Multi-label classification

Procedure

- 1. Selective picking of HTML tags' content to include in the dataset.
- 2. Removal of accented and non-ascii characters, stopwords, languages other than English, and punctuations.
- 3. Lowercasing and tokenization.
- 4. Perform TF-IDF on the dataset.
- 5. Pick tokens having highest TF-IDF weights in the document.

Selection criteria:

- 1. If more than 20 tokens, pick 60% of tokens, TF-IDF weight sorted.
- 2. If between 6 and 20 tokens, pick 70% of tokens, TF-IDF weight sorted.
- 3. If less than 6 tokens, include all tokens.
- 6. Using FastText, generate embeddings of the picked tokens from the document.
- 7. Calculate similarity of every picked token with every generalized token from the list agriculture, banking, blockchain, business, crime, cryptocurrency, economy, education, entertainment, environment, fashion, finance, food, governance, health, network, politics, security, software, sport, technology, web.
- 8. Assign the generalized token with the highest similarity score to the token.
 - <u>Assignment criteria</u>: only assigned if similarity is more than 60%; manual assignment of certain labels such as {onion, tor} to network.
- 9. Create a set of assigned generalized tokens per document thereby used as the labels in the classification.
- 10. Split the dataset into train and test sets.
 - Split criteria: 25% testing set and 75% training set.
- 11. Fit the classifier neural network model.
- 12. Evaulate the model using the test set.

Results and Discussion

Generic Hidden Data Wiki

Given: Raw HTML pages

```
<IDOCTYPE html>

<html lang="zh-Hans" id="facebook" class="no_js">
<html lang="zh-Hans" id="zh-Hans" id="zh-Hans" class="no_js">
<html lang="zh-Hans" id="zh-Hans" id="zh-Hans" class="no_js">
<html lang="zh-Hans" id="zh-Hans" id="zh-Ha
```

Assigned generalized labels' distribution

Trained TensorFlow Neural Network model architecture

Model fitting plots

Model evaluation report

			Market Carry and Control	
	precision	recall	f1-score	support
				7.60
agriculture	0.75	0.75	0.75	8
banking	0.28	0.70	0.40	10
business	0.95	0.92	0.94	878
commerce	0.71	0.63	0.67	19
crime	0.44	0.36	0.40	22
cryptocurrency	0.00	0.00	0.00	2
economy	0.68	0.83	0.75	110
education	0.93	0.73	0.82	247
entertainment	0.94	0.65	0.77	201
environment	0.72	0.54	0.61	80
fashion	0.65	0.51	0.57	47
finance	0.76	0.84	0.80	219
food	0.92	0.92	0.92	330
governance	0.95	0.94	0.95	548
health	0.82	0.84	0.83	320
network	0.79	0.64	0.71	131
politics	0.88	0.63	0.74	73
security	0.97	0.94	0.95	677
software	0.66	0.82	0.73	142
sport	0.92	0.87	0.90	94
micro avg	0.88	0.85	0.87	4158
macro avg	0.74	0.70	0.71	4158
weighted avg	0.89	0.85	0.87	4158
samples avg	0.92	0.91	0.91	4158

Drug dataset

Given: unclean dataset

Assigned generalized labels' distribution

Classifier Neural Network model architecture

Model fitting plot

Classifier evaluation report

	precision	recall	f1-score	support
	precision	recatt	11-30016	Support
agriculture	0.51	0.57	0.54	53
banking	0.83	0.80	0.82	81
business	0.78	0.47	0.58	346
commerce	0.80	0.70	0.75	74
crime	0.81	0.72	0.76	234
cryptocurrency	0.88	0.82	0.85	28
economy	0.62	0.63	0.62	92
education	0.58	0.54	0.56	180
entertainment	0.85	0.64	0.73	242
environment	0.81	0.75	0.78	174
fashion	0.71	0.71	0.71	51
finance	0.74	0.52	0.61	135
food	0.73	0.72	0.73	125
governance	0.65	0.55	0.59	150
health	0.76	0.66	0.71	246
network	0.78	0.75	0.77	106
politics	0.83	0.63	0.72	311
security	0.61	0.65	0.63	104
software	0.41	0.50	0.45	56
sport	0.90	0.82	0.86	234
technology	0.82	0.42	0.55	265
web	0.94	0.88	0.91	56
micro avg	0.76	0.63	0.69	3343
macro avg	0.74	0.66	0.69	3343
weighted avg	0.77	0.63	0.68	3343
samples avg	0.65	0.64	0.63	3343
			0.0000	

Explanation for the results

The **body** feature in the given dataset is poorly scraped and contain **ARCHIVE** sections within it, which contains additional unncessary and irrelevant words. Presence of these words in the data is unseparable and causes the noise which reflects in the results of model evaluation as well as label generation.

Example of working model

1) Page input

Predicted labels – business, network.

2) Page input

Samsungstore Buy original Samsung products from retailer without VAT and taxes! develop free website We are back! Important notice! We are ready to take your orders, delivery only within Europe! Smaller delays can happen during the shipment. Only original items We order everything directly from Samsung wholesalers, you will receive only new, original, unopened products Fast, safe shipping currently to Europe only. Shipping takes 2-5 days. Shipping is free. Secure We are trusted sellers since 2013 on deepweb. We need only your name a delivery address. We accept any kind of cryptocurrency. Escrow is accepted. Mobirise Best selling items* *Only examples, we can order any other Samsung items Product Galaxy S20 4G 128Gb Galaxy S20 5G 128Gb Price (in EUR) 539 -599 -

Predicted labels: business

3) Page input

Predicted labels: network

4) Page input

Predicted labels: security

5) Page input

Predicted Labels: entertainment

6) Page input

Page input:

Predicted labels: network, finance