

MEMENTO NEIGE & AVALANCHES

Benoit Leprettre / Patrick Vincent - Version 3 - Mars 2003

Diffusion réservée aux adhérents du GUM

GUM - M.N.E.I. - 5 Place Bir-Hakeim - 38000 Grenoble

Répondeur sorties : 04 76 51 54 10 - Site Web : http://perso.club-internet.fr/gum38

Avant de partir

Equipez-vous

Emmenez <u>systématiquement</u> un appareil de recherche de victimes d'avalanche (Arva) et apprenez à vous en servir. Cet appareil n'est pas un gri-gri porte-bonheur mais il permet d'être retrouvé plus vite en cas d'ensevelissement sous une avalanche.

Mais attention, l'utilité de l'Arva est considérablement réduite si l'on ne possède pas également une pelle et une sonde (ou des bâtons-sondes). Notez bien que **les Arvas du GUM sont prétés sans piles**! Prévoyez vos deux piles <u>alcalines</u> et gardez les pour la saison.

Informez-vous

sur les conditions de neige existantes et prévues, ainsi que sur l'évolution des conditions météorologiques : bulletins de Météo-France, professionnels de la neige et des secours, services des pistes.

Prévoyez

Adaptez votre sortie au niveau technique et physique des membres du groupe. Soyez autonomes ! N'oubliez pas qu'en montagne, le temps change vite, et les conditions météorologiques peuvent devenir hostiles (brouillard, tourmente de neige) en quelques minutes. Prévoyez vêtements chauds, couverture de survie, matériel d'orientation (carte + boussole + altimètre), vivres de course et boisson. Signalez votre itinéraire et l'heure approximative de votre retour.

Sur le terrain

Préparez-vous

Ne partez pas seul. Testez systématiquement <u>chaque</u> Arva avant <u>chaque</u> sortie (émission-réception). N'oubliez pas de le mettre en position "émission"! Une simple mais indispensable précaution quand on sort en groupe relativement important : se compter! Il est utile voire indispensable d'enlever les lanières des chaussures à la montée : en cas d'avalanche on pourra plus facilement se débarrasser de ses skis pour éviter d'être entraîné au fond!

- 1. On commence par tester la réception des arvas du groupe : le chef est en émission, tous les autres en réception. Ils vérifient qu'ils reçoivent bien son signal.
- 2. Le chef passe en réception, tous les autres en émission (position normale pour la rando).
- 3. Chacun son tour, on passe devant le chef qui vérifie qu'il entend bien votre appareil (cicontre).
- 4. Enfin, le chef repasse en émission, et la rando peut commencer. On est assuré que tous les arvas émettent et reçoivent normalement.

Observez les conditions et leur évolution

- ✓ Observez les conditions nivologiques et météorologiques. Quelle est l'épaisseur de neige récente ? La surface du manteau neigeux est-elle travaillée par le vent ? Des corniches sont-elles visibles ? Soyez très vigilant au cours ou immédiatement après un épisode neigeux accompagné de vent.
- ✓ Sachez qu'un manteau neigeux peu épais, surtout en début de saison, est souvent instable.
- ✓ Le regel est-il important ? La neige montre-t-elle des signes d'humidification ? Evitez les pentes raides et bien ensoleillées au début d'un réchauffement important, surtout après un épisode neigeux récent.
- ✓ Le temps est-il en train de changer! Renforcement du vent, arrivée de brouillard ou de la pluie,...
- ✓ Sachez tenir compte de vos observations dans le choix de votre itinéraire : adaptez-vous, au besoin renoncez.

Skiez malins!

Surveillez la condition physique des membres du groupe : adaptez la course au niveau du plus fatigué et au besoin renoncez. L'objectif du ski de rando ou de la raquette est d'arriver en haut suffisamment en forme pour pouvoir assurer à la descente, et en cas d'accident.

Adaptez votre trace aux conditions de neige, mais aussi à la topographie. Méfiez-vous particulièrement des ruptures de pente, de la proximité des barres rocheuses, des zones d'accumulation (ci-contre) ...

Rappelez-vous que la présence de traces n'est pas un gage absolu de sécurité.

Pendant les périodes de réchauffement, notamment au printemps, soyez de retour suffisamment tôt, avant le début d'après-midi, pour éviter les coulées et avalanches de fonte.

Montée et passage

dangereux : Mousqueton clippé

sur le pantalor

Descente ou forte pente glacée : Mousqueton clippé

sur la fivation

Petit

Anneau sur la buté

En cas de doute sur le stabilité d'un passage obligé, veillez à :

- enlever dragonnes et lanières de sécurité si cela n'a pas été fait au départ (voir petit montage ci-contre pour enlever ou remettre les lanières en 5 secondes chrono)
- augmenter l'espace entre les membres du groupe
- vous assurer à nouveau de la bonne marche des arvas de chacun en émission ET réception
- vous surveiller mutuellement

attente dans un endroit sûr

- évoluer "en douceur" en évitant si possible tout virage brutal pour éviter les surcharges.
- n'engager qu'une seule personne dans la zone dangereuse (ci-dessous)

Et surtout, n'hésitez pas à modifier votre itinéraire et / ou votre but, voire à renoncer si les conditions sont douteuses.

En cas d'accident d'avalanche?

Si vous êtes pris dans une avalanche

Tout va généralement très vite et vous n'aurez certainement pas le temps de réfléchir. C'est d'abord votre instinct de survie qui vous dictera votre conduite. Voici cependant quelques conseils :

- Essayez de garder votre sang froid
- Tentez de vous échapper latéralement
- Tentez de vous cramponner à tout obstacle
- Essayez de rester en surface (se débarrasser si possible des bâtons, des skis ou du surf, éventuellement prendre appui sur des blocs de neige, ou, si celle-ci est poudreuse, essayer de faire des mouvement de "natation")
- Protégez vos voies respiratoires (fermer la bouche)
- A l'arrêt de l'avalanche, essayez de vous ménager une poche d'air devant le visage (elle sera une réserve d'air pour respirer) avec vos mains et vos bras repliés devant le visage

Si vous êtes témoin d'un accident (cf. paragraphe spécifique)

- Suivez des yeux la personne emportée et repérez le point où vous l'avez vue pour la dernière fois
- Si possible, placez un guetteur pour prévenir en cas de seconde avalanche
- Marquez le point de disparition de chaque personne ensevelie
- Recherchez les victimes à l'aval de leur point de disparition, repérez les zones préférentielles comme des replats, observez bien la zone pour y découvrir d'éventuels indices de surface
- Organisez une recherche par ARVA (cf. paragraphe spécifique)
- Si la victime ne possède pas d'Arva, sondez la neige avec les bâtons, les skis, une branche, etc. Si vous êtes suffisamment nombreux, envoyez immédiatement deux personnes chercher du secours, sinon cherchez vivement pendant 15 minutes; si vos recherches restent vaines au bout de ce quart d'heure, partez donner l'alerte.

Une victime d'avalanche peut être polytraumatisée, en arrêt respiratoire et en hypothermie : donnez-lui immédiatement les soins appropriés. Excellente occasion pour rappeler que passer l'Attestation de Formation aux Premiers Secours (AFPS) est une TRES bonne idée quand on fait de la montagne !

L'ARVA

L'ARVA est un appareil de recherche de victime d'avalanche. Il en existe de différentes marques mais tous ont un point commun: la fréquence d'émission normalisée actuelle est de 457 kHz. Certains modèles plus anciens sont bi-fréquences : ils émettent et reçoivent sur deux fréquences : l'ancienne norme 2275 kHz, et la nouvelle 457 KHz. N'utilisez plus d'ARVA émettant seulement sur l'ancienne fréquence!

