Parallel Fringe Search

Christian Zeman & Lukas Mosimann

ETH Zürich

Design of Parallel and High-Performance Computing

December 14, 2013

Overview

- Algorithm
- 2 What we have done
- 3 Locking concepts
- 4 Benchmarks
 - Threshold vs. Path Length

Fringe Search

What we have done

- Serial implementation of fringe search (much faster than Boost A*)
- Parallel implementation with Open MP
 - 2 different locking concepts
 - Locks implemented using inline assembly (faster than Open MP locks)
- Benchmarking
 - Strong scaling
 - Weak scaling
 - Path quality

Locking concept: Deadlock prevention

Locking concept: 2 concepts for removing nodes

Standard:

Lock node and predecessor as shown before and remove it right away

Lazy locking:

- Don't lock anything and just mark the node as removed
- Other threads will clean up and remove it later

Threshold update

- Threshold += 0.1
- Threshold += 1
- Threshold += 10

Threshold update

- Threshold += 0.1
- Threshold += 1
- Threshold += 10

Threshold update

- Threshold += 0.1
- Threshold += 1
- Threshold += 10

Relative error path length (compared to A*)

relative Error, 2048 x 2048, threshold=1

Benchmark runtime

- Runtime vs. A* from Boost Graph Library
- Using "cross graph" and 400 10'000 nodes
- Threshold += 1
- 20 runs per size
- Intel Core 2 P9600 @ 2.53 GHZ

Benchmark path length

- Runtime vs. A* from Boost Graph Library
- Using "cross graph" and 400 10'000 nodes
- Threshold += 1
- 20 runs per size
- Intel Core 2 P9600 @ 2.53 GHZ

Benchmark path length

# Nodes	A-Star	Fringe	Difference	Difference in %
400	69.731	70.6903	0.9593	1.37 %
900	101.071	102.638	1.567	1.55 %
1600	133.304	136.326	3.022	2.27 %
2500	165.47	167.891	2.421	1.46 %
3600	195.363	198.115	2.752	1.41 %
4900	227.957	231.554	3.597	1.58 %
6400	258.5	261.49	2.99	1.16 %
8100	288.961	293.483	4.522	1.56 %
10000	321.263	325.853	4.59	1.43 %

Project Status

What we still have to do:

- Implement parallel version
- Benchmarking (strong/weak scaling)
- Threshold fine-tuning
- Write report

The End