Co	ntents		8 Mi 8.1		22 22
				8.1.1 Kirchhoff's Theorem	22
1 Bo		1		8.1.2 Tutte's Matrix	22
1.1		1		8.1.3 Cayley's Formula	22
1.2		1		8.1.4 Erdős-Gallai theorem	22
1.3 1.4	3 , ,	1		8.1.5 Havel-Hakimi algorithm	
	10 Optimization			8.1.6 Hall's marriage theorem	
2 Do	ata Structure	2			 22
2.1	Bigint	2			22
2.2	2 Dark Magic	2			
2.3	Disjoint Set	3	0.7		22
2.4	Link-Cut Tree	3		, 3	22
2.5	5 LiChao Segment Tree	3	8.3	DP-opt Condition	
2.6	5 Treap	4		8.3.1 totally monotone (concave/convex)	
2.7	7 Sparse Table	4		8.3.2 monge condition (concave/convex)	22
2.8	B Linear Basis	4	8.4	Convex 1D/1D DP	22
		_	8.5	ConvexHull Optimization	23
3 Gr	· ·	5	8.6	Josephus Problem	23
3.1	Euler Circuit	5	8.7	Cactus Matching	23
	BCC Vertex	5		DLX	24
	4 2-SAT (SCC)	5		Tree Knapsack	
	5 Lowbit Decomposition	6		0 N Queens Problem	
3.6	· · · · · · · · · · · · · · · · · · ·	6		1 Aliens Optimization	
3.7		7	0.1	Allens Optimization	24
	3 Virtural Tree	7	4	Davata	
3.9		7	1	Basic	
	0 Tree Hashing	8			
	1 Minimum Mean Cycle	8	1.1	vimrc	
	2 Mo's Algorithm on Tree	8	1 -	1.0	
	3 Minimum Steiner Tree	8		s nu rnu bs=2 ru mouse=a encoding=utf-8	
	4 Directed Minimum Spanning Tree	9	se c	in et sw=4 sts=4 t_Co=256 tgc sc hls	
3.1	5 Dominator Tree	9	syn	on	
4 14	extending C Flow	10	colo	rscheme desert	
	atching & Flow I Kuhn Munkres	10 10	file	type indent on	
	2 Bipartite Matching	10	inor	emap { <cr> {<cr>}<esc>0</esc></cr></cr>	
	3 General Graph Matching	10		<f8> <esc>:w<cr>:!clear && g++ "%" -o "%<" -</cr></esc></f8>	
	4 Minimum Weight Matching (Clique version)	10		fsanitize=address -fsanitize=undefined -g && echo	
4.		11		success <cr></cr>	
4.0	5 Flow Models	11	man	<f9> <esc>:w<cr>:!clear && g++ "%" -o "%<" -02 &&</cr></esc></f9>	
4.	7 Dinic	12	map	echo success <cr></cr>	
4.8	Minimum Cost Maximum Flow	12	man	<f10> <esc>:!./"%<"<cr></cr></esc></f10>	
4.9	Global Min-Cut	12	ıllap	<p10> <e30>.:./ %< <0R></e30></p10>	
5 M	ath	13	1 2	Increase Stack	
	Prime Table	13	1.2	increase stack	
5.2	$2 \mid rac{n}{i} \mid$ Enumeration $\ldots \ldots \ldots \ldots \ldots$	13		t int size = 256 << 20;	
5.2	$2 \ \lfloor rac{n}{2} \rfloor$ Enumeration	13 13		t int size = 256 << 20; ster long rsp asm("rsp");	
5.3 5.3 5.4	$2 \ \lfloor \frac{n}{4} \rfloor$ Enumeration	13 13	regi		
5.2 5.3 5.4 5.5	$2 \ \lfloor \frac{n}{2} \rfloor$ Enumeration	13 13 13 13	regi char	ster long rsp asm("rsp ["]);	
5.2 5.3 5.4 5.6	$2 \ \lfloor \frac{n}{2} \rfloor$ Enumeration	13 13 13 13 13	regi char	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p));</pre>	
5.2 5.3 5.4 5.5 5.0 5.0	$2 \left\lfloor \frac{n}{4} \right\rfloor$ Enumeration 3 ax+by=gcd 4 Pollard Rho 5 Pi Count (Linear Sieve) 5 Range Sieve 6 Miller Rabin 6 Inverse Element 5 Inverse Element 6 Inverse Element 6 Enumeration 5 Inverse Element 6 Inverse El	13 13 13 13 13 13 14	regi char as	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain</pre>	
5.2 5.3 5.4 5.5 5.5 5.5 5.5	$2 \left\lfloor \frac{n}{4} \right\rfloor$ Enumeration 3 ax+by=gcd 4 Pollard Rho $5 \text{ Pi Count (Linear Sieve)}$ 5 Range Sieve 7 Miller Rabin $3 \text{ Inverse Element}$ $5 \text{ Euler Phi Function}$	13 13 13 13 13 13 14 14	regi char as	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p));</pre>	
5.3 5.4 5.5 5.6 5.5 5.5 5.5	$2 \left\lfloor \frac{n}{4} \right\rfloor$ Enumeration 3 ax+by=gcd 4 Pollard Rho 5 Pi Count (Linear Sieve) 5 Range Sieve 7 Miller Rabin 6 Inverse Element 6 Euler Phi Function 7 Gauss Elimination 8 Case Sieve 7 Bush Sieve S	13 13 13 13 13 13 14 14 14	regi char as // m as	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak));</pre>	
5.3 5.4 5.5 5.6 5.5 5.5 5.1 5.1	2	13 13 13 13 13 13 14 14 14	regi char as	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak));</pre>	
5.2 5.3 5.4 5.5 5.0 5.1 5.1 5.1	2 \(\frac{n}{4} \) Enumeration 5 ax+by=gcd 4 Pollard Rho 5 Pi Count (Linear Sieve) 5 Range Sieve 7 Miller Rabin 8 Inverse Element 9 Euler Phi Function 0 Gauss Elimination 1 Fast Fourier Transform 2 Chinese Remainder	13 13 13 13 13 14 14 14 14 14	regichar as // m as	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization</pre>	
5.2 5.3 5.4 5.6 5.0 5.0 5.1 5.1 5.1 5.1	2 \(\frac{n}{2} \) Enumeration 5 ax+by=gcd 4 Pollard Rho 5 Pi Count (Linear Sieve) 6 Range Sieve 7 Miller Rabin 8 Inverse Element 9 Euler Phi Function 0 Gauss Elimination 1 Fast Fourier Transform 2 Chinese Remainder 3 Berlekamp Massey	13 13 13 13 13 14 14 14 14 14	regichar as // m as 1.3	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("Ofast,no-stack-protector")</pre>	
5.2 5.3 5.4 5.5 5.5 5.5 5.7 5.1 5.1 5.1 5.1	2	13 13 13 13 13 14 14 14 14 14 14	regicharas // mas //	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops")</pre>	
5.2 5.3 5.4 5.5 5.6 5.7 5.1 5.1 5.1 5.1 5.1	2	13 13 13 13 13 14 14 14 14 14 14 15	regi char as // m as 1.3 #pra #pra #pra	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4")</pre>	
5.2 5.5 5.6 5.6 5.1 5.1 5.1 5.1 5.1 5.1	2	13 13 13 13 13 14 14 14 14 14 14 15 16	regi char as // m as 1.3 #pra #pra #pra	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops")</pre>	
5.2 5.5 5.6 5.6 5.1 5.1 5.1 5.1 5.1 5.1 5.1	2	13 13 13 13 13 14 14 14 14 14 15 16	regi char as // m as 1.3 #pra #pra #pra	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4")</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1	2	13 13 13 13 13 14 14 14 14 14 15 16 16	regichar as // m as 1.3 #pra #pra #pra	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("Ofast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native")</pre>	
5.2 5.3 5.4 5.5 5.0 5.5 5.1 5.1 5.1 5.1 5.1 5.1	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16	regichar as // m as 1.3 #pra #pra #pra	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4")</pre>	
5.2 5.4 5.5 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	2	13 13 13 13 13 14 14 14 14 14 15 16 16 16 16	regichar as // m as 1.3 #pra #pra #pra 1.4	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization</pre>	
5.2 5.4 5.5 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17	regichar as // m as 1.3 #pra #pra #pra	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() {</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 6 Ge	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 16 17 17	regichar as // m as 1.3 #pra #pra #pra 1.4	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf;</pre>	
5.2 5.3 5.4 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 6 6 6	2. [\frac{n}{2} \] Enumeration 3. ax+by=gcd 4. Pollard Rho 5. Pi Count (Linear Sieve) 5. Range Sieve 7. Miller Rabin 8. Inverse Element 9. Euler Phi Function 0. Gauss Elimination 1. Fast Fourier Transform 2. Chinese Remainder 3. Berlekamp Massey 4. NTT 5. Polynomial Operations 6. FWT 7. DiscreteLog 8. Quadratic residue 9. De-Bruijn 20. Simplex Construction 21. Simplex 22. Sometry Basic Geometry	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 16 17 17	regicharas // mas 1.3 #pra #pra #pra 1.4 stat stat if	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("Ofast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) {</pre>	
5.2 5.3 5.4 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 6 Ge 6.1	2	13 13 13 13 13 13 14 14 14 14 15 16 16 16 17 17	regichar as // m as 1.3 #pra #pra #pra 1.4	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin);</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.2 6 Ge 6.1 6.2	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 18	regichar as // m as 1.3 #pra #pra #pra 1.4 stat stat if en	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF;</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 16 17 17 17 17 17 18 18	regichar as // m as 1.3 #pra #pra #pra 1.4 stat stat if en	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin);</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 18 18 18	regichar as // m as 1.3 #pra #pra #pra 1.4 stat stat if en	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF;</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 18 18 18 18	regichar as // m as 1.3 #pra #pra #pra 1.4 stati if en if p }	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF;</pre>	
5.2 5.3 5.4 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5	2. [\frac{n}{2} \] Enumeration 3. ax+by=gcd 4. Pollard Rho 5. Pi Count (Linear Sieve) 5. Range Sieve 7. Miller Rabin 3. Inverse Element 9. Euler Phi Function 0. Gauss Elimination 1. Fast Fourier Transform 2. Chinese Remainder 3. Berlekamp Massey 4. NTT 5. Polynomial Operations 6. FWT 7. DiscreteLog 8. Quadratic residue 9. De-Bruijn 20. Simplex Construction 21. Simplex 20. Cometry Basic Geometry 2. Circle Class 3. 2. D Convex Hull 4. 3D Convex Hull 4. 3D Convex Hull 5. 2D Cosest Pair 7. kD Closest Pair (3D ver.)	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 18 18 18 18 18	regichar as // m as 1.3 #pra #pra #pra 1.4 stati if en if p }	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf;</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.6	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 16 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	regichar as // m as 1.3 #pra #pra #pra 1.4 stat sta if en if p } ret }	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("Ofast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++;</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.6	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	regichar as // m as 1.3 #pra #pra #pra 1.4 stat stat if en if p } ret } temp	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("Ofast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T ></pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.6 6.5 6.6 6.6	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	regichar as // m as 1.3 #pra #pra #pra 1.4 stat if en if p ret } temps stat	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("Ofast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) {</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.6 6.5 6.6 6.6	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	regicharas // mas 1.3 #pra #pra #pra #pra 1.4 stat if en if p } ret } temps stat reg	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,sse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T = 1; _ = 0; }</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 6.6 6.2 6.4 6.5 6.6 6.5 6.6 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	regichar as // m as 1.3 #pra #pra #pra #pra 1.4 stat if en if p } ret } temp stat reg	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,sse3,sse4") gma GCC target("popent,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); }</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.4 6.5 6.4 6.5 6.4 6.5 6.7 7 St	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	regichar _as // m _as 1.3 #pra #pra #pra 1.4 stat if en if p } tempt statr reg whiif(<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popent,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { = -1; c = gc(); } </pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.2 6.3 6.4 6.5 6.4 6.5 6.7 7 St 7.1	2	13 13 13 13 13 13 14 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	regichar _as // m _as 1.3 #pra #pra #pra 1.4 stata if en if p } tempt statt regichien	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { = -1; c = gc(); } c == EOF) return false;</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.4 6.5 6.7 7 St 7.1 7.2	2	13 13 13 13 13 13 14 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	regicharas // mas 1.3 #pra #pra #pra 1.4 stat sta if en if p } ret } tempt stat reg whi if(whi	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T _ = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { _ = -1; c = gc(); } c == EOF) return false; le('0'<=c&&c<='9') _ = _ * 10 + c - '0', c = gc(); }</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.4 6.5 6.7 7 St 7.2 7.2	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	regicharas // mas 1.3 #pra #pra #pra 1.4 stat sta if en if p } ret } tempt stat reg whi if(whi	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { = -1; c = gc(); } c == EOF) return false;</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	Part Enumeration Part Part	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	regichar _as // m _as 1.3 #pra #pra #pra 1.4 stata if en if p } ret } tempt stata regularity	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T _ = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { _ = -1; c = gc(); } c == EOF) return false; le('0'<=c&&c<='9') _ = _ * 10 + c - '0', c = gc(); }</pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.5 6.5 6.7 7 St 7.1 7.2 7.5 7.5	Part Enumeration Part Part	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	regichar _as // m _as 1.3 #pra #pra #pra 1.4 stata if en if p } ret } tempt stata regularity	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T _ = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { _ = -1; c = gc(); } c == EOF) return false; le('0'<=c&&c<='9') _ = _ * 10 + c - '0', c = gc(); =; </pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	Part Enumeration Part Part	13 13 13 13 13 13 14 14 14 14 14 14 15 16 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 18 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20	regichar -as // m -as 1.3 #pra #pra #pra 1.4 stata if p } temp stata if(whii if(whii -ret }	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,ssse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T _ = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { _ = -1; c = gc(); } c == EOF) return false; le('0'<=c&&c<='9') _ = _ * 10 + c - '0', c = gc(); =; </pre>	
5.2 5.3 5.4 5.5 5.5 5.3 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.1 6.1 7 St 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	2	13 13 13 13 13 13 14 14 14 14 14 14 15 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	regicharas // mas 1.3 #pra #pra #pra 1.4 stat if en f p } temp stat reg whi if(i whi if(i - ret } temp	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("Ofast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,sse3,sse4") gma GCC target("popent,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { = -1; c = gc(); } c == EOF) return false; le('0'<=c&&c<='9') _ = _ * 10 + c - '0', c = gc(); urn true; late < typename T, typenameArgs ></pre>	
5.2 5.3 5.4 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.2 6.3 6.4 6.5 6.4 6.5 7 St 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	2	13 13 13 13 13 13 14 14 14 14 14 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	regicharas // mas 1.3 #pra #pra #pra 1.4 stat if en f p } ret } temp stat reg whi if(whi ret } temp stat	<pre>ster long rsp asm("rsp"); *p = (char*)malloc(size)+size, *bak = (char*)rsp; m("movq %0, %%rsp\n"::"r"(p)); ain m("movq %0, %%rsp\n"::"r"(bak)); Pragma Optimization gma GCC optimize("0fast,no-stack-protector") gma GCC optimize("no-math-errno,unroll-loops") gma GCC target("sse,sse2,sse3,sse3,sse4") gma GCC target("popcnt,abm,mmx,avx,tune=native") IO Optimization ic inline int gc() { tic char buf[1 << 20], *p = buf, *end = buf; (p == end) { d = buf + fread(buf, 1, 1 << 20, stdin); (end == buf) return EOF; = buf; urn *p++; late < typename T > ic inline bool gn(T &_) { ister int c = gc(); register T = 1; _ = 0; le(('0'>c c>'9') && c!=EOF && c!='-') c = gc(); c == '-') { = -1; c = gc(); } c == EOF) return false; le('0'<=c&&c<='9') _ = _ * 10 + c - '0', c = gc(); =; urn true;</pre>	

2 Data Structure

```
2.1 Bigint
class BigInt{
private
using lld = int_fast64_t;
#define PRINTF_ARG PRIdFAST64
#define LOG_BASE_STR "9"
static constexpr lld BASE = 1000000000;
static constexpr int LOG_BASE = 9;
vector<lld> dig; bool neg;
inline int len() const { return (int) dig.size(); }
inline int cmp_minus(const BigInt& a) const {
 if(len() == 0 && a.len() == 0) return 0;
 if(neg ^ a.neg)return a.neg ^ 1;
 if(len()!=a.len())
   return neg?a.len()-len():len()-a.len();
 for(int i=len()-1;i>=0;i--) if(dig[i]!=a.dig[i])
  return neg?a.dig[i]-dig[i]:dig[i]-a.dig[i];
 return 0;
inline void trim(){
 while(!dig.empty()&&!dig.back())dig.pop_back();
 if(dig.empty()) neg = false;
public:
BigInt(): dig(vector<lld>()), neg(false){}
BigInt(lld a): dig(vector<lld>()){
 neg = a<0; dig.push_back(abs(a));</pre>
 trim();
BigInt(const string& a): dig(vector<lld>()){
 assert(!a.empty()); neg = (a[0]=='-');
 for(int i=((int)a.size())-1;i>=neg;i-=LOG_BASE){
  11d cur = 0;
   for(int j=min(LOG_BASE-1,i-neg);j>=0;j--)
   cur = cur*10+a[i-j]-'0';
  dig.push_back(cur);
 } trim();
inline bool operator<(const BigInt& a)const
 {return cmp_minus(a)<0;}
inline bool operator<=(const BigInt& a)const</pre>
 {return cmp_minus(a)<=0;}
inline bool operator==(const BigInt& a)const
  {return cmp_minus(a)==0;}
 inline bool operator!=(const BigInt& a)const
  {return cmp_minus(a)!=0;}
inline bool operator>(const BigInt& a)const
 {return cmp_minus(a)>0;}
inline bool operator>=(const BigInt& a)const
  {return cmp_minus(a)>=0;}
BigInt operator-() const {
 BigInt ret = *this;
 ret.neg ^= 1; return ret;
BigInt operator+(const BigInt& a) const {
 if(neg) return -(-(*this)+(-a));
  if(a.neg) return (*this)-(-a);
  int n = max(a.len(), len());
 BigInt ret; ret.dig.resize(n);
 11d pro = 0;
 for(int i=0;i<n;i++) {</pre>
  ret.dig[i] = pro;
  if(i < a.len()) ret.dig[i] += a.dig[i];</pre>
  if(i < len()) ret.dig[i] += dig[i];</pre>
  pro = 0
   if(ret.dig[i] >= BASE) pro = ret.dig[i]/BASE;
  ret.dig[i] -= BASE*pro;
 if(pro != 0) ret.dig.push_back(pro);
 return ret;
BigInt operator-(const BigInt& a) const {
 if(neg) return -(-(*this) - (-a));
  if(a.neg) return (*this) + (-a);
  int diff = cmp_minus(a);
  if(diff < 0) return -(a - (*this));</pre>
  if(diff == 0) return 0;
 BigInt ret; ret.dig.resize(len(), 0);
  for(int i=0;i<len();i++) {</pre>
  ret.dig[i] += dig[i];
```

```
if(i < a.len())    ret.dig[i] -= a.dig[i];
   if(ret.dig[i] < 0){</pre>
    ret.dig[i] += BASE;
    ret.dig[i+1]--;
  ret.trim(); return ret;
 BigInt operator*(const BigInt& a) const {
  if(!len()||!a.len()) return 0;
  BigInt ret; ret.dig.resize(len()+a.len()+1);
  ret.neg = neg ^ a.neg;
  for(int i=0;i<len();i++)</pre>
   for(int j=0;j<a.len();j++){</pre>
    ret.dig[i+j] += dig[i] * a.dig[j];
    if(ret.dig[i+j] >= BASE) {
     lld x = ret.dig[i+j] / BASE;
     ret.dig[i+j+1] += x;
     ret.dig[i+j] -= x * BASE;
  ret.trim(); return ret;
 BigInt operator/(const BigInt& a) const {
  assert(a.len());
  if(len() < a.len()) return 0;</pre>
  BigInt ret; ret.dig.resize(len()-a.len()+1);
  ret.neg = a.neg;
  for(int i=len()-a.len();i>=0;i--){
   11d 1 = 0, r = BASE;
   while(r-1 > 1){
    11d \ mid = (1+r)>>1;
    ret.dig[i] = mid;
    if(ret*a<=(neg?-(*this):(*this))) 1 = mid;</pre>
    else r = mid;
   ret.dig[i] = 1;
  ret.neg ^= neg; ret.trim();
  return ret;
 BigInt operator%(const BigInt& a) const {
  return (*this) - (*this) / a * a;
 friend BigInt abs(BigInt a) { a.neg = 0; return a; }
friend void swap(BigInt& a, BigInt& b){
  swap(a.dig, b.dig); swap(a.neg, b.neg);
 friend istream& operator>>(istream& ss, BigInt& a){
  string s; ss >> s; a = s; return ss;
 friend ostream&operator<<(ostream&o, const BigInt&a){</pre>
  if(a.len() == 0) return o << '0';
if(a.neg) o << '-':
  if(a.neg) o <<</pre>
  o << a.dig.back();
  for(int i=a.len()-2;i>=0;i--)
   o<<setw(LOG_BASE)<<setfill('0')<<a.dig[i];
  return o;
 inline void print() const {
  if(len() == 0){putchar('0');return;}
  if(neg) putchar('-');
printf("%" PRINTF_ARG, dig.back());
  for(int i=len()-2;i>=0;i--)
printf("%0" LOG_BASE_STR PRINTF_ARG, dig[i]);
 #undef PRINTF_ARG
 #undef LOG_BASE_STR
};
2.2 Dark Magic
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
using __gnu_pbds::pairing_heap_tag;
using __gnu_pbds::binary_heap_tag;
using __gnu_pbds::binomial_heap_tag;
using __gnu_pbds::rc_binomial_heap_tag;
using __gnu_pbds::thin_heap_tag;
template<typename T>
```

