Illustration I:

Let us consider a binary source with source alphabet $S = \{s_1, s_2\}$ with probabilities

$$P = \left\{ \frac{1}{256}, \frac{255}{256} \right\}$$

Then, entropy H(S) =
$$\sum_{i=1}^{2} p_i \log \frac{1}{p_i}$$

= $\frac{1}{256} \log 256 + \frac{255}{256} \log \frac{256}{255}$
= 0.037 bits/message symbol

.. The average uncertainty is very very small and is relatively very easy to guess whether s, or s, will occur.

Illustration II:

Let S' = {s₃, s₄} with P'=
$$\left\{\frac{7}{16}, \frac{9}{16}\right\}$$

Then, entropy H(S') = $\frac{7}{16} \log \frac{16}{7} + \frac{9}{16} \log \frac{16}{9}$
= 0.989 bits/message symbol

In this case, it is hard to guess whether s₃ or s₄ is transmitted.

Illustration III:

Let S" =
$$\{s_5, s_6\}$$
 with P" = $\{\frac{1}{2}, \frac{1}{2}\}$

Then, entropy
$$H(S'') = \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = 1 \text{ bit/message symbol}$$

In this case, the uncertainty is maximum for a binary source and becomes impossible to guess which symbol is transmitted.

These illustrations clearly indicate the significance and dependence of entropy on probabilities of messages.

INFORMATION RATE: Let us suppose that the symbols are emitted by the source at a fixed time rate " r_s " symbols/sec. The "average source information rate R_s " in bits/sec is defined as the product of the average information content per symbol and the message symbol rate r_s .

$$\therefore R_s = r_s H(S) \text{ bits/sec or BPS} \qquad (1.5)$$

Example 2.17: Given the messages x_1 , x_2 , x_3 , x_4 , x_5 and x_6 with respective probabilities 0.4, 0.2, 0.2, 0.1, 0.07 and 0.03, construct a binary code by applying Shannon-Fano encoding procedure. Determine code efficiency and redundancy of the code.

Solution

There are two ways in which Step No. 2 given in the procedure can be applied. Let us discuss both the ways.

1st Way :							Code	l in binits
	P _i			1			11	2
x ₁	0.4	1	0.4	0			10	2
x,	0.2	1	0.2	0	3		01	2
X ₃	0.2	0	0.2	1			001	3
X ₄	0.1	0	0.1	0	0.1	007 1	0001	4
X ₅	0.07	0	0.07	0	0.07 0		0000	4
x.	0.03	0	0.03	0	0.03	003 0	3000	

Code	l, in binits
11	2
10	2
01	2
001	3
0001	4
0000	4

Table 2.24: Code-table for example 2.17

Average length L =
$$\sum_{i=1}^{6} p_i l_i$$

= $(0.4)(2) + (0.2)(2) + (0.2)(2) + (0.1)(3) + (0.07)(4)$
+ $(0.03)(4)$
= $2.3 \text{ binits/message-symbol}$

$$= 2.3 \text{ binits/message-symbol}$$

$$H(S) = \sum_{i=1}^{6} p_i \log \frac{1}{p_i}$$

$$= 0.4 \log \frac{1}{0.4} + 2 \times 0.2 \log \frac{1}{0.2} + 0.1 \log \frac{1}{0.1} + 0.07 \log \frac{1}{0.07}$$

$$+ 0.03 \log \frac{1}{0.03}$$

$$= 2.209 \text{ bits/message-symbol}$$

$$\therefore \text{ Code efficiency } \eta_c = \frac{H(S)}{L} = \frac{2.209}{2.3}$$
$$= 96.04\%$$

: Code redundancy R_w = 3.96%

2nd Way :

	P.								Code 1
\mathbf{X}_{i}	0.4	1							1
x,	0.2	0	0.2	1	0.2	1			011
х,	0.2	0	0.2	1	0.2	0			010
X ₄	0.1	0	0.1	0	0.1	1			001
х,	0.07	0	0.07	0	0.07	0	0.07	1	0001
X _e	0.03	0	0.03	0	0.03	0	0.03	0	0000

Table 2.25: Code-table for example 2.17

Observation of tables 2.24 and 2.25 reveals that both are instantaneous codes with some change in the coding pattern.

