

험지 착륙을 위한 멀티콥터 착륙 시스템 Multi-copter Landing System for land on rough terrain

최 지 욱¹, 천 동 훈², 강 호 선³, 이 장 명^{4*}

- 1) 부산대학교 전기전자공학과 (TEL: 051-510-7379; E-mail: jiwook7379@pusan.ac.kr)
- ²⁾ 부산대학교 전기전자공학과 (TEL: 051-510-7379; E-mail: donghun7379@pusan.ac.kr)
 - 3) 부산대학교 전기전자공학과 (TEL: 051-510-7379; E-mail: hosun7379@pusan.ac.kr)
 4) 부산대학교 전자공학과 (TEL: 051-510-2378; E-mail: jmlee@pusan.ac.kr)

Abstract In this research, we propose a landing system that can stably land on rough terrain and slopes by installing a landing system on the lower part of the multi-copter. Existing multi-copter landing system had a limitation that landing was possible only on a flat surface by using a skid-type gear equipped with a retractor. When landing on rough terrain or slopes using skid-type landing gear, roll-over occurs in which the multi-copter is overturned, causing damage to the multi-copter. In this paper, we propose a 4-leg landing system using a 2-link structured landing leg, and through this, we propose a landing platform capable of stably landing without roll-over even on slopes and rough terrain. The controller of the landing platform uses a PD(proportional derivative) controller with excellent quick response and proves the effectiveness of the proposed landing system through experiments.

Keywords Quadcopter, Landing system, Landing Gear, Control

1. 서론

UAV(Unmanned Aerial Vehicle)는 조종사가 직접 탑승하지 않고 지상에서 미리 프로그래밍 된 경로에 따라자동 및 반자동으로 비행하는 무인 항공 시스템이다. [1] Multi-copter는 이러한 무인 항공 시스템의 일종으로 설계 특성 상 수직 이/착륙이 가능하며 운용 시 공간적제약이 고정익 비행체보다 적다는 특징을 가지고 있지만 지면 환경이 경사나 계단과 같은 특수한 지형에서는 이/착륙 시 비행체가 뒤집어지는 Roll-over 현상이 일어난다. [2] 본 논문에서는 이/착륙 시 지면 상태에 영향을받지 않고 안정적으로 임무를 수행할 수 있는 2-link 구조의 Landing platform을 제안하며 속응성이 뛰어난 PD (Proportional-Differential) 제어기를 leg에 적용하여 이/착륙 실험을 진행한다. 2장에서는 Landing platform의 기구학 및 착륙 알고리즘에 대하서 기술하고, 3장은 실험을통하여 해당 platform의 유효성을 입증한다.

2. Landing platform

2.1 Landing platform 기구학

Landing platform은 4개의 2-link leg로 구성되어 있다. 2-link leg를 각각 multi-copter의 arm 부분과 대칭으로 부착하여 경사면에도 안정적으로 착륙이 가능하도록 설계하였다.

그림 1. Landing platform을 부착 한 Multi-copter

Landing platform을 이용하여 경사면에 안정적으로 착륙하려면 2-link leg의 역기구학을 이용하여 기체의 roll, pitch 각도를 수평으로 유지하는 알고리즘이 필요하다. 역기구학을 통해 계산되는 각 leg의 joint 각도를 이용하여 Landing platform의 joint를 제어하고 이를 통하여 multi-copter가 경사면에 착륙 할 때 수평을 유지하여 roll-over 현상을 방지 할 수 있다.

그림 2. Landing leg 좌표계

2-link leg의 역기구학은 간단한 2-link planar 로봇의 역 기구학을 참고하여 구할 수 있다. 그림 2는 Landing leg 의 좌표계를 나타낸다. 2-link leg의 정기구학은 아래와 같이 구할 수 있다.[3]

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \tag{1}$$

$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2),$$
 (2)

여기서 x와 y는 직교 좌표에서 로봇의 축을 나타내며, l은 landing leg 의 link 길이를 의미한다. landing leg 를 제어하기 위한 각 joint 각도는 식 (1), (2)를 이용하여 2-link leg 의 역기구학을 통하여 구할 수 있다.

$$\cos\theta_2 = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2} \tag{3}$$

$$\theta_2 = \pm a \tan 2(\sin \theta_2, \cos \theta_2) \tag{4}$$

$$\theta_1 = a \tan 2(y, x) - a \tan(\frac{l_2 \sin \theta_2}{l_1 + l_2 \cos \theta_2})$$
 (5)

2.2 착륙 알고리즘

Landing platform 이 부착 된 Multi-copter 의 착륙 을 다음과 같이 진행된다.

그림 3. 착륙 알고리즘

먼저 Multi-copter 가 비행을 끝마치고 나서 착륙 장소에서 정지 비행(Hovering)를 수행하고 있을 때 기체는 착륙 장소로 천천히 하강하게 된다. 이후 leg 에 부착되어 있는 force sensor 를 통하여 기체가 지면에 도달했는지를 판별하고 모든 leg 가 지면에 도달했을 때 역기구학을 통한 수평 유지 제어가 수 행되게 된다.

3. 실험

그림 4. Multi-copter 착륙 실험

Multi-copter의 착륙 실험은 20 도 기울어져 있는 착륙 환경을 조성하고 X-4 형태의 Quad-copter를 이용하여 실험을 진행했다. 착륙을 진행 했을 때그림 4의 (b)와 같은 자세 데이터를 획득하였다. 착륙이 진행되어 수평 유지가 되었을 때 각도 오차는 그래프와 같이 0.5도 이내로 수렴하였고 수평 제어는 0.6초이내에 수행되었다.

4. 결론

본 연구에서는 Multi-copter가 경사면과 같은 험지에서도 안정적으로 착륙 할 수 있는 Landing platform을 제안하였다. Landing platform은 Multi-copter의 하단부에 장착되어 다른 상용화 제품에도 사용 할 수 있는 범용성이 확보되었으며 실험을 통하여 20 도의 경사면에서도 안정적으로 착륙을 진행 할 수 있음을 입증하였다. 20 도 이상의 경사면에서는 실험에 사용 된 Quadcopter의 arm이 leg와 간섭되는 현상 때문에 안정적인 착륙이 불가능하였다. 향후 4-leg에서 3-leg로 변경하는 방법으로 착륙 한계점을 개선 할 예정이다.

참고문헌

- [1] Eslam. N. M., A. N. Ouda., Abdelhalim. A. Z. (2016). Mathematical, "Modeling and Linearization for Fixed Wing UAV," *International Journal of Computer Applications*, 147(2), pp. 24–31.
- [2] Nurrohaman, M.F., Titalim, B.A., Utama, T.H., & Adiprawita, W, "Design and implementation of on-board hybrid generator for rotary wing drone," *International Conference on Electrical Engineering and Informatic*, pp. 310–314, 2019.
- [3] Muslimin, S., & Istardi, D, "Inverse kinematics analysis for motion prediction of a hexapod robot," 2018 International Conference on Applied Engineering, pp. 1– 5

[※] 본 연구는 2021 년도 정부(산업통상자원부)의 재원으로 한국 산업기술진흥원의 지원을 받아 수행된 연구임(P0008473, 2021년 산업혁신인재성장지원사업).

[※] 이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구 재단의 지원을 받아 수행된 연구임 (No.2019R1A2C2088859).