

MONASH INFORMATION TECHNOLOGY

Machine Learning: Clustering

Prajwol Sangat Updated by Chee-Ming Ting (15 April 2022)

This week

Chapter 17 Parallel Clustering and Classification

- 17.1 Clustering and Classification
- 17.2 Parallel Clustering
- 17.3 Parallel Classification
- 17.4 Summary
- 17.5 Bibliographical Notes
- 17.6 Exercises

Machine Learning Fundamentals - Revision

- Supervised learning vs. unsupervised learning
- Supervised learning: discover patterns in the data that relate to data attributes with a target (class) attribute.
 - These patterns are then utilized to predict the values of the target attribute in future data instances.
- Unsupervised learning: The data have no target attribute.
 - Exploring the data to find some intrinsic structures in them.

Clustering: an illustration

- Finds groups (or clusters) of data
- A cluster comprises a number of "similar" objects
- A member is closer to another member within the same group than to a member of a different group (data points are similar within a cluster, less similar between clusters)
- Groups have no category or label
- Unsupervised learning

Definition:

to

Membership of a data point

- Indicates which cluster a point belong

sub	salary	age
1		
2		
3		
4		
1		
50		

What is clustering for?

- Let's see some real-life examples
- Example 1: Cluster students based on their examination marks, gender, heights, nationality, etc.

- Example 2: In marketing, segment customers according to their similarities
 - To do targeted marketing.

What is clustering for?

- Clustering is one of the most utilized machine learning techniques.
 - Used in almost every field, e.g., medicine, psychology, botany, sociology, biology, archeology, marketing, insurance, libraries, etc.
 - Most popular applications of clustering are:
 - recommendation engines,
 - market segmentation,
 - social network analysis,
 - image segmentation,
 - anomaly detection

Some Applications in Digital Health

Partitioning of Heart sound signals

Fig. 2. Dynamic clustering of heart sound into four fundamental components.

Noman, Fuad, Sh-Hussain Salleh, Chee-Ming Ting. "A markov-switching model approach to heart sound segmentation and classification." *IEEE Journal of Biomedical and Health Informatics* 24, no. 3 (2019).

Partitioning of brain regions into clusters (communities)

Ting, Chee-Ming, et al. "Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach." *IEEE Trans Medical Imaging* (2020).

What is clustering for?

Similarities Measures

- Key factor in clustering is the similarity measure
- Measure the degree of similarity between two objects
- Distance measure: the shorter the distance, the more similar are the two objects (zero distance means identical objects)

Euclidean Dis
$$dist(x_i, x_j) = \sqrt{\sum_{k=1}^{h} \left(x_{ik} - x_{jk}\right)^2}$$

Euclidean distance
$$(a, b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

$$\begin{aligned} &\mathsf{d}(\mathsf{x1},\!\mathsf{x2}) \\ &= & \sqrt{(x_{11} - x_{12})^2 + (x_{21} - x_{22})^2} \\ &= & \sqrt{(2 - 6)^2 + (3 - 6)^2} \end{aligned}$$

h = number of features (or attributes)

Clustering Techniques

Goal of clustering:

- maximize intra-cluster similarity & minimize intercluster similarity
- **Hierarchical** clustering (nested clustering)
 - Seeks to build a hierarchy of clusters (clusters within clusters)
 - Strategies:
 - *Agglomerative*: Bottom up approach
 - *Divisive*: Top down approach.
- Partitional clustering (non-overlapping clustering)
 - Partitions the data objects based on a clustering criterion.
 - Places the data objects into clusters to maximise intra-cluster similarity.
 - So that data in a cluster are more similar to each

Partitional vs Hierarchical

Each sample(point) is assigned to a unique cluster

Creates a nested and hierarchical set of partitions/clusters

K-Means clustering (Partitional clustering)

- K-means is a partitional clustering algorithm
- Let a set of data points (or instances) D be

$$\{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n}\},\$$

where $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ir})$ is a vector in a real-valued space $X \subseteq R^r$, and r is the number of attributes (dimensions) in the data.

