Práctica 1: Números complejos

Comisión: Rodrigo Cossio-Pérez y Gabriel Romero

1. Resolver las ecuaciones cuadráticas y comprobar el resultado.

(a)
$$x^2 + 3x = -3$$

** $x = -\frac{3}{2} \pm \frac{\sqrt{3}}{2}i$. Resolución

(b)
$$2y^2 + 4y = -5$$

**
$$y = -1 \pm \frac{\sqrt{6}}{2}i$$
. Resolución

(c)
$$t^2 + 3t = -8$$

**
$$y = -\frac{3}{2} \pm \frac{23}{2}i$$
. Resolución

(d)
$$x(x-10) = -34$$

**
$$x = 5 \pm 3i$$

2. Efectuar las siguientes operaciones y obtener el número complejo en forma binómica.

(a)
$$(-2+3i)+(1+3i)$$

**
$$-1 + 6i$$

(b)
$$(1-3i)-(4-2i)$$

**
$$-3 - i$$

(c)
$$i^2 + 3i + 2 - 5i^3$$

**
$$1 + 8i$$

(d)
$$(3+2i)(i-5)$$

**
$$-17 - 7i$$

(e)
$$(i-2)(3+2i)(1-3i)i$$

**
$$-23 - 11i$$
. Resolución

(f)
$$(3+4i)^{-1}$$

**
$$\frac{3}{25} - \frac{4}{25}i$$
. Resolución

(g)
$$\frac{5-2i}{5i-2}$$

**
$$-\frac{20}{29} - \frac{21}{29}i$$
. Resolución

(h)
$$\frac{3+2i}{-3-4i}$$

**
$$-\frac{17}{25} + \frac{6}{25}i$$
. Resolución

(i)
$$\frac{-3i+1}{4i-2}$$

**
$$-\frac{7}{10} + \frac{1}{10}i$$
. Resolución

(j)
$$(1-2i)^2$$

**
$$-3 - 4i$$

(k)
$$\frac{i}{i+1} + \left(\frac{1+i}{i}\right)^2$$

**
$$\frac{1}{2} - \frac{3}{2}i$$
. Resolución

** $|-2i-4| = 2\sqrt{5}$, $\arg(-2i- ** |-5i| = 5$, $\arg(-5i) = -\frac{\pi}{2} =$

-90°

 $\pi = 180^{\circ}$

(i) $-\sqrt{2}$

(j) 4i + 2

(k) $1 + \sqrt{2}$

(1)
$$(1+2i)^3$$

**
$$-11 - 2i$$

3. Representar en el plano complejo los siguientes números e indicar su módulo y argumento.

(a)
$$1 + i$$

**
$$|1+i| = \sqrt{2}$$
, $\arg(1+i) = \frac{\pi}{4} = 45^{\circ}$.

(b) 2 - 3i

(f) 2i

**
$$|3| = 3$$
, $arg(3) = 0^{\circ}$

 $4) \simeq -153.43^{\circ}$

**
$$|2 - 3i| = \sqrt{13}$$
, $\arg(2 - 3i) \simeq -56.31^{\circ}$

(c)
$$-1 + 3i$$

**
$$|-1 + 3i| = \sqrt{10}$$
, $\arg(-1 + 3i) \simeq 108.43^{\circ}$

(d)
$$-2i - 4$$

(h) -5i

**
$$|-1| = 1$$
, $arg(-1) = \pi = 180^{\circ}$

** |2i| = 2, $\arg(2i) = \frac{\pi}{2} = 90^{\circ}$

$$|-1| = 1$$
, $arg(-1) = \pi = 180^\circ$

$$=\pi=180^{\circ}$$

**
$$|1 + \sqrt{2}| = 1 + \sqrt{2} \simeq 2.4142,$$

** $|-\sqrt{2}| = \sqrt{2}$, $\arg(-\sqrt{2}) =$

** $|4i+2| = 2\sqrt{5}$, $\arg(4i+2) \simeq$

$$\arg(1+\sqrt{2}) = 0^{\circ} \qquad \arg\left(-\frac{1}{2} + \frac{3}{4}i\right) \simeq 123.69^{\circ} \qquad (n) \ 1+\sqrt{2}-\sqrt{3}i$$

$$(l) \ -\frac{1}{2} + \frac{3}{4}i \qquad (m) \ i-4 \qquad ** \ |1+\sqrt{2}-\sqrt{3}i| = \sqrt{6+\sqrt{8}} \simeq 123.69^{\circ}$$

