Nombres réels

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Cor	Corps ordonnés			
	1.1	Définitions et faits de base			
		1.1.1	Corps ordonné	2	
		1.1.2	Propriétés algébriques des anneaux et corps	2	
	1.2	Propri	iétés des corps ordonnés relatives à l'ordre	3	
		1.2.1	Inclusion de $\mathbb Z$ et $\mathbb Q$ dans $\mathbb K$	3	
		1.2.2	Ordre et addition	4	
		1.2.3	Ordre et produit	4	
		1.2.4	Valeur absolue dans \mathbb{K}	6	
2	Nor	Nombres réels			
	2.1	Propri	iété fondamentale	8	
		2.1.1	Énoncé	8	
		2.1.2	Exemple d'utilisation	8	
	2.2	Interv	alles	8	
		2.2.1	Définitions	8	
		2.2.2	Propriétés	9	
		2.2.3	Caractérisation des intervalles de \mathbb{R}	9	
	2.3	Partie	s entières supérieures et inférieures d'un réel	10	
		2.3.1	Théorème et définition	10	
		2.3.2	Partie fractionnaire	11	
		2.3.3	Propriétés	11	
	2.4	2.4 Densité des divers ensembles dans $\mathbb R$			
		2.4.1	Définition et propriété	12	
		2.4.2	$\mathbb D$ est dense dans $\mathbb R$	12	
		2.4.3	$\mathbb{N} + 2\pi \mathbb{Z}$ est dense dans \mathbb{R}	13	

1 Corps ordonnés

1.1 Définitions et faits de base

1.1.1 Corps ordonné

Un corps ordonné est un quadruplet $(\mathbb{K}, +, \times, \leq)$ avec :

- (1) Le triplet $(\mathbb{K}, +, \times)$ est un corps :
 - \times et + sont deux lois de composition internes associatives et commutatives possédant des neutres (0 est le neutre de +, et 1 celui de \times). On suppose $0 \neq 1$.
 - Tout élément x de \mathbb{K} possède un inverse par + noté -x et appelé opposé.
 - Tout élément y de $\mathbb{K}\setminus\{0\}$ possède un inverse pour \times noté $\frac{1}{y}$ a.
 - \times est distributive par rapport à +.
- (2) \leq est une relation d'ordre totale sur K, compatible avec + et \times :
 - $\forall a, b, c \in \mathbb{K}, a \leq b \Rightarrow a + c \leq b + c$
 - $\forall a, b \in \mathbb{K}, \ 0 \leqslant a \text{ et } 0 \leqslant b \Rightarrow 0 \leqslant ab$

a. Un anneau $(\mathbb{K}, +, \times)$ possède les mêmes propriétés que le corps $(\mathbb{K}, +, \times)$, à l'exception de l'inversibilité des éléments de \mathbb{K} par \times .

1.1.2 Propriétés algébriques des anneaux et corps

Éléments neutres et absorbants

- Pour $x \in \mathbb{K}$, $0 \times x = x \times 0 = 0$. En effet,

$$0 \times x = (0+0) \times x$$
$$= 0 \times x + 0 \times x$$

D'où:

$$0 = 0 \times x - 0 \times x$$
$$= 0 \times x + 0 \times x - 0 \times x$$
$$= 0 \times x$$

- Pour $x \in \mathbb{K}$, $-x = -1 \times x$. En effet,

$$x + (-1) \times x = 1 \times x + (-1) \times x$$
$$= (1 + (-1)) \times x$$
$$= 0 \times x$$
$$= 0$$

D'où
$$-x = (-1) \times x$$
.

Lien entre multiplication et itération de l'addition

- Pour $x \in \mathbb{K}$ et $n \in \mathbb{N}$, nx est défini récursivement par :
 - (1) $0_N x = 0_K$
 - (2) $\forall k \in \mathbb{N}, (k+1) x = kx + x, \text{ c'est-à-dire si } n \in \mathbb{N}^*, nx = \underbrace{x + x + \dots + x}_{n \text{ fois}}$
- On vérifie que $\forall n, m \in \mathbb{Z}, \forall x \in \mathbb{K}, (n+m)x = nx + mx$ et (nm)x = n(mx).
- $\forall n \in \mathbb{Z}, \forall x \in \mathbb{K}, nx = (n1_{\mathbb{K}}) \times x$ (preuve par récurrence).

- Pour
$$x, y \in \mathbb{K}$$
:
 $(-x, y) = (-x)y = x(-y)$
En effet.

$$xy + (-x) y = (x + (-x)) y$$
$$= 0y$$
$$= 0$$

Donc
$$(-x) y = (-xy)$$
. De même, $xy + x (-y) = x (y + (-y)) = 0x$

$$(-x)(-y) = -(x(-y))$$
$$= --(xy)$$
$$= xy$$

1.2 Propriétés des corps ordonnés relatives à l'ordre

1.2.1 Inclusion de \mathbb{Z} et \mathbb{Q} dans \mathbb{K}

Ordre et opérations

- $\forall x \in \mathbb{K}, \ x^2 \geqslant 0_{\mathbb{K}}$
- En effet:
- \circ si $x \ge 0$, alors $x \times x \ge 0$;
- \circ si $x \leq 0$, alors $x + (-x) = 0 \leq 0 + (-x)$ donc $-x \geq 0$. Ainsi, $(-x) \times (-x) \geq 0$.
- $\forall x, y \in \mathbb{K},$

$$x \le y \Leftrightarrow y - x \ge 0 \Leftrightarrow x - y \le 0 \Leftrightarrow -x \ge -y$$

La démonstration découle de la compatibilité de l'ordre avec +.

