KU LEUVEN

Chapter 1 Statistical models and estimators

Stefan Van Aelst KU Leuven 2022-2023

- 0 Outline I
- Introduction
- 2 Statistical models
- 3 Point estimators
- 4 Evaluating point estimators
- Optimal estimators
- 6 Bayesian estimators

(Mathematical) statistics

- Study stochastic phenomena to gain information about underlying population
- First tool: **Probability theory**
- Second tool: Random samples

1 Probability theory

Setting: A probability space (Ω, \mathcal{A}, P)

- $ightharpoonup \Omega$: **Universum**= the set of all possible outcomes of the stochastic phenomenon
- ightharpoonup A: σ -algebra = set of events, i.e. the subsets of Ω which are measurable
- ▶ P: Probability measure

Example: $(\mathbb{R}, \mathcal{B}, N(\mu, \sigma^2))$

 $ightharpoonup \mathcal{B}$ is the Borel σ -algebra generated by the collection

$$\mathcal{C} = \{ [a, b] \mid -\infty < a \le b < +\infty \},$$

1 Random variable

A function $X:\Omega\to\mathbb{R}$ is a **random variable** (r.v.) if $X:(\Omega,\mathcal{A},\mathrm{P})\to(\mathbb{R},\mathcal{B})$ is a measurable function which means

$$\forall B \in \mathcal{B} : X^{-1}(B) = \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{A}$$

Then, P induces a probability measure P_X on $(\mathbb{R}, \mathcal{B})$:

$$P_X(B) = P(X \in B) = P(X^{-1}(B)) = P(\{\omega \in \Omega : X(\omega) \in B\})$$

So, $(\Omega, \mathcal{A}, P) \stackrel{X}{\to} (\mathbb{R}, \mathcal{B}, P_X)$ with

- ▶ (Cumulative) distribution function: $F_X(x) = P(X \leq x)$
- ▶ Density function $f_X = \frac{dF_X(x)}{dx}$ (if r.v. X is absolutely continuous)
- Moment Generating function: $M_X(t) = \mathrm{E}[e^{tX}]$ if moments exist
- Characteristic function: $\phi_X(t) = \mathrm{E}[e^{itX}] = \mathrm{E}[\cos(tX)] + i \; \mathrm{E}[\sin(tX)]$

1 Random vector

A function $X = (X_1, \dots, X_p) : \Omega \to \mathbb{R}^p$ is a **random vector** if $X : (\Omega, \mathcal{A}, P) \to (\mathbb{R}^p, \mathcal{B}^p)$ is a measurable function Then, P induces a probability measure P_X on $(\mathbb{R}^p, \mathcal{B}^p)$:

$$P_{\boldsymbol{X}}(B_1 \times \dots \times B_p) = P(X_1^{-1}(B_1) \cap \dots \cap X_p^{-1}(B_p))$$

- (Cumulative) distribution function: $F_{\mathbf{X}}(x_1, \dots, x_p) = P(X_1 \leq x_1, \dots, X_p \leq x_p)$
- ▶ Density function $f_X = \frac{\partial F_{X_1,...,X_p}}{\partial x_1...\partial x_p}(x_1,...,x_p)$ (if all X_j are absolutely continuous)
- Moment Generating function: $M_{\boldsymbol{X}}(t_1,\ldots,t_p)=\mathrm{E}[e^{t_1X_1+\cdots+t_pX_p}]$ if moments exist
- ► Characteristic function: $\phi_{\boldsymbol{X}}(t_1,\ldots,t_p) = \mathbb{E}[e^{i(t_1X_1+\cdots+t_pX_p)}].$

2 Probability theory

- Assume a probability space (Ω, \mathcal{A}, P)
- ▶ P satisfies certain properties
- Study properties of the probability space(s)

2 (Mathematical) statistics

- ► The probability measure P is unknown
- ► Assume a statistical model $(\Omega, \mathcal{A}, \{P_{\theta}; \theta \in \Theta\})$
- ▶ $\{P_{\theta}; \theta \in \Theta\}$ is an assumed family of probability measures on (Ω, \mathcal{A})
- ightharpoonup is the parameter space
- ▶ Equivalently, a statistical model $(\Omega, \mathcal{A}, \{F_{\theta}; \theta \in \Theta\})$ with $\{F_{\theta}; \theta \in \Theta\}$ an assumed family of distributions

