

Foundation Models for Geospatial Data

Antonio Fonseca

Agenda

- Intro:
 - Frameworks of learning
- The building block of modern ML
 - Transformers
 - Applications: language and image
- Foundation Models (FM)
 - FM vs conventional ML models
 - Prithvi: geospatial foundational model (IBM-Nasa)
 - Applications
- Tutorial

About me

- PhD in Neuroscience
- Foundation models for biomedical application

Drug discovery

Single-cell expression profiles

Genes

 $g_1 g_2 g_3$

Cell 1Cell 2Cell 3

Cell N

Brain recordings

From supervised learning to Foundation Models

ChatGPT: conversational agent

Dall-E: generate image from prompt

general-purpose ML models

Neural Net for Supervised Learning

Frameworks for Machine Learning

Most real-world problems fall into the category of unsupervised learning.

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- ▶ The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- ▶ Millions of bits per sample
 - (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Unsupervised Learning techniques

Clustering:

- Grouping similar data points together.
- Example: K-means, Hierarchical Clustering, Spectral Clustering

2. **Dimensionality Reduction**:

- Reducing the number of features.
- Example: PCA, UMAP, VAE.

3. Sequence learning:

- Learning patterns in series
- Example 1: RNNs, LSTMs
- Example 2: BERT, GPT, LLaMA (all based on Transformers).

Transformers vs Neural Networks

What Separates Transformers from Previous Neural Networks?

Self-Attention Mechanism:

- Allows the model to focus on different parts of the input sequence when making predictions.
- Captures long-range dependencies more effectively than traditional RNNs (Recurrent Neural Networks).

Parallel Processing:

- Transformers process all tokens in the input sequence simultaneously.
- Faster training times compared to sequential processing in RNNs and LSTMs (Long Short-Term Memory networks).

Versatility:

- Applied to various tasks beyond NLP, including image processing and multimodal learning.
- Unified architecture for diverse applications.

How are Transformers implemented?

Transformer in high-level

What is inside the blocks?

Each Encoder has Self-Attention

Self-Attention at a High Level

Self-Attention

How is it implemented?

Query, Key, Value

Multiplying x1 by the W^Q weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.

Self-Attention as Matrix Calculation

Self-attention is calculated in matrix form for faster processing

Multi-head Attention

Multi-heads benefits:

- It expands the model's ability to focus on different positions.
- It gives the attention layer multiple "representation subspaces"

Self-attention with 8 heads:

 eight different times with different weight matrices, we end up with eight different Z matrices

Concatenating Multi-head Attention

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

Putting it all together

Representing The Order of The Sequence Using Positional Encoding

Adding meaningful distances between the embedding vectors

Positional Encoding

- Positions can't be encoded by numbers because sequences of different lengths can't be trained this way
- Instead use a periodic function like sin, cos to create the embedding

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.t), & ext{if } i = 2k \ \cos(\omega_k.t), & ext{if } i = 2k+1 \end{cases} \ \omega_k = rac{1}{10000^{2k/d}}$$

Binary vs Positional Encoding

Why not using Binary Encoding

- Positional encoding scales better with longer sequences due to its fixed dimensionality regardless of the sequence length.
- Binary encoding requires more bits as the sequence length increases, which might not be efficient for very long sequences.

Attention maps over tokens

"The animal didn't cross the street because it was too tired"

Self-attention helps a word gather information from other positions in the input sequence to enhance its representation.

Transformer architecture

Learning language with Transformer-based models

BERT: Bidirectional Encoder
Representations from Transformers

- The meaning is heavily dependent on the context
- Learning a language via predicting masked tokens (words/characters)
- Contextualized prediction

Can we apply this to other domains?

Vision Transformer (VIT)

How can we turn this into an unsupervised task?

Masked Autoencoder (MAE)

Foundation Models

Large Models + Big data = Foundation Models

Key Characteristics:

- Scale: Large models that are trained on extensive datasets.
- Unsupervised: Trained to predict the data itself
- **Transfer Learning**: Use pre-trained knowledge for task-specific applications.

Examples:

- 1. GPT-3 (OpenAI):
 - Parameters: 175 billion
 - Dataset Size: 410 billion tokens (source: Common Crawl, WebText2, Books1, Books2, Wikipedia)
- 2. BERT (Google):
 - Parameters: 340 million (BERT Large)
 - Dataset Size: 3.3 billion tokens (source: BooksCorpus and English Wikipedia)
- 3. CLIP (OpenAI):
 - Parameters: 428 million (Transformer + ViT-Large)
 - Dataset Size: 400 million image-text (source: Common Crawl)

Prithvi

A transformer-based geospatial foundational model

- Model size: 100 million parameters
- Dataset: 1TB of multispectral satellite imagery from the Harmonized Landsat-Sentinel 2 (HLS) dataset
- HLS dataset:
 - Spatial resolution: 30 m
 - Operational Land Imager (OLI) and Multi-Spectral Instrument (MSI) aboard the Landsat 8/9 and Sentinel-2 remote sensing satellites
 - Global observations of the land every 2–3 days.

Prithvi's framework

Prithvi's framework

Fig. 3: The masked autoencoder (MAE) structure for pre-training Prithvi on large-scale multi-temporal and multi-spectral satellite images.

Fine-tuning

Fig. 4: Pre-training and fine-tuning in Prithvi for various types of downstream tasks.

Flood detection

Crop classification

Conclusion

- Foundation Models: large models that are trained on extensive datasets.
- Advantage: A model that already understands the "basics" about the data
- Few-shot learning: Much smaller number of samples to tune it for your application
- Fine-tuning: Use the model's knowledge for a downstream application

Tutorial

Let's explore Prithvi and its fine-tuned models:

- 1) Predict masked regions of an image (pretrained)
- 2) Predict regions with likelihood of flooding (fine-tuned)
- 3) Predict different types of crop (fine-tuned)
- 4) BONUS: download an image for your hometown and do the prediction tasks above [did the model get it right?]