Bondad de ajuste

Contents

1	Introduccion	1
2	R-cuadrado en regresión de Poisson	1
3	Contraste para un grupo de coeficientes	3
4	Contraste de bondad de ajuste	3

1 Introduccion

Se estima el siguiente modelo de regresión logística:

```
d = read.csv("datos/Aircraft_Damage.csv")
d$bomber = factor(d$bomber, labels = c("A4","A6"))
m1 = glm(damage ~ bomber + load + experience, data = d, family = poisson)
summary(m1)
```

```
##
## Call:
## glm(formula = damage ~ bomber + load + experience, family = poisson,
##
       data = d
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.406023
                          0.877489 -0.463
                                             0.6436
## bomberA6
               0.568772
                          0.504372
                                     1.128
                                             0.2595
## load
               0.165425
                          0.067541
                                     2.449
                                             0.0143 *
## experience -0.013522
                          0.008281
                                    -1.633
                                             0.1025
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 53.883 on 29 degrees of freedom
## Residual deviance: 25.953 on 26 degrees of freedom
## AIC: 87.649
##
## Number of Fisher Scoring iterations: 5
```

El objetivo es analizar como de bueno es el modelo de regresión logística que se ha estimado.

2 R-cuadrado en regresión de Poisson

Se puede definir un \mathbb{R}^2 de manera similar a como se hizo en regresión lineal. La manera habitual es:

$$R^2 = 1 - \frac{D_1}{D_0}$$

donde D es la desviación del modelo (deviance en inglés). Se calcula como el doble de la verosimilitud del modelo calculada en los parámetros estimados (en valor absoluto):

$$D = |2loqL(\hat{\beta})|$$

$$logL(\hat{\beta}) = \sum_{i=1}^{n} (-\lambda_i + y_i log(\lambda_i) - log(y_i!))$$

$$\lambda_i = exp(x_i^T \beta)$$

Se definen dos desviaciones:

[1] 0.2596219

- D1: la desviación del modelo analizado.
- D0: la desviación del modelo en el que solo se estima β_0 .

```
source("funciones/poisson funciones.R")
(D1 = abs(2*poisson_logL(coef(m1),d$damage,model.matrix(m1))) )
## [1] 79.64922
m0 = glm(damage ~ 1, data = d, family = poisson)
summary(m0)
##
## Call:
  glm(formula = damage ~ 1, family = poisson, data = d)
##
##
              Estimate Std. Error z value Pr(>|z|)
   (Intercept) 0.4274
                            0.1474
                                     2.899 0.00374 **
##
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 53.883 on 29
                                    degrees of freedom
## Residual deviance: 53.883 on 29 degrees of freedom
  AIC: 109.58
##
## Number of Fisher Scoring iterations: 5
(DO = abs(2*poisson_logL(coef(m0),d$damage,model.matrix(m0))) )
## [1] 107.5791
(R2 = 1 - D1/D0)
```

Si $R^2 \approx 1$ el modelo se ajusta muy bien a los datos, y $R^2 \approx 0$ implica un mal ajuste. Es decir, $R^2 \approx 0$ significa que la verosimilitud de ambos modelos es muy parecida, luego $\beta_1 \approx \beta_2 \approx \beta_k \approx 0$.

3 Contraste para un grupo de coeficientes

Supongamos que tenemos dos modelos:

$$\lambda_i = exp(x_i^T \beta)$$

$$\lambda_{A,i} = exp(x_{A,i}^T \beta_A)$$

donde β_A es un subconjunto de β . Supongamos que $dim(\beta_A) = m$ y $dim(\beta) = k$, con m < k. Si β_B representa los parámetros que están en β pero no están en β_A , se puede resolver el siguiente contraste:

$$H_0: \beta_B = 0, \quad H_1: \beta_B \neq 0$$

En el caso de que la hipótesis nula sea cierta, se tiene que:

$$G = D_A - D_1 \sim \chi_{k-m}^2$$

donde D_1 es la desviación del modelo con parámetros β y D_A es la desviación del modelo con parámetros β_A .

- Si G ≥ χ²_α se rechaza la hipótesis nula.
 Si G < χ²_α no se rechaza la hipótesis nula.

Es decir, valores grandes del estadístico significa que la verosimilitud de ambos modelos es muy diferente, luego $\beta_B \neq 0$. Para valores pequeños de G, ambos modelos son muy parecidos, luego los regresores β_B no aportan nada al modelo, es decir, $\beta_B = 0$.

Por ejemplo, queremos resolver el contraste con hipótesis nula $\beta_2 = \beta_3 = 0$:

```
mA = glm(damage ~ bomber, data = d, family = poisson)
(DA = abs(2*poisson logL(coef(mA),d$damage,model.matrix(mA)))))
## [1] 91.97952
(G = DA - D1)
## [1] 12.3303
# valor crítico del contraste
k = length(coef(m1))
m = length(coef(mA))
qchisq(0.95, df = k-m)
```

[1] 5.991465

Luego se rechaza la hipótesis nula.

Contraste de bondad de ajuste 4

Utilizando el contraste anterior entre el modelo con todos los regresores y el modelo con solo β_0 se puede analizar la bondad del modelo. Es decir, se puede contrastar:

- H0: el modelo estimado NO es adecuado $(\beta_1 = \beta_2 = \cdots = \beta_k = 0)$
- H1: el modelo estimado es adecuado.

El estadístico del contraste es

$$G = D_0 - D_1 \sim \chi_{k-1}^2$$

En este caso:

```
(G = D0 - D1)
## [1] 27.9299
```

k = length(coef(m1))
(pvalor = 1-pchisq(G, k-1))

[1] 3.757192e-06

Luego el modelo es muy adecuado.