Getting started:

1)Installation

>git clone https://github.com/wdklotz/simulinac XXX

Use the command above to clone the latest version into the directory XXX.

2)run the sample

make shure you use pyhton 3 cd to XXX >python simu.py [<input-file>]

3) if it works - bingo!

4)Input (*.yml)

default sample input-file is

"XXX/yml/25_09_2017_versuche_70_200MeV.yml" This input file is loaded with lots of comments which explain how to set up input for simu.py. Be aware: its syntax is YAML which is very picky with indentation!

edit filepath at the end of simu.py if you want other default input files.

5)Features

the new version is loaded with new features:

5.1)flags:

most of them are commented. if so they are set to their default values which are shown in brackets {....}. if you want to activate uncomment! most important are:

map: **if** False the linear T3D mappings are used for cavities **else** nonlinear mapping through the cavities is used

sigma: **if** True beam size is calculated from sigma matrix formalism **else** from twiss functions

express: **if** True quadrupoles are replaced by fast implementations of thin-lense matrices **else** the thin-lens is calculated as triplet product D*KICK*D

5.2)sections:

two sections are defined in the sample LE and HE like

- [&<section alias><space><name>,&<section alias><space><name>,....] only HE is used in the sample.

5.3)parameters:

physics and lattice parameter definitions like:

- <name>: &<parameter alias><space><value> | <value> | *<parameter alias> some parameter names (see the sample input) are recognized by the program and used as starting conditions. they are: aperture, betax_i, alfax_i, emitx_i, betay_i, alfay_i, emity_i, sigmaz_i, dp2p_i, frequency and Tkin. others are of free choice to be used in element definitions

5.4)elements:

definition of elements

```
1st line - <ID>: &<element alias> #any ID you like
2nd line - type: <CLASS> #defines the lattice element
attribute 1 - <key>: *<parameter alias> | <value>
```

:

attribute N - <key>: *<parameter alias> | <value> all attribute keys with exception - sec: *<section alias> are mandatory and depend on the element CLASS

5.4.1) element CLASS definitions available

I NOP unit D Drift

QF thick F quadrupole with **slices** option QD thick D quadrupole with **slices** option

RFG RF gap with **mapping** options (ref. T3D and A.Shishlo)

TTFG TimeTransitionFactorGap (ref. A.Shishlo) using superfish data

RFC RF cavity as triple product D*RFG*D

GAP Simple zero length RF-gap w/o (s,dp/p) (ref. Dr.Tiede & T.Wrangler)

M Marker

SD T3D sector dipole in x-plane
RD T3D rectangular dipole x-plane
WD T3D dipole wedge x-plane

QFth thin F quadrupole (only available as QF slice)
QDth thin D quadrupole (only available as QD slice)
QFthx thin express F quadrupole (only available as QF slice)
QDthx thin express D quadrupole (only available as QD slice)

- 5.4.2)CLASS "RFG" has a **mapping** attribute which can be either "base" or "simple". "base" is a simplified non-linear map assuming constant time-transition factors. "simple" is a linear map and gives same result as T3D matrix. Both options are only active if flag **map** is activated.
- 5.4.3)CLASS "QF" and "QD" have a **slices** attribute which can take values [1,...,N]. **if** N=1 the thick T3D matrix is used **elif** N>1 the quadrupole is cut into N slices of thin-lens quadrupoles either as D*KICK*D or "express"
- 5.4.4)CLASS "TTFG" has a **SFdata** attribute which has to be set to the name of the file containing the field profile data from superfish

6)segments:

a segment is defined as

- <seg name>: #any name you like

- *<element alias>- *<element alias>

7)lattice:

1st line - title: <any text> # must be present as 1st line!

lines below - [N, <seg name>,<seg name>,...,<seg name>]
lines below - [N, <seg name>,<seg name>,...,<seg name>]

number N expands the segment list behind N times