 $- F0 : \text{en effet } 1 \neq 0 \text{ et } 1 = 1^2 \geqslant 0.$

Identification de \mathbb{Z} **dans** \mathbb{K} L'application $n \in \mathbb{Z} \mapsto n1_{\mathbb{K}} \in \mathbb{K}$ est strictement croissante donc $n \leq m$ dans $\mathbb{Z} \Rightarrow n1_{\mathbb{K}} \leq m1_{\mathbb{K}}$ dans \mathbb{K} .

En effet, $\forall n \in \mathbb{N}^*, n1_k > 0_{\mathbb{K}}$:

- C'est vrai pour n = 1.
- Si c'est vrai pour un $n \in \mathbb{N}^*$, alors

$$(n+1) 1_{\mathbb{K}} = n1_{\mathbb{K}} + 1_{\mathbb{K}} \geqslant n1_{\mathbb{K}} + 0_{\mathbb{K}} > 0_{\mathbb{K}}$$

Pour $n, m \in \mathbb{Z}$ avec $n < m, m - n \in \mathbb{N}^*$ donc

$$(m-n) 1_{\mathbb{K}} > 0_{\mathbb{K}} \Leftrightarrow m1_{\mathbb{K}} - n1_{\mathbb{K}} > 0_{\mathbb{K}}$$

donc $m1_{\mathbb{K}} > n1_{\mathbb{K}}$.

L'ensemble des $\{n1_{\mathbb{K}} | n \in \mathbb{Z}\}$ est en bijection avec \mathbb{Z} en respectant les lois et l'ordre de \mathbb{Z} :

- $\forall n, m \in \mathbb{Z}, n1_{\mathbb{K}} + m1_{\mathbb{K}} = (n+m)1_{\mathbb{K}}$
- $\forall n, m \in \mathbb{Z}, n1_k \times m1_{\mathbb{K}} = nm1_{\mathbb{K}}$
- $\forall n, m \in \mathbb{Z}, n < m \Rightarrow n1_{\mathbb{K}} < m1_{\mathbb{K}}$

Cet ensemble s'identifie donc à \mathbb{Z} et désormais, on notera pour $n \in \mathbb{Z}$, n au lieu de $n1_{\mathbb{K}}$. En ce sens, \mathbb{K} contient \mathbb{Z} .

Identification de \mathbb{Q} **dans** \mathbb{K} On sait que $\forall n \in \mathbb{N}^*$, $n = n1_{\mathbb{K}}$ est inversible par \times . On vérifie que l'ensemble $\left\{\frac{p1_{\mathbb{K}}}{q1_{\mathbb{K}}}|p \in \mathbb{Z}, q \in \mathbb{N}^*\right\}$ est une partie de \mathbb{K} en bijection avec \mathbb{Q} . Pour (p,q), $(p',q') \in \mathbb{Z} \times \mathbb{N}^*$, soit $r = \frac{p}{q}$ et $r' = \frac{p'}{q'}$, alors:

$$\frac{p1_{\mathbb{K}}}{q1_{\mathbb{K}}} + \frac{p'1_{\mathbb{K}}}{q'1_{\mathbb{K}}} = \left(\frac{p}{q} + \frac{p'}{q'}\right) 1_{\mathbb{K}} \quad \text{et} \quad \frac{p1_{\mathbb{K}}}{q1_{\mathbb{K}}} \times \frac{p'1_{\mathbb{K}}}{q'1_{\mathbb{K}}} = \left(\frac{p}{q} \times \frac{p'}{q'}\right) 1_{\mathbb{K}}$$

De plus, dans $\mathbb{Q}: \frac{p}{q} \leqslant \frac{p'}{q'} \Leftrightarrow \frac{p1_{\mathbb{K}}}{q1_{\mathbb{K}}} \leqslant \frac{p'1_{\mathbb{K}}}{q'1_{\mathbb{K}}} \text{ dans } \mathbb{K}.$

On identifiera désormais le rationnel $\frac{p}{q} \in \mathbb{Q}$ et $\frac{p1_{\mathbb{K}}}{q1_{\mathbb{K}}} \in \mathbb{K}$. En ce sens, \mathbb{K} contient \mathbb{Q} .

Autres propriétés Pour $x, y \in \mathbb{K}_+^* = \{z \in \mathbb{K} | z > 0_{\mathbb{K}}\} :$

- $-xy \in \mathbb{K}_{+}^{*}$. En effet, $xy \ge 0_{\mathbb{K}}$ et on ne peut avoir xy = 0 car si xy = 0, alors $\frac{1}{x}xy = 0 \Leftrightarrow y = 0$, ce qui est impossible.
- Pour $x \in \mathbb{K}^* = \{z \in \mathbb{K} | z \neq 0_{\mathbb{K}}\}, x \text{ et } \frac{1}{x} \text{ ont le même signe car } x \times \frac{1}{x} = 1 > 0.$

1.2.2 Ordre et addition

Addition d'inégalités

Soient $a, b, c, d \in \mathbb{K}$. Si $a \le b$ et $c \le d$, alors $a + c \le b + d$. Si de plus a < b, alors a + c < b + d.

