

Automatic Number Plate Recognition

Abhash Jain, Abhishek Srivastava, Ajay V, Darshan Bhandari, Deepak Gupta, Kamal Sharma North Carolina State University

1. Introduction

Automatic Number Plate Recognition using Image Processing and OCR.
ANN was used and exploration of CNNs.

3. Technical Details

The implementation is done in Python 2.7. Division of the project is done into 2 modules:

- 1.Preprocessing of the image.
 - -Conversion of image to gray scale.
 - -Edge detection
 - -Segmentation
- 2. Optical Character Recognition using ANN.

5. Parameter choices

- Batch size = 16,
- Learning rate = 0.01,
- Network architecture = 2 Hidden layers (400, 300) nodes
- Activation function = Sigmoid/ Relu/ Tanh
- Optimization algorithm: Adam/ Gradient Descent

These choices were used as they have proved to be successful in all neural network implementations.

2. Data description

The dataset consists of images of individual alphanumeric characters. The test images consist of images of cars, with the number plate clearly visible and has minimum reflection.

4. Results

The accuracy of each of the modules highly depends on a number of factors, also the performance of ANN is directly proportional to the quality of the segmented images.

The results generated from rigorous testing are as follows:

	Accuracy
Plate Localization	78.9%
Character Segmentation	60%
OCR from the segmented characters	55.66%

6. Conclusions

Neural Networks perform better for image classifications compared to other classification algorithms.

Adam optimization converges faster than gradient descent.

7. References

Bhavin V. Kakani, Divyang Gandhi, Sagar Jani, "Improved OCR based Automatic Vehicle Number Plate Recognition using features trained Neural Network." IEEE-40222, ICCCNT 2017