שעור 10 מרחב האפס, מרחב העמודות ומרחב השורות

10.1 דרגת המטריצה

הגדרה 10.1

נתונה מטריצה

 $:\mathbb{F}$ מעל שדה $A\in\mathbb{F}^{m imes n}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

למטריצה מקושרים 3 תת מרחבים:

ומוגדר Nul(A) שמסומן אוס של מרחב האפס של (1)

$$Nul(A) = \left\{ X \in \mathbb{F}^n \middle| A \cdot X = \bar{0} \right\} .$$

ומוגדר $\operatorname{Col}(A)$ מרחב העמודות של A שמסומן (2)

$$\operatorname{Col}(A) = \operatorname{span} \left\{ \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \cdots, \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} \right\}.$$

המטריצה. מרחב הנפרש ע"י עמודות המטריצה. Col(A)

ומוגדר Row(A) שמסומן A שמחות מרחב מרחב (3)

$$\operatorname{Row}(A) = \operatorname{span}\left\{ \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{pmatrix}, \cdots, \begin{pmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \right\} .$$

המטריצה. התת מרחב הנפרש ע"י שורות מרחב Row(A)

דוגמה 10.1

$$\mathrm{.Row}(A)$$
 -ו $\mathrm{Col}(A)$ של המימד את בסיס את מצאו את את המימד אור -2 $A=\begin{pmatrix}1&-2&4&3&1\\-2&1&-1&0&5\\4&-11&23&18&11\end{pmatrix}$ נתונה המטריצה המטריצה ואת בסיס אור המטריצה המטריצה ואת בסיס אור המטריצה ואת במיס אור המטריצה ואת בייס אור המטריצה ואת בייס אור המטריצה ואת במיס אור המטריצה ואת במיס אור המטריצה ואת בייס אור המטריצה ואת בייס אור המטריצה ואת בייס

פתרון:

$$\begin{pmatrix} 1 & -2 & 4 & 3 & 1 \\ -2 & 1 & -1 & 0 & 5 \\ 4 & -11 & 23 & 18 & 11 \end{pmatrix} \xrightarrow{R_2 \to 2R_1 + R_2} \begin{pmatrix} 1 & -2 & 4 & 3 & 1 \\ 0 & -3 & 7 & 6 & 7 \\ 0 & -3 & 7 & 6 & 7 \end{pmatrix}$$
$$\xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 1 & -2 & 4 & 3 & 1 \\ 0 & -3 & 7 & 6 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\operatorname{col}(A)$ של המדורגת מובילות, לפיכך עמודות 1 ו- 2 של מהווים בסיס של

$$\operatorname{col}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\-2\\4 \end{pmatrix}, \begin{pmatrix} -2\\1\\11 \end{pmatrix} \right\}$$

 $\operatorname{crow}(A)$ שורות A ו- 2 של A מהווים בסיס של פיכך שורות וו- 2 של המדורגת מובילות, לפיכך שורות שורות וו- 2

$$row(A) = span \left\{ \begin{pmatrix} 1 & -2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} -2 & 1 & -1 & 0 & 5 \end{pmatrix} \right\}$$

. מספר המודות המובילות, $\dim\left(\operatorname{Col}(A)\right)=2$

.מספר שלא אפסים, $\dim\left(\operatorname{Row}(A)\right)=2$

$\operatorname{col}(A)$ משפט 10.1 בסיס ומימד של

 $A \in \mathbb{R}^{m imes n}$ תהי

- .Col A מהווים בסיס של (1
- .Row A מהווים בסיס של (2
 - $\dim (\operatorname{Col}(A)) = \dim (\operatorname{Row}(A))$ (3

הוכחה:

- .9.3 משפט (1
- .תרגיל בית.
- A הוא מספר העמודות המובילות המובילות מספר העמודות dim $(\operatorname{Col}(A))$

A אוא מספר המדורגת במטריצה המובילים האיברים מספר לוש $\dim\left(\operatorname{Col}(A)\right)$ א"א

