CS 61C: Great Ideas in Computer Architecture

Lecture 18: Parallel Processing — SIMD

Bernhard Boser & Randy Katz

http://inst.eecs.berkeley.edu/~cs61c

61C Survey

It would be nice to have a review lecture every once in a while, actually showing us how things fit in the bigger picture

Agenda

- 61C the big picture
- Parallel processing
- Single instruction, multiple data
- SIMD matrix multiplication
- Amdahl's law
- Loop unrolling
- Memory access strategy blocking
- And in Conclusion, ...

61C Topics so far ...

- What we learned:
 - 1. Binary numbers
 - 2. C
 - 3. Pointers
 - 4. Assembly language
 - 5. Datapath architecture
 - 6. Pipelining
 - 7. Caches
 - 8. Performance evaluation
 - 9. Floating point
- What does this buy us?
 - Promise: execution speed
 - Let's check!

Reference Problem

Matrix multiplication

- Basic operation in many engineering, data, and imaging processing tasks
- -Image filtering, noise reduction, ...
- -Many closely related operations
 - E.g. stereo vision (project 4)

•dgemm

double precision floating point matrix multiplication

Application Example: Deep Learning

- Image classification (cats ...)
- Pick "best" vacation photos
- Machine translation
- Clean up accent
- Fingerprint verification
- Automatic game playing

Matrices

- Square (or rectangular) N x N array of numbers
 - Dimension N

$$C = A \cdot B$$

$$c_{ij} = \sum_{k} a_{ik} b_{kj}$$

Matrix Multiplication,

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$$
$$c_{ij} = \sum_{k} a_{ik} b_{kj}$$

Reference: Python

Matrix multiplication in Python

```
def dgemm(N, a, b, c):
    for i in range(N):
        for j in range(N):
        c[i+j*N] = 0
        for k in range(N):
        c[i+j*N] += a[i+k*N] * b[k+j*N]
```

N	Python [Mflops]
32	5.4
160	5.5
480	5.4
960	5.3

- 1 Mflop = 1 Million floating point operations per second (fadd, fmul)
- dgemm(N ...) takes
 2*N³ flops

C

- $c = a \times b$
- a, b, c are N x N matrices

```
// Scalar; P&H p. 226
void dgemm_scalar(int N, double *a, double *b, double *c) {
    for (int i=0; i<N; i++)
       for (int j=0; j<N; j++) {
           double cij = 0;
           for (int k=0; k<N; k++)
               // a[i][k] * b[k][j]
               cij += a[i+k*N] * b[k+j*N];
           // c[i][j]
           c[i+j*N] = cij;
```

