

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-222508

(43)Date of publication of application : 17.08.1999

(51)Int.Cl. C08F 20/20
 B29D 11/00
 C08F 2/44
 C08F 2/46
 G02B 1/04
 G02F 1/1333

(21)Application number : 10-025624 (71)Applicant : MITSUBISHI CHEMICAL CORP

(22)Date of filing : 06.02.1998 (72)Inventor : EZAKI SATOSHI

HAYAKAWA SEIICHIRO

(54) OPTICAL PARTS WITH LOW BIREFRINGENCE, MOLDING RESIN COMPOSITION THEREFOR, AND PREPARATION OF OPTICAL PARTS

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a resin which has excellent impact resistance and a low birefringence and suitable for a liquid crystal panel use or the like by photopolymerizing an alicyclic hydrocarbon skeleton-contg. bis (meth) acrylate compd. having plural, radically reactive unsatd. bonds in the mol., a mercapto compd. having plural thiol groups in the mol., and a monofunctional (meth) acrylate compd.

SOLUTION: There is prepared a compsn. comprising (A) 52-94.9 pts.wt. of an alicyclic hydrocarbon skeleton-contg. bis(meth)acrylate expressed by formula I (wherein R1 and R2 are each H or CH3; (p) is 1 or 2; and (q) is 0 or 1); (B) 0.1-8 pts.wt. of such a mercapto compd. or the like as expressed by formula II (wherein R3 is CH2 or CH2 CH2; R4 is a 2-15C hydrocarbyl group or an alkylether moiety; and (C) 5-40 pts.wt. of a monofunctional (meth)-acrylate having a viscosity at 25° C of 100 cP or less. The component A has an example of bis(oxymethyl) tricyclodecane diacrylate or the like, and the component B thioglycolate ester or the like. The compsn. is added with an photopolymerization initiator, then radiated with an UV ray, thus cured.

LEGAL STATUS

[Date of request for examination] 31.10.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

BEST AVAILABLE COPY

[Patent number] 3673389
[Date of registration] 28.04.2005
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-222508

(43)公開日 平成11年(1999)8月17日

(51)Int.Cl.⁶
C 0 8 F 20/20
B 2 9 D 11/00
C 0 8 F 2/44
2/46
G 0 2 B 1/04

識別記号

F I
C 0 8 F 20/20
B 2 9 D 11/00
C 0 8 F 2/44
2/46
G 0 2 B 1/04

B

審査請求 未請求 請求項の数7 OL (全9頁) 最終頁に続く

(21)出願番号 特願平10-25624

(22)出願日 平成10年(1998)2月6日

(71)出願人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 江崎 聰

茨城県稲敷郡阿見町中央8丁目3番1号

三菱化学株式会社筑波研究所内

(72)発明者 早川 誠一郎

茨城県稲敷郡阿見町中央8丁目3番1号

三菱化学株式会社筑波研究所内

(74)代理人 弁理士 長谷川 嘉司

(54)【発明の名称】 低複屈折光学部材、その成形用樹脂組成物及び光学部材の製造方法

(57)【要約】

【課題】 軽量で低複屈折かつ透明性、耐熱性、機械強度特に耐衝撃性に優れ、吸水率の低い低屈折光学部材、その製造法及び成形用組成物の提供。

【解決手段】 下記の成分A、成分B、および、成分Cを含有する樹脂組成物を成形し、光重合硬化してなることを特徴とする低複屈折光学部材。

成分(A)：脂環式炭化水素骨格ビス(メタ)アクリレート

成分(B)：メルカブト化合物

成分(C)：単官能(メタ)アクリレート

【特許請求の範囲】

【請求項1】 下記成分A、成分B、及び、成分Cを含有する樹脂組成物を成形し、光重合硬化してなることを特徴とする低複屈折光学部材。

[R¹ およびR² は、同一でも異なってもよく、それぞれ水素又はCH₃、pは1又は2の整数、qは0又は10部。

1]

成分(B)：下式[II]、[III]及び[IV]より選ば※

[R³ は-CH₂- 一又は-CH₂CH₂- を示し、R⁴はC₂₋₁₅ 炭化水素基又はアルキルエーテル基、aは2~6の整数]

【化3】

[XはHS-(CH₂-)、(CO)-(OCH₂CH₂)_c-(CH₂)_d-(b、dは1~8の整数、cは0~2)]

【化4】

[R⁵ は酸素を含んでもよい炭化水素基、eは2以上の整数]

成分(C)：25℃における粘度が100センチポイズ★

[R¹ およびR² は、同一でも異なってもよく、それぞれ水素又はCH₃、pは1又は2の整数、qは0又は

1]

成分(B)：下式[II]、[III]及び[IV]より選ば☆

[R³ は-CH₂- 一又は-CH₂CH₂- を示し、R⁴はC₂₋₁₅ 炭化水素基又はアルキルエーテル基、aは2~6の整数]

