

Generated by sandeep on 03 October 2024, 01:35:51

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents Setup 2 2 1.1 Command history 1.2 Configuration 2 $\mathbf{2}$ Datasets 3 2.1 $tag_1_pythia8_basicreco$ 3 $\mathbf{3}$ Histos and cuts 4 Object definition 1 4 3.2 Object definition 2 4 3.3 Object definition 3 4 3.4 Object definition 4 4 3.5 Object definition 5 3.6 Object definition 6 4 3.7 Object definition 7 4 3.8 Object definition 8 4 3.9 Histogram 1 4 3.10 Histogram 26 3.11 Histogram 3 7 3.12 Histogram 4 8 3.13 Histogram 59 3.14 Histogram 610 3.15 Histogram 7 11 3.16 Histogram 8 12 3.17 Histogram 913 3.18 Histogram 1014 Summary **15** 4.1 Cut-flow charts 15

1 Setup

1.1 Command history

```
ma5>define invisible = -14 12 16 -16 14 -12
ma5>set main.fastsim.package = fastjet
ma5>set main.fastsim.algorithm = antikt
ma5>set main.fastsim.radius = 0.4
ma5>set main.fastsim.ptmin = 5.0
ma5>set main.fastsim.bjet_id.matching_dr = 0.4
ma5>set main.fastsim.bjet_id.efficiency = 1.0
ma5>set main.fastsim.bjet_id.misid_cjet = 0.0
ma5>set main.fastsim.bjet_id.misid_ljet = 0.0
ma5>set main.fastsim.tau_id.efficiency = 1.0
ma5>set main.fastsim.tau_id.misid_ljet = 0.0
ma5>import /home/sandeep/software/MG5_aMC_v2_9_21/pp24tops/Events/run_07/tag_1_pythia8_events.hepm
as reco_events
ma5>set main.outputfile=tag_1_pythia8_BasicReco.lhe.gz
ma5>submit /home/sandeep/software/MG5_aMC_v2_9_21/pp24tops/MA5_HADRON_ANALYSIS_reco_BasicReco_1
ma5>remove reco_events
ma5>import /home/sandeep/software/MG5_aMC_v2_9_21/pp24tops/Events/run_07/tag_1_pythia8_BasicReco.1
as tag_1_pythia8_BasicReco
ma5>set main.stacking_method = normalize2one
ma5>define e = e+ e-
ma5>define mu = mu+ mu-
ma5>select (j) PT > 20
ma5>select (b) PT > 20
ma5>select (e) PT > 10
ma5>select (mu) PT > 10
ma5>select (j) ABSETA < 2.5
ma5>select (b) ABSETA < 2.5
ma5>select (e) ABSETA < 2.5
ma5>select (mu) ABSETA < 2.5
ma5>plot MET 40 0 500
ma5>plot THT 40 0 500
ma5>plot PT(j[1]) 40 0 500 [logY]
ma5>plot ETA(j[1]) 40 -10 10 [logY]
ma5>plot MT_MET(j[1]) 40 0 500 [logY]
ma5>plot PT(j[2]) 40 0 500 [logY]
ma5>plot ETA(j[2]) 40 -10 10 [logY]
ma5>plot MT_MET(j[2]) 40 0 500 [logY]
ma5>plot M(j[1] j[2]) 40 0 500 [logY]
ma5>plot DELTAR(j[1],j[2]) 40 0 10 [logY]
ma5>submit /home/sandeep/software/MG5_aMC_v2_9_21/pp24tops/MA5_HADRON_ANALYSIS_analysis2_BasicReco
```

1.2 Configuration

- MadAnalysis version 1.9.60 (2024-10-01).
- Histograms given for an integrated luminosity of 10fb⁻¹.

2 Datasets

$2.1 \quad {\rm tag_1_pythia8_basicreco}$

 \bullet Sample consisting of: signal events.

• Generated events: 20000 events.

 \bullet Normalization to the luminosity: 0+/- 0 events.

• Ratio (event weight): 0.0 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
pp24tops/Events/run_07/- tag_1_pythia8_BasicReco.lhe.gz	20000	0.0 @ 0.0%	0.0

3 Histos and cuts

3.1 Object definition 1

* Cut: select (j)
$$PT > 20.0$$

3.2 Object definition 2

* Cut: select (b)
$$PT > 20.0$$

3.3 Object definition 3

* Cut: select (e)
$${
m PT} > 10.0$$

3.4 Object definition 4

* Cut: select (mu)
$${\rm PT} > 10.0$$

3.5 Object definition 5

* Cut: select (j) ABSETA
$$< 2.5$$

3.6 Object definition 6

* Cut: select (b) ABSETA
$$< 2.5$$

3.7 Object definition 7

* Cut: select (e) ABSETA
$$< 2.5$$

3.8 Object definition 8

* Cut: select (mu) ABSETA
$$< 2.5$$

3.9 Histogram 1

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	92.1241	84.6	0.0	0.2694

Figure 1.

3.10 Histogram 2

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	1018.16	396.0	0.0	96.35

Figure 2.

3.11 Histogram 3

* Plot: PT ($\mathbf{j}[1]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	189.061	130.3	0.0	3.443

Figure 3.

3.12 Histogram 4

* Plot: ETA (j[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	0.00262959	1.118	0.0	0.0

Figure 4.

3.13 Histogram 5

* Plot: MT_MET ($\mathbf{j}[1]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	184.516	151.3	0.0	4.067

Figure 5.

3.14 Histogram 6

* Plot: PT ($\mathbf{j}[2]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	111.026	68.02	0.0	0.2914

Figure 6.

3.15 Histogram 7

* Plot: ETA (j[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8	1.0	1.0	0.00349146	1.156	0.0	0.0

Figure 7.

3.16 Histogram 8

* Plot: MT_MET ($\mathbf{j[2]}$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	124.349	96.06	0.0	0.5413

Figure 8.

3.17 Histogram 9

* Plot: M (j[1] j[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	313.417	259.1	0.0	16.29

Figure 9.

3.18 Histogram 10

* Plot: DELTAR ($\mathbf{j}[1]$, $\mathbf{j}[2]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	1.0	1.0	2.28805	0.9806	0.0	0.0

Figure 10.

4 Summary

4.1 Cut-flow charts

- \bullet How to compare signal (S) and background (B): S/sqrt(S+B) .
- \bullet Object definition selections are indicated in cyan.
- Reject and select are indicated by 'REJ' and 'SEL' respectively

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	0.0 +/- 0.0		