SERIES ANALYSIS AND SCHWARTZ ALGEBRAS OF SPHERICAL CONVOLUTIONS ON SEMISIMPLE LIE GROUPS

Olufemi O. Oyadare

Department of Mathematics Obafemi Awolowo University Ile-Ife, 220005, Nigeria femi oya@yahoo.com

Received February 15, 2024 Revised May 2, 2024

Abstract

We give the exact contributions of Harish-Chandra transform, $(\mathcal{H}f)(\lambda)$, of Schwartz functions f to the harmonic analysis of spherical convolutions and the corresponding L^p — Schwartz algebras on a connected semisimple Lie group G (with finite center). One of our major results gives the proof of how the Trombi-Varadarajan Theorem enters into the spherical convolution transform of L^p — Schwartz functions and the generalization of this Theorem under the full spherical convolution map.

Subject Classification: 43A85, 22E30, 22E46 Keywords: Harish-Chandra Transforms; Semisimple Lie groups; Harish-Chandra's Schwartz algebras

Copyright © 2024 by Hadronic Press Inc., Palm Harbor, FL 34682, U.S.A.

1 Introduction

Let G be a connected semisimple Lie group with finite center, and denote the Harish-Chandra-type Schwartz spaces of functions on G by $\mathcal{C}^p(G)$, $0 . We know that <math>\mathcal{C}^p(G) \subset L^p(G)$ for every such p, and if K is a maximal compact subgroup of G such that $\mathcal{C}^p(G/K)$ represents the subspace of $\mathcal{C}^p(G)$ consisting of the K-bi-invariant functions, Trombi and Varadarajan ([9.]) have shown that the spherical Fourier transform $f \mapsto \widehat{f}$ is a linear topological isomorphism of $\mathcal{C}^p(G/K)$ onto the spaces $\bar{\mathcal{Z}}(\mathfrak{F}^\epsilon)$, $\epsilon = (2/p) - 1$, consisting of rapidly decreasing functions on certain sets \mathfrak{F}^ϵ of elementary spherical functions.

We show the existence of a hyper-function on both G and \mathfrak{F}^1 (here named a spherical convolution) whose restriction to the group identity element, e, coincides with the spherical Fourier transforms, $f \mapsto \widehat{f}$, of Schwartz functions f on G and which affords us the opportunity of embarking on a more inclusive harmonic analysis on G. Indeed [8.] contains a more general Plancherel formula for the collection of these functions. As a function on G its series expansion is in the present paper studied. We show that, aside from the fact that the spherical Fourier transforms, $\widehat{f}(\lambda)$, is the constant term of this series expansion, there is a region in G where the spherical convolution is essentially $\widehat{f}(\lambda)$. Various algebras of these functions are thus studied and ultimately embedded in $L^2(G)$. It is however clear that the results in [8.] and in the present paper may be extended to include what may be termed as the Harish-Chandra-type Schwartz spaces of Eisenstein Integrals on G.

The following is the breakdown of each of the remaining sections of the paper. $\S 2$. contains the preliminaries to the research containing the structure theory, spherical functions and Schwartz algebras on G, while the series analysis of spherical convolutions on G is the subject of $\S 3$, where we also extend the $Trombi-Varadarajan\ Theorem$ to all spherical convolutions. The relationship existing among the Schwartz algebras of functions and those of spherical convolutions is considered in $\S 4$.

2 Preliminaries

For the connected semisimple Lie group G with finite center, we denote

its Lie algebra by $\mathfrak g$ whose Cartan decomposition is given as $\mathfrak g=\mathfrak t\oplus \mathfrak p$. Denote by θ the Cartan involution on $\mathfrak g$ whose collection of fixed points is $\mathfrak t$. We also denote by K the analytic subgroup of G with Lie algebra $\mathfrak t$. K is then a maximal compact subgroup of G. Choose a maximal abelian subspace $\mathfrak a$ of $\mathfrak p$ with algebraic dual $\mathfrak a^*$ and set $A=\exp \mathfrak a$. For every $\lambda \in \mathfrak a^*$ put

$$\mathfrak{g}_{\lambda} = \{ X \in \mathfrak{g} : [H, X] = \lambda(H)X, \forall H \in \mathfrak{a} \},$$

and call λ a restricted root of $(\mathfrak{g},\mathfrak{a})$ whenever $\mathfrak{g}_{\lambda} \neq \{0\}$.

Denote by \mathfrak{a}' the open subset of \mathfrak{a} where all restricted roots are $\neq 0$, and call its connected components the Weyl chambers. Let \mathfrak{a}^+ be one of the Weyl chambers, define the restricted root λ positive whenever it is positive on \mathfrak{a}^+ and denote by \triangle^+ the set of all restricted positive roots. Members of \triangle^+ which form a basis for \triangle and can not be written as a linear combination of other members of \triangle^+ are called simple. We then have the Iwasawa decomposition G = KAN, where N is the analytic subgroup of G corresponding to $\mathfrak{n} = \sum_{\lambda \in \triangle^+} \mathfrak{g}_{\lambda}$, and the polar decomposition $G = K \cdot cl(A^+) \cdot K$, with $A^+ = \exp \mathfrak{a}^+$, and $cl(A^+)$ denoting the closure of A^+ .

If we set $M = \{k \in K : Ad(k)H = H, H \in \mathfrak{a}\}$ and $M' = \{k \in K : Ad(k)\mathfrak{a} \subset \mathfrak{a}\}$ and call them the *centralizer* and *normalizer* of \mathfrak{a} in K, respectively, then (see [5.], p. 284); (i) M and M' are compact and have the same Lie algebra and (ii) the factor $\mathfrak{w} = M'/M$ is a finite group called the Weyl group. \mathfrak{w} acts on $\mathfrak{a}_{\mathbb{C}}^*$ as a group of linear transformations by the requirement

$$(s\lambda)(H) = \lambda(s^{-1}H),$$

 $H \in \mathfrak{a}, s \in \mathfrak{w}, \lambda \in \mathfrak{a}_{\mathbb{C}}^*$, the complexification of \mathfrak{a}^* . We then have the Bruhat decomposition

$$G = \bigsqcup_{s \in \mathfrak{w}} Bm_s B$$

where B = MAN is a closed subgroup of G and $m_s \in M'$ is the representative of s (i.e., $s = m_s M$). The Weyl group invariant members of a space shall be denoted by the superscript $^{\mathfrak{w}}$ while $|\mathfrak{w}|$ represents the cardinality of \mathfrak{w} .

