

Mon, Jul 28	Session
08:00-17:30	Registration Desk Open (HH Lobby)
08:45-09:00	Conference Opening (HH Auditorium)
09:00-10:00	Plenary Talk by Rohan Sawhney (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Stochastic Computation and Complexity, Part I (HH Auditorium)
10:30-12:30	Domain Uncertainty Quantification (HH Ballroom)
10:30-12:30	Nested expectations: models and estimators, Part I (PH Auditorium)
10:30-12:30	Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part I (WH Auditorium)
10:30-12:30	Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)
12:30-14:00	Lunch Break (MTCC Commons)
14:00-15:00	Plenary Talk by Christiane Lemieux, U of Waterloo, Golden ratio nets and sequences
	(HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30–17:30	Stochastic Computation and Complexity, Part II (HH Auditorium)
15:30–17:30	Recent advances in optimization under uncertainty (HH Ballroom)
15:30–17:30	Computational Methods for Low-discrepancy Sampling and Applications (PH Auditorium)
15:30-17:30	Technical Session - Quasi-Monte Carlo, Part 1 (WH Auditorium)
15:30–17:30	Technical Session - PDEs (HH Alumni Lounge)
17:30-19:30	Welcome Reception (HH Lobby)
	1 (),
Tue, Jul 29	Session
08:30-17:30	Registration Desk Open (HH Lobby)
09:00-10:00	Plenary Talk by Peter Glynn, Stanford U, Combining Simulation and Linear Algebra:
	COSIMLA (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Stochastic Computation and Complexity, Part III (HH Auditorium)
10:30-12:30	Next-generation optimal experimental design: theory, scalability, and real world impact: Part I (HH Ballroom)
10:30-12:30	Heavy-tailed Sampling (PH Auditorium)
10:30-12:30	Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods, Part I
	(WH Auditorium)
10:30-12:30	Technical Session - Bayesian Methods (HH Alumni Lounge)
12:30-14:00	Lunch Break (On your own)
14:00-15:00	Plenary Talk by Roshan Joseph, Georgia Institute of Technology, Sensitivity and
	Screening: From Monte Carlo to Experimental Design (HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30–17:30	Stochastic Computation and Complexity, Part IV (HH Auditorium)
15:30–17:30	Next-generation optimal experimental design: theory, scalability, and real world im-
15.20 17.20	pact: Part II (HH Ballroom) Advances in Rare Events Simulation (PH Auditorium)
15:30–17:30	
15:30–17:30	Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods, Part II (WH Auditorium)
15:30-17:30	Technical Session - Quasi-Monte Carlo, Part 2 (HH Alumni Lounge)
18:00-20:00	Chicago White Sox vs. Philadelphia Phillies (must purchase tickets beforehand) (Meet in HH Lobby)
	• /

03 July 2025 15:42 24

Wed, Jul 30	Session
08:30-16:30	Registration Desk Open (HH Lobby)
09:00-10:00	Plenary Talk by Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach
	to quantifying model uncertainty of SDEs (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Stochastic Computation and Complexity, Part V (HH Auditorium)
10:30-12:30	Statistical Design of Experiments (HH Ballroom)
10:30-12:30	Advances in Adaptive Hamiltonian Monte Carlo (PH Auditorium)
10:30-12:30	Technical Session - Simulation (WH Auditorium)
10:30-12:30	Technical Session - Sampling (HH Alumni Lounge)
12:30-14:00	Lunch Break (On your own)
14:00-16:00	Stochastic Optimization (HH Auditorium)
14:00-16:00	Recent Progress on Algorithmic Discrepancy Theory and Applications (HH Ballroom
14:00-16:00	Monte Carlo Applications in High-performance Computing, Computer Graphics, and
	Computational Science (PH Auditorium)
14:00-16:00	Technical Session - Statistics (WH Auditorium)
16:00-16:30	Coffee Break (HH Lobby)
18:00-20:30	Conference Banquet (Bridgeport Art Center, 1200 W. 35th Street)
08:30-17:30	Registration Desk Open (HH Lobby)
09:00-10:00	Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-
	ods and Optimization Strategies (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30–12:30	QMC and Applications Part I (HH Auditorium)
10:30-12:30	Analysis of Langevin and Related Sampling Algorithms, Part I (HH Ballroom)
10:30–12:30	Nested expectations: models and estimators, Part II (PH Auditorium)
10:30-12:30	Technical Session - Finance (WH Auditorium)
10:30-12:30	Technical Session - ML & Optimization (HH Alumni Lounge)
12:30-14:00	Lunch Break (On your own)
14:00-15:00	Plenary Talk by Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte
	Carlo and its application to exact ecological inference (HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30–17:30	QMC and Applications Part II (HH Auditorium)
15:30–17:30	Analysis of Langevin and Related Sampling Algorithms, Part II (HH Ballroom)
15:30–17:30	Recent Advances in Stochastic Gradient Descent (PH Auditorium)
15:30–17:30	Technical Session - Sampling (WH Auditorium)
15:30–17:30	Technical Session - SDEs (HH Alumni Lounge)
18:00-20:30	Steering Committee Meeting (by invitation) (TBD)
D: 4 -	α .
Fri, Aug 1	Session
08:30-12:15	Registration Desk Open (HH Lobby)
09:00-11:00	Forward and Inverse Problems for Stochastic Reaction Networks (HH Auditorium)

Fri, Aug 1 08:30-12:15 Registration Desk Open (HH Lobby) 09:00-11:00 Forward and Inverse Problems for Stochastic Reaction Networks (HH Auditorium) 09:00-11:00 Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II (HH Ballroom) 09:00-11:00 Technical Session - Simulation (PH Auditorium) 09:00-11:00 Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge) 11:00-11:30 Coffee Break (HH Lobby)
08:30–12:15 Registration Desk Open (HH Lobby) 09:00–11:00 Forward and Inverse Problems for Stochastic Reaction Networks (HH Auditorium) 09:00–11:00 Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II (HH Ballroom) 09:00–11:00 Technical Session - Simulation (PH Auditorium) 09:00–11:00 Technical Session - Sampling (WH Auditorium) 09:00–11:00 Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)
09:00–11:00 Forward and Inverse Problems for Stochastic Reaction Networks (HH Auditorium) 09:00–11:00 Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II (HH Ballroom) 09:00–11:00 Technical Session - Simulation (PH Auditorium) 09:00–11:00 Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)
09:00–11:00 Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II (HH Ballroom) 09:00–11:00 Technical Session - Simulation (PH Auditorium) 09:00–11:00 Technical Session - Sampling (WH Auditorium) 09:00–11:00 Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)
09:00–11:00 Technical Session - Simulation (PH Auditorium) 09:00–11:00 Technical Session - Sampling (WH Auditorium) 09:00–11:00 Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)
09:00–11:00 Technical Session - Sampling (WH Auditorium) 09:00–11:00 Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)
09:00–11:00 Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)
` '
11:00 11:20 Coffee Brook (HH Lobby)
11.00-11.50 Conee Dreak (III Lobby)
11:30–12:30 Plenary Talk by Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference (HH
Auditorium)
12:30–12:45 Closing Remarks (HH Auditorium)

