А.Н.Огурцов

ФИЗИКА ДЛЯ СТУДЕНТОВ

КОЛЕБАНИЯ И ВОЛНЫ

ЛЕКЦИИ ПО ФИЗИКЕ

5

http://sites.google.com/site/anogurtsov/lectures/phys/ http://www.ilt.kharkov.ua/bvi/ogurtsov/ln.htm

5-3

Свободные колебания

Колебания. Общий подход к изучению колебаний различной физической природы.

Колебаниями называются движения или процессы, которые обладают определенной повторяемостью во времени.

Колебания сопровождаются попеременным <u>превращением энергии</u> одного вида в энергию другого вида.

Колебания называются **свободными** (или **собственными**), если они совершаются за счет первоначально сообщенной энергии, <u>без</u> дальнейшего внешнего воздействия на колебательную систему (систему, совершающую колебания). Колебания называются **вынужденными**, если они происходят под действием периодически изменяющейся <u>внешней</u> силы.

Физическая природа колебаний может быть разной — различают механические, электромагнитные и др. колебания.

Но <u>различные</u> колебательные процессы описываются <u>одинаковыми</u> уравнениями, поэтому целесообразно изучать все колебательные процессы, используя общие свойства колебаний.

2. Гармонические колебания и их характеристики.

Гармоническими колебаниями называются колебания, при которых колеблющаяся физическая величина изменяется по закону синуса (или косинуса).

Различные **периодические процессы** (процессы, повторяющиеся через равные промежутки времени) могут быть представлены в виде <u>суммы</u> (суперпозиции) гармонических колебаний.

Гармоническое колебание величины s описывается уравнением типа

$$s = A \cdot \cos(\omega t + \varphi)$$
,

где: $A-\underline{\mathsf{aмплитудa}}$ колебания — максимальное значение колеблющейся величины:

— круговая (циклическая) частота;

 $\phi - \mu = \mu = \mu = 0$;

 $(\omega t + \varphi) - \varphi$ аза колебания в момент времени t.

Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до -1, то s может принимать значения от +A до -A.

Поскольку $\cos(a+2\pi)=\cos a$, то при гармонических колебаниях увеличение (приращение) фазы колебания на 2π приводит к тому, что все величины, характеризующие колебание, принимают исходное значение.

<u>Периодом колебаний</u> T называется <u>наименьший</u> промежуток времени, по истечении которого <u>повторяются</u> состояния колеблющейся системы (совершается одно полное колебание) и фаза колебания получает приращение 2π

$$\omega(t+T)+\varphi=(\omega t+\varphi)+2\pi$$
.

Откуда

$$T = \frac{2\pi}{\omega}$$
.

<u>Частотой колебаний</u> *п* называется величина обратная периоду колебаний – число полных колебаний, совершаемых в единицу времени

$$n=\frac{1}{T}=\frac{\omega}{2\pi}.$$

Единица частоты – **герц (Гц)** – частота периодического процесса, при котором за 1 секунду совершается один цикл колебаний.

3. Дифференциальное уравнение гармонических колебаний.

Первая (скорость) и вторая (ускорение) производные по времени от гармонически колеблющейся величины s также совершают гармонические колебания с той же циклической частотой

$$\dot{s} = \frac{\mathrm{d}s}{\mathrm{d}t} = -A\omega\sin(\omega t + \varphi) = A\omega\cos(\omega t + \varphi + \frac{\pi}{2}),$$

$$\ddot{s} = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = -A\omega^2 \cos(\omega t + \varphi) = A\omega^2 \cos(\omega t + \varphi + \pi).$$

Из последнего уравнения видно, что s удовлетворяет уравнению

$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + \omega^2 s = 0 \qquad \text{или} \qquad \ddot{s} + \omega^2 s = 0.$$

Это уравнение называется **дифференциальным уравнением гармони**ческих колебаний. Его решение

$$s = A \cdot \cos(\omega t + \varphi)$$
.

4. Метод векторных диаграмм.

Гармонические колебания изображаются графически методом вращающегося вектора амплитуды или методом векторных диаграмм.

Из произвольной точки O, выбранной на оси x, под углом ϕ , равным начальной фазе колебания, откладывается вектор \vec{A} , модуль которого равен амплитуде A, рассматриваемого колебания. Если этот вектор будет вращаться

вокруг точки O с угловой скоростью ω , то проекция вектора на ось x будет совершать колебания по закону $s = A \cdot \cos(\omega t + \varphi)$.

5. Экспоненциальная форма записи гармонических колебаний.

Согласно формуле Эйлера для комплексных чисел

$$e^{i\varphi} = \cos\varphi + i\sin\varphi,$$

где $i = \sqrt{-1}$ — мнимая единица. Поэтому уравнение гармонического колебания $s = A \cdot \cos(\omega t + \varphi)$ можно записать в комплексной экспоненциальной форме

$$\tilde{s} = Ae^{i(\omega t + \varphi)}$$
.

Физический смысл имеет только вещественная часть комплексной функции

 \widetilde{s} , которая и представляет собой гармоническое колебание

$$Re(\tilde{s}) = A\cos(\omega t + \varphi) = s$$
.

6. Механические гармонические колебания.

Пусть материальная точка совершает прямолинейные гармонические

колебания вдоль оси x около положения равновесия принятого, за начало координат. Тогда для колеблющейся точки

смещение:
$$x = A \cdot \cos(\omega t + \varphi)$$
,

скорость:
$$\upsilon = \dot{x} = -A\omega\cos\left(\omega t + \varphi + \frac{\pi}{2}\right)$$

ускорение:

$$a = \dot{\upsilon} = \ddot{s} = A\omega^2 \cos(\omega t + \varphi + \pi)$$
.

Амплитуды скорости и ускорения равны $A\omega$ и $A\omega^2$.

 $m{\phi}$ аза скорости отличается от фазы смещения на $\frac{\pi}{2}$, а фаза ускорения на π .

Сила, действующая на колеблющуюся

материальную точку массой m равна

$$F = ma = m \cdot A\omega^2 \cos(\omega t + \varphi + \pi) = -m\omega^2 A \cos(\omega t + \varphi) = -m\omega^2 x.$$

Таким образом, сила <u>пропорциональна смещению</u> материальной точки и <u>направлена</u> в сторону, противоположную смещению (<u>к положению равновесия</u>). Такая зависимость от смещения характерна для упругих сил и поэтому силы, которые аналогичным образом зависят от смещения, называются квазиупругими.

7. Энергия материальной точки, совершающей гармонические колебания.

Кинетическая энергия материальной точки

$$K = \frac{mv^{2}}{2} = \frac{mA^{2}\omega^{2}}{2}\sin^{2}(\omega t + \varphi) = \frac{mA^{2}\omega^{2}}{4}[1 - \cos 2(\omega t + \varphi)].$$

Потенциальная энергия материальной точки, совершающей гармонические колебания под действием квазиупругой силы

$$W = -\int_{0}^{x} F dx = \frac{m\omega^{2}x^{2}}{2} = \frac{mA^{2}\omega^{2}}{2}\cos^{2}(\omega t + \varphi) = \frac{mA^{2}\omega^{2}}{4}[1 + \cos 2(\omega t + \varphi)].$$

Полная энергия

$$E = K + W = \frac{mA^2\omega^2}{2}$$

остается постоянной, с течением времени происходит только превращение кинетической энергии в потенциальную и обратно.

8. Гармонический осциллятор.

Гармоническим осциллятором называется система, совершающая колебания, описываемые дифференциальным уравнением

А.Н.Огурцов. Физика для студентов

$$\ddot{s} + \omega^2 s = 0.$$

<u>Примерами</u> гармонического осциллятора являются пружинный, математический и физический маятники и электрический колебательный контур.

9. Пружинный маятник.

Пружинный маятник — это груз массой m, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы

$$F = -kx$$
,

где k — жесткость пружины.

Уравнение движения маятника

$$m\ddot{x} = -kx$$
 или $\ddot{x} + \frac{k}{m}x = 0$.

Сравнивая это уравнение с уравнением движения гармонического осциллятора $\ddot{s}+\omega^2 s=0$, мы видим, что пружинный маятник совершает колебания по закону $x=A\cdot\cos(\omega t+\phi)$ с циклической частотой и периодом

$$\omega = \sqrt{\frac{k}{m}}, \qquad T = 2\pi \sqrt{\frac{m}{k}}.$$

Потенциальная энергия пружинного маятника

$$U = \frac{m\omega^2 x^2}{2} = \frac{kx^2}{2}.$$

Если на маятник действует сила трения, пропорциональная скорости $F_{\rm rp} = -r\dot{x}$, где r – коэффициент сопротивления, то колебания маятника будут затухающими, и закон движения маятника будет иметь вид $m\ddot{x} = -kx - r\dot{x}$ или

$$\ddot{x} + \frac{r}{m}\dot{x} + \frac{k}{m}x = 0.$$

10. Математический маятник.

Математическим маятником называется идеализированная система, состоящая из материальной точки массой m, подвешенной на невесомой нерастяжимой нити длинной l, и колеблющейся под действием силы тяжести без трения.

Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити.

