University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Damian Skrzypiec

Student no.: 320335

Structure Learning Algorithms for Chain Graphs

 $\begin{array}{c} {\bf Master's \ thesis} \\ {\bf in \ MATHEMATICS} \end{array}$

Supervisor:

John Noble, PhD.

Institute of Applied Mathematics and Mechanics

Supervisor's statement
Hereby I confirm that the present thesis was prepared under my supervision and that it fulfils the requirements for the degree of Master of Mathematics.
Date Supervisor's signature
Author's statement
Hereby I declare that the present thesis was prepared by me and none of its contents was obtained by means that are against the law. The thesis has never before been a subject of any procedure of obtaining an academic degree. Moreover, I declare that the present version of the thesis is identical to the attached electronic version.
Date Author's signature

Abstract

In this place will be abstract of this project.

Keywords

graphical model, chain graph, structure learning

Thesis domain (Socrates-Erasmus subject area codes)

11.2 Statistics

Subject classification

62 Statistics62-09 Graphical methods62E10 Characterization and structure theory

Title of the thesis in Polish

Algorytmy uczenia strukturalnego dla grafów łańcuchowych

Contents

1.	Introduction	G
2.	Preliminaries	11
3.	3.1. Decomposition of chain graphs	17 17
	3.1.2. Construction of Separation Trees	17 19 21
	3.2.1. Mathematical basis	22
	1 0	24 25
4.	CKES Algorithm	27
		27
	9	28 28
Ri	bliography	31

List of Figures

2.1.	Immorality in chain graph	12
2.2.	Example graph	13
2.3.	Moral graph of graph in figure 2.2	14
3.1.	Example graph for node tree illustration	18
3.2.	Node tree based on graph 3.1 and $\mathcal C$	18
3.3.	\mathcal{B} -consistent labeled block ordering for chain graph 3.1	20
3.4.	Result of Algorithm 1 for LBO from 3.3	20
3.5.	Path between C_u and C_v in separation tree \mathcal{T}	22
3.6.	Result of first phase of LCD algorithm	24
	Result of second phase of LCD algorithm	24
3.8.	Result of Complex Recovery Algorithm	25

List of Algorithms

1.	(LCD) Separation Tree Construction with Labeled Block Ordering	20
2.	(LCD) Skeleton Recovery	23
3.	(LCD) Complex Recovery	25
4.	(CKES) Feasible split algorithm	27
5.	(CKES) Feasible merge algorithm	28
6.	(CKES) CKES Algorithm	29

Chapter 1

Introduction

The purpose of this project is to present algorithms for learning conditional independence structure of joint probability distributions represented by chain graphs. This is a special case of learning probabilistic graphical models which provides convenient representation of factorisation probabilistic graphical models (PGMs) are Bayesian Networks where PGM is represented by directed acyclic graph and Markov Fields where PGM is represented by undirected graph. Chain graphs is a class of graphs that does not contains cycles (formal definition in 2.1.11). It contains both directed and undirected edges in graph representation hence it is natural generalization of Bayesian Networks and Markov Fields. Such a generalization was needed because of limitation of Markov Fields and Bayesian Networks. An edge in a Markov Field model represent that there is a correlation between two random variables but it does not specify what type of correlation it is. On the other hand Bayesian Network models contains only directed edges which represents only cause-effect relationships without possibility of existence of mutual correlation between two random variables. [To be continued...]

Chapter 2

Preliminaries

2.1. Graph Theory Terminology

This section provides definitions of graph theory objects required for completeness of further sections. In this section, when is not mention different, V is default notation for set of graph's vertices and E is default notation for set of graph's edges.

Definition 2.1.1. (Undirected edge)

For vertices $u, v \in V$ we say that there is an undirected edge between vertices u and v if $(u, v) \in E$ and $(v, u) \in E$. Undirected edge between u and v is marked as u - v.

Definition 2.1.2. (Directed edge)

For vertices $u, v \in V$ we say that there is a directed edge from vertex u to vertex v if $(u, v) \in E$ and $(v, u) \notin E$. Directed edge from u to v is marked as $u \to v$.

Definition 2.1.3. (Parents, Neighbours, Boundry)

Let G = (V, E) be a graph and $Y \subset V$ be a set of vertices. We define as follows

- 1. Parents of set Y in graph G is the set defined as $Pa_G(Y) = \{X : X \to Z_Y \text{ for } Z_Y \in Y\}$.
- 2. Neighbors of set Y in graph G is the set defined as $Na_G(Y) = \{X : X Z_Y \text{ for } Z_Y \in Y\}$.
- 3. Boundry of vertex $v \in V$ in graph G is the set defined as $Bd_G(v) = Pa_G(v) \cup Ne_G(v)$.

Definition 2.1.4. (Skeleton)

Skeleton of graph G = (V, E) is a graph G' = (V', E') where V = V' and the set of edges E' is obtained by replacing directed edges of set E by undirected edges.

Definition 2.1.5. (Undirected complete graph)

Let V be a set of vertices. Graph G = (V, E) is called undirected complete graph if set of edges E contains undirected edge between any two vertices from V.

Definition 2.1.6. (Route)

A route in graph G = (V, E) is a sequence of vertices $(v_0, \ldots, v_k), k \geq 0$, such that

$$(v_{i-1}, v_i) \in E$$
 or $(v_i, v_{i-1}) \in E$

for $i=1,\ldots,k$. The vertices v_0 and v_k are called *terminals*. A route is called descending if $(v_{i-1},v_i)\in E$ for $i=1,\ldots,k$. Descending route from u to v is marked as $u\mapsto v$.

