

1 **Amendments to the Claims:**

2 This listing of claims will replace all prior versions, and listings of claims in the application:

3 **Listing of Claims:**

4 1-31. (Canceled)

1 32. (Previously presented) A probe nucleic acid having the formula

3 wherein,

4 NA is a nucleic acid chain comprising nucleic acid monomers selected from the
5 group consisting of natural nucleic acids, modified nucleic acids and
6 combinations thereof;

7 R¹, R², R³ and R⁴ are linker moieties independently selected from the group
8 consisting of substituted or unsubstituted alkyl and substituted or
9 unsubstituted heteroalkyl;

10 Nu¹ and Nu² are members independently selected from the group consisting of
11 nucleotide residues and nucleoside residues;

12 R is a molecular energy transfer donor;

13 Q is a molecular energy acceptor; and

14 X and Y are the same or different and are non-nucleic acid stabilizing moieties
15 that interact to bring R and Q into operative proximity, thereby enabling
16 transfer of energy from R to Q, wherein said probe nucleic acid sequence
17 is not hybridized to a target nucleic acid.

1 33. (Currently amended) The probe nucleic acid compound according to
2 claim 32, wherein said molecular energy transfer donor is a fluorophore.

1 34. (Currently amended) The probe nucleic acid compound according to
2 claim 32, wherein said molecular energy acceptor is a fluorescence quencher.

1 35. (Currently amended) The probe nucleic acid compound according to
2 claim 32, wherein X and Y are both hydrophobic moieties.

1 36. (Currently amended) The probe nucleic acid compound according to
2 claim 35, wherein X and Y are members independently selected from the group consisting of
3 saturated hydrocarbons, unsaturated hydrocarbons, steroids, fatty acids, fatty alcohols and
4 hydrophobic peptides.

1 37. (Currently amended) The probe nucleic acid compound according to
2 claim 32, wherein natural nucleic acids are members selected from the group consisting of
3 deoxyribonucleotides, ribonucleotides and combinations thereof.

1 38. (Currently amended) The probe nucleic acid compound according to
2 claim 32, wherein said modified nucleic acids are peptide nucleic acids.

1 39. (Currently amended) The probe nucleic acid compound according to
2 claim 32, wherein said nucleic acid monomers are joined by linkages that are members
3 independently selected from the group consisting of phosphodiesters and modified
4 phosphodiesters.

1 40. (Currently amended) The probe nucleic acid compound according to
2 claim 39, wherein said modified phosphodiesters are members selected from the group
3 consisting of phosphorothioates and phosphoramidates.

1 41. (Currently amended) The probe nucleic acid compound according to
2 claim 32, wherein said nucleic acid chain further comprises a hybridization enhancing moiety.

1 42. (Currently amended) The probe nucleic acid compound according to
2 claim 41, wherein said hybridization enhancing moiety is a member selected from the group
3 consisting of intercalating agents, minor groove binders and modified exocyclic bases.

1 43. (Canceled)

1 44. (Previously Presented) The probe nucleic acid compound according to
2 claim 32, wherein said compound is immobilized on a solid surface.

1 45. (Currently amended) A method for amplifying a polynucleotide, wherein
2 a probe nucleic acid compound according to claim 32 is a primer in said method, said method
3 comprising:

- 4 (a) hybridizing said primer to said polynucleotide; and
5 (b) amplifying said polynucleotide.

1 46. (Currently amended) The method according to claim 45, wherein said
2 amplifying is a member selected from the group consisting of polymerase chain reaction (PCR),
3 nucleic acid sequence based amplification (NASBA), strand displacement amplification (SDA)
4 and combinations thereof.

1 47. (Currently amended) A method for detecting or quantitating a nucleic
2 acid, wherein the probe nucleic acid compound according to claim 32 is used as a probe, said
3 method comprising:

- 4 (a) hybridizing said compound to said nucleic acid; and
5 (b) detecting a change in fluorescence of said compound, thereby detecting or
6 quantitating said nucleic acid .

