ALMOST COMPATIBLE FUNCTIONS AND INFINITE LENGTH GAMES

STEVEN CLONTZ AND ALAN DOW

Abstract. TODO

1. Introduction

Definition 1. Two functions f, g are almost compatible, that is, $f \sim g$ when $\{a \in dom \ f \cap dom \ g : f(a) \neq g(a)\}$ is finite.

Marion Scheepers used almost compatible functions in [3] in order to study the existence of limited information strategies on a variation of the meager-nowhere dense game he introduced in [4].

Game 2. Let $Sch_{C,F}^{\cup,\subset}(\kappa)$ denote Scheepers' strict countable-finite union game with two players \mathscr{C} , \mathscr{F} . In round 0, \mathscr{C} chooses $C_0 \in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_0 \in [\kappa]^{<\omega}$. In round n+1, \mathscr{C} chooses $C_{n+1} \in [\kappa]^{\leq \omega}$ such that $C_{n+1} \supset C_n$, followed by \mathscr{F} choosing $F_{n+1} \in [\kappa]^{<\omega}$.

 \mathscr{F} wins the game if $\bigcup_{n<\omega} F_n \supseteq \bigcup_{n<\omega} C_n$; otherwise, \mathscr{C} wins.

Of course, with perfect information this game is trivial: during round n player \mathscr{F} simply chooses n ordinals from each of the n countable sets played by \mathscr{C} . However, if \mathscr{F} is limited to using information from the last k moves by \mathscr{C} during each round, the task becomes more difficult. Call such a strategy a k-tactical strategy or k-tactic; if using the round number is allowed, then the strategy is called a k-Markov strategy or a k-mark.

Definition 3. The statement $S(\kappa)$ (given as $S(\kappa, \aleph_0, \omega)$ in [3]) claims that there exist one-to-one functions $f_A : A \to \omega$ for each $A \in [\kappa]^{\leq \aleph_0}$ such that the collection $\{f_A : A \in [\kappa]^{\leq \aleph_0}\}$ is pairwise almost compatible.

In the same paper, Scheepers noted that $S(\omega_1)$ holds in ZFC, and that it's possible to force \mathfrak{c} to be arbitrarily large while preserving $S(\mathfrak{c})$. However, $S(\mathfrak{c}^+)$ always fails. This axiom may be applied to obtain a winning 2-tactic for \mathscr{F} in the countable-finite game.

In [1], Clontz related this game to a game which may be used to characterize the Menger covering property of a topological space.

 $Key\ words\ and\ phrases.$ TODO.

Game 4. Let $Men_{C,F}(X)$ denote the $Menger\ game$ with players \mathscr{C} , \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathcal{U}_n , followed by \mathscr{F} choosing subset F_n of X which may be finitely covered by \mathcal{U}_n .

 \mathscr{F} wins the game if $X = \bigcup_{n < \omega} F_n$, and \mathscr{C} wins otherwise.

This characterization is slightly different than the typical characterization in which the second player first chooses a specific finite subcollection \mathcal{F}_n of the cover itself and lets $F_n = \bigcup \mathcal{F}_n$, denoted as $G_{fin}(\mathcal{O}, \mathcal{O})$ in [5]. However, it's easily seen that these games are equivalent for perfect information strategies (so both characterize the Menger property), and this characterization is more convenient for our concerns.

Definition 5. Let $\kappa^{\dagger} = \kappa \cup \{\infty\}$ where κ is discrete and ∞ 's neighborhoods are the co-countable sets containing it.

The relationship between $Sch_{C,F}^{\cup,\subset}(\kappa)$ and $Men_{C,F}(\kappa^{\dagger})$ is strong; in both games \mathscr{C} essentially chooses a countable subset of κ followed by \mathscr{F} choosing a finite subset of that choice, and it's easy to see the winning perfect information strategy for \mathscr{F} in both games. In addition, it was shown in [1] that when $S(\kappa)$ holds, \mathscr{F} has a winning 2-Markov strategy in $Men_{C,F}(\kappa^{\dagger})$.

One source of motivation is to make progress on the following open question:

Question 6. Does there exist a topological space X for which $\mathscr{F} \uparrow Men_{C,F}(X)$ but $\mathscr{F} \uparrow Men_{C,F}(X)$? (That is, the second player can win the Menger game on X with perfect information but not with 2-Markov information.)

One might hope that $(\mathfrak{c}^+)^{\dagger}$ might answer this question in the affirmative as $S(\mathfrak{c}^+)$ fails, but we will show that assuming V = L, $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(\kappa^{\dagger})$ for all cardinals κ .

2. One-to-one and finite-to-one almost compatible functions

We may weaken Scheeper's $S(\kappa)$ as follows:

Definition 7. The statement $S'(\kappa)$ weakens $S(\kappa)$ be only requiring the witness functions $f_A:A\to\omega$ to be finite-to-one.

The following observation will be convenient.

Proposition 8. $S(\kappa)$ and $S'(\kappa)$ need only be witnessed by functions $\{f_A : A \in \mathcal{S}\}$ for some family \mathcal{S} cofinal in $[\kappa]^{\leq \aleph_0}$.

Proof. For each
$$A \in [\kappa]^{\leq \aleph_0}$$
 choose $A' \supseteq A$ from S and let $g_A = f_{A'} \upharpoonright A$.

In the next section we will show that $S'(\kappa)$ is sufficient for the applications to the Scheepers and Menger games. In the meantime, we will demonstrate that $S'(\kappa)$ is strictly weaker than $S(\kappa)$.

Recall the following.