2 Types of statistical models

- Parametric statistics: Θ has a finite dimension k, i.e. $\Theta \subseteq \mathbb{R}^k$ Then, $\theta = (\theta_1, \dots, \theta_k) \in \Theta \subseteq \mathbb{R}^k$. Statistical model: $(\Omega, \mathcal{A}, \{F_{\theta}; \theta \in \Theta \subseteq \mathbb{R}^k\})$ Example: $\{\mathbb{R}, \mathcal{B}, N(\mu, \sigma^2); \mu \in \mathbb{R}, \sigma > 0\}$
- Nonparametric statistics: Θ is infinite dimensional. Index θ is usually dropped in this case Statistical model: $(\Omega, \mathcal{A}, \{P; P \in \mathcal{P}\})$ Example: $\{\mathbb{R}, \mathcal{B}, \{P; P \in \mathcal{P}\})$ with $\mathcal{P} = \{\text{all probability measures with continuous density}\}$
- ▶ Semiparametric statistics: $\Theta = \Theta_1 \times \Theta_2$ with Θ_1 finite dimensional and Θ_2 infinite dimensional Example: single index model: $Y = g(\boldsymbol{X}^{\top}\boldsymbol{\beta}) + \epsilon$ with both $\boldsymbol{\beta} \in \mathbb{R}^p$ and the smooth function g unknown

2 Statistical inference

Gain information about the unknown heta that generated the data

- **Point estimation**: Find a good 'approximation' of the unknown θ .
- ▶ Confidence interval/region: Determine a subset of Θ which contains the unknown θ with high 'confidence'.
- ▶ **Hypothesis test**: 'Decide' whether the unknown θ belongs to $\Theta_0 \subset \Theta$ or to $\Theta_1 = \Theta \setminus \Theta_0$.

2 Random sample

A random sample (X_1, \ldots, X_n) is a collection of independent random variables that all have the same distribution as X, i.e. P_X . These are called **i.i.d. random variables**The realization of a random sample (X_1, \ldots, X_n) is denoted by (x_1, \ldots, x_n) .

A statistic is a measurable function

$$T: (\Omega^n, \mathcal{A}^{\otimes n}) \to (\mathbb{R}^p, \mathcal{B}^p): (X_1, \dots, X_n) \to T(X_1, \dots, X_n).$$

- ▶ If p = 1 then $T_n = T(X_1, ..., X_n)$ is a random variable
- ▶ If p>1 then $T_n=T(X_1,\ldots,X_n)$ is a random vector whose components $T_1(X_1,\ldots,X_n),\ldots,T_p(X_1,\ldots,X_n)$ are one-dimensional statistics

3 Point estimator

A statistic $T_n=T(X_1,\ldots,X_n)$ which for a random sample (X_1,\ldots,X_n) provides an approximation for θ is an **estimator** of θ The value $t_n=T(x_1,\ldots,x_n)$ is an **estimate** of θ based on the available sample data.

Examples

- $m{ heta} = \mathrm{E}[X]$ Estimator: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, the sample mean
- ▶ $\theta = \operatorname{Var}[X] = \operatorname{E}[(X \operatorname{E}[X])^2]$ Estimator: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$, the sample variance
- $\theta = \operatorname{Var}[X] = \operatorname{E}[(X \operatorname{E}[X])^r]$ Estimator: $\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^r$
- \bullet $\theta=F_X(x)$ Estimator: $F_n(x)=\frac{1}{n}\sum_{i=1}^nI(X_i\leq y),$ the empirical distribution function

4 Example

Nonparametric statistical model $\{\mathbb{R}, \mathcal{B}, \{P \in \mathcal{P}\}\}$ with $\mathcal{P} = \{P; P \text{ has finite variance } \sigma^2 > 0\}$

Assume that $\mu=\mathrm{E}[X]$ is known and we want to estimate the unknown parameter $\sigma^2.$

Many estimators are possible, we could use for example

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

$$\tilde{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Is there a preferable estimator?