Depuis 2 ans, de nouveaux arvas sont sortis sur le marché (*cicontre*). Ils se veulent « intelligents » et prétendent rendre la recherche beaucoup plus facile pour des randonneurs inexpérimentés. Après plusieurs essais sur le terrain (voir aussi les tests ANENA), voici ce qu'on peut en dire :

- Leur portée est généralement plus faible (10-20m).
- Leur ergonomie est différente et chacun demande un entraînement spécifique, aussi intensif qu'avec les « anciens » arvas.
- Avec l'entraînement, ils permettent d'aller plus vite en recherche secondaire (du 1^{er} bip jusqu'à quelques mètres de la victime).
- Mais ils sont souvent moins performants en recherche fine (de quelques mètres à zéro), ils demandent plus d'entraînement;

Remarques importantes:

Porter un ARVA ne dispense pas d'être prudent : ce n'est pas un « gri-gri » ! Il ne sert qu'à nous donner une petite chance supplémentaire de nous en sortir, si on a fait la bêtise d'être pris dans une avalanche. La survie sous une avalanche est très aléatoire (chocs, commotions, asphyxie, ...). L'ARVA doit être porté sous un vêtement, jamais à l'air libre : une avalanche pourrait facilement vous l'arracher, et en contact la neige les piles s'épuiseraient plus vite.

Partir avec un arva sans pelle est une grave erreur : avec une pelle vous creuserez en ¼ d'heure autant qu'en une heure avec les skis ou les moyens du bord. L'ARVA au fond du sac même allumé ne sert à rien (sauf retrouver le sac et... peut être vous!). L'ARVA sans pile ou éteint dans le sac : des claques ! La sonde, souvent négligée, est pourtant un vrai plus pour gagner du temps. Elle seule permet de localiser très précisément la victime et surtout de connaître sa profondeur d'ensevelissement.

Principe de base du fonctionnement d'un arva : Le bip délivré par l'arva en position de recherche est d'autant plus fort qu'on est proche de la victime enfouie. Il s'agit donc de se guider grâce aux variations de volume du signal sonore, selon une technique rigoureuse détaillée ci-dessous.

En pratique: Les « anciens » arvas tels que ceux du GUM (Orthovox F1 et F2) possèdent un commutateur de réglage manuel du volume. En effet, l'oreille est plus sensible aux variations de volume d'un bruit faible, que d'un bruit fort. C'est donc à vous de manipuler ce bouton pour garder toujours un volume sonore audible, mais pas trop fort, afin de bien repérer ses variations. Certains aiment travailler avec un volume moyen, d'autres avec un volume très faible. Seul l'entraînement pourra vous dire avec quel volume vous êtes le plus à l'aise. De plus, le port d'écouteur aide à s'isoler « dans sa bulle » et à se concentrer en présence de bruit ambiant. N'hésitez pas à en rajouter si votre arva n'en possède pas d'origine.

Technique de recherche

• **Observer :** Pendant l'avalanche, essayer de garder à vue (le plus longtemps possible) les victimes. Tachez de repérer le point où vous les perdez de vue. C'est de ce point que commenceront les recherches.

Recherche primaire

Après l'avalanche toutes les personnes hors avalanche passent en mode **réception avec le volume maximum**. La portée maximum d'un ARVA varie de 10 à 50 m selon les conditions (marque, position, profondeur, ...). Les recherches peuvent s'effectuer seul ou à plusieurs, cela dépend de la taille de l'avalanche et du nombre présumé de victimes. L'efficacité de la recherche dépend surtout de la bonne coordination des chercheurs.

- Dans 1e d'une cas grosse avalanche, on commence par parcourir méthodiquement l'avalanche en zig-zags, couloirs, ou à plusieurs personnes de frond, jusqu'à percevoir le premier «bip » de l'ARVA de la victime (ci-contre).
- Veillez à bien balayer toute la zone : passez à moins de 10-15m de <u>chaque</u> endroit de l'avalanche. Alors commence la recherche dite « secondaire ».
- Les dessins ci-dessous illustrent la méthode de recherche dite « par angles droits » que vous avez apprise, dans le cas d'une avalanche de petite taille, et dans celui d'une avalanche de taille supérieure à la portée moyenne d'un ARVA (30-40 mètres environ).

Recherche secondaire

Lorsqu'on entend le 1^{er} bip, on est généralement entre 10 et 50m de la victime, selon le modèle, la position et la profondeur des arvas émetteur et récepteur. On va procéder en progressant par angles droits : soit à l'horizontale, soit dans la pente.

Important : A partir de cet instant, l'arva doit toujours rester dans la même position. Ne jamais le tourner ou le faire pivoter : il reste dans une direction fixe (axe de la pente par exemple) et c'est vous qui « tournez » autour !

- 1) On progresse dans une direction en restant attentif aux variations de volume du signal :
 - Si ça augmente on continue tout droit dans la même direction
 - Si ça devient trop fort pour bien repérer les variations de volume, on baisse le volume à l'aide du commutateur
 - Quand ça baisse de nouveau franchement, on fait demi-tour et on revient à l'endroit où le signal était maximal.
- 2) A cet endroit, on part à angle droit et on recommence selon le même principe :
 - Si ça baisse on fait demi-tour puis on avance tout droit.
 - Si ça augmente on continue dans la même direction
 - Si le signal est trop fort, on baisse le volume au commutateur pour bien entendre les variations.
 - Si ça rebaisse franchement, on fait demi-tour et on revient à l'endroit où le signal était le plus fort : on peut de nouveau partir à angle droit, et recommencer.

Par angles droits successifs, on arrive ainsi petit à petit sur la victime. Cette méthode, si elle n'est pas forcément la plus rapide pour un utilisateur très entraîné, à l'énorme avantage d'être très « mathématique » : elle ne nécessite qu'une réflexion minimale, ce qui est très important dans une situation de stress :

- Le bip augmente \Rightarrow j'avance en courant
- Le bip diminue ⇒ je rebrousse chemin jusqu'au maximum (sans trop finasser : ca urge !) et je pars à angle droit.
- Le signal devient trop fort pour que je perçoive clairement ses variations ⇒ je baisse le volume au commutateur.

Lorsque vous êtes sur le dernier calibre, vous êtes proches de la victime : on passe en recherche fine.

Recherche fine

Allez, on y est presque. Si vous êtes correctement entraîné, il n'a du s'écouler que quelques minutes, 10 maximum, depuis le début de l'avalanche. C'est maintenant qu'il va falloir être en forme pour creuser!

Le commutateur de **l'arva** est sur la position de plus faible volume (ou celle d'avant si la profondeur d'ensevelissement est grande et que vous n'entendez rien sur le plus faible calibre). Toujours par la méthode des angles droits, mais cette fois-ci avec des mouvements de quelques mètres d'amplitude maximum, localisez le bip maximal le plus précisément possible et marquer l'endroit (ski, vêtement, rainure dans la neige, ...). Notez que cette dernière phase est souvent plus délicate avec les « nouveaux » arvas numériques, surtout s'il y a plusieurs victimes enfouies et proches les unes des autres : il faut s'y entraîner!

Sondez avec la sonde à neige, ou à défaut un bâton de ski dont vous aurez découpé ou enlevé la rondelle. Le sondage est très important pour localiser précisément la victime et déterminer sa profondeur. Si la victime est a plus de 1,5 mètres de profondeur, il faudra creuser un trou très large dès le départ pour pouvoir y accéder facilement.

- Avec la pelle, creusez pour atteindre la victime. En gros, creusez un trou de diamètre deux fois la profondeur mesurée et plutôt vers l'horizontale (plus efficace). Vous pouvez refaire une recherche rapide à la sonde et/ou à l'arva en cours de route pour confirmer que vous êtes sur la victime, ou bien modifier l'orientation de votre trou.
- Dégager doucement la victime. **Mettre son ARVA en mode réception** pour ne pas gêner la recherche d'autres victimes éventuelles.
- Examiner son état : conscience, pouls, respiration, ... et prodiguer des soins appropriés <u>si vous savez le faire</u>. Si vous suspectez une atteinte de la colonne vertébrale, évitez de bougez la victime sauf cas d'absolue nécessité (risque de deuxième avalanche par exemple).

Entraînez-vous et soyez bien équipés!!!

Ces brefs rappels de la technique de recherche ne remplacent néanmoins pas l'entraînement : il est INDISPENSABLE se consacrer <u>au moins</u> une journée au secours en avalanches avant de débuter la saison. C'est aussi un excellent exercice à pratiquer régulièrement au refuge, ou durant une longue pause, ou bien encore au retour. En plus, ça réchauffe ! ©

Par ailleurs, si l'utilisation systématique de l'ARVA en ski de randonnée ou raquettes commence à rentrer dans les mœurs, il existe encore des randonneurs qui partent sans pelle ou sans sonde, cette dernière étant souvent considérée comme accessoire.