Definition 9. A Kurepa family $\mathcal{K} \subseteq [\kappa]^{\aleph_0}$ on κ satisfies that $\mathcal{K} \upharpoonright A = \{K \cap A : K \in \mathcal{K}\}$ is countable for each $A \in [\kappa]^{\aleph_0}$.

Theorem 10. $S'(\kappa)$ holds whenever there exists a cofinal Kurepa family on κ .

Proof. Let $\mathcal{K} = \{K_{\alpha} : \alpha < \theta\}$ be a cofinal Kurepa family on κ . We first define $f_{\alpha} : K_{\alpha} \to \omega$ for each $\alpha < \theta$.

Suppose we've already defined pairwise almost compatible finite-to-one functions $\{f_{\beta}: \beta < \alpha\}$. To define f_{α} , we first recall that $\mathcal{K} \upharpoonright K_{\alpha}$ is countable, so we may choose $\beta_n < \alpha$ for $n < \omega$ such that $\{K_{\beta}: \beta < \alpha\} \upharpoonright K_{\alpha} \setminus \{\emptyset\} = \{K_{\alpha} \cap K_{\beta_n}: n < \omega\}$. Let $K_{\alpha} = \{\delta_{i,j}: i \leq \omega, j < w_i\}$ where $w_i \leq \omega$ for each $i \leq \omega$, $K_{\alpha} \cap (K_{\beta_n} \setminus \bigcup_{m < n} K_{\beta_m}) = \{\delta_{n,j}: j < w_n\}$, and $K_{\alpha} \setminus \bigcup_{n < \omega} K_{\beta_n} = \{\delta_{\omega,j}: j < w_{\omega}\}$. Then let $f_{\alpha}(\delta_{n,j}) = \max(n, f_{\beta_n}(\delta_{n,j}))$ for $n < \omega$ and $f_{\alpha}(\delta_{\omega,j}) = j$ otherwise.

We should show that f_{α} is finite-to-one. Let $n < \omega$. Since $f_{\alpha}(\delta_{m,j}) \geq m$, we only consider the finite cases where $m \leq n$. Since each f_{β_m} is finite-to-one, $f_{\beta_m}(\delta_{m,j}) \leq n$ for only finitely many j. Thus $f_{\alpha}(\delta_{m,j}) = \max(m, f_{\beta_m}(\delta_{m,j}))$ maps to n for only finitely many j.

We now want to demonstrate that $f_{\alpha} \sim f_{\beta_n}$ for all $n < \omega$. We again need only concern ourselves with $\delta_{m,j}$ for $m \le n$ since otherwise $\delta_{m,j} \notin K_{\beta_n}$. For m = n, we have $f_{\alpha}(\delta_{n,j}) = \max(n, f_{\beta_n}(\delta_{n,j}))$ which differs from $f_{\beta_n}(\delta_{n,j})$ for only the finitely many j which are mapped below n by f_{β_n} . For m < n and $\delta_{m,j} \in K_{\beta_n}$, we have $f_{\alpha}(\delta_{m,j}) = \max(m, f_{\beta_m}(\delta_{m,j}))$ which can only differ from $f_{\beta_n}(\delta_{m,j})$ for only the finitely many j which are mapped below m by f_{β_m} or the finitely many j for which the almost compatible $f_{\beta_n} \sim f_{\beta_m}$ differ.

3. TODO ALL THIS STUFF NEEDS EDITING STILL

Definition 11. A topological space is said to be ω -bounded if each countable subset of the space has compact closure.

Theorem 12. For each $n \in \omega$, there is a locally countable, ω -bounded topology on ω_n . Note that this means that the closure of any set has the same cardinality and weight as the set.

To prove the theorem, we must actually prove a stronger lemma.

Lemma 13. Assume that X has cardinality at most ω_n (for any $n \in \omega$), and is locally countable, locally compact, and the closure of each set has the same cardinality as the set. Then X has an ω -bounded extension with the same properties.

Proof. We prove this by induction on n. In fact, we make our inductive statement that if \tilde{X} is the extension of X, then $\tilde{X}\setminus X$ also has cardinality ω_n . If n=0, then we can just take the free union of two copies of X and then the one-point compactification. So suppose n>0 and that X is such a topology on the ordinal ω_n . For each $\alpha<\omega_n$, the closure of the initial segment α is bounded by some γ_α . Also, because X is locally countable, γ_α can be chosen so that α is contained in the interior of γ_α . There is a cub $C\subset\omega_n$ with the property that for each $\delta\in C$ and $\alpha<\delta$, γ_α is also less than δ . This implies that for each $\delta\in C$, the initial segment δ is open, and if δ has uncountable cofinality, then δ is clopen.

The proof will be easier to visualize if we now identify the points of X with the point set $\omega_n \times \{0\}$ and we will add the points $\omega_n \times \{1\}$ to create the extension. By induction on $\lambda \in C$ we define a topology on $\omega_n \times \{0\} \cup \lambda \times \{1\}$ so that $\omega_n \times \{0\}$ is an open subset. We also ensure, by induction, for each $\alpha < \lambda$, the closure of $\alpha \times 2$ is an ω -bounded subset of $\lambda \times 2$.

In the case that n=1, then choose any sequence $\lambda_n:n\in\omega$ increasing cofinal in λ . If λ is a limit in C, then we simply take the topology we have constructed so far on $\lambda\times 2$ and there's nothing more needs to be done. Otherwise we may assume that λ_0 is the predecessor of $\lambda\in C$ and we set Y_λ to equal the countable set $\overline{\lambda}\setminus\lambda$. For convenience, and with no loss, we assume that λ itself is a limit of limits. And we have a topology on

$$\lambda_0 \times 2 \cup (\lambda \cup Y_\lambda) \times \{0\}$$
.

