

Obsah

Kvalitativní a kvantitativní parametry OS

11. přednáška KEE/ESV

27. dubna 2016

11. přednáška KEE/ESV 27. dubna 2016

KVANTITATIVNÍ A KVALITATIVNÍ PARAMETRY

POKRAČOVÁNÍ

3

PARAMETRY OSVĚTLENÍ

Norma ČSN EN 12464-1

Parametry osvětlení

- · Rozložení jasu
- Hladina osvětlenosti
- Zábrana oslnění
- Osvětlení prostoru
- Směrové vlastnosti osvětlení
- Barevné vlastnosti osvětlení
- Časové změny osvětlení

11. přednáška KEE/ESV

27. dubna 2016

ZÁBRANA OSLNĚNÍ

Činitel oslnění UGR (Unified Glare Rating)

 index oslněni přímo od svítidel osvětlovací soustavy

které jsou vidět

Určen pouze k hodnocení rušivého oslnění přímými svítidly s vyzařovacími plochami

od $0,005 \text{ m}^2$ do $1,5 \text{ m}^2$,

pod $\Omega \sim 0,0003 \div 0,1$ sr

V místech pracovních úkolů při **obvyklých směrech pohledů**

Změna L_p o 33% vyvolá změnu UGR o 1

11. přednáška KEE/ESV

27. dubna 2016

6

ADAPTAČNÍ JAS L

L_p = rovnoměrný jas okolí zajišťující ve svislé rovině v místě oka stejnou osvětlenost jako skutečné zorné pole bez oslňujících zdrojů

$$L_p = E_{nv} \sqrt{\pi}$$

E_{nv} nepřímá složka vertikální osvětlenosti v místě oka (lx)

Tok Φ_2 dopadlý na stěny z tokové metody

- 1. pro **předpokládané** činitele odrazu $\Rightarrow \Phi_2$
- 2. Pro **nulové** činitele odrazu \Rightarrow $\Phi_{2\text{př}}$
- 3. Nepřímá složka toku na stěny $\Phi_{2n} = \Phi_2 \Phi_{2př}$
- 4. Pozorovatel může být u kterékoliv stěny. Proto vzít střední hodnotu osvětlenosti stěn, tudíž přibližně všech vertikálních rovin E_{nv}

$$E_{nv} = \Phi_{2n} / A_{stěn}$$

5. Hledaný jas L_p pozadí :

$$L_{\rm p} = \dot{E_{\rm nv}}/\pi$$

11. přednáška KEE/ESV

27. dubna 2016

Pro menší zdroje je UGR příliš přísný; pro větší zdroje příliš tolerantní.

ZÁBRANA OSLNĚNÍ

Oslnění

- Přímé
- Nepřímé odraz světla od lesklých či polomatných povrchů
 - oslnění odrazem odlesky na plochách mimo oblast zrakového úkolu
 - závojové oslnění odlesky na plochách zrakového úkolu

Omezení

- o Clonění svítidel
- Speciální optické systémy
- Nepřímé osvětlení
- o Antireflexní úpravy povrchů
- o Zvýšení adaptačního jasu přisvětlení důležitých ploch v zorném poli
- Polarizace světla, atd
- · Ve vnitřních prostorech se předpokládá úplná eliminace omezujícího oslnění a kontroluje se míra rušivého oslnění.

11. přednáška KEE/ESV

27. dubna 2016

	-	_	_
Typ prostoru, úkolu nebo činnosti	\overline{E}_m (lx)	UGR _L *)	R _a
Cirkulační prostory a chodby	100 ¹⁾	28 ²⁾	40 ²⁾
Schodiště, eskalátory, pohyblivé chodníky	150	25 ²⁾	40 ²⁾
Nakládací rampy a místa	150	25	40
Kanceláře - kopírování, kompletace atd.	300	19	80
psaní, čtení, zpracování dat	500 ³⁾	19	80
Technické kreslení	750	16	80
Pracovní stanice CAD	500 ³⁾	19	80
Konferenční a shromažďovací místnosti	500	19	80
Recepční stůl	300	22	80
Archiv	200	25	80
Učebny a konzultační místnosti	300 4)	19	80
Učebny pro večerní studium a vzdělávání dospělých	500 ⁴⁾	19	80
Přednáškové sály	500 ⁴⁾	19	80
Tabule	500 ⁵⁾	19	80
Místnosti pro výtvarnou výchovu	500	19	80
dtto na výtvarných školách	750 ⁶⁾	19	90

^{*)} Index oslnění podle metody "Jednotného systému hodnocení oslnění UGR"

Osvětlenost na podlaze (150 lx, jsou-li na cestě vozidla). Zabránit oslnění řidičů a chodců.

