Лекция 4

План лекции

1. Специальные свойства отношений

- 1.1. Рефлексивность
- 1.2. Антирефлексивность
- 1.3. Симметричность
- 1.4. Асимметричность
- 1.5. Антисимметричность
- 1.6. Транзитивность
- 1.7. Антитранзитивность

2. Виды отношений

- 2.1. Отношения эквивалентности
- 2.1.1. Свойства эквивалентных отношений
- 2.1.2. Классы эквивалентности
- 2.2. Отношения порядка
- 2.2.1. Способы задавания порядка
- 2.2.2. Упорядоченное множество
- 2.2.3. Частично упорядоченное множество
- 2.2.4. Вполне упорядоченное множество
- 2.2.5. Линейно упорядоченное множество
- 2.2.6. Дополнительные определения частично упорядоченных множеств
- 2.2.7. Диаграммы Хассе
- 2.2.8. Разбиение частично упорядоченного множества на цепи

Специальные свойства отношений

Рефлексивность

Отношение R на множестве X называется $pe\phi$ лексивным, если для любого $x \in X$ имеет место xRx, то есть, каждый элемент $x \in X$ находится в отношении R к самому себе.

Пример.

- R_1 "≤" на множестве вещественных чисел,
- R_2 "иметь общий делитель" на множестве целых чисел.

Все диагональные элементы *матрицы* равны 1; при задании отношения *графом* каждый элемент имеет петлю – дугу (x, x).

Пример задания рефлексивных отношений

Пусть задано отношение $R \subset A \times A$.

$$R = \{(a_1, a_1), (a_1, a_2), (a_2, a_1), (a_2, a_2), (a_3, a_3), \}$$

$$(a_4,a_1),(a_4,a_2)(a_4,a_3),(a_4,a_4),$$

	aı	a ₂	a ₃	a ₄	a ₅
aı	1	1			
a ₂	1	1			8
a ₃		18	1		
a ₄	1	1	1	1	
a5		1	1		1

Антирефлексивность

Пусть задано отношение $R \subseteq X \times X$

Отношение R на множестве X называется *антирефлексивным*, если из x_1Rx_2 следует, что $x_1 \neq x_2$.

Пример.

 R_1 — "<" на множестве вещественных чисел, R_2

— "быть сыном" на множестве людей.

Представление булевой матрицей:

Все диагональные элементы являются нулевыми.

Представление графом:

Ни одна вершина не имеет петли – нет дуг вида (x_i, x_i).

Симметричность

Пусть задано отношение $R \subseteq X \times X$

Отношение R на множестве X называется cummempuunum, если для пары

$(x_1,x_2) \in R$ из x_1Rx_2 следует x_2Rx_1

(иначе говоря, для любой пары отношение \mathbf{R} выполняется либо в обе стороны, либо не выполняется вообще).

Задание матрицей

Матрица симметричного отношения является симметричной относительно главной диагонали.

Задание графом

В графе для каждой дуги из x_i в x_k существует противоположно направленная дуга из x_k в x_i .

Пример задания симметричных отношений

Пусть задано отношение $R \subset A \times A$.

$$R = \{(a_1, a_4), (a_2, a_2), (a_2, a_3), (a_2, a_5), (a_3, a_5), (a_3, a_2), (a_4, a_4), (a_4, a_1), (a_5, a_2), (a_5, a_3)\}$$

Асимметричность

Отношение R называется *асимметричным*, если для пары $(x_1,x_2) \in R$ из x_1Rx_2 следует, что не выполняется x_2Rx_1 .

(иначе говоря, для любой пары отношение \mathbf{R} выполняется либо в одну сторону, либо не выполняется вообще).

Пример.

 R_1 — ">" на множестве вещественных чисел, R_2

— "быть сыном" на множестве людей.

Задание матрицей

Матрица асимметричного отношения не содержит единичных элементов, симметричных относительно главной диагонали.

Задание графом

В графе полностью отсутствуют противоположно направленные дуги.

Антисимметричность

Пусть задано отношение $R \subseteq X \times X$

Отношение R называется *антисимметричным*, если из x_1Rx_2 и x_2Rx_1 следует, что $x_1=x_2$.

Пример.

 $extit{R1}$ — " $extit{\leq}$ " на оси действительных чисел .

 R_2 — "есть делителем" – на множестве действительных чисел.

Транзитивность.

Пусть задано отношение $R \subseteq X \times X$

Отношение R называется *транзитивным*, если для любых x_1,x_2,x_3 из x_1Rx_2 и x_2Rx_3 следует x_1Rx_3 .

