code_nafld_final_Lynn

Initialization

Packages import

First, we import packages and datasets

```
# Install Bioconductor packages
#if (!require("BiocManager", quietly = TRUE))
    #install.packages("BiocManager")
#BiocManager::install(version = "3.17")
## Package to download data from acession numbers
# BiocManager::install("Biobase")
# BiocManager::install("GEOquery")
library(Biobase)
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
library(GEOquery)
Setting options('download.file.method.GEOquery'='auto')
Setting options('GEOquery.inmemory.gpl'=FALSE)
```

```
## Packages for DESeq2
# Install DESeq2 package
# BiocManager::install("DESeq2")
library(DESeq2)
Warning: package 'DESeq2' was built under R version 4.3.1
Loading required package: S4Vectors
Warning: package 'S4Vectors' was built under R version 4.3.1
Loading required package: stats4
Attaching package: 'S4Vectors'
The following object is masked from 'package:utils':
    findMatches
The following objects are masked from 'package:base':
    expand.grid, I, unname
Loading required package: IRanges
Warning: package 'IRanges' was built under R version 4.3.1
Attaching package: 'IRanges'
The following object is masked from 'package:grDevices':
    windows
Loading required package: GenomicRanges
Warning: package 'GenomicRanges' was built under R version 4.3.1
Loading required package: GenomeInfoDb
Warning: package 'GenomeInfoDb' was built under R version 4.3.1
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Warning: package 'MatrixGenerics' was built under R version 4.3.1
Loading required package: matrixStats
Warning: package 'matrixStats' was built under R version 4.3.2
```

```
Attaching package: 'matrixStats'
The following objects are masked from 'package:Biobase':
    anyMissing, rowMedians
Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':
    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
The following object is masked from 'package:Biobase':
    rowMedians
# package for logistic regression + basic calculation
# install.packages("glmnet", repos = "http://cran.us.r-project.org")
library(glmnet)
Warning: package 'glmnet' was built under R version 4.3.3
Loading required package: Matrix
Warning: package 'Matrix' was built under R version 4.3.2
Attaching package: 'Matrix'
The following object is masked from 'package:S4Vectors':
    expand
Loaded glmnet 4.1-8
```

```
library(dplyr)
Warning: package 'dplyr' was built under R version 4.3.2
Attaching package: 'dplyr'
The following object is masked from 'package:matrixStats':
    count
The following objects are masked from 'package:GenomicRanges':
    intersect, setdiff, union
The following object is masked from 'package:GenomeInfoDb':
    intersect
The following objects are masked from 'package: IRanges':
    collapse, desc, intersect, setdiff, slice, union
The following objects are masked from 'package:S4Vectors':
    first, intersect, rename, setdiff, setequal, union
The following object is masked from 'package:Biobase':
    combine
The following objects are masked from 'package:BiocGenerics':
    combine, intersect, setdiff, union
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
library(ggplot2)
Warning: package 'ggplot2' was built under R version 4.3.2
## Packages for GOSeg (pathway examination)
#BiocManager::install("goseq")
#BiocManager::install("clusterProfiler")
#BiocManager::install("AnnotationDbi")
#BiocManager::install("org.Hs.eg.db")
```

```
#BiocManager::install("DOSE")
# BiocManager::install("hgu133a.db")
library(fgsea)
library(clusterProfiler)
Warning: package 'clusterProfiler' was built under R version 4.3.1
Registered S3 methods overwritten by 'treeio':
  method
                      from
  MRCA.phylo
                      tidytree
  MRCA.treedata
                      tidytree
  Nnode.treedata
                      tidytree
  Ntip.treedata
                      tidytree
  ancestor.phylo
                      tidytree
  ancestor.treedata
                     tidytree
  child.phylo
                      tidytree
  child.treedata
                      tidytree
  full join.phylo
                      tidytree
  full_join.treedata tidytree
  groupClade.phylo
                      tidytree
  groupClade.treedata tidytree
  groupOTU.phylo
                      tidytree
  groupOTU.treedata
                      tidytree
  inner join.phylo
                      tidytree
  inner_join.treedata tidytree
  is.rooted.treedata tidytree
  nodeid.phylo
                      tidytree
  nodeid.treedata
                      tidytree
  nodelab.phylo
                      tidytree
  nodelab.treedata
                     tidytree
  offspring.phylo
                     tidytree
  offspring.treedata tidytree
  parent.phylo
                      tidytree
  parent.treedata
                      tidytree
  root.treedata
                      tidytree
  rootnode.phylo
                      tidytree
  sibling.phylo
                      tidytree
clusterProfiler v4.8.3 For help: https://yulab-smu.top/biomedical-knowledge-
mining-book/
If you use clusterProfiler in published research, please cite:
T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu,
S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for
interpreting omics data. The Innovation. 2021, 2(3):100141
Attaching package: 'clusterProfiler'
```

```
The following object is masked from 'package: IRanges':
    slice
The following object is masked from 'package:S4Vectors':
    rename
The following object is masked from 'package:stats':
    filter
library(org.Hs.eg.db)
Loading required package: AnnotationDbi
Warning: package 'AnnotationDbi' was built under R version 4.3.1
Attaching package: 'AnnotationDbi'
The following object is masked from 'package:clusterProfiler':
    select
The following object is masked from 'package:dplyr':
    select
library(AnnotationDbi)
library(DOSE)
Warning: package 'DOSE' was built under R version 4.3.1
DOSE v3.26.2 For help: https://yulab-smu.top/biomedical-knowledge-mining-
book/
If you use DOSE in published research, please cite:
Guangchuang Yu, Li-Gen Wang, Guang-Rong Yan, Qing-Yu He. DOSE: an
R/Bioconductor package for Disease Ontology Semantic and Enrichment analysis.
Bioinformatics 2015, 31(4):608-609
library(hgu133a.db)
#install.packages('GOplot')
library(GOplot)
Warning: package 'GOplot' was built under R version 4.3.3
```

```
Loading required package: ggdendro

Warning: package 'ggdendro' was built under R version 4.3.3

Loading required package: gridExtra

Warning: package 'gridExtra' was built under R version 4.3.1

Attaching package: 'gridExtra'

The following object is masked from 'package:dplyr':

combine

The following object is masked from 'package:Biobase':

combine

The following object is masked from 'package:BiocGenerics':

combine

Loading required package: RColorBrewer

#BiocManager::install("illuminaHumanv4.db")

library("illuminaHumanv4.db")
```