- Each cluster has a cluster center, called centroid.
- Centroid can be mean/average of member data points in each cluster

sub	salary	age
x1		
x2		
x3		
x4		
i		

x50

K-Means clustering

- Algorithm k-Means:
 - (Initialization) Specifies k number of clusters, and guesses the k seed cluster centroid
 - (Assignment Step) Assign each data point to the cluster with the closest centroid
 - Current clusters may receive or loose their members
 - (Update Step) Each cluster must re-calculate the mean (centroid) based on the newly assigned members
 - The process is repeated until the clusters are stable (no change of members)

 Algorithm: k-means

```
MONASH
University
```

```
Algorithm: k-means
Input:
    D={x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} //Data objects
    k //Number of desired clusters
Output:
    K //Set of clusters
1. Assign initial values for means m<sub>1</sub>, m<sub>2</sub>, ..., m<sub>k</sub>
2. Repeat
3. Assign each data object x<sub>i</sub> to the cluster
    which has the closest mean
4. Calculate new mean for each cluster
```

5. Until convergence criteria is met

Algorithm: k-means, Distance Metric: Euclidean Distance

- (Initialization)

Specifies *k* number of clusters, and guesses the *k* seed cluster centroid

Algorithm: k-means, Distance Metric: Euclidean Distance

(Assignment Step)

Iteratively looks at each data point and assigns it to the closest centroid

Algorithm: k-means, Distance Metric: Euclidean Distance

(**Update Step**) Recalculate the mean (centroid) for each cluster based on the membership of the cluster

Algorithm: k-means, Distance Metric: Euclidean Distance

Iteratively looks at each data point and assigns it to the closest centroid,

Current clusters may receive or loose their members

Algorithm: k-means, Distance Metric: Euclidean Distance

Re-calculate the mean (centroid) for each cluster based on the membership of the cluster

- Data $D = \{5, 19, 25, 21, 4, 1, 17, 23, 8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16\}$
- Number of clusters: k = 3
- Initial centroids: $m_1=6$, $m_2=7$, and $m_3=8$
- First Iteration
 - (Assignment Step) Clusters:

$$-C_1=\{1, 2, 3, 4, 5, 6\}$$

$$-C_2=\{7\}$$

-
$$C_3$$
={8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 27}

	First Iter	ation:	Calcu	lating	euclide	an dist	ance.	determi	ning t	he cl	uster	memb	ership	and cal	culating	new c	entroid.	1	^		
_	D	5	19	25	21	4	1	17	23		7	1 6	10	2	20	14	11	27	9	3	16
	d(m1, Di)	1	13	19	15	2	5	11	17	2	1	0	4	4	14	8	5	21	3	3	10
	d(m2, Di)	2	12	18	14	3	6	10	16	1	0	1	3	5	13	7	4	20	2	4	9
	d(m3, Di)	3	11	17	13	4	7	9	15	0	1	2	2	6	12	6	3	19	1	5	8

- Clusters:

$$C_1 = \{1, 2, 3, 4, 5, 6\}$$

- $C_2 = \{7\}$
- $C_3 = \{8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 27\}$
- New centroids: $m_1 = 3.5$, $m_2 = 7$, and $m_3 = 16.9$
- Second Iteration
 - Clusters:
 - $C_1 = \{1, 2, 3, 4, 5\}$
 - C_2 ={6, 7, 8, 9, 10, 11}
 - C_3 ={14, 16, 17, 19, 20, 21, 23, 25, 27}
 - Re-calculated centroids: $m_1=3$, $m_2=8.5$, and $m_3=20.2$

Second	Iteration	on: Ca	lculatii	ng eucl	idean d	istance	e, deter	minin	g the	clust	er men	nbersh	ip and	calculati	ng nev	v centro	id.			
D	5	19	25	21	4	1	17	23	8	7	6	10	2	20	14	11	27	9	3	16
d(m1, Di)	1.5	15.5	21.5	17.5	0.5	2.5	13.5	19.5	4.5	3.5	2.5	6.5	1.5	16.5	10.5	7.5	23.5	5.5	0.5	12.5
d(m2, Di)	2	12	18	14	3	6	10	16	1	0	1	3	5	13	7	4	20	2	4	9
d(m3, Di)	11.9	2.1	8.1	4.1	12.9	15.9	0.1	6.1	8.9	9.9	10.9	6.9	14.9	3.1	2.9	5.9	10.1	7.9	13.9	0.9

