Review for Exam 2

Topics for Exam 2 (All sections covered in class except for 3.1 and 3.2):

From Chapter 4 you should know:

- · Know meaning: l.i., fundamental set. How to find the Wronskian
- How to find y_c the general sol to ay'' + by' + cy = 0
- How to find y_p a particular solution of ay'' + by' + cy = g(x)
 - ► Undetermined Coefficients
 - Variation of Parameters
 - Superposition Principle
- How to find the general solution of ay'' + by' + c = g(x)
- How to solve a Cauchy-Euler Equation (only homogeneous)
- How to solve Initial Value Problems (IVPs)
- 5.1 Application problems (free undamped and damped motion cases).

MATH 267

February 26, 2018 1 / 13

One of the most comprehensive types of problems (2^{nd} order DE) is solving a nonhomogeneous IVP:

$$ay'' + by' + cy = g(x), \ y(0) = y_0, \ y'(0) = y_1.$$

1st We find y_c , that is, find the general solution of ay'' + by' + cy = 0auxiliany Equation: am2+bm+c=0 yields three cases: Two distinct (real) roots $M_1 \neq M_2 \Rightarrow Y_c = C_1 e^{M_1 \times} + C_2 e^{M_2 \times}$ cased One repeated not MI=M2 => Ye= CIEMIX + 62 X EMIX Case3 Two complex conjugate nots M,,2 = a + i B y = c, exxws (Bx) + (2 exxsin(Bx)

2nd We find a particular solution y_p , if g(x) allows us to use undetermined coefficients remember the form of y_p :

	Form of $g(x)$	Form of y _p
i	$c_0 + c_1 x + \cdots + c_n x^n$	$A_0 + A_1 x + \cdots + A_n x^n$
ii	$ce^{\alpha x}$	$A x^t e^{\alpha x}$
iii	$c_1 \sin \beta x + c_2 \cos \beta x$	$x^t(A\cos\beta x + B\sin\beta x)$
iv	$e^{\alpha x}(c_1 \sin \beta x + c_2 \cos \beta x)$	$x^t e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

Where t will be 0, 1 or 2 depending on the roots of the auxiliary equation:

- In case ii: t=0 if α≠ noot of ax equ, t=1 if α= noot; t=2 if α= repeated noot.
- In case iii: t=1 if not of aux equ. m= +Bi; t=0 otherwise.
- · In case iv: t=1 y M = x + Bi; t=0 otherwise.

MATH 267

February 26, 2018

3 / 13

For the given DE and g(x) determine the form of y_p required for undetermined coefficients method:

I.
$$y'' + 9y = g(x) \Rightarrow m = \pm 3i$$
 ($y_1 = \cos 3x, y_2 = \sin 3x$)

- \Rightarrow $g(x) = 2\cos 3x \Rightarrow \forall P = X (A \cos 3x + B \sin 3x)$
- $g(x) = 5e^{2x} \sin 3x \Rightarrow 9p = e^{2x} (A\cos 3x + B\sin 3x)$

II.
$$y'' - 4y' + 9y = g(x) \implies m = 2 \pm \sqrt{5}$$

- \Rightarrow $g(x) = e^{2x} \Rightarrow \forall \rho = A e^{2x}$
- ► $g(x) = \cos(\sqrt{5}x)$ → $y_p = A\cos(\sqrt{5}x) + B\sin(\sqrt{5}x)$
- $g(x) = e^{2x} \sin(\sqrt{5}x)$ $y_{p} = x e^{2x} (A \cos(\sqrt{5}x) + B \sin(\sqrt{5}x))$

•
$$g(x) = e^{-x/2}$$
 • $g(x) = A e^{-x/2}$

1x2, because m=0 is repeated root!

When g(x) doesn't allow us to use undetermined coefficients we can use variation of parameters. Recall that given y_1 and y_2 the l.i. solutions to the homogeneous case, we can find u_1 and u_2 such that $y_1 = u_1y_1 + u_2y_2$ where

$$U_1 = -\int \frac{f \cdot y_2}{W} dx$$
 and $U_2 = \int \frac{f \cdot y_1}{W} dx$, and $W = \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix}$.

* Careful: f(x) corresponds to the stundard form of the D.E.

Recall if $g(x) = g_1(x) + g_2(x)$ we can use superposition principle to find y_p , sometimes we might mix and match methods to find y_{p_1} and y_{p_2} :

Find
$$y_{P_4}$$
 for $ay'' + by' + cy = g_1(x)$
 y_{P_2} for $ay'' + by' + cy = g_2(x)$
and then $y_P = y_{P_1} + y_{P_2}$
MATH 267 Review 2 February 26, 2018 5/13

3rd Once we have y_c and y_p we form the general solution:

$$y = y_c + y_p$$

 $y = C_1 y_1 + C_2 y_2 + y_p \leftarrow General Sol.$

4th Finally we use the general solution above to find c_1 and c_2 using the initial conditions.

Example

Solve the IVP: $9y'' - y = xe^{x/3} + 3x^2$, y(0) = 1, y'(0) = 0.

