《信息光学》(第二次印刷)第4章勘误表

页	行 (式)	原 文	勘正	备注
232	(4.5.6)	$F\{e^{\frac{ik}{2d}x_i^2}\} = i\lambda de^{-i\pi\lambda d\xi^2}$	$F\{e^{\frac{\mathrm{i}k}{2d}x_{i}^{2}}\} = F\{e^{\mathrm{i}\pi\left(\frac{x_{i}}{\sqrt{\lambda d}}\right)^{2}}\} = \sqrt{\lambda d}e^{-\mathrm{i}\pi/4}e^{-\mathrm{i}\pi\lambda d\xi^{2}}$	
232	(4.5.7)	$F\{U_{i}(x_{i})\} = \frac{e^{ikd}}{i\lambda d} \left[\frac{1}{2} \delta(\xi) + \frac{q}{4} \delta(\xi - \xi_{0}) + \frac{q}{4} \delta(\xi + \xi_{0}) \right] i\lambda de^{-i\pi\lambda d\xi_{0}}$ $= e^{ikd} \left[\frac{1}{2} \delta(\xi) + \frac{q}{4} e^{-i\pi\lambda d\xi_{0}^{2}} \delta(\xi - \xi_{0}) + \frac{q}{4} e^{-i\pi\lambda d\xi_{0}^{2}} \delta(\xi + \xi_{0}) \right]$	$\begin{split} F\{U_i(x_i)\} &= \frac{\mathrm{e}^{-\mathrm{i}\pi/4}\mathrm{e}^{\mathrm{i}kd}}{\mathrm{i}\sqrt{\lambda}d} \left[\frac{1}{2}\delta(\xi) + \frac{q}{4}\delta(\xi - \xi_0) + \frac{q}{4}\delta(\xi + \xi_0)\right]\mathrm{e}^{-\mathrm{i}\pi\lambda d\xi^2} \\ &= \frac{\mathrm{e}^{-\mathrm{i}\pi/4}\mathrm{e}^{\mathrm{i}kd}}{\mathrm{i}\sqrt{\lambda}d} \left[\frac{1}{2}\delta(\xi) + \frac{q}{4}\mathrm{e}^{-\mathrm{i}\pi\lambda d\xi_0^2}\delta(\xi - \xi_0) + \frac{q}{4}\mathrm{e}^{-\mathrm{i}\pi\lambda d\xi_0^2}\delta(\xi + \xi_0)\right] \end{split}$	
232	(4.5.8)	$U_{i}(x_{i}) = e^{ikd} \left[\frac{1}{2} + \frac{q}{2} e^{-i\pi\lambda d\xi_{0}^{2}} \cos(2\pi\xi_{0}x_{i}) \right]$	$U_{i}(x_{i}) = \frac{e^{-i\pi/4}e^{ikd}}{i\sqrt{\lambda d}} \left[\frac{1}{2} + \frac{q}{2}e^{-i\pi\lambda d\xi_{0}^{2}}\cos(2\pi\xi_{0}x_{i}) \right]$	
232	倒数1行	常相位因子 e ^{ikd}	常数项 $\dfrac{\mathrm{e}^{-\mathrm{i}\pi/4}\mathrm{e}^{\mathrm{i}kd}}{\mathrm{i}\sqrt{\lambda d}}$	
233	(4.5.9)	$I_{i} = U_{i}(x_{i}, y_{i}) ^{2} = \left \frac{1}{2} + \frac{q}{2}e^{-i\pi\lambda d\xi_{0}^{2}}\cos(2\pi\xi_{0}x_{i})\right ^{2}$	$I_{i}(x_{i}) = U_{i}(x_{i}) ^{2} = \frac{1}{\lambda d} \left \frac{1}{2} + \frac{q}{2} e^{-i\pi\lambda d\xi_{0}^{2}} \cos(2\pi\xi_{0}x_{i}) \right ^{2}$	
233	(4.5.12)	$I_{i} = \left \frac{1}{2} + \frac{q}{2} \cos(2\pi \xi_{0} x_{i}) \right ^{2}$	$I_{i}(x_{i}) = \frac{1}{\lambda d} \left \frac{1}{2} + \frac{q}{2} \cos(2\pi \xi_{0} x_{i}) \right ^{2}$	
233	(4.5.15)	$I_{i} = \left \frac{1}{2} - \frac{q}{2} \cos(2\pi \xi_{0} x_{i}) \right ^{2}$	$I_{i}(x_{i}) = \frac{1}{\lambda d} \left \frac{1}{2} - \frac{q}{2} \cos(2\pi \xi_{0} x_{i}) \right ^{2}$	
233	(4.5.18)	$I_{i} = \left \frac{1}{2} + i \frac{q}{2} \cos(2\pi \xi_{0} x_{i}) \right ^{2} =$	$I_{i}(x_{i}) = \frac{1}{\lambda d} \left \frac{1}{2} + i \frac{q}{2} \cos(2\pi \xi_{0} x_{i}) \right ^{2} \propto$	
250	(4.6.6)	$\left(\frac{ab}{\lambda z}\right)^2 \operatorname{sinc}^2\left(\frac{ax_i}{\lambda z}, \frac{by_i}{\lambda z}\right) = I_{i0} \operatorname{sinc}^2\left(\frac{ax_i}{\lambda z}, \frac{by_i}{\lambda z}\right)$	$\left(\frac{ab}{\lambda d}\right)^2 \operatorname{sinc}^2\left(\frac{ax_i}{\lambda d}, \frac{by_i}{\lambda d}\right) = I_{i0} \operatorname{sinc}^2\left(\frac{ax_i}{\lambda d}, \frac{by_i}{\lambda d}\right)$	
265	(4.6.65)	$B\left\{t(r_{\rm o})\right\} = \pi r_0^2 \frac{2J_1(2\pi a\rho)}{2\pi a\rho}$	$B\left\{t(r_{o})\right\} = \pi a^{2} \frac{2J_{1}(2\pi a\rho)}{2\pi a\rho}$	
<u> </u>				ш