Recursively choose clopen sets U_n in this topology so that $\lambda_0 \times 2 \subset U_0$, $U_n \cup \lambda_{n+1} \times \{0\}$ is contained U_{n+1} while U_{n+1} is disjoint from Y_{λ} . It is easy to see that we can have all the points in $(\lambda \setminus \{\lambda_n : n \in \omega\}) \times \{1\}$ be isolated, and arrange that $(\lambda_n, 1)$ is the point at infinity in the one-point compactification $U_n \cup (\lambda_n \times \{1\})$.

Now we handle the case n > 1 and we can shrink C and now assume that C is the closure of $\{\lambda \in C : \operatorname{cf}(\lambda) > \omega\}$. We again proceed by induction on $\lambda \in C$. If λ is a limit in C, then there is nothing to do: we simply have defined an appropriate topology on $\omega_n \times \{0\} \cup \lambda \times \{1\}$ so that for each $\mu \in C \cap \lambda$ with $\operatorname{cf}(\mu) > \omega$, $\mu \times 2$ is a clopen ω -bounded subspace. In case λ is not a limit of C, then λ has uncountable cofinality and a predecessor $\mu \in C$. We therefore have that $\lambda \times \{0\}$ is clopen in $\omega_n \times \{0\}$. We apply the induction hypothesis to the space $\lambda \times \{0\} \cup \mu \times 2$ to choose the topology on $\lambda \times 2$.

Corollary 14. There exists a Kurepa family cofinal in $[\omega_k]^{\omega}$ for each $k < \omega$.

Proof. This is actually a corollary of an observation of Todorcevic communicated by Dow in [TODO cite Gen Prog in Top I]: if every Kurepa family of size at most θ extends to a cofinal Kurepa family, then the same is true of θ^+ . So the result follows as every Kurepa family \mathcal{K} of size ω extends to the cofinal Kurepa family $[\bigcup \mathcal{K}]^{\omega}$.

We may alternatively obtain the result from the previous topological argument by using the family \mathcal{K} of compact sets in the constructed topology on ω_k as our witness. Of course, every Lindelöf set in a locally countable space is countable. Thus \mathcal{K} is cofinal in $[\omega_k]^{\omega}$ since for every countable set A, \overline{A} is compact and countable. It is Kurepa since for every countable set A, let (TODO)

Corollary 15. $S'(\omega_k)$ holds for all $k < \omega$.

As noted in [TODO cite Dow], Jensen's one-gap two-cardinal theorem under V=L [TODO cite] can be used to show that there exist cofinal Kurepa families on every cardinal.

Corollary 16 (V = L). $S'(\theta)$ holds for all cardinals.

In particular, $S(\omega_2)$ fails under CH, showing the two are distinct. Actually, CH is not required to have $S(\omega_2)$ fail.

We are going to need a technical lemma (available in Kunen).

Lemma 17. Assume that $G \subset \operatorname{Fn}(\omega_2, 2)$ is a generic filter, and let $\mu \in \omega_2$. Then the final model V[G] can be regarded as forcing with $\operatorname{Fn}(\omega_2 \setminus \mu, 2)$ over the model $V[G_{\mu}]$. In addition, for each $\operatorname{Fn}(\omega_2, 2)$ -name \dot{A} of a subset of ω (treat as a subset of $\omega \times \operatorname{Fn}(\omega_2, 2)$), there is a canonical name $\dot{A}(G_{\mu})$ where,

$$\dot{A}(G_{\mu}) = \{(n, p \upharpoonright [\mu, \omega_2)) : (n, p) \in \dot{A} \text{ and } p \upharpoonright \mu \in G_{\mu}\}$$

and we get that the valuation of $\dot{A}(G_{\mu})$ by the tail of the generic, $G_{\omega_2 \setminus \mu}$, is the same as the valuation of \dot{A} by the full generic.

Theorem 18. If we add ω_2 Cohen reals to a model of CH we get that Scheepers' $S(\omega_2)$ (still) fails.

Proof. The forcing poset is $\operatorname{Fn}(\omega_2, 2)$. Let $\{\dot{f}_A : A \in [\omega_2]^{\omega}\}$ be a family of names such that \dot{f}_A is a one-to-one function from A into ω . It suffices to only consider sets A from the ground model.

Put all the lemma stuff in an elementary submodel M of the universe (technically of $H(\kappa)$, or of V_{κ} , for some large κ). Standard methods says that we can assume that $|M| = \omega_1 = \mathfrak{c}$ and that $M^{\omega} \subset M$ (which means that every countable subset of M is a member of M).

Let $\lambda = M \cap \omega_2$ (same as the supremum of $M \cap \omega_2$). Consider the name $\dot{f}_{[\lambda,\lambda+\omega)}$. What is such a name? We can assume that it is a set of pairs of the form ((λ +

k, m), p) where $p \in Fn(\omega_2, 2)$ and, of course, $k, m \in \omega$. This is (almost) equivalent to saying that p forces that $\dot{f}_{[\lambda, \lambda + \omega)}(\lambda + k) = m$. We don't take all such p, in fact for each k, m it is enough to take a countable set of such p to get an equivalent name (Kunen calls it a nice name if we take, for each k, m an antichain that is maximal among such conditions). Given any such name \dot{f} , let supp (\dot{f}) denote the union of the domains of conditions p appearing in the name.