4 Performance measures

- ▶ Bias: $b_{\theta}(T_n) = \mathrm{E}_{\theta}[T_n(\boldsymbol{X})] \theta$ Unbiased estimator: $b_{\theta}(T_n) = 0 \ (\forall \theta \in \Theta)$ i.e. $\mathrm{E}_{\theta}[T_n(\boldsymbol{X})] = \theta \ (\forall \theta \in \Theta)$
- ▶ Mean squared error: $MSE_{\theta}(T_n) = E_{\theta} [(T_n(\boldsymbol{X}) \theta)^2]$ If $Var_{\theta}[T_n] < \infty \ (\forall \theta \in \Theta)$: $MSE_{\theta}(T_n) = (b_{\theta}(T_n))^2 + Var_{\theta}[T_n]$
- ▶ Mean absolute deviation error: $ABS_{\theta}(T_n) = E_{\theta}[|T_n(X) \theta|]$
- ▶ General expected loss (risk): $R_{\theta}(T_n) = E_{\theta}[L(T_n(X), \theta)]$

Examples

- L₁-loss: $L(x,\theta) = |x \theta|$: Mean absolute deviation
- L₂-loss: $L(x,\theta)=(x-\theta)^2$: Mean squared error
- L_p-loss: $L(x,\theta) = |x-\theta|^p$ for p > 0
- ▶ Large deviation loss: $L(x, \theta) = I(|x \theta| > c)$

4 Asymptotic properties

Consider a sequence of statistics $\{T_n = T(X_1, \dots, X_n); n \ge n_0\}$ Asymptotic properties of T_n are obtained as $n \to \infty$

 $ightharpoonup T_n$ is an asymptotically unbiased estimator if

$$\lim_{n\to\infty}(b_{\theta}(T_n))=0 \text{ i.e. } \mathrm{E}_{\theta}[T_n(\boldsymbol{X})]\xrightarrow{n\to\infty}\theta \quad (\forall\,\theta\in\Theta)$$

 $ightharpoonup T_n$ is (weakly) consistent if

$$\forall \theta \in \Theta : T_n \xrightarrow{P} \theta \text{ if } n \to \infty$$

 $ightharpoonup T_n$ is strongly consistent if

$$\forall \theta \in \Theta : T_n \xrightarrow{a.s.} \theta \text{ if } n \to \infty$$

 $ightharpoonup T_n$ is mean square consistent if

$$\forall \theta \in \Theta : \mathrm{MSE}_{\theta}(T_n) \to 0 \text{ if } n \to \infty$$

4 Asymptotic properties

- Strong consistency ⇒ (weak) consistency
- Mean square consistency ⇒ (weak) consistency
- An (asymptotically) unbiased estimator T_n is mean square consistent if $\operatorname{Var}_{\theta}[T_n] \xrightarrow{n \to \infty} 0 \ (\forall \ \theta \in \Theta)$

4 Asymptotic normality

A univariate estimator T_n for $\theta \in \Theta \subseteq \mathbb{R}$ is asymptotically normal (distributed) if $\forall \theta \in \Theta$ there exists a $V_\theta > 0$ such that

$$\sqrt{n}(T_n - \theta) \xrightarrow{D} N(0, V_\theta) \text{ if } n \to \infty$$

 $V_{\theta} \, 0$ is called the asymptotic variance of the estimator T_n and $T_n \approx \mathrm{N} \left(\theta, \frac{V_{\theta}}{n} \right)$

A multivariate estimator T_n for $\theta \in \Theta \subseteq \mathbb{R}^k$ is asymptotically normal (distributed) if $\forall \theta \in \Theta$ there exists a positive definite symmetric matrix Σ_{θ} such that

$$\sqrt{n}(T_n - \boldsymbol{\theta}) \xrightarrow{D} N_k(0, \boldsymbol{\Sigma}_{\boldsymbol{\theta}}) \text{ if } n \to \infty$$

