

PROYECTO FINAL MODELOS PREDICTIVOS

ESTUDIANTE: ERIKA ATEN

TEMA: ANÁLISIS DATASET DE MEDICAMENTOS PROGRA

RESUMEN ANÁLISIS

Tipo Monto	Metodo	MAD	MAPE%	Rango TS Inferior
Lousiana	Polinomial	12,543,174	2.9843	-3.4408
	Holt	13,847,233	3.4865	-2.0000
	SVR	10,000,980	2.4281	-1.8328
	Metodo	MAD	MAPE%	Rango TS Inferior
Alaska	Metodo Polinomial	MAD 3,344,843	-	
Alaska			8.6556	-2.0000
Alaska	Polinomial	3,344,843	8.6556 8.5569	-2.0000 -1.8512

VARIABLE OBJETIVO: Medicaid Amount Reimk DATASET: Medicaid-StateDrugUtilization de 2018 a :

Muestra seleccio 2 estados de los Estados Unidos escogidos al azar de entre los 50 estados de la unió

Objetivo del estu: Analizar la evolución de los montos reembolsados a farmacias y proveedores del pro Predecir el presupuesto de desembolsos para el periodo 2023 utilizando el método դ

Definición: La variable Medicaid Amount Reimbursed es el dinero que ha sido devuelto a las farmacias El análisis de esta variable nos ayuda a entender cómo se usan los fondos del programa en diversos sec

Luisiana

S

CIO

AMA MEDICAID

Rango TS Superior	Desv Est	R2
9.8679	15,678,967	0.9871
3.4624	17,309,041	0.9983
7.4301	12,501,225	0.9901
Rango TS Superior	Desv Est	R2
Rango TS Superior 7.4626		R2 0.7546
	4,181,054	
7.4626	4,181,054 4,080,056	0.7546

Comparé estos modelos porque se nota u Escojo SVR porque tiene menor porcentaje Y también porque tiene una Desviación est

Comparé los primeros 2 modelos porque :

Se puede escoger Winter porque tiene mei Aunque su R² no es el más alto, sigue sienc Pero también es válido escoger el Holt por

2022

n

ngrama de salud social Medicaid en 2 estados entre los años 2018 y 2022. predicitivo que mejor se adecúe al problema.

o proveedores de servicios médicos que suministraron los medicamentos a los pacientes inscritos en el programa ctores geográficos y también nos ayuda a ver cómo los costos de los medicamentos han evolucionado en un perio

ına línea con Tendencia sin Estacionalidad. La tendencia es creciente.

de error MAPE, MAD y se ajusta mejor a los datos pues tiene un valor de R2 aceptable tándar menor al resto. Pero también es válido el método Holt.

se nota una línea con Tendencia, en este caso positiva, pero también incluí Winter porque me pareci

nor porcentaje de error MAPE, MAD y se ajusta mejor a los datos pues tiene un valor de R2 Io relativamente alto, lo que indica que el modelo explica una buena parte de la variabilidad de los d

Parind	_

2023-1	
2023-2	
2023-3	

perl-script p-valor 2023-1 p-valor 2023-2 p-valor 2023-3

Hipótesis Nula

Hipótesis Alter

Un p-valor de (

ó que podía haber una leve estacionalidad

latos.

Prueba del Modelo Winters con Alaska

Monto Observado csv 2023	Esperado Modelo Winters	_Chi	
\$56,121,929.52	53738680.78	105694.343	
\$53,222,904.28	52891957.35	2070.74722	
\$51,759,000.68	57721437.88	615900.412	
		723665.502	

grados de liber

- $= 1 pchisq(0.048, df = 1) \approx 0.827$
- $t = 1 pchisq(0.0004, df = 1) \approx 0.982$
- $t = 1 pchisq(0.582, df = 1) \approx 0.445$

nativa (H1): Existe una variación significativa en el monto reembolsado a lo largo de los trimestres de 2018-2022. Es dec nativa (H1): Existe una variación significativa en el monto reembolsado a lo largo de los trimestres de 2018-2022. E 0.05 o menos es a menudo considerado como estadísticamente significativo. Esto significa que hay menos de un 5

