

KISSsoft Release 2019 A—

KISSsoft Hochschullizenz Duale Hochschule Baden-Wuerttemberg Heidenheim

Datei -

Name : Welle-Test

Geändert von: langohra.tmb18am: 22.10.2019 um: 09:52:43

Wichtiger Hinweis: Bei der Berechnung sind Warnungen aufgetreten:

1-> Welle 'Welle 1':

Die Summe der Drehmomente ist ungleich null.

 $\Delta T = 239.936 \text{ Nm}$

Berechnung von Wellen, Achsen und Trägern

Eingabedaten

Koordinatensystem Welle: siehe Bild W-002

Bezeichnung Welle 1

Zeichnung

Startposition (mm) 0.000 Länge (mm) 395.000

Drehzahl (1/min) 80.00

Drehrichtung: im Uhrzeigersinn

Werkstoff 42 CrMo 4 (1)

 Elastizitätsmodul (N/mm²)
 206000.000

 Poissonzahl nu
 0.300

 Dichte (kg/m³)
 7830.000

 Wärmeausdehnungskoeffizient (10^-6/K)
 11.500

 Temperatur (°C)
 20.000

Gewicht der Welle (kg) 3.887

Hinweis: Gewicht gilt für die Welle ohne Berücksichtigung der Zahnräder

Gewicht der Welle, inklusive Zusatzmassen (kg)3.887Massenträgheitsmoment (kg*mm²)777.318Schwungmoment GD2 (Nm²)0.031

Die Gewichtskraft wird nicht berücksichtigt

Zahnräder mit Steifigkeit nach ISO

Schubverformungen werden berücksichtigt

Schubkorrekturfaktor 1.100

Der Druckwinkel von Wälzlagern wird berücksichtigt

Toleranzlage: Mittelwert

Referenztemperatur (°C) 20.000

1/8

KISSsoft

Abbildung: Lasteinleitungen

Wellendefinition (Welle 1)

Aussenkontur

Zylinder(Zylinder)		0.000 mm 395.000 mm
Durchmesser (mm)	[d]	40.0000
Länge (mm)	[1]	395.0000
Rauhigkeit (µm)	[Rz]	32.0000

Kräfte

Art des Kraftelements Seilscheibe/Keilriemen			iemen		
Bezeichnung im Modell		Seilscheibe/Keilriemen			
Position auf Welle (mm)	[y _{local}]	375.0000			
Position im globalen System (mm)	[y _{global}]	375.0000			
Richtung des Seilzuges (°)		135.0000			
Scheibendurchmesser (mm)		184.0000			
Länge der Krafteinleitung (mm)		0.0000			
Leistung (kW)		2.0101	getrieben (Antrieb)		
Drehmoment (Nm)		239.9360			
Axialkraft (N)		0.0000			
Querkraft X (N)		-1844.1345			
Querkraft Z (N)		1844.1345			
Biegemoment X (Nm)		0.0000			
Biegemoment Z (Nm)		0.0000			
Summe der Seilzugkräfte (N)		2608.0000			
Art des Kraftelements		Zentrische Last			
Bezeichnung im Modell		Fs1			

KISSsoft

Position auf Welle (mm)	[y _{local}]		165.0000
Position im globalen System (mm)	[y _{global}]		165.000
Länge der Krafteinleitung (mm)			0.000
Leistung (kW)			0.0000
Drehmoment (Nm)			-0.0000
Axialkraft (N)			0.0000
Querkraft X (N)			3500.0000
Querkraft Z (N)			0.0000
Biegemoment X (Nm)			0.0000
Biegemoment Z (Nm)			0.0000
Art des Kraftelements		Z	entrische Last
Bezeichnung im Modell		F	s2
Position auf Welle (mm)	[y _{local}]		165.0000
Position im globalen System (mm)	[y _{global}]		165.0000
Länge der Krafteinleitung (mm)			0.0000
Leistung (kW)			0.0000
Drehmoment (Nm)			-0.0000
Axialkraft (N)			0.0000
Querkraft X (N)			1500.0000
Querkraft Z (N)			0.0000
Biegemoment X (Nm)			0.0000
Biegemoment Z (Nm)			0.0000
Lager			
Bezeichnung im Modell		 WälzlagerA	
Lager Typ		FAG 6008-2Z	
Lager Bauform		Rillenkugellager (einreihig)
Lager Position (mm)	[y _{lokal}]		20.000
Lager Position (mm)	[y _{global}]		20.000
Befestigung Aussenring	Ly global.	Loslager	
Innendurchmesser (mm)	[d]	· ·	40.000
Aussendurchmesser (mm)	[D]		68.000
Breite (mm)	[b]		15.000
Eckradius (mm)	[r]		0.000
Statische Tragzahl (kN)	[C₀]		11.500
Dynamische Tragzahl (kN)	[C]		17.800
Tragzahl Ermüdung (kN)	[C _u]		0.580
Werte für die approximierte Geometrie:			
Dynamische Tragzahl (kN)	$[C_{theo}]$		0.000
Statische Tragzahl (kN)	$[C_{0theo}]$		0.000
Korrekturfaktor Dynamische Tragzahl	[f _C]		1.000
Korrekturfaktor Statische Tragzahl	[f _{C0}]		1.000
Bezeichnung im Modell		WälzlagerB	
Lager Typ		FAG 6008-2Z	alaaailai V
Lager Bauform		Rillenkugellager (einreihig)