- Clusters:
 - $C_1 = \{1, 2, 3, 4, 5\}$
 - $C_2 = \{6, 7, 8, 9, 10, 11\}$
 - $C_3 = \{14, 16, 17, 19, 20, 21, 23, 25, 27\}$
- New centroids: $m_1=3$, $m_2=8.5$, and $m_3=20.2$
- Third Iteration
 - Clusters:
 - $C_1 = \{1, 2, 3, 4, 5\}$
 - $-C_2=\{6, 7, 8, 9, 10, 11, 14\}$
 - $C_3 = \{16, 17, 19, 20, 21, 23, 25, 27\}$
 - Re-calculated centroids: m_1 =3, m_2 =9.29, and m_3 =21

Third Ite	ration	: Calcu	lating (euclide	ean dista	ance,	determi	ning	the cl	uster	membe	ership	and cal	culating	new c	entroid				
D	5	19	25	21	4	1	17	23	8	7	6	10	2	20	14	11	27	9	3	16
d(m1, Di)	2	16	22	18	1	2	14	20	5	4	3	7	1	17	11	8	24	6	0	13
d(m2, Di)	3.5	10.5	16.5	12.5	4.5	7.5	8.5	14.5	0.5	1.5	2.5	1.5	6.5	11.5	5.5	2.5	18.5	0.5	5.5	7.5
d(m3, Di)	15.2	1.2	4.8	0.8	16.2	19.2	3.2	2.8	12.2	13.2	14.2	10.2	18.2	0.2	6.2	9.2	6.8	11.2	17.2	4.2

- Clusters:
 - $C_1 = \{1, 2, 3, 4, 5\}$
 - $C_2 = \{6, 7, 8, 9, 10, 11, 14\}$
 - $C_3 = \{16, 17, 19, 20, 21, 23, 25, 27\}$
- New centroids: $m_1 = 3$, $m_2 = 9.29$, and $m_3 = 21$
- **Fourth Iteration**
 - Clusters:
 - $-C_1=\{1, 2, 3, 4, 5, 6\}$
 - $-C_2=\{7, 8, 9, 10, 11, 14\}$
 - $C_3 = \{16, 17, 19, 20, 21, 23, 25, 27\}$
 - Re-calculated centroids: $m_1=3.5$. $m_2=9.83$. and $m_3=21$

		·	
Fourth Iteration: Calculating euclidean distance, de	etermining th	ıe cluster membershi	p and calculating new centroid

Fourth i	teratio	m: Card	Suiatin	g euciic	aean ais	stance	, aetern	mmmé	j trie (Jiuste	r mem	persuit	p and c	aiculatii	ig new	centro	a.			
D	5	19	25	21	4	1	17	23	8	7	6	10	2	20	14	11	27	9	3	16
d(m1, Di)	2	16	22	18	1	2	14	20	5	4	3	7	1	17	11	8	24	6	0	13
d(m2, Di)	4.3	9.7	15.7	11.7	5.3	8.3	7.7	13.7	1.3	2.3	3.3	0.7	7.3	10.7	4.7	1.7	17.7	0.3	6.3	6.7
d(m3, Di)	16.0	2.0	4.0	0.0	17.0	20.0	4.0	2.0	13.0	14.0	15.0	11.0	19.0	1.0	7.0	10.0	6.0	12.0	18.0	5.0

- Clusters:

$$C_1 = \{1, 2, 3, 4, 5, 6\}$$

$$C_2 = \{7, 8, 9, 10, 11, 14\}$$

- New centroids: m_1 =3.5, m_2 =9.83, and m_3 =21

Fifth Iteration

	 No data movement from clusters (Process Terminated) 														
m_1	m ₂	m ₃	C ₁	C ₂	C ₃										
6	7	8	1, 2, 3, 4, 5, 6	7	8, 9, 10, 11, 14, 16, 17, 19, 20, 23, 25, 27										
3.5	7	16.9	1, 2, 3, 4, 5	6, 7, 8, 9, 10, 11	14, 16, 17, 19, 20, 21, 23, 25, 27										
3	8.5	20.2	1, 2, 3, 4, 5	6, 7, 8, 9, 10, 11, 14	16, 17, 19, 20, 21, 23, 25, 27										
3	9.29	21	1, 2, 3, 4, 5, 6	7, 8, 9, 10, 11, 14	16, 17, 19, 20, 21, 23, 25, 27										
3.5	9.83	21	1, 2, 3, 4, 5, 6	7, 8, 9, 10, 11, 14	16, 17, 19, 20, 21, 23, 25, 27										

Evaluating K-Means Clusters

One common measure is sum of squared error (SSE)

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- \square x is a data point in cluster C_i
- $oldsymbol{\square}$ m_i is the centroid of cluster \mathcal{C}_i

Example: How to calculate SSE?