Some of the most important functions on G are the spherical functions which we now discuss as follows. A non-zero continuous function φ on G shall

be called a (zonal) spherical function whenever $\varphi(e) = 1$, $\varphi \in C(G//K) := \{g \in C(G): g(k_1xk_2) = g(x), k_1, k_2 \in K, x \in G\}$ and $f * \varphi = (f * \varphi)(e) \cdot \varphi$ for every $f \in C_c(G//K)$, where $(f * g)(x) := \int_G f(y)g(y^{-1}x)dy$. This leads to the existence of a homomorphism $\lambda : C_c(G//K) \to \mathbb{C}$ given as $\lambda(f) = (f * \varphi)(e)$. This definition is equivalent to the satisfaction of the functional relation

$$\int_K \varphi(xky)dk = \varphi(x)\varphi(y), \quad x, y \in G.$$

It has been shown by Harish-Chandra [6.] that spherical functions on G can be parametrized by members of $\mathfrak{a}_{\mathbb{C}}^*$. Indeed every spherical function on G is of the form

$$\varphi_{\lambda}(x) = \int_{K} e^{(i\lambda - p)H(xk)} dk, \ \lambda \in \mathfrak{a}_{\mathbb{C}}^{*},$$

 $\rho = \frac{1}{2} \sum_{\lambda \in \triangle^+} m_{\lambda} \cdot \lambda,$ where $m_{\lambda} = dim(\mathfrak{g}_{\lambda})$, and that $\varphi_{\lambda} = \varphi_{\mu}$ iff $\lambda = s\mu$ for some $s \in \mathfrak{w}$. Some of the well-known properties of spherical functions are $\varphi_{-\lambda}(x^{-1}) = \varphi_{\lambda}(x), \ \varphi_{-\lambda}(x) = \bar{\varphi}_{\bar{\lambda}}(x), \ |\ \varphi_{\lambda}(x)\ | \leq \varphi_{\Re\lambda}(x), \ |\ \varphi_{\lambda}(x)\ | \leq \varphi_{i\Im\lambda}(x), \ \varphi_{-i\rho}(x) = 1, \ \lambda \in \mathfrak{a}_{\mathbb{C}}^*,$ while $|\ \varphi_{\lambda}(x)\ | \leq \varphi_{0}(x), \ \lambda \in i\mathfrak{a}^*, \ x \in G.$ Also if Ω is the Casimir operator on G then

$$\Omega \varphi_{\lambda} = -(\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle) \varphi_{\lambda},$$

where $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ and $\langle \lambda, \mu \rangle := tr(adH_{\lambda} \ adH_{\mu})$ for elements H_{λ} , $H_{\mu} \in \mathfrak{a}$. This differential equation may be written simply as $\Omega \varphi_{\lambda} = \gamma(\Omega)(\lambda)\varphi_{\lambda}$, where $\lambda \mapsto \gamma(\Omega)(\lambda)$ is the well-known Harish-Chandra homomorphism. The elements H_{λ} , $H_{\mu} \in \mathfrak{a}$ are uniquely defined by the requirement that $\lambda(H) = tr(adH \ adH_{\lambda})$ and $\mu(H) = tr(adH \ adH_{\mu})$ for every $H \in \mathfrak{a}$ ([5.], Theorem 4.2). Clearly $\Omega \varphi_0 = 0$.

Due to a hint dropped by Dixmier [4.] (cf. [9.]) in his discussion of some functional calculus, it is necessary to recall the notion of a 'positive-definite' function and then discuss the situation for positive-definite spherical functions. We call a continuous function $f: G \to \mathbb{C}$ (algebraically) positive-definite whenever, for all x_1, \ldots, x_m in G and all $\alpha_1, \ldots, \alpha_m$ in \mathbb{C} , we have

$$\sum_{i,j=1}^{m} \alpha_i \bar{\alpha}_j f(x_i^{-1} x_j) \ge 0.$$

It can be shown (cf. [5.]) that $f(e) \ge 0$ and $|f(x)| \le f(e)$ for every $x \in G$ implying that the space \mathcal{P} of all positive-definite spherical functions on G is a subset of the space \mathfrak{F}^1 of all bounded spherical functions on G.

We know, by the Helgason-Johnson theorem ([7.]), that

$$\mathfrak{F}^1=\mathfrak{a}^*+iC_\rho$$

where C_{ρ} is the convex hull of $\{s\rho : s \in \mathfrak{w}\}$ in \mathfrak{a}^* . Defining the *involution* f^* of f as $f^*(x) = \overline{f(x^{-1})}$, it follows that $f = f^*$ for every $f \in \mathcal{P}$, and if $\varphi_{\lambda} \in \mathcal{P}$, then λ and $\overline{\lambda}$ are Weyl group conjugate, leading to a realization of \mathcal{P} as a subset of $\mathfrak{w} \setminus \mathfrak{a}_{\mathbb{C}}^*$. \mathcal{P} becomes a locally compact Hausdorff space when endowed with the weak *-topology as a subset of $L^{\infty}(G)$.

Let

$$\varphi_0(x) := \int_K \exp(-\rho(H(xk))) dk$$

be denoted as $\Xi(x)$ and define $\sigma: G \to \mathbb{C}$ as

$$\sigma(x) = \|X\|$$

for every $x = k \exp X \in G$, $k \in K$, $X \in \mathfrak{a}$, where $\|\cdot\|$ is a norm on the finite-dimensional space \mathfrak{a} . These two functions are spherical functions on G and there exist numbers c,d such that

$$1 \le \Xi(a)e^{\rho(\log a)} \le c(1+\sigma(a))^d.$$

Also there exists r > 0 such that $c =: \int_G \Xi(x)^2 (1 + \sigma(x))^r dx < \infty$ ([11.], p. 231). For each $0 \le p \le 2$ define $C^p(G)$ to be the set consisting of functions f in $C^\infty(G)$ for which

$$\mu_{a,b;r}(f) := \sup_{G} [|f(a;x;b)|\Xi(x)^{-2/p}(1+\sigma(x))^r] < \infty$$

where $a,b \in \mathfrak{U}(\mathfrak{g}_{\mathbb{C}})$, the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$, $r \in \mathbb{Z}^+, x \in G$, $f(x;b) := \frac{d}{dt}\big|_{t=0} f(x \cdot (\exp tb))$ and $f(a;x) := \frac{d}{dt}\big|_{t=0} f((\exp ta) \cdot x)$. We call $\mathcal{C}^p(G)$ the Schwartz space on G for each $0 and note that <math>\mathcal{C}^2(G)$ is the well-known (see [1.]) Harish-Chandra space of rapidly decreasing functions on G. The inclusions

$$C_c^{\infty}(G) \subset \mathcal{C}^p(G) \subset L^p(G)$$

hold and with dense images. It also follows that $C^p(G) \subseteq C^q(G)$ whenever $0 \le p \le q \le 2$. Each $C^p(G)$ is closed under *involution* and the *convolution*, *. Indeed $C^p(G)$ is a Fréchet algebra ([10.], p. 69). We endow $C^p(G//K)$ with the relative topology as a subset of $C^p(G)$.

