Rank-76100 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_0^2 X_3 + X_1^2 X_2 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1503028570

General information

Number of lines	9
Number of points	33
Number of singular points	0
Number of Eckardt points	4
Number of double points	6
Number of single points	21
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	59
Type of lines on points	$3^4, 2^6, 1^{21}, 0^2$

Singular Points

The surface has 0 singular points:

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_9$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & \omega^2 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{252} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{252} = \mathbf{Pl}(2, 0, 0, 1, 0, 0)_{11}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & \omega \\ 0 & 1 & 0 & 0 \end{bmatrix}_{168} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{168} = \mathbf{Pl}(3,0,0,1,0,0)_{12}$$

$$\ell_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & \omega^{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}_{268} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{268} = \mathbf{Pl}(0,3,1,0,0,0)_{8}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 0 & \omega \\ 0 & 0 & 1 & 0 \end{bmatrix}_{184} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{184} = \mathbf{Pl}(0,2,1,0,0,0)_{7}$$

$$\ell_{6} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0,1,0,1,0,0)_{13}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 1 & \omega^{2} \\ 0 & 1 & 1 & 0 \end{bmatrix}_{274} = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{274} = \mathbf{Pl}(2,3,1,3,0,1)_{169}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & \omega \\ 0 & 1 & 1 & 0 \end{bmatrix}_{190} = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{190} = \mathbf{Pl}(3,2,1,2,0,1)_{161}$$

Rank of lines: (340, 252, 168, 356, 268, 184, 345, 274, 190) Rank of points on Klein quadric: (9, 11, 12, 1, 8, 7, 13, 169, 161)

Eckardt Points

The surface has 4 Eckardt points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$$

$$1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0),$$

$$2: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1),$$

$$3: P_{11} = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0).$$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_{24} = (2,0,0,1) = \ell_1 \cap \ell_4$$

$$P_{32} = (2,2,0,1) = \ell_1 \cap \ell_7$$

$$P_{25} = (3,0,0,1) = \ell_2 \cap \ell_5$$

$$P_{37} = (3,3,0,1) = \ell_2 \cap \ell_8$$

$$P_{55} = (2, 0, 2, 1) = \ell_4 \cap \ell_7$$

 $P_{72} = (3, 0, 3, 1) = \ell_5 \cap \ell_8$

Single Points

The surface has 21 single points: The single points on the surface are:

$$\begin{array}{lll} 0: P_{26} = (0,1,0,1) \text{ lies on line } \ell_0 & 7: P_{38} = (0,0,1,1) \text{ lies on line } \ell_3 \\ 1: P_{28} = (2,1,0,1) \text{ lies on line } \ell_1 & 8: P_{40} = (2,0,1,1) \text{ lies on line } \ell_4 \\ 2: P_{29} = (3,1,0,1) \text{ lies on line } \ell_2 & 9: P_{41} = (3,0,1,1) \text{ lies on line } \ell_5 \\ 3: P_{30} = (0,2,0,1) \text{ lies on line } \ell_0 & 10: P_{42} = (0,1,1,1) \text{ lies on line } \ell_6 \\ 4: P_{33} = (3,2,0,1) \text{ lies on line } \ell_2 & 11: P_{48} = (3,2,1,1) \text{ lies on line } \ell_8 \\ 5: P_{34} = (0,3,0,1) \text{ lies on line } \ell_0 & 12: P_{51} = (2,3,1,1) \text{ lies on line } \ell_7 \\ 6: P_{36} = (2,3,0,1) \text{ lies on line } \ell_1 & 13: P_{53} = (0,0,2,1) \text{ lies on line } \ell_3 \end{array}$$

 $\begin{array}{lll} 14: \ P_{56} = (3,0,2,1) \ \text{lies on line} \ \ell_5 \\ 15: \ P_{60} = (3,1,2,1) \ \text{lies on line} \ \ell_8 \\ 16: \ P_{61} = (0,2,2,1) \ \text{lies on line} \ \ell_6 \\ 17: \ P_{69} = (0,0,3,1) \ \text{lies on line} \ \ell_6 \\ \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line: The points on the surface but not on lines are:

 $0: P_4 = (1, 1, 1, 1)$ $1: P_{12} = (1, 1, 1, 0)$

Line Intersection Graph

	012345678
0	011100100
1	101010010
2	110001001
3	100011100
4	010101010
5	001110001
6	100100011
7	010010101
8	$\begin{array}{c} 012343078 \\ \hline 011100100 \\ 1010101001 \\ 110001001 \\ 100011100 \\ 01010101$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_6
in point	P_1	P_1	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_7
in point	P_1	P_1	P_{24}	P_{32}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_8
in point	P_1	P_1	P_{25}	P_{37}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_6
in point	P_3	P_2	P_2	P_3

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_7
in point	P_{24}	P_2	P_2	P_{55}

Line 5 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_8
in point	P_{25}	P_2	P_2	P_{72}

Line 6 intersects

Line	ℓ_0	ℓ_3	ℓ_7	ℓ_8
in point	P_3	P_3	P_{11}	P_{11}

Line 7 intersects

Line	ℓ_1	ℓ_4	ℓ_6	ℓ_8
in point	P_{32}	P_{55}	P_{11}	P_{11}

Line 8 intersects

Line	ℓ_2	ℓ_5	ℓ_6	ℓ_7
in point	P_{37}	P_{72}	P_{11}	P_{11}

The surface has 33 points: The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$12: P_{32} = (2, 2, 0, 1)$	$24: P_{55} = (2,0,2,1)$
$1: P_2 = (0, 0, 1, 0)$	$13: P_{33} = (3, 2, 0, 1)$	$25: P_{56} = (3,0,2,1)$
$2: P_3 = (0,0,0,1)$	$14: P_{34} = (0, 3, 0, 1)$	$26: P_{60} = (3, 1, 2, 1)$
$3: P_4 = (1, 1, 1, 1)$	$15: P_{36} = (2,3,0,1)$	$27: P_{61} = (0, 2, 2, 1)$
$4: P_{11} = (0, 1, 1, 0)$	$16: P_{37} = (3, 3, 0, 1)$	$28: P_{69} = (0, 0, 3, 1)$
$5: P_{12} = (1, 1, 1, 0)$	17: $P_{38} = (0, 0, 1, 1)$	$29: P_{71} = (2, 0, 3, 1)$
$6: P_{24} = (2,0,0,1)$	18: $P_{40} = (2, 0, 1, 1)$	$30: P_{72} = (3, 0, 3, 1)$
$7: P_{25} = (3,0,0,1)$	$19: P_{41} = (3, 0, 1, 1)$	$31: P_{75} = (2, 1, 3, 1)$
$8: P_{26} = (0, 1, 0, 1)$	$20: P_{42} = (0, 1, 1, 1)$	$32: P_{81} = (0,3,3,1)$
9: $P_{28} = (2, 1, 0, 1)$	$21: P_{48} = (3, 2, 1, 1)$	
$10: P_{29} = (3, 1, 0, 1)$	$22: P_{51} = (2, 3, 1, 1)$	
11: $P_{30} = (0, 2, 0, 1)$	23: $P_{53} = (0, 0, 2, 1)$	