Linear Ordinary Differential Equatio Wronskia Complete Solution of a Homogeneous Equatio Reduction of Orde Iomogeneus Equations with Constants Coefficien

Ordinary Differential Equation

Chapter II: Differential Equation

Atiratch Laoharenoo

Kamnoetvidya Science Academy

- Linear Ordinary Differential Equation
- Wronskian
- 3 Complete Solution of a Homogeneous Equation
- Reduction of Order
- 6 Homogeneus Equations with Constants Coefficients
 - The Second Order Equation
 - The Higher Order Equation

- Linear Ordinary Differential Equation
- Wronskian
- 3 Complete Solution of a Homogeneous Equation
- 4 Reduction of Order
- 6 Homogeneus Equations with Constants Coefficients
 - The Second Order Equation
 - The Higher Order Equation

Definition

The **general linear equation** of order n is an equation in a form

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x),$$
 (1)

where $a_n(x) \neq 0$ for some interval I. $a_0(x), \dots, a_n(x)$ are **coefficient functions** of equation and $a_n(x)$ is a **leading coefficient function**.

If f(x) = 0 for all $x \in I$, the equation (1) is called **homogeneous** equation, otherwise (1) is called **non-homogeneous** equation and f(x) is **non-homogeneous term** of (1) and

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$

is an **related homogeneous equation** of (1).

Definition

We say that the general ODE

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = f(x)$$

is **normal** on an interval I if $a_0(x), \ldots, a_n(x)$ and f(x) are continuous on I and $a_n(x) \neq 0$ for all $x \in I$.

Consider

$$y'' - \frac{1}{x}y + 2y = \sin x.$$

Note that $a_2(x) = 1$, $a_1(x) = -\frac{1}{x}$, $a_0(x) = 2$ and $f(x) = \sin x$.

It is easy to see that $a_0(x)$, $a_2(x)$ and f(x) are continuous for every $x \in \mathbb{R}$ but $a_1(x)$ is discontinuous at x = 0 and $a_2(x) \neq 0$ for every $x \in \mathbb{R}$. So the following equation is normal on every interval which not contain 0.

For example $(0, \infty)$ and [11, 80).

Theorem: Existence and Uniqueness Theorem

Let

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x)$$

is normal on $I, x_0 \in I$ and $y_0, \dots, y_{n-1} \in \mathbb{R}$. Then there exists the unique solution y = y(x) of (1) that satisfies conditions

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}.$$

Show that $y = e^{2x}$ is the only solution of

$$y'' - 3y' + 2y = 0$$
, $y(0) = 1$, $y'(0) = 2$.

Show that $y = e^{2x}$ is the only solution of

$$y'' - 3y' + 2y = 0$$
, $y(0) = 1$, $y'(0) = 2$.

Solution From $y = e^{2x}$, then $y' = 2e^2x$ and $y'' = 4e^{2x}$, so

$$y'' - 3y' + 2y = 4e^{2x} - 6e^{2x} + 2e^{2x} = 0.$$

Note that $y(0) = e^0 = 1$ and $y'(0) = 2e^0 = 2$. By theorem, $y = e^{2x}$ is the only solution of the following ODE.

Reduction of Order

Corollary

Let

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$

is normal on *I*. Then y(x) = 0 is the only solution that satisfies the following equation and conditions

$$y(x_0) = y'(x_0) = \dots = y^{(n-1)}(x_0) = 0.$$

Linear Ordinary Differential Equation
Wronskiar
Complete Solution of a Homogeneous Equation
Reduction of Orde
comogeneous Equations with Constants Coefficient

Definition

A solution y(x) = 0 is called **trivial solution**, otherwise $y(x) \neq 0$ is called **nontrivial solution**.

Theorem: Superposition Principle

Let y_1, \ldots, y_m be solutions of an linear ODE

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$
 (*)

and c_1, \ldots, c_m are constants, then

$$y = c_1 y_1 + \ldots + c_m y_m$$

is a solution of (*).

Linear Ordinary Differential Equation Wronskian Complete Solution of a Homogeneous Equation Reduction of Orde

Definition

We say that

$$y = c_1 y_1 + \ldots + c_m y_m$$

is a **linear combination** of functions y_1, \ldots, y_m .

Let $y_1 = e^{-x}$ and $y_2 = e^{2x}$. It is easy to show that y_1 and y_2 are solutions of

$$y'' - y' - 2y = 0 (**)$$

on \mathbb{R} . By superposition principle,

$$y = c_1 e^{-x} + c_2 e^{2x}$$

are solutions of (**) for all $c_1, c_2 \in \mathbb{R}$.

