Diamenton	C	04	Level	Ctoons	Course		Other biomarkers	Canala salatad	Articles
Biomarkers	Genes	Other gene names	Level	Stages	Sources	patnway	Other biomarkers	Sepsis related	ATRICES
1.PCT	CALCA	Calationin Related Polypreptide Alpha CGRP Alpha Calationin Colling Alpha Calationin Colling Calationin Colling Calationin Calationin Gene Related Peptide 1 Calationin Gene Related Peptide 1 Calationin Gene Related Peptide 2 Calationin Colling Co	Protein level	DiagnosticPrognostic	Gram - bacterial infection	Neuroendocrine Pathways		Genecarde/NO MalaCarde/NO KEGGINO UniProt/NO	The CALCA gene is not commonly used directly for sepsis diagnosis, as its product, PCT, is already well-established as a protein biomarker.
		PCT CT KE							
		KC							2. Procalcitonin (PCT) is a reliable diagnostic and prognostic biomarker for sepsis and localized infections in burn ICU patients, outperforming traditional markers and aiding in monitoring treatment efficacy and outcomes.
									3.PCT is a valuable biomarker for sepsis management, aiding in:
									Early disprosis. Differentialing bacterial infections from other inflammatory states. Guiding artificiality can be considered and include the control of the
									4. Diagnostic Value: PCT levels are significantly elevated in sepsis patients and are especially high in cases of G-bacterial infections. PCT can help distinguish between G- and G-bacterial bloodstream infections.
									6. Diagnosis Utility: PCIT is a reliable early marker for differentiating sepsis from severe sepsis and septic shock, with high sensitivity and specificity for severe sepsis. PCIT is support to CGP, WBCI, and AP-II in diagnozing sepsis seventy. Propositis Rober Proposition Rober Prop
									Higher PCT levels are associated with increased mortality and disease severity, making it a useful prognostic marker. Limitations:
							IL-6 and IL-8		PCT's diagnostic stills for septic brooks is limited compared to severe sepsis. PCT as Diagnostic Marker. PCT is no et the most reliable biomarkers for baderial sepsis, with high diagnostic accuracy and rapid response kinetics. PCT is no et the most reliable biomarkers for baderial sepsis, with high diagnostic accuracy and rapid response kinetics.
									PCT levels respire disease squarity and treatment response, siding in national risk stratification
									Limitation Cr. Emiliation Cr. Brighton Cr.
							CRP		Not a standatione marker, must be used in conjunction with clinical findings and other diagnostic tools. 8. PCT as a Biomarker:
									R PCT as a Blomatice: PCT is a reliable after for diagnosing bacterial septis and predicting outcomes in critically if patients. It is superior to CPP and VMD but should be used alongside clinical judgment and other diagnostic tools. It is superior to CPP and VMD but should be used alongside clinical judgment and other diagnostic tools. If is superior to CPP and VMD but should be used alongside clinical judgment and other diagnostic tools. If is superior to CPP and VMD but should be used alongside clinical judgment and superior to CPP and VMD but should be used alongside clinical judgment and superior to CPP and VMD but should be used alongside clinical judgment and superior to CPP and VMD but should be used to clinical judgment and superior to CPP and VMD but should be used to clinical judgment and superior to CPP and VMD but should be used to clinical judgment and superior to CPP and VMD but should be used to clinical judgment and superior to CPP and VMD but should be used to clinical judgment and superior to CPP and VMD but should be used to clinical judgment and superior to CPP and VMD but should be used alongs and superior to CPP and VMD but should be used alongs and superior to CPP and VMD but should be used alongs and superior to CPP and VMD but should be used alongs and superior to CPP and VMD but should be used alongs and superior to CPP and VMD but should be used as a clinical judgment and superior to CPP and VMD but should be used as a clinical judgment and superior to CPP and VMD but should be used to clinical judgment and superior to CPP and VMD but should be used to clinical judgment and superior
									 While PCT (protein) is a well-established marker for bacterial infections and sepsis. CALCA gene expression (mRNA) appears to lack sufficient sensitivity and specificity for clinical use in this study. PCT remains a replus thoraster for bacterial sensis, and this assure explanates is facility in partial fine final sensitivity.
									10. PCT remains a robust biomarker for bacterial sepsis, and this assay enhances its clinical utility in rapid, bedded diagnostics. However, CALCA gene expression was not discussed as a diagnostic target in this study; the focus is on PCT potein levels. I.C. ALCA excepts colicitatin Gene-Related Peptide 1, which was upgradated in AND patterns. However, its specific rises as a diagnostic marker for sepsis alone (excluding AVI) remains unclear.
2.CRP	C-reactive protein	C-Reactive Protein PFX1 C-Reactive Protein, Pentraxin-Related Pentraxin 1	Protein level	Diagnosis/Prognosis		Acute Phase Response Pathway	WBC	Genecards/Arthritis Septic MalaCards/1.Septic Arthritis- 2.Bacterial Sepsis- 3.Sepsis in Premature Infants UniProtidisease/YES	1 Protein Level: The study validated CRP as a diagnostic marker at the protein level using a furbidimetric assay, a standard week bit method. Gene Level: The study did not evaluate CRP gene expression (mRNA level), it focused exclusively on the protein concentrations in plasma.
									2 CSP as anotice that postion produced by the liver in response to inflammatory optionizes, particularly 16, 10 Nev., and 1, 15. CRP is validated for the postion level through set but method lise immunitationizing val orderbornely, making it a robust diagnostic and prognostic tool for sepsis. While PCT insec sention in response to bacterial infections, CRP is more cost effective and widely available. Bit makes comprehend each other in celebration indices docramous.
									3. The study validates CRP as a protein-level marker for identifying individuals at risk of sepais. It does not involve gene-level validation but emphasizes the CRP's role in the inflammatory cascade, reinforcing its relevance in sepais monitoring.
									1. The study validation CPD ear a protein-level marker for levelsthing individuals at risk of sepois. It does not involve pre-level validation the uniformations for level provided by the provided by the provided interest of the provided by the provided control of the provided by the provided criticals with a valuable tool to evaluate free efficiences of levels between the provided criticals and with a valuable tool to evaluate free efficiences of levels between the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals and the provided criticals are valuable from the provided criticals are valuable fro
							PCT, IL-6, PCT,IL-6, IL-8, IL-10,LBP,CD84, CD14,TREM-1		5. The review emphasizes that burnances like CAP are invalidable for early detection and monitoring at the process level out should be used as part of a monitoring and approach.
									6.CRP remains a key biomarker for sepsis due to its availability and diagnostic utility, but its lack of specificity necessitates combination with other markers like PCT or cytokines for improved accuracy.
3.sTREM-1	TREM-1	Triggering Receptor Expressed On Myeloid Cells 1 TREM-1 CD354 Triggering Receptor Expressed On Monocytes 1	protein biomarker	diagnostic/prognostic	infectious sepsis from non-infectious inflammatory	Inflammatory and Immune Pathways	TLR4	Genecards/Septic, septic shock MalaCards/Bacterial Sepsis KEGG/NO UniProt/septic shock	1. A call surface recorder expressed on entirphile and monospectimacophages. Another information by promoting the related of pro-information by proteining the related of pro-information by proteining the related of pro-information by promoting the related of pro-information by promoting the related of pro-information by promoting the related of the
		CU354 Antigen							Works sprengisteally with Told like Recoption (TLRs), particularly TLR4, amplifying the inflammatory response. TEREM 1, particularly is actually from SERMAN is a promising brancher and the respurits traped in seather from SERMAN is a promising brancher and the respurits traped in seather from SERMAN is a promising brancher and the respurits traped in seather from SERMAN is a promising brancher and response and reduce sepsis-related mortality. Current research focuses on developing inhibitors and decoy receptors to modulate the TREM1 pathway, aiming to balance immune response and reduce sepsis-related mortality.
									Activation of TREM-1 requires its interaction with the DAP12 adaptor protein. This signaling cascade enhances inflammatory cytokine secretion, chemokine production, and immune cell recruitment. This signaling cascade enhances in flammatory cytokine secretion, chemokine production, and immune cell recruitment. The state his billable the neteritation of TREMAL as a dismonstruction production, and immune cell recruitment.
									Designation Potential Designation (a TEEMA+) are valuable biomarkers for distinguishing sepsis from non-infectious inflammatory conditions. There special bageling Potential conditions to designate the indexed in historical infection due to impaired immunic clearance. Potential modulation condition between the infection for the potential immunic clearance. Potential modulation condition between the infection of baseling condition to special modulations. Potential modulation condition for an absorber condition for septiment of the potential conditions.
									Configure intention to TREAM - a detainmental in state-less intention to on impacts initiative cleaning. Partial modulation out blastice information and baseline dismantial control, reducing mortally in expess. 4. the dynamic modulation of TREAM - expression during sepsis and its dependence on infection type and pathogen. While sTREAM-1 is a valuable diagnostic tool, surface TREAM - expression provides deeper insights into immit.
							CRP, PCT		Elevated sTREM-1 levels have shown specificity in identifying sepsis in critically ill patients compared to other markers like CRP and PCT. It is particularly effective in distinguishing bacterial infections from non-infectious inflammatory conditions. While a TDEM-1 is a patient is investigated probability in particular patients and in the patients of the
									6 Diagnostic Value of ITREAM: (The and source levels) are valuable for prognosis rather than initial diagnosis. TREAM represent of maintain (see and source levels) are valuable for prognosis rather than initial diagnosis. TREAM represent of maintain (see and source levels) are valuable for prognosis rather than initial diagnosis. TREAM represent of maintain (see and source levels) are valuable for prognosis rather than initial diagnosis.
									TREM 1's role as a biomarker lies in identifying patients at higher risk of poor outcomes based on early immunosuppression. 7. TREM1 as a Diagnostic and Prognostic Marker:
							CRP, PCT		7. TOEM as a Diagnostic and Proposels Marker Reschaed TRAIN gain expression considers with disease seventy, making it a valuable marker for identifying critically all patients and monitoring their recovery. Measurement of TREIM rePMA herebic could complement statistical biomarkers like CRP and PCT. TREIM rePMA level here could be replaced in the control of the country of backers inferiorists and can seve as a separation braining and monitoring sepsia progression.
							TNF-a, IL-6, IL-8, IL-10		8. TREM-1 Gene Expression No Sunificant Changes in Gene Excression:
									TREM-1 gene expression in monocytes did not increase with sepais sevently, unifies TREM-1 levels in serum. Lack of correlation between serum TREM-1 and monocyte TREM-1 gene expression.
									TREM 1 refine (FMA) levels in PMMs refer the severty of bacterial infections and can serve as a specific biomarker for diagnosing and monitoring sepsis progression. In TREM 1 one registeration in removing select the severity of bacterial infections and can serve as a specific biomarker for diagnosing and monitoring sepsis progression. IN Significant Changes in Gene Expression: TREM 1 per sequences in removing select of the forestee with sepsis severity, unities 1 TREM 1 per sequences. Cyclainer Correlation Interest Co
4.suPAR	PLAUR	Plasminogen Activator, Urokinase Reventor	Protein biomarker	diagnostic/prognostic	not specific to a particular	Coagulation Pathwave	CRP - PCT	Genecards/NO	
Faul Park		Plasminogen Activator, Urokinase Receptor UPAR Urokinase Plasminogen Activator Surface Receptor URKR COD7		and was broken	pathogen or infection type	Vascular and Endothelial		MalaCards/NO KEGG/NO	1 Provides valuable prognostic information. Complements trackload biomarkers 18 GPB and PCT. Usef for thipping critically it catestas and identifying those at higher risk. White suPAR is not experience ToPP PCT for disputoring sepsis, but should not be it White suPAR is not superior ToPP PCT for disputoring sepsis, but should not be it white suPAR is not superior ToPP PCT for disputoring sepsis, but should not be it.
		URKR CD87 Urokinase-Type Plasminogen Activator (UPA) Receptor Monocyte Activation Amigen MoS				Inflammatory and Immune		UniProt/NO	While suPAR is not superior to CRP or PCT for diagnosing sepsis, its strength lies in prognostic value and its ability to reflect disease severity, suPAR could complement other biomarkers in managing sepsis but should not be
		Monocyte Activation Antigen Mo3 U-PaR U-Plasminogen Activator Receptor Form 2							
		CD87 Ansigen MO3							
							CRP - PCT		2 Diagnostic Use: See The Construction of the
									Its high specificity makes it particularly useful in ruling out non-sepsic conditions. Proprostick Application inclusion is assessing disease severity and risk of mortality. May help fortish Privink patients investing intensive care.
							CRP - PCT		3. suPAR is a valuable blomarker for risk stratification in septic patients, particularly for predicting 30-day mortality. While less effective for diagnosing sepsis compared to CPP and PCT, 8 plays a crucial role in long-term outcome prediction and complements called profinenties position predictive sepsis management.
							CRP - PCT		comprements orner commitments in comprehensive sepsis management. 4.suPAR is a useful biomarker for immune system activation and sepsis severity, showing promise as a complement to other markers like CRP and PCT.
									& aDARS is a useful bromake for immune system activation and expis severity, sharing promise as a complement to other markers like CRP and PCT. **spPRI reflects immune system activation stem for and rest immunes year subject. Its correlation with SDFA scores indicates that it can serve as a marker of disease sevenity but not mortality.
							PCT		S au/ARI is a valuable biomarker for sepsis diagnosis and prognosis, particularly when combined with other markers like PCT and clinical scoring systems. uPAR lacks specificity for sepsis alone, its elevation reflects general immune activation.
5.LBP	LBP	Lipopolysaccharide Binding Protein Lipopolysaccharide-Binding Protein BPIFD2	Protein biomarker	Prognostic level	Gram - bacterial infection		LTR4	Genecards/ PUblication part MalaCards/Bacterial sepsis	1.18P plays a central role in amplifying endotwin-mediated inflammation and renal damage during sepsis. Targeting LIPC either through blood purification or pharmacological inhibitors, holds promise for preventing and managing sepsis-induced ARI. LEPF levels could serve as a bornative for deciding endoting and predicting ARI ARI is a predicting ARI ARI in ARI page.
		BPIFD2 BPI Fold Containing Family D, Member LPS-Binding Protein				Signaling Cytokine Storm Acute Phase Response Endothelial Dysfunction		MalaCards/Bacterial sepsis KEGG/NO UniProt/NO	LBP levels could serve as a biomarker for detecting endotoxernia and predicting AKI risk in septils.

									2. Diagnosis and Progratic Value: LEP refacts immune activation in response to bacterial endication, particularly Cram-negative bacteria. LEP refacts immune activation in response to bacterial endications, particularly Cram-negative boundarie. Addrag LEP se APACH_0F or SOFA covers immore see accuracy or deciding mostals, highlighing the utility of multimodal assessment. If shows promise as a progratic boundarie in the ED for early identification of high-sis patients. If shows promise are a progratic boundarie in the ED for early identification of high-sis patients. It is leveled LEP levels refer the body in immune response and could serve as a valuable blomarker for sepois diagnosis and progratis. ILPS levels precid vote continence, while bower LEP levels may indicate inabequate acute phase response no rotically ill patients. ILPS levels boundaries of the boundaries of minimizing appeals progressions and participations. In the participation of the participatio
									Elevated levets correlate with sepas seventy and poor outcomes, supporting its sue as a prognosic biomarker. Adding LBP to APACHE it or SSPA scores improves the accuracy of predicting mortality, highlighting the utility of multimodal assessment.
									a diverse personal as a programa constraint of the Law compression of the compression of
							LPS		LPS (seels predict worse outcomes, while lower LBP levels may indicate inadequate acute-phase response in critically ill patients. LBP could serve as a binamatre for monitoring sepsis progression and guiding interventions.
									4.LBP is an effective biomarker of systemic inflammation but is non-specific to the type of infection causing sepsis. White elevated levels indicate an acute-phase response, they do not cornishate strongly with seventy or nortatily. LBP levels are relevated in response to systemic inflammation but do not reliably discripate thetemen Gram-neegative, Gram-positive, or fungal infections.
							IL6 sCD14		LBP levels are elevated in response to systemic inflammation but do not reliably distinguish between Gram-positive, or fungal infections. 5. I BP and s COVIA are valiable hismarkers for the early inflammation is of enough sense, showing strong correlation with various relief sense servicity.
									LEP arts of the valuable boundaries for the early dispose in control supplies retirement being strong consistent with implact to virtual boundaries. LEP is particular, other a subjection about page due to be presidente and sensitivity to immune adoption. These furnings apposite about page due to be presidente and sensitivity to immune adoption. The persidence of elevated LEP everls provides a larger disposite virtual page of the control of the page of the
							CRP, IL6		sCD14 provise a bable pattern, reprisoning the value as a baseline marker of immunum advation. Montoning Special has bloomaster for monthing protectional transport provisions of the provision
									User remains a more practice route on lower cost and established climical use. Combination Stratigies: Combing LBP with other blomarkers like procalcition (PCT) or IL-6 might improve diagnostic accuracy, though this requires further research.
							IL-6, IL-1β, IL-10, and CRP		7.1.BP is a valuable biomarker for predicting disease progression in severe sepsis. An increase in LIP levels at 48 hours is strongly associated with the development of ARDS and higher mortality. No defined LIP confor tendiby identify remove vessus non-averages.
									An increase if ILL+ yelves at 44 notice; is strongly associated with the development of ANUS and nigner mortality. No defined LBP cutoff to reliably identify survivors versus non-aurivitors.
							TNF-a		8. The F438L genetic variant of LBP alters its functional properties, leading to reduced binding to bacterial ligands and a dampened inflammatory response. This variant is associated with a more favorable clinical course in sepsis, suggesting potential protective effects against hyperinflammation.
							CRP.PCT		9. LBP is a valuable biomarker for monitoring disease progression and predicting outcomes in severe sepsis and septic shock. The dynamics of LBP levels: rather than single admission measurements, provide significant prognostic information and outcorform CRP and PCT in specificity and predictive value.
							TNF-a, sCD14		10. This study highlights the dual role of LBP in sepsis: At least rough and the study highlights the dual role of LBP in sepsis.
									10. Thes study highlights the dust rived of LIP in segrits. At low concentrations, it enhances immune recognition of LIPS, amplifying inflammation. At high concentrations, it enhances immune recognition of LIPS, amplifying concentrations, it enhances the concentrations, it enhances the concentrations are processed and in the concentrations, it enhances the concentrations in the concentration in the concentration is made and processed in the concentration is never segretary exercise and processed recognition is never segretary exercise. Exercise LIPS in the concentration is never segretary exercise and processed recognitions are concerned as a processed and concentrations.
6.IL6	IL6	Interleukin 6 IL-6 IFNB2	Protein biomarker	Prognostic marker	various types of infections and distinguishing	Cytokine Storm and Inflammatory Signaling	TNF-a ,IL8 , HLA-DR, CD71	Genecards/NO MalaCards/Bscterial sepsis- septic Arthritis KEGG/NO	1. IL d. is a reliable biomarker for sepsits prognosis, with higher levels indicating women outcomes. It is considation with immorple scholaries and objects proudction undercores is contributed in the immorple scholaries and objects proudction undercore is contributed to improve the property of the
		IFNB2 BSF2			between specific conditions	Acute Phase Response		septic Arthritis KEGG/NO	Monitoring IL-6 dynamics may aid in early risk stratification and personalized treatment of sepsis patients. IL-6 can serve as a rapid, bedside biomarker for identifying high-risk sepsis patients.
		HGF HSF				Pathway		UniProt/NO	Serial II-6 measurements provide valuable information about disease progression and therapy effectiveness. Therapeutic Insights:
		B-Cell Stimulatory Factor 2 CTL Differentiation Factor				Vascular and Endothelial Pathways			Modulating II6 levels or targeting its downstream pathways may help balance immune hyperactivity and suppression in sepsis. Patients with high III-6 law increased excreasion of:
		FINEZ							Serial L. 6 measurements provide valuable information about disease progression and herapy effectiveness. Therespecial insight, a buggling is discontaining pathways may help balance immune hyperactivity and suppression in sepsis. Patients with high IL 6 has increased expression of HAL DRF- Haper desiry, incidenting activation monoples. CD64 (Fs-(R)) and CD71 (transferrin receptor): Enhanced capacity for antigen presentation and metabolic activity.
		Interleukin-6 IFN-Beta-2							
		BSF-2 CDF							
		Interleukin 6 (Interferon, Beta 2) B-Cell Differentiation Factor							
		B-Cell Differentiation Factor Interferon, Beta 2 Interleukin BSF-2							
									2. This auch playlights the significant rais of 1.6 genetic options in determining the risk and severity of despite in children. These G-1742 / optionshipmen the 8.4 perior regions particularly reviewant, with the CC general period period powers (on section of the contraction). These first propriets be contracted used if i.4 general period pass a prognostic bot in pediatric septis. But it is a highly sensitive bloansher for the decident on an innovation of Gamen-engite ECD in Petter mendorms. Rapid changes in I.4 levels contrained with repost severity and clinical outcomes, outperforming traditional manifests like CGPs. The florings highlight the emploration of clinic II.6 emposterments for early displayed and traditional monitoring in revenual septis.
							CRP		These findings support the potential use of IL-6 genotyping as a prognosiic tool in pediatric sepsis.
							CRP		3.I.L is a highly sensitive biomarker for the detection and monitoring of Gram-negative EUS in preterm newborns. Rapid changes in IL-6 levels correlate with sepsics severily and clinical outcomes, outperforming intelligi
							PTX3, PCT		The finding highlight the importance of serial L.C. measure-enters for early diagnosis and treatment monitoring in recordable sepsis. A Diagnosis. URIN. A Diagnosis.
									IL-6 was superior to PTX3, PCT, and CRP in diagnosing sepsis and septic shock. The dynamic range of IL-6 allowed it to discriminate between sepsis, septic shock, and non-septic conditions with high specificity.
									Prognostic Utility Persistent elevation of IL-6 in septic shock patients was strongly correlated with higher mortality.
									PTXS served as a secondary biomarker for long-term outcomes but lacked the robust predictive power of IL-6. Combining IL-6 with PTXS any enhance risk straffication in clinical practice.
									C. II. d. as a Diagnost blader All the diagnost blader All the diagnost blader L. d. as 72 Togini. Is indicative of Gamenegative bacterial separate L. d. as 72 Togini. Is indicative of Gamenegative bacterial separate L. d. as 24 Togini. Is indicative of Gamenegative bacterial separate Rapid roundization of II. d. Seves signals treatment success. Persistent high here's suggest proor actions.
									IL-6 > 78.7 pg/mL is indicative of Gram-negative bacterial sepsis. IL-6 > 78.7 pg/mL is indicative of Gram-negative bacterial sepsis. IL-6 as a Proporticit Marker.
									Rapid normalization of II-6 levels signals treatment success. Persistent his here's success once outcomes.
									6. Diagnostic and Prognostic Significance of IL-6
									IL-6 serves as a sensitive biomarker for sepsis seventy and early mortality risk:
									High plasma IL-9 levels (>3000 pg/mL) predict poor outcomes in W1 mice.
									risp pasma it to levels (>2000 ppm), precisic poor outcomes in vir mice. However, IL & Beschere (in IL & RO mice) does not significantly improve survival, indicating that IL-6 is a marker rather than a mediator of sepsis-induced mortality. Physiological Roles of IL-6
									light patied Le evec is 0.000 fg/ml, peticity poor dutiones in vir inter. High patied Le evec is 0.000 fg/ml, peticity poor dutiones in vir inter. Physiological Reloa of 10.400 ff/mlos) poor to updated in your poor survival, indicating that Le is a marker rather than a mediator of septis-induced mortality. Physiological Reloa of 10.400 ff/mlos poor to update the proper survival, indicating that Le is a marker rather than a mediator of septis-induced mortality. The more grant for the properties of the proper
7.HMGB1	HMGB1	High Mobility Group Box 1	protein biomarker	prognostic marker	inflammation and immune	Apoptosis and Cell Death		Genecards/High serum levels are	Persistent rigin enter suggest por automate. O Diagnation and Progrande Cignificance of 1.6 entity and early mortality risk. High plasma IL-8 levels (1900) givinal predict poor automate in VI risk. Notice, IL-8 desired (1900) givinal predict poor automate in VI risk. Notice, IL-8 desired (1.6 CM mine) does not significantly improve survival, indicating that IL-8 is a marker rather than a mediator of sepsis-induced mortality. Physiological Roles of IL-8 E8 is essential for developing hypothermal curing sepsis, which have yetled the body's response to inflammation. 1.14/06(8) plays a significant role in the inflammatory processes of sepsis, making it a valuable therapeutic target.
7.HMGB1		High Mobility Group Box 1 SBP-1 HMG3	protein biomarker	prognostic marker	inflammation and immune system activation			Genecards/High serum levels are found in several inflammatory events including sepsis	rilign plants in Le since south griffing plants griffing of plants and statement of the sta
7.HMGB1		HMG3	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune		MalaCards/Septic Arthritis-	
7.HMGB1		HMG3	protein biomarker	prognostic marker	inflammation and immune system activation			MalaCards/Septic Arthritis- Bacterial sepsis	
7.HMGB1		HMG3	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune		MalaCards/Septic Arthritis- Bacterial sepsis	
7.HMGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Mobility Group Protein 1 MMG-Miller Mobility Group Protein 1 MMG-Miller Miller M	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune		MalaCards/Septic Arthritis-	
7.HMGB1		High Mobility Group Box 1 580-1 580-1 1463 High Alexandria High Mobility Group (Northstone Chromosomal) Protein 1 Subdiplacement Carbonydrate Binding Protein High Mobility Group Protein 1 Dec 2-2609/HIGHS High Alexandria	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune	TNS IL-1	MalaCards/Septic Arthritis- Bacterial sepsis	1.140GB1 steps a significant rick in the inflammatory processes of sepais, making it a valuable therapeudic target. However, the fieldings an adaptivatic benefited is uncertain. Elevated IANGB1 levels are associated with sepais severify, but they do not consistently correlate with survival or prognosis in patients.
7.HMGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Mobility Group Protein 1 MMG-Miller Mobility Group Protein 1 MMG-Miller Miller M	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune	7NF, IL-1	MalaCards/Septic Arthritis- Bacterial sepsis	1.140GB1 steps a significant rick in the inflammatory processes of sepais, making it a valuable therapeudic target. However, the fieldings an adaptivatic benefited is uncertain. Elevated IANGB1 levels are associated with sepais severify, but they do not consistently correlate with survival or prognosis in patients.
7.HMGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Miller Mobility Group Protein 1 MMG-Miller Miller	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune	YNF, R-1	MalaCards/Septic Arthritis- Bacterial sepsis	1.1MGB1 leyes a significant rick in the inflammatory processes of sepsis, making it a valuable therapeudic target. However, the fieldings and adaptivel benefits its uncertain. Elevated IAMGB1 levels are associated with sepsis severity, but they do not consistently correlate with survival or prognosis in patients. 2. Disappratic Biomaster Protential MMGB1 levels correlate with disappratic processing and other inflammatory diseases. Elevated levels correlate with disease severity in sepsis and other inflammatory diseases. Elevated levels correlate each disease severity in sepsis and other inflammatory diseases. Elevated levels correlate each disease severity in sepsis and other inflammatory diseases.
7.HMGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Miller Mobility Group Protein 1 MMG-Miller Miller	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune	TNF, IL-1	MalaCards/Septic Arthritis- Bacterial sepsis	1.14.003 days a significant los in the inflammatory processed sepsis, making it a valuable therapeutic larget. Nonerver, largetidately an adaptactic bornate survention: Clevated HA/GB1 levels are associated with appais severity, but they do not consistently correlate with survival or progressis in patients. 2. Diagnostic Blomarker Potential. 2. Diagnostic Blomarker Potential. 1. Add to the controllate with disease severity in sepsis and other inflammatory diseases. 1. MA/GB1 levels correlate with disease severity in sepsis and other inflammatory diseases. 1. MA/GB1 levels correlate with disease severity in sepsis and other inflammatory diseases. 1. MA/GB1 in Severe Sepsis.
7.HMGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Miller Mobility Group Protein 1 MMG-Miller Miller	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune	TNF, IL-1 CD4+ and CD8+, CSP	MalaCards/Septic Arthritis- Bacterial sepsis	1.11/LGG1 steps a significant role in the inflammatory processes of sepses, making it a valuable therapeudic target. Nonever, for including an adapticatic benefit as uncertain. Elevated IRVGB1 levels are associated with applies severify, but they do not consistently correlate with sun-hard or prognosis in patients. 2. Diagnosis Biomarker Potential. HAMGB1 levels correlate with disease severify in segios and other inflammatory diseases. HAMGB1 sevels correlate with disease severify in segios and other inflammatory diseases. HAMGB1 levels correlate with disease severify in segios and other inflammatory diseases. HAMGB1 sevels correlate with disease severify in segios and other inflammatory diseases. HAMGB1 levels correlate with disease severify in segios and other inflammatory diseases. HAMGB1 levels correlate with disease severify in segios and other inflammatory diseases. HAMGB1 levels disease severify in segios and other inflammatory diseases. HAMGB1 levels disease disease severify and the second of the second
7.HMGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Miller Mobility Group Protein 1 MMG-Miller Miller	protein biomarker	prognostic marker	inflammation and immune system activision	Inflammatory and Immune		MalaCards/Septic Arthritis- Bacterial sepsis	1.14/EGG I styre a significant los in the Inflammatory processor of sepsis, making it a valuable therapeutic target. Noticence for fielding an a disposition formating the uncertain. Elevated HM/GB1 levels are associated with sepsis severity, but they do not consistently correlate with survival or prognosis in patients. 2. Diagnostic Biomarker Potential: HM/GB1 levels correlate with disease severity in sepsis and other inflammatory diseases. Elevated levels these been reported in experits insteriors, with higher levels fained by a service of the experiment of
7.HMGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Miller Mobility Group Protein 1 MMG-Miller Miller	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune		MalaCards/Septic Arthritis- Bacterial sepsis	1.1140G1 layer a significant role in the inflammatory processes of sepsis, making it a valuable therapeutic target. However, bit including an adaptivatic benefit as uncertain. Elevated IAVGB1 levels are associated with sepsis severify, but they do not consistently correlate with sun-vival or progness in patients. 2. Disappeads Biomarker Peterstat. HAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. Elevated levels there been reported in septic patients, with inject investigation and inject
7.14MGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Miller Mobility Group Protein 1 MMG-Miller Miller	protein biomarker	prognostic marker	inflammation and immune system activation	Inflammatory and Immune		MalaCards/Septic Arthritis- Bacterial sepsis	1.1140G1 layer a significant role in the inflammatory processes of sepsis, making it a valuable therapeutic target. However, bit including an adaptivatic benefit as uncertain. Elevated IAVGB1 levels are associated with sepsis severify, but they do not consistently correlate with sun-vival or progness in patients. 2. Disappeads Biomarker Peterstat. HAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. Elevated levels there been reported in septic patients, with inject investigation and inject
7.HMGB1		HMG3 HMG4 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High-Mobility Group (Nonhistone Chromosomal) Protein 1 High Mobility Group Protein B1 High Mobility Group Protein B1 High Mobility Group Protein 1 DKF-Zp68EA04236 AMMG-Miller Miller Mobility Group Protein 1 MMG-Miller Miller	protein biomarker	prognostic marker	inflammation and immune system advisions	Inflammatory and Immune	CD4+ and CD6+ , CRP	MalaCards/Septic Arthritis- Bacterial sepsis	1.1140G1 layer a significant role in the inflammatory processes of sepsis, making it a valuable therapeutic target. However, bit including an adaptivatic benefit as uncertain. Elevated IAVGB1 levels are associated with sepsis severify, but they do not consistently correlate with sun-vival or progness in patients. 2. Disappeads Biomarker Peterstat. HAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. Elevated levels there been reported in septic patients, with inject investigation and inject
		HAGGS Hagh-Abelity Group Picentisters Chromosomal) Protein 1 Sulloguaumny Carbonydrell Bellings Protein Sulloguaumny Carbonydrell Bellings Protein Hagh Mobility Group Pretein 1 DRFZ-p868AC298 Hagh Mobility Group Bex 1 Hagh Abelity Group Bex 1				Inflammatory and Immune Vascular and Endothetial	CD4+ and CD6+ , CRP	Masidicandifeptic, Arthritis- Backerial sepsis REGIANO UniProstNO	1.140GB1 days a significant rick in the inflammatory processed sepsis, making it a valuable therapeutic target. Nonervect for inflating an adaptation brometer is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with survival or prognosis in patients. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 3. Diagnostic Biomarker Proefute. 3. HAVGB1 is level to be interested as severity in sepsis and other inflammatory diseases. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed on increased mortally. Reviewer, IndiGell in Severe Sepsiz. 1.144GB1 in Severe Sepsiz. 4.144GB1 in Severe Sepsiz. 4.144GB1 is depended as the severe sepsic patients, with here increasing as disease severity prognostic biomarker. 3.144GB1 is big yet expressed in sepsic patients, with here increasing as disease severity prognossic biomarker in clinical settings appears limited. 4.144GB1 is big lever severe as a propriet biomarker, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain maker (CEV-4 certain maker). Elevated levels are included or forest prognosis, lower survival rate, and greater disease severity. Elevated levels are included or or company hyperinflammatory state in sepsis, contribution poor customes. Chronic disease severable the effect, supplied as pering between another poor contromes.