En effet, $a \le b$ donc $a + c \le b + c$. De plus $c \le d$ donc $c + b \le d + b$ d'où le résultat par transitivité. Si a < b, on ne peut avoir a + c = b + d donc a + c < b + d. D'autre part $b + c \le b + d$ d'où le résultat.

Généralisation du résultat précédent Soit $n \in \mathbb{N}^*$, $x_1, x_2, \ldots, x_n \in \mathbb{K}$ et $y_1, y_2, \ldots, y_n \in \mathbb{K}$ tels que $\forall i \in [1, n], x_i \leq y_i$. Alors :

(1)

$$\sum_{i=1}^{n} x_i \leqslant \sum_{i=1}^{n} y_i$$

(2) Si de plus $\exists j \in \llbracket 1, n \rrbracket / x_j < y_j$, alors

$$\sum_{i=1}^{n} x_i < \sum_{i=1}^{n} y_i$$

(3) Toujours avec les mêmes hypothèses,

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \Leftrightarrow \forall i \in [1, n], x_i = y_i$$

Corollaire Si $n \in \mathbb{N}^*$ et $x_1, x_2, \dots, x_n \in \mathbb{K}_+$, alors $\sum_{i=1}^n x_i \ge 0$ et

$$\sum_{i=1}^{n} x_i = 0 \Leftrightarrow \forall i \in [1, n], x_i = 0$$

1.2.3 Ordre et produit

Multiplication d'une inégalité par un nombre positif

Soit $a, b, c \in \mathbb{K}$. Alors :

- (1) Si $a \le b$ et $c \ge 0$, alors $ac \le bc$.
- (2) Si de plus c > 0, alors $a \le b \Leftrightarrow ac \le bc$.
- (3) Si a < b et c > 0, alors ac < bc.

Démonstrations

- (1) $b a \in \mathbb{K}_+ \text{ donc } (b a) c \in \mathbb{K}_+ \text{ donc } (b a) c \ge 0 \Leftrightarrow bc \ge ac$.
- (2) Le sens direct étant déjà prouvé, reste à montrer le sens réciproque : $ac \times \frac{1}{c} \leqslant bc \times \frac{1}{c} \Rightarrow a \leqslant b$.
- (3) Si b-a>0 et c>0, alors $(b-a)\,c>0$ d'où le résultat.

Multiplication d'inégalités positives entre elles Soient $a,b,c,d \in \mathbb{K}$ tels que $0 \le a \le b$ et $0 \le c \le d$. Alors :

- (1) $ac \leq bc$;
- (2) si de plus 0 < a < b et $0 \le c < d$, alors ac < bd.

Démonstrations

- (1) $a \le b$ et $c \ge 0$ donc $ac \le bd$. De même, $c \le d$ et $b \ge 0$ donc $cb \le db$, d'où le résultat par transitivité.
- (2) « Au courageux lecteur de le faire! »

Généralisation du résultat précédent Soit $n \in \mathbb{N}^*$, $x_1, x_2, \ldots, x_n \in \mathbb{K}$ et $y_1, y_2, \ldots, y_n \in \mathbb{K}$ tels que $\forall i \in [1, n], 0 \leq x_i \leq y_i$. Alors

$$\prod_{i=1}^{n} x_i \leqslant \prod_{i=1}^{n} y_i$$

Si de plus, $\exists j \in [1, n]/x_j < y_j$, alors

$$\prod_{i=1}^{n} x_i < \prod_{i=1}^{n} y_i$$

Résultats sur les puissances

- (1) Pour $x \in \mathbb{K}_+$ et $n \in \mathbb{N}^*$, $x^n \in \mathbb{K}_+$.
- (2) Pour $n \in \mathbb{N}^*$, $x \in \mathbb{K}_+ \mapsto x^n$ est strictement croissante, c'est-à-dire :

$$0 \leqslant x < y \Rightarrow 0 \leqslant x^n < y^n$$

Démonstrations

- (1) Récurrence, le principal argument étant que le produit de deux nombres positifs est positif.
- (2) **1**ère **façon**: soient $x, y \in \mathbb{K}_+$ avec x < y et $n \in \mathbb{N}^*$ D
 - Si x = 0, alors $0^n = 0$ et $y^n \in \mathbb{K}_+^*$ donc $y^n > 0 = x^n$.
 - Si $x \neq 0$, alors on pose $\forall i \in [1, n], x_i = x$ et $y_i = y$ donc

$$\prod_{i=1}^{n} x_i < \prod_{i=1}^{n} y_i \Leftrightarrow x^n < y^n$$

2^e façon : soit $x, y \in \mathbb{K}_+$ avec x < y et $n \in \mathbb{N}^*$, on a

$$y^{n} - x^{n} = (y - x) \sum_{k=0}^{n-1} x^{k} y^{n-k}$$

Or
$$\forall k \in [0, n-1], x^k y^{n-k} \ge 0$$
 et $\sum_{k=0}^{n-1} x^k y^{n-k} < 0$ car $x^0 y^{n-1} > 0$ et $y-x > 0$ donc $y^n - x^n > 0$.

a. En effet, $0^0 = 1$ par convention et parce que la fonction $x \in \mathbb{R}_+^* \longmapsto x^x$ tend vers 1 lorsque x tend vers 0.

