

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie Houari Boumediene Faculté d'Electronique et d'Informatique Département d'Informatique

La vision par ordinateur

Chapitre 3 : Géométrie, Calibration et Mathématique Projective

Master 2 : Systèmes Informatique Intelligents Lyes_sii@yahoo.fr lyes_abada@yahoo.fr

Transformation 2D

Transformation 2D

Une transformation 2D consiste à change un graphique (positions de pixels) en appliquant certaines règles

3- Changement d'échelle

Symétrie

$$X' = -X$$

$$Y' = Y$$

X' = -1X + 0y $Y' = \frac{0}{X} + \frac{1}{Y}$

transformation

Par rapport à l'axe X

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Translation/système de coordonnées

$$X' = X + t_x$$
$$Y' = Y + t_y$$

$$X' = 1X + 0y + t_x$$

$$Y' = 0X + 1Y + t_y$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Translation/système de coordonnées

$$C' = X + t_{x}$$

$$C' = Y + t_{y}$$

$$\begin{vmatrix} X' = 1X + 0y + t_x \\ Y' = 0X + 1Y + t_y \end{vmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Changement d'échelle(agrandissement :S>1)

$$\begin{vmatrix} X' = X*2 \\ Y' = Y \end{vmatrix} \longrightarrow \begin{vmatrix} X' = 2X + 0y \\ Y' = 0X + 1Y \end{vmatrix} \longrightarrow \begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} S_x & 0 \\ 0 & S_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Changement d'échelle (réduction :S<1)

$$X' = X * \frac{1}{2}$$

$$Y' = Y$$

$$X' = \frac{1}{2} *X + Oy$$
$$Y' = OX + 1Y$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} S_x & 0 \\ 0 & S_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Rotation

X

$x' = \cos \theta X - \sin \theta Y$ $y' = \sin \theta X + \cos \theta Y$

Matrice de la transformation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Autres transformations

Composition de transformations

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \qquad \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Transformation 3D

Changement d'échelle 3D

$$X' = S_x * X$$

$$Y' = S_y * Y$$

$$Z' = S_z * Z$$

$$X' = -S_X X + Y' = 0X + S$$

$$Z' = 0X + C$$

$$\begin{vmatrix} X' = S_x * X \\ Y' = S_y * Y \\ Z' = S_z * Z \end{vmatrix} \longrightarrow \begin{vmatrix} X' = -S_x X + 0y + 0Z \\ Y' = 0X + S_y Y + 0Z \\ Z' = 0X + 0Y + S_z Z \end{vmatrix} \longrightarrow \begin{vmatrix} x' \\ y' \\ z' \end{vmatrix} = \begin{pmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 1 & S_z \end{pmatrix} \begin{pmatrix} x \\ y \\ z' \end{pmatrix}$$

Translation 3D

$$X' = X+a$$

 $Y' = Y+b$
 $Z' = Z+c$

$$\rightarrow \begin{vmatrix} x \\ y \\ z \end{vmatrix}$$

$$X' = 1X + 0y + 0Z + a$$

 $Y' = 0X + 1Y + 0Z + b$
 $Z' = 0X + 0Y + 1Z + c$

$$\begin{vmatrix} X' = X + a \\ Y' = Y + b \\ Z' = Z + c \end{vmatrix} \longrightarrow \begin{vmatrix} X' = 1X + 0y + 0Z + a \\ Y' = 0X + 1Y + 0Z + b \\ Z' = 0X + 0Y + 1Z + c \end{vmatrix} \longrightarrow \begin{vmatrix} \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Transformation 3D

Rotation 3D

$$\begin{bmatrix} R_{\theta, \mathbf{z}} \\ y' \\ z' \end{bmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} R_{\theta, \mathbf{y}} \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{bmatrix} R_{\theta, \mathbf{x}} \\ y' \\ z' \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Composition de transformations

Rotation R ensuite Translation T

$$[T].[R] = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & a \\ \sin(\theta) & \cos(\theta) & 0 & b \\ \sin(\theta) & \cos(\theta) & 0 & b \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R & T \\ 0 & 1 \end{pmatrix}$$

Translation T ensuite rotation R

$$[R].[T] \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & a\cos(\theta) - b\sin(\theta) \\ \sin(\theta) & \cos(\theta) & 0 & a\sin(\theta) + b\cos(\theta) \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Composition de transformations

Rotation par rapport à un point $P(p_x, p_y)$?!

