Diseño de Bases de Datos

Clase 6

Curso 2020

Prof. Luciano Marrero

Pablo Thomas

Rodolfo Bertone

Agenda

Lenguaje de Consultas Estructurado (SQL)

- Definiciones
- DDL / DML
- Consultas/Updates
- Ejemplos

Lenguaje de Consultas Estructurado (SQL)

historia

1986 Es un estándart ANSI

1992 se amplia el estándart (SQL2 o SQL 92)

1999 Se crea SQL 2000 incorporando expresiones regulares, consultas recursivas y características de OO

2003 Surge SQL 3 agrega características de XML

2006 se definen características que lo acercan al mundo W3C

Lenguaje de definición de datos

- Es muy amplio
- Solo veremos las operaciones mas comunes
- CREATE DATABASE
- DROP DATABASE
- CREATE TABLE
- ALTER TABLE
- DROP TABLE

Ejemplos de Creación de Tablas

CREATE TABLE empresas (idempresa INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,

empresa VARCHAR(100) NOT NULL,

abreviatura VARCHAR(10) NULL,

cuit VARCHAR(13) NULL,

direccion VARCHAR(100) NULL,

observaciones TEXT NULL,

PRIMARY KEY (idempresa),

UNIQUE INDEX empresas_index19108(empresa));

Ejemplos de Creación de Tablas

```
CREATE TABLE pacientesempresas
      (idpacienteempresa INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
       idpaciente_os INTEGER UNSIGNED NOT NULL,
       idempresa INTEGER UNSIGNED NOT NULL,
       fecha_desde DATE NOT NULL,
       fecha hasta DATE NULL,
       PRIMARY KEY (idpacienteempresa),
       INDEX empleadosempresas_FKIndex1(idempresa),
       INDEX pacientesempresas_FKIndex2(idpaciente_os),
       FOREIGN KEY (idempresa) REFERENCES empresas (idempresa)
                   ON DELETE RESTRICT
                   ON UPDATE NO ACTION,
       FOREIGN KEY (idpaciente_os) REFERENCES pacientes_os (idpaciente_os)
                   ON DELETE RESTRICT
                   ON UPDATE NO ACTION);
      DBD - CLASE 6
```

Ejemplo de modificación de tablas

```
ALTER TABLE empresas (
ADD COLUMN razon_social VARCHAR(100) NOT NULL,
DROP COLUMN cuit,
ALTER COLUMN direccion VARCHAR(50) NULL);
```

Estructura básica

SELECT lista_de_atributos

FROM lista_de_tablas

WHERE condición

SELECT atr1, atr2, atr3

FROM tabla1, tabla2

WHERE atr4="Valor"

Equivale a

 $\pi_{\text{atr1, atr2, atr3}}$ ($\sigma_{\text{atr4 = 'valor'}}$ (tabla1 x tabla2))

Tablas sobre las cuales se resolverán las consutas

- Asociados=(idsocio, nombre, dirección, teléfono, sexo, estadocivil, fechanacimiento, idlocalidad)
- Deportes=(iddeporte, nombre, monto_cuota, idsede)
- Practica = (idsocio, iddeporte)
- Localidad = (idlocalidad, nombre)
- Sedes = (idsede, nombre, dirección, idlocalidad)

Ejemplo 1: nombre de todos los asociados

SELECT nombre

FROM asociados

- La Cláusula Select puede contener
 - * (incluye todos los atributos de las tablas que aparecen en el from)
 - Distinct (eliminan tuplas duplicadas)
 - All (valor por defecto, aparecen todas las tuplas)

Ejemplo 2: mostrar todos los datos de los asociados

SELECT *

FROM asociados

Ejemplo 3: mostrar todos los id de localidades donde viven los asociados, sin repetir valores

SELECT DISTINCT (idlocalidad) FROM asociados

 Ejemplo 4: mostrar de cuanto sería la cuota de cada deporte si se incrementara en un 25%

SELECT montocuota*1.25

FROM deportes

Ejemplo 4_1: suponga que la tabla
 PERSONA (idpersona, nombre, apellido, direccion, telefono)

