Algèbre linéaire Chapitre 9

Definition 0.1

Le produit scalaire sur \mathbb{R}^2 est l'application $\cdot: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ définie par

$$u \cdot v = u_1 v_1 + u_2 v_2,$$

ceci pour tous $u = (u_1, u_2), v = (v_1, v_2) \in \mathbb{R}^2$.

Lemma 0.2

Pour $u, v, w \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$, on a:

- 1. $u \cdot v = v \cdot u$;
- 2. $(u+v) \cdot w = u \cdot w + v \cdot w$;
- 3. $(\lambda u) \cdot v = u \cdot (\lambda v) = \lambda u \cdot v$;
- 4. $u \cdot u \ge 0$ et si $u \cdot u = 0$, alors u = 0.

Definition 0.3

La longueur (ou norme) d'un vecteur $u \in \mathbb{R}^n$ est définie par $||u|| = \sqrt{u \cdot u}$.

Definition 0.4

L'angle entre les droites de vecteurs directeurs non-nuls $u,v\in\mathbb{R}^2$ est défini comme étant l'angle $0\leq\theta\leq\pi$ tel que

$$\cos \theta = \frac{u \cdot v}{||u|| \cdot ||v||}.$$

Definition 0.5

Soit V un \mathbb{R} -espace vectoriel. Un *produit scalaire* sur V est une application qui fait correspondre à chaque paire ordonnée $(u,v) \in V \times V$ un nombre réel, noté $\langle u,v \rangle \in \mathbb{R}$, telle que les conditions suivantes soient vérifiées, pour tous $u,v,w \in V, \lambda \in \mathbb{R}$:

- 1. $\langle u, v \rangle = \langle v, u \rangle$.
- 2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.
- 3. $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle = \langle u, \alpha v \rangle$.
- 4. $\langle u, u \rangle \geq 0$ et si $\langle u, u \rangle = 0$, alors u = 0.

Remarque : Pour $u, v \in V$, le nombre réel $\langle u, v \rangle$ est appelé le produit scalaire de u et v.

Definition 0.6

Soit V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$. On définit la norme de $v \in V$, notée ||v||, par

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Aussi, on définit la distance entre deux vecteurs $u, v \in V$ comme étant ||u - v||.

Proposition 0.7

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$ et $v \in V$. Alors les affirmations suivantes sont vérifiées.

- 1. $||v|| \ge 0$.
- 2. Si ||v|| = 0, alors v = 0.
- 3. $||\alpha v|| = |\alpha|||v||$ pour tout $\alpha \in \mathbb{R}$.

Theorem 0.8 (L'inégalité de Cauchy-Schwarz)

Soit V un \mathbb{R} -espace vectoriel muni d'un produit scalaire \langle , \rangle . Alors

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||,$$

ceci pour tous $u, v \in V$.

Definition 0.9

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$ et $u,v\in V$ deux vecteurs non-nuls. Alors l'angle entre u et v est défini comme étant l'angle $0\leq \theta \leq \pi$ tel que

$$\cos \theta = \frac{\langle u, v \rangle}{||u|| \cdot ||v||}.$$

Definition 0.10

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$ et $u,v\in V$. On dit que u et v sont orthogonaux si $\langle u,v\rangle=0$.

Proposition 0.11 (Inégalité du triangle)

Soit V un \mathbb{R} -espace vectoriel muni d'un produit scalaire \langle , \rangle . Alors pour tous $u, v \in V$, on a

$$||u + v|| \le ||u|| + ||v||.$$

Theorem 0.12 (Théorème de Pythagore généralisé)

Soit V un \mathbb{R} -espace vectoriel muni d'un produit scalaire \langle , \rangle et supposons que $u_1, \ldots, u_t \in V$ soient des vecteurs deux-à-deux orthogonaux (i.e. $\langle u_i, u_j \rangle = 0$ pour tous $1 \leq i \neq j \leq t$). Alors

$$||u_1 + \dots + u_t||^2 = ||u_1||^2 + \dots + ||u_t||^2.$$

Definition 0.13

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$ et $S \subset V$ un sous-ensemble de V. On dit que S est une famille orthogonale si $\langle u,v \rangle = 0$ pour tous $u,v \in S$ et que S est une famille orthonormale si de plus $\langle u,u \rangle = 1$ pour tout $u \in S$. Enfin, si S est une base de V, alors on parle de base orthogonale ou de base orthonormale.