При малых углах отклонения $\, \alpha \,$ можно считать $\, x pprox l \alpha \, . \,$ Возвращающая сила

$$F = P \sin \alpha \approx mg\alpha = mg\frac{x}{l}$$
.

Уравнение движения

$$m\ddot{x} = -F = -mg\frac{x}{l}$$
 или $\ddot{x} + \frac{g}{l}x = 0$.

Следовательно, движение математического маятника описывается дифференциальным уравнением гармонических колебаний, то есть происходит по закону $x = A \cdot \cos(\omega t + \varphi)$ с частотой и периодом, соответственно

$$\omega = \sqrt{\frac{g}{l}}, \qquad T = 2\pi \sqrt{\frac{l}{g}}.$$

11. Физический маятник.

Физическим маятником называется твердое тело, совершающее под действием силы тяжести колебания вокруг горизонтальной оси подвеса, не проходящей через центр масс тела.

Если физический маятник отклонен из положения равновесия на некоторый угол α , то момент возвращающей силы

$$M = J\beta = J\ddot{\alpha}$$
.

С другой стороны, при малых углах

$$M = F_{\tau}l = -mgl\sin\alpha \approx -mgl\alpha$$
,

где J – момент инерции маятника относительно оси, проходящей через точку подвеса O,

l- расстояние между точкой подвеса и центром масс C маятника,

 $F_{\tau} = -mg\sin\alpha$ – возвращающая сила (со знаком

минус, поскольку она всегда направленная противоположно направлению увеличения α).

Следовательно, $J\ddot{\alpha} + mgl\alpha = 0$, или

$$\ddot{\alpha} + \frac{mgl}{J}\alpha = 0.$$

Таким образом, при малых колебаниях физический маятник совершает гармонические колебания $\alpha = \alpha_0 \cdot \cos(\omega t + \varphi)$ с циклической частотой и периодом

$$\omega = \sqrt{\frac{mgl}{J}}, \qquad T = 2\pi \sqrt{\frac{J}{mgl}} = 2\pi \sqrt{\frac{L}{g}}.$$

где длина $L=rac{J}{ml}$ – называется приведенной длиной физического маятника.

Приведенная длина физического маятника — это длина такого математического маятника, который имеет такой же период колебаний, что и данный физический маятник.

Точка O' на продолжении прямой OC , отстоящая от оси подвеса на расстоянии приведенной длины L, называется **центром качаний** физического маятника.

Математический маятник можно представить как частный (предельный) случай физического маятника, вся масса которого сосредоточена в его центре масс. При этом $J=ml^2$, следовательно

$$T=2\pi\sqrt{\frac{l}{g}}.$$

12. <u>Электрический колебательный контур.</u>

Электрическим колебательным контуром называется электрическая цепь, состоящая из включенных последовательно катушки индуктивностью L ,

конденсатора емкостью C и резистора сопротивлением R .

По закону Ома для участка цепи

$$IR = \varphi_1 - \varphi_2 + \Theta_c$$
 или $IR = -\frac{q}{C} - L\frac{\mathrm{d}\,I}{\mathrm{d}\,t}$

R $IR = \phi_1 - \phi_2 + \Theta_c$ или $IR = -\frac{q}{C} - L\frac{\mathrm{d}\,I}{\mathrm{d}\,t}$, где q и $(\phi_1 - \phi_2) = -\frac{q}{C}$ — заряд конденсатора и

разность потенциалов его обкладок в произвольный момент времени t; Rэлектрическое сопротивление колебательного контура; Θ_c – ЭДС само-

индукции в катушке. Сила тока $I=rac{\mathrm{d}\,q}{\mathrm{d}\,t}$, поэтому **дифференциальное** уравнение колебаний заряда в колебательном контуре

$$\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{LC} q = 0.$$

13. Стадии колебаний в идеализированном колебательном контуре.

Идеализированный колебательный контур – колебательный контур, у которого R=0.

Пусть **в начальный момент времени** t=0 конденсатор заряжен зарядом q. Тогда <u>энергия электрического поля</u> между обкладками конденсатора $W_e = \frac{q^2}{2C}$. При замыкании конденсатора на катушку индуктивности, в контуре потечет возрастающий ток I . Энергия электрического поля начнет уменьшаться, а <u>энергия магнитного поля</u> катушки $W_m = \frac{LI^2}{2} = \frac{L\dot{q}^2}{2}$ будет возрастать. Поскольку потерь в контуре нет (R=0), то <u>полная энергия</u>

 $W = W_e + W_m$ сохраняется.

В момент времени $t = \frac{1}{4}T$ (T – период колебаний), когда конденсатор полностью разрядится, энергия электрического поля обращается в нуль, а энергия магнитного поля (а следовательно, и ток) достигает наибольшего значения.

Стадии колебаний в контуре можно сопоставить с аналогичными стадиями механических колебаний, например, математического маятника, который в момент времени t=0 смещен из положения равновесия и имеет максимальную потенциальную энергию $E = U_{\text{max}}$. В момент времени $t = \frac{1}{4}T$ смещение маятника равно нулю, скорость - максимальна, и потенциальная энергия полностью переходит в кинетическую энергию маятника $E=K_{
m max}$.

Начиная с момента времени $t = \frac{1}{4}T$, ток в контуре будет убывать, следовательно, магнитное поле катушки начнет ослабевать. Изменение магнитного поля вызовет индукционный ток, который, по правилу Ленца, будет иметь то же направление, что и ток разрядки конденсатора. Конденсатор начинает перезаряжаться и **к моменту времени** $t = \frac{1}{2}T$ заряд на обкладках конденсатора достигнет максимума, ток в цепи прекратится, и энергия контура снова будет равна энергии электрического поля в конденсаторе.

Для маятника это будет соответствовать максимальному смещению в направлении, противоположном первоначальному, остановке маятника в крайнем положении ($\upsilon = 0$) и обратному превращению кинетической энергии в потенциальную.

Далее, все процессы в колебательном контуре будут <u>протекать в</u> <u>обратном направлении</u> и система **к моменту времени** t = T придет в первоначальное состояние.

Таким образом, в колебательном контуре происходят периодические uзменения заряда q на обкладках конденсатора и силы тока I. Эти электрические колебания сопровождаются превращением электрического и магнитного полей.

Из сравнения электрических колебаний с механическими колебаниями, следует, что:

- энергия электрического поля конденсатора аналогична потенциальной энергии маятника,
- энергия магнитного поля катушки аналогична кинетической энергии маятника
- сила тока в контуре аналогична скорости движения маятника,
- индуктивность L выполняет функцию массы,
- сопротивление R играет роль силы трения, действующей на маятник.

14. Свободные гармонические колебания в колебательном контуре.

Свободные электрические колебания в колебательном контуре являются гармоническими, если его электрическое сопротивление R=0.

Дифференциальное уравнение свободных гармонических колебаний заряда в контуре

$$\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + \frac{1}{LC}q = 0.$$

Заряд q совершает гармонические колебания по закону

$$q = q_{\text{max}} \cos(\omega t + \varphi)$$
,

с циклической частотой

$$\omega = \frac{1}{\sqrt{LC}}$$

и периодом

$$T = 2\pi\sqrt{LC}$$

Эта формула называется – формула Томсона.

В формуле Томсона q_{max} – амплитуда колебаний заряда.

Сила тока в колебательном контуре

$$I = \frac{\mathrm{d} q}{\mathrm{d} t} = -\omega q_{\text{max}} \sin(\omega t + \varphi) = I_{\text{max}} \cos\left(\omega t + \varphi + \frac{\pi}{2}\right)$$

опережает по фазе колебания заряда q на $\pi/2$.

3десь
$$I_{\mathrm{max}} = \omega q_{\mathrm{max}} = \frac{q_{\mathrm{max}}}{\sqrt{LC}}$$
 – амплитуда силы тока.

Разность потенциалов обкладок конденсатора $U = \varphi_2 - \varphi_1$ также изменяется по гармоническому закону и совпадает по фазе с зарядом q

$$U = \frac{q}{C} = U_{\text{max}} \cos(\omega t + \varphi),$$

где $U_{\mathrm{max}} = \frac{q_{\mathrm{max}}}{C}$ – амплитуда разности потенциалов. Амплитуда тока

$$I_{\rm max} = U_{\rm max} \sqrt{\frac{C}{L}} \ .$$

Величина $\sqrt{L_C}$ называется волновым сопротивлением колебательного контура.

15. Сложение гармонических колебаний.

Если система одновременно участвует в нескольких колебательных процессах, то под сложением колебаний понимают нахождение закона,

описывающего результирующий колебательный

Для сложения колебаний x_1 и x_2

$$x_1 = A_1 \cos(\omega t + \varphi_1), \qquad x_2 = A_2 \cos(\omega t + \varphi_2)$$

используем метод вращающегося вектора амплитуды (метод векторных диаграмм).

Так как векторы A_1 и A_2 вращаются с одинаковой угловой скоростью ω , то разность фаз $(\phi_2 - \phi_1)$ между ними остается постоянной. Уравнение результирующего колебания будет

$$x = x_1 + x_2 = A\cos(\omega t + \varphi),$$

где амплитуда A и начальная фаза ϕ задаются соотношениями

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\varphi_{2} - \varphi_{1}), \qquad \operatorname{tg} \varphi = \frac{A_{1}\sin\varphi_{1} + A_{2}\sin\varphi_{2}}{A_{1}\cos\varphi_{1} + A_{2}\cos\varphi_{2}}.$$

Сумма двух гармонических колебаний одного направления и одинаковой частоты **есть гармоническое колебание** в том же направлении и с той же частотой, что и складываемые колебания.