using pbds_heap=__gnu_pbds::prioity_queue<T,less<T>,\

pairing_heap_tag>;

```
// __gnu_pbds::priority_queue<T,less<T>>::
                                                            bool is_rch(){return !is_root() && par->ch[1]==this;}
                                                           } *node[maxn], *stk[maxn];
    point iterator
// x = pq.push(10); pq.modify(x, 87); a.join(b);
                                                           int top;
using __gnu_pbds::rb_tree_tag;
                                                           void to_child(Node* p,Node* c,bool dir){
using __gnu_pbds::ov_tree_tag;
                                                            p->ch[dir]=c;
using __gnu_pbds::splay_tree_tag;
                                                            p->up();
template<typename T>
using ordered_set = __gnu_pbds::tree<T,\</pre>
                                                           inline void rotate(Node* node){
__gnu_pbds::null_type,less<T>,rb_tree_tag,\
                                                            Node* par=node->par;
                                                            Node* par_par=par->par
 _gnu_pbds::tree_order_statistics_node_update>;
// find_by_order, order_of_key
                                                            bool dir=node->is_rch();
template<typename A, typename B>
                                                            bool par_dir=par->is_rch();
using hTable1=__gnu_pbds::cc_hash_table<A,B>;
                                                            to_child(par, node->ch[!dir], dir);
template<typename A, typename B>
                                                            to_child(node,par,!dir)
using hTable2=__gnu_pbds::gp_hash_table<A,B>;
                                                            if(par_par!=nullptr && par_par->ch[par_dir]==par)
                                                             to_child(par_par,node,par_dir);
2.3 Disjoint Set
                                                            else node->par=par_par;
class DJS {
private:
                                                           inline void splay(Node* node){
vector< int > fa, sz, sv;
                                                            Node* tmp=node;
vector< pair< int*, int > > opt;
                                                            stk[top++]=node;
void assign( int *k, int v ) {
                                                            while(!tmp->is_root()){
 opt.emplace_back( k, *k );
                                                             tmp=tmp->par;
  *k = v;
                                                             stk[top++]=tmp;
public:
                                                            while(top) stk[--top]->down();
                                                            for(Node *fa=node->par;
void init( int n ) {
 fa.resize( n ); iota( fa.begin(), fa.end(), 0 );
                                                             !node->is_root();
                                                             rotate(node),fa=node->par)
 sz.resize( n ); fill( sz.begin(), sz.end(), 1 );
                                                             if(!fa->is_root())
  opt.clear();
                                                              rotate(fa->is_rch()==node->is_rch()?fa:node);
int query(int x) {return fa[x] == x?x:query(fa[x]);}
void merge( int a, int b ) {
                                                           inline void access(Node* node){
                                                            Node* last=nullptr;
 int af = query( a ), bf = query( b );
  if( af == bf ) return
                                                            while(node!=nullptr){
  if( sz[ af ] < sz[ bf ] ) swap( af, bf );</pre>
                                                             splay(node);
 assign( &fa[ bf ], fa[ af ] );
                                                             to_child(node, last, true);
 assign( &sz[ af ], sz[ af ] + sz[ bf ] );
                                                             last=node:
                                                             node=node->par;
void save() { sv.push_back( (int) opt.size() ); }
void undo() {
 int ls = sv.back(); sv.pop_back();
                                                           inline void change_root(Node* node) {
 while ( ( int ) opt.size() > ls )
                                                            access(node);splay(node);node->set_rev();
  pair< int*, int > cur = opt.back();
                                                           inline void link(Node* x, Node* y) {
   *cur.first = cur.second;
   opt.pop_back();
                                                            change_root(x);splay(x);x->par=y;
}
                                                           inline void split(Node* x, Node* y) {
                                                            change_root(x);access(y);splay(x);
                                                            to_child(x,nullptr,true);y->par=nullptr;
      Link-Cut Tree
2.4
struct Node{
                                                           inline void change_val(Node* node,int v){
Node *par, *ch[2];
                                                            access(node);splay(node);node->v=v;node->up();
int xor_sum,v;
                                                           inline int query(Node* x, Node* y){
bool is_rev;
Node(int _v){
                                                            change_root(x);access(y);splay(y);
  v=xor_sum=_v;is_rev=false;
                                                            return y->xor_sum;
 par=ch[0]=ch[1]=nullptr;
                                                           inline Node* find_root(Node* node){
inline void set_rev(){is_rev^=1;swap(ch[0],ch[1]);}
                                                            access(node);splay(node);
                                                            Node* last=nullptr;
inline void down(){
  if(is_rev){
                                                            while(node!=nullptr){
                                                             node->down();last=node;node=node->ch[0];
   if(ch[0]!=nullptr) ch[0]->set_rev();
   if(ch[1]!=nullptr) ch[1]->set_rev();
   is_rev=false;
                                                            return last;
  }
                                                           set<pii> dic;
                                                           inline void add_edge(int u,int v){
 inline void up(){
                                                            if(u>v) swap(u,v)
 xor sum=v
                                                            if(find_root(node[u])==find_root(node[v])) return;
  if(ch[0]!=nullptr){
  xor_sum^=ch[0]->xor_sum;
                                                            dic.insert(pii(u,v))
                                                            link(node[u],node[v]);
   ch[0]->par=this;
  if(ch[1]!=nullptr){
                                                           inline void del_edge(int u,int v){
                                                            if(u>v) swap(u,v);
  xor_sum^=ch[1]->xor_sum;
   ch[1]->par=this;
                                                            if(dic.find(pii(u,v))==dic.end()) return;
 }
                                                            dic.erase(pii(u,v))
                                                            split(node[u],node[v]);
inline bool is_root(){
  return par==nullptr ||\
                                                           2.5 LiChao Segment Tree
   (par->ch[0]!=this && par->ch[1]!=this);
                                                          struct Line{
```

```
int m, k, id;
                                                             }
Line() : id( -1 ) {}
                                                              2.7 Sparse Table
Line( int a, int b, int c )
  : m(a), k(b), id(c) \{ \}
                                                              template < typename T, typename Cmp_ = less< T > >
int at( int x ) { return m * x + k; }
                                                              class SparseTable {
                                                              private:
class LiChao {
                                                               vector< vector< T > > tbl;
                                                               vector< int > lg;
private:
 int n; vector< Line > nodes;
                                                               T cv(Ta, Tb) {
 inline int lc( int x ) { return 2 * x + 1; }
inline int rc( int x ) { return 2 * x + 2; }
                                                                return Cmp_()( a, b ) ? a : b;
  void insert( int 1, int r, int id, Line ln ) {
                                                              public:
  int m = ( l + r ) >> 1;
if ( nodes[ id ].id == -1 ) {
                                                               void init( T arr[], int n ) {
                                                                 // 0-base
   nodes[ id ] = ln;
                                                                lg.resize(n + 1);
    return:
                                                                lg[0] = -1;
                                                                for( int i=1 ; i<=n ; ++i ) lg[i] = lg[i>>1] + 1;
tbl.resize( lg[n] + 1 );
   bool atLeft = nodes[ id ].at( 1 ) < ln.at( 1 );</pre>
  if ( nodes[ id ].at( m ) < ln.at( m ) ) {</pre>
                                                                tbl[ 0 ].resize( n );
                                                                copy( arr, arr + n, tbl[ 0 ].begin() );
   atLeft ^= 1; swap( nodes[ id ], ln );
                                                                for ( int i = 1 ; i <= lg[ n ] ; ++ i ) {</pre>
   if ( r - 1 == 1 ) return;
                                                                 int len = 1 << ( i - 1 ), sz = 1 << i;
                                                                 tbl[ i ].resize( n - sz + 1 );
for ( int j = 0 ; j <= n - sz ; ++ j )
   if ( atLeft ) insert( l, m, lc( id ), ln );
   else insert( m, r, rc( id ), ln );
                                                                   tbl[i][j] = cv(tbl[i-1][j], tbl[i-1][j+len]);
  int query( int 1, int r, int id, int x ) {
                                                                }
   int ret = 0;
   if ( nodes[ id ].id != -1 )
                                                               T query( int 1, int r ) {
                                                                // 0-base [1, r)
   ret = nodes[ id ].at( x );
                                                                int wh = lg[r - 1], len = 1 << wh;
   int m = (1 + r) >> 1
   if ( r - l == 1 ) return ret;
                                                                return cv( tbl[ wh ][ 1 ], tbl[ wh ][ r - len ] );
   else if ( x < m )</pre>
    return max( ret, query( 1, m, lc( id ), x ) );
                                                              };
                                                              2.8 Linear Basis
    return max( ret, query( m, r, rc( id ), x ) );
                                                              struct LinearBasis {
public:
                                                              private:
  void build( int n_ ) {
                                                               int n, sz;
  n = n_; nodes.clear();
                                                               vector< llu > B;
  nodes.resize( n << 2, Line() );</pre>
                                                               inline llu two( int x ){ return ( ( llu ) 1 ) << x; }</pre>
                                                              public:
 void insert( Line ln ) { insert( 0, n, 0, ln ); }
                                                               void init( int n_ ) {
 int query( int x ) { return query( 0, n, 0, x ); }
                                                                n = n_{;} B.clear(); B.resize(n); sz = 0;
} lichao:
                                                               void insert( llu x ) {
2.6 Treap
                                                                 // add x into B
namespace Treap{
                                                                for ( int i = n-1; i >= 0; --i ) if ( two(i) & x ){
                                                                 if ( B[ i ] ) x ^= B[ i ];
#define sz( x ) ( ( x ) ? ( ( x )->size ) : 0 )
struct node{
                                                                  else {
 int size;
                                                                  B[i] = x; sz++;
                                                                   for ( int j = i - 1 ; j >= 0 ; -- j )
if( B[ j ] && ( two( j ) & B[ i ] ) )
 uint32_t pri;
 node *lc, *rc;
node() : size(0), pri(rand()), lc( 0 ), rc( 0 ) {}
                                                                    B[ i ] ^= B[ j ];
 void pull() {
                                                                   for (int j = i + 1; j < n; ++ j)
                                                                   if ( two( i ) & B[ j ] )
B[ j ] ^= B[ i ];
  size = 1;
  if ( lc ) size += lc->size;
  if ( rc ) size += rc->size;
                                                                  break;
 }
                                                                 }
                                                                }
node* merge( node* L, node* R ) {
 if ( not L or not R ) return L ? L : R;
                                                               inline int size() { return sz; }
 if ( L->pri > R->pri ) {
                                                               bool check( llu x ) +
  L->rc = merge( L->rc, R ); L->pull();
                                                                // is x in span(B) ?
                                                                for (int i = n-1 ; i \ge 0 ; --i) if(two(i) & x)
  return L;
                                                                 if( B[ i ] ) x ^= B[ i ];
 } else {
  R->lc = merge( L, R->lc ); R->pull();
                                                                 else return false;
   return R;
                                                                return true;
                                                               llu kth_small(llu k) {
void split_by_size( node*rt,int k,node*&L,node*&R ) {
                                                                /** 1-base would always > 0 **/
                                                                /** should check it **/
 if ( not rt ) L = R = nullptr;
                                                                /* if we choose at least one element
 else if( sz( rt->lc ) + 1 <= k ) {</pre>
                                                                  but size(B)(vectors in B)==N(original elements)
   split_by_size( rt->rc,k-sz(rt->lc)-1,L->rc,R );
                                                                   then we can't get 0 */
  L->pull();
                                                                llu ret = 0;
 } else {
                                                                for ( int i = 0 ; i < n ; ++ i ) if( B[ i ] ) {
                                                                 if( k & 1 ) ret ^= B[ i ];
  R = rt
   split_by_size( rt->lc, k, L, R->lc );
                                                                 k >>= 1;
   R->pull();
                                                                }
  }
                                                                return ret;
#undef sz
                                                              } base;
```

3 Graph

3.1 Euler Circuit

```
bool vis[ N ]; size_t la[ K ];
void dfs( int u, vector< int >& vec ) {
  while ( la[ u ] < G[ u ].size() ) {
    if( vis[ G[ u ][ la[ u ] ].second ] ) {
        ++ la[ u ];
        continue;
    }
    int v = G[ u ][ la[ u ] ].first;
    vis[ G[ u ][ la[ u ] ].second ] = true;
    ++ la[ u ]; dfs( v, vec );
    vec.push_back( v );
}</pre>
```

3.2 BCC Edge

```
class BCC_Bridge {
private:
 int n, ecnt;
  vector<vector<pair<int,int>>> G;
  vector<int> dfn, low;
  vector<bool> bridge;
  void dfs(int u, int f) {
   dfn[u] = low[u] = dfn[f] + 1;
   for (auto [v, t]: G[u]) {
  if (v == f) continue;
    if (dfn[v]) {
     low[u] = min(low[u], dfn[v]);
     continue;
    dfs(v, u);
low[u] = min(low[u], low[v]);
    if (low[v] > dfn[u]) bridge[t] = true;
public:
 void init(int n_) {
   G.clear(); G.resize(n = n_);
   low.assign(n, ecnt = \theta);
   dfn.assign(n, 0);
  void add_edge(int u, int v) {
   G[u].emplace_back(v, ecnt)
   G[v].emplace_back(u, ecnt++);
  void solve() {
   bridge.assign(ecnt, false);
for (int i = 0; i < n; ++i)</pre>
    if (not dfn[i]) dfs(i, i);
 bool is_bridge(int x) { return bridge[x]; }
} bcc_bridge;
```

