Vysoké učení technické v Brně Fakulta informačných technologií

Elektronika pre informačné technológie 2018/2019

Semestrálny projekt

Tomáš Ďuriš (xduris05)

Zadanie: Stanovte U_{R3} a I_{R3} . Použite metódu postupného zjednodušovania obvodu

sk.	$\mathrm{U}_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$
D	105	85	420	980	330	280	310	710	240	200

Riešenie metodou postupného zjedodušovania Označíme si uzly pre transfiguráciu (trojuholník \Rightarrow hviezda):

Prevedieme transfiguráciu a spojenie R_1 a R_2 :

$$R_{12} = R_1 + R_2 = 420 + 980 = 1400$$

$$R_A = \frac{R_4 * R_5}{R_4 + R_6 + R_5} = \frac{280 * 310}{280 + 710 + 310} = \frac{863}{13}\Omega$$

$$R_B = \frac{R_4 * R_6}{R_4 + R_6 + R_5} = \frac{280 * 710}{280 + 710 + 310} = \frac{1988}{13}\Omega$$

$$R_C = \frac{R_6 * R_5}{R_4 + R_6 + R_5} = \frac{710 * 310}{280 + 710 + 310} = \frac{2201}{13}\Omega$$

Sériove spojenie R_{12} s R_A a R_3 s R_B a Paralelne spojenie R_7 s R_8

$$R_{12A} = R_{12} + R_A = 1400 + \frac{863}{13} = \frac{19063}{13}\Omega$$

$$R_{3B} = R_3 + R_A = 330 + \frac{1988}{13} = \frac{6278}{13}\Omega$$

$$R_{78} = \frac{R_7 * R_8}{R_7 + R_8} = \frac{240 * 200}{240 + 200} = \frac{1200}{11}\Omega$$

Paralelne spojenie R_{12A} s R_{3B} a spojenie zdrojov napätia

$$R_{123AB} = \frac{R_{12A} * R_{3B}}{R_{12A} + R_{3B}} = \frac{\frac{19063}{13} * \frac{6278}{13}}{\frac{19063}{13} + \frac{6278}{13}} = 363,2833\Omega$$

$$U_{12} = U_1 + U_2 = 105 + 85 = 190V$$

Sériové spojenie R_{123AB} s R_{78} s R_C

$$R_{EKV} = R_{123AB} + R_{78} + R_C = 363,2833 + \frac{1200}{11} + \frac{2201}{13} = 641,6819$$

Celkový prúd I:

$$I = \frac{U}{R_{EKV}} = \frac{190}{641,6819} = 0,2961A$$

Teraz môžme spätne dopočítať prúd a napätie na rezistore R_3

$$U_{123AB} = I * R_{123AB} = 0,2961 * 363,2833 = 107,5682V$$

$$I_{R3} \equiv I_{RB} \equiv I_{R3B} = \frac{U_{123AB}}{R_{3B}} = \frac{107,5682}{\frac{6278}{13}} = 0,22274A$$

$$U_{R3} = I * R_3 = 0.2227 * 330 = 73,5055V$$

Zadanie:

Stanovte U_{R_1} a I_{R_1} . Použite metódu Théveninovej vety.

ĺ	sk.	U [V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$
	С	200	70	220	630	240	450

Použijeme metódu Théveninovej vety

Vypočítame si prvú smyčku:

$$-450I_1 - 240I_2 + 200 = 0$$
$$-45I_1 - 24I_2 + 20 = 0$$

Vypočítame si druhú smyčku:

$$-220(I_1 - I_2) - 630(I_1 - I_2) + 240I_2 = 0$$
$$-220I_1 + 220I_2 - 630I_1 + 630I_2 + 240I_2 = 0$$
$$-850I_1 + 1090I_2 = 0$$
$$-85I_1 + 109I_2 = 0$$