A הוא מספר השורות שלא אפסים במטריצה $\dim\left(\operatorname{Row}(A)\right)$

A אוא מספר המדורגת של המובילים המובילים המדורגת של $\dim\left(\operatorname{Row}(A)\right)$

הגדרה 10.2 דרגה

ייא .rank(A) : איים דרגת המטריצה. סימון $\dim\left(\mathrm{Col}(A)\right)=\dim\left(\mathrm{Row}(A)\right)$ למספר למספר

$$\operatorname{rank}(A) = \dim\left(\operatorname{Col}(A)\right) = \dim\left(\operatorname{Row}(A)\right) .$$

$\mathrm{Nul}(A)$ משפט 10.2 מימד של

תהי $A\in\mathbb{F}^{m imes n}$ ונניח כי $A\in\mathbb{F}^{m imes n}$

 $\dim(\operatorname{Nul}(A)) = n - r = ($ מספר עמודות הלא מובילות) .

הוכחה: (להעשרה בלבד!)

 $.\mathrm{Nul}(A)$ בסיס של $\{u_1,\cdots,u_k\}$ נניח כי

 $\{u_1,\cdots,u_k,u_{k+1},\cdots u_n\}:\mathbb{R}^n$ נשלים אותו לבסיס של

פורשת $\{Au_1,\cdots,Au_k,Au_{k+1},\cdots Au_n\}$ לפיכך הקבוצה \mathbb{R}^n לפיכך פורשת את הקבוצה $\{u_1,\cdots,u_k,u_{k+1},\cdots u_n\}$ פורשת את $\operatorname{col}(A)$

 $Au_1=0,\cdots,Au_k=0 \Leftarrow \{u_1,\cdots,u_k\} \in \mathrm{Nul}(A)$ אבל

 $\operatorname{col}(A)$ פורשת את $\{Au_{k+1}, \cdots Au_n\}$ לפיכך

כעת נוכיח כי $\{Au_{k+1}, \cdots Au_n\}$ בת"ל: נרשום

 $s_{k+1}Au_{k+1} + \dots + s_nAu_n = \bar{0}$

כאער $ar{0} \in \mathbb{R}^n$ סקלרים. מכאן ווקטור האפט האפט $ar{0} \in \mathbb{R}^n$

 $A\left(s_{k+1}u_{k+1}+\cdots+s_nu_n\right)=\bar{0}$

 $\{u_1,\cdots,u_k\}$ ניתן לרשום אותו כצירוף לינארי לפיכך ניתן לפיכך ניתן לפיכך א"ג $s_{k+1}u_{k+1}+\cdots+s_nu_n\in \mathrm{Nul}(A)$ מ

 $s_{k+1}u_{k+1} + \dots + s_nu_n = t_1u_1 + \dots + t_ku_k$

:סקלרים. נעביר אגפים ונקבל t_1,\ldots,t_k

 $-t_1u_1 - \dots - t_ku_k + s_{k+1}u_{k+1} + \dots + s_nu_n = \bar{0}.$

 $t_1=\cdots=t_k=s_{k+1}=\cdots=s_n=0$ בסיס לכן היא בת"ל לכן $\{u_1,\cdots,u_k,u_{k+1},\cdots u_n\}$ הקבוצה

.לפיכך הקבוצה $\{Au_{k+1},\cdots,Au_n\}$ בת"ל.

 $\operatorname{col}(A)$ בסיס של $\operatorname{col}(A)$ בת"ל ופורשת אבסיס לכן בסיס של $\{Au_{k+1},\cdots,Au_n\}$ מצאנו כי

 $\operatorname{dim}\left(\operatorname{col}(A)
ight)=r$ נניח כי

 $\Rightarrow n-k=r \Rightarrow k=n-r$.

לפיכד

 $\operatorname{Dim}\left(\operatorname{Nul}(A)
ight)=n-r=($ מספר עמודות מובילות) – (מספר עמודות מובילות) – (מספר מספר עמודות הלא מובילות) .

