Chapter 3 -Signature

Section 3.1 - Σ-protocols and the Fiat-Shamir Heuristic

Interactive Proof of Knowledge

Zero-knowledge

Endomorphism Ring

An endomorphism given an elliptic curve is an isogeny, $\phi : E \rightarrow E$

$$(f+g)(P) = f(P) + g(P)$$

$$(f \circ g)(P) = f(g(P))$$

Three interactive phases

Public key: E_A

Private $\overline{\text{key (knowledge): End(E_A)}}$

- 1) Commitment: Prover randomly generates $(E_1, End(E_1))$. Sends E_1 to verifier.
- 2) Challenge: Verifier randomly generates ϕ_{chall} : $E_1 \rightarrow E_2$ and sends ϕ_{chall} to prover.
- Response: Prover uses $\operatorname{End}(E_1)$ and $\phi_{\operatorname{chall}}$ to compute $\operatorname{End}(E_2)$. Then uses this and its knowledge to compute $\phi_{\operatorname{resp}} : E_A \to E_2$. Sends this to Verifier

Verifier who has the public key and E_2 can easily check if ϕ_{resp} is a correct isogeny

Fiat-Shamir Transform

Interactive to non-interactive proof of knowledge

Single signing and single verifying stage without explicit communication

Key difference is prover computes its own challenge using an unpredictable hash function that changes drastically for different commitments or different messages

Section 3.3 - Key Generation

SQIsign.KeyGen Algorithm

Input: 1^{λ} where λ is the security parameter

Output: Secret signing key sk and public verification key pk

Output: found a boolean indicating whether computation succeeded

Select a random KLPT_secret_key_prime_size-bit prime $D_{\text{secret}} \equiv 3 \mod 4$

Then a secret ideal is computed: $I_{\text{secret}} = O_0 (\gamma(a+i)) + O_0 (D_{\text{secret}})$

Connecting quaternion is found and used to find a connecting ideal

$$\alpha, \mathtt{found} := \mathsf{KeyGenKLPT}_{2^{\bullet}}(I_{\mathtt{secret}})$$

$$J_{ ext{secret}} := \chi_{I_{ ext{secret}}}(\alpha)$$
 $\chi_{I}(\alpha) = I \frac{\overline{\alpha}}{\operatorname{nrd}(I)}$

$$\chi_I(\alpha) = I \frac{\overline{\alpha}}{\operatorname{nrd}(I)}$$

Section 3.3 - Key Generation

 $\varphi_{\text{secret}}, _, \text{found} := \text{IdealTolsogenyEichler}_{2\bullet}(J_{\text{secret}}, \mathcal{O}_0, B_{0,T})$

$$E_0: y^2 = x^3 + x$$

 $B_{0,T}$ is a basis for $E_0[T]$, the T-torsion subgroup of E_0 .

$$E_A, \varphi_{\mathsf{secret}} := \mathsf{Normalized}(\varphi_{\mathsf{secret}})$$

$$B_{A,T} := \varphi_{\text{secret}}(B_{0,T})$$

 ϕ_{secret} maps $B_{0,T}$ to the basis for T-Torsion subgroup of E_{A} .

Section 3.3 - Key Generation

Let P be a point generating $\ker \varphi_{\mathsf{secret}} \cap E_0[2^f]$ $(P,Q) := \mathsf{CompleteBasis}_{2^f,p+1}(E_0,P)$

P and Q are basis points.

$$Q := \varphi_{\operatorname{secret}}(Q)$$

The secret isogeny is applied to Q.

$$\begin{array}{l} \operatorname{Set}\, \operatorname{pk} := E_A \\ \operatorname{Set}\, \operatorname{sk} := \left(\alpha, B_{A,T}, Q\right) \\ \operatorname{end}\, \operatorname{if} \\ \operatorname{return}\, \operatorname{sk}, \operatorname{pk}, \operatorname{found} \end{array}$$

The signing key (the knowledge) is the connecting quaternion, basis of T-torsion subgroup of E_A , and mapped basis point Q