RAJALAKSHMI ENGINEERING COLLEGE

RAJALAKSHMINAGAR, THANDALAM - 602105

CS23331- DESIGNANDANALYSISOFALGORITHM

LABORATORYLABMANUAL

Name : Akaash sai K.S
Year / Branch / Section : . 2nd Year / AIML / A
Register No.:231501009
Semester : 3 rd Semester
Academic Year: 2024-2025

INDEX

	WEEK03- DIVIDEANDCONQUER	
3.1	NUMBEROFZEROSINANARRAY	
3.1	MAJORITYELEMENT	
3.3	FINDINGFLOORVALUE	
3.4	TWOELEMENTSSUMTOX	
3.5	IMPLEMENTATIONOFQUICKSORT	
3.3	INT LEWENTATIONOL GOICKSON	
	WEEK04- GREEDYALGORITHMS	
4.1	COIN PROBLEM	
4.2	COOKIESPROBLEM	
4.3	BURGERPROBLEM	
4.4	ARRAYSUMMAXPROBLEM	
4.5	PRODCUTOFARRAYELEMENTS- MIN	
	WEEK05- DYNAMICPROGRAMMING	
5.1	PLAYING W ITHNUMBERS	
5.2	PLAYING W ITHCHESSBOARD	
5.3	LONGESTCOMMONSUBSEQUENCE	
5.4	LONGESTNON- DECREASING	
	SUBSEQUENCE	
	WEEK06- COMPETITIVEPROGRAMMING	
6.1	FINDING DUPLICATES- O(N^2)	
	TIME COMPLEXITY,O(1)SPACECOMPLEXIT Y	
6.2	FINDING DUPLICATES- O(N)TIME	
	COMPLEXITY, O(1) SPACECOMPLEXITY PRINT INTERSECTION OF 2 SORTED	
6.3	ARRAYS-	
	O(M*N)TIMECOMPLEXITY,O(1)	
	SPACE COMPLEXITY	
6.4	PRINT INTERSECTION OF 2 SORTED	
	ARRAYS- O(M+N)TIMECOMPLEXITY,O(1)	
	SPACE COMPLEXITY	
6.5	PAIRW ITHDIFFERENCE- O(N^ 2)TIME COMPLEXITY, O(1)SPACECOMPLEXITY	
	100 12	

6.6	PAIR WITH DIFFERENCE - O(N) TIME COMPLEXITY, O(1) SPACECOMPLEXIT Y	
]

WEEK01- BASICC PROGRAMS

EXPERIMENTNO:1.1DATE:

SWAPPING OF TWO NUMBERS

GIVENTW ONUMBERS, WRITEACPROGRAMTOSW APTHENUMBERS.

FOREXAMPLE

Input	Result
10 20	20 10

PROGRAM

```
#include< stdio.h>in
t main()
{
inta;
int b;
int temp;
scanf("% d % d",&a,&b);
/*swappingthetwonumbers*/
temp=a;
a=b;
b=tem
p;
printf("% d % d",a,b);
}
```

<u>OUTPUT</u>

	Input	Expected	Got	
~	10 20	20 10	20 10	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

EXPERIMENTNO:1.2 DATE:

ELIGIBILITYCRITERIA

WRITEACPROGRAMTOFINDTHEELIGIBILITYOFADMISSIONFORAPROFESSIONA L COURSE BASED ON THE FOLLOWING CRITERIA:

MARKS IN MATHS >= 65 MARKS IN PHYSICS >= 55 MARKSINCHEMISTRY>=50 OR TOTALINALLTHREESUBJECTS>=180

SAMPLETESTCASES:

TEST CASE 1:

INPUT

706080

<u>OUTPUT</u>

THECANDIDATEISELIGIBLE

TESTCASE2:

<u>INPUT</u>	
508080	
<u>OUTPUT</u>	
THECANDIDATEISELIGIBLE	
TESTCASE3INP	
UT	
	
506040	
<u>OUTPUT</u>	
THECANDIDATEISNOTELIGIBLE	
	1
	PROGRAM

```
#include<stdio.h>in
```

```
t main()
{
    intmark1;
    intmark2;
    int total;
    scanf("% d% d% d",&mark1,&mark2,&mark3); total=mark1+mark2+mark3;

    if(mark1>=65 &&mark2>=55 &&mark3>=50 &&total>=180)
    {
        printf("The candidate is eligible");
    }
    else if(total>=180)
    {
        printf("The candidate is eligible");
    }
    else{
        printf("The candidate is not eligible");
    }
}
```

<u>OUTPUT</u>

	Input		Expected	Got
~	70 60 8	0	The candidate is eligible	The candidate is e
~	50 80 80		The candidate is eligible	The candidate is e

Passed all tests! 🗸

EXPERIMENTNO:1.3 DATE:

GROCERYITEMS

MALINI GOES TO BESTSAVE HYPER MARKET TO BUY GROCERY ITEMS. BESTSAVE

HYPERMARKETPROVIDES 10% DISCOUNTONTHEBILLAMOUNTBW HENEVERTH E BILL AMOUNT B IS MORE THAN RS. 2000.

THEBILLAMOUNTBISPASSEDASTHEINPUTTOTHEPROGRAM.THEPROGRAM MUST PRINT THE FINAL AMOUNT A PAYABLE BY MALINI.

INPUTFORMAT:

THEFIRSTLINEDENOTESTHEVALUEOFB.

OUTPUTFORMAT:

THEFIRSTLINECONTAINSTHEVALUEOFTHEFINALPAYABLEAMOUNT A.

EXAMPLEINPUT/

OUTPUT1:INPUT:

1900

OUTPUT:

1900

OUTPUT2:INP	UT:	
3000	<u> </u>	
OUTPUT:		
2700		
		1
		PROGRAM

EXAMPLEINPUT/

```
#include<stdio.h>in
t main()
{
    int b;

    int discount;
    scanf("% d",&b)
    ; if(b>2000)
    {
        discount=b*0.10;

        printf("% d",b- discount);
    }
    else
    printf("% d",b);
}
```

<u>OUTPUT</u>

		Input	Expected	Got	
	~	1900	1900	1900	~
\	~	3000	2700	2700	~
	Passe	d all tes	ts! 🗸		

EXPERIMENTNO:1.4DATE:

BABA'SGIVING PATTERN

BABA IS VERY KIND TO BEGGARS AND EVERY DAY BABA DONATES HALF OF THE

AMOUNTHEHASW HENEVERABEGGARREQUESTSHIM. THEMONEYMLEFTINBA BA'S HAND IS PASSED AS THE INPUT AND THE NUMBER OF BEGGARS B WHO RECEIVED THE

ALMSAREPASSEDASTHEINPUT.THEPROGRAMMUSTPRINTTHEMONEYBABAH ADIN THE BEGINNING OF THE DAY.

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF M.

THESECONDLINEDENOTESTHEVALUEOFB

.