Амплитуда результирующего колебания зависит от разности фаз складываемых колебаний:

- 1) $\phi_2 \phi_1 = \pm 2m\pi$, где (m = 0,1,2,...), тогда $A = A_1 + A_2$;
- 2) $\varphi_2 \varphi_1 = \pm (2m+1)\pi$, где (m=0,1,2,...), тогда $A = |A_1 A_2|$.

16. Биения.

Биениями называются периодические изменения <u>амплитуды</u> колебания, возникающие при сложении двух гармонических колебаний с близкими частотами.

Пусть амплитуды складываемых колебаний равны A, а частоты равны ω и $\omega + \Delta \omega$, причем $\Delta \omega << \omega$. Путь для простоты начало отсчета выбрано так, чтобы начальные фазы обоих колебаний были равны нулю

$$x_1 = A\cos\omega t, \quad x_2 = A\cos(\omega + \Delta\omega)t \ .$$
 Результирующее колебание будет иметь вид
$$x = \left(2A\cos\frac{\Delta\omega}{2}t\right) \cdot \cos\omega t$$

$$x = \left(2A\cos\frac{\Delta\omega}{2}t\right) \cdot \cos\omega$$

- гармоническое колебание с частотой ω , амплитуда которого изменяется по закону $A_{\text{биений}} = \left| 2A\cos{\frac{\Delta\omega}{2}t} \right|$ с частотой $\omega_{\text{биений}} = \Delta\omega$ (частота биений вдвое больше частоты изменения косинуса, поскольку $A_{\rm биений}$ берется по модулю).

17. Разложение Фурье.

Любое сложное периодическое колебание s = f(t) можно представить в виде суммы простых гармонических колебаний с циклическими частотами, кратными основной циклической частоте ω_0

$$s = f(t) = \frac{A_0}{2} + \sum_{m=1}^{n} A_m \cos(m\omega_0 t + \varphi_m).$$

Такое представление периодической функции f(t)называется разложением ее в ряд Фурье или гармоническим анализом сложного периодического колебания.

Члены ряда Фурье, соответствующие гармоническим колебаниям с циклическими частотами ω_0 , $2\omega_0$, $3\omega_0$ и т. д., называются **первой** (или основной), второй, третьей и т. д., гармониками сложного периодического колебания s = f(t).

Совокупность этих гармоник образует **спектр колебания** s = f(t).

18. Сложение взаимно перпендикулярных гармонических колебаний одинаковой частоты.

Пусть два гармонических колебания одинаковой частоты ω , происходят во взаимно перпендикулярных направлениях вдоль осей x и y. Для простоты выберем начало отсчета так, чтобы начальная фаза первого колебания была равна нулю

$$x = A\cos\omega t$$
, $y = B\cos(\omega t + \alpha)$,

где α – разность фаз колебаний, а A и B – их амплитуды. Уравнение траектории результирующего колебания (исключая t из уравнений) есть **уравнение эллипса**, произвольно расположенного относительно координатных осей,

$$\frac{x^2}{A^2} - \frac{2xy}{AB}\cos\alpha + \frac{y^2}{B^2} = \sin^2\alpha,$$

и такие колебания называются эллиптически поляризованными.

19. Линейно поляризованные колебания.

Если разность фаз равна $\alpha = m\pi \ (m = 0, \pm 1, \pm 2,...)$ эллипс вырождается в отрезок прямой

$$y = \pm \frac{B}{A}x$$
,

где знак плюс соответствует нулю и четным значениям m, а минус нечетным значениям m.

Результирующее колебание является гармоническим колебанием с частотой ω и амплитудой $\sqrt{A^2 + B^2}$ и совершается вдоль прямой, составляющей с осью x угол $\varphi = \operatorname{arctg}(B/A \cos m\pi)$. Такие колебания называются линейно поляризованными колебаниями.

20. Циркулярно поляризованные колебания.

Если разность фаз $\alpha = (2m+1)\frac{\pi}{2}$,

 $(m = 0, \pm 1, \pm 2,...)$, то уравнение траектории

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1.$$

Это уравнение эллипса, оси которого совпадают с

осями координат, а его полуоси равны соответствующим амплитудам A и B .

Если A = B, то эллипс вырождается в окружность, и такие колебания называются циркулярно поляризованными или колебаниями, поляризованными по кругу.

21. Фигуры Лиссажу.

Если взаимно перпендикулярные колебания происходят с циклическими частотам $p\omega$ и $q\omega$, где q и p – **целые** числа

$$x = A\cos(p\omega t), \quad y = B\cos(q\omega t + \alpha),$$

то значения координат x и y <u>одновременно повторяются</u> через одинаковые промежутки времени T_0 равные наименьшему общему кратному периодов

$$T_1=rac{2\pi}{p\omega}$$
 и $T_2=rac{2\pi}{q\omega}$ колебаний вдоль осей x и y . Траектории замкнутых

кривых, которые получаются в этих случаях, называются фигурами Лиссажу.

Вид этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний. На рисунке показан вид фигур Лиссажу при трех различных значениях отношения (2:1, 3:2, 4:3) и разности фаз $\alpha = \frac{\pi}{2}$.

Затухающие и вынужденные колебания

22. Затухающие колебания.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Затухание механических колебаний вызывается главным образом трением. Затухание в электрических колебательных системах вызывается тепловыми потерями и потерями на излучение электромагнитных волн, а также тепловыми потерями в диэлектриках и ферромагнетиках вследствие электрического и магнитного гистерезиса.

Закон затухания колебаний определяется свойствами колебательных систем.

Система называется линейной, если параметры, характеризующие те физические свойства системы, которые существенны для рассматриваемого процесса, не изменяются в ходе процесса.

Линейные системы описываются *линейными* дифференциальными уравнениями.

<u>Различные</u> по своей природе *линейные* системы описываются одинаковыми уравнениями, что позволяет осуществлять **единый подход** к изучению колебаний различной физической природы.

23. Дифференциальное уравнение свободных затухающих колебаний линейной системы

Дифференциальное уравнение свободных затухающих колебаний линейной системы имеет вид

$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + 2\delta \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0^2 s = 0,$$

где s — колеблющаяся величина,

 $\delta = const$ – коэффициент затухания,

 ω_0 — циклическая частота свободных **незатухающих** колебаний той же колебательной системы (при $\delta=0$).

В случае малых затуханий $(\delta^2 << \omega_0^2)$ решение этого уравнения:

$$s = A_0 e^{-\delta t} \cos(\omega t + \varphi),$$

где

 $A=A_0\,{
m e}^{-\delta t}$ — амплитуда зату- хающих колебаний,

 A_0 – начальная амплитуда,

$$\omega = \sqrt{\omega_0^2 - \delta^2}$$
 — циклическая частота затухающих колебаний.

Промежуток времени $au = \frac{1}{\delta}$, в течение которого амплитуда затухающих

колебаний уменьшается в е раз называется временем релаксации.

Затухание нарушает периодичность колебаний.

Затухающие колебания не являются периодическими.

Однако если затухание мало, то можно <u>условно</u> пользоваться понятием периода затухающих колебаний как промежутка времени между двумя последующими максимумами колеблющейся физической величины

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - \delta^2}}.$$

24. Декремент затухания.

Если A(t) и A(t+T) – амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающихся на период, то отношение

$$\frac{A(t)}{A(t+T)} = e^{\delta T}$$

называется *декрементом затухания*, а его логарифм

$$\theta = \ln \frac{A(t)}{A(t+T)} = \delta T = \frac{T}{\tau} = \frac{1}{N}$$

называется логарифмическим декрементом затухания.

Здесь N – число колебаний, совершаемых за время уменьшения амплитуды в ${f e}$ раз.

25. Добротность колебательной системы.

