	DLD Quiz			
Name:		Roll No		
		Time Allowed: 30 min		
✓ Do not spend too muc	ch time on a single question.	•		
	Section 1:	3+2 marks		
Q1. Starting from state 00 in the	he state diagram shown belov	w, determine the state		
transitions and output sequence	e that will be generated when	an input sequence of		
0101101 is applied.	_	0/0		
		1/0		
State Transitions:		$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$		
0000010111-	0001	0/1		
00 00 01 00 01 11	00 01	0/1 1/0		
		0/1		
		$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$		
		\ 0 \ \ \ 1/0 \ 1 \		
		1/3		
		1/0		
Output Sequence:0010010)	1,0		
(Can any flip flop(s) other	than ±xxx/ xxx adds triggered I	D Elip flop can be used in		
Q2. Can any flip flop(s) other registers? Why? Why not? Giv				
registers: why: why hot: Giv	ve reasons. (Not more than 4	illies) 2 marks		
D flinflore more feesible one	of			
D-flipflops more feasible, one		-tI		
	input volt (directly) = value	stored		

Section 2:

Q1. The state equation for L-M flip-flop is Q(t+1) = L'Q(t) + LM. Construct a state transition table (characteristic table) for the flip flop. **3 marks**

L M	Q(t+1)
0 0	Q(t)
0 1	Q(t)
1 0	0
1 1	1

DLD Quiz

Q2.(a). What should be the logical value of clock Pulse (CP) at the time of enabling the flip-flop whose diagram is shown below? **2+3+4 marks**

(b) Draw the characteristic table of the above flip flop.

СР	A	В	Q(t+1)	
1	X	X	Q(t) No change	
0	0	0	0 undefined asQ'=0 too	
0	0	1	0 reset	
0	1	0	1 set	
0	1	1	Q(t) No change	

(c) What is the characteristic equation of this flip flop?

A	В	Q(t)	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$Q(t+1) = AB' + AQ(t)$$

Q3. How can a J-K flip flop be converted into a T flip flop? A T-type FF changes its state at every clock pulse if its T-input is '1' and it remains in the present state as long as its T-input is '0'.

3 marks

DLD Quiz

as when
T =0 No change
T = 1 Q'(t)