Also let Y equal $\operatorname{supp}(\dot{f}_{[\lambda,\lambda+\omega)})\setminus\lambda$. Let δ denote the order type of Y and let the 2-parameter notation $\varphi_{\mu,\lambda}$ be the order-preserving function from $\mu\cup Y$ onto the ordinal $\mu+\delta$. This lifts canonically to an order-preserving bijection $\varphi_{\mu,\lambda}$: $\operatorname{Fn}(\mu\cup Y,2)\mapsto\operatorname{Fn}(\mu+\delta,2)$. Similarly, we make sense of the name $\varphi_{\mu,\lambda}(\dot{f}_{[\lambda,\lambda+\omega)})$, call it F_M . Here simply, for each tuple $((k,m),p)\in\dot{f}_{[\lambda,\lambda+\omega)}$, we have that $((k,m),\varphi_{\mu,\lambda}(p))$ is in F_M . Again, let $\varphi_{\mu,\lambda}(\dot{f}_{[\lambda,\lambda+\omega)})$ be interpreted in the above sense as giving F_M (which is an element of M). Note that we do not regard δ as fixed here, but rather simply depending on the $\operatorname{supp}(\dot{f}_{[\lambda,\lambda+\omega)})$ described above. Other values replacing $\lambda>\mu$ will result in their own set Y and canonical map $\varphi_{\mu,\lambda}$; but one thing we do have to assume (or arrange) for other values α replacing λ is that $\operatorname{supp}(\dot{f}_{[\alpha,\alpha+\omega)})$ intersected with α is contained in μ .

Now the object F_M is an element of M, and M believes this statement is true:

$$(\forall \beta \in \omega_2) \ (\exists \beta < \lambda \in \omega_2) \ \operatorname{supp}(\dot{f}_{[\lambda, \lambda + \omega)}) \cap \lambda \subset \mu \ \text{and} \ F_M = \varphi_{\mu, \lambda}(\dot{f}_{[\lambda, \lambda + \omega)})$$

But now, this means that, not only is there an $\alpha \in M$, $F_M = \varphi_{\mu,\alpha}(\dot{f}_{[\alpha,\alpha+\omega)})$ but also that there is an increasing sequence $\{\alpha_{\xi} : \xi \in \omega_1\} \subset \lambda$ of such α 's satisfying that, for each ξ we have that $\operatorname{supp}(\dot{f}_{[\alpha_{\xi},\alpha_{\xi}+\omega)})$ is contained in $\alpha_{\xi+1}$.

Choose such a sequence. This means that if we let $A = \bigcup_{n>0} [\alpha_n, \alpha_n + \omega)$ we have the name \dot{f}_A in M. This then means that all the $((\beta, m), p)$ appearing in \dot{f}_A have the property that dom(p) is contained in M. There is, within M, a name \dot{g} satisfying that $\dot{f}_A(\alpha_n + k) = \dot{f}_{[\alpha_n, \alpha_n + \omega)}(\alpha_n + k)$ for all $k > \dot{g}(n)$.

We now apply the above Lemma using $\mu=\mu_0$ and we are now working in the extension $V[G_{\mu}]$. We will abuse the notation and use $\dot{f}_{[\alpha_n,\alpha_n+\omega)}$ instead of $\dot{f}_{[\alpha_n,\alpha_n+\omega)}(G_{\mu})$ as defined in the Lemma. We work for a contradiction. Something special has now happened, namely, the supports of the names $\{\dot{f}_{[\alpha_n,\alpha_n+\omega)}: 0 < n < \omega\}$ are pairwise disjoint and also disjoint from the support of the name $\dot{f}_{[\lambda,\lambda+\omega)}$ (under the same convention about G_{μ} . And not only that, these names are pairwise isomorphic (in the way that they all map to F_M).

Since A is disjoint from $[\lambda, \lambda + \omega)$, there must be an integer ℓ together with a condition $q \in Fn(\omega_2 \setminus \mu, 2)$ satisfying that for all $n > \ell$, q forces that

"if
$$k > \dot{g}(n)$$
 (since $\alpha_n + k \in A$) then $\dot{f}_{[\alpha_n, \alpha_n + \omega)}(\alpha_n + k) \neq \dot{f}_{[\lambda, \lambda + \omega)}(\lambda + k)$ ".

Choose n large enough so that $dom(q) \cap [\alpha_n, \mu_{n+1})$ is empty. Choose $q_1 < q \upharpoonright \lambda$ (in M) so that

$$\varphi_{\mu,\alpha_n}(q_1 \upharpoonright \operatorname{supp}(\dot{f}_{[\alpha_n,\alpha_n+\omega)}) = \varphi_{\mu,\lambda}(q \upharpoonright \operatorname{supp}(\dot{f}_{[\lambda,\lambda+\omega)})$$

and then (again in M) choose $q_2 < q_1$ so that it both forces a value L on $\ell + \dot{g}(n)$ and subsequently forces a value m on $\dot{f}_{[\alpha_n,\alpha_n+\omega)}(\alpha_n+L+1)$. But now, again

calculate

$$q_3 = \varphi_{\mu,\lambda}^{-1} \circ \varphi_{\mu,\alpha_n}(q_2 \upharpoonright \operatorname{supp}(\dot{f}_{[\alpha_n,\alpha_n+\omega)}))$$

and, by the isomorphisms, we have that q_3 forces that $\dot{f}_{[\lambda,\lambda+\omega)}(\lambda+L+1)=m$.

Technically (or with more care) all of this is taking place in the poset $\operatorname{Fn}(\omega_2 \setminus \mu, 2)$ and this means that q_3 and q are all compatible with each other.

Follow the bouncing ball: it suffices to consider $q(\beta) = e$ and to assume that $q_3(\beta)$ is defined. Since $q_3(\beta)$ is defined, we have that there is a $\beta' \in dom(q_2)$ such that $\varphi_{\mu,\lambda}(\beta) = \varphi_{\mu,\alpha_n}(\beta')$, and that $q_3(\beta) = q_2(\beta')$. But, by definition of q_1 , $\beta' \in dom(q_1)$ and even that $q_1(\beta') = q(\beta)$. Then, since $q_2 < q_1$, we have that $q_2(\beta') = q_1(\beta') = q(\beta)$. This completes the circle that $q_3(\beta) = q(\beta)$.