Or, des études récentes montrent que les chances de survie sont très notablement dégradées si on ne possède pas de pelle ou pas de sonde :

Le graphique ci-dessus, réalisé à partir d'exercices en conditions réalistes rapportées dans la revue de l'ANENA, montre bien que si l'on possède un équipement incomplet (pas de sonde), le sauvetage prend en moyenne plus de 30mn et les chances de survie sont au mieux de 50%. Avec un équipement complet (arva + pelle + sonde), on tombe autour de 15mn et les chances de survie sont supérieures à 90%.

Organisation d'un secours en avalanche

Une avalanche vient de se produire et votre groupe doit organiser les secours. Que faire ?

- 1. Si vous êtes témoin de l'avalanche, ne quittez pas les victimes des yeux. Repérez l'endroit ou elles disparaissent sous la neige pour limiter le champ des recherches. Sinon, c'est toute la zone d'avalanche, <u>sans oublier ses bords</u> qui devra être fouillée.
- 2. Un **chef** doit se désigner pour coordonner les secours. C'est généralement le « chef » de la course qui assumera ce rôle, mais s'il est sous l'avalanche, cela pourrait être à vous de le faire !
- 3. Le chef désigne un ou plusieurs **guetteurs** qui se postent dans un endroit sûr depuis lequel ils peuvent observer l'amont de la zone de recherche. En cas d'avalanche, le guetteur prévient les autres (sifflet, cris). Ceux-ci repassent leur ARVA en position émission et ENSUITE SEULEMENT prennent la fuite <u>latéralement</u>.
- 4. Si l'effectif du groupe est suffisant (8 personnes ou plus), DEUX skieurs minimum peuvent aller déclencher les **secours organisés** (voir ci-dessous). Etre très prudent, car si ces deux skieurs ont à leur tour un accident, ils ne pourront pas être secourus efficacement. Dans la mesure du possible, envoyer deux skieurs de bon niveau, entraînés et connaissant bien la montagne et l'itinéraire.
- 5. En fonction de la taille de l'avalanche, le chef désigne un certain nombre de **chercheurs** entraînés qui seront chargés de la recherche des victimes.
- 6. Les personnes restantes attendent <u>en lieu sûr</u>, prêtes à venir en renfort pour apporter des pelles et des sondes, et creuser. Si des personnes semblent choqués, il peut être préférable de les occuper en leur faisant damer une DZ pour l'hélicoptère.

- 7. Les chercheurs désignés effectuent un balayage de la zone d'avalanche à environ 50m d'intervalle, jusqu'à obtenir un premier *bip*.
- 8. Lorsqu'un chercheur obtient un *bip* et démarre la recherche d'une victime particulière, il doit veiller à ce que les autres se concentrent sur d'autres victimes : un seul chercheur (le plus entraîné) par victime. IL EST INUTILE D'ETRE PLUSIEURS

A CHERCHER LA MEME VICTIME. Les autres doivent explorer d'autres zones, ou bien regagner un endroit sûr si leur présence n'est plus indispensable dans la zone dangereuse. Il est primordiale d'assurer une communication entre les chercheurs pour éviter de tels comportements et conduire une recherche efficace.

- 9. Lorsqu'une victime est localisée, le chercheur demande du renfort, estime la profondeur de la victime avec une sonde ou un bâton. Creuser une trou d'autant plus LARGE que la victime est profonde.
- 10. Dégager la victime doucement, passer son ARVA en mode réception pour ne pas gêner les autres chercheurs. Estimer son état et prodiguer des soins adaptés. L'évacuer si possible vers un endroit sûr.
- 11. Lorsque toutes les victimes ont été dégagées, balayer à nouveau toute la zone pour s'assurer qu'il ne subsiste personne sous l'avalanche.
- 12. Si des secours organisés ont été prévenus par radio ou téléphone portable, rendre compte du résultat des recherches.

Signaux d'alerte

Il existe des signaux internationaux permettant d'appeler à l'aide :

• Position des bras : à utiliser pour signaler à un hélico qui semble vous tourner autour que l'on a besoin, ou pas besoin, d'aide :

- Signaux sonores ou lumineux: six coups réguliers en une minute, une minute de pause, et recommencer. Attention, ce signal est moins connu que le bon vieux SOS morse: trois signaux brefs + trois signaux longs + trois signaux brefs, puis une pause.
- Fusée rouge : Il faut disposer d'un stylo-lanceur et de quelques fusées. Très utile pour se signaler à l'hélico lorsque le temps est nuageux.

Pour vous signaler : Si vous avez besoin d'attirer l'attention d'un groupe visible au loin, rien ne vaut le **sifflet** d'arbitre, bien plus puissant et strident que la voix. A avoir absolument dans son sac : il sert aussi pour l'orientation par temps de brouillard. Pour vous signaler à un hélicoptère, vous pouvez faire des **signaux lumineux** à l'aide d'un miroir (vieux CD, miroir de boussole, surface réfléchissante d'une couverture de survie) ou d'un flash d'appareil photo.

Le message d'alerte

Qui prévenir?

Téléphone : Le <u>112</u> est depuis quelques années un numéro de secours européen normalisé accessible même depuis un portable sans carte d'appel, et quelques soit votre opérateur. Ce service vous mettra en contact avec les secours les lieux adaptés. A défaut, appelez le SAMU(17) ou les pompiers (18).

Radio VHF : Il existe une fréquence de secours dite **FFVL** destinée aux pilotes de vol libre : 143.9875 MHz. Il y a souvent quelqu'un à l'écoute, mais ce n'est pas garanti. Fréquence **PGHM** : 154.460 MHz.

Contenu du message

Pour être efficace un message d'alerte doit comporter les informations suivantes et être énoncé clairement et calmement :

1. Qui demande du secours (votre identité) ? Etes-vous un groupe constitué ? De combien de personnes ? Y a t-il un « chef » du groupe ?

- 2. Nature de l'accident : accident corporel (de quelle nature), avalanche (précisez la taille approximative)
- 3. Lieu de l'accident : massif, localisation précise par rapport à un point caractéristique, altitude, orientation, ... Exemple : « Oisans, dans le haut du glacier Blanc à l'attaque de la voie normale du dôme des Ecrins, vers 3200m».
- 4. Nombre présumé de victimes
- 5. Si possible donner l'état des victimes : âge, blessures apparentes, état de choc, inconscience. Cela aide les secours à savoir si l'hélicoptère doit être médicalisé et à estimer le degré d'urgence de l'intervention.
- 6. Y a t-il un moyen de joindre le lieu de l'accident : fréquence radio FFVL, téléphone portable (donner le numéro). Ne donnez pas explicitement la fréquence radio si c'est une fréquence connue. Dites simplement « fréquence FFVL », le pilote sait immédiatement où ça se trouve sur sa radio.
- 7. Répondre aux questions de votre interlocuteur si vous l'avez directement en ligne, et surtout NE PAS RACCROCHER AVANT D'Y AVOIR ETE INVITE.

Comportement vis-à-vis des secours organisés

Les secours organisés sont des professionnels hautement qualifiés et très entraînés. N'essayez pas de vous substituer à eux. Lorsqu'ils sont arrivés, laissez les faire leur métier et diriger les secours comme bon leur semble. Restez humble et remerciez-les de vous porter secours : un vol de montagne en hélico n'est jamais anodin et ils risquent souvent leur vie pour nous.

Généralement, l'hélico débarquera un secouriste professionnel qui organisera la prise en charge des victimes. Vous pouvez proposer votre aide et éventuellement demander à accompagner la victime dans l'hélico, mais si les secouristes refusent, n'insistez pas. Placez-vous aux ordres du secouriste : c'est lui qui commande maintenant!

De même, si vous êtes « chef de groupe », n'essayez pas de prendre le secouriste à témoin pour vous justifier ou vous disculper au sujet de l'accident, cela pourrait être mal interprété par la suite. Les secours ne sont pas là pour vous juger. Enoncez les faits, rien que les faits.

Vous aurez souvent à redescendre vous-même le matériel des victimes si la place manque dans l'hélico. Le fait qu'un chef de course puisse redescendre le reste du groupe en sécurité rassure les secouristes qui n'ont alors pas à s'occuper du reste du groupe.