3.3 BCC Vertex

```
class BCC_AP {
private:
 int n, ecnt;
 vector<vector<pair<int,int>>> G;
 vector<int> bcc, dfn, low, st;
 vector<bool> ap, ins;
 void dfs(int u, int f) {
  dfn[u] = low[u] = dfn[f] + 1;
   int ch = 0;
   for (auto [v, t]: G[u]) if (v != f) {
    if (not ins[t]) {
     st.push_back(t);
     ins[t] = true;
    if (dfn[v]) {
    low[u] = min(low[u], dfn[v]);
    } ++ch; dfs(v, u)
    low[u] = min(low[u], low[v]);
    if (low[v] >= dfn[u]) {
     ap[u] = true;
     while (true) {
      int eid = st.back(); st.pop_back();
      bcc[eid] = ecnt;
      if (eid == t) break;
```

```
ecnt++;
    }
   if (ch == 1 and u == f) ap[u] = false;
 public:
  void init(int n_) {
   G.clear(); G.resize(n = n_);
   ecnt = 0; ap.assign(n, false);
   low.assign(n, 0); dfn.assign(n, 0);
  void add_edge(int u, int v) {
   G[u].emplace_back(v, ecnt);
   G[v].emplace_back(u, ecnt++);
  void solve() {
   ins.assign(ecnt, false);
   bcc.resize(ecnt); ecnt = 0;
   for (int i = 0; i < n; ++i)
if (not dfn[i]) dfs(i, i);</pre>
  int get_id(int x) { return bcc[x]; }
  int count() { return ecnt; }
  bool is_ap(int x) { return ap[x]; }
} bcc_ap;
3.4 2-SAT (SCC)
class TwoSat{
 private:
  int n;
  vector<vector<int>> rG,G,sccs;
  vector<int> ord,idx;
  vector<bool> vis.result;
  void dfs(int u){
   vis[u]=true
   for(int v:G[u])
    if(!vis[v]) dfs(v);
   ord.push_back(u);
  void rdfs(int u){
   vis[u]=false;idx[u]=sccs.size()-1;
   sccs.back().push_back(u);
   for(int v:rG[u])
    if(vis[v])rdfs(v);
 public:
  void init(int n_){
   n=n_;G.clear();G.resize(n);
   rG.clear();rG.resize(n);
   sccs.clear();ord.clear();
   idx.resize(n);result.resize(n);
  void add_edge(int u,int v){
   G[u].push_back(v);rG[v].push_back(u);
  void orr(int x,int y){
   if ((x^y)==1)return
   add_edge(x^1,y); add_edge(y^1,x);
  bool solve(){
   vis.clear();vis.resize(n);
   for(int i=0;i<n;++i)</pre>
    if(not vis[i])dfs(i);
   reverse(ord.begin(),ord.end());
   for (int u:ord){
    if(!vis[u])continue;
    sccs.push_back(vector<int>());
    rdfs(u);
   for(int i=0;i<n;i+=2)</pre>
    if(idx[i]==idx[i+1])
     return false;
   vector<bool> c(sccs.size());
   for(size_t i=0;i<sccs.size();++i){</pre>
    for(size_t j=0;j<sccs[i].size();++j){
  result[sccs[i][j]]=c[i];</pre>
     c[idx[sccs[i][j]^1]]=!c[i];
   return true;
```

int g = lca(u, v);

```
bool get(int x){return result[x];}
                                                                  while ( chain[ u ] != chain[ g ] ) {
                                                                   int s = chain_st[ chain[ u ] ]
  inline int get_id(int x){return idx[x];}
  inline int count(){return sccs.size();}
                                                                   res.emplace_back( tl[ s ], tl[ u ] + 1 );
} sat2;
                                                                   u = fa[ s ][ 0 ];
3.5 Lowbit Decomposition
                                                                  res.emplace_back( tl[ g ], tl[ u ] + 1 );
while ( chain[ v ] != chain[ g ] ) {
class LowbitDecomp{
                                                                   int s = chain_st[ chain[ v ] ];
private:
                                                                   res.emplace_back( tl[ s ], tl[ v ] + 1 );
int time_, chain_, LOG_N;
vector< vector< int > > G, fa;
                                                                   v = fa[ s ][ 0 ];
vector< int > tl, tr, chain, chain_st;
// chain_ : number of chain
                                                                  res.emplace_back( tl[ g ] + 1, tl[ v ] + 1 );
                                                                  return res;
// tl, tr[ u ] : subtree interval in the seq. of u
 // chain_st[ u ] : head of the chain contains u
                                                                  /* res : list of intervals from u to v
 // chian[ u ] : chain id of the chain u is on
                                                                   * ( note only nodes work, not edge )
                                                                   * usage
inline int lowbit( int x ) {
 return x & ( -x );
                                                                   * vector< PII >& path = tree.get_path( u , v )
                                                                   * for( auto [ 1, r ] : path ) {
                                                                   * 0-base [ 1, r )
void predfs( int u, int f ) {
 chain[ u ] = 0;
 for ( int v : G[ u ] ) {
                                                                   */
                                                                 }
  if ( v == f ) continue;
  predfs( v, u );
if( lowbit( chain[ u ] ) < lowbit( chain[ v ] ) )</pre>
                                                                } tree;
                                                                3.6 MaxClique
    chain[ u ] = chain[ v ];
                                                                // contain a self loop u to u, than u won't in clique
  if ( not chain[ u ] )
                                                                template < size_t MAXN >
  chain[ u ] = chain_ ++;
                                                                class MaxClique{
                                                                private:
 void dfschain( int u, int f ) {
                                                                 using bits = bitset< MAXN >;
 fa[ u ][ 0 ] = f;
                                                                 bits popped, G[ MAXN ], ans;
  for ( int i = 1 ; i < LOG_N ; ++ i )
fa[ u ][ i ] = fa[ fa[ u ][ i - 1 ] ][ i - 1 ];
                                                                 size_t deg[ MAXN ], deo[ MAXN ], n;
                                                                 void sort_by_degree() {
  tl[ u ] = time_++;
                                                                  popped.reset();
  if ( not chain_st[ chain[ u ] ] )
                                                                  for ( size_t i = 0 ; i < n ; ++ i )
  chain_st[ chain[ u ] ] = u;
for ( int v : G[ u ] )
                                                                  deg[ i ] = G[ i ].count();
for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
  if ( v != f and chain[ v ] == chain[ u ] )
                                                                     size_t mi = MAXN, id = 0;
  dfschain( v, u );
for ( int v : G[ u ] )
                                                                    for ( size_t j = 0 ; j < n ; ++ j )
  if ( not popped[ j ] and deg[ j ] < mi )</pre>
  if ( v != f and chain[ v ] != chain[ u ] )
                                                                         mi = deg[ id = j ];
    dfschain( v, u );
                                                                     popped[ deo[ i ] = id ] = 1;
                                                                     for( size_t u = G[ i ]._Find_first() ;
 tr[ u ] = time_;
                                                                     u < n ; u = G[ i ]._Find_next( u ) )
inline bool anc( int u, int v ) {
  return tl[ u ] <= tl[ v ] \</pre>
                                                                       -- deg[ u ];
                                                                  }
  and tr[ v ] <= tr[ u ];
                                                                 void BK( bits R, bits P, bits X ) {
public:
                                                                  if (R.count()+P.count() <= ans.count()) return;</pre>
inline int lca( int u, int v ) {
                                                                  if ( not P.count() and not X.count() ) {
  if ( anc( u, v ) ) return u;
                                                                   if ( R.count() > ans.count() ) ans = R;
  for ( int i = LOG_N - 1 ; i >= 0 ; -- i )
                                                                   return;
  if ( not anc( fa[ u ][ i ], v ) )
                                                                  /* greedily chosse max degree as pivot
    u = fa[ u ][ i ];
 return fa[ u ][ 0 ];
                                                                  bits cur = P | X; size_t pivot = 0, sz = 0;
                                                                  for ( size_t u = cur._Find_first()
void init( int n ) {
                                                                   u < n ; u = cur._Find_next( u ) )</pre>
                                                                    if ( deg[ u ] > sz ) sz = deg[ pivot = u ];
  for ( LOG_N = 0 ; ( 1 << LOG_N ) < n ; ++ LOG_N );
                                                                  cur = P & ( ~G[ pivot ] );
                                                                  */ // or simply choose first
 fa.clear();
 fa.resize( n, vector< int >( LOG_N ) );
G.clear(); G.resize( n );
                                                                  bits cur = P & (~G[ ( P | X )._Find_first() ]);
for ( size_t u = cur._Find_first() ;
                                                                   u < n ; u = cur._Find_next( u ) ) {</pre>
 tl.clear(); tl.resize( n );
                                                                   if ( R[ u ] ) continue;
 tr.clear(); tr.resize( n )
  chain.clear(); chain.resize( n );
                                                                   R[u] = 1;
 chain_st.clear(); chain_st.resize( n );
                                                                   BK( R, P & G[ u ], X & G[ u ] );
                                                                   R[u] = P[u] = 0, X[u] = 1;
 void add_edge( int u , int v ) {
 // 1-base
                                                                public:
 G[ u ].push_back( v );
 G[ v ].push_back( u );
                                                                 void init( size_t n_ ) {
                                                                  n = n_{-}
void decompose(){
                                                                  for ( size_t i = 0 ; i < n ; ++ i )</pre>
                                                                   G[ i ].reset();
 chain_ = 1;
 predfs( 1, 1 );
                                                                  ans.reset();
 time_{-} = 0;
                                                                 void add_edges( int u, bits S ) { G[ u ] = S; }
void add_edge( int u, int v ) {
 dfschain(1,1);
PII get_inter( int u ) { return {tl[ u ], tr[ u ]}; }
                                                                  G[u][v] = G[v][u] = 1;
vector< PII > get_path( int u , int v ){
 vector< PII > res;
                                                                 int solve() {
```

sort_by_degree(); // or simply iota(deo...)

```
for ( size_t i = 0 ; i < n ; ++ i )
                                                               } graph;
   deg[ i ] = G[ i ].count();
                                                                3.8 Virtural Tree
  bits pob, nob = 0; pob.set();
  for (size_t i=n; i<MAXN; ++i) pob[i] = 0;</pre>
                                                                inline bool cmp(const int &i, const int &j) {
  for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
                                                                 return dfn[i] < dfn[j];</pre>
   size_t v = deo[ i ];
                                                                void build(int vectrices[], int k) {
   bits tmp; tmp[ v ] = 1;
   BK( tmp, pob & G[ v ], nob & G[ v ] );
pob[ v ] = 0, nob[ v ] = 1;
                                                                 static int stk[MAX_N];
                                                                 sort(vectrices, vectrices + k, cmp);
                                                                 stk[sz++] = 0;
                                                                 for (int i = 0; i < k; ++i) {</pre>
  return static_cast< int >( ans.count() );
                                                                  int u = vectrices[i], lca = LCA(u, stk[sz - 1]);
};
                                                                  if (lca == stk[sz - 1]) stk[sz++] = u;
3.7
     MaxCliqueDyn
                                                                   while (sz >= 2 && dep[stk[sz - 2]] >= dep[lca]) {
                                                                    addEdge(stk[sz - 2], stk[sz - 1]);
constexpr int kN = 150;
struct MaxClique { // Maximum Clique
bitset<kN> a[kN], cs[kN];
                                                                   if (stk[sz - 1] != lca) {
 int ans, sol[kN], q, cur[kN], d[kN], n;
 void init(int _n) {
                                                                    addEdge(lca, stk[--sz]);
 n = _n; for (int i = 0; i < n; i++) a[i].reset();</pre>
                                                                    stk[sz++] = lca, vectrices[cnt++] = lca;
 void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
void csort(vector<int> &r, vector<int> &c) {
                                                                   stk[sz++] = u;
                                                                  }
 int mx = 1, km = max(ans - q + 1, 1), t = 0,
    m = int(r.size())
                                                                 for (int i = 0; i < sz - 1; ++i)
  cs[1].reset(); cs[2].reset()
                                                                  addEdge(stk[i], stk[i + 1]);
 for (int i = 0; i < m; i++) {
  int p = r[i], k = 1;
  while ((cs[k] & a[p]).count()) k++;</pre>
                                                                3.9 Centroid Decomposition
   if (k > mx) cs[++mx + 1].reset();
                                                               struct Centroid {
                                                                 vector<vector<int64_t>> Dist;
   cs[k][p] = 1;
   if (k < km) r[t++] = p;
                                                                 vector<int> Parent, Depth;
  }
                                                                 vector<int64_t> Sub, Sub2;
  c.resize(m);
                                                                 vector<int> Sz, Sz2;
  if (t) c[t - 1] = 0;
                                                                 Centroid(vector<vector<pair<int, int>>> g) {
  for (int k = km; k <= mx; k++) {</pre>
                                                                  int N = g.size();
   for (int p = int(cs[k]._Find_first());
                                                                  vector<bool> Vis(N);
      p < kN; p = int(cs[k]._Find_next(p))) {
                                                                  vector<int> sz(N), mx(N);
                                                                  vector<int> Path;
    r[t] = p; c[t++] = k;
                                                                  Dist.resize(N)
  }
                                                                  Parent.resize(N);
                                                                  Depth.resize(N)
                                                                  auto DfsSz = [&](auto dfs, int x) -> void {
 void dfs(vector<int> &r, vector<int> &c, int 1,
  bitset<kN> mask) {
                                                                   Vis[x] = true; sz[x] = 1; mx[x] = 0;
                                                                   for (auto [u, w] : g[x]) {
  while (!r.empty()) {
                                                                    if (Vis[u]) continue;
   int p = r.back(); r.pop_back();
                                                                    dfs(\underline{d}fs, u)
   mask[p] = 0;
   if (q + c.back() <= ans) return;</pre>
                                                                    sz[x] += sz[u]
   cur[q++] = p;
                                                                    mx[x] = max(mx[x], sz[u]);
   vector<int> nr, nc;
   bitset<kN> nmask = mask & a[p];
                                                                   Path.push_back(x);
   for (int i : r)
                                                                  }:
    if (a[p][i]) nr.push_back(i);
                                                                  auto DfsDist = [&](auto dfs, int x, int64_t D = 0)
   if (!nr.empty()) {
                                                                   -> void {
    if (1 < 4) {
                                                                   Dist[x].push_back(D);Vis[x] = true;
                                                                   for (auto [u, w] : g[x]) {
     for (int i : nr)
      d[i] = int((a[i] & nmask).count());
                                                                    if (Vis[u]) continue;
     sort(nr.begin(), nr.end(),
                                                                    dfs(dfs, u, D + w);
      [&](int x, int y)
       return d[x] > d[y];
                                                                  auto Dfs = [&]
      });
                                                                   (auto dfs, int x, int D = 0, int p = -1)->void {
   csort(nr, nc); dfs(nr, nc, l + 1, nmask);
} else if (q > ans) {
                                                                   Path.clear(); DfsSz(DfsSz, x);
                                                                   int M = Path.size();
    ans = q; copy(cur, cur + q, sol);
                                                                   int C = -1;
                                                                   for (int u : Path) {
  if (max(M - sz[u], mx[u]) * 2 <= M) C = u;</pre>
   c.pop_back(); q--;
  }
                                                                    Vis[u] = false;
 int solve(bitset<kN> mask) { // vertex mask
                                                                   DfsDist(DfsDist, C);
                                                                   for (int u : Path) Vis[u] = false;
  vector<int> r, c;
  for (int i = 0; i < n; i++)
                                                                   Parent[C] = p; Vis[C] = true;
  if (mask[i]) r.push_back(i);
for (int i = 0; i < n; i++)</pre>
                                                                   Depth[C] = D;
                                                                   for (auto [u, w] : g[C]) {
                                                                    if (Vis[u]) continue;
   d[i] = int((a[i] & mask).count());
                                                                    dfs(dfs, u, D + 1, C);
  sort(r.begin(), r.end(),
  [&](int i, int j) { return d[i] > d[j]; });
  csort(r, c);
                                                                  Dfs(Dfs, 0); Sub.resize(N); Sub2.resize(N);
  dfs(r, c, 1, mask);
  return ans; // sol[0 ~ ans-1]
                                                                  Sz.resize(N); Sz2.resize(N);
```

```
void Mark(int v) {
  int x = v, z = -1;
                                                                   while (vst[st] != 2) {
  for (int i = Depth[v]; i >= 0; --i) {
                                                                    int v = rho.back(); rho.pop_back();
   Sub[x] += Dist[v][i]; Sz[x]++;
                                                                    cycle.PB(v);
   if (z != -1) {
                                                                    vst[v]++;
    Sub2[z] += Dist[v][i];
                                                                   }
    Sz2[z]++;
                                                                   reverse(ALL(edgeID));
                                                                   edgeID.resize(SZ(cycle));
   z = x; x = Parent[x];
                                                                   return mmc;
  }
                                                                } mmc;
 int64_t Query(int v) {
                                                                       Mo's Algorithm on Tree
 int64_t res = 0;
  int x = v, z = -1
                                                                 int q; vector< int > G[N];
 for (int i = Depth[v]; i >= 0; --i) {
                                                                 struct Que{
  res += Sub[x] + 1LL * Sz[x] * Dist[v][i];
                                                                 int u, v, id;
} que[ N ];
   if (z != -1) res-=Sub2[z]+1LL*Sz2[z]*Dist[v][i];
  z = x; x = Parent[x];
                                                                 int dfn[N], dfn_, block_id[N], block_, stk[N], stk_;
                                                                void dfs( int u, int f ) {
  dfn[ u ] = dfn_++; int saved_rbp = stk_;
  return res;
                                                                  for ( int v : G[ u ] ) {
                                                                   if ( v == f ) continue;
};
                                                                   dfs(v, u);
3.10 Tree Hashing
                                                                   if ( stk_ - saved_rbp < SQRT_N ) continue;</pre>
                                                                   for ( ++ block_ ; stk_ != saved_rbp ; )
block_id[ stk[ -- stk_ ] ] = block_;
uint64_t hsah(int u, int f) {
 uint64_t r = 127;
 for (int v : G[ u ]) if (v != f) {
  uint64_t hh = hsah(v, u);
                                                                 stk[ stk_ ++ ] = u;
  r=(r+(hh*hh)%1010101333)%1011820613;
                                                                bool inPath[ N ];
return r;
                                                                 void Diff( int u ) {
                                                                 if ( inPath[ u ] ^= 1 ) { /*remove this edge*/ }
}
                                                                  else { /*add this edge*/ }
3.11 Minimum Mean Cycle
/* minimum mean cycle O(VE) */
                                                                 void traverse( int& origin_u, int u ) {
                                                                 for ( int g = lca( origin_u, u ) ;
struct MMC{
#define FZ(n) memset((n),0,sizeof(n))
                                                                   origin_u != g ; origin_u = parent_of[ origin_u ] )
#define E 101010
                                                                    Diff( origin_u );
#define V 1021
                                                                  for (int v = u; v != origin_u; v = parent_of[v])
                                                                   Diff( v );
#define inf 1e9
 struct Edge { int v,u; double c; };
                                                                  origin_u = u;
 int n, m, prv[V][V], prve[V][V], vst[V];
 Edge e[E];
                                                                 void solve() {
 vector<int> edgeID, cycle, rho;
                                                                  dfs(1, 1);
 double d[V][V];
                                                                  while ( stk_ ) block_id[ stk[ -- stk_ ] ] = block_;
                                                                  sort( que, que + q, [](const Que& x, const Que& y) {
 void init( int _n ) { n = _n; m = 0; }
 // WARNING: TYPE matters
                                                                   return tie( block_id[ x.u ], dfn[ x.v ] )
void add_edge( int vi , int ui , double ci )
{ e[ m ++ ] = { vi , ui , ci }; }
void bellman_ford() {
                                                                       < tie( block_id[ y.u ], dfn[ y.v ] );
                                                                  } );
                                                                  int U = 1, V = 1;
                                                                  for ( int i = 0 ; i < q ; ++ i ) {
  pass( U, que[ i ].u );</pre>
  for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {
  fill(d[i+1], d[i+1]+n, inf);
  for(int i=0; i=n; i+);</pre>
                                                                   pass( V, que[ i ].v );
   for(int j=0; j<m; j++) +</pre>
                                                                   // we could get our answer of que[ i ].id
    int v = e[j].v, u = e[j].u;
if(d[i][v]<inf_&&_d[i+1][u]>d[i][v]+e[j].c) {
                                                                }
                                                                 /*
     d[i+1][u] = d[i][v]+e[j].c;
     prv[i+1][u] = v;
                                                                 Method 2:
     prve[i+1][u] = j;
                                                                dfs u:
                                                                 push u
                                                                  iterate subtree
  }
                                                                  push u
                                                                 Let P = LCA(u, v), and St(u) <= St(v)
 double solve(){
                                                                if (P == u) query[St(u), St(v)]
  // returns inf if no cycle, mmc otherwise
                                                                 else query[Ed(u), St(v)], query[St(P), St(P)]
  double mmc=inf;
  int st = -1
                                                                 3.13
                                                                       Minimum Steiner Tree
  bellman_ford();
                                                                // Minimum Steiner Tree
  for(int i=0; i<n; i++) {</pre>
                                                                // 0(V 3^T + V^2 2^T)
   double avg=-inf;
                                                                 struct SteinerTree{
   for(int k=0; k<n; k++) {</pre>
    if(d[n][i]<inf-eps)</pre>
                                                                 #define V 33
     avg=max(avg,(d[n][i]-d[k][i])/(n-k));
                                                                 #define T 8
    else avg=max(avg,inf);
                                                                 #define INF 1023456789
                                                                  int n , dst[V][V] , dp[1 << T][V] , tdst[V];</pre>
   if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
                                                                  void init( int _n ){
                                                                   n = _n;
for( int i = 0 ; i < n ; i ++ ){</pre>
  FZ(vst);edgeID.clear();cycle.clear();rho.clear();
                                                                    for( int j = 0 ; j < n ; j ++ )</pre>
  for (int i=n; !vst[st]; st=prv[i--][st]) {
   vst[st]++
                                                                     dst[ i ][ j ] = INF;
   edgeID.PB(prve[i][st]);
                                                                    dst[ i ][ i ] = 0;
   rho.PB(st);
                                                                   }
```

```
void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
  dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
 void shortest_path(){
  for( int k = 0 ; k < n ; k ++ )
   for( int i = 0 ; i < n ; i ++ )</pre>
    for( int j = 0'; j < n'; j ++')
dst[ i ][ j ] = min( dst[ i ][ j ],
    dst[ i ][ k ] + dst[ k ][ j ] );</pre>
int solve( const vector<int>& ter ){
  int t = (int)ter.size();
  for( int i = 0 ; i < ( 1 << t ) ; i ++ )
  for( int j = 0 ; j < n ; j ++ )
dp[ i ][ j ] = INF;
for( int i = 0 ; i < n ; i ++ )</pre>
   dp[0][i] = 0;
  for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){</pre>
   if( msk == ( msk & (-msk) ) ){
    int who = __lg( msk );
for( int i = 0 ; i < n ; i ++ )
  dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];</pre>
    continue;
   for( int i = 0 ; i < n ; i ++ )</pre>
    for( int submsk = ( msk - 1 ) & msk ; submsk ;
       submsk = ( submsk - 1 ) & msk )
dp[ msk ][ i ] = min( dp[ msk ][ i ],
                 dp[ submsk ][ i ] +
                 dp[ msk ^ submsk ][ i ] );
   for( int i = 0 ; i < n ; i ++ ){</pre>
    tdst[ i ] = INF;
    for( int i = 0 ; i < n ; i ++ )</pre>
    dp[ msk ][ i ] = tdst[ i ];
  int ans = INF;
  for( int i = 0; i < n; i ++)
   ans = min( ans , dp[ ( 1 << t ) - 1 ][ i ] );
  return ans:
} solver;
3.14 Directed Minimum Spanning Tree
template <typename T> struct DMST {
T g[maxn][maxn], fw[maxn];
 int n, fr[maxn];
bool vis[maxn], inc[maxn];
void clear() {
```

```
for(int i = 0; i < maxn; ++i) {
  for(int j = 0; j < maxn; ++j) g[i][j] = inf;</pre>
  vis[i] = inc[i] = false;
 }
void addEdge(int u,int v,T w){g[u][v]=min(g[u][v],w);}
T operator()(int root, int _n) {
 n = n; T ans = 0;
 if (dfs(root) != n) return -1;
 while (true) {
  for(int i = 1;i <= n;++i) fw[i] = inf, fr[i] = i;
  for (int i = 1; i <= n; ++i) if (!inc[i]) {</pre>
   for (int j = 1; j <= n; ++j) {
  if (!inc[j] && i != j && g[j][i] < fw[i]) {</pre>
      fw[i] = g[j][i]; fr[i] = j;
    }
  int x = -1;
  for(int i = 1;i <= n;++i)if(i != root && !inc[i]){</pre>
   int j = i, c = 0;
   while(j!=root && fr[j]!=i && c<=n) ++c, j=fr[j];</pre>
   if (j == root || c > n) continue;
else { x = i; break; }
  if (!~x) {
   for (int i = 1; i <= n; ++i)</pre>
    if (i != root && !inc[i]) ans += fw[i];
```

```
return ans;
   int y = x;
    for (int i = 1; i <= n; ++i) vis[i] = false;</pre>
    ans += fw[y]; y = fr[y]; vis[y] = inc[y] = true;
    } while (y != x);
    inc[x] = false;
    for (int k = 1; k <= n; ++k) if (vis[k]) {</pre>
    for (int j = 1; j <= n; ++j) if (!vis[j]) {
  if (g[x][j] > g[k][j]) g[x][j] = g[k][j];
      if (g[j][k] < inf && g[j][k]-fw[k] < g[j][x])
       g[j][x] = g[j][k] - fw[k];
  }
  return ans;
 int dfs(int now) {
  int r = 1; vis[now] = true;
  for (int i = 1; i <= n; ++i)
   if (g[now][i] < inf && !vis[i]) r += dfs(i);</pre>
  return r:
};
```

```
3.15
       Dominator Tree
namespace dominator {
vector<int> g[maxn], r[maxn], rdom[maxn];
int dfn[maxn], rev[maxn], fa[maxn], sdom[maxn];
int dom[maxn], val[maxn], rp[maxn], tk;
void init(int n) {
 // vertices are numbered from 0 to n - 1 \,
 fill(dfn, dfn + n, -1);fill(rev, rev + n, -1);
 fill(fa, fa + n, -1); fill(val, val + n, -1);
 fill(sdom, sdom + n, -1); fill(rp, rp + n, -1);
 fill(dom, dom + n, -1); tk = 0;
 for (int i = 0; i < n; ++i) {
  g[i].clear(); r[i].clear(); rdom[i].clear();
void add_edge(int x, int y) { g[x].push_back(y); }
void dfs(int x)
 rev[dfn[x] = tk] = x;
 fa[tk] = sdom[tk] = val[tk] = tk; tk ++;
 for (int u : g[x]) {
  if (dfn[u] == -1) dfs(u), rp[dfn[u]] = dfn[x];
  r[dfn[u]].push_back(dfn[x]);
void merge(int x, int y) { fa[x] = y; }
int find(int x, int c = 0) {
 if (fa[x] == x) return c ? -1 : x;
 int p = find(fa[x], 1);
if (p == -1) return c ? fa[x] : val[x];
 if (sdom[val[x]]>sdom[val[fa[x]]]) val[x]=val[fa[x]];
 fa[x] = p;
 return c ? p : val[x];
vector<int> build(int s, int n) {
// return the father of each node in the dominator tree
// p[i] = -2 if i is unreachable from s
 dfs(s);
 for (int i = tk - 1; i >= 0; --i) {
  for (int u:r[i]) sdom[i]=min(sdom[i],sdom[find(u)]);
  if (i) rdom[sdom[i]].push_back(i);
  for (int &u : rdom[i]) {
   int p = find(u);
   if (sdom[p] == i) dom[u] = i;
   else dom[u] = p;
  if (i) merge(i, rp[i]);
 vector<int> p(n, -2); p[s] = -1;
for (int i = 1; i < tk; ++i)</pre>
  if (sdom[i] != dom[i]) dom[i] = dom[dom[i]];
 for (int i = 1; i < tk; ++i) p[rev[i]] = rev[dom[i]];</pre>
 return p;
}}
```