Data import

```
#US_1 - Arendt et al., 2015
data_u <- getGEO("GSE89632")

Found 1 file(s)

GSE89632_series_matrix.txt.gz
data_u <- data_u$GSE89632_series_matrix.txt.gz

#US_2
data_u2 <- getGEO("GSE163211")

Found 1 file(s)

GSE163211_series_matrix.txt.gz

data_u2 <- data_u2$GSE163211_series_matrix.txt.gz</pre>
```

Preprocessing

Get to know the data

```
#US 1
# dimension of data
dim(data_u)
Features Samples
   29377
# check for zeros expression values and/or NA, just in case
zeros <- apply(exprs(data_u), 1, function(x) sum(x==0))
data u <- data u[zeros!=63,]</pre>
dim(data_u)
Features Samples
   29377
               63
#US 2
# dimension of data
dim(data u2)
Features Samples
     800
# check for zeros expression values and/or NA, just in case
zeros <- apply(exprs(data_u2), 1, function(x) sum(x==0))
data u2 <- data u2[zeros!=318,]</pre>
dim(data_u2)
Features Samples
              318
     800
```

All datasets are cleaned and do not have zero expression values.

In the analysis, we will focus on gene expression values and its relationship with each other and phenotype characteristics.

Andrent et al (USA data 1)

Differentially expressed analysis

```
Get values for progression of NAFLD
```

```
# Values for diabetes
data_uu <- data_u[, !is.na(data_u@phenoData@data[["characteristics_ch1.22"]])
& data_u@phenoData@data[["characteristics_ch1.22"]] == "diabetes: yes" |</pre>
```

```
data u@phenoData@data[["characteristics ch1.22"]] == "diabetes: no" ]
data uu$diabetes <- ifelse(data uu@phenoData@data[["characteristics ch1.22"]]</pre>
== "diabetes: no", '0', '1')
# Values for progression of NAFLD
data_uu$stages <- gsub("[^:]+: (.*)", "\\1", data_uu$characteristics_ch1.1)</pre>
data_uu$stages <- ifelse(data_uu$stages == 'HC', 1,</pre>
                 ifelse(data uu$stages == 'NASH', 2,
                        ifelse(data_uu$stages == 'SS', 3, data_uu$stages)))
# get the back-transformed data into a new variable
data_u_expr = data_uu@assayData$exprs
data_u_expr = round((2^data_u_expr-1),0)
# Fit DESeq2
dds u <- DESeqDataSetFromMatrix(countData = data u expr, colData =</pre>
pData(data_uu), design=~stages+diabetes)
converting counts to integer mode
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
dds_u <- DESeq(dds_u)</pre>
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
-- note: fitType='parametric', but the dispersion trend was not well captured
by the
   function: y = a/x + b, and a local regression fit was automatically
substituted.
   specify fitType='local' or 'mean' to avoid this message next time.
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 451 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
```

```
estimating dispersions fitting model and testing
```

Plot dispersal

plotDispEsts(dds_u)

MA plot

```
resApeT <- lfcShrink(dds_u, coef=2, type="apeglm", lfcThreshold=1)
using 'apeglm' for LFC shrinkage. If used in published research, please cite:
    Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior
distributions for
    sequence count data: removing the noise and preserving large differences.
    Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895

computing FSOS 'false sign or small' s-values (T=1)

plotMA(resApeT, ylim=c(-3,3), cex=.8)

thresholding s-values on alpha=0.005 to color points

abline(h=c(-1,1), col="dodgerblue", lwd=2)</pre>
```


Compare healthy vs simple steatosis

```
# get the result and summary
head(dds_u)
class: DESeqDataSet
dim: 6 29
metadata(1): version
assays(6): counts mu ... replaceCounts replaceCooks
rownames(6): ILMN_1343291 ILMN_1651209 ... ILMN_1651235 ILMN_1651236
rowData names(31): baseMean baseVar ... maxCooks replace
colnames(29): GSM2385720 GSM2385723 ... GSM2385771 GSM2385773
colData names(86): title geo_accession ... sizeFactor replaceable
dds.results u <- results(dds u, contrast = c('stages', "2", "1"))</pre>
summary(dds.results u, alpha = 0.05) # p-value = 0.05
out of 29377 with nonzero total read count
adjusted p-value < 0.05
LFC > 0 (up)
                   : 1031, 3.5%
LFC < 0 (down)
                   : 2587, 8.8%
outliers [1]
                   : 292, 0.99%
low counts [2]
                   : 2278, 7.8%
(mean count < 280)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

