5.Avoidance_Segment 基础功能性实验

本文件夹中为避障控制器设计实验的不同阶段例程。

序号	实验名称	简介	文件地址	版本
1	避障控制器设计实验 (基础实验)	给定一个障碍物和一个多旋翼仿真模型,以及第6章6.2 节设计的跟踪控制器,利用人工势场法进行避障控制。假设多旋翼初始位置为(0,0),障碍物位置为(12,0),障碍物半径为2m,安全半径为3m。如图8.3 所示,目标位置分别设定为(25,6)、(25,0)和(25,-6),引导多旋翼避开障碍物到达目的地,并记录多旋翼避障轨迹。本实验具体目标包括以下几点: (1) 理解与熟悉人工势场法的理论与推导过程; (2) 实现单架多旋翼趋于不同目标点的避障控制; (3) 使用相同的控制器进行仿真2.0 实验,即非线性模型实验。	e5.1\Readme.pdf	免费版
2	避障控制器设计实验 (分析实验)	nan	e5.2\Readme.pdf	免费版
3	避障控制器设计实验(设计实验)	nan	e5.3\Readme.pdf	免费版
4	避障控制器设计实验(实飞实 验)	nan	e5.4\Readme.pdf	免费版
5	避障控制器设计实验 (基础	给定一个障碍物和一个多旋翼仿真模型,以及第6章	e5.1\Readme.pdf	免费版

	实验)	6.2 节设计的跟踪控制器,利用人工势场法进行避障控制。假设多旋翼初始位置为(0,0),障碍物位置为(12,0),障碍物半径为2m,安全半径为3m。如图8.3所示,目标位置分别设定为(25,6)、(25,0)和(25,-6),引导多旋翼避开障碍物到达目的地,并记录多旋翼避障轨迹。本实验具体目标包括以下几点: (1)理解与熟悉人工势场法的理论与推导过程; (2)实现单架多旋翼趋于不同目标点的避障控制; (3)使用相同的控制器进行仿真2.0实验,即非线性模型实验。		
6	避障控制器设计实验 (分析 实验)	nan	e5.2\Readme.pdf	免费版
7	避障控制器设计实验(设计实验)	nan	e5.3\Readme.pdf	免费版
8	避障控制器设计实验(实飞实 验)	nan	e5.4\Readme.pdf	免费版

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础功能性实验	本文件夹中为避障控制器设计实验的不同阶段例程。	Readme.pdf	免费版
2	避障控制器设计实验 (基础实验)	给定一个障碍物和一个多旋翼仿真模型,以及第6章6.2 节设计的跟踪控制器,利用人工势场法进行避障控制。假设多旋翼初始位置为(0,0),障碍物位置为(12,0),障碍物半径为2m,安全半径为3m。如图8.3 所示,目标位置分别设定为(25,6)、(25,0)和(25,-6),引导多旋翼避开障碍物到达目的地,并记录多旋翼避障轨迹。本实验具体目标包括以下几点: (1)理解与熟悉人工势场法的理论与推导过程; (2)实现单架多旋翼趋于不同目标点的避障控制; (3)使用相同的控制器进行仿真2.0实验,即非线性模型实验。	e5.1\Readme.pdf	免费版
3	避障控制器设计实验 (分析实验)	nan	e5.2\Readme.pdf	免费版
4	避障控制器设计实验(设计实验)	nan	e5.3\Readme.pdf	免费版
5	避障控制器设计实验(实飞实验)	nan	e5.4\Readme.pdf	免费版
6	避障控制器设计实验 (基础实验)	给定一个障碍物和一个多旋翼仿真模型,以及第6章6.2 节设计的跟踪控制器,利用人工势场法进行避障控制。假设多旋翼初始位置为(0,0),障碍物位置为	e5.1\Readme.pdf	免费版

		(12,0),障碍物半径为 2m,安全半径为 3m。如图 8.3 所示,目标位置分别设定为(25,6)、(25,0)和(25,-6),引导多旋翼避开障碍物到达目的地,并记录多旋翼避障轨迹。本实验具体目标包括以下几点: (1)理解与熟悉人工势场法的理论与推导过程; (2)实现单架多旋翼趋于不同目标点的避障控制; (3)使用相同的控制器进行仿真 2.0 实验,即非线性模型实验。		
7	避障控制器设计实验 (分析实验)	nan	e5.2\Readme.pdf	免费版
8	避障控制器设计实验 (设计实验)	nan	e5.3\Readme.pdf	免费版
9	避障控制器设计实验(实飞实验)	nan	e5.4\Readme.pdf	免费版

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。