$\mathrm{Nul}(A)$ משפט 10.3 בסיס

תהי AX=0. נניח שהפתרון הכללי למערכת $A\in\mathbb{F}^{m imes n}$ הוא

$$X_0 = y_1 u_1 + \dots + y_k u_k$$

 $u_1,\cdots,u_k\in\mathbb{F}^n$ -כאשר של המערכת החופשיים החופשיים y_1,\cdots,y_k

 $\mathrm{Nul}(A)$ בסיס של $B=\{u_1,\cdots,u_k\}$ אז הקבוצת ווקטורים

הוכחה: להעשרה בלבד!

k=n-r נניח כי n-r אז יש n-r משתנים חופשיים, לכן יש n-r ווקטורים בקבוצה .rank(A)=r

. $\operatorname{Nul}(A)$ את פורשת שת $B=\{u_1,\cdots,u_{n-r}\}$ והקבוצת ווקטורים $\dim\left(\operatorname{Nul}(A)\right)=n-r$

 $\operatorname{Nul}(A)$ לכן לפי משפט 9.4 הקבוצה B בת"ל לכן B מהווה בסיס של

דוגמה 2.01

במרחב $\mathbb{R}^{2 imes 2}$ נתונים ווקטורים

$$u_1 = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 & 5 \\ -1 & 3 \end{pmatrix}$, $v = \begin{pmatrix} a+2 & 1 \\ -5 & a \end{pmatrix}$

- u_1,u_2,u_3 שייך לפרישה לינארית של v ווקטור u עבור אילו ערכי (עבור אילו ערכי
- בשתי u_1,u_2,u_3 שמצאתם כל ערך עבור כל ערך א', בטאו את בסעיף א', בטאו א שמצאתם מין עבור כל ערך של דרכים שונות.
 - $\operatorname{span}\left\{u_{1},u_{2},u_{3},\operatorname{v}
 ight\}$ לכל ערך של מצאו את המימד ובסיס א לכל ערך אל
 - דט a עבורם קיימים ערכי a

span
$$\{u_1, u_2, u_3, \mathbf{v}\} = \mathbb{R}^{2 \times 2}$$
.

פתרון:

 $:u_1,u_2,u_3$ ערשום v כצירוף לינארי של (גערי ער

$$k_1u_1 + k_2u_2 + k_3u_3 = \mathbf{v}$$

נחשב את המקדמים:

$$\begin{pmatrix} 1 & 1 & 1 & a+2 \\ 3 & 1 & 5 & 1 \\ 3 & 1 & 5 & 1 \\ 3 & 3 & 3 & a \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R_1 \atop R_4 \to R_4 - 3R_1} \begin{pmatrix} 1 & 1 & 1 & a+2 \\ 0 & -2 & 2 & -3a-5 \\ 0 & 2 & -2 & -a-7 \\ 0 & 0 & 0 & -2a-6 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 1 & 1 & 1 & a+2 \\ 0 & -2 & 2 & -3a-5 \\ 0 & 0 & 0 & -4a-12 \\ 0 & 0 & 0 & -2a-6 \end{pmatrix}$$

 $\mathbf{v} \in \mathrm{span}\{u_1,u_2,u_3\}$ אם a=-3 אם a=-3

 $\underline{a=-3}$ (2

$$\begin{pmatrix}
1 & 1 & 1 & | & -1 \\
0 & -2 & 2 & | & 4 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\xrightarrow{R_2 \to -\frac{1}{2}R_2}
\begin{pmatrix}
1 & 1 & 1 & | & -1 \\
0 & 1 & -1 & | & -2 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - R_2}
\begin{pmatrix}
1 & 0 & 2 & | & 1 \\
0 & 1 & -1 & | & -2 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$k_1 = 1 - 2k_3$$
, $k_2 = -2 + k_3$, $k_3 \in \mathbb{R}$.

$$\Leftarrow k_3 = 1$$
 נציב

$$k_1 = -1$$
, $k_2 = -1$, $k_3 = 1$

ונקבל

$$-u_1 - u_2 + u_3 = v$$
.