We can show that

$$y_1 = e^{-x}$$
 and $y_2 = e^{2x}$

are solutions of nonlinear homogeneous ODE

$$yy'' - (y')^2 = 0$$

but $y = c_1 e^{-x} + c_2 e^{2x}$ is a solution if $c_1 = 0$ or $c_2 = 0$. So, the superposition principle is not valid for nonlinear ODE.

Definition

Let f_1, \ldots, f_n be functions on I. We say that f_1, \ldots, f_n are **linearly independent** if for every $c_1, \ldots, c_n \in \mathbb{R}$ such that

$$c_1f_1(x) + \ldots + c_nf_n(x) = 0$$

for all $x \in I$, then $c_1 = \ldots = c_n = 0$.

Linear Ordinary Differential Equation
Wronskian
Complete Solution of a Homogeneous Equation
Reduction of Orde
tomogeneus Equations with Constants Coefficient

Example

Show that $\sin x$ and $\cos x$ are linearly independent on \mathbb{R} .

Show that $\sin x$ and $\cos x$ are linearly independent on \mathbb{R} .

Solution Let $c_1, c_2 \in \mathbb{R}$ such that

$$c_1 \sin x + c_2 \cos x = 0$$

for all $x \in \mathbb{R}$.

If
$$x = 0$$
, then $c_2 = c_1 \sin 0 + c_2 \cos 0 = 0$.

If
$$x = \frac{\pi}{2}$$
, then $c_1 = c_1 \sin(\frac{\pi}{2}) = 0$.

Thus, $\sin x$ and $\cos x$ are linearly independent on \mathbb{R} .

Linear Ordinary Differential Equatio Wronskia Complete Solution of a Homogeneous Equatio Reduction of Orde tomogeneous Equations with Constants Coefficient

Example

Show that $f_1(x) = |x|$ and $f_2(x) = x$ are linearly independent on \mathbb{R} .

Show that $f_1(x) = |x|$ and $f_2(x) = x$ are linearly independent on \mathbb{R} .

Solution Let $c_1, c_2 \in \mathbb{R}$ such that

$$c_1|x| + c_2x = 0$$

for all $x \in \mathbb{R}$.

If
$$x = 1$$
, then $c_1 + c_2 = 0$.

If
$$x = -1$$
, then $c_1 - c_2 = 0$.

So,
$$c_1 = c_2 = 0$$
. Thus, $|x|$ and x are linearly independent on \mathbb{R} .

Theorem

For every linear ODE of order *n*

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$
 (*)

that normal on an interval I, there exists solutions y_1, \ldots, y_n which are linearly independent and every particular solution of (*) can be written as a linear combination of y_1, \ldots, y_n .

- Linear Ordinary Differential Equation
- Wronskian
- 3 Complete Solution of a Homogeneous Equation
- 4 Reduction of Order
- 6 Homogeneus Equations with Constants Coefficients
 - The Second Order Equation
 - The Higher Order Equation

Definition

Let f_1, f_2, \dots, f_n be n-1 times differentiable functions on \mathbb{R} , then the determinant

$$W(x) =: W(f_1, \dots, f_n : x) := \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}$$

is called the **Wronskian** of f_1, f_2, \ldots, f_n .

Linear Ordinary Differential Equatio

Wronskia

Complete Solution of a Homogeneous Equatio

Reduction of Orde

Homogeneus Equations with Constants Coefficien

Theorem

Let f_1, \ldots, f_n be n-1 differentiable functions on an interval I. If $W(f_1, \ldots, f_n : x) \neq 0$ for some $x \in I$, then f_1, \ldots, f_n are linearly independent.

Theorem

Let f_1, \ldots, f_n be n-1 differentiable functions on an interval I. If $W(f_1, \ldots, f_n : x) \neq 0$ for some $x \in I$, then f_1, \ldots, f_n are linearly independent.

Corollary

Let f_1, \ldots, f_n be n-1 differentiable functions on an interval I. If f_1, \ldots, f_n are linearly dependent, then $W(f_1, \ldots, f_n : x) = 0$ for all $x \in I$.

Theorem

Let f_1, \ldots, f_n be n-1 differentiable functions on an interval I. If $W(f_1, \ldots, f_n : x) \neq 0$ for some $x \in I$, then f_1, \ldots, f_n are linearly independent.

Corollary

Let f_1, \ldots, f_n be n-1 differentiable functions on an interval I. If f_1, \ldots, f_n are linearly dependent, then $W(f_1, \ldots, f_n : x) = 0$ for all $x \in I$.