Agrandissement d'un objet sans changer son centre ?!

Transformation 2D

Coordonnées Homogènes P²

المعدوم والاعتدول وويدا U S TH B Changement d'échelle 2D

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} S_x & 0 \\ 0 & S_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\rightarrow$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Translation 2D

Rotation 2D

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Coordonnées Homogènes P³

Transformation 3D

Changement d'échelle 3D

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 1 & S_z \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

 \rightarrow

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Translation 3D

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\rightarrow$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Coordonnées Homogènes

Coordonnées Homogènes P²

Plan affine

Coordonnées Homogènes:

$$(x, y, 1) = \left(\frac{X}{Z}, \frac{Y}{Z}, \frac{Z}{Z}\right) \sim k(x, y, 1)$$

Coordonnées Homogènes P²

Coordonnées affines ⇒ Coordonnées Homogènes :

$$(x,y)\Rightarrow(x,y,1)$$

Coordonnées Homogènes \Rightarrow Coordonnées affines 2D:

$$(\tilde{x}, \tilde{y}, t) \sim \left(\frac{\tilde{x}}{t}, \frac{\tilde{y}}{t}, 1\right) \Rightarrow (x, y) = \left(\frac{\tilde{x}}{t}, \frac{\tilde{y}}{t}\right)$$

Coordonnées Homogènes P³

Coordonnées affines \Rightarrow Coordonnées Homogènes 3D:

$$(x, y, z) \Rightarrow (x, y, z, 1)$$

Coordonnées Homogènes \Rightarrow Coordonnées affines 3D:

$$(\tilde{x}, \tilde{y}, \tilde{z}, t) \sim \left(\frac{\tilde{x}}{t}, \frac{\tilde{y}}{t}, \frac{\tilde{z}}{t}, 1\right) \Rightarrow (x, y, z) = \left(\frac{\tilde{x}}{t}, \frac{\tilde{y}}{t}, \frac{\tilde{z}}{t}\right)$$

Coordonnées Homogènes

Dans le plan affine un point P est représenté par ses coordonnées (x, y).

Le principe des coordonnées homogènes est de représenter ce point par le triplet $(\tilde{x}, \tilde{y}, t)$ avec $t \neq 0$ et tel que $(x, y) = \left(\frac{\tilde{x}}{t}, \frac{\tilde{y}}{t}\right)$

Pour tout scalaire $k \ne 0$, k(x, y, t) = (kx, ky, kt) représente le même point que (x, y, t)

Les coordonnées homogènes sont donc définies à un facteur multiplicatif près.

En particulier si t=1, les coordonnées homogènes sont $(\tilde{x}, \tilde{y}, 1)$.

Composition de transformations

1 - Le modèle géométrique d'une caméra

Modèle de sténopé (pinhole)

Relation entre P(X,Y,Z) et p(x,y,z)?

Modèle de sténopé (pinhole)

Modèle perspectif de la caméra

caméra)

p(x,y,f): projeté de P sur le plan image (repère

Modèle perspectif de la caméra

Le calibrage géométrique d'une caméra consiste à déterminer la relation mathématique existant entre les coordonnées des points 3D de la scène observée et les coordonnées 2D de leur projection dans l'image

Le calibrage géométrique d'une caméra consiste à déterminer la relation mathématique existant entre les coordonnées des points 3D de la scène observée et les coordonnées 2D de leur projection dans l'image

1- Transformation entre le repère du monde et le repère caméra:

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} + t = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$t = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

$$[R] = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

2- Transformation entre le repère caméra et le repère capteur

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = [P] \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

2- Transformation entre le repère caméra et le repère capteur

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} k_x & k_x \cos(\theta) & o_x + oy \cos(\theta) & 0 \\ 0 & k_y / \sin(\theta) & o_y / \sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} k_x & 0 & o_x \\ 0 & k_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = [A] \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

o_x, o_v: les coordonnées de o.