```
# Only get differential expressed genes (p-val <= 0.05 and log2FC outside of
[-2,2]
dds.results_u.h_ss <- dds.results_u[!is.na(dds.results_u$padj) &</pre>
dds.results u$padj <= 0.05 & dds.results u$log2FoldChange > 2
dds.results_u$log2FoldChange < -2 ,]</pre>
head(dds.results_u.h_ss)
log2 fold change (MLE): stages 2 vs 1
Wald test p-value: stages 2 vs 1
DataFrame with 6 rows and 6 columns
              baseMean log2FoldChange
                                          1fcSE
                                                      stat
                                                                pvalue
             <numeric>
                            <numeric> <numeric> <numeric>
                                                            <numeric>
ILMN_1651498 3177.259
                             -2.35824 0.568095 -4.15113 3.30844e-05
ILMN 1651838 2099.424
                             -2.25276 0.458222 -4.91631 8.81914e-07
ILMN 1652287
               653.217
                             -2.00275 0.449868 -4.45186
                             -2.05476 0.509094 -4.03611 5.43439e-05
ILMN 1652464
               994.163
                             -2.14865 0.555177 -3.87020 1.08744e-04
ILMN_1652866
             961.951
ILMN 1653447 1787.750
                             -2.34395 0.684971 -3.42197 6.21691e-04
                    padj
               <numeric>
ILMN 1651498 0.001636334
ILMN 1651838 0.000115324
ILMN_1652287
ILMN 1652464 0.002255105
ILMN 1652866 0.003676049
ILMN_1653447 0.011703411
# Overview of result
#upregulated
sum(dds.results u.h ss$log2FoldChange > 0)
[1] 10
#downregulated
sum(dds.results u.h ss$log2FoldChange < 0)</pre>
[1] 155
# Plot
plot(dds.results_u$log2FoldChange, -log10(dds.results_u$padj), col =
c("gray","pink4", "blue")[(dds.results_u$padj < 0.05 &</pre>
abs(dds.results_u$log2FoldChange) > 2) + 1 ], xlab = "Changes of gene
expression from Healthy to SS", ylab = "Significant level, FDR", cex = 0.8,
pch = 20)
title("GSE89632 - Healthy versus SS")
abline(v = c(-2, 2), col = "green")
abline(h = -\log 10(0.05), col = "green")
```

GSE89632 - Healthy versus SS

Changes of gene expression from Healthy to SS

Compare healthy versus NASH

```
# get the result and summary
head(dds_u)
class: DESeqDataSet
dim: 6 29
metadata(1): version
assays(6): counts mu ... replaceCounts replaceCooks
rownames(6): ILMN_1343291 ILMN_1651209 ... ILMN_1651235 ILMN_1651236
rowData names(31): baseMean baseVar ... maxCooks replace
colnames(29): GSM2385720 GSM2385723 ... GSM2385771 GSM2385773
colData names(86): title geo_accession ... sizeFactor replaceable
dds.results u h nash <- results(dds u, contrast = c('stages', "3", "1"))</pre>
summary(dds.results_u_h_nash, alpha = 0.05) # p-value = 0.05
out of 29377 with nonzero total read count
adjusted p-value < 0.05
LFC > 0 (up)
                   : 227, 0.77%
LFC < 0 (down)
                   : 484, 1.6%
                   : 292, 0.99%
outliers [1]
                   : 6259, 21%
low counts [2]
(mean count < 414)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

```
# Only get differential expressed genes (p-val <= 0.05 and log2FC outside of
[-2,2]
dds.results_u.h_nash <- dds.results_u[!is.na(dds.results_u_h_nash$padj) &</pre>
dds.results_u_h_nash$padj <= 0.05 & dds.results_u_h_nash$log2FoldChange > 2
dds.results_u_h_nash$log2FoldChange < -2 ,]</pre>
# Overview of the result
#upregulated
sum(dds.results u.h nash$log2FoldChange > 0)
[1] 2
#downregulated
sum(dds.results_u.h_nash$log2FoldChange < 0)</pre>
[1] 23
# Plot
plot(dds.results u h nash$log2FoldChange, -log10(dds.results u h nash$padj),
col = c("gray","pink4", "blue")[(dds.results_u_h_nash$padj < 0.05 &</pre>
abs(dds.results_u_h_nash$log2FoldChange) > 2) + 1 ], xlab = "Changes of gene
expression from Healthy to NASH", ylab = "Significant level, FDR", cex = 0.8,
pch = 20)
title("GSE89632 - Healthy versus NASH")
abline(v = c(-2, 2), col = "green")
abline(h = -\log 10(0.05), col = "green")
```

GSE89632 - Healthy versus NASH

Changes of gene expression from Healthy to NASH

Compare SS versus NASH

```
# get the result and summary of SS and NASH
dds.results_u_ss_nash <- results(dds_u, contrast = c('stages', "3", "2"))</pre>
# Only get differential expressed genes (p-val <= 0.05 and log2FC outside of
[-2,2]
dds.results_u.ss_nash <- dds.results_u[!is.na(dds.results_u_ss_nash$padj) &</pre>
dds.results u ss nash$padj <= 0.05 & dds.results u ss nash$log2FoldChange > 2
| dds.results u ss nash$log2FoldChange < -2 ,]
# Overview of the result
#upregulated
sum(dds.results u.ss nash$log2FoldChange > 0)
[1] 2
#downregulated
sum(dds.results_u.ss_nash$log2FoldChange < 0)</pre>
[1] 2
# Plot
plot(dds.results u ss nash$log2FoldChange, -
log10(dds.results_u_ss_nash$padj), col = c("gray","pink4",
"blue")[(dds.results u ss nash$padj < 0.05 &
abs(dds.results_u_ss_nash$log2FoldChange) > 2) + 1 ], xlab = "Changes of gene
expression from SS to NASH", ylab = "Significant level, FDR", cex = 0.8, pch
= 20)
title("GSE89632 - SS versus NASH")
abline(v = c(-2, 2), col = "green")
abline(h = -\log 10(0.05), col = "green")
```

GSE89632 - SS versus NASH

Changes of gene expression from SS to NASH

We have 2 upregulated and 2 downregulated genes that are differentially expressed in this sub-analysis.