Добротностью колебательной системы называется безразмерная величина Q, равная произведению 2π на отношение энергии W(t) колебаний системы в произвольный момент времени t к убыли этой энергии за промежуток времени от t до t+T (за один условный период затухающих колебаний)

$$Q = 2\pi \frac{W(t)}{W(t) - W(t+T)}.$$

Энергия W(t) пропорциональна квадрату амплитуды A(t), поэтому

$$Q = 2\pi \frac{A^2(t)}{A^2(t) - A^2(t+T)} = \frac{2\pi}{1 - e^{-2\delta T}} = \frac{2\pi}{1 - e^{-2\theta}}.$$

При малых значениях логарифмического декремента затухания $(\theta \ll 1)$

$$1-\mathrm{e}^{-2 heta}pprox2 heta$$
 , поэтому (принимая $Tpprox T_0$)
$$Q=\frac{\pi}{ heta}=\pi N=\frac{\pi}{\delta\cdot T}=\frac{\omega_0}{2\delta}\,.$$

26. Примеры свободных затухающих колебаний

Рассмотрим затухающие колебания различной физической природы:

- 1) механические колебания пружинный маятник с массой m, который совершает малые колебания под действием упругой силы F=-kx и силы трения $F_{\rm rp}=-r\dot{x}$ (r коэффициент сопротивления)
- 2) электромагнитные колебания колебания в колебательном контуре состоящем из сопротивления R, индуктивности L и емкости C

Будем сравнивать оба случая с дифференциальным уравнением свободных затухающих колебаний линейной системы

$$\ddot{s} + 2\delta \dot{s} + \omega_0^2 s = 0$$

решение которого имеет вид

$$s = A_0 e^{-\delta t} \cos(\omega t + \varphi).$$

	1) пружинный маятник	2) колебательный контур
колеблющаяся величина	смещение относительно положения равновесия x	заряд q
дифференциальное уравнение колебаний	$\ddot{x} + \frac{r}{m}\dot{x} + \frac{k}{m}x = 0$	$\ddot{q} + \frac{R}{L}\dot{q} + \frac{1}{LC}q = 0$
частота незатухающих колебаний ω_0	$\omega_0 = \sqrt{\frac{k}{m}}$	$\omega_0 = \frac{1}{\sqrt{LC}}$
коэффициент затухания δ	$\delta = \frac{r}{2m}$	$\delta = \frac{R}{2L}$
частота затухающих колебаний $\omega = \sqrt{\omega_0^2 - \delta^2}$	$\omega = \sqrt{\frac{k}{m} - \frac{r^2}{4m^2}}$	$\omega = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$
добротность Q	$Q = \frac{\sqrt{km}}{r}$	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$
закон колебаний	$x = A_0 e^{-\delta t} \cos(\omega t + \varphi)$	$q = q_0 e^{-\delta t} \cos(\omega t + \varphi)$

27. Вынужденные колебания.

Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X(t), изменяющегося по гармоническому закону

$$X(t) = X_0 \cos \omega t$$
.

В случае механических колебаний таким фактором является ${\it вынуждающая}\ {\it cuna}\ F = F_0 \cos \omega t$. Закон движения для пружинного маятника будет иметь вид

$$m\ddot{x} = -kx - r\dot{x} + F_0 \cos \omega t.$$

В случае электрического колебательного контура роль X(t) играет подводимая к контуру внешняя ЭДС или переменное напряжение $U=U_m\cos\omega t$. Уравнение колебаний в контуре будет иметь вид

$$\ddot{q} + \frac{R}{L}\dot{q} + \frac{1}{LC}q = \frac{U_m}{L}\cos\omega t.$$

В общем виде **дифференциальное уравнение вынужденных колебаний** имеет вид

$$\ddot{s} + 2\delta \dot{s} + \omega_0^2 s = x_0 \cos \omega t.$$

Это уравнение – линейное неоднородное дифференциальное уравнение. Его решение равно сумме общего решения $s=A_0\,\mathrm{e}^{-\delta t}\cos(\omega t+\phi)$ однородного уравнения и <u>частного</u> решения неоднородного уравнения. Можно показать, частное решение имеет вид

$$s = A\cos(\omega t + \varphi)$$

где A и ϕ задаются формулами

$$A = \frac{x_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}}, \quad \varphi = \operatorname{arctg} \frac{2\delta\omega}{\omega_0^2 - \omega^2}.$$

Так <u>для электромагнитных колебаний</u>, если обозначить α – сдвиг по фазе между зарядом и приложенным напряжением, то можно показать, что решение дифференциального уравнения будет иметь вид $q=q_m\cos(\omega t-\alpha)$, где

$$q_m = \frac{U_m}{\omega \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}, \quad tg\alpha = \frac{R}{\frac{1}{\omega C} - \omega L}.$$

Сила тока при установившихся колебаниях

$$I = \frac{\mathrm{d}q}{\mathrm{d}t} = -\omega q_m \sin(\omega t - \alpha) = I_m \cos(\omega t - \alpha + \frac{\pi}{2}),$$

где

$$I_m = \omega q_m = \frac{U_m}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}.$$

Силу тока можно записать в виде $I=I_m\cos(\omega t-\phi)$, где $\phi=\alpha-\frac{\pi}{2}-c$ совиг по фазе между током и приложенным напряжением. Тогда можно показать, что

$$tg \varphi = tg \left(\alpha - \frac{\pi}{2}\right) = -\frac{1}{tg \alpha} = \frac{\omega L - \frac{1}{\omega C}}{R}.$$

5-17

28. Резонанс.

Резонансом называется

называется явление <u>резкого возрастания амплитуды</u> вынужденных колебаний при приближении частоты вынуждающей силы (или, в случае электрических колебаний, частоты вынуждающего переменного напряжения) к частоте, равной или близкой собственной частоте колебательной системы.

Амплитуда вынужденных колебаний $A = \frac{x_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}}$ имеет максимум при

 $ω_{pes}$ $ω_0$ ω частоте $ω_{pes} = \sqrt{ω_0^2 - 2δ^2}$, которая называется pesohahchoŭ частоте $ω_{pes} = \sqrt{ω_0^2 - 2δ^2}$, которая называется $(-4(ω_0^2 - ω^2)ω + 8δ^2ω = 0)$ обращается в нуль при $ω^2 = ω_0^2 - 2δ^2$.)

$$A_{pes} = \frac{x_0}{2\delta\sqrt{\omega_0^2 - \delta^2}}.$$

При $\omega \to 0$, амплитуда достигает предельного значения $A_0 = \frac{x_0}{\omega_0^2}$, которое называется *статическим отклонением*. В случае *механических* колебаний $A_0 = \frac{F_0}{m\omega_0^2}$. В случае *электромагнитных* колебаний $A_0 = \frac{U_m}{L\omega_0^2}$.

При $\omega \to \infty$, амплитуда стремится к нулю.

В случае малого затухания, когда $\delta^2 \ll \omega_0^2$, резонансная амплитуда

$$A_{pe3} = \frac{x_0}{2\delta\omega_0} = \frac{\omega_0}{2\delta} \frac{x_0}{\omega_0^2} = Q \cdot A_0$$
,

где Q – добротность колебательной системы, A_0 – статическое отклонение.

Таким образом, <u>добротность характеризует резонансные свойства</u> колебательной системы – чем больше Q , тем больше A_{ne3} .

29. Переменный ток.

Переменным током называются вынужденные колебания тока в цепи, совпадающие с частотой вынуждающей ЭДС.

Пусть переменная ЭДС (или переменное напряжение) имеет вид

$$U = U_m \cos \omega t$$
,

где $U_{\it m}$ – амплитуда напряжения.

Тогда на участке цепи, имеющей сопротивление R , емкость C и индуктивность L , закон Ома будет иметь вид

$$\ddot{q}+rac{R}{L}\dot{q}+rac{1}{LC}q=rac{U_m}{L}\cos\omega t$$
 или $Lrac{\mathrm{d}\,I}{\mathrm{d}\,t}+IR+rac{q}{C}=U_m\cos\omega t$.

Рассмотрим частные случаи цепи.

(1) $R \neq 0, C \to 0, L \to 0$: переменное напряжение приложено к сопротивлению R. Закон Ома

$$I = \frac{U}{R} = \frac{U_m \cos \omega t}{R} = I_m \cos \omega t.$$

Амплитуда силы тока $I_m = \frac{U_m}{R}$.

Колебания тока происходят в одной фазе с напряжением.

Для наглядности воспользуемся **методом векторных диаграмм** и будем изображать векторами, угол между которыми равен разности фаз.

(2) $R \to 0$, $C \to 0$, $L \ne 0$: переменное напряжение приложено к катушке индуктивности.

ЭДС самоиндукции в катушке $\Theta_s = -L \frac{\mathrm{d}\,I}{\mathrm{d}\,t}$.

Закон Ома $L \frac{\mathrm{d}\,I}{\mathrm{d}\,t} = U_L = U_m \cos\omega t$, откуда после интегрирования получим

$$I = \frac{U_m}{\omega L} \sin \omega t = I_m \cos \left(\omega t - \frac{\pi}{2} \right),$$

где
$$I_m = \frac{U_m}{\omega L}$$
.

Таким образом, **падение напряжения** U_L **опережает**

по фазе ток I , текущий через катушку, на $\frac{\pi}{2}$

Величина $R_L = \omega L$

называется **реактивным индуктивным сопротивлением**. Для постоянного тока (ω = 0) катушка индуктивности не имеет сопротивления.

(3) $R \to 0$, $C \ne 0$, $L \to 0$: переменное напряжение приложено к конденсатору.

$$\frac{q}{C} = U_C = U_m \cos \omega t.$$

Сила тока

$$I = \frac{\mathrm{d}\,q}{\mathrm{d}\,t} = -\omega C U_m \sin \omega t = I_m \cos \left(\omega t + \frac{\pi}{2}\right),$$

где
$$I_m = \omega C U_m = \frac{U_m}{1/\omega}$$
.

Таким образом, падение напряжения $U_{\mathcal{C}}$ отстает по

фазе от текущего через конденсатор тока I на $\frac{\pi}{2}.$

Величина

$$R_C = \frac{1}{\omega C}$$

называется **реактивным емкостным сопротивлением**. Для постоянного тока $(\omega=0)$ $R_C=\infty$, т.е. постоянный ток через конденсатор течь не может.

