Formulario RSO

UniShare

Davide Cozzi @dlcgold

Indice

1	Ret		2
	1.1	Introduzione	2
	1.2	Livello di Trasporto	3
		Livello di Rete	
	1.4	Data Link	4
	1.5	Wireless	5
2	Sist	emi Operativi	6
	2.1	Page Table	6
	2.2	Memoria Virtuale	6

Capitolo 1

Reti

1.1 Introduzione

ritardo di trasmissione (tempo per trasmettere tutti i bit):

$$ritardo_trasmissione = \frac{L}{R} = \left[\frac{bit}{bps}\right]$$

ritardo tra N collegamenti (N-1 router):

$$ritardo_end_to_end = N\frac{L}{R} = \left\lceil \frac{bit}{bps} \right\rceil$$

ritardo di accodamento dell'n-esimo pacchetto (tempo che il pacchetto passa in coda):

$$ritardo_accodamento = (n-1)\frac{L}{R} = \left\lceil \frac{bit}{bps} \right\rceil$$

ritardo di propagazione (tempo attraversare collegamento tra due router):

$$ritardo_propagazione = \frac{distanza}{velolcita} = \frac{x}{v} = \left[\frac{m}{\frac{m}{s}}\right]$$

intensità di traffico, se i > 1 ritardo di coda tende a infinito:

$$intesita_traffico = \frac{L \cdot a}{R} = \left[\frac{bit \cdot \frac{pacchetti}{s}}{bps} \right]$$

ritardo end-to-end:

 $ritardo_end_to_end = N(ritardo_elaborazione + ritardo_trasmissione + ritardo_propagazione)$

1.2 Livello di Trasporto

TCP usa 32 bit di intestazione

dimensione massima file per la quale numeri di sequenza TCP non si ripetono:

$$dimensione_massima = 2^{32} = 4gb$$

estimated RTT, $\alpha = 0, 125$:

$$estimatedRTT = (1 - \alpha) \cdot estimatedRTT + \alpha \cdot sampleRTT$$

deviazione standard RTT, $\beta = 0, 25$:

$$devRTT = (1 - \beta) \cdot devRTT + \beta \cdot (sampleRTT - estimatedRTT)$$

intervallo:

 $timeoutInteval = estimatedRTT + 4 \cdot sampleRTT$

latenza:

$$latenza = 2 \cdot RTT + \frac{dimensione_pacchetto}{R}$$

se invio ncaratteri con sequenza ae riscontro bil successivo pacchetto ha sequenza be riscontro a+n

throughput_medio, con W ampiezza della finestra, :

$$throughput_medio = \frac{3}{4} \frac{W}{RTT} = \frac{3}{4} \frac{N \cdot L}{RTT} = \frac{1,22 \cdot MSS}{RTT\sqrt{L}}$$

utilizzazione del canale:

$$U = \frac{N \cdot \frac{L}{R}}{RTT + \frac{L}{R}}$$

assenza di stallo:

$$W \cdot \frac{MSS}{R} = \frac{MSS}{R} + RTT \rightarrow W = 1 + \frac{R}{MSS}RTT$$

si ha fair con velocità $\frac{R}{K},$ con K connessioni

1.3 Livello di Rete

tabelle di routing:

$$tabelle = N \quad router + 1$$

numero frammenti generati da un datagramma, in TCP header = 40:

$$N_frammenti = \frac{byte_datagramma}{MTU - header}$$

percentuale overhead:

$$percentuale_overhead_header = \frac{header}{byte_datagramma + header}$$

parte di rete dell'indirizzo:

$$2^x > host \rightarrow bit \quad rete = 32 - x$$

numero schede di rete:

ultime tre cifre della mask in binario, conto gli 1, gli sommo 24. faccio 2 elevato a (32 - quella cifra) e sottraggo 3

1.4 Data Link

efficienza aloha slotted:

$$efficienza_aloha = Np(1-p)^{N-1} \rightarrow \frac{1}{e} = 0,37$$

efficienza aloha puro:

$$efficienza_aloha = Np(1-p)^{2(N-1)} \rightarrow \frac{1}{2e} = 0,18$$

CSMA/CD:

$$t_segnale_jam = \frac{bit_segnale}{velocita}$$

rbit di CRC rappresentano un generatore G di r+1bit, in grado di rilevare errori a raffica fino a r+1bit

segnale di jam è di 48 bit

header ethernet 26

efficienza CSMA/CD:

$$effcienza = \frac{1}{1 + 5\frac{t_{prop}}{t_{trans}}}$$

tempi di attesa tra frame 96 bit

dimensione minima frame 72 byte (46 payload + 26 header)

1.5 Wireless

802.11b	2.4 GHz	1-11 Mbit/s
802.11g	2.4 GHz	54 Mbit/s
802.11a	5.8 GHz	54 Mbit/s
802.11n	2.4 e 5.8 GHz	$150 \; \mathrm{Mbit/s}$
802.11ac	5.8 GHz	800 Mbit/s

massimo 3 AP vicini per non avere interferenza mutua

Capitolo 2

Sistemi Operativi

2.1 Page Table

indirizzo fisico:

$$dimensione_indirizzamento_fisico = 2^{bit}$$

pagine virtuali:

$$N_pagine = \frac{memoria_virtuale}{dimensione_pagine}$$

pagine virtuali in memoria:

$$N_pagine_memoria_in_memoria = \frac{dimensione_indirizzamento_fisico}{dimensione_pagine}$$

grandezza memoria fisica:

$$qrandezza = paqe \quad size \cdot 2^{bit_entry}$$

grandezza page table:

$$grandezza = \frac{2^{indirizzo_virtuale}}{dimensione_pagina} \cdot dimensione_riga$$

2.2 Memoria Virtuale

tempo di accesso effettivo:

$$tempo = (1 - p) \cdot ma + p \cdot t_{page_fault}$$