

Configuration of USB7202/USB7206/USB725x

Author: Andrew Rogers

Microchip Technology Inc.

1.0 INTRODUCTION

The USB7202/USB7206/USB7250/USB7251/USB7252/USB7256 can be configured through:

- Hardware configuration straps (See USB7202/USB7206/USB7250/USB7251/USB7252/USB7256 Data Sheet for hardware strap descriptions.)
- SMBus during start-up configuration stage (SOC_CFG)
- SMBus during hub operational stages (during runtime)
- · One-Time Programmable (OTP) memory
- · A USB interface during hub operational stages (during runtime)
- · An external Serial Peripheral Interface (SPI) Flash

SMBus Configuration: The hub may be configured via the SMBus slave interface during the hub's start-up configuration stage (or SOC_CFG). To hold the hub in the SOC_CFG stage, the CONFIG_STRAP pins must be set with the correct configuration mode (CONFIG1 for USB7202/USB7206/USB7251/US7252/USB7256, and CONFIG1, 2, 3, or 5 for USB7250) and the SMBus slave clock and data pins must be sampled as 'high' (10k pull-up resistors to 3.3V recommended) at power-on or when RESET_N is deasserted. Once in the configuration stage, any of the registers may be reconfigured. The hub waits in SOC_CFG indefinitely until it receives the special Attach command.

After the hub has exited the SOC_CFG stage, the configuration registers may still be manipulated via SMBus. This may be useful for enabling an external SOC to control the hub's GPIOs or to check certain hub status registers.

OTP Memory: The hub's registers may be configured via the hub's internal OTP memory. Any register may be given a new default value. The OTP memory is 8 kB, and each bit within the OTP memory may be set once, but never cleared. The OTP commands are loaded sequentially, so it is possible to overwrite a previously programmed register setting by programming that register subsequently with a new value. The OTP memory may be programmed via the USB interface or via SMBus.

USB Interface: All registers are accessible from the USB host using vendor-specific commands issued to the hub's internal Hub Feature Controller device.

External SPI Memory Device: If a custom firmware image is being used and executed from an attached SPI memory device, the configuration registers may also be configured within the SPI image. This method mimics the OTP configuration method and is referred to as "pseudo-OTP."

1.1 Sections

This document includes the following topics:

- Hub Operational Mode on page 3
- · Register Map on page 5
- · SMBus Configuration on page 111
- OTP Configuration on page 116
- Hub Product IDs on page 133
- · Physical and Logical Port Mapping on page 134
- · Billboard Device on page 139

AN2935

1.2 References

The following documents should be referenced when using this application note. See your Microchip representative for availability.

- USB7202 Data Sheet
- USB7206 Data Sheet
- USB7250 Data Sheet
- · USB7251 Data Sheet
- USB7252 Data Sheet
- USB7256 Data Sheet
- MPLAB® Connect Configuration Tool
- System Management Bus Specification, Version 1.0

2.0 HUB OPERATIONAL MODE

2.1 Hub Configuration Stages

The hub is configured in three stages. The SOC_CFG stage is only entered if the CONFIG_STRAP pins are set with the correct configuration mode (CONFIG1 for USB7202/USB7206/USB7251/US7252/USB7256, and CONFIG1, 2, 3, or 5 for USB7250) and the SMBus slave interface pins (data and clock) are both sampled as 'high' at start-up. During this stage, the hub allows an external SOC to configure the registers. The hub waits in SOC_CFG until it receives the special Attach command.

After SOC_CFG is complete (or if SOC_CFG is bypassed), the hub loads its OTP memory contents and manipulates the registers based on the OTP configuration. Figure 1 explains the hub start-up flow.

FIGURE 1: HUB CONFIGURATION OPERATIONAL MODE FLOWCHART

Note: Because the OTP configuration registers are loaded after the SOC_CFG stage, it is possible for configuration registers modified in the SOC_CFG stage to be overwritten in the CFG_OTP stage. If a register is modified in both the SOC_CFG and OTP_CFG stages (an OTP patch was programmed to the hub OTP), then the register value, as written in the OTP_CFG stage, takes effect.

AN2935

2.2 SMBus Protocol

The SMBus protocol is a flexible 2-pin serial protocol used for low-speed communication between integrated circuits. The protocol consists of an SMBCLK pin generated by the SMBus master and a bi-directional SMBDATA pin that can be driven by a master or a slave. The bus requires a pull-up resistor on both SMBCLK and SMBDATA to function. The hub configures the pins as Open/Drain buffers, where the driver either tristates the pin or drives the pin to GND. The input threshold for the high level ranges from 1.2V to 3.3V, allowing the hub to communicate with a large sample of SOCs on the market. Refer to the *System Management Bus Specification* for more details on the timing specifications of the bus.

3.0 REGISTER MAP

Note: It is recommended not to modify the current values of Reserved bits to avoid operation failure.

3.1 Configuration Registers (Base Address: BF80_0000h)

TABLE 1: CONFIGURATION REGISTERS MEMORY MAP

	Conf	iguration Registers	Base Address: BF80_0000h			
Offset	R/W	Name	Function	Modification Stage		
0000h	R	DEV_REV	Device Revision Register	Configuration		
0908h	R/W	PIO96_OEN	PIO[96:64] Output Enable Register	Runtime or Configuration		
0918h	R/W	PIO96_IEN	PIO[96:64] Input Enable Register	Runtime or Configuration		
0928h	R/W	PIO96_OUT	PIO[96:64] Output Register	Runtime or Configuration		
0938h	R/W	PIO96_IN	PIO[96:64] Input Register	Runtime or Configuration		
0948h	R/W	PIO96_PU	PIO[96:64] Pull-Up Resistor Register	Runtime or Configuration		
0958h	R/W	PIO96_PD	PIO[96:64] Pull-Down Resistor Register	Runtime or Configuration		
0968h	R/W	PIO96_OD	PIO[96:64] Open Drain Mode Register	Runtime or Configuration		
09E8h	R/W	PIO96_DEB	PIO[96:64] Debounce Register	Runtime or Configuration		
0C04h	R/W	PF1_CTL	Programmable Function 1 Control	Runtime or Configuration		
0C05h	R/W	PF2_CTL	Programmable Function 2 Control	Runtime or Configuration		
0C06h	R/W	PF3_CTL	Programmable Function 3 Control	Runtime or Configuration		
0C07h	R/W	PF4_CTL	Programmable Function 4 Control	Runtime or Configuration		
0C08h	R/W	PF5_CTL	Programmable Function 5 Control	Runtime or Configuration		
0C09h	R/W	PF6_CTL	Programmable Function 6 Control	Runtime or Configuration		
0C0Ah	R/W	PF7_CTL	Programmable Function 7 Control	Runtime or Configuration		
0C0Bh	R/W	PF8_CTL	Programmable Function 8 Control	Runtime or Configuration		
0C0Ch	R/W	PF9_CTL	Programmable Function 9 Control	Runtime or Configuration		
0C0Dh	R/W	PF10_CTL	Programmable Function 10 Control	Runtime or Configuration		
0C0Eh	R/W	PF11_CTL	Programmable Function 11 Control	Runtime or Configuration		
0C0Fh	R/W	PF12_CTL	Programmable Function 12 Control	Runtime or Configuration		
0C10h	R/W	PF13_CTL	Programmable Function 13 Control	Runtime or Configuration		
0C11h	R/W	PF14_CTL	Programmable Function 14 Control	Runtime or Configuration		

TABLE 1: CONFIGURATION REGISTERS MEMORY MAP (CONTINUED)

	Conf	figuration Registers	Base Address: BF80_0	000h
Offset	R/W	Name	Name Programmable Function Programmable Function 15 Control Programmable Function 16 Control Programmable Function 17 Control Programmable Function 18 Control Programmable Function 19 Control Programmable Function 20 Control Programmable Function 21 Control Programmable Function 22 Control Programmable Function 23 Control Programmable Function 24 Control Programmable Function 25 Control Programmable Function 26 Control Programmable Function 27 Control Programmable Function 27 Control Programmable Function 27 Control	
0C12h	R/W	PF15_CTL	Programmable Function 15 Control	Runtime or Configuration
0C13h	R/W	PF16_CTL	Programmable Function 16 Control	Runtime or Configuration
0C14h	R/W	PF17_CTL	Programmable Function 17 Control	Runtime or Configuration
0C15h	R/W	PF18_CTL	Programmable Function 18 Control	Runtime or Configuration
0C16h	R/W	PF19_CTL	Programmable Function 19 Control	Runtime or Configuration
0C17h	R/W	PF20_CTL	Programmable Function 20 Control	Runtime or Configuration
0C18h	R/W	PF21_CTL	Programmable Function 21 Control	Runtime or Configuration
0C19h	R/W	PF22_CTL	Programmable Function 22 Control	Runtime or Configuration
0C1Ah	R/W	PF23_CTL	Programmable Function 23 Control	Runtime or Configuration
0C1Bh	R/W	PF24_CTL	Programmable Function 24 Control	Runtime or Configuration
0C1Ch	R/W	PF25_CTL	Programmable Function 25 Control	Runtime or Configuration
0C1Dh	R/W	PF26_CTL	Programmable Function 26 Control	Runtime or Configuration
0C1Eh	R/W	PF27_CTL	Programmable Function 27 Control	Runtime or Configuration
0C1Fh	R/W	PF28_CTL	Programmable Function 28 Control	Runtime or Configuration
0C20h	R/W	PF29_CTL	Programmable Function 29 Control	Runtime or Configuration
0C21h	R/W	PF30_CTL	Programmable Function 30 Control	Runtime or Configuration
0C22h	R/W	PF31_CTL	Programmable Function 31 Control	Runtime or Configuration
3000h	R/W	VID_LSB	Vendor ID LSB	Configuration
3001h	R/W	VID_MSB	Vendor ID MSB	Configuration
3002h	R/W	PID_LSB	Product ID LSB	Configuration
3003h	R/W	PID_MSB	Product ID MSB	Configuration
3004h	R/W	DID_LSB	Device ID LSB	Configuration
3005h	R/W	DID_MSB	Device ID MSB	Configuration
3006h	R/W	HUB_CFG1	Hub Configuration Data Byte 1	Configuration
3007h	R/W	HUB_CFG2	Hub Configuration Data Byte 2	Configuration
3008h	R/W	HUB_CFG3	Hub Configuration Data Byte 3	Configuration
3009h	R/W	HUB_NRD	USB2 Hub Non-Removable Device	Configuration
300Ah	R/W	PORT_DIS_S	Port Disable – Self Powered	Configuration
300Bh	R/W	PORT_DIS_B	Port Disable – Bus Powered	Configuration
300Ch	R/W	H_MAXP_S	Hub Max Power – Self Powered	Configuration
300Dh	R/W	H_MAXP_B	Hub Max Power – Bus Powered	Configuration

TABLE 1: CONFIGURATION REGISTERS MEMORY MAP (CONTINUED)

	Conf	figuration Registers	Base Address: BF80_0000)h
Offset	R/W	Name	Function	Modification Stage
300Eh	R/W	HC_MAXP_S	Hub Feature Controller Max Current – Self Powered	Configuration
300Fh	R/W	HC_MAXP_B	Hub Feature Controller Max Current – Bus Powered	Configuration
3010h	R/W	PWR_ON_TIME	Power-On Time Register	Configuration
3013h	R/W	MFR_STR_INDEX	USB2.0 Hub Manufacturer String Index Register	Configuration
3014h	R/W	PRD_STR_INDEX	USB2.0 Hub Product String Index Register	Configuration
3015h	R/W	SER_STR_INDEX	USB2.0 Hub Serial String Index Register	Configuration
30D0h	R	BC_EN	Battery Charging Enable Status Register	Runtime (Hub)
30E1h	R/W	OCS_LOCKOUT	Start OCS Lockout Timer Register	Configuration
30E5h	R	PORT_PWR_STAT	Port Power Status	Runtime (Hub)
30E6h	R	USB2_TEST_MODE	USB2 Test Mode Register	Runtime or Configuration
30E7h	R/W	HS_TRESP_TIMEOUT	LPM Turnaround Timeout	Configuration
30E9h	R/W	ENABLE_OCS_LEGACY	Enable OCS Legacy Register	Configuration
30EAh	R/W	OCS_MIN_WIDTH	OCS Minimum Width Register	Configuration
30EBh	R/W	OCS_INACTIVE_TIMER	OCS Inactive Timer	Configuration
30FAh	R/W	HUB_PRT_SWAP	Hub Port Swap Register	Configuration
30FBh	R/W	HUB_PRT_REMAP_12	Hub Port Remap 1-2 Register	Configuration
30FCh	R/W	HUB_PRT_REMAP_34	Hub Port Remap 3-4 Register	Configuration
30FDh	R/W	HUB_PRT_REMAP_56	Hub Port Remap 5-6 Register	Configuration
30FEh	R/W	HUB_PRT_REMAP_7	Hub Port Remap 7 Register	Configuration
3100h	R	USB2_LINK_STATE1	USB2 Link State Port 0-3	Runtime (Hub)
3101h	R	USB2_LINK_STATE2	USB2 Link State Port 4-7	Runtime (Hub)
3104h	R/W	USB2_HUB_CTL	USB2 Hub Control	Runtime
3108h	R/W	USB2_BCDUSB	USB2 Version BCD[15:0]	Configuration
318Ch	R/W	CNTLP	Hub Control Portable Test	Runtime
318Dh	R/W	EMBED_TEST_PORT_SEL	Embedded Hub Test Port Select	Runtime
3194h	R	USB2_HUB_STAT	USB2 Hub Status Register	Runtime (Hub)
3195h	R	USB2_DN_SPEED14	USB2 Downstream Device Speed[4-1]	Runtime (Hub)
3196h	R	USB2_DN_SPEED75	USB2 Downstream Device Speed[7-5]	Runtime (Hub)
3197h	R	USB2_SUSP_IND	USB2 Suspend Indicator	Runtime (Hub)
392Ch	R/W	USB_GEN2_HUB_CTRL_REG	USB GEN2 Hub Control Register	Configuration
3C00h	R/W	PORT_CFG_SEL_0	PORT 0 (Upstream) Port Power Select	Configuration
3C04h	R/W	PORT_CFG_SEL_1	PORT 1 Port Power Select	Configuration
3C08h	R/W	PORT_CFG_SEL_2	PORT 2 Port Power Select	Configuration
3C0Ch	R/W	PORT_CFG_SEL_3	PORT 3 Port Power Select	Configuration
3C10h	R/W	PORT_CFG_SEL_4	PORT 4 Port Power Select	Configuration
3C14h	R/W	PORT_CFG_SEL_5	PORT 5 Port Power Select	Configuration
3C18h	R/W	PORT_CFG_SEL_6	PORT 6 Port Power Select	Configuration
3C20h	R/W	USB_OCS_SEL_1	USB Port 1 OCS Source Select	Configuration
3C24h	R/W	USB_OCS_SEL_2	USB Port 2 OCS Source Select	Configuration

AN2935

TABLE 1: CONFIGURATION REGISTERS MEMORY MAP (CONTINUED)