Caution

Converse of the theorem is not true.

Linear Ordinary Differential Equatio
Wronskia
Complete Solution of a Homogeneous Equatio
Reduction of Orde
Homogeneus Equations with Constants Coefficien

Example

Use Wronskian to show that x, xe^x and x^2e^x are linearly independent on \mathbb{R} .

Use Wronskian to show that x, xe^x and x^2e^x are linearly independent on \mathbb{R} .

Solution Note that

$$W(x) = \begin{vmatrix} x & xe^x & x^2e^x \\ 1 & (x+1)e^x & (x^2+2x)e^x \\ 0 & (x+2)e^x & (x^2+4x+2)e^x \end{vmatrix} = e^{2x}x^3 \neq 0$$

for some $x \in \mathbb{R}$. So, x, xe^x and x^2e^x are linearly independent on \mathbb{R} . \square

Let f_1 and f_2 be real-valued functions on the set of real numbers by

$$f_1(x) = \begin{cases} x^3 & ; x \ge 0 \\ 0 & ; x < 0, \end{cases}$$
 and $f_2(x) = \begin{cases} 0 & ; x \ge 0 \\ x^3 & ; x < 0 \end{cases}$

for all $x \in \mathbb{R}$.

- Show that f_1 and f_2 are differentiable on \mathbb{R} .
- ② Show that the Wronskian of f_1 and f_2 is identically zero.
- \bigcirc Show that f_1 and f_2 are linearly independent.

• First, we find the derivatives of f_1 and f_2 Since

$$\lim_{x \to 0^+} \frac{f_1(x) - f_1(0)}{x} = \lim_{x \to 0^+} x^2 = 0 = \lim_{x \to 0^+} \frac{f_1(x) - f_1(0)}{x}$$

and

$$\lim_{x \to 0^+} \frac{f_2(x) - f_2(0)}{x} = 0 = \lim_{x \to 0^-} x^2 = \lim_{x \to 0^-} \frac{f_2(x) - f_2(0)}{x}.$$

Hence, $f'_1(0)$ and $f'_2(0)$ exist and $f'_1(0) = 0 = f'_2(0)$. So,

$$f'_1(x) = \begin{cases} 3x^2 & ; x > 0 \\ 0 & ; x \le 0 \end{cases}$$
, and $f'_2(x) = \begin{cases} 0 & ; x \ge 0 \\ 3x^2 & ; x < 0 \end{cases}$.

 $\text{Let } x \in \mathbb{R}.$ If x < 0, then

$$W(x) = \begin{vmatrix} 0 & x^3 \\ 0 & 3x^2 \end{vmatrix} = 0.$$

If x > 0, then

$$W(x) = \begin{vmatrix} x^3 & 0 \\ 3x^2 & 0 \end{vmatrix} = 0.$$

If x = 0, then

$$W(x) = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}.$$

So,
$$W(x) = 0$$
 for all $x \in \mathbb{R}$.

1 Let $k_1, k_2 \in \mathbb{R}$ such that

$$k_1 f_1(x) + k_2 f_2(x) = 0$$

for all $x \in \mathbb{R}$. If x = 1, then

$$f_1(x) = 1$$
, and $f_2(x) = 0$.

So, $k_1 = 0$. If x < 1, then

$$f_1(x) = 0$$
, and $f_2(x) = 1$.

So, $k_2 = 0$. This implies that f_1 and f_2 are form a linearly independent set.

Theorem

Let y_1, \ldots, y_n be particular solutions of an linear ODE of order n

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0$$

that normal on an interval I, then either $W(y_1, \ldots, y_n : x)$ is identically zero or $W(y_1, \ldots, y_n : x) \neq 0$ for all $x \in I$.

Theorem

Let y_1, \ldots, y_n be particular solutions of an linear ODE of order n

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0$$

that normal on an interval I, then y_1, \ldots, y_n are linearly independent if and only if $W(y_1, \ldots, y_n : x) \neq 0$ for all $x \in I$.

We can show that $y_1 = e^{-x}$ and $y_2 = e^{2x}$ are solutions of

$$y'' - y' - 2y = 0$$

and this equation is normal on \mathbb{R} . Note that

$$W(y_1, y_2 : x) = \begin{vmatrix} e^{-x} & e^{2x} \\ -e^{-x} & 2e^{2x} \end{vmatrix} = 3e^x \neq 0$$

for all $x \in \mathbb{R}$. So y_1 and y_2 are linearly independent.

