

Statistinis Apvalinimas ir Nauji Skaičių Formatai Superkompiuteriuose

Mantas Mikaitis Matematikos Departamentas Mančesterio Universitetas

mantas.mikaitis@manchester.ac.uk

10-asis Lietuvos Jaunųjų Matematikų Susitikimas

Gruodžio 28 d. 2021, Matematikos ir Informatikos Fakultetas, Vilniaus Universitetas, Vilnius, Lietuva

Kas yra Kompiuterių Aritmetika?

- Skaičių vaizdavimas kompiuteryje: turime registrus kurie laiko bitus (0/1)—kaip pavaizduoti realius skaičius?
- Operacijos su skaičiais: $+, -, \times, \div, \sqrt{\text{ ir kt.}}$
- Specialios funkcijos: e^x , $\log_e x$, \sin , \cos ir kt.
- Apvalinimas: link artimiausio skaičiaus, link nulio, link begalybes ir kt.

Bendrai

Dalies **realių skaičių** vaizdavimas ir skaičiavimas su jais.

Kompiuterių Aritmetikos Tyrimai

Tyrimai šitoje srityje gali buti: programinė ir techninė įranga, bendri algoritmai aritmetikai, matematinė analizė, paklaidų nagrinėjimas programose ir kt.

VI\CrNA Mantas Mikaitis LJMS 2021 2 / 24

Slankiojo kablelio aritmetika

Ribota sistema $F = F(\beta, t, e_{min}, e_{max}) \in \mathbb{R}$ kurioje kiekvienas elementas turi išraišką

$$X = \pm m \times \beta^{e-p+1}$$
.

Kompiuteriuose dažniausiai sutinkam $\beta=2$. p nusako **formato tikslumą**, $e_{min} \leq e \leq e_{max}$ yra **skaičiaus eilė**, o $m \leq \beta^p-1$ yra **mantise** (p, e, ir m sveikieji skaičiai).

Pavyzdys

Apačioje—teigiami skaičiai sistemoje

$$F(\beta = 2, p = 3, e_{min} = -2, e_{max} = 3).$$

VI\CrNA Mantas Mikaitis LJMS 2021 3 / 24

IEEE 754 Standartinė Aritmetika

- Standartas skirtas suvienodinti aritmetikas tarp kompiuterių (IEEE (2019)).
- Išleistas 1985, atnaujintas 2008 and 2019.
- Rekomenduojami formatai, operacijos, apvalinimo metodai ir kt.
- Dauguma šiodieninių kompiuterių palaiko.

Mantas Mikaitis

Table: Formatai ($\beta=2$) iš IEEE 754 standardo. f_{\min} —mažiausias normalizuotas skaičius, s_{\min} —mažiausias nenormalizuotas skaičius, f_{\max} —didžiausias skaičius.

	binary16	binary32	binary64
р	11	24	53
f_{\min}	2^{-14}	2^{-126}	2^{-1022}
s_{\min}	2^{-24}	2^{-149}	2^{-1074}
$f_{\sf max}$	$2^{15}(2-2^{-10})$	$2^{127}(2-2^{-23})$	$2^{1023}(2-2^{-52})$

IEEE 754 Standartinė Aritmetika

Kompiuterių atmintyje IEEE formatai laikomi naudojant bitus (binarinė sistema):

Taippat naujas **nestandatinis bfloat16 formatas**, naudojamas neuroniniuose tinkluose:

bfloat16 8 7

TOP500 Superkompiuteriai ir jų Aritmetika

- TOP500 (https://www.top500.org/) superkompiuterių (HPC) sarašas atnaujinamas kas pusę metų.
- 143 kompiuteriai turi NVIDIA vaizdo plokštes (nuo 2016 našumo dalis išaugo nuo 12% iki 39%).
- Prieš dešimtmetį binary16 nebuvo galima rasti, dabar vis daugėja.

Figure: NVIDIA vaizdo plokštė.

Figure: Top 2 Summit kompiuteris.

Figure: Top 1 Fugaku kompiuterio blokas.

Mantas Mikaitis

LJMS 2021

TOP500 Superkompiuteriai ir jų Aritmetika

- Taippat naujo tipo operacijos su matricomis: "tensor core" (TC).
- Priima argumentus binary16 matricas ir jas padaugina.
- Gražina matricas binary32.
- Žymiai greičiau negu dauginti atskirai po elementą.

