以 case2 为例

1.统一所有子 PST 的接口名称,优先统一为源 Port,比如(VP1,VP2,VP3,VSS),如果不存在 Port,那么同一位源 Net(比如 VN4)。

2.识别最终的 merged PST 一共有几列,可用可不用,因为根据下面的方法,应该最后合并 出来的列数就是最终的列数,不过可以作为检验用。

3.取用 pst 文件最上面的两个 PST, 以列数多的为优先 (自动分析哪张表列数多)

Situation1:如果是包含关系,即一个表所有的列数包含了另一列,那么取列数较多的那个表作为基准表,找出两个表中同时有效的行(只需要比较同时存在状态的部分)。

Situation2: 如果是交叉关系,一个表中有 VP1,VN4,VSS(PST of System/CPU_2),另一个表中有 VP1,VP2,VSS(PST of System/CPU_1),这个时候只需要比较 VP1,如果以"PST of System/CPU_2"为基准表,那么根据"PST of System/CPU_1"删除不适用状态后,将 VP2,VSS 加到表后面,注意这里的 VP2 和 VSS 加在后面要注意根据 VP1 在后面加状态。4.每次取上一次的基准表和新的一个表进行合并操作,最后得到 merged PST。

端口(Supply Port)上的供电状态(Supply State)。如为上述设计中的 VP1, VP2, VSS, VP2, CPU_1/VP1_1, CPU_1/VP2_1, CPU_1/VSS, CPU_1/ALU/VP2_1_1, CPU_1/VSS, PMG/VP3_1, PMG/VSS 等端口定义供电状态。对于每个设计模块的供电状态,可以简单的通过表 1-5来描述。以表 1 为例,具体的 UPF 命令描述可参见附录部分。

		7010-2701
PMG/pt3	VP3_1 V P3	VSS
S1	ON	OFF
S2	HV	OFF
S3	LV	OFF
\$4	OFF	OFF

表 1. PST of System/PMG

pt	VN1VPI	VN2 VP2	VN3 VP3	GN1 VSS
S1	ON	ON	ON	OFF
S2	HV	ON	LV	OFF
S3	LV	HV	LV	OFF
S4	ON	OFF	HV	OFF
S5	OFF	OFF	OFF	OFF

表 2. PST of System

CPU_1/pt1	VP1_1 VP	VN2_1 V P 2	GN2 VSS
S1	ON	ON	OFF
S2	ON	HV	OFF
S3	LV	HV	OFF
S4	OFF	HV	OFF
S5	OFF	ON	OFF
S6	OFF	OFF	OFF

表 3. PST of System/CPU_1

CPU_1/ALU/pt1_1	VP2_1_1 VP2	VSS			
S1	ON	OFF			
S2	HV	OFF			
\$3	OFF	OFF			

表 4. PST of System/CPU_1/ALU

	VP (
CPU_2/pt2	VP1_2 \ \	VP4_2 V /\/4	vss
S1	ON	LV	OFF
S2	ON	OFF	OFF
S3	HV	LV	OFF
S4	LV	LV	OFF
S5	OFF	OFF	OFF

表 5. PST of System/CPU_2

③新布在,得到到表与上上次基准整党全。样

		V				
	A			1		
Pt	VPI	VPZ	VP3	VSS		
SI	ON	ON	0 //	OFF		和美多公子
82	LV	HV	LV	OFF	+-1	The things
53	OFF	OFF	OFF	OFF		一个学

② 生现 situation 2 本本(交叉情况)

(21) 笔比较重量的部分,由为军出现交叉情况,则两个表种要性的消除无效状态操作。

(2)将另张惠公并到基准意中,注意 基根据的有重量,伏忌进行合并,比如这 里是根据 VPI和VSS相同的条件下,加入WY4

(23)此时从基准表依次取得全局。 纸取基准表 Pt=S1

SION ON ON OFF

局有上VPI 与VSS取相同状态的另一张表的 VN4的状态,发现有2套

CPU_2/pt2	VP1_2/P (VP4_2 / /\//	vss
S1	ON	LV	OFF
S2 /	ON	OFF	OFF

合辩

海意区里在农村Pt SiSzSin,进行重新编号。

最后,将merged PST中 (ON-1,2) 进行替换。 LV-0.6 OFT-0+f

得结果。

VP1	VP2	VN4	VP3	VSS
1.2	1.2	off	1.2	off
off	off	off	off	off
1.2	1.2	0.6	1.2	off
0.6	1.0	0.6	0.6	off

表 6. Merged PST