Timing Program Execution

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void) {
    // start time
    // Note: clock() measures execution time, not real time
             big difference in shared computer environments
             and with heavy system load
    clock_t start = clock();
    // task to time goes here:
    // dgemm(N, ...);
    // "stop" the timer
    clock t end = clock();
    // compute execution time in seconds
    double delta time = (double)(end-start)/CLOCKS_PER_SEC;
```

C versus Python

N	C [Gflops]	Python [Gflops]
32	1.30	0.0054
160	1.30	0.0055
480	1.32	0.0054
960	0.91	0.0053

Which class gives you this kind of power? We could stop here ... but why? Let's do better!

Agenda

- 61C the big picture
- Parallel processing
- Single instruction, multiple data
- SIMD matrix multiplication
- Amdahl's law
- Loop unrolling
- Memory access strategy blocking
- And in Conclusion, ...

Why Parallel Processing?

- CPU Clock Rates are no longer increasing
 - -Technical & economic challenges
 - Advanced cooling technology too expensive or impractical for most applications
 - Energy costs are prohibitive
- Parallel processing is only path to higher speed
 - Compare airlines:
 - Maximum speed limited by speed of sound and economics
 - Use more and larger airplanes to increase throughput
 - And smaller seats ...

Using Parallelism for Performance

- Two basic ways:
 - -Multiprogramming
 - run multiple independent programs in parallel
 - "Easy"
 - Parallel computing
 - run one program faster
 - "Hard"
- We'll focus on parallel computing in the next few lectures

New-School Machine Structures (It's a bit more complicated!)

Software

Parallel Requests

Assigned to computer e.g., Search "Katz"

Parallel Threads

Assigned to core e.g., Lookup, Ads

Parallel Instructions

>1 instruction @ one time e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time e.g., Add of 4 pairs of words

 Hardware descriptions All gates @ one time

Programming Languages

Hardware

Harness

Parallelism &

Achieve High

Warehouse Scale

Computer

Smart Phone

Logic Gates

16

Single-Instruction/Single-Data Stream (SISD)

- Sequential computer that exploits no parallelism in either the instruction or data streams. Examples of SISD architecture are traditional uniprocessor machines
 - E.g. our trusted MIPS

This is what we did up to now in 61C

Single-Instruction/Multiple-Data Stream (SIMD or "sim-dee")

 SIMD computer exploits multiple data streams against a single instruction stream to operations that may be naturally parallelized, e.g., Intel SIMD instruction extensions or NVIDIA **Graphics Processing Unit** (GPU)

Today's topic.

Multiple-Instruction/Multiple-Data Streams (MIMD or "mim-dee")

- Multiple autonomous processors simultaneously executing different instructions on different data.
 - MIMD architectures include multicore and Warehouse-Scale Computers

Topic of Lecture 19 and beyond.

Multiple-Instruction/Single-Data Stream (MISD)

- Multiple-Instruction,
 Single-Data stream
 computer that exploits
 multiple instruction
 streams against a single
 data stream.
 - Historical significance

This has few applications. Not covered in 61C.

Flynn* Taxonomy, 1966

		Data Streams		
		Single	Multiple	
Instruction	Single	SISD: Intel Pentium 4	SIMD: SSE instructions of x86	
Streams	Multiple	MISD: No examples today	MIMD: Intel Xeon e5345 (Clovertown)	

- SIMD and MIMD are currently the most common parallelism in architectures – usually both in same system!
- Most common parallel processing programming style: Single Program Multiple Data ("SPMD")
 - Single program that runs on all processors of a MIMD
 - Cross-processor execution coordination using synchronization primitives

Agenda

- 61C the big picture
- Parallel processing
- Single instruction, multiple data
- SIMD matrix multiplication
- Amdahl's law
- Loop unrolling
- Memory access strategy blocking
- And in Conclusion, ...

SIMD – "Single Instruction Multiple Data"

SIMD Applications & Implementations

Applications

- Scientific computing
 - Matlab, NumPy
- Graphics and video processing
 - Photoshop,...
- Big Data
 - Deep learning
- Gaming
- **—** ...
- Implementations
 - -x86
 - ARM
 - **—** ...

First SIMD Extensions: MIT Lincoln Labs TX-2, 1957

x86 SIMD Evolution

- New instructions
- New, wider, more registers
- More parallelism

http://svmoore.pbworks.com/w/file/fetch/70583970/VectorOps.pdf

CPU Specs (Bernhard's Laptop)

\$ sysctl -a | grep cpu hw.physicalcpu: 2 hw.logicalcpu: 4

machdep.cpu.brand_string:
Intel(R) Core(TM) i7-5557U CPU @ 3.10GHz

machdep.cpu.features: FPU VME DE PSE TSC MSR PAE MCE CX8 APIC SEP MTRR PGE MCA CMOV PAT PSE36 CLFSH DS ACPI MMX FXSR SSE SSE2 SS HTT TM PBE SSE3 PCLMULQDQ DTES64 MON DSCPL VMX EST TM2 SSSE3 FMA CX16 TPR PDCM SSE4.1 SSE4.2 x2APIC MOVBE POPCNT AES PCID XSAVE OSXSAVE SEGLIM64 TSCTMR AVX1.0 RDRAND F16C

machdep.cpu.leaf7_features: SMEP ERMS RDWRFSGS TSC_THREAD_OFFSET BMI1 AVX2 BMI2 INVPCID SMAP RDSEED ADX IPT FPU CSDS

SIMD Registers

SIMD Data Types

SIMD Vector Mode

Agenda

- 61C the big picture
- Parallel processing
- Single instruction, multiple data
- SIMD matrix multiplication
- Amdahl's law
- Loop unrolling
- Memory access strategy blocking
- And in Conclusion, ...

Problem

- Today's compilers (largely) do not generate SIMD code
- Back to assembly ...
- x86
 - -Over 1000 instructions to learn ...
 - -Green Book
- Can we use the compiler to generate all non-SIMD instructions?

x86 Intrinsics AVX Data Types

Intrinsics: Direct access to registers & assembly from C

Register

Туре	Meaning	
m256	256-bit as eight single-precision floating-point values, representing a YMM register or memory location	
m256d 256-bit as four double-precision floating-point values, representing a YMM register or memory location		
m256i	256-bit as integers, (bytes, words, etc.)	
m128	128-bit single precision floating-point (32 bits each)	
m128d	128-bit double precision floating-point (64 bits each)	

Intrinsics AVX Code Nomenclature

Marking	Meaning	
[s/d]	Single- or double-precision floating point	
[i/u]nnn	Signed or unsigned integer of bit size nnn, where nnn is 128, 64, 32, 16, or 8	
[ps/pd/sd]	Packed single, packed double, or scalar double	
epi32	Extended packed 32-bit signed integer	
si256	Scalar 256-bit integer	

x86 SIMD "Intrinsics"

Technologies \square MMX ☐ SSE ☐ SSE2 □ SSE3 SSSE3 ¬ SSE4.1 ¬ SSE4.2 AVX □ AVX2 ☐ FMA □ AVX-512 ☐ KNC □ SVML Other

Categories

- Application-Targeted
- ☐ Arithmetic
- ☐ Bit Manipulation
- □ Cast
- Compare