OUTPUTFORMAT:

THEFIRSTLINEDENOTESTHEVALUEOFMONEYW ITHBABAINTHEBEG INNING OF THE DAY.

EXAMPLEINPUT/OUTPUT:

INPUT:

100

2

OUTPUT:

400

EXPLANATION:

Babadonatedtotwobeggars.Sowhenheencounteredsecondbeggarhehad100*2=

Rs.200andwhenheencountered1sthehad200*2=Rs.400.

PROGRAM

```
#include<stdio.h>in
t main()
{
    int money;
    intbeggar;
    int amount;
    scanf("% d % d",&money,&beggar);

    amount=money*beggar*2;
    printf("% d",amount);
}
```

<u>OUTPUT</u>

PUNCTUALITYINCENTIVE

THECEOOFCOMPANYABCINCW ANTEDTOENCOURAGETHEEMPLOYEESCOMING ON TIME TO THE OFFICE. SO HE ANNOUNCED THAT FOR EVERY CONSECUTIVE DAY AN EMPLOYEE COMES ON TIME IN A WEEK (STARTING FROM MONDAY TO SATURDAY), HE WILL BE AWARDED RS.200 MORE THAN THE PREVIOUS DAY AS "PUNCTUALITY INCENTIVE". THE INCENTIVE I FOR THE STARTING DAY (IE ON MONDAY) IS PASSED AS THE INPUT TO THE PROGRAM. THE NUMBER OF DAYS N AN EMPLOYEE CAME ON TIME CONSECUTIVELY STARTING FROM MONDAY IS ALSO PASSED AS THE INPUT. THE PROGRAM MUST CALCULATE AND PRINT THE "PUNCTUALITY INCENTIVE" P OF THE EMPLOYEE.

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF I.
THESECONDLINEDENOTESTHEVALUEOFN

OUTPUTFORMAT:

THEFIRSTLINEDENOTESTHEVALUEOFP.

EXAMPLEINPUT/OUTPUT:

INPUT:

500 3

OUTPUT:

2100

EXPLANATION:

ONMONDAYTHEEMPLOYEERECEIVESRS.500,ONTUESDAYRS.700,ONWEDNE SDAY RS.900

SOTOTAL=RS.2100

PROGRAM

```
#include<stdio.h>in
t main()
{
    int a,b,sum=0;
    scanf("% d",&a);
    scanf("% d",&b);
    for(int i=0;i<b;i++)
    {
        sum+=a
        ;
        a=a+20
        0;
    }
    printf("% d",sum);</pre>
```

<u>OUTPUT</u>

DIVISIBILITYFINDER

TWONUMBERSMANDNAREPASSEDASTHEINPUT.ANUMBERXISALSOPASSEDAS THE INPUT. THE PROGRAM MUST PRINTTHENUMBERSDIVISIBLEBYXFROMNTOM (INCLUSIVE OF M AND N).

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF M
THESECONDLINEDENOTESTHEVALUEOFN
THE THIRD LINE DENOTES THE VALUE OF X

OUTPUTFORMAT:

NUMBERSDIVISIBLEBYXFROMNTOM, WITHEACHNUMBERSEPARATEDBYA SPACE.

BOUNDARYCONDITIONS:

1<=M<=99999 99 M < N <= 9999999 1<= X <= 9999

EXAMPLEINPUT/OUTPUT1:

INPUT:

2

40

7

OUTPUT: 352821147

EXAMPLEINPUT/OUTPUT2:

INPUT:

66

121

11

OUTPUT:

12111099887766

PROGRAM

```
#include<stdio.h>in
t main()
{
    intm;
    int x;
    scanf("% d % d",&m,&n);
    scanf("% d",&x);
    for(int i=n;i>m-1;i--)
    {
        if(i% x==0){
            printf("% d ",i);
        }
    }
}
```

<u>OUTPUT</u>

QUOTIENT&REMAINDER

WRITEACPROGRAMTOFINDTHEQUOTIENT&REMAINDEROFGIVEN INTEGERS

FOREXAMPLE

Input	Result
12	4
3	0

PROGRAM

```
#include< stdio.h>in
t main()
{
    intdd;
    int dr;
    scanf("% d",&dd);
    scanf("% d",&dr);
    int q;
    intrem;
    q=dd/
    dr;
    printf("% d\n",q);
    rem=dd% dr;
    printf("% d\n",rem);
    OUTPUT
```


GREATESTOFALLNUMBERS

WRITEACPROGRAMTOFINDTHEGREATESTNUMBERSOF3INTEGERS.

FOREXAMPLE

Input			Result
10	20	30	30

PROGRAM

```
#include<stdio.h>in
t main()
{
    inta;
    intb;
    int c;
    scanf("% d % d
    % d",&a,&b,&c);

    if(a>b &&a>c){
        printf("% d",a);
    }
    elseif(b>c&&b>a)
        { printf("% d",b);
    }
    else
    printf("% d",c);
    OUTPUT
```

	Input	Expected	Got	
~	10 20 30	30	30	~

Passed all tests! 🗸

EXPERIMENTNO:1.9DATE:

EVENORODD

WRITEACPROGRAMTOFINDTHENUMBERISODDOREVEN?


```
#include<stdio.h>in
t main()
{
    int a;
    scanf("% d",&a);

    if(a% 2==0){
        printf("Even");
    }
    else
    printf("Odd");
}
```

<u>OUTPUT</u>

EXPERIMENTNO:1.10DATE:

FACTORIALOFANUMBER

WRITEAPROGRAMTOFINDTHEFACTORIALOFANUMBER


```
#include<stdio.h>in
t main()
{
    intfactorial;
    factorial=1;
    int n;
    scanf("% d",&n);
    for(inti=1;i<=n;i++)
    {
        factorial=factorial*i;
    }
    printf("% d",factorial);
}</pre>
```

<u>OUTPUT</u>

SUM OF N NATURAL

NUMBERSW RITEACPROGRAMTOFIND THE SUMOFNNAT VR

ALNUMBERS FOR EXAMPLE

PROGRAM

```
#include<stdio.h>
int main(){
    int number;
    scanf("% d",&number);
    int i;
    intsum;
    sum=0;
    for(i=number;i>=0;i--)
    {
        sum=sum+i;
    }
    printf("% d",sum);
}
```

<u>OUTPUT</u>

Passed all tests! 🗸

FIBONACCISERIES

WRITEACPROGRAMTOFINDTHENTHTERMOFFIBONACCISERIES

Input Result 0 1 1 4 3

```
#include<stdio.h>in
t main()
{
inta;
intb;
int c;
intsum;
b=0;
 c=1;
sum = 0;
 scanf("% d",&a);
for(inti=0;i<a- 1;i++)
     { sum=b+d;
     b=c;
     c=su
     m;
if(a==1){
     printf("1");
}else{
     printf("% d", sum);
                                                         PROGRAM
<u>OUTPUT</u>
```

	Input	Expected	Got	
~	0	0	0	~
~	1	1	1	~
~	4	3	3	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

EXPERIMENTNO:1.13DATE:

<u>POW EROFINTEGERS</u>

WRITEACPROGRAMTOFINDTHEPOWEROFINTEGERS.

