Számítógépes Hálózatok

4. Előadás: Adatkapcsolati réteg

Adatkapcsolati réteg

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati

Fizikai

- Szolgáltatás
 - Adatok keretekre tördelése: határok a csomagok között
 - Közeghozzáférés vezérlés (MAC)
 - Per-hop megbízhatóság és folyamvezérlés
- □ Interfész
 - Keret küldése két közös médiumra kötött eszköz között
- Protokoll
 - Fizikai címzés (pl. MAC address, IB address)
- Példák: Ethernet, Wifi, InfiniBand

Adatkapcsolati réteg

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

- Funkciók:
 - Adat blokkok (keretek/frames) küldése eszközök között
 - A fizikai közeghez való hozzáférés szabályozása
- Legfőbb kihívások:
 - Hogyan keretezzük az adatokat?
 - Hogyan ismerjük fel a hibát?
 - Hogyan vezéreljük a közeghozzáférést (MAC)?
 - Hogyan oldjuk fel vagy előzzük meg az ütközési helyzeteket?

Keret képzés / Keretezés / Framing

- A bitek kódolását a fizikai réteg határozza meg
- A következő lépés az adatblokkok "kódolása"
 - Csomag-kapcsolt hálózatok
 - Minden csomag útvonal (routing) információt is tartalmaz
 - Az adathatárokat ismernünk kell a fejlécek olvasásához
 - a fizikai réteg nem garantál hibamentességet, az adatkapcsolati réteg feladata a hibajelzés illetve a szükség szerint javítás
 - Megoldás: keretekre tördelése a bitfolyamnak, és ellenőrző összegek számítása
 - a keretezés nem egyszerű feladat, mivel megbízható időzítésre nem nagyon van lehetőség
- Keret képzés fajtái
 - Bájt alapú protokollok
 - Bit alapú protokollok
 - Óra alapú protokollok

Bájt alapú: Karakterszámlálás

- a keretben lévő karakterek számának megadása a keret fejlécében lévő mezőben
- a vevő adatkapcsolati rétege tudni fogja a keret végét
- Probléma: nagyon érzékeny a hibára a módszer

Bájt alapú: Bájt beszúrás (Byte Stuffing)

FLAG ESC ESC Adat ESC FLAG FLAG

- Egy speciális FLAG bájt (jelölő bájt) jelzi az adat keret elejét és végét
 - Korábban két speciális bájtot használtak: egyet a keret elejéhez és egyet a végéhez
- Probléma: Mi van, ha a FLAG szerepel az adat bájtok között is?
 - Szúrjunk be egy speciális ESC (Escape) bájtot az "adat" FLAG elé
 - Mi van ha ESC is szerepel az adatban?
 - Szúrjunk be egy újabb ESC bájtot elé.
 - Hasonlóan a C stringeknél látottakhoz:
 - printf("You must \"escape\" quotes in strings");
 - printf("You must \\escape\\ forward slashes as well");
- 🗆 Pont-pont alapú protokollok használják: modem, DSL, cellular, ...

Bájt beszúrás példa

KERETEZENDŐ ADAT

H	E	L	L	0	[SPACE]	[ESC]

KERETEZETT ADAT

[FLAG] H E L	L O	[SPACE] [ESC]	[ESC] [FLAG]
--------------	-----	---------------	--------------

01111110

Adat

01111110

- Minden keret speciális bitmintával kezdődik és végződik (hasonlóan a bájt beszúráshoz)
 - A kezdő és záró bitsorozat ugyanaz
 - Például: 01111110 a High-level Data Link Protocol (HDLC) esetén
- A Küldő az adatban előforduló minden 11111 részsorozat elé 0 bitet szúr be
 - Ezt nevezzük bit beszúrásnak
- A Fogadó miután az 11111 részsorozattal találkozik a fogadott adatban:
 - 111110 → eltávolítja a 0-t (mivel ez a beszúrás eredménye volt)
 - 11111**1 →** ekkor még egy bitet olvas
 - 11111**10** → keret vége
 - 11111**11 →** ez hiba, hisz ilyen nem állhat elő a küldő oldalon. Eldobjuk a keretet!
- □ Hátránya: legrosszabb esetben 20% teljesítmény csökkenés
- Mi történik ha a záró bitminta meghibásodik?