		HAGS Hads Scheldly Group (Nonhatone Chromosomal) Protein 1 Suffopularumy Carbohydrate Bindrig Protein Hagh Mobilly Group Protein 81 Suffopularumy Carbohydrate Bindrig Protein DRZ-2684-04629 Protein 1 DRZ-2684-04629 Protein 1 Hgh-Mobilty Group Box 1	Protein biomarker	prognostic marker		Inflammatory and Immune Vascular and Endothetial Cytokine Storm	CD4+ and CD6+ , CRP	Masidicandifeptic, Arthritis- Backerial sepsis REGIANO UniProstNO	1.1140.01 styre a significant role in the inflammatory processed stepsis, making it a valuable therapeutic target. However, the including an adaptivatic benefit as uncertain. Elevated IAVGB1 levels are associated with applies severify, but they do not consistently correlate with survival or progness in patients. 2. Disappositic Biomarker Protential. IAVGB1 levels correlate with disease severify in applies and other inflammatory diseases. IAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. IAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. IAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. IAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. IAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. IAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. IAVGB1 levels correlate with disease severify in sepsis and other inflammatory diseases. IAVGB1 levels disease disease disease severify in sepsis and other inflammatory diseases. Vither IAVGB1 is a vicoum mediator of inflammator in a sepsis, to utility as a diagnostic progness bromative in circuit settings appears limited. Vither IAVGB1 is a vicoum mediator of inflammator in a sepsis, to utility as a diagnostic progness. It is closely associated with minum optivaction, reflected by attered Tool markers (CO4+ and CO8+) Excepted IAVGB1 levels are induced or vicous progness, level sense serverify.
		HAGGS HAMPA (Prophylographylog			where pyroplasts or excesses inflammation is involved.	Inflammatory and Innurus Vascular and Endothelial Cytokine Storm Vascular and Endothelial	CD4+ and CD6+ , CRP	Masidicandifeptic, Arthritis- Backerial sepsis REGIANO UniProstNO	1.140GB1 days a significant rick in the inflammatory processed sepsis, making it a valuable therapeutic target. Nonervect for inflating an adaptation brometer is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with survival or prognosis in patients. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 3. Diagnostic Biomarker Proefute. 3. HAVGB1 is level to be interested as severity in sepsis and other inflammatory diseases. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed on increased mortally. Reviewer, IndiGell in Severe Sepsiz. 1.144GB1 in Severe Sepsiz. 4.144GB1 in Severe Sepsiz. 4.144GB1 is depended as the severe sepsic patients, with here increasing as disease severity prognostic biomarker. 3.144GB1 is big yet expressed in sepsic patients, with here increasing as disease severity prognossic biomarker in clinical settings appears limited. 4.144GB1 is big lever severe as a propriet biomarker, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain maker (CEV-4 certain maker). Elevated levels are included or forest prognosis, lower survival rate, and greater disease severity. Elevated levels are included or or company hyperinflammatory state in sepsis, contribution poor customes. Chronic disease severable the effect, supplied as pering between another poor contromes.
		HAGG Habble Mobility Group (Nonhabros Chromosomal) Protein 1 Suffopularumy Carbohydrate (Index Protein 1 Suffopularumy Carbohydrate) Index Suffopularumy Carbohydrate Index Suffopularumy Carbohydrate Elastase, Neufrophil Expressed Neufrophil Elastase Neufrophil Elastase PNAI Statase	Protein biomarker		where pyroptosis or excessive inflammation is involved.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1.140GB1 days a significant rick in the inflammatory processed sepsis, making it a valuable therapeutic target. Nonervect for inflating an adaptation brometer is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with survival or prognosis in patients. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 3. Diagnostic Biomarker Proefute. 3. HAVGB1 is level to be interested as severity in sepsis and other inflammatory diseases. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed on increased mortally. Reviewer, IndiGell in Severe Sepsiz. 1.144GB1 in Severe Sepsiz. 4.144GB1 in Severe Sepsiz. 4.144GB1 is depended as the severe sepsic patients, with here increasing as disease severity prognostic biomarker. 3.144GB1 is big yet expressed in sepsic patients, with here increasing as disease severity prognossic biomarker in clinical settings appears limited. 4.144GB1 is big lever severe as a propriet biomarker, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain maker (CEV-4 certain maker). Elevated levels are included or forest prognosis, lower survival rate, and greater disease severity. Elevated levels are included or or company hyperinflammatory state in sepsis, contribution poor customes. Chronic disease severable the effect, supplied as pering between another poor contromes.
		HAGG Habble Mobility Group (Nonhabros Chromosomal) Protein 1 Suffopularumy Carbohydrate (Index Protein 1 Suffopularumy Carbohydrate) Index Suffopularumy Carbohydrate Index Suffopularumy Carbohydrate Elastase, Neufrophil Expressed Neufrophil Elastase Neufrophil Elastase PNAI Statase	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Innurus Vascular and Endothelial Cytokine Storm Vascular and Endothelial	CD4+ and CD6+ , CRP	Masidcands Reptic Arthritis- Bacterial sepsis KEGGANO UniProstNO GeneCandar Pathways by source for ELARI Gene	1.140GB1 days a significant rick in the inflammatory processed sepsis, making it a valuable therapeutic target. Nonervect for inflating an adaptation brometer is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with survival or prognosis in patients. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 3. Diagnostic Biomarker Proefute. 3. HAVGB1 is level to be interested as severity in sepsis and other inflammatory diseases. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed on increased mortally. Reviewer, IndiGell in Severe Sepsiz. 1.144GB1 in Severe Sepsiz. 4.144GB1 in Severe Sepsiz. 4.144GB1 is depended as the severe sepsic patients, with here increasing as disease severity prognostic biomarker. 3.144GB1 is big yet expressed in sepsic patients, with here increasing as disease severity prognossic biomarker in clinical settings appears limited. 4.144GB1 is big lever severe as a propriet biomarker, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain maker (CEV-4 certain maker). Elevated levels are included or forest prognosis, lower survival rate, and greater disease severity. Elevated levels are included or or company hyperinflammatory state in sepsis, contribution poor customes. Chronic disease severable the effect, supplied as pering between another poor contromes.
		HAGGS HAGGS Hay Abdelly Group (Nonhstone Chromosomal) Protein 1 Sufleysburney (Zeindryshate Binderig Pretein Sufleysburney (Zeindryshate Binderig Pretein Sufleysburney (Zeindryshate Binderig Pretein Diff2p88404029) Pretein 1 Diff2p88404029 Pretei	Protein biomarker		where pyroptosis or excessive inflammation is involved.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1.140GB1 days a significant rick in the inflammatory processed sepsis, making it a valuable therapeutic target. Nonervect for inflating an adaptation brometer is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with survival or prognosis in patients. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 3. Diagnostic Biomarker Proefute. 3. HAVGB1 is level to be interested as severity in sepsis and other inflammatory diseases. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed on increased mortally. Reviewer, IndiGell in Severe Sepsiz. 1.144GB1 in Severe Sepsiz. 4.144GB1 in Severe Sepsiz. 4.144GB1 is depended as the severe sepsic patients, with here increasing as disease severity prognostic biomarker. 3.144GB1 is big yet expressed in sepsic patients, with here increasing as disease severity prognossic biomarker in clinical settings appears limited. 4.144GB1 is big lever severe as a propriet biomarker, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain maker (CEV-4 certain maker). Elevated levels are included or forest prognosis, lower survival rate, and greater disease severity. Elevated levels are included or or company hyperinflammatory state in sepsis, contribution poor customes. Chronic disease severable the effect, supplied as pering between another poor contromes.
		HAGGS HAGGS Hay Abdelly Group (Nonhstone Chromosomal) Protein 1 Sufleysburney (Zeindryshate Binderig Pretein Sufleysburney (Zeindryshate Binderig Pretein Sufleysburney (Zeindryshate Binderig Pretein Diff2p88404029) Pretein 1 Diff2p88404029 Pretei	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1.140GB1 days a significant los in the Inflammatory processes of sepsis, making it a valuable therapeutic target. Notice the Inflation as adaptated broader is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with sunvival or prognosis in patients. 2. Disposation Elevanter Production 2. Disposation Elevanter Production Elevated levels have been reported in explicit patients, with higher levels intend to increased mortally. Elevated levels have been reported in explicit patients, with higher levels intend to increased mortally. Elevated levels have been reported intended patients, with higher levels intend to increased mortally. Elevated levels have been reported intended patients, with higher levels intended to increased mortally. Elevated levels have been reported in explicit patients, with some special compared to healing controls. Notices: MSGBI levels did not practice the severe special compared to healing controls. Clinical implications: 4.144GB1 is object to provide the report of participate or progressic biomarker in clinical settings appears limited. 4.144GB1 is a level set progressed in respect patients, with hereis increasing and disease severity progresses. It addition to the setting appears limited. Elevated levels with minutes optical control minutes progresses. It addition to the levels are included or direct and potentials is flevels makers (CIV-4 cell makers (CIV-4 cell makers (CIV-4 cell makers) (CIV-4 cell makers) (CIV-4 cell makers). Elevated levels are included or directain setting or progression, flevels or progression, flevels or progression, flevels or progression, flevels or progression progression or progression flevels are distingting to poor outcomes. Chronic disease secretable to feed rectain setting or people information.
		HAGGS HAGGS Hay Abdelly Group (Nonhstone Chromosomal) Protein 1 Sufleysburney (Zeindryshate Binderig Pretein Sufleysburney (Zeindryshate Binderig Pretein Sufleysburney (Zeindryshate Binderig Pretein Diff2p88404029) Pretein 1 Diff2p88404029 Pretei	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1.140GB1 days a significant los in the Inflammatory processes of sepsis, making it a valuable therapeutic target. Notice the Inflation as adaptated broader is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with sunvival or prognosis in patients. 2. Disposation Elevanter Production 2. Disposation Elevanter Production Elevated levels have been reported in explicit patients, with higher levels intend to increased mortally. Elevated levels have been reported in explicit patients, with higher levels intend to increased mortally. Elevated levels have been reported intended patients, with higher levels intend to increased mortally. Elevated levels have been reported intended patients, with higher levels intended to increased mortally. Elevated levels have been reported in explicit patients, with some special compared to healing controls. Notices: MSGBI levels did not practice the severe special compared to healing controls. Clinical implications: 4.144GB1 is object to provide the report of participate or progressic biomarker in clinical settings appears limited. 4.144GB1 is a level set progressed in respect patients, with hereis increasing and disease severity progresses. It addition to the setting appears limited. Elevated levels with minutes optical control minutes progresses. It addition to the levels are included or direct and potentials is flevels makers (CIV-4 cell makers (CIV-4 cell makers (CIV-4 cell makers) (CIV-4 cell makers) (CIV-4 cell makers). Elevated levels are included or directain setting or progression, flevels or progression, flevels or progression, flevels or progression, flevels or progression progression or progression flevels are distingting to poor outcomes. Chronic disease secretable to feed rectain setting or people information.
		HAGGS HAGGS HAGGNER AND A Prointenance Chromosomal) Protein 1 Sudiophanomy Candrolystell Biology Protein Sudiophanomy Candrolystell Biology Protein Sudiophanomy Candrolystell Biology Haggner Candrolystell Biology Haggner Candrolystell Biology Haggner Candrolystell Expressed Newtonian Candrolystell Expressed Newtonian Candrolystell Expressed PAIN Editation PAIN Edi	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1.140GB1 days a significant los in the Inflammatory processes of sepsis, making it a valuable therapeutic target. Notice the Inflation as adaptated broader is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with sunvival or prognosis in patients. 2. Disposation Elevanter Production 2. Disposation Elevanter Production Elevated levels have been reported in explicit patients, with higher levels intend to increased mortally. Elevated levels have been reported in explicit patients, with higher levels intend to increased mortally. Elevated levels have been reported intended patients, with higher levels intend to increased mortally. Elevated levels have been reported intended patients, with higher levels intended to increased mortally. Elevated levels have been reported in explicit patients, with some special compared to healing controls. Notices: MSGBI levels did not practice the severe special compared to healing controls. Clinical implications: 4.144GB1 is object to provide the report of participate or progressic biomarker in clinical settings appears limited. 4.144GB1 is a level set progressed in respect patients, with hereis increasing and disease severity progresses. It addition to the setting appears limited. Elevated levels with minutes optical control minutes progresses. It addition to the levels are included or direct and potentials is flevels makers (CIV-4 cell makers (CIV-4 cell makers (CIV-4 cell makers) (CIV-4 cell makers) (CIV-4 cell makers). Elevated levels are included or directain setting or progression, flevels or progression, flevels or progression, flevels or progression, flevels or progression progression or progression flevels are distingting to poor outcomes. Chronic disease secretable to feed rectain setting or people information.
		HAGGS	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1.140GB1 days a significant los in the Inflammatory processes of sepsis, making it a valuable therapeutic target. Notice the Inflation as adaptated broader is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with sunvival or prognosis in patients. 2. Disposation Elevanter Production 2. Disposation Elevanter Production Elevated levels have been reported in explicit patients, with higher levels intend to increased mortally. Elevated levels have been reported in explicit patients, with higher levels intend to increased mortally. Elevated levels have been reported intended patients, with higher levels intend to increased mortally. Elevated levels have been reported intended patients, with higher levels intended to increased mortally. Elevated levels have been reported in explicit patients, with some special compared to healing controls. Notices: MSGBI levels did not practice the severe special compared to healing controls. Clinical implications: 4.144GB1 is object to provide the report of participate or progressic biomarker in clinical settings appears limited. 4.144GB1 is a level set progressed in respect patients, with hereis increasing and disease severity progresses. It addition to the setting appears limited. Elevated levels with minutes optical control minutes progresses. It addition to the levels are included or direct and potentials is flevels makers (CIV-4 cell makers (CIV-4 cell makers (CIV-4 cell makers) (CIV-4 cell makers) (CIV-4 cell makers). Elevated levels are included or directain setting or progression, flevels or progression, flevels or progression, flevels or progression, flevels or progression progression or progression flevels are distingting to poor outcomes. Chronic disease secretable to feed rectain setting or people information.
		HAGGS	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1.140GB1 days a significant rick in the inflammatory processed sepsis, making it a valuable therapeutic target. Nonervect for inflating an adaptation brometer is uncertain: Elevated HAVGB1 levels are associated with appais severity, but they do not consistently correlate with survival or prognosis in patients. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 2. Diagnostic Biomarker Proefute. 3. Diagnostic Biomarker Proefute. 3. HAVGB1 is level to be interested as severity in sepsis and other inflammatory diseases. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed to increased mortally. Elevated levels have been reported in exptic patients, with higher fevels fixed on increased mortally. Reviewer, IndiGell in Severe Sepsiz. 1.144GB1 in Severe Sepsiz. 4.144GB1 in Severe Sepsiz. 4.144GB1 is depended as the severe sepsic patients, with here increasing as disease severity prognostic biomarker. 3.144GB1 is big yet expressed in sepsic patients, with here increasing as disease severity prognossic biomarker in clinical settings appears limited. 4.144GB1 is big lever severe as a propriet biomarker, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain article. Elevated levels with minuter systematic, referred by direct of certain maker (CEV-4 certain maker). Elevated levels are included or forest prognosis, lower survival rate, and greater disease severity. Elevated levels are included or or company hyperinflammatory state in sepsis, contribution poor customes. Chronic disease severable the effect, supplied as pering between another poor contromes.
		HAGGS HAGGS HAGGNER AND A Prointenance Chromosomal) Protein 1 Sudiophanomy Candrolystell Biology Protein Sudiophanomy Candrolystell Biology Protein Sudiophanomy Candrolystell Biology Haggner Candrolystell Biology Haggner Candrolystell Biology Haggner Candrolystell Expressed Newtonian Candrolystell Expressed Newtonian Candrolystell Expressed PAIN Editation PAIN Edi	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1.140GB1 leyes a significant role in the inflammation is received in a valuable therapeutic target. **Converse for fieldings and adaptatic formatine is uncertain: Elevated IANGB1 levels are associated with appais severity, but they do not consistently correlate with survival or progressis in patients. **Discopratio: Biomaker Preventid **ADGB1 levels correlate with discase severity in septis and other inflammatory diseases. Elevated levels two been reported in septic patients, with higher levels lined to in creased mortality. **ARGB1 levels were elevated in patients and in severe septis compared to healthy controls. **HAMGB1 levels were elevated in patients with severe septis compared to healthy controls. **HAMGB1 levels were elevated in patients with severe septis compared to healthy controls. **White HAMGB1 is a known mediator of inflammation in septis, its utility as a diagnostic or progress biomaker in clinical settings appears limited. ***ARGB1 in Septimes are inflammation in septimes. All the severe septimes are inclined settings appears limited. ****ARGB1 in Septimes are inclined in septimes and inclined in septimes. ***********************************
		HAGGS	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1-11-10.01 stops a spationar to in the Inflammatory processed sepas, making it a valuable therapeutic target. Nonever, late fielding a a disposable former far sucreture. Elevated IRVGB1 levels are associated with applies severity, but they do not consistently correlate with survival or progressis in patients. 2. Diagnosis Blomarker Potential. HAMCB1 tevels correlate with disease severity in sepals and other inflammatory diseases. HAMCB1 tevels correlate with disease severity in sepals and other inflammatory diseases. HAMCB1 tevels correlate with disease severity in sepals and other inflammatory diseases. HAMCB1 tevels correlate with disease severity in sepals and other inflammatory diseases. HAMCB1 tevels correlate with disease severity in sepals and other inflammatory diseases. HAMCB1 tevels disease for production of the severity of organ organization contaility. However, HAGCB1 tevels do not appear to the severity of organ organization early disposate bornafter. 3. HAMCB1 to happy expersed in sepila spatient, with level increasing a disease severity bornafter in clinical settings appears limited. 4. HAMCB1 to happy expersed in sepila spatient, with levels increasing a disease severity progresses. Prognosic Valuer of HAMCB1. Experise tax of display expersed in sepila spatient, with levels increasing a disease severity. Benefits and the severity of the severity of organization in sepals, to with severity of sepila mininguistic levels are included in experiment of plantical text. Benefits and to HAMCB1 tevels are included as organization and associated as severity. Benefits and organization and plantical text. and grade disease severity. Benefits and organization and plantical text. and grade disease severity. Benefits and organization and plantical text. and grade disease severity. Benefits and organization and plantical text. and grade disease severity. Control of the AMCB1 text and the severity of severity of sepals and targets for therapeutic development. 2. The orthalpits or mediated t
		HAGGS HAGGS HAMP (All Manager Commons of Protein 1 Subligations of Careful Protein 1 Subrigations of Careful Protein 1 Subrigations of Careful Protein 1 Subrigations of Careful Protein 1 Haggs	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1-11/40/21 plays a spinioral role in the Inflammatory processes of sepas, making it a valuable therapeutic target. Nonework for including an adaptacid behavior its uncertain. Elevated INVGB1 levels are associated with sepais severify, but they do not consistently correlate with survival or progressis in patients. 2. Diagnostic Biomarker Protential. MMDB1 levels correlate with disease executify in sepais and other inflammatory diseases. MMDB1 levels correlate with disease executify in sepais and other inflammatory diseases. MMDB1 levels correlate with disease executify in sepais and other inflammatory diseases. MMDB1 levels correlate with disease executify in sepais and other inflammatory diseases. MMDB1 levels correlate with disease executify in sepais and other inflammatory diseases. MMDB1 levels correlate with disease executify and a standardors early diagnostic biomarker. 3.1446/261 in Service disease execution of inflammators in sepais, so utility as a disquarker explaint of the correlate of inflammators in sepais, so utility as a disquarker or progresses. NMDB1 is highly respected in sepais patient, with been bronzed and disease exemity progresses. It is obtainly associated with manusco systemator, reflected by attems of cell markers (CAH+ and CDH+) Elevated IAMDB1 is a bronze exercised in sepais patient, with been bronzed and disease exemity. Elevated IAMDB1 is a progressed in sepais patient, with been bronzed and disease exemity. Progressed in AMDB1 is a progressed in sepais patient with several patients. Progressed in AMDB1 is a progressed in sepais patient with several patients and potential area, and greate disease exemity. Progressed in AMDB1 is a progressed in sepais patient and potential biomarkers for sepais progresses and targets for therapeutic development. 1 higher ELANE expression was linked to poper outcomes, provide insights into potential biomarkers for sepais progression and targets for therapeutic development. 2. The analysis everaled that ELANE was significantly associ
	ELANÉ	HAGGA HAGA HAGGA H	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1-11/40/21 stays a sparked and to in the Inflammatory concessed sepas, making it a valuable therapeudic target. Nonever, late fielding a a disposable Service is successed. Elevated IRVGB1 levels are associated with applies severify, but they do not consistently correlate with survival or prognosis in patients. 2. Disposable Romanker Potential. HAMCB1 bevels correlate with desires severify in sepals and other inflammatory diseases. HAMCB1 tevels correlate with desires severify in sepals and other inflammatory diseases. HAMCB1 tevels correlate with desires severify in sepals and other inflammatory diseases. HAMCB1 tevels correlate with desires severify in sepals and other inflammatory diseases. HAMCB1 tevels correlate with desires severify in sepals and other inflammatory diseases. HAMCB1 tevels desired inflammatory in sepals and submitted tevels of the severify of organ optimization or mortality. However, HAMCB1 tevels do not a practic the severify of organ optimization or mortality in sepals patients. However, HAMCB1 is shiply expersed in sepals patient, with levels increasing a disease severify becomes in clinical settings appears limited. 4.1446018 is shiply expersed in sepals patient, with levels increasing a disease severify progresses. Prognosite Valuer of HAMCB1. Experiment and collegated in levels are included or organization severify. Beneficial experses to the severify of organization severify in sepals and professional severify. Beneficial experses to the severification of the severificati
		HAGGS HAGGS HAMP (All Manager Commons of Protein 1 Subligations of Cartery belief in Green Protein Subligations of Cartery belief in Green Protein 1007-2006/ICCS Hamp Addedly Group Box 1 Haggs Addedly Group Box 1 Haggs Haddly Group Box 1 Haggs Haddly Group Box 1 Hadd (All Haddle) Haddle (All Hadd	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1-11/40/21 plays a sparked art los in the Inflammatory soccessed sepas, making it a valuable therapeutic target. Rowered is Revision as disposable Servisine its uncertain. Blevated IRVGB1 levels are associated with applies severify, but they do not consistently correlate with survival or prognosis in patients. 2. Disposable Rowers are recommended in the Rower of Servision of Servision (Servision Consistent of Servision Consistent Consistent of Servision Consistent of Servision Consistent Consistent Consistent of Servision Consistent Consiste
	ELANÉ	HAGGA HAGA HAGGA H	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1-11/40/21 plays a sparked art los in the Inflammatory soccessed sepas, making it a valuable therapeutic target. Rowered is Revision as disposable Servisine its uncertain. Blevated IRVGB1 levels are associated with applies severify, but they do not consistently correlate with survival or prognosis in patients. 2. Disposable Rowers are recommended in the Rower of Servision of Servision (Servision Consistent of Servision Consistent Consistent of Servision Consistent of Servision Consistent Consistent Consistent of Servision Consistent Consiste
	ELANÉ	HAGGS HAGGS HAMP (All Manager Commons of Protein 1 Subligations of Cartery belief in Green Protein Subligations of Cartery belief in Green Protein 1007-2006/ICCS Hamp Addedly Group Box 1 Haggs Addedly Group Box 1 Haggs Haddly Group Box 1 Haggs Haddly Group Box 1 Hadd (All Haddle) Haddle (All Hadd	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1-11/40/21 plays a sparked art los in the Inflammatory soccessed sepas, making it a valuable therapeutic target. Rowered is Revision as disposable Servisine its uncertain. Blevated IRVGB1 levels are associated with applies severify, but they do not consistently correlate with survival or prognosis in patients. 2. Disposable Rowers are recommended in the Rower of Servision of Servision (Servision Consistent of Servision Consistent Consistent of Servision Consistent of Servision Consistent Consistent Consistent of Servision Consistent Consiste
	ELANÉ	HAGGS HAGGS HAMP (All Manager Commons of Protein 1 Subligations of Cartery belief in Green Protein Subligations of Cartery belief in Green Protein 1007-2006/ICCS Hamp Addedly Group Box 1 Haggs Addedly Group Box 1 Haggs Haddly Group Box 1 Haggs Haddly Group Box 1 Hadd (All Haddle) Haddle (All Hadd	Protein biomarker		where pyrophotic or exceptive influentation is involved. more closely linked to the hoofs immune response.	Inflammatory and Immune Vascular and Endotheltal Cytokine Storm Cytokine Storm Cospolation Cospolation Cospolation	CD4+ and CD6+ , CRP	MalaCand Cepts Arthritis Bacterial sepsis KECGANO UsiProstNO GeneCards/ Pathways by source for ELAHE Gene MalaCandshO KECGANO MalaCandshO KECGANO MalaCandshO	1-11/40/21 plays a sparked art los in the Inflammatory soccessed sepas, making it a valuable therapeutic target. Rowered is Revision as disposable Servisine its uncertain. Blevated IRVGB1 levels are associated with applies severify, but they do not consistently correlate with survival or prognosis in patients. 2. Disposable Rowers are recommended in the Rower of Servision of Servision (Servision Consistent of Servision Consistent Consistent of Servision Consistent of Servision Consistent Consistent Consistent of Servision Consistent Consiste

9.IL8	CXCL8	C.X.C Modf Chemokine Linguid 8	Protein biomarker Prognostic marker		Inflammatory and Immune	associated with increased levels		1 III. A serves as a sensitive and specific biomarker for
		C-X-C Motif Chemokine Ligand 8 MDNCF NAP-1	Trogradu Harker		Vascular and Endothelial	associated with increased levels of IL-1β, IL-6, IL-10, TNF-α, and CRP		The God are did with a consider the size of the consideration of the Con
		MONAP GCP-1			Coagulation			1.8. A series as a sestion and specific bornaries for Predicting infections and septia from producting infections and septia in bum producting without sevently and septia from producting with burn sevently and MOF in patients with levels below 224 pgpint. Contraditing with burn sevently and MOF in patients with levels below 224 pgpint. If we have a sevently and MOF in patients with levels below 224 pgpint. If we have a sevently and MOF in patients with levels below 224 pgpint. If we have a sevently and MOF in patients with levels below 224 pgpint.
		Monocyte-Derived Neutrophil Chemotactic Factor Monocyte-Derived Neutrophil-Activating Peptide			Coagulation			IL-8 measurement could guide early diagnosis and management of sepsis in burn patients. This biomarker provides clinicians with an early warning system to target timely therapeutic interventions.
		Granulocyte Chemotactic Protein Chemokine (C-X-C Motif) Ligand 8						This biomarker provides clinicians with an early warning system to target timely therapeutic interventions.
		SCYB8 LYNAP						
		LUCT						
		IL-8 GCP1						
		NAP1 NAF						
		Microuse Microsys Carlos Neuropal Chemodade Faster Microsys Carlos Neuropal Activatory Proble Commission (CA: Charted Neuropal Activatory Proble Commission (CA: Charted Neuropal Activatory Neuropal London						
		Lung Giant Cell Carcinoma-Derived Chemotactic Protein Lymphocyte Derived Neutrophil ActivatingPeptide						
		Alveolar Macrophage Chemotactic Factor I Tumor Necrosis Factor-Induced Gene 1						
		T-Cell Chemotactic Factor						
		Interleukin 8 Interleukin-8						
		AMCF-I						
		AMCF-I B_ENAP TSG-1 3-10C K80						
		K60						
		Beta-Thromboglobulin-Like Protein						
		Small Inducible Cytokine Subfamily B, Member 8 Bets-Thromboglobulin-Like Protein Neutrophil-Activating Protein C.X.C Motif Chemokine 8 Protein 3-10C						
		Protein 3-10C				IL-1b, IL-6, IL-10, IL-12p70, TNF-a		2.11-8:
						CRP and PCT		A potent chemostractant that activates neutrophils. I eyels increase with disease severally and use predictive of mortality.
						CD64		CD64:
						CD64		A marker or neutropmi advassors, specime for carcieras infections. Rapidly measurable and reliable for assessing spenis progression.
								Clinical Relevance: A single measurement of CD64 and IL-8 within 24 hours of sepsis onset is sufficient to:
								2.46. demonstrates that scrientes multipolis. Levels increases with desires severing and a procedure of mortality. CDG4: Levels increases with desires severing and are procedure of mortality. CDG4: A recommendation of membrane and another increases. A recommendation of membrane and recommendation of membrane and recommendation. Clinical Relevance: A resign reseasement of CDG4 and IL of which 24 hours of sepsis creat is sufficient to: A region reseasement of CDG4 and IL of which 24 hours of sepsis creat is sufficient to: Assess severily and organ dysfunction. Personal 28 day mortality.
								Predict 29-day mortality
								3. Increased Chemokine/Cytokine Levels: Five chemokines-CNC3 (1,6,1), CNC10, CNC112, CDL13, and CDL22—were significantly elevated in all three sepsis cases. Other chemokines, and as CNC11, CNC12, and CDL1, stowed elevated levels in two of the three cases.
								user cremounes, such as UAULT, CXCL2, and CCL1, showed elevated levels in two of the three cases.
								No mRNA Changes: Despite increased protein levels of these chemokines, their corresponding mRNA expression levels were not affered,
						IL-6, IL-21, MCP-1		suggesting post-transcriptional regulation or accumulation of circulating proteins 18 parallel street the role of 1900 (1901) to us proteins bit proteins of the protein and the proteins of the protein and the proteins of the protein and the proteins of
								No mRNA Changes: Despite recovered protein levels of those chemokines, their corresponding mRNA expression levels were not altered. Despite recovered protein levels were not altered. 2. A emphasizes the level of mRN 487.0 as a potential biomarker for the pagin and reliable diagnosis of sepsis when contained with pro-inflammatory cytokines such as IL-9, IL-21, CXCL8, and MCP-1, along with mRNA markers TDASB and TLR4.
						miR-3663-3p		
						mRNA markers TDAG8 and TLR4		
								6. The study highlights the prooffered electrics of II. 8 in sensis northodoly in national with shock
								5. The study highlights the significant elevation of IL-8 in sepsis, particularly in patients with shock. White IL-6 consistes with several clinical and inflammatory parameters, its prognostic value remains limited. IL-6 couls serve as a formatine for assessing stock severity and finalmatory activity in sepsis patients.
								L.4. could serve as a biomature for assessing shock severity and inflammatory activity in expais patients. L.4. do and A.5. are less reliable for dapposes but may provide additional prognostic margists. L.4. do and A.5. are less reliable for dapposes but may provide additional prognostic margists. L.4. do and A.5. are less reliable for dapposes but may provide additional prognostic margists. L.5. These by highly damp damp control of DMAH. If ACTIVITY, and universace are diagnostic tools for sepsis. L.5. L.6. L.6. L.7. C.M.A.5. and universace compared to SIRS patients. These markers were also elevated compared to SIRS patients. These markers were also elevated compared to Patients. SVFOTE cereits were serve in suppos patients compared to SIRS. S. Whole blood. L.6. duplemforms general L.6 and C.GPF in diagnosing speptia in postoperative ICU patients. In the significance of the server of the
						PCT, IL6		IL-6 and IL-6 are less reliable for diagnosis but may provide additional prognostic insights. II-8 however correlated with mortality risk in analyses with sense;
						ICAM-1, VEGFR2, and urokinase		7. The study highlights the potential of ICAM-1, VEGFR2, and unokinase as diagnostic tools for sepsis.
						IL-6, IL-10		Sepsis patients had significantly higher levels of: 180, 180, 110, ICAM-1, and unclinass compared to SIRS patients.
								These markers were also elevated compared to healthy controls. VEGFR2 levels were lower in sepsis patients compared to SIRS. VetGFR2 levels were lower in sepsis patients compared to SIRS.
						CRP		8. Whole blood IL-8 outperforms plasma IL-8 and CRP in diagnosing sepsis in postoperative ICU patients.
miRNA150	MIR150	MicroRNA 150	gene biomarker diagnostic/prognostic	general sepsis biomarker	Inflammatory and Immune	downregulation of ARG1, IL-6, and	Genecards/NO	1.MicroRNA-150 (mR-150): Central regulator downregulated in sepsis. ARG1 (Agriase-1): Key protein suppressed by mit-150, reducing MISC-mediated immunosuppression. [Le, B., Li, T. GT-6]: Cylonizen influenced by mit-150 modulation. [C. Inc. B., Li, T. GT-6]: Cylonizen influenced by mit-150 modulation. [C. Inc. B., Li, T. GT-6]: Cylonizen influenced by mit-150 modulation.