4 Matching & Flow

```
4.1 Kuhn Munkres
class KM {
private:
static constexpr lld INF = 1LL << 60;</pre>
vector<lld> hl,hr,slk;
vector<int> f1,fr,pre,qu;
vector<vector<lld>> w;
vector<bool> v1.vr;
int n, ql, qr;
bool check(int x) {
 if (v1[x] = true, f1[x] != -1)
   return vr[qu[qr++] = f1[x]] = true;
 while (x != -1) swap(x, fr[fl[x] = pre[x]]);
  return false;
 void bfs(int s) {
 fill(slk.begin(), slk.end(), INF);
  fill(vl.begin(), vl.end(), false);
  fill(vr.begin(), vr.end(), false);
  ql = qr = 0;
  qu[qr++] = s;
  vr[s] = true;
  while (true) {
  11d d;
   while (ql < qr) {</pre>
    for (int x = 0, y = qu[ql++]; x < n; ++x) {
     if(!v1[x]\&s1k[x]>=(d=h1[x]+hr[y]-w[x][y])){
      if (pre[x] = y, d) slk[x] = d;
      else if (!check(x)) return;
     }
    }
   d = INF;
   for (int x = 0; x < n; ++x)
    if (!v1[x] \&\& d > s1k[x]) d = s1k[x];
   for (int x = 0; x < n; ++x) {
   if (vl[x]) hl[x] += d;
    else slk[x] -= d;
    if (vr[x]) hr[x] -= d;
   for (int x = 0; x < n; ++x)
    if (!v1[x] && !slk[x] && !check(x)) return;
 }
public:
void init( int n_ ) {
 n = n_; qu.resize(n);
 fl.clear(); fl.resize(n, -1);
 fr.clear(); fr.resize(n, -1);
 hr.clear(); hr.resize(n); hl.resize(n);
 w.clear(); w.resize(n, vector<lld>(n));
 slk.resize(n); pre.resize(n);
 vl.resize(n); vr.resize(n);
void set_edge( int u, int v, lld x ) {w[u][v] = x;}
1ld solve() {
  for (int i = 0; i < n; ++i)</pre>
  hl[i] = *max_element(w[i].begin(), w[i].end());
  for (int i = 0; i < n; ++i) bfs(i);
 11d res = 0;
  for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
 return res;
} km;
     Bipartite Matchina
class BipartiteMatching{
private:
vector<int> X[N], Y[N];
int fX[N], fY[N], n;
bitset<N> walked;
bool dfs(int x){
  for(auto i:X[x]){
  if(walked[i])continue;
   walked[i]=1;
   if(fY[i]==-1||dfs(fY[i])){
    fY[i]=x;fX[x]=i;
    return 1:
```

```
return 0;
public:
 void init(int _n){
  n=_n; walked.reset();
  for(int i=0;i<n;i++)</pre>
   X[i].clear();Y[i].clear();
   fX[i]=fY[i]=-1;
 void add_edge(int x, int y){
  X[x].push_back(y); Y[y].push_back(y);
 int solve(){
  int cnt = 0;
  for(int i=0;i<n;i++){</pre>
   walked.reset();
   if(dfs(i)) cnt++;
  // return how many pair matched
  return cnt;
 }
};
     General Graph Matching
const int N = 514, E = (2e5) * 2;
struct Graph{
 int to[E],bro[E],head[N],e;
 int lnk[N], vis[N], stp, n;
 void init( int _n ){
  stp = 0; e = 1; n = _n;
  for( int i = 0 ; i <= n ; i ++ )</pre>
   head[i] = lnk[i] = vis[i] = 0;
 void add_edge(int u,int v){
  to[e]=v,bro[e]=head[u],head[u]=e++;
  to[e]=u,bro[e]=head[v],head[v]=e++;
 bool dfs(int x){
  vis[x]=stp;
  for(int i=head[x];i;i=bro[i]){
   int v=to[i]
   if(!lnk[v]){
    lnk[x]=v, lnk[v]=x;
    return true
   }else if(vis[lnk[v]]<stp){</pre>
    int w=lnk[v];
    lnk[x]=v, lnk[v]=x, lnk[w]=0;
    if(dfs(w)) return true
    lnk[w]=v, lnk[v]=w, lnk[x]=0;
  }
  return false;
 int solve(){
  int ans = 0;
  for(int i=1;i<=n;i++)</pre>
   if(not lnk[i]){
    stp++; ans += dfs(i);
  return ans;
} graph;
4.4 Minimum Weight Matching (Clique version)
struct Graph {
 // 0-base (Perfect Match)
 int n, edge[MXN][MXN];
 int match[MXN], dis[MXN], onstk[MXN];
 vector<int> stk;
 void init(int _n) {
  n = _n;
  for (int i=0; i<n; i++)</pre>
   for (int j=0; j<n; j++)</pre>
    edge[i][j] = 0;
 void set_edge(int u, int v, int w) {
 edge[u][v] = edge[v][u] = w;
```

bool SPFA(int u){

if (onstk[u]) return true;

```
stk.PB(u);
  onstk[u] = 1;
  for (int v=0; v<n; v++){</pre>
   if (u != v && match[u] != v && !onstk[v]){
    int m = match[v];
    if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
     dis[m] = dis[u] - edge[v][m] + edge[u][v];
     onstk[v] = 1;
     stk.PB(v)
     if (SPFA(m)) return true;
     stk.pop_back();
     onstk[v] = 0;
  onstk[u] = 0;
  stk.pop_back();
  return false;
 int solve() {
  // find a match
  for (int i=0; i<n; i+=2){
   match[i] = i+1;
   match[i+1] = i;
  while (true){
   int found = 0;
   for (int i=0; i<n; i++)
dis[i] = onstk[i] = 0;</pre>
   for (int i=0; i<n; i++){
    stk.clear()
    if (!onstk[i] && SPFA(i)){
     found = 1;
     while (SZ(stk)>=2){
      int u = stk.back(); stk.pop_back();
int v = stk.back(); stk.pop_back();
      match[u] = v;
      match[v] = u;
   if (!found) break;
  int ret = 0:
  for (int i=0; i<n; i++)</pre>
   ret += edge[i][match[i]];
  return ret>>1;
 }
} graph;
4.5 Minimum Cost Circulation
struct Edge { int to, cap, rev, cost; };
vector<Edge> g[kN];
int dist[kN], pv[kN], ed[kN];
bool mark[kN];
int NegativeCycle(int n) {
 memset(mark, false, sizeof(mark));
memset(dist, 0, sizeof(dist));
  int upd = -1;
  for (int i = 0; i <= n; ++i) {</pre>
    for (int j = 0; j < n; ++j) {
      int idx = 0;
      for (auto &e : g[j]) {
         if(e.cap > 0 && dist[e.to] > dist[j] + e.cost){
           dist[e.to] = dist[j] + e.cost;
           pv[e.to] = j, ed[e.to] = idx;
           if (i == n) {
             upd = j;
             while(!mark[upd])mark[upd]=1,upd=pv[upd];
             return upd;
           }
        idx++;
      }
    }
  }
  return -1;
int Solve(int n) {
  int rt = -1, ans = 0;
  while ((rt = NegativeCycle(n)) >= 0) {
```

```
memset(mark, false, sizeof(mark));
    vector<pair<int, int>> cyc;
    while (!mark[rt]) {
      cyc.emplace_back(pv[rt], ed[rt]);
      mark[rt] = true;
      rt = pv[rt];
    reverse(cyc.begin(), cyc.end());
    int cap = kInf;
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      cap = min(cap, e.cap);
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      e.cap -= cap;
      g[e.to][e.rev].cap += cap;
      ans += e.cost * cap;
  }
  return ans;
}
```

4.6 Flow Models

- · Maximum/Minimum flow with lower bound / Circulation problem

 - 1. Construct super source S and sink T. 2. For each edge (x,y,l,u), connect $x \to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0 , connect $S\to v$ with capacity in(v) , otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect $t\to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T.If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the
 - maximum flow from s to t is the answer. To minimize, let f be the maximum flow from S to T. Connect t o s with capacity ∞ and let the flow from S to T be f'. If $f+f'
 eq \sum_{v\in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is $l_e + f_e$, where f_e corresponds to the flow of edge e on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipartite graph(X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise. 2. DFS from unmatched vertices in X.

 - 3. $x \in X$ is chosen iff x is unvisited. 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x, y, c), connect $x \to y$ with (cost, cap) = (c, 1) if
 - c>0, otherwise connect $y\to x$ with (cost, cap)=(-c,1) 3. For each edge with c<0, sum these cost as K, then increase d(y)
 - by 1, decrease d(x) by 1 4. For each vertex v with d(v) > 0, connect $S \to v$ with (cost, cap) =
 - 5. For each vertex v with d(v) < 0, connect v o T with (cost, cap) =(0, -d(v))
 - 6. Flow from S to T, the answer is the cost of the flow C+K
- · Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\it T}$
 - 2. Construct a max flow model, let K be the sum of all weights 3. Connect source $s \to v, v \in G$ with capacity K

 - 4. For each edge (u,v,w) in G, connect u o v and v o u with capacity
 - 5. For $v \in {\it G}$, connect it with sink $v \to t$ with capacity K + 2T - $(\sum_{e \in E(v)} w(e)) - 2w(v)$ 6. T is a valid answer if the maximum flow f < K|V|
- · Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with weight
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- · Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge
 - (v,t) with capacity $-p_v$. 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v
 - 3. The mincut is equivalent to the maximum profit of a subset of projects.

• 0/1 quadratic programming
$$\sum_x c_x x + \sum_y c_y \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity c_y . 2. Create edge (x,y) with capacity c_{xy} . 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

```
4.7
      Dinic
class Dinic{
private:
 using CapT = int64_t;
 struct Edge{
  int to, rev;
  CapT cap;
 };
 int n, st, ed;
 vector<vector<Edge>> G;
 vector<int> lv, idx;
 bool BFS(){
  fill(lv.begin(), lv.end(), -1);
  queue<int> bfs;
  bfs.push(st);
  lv[st] = 0;
  while(!bfs.empty()){
   int u = bfs.front(); bfs.pop();
   for(auto e: G[u]){
    if(e.cap <= 0 or lv[e.to]!=-1) continue;</pre>
    lv[e.to] = lv[u] + 1;
    bfs.push(e.to);
  return (lv[ed]!=-1);
 CapT DFS(int u, CapT f){
  if(u == ed) return f;
  CapT ret = 0;
  for(int& i = idx[u]; i < (int)G[u].size(); ++i){</pre>
   auto& e = G[u][i];
   if(e.cap <= 0 or lv[e.to]!=lv[u]+1) continue;</pre>
   CapT nf = DFS(e.to, min(f, e.cap));
   ret += nf; e.cap -= nf; f -= nf;
   G[e.to][e.rev].cap += nf;
   if(f == 0) return ret;
  if(ret == 0) lv[u] = -1;
  return ret;
public:
 void init(int n_, int st_, int ed_){
  n = n_, st = st_, ed = ed_;
  G.resize(n); lv.resize(n);
  fill(G.begin(), G.end(), vector<Edge>());
 void add_edge(int u, int v, CapT c){
G[u].push_back({v, (int)G[v].size(), c});
  G[v].push_back({u, ((int)G[u].size())-1, 0});
 CapT max_flow(){
 CapT ret = 0;
  while(BFS()){
   idx.assign(n, 0);
   CapT f = DFS(st, numeric_limits<CapT>::max());
   ret += f;
   if(f == 0) break;
  return ret;
 }
} flow;
```