INPUT: AB OUTPUT: A^BVALUE FOREXAMPLE

PROGRAM

```
#include<stdio.h>
#include<math.h>i
nt main()
{
    inta;
    int b;
    scanf("% d % d",&a,&b);
    int power;
    power=pow(a,b);
    printf("% d",power);
}
```

32

2 5

PRIMEORNONPRIME

WRITEACPROGRAMTOFINDWHETHERNUMBERISPRIMEORNOT?

PROGRAM

```
#include<stdio.h>
int main()
{
    int number;
    scanf("% d",&number);

    if(number% 2==0){
        printf("No Prime");
    }
    else if(number% 3==0){
            printf("No Prime");
    }
    elseif(number% number==0&&number/
            number==1){ printf("Prime");
    }
    else
        printf("Prime"):
```

OUTPU

EXPERIMENTNO:1.15DATE:

REVERSEOFANINTEGER

WRITEACPROGRAMTOFINDTHEREVERSEOFANINTEGER.


```
#include< stdio.h>in
t main()
{
    int n;
    scanf("% d",&n);
    int reverse;
    reverse=0;
    int last;
    last=0;
    while(n!=0)
    { last=n% 10;
    reverse=reverse*10+last; n/
    =10;
    }
    printf("% d",reverse);
}
```

<u>OUTPUT</u>

	Input	Expected	Got	
~	123	321	321	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

WEEK 02 - FINDING TIME COMPLEXITYOFALGORITHMS

EXPERIMENTNO:2.1DATE:

COUNTERMETHOD-WHILELOOP

CONVERTTHEFOLLOWING ALGORITHMINTO APROGRAMAND FIND ITSTIME COMPLEXITY USING THE COUNTER METHOD.

```
voidfunction(int n)
{
    int i=1;
    Ints=1;
    W hile(s<=n)
    {
        I+
        +;S+=I
        ;
     }
}</pre>
```

 ${\underline{\tt NOTE:}}$ NONEED OF COUNTERINC REMENTFOR DECLARATIONS AND SCANF () AN D COUNT VARIABLE PRINTF () STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLEFOREXAMPLE:

INPUT	RESUL T
9	12


```
#include<stdio.h>in
t main(){
intcount=0; int
scanf("% d",&n);
int i=1;
count++
; ints=1;
count++
while(s<=n){ count+
i++;
count++
; s+=1;
count++;
}
count++;
printf("% d",count);
}
```


COUNTERMETHOD-FORLOOP

CONVERTTHEFOLLOWING ALGORITHMINTO APROGRAMAND FIND ITSTIME COMPLEXITY USING THE COUNTER METHOD.

```
voidfunc(intn)
{
    if(n==1)
    {
        printf("*");
    }
    else
    {
        for(inti=1;i<=n;i++)
        {
            for(intj=1;j<=n;j++)
            {
                 printf("*");
                 break;
            }
        }
     }
}</pre>
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF() AND COUNT VARIABLE PRINTF() STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

PROGRAM

```
#include<stdio.h>int
main()
{
         int count=0; int
         scanf("% d",&n);
         if(n==1){
             count++;
             //printf("*");
         }
         //count++;
         else{
             count++;
             for(inti=1;i<=n;i++)</pre>
                  count++;
                  for(intj=1;j<=n;j++)</pre>
                  {
                       count++;
                      //printf("*"); count++;
                      //printf("*");
                      count++;
                       break; count+
                      +;
                  }
                  count++;
             }count++;
        }
        printf("% d",count);
    }
```

<u>O</u>UTPUT

	Input	Expected	Got	
~	2	12	12	~
~	1000	5002	5002	~
~	143	717	717	~

COUNTERMETHOD-FACTORS

CONVERTTHEFOLLOWING ALGORITHMINTO APROGRAMAND FIND ITSTIME COMPLEXITY USING COUNTER METHOD.

```
Factor(num){
{
  for(i=1;i<=num;++i)
  {
    if(num%i==0)
      {
      printf("%d",i);
      }
  }
}</pre>
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()ANDCOUNTER

INPUT: APOSITIVEIN	NTEGERN	
OUTPUT: PRINTTHEV	ALUEOFTHECOUNTERVARIABLE	
		PROGRAM

VARIABLE PRINTF() STATEMENT.

```
#include<stdio.h>i
nt main()
{
    int num;
    scanf("% d",&num);
    int count=0;
    int i;
    for(i=1;i<=num;i++)</pre>
        count++;
        if(num% i==0)
             count++;
            //printf("% d ",i);
            //count++;
        }count++;
    }count++;
    printf("% d",count);
}
```

	Input	Expected	Got	
~	12	31	31	~
~	25	54	54	~
~	4	12	12	~

COUNTERMETHOD-FUNCTION

CONVERTTHEFOLLOWING ALGORITHMINTO APROGRAMAND FIND ITSTIME COMPLEXITY USING COUNTER METHOD.

```
voidfunction(intn)
{
   intc=0;

   for(int i=n/2; i<n; i++)
      for(intj=1;j<n;j=2*j)
      for(intk=1;k<n;k=k*2) c++;
}</pre>
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()ANDCOUNT VARIABLE PRINTF() STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT: PRINTTHEVALUEOFTHECOUNTERVARIABLE

PROGRAM

```
#include<stdio.h>in
t main()
{
    int n;
    scanf("% d",&n);
    int count=0;
    intc=0;
    count+
    +;
    for(inti=n/2;i<n;i++){ count++;</pre>
         for(intj=1;j<n;j=2*j){ count++;</pre>
             for(intk=1;k<n;k=k*2)</pre>
                  { count++;
                  C++;
                  count++;
             count++;
         count++;
    count++;
    printf("% d",count);
}
```

	Input	Expected	Got	
~	4	30	30	~
~	10	212	212	~

CONVERTTHEFOLLOWING ALGORITHMINTO APROGRAMAND FIND ITSTIME COMPLEXITY USING COUNTER METHOD.

COUNTERMETHOD-REVERSE

```
void reverse(int n)
{
  intrev=0,remainder;
  while (n!= 0)
  {
    remainder = n % 10;
    rev=rev*10+remainder;
    n/= 10;
  }
print(rev);
}
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()ANDCOUNT VARIABLE PRINTF() STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT: PRINTTHEVALUEOFTHECOUNTERVARIABLE

PROGRAM

```
#include<stdio.h>in
t main()
{
    int n;
    scanf("% d",&n);
    int count=0;
    intc=0;
    count+
    +;
    for(inti=n/2;i<n;i++){ count++;</pre>
         for(intj=1;j<n;j=2*j){ count+</pre>
             for(intk=1;k<n;k=k*2)</pre>
                  { count++;
                  C++;
                  count++;
             count++;
         count++;
    }
    count++;
    printf("% d",count);
}
```

	Input	Expected	Got	
~	12	11	11	~
~	1234	19	19	~

WEEK03- DIVIDE AND CONQUER

EXPERIMENTNO:3.1DATE:

NUMBEROFZEROSINANARRAY

PROBLEMSTATEMENT

GIVENANARRAYOF1SAND0STHISHASALL1SFIRSTFOLLOWEDBYALL0S.AIMIS TO FIND THE NUMBER OF 0S. WRITE A PROGRAM USING DIVIDE AND CONQUER TO COUNT THE NUMBER OF ZEROES IN THE GIVEN ARRAY.