Lager Position (mm)	[y _{lokal}]	310.000
Lager Position (mm)	[y _{global}]	310.000
Befestigung Aussenring	Loslag	ger
Innendurchmesser (mm)	[d]	40.000
Aussendurchmesser (mm)	[D]	68.000
Breite (mm)	[b]	15.000

Eckradius (mm)	[r]	0.000
Statische Tragzahl (kN)	$[C_0]$	11.500
Dynamische Tragzahl (kN)	[C]	17.800
Tragzahl Ermüdung (kN)	$[C_u]$	0.580
Werte für die approximierte Geometrie:		
Dynamische Tragzahl (kN)	$[C_{theo}]$	0.000
Statische Tragzahl (kN)	[C _{0theo}]	0.000
Korrekturfaktor Dynamische Tragzahl	[f _c]	1.000
Korrekturfaktor Statische Tragzahl	[f _{C0}]	1.000

Resultate

Welle

Maximale Durchbiegung (µm)	152.703
Position des Maximums (mm)	395.000
Massenschwerpunkt (mm)	197.500
Summe der axialen Belastung (N)	0.000
Verdrehung unter Drehmoment (°)	0.259

Lager

Ausfallwahrscheinlichkeit	[n]	10.00	%		
Axialspiel	[u _A]			10.00	μm
Schmierstoff	ÖI: ISO-VG 220				
Schmierstoff - Betriebstemperatur	[T _B]			20.00	°C
Wälzlager klassisch (Druckwinkel berücks	sichtigen)				
Welle 'Welle 1' Wälzlager 'WälzlagerA'					
Position (Y-Koordinate)	[y]	20.00	mm		
Dynamisch äquivalente Belastung	[P]	2.94	kN		
Äquivalente Belastung	[P ₀]			2.94	kN
Faktor für Ausfallwahrscheinlichkeit	[a₁]			1.000	
Ergebnisse nach ISO 281:					
Lastverhältnis	[C/P]			6.049	
Betriebsviskosität	[v]			912.866	mm²/s
Bezugsviskosität	[V ₁]			0.000	mm²/s
Viskositätsverhältnis	[ĸ]			0.000	
Verunreinigungsbeiwert	[e _C]			0.500	
Nominelle Lagerlebensdauer	$[L_nh]$			46121.62	h
Statischer Sicherheitsfaktor	[S ₀]			3.91	
Lagamaditionalmat	(Est	2.042	LAN		
Lagerreaktionskraft	[Fx]	-2.913	kN		
Lagerreaktionskraft	[Fy]	0.000	kN		
Lagerreaktionskraft	[Fz]	0.413	kN		

[Fr]

[H]

 $[M_{rr}]$

 $[M_{sl}]$

 $\left[M_{\text{seal}} \right]$

kN (171.92°)