Proposition 0.14

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire \langle , \rangle et $\mathscr{B} = (v_1, \ldots, v_n)$ une base orthogonale de V. Alors pour tout $v \in V$, on a

$$([v]_{\mathscr{B}})_i = \frac{\langle v, v_i \rangle}{||v_i||^2},$$

ceci pour tout $1 \leq i \leq n$. En particulier, si \mathscr{B} est orthonormale, alors on a $([v]_{\mathscr{B}})_i = \langle v, v_i \rangle$, ceci pour tout $1 \leq i \leq n$.

Proposition 0.15

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire \langle , \rangle et $S = \{v_1, \dots, v_k\} \subset V$ une famille orthogonale de vecteurs non-nuls. Alors S est une famille libre.

Definition 0.16

Soit V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$. Pour $u,v\in V$, on définit la projection orthogonale de u sur v par

$$\operatorname{proj}_{v} u = \frac{\langle u, v \rangle}{\langle v, v \rangle} v.$$

Proposition 0.17

Soit V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$. Alors les affirmations suivantes sont vérifiées.

- 1. Pour tous $u, v \in V$, le vecteur proj_v $u \in V$ appartient à $Vect(\{v\})$.
- 2. Pour tous $u, v \in V$, on $a \langle u proj_v u, v \rangle = 0$.

Theorem 0.18 (Le procédé de Gram-Schmidt)

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire \langle , \rangle et $S = \{x_1, \ldots, x_k\}$ une famille de vecteurs dans V. En posant successivement

$$v_1 = x_1,$$

 $v_2 = x_2 - proj_{v_1}x_2,$
 $v_3 = x_3 - proj_{v_1}x_3 - proj_{v_2}x_3,$
 \vdots
 $v_k = x_k - proj_{v_1}x_k - proj_{v_2}x_k - \dots - proj_{v_{k-1}}x_k,$

alors la famille $\{v_1, \ldots, v_k\}$ ainsi obtenue est une famille orthogonale.

Definition 0.19

Un R-espace vectoriel V de dimension finie muni d'un produit scalaire est appelé un espace euclidien.

Theorem 0.20

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$ et $S = \{x_1, \ldots, x_k\}$ une famille de vecteurs linéairement indépendants dans V. Le procédé de Gram-Schmidt appliqué à la famille S définit une suite de vecteurs v_1, \ldots, v_k telle que $\{v_1, \ldots, v_k\}$ est une famille de vecteurs deux-à-deux orthogonaux, non-nuls et donc linéairement indépendants. De plus, on a

$$Vect(S) = Vect(v_1, \dots, v_k).$$

Remarques:

- 1. Si (x_1, \ldots, x_n) est une base de V, le procédé donne une base orthogonale (v_1, \ldots, v_n) de V.
- 2. Si l'on souhaite avoir une base orthonormale de V, il suffit de normaliser la base obtenue en 1.

Definition 0.21

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire \langle , \rangle et $W \subset V$ un sous-espace vectoriel de V. L'orthogonal à W dans V est le sous-ensemble de V défini par

$$W^{\perp} = \{ v \in V : \langle v, w \rangle = 0 \text{ pour tout } w \in W \}.$$

Proposition 0.22

Soient V un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \ , \ \rangle$ et $W \subset V$ un sous-espace vectoriel de V. Alors le sous-ensemble W^{\perp} de V est un sous-espace vectoriel de V.