Példa bit beszúrásra

Óra alapú keretezés: SONET

- Synchronous Optical Network
 - Nagyon gyors optikai kábelen való átvitel
 - STS-n, e.g. STS-1: 51.84 Mbps, STS-768: 36.7 Gbps
- Az STS-1 keretei rögzített mérettel rendelkeznek
 - □ 9*90 = 810 bájt → 810 bájt fogadása után újabb keret-kezdő mintázat

Hiba felügyelet

Zaj kezelése

- A fizikai világ eredendően zajos
 - Interferencia az elektromos kábelek között
 - Áthallás a rádiós átvitelek között, mikrosütő, ...
 - Napviharok
- Hogyan detektáljuk a bithibákat az átvitelben?
- Hogyan állítsuk helyre a hibát?

Bithibák definíciók és példák

 egyszerű bithiba – az adategység 1 bitje nulláról egyre avagy egyről nullára változik. Például:

VEVŐ 01100010

csoportos hiba (angolul burst error) – Az átviteli csatornán fogadott bitek egy olyan folytonos sorozata, amelynek az első és utolsó szimbóluma hibás, és nem létezik ezen két szimbólummal határolt részsorozatban olyan m hosszú részsorozat, amelyet helyesen fogadtunk volna a hiba burst-ön belül. A definícióban használt m paramétert védelmi övezetnek (guard band) nevezzük. (Gilbert-Elliott modell)

- Ötlet: küldjünk két kópiát minden egyes keretből
 - if (memcmp(frame1, frame2) != 0) { JAJ, HIBA TÖRTÉNT! }
- □ Miért rossz ötlet ez?
 - Túl magas ára van / a hatékonyság jelentősen lecsökken
 - Gyenge hibavédelemmel rendelkezik
 - Lényegében a duplán elküldött adat azt jelenti, hogy kétszer akkora esélye lesz a meghibásodásnak

Paritás Bit

- Ötlet: egy extra bitet adunk a bitsorozathoz úgy, hogy az egyesek száma végül páros legyen
 - Példa: 7-bites ASCII karakterek + 1 paritásbit
 - 0101001 1 1101001 0 1011110 1 0001110 1 0110100 1
- 1-bit hiba detektálható
- 2-bit hiba nem detektálható
- Nem megbízható burstös hibák esetén

Hiba vezérlés

- Stratégiák
 - Hiba javító kódok
 - Előre hibajavítás
 - Forward Error Correction (FEC)
 - kevésbé megbízható csatornákon célszerűbb
 - Hiba detektálás és újraküldés
 - Automatic Repeat Request (ARQ)
 - megbízható csatornákon olcsóbb

Hiba vezérlés

- □ Célok
 - Hiba detektálás
 - javítással
 - Forward error correction
 - Javítás nélkül -> pl. eldobjuk a keretet
 - Utólagos hibajavítás
 - A hibás keret újraküldése
 - Hiba javítás
 - Hiba detektálás nélkül
 - Pl. hangátvitel

Redundancia

- Redundancia szükséges a hiba vezérléshez
- Redundancia nélkül
 - □ 2^m lehetséges üzenet írható le m biten
 - Mindegyik helyes (legal) üzenet és fontos adatot tartalmazhat
 - Ekkor minden hiba egy új helyes (legal) üzenetet eredményez
 - A hiba felismerése lehetetlen
- Hogyan ismerjük fel a hibát???

Redundancia

- □ Egy keret felépítése:
 - m adat bit (ez az üzenet)
 - r redundáns/ellenőrző bit
 - Az üzenetből számolt, új információt nem hordoz
 - □ A teljes keret hossza: n = m + r

Az így előálló n bites bitsorozatot n hosszú kódszónak nevezzük!

