Hamed_HW2

Load the cpus dataset from the MASS package

```
library(MASS)
library(leaps)
data(cpus)
attach(cpus)
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2
```

Use syct, mmin, mmax, cach, chmin, chmax as the predictors (independent variables) to predict performance (perf)

Perform best subset selection in order to choose the best predictors from the above predictors

```
regfit.full <- regsubsets(perf ~ syct + mmin + mmax + cach + chmin +
chmax,data=cpus,nvmax = 6)
summary(regfit.full)
## Subset selection object
## Call: regsubsets.formula(perf ~ syct + mmin + mmax + cach + chmin +
      chmax, data = cpus, nvmax = 6)
## 6 Variables (and intercept)
##
       Forced in Forced out
## syct
            FALSE
                       FALSE
## mmin
           FALSE
                       FALSE
          FALSE
## mmax
                       FALSE
## cach
           FALSE
                       FALSE
## chmin
            FALSE
                       FALSE
## chmax
            FALSE
                       FALSE
## 1 subsets of each size up to 6
## Selection Algorithm: exhaustive
           syct mmin mmax cach chmin chmax
## 1 (1) " " " "
                     "*"
## 2 (1)""
                          "*"
                11 11
                     "*"
                               . .
           ......
                "*"
                     "*"
## 3 (1)
## 4 (1)
           " "
                 "*"
                     "*"
                          "*"
           "*"
                "*"
                     "*"
                                     "*"
## 5 (1)
                "*" "*"
                          " * "
                                     "*"
## 6 (1)
           "*"
```

What is the best model obtained according to Cp, BIC, and adjusted R2?

```
reg.summary_sub <- summary(regfit.full)
reg.summary_sub$cp

## [1] 176.563616 95.808585 28.225948 10.977588 5.099604 7.000000

reg.summary_sub$bic

## [1] -274.7146 -320.4675 -370.5300 -383.5185 -386.1684 -380.9290

reg.summary_sub$adjr2

## [1] 0.7435259 0.7981760 0.8444189 0.8567846 0.8614788 0.8608616
```

Show some plots to provide evidence for your answer,

and report the coefficients of the best model obtained for each criteria.

```
plot(reg.summary_sub$cp,xlab="number of variables" ,ylab="cp" ,type="l")
```



```
plot(reg.summary_sub$bic,xlab="number of variables" ,ylab="bic" ,type="l")
```


plot(reg.summary_sub\$adjr2,xlab="number of variables" ,ylab="adjr2"
,type="l")

Repeat using forward stepwise selection and also using backwards stepwise selection.

How does your answer compare to the best subset results?

```
# Forward Stepwise Selection
regfit.fwd <- regsubsets(perf ~ syct + mmin + mmax + cach + chmin +
chmax,data=cpus,nvmax = 6, method = "forward")
summary(regfit.fwd)
## Subset selection object
## Call: regsubsets.formula(perf ~ syct + mmin + mmax + cach + chmin +
       chmax, data = cpus, nvmax = 6, method = "forward")
## 6 Variables (and intercept)
         Forced in Forced out
## svct
            FALSE
                        FALSE
## mmin
            FALSE
                       FALSE
## mmax
            FALSE
                       FALSE
## cach
            FALSE
                       FALSE
## chmin
            FALSE
                       FALSE
## chmax
            FALSE
                       FALSE
## 1 subsets of each size up to 6
## Selection Algorithm: forward
            syct mmin mmax cach chmin chmax
## 1 ( 1 ) " "
                      "*"
## 2 (1)""
                     "*"
                 11 11
                           "*"
                                11 11
## 3 (1)
            . .
                 "*"
                     "*"
           11 11
                 "*"
                     "*"
                           "*"
## 4 (1)
                 "*"
                     "*"
                           "*"
                                .....
           "*"
## 5 (1)
                "*"
                     "*"
                           "*"
## 6 (1)
           "*"
                               "*"
                                      "*"
reg.summary fwd <- summary(regfit.fwd)</pre>
reg.summary fwd$cp
## [1] 176.563616 95.808585 56.684812 10.977588
                                                     5.099604
                                                                7,000000
reg.summary_fwd$bic
## [1] -274.7146 -320.4675 -346.0709 -383.5185 -386.1684 -380.9290
reg.summary fwd$adjr2
## [1] 0.7435259 0.7981760 0.8251032 0.8567846 0.8614788 0.8608616
plot(reg.summary fwd$cp,xlab="number of variables" ,ylab="cp" ,type="l")
```


plot(reg.summary_fwd\$bic,xlab="number of variables" ,ylab="bic" ,type="l")


```
plot(reg.summary_fwd$adjr2,xlab="number of variables" ,ylab="adjr2"
,type="l")
```



```
# Backward Stepwise Selection
regfit.bwd <- regsubsets(perf ~ syct + mmin + mmax + cach + chmin +
chmax,data=cpus,nvmax = 6, method = "backward")
summary(regfit.bwd)
## Subset selection object
## Call: regsubsets.formula(perf ~ syct + mmin + mmax + cach + chmin +
       chmax, data = cpus, nvmax = 6, method = "backward")
## 6 Variables (and intercept)
         Forced in Forced out
##
## syct
             FALSE
                        FALSE
## mmin
             FALSE
                        FALSE
## mmax
             FALSE
                        FALSE
## cach
             FALSE
                        FALSE
## chmin
             FALSE
                        FALSE
             FALSE
## chmax
                        FALSE
## 1 subsets of each size up to 6
## Selection Algorithm: backward
##
            syct mmin mmax cach chmin chmax
                 "*"
## 1
      (1)
                                       "*"
      (1)
                 " * "
## 2
## 3
     (1)
                                       " * "
## 4 (1)
```

```
## 5 (1) "*" "*" "*" "*" "*" "*"
reg.summary_bwd <- summary(regfit.fwd)
reg.summary_bwd$cp
## [1] 176.563616 95.808585 56.684812 10.977588 5.099604 7.000000
reg.summary_bwd$bic
## [1] -274.7146 -320.4675 -346.0709 -383.5185 -386.1684 -380.9290
reg.summary_bwd$adjr2
## [1] 0.7435259 0.7981760 0.8251032 0.8567846 0.8614788 0.8608616
plot(reg.summary_bwd$cp,xlab="number of variables" ,ylab="cp" ,type="l")</pre>
```


plot(reg.summary_bwd\$bic,xlab="number of variables" ,ylab="bic" ,type="l")

plot(reg.summary_bwd\$adjr2,xlab="number of variables" ,ylab="adjr2"
,type="l")