Fifth Iter	Fifth Iteration: Calculating euclidean distance, determining the cluster membership and calculating new centroid.																			
D	5	19	25	21	4	1	17	23	8	7	6	10	2	20	14	11	27	9	3	16
d(m1, Di)	1.5	15.5	21.5	17.5	0.5	2.5	13.5	19.5	4.5	3.5	2.5	6.5	1.5	16.5	10.5	7.5	23.5	5.5	0.5	12.5
d(m2, Di)	4.8	9.2	15.2	11.2	5.8	8.8	7.2	13.2	1.8	2.8	3.8	0.2	7.8	10.2	4.2	1.2	17.2	0.8	6.8	6.2
d(m3, Di)	16.0	2.0	4.0	0.0	17.0	20.0	4.0	2.0	13.0	14.0	15.0	11.0	19.0	1.0	7.0	10.0	6.0	12.0	18.0	5.0

Clusters:

$$C_1$$
={1, 2, 3, 4, 5, 6}

$$C_2$$
={7, 8, 9, 10, 11, 14}

SSE measures how close the assigned data points to centroids

□ small value → maximized intra-cluster similarity

K-Means Clustering

- The number of clusters *k* is predefined. The algorithm does not discover the ideal number of clusters. During the process, the number of clusters remains fixed it does not shrink nor expand.
- The final composition of clusters is very sensitive to the choice of initial centroid values. Different initialisations may result in (Initial centroids: 6, 7, 8 or 3, 9, 16

Figure 17.4 Different clustering results for different initial centroids

K-Means Clustering: Pros and Cons

Pros

- Simple and fast for low dimensional data (time complexity of K Means is linear i.e. O(n))
- Scales to large data sets
- Easily adapts to new data points

(P) Cons

- ② It will not identify outliers
- Restricted to data which has the notion of a centre (centroid)

K-means clustering

Exercise 1

- Data $D = \{8, 11, 12, 14, 16, 17, 24, 28\}$
- Number of clusters: k = 3
- Initial centroids: $m_1=11$, $m_2=12$, and $m_3=28$
- Use the k-means serial algorithm to cluster the data in three clusters

Finding Optimal number of the clusters

- As k increases, clusters become smaller.
- The neighbouring clusters become less distinct from one anoth

■ How to choose an optimal k?

- Flbow Method
 - Plot sum of squared errors as a function of k (a scree plot)
 - Select the value of k at the "elbow" ie the point after which the SSE start decreasing in a linear fashion.

Silhouette analysis

- Measure of how close each point in one cluster is compared to points in the neighbouring clusters and provides a way to assess number of clusters.
- If most points have a high silhouette value, then the clustering configuration is appropriate.
- If many points have a low or negative value, then the clustering configuration may have too many or too few clusters.

optimal value for k

= 1

DEMO

This week

Chapter 17 Parallel Clustering and Classification

- 17.1 Clustering and Classification
- 17.2 Parallel Clustering
- 17.3 Parallel Classification
- 17.4 Summary
- 17.5 Bibliographical Notes
- 17.6 Exercises

Parallel K-means clustering

Data parallelism of k-means

- Create parallelism from the beginning because of partitioning of the dataset.
- Data is partitioned into multiple partition
- Each processor will work independently to create three clusters
- ☐ The final clusters from each processor are respectively united

Parallel K-means

Data parallelism

- Example: Data partitioning using round-robin
- Initial centroids: 6, 7, 8
- Each processor will run k Means locally
- At the end of each iteration, info about sum & count of data points in each local cluster is shared to calculate new centroid/mean
- Data does not move among processors (it stays where it was allocated initially)
- Data move across clusters within same processor

Initial dataset: 5, 19, 25, 21, 4, 1, 17, 23, 8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16

Processor 3

Parallel K-means

Data parallelism

k-means

Processor 1: Cluster 1 = 2, 3, 5

Cluster 2 = 7.11

Cluster 3 = 17, 21

Processor 2: Cluster 1 = 4, 6

Cluster 2 = NII.