 Σ_{θ} is called the asymptotic variance-covariance matrix of the estimator T_n and $T_n \approx \mathrm{N}_k\left(\theta, \frac{\Sigma_{\theta}}{n}\right)$

4 Asymptotic normality

If T_n is asymptotically normal, then $\sqrt{n}(T_n-\theta)$ is **bounded in probability**, denoted by

$$\sqrt{n}(T_n - \theta) = O_P(1)$$

That is,

$$\forall \epsilon > 0, \exists M_{\epsilon}, n_{\epsilon} : \forall n \ge n_{\epsilon} : P(|\sqrt{n}(T_n - \theta)| \le M_{\epsilon}) > 1 - \epsilon$$

4 Functions of estimators

If T_n is an estimator of θ , then $g(T_n)$ is an estimator of $g(\theta)$

Delta method

If T_n is an asymptotically normal estimator for θ :

$$\sqrt{n}(T_n - \theta) \xrightarrow{D} N(0, V_{\theta})$$

and the function $g:\mathbb{R}\to\mathbb{R}$ is differentiable at θ with $g'(\theta)\neq 0$, then

$$\sqrt{n}(g(T_n) - g(\theta)) \xrightarrow{D} N(0, g'(\theta)^2 V_{\theta})$$

4 Delta method: proof

Rewrite
$$g(T_n) - g(\theta) = (T_n - \theta) \frac{g(T_n) - g(\theta)}{T_n - \theta}$$

$$= (T_n - \theta)g'(\theta) + (T_n - \theta) \left(\frac{g(T_n) - g(\theta)}{T_n - \theta} - g'(\theta) \right)$$

$$= (T_n - \theta)g'(\theta) + (T_n - \theta)h(T_n)$$

with
$$h(t) = \begin{cases} 0 & \text{if } t = \theta \\ \frac{g(T_n) - g(\theta)}{T_n - \theta} - g'(\theta) & \text{if } t \neq \theta \end{cases}$$

Then
$$\sqrt{n} \frac{(g(T_n) - g(\theta))}{g'(\theta)\sqrt{V_{\theta}}} = \sqrt{n} \frac{T_n - \theta}{\sqrt{V_{\theta}}} + \sqrt{n} \frac{T_n - \theta}{\sqrt{V_{\theta}}} h(T_n) \frac{1}{g'(\theta)}$$

4 Delta method: proof

$$\sqrt{n}\frac{(g(T_n)-g(\theta))}{g'(\theta)\sqrt{\mathcal{V}_\theta}} = \sqrt{n}\frac{T_n-\theta}{\sqrt{\mathcal{V}_\theta}} + \sqrt{n}\frac{T_n-\theta}{\sqrt{\mathcal{V}_\theta}}h(T_n)\frac{1}{g'(\theta)}$$

- $h(T_n) \xrightarrow{P} h(\theta) = 0 \text{ if } n \to \infty$
- ▶ $g'(\theta) \neq 0$ so $\frac{1}{g'(\theta)} < \infty$

Hence,
$$\sqrt{n} \frac{T_n - \theta}{\sqrt{V_{\theta}}} h(T_n) \frac{1}{g'(\theta)} \xrightarrow{P} 0 \text{ if } n \to \infty$$

Since, $\sqrt{n}(T_n - \theta) \xrightarrow{D} N(0, V_{\theta})$ Slutsky's lemma yields the result.

Delta method

Example: Consider a r.v. X with $\mathrm{E}[X^4] < \infty$

Assume that $\mu = E[X]$ is known and we want to estimate $\sigma^2 = \operatorname{Var}[X]$

Set
$$au^2 = \mathrm{E}[(X-\mu)^4] - \sigma^4$$
 and assume $0 < au^2 < \infty$

Based on a random sample X_1, \ldots, X_n , estimate σ^2 by

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

- $ightharpoonup \hat{\sigma}_n^2$ is an unbiased estimator of σ^2
- Since $Var[(X \mu)^2] = E[((X \mu)^2 \sigma^2)^2] = \tau^2$, the central limit theorem (CLT) yields

$$\sqrt{n}(\hat{\sigma}_n^2 - \sigma^2) = \frac{1}{\sqrt{n}} \sum_{i=1}^n [(X_i - \mu)^2 - \sigma^2] \xrightarrow{D} N(0, \tau^2)$$