Précautions vis-à-vis de l'hélicoptère

Si une DZ (zone d'atterrissage) a été aménagée, le pilote pourra choisir, ou pas, de s'y poser : c'est lui et lui seul qui décide.

Ranger tous les vêtements, couvertures de survie, et le matériel léger dans les sacs et enfoncez ceux-ci au mieux dans la neige, loin de la DZ. Couchez les skis et les bâtons et enfoncez-les dans la neige. Eloigner toutes les personnes non indispensables.

Placez-vous en bordure intérieure de la DZ, DOS AU VENT, BRAS ECARTES, A GENOUX, afin que le pilote dispose d'un repère de hauteur sol, d'un repère horizontal, et d'un point fixe. L'hélico se posera juste devant vous ou juste à coté : c'est assez stressant mais surtout NE BOUGEZ PAS : si le pilote ne vous « sent » pas, il redécollera sans hésiter : sécurité avant tout ! Si vous ne le sentez pas ou si vous ne l'avez jamais fait : ne faites rien et restez à l'écart.

MONTEZ ET DESCENDEZ DOUCEMENT de l'hélico, et seulement quand on vous y invite, jamais de votre propre chef. N'oubliez pas que l'hélico reste un appareil dangereux et que vous êtes aux ordres de l'équipage. Veillez à n'accrocher aucun câble en montant ou en manipulant du matériel, il y en a partout.

Ne passer JAMAIS DERRIERE un hélico, NE CIRCULEZ PAS AUTOUR : le rotor est un danger qu'on oublie facilement et c'est strictement interdit.

Trousse de secours minimale

Il est souhaitable d'avoir dans le groupe le matériel suivant :

- Matériel individuel: Arva, pelle et sonde indispensables, sifflet à roulette en plastique, beaucoup plus efficace que la voix pour se signaler
- Matériel d'orientation : boussole, altimètre régulièrement recalé, carte du coin au 1 / 25000 ème
- Piles de secours pour les ARVA
- Outils (tournevis léger, pince, fil de fer) pour bricoler un matériel défaillant
- Désinfectant, ciseaux, bande, pansements, Strapal et/ou Elastoplast

- Médicaments de confort : aspirine, paracétamol, anti-diarrhéiques, collyre
- Couverture dite de survie. Pratique, mais condense beaucoup. Utile pour isoler et se signaler (ça brille), mais pour réchauffer quelqu'un préférez quelques bonnes polaires!
- Matériel de signalisation : radio, téléphone portable, lanceur + fusées de détresses, miroir (vieux CD, miroir de la boussole). Ne pas oublier avant de partir de noter la fréquence ou le numéro de téléphone des secours.
- En fonction du type de rando, on peut rajouter : traîneau léger, peau de rechange ou colle spéciale, médicaments plus « techniques » à utiliser avec précaution, pile de secours pour la frontale, bâton télescopique de rechange, piolet de secours, corde, etc.

Quelques éléments de nivologie...

La neige se forme dans l'atmosphère par congélation de la vapeur d'eau contenue dans une masse d'air saturée autour de noyaux de condensation (poussières, particules salines, résidus de combustion, etc.). A température négative, la vapeur d'eau passe directement à l'état solide, et la croissance d'un cristal de neige s'amorce. Lorsque son poids ne lui permet plus de rester en suspension dans le nuage, il tombe vers le sol, et si la température de l'air y est suffisamment basse (inférieure à +3°C environ), on observe alors une chute de neige.

Suivant les conditions atmosphériques du moment, la forme et la taille de ce cristal sont très variables. Plusieurs centaines de cristaux ont ainsi été dénombrés et répertoriés selon une classification établie par l'Organisation Mondiale de la Météorologie qui distingue dix variétés de cristaux, dont les types les plus fréquents sont les étoiles, les plaquettes, les colonnes et les aiguilles. Au terme de leur chute ces cristaux, plus ou moins agglomérés en flocons, participent à la constitution du manteau neigeux. Dès lors, ils subissent en permanence des contraintes mécaniques et des flux énergétiques conduisant à leur métamorphose.

Les métamorphoses de la neige

L'évolution d'une strate de neige au sol dépend des conditions de température et d'humidité auxquelles elle est soumise. Au cours de l'hiver, ces différentes métamorphoses se succèdent au gré des conditions météorologiques. Le manteau neigeux est donc un empilage de strates nombreuses aux caractéristiques de cristallographie, de cohésion, de densité, de teneur en eau liquide très différentes.

La métamorphose d'isothermie

s'observe lorsque les variations de température au sein de la couche de neige sont faibles. Le gradient est inférieur à 5° par mètre. Elle s'amorce par la destruction des dendrites, fines ramifications des cristaux, et se poursuit par des transferts de matière, par sublimation/congélation, des convexités vers les concavités des cristaux, dus à des déséquilibres de tension de vapeur saturante. Les cristaux s'arrondissent, leur taille se réduit et se calibre. On les appelle des **grains fins.**

Leur nombreux points de contact favorisent la formation de ponts de glace qui les soudent les uns aux autres (phénomène de frittage). Cette métamorphose aboutit ainsi à la densification et à l'augmentation de la cohésion de la couche de neige (au détriment de sa plasticité).

La métamorphose de gradient moyen

se déclenche lorsque le gradient thermique vertical affectant la couche de neige (c'est-à-dire la différence de température entre le sommet et la base de la couche, divisée par son épaisseur) est entre 5 et 20 degrés par mètre environ, et se montre d'autant plus active que la couche de neige est poreuse. Dans ces conditions, on assiste à des transferts de matière par sublimation/congélation, mais cette fois-ci suivant un axe privilégié : la verticale, et dans le sens du bas vers le haut. Ces transferts génèrent des grains particuliers aux arêtes planes visibles : les **grains à faces planes**.

La métamorphose de gradient fort

Se produit lorsque le gradient de température dans la couche est fort, supérieur à 20 degrés par mètre. Les flux de vapeur entre le bas et le haut sont francs. On passe par la phase « faces planes » pour aboutir, après une dizaine de jours, aux fameux "gobelets" ou givre de profondeur, pouvant atteindre des tailles respectables (plusieurs millimètres), et formant des strates de très faible cohésion.

Un phénomène similaire peut se produire à la surface du manteau neigeux par nuit claire et froide, conduisant rapidement à la formation de givre de surface, parfois de taille importante (plusieurs centimètres).

La métamorphose de fonte

est consécutive à l'apparition d'eau liquide au sein du manteau neigeux, traduisant une fusion partielle des grains de neige. Elle accompagne les épisodes de redoux prolongés ou de pluie. Elle conduit à la formation d'agglomérats de plus en plus gros de grains dits **grains ronds**, liés plus ou moins fortement par cohésion de regel ou cohésion capillaire, suivant les températures qui règnent dans la couche de neige. Au-delà d'un certain seuil de rétention, l'eau liquide percole vers la base du manteau neigeux, dont la fonte est alors rapide.

La strate de grains ronds peut être très stable (neige dure et gelée), ou instable (neige mouillée dite « soupe » ou « gros sel »).

→ Retenons donc que la neige est un matériau très complexe qu'il faut apprendre à connaître. En un lieu donné, le manteau subit tout au long de la saison une série de transformations complexes. Certaines tendent à le stabiliser, d'autres à le déstabiliser.

La figure ci-dessous récapitule schématiquement les métamorphoses de la neige selon les conditions de gradient et de teneur en eau liquide. Les illustrations proviennent d'une étude de Claude Sergent, du Centre d'Etude de la Neige de Météo-France, publiée sur le site web de l'ANENA.

Le tableau ci-dessous récapitule les différents types de grains de neige, avec leurs principales caractéristiques.