Inégalité de Bernoulli

Pour $k \in \mathbb{K}_+$ et $n \in \mathbb{N}$,

$$(1+k)^n \geqslant 1 + nk$$

Démonstration Pour n = 0, l'inégalité est vérifiée car $1 \le 1$. Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{K}$. On a :

$$(1+k)^n = \sum_{l=0}^n \binom{n}{l} k^l$$
$$= 1 + \binom{n}{1} k + \sum_{l=2}^n \binom{n}{l} k^l$$
$$= 1 + nk + \alpha \quad \text{avec } \alpha > 0$$

D'où le résultat.

Inverse et inégalités L'application $x \in \mathbb{K}_+^* \longrightarrow \frac{1}{x}$ est strictement décroissante.

En effet, si 0 < x < y, alors

$$\frac{1}{y} - \frac{1}{x} = \frac{x - y}{xy}$$
$$= -\frac{y - x}{xy}$$

Or
$$y-x>0$$
 et $xy>0$ donc $\frac{1}{y}-\frac{1}{x}<0\Leftrightarrow 0<\frac{1}{y}<\frac{1}{x}$.

1.2.4 Valeur absolue dans \mathbb{K}

Définition

Pour $x \in \mathbb{K}$, on pose $|x| = \max(x, -x)$. |x| exist toujours car l'ordre (\mathbb{K}, \leq) est total.

On note que:

- Si $x \in \mathbb{K}_+$, alors $-x \in \mathbb{K}_-$ donc $-x \le x$ donc |x| = x.
- Si $x \in \mathbb{K}_{-}$, alors $-x \in \mathbb{K}_{+}$ donc $x \leq -x$ donc |x| = -x.

On peut donc aussi définir la valeur absolue par :

$$|x| = \begin{cases} x & \text{si } x \geqslant 0 \\ -x & \text{si } x \leqslant 0 \end{cases}$$

Propriétés

- $\forall x \in \mathbb{K}, |-x| = \max(-x, x) = |x|$
- |0| = 0
- $-|x|=0 \Leftrightarrow x=0$
 - \Rightarrow Déjà vu a .
 - \Leftarrow On a toujours $x \leq |x|$ et $-x \leq |x|$ donc si $x \leq 0$ et $-x \leq 0$, alors $x \geq 0$ donc x = 0.
- $\forall x \in \mathbb{K}, -|x| \leq x \leq |x|$
- Pour $x \in \mathbb{K}$ et $a \in \mathbb{K}_+$,

$$|x| \le a \Leftrightarrow -a \le x \le a$$

a. « Djafé! »

Produit de valeurs absolues

$$\forall x, y \in \mathbb{K},$$

$$|xy| = |x||y|$$

Démonstration

- Si $x \ge 0$ et $y \ge 0$, alors $xy \ge 0$ donc |xy| = xy = |x||y|.
- Si $x \le 0$ et $y \ge 0$, alors $xy \le 0$ donc |xy| = -xy = |x||y|.
- Si $x \le 0$ et $y \le 0$, alors $xy \ge 0$ donc $|xy| = xy = (-x) \times (-y) = |x||y|$.

Corollaire

(1) Pour $x \in \mathbb{K}$, $n \in \mathbb{N}$,

$$|x|^n = |x^n|$$

(2) Pour $x \in \mathbb{K} \setminus \{0\}$,

$$\left|\frac{1}{x}\right| = \frac{1}{|x|}$$

Inégalité triangulaire

Soient $x, y \in \mathbb{K}$. Alors :

$$||x| - |y|| \stackrel{(2)}{\leqslant} |x + y| \stackrel{(1)}{\leqslant} |x| + |y|$$

Démonstration Soient $x, y \in \mathbb{K}$. Alors $x \leq |x|$ et $y \leq |y|$ donc $x + y \leq |x| + |y|$. De même, $-x \leq |x|$ et $-y \leq |y|$ donc $-(x + y) \leq |x| + |y|$ donc

$$|x+y| \leqslant |x| + |y|$$

On a alors, pour $x, y \in \mathbb{K}$,

$$|x| = |x - y + y|$$

$$\leq |x + y| + |-y|$$

$$\leq |x + y| + |y|$$

Donc $|x| - |y| \le |x + y|$. De même, $-(|x| - |y|) \le |x + y|$ donc

$$||x| - |y|| \le |x + y|$$

Remarque (1) est une égalité si et seulement si x et y sont de même signe. En effet :

- ← « Easy but left to the reader! »
- \Rightarrow Supposons que |x + y| = |x| + |y|.

