Sorting Techniques

- **>** Bubble sort
- ► Insertion sort
- Selection sort

Sorting Algorithm

 Sorting takes an unordered collection and makes it an ordered one.

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pairwise comparisons and swapping

1	2	3	4	5	6
77	42	35	12	101	5

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pairwise comparisons and swapping

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pairwise comparisons and swapping

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pairwise comparisons and swapping

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pairwise comparisons and swapping

No need to swap

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pairwise comparisons and swapping

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pairwise comparisons and swapping

Largest value correctly placed

Repeat "Bubble Up" How Many Times?

- If we have N elements...
- And if each time we bubble an element, we place it in its correct location...
- Then we repeat the "bubble up" process N 1 times.
- This guarantees we'll correctly place all N elements.

"Bubbling" All the Elements

Bubble Sort

BubbleSORT(A,N): it will sort the elements of an array A with N elements in ascending order.

```
    Repeat step 2 to 3 for I = 1 to n-1 do
    Repeat step 3 for J = 1 to n-i do
    if (A[j+1] < A[j]),then:
        swap A[j] and A[j+1].
        [End of if structure]
        [End of inner for loop]</li>
    End of outer for loop]
    EXIT
```

Analysis:

```
In general, if the list has n elements, we will have to do (n-1) + (n-2) \dots + 2 + 1 = (n-1) n / 2 comparisons.
=O(n^2)
```

Insertion Sort

INSERTION_SORT (A, N):it will sort the elements of an array A with N elements in ascending order.

Insertion Sort Example

- Sort: 34 8 64 51 32 21
- 34 8 64 51 32 21
 - The algorithm sees that 8 is smaller than 34 so it swaps.
- 8 34 64 51 32 21
 - 51 is smaller than 64, so they swap.
- 8 34 51 64 32 21
- 8 34 51 64 **32 21** (from previous slide)
 - The algorithm sees 32 as another smaller number and moves it to its appropriate location between 8 and 34.
- 8 32 34 51 64 **21**
 - The algorithm sees 21 as another smaller number and moves into between 8 and 32.
- Final sorted numbers:
- 8 21 32 34 51 64

Insertion Sort Complexity

- This Sorting algorithm is frequently used when n is very small.
- Worst case occurs when array is in reverse order. The inner loop must use K 1 comparisons.

$$f(n) = 1 + 2 + 3 + \dots + (n-1)$$

$$= n(n-1)/2$$

$$= O(n^2)$$

• In average case, there will be approximately (K – 1)/2 comparisons in the inner loop.

$$f(n) = (1 + 2 + 3 + + (n - 1))/2$$

= $n(n - 1)/4$
= $O(n^2)$

Selection Sort

This algorithm sorts an array A with N elements. SELECTION(A, N)it will sort the elements of an array A with N elements in ascending order.

```
Repeat steps 2 and 3 for k=1 to N-1:
1.
         Call MIN(A, K, N, LOC).
         [Interchange A[k] and A[LOC]]
       Set Temp:= A[k].
       A[k] := A[LOC]
       A[LOC]:=Temp.
     [End of step for Loop.]
     Exit.
4.
MIN(A, K, N, LOC).
     Set MIN := A[K] and LOC:= K.
1.
     Repeat for j=k+1 to N:
          If Min>A[j], then: Set Min:= A[j] and LOC:=J.
      [End of if structure]
   Return.
```

Method 2: Selection sort (1 algo)

SELECTION(A, N)it will sort the elements of an array A with N elements in ascending order.

```
1.Repeat steps 2 and 3 for k=1 to N-1:
2. Set MIN:=a[K] and Set LOC:=k
3. Repeat step 4 for j=k+1 to N:
    If Min>A[j], then:
      Set Min:= A[j] and LOC:=J.
    [End of if structure]
         [end of inner for loop]
     [Interchange A[k] and A[LOC]]
        Set Temp:= A[k].
       A[k] := A[LOC]
       A[LOC]:=Temp.
     [End of outer for Loop.]
```

EXIT.

6.

Selection Sort Example

1	2	3	4	9	6	8
1	2	3	4	6	9	8
1	2	3	4	6	8	9
1	2	3	4	6	8	9

Selection Sort Complexity

The number f(n) of comparisons in selection sort algorithm is independent of original order of elements. There are n-1 comparisons during pass 1 to find the smallest element, n-2 comparisons during pass 2 to find the second smallest element, and so on.

Accordingly,

$$f(n) = (n-1)+(n-2)+----+2+1$$

$$= n(n-1)/2$$

$$= O(n^2)$$

The f(n) holds the same value $O(n^2)$ both for worst case and average case.

Comparing the Algorithms

	Best Case	Average Case	Worst Case
Bubble Sort	O(<i>n</i>)	$O(n^2)$	$O(n^2)$
Insertion Sort	O(<i>n</i>)	$O(n^2)$	$O(n^2)$
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

Thank You