【化7】

*成分(A)：下記一般式[I]で示される脂環式炭化水素骨格ビス(メタ)アクリレート52~94.9重量部。

※れる少なくとも1種のメルカプト化合物0.1~8重量部。

【化2】

★以下である単官能(メタ)アクリレート5~40重量部。

【請求項2】 低複屈折光学部材が液晶表示パネル用板である請求項1記載の低複屈折光学部材。

20 【請求項3】 樹脂組成物成形体表面にガスバリア膜が成膜されてなる請求項1記載の低複屈折光学部材。

【請求項4】 樹脂組成物成形体表面に透明電極が成膜されてなる請求項1記載の低複屈折光学部材。

【請求項5】 樹脂組成物成形体表面にガスバリア膜と透明電極膜が積層されてなる請求項1記載の低複屈折光学部材。

【請求項6】 下記成分A、成分B、及び、成分Cを含有することを特徴とする低複屈折光学部材用樹脂組成物。

30 成分(A)：下記一般式[I]で示される脂環式炭化水素骨格ビス(メタ)アクリレート52~94.9重量部。

【化5】

40 ☆れる少なくとも1種のメルカプト化合物0.1~8重量部。

【化6】

[R³ は-CH₂- 一又は-CH₂CH₂- を示し、R⁴はC₂₋₁₅ 炭化水素基又はアルキルエーテル基、aは2~6の整数]

* $[R^5]$ は酸素を含んでもよい炭化水素基、eは2以上の整数]

成分(C)：25°Cにおける粘度が100センチポイズ以下である単官能(メタ)アクリレート5~40重量部。

【請求項7】 下記の成分A、成分B、及び、成分Cを含有する樹脂組成物を形成し、活性エネルギー線を照射して光重合硬化することを特徴とする低複屈折光学部材の製造方法。

10 成分(A)：下記一般式[I]で示される脂環式炭化水素骨格ビス(メタ)アクリレート52~94.9重量部。

【化9】

[XはHS- $(CH_2)_b$ 、(CO)- $(OCH_2CH_2)_d$ - $(CH_2)_c$ -(b、dは1~8の整数、cは0~2)]

【化8】

[R¹およびR²は、同一でも異なってもよく、それぞれ水素又はCH₃、pは1又は2の整数、qは0又は1]

成分(B)：下式[II]、[III]及び[IV]より選ば※

【II】

[R³は-CH₂-又は-CH₂-CH₂-を示し、R⁴はC₂₋₁₅炭化水素残基又はアルキルエーテル残基、aは2~6の整数]

【化11】

[XはHS- $(CH_2)_b$ 、(CO)- $(OCH_2CH_2)_d$ - $(CH_2)_c$ -(b、dは1~8の整数、cは0~2)]

【化12】

【IV】

[R⁵は酸素を含んでもよい炭化水素基、eは2以上の整数]

成分(C)：25°Cにおける粘度が100センチポイズ以下である単官能(メタ)アクリレート5~40重量部。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は光学用部材、その中でも特に液晶表示パネルに適した高耐衝撃性低複屈折光学部材に関するものである。

※れる少なくとも1種のメルカプト化合物0.1~8重量部。

20 【化10】

【0002】

【従来の技術】従来使用されている液晶表示用パネルはガラス板を基板とするものであるが、このようなパネルではガラスの低密度化と機械的強度の向上に関して限界があるため現在要望されている軽量、薄型化に対応が難しい。また生産性の向上に関しても成形性、加工性の観点から問題点が指摘されており、プラスチックを基板として用いたパネルに注目が集まっている。しかし、この様なプラスチック基板には下記のような問題点が挙げられる。

① 液晶表示に適した透明性と光学的等方性に欠ける。

② 耐熱性に劣る。

【0003】特に光学的等方性に関しては、ガラス板の複屈折 $\Delta n \cdot d$ が1nm以下であるのに対し、プラスチック板では10nmを超えていのが現状である。この

40 複屈折性の問題は、なんらかの延伸操作あるいは材料の流動操作が樹脂になされる成型法ではそれを解消するのは難しく、また比較的厚い基板(たとえば0.4mm以上)を使用する際には熱可塑性樹脂の押し出しやベルト成形では成形が困難である。一方熱硬化性樹脂を用いた場合には、成形時間が数時間かかるという生産上の問題がある。

【0004】この問題を解決する手段として、分子内に2個以上のラジカル反応性不飽和結合を有する(メタ)アクリレート化合物と分子内に2個以上のチオール基を

50 有するメルカプト化合物よりなる樹脂組成物を、光ラジ

カル重合開始剤の存在下活性エネルギー線により重合硬化させることにより低複屈折光学部材を得る方法が提案されている(特願平8-90928)。この系はガラス基板と比較して耐衝撃性に優れており、液晶表示パネルの基板として好ましく用いられるものの、成形・加工工程においてなお破損するおそれがあるため、生産性が一定以上向上しない問題があった。特にA3サイズ以上の大面积シートの成形後の脱型工程において、基板の機械強度不足によるワレやカケは、歩留まりを低下させる大きな要因であった。

