Table des matières

1 Fonction réelle			2
	1.1	Ensemble de définition	2
	1.2	Continuité	2
	1.3	Discontinuité	2
	1.4	Limite	2
	1.5	Dérivabilité	2
	1.6	Non dérivabilité	2
	1.7	Représentation graphique	
2	Dév	veloppement asymptotique	3
	2.1	Développement limité	3
	2.2	Fonction équivalente	3
	2.3	Fonction négligeable	
	2.4	Fonction dominée	
3	Suite		
	3.1	Convergence des suites	4
	3.2	Divergence des suites	
	3.3		
4	Inté	égration	5

Fonction réelle

1.1 Ensemble de définition

1.2 Continuité

Par définition.

Limite.

1.3 Discontinuité

Par définition. Il s'agit d'utiliser la définition d'une fonction discontinue en un point $a \in V$, avec V un voisinage de a, qui est

$$\exists \epsilon > 0, \forall \delta > 0, |x - a| < \delta \Rightarrow ||f(x) - f(a)|| > \epsilon$$

En pratique, on suppose $\delta>0$ vérifiant $|x-a|<\delta$ puis :

- 1. expliciter m = |f(x) f(a)|
- 2. donner arbitrairement un nombre $\epsilon>0$ qui accompli la condition $m\geq\epsilon>0$

S'il est possible de trouver un tel $\epsilon>0$ alors la discontinuité est prouvée.

- 1.4 Limite
- 1.5 Dérivabilité
- 1.6 Non dérivabilité
- 1.7 Représentation graphique

Développement asymptotique

- 2.1 Développement limité
- 2.2 Fonction équivalente
- 2.3 Fonction négligeable
- 2.4 Fonction dominée

Suite

- 3.1 Convergence des suites
- 3.2 Divergence des suites
- 3.3 Calcul des limites

Intégration

Théorème fondamental de l'intégration.

Dérivées quotients usuelles.

Parité des fonctions.

Intégration par partie.

Théorème de changement de variable.