<pre>library(ISLR) data(College) attach(College) head(College)</pre>						
##	Private	Apps	Accept	Enroll	Top10p	erc
Top25perc						
<pre>## Abilene Christian University 52</pre>	Yes	1660	1232	721		23
## Adelphi University 29	Yes	2186	1924	512		16
## Adrian College 50	Yes	1428	1097	336		22
## Agnes Scott College	Yes	417	349	137		60
<pre>89 ## Alaska Pacific University</pre>	Yes	193	146	55		16
<pre>## Albertson College</pre>	Yes	587	479	158		38
62 ##	F.Under	grad (P.Under	grad Ou	tstate	Room.Board
Books		,		,		
<pre>## Abilene Christian University 450</pre>	2	2885		537	7440	3300
## Adelphi University 750	2	2683	1	1227	12280	6450
## Adrian College	1	1036		99	11250	3750
400 ## Agnes Scott College		510		63	12960	5450
450		2.40		0.50	====	4400
## Alaska Pacific University 800		249		869	7560	4120
## Albertson College		678		41	13500	3335
500 ##	Doncona	l DhD	Tonmin	51 C E I	Datio n	erc.alumni
Expend	Persona.	L PIID	TELIIITII	at 3.6.	касто р	erc.arumir
## Abilene Christian University 7041	2200	70	7	78	18.1	12
## Adelphi University	1500	29	3	30	12.2	16
10527 ## Adrian College	116	5 53	(56	12.9	30
8735 ## Agnes Scott College	875	5 92	9	97	7.7	37
19016	450	. 76	_		44.0	2
## Alaska Pacific University 10922	1500	76	,	72	11.9	2
## Albertson College 9727	67!	5 67	7	73	9.4	11
##	Grad.Rat	te				
<pre>## Abilene Christian University ## Adelphi University</pre>		50 56				
		-				

```
## Adrian College 54
## Agnes Scott College 59
## Alaska Pacific University 15
## Albertson College 55

library(caret)
```

Predict the number of applications received using the other variables in the College data set in library ISLR

```
colnames(College)
## [1] "Private"
                     "Apps"
                                   "Accept"
                                                 "Enroll"
                                                               "Top10perc"
## [6] "Top25perc"
                     "F.Undergrad" "P.Undergrad" "Outstate"
                                                               "Room.Board"
## [11] "Books"
                                                 "Terminal"
                                                               "S.F.Ratio"
                     "Personal"
                                   "PhD"
## [16] "perc.alumni" "Expend"
                                   "Grad.Rate"
```

(a) Split the data set into a training set and a test set using caret library and

fit each of the following models using caret and ten fold cross validation.

```
intrain <- createDataPartition(College$Apps,p=0.75,list = FALSE)
train1 <- College[intrain,]
test1 <- College[-intrain,]

trctrl <- trainControl(method= "cv", number=10)

nrow(train1)
## [1] 585
nrow(test1)
## [1] 192</pre>
```

(b) Fit a linear model using ordinary least squares on the training set,

and report the test mean squared error obtained.

```
## Random Forest
##
## 585 samples
## 17 predictor
##
## Pre-processing: scaled (17), centered (17)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 528, 527, 525, 526, 527, 527, ...
## Resampling results across tuning parameters:
##
     mtry
##
          RMSE
                     Rsquared
                                MAE
##
      2
           1498.896 0.8799545 716.3014
##
      9
           1268.750 0.9032436 522.0455
##
     17
           1268.218 0.8974584 517.7527
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was mtry = 17.
# Report test mean squared
ols$results
##
              RMSE Rsquared
                                  MAE
                                        RMSESD RsquaredSD
     mtry
                                                              MAESD
## 1
        2 1498.896 0.8799545 716.3014 1116.489 0.08867297 183.5196
        9 1268.750 0.9032436 522.0455 1141.621 0.10361832 162.3887
## 2
## 3
       17 1268.218 0.8974584 517.7527 1145.685 0.11315247 176.5862
ols$results$RMSE^2
## [1] 2246690 1609727 1608376
cat("test mean squared error")
## test mean squared error
# Predict for the test dataset
ln_pred <-predictions <- predict(ols, newdata= test1)</pre>
# Mean squared error in the test dataset
ln_mse <- mean(( predictions - test1$Apps)^2)</pre>
ln mse
## [1] 1195690
```

(c) Fit a ridge regression model on the training set, with λ chosen by cross-validation.