Cluster 3 = 16, 19, 20, 23, 27

Processor 3: Cluster 1 = 1

Cluster 2 = 8, 9, 10, 14

Cluster 3 = 25

Cluster 1 = 1, 2, 3, 4, 5, 6 Cluster 2 = 7, 8, 9, 10, 11, 14 Cluster 3 = 16, 17, 19, 20, 21, 23, 25, 27

Initial dataset: 5, 19, 25, 21, 4, 1, 17, 23, 8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16

Data partition 2:

19, 4, 23, 6, 20, 27, 16

Processor 1 Data partition 1: 5, 21, 17, 7, 2, 11, 3

Iteration 1

Dataset=2, 3, 5

Sum=10: Count=3

Cluster 1

Mean=6

Cluster 1 Mean=6

Cluster 2 Mean=7 Dataset=7

Sum=7: Count=1 Cluster 3

Mean=8 Dataset € 11.17, 21

Sum=49: Count=3

Cluster 1

Iteration 2

Mean=3.5Dataset= $2, \beta, 5$ Sum=10; Count=3

Cluster 2 Mean=7 Dataset=7.(11) Sum=18: Count=2

Cluster 3 Mean=16.92 Dataset=17, 21

Sum=38: Count=2

Mean=3.5Dataset=4

Cluster 1

Cluster 3

Cluster 2 Mean=7 Dataset €6

Sum=4: Cbunt=1

Sum=6: Count=1 Cluster 3

Mean=16.92

Processor 3 Data partition 3: 25, 1, 8, 10, 14, 9

Processor 2

Dataset=46 Sum=10; Count=2

Cluster 2 Mean=7 Dataset=NII Sum=0: Count=0

Mean=8 Dataset=16, 19, 20, 23, 27 Sum=105: Count=5

Cluster 1 Mean=6

Cluster 2

Dataset=1Sum=1: Count=1

Mean=7 Dataset=NIL Sum=0: Count=0

Cluster 3 Mean=8. Dataset=(8, 9) 10, 14, 25 Sum=66: Count=5

Mean=3.5

Cluster 1

Dataset=1 Sum=1: Count=1 Cluster 2 Mean=7

Dataset=(8, 9) 10 Sum=27: Count=3

Cluster 3 Mean=16.92 Dataset=14, 25 Sum=39: Count=2

Dataset=16, 19, 20, 23, 27 Sum=105: Count=5

Parallel K-means clustering

Result Parallelism of k-means

- Focuses on clusters partitioning
- Each processor will work on a particular target cluster
- □ For example, from the very beginning, processor 1 will produce only one cluster assigned to it, that is cluster 1.
- □ During the iteration, the memberships of cluster can change. -→ data movement across processors

Parallel K-means

Result parallelism k-means

- ☐ Example: Data partitioning using round-robin
- ☐ Each processor is allocated only one cluster.
- ☐ Three initial means are distributed among the three processors,
- Data points may move from one processor to another at each iteration to join a cluster in a different processor
- ☐ Since a cluster is processed by one processor, calculating the mean is straightforward because all the data points within a cluster are located at the same processor

Initial dataset: 5, 19, 25, 21, 4, 1, 17, 23, 8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16

Parallel K-means

Result parallelism k-means

At the end, the final cluster result is basically the union of all local clusters from each processor.

Processor 1 cluster 1 = 1, 2, 3, 4, 5, 6 Processor 2 cluster 2 = 7, 8, 9, 10, 11, 14 Processor 3 cluster 3 = 16, 17, 19, 20, 21, 23, 25, 27

Data parallelism vs Result parallelism

Data parallelism

- Parallelism is created due to the fragmentation of initial input data
- Each processor focuses on its partition of the dataset
- Final results are formed by combining all local results produced by individual processors.

Result parallelism

- Focuses on the fragmentation of the results, not necessarily the input data.
- Each processor focuses on its target result partition.

What have we learnt today?

- Partitional (k-means) to attain meaningful groups of data
- Algorithmic examples for clustering of data

