## Ряды Тейлора

Пример.

$$e^{x} = \sum_{n=0}^{+\infty}, \ x \in \mathbb{R}$$

$$\sin x = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}, \ x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}, \ x \in \mathbb{R}$$

$$\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^{n} x^{n}, \ x \in (-1,1)$$

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^{n-1} \frac{x^{n}}{n}, \ x \in (-1,1)$$

**Теорема 1.**  $\forall \sigma \in \mathbb{R} \ \forall x \in (-1,1)$ 

$$(1+x)^{\sigma} = 1 + \sigma x + \frac{\sigma(\sigma-1)}{2}x^2 + \dots + {\sigma \choose n}x^n + \dots$$

Доказательство. При |x| < 1 ряд сходится по признаку Даламбера:

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{\frac{\sigma!}{(n+1)!(n+1-\sigma)!}x^{n+1}}{\frac{\sigma!}{n!(n-\sigma)!}x^n}\right| = \left|\frac{(\sigma-n)x}{n+1}\right| \xrightarrow{n \to +\infty} |x| < 1$$

Обозначим сумму ряда через S(x).

Наблюдение:  $S'(x)(1+x) = \sigma S(x)$ 

$$S'(x) = \dots + \frac{\sigma(\sigma - 1) \dots (\sigma - n)}{n!} x^n + \dots$$

$$S(x) = \dots + \frac{\sigma(\sigma - 1) \dots (\sigma - n + 1)}{n!} x^n + \dots$$

$$(1 + x)S' = \dots + \left(\frac{\sigma(\sigma - 1) \dots (\sigma - n)}{n!} + \frac{\sigma(\sigma - 1) \dots (\sigma - n + 1)}{n!} n\right) x^n + \dots$$

$$= \dots + \frac{\sigma(\sigma - 1) \dots (\sigma - n + 1)}{n!} \sigma x^n + \dots$$

$$f(x) = \frac{S(x)}{(1+x)^{\sigma}} \quad f'(x) = \frac{S'(1+x)^{\sigma} - \sigma(1+x)^{\sigma-1}S}{(1+x)^{2\sigma}} = 0$$

$$\Rightarrow f = \text{const}, f(0) = 1 \Rightarrow f \equiv 1 \Rightarrow S(x) = (1+x)^{\sigma}$$

Следствие 1.

$$\arcsin x = \sum^{**} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}, \ x \in (-1,1)$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} {\sigma \choose n} (-x^2)^n \Big|_{\sigma=-\frac{1}{2}} = \sum_{n=0}^{+\infty} \frac{(2n-1)!!}{(2n)!!} x^{2n}$$

При n=0 \* это 1, и тогда \*\*:  $\arcsin x=x+\dots$ 

Следствие 2.

$$\sum_{n=m}^{+\infty} n(n-1)\dots(n-m+1)t^{n-m} = \frac{m!}{(1-t)^{m+1}}, |t| < 1$$

Доказательство.

$$\sum_{n=0}^{+\infty} t^n = \frac{1}{1-t}$$

Дифференцируем m раз, получим искомое. Слагаемые с n < m пропадут, т.к. они = 0

**Теорема 2.**  $f \in C^{\infty}(x_0 - h, x_0 + h)$ 

Тогда f — раскладывается в ряд Тейлора в окрестности  $x_0 \iff$ 

$$\exists \delta, C, A > 0 \ \forall n \ \forall x : |x - x_0| < \delta \ |f^{(n)}(x)| < CA^n n!$$

Примечание. В "Кошмарном сне" (см. лекцию 12)  $f^{(n)} \approx n! 2n! \Rightarrow f$  не раскладывается.