(4) В общем случае $R \neq 0, \quad C \neq 0, \quad L \neq 0$. Если напряжение в цепи изменяется по закону $U = U_m \cos \omega t$, то в цепи течет ток

$$I = I_m \cos(\omega t - \varphi)$$
,

где I_m и ϕ определяются формулами

$$I_{m} = \frac{U_{m}}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}},$$

$$tg \varphi = \frac{\omega L - \frac{1}{\omega C}}{R}.$$

Величина
$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} =$$

$$= \sqrt{R^2 + \left(R_L - R_C\right)^2}$$

называется **полным сопротивлением цепи.**

Величина
$$X = R_L - R_C = \omega L - \frac{1}{\omega C}$$

называется реактивным сопротивлением.

Таким образом,
$$I_m = \frac{U_m}{Z}$$
, $\operatorname{tg} \varphi = \frac{X}{R}$, причем $\cos \varphi = \frac{R}{Z}$, $\sin \varphi = \frac{X}{Z}$.

30. Резонанс напряжений.

Если
$$\omega L = \frac{1}{\omega C}$$
, то $\phi = 0$ – изменения тока и напряжения происходят

 ${\it синфазно}.$ В этом случае Z=R и ток определяется только активным сопротивлением и достигает максимально возможного значения. Падение напряжения на конденсаторе U_C и на катушке индуктивности U_L одинаковы по амплитуде и противоположны по фазе. Это явление называется ${\it pesohahcom}$ напряжений (последовательным ${\it pesohahcom}$).

Частота

$$\omega_{pes} = \frac{1}{\sqrt{LC}}$$

называется резонансной.

31. Резонанс токов.

К цепи переменного тока, содержащей параллельно включенные конденсатор емкостью C и катушку индуктивностью L , приложено напряжение $U=U_m\cos\omega t$.

Токи в ветвях **1C2** (R = 0, L = 0) и **1L2** $(R = 0, C = \infty)$ равны

$$I_{m1} = \frac{U_m}{1/\omega}, \qquad I_{m2} = \frac{U_m}{\omega L}$$

и противоположны по фазам. Амплитуда силы тока во внешней (неразветвленной) цепи

$$I_m = \left| I_{m1} - I_{m2} \right| = U_m \left| \omega C - \frac{1}{\omega L} \right|.$$

Если
$$\omega = \omega_{pes} = \frac{1}{\sqrt{LC}}$$
, то $I_{m1} = I_{m2}$ и $I_m = 0$. Явление резкого

уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катушку индуктивности, при приближении частоты ω приложенного напряжения к резонансной частоте ω_{pes} называется резонансом токов (параллельным резонансом).

В реальных цепях $R \neq 0$, поэтому сила тока $I_m > 0$, но принимает наименьшее возможное значение.

32. Действующее значение переменного тока.

Действующим или эффективным значением переменного тока $I=I_0\cos\omega t$ называется среднее квадратичное значение силы тока за период T его изменения

$$I_{\imath\phi} = \sqrt{rac{1}{T}\int\limits_0^T I^2(t)\mathrm{d}t} = rac{I_0}{\sqrt{2}},$$
 поскольку $\left\langle\cos^2\omega t\right\rangle = rac{1}{2}.$

Аналогично, **действующее значение напряжения**: $U_{9\phi} = \frac{U_0}{\sqrt{2}}$.

33. Мощность, выделяемая в цепи переменного тока.

Мгновенная мощность тока в цепи

$$P(t) = U(t)I(t) = U_m \cos \omega t \cdot I_m \cos(\omega t - \varphi)$$
.

Среднее за период значение мгновенной мощности называется **активной** мощностью P тока

$$P = \frac{1}{T} \int_{0}^{T} U_{m} \cos \omega t \cdot I_{m} \cos(\omega t - \varphi) dt = \frac{1}{2} I_{m} U_{m} \cos \varphi = I_{\vartheta \phi} U_{\vartheta \phi} \cos \varphi.$$

Множитель cos ф называется коэффициентом мощности.

Так как
$$I_{\vartheta\phi}=\frac{U_{\vartheta\phi}}{Z}$$
 , и $\cos\phi=\frac{R}{Z}=\frac{R}{\sqrt{R^2+\left(\omega L-\frac{1}{\omega C}\right)^2}}$, то
$$P=\frac{RU_{\vartheta\phi}^2}{Z^2}=RI_{\vartheta\phi}^2\,.$$

Если в цепи отсутствует реактивное сопротивление (X=0) , то $\cos \phi = 1$ и P=III

Если цепь содержит только реактивное сопротивление (R=0), то $\cos \varphi = 0$ и P=0, какими бы большими ни были ток и напряжение.

Волны в упругой среде.

34. Волновой процесс.

Если возбудить колебания в какой-либо точке среды (твердой, жидкой или газообразной) то, вследствие взаимодействия между частицами среды, эти колебания будут передаваться от одной точки среды к другой со скоростью, зависящей от свойств среды.

При рассмотрении колебаний <u>не учитывается</u> детальное строение среды; среда рассматривается как **сплошная**, непрерывно распределенная в пространстве и обладающая упругими свойствами.

Среда называется **линейной**, если ее свойства не изменяются под действием возмущений, создаваемых колебаниями.

Волновым процессом или **волной** — называется процесс распространения колебаний в сплошной среде.

При распространении волны частицы колеблются около своих положений равновесия, а не перемещаются вслед за волной.

Вместе с волной от частицы к частице передается только состояние колебательного движения и его энергия.

Основным свойством всех волн является перенос энергии без переноса вещества.

35. Упругие волны.

Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде.

Продольная волна – волна, в которой частицы среды колеблются <u>в</u> направлении распространения волны.

Поперечная волна – волна, в которой частицы среды колеблются в плоскостях, перпендикулярных направлению распространения волны.

Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации <u>сжатия и растяжения</u> (в твердых, жидких и газообразных телах).

Поперечные волны могут распространяться только в среде, в которой возникают упругие силы при деформации <u>сдвига</u> (только в твердых телах).

36. Упругая гармоническая волна.

Упругая волна называется **гармонической**, если соответствующие ей колебания частиц среды являются гармоническими.

Пусть гармоническая волна распространяется со скоростью υ вдоль оси OX . Обозначим смещения частиц среды через $\xi = \xi(x,t)$.

Для данного момента времени t зависимость между смещением частиц среды и расстоянием x этих частиц от источника колебаний O можно представить в виде $\emph{графика волны}$.

Отличие графика волны от графика гармонического колебания:

1) график волны представляет зависимость смещения всех частиц среды от **расстояния** до источника колебаний в данный момент времени $\xi = \xi(x, t = const)$;

2) график гармонического колебания это зависимость смещения данной частицы от **времени** $\xi = \xi(x = const, t)$.

Длиной волны λ называется расстояние между ближайшими частицами, колеблющимися в одинаковой фазе.

Длина волны равна расстоянию, на которое распространяется гармоническая волна за время, равное периоду колебаний T:

$$\lambda = \upsilon T$$
 или $\upsilon = \lambda n$,

где n – частота колебаний, υ – скорость распространения волны.

Волновым фронтом называется геометрическое место точек, до которых доходят колебания к определенному моменту времени t.

Волновой поверхностью называется геометрическое место точек, колеблющихся в одинаковой фазе.

Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени – один.

37. Бегущие волны.

Бегущими волнами называются волны, которые переносят в пространстве энергию.

Перенос энергии количественно характеризуется **вектором плотности потока энергии** (вектор Умова). Направление этого вектора совпадает с направлением распространения энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно волне.

Важными <u>примерами</u> бегущих волн являются плоская и сферическая волны.

Волна называется **плоской**, если ее волновые поверхности представляют совокупность плоскостей. параллельных друг другу.

Волна называется **сферической**, если ее волновые поверхности имеют вид концентрических сфер. Центры этих сфер называются **центром волны**.

38. Уравнение плоской волны.

Пусть точки, которые расположены в плоскости x=0, колеблются по закону $\xi(0,t)=A\cos\omega t$. И пусть υ – скорость распространения колебаний в данной среде.

Колебания частицы B среды (см. рисунок), расположенной на расстоянии x от источника колебаний O, будут происходить по тому же закону. Но, поскольку для прохождения волной расстояния x требуется время $\tau = x/\upsilon$, то ее колебания будут отставать по времени от колебания источника на τ .

Уравнение колебаний частиц, лежащих в плоскости x, имеет вид

$$\xi(x,t) = A\cos\omega\bigg(t - \frac{x}{v}\bigg).$$

Следовательно, **функция** $\xi(x,t)$ является не только <u>периодической</u> функцией времени, но и <u>периодической</u> функцией координаты x.

В общем случае *уравнение плоской волны*, распространяющейся вдоль положительного направления оси x в среде, не поглощающей энергию, имеет вид

$$\xi(x,t) = A\cos\left[\omega\left(t - \frac{x}{\upsilon}\right) + \varphi_0\right],$$

здесь: A = const — амплитуда волны,

ω – циклическая частота,

 ϕ_0 – начальная фаза волны,

$$\omega \left(t - \frac{x}{\upsilon} \right) + \varphi_0 - \phi$$
аза плоской волны.