Turint binary16 matricas $A \in R^{4\times4}$ ir $B \in R^{4\times4}$, binary32 matricą $C \in R^{4\times4}$, TC skaičiuoja D = AB + C (64 sudėties-daugybos operacijos vienu metu).

M\cr**NA**

Mantas Mikaitis LJMS 2021 7 / 24

TOP500 Superkompiuteriai ir jų Aritmetika

Mantas Mikaitis LJMS 2021 8 / 24

Aritmetikos Testavimas

binary32

$$\overline{d_{11}} = \underbrace{a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} + c_{11}}_{\text{binary}16} + \underbrace{a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} + c_{11}}_{\text{binary}32}$$

Exact mult. (not rounded to binary16): 22 signif. bits, 6 exp. bits, 1 sign bit

binary32 5-operand adder

Mantas Mikaitis LJMS 2021 9/24

Aritmetikos Testavimas

Pagrindinis klausimas: ar šitie prietaisai matricoms dauginti užtikrintai veikia taippat kaip programinė įranga (pagal IEEE 754)?

Pavyzdžiui, galim patikrinti:

- Kokia seka keturios sudėties operacijos yra atliekamos?
- Kaip apvalinama sudėtyje?
- Daugiau: Fasi, Higham, Mikaitis, Pranesh (2021)

Aritmetikos Testavimas

VI C NA Mantas Mikaitis LJMS 2021 11 / 24

Paklaidos Matricų Daugyboje

Rezultatai: Fasi, Higham, Lopez, Mary, Mikaitis (2022).

VI∖C NA Mantas Mikaitis LJMS 2021 12 / 24

Statistinis Apvalinimas

Apibrėžimas iš Connolly, Higham, Mary (2021). Jeigu $x \in \mathbb{R}$, $\lfloor x \rfloor \leq x \leq \lceil x \rceil$ (x tarp dvieju slankiojo kablelio skaičių), **statistinis apvalinimas** apibrėžiamas kaip

$$SR(x) = \begin{cases} \lceil x \rceil \text{ su tikimybe } q(x), \\ \lfloor x \rfloor \text{ su tikimybe } 1 - q(x), \end{cases}$$
 (1)

ir
$$q(x) = \frac{x - \lfloor x \rfloor}{\lceil x \rceil - \lfloor x \rceil}$$
.

M\cr**NA**

Mantas Mikaitis LJMS 2021 13 / 24

Statistinis Apvalinimas

- SR nėra dažnai sutinkamas kompiuteriuose (nors yra tarp Intel ir Graphcore tam tikrų mikroprocesorių).
- Minėtas publikacijose iš 1950, bet tik neseniai vėl susidomėta neuroninių tinklų literatūroje.
- Statistiškai naudingas apvalinimo metodas: neapvalina į vieną pusę net jeigu visi skaičiai arčiau kairiojo slankiojo kablelio skaičiaus.

Tyrimai ties Statistiniu Apvalinimu

Aritmetikos su SR teorija, **paklaidos** mokslinėse simuliacijose, **SR algoritmai** programinei ir techninei irangai su SR mikroprocesoriouse.

M\cr**NA**

Spredžiam dvi diferencialines lygtis su Euler metodu:

- $y_{n+1} = y_n hy_n$, su $y_0 = 2^{-6}$, intervale [0, 1] su žingsniais h = 1/n.
- $y_{n+1} = y_n h\frac{y_n}{20}$, su $y_0 = 1$, intervale $[0, 2^{-6}]$ su žingsniais $h = 2^{-6}/n$.

Eksperimentas keičiant n

Didinsim $n \in [10, 10^6]$ tol kol metodo žingsnis pasidarys mažesnis už tarpus tarp skaičių slankiojo kablelio aritmetikoje, kur ir pasimatys apvalinimo aritmetikoje poveikis paklaidoms.

Daugiau info: Croci, Fasi, Higham, Mary, Mikaitis (2021), Fasi, Mikaitis (2021).

VI CTNA Mantas Mikaitis LJMS 2021 15 / 24

Rezultatai: Fasi, Mikaitis (2021).

