Big O Notation The Secret to Writing Efficient Algorithms:

1. **O**(1)

This is the constant time notation. The runtime remains steady regardless of input size. For example, accessing an element in an array by index and inserting/deleting an element in a hash table.

2. O(n)

Linear time notation. The runtime grows in direct proportion to the input size. For example, finding the max or min element in an unsorted array.

3. O(log n)

Logarithmic time notation. The runtime increases slowly as the input grows. For example, a binary search on a sorted array and operations on balanced binary search trees.\

4. O(n^2)

Quadratic time notation. The runtime grows exponentially with input size. For example, simple sorting algorithms like bubble sort, insertion sort, and selection sort.

```
O(n^2)
Quadratic Time

The runtime increases quadratically with the size of the input.

1 Simple sorting algorithms like Bubble Sort, Selection Sort, and Insertion Sort.

i:0 6 0 3 5

i:2 0 3 6 5

i:2 0 3 6 5

i:2 column for (int row = 1; row<=3; row++)

{
for (int row = 1; row<=3; row++)
{
for (int col =1; col<=5; col++)
{
Inner {
    System.out.print("*")
    System.out.printl(");
```

5. $O(n^3)$

Cubic time notation. The runtime escalates rapidly as the input size increases. For example, multiplying two dense matrices using the naive algorithm.

6. O(n logn)

Linearithmic time notation. This is a blend of linear and logarithmic growth. For example, efficient sorting algorithms like merge sort, quick sort, and heap sort

7. O(2^n)

Exponential time notation. The runtime doubles with each new input element. For example, recursive algorithms solve problems by dividing them into multiple subproblems.

8. O(n!)

Factorial time notation. Runtime skyrockets with input size. For example, permutation-generation problems.

9. O(sqrt(n))

Square root time notation. Runtime increases relative to the input's square root. For

example, searching within a range such as the Sieve of Eratosthenes for finding all primes up to n.