$$\Leftarrow k_3 = 0$$
 נציב

$$k_1 = 1 \; , \qquad k_2 = -2 \; , \qquad k_3 = 0$$

ונקבל

$$u_1 - 2u_2 + 0 \cdot u_3 = \mathbf{v}$$
.

a = -3 עבור (ג

. מסעיף (ב), עמודה 1 ועמודה 2 של
$$u_1,u_2$$
 של $A=\begin{pmatrix} |&|&|&|\\ u_1&u_2&u_3&\mathrm{v}\\ |&|&|&| \end{pmatrix}$ של 2 מהווים בסיס.
$$a\neq -3$$
 עבור $a\neq -3$

 $u_1,u_2,$ ע מודה 1 עמודה 2 ועמודה 4 של $\begin{pmatrix} |&|&|&|\\u_1&u_2&u_3&\mathrm{v}\\|&|&|&|\end{pmatrix}$ של 4 מובילות, לכן הווקטורים $A=\begin{pmatrix} |&|&|&u_1&u_2&u_3&\mathrm{v}\\|&|&|&|&|\end{pmatrix}$ מהווים בסיס.

.span $\{u_1,u_2,u_3,\mathrm{v}\}=\mathbb{R}^{2 imes 2}$ עבורם ערכי ערכי א לכן לכל ערכי a לכל ערכי u_1,u_2,u_3,v הווקטורים (ד

דוגמה 10.3

$$.\mathrm{Nul}(A)$$
 של ובסיס את מצאו מ a של ערך לכל ארך. $A=\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$ נתונה המטריצה נתונה המטריצה או לכל לכל אר

פתרון:

$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 1 & a \\ 0 & a - 1 & 1 - a \\ 0 & 1 - a & 1 - a^2 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 1 & 1 & a \\ 0 & a - 1 & 1 - a \\ 0 & 0 & -a^2 - a + 2 \end{pmatrix}$$

$$a = 1, -2 \Leftarrow -a^2 - a + 2 = 0$$

$$\text{עבור 1 = 1 = 1}$$

$$\text{עבור 1 = 1 = 1}$$

$$\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

 $\dim(\operatorname{Nul}(A))=$ מספר העמודות הלא מובילות = 2 .

הפתרון הכללי הינו

$$x = -y - z , y \in \mathbb{R}$$

$$\begin{pmatrix} -y - z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

:Nul(A) בסיס של

$$\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$

עבור a=-2 מקבלים

$$\begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\dim(\operatorname{Nul}(A)) =$ מספר העמודות הלא מובילות = 1 .

הפתרון הכללי הינו

$$x = z, y = z, y \in \mathbb{R}$$

$$\begin{pmatrix} z \\ z \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

:Nul(A) בסיס של

$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

משפט 10.4 משפט הדרגה

m imes n מסדר $A \in \mathbb{F}^{m imes n}$ לכל

$$rank(A) + dim(Nul(A)) = n$$
.

הוכחה:

. שווה למספר העמודות המובילות rank(A)

. שווה למספר העמודות למספר שווה $\dim \left(\operatorname{Nul}(A) \right)$

A שווה למספר העמודות $\mathrm{rank}(A)+\dim\left(\mathrm{Nul}(A)\right)$ לכן

דוגמה 10.4

A את דרגת . $\dim(\mathrm{Nul}(A))=2$ ידוע כי $A\in\mathbb{R}^{5\times7}$ מצאו מטריצה עבור מטריצה אדוע כי

פתרון:

.rank
$$(A)=5$$
 לכו $\dim(\operatorname{Nul}(A))=2$

דוגמה 10.5

A מצאו את דרגת אווית למטריצה אווית להיות להיות להיות להיות להיות $A \in \mathbb{R}^{6 imes 9}$

פתרון:

 $\operatorname{dim}(\operatorname{Nul}(A))=2$ שעבורה $A\in\mathbb{R}^{6 imes 9}$ נניח שקיימת מטריצה

$$\operatorname{rank}(A) = 9 - 2 = 7$$
 গে

. שורות אפסים שורות אפסים במטריצה אפסים שווה למספר השורות שלא אפסים שורות אפסים שווה rank(A)

