Universität Duisburg-Essen Fachbereich VWL Lehrstuhl Ökonometrie

Dr. Yannick Hoga Thilo Reinschlüssel

Multivariate Time Series Analysis Exercise Sheet 1

Exercise 1: Matrix Operations

Prove properties 3,4 and 5 from Proposition 1.2 (Slide 1-11). Are there any requirements regarding the matrix dimensions?

Exercise 2: Bivariate Functions

Find the extrema of the following functions (using pen and paper). Determine whether these points constitute minima, maxima or saddle points:

a)
$$f(x,y) = (x-2)^2 + (y-5)^2 + xy$$

b)
$$g(x,y) = (x-1)^3 - (4y+1)^2$$

Exercise 3: Stationarity

- a) Are weakly stationary processes always strictly stationary? Construct an example to support your argument
- b) Is weak stationarity a necessary condition for strict stationarity? Bring an example. Hint: How many moments does a distribution require?

Exercise 4: Covariance Matrices under Stationarity

Referring to Remark 1.13: Show that $\Gamma_l = \Gamma_{-l}^{\top}$ holds for all weakly stationary processes. (Two dimensions suffice)

Exercise 5: Ljung-Box Test in R

Load the package MTS and open the associated data pool 'mts-examples' (Slide 1-8). We are interested in the time series 'GS', 'MS' and 'JPM' from the dataset 'tenstocks':

- a) First apply the Ljung-Box test on each time series individually. What do the results imply?
- b) Now apply the multivariate Ljung-Box test on all three time series together. Compare the results with those from the univariate test and comment on it.