Финансовая математика

Временная стоимость денег

Время в финансовых расчетах.

Необходимость учёта времени, определяется принципом неравноценности денег, относящийся к различным моментом времени (по умолчанию подразумевается год):

- Деньги могут принести доход при инвестировании на определенный срок
- Покупательная способность денег снижается со временем в следствии инфляции.
- Датированная сумма неравноценность денег во времени выражается в том, что каждая денежная сумма в финансовом анализе представляет собой датированную сумму, т.е. сумму, отнесенную к определений дате.
- Текущая(приведенная) стоимость это сумма денег, отнесенная на начало финансовой операции
- Итоговая (будущая) стоимость это сумма, отнесенная, к концу финансовой операции.
- **Пример 1.1.** В депозитной операции текущая стоимость это сумма денег, помещаемая на депозитный счёт, итоговая стоимость это сумма денег, которая накопится на депозитном счете за определенный период времени.
- **Пример 1.2.** В кредитной операции текущая стоимость это величина выдаваемой сегодня ссуды, итоговая сумма это сумма денег, которую следует вернуть через определенный промежуток времени.

Наращение и дисконтирование

В зависимости от того, какая из указанных сумм дана и какую нужно найти, выделяют два направления финансовых расчетов: наращение и дисконтирование.

- Наращение определение величины итоговой стоимости по заданной текущей стоимости.
- Дисконтирование определение текущей стоимости по ожидаемой итоговой сумме в будущем.
- Коэффициент наращение:

$$B = \frac{S}{P},$$

где S — итоговая стоимость, P — текущая стоимость.

• Коэффициент дисконтирования:

$$v = \frac{P}{S}$$
.

Процент и дисконт

Результат финансовой операции в абсолютном выражении определяются в виде процента или дисконта с учетом заданного промежутка времени.

- Процент это абсолютная величина дохода, получаемая в результате финансовой операции за определенный промежуток при наращении.
- Дисконт это абсолютная величина убытка, получаемая в результате финансовой за определенный промежуток период при дисконтировании.
- Процентная ставка

$$i = \frac{\Delta F}{F} \cdot 100,$$

F— денежная сумма, ΔF — изменение денежной суммы.

- При **декурсивном** способе проценты начисляются по ставке i в конце периода начисления, базой служит текущая стоимость P
- При **антисипативном** способе проценты начисляются при ставке процента i в начале периода начисления, базой начисления служит итоговая стоимость S.
- В зависимости от способа начисления(декурсивного или антисипативного), процент $I = \frac{Pi}{100}$, $I = \frac{Si}{100}$

Пример

Пример 1.3 Определить начисленный процент и итоговую сумму депозита — это декурсивный способ начисления. Дано: $P=80, i=12\,\%$, найти: I,S.

$$I = \frac{80 \cdot 12}{100} = 9,6;$$

$$S = P + I = 80 + 9,6 = 89,6$$

Пример 1.4. Определить доход банка и величину выданной ссуды, выданной под процент — это антисипативный способ начисления.

Дано: $P=80, i=12\,\%$, найти: I,S.

$$I = \frac{80 \cdot 12}{100} = 9,6;$$

$$S = P - I = 80 - 9,6 = 70,4$$

Классификация ставок

Ставки классифицируются в зависимости от способа начисления: декурсивного или антисипативного.

. Процентная ставка
$$i = \frac{I}{P} \cdot 100$$

- Простая ставка это процент, полученный при использовании простой ставки за определенный период.
- Сложная ставка это ставка при последовательно начислении процентов за несколько периодов, в каждом из которых на итоговую стоимость предыдущего периода

Проценты

Модель наращения по простой ставке наращения

Дано:

- P текущая стоимость (постоянная база начисления)
- r простоя ставка наращения за год (доли)
- t время (в годах)

Требуется определить I — процент, начисление за t лет, и S — итоговую сумму.

Проценты, полученные в конце каждого года

$$I_1 = Pr, I_2 = Pr, I_3 = Pr, \dots, I_t = Pr$$
 . Суммарный процент $I = \sum_{k=1}^{\infty} I_k$ или

I=Prt. Итоговая сумма S, полученная в результате начисления процентов по простой ставке наращения r pf t лет: S=P+I=P+Prt или

$$S = P(1 + rt).$$

Модель дисконтирования при простой ставке наращения дано:

- S— текущая стоимость (постоянная база начисления)
- r простоя ставка наращения за год (доли)
- t время (в годах)

Требуется определить D — дисконт, начисленный за t лет, и P — текущую стоимость.

Текущая стоимость ${\cal P}$ определяется из основной модели простого

процента:
$$P = \frac{S}{1 + rt}$$
. Множитель v дисконтирования

определяется по формуле $v = \frac{1}{1 + rt}$. Дисконт D определяется в

этом случае, как D = S - P.

