ECE M16 Homework 2

Lawrence Liu

July 14, 2022

HW1

Problem 4

part b

Problem 7

(a)

Month	m3	m2	m1	m0	output
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1

(b)

Therefore the equation is:

$$m_0.\overline{m_3} + \overline{m_0}.m3$$

(c)

HW 2

Problem 1

There would be a static 0 hazard between b=1, c=1 a=0 and b=1, c=1 a=1. We can fix it with the following circuit We can fix this by adding an And gate between b and c before the nor, so the resulting function would look like this

Problem 2

Let the inputs be M[0:3] then we have the following truth table

decimal	M3	M2	M1	M0	q2	q 5
0	0	0	0	0	1	1
1	0	0	0	1	0	1
2	0	0	1	0	1	1
3	0	0	1	1	0	1
4	0	1	0	0	0	1
5	0	1	0	1	0	0
6	0	1	1	0	1	0
7	0	1	1	1	0	1
8	1	0	0	0	1	1
9	1	0	0	1	0	1

Therefore we will have the following Kmap for q2

q^2 $M1, M0$									
M3, M2	00	01	11	10					
00	1	0	0	1					
01	0	0	0	1					
11	-	-	-	-					
10	1	0	ı	1					

Therefore the equation for q2 is:

$$q2 = \overline{M2} \cdot \overline{M0} + M1 \cdot \overline{M0}$$

Likewise, the Kmap for q5 is

Therefore the equation for q5 is:

$$q5 = \overline{M2} + \overline{M1} \cdot \overline{M0} + M1 \cdot M0$$

Therefore the resulting circuit is

Problem 3

Problem 4

Problem 5

Problem 6