INPUTFORMAT

FIRSTLINECONTAINSINTEGERM-SIZEOFARRAY

NEXTMLINESCONTAINSMNUMBERS- ELEMENTSOFANARRAY

<u>OUTPUTFORMAT</u>

FIRSTLINECONTAINSINTEGER- NUMBEROFZEROESPRESENTINTHEGIVEN ARRAY.

```
#include<stdio.h>int
main()
{
    int n;
    scanf("% d",&n);
    int arr[n];
    for(int =0;i<n;i++){ scanf("% d",&arr[i]);
    }
    int;
    int count=0; for(i=
    0;i<n;i++)

PROGRAM
```

Inpe	ut Expected	Got	
5 1 1 1 0 0	2	2	~
10 1 1 1 1 1 1 1 1	8	8	-
> S S S S S S S S S S S S S S S S S S S	S	9	~
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0	2	2	

MAJORITYELEMENT

GIVENANARRAYNUMSOFSIZEN, RETURNTHEMAJORITYELEMENT.

THEMAJORITYELEMENTISTHEELEMENTTHATAPPEARSMORETHAN N/2 TIMES

YOUMAYASSUMETHATTHEMAJORITYELEMENTALW AYSEXISTSINTHEARRAY.

EXAMPLE1:

INPUT:NUMS=[3,2,3]

OUTPUT:3

EXAMPLE2:

<u>INPUT:</u>NUMS=[2,2,1,1,1,2,2]

OUTPUT:2

CONSTRAINTS:

N==NUMS.LENGT

FOREXAMPLE:

FUREXAMPLE.		
Input	Result	
3 3 2 3	3	
7 2 2 1 1 1 2 2	2	


```
#include<stdio.h>in
t main(){
    int n;
    scanf("% d",&n);
     int a[n];
    for(int i=0;i<n;i++)</pre>
         { scanf("% d",&a[i]);
    for(inti=0;i<n;i++){ int</pre>
         count=0;
         for(intj=0;j<n;j++)</pre>
              \{ if(a[i] == a[j]) \}
                   count++;
         }
         if(count>n/2){
              printf("% d",a[i]); break;
    }
}
```



```
#include<stdio.h>in
 main()
    int n;
    scanf("% d",&n);
int arr[n];
ERIMENITNIO (3,131) (ATE)
        scanf("% d",&arr[i]);
    int key=0;
    scanf("% d",&key);
                              FINDING FLOORVALUE
    int floor=arr[0];
PROBLÉMSTAITENT:
          if(arr[j]>floor &&arr[j]<key)</pre>
```

GIVEN A SORTED ARRAY AND A VALUE X, THE FLOOR OF X IS THE LARGEST ELEMENTINARRAYSMALLERTHANOREQUALTOX.W RITEDIVIDEAND CONQUER ALGORITHM TO FIND FLOOR OF X.

INPUTFORMAT

- FIRSTLINECONTAINSINTEGERN- SIZEOFARRAY
- NEXTNLINESCONTAINSNNUMBERS- ELEMENTSOFANARRAY
- LASTLINECONTAINSINTEGERX- VALUEFORX

OUTPUTFORMAT

FIRSTLINECONTAINSINTEGER-FLOORVALUEFOR X

PROGRAM

```
floor=arr[j];
}
printf("% d",floor);
}
```

<u>OUTPUT</u>

	Input	Expected	Got	
*	6 1 2 8 10 12 19 5	2	2	•
*	5 10 22 85 108 129 100	85	85	*
•	7 3 5 7 9 11 13 15	9	9	•

NOTE:WRITEADIVIDEANDCONQUERSOLUTION

INPUTFORMAT

- FIRSTLINECONTAINSINTEGERN SIZEOFARRAY
- NEXTNLINESCONTAINSNNUMBERS- ELEMENTSOFANARRAY
- LASTLINECONTAINSINTEGERX- SUMVALUE

OUTPUTFORMAT

- FIRSTLINECONTAINSINTEGER- ELEMENT1
- SECONDLINECONTAINSINTEGER –
 ELEMENT2(ELEMENT1ANDELEMENTS2 TOGETHER SUMS TO VALUE
 " X")

PROGRAM

OUTPUT

		Input	Expected	Got	
	~	4	4	4	~
		2	10	10	
		4			
		8			
\		10			
		14			
	~	5	No	No	~
		2			
		4			
		6			
		8			
		10			
		100			

EXPERIMENTNO:3.5DATE:

IMPLEMENTATIONOFQUICKSORT

WRITEAPROGRAMTOIMPLEMENTTHEQUICKSORTALGORITHM

INPUTFORMAT:

- THEFIRSTLINECONTAINSTHENOOFELEMENTSINTHELIST- N
- THENEXTNLINESCONTAINTHEELEMENTS.

OUTPUT:

SORTEDLISTOFELEMENTS

```
FOREXAMPLE:
                   Result
Input
5
                   12 34 67 78 98
67 34 12 98 78
    #include<stdio.h>int
    main() {
                                PROGRAM
       int n;
       scanf("("ndj"=&nj); n- i- 1; j++)
       int arr[n];
    {
       arr[i+1]; arr[i+1] =
                 temp;
       for(inti=0;i< n-1;i++){
           }
```

	Input	Expected	Got	
~	5 67 34 12 98 78	12 34 67 78 98	12 34 67 78 98	*
~	10 1 56 78 90 32 56 11 10 90 114	1 10 11 32 56 56 78 90 90 114	1 10 11 32 56 56 78 90 90 114	~
~	12 9 8 7 6 5 4 3 2 1 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	*

WEEK04- GREEDY ALGORITHMS

EXPERIMENTNO:4.1DATE:

COIN PROBLEM

WRITEAPROGRAMTOTAKEVALUEVANDWEWANTTOMAKECHANGEFORVRS, AND WE HAVE INFINITE SUPPLY OF EACH OF THE DENOMINATIONS IN INDIAN CURRENCY, I.E., WE HAVE INFINITE SUPPLY OF { 1, 2, 5, 10, 20, 50, 100, 500, 1000} VALUED COINS/NOTES, WHAT IS THE MINIMUM NUMBER OF COINS AND/OR NOTES NEEDED TO MAKE THE CHANGE.

INPUTFORMAT:

TAKEANINTEGERFROMSTDIN.