 $\mathbf{1^{er}}$ cas : Supposons que $x+y\geqslant 0.$ Alors |x+y|=x+y=|x|+|y| d'où

$$\underbrace{(|x|-x)}_{\geqslant 0} + \underbrace{(|y|-y)}_{\geqslant 0} = 0 \Rightarrow \begin{cases} |x|=x \\ |y|=y \end{cases} \Rightarrow x,y \in \mathbb{K}_{+}$$

2ème cas : Supposons que x+y<0. Alors |x+y|=-x-y=|x|+|y| d'où

$$\underbrace{(|x|+x)}_{\geqslant 0} + \underbrace{(|y|+y)}_{\geqslant 0} = 0 \Rightarrow \begin{cases} |x| = -x \\ |y| = -y \end{cases} \Rightarrow x, y \in \mathbb{K}_{-}$$

Généralisation de l'inégalité triangulaire Pour $n \in \mathbb{N}^*$ et $x_1, x_2, \dots, x_n \in \mathbb{K}$,

$$\left| \sum_{i=1}^{n} x_i \right| \leqslant \sum_{i=1}^{n} |x_i|$$

De plus, $\sum_{i=1}^{n} |x_i| = \left| \sum_{i=1}^{n} x_i \right|$ si et seulement si tous les x_i sont de même signe.

2 Nombres réels

Propriété fondamentale

Énoncé 2.1.1

On admet l'existence d'un corps ordonné $(\mathbb{R}, +, \times, \leq)$ appelé corps des réels qui vérifie de plus la propriété suivante:

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure

Corollaire Toute partie non vide minorée de \mathbb{R} admet une borne inférieure (voir la section 7.1.3.2 du cours complet page 91 pour la démonstration).

Exemple d'utilisation 2.1.2

On a vu que $\forall x \in \mathbb{R}^*, x^2 \in \mathbb{R}_+^*$. Montrons que tout réel positif est un carré.

L'application $\mathbb{R}_+ \longrightarrow \mathbb{R}_+$ est une bijection. En effet, elle est strictement croissante donc injective, montrons $x \longmapsto x^2$

qu'elle est surjective.

- Pour x = 0, $0 = 0^2$.
- Pour x>0, introduisons $A_x=\{y\in\mathbb{R}_+|y^2\leqslant x\}$. On montre a que A_x est non vide et majoré et que $a = \sup A$ vérifie $a^2 = x$.

Pour $y \in \mathbb{R}_+$, on notera alors \sqrt{y} l'unique réel positif x tel que $x^2 = y$ et on a pour $z \in \mathbb{R}$,

$$z^2 = y \Leftrightarrow z \in \{\pm \sqrt{y}\}$$

2.2Intervalles

On rajoute à \mathbb{R} deux objets externes $+\infty$ et $-\infty$ tels que $\forall x \in \mathbb{R}$, $-\infty < x < +\infty$.

Définitions 2.2.1

On appelle intervalle de \mathbb{R} tout ensemble d'un des types suivants avec $a, b \in \mathbb{R}$:

$$(1) [a,b] = \{x \in \mathbb{R} | a \leqslant x \leqslant b\}$$

$$(2) [a,b] = \{x \in \mathbb{R} | a \leqslant x < b\}$$

(3)
$$]a,b] = \{x \in \mathbb{R} | a < x \le b\}$$

(4)
$$]a,b[= \{x \in \mathbb{R} | a < x < b\}]$$

$$(5) [a, +\infty[= \{x \in \mathbb{R} | a \leqslant x\}]$$

(6)
$$]a, +\infty[= \{x \in \mathbb{R} | a < x\}$$

(7) $]-\infty, a] = \{x \in \mathbb{R} | a \ge x\}$
(8) $]-\infty, a[= \{x \in \mathbb{R} | a > x\}$

$$(7) \quad]-\infty \quad a] = \{x \in \mathbb{R} | a > x\}$$

(8)
$$]-\infty$$
 $a[-\{x \in \mathbb{R} | a > x\}]$

(1), (2), (3), (4) sont des intervalles bornés et (5), (6), (7), (8), (9) des intervalles non bornés.

 $a. \ll left \ to \ the \ reader! \ >$

2.2.2 Propriétés

- Si a > b, alors (1), (2), (3), (4) sont vides.
- Si a = b, $[a, b] = \{a\}$ et les autres intervalles sont vides. Ce sont des intervalles triviaux.
- $\operatorname{Si} a < b, \]a, b[\subset [a, b[(\operatorname{ou} \]a, b]) \subset [a, b].$
- $]a, b[\neq \varnothing \operatorname{car} \frac{a+b}{2} \in]a, b[.$
-]a, b[est infini. En effet, si]a, b[était fini, alors on le note $\{x_1, x_2, \dots x_n\}$ avec $a < x_1 < \dots < x_n < b$. Or] a, x_1 [$\neq \emptyset$ donc $\exists x_1'/a < x_1' < x_1$ donc $x_1' \in]a, b$ [...
- Si a < b, tout intervalle borné d'extrémités a et b est infini.
- Tout intervalle non borné est infini (et bien sûr non borné).
- Pour $a \in \mathbb{R}$, $\varepsilon > 0$, on a pour $x \in \mathbb{R}$:

$$|x - a| \le \varepsilon \Leftrightarrow x \in [a - \varepsilon, a + \varepsilon]$$

et de plus

$$|x - a| < \varepsilon \Leftrightarrow x \in a - \varepsilon, a + \varepsilon$$

Si
$$a < b$$
, alors $]a, b[=]c - \varepsilon, c + \varepsilon[$ avec $c = \frac{a+b}{2}$ et $\varepsilon = \frac{b-a}{2}$. De plus, $[a,b] = [c-\varepsilon, c+\varepsilon]$

2.2.3 Caractérisation des intervalles de \mathbb{R}

Théorème et définition Les intervalles de \mathbb{R} non vides sont les parties convexes de \mathbb{R} .