Mostrar el nombre y apellido de todas las personas

SELECT nombre, apellido FROM persona

SELECT apellido, nombre FROM persona

SELECT CONCAT(RTRIM(apellido),", ", RTRIM(nombre))
FROM persona

Nombre	Apellido	
Juan	Perez	
Pedro	Gomez	

Apellido	Nombre
Perez	Juan
Gomez	Pedro

CONCAT(RTRIM(apellido),", ", RTRIM(nombre))
Perez, Juan
Gomez, Pedro

- Cláusula WHERE
 - Ejemplo 5: Operadores lógicos: mostrar los asociados varones casados.

SELECT nombre

FROM asociados

WHERE sexo = "masculino" AND estadocivil = "casado"

15

SQL -> DML

- Cláusula WHERE
 - Ejemplo 6: Operador BETWEEN: mostrar los deportes cuya cuota esté entre 400 y 600 pesos mensuales

SELECT nombre

FROM deportes

WHERE montocuota>= 400 AND montocuota <= 600

SELECT nombre

FROM deportes

WHERE montocuota BETWEEN 400 and 600

- Cláusula FROM
 - Ejemplo 7: **Producto Cartesiano**: mostrar para cada asociado su nombre y la localidad de residencia

SELECT asociado.nombre, localidad.nombre

FROM asociado, localidad

WHERE asociado.idlocalidad = localidad.idlocalidad

- Cláusula FROM
 - Ejemplo 8: **Producto Natural** mostrar para cada asociado su nombre y la localidad de residencia

SELECT asociado.nombre, localidad.nombre

FROM asociado INNER JOIN localidad ON (asociado.idlocalidad=localidad.idlocalidad)

■ Cláusula FROM

SELECT asociado.nombre, localidad.nombre

FROM asociado, localidad

WHERE asociado.idlocalidad = localidad.idlocalidad

SELECT asociado.nombre, localidad.nombre

FROM asociado INNER JOIN localidad ON (asociado.idlocalidad=localidad.idlocalidad)

Nombre	Cuota
Futbol	1000
Basquet	2000
Tenis	3000

- Operación de Renombrar
 - Ejemplo 9: mostrar todos los deportes salvo el mas costoso.

SELECT DISTINCT deporte.nombre

FROM deportes, deporte dep

WHERE dep. Montocuota > deporte.montocuota

Dep.nombre	Dep.monto	Deporte.nombre	Deporte.monto
Futb ol	1000	Futbol	1000
Futb ol	1000	Basquet	2000
Futb ol	1000	Tenis	3000
Basquet	2000	Futbol	1000
Basquet	2000	Basquet	2000
Basquet	2000	Tenis	3000
Tenis	3000	Futbol	1000
Tenis	3000	Basquet	2000
Tenis	3000	Tenis	3000

Ejemplo 10: presentar todos los asociados con nombre, dirección y idlocalidad. El listado debe figurar con la leyenda DIRECCIÓN LEGAL.

SELECT nombre, direccion AS DIRECCION LEGAL, idlocalidad

FROM asociados

Nombre	DIRECCION LEGAL	idLocalidad
Juan perez	Cerrito 123	1
Jose Gomez	Chacabuco 232	3

- Renombre, otro uso
 - ► Ejemplo 10_1: mostrar los asociados y los deportes que practica

SELECT a.nombre, d.nombre

FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)

INNER JOIN deportes d ON (d.iddeporte = p.iddeporte)

SELECT a.nombre, d.nombre

FROM asociados a, practica p, deportes d

WHERE a.idsocio = p.idsocio AND p.iddeporte = d.iddeporte

- Operaciones sobre cadenas
 - Operador Like: %, _
 - Ejemplo 11: mostrar aquellos asociados cuyo nombre empiece con RA

SELECT nombre

SELECT nombre

FROM Asociados

FROM asociados

WHERE nombre = "RA"

WHERE nombre like "RA%"

- "Alfa%": cualquier cadena que empiece con Alfa
- "%casa%": cualquier cadena que tenga casa en su interior
- "___": cualquier cadena con tres caracteres

SELECT nombre FROM deportes

"___%": cualquier cadena con al menos tres caracteres.