```
mul pd
```

```
m256d mm256 mul pd ( m256d a, m256d b)
Synopsis
 __m256d _mm256_mul_pd (__m256d a, __m256d b)
 Instruction: vmulpd ymm, ymm, ymm assembly instruction
 CPUID Flags: AVX
Description
 Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.
Operation
                   4 parallel multiplies
 FOR j := 0 \text{ to } 3
        i := i * 64
       dst[i+63:i] := a[i+63:i] * b[i+63:i]
 ENDFOR.
 dst[MAX:256] := 0
Performance
```

Architecture	Latency	Throughput	2 instructions per clock cycle (CPI = 0.5)
Haswell	5	0.5	
Ivy Bridge	5	1	
Sandy Bridge	5	1	

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Raw Double Precision Throughput (Bernhard's Powerbook Pro)

Characteristic	Value
CPU	i7-5557U
Clock rate (sustained)	3.1 GHz
Instructions per clock (mul_pd)	2
Parallel multiplies per instruction	4
Peak double flops	24.8 Gflops

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Actual performance is lower because of overhead

Vectorized Matrix Multiplication

"Vectorized" dgemm

```
// AVX intrinsics; P&H p. 227
void dgemm_avx(int N, double *a, double *b, double *c) {
    // avx operates on 4 doubles in parallel
    for (int i=0; i<N; i+=4) {
        for (int j=0; j<N; j++) {
            // c0 = c[i][i]
             m256d c0 = \{0,0,0,0\};
            for (int k=0; k<N; k++) {</pre>
                c0 = mm256 add pd(
                        c0, // c0 += a[i][k] * b[k][j]
                        _mm256_mul_pd(
                            _mm256_load_pd(a+i+k*N),
                            _{mm256\_broadcast\_sd(b+k+j*N))};
            _{mm256\_store\_pd(c+i+j*N, c0); // c[i,j] = c0}
```

Performance

N	Gflops			
N	scalar	avx		
32	1.30	4.56		
160	1.30	5.47		
480	1.32	5.27		
960	0.91	3.64		

- 4x faster
- But still << theoretical 25 Gflops!

We are flying ...

• Survey:

- But ... there is so much material to cover!
 - Solution: targeted reading
 - Weekly homework with integrated reading & lecture review

Agenda

- 61C the big picture
- Parallel processing
- Single instruction, multiple data
- SIMD matrix multiplication
- Amdahl's law
- Loop unrolling
- Memory access strategy blocking
- And in Conclusion, ...

A trip to LA

Commercial airline:

Get to SFO & check-in	SFO → LAX	Get to destination
3 hours	1 hour	3 hours

Total time: 7 hours

Supersonic aircraft:

Get to SFO & check-in	SFO → LAX	Get to destination
3 hours	6 min	3 hours

Total time: 6.1 hours

Speedup:

Flying time Trip time

$$S_{flight} = 60 / 6 = 10x$$

 $S_{trip} = 7 / 6.1 = 1.15x$

Amdahl's Law

- Get enhancement E for your new PC
 - E.g. floating point rocket booster
- E
- Speeds up some task (e.g. arithmetic) by factor S_E
- F is fraction of program that uses this "task"

Execution Time:

	no speedup	speedup section	
T ₀ (no <i>E</i>)	1-F	F	
T_E (with E)	1-F	F/S_E	

Speedup:

$$S = \frac{T_0}{T_E} = \frac{1}{(1 - F) + \frac{F}{S_E}}$$

Big Idea: Amdahl's Law

$$S = \frac{T_0}{T_E} = \frac{1}{(1-F) + \frac{F}{S_E}}$$
 Part not sped up

Example: The execution time of half of a program can be accelerated by a factor of 2.

What is the program speed-up overall?

$$S = \frac{T_0}{T_E} = \frac{1}{(1 - 0.5) + \frac{0.5}{2}} = \frac{1.33}{2} \ll 2$$

Maximum "Achievable" Speed-Up

$$S_{max} = \frac{1}{(1-F) + \frac{F}{S_E}} \bigg|_{S_E \to \infty} = \frac{1}{1-F}$$

Question: What is a reasonable # of parallel processors to speed up an algorithm with F = 95%? (i.e. $19/20^{th}$ can be speed up)