PRINCIPAUX TYPES DE GRAINS DE NEIGE ET LEURS CARACTERISTIQUES									
	Neige fraîche Particules reconnais-sables		Grains fins Grains à faces pland		Gobelets	Givre de surface	Grains ronds		
Symbole	+	l / \			Ù	Ú	О		
Description	Forme originale de flocon ou plaquette bien reconnaissable	Morceaux de la neige originale : bouts de dendrites, branches d'étoile,	Grains arrondis de petite taille	Grains brillants présentant des facettes planes et des angles marqués	Grains souvent assez gros, avec parfois une forme pyramidale. Stries de givre visibles sur la surface.	Grains souvent gros, en forme de pyramide, d'aiguilles ou de feuilles, avec des stries de givre très visibles	Grains souvent gros, agglomérés, arrondis, résultant d'une fonte partielle puis d'un regel du manteau.		
Métamorphos	/	Destruction	Faible	Gradient	Fort gradient	Givrage	Fonte		
e associée	Tendre	mécanique Tendre	gradient Friable à dure	Friable	Friable	surfacique Très friable	(gel / degel)		
Aspect Humidité	Sèche à humide	Sèche à humide	Sèche en général	Sèche	Sèche	Sèche	Pâteux ou dur Humide à mouillée		
Type cohésion	Feutrage	/	Frittage	/	/	/	Capillaire ou regel		
Cohésion	Faible	Faible	Bonne	Faible	Aucune	Aucune	Faible (forte si regel)		
Masse vol. (kg/m³)	20 – 180	50 – 200	200 – 350	180 – 280	200 – 350		280 – 600		
Diamètre moyen (mm)	0.5 – 2	0.3 – 0.8	0.1 – 1	0.8 – 1.5	1.5 – 3 +	2-50+	0.8 – 2		

Quelques éléments sur les avalanches

Une avalanche est une masse de neige qui dévale une pente à plus ou moins grande vitesse. Schématiquement, on distingue trois types d'avalanche caractérisés chacun par le type de neige mise en cause dans le mouvement initial : l'avalanche de neige récente, l'avalanche de plaque dure, et l'avalanche de neige humide (ou de fonte). Mais la réalité est souvent complexe et, au cours de son trajet, une avalanche peut changer de caractéristiques.

L'avalanche de neige poudreuse

C'est l'avalanche « de cinéma », la plus connue, spectaculaire et rapide. La neige mise en mouvement est peu évoluée, sèche ou peu humide, pulvérulente ou de faible cohésion. Sa masse volumique est le plus souvent inférieure à 200 kg/m3.

Des avalanches spontanées de taille importante se produisent pendant ou peu après les chutes de neige, dès lors que l'épaisseur de neige fraîche cumulée dépasse une trentaine de centimètres. Le risque de déclenchement par le skieur peut persister plusieurs jours.

Ces avalanches se caractérisent par un départ ponctuel. L'avalanche s'élargit vers l'aval (trace en forme de cône ou de poire). Leur écoulement se fait en surface comme un fluide dense, et sous forme d'aérosol, mélange de neige et d'air (avalanche de poudreuse). Les plus grosses d'entre elles, qui déferlent à très grande vitesse (jusqu'à 200 à 300 km/h) peuvent provoquer d'énormes dégâts. La zone de dépôt de ces avalanches de poudreuse est parfois difficilement détectable car elle s'étend sur une vaste superficie et les débris sont peu visibles.

Néanmoins, ces avalanches sont peu meurtrières en pratique, car elles correspondent à des périodes où le risque est grand et connu (fortes précipitations neigeuses), donc en général on reste à classer ses diapos plutôt que d'aller faire le zouave en montagne! Il est à noter qu'une trentaine de centimètres de neige récente doit être considéré comme une forte précipitation: c'est amplement suffisant pour provoquer une activité avalancheuse très significative (purge des couloirs, etc).

L'avalanche de neige humide (ou de fonte)

Ce type d'avalanche est directement lié à la présence d'eau liquide (fonte superficielle, pluie, etc.). La neige "mouillée" a une masse volumique élevée (350 à 500 kg/m3 en moyenne). Ces avalanches se produisent au cours de réchauffements importants, accompagnés ou non de pluie.

Les plus typiques des avalanches de neige humide sont les avalanches de printemps ou d'été qui se produisent dans les pentes bien ensoleillées. Elles peuvent intéresser des versants ou être canalisées dans d'étroits couloirs. Leur écoulement se rapproche de celui de la lave : les vitesses sont relativement faibles, de l'ordre de 20 à 60 km/h, mais ces avalanches ont une grande puissance destructrice. Les dépôts, parfois de plusieurs mètres d'épaisseur, sont constitués de blocs informes de neige très dense. Il n'est pas rare d'en trouver des restes en bas d'un couloir, alors que l'été est bien avancé (il n'est d'ailleurs pas d'emmener arva, pelle et sonde au début de la saison d'alpinisme !).

Un skieur pris dans une telle avalanche est littéralement fauché, et la densité de la neige est telle qu'il est vraiment difficile de s'en échapper.

Toutefois, comme les avalanches de poudreuse, ces avalanches correspondent à des situations dangereuses connues : fort redoux, pluie, fort ensoleillement. Le risque est donc connu des skieurs de randonnée, qui au printemps commencent leur course de nuit de façon à être de retour en vallée assez tôt, avant les fortes chaleurs du début d'après-midi.

L'avalanche de plaque

C'est la plus dangereuse car elle est difficilement détectable et se déclenche au passage des skieurs, entraînant toute la pente d'un seul coup. Elle est responsable de près de 90% des victimes d'avalanches.

La cassure, toujours très nette, se propage rapidement suivant une ligne brisée. L'instabilité de ces plaques tient essentiellement à la présence d'une sous-couche fragile. Leur fragile équilibre peut être rompu sous l'effet d'une faible surcharge.

Les **plaques à vent**, se forment sous l'action du vent en présence d'obstacles tels que crêtes, gros monticule rocheux. Brisés par le vent, les cristaux sont réduits en fines particules qui, en se déposant au sol à l'abri du vent, prennent rapidement une bonne cohésion. Ce phénomène explique également la formation des corniches aux voisinages des crêtes.

La plaque formée peut posséder une **certaine rigidité**, bien qu'elle ne soit pas forcément dure : il existe des plaques dites *friables*, dont l'aspect ressemble à s'y méprendre à de la neige poudreuse un peu lourde. Mais la plaque ne tient que par des points d'ancrages assez fragiles. Si la neige sous-jacente est glacée ou sans cohésion, la plaque est très peu solidaire de la

sous-couche et est très fragile.

Au passage d'un ou plusieurs skieurs, les **contraintes** sont transmises aux ancrages qui peuvent céder. Toute une plaque se détache alors, parfois sur plusieurs centaines de mètres, entraînant les skieurs. De la neige au sol peut être entraînée dans le mouvement, créant une avalanche mixte plaque / poudreuse.

A l'endroit où s'est détachée la plaque, on trouve une cassure souvent franche (cicontre). Les dimensions d'une plaque peuvent être très variables selon la quantité de neige déposée. L'épaisseur peut aller d'une dizaine de centimètres à 2 mètres voire plus. Sa largeur et sa hauteur dépendent de la configuration locale du terrain et peuvent aller de quelques mètres à plusieurs centaines de mètres! Il n'est pas si rare de voir une plaque balayer un pan entier d'une montagne.

Il est important de noter que **la plaque cède souvent loin en amont des skieurs** (déclenchement à distance), et non sous leur pieds : il est donc quasi impossible de s'enfuir, car dès le départ de l'avalanche le skieur est <u>dans</u> l'écoulement!

1. Le passage du skieur crée des contraintes qui se propagent jusqu'aux ancrages fragiles

2. La plaque cède aux endroits fragiles, elle se fissure en amont et commence à glisser dans la pente

3. L'avalanche est partie. La zone de dépôt mêle souvent neige compactée et restes de blocs de neige

Responsables de plus de 80% des victimes d'avalanches parmi les skieurs et les raquettistes, les plaques à vent sont la véritable bête noire du montagnard hivernal. Elles sont souvent difficiles à détecter, cachées par de la neige plus récente, mais toujours dangereuses par la nature même de leur déclenchement. Sur le terrain, on devra donc être particulièrement attentif à ce risque et, au moindre doute, renoncer ou changer d'itinéraire.

Estimation des conditions sur le terrain

Etant donnée le caractère dangereux des plaques à vent, il importe de prendre sur le terrain toutes les précautions nécessaires pour les détecter, afin de prendre une décision en connaissance de cause.

