3. Secants, Tangents, and Limits

Lec 2 mini review.

composition $(f \circ g)(x) = f(g(x))$

logarithmic functions: laws of logs

base a > 0 $y = \log_a x$

natural logarithm $y = \ln x$ inverse relationship between $\log_a x$ and a^x

trig ratios: $\sin \theta$, $\cos \theta$, $\tan \theta$, $\csc \theta$, $\sec \theta$, $\cot \theta$

trig functions: domain, range

inverse $f^{-1}(y) = x \iff f(x) = y$

one-to-one function horizontal line test

exponential functions: laws of exponents

base a > 0 $y = a^x$

natural base e = 2.718... $y = e^x$

identities: $\cos^2(x) + \sin^2(x) = 1...$ and others

inverse trig functions: $\arcsin x$, $\arccos x$, $\arctan x$

Example 3.1. Recall the height function $h(t) = -4.9t^2 + v_0t + h_0$ of an object thrown with initial upwards velocity v_0 , from an initial height h_0 , t seconds after being thrown.

A ball is thrown up with an initial velocity of 10 m/s from the upper observation deck of the CN Tower, 450 m above the ground. What is the average velocity of the ball over the time interval [3,4]? Estimate the instantaneous velocity of the ball 3 seconds after being thrown. How could you improve your estimate?

^{*} These notes are solely for the personal use of students registered in MAT1320.

Let f be a function that is "continuous" (to be defined precisely later) on an interval [a, b]. Then

SLOPE OF TANGENT — INSTANTANEOUS RATE OF CHANGE AT A POINT

Goal: We want the **instantaneous rate of change** of f(x) at a point x = a.

In this case, the "interval" we are interested in is [a, a]. That is, we only care what happens when x is exactly equal to a.

Obstacle: The formula for the average rate of change of f on the interval [a, a] does not work — we get the **indeterminate form** $\frac{0}{0}$.

Observation: If h > 0, then we can calculate the average rate of change over the interval [a, a + h], even when h is extremely tiny.

So, h can **approach** 0, written $h \to 0$, without ever actually equalling zero. At the same time, if the average rate of change of f over the interval [a, a+h] **approaches** a particular number, then that number is called the **instantaneous rate of change of** f **at** x=a.

We need to formalize the idea of $h \to 0$. In fact, we will develop a framework for evaluating limits in general, not just those for instantaneous rates of change.

LIMITS: THE INTUITIVE DEFINITION

Suppose f(x) is defined when x is "near" a number a (this means that f is defined on some open interval that contains the number a, except possibly at a itself; a might not be in the domain of f, but at all other points in the neighbourhood of this open interval, f is defined).

▶ If we can make the values f(x) arbitrarily close to a unique real number L by restricting x (on either side of a) to be sufficiently close to a but not equal to a, then

[read: "the limit of f(x), as x approaches a, exists and equals L"]

Informally, we can guarantee that f(x) gets arbitrarily close to a unique real number L as long as we make sure that x is close enough to a (without actually letting x equal a).

▶ If there is no such unique real number L, then the limit of f(x) as x approaches a **does not exist (DNE)**.

Example 3.2. Consider the rational function $f(x) = \frac{2x^2 - 2x}{x - 1}$ and the limit $\lim_{x \to 1} f(x)$.

- \diamond What happens if we just plug in x = 1 to f(x)?
- \diamond Test how f(x) behaves for values of x near x=1 by filling in the chart:

(from the left $x \to 1$) $(1 \leftarrow x \text{ from the right})$

	x	0.5	0.75	0.9	0.99	0.999	1	1.001	1.01	1.1	1.25	1.5
	f(x)						<u>0</u>					
'	J(x)						0 eek!					

3

- \diamond As x approaches 1, does f(x) seem to be approaching a specific number?
- \diamond If x is any number other than 1, what does the graph of f look like?