Gene Identification Analysis

We want to find which molecular function pathway associated with those differentially expressed genes.

```
1. Healthy versus SS
# FDR <= 0.05 and foldchange outside abs 2
sigs FC u <- dds.results u[!is.na(dds.results u$padj) & dds.results u$padj <</pre>
0.05 &( dds.results_u$log2FoldChange > 2 | dds.results_u$log2FoldChange < -2)</pre>
, ]
sigs_FC_u$log2FoldChange < 0</pre>
              TRUE
                    TRUE TRUE
                                 TRUE
                                       TRUE
                                              TRUE
                                                    TRUE
                                                           TRUE
                                                                 TRUE
                                                                        TRUE
                                                                              TRUE
  [1]
       TRUE
                                       TRUE
                                                    TRUE
 [13] FALSE
              TRUE FALSE FALSE
                                 TRUE
                                              TRUE
                                                           TRUE
                                                                 TRUE
                                                                        TRUE FALSE
 [25]
       TRUE
              TRUE
                    TRUE
                          TRUE
                                 TRUE FALSE FALSE
                                                    TRUE
                                                           TRUE
                                                                 TRUE
                                                                        TRUE
                                                                              TRUE
 [37]
       TRUE
             TRUE
                    TRUE
                          TRUE
                                 TRUE
                                       TRUE
                                              TRUE
                                                    TRUE
                                                           TRUE
                                                                 TRUE
                                                                        TRUE
                                                                              TRUE
       TRUE
                    TRUE
                          TRUE
                                 TRUE
                                       TRUE
                                                    TRUE
                                                           TRUE FALSE
                                                                        TRUE
                                                                              TRUE
 [49]
             TRUE
                                              TRUE
 [61]
       TRUE
             TRUE
                    TRUE
                          TRUE
                                 TRUE
                                       TRUE
                                              TRUE
                                                    TRUE
                                                           TRUE
                                                                 TRUE
                                                                        TRUE
                                                                              TRUE
 [73]
       TRUE
             TRUE
                    TRUE
                          TRUE
                                       TRUE
                                              TRUE
                                                    TRUE
                                                           TRUE
                                                                        TRUE
                                                                              TRUE
                                 TRUE
                                                                 TRUE
                                              TRUE
                                                                        TRUE
 [85]
       TRUE
             TRUE
                    TRUE
                          TRUE
                                 TRUE
                                       TRUE
                                                    TRUE
                                                           TRUE
                                                                 TRUE
                                                                              TRUE
              TRUE
                    TRUE
                          TRUE FALSE
                                       TRUE
                                              TRUE
                                                    TRUE
                                                           TRUE
                                                                 TRUE
                                                                        TRUE
                                                                              TRUE
 [97]
       TRUE
[109]
       TRUE
             TRUE
                    TRUE TRUE TRUE
                                       TRUE
                                              TRUE TRUE FALSE
                                                                 TRUE
                                                                        TRUE TRUE
```

```
TRUE
                                   TRUE
                                          TRUE
                                                 TRUE
                                                        TRUE
                                                               TRUE
                                                                      TRUE
                                                                             TRUE
                                                                                    TRUE
[121]
        TRUE
              TRUE FALSE
                                                                             TRUE
[133]
       TRUE
              TRUE
                    TRUE
                           TRUE
                                   TRUE
                                          TRUE
                                                 TRUE
                                                        TRUE
                                                               TRUE
                                                                      TRUE
genes_sigs_FC_u <- rownames(sigs_FC_u)</pre>
# Gene identification
genes_h_ss_1 <- data.frame(Gene=unlist(mget(x = genes_sigs_FC_u,envir =</pre>
illuminaHumanv4SYMBOL)))
go_h_ss_1 <- enrichGO(gene = genes_h_ss_1$Gene, OrgDb = "org.Hs.eg.db",</pre>
keyType = "SYMBOL", ont = "MF")
# export the supplemental table A1
write.csv(go_h_ss_1@result,"C:\\Users\\nklin\\Downloads\\spring 24\\DA
401\\table_A1_1_h_ss.csv", row.names = FALSE)
goplot(go_h_ss_1)
molecular function hormone receptor binding
                         steroid hormone receptor binding
 binding
                                  nuclear receptor binding p.adjust
   catalytic activity
               transcription regulator activity
protein binding DNA-binding transcription factor activity
                                                               0.01
       oxidoreductase activityglucocorticoid receptor binding
                                                               0.02
transcription facto DhiAdbigding transcription activator activity
DNA-binding transcription factor activity, RNA polymerase II-s
                                                          relationship
cting on single donors with incorporation of molecular oxygen
                                                           → isa
DNA-binding transcription factor binding
ing transcription activator activity, RNA polymerase II-specific
olymerase II-specific DNA-binding transcription factor binding
cnetplot(go_h_ss_1, showCategory = 12)
```

PTGS2

ALOX12B

oxidoreductase activity, acting on single donors wi

Bind gene names and log2fc

```
h_ss_1_genes <- merge(data.frame(dds.results_u), genes_h_ss_1, by = 0)
# export the supplemental table A.1.2
write.csv(h ss 1 genes, "C:\\Users\\nklin\\Downloads\\spring 24\\DA
401\\table_A1_1_2_h_ss.csv", row.names = FALSE)
```

2. Healthy versus NASH

```
# FDR <= 0.05 and foldchange outside abs 2
sigs_FC_u_h_nash <- dds.results_u_h_nash[!is.na(dds.results_u_h_nash$padj) &</pre>
dds.results u h nash$padj <= 0.05 &( dds.results u h nash$log2FoldChange > 2
| dds.results_u_h_nash$log2FoldChange < -2) ,]
genes_sigs_FC_u_h_nash <- rownames(sigs_FC_u_h_nash)</pre>
# Gene identification
genes_h_nash_1 <- data.frame(Gene=unlist(mget(x =</pre>
genes_sigs_FC_u_h_nash,envir = illuminaHumanv4SYMBOL)))
# Gene identification
go_h_nash_1 <- enrichGO(gene = genes_h_nash_1$Gene, OrgDb = "org.Hs.eg.db",</pre>
keyType = "SYMBOL", ont = "MF")
cnetplot(go h nash 1, showCategory = 12)
```

exoribonuclease activity regulatory RNA binding XRN2 ZC3H12A SOCS3 exonuclease activity miRNA binding

F.O.S.B-activated transcription factor activity activity

NR4A2

DNA-binding transcription activator activity binding

JUNB

NR4A1

iption activator activity, RNA polymerase II-specific DNA-binding transcription factor binding