Если определить волновое число

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{vT} = \frac{\omega}{v},$$

то уравнение плоской бегущей волны можно записать в виде

$$\xi(x,t) = A\cos(\omega t - kx + \varphi_0)$$

или в экспоненциальной форме

$$\xi(x,t) = A e^{i(\omega t - kx + \varphi_0)},$$

где физический смысл имеет только вещественная часть.

В общем виде уравнение плоской волны, распространяющейся в направлении \vec{s} имеет вид

$$\xi(\vec{r},t) = A \exp[i(\omega t - k\vec{r}\vec{s} + \varphi_0)].$$

39. Фазовая скорость

Скорость $\upsilon = \frac{\mathrm{d}\,x}{\mathrm{d}\,t}$ в этих уравнениях есть скорость распространения фазы

волны и ее называют фазовой скоростью.

Действительно, пусть в волновом процессе фаза постоянна

$$\omega t - kx + \varphi_0 = const$$
,

следовательно,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\omega}{k} = \upsilon$$
.

40. Уравнение сферической волны

$$\xi(r,t) = \frac{A}{r}\cos(\omega t - kr + \varphi_0),$$

где r — расстояние от центра волны до рассматриваемой точки среды.

Амплитуда колебаний в сферической волне убывает с расстоянием по закону $\frac{1}{r}$.

41. Волновое уравнение.

Распространение волн в однородной изотропной среде в общем случае описывается **волновым уравнением** – дифференциальным уравнением в частных производных

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2} \quad \text{или} \quad \Delta \xi = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2},$$

где υ – фазовая скорость

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 — оператор Лапласа.

<u>Решением</u> волнового уравнения является уравнение любой волны (в том числе и плоская и сферическая волны).

Волновое уравнение для плоской волны, распространяющейся вдоль оси x

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}.$$

42. Принцип суперпозиции.

Если среда, в которой распространяется одновременно несколько волн, *линейна*, то к этим волнам применим *принцип суперпозиций* (наложения) волн:

При распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвующие в каждом из слагающих волновых процессов.

43. Групповая скорость.

Любое сложное колебание может быть представлено в виде <u>суммы</u> одновременно совершающихся гармонических колебаний (разложение Фурье).

Поэтому любая волна может быть представлена в виде суммы гармонических волн, то есть в виде волнового пакета или группы волн.

Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства.

За скорость распространения волнового пакета принимают скорость перемещения максимума его амплитуды (центра волнового пакета).

Групповой скоростью u называется скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет (или скорость движения центра волнового пакета).

Ее величина

$$u = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}\omega}{\mathrm{d}k}.$$

Связь групповой и фазовой скоростей

$$u = \upsilon - \lambda \frac{d\upsilon}{d\lambda}$$
.

44. <u>Интерференция волн.</u>

Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

Две волны называются когерентными, если разность их фаз не зависит от времени.

Гармонические волны, имеющие одинаковую частоту, когерентны всегда.

Интерференцией волн называется <u>явление наложения волн,</u> при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других в зависимости от соотношения между фазами этих волн.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками, колеблющимися с одинаковыми амплитудой A_0 , частотой ω и постоянной разностью фаз

$$\xi_1 = \frac{A_0}{r_1} \cos(\omega t - kr_1 + \varphi_1), \qquad \xi_2 = \frac{A_0}{r_2} \cos(\omega t - kr_2 + \varphi_2),$$

где r_1 и r_2 – расстояния от источников до рассматриваемой точки, k – волновое число, ϕ_1 и ϕ_2 – начальные фазы волн.

Амплитуда результирующей волны

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\Delta\varphi) = A_{0}^{2} \left\{ \frac{1}{r_{1}^{2}} + \frac{1}{r_{2}^{2}} + \frac{2}{r_{1}r_{2}}\cos[k(r_{1} - r_{2}) - (\varphi_{1} - \varphi_{2})] \right\}.$$

Поскольку для когерентных источников $\phi_1 - \phi_2 = const$, то результат интерференции двух волн зависит от величины $(r_1 - r_2)$, называемой разностью хода.

Интерференционный максимум $\left(A = \frac{A_0}{r_1} + \frac{A_0}{r_2}\right)$ наблюдается в точках, где $k(r_1 - r_2) - (\varphi_1 - \varphi_2) = \pm 2m\pi$ (m = 0, 1, 2, ...)

Числа (m=0,1,2,...) называются **порядком интерференционного** максимума.

Интерференционный минимум $A = \begin{vmatrix} A_0 \\ r_1 \end{vmatrix} - \begin{vmatrix} A_0 \\ r_2 \end{vmatrix}$ наблюдается в точках, где $k(r_1-r_2)-(\varphi_1-\varphi_2)=\pm(2m+1)\pi$

(m = 0, 1, 2,...).

Числа (m=0,1,2,...) называются **порядком интерференционного** минимума.

45. Стоячие волны.

Особым случаем интерференции являются стоячие волны.

Стоячие волны – это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Пусть две плоские бегущие волны с одинаковыми амплитудами и частотами распространяются навстречу друг другу вдоль оси $\,x\,$

$$\xi_1 = A\cos(\omega t - kx), \qquad \xi_2 = A\cos(\omega t + kx)$$

Сложив эти уравнения, с учетом $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ и $k=2\pi/\lambda$, получим уравнение стоячей волны

$$\xi = \xi_1 + \xi_2 = 2A\cos kx \cos \omega t = 2A\cos \frac{2\pi x}{\lambda}\cos \omega t.$$

В точках среды, где

$$\frac{2\pi x}{\lambda} = \pm m\pi$$

$$(m = 0, 1, 2, ...)$$

амплитуда стоячей волны достигает максимального значения $A_{CT} = 2A$.

Такие точки называются стоячей пучностями волны.

Координаты пучностей

$$x_{II} = \pm m \frac{\lambda}{2} \ (m = 0, 1, ...).$$

В точках среды, где $\frac{2\pi x}{\lambda} = \pm \left(m + \frac{1}{2}\right)\pi$ (m = 0, 1, 2, ...), амплитуда стоячей обращается в нуль

 $A_{CT}=0$. Такие точки называются $\emph{yзлами стоячей волны}.$

Координаты узлов:
$$x_{\rm y} = \pm \left(m + \frac{1}{2}\right) \frac{\lambda}{2} \quad (m = 0, 1, 2, \ldots)$$
.

Расстояния между двумя соседними узлами и между двумя соседними пучностями одинаковы и равны половине длины волны λ бегущих волн. Эту

величину называют **длиной стоячей волны** $\lambda_{CT} = \frac{\kappa}{2}$.

	<u> </u>				
В бегущей волне	В стоячей волне				
Амплитуда колебаний					
все точки волны совершают колебания	все точки между двумя узлами				
с одинаковой амплитудой	колеблются с разными амплитудами				
Фаза колебаний					
фаза колебаний зависит от коор-	все точки между двумя узлами				
динаты <i>x</i> рассматриваемой точки колеблются с одинаковыми фазами					
	при переходе через узел фаза				
	колебаний изменяется на π ;				
	точки лежащие по разные стороны от				
	узла колеблются в противофазе				
Перенос энергии					
энергия колебательного движения	переноса энергии нет, лишь в пре-				
переносится в направлении распро-	делах $\frac{\lambda}{2}$ происходят взаимные пре-				
странения бегущей волны	вращения кинетической энергии в				
	потенциальную и обратно				

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн.

Если среда, от которой происходит отражение, <u>менее плотная</u>, то на границе сред образуется **пучность**.

Если среда, от которой происходит отражение, <u>более плотная</u>, то на границе сред образуется **узел** стоячей волны.

46. Эффект Доплера.

Эффектом Доплера называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. В акустике эффект Доплера проявляется как повышение тона при приближении источника звука к приемнику и понижения тона звука при удалении источника от приемника.

Пусть источник и приемник звука движутся вдоль соединяющей их прямой; υ_i и υ_p – скорости источника и приемника (положительны при сближении и отрицательны при удалении источника и приемника); n_0 – частота колебаний источника; υ – скорость распространения звука в данной среде.

1) Источник и приемник покоятся относительно среды.

 $\upsilon_i=\upsilon_p=0$. Длина волны $\lambda=\upsilon T=\upsilon/n_0$. Распространяясь в среде, волна достигнет приемника и вызовет его колебания с частотой $n=\frac{\upsilon}{\lambda}=\frac{\upsilon}{\upsilon T}=n_0$.

2) Приемник приближается к источнику, а источник покоится.

 $\upsilon_p>0,$ $\upsilon_i=0$. Скорость распространения волны относительно приемника станет равной $\upsilon+\upsilon_p$, при этом длина волны не меняется, следовательно

$$n = \frac{\upsilon + \upsilon_p}{\lambda} = \frac{\upsilon + \upsilon_p}{\upsilon T} = \frac{\upsilon + \upsilon_p}{\upsilon} n_0.$$

Частота колебаний, воспринимаемых приемником увеличится.

3) Источник приближается к приемнику, а приемник покоится.