Soit $A \subset \mathbb{R}$, $A \neq \emptyset$. Alors que A est convexe si $\forall x, y \in A$ avec $x \leq y$, on a $[x, y] \subset A$.

Démonstration Il est clair que tout intervalle non vide de \mathbb{R} est une partie convexe de \mathbb{R} .

Réciproquement, soit A une partie convexe de \mathbb{R} . Plusieurs cas se présentent alors :

- Si A est minorée, on note $a = \inf A$:
 - \circ Supposons que A est majorée, alors on note $b = \max A$:
 - \rightarrow Supposons que $a, b \in A$. Montrons que A = [a, b].
 - $\rightarrow a, b \in A \text{ et } a \leq b \text{ donc } [a, b] \in A.$
 - $\rightarrow \forall x \in A, \ a \leq x \leq b \text{ donc } A \subset [a, b].$
 - \rightarrow Supposons que $a \in A$ et $b \notin A$.
 - \rightarrow Donc $\forall x \in A, a \leq x \leq b$, et même x < b donc $A \subset [a, b[$.
 - \Rightarrow Si $y \in [a, b[$, alors $y < b = \sup A$ donc y ne majore pas $A : \exists x \in A/y < x$. Ainsi si $a \in A$ et $x \in A$ tel que $a \le y \le x$, alors (du fait que A est convexe) $[a, x] \subset A$ d'où $y \in A$ donc $[a, b] \subset A$.
 - \rightarrow Si $x \notin A$ et $b \in A$ alors A = [a, b].
 - \rightarrow Si $a \notin A$ et $b \notin B$, alors A = [a, b[.
 - \circ Supposons que A n'est pas majorée :
 - \rightarrow Si $a \in A$:
 - \rightarrow Alors $\forall x \in A, x \ge a \text{ donc } A \subset [a, +\infty[.$
 - \Rightarrow Si $y \in [a, +\infty[$, alors y ne majore pas A donc $\exists x \in A/y < x$ donc $a \le x$. Or A est convexe donc $[a, x] \in A$ et $y \in [a, x]$ donc $[a, +\infty[\subset [a, x] \subset A]$. Finalement, $A = [a, +\infty[$.
 - \rightarrow Si $a \notin A$, alors $A =]a, \infty[$.
- Supposons que A n'est pas minorée a...

Caractérisation des bornes inférieures et supérieures

Soit $A \subset \mathbb{R}$ tel que $A \neq \emptyset$ et $\omega \in \mathbb{R}$. Alors :

(1) A est majorée et

$$\sup A = \omega \Leftrightarrow \begin{cases} \forall a \in A, a \leqslant \omega \\ \forall \varepsilon > 0, \exists a \in A/\omega < a - \varepsilon \end{cases}$$

(2) A est minorée et

$$\inf A = \omega \Leftrightarrow \begin{cases} \forall a \in A, a \geqslant \omega \\ \forall \varepsilon > 0, \exists a \in A/\omega > a - \varepsilon \end{cases}$$

Démonstration du (1)

- \Rightarrow sup A majore A donc $\forall a \in A, a \leq \omega$.
 - Soit $\varepsilon > 0$, alors $\omega \varepsilon < \omega$ donc $\exists a \in A/a > \omega \varepsilon$.
- $\leftarrow -\omega$ est un majorant de A alors A est majorée.
 - Soit α un majorant de A. Alors on ne peut avoir $\alpha < \omega$ car si $\alpha < \omega$, alors en posant $\varepsilon = \omega \alpha$, $\varepsilon > 0$ on a $\exists a \in A/\omega \varepsilon < a$ donc α ne serait pas un majorant de A. Ainsi, $\alpha \geqslant \omega$.

Caractère archimédien de $\mathbb R$

Pour tout $x \in \mathbb{R}$, $\forall \varepsilon > 0$, il existe un entier naturel n tel que $n\varepsilon > x$.

Démonstration

- N n'est pas majorée dans R. En effet, si N est majorée alors appelons $ω = \sup \mathbb{N}$ donc $\exists n \in \mathbb{N}/ω 1 < n$ d'où ω < n + 1, ce qui est impossible car $n + 1 \in \mathbb{N}$.
- Soit $\varepsilon > 0$ et $x \in \mathbb{R}$, alors $\frac{x}{\varepsilon}$ ne majore pas $\mathbb{N} : \exists n \in \mathbb{N}$ tel que :

$$\frac{x}{\varepsilon} < n \Leftrightarrow x < n\varepsilon$$

Puissances d'un réel Soit a > 1 et $M \in \mathbb{R}$. Alors il existe un entier naturel n tel que $a^n > M$.

En effet, posons $a=1+\varepsilon$ avec $\varepsilon>0$. Soit $n\in\mathbb{N}/n\varepsilon>M$, alors, d'après l'inégalité de Bernoulli,

$$a^n = (1+\varepsilon)^n \geqslant 1 + n\varepsilon > M$$

De même, $\forall \alpha > 0$, il existe un entier naturel n tel que $\frac{1}{a^n} < \alpha$.

2.3 Parties entières supérieures et inférieures d'un réel

2.3.1 Théorème et définition

Soit $x \in \mathbb{R}$.