Report the test mean squared error obtained. Report the value of $\boldsymbol{\lambda}$ used in the mode

```
ridge_fit <- train(Apps ~., data = train1,</pre>
                   method="ridge",
                   trControl=trctrl,
                   preProcess=c('scale','center'))
ridge fit
## Ridge Regression
##
## 585 samples
## 17 predictor
##
## Pre-processing: scaled (17), centered (17)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 527, 527, 526, 526, 526, 527, ...
## Resampling results across tuning parameters:
##
##
    lambda RMSE
                       Rsquared
                                  MAE
##
    0e+00 1036.263 0.9248218 606.4225
    1e-04 1036.334 0.9248477 606.3501
##
    1e-01 1197.058 0.9188929 700.9011
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was lambda = 0.
ridgeGrid <- data.frame(lambda = seq(0, .2, length = 15))</pre>
ridge fit <- train(Apps~.,data=train1,
                 method="ridge",
                 tuneGrid=ridgeGrid,
                 trControl=trctrl,
                 preProcess=c('scale','center'))
ridge_fit
## Ridge Regression
##
## 585 samples
## 17 predictor
## Pre-processing: scaled (17), centered (17)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 529, 527, 527, 525, 526, 527, ...
## Resampling results across tuning parameters:
##
##
     lambda
                 RMSE
                           Rsquared
                                      MAE
```

```
##
     0.00000000 1067.551 0.9281832 618.2244
##
     0.01428571 1065.748 0.9311674 614.8620
##
     0.02857143 1076.910 0.9315776 620.8149
##
     0.04285714 1093.498 0.9309338 633.0227
##
     0.05714286 1112.704 0.9297919 649.3933
##
     0.07142857 1133.205 0.9284120 666.8707
##
     0.08571429 1154.331 0.9269287
                                     685.0552
     0.10000000 1175.742 0.9254146 703.2052
##
##
     0.11428571 1197.265 0.9239095 721.0767
     0.12857143 1218.820 0.9224348
##
                                     739.2864
##
     0.14285714 1240.375 0.9210017 757.5451
##
     0.15714286 1261.919 0.9196151 775.3353
##
     0.17142857 1283.457 0.9182766 793.0985
     0.18571429 1304.996 0.9169857 810.6974
##
##
     0.20000000 1326.546 0.9157409
                                      828.3609
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was lambda = 0.01428571.
# Generate predictions with test dataset
ridge_pred <- predict(ridge_fit, newdata = test1)</pre>
head(ridge_pred)
##
                   Adrian College
                                               Albertson College
##
                        1264.7578
                                                        689.1371
##
        Alderson-Broaddus College
                                                    Alma College
##
                         638.8626
                                                       1795.4662
## American International College
                                                 Amherst College
                        1144.8377
                                                       3424,4456
# Calculate Mean Square Error (MSE) ridge_mse
ridge mse <- mean((ridge pred - test1$Apps)^2)</pre>
ridge mse
## [1] 1469828
# Predicting the ridge fit
predict(ridge fit$finalModel, type='coef', mode='norm')$coefficients
      PrivateYes
                             Enroll Top10perc Top25perc F.Undergrad
##
                   Accept
P.Undergrad
## 0
                                       0.0000
         0.00000
                    0.000
                             0.0000
                                                 0.00000
                                                             0.00000
0.00000
## 1
         0.00000 3107.494
                             0.0000
                                       0.0000
                                                 0.00000
                                                             0.00000
0.00000
## 2
         0.00000 3406.305
                             0.0000
                                     298.8110
                                                 0.00000
                                                             0.00000
0.00000
## 3
         0.00000 3516.470
                             0.0000
                                     355.4996
                                                 0.00000
                                                             0.00000
0.00000
## 4
       -85.10238 3532.268
                             0.0000 393.1734
                                                 0.00000
                                                             0.00000
0.00000
```

	## 5 -123.23259 0.00000	3533.393	0.0000	405.9061	0.00000	0.00000	
#	## 6 -132.88931	3532.487	0.0000	415.1257	0.00000	0.00000	
#).00000 ## 7 -134.14308	3532.690	0.0000	416.3824	0.00000	0.00000	
).00000 ## 8 -142.35585	3536.760	0.0000	438.9648	0.00000	0.00000	
).00000 ## 9 -145.07089	3537.104	0.0000	442.9592	0.00000	0.00000	
	0.00000						
	## 10 -159.86816 L4.08922	3534.901	0.0000	469.7317	0.00000	0.00000	
	## 11 -166.94460 20.28294	3534.157	0.0000	481.2025	0.00000	0.00000	
#	## 12 -186.33993	3613.729	-104.3296	508.8359	0.00000	0.00000	
#	10.47082 ## 13 -201.04461	3675.025	-180.6745	571.8337	-50.46454	0.00000	
#	54.97060 ## 14 -214.09929	3730.100	-250.4806	627.3609	-94.90267	0.00000	
#	66.62224 ## 15 -221.36345	3760.528	-289.0791	657.8563	-119.50862	0.00000	
	'3.03312 ## 16 -223.09537	3772.408	-326.0164	670.9452	-131.10416	25.06694	
	74.22332 ## 17 -226.55307	3803.837	-424.9786	706.0117	-161.82271	91.40697	
7	7.57179						
	## Outstate S.F.Ratio	Room.Boar	d Books	Persona]	L PhD	Terminal	
#	## 0 0.00000 0.000000	0.0000	0.000000	0.000000	0.000000	0.000000	
#	## 1 0.00000	0.0000	0 0.000000	0.000000	0.000000	0.000000	
	0.000000 ## 2	0.0000	0 0.000000	0.000000	0.000000	0.000000	
	0.000000 ## 3	0.0000	0 0.000000	0.00000	0.000000	0.000000	
).000000 ## 4 0.00000	9.9999	0 0.000000	0.000000	0.00000	0.000000	
6	0.000000						
	## 5 0.00000 0.000000	26.5907	3 0.000000	0.000000	0.000000	0.000000	
	## 6 0.00000 0.000000	36.2878	6 0.000000	0.000000	0.000000	0.000000	
#	## 7 0.00000	37.2561	3 0.000000	0.000000	-2.073079	0.000000	
#	0.000000 ## 8 -34.84148	63.4501	9 0.000000	0.000000	30.770448	0.000000	
	0.000000 t# 9 -44.72034	69.2879	7 0.000000	0.000000	37.773772	0.000000	
).000000 ## 10 -105.78909	105 1907	9 0.000000	0 000000	9 -83.405011	0.000000	
	0.000000	100.100/	5 0.000000	0.00000	, -05,40JUII	0.00000	

```
## 11 -131.38425 121.11433 0.000000 0.000000 -96.816664 -8.138322
0.000000
## 12 -174.83996 134.30637 0.000000 0.000000 -114.322952 -17.710458
0.000000
## 13 -206.03288 144.10892 0.000000 0.000000 -126.019576 -18.751976
0.000000
## 14 -232.94781 153.21363 0.000000 7.027112 -136.107651 -19.685471
0.000000
## 15 -247.70460 158.01594 1.275852 10.647493 -141.450186 -20.425112
0.000000
## 16 -252.83583 159.82638 1.832312 11.633432 -143.868318 -21.301852
0.000000
## 17 -266.30652 164.98313 3.093920 14.757475 -150.815095 -23.655286
6.612105
##
      perc.alumni Expend
                           Grad.Rate
## 0
          0.00000 0.0000
                            0.000000
## 1
          0.00000
                   0.0000
                            0.000000
## 2
          0.00000
                   0.0000
                            0.000000
## 3
          0.00000 81.9782
                            0.000000
## 4
          0.00000 148.0035
                            0.000000
                            0.000000
## 5
         0.00000 160.2378
## 6
       -14.68213 167.1304
                            0.000000
## 7
       -15.29255 167.9205
                            0.000000
## 8
       -19.41647 189.2174
                            0.000000
## 9
       -21.44036 195.3512
                            5.159169
## 10
        -33.98853 233.3089 40.423469
## 11
       -38.90375 249.7533 55.454746
       -41.64644 271.4519 73.750186
## 12
## 13
       -42.08003 280.5936 88.472860
## 14
       -41.60042 288.2754 102.198266
## 15
       -41.24444 292.4828 109.825551
## 16
       -40.77802 294.7074 113.448015
## 17
        -39.04298 303.8768 123.081749
# See what lambda was used in the ridge
ridge_fit$bestTune$lambda
## [1] 0.01428571
# Plot the Lambdas to see how the Lambda was chosen (minimum RMSE)
plot(ridge_fit)
```