【0005】

【発明が解決しようとする課題】本発明は、軽量で低複屈折かつ透明性、耐熱性、機械強度特に耐衝撃性に優れ、吸水率の低い低複屈折光学部材、特に液晶パネルとして適する低複屈折光学部材、その製造方法、および、低複屈折光学部材用の樹脂組成物を提供することにある。

【0006】

【0008】[R¹ および R² は、同一でも異なってもよく、それぞれ水素又は CH₃、p は 1 又は 2 の整数、q は 0 又は 1]

成分 (B) : 下式 [II]、[III] 及び [IV] より選ば※

【0010】[R³ は -CH₂ 一又は -CH₂CH₂ 一を示し、R⁴ は C₂₋₁₅ 炭化水素残基又はアルキルエーテル残基、a は 2 ~ 6 の整数]

【0011】

【化15】

【0012】[X は HS - (CH₂ -)_b (CO) - (OCH₂CH₂)_d - (CH₂)_c - (b, d は 1 ~ 8 の整数、c は 0 ~ 2)]

【0013】

【化16】

【0014】[R⁵ は酸素を含んでもよい炭化水素基、e は 2 以上の整数]

成分 (C) : 25°Cにおける粘度が 100 センチポイズ

* 【課題を解決するための手段】本発明者らは上記問題点を解決するために鋭意検討を行った結果、分子内に 2 個以上のラジカル反応性不饱和結合を有する脂環式炭化水素骨格(メタ)アクリレート化合物と分子内に 2 個以上のチオール基を有するメルカプト化合物に更に無色透明である単官能(メタ)アクリレート化合物を添加した系を、活性エネルギー線により重合硬化させることにより目的とする高耐衝撃性低複屈折光学部材が得られることを見いだし、本発明に到達した。すなわち、本発明は、

10 ① 下記の成分 A、成分 B、及び、成分 C を含有する樹脂組成物を成形し、光重合硬化してなることを特徴とする低複屈折光学部材。

成分 (A) : 下記一般式 [I] で示される脂環式炭化水素骨格ビス(メタ)アクリレート 52 ~ 94.9 重量部。

【0007】

【化13】

※れる少なくとも 1 種のメルカプト化合物 0.1 ~ 8 重量部。

【0009】

【化14】

30 以下である単官能(メタ)アクリレート 5 ~ 40 重量部。

② 上記成分 A、成分 B、及び、成分 C を含有することを特徴とする低複屈折光学部材用樹脂組成物、及び、

③ 上記成分 A、成分 B、及び、成分 C を含有する樹脂組成物を成形し、活性エネルギー線を照射して光重合硬化化することを特徴とする低複屈折光学部材の製造方法を提供することにある。

【0015】

【発明の実施の形態】本発明は、特定の脂環式炭化水素骨格ビス(メタ)アクリレート単量体と特定のメルカプト化合物及び無色透明液体である単官能(メタ)アクリレート単量体とを含有する重合性樹脂組成物を成形し、光重合硬化した低複屈折光学部材及びその製造法、並びに成形用樹脂組成物に関する。ここで「含有する」ということは、本発明の趣旨を損なわない限り少量の補助成分を含んでもよいことを意味するものである。

【0016】すなわち、本発明で特定する成分と共重合可能な他の単量体を、具体的にはたとえばこの特定の 3 成分の 100 重量部につき 30 重量部程度までの量で、併用してもよいことを意味する。また各成分は、成分間

50 併用してもよいことを意味するものである。

及び（又は）成分内においてその複数を併用してもよい。なお「（メタ）アクリル」及び「（メタ）アクリレート」は、アクリルないしメタクリルおよびアクリレートないしメタクリレートを総称するものである。

【成分（A）：ビス（メタ）アクリレート】成分（A）*

*は、式【I】で示される脂環式炭化水素骨格ビス（メタ）アクリレートである。

【0017】

【化17】

【0018】式中の記号は、下記の意味を持つ。

R¹ および R²：水素原子またはメチル基。R¹、R²は同一でも異なってもよい。

p：1又は2の整数。q：0又は1。

【0019】式【I】に示される脂環式炭化水素骨格ビス（メタ）アクリレート化合物の具体例としては、ビス（オキシメチル）トリシクロ[5.2.1.0^{2,6}]デカン=ジアクリレート、ビス（オキシメチル）トリシクロ[5.2.1.0^{2,6}]デカン=ジメタクリレート、ビス（オキシメチル）トリシクロ[2.2.1.0^{2,6}]デカン=アクリレートメタクリレート及びこれらの混合物、ビス（オキシメチル）ペンタシクロ[6.5.1.1^{3,6}.0^{2,7}.0^{9,13}]ペンタデカン=ジアクリレート、ビス（オキシメチル）ペンタシクロ[6.5.1.1^{3,6}.0^{2,7}.0^{9,13}]ペンタデカン=ジメタクリレート、ビス（オキシメチル）ペンタシクロ[6.5.1.1^{3,6}.0^{2,7}.0^{9,13}]ペンタデカン=アクリレートメタクリレート及びこれらの混合物等が挙げられる。これらのトリシクロデカン化合物及びペンタシクロデカン化合物は、群内及び（又は）群間で2種以上併用してもよい。これらの化合物は、たとえば特開昭62-225508号公報に示されている手法で合成することができる。