MYC

SIK1

Export table A2

```
write.csv(go_h_nash_1@result,"C:\\Users\\nklin\\Downloads\\spring 24\\DA
401\\table A2 1 h nash.csv", row.names = FALSE)
h_nash_1_genes <- merge(data.frame(sigs_FC_u_h_nash), genes h_nash_1, by = 0)</pre>
# export the supplemental table A.1.2
write.csv(h_nash_1_genes,"C:\\Users\\nklin\\Downloads\\spring 24\\DA
401\\table A1 1 2 h nash.csv", row.names = FALSE)
3. SS vs NASH
# FDR <= 0.05 and foldchange outside abs 2
sigs FC u ss nash <- dds.results u ss nash[!is.na(dds.results u ss nash$padi)</pre>
& dds.results u ss nash$padj < 0.05 &( dds.results u ss nash$log2FoldChange >
2 | dds.results_u_ss_nash$log2FoldChange < -2) ,]</pre>
genes sigs FC u ss nash <- rownames(sigs FC u ss nash)</pre>
# Gene identification
genes ss nash 1 <- data.frame(Gene=unlist(mget(x =</pre>
genes sigs FC u ss nash,envir = illuminaHumanv4SYMBOL)))
# Gene identification
go ss nash 1 <- enrichGO(gene = genes ss nash 1$Gene, OrgDb = "org.Hs.eg.db",
keyType = "SYMBOL", ont = "MF")
```

```
cnetplot(go_ss_nash_1, showCategory = 12)
NADP-retinol dehydrogenase activity
   alcohol dehydrogenase (NADP+) activity
       MHC protein complex binding
oxidoreductase activity, acting on the aldehyde or
        alditol:NADP+ 1-oxidoreductase activity
 MHC class II protein complex binding
                                                          1.0
                                                           1.5
                            AKR1B10
                                                           2.0
oxidoreductase activity, acting on CH-OH group o
HLA-DRB5
POHOGOUP OF CONCINE IN ADIOP NA DE ASSACREPTOR
     peptide antigen binding
            aldo-keto reductase (NADP) activity
antigen binding
ss_nash_1_genes <- merge(data.frame(sigs_FC_u_ss_nash), genes_ss_nash_1, by =</pre>
0)
# export the supplemental table A.1.2
write.csv(h nash 1 genes, "C:\\Users\\nklin\\Downloads\\spring 24\\DA
401\\table_A1_1_2_h_nash.csv", row.names = FALSE)
4. Similar genes between these analyses for this dataset
sigs h nafld <- intersect(genes_sigs_FC_u_h_nash, genes_sigs_FC_u)</pre>
sigs h nafld 0 <- rbind(sigs FC u[row.names(sigs FC u) %in% sigs h nafld, ],</pre>
sigs_FC_u_h_nash[row.names(sigs_FC_u_h_nash) %in% sigs_h_nafld, ] )
genes h nafld <- data.frame(Gene=unlist(mget(x =</pre>
unique(rownames(sigs h nafld 0)),envir = illuminaHumanv4SYMBOL)))
genes_h_nafld <- as.data.frame(na.omit(genes_h_nafld))</pre>
genes_h_nafld_1 <- merge(as.data.frame(sigs_FC_u[row.names(sigs FC u) %in%</pre>
sigs h nafld, ]), genes h nafld, by = "row.names")
genes h nafld 2 <-
merge(as.data.frame(sigs_FC_u_h_nash[row.names(sigs_FC_u_h_nash) %in%
sigs_h_nafld, ]), genes_h_nafld, by = "row.names")
```

```
genes_h_nafld_all <- rbind(genes_h_nafld_1, genes_h_nafld_2)</pre>
```

Molecular function pathway of these similar genes

```
# run goseq, find molecular function pathways
GO results sigs <- enrichGO(gene = unique(genes h nafld$Gene), OrgDb =
"org.Hs.eg.db", keyType = "SYMBOL", ont = "MF")
# check results
dfGO sigs <- data.frame(GO results sigs@result) # transform the result file
to dataframe
head(dfGO_sigs)
GO:0001228 GO:0001228
GO:0001216 GO:0001216
GO:0035259 GO:0035259
GO:0035198 GO:0035198
GO:0004879 GO:0004879
GO:0098531 GO:0098531
Description
GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-
specific
GO:0001216
                                       DNA-binding transcription activator
activity
GO:0035259
                                            nuclear glucocorticoid receptor
binding
GO:0035198
                                                                       miRNA
binding
GO:0004879
                                                           nuclear receptor
activity
GO:0098531
                                     ligand-activated transcription factor
activity
           GeneRatio
                       BgRatio
                                     pvalue
                                               p.adjust
                                                               qvalue
GO:0001228
                5/17 468/18369 5.046270e-05 0.001625130 0.0009649895
GO:0001216
                5/17 472/18369 5.254974e-05 0.001625130 0.0009649895
GO:0035259
                2/17 13/18369 6.250500e-05 0.001625130 0.0009649895
                2/17 37/18369 5.267705e-04 0.009171301 0.0054458468
GO:0035198
                2/17 46/18369 8.146316e-04 0.009171301 0.0054458468
GO:0004879
                2/17 46/18369 8.146316e-04 0.009171301 0.0054458468
GO:0098531
                              geneID Count
GO:0001228 NR4A1/MYC/FOSB/JUNB/NR4A2
GO:0001216 NR4A1/MYC/FOSB/JUNB/NR4A2
                                         5
GO:0035259
                         NR4A1/NR4A2
                                         2
                                         2
GO:0035198
                       ZC3H12A/SOCS3
GO:0004879
                         NR4A1/NR4A2
                                         2
                                         2
GO:0098531
                         NR4A1/NR4A2
```

Draw the plot

cnetplot(GO_results_sigs, showCategory = 12)

ligand-activated transcription factor activity

Subudhi et al

1. Get data to analyze

```
# Values for diabetes
data_u2u <- data_u2[,
!is.na(data_u2@phenoData@data[["characteristics_ch1.5"]]) &
data_u2@phenoData@data[["characteristics_ch1.5"]] == "diabetes: Yes" |
data_u2@phenoData@data[["characteristics_ch1.5"]] == "diabetes: No" ]

data_u2u$diabetes <-
ifelse(data_u2u@phenoData@data[["characteristics_ch1.5"]] == "diabetes: No",
0, 1)</pre>
```

