Translating Embeddings for Modeling Multi-relational Data

2022.07.19 김영로

Contents

- Background
- Introduction
- Model
- Experiment
- Conclusion

Background(Word Embedding)

- 자연어(단어)를 벡터로 표현하는 방법
- one-hot vector 사용 시 공간적 낭비
- 차원을 줄여 사용하는 공간을 줄임

A 4-dimensional embedding

•••

Background(Knowledge Graph)

- knowledge base: 어떤 분야에 관련된 지적 활동과 경험을 통해서 축적된 지식, 문제 해결에 필요한 사실과 규칙 등이 저장되어 있는 데이터베이스
- entity: 개체, relation: 개체 사이의 관계로 구성
- knowledge graph: 개체와 관계를 이용해서 생성되는 그래프
- entity를 node, relation을 edge로 표현함

Background(Knowledge Graph)

- embedding을 통해 변환된 데이터로 학습
- entity와 relation으로 학습된 모델을 이용해서 다음 entity 예측
- entity간의 relation 예측

• node: entities, edge: relation (head, label, tail) denoted as (h, l, t)

- focuses on modeling multi-relational data from KBs
- Dataset: Wordnet, Freebase
- Goal: automatically adding new facts, without requiring extra knowledge

Modeling multi-relational data

- ex) friend of my friend is my friend: relationship에 의존
- ex) Star Wars IV를 좋아하는 사람은 Star Wars V도 좋아할 가능성 높음, 하지만 Titanic에 대한 정보는 불확실: entity에 의존
- entities 사이의 pattern 도출이 목표
- entity와 relation을 동시에 고려할 수 있는 generic approaches가 필요함

- 많은 recent approaches는 increasing the expressivity에 초점을 맞춤
- hard to interpret/ higher computational costs/ overfitting/ underfitting 과 같은 문제점들 발생 가능
- simple model can lead to better trade-offs between accuracy and scalability

Relationships as translations in the embedding space

• TransE: energy-based model for learning low-dimensional embeddings of entities

• relationship은 translations in the embedding space에 표현됨

• (h,l,t) holds: t가 h+l에 가까움

- main motivation: hierarchical relationships이 KBs에 자주 등장하고, translations이 이를 표현하는 natural transformation
- 다양한 type의 1-to-1 relationships between entities를 translation을 이용 해서 표현하는 embedding space가 존재
- new model: simplicity, modeling hierarchies를 design한 architecture, outperform state-of-the-art methods in link prediction on real world KBs

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
  1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each \ell \in L
                    \ell \leftarrow \ell / \|\ell\| for each \ell \in L
                   \mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each entity e \in E
  4: loop
  5: \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
          S_{batch} \leftarrow \text{sample}(S, b) \text{ // sample a minibatch of size } b
       T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
       for (h, \ell, t) \in S_{batch} do
             (h', \ell, t') \leftarrow \text{sample}(S'_{(h,\ell,t)}) \text{ // sample a corrupted triplet}
            T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
          end for
11:
          Update embeddings w.r.t. \sum \nabla [\gamma + d(\mathbf{h} + \boldsymbol{\ell}, t) - d(\mathbf{h'} + \boldsymbol{\ell}, t')]_{+}
12:
                                                   ((h,\ell,t),(h',\ell,t')) \in T_{batch}
13: end loop
```

- $S = \{(h, l, t)\}$
- E: entities set, L: relationships set
- γ: margin
- k: embeddings dimension

basic idea

• the functional relation induced by the *l*-labeled edges corresponds to a translation of the embeddings

• $h + l \approx t$ when (h, l, t) holds $(t \land h + l)$ 이랑 가장 가까운 벡터)

• energy of a triplet = $d(\mathbf{h} + \mathbf{l}, \mathbf{t})$

• d: dissimilarity measure (L_1 or L_2 -norm)

Loss function

$$\mathcal{L} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in S'_{(h,\ell,t)}} \left[\gamma + d(\mathbf{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\mathbf{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]_{+}$$

Set of corrupted triplets

$$S'_{(h,\ell,t)} = \{(h',\ell,t)|h' \in E\} \cup \{(h,\ell,t')|t' \in E\}$$

주어진 entity에 대해 head나 tail에 나타날 때 embedding vector는 같음

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
  1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each \ell \in L
                        \ell \leftarrow \ell / \|\ell\| for each \ell \in L
e \leftarrow uniform\left(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}\right) for each entity e \in E
  3:
  4: loop
           \mathbf{e} \leftarrow \mathbf{e} / \| \mathbf{e} \| for each entity e \in E
           S_{batch} \leftarrow \text{sample}(S, b) \text{ // sample a minibatch of size } b
           T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
           for (h, \ell, t) \in S_{batch} do
               (h', \ell, t') \leftarrow \text{sample}(S'_{(h,\ell,t)}) \text{ // sample a corrupted triplet}
                T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
            end for
 11:
                                                                         \sum \nabla \left[ \gamma + d(\boldsymbol{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\boldsymbol{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]_{+}
            Update embeddings w.r.t.
                                                         ((h,\ell,t),(h',\ell,t')) \in T_{batch}
13: end loop
```