4.8 Minimum Cost Maximum Flow

```
class MiniCostMaxiFlow{
using CapT = int;
using WeiT = int64_t;
using PCW = pair<CapT, WeiT>;
static constexpr CapT INF_CAP = 1 << 30;</pre>
static constexpr WeiT INF_WEI = 1LL<<60;</pre>
private:
struct Edge{
  int to, back;
 WeiT wei;
 CapT cap
 Edge() {}
 Edge(int a,int b,WeiT c,CapT d):
   to(a),back(b),wei(c),cap(d)
  {}
};
int ori, edd;
vector<vector<Edge>> G;
```

```
vector<int> fa, wh;
 vector<bool> inq;
 vector<WeiT> dis;
 PCW SPFA(){
  fill(inq.begin(),inq.end(),false);
  fill(dis.begin(), dis.end(), INF_WEI);
  queue<int> qq; qq.push(ori);
  dis[ori]=0;
  while(!qq.empty()){
   int u=qq.front();qq.pop();
   inq[u] = 0;
   for(int i=0;i<SZ(G[u]);++i){</pre>
    Edge e=G[u][i];
    int v=e.to;
    WeiT d=e.wei;
    if(e.cap <= 0 | |dis[v] <= dis[u] + d)
     continue
    dis[v]=dis[u]+d;
    fa[v]=u,wh[v]=i;
    if(inq[v]) continue;
    qq.push(v);
    inq[v]=1;
  if(dis[edd]==INF_WEI)
   return {-1,-1};
  CapT mw=INF_CAP;
  for(int i=edd;i!=ori;i=fa[i])
   mw=min(mw,G[fa[i]][wh[i]].cap);
  for (int i=edd;i!=ori;i=fa[i]){
   auto &eg=G[fa[i]][wh[i]];
   eq.cap-=mw;
   G[eg.to][eg.back].cap+=mw;
  return {mw,dis[edd]};
public:
 void init(int a,int b,int n){
  ori=a,edd=b;
  G.clear();G.resize(n);
  fa.resize(n);wh.resize(n);
  inq.resize(n); dis.resize(n);
 void add_edge(int st,int ed,WeiT w,CapT c){
  G[st].emplace_back(ed,SZ(G[ed]),w,c);
  G[ed].emplace_back(st,SZ(G[st])-1,-w,0);
 PCW solve(){
  /* might modify to
  cc += ret.first * ret.second
  or
  ww += ret.first * ret.second
  CapT cc=0; WeiT ww=0;
  while(true){
   PCW ret=SPFA();
   if(ret.first==-1) break;
   cc+=ret.first;
   ww+=ret.second;
  return {cc,ww};
 }
} mcmf;
4.9 Global Min-Cut
const int maxn = 500 + 5;
int w[maxn][maxn], g[maxn];
bool v[maxn], del[maxn];
void add_edge(int x, int y, int c) {
w[x][y] += c; w[y][x] += c;
pair<int, int> phase(int n) {
memset(v, false, sizeof(v));
memset(g, 0, sizeof(g));
int s = -1, t = -1;
 while (true) {
  int c = -1;
  for (int i = 0; i < n; ++i) {
```

if (del[i] || v[i]) continue;

if (c == -1) **break**;

if $(c == -1 \mid | g[i] > g[c]) c = i;$

```
v[s = t, t = c] = true;
                                                                       1ld square_root(1ld x){
  for (int i = 0; i < n; ++i) {
  if (del[i] || v[i]) continue;</pre>
                                                                        lld s=sqrt(x-static_cast<long double>(0.1));
                                                                        while(s*s <= x) ++s;
   g[i] += w[c][i];
                                                                        return s-1;
                                                                      void init(){
 return make_pair(s, t);
                                                                        primes.reserve(N);
                                                                        primes.push_back(1);
int mincut(int n) {
                                                                        for(int i=2;i<N;i++) {</pre>
                                                                         if(!sieved[i]) primes.push_back(i);
pi[i] = !sieved[i] + pi[i-1];
 int cut = 1e9;
 memset(del, false, sizeof(del));
 for (int i = 0; i < n - 1; ++i) {
                                                                         for(int p: primes) if(p > 1) {
  int s, t; tie(s, t) = phase(n);
del[t] = true; cut = min(cut, g[t]);
                                                                          if(p * i >= N) break;
                                                                          sieved[p * i] = true;
  for (int j = 0; j < n; ++j) {
                                                                          if(p % i == 0) break;
   w[s][j] += w[t][j]; w[j][s] += w[j][t];
                                                                       11d phi(11d m, 11d n) {
 return cut;
                                                                        static constexpr int MM = 80000, NN = 500;
                                                                        static lld val[MM][NN];
                                                                        if(m<MM&&n<NN&&val[m][n])return val[m][n]-1;</pre>
5
     Math
                                                                        if(n == 0) return m;
      Prime Table
                                                                        if(primes[n] >= m) return 1;
                                                                        11d ret = phi(m,n-1)-phi(m/primes[n],n-1);
1002939109, 1020288887, 1028798297, 1038684299,
1041211027, 1051762951, 1058585963, 1063020809,
                                                                        if(m<MM&&n<NN) val[m][n] = ret+1;</pre>
1147930723, 1172520109, 1183835981, 1187659051,\\
                                                                        return ret;
\begin{array}{c} 1241251303, 1247184097, 1255940849, 1272759031, \\ 1287027493, 1288511629, 1294632499, 1312650799, \\ 1868732623, 1884198443, 1884616807, 1885059541, \end{array}
                                                                      11d pi_count(11d);
1909942399, 1914471137, 1923951707, 1925453197,
                                                                      11d P2(11d m, 11d n) {
1979612177, 1980446837, 1989761941, 2007826547,\\
                                                                        11d sm = square_root(m), ret = 0;
2008033571, 2011186739, 2039465081, 2039728567
                                                                        for(lld i = n+1;primes[i]<=sm;i++)</pre>
\begin{matrix} 2093735719, 2116097521, 2123852629, 2140170259, \\ 3148478261, 3153064147, 3176351071, 3187523093, \end{matrix}
                                                                         ret+=pi_count(m/primes[i])-pi_count(primes[i])+1;
                                                                        return ret;
3196772239, 3201312913, 3203063977, 3204840059,
3210224309, 3213032591, 3217689851, 3218469083,
3219857533, 3231880427, 3235951699, 3273767923,
                                                                      11d pi_count(11d m) {
3276188869, 3277183181, 3282463507, 3285553889,
                                                                        if(m < N) return pi[m];</pre>
3319309027, 3327005333, 3327574903, 3341387953, \\ 3373293941, 3380077549, 3380892997, 3381118801
                                                                        11d n = pi_count(cube_root(m));
                                                                        return phi(m, n) + n - 1 - P2(m, n);
      \lfloor rac{n}{i} 
floor Enumeration
T_0 = 1, T_{i+1} = \lfloor \frac{n}{\lfloor \frac{n}{T_i + 1} \rfloor} \rfloor
                                                                       5.6 Range Sieve
5.3 ax+by=gcd
                                                                      const int MAX_SQRT_B = 50000;
// ax+ny = 1, ax+ny == ax == 1 \pmod{n}
                                                                      const int MAX_L = 200000 + 5;
void exgcd(lld x,lld y,lld &g,lld &a,lld &b) {
if (y == 0) g=x, a=1, b=0;
                                                                       bool is_prime_small[MAX_SQRT_B];
else exgcd(y, x\%y, g, b, a), b=(x/y)*a;
                                                                      bool is_prime[MAX_L];
                                                                       void sieve(lld 1, lld r){
5.4 Pollard Rho
                                                                        // [1, r)
// does not work when n is prime
                                                                        for(lld i=2;i*i<r;i++) is_prime_small[i] = true;</pre>
// return any non-trivial factor
                                                                        for(lld i=1;i<r;i++) is_prime[i-1] = true;</pre>
llu pollard_rho(llu n){
                                                                        if(l==1) is_prime[0] = false;
 static auto f=[](llu x,llu k,llu m){
                                                                        for(lld i=2;i*i<r;i++){</pre>
  return add(k,mul(x,x,m),m);
                                                                         if(!is_prime_small[i]) continue;
                                                                         for(lld j=i*i;j*j<r;j+=i) is_prime_small[j]=false;</pre>
 if (!(n&1)) return 2;
mt19937 rnd(120821011);
                                                                         for(1ld j=std::max(2LL, (1+i-1)/i)*i;j<r;j+=i)</pre>
                                                                            is_prime[j-1]=false;
 while(true){
  llu y=2,yy=y,x=rnd()%n,t=1;
                                                                      }
  for(llu sz=2;t==1;sz<<=1) {</pre>
                                                                       5.7 Miller Rabin
   for(llu i=0;i<sz;++i){</pre>
    if(t!=1)break;
                                                                      bool isprime(llu x){
                                                                        static llu magic[]={2,325,9375,28178,\
    yy=f(yy,x,n);
     t=gcd(yy>y?yy-y:y-yy,n);
                                                                                   450775,9780504,1795265022};
                                                                        static auto witn=[](llu a,llu u,llu n,int t)
   y=yy;
                                                                        ->bool{
                                                                         if (!(a = mpow(a,u,n)))return 0;
  if(t!=1&&t!=n) return t;
                                                                         while(t--){
                                                                          1lu a2=mul(a,a,n);
                                                                          if(a2==1 && a!=1 && a!=n-1)
                                                                           return 1;
5.5 Pi Count (Linear Sieve)
                                                                          a = a2;
static constexpr int N = 1000000 + 5;
                                                                         }
lld pi[N];
                                                                         return a!=1;
vector<int> primes;
bool sieved[N];
                                                                        if(x<2)return 0;</pre>
11d cube_root(11d x){
                                                                        if(!(x&1))return x==2;
1ld s=cbrt(x-static_cast<long double>(0.1));
                                                                        llu x1=x-1; int t=0;
 while(s*s*s <= x) ++s;</pre>
                                                                        while(!(x1&1))x1>>=1,t++;
 return s-1;
                                                                        for(llu m:magic)if(witn(m,x1,x,t))return 0;
```

return 1:

```
| }
                                                                (len must be 2^k and = 2^k(max(a, b))
                                                               Hand written Cplx would be 2x faster
      Inverse Element
                                                             Cplx omega[2][N];
// x's inverse mod k
                                                             void init_omega(int n) {
long long GetInv(long long x, long long k){
                                                              static constexpr llf PI=acos(-1);
 // k is prime: euler_(k)=k-1
                                                              const llf arg=(PI+PI)/n;
 return qPow(x, euler_phi(k)-1);
                                                              for(int i=0;i<n;++i)</pre>
                                                               omega[0][i]={cos(arg*i),sin(arg*i)};
// if you need [1, x] (most use: [1, k-1]
                                                              for(int i=0;i<n;++i)</pre>
void solve(int x, long long k){
                                                               omega[1][i]=conj(omega[0][i]);
 inv[1] = 1;
 for(int i=2;i<x;i++)</pre>
                                                             void tran(Cplx arr[],int n,Cplx omg[]) {
  inv[i] = ((long long)(k - k/i) * inv[k % i]) % k;
                                                              for(int i=0, j=0;i<n;++i)</pre>
                                                               if(i>j)swap(arr[i],arr[j]);
5.9 Euler Phi Function
                                                               for(int l=n>>1;(j^=1)<1;l>>=1);
                                                              for (int l=2;l<=n;l<<=1){
  extended euler:
                                                               int m=1>>1;
  a^b mod p
                                                               for(auto p=arr;p!=arr+n;p+=1){
  if gcd(a, p)==1: a^{(b\%phi(p))}
                                                                for(int i=0;i<m;++i){</pre>
  elif b < phi(p): a^b mod p
                                                                 Cplx t=omg[n/1*i]*p[m+i];
  else a^(b%phi(p) + phi(p))
                                                                 p[m+i]=p[i]-t; p[i]+=t;
lld euler_phi(int x){
 lld r=1;
 for(int i=2;i*i<=x;++i){</pre>
  if(x%i==0){
                                                             void DFT(Cplx arr[],int n){tran(arr,n,omega[0]);}
   x/=i; r*=(i-1);
                                                             void iDFT(Cplx arr[],int n){
   while(x%i==0){
                                                              tran(arr,n,omega[1]);
    x/=i; r*=i;
                                                              for(int i=0;i<n;++i) arr[i]/=n;</pre>
  }
                                                             5.12 Chinese Remainder
 if(x>1) r*=x-1;
                                                             1ld crt(lld ans[], lld pri[], int n){
 return r;
                                                              lld M = 1, ret = 0;
                                                              for(int i=0;i<n;i++) M *= pri[i];</pre>
vector<int> primes;
                                                              for(int i=0;i<n;i++)</pre>
bool notprime[N];
                                                               lld iv = (gcd(M/pri[i],pri[i]).FF+pri[i])%pri[i];
11d phi[N];
                                                               ret += (ans[i]*(M/pri[i])%M * iv)%M;
void euler_sieve(int n){
                                                               ret %= M;
 for(int i=2;i<n;i++){</pre>
  if(!notprime[i]){
   primes.push_back(i); phi[i] = i-1;
                                                              return ret;
                                                             }
                                                             /*
  for(auto j: primes){
   if(i*j >= n) break;
                                                             Another:
                                                             x = a1 \% m1
   notprime[i*j] = true;
                                                             x = a2 \% m2
   phi[i*j] = phi[i] * phi[j];
                                                             g = gcd(m1, m2)
   if(i \% j == 0)
                                                             assert((a1-a2)%g==0)
    phi[i*j] = phi[i] * j;
                                                             [p, q] = exgcd(m2/g, m1/g)
     break;
                                                             return a2+m2*(p*(a1-a2)/g)
                                                             \theta \ll x \ll 1cm(m1, m2)
                                                             */
 }
                                                             5.13 Berlekamp Massey
       Gauss Elimination
                                                             // x: 1-base, p[]: 0-base
void gauss(vector<vector<double>> &d) {
                                                             template<size_t N>
                                                             vector<llf> BM(llf x[N], size_t n){
   int n = d.size(), m = d[0].size();
                                                               size_t f[N]={0},t=0;11f d[N];
   for (int i = 0; i < m; ++i) {
                                                               vector<llf> p[N];
     int p = -1;
     for (int j = i; j < n; ++j) {
                                                               for(size_t i=1,b=0;i<=n;++i)</pre>
       if (fabs(d[j][i]) < eps) continue;</pre>
                                                                 for(size_t j=0;j<p[t].size();++j)</pre>
                                                                    d[i]+=x[i-j-1]*p[t][j];
       if (p == -1 || fabs(d[j][i])>fabs(d[p][i])) p=j;
                                                                  if(abs(d[i]-=x[i])<=EPS)continue;</pre>
                                                                 f[t]=i;if(!t){p[++t].resize(i);continue;}
     if (p == -1) continue;
     for (int j = 0; j < m; ++j) swap(d[p][j], d[i][j]);
                                                                 vector<llf> cur(i-f[b]-1);
                                                                 11f k=-d[i]/d[f[b]];cur.PB(-k);
     for (int j = 0; j < n; ++j) {
       if (i == j) continue;
                                                                 for(size_t j=0;j<p[b].size();j++)</pre>
       double z = d[j][i] / d[i][i];
                                                                    cur.PB(p[b][j]*k);
       for (int k = 0; k < m; ++k) d[j][k] -= z*d[i][k];
                                                                  if(cur.size()<p[t].size())cur.resize(p[t].size());</pre>
                                                                  for(size_t j=0;j<p[t].size();j++)cur[j]+=p[t][j];
                                                                 if(i-f[b]+p[b].size()>=p[t].size()) b=t;
  }
                                                                 p[++t]=cur;
       Fast Fourier Transform
5.11
                                                               return p[t];
  polynomial multiply:
                                                             5.14 NTT
  DFT(a, len); DFT(b, len);
  for(int i=0;i<len;i++) c[i] = a[i]*b[i];
                                                             // Remember coefficient are mod P
  iDFT(c, len);
                                                             /* p=a*2^n+1
```

```
root
                                                                  Poly& isz(int _n) { return coef.resize(_n), *this; }
      65536
                    65537
                                                                  Poly& iadd(const Poly &rhs) { // n() == rhs.n()
  16
                                1
                                      3 */
  20 1048576
                    7340033
                                                                   fi(0, n()) if ((coef[i]+=rhs[i]) >= P)coef[i]-=P;
// (must be 2<sup>k</sup>)
template<LL P, LL root, int MAXN>
struct NTT{
                                                                  Poly& imul(LL k) {
 static LL bigmod(LL a, LL b) {
                                                                   fi(0, n()) coef[i] = coef[i] * k % P;
                                                                   return *this;
 LL res = 1;
  for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P)
                                                                 if(b&1) res=(res*bs)%P;
  return res;
 static LL inv(LL a, LL b) {
 if(a==1)return 1;
  return (((LL)(a-inv(b%a,a))*b+1)/a)%b;
                                                                   ntt(X.data(), _n, true);
                                                                   return X.isz(n() + rhs.n() - 1);
 LL omega[MAXN+1];
 NTT()
                                                                  Poly Inv() const { // coef[0] != 0
  omega[0] = 1
                                                                   if (n() == 1) return {ntt.minv(coef[0])};
  LL r = bigmod(root, (P-1)/MAXN);
                                                                   const int _n = n2k(n() * 2);
  for (int i=1; i<=MAXN; i++)
                                                                   Poly Xi = Poly(*this, (n() + 1)/2).Inv().isz(_n);
                                                                   Poly Y(*this, _n);
   omega[i] = (omega[i-1]*r)%P;
                                                                   ntt(Xi.data(), _n), ntt(Y.data(), _n);
 // n must be 2^k, and 0 <= a[i] < P
void tran(int n, LL a[], bool inv_ntt=false){
  int basic = MAXN / n , theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
                                                                   fi(0, _n) {
Xi[i] *= (2 - Xi[i] * Y[i]) % P;
                                                                    if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
   int mh = m >> 1;
                                                                   ntt(Xi.data(), _n, true);
   for (int i = 0; i < mh; i++) {
  LL w = omega[i*theta%MAXN];</pre>
                                                                   return Xi.isz(n());
    for (int j = i; j < n; j += m) {</pre>
                                                                  Poly Sqrt() const { // Jacobi(coef[0], P) = 1
     int k = j + mh;
LL x = a[j] - a[k];
                                                                   if (n()==1) return {QuadraticResidue(coef[0], P)};
                                                                   Poly X = Poly(*this, (n()+1) / 2).Sqrt().isz(n());
     if (x < 0) x += P;
                                                                   return X.iadd(Mul(X.Inv()).isz(n())).imul(P/2+1);
     a[j] += a[k];
                                                                  pair<Poly, Poly> DivMod(const Poly &rhs) const {
  // (rhs.)back() != 0
     if (a[j] > P) a[j] -= P;
     a[k] = (w * x) % P;
                                                                   if (n() < rhs.n()) return {{0}, *this};</pre>
    }
                                                                   const int _n = n() - rhs.n() + 1;
   theta = (theta * 2) % MAXN;
                                                                   Poly X(rhs); X.irev().isz(_n);
                                                                   Poly Y(*this); Y.irev().isz(_n);
                                                                   Poly Q = Y.Mul(X.Inv()).isz(_n).irev();
  for (int j = 1; j < n - 1; j++) {
                                                                   X = rhs.Mul(Q), Y = *this
                                                                   fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
return {0, Y.isz(max(1, rhs.n() - 1))};
   for (int k = n >> 1; k > (i ^= k); k >>= 1);
   if (j < i) swap(a[i], a[j]);</pre>
  if (inv_ntt) {
                                                                  Poly Dx() const {
   LL ni = inv(n,P);
                                                                   Poly ret(n() - 1)
   reverse( a+1 , a+n );
for (i = 0; i < n; i++)
                                                                   fi(0, ret.n()) ret[i] = (i + 1) * coef[i + 1] % P;
                                                                   return ret.isz(max(1, ret.n()));
    a[i] = (a[i] * ni) % P;
                                                                  Poly Sx() const {
                                                                   Poly ret(n() + 1);
                                                                   fi(0, n()) ret[i + 1]=ntt.minv(i + 1)*coef[i] % P;
const LL P=2013265921, root=31;
                                                                   return ret:
const int MAXN=4194304;
NTT<P, root, MAXN> ntt;
                                                                  Poly _tmul(int nn, const Poly &rhs) const {
                                                                   Poly Y = Mul(rhs).isz(n() + nn - 1);
5.15
      Polynomial Operations
                                                                   return Poly(Y.data() + n() - 1, nn);
using VL = vector<LL>;
#define fi(s, n) for (int i=int(s); i<int(n); ++i)
#define Fi(s, n) for (int i=int(n); i>int(s); --i)
                                                                  VL _eval(const VL &x, const auto up)const{
                                                                   const int _n = (int)x.size();
                                                                   if (!_n) return {};
int n2k(int n) {
                                                                   vector<Poly> down(_n * 2);
int sz = 1; while (sz < n) sz <<= 1;</pre>
 return sz;
                                                                   down[1] = DivMod(up[1]).second;
                                                                   fi(2,_n*2) down[i]=down[i/2].DivMod(up[i]).second;
                                                                   /* down[1] = Poly(up[1]).irev().isz(n()).Inv().irev()
template<int MAXN, LL P, LL RT> // MAXN = 2^k
                                                                   ._tmul(_n, *this);
fi(2, _n * 2) down[i] = up[i ^ 1]._tmul(up[i].n() -
1, down[i / 2]); */
struct Poly { // coefficients in [0, P)
 static NTT<MAXN, P, RT> ntt;
 VL coef;
                                                                   VL y(_n);
 int n() const { return coef.size(); } // n()>=1
                                                                   fi(0, _n) y[i] = down[_n + i][0];
 LL *data() { return coef.data(); }
 const LL *data() const { return coef.data(); }
                                                                   return y;
 LL &operator[](size_t i) { return coef[i]; }
 const LL &operator[](size_t i)const{return coef[i];}
                                                                  static vector<Poly> _tree1(const VL &x) {
 Poly(initializer_list<LL> a) : coef(a) { }
                                                                   const int _n = (int)x.size();
 explicit Poly(int _n = 1) : coef(_n) { }
Poly(const LL *arr, int _n) : coef(arr, arr + _n) {}
                                                                   vector<Poly> up(_n * 2);
                                                                   fi(0, _n) up[_n + i] = \{(x[i] ? P - x[i] : 0), 1\};
 Poly(const Poly &p, int _n) : coef(_n) {
                                                                   Fi(0, _n-1) up[i] = up[i * 2].Mul(up[i * 2 + 1]);
                                                                   return up;
  copy_n(p.data(), min(p.n(), _n), data());
                                                                  VL Eval(const VL&x)const{return _eval(x,_tree1(x));}
 Poly& irev(){return reverse(data(),data()+n()),*this;}
```

```
static Poly Interpolate(const VL &x, const VL &y) {
                                                             if( inv )
 const int _n = (int)x.size();
                                                              for( int i = 0 ; i < N ; i++ ) {
 vector<Poly> up = _{tree1(x), down(_n * 2);}
                                                               x[ i ] *= inv( N, MOD );
 VL z = up[1].Dx()._eval(x, up);
fi(0, _n) z[i] = y[i] * ntt.minv(z[i]) % P;
                                                               x[i] %= MOD;
                                                              }
                                                            }
 fi(0, _n) down[_n + i] = {z[i]};
        _n-1) down[i]=down[i * 2].Mul(up[i * 2 + 1])
 Fi(0,
   .iadd(down[i * 2 + 1].Mul(up[i * 2]));
                                                            5.17
                                                                   DiscreteLog
  return down[1];
                                                            11d BSGS(11d P, 11d B, 11d N) {
                                                             // find B^L = N \mod P
Poly Ln() const \{ // coef[0] == 1 \}
                                                             unordered_map<lld, int> R;
 return Dx().Mul(Inv()).Sx().isz(n());
                                                             1ld sq = (lld)sqrt(P);
                                                             11d t = 1:
Poly Exp() const \{ // coef[0] == 0 \}
                                                             for (int i = 0; i < sq; i++) {
 if (n() == 1) return {1};
                                                              if (t == N) return i;
 Poly X = Poly(*this, (n() + 1)/2).Exp().isz(n());
Poly Y = X.Ln(); Y[0] = P - 1;
                                                              if (!R.count(t)) R[t] = i;
                                                              t = (t * B) % P;
 fi(0, n()) if((Y[i] = coef[i] - Y[i]) < 0)Y[i]+=P;
 return X.Mul(Y).isz(n());
                                                             11d f = inverse(t, P);
                                                             for(int i=0;i<=sq+1;i++) {</pre>
Poly Pow(const string &K) const {
                                                              if (R.count(N))
 int nz = 0;
                                                               return i * sq + R[N];
 while (nz < n() && !coef[nz]) ++nz;</pre>
                                                              N = (N * f) % P;
 LL nk = 0, nk2 = 0;
                                                             }
  for (char c : K) {
                                                             return -1;
  nk = (nk * 10 + c - '0') % P;
  nk2 = nk2 * 10 + c - '0'
  if (nk2 * nz >= n()) return Poly(n());
                                                            5.18 Quadratic residue
  nk2 %= P - 1;
                                                            struct Status{
                                                              11 x,y;
 if (!nk && !nk2) return Poly({1}, n());
 Poly X(data() + nz, n() - nz * nk2);
                                                            11 w:
 LL \times 0 = X[0]
                                                            Status mult(const Status& a,const Status& b,ll mod){
 return X.imul(ntt.minv(x0)).Ln().imul(nk).Exp()
                                                              Status res
   .imul(ntt.mpow(x0, nk2)).irev().isz(n()).irev();
                                                              res.x=(a.x*b.x+a.y*b.y%mod*w)%mod;
                                                              res.y=(a.x*b.y+a.y*b.x)%mod;
static LL LinearRecursion(const VL&a,const VL&c,LL n){
                                                              return res;
 // a_n = \sum_{j=0}^{n-j} a_{j}
 const int k = (int)a.size();
                                                            inline Status qpow(Status _base, 11 _pow, 11 _mod) {
 assert((int)c.size() == k + 1);
                                                              Status res = \{1, 0\};
 Poly C(k + 1), W(\{1\}, k), M = \{0, 1\};
                                                              while(_pow>0){
 fi(1, k + 1) C[k - i] = c[i] ? P - c[i] : 0;
                                                                if(_pow&1) res=mult(res,_base,_mod);
 C[k] = 1
                                                                _base=mult(_base,_base,_mod);
 while (n) {
                                                                _pow>>=1;
  if (n % 2) W = W.Mul(M).DivMod(C).second;
                                                              }
  n /= 2, M = M.Mul(M).DivMod(C).second;
                                                              return res;
 LL ret = 0;
                                                            inline 11 check(11 x,11 p){
 fi(0, k) ret = (ret + W[i] * a[i]) % P;
                                                              return qpow_mod(x,(p-1)>>1,p);
 return ret;
}
                                                            inline 11 get_root(11 n,11 p){
                                                              if(p==2) return 1;
#undef fi
                                                              if(check(n,p)==p-1) return -1;
#undef Fi
                                                              11 a;
using Poly_t = Poly<131072 * 2, 998244353, 3>;
                                                              while(true){
template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
                                                                a=rand()%p;
5.16 FWT
                                                                w=((a*a-n)%p+p)%p;
                                                                if(check(w,p)==p-1) break;
/* xor convolution:
* x = (x0,x1) , y = (y0,y1)
* z = (x0y0 + x1y1 , x0y1 + x1y0 )
                                                              Status res = \{a, 1\}
                                                              res=qpow(res,(p+1)>>1,p);
                                                              return res.x;
* x' = (x0+x1, x0-x1), y' = (y0+y1, y0-y1)
* z' = ((x0+x1)(y0+y1)', (x0-x1)(y0-y1))
* z = (1/2) * z''
                                                            5.19 De-Bruijn
 * or convolution:
* x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
                                                            int res[maxn], aux[maxn], sz;
* and convolution:
                                                            void db(int t, int p, int n, int k) {
 * x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */
                                                             if (t > n) {
const LL MOD = 1e9+7;
                                                              if (n \% p == 0)
                                                               for (int i = 1; i <= p; ++i)</pre>
inline void fwt( LL x[ MAXN ] , int N , bool inv=0 ) {
for( int d = 1 ; d < N ; d <<= 1 ) {</pre>
                                                                res[sz++] = aux[i];
                                                             } else {
 int d2 = d << 1;
                                                              aux[t] = aux[t - p];
 for( int s = 0; s < N; s += d2)
  db(t + 1, p, n, k);
                                                              for (int i = aux[t - p] + 1; i < k; ++i) {
   x[ i ] = ta+tb;
                                                               aux[t] = i;
   x[ j ] = ta-tb;
                                                               db(t + 1, t, n, k);
   if( x[ i ] >= MOD ) x[ i ] -= MOD;
                                                              }
    if(x[j] < 0) x[j] += MOD;
}
                                                            int de_bruijn(int k, int n) {
```

