## **Edge Based segmentation**

- Various edge operators produce primitive edge elements
- Human vision tends to organise the observed scene into meaningful units as a significant step towards image understanding
- Further processing is necessary to group edge elements into structures suited to interpretation
- The goal is to make a <u>coherent</u> one dimensional edge feature from many individual local edge elements

# What is segmentation?

"The goal of segmentation is to partition an image into disjoined regions which correspond to objects or their parts"

#### T. Pavlidis

## What are "objects"?

- Some knowledge has to be incorporated
- Knowledge implicit or explicit constraints on the likehood of a given grouping
- Domain independent general physical arguments
- Psychology of human perception
- Domain dependent

Two main approaches to segmentation:

- through extracting boundaries of regions based on discontinuities
- through extracting regions based on similarities

The two approaches are equivalent - one representation can be converted into the other.

## Representation for segmented image data

Input to a segmentation process is an image

- original grey level image
- intrinsic image (e.g. edge gradient magnitude and gradient direction).

Output of the segmentation process can have several forms:

- an image where a pixel value indicates whether the pixel belongs to edge/region or to the background
- an image where a pixel value is a region <u>label</u>
- a data structure which describes the results of segmentation, for example a linked list of coordinates of the outline of a region.

The segmented image is on a higher level of abstraction than an intrinsic image

it contains the beginnings of <u>domain-dependent</u> interpretation

# Segmentation via boundary detection and edge linking

#### Contour following in grey level images

- uses magnitude and gradient images
- if a pixel is on a boundary of an object, subsequent boundary points should be searched in a direction perpendicular to a local gradient direction



## **Transforms**

- Graph searching
- Hough transform

## **Hough transform**

- a shape boundary is known to have a parametric description
- example straight lines of equation (polar coordinates)

$$\rho = x \cos \varphi + y \sin \varphi$$

all possible straight lines are considered and rated



#### Hough transform algorithm

- 1 quantify parameter space between approximate values of  $\rho$  and  $\phi$
- 2 set elements of  $A(\rho, \phi)$  to 0
- **3** for each point (x,y) of a gradient image for which gradient > threshold along a line

$$A(\rho, \phi) = A(\rho, \phi) + 1$$

**4** Local maxima in A correspond to collinear points in image array

Values at maxima are a measure of the line length





Angle



Distance

# **Hough transform for conic sections**

- circles 3 parameters (xc, yc, r)
- ellipses 5 parameters (xc, yc, a, b, φ)
- general conics 6 parameters