1 48. (Previously Presented) The method according to claim 47, wherein said
2 method comprises a member selected from the group consisting of 5'-nuclease assay, rolling
3 circle amplification and combinations thereof.

1 49. (Currently amended) A kit for quantitating nucleic acid, said kit
2 comprising a probe nucleic acid compound according to claim 32.

1 50. (Currently amended) A probe nucleic acid compound having the formula:
2

4 wherein,

5 CHOL is a cholesterol derivative;

6 R¹, R², R³ and R⁴ are linker moieties independently selected from the group
7 consisting of substituted or unsubstituted alkyl and substituted or
8 unsubstituted heteroalkyl;

9 Nu¹ and Nu² are members independently selected from the group consisting of
10 nucleotide residues and nucleoside residues;

11 NA is a nucleic acid sequence;

12 D is a donor of light energy; and

13 Q is a quencher of light energy,

14 wherein the CHOL moieties interact to bring D and Q into operative proximity,
15 thereby enabling transfer of energy from D to Q, and

16 wherein said probe nucleic acid sequence is not hybridized to a target nucleic
17 acid.

1 51. (Currently amended) The probe nucleic acid compound according to
2 claim 50, wherein R²-CHOL and R³-CHOL are independently selected and have structures
3 according to the formula:

5 wherein,

6 R¹¹ is a member selected from the group consisting of substituted or unsubstituted
7 alkyl and substituted or unsubstituted heteroalkyl;
8 PEG is polyethylene glycol;
9 Y³ is an organic functional group adjoining said PEG to said CHOL.

1 52. (Currently amended) The probe nucleic acid compound according to
2 claim 51, wherein said PEG has from about 2 to about 20 ethylene glycol subunits.

1 53. (Currently amended) The probe nucleic acid compound according to
2 claim 51 in which R¹¹ is substituted or unsubstituted alkyl.

1 54. (Currently amended) The probe nucleic acid compound according to
2 claim 53, wherein R¹¹ is C₁-C₆ substituted or unsubstituted alkyl.

1 55. (Currently amended) The probe nucleic acid compound according to
2 claim 51, wherein Y³-CHOL has the structure:

1 56. (Currently amended) The probe nucleic acid compound according to
2 claim 50, wherein Nu¹ and Nu² are nucleotides having an exocyclic amine group to which -R¹-D
3 and -R⁴Q are attached, respectively.

1 57. (Currently amended) A probe nucleic acid compound having the formula:

3 wherein,

4 NA is a nucleic acid sequence;
5 Nu¹ and Nu² are members independently selected from the group consisting of
6 nucleotide residues and nucleoside residues;
7 Y¹ and Y² are linking groups independently selected from the group consisting of
8 substituted or unsubstituted alkyl and substituted or unsubstituted
9 heteroalkyl;
10 R⁵ and R⁶ are linking groups independently selected from the group consisting of
11 substituted or unsubstituted alkyl and substituted or unsubstituted
12 heteroalkyl;
13 D is a donor of light energy; and
14 Q is a quencher of light energy,
15 wherein each CHOL interacts with the other CHOL to bring D and Q into
16 operative proximity, thereby enabling transfer of energy from D to Q, and
17 wherein said probe nucleic acid sequence is not hybridized to a target nucleic
18 acid.

1 58. (Currently amended) The probe nucleic acid compound according to
2 claim 57, wherein Y¹ and Y² are members independently selected from substituted or
3 unsubstituted heteroalkyl.

1 59. (Currently amended) The probe nucleic acid compound according to
2 claim 58, wherein Y¹ and Y² are polyethylene glycol.

60. (Currently amended) The probe nucleic acid compound according to
claim 59, wherein said polyethylene glycol has from about 2 to about 20 ethylene glycol
subunits.

1 61. (Currently amended) The probe nucleic acid compound according to
2 claim 57, wherein Y¹-CHOL and Y²-CHOL have the structure:

3

1 62. (Cancelled)