(d) Fit a lasso model on the training set, with fraction chosen by cross validation.

Report the test mean squared error obtained, along with the number of non-zero coefficient estimates and the fraction.

```
lasso <- train(Apps ~., data = train1,</pre>
               method= 'lasso',
               preProc=c('scale','center'),
               trControl=trctrl)
lasso
## The lasso
##
## 585 samples
  17 predictor
##
##
## Pre-processing: scaled (17), centered (17)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 526, 528, 525, 527, 525, 526, ...
## Resampling results across tuning parameters:
##
##
     fraction RMSE
                         Rsquared
                                     MAE
##
     0.1
               3099.302 0.9140627 2076.3624
```

```
##
     0.5
               1082.136 0.9314001
                                      576.6874
##
     0.9
               1026.635 0.9365021
                                      602.9177
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was fraction = 0.9.
lassoGrid <- data.frame(fraction = seq(0.05, .8, length = 15))</pre>
lasso <- train(Apps ~., data = train1,</pre>
               method='lasso',
               preProc=c('scale','center'),
               tuneGrid = lassoGrid,
               trControl=trctrl)
# Generate predictions with test dataset
lasso pred <- predict(lasso, newdata = test1)</pre>
# Calculate Mean Square Error (MSE)
lasso_mse <- mean(lasso_pred - test1$Apps)^2</pre>
lasso_mse
## [1] 5.282411
# See the coefficients of the regression (the last row is the final
coeffcients)
predict(lasso$finalModel, type='coefficients', mode='norm')$coefficients
##
                              Enroll Top10perc Top25perc F.Undergrad
      PrivateYes
                   Accept
P.Undergrad
## 0
                                         0.0000
                                                                0.0000
         0.00000
                    0.000
                             0.00000
                                                   0.00000
0.00000
## 1
         0.00000 3118.519
                             0.00000
                                         0.0000
                                                   0.00000
                                                                0.0000
0.00000
## 2
         0.00000 3412.191
                             0.00000
                                      293.6716
                                                   0.00000
                                                                0.0000
0.00000
## 3
         0.00000 3543.425
                             0.00000 360.0307
                                                   0.00000
                                                                0.0000
0.00000
## 4
                                                                0.0000
       -64.34795 3554.396
                             0.00000 387.8549
                                                   0.00000
0.00000
                                                                0.0000
## 5
       -87.18885 3554.697
                             0.00000 395.3741
                                                   0.00000
0.00000
## 6
       -89.18293 3554.464
                             0.00000 397.2842
                                                   0.00000
                                                                0.0000
0.00000
## 7
       -96.90407 3555.585
                             0.00000 404.9843
                                                   0.00000
                                                                0.0000
0.00000
## 8 -108.77504 3561.492
                             0.00000 439.3036
                                                   0.00000
                                                                0.0000
0.00000
## 9 -116.84280 3600.314 -45.62726 451.9002
                                                   0.00000
                                                                0.0000
0.00000
## 10 -130.87969 3659.902 -117.03541 469.0630
                                                   0.00000
                                                                0.0000
0.00000
## 11 -143.87277 3723.532 -198.92921 489.3963
                                                   0.00000
                                                                 0.0000
14.66885
```

