CC1 Version A (durée 60 mn)

Exercice 1 (Question de cours). Soient α et β deux nombres réels, tels que $\alpha > 1$. Montrer que l'intégrale impropre

 $\int_{2}^{+\infty} \frac{dx}{x^{\alpha} (\ln(x))^{\beta}}$

converge.

Corrigé. cf.cours

Exercice 2. Montrer que l'intégrale impropre

$$\int_0^{+\infty} \frac{dx}{x^2 + 5x + 6}$$

converge, et calculer sa valeur.

Corrigé. On remarque tout d'abord que $x^2 + 5x + 6 = (x+2)(x+3)$, et donc que la fonction $x \mapsto \frac{1}{x^2 + 5x + 6}$ est continue et positive sur \mathbb{R}_+ . L'intégrale est impropre en $+\infty$.

Par ailleurs, $\frac{1}{x^2 + 5x + 6} \sim \frac{1}{x^2}$, qui est un exemple de Riemann dont l'intégrale converge en $+\infty$. Par critère d'équivalence sur les fonctions à valeurs positives, appliqué sur l'intervalle $[1; +\infty[$, l'intégrale est bien convergente (la question de la convergence sur [0; 1] ne se pose pas).

Pour le calcul de la valeur, on effectue une décomposition en éléments simples. On trouve que pour tout réel positif x, $\frac{1}{x^2 + 5x + 6} = \frac{1}{x + 2} - \frac{1}{x + 3}$, et donc :

$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 5x + 6} = \lim_{A \to +\infty} \int_{0}^{A} \frac{dx}{x^{2} + 5x + 6}$$

$$= \lim_{A \to +\infty} \int_{0}^{A} \frac{dx}{x + 2} - \int_{0}^{A} \frac{dx}{x + 3}$$

$$= \lim_{A \to +\infty} \left[\ln(x + 2) \right]_{0}^{A} - \left[\ln(x + 3) \right]_{0}^{A}$$

$$= \lim_{A \to +\infty} \left[\ln(A + 2) - \ln(2) - \ln(A + 3) + \ln(3) \right]$$

$$= \lim_{A \to +\infty} \ln\left(\frac{A + 2}{A + 3}\right) + \ln\left(\frac{3}{2}\right)$$

$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 5x + 6} = \ln\left(\frac{3}{2}\right)$$

Remarque : il est possible de calculer la limite $\lim_{A\to +\infty} \int_0^A \frac{dx}{x^2+5x+6}$ dès le début, de constater que c'est un nombre réel, et de conclure à la convergence de l'intégrale a posteriori. Dans ce cas, il n'est pas possible d'écrire $\int_0^{+\infty} \frac{dx}{x^2+5x+6} = \lim_{A\to +\infty} \int_0^A \frac{dx}{x^2+5x+6}$ tant que la convergence de l'intégrale n'est pas assurée.

Exercice 3. Déterminer si l'intégrale impropre

$$\int_0^\infty \frac{dx}{x + x^2 + x^3}$$

est convergente ou divergente.

Corrigé. L'intégrale est impropre en 0 et en $+\infty$. Soit $f(x) = \frac{1}{x + x^2 + x^3}$. Remarquons que $x + x^2 + x^3 \sim_0 x$ et donc $f(x) \sim_0 \frac{1}{x}$ et, d'après le critère de Riemann, l'intégrale $\int_0^1 \frac{1}{x}$ est divergente. Par test par la limite, l'intégrale $\int_0^1 f(x)$ est divergente aussi et donc $\int_0^\infty \frac{dx}{x + x^2 + x^3}$ est divergente.

Exercice 4. Montrer que l'intégrale impropre

$$\int_0^{+\infty} \frac{\ln(1+x)\sin(x)}{x^{5/2}} dx$$

est absolument convergente.

Corrigé. L'intégrale est impropre en 0 et en $+\infty$.

