

Seja bem-vindo ao

A2P2

Analisador de Ambiente para Plantações

Monitoramento de dados do solo e do clima para tomada de decisão

Estrutura

Sistema de Alimentação

Demanda energética

• Tempo de medição

Componentes	Tempo de resposta	Tempo diário de funcionamento
Sensor de umidade do solo	1s	0,026 h
Sensor de Ph	60s	1,6 h
Módulo GPS	26s	0,173 h
ESP 32	-	1,6 h
Estação meteorológi	ca	
Componentes	Tempo de resposta	Tempo diário de funcionamento
Sensor BME280	1 s	0,026 h
Anemômetro	-	24 h
Sensor de índice pluviométrico de chuva	-	24 h
Módulo GPS	26 s	0,173 h
ESP 32	-	24 h

Demanda energética

Estação do solo

Tensão	Corrente	Potência	Tempo de uso diário	Consumo diário
5 V	35 mA	0,175 W	0,026 h	0,004Wh
5 V	10 mA	0,05 W	1,6 h	0,08 Wh
3,6 V	0,5 A	1,8 W	1,6 h	2,88 Wh
5 V	2A	10 W	0,173 h	1,73 Wh
18,6 V	2,55 A	2,3 W	-	4,7 Wh
	5 V 5 V 3,6 V 5 V	5 V 35 mA 5 V 10 mA 3,6 V 0,5 A 5 V 2A	5 V 35 mA 0,175 W 5 V 10 mA 0,05 W 3,6 V 0,5 A 1,8 W 5 V 2A 10 W	Tensão Corrente Potência uso diário 5 V 35 mA 0,175 W 0,026 h 5 V 10 mA 0,05 W 1,6 h 3,6 V 0,5 A 1,8 W 1,6 h 5 V 2A 10 W 0,173 h

Demanda energética

Estação Meteorológica

Componentes	Tensão	Corrente	Potência	Tempo de	Consumo
Componentes	Tensao	Corrente	Fotelicia	uso diário	diário
Sensor BME280	3,3 V	2,7 uA	8,91 uW	0,026 h	0,23 uWh
Anemômetro	24 V	0,05 A	1,2 W	24 h	28,8 Wh
Sensor do índice	5 V	0,5 A	2,5 W	24 h	60 Wh
pluviométrico de chuva	9 V	0,5 A	2,5 VV	24 11	00 WII
ESP 32	3,6 V	0,5 A	1,8 W	24 h	43,2 Wh
Módulo GMS	5 V	2A	10 W	0,173 h	1,73 Wh
Total	41 V	5,05 A	5,741 W	-	133,73 Wh

Ângulo	Jan	Fev	Mar	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
16^{2}	4,99	5,41	5,13	5,52	5,68	5,83	6,52	5,58	5,33	4,76	4,93	5,45

Características	Estação do solo	Estação Meteorológica	
Potência	3 W	45 W	
Corrente de curto circuito	0,35 A	2,41 A	
Tensão de máxima potência	9 V	17,82 V	
Tensão de circuito aberto	10,6 V	21,72 V	
Dimensões	230 x 190 x17 mm	680 x 540x 25 mm	
Peso	$0.5~\mathrm{Kg}$	4,9 Kg	

Bateria

Responsabilidade Resposta a demandas do produtor

4 dias de autonomia

Características	Estação do solo	Estação Meteorológica		
Tensão	12 V	12 V		
Capacidade	4 Ah	24 Ah		
Peso	1,7 Kg	8,2 Kg		
Dimensões	151 x 65 x101 mm	166 x 175 x 125 mm		

Controlador de carga

Responsabilidade Resposta a demandas do produtor

Estação do solo

Entrada: 5V Corrente: 5A

Saída: 12V

Estação Meteorológica

Entrada: 18V Corrente: 10A

Saída: 12V

Sistema de Condicionamento de Potência Responsabilidade Resposta a demandas Ambiental do produtor

Sistema de condicionamento de potência como conexão entre os sistemas de geração, armazenamento e carga.