We still also have to back transform the expression values of this dataset - but the method is different compared to the previous one. We will also re-code values in the stage column for easy interpretation

backtransform the expression values

2. Fit DeSEQ2

```
# Fit DESeq2

dds_u2 <- DESeqDataSetFromMatrix(countData = exprs_data_u2, colData = pData(data_u2u), design=~stages+diabetes)

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

the design formula contains one or more numeric variables with integer values,
specifying a model with increasing fold change for higher values.
did you mean for this to be a factor? if so, first convert this variable to a factor using the factor() function

dds_u2 <- DESeq(dds_u2)

estimating size factors
estimating dispersions
gene-wise dispersion estimates
```

```
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 61 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
```

Healthy vs ss

```
# head(dds u2)
# normal vs ss
dds.results_u2_h_ss <- results(dds_u2, contrast = c('stages', '2', '1'))</pre>
summary(dds.results u2 h ss, alpha = 0.05) # p-value = 0.05
out of 800 with nonzero total read count
adjusted p-value < 0.05
LFC > 0 (up)
                : 7, 0.88%
LFC < 0 (down)
                 : 0, 0%
outliers [1]
                 : 0, 0%
low counts [2]
                 : 16, 2%
(mean count < 9)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
# Only get differential expressed genes (p-val <= 0.05) - we did not consider
log2FC, though
dds u2 h ss <- dds.results u2 h ss[!is.na(dds.results u2 h ss$padj) &
dds.results u2 h ss$padj <= 0.05 & dds.results u2 h ss$log2FoldChange > .5
dds.results u2 h ss$log2FoldChange < -.5 ,]</pre>
head(dds u2 h ss)
log2 fold change (MLE): stages 2 vs 1
Wald test p-value: stages 2 vs 1
DataFrame with 4 rows and 6 columns
       baseMean log2FoldChange
                               1fcSE
                                         stat
                                                  pvalue
                                                              padi
                   <numeric> <numeric> <numeric>
      <numeric>
                                                <numeric> <numeric>
CTSG
       23.4556
                    0.605882   0.138166   4.38517   1.15898e-05   0.00302879
                   EGR1
       294.0780
                   IGFBP1 1834.4655
                    TPSAB1 167.0480
```

```
# Overview of result
#upregulated
sum(dds_u2_h_ss$log2FoldChange > 0)
[1] 2
#downregulated
sum(dds_u2_h_ss$log2FoldChange < 0)</pre>
[1] 2
# Plot
plot(dds.results_u2_h_ss$log2FoldChange, -log10(dds.results_u2_h_ss$padj),
col = c("gray", "red", "blue")[(dds.results_u2_h_ss$padj < 0.05 &</pre>
abs(dds.results_u2_h_ss$log2FoldChange) > 0.5) + 1 ], xlab = "Changes of gene
expression from Healthy to SS", ylab = "Significant level, FDR", cex = 0.8,
pch = 20
title("GSE163211 - Healthy versus SS")
abline(v = c(-0.5, .5), col = "green")
abline(h = -\log 10(0.05), col = "green")
```

GSE163211 - Healthy versus SS

Changes of gene expression from Healthy to SS

Healthy vs nash

```
# normal vs ss
dds.results_u2_h_nash <- results(dds_u2, contrast = c('stages', '3', '1'))
summary(dds.results_u2_h_nash, alpha = 0.05) # p-value = 0.05</pre>
```

```
out of 800 with nonzero total read count
adjusted p-value < 0.05
                  : 82, 10%
LFC > 0 (up)
LFC < 0 (down)
                  : 41, 5.1%
outliers [1]
                  : 0, 0%
low counts [2]
                  : 124, 16%
(mean count < 17)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
# Only get differential expressed genes (p-val <= 0.05) - we did not consider
log2FC, though
dds u2 h nash <- dds.results u2 h nash[!is.na(dds.results u2 h nash$padj) &</pre>
dds.results_u2_h_nash$padj <= 0.05 & dds.results_u2_h_nash$log2FoldChange >
.5 | dds.results u2 h nash$log2FoldChange < -.5 ,]
head(dds_u2_h_ss)
log2 fold change (MLE): stages 2 vs 1
Wald test p-value: stages 2 vs 1
DataFrame with 4 rows and 6 columns
       baseMean log2FoldChange
                                  1fcSE
                                                      pvalue
                                             stat
                                                                   padj
                     <numeric> <numeric> <numeric>
                                                   <numeric> <numeric>
      <numeric>
                      CTSG
        23.4556
EGR1
       294.0780
                     -0.848085 0.255523 -3.31902 9.03330e-04 0.07709536
IGFBP1 1834.4655
                    0.589854   0.132370   4.45610   8.34655e-06   0.00302879
TPSAB1 167.0480
# Overview of result
#upregulated
sum(dds u2 h nash$log2FoldChange > 0)
[1] 10
#downregulated
sum(dds u2 h nash$log2FoldChange < 0)</pre>
[1] 1
# Plot
plot(dds.results u2 h nash$log2FoldChange, -
log10(dds.results_u2_h_nash$padj), col = c("gray","red",
"blue")[(dds.results_u2_h_nash$padj < 0.05 &
abs(dds.results_u2_h_nash$log2FoldChange) > 0.5) + 1 ], xlab = "Changes of
gene expression from Healthy to NASH", ylab = "Significant level, FDR", cex =
0.8, pch = 20)
abline(v = c(-0.5, .5), col = "green")
abline(h = -\log 10(0.05), col = "green")
title("GSE163211 - NASH vs Healthy")
```