Kx,ky : le nombre de pixels par unité de longueur par rapport à x et y

Modèle sténopé complet : la composition des trois translations 1,2 et 3 Donne la translation entre les coordonnées scène et les coordonnées image

Modèle sténopé complet

$$(X,Y,Z) \xrightarrow{T} (xc,yc,zc) \xrightarrow{P} (x,y,1) \xrightarrow{A} (u,v,1)$$

Modèle sténopé complet
$$(X,Y,Z) \xrightarrow{T} (xc,yc,zc) \xrightarrow{P} (x,y,1) \xrightarrow{A} (u,v,1)$$

$$M = APTm$$

$$AP = \begin{bmatrix} f_x & f_x cos(\theta) & o_x + oy \cos(\theta) & 0 \\ 0 & f_y / \sin(\theta) & o_y / \sin(\theta) & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} / f_x = f^*k_x, f_y = f^*k_y$$

- f_x, f_y, cx, cy, θ de ma matrice AP sont appelés paramètres intrinsèques de la caméra
- ✓ les 3 rotations et les 3 translation de la matrice T sont appelés paramètres extrinsèques
- ✓ le modèle sténopé est décrit par les 5 paramètres intrinsèques et les 6 paramètres extrinsèques

Modèle sténopé complet
$$(X,Y,Z) \xrightarrow{T} (xc,yc,zc) \xrightarrow{P} (x,y,1) \xrightarrow{A} (u,v,1)$$

M = APTm

$$\mathsf{AP} = \begin{bmatrix} f_x & f_x cos(\theta) & o_x + oy \cos(\theta) & 0 \\ 0 & f_y / \sin(\theta) & o_y / \sin(\theta) & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad / \quad \mathsf{f_x} = \mathsf{f^*k_x}, \, \mathsf{f_y} = \mathsf{f^*k_y}$$

- $\checkmark f_x, f_y, cx, cy, \theta$ de ma matrice AP sont appelés paramètres intrinsèques de la caméra
- ✓ les 3 rotations et les 3 translation de la matrice T sont appelés paramètres extrinsèques
- ✓ le modèle sténopé est décrit par les 5 paramètres intrinsèques et les 6 paramètres extrinsèques
- ✓ L'étalonnage (calibrage) d'une caméra consiste à déterminer les paramètres intrinsèques et extrinsèques de la caméra

La matrice de distorsion (distortion matrix) (k1,k2,k3,p1,p2)

La stéréovision : Il s'agit de calculer les coordonnées 3D d'un point à partir de ses deux images, connaissant le modèle de projection de chaque caméra et la relation spatiale entre les deux caméras.

Le calibrage stéréoscopique : Consiste à déterminer la matrice de transformation entre les deux repères des deux caméras (gauche et droite).

Le calibrage des caméras : Consiste à déterminer les paramètres intrinsèques et extrinsèque Auto calibrage : il s'agit de calculer relativement les paramètres extrinsèques et intrinsèques aboutissant vers une structure 3D relative à la scène.

3D vers 2D
$$\begin{cases} u = fx \frac{x}{z} + ox \\ v = fy \frac{y}{z} + oy \end{cases}$$

$$\begin{cases} x = \frac{z}{f_x}(u - ox) \\ y = \frac{z}{f_y}(u - oy) \\ z > 0 \end{cases}$$

3D vers 2D
$$\begin{cases} u_L = fx \frac{x}{z} + ox \\ v_L = fy \frac{y}{z} + oy \end{cases}$$

3D vers 2D
$$\begin{cases} u_R = fx \frac{x-b}{z} + ox \\ v_R = fy \frac{y}{z} + oy \end{cases}$$

Solution

$$\begin{cases} x = \frac{b(uL - ox)}{(uL - uR)} \\ y = \frac{bf_x(vL - oy)}{f_y(uL - uR)} \\ z = \frac{bf_x}{(uL - uR)} \end{cases}$$

Solution
$$\begin{cases} x = \frac{b(uL - ox)}{(uL - uR)} \\ y = \frac{bf_x(vL - oy)}{f_y(uL - uR)} \\ z = \frac{bf_x}{(uL - uR)} \end{cases}$$

- $(u_L uR)$ la différence du même point de la scène sur les deux images.
- Cette différence s' appelle disparité
- Z est inversement proportionnel à la disparité
- Z est proportionnel à b (baseline)

Composition de transformations

2 - Le modèle photométrique d'une caméra