Logarithmic pooling and log-concavity

Luiz Max F. de Carvalho

July 14, 2019

Abstract

In this brief note I claim to show that logarithmic pooling is the *only* pooling operator that will *always* produce a log-concave opinion when all expert opinions are also log-concave.

Key-words: logarithmic pooling; log-concavity; uniqueness.

Background

Logarithmic pooling is a popular method for combining opinions on an agreed quantity, specially when these opinions can be framed as probability distributions. Let $\theta \in \Theta \subseteq \mathbb{R}^1$, be a quantity of interest and let $\mathbf{F}_{\theta} := \{f_0(\theta), f_1(\theta), \dots, f_K(\theta)\}$ be a set of distributions representing the opinions of K+1 experts and let $\boldsymbol{\alpha} := \{\alpha_0, \alpha_1, \dots, \alpha_K\} \in \mathcal{S}^K$ be the vector of weights, such that $\alpha_i > 0 \ \forall i$ and $\sum_{i=0}^K \alpha_i = 1$, i.e., \mathcal{S}^{K+1} is the space of all open simplices of dimension K+1. The **logarithmic pooling operator** $\mathcal{LP}(\mathbf{F}_{\theta}, \boldsymbol{\alpha})$ is defined as

$$\mathcal{LP}(\mathbf{F}_{\theta}, \boldsymbol{\alpha}) := \pi(\theta | \boldsymbol{\alpha}) = t(\boldsymbol{\alpha}) \prod_{i=0}^{K} f_i(\theta)^{\alpha_i}, \tag{1}$$

where $t(\boldsymbol{\alpha}) = \left[\int_{\boldsymbol{\Theta}} \prod_{i=0}^K f_i(\theta)^{\alpha_i} d\theta \right]^{-1}$. This pooling method enjoys several desirable properties and yields tractable distributions for a large class of distribution families (Genest et al., 1984, 1986).

Another desirable property of the logarithmic pooling operator is log-concavity. Log-concavity of the pooled prior may be important to consider in order to guarantee unimodality and certain conditions on tail behaviour (Bagnoli and Bergstrom, 2005).

Definition 1. Relative propensity consistency (Genest et al., 1984). Taking \mathbf{F}_X as a set of expert opinions with support on a space \mathcal{X} , define $\boldsymbol{\xi} = \{\mathbf{F}_X, a, b\}$ for arbitrary $a, b \in \mathcal{X}$. Let \mathcal{T} be a pooling operator and define two functions U and V such that

$$U(\xi) := \left(\frac{f_0(a)}{f_0(b)}, \frac{f_1(a)}{f_1(b)}, \dots, \frac{f_K(a)}{f_K(b)}\right) \text{ and}$$
 (2)

$$V(\boldsymbol{\xi}) := \frac{\mathcal{T}_{\boldsymbol{F}_X}(a)}{\mathcal{T}_{\boldsymbol{F}_Y}(b)}.\tag{3}$$

We then say that \mathcal{T} enjoys relative propensity consistency (RPC) if and only if

$$U(\xi_1) \ge U(\xi_2) \implies V(\xi_1) \ge V(\xi_2),\tag{4}$$

for all ξ_1, ξ_2 .

Informally, this property says that if all experts consider a particular event A more probable than another event B, then the pooled opinion should be consistent with these relative judgments.

Lemma 1. Representation of a pooling operator with RPC (Genest et al., 1984, eq. 1.4). When $|\Theta| \geq 3$, a relative propensity consistent operator is always of the form

$$\mathcal{T}\left(oldsymbol{F}_{ heta}
ight)\left(heta
ight)=oldsymbol{B}\left(oldsymbol{F}_{ heta}
ight)c(heta)\prod_{i=0}^{K}\left[f_{i}(heta)
ight]^{w_{i}},$$

with $\mathbf{B}(\mathbf{F}_{\theta}) > 0$, $c(\theta) > 0$ and $w_0, w_1, \dots, w_K \geq 0$ arbitrary.

We refer the reader to Genest et al. (1984) for a proof.

Corollary 1. Uniqueness of RPC for LP. Logarithmic pooling is the only pooling operator that enjoys RPC.

Proof. The result follows trivially from the general definition of the logarithmic pool (see e.g. Genest and Zidek (1986), eq. 1.7) and Lemma 1. \Box

¹If Θ is atomic, we need $|\Theta| \geq 3$.

The result

Now we can state and prove the following result.

Remark 1. Log-concavity. If \mathbf{F}_{θ} is a set of log-concave distributions, then $\pi(\theta \mid \alpha)$ is also log-concave. Moreover, logarithmic pooling is the only pooling operator to preserve log-concavity.

Proof. First, we will show by direct calculation that logarithmic pooling (LP) leads to a log-concave distribution. Notice that each f_i can be written as $f_i(\theta) \propto e^{\nu_i(\theta)}$, where $\nu_i(\cdot)$ is a concave function. We can then write

$$\pi(\theta \mid \boldsymbol{\alpha}) \propto \prod_{i=0}^{K} [\exp(\nu_i(\theta))]^{\alpha_i},$$
$$\propto \exp(\nu^*(\theta)),$$

where $\nu^*(\theta) = \sum_{i=0}^K \alpha_i \nu_i(\theta)$ is a concave function because it is a linear combination of concave functions. We will now show that LP is the only operator that guarantees log-concavity when \mathbf{F}_{θ} is a set of concave distributions. First, recall that LP is the only pooling operator that enjoys RPC as implied by Corollary 1. Then, with the goal of obtaining a contradiction, suppose that there exists a pooling operator \mathcal{T} that is log-concave but does not enjoy RPC. From Lemma 1, we know that \mathcal{T} cannot be represented as $\mathbf{B}(\mathbf{F}_{\theta})c(\theta)\prod_{i=0}^K f_i(\theta)^{w_i}$. Every non-negative log-concave function $g(\theta)$ can be represented as

$$g(\theta) = a \cdot c(\theta) \cdot h(\theta), \tag{5}$$

with $a \geq 0$ and $c(\theta)$ and $h(\theta)$ non-negative and log-concave. But under the assumptions on \mathbf{F}_{θ} , we have that $h(\theta) := \prod_{i=0}^{K} f_i(\theta)^{w_i}$ is non-negative and log-concave and therefore \mathcal{T} can in fact be represented in the form of (5) and thus the form of Lemma 1, a contradiction.

Acknowledgments

I am grateful to Felipe Figueiredo for insightful discussions and to Professor Christian Genest for taking a look at this note.

References

Bagnoli, M. and Bergstrom, T. (2005). Log-concave probability and its applications. *Economic theory*, 26(2):445–469.

Genest, C., McConway, K. J., and Schervish, M. J. (1986). Characterization of externally bayesian pooling operators. *The Annals of Statistics*, pages 487–501.

Genest, C., Weerahandi, S., and Zidek, J. V. (1984). Aggregating opinions through logarithmic pooling. Theory and Decision, 17(1):61–70.

Genest, C. and Zidek, J. V. (1986). Combining probability distributions: A critique and an annotated bibliography. *Statistical Science*, pages 114–135.