- (1) Soit $f(x) = \frac{\ln(1+x)\sin(x)}{x^{5/2}}$. Remarquons que pour $0 \le x \le 1$, on a $\sin(x) \ge 0$ et donc f(x) = |f(x)|. La convergence équivaut à la convergence absolue. On rappelle qu'on a $\ln(1+x) \sim_0 x$ et $\sin(x) \sim_0 x$. Donc $f(x) \sim_0 \frac{xx}{x^{5/2}} = \frac{1}{\sqrt{x}}$. D'après le test par la limite, l'intégrale $\int_0^1 f(x) dx$ est de la même que $\int_0^1 \frac{1}{\sqrt{x}} dx$ qui est convergente d'après le critère de Riemann.
- (2) Remarquons que, pour $x \geq 1$, on a $|f(x)| = \frac{\ln(1+x)|\sin(x)|}{x^{5/2}} \leq \frac{\ln(1+x)}{x^{5/2}}$. Par comparaison, l'intégrale $\int_1^{+\infty} |f(x)| dx$ est convergente si l'intégrale $\int_1^{+\infty} \frac{\ln(1+x)}{x^{5/2}} dx$ est convergente. Remarquons que $\frac{\ln(1+x)}{x^{5/2}} \sim_{+\infty} \frac{\ln(x)}{x^{5/2}}$ et donc $\int_1^{+\infty} \frac{\ln(1+x)}{x^{5/2}} dx$ est de la même nature que $\int_1^{+\infty} \frac{\ln(x)}{x^{5/2}} dx$. Par le critère de Bertrand, la dernière intégrale est convergente. On en déduit que $\int_1^{+\infty} f(x) dx$ est absolument convergente.

Exercice 5. Montrer que l'intégrale impropre

$$\int_0^{+\infty} \frac{\cos(x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}} dx$$

converge. Est-elle absolument convergente?

Corrigé. On sait que pour tout réel strictement positif x, on a $x > |\sin(x)|$, et donc que $2x + \sin(x)$ est un nombre strictement positif. La fonction $x \mapsto \frac{\cos(x)\sin(x)}{(2x + \sin(x))^{\frac{3}{2}}}$ est donc continue sur \mathbb{R}_+^* , et l'intégrale est impropre en 0 et en $+\infty$.

- (1) Étude de $\int_0^1 \frac{\cos(x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}} dx$. Sur l'intervalle]0;1], la fonction intégrée est positive (le dénominateur est clairement positif, et puisque 1 est inférieur à $\frac{\pi}{2}$, $\sin(x)$ et $\cos(x)$ sont aussi positifs) et donc la convergence équivaut à la convergence absolue. On remarque que $\cos(x)\sin(x) \sim x$. Un développement limité à l'ordre 1 de la fonction sin en 0 montre que $2x + \sin(x) = 3x + o(x)$ au voisinage de 0, et donc $(2x + \sin(x))^{\frac{3}{2}} \sim 3^{\frac{3}{2}}x^{\frac{3}{2}}$. La fonction intégrée est donc équivalente en 0 à $x \mapsto \frac{1}{3^{\frac{3}{2}}} \times \frac{1}{x^{\frac{1}{2}}}$. À une constante multiplicative près, c'est un exemple de Riemann dont l'intégrale est convergente en 0, et donc, par critère d'équivalence sur les fonctions positives, $\int_0^1 \frac{\cos(x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}} dx$ converge et converge absolument.
- (2) Étude de $\int_{1}^{+\infty} \frac{\cos(x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}} dx$. Pour montrer la convergence, il est plus facile ici de passer directement par la convergence absolue. En effet, pour tout $x \geq 1$, on a $\left|\frac{\cos(x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}}\right| \leq \frac{1}{(2x-1)^{\frac{3}{2}}}$. Cette dernière expression est équivalente en $+\infty$ à $\frac{1}{2^{\frac{3}{2}}}\frac{1}{x^{\frac{3}{2}}}$, qui (à une constante multiplicative près) est un exemple de Riemann dont l'intégrale converge en $+\infty$. Par critère d'équivalence, puis de majoration, $\int_{1}^{+\infty} \frac{\cos(x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}} dx$ converge absolument, et donc converge.

Conclusion: $\int_0^{+\infty} \frac{\cos(x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}} dx$ converge absolument, et donc converge.