03 July 2025 15:42 25

Mon, Jul 28, 2025 – Morning

08:00-17:30	Pariety tion Dock Open							
08:45-09:00	1 ,	Registration Desk Open, HH Lobby						
	Conference Opening by Fred Hickernell, HH Auditorium							
9:00 - 10:00		TBD Plenary Talk: Rohan Sawhney, p. ?? Chair: TBD						
10:00-10:30	Coffee Break, HH Lobby	Sawnney, p. :: Cha	ar: IBD					
10:00-10:50	HH Auditorium	HH Ballroom	PH Auditorium	WH Auditorium	IIII Alumani I aun ma			
	Special Session		Special Session	Special Session	HH Alumni Lounge Technical Session -			
	Stochastic Stochastic	Special Session Domain Uncertainty	Nested expectations:	Hardware or Software	Markov Chain Monte			
	Computation and	Quantification p. 47	models and estimators,	for (Quasi-)Monte	Carlo			
	Complexity, Part I p. 46	Chair:	Part I p. 48	Carlo Algorithms, Part	Chair: Philip Gagnon			
	Chair: Stefan Heinrich	André-Alexander	Chair: Arved Bartuska	I p. 49	Chan. Thuip Gagnon			
	Chan. Stefan Henrich	Zepernick	Chan. 11 oca Bartaska	Chair: Sou-Cheng Choi				
10:30-11:00	Andreas Neuenkirch, A	André-Alexander	Abdul Lateef Haji Ali,	Pieterjan Robbe,	Zhihao Wang,			
10.50 11.00	strong order 1.5	Zepernick, Domain UQ	An Adaptive Sampling	Multilevel quasi-Monte	Stereographic			
	boundary-preserving	for stationary and	Algorithm for Level-set	Carlo without	Multi-Try Metropolis			
	discretization scheme	time-dependent PDEs	Approximation, p. 90	replications, p. 93	Algorithms for			
	for scalar SDEs defined	using QMC, p. 87	ripproximation, p. 50	replications, p. 56	Heavy-tailed Sampling,			
	in a domain, p. 84	asing Qiric, p. or			p. 170			
11:00-11:30	Christopher Rauhögger,	Carlos Jerez-Hanckes,	Vinh Hoang,	Irina-Beatrice Haas, A	Ruben Seyer, Creating			
	An adaptive	Domain Uncertainty	Posterior-Free	nested Multilevel	rejection-free samplers			
	Milstein-type method	Quantification for	A-Optimal Bayesian	Monte Carlo framework	by rebalancing			
	for strong	Electromagnetic Wave	Design of Experiments	for efficient simulations	skew-balanced jump			
	approximation of	Scattering via	via Conditional	on FPGAs, p. 93	processes, p. 171			
	systems of SDEs with a	First-Order Sparse	Expectation, p. 91	, -				
	discontinuous drift	Boundary Element						
	coefficient, p. 85	Approximation, p. 88						
11:30-12:00	Verena Schwarz,	Jürgen Dölz,	Vesa Kaarnioja, QMC	Mike Giles, CUDA	$Philippe\ Gagnon,$			
	Strong order 1 adaptive	Quantifying uncertainty	for Bayesian optimal	implementation of	Theoretical guarantees			
	approximation of	in spectral clusterings:	experimental design	MLMC on NVIDIA	for lifted samplers,			
	jump-diffusion SDEs	expectations for	with application to	GPUs, p. 94	p. 172			
	with discontinuous drift	perturbed and	inverse problems					
	, p. 86	incomplete data, p. 89	governed by PDEs,					
			p. 92					
12:00-12:30	Toni Karvonen,	Harri Hakula, Model		Chung Ming Loi,				
	Approximation in	Problems for PDEs on		Scalable and				
	Hilbert spaces of the	Uncertain Domains,		User-friendly QMC				
	Gaussian and related	p. 90		Sampling with				
	analytic kernels, p. 86			UMBridge, p. 95				

Mon, Jul 28, 2025 - Afternoon

		U25 – Afternoon			
12:30-14:00	Lunch Break, MTCC Co	mmons			
14:00-15:00	HH Auditorium				
	Plenary Talk: Christ	tiane Lemieux, U of Wa	terloo, Golden ratio ne	ts and sequences, p. 36	Chair: Nathan Kirk
15:00-15:30	Coffee Break, HH Lobby				
	HH Auditorium	HH Ballroom	PH Auditorium	WH Auditorium	HH Alumni Lounge
	Special Session	Special Session	Special Session	Technical Session -	Technical Session -
	Stochastic	Recent advances in	Computational	Quasi-Monte Carlo,	PDEs
	Computation and	optimization under	Methods for	Part 1	Chair: Håkon Hoel
	Complexity, Part II	uncertainty p. 52	Low-discrepancy	Chair: Peter Kritzer	
	p. 51	Chair: Phillip A. Guth	Sampling and		
	Chair: Larisa		Applications p. 53		
	Yaroslavtseva		Chair: Nathan Kirk		
15:30-16:00	$Michael\ Gnewuch,$	Tapio Helin, Stability	François Clément,	Christian Weiss,	Miguel Alvarez, A New
	Optimality of	of Expected Utility in	Searching Permutations	Halton Sequences,	Approach for Unbiased
	deterministic and	Bayesian Optimal	for Constructing	Scrambling and the	Estimation of
	randomized	Experimental Design,	Low-Discrepancy Point	Inverse	Parameters of Partially
	QMC-cubatures on	p. 99	Sets and Investigating	Star-Discrepancy,	Observed Diffusions,
	several scales of		the Kritzinger Sequence	p. 181	p. 206
	function spaces, p. 96		, p. 102		
16:00-16:30	Kateryna Pozharska,	$Karina\ Koval,$	Nathan Kirk,	Sifan Liu, Transport	Håkon Hoel, High-order
	Optimal designs for	Subspace accelerated	Minimizing the Stein	Quasi-Monte Carlo,	adaptive methods for
	function discretization	measure transport	Discrepancy, p. 103	p. 182	exit times of diffusion
	and construction of	methods for fast and			processes and reflected
	tight frames, p. 97	scalable sequential			diffusions, p. 207
		experimental design,			
1000 1500	D	p. 100	16.1	4 7	
16:30–17:00	Leszek Plaskota,	Johannes Milz,	Makram Chahine,	Ambrose	
	Complexity of	Randomized	Improving Efficiency of	Emmett-Iwaniw, Using	
	approximating	quasi-Monte Carlo	Sampling-based Motion	Normalizing Flows for	
	piecewise smooth functions in the	methods for risk-averse	Planning via Message-Passing Monte	Efficient Quasi-Random	
	presence of	stochastic optimization, p. 101	Carlo, p. 104	Sampling for Copulas, p. 182	
	deterministic or	p. 101	Carlo, p. 104	p. 182	
	random noise, p. 98				
17:00-17:30	Larysa Matiukha, The	Arved Bartuska,	Gregory Seljak, An	Claude Hall,	
17.00-17.30	Quality of Lattice	Efficient expected	Empirical Evaluation of	Optimization of	
	Sequences, p. 98	information gain	Robust Estimators for	Kronecker Sequences,	
	bequences, p. 36	estimators based on the	RQMC, p. 105	p. 183	
		randomized	16&11C, p. 100	p. 100	
		quasi-Monte Carlo			
		method, p. 102			
17:30-19:30	Welcome Reception, HH				
11.00 10.00	steeme recopion, iiii	J			

