Specialist Mathematics Trial Exam 1 Solutions 2006 Free download and print from www.itute.com Do not photocopy ©Copyright 2006 itute.com

Q1.
$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$$

Since \overrightarrow{OB} bisects \overrightarrow{AC} , $\therefore \overrightarrow{OB} = \frac{1}{2} (\overrightarrow{OC} + \overrightarrow{OA})$

Since \overline{OB} is perpendicular to \overline{AC} , $\therefore \overline{OB} \bullet \overline{AC} = 0$,

$$\therefore \frac{1}{2} \left(\overrightarrow{OC} + \overrightarrow{OA} \right) \bullet \left(\overrightarrow{OC} - \overrightarrow{OA} \right) = 0 \; , \; \therefore \overrightarrow{OC} \bullet \overrightarrow{OC} - \overrightarrow{OA} \bullet \overrightarrow{OA} = 0 \; ,$$

 $\therefore \overline{OC}^2 - \overline{OA}^2 = 0$ and $\therefore \overline{OC} = \overline{OA}$. Hence $\triangle OAC$ is isosceles.

Q2.
$$z^3 - 3iz^2 + 3z + 9i^3 = 0$$
, $z^3 - 3iz^2 + 3z - 9i = 0$, $(z^3 - 3iz^2) + (3z - 9i) = 0$, $z^2(z - 3i) + 3(z - 3i) = 0$, $(z - 3i)(z^2 + 3) = 0$, $(z - 3i)(z - i\sqrt{3})(z + i\sqrt{3}) = 0$, $\therefore z = 3i$, $i\sqrt{3}$ or $-i\sqrt{3}$.

O3a.
$$xy - y^2 = 2$$
.

By implicit differentiation: $\frac{d}{dx}(xy - y^2) = 0$,

$$\frac{d}{dx}(xy) - \frac{d}{dx}(y^2) = 0$$
, $y + x\frac{dy}{dx} - 2y\frac{dy}{dx} = 0$,

$$y = (2y - x)\frac{dy}{dx}$$
, $\therefore \frac{dy}{dx} = \frac{y}{2y - x}$.

Q3b. When x = 3, $3y - y^2 = 2$, $y^2 - 3y + 2 = 0$, (y - 1)(y - 2) = 0, $\therefore y = 1$ or 2. \therefore the relation contains two points with x = 3. They are (3,1) and (3,2).

At
$$(3,1)$$
, $\frac{dy}{dx} = \frac{1}{2(1)-3} = -1$; at $(3,2)$, $\frac{dy}{dx} = \frac{2}{2(2)-3} = 2$.

Q4. Let
$$u = \log_e(x^2 + 1)$$
, $\frac{du}{dx} = \frac{1}{x^2 + 1} \times 2x = \frac{2x}{x^2 + 1}$.

When x = 0, u = 0; when $x = \sqrt{e-1}$, u = 1.

$$\therefore \int_{0}^{\sqrt{e-1}} \left(\frac{2x \log_{e} (x^{2} + 1)}{x^{2} + 1} \right) dx = \int_{0}^{\sqrt{e-1}} u \frac{du}{dx} dx = \int_{0}^{1} u du = \left[\frac{u^{2}}{2} \right]_{0}^{1} = \frac{1}{2}.$$

Q5a.
$$y = 1 + (x^2 - 2x + 2)\tan^{-1}(x - 1)$$
,

$$\frac{dy}{dx} = 0 + (x^2 - 2x + 2)\frac{d}{dx}(\tan^{-1}(x - 1)) + \tan^{-1}(x - 1)\frac{d}{dx}(x^2 - 2x + 2)$$

$$= (x^2 - 2x + 2)\frac{1}{1 + (x - 1)^2} + (2x - 2)\tan^{-1}(x - 1)$$

$$= (x^2 - 2x + 2)\frac{1}{x^2 - 2x + 2} + 2(x - 1)\tan^{-1}(x - 1)$$

$$= 1 + 2(x - 1)\tan^{-1}(x - 1)$$
.

Q5b.
$$\frac{dy}{dx} = 1 + 2(x - 1)\tan^{-1}(x - 1)$$
,
 $\therefore \frac{d^2y}{dx^2} = 2(x - 1)\frac{1}{1 + (x - 1)^2} + 2\tan^{-1}(x - 1)$.
At $(1,1)$, $x = 1$, $\frac{d^2y}{dx^2} = 0 + 2\tan^{-1}(0) = 0$, \therefore $(1,1)$ is a point of inflection.

Q6a.
$$r = \sin(2t) \mathbf{i} + \cos(2t) \mathbf{j} + (10 - t^2) \mathbf{k}$$
,
 $v(t) = \frac{d}{dt} \mathbf{r} = 2\cos(2t) \mathbf{i} - 2\sin(2t) \mathbf{j} - 2t \mathbf{k}$.
At $t = 0$, $v = 2\cos(0) \mathbf{i} - 2\sin(0) \mathbf{j} = 2\mathbf{i}$.