Let $\omega > 0$. We can show that $y_1 = \sin \omega x$ and $y_2 = 4 \sin \omega x$ are solutions of

$$y'' + \omega^2 y = 0.$$

Note that

$$W(y_1, y_2 : x) = \begin{vmatrix} \sin \omega x & 4 \sin \omega x \\ \omega \cos \omega x & 4\omega \cos \omega x \end{vmatrix} = 0$$

for all $x \in \mathbb{R}$. So y_1 and y_2 are linearly dependent.

- Linear Ordinary Differential Equation
- Wronskian
- 3 Complete Solution of a Homogeneous Equation
- 4 Reduction of Order
- 6 Homogeneus Equations with Constants Coefficients
 - The Second Order Equation
 - The Higher Order Equation

Theorem

Let y_1, \ldots, y_n be linearly independent particular solutions of a linear ODE

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$
 (*)

that normal on an interval I, then every solution of (*) on I is a linear combination of y_1, \ldots, y_n .

Definition

Functions y_1, \ldots, y_n those linearly independent particular solutions of a linear ODE order n on an interval I are called **fundamental** solutions or basis of all solutions on I and a linear combination

$$y = c_1 y_1 + \ldots + c_n y_n,$$

where c_1, \ldots, c_n are constants, is **complete solution** or **general solution** of equation.

Use functions x^{-2} and $x^{-2} \ln x$ to find a complete solution (or general solution) of

$$x^2y'' + 5xy' + 4y = 0$$

on $[0, \infty)$.

Use functions x^{-2} and $x^{-2} \ln x$ to find a complete solution (or general solution) of

$$x^2y'' + 5xy' + 4y = 0$$

on $[0,\infty)$.

Solution First, we check that $y_1 = x^{-2}$ and $y_2 = x^{-2} \ln x$ are solutions of this ODE. Note that

$$y_1' = -2x^{-3}, \quad y_1'' = 6x^{-4}$$

and

$$y_2' = x^{-3} - 2x^{-3} \ln x$$
, $y_2'' = -3x^{-3} - 2x^{-4} + 6x^{-4} \ln x$.

- 4 ロト 4 部 ト 4 差 ト 4 差 ト - 差 - 釣 Q (で)

Then,

$$x^2y_i'' + 5xy_i' + 4y_i = 0$$

for i = 1, 2. Since

$$W(y_1, y_2 : x) = \begin{vmatrix} x^{-2} & x^{-2} \ln x \\ -2x^{-3} & x^{-3} - 2x^{-3} \ln x \end{vmatrix} = x^{-5} \neq 0$$

for $x \in (0, \infty)$. So, y_1 and y_2 are linearly independent on $(0, \infty)$. Thus, a general solution of ODE is

$$y = c_1 x^{-2} + c_2 x^{-2} \ln x,$$

- Linear Ordinary Differential Equation
- Wronskian
- Complete Solution of a Homogeneous Equation
- Reduction of Order
- 5 Homogeneus Equations with Constants Coefficients
 - The Second Order Equation
 - The Higher Order Equation

In this section, we will find an another solution y_2 if we know that y_1 is one of solution of

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0,$$

where $a_2(x)$, $a_1(x)$ and $a_0(x)$ are functions and y_1, y_2 are linearly independent.

Note that y_1 and y_2 are solutions, so

$$a_2(x)y_i'' + a_1(x)y_i' + a_0(x)y_i = 0,$$

for i = 1, 2. Since y_1 and y_2 are linearly independent, there exists a nonconstant function u(x) such that

$$y_2 = uy_1$$
.

Then

$$y_2' = uy_1' + u'y_1$$
 and $y_2'' = uy_1'' + 2u'y_1' + u''y_1$.

So,

$$a_2(x)(uy_1'' + 2u'y_1' + u''y_1) + a_1(x)(uy_1' + u'y_1) + a_0(x)(uy_1) = 0.$$

Then

$$u''a_2(x)y_1 + u'(2a_2(x)y_1' + a_1(x)y_1) + u(a_2(x)y_1'' + a_1(x)y_1' + a_0(x)y_1) = 0$$

$$u''a_2(x)y_1 + u'(2a_2(x)y_1' + a_1(x)y_1) = 0$$

$$\frac{u''}{u'} = -2\frac{y_1'}{y_1} - \frac{a_1(x)}{a_2(x)}.$$

Integrate respect to x on both sides, hence

$$\ln u' = -2\ln y_1 - \int \frac{a_1(x)}{a_2(x)} dx = \ln y_1^{-2} - \int \frac{a_1(x)}{a_2(x)} dx + C.$$