		Hsa-MiR-150-5p Hsa-MiR-150-3p Hsa-Mir-150		across diverse infection types	Cytokine Storm Regulates MYD88, CXCL8	anti-inflammatory cytokines (TGF-β, IL-10).	MalaCards/NO KEGG/NO	ARGI (Arginase-1): Key protein suppressed by mIR-180, reducing MUSC-mediated immunosuppression. IL-6, IL-10, TGF; C Cytokines influenced by mIR-180 modulation. II-6, IL-10, TGF; C Cytokines influenced by mIR-180 modulation.
		Hsa-Mir-150 MIRN150			Vascular and Endothelial Modulates VEGFA and		UniProt/NO	
		MIRN150 Hsa-Mir-150_pre MIMAT0004610			Modulates VEGFA and ANGPT2			
		MIMAT0000451 MI0000479						
		MMATDOGGETO MMATDOGGETO MMATDOGGGETO MIDOGGT9 MERNATSO ME-150			Apoptosis and Cell Death Controls FOXP1 and BCL2			
		NE-100						
					Epigenetic Regulation			
					Epigenetic Regulation	negatively correlated with pro-inflammatory cytokines		 its study rightings mik-164 as a candidate no non-invasive sepais diagnostics and suggests its potential role in regulating immune responses during sepais. its expression levels in plasma and leukocytes can distinguish sepais patients from healthy individuals.
					Epigenetic Regulation	negatively correlated with pro-inflammatory cytokines (TNF-alpha, IL-18) and the anti-inflammatory cytokine IL-10.		2. In its subyringingths time-10 us a cannotine for non-investive sepsis cappoints; and suggests is potential role in regulating immune responses during sepsis. Its expression levels in plasma and feliologic scan distinguish expession selected in plasma soft existing-close can distinguish explicit selected in plasma and feliologic scan distinguish explicit selected in the plasma of levels or plasma selected in the plasma of levels or plasma of levels or levels and the plasma of levels or levels or levels and the plasma of levels or levels
					Epigenetic Regulation	anti-inflammatory cytokine IL-10.		2. In a study right print risk 10 at 3 at clandates for find invitative deptile daily before the study register in powers on on requirement responses ourny sepse. A proposed mRR-1016 I feat on court further risk reservely assessment for time healthy redictions. MR-101 was significantly downersplained in both histocycles and plasma of sepsis patients compared to controls. MR-102 and MR-204 you was bad after both to a lesser exist. MR-102 and MR-204 you was bad after both to a lesser exist.
					Epigenetic Regulation	negatively correlated with pro-inflammatory cytokines (TNF-slpha, IL-18) and the anti-inflammatory cytokine IL-10. miR-182 and miR-342-5p		2. This study highlights milk 190 as a conditate for non-insiste exposi diagnostics and suggests its potential role in regulating immune responses during sepsis. Its accreasion limits be pleasan and relactions can disripative special septients from healthy relateduse. A processed milk 1900.1-18 radio could further refire severity assessment. milk 190 axes applicately diversegialated in the intallectory as and season of sepsis patients compared to control and in the control of the
					Epigenetic Regulation	anti-inflammatory cytokine IL-10.		
					Epigenetic Regulation	anti-inflammatory cytokine IL-10.		
					Epigenetic Regulation	anti-inflammatory cytokine IL-10.		
					Epigenetic Regulation	arki-inflammatory cytokine IL-10. mR-182 and mR-342-6p		3. The study highlights the potential of combining mR-150 levels with the SOFA score to enhance prognostic accuracy in septia patients. mR-150 could serve as a valuable prognostic marker, reflecting underlying immune dyrengulation in septia. He study highlights mH-150 potential as a perceptic biomants or inclinically illustrates that suggests finited utility for septia diagnosis. Reduced mH-150 levels may inclose unforceable outcomes and reflect immune dyrengulation in ortical liferas. Reduced mH-150 levels may inclose unforceable outcomes and reflect immune dyrengulation in ortical liferas. No significant difference was band in mH-150 levels between seption of non-on-spectic conduction. Poll patients.
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. miR-182 and miR-342-5p miR-23: Associated with sepsis seventy.		
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. miR-182 and miR-342-dp miR-223: Associated with sepsis severity miR-223: Associated with sepsis severity miR-188 and miR-195. Correlated with activated and miR-195. Correlated with		3. The study highlights the potential of combining mR-150 levels with the SOFA score to enhance prognostic accuracy in septia patients. mR-150 could serve as a valuable prognostic marker, reflecting underlying immune dyrengulation in septia. He study highlights mH-150 potential as a perceptic biomants or inclinically illustrates that suggests finited utility for septia diagnosis. Reduced mH-150 levels may inclose unforceable outcomes and reflect immune dyrengulation in ortical liferas. Reduced mH-150 levels may inclose unforceable outcomes and reflect immune dyrengulation in ortical liferas. No significant difference was band in mH-150 levels between seption of non-on-spectic conduction. Poll patients.
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. miR-182 and miR-342-dp miR-223: Associated with sepsis severity miR-223: Associated with sepsis severity miR-188 and miR-195. Correlated with activated and miR-195. Correlated with		3. The study highlights the potential of combining mR-150 levels with the SOFA score to enhance prognostic accuracy in septia patients. mR-150 could serve as a valuable prognostic marker, reflecting underlying immune dyrengulation in septia. He study highlights mH-150 potential as a perceptic biomants or inclinically illustrates that suggests finited utility for septia diagnosis. Reduced mH-150 levels may inclose unforceable outcomes and reflect immune dyrengulation in ortical liferas. Reduced mH-150 levels may inclose unforceable outcomes and reflect immune dyrengulation in ortical liferas. No significant difference was band in mH-150 levels between seption of non-on-spectic conduction. Poll patients.
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. miR-182 and miR-342-5p miR-23: Associated with sepsis seventy.		3. The study highlights the potential of combining mR-150 levels with the SOFA score to enhance prognostic accuracy in septia patients. mR-150 could serve as a valuable prognostic marker, reflecting underlying immune dyrengulation in septia. He study highlights mH-150 potential as a perceptic biomants or inclinically illustrates that suggests finited utility for septia diagnosis. Reduced mH-150 levels may inclose unforceable outcomes and reflect immune dyrengulation in ortical liferas. Reduced mH-150 levels may inclose unforceable outcomes and reflect immune dyrengulation in ortical liferas. No significant difference was band in mH-150 levels between seption of non-on-spectic conduction. Poll patients.
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. miR-182 and miR-342-dp miR-223: Associated with sepsis severity miR-223: Associated with sepsis severity miR-188 and miR-195. Correlated with activated and miR-195. Correlated with		3. The study highlights the potential of combining miR-150 levels with the SOFA score to enhance proposals accuracy in septia patients. miR-150 could serve as a valuable programs marker, reflecting underlying immune dyresplation in septia. miR-150 could serve as a valuable programs marker, reflecting underlying immune dyresplation in septia. Federated miR-150 levels were used to reflect immune dyresplation in profital linears. No significant difference was found in miR-150 levels between septic and ron-septic critically ill patients. No significant difference was found in miR-150 levels between septic and ron-septic critically ill patients. No significant difference was found in miR-150 levels between newlock and reflection, but of a character potential (TPF), interination 6 (IL-6), interination-10 (IL-10), or tumor necrosis factor (TNF). S. miN-150 between patient in most studies, associated with immune modulation, arti-effaurmaticy effects, and enduthelial integrity, and indicated to the septimental patients of the septimental patients. **Total Commence of the Profit interination of the patients of
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. miR-182 and miR-342-dp miR-223: Associated with sepsis severity miR-223: Associated with sepsis severity miR-188 and miR-195. Correlated with activated and miR-195. Correlated with		3. The study highlights the potential of combining miR-150 levels with the SOFA score to enhance proposals accuracy in septia patients. miR-150 could serve as a valuable programs marker, reflecting underlying immune dyresplation in septia. miR-150 could serve as a valuable programs marker, reflecting underlying immune dyresplation in septia. Federated miR-150 levels were used to reflect immune dyresplation in profital linears. No significant difference was found in miR-150 levels between septic and ron-septic critically ill patients. No significant difference was found in miR-150 levels between septic and ron-septic critically ill patients. No significant difference was found in miR-150 levels between newlock and reflection, but of a character potential (TPF), interination 6 (IL-6), interination-10 (IL-10), or tumor necrosis factor (TNF). S. miN-150 between patient in most studies, associated with immune modulation, arti-effaurmaticy effects, and enduthelial integrity, and indicated to the septimental patients of the septimental patients. **Total Commence of the Profit interination of the patients of
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. miR-182 and miR-342-dp miR-223: Associated with sepsis severity miR-223: Associated with sepsis severity miR-188 and miR-195. Correlated with activated and miR-195. Correlated with		3. The study highlights the potential of combining miR-100 levels with the SDFA score to enhance prognostic accuracy in septia patients. 4. The study highlights miR-100 potential as a prognostic blomaker in critical in glades but suggests intellect stilly for septia diagnosis. Relaced miR-100 potential as a prognostic blomaker in critical in glades but suggests intellect stilly for septia diagnosis. Relaced miR-100 potential as a prognostic blomaker in critical intellection in critical inte
					Epigenetic Regulation	arti-riflammatory cytokine IL-10. mR-102 and mR-342-5p mR-223 Associated with sepsis sevenity mR-223 Associated with sepsis sevenity mR-165a and mR-100-Correlated with service and inflammatory regulation. mR-165 and mR-155 epidemic in service progression.		3. The study highlights the potential of combining miR-100 levels with the SDFA score to enhance prognostic accuracy in septia patients. 4. The study highlights miR-100 potential as a prognostic blomaker in critical in glades but suggests intellect stilly for septia diagnosis. Relaced miR-100 potential as a prognostic blomaker in critical in glades but suggests intellect stilly for septia diagnosis. Relaced miR-100 potential as a prognostic blomaker in critical intellection in critical inte
					Epigenetic Regulation	arti-inflammentory cylciaine EL 10. mRP-182 and mRP-342-569 mRP-223 Associated with sepsis sevently mRP-223 Associated with sepsis sevently mRP-163 and mRP-160. Correlated with serviced and rifflammentory regulation. mRP-165 and mRP-126: treplaced in excluded in Exercision and sepsis progression. mRP-166 and mRP-126: treplaced in excluded in Exercision and sepsis progression.		3. The study highlights the potential of combining miR-100 levels with the SDFA score to enhance prognostic accuracy in septia patients. 4. The study highlights miR-100 potential as a prognostic blomaker in critical in glades but suggests intellect stilly for septia diagnosis. Relaced miR-100 potential as a prognostic blomaker in critical in glades but suggests intellect stilly for septia diagnosis. Relaced miR-100 potential as a prognostic blomaker in critical intellection in critical inte
					Epigenetic Regulation	arti-inflammentory cylciaine EL 10. mRP-182 and mRP-342-56 mRP-223 Associated with sepsis sevently mRP-223 Associated with sepsis sevently mRP-163 and mRP-160. Correlated with serviced and rifflammentory regulation. mRP-165 and mRP-120: tregistated in excluded in Execution and Sepsis progression. mRP-165 and mRP-120: tregistated in excluded in Execution and Sepsis progression.		3. The study highlights the potential of combining miR-100 levels with the SDFA score to enhance prognostic accuracy in septia patients. 4. The study highlights miR-100 potential as a prognostic blomaker in critical in glades but suggests intellect stilly for septia diagnosis. Relaced miR-100 potential as a prognostic blomaker in critical in glades but suggests intellect stilly for septia diagnosis. Relaced miR-100 potential as a prognostic blomaker in critical intellection in critical inte
					Epigenetic Regulation	arti-inflammentory cylciane EL 10. mRP-122 and mRP-342-569 mRP-223 Associated with sepsis sevently mRP-225 Associated with sepsis sevently mRP-163 and mRP-160. Correlated with serviced and rifflammentory regulation. mRP-165 and mRP-160: terplaceted in mRP-166 and mRP-160: terplaceted in mRP-166 and mRP-160: terplaceted in mRP-166 demonstrated superior diagnostic accuracy Upregulated mRP-162, mRP-122, mRP-133a, mRP-160, mRP-267.		3. The study highlight the potential of combring mRR 150 levels with the SDFA score to enhance prognostic accuracy in against patients. mRR-150 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. mRR-150 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. mRR-160 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities, and endothered integrity. mRR-145e. Also downergulated, with anti-inflammatory and immune-regulating roles. 6. Prognostic Potential: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in RR-150 can serve as a biomarker observed yellow article) Downergulated in RR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in RR-150 can serve as a biomarker or assessment or server and assessment or server and assessme
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. mR-112 and mR-342-5p mR-223 Associated with sepsis seventhy mR-124 and ser mR-150. Consistent of with married and reflammatory regulation. mR-156 and mR-150 inspirated with serviced and reflammatory regulation. mR-156 and mR-150 inspirated in endotherial function and sepsis progression. mR-25 demonstrated superior diagnostic accurately Unregulated mR-152, mR-122, mR-133a, mR-150, mR-223 Devergulated mR-152, mR-133a, mR-150, mR-223 Devergulated mR-154(a)		3. The study highlight the potential of combring mRR 150 levels with the SDFA score to enhance prognostic accuracy in against patients. mRR-150 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. mRR-150 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. mRR-160 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities, and endothered integrity. mRR-145e. Also downergulated, with anti-inflammatory and immune-regulating roles. 6. Prognostic Potential: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in RR-150 can serve as a biomarker observed yellow article) Downergulated in RR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in RR-150 can serve as a biomarker or assessment or server and assessment or server and assessme
					Epigenetic Regulation	arti-inflammentory cylcitric EL 10. mR-122 and mR-342-459 mR-122 and mR-342-459 mR-223 Associated with sepsis seventry mR-123 as of mR-120. Correlated with serviced and rifflammentory regulation. mR-155 and mR-150: brejicated in mR-156 and mR-156: brejicated in mR		3. The study highlight the potential of combring mRR 150 levels with the SDFA score to enhance prognostic accuracy in against patients. mRR-150 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. mRR-150 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. mRR-160 count serve as a valuable prognostic marker, reflecting underlying immune dyregulation in signis. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities) lightered. Mo significant difference was found in mRR-150 levels between septic and non-septic folicities, and endothered integrity. mRR-145e. Also downergulated, with anti-inflammatory and immune-regulating roles. 6. Prognostic Potential: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in Regiss: mRR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in RR-150 can serve as a biomarker observed yellow article) Downergulated in RR-150 can serve as a biomarker to assess sepsis progression and predict outcomes (yellow article) Downergulated in RR-150 can serve as a biomarker or assessment or server and assessment or server and assessme
					Epigenetic Regulation	arti-inflammatory cytokine IL-10. mR-112 and mR-342-5p mR-223 Associated with sepsis seventhy mR-124 and ser mR-150. Consistent of with married and reflammatory regulation. mR-156 and mR-150 inspirated with serviced and reflammatory regulation. mR-156 and mR-150 inspirated in endotherial function and sepsis progression. mR-25 demonstrated superior diagnostic accurately Unregulated mR-152, mR-122, mR-133a, mR-150, mR-223 Devergulated mR-152, mR-133a, mR-150, mR-223 Devergulated mR-154(a)		3. The study highlight the potential of combining mRN 150 levels with the SDFA score to enhance proposalic accuracy in septial patients. mRN-150 count serve as a valuable programe marker, reflecting underlying immune dyresplation in septia. Miss product serve as a valuable programe marker, reflecting underlying immune dyresplation in septia. Miss programs are septial to the server of the
					Epigenetic Regulation	arti-inflammatory cylciane E. 1-0. mR-152 and mR-342-5-5 mR-152 and mR-342-5-5 mR-152 and mR-342-5-5 mR-152 and mR-342-5-5 mR-152 and mR-150 Correlated with serpois sevently mR-164 and mR-175 Correlated with servined and rifflammatory regulation. mR-155 and mR-182 inspirated with servined and mR-182 inspirated with serviced and mR-182 inspirated with serviced and mR-182 inspirated mR-183 inspirated mR-183 inspirated mR-183 inspirated mR-1842 insp		3. The study highlights the potential of combining mR-100 levels with the SOFA score to enhance prognostic accuracy in segritis patients. 4. The study highlights mR-100 potential as a prognostic blomaker in critical in gladers but suppress intellect stills for experts diagnosis. Relacional mR-100 potential as a prognostic blomaker in critical in gladers but suppress intellect stills for experts diagnosis. Relacional mR-100 potential in an information of the study of t
						arti-inflammatory cylciane EL 10. mR-122 and mR-342-6-6 mR-225 Associated with sepsis seventhy mR-225 Associated with sepsis seventhy mR-145 and mR-150. Correlated with serviced and rifflammatory regulation. mR-156 and mR-150: Explicated in mR-156 and mR-150: Explicated in excludinated mR-25 demonstrated surperior Glagorostic accuracy Uprogulated: mR-122, mR-122, mR-133, mR-150, mR-220 Downeyalated: mR-146a mR-150-22, mR-154, mR-154	3	3. The study highlights the potential of combining miR-100 levels with the SDFA core to enhance propriets accuracy in septial patients. 4. The study highlights miR-100 potential as a progressible blomaker in critical in gladers but suggests intelled stilly for expels diagnosis. Reduced miR-100 potential as a progressible blomaker in critical in gladers but suggests intelled stilly for expels diagnosis. Reduced miR-100 levels were not correlated with common formation or intelled intelled mines or intelled mines or intelled intelled mines or intele
miRNA185	miRNA155	MouseNA 155 Has MAP 105 dp	gane biomarker diagnostic/prognostic	blent of sharce-dependent specificity	Inflammatory and Immune Pathwayse Angelinese	arti-inflammatory cylciane EL 10. mR-122 and mR-342-6-6 mR-225 Associated with sepsis seventhy mR-225 Associated with sepsis seventhy mR-145 and mR-150. Correlated with serviced and rifflammatory regulation. mR-156 and mR-150: Explicated in mR-156 and mR-150: Explicated in excludinated mR-25 demonstrated surperior Glagorostic accuracy Uprogulated: mR-122, mR-122, mR-133, mR-150, mR-220 Downeyalated: mR-146a mR-150-22, mR-154, mR-154	3	3. The study highlights the potential of combining miR-100 levels with the SDFA core to enhance propriets accuracy in septia patients. 4. The study highlights miR-100 potential as a progressible blomaker in critically in planters but suggests instituted stilly for expels diagnosis. Relacional miR-100 potential as a progressible blomaker in critically instituted stilly for expels diagnosis. Relacional miR-100 potential as a progressible blomaker in critical lines. Relacional miR-100 potential institute in common progressible or mixed blomaker in mixed blomaker in critical lines. Silver in critical lines. Silver in mixed blomaker in critical lines. Silver in mixed blomaker in mixed blomaker in critical lines. Silver in mixed blomaker in mixe
mRNA155	miRNA155		gene biomarker diagnostic/progrostic	specificity	Inflammatory and Immune Permanyol Angilles	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	Gene Cardol miRNA role in immune response in septie	3. The study highlight the potential of combining mRN 150 levels with the SDFA score to enhance proposalic accuracy in septial patients. mRN-150 count serve as a valuable programe marker, reflecting underlying immune dyresplation in septia. Miss product serve as a valuable programe marker, reflecting underlying immune dyresplation in septia. Miss programs are septial to the server of the
mRNA155	msRNA155		gene biomarker diagnostic/prognostic		Inflammatory and Immune Partinerpal Angillies Purposeds Thirlifus III	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	3	3. The study highlights the potential of combining miR-100 levels with the SDFA core to enhance propriets accuracy in septia patients. 4. The study highlights miR-100 potential as a progressible blomaker in critically in planters but suggests instituted stilly for expels diagnosis. Relacional miR-100 potential as a progressible blomaker in critically instituted stilly for expels diagnosis. Relacional miR-100 potential as a progressible blomaker in critical lines. Relacional miR-100 potential institute in common progressible or mixed blomaker in mixed blomaker in critical lines. Silver in critical lines. Silver in mixed blomaker in critical lines. Silver in mixed blomaker in mixed blomaker in critical lines. Silver in mixed blomaker in mixe
miRNA155	miRNA155		gene bomanker diagnostic/prognostic	specificity pathogen or inflammatory stimulus	Inflammatory and Immune Pathwaysi Angillies Promotes Thi (This Tip Promotes This Tip Vascalar and Endohelial Pathwaysi	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	Gene Cardol miRNA role in immune response in septie	3. The study highlights the potential of combining miR-100 levels with the SDFA core to enhance propriets accuracy in septia patients. 4. The study highlights miR-100 potential as a progressible blomaker in critically in planters but suggests instituted stilly for expels diagnosis. Relacional miR-100 potential as a progressible blomaker in critically instituted stilly for expels diagnosis. Relacional miR-100 potential as a progressible blomaker in critical lines. Relacional miR-100 potential institute in common progressible or mixed blomaker in mixed blomaker in critical lines. Silver in critical lines. Silver in mixed blomaker in critical lines. Silver in mixed blomaker in mixed blomaker in critical lines. Silver in mixed blomaker in mixe
mRNA155	miRNA155		gene biomarker diagnostic/prognostic	specificity	Inflammatory and Immune Pathwaysi Angillies Promotes Thi (This Tip Promotes This Tip Vascalar and Endohelial Pathwaysi	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	Gene Cardol miRNA role in immune response in septie	3. The study highlights the potential of combining miR-100 levels with the SDFA core to enhance propriets accuracy in septia patients. 4. The study highlights miR-100 potential as a progressible blomaker in critically in planters but suggests instituted stilly for expels diagnosis. Relacional miR-100 potential as a progressible blomaker in critically instituted stilly for expels diagnosis. Relacional miR-100 potential as a progressible blomaker in critical lines. Relacional miR-100 potential institute in common progressible or mixed blomaker in mixed blomaker in critical lines. Silver in critical lines. Silver in mixed blomaker in critical lines. Silver in mixed blomaker in mixed blomaker in critical lines. Silver in mixed blomaker in mixe
mRNA155	maRNA155		gene biomarker diagnostic/progrostic	specificity pathogen or inflammatory stimulus	Inflammatory and Immune Pathwaysi Angillies Promotes Thi (This Tip Promotes This Tip Vascalar and Endohelial Pathwaysi	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	Gene Cardol miRNA role in immune response in septie	3. The study highlights the potential of combining miR-100 levels with the SDFA core to enhance propriets accuracy in septial patients. 4. The study highlights miR-100 potential as a progressible blomaker in critical in gladers but suggests intelled stilly for expels diagnosis. Reduced miR-100 potential as a progressible blomaker in critical in gladers but suggests intelled stilly for expels diagnosis. Reduced miR-100 levels were not correlated with common formation or intelled intelled mines or intelled mines or intelled intelled mines or intele
mRNA155	miRNA155		gane biomarker diagnostic/prognostic	specificity pathogen or inflammatory stimulus	Inflammatory and Immune Partinerpal Angillies Purposeds Thirlifus III	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	Gene Cardol miRNA role in immune response in septie	3. The study highlights the potential of combining miR-100 levels with the SOFA core to enhance proposite accuracy in septia patients. 4. The study highlights miR-100 potential as a progressible blomaker in critical in glariers but suggests intelled stilly for expets diagnosis. Relacional miR-100 potential as a progressible blomaker in critical in glariers. But suggests intelled stilly for expets diagnosis. Relacional miR-100 potential as a progressible blomaker in critical intellection. In critical lines. Relacional miR-100 potential critical still critical mines of the critical mines of the critical mines. In critical mines of the critical mines of the critical mines of the critical mines of the critical mines. In critical mines of the critical mines of the critical mines of the critical mines of the critical mines. In critical mines of the c
mRNA155	msRNA155		gene bomanker diagnostic/prognostic	specificity pathogen or inflammatory stimulus	Inflammatory and Immune Pathwaysi Angillies Promotes Thi (This Tip Promotes This Tip Vascalar and Endohelial Pathwaysi	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	Gene Cardol miRNA role in immune response in septie	3. The study highlights the potential of combining miR-100 levels with the SOFA core to enhance proposite accuracy in septia patients. 4. The study highlights miR-100 potential as a progressible blomaker in critical in glariers but suggests intelled stilly for expets diagnosis. Relacional miR-100 potential as a progressible blomaker in critical in glariers. But suggests intelled stilly for expets diagnosis. Relacional miR-100 potential as a progressible blomaker in critical intellection. In critical lines. Relacional miR-100 potential critical still critical mines of the critical mines of the critical mines. In critical mines of the critical mines of the critical mines of the critical mines of the critical mines. In critical mines of the critical mines of the critical mines of the critical mines of the critical mines. In critical mines of the c
mFNA155	miRNA155		gene biomarker diagnostic/prognostic	specificity pathogen or inflammatory stimulus	Inflammatory and Immune Pathwaysi Angillies Promotes Thi (This Tip Promotes This Tip Vascalar and Endohelial Pathwaysi	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	Gene Cardol miRNA role in immune response in septie	3. The study highlights the potential of combining mRH 150 levels with the SDFA score to enhance prognostic accuracy in septia patients. 4. The study highlights mRH 150 potential as a prognost located in the supports instituted tally for septia diagnosis. Relaced mRH 150 potential as a prognost located in the relación place but supports instituted tally for septia diagnosis. Relaced mRH 150 potential test as prognosts located in the relación placed pla
miRNA155	miRNA155		gene biomarker diagnostic/prognostic	specificity pathogen or inflammatory stimulus	Inflammatory and Immune Pathwaysi Angillies Promotes Thi (This Tip Promotes This Tip Vascalar and Endohelial Pathwaysi	arti-inflammatory cylciane EL 10. miR-122 and miR-342-69. miR-122 and miR-342-69. miR-223 Associated with sepsis severity miR-125 associated with sepsis severity miR-126 and miR-126. Commission with mix-126 and miR-126. Englished with severided and inflammatory regulation. miR-126 demonstrated superior dispressive accuracy Uprographed—miR-22 miR-122, miR-133a, miR-130, miR-22, miR-132, miR-133a, miR-140, miR-146,	Gene Cards' miRNA role in immune response in septie	3. The study highlights the potential of combining miR-100 levels with the SOFA score to enhance propriodic accuracy in segrits patients. 4. The study highlights miR-100 potential as a progressible bornaker in critical in gladers but suggests intelled stilly for expetic diagnosis. Relacted miR-100 levels may include still micro in critical lines. Relacted miR-100 levels may include still-relaction common and middle nature operations in critical lines. Relacted miR-100 levels were not correlated with common markets of inflammation or infection, such as C-reactive protein (CRP), procalations (PCT), interexists 6 (IL-6), interexists 7 (IL-6), interexists 7 (IL-6), interexists 8 (IL-6), interexists

									A mRI 105 jlays a critical risk in septic drock by driving myocardial and vascular dysfunction through multiple mechanisms, including: Amplitication of VolCoME regulating. Sugression of Angl I treaching via AT IRI downerspullation.
									Dysregulation of the CD47-thrombospondin-1 axis. Therapeutic Potential: Genetic deletion or pharmacologic inhibition of miR-155 improved survival and cardiovascular outcomes in septic shock models.
							miR-146a		5. The study reports in the Mind 15% was residued (downergalated) in the propheral bloom formconcuder cells (PMIA) of septis patients compared to healthy controls. Dyseguidated mRVMs, particularly mRF 146s, play a critical rich in bilancing pro-inflammatory and an in-filammatory responses in septis. mRVMs it is milk 14mm yeare as potential biomarks for disease servely and target for the respect intervention.
									положения поститутельных выполням поставления и учения выделя по посторыми постычного.
miRNA146a	miRNA146a	MicroffWA (46a) HeadRR-146a Tgo MICROFF Tg	gene biomarker	diagnostic/prognostic				GeneCards/ NO MalaCards/ Bacterial Sepsis Septic Arthritis	1 mil 1-46 and mil 222 have strong potential as novel biomarkers for the early disposals of sepsis, defining better specificity and sensitively than traditional markers. In this study, milk observed in application through an experience across the first exposure of sepsis, designed in does not serve as a useful biomarker in this context, and 222 emergets as the most reside biomarker due to its distinct reduction in experiencement to GRIS.
		MIMAT000449 MIMAT0004608 MIRNA146A MI000477 MIR-146a							
		and the same of th					miR-146b		Both miR-146a and miR-146b are elevated in sepsis patients and associated with increased disease severity and systemic inflammation. miR-146b is a more reliable biomarker than miR-146a for:
									Diagnoming spois. Predicting mortality risk and overall prognosis. mil%-1456 showed stronger constations than mil%-145a with: CRF (**n 0.454 to 2.255). TNF* (**n 0.364 to 2.255). LG (**n 0.364 to 0.166).
									IL-6 (r = 0.408 vs. 0.188). 3. Plasma miR-146a levels are lower in sepsis patients compared to non-sepsis-SIRS patients, suggesting its potential as a biomarker for distinguishing these conditions.
									nillé 148 acts à sa critical suis informative regulate ly lappeing TLRNF-60 pathways. Its superplation reasons options production and improves surinier ne specimies. 5. mille 146s stands out as a strong candidate biomater for diagnosing and monotoning sepsis severity. Objectable out as strong candidate biomater for diagnosing and monotoning sepsis severity. Objectable out as strong candidate biomater for diagnosing and monotoning sepsis severity. Objectable out as strong candidate biomater for diagnosing and monotoning sepsis severity.
							miR-150, miR-223		Dyvergulated microRNAs, including mR-223 and mR-145, play significant toles in sepsis pathophysiology but require further study for clinical application. 6. Extracellular mRNAs, particularly mR-110, mR-223, and mR-146s, hold significant potential as diagnostic and prognostic biomarkers for sepsis. https://dx.doi.org/10.000/10.0000/10.00000000000000000000
miRNA223	miRNA223	MIR223	gene biomarker	diagnostic/prognostic		inflammatory pathways		GeneCards/ NO	mIR-223 could serve as a prognostic biomarker, with higher levels indicating improved survival. It may also be a potential therapeutic target for immunomodulation in septis.
		MicroRNA 223 Hsa-MiR-223-5p Hsa-MiR-223-7p						MalaCards/ NO	It may also be a potential therapeutic target for immunomodulation in sepsis.
		MIRCR3 McroRNA 223 McroRNA 223 McroRNA 225							
		MIMAT0004570 MIRO00300 MIRNA223 Mr-223							
									2. Diagnostic Role:
									2. Diagnostic Rolle: MR 221 is a promising biomarker for sepsis, with the ability to distinguish it from SRFS and provide insights into disease progression. Therepresic Potential: The
									Circulating miRNAs show high disagnostic accuracy for seasis, outperforming incidional markers like PCT and CRP. Circulating miRNAs show high disagnostic accuracy for seasis, outperforming incidional markers like PCT and CRP.
							miR-7110-5p		3. Circulating mRNAs show high diagnostic accuracy for spease, outperforming including an invalves Nav PCT and CRP mR223 stands on a strong diagnostic accuracy for spease, outperforming invalves Nav PCT and CRP mR223 stands on a strong diagnostic endedted such to accordance with disease servicely and seperiforily for spease. 4. mR223 by a promising biomarker for diagnosing sepsies secondary to presumona with high sensitivity and specificity mR27110-06 gain box soperified but neights inferther validation.
10.IL10	IL10	Interleukin 10	anatain bisanastas		and an east become	left-maraters and		GeneCards/ NO	
IO.IEIO	icio	Illustration of the control of the c	proteil biolitaixe	prognosac marker	regulatory cytokine	Inflammatory and Immune Pathways Endothelial Protection Metabolic Pathways		MalaCards/ Bacterial Sepsis Septic Arthritis	While IL-10 is not directly useful as a diagnostic marker, it holds value in undestanding the immune dynamics of sepsis and could complement other biomarkers in prognostic assessments
		Interleukin-10 GVHDS				Apoptosis			
									2. The study demonstrates that it. 10 is a key mediator of immune suppression during polymicrobial septis. Delayer foruntalization of IL-10 resistes immune function and improves survival. Singlishing the polarisation for phase-specific thereproduce intervenestic paging IL-10 in septis management.
									Inglingting the potential to primase-specin transpeption interventions targering IL-10 in septem transperient. 3. IL-10 levels at admission instrowed potential as a prognostic marker for septis outcomes. Combining IL-10 with other markers, such as IL-6, improved predictive accuracy for mortality and MOF.
									4. L. 10 is a key mediator of sepsis-induced immunosuppression, inhibiting pro-inflammatory cytokines (e.g., TNF-q) and antigen presentation (via reduced HLA-DR). Elevated IL-10 levels may serve as a marker of immunosuppression in septic shock.