if (d[r][n + 1] < -eps) {</pre>

```
// return cyclic string of len k^n s.t. every string
                                                                     pivot(r, n);
                                                                     if (!phase(1) \mid | d[m + 1][n + 1] < -eps)
 // of len n using k char appears as a substring.
 if (k == 1) {
                                                                      return VD(n, -inf);
 res[0] = 0;
                                                                     for (int i = 0; i < m; ++i) if (p[i] == -1) {
  return 1:
                                                                      int s = min_element(d[i].begin(), d[i].end() - 1)
                                                                           - d[i].begin();
 for (int i = 0; i < k * n; i++) aux[i] = 0;
                                                                      pivot(i, s);
 sz = 0:
 db(1, 1, n, k);
                                                                    if (!phase(0)) return VD(n, inf);
 return sz;
                                                                    VD x(n);
                                                                    for (int i = 0; i < m; ++i)
5.20 Simplex Construction
                                                                    if (p[i] < n) x[p[i]] = d[i][n + 1];
Standard form: maximize \sum_{1 \le i \le n} c_i x_i such that for all 1 \le j \le m,
                                                                    return x;
\sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j and x_i \geq 0 for all 1 \leq i \leq n.
  1. In case of minimization, let c_i^\prime = -c_i
                                                                  6
                                                                        Geometry
  2. \sum_{1 \le i \le n} A_{ji} x_i \ge b_j \to \sum_{1 \le i \le n} -A_{ji} x_i \le -b_j
                                                                       Basic Geometry
  3. \sum_{1 < i < n} A_{ji} x_i = b_j
                                                                  using coord_t = int;
                                                                  using Real = double:
        • \sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j
                                                                  using Point = std::complex<coord_t>;
                                                                  int sgn(coord_t x) {
        • \sum_{1 \le i \le n} A_{ji} x_i \ge b_j
                                                                   return (x > 0) - (x < 0);
  4. If x_i has no lower bound, replace x_i with x_i - x_i'
                                                                  coord_t dot(Point a, Point b) {
5.21 Simplex
                                                                    return real(conj(a) * b);
namespace simplex {
                                                                  coord_t cross(Point a, Point b) {
// maximize c^Tx under Ax <= B
                                                                   return imag(conj(a) * b);
// return VD(n, -inf) if the solution doesn't exist
// return VD(n, +inf) if the solution is unbounded
                                                                  int ori(Point a, Point b, Point c) {
using VD = vector<double>;
                                                                   return sgn(cross(b - a, c - a));
using VVD = vector<vector<double>>;
const double eps = 1e-9;
                                                                  bool operator<(const Point &a, const Point &b) {</pre>
const double inf = 1e+9;
                                                                   return real(a) != real(b)
int n, m;
                                                                     ? real(a) < real(b) : imag(a) < imag(b);
VVD d;
vector<int> p, q;
void pivot(int r, int s) {
                                                                  int argCmp(Point a, Point b) {
                                                                   // -1 / 0 / 1 <-> < / == / > (atan2)
 double inv = 1.0 / d[r][s];
                                                                   int qa = (imag(a) == 0
 for (int i = 0; i < m + 2; ++i)
                                                                      ? (real(a) < 0 ? 3 : 1) : (imag(a) < 0 ? 0 : 2));
  for (int j = 0; j < n + 2; ++j)
                                                                    int qb = (imag(b) == 0
   if (i != r && j != s)
                                                                      ? (real(b) < 0 ? 3 : 1) : (imag(b) < 0 ? 0 : 2));
    d[i][j] -= d[r][j] * d[i][s] * inv;
                                                                    if (qa != qb)
 for(int i=0;i<m+2;++i) if (i != r) d[i][s] *= -inv;</pre>
                                                                     return sgn(qa - qb);
 for(int j=0;j<n+2;++j) if (j != s) d[r][j] *= +inv;</pre>
                                                                    return sgn(cross(b, a));
 d[r][s] = inv; swap(p[r], q[s]);
                                                                  template <typename V> Real area(const V & pt) {
bool phase(int z) {
                                                                   coord_t ret = 0;
 int x = m + z;
                                                                    for (int i = 1; i + 1 < (int)pt.size(); i++)</pre>
 while (true) {
                                                                    ret += cross(pt[i] - pt[0], pt[i+1] - pt[0]);
  int s = -1;
                                                                    return ret / 2.0;
  for (int i = 0; i <= n; ++i) {
   if (!z && q[i] == -1) continue;
   if (s == -1 \mid | d[x][i] < d[x][s]) s = i;
                                                                   6.2 Circle Class
  if (d[x][s] > -eps) return true;
                                                                  struct Circle { Point o; Real r; };
  for (int i = 0; i < m; ++i) {
                                                                   vector<Real> intersectAngle(Circle a, Circle b) {
   if (d[i][s] < eps) continue;
if (r == -1 || \</pre>
                                                                   Real d2 = norm(a.o - b.o)
                                                                    if (norm(A.r - B.r) >= d2)
                                                                    if(A.r < B.r)
    d[i][n+1]/d[i][s] < d[r][n+1]/d[r][s]) r = i;
                                                                      return {-PI, PI};
  if (r == -1) return false;
                                                                     else
  pivot(r, s);
                                                                      return {};
                                                                    if (norm(A.r + B.r) <= d2) return {};</pre>
                                                                   Real dis = hypot(A.x - B.x, A.y - B.y);
Real theta = atan2(B.y - A.y, B.x - A.x);
Real phi = acos((A.r * A.r + d2 - B.r * B.r) /
VD solve(const VVD &a, const VD &b, const VD &c) {
 m = b.size(), n = c.size();
d = VVD(m + 2, VD(n + 2));
for (int i = 0; i < m; ++i)
                                                                     (2 * A.r * dis));
                                                                    Real L = theta - phi, R = theta + phi;
while (L < -PI) L += PI * 2;
  for (int j = 0; j < n; ++j) d[i][j] = a[i][j];</pre>
 p.resize(m), q.resize(n + 1);
                                                                    while (R > PI) R -= PI * 2;
 for (int i = 0; i < m; ++i)
                                                                    return { L, R };
 p[i] = n + i, d[i][n] = -1, d[i][n + 1] = b[i];
 for (int i = 0; i < n; ++i) q[i] = i,d[m][i] = -c[i];
q[n] = -1, d[m + 1][n] = 1;
                                                                   vector<Point> intersectPoint(Circle a, Circle b) {
 int r = 0;
                                                                   Real d=o.dis(aa.o);
                                                                    if (d >= r+aa.r || d <= fabs(r-aa.r)) return {};</pre>
 for (int i = 1; i < m; ++i)
  if (d[i][n + 1] < d[r][n + 1]) r = i;
                                                                    Real dt = (r*r - aa.r*aa.r)/d, d1 = (d+dt)/2;
```

Point dir = (aa.o-o); dir /= d;

stk[(pos+1)%n]-stk[i]))