## 12 -163.70017 36.32149	3816.901 -3	318.84036	519.1336	0.00000	0.0000	
## 13 -176.62501	3878.790 -3	394.52176	581.4808	-49.81138	0.0000	
49.74382 ## 14 -210.30132	4041.844 -	597.11480	742.3108	-178.14841	0.0000	
81.37388 ## 15 -216.10470	4112.781 -8	835.29127	812.1246	-239.96087	171.7969	
85.18803 ## 16 -217.03504	4123.959 -8	872.83523	823.0672	-249.71417	198.8725	
85.78119						
## 17 -217.11401 85.81556	4124.669 -8	875.19759	823.7565	-250.33417	200.5906	
	Room.Board	Books	Personal	PhD	Terminal	
S.F.Ratio						
## 0 0.00000 0.000000	0.00000	0.0000000	0.00000	0.00000	0.000000	
## 1 0.00000 0.0000000	0.00000	0.0000000	0.00000	0.00000	0.000000	
## 2 0.00000	0.00000	0.0000000	0.00000	0.00000	0.000000	
0.0000000 ## 3	0.00000	0.0000000	0.00000	0.00000	0.000000	
0.0000000 ## 4 0.00000	0.00000	0.0000000	0.00000	0.00000	0.000000	
0.0000000 ## 5 0.00000	15.89804	0.0000000	0.00000	0.00000	0.000000	
0.0000000						
## 6 0.00000 0.0000000	17.89628	0.0000000	0.00000	0.00000	0.000000	
## 7 0.00000	23.79990	0.0000000	0.00000	-12.67536	0.000000	
0.0000000 ## 8 -54.47427	64.11197	0.0000000	0.00000	-55.99901	0.000000	
0.0000000 ## 9 -72.85521	70.46131	0.0000000	0.00000	-65.49958	0.000000	
0.0000000 ## 10 -104.76370	79 75910	0.0000000	0.00000	-80.74236	0.000000	
0.0000000		0.0000000	0.00000	-80.74230	0.000000	
## 11 -137.29498 0.0000000	87.83562	0.0000000	0.00000	-97.90737	0.000000	
## 12 -184.37387 0.0000000	100.31231	0.0000000	0.00000	-116.06260	-9.082052	
## 13 -213.21537	108.31070	0.0000000	0.00000	-126.87369	-8.555821	
0.0000000 ## 14 -286.05657	130.11651	0.0000000	18.63705	-154.12468	-7.272111	
0.0000000 ## 15 -309.32808	136 ///30	0 0000000	23 1/1908	-166.25414	-10 /63126	
0.0000000						
## 16 -312.95887 0.0000000	137.37273	0.3717955	24.12972	-168.09089	-11.038567	
## 17 -313.19058 0.1120441	137.42593	0.3991982	24.16412	-168.19789	-11.074925 -	
0.1120441						

```
##
      perc.alumni
                    Expend
                             Grad.Rate
## 0
         0.000000
                    0.0000
                              0.000000
                    0.0000
## 1
         0.000000
                              0.000000
## 2
         0.000000
                    0.0000
                              0.000000
                   97.7062
                              0.000000
## 3
         0.000000
## 4
         0.000000 147.6031
                              0.000000
## 5
         0.000000 154.7367
                              0.000000
        -3.029819 156.1379
## 6
                              0.000000
## 7
        -6.633261 160.8712
                              0.000000
## 8
       -12.169565 193.3602
                              0.000000
## 9
       -12.077931 201.7602
                              0.000000
       -13.868335 217.0680
                              9.492627
## 10
## 11
       -15.232503 232.1583 21.884916
## 12
       -16.730465 254.4692
                             39.965940
## 13
       -16.194739 260.9267
                             52.254455
## 14
       -12.440556 276.5087
                             85.898496
## 15
        -8.154701 285.7632 102.264835
## 16
        -7.452478 287.2115 104.856871
## 17
        -7.416487 287.2462 105.020853
# See what fraction was used in the lasso regression
lasso$bestTune$fraction
## [1] 0.8
# Plot the fractions to see how the fraction was chosen (minimum RMSE)
plot(lasso)
```


(e) Fit a PCR model on the training set, with no. of principal components M chosen by cross-validation.

Report the test mean squared error obtained, along with the value of M selected by cross-validation.

```
pcr_fit <- train(Apps ~., data=train1,</pre>
                 preProc = c('center', 'scale'),
                 method='pcr',
                 trControl=trctrl)
pcr_fit
## Principal Component Analysis
##
## 585 samples
## 17 predictor
## Pre-processing: centered (17), scaled (17)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 525, 526, 528, 525, 525, 526, ...
## Resampling results across tuning parameters:
##
## ncomp RMSE
                      Rsquared
                                  MAE
## 1
## 2
## 3
            3805.440 0.01645192 2585.426
            1992.716 0.75646996 1297.173
            2000.603 0.75407555 1312.703
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 2.
# Generate predictions with test dataset
pcr pred <- predict(pcr fit, test1)</pre>
# Calculate Mean Square Error (MSE)
pcr mse <- mean(pcr pred - test1$Apps)^2</pre>
pcr_mse
## [1] 35092.46
# See the coefficients of the regression
pcr_fit$finalModel$coefficients
## , , 1 comps
##
##
                .outcome
## PrivateYes
                29.495042
## Accept -1.143878
               -7.574264
## Enroll
## Top10perc 46.421089
```

```
## Top25perc
               42.358269
## F.Undergrad -11.009675
## P.Undergrad -18.015828
## Outstate
               51.955779
## Room.Board 39.793887
## Books
                4.213103
## Personal -22.830621
## PhD
               34.234778
## Terminal
              33.988896
## S.F.Ratio -37.327140
## perc.alumni 40.258632
           46.885412
## Expend
## Grad.Rate 40.424021
##
## , , 2 comps
##
##
                 .outcome
## PrivateYes -460.68162
## Accept
               652.47172
## Enroll
               683.66489
## Top10perc
               297.06783
## Top25perc
                346.76339
## F.Undergrad 683.94502
## P.Undergrad 417.65542
## Outstate
               -40.58215
## Room.Board
                57.14744
## Books 175.76323
## Personal 265.54569
## PhD
               454.86023
## Terminal
               440.62044
## S.F.Ratio
               139.05725
## perc.alumni -96.85047
## Expend
                171.49869
## Grad.Rate
                26.33576
# See the number of principal components used in the regression
pcr_fit$bestTune$ncomp
## [1] 2
# Plot principal components vs RMSE to see how the no of components was
chosen
plot(pcr fit)
```


(f) Fit a PLS model on the training set, with M chosen by cross validation.