M\cr**NA**

Mantas Mikaitis LJMS 2021 16 / 24

Kitas pavyzdys. Spredžiam

$$u'(t) = v(t), \ v'(t) = -u(t)$$

kai u(0) = 1, v(0) = 0 (**vienetinis skritulys** uv koordinačių plokštėje).

Sprendimas naudojant Euler metodą (žingsniai $h = 2\pi/n$):

$$u_{k+1} = u_k + hv_k, \ v_{k+1} = v_k - hu_k.$$

Eksperimentas mažinant h

Didinam *n* kol apvalinimo paklaidos dominuoja.

Daugiau info: Croci, Fasi, Higham, Mary, Mikaitis (2021), Fasi, Mikaitis (2021).

√/\Cr\\A Mantas Mikaitis LJMS 2021 17 / 24

(a)
$$n = 2^5$$
 (b) $n = 2^9$ (c) $n = 2^{11}$ (d) $n = 2^{13}$

9 the old of the old of

----- Exact ---- SR ---- RN

Mantas Mikaitis LJMS 2021 18 / 24

Ivairių Aritmetikų Simuliacija ant Kasdieninių Kompiuterių

- Jeigu neturim priegos prie naujų aritmetikų, ka darom?
- Simuliuojam aritmetikas ant stalinių kompiuterių.
- Ant MATLAB galim naudoti funkciją chop (Higham, Pranesh (2019)).
- Tarp C kalbos yra CPFloat funkcija (Fasi, Mikaitis (2020))—veikia ir tarp MATLAB.
- Palaiko betkokia aritmetika $p \le 32$.
- Palaiko visus apvalinimo metodus, įskaitant statistinį.
- Naudoja binary64 ant procesoriaus operacijoms ir tada nunuliuoja kiek reikia bitų dešnėje.

binary64	11	52 bits

// Cr NA Mantas Mikaitis LJMS 2021 19 / 24

MATLAB CPFloat pavyzdys

```
>> options.format = 'binary16';
>> x = pi;
>> x
x = 3.14159265358979
>> xr = cpfloat(x, options);
>> xr
xr = 3.140625
>> x*x
ans = 9.86960440108936
>> cpfloat(x*x, options)
ans = 9.8671875
```

Santrauka

- Vis dažniau atsiranda binary16, bfloat16 ir matricų operacijos kompiuterių mikroprocesoriuose.
- Programinė įranga adaptuojama dėl geresnio našumo.
- Pristačiau progresą testuojant ir simuliuojant įvairias aritmetikas.
- Skaidrės
 https://mmikaitis.github.io/talks/.

Visada ieškau su kuo bendradarbiauti tyrimuose šioje srityje. Susiekimui mantas.mikaitis@manchester.ac.uk.

VI CTNA Mantas Mikaitis LJMS 2021 21 / 24

References I

- **IEEE**
 - IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (revision of IEEE Std 754-2008).

 Institute of Electrical and Electronics Engineers.
 - Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA. 2019.
- M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh. Numerical Behavior of NVIDIA Tensor Cores. PeerJ Comput. Sci. 7:e330 (2021).
- M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis.
 - Multiword Matrix Multiplication: General Error Analysis and Application to GPU Tensor Cores. 2022. In preparation.

References II

M. P. Connolly, N. J. Higham, and T. Mary.
Stochastic Rounding and Its Probabilistic Backward
Error Analysis.

SIAM J. Sci. Comput. 43, A566-A585. 2021.

M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis.

Stochastic Rounding: Implementation, Error Analysis, and Applications.

MIMS EPrint 2021.17, 2021.

N. J. Higham and S. Pranesh.
Simulating Low Precision Floating-Point Arithmetic.
SIAM J. Sci. Comput. 41, C585–C602. 2019.

Mantas Mikaitis LJMS 2021 23 / 24

References III

M. Fasi and M. Mikaitis. CPFloat: A C Library for Emulating Low-Precision Arithmetic. MIMS EPrint 2020.22, 2020.

M. Fasi and M. Mikaitis.

Algorithms for Stochastically Rounded Elementary Arithmetic Operations in IEEE 754 Floating-Point Arithmetic.

IEEE Trans. Emerg. Topics Comput. 9, 1451–1466. 2021.

Mantas Mikaitis LJMS 2021 24 / 24