- (1) Il existe un unique entier relatif n tel que $n \le x < n+1$. n est alors la partie entière inférieure de x et se note E(x) ou [x].
- (2) Il existe un unique entier relatif m tel que $m-1 < x \le m$. m est alors la partie entière supérieure de x et se note [x].

Démonstration

- (1) Si $n, m \in \mathbb{Z}$ avec n < m, alors $n + 1 \le m$ donc $[n, n + 1[\cap [m, m + 1[= \emptyset. D'où l'unicité d'un <math>n \in \mathbb{Z}$ tel que $n \le x < n + 1$. Prouvons l'existence d'un tel entier relatif.
 - Si $x \in \mathbb{Z}$, alors $x \leq x < x + 1$.
 - $\operatorname{Si} x \notin \mathbb{Z}$:

- Si x > 0, alors on peut trouver $n_0 \in \mathbb{N}$ tel que $n_0 > x$ donc $A = \{k \in \mathbb{N} | k \leq x\} \neq \emptyset$ or 0 < x et cet ensemble est inclus dans [0, n-1] donc A admet un maximum p. On a $p \leq x$ et $p+1 > p = \max A$ donc $p+1 \notin A$ et p+1 > x.
- Si x < 0, on peut trouver $p \in \mathbb{N}$ tel que $p \le -x < p+1$ et de ce fait p < -x < p+1 car $x \notin \mathbb{Z}$ donc -(p+1) < x < -p = -(p+1) + 1 donc l'entier -(p+1) fait l'affaire.

FIGURE 1 – Graphes de |x| (en rouge) et de [x] (en bleu)

2.3.2 Partie fractionnaire

On définit la partie fractionnaire d'un réel par

$$\operatorname{Frac}(x) = x - \operatorname{E}(x)$$

Ainsi, Frac $(x) \in [0, 1[$.

2.3.3 Propriétés

- Pour $\theta \in [0, 1[$ et $m \in \mathbb{Z}, E(\theta + m) = m$ et Frac $(x) = \theta$.
- Pour $x \in \mathbb{R}$ et $m \in \mathbb{Z}$,

$$E(x+m) = E(x) + m$$

En effet,

$$\mathrm{E}(x) \leqslant x < \mathrm{E}(x) + 1 \Rightarrow \underbrace{m + \mathrm{E}(x)}_{\in \mathbb{Z}} \leqslant m + x < (m + \mathrm{E}(x)) + 1$$

 $-x \in \mathbb{R} \longrightarrow \operatorname{Frac}(x)$ est 1-périodique. En effet,

Frac
$$(x + 1)$$
 = $x + 1 - E(x + 1)$
= $x + 1 - (E(x) + 1)$
= $x - E(x)$
= Frac (x)

- Pour $x \in \mathbb{R}$ et $m \in \mathbb{Z}$, $m \leq x \Leftrightarrow m \leq \mathrm{E}(x)$.
 - \Leftarrow « Obvious! »
 - \Rightarrow Si m > E(x), alors $m \ge E(x) + 1 > x$...

FIGURE 2 – Graphe de la partie fractionnaire

- Soit $x \in \mathbb{R}$ et $m \in \mathbb{Z}$. Alors :

$$\circ m > x \Leftrightarrow m \geqslant \mathrm{E}(x) + 1$$

$$\circ m \geqslant x \Leftrightarrow m \geqslant [x]$$

$$\circ \ m \leqslant x \Leftrightarrow m \leqslant \lceil x \rceil - 1$$

Exemple Soient $a, b \in \mathbb{R}$. Quid de Card $(\mathbb{Z} \cap [a, b])$?

Pour $n \in \mathbb{Z}$,

$$a \leqslant n \leqslant b \Rightarrow \begin{cases} n \geqslant [a] \\ n \leqslant \mathbf{E}(b) \end{cases} \Rightarrow n \in \llbracket [a], \mathbf{E}(b) \rrbracket$$

Ainsi, Card $(\mathbb{Z} \cap [a, b]) = \mathrm{E}(b) - [a] + 1$.

2.4 Densité des divers ensembles dans $\mathbb R$

2.4.1 Définition et propriété

On rappelle que $A \subset \mathbb{R}$ est dense si :

- (1) $\forall \varepsilon > 0, \forall x \in \mathbb{R}, \exists a \in A \text{ tel que } |x a| \leq \varepsilon.$
- (2) $\forall \alpha, \beta \in \mathbb{R} \text{ avec } \alpha < \beta, \text{ alors } A \cap]\alpha, \beta[\neq \emptyset.$

Ces deux conditions sont équivalentes : il suffit d'en avoir une pour prouver la densité.

Propriété Si A est dense dans \mathbb{R} et a < b, alors $A \cap [a, b] \neq \emptyset$ et est infini.

En effet, si $A \cap]a,b[$ est fini alors on peut noter ses éléments $\{x_1,x_2,\ldots,x_n\}$ avec $a < x_1 < \cdots < x_n < b$ or $A \cap]a,x_1[\neq \varnothing \text{ donc....}$

2.4.2 \mathbb{D} est dense dans \mathbb{R}

On note $\mathbb{Z}\left[\frac{1}{10}\right]$ l'ensemble des nombres décimaux de la forme $\frac{k}{10^n}$ avec $k \in \mathbb{Z}$ et $n \in \mathbb{N}$.