Report the test error obtained, along with the value of M selected by cross-validation.

```
pls fit <- train(Apps ~., data=train1,
                 preProc = c('center', 'scale'),
                 method='kernelpls',
                 trControl=trctrl)
pls_fit
## Partial Least Squares
## 585 samples
  17 predictor
##
##
## Pre-processing: centered (17), scaled (17)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 525, 528, 526, 526, 526, 527, ...
## Resampling results across tuning parameters:
##
##
                                 MAE
     ncomp
            RMSE
                      Rsquared
##
            1800.981 0.8093431 1165.4165
```

```
##
            1415.929 0.8874875
                                   801.8750
##
     3
            1347.589
                      0.8969791
                                   801.1473
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 3.
pls.pred <- predict(pls_fit, test1)</pre>
# Calculate Mean Square Error (MSE)
pls_fit_mse <-mean(pcr_pred - test1$Apps)^2</pre>
pls_fit_mse
## [1] 35092.46
# Plot principal components vs RMSE to see how the no of components was
chosen
pls_fit$finalModel$coefficients
## , , 1 comps
##
##
                  .outcome
## PrivateYes -410.350479
## Accept
                883.505125
## Enroll
                774.103805
## Top10perc
                298.515791
## Top25perc
                323.306950
## F.Undergrad 743.040277
## P.Undergrad 353.787168
## Outstate
                  3.524867
## Room.Board
                129.390197
## Books
                135.726697
## Personal
                196.589653
## PhD
                349.585400
## Terminal
                333.685650
## S.F.Ratio
                113.301372
## perc.alumni -105.320445
## Expend
                206.700110
## Grad.Rate
                110.737131
##
## , , 2 comps
##
##
                 .outcome
## PrivateYes -235.78288
## Accept
               1712.81438
## Enroll
               1006.09523
## Top10perc
                167.91993
## Top25perc
                 91.62511
## F.Undergrad 861.49776
## P.Undergrad 85.48709
## Outstate
                 46.34354
## Room.Board
                294.53788
```

```
## Books
                -33.72818
## Personal
               -41.53068
## PhD
               -166.65869
## Terminal
               -183.18808
## S.F.Ratio
                 76.51053
## perc.alumni -219.25455
## Expend
             222.43450
## Grad.Rate
                306.05485
##
## , , 3 comps
##
##
                  .outcome
## PrivateYes -165.027643
## Accept
               1879.814879
## Enroll
               984.395684
## Top10perc
                219.852877
## Top25perc
                109.962439
## F.Undergrad 813.214636
## P.Undergrad
               -2.954522
## Outstate
                119.359042
## Room.Board 369.151457
## Books
               -45.066065
## Personal -112.849103
## PhD
               -189.220502
## Terminal
              -202.784951
## S.F.Ratio
                  7.853934
## perc.alumni -178.371574
## Expend
                302.654354
## Grad.Rate
                370.889345
# See the number of principal components used in the regression
pls_fit$bestTune$ncomp
## [1] 3
plot(pls_fit)
```


(g) Comment on the results obtained.

Is there much difference among the test errors resulting from these five approaches?

```
avg_test <- mean(test1[,"Apps"])
linear_r2 <- -1-mean((test1[,"Apps"]-ln_pred)^2)/mean((test1[,"Apps"]-
avg_test)^2)

ridge_r2 <- 1 - mean((test1[, "Apps"] -ridge_pred)^2) /mean((test1[, "Apps"]
- avg_test)^2)
lasso_r2 <- 1 - mean((test1[, "Apps"] -lasso_pred)^2) /mean((test1[, "Apps"]
- avg_test)^2)

pcr_r2 <- 1 - mean((test1[, "Apps"] -(pcr_mse))^2) /mean((test1[, "Apps"] -
avg_test)^2)

pls_r2 <- 1 - mean((test1[, "Apps"] -(pls_fit_mse))^2) /mean((test1[, "Apps"] -
avg_test)^2)

par(mfrow <- c(1,2))

## NULL</pre>
```

Test R-Squared


```
barplot(c(ln_mse,ridge_mse, lasso_mse, pcr_mse, pls_fit_mse), col="red",
names.arg=c("OLS","Ridge", "Lasso", "PCR", "PLS"), main = "Test MSE", ylab =
"Test MSE")
```

Test MSE

1.Load the Cars93 dataset in the MASS package in R

library(MASS)
data(Cars93)

attach(Cars93) head(Cars93)	93)					
## Manufac	cturer Model	. Type	Min.Price	Price	Max.Price	MPG.city
MPG.highway		6 11	40.0	4= 0	10.0	^-
## 1	Acura Integra	Small	12.9	15.9	18.8	25
31						
## 2	Acura Legend	l Midsize	29.2	33.9	38.7	18
25						
## 3	Audi 90	Compact	25.9	29.1	32.3	20
26						
## 4	Audi 100	Midsize	30.8	37.7	44.6	19
26						
## 5	BMW 535i	Midsize	23.7	30.0	36.2	22
30						
## 6	Buick Century	Midsize	14.2	15.7	17.3	22
31						
##	AirBags D	riveTrain	Cylinders	: Engir	neSize Hors	sepower RPM
## 1	None	Front	4	ŀ	1.8	140 6300
## 2 Driver	& Passenger	Front	ϵ	5	3.2	200 5500
## 3	Driver only	Front	ϵ	5	2.8	172 5500
## 4 Driver	& Passenger	Front	ϵ	5	2.8	172 5500

## 5 ## 6 ##	Rev.per	Driver only Driver only .mile Man.t		4 3.5 4 2.2 Cank.capacity Pa	116	3 5700 3 5200 ength		
Wheel					<u> </u>	J		
## 1		2890	Yes	13.2	5	177		
102								
## 2		2335	Yes	18.0	5	195		
115								
## 3		2280	Yes	16.9	5	180		
102								
## 4		2535	Yes	21.1	6	193		
106								
## 5		2545	Yes	21.1	4	186		
109								
## 6		2565	No	16.4	6	189		
105								
##	Width 7	Turn.circle	Rear.seat.room Lu	uggage.room Weig	ht Origin			
Make								
## 1	68	37	26.5	11 27	05 non-USA	Acura		
Integ								
## 2	71	38	30.0	15 35	60 non-USA	Acura		
Legen								
## 3	67	37	28.0	14 33	75 non-USA	Audi		
90								
## 4	70	37	31.0	17 34	05 non-USA	Audi		
100								
## 5	69	39	27.0	13 36	40 non-USA	BMW		
535i								
## 6	69	41	28.0	16 28	80 USA	Buick		
Centu	ıry							
<pre>cars_data <- na.omit(Cars93)</pre>								