Osvětlení východů a vchodů bez náhlých změn hladin osvětlenosti.

R_a a UGR_L podobné jako u přilehlých prostorů.
 Při používání displejů respektovat i další požadavky.

⁴⁾ Regulovatelné osvětlení.

⁵⁾ Zamezit zrcadlovým odrazům.

⁶⁾ $T_{cn} > 5000 \text{ K}$.

Rovnoměrnost osvětlení r

ČSN EN 12464-1

= poměr osvětlenosti minimální $E_{
m min}$ k průměrné $E_{
m p}$

v místě zrakového úkolu

 $r \geq 0,7$

na ploše **bezprostředního okolí úkolu** (pás 0,5 m okolo)

 $r \geq 0.5$

Osvětlenosti bezprostředního okolí zrakového úkolu nesmí být menší než hodnoty v tabulce

Osvětlenost zrakového úkolu (lx)	≥ 750	500	300	≤ 200
Osvětlenost bezprostředního okolí úkolu (<i>lx</i>)	500	300	200	$E_{ m ukolu}$

Doporučení: schodiště $r \ge (1:3)$

komunikace $r \ge (1:5)$

v celém prostoru $r \ge 0.3$

Rozložení jasů:

Optimální poměr jasu úkolu k jasu bezprostř. okolí a k jasu pozadí je 10:4:3

Doporučení: *Dobré podání tvaru* $(L_{\text{stropu}}: L_{\text{stěn}}) > 3,5$

Při překročení 10 ⇒ oslnění

10

SMĚROVÉ VLASTNOSTI OSVĚTLENÍ

Činitel podání tvaru

= vyjádření směrových vlastností osvětlení související s tvorbou stínů, tzv. stínivostí.

= podíl velikosti světelného vektoru a střední kulové osvětlenosti. Může nabývat hodnot v rozsahu od 0 do 4. Pokud je činitel podání tvaru roven

- P = 0...... světelný tok dopadá do kontrolního bodu ze všech směrů stejně
 e osvětlení je rovnoměrně rozptýlené a na trojrozměrných předmětech nevytváří stíny.
- P = 4...... světelný tok dopadá do kontrolního bodu z jednoho bodového zdroje.
 = osvětlení je směrované a na trojrozměrných předmětech vznikají velmi ostré stíny.

11. přednáška KEE/ESV

27. dubna 2016

SMĚROVÉ VLASTNOSTI OSVĚTLENÍ

Charakteristika prostoru	Požadavky na prosvětlení prostoru	$E_{4\pi}$ (lx)	Požadavky na podání tvaru	P
kongresové sály reprezentační prostory	vysoké	130 až 150	vysoké	1,3 až 1,5
hlediště divadel, koncertní a společenské sály	střední	90 až 120	střední	1,6 až 2,0
hlediště klubů, galerie, kryté tržnice, vstupní haly	nízké	50 až 70	nízké	2,1 až 2,5

11. přednáška KEE/ESV

27. dubna 2016

12

SMĚROVÉ VLASTNOSTI OSVĚTLENÍ

Směrovost – hodnocení dle poměru válcové a vodorovné osvětlenosti

- = určena převažujícím směrem světla v daném místě
- Lze ji charakterizovat světelným vektorem
- Obecné doporučení = převažující směr dopadu světla by měl být ze stran nejlépe zleva přes levé rameno!!!
- Osvětlení **nemá být příliš směrované**
 - nemá vytvářet ostré stíny a ani nemá být difúzní
- Nežádoucí
 - závojové odrazy (lesklé a polomatné povrchy), ostré stíny, oslnění odrazem