WHERE nombre like "%BALL%"

- Ejemplo 12: mostrar los deportes que incluyan la palabra BALL en su nombre
- Ejemplo 12_1: mostrar los asociados que tengan una letra C como tercera letra de su nombre

SELECT nombre FROM asociados WHERE nombre like "__c%"

- Operadores que permite ORDENAR las tuplas
 - ORDER BY atributo:
 - especifica el atributo por el cual las tuplas serán ordenadas
 - Ejemplo 13: presentar todos los asociados ordenados por nombre.

SELECT nombre

FROM asociados

ORDER BY nombre

Desc, asc: por defecto ascendente, se puede especificar descendente.

■ Ejemplo 14: presentar los asociados que nacieron el mes de agosto ordenados por fecha desde el 31 al 1 de agosto.

SELECT nombre

FROM asociados

WHERE MONTH (fecha_nacimiento) = 8

ORDER BY DAY (fecha_nacimiento) DESC

- Fechas???
 - Crisis del año 2000
 - Cambio en el manejo de fechas
 - Funciones de fechas?? YEAR MONTH DAY DATE TIME etc.

- 24
- Otras operaciones del algebra, Operaciones sobre conjuntos
 - Unión: agrupa las túplas resultantes de dos subconsultas.
 - Union all conserva duplicados
 - Ejemplo 1/5: asociados que practican futbol o voley
- Intersección:
 - Ejemplo 16: asociados que practican futbol y voley
- Diferencia: (except)
 - Ejemplø 17: asociados que p

(SELECT a.nombre

FROM asociados a INNER JOIN practica p ON a.idsocio = p.idsocio
INNER JOIN deportes d ON p.iddeporte = d.iddeporte

WHERE d.nombre = "FUTBOL")

UNION / UNION ALL / INTERSECT / EXCEPT

(SELECT a.nombre

FROM asociados a INNER JOIN practica p ON a.idsocio = p.idsocio
INNER JOIN deportes d ON p.iddeporte = d.iddeporte

WHERE d.nombre = "VOLEY")

DBD - CLASE 6

- Funciones de agregación:
 - Promedio (avg): aplicable a atributos numéricos, retorna el promedio de la cuenta
 - Mínimo (min): retorna el elemento más chico dentro de las tuplas para ese atributo
 - Máximo (max): retorna el elemento más grande dentro de las tuplas para ese atributo
 - ■Total (sum): aplicable a atributos numéricos, realiza la suma matemática
 - Cuenta (count): cuenta las tuplas resultantes.

DBD - CLASE

- ► Funciones de agregación:
 - Limitaciones
 - Debe aparecer en el select (por ahora)
 - NO puede aparecen en el where
 - Devuelve un solo valor, por ende POR AHORA, no puede haber otro atributo en el select si hay una funcion de agregacion.
 - Ejemplo 18: mostrar la cantidad de asociados del club

SELECT COUNT (*)

FROM asociados

Ejemplo 19: mostrar el asociado que aparece primero en una lista alfabética

SELECT MIN(nombre)

FROM asociados

Ejemplo 20: mostrar cual es la cuota promedio que se cobra

SELECT AVG (montocuota)

FROM deportes

Ejemplo 21: mostrar cual será la recaudación mensual de futbol.