Доказательство.

$$\Leftarrow$$
 формула Тейлора в  $x_0: f(x) = \sum\limits_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(n)}(c)}{n!} (x-x_0)^n$ 

Если

$$\left| \frac{f^{(n)}(c)}{n!} (x - x_0)^n \right| \xrightarrow{n \to +\infty} 0$$

, то f раскладывается в ряд Тейлора. Из условия мы знаем:

$$\left| \frac{f^{(n)}(c)}{n!} (x - x_0)^n \right| \le C|A(x - x_0)|^n$$

Тогда при  $C|A(x-x_0)|^n \to 0$  f раскладывается в ряд Тейлора.

$$C|A(x-x_0)|^n \to 0 \Leftrightarrow |x-x_0| < \min(\delta, \frac{1}{A})$$

Таким образом, f раскладывается в ряд Тейлора в области  $(x_0-\min(\delta,\frac{1}{A}),x_0+\min(\delta,\frac{1}{A}))$ 

$$\Rightarrow f(x) = \sum \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Возьмём  $x_1 \neq x_0$ , для которого разложение верно.

(a) при  $x=x_1$ , ряд сходится  $\Rightarrow$  слагаемые  $\to 0 \Rightarrow$  слагаемые ограничены:

$$\left|\frac{f^{(n)}(x_0)}{n!}(x_1-x_0)^n\right|\leq C_1\Leftrightarrow |f^{(n)}(x_0)|\leq C_1n!B^n$$
 , где  $B=\frac{1}{|x_1-x_0|}$ 

Таким образом, мы оценили производную в  $x_0$ , но нужно уметь оценивать и производную в окрестности  $x_0$ .

(b)

$$f^{(m)}(x) = \sum_{n=m}^{+\infty} \frac{f^{(n)}(x_0)}{n!} n(n-1) \dots (n-m+1)(x-x_0)^{n-m}$$
$$= \sum_{n=m}^{+\infty} \frac{f^{(n)}(x_0)}{(n-m)!} (x-x_0)^{n-m}$$

Пусть  $|x - x_0| < \frac{1}{2B}$ 

$$|f^{(m)}(x)| \leq \sum \left| \frac{f^{(n)}(x_0)}{(n-m)!} |x - x_0|^{n-m} \right|$$

$$\leq \sum \frac{C_1 n! B^n}{(n-m)!} |x - x_0|^{n-m}$$

$$= C_1 B^m \sum \frac{n!}{(n-m)!} \underbrace{(B|x - x_0|)^{n-m}}_{<\frac{1}{2}}$$

$$= \frac{C_1 B^m m!}{\underbrace{(1 - B|x - x_0|)^{m+1}}_{>\frac{1}{2}}}$$

$$\leq C_1 2^{m+1} B^m m!$$
(1)

$$=\underbrace{(2C_1)}_C(\underbrace{2B}_A)^m m!$$

(1): по следствию 2.

Эта оценка выполняется при  $|x-x_0|<\delta=\frac{1}{2B}$ 

## Теория меры

Продолжим доказательство с прошлой лекции.

Доказательство.

2.

$$B_k := A \cap A_k \in \mathcal{P} \ A = \bigcup_{\text{koh.}} B_k$$

Сделаем это множество дизъюнктным.

$$C_1:=B_1,\ldots,C_k:=B_k\setminus\left(igcup_{i=1}^{k-1}B_i
ight)\ A=igsqcup_{\mathrm{koh.}}C_k$$

Но эти  $C_k$  вообще говоря  $\not\in \mathcal{P}$ 

$$C_k = B_k \setminus \left(\bigcup_{i=1}^{k-1} B_i\right) = \bigsqcup_j D_{k_j} \in \mathcal{P}$$

Тогда 
$$A = \coprod_{k,j} D_{k_j} \;\; \mu A = \sum \mu D_{k_j}$$

При этом 
$$\forall k \;\; \sum_j \mu D_{k_j} = \mu C_k \;\stackrel{\text{монот},\mu}{\leq} \; \mu A_k$$

Итого 
$$\mu A = \sum\limits_k \sum\limits_k \mu D_{k_j} = \sum \mu C_k \le \sum \mu A_k$$

Упражнение.

1. 
$$X=\{1,2,3\}, \mathcal{P}=2^X$$
. Задайте объем  $\mu$  на  $\mathcal{P}$ :  $\mu\{1\}=10, \mu\{1,2,3\}=2021$ 

M3137y2019

2.  $\mu$  — объем на алгебре  $\mathfrak{A}$ ,  $\mu X < +\infty \ \forall X$ .