Error Control Codes

How Codes Work: Words and Codewords

- Code = subset of possible words: Codewords
- Example:
 - n 3 bits => 8 words; codewords: subset

Words:

000, 001, 010, 011 100, 101, 110, 111

Code:

000, 011, 101, 110

Send only codewords

Elméleti alapok

- \square Tegyük fel, hogy a keret m bitet tartalmaz. ("uzenet bitek")
- A redundáns bitek száma legyen r. (ellenőrző bitek)
- A küldendő keret tehát n=m+r bit hosszú. (kódszó)

Hamming távolság

- Az olyan bitpozíciók számát, amelyeken a két kódszóban különböző bitek állnak, a két kódszó Hamming távolságának nevezzük.
 - Jelölés: d(x,y)
- Legyen S egyenlő hosszú bitszavak halmaza, ekkor S Hamming távolsága az alábbi:

$$d(S) := \min_{x,y \in S \ \land \ x \neq y} d(x,y)$$

- □ Jelölés: d(S)
- A Hamming távolság egy metrika.

Példa Hamming távolságra

- Mi lesz a halmaz Hamming távolsága?
 - d(S) = 5

Hamming távolság használata

S halmaz legyen a megengedett azonos hosszú kódszavak halmaza.

d(S)=1 esetén

- nincs hibafelismerés
- megengedett kódszóból megengedett kódszó állhat elő 1 bit megváltoztatásával

d(S)=2 esetén

- na az u kódszóhoz létezik olyan x megengedett kódszó, amelyre d(u,x)=1, akkor hiba történt.
- Feltéve, hogy az u és v megengedett kódszavak távolsága minimális, akkor a következő összefüggésnek teljesülnie kell: $2 = d(u, v) \le d(u, x) + d(x, v)$.
- Azaz egy bithiba felismerhető, de nem javítható.

Hamming korlát bináris kódkönyvre 1/3

TÉTEL

Minden $C\subseteq\{0,1\}^n$ kód , ahol d(C)=k $(\in \mathbb{N}_+)$. Akkor teljesül az alábbi összefüggés:

$$|C| \sum_{i=0}^{\left\lfloor \frac{k-1}{2} \right\rfloor} {n \choose i} \le 2^n$$

BIZONYÍTÁS

- 1. Hány olyan bitszó létezik, amely egy tetszőleges $x \in C$ kódszótól pontosan $i \in \mathbb{N}_+$ távolságra helyezkedik el?
 - Pontosan $\binom{n}{i}$ lehetőség van.
- 2. Hány olyan bitszó létezik, amely egy tetszőleges $x \in C$ kódszótól legfeljebb $\left|\frac{k-1}{2}\right|$ távolságra helyezkedik el?
 - Pontosan $\sum_{i=0}^{\left\lfloor \frac{k-1}{2} \right\rfloor} \binom{n}{i}$ lehetőség van.

Hamming korlát bináris kódkönyvre 2/3

- Lássuk be, hogy egy tetszőleges $x \in \{0,1\}^n$ bitszóhoz legfeljebb egy legális $u \in C$ kódszó létezhet, amelyre $d(x,u) \le \frac{k-1}{2}$ teljesül.
 - Indirekt tegyük fel, hogy létezhet két legális kódszó is a \mathcal{C} kódkönyvben, jelölje őket u_1 és u_2 . Ekkor viszont az alábbi két feltétel együttesen teljesül:

$$d(x, u_1) \le \frac{k-1}{2} \text{ és } d(x, u_2) \le \frac{k-1}{2}$$

Mi a két kódszó távolsága?

$$d(u_2, u_1) \le d(u_2, y) + d(y, u_1) \le \frac{k-1}{2} + \frac{k-1}{2} = k-1$$

Ez viszont ellentmond annak hogy a kódkönyv Hamming távolsága k, azaz az indirekt feltevésünk volt hibás. Vagyis tetszőleges bitszóhoz legfeljebb egy legális kódszó létezhet, amely a kódkönyv minimális távolságának felénél közelebb van a bitszóhoz.

Hamming korlát bináris kódkönyvre 3/3

4. A kódszavak $\frac{k-1}{2}$ sugarú környezeteiben található bitszavak egymással diszjunkt halmazainak uniója legfeljebb az n-hosszú bitszavak halmazát adhatja ki. Vagyis formálisan:

JELMAGYARÁZAT

- Kódszó
- Bitszó, amely nem kódszó

Hibafelismerés és javítás Hamming távolsággal

Hibafelismerés

d bit hiba felismeréséhez a megengedett keretek halmazában legalább
 d+1 Hamming távolság szükséges.