4 Delta method

The standard deviation σ can now be estimated by $\hat{\sigma}_n$ Apply the delta method with $g(x)=\sqrt{x}$ for which $g'(x)=\frac{1}{2\sqrt{x}}$

- $g'(\sigma^2) = \frac{1}{2\sigma} \neq 0 \text{ for } \sigma^2 > 0$

which yields

$$\sqrt{n}(\hat{\sigma}_n - \sigma) \xrightarrow{D} N(0, V_{\sigma}) \text{ with } V_{\sigma} = \frac{\tau^2}{4\sigma^2}$$

4 Variance stabilizing transformation

Often, the asymptotic variance V_{θ} of an asymptotically normal estimator depends on θ :

$$\sqrt{n}(T_n - \theta) \xrightarrow{D} N(0, V_{\theta}) \text{ if } n \to \infty$$

Can we find a transformation such that the variance does not depend on θ anymore?

That is, a function g such that

$$\sqrt{n}(g(T_n) - g(\theta)) \xrightarrow{D} N(0, c^2) \text{ if } n \to \infty$$

for some constant c>0 independent of $\boldsymbol{\theta}$

The delta method yields that g needs to satisfy

$$g'(\theta)^2 V_{\theta} = c^2$$

so, q needs to solve the differential equation

$$g'(\theta) = \frac{c}{\sqrt{V_{\theta}}}$$

4 Variance stabilizing transformation

Example 1: square root transformation

- ▶ T_n is a r.v. following a Poisson distribution with parameter $n\lambda$ for some $\lambda > 0$
- ► Then, $\sqrt{n}(\frac{T_n}{n} \lambda) \xrightarrow{D} N(0, \lambda)$
- ▶ Set $g(x) = \sqrt{x}$ then $g'(\lambda) = \frac{c}{\sqrt{\lambda}}$

We obtain that
$$\sqrt{n}\left(\sqrt{\frac{T_n}{n}} - \sqrt{\lambda}\right) \xrightarrow{D} N(0, \frac{1}{4})$$

Hence, if $X \sim \mathsf{Poisson}(\lambda)$, then \sqrt{X} behaves like $\mathrm{N}\left(\sqrt{\lambda}, \frac{1}{4}\right)$

4 Variance stabilizing transformation

Example 2: arcsin transformation

- X_1, \ldots, X_n be a random sample from a Bernoulli distribution with parameter $\theta \in]0,1[$
- ► CLT yields $\sqrt{n}(\overline{X}_n \theta) \xrightarrow{D} N(0, \theta(1 \theta))$
- $\blacktriangleright \ g$ needs to satisfy the equation $g'(\theta) = \frac{c}{\sqrt{\theta(1-\theta)}}$
- ▶ With c=1/2 this becomes $g'(\theta)=\frac{1}{2\sqrt{\theta(1-\theta)}}$ with solution

$$g(\theta) = \arcsin(\sqrt{\theta})$$

We obtain that $\sqrt{n}(\arcsin(\sqrt{\overline{X}_n}) - \arcsin(\sqrt{\theta})) \xrightarrow{D} \mathrm{N}\left(0, \frac{1}{4}\right)$

4 Multivariate Delta method

If T_n is an **asymptotically normal (distributed)** estimator for $\theta \in \Theta \subseteq \mathbb{R}^k$:

$$\sqrt{n}(T_n - \boldsymbol{\theta}) \xrightarrow{D} N_k(0, \boldsymbol{\Sigma}_{\boldsymbol{\theta}}) \text{ if } n \to \infty$$

and the function $g: \mathbb{R}^k \to \mathbb{R}$ is differentiable at $\boldsymbol{\theta}$ with gradient $\nabla g(\boldsymbol{\theta}) = (\frac{\partial g}{\partial t_1}\big|_{t=\boldsymbol{\theta}}, \dots, \frac{\partial g}{\partial t_k}\big|_{t=\boldsymbol{\theta}})^\top \neq \mathbf{0}$, then

$$\sqrt{n}(g(T_n) - g(\boldsymbol{\theta})) \xrightarrow{D} \mathrm{N}(0, \nabla g(\boldsymbol{\theta})^{\top} \boldsymbol{\Sigma}_{\boldsymbol{\theta}} \nabla g(\boldsymbol{\theta})) \text{ if } n \to \infty$$