Stínivost

- = schopnost osvětlení vytvářet na 3D předmětech stíny
- charakterizuje se činitelem podání tvaru

11. přednáška KEE/ESV

27. dubna 2016

Definice barvy

- Barva
 - = vjem způsobený barevným podnětem
 - = je to, čím se rozlišují dva zrakové počitky, když oddělíme počitky objemu, velikosti, jasu, atd.
 - Barva není vlastností hmoty osvícení barevným světlem změna barvy (barevný filtr)

• Vnímání barev – určeno spektrálním složením světelného barevného podnětu

12. přednáška KEE/ES

27. dubna 2016

14

VJEM BARVY

- Metamerní barvy = barvy které i při rozdílném spektrálním složení vzbuzují stejný vjem barvy.
- Kolorita = barevné vlastnosti předmětů dle spektra zdroje , odrazných a

prostupných vlastností daného materiálu předmětu

Chromatičnost

- = barevné vlastnosti světla dle spektra
- Určena spektrálním zářením primárního světelného zdroje

DĚLENÍ BAREV

- Spektrální
- = čisté spektrální barvy viditelné při pozorování duhy
- Nespektrální
- = purpurové barvy **nejsou součástí spektra** žádného zdroje
- Vznikají míšením krajních částí spektra viditelného záření. tj modrá (fialová) a červená

Dle psychologického působení

Teplé

- Červená
- Oranžová
- Žlutá

Studené Modrá Zelená Fialová

Vliv na	Účinek barvy		
VIIV III	oranžové (teplé)	modrozelené	
fyzickou aktivitu	tlumící	povzbuzující	
jasově – optický	světlý	temný	
dojem	vystupující	odstupující	
	teplý	studený	
citový	suchý	vlažný	
(psychologický)	zdůrazňující	uklidňující	
dojem	aktivní (povzbuzující)	pasivní (tlumící)	
	dráždivý	uklidňující	

12. přednáška KEE/ES

27. dubna 2016

Soustava XYZ – opakování viz SZ Diagram chromatičnosti

mezinárodní kolorimetrické soustavy XYZ

v pravoúhlých souřadnicích x, y.

- 1 křivka spektrálních světel s vyznačenými vlnovými délkami v nm,
- čára teplotních zářičů se stupnicí v kelvinech (K),
- 3 přímka purpurů (spojnice koncových bodů křivky spektráľních světel),
- W bod charakterizující chromatičnost bílého smluvního světla,
- příklad bodu chromatičnosti světla vzniklého míšením spektrálního světla určeného náhradní vlnovou délkou λ_d s bílým smluvním světlem W,
- K příklad bodu chromatičnosti purpurového podnětu, který smíšen se spektrálním světlem doplňkové délky λ_c dává bílé smluvní světlo W.

4. přednáška KEE/MPP - světlo

14. listopadu 2014

Jakost vjemu určena – vlastnostmi zrakového orgánu (spektrální citlivostí, barvocitem a adaptačními schopnostmi)

- spektrálním složením světla SZ
- spektrálními činiteli odrazu a pohlcení

Hodnocení

- Teplota chromatičnosti (či náhradní teplota chromatičnosti) a index podání barev
- Fylogenetické přizpůsobení zraku přírodním podmínkám
 - Denní světlo ráno a večer teplejší a méně intenzivní než v poledne (rozdílné podmínky rozptylu a pohlcení slunečního světla v zemské kůře
 - → přirozená vazba mezi teplotou chromatičností a hladinou osvětlenosti

11. přednáška KEE/ESV

27. dubna 2016

18

BAREVNÉ VLASTNOSTI OSVĚTLENÍ

→ přirozená vazba mezi teplotou chromatičností a hladinou osvětlenosti

Kruithoffův diagram

 Pomůcka pro usnadnění volby teploty chromatičnosti u zářivek

11. přednáška

<i>T</i> _c (K)	Tón barvy světla zdroje	Příklad světelného zdroje	
< 3300	teple bílý	žárovky, halogenové žárovky, zářivky (teple bílé), výbojky vysokotlaké sodíkové, halogenidové výbojky	
3300 až 5300	neutrálně bílý	zářivky (bílé), výbojky halogenidové	
> 5300	chladně bílý (denní)	zářivky (denní), halogenidové výbojky	

