10.5.2.14

EE23BTECH11003 - pranav

Question: How many multiples of 4 lie between 10 and 250?

Solution: let $4n_1$ and $4n_2$ be the first and last multiples of 4 between 10 and 250 then

$$4n_1 > 10$$
 and $4n_2 < 250$ (1)

$$\implies n_1 > 10/4 \text{ and } n_2 < 250/4$$
 (2)

$$\therefore n_1 \text{ and } n_2 \in \mathbb{N} \tag{3}$$

$$\implies n_1 = 3, n_2 = 62$$
 (4)

 \therefore number of multiples of 4 which lie between 10 and 250 are 62 - 3 + 1 = 60 considering the series to start from n = 0 the general term

$$X(n) = [X(0) + n \cdot d].u(n) \tag{5}$$

$$X(n) = [12 + 4 \cdot n].u(n) \tag{6}$$

Variable	Description	Value
S(0)	First term of the AP	12
d	Common difference of the AP	d
S(n)	General term of the AP	$12 + 4 \cdot n$

TABLE I: Variables Used

Arithmetic Sequence: $S(n) = 12 + 4n$									
5(0					•			
4!									
40									
3!									
(u)S 3(
25									
2									
1	5								
10	0	2	4	6	8	10			
	n								

Fig. 1: general term of the AP

applying Z transform

$$X(z) = \sum_{n = -\infty}^{\infty} X(n) \cdot z^{-n}$$
 (7)

$$\implies X(z) = \sum_{n=-\infty}^{\infty} [12 + 4 \cdot n] \cdot u(n) \cdot z^{-n} \qquad (8)$$

$$\implies X(z) = \sum_{n=0}^{\infty} [12 + 4 \cdot n] \cdot z^{-n}$$
 (9)

$$\implies X(z) = \frac{12}{1 - z^{-1}} + \frac{4 \cdot z^{-1}}{(1 - z^{-1})^2} \tag{10}$$