 \diamond Use the graph of f to evaluate the limit: $\lim_{x \to 1} f(x) =$

REASONS WHY SOME LIMITS DO NOT EXIST

Example 3.3. $\lim_{x \to 0} \frac{1}{x^2}$

Infinite Limits (Vertical Asymptotes)

 \blacktriangleright Let f be a function defined on both sides of a, except possibly at a itself. Then

means that the values of f(x) grow arbitrarily large as x approaches a.

- ▶ **Graphically**: f has a **Vertical Asymptote** as x approaches a.
- ▶ Same idea for $\lim_{x \to a} f(x) = -\infty$
- ▶ Note. Since ∞ is not a real number $L \in \mathbb{R}$, infinite limits DNE.

Nevertheless, we write $\lim_{x\to a} f(x)$

$$\left[\lim_{x \to a} f(x) = \infty\right] \quad \text{or} \quad \left[\lim_{x \to a} f(x) = -\right]$$

because it tells us for short which way the Vertical Asymptote goes.

Example 3.4. $\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right)$

Observations. As $x \to 0$, it happens **infinitely often** that

- $\sin\left(\frac{\pi}{x}\right) = 0$
- $\sin\left(\frac{\pi}{x}\right) = 1$
- ► Since $\sin\left(\frac{\pi}{x}\right)$ does not approach a **unique** real number, as $x \to 0$, this limit **DNE**.

4

Example 3.5. For all $x \in \mathbb{R}$, the ceiling function [x] is defined as $[x] = \min\{n \in \mathbb{Z} : x \le n\}$.

$$\lim_{x\to 2} \lceil x \rceil$$

▶ Since [x] approaches different real numbers as $x \to 2$ from either side, this limit DNE.

ONE-SIDED LIMITS

- \diamond As in Example 3.5, as $x \to a$, the values of f(x) may behave differently from one side than the other.
- \diamond For some functions, a limit as $x \to a$ only makes sense if x approaches a from one side:

To distinguish from which side x approaches a, we use the following notation for **one-sided limits**:

By definition, we can say

$$\lim_{x\to a} f(x) = L \quad \text{if and only if both} \quad \lim_{x\to a^-} f(x) = L \quad \text{and} \quad \lim_{x\to a^+} f(x) = L$$

EVALUATING LIMITS

- \blacktriangleright numerically: guessing by plugging in nearby values of x
- ▶ graphically: eyeballing the limit by looking at the graph
- **▶** using the Limit Laws:

Let k be a constant real number, and suppose that the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then

$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \left[\lim_{x \to a} f(x) \right] \pm \left[\lim_{x \to a} g(x) \right]$$

$$\lim_{x \to a} \left[kf(x) \right] = k \left[\lim_{x \to a} f(x) \right]$$

$$\lim_{x \to a} \left[f(x)g(x) \right] = \left[\lim_{x \to a} f(x) \right] \cdot \left[\lim_{x \to a} g(x) \right]$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\left[\lim_{x \to a} f(x) \right]}{\left[\lim_{x \to a} g(x) \right]} \quad \text{if } \lim_{x \to a} g(x) \neq 0.$$

▶ using direct substitution:

If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a).$$

▶ using algebraic tricks:

If f(x) = g(x) everywhere except when x = a, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$
 provided the limit exists.

The above observation allows us to use **algebraic tricks** (such as the following) to evaluate limits:

- factoring and cancelling common factors
- \heartsuit rationalizing the numerator or denominator
- ♠ dividing all terms by a common expression
- \diamondsuit adding/subtracting fractional expressions on a common denominator

6

Example 3.6.
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$

Example 3.7.
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{1}{x^2 - x} \right)$$

STUDY GUIDE

Important terms and concepts:

- slope of a secant average rate of change of a function
- goal: find slope of a tangent instantaneous rate of change of a function
- \diamond limits and one-sided limits: $\lim_{x\to a} f(x)$ $\lim_{x\to a^+} f(x)$ $\lim_{x\to a^-} f(x)$
- \diamond **why some limits DNE**: infinite, no unique L, different from left/right
- evaluating limits: numerically, graphically, with Limit Laws and algebraic tricks