T _c	Hladiny osvětlenosti (lx) v prostorech		
(K)	pracovních kulturních a společensk		
< 3300	≤ 500	≤ 200	
3300 až 5300	300 až 1500	150 až 500	
> 5300	> 500	> 200	

11. přednáška KEE/ESV

27. dubna 2016

Index podání barev – charakterizuje kvalitu vjemu barev předmětu pozorovaného ve světle posuzovaného světelného zdroje v porovnání s vjemem barev téhož předmětu ve světle smluvního světelného zdroje.

	jakosti ú barev DIN	Index podání barev R _a	Tón barvy světla zdroje	Požadavky na kvalitu vjemu barev	Příklady použití
1	1A	<i>R</i> _a ≥ 90	teple bílý chladně bílý (denní)	velmi vysoké	klinická diagnostika, obrazové galerie, polygrafie
	1B	80 ≤ R ₂ < 90	teple bílý neutrálně bílý	vysoké	byty, hotely, restaurace, obchody, nemocnice
2	ID	00 ≤ K _a < 90	neutrálně bílý chladně bílý (denní)		tiskárny, textilní průmysl, kanceláře, školy, sportoviště
3	2	$60 \le R_{\rm a} < 80$	teple bílý	střední	Některé průmyslové provozy
4	3	$40 \le R_{\rm a} < 60$		reacte praintysiove provozy	
5	4	$20 \le R_{\rm a} < 40$	teple bílý	velmi nízké	komunikace

11. přednáška KEE/ESV

27. dubna 2016

22

BAREVNÉ VLASTNOSTI OSVĚTLENÍ

· Velký vliv má i barevnost vnitřního prostoru a jeho vybavení

Volba barev

- **Individuální vkus** závislý na věku, pohlaví, geografických a klimatických podmínkách, módě,...
- Stanovení obecných pravidel pro volbu SZ a barev povrchových úprav ve vnitřních prostorech:
- Strop světlý či slabě tónovaný k barvě stěn (v nemocnici stejně jako stěny!!!)
- Barevné řešení dle hlavní funkce využití
- Barvy pozadí bílé či pastelové
- Ženy teplejší odstíny X muži chladnější odstíny
- Barvy potravin teplý tón
- Osvětlené barevné povrchy sekundární zdroj světla ovlivňuje celkový dojem
- Nejsou vhodné syté barvy vliv na lidský organismus

11. přednáška KEE/ESV

27. dubna 2016

STÁLOST OSVĚTLENÍ

Kolísání sv. toku – ztěžuje vidění, unavuje zrak pravidelné ⇒ možnost vzniku stroboskop. jevu - zabránit

Příklad časové změny toku $\Phi(t)$:

 A_1 (A_2) je plocha omezená křivkou průběhu $\Phi(t)$ nad (pod) stř. hodnotou $\Phi_{\rm stf}$

$$\Phi_{st\tilde{r}} = \frac{1}{T} \int_{0}^{T} \Phi(t) dt$$

Měřítkem velikosti periodického kolísání toku Φ(t) :

dříve činitel vlnivosti světla k_f
 poměrná amplituda kolísání toku

$$k_f = \frac{\Phi_{\text{max}} - \Phi_{\text{min}}}{\Phi_{\text{max}} + \Phi_{\text{min}}}$$

- nyní **index míhání** f (flicker index)

$$f = \frac{A_{l}}{A_{l} + A_{2}} = \frac{A_{l}}{T \cdot \Phi_{st\tilde{r}}}$$

Doporučení CIE $f \leq 0,1$

24

PERIODICKÉ KOLÍSÁNÍ SVĚTELNÉHO TOKU VYBRANÝCH ZDROJŮ

Doporučení CIE $f \leq 0,1$

Míhání světla

- Nebezpečí úrazu, snížení zrakového výkonu, únava
- Omezení střídavé zapojení na různé fáze či elektronické předřadníky

25

L

11. přednáška KEE/ESV 27. dubna 2016

Příště

OSVĚTLOVÁNÍ APLIKAČNÍCH OBLASTÍ A ZHODNOCENÍ OS