Project Euler #93: Arithmetic expressions

This problem is a programming version of Problem 93 from projecteuler.net

By using each of the digits from the set, 1, 2, 3, 4, exactly once, and making use of the four arithmetic operations (+, -, *, /) and brackets/parentheses, it is possible to form different positive integer targets.

For example,

$$8 = (4 \times (1+3))/2$$

 $14 = 4 \times (3+1/2)$
 $19 = 4 \times (2+3) - 1$
 $36 = 3 \times 4 \times (2+1)$

Note that concatenations of the digits, like 12 + 34, are not allowed.

Using the set, 1, 2, 3, 4, it is possible to obtain thirty-one different target numbers of which 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering the first non-expressible number.

Given a set of m distinct digits, S, find the largest possible integer n such that each integer from 1 to n is expressible using elements of S and following the above rules. If 1 is also not expressible, output 0 instead.

Input Format

The first line contains m.

The second line contains m space separated integers, the elements of S.

Constraints

$$1 \le m \le 5$$

Output Format

Output a single integer, the answer to the problem.

Sample Input

Sample Output

28

Explanation

Explained in the statement.