

Johnson Space Center
Engineering Directorate
Software, Robotics and Simulation Division

Electronic and Augmented Reality Procedure Technology

Lui Wang

Spacecraft Software Engineering Branch / ER6
Software Robotics & Simulation Division / ER

NASA JSC

February 2014

Johnson Space Center
Engineering Directorate
Software, Robotics and Simulation Division

Evolution of Procedures

Early ISS—PDF

Apollo & Space Shuttle—Paper

Current ISS—IPV/XML

- No Automation or Computer Oversight

Orion; Enhanced XML (PRL)

- Computer Oversight
- Automation

Deep Space Exploration- AR-eProc;

- PRL Extension
- Machine Vision and Marker-less Registration

Background

- Mission Operations: Overview
 - Crew operate equipment using *procedures*
 - Mission Control staff operate equipment remotely using *procedures*
 - Mission Control staff maintain operations *schedules and plans*
 - Staffing, equipment configuration and manifests also require scheduling and planning

Flight Procedure

- Procedures contain knowledge about how to operate systems to achieve mission goals
- Procedures are the approved means by which a user operates a system
- Users of procedures include crew, flight controllers, instructors, mission designers, payload community, etc.

5.420 RPCM POWER ON RESET
(GND SYSTEMS/X2R4 - 12A/FIN 4) Page 1 of 14 pages

1. [CONFIGURING RPCM AFTER POWER-UP](#)

Reference Table 1 for Element RPCM Architecture

Record Element and RPCM from Table 1

Element = _____

RPCM [X] = _____

PCS

Element: EPS

Element: EPS

sel RPCM [X] where [X] is selected from Table 1

RPCM X

sel Firmware

'Clear Cmds'

cmd Common Clear

vPower On Reset – blank

vORU Health – OK

RPCM X

sel Input Undervoltage

cmd Trip Recovery – Inhibit Arm

cmd Trip Recovery – Inhibit (Verify – Inh)

2. [INHIBITING RPC CLOSE COMMANDS](#)

NOTE

Table 2 RPC Configuration specifies RPCs to be close command Inhibited including specific spare RPCs. The only EPS specific requirement is to close command inhibit spare RPCs that are marked for future use and those RPCs with known failures.

Refer to Table 2 for RPC Configuration.

Record RPCs which require Close Inhibits from Table 2.

RPCM [X] = _____

Close – Inhibit RPC [Y] = _____

Element: EPS

Element: EPS

Procedure Requirements

- Need support for automating procedure execution
 - Commands and telemetry
 - Safety conditions/context
 - Explicit control structures
- Don't want to lose human readability
 - Capturing “look-and-feel” of current procedures
 - Presentation of procedure content in a human-friendly way
- Improve quality of execution
 - Improved ease of use
 - Reduction of human error
 - Improved situational awareness
- Interleave human actions with spacecraft scripts
- Use *Procedure Representation Language*
 - Capture and formalized the above stated requirements
 - Started from NASA ODF standards and construct support automation

Uses of PRL

Procedure Authoring Tool (PAT)

Procedure Representation Language (PRL) file

Paper Procedure

Procedure Displays

Procedure Verification Tools

Ground Control Tools
(e.g., Thin Layer)

Send
Command foo
Command bar
Wait 10 secs
Command foo2

SCL
Execute foo
Verify bar
Wait 10 secs
Execute foo2
End

Automated Scripts
(e.g., SCL)

Procedure Lifecycle Development

- **Procedure Authoring Tool (PAT)**
 - Procedure authors currently use IPV (Licensed software & not easy to use)
 - Need an easy-to-use authoring environment
 - Need an easy method to add telemetry & commands
- **Procedure verification & validation (PV)**
 - Procedure verifiers are human intensive
 - Need for desktop verification tools to catch simple mistakes
- **Procedure Library Admin. (PLA)**
 - Configuration control works reasonably well today
 - Need to be integrated with Procedure Repository and Procedure approval system
- **Procedure Viewer/Executor (PVE)**
 - Integration with crew time and Caution & Warning system
 - Need to view/execute/track anywhere and any configuration (stationary, mobile, hand-free. Etc.)
- **Procedure training**
 - Integration with Workflow CR and procedure verification and validation
 - Measure and track performance