 $\upsilon_p = 0, \upsilon_i > 0$. Скорость распространения колебаний υ зависит только от свойств среды, поэтому за время, равное периоду колебаний источника,

излученная им волна пройдет в направлении к приемнику расстояние $\upsilon T = \lambda$. Источник же пройдет расстояние $\upsilon_i T$. Поэтому к моменту окончания излучения волны длина волны в направлении движения сократится и станет $\lambda' = \lambda - \upsilon_i T$. Частота колебаний которые воспринимает приемник, увеличится

$$n = \frac{\upsilon}{\lambda'} = \frac{\upsilon}{(\upsilon - \upsilon_i)T} = \frac{\upsilon}{\upsilon - \upsilon_i} n_0.$$

4) Источник и приемник движутся друг относительно друга.

Этот случай обобщает два предыдущих. Частота колебаний, воспринимаемых приемником

$$n = \frac{\upsilon \pm \upsilon_p}{\upsilon \mp \upsilon_i} n_0.$$

Верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак – в случае их взаимного удаления.

Если направления скоростей не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле надо брать их проекцию на направление этой прямой.

Электромагнитные волны

47. Электромагнитные волны.

Электромагнитные волны — это переменное электромагнитное поле, распространяющееся в пространстве с конечной скоростью.

Существование электромагнитных волн вытекает из уравнений

Максвелла
$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}; \operatorname{div} \vec{D} = \rho; \operatorname{rot} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}; \operatorname{div} \vec{B} = 0,$$

которые в области пространства, не содержащей свободных электрических зарядов и макроскопических токов, имеют вид

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
; $\operatorname{div} \vec{D} = 0$; $\operatorname{rot} \vec{H} = \frac{\partial \vec{D}}{\partial t}$; $\operatorname{div} \vec{B} = 0$.

Если среда — однородный и изотропный диэлектрик, не обладающий сегнетоэлектрическими или ферромагнитными свойствами, то $\vec{D}=\epsilon\epsilon_0\vec{E}$ и $\vec{B}=\mu\mu_0\vec{H}$, где ϵ_0 и μ_0 — электрическая и магнитная постоянные, ϵ и μ — диэлектрическая и магнитная проницаемости среды.

В этом случае уравнения Максвелла

$$\operatorname{rot} \vec{E} = -\mu \mu_0 \frac{\partial \vec{H}}{\partial t}; \quad \operatorname{div} \vec{H} = 0; \quad \operatorname{rot} \vec{H} = \varepsilon \varepsilon_0 \frac{\partial \vec{E}}{\partial t}; \quad \operatorname{div} \vec{E} = 0.$$

Используя соотношение $\Delta \vec{V}=\mathrm{grad}\;\mathrm{div}\,\vec{V}-\mathrm{rot}\;\mathrm{rot}\,\vec{V}$, получим волновые уравнения для векторов \vec{E} и \vec{H}

$$\Delta \vec{E} = \varepsilon \varepsilon_0 \mu \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}, \qquad \Delta \vec{H} = \varepsilon \varepsilon_0 \mu \mu_0 \frac{\partial^2 \vec{H}}{\partial t^2},$$

где
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 — оператор Лапласа, $\upsilon = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \frac{1}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon \mu}}$ —

фазовая скорость электромагнитной волны, $c=\frac{1}{\sqrt{\varepsilon_0\mu_0}}$ — скорость света в

вакууме. Таким образом, **электромагнитные поля** действительно **могут** существовать в виде электромагнитных волн.

Поскольку $\epsilon \mu > 1$, то $\upsilon < c$ – скорость распространения электромагнитных волн в веществе всегда меньше, чем в вакууме.

48. Поперечность электромагнитных волн.

Следствия теории Максвелла:

(1) Векторы \vec{E} и \vec{H} напряженностей электрического и магнитного полей волны взаимно перпендикулярны и лежат в плоскости, перпендикулярной

вектору \vec{v} скорости распространения волны, причем векторы \vec{E} , \vec{H} и \vec{v} образуют **правовинтовую** систему. (Только $E_{\scriptscriptstyle \mathcal{V}} \neq 0$ и $H_z \neq 0$)

(2) В электромагнитной волне векторы \vec{E} и \vec{H} всегда колеблются в одинаковых фазах, причем мгновенные значения E и H в любой точке связаны соотношением $\sqrt{\varepsilon_0} \vec{\epsilon} E = \sqrt{\mu_0 \mu} H$.

Волновым уравнениям

$$\frac{\partial^2 E_y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 E_y}{\partial t^2}, \qquad \frac{\partial^2 H_z}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 H_z}{\partial t^2}$$

удовлетворяют плоские монохроматические электромагнитные волны, описываемые уравнениями $E_y=E_0\cos(\omega t-kx+\phi)$, $H_z=H_0\cos(\omega t-kx+\phi)$, где E_0 и H_0 — амплитуды напряженностей электрического и магнитного полей волны, ω — круговая частота волны, $k=\omega/\upsilon$ — волновое число, ϕ — начальная фаза колебаний (одинаковая, поскольку колебания \vec{E} и \vec{H} происходят с одинаковой фазой).

49. Отражение и преломление электромагнитных волн на границе раздела двух диэлектрических сред.

Пусть на границу раздела двух диэлектриков падает плоская электромагнитная волна. В таком случае, как показывает опыт, от границы раздела диэлектриков будут распространяться две плоские волны — отраженная и преломленная.

Запишем выражения для падающей (i), отраженной (r) и преломленной (d) волн в комплексной экспоненциальной форме

$$\vec{E}_i \exp[i(\omega_i t - k_i \vec{r} \vec{s}_i)], \quad k_i = \frac{\omega_i}{\upsilon_i};$$

$$\vec{E}_r \exp[i(\omega_r t - k_r \vec{r} \vec{s}_r)], \quad k_r = \frac{\omega_r}{v};$$

$$\vec{E}_d \exp[i(\omega_d t - k_d \vec{r} \vec{s}_d)], \quad k_d = \frac{\omega_d}{\upsilon_d}.$$

Здесь \vec{r} — радиус-вектор, ω и υ — частота и скорости волн, \vec{E} — амплитуды волн, \vec{s} — единичные векторы, показывающие направление распространения соответствующих волн. Условие $\vec{s}\vec{r}=const$ определяет плоскость, перпендикулярную к \vec{s} , поэтому данная система выражений описывает плоские волны, распространяющиеся вдоль векторов $\vec{s}_i, \vec{s}_r, \vec{s}_d$.

Граничные условия для тангенциальных (au) компонент векторов напряженности электрического и магнитного поля в любой точке границы раздела сред (1) и (2) имеют вид (см. 4–п.45) $\vec{E}_{ au 1} = \vec{E}_{ au 2}$, $\vec{H}_{ au 1} = \vec{H}_{ au 2}$.

Для нашего случая, граничные условия для электрического вектора

$$\dot{E}_{i\tau} \exp[i(\omega_i t - k_i \vec{s}_i \vec{r})] + \dot{E}_{r\tau} \exp[i(\omega_r t - k_r \vec{s}_r \vec{r})] = \dot{E}_{d\tau} \exp[i(\omega_d t - k_d \vec{s}_d \vec{r})].$$

Для выполнения этого равенства в любой момент времени t в любой точке границы раздела необходимо и достаточно, чтобы во всех трех показателях экспонент были одинаковы коэффициенты при t и при проекции \vec{r}_{τ} радиус-вектора \vec{r} на границу раздела, т.е. чтобы выполнялись равенства

$$\omega_i = \omega_r = \omega_d,$$

$$k_i \vec{s}_{i\tau} = k_r \vec{s}_{r\tau} = k_d \vec{s}_{d\tau}.$$

Следовательно, **частоты** всех трех волн должны быть равны между собой, поскольку частоты колебаний зарядов в диэлектрической среде, вынуждаемых колебаниями электрического вектора, совпадают с частотой вынуждающей силы. Кроме того, единичные векторы $\vec{s}_i, \vec{s}_r, \vec{s}_d$ находятся в одной плоскости, проходящей через нормаль к плоскости раздела (плоскость падения).

Выберем систему координат таким образом, чтобы плоскость xOy совпадала с плоскостью раздела сред, а плоскость zOx – с плоскостью

падения, причем ось Oz направим из среды I в среду II (см. рисунок). Обозначим ϕ – угол между \vec{s}_i и осью Oz (угол падения), $\pi - \phi'$ – угол отражения), ψ – угол между \vec{s}_r и Oz (ϕ' – угол отражения), ψ – угол между \vec{s}_r и Oz (угол между \vec{s}_r и Oz (угол

преломления). В этой системе координат \emph{y} -компоненты векторов \vec{s}_{τ} равны нулю, а \emph{x} -компоненты можно выразить следующим образом

$$s_{ix} = \sin \varphi$$
, $s_{rx} = \sin \varphi'$, $s_{dx} = \sin \psi$.

Следовательно, равенство $k_i \vec{s}_{i\tau} = k_r \vec{s}_{r\tau} = k_d \vec{s}_{d\tau}$ примет вид

$$\frac{\sin \varphi}{\upsilon_1} = \frac{\sin \varphi'}{\upsilon_1} = \frac{\sin \psi}{\upsilon_2}.$$

Первое равенство означает, что $\phi = \phi' -$ **закон отражения** в оптике.