Sistema de Condicionamento de Potência

Estação do solo

Tensão de entrada: 12V Tensão de saída: 5 V

Corrente de saída: 2,5 A

Estação Meteorológica

Tensão de entrada: 12 V Tensão de saída: 3,3 V e 5 V

Corrente de saída: 3 A

Conversor CC/CC Step-up

Tensão de entrada: 12 V Tensão de saída: 24 V Corrente de saída: 3 A

Diagrama unifilar: Estação do Solo

Diagrama unifilar: Estação Meteorológica

Estação do solo

Estação Meteorológica

Eletrônica

Responsabilidade Ambiental

Resposta a demandas do produtor

Características Técnicas

	Sensor de pH	Sensor de Umidade do solo	Anemômetro	Pluviômetro	Sensor BME280	Módulo GPS
Característica	Medição: 3-9 pH	Medição: 0-100% úmido	0-120Km/h	Leitura a cada 0,25mm	Medição - Umidade: 0-100% Pressão: 300-1100 hPa Temperatura:-40-85°C	QuadBand (frequências) 850/900/ 1800/1900MHz
Tensão de funcionamento	24V	5V	24V	5V	5V	5V
Temperatura de trabalho	0-55°C	0-80°C	0-65°C	0-65°C	(-)40-85°C	(-)40-85°C
Transmissão de dados	RS485 (Digital) Serial TTL	Analógica e Digital	Digital (Serial)	Digital (Serial)	Digital Protocolo: I2C (até 3,4 MHz) SPI (até 10MHz)	Digital Protocolo: UART
Dimensões Totais	13,5 x 4,5 x 1,4 cm	60 x 20 mm (sonda) 32 x 14 mm (circuito)	~39 x 27 cm	160 x 117 cm	15,5 x 11,5 x 2,5 mm	77,5 x 50 x 11 mm

Especificações Microcontroladores

	ESP32	ESP8266	UNO R3	MSP430g2553	RaspBerry Pi Zero W
Arquitetura	32 Bits	32 Bits	8 Bits	16 Bit	32 Bits
Clock	160MHz	80Mhz	16MHz	16MHz	1GHz
WiFi	Sim	Sim	Não	Não	Sim
Bluetooth	Sim	Não	Não	Não	Sim
RAM	512Kb	160Kb	2Kb	0.5 Kb	512Mb
FLASH	16Mb	16Mb	32Kb	16Kb	-
GPIO	36	17	14	24	40
Interface	SPI/I2C/ UART/ I2S/CAN	SPI/I2C/ UART/ I2S	SPI/I2C/ UART	SPI/I2C/ UART	-
A/D	18	1	6	8	-
D/A	2	-	-	-	-

Diagramas Lógicos

Códigos dos Sensores


```
float pHVol=(float)avgValue*5.0/1024/6;
float phValue = -5.70 * pHVol + calibration;
void envia GSM(String texto) {
  char temp string[55];
  char msg[10];
  int numdata;
  if (inet.attachGPRS("operadoracel", "operadora", "operadora"))
    Serial.println(F("status=Conectado..."));
  else Serial.println(F("status=Nao conectado !!"));
  delay (100);
  String valor = "MSG Texto1=" + texto;
  valor.toCharArray(temp string, 55);
  numdata = inet.httpPOST("A2P2.webatu.com", 80, "/add.php", temp_string, msg, 50);
  delay (5000);
```



```
void RPMcalc() {
  RPM=((counter) *60)/(period/1000);//Calcular revoluções por minuto (RPM)
void WindSpeed() {
  windspeed = ((4 * pi * radius * RPM)/60) /
                                             1000;//Calcular a velocidade do vento em m/s
void SpeedWind() {
  speedwind = (((4 * pi * radius * RPM)/60) / 1000)*3.6;//Calcular a velocidade do vento em km/h
void addcount() {
  counter++;
```


Software

Diagrama Geral

Diagrama Entidade-Relacionamento (DER)

Demonstração

Schema

```
"id": "number",
"farmOwner": {
  "username": "string",
  "email": "string",
  "fullName": "string",
  "telegram": "string"
},
"requestDetails": {
  "stationIndex": "number",
  "latitude": "number",
  "longitude": "number",
  "dateTime": "string"
},
"soil": {
  "pH": "number",
  "soilMoistude": "number"
},
"environment": {
  "temperature": "number",
  "airHumidity": "number",
  "atmosphericPressure": "number",
  "windSpeed": "number",
  "pluviometricIndex": "number"
```


Muito Obrigado!

Analisador de Ambiente para Plantações

Seja bem-vindo ao futuro da agricultura:

Responsabilidade Ambiental

Resposta a demandas do produtor