Operational Amplifier Stability

Collin Wells

Texas Instruments

HPA Linear Applications

2/22/2012

The Culprits

Capacitive Loads!

High Feedback Network Impedance!

Just Plain Trouble!

Inverting Input Filter??

Oscillator

Output Filter??

Oscillator

Recognize Amplifier Stability Issues on the Bench

Required Tools:

- Oscilloscope
- Step Generator

Other Useful Tools:

- Gain / Phase Analyzer
- Network / Spectrum Analyzer

Recognize Amplifier Stability Issues

- Oscilloscope Transient Domain Analysis:
 - Oscillations or Ringing
 - Overshoots
 - Unstable DC Voltages
 - High Distortion

Recognize Amplifier Stability Issues

 Gain / Phase Analyzer - Frequency Domain: Peaking, Unexpected Gains, Rapid Phase Shifts

Quick Op-Amp Theory and Bode Plot Review

Poles and Bode Plots

- Pole Location = f_p
- Magnitude = -20dB/Decade Slope
- Slope begins at f_P and continues down as frequency increases
- Actual Function = -3dB down @ f_P
- Phase = -45°/Decade Slope through f_P
- Decade Above f_P Phase = -84.3°
- Decade Below f_P Phase = -5.7°

Zeros and Bode Plots

- Zero Location = f_Z
- Magnitude = +20dB/Decade Slope
- Slope begins at f_Z and continues up as frequency increases
- Actual Function = +3dB up @ f_Z
- Phase = +45°/Decade Slope through f_Z
- Decade Above f_Z Phase = +84.3°
- Decade Below f₇ Phase = 5.7°

TEXAS INSTRUMENTS

Capacitor Intuitive Model

Inductor Intuitive Model

DC X_L

 $DC < X_L < Hi-f$

Hi-f X_L

Op-Amp Intuitive Model

Op-Amp Loop Gain Model

TEXAS INSTRUMENTS

Amplifier Stability Criteria

 $V_{OUT}/V_{IN} = AoI / (1 + AoI\beta)$

If: $Aol\beta = -1$

Then: $V_{OUT}/V_{IN} = AoI / 0 \rightarrow \infty$

If $V_{OUT}/V_{IN} = \infty \rightarrow$ Unbounded Gain

Any small changes in V_{IN} will result in large changes in V_{OUT} which will feed back to V_{IN} and result in even larger changes in $V_{OUT} \rightarrow OSCILLATIONS \rightarrow INSTABILITY!!$

Aolβ: Loop Gain

Aol β = -1 \rightarrow Phase shift of $\pm 180^{\circ}$, Magnitude of 1 (0dB)

fcl: frequency where $Aol\beta = 1 (0dB)$

Stability Criteria:

At fcl, where AoI β = 1 (0dB), Phase Shift < \pm 180°

Desired Phase Margin (distance from ±180° Phase Shift) ≥ 45°

What causes amplifier stability issues???

Fundamental Cause of Amplifier Stability Issues

Too much delay in the feedback network

INSTRUMENTS

Cause of Amplifier Stability Issues

Example circuit with too much delay in the feedback network

TEXAS

INSTRUMENTS

Cause of Amplifier Stability Issues

Real circuit translation of too much delay in the feedback network

Cause of Amplifier Stability Issues

Same results as the example circuit

INSTRUMENTS

How do we determine if our system has too much delay??

Phase Margin

Phase Margin is a measure of the "delay" in the loop

V-

Damping Ratio vs. Phase Margin

Phase margin, degrees

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Small-Signal Overshoot vs. Damping Ratio

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

AC Peaking vs. Damping Ratio

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Rate of Closure

Rate of Closure: Rate at which 1/Beta and AOL intersect

ROC = Slope(1/Beta) - Slope(AOL)

ROC = 0dB/decade - (-20dB/decade) = 20dB/decade

Rate of Closure and Phase Margin

Relationship between the AOL and 1/Beta rate of closure and Loop-Gain (AOL*B) phase margin

Rate of Closure and Phase Margin

So a pole in AOL or a zero in 1/Beta inside the loop will decrease AOL*B Phase!!

Rate of Closure and Phase Margin

1/Beta Zero

28

Testing for Rate of Closure in SPICE

Break the feedback loop and inject a small AC signal

Breaking the Loop

Plotting AOL, 1/Beta, and Loop Gain

Noise Gain

Understanding Noise Gain vs. Signal Gain

Signal Gain, G = -1

$$NG = 1 + ISGI = 2$$

Signal Gain, G = 2

$$NG = SG = 2$$

Both circuits have a **NOISE GAIN** (NG) of 2.

