Black-Scholes

Marco e Victor

```
library(tidyverse)
library(gridExtra)
```

European Options

Total Value

Total.value = Intrinsic.value + Time.value

Intrinsic value: the maximum of zero and the payoff from the option if it were exercised immediately.

```
Call: max(S-K,0)
Put: max(K-S,0)
```

Time value: The excess of an option's value over its intrinsic value

Moneyness

- At-the-money (**ATM**): S = K
- In-the-money (ITM): Option has intrinsic value > 0
- Out-of-the-money (**OOTM**): Option has instrinsic value = 0

```
# Assuming a $50 strike price (k)
k <- 50
# We define a vector of potential terminal spot prices (st)
st <- 0:100

# PO = Payoff
# We calculate the potential call and put options payoffs
c_po <- pmax(st - k, 0)

p_po <- pmax(k-st,0)

po <- data.frame(st, c_po, p_po)</pre>
```

Graph of each combination of option type

```
lcpo <- ggplot(po, aes(x = st, y = c_po)) +
  geom_line(color = "blue", linewidth = 1) +
  ggtitle("Long Call Payoff")</pre>
```

```
lppo <- ggplot(po, aes(x = st, y = p_po)) +
    geom_line(color = "blue",linewidth = 1) +
    ggtitle("Long Put Payoff")

scpo <- ggplot(po, aes(x = st, y = -c_po)) +
    geom_line(color = "magenta", linewidth = 1) +
    ggtitle("Short Call Payoff")

sppo <- ggplot(po, aes(x = st, y = -p_po)) +
    geom_line(color = "magenta", linewidth = 1) +
    ggtitle("Short Put Payoff")

grid.arrange(lcpo, lppo, scpo, sppo, nrow = 2)</pre>
```


Assume call and put costs

```
call = 10
put = 10
c_np <- c_po - call
p_np <- p_po - put
np <- data.frame(st, c_np, p_np)

lcnp <- ggplot(np, aes(x = st, y = c_po)) +
  geom_line(color = "blue", linewidth = 1) +
  geom_line(y = c_np, linetype = "dashed") +</pre>
```

```
ggtitle("Long Call Payoff & Net Profit") +
  ylim(-10, 50)
lpnp \leftarrow ggplot(np, aes(x = st, y = p_po)) +
  geom_line(color = "blue", linewidth = 1) +
  geom_line(y = p_np, linetype = "dashed") +
  ggtitle("Long Put Payoff & Net Profit") +
  ylim(-10, 50)
scnp \leftarrow ggplot(np, aes(x = st, y = -c_po)) +
  geom_line(color = "magenta", linewidth = 1) +
  geom_line(y = -c_np, linetype = "dashed") +
  ggtitle("Short Call Payoff & Net Profit") +
  ylim(-50, 10)
spnp <- ggplot(np, aes(x = st, y = -p_po)) +
  geom line(color = "magenta", linewidth = 1)
  geom_line(y = -p_np, linetype = "dashed") +
  ggtitle("Short Put Payoff & Net Profit") +
  ylim(-50, 10)
grid.arrange(lcnp, lpnp, scnp, spnp, nrow = 2)
```


Monte Carlo Simulation

- Involves generating multiple (10^06 or more) random values corresponding to the independent variable, based on an assumed probability distribution.
- For stock options valuation we want to model the price of the underlying asset, so the random values are plugged in the corresponding valuation function.
- We then average the potential values of all scenarios, and bring that expected value to the present.

Theoretical Distribution of Stock Prices

Given by:

```
ST=S0e[(\mu-\sigma^2/2)T+\sigma\epsilon\sqrt{T}]
```

 μ is the risk free rate (the "drift") and ϵ is a random number with Standard Normal Distribution \sim N(0,1) (the "stochastic" component, Wiener process, Brownian motion, etc). Given that we are assuming that **Returns follow a Normal Distribution**, then **Prices follow a Lognormal Distribution** (they are always positive).

Step-by-Step Computation

Input data

- type: european call or put
- s: underlying asset's spot price
- k: option's strike price
- t: option's time to maturity in years (e.g. 3 months = 3/12 years)
- v: underlying asset's returns annualized volatility
- r: annualized risk-free rate
- m: number of simulations

```
# Input data
m = 100000
type = "c"
s = 52
k = 50
t = 0.50
v = 0.20
r = 0.10
# Generation of stochastic component
epsilon <- rnorm(m, 0, 1)
hist(epsilon)</pre>
```

Histogram of epsilon

Histogram of st


```
# Payoff estimations for call or put
if(type == "c") po <- pmax(st - k, 0)
if(type == "p") po <- pmax(k-st, 0)
hist(po)</pre>
```

Histogram of po


```
# Risk-neutral stock price at T (Future)
round(s*exp(r*t), 2)
[1] 54.67
# Scenarios
scenarios <- data.frame(epsilon, st, po)</pre>
scenarios[sample(nrow(scenarios), 5),]
          epsilon
                        st
2247 -0.36993084 51.36349 1.363489
83432 1.03437288 62.64765 12.647648
99083 -0.05161002 53.72857 3.728574
61052 -0.64349293 49.41431 0.000000
98308 -0.27675466 52.04479 2.044790
# Option price
op <- mean(po) * exp(-r*t) # bring to present value the mean of all cases
simulated
op
[1] 5.541914
```

Custom Function

We can define a custom function so that we can apply the method to a variety of options quickly.

Black-Scholes

Given that **European Options** can only be exercised at maturity, the only thing that matters is the prices distribution at time T.

This option is NOT path-dependant, that is, it only matters the final ST, not how it got there.

Hence, we can "skip" the simulation part by using Black-Scholes equations.

Equations

Call price:

```
c = SON(d1) - Kexp(-rT)*N(d2)
```

Put price:

```
p = Kexp(-rT)N(-d2) - S0*N(-d1)
```

Where N(x) is the Standard Normal Cumulative Distribution Function (cdf) for x.

$$d1 = [\ln(S0/K) + (r + \sigma^2/2) * T] / (\sigma\sqrt{T})$$

Step-by-Step Computation

Input Data

- type: call or put
- s: underlying asset's spot price
- k: option's strike price
- t: option's time to maturity in years (e.g. 3 months = 3/12 years)
- v: underlying asset's returns annualized volatility
- r: annualized risk-free rate

Sensitivity Analysis

Volatility

```
# Construction of Volatility Vector
vv <- seq(from=0.00, to=0.60, by=0.05)
vv

[1] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

# Call and Put Prices Vector: Using a For Loop
cv <- 0
pv <- 0
vv <- seq(from=0.00, to=0.60, by=0.05)
for (i in 1:length(vv)) {
   cv[i] <- bs(type= "c", v = vv[i])
   pv[i] <- bs(type = "p", v = vv[i])
}</pre>
```

Option Price Sensitivity to Volatility

Asset's Spot Price

Option Price Sensitivity to Asset's Spot Price

Strike Price

Option Price Sensitivity to Strike Price

Time to Maturity

Option Price Sensitivity to Time to Maturity

Risk Free Rate

Option Price Sensitivity to Risk Free Rate

