Final Project

Pavankumar Pendela

12/12/2021

Problem

This case study involved things like evaluating prices and determining which car specifications the buyer will receive. We will aim to obtain information for the cheapest, average, high, and most costly cars in this case study.

What are the specifications that clients will receive based on these four price ranges?

About dataset

Kaggle provided the data for this project. There are 205 rows and 26 columns in the car dataset. The dataset provides information on all automotive specifications, including body style, driving wheel, engine position, wheel-base, length, width, and height, as well as a few more.

Let's look at dataset details

oolin, norm	nalize make	fuel-tur	ne agnicatio	r num-of-	chodu-stu	drive-whee	ls engine-locati		length	width	height	curb-weigl	ennine-tu	ne num-of-	cy engine-siz fuel-syst		stroke	compres k	orseno- n	neak-rnn	city-mpg high	ou au-mod	price
3 ?	alfa-rome		std std	two	convertib		front	88.6				2548		four	130 mpfi	3.47	2.68	9	111	5000	21 21	27	
3 ?	alfa-rome	-	std	two	convertib		front	88.6	168.8		48.8	2548		four	130 mpfi	3.47	2.68	9	111	5000	21	27	165
1?	alfa-rome	-	std	two	hatchbar		front	94.5	171.2			2823	ohcv	six	152 mpfi	2.68	3.47	9	154	5000	19	26	163
2		gas	std	four	sedan	fwd	front	99.8	176.6	66.2	54.3	2337	ohc	four	109 mpfi	3.19	3.4	10	102	5500	24	30	13
2		gas	std	four	sedan	4wd	front	99.4	176.6	66.4	54.3	2824	ohc	five	136 mpfi	3.19	3.4	8	115	5500	18	22	17
2 ?		gas	std	two	sedan	fwd	front	99.8	177.3	66.3	53.1	2507	ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	15
1		gas	std	four	sedan	fwd	front	105.8	192.7	71.4	55.7	2844	ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	17
1?		gas	std	four	wagon	fwd	front	105.8	192.7	71.4	55.7	2954	ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	18
1	158 audi	gas	turbo	four	sedan	fwd	front	105.8	192.7	71.4	55.9	3086	ohc	five	131 mpfi	3.13	3.4	8.3	140	5500	17	20	23
0 ?	audi	gas	turbo	two	hatchbar	4wd	front	99.5	178.2	67.9	52	3053	ohc	five	131 mpfi	3.13	3.4	7	160	5500	16	22	?
2	192 bmw	gas	std	two	sedan	rwd	front	101.2	176.8	64.8	54.3	2395	ohc	four	108 mpfi	3.5	2.8	8.8	101	5800	23	29	1
0	192 bmw	gas	std	four	sedan	rwd	front	101.2	176.8	64.8	54.3	2395	ohc	four	108 mpfi	3.5	2.8	8.8	101	5800	23	29	1
0	188 bmw	gas	std	two	sedan	rwd	front	101.2	176.8	64.8	54.3	2710	ohc	Six	164 mpfi	3.31	3.19	9	121	4250	21	28	2
0	188 bmv	gas	std	four	sedan	rwd	front	101.2	176.8	64.8	54.3	2765	ohc	SİX	164 mpfi	3.31	3.19	9	121	4250	21	28	
1?	bmw	gas	std	four	sedan	rwd	front	103.5	189	66.9	55.7	3055	ohc	SİX	164 mpfi	3.31	3.19	9	121	4250	20	25	2
0 ?	bmw	gas	std	four	sedan	rwd	front	103.5	189	66.9	55.7	3230	ohc	SİK	209 mpfi	3.62	3.39	8	182	5400	16	22	3
0 ?	bmw	gas	std	two	sedan	rwd	front	103.5	193.8	67.9	53.7	3380	ohc	Six	209 mpfi	3.62	3.39	8	182	5400	16	22	
0 ?	bmw	gas	std	four	sedan	rwd	front	110	197	70.9	56.3	3505	ohc	SİX	209 mpfi	3.62	3.39	8	182	5400	15	20	3
2	121 chevrolet	gas	std	two	hatchba	fwd	front	88.4	141.1	60.3	53.2	1488	l	three	61 2ЫЫ	2.91	3.03	9.5	48	5100	47	53	
1	98 chevrolet	gas	std	two	hatchbar	fwd	front	94.5	155.9	63.6	52	1874	ohc	four	90 2ЫЫ	3.03	3.11	9.6	70	5400	38	43	- 1
0	81 chevrolet	gas	std	four	sedan	fwd	front	94.5	158.8	63.6	52	1909	ohc	four	90 2ЫЫ	3.03	3.11	9.6	70	5400	38	43	- 1
1	118 dodge	gas	std	two	hatchbar	fwd	front	93.7	157.3	63.8	50.8	1876	ohc	four	90 2ЫЫ	2.97	3.23	9.41	68	5500	37	41	
1		gas	std	two	hatchbar	fwd	front	93.7	157.3			1876		four	90 2ЫЫ	2.97	3.23	9.4	68	5500	31	38	- 1
1		gas	turbo	two	hatchba	fwd	front	93.7	157.3		50.8	2128	ohc	four	98 mpfi	3.03	3.39	7.6	102	5500	24	30	
1	148 dodge	gas	std	four	hatchba	fwd	front	93.7	157.3	63.8	50.6	1967	ohc	four	90 2ЫЫ	2.97	3.23	9.4	68	5500	31	38	- 1
1	148 dodge	gas	std	four	sedan	fwd	front	93.7	157.3	63.8	50.6	1989	ohc	four	90 2ЫЫ	2.97	3.23	9.4	68	5500	31	38	- 6