5 Optimal estimators

For a parametric model $X:(\Omega,\mathcal{A},\{F_{\theta};\theta\in\Theta\subseteq\mathbb{R}\})$ can we find the best possible estimator of θ based on a random sample?

What is the optimal estimator depends on the performance criterion

In general we can try to find the estimator T_n which minimizes the risk $R_{\theta}(T_n) = \mathbb{E}_{\theta} \left[L(T_n(\boldsymbol{X}), \theta) \right]$ for all possible values of $\theta \in \Theta$.

However, this is not feasible in general because the class of estimators is too large.

Restricted classes of estimators can be considered

5 Uniform Minimum Variance Unbiased Estimators

Consider the class of unbiased estimators with finite variance $\mathrm{Var}_{\theta}[T_n]<\infty~(\forall \theta\in\Theta)$, then an estimator $T_n(\boldsymbol{X})$ is a **Uniform Minimum Variance Unbiased Estimator** (UMVUE) of θ if

- 1 $E_{\theta}[T_n(\boldsymbol{X})] = \theta \quad \forall \theta \in \Theta$
- 2 For any other unbiased estimator $S_n(\boldsymbol{X})$ of θ : $\operatorname{Var}_{\theta}[T_n(\boldsymbol{X})] \leq \operatorname{Var}_{\theta}[S_n(\boldsymbol{X})] \quad \forall \theta \in \Theta$

5 Uniform Minimum Variance Unbiased Estimators

The following characterisation of a UMVUE was obtained by C.R. Rao

Consider a random sample X_1, \ldots, X_n from a statistical model with $\theta \in \Theta \subseteq \mathbb{R}$.

If T_n is an unbiased estimator of θ with variance $\mathrm{Var}_{\theta}[T_n(\boldsymbol{X})]<\infty(\forall \theta\in\Theta)$, then

 T_n is a UMVUE of $\theta \Leftrightarrow E_{\theta}[T_nU_n] = 0$ for all $\theta \in \Theta$ and for all U_n which is an unbiased estimator of 0 with finite variance.

5 Proof of the UMVUE characterisation

 \Longrightarrow Suppose there exists a U_n such that $\mathrm{E}_{\theta}[T_nU_n] \neq 0$ for some $\theta \in \Theta$.

Then, $0<|\mathrm{E}_{\theta}[T_nU_n]|^2\leq \mathrm{E}_{\theta}[T_n^2]\,\mathrm{E}_{\theta}[U_n^2]$ (Cauchy-Schwarz), so $\mathrm{E}_{\theta}[U_n^2]>0$

Set $a = -\frac{\mathbf{E}_{\theta}[T_n U_n]}{\mathbf{E}_{\theta}[U_n^2]} \neq 0$ then

- ► T_n is UMVUE, so $\operatorname{Var}_{\theta}[T_n] \leq \operatorname{Var}_{\theta}[T_n + aU_n]$

Hence, $E_{\theta}[T_n^2] - E_{\theta}[T_n]^2 \le E_{\theta}[(T_n + aU_n)^2] - (E_{\theta}[T_n] + aE_{\theta}[U_n])^2$

Since $E_{\theta}[U_n] = 0$ this reduces to

$$E_{\theta}[T_n^2] \le E_{\theta}[(T_n + aU_n)^2]$$

5 Proof of the UMVUE characterisation

On the other hand,

which contradicts the result on the previous slide, so we can conclude that such a U_n does not exist.