Hibajavítás

d bit hiba javításához a megengedett keretek halmazában legalább
 2d+1 Hamming távolság szükséges

Definíciók

- Egy $S\subseteq\{0,1\}^n$ kód rátája $R_S=\frac{\log_2|S|}{n}$. (a hatékonyságot karakterizálja)
- Egy $S\subseteq\{0,1\}^n$ kód távolsága $\delta_S=\frac{d(S)}{n}$. (a hibakezelési lehetőségeket karakterizálja)
- A jó kódoknak a rátája és a távolsága is nagy.

Hiba felismerés

d bithiba felismeréséhez legalább d+1 Hamming távolságú kód szükséges.

Hiba javítás

d bithiba javításához legalább 2d+1 Hamming-távolságú kód szükséges.

Újra a paritás bit használata 1/4

- a paritásbitet úgy választjuk meg, hogy a kódszóban levő 1ek száma páros (vagy páratlan)
 - Odd parity ha az egyesek száma páratlan, akkor 0 befűzése; egyébként 1-es befűzése
 - Even parity ha az egyesek száma páros, akkor 0 befűzése; egyébként 1-es befűzése

ÜZENET 1101011 5 darab 11010110

EVEN PARITY HASZNÁLATA 11010111

Paritás bit használata 2/4

Egy paritást használó módszer (Hamming)

- 🗆 a kódszó bitjeit számozzuk meg 1-gyel kezdődően;
- 2 egészhatvány sorszámú pozíciói lesznek az ellenőrző bitek,
 azaz 1,2,4,8,16,...;
- a maradék helyeket az üzenet bitjeivel töltjük fel;
- mindegyik ellenőrző bit a bitek valamilyen csoportjának a paritását állítja be párosra (vagy páratlanra)
- egy bit számos paritásszámítási csoportba tartozhat:
 - k pozíciót írjuk fel kettő hatványok összegeként, a felbontásban szereplő ellenőrző pozíciók ellenőrzik a kadik pozíciót
 - □ Példa: *k*=13-ra *k*=1+4+8, azaz az első, a negyedik illetve a nyolcadik ellenőrző bit fogja ellenőrizni

Paritás bit használata - példa 3/4

- Az ASCII kód 7 biten ábrázolja a karaktereket
- A példában EVEN PARITY-t használunk

ÜZENET BITEK KÓDSZÓBAN LÉVŐ POZÍCIÓNAK FELBONTÁSAI

•
$$3 = 1 + 2$$

•
$$5 = 1 + 4$$

•
$$6 = 2 + 4$$

•
$$7 = 1 + 2 + 4$$

•
$$10 = 2 + 8$$

•
$$11 = 1 + 2 + 8$$

ASCII karakter	ASCII decimális	Üzenet forrás bitjei	Az előállt kódszavak
E	69	1000101	10100000101
L	76	1001100	10 110011100
Т	84	1010100	00 110101100
Е	69	1000101	1010 000 0 101
	32	0100000	10001100000
I	73	1001001	11110011001
K	75	1001011	00 11001 0 011

Paritás bit használata 4/4

- a vevő az üzenet megérkezésekor 0-ára állítja a számlálóját, ezt követően megvizsgálja a paritás biteket, ha a k-adik paritás nem jó, akkor a számlálóhoz ad k-t
- Ha a számláló 0 lesz, akkor érvényes kódszónak tekinti a vevő a kapott üzenetet; ha a számláló nem nulla, akkor a hibás bit sorszámát tartalmazza, azaz ha például az első, a második és nyolcadik bit helytelen, akkor a megváltozott bit a tizenegyedik.

FOGADOTT *E* KARAKTER **10100100**101

Számláló != 0 SZÁMLÁLÓ = 2 + 4Számláló != 0 SZÁMLÁLÓ = 2

FOGADOTT *L* KARAKTER **11**110011100

Hibajelző kódok

Hibajelző kódok

Polinom-kód, avagy ciklikus redundancia (CRC kód)

 \square Tekintsük a bitsorozatokat \mathbb{Z}_2 feletti polinomok reprezentációinak.