Из второго равенства следует оптический закон преломления.

Показателем преломления среды n называется величина, равная отношению скорости c электромагнитных волн в вакууме к их фазовой скорости υ в среде

$$n = \frac{c}{v} = \sqrt{\varepsilon \mu}$$
.

Для среды, не обладающей ферромагнитными свойствами, $\mu \approx 1$ и практически можно считать, что

$$n = \sqrt{\varepsilon}$$
.

В этом случае для преломленной волны имеем закон преломления

$$\frac{\sin \psi}{\sin \varphi} = \frac{n_1}{n_2} = \sqrt{\frac{\varepsilon_1}{\varepsilon_2}} = \frac{\upsilon_2}{\upsilon_1}.$$

Разложим амплитуды электрического и магнитного векторов на компоненты $\vec{E}_{\parallel},~\vec{H}_{\parallel},~\vec{E}_{\perp},~\vec{H}_{\perp}$, лежащие соответственно в плоскости падения и перпендикулярные к ней. Взаимные ориентации векторов \vec{s} , \vec{E}_{\parallel} , \vec{E}_{\perp} , \vec{H}_{\parallel} и \vec{H}_{\perp} приведены на рисунках (а) и (б).

Для компонент напряженности электрического вектора, лежащих в плоскости падения (рис. (а)), граничные условия (с учетом $\sqrt{\varepsilon_0 \varepsilon} E = \sqrt{\mu_0 \mu} H$, $\phi = \phi'$ и $n = \sqrt{\varepsilon}$) имеют вид

$$E_{i\parallel}\cos\phi + E_{r\parallel}\cos\phi = E_{d\parallel}\cos\psi$$
 $n_1E_{i\parallel} - n_1E_{r\parallel} = n_2E_{d\parallel}$.

Решая эту систему уравнений и используя закон преломления, найдем выражения для **амплитудных коэффициентов отражения** $r_{||}$ и **пропускания** $t_{||}$ для волны, линейно-поляризованной в плоскости падения

$$r_{\parallel} = \frac{E_{r\parallel}}{E_{i\parallel}} = -\frac{\sin 2\varphi - \sin 2\psi}{\sin 2\varphi + \sin 2\varphi} = -\frac{\operatorname{tg}(\varphi - \psi)}{\operatorname{tg}(\varphi + \psi)}$$

$$t_{\parallel} = \frac{E_{d\parallel}}{E_{i\parallel}} = \frac{2\cos\varphi\sin\psi}{\sin(\varphi + \psi)\cos(\varphi - \psi)}$$
(*)

Для компонент напряженностей электрического вектора, перпендикулярных к плоскости падения (рис. (б)), граничные условия принимают вид

$$E_{i\perp}+E_{r\perp}=E_{d\perp}$$
 $\qquad \qquad \qquad n_1(E_{i\perp}-E_{r\perp})\cos\phi=n_2E_{d\perp}\cos\psi$.

Амплитудные коэффициенты отражения и пропускания $r_{\! \perp}$ и $t_{\! \perp}$

$$r_{\perp} = \frac{E_{r\perp}}{E_{i\perp}} = -\frac{\sin(\varphi - \psi)}{\sin(\varphi + \psi)}$$

$$t_{\perp} = \frac{E_{d\perp}}{E_{i\perp}} = \frac{2\sin\psi\cos\varphi}{\sin(\varphi + \psi)}$$
(**)

Соотношения (*) и (**) между амплитудами падающей, отраженной и преломленной волн называются формулами Френеля.

В формулах Френеля $E_{i\parallel}$ и $E_{i\perp}$ – величины положительные, а $E_{d\parallel}$ и $E_{d\perp}$ при любых возможных углах падения и преломления также положительны, что свидетельствует о совпадении фаз преломленной и падающей волн. Величины $E_{r\parallel}$ и $E_{r\perp}$ могут быть как отрицательными, так и положительными. В первом случае фаза колебаний вектора \vec{E} изменяется при отражении на π (фаза колебаний вектора \vec{H} при этом сохраняется). Во втором случае (см. рис.) отражение происходит без изменения фазы колебаний вектора \vec{E} (соответственно фаза колебаний вектора \vec{H} при отражении изменяется на π). Значения сдвига фаз колебаний вектора \vec{E} при отражении электромагнитных

волн в зависимости от угла падения и значений показателей преломления приведены в таблице.

Сдвиг фаз между компонентами	$(\varphi + \psi) < \frac{\pi}{2}$		$(\varphi + \psi) > \frac{\pi}{2}$	
	$n_2 > n_1$ или $\phi > \psi$	$n_2 < n_1$ или $\phi < \psi$	$n_2 > n_1$ или $\phi > \psi$	$n_2 < n_1$ или $\phi < \psi$
$E_{i\parallel}$ и $E_{r\parallel}$	π	0	0	π
$E_{i\perp}$ и $E_{r\perp}$	π	0	π	0

Таким образом, при малых углах падения $(\phi + \psi < \pi/2)$ фаза обеих компонент электрического вектора отраженной волны противоположна фазе падающей для случая, когда $n_2 > n_1$, и совпадает с фазой падающей волны при $n_2 < n_1$. В частности это имеет место и при нормальном падении.

Явление изменения фазы волны на π при отражении от среды с б**ó**льшим показателем преломления — "потеря полуволны" — играет значительную роль в интерференционных и дифракционных явлениях, которые рассматриваются в курсе "Оптика".

Рассмотрим теперь случай, когда выполняется условие $\phi + \psi = \pi/2$ (и, следовательно, $tg(\phi + \psi) \to \infty$). Угол падения ϕ_E , при котором отраженный и преломленный лучи взаимно перпендикулярны, называется **углом Брюстера**.

 $\operatorname{tg} \varphi_{E} = \frac{n_{2}}{n}$.

При этом $r_{\parallel}=0$ и в отраженной волне присутствует только $E_{r\perp}$ компонента (отраженная волна линейно поляризована в плоскости, перпендикулярной плоскости падения).

50. Энергия электромагнитных волн.

Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей w_e и w_m электрического и магнитного полей

$$w=w_e+w_m=\frac{\varepsilon_0 \epsilon E^2}{2}+\frac{\mu_0 \mu H^2}{2}\,.$$
 Так как $\sqrt{\varepsilon_0 \epsilon} E=\sqrt{\mu_0 \mu} H$, то $w=\sqrt{\varepsilon_0 \mu_0}\sqrt{\epsilon \mu} E H$.

Плотность потока энергии $S = w \cdot \upsilon = EH$.

Вектор S **плотности потока энергии** электромагнитной волны называется **вектором Умова-Пойтинга**.

$$\vec{S} = [\vec{E}, \vec{H}].$$

Вектор S направлен в сторону распространения электромагнитной волны, а eso модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны. Скалярная величина I, равная модулю среднего значения вектора Умова-Пойтинга, называется **интенсивностью** волны $I = \left| \langle \vec{S} \rangle \right|$.

Интенсивность волны численно равна энергии, переносимой волной за единицу времени сквозь единицу площади поверхности, нормальной к направлению распространения волны. *Интенсивность синусоидальной волны пропорциональна <u>квадрату ее амплитуды</u>.*

51. Излучение электрического диполя.

Процесс возбуждения электромагнитных волн какой-либо системой в окружающем пространстве называется *излучением* этих волн, а сама система называется *излучающей системой*. Поле электромагнитных волн называется *полем излучения*.

Простейшим излучателем электромагнитных волн является **электрический диполь** (см. 3–п.13), электрический момент которого изменяется по гармоническому закону

$$\vec{p} = \vec{p}_0 \cos \omega t$$
.

Примером подобного диполя может служить система, состоящая из покоящегося положительного заряда +q и отрицательного заряда -q, гармонически колеблющегося вдоль направления \vec{p} с частотой ω .

Как показывает теория, в точках пространства, отстоящих от диполя на расстояниях r, значительно превышающих длину излучаемой волны $r\gg\lambda$ (эта область пространства называется волновой зоной диполя), интенсивность излучения диполя

$$I \sim \frac{\sin^2 \theta}{r^2}$$
,

где θ — угол между осью диполя и направлением излучения. Зависимость $I(\theta)$ при фиксированном r называют **полярной диаграммой направленности излучения диполя** (индикатриссой излучения). Из этой диаграммы видно,

что диполь сильнее всего излучает в направлениях, перпендикулярных его оси $(\theta=\pi/2)$. Вдоль своей оси $(\theta=0$ и $\theta=\pi)$ диполь не излучает вообще. Диаграмма направленности позволяет формировать излучение с определенными пространственными характеристиками и используется при конструировании антенн.

52. Шкала электромагнитных волн.

Электромагнитные волны, обладая широким диапазоном частот (или длин волн), отличаются по способам их генерации и регистрации, а также по своим

свойствам. Поэтому электромагнитные волны <u>условно</u> делятся на несколько видов: **радиоволны** (λ >50мкм), **световые волны** (инфракрасные волны (770нм< λ <1мм) видимый свет (380нм< λ <770нм), ультрафиолетовое излучение (10нм< λ <380нм), **рентгеновское излучение** (0,01нм< λ <100нм) и γ -излучение (λ <0,1нм).