0.059

0.040

0.000

Nm

Nm

 Nm

2.942

0.000

Ölstand

Lagerreaktionskraft

Rollreibungsmoment

Gleitreibungsmoment

Reibungsmoment Dichtungen

Reibungsmoment Dichtungen nach SKF-F	lauptkatalog 170	00/1 EN:2018	bestimmt		
Reibungsmoment Strömungsverluste	[M _{drag}]			0.000	Nm
Reibungsmoment	[M _{loss}]			0.099	Nm
Verlustleistung	[P _{loss}]			0.831	W
Das Reibungsmoment wird nach Angaben		atalog 2018 b	erechnet.		
Es wird immer mit einem Beiwert für Zusä		-			
Lagerverschiebung	[u _x]	, ,		11.862	μm
Lagerverschiebung	[u _y]			0.000	μm
Lagerverschiebung	[u _z]			-1.816	μm
Lagerverschiebung	[u _r]			12.000	μm (-8.71°)
Lagerneigung	[r _x]			-0.172	mrad (-0.59')
Lagerneigung	[r _y]			0.241	mrad (0.83')
Lagerneigung	[r _z]			-1.196	mrad (-4.11')
Lagerneigung	[r,]			1.208	mrad (4.15')
Malla BMalla 41 Mëlala nan BMëlala nan Bl					
Welle 'Welle 1' Wälzlager 'WälzlagerB'	5.3	240.00			
Position (Y-Koordinate)	[y]	310.00	mm		
Dynamisch äquivalente Belastung	[P]	2.27	kN	0.07	LAL
Äquivalente Belastung	[P ₀]			2.27	kN
Faktor für Ausfallwahrscheinlichkeit	[a₁]			1.000	
Ergebnisse nach ISO 281:					
Lastverhältnis	[C/P]			7.840	
Betriebsviskosität	[v]			912.866	mm²/s
Bezugsviskosität	[V ₁]			0.000	mm²/s
Viskositätsverhältnis	[ĸ]			0.000	
Verunreinigungsbeiwert	[e _c]			0.500	
Nominelle Lagerlebensdauer	$[L_{nh}]$			100386.23	h
Statischer Sicherheitsfaktor	[S ₀]			5.07	
Lagerreaktionskraft	[Fx]	-0.242	kN		
Lagerreaktionskraft	[Fy]	0.000	kN		
Lagerreaktionskraft	[Fz]	-2.257	kN		
Lagerreaktionskraft	[Fr]	2.270	kN (-96.13°)	
Ölstand	[H]	0.000	mm	,	
Rollreibungsmoment	[M _{rr}]	0.000		0.051	Nm
Gleitreibungsmoment	[M _{sl}]			0.026	Nm
Reibungsmoment Dichtungen	[M _{seal}]			0.000	Nm
Reibungsmoment Dichtungen nach SKF-F		00/1 FN:2018	bestimmt	0.000	
Reibungsmoment Strömungsverluste	[M _{draq}]			0.000	Nm
Reibungsmoment	[M _{loss}]			0.077	Nm
Verlustleistung	[P _{loss}]			0.649	W
Das Reibungsmoment wird nach Angaben		atalog 2018 b	erechnet.		
Es wird immer mit einem Beiwert für Zusä		_			
Lagerverschiebung	[u _x]	o p.o. oo g	0.00	0.793	μm
Lagerverschiebung	[u _y]			-0.000	μm
Lagerverschiebung	[u _z]			11.974	μm
Lagerverschiebung	[u _r]			12.000	μm (86.21°)
Lagerneigung	[r _x]			0.500	mrad (1.72')
Lagerneigung	[r _y]			3.735	mrad (1.72)
Lagerneigung	[r _z]			1.506	mrad (5.18')
Lagerneigung	[r _r]			1.586	mrad (5.45')
Lagerneigung	ניז			1.500	1111au (0.40)
Schädigung (%), bezogen auf die Soll-Leb	ensdauer [Lre	eq] (20000.00	00)		
Lastfall B1 B2	•	•	,		
1 43.36 19.92					

Σ 43.36 19.92

Ausnutzung (%), bezogen auf die Soll-Lebensdauer [Lreq] (20000.000

B1 B2

75.69 58.41

Hinweis: Ausnutzung = (Lreq/Lh)^(1/k)

Hinweis: Ausnutzung = $(\text{Lreq/Lh})^{(1/k)}$ Kugellager: k = 3, Rollenlager: k = 10/3

B1 : WälzlagerAB2 : WälzlagerB

Abbildung: Verformung (Biegelinien etc.) (Beliebige Ebene 154.6803085 124)

Nennspannungen, ohne Berücksichtigung der Spannungskonzentrationen GEH(von Mises): $sigV = ((sigB+sigZ,D)^2 + 3*(tauT+tauS)^2)^1/2$ SSH(Tresca): $sigV = ((sigB-sigZ,D)^2 + 4*(tauT+tauS)^2)^1/2$

Abbildung: Vergleichsspannung

Abbildung: Momentenverlauf (Beliebige Ebene 171.9248838 124)

Ende Protokoll Zeilen: 273