【0020】<成分（B）：メルカプト化合物>成分（B）は式【II】、【III】及び【IV】で示される分子内に2個以上のチオール基を有するメルカプト化合物より選ばれる少なくとも1種のメルカプト化合物である。

【0021】

【化18】

【0022】式中の記号は、下記の意味を持つ。

R³：メチレン基またはエチレン基。

R⁴：エーテル酸素、チオエーテル硫黄を含んでもよい炭素数2～15の炭化水素残基。好ましくは炭素数2～6の炭化水素残基。

a：2～6の整数。

30 X：HS- (CH₂)_b (CO) - (OCH₂CH₂)_d - (CH₂)_c - (b、dは1～8の整数、cは0～2)]

R⁵：酸素を含んでもよい炭化水素基。

e：2以上の整数。

【0023】式【II】に示されるメルカプト化合物は、2～6価のチオグリコール酸エステル又はチオプロピオニ酸エステルである。式【II】の化合物の具体例としては、たとえばペンタエリスリトールテトラキス（β-チオプロピオネート）、ペンタエリスリトールテトラキス（チオグリコレート）、トリメチロールプロパントリス（β-チオプロピオネート）、トリメチロールプロパントリス（チオグリコレート）、ジエチレングリコールビス（β-チオプロピオネート）、ジエチレングリコールビス（チオグリコレート）、トリエチレングリコールビス（β-チオプロピオネート）、トリエチレングリコール（チオグリコレート）、ジペンタエリスリトールヘキサキス（β-チオプロピオネート）、ジペンタエリスリトールヘキサキス（チオグリコレート）等が挙げられる。

50 【0024】式【III】の化合物は、ω-SH基含有イ

ソシアヌレートである。式 [III] の化合物の具体例としては、たとえば、トリス [2-(β -チオプロピオニルオキシ)エチル]イソシアヌレート、トリス (2-チオグリコニルオキシエチル)イソシアヌレート、トリス [2-(β -チオグリコニルオキシエトキシ)エチル]イソシアヌレート、トリス (2-チオグリコニルオキシエトキシエチル)イソシアヌレート、トリス [3-(β -チオプロピオニルオキシ)プロピル]イソシアヌレート、トリス (3-チオグリコニルオキシプロピル)イソシアヌレート等が挙げられる。

【0025】式 [IV] で示される化合物はSH基含有炭化水素である。式 [IV] の化合物の具体例としては、たとえば、ベンゼンジメルカプタン、キシリレンジメルカプタン、4, 4'-ジメルカプトジフェニルスルフィド、ポリプロピレンジリコールジグリシジルエーテルSH化物、ビスフェノールAジグリシジルエーテルSH化物等が挙げられる。

【0026】前記成分 (A) の脂環式炭化水素骨格ビス (メタ) アクリレートは、それ単独でも重合させることができると、得られる硬化樹脂は①複屈折が大きく、また②耐衝撃性などの機械強度に劣る欠点がある。前記一般式 [II] ないし [IV] で表される成分 (B) のメルカプト化合物を配合することにより、メルカプト化合物中のチオール基が鎖鎖移動剤として作用し、重合硬化をまだやかに均一に進行させ、硬化樹脂の複屈折を大幅に軽減することができる。また前記 [1] の脂環式炭化水素骨格ビス (メタ) アクリレート化合物により形成される3次元網目構造に入り込み、適度な韌性を付与することができる。本発明では分子内に2個以上のチオール基を有する、すなわち多官能性のメルカプト化合物を用いているため、得られる硬化物の耐熱性を大きく損なうことなく、上記の①複屈折の問題を解決することができる。

【0027】本発明におけるメルカプト化合物の組成割合は、全モノマー成分100重量部に対し0.1~8重量部、好ましくは1~8重量部になるようにする。メルカプト化合物の割合が少なすぎると硬化樹脂の複屈折改良効果が得られなくなるし、逆に多すぎると硬化樹脂の耐熱性が低くなる。

