

Al-Powered Learning Assistant

Janhavi Revdekar - 47 Naina Sachdev - 48 Pratham Matkar - 66

Predict difficulty level ,detects stress level, and tutor for answer questions, explain concepts, and generate quizzes.

Difficulty Level Prediction

Predict Difficulty Level time spent retry attempts 6 videos watched articles read quizzes attempted interactive exercises 6 subject History **Predict** Predicted Difficulty Level: Strong (Easy to Understand)

User Inputs

Features Used:

time_spent, retry_attempts, videos_watched, articles_read, quizzes_attempted, interactive_exercises, subject

ML Models Used

- Random Forest Classifier
- Target: difficulty_level (0 = Strong, 1 = Weak)
- Preprocessing:
 - Label Encoding for categorical features
 - StandardScaler for numeric features
 - Parameters: class_weight='balanced', random_state=42
- Accuracy: 97% Cross Validation: 96.8%

Stress Level Prediction

Predict Stress Level

Time Spent (hours)

10

Retry Attempts

3

Subject

History

Avg Past Quiz Score

20

Predict Stress

Moderate

Inputs

time_spent, retry_attempts, past_quiz_score

ML Models Used

- Gradient boosting regressor
- Target: stress_level (0 = Low, 1 = Moderate, 2 = High)
- Preprocessing:
 Rule-based labeling for stress level
 Label Encoding for subject
- Parameters: n_estimators=100, random_state=42
- MAE:0.0041 RMSE: 0.011
- Evaluation: confusion matrix used

Study Tutor

Objective

Use ML models to dynamically explain concepts, answer questions, and generate quizzes based on a user-defined topic

ML MODELS USED

Concept Summarization:

- Model: t5-small
- Task: Summarize topic content retrieved from Wikipedia
- Purpose: Create concise, readable explanations

Question Answering (QA):

- Model: distilbert-base-uncased-distilled-squad
- Task: Extractive QA from summarized concept text
- Purpose: Generate direct answers to user queries

■ ×

Study Tutor

Ask a Question what is regression Response For example, in a classification algorithm that filters emails, the input is an incoming email, and the output is the folder in which to file the email. In contrast, regression is used for tasks such as predicting a person's height based on factors like age and genetics or forecasting future temperatures based on historical data. Similarity learning is an area of supervised machine learning closely related to regression and classification, but the goal is to learn from examples using a similarity function that measures how similar or related two objects are. Explain a Concept classification Response Classification algorithms are used when the outputs are restricted to a limited set of values, while regression algorithms are used when the outputs can take any numerical value within a range. Types of supervised-learning algorithms include active I...

Model

Semantic Search / Matching:

- Model: sentence-transformers/all-MiniLM-L6-v2
- Task: Embed questions and text for similarity search
- Purpose: Identify relevant content for QA input

Quiz Generation:

- Logic: Rule-based templates on top of summarized content
- Potential upgrade: Fine-tune generative model in future

Pipeline Flow:

- User Sets Topic →
- Wikipedia Article Retrieved →
- Summarized using T5 →
- QA and Quiz Generated using extractive + semantic
 ML

• **E** ×

Final Outputs

TechStack and Evaluation

Tech Stack:

• Backend: Flask (API)

• Frontend: React + Vite

ML Frameworks: Scikit-learn,

HuggingFace Transformers

STRESS LEVEL MODEL

Rounded Classification Report:						
	precision	recall	f1-score	support		
0	1.00	1.00	1.00	173		
V	1.00	1.00	1.00	1/3		
1	1.00	1.00	1.00	21		
2	1.00	1.00	1.00	6		
accuracy			1.00	200		
macro avg	1.00	1.00	1.00	200		
weighted avg	1.00	1.00	1.00	200		

DIFFICULTY LEVEL MODEL

Model: Random Forest (Balanced)							
Accuracy: 0.97							
	precision	recall	f1-score	support			
0	0.98	0.99	0.98	168			
1	0.93	0.88	0.90	32			
accuracy			0.97	200			
macro avg	0.95	0.93	0.94	200			
weighted avg	0.97	0.97	0.97	200			
Cross-validation Accuracy: 0.968							