Noise Gain

Noise Gain vs. Signal Gain
 Gain of -0.1V/V, Is it Stable?

Signal Gain, G = -0.1

Noise Gain, NG = 1.1

If it's unity-gain stable then it's stable as an inverting attenuator!!!

Capacitive Loads

Capacitive Loads

Capacitive Loads – Unity Gain Buffers - Results

Determine the issue:

Capacitive Loads – Unity Gain Buffers - Theory

Capacitive Loads – Unity Gain Buffers - Theory

Capacitive Loads – Unity Gain Buffers - Theory

INSTRUMENTS

Stabilize Capacitive Loads – Unity Gain Buffers

Stability Options

Unity-Gain circuits can only be stabilized by modifying the AOL load

Method 1: Riso

Method 1: Riso - Results

Theory: Adds a zero to the Loaded AOL response to cancel the pole

Method 1: Riso - Results

When to use: Works well when DC accuracy is not important, or when loads are very light

Method 1: Riso - Theory

Method 1: Riso - Theory

Transfer function:

Loaded AOL(s)=
$$\frac{1+C_{Load} \cdot R_{iso} \cdot s}{1+(R_o + R_{iso}) \cdot C_{Load} \cdot s}$$

Pole Equation:

$$f(pole) = \frac{1}{2 \cdot pi \cdot (R_o + R_{iso}) \cdot C_{Load} \cdot s}$$

Zero Equation:

$$f(zero) = \frac{1}{2 \cdot pi \cdot R_{iso} \cdot C_{Load} \cdot s}$$

Method 1: Riso - Theory

TEXAS INSTRUMENTS

Ensure Good Phase Margin:

1.) Find: fcl and f(AOL = 20dB)

2.) Set Riso to create AOL zero:

Good: $f(zero) = Fcl \text{ for PM} \approx 45 \text{ degrees}.$

Better: f(zero) = F(AOL = 20dB) will yield slightly less than 90 degrees phase margin

$$fcl = 222.74kHz$$

 $f(AOL = 20dB) = 70.41kHz$

Zero Equation: $f(zero) = \frac{1}{2 \cdot pi \cdot R_{iso} \cdot C_{Load} \cdot s}$

$$f(zero) = \frac{1}{2 \cdot pi \cdot R_{iso} \cdot C_{Load} \cdot s}$$

Ensure Good Phase Margin: Test

f(AOL = 20dB) = 70.41kHz

fcl = 222.74kHz

 \rightarrow Riso = 0.715Ohms

Prevent Phase Dip:

Place the zero less than 1 decade from the pole, no more than 1.5 decades away

Good: 1.5 Decades: $F(zero) \le 35*F(pole) \rightarrow Riso \ge Ro/34 \rightarrow 70°$ Phase Shift Better: 1 Decade: $F(zero) \le 10*F(pole) \rightarrow Riso \ge Ro/9 \rightarrow 55°$ Phase Shift

TEXAS

INSTRUMENTS

Prevent Phase Dip: Ratio of Riso to Ro

If Riso $\geq 2*Ro \rightarrow F(zero) = 1.5*F(pole) \rightarrow \sim 10^{\circ}$ Phase Shift **Almost completely cancels the pole.

TEXAS INSTRUMENTS

Method 1: Riso – Design Summary

Summary:

- 1.) Ensure stability by placing Fzero ≤ F(AOL=20dB)
- 2.) If Fzero is > 1.5 decades from F(pole) then increase Riso up to at least Ro/34
- 3.) If loads are very light consider increasing Riso > Ro for stability across all loads

NSTRUMENTS

Method 1: Riso - Disadvantage

Disadvantage:

Voltage drop across Riso may not be acceptable

Method 2: Riso + Dual Feedback

Method 2: Riso + Dual Feedback

<u>Theory:</u> Features a low-frequency feedback to cancel the Riso drop and a high-frequency feedback to create the AOL pole and zero.