	Conf	iguration Registers			
Offset	R/W	Name	Function	Modification Stage	
3C28h	R/W	USB_OCS_SEL_3	USB Port 3 OCS Source Select	Configuration	
3C2Ch	R/W	USB_OCS_SEL_4	USB Port 4 OCS Source Select	Configuration	
3C30h	R/W	USB_OCS_SEL_5	USB Port 5 OCS Source Select	Configuration	
3034h	R/W	USB_OCS_SEL_6	USB Port 6 OCS Source Select	Configuration	
3038h	R/W	USB_OCS_SEL_7	USB Port 7 OCS Source Select	Configuration	
3C40h	R/W	VBUS_PASS_THRU	VBUS_DET Pass-Through Register	Configuration	
3C50h	R	PORT_STAT_REG_0	Port 0 (Upstream) Status Register	Runtime	
3C54h	R	PORT_STAT_REG_1	Port 1 Status Register	Runtime	
3C58h	R	PORT_STAT_REG_2	Port 2 Status Register	Runtime	
3C5Ch	R	PORT_STAT_REG_3	Port 3 Status Register	Runtime	
3C60h	R	PORT_STAT_REG_4	Port 4 Status Register	Runtime	
3C64h	R	PORT_STAT_REG_5	Port 5 Status Register	Runtime	
3C68h	R	PORT_STAT_REG_6	Port 6 Status Register	Runtime	
3C6Ch	R	PORT_STAT_REG_7	Port 7 Status Register	Runtime	
60CAh	R/W	HS_P0_BOOST	USB Port 0 Boost Register	Configuration	
60CCh	R/W	HS_P0_VSENSE	USB Port 0 VariSense™ Register	Configuration	
64CAh	R/W	HS_P1_BOOST	USB Port 1 Boost Register	Configuration	
64CCh	R/W	HS_P1_VSENSE	USB Port 1 VariSense™ Register	Configuration	
68CAh	R/W	HS_P2_BOOST	USB Port 2 Boost Register	Configuration	
68CCh	R/W	HS_P2_VSENSE	USB Port 2 VariSense™ Register	Configuration	
6CCAh	R/W	HS_P3_BOOST	USB Port 3 Boost Register	Configuration	
6CCCh	R/W	HS_P3_VSENSE	USB Port 3 VariSense™ Register	Configuration	
70CAh	R/W	HS_P4_BOOST	USB Port 4 Boost Register	Configuration	
70CCh	R/W	HS_P4_VSENSE	USB Port 4 VariSense™ Register	Configuration	
74CAh	R/W	HS_P5_BOOST	USB Port 5 Boost Register	Configuration	
74CCh	R/W	HS_P5_VSENSE	USB Port 5 VariSense™ Register	Configuration	

3.2 Configuration Registers (Base Address: BFCF_0000h)

TABLE 2: CONFIGURATION REGISTERS MEMORY MAP

	Config	uration Registers	Base Address: BFD2_0	000h
OFFSET			Function	Recommended Modification Stage
8042h	R/W	USB3_HUB_BCDUSB_LSB	USB3 Hub BcdUSB LSB	Configuration
8042h	R/W	USB3_HUB_BCDUSB_MSB	USB3 Hub BcdUSB MSB	Configuration
8048h	R/W	USB3_HUB_VID_LSB	USB3 Hub Vendor ID LSB	Configuration
8049h	R/W	USB3_HUB_VID_MSB	USB3 Hub Vendor ID MSB	Configuration
804Ah	R/W	USB3_HUB_PID_LSB	USB3 Hub Product ID LSB	Configuration
804Bh	R/W	USB3_HUB_PID_MSB	USB3 Hub Product ID LSB	Configuration
804Ch	R/W	USB3_HUB_DID_LSB	USB3 Hub Device ID (bcdDevice) LSB	Configuration
804Dh	R/W	USB3_HUB_DID_MSB	USB3 Hub Device ID (bcdDevice) MSB	Configuration
804Eh	R/W	USB3_HUB_MFR_STR_IND EX	USB3 Hub Manufacturer String Index Register	Configuration
804Fh	R/W	USB3_HUB_PRD_STR_IND EX	USB3 Hub Product String Index Register	Configuration
8050h	R/W	USB3_HUB_SER_STR_IND EX	USB3 Hub Serial String Index Register	Configuration
80DAh	R/W	USB3_HUB_LANG_ID	USB3 Hub LANG_ID[15:0] Language Identifier	Configuration
80E0h	R/W	USB3_HUB_STR_CONTAIN TER	USB3 Hub String Descriptor Container	Configuration
805Fh	R/W	USB3_HUB_ATTRIBUTES	USB3 Hub Attributes Descriptor	Configuration
8060h	R/W	USB3_HUB_MAX_POWER	USB3 Hub Max Power Descriptor	Configuration
80CAh	R/W	USB3_HUB_NBR_PORTS	USB3 Hub Number of Ports Descriptor	Configuration
80CBh	R/W	USB3_HUB_CHARACTERI STICS	USB3 Hub Characteristics Descriptor	Configuration
80CDh	R/W	UBS3_HUB_PWR2PWRGO OD	USB3 Hub Power-to-Power Good Descriptor	Configuration
80D2h	R/W	USB3_HUB_NON_REM	USB3 Hub Characteristics Descriptor	Configuration

3.3 Configuration Registers (Base Address: BFD2_0000h)

TABLE 3: CONFIGURATION REGISTERS MEMORY MAP

	Configu	uration Registers	Base Address: BFD2_0000h		
OFFSET	R/W	Name	Function	Recommended Modification Stage	
2856h	R/W	HFC_PID_LSB	HFC Product ID LSB	Configuration	
2857h	R/W	HFC_PID_MSB	HFC Product ID MSB	Configuration	
2864h	R/W	HFC_VID_LSB	HFC Vendor ID LSB	Configuration	
2865h	R/W	HFC_VID_MSB	HFC Vendor ID MSB	Configuration	
2868h	R/W	HFC_DID_LSB	HFC Device ID (bcdDevice) LSB	Configuration	
2869h	R/W	HFC_DID_MSB	HFC Device ID (bcdDevice) MSB	Configuration	
286Ah	R/W	HFC_MFR_STR_INDEX	USB2.0 HFC Manufacturer String Index Register	Configuration	
286Ah	R/W	HFC_PRD_STR_INDEX	USB2.0 HFC Product String Index Register	Configuration	
286Ah	R/W	HFC_SER_STR_INDEX	USB2.0 HFC Serial String Index Register	Configuration	

AN2935

TABLE 3: CONFIGURATION REGISTERS MEMORY MAP (CONTINUED)

	Config	uration Registers	Base Address: BFD2_0	000h
OFFSET	R/W	Name	Function	Recommended Modification Stage
28FAh	R/W	HFC_LANG_ID	HFC LANG_ID[15:0] Language Identifier	Configuration
28FCh	R/W	HFC_STR_CONTAINTER	HFC Product String Descriptor Container	Configuration
3202h	R/W	USB2_HUB_LANG_ID	USB2.0 Hub LANG_ID[15:0] Language Identifier	Configuration
3204h	R/W	USB2_HUB_STR_CONTAIN TER	USB2.0 Hub String Descriptor Container	Configuration
3400h	R/W	RUNTIME_FLAGS	Runtime Flags Memory	Runtime or Configuration
3408h	R/W	RUNTIME_FLAGS2	Runtime Flags 2 Memory	Runtime or Configuration
3412h	R/W	I2S_FEAT_SEL	I2S Feature Select Register	Configuration
3413h	R/W	I2S_HFEAT_SEL	I2S HID Feature Select Register	Configuration
3419h	R/W	SMBUS_OTP_RES	SMBUS OTP Result	Configuration
341Bh	R/W	OTP_UDC_ENABLE	OTP UDC Enumeration	Configuration
341Eh	R/W	HUB_DEF_PIDM	Hub PID MSB	Configuration
341Fh	R/W	HUB_DEF_PIDL	Hub PID LSB	Configuration
3433h	R/W	BC_CONFIG_P1	Port 1 Battery Charging Configuration	Configuration
3434h	R/W	BC_CONFIG_P2	Port 2 Battery Charging Configuration	Configuration
3435h	R/W	BC_CONFIG_P3	Port 3 Battery Charging Configuration	Configuration
3436h	R/W	BC_CONFIG_P4	Port 4 Battery Charging Configuration	Configuration
3437h	R/W	BC_CONFIG_P5	Port 5 Battery Charging Configuration	Configuration
3438h	R/W	BC_CONFIG_P6	Port 6 Battery Charging Configuration	Configuration
3442h	R/W	FLEX_IN_PORT1	FLEX_IN_Port1	Configuration
3443h	R/W	FLEX_IN_PORT2	FLEX_IN_Port2	Configuration
3444h	R/W	FLEX_IN_PORT3	FLEX_IN_Port3	Configuration
3445h	R/W	FLEX_IN_PORT4	FLEX_IN_Port4	Configuration
3446h	R/W	FLEX_IN_PORT5	FLEX_IN_Port5	Configuration
3447h	R/W	FLEX_IN_PORT6	FLEX_IN_Port6	Configuration
3448h	R/W	FLEX_OUT_PORT1	FLEX_OUT_Port1	Configuration
3449h	R/W	FLEX_OUT_PORT2	FLEX_OUT_Port2	Configuration
344Ah	R/W	FLEX_OUT_PORT3	FLEX_OUT_Port3	Configuration
344Bh	R/W	FLEX_OUT_PORT4	FLEX_OUT_Port4	Configuration
344Ch	R/W	FLEX_OUT_PORT5	FLEX_OUT_Port5	Configuration
344Dh	R/W	FLEX_OUT_PORT6	FLEX_OUT_Port6	Configuration
344Eh	R/W	FLEX_PRTCTL_PORT1	FLEX_PRTCTL_Port1	Configuration
344Fh	R/W	FLEX_PRTCTL_PORT2	FLEX_PRTCTL_Port2	Configuration
3450h	R/W	FLEX_PRTCTL_PORT3	FLEX_PRTCTL_Port3	Configuration
3451h	R/W	FLEX_PRTCTL_PORT4	FLEX_PRTCTL_Port4	Configuration

TABLE 3: CONFIGURATION REGISTERS MEMORY MAP (CONTINUED)

	Config	uration Registers	Base Address: BFD2_0000h		
OFFSET	R/W	Name	Function	Recommended Modification Stage	
3452h	R/W	FLEX_PRTCTL_PORT5	FLEX_PRTCTL_Port5	Configuration	
3453h	R/W	FLEX_PRTCTL_PORT6	FLEX_PRTCTL_Port6	Configuration	
3454h	R/W	FLEX_VBUSDET	FLEX_VBUSDET	Configuration	
3455h	R/W	FLEX_ATTACH_DELAY	FlexConnect Hub Attach Delay	Configuration	
3456h	R/W	ROLE_SWITCH_DELAY	Role Switch Delay	Configuration	
346Ah	R/W	MFG_STR_LEN	Manufacturer String Length	Configuration	
3472h	R/W	PROD_STR_LEN	Product String Length	Configuration	

3.4 PFx Function/Pin Number/PIO Register Mapping

TABLE 4: PFX TO PIN NUMBER AND PIO REGISTER MAPPING

PFx	USB7202	USB7206	USB7250	USB7251	USB7252	USB7256	PIO	Register
FIX	Pin #	Pin #	Pin#	Pin#	Pin#	Pin#	FIO	Register
PF2			43				GPIO66	PIO96[2]
PF3			44				GPIO67	PIO96[3]
PF4			45	45			GPIO68	PIO96[4]
PF5			56				GPIO69	PIO96[5]
PF6	47		47	47	47	47	GPIO70	PIO96[6]
PF7	48		48	48	48	48	GPIO71	PIO96[7]
PF10						51	GPIO74	PIO96[10]
PF11						51	GPIO75	PIO96[11]
PF12	54						GPIO76	PIO96[12]
PF14	57		57	57	57		GPIO78	PIO96[14]
PF18	61						GPIO82	PIO96[18]
PF19	66		66	66	66		GPIO83	PIO96[19]
PF26	75		75	75	75		GPIO90	PIO96[26]
PF27	76		76	76	76		GPIO91	PIO96[27]
PF28	77		77	77	77		GPIO92	PIO96[28]
PF29	74		74	74	74		GPIO93	PIO96[29]
PF30	2		2	2			GPIO94	PIO96[30]
PF31	3		3	3			GPIO95	PIO96[31]

3.4.1 REGISTER DEFINITIONS

TABLE 5: DEVICE REVISION REGISTER

DEV_REV OFFSET: 0000h RESET = B000_8D01H			Device Revision Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:16	DEVID	R	Device ID: 0589h
15:8	Reserved	R	Always reads 0
7:0	REVID	R	Silicon Revision ID A0h = A0 silicon B0h = B0 silicon C0h = C0 silicon

Note 1: 0800h-[7:0], 0801h-[15:8], 0802h-[23:16], 0803h-[31:24]

TABLE 6: PIO[96:64] OUTPUT ENABLE REGISTER

	DEN T: 0908h = 0000_0000h		PIO96 Output Enable Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:0	PIO96_OEN[96:64]	R/W	PIO96_OEN[x] '0' = Disabled '1' = Enabled

Note 1: 0908h-[7:0], 0909h-[15:8], 090Ah-[23:16], 090Bh-[31:24]

TABLE 7: PIO[96:64] INPUT ENABLE REGISTER

_	IEN T: 0918h = 0000_0000h		PIO96 Input Enable Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:0	PIO96_IEN[96:64]	R/W	PIO96_IEN[x] '0' = Disabled '1' = Enabled

Note 1: 0918h-[7:0], 0919h-[15:8], 092Ah-[23:16], 092Bh-[31:24]

TABLE 8: PIO[96:64] OUTPUT REGISTER

PIO96_OUT OFFSET: 0928h RESET = 0000_0000h			PIO96 Output Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:0	PIO96_OUT[96:64]	R/W	PIO96_OUT[x] '0' = Output is 0 '1' = Output is 1

Note 1: 0928h-[7:0], 0929h-[15:8], 093Ah-[23:16], 093Bh-[31:24]

TABLE 9: PIO[96:64] INPUT REGISTER

PIO96_IN OFFSET: 0938h RESET = 0000_0000h			PIO96 Input Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:0	PIO96_IN[96:64]	R/W	PIO96_IN[x] '0' = Input is 0 '1' = Input is 1

Note 1: 0938h-[7:0], 0939h-[15:8], 094Ah-[23:16], 094Bh-[31:24]

TABLE 10: PIO[96:64] PULL-UP RESISTOR REGISTER

PIO96_PU OFFSET: 0948h RESET = 0000_0000h			PIO96 Pull-Up Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:0	PIO96_PU[96:64]	R/W	PIO96_PU[x] '0' = Pull-Up Disabled '1' = Pull-Up Enabled

Note 1: 0948h-[7:0], 0949h-[15:8], 095Ah-[23:16], 095Bh-[31:24]

TABLE 11: PIO[96:64] PULL-DOWN RESISTOR REGISTER

PIO96_PD OFFSET: 0958h RESET = 0000_0000h			PIO96 Pull-Down Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:0	PIO96_PD[96:64]	R/W	PIO96_PD[x] '0' = Pull-Down Disabled '1' = Pull-Down Enabled

Note 1: 0958h-[7:0], 0959h-[15:8], 096Ah-[23:16], 096Bh-[31:24]

TABLE 12: PIO[96:64] OPEN DRAIN MODE REGISTER

PIO96_OD OFFSET: 0968h RESET = 0000_0000h			PIO96 Open Drain Mode Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:0	PIO96_OD[96:64]	R/W	PIO96_OD[x] '0' = Open Drain Disabled '1' = Open Drain Enabled If bit is 1 and the corresponding output is enabled { If output register is 1, output is Hi-Z unless pull-up is enabled. If output register is 0, output is 0.}

Note 1: 0968h-[7:0], 0969h-[15:8], 097Ah-[23:16], 097Bh-[31:24]

TABLE 13: PIO[96:64] DEBOUNCE REGISTER

PIO96_DEB OFFSET: 09E8h RESET = 0000_0000h			PIO96 Debounce Register Base Address: BF80_0000h
Bit	Name	R/W	Description
31:0	PIO96_DEB[96:64]	R/W	PIO96_DEB[x] '0' = No debounce '1' = Input debounced as specified in GPIO_DEBOUNCE

Note 1: 09E8h-[7:0], 09E9h-[15:8], 09EAh-[23:16], 09EBh-[31:24]

TABLE 14: PROGRAMMABLE FUNCTION 1 CONTROL

PF1_CTL OFFSET: 0C04h RESET = 0000_0000h			PF1 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO65

TABLE 15: PROGRAMMABLE FUNCTION 2 CONTROL

PF2_CTL OFFSET: 0C05h RESET = 0000_0000h			PF2 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO66 001 – Reserved 010 – UART_nCTS 011 – DP1_VCONN1 100 – UART_nDSR 101 – PD_SPI_CE_N4 110 – I2S_SDO