Une idée reçue, heureusement de moins en moins répandue, veut qu' « une plaque, ça se reconnaît facilement à l'aspect et au bruit ». Ce n'est vrai que dans de rares cas. La neige ventée est en effet assez caractéristique sous les skis (aspect « soyeux », plus mat, neige un peu collante). Mais d'une part, si la plaque est enfouie sous de la neige plus récente, elle est invisible. D'autre part, le bruit n'est pas forcément un critère : une plaque à vent peut ne pas faire de bruit particulier sous les skis jusqu'à ce qu'elle cède! A contrario, une simple croûte de glace peut faire un bruit particulier, alors que le danger est faible.

Il est donc extrêmement difficile, même pour une personne habituée, de détecter toutes les plaques à vent. Bien malin qui peut reconnaître une plaque à vent au simple contact de ses skis, surtout si elle est enfouie! Plusieurs indices permettent toutefois d'évaluer le risque a priori.

Observez en permanence!

Des sastrugis formés par le vent, des sommets qui fument, des corniches sur les crêtes... Le vent souffle, ou il a soufflé, et des plaques se sont probablement formées : méfiance !

En particulier, les indices suivants doivent attirer l'attention car ils sont des facteurs aggravants :

☐ Environnement et caractéristiques de la pente

- L'inclinaison est moyenne (entre 20° et 40°)
- Il y a des ruptures de pente
- La pente est sous le vent dominant lors de précédentes chutes de neige
- On n'est pas loin en dessous de **crêtes, falaises, brèches ou ruptures de pente importantes**, sous le vent desquelles peuvent se créer des plaques
- Des corniches sont visibles

Les ruptures de pentes sont des endroits particulèrement dangereux ! La traction sur la neige y est maximale et le manteau neigeux est donc particulièrement fragile à cet endroit. S'il y a une plaque à vent, une surcharge même faible pourra la faire partir (cicontre).

Caractéristiques de la neige de surface

- Les skis découpent de petites plaques (→ la strate de neige supérieure possède une certaine rigidité)
- Il y a des traces de transport de neige par le vent : épaisseur irrégulière, neige sculptée par le vent (formant des dessins appelés *sastrugis*), neige 'soyeuse', ...

Et pourquoi pas parfois laisser parler son **instinct** : quand tout paraît assez bon mais qu'on ne le « sent » pas, mieux vaut renoncer car on n'est pas dans de bonnes dispositions pour bien analyser le terrain !

Se méfier également des crêtes ou des massifs orientés le long du vent, et non pas en travers. Le vent a tendance à y créer des accumulations sous le vent des crêtes secondaires et des obstacles. En conséquence, des plaques peuvent exister sur les deux versants de la crête principale!

Sur la photo **ci-contre**, le vent a soufflé latéralement du Nord, à gauche de la photo. L'arête principale est Nord-Sud, donc "bien" orientée (dans le sens du vent, pas en travers).

On observe cependant de nombreuses petites corniches et accumulations de neige au voisinage des crêtes secondaires, dans le haut de la pente. Des plaques peuvent exister dans ces endroits.

Bref, toujours analyser une pente avant de s'y engager, surtout à la descente en skiant comme un bourrin, mais aussi bien sûr à la montée!

Adaptez votre comportement en conséquence

Selon la dangerosité présumée de la situation, on sera amené à prendre des précautions particulières telles que :

☐ Diminuer la contrainte mécanique sur le manteau neigeux :

- Espacer les membres du groupe, ou passer un par un
- Skier léger, préférer les conversions aux virages sautés

☐ Optimiser les conditions de sécurité au cas où une avalanche se produit :

- Vérifier une nouvelle fois les arvas (émission et réception)
- Enlever dragonnes, lanières, ventrale du sac pour pouvoir s'alléger rapidement

■ Modifier ses plans :

• Renoncer, changer d'itinéraire

□ Réaliser des tests plus poussés pour confirmer ses doutes

Faire une analyse stratigraphique du manteau neigeux et un test de stabilité

Autres remarques importantes : ce n'est pas parce qu'un ou plusieurs skieurs sont passés sains et saufs que la plaque tient : on a déjà vu des plaques céder au dixième passage, même lorsque les skieurs prennent soin de se faire légers ! **Une plaque à vent en place reste dangereuse** tant qu'elle n'est pas détruite par la fonte des neiges ou bien recouverte d'une couche de plus d'1 mètre 50 de neige stable.

Pièges classiques mais néanmoins pervers

Il n'est pas facile, même pour une personne rompue à l'encadrement, de rester aux aguets en permanence lors d'une course. Certains éléments ont tendance à faire nettement baisser la vigilance :

- Le fait d'être en groupe : On plaisante, on se tire la bourre, mais on oublie de surveiller le terrain et de garder un œil sur tout, surtout si les membres du groupe se connaissent bien et si l'ambiance est bonne
- L'euphorie de la descente : Il est fréquent que l'on passe en groupe et sans précautions particulières à un endroit où, à la montée, on avait jugé utile de s'espacer. A la montée, le rythme est lent, on est dans une logique de «montagne», on fait attention. A la descente, on s'éclate, on est dans une logique d'amusement qui récompense des efforts de la montée. Or, la descente est d'autant plus dangereuse que les efforts produits sur la neige sont plus importants (virages brusques ou sautés, grandes courbes appuyées, ...). Il faut donc être aussi vigilant à la descente : rester aux aguets, s'espacer pour limiter les dégâts éventuels, se regrouper souvent dans des endroits sûrs.
- Les traces existantes : Pas facile de se convaincre qu'il y a un risque lorsque l'itinéraire est déjà largement tracé ! Pourtant, on a déjà vu des plaques partir dans des pentes zébrées de traces.
- La fréquentation: Il y a plein de monde aux alentours, tout le monde trace et tout va bien. Mais si vous êtes pris, il leur faudra sans doute plusieurs minutes pour commencer à vous rechercher, à supposer même qu'ils aient des arvas, une pelle, une sonde, et qu'ils sachent s'en servir... Ca fait beaucoup de suppositions!
- Le très beau temps: Les conditions sont bonnes, il fait bon, et l'attention se relâche...
- Le mauvais temps: A contrario, par mauvaises conditions, on est polarisé sur la progression (boussole, ...) et la cohésion du groupe. Du coup, on oublie d'analyser les risques de l'itinéraire, ce qui est d'autant plus difficile que les pentes ne sont pas forcément bien visibles!
- La proximité d'un domaine skiable : On s'imagine toujours que cela craint moins en domaine skiable hors piste qu'en randonnée. Ce n'est pas complètement vrai : bien que les services des pistes sécurisent l'amont des pistes, on ne peut jamais être sur d'être dans un secteur sécurisé. Le hors-pistes, même en station, doit être abordé comme un sport de montagne à part entière, avec la mentalité d'un montagnard et non celle d'un skieur restant sur la piste balisée.

A titre de contre-exemple, on peut citer l'avalanche de la Clusaz, en Février 2003 : des surfeurs ont déclenché une plaque en amont d'une piste, dans une pente pourtant déjà zébrée de dizaines de traces. L'avalanche a pris de l'ampleur et a déboulé sur la piste : une victime.

Pour terminer sur le sujet des plaques à vent, il existe un moyen d'évaluer la stabilité du manteau en un endroit donné que l'on suppose représentatif d'une pente douteuse. Il faut creuser la neige pour connaître la structure en profondeur du manteau : c'est le profil stratigraphique.

L'analyse du manteau neigeux par profil stratigraphique

Le cas le plus dangereux est donc celui d'une **plaque à vent enfouie** sous une faible épaisseur de neige stable : la neige paraît bonne et stable, mais la plaque est toujours active! Seul un **profil stratigraphie** (coupe du manteau neigeux) peut la révéler clairement, et confirmer par exemple ce que l'on pressent en ayant fait un sondage au bâton.

L'analyse stratigraphique consiste à étudier la structure du manteau neigeux (épaisseur des couches, types de grains rencontrés, résistance mécanique, ...) depuis le sol jusqu'à la surface. Ainsi, une structure de plaque pourra apparaître clairement, même si elle est masquée par une épaisse couche de neige récente.

Cette opération demande une certaine expérience, et nécessite au moins une ½ heure. On la réservera donc à des circonstances particulières telles que l'impossibilité de changer d'itinéraire au cours d'un raid, par exemple.