Average length,
$$L = \sum_{i=1}^{6} p_i l_i$$

= $(0.4)(1) + (0.2)(3) + (0.2)(3) + (0.1)(3) + (0.07)(4) + (0.03)(4)$
= $2.3 \text{ binits/message-symbol}$
Entropy. $H(S) = 2.209 \text{ bits/message-symbol}$

Code efficiency
$$\eta_c = \frac{H(S)}{L} = \frac{2.209}{2.3}$$

$$= 96.04\% \text{ which } -\infty$$

= 96.04% which remains the same for both ways of coding and (b).

Fig. 2.5 : Code-tree for (a) 1" way (b) 200 way of example 2 17

Example 2.18: You are given 4 messages x_1 , x_2 , x_3 and x_4 with respective probabilities 0.1, 0.2, 0.3, 0.4.

- (i) Device a code with prefix property (Shannon-Fano code) for these messages and draw the code tree.
- (ii) Calculate the efficiency and redundancy of the code.
- (iii) Calculate the probabilities of 0's and 1's in the code.

Solution

(i)	p						Code	l_i in binits
	0.4	1					0.1	1
	0.3	0	0.3	1			01	2
^,	0.2	0	0.2	0	0.2	1 1	001	3
x,	0.1	0	0.1	0	0.1	0 -	000	. 3

Table 2.26 : Code-table for example 2.18.

(ii) Average length,
$$L = \sum_{i=1}^{4} p_i l_i$$

= (0.4) (1) + (0.3) (2) + (0.2) (3) + (0.1) (3)
= 1.9 binits/message-symbol

Entropy H(S) =
$$\sum_{i=1}^{4} p_i \log \frac{1}{p_i}$$

= $0.4 \log \frac{1}{0.4} + 0.3 \log \frac{1}{0.3} + 0.2 \log \frac{1}{0.2} + 0.1 \log \frac{1}{0.1}$
= $1.846 \text{ bits/message-symbol}$

: Code efficiency
$$\eta_c = \frac{H(S)}{L} = \frac{1.846}{1.9} = 97.15\%$$

 \therefore Code redundancy $R_{\eta_c} = 2.85\%$

The code-tree can be drawn as shown in figure 2.6.

Fig. 2.6: Code-tree for example 2.18

(iii) The probability of '0's and '1's in the code are found using the formulas,

$$P(0) = \frac{1}{L} \sum_{i=1}^{4} [Number of '0' s in the code for x_i] [p_i]$$

$$P(1) = \frac{1}{L} \sum_{i=1}^{4} [\text{Number of '1's in the code for } x_i] [p_i]$$

From the code-table 2.26, we have

$$P(0) = \frac{1}{1.9} [(3) (0.1) + (2) (0.2) + (1) (0.3) + (0) (0.4)]$$

$$\therefore P(0) = 0.5263$$
and
$$P(1) = \frac{1}{1.9} [(0) (0.1) + (1) (0.2) + (1) (0.3) + (1) (0.4)]$$

$$\therefore P(1) = 0.4737$$

Example 2.19: Consider a source $S = \{s_1, s_2\}$ with probabilities 3/4 and 1/4 respectively. Obtain Shannon-Fano code for source S, its 2^{nd} and 3^{rd} extensions. Calculate efficiencies to each case.