【0028】<成分 (C) : 単官能 (メタ) アクリレート>成分 (C) は、25°Cにおける粘度が100センチポイズ以下である単官能 (メタ) アクリレートである。成分 (C) の単官能 (メタ) アクリレートは、25°Cにおける粘度が100センチポイズ以下であれば特に制限はないが、好ましくは、無色透明の単官能 (メタ) アクリレート例えば、アリル (メタ) アクリレート、ベンジル (メタ) アクリレート、ブタンジオールアクリレート、t-ブチルアミノエチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、2-シアノエチルアクリレート、シクロヘキシル (メタ) アクリ

レート、ジシクロペントニル (メタ) アクリレート、ジシクロペントニルアクリレート、N, N-ジエチルアミノエチル (メタ) アクリレート、N, N-ジメチルアミノエチル (メタ) アクリレート、2-エチルヘキシル (メタ) アクリレート、グリシジル (メタ) アクリレート、2-ヒドロキシエチル (メタ) アクリレート、2-ヒドロキシプロピル (メタ) アクリレート、イソデシル (メタ) アクリレート、(イソ)オクチルアクリレート、ラウリル (メタ) アクリレート、2-メトキシエチルアクリレート、フェノキシエチル (メタ) アクリレート、EO変性オクトキシ化リン酸 (メタ) アクリレート、ポリプロピレンジリコールメタクレート、ステアリル (メタ) アクリレート、テトラヒドロフルフリルアクリレート、ビニルアセテート、N-ビニルピロリドン等が挙げられる。

【0029】本発明は成分 (C) の単官能 (メタ) アクリレートを配合することを特徴とする。成分 (C) の単官能 (メタ) アクリレートを配合することにより、成分 (A) 及び成分 (B) が形成する3次元架橋構造の架橋密度が過度に増大するのを抑え硬化物に柔軟性を付与し、耐衝撃性等の機械強度を大幅に向上させることができる。本発明における単官能 (メタ) アクリレートの組成割合は、全モノマー成分100重量部に対し5~40重量部、好ましくは8~30重量部である。単官能 (メタ) アクリレートの割合が少なすぎると硬化樹脂の耐衝撃性等の機械強度を向上させる効果が得られなくなるし、逆に多すぎると硬化樹脂の耐熱性が低下し、また弾性率が小さくなりすぎて好ましくない。

【0030】<補助成分>本発明による低複屈折部材は成分 (A)、(B) 及び (C) を含んでなる樹脂組成物を重合硬化させてなるものであり、この樹脂組成物が少量の補助成分を含んでもよいことは前記したところである。従って本発明の低複屈折光学部材用樹脂は、その硬化前の組成物100重量部に対し30重量部程度までの量でラジカル重合可能な他の単量体を混合して共重合させて製造することも可能である。その際に用いる他の単量体としては、たとえば、フェニル (メタ) アクリレート、メタクリロイルオキシメチルテトラシクロデカン、メタクリロイルオキシメチルテトラシクロドデセン、エチレンジリコールジ (メタ) アクリレート、ジエチレンジリコールジ (メタ) アクリレート、1, 6-ヘキセンジオールジ (メタ) アクリレート、2, 2-ビス [4-(β -メタクリロイルオキシエトキシ)フェニル]プロパン、2, 2'-ビス [4-(β -メタクリロイルオキシエトキシ)シクロヘキシル]プロパン、1, 4-ビス (メタクリロイルオキシメチル)シクロヘキサン、トリメチロールプロパントリ (メタ) アクリレート等の (メタ) アクリレート化合物、スチレン、クロルスチレン、ジビニルベンゼン、 α -メチルスチレン等の核及び (または) 側鎖置換および非置換スチレン等が挙げられる。

これらの他の単量体の中でもメタクリロイルオキシメチルシクロドデカン、2, 2-ビス[4-(β -メタクリロイルオキシエトキシ)フェニル]プロパン、2, 2-ビス[4-(β -メタクリロイルオキシエトキシ)シクロヘキシル]プロパン、1, 4-ビス(メタクリロイルオキシメチル)シクロヘキサン、およびこれらの混合物が特に好ましい。補助成分としては、その他にも、酸化防止剤、紫外線吸収剤、染顔料、可塑剤、充填剤、チクソトロピー性付与剤、離型剤、消泡剤、レベリング剤などがある。

【0031】<重合硬化>本発明における成分A、BおよびCからなる樹脂組成物は成形されて硬化される。その硬化は、紫外線等の活性エネルギー線によりラジカルを発生する光重合開始剤を添加する公知のラジカル重合により行う。その際に用いる光重合開始剤としては、たとえばベンゾフェノン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2, 6-ジメチルベンゾイルジフェニルホスフィンオキシド、2, 4, 6-トリメチルベンゾイルジフェニルホスフィンオキシド等が挙げられる。好ましい光重合開始剤としては、2, 4, 6-トリメチルベンゾイルジフェニルホスフィンオキシドM、ベンゾフェノンである。

