Symmetric Matrices

Situation: $V = IR^n$ w/ Standard inner product $\langle \vec{\pi}, \vec{j} \rangle = \vec{x}^T \vec{j} = \vec{y}^T \vec{z}$

 $A_{n \times n}$ Symmetric $\Leftrightarrow A^T = A$

LA: R^ > R^

"A symmetric => LA is self-adjoint"

Proposition 1: If $\lambda^{\epsilon}C$ is an eigenvalue of A, then $\lambda^{\epsilon}R$

Proof! Suppose ve C' \ \alpha \in \alpha \\ \note: \alpha \in \alpha \in \alpha \in \alpha \\ \note: \alpha \in \alpha \in \alpha \in \alpha \\ \note: \alpha \in \alpha \in \alpha \in \alpha \in \alpha \\ \note \alpha \in \alpha \i

=> ZER

complex

 $A\vec{v} = \lambda\vec{v}$ $A\vec{v} = \vec{\lambda}\vec{v}$ $A\vec{v} = \vec{\lambda}\vec{v}$ $A\vec{v} = \vec{\lambda}\vec{v}$ Thusbers

TRICK

 $\vec{A} \vec{v} = \vec{\lambda} \vec{v} \quad \text{Transpose}$ $\vec{v}^T A = \vec{v}^T \lambda$ $\vec{v}^T A =$

Proposition 2: If $\vec{v}_1 \in E_{\lambda_1}(A)$, $\vec{v}_2 \in E_{\lambda_2}(A)$, $\lambda_1 \neq \lambda_2$,
then $\vec{v}_1 \cdot \vec{v}_2 = 0$ ASSUMING $A = A^T$

Proof Know
$$A_{V_1} = \lambda_1 V_1$$
 $\lambda_1 \neq \lambda_2$
 $A_{V_2} = \lambda_2 V_2$ $V_1 \neq 0$
 $V_2 \neq 0$

$$V_{2}^{\dagger} A V_{1} = V_{2}^{\dagger} \lambda_{1} V_{1} = \lambda_{1} (V_{2}^{\dagger} V_{1}) = \lambda_{1} (V_{1} \cdot V_{2})$$

$$\lambda_{2}^{\dagger} V_{2}^{\dagger} V_{1} = \lambda_{2} (V_{1} \cdot V_{2})$$

Proposition 3: Let $W \subseteq \mathbb{R}^n = V$, Suppose W is A-invariant. Then W^+ is also A invariant. $(A=A^+)$

Proof: let veW!.

Then YWEW, <v, w> = 0

i.e. YWEW, wTAV = 0

but wTAV=VTAW = 0

:. AVEW!

Proposition 6: If
$$A = A^T$$
, and $\lambda_1, \dots, \lambda_m \in \mathbb{R}$ are the distinct eigenvalues of A, then

Proof (Note: A has a real eigenvalue since it has a complex eigenvalue but by prop 1 this is real.

Preed

$$V_1 + \cdots + V_m = 0 \Rightarrow V_1 = 0 = \cdots - V_m$$
 $V_1 + \cdots + V_m = 0 \Rightarrow V_1 = 0 \Rightarrow V_2 =$

Let $\beta = \alpha r + honormal basis$ $Q = (u_1, ..., u_r, u_r, ..., u_n)$

Ihen

$$Q^{T} \wedge Q = \beta = \begin{bmatrix} \beta_{1} & 0 \\ \hline 0 & \beta_{2} \end{bmatrix}$$

 β_z Symmetric. if ren, β_z has eigenvector- $\beta_z v = \lambda v$ $\beta_z D$, do on your own