 $\operatorname{.rank}(A) \leq 6$ לכן

. קיבלנו סתירה. לכן לא קיימת מטריצה A המקיימת הת תנאי התרגיל

למה 10.1 סיכום של המימדים של מטריצה

אז $r=\mathrm{rank}(A)$ מטריצה בעלת m שורות ו- n מטריצה בעלת $A\in\mathbb{F}^{m\times n}$ אז

$$\dim\left(\operatorname{col}(A)\right) = r$$
 = (מספר עמודות מובילות)

$$\dim (\operatorname{row}(A)) = r$$
 = (מספר שורות מובילות)

 $\dim (\operatorname{Nul}(A)) = n - r = ($ מספר עמודות הלא מובילות)

משפט 10.5 תנאים שקולים של מטריצה הפיכה

עבור מטריצה ריבועית $A \in \mathbb{F}^{n \times n}$ התנאים הבאים עבור

- $\operatorname{.rank}(A) = n$ (1
 - .הפיכה A (2
- .יש פתרון יחיד $A\cdot X=0$ למרעכת (3
 - $|A| \neq 0$ (4
 - כל השורות של A בת"ל.
 - כל העמודות של A בת"ל.

הוכחה:

תרגיל בית.

10.2 ווקטור קואורדינטות לפי בסיס

משפט 10.6 קואורדינטות של ווקטור לפי בסיס מסוים יחיד

נניח כי $u_1,\cdots,u_n\in V$ אז כל ווקטור $u_1,\cdots,u_n\in V$ נניח כי $u_1,\cdots,u_n\in V$ בסיס של המרחב ווקטורי $u_1,\cdots,u_n\in V$ כצירוף ליניארי יחיד של

הוכחה:

$$\sup\{u_1,\cdots,u_n\}=V$$
 בסיס של $u_1,\cdots,u_n\in V$

 $a \in V$ מכאן נובע שלכל

$$a \in \operatorname{span} \{u_1, \cdots, u_n\}$$

-ט כך א k_1,\cdots,k_n כך ש

$$a = k_1 u_1 + \dots + k_n u_n .$$

נוכיח שהצירוף הלינארי הוא יחיד בדרך השלילה:

נניח שקיים צירוף לינארי אחר:

$$a = t_1 u_1 + \dots + t_n u_n .$$

 $.k_i
eq t_i$ כך ש-

לכן

$$(k_1 - t_1)u_1 + \dots + (k_i - t_i)u_i + \dots + (k_n - t_n)u_n = \bar{0}$$

. תלוים ליניארית. סתירה. $\{u_1,\cdots,u_n\}$ היא ווקטורים $t_i-k_i\neq 0$ ו

הגדרה 10.3 ווקטור הקואורדינטות

אז $a\in V$ -ו $\mathbb F$ מעל שדה אוקטורי מרחב בסיס של בסיס $B=\{u_1,\cdots,u_n\}\in V$ אם

$$a = k_1 u_1 + \dots + k_n u_n .$$

לווקטור

$$\begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix}$$

 $B = \{u_1, \cdots, u_n\}$ קוראים לפי בסיס של ווקטור של ווקטור הקואורדינטות סימון:

$$[a]_B = \begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} .$$

דוגמה 10.6

$$.u=egin{pmatrix} 2 \ -1 \ 10 \end{pmatrix}$$
 . \mathbb{R}^3 של של $E=\{e_1,e_2,e_3\}$

$$u = 2e_1 - e_2 + 10e_3 .$$

לכן

$$[u]_E = \begin{pmatrix} 2\\-1\\10 \end{pmatrix}$$

דוגמה 10.7

$$p(x) = 1 + 8x - 5x^2$$
 . $\mathbb{R}_2[x]$ של של הסטנדרטי הבסיס $E = \{1, x, x^2\}$

$$p(x) = 1 \cdot 1 + 8 \cdot x - 5 \cdot x^2 = 1e_1 + 8e_2 - 5e_3.$$

לכן

$$[p]_E = \begin{pmatrix} 1\\8\\-5 \end{pmatrix}$$

דוגמה 10.8

הראו כי קבוצת הווקטורים

$$B = \left\{ b_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, b_3 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$u=egin{pmatrix} 2 \ -1 \ 10 \end{pmatrix}$$
 עבוטר הווקטור $[u]_B$ ומצאו את ומצאו \mathbb{R}^3