Доказать:  $\forall A,B,C\in\mathfrak{A}:\mu(A\cup B\cup C)=\mu A+\mu B+\mu C-\mu(A\cap B)-\mu(B\cap C)-\mu(A\cap C)+\mu(A\cap B\cap C)$ 

Определение.  $\mu: \underbrace{\mathcal{P}}_{\text{полукольцо}} o \overline{\mathbb{R}}$  — мера, если  $\mu$  — объем и  $\mu$  счётно-аддитивна:

$$A, A_1, A_2, \dots \in \mathcal{P} : A = \bigsqcup_{i=1}^{+\infty} A_i \quad \mu A = \sum_i \mu A_i$$

Примечание.  $(a_{\omega})_{\omega\in\Omega}$  — счётное семейство чисел (  $\Omega$  — счётно),  $\forall \omega \ a_{\omega}\geq 0$ 

Тогда определена  $\sum\limits_{\omega\in\Omega}a_{\omega}=\sup\sum\limits_{\text{кон.}}a_{\omega}$ 

Значит, можно счётную аддитивность понимать обобщенно:

$$A = \bigsqcup_{\text{vol}} A_{\omega} \Rightarrow \mu A = \sum \mu A_{\omega}$$

Примечание. Счётная аддитивность не следует из конечной аддитивности.

*Пример* (не меры).  $X = \mathbb{R}^2$ ,  $\mathcal{P} =$  ограниченные множества и их дополнения.

$$\mu A = egin{cases} 0 &, A - ext{orp.} \\ 1 &, A - ext{имеет orp. дополнениe} \end{cases}$$

Пусть  $\mathbb{R}^2 = \bigcup_{\text{счётное}}$  клеток  $= \bigsqcup_{\text{счётное}}$  ячеек  $= \bigsqcup A_i$ 

 $\mu(\mathbb{R}^2)=1, \sum \mu A_i=0 \Rightarrow \mu$  — не счётно аддитивная и не мера.

Пример (меры). X — (бесконечное) множество.

 $a_1, a_2, a_3 \dots$  набор попарно различных точек.

 $h_1, h_2, h_3 \ldots$  — положительные числа.

Для 
$$A\subset X$$
  $\mu A:=\sum_{k:a_k\in A}h_k.$ 

Физический смысл  $\mu$ : каждой точке  $a_i$  сопоставляется "масса"  $h_i$ . Объем множества точек есть сумма "масс" точек.

Счётная аддитивность  $\mu \Leftrightarrow$  теореме о группировке слагаемых (в ряду можно ставить скобки).

Эта мера называется дискретной.

Теорема 3. 
$$\mu: \underbrace{\mathcal{P}}_{\text{полукольцо}} \to \overline{\mathbb{R}}$$
 — объем.

Тогда эквивалентно:

1.  $\mu$  — мера, т.е.  $\mu$  — счётно-аддитивна.

2.  $\mu$  — счётно-полуаддитивна:

$$A, A_1, A_2, \dots \in \mathcal{P} \ A \subset \bigcup A_i \Rightarrow \mu A \leq \sum \mu A_i$$

Доказательство.

 $1 \Rightarrow 2$  как в предыдущей теореме.

$$2 \Rightarrow 1 \ A = \coprod A_i \stackrel{?}{\Rightarrow} \mu A = \sum \mu A_i$$

$$\forall N \ A \supset \bigsqcup_{i=1}^{N} A_i \ \mu A \ge \sum_{i=1}^{N} \mu A_i$$

$$A\subset\bigcup A_i$$
 (на самом деле  $A=\bigsqcup A_i)\Rightarrow \mu A\leq\sum \mu A_i$   $\Rightarrow \mu A=\sum \mu A_i$ 

 $\it C$ ледствие 3.  $A\in \mathcal{P}, A_n\in \mathcal{P}: A\subset \bigcup A_n, \mu A_n=0, \mu$ — мера. Тогда  $\mu A=0$  Это очевидно, т.к.  $\mu A\leq \sum \mu A_i=0$ 

Теорема 4.

