---{ Trigonometria }---

Trigonometria no Círculo Trigonométrico: O Seno, o Cosseno e a Tangente

Prof. Eduardo Ono

Sumário

- 1. Conceitos e Definições
 - 1.1. Definição. (Círculo Trigonométrico)
- 1. Seno
 - 2.1. Definição
 - 2.2. Propriedades
- 1. Cosseno
 - 3.1. Definição
 - 3.2. Propriedades
- 1. Tangente
 - 4.1. Definição
 - 4.2. Propriedades
 - 4.3. Teorema. (tg $x = \frac{\sin x}{\cos x}$)

1. Conceitos e Definições

1.1. Definição. (Círculo Trigonométrico)

Consideremos sobre um plano um sistema cartesiano ortogonal com origem no ponto O. Um **Círculo Trigonométrico** é definido pela circunferência λ de raio unitário e centro na origem O. O comprimento dessa circnferência é 2π , pois r=1.

A cada número real x, com $\ 0\leqslant x<2\pi$, podemos associar a um único ponto P de λ do seguinte modo:

- 1. Se x=0 , então P coincide com A;
- 2. Se $\,x>0\,$, então realizamos a partir de A um percurso de comprimento x, no sentido anti-horário, e marcamos P como ponto final do percurso;
- 3. Se $\,x<0\,$, então realizamos a partir de A um percurso de comprimento |x|, no sentido horário. O ponto final do percurso é P.

2. Seno

2.1. Definição

Dado um número real $x \in [0, 2\pi]$, seja P sua imagem no ciclo trigonométrico.

Fonte: lezzi

Denominamos **seno** de x (e indicamos $\operatorname{sen} x$) a ordenada OP_1 do ponto P, onde OP_1 é a projeção ortogonal do ponto P sobre o eixo das ordenadas.

2.2. Propriedades

- 1. Se x é do primeiro ou do segundo quadrante, então $\sin x$ é positivo.
- 2. Se x é do terceiro ou do quarto quadrante, então $\sin x$ é negativo.
- 3. Se x percorre o primeiro ou o quarto quadrante, então $\sin x$ é crescente.
- 4. Se x percorre o segundo ou o terceiro quadrante, então $\sin x$ é decrescente.

3. Cosseno

3.1. Definição

Dado um número real $x \in [0, 2\pi]$, seja P sua imagem no ciclo trigonométrico.

Fonte: lezzi

Denominamos **cosseno** de x (e indicamos $\cos x$) a abscissa OP_2 do ponto P, onde OP_2 é a projeção ortogonal do ponto P sobre o eixo das abscissas.

3.2. Propriedades

- 1. Se x é do primeiro ou do quarto quadrante, então $\cos x$ é positivo.
- 2. Se x é do segundo ou do terceiro quadrante, então $\cos x$ é negativo.
- 3. Se x percorre o primeiro ou o segundo quadrante, então $\cos x$ é decrescente.
- 4. Se x percorre o terceiro ou o quarto quadrante, então $\cos x$ é crescente.

4. Tangente

4.1. Definição

Dado um número real $x\in[0,2\pi]$, $x\neq\frac{\pi}{2}$ e $x\neq\frac{3\pi}{2}$, seja P sua imagem no ciclo trigonométrico. Consideremos a reta \overrightarrow{OP} e seja T sua interseção com o eixo das tangentes.

Denominamos tangente de x (e indicamos $\operatorname{tg} x$) a medida algébrica do segmento \overline{AT} , copnforme a figura a seguir:

Fonte: lezzi

Notemos que, para $x=\frac{\pi}{2}$, P está em B e, para $x=\frac{3\pi}{2}$, P está em B', então a reta \overrightarrow{OP} fica paralela ao eixo das tangentes. Como neste caso não existe o ponto T, a $\lg x$ não está definida.

4.2. Propriedades

- 1. Se x é do primeiro ou do terceiro quadrante, então tg x é positiva.
- 2. Se x é do segundo ou do quarto quadrante, então $\operatorname{tg} x$ é negativa.
- 3. Se x percorre qualquer um dos quatro quadrantes, então $\operatorname{tg} x$ é crescente.

4.3. Teorema. (tg
$$x = \frac{\sin x}{\cos x}$$
)

Para todo x real, $\,x\in[0,2\pi]$, e $\,x
otin\{\left\{\frac{\pi}{2},\frac{3\pi}{2}\right\}$, vale a relação:

$$tg x = \frac{\text{sen } x}{\cos x}$$

Demonstração.

Fonte: lezzi

a) Se $x \not\in \{0,\pi,2\pi\}$, a imagem de x é distinta de A, A', B e B'. Então, temos:

$$riangle OAT \sim riangle OP_2P \ rac{|AT|}{|OA|} = rac{P_2P}{OP_2}$$

$$tg x = \frac{sen x}{cos x}$$

b) Se $\,x\in\{0,\pi,2\pi\}$, temos:

$$tg x = 0 = \frac{\operatorname{sen} x}{\cos x}$$