【0032】光重合開始剤は2種以上を併用してもよい。これらの光重合開始剤の添加量は、モノマー100重量部に対し0.01~1重量部、好ましくは0.02~0.3重量部である。光重合開始剤の添加量が多すぎると、重合が急激に進行し複屈折の増大をもたらすだけでなく色相も悪化する。また少なすぎると組成物を十分に硬化させることができなくなる。照射する活性エネルギー線の量は、光重合開始剤がラジカルを発生させる範囲であれば任意であるが、極端に少ない場合は重合が不完全なため硬化物の耐熱性、機械特性が十分に発現されず、逆に極端に過剰な場合は硬化物の黄変等の光による劣化を生じるので、モノマーの組成および光重合開始剤の種類、量に合わせて波長200~400nmの紫外線を好ましくは0.1~200Jの範囲で照射する。使用するランプの具体例としては、メタルハライドランプ、高圧水銀灯ランプ等を挙げることができる。

【0033】硬化を速やかに完了させる目的で、熱重合を併用してもよい。すなわち光照射と同時に組成物並びに型全体を30~300°Cの範囲で加熱する。この場合は重合をよりよく完結するためにラジカル重合開始剤を添加してもよいが、過剰な使用は複屈折の増大と色相の悪化をもたらす。熱重合開始剤の具体例としてはベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート、t-ブチルパーオキシ(2-エチルヘキサノエート)等が挙げられ、使用量はモノマー100重量部に対して1重量部以下が好ましい。

【0034】更に本発明において光照射によるラジカル

重合を行った後、硬化物を加熱することにより重合反応の完結及び重合時に発生する内部歪を低減することも可能である。加熱温度は、硬化物の組成やガラス転移温度に合わせて適宜選択されるが、過剰な加熱は硬化物の色相悪化をもたらすため、ガラス転移温度付近かそれ以下の温度が好ましい。

【0035】本発明によって得られる硬化物の表面には、種々の方法により、ガスバリア膜を形成することができ、ガスバリア付き光学部材として利用することができる。ガスバリア膜としては公知のものが使用できる。例えば、SiO_xなどのケイ素酸化物あるいはPVAやアクリル樹脂などを単層あるいは積層することが可能である。

【0036】本発明によって得られる硬化物の表面には種々の手法により各種透明導電膜を好ましく形成することができ、透明電極付光学部材として利用することができる。硬化物の表面に形成できる透明導電膜には特に制限はないが、例えばAu、Ag、Cu、Pd、Al、Cr、Rh等の金属導電膜、In₂O₃、SnO₂、Cd₂SnO₄、CdO等の酸化物半導電体膜が挙げられる。これらのうちIn₂O₃、SnO₂及びCd₂SnO₄が導電性、透明性及び膜強度等の面で好ましく、さらにIn₂O₃にSnをドープしたいわゆるITOが最も好ましい。透明導電膜を形成する手法としては特に制限はないが、例えばスプレー法、気相反応法(CVD法)、塗布法等の化学的成膜法、真空蒸着法、スパッタ法等の物理的成膜法が挙げられる。

【0037】本発明によって得られる光学部材は、複屈折が小さく耐衝撃性が良好で、かつ透明性に優れる。従って、ディスプレイパネル板、液晶パネル板、各種レンズ、プリズム光ファイバー、光学フィルタ、光ディスク等多くの光学部材に用いることができる。また本発明によって得られる透明電極付光学部材は、透明導電膜の硬化物表面に対する密着性に優れ、また透明性も良好であるので、ディスプレイパネル板や液晶パネル板等に有利に利用できる。

【0038】
【実施例】以下の実施例は本発明をより具体的に説明するためのものである。なお実施例、比較例中の部は重量部を示す。また実施例に記載の硬化物の諸物性は下記の試験法により測定された。

- (1) 光線透過率 500nmにおける光線硬化率を測定した。
- (2) 複屈折 複屈折測定装置(オーク社製)を用いて25°Cに測定した。
- (3) 耐熱性 ビカット軟化試験において120°C以下で圧子が0.3mm以上進入したものを×、しなかったものを○とした。圧子断面積1.0mm²、荷重5kg、昇温速度50°C/Hr。
- (4) 曲げ弾性率 幅1cmの板について支点間距離3

c mにてオートグラフ試験装置を用いて25℃で測定した。

(5) 耐衝撃性 40 mm角の板をサンプルとし、落球試験機(東京精密社製)を用いて8 gの鋼球を高さ10 cmの位置から落下させてサンプルに衝撃を与える。鋼球を落下させる位置を10 cmずつ高くし、破壊するまで落球を繰り返す。落球衝撃強度=(サンプルが破壊したときの落球高さ)-10 cmとする。

