Finite Model Theory

Heinz-Dieter Ebbinghaus Jörg Flum

June 16, 2020

Contents

1	1 Preliminaries			
	1.1	Structures	2	
	1.2	Graph	2	
	1.3	Syntax and Semantics of First-Order Logic	3	
	1.4	Some Classical Results of First-Order Logic	3	
	1.5	Model Classes and Global Relations	5	
	1.6	Relational Databases and Query Languages	5	
2	EhrenfeuchtFraïssé Method			
	2.1	Elementary Classes	5	
	2.2	Ehrenfeucht's Theorem	6	

1 Preliminaries

1.1 Structures

Vocabularies are finite sets that consist of **relation symbols** and **constant symbols**. We denote vocabularies by τ , σ ,.... A *vocabulary is *relational if it does not contain constants.

1.2 Graph

Let $\tau = \{E\}$ with a binary relation symbol E. A **graph** (or **undirected graph**) is a τ -structure $\mathcal{G} = (G, E^G)$ satisfying

- 1. for all $a \in G$: not $E^G aa$
- 2. for all $a, b \in G$: if $E^G ab$ then $E^G ba$

By GRAPH we denote the class of **finite** graphs. If only (1) is required, we speak of a **digraph**

A subset X of the universe of a graph \mathcal{G} is a **clique**, if E^Gab for all $a,b\in X$, $a\neq b$

Let \mathcal{G} be a digraph. If $n \geq 1$ and

$$E^{G}a_{0}a_{1}, E^{G}a_{1}a_{2}, \dots, E^{G}a_{n-1}a_{n}$$

then a_0, \ldots, a_n is a **path** from a_0 to a_n of **length** n. If $a_0 = a_n$, then a_0, \ldots, a_n is a **cycle**. A path a_0, \ldots, a_n is **Hamiltonian** if $G = \{a_0, \ldots, a_n\}$ and $a_i \neq a_j$ for $i \neq j$. If, in addition, $E^G a_n a_0$ we speak of a **Hamiltonian circuit**

Let \mathcal{G} be a graph. Write $a \sim b$ if a = b or if there is a path from a to b. The equivalence class of a is called the **(connected) component** of a. Let CONN be the class of finite connected graphs

Denote by d(a,b) the length of a shortest path from a to b; more precisely, define the **distance function** $d: G \times G \to \mathbb{N} \cup \{\infty\}$ by

$$d(a,b) = \infty$$
 iff $a \nsim b$, $d(a,b) = 0$ iff $a = b$

and otherwise

$$d(a,b) = \min\{n \ge 1 \mid \text{there is a path from } a \text{ to } b \text{ of length } n\}$$

We give the following definitions only for **finite** digraphs. A vertex b is a successor of a vertex a if E^Gab . The **in-degree** of a vertex is the number of its predecessors, the **out-degree** the number of its successors.

A **root** of a digraph is a vertex with in-degree 0 and a **leaf** a vertex with out-degree 0.

A **forest** is an acyclic digraph where each vertex has in-degree at most 1. A **tree** is a forest with connected underlying graph. Let TREE be the class of finite trees.

1.3 Syntax and Semantics of First-Order Logic

Denote FO[τ] the set of formulas of first-order logic of vocabulary τ .

When only taking into consideration finite structures, we use the notation $\Phi \models_{\text{fin}} \psi$

The **quantifier rank** $qr(\varphi)$ of a formula φ is the maximum number of nested quantifiers occurring in it

It can be shown that every first-order formula is logically equivlent to a formula in prenex normal form, that is, to a formula of the form $Q_1x_1,\ldots,Q_sx_s\psi$ where $Q_1,\ldots,Q_s\in\{\forall,\exists\}$, and where ψ is quantifierfree. Such a formula is called Σ_n if the string of n consecutive blocks, where in each block all quantifiers all of the same type, adjacent blocks contain quantifiers of different type, and the first block is existential. Π_n formulas are defined in the same way but now we require that the first block consists of universal quantifiers. A Δ_n -formula is a formula logically equivalent to both a Σ_n -formula and a Π_n -formula

Given a formula $\varphi(x, \bar{z})$ and $n \ge 1$,

$$\exists^{\geq n} x \varphi(x, \bar{z})$$

is an abbreviation for the formula

$$\exists x_1, \dots \exists x_n (\bigwedge_{1 \le i \le n} \varphi(x_i, \bar{z}) \land \bigwedge_{1 \le i < j \le n} \neg x_i = x_j)$$

We set

$$\varphi_{\geq n} := \exists^{\geq n} x \ x = x$$

Clearly

$$A \models \varphi_{\geq n}$$
 iff $||A|| \geq n$

1.4 Some Classical Results of First-Order Logic

Theorem 1.1. The set of logically valid sentences of first-order logic is r.e.