abs(cross(stk[i+1]-stk[i],

```
Point pcrs = dir*d1 + o;
                                                                  ans = max({ans, dis(stk[i], stk[pos]),
 dt=sqrt(max(0.0L, r*r - d1*d1)), dir=dir.rot90();
 return {pcrs + dir*dt, pcrs - dir*dt};
                                                                 dis(stk[i+1], stk[pos])});
6.3 2D Convex Hull
                                                               6.6 2D Closest Pair
                                                               struct cmp_y {
template<typename PT>
vector<PT> buildConvexHull(vector<PT> d) {
                                                                bool operator()(const P& p, const P& q) const {
 sort(ALL(d), [](const PT& a, const PT& b){
                                                                 return p.y < q.y;</pre>
   return tie(a.x, a.y) < tie(b.x, b.y);});</pre>
 vector<PT> s(SZ(d)<<1);</pre>
                                                               };
                                                               multiset<P, cmp_y> s;
void solve(P a[], int n) {
 int o = 0;
 for(auto p: d) {
  while(o \ge 2 && cross(p - s[o - 2], s[o - 1] - s[o - 2]) <= 0)
                                                                sort(a, a + n, [](const P& p, const P& q) {
                                                                 return tie(p.x, p.y) < tie(q.x, q.y);</pre>
  s[o++] = p;
                                                                11f d = INF; int pt = 0;
 for(int i=SZ(d)-2, t = o+1;i>=0;i--){
                                                                for (int i = 0; i < n; ++i) {
  while (pt < i and a[i].x - a[pt].x >= d)
  while(o = t\&cross(d[i] - s[o-2], s[o-1] - s[o-2]) <= 0)
                                                                  s.erase(s.find(a[pt++]));
  s[o++] = d[i];
                                                                 auto it = s.lower_bound(P(a[i].x, a[i].y - d));
                                                                 while (it != s.end() and it->y - a[i].y < d)
                                                                  d = min(d, dis(*(it++), a[i]));
 s.resize(o-1);
 return s;
                                                                 s.insert(a[i]);
                                                               }
6.4 3D Convex Hull
                                                                     kD Closest Pair (3D ver.)
// return the faces with pt indexes
int flag[MXN][MXN];
                                                               llf solve(vector<P> v) {
                                                                shuffle(v.begin(), v.end(), mt19937());
unordered_map<lld, unordered_map<lld,</pre>
struct Point{
ld x,y,z;
 Point operator * (const ld &b) const {
                                                                 unordered_map<lld, int>>> m;
                                                                llf d = dis(v[0], v[1]);
auto Idx = [&d] (llf x) -> lld {
  return (Point) {x*b,y*b,z*b};}
 Point operator * (const Point &b) const {
  return(Point) {y*b.z-b.y*z,z*b.x-b.z*x,x*b.y-b.x*y};
                                                                 return round(x * 2 / d) + 0.1; };
 }
                                                                auto rebuild_m = [&m, &v, &Idx](int k) {
                                                                 m.clear();
Point ver(Point a, Point b, Point c) {
return (b - a) * (c - a);}
                                                                 for (int i = 0; i < k; ++i)
                                                                  m[Idx(v[i].x)][Idx(v[i].y)]
vector<Face> convex_hull_3D(const vector<Point> pt) {
                                                                   [Idx(v[i].z)] = i;
 int n = SZ(pt), ftop = 0;
                                                                }; rebuild_m(2);
                                                                for (size_t i = 2; i < v.size(); ++i) +</pre>
 REP(i,n) REP(j,n) flag[i][j] = 0;
 vector<Face> now;
                                                                 const lld kx = Idx(v[i].x), ky = Idx(v[i].y),
 now.emplace_back(0,1,2);
                                                                    kz = Idx(v[i].z); bool found = false;
 now.emplace_back(2,1,0);
                                                                 for (int dx = -2; dx <= 2; ++dx) {
 for (int i=3; i<n; i++){
                                                                  const 11d nx = dx + kx;
  ftop++; vector<Face> next;
                                                                  if (m.find(nx) == m.end()) continue;
  REP(j, SZ(now)) {
                                                                  auto\& mm = m[nx];
   Face& f=now[j]; int ff = 0;
                                                                  for (int dy = -2; dy <= 2; ++dy) {
   ld d=(pt[i]-pt[f.a]).dot(
                                                                   const 11d ny = dy + ky;
     ver(pt[f.a], pt[f.b], pt[f.c]));
                                                                   if (mm.find(ny) == mm.end()) continue;
                                                                   auto& mmm = mm[ny];
   if (d <= 0) next.push_back(f);</pre>
   if (d > 0) ff=ftop;
                                                                   for (int dz = -2; dz <= 2; ++dz) {
   else if (d < 0) ff=-ftop;</pre>
                                                                    const 11d nz = dz + kz;
   flag[f.a][f.b]=flag[f.b][f.c]=flag[f.c][f.a]=ff;
                                                                    if (mmm.find(nz) == mmm.end()) continue;
                                                                     const int p = mmm[nz];
                                                                    if (dis(v[p], v[i]) < d) {</pre>
  REP(j, SZ(now)) {
   Face& f=now[j]
                                                                     d = dis(v[p], v[i]);
   if (flag[f.a][f.b] > 0 &&
                                                                     found = true;
     flag[f.a][f.b] != flag[f.b][f.a])
    next.emplace_back(f.a,f.b,i);
   if (flag[f.b][f.c] > 0 &&
                                                                  }
     flag[f.b][f.c] != flag[f.c][f.b])
    next.emplace_back(f.b,f.c,i);
                                                                 if (found) rebuild_m(i + 1);
   if (flag[f.c][f.a] > 0 &&
   flag[f.c][f.a] != flag[f.a][f.c])
                                                                 else m[kx][ky][kz] = i;
    next.emplace_back(f.c,f.a,i);
                                                                return d;
  now=next;
                                                               6.8 Simulated Annealing
 return now;
                                                               11f anneal() {
                                                                mt19937 rnd_engine( seed );
                                                                uniform_real_distribution< llf > rnd( \theta, 1 );
6.5 2D Farthest Pair
                                                                const llf dT = 0.001;
// stk is from convex hull
                                                                // Argument p
                                                                11f S_cur = calc( p ), S_best = S_cur;
for ( 11f T = 2000 ; T > EPS ; T -= dT ) {
n = (int)(stk.size());
int pos = 1, ans = 0; stk.push_back(stk[0]);
for(int i=0;i<n;i++) {</pre>
                                                                 // Modify p to p_prime
 while(abs(cross(stk[i+1]-stk[i],
```

const llf S_prime = calc(p_prime);

11f prob = min((11f) 1, exp(-delta_c / T));

const llf delta_c = S_prime - S_cur

```
if ( rnd( rnd_engine ) <= prob )</pre>
                                                                   if (dist(pts[k], c.o) <= c.r) continue;</pre>
   S_cur = S_prime, p = p_prime;
                                                                       c = getCircum(pts[i], pts[j], pts[k]);
  if ( S_prime < S_best ) // find min</pre>
   S_best = S_prime, p_best = p_prime;
                                                                   }
                                                                }
return S_best;
                                                                 return c;
6.9 Half Plane Intersection
                                                              6.11 KDTree (Nearest Point)
                                                              const int MXN = 100005;
// NOTE: Point is complex<Real>
// cross(pt-line.st, line.dir)<=0 <-> pt in half plane
                                                               struct KDTree {
struct Line {
                                                                struct Node {
 Point st, ed;
                                                                 int x,y,x1,y1,x2,y2;
  Point dir;
                                                                 int id,f;
                                                                Node *L, *R;
 Line (Point _s, Point _e)
   : st(_s), ed(_e), dir(_e - _s) {}
                                                                } tree[MXN], *root;
                                                                int n;
                                                                LL dis2(int x1, int y1, int x2, int y2) {
bool operator<(const Line &lhs, const Line &rhs) {</pre>
                                                                LL dx = x1-x2, dy = y1-y2;
 if (int cmp = argCmp(lhs.dir, rhs.dir))
                                                                return dx*dx+dy*dy;
    return cmp == -1;
  return ori(lhs.st, lhs.ed, rhs.st) < 0;</pre>
                                                                static bool cmpx(Node& a, Node& b){return a.x<b.x;}</pre>
                                                                static bool cmpy(Node& a, Node& b){return a.y<b.y;}</pre>
Point intersect(const Line &A, const Line &B) {
                                                                void init(vector<pair<int,int>> ip) {
  Real t = cross(B.st - A.st, B.dir) /
                                                                n = ip.size();
  cross(A.dir, B.dir);
                                                                 for (int i=0; i<n; i++) {</pre>
  return A.st + t * A.dir;
                                                                  tree[i].id = i;
                                                                  tree[i].x = ip[i].first;
                                                                  tree[i].y = ip[i].second;
Real HPI(vector<Line> &lines) {
  sort(lines.begin(), lines.end());
                                                                root = build_tree(0, n-1, 0);
  deque<Line> que;
  deque<Point> pt;
                                                                Node* build_tree(int L, int R, int d) {
                                                                 if (L>R) return nullptr;
  que.push_back(lines[0]);
  for (int i = 1; i < (int)lines.size(); i++) {</pre>
                                                                 int M = (L+R)/2; tree[M].f = d%2;
    if (argCmp(lines[i].dir, lines[i-1].dir) == 0)
                                                                 nth_element(tree+L, tree+M, tree+R+1, d%2?cmpy:cmpx);
     continue;
                                                                 tree[M].x1 = tree[M].x2 = tree[M].x;
#define POP(L, R) \
                                                                 tree[M].y1 = tree[M].y2 = tree[M].y;
    while (pt.size() > 0 \
                                                                 tree[M].L = build_tree(L, M-1, d+1);
                                                                 if (tree[M].L) {
      && ori(L.st, L.ed, pt.back()) < 0) \
    pt.pop_back(), que.pop_back(); \
while (pt.size() > 0 \
                                                                  tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
                                                                  tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
      && ori(R.st, R.ed, pt.front()) < 0) \
                                                                  tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
      pt.pop_front(), que.pop_front();
    POP(lines[i], lines[i]);
    pt.push_back(intersect(que.back(), lines[i]));
                                                                 tree[M].R = build_tree(M+1, R, d+1);
    que.push_back(lines[i]);
                                                                 if (tree[M].R) {
                                                                 tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
 POP(que.front(), que.back())
  if (que.size() <= 1 ||</pre>
    argCmp(que.front().dir, que.back().dir) == 0)
                                                                  tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
 pt.push_back(intersect(que.front(), que.back()));
                                                                 return tree+M;
  return area(pt);
                                                                int touch(Node* r, int x, int y, LL d2){
                                                                LL dis = sqrt(d2)+1;
6.10 Minimum Covering Circle
                                                                 if (x<r->x1-dis || x>r->x2+dis ||
template<typename P>
                                                                   y<r->y1-dis || y>r->y2+dis)
Circle getCircum(const P &a, const P &b, const P &c){
                                                                  return 0;
Real a1 = a.x-b.x, b1 = a.y-b.y;
                                                                 return 1;
Real c1 = (a.x+b.x)/2 * a1 + (a.y+b.y)/2 * b1;
                                                                void nearest(Node* r,int x,int y,int &mID,LL &md2) {
Real a2 = a.x-c.x, b2 = a.y-c.y;
                                                                 if (!r || !touch(r, x, y, md2)) return;
Real c2 = (a.x+c.x)/2 * a2 + (a.y+c.y)/2 * b2;
Circle cc;
                                                                 LL d2 = dis2(r->x, r->y, x, y);
cc.o.x = (c1*b2-b1*c2)/(a1*b2-b1*a2);
                                                                 if (d2 < md2 \mid \mid (d2 == md2 \&\& mID < r->id)) {
cc.o.y = (a1*c2-c1*a2)/(a1*b2-b1*a2);
                                                                 mID = r -> id;
cc.r = hypot(cc.o.x-a.x, cc.o.y-a.y);
                                                                  md2 = d2:
return cc;
                                                                 // search order depends on split dim
                                                                 if ((r->f == 0 && x < r->x) ||
                                                                   (r->f == 1 \&\& y < r->y)) {
template<typename P>
Circle MinCircleCover(const vector<P>& pts){
                                                                  nearest(r->L, x, y, mID, md2);
  random_shuffle(pts.begin(), pts.end());
                                                                  nearest(r->R, x, y, mID, md2);
  Circle c = { pts[0], 0 };
                                                                 } else {
  for(int i=0;i<(int)pts.size();i++){</pre>
                                                                  nearest(r->R, x, y, mID, md2);
  if (dist(pts[i], c.o) <= c.r) continue;</pre>
                                                                  nearest(r->L, x, y, mID, md2);
  c = { pts[i], 0 };
for (int j = 0; j < i; j++) {</pre>
                                                                }
      if(dist(pts[j], c.o) <= c.r) continue;</pre>
                                                                int query(int x, int y) {
                                                                 int id = 1029384756;
      c.o = (pts[i] + pts[j]) / 2;
      c.r = dist(pts[i], c.o);
                                                                 LL d2 = 102938475612345678LL;
                                                                nearest(root, x, y, id, d2);
   for (int k = 0; k < j; k++) {
```

_s[(int)s.size()] = 0; // s shouldn't contain 0

```
sais(_s, sa, p, q, t, c, (int)s.size() + 1,
  return id;
                                                                for(int i = 0; i < (int)s.size(); ++i) sa[i]=sa[i+1];</pre>
} tree;
                                                                for(int i = 0; i < (int)s.size(); ++i) rev[sa[i]]=i;</pre>
                                                                int ind = 0; hi[0] = 0;
                                                                for (int i = 0; i < (int)s.size(); ++i) {</pre>
     Stringology
                                                                 if (!rev[i]) {
                                                                  ind = 0;
7.1
     Hash
                                                                  continue;
class Hash {
 private:
                                                                 while (i + ind < (int)s.size() && \</pre>
  static constexpr int P = 127, Q = 1051762951;
                                                                  s[i + ind] == s[sa[rev[i] - 1] + ind]) ++ind;
  vector<int> h, p;
                                                                 hi[rev[i]] = ind ? ind-- : 0;
 public:
  void init(const string &s){
   h.assign(s.size()+1, 0); p.resize(s.size()+1);
   for (size_t i = 0; i < s.size(); ++i)</pre>
                                                               7.3 Aho-Corasick Algorithm
    h[i + 1] = add(mul(h[i], P), s[i]);
                                                               class AhoCorasick{
   generate(p.begin(), p.end(),[x=1,y=1,this]()
                                                                private:
     mutable{y=x;x=mul(x,P);return y});
                                                                 static constexpr int Z = 26;
                                                                 struct node{
  int query(int 1, int r){ // 1-base (1, r]
                                                                  node *nxt[ Z ], *fail;
   return sub(h[r], mul(h[1], p[r-1]));}
                                                                  vector< int > data;
                                                                  node(): fail( nullptr ) {
                                                                   memset( nxt, 0, sizeof( nxt ) );
7.2 Suffix Array
                                                                   data.clear();
namespace sfxarray {
                                                                  }
bool t[maxn * 2];
                                                                 } *rt;
int hi[maxn], rev[maxn];
                                                                 inline int Idx( char c ) { return c - 'a'; }
int _s[maxn * 2], sa[maxn * 2], c[maxn * 2];
                                                                public:
int x[maxn], p[maxn], q[maxn * 2];
                                                                 void init() { rt = new node(); }
// sa[i]: sa[i]-th suffix is the \
                                                                 void add( const string& s, int d ) {
                                                                  node* cur = rt;
// i-th lexigraphically smallest suffix.
// hi[i]: longest common prefix \
                                                                  for ( auto c : s )
// of suffix sa[i] and suffix sa[i - 1].
                                                                   if ( not cur->nxt[ Idx( c ) ] )
void pre(int *sa, int *c, int n, int z) {
                                                                    cur->nxt[ Idx( c ) ] = new node();
 memset(sa, 0, sizeof(int) * n);
                                                                   cur = cur->nxt[ Idx( c ) ];
 memcpy(x, c, sizeof(int) * z);
                                                                  cur->data.push_back( d );
void induce(int *sa,int *c,int *s,bool *t,int n,int z){
 memcpy(x + 1, c, sizeof(int) * (z - 1));
for (int i = 0; i < n; ++i)
if (sa[i] && !t[sa[i] - 1])
                                                                 void compile() {
                                                                  vector< node* > bfs;
                                                                  size_t ptr = 0;
   sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
                                                                  for ( int i = 0 ; i < Z ; ++ i ) {
 memcpy(x, c, sizeof(int) * z);
                                                                   if ( not rt->nxt[ i ] ) {
 for (int i = n - 1; i >= 0; --i)
if (sa[i] && t[sa[i] - 1])
                                                                    // uncomment 2 lines to make it DFA
                                                                    // rt->nxt[i] = rt;
   sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
                                                                    continue;
void sais(int *s, int *sa, int *p, int *q,
                                                                   rt->nxt[ i ]->fail = rt;
 bool *t, int *c, int n, int z)
                                                                   bfs.push_back( rt->nxt[ i ] );
 bool uniq = t[n - 1] = true;
 int nn=0, nmxz=-1, *nsa = sa+n, *ns=s+n, last=-1;
                                                                  while ( ptr < bfs.size() ) {</pre>
                                                                   node* u = bfs[ ptr ++ ];
for ( int i = 0 ; i < Z ; ++ i ) {
 memset(c, 0, sizeof(int) * z);
 for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
 for (int i = 0; i < z - 1; ++i) c[i + 1] += c[i];
                                                                    if ( not u->nxt[ i ] ) {
 if (uniq) {
                                                                     // u->nxt[i] = u->fail->nxt[i];
  for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;
                                                                     continue;
  return:
                                                                    node* u_f = u->fail;
 for (int i = n - 2; i >= 0; --i)
                                                                    while ( u_f ) {
  t[i] = (s[i] = s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
                                                                     if ( not u_f->nxt[ i ] ) {
 pre(sa, c, n, z);
                                                                      u_f = u_f->fail; continue;
 for (int i = 1; i <= n - 1; ++i)
  if (t[i] && !t[i - 1])
                                                                     u->nxt[ i ]->fail = u_f->nxt[ i ];
    sa[--x[s[i]]] = p[q[i] = nn++] = i;
  induce(sa, c, s, t, n, z);
 for (int i = 0; i < n; ++i) {
  if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {</pre>
                                                                    if ( not u_f ) u->nxt[ i ]->fail = rt;
                                                                    bfs.push_back( u->nxt[ i ] );
  bool neq = last < 0 || \
   memcmp(s + sa[i], s + last,
    (p[q[sa[i]] + 1]
                      - sa[i]) * sizeof(int));
  ns[q[last = sa[i]]] = nmxz += neq;
                                                                 void match( const string& s, vector< int >& ret ) {
                                                                  node* u = rt;
 sais(ns, nsa, p+nn, q+n, t+n, c+z, nn, nmxz+1);
                                                                  for ( auto c : s ) {
                                                                   while ( u != rt and not u->nxt[ Idx( c ) ] )
 pre(sa, c, n, z);
 for (int i = nn - 1; i >= 0; --i)
                                                                    u = u->fail:
  sa[--x[s[p[nsa[i]]]]] = p[nsa[i]];
                                                                   u = u - nxt[Idx(c)];
                                                                   if ( not u ) u = rt;
 induce(sa, c, s, t, n, z);
                                                                   node* tmp = u;
void build(const string &s) {
  for (int i = 0; i < (int)s.size(); ++i) _s[i] = s[i];</pre>
                                                                   while ( tmp != rt ) {
                                                                    for ( auto d : tmp->data )
```