							IL17, PCT		5.110 and II17 offer early diagnostic value by reflecting the immune and inflammatory responses in sepsis. PCT enhances diagnostic precision for bacterial infections and sepsia seventy.
									Timely administration of IL-10 can delay shock onset, providing a critical window for surgical or medical intervention.
									7. The study demonstrates that PCT and it. 10 are effective biomarkers for diagnosing severe sepsis and predicting patient outcomes. Their combined use improves accuracy, offering a promising approach for early and failured interventions in sepsis management.
			gene marker	giagnostic marker					polymorphism in gene make prediction about sepsis.
11.IL1B	IL1b								
12.S100A8	\$100A8	S100 Calcium Binding Protein A8 MRP8 P8 Migration Inhibitory Factor-Related Protein 8 Leukocyte L1 Complex Light Chain Calprotectin L1L Suburit	Protein marker/ some studies mRNA leve	diagnostic/prognostic		Inflammatory and Immune Pathways/Cytokine Storm/ Neutrophil Recruitment and Activation Endothelial Dysfunction		GeneCards/ NO MalaCards/ Septic Arthritis	1. the study emphasizes the proproadic value of \$100A05\$100A0 in identifying saptic shock patients at higher risk of mortality. Elevater \$100A05\$100A08 levels reflect severe inflammation and cellular disnange in septic shock. The dentified protections (e.g., auditated \$100A0) may serve as specific bornarities for prognosis.
		Cystic Fibrosis Antigen S100-A8 608BAG MRP-8 CCI A				Act as DAMPs, amplifying pro-inflammatory cytokines			
		MBP-8 CGLA CAGA CAGA CAGA CAGA CAGA CAGA CAGA				Promote chemotaxis and NET formation Drive ROS release, contributing to tissue damage.			
		S100 Calcium-Binding Protein A8 Calgranulin-A				uamage.			
		CP-10 MA387 L1Ag MIF							
		NIF					S100A9		Findings suggest \$100A8/A9 mRNA levels could serve as surrogate blomarkers for endotoxin tolerance and sepsis-induced immune dysfunctions. Clause 61 010A8/A9 lauser rather immune durfunction in sensis and may read of bornish account infections or specific forming and infection or specific for
									2. Endings suggest \$100,000.00 RMAN levels could serve as surrogate biomarkers for endotionis between and sepsis inclined immune dysfunctions. Bleasted \$100,000.00 besis related immune optimation is sepsis and image predict hospids surgiciar directions or port outcomes. 8. In 30 appears to mediate the inclusion of \$1000,000.00 training immune reprogramming, while IFI by can reverse these changes. 10.00,000.00 related to the could guide patient surfactional for personalized extenders surgicing immune restrational (p. IFIV) personally. 1. In 10.00,000.00 related to the could guide patient surfactional for personalized extenders surgicing immune restrational (p. IFIV) personally.
							S100A9		3. the study injulgible the diagnostic value of seame STUARAB4 levels in distinguishing SC patients and operating diseases serving demonstrates that SCORAB4 contracts the SCORAB4 contracts and scorab contracts and
							(PCT) and (CRP), S100A9		4.5 (100Abil is a reliate browned for literaffying pagis a servely and associated organ hydres. Any described many of 100Abil events on temper programs and associated organ hydres. Binealed serum livels correlate with spagis asverily and mortality. Binealed serum livels correlate with spagis asverily and mortality. Performs better fame intelligent and include promotions (PCI) and C-reactive protein (ICIP) in predicting ICU admission and mortality.
							S100A9		Envirous serium revers currenam wai sepina serveny affil mitratiny. Performs better than traditional biomarkers like proceditionin (PCT) and C-reactive protein (CRP) in predicting ICU admission and mortality. 5. The study identifies \$1000A(Mich meturobilits as key drivers of mitochnodial dissfunction and endobleistic cell revenir.
									the study highlights the diagnostic and prognostic value of \$100ABAB in identifying severe endothelial damage and predicting poor outcomes in sepsis. Monitoring \$100ABAB levels could help identify sepsis patients at high risk for severe endothelial damage and poor outcomes.
							S100A9		The study identifies SIGNABATH results as the procession in re-1 year or resource process (order) in processing SIGNABATH results as they always a finishment of the processing SIGNABATH results as they always a finishment of the processing SIGNABATH results as they always a finishment of the signature of SIGNABATH results and they benefit years parters at high risk for severe enrotherial damage and poor customes. As the signature of SIGNABATH results are supported by the signature of SIGNABATH results are supported by the signature of the signa
									7. The sucksy highlight 5100AB is both a diagnostic biomantie and a potential freezionic target for applicit. For the analysis of the production of the production of the production of the application of

							S100A9		8. STORAGING green expression in blood was applicantly levined in septio arthritis mice compand to non-artifice mice as early as day 2 post infection. Elevated green expression consisted postage with bone excisors exercisely on day 10. Pleasand STORAGING protein break were quergulated in all refreed mice but did not differentiate between arthritis groups. I plays a collisated in the featurement procession of the protein procession of the protein break and protein break and protein break and protein procession of the protein procession of the protein procession of the protein procession of the proteining procession of the proteining procession of the proteining procession procession of the proteining procession
									Plasma S100a8/dg protein levels were upregulated in all infected mice but did not differentiate between arthritic and non-arthritic groups. \$100a8/dg gene expression shows promise as an early biomarker for septic arthritis, enabling timely intervention.
							S100A9, S10012		It plays a critical role in the inflammatory response and joint damage, especially in Starphylococcus aureus-induced infections. S100A8/S100A8 and S100A12 are valuable biomarkers for accession mortality in its new force in the party phase.
									9. \$100A8/\$10049 and \$100A12 are valuable biomarkers for assessing mortality risk in septic shock patients, particularly in the early phase. highlights the diagnostic and prognostic value of \$100A8/\$100A9 and \$100A12, demonstrating their potential to predict mortality and complement clinical scoring systems.
13.S100A9	S100A9	S100 Calcium Binding Protein A9	Protein marker/ gene diagnostic	prognostic univers	ersal role in the	Inflammatory and Immune		GeneCards/ NO	10 1. study primarily evaluates the therapeutic role of targeting \$10040, the significant elevation of \$100A9 levels in plasma and lungs during sepsis suggests potential diagnostic value as a biomarker for inflammation executy.
		MRP-14 MRP14		inflamr	mmatory response	Inflammatory and Immune Pathways/Cytokine Storm/ Neutrophil Recruitment		MalaCards/ Bacterial Sepsis	in plasma and lungs during sepsis suggests potential diagnostic value as a biomarker for inflammation severity.
		P14				and Activation			
		Leukocyte L1 Complex Heavy Chain				Endothelial Dysfunction			
		S100-A9				Act as DAMPs, amplifying pro-inflammatory cytokines			
		60B8AG							
		Migration Inhibitory Factor-Related Protein 14 Leukologis LL Complex Heavy Chain Calprotein L1H Subunit MACSB7 GBBAG LLAG CALL CALL CALL CALL CALL CALL CA				Promote chemotaxis and NET formation			
		CAGB CFAG				Drive ROS release,			
		MIF NIF				Drive ROS release, contributing to tissue damage.			
		Protein S100-A9 Calgranulin B							
		S100 Calcium-Binding Protein A9 (Calgranulin B) S100 Calcium-Binding Protein A9							
		NIF Protein S100-A9 Calgranulin B S100 Calcium-Binding Protein A9 (Calgranulin B) S100 Calcium-Binding Protein A9 Calgranulin-B L1AG							
									2 This study identifies \$10008 as a critical mediator of inflammation and proprietors in septim associated manife kindery (kipy). It highlights \$10004 as on ban a potential disposicia biomarker and a threspectile together remarking kindery (kipy) in septim septim parties. 3. Elevator plasma \$10000 levels suggest it could some as a bromather for septim disposicia. Oblicators of \$10000 militages those efficies, suppositing prospecting for suppositing plasma \$10000 levels, suggesting prospecting for suppositing for suppositing plasma \$10000 levels, suppositing for suppositing for suppositing \$1000000000000000000000000000000000000
									it inglings a rouse as boar a potential coagrisos. Una real replación (angel no il imagaing boarrey aquiy in sepsis patients.) 3. Elevaled plasma \$100A9 levels suggest it could serve as a biomarker for a sepsis diagnosis. 3. Elevaled plasma \$100A9 levels suggest it could serve as a biomarker for a sepsis diagnosis.
									Deficiency of \$100A9 mitigates these effects, suggesting therapeutic potential for targeting \$100A8/A9 in sepsis.
14.S100A12	S100A12	S100A12	protein marker/ gene diagnostic	marker univers	ersal role in the mmatory response	Inflammatory and Immune		GeneCards/ NO	Monitoring \$100A12 levels could help in diagnosing sepsis and assessing its severity.
		S100A12 S100 Calcium Binding Protein A12 CAAF1 CGRP CAGC P6		inflamr	mmatory response	Inflammatory and Immune Pathways/Cytokine Storm/ Neutrophil Recruitment		MalaCards/ NO	Monitoring S100A12 levels could help in diagnosing sepris and assessing its sevenity. This study identifies S100A12 as provintamentary amplifier of innate immunity, particularly through TLP4-mediated monocyte activation. This specified diagnostic value in seption and may serve as a thereprovint lauged for modulate excessive relitamentary responses.
		CGRP				and Activation			
						Endothelial Dysfunction			
		Migration Inhibitory Factor-Related Protein 6 Calcium-Binding Protein In Amnintic Fluid 1				Act as DAMPs, amplifying pro-inflammatory cytokines			
		Extractionals Newsy Internated Process Centuring Protein Migration Inhibitory Factor-Related Protein 6 Calcium-Binding Protein In Amniotic Fluid 1 Neutrophil St00 Protein ENRAGE MRP6							
		ENRAGE MRP6 Protein S100-A12				Promote chemotaxis and NET formation			
		Protein S100-W2 Caligranulin C EN-RAGE MIRP-6 S100 Calicium-Binding Protein A12 (Calgranulin C) S100 Calicium-Binding Protein A12 Caligranulin C				Drive ROS release,			
		EN-RAGE MRP-6				contributing to tissue damage.			
		S100 Calcium-Binding Protein A12 (Calgranulin C) S100 Calcium-Binding Protein A12							
		Calgranulin-C Calcitermin							
									2.S100.412 is a promising biomarker for systemic inflammation in severe sepsis, with significant elevation across all infection types. The high focul levels during encironitis superate that \$100.412 is released precipioninality at the sit led infection.
									S100A12 has diagnostic value for identifying systemic inflammation and sepsis, but its lack of correlation with disease severity limits its prognostic utility.
									3. S 100412 cemporatraten pari orapinostic value for sepata (AUC = 0.94/) anni moternate value for Ary (AUC = 0.042/). S100A12 expression was significantly elevated in sepais and AF, correlating with immune and inflammatory pathways.
									S100A12 upregulation in serum and afrait tissue was associated with inflammation, reduced heart rate, and increased susceptibility to AF in septic mice. The study inflatly identified S100A12 at the gene level using bioinformatics and MR methods.
							S100A9 CHPT1 CPER4 DNA.IC3		It validated these findings at the protein level in experimental mouse models, demonstrating functional and otherapeutic relevance. 4 This study is a combination of in sition (hindingmatries) and eval table (wavefunctional and annual process) annual process.
							S100A9, CHPT1, CPEB4, DNAJC3, MAFG, NARF, SNX3, METTL9		The identified genes, particularly S100A12 and S100A9, demonstrate strong potential as diagnostic biomarkers for sepsis. Nice best identified genes, particularly S100A12 and S100A9, demonstrate strong potential as diagnostic biomarkers for sepsis. Nice best identified genes, particularly S100A12 and S100A9,
									2.5.10.4.7 is a porceing towards for regards elementation in every septie, with cypefford sengetion control of infection types. The high local law favil programmin suggested that SCR00.2.1 is received engineering and pile to infection types. The high local law favil programmin suggested to SCR00.2.2 is received engineering and the off-stocker. \$1.500.4.1 senders the registed country of interesting systemic inflammation and septie, but is lack of convisition with disease severity limits to programsic utility. \$1.500.4.2 is convicted by the dispective time registed (AUT – 500.7) and moderness values for FA (EUT + 500.7). \$1.500.4.2 is convicted by the dispective time registed (AUT – 500.7) and moderness values for FA (EUT + 500.7). \$1.500.4.2 is convicted the set of the septie of the register (AUT – 500.7) and translated professional and set of the septie of the septie of the set of the set of the septie of the septie of the set of the set of the set of the septie of the set of the s
15.sCD14-ST/			protein marker diagnostic	prognostic univers	rsal pattern	Inflammatory and Immune		GeneCards/ NO	1.0014
15.sCD14-ST/ CD14	CD14	CD14 Molecule Myeloid Cell-Specific Leucine-Rich Glycoprotein Manager Differentiation Actions CD14	protein marker diagnostic	prognostic universi recogni	rsal pattern prition receptor	Inflammatory and Immune Pathways/Toll-like Receptor (TLP) Signaling/Cytokina			1. CD14: The decreased mCD14 and elevated sCD14 levels in sepsis patients suggest its diagnostic utility for distinguishing sepsis severity.
15.sCD14-ST/ CD14	CD14	CD14 Molecule Myeloid Cell-Specific Leucine-Rich Glycoprotein Monocyte Differentiation Antigen CD14 CD14 Antigen Mx23 Antigen	protein marker diagnostic	prognostic univers recogni pathogo molecul	rsal pattern prition receptor ogen-associated oular patterns (PAMPs)	Inflammatory and Immune Pathways/Toll-like Receptor (TLR) Signaling/ Cytokine Storm/		GeneCards/ NO MalaCards/ Bacterial Sepsis Septic Arthritis	1. CD18: The decreased mCD14 and elevated sCD14 levels in sepsis patients suggest its diagnostic utility for distinguishing sepsis seventy. mCD14. Required levels on cell surfaces may reflect immune cell dysfunction, in hallmark of immune suppression in severe sepsis or septic shock.
15.sCD14-ST/ CD14	CD14	CD14 Molecule Myeloid Cell-Specific Leucine-Rich Glycoprotein Monocyte Differentiation Antigen CD14 CD14 Antigen My23 Antigen	protein marker diagnostic	prognostic univers recogni pathoge molecul	rsal pattern gnition receptor agen-associated cular patterns (PAMPs)	inflammatory and Immune Pathways/Toll-like Receptor (TLR) Signaling/ Cytokine Storm/ Endothelial Dysfunction Acute Phase Response/			1. CD14: The decreased mCD14 and elevated sCD14 levels in sepsis patients suggest its diagnostic utility for distinguishing sepsis sevently. mCD14: Reduced levels on cell surfaces may reflect immune cell dysfunction, a halimatic of immune suppression in severe sepsis or septic shock. sCD14: Elevated levels in the bloodstream indicate a systemic inflammatory response, othen proportional to the diseaser's severity.
15.sCD14-ST/ CD14	CD14	CD14 Molecule Myeloid Cell-Specific Leucine-Rich Glycoprotein Monocyte Differentiation Antigen CD14 CD14 Antigen My23 Antigen	protein marker diagnostic	prognostic univers recogni pathoge molecul	rsal pattern mitton receptor ogen-associated cular patterns (PAMPs)	Inflammatory and Immune Pathways/Tol-like Receptor (TLR) Signaling/ Cytokine Storm/ Endothelial Dysfunction Acute Phase Response/ Systemic Inflammation			Elevated levels in the bloodstream indicate a systemic inflammatory response, often proportional to the disease's seventy.
15.sCD14-ST/ CD14	CD14	CD14 Molecule Myeloto Cell Specific Leucine-Rich Glycoprotein Myeloto Cell Specific Leucine-Rich Glycoprotein CD14 Myeloto Cell Specific Leucine-Rich Glycoprotein My23 Artigen	protein marker diagnostic	prognostic univers recogni pathoge molecui	rsal pattern pition receptor igen-associated cular patterns (PAMPs)	Inflammatory and Immune Pathways/Iol-like Receptor (TLR) Signaling/ Cytokine Storm/ Endothelial Dysfunction Acute Phase Response/ Systemic Inflammation			Elevated levels in the bloodstrawn indicate a systemic inflammatory response, often proportional to the disease's sevently. 2. Elevated TLR.2, TLR.4, and CDT4 protein level expression distinguishes sepsis polients from healthy individuals. Decreased expression of TLP2 and CDT4 on monocytes at admission consellates with injustic motality, indicating potential as prognostic biomarkers.
15:sCD14-ST/ CD14	CD14	CD14 Molecule Myelot Cell Spedific Leudine-Rich Glycogratein Monocyte Differentiation Antigen CD14 My22 Antigen My22 Antigen	protein marker diagnostic	prognostic univers recogni pathog molecui	rsal pattern nition receptor igen-associated oular patterns (PAMPs)	Inflammatory and Immune Pathwayar/Uni like Receptor (TLR) Signaling/ Cytokine Storm/ Endothelial Dysfunction Acute Phase Response/ Systemic Inflammation			Elevated Levis in the Elecotation indicate a systemic inflammatory response, other proportions in the disease's sevently. 2. Elevated ILES, ILES, and CDIF4 point were despressed intelligentally essential sessions patient in the levis of the control of the cont
15:sCD14-ST/ CD14	CD14	CD14 Medicale Michael	protein marker diagnostic	prognostic univers recogni pathog molecul	rsal pattern pillion receptor gen-associated cular patterns (PAMPs)	Inflammatory and Immune Pathways/Tol-like Receptor (TLR) Signaling/ Cytokine Storm/ all Optionies Endotheline Endotheline Endotheline Systemic Inflammation Systemic Inflammation			Elevate Levis in the Eleccitizen indicate a systemic inflammatory response, often proportional to the disease's sevently. 2. Elevated LEV. ER. Alex and CD14 sortion and propasation distilluish aspets sasteries from harbitally individuals. Decisional expression of TLE2 and CD14 on monocytes at admission correlates with higher mortality, indicating potential as prognessic biomarkers. 3. Diagnostic Nature. Elevated protein levels of sCD14.5 in plasma were specific to septia and distinguished it from SIRS and healthy controls. 2.0014.61 in a searche boromative for early and gript diagnoses of septia.
15-CD14-ST/ CD14	CD14	COL & Machine Rest Oppoputes Menocyte Differentiation Antigen CO14 Menocyte Differentiation Antigen CO14 My24 Antigen My24 Antigen	protein marker dagnostic	prognostic univers recogni patings molecui	rsal pattern pillion receptor gen-associated cular patterns (PAMPs)	Inflammatory and Immune Pathways/Foll-Re Receptor (TLR) Signaling/ Cytokine Storm/ Enddheld Dysfunction Acute Phase Response/ Systemic Inflammation			Elemente Levels in the bloodbream indicate a systemic inflammatory response, often proportional to the disease's sevently. 2. Elemente TLEV, All, All COTTo provide expression distinguishes sepsis patients from healthy individuals. Demandel Gene TLEV, All COTTO from convoyies at all-insersion correlates with highly mortidate, indicating patiential as prognessic biomarkers. Demandel Gene TLEV, All COTTO from the convolution of
15.5CD14-ST/ CD14	CD14	CD14 Microslamic Lucine Rot Opcoprates Microslamic Lucine Rot Opcoprates Microslamic Rotter Opcopra	protein marker dagnostic	prognostic univers recogni pathog molecul	rsal pattern gnillon receptor gen-associated cular patterns (PAMPs)	Inflammatory and Immune Pathways/Toll-Re Receptor (TLR) Signaling/Cytickine Endothelat Dystruction Acute Phase Responer Systemic Inflammation			Elevate Levis in the blood/tream indicate a systemic inflammatory response, often proportional to the disease's sevently. 2. Elevated TLE, A., and CDTA point expression distinguishes sepsis patients from healthy individuals. Demand Levis TLEAR TLEO and CDTA on monopoles at all-insersion connellers with highly mortidate, relictories patiential as prognostic biomarkers. Demand Levis Levis CDTA on the CDTA on monopoles at all-insersion connellers with highly mortidate, relictories patiential as prognostic biomarkers. Dispositor better Elevated protein levels of sCDTA ST in plasma were sportle to sepsis and distinguished it from SIRS and healthy controls. CDTA-61 and several the boundaries for any and policity discoverage and the control of the control of the sepsis several and policy discoverage and the self-several control of the
15.5CD14-ST/ CD14	CD14	COM Morealism filt Lustine Risk Oppopration Moreoute Differentiation Artigen CD14 CD14 Artigen (My23 Antigen	protein marker dagnostic	prognostic univers recogni pathog molecui	rsal pattern guillion receptor rgen associated outer patterns (PAMPs)	Inflammatory and Immune Pathway (TOI Me Receptor (TUM) Signating C-paties Endothelad Dystancion Acute Plasas Response Systems Inflammation Systems Inflammation			Elevated Levis in the bicoditives indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elevated LEV. EV. R.J. Am COTAL prior the evel expression deliringuishme seeps garletis from healthy entitlediate. Decreased expression of TLV2 and COTA on monopoles at admission consistence with higher mortality, indicating potential as prognostic biomarkers. 3. Diagnostic Niews. Bineation graties invented of arCOTA-ST in pleasma were specific to sepsis and deliringuished it from SRS and healthy controls. Prognostic Voluse. 4. Prognostic Voluse. 4. COTA-ST levels correlate with sepsis sevenity, an indicated by SCPA scoose, and track the response to treatment. 4. COTA-ST levels correlate with sepsis sevenity, an indicated by SCPA scoose, and track the response to treatment. 4. COTA-ST levels correlate with sepsis sevenity, an indicated by SCPA scoose, and track the response to treatment. 4. COTA-ST levels correlate with sepsis sevenity and indicate the response to the response to the transport. 6. Evening portion levels of Presponse in pleasma make it a reliable diagnostic biomarker for distinguishing sepsis from SIRS and other conditions. Faster and more account the transfortion and control of the septiment
15±CD14-ST/ CD14	CD14	COL & Microsoft Exercise Rest Oppoprates Microsoft Exercise Rest Oppoprates Microsoft Exercise Arrigen CO14 CO14 Arrigen Myc2 Arrigen	protein marker dagnostic	prognostic universe recogni pathogo molecut	rsal patiers pullon receptor gen-associated outer patierns (PAMPs)	Inflammatory and Immune Pathwaye/Folk Receptor (TLR) Signatury Cytotion Emothelial Dypathary Cytotion Emothelial Dypathary Color Acute Phase Responsel Cytemic Inflammation			Elementa Levils in the Elecotheres indicate a systemic inflammatory response. Often proportional to the disease's sevently. 2. Elementa LEV. ER. Alex and CD14 protein well explained institutions assign assign assign assign assign assign assign assignment of the proportional control of the protein assignment assignmen
15±CD14-ST/ CD14	CD14	CD14 Microslamic Insurine Rela Oppopration Microslamic Insurine Rela Oppopration Microslamic Differentiation Antigen CD14 CD14 Antigen My25 Antigen	protein marker diagnostic	prognostic universe recogni pathogo molecul	rsal patter grand patterns (PAMPs) gen-associated outer patterns (PAMPs)	Inflammatory and Immuno Parlhamy Tild Sile Penciplor Sharing Tild Sile Penciplor Somi Sile Sile Sile Sile Sile Sile Sile Sil			Elemental Design the biologisters indicate a systemic inflammatory response, other proportions of the disease's seventy. 2. Elemental TLES, INEA, with COTA prior there deep response distinguishes seeing pasters from healthy individuals. Decreased expression of TLE2 and COTA on monopoles at admission consistent with higher mortality, reliability and consistent an
15.5CD14-ST/ CD14	CD14	CD14 Microsification Lucifice Risk Oppoprotein Microsific Differentiation Artigen CD14 CD14 Artigen My23 Antigen	protein marker diagnostic	prognostic universe recogni pathoga molecul	rsal patter militar receptor gen-associated gudar patterns (PAMPs)	Inflammatory and Immune Pathwaye/Sol Me Receptor (ILM) Signatury Cytolico Escholedal Dyplanty Cytolico Escholedal Dyplanty Contine Escholedal Dyplanty Company Acute Phase Responsed Systems Lithernation	POLORP		Elemental Design the biologisters indicate a systemic inflammatory response, other proportions of the disease's seventy. 2. Elemental TLES, INEA, with COTA prior there deep response distinguishes seeing pasters from healthy individuals. Decreased expression of TLE2 and COTA on monopoles at admission consistent with higher mortality, reliability and consistent an
15.5CD14-ST/ CD14	CD14	CD14 Microsoft Exercise Rest Oppoprates Microsoft Differentiation Artigen CD14 OD14 Artigen Myd2 Artigen	protein marker diagnostic	prognosic universe recogni pathogranical control contr	rsal pattern grand patterns (PAMPs) gen-associated outer patterns (PAMPs)	Inflammatory and Immune Pathways (Tol Mic Peccifor) State of the Control of the Control State of the Control of the Control State of the Control of the Control State of the Control of the Control of the Control of the Con	PCT_CRP		Elemental Design the biologistes in indicate a systemic inflammatory response, often proportional to the disease's sevenity. 2. Elemental TULE, TULK, and COTH of prior these deep response distinguishes seeing selected into metally individuals. Decreased expression of TULE and COTH on monopoles and admission consistes with higher mortality, individual programmatics. 2. Elemental TULK, and COTH of TULK and TULK a
18:c014:ST7	CD14	CD14 Microslamic Insurine Rot Oppopration Microslamic Insurine Rot Oppopration Microslamic Differentiation Antigen CD14 CD14 Antigen My25 Antigen	protein marker diagnostic	prognostic universe recogni pathogo mulecul	rsali patiern grinden receptor gen-associated outer patierns (PAMPs)	Inflammatory and Immune Phylhamy (2016 Me Peccylor Phylhamy) (2016 Me Peccylor Storm (2016 Me Peccylor Storm (2016 Me Peccylor Storm (2016 Me Peccylor Storm (2016 Me Peccylor Systemic Inflammation Systemic Inflammation	PCT, CRP		Elemental Design the biologisters indicate a systemic inflammatory response, other proportions of the disease's seventy. 2. Elemental TLES, INEA, with COTA prior there deep response distinguishes seeing pasters from healthy individuals. Decreased expression of TLE2 and COTA on monopoles at admission consistent with higher mortality, reliability and consistent an
18:sC014:ST7	CD14	COL & Microslamic Rest Oppopulation My 24 Arrigan	protein marker diagnostic	prognostic universe recogni pathogo molecul	rsal pattern gren associated outer patterns (PAMPs)	Inflammatory and Immune Partharys (Tol Mar Pencipter Marchary (Tol Marchary Marchary Marchary Sport) — (Tol Marchary Marchary Marchary Marchary Place Regional Gystemic Inflammation	PCT_CRP		Elevate Levis in the Elecotives in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elevated LEV. EV. R.R. and COH4 portion well explosated indicational sepais pasters from healthy individuals. Decreased expression of TLG2 and COH4 on monocytes at admission connecties with higher mortality, indicating potential as prognostic biomarkers. Discussion in the contract of
			protein marker diagnostic			Systems imanification	PCI, CRP	MataCardo Bacterial Sepsis Depte. Arthritis	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
	FCGRIA		protein marker diagnostic		real pattern pulson receptor pulson receptor discovery patterns (PAMPs)	Inflammatory and Immune Parthamy Flot Me Receptor State of the Control of the Control State of the Control of the Control State of the Control of the Control State of the Control of the Control of the Systemic Inflammator	PCT, CRP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Camma Raceptor ta	protein marker diagnostic			Inflammatory and Immunel Options Store	PCT, CRP	MataCardo Bacterial Sepsis Depte. Arthritis	Elemental Design the biologisters indicate a systemic inflammatory response, other proportions of the disease's seventy. 2. Elemental TLES, INEA, with COTA prior there deep response distinguishes seeing pasters from healthy individuals. Decreased expression of TLE2 and COTA on monopoles at admission consistent with higher mortality, reliability and consistent an
		Fc Camma Raceptor ta	protein marker diagnostic protein marker diagnostic			Inflammatory and Immunel Cyclistic Recognition Pathogan Recognition	PCT, CSP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Camma Raceptor ta	protein marker diagnostic			Inflammatory and Immunel Cyclistic Recognition Pathogan Recognition	PCT, CRP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Camma Raceptor ta	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	POT CRP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Gamma Raceptor la Figure 1997 (1997) (19	protein marker diagnostic			Inflammatory and Immunel Cyclistic Recognition Pathogan Recognition	PCT, CRP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Gamma Raceptor la Figure 1997 (1997) (19	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	PCT_CRP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Gamma Raceptor la Figure 1997 (1997) (19	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	PCT, CRP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Gamma Raceptor la Figure 1997 (1997) (19	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	PCT, CRP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Camma Raceptor ta	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	PCT_CRP	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Gamma Raceptor la Figure 1997 (1997) (19	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	L.a	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's seventy. 2. Elemental TLUE, IRL, and CD14 prior the elempresses destinguishe sepsis patients from healthy prioritions. Decreased expression of TLUE and CD14 or no monocytes at admission contralists with higher mortality, reducing potential as prograptic bornerhers. 2. Diagnostic Nature. 3. CD14.61 To a semilise bornerher for early and tapid diagnosis of exprise. 3. CD14.61 To a semilise bornerher for early and tapid diagnosis of exprise. 3. CD14.61 To a semilise bornerher for early and tapid diagnosis of exprise. 4. Diagnostic Result. 5. Diagnostic Result. 6. Diagnostic Result. 6. Diagnostic Result. 6. Semiliar of Presegonia production marker to morbiding sepsis progression and thereputing elempts from sillar and transport of the programmatic and transpo
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	PCT_CRP_WBC	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's seventy. 2. Elemental TLUE, IRL, and CD14 prior the elempresses destinguishe sepsis patients from healthy prioritions. Decreased expression of TLUE and CD14 or no monocytes at admission contralists with higher mortality, reducing potential as prograptic bornerhers. 2. Diagnostic Nature. 3. CD14.61 To a semilise bornerher for early and tapid diagnosis of exprise. 3. CD14.61 To a semilise bornerher for early and tapid diagnosis of exprise. 3. CD14.61 To a semilise bornerher for early and tapid diagnosis of exprise. 4. Diagnostic Result. 5. Diagnostic Result. 6. Diagnostic Result. 6. Diagnostic Result. 6. Semiliar of Presegonia production marker to morbiding sepsis progression and thereputing elempts from sillar and transport of the programmatic and transpo
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	L.a	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodedireas in indicate a systemic inflammatory response, often proportional is the disease's sevently. 2. Elemental TLSL TRA, and COTA prior there designession distinguish easing spatient from healthy individuals. Decreased expression of TLS2 and COTA on monopoles at admission consistence with higher mortality, individual proteinal as propriorite bornarhers. 3. Diagnostic Nature. 3. Diagnostic Robin. 4. Diagnostic Robin. 4. Diagnostic Robin. 5. Diagnostic Robin. 5. Diagnostic Robin. 6. Di
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	L.a	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design She biologistes in indicate a systemic inflammatory response, often proportional is the disease's seventy. J. Elemental TLUE, IRL, and CD14 prior the elempessan destinguishe sepsis patient from healthy prioritions. Decreased expression of TLUE and CD14 on monocytes and admission consistes with higher mortality, reducing potential as progradic biomarkers. J. Diagnostic Name. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express in the response to transmit. SCD14.57 is a semble biomarker for early and rapid diagnosis of express in the response to transmit and response in the response to th
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Storm Pathogen Recognition and Street NOS production	L.a	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design She biologistes in indicate a systemic inflammatory response, often proportional is the disease's seventy. J. Elemental TLUE, IRL, and CD14 prior the elempessan destinguishe sepsis patient from healthy prioritions. Decreased expression of TLUE and CD14 on monocytes and admission consistes with higher mortality, reducing potential as progradic biomarkers. J. Diagnostic Name. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express. SCD14.57 is a semble biomarker for early and rapid diagnosis of express in the response to transmit. SCD14.57 is a semble biomarker for early and rapid diagnosis of express in the response to transmit and response in the response to th
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Stores Pathogen Recognition and Street NOS production	L.a	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biologistes in indicate a systemic inflammatory response, often proportional is the disease's severity. J. Elemental TLUE, INF. and CD14 prior to ever deep response indications be septia patient in the biologistes of the proportional appropriate bornerhees. Decreased expression of TLUE and CD14 or in content and admission correlates with higher mortality, indicating potential as progratic bornerhees. A. Diagnostic Name. SCD14.67 is a semble bornerhe for early and spot diagnoses of express. Polypositic Name. A. Diagnostic Name. B. Diagnostic Vision.