Tue, Jul 29, 2025 - Morning

	Tue, Jui 29, 20				
08:30-17:30	Registration Desk Open,	HH Lobby			
09:00-10:00	HH Auditorium				
		Glynn, Stanford U, Co.	mbining Simulation and	$l\ Linear\ Algebra:\ COSI$	MLA, p. 37 Chair:
	Chang-Han Rhee				
10:00-10:30	Coffee Break, HH Lobby				
	HH Auditorium	HH Ballroom	PH Auditorium	WH Auditorium	HH Alumni Lounge
	Special Session	Special Session	Special Session	Special Session	Technical Session -
	Stochastic	Next-generation	Heavy-tailed Sampling	Frontiers in	Bayesian Methods
	Computation and	optimal experimental	p. 58	(Quasi-)Monte Carlo	Chair: Hamza Ruzayqat
	Complexity, Part III	design: theory,	Chair: Sebastiano	and Markov Chain	
	p. 55	scalability, and real	Grazzi	Monte Carlo Methods,	
	Chair: Leszek Plaskota	world impact: Part I		Part I p. 60	
		p. 56		Chair: Sou-Cheng Choi	
		Chair: Alen			
		Alexanderian			
10:30-11:00	Jean-François	Xun Huan, Optimal	$Sebastiano\ Grazzi,$	Jonathan Weare,	Lorenzo Nagar,
	Chassagneux,	Pilot Sampling for	Parallel computations	Functional estimation	Optimizing Generalized
	Computing the	Multi-fidelity Monte	for Metropolis Markov	of the marginal	Hamiltonian Monte
	stationary measure of	Carlo Methods, p. 109	chains based on Picard	likelihood, p. 114	Carlo for Bayesian
	McKean-Vlasov SDEs,		maps, p. 111		Inference applications,
	p. 106				p. 173
11:00-11:30	dos reis, TBD, p. 107	Adrien Corenflos, A	Federica Milinanni, A	Nikhil Bansal,	Hamza Ruzayqat,
		recursive Monte Carlo	large deviation principle	Randomized QMC	Bayesian Anomaly
		approach to optimal	for Metropolis-Hastings	Methods via	Detection in
		Bayesian experimental	sampling, p. 112	Combinatorial	Variable-Order and
		design, p. 110		Discrepancy, p. 115	Variable-Diffusivity
					Fractional Mediums,
11.20 12.00	Nonfal Enilsh a On the	Accord Dollardii	Vin and Was a Cham	Michael Massacci The	p. 175
11:30-12:00	Noufel Frikha, On the	Ayoub Belhadji,	Xingyu Wang, Sharp Characterization and	Michael Mascagni, The	Arghya Datta, Theoretical Guarantees
	convergence of the Euler-Maruyama	Weighted quantization using MMD: From	Control of Global	Walk on Spheres Monte Carlo Algorithm for	of Mean Field
	scheme for	mean field to mean	Dynamics of SGDs with	Solving Partial	Variational Inference
	McKean-Vlasov SDEs,	shift via gradient flows,	Heavy Tails, p. 113	Differential Equations,	for Bayesian Principal
	p. 107	p. 111	neavy rans, p. 115	p. 116	Component Analysis,
	p. 107	p. 111		p. 110	p. 176
12:00-12:30	Sotirios Sabanis,			Hwanwoo Kim,	Jimmy Lederman,
12.00 12.00	Wasserstein			Enhancing Gaussian	Bayesian Analysis of
	Convergence of			Process Surrogates for	Latent Underdispersion
	Score-based Generative			Optimization and	Using Discrete Order
	Models under			Posterior	Statistics, p. 177
	Semiconvexity and			Approximation via	, p. 111
	Discontinuous			Random Exploration,	
	Gradients, p. 108			p. 117	

Tuo Jul 20, 2025 - Afternoon

	Tue, Jul 29, 20	25 - Afternoon						
12:30-14:00	Lunch Break, On your ov	vn						
14:00-15:00	HH Auditorium							
	Plenary Talk: Rosha	Plenary Talk: Roshan Joseph, Georgia Institute of Technology, Sensitivity and Screening: From Monte Carlo to						
	${\it Experimental \ Design},$	p. 38 Chair: Simon M	Iak					
15:00-15:30	Coffee Break, HH Lobby							
	HH Auditorium	HH Ballroom	PH Auditorium	WH Auditorium	HH Alumni Lounge			
	Special Session	Special Session	Special Session	Special Session	Technical Session -			
	Stochastic	Next-generation	Advances in Rare	Frontiers in	Quasi-Monte Carlo,			
	Computation and	optimal experimental	Events Simulation p. 64	(Quasi-)Monte Carlo	Part 2			
	Complexity, Part IV,	design: theory,	Chair: Shyam Mohan	and Markov Chain	Chair: Christian Weiss			
	p. 61	scalability, and real	Subbiah Pillai	Monte Carlo Methods,				
	Chair: Thomas	world impact: Part II		Part II p. 66				
	Müller-Gronbach	p. 62		Chair: Sou-Cheng Choi				
		Chair: Xun Huan						
15:30-16:00	$Larisa\ Yaroslavtseva,$	Alen Alexanderian,	Victor Elvira, Multiple	$Takashi\ Goda,$	Peter Kritzer,			
	Optimal strong	Goal-Oriented Sensor	Importance Sampling	Quasi-uniform	Approximation using			
	approximation of SDEs	Placement for	for Rare Event	quasi-Monte Carlo	median lattice			
	with Hölder continuous	Infinite-Dimensional	Simulation in	digital nets, p. 126	algorithms, p. 184			
	drift coefficient, p. 117	Bayesian Inverse	Communication					
10.00 10.00		Problems, p. 120	Systems, p. 123	. TDD 100	W I C			
16:00-16:30	Gunther Leobacher,	jacopo iollo,	Bruno Tuffin,	isaacson, TBD, p. 126	Yang Liu, Convergence Rates of Randomized			
	Tractability of L_2 -approximation and	Diffusion-Based Bayesian Experimental	Asymptotic robustness of smooth functions of		Quasi-Monte Carlo			
	L_2 -approximation and integration in weighted	Design: Advancing	rare-event estimators,		Methods under Various			
	Hermite spaces of finite	BED for Practical	p. 123		Regularity Conditions,			
	smoothness, p. 118	Applications, p. 121	p. 120		p. 185			
16:30-17:00	Alexander Steinicke,	Tommie Catanach,	Eya Ben Amar,	Ziang Niu, Boosting	Jakob Dilen, Use of			
10.00 11.00	Malliavin differentiation	Robust Bayesian	Importance Sampling	the inference for	rank-1 lattices in the			
	of Lipschitz SDEs and	Optimal Experimental	Methods with	generative models by	Fourier neural operator,			
	BSDEs and an	Design under Model	Stochastic Differential	(Quasi-)Monte Carlo	p. 186			
	Application to	Misspecification, p. 122	Equations for the	resampling, p. 127	•			
	Quadratic	, ,	Estimation of the Right	1 0/1				
	Forward-Backward		Tail of the CCDF of the					
	SDEs, p. 119		Fade Duration, p. 124					
17:00-17:30	Fred J. Hickernell, A		Shyam Mohan Subbiah	Chenyang Zhong, A	$Aadit\ Jain,$			
	Unified Treatment of		Pillai, Estimating rare	hit-and-run approach	Investigating the			
	Tractability for		event probabilities	for sampling and	Optimum RQMC Batch			
	Approximation		associated with	analyzing ranking	Size for Betting and			
	Problems Defined on		McKean-Vlasov SDEs,	models, p. 128	Empirical Bernstein			
	Hilbert Spaces, p. 119		p. 125		Confidence Intervals,			
10.00.00.00	Cl. Will C		1 (11 1 2 2 1) M	p. 186			
18:00-20:00	Chicago White Sox vs. P	'hiladelphia Phillies (must j	purchase tickets beforehand), Meet in HH Lobby				

