UNIVERSITY OF NEW SOUTH WALES. SCHOOL OF MATHEMATICS AND STATISTICS MATH5645 TOPICS IN ANALYTIC NUMBER THEORY

5. PRIME NUMBER THEOREM:

- **1** a. Explain why $\psi(x)$ can be written in the form $\sum_{p \le x} \left[\frac{\log x}{\log p} \right] \log p$.
 - **b.** Deduce that $\psi(x) \leq \pi(x) \log x$ and hence

$$\frac{\psi(x)}{x} \le \frac{\pi(x)}{\frac{x}{\log x}}.$$

- **c.** Use Theorem 1.6 from section 1 to deduce that $\psi(x) \leq 2x$.
- *2 Suppose x > 2 and let m be the largest integer such that $2^m \le x$.
 - **a.** By considering $\psi(x) \vartheta(x)$, show that $\psi(x) = \vartheta(x) + \vartheta(x^{\frac{1}{2}}) + \vartheta(x^{\frac{1}{3}}) + \dots + \vartheta(x^{\frac{1}{m}})$.
 - **b.** Deduce that $\psi(x) \geq \vartheta(x)$ and so $\vartheta(x) \leq 2x$.
 - **c.** Show that $\frac{\log x}{x^{\alpha}}$ has a maximum of $\frac{1}{\alpha e}$.
 - **d.** Deduce that $\psi(x) \vartheta(x) \leq 9x^{\frac{1}{2}}$.
 - **e.** Conclude that, as $x \to \infty$, $\frac{\psi(x)}{x} \to 1 \iff \frac{\vartheta(x)}{x} \to 1$.

3

- **a.** Explain why $\psi(n)$ is the logarithm of the lowest common multiple of 2, 3, ..., n.
- **b.** Use this to find $\psi(10)$.
- *4 In this question you may assume the following results from Sheet 1 Question 10.

Let n be an integer greater than 2. Write $N = \binom{2n+1}{2n}$. Let $p_{k+1}, p_{k+2}, ..., p_m$ be the primes p such that $n+2 \le p \le 2n+1$. We know that $N < 4^n$ and $\prod_{n+2 \le p \le 2n+1} p < N$.

- **a.** Prove that $\vartheta(2n+1) \vartheta(n+1) \le n \log 4$.
- **b.** By supposing that $\vartheta(k) \leq k \log 4$ for all $k \leq 2n$, n > 1 show that $\vartheta(2n+1) \leq (2n+1) \log 4$.
- **c.** Prove by induction that $\vartheta(n) \leq n \log 4$ for all n > 1.

(Hence, since ϑ is increasing, we have $\vartheta(x) \leq x \log 4$ for x > 1.)

- **5** a. Assuming that $\lim_{n\to\infty} \frac{\pi(x)\log x}{x} = 1$ show that $\lim_{n\to\infty} \frac{\log \pi(x)}{\log x} = 1$.
 - **b.** Deduce that $\lim_{n\to\infty} \frac{\pi(x)\log \pi(x)}{x} = 1$.
 - **c.** If p_n denotes the *n*th prime, show that the PNT implies $\lim_{n\to\infty}\frac{n\log n}{p_n}=1$.

(This says that the nth prime is 'roughly' $n \log n$ for large n.)

- *6 Assume that $\frac{\vartheta(x)}{x} \to 1$ as $x \to \infty$.
 - **a.** Prove that $\frac{\log x}{x} \int_2^x \frac{\vartheta(t)}{t(\log t)^2} dt \to 0$ as $x \to \infty$. (Hint: After replacing $\vartheta(x)$ as O(x), split the integral over $[2, \sqrt{x}] \cup [\sqrt{x}, x]$.)
 - **b.** Use the formula $\pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^\infty \frac{\vartheta(t)}{t(\log t)^2} dt$ to prove that $\frac{\pi(x)\log x}{x} \to 1$ as $x \to \infty$.

7 **a.** If f(s) has a pole of order k at $s = \alpha$, prove that $\frac{f'(s)}{f(s)}$ has a simple pole at $s = \alpha$ with residue -k.

b. Deduce that $F(s) = \frac{\zeta'(s)}{\zeta(s)} + \frac{1}{s-1}$ is analytic at s = 1.

8 Let
$$Z(s) = -\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$$
.

a. Use Abel's summation formula to prove that

$$Z(s) = s \int_{1}^{\infty} \frac{\psi(x)}{x^{s+1}} dx$$

where
$$\psi(x) = \sum_{n \le x} \Lambda(n)$$
.

(Note: This is the Mellin transform if $\psi(x)$.)

b. Use integration by parts to show that

$$Z(s) = s(s+1) \int_{1}^{\infty} \frac{\psi_1(x)}{x^{s+2}} dx$$

where
$$\psi_1(x) = \int_1^\infty \psi(x) dx$$
.

9 Prove Bertrand's postulate assuming the PNT.

10 Let s(x) denote the number of squares less or equal to x. Use the prime number theorem to prove that $\frac{s(x)}{\pi(x)}$ tends to 0 as $x \to \infty$. (This shows that the number of primes greatly exceeds the number of squares.)

11 Let c > 1

a. Prove that $\pi(cx) \sim c\pi(x)$ as $x \to \infty$

b. Prove that $\pi(cx) - \pi(x) \sim (c-1) \frac{x}{\log x}$ as $x \to \infty$.

c. Deduce that for sufficiently large x, there are primes in the interval (x, cx]

12 Prove that every interval [a, b], 0 < a < b, contains a rational number $\frac{p}{q}$ with both p, q prime.

13 Prove that

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{p} \frac{\log p}{p^s - 1},$$

for s > 1.

(Hint: Start with the Euler product for ζ .)

14 a. If $x \geq 2$, define the logarithmic integral,

$$Li(x) = \int_2^x \frac{dt}{\log t}.$$

Show that

$$Li(x) = \frac{x}{\log x} + \int_2^x \frac{dt}{(\log t)^2} - \frac{2}{\log 2}.$$

b. Show that

$$Li(x) = \frac{x}{\log x} + \frac{x}{(\log x)^2} + \dots + (n-1)! \frac{x}{(\log x)^n} + r_{n+1}(x)$$

where $r_{n+1}(x) \sim n! \frac{x}{(\log x)^{n+1}}$ as $x \to \infty$.

15 It is an unsolved problem to prove that there is always a prime between n^2 and $(n+1)^2$. Use the PNT to show heuristically that there should be about $\pi(n)$ primes between n^2 and $(n+1)^2$. For example, there are 7 primes between 400 and 441, while $\pi(20) = 8$.

(You may find that $\log(x+1) \sim \log(x) + 1/x$ is useful here.)