Thanks for reading.

Rendered by MarkPoint.

Empty page

The Maxwell's Equations

Here's the start of the page, feel free to use !!! In the content.

Ampère's Law with Maxwell's Addition

Integral Form:

$$\oint_{\partial C} \mathbf{B} \cdot d\mathbf{I} = \mu_0 I_{\text{enc}} + \mu_0 \varepsilon_0 \frac{d}{dt} \iint_{S} \mathbf{E} \cdot d\mathbf{A}$$

Differential Form:

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

These equations form the foundation of classical electromagnetism, unify the behavior of electric and magnetic fields, and predict the existence of electromagnetic waves.

line break here **Bold italic** and **bold** is fine. And flat styles are fine

The Maxwell's Equations

Faraday's Law of Induction

Integral Form:

$$\oint_{\partial C} \mathbf{E} \cdot d\mathbf{I} = -\frac{d}{dt} \iint_{S} \mathbf{B} \cdot d\mathbf{A}$$

Differential Form:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

The Maxwell's Equations

Gauss's Law for Electric Fields

Integral Form:

$$\oint_{\partial S} \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{enc}}}{\varepsilon_0}$$

Differential Form:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

Gauss's Law for Magnetic Fields

Integral Form:

$$\oint_{\partial S} \mathbf{B} \cdot d\mathbf{A} = 0$$

Differential Form:

$$\nabla \cdot \mathbf{B} = 0$$

The Art of MarkPoint

Nejiwwkr