TABLE 16: PROGRAMMABLE FUNCTION 3 CONTROL

PF3_CTL OFFSET: 0C06h RESET = 0000_0000h			PF3 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO67 001 - I2S_SDI 010 - UART_nRTS 011 - DP1_VCONN2 100 - PD_SPI_CE_N3

TABLE 17: PROGRAMMABLE FUNCTION 4 CONTROL

PF4_CTL OFFSET: 0C07h RESET = 0000_0000h			PF4 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO68 001 - I2S_SDO 010 - UART_nDSR 011 - DP3_DISCHARGE 100 - PD_SPI_CE_N2 101 - DP1_VCONN1

TABLE 18: PROGRAMMABLE FUNCTION 5 CONTROL

PF5_CTL OFFSET: 0C08h RESET = 0000_0000h			PF5 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO69 001 – I2S_SCK 010 – UART_nDTR 011 – DP1_DISCHARGE 100 – PD_SPI_CE_N1

TABLE 19: PROGRAMMABLE FUNCTION 6 CONTROL

PF6_CTL OFFSET: 0C09h RESET = 0000_0000h			PF6 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO70 001 – I2S_LRCK 010 – UART_RX 011 – DP1_DISCHARGE 100 – PD_SPI_CE_N0 101 – PRT_CTL1_U3

TABLE 20: PROGRAMMABLE FUNCTION 7 CONTROL

PF7_CTL OFFSET: 0C0Ah RESET = 0000_0000h			PF7 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO71 001 – I2S_MCLK 010 – UART_TX 011 – DP1_DISCHARGE 100 – PD_SPI_CLK 101 – PRT_CTL2_U3

TABLE 21: PROGRAMMABLE FUNCTION 8 CONTROL

PF8_CTL OFFSET: 0C0Bh RESET = 0000_0000h			PF8 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO72 001 - PD_I2C_DATA 010 - Reserved 011 - DP1_VCONN1 100 - PD_SPI_DO

TABLE 22: PROGRAMMABLE FUNCTION 9 CONTROL

PF9_CTL OFFSET: 0C0Ch RESET = 0000_0000h			PF9 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO73 001 – PD_I2C_CLK 010 – Reserved 011 – DP1_VCONN2 100 – PD_SPI_DI

TABLE 23: PROGRAMMABLE FUNCTION 10 CONTROL

PF10_CTL OFFSET: 0C0Dh RESET = 0000_0000h			PF10 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO74 001 – MSTR_I2C_DATA 010 – PRT_CTL3_U3 011 – DP3_VCONN1 100 – PD_SPI_CE_N5 101 – I2S_SDI

TABLE 24: PROGRAMMABLE FUNCTION 11 CONTROL

PF11_CTL OFFSET: 0C0Eh RESET = 0000_0000h			PF11 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO75 001 - MSTR_I2C_CLK 010 - PRT_CTL4_U3 011 - DP3_VCONN2 100 - PD_SPI_CE_N6 101 - I2S_MCLK

TABLE 25: PROGRAMMABLE FUNCTION 12 CONTROL

PF12_CTL OFFSET: 0C0Fh RESET = 0000_0000h			PF12 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO76 001 – PRT_CTL5_U3

TABLE 26: PROGRAMMABLE FUNCTION 13 CONTROL

PF13_CTL OFFSET: 0C10h RESET = 0000_0000h			PF13 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO77 001 – PRT_CTL5/OCS 010 – PRT_CTL4/OCS

TABLE 27: PROGRAMMABLE FUNCTION 14 CONTROL

PF14_CTL OFFSET: 0C11h RESET = 0000_0000h			PF14 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO78 001 - I2S_SDI 010 - UART_nCTS 011 - PRT_CTL4/OCS 100 - MSTR_I2C_CLK 101 - UART_nRTS 110 - UART_nDTR

TABLE 28: PROGRAMMABLE FUNCTION 15 CONTROL

PF15_CTL OFFSET: 0C12h RESET = 0000_0000h			PF15 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO79 001 – PRT_CTL3/OCS

TABLE 29: PROGRAMMABLE FUNCTION 16 CONTROL

PF16_CTL OFFSET: 0C13h RESET = 0000_0000h			PF16 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO80 001 – PRT_CTL2/OCS

TABLE 30: PROGRAMMABLE FUNCTION 17 CONTROL

PF17_CTL OFFSET: 0C14h RESET = 0000_0000h			PF17 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO81 001 – PRT_CTL1/OCS

TABLE 31: PROGRAMMABLE FUNCTION 18 CONTROL

PF18_CTL OFFSET: 0C15h RESET = 0000_0000h			PF18 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO82 001 - I2S_LRCK 010 - UART_nDCD 011 - Reserved 100 - MSTR_I2C_CLK

TABLE 32: PROGRAMMABLE FUNCTION 19 CONTROL

-	TL T: 0C16h = 0000_0000h		PF19 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO83 001 – I2S_SDO 010 – UART_nRTS 011 – SLV_I2C_DATA 100 – MSTR_I2C_DATA

TABLE 33: PROGRAMMABLE FUNCTION 20 CONTROL

PF20_CTL OFFSET: 0C17h RESET = 0000_0000h			PF20 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO84 001 - SPI_CE_N

TABLE 34: PROGRAMMABLE FUNCTION 21 CONTROL

PF21_CTL OFFSET: 0C18h RESET = 0000_0000h			PF21 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO85 001 – SPI_CLK

TABLE 35: PROGRAMMABLE FUNCTION 22 CONTROL

PF22_CTL OFFSET: 0C19h RESET = 0000_0000h			PF22 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO86 001 – SPI_D0

TABLE 36: PROGRAMMABLE FUNCTION 23 CONTROL

PF23_CTL OFFSET: 0C1Ah RESET = 0000_0000h			PF23 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO87 001 – SPI_D1

TABLE 37: PROGRAMMABLE FUNCTION 24 CONTROL

PF24_CTL OFFSET: 0C1Bh RESET = 0000_0000h			PF24 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO88 001 – SPI_D2

TABLE 38: PROGRAMMABLE FUNCTION 25 CONTROL

PF25_CTL OFFSET: 0C1Ch RESET = 0000_0000h			PF25 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO89 001 – SPI_D3

TABLE 39: PROGRAMMABLE FUNCTION 26 CONTROL

PF26_CTL OFFSET: 0C1Dh RESET = 0000_0000h			PF26 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO90 001 - I2S_SCK 010 - UART_nDSR 011 - Reserved 100 - SLV_I2C_CLK

TABLE 40: PROGRAMMABLE FUNCTION 27 CONTROL

PF27_CTL OFFSET: 0C1Eh RESET = 0000_0000h			PF27 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO91 001 - I2S_MCLK 010 - UART_nDTR 011 - Reserved 100 - SLV_I2C_DATA 101 - PRT_CTL6/OCS 110 - UART_RX

TABLE 41: PROGRAMMABLE FUNCTION 28 CONTROL

PF28_CTL OFFSET: 0C1Fh RESET = 0000_0000h			PF28 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 - GPIO92 001 - I2S_LRCK 010 - UART_nDSD 011 - PRT_CTL6/OCS 100 - UART_TX

TABLE 42: PROGRAMMABLE FUNCTION 29 CONTROL

PF29_CTL OFFSET: 0C20h RESET = 0000_0000h			PF29 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO93 001 – CLOCK_OUT 010 – USB3_SUSP_IND 011 – USB2_SUSP_IND 100 – USB2_SUSP_IND or USB3_SUSP_IND (logical OR'ing of both USB2 and USB suspend indicators)

TABLE 43: PROGRAMMABLE FUNCTION 30 CONTROL

PF30_CTL OFFSET: 0C21h RESET = 0000_0000h			PF30 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO94 001 – VBUS Routed to GPIO16 010 – MSTR_I2C_CLK

TABLE 44: PROGRAMMABLE FUNCTION 31 CONTROL

PF31_CTL OFFSET: 0C22h RESET = 0000_0000h			PF31 Control Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read '0'
3:0	SELECT	R/W	000 – GPIO95 001 – MSTR_I2C_DATA 010 – I2S_CLK

TABLE 45: VENDOR ID LSB

VID_LSB OFFSET: 3000h RESET = 24h			USB2.0 Vendor ID LSB Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	VID_LSB	R/W	Least Significant Byte of the Hub Vendor ID. This is a 16-bit value that uniquely identifies the vendor of the user device (assigned by USB-Implementers Forum). The Microchip Vendor ID is 0424h.

TABLE 46: VENDOR ID MSB

VID_MSB OFFSET: 3001h RESET = 04h			USB2.0 Vendor ID MSB Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	VID_MSB	R/W	Most Significant Byte of the Hub Vendor ID. This is a 16-bit value that uniquely identifies the vendor of the user device (assigned by USB-Implementors Forum). The Microchip Vendor ID is 0424h.

TABLE 47: PRODUCT ID LSB

PID_LSB OFFSET: 3002h RESET = XXh			USB2.0 Product ID LSB Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	PID_LSB	R/W	Least Significant Byte of the Hub Product ID. This is a 16-bit value that the vendor can assign and uniquely identifies this product. The default value is dependent on the part as shown below: USB7202 = 02h USB7206 = 06h USB7250 = 50h USB7251 = 51h USB7252 = 52h USB7256 = 56h

Note 1: If port disable straps are implemented, these values will automatically decrement by the number of ports disabled by strapping. For example, if a design that implements USB7256 with two ports disabled by strapping, the Product ID (PID) will automatically change to 0x7254.

TABLE 48: PRODUCT ID MSB

PID_MSB OFFSET: 3003h RESET = 42h			USB2.0 Product ID MSB Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	PID_MSB	R/W	Most Significant Byte of the Hub Product ID. This is a 16-bit value that the vendor can assign that uniquely identifies this product. The default value is shown below: All part numbers = 42h

Note 1: The USB2.0 hub Product ID MSB is assigned '42'. The USB3.2 equivalent Product ID descriptor MSB is assigned '72'. This allows simpler distinction between the USB2.0 portion of the hub and the USB3.2 portion of the hub.

TABLE 49: DEVICE ID LSB

DID_LSB OFFSET: 3004h RESET = XXh			Device ID LSB Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	DID_LSB	R/W	Least Significant Byte of the Hub Device ID. This is a 16-bit device release number in BCD format assigned by OEM. This value will vary by part number and firmware/configuration revision.

TABLE 50: DEVICE ID MSB

DID_MSB OFFSET: 3005h RESET = XXh			Device ID MSB Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	DID_MSB	R/W	Most Significant Byte of the Hub Device ID. This is a 16-bit device release number in BCD format assigned by OEM. This value will vary by part number and firmware/configuration revision.

TABLE 51: HUB CONFIGURATION DATA BYTE 1

HUB_CFG1 OFFSET: 3006h RESET = 00h(3006h)			Hub Configuration Data Byte 1 Base Address: BF80_0000h
Bit	Name	R/W	Description
7	SELF_BUS_PWR	R/W	Self or Bus Power: Selects between self- and bus-powered operation. The Hub is either self-powered (draws less than 2 mA of upstream bus power) or bus-powered (limited to 100 mA maximum of upstream power prior to being configured by the host controller). When configured as a pus-powered device, the Microchip hub consumes less than 100 mA of current prior to being configured. After configuration, the bus-powered Microchip hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system-dependent, and the OEM must ensure that the USB2.0 specifications are not violated. When configured as a self-powered device, less than 1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current. 0 = Bus-powered operation 1 = Self-powered operation
6	VSM_DISABLE	R/W	0 = VSM Messaging is supported. 1 = VSM Messaging is disabled. When VSM is disabled, all vendor-specific messaging to the hub endpoint will be ignored with no ill effect.

TABLE 51: HUB CONFIGURATION DATA BYTE 1 (CONTINUED)

HUB_CFG1 OFFSET: 3006h RESET = 00h(3006h)			Hub Configuration Data Byte 1 Base Address: BF80_0000h
Bit	Name	R/W	Description
5	HS_DISABLE	R/W	High-Speed Disable: Disables the capability to attach as either a High-Speed or Full-Speed device, and forces attachment as Full-Speed only (that is, no High-Speed support). 0 = High-Speed/Full-Speed
			1 = Full-Speed-Only (High-Speed disabled!)
4	MTT_ENABLE	R/W	Multi-TT Enable: Enables one transaction translator per port operation. Selects between a mode where only one transaction translator is available for all ports (Single-TT), or each port gets a dedicated transaction translator (Multi-TT). The host may force Single-TT mode only. 0 = Single TT for all ports 1 = One TT per port (multiple TT's supported)
3	EOP_DISABLE	R/W	EOP Disable: Disables EOP generation of EOF1 when in Full-Speed mode. During FS operation only, this permits the hub to send EOP if no downstream traffic is detected at EOF1. See Section 11.3.1 of the USB 2.0 Specification for additional details. Note that generation of an EOP at the EOF1 point may prevent a host controller (operating in FS mode) from placing the USB bus in suspend. 0 = An EOP is generated at the EOF1 point if no traffic is detected. 1 = EOP generation at EOF1 is disabled. This is a normal USB operation.
2:1	CURRENT_SNS	R/W	Over Current Sense: Selects current sensing on a port-by-port basis, all ports ganged, or none (only for bus-powered hubs). The ability to support current sensing on a port or ganged basis is hardware implementation dependent. 00 = Ganged sensing (all ports together). The OCS source select registers need to be updated to select the OCS ganged input. 01 = Individual port-by-port 1x = Over current sensing not supported (must only be used with Bus-Powered configurations)
0	PORT_PWR	R/W	Port Power Switching: Enables power switching on all ports simultaneously (ganged), or port power is individually switched on and off on a port-by-port basis (individual). The ability to support power enabling on a port or ganged basis is hardware implementation dependent. 0 = Ganged switching (all ports together) 1 = Individual port-by-port switching

TABLE 52: HUB CONFIGURATION DATA BYTE 2

HUB_CFG2 OFFSET: 3007h RESET = 00h			Hub Configuration Data Byte 2 Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	Reserved	R/W	Reserved
5:4	OC_TIMER	R/W	Over Current Timer: Over Current Timer delay. This measures the minimum pulse width for which a pulse is considered valid. 00 = 50 ns 01 = 100 ns 10 = 200 ns 11 = 400 ns
3	COMPOUND	R/W	Compound Device: Allows the OEM to indicate that the Hub is part of a compound device (See the USB specification for definition). The applicable ports must also be defined as having a "Non-Removable Device." When configured via strapping options, declaring a port as non-removable automatically causes the hub controller to report that it is part of a compound device. 0 = No. 1 = Yes, the Hub is part of a compound device.
2:0	Reserved	R/W	Always read '0'

TABLE 53: HUB CONFIGURATION DATA BYTE 3

HUB_CFG3 OFFSET: 3008h RESET = 00h			Hub Configuration Data Byte 3 Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	Reserved
3	PRTMAP_EN	R/W	Port Re-Mapping enable: Selects the method used by the hub to assign port numbers and disable ports. '0' = Standard mode. Strap options or the following registers are used to define which ports are enabled, and the port mapped as Port 'n' on the hub is reported as Port 'n' to the host. Unless one of the ports is disabled, the higher numbered ports are remapped to report contiguous port numbers to the host. '1' = Port Re-Map mode. The mode enables remapping via the registers defined below. Disable the LPM to use this feature in USB2 Hub Control.
2:1	Reserved	R/W	Always read '0'
0	STRING_EN	R/W	Enables String Descriptor Support '0' = String Support Disabled '1' = String Support Enabled

TABLE 54: USB2 HUB NON-REMOVABLE DEVICE

USB2_HUB_NRD OFFSET: 3009h RESET = XXh			USB2 Hub Non-Removable Device Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	HUB_NON_REM	R/W	Non-Removable Device: Indicates which PHYSICAL ports include non-removable devices. '0' = Port is removable. Informs the Host if one of the active ports has a permanent device that is non-detachable from the Hub. The device must provide its own descriptor data. Bit 7 = 1; PHYSICAL Port 7 is non-removable. Bit 6 = 1; PHYSICAL Port 6 is non-removable. Bit 5 = 1; PHYSICAL Port 5 is non-removable. Bit 4 = 1; PHYSICAL Port 4 is non-removable. Bit 3 = 1; PHYSICAL Port 3 is non-removable. Bit 2 = 1; PHYSICAL Port 2 is non-removable. Bit 0 = Reserved, always = '0' When using the CFG_NON_REM strap, the port configuration is selected by the resistor used as follows: 200K PD – All removable 200K PD – Port 1 non-removable 10K PD – Ports 1, 2 non-removable 10K PU – Ports 1, 2, 3, 4 non-removable 10R PU – Ports 1, 2, 3, 4, 5, 6 non-removable No resistor – Not allowed The default value of this register depends on the product number and GFG_NON_REM strap setting.