Method 2: Riso + Dual Feedback

When to Use: Only practical solution for very large capacitive loads ≥ 10uF

When DC accuracy must be preserved across different current loads

Method 2: Riso + Dual Feedback - Design

Ensure Good Phase Margin:

- 1.) Find: fcl and f(AOL = 20dB)
- 2.) Set Riso to create AOL zero:

Good: $f(zero) = Fcl \text{ for PM} \approx 45 \text{ degrees}.$

Better: f(zero) = F(AOL = 20dB) will yield slightly less than 90 degrees phase margin

- 3.) Set Rf so Rf >>Riso Rf ≥ (Riso * 100)
- 4.) Set Cf ≥ (200*Riso*Cload)/Rf

$$fcl = 222.74kHz$$

 $f(AOL = 20dB) = 70.41kHz$

Zero Equation:

$$f(zero) = \frac{1}{2 \cdot pi \cdot R_{iso} \cdot C_{Load} \cdot s}$$

Method 2: Riso + Dual Feedback - Summary

Ensure Good Phase Margin (Same as "Riso" Method):

- 1.) Set Riso so f(zero) = F(AOL = 20dB)
- 2.) Set Rf: Rf ≥ (Riso * 100)
- 3.) Set Cf: Cf ≥ (200*Riso*Cload)/Rf

Capacitive Loads – Circuits with Gain

Capacitive Loads – Circuits with Gain

Capacitive Loads – Circuits With Gain - Results

Same Issues as Unity Gain Circuit

Pole in AOL!!

ROC = 40dB/decade!!

INSTRUMENTS

Stabilize Capacitive Loads – Circuits with Gain

Stability Options – Circuits with Gain

Circuits with gain can be stabilized by modifying the AOL load and by modifying 1/Beta

Method 1 + Method 2

Method 3: Cf

Method 3: Cf - Results

<u>Theory:</u> 1/Beta compensation. Cf feedback capacitor causes 1/Beta to decrease at -20dB/decade and if placed correctly will cause the ROC to be 20dB/decade.

Method 3: Cf - Results

When to use: Especially effective when NG is high, ≥ 30dB.

Systems where a bandwidth limitation is not an issue

- Limits closed-loop bandwidth at 1/(2*pi*Rf*Cf)

NSTRUMENTS

Method 3: Cf - Design

Ensure Good Phase Margin:

For 20dB/decade ROC, 1/Beta must intersect AOL while its slope is -20dB/decade.

Therefore: $f(1/B \text{ pole}) < f(cl_unmodified)$ f(1/B zero) > f(AOL = 0dB)

 $f(cl_unmodified) = 152.13kHz$ f(AOL = 0dB) = 704.06kHz

1/B Pole Equation:

$$f(1/B \text{ pole}) = \begin{cases} 1 \\ 2 \cdot \text{pi} \cdot R_f \cdot C_f \end{cases}$$

1/B Zero Equation:

$$f(1/B zero) = 2 \cdot pi \cdot (R_g || R_f) \cdot C_f$$

Method 3: Cf - Design

Ensure Good Phase Margin:

- 1.) Find f(AOL=0dB)
- 2.) Set f(1/B zero) by choosing Cf:

Good: Set f(1/B zero) = f(AOL = 0dB) for PM ≈ 45 degrees.

Better: Set f(1/B zero) so AOL @ $f(cl) = \frac{1}{2}$ Low-Frequency NG in dB

f(AOL = 0dB) = 704.06kHz

1/B Zero Equation:

$$f(1/B zero) = \frac{1}{2 \cdot pi \cdot (R_g || R_f) \cdot C_f}$$

Method 3: Cf – Design - Summary

Summary:

- 1.) Ensure stability by placing:
 - a) $f(1/B zero) \ge f(AOL = 0dB$
 - b) $f(1/B \text{ pole}) \leq f(cl_unmodified})$
- 2.) Try to adjust the zero location so the 1/B curve crosses the AOL curve in the middle of the 1/B span allowing for shifts in AOL

Method 4: Noise-Gain

Method 4: Noise Gain - Results

Theory: 1/Beta compensation. Raise high-frequency 1/Beta so the ROC occurs before the AOL pole causes the AOL slope to change

Method 4: Noise Gain - Results

When to use: Better for lighter capacitive loading

When AOL @ f(AOL pole) < (Closed loop gain + 20dB)

Due to the increase in noise gain, this approach may not be practical when required noise gain is greater than the low-frequency signal gain by more than ~25-30dB.

Method 4: Noise Gain - Design

Ensure Good Phase Margin:

For 20dB/decade ROC, 1/Beta must intersect AOL above the AOL pole.