ŞÉLECT SUM (d.montocuota)

FROM deportes d INNER JOIN practica p ON (p.iddeporte = d.iddeporte)

WHERE d.nombre = "futbol"

Ejemplo 22: mostrar el deporte que cobra la cuota mas alta

SELECT MAX (montocuota) SELECT nombre, MAX (montocuota) SELECT nombre

FROM deportes FROM deportes FROM deportes

WHERE montocuota = (SELECT MAX(montocuota)

FROM deportes)

ROUP BY d.nombre

SQL -> DML

- Operación de Agrupamientos (GROUP BY):
 - Permite agrupar un conjunto de tuplas por algún criterio
 - Ejemplo 23: obtener la cantidad de asociados que practica cada deporte

GROUP BY d.nombre

```
SELECT COUNT (*)
SELECT COUNT (*)
                                                                                   FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
                                                                                                     INNER JOIN deportes d ON (d.iddeporte = p.iddeporte)
                  INNER JOIN deportes d ON (d.iddeporte = p.iddeporte)
                                                                                   WHERE d.nombre = "voley"
WHERE d.nombre = "futbol"
                                        SELECT COUNT (*)
                                         FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
                                                           INNER JOIN deportes d ON (d.iddeporte = p.iddeporte)
                                         WHERE d.nombre = "basquet"
      SELECT COUNT (*)
                                                                              SELECT d.nombre, COUNT (*)
      FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
                                                                              FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
                        INNER JOIN deportes d ON (d.iddeporte = p.iddeporte)
                                                                                                 INNER JOIN deportes d ON (d.iddeporte = p.iddeporte)
```

Ejemplo 24: obtener la recaudación mensual de cada deporte

SELECT d.nombre, SUM (d.monto cuota)
FROM deportes d INNER JOIN practica p ON (d.iddeporte = p.iddeporte)
GROUP BY d.nombre

Ejemplo 25: informar para cada asociado cuantos deportes practica

```
SELECT a.nombre, COUNT (*)
FROM asociados a INNER JOIN practica p ON ( a.idsocio = p.idsocio)
GROUP BY a.nombre

CREATE VIEW consulta (
SELECT a.idsocio, COUNT (*)
FROM asociados a INNER JOIN practica p ON ( a.idsocio = p.idsocio)
GROUP BY a.idsocio )

SELECT a.nombre, ????????
FROM asociados a INNER JOIN consultas c ON (a.idsocio = c.idsocio )
```

```
SELECT a.idsocio, COUNT (*)
FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
GROUP BY a.idsocio

CREATE VIEW consulta (
SELECT a.idsocio, COUNT (*) AS Cantidad
FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
GROUP BY a.idsocio)

SELECT a.nombre, c.cantidad
FROM asociados a INNER JOIN consultas c ON (a.idsocio = c.idsocio)
```

Ejemplo 26: que modificaría al problema anterior para mostrar solamente los asociados de La Plata

```
CREATE VIEW consulta (
SELECT a.idsocio, COUNT (*) AS Cantidad
FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
GROUP BY a.idsocio)
SELECT
         a.nombre, c.cantidad
FROM asociados a INNER JOIN consultas c ON (a.idsocio = c.idsocio )
                  INNER JOIN localidades I on (a.idocalidad = I.idlocalidad)
WHERE I.nombre = "La Plata"
CREATE VIEW consulta (
SELECT a.idsocio, COUNT (*) AS Cantidad
FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
                   INNER JOIN localidades I on (a.idocalidad = I.idlocalidad)
WHERE I.nombre = "La Plata"
GROUP BY a.idsocio )
SELECT
         a.nombre, c.cantidad
FROM asociados a INNER JOIN consultas c ON (a.idsocio = c.idsocio)
```

- Operación de Agrupamientos (GROUP BY):
 - HAVING: permite aplicar condiciones a los grupos
 - Ejemplo 27: mostras todos los deportes y la cantidad de asociados que lo practican siempre y cuando para el deporte se abonen en total mas de 100000 pesos

```
SELECT d.nombre, COUNT (*)
FROM asociados a INNER JOIN practica p ON (a.idsocio = p.idsocio)
INNER JOIN deportes d ON (d.iddeporte = p.iddeporte)
GROUP BY d.nombre
HAVING SUM(d.montocuota) > 100000
```

- Valores nulos:
 - Los atributos con valores nulos deben ser tratados de manera especial
 - Ejemplo 28: Mostrar aquellos deportes que no tengan valor ingresado en su cuota