Polinom ábrázolása \mathbb{Z}_2 felett

$$p(x) = \sum_{i=0}^{n} a_i x^i = a_n x^n + \dots + a_1 x^1 + a_0 x^0$$
, and $a_i \in \{0,1\}$

- A számítás mod 2 történik. (összeadás, kivonás, szorzás, osztás)
- lacktriangle reprezentálható az együtthatók n+1-es vektorával, azaz (a_n,\dots,a_1,a_0)
- Például az ASCII "b" karakter kódja 01100010, aminek megfelelő polinom hatod fokú polinom

$$p(x) = 1 * x^6 + 1 * x^5 + 0 * x^4 + 0 * x^3 + 0 * x^2 + 1 * x^1 + 0 * x^0$$

 Az összeadás és a kivonás gyakorlati szempontból a logikai KIZÁRÓ VAGY művelettel azonosak.

11110000 - 10100110 01010110

10011011 + 11001010 01010001

CRC

Definiáljuk a G(x) generátor polinomot (G foka r), amelyet a küldő és a vevő egyaránt ismer.

Algoritmus

- Legyen G(x) foka r. Fűzzünk r darab 0 bitet a keret alacsony helyi értékű végéhez, így az m+r bitet fog tartalmazni és az $x^rM(x)$ polinomot fogja reprezentálni.
- 2. Osszuk el az $x^r M(x)$ tartozó bitsorozatot a G(x)-hez tartozó bitsorozattal modulo 2.
- Vonjuk ki a maradékot (mely mindig r vagy kevesebb bitet tartalmaz) az $x^r M(x)$ -hez tartozó bitsorozatból moduló 2-es kivonással. Az eredmény az ellenőrző összeggel ellátott, továbbítandó keret. Jelölje a továbbítandó keretnek megfelelő a polinomot T(x).
- 4. A vevő a T(x) + E(x) polinomnak megfelelő sorozatot kapja, ahol E(x) a hiba polinom. Ezt elosztja G(x) generátor polinommal.
 - ■Ha az osztási maradék, amit R(x) jelöl, nem nulla, akkor hiba történt.

CRC áttekintés

Forrás: Dr. Lukovszki Tamás fóliái

Példa CRC számításra

Keret: 1101011011

Generátor: 10011

A továbbítandó üzenet: 11010110111110

CRC áttekintés

- □ A G(x) többszöröseinek megfelelő bithibákat nem ismerjük fel, azaz, ha $\exists j \in \mathbb{N}$: $E(x) = x^j G(x)$.
- \Box G(x) legmagasabb illetve legalacsonyabb fokú tagjának együtthatója mindig 1.

Hiba események

- $E(x) = x^i$, azaz i a hibás bit sorszáma, mivel G(x) kettő vagy több tagból áll, ezért minden egybites hibát jelezni tud.
- $E(x) = x^i + x^j = x^j (x^{i-j} + 1) (i > j)$, azaz két izolált egybites hiba esetén.
 - \Box G(x) ne legyen osztható x-szel;
 - G(x) ne legyen osztható (x^k+1) –gyel semmilyen maximális kerethossznál kisebb k-ra. (Pl. $x^{15}+x^{14}+1$)
- Ha E(x) páratlan számú tagot tartalmaz, akkor nem lehet x+1 többszöröse. Azaz, ha G(x) az x+1 többszöröse, akkor minden páratlan számú hiba felismerhető
- Egy r ellenőrző bittel ellátott polinom-kód minden legfeljebb r hosszúságú csoportos hibát jelezni tud

CRC a gyakorlatban

□ IEEE 802 által használt polinom az

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x^{1} + 1$$

- Néhány jó tulajdonságai a fenti polinomnak:
 - minden legfeljebb 32 bites hibacsomót képes jelezni,
 - 2. minden páratlan számú bitet érintő hibacsomót tud jelezni.

Peterson és Brown (1961)

 Szerkeszthető egy egyszerű, léptető regiszteres áramkör az ellenőrző összeg hardverben történő kiszámítására és ellenőrzésére.