a) Maximum speedup:

$$F = 95\% \implies S_{max} = 20 \quad \text{but } S_F \to \infty !?$$

b) Reasonable "engineering" compromise:

Equal time in sequential and parallel code

$$(1-F) = \frac{F}{S_E}$$
 \Longrightarrow $S_E = \frac{F}{1-F} = \frac{0.95}{0.05} = 19$

Then
$$S = \frac{S_{max}}{2} = 10$$

Amdahl's Law

Strong and Weak Scaling

- To get good speedup on a parallel processor while keeping the problem size fixed is harder than getting good speedup by increasing the size of the problem.
 - Strong scaling: when speedup can be achieved on a parallel processor without increasing the size of the problem
 - Weak scaling: when speedup is achieved on a parallel processor by increasing the size of the problem proportionally to the increase in the number of processors
- Load balancing is another important factor: every processor doing same amount of work
 - Just one unit with twice the load of others cuts speedup almost in half

Clickers/Peer Instruction

Suppose a program spends 80% of its time in a square root routine. How much must you speedup square root to make the program run 5 times faster?

$$S = \frac{T_0}{T_E} = \frac{1}{(1 - F) + \frac{F}{S_E}}$$

Answer	S _E	
Α	5	
В	16	
С	20	
D	100	
Е	None of the above	

Clickers/Peer Instruction

Suppose a program spends 80% of its time in a square root routine. How much must you speedup square root to make the program run 5 times faster?

$$S = \frac{T_0}{T_E} = \frac{1}{(1 - F) + \frac{F}{S_E}}$$

Answer	S _E	
Α	5	
В	16	
С	20	
D	100	
Е	None of the above	

Administrivia

- MT2 is
 - Tuesday, November 1,
 - 3:30-5pm
 - see web for <u>room</u> assignments
- TA Review Session:
 - Sunday 10/30, 3:30 5 PM in 10 Evans
 - See Piazza

MT 2 Topics

- Covers lecture material up to 10/20
 - Caches
 - not floating point
- Combinatorial logic including synthesis and truth tables
- FSMs
- Timing and timing diagrams
- Pipelining
- Datapath, hazards, stalls
- Performance (e.g. CPI, instructions per second, latency)
- Caches
- All topics covered in MT 1
 - Focus is new material, but do not be surprised by e.g. MIPS assembly

Agenda

- 61C the big picture
- Parallel processing
- Single instruction, multiple data
- SIMD matrix multiplication
- Amdahl's law
- Loop unrolling
- Memory access strategy blocking
- And in Conclusion, ...

Amdahl's Law applied to dgemm

Measured dgemm performance

– Peak	5.5 Gflops
Large matrices	3.6 Gflops
Processor	24.8 Gflops

- Why are we not getting (close to) 25 Gflops?
 - Something else (not floating point ALU) is limiting performance!
 - But what? Possible culprits:
 - Cache
 - Hazards
 - Let's look at both!

Pipeline Hazards – **dgemm**

T------

Technologies			
□ MMX			
□ SSE			
□ SSE2			
□ SSE3			
□ SSSE3			
□ SSE4.1			
☐ SSE4.2			
☑ AVX			
□ AVX2			
□ FMA			
□ AVX-512			
□ KNC			
□ SVML			
□ Other			

Categories

- Application-Targeted Arithmetic Bit Manipulation
- □ Cast
- Compare

mul pd

Synopsis

```
__m256d _mm256_mul_pd (__m256d a, __m256d b)
#include "immintrin.h"
Instruction: vmulpd ymm, ymm, ymm
CPUID Flags: AVX
```

Description

Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

Operation

```
FOR j := 0 to 3
      i := j*64
      dst[i+63:i] := a[i+63:i] * b[i+63:i]
ENDFOR
dst[MAX:256] := 0
```

Performance

Architecture	Latency	Throughput
Haswell	5	0.5
Ivy Bridge	5	1
Sandy Bridge	5	1

Loop Unrolling

