

If
$$A' = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}_{\text{and}} B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}_{\text{, then find }} (A+2B)'$$

We know that A = (A')'

$$\therefore A = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix}$$

$$\therefore A + 2B = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} + 2 \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 0 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 1 \\ 5 & 6 \end{bmatrix}$$

$$\therefore (A+2B)' = \begin{bmatrix} -4 & 5 \\ 1 & 6 \end{bmatrix}$$

Question 5:

For the matrices A and B, verify that (AB)' = B'A' where

$$A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$$

(i)
$$A = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 5 & 7 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$$

$$\therefore (AB)' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix}$$

Now,
$$A' = \begin{bmatrix} 1 & -4 & 3 \end{bmatrix}$$
, $B' = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$

$$\therefore B'A' = \begin{bmatrix} -1\\2\\1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 & -3\\2 & -8 & 6\\1 & -4 & 3 \end{bmatrix}$$

Hence, we have verified that (AB)' = B'A'.

(ii)
$$AB = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 5 & 7 \\ 2 & 10 & 14 \end{bmatrix}$$

$$\therefore (AB)' = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \end{bmatrix}$$

Now,
$$A' = [0 1 2], B' = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$$

$$\therefore B'A' = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \end{bmatrix}$$

Hence, we have verified that (AB)' = B'A'.

$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}, \text{ then verify that } A'A = I$$

$$A = \begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}, \text{ then verify that } A'A = I$$
Answer
(i)

$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

$$\therefore A' = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

$$A'A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$$

$$= \begin{bmatrix} (\cos\alpha)(\cos\alpha) + (-\sin\alpha)(-\sin\alpha) & (\cos\alpha)(\sin\alpha) + (-\sin\alpha)(\cos\alpha) \\ (\sin\alpha)(\cos\alpha) + (\cos\alpha)(-\sin\alpha) & (\sin\alpha)(\sin\alpha) + (\cos\alpha)(\cos\alpha) \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2\alpha + \sin^2\alpha & \sin\alpha\cos\alpha - \sin\alpha\cos\alpha \\ \sin\alpha\cos\alpha - \sin\alpha\cos\alpha & \sin^2\alpha + \cos^2\alpha \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Hence, we have verified that A'A = I.

$$A = \begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}$$

$$\therefore A' = \begin{bmatrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix}$$

$$A'A = \begin{bmatrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix} \begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}$$

$$\begin{bmatrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix} \begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}$$

$$= \begin{bmatrix} (\sin \alpha)(\sin \alpha) + (-\cos \alpha)(-\cos \alpha) & (\sin \alpha)(\cos \alpha) + (-\cos \alpha)(\sin \alpha) \\ (\cos \alpha)(\sin \alpha) + (\sin \alpha)(-\cos \alpha) & (\cos \alpha)(\cos \alpha) + (\sin \alpha)(\sin \alpha) \end{bmatrix}$$

$$= \begin{bmatrix} \sin^2 \alpha + \cos^2 \alpha & \sin \alpha \cos \alpha - \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha - \sin \alpha \cos \alpha & \cos^2 \alpha + \sin^2 \alpha \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Hence, we have verified that A'A = I.

Question 7:

(i) Show that the matrix
$$A = \begin{bmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{bmatrix}_{\text{is a symmetric matrix}}$$

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}_{\text{is a skew symmetric matrix}}$$
(ii) Show that the matrix

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

Answer

(i) We have:

$$A' = \begin{bmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{bmatrix} = A$$

$$A' = A$$

Hence, A is a symmetric matrix.

(ii) We have:

$$A' = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} = -A$$

$$A' = -A$$

Hence, A is a skew-symmetric matrix.

Question 8:

 $A = \begin{bmatrix} 1 & & 5 \\ 6 & & 7 \end{bmatrix} \text{, verify that}$

(i) (A+A') is a symmetric matrix

(ii) $(A-A')_{is}$ a skew symmetric matrix

$$A' = \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}$$

$$A + A' = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix}$$

$$\therefore (A + A')' = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix} = A + A'$$

$$\therefore (A+A')' = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix} = A+A'$$

Hence, $\left(A+A'\right)_{\text{is a symmetric matrix.}}$

(ii) A-A' =
$$\begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$$
 - $\begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}$ = $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

$$(A-A')' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -(A-A')$$

Hence, (A-A') is a skew-symmetric matrix.

Question 9:

$$\frac{1}{2} (A+A') \frac{1}{\text{and}} \frac{1}{2} (A-A') \text{, when} \quad A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$
 Answer

$$A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$
 The given matrix is
$$A' = \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{bmatrix}$$

$$A + A' = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} + \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\frac{1}{2} (A + A') = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

****** END ******