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. The PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 55: PORT DISABLE - SELF POWERED

PORT_DIS_S OFFSET: 300Ah RESET = 00h			Port Disable for Self-Powered Operation Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	PORT_DIS_SELF	R/W	Port Disable Self-Powered: Disables 1 or more ports. '0' = Port is available. '1' = Port is disabled. During self-powered operation, when PRTMAP_EN = 0, this selects the PHYSICAL ports that are permanently disabled and are not available to be enabled or enumerated by a host controller. The ports can be disabled in any order. The internal logic automatically reports the correct number of enabled ports to the USB host and reorders the active ports to ensure proper function. When using the internal default option, the PRT_DIS[1:0] pins disable the appropriate ports. Bit 7 = 1; PHYSICAL Port 7 is disabled. Bit 6 = 1; PHYSICAL Port 6 is disabled. Bit 5 = 1; PHYSICAL Port 4 is disabled. Bit 4 = 1; PHYSICAL Port 3 is disabled. Bit 3 = 1; PHYSICAL Port 2 is disabled. Bit 2 = 1; PHYSICAL Port 1 is disabled. Bit 1 = 1; PHYSICAL Port 1 is disabled. Bit 1 = 1; PHYSICAL Port 1 is disabled. Bit 0 = Reserved, always = '0'

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. The PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 56: PORT DISABLE - BUS POWERED

PORT_DIS_B OFFSET: 300Bh RESET = 00h			Port Disable for Bus-Powered Operation Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	PORT_DIS_BUS	R/W	Port Disable Bus-Powered: Disables 1 or more ports. '0' = Port is available. '1' = Port is disabled. During Bus-Powered operation, when PRTMAP_EN = 0, this selects the PHYSICAL ports that are permanently disabled and are not available to be enabled or enumerated by a host controller. The ports can be disabled in any order. The internal logic automatically reports the correct number of enabled ports to the USB host and reorders the active ports to ensure proper function. When using the internal default option, the PRT_DIS[1:0] pins disable the appropriate ports. Bit 7 = 1; PHYSICAL Port 7 is disabled. Bit 6 = 1; PHYSICAL Port 6 is disabled. Bit 5 = 1; PHYSICAL Port 4 is disabled. Bit 4 = 1; PHYSICAL Port 3 is disabled. Bit 3 = 1; PHYSICAL Port 2 is disabled. Bit 2 = 1; PHYSICAL Port 1 is disabled. Bit 1 = 1; PHYSICAL Port 1 is disabled. Bit 0 = Reserved, always = '0'

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. The PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 57: HUB MAX POWER - SELF POWERED

H_MAXP_S OFFSET: 300Ch RESET = 01h			Max Current for Self-Powered Operation Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	MAX_PWR_SP	R/W	Max Power Self-Powered: Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors. The USB2.0 specification does not permit this value to exceed 100 mA.

TABLE 58: HUB MAX POWER - BUS POWERED

H_MAXP_B OFFSET: 300Dh RESET = 50h			Max Current for Bus-Powered Operation Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	MAX_PWR_BP	R/W	Max Power Bus-Powered: Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.

TABLE 59: HUB FEATURE CONTROLLER MAX CURRENT - SELF POWERED

HC_MAXP_S OFFSET: 300Eh RESET = 01h			Hub Feature Controller Max Current for Self-Powered Operation Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	HC_MAX_C_SP	R/W	Hub Feature Controller Max Current Self-Powered: Value in 1 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value does NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device. The USB2.0 specification does not permit this value to exceed 100 mA.

TABLE 60: HUB FEATURE CONTROLLER MAX CURRENT - BUS POWERED

HC_MAXP_B OFFSET: 300Fh RESET = 50h			Hub Feature Controller Max Current for Bus-Powered Operation Base Address: BF80_0000h	
Bit	Name	R/W	Description	
7:0	HC_MAX_C_BP	R/W	Hub Feature Controller Max Current Bus-Powered: Value in 1 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value does NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device.	

TABLE 61: POWER-ON TIME REGISTER

PWR_O OFFSET RESET	Г: 3010h		Power-On Time Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	POWER_ON_TIME	R/W	Power On Time: The length of time that is takes (in 2 ms intervals) from the time the host initiated power-on sequence begins on a port until power is good on that port. The system software uses this value to determine how long to wait before accessing a powered-on port.

TABLE 62: USB2.0 HUB MANUFACTURER STRING INDEX REGISTER

MFR_STR_INDEX OFFSET: 3013h RESET = 01h			USB2.0 Hub Manufacturer String Index Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	MFR_STR_INDEX	R/W	Manufacturer String Index

TABLE 63: USB2.0 HUB PRODUCT STRING INDEX REGISTER

PRD_STR_INDEX OFFSET: 3014h RESET = 02h			USB2.0 Hub Product String Index Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	PRD_STR_INDEX	R/W	Product String Index

TABLE 64: USB2.0 HUB SERIAL STRING INDEX REGISTER

SER_STR_INDEX OFFSET: 3015h RESET = 00h			USB2.0 Hub Serial String Index Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	SER_STR_INDEX	R/W	Serial String Index

TABLE 65: BATTERY CHARGING ENABLE STATUS REGISTER

	BC_EN Offset: 30D0h RESET = XXh		Battery Charging Enable Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7	Reserved	R	Always 0
6:1	BC_EN_STAT	R	'0' = Battery Charging is OFF '1' = Battery Charging is ON Bit 6 = PHYSICAL Port 6 Bit 5 = PHYSICAL Port 5 Bit 4 = PHYSICAL Port 4 Bit 3 = PHYSICAL Port 2 Bit 1 = PHYSICAL Port 1 The default state of the register depends on the CFG_BC_EN strap setting. When using the CFG_BC_EN strap, the port configuration is selected by the resistor used as follows: 200K PD - Battery charging is disabled on all ports. 200K PU - Port 1 BC is enabled. 10K PD - Ports 1, and 2 BC are enabled. 10R PD - Ports 1, 2, and 3 BC are enabled. 10R PD - Ports 1, 2, 3, and 4 BC are enabled. 10R PU - Ports 1, 2, 3, 4, 5, and 6 BC are enabled. No resistor - Not allowed See Note 1.
0	Reserved	R	Always 0

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. The PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 66: START OCS LOCKOUT TIMER REGISTER

	OCKOUT T: 30E1h = 0Ah		Start OCS Lockout Timer Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	START_OCS_LOCK	R/W	This timer blocks OCS events after the port power is enabled and is specified in 1 ms increments.

TABLE 67: PORT POWER STATUS

PORT_PWR_STAT OFFSET: 30E5h RESET = 00h			Port Power Status Base Address: BF80_0000h
Bit	Name	R/W	Description
7:5	Reserved	R	Always 0
7:1	BPRTPWR[4:1]	R	'0' = State of Port Power Enable is OFF '1' = State of Port Power Enable is ON Bit 7 = PHYSICAL Port 7 Bit 6 = PHYSICAL Port 6 Bit 5 = PHYSICAL Port 5 Bit 4 = PHYSICAL Port 4 Bit 3 = PHYSICAL Port 3 Bit 2 = PHYSICAL Port 2 Bit 1 = PHYSICAL Port 1 See Note 1.
0	Reserved	R	Always 0

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. The PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 68: USB2 TEST MODE REGISTER

USB2_TEST_MODE OFFSET: 30E6h RESET = 00h			USB2 Test Mode Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7	Reserved	R	Always 0
6:1	H_DN_STATE_PORT_TES	R	'0' = Port is not in a USB2.0 Test mode. Bit 6 = 1; PHYSICAL Port 6 is in a USB2.0 Test mode. Bit 5 = 1; PHYSICAL Port 5 is in a USB2.0 Test mode. Bit 4 = 1; PHYSICAL Port 4 is in a USB2.0 Test mode. Bit 3 = 1; PHYSICAL Port 3 is in a USB2.0 Test mode. Bit 2 = 1; PHYSICAL Port 2 is in a USB2.0 Test mode. Bit 1 = 1; PHYSICAL Port 1 is in a USB2.0 Test mode. See Note 1.
0	UP_STAT_TEST_MODE	R	'0' = Upstream port is not in a USB2.0 Test mode. '1' = Upstream port is in a USB2.0 Test mode.

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. The PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 69: LPM TURNAROUND TIMEOUT

HS_TRESP_TIMEOUT OFFSET: 30E7h RESET = 00h			LPM Turnaround Timeout Register Base Address: BF80_0000h
Bit	Name	R/W	Description
6:0	LPM_TIMEOUT	R/W	This register sets the number of clocks the LPM logic will wait before timing out an LPM transaction on a downstream port.
			When this register is left at '0', a default value of 0x25 will be used. When this register holds a non-zero value, the register value is used.

TABLE 70: ENABLE OCS LEGACY REGISTER

ENABLE_OCS_LEGACY OFFSET: 30E9h RESET = 00h			Enable OCS Legacy Base Address: BF80_0000h
Bit	Name	R/W	Description
7:3	Reserved	R	Reserved; do not modify
2	ENABLE_OCS_LEGACY	R/W	_
1:0	Reserved	R	Reserved; do not modify

TABLE 71: OCS MINIMUM WIDTH REGISTER

OCS_MIN_WIDTH OFFSET: 30EAh RESET = 05h			OCS Minimum Width Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	OCS _MIN_WIDTH	R/W	Contains the minimum OCS pulse width required to detect an OCS event. This field provides a range from 0 to 5 milliseconds in 1 ms increments.

TABLE 72: OCS INACTIVE TIMER

OCS_INACTIVE_TIMER OFFSET: 30EBh RESET = 14h			OCS Inactive Timer After First OCS Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	OCS_INACTIVE	R/W	Contains the maximum delay between two consecutive OCS pulses to occur to register as an OCS event. This field provides a range from 0 to 255 milliseconds in 1 ms increments.

TABLE 73: HUB PORT SWAP REGISTER

HUB_PRT_SWAP OFFSET: 30FAh RESET = 00h			Hub Port Swap Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	PRT_SWAP	R/W	Port Swap: Swaps the upstream and downstream USB DP and DM pins for ease of board routing to devices and connectors. '0' = USB D+ functionality is associated with the DP pin, and D- functionality is associated with the DM pin. '1' = USB D+ functionality is associated with the DM pin, and D- functionality is associated with the DP pin. Bit 5 = '1': PHYSICAL Port 5 DP/DM is Swapped. Bit 4 = '1': PHYSICAL Port 4 DP/DM is Swapped. Bit 3 = '1': PHYSICAL Port 3 DP/DM is Swapped. Bit 2 = '1': PHYSICAL Port 2 DP/DM is Swapped. Bit 1 = '1': PHYSICAL Port 1 DP/DM is Swapped. Bit 0 = '1': PHYSICAL Port 0 (Upstream) Port DP/DM is Swapped.

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. The PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 74: HUB PORT REMAP 1-2 REGISTER

HUB_PRT_REMAP_12 OFFSET: 30FBh RESET = 00h			Hub Port 1-2 Remap Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	PRT_2_MAP	R/W	0000b – Physical Port 2 is disabled. 0001b – Physical Port 2 is mapped to Logical Port 1. 0010b – Physical Port 2 is mapped to Logical Port 2. 0011b – Physical Port 2 is mapped to Logical Port 3. 0100b – Physical Port 2 is mapped to Logical Port 4. 0101b – Physical Port 2 is mapped to Logical Port 5. 0110b – Physical Port 2 is mapped to Logical Port 6. 0111b – Physical Port 2 is mapped to Logical Port 7. All other values default to 0000b value.
3:0	PRT_1_MAP	R/W	0000b – Physical Port 1 is disabled. 0001b – Physical Port 1 is mapped to Logical Port 1. 0010b – Physical Port 1 is mapped to Logical Port 2. 0011b – Physical Port 1 is mapped to Logical Port 3. 0100b – Physical Port 1 is mapped to Logical Port 4. 0101b – Physical Port 1 is mapped to Logical Port 5. 0110b – Physical Port 1 is mapped to Logical Port 6. 0111b – Physical Port 1 is mapped to Logical Port 7. All other values default to 0000b value.

Note 1: Writes to this register are disabled unless PRTMAP_EN bit in HUB_CFG_3 is set.

TABLE 75: HUB PORT REMAP 3-4 REGISTER

HUB_PRT_REMAP_34 OFFSET: 30FCh RESET = 00h			Hub Port 3-4 Remap Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	PRT-4_MAP	R/W	0000b – Physical Port 4 is disabled. 0001b – Physical Port 4 is mapped to Logical Port 1. 0010b – Physical Port 4 is mapped to Logical Port 2. 0011b – Physical Port 4 is mapped to Logical Port 3. 0100b – Physical Port 4 is mapped to Logical Port 4. 0101b – Physical Port 4 is mapped to Logical Port 5. 0110b – Physical Port 4 is mapped to Logical Port 6. 0111b – Physical Port 4 is mapped to Logical Port 7. All other values default to 0000b value.
3:0	PRT-3_MAP	R/W	0000b – Physical Port 3 is disabled. 0001b – Physical Port 3 is mapped to Logical Port 1. 0010b – Physical Port 3 is mapped to Logical Port 2. 0011b – Physical Port 3 is mapped to Logical Port 3. 0100b – Physical Port 3 is mapped to Logical Port 4. 0101b – Physical Port 3 is mapped to Logical Port 5. 0110b – Physical Port 3 is mapped to Logical Port 6. 0111b – Physical Port 3 is mapped to Logical Port 7. All other values default to 0000b value.

Note 1: Writes to this register are disabled unless PRTMAP_EN bit in HUB_CFG_3 is set.

TABLE 76: HUB PORT REMAP 5-6 REGISTER

HUB_PRT_REMAP_56 OFFSET: 30FDh RESET = 00h			Hub Port 5-6 Remap Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	PRT-6_MAP	R/W	0000b – Physical Port 6 is disabled. 0001b – Physical Port 6 is mapped to Logical Port 1. 0010b – Physical Port 6 is mapped to Logical Port 2. 0011b – Physical Port 6 is mapped to Logical Port 3. 0100b – Physical Port 6 is mapped to Logical Port 4. 0101b – Physical Port 6 is mapped to Logical Port 5. 0110b – Physical Port 6 is mapped to Logical Port 6. 0111b – Physical Port 6 is mapped to Logical Port 7. All other values default to 0000b value.
3:0	PRT-5_MAP	R/W	0000b – Physical Port 5 is disabled. 0001b – Physical Port 5 is mapped to Logical Port 1. 0010b – Physical Port 5 is mapped to Logical Port 2. 0011b – Physical Port 5 is mapped to Logical Port 3. 0100b – Physical Port 5 is mapped to Logical Port 4. 0101b – Physical Port 5 is mapped to Logical Port 5. 0110b – Physical Port 5 is mapped to Logical Port 6. 0111b – Physical Port 5 is mapped to Logical Port 7. All other values default to 0000b value.

Note 1: Writes to this register are disabled unless PRTMAP_EN bit in HUB_CFG_3 is set.