Theorem 1.2 (Compactness Theorem). Φ *is satisfiable iff every finite subset of* Φ *is satisfiable*

Neither Theorem 1.1 nor 1.2 remain valid if one only considers finite structures. A counterexample for the Compactness Theorem is given by the set $\Phi_{\infty} := \{\varphi_{\geq n} \mid n \geq 1\}$: Each finite subset of Φ_{∞} has a finite model, but Φ_{∞} has no finite model

The failure of Theorem 1.1 is documented by

Theorem 1.3 (Trahtenbrot's Theorem). *The set of sentences of first-order logic valid in all finite structures is not r.e.*

Lemma 1.4. Let $\varphi \in FO[\tau]$ and for $i \in I$, let $\Phi^i \subseteq FO[\tau]$. Assume that

$$\models \varphi \leftrightarrow \bigvee_{i \in I} \bigwedge \Phi^i$$

Then there is a finite $I_0 \subseteq I$ and for every $i \in I_0$, a finite $\Phi_0^i \subseteq \Phi^i$ s.t.

$$\models \varphi \leftrightarrow \bigvee_{i \in I_0} \bigwedge \Phi_0^i$$

Proof. For simplicity we assume that φ is a sentence and that every Φ^i is a set of sentences. By hypothesis, for some $i \in I$, we have $\Phi^i \models \varphi$; hence, by the Compactness Theorem, $\Phi^i_0 \models \varphi$ for some finite $\Phi^i_0 \subseteq \Phi^i$.

If there is not such I_0 with $\models \varphi \to \bigvee_{i \in I_0} \bigwedge \Phi_0^i$, then each finite subset of $\{\varphi\} \cup \{\neg \bigwedge \Phi_0^i \mid i \in I\}$ has a model. Hence by the Compactness Theorem, there is a contradiction

Corollary 1.5. Let Φ be a set of first-order sentences. Assume that any two structures that satisfy the same sentences of Φ are elementarily equivalent. Then any first-order sentence is equivalent to a boolean combination of sentences of Φ

Proof. For any structure A set

$$\Phi(\mathcal{A}) := \{ \psi \mid \psi \in \Phi, \mathcal{A} \models \psi \} \cup \{ \neg \psi \mid \psi \in \Phi, \mathcal{A} \models \neg \psi \}$$

Let φ be any first-order sentence. By the preceding lemma it suffices to show that

$$\models \varphi \leftrightarrow \bigvee_{\mathcal{A} \models \phi} \bigwedge \Phi(\mathcal{A})$$

If $\mathcal{B} \models \varphi$ then $\mathcal{B} \models \bigvee_{\mathcal{A} \models \varphi} \bigwedge \Phi(\mathcal{A})$. Suppose $\mathcal{A} \models \bigvee_{\mathcal{A} \models \varphi} \bigwedge \Phi(\mathcal{A})$. Then for some model \mathcal{A} of φ , $\mathcal{B} \models \Phi(\mathcal{A})$. By the definition of $\Phi(\mathcal{A})$, \mathcal{A} and \mathcal{B} satisfy the same sentences of Φ

1.5 Model Classes and Global Relations

Fix a vocabulary τ . For a sentence φ of FO[τ] we denote by Mod(φ) the class of **finite** models of φ .

 $Mod(\varphi)$ is closed under isomorphisms

For $\varphi(x_1, ..., x_n) \in FO[\tau]$ and a structure \mathcal{A} let

$$\varphi^{\mathcal{A}}(-) := \{(a_1, \dots, a_n) \mid \mathcal{A} \models \varphi[a_1, \dots, a_n]\}$$

be the set of *n*-tuples **defined by** φ **in** A

Definition 1.6. Let K be a class of τ -structures. An n-ary **global relation** Γ **on** K is a mapping assigning to each $A \in K$ an n-ary relation $\Gamma(A)$ on A satisfying

$$\Gamma(\mathcal{A})a_1\ldots a_n$$
 iff $\Gamma(\mathcal{B})\pi(a_1)\ldots\pi(a_n)$

for every isomorphism $\pi : \mathcal{A} \cong \mathcal{B}$ and every $a_1, \ldots, a_n \in A$. If K is the class of all finite τ -structures, then we just speak of an n-ary **global relation**

Example 1.1. 1. Any formula $\varphi(x_1, ..., x_n) \in FO[\tau]$ defines the global relation $A \mapsto \varphi^A(-)$