We shall say a function f on G satisfies a general strong inequality if for any $r \geq 0$ there is a constant $c = c_r > 0$ such that

$$|f(y)| \le c_r \Xi(y^{-1}x)(1 + \sigma(y^{-1}x))^{-r} \quad \forall x, y \in G.$$

We observe that if x=e then, using the fact that $\Xi(y^{-1})=\Xi(y)$ and $\sigma(y^{-1})=\sigma(y), \ \forall \ y\in G$, such a function satisfies

$$| f(y) | \le c_r \Xi(y^{-1})(1 + \sigma(y^{-1}))^{-r} = c_r \Xi(y)(1 + \sigma(y))^{-r}, \ \forall \ y \in G,$$

showing that a function on G which satisfies a general strong inequality satisfies in particular a strong inequality (in the classical sense of Harish-Chandra, [11.]). Members of $C^2(G) =: C(G)$ are those functions f on G for which $f(g_1; \cdot; g_2)$ satisfies the strong inequality, for all $g_1, g_2 \in \mathfrak{U}(\mathfrak{g}_{\mathbb{C}})$. We may then define $C^{(x)}(G)$ to be those functions f on G for which $f(g_1; \cdot; g_2)$ satisfies the general strong inequality, for all $g_1, g_2 \in \mathfrak{U}(\mathfrak{g}_{\mathbb{C}})$ and a fixed $x \in G$. It is clear that $C^{(e)}(G) = C(G)$ and that $\bigcup_{x \in G} C^{(x)}(G)$, which contains C(G), may be given an inductive limit topology. The seminorms defining this topology will be explicitly given in §4.

For any measurable function f on G we define the *spherical Fourier transform* \widehat{f} as

$$\widehat{f}(\lambda) = \int_G f(x)\varphi_{-\lambda}(x)dx,$$

 $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$. It is known (see [3.]) that for $f, g \in L^1(G)$ we have:

- (i.) $(f*g)^{\wedge} = \widehat{f} \cdot \widehat{g}$ on \mathfrak{F}^1 whenever f (or g) is right (or left-) K-invariant;
- (ii.) $(f^*)^{\wedge}(\varphi) = \overline{\widehat{f}(\varphi^*)}, \varphi \in \mathfrak{F}^1$; hence $(f^*)^{\wedge} = \overline{\widehat{f}}$ on \mathcal{P} : and, if we define $f^{\#}(g) := \int_{K \times K} f(k_1 x k_2) dk_1 dk_2, x \in G$, then
- (iii.) $(f^{\#})^{\wedge} = \widehat{f}$ on \mathfrak{F}^1 .

We shall denote the spherical Fourier transform $\widehat{f}(\lambda)$ of $f \in \mathcal{C}(G)$ by $(\mathcal{H}f)(\lambda)$ and refer to it as the Harish-Chandra transforms of f. Its major properties are well-known and may be found in [9.]. It should be noted that $(\mathcal{H}f)(\lambda) = \widehat{f}(\lambda) = \int_G f(y)\varphi_{-\lambda}(y)dy = \int_G f(y)\varphi_{\lambda}(y^{-1})dy = \int_G f(y)\varphi_{\lambda}(y^{-1}e)dy = (f*\varphi_{\lambda})(e)$. That is, the Harish-Chandra transforms of f is the restriction of the function

$$x \mapsto (f * \varphi_{\lambda})(x) =: s_{\lambda,f}(x)$$

on G to the identity element. It is therefore worthwhile to explore $s_{\lambda,f}(x)$ in some details for all $x \in G$ in order to put its behaviour at x = e (as the Harish-Chandra transforms of f) in a proper and larger perspective.

The beauty of studying the entirety of the function $s_{\lambda,f}(x)$, for $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$, $f \in \mathcal{C}^p(G)$, $x \in G$, which we shall explore in this paper, is that it could be viewed as a transformation in six (6) different ways; As

(1.)
$$x \mapsto k_1(\lambda) := s_{\lambda, f}(x)$$
, for any $f \in C^p(G)$

and

(2.)
$$x \mapsto k_2(f) := s_{\lambda,f}(x)$$
, for any $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$,

(from where the Plancherel formula for the space of functions $x \mapsto k_2(f)$ has recently been computed in [8.]) both of which are maps on G; or as

(3.)
$$f \mapsto l_1(\lambda) := s_{\lambda,f}(x)$$
, for any $x \in G$

(which, at x = e, led Harish-Chandra to the consideration of $f \mapsto (\mathcal{H}f)(\lambda)$: cf. [9.]) and

(4.)
$$f \mapsto l_2(x) := s_{\lambda,f}(x)$$
, for any $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$,

both of which are maps on $C^p(G)$; or as

(5.)
$$\lambda \mapsto m_1(f) := s_{\lambda,f}(x)$$
, for any $x \in G$

and

(6.)
$$\lambda \mapsto m_2(x) := s_{\lambda,f}(x)$$
, for any $f \in C^p(G)$,

both of which are maps on $\mathfrak{a}_{\mathbb{C}}^*$. Hence the function $x \mapsto s_{\lambda,f}(x)$ may rightly be called an *hyper-function* on G whose major contribution to harmonic analysis would be to *absorb* other known functions of the subject and put their results in *proper perspectives*, as we shall establish here for the *Harish-Chandra*

transform and Trombi-Varadarajan Theorem.

In order to know the image of the spherical Fourier transform when restricted to $C^p(G//K)$ we need the following spaces that are central to the statement of the well-known result of Trombi and Varadarajan [9.]. Let C_ρ be the closed convex hull of the (finite) set $\{s\rho: s \in \mathfrak{w}\}$ in \mathfrak{a}^* , i.e.,

$$C_{\rho} = \left\{ \sum_{i=1}^{n} \lambda_{i}(s_{i}\rho) : \lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i} = 1, s_{i} \in \mathfrak{w} \right\}$$

where we recall that, for every $H \in \mathfrak{a}$, $(s\rho)(H) = \frac{1}{2} \sum_{\lambda \in \triangle^+} m_\lambda \cdot \lambda(s^{-1}H)$.