פתרון:

$$\begin{pmatrix} 1 & 1 & 3 \\ -2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 1 & 1 & 3 \\ 0 & 3 & 6 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{R_3 \to R_2 - 2R_3} \begin{pmatrix} 1 & 1 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 3 \end{pmatrix}$$

B כל העמודות מובילות לכן b_1,b_2,b_3 בסיס של \mathbb{R}^3 נמצא את הקואורדינטות לכן b_1,b_2,b_3 בסיס

$$u = xb_1 + yb_2 + zb_3$$

$$\begin{pmatrix} 1 & 1 & 3 & 2 \\ -2 & 1 & 0 & -1 \\ 0 & 1 & 1 & 10 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 3 & 6 & 3 \\ 0 & 1 & 1 & 10 \end{pmatrix} \xrightarrow{R_3 \to R_2 - 2R_3} \begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 3 & 6 & 3 \\ 0 & 0 & 3 & -27 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{1}{3}R_2} \begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & -9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 19 \\ 0 & 0 & 1 & -9 \end{pmatrix}$$

$$\vdots [u]_B = \begin{pmatrix} 10 \\ 19 \\ -9 \end{pmatrix}$$

דוגמה 10.9 (מרחב האפס ובסיסו)

$$A=\left(egin{array}{ccccc} -3 & 6 & -1 & 1 & -7 \ 1 & -2 & 2 & 3 & -1 \ 2 & -4 & 5 & 8 & -4 \end{array}
ight)$$
 מצאו את בסיס ומימד של מרחב האפס של המטריצה

פתרון:

כדי למצוא את המרחב האפס יש למצוא את הפתרונות של המערכת

$$AX = \bar{0}$$

$$\begin{pmatrix}
-3 & 6 & -1 & 1 & -7 & 0 \\
1 & -2 & 2 & 3 & -1 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix}
1 & -2 & 2 & 3 & -1 & 0 \\
-3 & 6 & -1 & 1 & -7 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 + 3R_1} \begin{pmatrix}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 5 & 10 & -10 & 0 \\
0 & 0 & 1 & 2 & -2 & 0
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2R_1} \begin{pmatrix}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 1 & 2 & -2 & 0
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

המערכת המתאימה היא

$$x_1 - 2x_2 - x_4 + 3x_5 = 0$$

 $x_3 + 2x_4 - 2x_5 = 0$

ולכן הפתרון הוא

$$x_1 = 2x_2 + x_4 - 3x_5$$
, $x_3 = -2x_4 + 2x_5$, $x_2, x_4, x_5 \in \mathbb{R}$

ובצורה וקטורית

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{pmatrix} , \qquad x_2, x_4, x_5 \in \mathbb{R}$$

 $:\mathbb{R}^5$ נרשום את הפתרון בצורה צ"ל של וקטורים ב

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ x_2 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} x_4 \\ 0 \\ -2x_4 \\ x_4 \\ 0 \end{pmatrix} + \begin{pmatrix} -3x_5 \\ 0 \\ 2x_5 \\ 0 \\ x_5 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

לכן $x_2, x_4, x_5 \in \mathbb{R}$ כאשר

$$\operatorname{Nul}(A) = \operatorname{span} \left\{ \mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{pmatrix} \right\} \; .$$

.Dim (Nul(A)) = 3

משפט 10.7

נניח ש- $A\in\mathbb{F}^{m imes n}$ ותהי ותהי $A\in\mathbb{F}^{m imes n}$ אז

 $Row A = Col A^t , \qquad Col A = Row A^t .$

הוכחה: תרגיל בית.