GSE163211 - NASH vs Healthy

Changes of gene expression from Healthy to NASH

SS vs NASH

```
# ss vs nash
dds.results_u2_ss_nash <- results(dds_u2, contrast = c('stages', '3', '2'))</pre>
summary(dds.results_u2_ss_nash, alpha = 0.05) # p-value = 0.05
out of 800 with nonzero total read count
adjusted p-value < 0.05
                   : 83, 10%
LFC > 0 (up)
LFC < 0 (down)
                   : 89, 11%
outliers [1]
                   : 0, 0%
low counts [2]
                   : 0, 0%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
# Only get differential expressed genes (p-val <= 0.05) - we did not consider
log2FC, though
dds u2 ss nash <- dds.results u2 ss nash[!is.na(dds.results u2 ss nash$padj)</pre>
& dds.results u2 ss nash$padj <= 0.05 & dds.results u2 ss nash$log2FoldChange
> .5 | dds.results_u2_ss_nash$log2FoldChange < -.5 ,]</pre>
head(dds_u2_ss_nash)
log2 fold change (MLE): stages 3 vs 2
Wald test p-value: stages 3 vs 2
DataFrame with 6 rows and 6 columns
```

```
baseMean log2FoldChange
                                    1fcSE
                                               stat
                                                         pvalue
                                                                        padi
       <numeric>
                      <numeric> <numeric> <numeric>
                                                      <numeric>
                                                                  <numeric>
COL1A1
        214.7989
                       0.600397 0.152336
                                            3.94128 8.10496e-05 1.90705e-03
CXCL9
        138.6186
                       0.563011 0.113319
                                            4.96838 6.75151e-07 9.00201e-05
EGR1
                                            5.86294 4.54750e-09 7.27600e-07
        294.0780
                       1.294711 0.220830
FGF21
        99.9763
                       0.565766 0.149281
                                            3.78994 1.50686e-04 2.97174e-03
JUN
        110.9270
                       0.836661 0.121620
                                            6.87928 6.01544e-12 2.40618e-09
                                            5.91676 3.28348e-09 6.56695e-07
KLF6
        319.2813
                       0.776580 0.131251
# Overview of result
#upregulated
sum(dds_u2_ss_nash$log2FoldChange > 0)
[1] 10
#downregulated
sum(dds u2 ss nash$log2FoldChange < 0)</pre>
[1] 0
# Plot
plot(dds.results u2 ss nash$log2FoldChange, -
log10(dds.results_u2_ss_nash$padj), col = c("gray", "red",
"blue")[(dds.results_u2_ss_nash$padj < 0.05 &
abs(dds.results_u2_ss_nash$log2FoldChange) > 0.5) + 1 ], xlab = "Changes of
gene expression from SS to NASH", ylab = "Significant level, FDR", cex = 0.8,
pch = 20)
abline(v = c(0.5), col = "green")
abline(h = -\log 10(0.05), col = "green")
title("GSE163211 - SS vs NASH")
```

GSE163211 - SS vs NASH

Changes of gene expression from SS to NASH

2. Comparison

```
sigs_h_nafld_2 <- intersect(rownames(dds_u2_h_ss), rownames(dds_u2_h_nash))
sigs_h_nafld_2 <- rbind(dds.results_u2_h_ss[row.names(dds.results_u2_h_ss)
%in% sigs_h_nafld_2, ],

dds.results_u2_h_nash[row.names(dds.results_u2_h_nash) %in% sigs_h_nafld_2, ]
)

genes_h_nafld <- data.frame(Gene=unlist(mget(x = unique(rownames(sigs_h_nafld)),envir = illuminaHumanv4SYMBOL)))</pre>
```

2.4 All genes together

```
deg_sum <- data.frame(
   category = c("Healthy vs Steatosis", "Healthy vs NASH", "Steatosis vs
NASH", "Healthy vs NAFLD stages"),
   count = c(4, 11, 10, 0),
   upreg = c(sum(dds_u2_h_ss$log2FoldChange > 0),
sum(dds_u2_h_nash$log2FoldChange > 0), sum(dds_u2_ss_nash$log2FoldChange > 0),
   downreg = c(sum(dds_u2_h_ss$log2FoldChange < 0),
sum(dds_u2_h_nash$log2FoldChange < 0), sum(dds_u2_ss_nash$log2FoldChange
<0), 0)
   library(tidyr)</pre>
```

```
Warning: package 'tidyr' was built under R version 4.3.2
Attaching package: 'tidyr'
The following objects are masked from 'package:Matrix':
    expand, pack, unpack
The following object is masked from 'package:S4Vectors':
    expand
df_long <- pivot_longer(deg_sum, cols = c(downreg,upreg), names_to = "genes",</pre>
values to = "value")
# Create stacked bar chart
ggplot(df_long, aes(x = category, y = value, fill = genes)) +
  geom_bar(stat = "identity", position = "stack") +
  labs(title = "Number of significantly differentially expressed genes -
GSE163211",
       x = NULL
       y = "Number of genes") +
 theme_minimal()
```

Number of significantly differentially expressed genes -

Healthy vs NAFLD blagletsy vs NAGellthy vs Steathosis vs NASH

```
mapping: label = ~value
geom_text: parse = FALSE, check_overlap = FALSE, size.unit = mm, na.rm =
FALSE
stat_identity: na.rm = FALSE
position_identity
```

3. Gene identification

For Healthy and SS

cluster of genes

```
mf_u2_h_ss <- enrichGO(gene = rownames(dds_u2_h_ss), keyType = 'SYMBOL',</pre>
OrgDb = org.Hs.eg.db, ont = "MF")
# check results
mf_u2_h_ss.df <- data.frame(mf_u2_h_ss@result) # transform the result file to</pre>
dataframe
head(mf_u2_h_ss.df)
                   ID
                                               Description GeneRatio
BgRatio
GO:0004252 GO:0004252
                      serine-type endopeptidase activity
                                                                 2/4
170/18369
GO:0008236 GO:0008236
                            serine-type peptidase activity
                                                                 2/4
190/18369
                                 serine hydrolase activity
                                                                 2/4
GO:0017171 GO:0017171
194/18369
GO:0031994 GO:0031994 insulin-like growth factor I binding
                                                                 1/4
13/18369
GO:0089720 GO:0089720
                                           caspase binding
                                                                 1/4
14/18369
GO:0004175 GO:0004175
                                    endopeptidase activity
                                                                 2/4
428/18369
                 pvalue
                           p.adjust
                                         avalue
                                                     geneID Count
GO:0004252 0.0005046946 0.003720649 0.000921523 CTSG/TPSAB1
GO:0008236 0.0006299039 0.003720649 0.000921523 CTSG/TPSAB1
                                                                2
GO:0017171 0.0006565851 0.003720649 0.000921523 CTSG/TPSAB1
                                                                2
GO:0031994 0.0028280833 0.008925875 0.002210743
                                                     IGFBP1
                                                                1
GO:0089720 0.0030453794 0.008925875 0.002210743
                                                                1
                                                       CTSG
GO:0004175 0.0031503089 0.008925875 0.002210743 CTSG/TPSAB1
                                                                2
cnetplot(mf u2 h ss,showCategory=10)
```


promoter-specific chromatin binding histone acetyltransferase binding EGR1

```
h_ss_2_genes <- merge(data.frame(dds_u2_h_ss), mf_u2_h_ss, by = 0)

# export the supplemental table A.1.2
write.csv(h_ss_1_genes, "C:\\Users\\nklin\\Downloads\\spring 24\\DA
401\\table_A1_1_2_h_ss.csv", row.names = FALSE)</pre>
```