Модель дисконтирования при простой ставке наращения дано:

- S— текущая стоимость (постоянная база начисления)
- r простоя ставка наращения за год (доли)
- t время (в годах)

Требуется определить D — дисконт, начисленный за t лет, и P — текущую стоимость.

Текущая стоимость ${\cal P}$ определяется из основной модели простого

процента:
$$P = \frac{S}{1 + rt}$$
. Множитель v дисконтирования

определяется по формуле $v = \frac{1}{1 + rt}$. Дисконт D определяется в

этом случае, как D = S - P.

Модель дисконтирования по простой дискретной ставке дано:

- S— текущая стоимость (постоянная база начисления)
- d простоя ставка наращения за год (доли)
- t время (в годах)

Требуется определить D — дисконт, начисленный за t лет, и P — текущую стоимость.

Дисконты, полученные в начале каждого года:

$$D_1 = \mathit{Sd}, D_2 = \mathit{Sd}, ..., D_t = \mathit{Sd}$$
 . Дисконт, полученный за t лет,

определяется их суммой: $D = \sum_{k=1}^{\infty} D_k$, или D = Sdt. Текущая

стоимость с учетом дисконта: P = S - D = S - Sdt = S(1 - dt)

Начисление процентов по простой переменной ставке

Дано: P — текущая стоимость (постоянная база начисления); $r_1, r_2, \dots r_k$ — последовательность значений, применяемой переменной ставки соотвественно при начислении процентно за t_1, t_2, \dots, t_k лет, $t = t_1 + t_2 + t_3 + \dots + t_k$. Требуется определить простой процент I_{Σ} , начисленный за t лет, и итоговую сумму S_{Σ}

Проценты, полученные в конце каждого периода:

$$I_1 = Pr_1t_1, I_2 = Pr_2t_2, \dots, I_k = Pr_kt_k$$
. Итоговая сумма: $S = P + I = P(1 + \sum_{s=1}^k r_st_s)$

Начисление процентов по сложной ставке

- P текущая стоимость (постоянная база начисления)
- r процентная ставка наращения за период начисления процентов
- п число периодов начислений

Требуется определить I — сложный процент и S — итоговую сумму.

Последовательность итоговых стоимостей за n периодов начисления процентов: $S_1=P+Pi=P(1+i);$ $S_2=S_1+S_1i=S_1(1+i)=P(1+i)^2;$ $S_3=S_2+S_2i=S_2(1+i)=P(1+i)^3;.....S_n=P(1+i)^n$

$$S = P(1 + i)^n$$

Модель дисконтирования по сложной процентной ставке дано:

- S текущая стоимость (постоянная база начисления)
- d процентная ставка наращения за период начисления процентов
- n число периодов начислений

Требуется определить P — текущую стоимость и D — дисконт.

Последовательность итоговых стоимостей за n периодов начисления процентов: $P_1=S-Sd=S(1-d);$ $P_2=P_1-P_1d=P_1(1-d)=S(1-d)^2;$ $P_3=P_2-P_2i=P_2(1-i)=S(1-d)^4;.....P_n=S(1-d)^n$

$$P = S(1 - d)^n$$

Финансовая математика

Потоки платежей

Принцип финансовой эквивалентности

Равенство финансовых обязательств участников операции

- Платежи представляют собой датированную денежную сумму, подлежащую уплате.
- Поток платежей это последовательность платежей, распределенных во времени.
- Эквивалентными платежами считаются такие платежи, которые обеспечивают равенство финансовых обязательстве участников операции.
- Сумма кредита эквивалентна сумме выплат его погашения, так что второй платеж равен первому с начисленным на него процентами.

Аннуитет

Классификация аннуитетов

- Определенный аннуитет
- Случайный аннуитет
- Дискретный аннуитет
- Непрерывный аннуитет
- Обыкновенный аннуитет
- Полагающийся аннуитет
- Простой аннуитет

- Общий аннуитет
- Потерянный аннуитет
- Переменный аннуитет
- Срочный аннуитет
- Бессрочный аннуитет
- Немедленный аннуитет
- Отсроченный аннуитет

Аннуитет

Классификация аннуитетов

- Определенный аннуитет
- Случайный аннуитет
- Дискретный аннуитет
- Непрерывный аннуитет
- Обыкновенный аннуитет
- Полагающийся аннуитет
- Простой аннуитет

- Общий аннуитет
- Потерянный аннуитет
- Переменный аннуитет
- Срочный аннуитет
- Бессрочный аннуитет
- Немедленный аннуитет
- Отсроченный аннуитет

Простейший аннуитет

Определенный дискретный, срочный постоянный, немедленный, простой, обыкновенный аннуитет. **Д**ано: R — размер платежа; n — число платежей; i — сложная процентная ставка при начислении процентов за интервал платежа. *Требуется найти* S — итоговую сумму и настоящую стоимость A простейшего аннуитета.

