Knock-in mouse model, App^{NLF/NLF}, with slow plaque development into old age, shows plaque specific gene expression pattern more similar to that found in post-mortem tissues from people with Alzheimer's disease.

Aya Balbaa¹, Jack I. Wood¹, Aishwarya Pathak¹, Eugenia Wong¹, Ridwaan Joghee¹, Sneha Desai¹, Damian M.Cummings¹, Takshashila Tripathi¹, John Hardy¹, Frances A.Edwards¹

¹Department of Neuroscience, Physiology and Pharmacology, UCL

Introduction

The APPKI mice NLF and NLGF (Saito et al., 2014) are widely used.

NLGF mouse (like many transgenic mice): an aggressive model laying down plaques rapidly from 2 months.

NLF mouse (more like progression of preclinical Alzheimer's disease): earliest plaques in middle age (around 9 months); slow progression into old age. New technologies Nanostring GeoMx regional transcriptomics allows study of more relevant. Age an important factor in gaining translational insites in

Methods: Whole hippocampal RNA was extracted from WT, NLF and NLGF mice (n=9-12/genotype; mixed sex; 18 months old).

RNAseq: Differential expression analysis compared WT to NLF or NLGF using DESeq2 R package, batch effect was accounted for as needed.

Regional cell-type enriched transcriptomics.

Nanostring GeoMx technology: AOIs microglia, astrocytes (and underlying synapses) on, near or far from plaques

Comparing regions with dense plaques (Plaque ROIs) to regions away from plaques (Away ROIs) (n=6, 4 female, 2 male). Analysed using the limma-voom pipeline; within tissue pairing from plaque versus away.

RNA-Seq from whole hippocampus only useful for NLGF:

Differentially expressed genes (DEGs)

WT vs NLGF

WT vs NLF NS functional enrich't ~5 genes

NLF: Regional cell-enriched transcriptomics: comparing paque and away within tissue brings up 556 DEGs

NLGF plaque-induced genes (versus WT)

compared to

NLF plaque-induced genes (vs far from plaque)

175

Human

AD vs Control

Plaque

specific

NLF/ NOT NLGF

359

P=1.45e-05

22

308

within NLF

381

WT-NLGF

RNAseq

2173

52 (not

P=0.334

significant)

278

Plaque-dependent Microglial gene modules coexpressing in NLF and NLGF mice similar to previously studied genotypes

Some microglial genes, including *Trem2*, only increase in expression on plaque contact.

A small subset are *Trem2*-genotype-dependent

Conclusion

The NLF mouse shows similarities to the human condition of Alzheimer's disease that makes it likely a more translatable model. The TREM2 dependent roles of microglia depend on the microglia touching the plaque and so must depend on a lipophilic ligand

Wood et al., Cell Reports (in press)