TABLE 77: HUB PORT REMAP 7 REGISTER

HUB_PRT_REMAP_7 OFFSET: 30FEh RESET = 00h			Hub Port 7 Remap Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R	Always read 0
3:0	PRT-7_MAP	R/W	0000b – Physical Port 7 is disabled 0001b – Physical Port 7 is mapped to Logical Port 1. 0010b – Physical Port 7 is mapped to Logical Port 2. 0011b – Physical Port 7 is mapped to Logical Port 3. 0100b – Physical Port 7 is mapped to Logical Port 4. 0101b – Physical Port 7 is mapped to Logical Port 5. 0110b – Physical Port 7 is mapped to Logical Port 6. 0111b – Physical Port 7 is mapped to Logical Port 7. All other values default to 0000b value.

Note 1: Writes to this register are disabled unless PRTMAP_EN bit in HUB_CFG_3 is set.

TABLE 78: USB2 LINK STATE PORT 0-3

USB2_LINK_STATE1 OFFSET: 3100h RESET = FFh			USB2 Link State 1 Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	L_STATE3	R	Indicates the state of PHYSICAL downstream Port 3 00b – L0 Normal Operation 01b – L1 Sleep 10b – L2 Suspend 11b – L3 Off
5:4	L_STATE2	R	Indicates the state of PHYSICAL downstream Port 2 00b – L0 Normal Operation 01b – L1 Sleep 10b – L2 Suspend 11b – L3 Off
3:2	L_STATE1	R	Indicates the state of PHYSICAL downstream Port 1 00b – L0 Normal Operation 01b – L1 Sleep 10b – L2 Suspend 11b – L3 Off
1:0	L_STATE0	R	Indicates the state of PHYSICAL upstream Port 0 00b – L0 Normal Operation 01b – L1 Sleep 10b – L2 Suspend 11b – L3 Off

TABLE 79: USB2 LINK STATE PORT 4-7

USB2_LINK_STATE2 OFFSET: 3101h RESET = FFh			USB2 Link State 2 Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	L_STATE7	R	Indicates the state of PHYSICAL downstream Port 7 00b – L0 Normal Operation 01b – L1 Sleep 10b – L2 Suspend 11b – L3 Off
5:4	L_STATE6	R	Indicates the state of PHYSICAL downstream Port 6 00b – L0 Normal Operation 01b – L1 Sleep 10b – L2 Suspend 11b – L3 Off
3:2	L_STATE5	R	Indicates the state of PHYSICAL downstream Port 5 00b – L0 Normal Operation 01b – L1 Sleep 10b – L2 Suspend 11b – L3 Off
1:0	L_STATE4	R	Indicates the state of PHYSICAL downstream Port 4 00b – L0 Normal Operation 01b – L1 Sleep 10b – L2 Suspend 11b – L3 Off

TABLE 80: USB2 HUB CONTROL

USB2_HUB_CTL OFFSET: 3104h RESET = 00h			USB2 Hub Control Base Address: BF80_0000h	
Bit	Name R/W		Description	
7:2	RESERVED	R	Reserved	
1	LPM_DISABLE	R/W	Disables Link Power Management	
0	RESET	R/W	Hub reset downstream '0' = Hub is in Normal mode. '1' = Hub is kept in reset.	

TABLE 81: USB2 VERSION BCD[15:0]

USB2_BCDUSB OFFSET: 3108h RESET = 0201h			USB2 Version BCD Base Address: BF80_0000h
Bit	Bit Name R/W		Description
15:0	USBVCD[15:0]	R/W	USB Specification Release Number in BCD format

Note 1: 3108h-[15:8], 3109h-[7:0]

TABLE 82: HUB CONTROL PORTABLE TEST

CNTLP OFFSET: 318Ch RESET = 00h			Hub Control Portable Test Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	RESERVED	R	Reserved
3:1	EMBEDTEST	R/W	Embedded Host Compliance Testing Modes. Enables test modes on USB ports. To facilitate embedded host compliance testing, the SOC may select any of the following test modes using the serial port interface instead of modifying the embedded host stack to accomplish the same modes using USB communication to the hub controller with standard SETUP packet commands. Both methods can be used for embedded host compliance testing with equivalent results. The Test modes described below are related to Section 7.1.20 of the USB 2.0 Specification and associated errata. Encoded values match the low nibble of the PID asserted by the HS-OPT when it requests the host to enter the associated Test mode. When the test mode entered is continues until the embedTest control is written back to '000' by the SOC. 0 (000) – Default Operation – No Test mode asserted 1 (001) – TEST_SE0_NAK – The hub enters high-speed receive and drives SE0 on the hub's downstream port, 2 (010) – TEST_J – The hub's downstream port enters high-speed J state.
			3 (011) – TEST_K – The hub's downstream port enters high-speed K state. 4 (100) – TEST_PACKET – Sends test packets on downstream port. All others are reserved. The port in use is selected using the EMBED TEST PORT SEL register.
0	Reserved	R	Reserved

TABLE 83: EMBEDDED HUB TEST PORT SELECT

EMBED_TEST_PORT_SEL OFFSET: 318Dh RESET = 00h			Hub Test Port Select Base Address: BF80_0000h	
Bit	Name	R/W	Description	
7:6	Reserved	R	Reserved	

TABLE 83: EMBEDDED HUB TEST PORT SELECT (CONTINUED)

EMBED_TEST_PORT_SEL OFFSET: 318Dh RESET = 00h			Hub Test Port Select Base Address: BF80_0000h
Bit	Name	R/W	Description
5:0 F	PORT_SEL[4:0]	R/W	Enables a port at the particular bit position. Any combination is permissible. Some examples are shown below: 00_0000 - Normal operation 00_0001 - PHYSICAL Downstream Port 1 00_0010 - PHYSICAL Downstream Port 2 00_0100 - PHYSICAL Downstream Port 3 00_1000 - PHYSICAL Downstream Port 4 01_0000 - PHYSICAL Downstream Port 5 00_0011 - PHYSICAL Downstream Port 1 and Port 2 00_0111 - PHYSICAL Downstream Port 1-3 00_1111 - PHYSICAL Downstream Port 1-4 11_1111 - PHYSICAL Downstream Port 1-6 To enable testing of the upstream port, use FlexConnect to swap Port 1 with the upstream port, and then run the EMBEDTEST on Port 1. See
			00_0111 - PHYSICAL Downstream Port 1-3 00_1111 - PHYSICAL Downstream Port 1-4 11_1111 - PHYSICAL Downstream Port 1-6 To enable testing of the upstream port, use FlexConnect to

TABLE 84: USB2 HUB STATUS REGISTER

	HUB_STAT T: 3194h = 00h		USB2 Hub Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:1	USB2_DN_CONNECTED	R	USB Device connected on downstream port
			'1' = Device connected
			'0' = No device connected
			Bit 7 = PHYSICAL Port 7
			Bit 6 = PHYSICAL Port 6
			Bit 5 = PHYSICAL Port 5
			Bit 4 = PHYSICAL Port 4
			Bit 3 = PHYSICAL Port 3
			Bit 2 = PHYSICAL Port 2
			Bit 1 = PHYSICAL Port 1
			See Note 1.
0	USB2_HOST_DETECT	R	'1' = USB2 Host connected
			'0' = No USB2 host connected

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed, and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 85: USB2 DOWNSTREAM DEVICE SPEED[4-1]

USB2_DN_SPEED41 OFFSET: 3195h RESET = 00h			USB2 Downstream Device Speed1 Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	USB2_DN4_DEV_SPEED	R	Indicates the USB2.0 state of PHYSICAL downstream Port 4 00b – No connect 01b – LS 10b – FS 11b – HS
5:4	USB2_DN3_DEV_SPEED	R	Indicates the USB2.0 state of PHYSICAL downstream Port 3 00b – No connect 01b – LS 10b – FS 11b – HS
3:2	USB2_DN2_DEV_SPEED	R	Indicates the USB2.0 state of PHYSICAL downstream Port 2 00b – No connect 01b – LS 10b – FS 11b – HS
1:0	USB2_DN1_DEV_SPEED	R	Indicates the USB2.0 state of PHYSICAL downstream Port 1 00b - No connect 01b - LS 10b - FS 11b - HS

TABLE 86: USB2 DOWNSTREAM DEVICE SPEED[7-5]

USB2_DN_SPEED75 OFFSET: 3196h RESET = 00h			USB2 Downstream Device Speed2 Base Address: BF80_0000h
Bit	Name	R/W	Description
7:2	Reserved	R	Always reads 0
5:4	USB2_DN7_DEV_SPEED	R	Indicates the USB2.0 state of PHYSICAL downstream Port 7 00b – No connect 01b – LS 10b – FS 11b – HS

TABLE 86: USB2 DOWNSTREAM DEVICE SPEED[7-5] (CONTINUED)

USB2_DN_SPEED75 OFFSET: 3196h RESET = 00h			USB2 Downstream Device Speed2 Base Address: BF80_0000h
Bit	Name	R/W	Description
3:2	USB2_DN6_DEV_SPEED	R	Indicates the USB2.0 state of PHYSICAL downstream Port 6 00b – No connect 01b – LS 10b – FS 11b – HS
1:0	USB2_DN5_DEV_SPEED	R	Indicates the USB2.0 state of PHYSICAL downstream Port 5 00b - No connect 01b - LS 10b - FS 11b - HS

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed, and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 87: USB2 SUSPEND INDICATOR

USB2_SUSP_IND OFFSET: 3197h RESET = 00h			USB2 Suspend Indicator Base Address: BF80_0000h
Bit	Name	R/W	Description
7:1	Reserved	R	Always reads 0. Do not modify.
0	USB_SUSPEND	R	Suspend indicator 0 = Active. The hub is configured and operational. 1 = Inactive. The hub is not configured, or configured and is suspended in Sleep state.

TABLE 88: USB2 SUSPEND INDICATOR

	SUSP_IND T: 3197h = 00h		USB2 Suspend Indicator Base Address: BF80_0000h
Bit	Name	R/W	Description
7:1	Reserved	R	Always reads 0. Do not modify.
0	USB_SUSPEND	R	Suspend indicator 0 = Active. The hub is configured and operational. 1 = Inactive. The hub is not configured, or configured and is suspended in Sleep state.

TABLE 89: USB GEN2 HUB CONTROL REGISTER

USB3_GEN2_HUB_CTRL_REG 0xBF80_392Ch Reset = 0x00000000			GEN2 Hub Control Register
Bit	Name	R/W	Description

TABLE 89: USB GEN2 HUB CONTROL REGISTER (CONTINUED)

0xBF80	GEN2_HUB_CTRL_REG)_392Ch = 0x000000000		GEN2 Hub Control Register
31:14	Reserved	R	Always '0'
13	HOST_FORCE_GEN1_SPEED_P5	R	Port 5 USB Super Speed link Gen1 Link Speed Control: 0: Max Link Speed is Gen2. 1: Max Link Speed is Gen1.
12	HOST_FORCE_GEN1_SPEED_P4	R	Port 4 USB Super Speed link Gen1 Link Speed Control: 0: Max Link Speed is Gen2. 1: Max Link Speed is Gen1.
11	HOST_FORCE_GEN1_SPEED_P3	R	Port 3 USB Super Speed link Gen1 Link Speed Control: 0: Max Link Speed is Gen2. 1: Max Link Speed is Gen1.
10	HOST_FORCE_GEN1_SPEED_P2	R	Port 2 USB Super Speed link Gen1 Link Speed Control: 0: Max Link Speed is Gen2. 1: Max Link Speed is Gen1.
9	HOST_FORCE_GEN1_SPEED_P1	R	Port 1 USB Super Speed link Gen1 Link Speed Control: 0: Max Link Speed is Gen2. 1: Max Link Speed is Gen1.
8	HOST_FORCE_GEN1_SPEED_P0	R	It is not recommended to modify this bit. Port 0 (upstream port) USB Super Speed link Gen1 Link Speed Control: 0: Max Link Speed is Gen2. 1: Max Link Speed is Gen1.
7:0	Reserved	R	Always '0'

TABLE 90: PORT 0 (UPSTREAM) PORT POWER SELECT

PORT_CFG_SEL_0 OFFSET: 3C00h RESET = 80h			PHYSICAL Port 0 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
31:23	Reserved	R	Always reads 0. Do not modify.
22	ORIENTATION_POLARITY	R/W	This bit indicates/controls the Type-C orientation of the port. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
21	CC_ENABLE	R/W	This bit controls the Enable to CC Pin Detection logic. This should always be enabled for Type-C ports. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.

TABLE 90: PORT 0 (UPSTREAM) PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_0 OFFSET: 3C00h RESET = 80h			PHYSICAL Port 0 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
20:16	Reserved	R	Always reads 0. Do not modify.
15	MUX_EN	R/W	Enables the internal MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			0 = Port MUX disabled 1 = Port MUX enabled
14	Reserved	R	Always reads 0. Do not modify.
13:12	C_MUX_SEL[1:0]	R/W	Control mode for the MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			00 = Firmware controls attach and orientation (This mode used for Power Delivery enabled ports.).
			01 = Firmware controls C_ATTACH, hardware logic controls ORI-ENTATION. (Used in custom application only)
			10 = Firmware controls ORIENTATION, hardware logic controls C_ATTACH. (Used in custom application only)
			11 = Hardware logic controls C_ATTACH and ORIENTATION. This mode is used for standard Type-C ports with no PD enabled.)
11	C_SEL_BNA	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls which USB3.1 PHY is selected for the Type-C attach orientation. This bit is valid only if MUX_EN = 1 and PORT_TYPE = Type-C.
			0 = PHY side 'A' is selected. 1 = PHY side 'B' is selected.
10	C_ATTACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls if a Type-C attach is detected.
			0 = No Type-C attach 1 = Type-C attach detected.
9:8	PORT_TYPE	R/W	Indicates the type of USB receptacle used on the port 00 = Type-A with USB2 and USB3 01 = Type-C with USB2 and USB3 10 = Split. Type-A USB2 only, internal (embedded device) USB3 11 = Split. Type-C USB2 only, internal (embedded device) USB3

TABLE 90: PORT 0 (UPSTREAM) PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_0 OFFSET: 3C00h RESET = 80h			PHYSICAL Port 0 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7	COMBINED _MODE	R/W	This should always be set to 1 for the standard-use case as both pins are always physically bonded out the same pin in the package.
			 0 = The Port Power and Overcurrent Sense functions use separate physical pins. 1 = The Port Power and Overcurrent Sense functions use the same physical pin.
6	GANG_PIN	R/W	When set, the port power will be connected to the GANG_PWR pin.
5	DISABLED	R/W	When set, it disables the port. Used to inform the USB hub that a port is permanently disabled.
4	PERMANENT	R/W	When set, it indicates that the port has a permanently attached device.
3:0	PRT_SEL	R/W	This selects the source for PRT_CTL1. 0000b = The port power is disabled. 0001b = The port is on if the USB2 port power is on (enable port power command received from USB2 host). 0010b = The port is on if the USB3 port power is on (enable port power command received from USB3 host). 0011b = The port is on if the USB2 or USB3 port power is on (enable port power command received from USB2 or USB3 host). 0100b = The port is on if the designated GPIO is on (change PRT_CTL pin to GPIO mode for external control via USB register write or SMBus/I²C register write). All other values are reserved.

