

QUALITY MANAGEMENT 444

Tutorial 9 Week 10

Prof Imke de Kock

imkedk@sun.ac.za

Tutorial 9

Practical exposure to a full factorial 3-factor DOE Optimizing the design of paper helicopters.

You will need:

- > Scissors
- > Ruler
- ➤ Pencil
- > A4 paper (at least 8 pages)
- ➤ Laptop capable of running Excel

Paper helicopters

Decide on 3 factors, and two levels

- Full factorial DOE using 3 factors
 - 2³ = 8 runs (Excel template)
- > Assume:
 - Rotor width = 1/2 total width
 - Leg Width = 1/3 total width
- Choose
 - 2 x rotor lengths
 - 2 x leg lengths
- > Third = your choice
 - Total width
 - Bottom fold (yes/no or height)
 - Thickness of paper
 - Paper clip
 - Body Length

Making the helicopters

3_Factor_DoE_Template

Tutorial / Assignment submission

- \odot 3 5 slide presentation
- Videos & photos
- Excel outputs
- Clear description of findings (...what could you not / did you not control that had / may have had an influence on outcome?
- A brief reflection of the applicability and value of DoE for (i) industrial engineers, and (ii) within the context of quality management.
- Submit on SUNLearn by 15 October, 13h00