Definition 2.1.7. (Path)

A route $r = (v_0, v_1, \dots, v_k)$ in graph G = (V, E) is called a path if all vertices in r are distinct.

Definition 2.1.8. (Complex)

A path $\pi = (v_1, v_2, \dots, v_k)$ in graph G = (V, E) is called complex if

- 1. $v_1 \rightarrow v_2$
- 2. $\forall_{i \in \{2,3,\dots k-2\}} v_i v_{i+1}$
- $v_{k-1} \leftarrow v_k$
- 4. There is not additional edges in graph G for vertices in path π .

Vertices v_1 and v_k are called *parents* of the complex, set of vertices $\{v_2, v_3, \dots, v_{k-1}\}$ is called *region* of the complex and number k-2 is the *degree* of the complex.

Next we define extended version of moral graphs. In Bayesian Networks moral graph is an undirected graph obtained from the original graph by adding undirected edges for not connected parents of the same child and then transform all edges into undirected edges. In case of chain graphs there can be situation when there are not connected parents of connected children (see 2.1). This situation can be interpreted as immoral and to be moralized a connection between parents are required.

Example 2.1.1. (Immorality in chain graph)

Figure 2.1: Immorality in chain graph

Definition 2.1.9. (Moral Graph)

Let G = (V, E) be a graph. A moral graph $G^m = (V, E^m)$ of graph G is a graph obtained by firstly join parents of complexes in graph G and then replace all edges by undirected edges.

Definition 2.1.10. (Cycle)

A route $r = (v_0, v_1, \dots, v_k)$ in graph G = (V, E) is called a pseudocycle if $v_0 = v_k$ and a cycles if further route is a path and $k \geq 3$.

A graph with only directed edges is called an *undirected graph*. A graph without directed cycles and with only directed edges is called a *directed acyclic graph* (DAG).

Definition 2.1.11. (Chain graph)

A graph G = (V, E) is called a chain graph if it does not have directed (pseudo) cycles.

Definition 2.1.12. (Section)

A subroute $\sigma = (v_i, \dots, v_j)$ of route $\rho = (v_0, \dots, v_k)$ in graph G is called section if σ is the maximal undirected subroute of route ρ . That means $v_i - \dots - v_j$ for $0 \le i \le j \le k$. Vertices v_i and v_j are called terminals of section σ . Further vertex v_i is called a head-terminal if i > 0 and $v_{i-1} \to v_i$ in graph G. Analogically vertex v_j is called a head-terminal if j < k and $v_j \leftarrow v_{j+1}$ in graph G.

A section with two head-terminals is called *collider* section. Otherwise the section is called *non collider*. For a given set of vertices $S \subset V$ in graph G and section $\sigma = (v_i, \ldots, v_j)$ we say that section is hit by S if $\{v_i, \ldots, v_j\} \cap S \neq \emptyset$. Otherwise we say that section σ is outside set S.

Definition 2.1.13. (Intervention)

A route ρ in graph G = (V, E) is blocked by a subset $S \subset V$ of vertices if and only if there exists a section σ of route ρ such that one of the following conditions is satisfied.

- 1. Section σ is a collider section with respect to ρ and σ is outside of S.
- 2. Section σ is non collider section with respect to ρ and σ is hit by S.

Lemma 2.1.1. Let G = (V, E) be a chain graph, ρ be a route from vertex u to vertex v in G and W denote set of vertices of route ρ . If route ρ is blocked by $S \subset V$ in G such that $W \subset S$ then route ρ is blocked by W and any vertez set containing W.

Proof. If route ρ is blocked by S then there is a non collider section of ρ which is hit by S or there is a collider section of ρ which is outside of S. Any collider section of ρ cannot be outside of S because $W \subset S$. With assumption that $W \subset S$ we know that every non collider section is hit by S and therefore is hit also by W and any other vertex set containing set W.

Example 2.1.2. (Graph definitions)

Based on the following two graphs (figures 2.2 and 2.3) we present examples of above defined definitions. Let graph presented in figure 2.2 be denoted as G. In graph G as example of descending route is (A,B,C,D) and example of non-descending route is (D,E,F,G). Graph G contains two complexes. Complex (A,B,C,D,E) is of degree equal to 3 and the other one (F,G,H,I) is of degree equal to 2. Graph G contains one cycle (I,J,K,I). The Route (F,G,H,I) in graph G contains section (G,H) which is head-to-head section.

Figure 2.2: Example graph

Graph presented in figure 2.3 is moral graph of graph G. Additional undirected edges A - E and F - I are the result of connecting parents of complexes in the original graph G.

Figure 2.3: Moral graph of graph in figure 2.2

2.2. Graphical Model Terminology

Our main goal is to find an conditional independence structure of given joint probability distribution, hence we start from recalling definition of conditional independence.

