Modul 3: PD Linear Orde Kedua Analisis Rangkaian RLC dan Desain Filter

Nama Dosen/Institusi

Departemen Teknik Elektro

July 2, 2025

Ikhtisar Modul 3

- 1 Tantangan Desain PBL: Filter Crossover Audio
- Persamaan Homogen Orde Kedua
- 3 Persamaan Non-Homogen Orde Kedua
- Aplikasi di Teknik Elektro
 - Redaman dan Resonansi pada Rangkaian RLC

Tantangan Desain PBL: Filter Crossover Audio

Skenario Desain

Anda adalah bagian dari tim yang merancang jaringan *crossover* audio pasif untuk sistem pengeras suara dua arah. Tugas Anda adalah merancang filter *band-pass* RLC orde kedua yang akan menyalurkan frekuensi rentang menengah (misalnya, 300 Hz - 3 kHz) ke driver speaker midrange.

Tugas Utama

- Pemodelan: Turunkan PDB orde kedua yang mengatur arus dalam rangkaian RLC seri Anda.
- Desain & Analisis: Pilih nilai R, L, dan C yang sesuai untuk mencapai frekuensi resonansi dan faktor kualitas (Q) yang diinginkan. Analisis karakteristik redaman filter Anda.
- **Validasi:** Simulasikan desain akhir Anda menggunakan LTspice atau Simulink untuk memvalidasi performa.

PD Homogen dengan Koefisien Konstan

Bentuk Umum

Dasar dari analisis sistem orde kedua adalah persamaan homogen:

$$ay'' + by' + cy = 0$$

Teknik Solusi: Persamaan Karakteristik

- Kita mengasumsikan solusi berbentuk $y(t) = e^{rt}$.
- Dengan mensubstitusikannya ke dalam PDB, kita mendapatkan persamaan aljabar yang disebut persamaan karakteristik (atau bantu):

$$ar^2 + br + c = 0$$

• Sifat akar dari persamaan kuadrat ini menentukan bentuk solusi umum.

Tiga Kasus Akar Persamaan Karakteristik

Bentuk solusi homogen bergantung pada diskriminan $b^2 - 4ac$.

Kasus 1: Akar Riil Berbeda $(r_1 \neq r_2)$

Solusi umum: $y_h(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$. ¡br¿ Ini sesuai dengan sistem **overdamped** (teredam lebih).

Kasus 2: Akar Riil Berulang $(r_1 = r_2 = r)$

Solusi umum: $y_h(t) = (c_1 + c_2 t)e^{rt}$. jbrį Ini sesuai dengan sistem **critically damped** (teredam kritis).

Kasus 3: Akar Kompleks Konjugat $(r = \alpha \pm i\beta)$

Solusi umum: $y_h(t) = e^{\alpha t}(c_1 \cos(\beta t) + c_2 \sin(\beta t))$. ¡br¿ Ini sesuai dengan sistem **underdamped** (teredam kurang), yang menunjukkan osilasi.

Persamaan Non-Homogen

Bentuk Umum dan Solusi

Bentuk umum persamaan non-homogen adalah ay'' + by' + cy = g(t), di mana g(t) adalah fungsi pemaksa atau input. Solusi umumnya adalah jumlah dari solusi komplementer (y_h) dan solusi khusus (y_p) :

$$y(t) = y_h(t) + y_p(t)$$

Dua Metode Utama untuk Menemukan $y_p(t)$

- **Metode Koefisien Tak Tentu:** Metode prosedural untuk bentuk g(t) yang spesifik (polinomial, eksponensial, sinusoid).
- **Metode Variasi Parameter:** Metode yang lebih umum dan kuat yang berlaku untuk setiap g(t) yang kontinu.

Analisis Redaman Rangkaian RLC

Respons alami rangkaian (saat E(t)=0) ditentukan oleh parameter R, L, dan C. Jenis redaman secara langsung terkait dengan akar persamaan karakteristik.

Tipe-Tipe Redaman

- Overdamped ($R^2 > 4L/C$): Rangkaian kembali ke kesetimbangan secara perlahan tanpa osilasi.
- Critically Damped ($R^2 = 4L/C$): Kembali ke kesetimbangan paling cepat tanpa osilasi.
- Underdamped ($R^2 < 4L/C$): Rangkaian berosilasi dengan amplitudo yang meluruh. Perilaku ini khas untuk filter agar memiliki respons yang tajam.

Konteks Desain PBL

Kita perlu memilih karakteristik redaman yang tepat. Terlalu teredam akan membuat respons frekuensi filter menjadi tumpul; kurang teredam akan menghasilkan osilasi yang tidak diinginkan.

Perbandingan Kondisi Redaman pada Rangkaian RLC Seri (Tanpa Paksaan)

Kondisi untuk Akar	Tipe Redaman	Bentuk Solusi Homogen
$R^2 - 4L/C > 0$	Overdamped	$c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$
$R^2 - 4L/C = 0$	Critically Damped	$(c_1+c_2t)e^{-(R/2L)t}$
$R^2-4L/C<0$	Underdamped	$e^{-\alpha t}(c_1\cos(\omega_d t)+c_2\sin(\omega_d t))$

Respons Paksa dan Resonansi

Respons Keadaan Tunak (Steady-State)

Ketika rangkaian RLC diberi input sinusoidal, $E(t) = E_0 \cos(\omega t)$, respons keadaan tunaknya akan berosilasi pada frekuensi penggerak ω .

Fenomena Kritis: Resonansi

- Resonansi terjadi ketika frekuensi penggerak ω mendekati frekuensi alami rangkaian, $\omega_0=1/\sqrt{LC}$.
- Pada saat resonansi, amplitudo arus menjadi sangat besar.
- Prinsip ini adalah kunci dalam penyetelan rangkaian dan desain filter, termasuk dalam tantangan PBL kita.

Validasi Desain Melalui Simulasi

Lab Validasi

Aktivitas puncak modul ini adalah lab simulasi.

- Bangun filter *crossover* audio yang telah Anda rancang secara analitis di dalam perangkat lunak simulasi (LTspice, Simulink, dll.).
- 2 Lakukan AC sweep untuk menghasilkan plot Bode (plot respons frekuensi).
- Bandingkan frekuensi resonansi, bandwidth, dan faktor-Q dari hasil simulasi dengan perhitungan teoretis Anda.

Tujuan

Memberikan pengalaman dalam alur kerja rekayasa modern: pemodelan, analisis, dan validasi berbasis simulasi.

Rangkuman Modul 3

Keterampilan yang Dikuasai

- Menyelesaikan PD linear orde kedua, baik homogen maupun non-homogen, dengan koefisien konstan.
- Memodelkan dan menganalisis rangkaian RLC.
- Menafsirkan secara fisik konsep redaman dan resonansi.
- Menerapkan pengetahuan untuk merancang sistem rekayasa sederhana (filter audio) dan memvalidasinya menggunakan alat simulasi.

Selanjutnya di Modul 4

Kita akan mempelajari alat matematika yang sangat kuat untuk menyederhanakan analisis PDB dan sistem: **Transformasi Laplace**.