Le matériel nécessaire (ci-contre) est : pelle, sonde, stylo, formulaire de sondage, et si possible plaquette d'observation et loupe style compte-fils.

Les étapes de sa réalisation sont les suivantes :

Exemple de profil identifiant clairement une plaque à vent masquée par de la neige fraîche : danger maximal !

- Choisir un lieu <u>sûr</u> ayant des caractéristiques (orientation, pente, ...) proches de celles de la zone à analyser. Vérifier éventuellement à la sonde que vous n'êtes pas sur un accident de terrain caché.
- 2. Creuser un trou assez large, **verticalement** jusqu'au sol, ou au moins jusqu'à rencontrer une couche très dure que vous arrivez à peine à entailler à la pelle.
- 3. Brosser et lisser le profil avec les gants. **Repérer les différentes strates** de neige en marquant bien leur limite. Si le trou est orienté au soleil, les grains exposés font fondre : pensez à rafraîchir la coupe de temps en temps.
- 4. Pour chaque strate **en partant de la base** du manteau : estimer l'épaisseur, la dureté de la neige et son humidité. Identifier le type de grain qui domine dans la strate. Reporter ces données sur un **formulaire de profil stratigraphique** (voir exemplaire vierge à la fin du mémento).
- 5. **Interpréter le profil** de résistance obtenu et en déduire s'il est plutôt stable ou plutôt instable.
- 6. Eventuellement faire un **test de stabilité** pour confirmer ses hypothèses.
- 7. **Reboucher le trou** pour éviter que quelqu'un tombe dedans en skiant!
- 8. Prendre une décision en fonction de ce qu'on a observé, et au besoin renoncer.

Si on met en évidence une structure qu'on pense être dangereuse, il existe toute une batterie de tests de stabilité que l'on peut faire à la suite du profil stratigraphique..

Les **tests de stabilité** (*Rutschblock*) sont pratiqués en « découpant » un bloc de neige selon une procédure précise, puis en essayant de le déstabiliser. Ils demandent du temps mais sont toujours instructifs, même si l'information qu'ils apportent est assez limitée. Cela peut former un très bon complément du profil stratigraphique pour mieux évaluer la stabilité

En quise de conclusion

L'analyse d'un manteau neigeux pour estimer sa stabilité est très difficile et doit faire l'objet d'un enseignement et d'un entraînement spécial. Mais même avec des connaissances poussées on ne peut émettre que des suppositions, des probabilités, jamais des certitudes. En toutes occasions la prudence s'impose et la règle du doute systématique doit être votre credo.

Pour estimer le risque de présence de plaques, il faudrait idéalement se souvenir du temps qu'il a fait depuis les premières chutes de neige, dans tous les massifs et à toutes les altitudes et toutes les expositions, pour avoir une chance d'évaluer le risque. Laissez cela à Météo-France : ils disposent des outils de simulation et de modélisation nécessaires et vous donnent leurs conclusions dans les **bulletins Neige et Avalanches**, dont la consultation est indispensable avant de choisir une course.

Les Bulletins Neige et Avalanches (BNA)

L'objectif des bulletins neige et avalanche (BNA) n'est ni d'autoriser ni d'interdire la pratique de la montagne, mais de permettre à chacun d'adapter son comportement en fonction des risques. Les informations nivologiques concernent l'état du manteau neigeux et le risque d'avalanche en dehors de pistes balisées et ouvertes.

Les BNA sont quotidiens et départementaux. Chaque département est découpé en zones, ou massifs, de quelques centaines de kilomètres carrés. Les informations sur les conditions de neige et de risque sont fournies à l'échelle de ces massifs.

La consultation des BNA doit devenir un réflexe pour les pratiquants de la montagne. Mais elle ne dispense pas d'une information locale.

Ce qu'il ne faut absolument pas faire : se fixer un seuil chiffré arbitraire ("en risque 2, je vais partout ")!

Ce qu'il est recommandé de faire : prendre connaissance de l'intégralité du BNA, ne pas s'en tenir au seul indice chiffré de l'échelle, et choisir sa course en fonction de toutes les données.

Contenu des Bulletins Neige et Avalanche

Les bulletins neige et avalanche (BNA) sont diffusés du 15 décembre au 30 avril. Ils comprennent 6 rubriques :

- 1. L'estimation des risques d'avalanche : par massif et pour les 24 heures à venir avec la référence à l'échelle européenne (indice chiffré et signification): voir plus loin pour la description de chaque niveau.
- 2. **Les conditions d'enneigement :** limites inférieures d'enneigement skiable, enneigement moyen, valeurs ponctuelles...;
- 3. **L'état du manteau neigeux :** bilan des chutes de neige, descriptif des couches superficielles et internes en terme de qualité et de stabilité ;
- 4. Un aperçu météo : brève information sur les paramètres prévus ayant une influence sur l'état du manteau neigeux ;
- 5. **L'évolution du manteau neigeux :** transformation attendue de la neige avec les conséquences sur la stabilité, la nature et l'intensité du risque d'avalanche qui en découle ;
- 6. La tendance ultérieure des risques : sens probable de l'évolution du risque à échéance d'au moins 48 heures.

Au cours de cette même période, de la mi-décembre à la fin avril, des bulletins de synthèse hebdomadaire (BSH) sont disponibles du jeudi au dimanche. Ils résument les phénomènes marquants de la semaine écoulée, avec notamment le cumul des chutes de neige mesurées depuis le jeudi précédent.

En automne et au printemps, plus exceptionnellement en été si des chutes de neige remarquables venaient à se produire, des informations plus succinctes sur les conditions de neige sont délivrées au moins une fois par semaine, à la veille des weekend.

Comprendre et interpréter les bulletins

L'information neige et avalanche est fournie à l'échelle de massifs (superficie de l'ordre de quelques centaines de kilomètres carrés). Elle n'est valable qu'en dehors des pistes balisées et ouvertes. C'est une information de synthèse qui s'attache à donner les particularités les plus représentatives des conditions de neige existantes ou prévues. Des précisions sont souvent apportées en fonction de l'exposition, de l'altitude ou encore de la plage horaire.

La consultation des bulletins neige et avalanche doit devenir un réflexe quand on pratique la montagne enneigée en dehors des pistes balisées et ouvertes. En station, une information locale auprès des professionnels est également recommandée.

L'estimation des risques fait référence à l'échelle européenne de risque d'avalanche qui comporte 5 indices. Chacun de ces indices correspond à un niveau de danger pour le pratiquant de la montagne. Aucun d'entre eux n'est à négliger : en montagne, le risque 0 n'existe pas. Ces indices sont ordonnés selon la gravité du danger auquel s'expose l'usager. L'augmentation du risque est basée sur l'aggravation et sur l'extension géographique de l'instabilité du manteau neigeux.

L'enseignement retiré du bulletin dépend bien sûr de l'expérience et de la connaissance du milieu montagnard que possède chaque utilisateur. Dans certaines situations le skieur peu expérimenté peut être amené à annuler la descente de hors-piste ou la randonnée projetée et à rester sur les pistes ouvertes. Le skieur expérimenté peut décider de maintenir une sortie prévue mais en choisissant un site moins exposé que celui initialement prévu.

Une fois sur le terrain, il convient d'apprécier si les conditions réelles sont dans l'ensemble conformes à celles qui étaient annoncées. En effet, la prévision du risque d'avalanche est établie à partir des conditions nivologiques existantes et des prévisions météorologiques, dont l'essentiel est indiqué dans la rubrique "aperçu météo" du bulletin. Elle peut être remise en cause si les conditions météorologiques évoluent différemment de ce qui était prévu.

Echelle européenne de risque d'avalanche

INDICE	STABILITE DU MANTEAU NEIGEUX	PROBABILITE DE DECLENCHEMENT
1 - FAIBLE	Le manteau neigeux est bien stabilisé dans la plupart des pentes.	Les déclenchements d'avalanches ne sont en général possibles que par forte surcharge sur de très rares pentes raides. Seules des coulées ou petites avalanches peuvent se produire spontanément.