Definition 2.2.1. (Conditional Independence)

Let $(X_1, X_2, ..., X_n)$ be a random vector over probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that random vectors $X_A = \{X_a \mid a \in A\}$ and $X_B = \{X_b \mid b \in B\}$ are conditional independent given $X_S = \{X_s \mid s \in S\}$ when for all $A_1, A_2, A_3 \in \mathcal{F}$

$$\mathbb{P}(X_A \in A_1, X_B \in A_2 \mid X_S \in A_3) = \mathbb{P}(X_A \in A_1 \mid X_S \in A_3) \mathbb{P}(X_B \in A_2 \mid X_S \in A_3)$$
 (2.1)

where $A, B, S \subset 1, 2, ..., n$. Conditional independence of X_A and X_B given X_S is denoted as $X_A \perp \!\!\! \perp X_B \mid X_S$.

The following definition of c-separation is an analogical version of d-separation, used in Bayesian Networks, for chain graphs. This definition was introduced by Studeny and Bouckaert in [5]. The notation c-separation is short of "chain separation" and it is written in this form to present analogy to definition of d-separation.

Definition 2.2.2. (c-separation)

Let G = (V, E) be a chain graph. Let A, B, S be three disjoint subsets of the vertex set V, such that A and B are nonempty. We say that A and B are c-separated by S on G if every route within one of its terminals in A and the other in B is blocked by S. We call S a c-separator for A and B and mark as $\langle A, B \mid S \rangle_G^{sep}$.

Definition 2.2.3. (faithfulness)

Let G = (V, E) be a chain graph with random variables X_v associated with vertex $v \in V$. Let note domain of random variable X_v as \mathcal{X}_v . A probability measure \mathbb{P} defined on $\prod_{v \in V} \mathcal{X}_v$ is *faithful* with respect to G if for any triple (A, B, S) of disjoint subsets of V where A and B are non-empty we have

$$\langle A, B \mid S \rangle_{\mathcal{G}}^{sep} \iff X_A \perp \!\!\!\perp X_B \mid X_S$$
 (2.2)

In the same setup a probability measure $\mathbb P$ is called Markovian with respect to G if

$$\langle A, B \mid S \rangle_{\mathcal{G}}^{sep} \Longrightarrow X_A \perp \!\!\!\perp X_B \mid X_S$$
 (2.3)

Definition 2.2.4. (independence model, I-map)

The independence model induced by a chain graph G, denoted as I(G), is the set of separation statements $X \perp \!\!\! \perp Y \mid Z$ that holds in G. A chain graph H is an I-map (from independence map) of an independence model M if $I(H) \subset M$. Furthermore we say that H is an MI-map (minimal independence map) of M if after removing any edge from H it is not I-map of M anymore.

Remark 2.2.1. In the further section of this paper we will use c-separation statement for some chain graph G even if at that time graph G is unknown. In such a situation it should be interpreted as c-separation statement under probability distribution \mathbb{P} which is faithful to graph G. In particular in the chapter 3 we will be using separation trees, which depends on chain graph G, to build chain graph G via LCD algorithm. Underlying meaning is that separation trees are built based on probability distribution that is faithful to chain graph G but we do not know form of graph G beforehand.

It is said that two chain graphs G and H are in the same Markov equivalence class if I(G) = I(H). The following theorem from Frydenberg's paper [1] provides convenient tool for testing if two given chain graphs are the same in respect to Markov equivalence class.

Proposition 2.2.1. (Markov equivalence of chain graphs) [Theorem 5.6 from [1]] Two chain graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ have the same Markov properties if and only if they same the same skeleton and the same complexes.

Chapter 3

LCD Algorithm

LCD algorithm is short for Learning of Chain graphs via Decomposition algorithm. The algorithm was introduced by Ma, Xie and Geng in paper Structural Learning of Chain Graphs via Decomposition [2]. LCD algorithm returns representative chain graph of it's Markov equivalence class, because even with perfect knowledge of data probability distribution any two chain graph structures within the same Markov equivalence class are indistinguishable. (TODO: Add ref) The algorithm is composed of two steps - recovering skeleton of chain graph and the second is recovering complexes. This idea is backed up by proposition 2.2.1. The main idea of skeleton recovery is to decompose set of variables into smaller sets, determine independence structure there and join results in a correct way. To decompose problem into smaller subproblems concept of separation trees is being used.

3.1. Decomposition of chain graphs

Concept of separation trees introduced in this section is the main tool in LCD algorithm for decompose original graph into smaller subgraphs. We will see in subsection 3.2.4 that computational complexity of LCD algorithm depends on size of largest node of input separation tree. In subsection 3.1.1 we introduce definition and example of node tree and separation tree. In subsection 3.1.2 we present method of construction separation trees.

3.1.1. Separation Trees

For graph G = (V, E) we call set $C = \{C_1, \ldots, C_k\}$ as node set of graph G if C is a collection of distinct vertex sets such that $\forall i \in \{1, 2, \ldots, k\} C_i \subset V$.

Definition 3.1.1. (Node Tree)

Let G = (V, E) be a graph and $\mathcal{C} = \{C_1, \dots, C_k\}$ be a node set of graph G. A node tree is a graph $\mathcal{T}(G, \mathcal{C}) = (\mathcal{C} \cup \mathcal{S}, E)$, where $\mathcal{S} = \{C_i \cap C_j \mid i, j \in \{1, 2, \dots, k\}\}$ is set of so-called separators and $E = \{C_i \cap C_j \mid C_i \cap C_j \neq \emptyset \text{ and } i, j \in \{1, 2, \dots, k\}\}$ is set of undirected edges.

We will be using graphical convention for representing node trees proposed by Ma, Xie and Geng in [2]. Regular nodes (from set \mathcal{C}) in node tree will be displayed as triangles and separators (from set \mathcal{S}) will be displayed as rectangles.