ret.push_back(d);

```
tmp = tmp->fail;
                                                               for (int i = 0, k = 0; i < (int)s.size(); ++i)</pre>
                                                                while(k > 0 && (k==(int)t.size() || s[i]!=t[k]))
   }
                                                                 k = f[k - 1];
                                                                if (s[i] == t[k]) ++k;
} ac;
                                                                if (k == (int)t.size()) r.push_back(i-t.size()+1);
7.4
     Suffix Automaton
                                                               return res;
                                                              }
struct Node{
 Node *green, *edge[26];
                                                              7.6 Z value
 int max_len;
                                                              char s[MAXN]:
 Node(const int _max_len)
  : green(NULL), max_len(_max_len){
                                                              int len,z[MAXN]
  memset(edge, 0, sizeof(edge));
                                                              void Z_value() {
                                                               int i,j,left,right;
} *ROOT, *LAST;
                                                               z[left=right=0]=len;
void Extend(const int c) {
                                                               for(i=1;i<len;i++) {</pre>
 Node *cursor = LAST;
                                                                j=max(min(z[i-left],right-i),0);
 LAST = new Node((LAST->max_len) + 1);
                                                                for(;i+j<len&&s[i+j]==s[j];j++)
 for(;cursor&&!cursor->edge[c]; cursor=cursor->green)
                                                                if(i+(z[i]=j)>right)right=i+z[left=i];
  cursor->edge[c] = LAST;
 if (!cursor)
                                                              }
  LAST->green = ROOT;
 else {
                                                              7.7 Manacher
  Node *potential_green = cursor->edge[c];
                                                              int z[maxn];
  if((potential_green->max_len)==(cursor->max_len+1))
                                                              int manacher(const string& s) {
  string t = ".";
   LAST->green = potential_green;
  else {
                                                               for(char c:s)) t += c, t += '.';
//assert(potential_green->max_len>(cursor->max_len+1));
                                                               int 1 = 0, r = 0, ans = 0;
   Node *wish = new Node((cursor->max_len) + 1);
                                                               for (int i = 1; i < t.length(); ++i) {
z[i] = (r > i ? min(z[2 * 1 - i], r - i) : 1);
   for(;cursor && cursor->edge[c]==potential_green;
      cursor = cursor->green)
                                                                while (i - z[i] \ge 0 \&\& i + z[i] < t.length()) {
    cursor->edge[c] = wish;
                                                                 if(t[i - z[i]] == t[i + z[i]]) ++z[i];
   for (int i = 0; i < 26; i++)
                                                                 else break;
    wish->edge[i] = potential_green->edge[i];
   wish->green = potential_green->green;
                                                                if (i + z[i] > r) r = i + z[i], l = i;
   potential_green->green = wish;
   LAST->green = wish;
                                                               for(int i=1;i<t.length();++i) ans = max(ans, z[i]-1);</pre>
                                                               return ans;
 }
char S[10000001], A[10000001];
                                                              7.8 Lexico Smallest Rotation
int N;
                                                              string mcp(string s){
int main(){
                                                               int n = s.length();
 scanf("%d%s", &N, S);
 ROOT = LAST = new Node(0);
                                                               s += s:
                                                               int i=0, j=1;
 for (int i = 0; S[i]; i++)
Extend(S[i] - 'a');
                                                               while (i<n && j<n){</pre>
                                                                int k = 0;
 while (N--){
                                                                while (k < n \&\& s[i+k] == s[j+k]) k++;
  scanf("%s", A);
                                                                if (s[i+k] <= s[j+k]) j += k+1;</pre>
  Node *cursor = ROOT;
                                                                else i += k+1;
  bool ans = true;
                                                                if (i == j) j++;
  for (int i = 0; A[i]; i++){
   cursor = cursor->edge[A[i] - 'a'];
                                                               int ans = i < n ? i : j;</pre>
   if (!cursor) {
                                                               return s.substr(ans, n);
    ans = false;
    break:
                                                              7.9 BWT
  puts(ans ? "Yes" : "No");
                                                              struct BurrowsWheeler{
                                                              #define SIGMA 26
                                                              #define BASE 'a
 return 0;
                                                               vector<int> v[ SIGMA ];
                                                               void BWT(char* ori, char* res){
7.5 KMP
                                                                // make ori -> ori + ori
vector<int> kmp(const string &s) {
                                                                // then build suffix array
 vector<int> f(s.size(), 0);
 /* f[i] = length of the longest prefix
                                                               void iBWT(char* ori, char* res){
   (excluding s[0:i]) such that it coincides with the suffix of s[0:i] of the same length */
                                                                for( int i = 0 ; i < SIGMA ; i ++ )</pre>
                                                                 v[ i ].clear()
 /* i + 1 - f[i] is the length of the
                                                                int len = strlen( ori );
                                                                for( int i = 0 ; i < len ; i ++ )</pre>
   smallest recurring period of s[0:i] */
                                                                 v[ ori[i] - BASE ].push_back( i );
 int k = 0:
 for (int i = 1; i < (int)s.size(); ++i) {</pre>
                                                                vector<int> a;
  while (k > 0 \&\& s[i] != s[k]) k = f[k - 1];
                                                                for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )
  if (s[i] == s[k]) ++k;
                                                                 for( auto j : v[ i ] ){
  f[i] = k;
                                                                  a.push_back( j );
 }
                                                                  ori[ ptr ++ ] = BASE + i;
 return f;
                                                                for( int i = 0 , ptr = 0 ; i < len ; i ++ ){
  res[ i ] = ori[ a[ ptr ] ];</pre>
vector<int> search(const string &s, const string &t) {
 // return 0-indexed occurrence of t in s
                                                                 ptr = a[ ptr ];
 vector<int> f = kmp(t), r;
```

```
res[ len ] = 0;
}
} bwt;
```

7.10 Palindromic Tree

```
struct palindromic_tree{
struct node{
  int next[26],f,len;
  int cnt, num, st, ed;
 node(int l=0):f(0),len(1),cnt(0),num(0) {
  memset(next, 0, sizeof(next)); }
};
vector<node> st;
vector<char> s;
int last,n;
void init(){
 st.clear();s.clear();last=1; n=0;
 st.push_back(0);st.push_back(-1);
  st[0].f=1;s.push_back(-1); }
int getFail(int x){
 while(s[n-st[x].len-1]!=s[n])x=st[x].f;
  return x;}
void add(int c){
  s.push_back(c-='a'); ++n;
  int cur=getFail(last);
  if(!st[cur].next[c]){
   int now=st.size();
   st.push_back(st[cur].len+2);
   st[now].f=st[getFail(st[cur].f)].next[c];
   st[cur].next[c]=now;
   st[now].num=st[st[now].f].num+1;
 last=st[cur].next[c];
 ++st[last].cnt;}
int size(){ return st.size()-2;}
} pt;
int main() {
string s; cin >> s; pt.init();
for (int i=0; i<SZ(s); i++) {
  int prvsz = pt.size(); pt.add(s[i]);</pre>
  if (prvsz != pt.size()) {
  int r = i, l = r - pt.st[pt.last].len + 1;
   // pal @ [1,r]: s.substr(1, r-l+1)
 }
}
return 0;
```

8 Misc

8.1 Theorems

8.1.1 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|{\rm det}(\tilde{L}_{rr})|.$

8.1.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniform randomly) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

8.1.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there're $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

8.1.4 Erdős-Gallai theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$

holds for all $1 \le k \le n$.

8.1.5 Havel–Hakimi algorithm

find the vertex who has greatest degree unused, connect it with other greatest vertex

8.1.6 Hall's marriage theorem

Let G be a finite bipartite graph with bipartite sets X and Y. For a subset W of X, let $N_G(W)$ denote the set of all vertices in Y adjacent to some element of W. Then there is an X-saturating matching iff $\forall W\subseteq X, |W|\leq |N_G(W)|$

8.1.7 Euler's planar graph formula

```
V - E + F = C + 1, E \le 3V - 6(?)
```

8.1.8 Pick's theorem

For simple polygon, when points are all integer, we have $A=\#\{\text{lattice points in the interior}\}+\frac{\#\{\text{lattice points on the boundary}\}}{2}-1$

8.1.9 Lucas's theorem

```
{m\choose n}\equiv\prod_{i=0}^k{m_i\choose n_i}\ (\mathrm{mod}\ p)\text{, where }m=m_kp^k+m_{k-1}p^{k-1}+\cdots+m_1p+m_0, and n=n_kp^k+n_{k-1}p^{k-1}+\cdots+n_1p+n_0.
```

8.2 MaximumEmptyRect

```
int max_empty_rect(int n, int m, bool blocked[N][N]) {
 static int mxu[2][N], me=0, he=1, ans=0;
 for (int i=0;i<m;i++) mxu[he][i]=0;</pre>
 for (int i=0;i<n;i++) {</pre>
  stack<PII, vector<PII>> stk;
  for (int j=0;j<m;++j) {</pre>
   if (blocked[i][j]) mxu[me][j]=0;
   else mxu[me][j]=mxu[he][j]+1;
   int la = j;
   while (!stk.empty()&&stk.top().FF>mxu[me][j]) {
    int x1 = i - stk.top().FF, x2 = i;
    int y1 = stk.top().SS, y2 = j;
    la = stk.top().SS; stk.pop();
    ans=max(ans,(x2-x1)*(y2-y1));
   if (stk.empty()||stk.top().FF<mxu[me][j])</pre>
    stk.push({mxu[me][j],la});
  while (!stk.empty()) {
   int x1 = i - stk.top().FF, x2 = i;
   int y1 = stk.top().SS-1, y2 = m-1;
   stk.pop(); ans=max(ans,(x2-x1)*(y2-y1));
  swap(me,he);
 return ans:
```

8.3 DP-opt Condition

8.3.1 totally monotone (concave/convex)

```
\begin{array}{l} \forall i < i', j < j', B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ \forall i < i', j < j', B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}
```

8.3.2 monge condition (concave/convex)

```
\begin{array}{l} \forall i < i', j < j', B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j', B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}
```

8.4 Convex 1D/1D DP

```
struct segment {
int i, 1, r
segment() {}
segment(int a, int b, int c): i(a), l(b), r(c) {}
inline 1ld f(int 1, int r){return dp[1] + w(1+1, r);}
void solve() {
dp[0] = 0;
deque<segment> dq; dq.push_back(segment(0, 1, n));
for (int i = 1; i <= n; ++i) {
 dp[i] = f(dq.front().i, i);
 while(dq.size()&&dq.front().r<i+1) dq.pop_front();</pre>
 dq.front().l = i + 1
 segment seg = segment(i, i + 1, n);
 while (dq.size() &&
  f(i, dq.back().1) < f(dq.back().i, dq.back().1)
   dq.pop_back();
 if (dq.size())
  int d = 1 << 20, c = dq.back().1;</pre>
  while (d >>= 1) if (c + d <= dq.back().r)</pre>
   if(f(i, c+d) > f(dq.back().i, c+d)) c += d;
   dq.back().r = c; seg.1 = c + 1;
```

```
if (seg.1 <= n) dq.push_back(seg);</pre>
      ConvexHull Optimization
inline lld DivCeil(lld n, lld d) { // \text{ceil}(n/d)
return n / d + (((n < 0) != (d > 0)) \&\& (n % d));
struct Line {
static bool flag;
11d a, b, 1, r; ^{'}// y=ax+b in [1, r)
11d operator()(11d x) const { return a * x + b; }
bool operator<(const Line& i) const {</pre>
  return flag ? tie(a, b) < tie(i.a, i.b) : 1 < i.l;</pre>
11d operator&(const Line& i) const {
  return DivCeil(b - i.b, i.a - a);
bool Line::flag = true;
class ConvexHullMax {
set<Line> L;
public:
ConvexHullMax() { Line::flag = true; }
void InsertLine(lld a, lld b) { // add y = ax + b
 Line now = \{a, b, -INF, INF\};
 if (L.empty()) {
  L.insert(now);
  return;
 Line::flag = true;
  auto it = L.lower_bound(now);
  auto prv = it == L.begin() ? it : prev(it);
  if (it != L.end() && ((it != L.begin() &&
   (*it)(it->1) >= now(it->1) &&
   (*prv)(prv->r - 1) >= now(prv->r - 1)) ||
   (it == L.begin() && it->a == now.a))) return;
  if (it != L.begin()) {
   while (prv != L.begin() &&
    (*prv)(prv->1) <= now(prv->1))
     prv = --L.erase(prv)
   if (prv == L.begin() && now.a == prv->a)
   L.erase(prv);
  if (it != L.end())
   while (it != --L.end() &&
    (*it)(it->r) \le now(it->r))
     it = L.erase(it);
  if (it != L.begin()) {
   prv = prev(it);
   const_cast<Line*>(&*prv)->r=now.l=((*prv)&now);
  if (it != L.end())
   const_cast<Line*>(&*it)->l=now.r=((*it)&now);
 L.insert(it, now);
11d Query(11d a) const { // query max at x=a
  if (L.empty()) return -INF;
 Line::flag = false;
  auto it = --L.upper_bound({0, 0, a, 0});
  return (*it)(a);
};
8.6 Josephus Problem
// n people kill m for each turn
int f(int n, int m) {
int s = 0;
for (int i = 2; i <= n; i++)
 s = (s + m) \% i;
 return s;
// died at kth
int kth(int n, int m, int k){
if (m == 1) return n-1;
for (k = k*m+m-1; k >= n; k = k-n+(k-n)/(m-1));
```

return k;

8.7 Cactus Matching

```
vector<int> init_g[maxn],g[maxn*2];
int n,dfn[maxn],low[maxn],par[maxn],dfs_idx,bcc_id;
void tarjan(int u){
 dfn[u]=low[u]=++dfs_idx;
 for(int i=0;i<(int)init_g[u].size();i++){</pre>
  int v=init_g[u][i];
  if(v==par[u]) continue;
  if(!dfn[v]){
   par[v]=u;
   tarjan(v);
   low[u]=min(low[u],low[v]);
   if(dfn[u]<low[v]){</pre>
    g[u].push_back(v);
    g[v].push_back(u);
  }else{
   low[u]=min(low[u],dfn[v]);
   if(dfn[v]<dfn[u]){</pre>
    int temp_v=u;
    bcc_id++;
    while(temp_v!=v){
     g[bcc_id+n].push_back(temp_v);
     g[temp_v].push_back(bcc_id+n);
     temp_v=par[temp_v];
    g[bcc_id+n].push_back(v);
    g[v].push_back(bcc_id+n);
    reverse(g[bcc_id+n].begin(),g[bcc_id+n].end());
int dp[maxn][2], min_dp[2][2], tmp[2][2], tp[2];
void dfs(int u,int fa){
 if(u<=n){
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
   if(v==fa) continue;
   dfs(v,u);
   memset(tp,0x8f,sizeof tp);
   if(v<=n){
    tp[0]=dp[u][0]+max(dp[v][0],dp[v][1]);
    tp[1]=max(
     dp[u][0]+dp[v][0]+1
     dp[u][1]+max(dp[v][0],dp[v][1])
   }else{
    tp[0]=dp[u][0]+dp[v][0];
    tp[1]=max(dp[u][0]+dp[v][1],dp[u][1]+dp[v][0]);
   dp[u][0]=tp[0],dp[u][1]=tp[1];
 }else{
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
   if(v==fa) continue;
   dfs(v,u);
  min_dp[0][0]=0;
  min_dp[1][1]=1;
  min_dp[0][1]=min_dp[1][0]=-0x3f3f3f3f;
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
   if(v==fa) continue;
   memset(tmp,0x8f,sizeof tmp);
   tmp[0][0]=max(
   min_dp[0][0]+max(dp[v][0],dp[v][1]),
    min_dp[0][1]+dp[v][0]
   ):
   tmp[0][1]=min_dp[0][0]+dp[v][0]+1;
   tmp[1][0]=max(
    \min_{dp[1][0]+\max(dp[v][0],dp[v][1]),}
    min_dp[1][1]+dp[v][0]
   tmp[1][1]=min_dp[1][0]+dp[v][0]+1;
   memcpy(min_dp,tmp,sizeof tmp);
  dp[u][1]=max(min_dp[0][1],min_dp[1][0]);
  dp[u][0]=min_dp[0][0];
```

```
resume(c);
int main(){
                                                               } sol;
int m,a,b;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){</pre>
                                                                8.9
                                                                     Tree Knapsack
 scanf("%d%d",&a,&b);
                                                                int dp[N][K];PII obj[N];
  init_g[a].push_back(b);
                                                                vector<int> G[N];
 init_g[b].push_back(a);
                                                                void dfs(int u, int mx){
                                                                 for(int s: G[u]) {
par[1]=-1;
                                                                  if(mx < obj[s].first) continue;</pre>
tarjan(1);
                                                                  for(int i=0;i<=mx-obj[s].FF;i++)</pre>
dfs(1,-1);
                                                                   dp[s][i] = dp[u][i]
printf("%d\n", max(dp[1][0], dp[1][1]));
                                                                  dfs(s, mx - obj[s].first);
 return 0;
                                                                  for(int i=obj[s].FF;i<=mx;i++)</pre>
                                                                   dp[u][i] = max(dp[u][i],
                                                                     dp[s][i - obj[s].FF] + obj[s].SS);
8.8 DLX
struct DLX {
  const static int maxn=210;
                                                                int main(){
  const static int maxm=210;
                                                                 int n, k; cin >> n >> k;
  const static int maxnode=210*210;
                                                                 for(int i=1;i<=n;i++){</pre>
  int n, m, size, row[maxnode];
                                                                  int p; cin >> p;
  int U[maxnode], D[maxnode], L[maxnode], R[maxnode];
int H[maxn], S[maxm], ansd, ans[maxn];
                                                                  G[p].push_back(i);
                                                                  cin >> obj[i].FF >> obj[i].SS;
  void init(int _n, int _m) {
    n = _n, m = _m;
                                                                 dfs(0, k); int ans = 0;
    for(int i = 0; i <= m; ++i) {</pre>
                                                                 for(int i=0;i<=k;i++) ans = max(ans, dp[0][i]);
      S[i] = 0;
                                                                 cout << ans << '\n';
      U[i] = D[i] = i;
                                                                 return 0;
      L[i] = i-1, R[i] = i+1;
                                                                8.10 N Queens Problem
    R[L[0] = size = m] = 0;
    for(int i = 1; i <= n; ++i) H[i] = -1;
                                                                vector< int > solve( int n ) {
  }
                                                                 // no solution when n=2, 3
  void Link(int r, int c) {
                                                                 vector< int > ret;
    ++S[col[++size] = c];
                                                                 if ( n % 6 == 2 ) {
  for ( int i = 2 ; i <= n ; i += 2 )</pre>
    row[size] = r; D[size] = D[c];
    U[D[c]] = size; U[size] = c; D[c] = size;
                                                                    ret.push_back( i );
    if(H[r] < 0) H[r] = L[size] = R[size] = size;
                                                                  ret.push_back( 3 ); ret.push_back( 1 );
for ( int i = 7 ; i <= n ; i += 2 )</pre>
    else {
      R[size] = R[H[r]];
                                                                   ret.push_back( i );
      L[R[H[r]]] = size;
                                                                  ret.push_back( 5 );
      L[size] = H[r];
                                                                 } else if ( n % 6 == 3 ) {
      R[H[r]] = size;
                                                                  for ( int i = 4 ; i <= n ; i += 2 )
    }
                                                                   ret.push_back( i )
  }
                                                                  ret.push_back( 2 );
  void remove(int c) {
                                                                  for ( int i = 5 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
    L[R[c]] = L[c]; R[L[c]] = R[c];
    for(int i = D[c]; i != c; i = D[i])
  for(int j = R[i]; j != i; j = R[j]) {
                                                                  ret.push_back( 1 ); ret.push_back( 3 );
                                                                 } else {
for ( int i = 2 ; i <= n ; i += 2 )</pre>
        U[D[j]] = U[j];
        D[U[j]] = D[j];
                                                                   ret.push_back( i );
        --S[col[j]];
                                                                  for ( int i = 1 ; i <= n ; i += 2 )
                                                                   ret.push_back( i );
  void resume(int c) {
   L[R[c]] = c; R[L[c]] = c;
                                                                 return ret;
                                                                }
    for(int i = U[c]; i != c; i = U[i])
      for(int j = L[i]; j != i; j = L[j]) {
                                                                8.11 Aliens Optimization
        U[D[j]] = j;
                                                                long long Alien() {
        D[U[j]] = j
                                                                  long long c = kInf;
        ++S[col[j]];
                                                                  for (int d = 60; d >= 0; --d) {
    }
                                                                     // cost can be negative, depending on the problem.
                                                                     if (c - (1LL << d) < 0) continue;</pre>
  void dance(int d) {
                                                                    long long ck = c - (1LL \ll d);
    if(d>=ansd) return;
                                                                    pair<long long, int> r = check(ck);
    if(R[0] == 0) {
                                                                     if (r.second == k) return r.first - ck * k;
      ansd = d;
                                                                    if (r.second < k) c = ck;</pre>
      return:
                                                                  pair<long long, int> r = check(c);
return r.first - c * k;
    int c = R[0];
    for(int i = R[0]; i; i = R[i])
      if(S[i] < S[c]) c = i;
    remove(c);
    for(int i = D[c]; i != c; i = D[i]) {
      ans[d] = row[i];
      for(int j = R[i]; j != i; j = R[j])
        remove(col[j]);
      dance(d+1);
      for(int j = L[i]; j != i; j = L[j])
        resume(col[j]);
```