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Stores Pathogen Recognition and Street NOS production	L.a	NataCardor Beccinal Sepsis Sepis Afferia	Clemated Tust, Park and Colf y prints were despessed intelligents seeps gastered intelligents. Decreased expression of Tusta and COM on monocytes and admission consistents with higher mortality, including potential as progratic bomarkers. Decreased expression of Tusta and COM on monocytes and admission consistents with higher mortality, including potential as progratic bomarkers. 2. Diagnosts: Name. SCOL4-67 is a sensible bornaris for early and spoil diagnosis of expris. Progratic Name. 2. Diagnosts: Name. 2. Diagnosts: Name. 2. Diagnosts: Name. 2. Diagnosts: Name. 3. Diagnosts: Name. 3. Diagnosts: Name. 3. SCOL4-67 is potential progratic marker for morbining sequisis progression and therapoutice elicitude. 4. Diagnosts: Read. 5. SCOL4-67 is potential progratic marker for morbining sequisis progression and therapoutice elicitude. 5. SCOL4-67 is potential progratic marker for morbining sequisis progression and therapoutice elicitude. 6. SCOL4-67 is potential progratic marker for morbining sequisis progression and therapoutice elicitude. 7. SCOL4-67 is potential progratic marker for morbining sequisis progression and therapoutice elicitude. 8. SCOL4-67 (Presegratin) production to tightly intend to bacterial effections, marking a separate characteristic production to tightly intended to bacterial effections, marking a separate diagnosis characteristic procession with the serverily of separate intended progratic visions. 9. SCOL4-67 (Presegratin) production to tightly intended to bacterial effections, marking a separate diagnosis characteristic procession. 8. SCOL4-67 (Presegratin) production to tightly intended to bacterial effections, marking and progratic visions. 9. Diagnostic Vision: 9. Presignostic Vision: 1. Diagnostic Vision: 1. Diagnostic Vision: 1. Diagnostic Vision: 1. Diagnostic Vision: 2. This COL4 inches a intended as the most effective and progration of the severily of systemic bacterial effections and separate progression, prograted to the severily of systemic bacterial in
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Stores Pathogen Recognition and Street NOS production	L.a	NataCardor Beccinal Sepsis Sepis Afferia	Clemated Design the biodedirean indicate a systemic inflammatory response, often proportional is the disease's severity. J. Elemated TLES, INEA, and COTA prior the elemaness of temporary that the proposal prop
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Stores Pathogen Recognition and Street NOS production	L.a	NataCardor Beccinal Sepsis Sepis Afferia	Clemated Tust, Park and Colf a priority and colfess of a systemic inflammatory response, office and proposition of the the disease's serventy. Decreased expression of Tusta and COM on monocytes and admission correlates with higher mortality, including potential as progressic bornerkers. Decreased expression of Tusta and COM on monocytes and admission correlates with higher mortality, and colfess of the produce and complete and c
		Fc Gamma Raceptor la Figure 1997 de la Figure 19	protein marker diagnostic			Inflammatory and Immunel Options Stores Pathogen Recognition and Street NOS production	EL-B PCT, CRP, WBC	NataCardor Beccinal Sepsis Sepis Afferia	Elemental Design the biodetimes indicate a systemic inflammatory response, office proportional in the disease's severity. 2. Elemental TLSE, INEA and CD14 prior there designess indistinguish sessis pasters than healthy controls. Decreased expression of TLSE and CD14 con monocytes at advancion consistes with higher mortality, including potential as progressio biomarkers. 3. Diagnosis: Nature. 3. CD14.51 in a serior serior of CD14 con monocytes and significance of seguis. 3. CD14.51 in a serior serior of CD14 control

	ITGAM, CD11b	Integrin Subunit Alpha M MAC-1	protein marker	diagnostic/prognostic	universal immune receptor	Inflammatory and Immune/ Pathogen Recognition	CD14	GeneCards/ NO	1. sCD14 levels can serve as a potential biomarker for detecting sepsis and stratifying disease seventy. The dynamic regulation of CD17b and cytokine profiles may help in in (entitying stages of sepsis.
		CD11b				and Phagocytosis		MalaCards/ Bacterial Sepsis	The dynamic regulation of GOTTO and Cytokine promes may freight recentlying saages of sepails.
		CD11b CR3A Integrin, Alpha M				Leukocyte Adhesion			
						and Migration			
		Cell Surface Glycoprotein MAC-1 Subunit Alpha Complement Component 3 Recentor 3 Subunit				Vascular and Endothelial/			
		Macrophage-1 Antigen Alpha Subunit				Endothelial Dysfunction			
		CD11 Antigen-Like Family Member B Leukocyte Adhesion Receptor MO1				Oxidative Stress/ ROS Production			
		Integrin Alpha-M				ROS Production			
		Cell Surface Operagement (MAC-15 Massers Rajents Complement COmpared Tall Receptor & Students (April Complement COmpared Tall Receptor & Students (Cell 14 Angles Little Family Members & Students (Cell 14 Angles Little Family Members & Cell 14 Angles Little Family Members & Cell 14 Angles Angles Little Family Members & Cell 14 An				Acute Phase Response/			
		; Also Known As CD11b (P170),				Immune Activation			
		Macrophage Antigen Alpha Polypeptide) Neutrophil Adherence Receptor Alpha-M Subunit							
		Macrophage Antigen Alpha Polypeptide							
		Antigen CD11b (P170) CD11b Antigen							
		CD 11b Antigen							
		SLEB6							
		MACIA SLEB6 CD11B M01A							
							CD64		2. The study highlights neutrophil CD64 as a superior diagnostic biomarker for severe secsis, with excellent sensitivity and specificity.
									2. The study highlights neutrophil CD64 as a superior diagnostic biomarker for severe sepsis, with excellent sensitivity and specificity. CD11 to also provides additional diagnostic value but is lies effective than CD64. Both markers show potential prognostic reference for monitoring natural recovery in sepsis survivors.
							CRP		DOWN INSINCE SIZE SIZE SIZE SIZE SIZE SIZE SIZE SIZ
							CXCR2		4 CDMb:
									Significantly increased on reutrophils of septic patients compared to healthy controls over the 5-day study period. CXXXII. Significantly reduced in septic patients compared to controls (p < 0.02). CXXXII.
									CACAC: Significantly reduced in septic patients compared to controls (p < 0.02).
									CXCR1:
									No significant changes or correlations were observed with disease severity or oxygenation. focusing on protein-level markers like CD11b and CXCR2. These changes correlate with disease severity,
									highlighting their potential as both diagnostic and prognostic markers in septic shock.
18.C3AR1/C5aF		Complement C3a Receptor 1	protein/gene marker	diagnostic/prognostic	universal / level of	Inflammatory and Immune/		GeneCards/NO	1 CDP2 and C2ADS are identified as law disposals analysis for another heads do to their
18.U3AR1/C5aF	Canril		protein/gene marker	ulagnostic/prognostic	universal / level of activation may vary based	Cytokine Storm			CD63 and CDAR1 are identified as key diagnostic markers for septic shock due to their significant differential gene expression and involvement in immune and inflammatory pathways. Igene
		C3a Anaphylatoxin Chemotactic Receptor Complement Component 3a Receptor 1						MalaCards/ NO	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		Complement Component 3a Receptor 1			e type or patnogen	Neutrophil Recruitment and Activation			
		HNFAG09 Complement Component 3 Receptor 1				Vascular and Endothelial/			
		C3a-R C3R1 /				Endothelial Dysfunction			
		C3R1 /							
						Oxidative Stress/ ROS production			
		Complement C5a Receptor 1 C5AR 2 3 4 5					ITGAM, CD44, IL2Rg		2 Single Cell RNA Sequencing-ligene ITGMA and CDMR1 were predominantly expressed in macrophage clusters. [CDMA and LDMR were present across various immune cell syste, reflecting their widespread involvement in immune modulation.
		CD88 C5R1							IT GAME BILL CAPICE WERE DECOMPRISING WATER TO AN ADDRESS OF THE CAPICAL CAPIC
		CSA CSa Ananhulatovin Chemotactic Recentor 1							Diagnostic: The core genes (TGAM, CD44, C3AR1, IL2RG) provide potential biomarkers for distinguishing sepsis from SIRS and tracking disease progression.
		Complement Component 5a Receptor 1							Promotive
		C5a-R							The expression levels of ITGAM and C3AR1 in macrophages correlate with inflammatory responses, suggesting their use as markers for immune dysregulation sevenity.
		Complement Component Sa Receptor 1 CSa-R Complement Component 5 Receptor 1 (CSa Ligand) CSa Anaphylatoxin Chemotactic Receptor							
		C5a Anaphylatoxin Receptor CD88 Antigen							
		C5a Ligand							
		C5aR							
							C5a		3.Diagnostic/protein Elevated (version of Sa in plasma could indicate the degree of complement system activation and immune dysregulation in sepsis.
									Prognostic: The balance Chan and CSa activity could serve as a marker of disease severity and guide therapeutic strategies.
							caspase-5		The challence between CSA and CSA activity down server as a make on cassase severily an apulse are appears. 4. identifies CSAR1 and caspasse-5 as potential biomarkers for disposing and understanding the severily of sepsisione.
							cuspusc-0		Tolerandicity Tolerandicity Tolerandicity
									Diagnostic: Elevated protein Cla, CSa, Bb, and M-ficolin levels could serve as early biomarkers of sepsis.
									6. Diagnostic Value: Increased a groupering of CReD at both the mONA and nothing levels during sensity supports it could sense as a highest for disease sensity.
									 Diagnostic Value: Increased expression of CSaR at both the mRNA and protein levels during sepsis suggests it could serve as a biomarker for disease severity. Propriets Value:
									Prognostic Value: High levels of CSaR correlate with poor outcomes. Blocking CSaR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target.
									Prognostic Value: High levels of CSaR correlate with poor outcomes. Blocking CSaR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target.
									Programs to Mate: Ways Invest or CORR correlate with poor outcomes. Blocking CRAR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CLAR are upregulated during large information caused by applications of the province of the provin
									Programs to Mate: Ways Invest or CORR correlate with poor outcomes. Blocking CRAR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CLAR are upregulated during large information caused by applications of the province of the provin
									Prognostic Value: High levels of CSaR correlate with poor outcomes. Blocking CSaR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target.
									Programsic Usland Ways levels or CDRR correlate with poor outcomes. Blocking CDRR reduces cylcitine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shotly demonstrate that CDRR and CDRR are unprepaided during large inflammation caused by separal price. These recopanies of average is only an experiment canteria and therapeutic largets in separate and other inflammatory large conditions. 8. The control of the control
									Programsic Males Ways Investor COSAR correlate with poor outcomes. Blocking CRSR reduces cyclotine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CLSR and CSSR are using paginated during large information caused by sepais larger. These receptors coals devie as both disposition analyses and therapeutic largets in sepais and other information by any conditions. 8. The CSS-CSSR are holds both disposition and programsic ingritishance in sepais, profered Measurang CSR and CSR levels could be intered and programsic and programs of an area of the paginate in the page of the
									Programsic Usland Ways levels or CDRR correlate with poor outcomes. Blocking CDRR reduces cylcitine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shotly demonstrate that CDRR and CDRR are unprepaided during large inflammation caused by separal price. These recopanies of average is only an experiment canteria and therapeutic largets in separate and other inflammatory large conditions. 8. The control of the control
									Programs to Mater Why hereis of CORR correlate with poor outcomes. Blocking CRRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CLRR are upregulated during large inflammation caused by sepais, larger. These receptors coaks over as both disposition invales and therapeutic largets in sepais and other inflammatory large conditions. 8. The CRA-CRAR are traits both disposition and programs capitalisms on the sepais and programs of the
20.LCN2	LCN2	LOU Locale	protein/gene marker	diagnostic/prognostic	Not Pathogen-Dependent	Inflammatory and Immune/ Nutritional Immune/		Genecards/ Palhusys & Interactions for LCN2 Gene	Programs to Mate: Why Investor COSAR correlate with poor outcomes. Blocking CRSR reduces cyclotine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CLSR and CSSR are using paided during large information caused by sepaid jurger. These receptors could serve as both disposition analyses and temporary large in reduces. 8. The CSA-CSSR are tricks both disposition and programs in grant in grant in the state of the server and the partially patients bestored in gent and project clinical outcomes. 8. Disposition and Programsic Programsic proteins Received CSRR expression on materially interferent best or disease severity and any product clinical outcomes. Programsic Lower CSRR expression on materials in the state of the server associated with worse outcomes, making them potential programsic markers. 1. Disposition CSRR programsic and programsic Profession of the programsic programsic markers. 1. Disposition CSRR programsic and triplers CSRR levels were associated with worse outcomes, making them potential programsic markers. 1. Disposition CSRR programsic programsic programsic markers.
20.LCN2	LON2	Lipocalin NGAL	protein/gene marker	diagnostic/prognostic	Not Pathogen-Dependent	inflammatory and Immune/ Nutritional Immunity' Cytokine Stom		Interactions for LCN2 Gene	Programs to Mater Why here for CORR correlate with poor outcomes. Blocking CRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shuty demonstrates that CLRR are unpreglated during large inflammation caused by sepait, jurges. These receptions code were as both disposition enteries and therapeutic targets in sepain and other inflammatory large conditions. 8. The Clark dark are trots both disposition and programs guitaries to best on inference enteries and project clinical outcomes. 9. Desposition and Programs Relevance (proteins.) Disposition and Programs Relevance (proteins.) Clark desposition on nearborghist estably differentiated egiclic shock patients from healthy controls with high sensitivity and specificity. Loave CLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance and the cLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance to LRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness.
20.LCN2	LON2	Lipocalin NGAL	proteinigene marker	diagnostic/prognostic	Not Pathogen-Dependent	Nutritional Immunity/ Cytokine Storm		Genecards/ Pathways & Interactions for LCN2 Gene MatigCards/ NO	Programs to Mate: Why Investor COSAR correlate with poor outcomes. Blocking CRSR reduces cyclotine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CLSR and CSSR are using paided during large information caused by sepaid jurger. These receptors could serve as both disposition analyses and temporary large in reduces. 8. The CSA-CSSR are tricks both disposition and programs in grant in grant in the state of the server and the partially patients bestored in gent and project clinical outcomes. 8. Disposition and Programsic Programsic proteins Received CSRR expression on materially interferent best or disease severity and any product clinical outcomes. Programsic Lower CSRR expression on materials in the state of the server associated with worse outcomes, making them potential programsic markers. 1. Disposition CSRR programsic and programsic Profession of the programsic programsic markers. 1. Disposition CSRR programsic and triplers CSRR levels were associated with worse outcomes, making them potential programsic markers. 1. Disposition CSRR programsic programsic programsic markers.
20.LCN2	LCN2	Lipocalin NSAL Neutrophil Gelatinase-Associated Lipocalin Oncogene 24p3 24n3	proteinigene marker	diagnostic/prognostic	Not Pathogen-Dependent	Inflammatory and Immune! Nutritional Immunity! Cyptaine Bloom Vascular and Enrichhela! Enrichhelal Optional Controlled Inflammatory Immunity		Interactions for LCN2 Gene	Programs to Mater Why here for CORR correlate with poor outcomes. Blocking CRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shuty demonstrates that CLRR are unpreglated during large inflammation caused by sepait, jurges. These receptions code were as both disposition enteries and therapeutic targets in sepain and other inflammatory large conditions. 8. The Clark dark are trots both disposition and programs guitaries to best on inference enteries and project clinical outcomes. 9. Desposition and Programs Relevance (proteins.) Disposition and Programs Relevance (proteins.) Clark desposition on nearborghist estably differentiated egiclic shock patients from healthy controls with high sensitivity and specificity. Loave CLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance and the cLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance to LRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness.
20.LCN2		Lipocatin NGAL Neutrophil Gelatinase-Associated Lipocalin Oncogene 24p3 24p3 26 KDa Alpha-2-Microglobulin-Related Subunit Of MMP-9 Siderocalin	proteinigene marker	diagnostic/prognostic	Not Pathogen-Dependent	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Oxidative Stress/ Iron		Interactions for LCN2 Gene	Programs to Mater Why here for CORR correlate with poor outcomes. Blocking CRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shuty demonstrates that CLRR are unpreglated during large inflammation caused by sepait, jurges. These receptions code were as both disposition enteries and therapeutic targets in sepain and other inflammatory large conditions. 8. The Clark dark are trots both disposition and programs guitaries to best on inference enteries and project clinical outcomes. 9. Desposition and Programs Relevance (proteins.) Disposition and Programs Relevance (proteins.) Clark desposition on nearborghist estably differentiated egiclic shock patients from healthy controls with high sensitivity and specificity. Loave CLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance and the cLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance to LRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness.
20.LCN2		Lipocatin NGAL Neutrophil Gelatinase-Associated Lipocalin Oncogene 24p3 24p3 26 KDa Alpha-2-Microglobulin-Related Subunit Of MMP-9 Siderocalin	proteinigene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation		Interactions for LCN2 Gene	Programs to Mater Why here for CORR correlate with poor outcomes. Blocking CRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shuty demonstrates that CLRR are unpreglated during large inflammation caused by sepait, jurges. These receptions code were as both disposition enteries and therapeutic targets in sepain and other inflammatory large conditions. 8. The Clark dark are trots both disposition and programs guitaries to best on inference enteries and project clinical outcomes. 9. Desposition and Programs Relevance (proteins.) Disposition and Programs Relevance (proteins.) Clark desposition on nearborghist estably differentiated egiclic shock patients from healthy controls with high sensitivity and specificity. Loave CLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance and the cLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance to LRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness.
20 LCN2		Lipocatin NGAL Neutrophil Gelatinase-Associated Lipocalin Oncogene 24p3 24p3 26 KDa Alpha-2-Microglobulin-Related Subunit Of MMP-9 Siderocalin	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation		Interactions for LCN2 Gene	Programs to Mater Why here for CORR correlate with poor outcomes. Blocking CRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shuty demonstrates that CLRR are unpreglated during large inflammation caused by sepait, jurges. These receptions code were as both disposition enteries and therapeutic targets in sepain and other inflammatory large conditions. 8. The Clark dark are trots both disposition and programs guitaries to best on inference enteries and project clinical outcomes. 9. Desposition and Programs Relevance (proteins.) Disposition and Programs Relevance (proteins.) Clark desposition on nearborghist estably differentiated egiclic shock patients from healthy controls with high sensitivity and specificity. Loave CLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance and the cLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance to LRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness.
20.LCN2		Lipocatin NGAL Neutrophil Gelatinase-Associated Lipocalin Oncogene 24p3 24p3 26 KDa Alpha-2-Microglobulin-Related Subunit Of MMP-9 Siderocalin	proteinigene marker	diagnostir/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Oxidative Stress/ Iron		Interactions for LCN2 Gene	Programs to Mater Why here for CORR correlate with poor outcomes. Blocking CRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shuty demonstrates that CLRR are unpreglated during large inflammation caused by sepait, jurges. These receptions code were as both disposition enteries and therapeutic targets in sepain and other inflammatory large conditions. 8. The Clark dark are trots both disposition and programs guitaries to best on inference enteries and project clinical outcomes. 9. Desposition and Programs Relevance (proteins.) Disposition and Programs Relevance (proteins.) Clark desposition on nearborghist estably differentiated egiclic shock patients from healthy controls with high sensitivity and specificity. Loave CLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance and the cLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance to LRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness.
20 LCN2		Lipocalin NSAL Neutrophil Gelatinase-Associated Lipocalin Oncogene 24p3 24p3 25 KDa Alpha-2-Microglobulin-Related Subunit Of MMP-9	protein/gene marker	dagnostolprognoste	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation		Interactions for LCN2 Gene	Programs to Mater Why here for CORR correlate with poor outcomes. Blocking CRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This shuty demonstrates that CLRR are unpreglated during large inflammation caused by sepait, jurges. These receptions code were as both disposition enteries and therapeutic targets in sepain and other inflammatory large conditions. 8. The Clark dark are trots both disposition and programs guitaries to best on inference enteries and project clinical outcomes. 9. Desposition and Programs Relevance (proteins.) Disposition and Programs Relevance (proteins.) Clark desposition on nearborghist estably differentiated egiclic shock patients from healthy controls with high sensitivity and specificity. Loave CLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance and the cLRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness. 1. Diagnostic Relevance to LRR expression and higher CLRR levels were associated with worse outcomes, making them potential programs carefulness.
201CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	dagnostr/prognoste	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	OF EASI	Interactions for LCN2 Gene	Proposatic Value Why levels or CDRR correlate with poor outcomes. Blocking CERR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CLSR and CERR are upregulated during large inflammation caused by appair, large in the control of the
20 LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	proteinigene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	QLFMA	Interactions for LCN2 Gene	Proposate Value Why levels of CDRR correlate with poor outcomes. Blocking CDRR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CDRR and CDRR are upregulated during large information caused by aspail, porce. These receptions could be read to select a floridation can index and thereposite largets in response and their information of disposation and an appropriate demonstrate survival in the propriate demonstrate or design and propriate demonstrate programs between company approach between company approach between company approach between company and product clinical ductiones. 1. Desposation of programs demonstrate programs and an approach demonstrate or de
20 LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	dagnostr/prognoste	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	OLFMA	Interactions for LCN2 Gene	Proposatic Roles (Roles present an about the second to the
201CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	proteinigene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	QLEMA	Interactions for LCN2 Gene	Progressic Usates Aging Newton of Collect consister with poor outcomes. Blocking Chair reclaims of bacterial load, improving survival, which highlights to potential as a therepositic target. 7. This suity demonstrates that CLSA and CSAR are using-placed during large interpretations are consistent or consistent or consistent and the progressic designation. 1. This suity demonstrates that CLSAR and CSAR are using-placed during large interpretations are consistent or consist
20.LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	proteinigene marker	dagnostir/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	OLFMA	Interactions for LCN2 Gene	Proposate Usate Agric Newlar of Collect correlate with poor automass. Blocking CEAR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeoutic target. 7. This study demonstrates that CLSAR and CEAR are usergalacted during up in present and the inflammation proposate proper in the control of the inflammation proposate proper in the inflammation proposate in the inflammation of the inflammation proposate in the inflammation proposate in the inflammation proposate in the inflammation proposate in the inflammation proposate inflammation could be proposate inflammation and include in the inflammation proposate inflammation could be proposate inflammation and include in the inflammation
20 LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	proteinigene marker	diagnosticijangnostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	OLFMA	Interactions for LCN2 Gene	Prognatic Value (April control with poor autonome. Blocking CRAR reduces cytokine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This study demonstrates that CLAS and CSAR are surregulated during large inflammation caused by aspisat jurge. These inequates could be device as both subgroups canalyses and the province of the inflammatury large conditions. 8. In the control of the count of the province investment of the inflammatury large conditions. 8. International County of the inflammature in the i
201.CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	dagnostr/prognoste	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	OLFMA	Interactions for LCN2 Gene	Prognatic Value (April Prognatic Policy County of the Coun
20.LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	OLFMA	Interactions for LCN2 Gene	Prognatic Subset Age (CAR) event are a stocked or subset with poor outcomes. Blocking CRR reduces cyclotine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 7. This stocky demonstrates that CLRS and CSRR are usergalized during large inflammation caused by appaid, price These receptors could be created as the control of the
201.CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	proteinigene marker	dagnostir/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation		Interactions for LCN2 Gene	Proposate Dates of DRA consider with poor outcomes. Blocking CRAR reduces cyclotine levels and bacterial load, improving survival, which highlights its potential as a therapeutic target. 2. This study demonstrates that CLAS and CSAR are ungequiated during large inflammation caused by spacely jurge. These enceptors could ever be so the disposarior canters and therapeutic larget in septia and on their inflammatory large conditions. 2. The study demonstrates that CLAS and CSAR are using control in the septia may be a septial present the septial of the inflammatory large conditions. 2. Execution of CSAR to the could have bearing primarily bearing the septial of the septial present the sepistal present the septial present the septial present the septia
20LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA	Interactions for LCN2 Gene	Progressic Usate Agriculture of Collect consists start CLSR and CSRR are usergalized during sign immediate load, improving survival, which highlights its potential as a therapeutic target. This skip demonstrates that CLSR and CSRR are usergalized during sign particular to the immediate to
201.CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	proteinigene marker	diagnostir/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2	Interactions for LCN2 Gene	Prognatic Pales of CN2 Devet are associated with worse cardiar function, suggesting the protection of CN2 Devet are associated with worse cardiar function, suggesting the protection of the prognation of the pro
20.LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA	Interactions for LCN2 Gene	Programs cluster Age of the control
20.LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	proteinigene marker	diagnostir/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2	Interactions for LCN2 Gene	Programs before the control of the c
201.CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2	Interactions for LCN2 Gene	Programsic blank Agriculture of CNR, OLFA supersion and Inject Coal's for coalest with process and success of supersions and supersions of the coalest supersions of the coal
20.LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2	Interactions for LCN2 Gene	Progressic Older consists that CLSR and CSRR are unexpelled during bery facilities to protein a site throughout target. 7. This sharp demonstrate that CLSR and CSRR are unexpelled during bery facilities. 8. This sharp demonstrate that CLSR and CSRR are unexpelled during bery facilities. 9. This sharp demonstrate that CLSR and CSRR are unexpelled during bery facilities. 9. This sharp demonstrate that CLSR and CSRR are unexpelled during bery facilities. 9. This sharp demonstrate that CLSR and CSRR are unexpelled demonstrated that the control of the sharp demonstrated that the sharp demonstrate that the control of the sharp demonstrated that the sharp demonstrated that the sharp demonstrate that the sharp demonstrated
201.CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2	Interactions for LCN2 Gene	Progressic Older consists that CLSR and CSRR are unexpelled during bery facilities to protein a site throughout target. 7. This sharp demonstrate that CLSR and CSRR are unexpelled during bery facilities. 8. This sharp demonstrate that CLSR and CSRR are unexpelled during bery facilities. 9. This sharp demonstrate that CLSR and CSRR are unexpelled during bery facilities. 9. This sharp demonstrate that CLSR and CSRR are unexpelled during bery facilities. 9. This sharp demonstrate that CLSR and CSRR are unexpelled demonstrated that the control of the sharp demonstrated that the sharp demonstrate that the control of the sharp demonstrated that the sharp demonstrated that the sharp demonstrate that the sharp demonstrated
20.LCN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	dagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2	Interactions for LCN2 Gene	Programsic blank Agriculture of CNR, OLFA supersion and Inject Coal's for coalest with process and success of supersions and supersions of the coalest supersions of the coal
201CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2 IL10, LCN2, IL17R, CD40LG, CD28	Interactions for LCN2 Gene	Programs Chair present and logical consists with Cost and CSR are unprojected districts projected and bacterial load, improving survival, which highlights to potential as a therapeutic target. 7. This skyl demonstrates that CSR are of CSR are unprojected districts projected and the inflammation projected project. 8. This skyl demonstrates that CSR are of CSR are unprojected districts and the inflammation projected project. 8. This CSR cSR are that the inflammation districts are unprojected and CSR lease could have a training and the inflammation of the inflammation projected and CSR lease could have a training and the inflammation of the inflammation projected and CSR lease could have a training and the inflammation of the inflammati
201CNZ		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	dagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2	Interactions for LCN2 Gene	Progressic Author Services as a biomarker for SIC and correlates with process and bacterial local, improving survival, which highlights its potential as a therspeutic target. 7. This shuty demonstrates that CLSR and CLSR are usergalized during barg inflammation caused by aspect, purple. 7. This shuty demonstrates that CLSR and CLSR are usergalized during barg inflammation. 8. This shuty demonstrates that CLSR and CLSR are usergalized during barg inflammation. 8. This shuty demonstrates that CLSR and CLSR are usergalized during barg inflammation. 8. This shuty demonstrates that CLSR and CLSR are usergalized during barg inflammation. 8. Diagnosis and CLSR these could help strately additional countries. 8. Diagnosis and CLSR that could help strately additional countries. 8. Diagnosis and CLSR are presented in management of the countries of the countries. 9. Diagnosis and class and higher CLSR levels were associated with worse outcomes, making them potential progression makes. 1. Diagnosis Roll expression and higher CLSR levels were associated with worse outcomes, making them potential progression makes. 1. Diagnosis Roll expression and sigher CLSR levels were associated with worse outcomes, making them potential progression makes. 1. Diagnosis Roll expression and sigher CLSR levels were associated with worse outcomes, making them potential progression makes. 1. Diagnosis Roll expression and sigher CLSR levels are associated with worse cardiac function, suggesting its potential as a progression indicator for SIC outcomes. 9. Diagnosis Roll expression on LCNR, OLFMA, and other medicophil-related genes could help identify patients at risk of ARDS. 1. Diagnosis Roll expression on LCNR, OLFMA, and other medicophil-related genes could help identify patients at risk of ARDS. 1. Diagnosis Roll expression on LCNR, OLFMA, and other medicophil-related genes could help identify patients at risk of ARDS. 1. Diagnosis Roll expression on LCNR, OLFMA, and other medicophil-related genes could help identify patient
201CN2		Lipocain NGAL Neurophi Glatimare Associated Lipocain Opcogene 2450 26 KDa Ajrhaz Alforoglobulin-Related Subunit Of MMP-9 Siderocain P25 Milipado Simulating Factor Inhibitor Lipocain 2 (Oncogene 2456) Lipocain 2 (Decogene 2456) Lipocain 2 (Decogene 2456)	protein/gene marker	diagnostic/prognostic	, , , , , , , , , , , , , , , , , , ,	Nutritional Immunity/ Cytokine Storm Vascular and Endothelial/ Endothelial Dysfunction Cxidative Stress/ Iron regulation	VEGFA MPO, MMP9, TLR2 IL10, LCN2, IL17R, CD40LG, CD28	Interactions for LCN2 Gene	Programs Chair greater with provided the provided and the

21.CXCL10 IP-10		CACC Motif Chemokins Ligand 10 GB-10 GB-10 GB-10 GB-10 GB-10 GB-20	protein/gene marker	diagnostic/prognostic	not pathogen-dependent.	Inflammation and Immuse Pathways Cycline Stomy T-cell and NK Cell Recruitment Vascular and Endothelial Endothelial Systemicin Immune Dysregulation/ Immune Exhaustion		Genecards NO Malacards / Basterial Sepsis Septic Arthritis	1 Diagnostic and Prognostic Retervance/protein/yellow) Diagnosis Volter Di
									2. Diagnotic Role: protein L. Fil, L. F. L. F. Special State Charles (See See See See See See See See See Se
									Elevated CXCL 10 levels in plasma can serve as an indicator of sepsis severity. 4. Elevated synovial fluid CXCL 10 levels make it a promising diagnostic marker and therapeutic target in septic arthritis (protein
									5. The identified genes (TNFAIP6, GBP1, CXCL10, CXCL5, FCN1, PID1) can stratify septic patients and identify those who might benefit from IFN-y therapy.
22.IFN-γ	IFNG	Interfector Comman Immunor Interfector IFIN Comman IFIN Comman IFIN Comman IFIT Comman I	protein marker	therapeutic role	IFN-gamma production is largely infection-dependent, bacterial/virus	Inflammatory and Immune Pathways/ Cytokine Storm/ T-cell and Marcophage Activation Vascular and Endothelial Pathways/ Endothelial Dysfunction Immune Dysregulation Pathways/ Emmune Exhaustion		GeneCards/NO MalaCards/ bacterial sepsis Septic Arthritis	s. study demonstrates that ENV per dischooly restores immune function in septic by reducing T-cell apoptosis, monostating options responses, and observability angulatory T-cell profits These findings highlight ENV as a priorising threspectic candidate for targeted immune enhancement in septis.
							TLR4		2. The findings suggest that therapeutic modulation of the type I IFN pathway could improve outcomes in sepsis by balancing immune activation and inflammation /protein
							TLR4		3. Diagnostic. Value jorostini Almero II Rel argunosion on NK cells may help differentiate sepsis from SIRS. Impaired II-Rel argunosion on NK cells may help differentiate sepsis from SIRS. Impaired II-Rel production could serve as a biomaniser of immune dysfunction in sepsis. Propositio Value. Reduced NK cell counts and function (e.g., diminished IFN-y production) may indicate worse immune status and poorer outcomes in sepsis.