Finally, our contradiction is that $q_3 \cup q_2 \cup q$ forces that k = L + 1 violates the quoted statement above.

On the other hand, it's also consistent that $S'(\theta)$ can fail.

Theorem 19. There's a model where $S'(\omega_{\omega})$ fails.

Proof. We will need the model constructed in [2] in which an instance of Chang's conjecture $(\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0)$ is shown to fail.

We can take as a given (as shown in [2, Theorem 5]) that we may assume that we have a model V of GCH in which there are regular limit cardinals $\kappa < \lambda$ satisfying that $(\lambda^{+\omega+1}, \lambda^{+\omega}) \rightarrow (\kappa^{+\omega+1}, \kappa^{+\omega})$.

What this says is that if L is a countable language with at least one unary relation symbol R and M is a model of L with base set $\lambda^{+\omega+1}$ in which the interpretation of R has cardinality $\lambda^{+\omega}$, then M has an elementary submodel N of cardinality $\kappa^{+\omega+1}$ in which $R \cap N$ has cardinality $\kappa^{+\omega}$ (of course $R \cap N$ is the interpretation of R in N because $N \prec M$).

The interested reader will want to know that it is shown in [2] that if κ is a 2-huge cardinal and j is the 2-huge embedding with critical point κ , then with $\lambda = j(\kappa)$ one has that $(\lambda^{+\omega+1}, \lambda^{+\omega}) \rightarrow (\kappa^{+\omega+1}, \kappa^{+\omega})$ holds.

Let $\{h_{\xi}: \xi \in \lambda^{+\omega+1}\}$ be a scale in $\Pi\{\lambda^{+n+1}: n \in \omega\}$ ordered by the usual mod finite coordinatewise ordering. For convenience we may assume that $h_{\xi}(n) \geq \lambda^{+n}$ for all ξ and all n. If P is any poset of cardinality less than $\lambda^{+\omega}$, then in the forcing extension by P, the sequence $\{h_{\xi}: \xi \in \lambda^{+\omega+1}\}$ remains cofinal in $\Pi\{\lambda^{+n+1}: n \in \omega\}$.

The forcing notion \mathbb{P}_0 is simply the finite condition collapse of $\kappa^{+\omega}$, i.e. $\mathbb{P}_0 = (\kappa^{+\omega})^{<\omega}$. In the forcing extension by \mathbb{P}_0 , one now has that the ordinal $\kappa^{+\omega+1}$ from V is the first uncountable cardinal \aleph_1 . Then in this forcing extension we let \mathbb{P}_1 be the countable condition Levy collapse, $Lv(\lambda,\omega_2)$, which collapses all cardinals less than λ to have cardinality at most \aleph_1 . The poset \mathbb{P}_1 has cardinality λ . We treat \mathbb{P}_1 as containing \mathbb{P}_0 as a subposet by identifying each $(p_0,1)$ with p_0 . After forcing with $\mathbb{P}_0 * \mathbb{P}_1$ we will have that ω_1 is the ordinal $(\kappa^{+\omega+1})^V$, ω_2 is the ordinal λ , and ω_{ω} is the ordinal $(\lambda^{+\omega})^V$.

Now we assume that we have an assignment $\dot{f}_{\dot{A}}$ of a $\mathbb{P}_0 * \mathbb{P}_1$ -name of a finite-to-one function from \dot{A} into ω for each $\mathbb{P}_0 * \mathbb{P}_1$ -name of a countable subset of $\lambda^{+\omega+1}$. We will obtain a contradiction.

Let $\{\dot{A}_{\xi}: \xi \in \lambda^{+\omega+1}\}$ be an enumeration of all the nice \mathbb{P}_0 -names of countable subsets of $\lambda^{+\omega}$. For each $\xi \in \lambda^{+\omega+1}$, let \dot{f}_{ξ} be another notation for $\dot{f}_{\dot{A}_{\xi}}$. Since \mathbb{P}_0 forces that \mathbb{P}_1 is countably closed, the collection of all nice \mathbb{P}_0 -names will produce all the countable sets in the extension by $\mathbb{P}_0 * \mathbb{P}_1$, but $\mathbb{P}_0 * \mathbb{P}_1$ can introduce new enumerations of these names. For each $\xi \in \lambda^{+\omega+1}$, there is a minimal ζ_{ξ} so that $\dot{A}_{\zeta_{\xi}}$ is the canonical name for the range of h_{ξ} . This means that $\dot{f}_{\zeta_{\xi}} \circ h_{\xi}$ is simply the $\mathbb{P}_0 * \mathbb{P}_1$ -name of a finite-to-one function from ω to ω . For each $\xi \in \lambda^{+\omega+1}$, choose any $p_{\xi} \in \mathbb{P}_0 * \mathbb{P}_1$ so that there is a nice \mathbb{P}_0 -name, \dot{H}_{ξ} , that is forced by p_{ξ} to equal $\dot{f}_{\zeta_{\xi}} \circ h_{\xi}$. Choose $\Lambda \subset \lambda^{+\omega+1}$ of cardinality $\lambda^{+\omega+1}$ and so that there is a pair p, \dot{H} satisfying that $p_{\xi} = p$ and $\dot{H}_{\xi} = \dot{H}$ for all $\xi \in \Lambda$. We may assume that p is in a generic filter G.