SELECT nombre

FROM deportes

WHERE montocuota IS NOT NULL

Subconsultas anidadas

WHERE idsocio IN (SELECT idsocio

SELECT nombre FROM asociados

- Pertenencia a conjuntos: IN
 - Ejemplo 29: mostrar aquellos asociados que practiquen Basquet.

```
FROM practica p INNER JOIN deportes d ON (d.iddeporte = p.idpractica )

WHERE d.nombre = "basquet" )

Ejemplo 30: mostrar los asociados de Gonnet que practiquen Handball.

SELECT nombre
FROM asociados
WHERE ( idsocio IN ( SELECT idsocio
FROM practica p INNER JOIN deportes d ON (d.iddeporte = p.idpractica )
WHERE d.nombre = "Handball" )

and
idlocalidad IN ( SELECT idlocalidad
FROM localidades
WHERE nombre = "gonnet" ) )
```

- Subconsultas anidadas
 - Comparación de Conjuntos
 - > some (<, =, >=, <=, <>)
 - Ejemplo 31: mostrar todos los deportes, menos el mas económico

SELECT nombre
FROM deportes
WHERE montocuota > SOME (SELECT montocuota FROM deportes)

- > all (<, =, >=, <=, <>)
- Ejemplo 32: presentar el deporte mas oneroso

SELECT nombre
FROM deportes
WHERE montocuota >= ALL (SELECT montocuota
FROM deportes)

- Cláusula EXIST: devuelve verdadero si la subconsulta argumento no es vacía.
 - Ejemplo 33: mostrar los asociados que practican futbol y voley (una tercera variante)

deporte que el

asociado no

practique

- Cláusula EXIST: devuelve verdadero si la subconsulta argumento no es vacía.
 - Ejemplo 34: obtener los asociados que practiquen todos los deportes.

- Variantes del producto natural
 - ► Left outer Join:
 - primero se calcula el inner join (ídem anterior) y
 - luego cada tupla t perteneciente a la relación de la izquierda que no encontró un par igual en la tupla de la derecha, aparece igualmente en el resultado final con valores nulos en los atributos del correspondientes a la dercha.
 - Right outer Join: ídem anterior pero aparecen las tuplas t de la relación de la derecha
 - Full outer join: aparecen las tuplas colgadas de ambos lados.

- Variantes del producto natural
 - Ejemplos:
 - Ejemplo 36: Presentar para cada deporte un listado de asociados que lo practican. Pueden haber deportes que aun no tengan asociados y deben aparecer igualmente en el listado

SELECT d.nombre, a.nombre
FROM deportes d LEFT JOIN practica p ON (p.iddeporte = d.iddeporte)
LEFT JOIN asociados a ON (a.idsocio = p.idsocio)

Ejemplo 37:Presentar para cada asociado los deportes que practican. Pueden que haya alguno que no practique deportes, igualmente debe aparecer.

SELECT a.nombre, d.nombre,
FROM asociados a LEFT JOIN practica p ON (a.idsocio = p.idsocio)

LEFT JOIN deportes d ON (p.iddeporte = d.iddeporte)

- ABM sobre tablas:
 - Insersión:
 - Ejemplo 38: agregar un nuevo asociado a la tabla

MSERT INTO asociados ("Juan Perez", "Balbin 143", "221-5133747", "masculino", "casado", 22-10-1994, 4)

- Borrado
 - Ejemplo 39: quitar de la tabla el deporte bochas

DELETE FROM deportes

WHERE nombre = "Bochas"

 Ejemplo 40: como haría en el caso anterior si bochas tuviera deportistas y estuviera definida integridad referencial

DELETE FROM practica
WHERE iddeporte = (SELECT iddeporte
FROM deportes
WHERE nombre = "bochas")

DBD - CLASE 6

- ABM sobre tablas:
 - Ejemplo 41: incrementar la cuota de cada deporte en un 20%

UPDATE deportes

SET monto cuota = monto cuota * 1,2

Ejemplo 42: incrementar la cuota de hockey en un 30%

UPDATE deportes

SET montocuota = montocuota * 1,3

WHERE nombre = "hockey"