Example 3.1.1. (Node tree)

To illustrate node tree definition let's consider graph presented in figure 3.1 and node set $C = \{\{A, I\}, \{A, B, C, D\}, \{D, E, F\}, \{D, F, G\}, \{E, F, H\}\}.$

Figure 3.1: Example graph for node tree illustration

Figure 3.2: Node tree based on graph 3.1 and C

Notice that if we remove separator S from node tree $\mathcal{T}(G,\mathcal{C})$ (or equivalently remove edge that contain separator S) then we got two separate node trees $\mathcal{T}(G,\mathcal{C}_1(S))$ and $\mathcal{T}(G,\mathcal{C}_2(S))$ where $\mathcal{C}_1(S) \cup \mathcal{C}_2(S) = \mathcal{C}$. To simplify notation we use

$$V_i(S) = \bigcup_{C \in \mathcal{C}_i(S)} C$$

as union of nodes from node tree $\mathcal{T}(G, \mathcal{C}_i(S))$ where $i \in \{1, 2\}$.

Definition 3.1.2. (Separation tree)

For given chain graph G = (V, E) and node set \mathcal{C} we say that node tree $\mathcal{T}(G, \mathcal{C})$ is a separation tree if

- 1. $\bigcup_{C \in \mathcal{C}} C = V$ and
- 2. for any separator S in node tree $\mathcal{T}(G,\mathcal{C})$ we have

$$\langle V_1(S) \setminus S, V_2(S) \setminus S \mid S \rangle_{\mathcal{G}}^{sep}$$

Let the node tree displayed in figure 3.2 be marked as $\mathcal{T}(G,\mathcal{C})$. The node tree $\mathcal{T}(G,\mathcal{C})$ contains four separators $\{A\}$, $\{D\}$, $\{E,F\}$, and $\{D,F\}$. At this point we know that $\bigcup_{C\in\mathcal{C}}C=V$. To examine if node tree $\mathcal{T}(G,\mathcal{C})$ is a separation tree we have to check if second condition from definition 3.1.2 are satisfied for every separator in $\mathcal{T}(G,\mathcal{C})$. If we consider separator $\{A\}$ of node tree $\mathcal{T}(G,\mathcal{C})$ then we obtain $V_1(\{A\}) = \{A,I\}$ and $V_2(\{A\}) = \{A,B,C,D,E,F,G,H\}$. The following condition of c-separation

$$\langle \{I\}, \{B, C, D, E, F, G, H\} \mid \{A\} \rangle_{\mathcal{G}}^{sep} \tag{3.1}$$

holds, because every route from $V_1(\{A\}) \setminus \{A\}$ to $V_2(\{A\}) \setminus \{A\}$ has only non head-to-head sections and for each route exist some section which is hit by A in graph G. Now if we consider separator $\{D\}$ we have $V_1(\{D\}) = \{A, B, C, D, I\}$ and $V_2(\{D\}) = \{D, E, F, G, H\}$. There is no route from $\{A, B, C, I\}$ to $\{E, F, G, H\}$ which would have a head-to-head section. Additionally every route from $\{A, B, C, I\}$ to $\{E, F, G, H\}$ contains section which is hit by D. Therefore $\{D\}$ c-separates $\{A, B, C, I\}$ and $\{E, F, G, H\}$ in graph G. Using the same argument we could prove that separators $\{E, F\}$ and $\{D, F\}$ also satisfies second condition in c-separation definition 3.1.2. Thus node tree $\mathcal{T}(G, \mathcal{C})$ presented in figure 3.2 is actual a separation tree of chain graph G presented in figure 3.1.

3.1.2. Construction of Separation Trees

In this subsection we present method for construction a separation trees by using labeled block ordering. Concept of labeled block ordering was introduced by Roverto and La Rocca in [4]. **TODO:** extend description

Definition 3.1.3. (labelled block ordering)

Let G = (V, E) be a chain graph and $(V_i)_{i=1}^n$ be a partition of a set V. A labelled block ordering \mathcal{B} of chain graph G is a sequence $(V_i^{l_i})_{i=1}^n$ such that $l_i \in \{d, g, u\}$ with convention $V_i = V_i^g$.

Definition 3.1.4. (\mathcal{B} -consistence)

Let G = (V, E) be a chain graph and $\mathcal{B} = (V_i^{l_i})_{i=1}^n$ be a labelled block ordering of G. We say that G is \mathcal{B} -consistent if

- 1. every edge connecting vertices $A \in V_i$ and $B \in V_j$ is oriented from $A \to B$ for i < j;
- 2. for every i such that $l_i = u$, the subgraph G_{V_i} is a undirected graph;
- 3. for every i such that $l_i = d$, the subgraph G_{V_i} is a DAG;
- 4. for every i such that $l_i = g$, the subgraph G_{V_i} may have both directed and undirected edges.

Example 3.1.2. Let $V_1 = \{A, B, C, D, R, I\}$, $V_2 = \{G, F\}$ and $V_3 = \{H\}$. Figure 3.3 presents a \mathcal{B} -consistent labeled block ordering $\mathcal{B} = \{V_1^g, V_2^u, V_3^g\}$ of chain graph from figure 3.1.