From healthy to nash

```
mf_u2_h_nash <- enrichGO(gene = rownames(dds_u2_h_nash), keyType = 'SYMBOL',</pre>
OrgDb = org.Hs.eg.db, ont = "MF")
# check results
mf u2 h nash.df <- data.frame(mf u2 h nash@result) # transform the result
file to dataframe
head(mf_u2_h_nash.df)
                   ID
                                              Description GeneRatio
                                                                       BgRatio
GO:0004252 GO:0004252 serine-type endopeptidase activity
                                                               3/11 170/18369
                          receptor ligand activity serine-type peptidase activity
GO:0048018 GO:0048018
                                                               4/11 497/18369
GO:0008236 GO:0008236
                                                               3/11 190/18369
GO:0017171 GO:0017171
                                serine hydrolase activity
                                                               3/11 194/18369
GO:0008009 GO:0008009
                                       chemokine activity
                                                                2/11 49/18369
GO:0042379 GO:0042379
                              chemokine receptor binding
                                                                2/11 74/18369
                                                                   geneID Count
                 pvalue
                           p.adjust
                                           qvalue
GO:0004252 0.0001216754 0.001842991 0.0007097528
                                                      MMP19/MMP9/TMPRSS9
                                                                              3
GO:0048018 0.0001501969 0.001842991 0.0007097528 CCL19/CXCL9/FGF21/IGF1
                                                                              4
GO:0008236 0.0001690761 0.001842991 0.0007097528
                                                      MMP19/MMP9/TMPRSS9
```

```
3
GO:0017171 0.0001798040 0.001842991 0.0007097528
                                                   MMP19/MMP9/TMPRSS9
                                                                          2
GO:0008009 0.0003775579 0.003095975 0.0011922881
                                                          CCL19/CXCL9
GO:0042379 0.0008601090 0.005877411 0.0022634447
                                                                          2
                                                          CCL19/CXCL9
# View(dfGO_sigs.CN)
cnetplot(mf_u2_h_nash,showCategory=10)
metalloendopeptidase activitylopeptidase activity
                             MMP9
                      serine hydrolase activity
                                       TMPRSS9
                 MMP19
serine-type endopeptidase activity
                                                    size
              serine-type peptidase activity
                                                        2.0
        chemokine activity
                                                        2.5
 chemokine receptor binding
                                                        3.0
     CCL<sub>19</sub>
                                                        3.5
CXCL9 receptor ligand activity
                                      COL1A1
                    IGF1 protease binding
        FGF21
                                   SERPINE1
                      growth factor activity
```

goplot(mf_u2_h_nash, geom = 'label')

From SS to NASH

```
mf_u2_ss_nash <- enrichGO(gene = rownames(dds_u2_ss_nash), keyType =</pre>
'SYMBOL', OrgDb = org.Hs.eg.db, ont = "MF")
# check results
mf_u2_ss_nash.df <- data.frame(mf_u2_ss_nash@result) # transform the result</pre>
file to dataframe
head(mf u2 ss nash.df)
GO:0004252 GO:0004252
GO:0008236 GO:0008236
GO:0017171 GO:0017171
GO:0004175 GO:0004175
GO:0001228 GO:0001228
GO:0001216 GO:0001216
Description
GO:0004252
                                                   serine-type endopeptidase
activity
GO:0008236
                                                       serine-type peptidase
activity
                                                            serine hydrolase
GO:0017171
activity
GO:0004175
                                                               endopeptidase
activity
```

```
GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-
specific
GO:0001216
                                       DNA-binding transcription activator
activity
                                     pvalue
           GeneRatio
                       BgRatio
                                               p.adjust
                                                              qvalue
                3/10 170/18369 8.909705e-05 0.001976865 0.0009710918
GO:0004252
GO:0008236
                3/10 190/18369 1.239075e-04 0.001976865 0.0009710918
GO:0017171
                3/10 194/18369 1.317910e-04 0.001976865 0.0009710918
                3/10 428/18369 1.334246e-03 0.012223222 0.0060043897
GO:0004175
GO:0001228
                3/10 468/18369 1.725375e-03 0.012223222 0.0060043897
                3/10 472/18369 1.768046e-03 0.012223222 0.0060043897
GO:0001216
                       geneID Count
GO:0004252 MMP19/MMP9/TMPRSS9
                                  3
GO:0008236 MMP19/MMP9/TMPRSS9
                                  3
GO:0017171 MMP19/MMP9/TMPRSS9
                                  3
GO:0004175 MMP19/MMP9/TMPRSS9
                                  3
GO:0001228
                EGR1/JUN/KLF6
GO:0001216
                EGR1/JUN/KLF6
                                  3
# View(dfGO sigs.CN)
cnetplot(mf_u2_ss_nash, showCategory=10)
          metalloendopeptidase activity
```

```
metallopeptidase activity type peptidase activity
                             MMP9
SERPINE1
                  MMP19-
                           endopeptidase activity size
   protease binding
                         serine hydrolase activity
                                                       1.0
     serine-type endopeptidase activit JMPRSS9
                                                       2.0
   COL1A1
                                                       2.5
   platelet-derived growth factor binding
                KLF6
DNA-binding transcription activator activity
                   EGR1
                                            JUN
ition activator activity, RNA polymerase II-specific
```