23.IFN-α		Interferon Alpha to FFM AUPAID FF	protein marker	Therapeutic role	More virus infection	Inflammatory and Immune Pathwayd optobine stome Pathwayd optobine stome Dysregulation will be a served Vascular and Endothelial/ Endothelial Dysfunction Outsides Stress ROS Production		Genecards/ No MalaCards/ No	
24.IFN-β	IFNB1	Interferon Beta 1 FB FF F	protein marker	therapeutic role	viral, bacterial, or parasitic infections	Inflammatory and Immune Pathways/cr/ckine storm/ Anthiviral Defense/Immune Dysregulation Vascular and Endothelial/ Endothelial/ Dysfunction Oxidative Stress/ROS Production		Genecards/ No MalaCards/ No	A \$15,9 Section Inverse funds, instituting pointed as a progression naster for theoposis regions and annual improvement. Askip demonstrates in RFR of efficiency proteom shaded memorphise funds, in references resulting improvement, and reduces lung injury, thereby reproving serviced in a mutrue model of septio-induced APDS. These findings suggest RFR if as a potential throughout, askingly for septio-related immune suppression and APDS. 5 Progression Value:
									E Prograntis Value: (FM) de corperation livests connellate with sun/val outcomes in experimental aspira models, suggesting potential as a prograntis biomarker. (E. Type I (FMs. particulary FMs.) are cerear investigates or inflammation in septimental surprises. (E. Type I (FMs. particulary FMs.) are cerear investigates or inflammation in securitate inflammation and issue attempts, whiching them a potential frequency for septiment and respects (asympt.)
25.CCL19	CCL19	CC Motif Chemokine Ligand 19 ELC CM Bets-11 Endus-3 SCVA19 CKS11 CKS11 CKS11 Endus-3 SCVA19 Endus-3 SCVA19 Endus-12 Endus-13 Endu	protein marker	more prognostic	not pathogen-dependent	Inflammatory and Immune/ Cytokine Storm/ Immune Dysregulation Adaptive Immune/ T-cell Activation and Trafficking	CCL28, and VEGF-A	GeneCards/ NO malaCards/ No	Einvaled levels of CCL19, CCL28, and VEGF-A could serve as biomarkers for segois susceptibility and sevently/protein
28.CCL25	CCL25	C.C. Metil Chemokine Ligand 25 EEC/LSS	protein/gene marker	Therapeutic	not pathogen-dependent primarily expressed in the thymus and intestinal mucosa	Inflammatory and Immune/ Immune Dysregulation Gut Barrier and Mucosal Immunely Gut Barrier Integrity Adaptive Immune/ T-cell Trafficking		GeneCards/ NO malaCards/ No	Diagnostic and Prognostic Relevance: Elevated sonor Merchanic et COL25 were associated with sepsis and could serve as a biomarker for inflammation and endothelial dysfunction in ALL Neufsitizing COL25 showed promise as a therapeutic strategy to reduce inflammation, improve endothelial barrier function, and mitigate sepsis-induced ALL
27.CXSGR1		CAGC Matt Chemokine Recoptor 1 VSB CARRELL TO CARREL CARRELL CARREL CARR	proteinigene marker	mos prognotic than diagnostic	not pathogen-dependent	Inflamentary and Immune Pathways of cytients estem! Memory are and Management Memory and Management Memory and Management Angualet and Caldedhald Pathways (Endothelia) Optimization Immune Endothelia Optimization Immune Endothelia Optimization Ondative Breast ROS production		GeneCardol NO mataCardol NO	In cRNAL code COCRT mRNA supression was significantly downregulated in septic shock patients compared to healthy controls. Normanina showed pensistedly insect COCRT mRNA here them survivors. COCRT profess registed in control seems similarly induced. The downregulation was more protococid in normanina. Soluble COCRT Livers in supriculated in normanina. Soluble COCRT Livers in supriculated in normanina. Despited SOLUCI. I versit in supriculated in more consisted with disease severity and poor outcomes. Despited SOLUCI. I versit in supriculated solution in COCRT mRNA and protein leverits in septic patients suggests its potential as a diagnostic marker for immune dysfunction in septic shock. Programs. Use the several predicted patient annumal write. Solution of the several produced patient controls with the solution of the several patient controls with the solution of the several patient controls with the solution of the several patient solution in septic shock. 2. The study suggests potential therepunds consequently annumal patient several solution of the solution of the solution of the solution of the solution in septic solution. 3. COCRT mRNA and protein levels were desirated on an operationly protocolouries. 4. Fractalizer could be could modulate these interactions and protein interaction and improving outcomes in septis. SOCRT mRNA and protein levels were signature of the solution position for reduced patients compared to healthy controls.
									Non-serviors exhibited amore procurated and persistent downergulation than survivors. 200CLL Levels teaching was electric procurated and persistent downergulation than survivors. 200CLL 1 (and the standards was electric procurated to single short schize, particularly in segle about.) The starty inplights the potential of COCRT on some process is associated with procurations, underscoring its role in sepais-induced immunosuppression. 8. Servinal Analysis: 8. Servinal Analysis: 8. Servinal Analysis: 1. Servinal Analys

28.P2X7			protein/gene marker	more prognostic then diagnostic	not pathogen-dependent	Inflammatory and Immune Pathways/ Cytokine Storm/ Immune Cell Activation	NLHP/3	GeneCards/ NO	Diagnostic:protein POXY receptor expression and mitochondrial dysfunction could serve as biomarkers for immune paralysis in sepsis.
		P2RX7 Puninergic Receptor P2X 7 P2X7 P2X PX						malaCards/ NO	Prograstic
		ATP Receptor				Vascular and Endothelial			Prognostic: Early NLRP3 inflammasome dysfunction strongly correlated with mortality, suggesting its potential as a prognostic marker.
		P2Z Receptor				Pathways/Endothelial Dysfunction			The study identifies the P2X7 receptor as a critical regulator of mitochondrial function and immune suppression in sepsis, offering a potential target for therapeutic intervention. Restoring NLRP3 inflammascome activation could improve outcomes in septic patients.
		Purinergic Receptor P2X, Ligand-Gated Ion Channel, 7				Apoptosis and Cell Death Pathways/Pyroptosis			
		Purinergic Receptor P2X, Ligand-Gated Ion Channel, 7 Purinergic Receptor P2X, Ligand Gated Ion Channel, 7 Purinergic Receptor P2X 7 Purinergic Receptor							
		Purinergic Receptor				Oxidative Stress/ ROS production			
		P2X7 Receptor External Ids for P2RX7 Gene							
							CD39		2 study highlights PDXT and CD39 as potential therapeutic and diagnostic targets for managing SAE and its associated cognitive impairments in sepsis genelprotein PDXT respits mRNM expression was significantly increased in the hippocampus of septic mice 24 hours after sepsis includent. Of prougi compared for the stam-operated growth, risk suggests and regulation of PDXT as part of the inflammatory response in this brain region.
									Cerebral Cottex:
									Correlated Contex No significant change in PDXT receptor mRNA expression was observed in the constrail contex of septic mice. This indicates regional specificity in the brain's inflammatory response to septic.
							CD14		In a bility of CD14 to modulate bacterial clearance and inflammation suggests a potential role in predicting sepsis seventy-protein The ability of CD14 to modulate bacterial clearance and inflammation suggests a potential role in predicting sepsis outcomes.
									The Ballity of Chris in Visional teachers designed in International Supplies a Systematic Vision of Systematic Visional Systematic Visional Systematic Visional Systematic Visional International Internationa
									dysregulated ATPergic signaling is a feature of early sepsis and identifies ATP, ADP, and related enzymatic activities as promising diagnostic biomarkers.
									5. systemic blockade of PZVTR protects against sepsis-induced intestinal barrier dysfunction. (protein This protective effect is mediated through the suppossion of pro-inflammatory optioner, reduced M1 macrophage activation, and maintenance of eight purction relengthy via ERVNR-HS agranging pathways. On the protection of the protection relengthy is a ERVNR-HS agranging pathways.
29.PTX3	PTX3	PTX3	protein/gene marker	prognostic more than	not pathogen-dependent	Inflammatory and Immune			 Studies confirm PTX3 as an early and independent predictor of mortality in septic patients. Elevated PTX3 levels predict disease severity in bacterial (e.g., preservoirs), furgal (e.g., aspergillosis), and viral infections (e.g., dengue). PTX3 levels decrease with efficient bestiment, making it a marker for heteropeutic response.
		Pentraxin 3 TSG-14 Tumor Necrosis Factor-Inducible Gene 14 Protein		diagnostic		Inflammatory and Immune Pathways/ Acute Phase Response / Pathogen Recognition and Clearance/			Elevated PTX3 levels predict disease severity in bacterial (e.g., pneumonia), fungal (e.g., aspergillosis), and viral infections (e.g., dengue). PTX3 (swelst electrases with effective treatment making it a marker for the
						Recognition and Clearance/ Complement Activation and			
		Tumor Necrosis Factor Alpha-Induced Protein 5				Regulation			PTX3 is a robust biomarker for diagnosing and monitoring sepsis. Its rapid response to infection and strong correlation with disease severity and outcomes make it a valuable tool in clinical settings.
		TWFAIPS Tumor Necrosis Factor Alpha-Induced Protein 5 Pentraxin-Related Protein PTX3 TNF Alpha-Induced Protein 5				Vascular and Endothelial/			
		Long Pentraxin 3				Endothelial Dysfunction			PTX3's role as a diagnostic and prognostic marker is based on its protein levels in the bloodstream, which correlate with disease severity, organ dysfunction, and patient outcomes.
		Pentraxin-Related Gene, Rapidly Induced By IL-1 Beta Pentaxin-Related Gene, Rapidly Induced By IL-1 Beta							
		Tumor Necrosis Factor, Alpha-Induced Protein 5				Coagulation/ Coagulation and Fibrinolysis			
		Long Pentraxin 3 Pentraxin Related Gene, Rapidly Induced By IL-1 Beta Pentaxin-Related Gene, Rapidly Induced By IL-1 Beta Tumor Necrosis Factor, Alpha-Induced Protein 5 Tumor Necrosis Factor-Inducible Protein TSG-14 Pentaxin Related Protein PTX3				Immune Regulation/			
		Pentraxin 3, Long 2 TSG14				Resolution of Inflammation			
									2. Elevated FTO in Segue Pallativa Synthisignes. FTOL levels were significantly injective regulated (investigation) and interest (investigation) and interest (investigation) injective resultance (20.8.19) grind.) (born survivors (investigation) injective regulation) and injective (investigation) injective (investigation) injective (investigation) injective (investigation) injection) injective (investigation) injective (investigati
									PTX2 levels were significantly higher in septic patients (median: 22.031 pg/mL) compared to healthy volunteers (median: 438 pg/mL). Noncourbournes had higher PTX3 levels (median: 20.04.879 online). Have supported to healthy volunteers (median: 438 pg/mL).
									In septic shock patients and HV, PTX3 mRMA peaked 2 hours post-LPS stimulation, while protein levels increased continuously and peaked at 24 hours.
									PTXS protein stability was significantly higher than TMF-a, contributing to sustained circulating levels. PTXS mRNM expression was similatined in section catellars, with slower decay command to nor inflammatory cytokines like TNF-a.
									PTX3 transcription was less susceptible to endotaxin tolerance, indicating its robust gene-level regulation.
							PCT CRP		3 PTX3 is a reliable biomarker for the early identification of severe sensis and prediction (motein
									Of mortality in emergency compatients with suspected infections. Its rapid response to inflammation and strong
									3.FTDL is a heliable blocated or for the early identification of seven sepsis and prediction (protein). The did a learn recovery or give sever seven seven and the protein of the seven seven or give seven or give sever the seven of the sev
									4. F1x3 orangentrations take serves as a nove abonaise for resorving instantiation and perfect instances are perpendicular. The dynamic shift from characteric to monomeric PTX3 day 2 post-ICU admission correlates with better outcomes,
							PCT.CRP		making it a potential tool for monitoring treatment responses and disease progression.
							PCI,CRP		making it a potential tool for monthing treatment responses and desisse progression. Elevated PTOL labes are associated with disease severity and motifiely in septial and reflections like pineumonia, tuberculosis, and fungal diseases, protein Pleastently high PTOL levels in a septia correlate with poor outcomes, organ oflystinction, and coapulation althorizations. PETOL outperforms CPP and PTOL in precision montally and diseases everity in septic potential.
							PCTCRP		PTX3 outperforms CRP and PCT in predicting mortality and disease severity in septic patients.
							PUI,CRP		P FX outpersonate Over a Declary in procuring inclusing and undersore services in supplicipations. Por American Company and the Company of th
									 PTX3 protects against sepsis-induced myocardial injury by downregulating apoptosis and autophagy through/protein the inhibition of the PISK/AKT/mTOR signaling pathway. This suggests PTX3 as a potential therapeutic target for managing sepsis-related cardiac complications.
									the inhibition of the PI3K/AKTImTOR signaling pathway. This suggests PTXS as a potential therapeutic target for managing sepsis-related cardiac complications.
30.TRAIL	TNFSF10	TNFSF10	protein marker	diagnostic/prognostic	triggered by inflammatory	Apoptosis and Cell Death		GeneCards / NO	identifies TRAIL as a key mediator of immune suppression during sepsis. /protein
30.TRAIL			protein marker	diagnostic/prognostic	signals rather than	Apoptosis and Cell Death Pathways/ mmune Cell			Memilies TRAIL as a key mediator of immune suppression during sepsis, (protein contributing to impaired bacterial clearance and reduced C08 T-cell responses.
30.TRAIL			protein marker	diagnostic/prognostic		Apoptosis and Cell Death Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis		GeneCards / NO MalaCards/ NO	I. Identifies TPAIL as a key mediator of immune suppression during sepsis, jurotein contributing tringuist bacterial obseniors and molicies COOI Figure responses. And reduce monthly associated with security infection in sepsic patients. And reduce monthly associated with security infection in sepsic patients. The security of the security infection in sepsic patients. The security is a security of the security infection in sepsic patients.
30.TRAIL			protein marker	diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis			identifies TRAIL as a key mediator of immune suppression during sepsis, fyrotein contributing to impared bacterial clearance and induced COB T-coll responses. Tapering he TRAIL synamism yan have thereplance (content or receive immunity and reduce mortality associated with secondary infections in septic potents.
30.TRAIL			protein marker	diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis			1. Mentifier TRAIL as a key motifier of immune apprecision during septis, protein contributing is implied solvated desarrated solvated desarrated and transfer and transfer of the contributing is implied solvated desarrated solvated desarrated and transfer and transfer of the contribution of the contribut
30.TRAIL			protein marker	diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			identifies TRAIL as a key mediator of immune suppression during sepsis, jurdein conflicting to impaired sactional clearance and reduced CDB T-cell responses. An experimentally associated with secondary infections in septic patients. An endure mortally associated with secondary infections in septic patients.
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			1. Meetike TONLE, as a key mediator of immune augumension during septis, involved contributing to immider advanted information and missed COR To-Correct Targeting the TRAIL pathway may have therapeacing colorital to restore immunity and reduce montality associated with secondary infections in septic paternas.
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis			1, Mentifier TRUIL as a key motival or firmours apprecise during species, proteins contributing in simples descental descents are or finded CDTP 1-20 may Contributed in simples descental descent are of majorities. Targeting the TRUIL pathway may have therapeutic potential to restore immunity and reduce mortality associated with secondary infections in septic patients.
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			1. Meetifier TONIL as a key mediator of immune appression during segols, involved contributing to implicate obserted interessor and motioned COST Foot general Targeting the TRAIL pathway may have thereposed potential for restore immunity and reduce mortality associated with secondary infections in expite patients.
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			1. Mendies TRAIL as a key motive of immune appreciacio during specie, protein contributing in implicate aborated cleanures and resolucion 2. The protein contributing in implicate aborated cleanures and resolucion 2. The protein Targeting the TRAIL pathway may have therapeutic potential to restore immunity and reduce mortality associated with secondary infections in septic patients.
30.TRAJL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			1. Meetides TONIL as a key mediator of immune appression during appear, injection contributing to impresse absential cleanance and motioned CDR Tod of responses. Targeting the TRAIL pathway may have therepeaks potential to restore immunity and reduce mortality associated with secondary infections in expite patients.
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			1. Meetide TONLE, as a key model of immune augmenosis during septis, protein contributing is implied scholarist desarrated and model of DEP of contributing is implied scholarist desarrated proteins in response. Targeting the TRAIL pathway may have therapeutic potential to restore immunity and reduce mortality associated with secondary infections in septic patients.
30.TRAIL				diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			contributing to impaired societatic inference and motivace COST (cell responses.) It paying the TRSM pathoday may have three papers in the properties of the
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			contributing to impaired societatic inference and motivace COST (cell responses.) It paying the TRSM pathoday may have three papers in the properties of the
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			contributing to impaired societatic inference and motivace COST (cell responses.) It paying the TRSM pathoday may have three papers in the properties of the
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Opas Dyskindron jorden Lever TRAIL levels (25 pg/ml.) were associated with increased opas of performance or passed on the performance of the pe
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Opas Opstanction jectors Lever TRAIL levels (25 Sprijel, were associated with increased opas op factors of the control opas opas opas opas opas opas opas opas
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostr/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAL Laets and Cogan Oyalradion poets and I Radio Committed C
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dysfunction /portein Lover TRAIL Levels (2.25 pg/ml) were associated with some control organ Dysfunction /portein Lover TRAIL Levels (2.25 pg/ml) were associated with some control organ Dysfunction in /portein /portein Lover TRAIL Levels (2.25 pg/ml) were associated with some control organ Dysfunction in /portein /portein Lover TRAIL Levels (2.25 pg/ml) were associated with some control organ /portein /por
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostic/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dysfunction /portein Lover TRAIL Levels (2.25 pg/ml) were associated with some control organ Dysfunction /portein Lover TRAIL Levels (2.25 pg/ml) were associated with some control organ Dysfunction in /portein /portein Lover TRAIL Levels (2.25 pg/ml) were associated with some control organ Dysfunction in /portein /portein Lover TRAIL Levels (2.25 pg/ml) were associated with some control organ /portein /por
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostr/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dystunction/protein Level TRAIL Levels and Organ Dystunction with protein and greater vasopressor use, reflecting homodynamic instability TRAIL direction seeps scale book for expectation and non-infectious critical liness. Protential use as a marker of immune dystunction in septic patents. Level TRAIL Levels and Sepas Servich protein Service Ser
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostriprognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dystunction/protein Level TRAIL Levels and Organ Dystunction with protein and greater vasopressor use, reflecting homodynamic instability TRAIL direction seeps scale book for expectation and non-infectious critical liness. Protential use as a marker of immune dystunction in septic patents. Level TRAIL Levels and Sepas Servich protein Service Ser
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostr/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dystunction/protein Level TRAIL Levels and Organ Dystunction with protein and greater vasopressor use, reflecting homodynamic instability TRAIL direction seeps scale book for expectation and non-infectious critical liness. Protential use as a marker of immune dystunction in septic patents. Level TRAIL Levels and Sepas Servich protein Service Ser
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostriprognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dystunction/protein Level TRAIL Levels and Organ Dystunction with protein and greater vasopressor use, reflecting homodynamic instability TRAIL direction seeps scale book for expectation and non-infectious critical liness. Protential use as a marker of immune dystunction in septic patents. Level TRAIL Levels and Sepas Servich protein Service Ser
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostr/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dysfunction iprotein Level and Organ Dysfunction iprotein Level and Organ Dysfunction iprotein Level Education of State Control of S
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostriprognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dysfunction ignores and organ for the TRAIL (avel to graph organized to graph or
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostr/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm			2. TRAIL Levels and Organ Dysfunction ignores and organ for the TRAIL (avel to graph organized to graph or
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostri/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASL Cascose 3		2. TRAIL Levels and Organ Dysfunction /protein Level TrAIL Levels and Organ Dysfunction /protein Level TrAIL Level and the organ /protein /protei
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostr/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASI, Caspase 3		2. TRAIL Levels and Organ Dysfunction /protein Level TrAIL Levels and Organ Dysfunction /protein Level TrAIL Level and the organ /protein /protei
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		dagnostriprognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASL, Caspase 3		contributing to impained sactional clearance and molicus COS IT-cell responses. It paying the TRNAL parking may have the supposed potential for recision immunity. 2. TRNAL Levels and Organ Dysfunction riprotein Lower TRNAL levels (r.28 5 gipm), were associated with: Clear TRNAL levels (r.28 5 gipm), were associated with: Clear trouders of septic shoots in all cohorts. TRNAL levels are associated with higher lactate levels and greater vasopressor use, reflecting hemodynamic instability. Lower TRNAL levels are associated with higher lactate levels and greater vasopressor use, reflecting hemodynamic instability. Lower TRNAL levels are associated with higher lactate levels and greater vasopressor use, reflecting hemodynamic instability. Lower TRNAL levels predict higher mortality and severe organ dysfunction, making a candidate for risk stratification. TRNAL provided use as a market of minume plyshanton in septic pasterial provided use and severe organ dysfunction, making a candidate for risk stratification. TRNAL levels produce higher mortality and severe organ plyshanton, making a candidate for risk stratification. TRNAL levels are associated with septic severely and conditions and plants companded to controls distinguishing segares and septic shock from respect contability should serve as a biomarket for distinguishing segares and septic shock from respect contability should serve as a biomarket for distinguishing segares and septic shock from respect contability should serve as a biomarket for distinguishing segares and septic shock from respect contability should serve as a biomarket for distinguishing segares and septic shock from respect contability should serve as a biomarket for distinguishing segares and septic shock from respect contability should serve as a biomarket for distinguishing segares. TRNAL (TRNAL TRNAL TRNAL EVEL Seed as segarities of
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostir/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASI, Caspose 3		contributing to impained bacterial clearance and moluced CDB T-cell responses. It periging the TRSM partial perial peria
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostri/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASL, Cospose 3		contributing to impained bacterial clearance and moluced CDB T-cell responses. It periging the TRSM partial perial peria
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostir/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASI, Caspase 3		contributing to impained sactional clearance and moliused COST I colf responses. It periging the TRIAL problems may have the requirement of the contribution of the c
30.TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnostr/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASL, Cospose 3		Contributing to impaired bacterial observance and reduced COST Losf responses. It prings the TRIAL praises and the secondary intentions in expire patients. 2. TRIAL Lizerb and Cogan hydrandom/protein and contributing associated with secondary intentions in expire patients. 2. TRIAL Lizerb and Cogan hydrandom/protein and the contributing associated with secondary intentions in expire patients. 2. TRIAL Lizerb and Cogan hydrandom/protein and the company of the comp
30 TRAIL		TNF Superfamily Member 10 Apo -21. TRAIL. CD283 TANCR TUDES Network Superfamily, Member 10 Tumor Necrosis Factor (Ligand) Superfamily, Member 10 Tumor Necrosis Factor Ligand Superfamily Member 10 Apo -2 Ligand		diagnosti/prognostic	signals rather than	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASL, Caspase 3		contributing to impained sactional clearance and molicus CDI Tcell responses. It perignity the TRIAL presides and common and molicus CDI Tcell responses. It perignits the TRIAL presides deliver the execution of the special patients of the special patients of the special patients. 2. TRIAL Levels and Cryst Dysfunction ignorates Lower TRIAL levels (25 Spyrint) were associated with: Increased organ cyluluction ingrite TGPA corres). Lower TRIAL levels (25 Spyrint) were associated with: Increased organ cyluluction ingrite TGPA corres). Lower TRIAL levels are associated with light clause levels and greater vasopressor use, reflecting hemodynamic instability. Desponse. Desponse. Desponse. Desponse. James of the TRIAL levels (25 Spyrint) were associated with light clause levels and greater vasopressor use, reflecting hemodynamic instability. Desponse. Desponse. Desponse. James of the TRIAL levels (25 Spyrint) were associated with light clause levels and greater vasopressor use, reflecting hemodynamic instability. Desponse. Desponse. Desponse. James of the trial patients associated with light clause levels and greater vasopressor use, reflecting hemodynamic instability. Desponse. Desponse. James of the trial patients associated with light clause levels and greater associated with light clause levels and greater associated with light clause levels and greater of the patients. Desponse. James of the trial patients associated with levels and greater associated with light clause levels. James of the trial patients associated with levels and greater associated with levels associated aspect associa
		The Superfamily Member 10 Appeal Appe			signals anter than specific pathogens	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASL, Cosposo 3	MataCardol NO	contributing to impaired sactional clearance and molicus CDS IT-cell responses. It parings the TRNAL plansing may have the supposed potential for receive immunity and visible molitality associated with executiony visible in expirity patients. 2. TRNAL Levels and Organ Drystanction ignotion Level TRNAL levels are displayed to an all cohorts. Clease transferred supplication in all cohorts. Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with stages sevenity and cool all lenes. TRNAL invelse were associated with separa sevenity and cool alleres as a biomater to contribute of the proposed in the proposed of the proposed in the proposed of the proposed in the propo
30 TRAIL		The Superfamily Member 10 Appeal Appe			signals rather than	Pathwayd menuse Cell Apoptoses Apoptoses Inflammatory and Immune Pathwayd immune Dymregalation Cytokine Bloom	FASL Caspase 3	MalaCardol NO GeneCardol NO	contributing to impaired sactional clearance and molicus CDS IT-cell responses. It parings the TRNAL plansing may have the supposed potential for receive immunity and visible molitality associated with executiony visible in expirity patients. 2. TRNAL Levels and Organ Drystanction ignotion Level TRNAL levels are displayed to an all cohorts. Clease transferred supplication in all cohorts. Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with stages sevenity and cool all lenes. TRNAL invelse were associated with separa sevenity and cool alleres as a biomater to contribute of the proposed in the proposed of the proposed in the proposed of the proposed in the propo
		The Superfamily Member 10 Appeal Appe			signals anter than specific pathogens	Pathways/ mmune Cell Apoptosis/Endothelial Cell Apoptosis Inflammatory and Immune Pathways/. Immune Dysregulation/ Cytokine Storm	FASL, Cospose 3	MataCardol NO	contributing to impaired sactional clearance and molicus CDS IT-cell responses. It parings the TRNAL plansing may have the supposed potential for receive immunity and visible molitality associated with executiony visible in expirity patients. 2. TRNAL Levels and Organ Drystanction ignotion Level TRNAL levels are displayed to an all cohorts. Clease transferred supplication in all cohorts. Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with higher betalla levels and greater vasopressor use, reflecting hemodynamic instability Level TRNAL is seen associated with stages sevenity and cool all lenes. TRNAL invelse were associated with separa sevenity and cool alleres as a biomater to contribute of the proposed in the proposed of the proposed in the proposed of the proposed in the propo
		The Superfamily Member 10 Appeal Appe			signals anter than specific pathogens	Pathwayd menuse Cell Apoptoses Apoptoses Inflammatory and Immune Pathwayd immune Dymregalation Cytokine Bloom	FASI, Caspase 3	MalaCardol NO GeneCardol NO	Contributing to impained bacterial observance and reduced CDB T-cell responses. It prings the TBM parks war park were beingering dependent or feed on membly and visible morehally associated with screenbey reflectives in explicit patients. 2. TBM L Lands and Cogan hydratedon-josephin Level TBMs levels (CSB 5 gymt) were associated with: Increased organ systematic patients or the common state of the com
		The Superfamily Member 10 Appeal Appe			signals anter than specific pathogens	Pathwayd menuse Cell Apoptoses Apoptoses Inflammatory and Immune Pathwayd immune Dymregalation Cytokine Bloom	FASL, Cosposo 3	MalaCardol NO GeneCardol NO	contributing to impained sociental clearance and molicus CDS IT-cell responses. It parings the TRNAL plansing may have the suppose potential or treatmentally associated with econology electrons in eyelp patients. 2. TRNAL Levels and Organ Dysfunction protein Levels and Organ Dysfunction riporties Consider incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. TRNAL incidence aspect about for the higher lectate levels and greater vasopressor use, reflecting hemodynamic instability. Level TRNAL incidence of supple spools in all cohorts. TRNAL incidence aspect about from supple spots on supple spots and supple spot
		The Superfamily Member 10 Appeal Appe			signals anter than specific pathogens	Pathways menus Call Apoptosis Inflammatory and Immune Pathways / Femine Dymragiation / Cypisine Born South and South of South of South of South Endometric South of South Inflammatory and Immune Inflammatory and Immune Cypisine South Inflammatory and Immunel Cypisine South Infl	FASI, Caspase 3	MalaCardol NO GeneCardol NO	contributing to impained sociental clearance and molicus CDS IT-cell responses. It parings the TRNAL plansing may have the suppose potential or treatmentally associated with econology electrons in eyelp patients. 2. TRNAL Levels and Organ Dysfunction protein Levels and Organ Dysfunction riporties Consider incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. TRNAL incidence aspect about for the higher lectate levels and greater vasopressor use, reflecting hemodynamic instability. Level TRNAL incidence of supple spools in all cohorts. TRNAL incidence aspect about from supple spots on supple spots and supple spot
		The Superfamily Member 10 Appeal Appe			signals anter than specific pathogens	Pathways musus Cell Academics Cell Academics Cell Cell Cell Cell Cell Cell Cell Cel	FASL, Cospose 3	MalaCardol NO GeneCardol NO	contributing to impained sociental clearance and molicus CDS IT-cell responses. It parings the TRNAL plansing may have the suppose potential or treatmentally associated with econology electrons in eyelp patients. 2. TRNAL Levels and Organ Dysfunction protein Levels and Organ Dysfunction riporties Consider incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. TRNAL incidence aspect about for the higher lectate levels and greater vasopressor use, reflecting hemodynamic instability. Level TRNAL incidence of supple spools in all cohorts. TRNAL incidence aspect about from supple spots on supple spots and supple spot
		The Superfamily Nember 10 Appeal Appe			signals anter than specific pathogens	Pathways menus Call Apoptosis Inflammatory and Immune Pathways / Femine Dymragiation / Cypisine Born South and South of South of South of South Endometric South of South Inflammatory and Immune Inflammatory and Immune Cypisine South Inflammatory and Immunel Cypisine South Infl	FASL Caspase 3	MalaCardol NO GeneCardol NO	contributing to impained sociental clearance and molicus CDS IT-cell responses. It parings the TRNAL plansing may have the suppose potential or treatmentally associated with econology electrons in eyelp patients. 2. TRNAL Levels and Organ Dysfunction protein Levels and Organ Dysfunction riporties Consider incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. TRNAL incidence aspect about for the higher lectate levels and greater vasopressor use, reflecting hemodynamic instability. Level TRNAL incidence of supple spools in all cohorts. TRNAL incidence aspect about from supple spots on supple spots and supple spot
		The Superfamily Member 10 Appeal Appe			signals anter than specific pathogens	Pathways menus Call Apoptosis Inflammatory and Immune Pathways / Femine Dymragiation / Cypisine Born South and South of South of South of South Endometric South of South Inflammatory and Immune Inflammatory and Immune Cypisine South Inflammatory and Immunel Cypisine South Infl	FASL, Company 3	MalaCardol NO GeneCardol NO	contributing to impained sociental clearance and molicus CDS IT-cell responses. It parings the TRNAL plansing may have the suppose potential or treatmentally associated with econology electrons in eyelp patients. 2. TRNAL Levels and Organ Dysfunction protein Levels and Organ Dysfunction riporties Consider incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. Cleater incidence of supple spools in all cohorts. TRNAL incidence aspect about for the higher lectate levels and greater vasopressor use, reflecting hemodynamic instability. Level TRNAL incidence of supple spools in all cohorts. TRNAL incidence aspect about from supple spots on supple spots and supple spot
		The Superfamily Nember 10 Appeal Appe			signals anter than specific pathogens	Pathways menus Call Apoptosis Inflammatory and Immune Pathways / Femine Dymragiation / Cypisine Born South and South of South of South of South Endometric South of South Inflammatory and Immune Inflammatory and Immune Cypisine South Inflammatory and Immunel Cypisine South Infl	FASL Caspase 3	MalaCardol NO GeneCardol NO	contributing to impained sociental clearance and molicated COST I colf responses. It paries the TRSIA pathway may have the supposed potential or testing memority. 2. TRAIL Lenets and Organ Dystanction intention Lower TRAIL lenets (*28 5 gym), were associated with: Increased Copys of the Control of the Control of the Copys of
		The Superfamily Nember 10 Appeal Appe			signals anter than specific pathogens	Pathways menus Call Apoptosis Inflammatory and Immune Pathways / Femine Dymragiation / Cypisine Born South and South of South of South of South Endometric South of South Inflammatory and Immune Inflammatory and Immune Cypisine South Inflammatory and Immunel Cypisine South Infl	FASL, Cospose 3	MalaCardol NO GeneCardol NO	contributing to impained sociental clearance and molicated COST I colf responses. It paries the TRSIA pathway may have the supposed potential or testing memority. 2. TRAIL Lenets and Organ Dystanction intention Lower TRAIL lenets (*28 5 gym), were associated with: Increased Copys of the Control of the Control of the Copys of
		The Superfamily Nember 10 Appeal Appe			signals anter than specific pathogens	Pathways menus Call Apoptosis Inflammatory and Immune Pathways / Femine Dymragiation / Cypisine Born South and South of South of South of South Endometric South of South Inflammatory and Immune Inflammatory and Immune Cypisine South Inflammatory and Immunel Cypisine South Infl	FASL Caspase 3	MalaCardol NO GeneCardol NO	contributing to impained sociental clearance and molices CDB T-call responses. It parings the TRMAL plansing may have the suppose potential to receive immunity and visible molitality associated with econology infections in eyest patients. 2. TRAIL Levels and Organ Drystunction-sporter Level and Organ Drystunction-sporter Level and Organ Drystunction-sporter Level and Organ Drystunction-sporter Consistent molecular of supplic shocks and controls. Clineater molecular of supplic shocks in all cohorts. Clineater molecular of supplic shocks in all cohorts. Clineater molecular of supplic shocks in all cohorts. TRAIL invest a supplic shocks from sepsia and non-reficious ortical illness. Foreign and the supplic shocks of the supplication in supplic patients. TRAIL invest supplic shocks from sepsia and non-reficious ortical illness. TRAIL invest supplic shocks from sepsia and non-reficious ortical illness. TRAIL invest supplication or supplication in supplication in supplication in supplications. TRAIL invest supplication or supplication in supplications. TRAIL invest supplication or supplication in supplications. TRAIL invest supplication or supplications in supplications. TRAIL invest supplications or supplication or supplications. TRAIL invest supplications or supplications or supplications or supplications. TRAIL invest supplications or supplications or supplications or supplications. TRAIL invest supplications or supplication

									Diagnostic:/protein/igene Elevated MMIP8 levels distinguish sepsis patients from healthy controls. Domonaria:
									Prognostic. High IMINPB expression is associated with increased mortality, making it a potential prognostic biomarker.