$$** \ |1+\sqrt{2}-\sqrt{3}i| = \sqrt{6+\sqrt{8}} \simeq 123.69^{\circ} \qquad ** \ |1+\sqrt{2}-\sqrt{3}i| = \sqrt{6+\sqrt{8}} \simeq 123.69^{\circ}$$

$$** \ |1+\sqrt{2}-\sqrt{3}i| = \sqrt{6+\sqrt{8}} \simeq 123.69^{\circ} \qquad ** \ |1+\sqrt{2}-\sqrt{3}i| = \sqrt{6+\sqrt{8}} \simeq 123.69^{\circ}$$

$$** \ |1+\sqrt{2}-\sqrt{3}i| = \sqrt{8}$$

$$** \ |1+\sqrt{$$

4. Transformar los números complejos a sus formas restantes (binómica, trigonométrica o exponencial).

5. Utilizando complejos genéricos z = a + bi y w = c + di, demostrar que se cumplen las siguientes propiedades para todos los números complejos.

(a)
$$Re(z+3w)=Re(z)+Re(3w)$$
 $(a+c)+(b-d)i$. Podemos obserar que son iguales: $\overline{z}+w=z+\overline{w}=(a+c)+(b-d)i$.

- ** Desarrollando el lado izquierdo se obtiene $\overline{i.z} = \overline{i(a+bi)} = \overline{ai+bi^2} = \overline{-b+ai} = -b-ai$. Desarrollando el lado derecho se obtiene $-i.\overline{z} = -i(a-bi) = -ai+bi^2 = -b-ai$, que es lo mismo.
- (f) $z.\overline{z} = |z|^2$
- ** Por el lado izquierdo tenemos: $z.\overline{z} = (a+bi)(a-bi) = a^2 (bi)^2 = a^2 b^2i^2 = a^2 + b^2$. Por el lado
- derecho tenemos $|z|^2 = \sqrt{a^2 + b^2}^2 = a^2 + b^2$. Por lo tanto, son iguales.
- (g) $\overline{z-w} = \overline{z} \overline{w}$
- (h) $|z.(1+2i)|^2 = (|z|.|3+4i|)^2$
- (i) $z + \overline{z} \in \mathbb{R}$
- (i) $z \overline{z} \notin \mathbb{R}$
- 6. En cada inciso, hallar el número real (x, y, m, etc...) que cumpla la condición.
 - (a) (3+2i)(x+6i) es un número imaginario puro
 - ** x = 4. Resolución
 - (b) $\frac{y+3i}{2-5i}$ es un número real puro
 - ** $y = -\frac{6}{5}$ hrefhttps://youtu.be/cgQsvNewGZ0Resolución
 - (c) $(5x+2m)+m^3i=9-27i$
 - ** (x, m) = (3, -3). Resolución
- 7. Utilizando la forma exponencial, calcular los siguientes números complejos.

(a)
$$(-1 - \sqrt{3}i)^9$$

- ** 512. Resolución
- (b) $\frac{1}{(2+2i)^7}$
- ** $8^{-\frac{7}{2}}e^{\frac{\pi}{4}i}$. Resolución
- (c) $\frac{(\sqrt{3}+i)^4}{(-1+\sqrt{3}i)^6}$
- ** $-\frac{1}{8} + \frac{3}{8}i$. Resolución
- (d) $\frac{(1+i)^4}{(-1-i)^6}$
- ** $2^{\frac{75}{2}}e^{\frac{7\pi}{4}i}$. Resolución
- (e) $\sqrt[3]{2\sqrt{3}+2i}$ (las raíces cúbicas de $2\sqrt{3}+2i$)

- ** Resolución
- (f) $\sqrt[5]{-\sqrt{3}i-1}$ (las raíces quintas de $-\sqrt{3}i-1$)
- ** Resolución
- (g) $\sqrt[4]{-\frac{\sqrt{3}}{2}i+\frac{1}{2}}$ (las raíces cuartas de $-\frac{\sqrt{3}}{2}i+\frac{1}{2}$)
- ** Resolución
- (h) $\sqrt[3]{-1-i\sqrt{3}}$ (las raíces cúbicas de $-1-i\sqrt{3}$)
- ** https://youtu.be/x1KOtRgsRrgResolución
- (i) $\sqrt[5]{-1+\sqrt{3}i}$ (las raíces quintas de $-1+\sqrt{3}i$)
- ** Resolución
- 8. Hallar todos los valores de $z \in \mathbb{C}$ que solucionan la ecuación.