 $Wed,\,Jul\,\,30,\,2025-Morning$

08:30-16:30	Registration Desk Open,							
09:00-10:00	HH Auditorium							
		Plenary Talk: Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach to quantifying model						
	uncertainty of SDEs,							
10:00-10:30	Coffee Break, HH Lobby							
	HH Auditorium	HH Ballroom	PH Auditorium	WH Auditorium	HH Alumni Lounge			
	Special Session	Special Session	Special Session	Technical Session -	Technical Session -			
	Stochastic	Statistical Design of	Advances in Adaptive	Simulation	Sampling			
	Computation and	Experiments p. 68	Hamiltonian Monte	Chair: Toon Ingelaere	Chair: Nicola			
	Complexity, Part V,	Chair: Simon Mak	Carlo p. 69		Branchini			
	p. 67		Chair: Art Owen					
	Chair: Andreas							
	Neuenkirch							
10:30-11:00	Stefan Heinrich, On	Simon Mak, Respecting	Bob Carpenter, GIST:	Philippe Blondeel,	Akash Sharma,			
	the quantum	the boundaries:	Gibbs self-tuning for	Combining quasi-Monte	Sampling with			
	complexity of	Space-filling designs for	locally adapting	Carlo with Stochastic	constraints, p. 187			
	parametric integration	surrogate modeling	Hamiltonian Monte	Optimal Control for				
	in Sobolev spaces,	with boundary	Carlo, p. 134	Trajectory				
	p. 128	information, p. 131		Optimization of				
				Autonomous Vehicles in				
				Mine Counter Measure				
11 00 11 00	D 177"0 11	4 1 5 1	M f D D 1	Simulations, p. 215				
11:00-11:30	Bernd Käßemodel,	Andrews Boahen,	Nawaf Bou-Rabee,	Rino Persiani, A	Joonha Park, Sampling			
	Quantum Integration in	Active Learning for	Acceleration of the	Monte Carlo Approach	from high-dimensional,			
	Tensor Product Besov	Nonlinear Calibration,	No-U-Turn Sampler,	to Designing a Novel	multimodal			
	Spaces, p. 129	p. 132	p. 135	Sample Holder for Enhanced UV-Vis	distributions using automatically tuned,			
				Spectroscopy, p. 216	tempered Hamiltonian			
				spectroscopy, p. 210	Monte Carlo, p. 188			
11:30-12:00	Nikolaos Makras,	Qian Xiao, Optimal	Chirag Modi, ATLAS:	Prasanth Shyamsundar,	Arne Bouillon,			
11.00 12.00	Taming the Interacting	design of experiments	Adapting Trajectory	ARCANE Reweighting:	Localized			
	Particle Langevin	with	Lengths and Step-Size	A technique to tackle	consensus-based			
	Algorithm — The	quantitative-sequence	for Hamiltonian Monte	the sign problem in the	sampling for			
	Superlinear Case, p. 130	factors, p. 132	Carlo, p. 136	simulation of collider	non-Gaussian			
	r) F	, F	events in high-energy	distributions, p. 189			
				physics, p. 217	, 1			
12:00-12:30	Iosif Lytras, Sampling	Chaofan Huang, Factor	Trevor Campbell,	Nicole Aretz,	Alex Shkolnik,			
	with Langevin	Importance Ranking	AutoStep: Locally	Multifidelity and	Importance Sampling			
	Dynamics from	and Selection using	adaptive involutive	Surrogate Modeling	for Hawkes Processes,			
	non-smooth and	Total Indices, p. 133	MCMC, p. 137	Approaches for	p. 190			
	non-logconcave			Uncertainty				
	potentials., p. 130			Quantification in Ice				
				Sheet Simulations,				
				p. 218				

Wed, Jul 30, 2025 – Afternoon

12:30–14:00	Lunch Break, On your ow		DII A 1:	737TT A 114 1	
	HH Auditorium Special Session Stochastic Optimization p. 71 Chair: Shane Henderson	HH Ballroom Special Session Recent Progress on Algorithmic Discrepancy Theory and Applications, p. 72 Chair: Haotian Jiang	PH Auditorium Special Session Monte Carlo Applications in High-performance Computing, Computer Graphics, and Computational Science p. 73 Chair: Michael Mascagni	WH Auditorium Technical Session - Statistics Chair: Yiming Xu	
14:00-14:30	Raghu Bollapragada, Monte Carlo Based Adaptive Sampling Approaches for Stochastic Optimization, p. 138	Haotian Jiang, Algorithmic Discrepancy Theory: An Overview, p. 140	Arash Fahim, Gaining efficiency in Monte Carlo policy gradient methods for stochastic optimal control, p. 143	Kazeem Adeleke, Empirical Statistical Comparative Analysis of SNP Heritability Estimators and Gradient Boosting Machines (GBM) Using Genetic Data from the UK Biobank, p. 219	
14:30-15:00	Raghu Pasupathy, Interior-Point Frank-Wolfe (IPFW) for Linearly Constrained Functional Optimization Over Probability Spaces, p. 138	Peng Zhang, Improving the Design of Randomized Experiments via Discrepancy Theory, p. 141	Sharanya Jayaraman, Examining the Fault Tolerance of High-Performance Monte Carlo Applications through Simulation, p. 144	Carles Domingo-Enrich, Cheap permutation testing, p. 220	
15:00–15:30	Shane Henderson, A New Convergence Analysis of Two Stochastic Frank-Wolfe Algorithms, p. 139	Aleksandar Nikolov, Online Factorization for Online Discrepancy Minimization, p. 142	sawahney, TBD, p. 145	Christopher Draper, Moving PCG beyond LCGs, p. 221	
15:30–16:00	Akshita Gupta, Stochastic Gradient with Testing Functionals, p. 140		Silei Song, WoS-NN: Collaborating Walk-on-Spheres with Machine Learning to Solve Elliptic PDEs, p. 145	Yiming Xu, Hybrid least squares for learning functions from highly noisy data, p. 221	