0	1	2	•••	n-2	n-1	n
	R	R	•••	R	R	R
						S
Α						

$$S = R + R(1+i) + R(1+i)^{2} + R(1+i)^{3} \dots + R(1+i)^{n-2} + R(1+i)^{n-1}.$$

$$S = R \frac{(1+i)^{n} - 1}{n}$$

$$S=Rs(n,i)$$
, где $s(n,i)=rac{(1+i)^n-1}{i}$ — функция наращения(см. таблицу)

$$S=Rs(n,i)$$
, где $s(n,i)=rac{(1+i)^n-1}{i}$ — функция наращения(см. таблицу) $A=S(1+i)^{-n}=Rrac{1-(1+i)^{-n}}{i}=Ra(n,i), a(n,i)=rac{1-(1+i)^{-n}}{i}$ — функция дисконтирования.

Полагающий аннуитет

Платежи относятся к начальным моментам интервалов платежа.

Дано: R — размер платежа; n — число платежей; i — сложная процентная ставка при начислении процентов за интервал платежа. *Требуется найти* S — итоговую сумму и настоящую стоимость A простейшего аннуитета.

0	1	2	 n-2	n-1	n
R	R	R	 R	R	
					S
Α					

Представим полагающий аннуитет в виде обыкновенного с итоговой суммой $S_{(-1)}$, который начинается на один период времени раньше. $S=S_{(-1)}(1+i), S_{(-1)}=Rs(n,i)$.

$$S = Rs(n, i)(1 + i).$$

 $A = R + A^{(n-1)}, A^{(n-1)} = Ra(n - 1, i) = R + Ra(n - 1, i)$

Полагающий аннуитет

Платежи относятся к начальным моментам интервалов платежа.

Дано: R — размер платежа; n — число платежей; i — сложная процентная ставка при начислении процентов за интервал платежа. *Требуется найти* S — итоговую сумму и настоящую стоимость A простейшего аннуитета.

-1	0	1	2	 n-2	n-1	n
	R	R	R	 R	R	
					$S_{(-1)}$	
						S

Представим полагающий аннуитет в виде обыкновенного с итоговой суммой $S_{(-1)}$, который начинается на один период времени раньше.

Полагающий аннуитет

Платежи относятся к начальным моментам интервалов платежа.

Дано: R — размер платежа; n — число платежей; i — сложная процентная ставка при начислении процентов за интервал платежа. *Требуется найти* S — итоговую сумму и настоящую стоимость A простейшего аннуитета.

0	1	2	 n-2	n-1	n
R	R	R	 R	R	
$R+A^{(n-1)}$					S
Α					

Настоящая стоимость стоимость аннуитета — это совокупность первого платежа и обыкновенного аннуитета

$$A = R + A^{(n-1)}, A^{(n-1)} = Ra(n-1,i) = R + Ra(n-1,i)$$

Общий аннуитет

Платежи относятся к начальным моментам интервалов платежа.

Дано: R — размер платежа; n — число платежей; i — сложная процентная ставка при начислении процентов за интервал платежа. *Требуется найти* S — итоговую сумму и настоящую стоимость A простейшего аннуитета.

0	1	2	 n-2	n-1	n
R	R	R	 R	R	
$R + A^{(n-1)}$					S
Α					

Настоящая стоимость стоимость аннуитета — это совокупность первого платежа и обыкновенного аннуитета

$$A = R + A^{(n-1)}, A^{(n-1)} = Ra(n-1,i) = R + Ra(n-1,i)$$

Общий аннуитет

0	1	2	 p-2	p-1	Р
	R_p	R_p	 R_p	R_p	R_p
					S_p

0	1	2	 m-2	m-1	М
	R_m	R_m	 R_m	R_m	R_m
					S_m
Α					

Условие:
$$S_p=S_m$$
. Так как $S_m=R_m\frac{(1+i_m)^m-1}{i_m}$, $S_p=R_p\frac{(1+i_p)^p-1}{i_p}$, то имеем систему:
$$\Big((1+i_p)^p=(1+i_m)^m$$

$$\begin{cases} (1+i_p)^p = (1+i_m)^m \\ R_m \frac{(1+i_m)^m - 1}{i_m} = R_p \frac{(1+i_p)^p - 1}{i_p} \end{cases}$$

Тогда: $R_m = R_p \frac{i_m}{(1+i_m)^{m/p}-1}$ — модель перехода от общего обыкновенного аннуитета к эквивалентному ему простому обыкновенному аннуитет.