So

$$u' = Ay_1^{-2}e^{-\int \frac{a_1(x)}{a_2(x)}dx} \rightarrow u = A \int y_1^{-2}e^{-\int \frac{a_1(x)}{a_2(x)}dx}dx + C_2.$$

39 / 71

Hence

$$y_2 = Ay_1 \int y_1^{-2} e^{-\int \frac{a_1(x)}{a_2(x)} dx} dx + C_2 y_1.$$

Let $\tilde{y}_2 = y_1 \int y_1^{-2} e^{-\int \frac{a_1(x)}{a_2(x)} dx} dx$. Note that

$$W(y_1, \tilde{y}_2 : x) = \begin{vmatrix} y_1 & y_1 \int y_1^{-2} e^{-\int \frac{a_1(x)}{a_2(x)} dx} dx \\ y_1' & y_1^{-1} e^{-\int \frac{a_1(x)}{a_2(x)} dx} + y_1' \int y_1^{-2} e^{-\int \frac{a_1(x)}{a_2(x)} dx} dx \end{vmatrix}$$
$$= e^{-\int \frac{a_1(x)}{a_2(x)} dx} \neq 0,$$

for all $x \in \mathbb{R}$. So, y_1 and \tilde{y}_2 are linearly independent. That is another solution is

$$y_1 \int y_1^{-2} e^{-\int \frac{a_1(x)}{a_2(x)} dx} dx.$$

Theorem

Let y_1 be one of solution of

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0, \quad a_2(x) \neq 0$$

then a complete solution (or general solution) is

$$y = c_1 y_1 + c_2 y_2,$$

where

$$y_2 = y_1 \int y_1^{-2} e^{-\int \frac{a_1(x)}{a_2(x)} dx} dx$$

and c_1, c_2 are constants.

(We already shown that y_1 and y_2 are fundamental solutions of this ODE.)

Find a general solution of

$$x^2y'' - 3xy' + 3y = 0,$$

where y = x is one of its fundamental solution.

Find a general solution of

$$x^2y'' - 3xy' + 3y = 0,$$

where y = x is one of its fundamental solution.

Solution Note that
$$a_2(x) = x^2$$
, $a_1(x) = -3x$. So $y_2 = x \int x^{-2} e^{3 \int \frac{1}{x} dx} dx = x \int x^{-2} e^{3 \ln|x|} dx$

$$= x \int x^{-2} x^3 dx = x \int x dx = \frac{x^3}{2} + Cx.$$

Hence, a general solution is

$$y = c_1 x + c_2 x^3,$$

Find a general solution of

$$4x^2y'' - 8xy' + 9y = 0,$$

where $y = x^{\frac{3}{2}}$ is one of its fundamental solution.

Find a general solution of

$$4x^2y'' - 8xy' + 9y = 0,$$

where $y = x^{\frac{3}{2}}$ is one of its fundamental solution.

Solution Note that
$$a_2(x) = 4x^2$$
, $a_1(x) = -8x$. So

$$y_2 = x^{\frac{3}{2}} \int x^{-3} e^{2 \int \frac{1}{x} dx} dx = x^{\frac{3}{2}} \int x^{-3} e^{2 \ln|x|} dx$$
$$= x^{\frac{3}{2}} \int x^{-3} x^2 dx = x^{\frac{3}{2}} \int x^{-1} dx = x^{\frac{3}{2}} \ln|x| + Cx^{\frac{3}{2}}.$$

Hence, a general solution is

$$y = c_1 x^{\frac{3}{2}} \ln|x| + c_2 x^{\frac{3}{2}},$$

Example: KVIS ODE Final Examination 2560

Find a general solution of

$$y'' - 4xy' + 2(2x^2 - 1)y = 0,$$

where $y = e^{x^2}$ is one of its fundamental solution.

Example: KVIS ODE Final Examination 2560

Find a general solution of

$$y'' - 4xy' + 2(2x^2 - 1)y = 0,$$

where $y = e^{x^2}$ is one of its fundamental solution.

Solution Note that $a_2(x) = 1$, $a_1(x) = -4x$ and $a_0(x) = 2(2x^2 - 1)$. So

$$y_2 = e^{x^2} \int e^{-2x^2} e^{\int 4x dx} dx = e^{x^2} \int dx = xe^{x^2}.$$

So, a general solution is

$$y = c_1 e^{x^2} + c_2 x e^{x^2}$$

Find a general solution of

$$(2x+1)y'' - (4x+4)y' + 4y = 0,$$

where $y = e^{2x}$ is one of its fundamental solution.

