計算固体力学入門(1)

Introduction to Computational Solid Mechanics (1)

Dept. of Sys. Desg. Eng.

Hiroshi Isakari

Finite Element Method

(FEM)

Introductory remarks 1/3

- This course will be taught via Zoom (live broadcast).
- The recorded video will also be provided via Canvas LMS in case you miss the live session due to, for example, bad Internet connection.
 - The video will be erased in a week.
- The presentation slides used in the course will also be provided via Canvas LMS.

Do NOT redistribute the video and slides. I maintain the copyright.

Introductory remarks 2/3

In this course, we discuss the finite element method (FEM) for basic problems in solid mechanics.

Upon completion of the course, students

- can tell "what is FEM?"
- can derive fundamental equations for FEM in solid mechanics.
- can implement your own FEM codes.

Grading

- weekly homework (40%)
- mid-term report (30%)
- final report (30%)

All the homeworks' and reports' assignments will be presented and should be submitted through Canvas LMS.

Introductory remarks 3/3

What is FEM used for?

For analysing mechanical (or, physical in general) phenomena such as bending of beam, propagation of vibration, etc.

Plans

The contents of this course will be as follows:

- 1. FEM for a one-dimensional problem.
- 2. Mathematical preliminaries
 Gauss-Legendre quadrature numerical integration
 Einstein's summation convention
- 3. Continuum mechanics 連続体の分学 Deformation of continuum

 - Balance of continuum
 - Basic equations
- 4. Weak form
- 5. Discretization
- 6. FEM implementations final

mid-term

FEM for a 1D problem

Let us solve the following simple problem by FEM!

Problem

Solve the following differential equation:

2 nd ordinary
$$\frac{\mathrm{d}^2 u(x)}{\mathrm{d}x^2} = -f(x),$$

$$u(0) = u(1) = 0$$

defined in $x \in [0,1]$, where f is a give function.

Note: the set of DE and BC is called "boundary value problem".

Modelling 1/3

First, let us confirm that the BVP (1) and (2) describes, for example, the deflection of a uniform string.

Problem: a string of unit length is subject to distributed load q(x). Find the deflection u(x) of the string.

assumption: the deflection is small.

Modelling 2/3

Let us take a small piece of the string to see the balance equation:

Vertical component of T at the left-hand side:

Of
$$T$$
 at the left-hand side:
$$N_1 = -T \sin \theta \simeq -T \tan \theta = -T \frac{du(x)}{dx}$$
and side:

That at the right-hand side:

$$N_2 = T \frac{\mathrm{d}u(x + \mathrm{d}x)}{\mathrm{d}x} \simeq T \left(\frac{\mathrm{d}u(x)}{\mathrm{d}x} + \frac{\mathrm{d}^2 u(x)}{\mathrm{d}x^2} \mathrm{d}x \right)$$

Modelling 3/3

Let us take a small piece of the string to see the balance equation:

Since the internal force $N_1 + N_2 = T \frac{\mathrm{d}^2 u(x)}{\mathrm{d}x^2} \mathrm{d}x$ should balance with the

external force q(x)dx, the equation of the mechanical system is

$$T \frac{\mathrm{d}^2 u(x)}{\mathrm{d}x^2} \mathrm{d}x + q(x) \mathrm{d}x = 0 \qquad \qquad \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = -f(x), \qquad (1)$$

Thus, the problem at hand models the deflection of a supported string subject to a distributed load:

Problem

Solve the following differential equation:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = -f(x),\tag{1}$$

$$u(0) = u(1) = 0, (2)$$

defined in $x \in [0,1]$, where f is a give function.

ディリクレ Note: (2) is often called as the BC of Dirichlet type. Neumann BC: $\frac{du}{dx} = 0$

Neumann BC:
$$\frac{du}{dx} = 0$$

Robin BC:
$$u + k \frac{du}{dx} = 0$$
 (constant)

solve the BVP (1)&(2) when the RHS is given as f(x) = 1.