Thu, Jul 31, 2025 - Morning

	1 nu, Jui 31, 20	0						
08:30-17:30	Registration Desk Open,	HH Lobby						
09:00-10:00	HH Auditorium							
	-	Plenary Talk: Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Methods and Optimization						
	Strategies, p. 40 Chair: Tim Hobbs							
10:00-10:30	Coffee Break, HH Lobby							
	HH Auditorium	HH Ballroom	PH Auditorium	WH Auditorium	HH Alumni Lounge			
	Special Session QMC	Special Session	Special Session	Technical Session -	Technical Session - ML			
	and Applications Part I	Analysis of Langevin	Nested expectations:	Finance	& Optimization			
	p. 74	and Related Sampling	models and estimators,	Chair: TBD	Chair: Frédéric			
	Chair: Michael	Algorithms, Part J p. 75	Part IĮ p. 76		Blondeel			
	Gnewuch	Chair: Xiaoou Cheng	Chair: Abdul-Lateef					
		, and the second	Haji-Ali					
10:30-11:00	Felix Bartel, Exact	Krishnakumar	Matteo Raviola,	Abdujabar Rasulov,	Frédéric Blondeel,			
	discretization, tight	Bala subramanian,	Stochastic gradient	Monte Carlo method	Learning cooling			
	frames and recovery via	Finite-Particle	with least-squares	for the Spatially	strategies in simulated			
	D-optimal designs,	Convergence Rates for	control variates, p. 152	Homogenous	annealing through			
	p. 146	Stein Variational	, -	Boltzmann equation,	binary interactions,			
	1	Gradient Descent,		p. 194	p. 207			
		p. 149		•	•			
11:00-11:30	Mou Cai,	Lihan Wang,	Philipp Guth, A	Matyokub Bakoev, The	Du Ouyang, Accuracy			
	L2-approximation:	Convergence rates of	one-shot method for	Stochastic Differential	of Discretely Sampled			
	using randomized	kinetic Langevin	Bayesian optimal	Equations of the	Stochastic Policies in			
	lattice algorithms and	dynamics with weakly	experimental design,	Heston Model for	Continuous-Time			
	QMC	confining potentials,	p. 152	Option Pricing, p. 195	Reinforcement Learning			
	hyperinterpolation,	p. 150	•	0,1	, p. 209			
	p. 147	•			/ 1			
11:30-12:00	Zhijian He,	Xiaoou Cheng,	Sara Pérez-Vieites,	Leon Wilkosz, Forward	Wei Cai, Martingale			
	High-dimensional	Delocalization of Bias	Langevin-based	Propagation of Low	deep neural networks			
	density estimation on	in Unadjusted	strategies for nested	Discrepancy Through	for quasi-linear PDEs			
	unbounded domain,	Hamiltonian Monte	particle filters, p. 153	McKean-Vlasov	and stochastic optimal			
	p. 148	Carlo, p. 151	, ,	Dynamics: From QMC	controls in 10,000			
		· -		to MLQMC, p. 196	dimensions, p. 210			
12:00-12:30	Frances Y. Kuo,			Vincent Zhang,	Yiqing Zhou,			
	Application of QMC to			Characterizing Efficacy	Minimizing Functions			
	Oncology, p. 148			of Geometric Brownian	with Sparse Samples: A			
				Motion	Fast Interpolation			
				Expectation-based	Approach, p. 210			
				Simulations on				
				Low-Volatility				
				American Common				
				Stocks, p. 197				