Therefore: |High-Freq NG| > |AOL| @ f(AOL pole)f(1/B zero) < f(AOL = High-Freq NG)

High-Freq Noise-Gain Equation:

$$R_f$$

HF NG = $(R_g || R_n)$

1/B Zero Equation:

$$f(1/B zero) = \frac{1}{2 \cdot pi \cdot R_n \cdot C_n}$$

1/B Pole Equation:

$$f(1/B \text{ pole}) = \frac{1}{2 \cdot \text{pi} \cdot (R_n + (R_g || R_f) \cdot C_f)}$$

Method 4: Noise Gain - Design

Ensure Good Phase Margin:

- 1.) Find f(AOL pole) and |AOL| @ f(AOL pole)
- 2.) Set High-Freq Noise-Gain by choosing Rn:

Good: $|HF NG| \ge |AOL| @ f(AOL pole)$

Better: |HF NG| ≥ |AOL| @ f(AOL pole) + 10dB

|AOL| @ f(AOL pole) = 52.11dB f(AOL pole) = 29.49kHz

High-Freq Noise-Gain Equation: R_f HF NG = $\binom{R_f}{R_g} \binom{R_g}{R_n}$

Method 4: Noise Gain - Design

Ensure Good Phase Margin:

- 3.) Find f(cl_modified) = f(AOL @ |HF NG|)
- 4.) Set f(1/B zero) by choosing Cn:

Good: $f(1/B zero) \le f(cl_modified)$

Better: $f(1/B zero) \le f(cl_modified) / 3.5 (~ \frac{1}{2} decade)$

f(cl_modified) = 29.49kHz

High-Freq Noise-Gain Equation: R_f HF NG = $(R_a || R_n)$

Method 4: Noise Gain - Summary

Summary:

- 1.) Ensure stability by setting:
 - a) $|HF NG| \ge (|AOL| @ f(AOL pole) + 10dB)$
 - b) $f(1/B zero) \le f(cl_modified) / 3.5$

Method 4: Noise Gain

Quick reminder that inverting and non-inverting noise gain circuits are different!

Circuits with High Feedback Network Impedance

Circuits with High Feedback Network Impedance

Circuits with High Feedback Network Impedance

Determine the issue:

Zero in 1/Beta!!

Circuits with High Feedback Network Impedance - Theory

Circuits with High Feedback Network Impedance - Theory

Stabilize Circuits With High Feedback Network Impedance

Stability Options – Zero in 1/Beta

The only practical option is to add a pole to cancel the 1/Beta Zero

Method 1: Cf

Method 1: Cf - Results

<u>Theory:</u> 1/Beta compensation. Cf feedback places a pole in 1/Beta to cancel the zero from the input capacitance.

Method 1: Cf - Results

When to use: Almost always a safe design practice. Limits gain at 1/(2*pi*Rf*Cf)

Method 1: Cf - Design

Ensure Good Phase Margin:

For 20dB/decade ROC, the 1/Beta pole must flatten the 1/Beta Zero before f(cl) Therefore $f(1/Beta pole) \le f(cl)$

f(cl) = 445.6kHz

1/B Pole Equation:

 $f(1/B \text{ pole}) = \frac{1}{2 \cdot \text{pi} \cdot R_f \cdot C_f}$

1/B Zero Equation:

 $f(1/B zero) = 2 \cdot pi \cdot (R_g || R_f) \cdot C_{in}$

Method 1: Cf - Design

Ensure Good Phase Margin:

1.) Find f(cl)

2.) Set f(1/B pole) by setting Cf:

Good: $f(1/B \text{ pole}) \leq f(cl)$

Better: $f(1/B \text{ pole}) \le f(cl)/3.5 \ (\sim \frac{1}{2} \text{ decade})$

1/B Pole Equation: $f(1/B \text{ pole}) = \frac{1}{2 \cdot \text{pi} \cdot \text{R}_{f} \cdot \text{C}_{f}}$

Method 1: Cf - Summary

Summary:

1.) Ensure stability by setting $f(1/B \text{ pole}) \le f(cl)/3.5 \ (\sim \frac{1}{2} \text{ decade})$

Ro vs. Zo

When Ro is really Zo!!

With Complex Zo, Accurate Models are Key!

With Complex Zo, Accurate Models are Key!

Questions/Comments?

Thank you!!

Special Thanks to:

Art Kay

Bruce Trump

Marek Lis

Tim Green

PA Apps Team