5 Proof of the UMVUE characterisation

 $\;\mathrel{\bigsqcup}\;$ Take an arbitrary unbiased estimator S_n of heta with finite variance

Then,
$$\mathrm{E}_{\theta}[T_n-S_n]=0$$
 and $\mathrm{Var}_{\theta}[T_n-S_n]<\infty$
Hence, $\mathrm{E}_{\theta}[T_n(T_n-S_n)]=0 \quad \forall \, \theta\in\Theta$ which yields

$$\mathbf{E}_{\theta}[T_n^2] = \mathbf{E}_{\theta}[T_n S_n] \le \sqrt{\mathbf{E}_{\theta}[T_n^2] \mathbf{E}_{\theta}[S_n^2]} \quad \forall \, \theta \in \Theta \quad \text{(Cauchy-Schwarz)}$$

$$\begin{aligned}
\left(\mathbf{E}_{\theta}[T_{n}^{2}]\right)^{2} &\leq \mathbf{E}_{\theta}[T_{n}^{2}] \mathbf{E}_{\theta}[S_{n}^{2}] \quad \forall \, \theta \in \Theta \\
\mathbf{E}_{\theta}[T_{n}^{2}] &\leq \mathbf{E}_{\theta}[S_{n}^{2}] \quad \forall \, \theta \in \Theta \\
\mathbf{Var}_{\theta}[T_{n}] &\leq \mathbf{Var}_{\theta}[S_{n}] \quad \left(\mathbf{E}_{\theta}[T_{n}]^{2} = \mathbf{E}_{\theta}[S_{n}]^{2}\right) \quad \forall \, \theta \in \Theta
\end{aligned}$$

This holds for any unbiased estimator S_n of θ with finite variance, so T_n is a UMVUE

5 Uniqueness of UMVUE

Consider a random sample X_1, \ldots, X_n from a statistical model with $\theta \in \Theta \subseteq \mathbb{R}$. It holds that

$$T_n$$
 and S_n are both an UMVUE of $\theta \Rightarrow T_n \stackrel{\text{a.s.}}{=} S_n \quad (\forall \, \theta \in \Theta)$

Proof

- ightharpoonup $\operatorname{E}_{\theta}[T_n S_n] = 0$ and $\operatorname{Var}_{\theta}[T_n S_n] < \infty$
- $ightharpoonup T_n$ is UMVUE so $\mathrm{E}_{ heta}[T_n(T_n-S_n)]=0\Rightarrow \mathrm{E}_{ heta}[T_n^2]=\mathrm{E}_{ heta}[T_nS_n]$
- ▶ S_n is UMVUE so $\mathrm{E}_{\theta}[S_n(T_n-S_n)]=0\Rightarrow\mathrm{E}_{\theta}[S_n^2]=\mathrm{E}_{\theta}[T_nS_n]$

Hence,
$$\mathrm{E}_{\theta}[(T_n-S_n)]^2]=\mathrm{E}_{\theta}[T_n^2]+\mathrm{E}_{\theta}[S_n^2]-2\,\mathrm{E}_{\theta}[T_nS_n]=0$$

Since $(T_n-S_n)^2\geq 0\Rightarrow (T_n-S_n)^2\stackrel{\mathrm{a.s.}}{=} 0$ so $T_n\stackrel{\mathrm{a.s.}}{=} S_n$

5 Best Linear Unbiased Estimators

Sometimes the class can be restricted even further to unbiased estimators that are a linear combination of the observations X_1, \ldots, X_n

An estimator $T_n(\boldsymbol{X})$ is the **Best Linear Unbiased Estimator** (BLUE) of θ if

- 1 $E_{\theta}[T_n(\boldsymbol{X})] = \theta \quad \forall \theta \in \Theta$
- 2 $T_n(\boldsymbol{X})$ is a linear estimator, i.e. it can be written as $T_n(\boldsymbol{X}) = \sum_{i=1}^n c_i X_i$ for some $c_i \in \mathbb{R}$
- 3 For any other linear unbiased estimator $S_n(\boldsymbol{X})$ of θ : $\operatorname{Var}_{\theta}[T_n(\boldsymbol{X})] \leq \operatorname{Var}_{\theta}[S_n(\boldsymbol{X})] \quad \forall \theta \in \Theta$

5 Best Linear Unbiased Estimators

- ► Linear unbiased estimators are a subset of unbiased estimators, so if the UMVUE is a linear estimator, then it is also the BLUE.
- For many parameters there do not exist linear unbiased estimators. For example, for $X \sim N(\mu, \sigma^2)$ there is no linear unbiased estimator for σ^2 .