Now for each $\epsilon > 0$ set $\mathfrak{F}^{\epsilon} = \mathfrak{a}^* + i\epsilon C_{\rho}$. Each \mathfrak{F}^{ϵ} is convex in $\mathfrak{a}_{\mathbb{C}}^*$ and

$$int(\mathfrak{F}^{\epsilon}) = \bigcup_{0 < \epsilon' < \epsilon} \mathfrak{F}^{\epsilon'}$$

([9.], Lemma (3.2.2)). Let us define $\mathcal{Z}(\mathfrak{F}^0) = \mathcal{S}(\mathfrak{a}^*)$ and, for each $\epsilon > 0$, let $\mathcal{Z}(\mathfrak{F}^{\epsilon})$ be the space of all \mathbb{C} -valued functions Φ such that (i.) Φ is defined and holomorphic on $int(\mathfrak{F}^{\epsilon})$, and (ii.) for each holomorphic differential operator D with polynomial coefficients we have $\sup_{int(\mathfrak{F}^{\epsilon})} |D\Phi| < \infty$.

The space $\mathcal{Z}(\mathfrak{F}^{\epsilon})$ is converted to a Fréchet algebra by equipping it with the topology generated by the collection, $\|\cdot\|_{\mathcal{Z}(\mathfrak{F}^{\epsilon})}$, of seminorms given by $\|\Phi\|_{\mathcal{Z}(\mathfrak{F}^{\epsilon})} := \sup_{int(\mathfrak{F}^{\epsilon})} |D\Phi|$. It is known that $D\Phi$ above extends to a continuous function on all of \mathfrak{F}^{ϵ} ([9.], pp. 278 – 279). An appropriate subalgebra of $\mathcal{Z}(\mathfrak{F}^{\epsilon})$ for our purpose is the closed subalgebra $\bar{\mathcal{Z}}(\mathfrak{F}^{\epsilon})$ consisting of \mathfrak{w} -invariant elements of $\mathcal{Z}(\mathfrak{F}^{\epsilon})$, $\epsilon \geq 0$. The following (known as the Trombi-Varadarajan Theorem) is the major result of [9.]: Let $0 and set <math>\epsilon = (2/p) - 1$. Then the spherical Fourier transform $f \mapsto \hat{f}$ is a linear topological algebra isomorphism of $C^p(G//K)$ onto $\bar{\mathcal{Z}}(\mathfrak{F}^{\epsilon})$. That is, the topological algebra $\bar{\mathcal{Z}}(\mathfrak{F}^{\epsilon})$ is an isomorphic copy or a realization of $C^p(G//K)$.

In order to find other isomorphic copies or realizations of $C^p(G//K)$ under the more inclusive general transformation map

$$f \mapsto l_1(\lambda) := s_{\lambda,f}(x)$$
, for any $x \in G$,

we shall now introduce a more general algebra, $\bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$, of \mathbb{C} -valued functions on $int(\mathfrak{F}^{\epsilon}) \times G$ which, when restricted to $int(\mathfrak{F}^{\epsilon}) \times \exp(N_0)$, coincides

with $\bar{\mathcal{Z}}(\mathfrak{F}^{\epsilon})$. The form of this new algebra is suggested by Theorem 3.5. Set $\mathcal{Z}_G(\mathfrak{F}^0) = \mathcal{S}(\mathfrak{a}^*) \times G$ and let $\mathcal{Z}_G(\mathfrak{F}^{\epsilon})$, $\epsilon > 0$, be the collection of all \mathbb{C} -valued functions Ψ $((\lambda, x) \mapsto \Psi(\lambda, x), \ \forall \ (\lambda, x) \in int(\mathfrak{F}^{\epsilon}) \times G)$ such that

- (i.) Ψ is holomorphic in the variable λ , analytic in x and spherical on G;
- (ii.) $\sup_{int(\mathfrak{F}^e)} |D_1\Psi| < \infty$ and $\sup_G |\Psi D_2| < \infty$, for every holomorphic differential operator D_1 with polynomial coefficients and every left-invariant differential operator D_2 on G and
- (iii.) the restriction of Ψ to $int(\mathfrak{F}^{\epsilon}) \times \{e\}$ (or to $int(\mathfrak{F}^{\epsilon}) \times \exp(N_0(A^+))$, for some zero neighbourhood $N_0(A^+)$ in \mathfrak{g} , as will later be seen in Theorem 3.5) is (a non-zero constant multiple of) the Harish-Chandra transform, $(\mathcal{H}f)(\lambda) = \hat{f}$.

It may be shown, in exact manner as for $\mathcal{Z}(\mathfrak{F}^{\epsilon})$ above, that the space $\mathcal{Z}_{G}(\mathfrak{F}^{\epsilon})$ is converted to a Fréchet algebra by equipping it with the topology generated by the collection, $\|\cdot\|_{\mathcal{Z}_{G}(\mathfrak{F}^{\epsilon})}$, of seminorms given by

$$\|\Psi\|_{\mathcal{Z}_G(\mathfrak{F}^\epsilon)}:=\sup_{int(\mathfrak{F}^\epsilon)\times G}|D_1\Psi D_2|.$$

An appropriate subalgebra of $\mathcal{Z}_G(\mathfrak{F}^{\epsilon})$ for our purpose is the closed subalgebra $\bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$ consisting of \mathfrak{w} -invariant elements of $\mathcal{Z}_G(\mathfrak{F}^{\epsilon})$, $\epsilon \geq 0$. By the time Theorem 3.5 is established it will be clear that $\bar{\mathcal{Z}}_{\{x\}}(\mathfrak{F}^{\epsilon}) \simeq \bar{\mathcal{Z}}(\mathfrak{F}^{\epsilon})$, for every x in some zero neighbourhood $N_0(A^+)$ in \mathfrak{g} . In particular, $\bar{\mathcal{Z}}_{\{e\}}(\mathfrak{F}^{\epsilon}) \simeq \bar{\mathcal{Z}}(\mathfrak{F}^{\epsilon})$.

3 Series Analysis of Spherical Convolutions

Let $f \in \mathcal{C}(G)$ and $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$, we recall from [8.] the definition of spherical convolutions, $s_{\lambda,f}$, on G corresponding to the pair (λ, f) as

$$s_{\lambda,f}(x) := (f * \varphi_{\lambda})(x), x \in G.$$

We already know that $s_{\lambda,f}(e) = (\mathcal{H}f)(\lambda)$, where e is the identity element of G and $\lambda \in i\mathfrak{a}^*$. This relation between a function on G at the identity element and another function on $i\mathfrak{a}^*$ suggests we study the full contribution of the Harish-Chandra transforms, $(\mathcal{H}f)(\lambda)$, of f to the properties of $x \mapsto s_{\lambda,f}(x)$

and to seek other functions on $i\mathfrak{a}^*$ which have not been known in the harmonic analysis of G, but still contribute to a deeper understanding of the structure of G.