							TIMP-1		
							TIME-1		4. TMP-1 and MMP-8 may serve as biomarkers for distinguishing patients with overt DIC in the early stages of sepsis juriosin Elevated TMP-1 level in the early phase were associated with the serveity of coapulposity and the presence of overt DIC. MMP-9, while elevated, had a less direct association with coapulposition obscirred.
									Shiphighas the significant elevation of MIP-2 and MIMP-8 in severe appais and their correlation with disease severity/protein Elevated MIMP-2 and MIMP-8 levels could serve as markers of sepsis severity.
									Higher MMP-2 levels in skin blister fluid were associated with non-survivors, suggesting a potential prognostic role in severe sepsis.
									MMP9 plays a critical role in bacterial clearance and immune regulation in juvenile sepsis (protein White is inhibition improves outcomes in adults, this suby underscores its protein-order in protein prote
							MMP9		emphasizing the need for age-specific therapeutic approaches.
							MMP9		7. Diagnostic protein High MINP-3 are low MINP-9 levels were useful biomarkers for identifying sepsis in ICU patients. MINP-2 and IOM MINP-9 levels were associated with survival, with lower MINP-2 levels predicting poorer outcomes.
									MMH-2 and MMH-3 levies were associated with survival, with lower MMH-2 are MMH-3 and MMH-3 levies before associated with survival, with lower MMH-3 and MMH-
									MMPS role in driving immune tolerance and its association with sepsis outcomes suggest it could serve as a prognostic marker, though knither studies are needed.
									8. Programatics interrule products in the control of the control o
22 MMD0	MMD0								
32.MMP9	MMP9	Matrix Metallopeptidase 9 C.L.G4B Matrix Metalloproteinase 9 (Gelatinase 8, 92k/ba Gelatinase, 92k/ba Type IV Collagenase) Matrix Metalloproteinase 9	protein/gene d	diagnosec/prognosec	not patnogen-dependent	Extracellular Matrix Pathways/ ECM Degradation and Remodeling		MalaCards/ Septic Arthritis	Gene Level (gene) protein MAPP - RNNN levels were quantified using RT-PCR, showing increased expression during infection. Reviewed MAPP - BnNNN levels were quantified using RT-PCR, showing increased expression during infections. Reviewed MAPP - Seek during septim infection by the control of the service of the control
		Matrix Metalloproteinase 9 (Gelatinase B, 92kDa Gelatinase, 92kDa Type IV Collagenase)				Remodeling		MalaCards/ Septic Arthritis	Elevated MMP-9 levels during sepsis indicate its potential role as a biomarker for inflammatory responses in bacterial infections. Reduced MMP-9 elevity was associated with impaired bacterial clearance and increased issues damage,
		Matrix Metalloproteinase-9 EC 3.4.24.35 MMP-9 GELB				Cutokina Storm/ Nautrophil			suggesting its importance in determining infection outcomes.
						Recruitment and Activation			
		Matrix Metallopeptidase 9 (Gelatinase B, 92kDa Gelatinase, 92kDa Type IV Collagenase)				Vascular and Endothelial/ Endothelial Dysfunction			
		92 KDa Type IV Collagenase Macrophage Gelatinase							
		Type V Collagenase 92 KDa Gelatinase							
		Matrix Metallopepidase 9 BXtha Gelatinase, 92kDa Type IV Collagenase) 92 KDa Type IV Collagenase 92 KDa Type IV Collagenase Macrophage Gelatinase 1 Type V Collagenase 22 KDa Gelatinase 22 KDa Gelatinase 62 B B G B B G B B B G B B B B B B B B B							
		MANDP							2. MMP-8 excression (mRNA and protein levels) was significantly elevated in lung tissues of CLP-induced section mice.
									2. MMP-9 expression (mRNA and protein levels) was significantly elevated in lung tissues of CLP-induced septic mice. MMP-9 express against sepsis exicuted ALI by promoting SANGE frelease, which mitigates the harmful effects of RAGENF-8-d salication. Tagging the MRM-BEANGE area represented in hereputed strategy for sepsis-related lung injury.
									3. Flevated MMP-2 and MMP-9 activity could serve as higgariers for BRR(blood-brain barrier) dysfunction in sensis (protein
									Prognostic Persistent MMP-9 activity might indicate the severity of BBB disruption and related outcomes. A Diamonstri-Innehin
									The abuly demonstrated the utility of MMO.0 as a highwayler for the early detection of sensis, with the highwayler analytics ravid identification
									6. Plasma MMP-9 levels were highest on ICU Day 1 and decreased over time during recovery/protein Elevated MMPs (a. m. MMP-9 MMPs). An anti-overse sension of the protein sension sension of the protein sension se
							IL-8, and C5aR IFNy, IL-12, and TLR4		F. Passen MIMP-8 levels were highest on CCU Day 1 and document over time during recovery jurishes Elevated MIMP-8 (a.W.P9, MIMP-9, MIMP-9) canders even a marken of enerse space. G. Upropulated games, such as MIMPs IL-8, and CSSR - refect Immune acclusion and may serve as boromates for applies overrify lighter The operation of colorang repect (VIP). IL-10 and IL-10 content colorans, respecting formed proposition (affiliation)
							IFNy, IL-12, and TLR4 CD44, and EGR1		The expression of certain gener (FNy, Lr 12, and TLA) constanted with patient outcomes, suggesting potential prognostic utility. 7. Upregulated expression of MMP9, CD44, and EGR1 in sepsis highlights their potential as biomarkers. These genes could also serve as therepused targets given their certain roles in sepsis pathogenesis.
33.HLA-DR	HLA-DR	HLA-DRB1	ptotein / gene marker p	prognostic/diagnostic	not pathogen-dependent	Adaptive Immune/ Antigen Presentation and T-cell		GeneCards/ NO	Low HLA-SR expression on T cells or monocytes, along with reduced soluble HLA-DR, were early markers for sepsis susceptibility protein The finding suggest that monitoring hese markers can predict severe sepsis and guide early interventions. These markers on pretentially enhance early disposes and statistication of patients, existing entirely therapped interventions. These markers on pretentially enhance early disposes and statistication of patients, existing entirely therapped interventions.
		HLADRB1 Major Histocompatibility Complex, Class III, DR Betta 1 HLADR18 Major Histocompatibility Complex, Class III, DR Betta 1 HLA Class II Histocompatibility Artigen, DR-1 Beta Chain HLA Class II Histocompatibility Artigen, DRB1 Beta Chain MHC Class II HLADR Beta 1 Chain HISTOCOMP				Presentation and T-cell Activation		MalaCards/ Bacterial Sepsis	The findings suggest that monitoring these markers can predict severe sepsis and guide early interventions. These markers can potentially enhance early diagnosis and stratification of patients, enabling timely therapeutic interventions.
		Major Histocompatibility Complex, Class II, DR Beta 1 HLA Class II Histocompatibility Antigen, DR-1 Beta Chain				Inflammatory and Immune/ Immune Dysregulation		Septic Arthritis	
		HLA Class II Histocompatibility Antigen, DRB1 Beta Chain MHC Class II HLA-DR Beta 1 Chain							
		Human Leucocyte Antigen DRB1 Human Leukocyte Antigen DRB1				Cytokine Storm and Resolution/ Immune Regulation			
		Human Leukocyte Antigen DRB1 Lymphocyte Antigen DRB1 HLA-DRB							
		DRB1 SS1							
									2. Low HLA-DRA mRNA expression and reduced TNFs response are markers of septis induced immunosuppression, protein/gase HLA-DRA expression and the Virial AL-DRA rate controlled with disease serverity (SOFA score), indicating potential prognostic utility HLA-DRA mRNA-Med on a Disease of SOFA core in management TO SOFA CORE (SOFA CORE AL-DRA
									HAVIVE explession in an interview have the relative to the responsibility of the relative to t
									3 Reduced mHLA-DR expression is a sensitive and specific marker for sepsis-induced immunosuppression./gene/protein Helps differentiate between septic and non-septic inflammatory conditions.
									Prognostic. Dynamic changes in mHLA-DR levels, particularly the recovery slope, predict sepsis outcomes, including survival and infection risks.
									4. This study validates HLA-ORA mRNA expression as a viable biomarker for sepsis-induced immunosuppression / protein/gene
									4. This study validation HA. DOR ANERIAR expression as a validate biomather for applic inclined immunosuppression fractioning the format production of the storing controllable beasement HA. DOR ANERIAR and HIALA DOS (retainments used supports that of RT-PCR offers a practical, scalable alternative to flour cylindrity for monitoring immunos status in septia. Lower HA. DOR ANE HIALA DRI include secondated with more seven septial and power outcomes.
									5. HLA-DRA mRNA downregulation is a sensitive indicator of septis-induced immunosuppression.
									1. HLA-DRA-riBNA charminguistation is a sensitive indicator of seguile induced minutosuppression. Residently low HLA-DRA riBNA review consistent with residence of seguile induced minutosuppression. Residently low HLA-DRA riBNA ribs residence seguile, organ labilities (DRA), and por conditiones. measurement of HLA-DRA riBNA ribs ribs relation and reproduce seguile minutosuppression in explain.
									6. Low CD74 mRNA levels indicate severe immune dysfunction and identify patients at risk for poor outcomes after septic shock/protein/gene CD74 mRNA severe as a robust prognostic biomarker, correlating with 28-day mortality, even after adjusting for clinical confounders.
									6. Low CD74 mRNA levels indicate severe immune dysfunction and identify patients at risk for poor outcomes after septic shock/protein/gene CD74 mRNA severe as a robust prognostic biomarker, correlating with 28-day mortality, even after adjusting for clinical confounders.
									6. Low CD74 mRNA levels indicate severe immune dysfunction and identify patients at risk for poor outcomes after septic shock/protein/gene CD74 mRNA severe as a robust prognostic biomarker, correlating with 28-day mortality, even after adjusting for clinical confounders.
									6. Los CDV ni miNA levels indicate severe immune dystunction and desting patient at sits for poor outcomes after septic shock jurgicine (proc. CDV ni miNA severe as motion) prospected, and a mind any adjusting or derical continueds. print A DV also predicted mortality. Predicted mind A DV recovery provided early samming of minuse dysfunction. The stops of miNA DV recovery provided early samming of minuse dysfunction. The stops of miNA DV recovery provided early samming of minuse dysfunction. The findings appears the staffy or miNA DV recovery provided early samming of minuse dysfunction.
									6. Low CD74 mRNA levels indicate severe immune dysfunction and identify patients at risk for poor outcomes after septic shock/protein /gene CD74 mRNA serves as a robust prognostic biomarker, correlating with 26-bay mortality, even after adjusting for clinical conformation.
34 TNE n	THE	De	proteiniume		not nathones-decourses-	Inflammatory and Immunal		ConsCartel apple, sanis shade	6. Los CDV ni miNA levels indicate severe immune dystunction and desting patient at sits for poor outcomes after septic shock jurgicine (proc. CDV ni miNA severe as motion) prospected, and a mind any adjusting or derical continueds. print A DV also predicted mortality. Predicted mind A DV recovery provided early samming of minuse dysfunction. The stops of miNA DV recovery provided early samming of minuse dysfunction. The stops of miNA DV recovery provided early samming of minuse dysfunction. The findings appears the staffy or miNA DV recovery provided early samming of minuse dysfunction.
34.TNF-a	TNF	TNF Turnor Necrosis Fector	protein/gene		not pathogen-dependent	Inflammatory and immune!		GeneCards/ septic- septic shock	B. Low CDV mRNAL hereis shotiates severe immune Special mortal at risk for por outcomes after septic shock protein (gree CDV) mRNAL hereis should be a should proposed be sometime, correlating with the dynaptime for official continued as the dynamic of the dynamic official continued as the dynamic of the dynamic official continued as the dynami
34.TNF-a	TNF	The Theoretic Fador Theoretic	protein/gene		not pathogen-dependent	Inflammatory and Immune/ clokine storm/ Immune Cell Recruitment		GeneCartes' septic- septic shock MalaCartes' Bacterial Sepsis septin Artitha-	B. Los CUTA mRNA levels and taste serves immune dysfunctions and bearing patients at risk for poor subcromes after septic shock injoints (gene levels). F. Reduced mortices on charge a service of the
34.TNF-a	TNF	The Fluor Necrosis Factor The Agha The	protein/gene		not pathogen-dependent	Vascular and Endothelial/ Endothelial Dysfunction			E. Los CUTA mRNA levels and taste serves immune dysfunctions and bearing patients at its for por subcromes after septic shock injoints (gene levels). F. Reduced mortices on charge a control of the service of the se
34.TNF-a	TNF	TNF Turn blevrosis Factor Turn Steps TNFSF2 TNFSF2 Turn Necrosis Factor Ligand Superfamily Member 2 TNF-A	proteinigene		not pathogen-dependent	Vascular and Endothelial/ Endothelial Dysfunction			E. Los CUTA mRNA levels and taste serves remune dysfunctions and tearility patients at risk for nor subcriment after sergic shock, increasing mental management of the control of the con
34.TNF-a	TNF	TNF Turor Necrosis Factor Turor Sez TNS 2 TNS 2 TNS 4 Turor Necrosis Factor Ligand Superfamily Member 2 TNS 4 Turor Necrosis Factor Ligand Superfamily Member 2 Turor Necrosis Factor Ligand Superfamily Member 2) Turor Necrosis Factor Ligand Superfamily Member 2)	proteinigene		not pathogen-dependent	Vascular and Endothelial/ Endothelial Dysfunction Coagulation/ Coagulation Cascade Activation			E. Los CUTA mRNA levels and taste serves immune dysfunctions and bearing patients at its for por subcromes after septic shock injoints (gene levels). F. Reduced mortices on charge a control of the service of the se
34.TNF-a	TNF	THE Fluor Necrosis Factor The Author Necrosis Factor The Author Th	protein/gene		not pathogen-dependent	Vascular and Endothelial/ Endothelial Dysfunction Coagulation/ Coagulation Cascade Activation			EL Los CUTA mRNA levels and taste serves immune dysfunctions and tearing patients at its for por subcromes after septic shock (protein) general methods and the contraction of the dysfunction of the dysf
34.TNF-a	TNF	The Theoret Recrosis Factor The Angel Theoret Recrosis Factor The Angel Theoret Theore	protentigene		not pathagen dependent	Vascular and Endothelial/ Endothelial Dysfunction Coagulation/ Coagulation Cascade Activation			E. Los CUTA mRNA levels and taste serves immune dysfunctions and tearing patients at risk for poor subcromes after septic shock ignoring ingeneral materials. AD it is no precise demonstration on the pt-1 deservation of the substitution of the su
34.TNF-a	116	Discovery Necrosis Factor Ligand Superfamily Member 2 This-A, Tissen Necrosis Factor (IRF Superfamily, Member 2) Tissen Necrosis Factor Ligand 17 Tissen Necrosis Factor Ligand 17 Tissen Necrosis Factor Alpha Tissen Necrosis Factor Tissen Necros	proteinigene		nut pathogen-dependent	Vascular and Endothelial/ Endothelial Dysfunction Coagulation/ Coagulation Cascade Activation			EL Los CUTA mRNA levels and taste serves immune dysfunctions and tearing patients at its for por subcromes after septic shock (protein) general methods and the contraction of the dysfunction of the dysf
34.TNF-a	The	The Turner Neurouss Factor The Author 1968 2	proteintgene		not pathogen-dependent	Vascular and Endothelial/ Endothelial Dysfunction Coagulation/ Coagulation Cascade Activation			EL Los CUTA mRNA levels and taste serves immune dysfunctions and tearing patients at its for por subcromes after septic shock (protein) general methods and the contraction of the dysfunction of the dysf
		Union Vecrosis Factor Ligand Sisperfamily Member 2 TNF-A Turner Necrosis Factor (TNF Singerfamily, Member 2) Turner Necrosis Factor (April Turner Necrosis Factor April Turner Necrosis Singerfamily Turner Necrosis Singerfamily Turner Necrosis Singerfamily Topic Macrophia Destreat APC 1 Protein TNA.G1F	protentigene		not pathagen dependent	Vascular and Endothelial/ Endothelial Dysfunction Casquisterio Casquisterio Cascude Activation Apoptosis and Cell Death/ Immere and Endothelial Cell Death	T-OM	MataCardy/Bacterial Sepsis septin Attribus	EL Los CUTA mRNA levels and taste serves remained systematics and sensity gateletes at its like for our outcomes after septic shock (protein) grant (miles of the control
34.TNF-a		Union Vecrosis Factor Ligand Sisperfamily Member 2 TNF-A Turner Necrosis Factor (TNF Singerfamily, Member 2) Turner Necrosis Factor (April Turner Necrosis Factor April Turner Necrosis Singerfamily Turner Necrosis Singerfamily Turner Necrosis Singerfamily Topic Macrophia Destreat APC 1 Protein TNA.G1F	protein/gene	more prognostic	not pathogen-dependent	Vascular and Endothelial/ Endothelial Dysfunction Casquisterio Casquisterio Cascude Activation Apoptosis and Cell Death/ Immere and Endothelial Cell Death	TLR24	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA mRNA levels and taste serves remained systematics and sensity gateletes at its like for our outcomes after septic shock (protein) grant (miles of the control
		Union Vecrosis Factor Ligand Sisperfamily Member 2 TNF-A Turner Necrosis Factor (TNF Singerfamily, Member 2) Turner Necrosis Factor (April Turner Necrosis Factor April Turner Necrosis Singerfamily Turner Necrosis Singerfamily Turner Necrosis Singerfamily Topic Macrophia Destreat APC 1 Protein TNA.G1F	protein/gene protein/gene	more prognostic	not pathogen-dependent Not pathogen-dependent	Vacutur and Endothelial/ Endothelial Dysfunction Coaguistion (Coaguistion) Cascade Activation Cascade Activation Apoptosis and Cell Death Immune and Endothelial Cell Death Inflammatory and Immunel Cytokine stomin-Pathogen Recognition and Immune Activation	TLR24	MataCardy/Bacterial Sepsis septin Attribus	EL Los CUTA mRNA levels and taste serves immune dysfunctions and tearing patients at its for por subcromes after septic shock (protein) general methods and the contraction of the dysfunction of the dysf
		Union Vecrosis Factor Ligand Sisperfamily Member 2 TNF-A Turner Necrosis Factor (TNF Singerfamily, Member 2) Turner Necrosis Factor (April Turner Necrosis Factor April Turner Necrosis Singerfamily Turner Necrosis Singerfamily Turner Necrosis Singerfamily Topic Macrophia Destreat APC 1 Protein TNA.G1F	proteinigene proteinigene	more prognostic	not pathogen dependent Not pathogen-dependent	Vascular and Enclinhelal Enclinhelal Optionals Cassalation Coagulation Cassalation Cassalation Cassalation Coagulation Cassalation Coagulation Cassal	TLR24	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA mRNA levels and taste serves remained systematics and sensity gateletes at its like for our outcomes after septic shock (protein) grant (miles of the control
		Union Necrosis Factor Ligant Spentamily Member 2 The-A-Hermits Factor TIPE Spentamily, Member 2) The-A-Hermits Factor TIPE Spentamily, Member 2) Thurs Pacessas Factor Ligant 2 Thurs Pacessas Factor Apha The Spentamily, Member 2 The Macrophile Demonstration APCI Product Control of the Spentamily Spentamily APCI Product Spentamily Spentamily APCI Spentamily Spentamily Spentamily Myblood Differentiation Premay Response Green (88) TITA Adaptor MYDIB TITA Adaptor MYDIB TITA Adaptor MYDIB THE SPENTAMILY SPEN	proteinigene proteinigene a	more prognastic	not pathogen dependent Not pathogen dependent	Vascale nod Enchrohald Enchrohald Enchrohald Described Nogalinico Congulation Congulation Congulation Consider Advantage American and Cell Death Immune and Endodeheld Cell Death Immune and Endodeheld Cell Death Immune American and Endodeheld Cell Death Immune Advantage American and Immune Advantage Cell Cell Cell Cell Cell Cell Cell Ce	TLR2/4	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA mRNA levels and taste serves remune dystructions and scentify patients at risk for nor outcomes after angle short business. P. Reduced monthly CR convey monther design your importance. P. Reduced monthly CR convey monther design your importance. The footing suppose the utility of the CR convey monther design design design design of the CR convey monther design des des design des design des
		Union Venerals Factor Ligand Signethanly Member 2 ThS-A Timor Neorosis Factor (Th8' Signethanly, Member 2) Timor Neorosis Factor (Th8' Signethanly, Member 2) Timor Neorosis Factor Alpha 1 Timor Neorosis Factor Neorosis Facto	proteinigene proteinigene	more prognostic	not pathogen-dependent Not pathogen-dependent	Vascular and Enclinhelal Enclinhelal Optionals Cassalation Coagulation Cassalation Cassalation Cassalation Coagulation Cassalation Coagulation Cassal	TLR24	MalaCards/ Bacterial Sepsis septin Artithtis	IL Los CUTA miRNA levels sociates serves remune dysfunctions and tearing patients at its like to nor subcriment after segles between discharged in the control of the company of the control of the cont
		Union Necrosis Factor Ligant Spentamily Member 2 The-A-Hermits Factor TIPE Spentamily, Member 2) The-A-Hermits Factor TIPE Spentamily, Member 2) Thurs Pacessas Factor Ligant 2 Thurs Pacessas Factor Apha The Spentamily, Member 2 The Macrophile Demonstration APCI Product Control of the Spentamily Spentamily APCI Product Spentamily Spentamily APCI Spentamily Spentamily Spentamily Myblood Differentiation Premay Response Green (88) TITA Adaptor MYDIB TITA Adaptor MYDIB TITA Adaptor MYDIB THE SPENTAMILY SPEN	proteinigene proteinigene	more prognostic	not pathogen dependent Not pathogen dependent	Vascale nod Enchrohald Enchrohald Enchrohald Described Nogalinico Congulation Congulation Congulation Consider Advantage American and Cell Death Immune and Endodeheld Cell Death Immune and Endodeheld Cell Death Immune American and Endodeheld Cell Death Immune Advantage American and Immune Advantage Cell Cell Cell Cell Cell Cell Cell Ce	TLR24	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA miRNA levela solutions server immune dysfunctions and scentify patients of at risk for por outcomes after regists chock journity greaters (Inc.). The control of the control
		Union Necrosis Factor Ligant Spentamily Member 2 The-A-Hermits Factor TIPE Spentamily, Member 2) The-A-Hermits Factor TIPE Spentamily, Member 2) Thurs Pacessas Factor Ligant 2 Thurs Pacessas Factor Apha The Spentamily, Member 2 The Macrophile Demonstration APCI Product Control of the Spentamily Spentamily APCI Product Spentamily Spentamily APCI Spentamily Spentamily Spentamily Myblood Differentiation Premay Response Green (88) TITA Adaptor MYDIB TITA Adaptor MYDIB TITA Adaptor MYDIB THE SPENTAMILY SPEN	protein (june	more prognostic	not pathogen dependent Not pathogen dependent	Vascale nod Enchrohald Enchrohald Enchrohald Described Nogalinico Congulation Congulation Congulation Consider Advantage American and Cell Death Immune and Endodeheld Cell Death Immune and Endodeheld Cell Death Immune American and Endodeheld Cell Death Immune Advantage American and Immune Advantage Cell Cell Cell Cell Cell Cell Cell Ce	TLR2/4	MalaCards/ Bacterial Sepsis septin Artithtis	B. Los CUTA miRNA levels solicitate servers immunity dynamicals and tearing patients of at the for por subtrained selected microlity. I Reduced microlity on the patients of
	MYCES	Union Vecorios Factor Ligand Siperfamily Member 2 This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) Tumor Recross Factor Agina This Management Factor Recross Factor Recross AVD68 Invaled Invaled Factor Recross Protein MyD68 MyD60 Differentiation Primary Response 89 TLX Adaptor MyD60 MyB600 Differentiation Primary Response 88 MYD68 MYD69 MYD			not pathagen dependent Not pathagen dependent Not pathagen dependent	Vascaler and Enchnhald Enchnhella Djestochen Cangulation Cangulation Cangulation Cangulation Canada Activation Apoptosis and Call Death Immune and Endnhellad Cell Death Inflammatory and Immunel optionic actions Telescope Inflammatory and Immunel Optionic Seminal Immunel Optionic Seminal Immune Cyperagulation Late-Stage Immunosoppression Inflammatory and Immunel	TLR24	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA miRNA levela solutions server immune dysfunctions and bearing patients of a risk for por outcomes after regists chock (protein) gene (milk AD) Risk operation on days 3-4 identified operations (milk and patients). P. Reduced monotify of monotify monotify and patients at risk for developing speak potents. The finding suggest the sally of risk ADR containing in standard patients. R. Reduced monotify of monotify and and patients. R. Reduced monotify the LAD CR generation of risk ADR containing in standard patients are one. P. Reduced monotify the LAD CR generation of risk ADR containing in standard patients are one. P. Reduced monotify the LAD CR generation of risk ADR containing in standard patients are one of referred calculations. P. Reduced monotify the LAD CR generation of the patients of the standard patients are one of referred calculations. P. Reduced monotify one that ADR complete in the patients of the patients of the patients. P. Reduced monotify one that ADR containing in the patients of the patients of the patients of the patients. P. Reduced monotify one that ADR containing in the patients of the patients of the patients. P. Reduced monotify one that the patients of the patients. P. Reduced monotify one that the patients of
35AYD88	MYCES	Union Vecorios Factor Ligand Siperfamily Member 2 This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) Tumor Recross Factor Agina This Management Factor Recross Factor Recross AVD68 Invaled Invaled Factor Recross Protein MyD68 MyD60 Differentiation Primary Response 89 TLX Adaptor MyD60 MyB600 Differentiation Primary Response 88 MYD68 MYD69 MYD				Viscolar and Enchnicial Enchnickel Dystocian Casplatinor Casplatinor Casplatinor Casplatinor Cascade Advantan Apoptosis and Cell Death Immune and Endedhelal Cell Death Immune and Immunel optione Biomip Birthopen Activation and Immunel Activation Stress ROS and NO Production Late-Stage Immunosoppression	TLR24	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA mRNA levela solutions serves remunan dysturctions and seatile patients and at risk for por outcomes after regists shock protein (year level solutions). He Active of mich. A Cit expression on days 3-4 identified options at risk for developing speak protein. The footing assigned the salloy of the Common provided and your manipulations. El Reduction of the Common provided early warring of termous provided and provided and the common sections. The footing suggest the salloy of the AL CR contributing in studient gathers at risk of the contribution in high-risk patients. El Reduction of the AL CR covered so the impatient's cell incovery were associated and provided accounts. Fig. The sall and studies in septic, forticituming terminal patients are risk or developing and a section of the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the AL CR covered in the salloy of the AL CR covered in the salloy of the AL CR covered in the AL
35AYD88	MYCES	Union Vecorios Factor Ligand Siperfamily Member 2 This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) Tumor Recross Factor Agina This Management Factor Recross Factor Recross AVD68 Invaled Invaled Factor Recross Protein MyD68 MyD60 Differentiation Primary Response 89 TLX Adaptor MyD60 MyB600 Differentiation Primary Response 88 MYD68 MYD69 MYD				Vascate and Enclinhelal Enclinhelal Enclinhelal Desirable Land September 1 Copyalation Copyalation Cocasale Advantage Andread September 1 Cocasale Advantage Andread September 1 Cocasale Advantage Andread September 1 Cocasale Advantage 1 Cocasale 1 Co	TLR2/4	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA miRNA levela solutions server immune dysfunctions and scentify patients of at risk for por outcomes after regists chock journity greaters (Inc.). The control of the control
35AYD88	MYCES	Union Vecorios Factor Ligand Siperfamily Member 2 This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) Tumor Recross Factor Agina This Management Factor Recross Factor Recross AVD68 Invaled Invaled Factor Recross Protein MyD68 MyD60 Differentiation Primary Response 89 TLX Adaptor MyD60 MyB600 Differentiation Primary Response 88 MYD68 MYD69 MYD				Vascate and Enclinhelal Enclinhelal Enclinhelal Desirable Land September 1 Copyalation Copyalation Cocasale Advantage Andread September 1 Cocasale Advantage Andread September 1 Cocasale Advantage Andread September 1 Cocasale Advantage 1 Cocasale 1 Co	TLR244	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA mRNA levela solutions serves remunan dysturctions and seatile patients and at risk for por outcomes after regists shock protein (year level solutions). He Active of mich. A Cit expression on days 3-4 identified options at risk for developing speak protein. The footing assigned the salloy of the Common provided and your manipulations. El Reduction of the Common provided early warring of termous provided and provided and the common sections. The footing suggest the salloy of the AL CR contributing in studient gathers at risk of the contribution in high-risk patients. El Reduction of the AL CR covered so the impatient's cell incovery were associated and provided accounts. Fig. The sall and studies in septic, forticituming terminal patients are risk or developing and a section of the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the AL CR covered in the salloy of the AL CR covered in the salloy of the AL CR covered in the AL
35AYD88	MYCES	Union Vecorios Factor Ligand Siperfamily Member 2 This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) Tumor Recross Factor Agina This Management Factor Recross Factor Recross AVD68 Invaled Invaled Factor Recross Protein MyD68 MyD60 Differentiation Primary Response 89 TLX Adaptor MyD60 MyB600 Differentiation Primary Response 88 MYD68 MYD69 MYD				Vascale not Enchnistal Enthnish Laboration Casplation Casplation Casplation Casplation Casplation Casplation Casade Activation Apoptosis and Call Death minutes and Endnesses Inflammatory and Immunel Inflammatory and Immunel Recognition and Immune Recognition and Immune Activation Oudstales Stress ROS and NO Production Immune Dysregulation Late Stage Immunosppression Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Cold Earth Cystella Stage Inflammatory and Immunel Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory C	11/2/4	MalaCards/ Bacterial Sepsis septin Artithtis	B. Los CUT miRNA levels and taste serves remune dystunctions and tearing patients at a fact for or outcomes after angle to the controlled with a controlled with the disputing for interest controlled with the disputing for interest designing to the disputing of the controlled with the disputing for interest disputing for interest disputing controlled with the cont
35AYD88	MYCES	Union Vecorios Factor Ligand Siperfamily Member 2 This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) Tumor Recross Factor Agina This Management Factor Recross Factor Recross AVD68 Invaled Invaled Factor Recross Protein MyD68 MyD60 Differentiation Primary Response 89 TLX Adaptor MyD60 MyB600 Differentiation Primary Response 88 MYD68 MYD69 MYD				Vascale not Enchnistal Enthnish Laboration Casplation Casplation Casplation Casplation Casplation Casplation Casade Activation Apoptosis and Call Death minutes and Endnesses Inflammatory and Immunel Inflammatory and Immunel Recognition and Immune Recognition and Immune Activation Oudstales Stress ROS and NO Production Immune Dysregulation Late Stage Immunosppression Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Cold Earth Cystella Stage Inflammatory and Immunel Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory C	TLREAS	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA mRNA levela solutions serves remunan dysturctions and seatile patients and at risk for por outcomes after regists shock protein (year level solutions). He Active of mich. A Cit expression on days 3-4 identified options at risk for developing speak protein. The footing assigned the salloy of the Common provided and your manipulations. El Reduction of the Common provided early warring of termous provided and provided and the common sections. The footing suggest the salloy of the AL CR contributing in studient gathers at risk of the contribution in high-risk patients. El Reduction of the AL CR covered so the impatient's cell incovery were associated and provided accounts. Fig. The sall and studies in septic, forticituming terminal patients are risk or developing and a section of the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the AL CR covered in the salloy of the AL CR covered in the salloy of the AL CR covered in the AL
35AYD88	MYCES	Union Vecorios Factor Ligand Siperfamily Member 2 This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) This-F-A Tumor Recross Factor (TNF Superfamily, Member 2) Tumor Recross Factor Agina This Management Factor Recross Factor Recross AVD68 Invaled Invaled Factor Recross Protein MyD68 MyD60 Differentiation Primary Response 89 TLX Adaptor MyD60 MyB600 Differentiation Primary Response 88 MYD68 MYD69 MYD				Vascate and Enclinhelal Enclinhelal Enclinhelal Desirable Land September 1 Copyalation Copyalation Cocasale Advantage Andread September 1 Cocasale Advantage Andread September 1 Cocasale Advantage Andread September 1 Cocasale Advantage 1 Cocasale 1 Co	TLR24	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA mRNA levela solutions serves remunan dysturctions and seatile patients and at risk for por outcomes after regists shock protein (year level solutions). He Active of mich. A Cit expression on days 3-4 identified options at risk for developing speak protein. The footing assigned the salloy of the Common provided and your manipulations. El Reduction of the Common provided early warring of termous provided and provided and the common sections. The footing suggest the salloy of the AL CR contributing in studient gathers at risk of the contribution in high-risk patients. El Reduction of the AL CR covered so the impatient's cell incovery were associated and provided accounts. Fig. The sall and studies in septic, forticituming terminal patients are risk or developing and a section of the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the contribution in the salloy of the AL CR covered in the AL CR covered in the salloy of the AL CR covered in the salloy of the AL CR covered in the AL
35AYD88	MYCES	Union Velocrois Factor Ligand Sipperlamity Member 2 This-F-A Tumor Necrosis Factor (THP Superlamity, Member 2) This-F-A Tumor Necrosis Factor (THP Superlamity, Member 2) Tumor Necrosis Factor Agina Tumor Necrosis Necrosis This Macroplas Derived PM No. Macroplas Derived PM No. Macroplas Derived PM No. Macroplas Derived PM No. Macroplas Derived No. Gif MYD80 Index Immune Signal Transduction Adaptor Mybold Differentiation Primary Response Protein MyD88 Mybold Differentiation Primary Response Gene (8) Mybold Differentiation Primary Response B8 Multer Mybold Differentiation Primary				Vascale not Enchnistal Enthnish Laboration Casplation Casplation Casplation Casplation Casplation Casplation Casade Activation Apoptosis and Call Death minutes and Endnesses Inflammatory and Immunel Inflammatory and Immunel Recognition and Immune Recognition and Immune Activation Oudstales Stress ROS and NO Production Immune Dysregulation Late Stage Immunosppression Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Cold Earth Cystella Stage Inflammatory and Immunel Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory and Immunel Pryregotics and Inflammatory Cold Earth Cystella Stage Inflammatory C	TLR214	MalaCards/ Bacterial Sepsis septin Artithtis	EL Los CUTA miRNA levels ancitats serves immune dystunctions and boarding patients and as it six for on outcomes after angle short becomes after angle short becomes after angle short become short and the short becomes after angle short becomes after a

								2. For diagnosing sepsits/protein NUPP has dar AUC (New Linder the Curve) of 0.980, with 95.2% sensitivity and 90% specificity at a cutoff of 125.73 gg/mL. AUC Wass 0.98(x) with 2-1% sensitivity and 98.6% specificity at a cutoff of 23.18 pc/mL. NURP is a reliable biomarker for identifying high-risk spelic patients, particularly for differentiating septic shock. Programsic Values.