(6) 脱型性 脱型する際に硬化物にクラックが入ったものを×とした。

(7) 酸素透過率 ASTN D3985に準じてモダンコントロール社OX-TRAN100を用いて、23℃-80%RH条件下で測定した。

(8) 抵抗値 三菱化学製ロレスタを用いて測定した。

【0039】[実施例1] ビス(オキシメチル)トリシクロ[5.2.1.0^{2,6}]デカン=ジメタクリレート85部、ペンタエリスリトールテトラキス(β-チオブロピオネート)5部、ジシクロペンタニルメタクリレート(25℃における粘度:20センチポイズ)10部、光開始剤として2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(BASF社製「ルシリントPO」)0.05部、ベンゾフェノン0.02部を均一に攪拌混合した後、脱泡して組成物を得た。この組成物を2枚の光学研磨ガラス板及び厚さ1 mmのシリコンスペーサーで構成された型に注液し、ガラス面より距離40 cmで上下にある出力80 W/cmのメタルハライドランプの間に、5分間紫外線を照射した。紫外線照射後脱型し、120℃で1時間加熱して硬化物を得た。硬化物の諸特性は表1に示すとおりであった。

【0040】[実施例2] ビス(オキシメチル)トリシクロ[5.2.1.0^{2,6}]デカン=ジメタクリレート75部、ペンタエリスリトールテトラキス(β-チオブロピオネート)5部、ジシクロペンタニルメタクリレート20部を用いた以外は実施例1と同様にして硬化物を得た。硬化物の諸特性は表1に示すとおりであった。

【0041】[実施例3] ジシクロペンタニルメタクリレート10部の代わりにフェノキシエチルメタクリレート(25℃における粘度:10センチポイズ)10部を用いた以外は実施例1と同様にして硬化物を得た。硬化物の諸特性は表1に示すとおりであった。

【0042】[実施例4] ペンタエリスリトールテトラキス(β-チオブロピオネート)5部の代わりにトリス[2-(β-チオブロピオニルオキシ)エチル]イソシ

アヌレート5部を用いた以外は実施例1と同様にして硬化物を得た。硬化物の諸特性は表1に示すとおりであった。

【0043】[実施例5] 実施例1で得られた1 mm厚の硬化物上に、スペッタ装置(徳田製作所;形式CFS-4ES)にてSiO₂を200オングストローム成膜した。得られたシートの諸特性は表1に示すとおりであった。また得られたシートの酸素透過率は1 cc/m²・24 h・atmであった。

10 【0044】[実施例6] 実施例1で得られた1 mm厚の硬化物上に、スペッタ装置(徳田製作所;形式CFS-4ES)にてITOを1500オングストローム成膜した。得られたシートの諸特性は表1に示すとおりであった。また得られたシートの表面抵抗値は30Ω/□であった。

【0045】[実施例7] 実施例1で得られた1 mm厚の硬化物上に、スペッタ装置(徳田製作所;形式CFS-4ES)にてSiO₂を200オングストローム成膜し、さらにその上に同じ装置を用いてITOを1500オングストローム成膜した。得られたシートの諸特性は表1に示すとおりであった。また得られたシートの酸素透過率は1 cc/m²・24 h・atmであり、表面抵抗値は30Ω/□であった。

20 【0046】[比較例1] ビス(オキシメチル)トリシクロ[5.2.1.0^{2,6}]デカン=ジメタクリレート100部を用いて、メルカプト化合物及び单官能(メタ)アクリレートを配合せず、実施例1と同様にして硬化物を得た。硬化物の諸特性は表1に示すとおりであった。

30 【0047】[比較例2] ビス(オキシメチル)トリシクロ[5.2.1.0^{2,6}]デカン=ジメタクリレート95部、ペンタエリスリトールテトラキス(β-チオブロピオネート)5部を用いて、单官能(メタ)アクリレートを配合せず、実施例1と同様にして硬化物を得た。硬化物の諸特性は表1に示すとおりであった。

【0048】[比較例3] ビス(オキシメチル)トリシクロ[5.2.1.0^{2,6}]デカン=ジメタクリレート70部、ペンタエリスリトールテトラキス(β-チオブロピオネート)20部、ジシクロペンタニルメタクリレート10部を用いた以外は実施例1と同様にして硬化物を得た。硬化物の諸特性は表1に示すとおりであった。

40 【0049】

【表1】

表 1

	光線透過率 (%)	複屈折 (nm)	耐熱性	曲げ弾性率 (kg/mm ²)	耐衝撃性 (cm)	脱型性
実施例1	92	<5	○	380	110	○
実施例2	92	<5	○	350	100	○
実施例3	92	<5	○	400	80	○
実施例4	92	<5	○	400	80	○
実施例5	92	<5	○	370	90	○
実施例6	85	<5	○	370	90	○
実施例7	85	<5	○	370	90	○
比較例1	92	50	○	240	40	×
比較例2	92	<5	○	360	50	×
比較例3	92	<5	×	170	120	○

フロントページの続き

(51) Int. Cl.⁶
G 02 F 1/1333識別記号
500F I
G 02 F 1/1333 500

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第3部門第3区分

【発行日】平成15年2月26日(2003.2.26)