2.Run a principal component analysis on columns 4 through 8 in the dataset

```
cars_pca <- prcomp(cars_data[4:8], scale=TRUE)</pre>
summary(cars_pca)
## Importance of components:
                            PC1
                                   PC2
                                           PC3
                                                   PC4
                                                            PC5
## Standard deviation
                         2.0045 0.9198 0.28510 0.23339 0.002231
## Proportion of Variance 0.8036 0.1692 0.01626 0.01089 0.000000
## Cumulative Proportion 0.8036 0.9728 0.98910 1.000000 1.000000
cars_pca$center
                                         MPG.city MPG.highway
##
    Min.Price
                    Price
                            Max.Price
                                         23.08537 29.97561
##
     16.82683
                 19.17073 21.51585
```

```
# The scaling factor that was used to scale the variables
cars pca$scale
##
    Min.Price
                 Price
                        Max.Price
                                   MPG.city MPG.highway
##
    8.921953
              9.959318
                        11.446337
                                   5.593650
                                             5.011039
# To see the eigen vectors (loadings for each variable for each PC)
cars pca$rotation
##
                  PC1
                           PC2
                                      PC3
                                                PC4
                                                            PC5
## Min.Price
             0.4721737 -0.2602795 -0.756860888
                                          0.07049906 -0.3626265737
                               0.027649698 -0.00453180
## Price
             0.4721263 -0.3510487
                                                    0.8081314972
## Max.Price
             0.4534056 -0.4075026
                               0.639508057 -0.06300006 -0.4641394246
## MPG.city
            -0.4167658 -0.5698611
                               0.002012706
                                          0.70820942 -0.0001597383
## MPG.highway -0.4181846 -0.5641094 -0.131994257 -0.69962830 -0.0001421337
# To see the square root of the eigen values
cars_pca$sdev
## [1] 2.004548487 0.919797562 0.285098882 0.233391212 0.002231334
# To see the rotated data (i.e the centered/scaled data multiplied by the
rotation matrix)
cars_pca$x
##
           PC1
                     PC2
                               PC3
                                           PC4
                                                       PC5
## 1
    -0.69858943 0.01615709 0.14600836
                                   0.0847955922 4.247297e-03
                         0.08057144 0.0473127678 -4.234604e-03
## 2
     2.82788093 -0.41371802
## 3
     1.93971012 -0.23673460 -0.03600106 0.1722480637 -1.668366e-04
     3.16844579 -1.01883459 0.25904390
## 4
                                   0.0127452685 -2.181258e-04
## 5
     1.53760504 -0.99716825 0.26637670 -0.1722613299 3.967243e-03
## 6
    ## 7
     2.967178e-06
## 8
     ## 9
     1.58152961 0.05320129 -0.43962827 -0.0565204087 -3.304811e-04
     3.12085802 -0.26357817 -0.37437438 -0.1630341927
                                              3.606756e-03
     3.86851278 -0.81304426 -0.38355474 -0.1651587508 -6.337031e-04
## 11
## 12 -1.48703209 -0.31242749 0.35268689 -0.6441696675
                                              3.568628e-04
## 13 -1.53478066 0.14426208 -0.23169874 -0.3031324315 4.784595e-05
## 14 -0.09187560 1.04995010
                         0.06649467 -0.2406865680
                                               3.653089e-04
## 18
     0.75380027
               1.11455240 -0.10505909 -0.1954174133
                                               2.077278e-04
## 20
     ## 21 -0.28662115 0.57500004 -0.00667607
                                   0.2724738004
                                               1.778741e-04
## 22
    2.03828202 -0.25617326 -0.49671953 0.2159234186 -4.913652e-04
## 24 -1.02110001 0.90224205
                         0.30993768 0.1026647834 5.277031e-04
## 25 -0.47984162 1.03886281
                         ## 27 -0.07548687
               0.91454480 -0.04616873 0.1651864436
                                               2.258265e-04
## 28 1.73925252 0.49588297
                         0.67924674 0.1368893053 5.027852e-04
## 29 -1.69464255 -0.25832947 0.38014933 0.2868328355 3.309032e-04
```

```
## 30 0.42399373 0.52377695 -0.02346508 -0.1078083542 -3.919558e-03
## 31 -2.46478362
                   0.04245206 -0.02810870
                                           0.5816682710
                                                         1.533007e-04
## 32 -1.25254553
                   0.91384925
                               0.15176422 -0.0237475159 -3.609484e-03
## 33 -0.75306516
                   1.24212158
                               0.08085644
                                           0.2821014909
                                                         4.227120e-04
## 34 -0.33215577
                   0.52987370
                               0.49867026 -0.0445005467
                                                          5.345706e-04
## 35 -0.77859359
                   0.42865995 -0.02593491
                                           0.1176920775
                                                          1.734638e-04
                               0.28902383 -0.2956707335
## 37
       0.26729435
                   0.09229487
                                                          2.712657e-04
  38
       0.97316645
                   0.80262907 -0.15968763 -0.0647280554
                                                          7.371709e-05
## 39 -4.88107845 -3.50361720 -0.33343352
                                           0.0937215038
                                                          3.361621e-03
## 40 -1.93359847 -0.70671952 -0.17068306
                                           0.0394117594 -1.117671e-04
## 41 -0.06773357 -0.27788816
                               0.02656105 -0.0326567835 -4.048849e-03
## 42 -3.75412489 -3.03231728 -0.03940443
                                           0.1255794949 -4.611339e-04
## 43 -0.40553590 -0.05006207
                               0.20783065 -0.0486398958
                                                          2.071891e-04
## 44 -2.24112387
                  0.18169177
                               0.05395169
                                           0.3202308692
                                                          2.468820e-04
## 45 -1.10322311
                   1.14636111