In order to explore the nature of this idea we consider opening up the spherical convolutions $x \mapsto s_{\lambda,f}(x)$ via its Taylor's series expansion.

Lemma 3.1. Let N_0 be a neighbourhood of origin in \mathfrak{g} and t be sufficiently small in \mathbb{R} (say $0 \le t \le 1$). Then

$$s_{\lambda,f}(x\exp tX) = \sum_{n=0}^{\infty} \frac{t^n}{n!} [\tilde{X}^n s_{\lambda,f}](x),$$

where for every $X \in N_0$ we set $[\tilde{X}^n s_{\lambda,f}](x) = \frac{d^n}{du^n} s_{\lambda,f}(x \exp uX)|_{u=0}$ **Proof.** The proof follows from a direct application of Taylor's series expansion, [5.], $p.\ 105$. \square

At x = e and t = 1 the formula in the Lemma becomes

$$s_{\lambda,f}(\exp X) = \sum_{n=0}^{\infty} \frac{1}{n!} [\tilde{X}^n s_{\lambda,f}](e) = s_{\lambda,f}(e) + \sum_{n=1}^{\infty} \frac{1}{n!} [\tilde{X}^n s_{\lambda,f}](e)$$
$$= (\mathcal{H}f)(\lambda) + \sum_{n=1}^{\infty} \frac{1}{n!} [\tilde{X}^n s_{\lambda,f}](e), \quad X \in N_0.$$

This observation leads quickly to the following result which gives the exact contribution of the Harish-Chandra transforms to the study of spherical convolutions.

Lemma 3.2. The Harish-Chandra transforms, $\lambda \mapsto (\mathcal{H}f)(\lambda)$, $f \in \mathcal{C}(G)$, is the constant term in the (Taylor's) series expansion of spherical convolutions, $x \mapsto s_{\lambda,f}(x)$ around x = e, for every $\lambda \in \mathfrak{a}^*$. \square

It may be deduced, from the expansion leading to the proof Lemma 3.2, that the only time the remaining terms in $s_{\lambda,f}(\exp X)$, after the (non-zero) constant term $(\mathcal{H}f)(\lambda)$, could vanish is when the differential operator $\tilde{X}=0$. That is, when X=0. It therefore follows that the well-known (Harish-Chandra) harmonic analysis on G ([1.], [2.], [9.] and [11.]) has always been

that of the consideration of the map $X \mapsto s_{\lambda,f}(\exp X)$ at only X = 0, which is the origin of \mathfrak{g} or which corresponds to the identity point of $\exp(\mathfrak{g})$. Hence, since the constant term, $(\mathcal{H}f)(\lambda)$, of $s_{\lambda,f}(\exp X)$ corresponds indeed to the consideration of the constant term in the asymptotic expansion of (zonal) spherical functions, φ_{λ} , it also follows that other terms in the expansion of φ_{λ} may be needed to completely understand $f \mapsto s_{\lambda,f}(x)$.

The expression for $s_{\lambda,f}(\exp X)$ therefore suggests that a full harmonic analysis of G may be attained from a close study of the remaining contributions of the transform of f given as

$$\lambda \longmapsto \frac{t^n}{n!} [\tilde{X}^n s_{\lambda,f}](x),$$

for all $X \in N_0$, $n \in \mathbb{N} \cup \{0\}$, $x \in G$, $f \in \mathcal{C}(G)$ and sufficiently small values of t, in the same manner that its constant term,

$$\lambda \longmapsto (\mathcal{H}f)(\lambda)$$

had been considered.

However before considering the transformational properties of spherical convolutions we note the following lemmas which lead to a more inclusive view of the Trombi-Varadarajan Theorem and prepares the ground for its generalization.

Lemma 3.3. Let N_0 be a neighbourhood of origin in \mathfrak{g} , $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ and t be sufficiently small in \mathbb{R} (say $0 \le t \le 1$). Then

$$s_{\lambda,f}(x\exp tX) = \left[\sum_{n=0}^{\infty} \frac{t^n}{n!} \gamma(\frac{d^n}{du^n})(\lambda)_{|_{u=0}}\right] \cdot s_{\lambda,f}(x),$$

for every $X \in N_0$, $x \in G$, $f \in C(G)$.

Proof. We note here that

$$\begin{split} & [\tilde{X}s_{\lambda,f}](x) = \frac{d}{du}s_{\lambda,f}(x\exp uX)_{|u=0} = \frac{d}{du}(f*\varphi_{\lambda})(x\exp uX)_{|u=0} \\ & = (f*\frac{d}{du}\varphi_{\lambda})(x\exp uX)_{|u=0} = \gamma(\frac{d}{du})(\lambda) \cdot (f*\varphi_{\lambda})(x\exp uX)_{|u=0}. \end{split}$$

Hence

$$[\tilde{X}^n s_{\lambda,f}](x) = \gamma (\frac{d^n}{du^n})(\lambda)_{|u=0} \cdot (f * \varphi_{\lambda})(x \exp uX)_{|u=0} = \gamma (\frac{d^n}{du^n})(\lambda)_{|u=0} \cdot s_{\lambda,f}(x). \quad \Box$$

The particular case of setting x = e and t = 1 in Lemma 3.3 introduces the Harish-Chandra transforms, $(\mathcal{H}f)(\lambda)$, into the analysis of this series, proving the following.

Lemma 3.4. Let N_0 be a neighbourhood of origin in \mathfrak{g} , $f \in \mathcal{C}(G)$ and $\lambda \in \mathfrak{a}^*$. Then the spherical convolution function, $x \mapsto s_{\lambda,f}(x)$ is a non-zero constant multiple of the Harish-Chandra transforms, $(\mathcal{H}f)(\lambda)$, on $\exp(N_0)$.