Solution of Q1

$$\frac{d^2u(x)}{dx^2} = -1 \qquad (1)$$

$$u(0) = u(1) = 0 \qquad (2)$$

$$u(0) = c' = 0$$

$$u(1) = -\frac{1}{2}t$$

$$\frac{du}{dx} = -x + c$$

$$u(x) = -\frac{1}{2}$$

$$u(x) = -\frac{1}{2}$$
where $c \cdot k \cdot c'$ are unknown
$$coefficients.$$

By using (2)

$$u(0) = d' = 0$$

$$-9 c' = 0$$

$$u(1) = -\frac{1}{2} + d$$

$$-9 c = \frac{1}{2}$$

$$u(x) = -\frac{1}{2} x^2 + \frac{1}{2} x$$

Weighted residual method 1/2

In the previous example, it was quite easy to solve the DE analytically, but this would be impossible in general.

 \rightarrow We try to find a function $\tilde{u}(x)$ approximating u(x).

Requirement for $\tilde{u}(x)$

 $\tilde{u}(x)$ satisfies the BC (2).

The following function can be a candidate for $\tilde{u}(x)$:

$$\mathcal{L}(\mathcal{L}) = \sum_{i=0}^{n-1} a_i g_i(x), \qquad (3)$$

where $a_i \in \mathbb{R}$ is the unknown coefficient, and $g_i : [0, 1] \to \mathbb{R}$ is a basis function like

$$g_i(x) = x^i \times x(1-x)$$

Weighted residual method 2/2

Next issue:

How to determine a_i ? \rightarrow weighted residual method (WRM)

Recipe (WRM)

- 1. Prepare test functions (weight functions) $v_i(x)$ for $i = 0, \dots, n-1$.
- 2. solve the following weighted residual equation:

$$\int_0^1 v_i \left(\frac{\mathrm{d}^2 \tilde{u}(x)}{\mathrm{d}x^2} + f(x) \right) \mathrm{d}x = 0.$$
 (4)

Q2:

Let us assume that $\tilde{u}(x) = a_0 \sin \pi x$ approximately solves

$$\frac{d^2u}{dx^2} = -1$$
 in [0,1], and $u(0) = u(1) = 0$.

Then, find a_0 by the WRM using the following test functions:

(a)
$$v_i(x) = 1$$

(b) $v_i(x) = \sin \pi x$

Solution of Q2

Q2: $\int \frac{d\vec{k}}{dx} = \pi \alpha_0 \cos \pi x \rightarrow \frac{d\vec{k}}{dx} = -\pi^2 \alpha_0 \sin \pi x$

Let us assume that $\underline{\tilde{u}(x)} = \underline{a_0 \sin \pi x}$ approximately solves $\frac{d^2u}{dx^2} = -1$ in [0,1], and u(0) = u(1) = 0.

Then, find a_0 by the WRM using the following test functions:

$$\begin{cases} (a) v_i(x) = 1\\ (b) v_i(x) = \sin \pi x \end{cases}$$

(a) From the weighted residual equation (4), we have

$$0 = \int_{0}^{1} \frac{\sqrt{x}(x)}{\sqrt{x}} \left(\frac{d^{2}\tilde{u}(x)}{dx^{2}} + 1 \right) dx$$

$$= \int_{0}^{1} 1 \cdot \left(-\sqrt{x} a_{0} + x + 1 \right) dx$$

$$= \left[\sqrt{x} a_{0} \cos x + x + x \right]_{0}^{1}$$

$$= -2\alpha_0 \pi + 1.$$
Thus, $\alpha_0 = \frac{1}{2\pi} \rightarrow \mu(x) = \frac{1}{2\pi} \sin \pi x$

Can you

(b) Solve this problem by yourself?