Zistíme I_2 :

$$45I_1 + 24I_2 = 20$$
$$-85I_1 + 109I_2 = 0$$
$$3825I_1 + 2040I_2 = 1700$$
$$-3825I_1 + 4905I_2 = 0$$
$$6945I_2 = 1700$$
$$I_2 = 0,2448A$$

Výpočet I_1 :

$$45I_1 + 24 * 0, 2448 = 20$$
$$45I_1 + 5, 8752 = 20$$
$$45I_1 = 14, 1248$$
$$I_1 = 0, 3139A$$

Odstránime cielený rezistor a počítame ďalej Výpočet V_{th} :

$$-V_{th} + 220(I_1 - I_2) = 0$$

$$V_{th} = 220(I_1 - I_2)$$

$$V_{th} = 220 * 0,0691$$

$$V_{th} = 15,202V$$

Zjednodušíme obvod:

$$R_{345} = R_3 + \frac{R_4 * R_5}{R_4 + R_5}$$

$$R_{345} = \frac{18090}{23}$$

$$R_{th} = \frac{\frac{18090}{23} * 220}{\frac{18090}{23} + 220}$$

$$R_{th} = 171,9136\Omega$$

Vypočítame prúd I:

$$I_{R1} = \frac{V_{th}}{R_{th} + R_l}$$
$$I_{R1} = 0,0628A$$

A ako posledné vypočítame napätie U:

$$U_{R1} = R * I$$
$$U_{R1} = 4,396V$$

Zadanie:

Stanovte napätie U_{R_3} a prúd I_{R_3} . Použite metódu uzlových napätí (U_A, U_B, U_C)

sk	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
В	150	0.7	0.8	49	45	61	34	34

Označíme si jednotlivé uzly a zapíšeme rovnicu pre každý uzol

$$A: I_{R1} - I_1 + I_{R3} - I_{R2} = 0$$
$$B: I_1 - I_{R3} + I_2 - I_{R4} = 0$$
$$C: I_{R4} - I_2 - I_{R5} = 0$$

Vyjadríme si prúdy na odporoch podľa ohmovho zákona

$$A: -I_1 + \frac{U - U_A}{R_1} + \frac{U_B - U_A}{R_3} - \frac{U_A}{R_2} = 0$$

$$B: I_1 - \frac{U_B - U_A}{R_3} + I_2 - \frac{U_B - U_C}{R_4} = 0$$

$$C: -I_2 - \frac{U_C}{R_5} + \frac{U_B - U_C}{R_4} = 0$$

Dosadíme si čísla do rovníc

$$A: -0.7 + \frac{150 - U_A}{49} + \frac{U_B - U_A}{61} - \frac{U_A}{45} = 0$$

$$B: 0.7 - \frac{U_B - U_A}{61} + 0.8 - \frac{U_B - U_C}{34} = 0$$

$$C: -0.8 - \frac{U_C}{34} + \frac{U_C - U_C}{34} = 0$$

Po odstránení zlomkov a sčítaní rovnakých neznámych dostaneme výsledne rovnice v tvare

$$A:7939U_A - 2205U_B = 317596, 5$$

$$B:34U_A - 95U_B + 61U_C = -3111$$

$$C: U_B - 2U_C = 27, 2$$

Po výpočte 3 rovníc o 3 neznámych Cramerovým pravidlom dostaneme výsledné hodnoty

$$U_A = 58,3750$$

$$U_B = 66, 1418$$

$$U_C = 19,4709$$

Vieme, že $U_{R3}=U_B-U_A$ tak
že

$$U_{R3} = 7,7688V$$

A ako posledné vypočítame \mathcal{I}_{R3}

$$I_{R3} = \frac{U_{R3}}{R_3}$$

$$I_{R3} = 0,1273A$$

Pre napájacie napätie platí: $U_1 = U_1 * sin(2\pi ft), u_2 = U_2 * sin(2\Pi ft)$. Vo vzťahu pre napätie $u_{c2} = U_{c2} * sin(2\pi ft + \lambda_{c2})$ určte $|U_{c2}|$ a λ_{c2} . Použite metódu smyčkových prúdov.