Pour $x \in \mathbb{R}$, on pose pour $n \in \mathbb{N}$:

$$\omega_n(x) = \frac{1}{10^n} \mathrm{E}\left(10^n x\right)$$

 $\omega_{n}\left(x\right)$ est la partie décimale de x approchée à 10^{n} par défaut, et $\omega_{n}\left(x\right)\in\mathbb{Z}\left[\frac{1}{10}\right]$. On définit de plus

$$\eta_n(x) = \omega_n(x) + \frac{1}{10^n}$$

 $\eta_{n}\left(x\right)$ est la partie décimale de x approchée à 10^{n} par excès, et $\eta_{n}\left(x\right)\in\mathbb{Z}\left[\frac{1}{10}\right]$. Soit $n\in\mathbb{N}$, on sait que

$$\mathrm{E}\left(10^{n}x\right) \leqslant 10^{n}x < \mathrm{E}\left(10^{n}x\right) + 1 \quad \Leftrightarrow \quad \frac{\mathrm{E}\left(10^{n}x\right)}{10^{n}} \leqslant x < \frac{\mathrm{E}\left(10^{n}x\right)}{10^{n}} + \frac{1}{10^{n}}$$

$$\Leftrightarrow \quad \omega_{n}\left(x\right) \leqslant x < \eta_{n}\left(x\right)$$

Ainsi,

$$0 \leqslant x - \omega_n(x) < \eta_n(x) - \omega_n(x) = \frac{1}{10^n}$$

Soit $\varepsilon > 0$. On sait que 10 > 1 donc on peut trouver $n \in \mathbb{N}$ tel que $\frac{1}{10^n} < \varepsilon$, on a alors

$$|x - \omega_n(x)| = x - \omega_n(x) < \frac{1}{10^n} < \varepsilon$$

Ainsi, $\mathbb{D} = \mathbb{Z}\left[\frac{1}{10}\right]$ est dense dans \mathbb{R} . A fortiori, puisque $\mathbb{Z}\left[\frac{1}{10}\right] \subset \mathbb{Q}$, \mathbb{Q} est dense dans \mathbb{R} . On montre aussi que $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

2.4.3 $\mathbb{N} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R}

Lemme Soit $\varepsilon > 0$, alors $\forall M > 0$, il existe $p, q \in \mathbb{Z}$ tels que |p| > M et $|p + 2\pi q| \le \varepsilon$. Ce lemme est toujours vrai pour $(p, q) \in \mathbb{N} \times \mathbb{Z}$.

Démonstration Supposons que $\exists \varepsilon > 0$, $\exists M > 0$ tels que $\forall (p, q) \in \mathbb{Z}^2$,

$$|p+2\pi q|\leqslant\varepsilon\Rightarrow|p|\leqslant M$$

Soient $(p,q) \in \mathbb{Z}^2$ tels que $|p+2\pi q| \leq \varepsilon$. Alors $|p| \leq M$, or

$$|2\pi q| = |2\pi q + p - p|$$

$$\leq |2\pi q + p| + |p|$$

$$\leq \varepsilon + M$$

donc $|q| < \frac{\varepsilon + M}{2\pi}$. Alors, $\{(p,q) \in \mathbb{Z}^2 | |p + 2\pi q| \le \varepsilon\} \subset \left([-M,M] \times \left[-\frac{\varepsilon + M}{2\pi}; \frac{\varepsilon + M}{2\pi}\right]\right) \cap \mathbb{Z}^2$ qui est lui même fini. Par conséquent, $[0,\varepsilon] \cap \mathbb{Z} + 2\pi \mathbb{Z}$ est nécessairement fini, ce qui est impossible car $\mathbb{Z} + 2\pi \mathbb{Z}$ est dense dans \mathbb{R} .

On en déduit que $\forall \varepsilon > 0$, $\forall M > 0$, $\exists (p,q) \in \mathbb{N} \times \mathbb{Z}$ tels que |p| > M et $|p + 2\pi q| \leq \varepsilon$. En effet, soit $\varepsilon > 0$, M > 0, alors $\exists (p_1, q_1) \in \mathbb{Z}^2$ tells que $|p_1| > M$ et $|p_1 + 2\pi q_1| \leq \varepsilon$.

- Si $p_1 \in \mathbb{N}$, on prend $p = p_1$ et $q = q_1$.
- Si $p_1 < 0$, on a aussi $|-(p_1 + 2\pi q_1)| \le \varepsilon$ et $|-p_1| > M$ donc on prend $p = -p_1$, $q = -q_1$.

Densité de $\mathbb{N} + 2\pi\mathbb{Z}$ Soit $x \in \mathbb{R}$ et $\varepsilon > 0$. Or $\mathbb{Z} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R} donc il existe $k, l \in \mathbb{Z}$ tels que

$$|x - (l + 2\pi k)| \le \frac{\varepsilon}{2}$$

On peut trouver de plus $(p,q) \in \mathbb{N} \times \mathbb{Z}$ avec $p \ge |l|$ et $|p+2\pi q| \le \frac{\varepsilon}{2}$. Alors:

$$\begin{aligned} |x-((p+l)+2\pi\,(q+k))| &=& |x-(l+2\pi k)-(p+2\pi q)| \\ &\leqslant & |x-(l+2\pi k)|+|p+2\pi q| \\ &\leqslant & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \end{aligned}$$