Let $\{x_{\xi}: \xi \in \lambda^{+\omega+1}\}$ be any enumeration of $H(\lambda^{+\omega+1})$ such that $\{x_{\xi}: \xi \in \lambda^{+\omega}\}$ is also equal to $H(\lambda^{+\omega})$. We choose this enumeration in such a way that $x_{\xi} \in x_{\eta}$ implies $\xi < \eta$. We use relation symbol R_0 to code (and well order) $(H(\lambda^{+\omega+1}), \in)$ as follows: $(\xi, \eta) \in R_0$ if and only if $x_{\xi} \in x_{\eta}$. Let R_1 be a binary relation on $\kappa^{+\omega}$ so that $(\kappa^{+\omega}, R_1)$ is isomorphic to \mathbb{P}_0 . Let R_2 be a binary relation on λ so that $R_2 \cap (\kappa^{+\omega} \times \kappa^{+\omega}) = R_1$ and (λ, R_2) is isomorphic to $\mathbb{P}_0 * \mathbb{P}_1$. Let ψ be the poset isomorphism from λ to $\mathbb{P}_0 * \mathbb{P}_1$.

We continue coding. We can code the sequence $\{h_{\xi}: \xi \in \lambda^{+\omega+1}\}$ as another binary relation R_3 on $\lambda^{+\omega+1}$ where $R_3 \cap (\{\xi\} \times \lambda^{+\omega+1}) = \{(\xi, h_{\xi}(n)) : n \in \omega\}$ for each $\xi \in \lambda^{+\omega+1}$. The relation symbol R_4 can code the sequence $\{\dot{A}_{\xi}: \xi \in \lambda^{+\omega+1}\}$ where $(\xi, \alpha, \zeta) \in R_4$ if and only if $(\check{\alpha}, \psi(\zeta))$ is in the name \dot{A}_{ξ} . Let R_5 code this collection, i.e. $(\gamma, n, m, \eta) \in R_5$ if and only if $((n, m), \psi(\eta)) \in \dot{H}_{\gamma}$. Also let R_6 code (equal) the set Λ . Finally we use the relation symbol R_7 to similarly code the sequence $\{\dot{f}_{\xi}: \xi \in \lambda^{+\omega+1}\}$: $(\xi, \alpha, n, \zeta) \in R_7$ if and only if $((\alpha, n), \psi(\zeta))$ is in the name \dot{f}_{ξ} .

Needless to say, the unary relation symbol R is interpreted as the set $\lambda^{+\omega}$ for the application of $(\lambda^{+\omega+1}, \lambda^{+\omega})$ — $(\kappa^{+\omega+1}, \kappa^{+\omega})$. Now we have defined our model M of the language $L = \{\in, R, R_0, \ldots, R_7\}$, and we choose an elementary submodel N witnessing $(\lambda^{+\omega+1}, \lambda^{+\omega})$ — $(\kappa^{+\omega+1}, \kappa^{+\omega})$. Of course N is really just a $\kappa^{+\omega+1}$ sized subset of $\lambda^{+\omega+1}$ with the additional property that $N \cap \lambda^{+\omega}$ has cardinality $\kappa^{+\omega}$. In the forcing extension N has cardinality ω_1 and $A = N \cap \lambda^{+\omega}$ is countable.

We will need the following claim from [2]

Claim. We may assume that N satisfies that $N \cap \kappa^{+\omega+1}$ is transitive (i.e. an initial segment).

Proof of Claim. Suppose our originally supplied N fails the conclusion of the claim. We know that $\kappa^{+\omega} \in N$, (via R_1) in which case so is $\kappa^{+\omega+1}$.

Then set $\beta_0 = \sup(N \cap \kappa^{+\omega+1})$ and consider the Skolem closure $Hull(N \cup \beta_0, M)$. A little informally (in that we have to formalize the enumeration of formulas) let $\{\varphi_n : n \in \omega\}$ is the enumeration of all formulas in the language L, and let ℓ_n

be the minimal integer such that the free variables of φ_n are among $\{v_0,\ldots,v_{\ell_n}\}$. Then, for each tuple $\langle \xi_1, \dots, \xi_{\ell_n} \rangle$ of elements of $\lambda^{+\omega+1}$, we define $f_n(\xi_1, \dots, \xi_{\ell_n})$ to be the minimal $\xi_0 \in \lambda^{+\omega+1}$ such that $M \models \varphi_n(\xi_0, \dots, \xi_{\ell_n})$. If there is no such ξ_0 , in other words if $M \models \neg \exists x \ \varphi_n(x, \xi_1, \dots, \xi_{\ell_n})$, then set $f_n(\xi_1, \dots, \xi_{\ell_n})$ to be 0. Now $Hull(N \cup \beta_0, M)$ is just the minimal superset X of $N \cup \beta_0$ that satisfies that $f_n[X^{\{1,\dots,\ell_n\}}] \subset X$ for all n. Since this is simply a large algebra, we can generate all the terms t of the algebraic operations $\{f_n : n \in \omega\}$. It is easily seen that for each $\zeta \in X$, there is a term $t(v_1, \ldots, v_m)$ such that $\zeta = t(\delta_1, \ldots, \delta_m)$ for some sequence $\langle \delta_1, \ldots, \delta_m \rangle$ with each $\delta_i \in N \cup \beta_0$. Assume that $\zeta \in \kappa^{+\omega+1}$. By re-indexing the variables in the term we can assume that there is an $n \leq m$ so that $\delta_i < \beta_0$ for $1 \leq i \leq n$ and $\kappa^{+\omega+1} \leq \delta_i$ for $n < i \leq m$. Let \vec{a} denote the tuple $\langle \delta_{n+1}, \ldots, \delta_m \rangle$. Choose $\eta \in N \cap \kappa^{+\omega+1}$ large enough so that $\{\delta_1, \ldots, \delta_n\}$ is contained in η . Since set-membership in M is coded by R_0 rather than \in we have to argue a little less naturally. Consider the set $s_0(\eta, \vec{a}) = \{t(\gamma_1, \dots, \gamma_n, \vec{a}) : \{\gamma_1, \dots, \gamma_n\} \in [\eta]^{\leq n}\}.$ Clearly $s_0(\eta, \vec{a})$ is a member of $H(\lambda^{+\omega+1})$. Now define $s_1(\eta, \vec{a})$ to be $\{x_\alpha : \alpha \in A\}$ $s_0(\eta, \vec{a})$, and choose the unique $\zeta_1 \in \lambda^{+\omega+1}$ such that $x_{\zeta_1} = s_1(\eta, \vec{a})$. We claim that $\zeta_1 \in N$. Note that $\alpha R_0 \zeta_1$ holds if and only if $\alpha \in s_0(\eta, \vec{a})$, and therefore