OUTPUTFORMAT:

PRINTTHEINTEGERW HICHISCHANGEOFTHENUMBER.

EXAMPLEINPUT:

64

```
#include<stdio.h>in
t main()
{
    int value;
    scanf("% d",&value);

    int currency[]={1000,500,100,50,20,10,5,2,1};
    int totalcurrency;

    totalcurrency=sizeof(currency)/sizeof(currency[0]);

int count=0;

for(int i=0;i<totalcurrency;i++)
{
        if(value==0)
        {
            break;
        }
        count=count+(value/currency[i]);

        value=value% currency[i];
    }
    printf("% d",count);
}</pre>
```

	Input	Expected	Got	
~	49	5	5	~
D	ed all tes	L-1		•

COOKIESPROBLEM

ASSUMEYOUAREANAW ESOMEPARENTANDW ANTTOG IVEYOURCHILDRENSO ME COOKIES. BUT, YOU SHOULD GIVE EACH CHILD AT MOST ONE COOKIE.

EACHCHILDIHASAGREEDFACTORG[I], WHICHISTHEMINIMUMSIZEOFACOOKI E THAT THE CHILD WILL BE CONTENT WITH; AND EACH COOKIE J HAS A SIZE S[J]. IF

S[J]>=G[I],WECANASSIGNTHECOOKIEJTOTHECHILDI,ANDTHECHILDIWILLBE CONTENT.YOURGOALISTOMAXIMIZETHENUMBEROFYOURCONTENTCHILDRE N AND OUTPUT THE MAXIMUM NUMBER.

EXAMPLE1:

INPUT:

3

123

2

11

OUTPUT:

1

EXPLANATION:

- YOUHAVE3CHILDRENAND2COOKIES.THEGREEDFACTORSOF3CHILDRE N ARE 1, 2, 3.
- ANDEVENTHOUGHYOUHAVE2COOKIES, SINCETHEIRSIZEISBOTH1, YOU
 COULD ONLY MAKE THE CHILD WHOSE GREED FACTOR IS 1
 CONTENT.

• YOUNEEDTOOUTPUT1.

CONSTRAINTS:

1<=G.LENGTH<=3*10^4

0<=S.LENGTH<=3*10^4

1<=G[I],S[J]<=2³¹-1


```
#include<stdio.h>int
main() {
    int n;
    scanf("% d",&n);
    intgreedfactor[n];
    for (int i = 0; i < n; i++)
         { scanf("% d", & greedfactor[i]);
    }
    intm; scanf("% d",
    &m);
    intcookiesize[m];
    for (int j = 0; j < m; j++)
         { scanf("% d", & cookiesize[j]);
    for(inti=0;i<n-1;i++){
         for(intj=0;j<n- i- 1;j++){</pre>
              if(greedfactor[j]>greedfactor[j+1]){ int temp =
                   greedfactor[j]; greedfactor[j] =
                   greedfactor[j + 1]; greedfactor[j + 1] =
                  temp;
              }
         }
    }
    for(inti=0;i < m-1;i++){
         for(intj=0;j<m-i-1;j++){
              if(cookiesize[j]>cookiesize[j+1]){ int temp
                   = cookiesize[j]; cookiesize[j] =
                   cookiesize[j + 1]; cookiesize[j + 1] =
                  temp;
              }
         }
    }
    inti=0;
    intj=0;
    intcontents=0;
    while(i<n&&j<m){
         if(cookiesize[j]>=greedfactor[i]){ contents++;
              j++;
         } j+
         +;
    printf("% d\n", contents);
    return 0;
}
```


EXPERIMENTNO:4.3DATE:

BURGERPROBLEM

APERSONNEEDSTOEATBURGERS.EACHBURGERCONTAINSACOUNTOFCALO RIE.

AFTEREATING THEBURGER, THEPERSONNEEDSTORUNADISTANCETOBURNO UT HIS CALORIES. IF HE HAS EATEN I BURGERS WITH C CALORIES EACH, THEN HE HAS

TORUNATLEAST3I*CKILOMETERSTOBURNOUTTHECALORIES.FOREXAMPLE, IF HE ATE 3 BURGERS WITH THE COUNT OF CALORIE IN THE ORDER: [1, 3, 2], THE KILOMETERS HE NEEDS TO RUN ARE (30 * 1) + (31 * 3) + (32 * 2) = 1 + 9 +

18 = 28.BUT

THISISNOTTHEMINIMUM, SONEED TO TRYOUT OTHER ORDERSOF CONSUMPTION AND CHOOSE THE MINIMUM VALUE. DETERMINE THE MINIMUM DISTANCE. HE NEEDS TO RUN. NOTE: HE CAN EAT BURGER IN ANY ORDER AND USE AN EFFICIENT SORTING ALGORITHM. APPLY GREEDY APPROACH TO SOLVE THE PROBLEM.

INPUTFORMAT

- FIRSTLINECONTAINSTHENUMBEROFBURGERS
- SECONDLINECONTAINSCALORIESOFEACHBURGERWHICHI SN SPACE- SEPARATE INTEGERS

<u>OUTPUTFORMAT</u>

 PRINT:MINIMUMNUMBEROFKILOMETERSNEEDEDTORUNTOBURNO UT THE CALORIES

SAMPLEINPUT

3

5107

SAMPLEOUTPUT

76


```
#include<stdio.h>#i
nclude<math.h>int
main(){
    int n=0;
    scanf("% d",&n);
    int a[n];
    for(int i=0;i<n;i++)</pre>
         { scanf("% d",&a[i]);
    for(int i=0;i<n-1;i++)
         \{ for(intj=0;j< n-i-1;j++) \}
              if(a[j]>a[j+1])
                   { inttemp=a[j];
                   a[j] = a[j+1];
                   a[j+1]=temp;
              }
         }
    }
    intj=n- 1;
    intsum=0;
    for(int i=0;i<n;i++){ sum=sum+((</pre>
         pow(n,i))*a[j]); j--;
    printf("% d", sum);
}
```

	Test	Input	Expected	Got	
~	Test Case 1	3 1 3 2	18	18	~
~	Test Case 2	4 7 4 9 6	389	389	~
~	Test Case 3	3 5 10 7	76	76	~

```
#include<stdio.h>in
t main(){
    int n;
    scanf("% d",&n);
    int arr[n];
    for(int i=0;i<n;i++)
    {
        scanf("% d ",&arr[i]);
    }
    for(int i=0;i<n-1;i++)
    {</pre>
```

EXPERIMENTNO:4.4DATE:	

<u>ARRAYSUMMAXPROBLEM</u>

GIVENANARRAYOFNINTEGER, WEHAVETOMAXIMIZETHESUMOFARR[I]*I, WHERE I IS THE INDEX OF THE ELEMENT (I = 0, 1, 2, ..., N). WRITE AN ALGORITHM BASED ON GREEDY TECHNIQUE WITH A COMPLEXITY O(NLOGN).