Proof. Set x = e and t = 1 into Lemma 3.3 to have

$$s_{\lambda,f}(\exp X) = [\sum_{n=0}^{\infty} \frac{1}{n!} \gamma(\frac{d^n}{du^n})(\lambda)_{|u=0}] \cdot s_{\lambda,f}(e) = [\sum_{n=0}^{\infty} \frac{1}{n!} \gamma(\frac{d^n}{du^n})(\lambda)_{|u=0}] \cdot (\mathcal{H}f)(\lambda),$$

with
$$\sum_{n=0}^{\infty} \frac{1}{n!} \gamma(\frac{d^n}{du^n})(\lambda)|_{u=0} = 1 + \left[\sum_{n=1}^{\infty} \frac{1}{n!} \gamma(\frac{d^n}{du^n})(\lambda)|_{u=0}\right] \neq 0$$
. \square

Let us denote the non-zero constant in Lemma 3.4 above by κ . The following theorem is a consequence of normalizing the spherical convolutions in Lemma 3.4.

Theorem 3.5. (Trombi-Varadarajan Theorem for Spherical Convolutions) Let $0 , set <math>\epsilon = (2/p) - 1$ and $x \in \exp(N_0)$. Set $\widehat{f}_x(\lambda) = \frac{1}{\kappa} s_{\lambda,f}(x)$ for $f \in C^p(G//K)$. Then the spherical convolution transforms $f \mapsto \widehat{f}_x$ is a linear topological algebra isomorphism of $C^p(G//K)$ onto $\overline{Z}(\mathfrak{F}^{\epsilon})$. \square

We recover the Trombi-Varadarajan Theorem for Harish-Chandra transforms by setting x=e in Theorem 3.5. Indeed, Theorem 3.5 above says that every $x\in\exp(N_0)$ (and not just x=e) gives a topological algebra isomorphism between $C^p(G//K)$ and $\bar{\mathcal{Z}}(\mathfrak{F}^e)$. However if $x\in G\setminus\exp(N_0)$, for any neighborhood N_0 of zero in \mathfrak{g} , Trombi-Varadarajan Theorem may not be appropriate and it may be necessary to seek a more general realization of $C^p(G//K)$ under the map $f\mapsto l_1(\lambda):=s_{\lambda,f}(x)$, for any $x\in G$. Before considering another major result of this paper, giving the fine structure of spherical convolution functions, we state a result on the finiteness of a central integral usually used in the estimation of many other integrals of harmonic

analysis on semisimple Lie groups.

To this end we define, for every $x \in G$, the function $x \mapsto d(x)$ as

$$d(x) = \int_G \Xi^2(y^{-1}x)(1 + \sigma(y^{-1}x))^{-r} dy.$$

We observe here that

$$d(e) = \int_G \Xi^2(y^{-1})(1 + \sigma(y^{-1}))^{-r} dy = \int_G \Xi^2(y)(1 + \sigma(y))^{-r} dy,$$

which is a constant whose proof of finiteness may be found in [11.], p. 231. This constant is crucial to all harmonic analysis of $\mathcal{C}(G)$ and, in particular, to the embedding of $\mathcal{C}(G)$ in $L^2(G)$. It is therefore important to understand the nature of d(x) for all $x \in G$ in order to employ it in a more inclusive harmonic analysis on G. We consider the nature of this integral in the following.

Lemma 3.6. Let $x \in G$. Then there exist $r \geq 0$ such that

$$d(x) = \int_G \Xi^2(y^{-1}x)(1 + \sigma(y^{-1}x))^{-r} dy < \infty.$$

Proof. We already know that $\Xi(y^{-1}x) \leq 1$. Also

$$1 + \sigma(y^{-1}x) \le (1 + \sigma(y^{-1}))(1 + \sigma(x)) = (1 + \sigma(y))(1 + \sigma(x)).$$

It follows therefore that

$$d(x) \le \int_G (1 + \sigma(y^{-1}x))^{-r} dy \le (1 + \sigma(x)) \int_G (1 + \sigma(y)) dy.$$

The last integral in the above inequality is finite if we embark on its computation via the polar decomposition, $G = K \cdot cl(A^+) \cdot K$, of G. \square

Theorem 3.7. Let N_0 be a neighbourhood of origin in \mathfrak{g} where f is a measurable function on G which satisfies the general strong inequality. The integral defining the spherical convolution function, $x \mapsto s_{\lambda,f}(x)$, is absolutely and uniformly convergent for all $x \in \exp(N_0)$, $\lambda \in \mathfrak{ia}^*$. Moreover the transforms $\lambda \mapsto s_{\lambda,f}(x)$ of f, with $x \in \exp(N_0)$, is a continuous function on \mathfrak{ia}^* . If $r \geq 0$ is such that $d(x) = \int_G \Xi^2(y^{-1}x)(1+\sigma(y^{-1}x))^{-r}dy < \infty$, $x \in G$, then

$$\mid s_{\lambda,f}(x)\mid \leq d(x)\cdot \mu_{1,1,r}(f), \ x\in G, \ \lambda\in i\mathfrak{a}^*.$$

Proof. We recall that $|\varphi_{\lambda}(x)| \leq \varphi_{0}(x) = \Xi(x), x \in G, \lambda \in i\mathfrak{a}^{*}$. Hence

$$\mid (f*\varphi_{\lambda})(x) \mid \leq \int_{G} \mid f(y)\varphi_{\lambda}(y^{-1}x) \mid dy \leq \mu_{1,1,r}(f) \int_{G} \Xi^{2}(y^{-1}x)(1+\sigma(y^{-1}x))^{-r} dy$$

= $d(x) \cdot \mu_{1,1,r}(f)$. Continuity follows from the use of the Lebesgue's dominated convergence theorem. \square

The following well-known result on the foundational properties of the Harish-Chandra transforms, $\lambda \mapsto (\mathcal{H}f)(\lambda)$, $\lambda \in i\mathfrak{a}^*$, now follows from the general outlook given by Theorem 3.7.

Corollary 3.8. ([9.]) Let f be a measurable function on G which satisfies the strong inequality. The integral defining the Harish-Chandra transforms,

$$(\mathcal{H}f)(\lambda) = \int_G f(x)\varphi_{\lambda}(x)dx,$$

is absolutely and uniformly convergent for all $\lambda \in i\mathfrak{a}^*$ and is continuous on $i\mathfrak{a}^*$. If $r \geq 0$ is such that $d = \int_G \Xi^2(y)(1+\sigma(y))^{-r}dy < \infty$, then

$$(\mathcal{H}f)(\lambda) \mid \leq d\mu_{1,1,r}(f), \ \lambda \in i\mathfrak{a}^*.$$

Proof. Set X=0 in Theorem 3.7 to have the first results. The inequality follows if we set x=e and observe that $d(e)=\int_G\Xi^2(y^{-1})(1+\sigma(y^{-1}))^{-r}dy=d$. \square

We now consider the image of $C^p(G//K)$ under the full spherical convolution map, $f \mapsto l_1(\lambda) := s_{\lambda,f}(x)$, for any $x \in G$. In order to discuss this we have two options. One of the options is to introduce wave-packet that will still have its domain as $\bar{Z}(\mathfrak{F}^e)$ while using an appropriate Plancherel measure on \mathfrak{F}^e . This option has been explored in [8.], p. 34, where the L^2 Plancherel measure, $d\zeta_{x,\lambda}$ on \mathfrak{F}^1 for the spherical convolution function (when viewed as a function on G) was defined to absorb the group variable, x. The results therein suggest that the image of $C^p(G//K)$ under the full spherical convolution map is indeed possible.