$$M \models (\forall \alpha) \left[\alpha R_0 \zeta_1 \text{ iff } (\exists \gamma_1 \in \eta) \cdots (\exists \gamma_n \in \eta) (\alpha = t(\gamma_1, \dots, \gamma_n, \vec{a})) \right].$$

By elementarity then we have that $\zeta_1 \in N$, and by similar reasoning the supremum, ζ_0 , of $\zeta_1 \cap \kappa^{+\omega+1}$ is also in N. This of course means that $\zeta < \xi_0$.

We use the elementarity of N to deduce properties of the families $\{\dot{A}_{\xi}: \xi \in N\}$ and $\{\dot{f}_{\xi}: \xi \in N\}$. Actually the collection we are most interested in is the family $\{h_{\xi}: \xi \in \Lambda \cap N\}$.

Since $\mathfrak{c} < \kappa^{+\omega+1}$ there is a function $\langle \varrho_n : n \in \omega \rangle$ in $\Pi_n \lambda^{+\omega}$ such that the sequence $\{h_{\xi} : \xi \in N\}$ is unbounded mod finite in $\Pi_n \varrho_n$ (by Shelah's pcf theory). This is in Jech somewhere. For each $n, \ \rho_n \leq \sup(N \cap \lambda^{+n+2})$.

Since \mathbb{P}_0 has cardinality less than $|N| = \kappa^{+\omega+1}$, the sequence $\{h_\xi : \xi \in \Lambda \cap N\}$ remains unbounded mod finite in $\Pi_n \varrho_n$ (and in $\Pi_n (\varrho_n \cap N)$). Now pass to the extension by $G \cap \mathbb{P}_0$ and let H be the function $\operatorname{val}_G(\dot{H})$, and we recall that $f_{\zeta_\xi}(h_\xi(n)) = H(n)$ for all $n \in \omega$. Now pass to the full extension V[G] and again, since \mathbb{P}_1 was forced to be countably closed, the family $\{h_\xi : \xi \in \Lambda \cap N\}$ is still unbounded in $\Pi_n(\varrho_n \cap N)$. We let A be the countable set $N \cap \lambda^{+\omega}$, and for each $\xi \in \Lambda \cap N$, there is an n_ξ such that $f_\xi(h_\xi(m)) = f_A(h_\xi(m))$ for all $m > n_\xi$. There is a single n so that $\Lambda_n = \{\xi \in \Lambda \cap N : n_\xi = n\}$ has cardinality ω_1 , and thus $\{h_\xi : \xi \in \Lambda_n \cap N\}$ is also unbounded in $\Pi_n(\varrho_n \cap N)$. This certainly implies that there is an m > n such that $\{h_\xi(m) : \xi \in \Lambda_n \cap N\}$ is infinite. This completes the proof since $f_A(h_\xi(m)) = H(m)$ for all $\xi \in \Lambda_n \cap N$.

Question 20. Is $S'(\theta)$ equivalent to having a Kurepa family on θ ?

APPLICATIONS!

Theorem 21. Figure 1 holds. (Proven in [TODO cite]) (Actually, TODO double-check that it works with just S', particularly the strict game)

FIGURE 1. Diagram of Scheeper/Menger game implications with $S'(\kappa)$

It was left open if these implications can be reversed. The answer is consistently no.

Theorem 22. Let α be the limit of increasing ordinals β_n for $n < \omega$. If $\mathscr{F} \uparrow_{2-mark}$ $Sch_{C,F}^{\cap}(\omega_{\beta_n})$ for all $n < \omega$, then $\mathscr{F} \uparrow_{2-mark}$ $Sch_{C,F}^{\cap}(\omega_{\alpha})$.

Proof. Let σ_n be a winning 2-mark for \mathscr{F} in $Sch_{C,F}^{\cap}(\omega_{\beta_n})$. Define the 2-mark σ for \mathscr{F} in $Sch_{C,F}^{\cap}(\omega_{\alpha})$ as follows:

$$\sigma(\langle C \rangle, 0) = \sigma_0(\langle C \cap \omega_{\beta_0} \rangle, 0)$$

$$\sigma(\langle C, D \rangle, n+1) = \sigma_{n+1}(\langle D \cap \omega_{\beta_{n+1}} \rangle, 0) \cup \bigcup_{m \leq n} \sigma_m(\langle C \cap \omega_{\beta_m}, D \cap \omega_{\beta_m} \rangle, n-m+1)$$