Solution

For the basic source:

	\mathbf{p}_{i}
s ₁	3/4
s,	1/4

Code	length l_i in binits
1	1
0	1

Table 2.27: Code-table for basic source of example 2.19

man H(S) = Emiliar

Average length,
$$L = \sum_{i=1}^{2} p_i l_i$$

$$= \frac{3}{4} (1) + \frac{1}{4} (1)$$

$$= 1 \text{ binits/message-symbol}$$

Entropy, H(S) =
$$\sum_{i=1}^{2} p_i \log \frac{1}{p_i}$$
=
$$\frac{3}{4} \log \frac{4}{3} + \frac{1}{4} \log 4$$
= 0.8113 bits/message-symbol

: Code efficiency
$$\eta_c = \eta_c^{(1)} = \frac{H(S)}{L} = \frac{0.8113}{1} = 81.13\%$$

:: $\eta_c^{(1)} = 81.13\%$

For the 2^{nd} extension: The 2^{nd} extension will have $2^2 = 4$ symbols given by $s_1 s_2$, and $s_2 s_3$ with probabilities 9/16, 3/16, 3/16 and 1/16 respectively.

	P,						Code	l_i in binits
8,8	9/16	l	_ Las				1	1
5,52	3/16	0	3/16	1			01	2
5,5,	3/16	0	3/16	0	3/16	1	001	3
5,5,	1/16	0	1/16	0	1/16	0	000	3

Table 2.28: Code-table for 2nd extension of example 2.19

The average length L₂ of the 2nd extension is given by

$$L_{2} = \sum_{i=1}^{4} p_{i} l_{i}$$

$$= \left(\frac{9}{16}\right) (1) + \left(\frac{3}{16}\right) (2) + \left(\frac{3}{16}\right) (3) + \left(\frac{1}{16}\right) (3)$$

$$= 1.6875 \text{ bits/message-symbol}$$

Entropy of the 2nd extended source is given by equation (1.33) as

$$H(S^2) = 2 H(S)$$

= 2 [0.8113]
= 1.6226 bits/message-symbol

.. Code efficiency of the 2nd extended source is

$$\eta_c^{(2)} = \frac{H(S^2)}{L_2} = \frac{1.6226}{1.6875} = 96.15\%$$

$$\eta_{\epsilon}^{(2)} = 96.15\%$$

 3^{rd} extension: The 3^{rd} extension will have $2^3 = 8$ symbols which are listed below in the non increasing order.

	P,								Code	I, in binits
s,s,s,	27/64	1	27/64	1					11	2
s,s,s,	9/64	1	9/64	0					10	2
s,s2s,	9/64	0	9/64	1	9/64	1			011	3
s25,5,	9/64	0	9/64	1	9/64	0			010	3
s ₁ s ₂ s ₃	3/64	0	3/64	0	3/64	1	3/64	1	0011	4
s ₂ s ₁ s		0	3/64	0	3/64	1	3/64	0	-0010	4
s,s,s		0	3/64	0	3/64	0	3/64	1	0001	4
s,s,		_ o	1/64	0	1/64	0	1/64	0	0000	4

Table 2.29: Code-table for 3rd extension of example 2.19

The average length L, of the 3rd extended source is

$$L_{3} = \sum_{i=1}^{8} p_{i} l_{i}$$

$$= \left(\frac{27}{64}\right) (2) + \left(\frac{9}{64}\right) (2) + \left(\frac{9}{64}\right) (3) + \left(\frac{9}{64}\right) (3) + \left(\frac{3}{64}\right) (4)$$

$$+ \left(\frac{3}{64}\right) (4) + \left(\frac{3}{64}\right) (4) + \left(\frac{1}{64}\right) (4)$$

$$= 2.59375 \text{ binits/message-symbols}$$

The entropy of the 3rd extended source is given by equation (1.34) as,

$$H(S^3) = 3 H(S)$$

= 3 [0.8113] = 2.4339 bits/message-symbol

:. Code efficiency of the 3rd extended source is

$$\eta_c^{(3)} = \frac{H(S^3)}{L_3} = \frac{2.4339}{2.59375} = 93.84\%$$

$$\therefore \quad \eta_c^{(3)} = 93.84\%$$

Which is less than the efficiency of the 2nd extended source indeed!!!; And Shannon's first theorem of equation (2.33) is violated! The following reasoning appears to be relevant for the above case.