Find a general solution of

$$(2x+1)y'' - (4x+4)y' + 4y = 0,$$

where $y = e^{2x}$ is one of its fundamental solution.

Solution Note that
$$a_2(x) = 2x + 1$$
, $a_1(x) = -(4x + 4)$. So
$$y_2 = e^{2x} \int e^{-4x} e^{4\int \frac{x+1}{2x+1} dx} dx = e^{2x} \int e^{-4x} e^{2x+\ln|2x+1|} dx$$
$$= e^{2x} \int e^{-2x} (2x+1) dx = -(x+1) + Ce^{2x}.$$

Hence, a general solution is

$$y = c_1(x+1) + c_2e^{2x}$$

- Linear Ordinary Differential Equation
- Wronskian
- 3 Complete Solution of a Homogeneous Equation
- 4 Reduction of Order
- 6 Homogeneus Equations with Constants Coefficients
 - The Second Order Equation
 - The Higher Order Equation

- Linear Ordinary Differential Equation
- Wronskian
- 3 Complete Solution of a Homogeneous Equation
- 4 Reduction of Order
- 6 Homogeneus Equations with Constants Coefficients
 - The Second Order Equation
 - The Higher Order Equation

In this section, we consider the second order ODE

$$ay'' + by' + cy = 0, (2)$$

where a, b, c are constants and $a \neq 0$.

First, we try to find solutions by let $y = e^{rx}$, where r is a constant, then

$$y' = re^{rx}$$
 and $y'' = r^2 e^{rx}$.

So

$$e^{rx}(ar^2 + br + c) = 0.$$
 (3)

Note that $e^{rx} \neq 0$ for all $x \in \mathbb{R}$, so

$$ar^2 + br + c = 0.$$

This equation is called a **auxiliary equation** or **characteristic equation** of equation (2).

Then, we have

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

We separate into 3 cases.

- $b^2 4ac > 0$ ((3) has two distinct real roots.)
- $b^2 4ac = 0$ ((3) has two repeated real roots.)
- $b^2 4ac < 0$ ((3) has two complex conjugate roots.)

$\underline{\text{Case I}: b^2 - 4ac > 0}.$

Then, (3) has two distinct real roots, say r_1 and r_2 . Hence

$$y_1 = e^{r_1 x}$$
 and $y_2 = e^{r_2 x}$

are solutions of (2). Note that

$$W(y_1, y_2 : x) = \begin{vmatrix} e^{r_1 x} & e^{r_2 x} \\ r_1 e^{r_1 x} & r_2 e^{r_2 x} \end{vmatrix} = (r_2 - r_1)e^{(r_1 + r_2)x} \neq 0$$

for all $x \in \mathbb{R}$. That is y_1 and y_2 are linearly independent, so a general solution of equation (2) is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x},$$

$\underline{\text{Case II}: b^2 - 4ac = 0}.$

Then, (3) has two repeated real roots, say $r = -\frac{b}{2a}$. So

$$y_1 = e^{rx}$$

is one of solution of equation (2). Next, we will find another solution y_2 that linearly independent with y_1 by

$$y_2 = y_1 \int \frac{1}{y_1^2} e^{-\int \frac{b}{a} dx} dx = e^{rx} \int \frac{e^{-\frac{b}{a}x}}{e^{2r}} dx = e^{rx} \int dx = xe^{rx}.$$

So, a general solution of (2) is

$$y = c_1 e^{rx} + c_2 x e^{rx} = e^{rx} (c_1 + c_2 x),$$

Case III : $b^2 - 4ac < 0$.

Then, (3) has two complex conjugate roots, say

$$r_1 = \alpha + i\beta$$
 and $r_2 = \overline{r}_1 = \alpha - i\beta$; $\alpha, \beta \in \mathbb{R}$, $i^2 = -1$.

So,

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x} = c_1 e^{(\alpha + i\beta)x} + c_2 e^{(\alpha - i\beta)x} = e^{\alpha x} (c_1 e^{i\beta x} + c_2 e^{-i\beta x})$$

is a general solution of (2). Next, we will simplify y as a real-valued function by using Euler's identity

$$e^{i\theta} = \cos \theta + i \sin \theta$$
, $\theta \in \mathbb{R}$.