Here is the link for dataset https://www.kaggle.com/natigmamishov/eda-and-regression-on-automobile-dataset/data

Approach

I will attempt clustering the cars by specification. For this, I will drop the symbolling and normalized-losses variables from the data set and work with just the specification variables which are both categorical and numerical.

One of the most widely used clustering algorithms is the K-means approach. Simply put, K is a set of clusters into which the data can be separated based on their attribute similarities and differences. Each cluster has a core that is more similar to nearby observatories. The amount of similarities to be used to cluster can be expressed as a distance between two observations in K-means clustering. The calculation is then done using this distance to determine which cluster each member of the observation belongs to. New cluster centers are determined with each fresh observation, and new observations are assigned to the appropriate cluster.

Why K-means

The simplest is K-means. To put in place and run. All you have to do is select "k" and run it several times. Most smart algorithms are far more difficult to develop and have a lot more parameters to set. Furthermore, the majority of people do not require high-quality clusters. They are content with anything that can be done remotely for them. Plus, when they have more complex clusters, they aren't sure what to do. They require K-means, which models clusters using the simplest model ever - a centroid: a huge reduction of data to centroids.

I decided to use the following steps to get the results

- Run the required libraries
- Import the data
- Data cleaning
- Factorial analysis
- Clustering

The following are the conclusions I reached based on my research.

By using Factorial analysis of mixed data (PCAmix) to analyse a data table where observations are described both by quantitative variables and qualitative variables method I choose 4 centres's to apply K-means algorithm.

I found the results accordingly

By using these analyses the four clusters results are accordingly.

Cluster 1: Cheapest, most economical, low horsepower, small, small engine cars Cluster

Cluster 2: Standard average priced cars with average specs across the board

Cluster 3: Mid high price, diesel, 4 door sedan/wagons, pretty big & heave in dimension with low RPM

Cluster 4: Most expensive, biggest horsepower, biggest engine cars Cluster

The results below are based on clustering techniques for each specification individually.

Conclusion

People can choose their cars directly based on the findings, according to their desired features and budget.

Companies frequently advise their consumers on which characteristics they should obtain based on their budget.