<u>INPUTFORMAT:</u>

- FIRSTLINESPECIFIESTHENUMBEROFELEMENTS- N
- THENEXTNLINESCONTAINTHEARRAYELEMENTS.

OUTPUTFORMAT:

MAXIMUMARRAYSUMTOBEPRINTED.

SAMPLEINPUT:

5

25340

SAMPLEOUTPUT:

40

PROGRAM

<u>OUTPUT</u>

	Input	Expected	Got	
~	5	40	40	~
	2			
	5			
	3			
	4			
	0			
~	10	191	191	~
	2			
	2			
	2			
	4			
	4			
	3			
	3			
	5			
	5			
	5			
~	2	45	45	~
	45			
	3			

```
#include
     <stdio.h>#include<st
     dlib.h>int main() {
         int n;
         scanf("% d",&n);
         intarrayOne[n];
         int arrayTwo[n];
         for (int i=0;i<n;i++) {
              scanf("% d",&arrayOne[i]);
         for (int i=0;i<n;i++) {
              scanf("% d",&arrayTwo[i]);
         for (int i=0;i<n-1;i++) {
              for (int j=0;j<n- i- 1;j++) {
                  if(arrayOne[j]>arrayOne[j+1]){ int
                       temp = arrayOne[j];
                       arrayOne[j] = arrayOne[j+1];
                       arrayOne[j+1]=temp;
              }
         for (int i=0;i<n-1;i++) {
              for (int j=0;j<n- i- 1;j++) {
1
                  if (arrayTwo[j]<arrayTwo[j+1]) {</pre>
```


PRODCUTOFARRAYELEMENTS- MIN

GIVENTWOARRAYSARRAY_ONE[]ANDARRAY_TWO[]OFSAMESIZEN.WENEED TO FIRST REARRANGE THE ARRAYS SUCH THAT THE SUM OF THE PRODUCT OF PAIRS(1

ELEMENTFROMEACH)ISMINIMUM.THATISSUM(A[I]*B[I])FORALLIISMINIMUM.


```
int temp=arrayTwo[j];
arrayTwo[j]=arrayTwo[j+1]
; arrayTwo[j+1]=temp;
```

```
}
int minimumsum = 0;
for (int i = 0; i < n; i++) {
         minimumsum=minimumsum+arrayOne[i]*arrayTwo[i];
}
printf("% d\n", minimumsum);
}</pre>
```

	Input	Expected	Got	
~	3	28	28	~
	1			
	2			
	3			
	4			
	5			
	6			
~	4	22	22	~
	7			
	5			
	1			
	2			
	1			
	3			
	4			
	1			
~	5	590	590	~
	20			
	10			
	30			
	10			
	40			
	8			
	9			
	4			
	3			
	10			

WEEK - 05 PLAYINGWITHNUMBERS

EXPERIMENTNO:5.1DATE:

PLAYING WITHNUMBERS

PLAYING WITHNUMBERS:

RAM AND SITA ARE PLAYING WITH NUMBERS BY GIVING PUZZLES TO EACH OTHER.NOW ITW ASRAMTERM, SOHEGAVESITAAPOSITIVEINTEGER' N' AND TW ONUMBERS 1AND 3. HEASKEDHERTOFIND THE POSSIBLEW AYSBYW HICH THE NUMBER N CAN BE REPRESENTED USING 1 AND 3. WRITE ANY EFFICIENT ALGORITHM TO FIND THE POSSIBLE WAYS.

EXAMPLE1:

INPUT:

6

OUTPUT:

6

EXPLANATION:

THEREARE6W AYSTO6REPRESENTNUMBERW ITH1AND3

1+1+1+1+1+1

3+3

1+1+1+3

1+1+3+1

1+3+1+1

3+1+1+1

INPUTFORMAT

FIRSTLINECONTAINSTHENUMBERN

UU IPU IFURMAT				
PRINT:				
THENUMBEROFPOSSIBLEWAYS' I	N' C	ANBEREPRE	ESENTEDUSIN	G1AND3
SAMPLEINPUT 6				
<u>SAMPLEOUTPUT</u>				
6				
				PROGRAM

```
#include<stdio.h>int
main() {
    long n;
    scanf("% ld",&n); if
    (n < 0) {
         return 0;
    longarray[n+1];
    array[0] = 1;
    array[1] = 1;
    array[2] = 1;
    array[3] = 2;
    for (long i = 4; i <= n; i++) {
        array[i] = array[i - 1] + array[i - 3];
    printf("% ld\n", array[n]); return
    0;
}
```

OUTPUT

	Input	Expected	Got	
~	6	6	6	~
~	25	8641	8641	~
~	100	24382819596721629	24382819596721629	~

EXPERIMENTNO:5.2DATE:

PLAYING WITHCHESSBOARDP

LAYING WITH CHESSBOARD:

RAM IS GIVEN WITH AN N*N CHESSBOARD WITH EACH CELL WITH A MONETARY VALUE. RAM STANDS AT THE (0,0), THAT THE POSITION OF THE TOP LEFT WHITE ROOK. HE IS BEEN GIVEN A TASK TO REACH THE BOTTOM RIGHT BLACK ROOK POSITION (N- 1, N- 1) CONSTRAINED THAT HE NEEDS TO REACH THE POSITION BY

TRAVELING THEMAXIMUMMONETARYPATHUNDERTHECONDITIONTHATHECA N ONLY TRAVEL ONE STEP RIGHT OR ONE STEP DOWN THE BOARD. HELP RAM TO ACHIEVE IT BY PROVIDING AN EFFICIENT DP ALGORITHM.

EXAMPLE:

INPUT

3

124

234

871

OUTPUT:

19

EXPLANATION:

TOTALLYTHEREW ILLBE6PATHSAMONG THATTHEOPTIMALIS

OPTIMAL PATH VALUE:1+2+8+7+1=19

INPUTFORMAT

- FIRSTLINECONTAINSTHEINTEGERN
- THENEXTNLINESCONTAINTHEN*NCHESSBOARDVALUES

OUTPUTFORMAT

PRINTMAXIMUMMONETARYVALUEOFTHE PATH

PROGRAM

```
#include<stdio.h>
intmaxMonetaryPath(intn,intboard[n][n])
    intdp[n][n];
    dp[0][0]=board[0][0];
    for(intj=1;j<n;j++){</pre>
         dp[0][j]=dp[0][j-1]+board[0][j];
    }
    for(inti=1;i<n;i++){</pre>
         dp[i][0]=dp[i-1][0]+board[i][0];
    }
    for(inti=1;i<n;i++){for(intj=1;j<n;j++)
         {
              dp[i][j] = board[i][j] + (dp[i-1][j] > dp[i][j-1]?dp[i-1][j] : dp[i][j-1]);
         }
    }
    returndp[n-1][n-1];
}
intmain(){
    int n;
    scanf("% d",&n);
    intboard[n][n];
    for(inti=0;i< n;i++){for(intj=0;j< n;j+
         +){
              scanf("% d", & board[i][j]);
         }
    }
    intmaxValue=maxMonetaryPath(n,board);
    printf("% d\n", maxValue);
    return0;
}
<u>OUTPUT</u>
```

		Input	Expected	Got	
	~	3	19	19	~
		1 2 4			
		2 3 4			
		8 7 1			
	~	3	12	12	~
		1 3 1			
\setminus		1 5 1			
		4 2 1			
	~	4	28	28	~
		1 1 3 4			
	\	1 5 7 8			
		2 3 4 6			
		1 6 9 0			

LONGESTCOMMONSUBSEQUENCE

GIVENTW OSTRING SFINDTHELENG THOFTHECOMMONLONG EST SUBSEQUENCE (NEED NOT BE CONTIGUOUS) BETWEEN THE TWO.

