Grafos Eulerianos

Teoria dos Grafos - 2020

Prof. Roberto C. de Araujo

Uma trilha que passa por todas as arestas de um grafo G é chamada de *trilha de Euler* de G. Um grafo G é *euleriano* se G contém uma trilha de Euler fechada.

Problema das 7 pontes de Königsberg (atualmente, Kaliningrado): É possível achar um passeio que, começando em uma das regiões de terra de Königsberg (A, B, C ou D), passe uma vez em cada ponte e volte à região de origem?

Podemos definir um grafo G desta forma:

- * vértices ≅ regiões de terra
- * aresta ≅ pontes ligando as regiões correspondentes

Euler provou que um tal passeio não existe. Ele provou também resultados mais gerais sobre outros problemas do mesmo tipo.

Exercício: Dado o grafo G abaixo, encontre uma trilha de Euler fechada em G.

Teorema. Um grafo conexo não vazio e não trivial é euleriano se e somente se não contém vértices de grau ímpar.

Corolário. Se G é um grafo conexo que contém exatamente dois vértices u,v de grau impar, então G tem uma trilha de Euler com início em u e término em v.

Corolário. Um grafo conexo tem uma trilha de Euler se e somente se tem no máximo 2 vértices de grau ímpar.

Algoritmo de Fleury

Dado um grafo G, devolve um trilha T em G.

<u>Inicialização</u>: escolha $v_0 \in VG$ e faça $T_0 := (v_0)$.

Passo:

supondo que a trilha $T_i := (v_0, a_1, v_1, ..., a_i, v_i)$ já foi escolhida, escolha $a_{i+1} \in AG \setminus \{a_1, ..., a_i\}$ tal que

- i. v_i é extremo de a_{i+1} ;
- ii. a menos que não haja alternativa, a_{i+1} não é aresta de corte de $G_i = G \setminus \{a_1, ..., a_i\}$;

e faça $T_{i+1} := T_i(v_i, a_{i+1}, v_{i+1})$.

Repita o <u>Passo</u> até que este não possa mais ser implementado.

Corolário. Se G é euleriano então qualquer trilha em G construída pelo algoritmo de Fleury é uma trilha de Euler fechada em G.