2 - LIMITÉ	Dans quelques pentes suffisamment raides, le manteau neigeux n'est que modérément stabilisé. Ailleurs, il est bien stabilisé.	Déclenchements d'avalanches possibles surtout par forte surcharge et dans quelques pentes généralement décrites dans le bulletin. Des départs spontanés d'avalanches de grande ampleur ne sont pas à attendre.
3 -MARQUÉ	Dans de nombreuses pentes suffisamment raides, le manteau neigeux n'est que modérément à faiblement stabilisé.	Déclenchements d'avalanches possibles parfois même par faible surcharge et dans de nombreuses pentes, surtout celles généralement décrites dans le bulletin. Dans certaines situations, quelques départs spontanés d'avalanches de taille moyenne, et parfois assez grosse, sont possibles.
4 - FORT	Le manteau neigeux est faiblement stabilisé dans la plupart des pentes suffisamment raides.	Déclenchements d'avalanches probables même par faible surcharge dans de nombreuses pentes suffisamment raides. Dans certaines situations, de nombreux départs spontanés d'avalanches de taille moyenne, et parfois assez grosse, sont à attendre.
5 -TRÈS FORT	L'instabilité du manteau neigeux est généralisée.	De nombreuses et grosses avalanches se produisant spontanément sont à attendre y compris en terrain peu raide.

Quelques précisions :

Les « pentes raides » : Pentes particulièrement propices aux avalanches en raison de leur déclivité, de la configuration du terrain, de la proximité des crêtes...

Les « quelques pentes décrites dans le bulletin » : les caractéristiques de ces pentes sont généralement précisées dans le bulletin: altitude, exposition, topographie...

Les surcharges : données à titre indicatif. Forte (par exemple skieurs groupés) ou faible (par exemple skieur isolé, piéton).

Le terme **déclenchement** ou **accidentel** désigne les avalanches provoquées par surcharge, notamment par le(s) skieur(s).

Le terme spontané désigne les avalanches qui se produisent sans action extérieure.

Pour aller plus loin : quelques références...

- Une mine : l'ANENA (Association Nationale pour l'Etude de la Neige et des Avalanche) peut vous aider à trouver la documentation la mieux adaptée ce que vous recherchez : 15 rue Ernest Calvat, 38000 Grenoble. Site web : http://www.anena.org
- La FFME propose aussi des pages sur la neige et les avalanches : http://www.ffme.fr
- Un autre lien intéressant, en anglais : http://www.avalanche.org
- Les sports de montagne sous la direction de Jean-Paul Zuanon CAF. *Très complet, bonnes parties sur les avalanches, l'orientation en montagne, ...*
- Ski et Sécurité François Valla Publié par l'ANENA, Editions Glénat Grenoble, 1991. Bon petit bouquin clair et concis, nombreuses photos superbes, centré sur la pratique : un excellent choix.
- La neige, formation et Evolution Edmond Pahaut et Claude Sergent Brochure Météo-France, Centre d'Etudes de la Neige. Bonne référence pour une première approche.
- La Neige Robert Bolognesi Collection Miniguide Tout Terrain Nathan, 64 pages. Bon petit livre centré sur la pratique. Le formulaire de sondage à la fin de ce mémento est très largement inspiré de ce livre.

Attention!

Ce mémento rassemble quelques techniques qui font <u>plus ou moins</u> l'objet d'un consensus parmi les encadrants. Cependant, il n'existe pas de dogme : telle technique préconisée ici peut être discutable dans telle ou telle situation particulière. Les techniques évoluent rapidement et ne sont pas non plus à l'abri d'effets de mode : telle pratique courante aujourd'hui sera peut-être bannie demain pour une raison ou une autre.

L'idéal est donc de se former régulièrement, si possible auprès de sources différentes. A vous ensuite, une fois que vous maîtrisez les techniques de base, de savoir les utiliser toutes à bon escient.

Equivalence approximative entre les cotations ski-alpinisme

(source FFME.FR et CAMPTOCAMP.COM)

Blachère	Alpine	Ponctuelle Traynard	Description	Exemples
SM Skieur Moyen	F- à F+ (Facile)	S1 / S2	S1: Itinéraire facile ne nécessitant pas de technique particulière pour évoluer en sécurité, route forestière par exemple. S2: Pentes assez vastes, même un peu raides (25°), ou itinéraires vallonnés (niveau technique de contrôle des dérapages et virages en toutes neiges).	Charmant Som par le col de Porte Col du Sabot Pic Saint Michel Montagne de Sulens (Aravis) Grand Rocher depuis col du Barioz Crête de Brouffier au Taillefer Col du Tour Noir, versant Argentière Tête du Parmelan, voie normale
BS Bon Skieur	PD- à PD+ (Peu Difficile)	S3	Inclinaison des pentes jusqu'à 35° (pistes noires les plus raides des stations, en neige dure). L'évolution en toutes sortes de neige doit se pratiquer sans difficulté technique.	Cime de la Jasse, VN depuis Prabert Grand Van, voie normale Pas de la Coche, VN depuis Prabert Rocher Blanc, VN depuis la Martinette Chamechaude, voie normale Croix de Belledonne, voie normale Thabor de Maurienne depuis Bonnenuit Aiguille de l'Epaisseur depuis Bonnenuit Tabor de Matheysine Tournette, voie normale
TBS Très Bon Skieur	AD- à AD+ (Assez Difficile)	S4	Inclinaison des pentes jusqu'à 45° si l'exposition n'est pas trop forte; a partir de 30° et jusqu'à 40° si l'exposition est forte ou le passage étroit. Une très bonne technique à ski devient indispensable.	Piquet de Nantes en Matheysine Dent du Pra depuis Prabert Taillefer par la crête de Brouffier Brèche de la Meije versant Sud Dôme des Ecrins, voie normale Grande Lande de Domène, voie normale Pointe de l'Etendard, versant Nord Grand Colon, épaule sud-ouest
EBS Exceptionnellement Bon Skieur	D- à D+ (Difficile)	S5	Inclinaison de 45 à 50° voire plus si l'exposition est faible. A partir de 40° si l'exposition est forte.	Col du Belvédère, versant Nord Pic Ouest du Combeynot, versant NW Pointe de Comberousse, voie normale Grand Colon, couloir Nord Rocher Blanc, face NW Tour Ronde, couloir Gervasutti
<u>NC</u> Non Coté	TD- à ED+ / ABO (Très Difficile à Exceptionnellement Difficile)	S6 / S7	S6: Au delà de 50° si l'exposition est forte, ce qui est le plus souvent le cas. Sinon à partir de 55° pour de courts passages peu exposés. S7: Passages à 60° ou plus, ou saut de barres en terrain très raide ou exposé (ce qui est souvent synonyme)	Calotte des Agneaux Le Rateau, pentes SW Couloir N/NE des Courtes Grand Colon, couloir central face W Aiguille Verte, couloir Whymper Aiguille Verte, couloir Couturier Grand Galbert, couloir de l'Infernet

PROFIL NIVOLOGIQUE SIMPLIFIE (adapté d'après R. Bolognesi)												
Lieu:						Co	nditions	météo:				
Altitude :		m	Pente:	0	Orie	ntation :		Date :	•			Heure:
5	Dureté (4	manuel)	→ Résis	tance	2 (**)	1 0 \(\)	Type de grain	Humidité (1–5)	Commentaires	λ Partic• Grain□ Grain∧ Gobe	e fraîche cules reconnaissables s fins s à faces planes lets de surface
250 cm ·					Z						1 Impo 2 Bould 3 Bould 4 Eau c 5 Soup	e testée par boule ssible faire une boule e OK, gant reste sec e OK, gant humide oule au pressage boule e épaisse
											1 Poing 2 4 doi; 3 Un do 4 Crayo 5 Lame	contean
200 cm												GENERALEMENT ES filiformes à faibles résistances Fort risque naturel et accidentel Indentations
150 cm												Sensible aux surcharges, complexe, fort risque accidentel Pyramide inversée Sensible aux surcharges, fort risque accidentel
100 cm											STABLES A A A A A A A A A A A A A A A A A A A	Massif forte résistance Avalanches de fond si epose sur plan lisse et Pyramidal Coulées de surface ponctuelles, surtout pente
50 cm												Forte croûte de surface Avalanches improbables si Fouche regelée épaisse