Thu, Jul 31, 2025 - Afternoon

Handitorium Plemary Talk: Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte Carlo and its application to exact ecological inference, p. 12 Chair: Bruno Tulfin Special Session Special Session Analysis of Langevin Analysis of Langevin Based Markov processes for functions, p. 154 Dirk Nugens, Approximation of multivariate periodic functions, p. 154 Phone P		,	25 – Alternoon			
Plenary Talk: Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte Carlo and its application to exact ecological inference, p. 12 Chair: Bruno Tuffin Coffee Break, HH Lobby IIII Auditorium Special Session Mach Applications Part II p. 77 Chair: Takashi Goda Chair: Takashi Goda Chair: Takashi Goda Chair: Takashi Goda Chair: Vifan Chen Approximation of multivariate periodic functions, p. 154 P. 156 Art Owen, Randomized QMC with one categorical variable, p. 154 QMC with one categorical variable, p. 156 16:30–17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Art Owen, Randomized QMC with one categorical variable, p. 155 Convergence of Unadjusted Langevin in High Dimensions: p. 156 16:30–17:00 Langevin Monte Carlo lattice point sets, p. 156 Total: Bruno Tuffin Pla Auditorium Special Session Special Session Recent Advances in Special Session Pocchait Session Special Session Special Session Recent Advances in Special Session Special Session Special Session Special Session Special Session Pocchait Special Session Recent Advances in Special Session Technical Session Technical Session Sampling Chair: Joonha Park Chair: Joonha Park Chair: Joonha Park Algorithms, Part II p. 78 Chair: Jing Dong Chair: Joonha Park Algorithms, Part II p. 79 Chair: Jing Dong Chair: Joonha Park Markov processes for Markov processes f	12:30-14:00	Lunch Break, On your ow	'n			
Exact ecological inference, p. 42 Chair: Brano Tuffin	14:00-15:00	HH Auditorium				
The first of the problem of the pr		Plenary Talk: Nicolas	s Chopin, Institut Polyi	technique de Paris, Sad	depoint Monte Carlo a	nd its application to
The first of the problem of the pr		exact ecological inferen	nce, p. 42 Chair: Brus	no Tuffin		
HH Auditorium Special Session QMC and Applications Part II p. 77 Chair: Takashi Goda 15:30–16:00 Dirk Nuyens, Approximation of multivariate periodic functions, p. 154 16:00–16:30 Art Owen, Randomized QMC with one categorical variable, p. 154 16:30–17:00 Technical Session Recent Advances in Special Session Recent Advances in Special Session Recent Advances in Special Session Recent Advances in Stochastic Gradient Descent p. 79 Chair: Jing Dong Chair: Jondon Park Sochastic Gradient Descent with Infinite Variance, p. 150 Infinite Variance, p. 150 Integration, p. 190 Technical Session Schambling Chair: Joonha Park Chair: Fabio Zoccolan Approximation of Markov processes for Markov processes for Monte Carlo Integration, p. 190 Integration, p. 190 Pynomial Approximation for Special Session Special Session Special Session Recent Advances in Sampling Chair: Joonha Park Chair: Fabio Zoccolan Concatenation of Markov processes for Monte Carlo Integration, p. 190 Pynomial Approximation for Special Session Special Session Special Session Recent Advances in Stochastic Gradient Inference for Stochastic Gradient Descent with Infinite Variance, p. 150 Integration, p. 190 Pynomial Approximation for Special Session Special Sesion Special Scale Chair: Joonha Park Chair: Fabio Zoccolan Inference for Stochastic Gradient Descent with Infinite Variance, p. 150 Integration, p. 190 Pynomial Approximation for Splyromial A	15:00-15:30	Coffee Break, HH Lobby				
Special Session QMC and Applications Part II p. 77 Chair: Takashi Goda			HH Ballroom	PH Auditorium	WH Auditorium	HH Alumni Lounge
and Applications Part II p. 77 Chair: Takashi Goda 15:30–16:00 Dirk Nuyens, Approximation of multivariate periodic functions, p. 154 16:00–16:30 Art Owen, Randomized QMC with one categorical variable, p. 154 Disconting p. 154 16:30–17:00 Chair: Vifan Chen Convergence of Conditivation of Bias, p. 1557 Chair: Disconting p. 157 16:30–17:00 Chair: Vifan Chen Convergence of Consequence of Conditivation of Bias, p. 157 Chair Disconting p. 159 Chair: Jing Dong Chair: Joonha Park Anke Joonha Park Chair: Joonha Park Chair: Joonha Park Antel Joonha Park Chair: Joonha Park Antel Joonha Park Chair: Joonha Park An		Special Session QMC	Special Session	Special Session	Technical Session -	
Algorithms, Part II p. 78 Chair: Takashi Goda Algorithms, Part II p. 78 Chair: Tign Dong Chair: Jing Dong Chair: Jing Dong Chair: Jose Blanchet, Infinite Variance, p. 159 Infinite Variance, p. 150 Infinite Variance, p. 150 Infinite Variance, p. 150 Infinite Variance, p. 150 Integration, p. 190 Integ					Sampling	SDEs
Chair: Takashi Goda Po			v	Stochastic Gradient		Chair: Fabio Zoccolan
15:30–16:00 Dirk Nuyens, Approximation of multivariate periodic functions, p. 154 16:00–16:30 Art Owen, Randomized QMC with one categorical variable, p. 154 16:30–17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 155 16:30–17:00 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Dirk Nuyens, Molei Tao, Langevin Based Sampling under Nonconvex Constraints, p. 158 Document of the delocalization of bias in Langevin Monte Carlo, p. 158 Chair: Jing Dong Ch						
15:30-16:00 Dirk Nuyens, Approximation of multivariate periodic functions, p. 154 Langevin-Based Sampling under Nonconvex Constraints, p. 156 Infinite Variance, p. 159 Infinite Variance, p. 159 Infinite Variance, p. 159 Infinite Variance, p. 159 Infinite Variance, p. 150 Integration, p. 190 particle-system ROM, p. 203 Art Owen, Randomized QMC with one categorical variable, p. 154 Unadjusted Langevin in High Dimensions: Delocalization of Bias, p. 154 Delocalization of Bias, p. 155 Sacchastic Gradient Descent with Langevin Infinite Variance, p. 159 Infinite Variance, p. 150 Integration, p. 190 Spepira Westermann, Polynomial approximation for efficient transport-based sampling, p. 192 Pracham Alphasis of Stochastic Gradient Descent with Adaptive Data, p. 160 Sournyadip Ghosh, Fast Anke Wiese, A Chen-Fliess series for stochastic differential Equations, Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205 Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205 Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205 Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205 Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205 P						
15:30–16:00 Dirk Nuyens, Approximation of multivariate periodic functions, p. 154 Nonconvex Constraints, p. 156 Sampling under Nonconvex Constraints, p. 156 Nonconvex Constraints, p. 156 Infinite Variance, p. 159 Infinite Variance, p. 150 Infinite Variance, p. 150 Infinite Variance, p. 150 Infinite Variance, p. 150 Infinite Vari						
Approximation of multivariate periodic functions, p. 154 16:00–16:30 Art Owen, Randomized QMC with one categorical variable, p. 154 16:30–17:00 16:30–17:00 16:30–17:00 Art Owen, Randomized of this categorical variable, p. 155 16:30–17:00 Art Owen, Randomized of Convergence of categorical variable, p. 155 16:30–17:00 16:30–17:00 16:30–17:00 Art Owen, Randomized of Convergence of Categorical variable, p. 154 16:30–17:00	15:30-16:00	Dirk Nuyens,	•	Jose Blanchet,	Sascha Holl,	Fabio Zoccolan,
multivariate periodic functions, p. 154 Nonconvex Constraints, p. 156 Nonconvex Constraints, p. 156 Art Owen, Randomized QMC with one categorical variable, p. 154 16:30–17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 155 16:30–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Markov processes for Monte Carlo lattice point sets, p. 156 Gradient Descent with Infinite Variance, p. 159 Integration, p. 190 Schapten Rhee, Convergence of Exit-Time Analysis of Stochastic Gradient Descent via Kesten's Recursion, p. 160 Descent via Kesten's Recursion, p. 160 Fuzhong Zhou, Entropy delocalization of bias in Langevin Monte Carlo, p. 158 Tr:00–17:30 Rosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Tricon Along Langevin Markov Chains, p. 158 Markov processes for Monte Carlo Infinite Variance, p. 159 Integration, p. 190 Josephine Westermann, Polynomial approximation for SDEs: an interacting particle-system ROM, p. 203 Adrien Richou, A probabilistic Numerical method for semi-linear elliptic Partial transport-based sampling, p. 192 Sounyadip Ghosh, Fast Approximate Matrix Inversion via MCMC for Linear System Solvers, p. 192 Tr:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Art Owen, Randomized Chen, Chang-Han Rhee, Exit-Time Analysis of Stochastic Oradient Descent with Acaptive Data, p. 160 Fuzitoria Along Langevin Markov Chains, p. 158 Sampling under Monte Carlo Integration, p. 190 Exit-Time Analysis of Stochastic Gradient Descent with Kesten's Recursion, p. 160 Fuzitoria Approximation for SDEs: an interacting particle-system ROM, p. 203 Adrien Richou, A probabilistic Numerical methods for the delocalization of bias in Integration, p. 192 Sounyadip Ghosh, Fast Approximate Matrix Chen-Fliess series for Solvers, p. 192 Lévy processes, p. 204 Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205			*	· ·		*
functions, p. 154 Nonconvex Constraints, p. 156 Nonconvex Constraints, p. 156 Nonconvex Constraints, p. 159 Monte Carlo Integration, p. 190 Monte Carlo Integration, p. 190 Particle-system ROM, p. 203 Art Owen, Randomized QMC with one categorical variable, p. 154 Convergence of Unadjusted Langevin in High Dimensions: Delocalization of Bias, p. 157 16:30-17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 155 Texhong Zhou, Entropy are thods for the delocalization of bias in Langevin Monte Carlo, p. 158 Nonconvex Constraints, p. 156 Integration, p. 159 Monte Carlo Integration, p. 190 SDEs: an interacting particle-system ROM, p. 203 Adrien Richou, A Polynomial approximation for efficient transport-based sampling, p. 192 Soumyadip Ghosh, Fast Approximate Matrix Inversion via MCMC for Linear System Solvers, p. 192 Lévy processes, p. 204				Gradient Descent with	Markov processes for	