While following step no. 2 of the Shannon-Fano procedure for 3^{rd} extension, we had grouped $(s_1s_1s_1)$ and $(s_1s_1s_2)$ with a total probability of (36/64) in one group and the remaining symbols with a total probability of (28/64) in the other group. We could have grouped with probability (27/64) in one group and the rest of the symbols with a total probability (37/64) in the other group. With the former groupings, the difference in total probability (36/64 - 28/64 = 8/64) which is less than the difference in total probability of (37/64 - 28/64) for the latter case. According to the rule formulated by Fano, the least difference in total probability of (37/64 - 28/64) for the latter case. According to the rule formulated by Fano, the least difference

case has to be considered and in doing so, we get a decreasing efficiency for the 3rd extension case lif we violate this rule and consider the latter case, we can achieve increasing efficiency as shown below:

P _i	4 1										Code	/, in
$\frac{ s_1s_1s_1 }{ s_1s_1s_2 } = \frac{2770}{9/64}$	_	9/64	1	9/64	1						1	1
s ₁ s ₂ s ₁ 9/64	0	9/64	1	9/64	0						011	3
s ₂ s ₁ s ₁ 9/64	0	9/64	0	9/64	1						010	3
s ₁ s ₂ s ₂ 3/64	0	3/64	0	3/64	0	3/64					001	3
1 1	0	3/64	0	3/64			1				0001	4
212		100000000			0	3/64	0	3/64	1		10000	5
s ₂ s ₂ s ₁ 3/64		3/64	0	3/64	0	3/64	0	3/64	0	3/64 1	000001	6
s,s,s, 1/64	0	1/64	0	1/64	0	1/64	0	1/64	0	1/64 0	000000	6

Table 2.30: Code-table for 3rd extension of example 2.19.

The average length L, referring to table 2.30 is given by

$$L_{3} = \sum_{i=1}^{8} p_{i} l_{i}$$

$$= \left(\frac{27}{64}\right) (1) + \left(\frac{9}{64}\right) (3) + \left(\frac{9}{64}\right) (3) + \left(\frac{9}{64}\right) (3) + \left(\frac{3}{64}\right) (4)$$

$$+ \left(\frac{3}{64}\right) (5) + \left(\frac{3}{64}\right) (6) + \left(\frac{1}{64}\right) (6)$$

 $L_3 = 2.484375$ binits/message-symbol

Entropy
$$H(S^3) = 3 H(S)$$

= 2.4339 bits/message-symbol

.. Code efficiency of the 3rd extended source is

$$\eta_c^{(3)} = \frac{H(S^3)}{L_3} = \frac{2.4339}{2.484375}$$
= 97.97%

Which is greater than the second-extension efficiency of 96.15%.

Note: From the above, we can conclude that the symbol with highest probability should be made to correspond to a code with a shortest word-length. E_{xample} 2.20 : Consider a discrete memoryless source whose alphabet consists of K equiprobable symbols.

Example 2.26: Given the messages x_1 , x_2 , x_3 , x_4 , x_5 and x_6 with respective of probabilities of 0.4, 0.2, 0.2, 0.1, 0.07 and 0.03, construct a binary code by applying Huffman encoding procedure. Determine the efficiency and redundancy of the code so formed.

Solution

Source	_	Code	Sour	ce S _a	Sour	ce S _b	Sour	ce S _c	Sour	ce S _d
Symbols	P _i	Code	p _i	Code	\mathbf{p}_{i}	Code	\mathbf{p}_{i}	Code	$\mathbf{p_i}$	Code
х,	0.4	1	0.4	1	0.4	1	0.4~ -	_ 1	→ 0.6	0
x ₂	0.2	01	0.2	01	0.2~	-01	→ 0.4	00]	→0.4	1
x ₃	0.2	000	0.2	000	0.2	000	→0.2	01		
X ₄	0.1	0010	0.1	0010 γ	→ 0.2	001			1	
x _s	0.07	00110	→ 0.1	0011				100		
X ₆	0.03	00111	Ţ							