Ma, Xie and Geng proposed in [2] algorithm for creating separation tree based on given labeled block ordering. Using the main feature of labeled block ordering which is known order of blocks one can construct a DAG of blocks and then create separation trees from DAG representation of blocks. Figure 3.4 presents execution of Algorithm 1 on labeled block ordering from previous example. On the lefthand side a) of the figure DAG of blocks is

Figure 3.3: \mathcal{B} -consistent labeled block ordering for chain graph 3.1

Algorithm 1 (LCD) Separation Tree Construction with Labeled Block Ordering

Input: \mathcal{B} -consistent labeled block ordering $\mathcal{B} = (V_i^{l_i})_{i=1}^k$ of chain graph G Output: Separation tree \mathcal{T} of G.

- 1: Construct a DAG D with blocks $(V_i)_{i=1}^k$
- 2: Construct a junction tree \mathcal{T} by triangulating D
- 3: Replace each block V_i in $\mathcal T$ by original vertices it contains
- 4: return: \mathcal{T} ;

Figure 3.4: Result of Algorithm 1 for LBO from 3.3

presented. It is result of first line of the algorithm. On the righthand side b) of the figure separation tree is presented which is built after second and third line of the algorithm.

TODO: Add some description of the following lemma.

Lemma 3.1.1. Let G = (V, E) be a chain graph, $\mathcal{T}(G, \mathcal{C})$ be a separation tree and S be a separator of $\mathcal{T}(G, \mathcal{C})$. Suppose that $u \in V_1(S) \setminus S$, $u \in V_2(S) \setminus S$ and ρ is a route from u to v in G. Let W denote set of vertices of ρ . Then ρ is blocked by $W \cap S$ and any vertex set containing $W \cap S$.

Proof. We can assume that route ρ is of the form

$$\rho = \left(\underbrace{v_1^1, v_2^1, \dots, v_k^1}_{V_1, v_2^1, \dots, v_k^1}, \underbrace{s_1, \dots, s_n}_{S}, \underbrace{v_2^2, \dots, v_m^2}_{V_2^2, \dots, v_m^2} \right)$$
(3.2)

Otherwise every vertex of ρ would be in either $V_1(S) \setminus S$ or in $V_2(S) \setminus S$. That would imply existance of two adjacent vertices $v \in V_1(S) \setminus S$ and $w \in V_2(S) \setminus S$ and further that would contradictory to condition from separation tree definition $\langle V_1(S) \setminus S, V_2(S) \setminus S \mid S \rangle_G^{sep}$.

Let ψ be the subroute of the vertices $(v_k^1, s_1, \ldots, s_n, v_1^2)$ and W_{ψ} be the vertex set of ψ with vertices $\{v_k^1, v_1^2\}$ excluded. Since $W_{\psi} \subset S$ there is at least one non collider section of route ψ and, from lemma 2.1.1, every non collider section on ψ is hit by W_{ψ} . Therefore route ρ is blocked by set S or any set containing S when ψ is part of non collider section of ρ . To complete proof we have to show that thesis is satisfied in case when subroute ψ is part of collider section of route ρ . From now on we can assume that route ρ has collider section σ of the form

$$\sigma = v_i^1 \to v_{i+1}^1 - \dots - v_k^1 - s_1 - \dots - s_n - v_1^2 - \dots v_i^2 \leftarrow v_{i+1}^2$$
(3.3)

for some $i \in \{1, 2, \dots k\}$ and $j \in \{1, 2, \dots, m\}$. We have to consider few corner cases. In case when $v_i^1 \in S$ then exists a non collider section of ρ which is blocked by S or any set containing S. In case when $v_i^1 \in V_1(S) \setminus S$ and $v_{j+1}^2 \in S$ then exists a non collider section of ρ which is blocked by S or any set containing S. In case when $v_{j+1}^2 \in V_1(S) \setminus S$ then we can consider a non collider section of route ρ which starts from v_{j+1}^2 . Now it is sufficient to consider regular case when $v_i^1 \in V_1(S) \setminus S$ and $v_{j+1}^2 \in V_2(S) \setminus S$. This case cannot occure in separation tree because that would imply $v_i^1 \not \perp v_{j+1}^2 \mid S$ which is contradictory to condition from separation tree definition $\langle V_1(S) \setminus S, V_2(S) \setminus S \mid S \rangle_{\mathcal{G}}^{sep}$.

3.2. Algorithm

We pointed out before that LCD algorithm is composed of two phases. In the first phase skeleton of chain graph is constructed based on provided separation tree of chain graph and knowledge about conditional probability distribution. Outcome of this phase is skeleton G' of chain graph G and set of separators S. In the second phase complexes of chain graph G are reconstructed. Algorithm in the second phase is based on outcome of the first phase. Mathematical grounds for both algorithms are described in subsection 3.2.1. In subsection 3.2.2 we describe skeleton recovery algorithm (phase 1) and present associated example. In subsection 3.2.3 we describe complex recovery algorithm (phase 2) and also present associated example. In subsection 3.2.4 we performe analysis of computitional complexity of the LCD algorithm.

3.2.1. Mathematical basis

[...] Some introduction.

