抽象代数期末考试

2018年1月2日,星期二

- 1 [15分]. 设R是交换幺环,M = R是秩为1的自由模。证明: 非空子集 $S \subset M$ 是一组基当且仅当 $S = \{a\}$,a是R中的一个可逆元素。
 - 2 [15分]. 找出1800阶交换群的所有可能的同构类型(不需要证明)。
 - 3 [15分]. 记 $K = \mathbb{Q}[\sqrt{2}, \sqrt{3}].$
 - (1) [5分],证明K在Q上的次数等于4。
 - (2) $[5 \beta]$,设 $\alpha \in K \mathbb{Q}$,证明 α 在 \mathbb{Q} 上的次数等于2或者4。
 - (3) [5分],找出一个元素 $\alpha \in K \mathbb{Q}$,它在 \mathbb{Q} 上的次数是4(不需要证明)。
- 4 [10分]. 设 $R = \mathbb{Z}$, $M = R^{(2)}$ 是R上秩为2的自由模。在 $M^* = M \{0\}$ 上定义一个关系~: 对于 $v,v' \in M^*$, $v \sim v'$ 当且仅当存在R-模自同构 $\eta: M \to M$,使得 $\eta(v) = v'$ 。
 - (1) [5分],证明~是一个等价关系。
 - (2) [5分],找出一些两两互不等价的 M^* 中的元素,其代表所有的等价类(不需要证明)。
- 5 [10分]. 设R是交换幺环, $M = R^{(n)}$ 是R上秩为n的自由模, $f: M \to M$ 是一个R-模同态。记 $A \in M_n(R)$ 为f 在M的标准基 $\{e_1, \ldots, e_n\}$ 下对应的矩阵。
 - (1) [5分],证明f是满同态当且仅当 $\det A$ 是R中的可逆元素。
 - (2) [5分],假设 $\det A$ 不是R中的零因子,证明f是单同态。
- 6 [10分]. 设域F的特征为素数p,假设 $a \in F$ 且 $a \notin F^p = \{b^p : b \in F\}$ 。证明: 对于任意的整数 $e \ge 1$, $x^{p^e} a \in F[x]$ 是不可约多项式。
- 7 [10分]. 设d是不含任何非平凡平方因子的整数,且 $d \neq 0,1$ 。记 R_d 是二次数域 $\mathbb{Q}_d = \{a + b\sqrt{d} : a,b \in \mathbb{Q}\}$ 的代数整数环, R_d^{\times} 为 R_d 的单位群。

- (1) [5分],设d < 0,证明 R_d^{\times} 是有限群,并就d的不同取值具体描叙 R_d^{\times} 。
- (2) [5分],设d = 10,找出 R_{10}^{\times} (作为一个Abel群)的生成元并描叙 R_{10}^{\times} 的结构。

说明:如果套用Pell方程的结果,需给出完整证明,否则视为无效。

8 [5分]. 设n > 6。证明:不存在群G,满足 $G^{(1)} \cong S_n$ 。

Proof. Suppose there is such a group G.

Lemma 1: for n > 6, if $\sigma \in S_n$ satisfies $\sigma^2 = 1$ and the conjugacy class containing $\sigma \in S_n$ has the same number of elements as the class of (12), then $\sigma \sim (12)$.

Under the assumption, σ is a product of k 2-cycles $(1 \le k \le \frac{n}{2})$. Prove by counting the numbers of conjugacy classes containing σ and (12) respectively.

Lemma 2: $\operatorname{Aut}(S_n) = \operatorname{Inn}(S_n) \cong S_n$.

The group S_n is generated by 2-cycles $\{(k, k+1) : 1 \le k \le n-1\}$. By Lemma 1, each $f \in \operatorname{Aut}(S_n)$ maps any (k, k+1) to a 2-cycle. Note that, the product of two different 2-cycles has order 2 if and only if they are disjoint, otherwise the order is 3. From this, by an inductive argument one can find a permutation $\tau \in S_n$ such that

$$f((k, k+1)) = (\tau(k), \tau(k+1)), \ \forall k, 1 \le k \le n-1.$$

Then, $f = Ad(\tau)$.

As $G^{(1)}$ is a normal subgroup, by conjugation we have a natural homomorphism $\phi: G \to \operatorname{Aut}(G^{(1)})$. Write $N = \ker \phi$. By Lemma 2,

$$\phi|_{G^{(1)}}:G^{(1)}\to \operatorname{Aut}(G^{(1)})$$

is an isomorphism. Hence, $G = N \rtimes G^{(1)}$. On the other hand, $N = Z_G(G^{(1)})$ commutes with $G^{(1)}$. Thus, $G = N \times G^{(1)}$. Moreover, $N \cong G/G^{(1)}$ is commutative. Therefore, $G^{(1)} = N^{(1)} \times (G^{(1)})^{(1)} = (G^{(1)})^{(1)}$. As $G^{(1)} \cong S_n$, we get $S_n = S_n^{(1)} = A_n$. By counting order, we get a contradiction. \square

9 [5分]. 设p是素数,n是正整数。记 $k = \mathbb{Z}/p\mathbb{Z}$,它是含有p个元素的域。令G是 $GL_n(k)$ 的一个子群,则G有一个在 $V = k^n$ 上的自然作用。假设G是有限p-群,证明G在V上有一个非零的不变向量,也即:存在 $0 \neq v \in V$ 使得

$$q \cdot v = v, \ \forall q \in G.$$

10 [5分]. 设p是奇素数,G是 $GL_n(\mathbb{Z})$ 的子群。假设G是有限p-群,证明G的阶< $p^{\frac{pn}{(p-1)^2}}$ 。

Proof. Write $p^l = |G|, l \in \mathbb{Z}_{>0}$.

Take a primitive root $a \in \{1, 2, ..., p^2\}$ modulo p^2 . By Dirichlet theorem, there exists a prime $q \equiv a \pmod{p^2}$.

Modulo q, there is a natural homomorphism $\phi: G \to \mathrm{GL}_n(\mathbb{Z}/q\mathbb{Z})$. We show that ϕ is injective. For any $I \neq A \in G$, suppose that $A \in \ker \phi$. Then, there exists $k \geq 1$, $Y \in M_n(\mathbb{Z}) - qM_n(\mathbb{Z})$ such that $A = I + q^k Y$. Then,

$$I = A^{p^l} = (I + q^k Y)^{p^l} \equiv I + q^k p^l Y \pmod{q^{k+1}}.$$

Hence, $p^l Y \in qM_n(\mathbb{Z})$. Due to (p,q) = 1 and $Y \in M_n(\mathbb{Z}) - qM_n(\mathbb{Z})$, thus $p^l Y \in M_n(\mathbb{Z}) - qM_n$. This is a contraction.

As ϕ is injective, $G \cong \phi(G) \subset \mathrm{GL}_n(\mathbb{Z}/q\mathbb{Z})$. Counting order, we get

$$p^l | \prod_{0 \le j \le n-1} (q^n - q^j).$$

As $q \equiv a \pmod{p^2}$ is a primitive root modulo p^2 , it is a primitive root module p^k for any $k \geq 1$. Therefore, the order of p-power in $\prod_{0 \leq j \leq n-1} (q^n - q^j)$ is equal to

$$\sum_{k>0} \left[\frac{n}{(p-1)p^k} \right].$$

Thus,

$$l \le \sum_{k>0} \left[\frac{n}{(p-1)p^k} \right] \le \sum_{k>0} \frac{n}{(p-1)p^k} = \frac{np}{(p-1)^2}.$$

This is the conclusion we want to show.