From the weighted residual equation (4), we have

$$0 = \int_{0}^{1} \sin \pi x \cdot \left(-\pi^{2} \alpha_{0} \sin \pi x + 1 \right) dx$$

$$= -\pi^{2} \alpha_{0} \int_{0}^{1} \sin^{2} \pi x dx + \int_{0}^{1} \sin \pi x dx$$

$$= -\pi^{2} \alpha_{0} / 2 + \frac{2}{\pi}$$

$$\Leftrightarrow \alpha_0 = \frac{4}{\pi_3}$$

Thus, we have the following approx. solution:

$$\widetilde{u}(x) = \frac{4}{\pi^3} \sin \pi x$$

HW: plot
$$\tilde{u}_{\alpha}(x) = \frac{1}{2\pi} \sin \pi x$$
, $\tilde{u}_{b}(x) = \frac{4}{\pi^{3}} \sin \pi x$ & $u(x) = -\frac{1}{2} x^{2} + \frac{1}{2} x$ by using a software you like - compare the accurracy of \tilde{u}_{α} & \tilde{u}_{b} against the exact solution u .

Important notes

- The Galerkin method uses the same test functions as the basis functions. Usually, the Galerkin method gives more accurate result than other choices of test functions. See Q2(b).
- The boundary value problem of a differential equation (1) & (2) is converted into an algebraic equation which can be solved by a computer.

Finite element method (FEM) 1/2

In the previous example, we used the weighted residual equation (4) as is.

Here, we transform it a little. We here take test functions $\tilde{v}_i(x)$ satisfying the BC (2), i.e. $\tilde{v}_i(0) = \tilde{v}_i(1) = 0$. Then, (4) is rewritten by using the "integration by parts" as

$$\int_0^1 v_i'(x)u'(x)dx = \int_0^1 v_i(x)f(x)dx : \mathbf{weak form}$$

Note: the weak form only involves differentiation of order 1. \rightarrow linear functions can be used for \tilde{u} and v!

Finite element method (FEM) 2/2

An example of the linear functions:

The weak form discretized by the Galerkin method gives the following algebraic equation (which can be solved by a computer!)

$$\sum_{j=0}^{n-1} \left(\int_0^1 g_i'(x)g_j'(x) dx \right) a_j = \int_0^1 g_i f(x) dx \quad \text{for } i = 0, \dots, n-1$$

Finite element method (FEM) 3/3

Recipe (FEM)

- 1. Prepare locally supported test functions $v_i(x)$ for $i = 0, \dots, n-1$.
- 2. Prepare the weighted residual equation (WRE).
- 3. Transform WRE into the weak form.
- 4. Discretize the weak form by the Galerkin method.
- 5. Solve the algebraic equations (by a computer).

Note:

the basis functions are also locally supported by the definition of the Galerkin method.

Example 1/2

Solve the following BVP by the finite element method:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = -1$$
 in [0,1], and $u(0) = u(1) = 0$,

by using the following basis functions:

Example 2/2

Homework 1

H1. Solve the following BVP by the finite element method:

$$\frac{d^2u}{dx^2} = -1$$
 in [0,1], and $u(0) = u(1) = 0$,

by using the following basis functions:

$$g_0(x) = egin{cases} 4x & ext{if } 0 \leq x \leq 1/4 \ -4(x-1/2) & ext{if } 0 \leq x \leq 1/2 \ 0 & ext{otherwise} \end{cases} \ g_1(x) = egin{cases} 4(x-1/4) & ext{if } 1/4 \leq x \leq 1/2 \ -4(x-3/4) & ext{if } 1/2 \leq x \leq 3/4 \ 0 & ext{otherwise} \end{cases} \ g_2(x) = egin{cases} 4(x-1/2) & ext{if } 1/2 \leq x \leq 3/4 \ -4(x-1) & ext{if } 3/4 \leq x \leq 1 \ 0 & ext{otherwise} \end{cases} \ \end{cases}$$

Homework 1 (cont.)

H2. Solve the following BVP by the finite element method:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = -f(x) \quad \text{in [0,1], and } u(0) = u(1) = 0,$$

where
$$f(x) = \begin{cases} 1 & \text{if } x \le 1/2 \\ 0 & \text{otherwise} \end{cases}$$
 by using appropriate

basis functions.