Ist Find yc. Aux. Equation:
$$9m^2 - 1 = 0 \Rightarrow m = \pm \frac{1}{3}$$

 $y_1 = e^{\frac{1}{3}}$ and $y_2 = e^{-\frac{1}{3}}$ then $y_c = c_1 e^{\frac{1}{3}} + c_2 e^{-\frac{1}{3}}$

2nd Find you for 9y"-y = xex13 using variation of parameters. $W = \begin{vmatrix} e^{x/3} & e^{-x/3} \\ \frac{1}{3}e^{x/3} & -\frac{1}{3}e^{x/3} \end{vmatrix} = -\frac{1}{3} - \frac{1}{3} = -\frac{2}{3} \quad \text{Note: } f(x) = \frac{xe^{x/3}}{9}$

$$u_1 = -\int \frac{f \, 4z}{W} \, dx = -\int \frac{x e^{x/3}}{9} \cdot \frac{e^{-x/3}}{-2/3} \, dx = \frac{1}{6} \int x \, dx = \frac{x^2}{12}$$

$$U_2 = \int \frac{f \, y_1}{w} \, dx = \int \frac{x \, e^{x \, 13}}{9} \frac{e^{x \, 13}}{-2/3} = -\frac{1}{6} \int x \, e^{2x \, 13} \, dx = -\frac{1}{6} \left[x \, \frac{3}{2} \, e^{2x \, 13} - \frac{9}{4} e^{2x \, 13} \right]$$

Next find yp for 9y"-y=3x2 with undetermined

coefficients.
$$y_{p_2} = A + Bx + Cx^2$$
; $y_{p_2} = B + 2Cx$; $y_{p_2} = 2C$

Plug in: 9(2c) - A-Bx-Cx2 = 3x2 => C=-3; B=0; 18c-A=0

$$\Rightarrow$$
 A = 18c = -54 : $y_2 = -54 - 3 \times^2$

$$y_p = y_{p_1} + y_{p_2} = \frac{x^2}{12} e^{x/3} - \frac{x}{4} e^{x/3} + \frac{3}{8} e^{x/3} - 54 - 3x^2$$

Gen. Sol: $y = y_c + y_p = c_1 e^{x/3} + c_2 e^{x/3} + \frac{\chi^2}{12} e^{x/3} - \frac{\chi}{4} e^{x/3} + \frac{3}{8} e^{x/3} - 54 - 3x^2$ Grad

Plug initial:
$$y(0) = C_1 + C_2 - 54 = 1 - 3/8$$
 2×2 $C_1 = 55/2$ Conditions $y'(0) = \frac{1}{3}C_1 - \frac{1}{3}C_2 - \frac{1}{4} + \frac{1}{8} = 0$ $3 \times 2 \times 2$ $C_2 = 217/8$.

Cauchy-Euler Equation

Recall the solutions to $a x^2 y'' + b x y' + cy = 0$ are of the form $y = x^m$ where m is a root of the auxiliary equation: $am^2 + (b-a)m + c = 0$.

Cases

$$M_1 \neq M_2$$
 (real) $\Rightarrow y = c_1 \times 2^{m_1} + c_2 \times 2^{m_2}$
 $M_1 = M_2$ $\Rightarrow y = c_1 \times 2^{m_1} + c_2 \times 2^{m_2} + c_3 \times 2^{m_1} + c_4 \times 2^{m_2}$
 $M_{1,2} = x \neq i\beta$ $\Rightarrow y = x \times (c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x))$

MATH 267

Review 2

February 26, 2018 9 / 13

Spring-Mass Systems

Free Undamped Motion: χ " +

 $x'' + \frac{k}{m} x = 0 \Rightarrow x(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t)$

K = spring constant

M= mass (kg;slug)

or X(t) = Asin (wt + p)

 $A = \sqrt{C_1^2 + \binom{2}{2}} \quad \phi = \tan^{-1}\left(\frac{C_1}{C_2}\right)$

4 x (0) >0 (below equilibrium), x'(0) <0 (upward velocity).

Free Damped Motion:

$$X'' + \frac{B}{M} X' + \frac{K}{M} X = 0$$
 $B \in \text{damping constant}$

According to the discriminant 12-we use here three coses.

12-w2>0 => overdauped motion 1

 $\chi^2 - \omega^2 < 0 \Rightarrow \text{ underdamped motion}$

Man

Example

A mass weighing 16 pounds is attached to a 5-ft long spring. At equilibrium the spring measures 8.2 ft. If the mass is initially released from rest at a point 2 ft above the equilibrium position, find the equation of motion of the mass if it is also known that the surrounding medium offers a resistance numerically equal to the instantaneous velocity.

Hooke's Law: F= K·S => 16= K 3.2 => K=5

Mass: $W = M \cdot g = 7 M = \frac{16}{32} = \frac{1}{2}$

DE: $\frac{1}{2}X'' + 1 \cdot X' + 5X = 0$

X'' + 2x' + 10x = 0

Aux. Equ: m2 +2 m +10=0 (=>

 $m^{2} + 2m + 1 = -9$ $(m+1)^{2} = -9$ $m+1 = \pm 3i$

W=-1±3;

MATH 267

Review 2

February 26, 2018 11 / 13

 $x(t) = e^{-t} \left(c_1 \cos(3t) + c_2 \sin(3t) \right)$

Initial Conditions: x(0) = -2 , x'(0) = 0.

 $X(0) = C_1 = -2$

 $\chi'(0) = -C_1 + 3C_2 = 0 \Rightarrow C_2 = \frac{C_1}{3} = -\frac{2}{3}$

Equation of motion: x(t) = [(2 cos(3t) - 2/3 Sin(3t))

We have underdamped motion.

If there's time...

A 20-kg mass is attached to a spring with stiffness 16 N/m. If the mass is initially at equilibrium position and given an upward velocity of 2 m/s, find the amplitude and period of the equation of motion of the mass.

$$K = 16$$
, $M = 20$ $\Rightarrow DE: X'' + \frac{16}{20}X = 0 \Rightarrow M = \pm \frac{4}{120} = \pm \frac{2}{120}$

$$z(0) = c_1 = 0$$

 $z'(0) = \frac{2}{15}c_2 = -2 \Rightarrow c_2 = -\sqrt{5}$

MATH 267

Review 2

February 26, 2018 13 / 13