```
// Loop unrolling; P&H p. 352
const int UNROLL = 4:
void dgemm_unroll(int n, double *A, double *B, double *C) {
    for (int i=0; i<n; i+= UNROLL*4) {</pre>
        for (int j=0; j<n; j++) {
              m256d c[4];
                                          4 registers
            for (int x=0; x<UNROLL; x++)</pre>
                 c[x] = _mm256_load_pd(C+i+x*4+j*n);
            for (int k=0; k<n; k++) {
                 m256d b = mm256 broadcast sd(B+k+j*n);
                 for (int x=0; x<UNROLL; x++) Compiler does the unrolling
                     c[x] = mm256 \text{ add } pd(c[x],
                            _{mm256} \ mul \ pd(_{mm256} \ load \ pd(A+n*k+x*4+i), \ b));
            for (int x=0; x<UNROLL; x++)</pre>
                _{mm256\_store\_pd(C+i+x*4+j*n, c[x]);}
```

Performance

N	Gflops		
IV	scalar	avx	unroll
32	1.30	4.56	12.95
160	1.30	5.47	19.70
480	1.32	5.27	14.50
960	0.91	3.64	6.91

Agenda

- 61C the big picture
- Parallel processing
- Single instruction, multiple data
- SIMD matrix multiplication
- Amdahl's law
- Loop unrolling
- Memory access strategy blocking
- And in Conclusion, ...

FPU versus Memory Access

- How many floating point operations does matrix multiply take?
 - $-F = 2 \times N^3$ (N³ multiplies, N³ adds)
- How many memory load/stores?
 - $M = 3 \times N^2 \text{ (for A, B, C)}$
- Many more floating point operations than memory accesses
 - q = F/M = 2/3 * N
 - Good, since arithmetic is faster than memory access
 - Let's check the code ...

But memory is accessed repeatedly

Inner loop:

• q = F/M = 1! (2 loads and 2 floating point operations)

Typical Memory Hierarchy

- Where are the operands (A, B, C) stored?
- What happens as N increases?
- Idea: arrange that most accesses are to fast cache!

Sub-Matrix Multiplication or: Beating Amdahl's Law

Blocking

• Idea:

- Rearrange code to use values loaded in cache many times
- Only "few" accesses to slow main memory (DRAM) perfloating point operation
- − → throughput limited by FP hardware and cache, not slow DRAM
- -P&H p. 556

Memory Access Blocking

```
// Cache blocking; P&H p. 556
const int BLOCKSIZE = 32;
void do_block(int n, int si, int sj, int sk, double *A, double *B, double *C) {
    for (int i=si; i<si+BLOCKSIZE; i+=UNROLL*4)</pre>
        for (int j=sj; j<sj+BLOCKSIZE; j++) {</pre>
            _{m256d} c[4];
            for (int x=0; x<UNROLL; x++)</pre>
                 c[x] = mm256 load pd(C+i+x*4+j*n);
            for (int k=sk; k<sk+BLOCKSIZE; k++) {</pre>
                 m256d b = mm256 broadcast sd(B+k+j*n);
                 for (int x=0; x<UNROLL; x++)</pre>
                     c[x] = mm256_add_pd(c[x],
                            mm256 mul pd( mm256 load pd(A+n*k+x*4+i), b));
            for (int x=0; x<UNROLL; x++)</pre>
                mm256 store pd(C+i+x*4+j*n, c[x]);
void dgemm_block(int n, double* A, double* B, double* C) {
    for(int sj=0; sj<n; sj+=BLOCKSIZE)</pre>
        for(int si=0; si<n; si+=BLOCKSIZE)</pre>
            for (int sk=0; sk<n; sk += BLOCKSIZE)</pre>
                 do block(n, si, sj, sk, A, B, C);
```

Performance

NI	Gflops			
N	scalar	avx	unroll	blocking
32	1.30	4.56	12.95	13.80
160	1.30	5.47	19.70	21.79
480	1.32	5.27	14.50	20.17
960	0.91	3.64	6.91	15.82

Agenda

- 61C the big picture
- Parallel processing
- Single instruction, multiple data
- SIMD matrix multiplication
- Amdahl's law
- Loop unrolling
- Memory access strategy blocking
- And in Conclusion, ...

And in Conclusion, ...

- Approaches to Parallelism
 - SISD, SIMD, MIMD (next lecture)
- SIMD
 - One instruction operates on multiple operands simultaneously
- Example: matrix multiplication
 - Floating point heavy → exploit Moore's law to make fast
- Amdahl's Law:
 - Serial sections limit speedup
 - Cache
 - Blocking
 - Hazards
 - Loop unrolling