TABLE 91: PORT 1 PORT POWER SELECT

PORT_CFG_SEL_1 OFFSET: 3C04h RESET = 80h			PHYSICAL Port 1 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
31:23	Reserved	R	Always reads 0. Do not modify.
22	ORIENTATION_POLARITY	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls the Type-C orientation of the port.
21	CC_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit controls the Enable to CC Pin Detection logic. This should always be enabled for Type-C ports.
20	AUTO_DETACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			When this bit is set, the MINIHOST_CONNECT bits will be set to 000b automatically when a device detach is detected.
19:17	MINIHOST_CONNECT[2:0]	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			000 = Neutral condition (Disconnected state) 001 = Port is connected to Mini-Host. 010 = Port is connected to the USB2 hub in USB1.1 mode. 011 = Port is connected in USB2 mode. 100 = Port is connected in USB3.1 Gen 1 mode.
			Others are reserved.
16	MINI_HOST_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 0 = The port is a standard USB port connected to the USB hub. 1 = The port is under control by the Mini-Host.
15	MUX_EN	R/W	Enables the internal MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			0 = Port MUX disabled 1 = Port MUX enabled
14	Reserved	R	Always reads 0. Do not modify.
	1	<u> </u>	1

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed, and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 91: PORT 1 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_1 OFFSET: 3C04h RESET = 80h			PHYSICAL Port 1 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
13:12	C_MUX_SEL[1:0]	R/W	Control mode for the MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			00 = Firmware controls attach and orientation. (This mode is used for Power Delivery enabled ports.)
			01 = Firmware controls C_ATTACH, hardware logic controls ORI-ENTATION. (Used in custom application only)
			10 = Firmware controls ORIENTATION, hardware logic controls C_ATTACH. (Used in custom application only)
			11 = Hardware logic controls C_ATTACH and ORIENTATION. (This mode is used for standard Type-C ports with no PD enabled.)
11	C_SEL_BNA	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls which USB3.1 PHY is selected for the Type-C attach orientation. This bit is valid only if MUX_EN = 1 and PORT_TYPE = Type-C.
			0 = PHY side 'A' is selected. 1 = PHY side 'B' is selected.
10	C_ATTACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls if a Type-C attach is detected.
			0 = No Type-C attach 1 = Type-C attach detected
9:8	PORT_TYPE	R/W	Indicates the type of USB receptacle used on the port.
			00 = Type-A with USB2 and USB3 01 = Type-C with USB2 and USB3
			10 = Split. Type-A USB2 only, internal (embedded device) USB3 11 = Split. Type-C USB2 only, internal (embedded device) USB3
L		1	

TABLE 91: PORT 1 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_1 OFFSET: 3C04h RESET = 80h			PHYSICAL Port 1 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7	COMBINED _MODE	R/W	This should always be set to 1 for the standard-use case as both pins are always physically bonded out the same pin in the package.
			 0 = The Port Power and Overcurrent Sense functions use separate physical pins. 1 = The Port Power and Overcurrent Sense functions use the same physical pin.
6	GANG_PIN	R/W	When set, the port power will be connected to the GANG_PWR pin.
5	DISABLED	R/W	When set, it disables the port. Used to inform the USB hub that a port is permanently disabled.
4	PERMANENT	R/W	When set, it indicates that the port has a permanently attached device.
3:0	PRT_SEL	R/W	This selects the source for PRT_CTL1. 0000b = The port power is disabled. 0001b = The port is on if the USB2 port power is on (enable port power command received from USB2 host). 0010b = The port is on if the USB3 port power is on (enable port power command received from USB3 host). 0011b = The port is on if the USB2 or USB3 port power is on (enable port power command received from USB2 or USB3 host). 0100b = The port is on if the designated GPIO is on (change PRT_CTL pin to GPIO mode for external control via USB register write or SMBus/I ² C register write). All other values are reserved.

TABLE 92: PORT 2 PORT POWER SELECT

PORT_CFG_SEL_2 OFFSET: 3C08h RESET = 80h			PHYSICAL Port 2 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
31:23	Reserved	R	Always reads 0. Do not modify.
22	ORIENTATION_POLARITY	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls the Type-C orientation of the port.
21	CC_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit controls the Enable to CC Pin Detection logic. This should always be enabled for Type-C ports.
20	AUTO_DETACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			When this bit is set, the MINIHOST_CONNECT bits will be set to 000b automatically when a device detach is detected.
19:17	MINIHOST_CONNECT[2:0]	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			000 = Neutral condition (disconnected state) 001 = The port is connected to Mini-Host. 010 = The port is connected to the USB2 hub in USB1.1 mode. 011 = The port is connected in USB2 mode. 100 = The port is connected in USB3.1 Gen 1 mode.
			Others are reserved.
16	MINI_HOST_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			0 = The port is a standard USB port connected to the USB hub. 1 = The port is under control by the Mini-Host.
15	MUX_EN	R/W	Enables the internal MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			0 = Port MUX disabled 1 = Port MUX enabled
14	Reserved	R	Always reads 0. Do not modify.

TABLE 92: PORT 2 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_2 OFFSET: 3C08h RESET = 80h			PHYSICAL Port 2 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
13:12	C_MUX_SEL[1:0]	R/W	Control mode for the MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			00 = Firmware controls attach and orientation. (This mode used for Power Delivery enabled ports.)
			01 = Firmware controls C_ATTACH, hardware logic controls ORI-ENTATION. (Used in custom application only)
			10 = Firmware controls ORIENTATION, hardware logic controls C_ATTACH. (Used in custom application only)
			11 = Hardware logic controls C_ATTACH and ORIENTATION. (This mode used for standard Type-C ports with no PD enabled.)
11	C_SEL_BNA	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls which USB3.1 PHY is selected for the Type-C attach orientation. This bit is valid only if MUX_EN = 1 and PORT_TYPE = Type-C.
			0 = PHY side 'A' is selected. 1 = PHY side 'B' is selected.
10	C_ATTACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls if a Type-C attach is detected.
			0 = No Type-C attach 1 = Type-C attach detected
9:8	PORT_TYPE	R/W	Indicates the type of USB receptacle used on the port.
			00 = Type-A with USB2 and USB3 01 = Type-C with USB2 and USB3
			10 = Split. Type-A USB2 only, internal (embedded device) USB3 11 = Split. Type-C USB2 only, internal (embedded device) USB3
	<u> </u>	l	

TABLE 92: PORT 2 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_2 OFFSET: 3C08h RESET = 80h			PHYSICAL Port 2 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7	COMBINED _MODE	R/W	This should always be set to 1 for the standard-use case as both pins are always physically bonded out the same pin in the package.
			 0 = The Port Power and Overcurrent Sense functions use separate physical pins. 1 = The Port Power and Overcurrent Sense functions use the same physical pin.
6	GANG_PIN	R/W	When set, the port power will be connected to the GANG_PWR pin.
5	DISABLED	R/W	When set, it disables the port. Used to inform the USB hub that a port is permanently disabled.
4	PERMANENT	R/W	When set, it indicates that the port has a permanently attached device.
3:0	PRT_SEL	R/W	This selects the source for PRT_CTL2. 0000b = The port power is disabled. 0001b = The port is on if the USB2 port power is on. (enable port power command received from USB2 host) 0010b = The port is on if the USB3 port power is on. (enable port power command received from USB3 host). 0011b = The port is on if the USB2 or USB3 port power is on. (enable port power command received from USB2 or USB3 host). 0100b = The port is on if the designated GPIO is on. (Change PRT_CTL pin to GPIO mode for external control via USB register write or SMBus/I²C register write.) All other values are reserved.

TABLE 93: PORT 3 PORT POWER SELECT

PORT_CFG_SEL_3 OFFSET: 3C0Ch RESET = 80h			PHYSICAL Port 3 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
31:23	Reserved	R	Always reads 0. Do not modify.
22	ORIENTATION_POLARITY	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls the Type-C orientation of the port.
21	CC_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit controls the Enable to CC Pin Detection logic. This should always be enabled for Type-C ports.
20	AUTO_DETACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			When this bit is set, the MINIHOST_CONNECT bits will be set to 000b automatically when a device detach is detected.
19:17	MINIHOST_CONNECT[2:0]	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			000 = Neutral condition (Disconnected state) 001 = The port is connected to Mini-Host. 010 = The port is connected to the USB2 hub in USB1.1 mode. 011 = The port is connected in USB2 mode. 100 = The port is connected in USB3.1 Gen 1 mode.
			Others are reserved.
16	MINI_HOST_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 0 = The port is a standard USB port connected to the USB hub. 1 = The port is under control by the Mini-Host.
15	MUX_EN	R/W	This enables the internal MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 0 = Port MUX disabled
			1 = Port MUX enabled
14	Reserved	R	Always reads 0. Do not modify.

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed, and the settings are not impacted by LOGICAL port renumbering/remapping. See Section 7.0, Physical and Logical Port Mapping for details on the LOGICAL vs. PHYSICAL mapping for each device in this family.

TABLE 93: PORT 3 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_3 OFFSET: 3C0Ch RESET = 80h			PHYSICAL Port 3 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
13:12	C_MUX_SEL[1:0]	R/W	Control mode for the MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			00 = Firmware controls attach and orientation. (This mode is used for Power Delivery enabled ports.)
			01 = Firmware controls C_ATTACH, hardware logic controls ORI-ENTATION. (Used in custom application only)
			10 = Firmware controls ORIENTATION, hardware logic controls C_ATTACH. (Used in custom application only)
			11 = Hardware logic controls C_ATTACH and ORIENTATION. (This mode used for standard Type-C ports with no PD enabled.)
11	C_SEL_BNA	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls which USB3.1 PHY is selected for the Type-C attach orientation. This bit is valid only if MUX_EN = 1 and PORT_TYPE = Type-C.
			0 = PHY side 'A' is selected. 1 = PHY side 'B' is selected.
10	C_ATTACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls if a Type-C attach is detected.
			0 = No Type-C attach 1 = Type-C attach detected
9:8	PORT_TYPE	R/W	Indicates the type of USB receptacle used on the port 00 = Type-A with USB2 and USB3 01 = Type-C with USB2 and USB3
			10 = Split. Type-A USB2 only, internal (embedded device) USB3 11 = Split. Type-C USB2 only, internal (embedded device) USB3

TABLE 93: PORT 3 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_3 OFFSET: 3C0Ch RESET = 80h			PHYSICAL Port 3 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7	COMBINED _MODE	R/W	This should always be set to 1 for the standard-use case as both pins are always physically bonded out the same pin in the package.
			 0 = The Port Power and Overcurrent Sense functions use separate physical pins. 1 = The Port Power and Overcurrent Sense functions use the same physical pin.
6	GANG_PIN	R/W	When set, the port power will be connected to the GANG_PWR pin.
5	DISABLED	R/W	When set, it disables the port. Used to inform the USB hub that a port is permanently disabled.
4	PERMANENT	R/W	When set, it indicates that the port has a permanently attached device.
3:0	PRT_SEL	R/W	This selects the source for PRT_CTL3. 0000b = The port power is disabled. 0001b = The port is on if the USB2 port power is on. (enable port power command received from USB2 host). 0010b = The port is on if the USB3 port power is on. (enable port power command received from USB3 host). 0011b = The port is on if the USB2 or USB3 port power is on. (enable port power command received from USB2 or USB3 host). 0100b = The port is on if the designated GPIO is on. (change PRT_CTL pin to GPIO mode for external control via USB register write or SMBus/I ² C register write). All other values are reserved.

TABLE 94: PORT 4 PORT POWER SELECT

PORT_CFG_SEL_4 OFFSET: 3C10h RESET = 80h			PHYSICAL Port 4 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
31:23	Reserved	R	Always reads 0. Do not modify.
22	ORIENTATION_POLARITY	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls the Type-C orientation of the port.
21	CC_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit controls the Enable to CC Pin Detection logic. This should always be enabled for Type-C ports.
20	AUTO_DETACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			When this bit is set, the MINIHOST_CONNECT bits will be set to 000b automatically when a device detach is detected.
19:17	MINIHOST_CONNECT[2:0]	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			000 = Neutral condition (Disconnected state) 001 = The port is connected to Mini-Host. 010 = The port is connected to the USB2 hub in USB1.1 mode. 011 = The port is connected in USB2 mode. 100 = The port is connected in USB3.1 Gen 1 mode.
			Others are reserved.
16	MINI_HOST_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			0 = The port is a standard USB port connected to the USB hub. 1 = The port is under control by the Mini-Host.
15	MUX_EN	R/W	Enables the internal MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			0 = Port MUX disabled 1 = Port MUX enabled
14	Reserved	R	Always reads 0. Do not modify.
			<u> </u>

TABLE 94: PORT 4 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_4 OFFSET: 3C10h RESET = 80h			PHYSICAL Port 4 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
13:12	C_MUX_SEL[1:0]	R/W	Control mode for the MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			00 = Firmware controls attach and orientation (this mode used for Power Delivery enabled ports).
			01 = Firmware controls C_ATTACH, hardware logic controls ORI- ENTATION. (Used in custom application only)
			10 = Firmware controls ORIENTATION, hardware logic controls C_ATTACH. (Used in custom application only)
			11 = Hardware logic controls C_ATTACH and ORIENTATION. (This mode used for standard Type-C ports with no PD enabled.)
11	C_SEL_BNA	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls which USB3.1 PHY is selected for the Type-C attach orientation. This bit is valid only if MUX_EN = 1 and PORT_TYPE = Type-C.
			0 = PHY side 'A' is selected. 1 = PHY side 'B' is selected.
10	C_ATTACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls if a Type-C attach is detected.
			0 = No Type-C attach 1 = Type-C attach detected
9:8	PORT_TYPE	R/W	Indicates the type of USB receptacle used on the port. 00 = Type-A with USB2 and USB3 01 = Type-C with USB2 and USB3 10 = Split. Type-A USB2 only, internal (embedded device) USB3 11 = Split. Type-C USB2 only, internal (embedded device) USB3

TABLE 94: PORT 4 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_4 OFFSET: 3C10h RESET = 80h			PHYSICAL Port 4 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7	COMBINED _MODE	R/W	This should always be set to 1 for the standard-use case as both pins are always physically bonded out the same pin in the package.
			 0 = The Port Power and Overcurrent Sense functions use separate physical pins. 1 = The Port Power and Overcurrent Sense functions use the same physical pin.
6	GANG_PIN	R/W	When set, the port power will be connected to the GANG_PWR pin.
5	DISABLED	R/W	When set, it disables the port. Used to inform the USB hub that a port is permanently disabled.
4	PERMANENT	R/W	When set, it indicates that the port has a permanently attached device.
3:0	PRT_SEL	R/W	This selects the source for PRT_CTL4. 0000b = The port power is disabled. 0001b = The port is on if the USB2 port power is on. (enable port power command received from USB2 host). 0010b = The port is on if the USB3 port power is on. (enable port power command received from USB3 host). 0011b = The port is on if the USB2 or USB3 port power is on. (enable port power command received from USB2 or USB3 host). 0100b = The port is on if the designated GPIO is on. (Change PRT_CTL pin to GPIO mode for external control via USB register write or SMBus/I²C register write.) All other values are reserved.

TABLE 95: PORT 5 PORT POWER SELECT

PORT_CFG_SEL_5 OFFSET: 3C14h RESET = 80h			Port 5 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
31:23	Reserved	R	Always reads 0. Do not modify.
22	ORIENTATION_POLARITY	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls the Type-C orientation of the port.
21	CC_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit controls the Enable to CC Pin Detection logic. This should always be enabled for Type-C ports.
20	AUTO_DETACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. When this bit is set, the MINIHOST CONNECT bits will be set to
			000b automatically when a device detach is detected.
19:17	MINIHOST_CONNECT[2:0]	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 000 = Neutral condition (Disconnected state) 001 = The port is connected to Mini-Host. 010 = The port is connected to the USB2 hub in USB1.1 mode. 011 = The port is connected in USB2 mode. 100 = The port is connected in USB3.1 Gen 1 mode.
			Others are reserved.
16	MINI_HOST_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			0 = The port is a standard USB port connected to the USB hub. 1 = The port is under control by the Mini-Host.
15	MUX_EN	R/W	Enables the internal MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 0 = Port MUX disabled 1 = Port MUX enabled
14	Reserved	R	Always reads 0. Do not modify.
• •			

TABLE 95: PORT 5 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_5 OFFSET: 3C14h RESET = 80h			Port 5 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
13:12	C_MUX_SEL[1:0]	R/W	Control mode for the MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			00 = Firmware controls attach and orientation. (This mode used for Power Delivery enabled ports.)
			01 = Firmware controls C_ATTACH, hardware logic controls ORI- ENTATION. (Used in custom application only)
			10 = Firmware controls ORIENTATION, hardware logic controls C_ATTACH. (Used in custom application only)
			11 = Hardware logic controls C_ATTACH and ORIENTATION. (This mode used for standard Type-C ports with no PD enabled.)
11	C_SEL_BNA	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls which USB3.1 PHY is selected for the Type-C attach orientation. This bit is valid only if MUX_EN = 1 and PORT_TYPE = Type-C
			0 = PHY side 'A' is selected. 1 = PHY side 'B' is selected.
10	C_ATTACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls if a Type-C attach is detected.
			0 = No Type-C attach 1 = Type-C attach detected
9:8	PORT_TYPE	R/W	Indicates the type of USB receptacle used on the port.
			00 = Type-A with USB2 and USB3
			01 = Type-C with USB2 and USB3 10 = Split. Type-A USB2 only, internal (embedded device) USB3
			11 = Split. Type-C USB2 only, internal (embedded device) USB3
7	COMBINED _MODE	R/W	This should always be set to 1 for the standard-use case as both pins are always physically bonded out of the same pin in the package.
			0 = The Port Power and Overcurrent Sense functions use separate physical pins.
			1 = The Port Power and Overcurrent Sense functions use the same physical pin.
6	GANG_PIN	R/W	When set, the port power will be connected to the GANG_PWR pin.
5	DISABLED	R/W	When set, it disables the port. Used to inform the USB hub that a port is permanently disabled.
4	PERMANENT	R/W	When set, it indicates that the port has a permanently attached device.