The second option is to retain the spherical Bochner measure, $d\lambda$, on (a subset of) \mathfrak{F}^{ϵ} and define the wave-packet as a map on the Fréchet algebra $\bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$. This will reflect the nature of the full spherical convolution map as a transform of members of $\mathcal{C}^p(G//K)$ whose arguments are (generally) taken from $int(\mathfrak{F}^{\epsilon}) \times G$ (and not just from $int(\mathfrak{F}^{\epsilon})$ as in the first option). This is the option we shall explore in the present paper.

To this end recall the Fréchet algebra $\bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$, $\forall \epsilon > 0$, let $\Psi \in \bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$ and set

$$N_0(A^+) = N_0 \cap A^+,$$

where N_0 is a zero neighbourhood in \mathfrak{g} . It is clear that $N_0(A^+)$ is also a zero neighbourhood in \mathfrak{g} and that $\Psi = \Psi(\lambda, x)$, for all $(\lambda, x) \in int(\mathfrak{F}^{\epsilon}) \times G$. It follows, from Theorem 3.5, that $\bar{\mathcal{Z}}_{\{x\}}(\mathfrak{F}^{\epsilon}) \simeq \bar{\mathcal{Z}}(\mathfrak{F}^{\epsilon})$, for every $x \in \exp(N_0(A^+))$. We then have the following.

Lemma 3.9. For every $x \in \exp(N_0(A^+))$ and $\Psi \in \bar{\mathcal{Z}}_G(\mathfrak{F}^e)$, we have that $\Psi(\lambda, x) = \Phi(\lambda)$, for some $\Phi \in \bar{\mathcal{Z}}(\mathfrak{F}^e)$.

We now employ these remarks to define a map from $\bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$ to $C^p(G//K)$ as follows. Let $a \in \bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$ and $\lambda \mapsto c(\lambda)$ be the Harish-Chandra c-function defined on $\mathfrak{F}_I := i\mathfrak{a}^*$. We associate to every $a \in \bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$ the function φ_a on G defined as

$$\varphi_a(x) = \mid \mathfrak{w} \mid^{-1} \int_{\mathfrak{F}_I} a(-\lambda, x) \varphi_{-\lambda}(x) c(-\lambda)^{-1} c(\lambda)^{-1} d\lambda, \quad x \in G.$$

It should be noted here that

$$\begin{split} \varphi_a(x) &= \mid \mathfrak{w} \mid^{-1} \int_{\mathfrak{F}_I} a(-\lambda, x) \varphi_{-\lambda}(x) c(-\lambda)^{-1} c(\lambda)^{-1} d\lambda \\ &= \mid \mathfrak{w} \mid^{-1} \int_{\mathfrak{F}_I} a(\lambda, x) \varphi_{\lambda}(x) c(\lambda)^{-1} c(-\lambda)^{-1} d(-\lambda) \\ &= \mid \mathfrak{w} \mid^{-1} \int_{\mathfrak{F}_I} a(\lambda, x) \varphi_{\lambda}(x) c(\lambda)^{-1} c(-\lambda)^{-1} d\lambda, \end{split}$$

which is due to the invariance of $d\lambda$, and that

$$\varphi_a(k_1xk_2) = \varphi_a(x),$$

 $\forall x \in G, k_1, k_2 \in K$, being a property inherited from a and φ_{λ} .

The (extra) requirement of being spherical on G placed on members of $\bar{\mathcal{Z}}_G(\mathfrak{F}^e)$ may at first be seen as a restriction, when compared to the requirements on members of $\bar{\mathcal{Z}}(\mathfrak{F}^e)$. It however turns out that this extra requirement is what is needed to assure us of the generalization of the *classical* wave-packets (of Trombi-Varadarajan) on G to all of $x \mapsto \varphi_a(x)$. This is established as follows.

Lemma 3.10. Let $a \in \bar{\mathcal{Z}}_G(\mathfrak{F}^e)$ and $N_0(A^+)$ be as defined above. Then, for every $x \in \exp(N_0(A^+))$, the map $x \mapsto \varphi_a(x)$ is the classical wave-packet of G.

Proof. We observe that, with $\exp tH \in \exp(N_0(A^+))$,

$$a(\lambda, x) = a(\lambda, k_1 \exp tHk_2) = a(\lambda, \exp tH) = \Phi(\lambda),$$

for some $\Phi \in \bar{\mathcal{Z}}(\mathfrak{F}^{\epsilon})$. Here we have employed the spherical property of a on G in the second equality and Lemma 3.9 in the third equality. \square

The above Lemma shows that the definition and properties of the map $x \mapsto \varphi_a(x), x \in G$, is consistent with the relationship (in Lemma 3.4) existing between spherical convolutions, $s_{\lambda,f}(x)$ and the Harish-Chandra transfroms, $(\mathcal{H}f)(\lambda)$. Hence in order to extend Trombi-Varadarajan Theorem (which gives the image of the algebra $C^p(G//K)$ under $f \mapsto (\mathcal{H}f)(\lambda)$) to all $x \in G$ (under the spherical convolution transform), it will be necessary to show that $x \mapsto \varphi_a(x)$ is the wave-packet of $f \mapsto s_{\lambda,f}(x)$ for all $x \in G$. According to Lemma 3.10, this needs only be done for those $x = k_1 \exp tHk_2$ in G with $\exp tH \notin \exp(N_0(A^+))$, for any neighbourhood, N_0 , of zero in \mathfrak{g} . We however give a self-contained discussion of these results, the first of which is given below.

Theorem 3.11. $\varphi_a \in C^p(G//K)$ for every $a \in \bar{\mathcal{Z}}_G(\mathfrak{F}^{\epsilon})$.

In order to establish this Theorem we prove some lemmas which give appropriate background for it. Indeed we derive an appropriate bound for $|\varphi_a(h;u)|$, where $u \in \mathfrak{U}(\mathfrak{g}_{\mathbb{C}})$ and h is well-chosen, and the appropriate collection of seminorms are also in place.