EXAMPLE:

S1:GGTABE

S2:TG ATASB

S1:	AG	G	Т	Α	В	
S2:	GX	Т	X	Α	Υ	В

THELENG THIS4

SOLVING ITUSING DYNAMIC PROGRAMMING


```
int n = strlen(s2);
    intdp[m+1][n+1];
    for(inti=0;i<=m;i++)</pre>
         \{for(intj=0;j<=n;j++)\}
              if(i=0||j=0){dp[i][j] = 0}
              elseif(s1[i-1]==s2[j-1]){
                  dp[i][j]=dp[i-1][j-1]+1;
              }else{
                  dp[i][j] = (dp[i-1][j] > dp[i][j-1])?dp[i-1][j]:
    dp[i][j-1];
              }
         }
    returndp[m][n];
}
intmain(){
    chars1[100],s2[100];
    fgets(s1, sizeof(s1), stdin); s1[strcspn(s1,
    "\n")]='\0';
    fgets(s2, sizeof(s2), stdin);
    s2[strcspn(s2,"\n")]='\0';
    intlength=longestCommonSubsequence(s1,s2);
    printf("% d\n", length);
    return0;
}
```

OUTPUT

	Input	Expected	Got	
~	aab azb	2	2	~
~	ABCD ABCD	4	4	~

EXPERIMENTNO:5.4DATE:
LONGESTNON- DECREASING SUBSEQUENCE
PROBLEMSTATEMENT:
FINDTHELENGTHOFTHELONGESTNON- DECREASING SUBSEQUENCEINAGIVEN SEQUENCE.
EXAMPLE:
<u>INPUT:</u>
9
SEQUENCE:[-1,3,4,5,2,2,2,3]
THESUBSEQUENCEIS[- 1,2,2,2,2,3]
OUTPUT:
<u>OUTPUT:</u>
6
<u>PROGRAM</u>
ì

```
int maximumlength=0;
    for(inti=0;i<n;i++){</pre>
         if(dp[i]>maximumlength)
             { maximumlength=dp[i];
    returnmaximumlength;
    intmain()
{
    int n;
    scanf("% d",&n);
    intarr[n];
    for(inti=0;i<n;i++)</pre>
         scanf("% d",&arr[i]);
    intlength=longseq(arr,n);
    printf("% d\n",length);
    return0;
}
```

	Input	Expected	Got	
~	9 -1 3 4 5 2 2 2 2 3	6	6	~
~	7 1 2 2 4 5 7 6	6	6	~

WEEK06- COMPETITIVEPROGRAMMING

EXPERIMENT NO :6.1DATE :	
FINDING DUPLICATES- O(N^2)TIMECOMPLEXITY, O(1)SPACECOM	ИPLEXITY
FINDDUPLICATEINARRAY.	
GIVENAREADONLYARRAYOFNINTEGERSBETWEEN1ANDN,FII	NDONE
NUMBER THAT REPEATS.	
INPUTFORMAT:	
FIRSTLINE- NUMBEROFELEMENTS	
NUMEO NELEMENTO	
NLINES- N ELEMENTS#include<stdio.h>int</stdio.h>	
main() QUTPUTFORMAT:	
int n i count:	

scanf("% d",&n);

ELENMENT () THATISREPEATED

<u>PROGRAM</u>


```
{
    scanf("% d",&arr[i]);
}
for(i=0;i<n;i++){ count=0;
    for(int j=0;j<n;j++)
        { if(arr[i]==arr[j]){
            count=count+1;
        }
    }
if(count>1){
    printf("% d\n",arr[i]);
    break;
}
}
```

	Input	Expected	Got	
~	11 10 9 7 6 5 1 2 3 8 4 7	7	7	~
~	5 1 2 3 4 4	4	4	~
~	5 1 1 2 3 4	1	1	~

```
#include<stdio.h>int
main()
EXPERIMENTING: Scape(TE:
    "% d",&n); int
    arr[n];
    for(i=0;i<n;i++)
   FINDstant(Used 1084) (ON) TIMECOMPLEXITY, O(1) SPACECOMPLEXITY
```

FINDDUPLICATEINARRAY.

• GIVENAREADONLYARRAYOFNINTEGERSBETWEEN1ANDN, FINDONE NUMBER THAT REPEATS.

INPUTFORMAT:

- FIRSTLINE- NUMBEROFELEMENTS
- NLINES- N ELEMENTS

OUTPUTFORMAT:

• ELEMENTX-THATISREPEATED

<u>OUTPUT</u>

	Input	Expected	Got	
~	11 10 9 7 6 5 1 2 3 8 4 7	7	7	*
~	5 1 2 3 4 4	4	4	~
	5 1 1 2 3 4	1	1	~

Passed all tests! 🗸

PRINTINTERSECTIONOF2SORTEDARRAYSO(M*N)TIMECOMPLEXITY,O(1)SPACE
COMPLEXITY

FIND THEINTERSECTION OF TWO SORTED ARRAYS OR IN OTHERWORDS,

• GIVEN2SORTEDARRAYS, FINDALLTHEELEMENTSW HICHOCCURINBOT H THE ARRAYS.