TABLE 95: PORT 5 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_5 OFFSET: 3C14h RESET = 80h			Port 5 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
3:0	PRT_SEL	R/W	This selects the source for PRT_CTL5. 0000b = The port power is disabled. 0001b = The port is on if the USB2 port power is on. (enable port power command received from USB2 host) 0010b = The port is on if the USB3 port power is on. (enable port power command received from USB3 host). 0011b = The port is on if the USB2 or USB3 port power is on. (enable port power command received from USB2 or USB3 host). 0100b = The port is on if the designated GPIO is on. (Change PRT_CTL pin to GPIO mode for external control via USB register write or SMBus/I²C register write).

TABLE 96: PORT 6 PORT POWER SELECT

PORT_CFG_SEL_6 OFFSET: 3C04h RESET = 80h			PHYSICAL Port 6 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
31:23	Reserved	R	Always reads 0. Do not modify.
22	ORIENTATION_POLARITY	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls the Type-C orientation of the port.
21	CC_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit controls the Enable to CC Pin Detection logic. This should always be enabled for Type-C ports.
20	AUTO_DETACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases.
			When this bit is set, the MINIHOST_CONNECT bits will be set to 000b automatically when a device detach is detected.

TABLE 96: PORT 6 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_6 OFFSET: 3C04h RESET = 80h			PHYSICAL Port 6 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
19:17	MINIHOST_CONNECT[2:0]	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 000 = Neutral condition (Disconnected state) 001 = The port is connected to Mini-Host. 010 = The port is connected to the USB2 hub in USB1.1 mode. 011 = The port is connected in USB2 mode. 100 = The port is connected in USB3.1 Gen 1 mode. Others are reserved.
16	MINI_HOST_ENABLE	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 0 = The port is a standard USB port connected to the USB hub. 1 = The port is under control by the Mini-Host.
15	MUX_EN	R/W	Enables the internal MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 0 = Port MUX disabled 1 = Port MUX enabled
14	Reserved	R	Always reads 0. Do not modify.
13:12	C_MUX_SEL[1:0] C_SEL_BNA	R/W	Control mode for the MUX for Type-C routing of the USB3.1 signals. This register bit is controlled by the firmware and should not be modified externally under normal-use cases. 00 = Firmware controls attach and orientation. (This mode is used for Power Delivery enabled ports.) 01 = Firmware controls C_ATTACH, hardware logic controls ORI-ENTATION. (Used in custom application only) 10 = Firmware controls ORIENTATION, hardware logic controls C_ATTACH. (Used in custom application only) 11 = Hardware logic controls C_ATTACH and ORIENTATION. (This mode used for standard Type-C ports with no PD enabled.) This register bit is controlled by the firmware and should not be
			modified externally under normal-use cases. This bit indicates/controls which USB3.1 PHY is selected for the Type-C attach orientation. This bit is valid only if MUX_EN = 1 and PORT_TYPE = Type-C. 0 = PHY side 'A' is selected. 1 = PHY side 'B' is selected.
10	C_ATTACH	R/W	This register bit is controlled by the firmware and should not be modified externally under normal-use cases. This bit indicates/controls if a Type-C attach is detected. 0 = No Type-C attach 1 = Type-C attach detected

TABLE 96: PORT 6 PORT POWER SELECT (CONTINUED)

PORT_CFG_SEL_6 OFFSET: 3C04h RESET = 80h			PHYSICAL Port 6 Power Select Base Address: BF80_0000h
Bit	Name	R/W	Description
9:8	PORT_TYPE	R/W	Indicates the type of USB receptacle used on the port.
			00 = Type-A with USB2 and USB3 01 = Type-C with USB2 and USB3 10 = Split. Type-A USB2 only, internal (embedded device) USB3 11 = Split. Type-C USB2 only, internal (embedded device) USB3
7	COMBINED _MODE	R/W	This should always be set to 1 for the standard-use case as both pins are always physically bonded out the same pin in the package.
			 0 = The Port Power and Overcurrent Sense functions use separate physical pins. 1 = The Port Power and Overcurrent Sense functions use the same physical pin.
6	GANG_PIN	R/W	When set, the port power will be connected to the GANG_PWR pin.
5	DISABLED	R/W	When set, it disables the port. Used to inform the USB hub that a port is permanently disabled
4	PERMANENT	R/W	When set, it indicates that the port has a permanently attached device.
3:0	PRT_SEL	R/W	This selects the source for PRT_CTL6. 0000b = The port power is disabled. 0001b = The port is on if the USB2 port power is on. (enable port power command received from USB2 host). 0010b = The port is on if the USB3 port power is on. (enable port power command received from USB3 host). 0011b = The port is on if the USB2 or USB3 port power is on. (enable port power command received from USB2 or USB3 host). 0100b = The port is on if the designated GPIO is on. (Change PRT_CTL pin to GPIO mode for external control via USB register write or SMBus/I ² C register write.)

TABLE 97: USB PORT 1 OCS SOURCE SELECT

USB_OCS_SEL_1 OFFSET: 3C20h RESET = 00h			Port 1 OCS Source Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	OCS_SEL_USB3	R/W	This selects the source for the OCS signal for Port 1. 0000b = OCS is disabled.
			0001b = OCS comes from USB3 Hub OCS pin.
			0010b = OCS pin comes from GPIO.
			0011b = OCS pin comes from GANG_PWR pin.
			1111b = OCS is forced on (for testing).
			All other values are reserved.
3:0	OCS_SEL_USB2	R/W	This selects the source for the OCS signal for Port 1.
			0000b = OCS is disabled.
			0001b = OCS comes from USB2 Hub OCS logic.
			0010b = OCS pin comes from GPIO.
			0011b = OCS pin comes from GANG_PWR pin.
			1111b = OCS is forced on (for testing).
			All other values are reserved.

TABLE 98: USB PORT 2 OCS SOURCE SELECT

USB_OCS_SEL_2 OFFSET: 3C24h RESET = 00h			Port 2 OCS Source Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	OCS_SEL_USB3	R/W	This selects the source for the OCS signal for Port 2. 0000b = OCS is disabled. 0001b = OCS comes from USB3 Hub OCS pin. 0010b = OCS pin comes from GPIO. 0011b = OCS pin comes from GANG_PWR pin. 1111b = OCS is forced on (for testing). All other values are reserved.
3:0	OCS_SEL_USB2	R/W	This selects the source for the OCS signal for Port 2. 0000b = OCS is disabled. 0001b = OCS comes from USB2 Hub OCS logic. 0010b = OCS pin comes from GPIO. 0011b = OCS pin comes from GANG_PWR pin. 1111b = OCS is forced on (for testing). All other values are reserved.

TABLE 99: USB PORT 3 OCS SOURCE SELECT

USB_OCS_SEL_3 OFFSET: 3C28h RESET = 00h			Port 3 OCS Source Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	This selects the source for the OCS signal for Port 3.
			0000b = OCS is disabled. 0001b = OCS comes from USB3 Hub OCS pin.
			0010b = OCS pin comes from GPIO.
			0011b = OCS pin comes from GANG_PWR pin.
			1111b = OCS is forced on (for testing).
			All other values are reserved.
3:0	OCS_SEL	R/W	This selects the source for the OCS signal for Port 3.
			0000b = OCS is disabled.
			0001b = OCS comes from USB2 Hub OCS logic.
			0010b = OCS pin comes from GPIO.
			0011b = OCS pin comes from GANG_PWR pin.
			1111b = OCS is forced on (for testing).
			All other values are reserved.

TABLE 100: USB PORT 4 OCS SOURCE SELECT

USB_OCS_SEL_4 OFFSET: 3C2Ch RESET = 00h			Port 4 OCS Source Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	This selects the source for the OCS signal for Port 4. 0000b = OCS is disabled. 0001b = OCS comes from USB3 Hub OCS pin. 0010b = OCS pin comes from GPIO. 0011b = OCS pin comes from GANG_PWR pin. 1111b = OCS is forced on (for testing). All other values are reserved.
3:0	OCS_SEL	R/W	This selects the source for the OCS signal for Port 4. 0000b = OCS is disabled. 0001b = OCS comes from USB2 Hub OCS logic. 0010b = OCS pin comes from GPIO. 0011b = OCS pin comes from GANG_PWR pin. 1111b = OCS is forced on (for testing). All other values are reserved.

TABLE 101: USB PORT 5 OCS SOURCE SELECT

USB_OCS_SEL_5 OFFSET: 3C30h RESET = 00h			Port 5 OCS Source Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	This selects the source for the OCS signal for Port 5. 0000b = OCS is disabled. 0001b = OCS comes from USB3 Hub OCS pin. 0010b = OCS pin comes from GPIO. 0011b = OCS pin comes from GANG_PWR pin. 1111b = OCS is forced on (for testing). All other values are reserved.
3:0	OCS_SEL	R/W	This selects the source for the OCS signal for Port 5. 0000b = OCS is disabled. 0001b = OCS comes from USB2 Hub OCS logic. 0010b = OCS pin comes from GPIO. 0011b = OCS pin comes from GANG_PWR pin. 1111b = OCS is forced on (for testing). All other values are reserved.

TABLE 102: USB PORT 6 OCS SOURCE SELECT

USB_OCS_SEL_6 OFFSET: 3034h RESET = 00h			Port 6 OCS Source Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	This selects the source for the OCS signal for Port 6. 0000b = OCS is disabled. 0001b = OCS comes from USB3 Hub OCS pin. 0010b = OCS pin comes from GPIO. 0011b = OCS pin comes from GANG_PWR pin. 1111b = OCS is forced on (for testing). All other values are reserved.
3:0	OCS_SEL	R/W	This selects the source for the OCS signal for Port 6. 0000b = OCS is disabled. 0001b = OCS comes from USB2 Hub OCS logic. 0010b = OCS pin comes from GPIO. 0011b = OCS pin comes from GANG_PWR pin. 1111b = OCS is forced on (for testing). All other values are reserved.

TABLE 103: USB PORT 7 OCS SOURCE SELECT

USB_OCS_SEL_7 OFFSET: 3038h RESET = 00h			Port 7 OCS Source Select Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	This selects the source for the OCS signal for Port 7. 0000b = OCS is disabled.
			0000b = OCS is disabled. 0001b = OCS comes from USB3 Hub OCS pin.
			0010b = OCS pin comes from GPIO.
			0011b = OCS pin comes from GANG_PWR pin.
			1111b = OCS is forced on (for testing).
			All other values are reserved.
3:0	OCS_SEL	R/W	This selects the source for the OCS signal for Port 7.
			0000b = OCS is disabled.
			0001b = OCS comes from USB2 Hub OCS logic.
			0010b = OCS pin comes from GPIO.
			0011b = OCS pin comes from GANG_PWR pin.
			1111b = OCS is forced on (for testing).
			All other values are reserved.

TABLE 104: VBUS_DET PASS-THROUGH REGISTER

VBUS_DET_PASS_THRU OFFSET: 3C40h RESET = 00h			VBUS_DET Pass-Through Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	Always read as 0
3:2	USB3_PASS_THRU	R/W	00 – The VBUS detection to the USB3 Hub comes from internal PIO24. 01 – The VBUS detection to the USB3 Hub comes from the VBUS_DET pin. 10 – The VBUS detection to the USB3 Hub comes from VBUS_MON pin. 11 – Reserved
1:0	USB2_PASS_THRU	R/W	00 – The VBUS detection to the USB2 Hub comes from internal PIO32. 01 – The VBUS detection to the USB2 Hub comes from the VBUS_DET pin. 10 – The VBUS detection to the USB2 Hub comes from VBUS_MON pin. 11 – Reserved

TABLE 105: PORT 0 (UPSTREAM) STATUS REGISTER

PORT_STAT_REG_0 OFFSET: 3C50h RESET = 00h			Port 0 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	Reserved	R/W	Always read as 0
5	A_ATTACH_STATUS	R	The current state of the Type-A port attach status. 1 = Type-A port currently has an attached device. 0 = Type-A port does not have an attached device.

TABLE 105: PORT 0 (UPSTREAM) STATUS REGISTER (CONTINUED)

PORT_STAT_REG_0 OFFSET: 3C50h RESET = 00h			Port 0 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
4	C_ATTACH_STATUS	R	The current state of the Type-C port attach status. 1 = Type-C port currently has an attached device. 0 = Type-C port does not have an attached device.
3	USB_A_ATTACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 attach is detected. This is cleared by the firmware before enabling the port power for the port.
2	USB_C_ATTACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.
1	USB_A_DETACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 detach is detected. Cleared by the hardware if the port power is not enabled for this port.
0	USB_C_DETACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.

TABLE 106: PORT 1 STATUS REGISTER

PORT_STAT_REG_1 OFFSET: 3C54h RESET = 00h			Port 1 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	Reserved	R/W	Always read as 0
5	A_ATTACH_STATUS	R	The current state of the Type-A port attach status.
			1 = Type-A port currently has an attached device.
			0 = Type-A port does not have an attached device.
4	C_ATTACH_STATUS	R	The current state of the Type-C port attach status. 1 = Type-C port currently has an attached device. 0 = Type-C port does not have an attached device.
3	USB_A_ATTACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 attach is detected. This is cleared by the firmware before enabling the port power for the port.
2	USB_C_ATTACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.
1	USB_A_DETACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 detach is detected. Cleared by the hardware if the port power is not enabled for this port.
0	USB_C_DETACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.

TABLE 107: PORT 2 STATUS REGISTER

PORT_STAT_REG_2 OFFSET: 3C58h RESET = 00h			Port 2 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	Always read 0
5	A_ATTACH_STATUS	R	The current state of the Type-A port attach status.
			1 = Type-A port currently has an attached device.
			0 = Type-A port does not have an attached device.
4	C_ATTACH_STATUS	R	The current state of the Type-C port attach status. 1 = Type-C port currently has an attached device. 0 = Type-C port does not have an attached device.
3	USB_A_ATTACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 attach is detected. This is cleared by the firmware before enabling the port power for the port.
2	USB_C_ATTACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.
1	USB_A_DETACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 detach is detected. Cleared by the hardware if the port power is not enabled for this port.
0	USB_C_DETACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.

TABLE 108: PORT 3 STATUS REGISTER

PORT_STAT_REG_3 OFFSET: 3C5Ch RESET = 00h			Port 3 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	Always read 0
5	A_ATTACH_STATUS	R	The current state of the Type-A port attach status.
			1 = Type-A port currently has an attached device.
			0 = Type-A port does not have an attached device.
4	C_ATTACH_STATUS	R	The current state of the Type-C port attach status. 1 = Type-C port currently has an attached device. 0 = Type-C port does not have an attached device.
3	USB_A_ATTACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 attach is detected. This is cleared by the firmware before enabling the port power for the port.
2	USB_C_ATTACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.
1	USB_A_DETACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 detach is detected. Cleared by the hardware if the port power is not enabled for this port.
0	USB_C_DETACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.