initialize *l*, *e* normalize *l*

for each loop

- normalize *e*
- sample minibatch of size *b*
- initialize T_{batch}
- for each element in S_{batch} , sample corruted triplet and add to T_{batch}
- Update embeddings

Data sets(Wordnet)

• entities correspond to word senses, relationships define lexical relations

between them

denote as WN

Data sets(Freebase)

- around 1.2 billion triplets, 80 million entities about general facts
- two data set from Freebase
 - 1. FB15k: Wikilinks database에 나오며 100번 이상 언급된 entities
 - 2. FB1M: 가장 많이 언급된 entities 1,000,000개

Table 2: Statistics of the data sets used in this paper and extracted from the two knowledge bases, Wordnet and Freebase.

DATA SET	WN	FB15K	FB1M
ENTITIES	40,943	14,951	1×10^{6}
RELATIONSHIPS	18	1,345	23,382
TRAIN. EX.	141,442	483,142	17.5×10 ⁶
VALID EX.	5,000	50,000	50,000
TEST EX.	5,000	59,071	177,404

Setup (Evaluation protocol)

- ranking procedure
- corrupted triplets의 dissimilarities가 model에 의해 계산된 후, ascending order로 sort됨 (head, tail 두 경우) 그 후 correct entity의 rank를 저장
 - mean of predicted rank
 - hits@10 (상위 10위에 올바른 entities의 비율)
- To avoid error, use filtered rank

```
learning rate \lambda: {0.001, 0.01, 0.1} margin \gamma: {1, 2, 10} dimension k: 20, 50 dissimilarity measure d: L_1, L_2 epochs: 1,000 (early stopping)
```

Optimal configurations (λ , γ , k, d)

WN: (0.01, 2, 20, L₁)

FB15k: (0.01, 1, 50, L₁)

FB1M: (0.01, 1, 50, L₂)

Related work (method)

- Unstructured: consider data as mono-relational and sets all translations to ${f 0}$
- RESCAL: collective matrix factorization model
- SE: embeds entities into \mathbb{R}^k , relationship into two matrices $L_1, L_2 \in \mathbb{R}^{k \times k}$
- SE, SME(linear), SME(bilinear), LFM: energy-based model

Table 1: **Numbers of parameters** and their values for FB15k (in millions). n_e and n_r are the nb. of entities and relationships; k the embeddings dimension.

METHOD	NB. OF PARAMETERS	ON FB15K
Unstructured [2]	$O(n_e k)$	0.75
RESCAL [11]	$O(n_e k + n_r k^2)$	87.80
SE [3]	$O(n_e k + 2n_r k^2)$	7.47
SME(LINEAR) [2]	$O(n_e k + n_r k + 4k^2)$	0.82
SME(BILINEAR) [2]	$O(n_e k + n_r k + 2k^3)$	1.06
LFM [6]	$O(n_e k + n_r k + 10k^2)$	0.84
TransE	$O(n_e k + n_r k)$	0.81

Table 1 compares the theoretical number of parameters of baseline of each model

In case of SE, RESCAL, they learn at least one $k \times k$ matrix for each relationship so they need many parameters than others

Table 3: Link prediction results. Test performance of the different methods.

DATASET	WN			FB15K				FB1M		
METRIC	MEAN	RANK	HITS@	10 (%)	MEAN	RANK	HITS@	10(%)	MEAN RANK	Hits@10 (%)
Eval. setting	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Raw
Unstructured [2]	315	304	35.3	38.2	1,074	979	4.5	6.3	15,139	2.9
RESCAL [11]	1,180	1,163	37.2	52.8	828	683	28.4	44.1	-	-
SE [3]	1,011	985	68.5	80.5	273	162	28.8	39.8	22,044	17.5
SME(LINEAR) [2]	545	533	65.1	74.1	274	154	30.7	40.8	-	-
SME(BILINEAR) [2]	526	509	54.7	61.3	284	158	31.3	41.3	-	-
LFM [6]	469	456	71.4	81.6	283	164	26.0	33.1	-	-
TransE	263	251	75.4	89.2	243	125	34.9	47.1	14,615	34.0

- filtered setting provides lower mean ranks, higher hits@10
- generally, trends between raw and filtered are the same

• 저자는 TransE의 good performance가 appropriate design of the model, its relative simplicity로부터 나온다고 생각

• stochastic gradient를 이용한 효율적인 최적화 가능

• translation term의 impact가 큼

Issue of other model

- SE: more expressive, complexity make it hard to learn
- SME, LFM: not enough train so could not exploit their full capabilities
- Unstructured: simply clusters all entities co-occurring together, independent to relationship, make guess only which entities are related

Table 4: **Detailed results by category of relationship.** We compare Hits@10 (in %) on FB15k in the filtered evaluation setting for our model, TransE and baselines. (M. stands for MANY).

TASK	PREDICTING head				PREDICTING tail			
REL. CATEGORY	1-TO-1	1-то-М.	MTO-1	Мто-М.	1-TO-1	1-то-М.	MTO-1	Мто-М.
Unstructured [2]	34.5	2.5	6.1	6.6	34.3	4.2	1.9	6.6
SE [3]	35.6	62.6	17.2	37.5	34.9	14.6	68.3	41.3
SME(LINEAR) [2]	35.1	53.7	19.0	40.3	32.7	14.9	61.6	43.3
SME(BILINEAR) [2]	30.9	69.6	19.9	38.6	28.2	13.1	76.0	41.8
TransE	43.7	65.7	18.2	47.2	43.7	19.7	66.7	50.0

• categorized the relationships: 1-To-1, 1-To-M, M-To-1, M-To-M

• average number (appear in dataset)>1.5 -> Many

Table 5: **Example predictions** on the FB15k test set using TransE. **Bold** indicates the test triplet's true tail and *italics* other true tails present in the training set.

INPUT (HEAD AND LABEL)	PREDICTED TAILS			
J. K. Rowling influenced by	G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,			
	Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming			
Anthony LaPaglia performed in	Lantana, Summer of Sam, Happy Feet, The House of Mirth,			
	Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake			
Camden County adjoins	Burlington County, Atlantic County, Gloucester County, Union County,			
	Essex County, New Jersey, Passaic County, Ocean County, Bucks County			
The 40-Year-Old Virgin nominated for	MTV Movie Award for Best Comedic Performance,			
	BFCA Critics' Choice Award for Best Comedy,			
	MTV Movie Award for Best On-Screen Duo,			
	MTV Movie Award for Best Breakthrough Performance,			
	MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss,			
	D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,			
	Screen Actors Guild Award for Best Actor - Motion Picture			
Costa Rica football team has position	Forward, Defender, Midfielder, Goalkeepers,			
	Pitchers, Infielder, Outfielder, Center, Defenseman			
Lil Wayne born in	New Orleans, Atlanta, Austin, St. Louis,			
	Toronto, New York City, Wellington, Dallas, Puerto Rico			
WALL-E has the genre	Animations, Computer Animation, Comedy film,			
	Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama			

- input: head and label -> output: top predicted tails and true one
- good answer가 항상 top rank에 있지는 않아도, prediction은 common sense를 보임

predict new relationships (setup)

- select 40 random relationships
- split data into two set: FB15k-40rel, FB15k-rest
- FB15k-rest: 353,788 triplets training set, 53,266 triplets validation set
- FB15k-40rel: 40,000 training set, 45,159 test set

process

- 1. model을 FB15k-rest를 이용해 train, select with validation set
- 2. FB15k-40rel을 이용해 40 relations에 연관된 parameter를 learn
- 3. FB15k-40rel의 test set을 이용해 evaluate
- 4. repeat this procedure using 0, 10, 100, and 1000 examples of each relationship in phase 2

Figure 1: Learning new relationships with few examples. Comparative experiments on FB15k data evaluated in mean rank (left) and hits@10 (right). More details in the text.

simplicity of the TransE model makes it able to generalize well

Conclusion

- Find new approach to learn embeddings of KBs
- minimal parametrization to represent hierarchical relationships
- works very well compared with other methods on two data base
- highly scalable model
- all relationship types can be modeled adequately by this approach

Thank you!