Theorem 3.2.1. ([2], chapter 3.1, Theorem 3)

Let $\mathcal{T}(G,\mathcal{C})$ be a separation tree for chain graph G. Then vertices u and v are c-separated by some set $S_{uv} \subset V$ in G if and only if one the following conditions hold:

- 1. Vertices u and v are not contained together in any node C of $\mathcal{T}(G,\mathcal{C})$,
- 2. Vertices u and v are contained together in some node C, but for any separator S connected to C, $\{u,v\} \not\subset S$, and there exists $S'_{uv} \subset C$ such that $\left\langle u,v\mid S'_{uv}\right\rangle_{\mathcal{C}}^{sep}$,
- 3. Vertices u and v are contained together in some node C and both of them belong to some separator connected to C, but there is a subset S'_{uv} of either $\bigcup_{u \in C'} C'$ or $\bigcup_{v \in C'} C'$ such that $\langle u, v \mid S'_{uv} \rangle_{\mathcal{G}}^{sep}$.

Proof. Here will be proof of the theorem.

Proposition 3.2.1. ([2], chapter 3.1, Proposition 4)

Let G be a chain graph and $\mathcal{T}(G,\mathcal{C})$ be a separation tree of G. For any complex K in G, there exists some node tree C of $\mathcal{T}(G,\mathcal{C})$ such that $\mathcal{K} \subset C$.

Proof. Let suppose oposite. Let $\mathcal{K} = (u, w_1, \dots, w_n, v)$ be a complex in chain graph G such that for any node C in separation tree $\mathcal{T}(G, \mathcal{C})$ vertex u and v are not contained together in C. Now let suppose that $u \in C_u$ and $v \in C_v$ where C_u and C_v are nodes of the separation tree.

Figure 3.5: Path between C_u and C_v in separation tree \mathcal{T}

Futhermore we introduce $\rho = \{C_u, S_1, C_1, S_2, \dots, S_k, C_v\}$ as a path between C_u and C_v in the separation tree $\mathcal{T}(G, \mathcal{C})$. We observe that $u \notin S_1$ and $v \notin S_1$ then we have $\{w_1, w_2, \dots, w_n\} \cap S_1 \neq \emptyset$ and therefore $u \not \perp v \mid S_1$. The last implication holds because in this case we have a head-to-head section $u \to w_1 - w_2 - \cdots - w_n \leftarrow v$ and if $\{w_1, w_2, \dots, w_n\} \cap S_1 \neq \emptyset$ then this section is not outside of S_1 . Condition $u \not \perp v \mid S_1$ is contrary to definition of separation tree. Because of the above contrary we can assume that $u \in C_1$ and repeate the same process. After finite number of iteration we obtain that u and v have to be contained in the same node of the separation tree.

3.2.2. Skeleton recovery

Skeleton Recovery algorithm is composed of three parts. In the first part of this algorithm (lines 3-11) local skeletons are recovered. This is obtained by looping over all nodes in $\mathcal{T}(G,\mathcal{C})$. For given node $C_h \in \mathcal{T}(G,\mathcal{C})$ we create complite graph $G_h = (C_h, E_h)$ and we test conditional independence of all possible pairs of C_h . For fixed pair $\{u,v\} \in C_h$ we every subset $S_{uv} \subset C_h$ we test condition $u \perp v \mid S_{uv}$. If such a condition is satisfied then edge (u,v) is removed from local graph G_h . By condition 1 from theorem 3.2.1 we observe that

edge which is removed from local skeleton cannot occure in global skeleton. This observation increase performance of implementation of Skeleton Recovery algorithm. In the second part of Skeleton Recovery algorithm (lines 12-17) local skeletons are combined into global skeleton and some of extra edges are removed based on second condition in theorem 3.2.1. The third part of this algorithm (lines 18-24) also focus on removing incorrect edges. This part of algorithm are backed up by third condition of theorem 3.2.1. The following algorithm was introduced in [2], chapter 3.2, algorithm 1.

Algorithm 2 (LCD) Skeleton Recovery

Input: A separation tree $\mathcal{T}(G,\mathcal{C})$; perfect conditional independence knowledge about \mathbb{P} . **Output:** The skeleton G' of G; a set \mathcal{S} of c-separators.

```
1: procedure RecoverySkeleton(\mathcal{T}(G, \mathcal{C}))
 2:
          S = \emptyset
          for all node C_h \in \mathcal{T}(G, \mathcal{C}) do
 3:
               Create complete undirected graph G_h = (C_h, E_h);
 4:
              for all vertex pair \{u,v\} \subset C_h do
 5:
                   if \exists S_{uv} \subset C_h \ u \perp v \mid S_{uv} \ \mathbf{then}
 6:
                         Delete edge (u, v) from graph G_h;
 7:
                         \mathcal{S} := \mathcal{S} \cup S_{uv};
                                                                                           \triangleright Add set S_{uv} to separators
 8:
                    end if
 9:
10:
               end for
          end for
11:
         Combine all the graphs (G_h)_{i \in \{1,...,H\}} into undirected graph G' = (V, \bigcup_{h=1}^{H} E_h);
12:
          for all \{u,v\} \in G' contained in more then one node of \mathcal{T}(G,\mathcal{C}) do
13:
              if \exists C_h \{u, v\} \subset C_h and (u, v) \notin E_h then
14:
                    Delete the edge (u, v) from G':
15:
              end if
16:
          end for
17:
          for all \{u,v\} \in G' contained in more then one node of \mathcal{T}(G,\mathcal{C}) do
18:
               N_{uv} := \{ S \subset \operatorname{ne}_{G'}(u) \cup \operatorname{ne}_{G'}(v) \mid S \not\subset C_h \text{ and } \{u, v\} \subset C_h \}
19:
              if u \perp v \mid S_{uv} for some S_{uv} \subset N_{uv} then
20:
                   Delete edge (u, v) from graph G';
21:
                    \mathcal{S} := \mathcal{S} \cup S_{uv};
22:
                                                                                           \triangleright Add set S_{uv} to separators
              end if
23:
          end for
24:
          return: G', S.
25:
26: end procedure
```

