Projet Cassiopée: Méthodes algébriques d'inversion de systèmes polynomiaux

Clément Aubert - Erwan Tesson

18 février 2018

Première partie Bases de Gröbner

Rappels d'Algèbre

1.1 Définitions

Définition 1.1. Soit A un ensemble de deux lois de composition interne + et \times . On dit que $(A, +, \times)$ est un anneau si :

- (A, +) est un groupe commutatif
- -- × est associative.
- -- × est distributive par rapport à l'addition.

Définition 1.2. Une partie I de l'anneau A est appelé $id\acute{e}al$ de l'anneau A si :

- -(I,+) est un sous-groupe de (A,+)
- $\forall x \in I$ et $\forall a \in A$, alors ax et xa sont éléments de I.

Définition 1.3. On appelle $id\acute{e}al$ de $K[x_1,...,x_n]$ toute partie I de $K[x_1,...,x_n]$ vérifiant :

- le polynome nul est dans I
- si P_1 et P_2 sont dans I, il en est de même pour $P_1 P_2$
- si P est dans I et si Q est un polynôme quelconque, PQ appartient à I.

Propriété 1.1. L'ordre doit être total, compatible à la multiplication et bien ordonné :

- $\text{LEX}_{X_1>X_2>...>X_n}$: le plus grand monôme est celui qui contient le plus de X_1 , puis le plus de X_2
- ${\tt DEGLEX}_{X_1>X_2>...>X_n}$: par degrès puis par ordre ${\tt LEX}_{X_1>X_2>...>X_n}$
- DEGREVLEX_{X_1>X_2>...>X_n} : par degrès puis par ordre ${\tt LEX}_{X_1>X_2>...>X_n}$ "inversé"

Théorème. (Hilbert) Pour tout Idéal I de $K[x_1,...,x_n]$, il existe un système fini de générateur $(g_1,...,g_k)$ de polynômes tel que $I=\mathrm{Id}(g_1,...,g_k)$

Théorème. (Croissance d'idéaux) Si $(I_i)_{i\in\mathbb{N}}$ une famille d'idéaux tels que :

$$I_1 \subset I_2 \subset I_3 \subset \dots$$

alors $\exists N \in \mathbb{N}$ tel que

$$I_N = I_{N+1} = I_{N+2} = \dots$$

1.2 Notations

— $K[x_1,...,x_n]$: l'anneau des polynomes à valeur dans K

Bases de Gröbner

2.1**Définition**

Définition 2.1. On fixe un ordre monomial. Soit $I=\langle f_1,...,f_m \rangle$ un idéal de $K[x_1,...,x_n]$

- $\begin{array}{l} \operatorname{LT}(I) = \langle \{lt(f): f \in I\} \rangle \text{ est appelé idéal initial de } I \\ \{g_1, ..., g_s\} \subset I \text{ est une base de Gröbner de } I \text{ si :} \end{array}$

$$\langle lt(g_1), ..., lt(g_s) \rangle = LT(I)$$

Propriété 2.1. Soit $f \in K[x_1,...,x_n]$, si G est une base de Gröbner de $I = \langle f_1,...,f_m \rangle$ alors :

- $--\overline{f^G}=0 \Leftrightarrow f \in I$
- le reste $\overline{f^G}$ est unique

Résolution de systèmes polynomiaux

3.1 Définitions

Définition 3.1. Soit $(f_1, f_2, ..., f_s) \in K[x_1, ..., x_n]$, on définit une variété affine comme :

$$V(f_1, f_2, ..., f_s) = \{(a_1, ..., a_n) \in k^n : f_i(a_1, ..., a_n) = 0, \forall i \in [1, s]\}$$

3.2 Théorie de l'élimination

Définition 3.2. $I_I = I \cap K[x_{I+1},...,x_n]$ est un idéal de $K[x_{I+1},...,x_n]$ appelé I-ème idéal d'élimination.

Deuxième partie

Exemples d'utilisation des Bases de Gröbner

Réduction par le pivot de Gauss

Principe

La méthode du pivot de Gauss est un procédé qui résulte des bases de Gröbner.

Exemple

On a $F = \{x+3y+4z-5, 3x+4y+5z-2\}$. On cherche à simplifier l'expression de F

$$\Leftrightarrow S = \begin{cases} 2x + 3y + 4z = 5 \\ 3x + 4y + 5z = 2 \end{cases}$$

$$\Leftrightarrow S = \begin{cases} 2x + 3y + 4z = 5 \\ y + 2z = 11 \end{cases}$$

$$\Leftrightarrow S = \begin{cases} 2x - 2z = -28 \\ y + 2z = 11 \end{cases}$$

$$\Leftrightarrow S = \begin{cases} x = z - 14 \\ y = -2z + 11 \end{cases}$$

On a donc $G = \{-z+14, y+2z-11\}.$

Bibliographie

Voici la liste des documents utilisés pour nos recherches :

- https://moodle.polytechnique.fr/pluginfile.php/66308/mod_resource/content/3/Cours8.pdf http://denis.monasse.free.fr/denis/articles/grobner.pdf
- http://www.lifl.fr/jncf2015/files/lecture-notes/faugere.pdf
- http://iml.univ-mrs.fr/ kohel/tch/M2-Agreg/CM/08 $_g$ eometrie $_s$ uite.pdf Ces documents s'ajoutent à ceux proposés sur le sujet de notre projet Cassiopée :
 - J.-F. Cardoso. Blind signal separation: statistical principles. Proc. IEEE, 9(10):20092025, Oct. 1998.
 - M. Castella. Inversion of polynomial systems and separation of nonlinear mixtures of nite-alphabet sources. IEEE Trans. Signal Process., 56(8, Part 2):39053917, Aug. 2008.
 - P. Comon. Independent component analysis, a new concept? Signal Process., 36(3):287-314, Apr. 1994.
 - D. Cox, J. Little, and D. O'Shea. Ideal, Varieties, and Algorithms. Springer, third edition edition, 2007.