Then,

$$y = e^{\alpha x} (c_1(\cos \beta x + i \sin \beta x) + c_2(\cos \beta x - i \sin \beta x))$$

= $e^{\alpha x} ((c_1 + c_2) \cos \beta x + (ic_1 - ic_2) \sin \beta x)$
= $C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$,

where C_1 , C_2 are constants. Let $y_1 = e^{\alpha x} \cos \beta x$ and $y_2 = e^{\alpha x} \sin \beta x$. Note that

$$W(y_1, y_2 : x) = \begin{vmatrix} e^{\alpha x} \cos \beta x & e^{\alpha x} \sin \beta x \\ e^{\alpha x} (-\beta \sin \beta x + \alpha \cos \beta x) & e^{\alpha x} (\beta \cos \beta x + \alpha \sin \beta x) \end{vmatrix}$$
$$= e^{2\alpha x} (\beta \cos^2 \beta x + \beta \sin^2 \beta x) = \beta e^{2\alpha x} \neq 0$$

for all $x \in \mathbb{R}$. So a general solution of (2) is

$$y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x),$$

where c_1 and c_2 are constants.

<ロト <部 > < 注 > < 注 > の く

Find a general solution of y'' - 2y' = 0.

Find a general solution of y'' - 2y' = 0.

Solution Note that the characteristic equation is

$$r^2 - 2r = 0 \quad \to \quad r(r-2) = 0,$$

so r = 0, 2. Thus, a general solution of this ODE is

$$y = c_1 + c_2 e^{2x},$$

Find a general solution of y'' - 3y' - y = 0.

Find a general solution of y'' - 3y' - y = 0.

Solution The characteristic equation is

$$r^2 - 3r - 1 = 0$$
 \rightarrow $r = \frac{3 \pm \sqrt{13}}{2}$.

Thus, a general solution of this ODE is

$$y = c_1 e^{\left(\frac{3+\sqrt{13}}{2}\right)x} + c_2 e^{\left(\frac{3-\sqrt{13}}{2}\right)x},$$

Find a general solution of y'' - 4y' + 4y = 0.

Find a general solution of y'' - 4y' + 4y = 0.

Solution The characteristic equation is

$$r^2 - 4r + 4 = 0 \rightarrow r = 2, 2.$$

Thus, a general solution of this ODE is

$$y = c_1 e^{2x} + c_2 x e^{2x}$$

Find the particular solution of

$$y'' - 10y' + 25y = 0$$
, $y(0) = 3$, $y'(0) = 4$.

Find the particular solution of

$$y'' - 10y' + 25y = 0$$
, $y(0) = 3$, $y'(0) = 4$.

Solution The characteristic equation is

$$r^2 - 10r + 25 = 0 \rightarrow r = 5, 5.$$

Thus, a general solution of this ODE is

$$y = c_1 e^{5x} + c_2 x e^{5x}$$

$$y' = 5c_1e^{5x} + 5c_2xe^{5x} + c_2e^{5x}.$$

Note that y(0) = 3 and y'(0) = 4, we have $c_1 = 3$ and $c_2 = -11$. Thus, the particular solution is

$$y = 3e^{5x} - 11xe^{5x}. \quad \Box$$

Find a general solution of y'' + 5y = 0.

Find a general solution of y'' + 5y = 0.

Solution The characteristic equation is

$$r^2 + 5 = 0$$
 \rightarrow $r = i\sqrt{5}, -i\sqrt{5}.$

Thus, a general solution of this ODE is

$$y = c_1 \cos \sqrt{5}x + c_2 \sin \sqrt{5}x,$$

where c_1, c_2 are constants.

Find the particular solution of

$$4y'' + 16y' + 17y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Find the particular solution of

$$4y'' + 16y' + 17y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Solution The characteristic equation is

$$4r^2 + 16r + 17 = 0 \rightarrow r = -2 \pm \frac{1}{2}i$$
.

Thus, a general solution of this ODE is

$$y = e^{-2x} \left(c_1 \cos \frac{x}{2} + c_2 \sin \frac{x}{2} \right),$$

where c_1, c_2 are constants.

From
$$y(0) = 1$$
 and $y(\pi) = 0$, we have

$$c_1 = 1$$
 and $c_2 = 0$.

Thus, the particular solutioni is

$$y = e^{-2x} \cos \frac{x}{2}. \quad \Box$$

- Linear Ordinary Differential Equation
- Wronskian
- 3 Complete Solution of a Homogeneous Equation
- 4 Reduction of Order
- 6 Homogeneus Equations with Constants Coefficients
 - The Second Order Equation
 - The Higher Order Equation

Next, we will find a solution of a linear homogeneous equation ODE with with constant coefficients order n,

$$a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0,$$
 (4)

where a_n, \ldots, a_1, a_0 are constants.