2. The "transitive closure relation" TC is the binary global relation on GRAPH with

$$TC(G) := \{(a, b) \mid a, b \in G, \text{ there is a path from } a \text{ to } b\}$$

1.6 Relational Databases and Query Languages

2 EhrenfeuchtFraïssé Method

2.1 Elementary Classes

Proposition 2.1. Every finite structure can be characterized in first-order logic up to isomorphism, i.e., for every finite structure A there is a sentence φ_A of first-order logic s.t. for all structures B we have

$$\mathcal{B} \models \varphi_{\mathcal{A}} \quad \textit{iff} \quad \mathcal{A} \cong \mathcal{B}$$

Proof. Suppose $A = \{a_1, \ldots, a_n\}$. Set $\bar{a} = a_1 \ldots a_n$. Let

$$\Theta_n := \{ \psi \mid \psi \text{ has the form } Rx_1 \dots x_k, x = y \text{ or } c = x,$$
 and variables among $v_1, \dots, v_n \}$

and

$$\varphi_{\mathcal{A}} := \exists v_1 \dots \exists v_n (\bigwedge \{ \psi \mid \psi \in \Theta_n, \mathcal{A} \models \psi[\bar{a}] \} \land$$

$$\bigwedge \{ \neg \psi \mid \psi \in \Theta_n, \mathcal{A} \models \neg \psi[\bar{a}] \} \land \forall v_{n+1} (v_{n+1} = v_n \lor \dots \lor v_{n+1} = v_n))$$

Corollary 2.2. Let K be a class of finite structures. Then there is a set Φ of first-order sentences s.t.

$$K = Mod(\Phi)$$

that is, K is the class of finite models of Φ

Proof. For each n there is only a finite number of pairwise nonisomorphic structures of cardinality n. Let A_1, \ldots, A_k be a maximal subset of K of pairwise nonisomorphic structures of cardinality n. Set

$$\psi_n := (\varphi_{=n} \to (\varphi_{A_1} \lor \cdots \lor \varphi_{A_k}))$$

Then
$$K = \text{Mod}(\{\psi_n \mid n \ge 1\})$$

Definition 2.3. Let K be a class of finite structures. K is called **axiomatizable in first-order logic** or **elementary** if there is a setence φ of first-order logic s.t. $K = \text{Mod}(\varphi)$

For structures \mathcal{A} and \mathcal{B} and $m \in \mathbb{N}$ we write $\mathcal{A} \equiv_m \mathcal{B}$ and say that \mathcal{A} and \mathcal{B} are m-equivalent if \mathcal{A} and \mathcal{B} satisfy the same first-order sentences of quantifier rank < m

Theorem 2.4. Let K be a class of finite structures. Suppose that for every m there are finite structures A and B s.t.

$$A \in K, B \notin K$$
, and $A \equiv_m B$

Then K is not axiomatizable in first-order logic

Proof. Let φ be any first-order sentence. Set $m := \operatorname{qr}(\varphi)$ and $\mathcal{A} \equiv_m \mathcal{B}$

2.2 Ehrenfeucht's Theorem

Definition 2.5. Assume \mathcal{A} and \mathcal{B} are structures. Let p be a map with $dom(p) \subseteq A$ and $im(p) \subseteq B$. Then p is said to be a **partial isomorphism** from \mathcal{A} to \mathcal{B} if

• *p* is injective

- for every $c \in \tau$: $c^A \in \text{dom}(p)$ and $p(c^A) = c^B$
- for every n-ary $R \in \tau$ and all $a_1, \ldots, a_n \in \text{dom}(p)$

$$R^A a_1 \dots a_n$$
 iff $R^B p(a_1) \dots p(a_n)$

We write Part(A, B) for the set of partial isomorphisms from A to B

Let \mathcal{A} and \mathcal{B} be τ -structures, $\bar{a} \in A^s$, $\bar{b} \in B^s$, and $m \in \mathbb{N}$. The **Ehrenfeucht game** $G_m(\mathcal{A}, \bar{a}, \mathcal{B}, \bar{b})$ is played by two players called the **spoiler** and the **duplicator**. Each player has to make m moves in the course of a play. In his i-th move the spoiler first selects a structure, \mathcal{A} or \mathcal{B} , and an element in this structure. If the spoiler chooses e_i in \mathcal{A} the nthe duplicator in his i-th move must choose an element f_i in \mathcal{B} . If the spoiler chooses f_i in \mathcal{B} then the duplicator must choose an element e_i in \mathcal{A}

	\mathcal{A}, \bar{a}	$\mathcal{B}, ar{b}$
first move	e_1	f_1
second move	e_2	f_2
÷	÷	:
<i>m</i> -th move	e_m	f_{m}