                               0.07628560 -0.0009995234
                                                         4.407784e-04
## 46 -1.81322203
                   0.17307141 -0.06246174 -0.1918583021 -3.879701e-03
## 47 -0.25215625
                   1.18551956
                               0.09088981
                                           0.0264405981
                                                         4.461264e-03
## 48
       5.13722378 -1.35673203 -0.52248544
                                           0.3967972381 -9.783664e-04
## 49
       2.13367512 0.32310578 -0.34071669
                                           0.2328725715
                                                         3.800287e-03
  50
       3.22469282 -0.28448166 -0.50290750
                                           0.3864779498
                                                         3.467096e-03
       2.92020159 -0.43707937 -0.48278526 -0.1679855885 -5.515926e-04
## 51
## 52
       3.08826801 -0.72349574 -0.43106734 -0.0472630535 -6.039417e-04
## 53 -2.53292048 -0.29311970 -0.10706401 -0.2330838747 4.144736e-03
## 54 -1.90653683 -0.41101810 -0.19004668 -0.2115340985 -3.800002e-05
## 55 -0.92488051 -0.48187030 -0.05533899 -0.1961073019 -2.750871e-05
## 58
       2.08913743 -0.85614879 -0.22496438 -0.2376931200 -4.475992e-03
  59
      6.48935020 -3.39879761
                               1.22756499
                                           0.0492339085 -3.394412e-04
## 60 -0.34699631
                  0.96983867
                               0.02575602
                                           0.5545583847 -3.782516e-03
       0.06967101
                   1.30602920 -0.11477934
                                           0.0609494113
                                                          2.703455e-04
## 61
## 62 -1.93789860 -0.05735908
                               0.19070831
                                           0.3059312620
                                                          2.645786e-04
## 63
      1.83311612
                   0.48545771
                               0.17045320
                                           0.1851822688 -3.909694e-03
                                           0.3021425690
## 64 -1.73464486 -0.21060668
                               0.22178162
                                                         2.368237e-04
## 65 -0.56462434
                   0.25253978
                               0.13501580
                                           0.1014366318
                                                         4.285720e-03
      0.83760275
                   0.43891485 -0.21652955
                                           0.3202879289 -7.062521e-05
## 68 -0.92269817
                   0.37059752 -0.13767412 -0.0135127374
                                                          1.036109e-04
## 69 -0.47765843
                   0.18212629
                               0.01377049 -0.1561316359
                                                          1.437843e-04
## 71
     0.69844172
                   0.49303915 -0.15049166 -0.2231041942
                                                          3.653023e-05
                   0.47895667
                               0.21649383 -0.0322706140
                                                          3.531832e-04
  72 -0.67207110
## 73 -2.90853398 -1.02365896 -0.23293274 -0.5367347614
                                                        -4.180333e-03
##
  74 -1.20001976
                   0.70481369
                               0.09365158 -0.1608717692
                                                          3.668522e-04
  75
       0.24534478
                   0.77703562
                               0.27981665 -0.2624467648
                                                          4.250237e-04
##
##
  76
       0.44873589
                   0.81344802
                               0.20078856 -0.1132317058
                                                          3.561321e-04
## 77
       1.16563535
                   0.09852933
                               0.28728944 -0.2668576052
                                                          2.122562e-04
   78
       1.81451566 -0.23015236
                               0.70612022
                                           0.1017613050
                                                          3.479684e-04
  79 -2.16334665 -0.59030735 -0.06638094 -0.5072767723
                                                          4.099462e-03
## 80 -2.81565541 -0.71547341 -0.07451594
                                           0.2703170145 -1.040308e-05
## 81 -1.27626423 0.64199531 -0.05696292
                                           0.2490035828
                                                          2.244657e-04
## 82 0.03895853 -0.03244286
                              0.11109096 -0.0250436175
                                                          1.161092e-04
## 83 -3.73412636 -2.02702223 -0.20191090
                                           0.1894267330 -4.397862e-03
## 84 -2.55721319 -0.75941363 0.01509660 0.1343622267 3.347597e-05
```

```
## 85 -0.44420554 -0.35774604 0.22863403 -0.0666021354 1.526426e-04
## 86 0.01765895 0.31332158 0.14297196 -0.0118801972 2.192836e-04
## 88 -1.77851353 0.48431549 -0.08885214 -0.1733456675 2.297622e-04
## 90 0.26859123 0.12644140 -0.01528227 -0.2665667437 7.200484e-05
## 91 1.39779865 0.67772010 -0.25247133 0.0849142983 -5.649245e-05
## 92 0.82933924 0.09473021 -0.24993932 0.0385725289 3.905359e-03
## 93 1.45029326 -0.20991090 -0.21433746 -0.0936716221 3.828190e-03
```

3.Plot the biplot

biplot(cars_pca,xlab="Std PC1 80% explained var",ylab="Std PC2 17% explained
var", scale=0)

4. Calculate the percent of variance explained

```
cars_pca$sdev
## [1] 2.004548487 0.919797562 0.285098882 0.233391212 0.002231334

cars_var <- cars_pca$sdev^2
cars_var
## [1] 4.018215e+00 8.460276e-01 8.128137e-02 5.447146e-02 4.978852e-06

cars_ve <- cars_var/sum(cars_var)
cars_ve</pre>
```

```
## [1] 8.036429e-01 1.692055e-01 1.625627e-02 1.089429e-02 9.957703e-07
# Change the direction of the plot. Does not alter the values.
cars_pca$rotation=-cars_pca$rotation
cars_pca$x=-cars_pca$x
biplot(cars_pca, scale=0)
```


5.Plot the percent of variance explained

Compute percentage variance explained

plot(cars_ve, xlab="Principal Component", ylab="Proportion of Variance
Explained", ylim=c(0,1),type='b')

Compute percentage variance explained
plot(cumsum(cars_ve), xlab="Principal Component", ylab="Cumulative Proportion
of Variance Explained", ylim=c(0,1),type='b')

6. How much of the variance does the first two principal components explain?