Table 2.44: Huffman code-table for example 2.26

The average length L is given by

$$L = \sum_{i=1}^{6} p_i l_i$$
= (0.4) (1) + (0.2) (2) + (0.2) (3) + (0.1) (4) + (0.07) (5) + (0.03)(5)

= 2.3 binits/message-symbol

The entropy H(S) is given by

$$H(S) = \sum_{i=1}^{6} p_i \log \frac{1}{p_i}$$

$$= 0.4 \log \frac{1}{0.4} + 2 \times 0.2 \log \frac{1}{0.2} + 0.1 \log \frac{1}{0.1} + 0.07 \log \frac{1}{0.07} + 0.03 \log \frac{1}{0.03}$$

$$= 2.209 \text{ bits/message-symbol}$$

$$H(S) = 2.209$$

∴ Code efficiency
$$\eta_c = \frac{H(S)}{L} = \frac{2.209}{2.3}$$

$$= 96.04\%$$

 \therefore Code redundancy $R_{\eta c} = 2.96\%$

Example 2.27: Consider a zero-memory source with

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$$

$$P = \{0.4, 0.2, 0.1, 0.1, 0.1, 0.05, 0.05\}$$

- (i) Construct a binary Huffman code by placing the composite symbol as low as you can. (ii) Repeat (i) by moving the composite symbol "as high as possible".
- In each of the cases (i) and (ii) above, compute the variances of the word-lengths and

Solution

For Huffman binary coding, dummy symbols are not required.

(i) Table 2.45 below gives the complete code-table with the composite symbol placed "as

Cource		Codo	Sou	rce S	Sou	ree C						
Source Symbols	P _i	Code	P _i	Code		rce S _b		rce S _c	Sou	rce S _d	Sou	rce S
	0.4	1	0.4	-		Code	Pi	Code	p _i	Code	p _i	Code
S ₁	0.2	01	0.2	01	0.4		0.4	1	0.4	1	r 0.6	0
s,	0.1	0010	0.1	00.0	r ^{0.2}	٠.	0.2		† 0.4	u u	→ 0.4	1
S ₄	0.1	0011		Q011-	٠.1 ا .0د	0010	0.2 →0.2		70.2	01 /		
s,	0.1	0000	0.1	00007	200 00	0011	10.2	0017				
s ₆	0.05	00010		0001			h			1		
S7	0.05	00011 /										

Table 2.45: Code-table for example 2.27 with composite symbol placed "as low as possible"

The average length L is given by,

$$L = \sum_{i=1}^{7} p_i l_i$$
= (0.4) (1) + (0.2) (2) + (0.1) (4) + (0.1) (4) + (0.1) (4) + (0.05) (5) + (0.05)(5)

= 2.5 binits/message-symbol

From the equation (0.37), the variance is defined as

$$Var(X) = E[(X - \mu)^2]$$

where μ = average value.

The variance of word-lengths is calculated from

$$Var(l_i) = E[(l_i - L)^2] \qquad (2.38)$$

$$= \sum_{i=1}^{7} p_i (l_i - L)^2$$

$$= (0.4) (1 - 2.5)^2 + (0.2) (2 - 2.5)^2 + (0.1) (4 - 2.5)^2$$

$$+ (0.1) (4 - 2.5)^2 + (0.1) (4 - 2.5)^2 + (0.05) (5 - 2.5)^2$$

$$+ (0.05) (5 - 2.5)^2$$

$$= 2.25$$

⁽ii) Table 2.46 gives the complete code-table with the composite symbol placed "as high as possible"

Source		Codo	Sou	rce S _a	Sou	rce S _b	Sou	rce S _c	Sou	rce S _d	Co
Symbols	P _i	Code	P _i	Code	p _i	Code	p,	Code	p,	Code	
s,	0.4	00	0.4	00	0.4	00	0.4	00	r ³ 0.4		Pi
s ₂	0.2	11	0.2	- 11	→ 0.2	- 10	0.2		⁷ 0.4	``	0.6
S ₃	0.1~	011	۲۰0.1	_010	70.2	. [1]	[→] 0.2	10 1	70.2	01	0.4
. S ₄	0.1-	100	0.1	_011°	~ 0.1	010]	→ 0.2	11			
S ₅	0.1~	101	0.1	1007	→0.1	011					
S ₆	0.05	0100	0.1	101							
S ₇	0.05	0101							4 1	- 1	1

Table 2.46: Code-table for example 2.27 with composite symbol placed "as high as possible".