p. 156 16:00–16:30 Art Owen, Randomized QMC with one categorical variable, p. 154 16:30–17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 155 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Polynomial approximation for existic Gradient Descent via Kesten's Recursion, p. 160 Stochastic Gradient Descent via Kesten's Recursion, p. 192 Jing Dong, Stochastic Gradient transport-based sampling, p. 192 Soumyadip Ghosh, Fast Approximate Matrix Inversion via MCMC for Linear System Solvers, p. 192 Solvers, p. 192 Lévy processes, p. 204 Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 203 Adrien Richou, A Polynomial approximation for efficient transport-based sampling, p. 192 Soumyadip Ghosh, Fast Approximate Matrix Inversion via MCMC for Linear System Solvers, p. 192 Lévy processes, p. 204 Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205		functions, p. 154		Infinite Variance, p. 159	_	
16:00–16:30 Art Owen, Randomized QMC with one categorical variable, p. 154 Unadjusted Langevin in High Dimensions: Delocalization of Bias, p. 157 Evalong Zhou, Entropy confidence intervals using quantiles of randomized nets, p. 155 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Kosuke Suzuki, Quasi-uniform Quasi-Monte Carlo Additional and the confidence and Additional and the confidence and Additional and the confidence and Additional approximation for elliptic Partial Descent via Kesten's Recursion, p. 160 Stochastic Gradient transport-based sampling, p. 192 Sounyadip Ghosh, Fast Adaptive Data, p. 160 Inversion via MCMC for Linear System Solvers, p. 192 Lévy processes, p. 204 Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205		, -	p. 156	, -	Integration, p. 190	particle-system ROM,
QMC with one categorical variable, p. 154 16:30–17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 155 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 QMC with one categorical variable, p. 154 Convergence of Unadjusted Langevin in High Dimensions: Delocalization of Bias, p. 157 Exit-Time Analysis of Stochastic Gradient Descent via Kesten's Recursion, p. 160 Soumyadip Ghosh, Fast Approximate Matrix Chen-Fliess series for Stochastic differential equations driven by Lévy processes, p. 204 Riccardo Saporiti, Comparing Probabilistic Numerical method for semi-linear elliptic Partial Differential Equations, p. 192 Soumyadip Ghosh, Fast Approximate Matrix Chen-Fliess series for Stochastic differential equations driven by Lévy processes, p. 204 Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205			-		, <u>, ,</u>	
categorical variable, p. 154 Dimensions: Delocalization of Bias, p. 157 Descent via Kesten's Recursion, p. 160 Differential Equations, p. 204 Differential Equations, p. 204 Differential Equations, p. 204 Differential Equations, p. 204 Chen-Fliess series for Solvers, p. 192 Descent via Kesten's Recursion, p. 160 Differential Equations, p. 204 Differential Equations, p. 204 Differential Equations are quations driven by Every processes, p. 204 Differential Equations of Solvers, p. 192 Descent via Kesten's Recursion, p. 160 Differential Equations of Solvers, p. 192 Differential Equations of Solvers, p. 192 Differential Equations of Solvers, p. 192 Differential Equations of Solvers, p. 193 Descent via Kesten'	16:00-16:30	Art Owen, Randomized	Yifan Chen,	Chang-Han Rhee,	Josephine Westermann,	Adrien Richou, A
categorical variable, p. 154 Dimensions: Delocalization of Bias, p. 157 Descent via Kesten's Recursion, p. 160 Differential Equations, p. 204 Differential Equations, p. 204 Differential Equations, p. 204 Differential Equations, p. 204 Chen-Fliess series for Solvers, p. 192 Descent via Kesten's Recursion, p. 160 Differential Equations, p. 204 Differential Equations, p. 204 Differential Equations are quations driven by Every processes, p. 204 Differential Equations of Solvers, p. 192 Descent via Kesten's Recursion, p. 160 Differential Equations of Solvers, p. 192 Differential Equations of Solvers, p. 192 Differential Equations of Solvers, p. 192 Differential Equations of Solvers, p. 193 Descent via Kesten'		QMC with one	Convergence of		Polynomial	probabilistic Numerical
Delocalization of Bias, p. 157 16:30–17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 155 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform Quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform Quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform Quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform Quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform Quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform Quasi-Monte Carlo lattice point sets, p. 156 4-Divergence and 4-Mutual Information Along Langevin Markov Chains, p. 158 4-Divergence and 4-Mutual Information Along Langevin Markov Chains, p. 158 5-Divergence and 4-Mutual Information Along Langevin Markov Chains, p. 158 5-Diversion, p. 160 5-Divergence with Adaptive Data, p. 160 5-Divergence of 4-Divergence and 4-Divergence and 4-Mutual Information Along Langevin Markov Chains, p. 158 6-Divergence and 4-Mutual Information Along Langevin Markov Chains, p. 158			Unadjusted Langevin in	Stochastic Gradient	approximation for	method for semi-linear
p. 157 16:30–17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 155 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 According Pan, QMC confidence intervals using quantiles of randomized nets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform Quasi-Monte Carlo lattice point sets, p. 156 According Pan, QMC production of bias in Langevin Monte Carlo lattice point sets, p. 156 Adaptive Data, p. 160 Adaptive Data, p. 160 Fuzhong Zhou, Entropy methods for the Gradient Descent with Adaptive Data, p. 160 Langevin Monte Carlo, p. 158 Solvers, p. 192 Soumyadip Ghosh, Fast Anke Wiese, A Chen-Fliess series for stochastic differential equations driven by Lévy processes, p. 204 Extractor Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205		p. 154	High Dimensions:	Descent via Kesten's	efficient	elliptic Partial
16:30–17:00 Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 155 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 17:00–17:30 Caxin Pan, QMC confidence intervals using quantiles of randomized nets, p. 156 17:00–17:30 Kosuke Suzuki, Quasi-uniform Adaptive Data, p. 160 17:00–17:30 Convergence of Along Langevin Markov Chains, p. 158 17:00–17:30 Convergence and Along Langevin Markov Chains, p. 158 17:00–17:30 Confidence intervals methods for the Gradient Descent with Adaptive Data, p. 160 17:00–17:30 Kosuke Suzuki, Siddharth Mitra, Convergence of Along Langevin Markov Chains, p. 158 17:00–17:30 Convergence and Along Langevin Markov Chains, p. 158 17:00–17:30 Convergence of Along Langevin Markov Chains, p. 158			Delocalization of Bias,	Recursion, p. 160	transport-based	Differential Equations,
confidence intervals using quantiles of randomized nets, p. 155 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Chen-Fliess series for Adaptive Data, p. 160 Langevin Monte Carlo, p. 158 Solvers, p. 192 Chen-Fliess series for stochastic differential equations driven by Solvers, p. 192 Lévy processes, p. 204 Riccardo Saportii, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205			p. 157		sampling, p. 192	p. 204
using quantiles of randomized nets, p. 155	16:30-17:00	Zexin Pan, QMC	Fuzhong Zhou, Entropy	Jing Dong, Stochastic	Soumyadip Ghosh, Fast	
randomized nets, p. 155 Langevin Monte Carlo, p. 158 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Along Langevin Markov Chains, p. 158 Langevin Monte Carlo, p. 158 for Linear System Solvers, p. 192 Lévy processes, p. 204 Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205		confidence intervals	methods for the	Gradient Descent with	Approximate Matrix	Chen-Fliess series for
p. 158 Solvers, p. 192 Lévy processes, p. 204 17:00–17:30 Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 156 Along Langevin Markov Chains, p. 158 Solvers, p. 192 Lévy processes, p. 204 Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 205			delocalization of bias in	Adaptive Data, p. 160	Inversion via MCMC	stochastic differential
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		randomized nets, p. 155	Langevin Monte Carlo,		for Linear System	equations driven by
Quasi-uniform Convergence of Quasi-Monte Carlo Φ -Divergence and Probabilistic Load Probabilistic Load Φ -Mutual Information Along Langevin Markov Chains, p. 158 Chains, p. 205			p. 158		Solvers, p. 192	Lévy processes, p. 204
quasi-Monte Carlo lattice point sets, p. 156 Φ-Divergence and Φ-Mutual Information Along Langevin Markov Chains, p. 158 Φ-Divergence and Forecasters: Stochastic Differential Equations and Deep Learning, p. 205	17:00-17:30	Kosuke Suzuki,	Siddharth Mitra,			$Riccardo\ Saporiti,$
Partice point sets, p. 156 Φ-Mutual Information Along Langevin Markov Chains, p. 158 Forecasters: Stochastic Differential Equations and Deep Learning, p. 205		Quasi-uniform				
Along Langevin Markov Chains, p. 158 Differential Equations and Deep Learning, p. 205						
Chains, p. 158 and Deep Learning, p. 205		lattice point sets, p. 156				
p. 205			~ ~			_
			Chains, p. 158			
10 00 00 00 Ct ' C '' M '' (1 ' '' ') IDDD						p. 205
18:00–20:30 Steering Committee Meeting (by invitation), TBD	18:00-20:30	Steering Committee Meet	ing (by invitation), TBD			