משפט 10.8

נניח ש- אלמנטריות שורה אלמנטריות מספר טופי ביצוע מספר ל- אל מ- אלמנטריות מהגיע מ- א $A\in\mathbb{F}^{m\times n}$

row A = row B.

הוכחה: תרגיל בית.

משפט 10.9

נניח ש- $A \in R^{m imes n}$ ונניח ש- B המטריצה המדורגת המתקבלת מ- אז

 $\operatorname{Row} A = \operatorname{Row} B \ , \qquad \operatorname{Nul} A = \operatorname{Nul} B \ .$

הוכחה: תרגיל בית.

דוגמה 10.10

עבור המטריצה

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2 \end{pmatrix}$$

מצאו בסיס ל-

- Row A (x)
- Nul A (2)
- .Col A (λ)

פתרון:

(N)

$$\begin{array}{c}
R_{2} \to R_{2} + 2R_{1} \\
R_{4} \to R_{4} - 3R_{1} \\
\hline
0 \quad 0 \quad 0 \quad -13 \quad -13
\end{array}
\qquad
\begin{array}{c}
\begin{pmatrix}
1 \quad 2 \quad 0 \quad 2 \quad 5 \\
0 \quad -1 \quad 1 \quad 3 \quad 2 \\
0 \quad -3 \quad 3 \quad 4 \quad 1 \\
0 \quad 0 \quad 0 \quad -13 \quad -13
\end{array}
\right)
\xrightarrow{R_{2} \to R_{2} \\
R_{3} \to R_{3} - 3R_{2} \\
\hline
0 \quad 1 \quad -1 \quad -3 \quad -2 \\
0 \quad 0 \quad 0 \quad -5 \quad -5 \\
0 \quad 0 \quad 0 \quad -13 \quad -13
\end{array}\right)$$

ולכן הוקטורים הלא כולה אפסים

$$v_1 = \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 & 1 & -1 & 0 & 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \end{pmatrix}$.

Row A מהווה בסיס של

נפתור את המערכת ההומגנית AX=0 ע"י המטריצה המדורגת המצאת וע"י המטריצה המדורגת הנמצאת (ב לעיל מקבלים את המערכת המתאימה

כד ש-

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -2s - t \\ s - t \\ s \\ -t \\ t \end{pmatrix} = s \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

הקבוצה

$$\left\{ \begin{pmatrix} -2\\1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1\\0\\-1\\1 \end{pmatrix} \right\}$$

 $\operatorname{Nul} A$ הינה בסיס של

(ג) שיטה 1

 $\operatorname{Row} A^t$ לפי משפט 10.7 ע"ל למצוא בסיס של 10.7 לפי משפט

$$A^{t} = \begin{pmatrix} 1 & -2 & 0 & 3 \\ 2 & -5 & -3 & 6 \\ 0 & 1 & 3 & 0 \\ 2 & -1 & 4 & -7 \\ 5 & -8 & 1 & 2 \end{pmatrix}$$

המדורגת של A^t היא

$$\tilde{U} = \begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -5 & -13 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

לכן

$$B_{\operatorname{Row} A^t} = \left\{ \begin{pmatrix} 1 & -2 & 0 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -5 & -13 \end{pmatrix} \right\}$$

ואז לפי משפט 10.7:

$$B_{\text{Col }A} = \left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -5 \\ -13 \end{pmatrix} \right\}$$

שיטה 2

לפי 10.1 העמודות של A המתאימות לעמודות של המדורגת עם איבר מוביל, מהוות בסיס. מכיוון שיש איבר מוביל בעמודה ה-1 עמודה ה- 2 ועמודה ה- 4 בהמדורגת עודה ה-1 עמודה ה- 2 ועמודה ה- 4 של A של A מהווה בסיס:

$$B_{\text{Col }A} = \left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ -3 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 4 \\ -7 \end{pmatrix}, \right\}$$