The average length L is given by

$$L = \sum_{i=1}^{7} P_i l_i$$
= (0.4) (2) + (0.2) (2) + (0.1) (3) + (0.1) (3) + (0.05) (4) + (0.05) (4)
= 2.5 binits/message-symbol

From equation (2.38), the variance of word-lengths is

Var
$$(l_i)$$
 = E $[(l_i - L)^2]$
= $\sum_{i=1}^{7} p_i (l_i - L)^2$
= $(0.4) (2 - 2.5)^2 + (0.2) (2 - 2.5)^2 + (0.1) (3 - 2.5)^2 + (0.1) (3 - 2.5)^2 + (0.05) (4 - 2.5)^2 + (0.05) (4 - 2.5)^2$
= 0.45

Comment: When the composite symbol is moved as high as possible, the variance of the word-lengths over the ensemble of source symbols would become smaller, which, indeed is desirable.

Example 2.28: Consider a source with 8 alphabets A to H with respective probabilities of 0.22, 0.20, 0.18, 0.15, 0.10, 0.08, 0.05, 0.02 0.22, 0.20, 0.18, 0.15, 0.10, 0.08, 0.05, 0.02.

- (a) Construct a binary compact (Huffman) code and determine the code efficiency.
- (b) Construct a ternary compact code and determine the efficiency of the code.
- (c) Construct a quarternary compact code and determine the efficiency of the code. comment on the result. Draw code-trees for all three cases.

(a) Binary Code:

Source Symbols	p _i	Code 10	Source S		Source S _b		Source S							
			P _i	Code	P _i	Code			Sou	rce S _d	Sou	rce S	San	
			0.22	10			P,	Code	P,	Code	P,	Code		irce S
В	0.20	- 11	1		0.22~	- 10	r→0.25~	01	+0.33~			Code	P.	Coc
С	0.18	000	0.20	11	0.20~		70.22	10	0.25-	`]	0.42	- 11	+0.58	0
D	0.15	001	0.18	000	0.18~	000	→0.20-		0.22	10	70.33	00	0.42	1
E	0.10	011	0.15	001	0.15~	001	~0.18	11	0.20	11	0.25	01 /		
F	0.08	0100	0.10		0.15	010	~0.15	001						1
G	0.05	01010	0.08	0100	~0.10	011	-	- 1		1				
Н	0.02	01011	0.07	0101					1				1	

Solution:

The average length L(2) given by

$$L^{(2)} = \sum_{i=1}^{8} p_i l_i$$
= (0.22) (2) + (0.20) (2) + (0.18) (3) + (0.15) (3) + (0.10) (3) + (0.08) (4) + (0.05) (5) + (0.02) (5)
= 2.8 binits/message-symbol

The entropy H(S) is given by

$$H(S) = \sum_{i=1}^{8} p_i \log \frac{1}{p_i}$$

$$= 0.22 \log \frac{1}{0.22} + 0.20 \log \frac{1}{0.20} + 0.18 \log \frac{1}{0.18} + 0.15 \log \frac{1}{0.15} + 0.10 \log \frac{1}{0.10} + 0.08 \log \frac{1}{0.08} + 0.05 \log \frac{1}{0.05} + 0.02 \log \frac{1}{0.02}$$

$$= 2.7535 \text{ bits/message-symbol}$$

:. Code efficiency
$$\eta_c = \frac{H(S)}{L} = \frac{2.7535}{2.8} = 98.34\%$$