12:30–12:45 Closing Remarks by Fred Hickernell, HH Auditorium

	Fri, Aug 1, 202	35			
08:30-12:15	Registration Desk Open,	HH Lobby			
	HH Auditorium	HH Ballroom	PH Auditorium	WH Auditorium	HH Alumni Lounge
	Special Session	Special Session	Technical Session -	Technical Session -	Technical Session -
	Forward and Inverse	Hardware or Software	Simulation	Sampling	Markov Chain Monte
	Problems for Stochastic	for (Quasi-)Monte	Chair: Nicole Aretz	Chair: Soumyadip	Carlo
	Reaction Networks	Carlo Algorithms, Part		Ghosh	Chair: TBD
	p. 80	IĮ p. 81			
	Chair: Sophia Münker	Chair: Sou-Cheng Choi			
09:00-09:30	Zhou Fang,	Niklas Baumgarten, A	Yashveer Kumar,	Nicola Branchini,	Reuben Cohn-Gordon,
	Fixed-budget	High-performance	Monte Carlo simulation	Revisiting	Gradient-based MCMC
	simulation method for	Multi-level Monte Carlo	approach to solve	self-normalized	in high dimensions,
	growing cell	Software for Full Field	distributed order	importance sampling:	p. 211
	populations, p. 161	Estimates and	fractional mathematical	new methods and	
		Applications in	model, p. 178	diagnostics, p. 199	
		Optimal Control, p. 165			
09:30-10:00	$Sophia\ M\"{u}nker,$	Aleksei Sorokin, Fast	Serena Fattori,	Daniel Yukimura,	Philip Schaer, Parallel
	Dimensionality	Gaussian Processes,	Benchmarking the	Quantitative results on	Affine Transformation
	Reduction for Efficient	p. 166	Geant4-DNA 'UHDR'	sampling from	Tuning: Drastically
	Rare Event Estimation,		Example for Monte	quasi-stationary	Improving the
	p. 162		Carlo Simulation of pH	distributions, p. 200	Effectiveness of Slice
			Effects on Radiolytic		Sampling, p. 212
			Species Yields Using a		
			Mesoscopic Approach,		
10.00.10.00	16.1	T 1 TZ .	p. 179	<i>m</i> , ,	4 1 11 0 11
10:00-10:30	Maksim Chupin,	Johannes Krotz,	Muhammad Noor ul	Toon Ingelaere,	Annabelle Carrell,
	Filtered Markovian	Hybrid Monte Carlo	Amin, Adaptive	Multilevel simulation of	Low-Rank Thinning,
	Projection:	methods for kinetic	Max-EWMA Control Chart with SVR:	ensemble Kalman methods: interactions	p. 213
	Dimensionality Reduction in Filtering	transport, p. 167	Monte Carlo Simulation	across levels, p. 201	
	for Stochastic Reaction		for Run Length	across levels, p. 201	
	Networks, p. 163		Analysis, p. 180		
10:30-11:00	Muruhan Rathinam,	Joseph Farmer,	Chi-Ok Hwang,	Amit Subrahmanya,	Hongmei Chi,
10.50 11.00	State and parameter	Flow-Based Monte	First-passage-based	Serial ensemble filtering	Randomness in the
	inference in stochastic	Carlo Transport	Last-passage Algorithm	with marginal coupling,	quantum age: A
	reaction networks,	Simulation, p. 168	for Charge Density on a	p. 202	Comparative Study of
	p. 164	Silitateoron, p. 100	Conducting Surface,	p. ===	Classical and Quantum
	F		p. 180		Random Number
			•		Generators, p. 213
11:00-11:30	Coffee Break, HH Lobby				, 1
11:30-12:30	HH Auditorium				
	Plenary Talk: Veroni	ka Ročková, U of Chica	ago, AI-Powered Bayes	ian Inference, p. 44	Chair: Art Owen

34