SEGUNDA REEVALUACION ESTADISTICA INFERENCIAL II – 1ER PARCIAL

- 1. De manera indivdual los siguientes ejerciciosl
- 2. Empaqueta los tres archivos generados en los ejericios (1 excel y 2 en statgraphics), en un archivo comprimido en .rar.
- 3. El nombre del archivo generado será de la siguiente manera NombreApellido_Maricula_IIND_4E.rar

Ejemplo 1:

La revista *Motor Trend* presenta con frecuencia datos de rendimiento para automóviles, que compara el tamaño del motor en pulgadas cúbicas de desplazamiento (pcd) y las millas por galón (mpg) estimadas para ocho modelos representativos de automóviles subcompactos modelo 1984.

coches compactos	tamaño del motor (pcd) x	millas/galón (mpg), y	
Chevrolet Cavalier	121	30	
Datsun Nissan Stanza	120	31	
Dodge Omni	97	34	
Ford Escort	98	27	
Mazda 626	122	29	
Plymouth Horizon	97	34	
Renault Alliance/Encore	85	38	
Toyota Corolla	122	32	

Encuentre:

- a) Gráfico de dispersión
- b) Una estimación puntual para β_0 .
- c) Una estimación puntual para β_1
- d) Predica la cantidad de millas/galon si el tamaño del motor es de 155 (pcd).

Ejemplo 2: Una firma de renta de coches recabó los datos adjuntos sobre los costos de mantenimiento *y*, y las millas recorridas *x* para siete de sus automóviles.

Automóvil	Millas recorridas <i>x</i> en miles	Costos de manteni- miento y (dólares)		
А	55	299		
В	27	160		
С	36	215		
D	42	255		
E	65	350		
F	48	275		
G	29	207		

Encuentre:

- a) Gráfico de dispersión
- b) Una estimación puntual para $oldsymbol{eta}_{\scriptscriptstyle 0}$.
- c) Una estimación puntual para β_1
- d) Una estimación puntual para el costo promedio del mantenimiento de un coche con 36,000 millas recorridas.
- e) Prediga el costo para un coche con 29,000 millas recorridas.

Ejemplo 3: En un esfuerzo por determinar la relación entre el pago anual de los empleados y el número de faltas al trabajo por causa de enfermedad, una corporación grande estudió los registros personales de una muestra de doce empleados. Los datos pareados aparecen en la siguiente tabla.

	Pago anual	
Empleado	(miles de dólares)	Inasistencias
1	15.7	4
2	17.2	3
3	13.8	6
4	24.2	5
5	15	3
6	12.7	12
7	13.8	5
8	18.7	1
9	10.8	12
10	11.8	11
11	25.4	2
12	17.2	4

- a) Gráfico de dispersión
- b) Determine el coeficiente de correlación e interprete el resultado.
- c) Una estimación puntual para $oldsymbol{eta}_0$.
- d) Una estimación puntual para β_1
- e) Predica el número de faltas por enfermedad tendrían dos empleados si reciben un pago anual de 18.3 y 11.79 respectivamente.

Ejercicio 4: "La dureza de los árboles es difícil de medir directamente, sin embargo la densidad si es relativamente fácil de medir. Por ello es de gran interés disponer de un modelo que permita predecir la dureza de un árbol a partir de su densidad. Por este motivo se ha tomado una muestra de 36 eucaliptos australianos y se les midió su densidad (X) y su dureza (Y). Los resultados obtenidos son los de la tabla adjunta.

Densidad	Dureza	Densidad	Dureza	Densidad	Dureza
24 ¹ 7	484	39 ¹ 4	1210	53 ¹ 4	1880
24 ¹ 8	427	39 ¹ 9	989	56 ¹ 0	1980
27 ¹ 3	413	40 ¹ 3	1160	56 ¹ 5	1820
28 ¹ 4	517	40 ¹ 6	1010	57 ¹ 3	2020
28 ¹ 4	549	40 ¹ 7	1100	57 ¹ 6	1980
29 ¹ 0	648	40 ¹ 7	1130	59 ¹ 2	2310
30 ¹ 3	587	42 ¹ 9	1270	59 ¹ 8	1940
32 ¹ 7	704	45 ¹ 8	1180	66 ¹ 0	3260
35 ¹ 6	979	46 ¹ 9	1400	67 ¹ 4	2700
38 ¹ 5	914	48 ¹ 2	1760	68 ¹ 8	2890
38 ¹ 8	1070	51 ¹ 5	1710	69 ¹ 1	2740
39 ¹ 3	1020	51 ¹ 5	2010	69 ¹ 1	3140

- a) Gráfico de dispersión
- b) Determine el coeficiente de correlación e interprete el resultado.
- c) Una estimación puntual para β_0 .
- d) Una estimación puntual para β_1
- e) Con el mejor ajuste predecir la dureza de un árbol de densidad 20, 40, 60 y 80.

Ejercicio 5:

"Los datos de la tabla adjunta son el conjunto clásico de datos del test psicológico de Strong sobre retención de memoria. Los datos se tomaban de la siguiente manera: un conjunto de individuos memorizaban una lista de objetos inconexos y pasado un tiempo la recordaba. La variable p indica el porcentage de retención de memoria en promedio y la variable t es el tiempo transcurrido. El objetivo del estudio era explicar la variable p en función de t.

t	р	t	р	t	р	t	р
1	0'84	60	0'54	720	0′36	10080	0'08
5	0'71	120	0'47	1440	0'26		
15	0'61	240	0'45	2880	0'20		
30	0'56	480	0'38	5760	0'16		

- a) Gráfico de dispersión
- b) Determine el coeficiente de determinación e interprete el resultado.
- c) Una estimación puntual para β_0 .
- d) Una estimación puntual para β_1
- e) Con el mejor ajuste predecir el porcentaje de retención para un tiempo de 250, 131, 45

Ejercicio 6:

La resistencia del cemento $\binom{r}{}$ depende, entre otras cosas, del tiempo de secado del cemento $\binom{t}{}$. En un experimento se obtuvo la resistencia de bloques de cemento con diferente tiempo de secado los resultados fueron los siguientes.

Tiempo (días)	Resistencia (kg/cm²)					
1	130	13'3	118			
2	219	245	247			
3	298	280	241	242	262	
7	324	304	345	331	357	
28	418	426	40'3	357	373	

- a) Gráfico de dispersión
- b) Determine el coeficiente de determinación e interprete el resultado.
- c) Una estimación puntual para $oldsymbol{eta}_{\scriptscriptstyle 0}$.
- d) Una estimación puntual para $oldsymbol{eta}_{\!\scriptscriptstyle 1.}$
- e) Con el mejor ajuste predecir la resistencia al termino de 5 y 6 dias.