【公開番号】特開平11-222508

【公開日】平成11年8月17日(1999.8.17)

【年通号数】公開特許公報11-2226

【出願番号】特願平10-25624

【国際特許分類第7版】

C08F 20/20

B29D 11/00

C08F 2/44

2/46

G02B 1/04

G02F 1/1333 500

【F1】

C08F 20/20

B29D 11/00

C08F 2/44 B

2/46

G02B 1/04

G02F 1/1333 500

【手続補正書】

【提出日】平成14年10月31日(2002.10.31)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

[R¹ および R² は、同一でも異なってもよく、それぞれ水素又はCH₃、pは1又は2の整数、qは0又は1]

成分(B)：分子内に2個以上のチオール基を有するメルカプト化合物 0.1～8重量部。成分(C)：25℃における粘度が100センチポイズ以下である単官能

* 【請求項1】 下記の成分A、成分B、及び、成分Cを含有する樹脂組成物を成形し、光重合硬化してなることを特徴とする樹脂組成物成形体。

成分(A)：下記一般式[I]で示される脂環式炭化水素骨格ビス(メタ)アクリレート 52～94.9重量部。

【化1】

※(メタ)アクリレート5～40重量部。

【請求項2】 成分(B)が下式[II]、[III]及び[IV]より選ばれた少なくとも1種のメルカプト化合物である、請求項1に記載された樹脂組成物成形体。

【化2】

[R³ は-CH₂-又は-CH₂CH₂-を示し、R⁴はC₂₋₁₅炭化水素残基又はアルキルエーテル残基、aは2～6の整数]

【化3】

[III]

[XはHS- $(CH_2)_b$ -(CO)-(OCH₂CH₂)_d- $(CH_2)_c$ -(b, dは1~8の整数, cは0~2)] * 【化4】

[R⁵は酸素を含んでもよい炭化水素基、eは2以上の整数]

【請求項3】樹脂組成物成形体表面にガスバリア膜が成膜されてなる、請求項1又は2に記載された樹脂組成物成形体。

【請求項4】樹脂組成物成形体表面に透明電極が成膜されてなる、請求項1又は2に記載された樹脂組成物成形体。

【請求項5】樹脂組成物成形体表面にガスバリア膜と透明電極膜が積層されてなる、請求項1又は2に記載された樹脂組成物成形体。

[IV]

※【請求項6】樹脂組成物成形体が低複屈折光学部材である、請求項1ないし5のいずれか1項に記載された樹脂組成物成形体。

【請求項7】低複屈折光学部材が液晶表示パネル用板である、請求項6に記載された低複屈折光学部材。

【請求項8】下記成分A、成分B、及び、成分Cを含有することを特徴とする樹脂組成物。

成分(A)：下記一般式[I]で示される脂環式炭化水素骨格ビス(メタ)アクリレート52~94.9重量部。

【化5】

[R¹およびR²は、同一でも異なってもよく、それぞれ水素又はCH₃、pは1又は2の整数、qは0又は1]

成分(B)：分子内に2個以上のチオール基を有するメルカプト化合物0.1~8重量部。成分(C)：25℃における粘度が100センチポイズ以下である単官能 ★

[II]

[R³は-CH₂-又は-CH₂CH₂-を示し、R⁴はC₂₋₁₅炭化水素残基又はアルキルエーテル残基、aは2~6の整数]

★【化7】

[III]

[XはHS- (CH₂-)_b (CO)- (OCH₂ CH₂)_d - (CH₂)_c - (b、dは1~8の整数、cは0~2)]

*【化8】

*

[IV]

[R⁵は酸素を含んでもよい炭化水素基、eは2以上の整数]

成分(C)：25℃における粘度が100センチポイズ以下である単官能(メタ)アクリレート5~40重量部。

【請求項10】樹脂組成物が低複屈折光学部材用である、請求項8又は9に記載された樹脂組成物。

【請求項11】下記の成分A、成分B、及び、成分C※

[R¹およびR²は、同一でも異なってもよく、それぞれ水素又はCH₃、pは1又は2の整数、qは0又は1]

成分(B)：下式[II]、[III]及び[IV]より選ばれた少

★なくとも1種のメルカプト化合物0.1~8重量部。

【化10】

[R³は-CH₂-又は-CH₂CH₂-を示し、R⁴はC_{2~15}炭化水素残基又はアルキルエーテル残基、aは2~6の整数]

★【化11】

★

[III]

[XはHS- (CH₂-)_b (CO)- (OCH₂ CH₂)_d - (CH₂)_c - (b、dは1~8の整数、cは0~2)]

◆【化12】

◆

[IV]

[R⁵は酸素を含んでもよい炭化水素基、eは2以上の整数]

成分(C)：25℃における粘度が100センチポイズ

以下である単官能(メタ)アクリレート5~40重量部。

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.