INPUTFORMAT

- · THEFIRSTLINECONTAINST, THENUMBEROFTEST CASES. FOLLOW INGTLINES CONTAIN:
- 1.LINE1CONTAINSN1, FOLLOW EDBYN1INTEGERSOFTHEFIRSTARRAY
- 2.LINE2CONTAINSN2, FOLLOW EDBYN2INTEG ERSOFTHESECONDARRAY

OUTPUTFORMAT

• THEINTERSECTIONOFTHEARRAYSINASINGLELINE

EXAMPLE INPUT: 1 3101757 627101557246 OUTPUT:

INPUT:

1057

1

6123456

216

OUTPUT:

16

Input	Result
1 3 10 17 57 6 2 7 10 15 57 246	10 57

FOREXA

PROGRAM

```
#include<stdio.h>
voidfindIntersection(intarr1[],intv1,intarr2[],intv2){ int i = 0, j = 0;
     while (i < v1\&\&j < v2)
         {if(arr1[i] = = arr2[j]){
               printf("% d", arr1[i]); i++;
         }elseif(arr1[i] < arr2[j]){ i++;</pre>
         }else{
              j++;
     printf("\n");
}
intmain(){
     int T;
     scanf("% d",&T);
     while(T--){
         int v1;
         scanf("% d",&v1);
          int arr1[v1];
         for(inti=0;i<v1;i++){ scanf("% d",
               &arr1[i]);
          }
          int v2;
         scanf("% d",&v2);
          int arr2[v2];
         for(inti=0;i<v2;i++){ scanf("% d",
               &arr2[i]);
          findIntersection(arr1, v1, arr2, v2);
    return0;
OUTPUT
```

	Input	Expected	Got	
~	1 3 10 17 57 6 2 7 10 15 57 246	10 57	10 57	~
*	1 6 1 2 3 4 5 6 2 1 6	1 6	1 6	~

Passed all tests! 🗸

EXPERIMENTNO:6.4DATE:

PRINTINTERSECTIONOF2SORTEDARRAYSO(M+N)TIMECOMPLEXITY,O(1)SPACE
COMPLEXITY

FIND THEINTERSECTION OF TWO SORTED ARRAYS OR IN OTHERWORDS,

• GIVEN2SORTEDARRAYS, FINDALLTHEELEMENTSW HICHOCCURINBOT H THE ARRAYS.

INPUTFORMAT

- $\cdot \ \, \text{THEFIRSTLINECONTAINST}, \text{THENUMBEROFTESTCASES}. \text{FOLLOWINGTLINES} \\ \text{CONTAIN:} \\$
- 1.LINE1CONTAINSN1, FOLLOW EDBYN1INTEGERSOFTHEFIRSTARRAY
- 2.LINE2CONTAINSN2, FOLLOW EDBYN2INTEG ERSOFTHESECONDARRAY

OUTPUTFORMAT

THEINTERSECTIONOFTHEARRAYSINASING LELINE

EXAMPLE

INPUT:

1

3101757

627101557246

OUTPUT:

1057

INPUT:

1

6123456

216

OUTPUT:

```
#include < stdio.h>
      oidfindIntersection(intarr1[],intn1,intarr2[],intn2){    int i = 0, j = 0;
         while (i < n1 \&\&j < n2) \{
              if (arr1[i] == arr2[j]) {
                   printf("% d",arr1[i]); i++;
                   j++;
              }elseif(arr1[i] < arr2[j]){ i++;</pre>
              } else {
                   j++;
         printf("\n");
     nt main() {
         int T;
         scanf("% d",&T);
         while (T--) {
              int n1;
              scanf("% d",&n1);
              int arr1[n1];
              for(inti=0;i<n1;i++){ scanf("% d",
                   &arr1[i]);
              int n2;
                                                                                              16
     FOREXA¾₄₽ըҢ́:"% d",&n2);
              int arr2[n2];
Input
              for(inti=0;i<n2;Resultinf("%d",
                   &arr2[i]);
              findIntersection (arr 1,7n1, arr2, n2);
3 10 1<sup>3</sup>7 57
         return 0;
2 7<del>044P45</del> 57 246
```

1

6

PROGRAM

	Input	Expected	Got	
~	1 3 10 17 57 6 2 7 10 15 57 246	10 57	10 57	~
~	1 6 1 2 3 4 5 6 2 1 6	1 6	1 6	~

Passed all tests! 🗸

#include<stdio.h>int main()

EXPERIMENTNO:6.5DATE:
PAIRW ITHDIFFERENCE- O(N^ 2)TIMECOMPLEXITY, O(1)SPACECOMPLEXITY
GIVEN AN ARRAY A OF SORTED INTEGERS AND ANOTHER NON NEGATIVE INTEGERK, FINDIFTHEREEXISTS 2 INDICESIAND JSUCHTHATA[J]-A[I]=K, I!=J.
INPUTFORMAT:
• FIRSTLINEN- NUMBEROFELEMENTSINANARRAY
NEXTNLINES- NELEMENTSINTHEARRAY
K- NON- NEGATIVEINTEGER
OUTPUTFORMAT:
• 1- IFPAIREXISTS
• 0- IFNOPAIREXISTS
EXPLANATIONFORTHEGIVENSAMPLETESTCASE:
YESAS5- 1=4
SORETURN1.
<u>FOREXAMPLE</u>


```
int n;
     scanf("% d",&n);
     int array[n];
     for(inti=0;i<n;i++)</pre>
          scanf("% d",&array[i]);
     }
     int d;
     scanf("% d",&d);
     int count=0;
     for(int i=0;i<n;i++)</pre>
           { for(intj=0;j<n;j++){
                if(i!=j){}
                     if(array[j]- array[i] == d)
                          { count=count+1;
                }
          }
     }
     if(count==0){
          printf("0");
     }else printf("1");
}
```

	Input	Expected	Got	
~	3 1 3 5 4	1	1	*
~	10 1 4 6 8 12 14 15 20 21 25 1	1	1	~
~	10 1 2 3 5 11 14 16 24 28 29 0	0	0	*
+	10 0 2 3 7 13 14 15 20 24 25 10	1	1	~

Passed all tests! 🗸

PAIRW ITHD IFFERENCE- O(N)TIMECOMPLEXITY, O(1)SPACECOMPLEXITY

GIVENANARRAYAOFSORTEDINTEGERSANDANOTHERNONNEGATIVEINTEGERK, FIND IF THERE EXISTS 2 INDICES I AND J SUCH THAT A[J] - A[I] = K, I!= J.

INPUTFORMAT:

- FIRSTLINEN- NUMBEROFELEMENTSINANARRAY
- NEXTNLINES- NELEMENTSINTHEARRAY
- K-NON-NEGATIVEINTEGER

OUTPUTFORMAT

- 1- IFPAIREXISTS
- 0- IFNOPAIREXISTS

EXPLANATIONFORTHEGIVENSAMPLETESTCASE:

YES AS 5 - 1 = 4

SORETURN1.


```
#include<stdio.h>i
nt main()
{
    int n;
    scanf("% d",&n);

    int array[n];
    for(inti=0;i<n;i++)
}</pre>
```

```
scanf("% d",&array[i]);
    }
    int d;
     scanf("% d",&d);
     int count=0;
    for(int i=0;i<n;i++)</pre>
          { for(intj=0;j<n;j++){
               if(i!=j){}
                    if(array[j]-array[i]==d){}
                         count=count+1;
                    }
               }
         }
    }
    if(count==0)
{
         printf("0");
    }
       else
              printf("1");
}
```

<u>OUTPUT</u>

	Input	Expected	Got	
*	3 1 3 5 4	1	1	~
~	10 1 4 6 8 12 14 15 20 21 25 1	1	1	~
*	10 1 2 3 5 11 14 16 24 28 29 0	0	0	~
~	10 0 2 3 7 13 14 15 20 24 25 10	1	1	~

Passed all tests! 🗸