Пример.

 $R - "\le"$ и "<" на множестве действительных чисел – транзитивны.

Задание графом

В графе, задающем транзитивное отношение \mathbf{R} , для всякой пары дуг таких, что конец первой совпадает с началом второй, существует третья дуга, имеющая общее начало с первой и общий конец со второй.

Антитранзитивность

Отношение R называется *антитранзитивным*, если для любых x_1,x_2,x_3 из x_1Rx_2 и x_2Rx_3 следует, что x_1Rx_3 не выполняется.

Пример.

R1 — "быть следующим годом" на множестве лет, R2 — "быть отцом" на множестве людей.

Пример.

Пусть
$$X = \{\alpha, \beta, \gamma, \delta\}$$
. Пусть $R \subseteq X \times X$ определено в виде $R = \{(\alpha, \alpha_-, \alpha, \beta_-, \alpha, \delta_-, (\beta, \alpha_-, \delta, \alpha_-, \delta, \delta_-, \gamma, \delta_-, \gamma, \gamma)\}$.

- 1. R не является рефлексивным, поскольку $\beta \in X$, но $(\beta, \beta) \notin R$.
- 2. R не является симметричным, поскольку $(\gamma, \delta) \in R$, но $(\delta, \gamma) \notin R$.
- 3. R не является антисимметричным, поскольку $(\alpha, \beta) \in R$ и $(\beta, \alpha) \in R$, но $\alpha \neq \beta$.
- 4. R не является транзитивным, поскольку $(\beta, \alpha) \in R$, $(\alpha, \delta) \in R$, но $(\beta, \delta) \notin R$.

Виды отношений 1. Отношения эквивалентности

Некоторые элементы множества можно рассматривать как эквивалентные в том случае, когда любой из этих элементов при некотором рассмотрении может быть заменен другим. В этом случае говорят, что данные элементы находятся в отношении эквивалентности.

Отношение R на множестве X является **отношением эквивалентности**, если оно рефлексивно, симметрично и транзитивно.

- 1. Свойство **рефлексивности** проявляется в том, что каждый элемент эквивалентен самому себе или X X.
- 2. Высказывание, что два элемента являются эквивалентными, не требует уточнения, какой из элементов рассматривается первым, какой вторым, т. е. имеет место *хуух* свойство **симметричности.**
- 3. Два элемента, эквивалентные третьему, эквивалентны между собой, или имеет место *x у* и *y z z z* свойство **транзитивности.**

В качестве общего символа отношения эквивалентности используется символ « » (иногда символ « »). Для отдельных частных отношений эквивалентности используются другие символы:

«=»-для обозначения равенства; « | » - для обозначения параллельности; « » или « »- для обозначения логической эквивалентности.

Пример. Пусть A 1,2,3,4,5,6 и дано отношение R на A:

Легко проверить, что данное отношение рефлексивно, симметрично и транзитивно. Поэтому оно является отношением эквивалентности на множестве *A*.

Отношение эквивалентности R на множестве A разбивает его на подмножества, элементы которых эквивалентны друг другу и не эквивалентны элементам других подмножеств. В контексте отношений эквивалентности эти подмножества называются *классами* эквивалентности по отношению R.

Это разбиение можно представлять себе следующим образом. Пусть множество A — это набор разноцветных шаров, а отношение R задается условием: a, b R тогда и только тогда, когда a u b имеют одинаковый цвет. Поскольку R — отношение эквивалентности, каждый класс эквивалентности будет состоять из шаров, имеющих одинаковый цвет. Если определить отношение R условием: a, b R тогда и только тогда, когда шары a u b имеют одинаковый диаметр, то каждый класс эквивалентности будет состоять из шаров одинакового размера.

Пусть а А и R — отношение эквивалентности на А А. Пусть

Пример. Пусть А 1,2,3,4,5,6 и дано отношение эквивалентности:

Классы эквивалентности по отношению *R* были получены путем определения класса эквивалентности каждого элемента множества *A*:

4,1 R, и не существует никакого иного x Точно

так же, получаем

2 <i>x</i>	x,2 R x	<i>xR</i> 2 2,1,4
3 <i>x</i>	x ,3 R x	xR3 3,5
4 x	x ,4 R x	xR4 4,1,2
5 x	x,5 R x	<i>xR</i> 55,3
6 <i>x</i>	x,6 R x	<i>xR</i> 6 6