Gruppen

Übungsaufgaben

Aufgabe 1: Beweise:

Sei (G, e, \circ) eine Gruppe und a,b beliebige Elemente von G. Dann gilt:

- (a) $\exists ! \ x \in G : a \circ x = b$
- (b) $\exists ! y \in G : y \circ a = b$

Aufgabe 2: Beweise oder widerlege folgende Aussagen:

- (a) $a \circ a = a \circ b \Rightarrow a = b$
- (b) $a \circ a = b \circ b \Rightarrow a = b$.
- (c) $a^5 = a \Rightarrow a^4 = e$
- (d) $a^5 = e$ und $a^4 = e \Rightarrow a = e$
- (e) Gilt für jedes Element a einer Gruppe (G, e, \circ) , mit dem neutralen Element e und $a^2 = e$, so ist (G, e, \circ) eine abelsche Gruppe.
- (f) Gilt auch die Umkehrung der Aussage (e)?

Aufgabe 3: Begründe anhand der Schulkenntnisse, warum folgende Beispiele aus dem Gruppenvortrag tatsächlich Gruppen sind:

- (a) $(\mathbb{Z}, 0, +)$
- (b) $(\mathbb{Q} \setminus \{0\}, 1, \cdot)$

Aufgabe 4: Es sei M eine endliche Menge, G = P(M), wobei P(M) die Potenzmenge bezeichne. Unter welcher Bedingung für \star ist (G, \star, e) eine Gruppe? Begründe.

- (a) $\star = \cap$
- (b) $\star = \cup$
- (c) $\star = \Delta$ (symmetrische Differenz, vgl. Mengenvortrag)

Die Verknüpfung \star verhält sich wie folgt: $A \times B \to A \star B$, wobei die Elemente A,B Teilmengen der Menge M sind und anhand der üblichen Mengenoperationen (Durchschnitt, Vereinigung und symmetrische Differenz) ausgewertet werden können.

Aufgabe 5: Sei (G, \star, e) eine Gruppe und H_1, H_2 zwei Untergruppen von G.

- (a) Zeige, dass $H_1 \cap H_2$ auch eine Untergruppe von G ist.
- (b) Gilt es auch, dass $H_1 \cup H_2$ eine Untergruppe von G ist? Hinweis: Betrachte das Beispiel zu den Untergruppen aus dem Vortrag