•  $\mu:\mathfrak{A} o \overline{\mathbb{R}}$  — объем.

Тогда эквивалентно:

1.  $\mu$  — мера

2.  $\mu$  — непрерывна снизу:

$$A, A_1, A_2 \cdots \in \mathfrak{A} \ A_1 \subset A_2 \subset \dots, A = \bigcup_{i=1}^{+\infty} A_i \Rightarrow \mu A = \lim_{i \to +\infty} \mu A_i$$

Теорема 5.

•  $\mu:\mathfrak{A} o\mathbb{R}$  — объем.

M3137y2019

7.12.2020

•  $\mu$  — конечный объем.

Тогда эквивалентно:

- 1.  $\mu$  мера, т.е.  $\mu$  счётно-аддитивная.
- 2.  $\mu$  непрерывна сверху:

$$A, A_1, A_2 \cdots \in \mathfrak{A} \ A_1 \supset A_2 \supset \dots, A = \bigcup_{i=1}^{+\infty} A_i \Rightarrow \mu A = \lim_{i \to +\infty} \mu A_i$$

Доказательство.

$$1 \Rightarrow 2 \ B_k = A_k \setminus A_{k+1}, A_1 = \coprod B_k \cup A$$
$$\mu A_1 = \sum \mu B_k + \mu A$$

$$A_n = \bigsqcup_{k > n} B_k \cup A \quad \mu A_n = \sum_{k > n} \mu B_k + \mu A \xrightarrow{n \to +\infty} \mu A$$

 $2\Rightarrow 1\;$  Проверим, что  $C=\bigsqcup C_i \stackrel{?}{\Rightarrow} \mu C=\sum \mu C_i.$ 

Пусть  $A_k:=\bigsqcup_{i=k+1}^{+\infty}C_i$ . Тогда  $A_k\in\mathfrak{A}$ , т.к.  $A_k=C\setminus\bigsqcup_{i=1}^kC_i$  — конечное объединение.

$$A_1 \supset A_2 \supset \dots \quad \bigcap A_k = \emptyset \Rightarrow \mu A_k \xrightarrow{k \to +\infty} 0$$

$$C = \bigsqcup_{i=1}^{k} C_i \sqcup A_k \ \mu C = \sum_{i=1}^{k} \mu C_i + \mu A_k \xrightarrow{k \to +\infty} \sum \mu C_i$$

## Теорема о продолжении меры

Определение.  $\mu:\mathcal{P} \to \overline{\mathbb{R}}$  — мера,  $\mathcal{P} \subset 2^X$ 

$$\mu-\ \sigma$$
-конечна, если  $\exists A_1,A_2\dots\in\mathcal{P}:X=\bigcup A_i,\mu A_i<+\infty$ 

 $\Pi$ ример.  $X=\mathbb{R}^m, \mathcal{P}=\mathcal{P}^m$  — полукольцо ячеек,  $\mu$  — классический объем,  $\mu$  —  $\sigma$ -конечный объем.

$$\mathbb{R}^m = \bigcup \mathrm{Kyd}(0,2R)$$
 
$$= \bigcup \mathrm{целочисл.} \ \mathrm{eд.} \ \mathrm{ячеек}$$

M3137y2019 7.12.2020

Определение.  $\mu:\mathcal{P}\to\overline{\mathbb{R}}$  — мера.

 $\mu$  — полная в  $\mathcal{P}$ , если  $\forall A \in \mathcal{P} \ \mu A = 0 \ \forall B \subset A$  выполняется:  $B \in \mathcal{P}$  и (тогда автоматически)  $\mu B = 0$  (по монотонности)

Это совместное свойство  $\mu$  и  $\mathcal{P}$ .

Должок. Пространство с мерой — тройка 
$$(\underbrace{X}_{\text{множество}},\underbrace{\mathfrak{A}}_{\sigma\text{-алгебра}},\underbrace{\mu}_{\text{мера на }\mathfrak{A}})$$