Example 3.2.1. To illustrate execution of the LCD algorithm let's assume we have data which joint distribution is faithful to graph presented in figure 3.1 but we do not know it's chain graph representation yet. Additionally we have separation tree presented on figure 3.2. Result of first phase of skeleton recovery algorithm is presented on figure 3.6. For every node tree we have local undirected graph representing local (in sense of particular node) independence structure. Phase two of skeleton recovery algorithm join local graphs into global undirected graph and removes some of redundant edges. Result of execution second phase is represented on figure 3.7. Result of applying skeleton recovery algorithm is the same as outcome from second phase of the algorithm, because there isn't pair of random variable satisfying condition from 20th line of Algorithm 2. Output set of separators in this example

Figure 3.6: Result of first phase of LCD algorithm

Figure 3.7: Result of second phase of LCD algorithm

is $S = \{ \{B, C\}, \{F\} \}.$

3.2.3. Complex recovery

Some words. The following algorithm was introduced in [2], chapter 3.3, algorithm 2.

Example 3.2.2. In this example we present performance of complex recovery algorithm for outcomes from skeleton recovery algorithm presented in Example 3.2.1. If we consider pair [D,A] in outer loop in the algorithm we find that $S_{DA} = \{B\}$ and $D \not \!\! \perp A \mid \{B\} \cup \{C\}$, therefore we orient edge $D \to C$. Similar we orient edge $A \to B$, because for pair [A,D] in the outer loop we have $S_{AD} = \{B\}$ and $A \not \!\! \perp D \mid \{B\}$. Conditional independence in this case is not satisfied because condition $\langle A,D \mid B \rangle_{\mathcal{G}}^{sep}$ does not hold and we have assumption of faithfulness. For [D,G] in outer loop we have $S_{DG} = \{F\}$ and $D \not \!\! \perp G \mid S_{DG} \cup \{F\}$, hence we orient edge $D \to F$. Orientation of edge $E \to F$ is obtained by consideration [E,H] in outer loop and w = F. Result of complex recovery algorithm is presented in figure 3.8. The edge [F,H] was not oriented by the algorithm because condition $F \not \!\! \perp H \mid F$ is not satisfied. As we mentioned before LCD algorithm creates representative of Markov equivalence class

Algorithm 3 (LCD) Complex Recovery

Input: Perfect conditional independence knowledge about \mathbb{P} ; the skeleton G' and the set \mathcal{S} of c-separators obtained in algorithm 2.

```
Output: The pattern G^* of graph G.
 1: procedure ComplexRecovery(\mathcal{T}(G, \mathcal{C}))
        Initialize G^* = G'
 2:
        for all ordered pair [u, v] : S_{uv} \in \mathcal{S} do
 3:
            for all u-w in G^* do
 4:
 5:
```

if $u \not\perp \!\!\! \perp v \mid S_{uv} \cup \{w\}$ then Orient u - w as $u \to w$ in G^* ; 6: 7: end if end for 8: 9: end for **return:** Pattern of G^* .

11: end procedure

10:

Figure 3.8: Result of Complex Recovery Algorithm

of given chain graph. Chain graphs presented in figure 3.8 and 3.1 are in the same Markov equivalence class.

3.2.4. Algorithm complexity

The skeleton and complex recovery phases are independent in sense of computational complexity, hence we can find upper bounds for those two phases separately. Let suppose that we have unknown chain graph G = (V, E) with |V| = n and |E| = m. Let further suppose that the input separation tree \mathcal{T} contains tree nodes $H = \{C_1, C_2, \dots, C_k\}$. To denote number of elements of separation tree node C_i we use c_i and by m we denote count of the biggest node in a separation tree \mathcal{T} , that is $m = \max\{c_i \mid i \in \{1, 2, \dots, k\}\}$.

The most computational expensive step in the skeleton recovery algorithm is loop in line 5 and verifying condition in line 6 of Algorithm 2. For given node in the separation tree C_i looping over all pairs $\{u,v\}\subset C_i$ is of complexity $\frac{1}{2}c_i\cdot(c_i+1)$ which is $\mathcal{O}(c_i^2)$. For given node in the separation tree and given pair of vertex $\{u,v\}$ verifying condition in line 6 of Algorithm 2 is of cost 2^{c_i} because it requires to look over all subsets of C_i . Second and third steps of the skeleton recovery algorithm are less computational complex then the first step.

Therefore complexity of the whole algorithm is determined by complexity of the first step which can be estimated as follow

$$T(\mathcal{T}) = \mathcal{O}\left(\sum_{C_i \in H} \frac{1}{2} c_i (c_i + 1) 2^{c_i}\right) \le$$

$$\le \mathcal{O}\left(\sum_{C_i \in H} \frac{1}{2} m(m+1) 2^m\right) =$$

$$= \mathcal{O}\left(km^2 2^m\right)$$
(3.4)

Chapter 4

CKES Algorithm

There will be an overview of CKES algorithm.