Let $\langle C_0, C_1, \ldots \rangle$ be an attack by $\mathscr C$ in $Sch_{C,F}^{\cap}(\omega_{\alpha})$, and $\alpha \in \bigcap_{n < \omega} C_n$. Choose $N < \omega$ with $\alpha < \omega_{\beta_{N+1}}$. Consider the attack $\langle C_{N+1} \cap \omega_{\beta_{N+1}}, C_{N+2} \cap \omega_{\beta_{N+1}}, \ldots \rangle$ by $\mathscr C$ in $Sch_{C,F}^{\cap}(\omega_{\beta_{N+1}})$. Since σ_{N+1} is a winning strategy and $\alpha \in \bigcap_{n < \omega} C_{N+n+1} \cap \omega_{\beta_{N+1}}$, either $\alpha \in \sigma_{N+1}(\langle C_{N+1} \cap \omega_{\beta_{N+1}} \rangle, 0)$ and thus $\alpha \in \sigma(\langle C_N, C_{N+1} \rangle, N+1)$, or $\alpha \in \sigma_{N+1}(\langle C_{N+M+1} \cap \omega_{\beta_{N+1}}, C_{N+M+2} \cap \omega_{\beta_{N+1}} \rangle, M+1)$ for some $M < \omega$ and thus $\alpha \in \sigma(\langle C_{N+M+1}, C_{N+M+2} \rangle, N+M+2)$. Thus σ is a winning strategy. \square

Theorem 23. Let α be the limit of increasing ordinals β_n for $n < \omega$. If $\mathscr{F} \uparrow_{2-mark}$ $Sch_{C,F}^{1,\subseteq}(\omega_{\beta_n})$ for all $n < \omega$, then $\mathscr{F} \uparrow_{2-mark}$ $Sch_{C,F}^{1,\subseteq}(\omega_{\alpha})$.

Proof. Let σ_n be a winning 2-mark for \mathscr{F} in $Sch_{C,F}^{1,\subseteq}(\omega_{\beta_n})$. Define the 2-mark σ for \mathscr{F} in $Sch_{C,F}^{1,\subseteq}(\omega_{\alpha})$ as follows:

$$\sigma(\langle C \rangle, 0) = \sigma_0(\langle C \cap \omega_{\beta_0} \rangle, 0)$$

$$\sigma(\langle C, D \rangle, n+1) = \sigma_{n+1}(\langle D \cap \omega_{\beta_{n+1}} \rangle, 0) \cup \bigcup_{m \leq n} \sigma_m(\langle C \cap \omega_{\beta_m}, D \cap \omega_{\beta_m} \rangle, n-m+1)$$

Let $\langle C_0, C_1, \ldots \rangle$ be an attack by $\mathscr C$ in $Sch_{C,F}^{1,\subseteq}(\omega_\alpha)$, and $\alpha \in C_0$. Choose $N < \omega$ with $\alpha < \omega_{\beta_{N+1}}$. Consider the attack $\langle C_{N+1} \cap \omega_{\beta_{N+1}}, C_{N+2} \cap \omega_{\beta_{N+1}}, \ldots \rangle$ by $\mathscr C$

in $Sch_{C,F}^{1,\subseteq}(\omega_{\beta_{N+1}})$. Since σ_{N+1} is a winning strategy and $\alpha \in C_{N+1} \cap \omega_{\beta_{N+1}}$, either $\alpha \in \sigma_{N+1}(\langle C_{N+1} \cap \omega_{\beta_{N+1}} \rangle, 0)$ and thus $\alpha \in \sigma(\langle C_N, C_{N+1} \rangle, N+1)$, or $\alpha \in \sigma_{N+1}(\langle C_{N+M+1} \cap \omega_{\beta_{N+1}}, C_{N+M+2} \cap \omega_{\beta_{N+1}} \rangle, M+1)$ for some $M < \omega$ and thus $\alpha \in \sigma(\langle C_{N+M+1}, C_{N+M+2} \rangle, N+M+2)$. Thus σ is a winning strategy. \square

Corollary 24. It is consistent that $S'(\omega_{\omega})$ fails, but as $S'(\omega_k)$ holds for all $k < \omega$, we have $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Sch_{C,F}^{\cap}(\omega_{\omega})$ and $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Sch_{C,F}^{1,\subseteq}(\omega_{\omega})$.

A tricky topological question: does $\mathscr{F} \uparrow Men_{C,F}(X)$ imply $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$? (C showed that) Under V = L, we cannot hope to find a counterexample using $X = \kappa^{\dagger}$ since $S'(\kappa)$ and thus $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Sch_{C,F}^{\cap}(\kappa)$ always holds.

Definition 25. Let R_{ω} be the real numbers with the topology of the usual open intervals with countably many elements removed.

Theorem 26. $\mathscr{F} \uparrow Men_{C,F}(R_{\omega})$. If there exists a Kurepa family on the reals, then $\mathscr{F} \uparrow Men_{C,F}(R_{\omega})$.

References

- [1] Steven Clontz. Applications of limited information strategies in menger's game (preprint). 2015.
- [2] Jean-Pierre Levinski, Menachem Magidor, and Saharon Shelah. Chang's conjecture for \aleph_{ω} . Israel J. Math., 69(2):161–172, 1990.
- [3] Marion Scheepers. Concerning n-tactics in the countable-finite game. J. Symbolic Logic, 56(3):786–794, 1991.
- [4] Marion Scheepers. Meager-nowhere dense games. I. n-tactics. Rocky Mountain J. Math., 22(3):1011-1055, 1992.
- [5] Marion Scheepers. Combinatorics of open covers. I. Ramsey theory. Topology Appl., 69(1):31–62, 1996.

Department of Mathematics and Statistics, UNC Charlotte, Charlotte, NC 28262 $E\text{-}mail\ address:}$ steven.clontz@gmail.com

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNC CHARLOTTE, CHARLOTTE, NC 28262 E-mail address: adow@uncc.edu