Q6b.
$$\mathbf{v}(t) = 2\cos(2t)\mathbf{i} - 2\sin(2t)\mathbf{j} - 2t\mathbf{k}$$
,
 $\mathbf{a}(t) = \frac{d}{dt}\mathbf{v} = -4\sin(2t)\mathbf{i} - 4\cos(2t)\mathbf{j} - 2\mathbf{k}$,
 $a = \sqrt{(-4\sin(2t))^2 + (-4\cos(2t))^2 + (-2)^2}$
 $= \sqrt{16\sin^2(2t) + 16\cos^2(2t) + 4}$
 $= \sqrt{16(\sin^2(2t) + \cos^2(2t)) + 4} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}$.

Q7
$$y = \frac{2}{\sqrt{2-x^2}}$$
, $0 \le x \le 1$ is rotated about the x-axis.

Volume of the solid of revolution

$$V = \int_{0}^{1} \pi y^{2} dx = 4\pi \int_{0}^{1} \frac{1}{2 - x^{2}} dx.$$

Change $\frac{1}{2-r^2}$ to partial fractions,

$$\frac{1}{2-x^{2}} = \frac{A}{\sqrt{2}-x} + \frac{B}{\sqrt{2}+x} = \frac{\sqrt{2}}{4} \left(\frac{1}{\sqrt{2}-x} + \frac{1}{\sqrt{2}+x}\right).$$

$$\therefore V = \sqrt{2}\pi \int_{0}^{1} \left(\frac{1}{\sqrt{2}-x} + \frac{1}{\sqrt{2}+x}\right) dx$$

$$= \sqrt{2}\pi \left[-\log_{e}\left(\sqrt{2}-x\right) + \log_{e}\left(\sqrt{2}+x\right)\right]_{0}^{1}$$

$$= \sqrt{2}\pi \left[\log_{e}\left(\frac{\sqrt{2}+x}{\sqrt{2}-x}\right)\right]_{0}^{1} = \sqrt{2}\pi \log_{e}\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right).$$

Q8.
$$\frac{dy}{dx} = \sin(2x)\sqrt{1 + \sin(x)}$$
.
 $y = \int \sin(2x)\sqrt{1 + \sin(x)}dx = \int 2\sin(x)\cos(x)\sqrt{1 + \sin(x)}dx$.
Let $u = 1 + \sin(x)$, $\therefore \sin(x) = u - 1$ and $\frac{du}{dx} = \cos(x)$.
 $\therefore y = \int 2(u - 1)\sqrt{u}\frac{du}{dx}dx = \int \left(2u^{\frac{3}{2}} - 2u^{\frac{1}{2}}\right)du$
 $= \frac{4}{5}u^{\frac{5}{2}} - \frac{4}{3}u^{\frac{3}{2}} + C = \frac{4}{5}(1 + \sin(x))^{\frac{5}{2}} - \frac{4}{3}(1 + \sin(x))^{\frac{3}{2}} + C$.
 $y = \frac{7}{15}$ when $x = 0$, $\therefore \frac{7}{15} = \frac{4}{5} - \frac{4}{3} + C$, $C = 1$,
 $\therefore y = \frac{4}{5}(1 + \sin(x))^{\frac{5}{2}} - \frac{4}{3}(1 + \sin(x))^{\frac{3}{2}} + 1$.

Q9.
$$\{z: |z+i| + |z-i| = 4\}$$
. Let $z = x + yi$,
 $|x+(y+1)i| = 4 - |x+(y-1)i|$,
 $|x+(y+1)i|^2 = (4 - |x+(y-1)i|)^2$,
 $|x+(y+1)i|^2 = 16 - 8|x+(y-1)i| + |x+(y-1)i|^2$,
 $x^2 + (y+1)^2 = 16 - 8|x+(y-1)i| + x^2 + (y-1)^2$,
 $8|x+(y-1)i| = 16 - 4y$, $\therefore 2|x+(y-1)i| = 4 - y$,
 $(2|x+(y-1)i|)^2 = (4-y)^2$,
 $4(x^2+(y-1)^2) = 16 - 8y + y^2$,
 $4x^2+4y^2-8y+4=16-8y+y^2$,
 $4x^2+3y^2=12$, $\therefore \frac{x^2}{3} + \frac{y^2}{4} = 1$, i.e. $\frac{(\text{Re } z)^2}{3} + \frac{(\text{Im } z)^2}{4} = 1$.
Hence $p=3$ and $q=4$.

0.20 N 10g

0.20 N i

j-component: Resultant force = 0, $N + 10g \sin 30^{\circ} - 10g \cos 30^{\circ} = 0$, $\therefore N + 5g - 5\sqrt{3}g = 0$, $\therefore N = 5(\sqrt{3} - 1)g$.

O10b.

i-component: Resultant force = ma, $10g \cos 30^{\circ} - 10g \sin 30^{\circ} - 0.20N = 10a$, $5\sqrt{3}g - 5g - 0.20(5(\sqrt{3} - 1)g) = 10a$, $4(\sqrt{3} - 1)g = 10a$, $\therefore a = \frac{2g}{5}(\sqrt{3} - 1)$.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors