TEX and LATEX
Languages and parsing
Dynamic programming
Font and graphics matters
Lambda Calculus
Software engineering

Introduction

Victor Eijkhout

Notes for CS 594 - Fall 2004

Ancient typesetting systems

- Input was compiled to printable form; not 'wysiwyg'
- Sequential processing of text input file
- Commands for font choice and other layout
- Macros with replacement text
 - \$ADAM\$ --> From our correspondent in Amsterdam

Computer typesetting systems

► Same idea: document compilation, macros for text replacement and formatting

```
\TeX => T\kern -.1667em\lower .5ex\hbox {E}\kern -.1256 gives 'T_EX'.
```

- Macro replacement language
- Turing equivalent

Logical markup

▶ Use macro names to indicate structure:

```
\begin{theorem}
\TeX\ is pretty cool.
\end{theorem}
\begin{proof}
See for yourself
\end{proof}
```

Theorem

T_EX is pretty cool.

Proof: See for yourself

Logical markup (2)

Layout is determined by style declaration

```
\documentclass{article}
\documentclass{IEEEproc}
\documentclass[twoside,a4paper]{artikel1}
```


The name of the games

- ► 'TEX' is "tek", 'LATEX' is "lay-tek" or "lah-tek"
- ► T_EX is the basic system
- LATEX is a macro package on top of it

Aims of LATEX

- Foremost: scientific documents
- But also classes for letters, vitae, plays
- Excellent math typesetting
- Customizable, extendable
- Not all that great for fancy layouts

LATEX styles

► Commands for document structuring

```
\section{Introduction}
\subsection{Prior research}
```

- Tools for making new structure constructs \newtheorem{corollary}
- Lower level tools

Math typesetting

- Sophisticated algorithms
- Math fonts with many parameters

$$\sqrt[3]{\frac{B}{1-A_{j_1,j_2}^2}}+\cdots+1=\int_1^\infty \widehat{\sin t} dt$$

Large number of weird symbols

- ▶ LATEX commands for everyday use
- ► Ways of customizing LATEX

Short history of TEX

- ▶ Thought up by Donald Knuth in 1978
- as a summer project for his students
- ▶ First real implementation in 1981
- ► T_EX2 in 1985, revision T_EX3 in 1991, now frozen
- Omega, pdftex

Features of the TEX language

- ▶ Macro language
 - \def\theorem{\newline \bold Theorem \theoremcounter}
 \theorem This is good
- Dynamically changable syntax
- Many low-level constructs

- ▶ Boxes, glue, paragraph parameters
- ► Fancy macro programming

Lexical analysis

- ▶ Recognize words, numbers and such
- Used as basic blocks for grammar
- Finite State Automaton usually sufficient

Syntactical analysis

- ► Recognize statements and constructs
- ► Translate 'meaning' into internal representation
- Pushdown Automaton usually sufficient

- Recap of automata theory (FSA, PDA)
- Applications of automata in programming language parsing
- lex and yacc unix tools
- Hashing

Paragraph breaking

- For right-justified paragraph:
- Compress some lines, stretch others, use hyphenation
- Aim for even 'colour', avoid consecutive hyphens, rivers, et cetera
- \blacktriangleright With *n* words, 2^n breakpoints: efficient algorithm needed

Naive 'first fit' breaking

In olden times when wishing still helped one, there .131 lived a king whose daughters were all beautiful; and the youngest was so beautiful that the sun itself, which ---has seen so much, was astonished whenever it shone in --see her face. Close by the king's castle lay a great dark ... forest, and under an old lime-tree in the forest was a well, and when the day was very warm, the king's child ---went out into the forest and sat down by the side of the ---cool fountain; and when she was bored she took a golden ball, and threw it up on high and caught it; and ----this ball was her favorite plaything.

Sophisticated line breaking

In olden times when wishing still helped one, there lived a king whose daughters were all beautiful; and the youngest was so beautiful that the sun itself, which has seen so much, was astonished whenever it shone in her face. Close by the king's castle lay a great dark forest, and under an old lime tree in the forest was a well, and when the day was very warm, the king's child went out into the forest and sat down by the side of the cool fountain; and when she was bored she took a golden ball, and threw it up on high and caught it; and this ball was her favorite plaything.

TEX's paragraph algorithm

- ► Dynamic programming
- Small number of possibilities considered
- Fast running time

- ► Dynamic programming
- ▶ NP-completeness
- Python

Metafont

- ► Knuth also wrote a program to design fonts with: Metafont
- ▶ Based on splines

This point z_{1234} is one of the points of the curve determined by (z_1, z_2) To get the remaining points of that curve, repeat the same construct $(z_1, z_{12}, z_{123}, z_{1234})$ and on $(z_{1234}, z_{234}, z_{34}, z_{4})$, ad infinitum:

The process converges quickly, and the preliminary scaffolding (which above the limiting curve in our example) is ultimately discarded. The curve has the following important properties:

- It begins at z_1 , heading in the direction from z_1 to z_2 .
- It ends at z_4 , heading in the direction from z_3 to z_4 .
- It stays entirely within the so-called convex hull of z_1 , z_2 , z_3 , i.e., all points of the curve lie "between" the defining points.

Raster graphics

If we digitize this character according to *lowres* mode at 200 pixels p the following results:

The left-hand example was obtained by omitting the 'round' and 'good in the equations for x_6 and x_8 . This meant that points z_6 and z_8 fe possibly unlucky, raster positions, so the two diagonal strokes digitized though they came from essentially identical undigitized lines. The

- ► Interpolation theory
- Splines
- ► Issues in raster graphics

TEX's expansion mechanism

- ► TEX commands are of two kinds: expansion and execution
- ► The expansion mechanism is strong enough to implement lambda calculus

TEX and LATEX
Languages and parsing
Dynamic programming
Font and graphics matters
Lambda Calculus
Software engineering

You will learn

Some foundations of mathematics

What's in an input file

- ▶ Plain Ascii?
- ▶ The problem with funny languages

- ► A history of character encodings
- Unicode
- ► Font organization

Yet another Knuth product

- ► The WEB system for literate programming
- Write code and documentation together

Source pretty printing

```
894. When the following code is activated, the line_break procedure is in its second pass, and
cur_p points to a glue node.
(Try to hyphenate the following word 894)
  begin s \leftarrow link(cur_p);
  if s \neq null then
     begin (Skip to node ha, or goto done!) if no hyphenation should be attempted 896);
    (Skip to node hb, putting letters into hu and hc 897);
    Check that the nodes following hb permit hyphenation and that at least five letters have been
         found, otherwise goto done1 899);
    hyphenate;
    end:
done1: end
This code is used in section 866.
895. (Declare subprocedures for line_break 826) +≡
(Declare the function called reconstitute 906)
procedure hyphenate;
  label done, found, not_found, found1, exit;
  var (Local variables for hyphenation 901)
  begin (Find hyphen locations for the word in hc 923);
  (If no hyphens were found, return 902):
  (Replace nodes ha., hb by a sequence of nodes that includes the discretionary hyphens 903);
exit: end:
ASCII_{-}code = 0...127, §18.
                                     max_halfword, §113.
                                                                      not\_found = 45, §15.
```

- ► Literate programming
- ▶ WEB and noweb

- History of TEX
- Knuth's notions of development
- ▶ The 'torture test' idea
- Competing notions