5 Best Linear Unbiased Estimators

Example: If ${\rm Var}_{\theta}[X] < \infty$, then the sample mean is the BLUE of $\mu = {\rm E}[X]$

Gauss-Markov theorem: If X is a r.v. with mean $\mu=\mathrm{E}[X]$ and $\mathrm{Var}_{\theta}[X]=\sigma^2<\infty$ and X_1,\ldots,X_n is a random sample from X, then the sample mean \overline{X}_n is the BLUE of μ

5 **Proof of Gauss-Markov theorem**

- ightharpoonup Clearly, \overline{X}_n is an unbiased estimator of μ
- \overline{X}_n is a linear estimator with $c_i = \frac{1}{n}$ for $i = 1, \ldots, n$
- ightharpoonup To show that X_n has minimal variance, consider an arbitrary unbiased linear estimator $T_n(\mathbf{X}) = \sum_{i=1}^n c_i X_i$ of μ . Then
 - $E[T_n(X)] = \sum_{i=1}^n c_i E[X_i] = \mu \sum_{i=1}^n c_i$, so $\sum_{i=1}^n c_i = 1$
 - $Var[T_n(X)] = \sum_{i=1}^n c_i^2 Var[X_i] = \sigma^2 \sum_{i=1}^n c_i^2$
 - The BLUE thus minimizes $\sum_{i=1}^{n} c_i^2$ under the condition $\sum_{i=1}^{n} c_i = 1$
 - Under this condition it holds that

$$\sum_{i=1}^{n} \left(c_i - \frac{1}{n} \right)^2 = \sum_{i=1}^{n} c_i^2 - \frac{2}{n} \sum_{i=1}^{n} c_i + \frac{1}{n} = \sum_{i=1}^{n} c_i^2 - \frac{1}{n}$$

so it suffices to minimize the left hand side

• Since $\sum_{i=1}^{n} (c_i - \frac{1}{n})^2 \ge 0$, the minimum is reached for $c_i = \frac{1}{n}$ for $i = 1, \ldots, n$

Minimax estimators

Search for estimators for which the maximal possible risk (taken over θ) is minimal

An estimator T_n is called a **minimax estimator** of θ if

$$\sup_{\theta} R_{\theta}(T_n) \le \sup_{\theta} R_{\theta}(S_n)$$

for any other estimator S_n of θ

6 Bayesian estimators

- In the Bayesian framework, the parameters are also random variables/vectors with a distribution over the parameter space Θ
- ► A **prior distribution** is assumed for the parameters based on past experience or current believes
- ➤ The choice of the prior distribution is an important (subjective) choice
- \blacktriangleright The information of the random sample is combined with the prior distribution to estimate θ
- For example, minimize the **Bayes risk** with respect to the prior distribution of θ

6 Bayes estimators

The Bayes risk of the estimator $T_n(\boldsymbol{X})$ with respect to the prior distribution with density $\pi(\theta)$ is defined as

$$\mathsf{BR}_{\pi}(T_n) = \begin{cases} \sum_{\theta \in \Theta} R_{\theta}(T_n) \pi(\theta) & \text{if } \pi \text{ discrete} \\ \int_{\theta \in \Theta} R_{\theta}(T_n) \pi(\theta) \, d\theta & \text{if } \pi \text{ continuous} \end{cases}$$

An estimator $T_n(\boldsymbol{X})$ is called the **Bayes estimator** of θ with respect to the prior density $\pi(\theta)$ if

$$\mathsf{BR}_\pi(T_n) \leq \mathsf{BR}_\pi(S_n)$$

for any other estimator $S_n(\boldsymbol{X})$ of θ .