System Representation

- Procedure language describes how to operate any system. They do not describe the system itself
- System representation needs to define
 - Telemetry
 - Commands and command parameters
 - System hierarchy and classes
 - e.g., commanding the Orion Display Pages
- Must be available during procedure editing, validation and execution
- We selected XML Telemetric & Command Exchange (XTCE) -- an industry and NASA standard

Procedure Authoring Tool

The screenshot shows the PrIDE (Procedure IDE) application window. The main area displays a checklist entry titled "2.3 Turn on Lighting". The entry contains a single objective: "Light 1 - On". Below this, there are five steps listed under the heading "Light 2 - On":

- [RIU1] LIGHTING_LIGHT1_ACTUATOR equal LIGHT_OFF_STATE
- [RIU1] LIGHTING_LIGHT1_ACTUATOR equal LIGHT_ON_STATE
- [RIU1] LIGHTING_LIGHT2_ACTUATOR equal LIGHT_OFF_STATE
- [RIU1] LIGHTING_LIGHT2_ACTUATOR equal LIGHT_ON_STATE

To the right of the checklist is a "Palette" panel containing icons for "Select", "Step", "Substep", "If Statement", "Off Nominal Block", "Ground Block", and "Alternate Block". Below the palette is an "Instructions" section with icons for "Manual", "Call Procedure", "Go To", "Record Instruction", "Select Instruction", and "Command". Further down are sections for "Info" (Note, Caution, Warning, Figure, List, Table, Virtual Signs Table), "Advanced", and "Symbols".

A "Properties" panel at the bottom left shows the following table:

Property	Value
1. Required	
Command Id	\$system_id(CORE.LIGHTING.RIU1.LIGHT.1)
Parameter List	[0] arg1 LIGHT1 [1] arg2 ON
2. Optional/Recommended	
Comment	
Extra Space Above	false
3. Left Margin Entries	
Crew Members (label)	
Duration (label)	
Location (label)	
4. Advanced	

On the right side of the interface is a "System Representation Loader" panel showing a hierarchical tree of system components:

- HDU
 - AIRLOCK
 - COMMS
 - ECLSS
 - HUMFAC
 - TCS
- CORE
 - AVIONICS
 - CTRL1
 - CTRL2
 - RIU1
 - RIU2
 - RIU3
 - RIU4
 - COMMS
 - CRIO
 - ECLSS
 - FOOD
 - GEOLAB
 - HUMFAC
 - LIGHTING
 - MEDOPS
 - POWER
 - TCS
 - STRUCT
- HYGIENE
- XHAB
- DSH
- EXTERN

At the bottom left of the interface, the date "2/20/2014" is displayed.

Johnson Space Center
Engineering Directorate
Software, Robotics and Simulation Division

Procedure Viewer & Executor

WebPD – Focus on C&W Integration

PRIDE View – focus on Procedure performance tracking

Orion eProc-Flight Deck – focus on Edge Keys Display & Keyboard-less interaction

Google Glass – Focus on Mobility & mobile interactions

AR-eProc – Focus on mixed reality interaction

Capture Rich Procedure Content Once and Use It Everywhere!!

Miniature Exercise Device (MED):

- a. Equipment Assembly Task
- b. Equipment Dis-Assembly Task

Just-in-time (JIT) training of a Sani-tank purge

After the task was completed using the Google Glass – the same JITT material was viewed on an iPad

Johnson Space Center
Engineering Directorate
Software, Robotics and Simulation Division

Augmented Reality Training Assistance

The AR-eProc Vision

This section displays a collage of images illustrating the AR-eProc vision. It includes a large green arrow pointing right, several screenshots of mobile devices showing AR overlays for tasks like cylinder evacuation and ultrasound guidance, and a person standing in a lab setting with a monitor displaying a complex interface.

AR Ultrasound -
Autonomous
guidance

AR ARED – Augmented reality
Advanced Resistive Exercise
Device Cylinder Evac. Procedure

AR DSH Locator - Deep Space
Hab augmented reality assets
monitoring

AR TOCA - Augmented reality
Total Organic Carbon Analyzer
Buffer Change Out Procedure

Autonomous Operation

This section displays a collage of images illustrating autonomous operation. It includes a large green arrow pointing right, a screenshot of a mobile device showing a complex AR interface, and a person interacting with a white humanoid robot (GM-1) that is wearing a NASA and GM logo patch.