Proposition 0.23

Soient V un espace euclidien et $W \subset V$ un sous-espace vectoriel de V. Alors pour tout $v \in V$, il existe $w \in W$ et $x \in W^{\perp}$ tels que v = w + x. De plus, w et x sont uniquement déterminés par v.

Definition 0.24

Soient V un espace euclidien et $W \subset V$ un sous-espace vectoriel de V. Soient également $v \in V$ et $w \in W$, $x \in W^{\perp}$ tels que v = w + x, comme ci-dessus. On appelle w la projection orthogonale de v sur W et on écrit $w = \operatorname{proj}_W v$.

Corollary 0.25

Soient V un espace euclidien et $W \subset V$ un sous-espace vectoriel de V. Alors

$$\dim W^{\perp} = \dim V - \dim W.$$

Corollary 0.26

Soient V un espace euclidien et $W \subset V$ un sous-espace vectoriel de V. Alors

$$\left(W^{\perp}\right)^{\perp} = W.$$

Proposition 0.27

Soient V un espace euclidien et $W \subset V$ un sous-espace vectoriel de V. Alors pour tout $x \in V$ et tout $y \in W$, on a

$$||x - proj_W x|| \le ||x - y||.$$

Definition 0.28

Soient V un espace euclidien, $W \subset V$ un sous-espace vectoriel de V et $x \in V$. Alors le vecteur proj $_W x$ est appelé la meilleure approximation quadratique (ou au sens des moindres carrés) de x par un vecteur dans W.

Definition 0.29

Soient $A \in M_{m \times n}(\mathbb{R})$, $b \in M_{m \times 1}(\mathbb{R})$ et $X = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}^T$. Une solution du système AX = b au sens des moindres carrés est une solution du système $A^TAX = A^Tb$.

Theorem 0.30

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice dont les colonnes sont linéairement indépendantes (vues comme vecteurs de \mathbb{R}^m . Alors il existe une factorisation du type A = QR, où Q est une matrice $m \times n$ dont les colonnes forment une base orthonormée de l'espace colonnes de A et R est une matrice triangulaire supérieure, inversible, dont les coefficients diagonaux sont strictement positifs.

Algorithme:

- 1. Poser $\mathcal{B} = (c_1, \dots, c_n)$ une base de l'espace colonnes W de A.
- 2. A l'aide du procédé de Gram-Schmidt, trouver une base w_1, \ldots, w_n orthonormée de W.
- 3. Définir $Q \in M_{m \times n}(\mathbb{R})$ comme étant la matrice dont la *i*-ème colonne est w_i .
- 4. Pour tout $1 \le k \le n$, écrire $c_k = r_{1k}w_k + r_{2k}w_2 + \cdots + r_{kk}w_k + 0w_{k+1} + \cdots + 0w_n$. (On supposera que $r_{ij} \ge 0$, quitte à remplacer w_i par $-w_i$.) Poser alors

$$r_k = \begin{pmatrix} r_{1k} \\ r_{2k} \\ \vdots \\ r_{kk} \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

5. Définir $R \in M_{n \times n}(\mathbb{R})$ comme étant la matrice dont la *i*-ème colonne est r_i .

Proposition 0.31

Soit $Q \in M_{m \times n}(\mathbb{R})$ une matrice dont les colonnes forment une base orthonormée de l'espace des colonnes W de Q. Alors $QQ^Tb = proj_Wb$ pour tout $b \in M_{m \times 1}(\mathbb{R})$.

Proposition 0.32

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice dont les colonnes sont linéairement indépendantes et soit A = QR une factorisation QR de A, comme décrite ci-dessus. Alors pour tout $b \in M_{m \times 1}(\mathbb{R})$, l'équation AX = b admet une unique solution au sens des moindres carrés, donnée par la formule

$$\hat{X} = R^{-1}Q^Tb.$$