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$L_1[mH]$	$L_2[mH]$	$C_1[\mu F]$	$C_2[\mu F]$	f[Hz]
D	45	50	13	15	13	180	90	210	75	85

Vyjadríme si impedanciu cievok a kondenzátorov

$$Z_{c1} = -\frac{j}{\omega * C_1}$$

$$Z_{c1} = -8,9127j\Omega$$

$$Z_{c2} = -\frac{j}{\omega * C_2}$$

$$Z_{c2} = -24,9377j\Omega$$

$$Z_{L1} = j * \omega * L_1$$

$$Z_{L1} = 96,1327j\Omega$$

$$Z_{L2} = j * \omega * L_2$$

$$Z_{L2} = 48,0664j\Omega$$

$$U_1 = U_1 * sin(2\pi f \frac{\pi}{2\omega})$$

$$U_1 = U_1 * sin(90)$$

Zostavime Rovnice pre smyčky

$$A: -U_1 + I_A * Z_{L1} + I_A * R_2 + I_A + Z_{c2} - I_B * R_2 - I_B * Z_{L1} - I_C * Z_{c2} = 0$$

$$B: U2 + I_B * Z_{L2} + I_B * R_2 + I_B * Z_{L1} + I_B * Z_{c1} + I_B * R_1 - I_A * Z_{L1} - I_A * R_2 - I_C * Z_{l2} = 0$$

$$C: I_C * R_3 + I_C * Z_{c2} + I_C * Z_{L2} - I_A * Z_{c2} - I_B * Z_{L2} = 0$$

Napätie na zdroji dáme na druhú stranu a vyjmeme I_A, I_B, I_C pred zátvorku a usporiadame

$$I_A(Z_{L1} + R_2 + Z_{c2}) - I_B(R_2 + Z_{L1}) - I_C(Z_{c2}) = U1$$

$$-I_A(Z_{L1} - R_2) + I_B(Z_{L2} + R_2 + Z_{L1} + Z_{c1} + R_1) - I_C(Z_{L2}) = -U2$$

$$-I_A(Z_{c2}) - I_B(Z_{c2}) + I_C(R_3 + Z_{c2} + Z_{L2}) = 0$$

Zostavíme maticu a vypočítame I_A, I_C, I_{c2}

$$\begin{pmatrix} 15 + 71, 195j & -(15 + 96, 1327j) & 24, 9377j \\ -(15 + 96, 1327j) & 28 + 135, 2864j & -48, 0664j \\ 24, 9377j & -48, 0664j & 13 + 23, 1287j \end{pmatrix} \begin{pmatrix} 45 \\ -50 \\ 0 \end{pmatrix}$$

$$I_A = 0, 5563 - 0, 9889j$$

$$I_C = -0, 4135 + 0, 3571j$$

$$I_{c2} = I_A - I_C = 0, 9698 - 1, 346j$$

Vypočítame $|U_{c2}|$ a φ_{c2}

$$U_{c2} = I_{c2} * Z_{c2} = (0,9698 - 1,346j) * (-24,9377j) = -33.5661 - 24.6634j$$
$$|U_{c2}| = \sqrt{(33.5661)^2 + (24,4389)^2} = 41,5205V$$
$$\varphi_{c2} = -arctg(\frac{ImgU_{c2}}{ReU_{c2}}) * \frac{\pi}{180} = -arctg(\frac{33.5661}{24.4389}) * \frac{\pi}{180} = -0,01643rad$$

Výsledky

Př.	Sk.	Výsledeky
1	D	$U_{R_3} = 73,5055V, I_{R_3} = 0,2227A$
2	С	$U_{R_1} = 4,396V, I_{R_1} = 0,0628A$
3	В	$U_{R_3} = 7,7688V, I_{R_3} = 0,1273A$
4	D	$ U_{C_2} = 41,5205V, \varphi_{C_2} = -0,01643rad$
5	С	??