ESTRUCTURAS ALGEBRAICAS. Hoja de problemas 5

1. Demuestra que el conjunto $(\mathcal{C}([0,1]),+,\cdot)$, donde $\mathcal{C}([0,1]):=\{f:[0,1]\longrightarrow\mathbb{R} \text{ continua}\}$ con las operaciones

$$(f+g)(x) = f(x) + g(x)$$
 y $(f \cdot g)(x) = f(x)g(x)$ para $x \in [0,1]$

es un anillo. Especialmente señala los elemntos neutros respecto de las dos operaciones y el inverso de un elemento dado respecto de la primera. ¿Es conmutativo?

- 2. Demuestra que $\mathbb{Z}[i] = \{a+bi, | a, b \in \mathbb{Z}\}$ y $\mathbb{Q}[i] = \{a+bi, | a, b \in \mathbb{Q}\}$ son subanillos de \mathbb{C} . ¿Es alguno de ellos un cuerpo? Discute las mismas cuestiones para $\mathbb{Z}[\sqrt{-2}] = \{a+b\sqrt{-2} \mid a,b \in \mathbb{Z}\}$.
- 3. Halla las unidades de los siguientes anillos $\mathbb{Z}[i]$, $\mathbb{Q}[i]$, $\mathbb{Z}[\sqrt{-2}]$, $Z[\sqrt{-5}]$, $M_2(\mathbb{Q})$ y $M_2(\mathbb{Z})$.

En lo que sigue, a menos que se especifique lo contrario, consideramos anillos conmutativos con unidad, y supondremos que $1 \neq 0$.

- 4. Demuestra que un cuerpo no tiene divisores de cero.
- 5. Sea A un anillo finito y sea $0 \neq a \in A$. Demuestra que la aplicación $f_a : A \to A$ definida por $f_a(x) = ax$ es biyectiva si y sólo si a no es un divisor de cero. Deduce que en un anillo finito todo elemento no nulo es o bien una unidad o bien un divisor de cero. Observa, en particular, que un anillo finito es un dominio si y solo si es un cuerpo.
- 6. Sea A un anillo. demuestra que el conjunto A^* de sus unidades es un grupo respecto de la multiplicación. Comprueba que este hecho es coherente con los resultados que has obtenido en el ejercicio 3.
- 7. Para cada elemento no nulo $x \in \mathbb{Z}/8\mathbb{Z}$ decide si x es una unidad o un divisor de cero.
- 8. Demuestra que si A es un dominio conmutativo, entonces A[X] es un dominio conmutativo.
- 9. Si R_1 y R_2 son dos anillos demuestra que $(R_1 \times R_2)^* = R_1^* \times R_2^*$.
- 10. Calcula el número de unidades del anillo finito $\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$, e indica cuántos divisores de cero tiene.
- 11. Demuestra que $R := \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ es un subanillo conmutativo del anillo no conmutativo $M_2(\mathbb{R})$. Decidir si R es un cuerpo y si la respuesta es afirmativa intentar establecer un isomorfismo con algún cuerpo conocido.
- 12. Sea R un anillo e I un ideal de R. Demuestra que los siguientes subconjuntos de R son ideales de R.
 - (a) $Rad(I) := \{a \in R : a^n \in I \text{ para algún } n \in \mathbb{N} \}$ (el radical de I). (¿Quién es Rad(I) cuando $I = (4) \subset \mathbb{Z}$ y cuando $I = (X^3) \subset \mathbb{R}[X]$?)
 - (b) $Ann(I) := \{a \in R : ax = 0 \text{ para todo } x \in I\}$ (el anulador de I). (¿Quién es Ann(I) cuando $I = (4) \subset \mathbb{Z}$ y cuando $I = (\overline{2}) \subset \mathbb{Z}/6\mathbb{Z}$?)
- 13. Sea R un anillo conmutativo con unidad. Demuestra lo siguiente:
 - (a) Si I es un ideal de R entonces, $I = R \iff$ existe una unidad de R en I.
 - (b) R es un cuerpo \iff $\{0\}$ es el único ideal propio de R.
- 14. Sean los anillos $A_1 = \mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} | a, b \in \mathbb{Z}\}$ y $A_2 = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$. Consideramos los anillos cociente $R_i = A_i/2A_i$ con i = 1, 2. Para i = 1, 2, halla:
 - (a) el número de elementos de R_i ;
 - (b) todos los ideales de R_i .
- 15. Sea $r \in \mathbb{R}$. Decide si el conjunto $M_r = \{ f \in \mathcal{C}([0,1]) \mid f(r) = 0 \}$ es un ideal del anillo $\mathcal{C}([0,1])$.
- 16. Sea $f: A \to A'$ un homomorfismo de anillos y sean $I \in I'$ ideales de $A \lor A'$ respectivamente. Se pide:
 - (a) Probar que f(A) es un subanillo de A'.

- (b) Probar que $f^{-1}(I')$ es un ideal de A.
- (c) Probar que f(I) es un ideal de A' si f es suprayectivo.
- (d) Dar un ejemplo de un homomorfismo de anillos $f: A \to A'$ y de un ideal I de A tal que f(I) no sea un ideal.
- 17. Consideremos el caso particular del ejercicio anterior en el que el homomorfismo es la aplicación cociente $\pi:A\to A/I$ definida por $\pi(a)=a+I=\overline{a}$.
 - (a) Demuestra que la aplicación

$$M \longrightarrow \pi^{-1}(M)$$

establece una aplicación biyectiva entre los conjuntos {ideales de A/I} e {ideales de A que contienen a I} que tiene como inversa la aplicación

$$J \longrightarrow \pi(J) = J/I$$

- (b) Usa este resultado para encontrar todos los ideales en $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/10\mathbb{Z}$ y en $\mathbb{Z}/n\mathbb{Z}$ y señala entre ellos a los maximales.
- 18. Indica cuántos ideales primos tiene el anillo $\mathbb{R}[X]/I$ si $I=((X^2-1)^5)$.
- 19. Demuestra que $\{(3a,b): a,b \in \mathbb{Z}\}$ es un ideal maximal de $\mathbb{Z} \times \mathbb{Z}$ y que $\{(a,0): a \in \mathbb{Z}\}$ es un ideal primo pero no maximal de $\mathbb{Z} \times \mathbb{Z}$. Intenta hacerlo estableciendo un isomorfismo entre el cociente del anillo por el primero (respectivamente del segundo) y un cuerpo (respectivamente un dominio que no sea un cuerpo).
- 20. Sea F un cuerpo y $a \in F$. Demuestra que el núcleo del homomorfismo de evaluación $ev_a \colon F[X] \to F$ es un ideal maximal de F[X]. Señala un generador.
- 21. Sea R un dominio. Halla el núcleo del homomorfismo de evaluación $ev_0: R[X] \to R: f(X) \mapsto f(0)$.
- 22. Demuestra la existencia de los siguientes isomorfismos dando el isomorfismo explicitamente:
 - (a) $\mathbb{Z}[X]/I \cong \mathbb{Z}$, donde $I = \{p(X) \in \mathbb{Z}[X] \mid p(2) = 0\}$;
 - (b) $\mathbb{Q}[X]/I \cong \mathbb{Q}[\sqrt{2}]$, donde $I = (X^2 2)$.