Содержание

Задание	2
Результаты работы	3
Выводы	14
Код программы	15

Задание

Задание заключается в реализации численного расчёта интегрального преобразования над одномерным сигналом. Заданы входной сигнал, ядро сигнала и параметры в соответствии с заданием и вариантом.

$$f(x)=e^{ix\beta},$$

$$\alpha=1, \qquad \beta=0,1, \qquad m=1000, \qquad n=1000.$$

Вариант 13:

12	$1 \exp(-\alpha x - \varepsilon)$	[a,b] = [-c,c], c = 5
13		[p,q] = [-10,10]

Результаты работы

Реализована программа, которая производит численный расчёт интегрального преобразования над одномерным сигналом и строит графики полученного и преобразованного сигналов.

Для начала рассмотрим графики при исходном значении параметра $\beta = 0.1$.

На рисунке 1 показан график амплитуды входного сигнала.

Рисунок 1 — График амплитуды входного сигнала ($\beta=0,1$) На рисунке 2 показан график фазы входного сигнала.

Рисунок 2 — График фазы входного сигнала ($\beta=0,1$) Рассмотрим графики при параметре $\beta=15.$

На рисунке 3 показан график амплитуды входного сигнала.

Рисунок 3 — График амплитуды входного сигнала ($\beta=15$) На рисунке 4 показан график фазы входного сигнала.

Рисунок 4 – График фазы входного сигнала ($\beta = 15$)

По графикам видно, что амплитуда входного сигнала не меняется при увеличении параметра β , в отличие от фазы входного сигнала, график которой сжимается по оси х и растягивается по оси у, принимая вид ломанных.

Далее рассмотрим графики при параметре $\beta = 0.0000001$.

На рисунке 5 показан график амплитуды входного сигнала.

Рисунок 5 — График амплитуды входного сигнала ($\beta=0.0000001$) На рисунке 6 показан график фазы входного сигнала.

Рисунок 6 – График фазы входного сигнала $\beta = 0,0000001$

По графикам видно, что амплитуда и фазы остаются неизменными при малом β .

На рисунке 7 и 8 представлены графики амплитуды и фазы входного сигнала соответственно при значении параметра $\beta=-1.$

Рисунок 7 — График амплитуды входного сигнала ($\beta = -1$)

Рисунок 8 – График фазы входного сигнала ($\beta = -1$)

По графикам видно, что при отрицательных значениях параметра β графики будут симметрично отображены относительно оси х.

На рисунках 9 и 10 представлены амплитуда и фаза выходного сигнала соответственно.

Рисунок 9 – График амплитуды выходного сигнала

Рисунок 10 – График фазы выходного сигнала

Рассмотрим графики при параметре p = 100.

На рисунках 11 и 12 представлены амплитуда и фаза выходного сигнала при значении параметра p=100.

Рисунок 11 – График амплитуды выходного сигнала (p = 100)

Рисунок $12 - \Gamma$ рафик фазы выходного сигнала (p = 100)

По графикам видно, что при увеличении параметра p увеличивается отображаемая область, а сами графики остаются прежними.

Теперь рассмотрим графики при параметре p = 0,1.

На рисунках 13 и 14 представлены амплитуда и фаза выходного сигнала при значении параметра p=0,1.

Рисунок 13 – График амплитуды выходного сигнала (p=0,1)

Рисунок $14 - \Gamma$ рафик фазы выходного сигнала (p = 0,1)

По графикам видно, благодаря уменьшению параметра p, увеличивается масштаб, график амплитуды раскрывается детальнее. На графике фазы изменений нет, только увеличен масштаб.

Рассмотрим графики при параметре $\alpha = 200$.

На рисунках 15 и 16 представлены амплитуда и фаза выходного сигнала при значении параметра $\alpha=200.$

Рисунок 15 – График амплитуды выходного сигнала ($\alpha = 200$)

Рисунок $16 - \Gamma$ рафик фазы выходного сигнала ($\alpha = 200$)

По графикам видно, что при увеличении параметра α график амплитуды имеет вид прямоугольника, сжимаясь по оси у, а график фазы претерпевает значительные изменения.