								For septic shock: All IC year 1.992 with 97.4% sensitivity and 98.6% specificity at a quintif of 231.87 point)
								NLRP3 is a reliable biomarker for identifying high-risk septic patients, particularly for differentiating septic shock.
								Prognostic Value: Elevated NLRP3 levels are associated with higher 30-day mortality, highlighting its utility in risk stratification.
								cereator in error or erect an exposed that support of the error of the
								Orives excessive inflammasome activation, resulting in: longressed IL-5 and IL-15 Representation on expression on
								Solution at 5 plant at 20 years expectation. Solution at the solution at 5 plant at 20 years at 20 plant at 20 pla
								Ustruption or one also transporters (winz.; essep) also compressancy upregulation or winps, wips. Inflammatory Casados — Elevated cyfokines lead to hepatocyte damage and mitochondrial dysfunction, further impairing bile acid metabolism.
								4. The study identifier LVD4 and NLDD3-related nathurns as notential biomarkers for monitoring the progression and resolution of service frame.
						IL31, IL1BETA		5. Diagnostic and Prognostic Value/protein/gene
								IL-31, IL-1β, and NLRP3 can differentiate between SIRS and sepsis and predict septic shock. The biomarker panel outperforms individual biomarkers in sensitivity and specificity.
						HCAR1		5. Diagnostic and Proposotic Value (pricinite) pricinite Value (pricinite) p
37.TLR2	TLR2	Toll Like Receptor 2	protein/gene marker diagnostic/prognostic	Gram-positive bacteria	Inflammatory and Immune/ Pathogen Recognition and Immune Activation/Cytokine	TF,	GeneCards/ NO	1. At the gene level, TLR2 plays a pivotal role in liggene Upropulators TF R3 gene) expression, Insking insue immune activation to coagulation in sepsis. Analyting pro-inhamatory gene expression, Euris, Eur. M.E. RF-d1, exacerbating SIC. Analyting pro-inhamatory gene expression of Euris, M.E. RF-d2, exacerbating SIC.
		TiL4 Toll-Like Receptor 2			Immune Activation/Cytokine		MalaCards/ Bacterial Sepsis sepric Arthritis	Opeguanny ir Fe yester popressam, miking minar in minartie autrauori no toagloismi in sepsa. Amplining pro-inflammatory gene expression (e.g., II-4, TNF-0, exacerbating SIC.
		Toll/Interleukin-1 Receptor-Like Protein 4 CD282 Antigen			Storm		sepnic Arthriss	
		CD282 Antigen			Oxidative Stress/ ROS Production			
					Immune Dysregulation/Late-Stage			
					Immunosuppression			
								2. TLR2 and TLR4 iprotein No significant differences in expression levels among the sepais, server sepais, septic shock, and healthy groups. TLR2 and TLR4 levels were not directly associated with cytokine production in server cases.
								Expression was higher in early sepsis but did not show significant differences in severe sepsic or septic shock. 3.1 R.P. an BMA and moterial reviews are inscribed in services in severe sepsic or septic shock.
								3. TLR-2 mRNM and protein levels are significantly elevated in sepsis, particularly in Gram-positive and Gram-negative infections /gene/protein TLR-4 mRNM is upregulated in Gram-positive sepsis, but no corresponding increase in protein levels was observed.
								4. TLR-2 and TLR-4 levels were significantly higher on leukocytes from sepsis patients compared to healthy controls /protein
38.TLR4	TLR4	Toll Like Receptor 4 HToll	protein/gene marker diagnostic/prognostic	Gram-negative bacteria	Inflammatory and Immune/ Pathogen Recognition and Immune Activation/Cytokine Storm		GeneCards/ NO	1. TLR4 is crucial for detecting (popolysaccharide (LPS) from gram-negative baderia and initiating the immune response (gene Excessive: TLR4 activation leads to hypereritamination, contributing to systemic inflammatory response syntrome (SIRS) and multi-organ dysfunction. Taggeting TLR4 or its downstream pathways any impligate immune contribution and relocate species severity.
		I Iol Lise receptor 4 Iol Lise Receptor 4 ARBID 10 CID284 TIR.4 Hemolog Of Drosophila Toll CD284 Artigen TOLL TOLL TOLL TOLL TOLL TOLL TOLL TOL			Immune Activation/Cytokine Storm		MalaCards/ Bacterial Sepsis sepric Arthritis	Targeting TLR4 or its downstream pathways may mitigate immune overactivation and reduce sepsis severity.
		CD284 TLR-4					* * **	
		Toll Like Receptor 4 Protein			Oxidative Stress/ ROS Production			
		CD284 Antigen			Immune Dysregulation/Late-Stage			
		IOLL			immunosuppression			
								2. TLR4 modulation remains a promising target for managing sepsis and inflammatory diseases/genelprotein Biomanders like noticines (if if it is Near) post plan in inference in the protein protein sepsis and inflammatory diseases/genelprotein Biomanders like noticines (if if it is Near) post plan in the protein protein sepsis plan in the protein protein sepsis plan in the protein sepsis plan in
								3. The study highlights the utility of TLR gene expression as a predictive tool for spesis, offering earlier diagnosis than current clinical and laboratory methods /gene
								2. TLR4 modulation remains a promising target for managing sepsis and inflammatory diseases. I/gene/protein Biomarkers like cytidines (IL4, TR4—Cytical help identify ITR4 overactivation in patients. Althestudy highlights be utility of IL2 gene pression as a predictive boff or sepsis, infligent ending earlier diagnosis than current clinical and laboratory methods. I/gene Early upregulation of ILRs supgests between the role in the host recognition of infection and the inflation of immune responses. MiNRA expression level of IR4. ILR4_IRR_6, and ILR9_9 IRR_6 and IRR_9
						DLL1		3 Notich as a Diagnostic Tochiproteinigene Soluble DLL1 and Notich1 receptor levels could serve as biomarkers for sepsis progression and organ dysfunction. 3. Therapeutic Politics 1. Therapeutic Pol
								3. Therapeutic Potentias: Modulating Notch signaling offers a promising strategy for controlling inflammation and preventing organ failure in sepsis.
39.NOTCH1					Inflammatory and Immune Pathways/ cytokine storm/ Immune Dysregulation		GeneCards/ NO	Soluble DLL1 and Notch signaling markers show potential for early sepsis detection./protein Therapeutic Potential:
							MalaCards/ NO	Modulating Notch signaling may reduce inflammation, preserve endothelial function, and improve sepsis outcomes.
					Vascular and Endothelial Pathways/ Endothelial Dysfunction and Angiogenesis			
					Angiogenesis			
					Tissue Injury and Repair/Tissue Repair and Regeneration			
					Repair and Regeneration			2. Notch pathway inhibition may reverse immunosuppression, offering a novel approach to sepsis treatment (yellow)
								2. Fidelity (Similary Inhalition) from y revenue mirrorocoppressions, circumy a store appropriate to separe treatment (sector) From the Committed Simple of the Hamiltonia (Simple of the Hamiltonia (S
								Elevated PD-1 and IL-10 mRNA levels suggest immune tolerance and T cell exhaustion. Elevated PD-1 and IL-10 mRNA levels suggest immune tolerance and T cell exhaustion.
								Spelic patients had higher PD-1 and PD-1 protein levels companed to healthy controls. Protein-level measurements correlate with immune suppression and disease severity.
								Dagnostic Implications: Blevelated Nishort in RNAN in PBIMC's could serve as a biomarker for immune dysfunction in septis and septic abook. Other Notici Recognition No largeritation differences in the mBNA levels of Noticit, Noticity. One Noticit Recognition.
								Other Notch Receptors: No significant differences in the mRNA levels of Notch2, Notch3, or Notch4.
								4. citch1 Signaling Pathway-photein/gene Activation: mothers devanged of the Notich1 inceptor, releasing the NICO, which translocates to the nucleus to regulate larged gene expression (e.g., Hes1). Occessed NICD Develor inclinate endotherist dysfunction in sepsis.
								Decreased NICU levels indicate endothelial dysfunction in sepsis.
40.BCL2	BCL2	BCL2 Apoptosis Regulator 2 PPP1R50	protein/gene		Apoptosis and Cell Death/	Bim, Bol-xl, Bid	Genecards/NO	1. Gene Expression Changes in Severe Sepsit:/gene
		PPP1R50 Bd-2			Apoptosis and Cell Death/ Lymphocyte Apoptosis/ Mitochondrial Integrity		MalaCards/ Septic Arthritis	1. Gene Expression Changes in Seriese Segain (years) 1. Gene Expression Changes in Seriese Segain (years) 1. Gene Expression Changes in Seriese Segain (years) 1. Gene (BL-CO ₂): 1. Gene (BL-CO ₃): 1. Gene (BL-CO
		Protein Phosphatase 1, Regulatory Subunit 50 Apoptosis Regulator Bd-2 B-Cell CLULymphoma 2 BCL2, Apoptosis Regulator			Immune Dysregulation/ Late-Stage			Sim (BH3-Cnly): mRNA: Upregulated by more than 50-fold compared to healthy controls.
		B-Cell CLL/Lymphoma 2 RCl 2 Apontosis Regulator			Immunosuppression			Bist (BAS-Zeny): BIST (BAS-Ze
		Social, Apoptosis regulator			Oxidative Stress/ Protection Against			Bic-2 protein levels are significantly reduced in lymphocytes of septic patients, contributing to the immune dysfunction observed in severe sepsis.
					Oxidative Damage	caspase-3, sFasL		insic complements the upregulation or pro-apoptionic genes and proteins like Bim, Bid, and Baik, tipping the balance towards apoptiosis and lymphocyte depletion. 2. Diagnostic Relevance/brotein 2. Diagnostic Relevance/brotein
								Prognostic Relevance: Decreased Bcl-2 levels correlated with the progression to MOF, providing prognostic insights into patient outcomes.
								3. Improved remixed in Dot-2 transparin mine supports the transfer apportunity apportunity and improve outcomes in sentin potents (protein
								4. Early and severe down-expression of Bcl-2 in CMNO serves as a strong predictor of mortality in severe sepsis./gene A clear public for Bcl / expression served in the served served for six stratification.
						Bid, FAS		5. Day 1-2. EQ. 2. mRNA expression was slightly decreased in septic shock patients compared to the solution compared to t
								8. Day 1–6 IRC.3 mRNA expression was slightly demanded in septic body, patients, surregard to healthy contribs, (pare by 50, 50 Expression was slightly demanded in septic body, patients, surregard to healthy contribs, (pare by 50, 50 Expression was surregarded and patients) and the patients of the pat
								Elevand pro-apoptotic gene expression' suggests a possible correlation with disease severify and immune suppression, though further studies are needed for validation.
								6. Higher Bcl-2 expression in survivors suggests its potential as a biomarker for better outcomes in severe sepsis./protein
						HLA-DR,PD-1		7. Diagnostic Utility:/protein/gene
						HLA-DR,PD-1		Diagnostic Utility/proteinigene Biomarkers like HLA-DR, PD-1, and cytokine levels can help diagnose sepsis-induced immunosuppression and stratify patient risk. Proposetic Peterdial:
						HLA-DR.PD-1		7. Dagnosts: Utility/protein/gipre Bloomarkes like In/Qrotein/gipre Bloomarkes like In/Qrotein/gipr
								Low Bcl.2 expression and high levels of immune checkpoint molecules are associated with worse outcomes. Downregulation of Bcl.2 in immune cells correlates with increased apoptosis and immunosuppression.
41.PD-1	PDCD1	PDCD1	prorein marker more prognostic		Immune Dysregulation Pathways/	HLA-DR,PD-1	GeneCards/	Low Bcl.2 expression and high levels of immune checkpoint molecules are associated with worse outcomes. Downregulation of Bcl.2 in immune cells correlates with increased apoptosis and immunosuppression.
41.PD-1		PDCD1 Programmed Cell Death 1 PD1	prorein marker more prognostic		Late-Stage Immunosuppression	PD-L1	GeneCards/ Malacards/ Bacterial Sepsis	7. Diagnostic Utility/proteinigene Biomateria Stell-LAG, RP-D1, and cytokine levels can help diagnose sepsis induced immunosuppression and stratify patient risk. Biomateria Stell-LAG, RP-D1, and cytokine levels can help diagnose sepsis induced immunosuppression and stratify patient risk. Lass Biol 2 expression and high levels of immune checkpoint indicules are associated with worse outcomes. Downergatistion of Exp. 2 immune cells controlled with increased apoptosis and immunosuppression. 1. sPDL1 serves as a reliable bromater to differentiate septic patients from those with non-septic infections and inflammatory diseases/protein(yellow) Higher sPDL1 levels reflect immune dysregulation and may help assess septis severity.
41.PD-1		CD279 HSLE1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PD-L1	GeneCards/ Malacards/ Bacterial Sepsis	Low Bcl.2 expression and high levels of immune checkpoint molecules are associated with worse outcomes. Downregulation of Bcl.2 in immune cells correlates with increased apoptosis and immunosuppression.
41.PD-1		CD279 HSLE1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PD-L1	GeneCards/ Malacards/ Bacterial Sepsis	Low Bcl.2 expression and high levels of immune checkpoint molecules are associated with worse outcomes. Downregulation of Bcl.2 in immune cells correlates with increased apoptosis and immunosuppression.
41.PD-1		CD279 HSLE1	prorein marker more progressio			PD-L1	GeneCards/ Malacards/ Bacterial Sepsis	Low Bcl.2 expression and high levels of immune checkpoint molecules are associated with worse outcomes. Downregulation of Bcl.2 in immune cells correlates with increased apoptosis and immunosuppression.
41.PD-1		CDZ79 HSLE1 PD-1 Systemic Lupus Erythematosus Susceptibility 2 Programmed Cell Death Protein 1 Protein PD-1 SLE82 HJPD-1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PD-L1	GeneCards/ Malacards/ Bacterial Sepsis	Low Bcl.2 expression and high levels of immune checkpoint molecules are associated with worse outcomes. Downregulation of Bcl.2 in immune cells correlates with increased apoptosis and immunosuppression.
41.PD-1		CDZ79 HSLE1 PD-1 Systemic Lupus Erythematosus Susceptibility 2 Programmed Cell Death Protein 1 Protein PD-1 SLE82 HJPD-1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PD-L1	GeneCards/ Malacards/ Bacterial Sepsis	Low Bcl.2 expression and high levels of immune checkpoint molecules are associated with worse outcomes. Downregulation of Bcl.2 in immune cells correlates with increased apoptosis and immunosuppression.
41.PD-1		CD279 HSLE1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PDL1	GeneCardol Melacardol Bacterial Sepsis	Los Bibl 2 spression and high levels of immune developed indirectles are associated with worse enforces. Observagations of Bibl 8 immune discussions with receivable and immunestations. 1. sPD-1.1 serves as a reliable bornafter to differentiate segic patients from those with non-septic infections and inflammatory diseases/protein(yellow) Higher sPD-1.1 levels reflect immune dyrregulation and may help assess sepsis severify.
41.PD-1		CDZ79 HSLE1 PD-1 Systemic Lupus Erythematosus Susceptibility 2 Programmed Cell Death Protein 1 Protein PD-1 SLE82 HJPD-1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PD-L1	GeneCards/ Malacards/ Bacterial Sepsis	Los 62/2 spression and high levis of immune developed miderales are associated with worse outcomes. Downeyaption of 61/4 in minuse edit controls with the control of the c
41.PD-1		CDZ79 HSLE1 PD-1 Systemic Lupus Erythematosus Susceptibility 2 Programmed Cell Death Protein 1 Protein PD-1 SLE82 HJPD-1	provein marker whose prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PDL1	GeneCandel Malacardel Bacterial Sepsis	Los BLS2 spression and high levels of immune developed indicates are associated with worse outcomes. Downegation of Disk in immune distinctives with receivant global part of immune distinctives with receivant global part of immune distinctives with receivant global part of immune distinctives and inflammatory diseases./protein(yellow) Higher SPD-L1 levels reflect immune dispregulation and may help assess sepsis serverity. 2.16gh PD-L1 and PD-L1 levels are manifers of immune dysfunction and are associated with poor outcomes in sepsis, foreign. 2.16gh PD-L1 and PD-L1 levels seen manifers of immune dysfunction and are associated with poor outcomes in sepsis, foreign.
41.PD-1		CDZ79 HSLE1 PD-1 Systemic Lupus Erythematosus Susceptibility 2 Programmed Cell Death Protein 1 Protein PD-1 SLE82 HJPD-1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PDL1	GeneCantal Malacards/ Bacterial Sepais	Los 642 spression and high levels of immune devolution indicates are associated with sone outcomes. Downegations of 540 in immune discussed with the control of the contro
41.PD-1		CDZ79 HSLE1 PD-1 Systemic Lupus Erythematosus Susceptibility 2 Programmed Cell Death Protein 1 Protein PD-1 SLE82 HJPD-1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PDL1	GeneCardul Melacardul Bacterial Sepsis	Los 642 spression and high levels of immune devolution indicates are associated with sone outcomes. Downegations of 540 in immune discussed with the control of the contro
41.PD-1		CDZ79 HSLE1 PD-1 Systemic Lupus Erythematosus Susceptibility 2 Programmed Cell Death Protein 1 Protein PD-1 SLE82 HJPD-1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PDL1	GeneCantel Malacards/ Bacterial Sepsis	Los Biol 2 expression and high heat of minume development minuments are associated with worse enforcers. Downergations Disk of minume citic controls with minuments programments. 1. 8/P0.1 serves as a reliable bornafter to differentiate seglic patients from horse with non-septic infections and inflammatory diseases./protein/yellow) Higher sPD.1 livests entered immune dynardian and many help assess segals severity. 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes in segals./protein 2. 16gip PD.1 and PD.1 livests are markers of immune dynardian and are associated with poor outcomes./protein and inflammatory diseases./protein and in
41PD-1		CDZ79 HSLE1 PD-1 Systemic Lupus Erythematosus Susceptibility 2 Programmed Cell Death Protein 1 Protein PD-1 SLE82 HJPD-1	prorein marker more prognostic		Adaptive Immune Pathways/ T-cell Exhaustion and Regulation	PDL1	GeneCards/ Malacards/ Bacterial Sepsis	Los 642 spression and high levels of immune devolution indicates are associated with sone outcomes. Downegations of 540 in immune discussed with the control of the contro

42.CCL2									
43.ARG1	ARG1	ARG1 Arginase 1 Arginase 1 Liver-Type Arginase Arginase, Liver Type I Arginase EVE Type I Arginase EVE 3.8.3.1	protein/gene	diagnostic/prognostic			IL1R2, ELANE, MPO, MMP9	GeneCrads/NO MalaCards/ Bacterial Sepsis	1. ARGJ, IL-IR2, ELANE, MPO, MMP9.gene Associated with immune dysregulation and oxidative stress during septis.
							IL10		2 Elevated IL-10 expression suggests a biomarker for immunosuppressive phases in sepsis /lgene Ratios of INOS (M1) and ARG1 (M2) could be diagnostic markers for macrophage polarization states.
									nation or involver (in it and involver (in its count or originate) in interest or initiation) page postulation states. 3. ARGI emerges an antiflutacional obliomatarie in septis for (prolonging) Diagnose. Differentiating septis sevenity and related conclorus. Programs: Producting pasternet response and survaiol outcomes.
44.IL1R2	II 1D2	IL1R2	protein/gene marker	diagnostic/prognostic	distinguished sensis			GeneCards/ NO	1 II 102 offers a non-invertise rapid disposetic tool for sensis and nathones identification, (nanahumtain
		IL FIG. Intercaban 1 Recogior Type 2 CCP CR			distinguished sepsis from bacterial infections			MalaCards/ Bacterial Sepsis	1. I. I.R.Z. offers a non-invasive, rapid diagnostic tool for septis and pathogen identification, igenephotein it could improve easily diagnosis, guide arithbotic selection, and enhance sepsis management. 2. In sepsis, II. I.R.Z. transcription was significantly increased in monocyfes, aligning with the higher plasma ali IRZ levels, igenephotein is I.R.Z. distinguished sepsis from bacterial infections and could differentiate sepsis based on the Sepsis 2 and Sepsis-3 criteria.
							IGHG1, LCN2, LTF, MMP8, OLFM4		sL-1R2 distinguished sepsis from bacterial infections and could differentiate sepsis based on the Sepsis-2 and Sepsis-3 criteria.
							IGHG1, LCN2, LTF, MMP8, OLFM4		3. The treatishing recognition of considers. 3. The treatishing represent of general considers. The treatishing represent of general considers. These general showed significant ability to distinguish septic shock from non-septic shock based on ROC analysis.
IL1B	II 1B	Interleukin 1 Reta	protein gene marker	diagnostic/prognoatic			IL-6. TNF-a	GeneCards/ Septic Shock	The findings indicate potential higgs respectively in the property of the
LID	IL-10	Interfection 1 Beta 1, 142	process gene market	ulagitussu progridatu				MalaCards/ Bacterial Sepsis	The findings indicate potential biomentum of immune dysfunction in bits septis (L-1), L.4, TNF-a). Igene These genes may reflect the extent of immunosuppression during septis.
							IL-1R2		 PNINs from sepsis patients exhibited a marked reduction in IL-1§ mRNA and protein synthesis in response to endotoxin stimulation compared to controls/gene Elevated IL-1R2 expression on PNINs and tolerance to endotoxin-induced IL-1§ expression may serve as markers for sepsis.
45.CD177	CD177	CD177 Molecule PRV1	protein/gene marker	diagnostic/prognostic				GeneCards/ NO	1. CD177 proposed as a marker for sepsis, reflecting changes in neutrophili function during the disease./gene/yellow)
		NB1 Ty Artigen O132 Artigen O242 Artigen Polysythemia Rubra Versa Protein Human Neutroppil Alloantigen 2a NB1 Glycoprotein NB1 GP PRV-1 PRV-1 PRV-1 Coll Surface Rebora Versa 1 Coll Surface Rebora Versa 1 Coll Surface Rebora Versa 1						MataCards/ NO	1. CD17 proposed as marker for septis, reflecting charges in neutropal function during the disease (general/set) of the study investigates but they never (and Trick Reflections) and poster-stere (CD177 surface expression) charges, providing a comprehensive view of the biomarker's potential poster-stere (CD177 surface expression) charges, providing a comprehensive view of the biomarker's potential
46.OLFM4		Olfactomedin 4	protein/gene marker	more prognostic marker				GeneCards/ NO	1. OLFM4+ neutrophil percentage is strongly linked to mortality and could serve as a prognostic biomarker for sepsis severily and outcomes.
		Offsatomedin 4 GW112 GW112 GW12 GW12 GW3					CD177 MAPK14	MalaCards/ NO	
							CD177, MAPR 14		2. Diagnostic Value: OLFM4 is a promising biomarker for distinguishing between severe and mild infectious diseases, including sepsis and AROS, proteinigene Prognostic Value: Higher CLFM4 expression including por prognosio
									3. Plasma Olfm4 is elevated in septic shock but lacks specificity as a diagnostic marker/protein
47.MAPK14	MAPK14	Mitogen-Activated Protein Kinase 14	gene marker	diagnostic/prognostic		Epigenetic and Transcriptomic	PID1, CS, CYP1B1, FLVCR1, IFIT2	GeneCards/ NO	Diagnostic Biomarkers: PID1, CS, CYP1B1, FLVCR1, IFIT2, MAPK14 were identified as diagnostic genes for sepsis.
		Millagen Activated Protein Kinase 14 PROMIAL PROMIAL PROMIAL CORRET CORR				Egyperdic and Transcriptome Repulsidos Pathingsylamone Gore Transcription Hypoxia and Metabolic Pathwaysi Metabolic Shift		Mala Careful NO	Volidation: These genes demonstrated high sensitivity and specificity for diagnosing sepsis across datasets and experimental models.
48.VCAM1/ ICAM1	VCAP1/ICAM1	Vascular Cell Adhesion Molecule 1	protein/gene marker	more prognostic		Vascular and Endothelial Pathways/ Endothelial Activation	VCAM1+ EC-EVs	GeneCards/NO	Diagnostic Elevated levels of VCAM1+ EC-EVs can serve as a biomarker for sepsis-related APDS.
		Namenter Colf Admission Molecule 1 CD 006 Vasculati Colf Admission Protein 1 Ind CALLA 100 Indicate Admission Molecule 1 Indicate Admission Molecule 1 Indicate Colf				unconnellal Activation		Mila Cando Bacterial sepsis Septic Arthritis	Elements (Involved to CLV) can serve as a biomarker for sepsis related AROS. VCMM1+ EC.EVs could potentially predict the sevently and progression of lung pipury in septic patients.

50.SOCS3		Supressor Of Cytokine Signaling 3 SOC5:3 SOS3 SOS3 SOS3 SOS3 SOS3 SOS3 Cutoff Cutoff Cutoff SOS3 SOS3 SOS3 SOS3 SOS3 SOS3 SOS3 SO			Epigenetic and Transcriptomic Regulation Pathways/ Gene Expression Modulation Inflammatory and Immune Pathways/ Anti-Inflammatory Signals	GeneCards/ NO Malacards/ Septic Arthritis	
51.GATA3	GATA3	GATA Binding Protein 3 HDR Trans-Acting T-Cell-Specific Transcription Factor GATA-3 GATA-Binding Factor 3 GATA-Binding Protein 3 HDRS			Inflammatory and Immune Pathways! Immune Cell Recruitment Adaptive Immune Pathways! T-cell Activation/Regulation of Differentiation	GeneCards/ NO MalaCards/ Bacterial sepsis	
52.CCR7/8	CCR7	C-C Motif Chemokine Receptor 7	protein/ gene marker	diagnostic/prognostic	Adaptive Immune Pathways/ Regulation of Differentiation	GeneCards/ NO	
		CDW197 BLR2			Regulation of Differentiation	MalaCrads/ Bactreial sepsis	
		CMKBR7 CD197			Inflammatory and Immune Pathways/ Immune Cell Recruitment	malaciausi bacilelai sepsis	
					Immune Cell Recruitment		
		Epstein-Barr Virus-Induced G-Protein Coupled Receptor 1					
		East Epstein-Barr Virus-Induced G-Protein Coupled Receptor 1 Chemokine (C-C Modif) Receptor 7 C-C Chemokine Receptor Type 7 MIP-3 Beta Receptor Commonwealth MIP-3 Beta Receptor Commonwealth MIP-3 Beta Receptor MIP-3 Beta Rec					
		MIP-3 Beta Receptor					
		CCR-7					
		Lymphopyte, Specific G Protein, Counted Dentide Decentor					
		EBV-Induced G Protein-Coupled Receptor 1 EBV-Induced G-Protein Coupled Receptor 1					
		Enstein-Barr Virus Induced Gene 1					
		Buildt'S Lymphoma Receptor CC Chemokine Receptor 7					
		CD197 Antigen C-C CKR-7					
		EVI1					
53.CCR2	CCR2	C-C Motif Chemokine Receptor 2	protein/gene marker	diagnostic/prognostic	Inflammatory and Immune Pathways/	GeneCards/ NO	
		CC-CKR-2 MCP-1-R			Immune Cell Recruitment	MalaCards/ No	
		CMKBR2				MalaCards/ No	
		CD192 CKR2					
		Monocyte Chemoattractant Protein 1 Receptor					
		Chemokine (C-C Motif) Receptor 2 C-C Chemokine Receptor Type 2					
		FLJ78302 CCR-2					
		Monocute Chemotectic Protein 1 Pecentor					
		MCP-1 Receptor					
		MCP-1 Receptor CD192 Antigen C-C CKR-2 CCR2A					
		CCR2A					
		CCR2B CKR2A					
		CKR2B PCLUD					
54.HIF1a	HIF1A	Hypoxia Inducible Factor 1 Subunit Alpha	protein/ gene marker	diagnostic/prognostic	Vascular and Endothelial Pathways/	GeneCards/ NO	1. Diagnostic Biomarker: HIF-1a alone and as part of a composite measure was effective in distinguishing septic from non-septic patients/gene/protein
		BHLHe78 PASD8			Vascular Integrity	MalaCards/NO	Prognostic Biomarker: HIF-1a levels were predictive of ICU mortality and disease severity.
		MOP1			Hypoxia and Metabolic Pathways/		
		Class E Basic Helix-Loop-Helix Protein 78 PAS Domain-Containing Protein 8			Metabolic Shift		
		Member Of PAS Protein			Epigenetic and Transcriptomic Regulation Pathways/ Gene		
		HIF-1alpha HIF1			Regulation Pathways/ Gene Expression Modulation		
		Hypoxia Inducible Factor 1, Alpha Subunit (Basic Helix-Loop-Helix Transcription Factor) Basic-Helix-Loop-Helix-PAS Protein MOP1			1		
		Basic-Helix-Loop-Helix-PAS Protein MOP1					
		Hypoxia-Inducible Factor 1-Alpha HIF-1-Alpha					
		Hypoxia Inducible Factor 1 Alpha Subunit					
		Hypoxia-Inducible Factor1alpha Member Of PAS Superfamily 1					
		ARNT Interacting Protein					
		ARNT-Interacting Protein HIF1-ALPHA					
		HIF1-Alpha					
		BHLHE78 HIF-1A					
							2. HIF-1α mRNA levels in leukocytes show potential as a diagnostic biomarker for sepsis severity/gene
IKZF1							