Série 2 : Droites, demi-droites et segments

- 1 Traduis en écriture mathématique puis illustre avec une figure les expressions suivantes :
- a. le segment qui a pour extrémités A et B : [AB]

b. la droite passant par A et B : (AB)

c. la demi-droite d'origine A passant par B : [AB)

- 2 Traduis par une phrase en français les expressions mathématiques suivantes :
- a. [OB): la demi-droite d'origine O passant par B.
- **b.** [MN] : le segment d'extrémités M et N.
- c. (AC): la droite passant par A et C.
- **d.** [Ox) : la demi-droite d'origine O de direction x.
- Repasse en vert la partie de la droite correspondante:

4 Nomme la partie de la droite qui a été repassée en couleurs.

- 5 Sur cette figure, repasse :
- a. en bleu, [AC];
- **b.** en rouge, (Bv);
- **c.** en vert, [Bz).

- 6 Sur cette figure, repasse :
- a. en bleu, [KP];
- **b.** en rouge, [Ks);
- c. en vert (ML).

Réalise la figure suivante :

Place 4 points A, B, C et D non alignés. Trace en bleu la droite (AB), en rouge la demi-droite d'origine A passant par C et en vert le segment d'extrémités C et D.

8 Noms d'une droite

- Écris tous les noms possibles pour cette droite.
- (AB) (AC) (AD) (BA) (BC) (BD) (CA) (CB) (CD) (DA) (DB) (DC).
- b. Combien y aurait-il de noms en plus si on avait placé cinq points sur la droite?

Il y aurait 8 noms en plus avec cinq points.

- c. Combien faut-il de points pour que la droite ait trois noms possibles?
- Il faut au moins trois points pour avoir trois noms.

Avec trois points on aurait six noms en tout.

9 Complète avec ∈ ou ∉.

- $N \notin [DC]$
- e. $D \in [NC)$
- $N \notin [DC)$
- $C \in (ND)$
- $N \in (DC)$
- C ∉ [DN)
- $D \in [CN)$
- $D \in [DC)$

Série 2 : Droites, demi-droites et segments

10 Complète avec ∈ ou ∉.

- a. $X \in (QM)$
- **d.** X ∈ [QM)
- **g.** 0 ∈ [LX]

- **b.** X ∈ [QM]
- **e.** Q ∈ (OZ)
- h. L<mark>∉</mark>XO]

- **c.** Q **∉** [XM]
- **f.** Q ∉ [ZO]
- i. L ∈ [XO)

(V)rai ou (F)aux ?

- **a.** Si $C \in (AB)$ alors $A \in (BC)$:
- <mark>Vrai</mark>
- b. Si E ∈ [DF] alors D∈ [EF]:
- **Faux**
- c. Si $C \in [AB)$ mais C[AB] alors $A \in [CB)$: Vrai
- **d.** Si $C \in [BA]$ mais C[AB] alors $B \in [AC]$: Faux
- e.SiC∈ [BA) et D∈ [AC) alors B∈ [DA): Faux
- 12 En t'aidant des points déjà marqués, place les points H, I, L et M tels que :
- **a.** $H \in [AB)$ et $H \in [ED]$; **c.** $L \in [BD]$ et $L \in [CH]$;
- **b.** $I \in [CB)$ et $I \in [ED]$; **d.** $M \in [AI)$ et $M \in [DH)$.

13 Positions relatives

- **a.** (LE) et (By) sont confondues. Qu'en déduis-tu pour les points L, E et B ? L, E et B sont alignés.
- b. (AB) et (CD) n'ont aucun point commun. Que peux-tu en dire ? (AB) et (CD) sont parallèles.
- c. (RF), (SF) et (TF) ne sont pas confondues. Que peux-tu en dire ? Elles sont concourantes en F.
- d. (BD) et (BV) sont sécantes en R. Qu'en déduis tu ? B et R sont confondus.

14 « Prends garde à la consigne »

a. Repasse en vert la partie de la droite dont les points appartiennent à [AB) mais pas à [CD).

b. Repasse en rouge la partie de la droite dont les points appartiennent à la fois à [AB) et à [DC) mais pas à [EF].

15 Reproduction de figure

Reproduis la figure ci-dessous en utilisant uniquement ta règle non graduée.

16 Programme de construction

Entoure la figure qui correspond au programme de construction.

- Place trois points A, B et C non alignés.
- Trace le segment [AB].
- Trace la droite (AC).
- Trace la demi-droite [BC).