4 Algebras of Spherical Convolutions

We now consider the various algebras of spherical convolutions that have emanated in the course of this research and their relationship with the Harish-Chandra Schwartz algebra, C(G), on G as well as its distinguished commutative subalgebra, C(G//K), of (elementary) spherical functions.

Define $\mathcal{C}_{\lambda}(G) = \{s_{\lambda,f} : f \in \mathcal{C}(G)\}$ and set $\mathcal{C}_{\lambda,0}(G) = \{s_{\lambda,\varphi_{\lambda}}\}$, for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$. It is clear that $\bigcup_{\lambda \in \mathfrak{a}_{\mathbb{C}}^*} \mathcal{C}_{\lambda}(G)$ is contained in $\mathcal{C}(G)$. We may therefore topologize $\bigcup_{\lambda \in \mathfrak{a}_{\mathbb{C}}^*} \mathcal{C}_{\lambda}(G)$ by giving it the *relative topology* from the topology defined on $\mathcal{C}(G)$ by the seminorms, $\mu_{a,b,r}$.

Lemma 4.1. The inclusions

$$[\bigcup_{\lambda \in \mathfrak{a}_{\mathbb{C}}^*} \mathcal{C}_{\lambda,0}(G)] \subset \mathcal{C}(G//K) \subset [\bigcup_{\lambda \in \mathfrak{a}_{\mathbb{C}}^*} \mathcal{C}_{\lambda}(G)] \subset \mathcal{C}(G)$$

are all proper.

Theorem 4.2. $\bigcup_{\lambda \in \mathfrak{F}^1} \mathcal{C}_{\lambda}(G)$ is a closed subalgebra of $\mathcal{C}(G)$. Proof. We recall that $\mu_{a,b;r}(f * \varphi_{\lambda}) \leq c\mu_{1,b;r+r_0}(f) \cdot \mu_{a,1;r}(\varphi_{\lambda})$, where $c := \int_G \Xi^2(x)(1+\sigma(x))^{-r_0} dx < \infty$ for some $r_0 \geq 0$. However

$$\mu_{a,1;r}(\varphi_{\lambda}) = \sup_{G} [|\varphi_{\lambda}(1;x;a)| \cdot \Xi(x)^{-1} (1 + \sigma(x))^{r}]$$

$$= |\gamma(a)(\lambda)| \cdot \sup_{G} [|\varphi_{\lambda}(x)| \cdot \Xi(x)^{-1} (1 + \sigma(x))^{r}]$$

$$\leq M |\gamma(a)(\lambda)| \cdot \sup_{G} [\Xi(x)^{-1} (1 + \sigma(x))^{r}] < \infty$$
(since φ_{λ} is bounded for all $\lambda \in \mathfrak{F}^{1}$).

Hence $\mu_{a,b;r}(f * \varphi_{\lambda}) < \infty, \ \forall \ \lambda \in \mathfrak{F}^1$. \square

It may be recalled that members of C(G) are exactly those functions on G whose left and right derivatives satisfy the *strong inequality*. In the light of this observation we define $C^{(x)}(G)$ as exactly those functions on G whose

left and right derivatives satisfy the general strong inequality, for each $x \in G$. Explicitly we set $C^{(x)}(G)$ as

$$\mathcal{C}^{(x)}(G) = \{ f: G \mapsto \mathbb{C} : \sup_{y \in G} [|f(a;y;b)| \cdot \Xi(y^{-1}x)^{-1}(1 + \sigma(y^{-1}x))^r] < \infty \},$$

 $x \in G$. A collection of seminorms on each of $\mathcal{C}^{(x)}(G)$ may be given by

$$\mu_{a,b;r}^{(x)}(f) := \sup_{y \in G} [|f(a;y;b)| \cdot \Xi(y^{-1}x)^{-1} (1 + \sigma(y^{-1}x))^r].$$

It is however clear that $\mathcal{C}^{(e)}(G) = \mathcal{C}(G)$, so that $\mathcal{C}(G) \subset \bigcup_{x \in G} \mathcal{C}^{(x)}(G)$.

Theorem 4.3. The natural inclusion $\bigcup_{x\in G} C^{(x)}(G) \subset L^2(G)$ has a dense image.

Proof. It is known that the natural inclusion of C(G) in $L^2(G)$ has a dense image, [1.]. The result therefore follows if we recall that, as sets of functions,

$$C(G) \subset \bigcup_{x \in G} C^{(x)}(G) \subset L^2(G),$$

where the second inclusion holds from the fact that $d(x) < \infty$, $x \in G$. \square

References.

- [1.] Arthur, J.G., Harmonic analysis of tempered distributions on semisimple Lie groups of real rank one, Ph.D. Dissertation, Yale University, 1970.
- [2.] Arthur, J.G., Harmonic analysis of the Schwartz space of a reductive Lie group, I. II. (preprint, 1973).
- [3.] Barker, W.H., The spherical Bochner theorem on semisimple Lie groups, J. Funct. Anal., vol. 20 (1975), pp. 179 – 207.
- [4.] Dixmier, J., Opérateurs de rang fini dans les représentations unitaires, Publ. math. de l' Inst. Hautes Études Scient., tome 6 (1960), pp. 13-25.

- [5.] Helgason, S., "Differential Geometry, Lie Groups and Symmetric Spaces," Academic Press, New York, 1978.
- [6.] Helgason, S., "Groups and Geometric Analysis; Integral Geometry, Invariant Differential Operators, and Spherical Functions," Academic Press, New York, 1984.
- [7.] Helgason, S. and Johnson, K., The bounded spherical functions on symmetric spaces, Advances in Math, 3 (1969), pp. 586-593.
- [8.] Oyadare, O. O., On harmonic analysis of spherical convolutions on semisimple Lie groups, Theoretical Mathematics and Applications, 5(3) (2015), pp. 19 – 36.
- [9.] Trombi, P.C. and Varadarajan, V.S., Spherical transforms on semisimple Lie groups, Ann. of Math., 94 (1971), pp. 246 – 303.
- [10.] Varadarajan, V.S., The theory of characters and the discrete series for semisimple Lie groups, in *Harmonic Analysis on Homogeneous Spaces*, (C.C. Moore (ed.)) *Proc. of Symposia in Pure Maths.*, vol. 26 (1973), pp. 45 – 99.
- [11.] Varadarajan, V.S., "An introduction to harmonic analysis on semisimple Lie groups," Cambridge University Press, Cambridge, 1989.