(a)
$$iz^{-1} = 2 - i$$

**
$$z = -\frac{1}{5} + \frac{2}{5}$$
. Resolución

(b)
$$z(1+2i) = 2z + \overline{z}$$

**
$$z = 0 + 0i$$
. Resolución

(c)
$$\overline{z} = \frac{3+i}{Re(z)}$$

**
$$z = \sqrt{3} - \frac{\sqrt{3}}{3}i$$
 y $z = -\sqrt{3} + \frac{\sqrt{3}}{3}i$

(d)
$$\frac{z+1}{Im(z)} = \overline{z}$$

**
$$z = -\frac{1}{2} - i$$

(e)
$$z + |z|^2 = 7 + i$$

**
$$z = 2 + i$$
 y $z = -3 + i$

(f)
$$z^5 - \sqrt{3} = i$$

** Resolución

(g)
$$z^5 - 1 = 0$$

**
$$z^5 - 1 = 0$$

(h)
$$\frac{-3i+1}{4i-2} = z^2i$$

** Resolución

(i)
$$z^4 - 8 = 0$$

(j)
$$z^4 + i = 0$$

**
$$z \in \{2, -2, 2i, -2i\}$$

** Resolución

- 9. Indicar si las siguientes afirmaciones son verdaderas o falsas. Jusificar.
 - (a) El módulo de z = 3 + i es mayor que el de w = 2 2i
 - (b) Si el argumento de (z) es α , entonces el argumento de 2z será 2α
 - (c) Dado $z=2e^{\beta i}$ y w=1+i, el argumento de z.w será $\beta+\frac{\pi}{4}$
 - (d) Si z es un número real puro, entonces z^2 es un número real puro
- 10. Representar en el plano complejo los números z = x + yi tales que cumplan las siguientes condiciones.

(a)
$$|z| = 3$$

** |z|=3 es la circunferencia de radio 3 centrada en el origen. Resolución

(b)
$$|z| \le 2$$

** $|z| \le 2$ es el circulo de radio 2 centrado en el origen.

(c)
$$|z-3|=4$$

** |z-3|=3 es la circunferencia de radio 4 centrada en el punto (3,0).

(d)
$$|z+1+i| \le 4$$

** $|z+1+i| \le 4$ es el circulo de radio 4 centrado en

el punto (-1, -1). Resolución

(e)
$$|z - 2 - 2i| = 2 \land \frac{\pi}{4} \le Arg(z) \le \frac{pi}{2}$$

** Resolución

(f)
$$|z+i| < 1 \quad \land \quad \frac{7}{4}\pi < Arg(z) < \frac{\pi}{2}$$

** Resolución

(g)
$$Im(z) > -\frac{1}{3}Re(z) \wedge 2 \le |z - 3 + i| \le 4$$

(h)
$$3Im(z) < 0 \quad \lor \quad |z+1| \le 4$$

** Resolución

(i)
$$4Im(z) = 4 \quad \lor \quad 2 < |z - 3 + i|$$

** Resolución

- 11. En el plano complejo, el número $w=z.e^{\phi i}$ está rotado ϕ grados con respecto a z y el número u=k.z presenta una expansión de factor $k \in \mathbb{R}$ con respecto al origen. Utilizar estas propiedades de los complejos y realizar las siguientes actividades.
 - (a) Rotar el complejo z=3+i para que pertenezca a la región $A=\{z\in\mathbb{C}\ /\ |z+3|\leq 1\}$. Graficar.
 - (b) Escalar el complejo z=1+4i para que pertenezca a la región $B=\{z\in\mathbb{C}\ /\ Im(z)\leq 2-Re(z)\}$. Graficar.
 - (c) Al conectar los puntos de los complejos a=2i, b=0 y c=1 se forma la letra L. Rotar la letra 90° en sentido antihorario. Independientemente, obtener una L cuyas dimensiones sean el triple de grandes. Graficar.
 - (d) Al conectar los puntos de los complejos $a=0,\,b=2i,\,c=1+\frac{3}{2}i$ y d=i se forma la letra P. Rotar la letra 60° en sentido horario. Por otra parte, obtener una letra P cuyo tamaño sea la mitad del original. Graficar.
 - (e) Al conectar los puntos de los complejos a = i, b = 1 + i, c = 0 y d = 1 se forma la letra Z cuya altura mide 1 unidad. Aplicar una rotación y/o expansión para obtener una N cuya base mida 2 unidades. Graficar.