ULA de 16 bits

O diagrama de blocos da implementação da nossa ULA é idêntico ao apresentado no slide de referência da disciplina, este é:

A única diferença notável é a nomeação de algumas variáveis que serão esclarecidas em seguida nesse documento.

Tabela verdade do componente lógico

$\overline{\mathrm{M}}$	S1	S0	Operação	Ia	Ib	Cin
0	0	0	A+B		В	0
0	0	1	A - B	A	\overline{B}	1
0	1	0	A << 1	A(14 downto 0) & '0'	(others => '0')	0
0	1	1	A >> 1	'0'& A(14 downto 0)	(others => '0')	0
1	0	0	$A \wedge B$	$A \wedge B$	(others => '0')	0
1	0	1	$A \vee B$	$A \vee B$	(others => '0')	0
1	1	0	$A \oplus B$	$A \oplus B$	(others => '0')	0
1	1	1	A XNOR B	A XNOR B	(others => '0')	0

Expressões de entrada do somador

O nosso somador de 16 bit é implementado a partir de vários somadores de 1 bit, tal somador tem as seguintes entradas e saídas:

- Entradas:
 - A: bit do operando A.
 - B: bit do operando B.
 - Cin carry-in (bit de transporte da última posição).
- Saídas:
 - Result: soma dos bits A, B e Cin.
 - Cout: carry-out (bit de tranporte para a próxima posição).

Expressões lógicas Além disso, as expressões das saídas do somador de 1 bit são:

• Soma

$$F=A\oplus B\oplus {\tt Cin}$$

• Carry-out:

$$\mathtt{Cout} = (A \cdot B) + (\mathtt{Cin} \cdot (A \oplus B))$$

Mapa de karnaugh para as saídas

• Para F (Result):

O mapa de karnaugh de F para as combinações das entraddas A, B e Cin é:

$A \setminus B, \mathtt{Cin}$	00	01	11	10
0	0	1	0	1
1	1	0	1	0

• Para Cout:

E por fim, o mapa de karnaugh para Cout com as combinações das entradas $A,B,\,$ e Cin é:

$\overline{A \setminus B, \mathtt{Cin}}$	00	01	11	10
0	0	0	1	0
1	0	1	1	1

Somador 16 bits

Uma vez definido o funcionamento do somador de 1 bit, implementamos o somador de 16 utilizando a propagação de carry, isto é:

- Cada carry (Cout) é passado como Cin para o próximo somador de 1 bit.
- O resultador (Result) é calculado bit a bit usando os somadores de 1 bit.

Plano de Simulação

Para averiguar o funcionamento da ULA, realizaremos os seguintes testes no Quartus:

Cenários de Teste para a ULA de 16 bits

Caso de			
Teste	Entrada	Saída Esperada	Descrição
Teste 1	M=0, S1=0, S0=0, A=0001, B=0001	0000 0000 0000 0010	Soma dos valores A e B $(1 + 1 = 2)$.
Teste 2	M=0, S1=0, S0=1, A=0005, B=0003	0000 0000 0000 0010 e Cout=1	Subtração de A por B $(5 - 3 = 2)$.
Teste 3	M=0, S1=1, S0=0, A=0001	0000 0000 0000 0010	Deslocamento de A um bit à esquerda.
Teste 4	M=0, S1=1, S0=1, A=0002	0000 0000 0000 0001	Deslocamento de A um bit à direita.
Teste 5	M=1, S1=0, S0=0, A=0101, B=0011	0000 0000 0000 0001	Operação lógica AND entre A e B.
Teste 6	M=1, S1=0, S0=1, A=0101, B=0011	0000 0000 0000 0111	Operação lógica OR entre A e B.
Teste 7	M=1, S1=1, S0=0, A=0101, B=0011	0000 0000 0000 0110	Operação lógica XOR entre A e B.
Teste 8	M=1, S1=1, S0=1, A=0101, B=0011	1111 1111 1111 1001	Operação lógica XNOR entre A e B.
Teste 9	M=0, S1=0, S0=0, A=1111, B=0001	0000 0000 0000 0000 e Cout=1	Soma com overflow .
Teste 10	M=0, S1=0, S0=1, A=0000, B=0001	0000 0000 0000 0000	Subtração negativa resultando em 0.

Devido ao número de testes, seu resultados foram colocados na pasta <code>assets/.</code> De antemão, assertamos que o resultado foi bem sucedido!