Теперь рассмотрим графики при параметре $\alpha = 0.01$.

На рисунках 17 и 18 представлены амплитуда и фаза выходного сигнала при значении параметра $\alpha=0.01.$

Рисунок 17 – График амплитуды выходного сигнала ($\alpha=0.01$)

Рисунок 18 – График фазы выходного сигнала ($\alpha = 0.01$)

По графикам видно, что при уменьшении параметра α график амплитуды, прижимаясь к оси абсцисс, становится более пологим, растягиваясь по оси х и по оси у, а график фазы растягивается по оси х, вытягиваясь в прямую, параллельную оси х.

Рассмотрим графики при параметре c = 10.

На рисунках 19 и 20 представлены амплитуда и фаза выходного сигнала при значении параметра c=10.

Рисунок 19 – График амплитуды выходного сигнала (c=10)

Рисунок 20 – График фазы выходного сигнала (c=10)

По графикам видно, что при увеличении параметра c графики амплитуды и фазы растягиваются по оси x.

Рассмотрим графики при параметре c = 0.5.

На рисунках 21 и 22 представлены амплитуда и фаза выходного сигнала при значении параметра c=0.5.

Рисунок 21 — График амплитуды выходного сигнала (c=0,5)

Рисунок 22 – График фазы выходного сигнала (c=0,5)

По графикам видно, что при уменьшении параметра c графики амплитуды и фазы сжимаются по обеим осям.

Выводы

Параметр β в ис-	При изменении параметра β , график амплитуды не ме-
ходной функции	няется. При уменьшении параметра график фазы оста-
	ется неизменным. При увеличении параметра β график
	фазы сжимается по оси х и растягивается по оси у,
	принимая вид ломанных. При отрицательных значени-
	ях параметра β графики будут симметрично отображе-
	ны относительно оси х.
Выходная об-	При увеличении параметра р увеличивается отобража-
ласть [р, q]	емая область, а сами графики остаются прежними. При
	уменьшении параметра p , увеличивается масштаб, гра-
	фика амплитуды раскрывается детальнее. Так на ри-
	сунке 13 видно, что график представляет собой не
	гладкую прямую, как может показаться на рисунке 9.
	На графике фазы изменений нет, только увеличен мас-
	штаб.
Параметр α в ядре	При увеличении параметра α график амплитуды имеет
оператора	вид прямоугольника, сжимаясь по оси у, а график фазы
	претерпевает значительные изменения. При уменьше-
	нии параметра α график амплитуды, прижимаясь к оси
	абсцисс, становится более пологим, растягиваясь по
	осям абсцисс и ординат, а график фазы растягивается
	по оси х, вытягиваясь в прямую, параллельную оси х.
Параметр с во	При увеличении параметра c графики амплитуды и фа-
входной области	зы растягиваются по оси х. При уменьшении параметра
[a, b]	с графики амплитуды и фазы сжимаются по обеим
	осям.

Код программы

```
clear;
n = 1000;
m = 1000;
alpha = 1;
beta = 0.1;
a = 5;
p = 10;
hx = 2 * a/n;
x = -a:hx:(a - hx/2)
hxi = 2 * p/m;
xi = (-p:hxi:(p - hxi/2));
f = \exp(1i * x * beta);
[X, XI] = meshgrid(x, xi);
Kernel = 1i * exp(-alpha * abs(X.-XI));
F = Kernel * f.' * hx;
figure(1);
plot(x, abs(f)); # Амплитуда входного сигнала
figure(2);
plot(x, arg(f)); # Фаза входного сигнала
figure(3);
plot(xi, abs(F));# Амплитуда выходного сигнала
figure(4);
plot(xi, arg(F));# Фаза выходного сигнала
```