4.1. Mathematical basis

In order to prove Meek's conjecture two operations on chain graphs were introduced in [3] - feasible split and feasible merge. **TODO:** Add description why this operations are important.

```
Algorithm 4 (CKES) Feasible split algorithm
Input: G - chain graph, K block of G and L \subset K.
Output: Splitting K into K \setminus L and L in chain graph G.
 1: procedure FBSPLIT(K, L, G)
        Let L_1, \ldots, L_n denote the maximal connected subsets of L in G
        for all M \in \{L_1, L_2, ..., L_n\} do
 3:
            for all X, Y \in Ne_G(M) \cap (K \setminus L) do
 4:
                Add and edge X - Y in G
 5:
 6:
            end for
            for all X \in \operatorname{Pa}_G(M) and Y \in \operatorname{Ne}_G(M) \cap (K \setminus L) do
 7:
                Add an edge X \to Y in G
 8:
 9:
            end for
        end for
10:
        for i \in \{1, 2, ..., n\} do
11:
            Let K_i denote the component of G such that L_i \subset K_i
12:
            if K_i \setminus L_i \neq \emptyset then
13:
                Split K_i into K_i \setminus L_i and L_i in G
14:
            end if
15:
        end for
16:
17: end procedure
```

Theorem 4.1.1. (Meek's conjecture for chain graphs)

Let G and H be chain graphs such that $I(H) \subset I(G)$. Chain graph G can be transformed into H by sequence of edge additions, feasible splits and mergings such that after each operation in the sequence G is a chain graph and $I(H) \subset I(G)$.

Algorithm 5 (CKES) Feasible merge algorithm

```
Input: G - chain graph, L, R are blocks in G.
Output: Merged L and R block in G.
 1: procedure Fbmerge(L, R, G)
        Let R_1, \ldots, R_n denote the components of G that are in R
 2:
        for i \in \{1, 2, ..., n\} do
 3:
            for all X, Y \in \operatorname{Pa}_G(R_i) \cap L do
 4:
                Add an edge X - Y in G
 5:
 6:
            end for
            for all X \in Pa_G(R_i) \setminus L and Y \in Pa_G(R_i) \cap L do
 7:
                Add an edge X \to Y in G
 8:
            end for
 9:
10:
        end for
        for i \in \{1, 2, ..., n\} do
11:
           Let L_i denote the component of G such that L_i \subset L \cup R and Pa_G(R_i) \cap L_i \neq \emptyset
12:
            if L_i \neq \emptyset then
13:
                Merge L_i and R_i in G
14:
           end if
15:
16:
        end for
17: end procedure
```

4.2. Algorithm

TODO:

- 1. Define "Feasible split" for chain graphs
- 2. Define "Feasible merge" for chain graphs
- 3. Provide detailes about implementation of CKES algorithm

Algorithm CKES presented in Algorithm 6 was introduced in [3] in chapter 4 in figure 4.

4.2.1. Algorithm complexity

Algorithm 6 (CKES) CKES Algorithm

```
Input: Perfect conditional independence knowledge about \mathbb{P}.
Output: Chain graph G
 1: procedure CKESALGORITHM()
 2:
        S = \emptyset
 3:
        for all chain graph G in equivalence class of G do
             for all orderder pair of vertex X and Y do
 4:
                 if X \to Y is in G but X \perp\!\!\!\perp Y \mid \operatorname{Bd}_G(Y) \setminus X then
 5:
                     Remove X \to Y and go to line 3;
 6:
                 end if
 7:
                 if X - Y is in G but X \perp \!\!\! \perp Y \mid \operatorname{Bd}_G(Y) \setminus X and X \perp \!\!\! \perp Y \mid \operatorname{Bd}_G(X) \setminus Y then
 8:
                     Remove X - Y and go to line 3;
 9:
10:
                 end if
                 if X \to Y is not in G but adding it to G
11:
                     results in CG and X \not\perp \!\!\!\perp Y \mid \operatorname{Bd}_G(Y) then
12:
                     Add X \to Y to G and go to line 3;
13:
                 end if
14:
15:
                 if X - Y is not in G but adding it to G
                     results in CG and X \not\perp \!\!\!\perp Y \mid \operatorname{Bd}_G(Y) or X \not\perp \!\!\!\perp Y \mid \operatorname{Bd}_G(X) then
16:
                     Add X - Y to G and go to line 3;
17:
                 end if
18:
                 Move to another chain graph in the same equivalence class of G by performing
19:
20:
                 a random number of random feasible merges or feasible splits on G
                 and thereby updating G;
21:
             end for
22:
23:
        end for
24:
        return: G;
25: end procedure
```

Bibliography

- [1] M. Frydenberg, *The Chain Graph Markov Property*, Scandinavian Journal of Statistics 17 (1990) 333-353
- [2] Z. Ma, X. Xie and Z. Geng, Structural Learning Of Chain Graphs via Decomposition, Journal of Machine Learning Research 9 (2008) 2847-2880
- [3] J. Nielsen, J. Pena and D. Sonntag, An inclusion optimal algorithm for chain graph structure learning, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, PMLR (2014) 33:778-786
- [4] A. Roverto and L. La Rocca, On Block Ordering of Variables in Graphical Modelling, Scandinavian Journal of Statistics 33 (2006) 65-81
- [5] M. Studeny and R.R. Bouckaert, On chain graph models for description of conditional independence structures, Annals Of Statistics 26 (1998) 1434-1495