We can show that the auxiliary equation is

$$a_n r^n + \ldots + a_1 r + a_0 = 0.$$
 (5)

Theorem

If y_i is a particular solution of (4) that corresponding to a root of (5) r_i and r_i is repeated k times, where $k \ge 2$, then

$$xy_i, x^2y_i, \dots, x^{k-1}y_i$$

are particular solutions of (4) and a linear combination of all particular solutions of (4) is a general solution of (4).

$$y''' - 5y'' + 6y' = 0.$$

Find a general solution of

$$y''' - 5y'' + 6y' = 0.$$

Solution The characteristic equation is

$$r^3 - 5r^2 + 6r = 0 \rightarrow r = 0, -2, -3.$$

So, a general solution is

$$y = c_1 + c_2 e^{-2x} + c_3 e^{-3x}$$

where c_1, c_2, c_3 are constants.

Find the particular solution of

$$y''' + 3y'' + 3y' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = 1$.

Find the particular solution of

$$y''' + 3y'' + 3y' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = 1$.

Solution The characteristic equation is

$$r^3 + 3r^2 + 3r + 1 = 0 \rightarrow r = -1, -1, -1.$$

Thus, a general solution of this ODE is

$$y = (c_1 + c_2 x + c_3 x^2)e^{-x},$$

where c_1, c_2, c_3 are constants.

From y(0) = 0, we have $c_1 = 0$. Since y'(0) = 1 and

$$y' = -(c_2x + c_3x^2)e^{-x} + (c_2 + 2c_3x)e^{-x} = (c_2 + (2c_3 - c_2)x + c_3x^2)e^{-x},$$

so, we obtain $c_2 = 1$. From

$$y'' = ((2c_3 - 2) + x - c_3x^2)e^{-x},$$

and y''(0) = 1, so $c_3 = \frac{3}{2}$. Thus, the particular solution is

$$y = \left(x + \frac{3}{2}x^2\right)e^{-x}.\quad \Box$$

$$y^{(4)} - 2y''' + 6y'' - 8y' + 8y = 0.$$

Find a general solution of

$$y^{(4)} - 2y''' + 6y'' - 8y' + 8y = 0.$$

Solution The characteristic equation

$$r^4 - 2r^3 + 6r^2 - 8r + 8 = 0 \rightarrow r = \pm i\sqrt{2}, 1 \pm i.$$

So, a general solution is

$$y = c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x + e^x(c_3 \cos \sqrt{x} + c_3 \sin \sqrt{x}),$$

where c_1, c_2, c_3, c_4 are constants.

$$y''' + 4y'' - 3y' - 18y = 0.$$

Find a general solution of

$$y''' + 4y'' - 3y' - 18y = 0.$$

Solution The characteristic equation is

$$r^3 + 4r^2 - 3r - 18 = 0$$
 \rightarrow $(r-2)(r+3)^2 = 0$.

So, r = 2, -3, -3. Thus a general solution is

$$y = c_1 e^{2x} + c_2 e^{-3x} + c_3 x e^{-3x},$$

where c_1, c_2, c_3 are constants.

$$y^{(4)} - 8y''' + 26y'' - 40y' + 25y = 0.$$

Find a general solution of

$$y^{(4)} - 8y''' + 26y'' - 40y' + 25y = 0.$$

Solution The characteristic equation is

$$r^4 - 8r^3 + 26r^2 - 40r + 25 = 0$$
 \rightarrow $(r^2 - 4r + 5)^2 = 0$.

So, r = 2 + i, 2 + i, 2 - i, 2 - i. Thus a general solution is

$$y = e^{2x}(c_1 \cos x + c_2 \sin x + c_3 x \cos x + c_4 x \sin x),$$

where c_1, c_2, c_3, c_4 are constants.

$$y^{(8)} + 6y^{(6)} - 32y'' = 0.$$

Find a general solution of

$$y^{(8)} + 6y^{(6)} - 32y'' = 0.$$

Solution The characteristic equation is

$$r^{8} + 6r^{6} - 32r^{2} = 0$$
 \rightarrow $r^{2}(r^{2} - 2)(r^{2} + 4)^{2} = 0.$

So, $r = 0, 0, \pm \sqrt{2}, 2i, 2i, -2i, -2i$. Thus a general solution is

$$y = c_1 + c_2 x + c_3 e^{\sqrt{2}x} + c_4 e^{-\sqrt{2}x} + c_5 \cos 2x + c_6 \sin 2x + c_7 x \cos 2x + c_8 x \sin 2x,$$

where $c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8$ are constants.

