

Termoquimica

I.Q.I. Luz Bertha Almazna Jimenez

Concepto

Rama de la fisicoquímica que estudia los cambios térmicos que intervienen durante el transcurso de una reacción química.

Conceptos básicos

CALORÍA.- Cantidad de calor que se necesita para elevar en 1º C la temperatura a 1 gr. de agua

CAPACIDAD

CALORÍFICA MOLAR.
Cantidad de calor que se necesita para elevar en 1º centígrado la temperatura a una mol de cualquier substancia

CAPACIDAD
CALORÍFICA
ESPECÍFICA(Ce).Cantidad de calor que
se necesita para elevar
1º C la temperatura un
gramo de cualquier
sustancia

Entalpía de reacción/ Calor de reacción

Cantidad de calor que se absorbe o se desprende al efectuarse una reacción química.

$$\Delta H^0 reacci\'on = \sum \Delta H^0_f productos - \sum \Delta H^0_f reactivos$$

- Es decir es la diferencia de la suma de los calores de formación de productos menos la suma de los calores de formación de reactivos en condiciones estándar
- CNTP: T= 25^o C y P= 1 atmósfera
- Además representa el contenido calorífico de las sustancias.

Ejemplo: Qué tiene mayor contenido calorífico, una barra de chocolate de 100 g. o 1 Kg de chocolate

CALOR DE REACCIÓN

• Se hace el calculo a cualquier reacción termoquímica, a partir de los datos de calores de formación de reactivos y productos.

CALOR DE NEUTRALIZACIÓN

• Cantidad de calor que se absorbe o se desprende al hacer reaccionar un ácido con una base.

CALOR DE COMBUSTIÓN

• Es la cantidad de calor que se absorbe o se desprende al hacer reaccionar un combustible con oxígeno.

CALOR DE FORMACIÓN

• En base a esta se hacen los cálculos térmicos.

CALOR DE HIDRÓLISIS

• Es la cantidad de calor que se absorbe o se desprende al hacer reaccionar una sal con agua.

Tipos de reacciones químicas

NOTA: Las entalpias de formación, además de su gran utilidad para realizar cálculos termoquímicos, sirven para la estabilidad de los compuestos con relación a sus elementos.

Reacción de neutralización

 Es aquella reacción que se efectúa entre un ácido y una base, obteniéndose una sal + agua.

Reacción de hidrólisis

 Es lo contrario a una neutralización (descomposición de una sustancia por acción del H20, para formar un ácido + base).

CALOR DE FORMACIÓN (ΔH_f) :

 Es la cantidad de calor que se absorbe o se desprende cuando se forma una mol de cualquier sustancia a partir de los elementos que la constituyen. (debe ser dato del problema)

Nota: el calor de formación para cualquier elemento que participa en una reacción química sin combinar debe ser de cero.

Clasificación de las reacciones químicas

ENDOTÉRMICA

• Es la cantidad de calor que se absorbe durante el transcurso de una reacción química.

$$\Sigma H_{Productos} > \Sigma H_{Reactivos}$$

por lo tanto $\Delta H_R > 0$

$$\Delta H = +420 \ KJ$$

$$N_2H_{4(1)} + CI_{2(g)} \rightarrow 4HCI_{(g)} + N_{2(g)} - 420 \text{ KJ}$$

EXOTÉRMICA

 Es la cantidad de calor que se desprende o se libera durante el transcurso de una reacción química.

$$\Delta H_R < 0$$

$$N_2H_{4(I)} + CI_{2(g)} \rightarrow 4HCI_{(g)} + N_{2(g)}$$
 $\Delta H = -420 \text{ KJ}$

También puede escribirse:

- 1. $N_2H_{4(I)} + CI_{2(g)} \rightarrow 4HCI_{(g)} + N_{2(g)} + 420 \text{ KJ}$
- 2. $N_2H_{4(I)} + CI_{2(g)} 420 \text{ KJ} \rightarrow 4HCI_{(g)} + N_{2(g)}$

Endothermic vs. Exothermic Reactions

Energy is conserved in chemical reactions. The total energy of the system is the same before and after a reaction

Endothermic

The endothermic reaction is cooler than surroundings

Exothermic

The exothermic reaction is hotter than surroundings

Transcurso de la reacción

Complejo activado potencia Energía (activación **Productos** $\Delta H > 0$ Reactivos

Transcurso de la reacción

Reacción exotérmica

Reacción endotérmica

9

Leyes de Hess

1ra. Ley de Hess

Indica que, si una reacción es exotérmica en un sentido, en sentido opuesto es endotérmica.

2da Ley de Hess

Indica qué el calor de una reacción es el mismo, ya sea si ésta se efectúa en una sola etapa o lo hace en varias etapas.

$$\triangle, H_{TOT} = \triangle, H_1 + \triangle, H_2 + \triangle, H_3 \dots \triangle H_n$$

Leyes de Hess

Las entalpías se suman, restan y multiplican junto con toda la ecuación química.

A partir de estas dos ecuaciones químicas, calcula el calor de reacción para la ecuación escrita en color rojo.

$$C_{(S)} + O_{2(g)} \rightarrow CO_{2(g)}$$
 $\Delta H_1 = -393.5 \text{ KJ}$

$$\Delta H_1 = -393.5 \text{ KJ}$$

$$CO_{2(g)} \rightarrow CO_{(g)} + \frac{1}{2} O_{2(g)}$$

$$\Delta H_2 = 283 \text{ KJ}$$

$$C_{(S)} + \frac{1}{2} O_{2(g)} \rightarrow CO_{(g)}$$
 $\Delta H = \Delta H_1 + \Delta H_2$

$$\Delta H = \Delta H_1 + \Delta H_2$$

Leyes de Hess

El calor total de una reacción depende únicamente de los estados inicial y final y no de los estados intermedios por los que pueda pasar el sistema.

Ley de Hess

 $\Delta H_1 = \Delta H_2 + \Delta H_3$

Leyes de Hess

El calor de reacción (ΔH_R), a P y V constantes, de una reacción química es el mismo tanto si esta se verifica en una etapa, como si tiene lugar en varias.

Tipos de sistemas

entorno

Ejemplo

Observa el video y analiza el experimento.

REACCIÓN ENDOTÉRMICA

bicarbontato + vinagre

Gracias

"La técnica al servicio de la patria"