TABLE 109: PORT 4 STATUS REGISTER

PORT_STAT_REG_4 OFFSET: 3C60h RESET = 00h			Port 4 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	Always read 0
5	A_ATTACH_STATUS	R	The current state of the Type-A port attach status.
			1 = Type-A port currently has an attached device.
			0 = Type-A port does not have an attached device.
4	C_ATTACH_STATUS	R	The current state of the Type-C port attach status. 1 = Type-C port currently has an attached device. 0 = Type-C port does not have an attached device.
3	USB_A_ATTACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 attach is detected. This is cleared by the firmware before enabling the port power for the port.
2	USB_C_ATTACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.
1	USB_A_DETACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 detach is detected. Cleared by the hardware if the port power is not enabled for this port.
0	USB_C_DETACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.

TABLE 110: PORT 5 STATUS REGISTER

PORT_STAT_REG_5 OFFSET: 3C64h RESET = 00h			Port 5 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	Always read 0
5	A_ATTACH_STATUS	R	The current state of the Type-A port attach status.
			1 = Type-A port currently has an attached device.
			0 = Type-A port does not have an attached device.
4	C_ATTACH_STATUS	R	The current state of the Type-C port attach status. 1 = Type-C port currently has an attached device.
_			0 = Type-C port does not have an attached device.
3	USB_A_ATTACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 attach is detected. This is cleared by the firmware before enabling the port power for the port.
2	USB_C_ATTACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.
1	USB_A_DETACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 detach is detected. Cleared by the hardware if the port power is not enabled for this port.
0	USB_C_DETACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.

TABLE 111: PORT 6 STATUS REGISTER

PORT_STAT_REG_6 OFFSET: 3C68h RESET = 00h			Port 6 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	Always read 0
5	A_ATTACH_STATUS	R	The current state of the Type-A port attach status.
			1 = Type-A port currently has an attached device.
			0 = Type-A port does not have an attached device.
4	C_ATTACH_STATUS	R	The current state of the Type-C port attach status. 1 = Type-C port currently has an attached device. 0 = Type-C port does not have an attached device.
3	USB_A_ATTACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 attach is detected. This is cleared by the firmware before enabling the port power for the port.
2	USB_C_ATTACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.
1	USB_A_DETACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 detach is detected. Cleared by the hardware if the port power is not enabled for this port.
0	USB_C_DETACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.

TABLE 112: PORT 7 STATUS REGISTER

PORT_STAT_REG OFFSET: 3C6Ch RESET = 00h			Port 7 Status Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:4	Reserved	R/W	Always read 0
5	A_ATTACH_STATUS	R	The current state of the Type-A port attach status.
			1 = Type-A port currently has an attached device.
			0 = Type-A port does not have an attached device.
4	C_ATTACH_STATUS	R	The current state of the Type-C port attach status. 1 = Type-C port currently has an attached device. 0 = Type-C port does not have an attached device.
3	USB_A_ATTACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 attach is detected. This is cleared by the firmware before enabling the port power for the port.
2	USB_C_ATTACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.
1	USB_A_DETACH	R	Set = 1 by hardware when a USB2 LS, FS, HS or USB3 detach is detected. Cleared by the hardware if the port power is not enabled for this port.
0	USB_C_DETACH	R	Set = 1 by hardware when USB Type-C attach detected. Cleared by the hardware if the port power is not enabled for this port.

3.4.1.1 Port Control Registers

These registers control the analog signaling of specific ports.

TABLE 113: USB PORT 0 BOOST REGISTER

HS_P0_BOOST OFFSET: 60CAh RESET = 00h			USB Port 0 Boost Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:3	Reserved	R/W	Reserved. Do not modify.
2:0	HS_BOOST	R/W	HS Output Current.
			000b – Nominal 17.78 mA 001b – Decrease by 5% 010b – Increase by 10% 011b – Increase by 5% 100b – Increase by 20% 101b – Increase by 15% 110b – Increase by 30% 111b – Increase by 25% See Note 1.

Note 1: If adjusting this register, it might be necessary to also adjust the USB2_HS_DISC_TUNE[1:0] register if High-Speed disconnect issues are encountered.

TABLE 114: USB PORT 0 VARISENSE™ REGISTER

HS_P0_VSENSE OFFSET: 60CCh RESET = 00h			USB Port 0 VariSense™ Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	USB2_HS_DISC_TUNE[1:0]	R/W	HS Disconnect Threshold Tuning
			00b – Nominal (575 mV) threshold 01b – 625 mV threshold (+8.6%) 10b – 675 mV threshold (+17%) 11b – 700 mV threshold (+22%)
5:3	Reserved	R	Reserved. Do not modify.
2:0	SQ_TUNE[2:0]	R/W	Squelch Tune
			000b – Nominal 100 mV Trip Point 001b – Decrease by 12.5 mV 010b – Decrease by 25 mV 011b – Decrease by 37.5 mV 100b – Decrease by 50 mV 101b – Decrease by 62.5 mV 110b – Increase by 25 mV 111b – Increase by 12.5 mV

TABLE 115: USB PORT 1 BOOST REGISTER

HS_P1_BOOST OFFSET: 64CAh RESET = 00h			USB Port 1 Boost Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:3	Reserved	R/W	Reserved. Do not modify.
2:0	HS_BOOST	R/W	HS Output Current 000b – Nominal 17.78 mA 001b – Decrease by 5% 010b – Increase by 10% 011b – Increase by 5% 100b – Increase by 20% 101b – Increase by 15% 110b – Increase by 30% 111b – Increase by 25% See Note 1.

Note 1: If adjusting this register, it might be necessary to also adjust the USB2_HS_DISC_TUNE[1:0] register if High-Speed disconnect issues are encountered.

TABLE 116: USB PORT 1 VARISENSE™ REGISTER

HS_P1_VSENSE OFFSET: 64CCh RESET = 00h			USB Port 1 VariSense™ Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	USB2_HS_DISC_TUNE[1:0]	R/W	HS Disconnect Threshold Tuning
			00b – Nominal (575 mV) threshold
			01b - 625-mV threshold (+8.6%)
			10b – 675-mV threshold (+17%)
			11b – 700-mV threshold (+22%)
5:3	Reserved	R	Reserved. Do not modify.
2:0	SQ_TUNE[2:0]	R/W	Squelch Tune
			000b – Nominal 100-mV Trip Point
			001b – Decrease by 12.5 mV
			010b – Decrease by 25 mV
			011b – Decrease by 37.5 mV
			100b – Decrease by 50 mV
			101b – Decrease by 62.5 mV
			110b – Increase by 25 mV
			111b – Increase by 12.5 mV

TABLE 117: USB PORT 2 BOOST REGISTER

HS_P2_BOOST OFFSET: 68CAh RESET = 00h			USB Port 2 Boost Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:3	Reserved	R/W	Reserved. Do not modify.
2:0	HS_BOOST	R/W	HS Output Current
			000b – Nominal 17.78 mA 001b – Decrease by 5% 010b – Increase by 10% 011b – Increase by 5% 100b – Increase by 20% 101b – Increase by 15% 110b – Increase by 30% 111b – Increase by 25% See Note 1.

Note 1: If adjusting this register, it might be necessary to also adjust the USB2_HS_DISC_TUNE[1:0] register if High-Speed disconnect issues are encountered.

TABLE 118: USB PORT 2 VARISENSE™ REGISTER

HS_P2_VSENSE OFFSET: 68CCh RESET = 00h			USB Port 2 VariSense™ Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	USB2_HS_DISC_TUNE[1:0]	R/W	HS Disconnect Threshold Tuning
			00b – Nominal (575 mV) threshold
			01b - 625 mV threshold (+8.6%)
			10b – 675 mV threshold (+17%)
			11b – 700 mV threshold (+22%)
5:3	Reserved	R	Reserved. Do not modify.
2:0	SQ_TUNE[2:0]	R/W	Squelch Tune
			000b - Nominal 100 mV Trip Point
			001b – Decrease by 12.5 mV
			010b – Decrease by 25 mV
			011b – Decrease by 37.5 mV
			100b – Decrease by 50 mV
			101b – Decrease by 62.5 mV
			110b – Increase by 25 mV
			111b – Increase by 12.5 mV

TABLE 119: USB PORT 3 BOOST REGISTER

HS_P3_BOOST OFFSET: 6CCAh RESET = 00h			USB Port 3 Boost Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:3	Reserved	R/W	Reserved. Do not modify.
2:0	HS_BOOST	R/W	HS Output Current.
			000b – Nominal 17.78 mA 001b – Decrease by 5% 010b – Increase by 10% 011b – Increase by 5% 100b – Increase by 20% 101b – Increase by 15% 110b – Increase by 30% 111b – Increase by 25% See Note 1.

Note 1: If adjusting this register, it might be necessary to also adjust the USB2_HS_DISC_TUNE[1:0] register if High-Speed disconnect issues are encountered.

TABLE 120: USB PORT 3 VARISENSE™ REGISTER

HS_P3_VSENSE OFFSET: 6CCCh RESET = 00h			USB Port 3 VariSense™ Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	USB2_HS_DISC_TUNE[1:0]	R/W	HS Disconnect Threshold Tuning
			00b - Nominal (575 mV) threshold
			01b - 625 mV threshold (+8.6%)
			10b – 675 mV threshold (+17%)
			11b – 700 mV threshold (+22%)
5:3	Reserved	R	Reserved. Do not modify.
2:0	SQ_TUNE[2:0]	R/W	Squelch Tune
			000b - Nominal 100 mV Trip Point
			001b – Decrease by 12.5 mV
			010b – Decrease by 25 mV
			011b – Decrease by 37.5 mV
			100b – Decrease by 50 mV
			101b – Decrease by 62.5 mV
			110b –Increase by 25 mV
			111b – Increase by 12.5 mV

TABLE 121: USB PORT 4 BOOST REGISTER

HS_P4_BOOST OFFSET: 70CAh RESET = 00h			USB Port 4 Boost Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:3	Reserved	R/W	Reserved. Do not modify.
2:0	HS_BOOST	R/W	HS Output Current
			000b – Nominal 17.78 mA 001b – Decrease by 5% 010b – Increase by 10% 011b – Increase by 5% 100b – Increase by 20% 101b – Increase by 15% 110b – Increase by 30% 111b – Increase by 25% See Note 1.

Note 1: If adjusting this register, it might be necessary to also adjust the USB2_HS_DISC_TUNE[1:0] register if High-Speed disconnect issues are encountered.

TABLE 122: USB PORT 4 VARISENSE™ REGISTER

HS_P4_VSENSE OFFSET: 70CCh RESET = 00h			USB Port 4 VariSense™ Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	USB2_HS_DISC_TUNE[1:0]	R/W	HS Disconnect Threshold Tuning
			00b - Nominal (575 mV) threshold
			01b - 625-mV threshold (+8.6%)
			10b – 675-mV threshold (+17%)
			11b - 700-mV threshold (+22%)
5:3	Reserved	R	Reserved. Do not modify.
2:0	SQ_TUNE[2:0]	R/W	Squelch Tune
			000 - Nominal 100-mV Trip Point
			001 – Decrease by 12.5 mV
			010 – Decrease by 25 mV
			011 – Decrease by 37.5 mV
			100 – Decrease by 50 mV
			101 – Decrease by 62.5 mV
			110 – Increase by 25 mV
			111 – Increase by 12.5 mV

TABLE 123: USB PORT 5 BOOST REGISTER

HS_P5_BOOST OFFSET: 74CAh RESET = 00h			USB Port 5 Boost Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:3	Reserved	R/W	Reserved. Do not modify.
2:0	HS_BOOST	R/W	HS Output Current
			000b – Nominal 17.78 mA 001b – Decrease by 5% 010b – Increase by 10% 011b – Increase by 5% 100b – Increase by 20% 101b – Increase by 15% 110b – Increase by 30% 111b – Increase by 25% See Note 1.

Note 1: If adjusting this register, it might be necessary to also adjust the USB2_HS_DISC_TUNE[1:0] register if High-Speed disconnect issues are encountered.

TABLE 124: USB PORT 5 VARISENSE™ REGISTER

HS_P5_VSENSE OFFSET: 74CCh RESET = 00h			USB Port 5 VariSense™ Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:6	USB2_HS_DISC_TUNE[1:0]	R/W	HS Disconnect Threshold Tuning
			00b – Nominal (575 mV) threshold
			01b - 625 mV threshold (+8.6%)
			10b – 675 mV threshold (+17%)
			11b – 700 mV threshold (+22%)
5:3	Reserved	R	Reserved. Do not modify.
2:0	SQ_TUNE[2:0]	R/W	Squelch Tune
			000b - Nominal 100 mV Trip Point
			001b – Decrease by 12.5 mV
			010b – Decrease by 25 mV
			011b – Decrease by 37.5 mV
			100b – Decrease by 50 mV
			101b – Decrease by 62.5 mV
			110b – Increase by 25 mV
			111b – Increase by 12.5 mV

TABLE 125: USB3 HUB BCDUSB LSB

USB3_HUB_BCDUSB_LSB OFFSET: 8042h RESET = 03h			USB3 Hub bcdUSB LSB Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_BCDUS- B_LSB	R/W	Least Significant Byte of the HFC Product ID. This is a 16-bit value that identifies the USB-IF specification revision that the product adheres to.

TABLE 126: USB3 HUB BCDUSB MSB

OF	USB3_HUB_BCDUSB_LSB OFFSET: 8043h RESET = 20h			USB3 Hub bcdUSBLSB Base Address: BFCF_0000h
	Bit	Name	R/W	Description
	7:0	USB3_HUB_BCDUS- B_MSB	R/W	Most Significant Byte of the USB3Hub BcdUSB descriptor. This is a 16-bit value that identifies the USB-IF specification revision that the product adheres to.

TABLE 127: USB3 HUB VENDOR ID LSB

USB3_HUB_VID_LSB OFFSET: 8048h RESET = 24h			USB3 Hub Vendor ID MSB Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB DID_MSB	R/W	Least Significant Byte of the HFC Product ID. This is a 16-bit value that identifies the vendor of the product (as registers with USB-IF). The Microchip Vendor ID is 0424h.

TABLE 128: USB3 HUB VENDOR ID MSB

USB3_HUB_VID_MSB OFFSET: 8049h RESET = 04h			USB3 Hub Vendor ID MSB Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB DID_MSB	R/W	Least Significant Byte of the HFC Product ID. This is a 16-bit value that identifies the vendor of the product (as registers with USB-IF). The Microchip Vendor ID is 0424h.

TABLE 129: USB3 HUB PRODUCT ID LSB

USB3_HUB_PID_LSB OFFSET: 804Ah RESET = XXh			USB3 Hub Product ID LSB Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_PID_MS B	R/W	Most Significant Byte of the USB3 Hub Product ID. This is a 16-bit value that uniquely identifies this USB3 Hub device. The default value is dependent on the part as shown below: USB7202 = 02h USB7206 = 06h USB7250 = 50h USB7251 = 51h USB7252 = 52h USB7256 = 56h

Note 1: If port disable straps are implemented, these values will automatically decrement by the number of ports disabled by strapping. For example, if a design that implements USB7256 with two ports disabled by strapping, the Product ID (PID) will automatically change to 0x7254.

TABLE 130: USB3 HUB PRODUCT ID LSB

USB3_HUB_PID_LSB OFFSET: 804Bh RESET = 72h			USB3 Hub Product ID LSB Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_PID_MS B	R/W	Most Significant Byte of the USB3 Hub Product ID. This is a 16-bit value that uniquely identifies this USB3 Hub device.
			All devices: 72h

TABLE 131: USB3 HUB DEVICE ID (BCDDEVICE) LSB

USB3_HUB_PID_MSB OFFSET: 804Ch RESET = XXh			USB3 Hub Device ID LSB Base Address: BFCD_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB DID_LSB	R/W	Least Significant Byte of the USB3 Hub Device ID. This is a 16-bit value that is used for firmware or device revision tracking purposes.

Note 1: The default Device ID may change with silicon or firmware revisions.

TABLE 132: USB3 HUB DEVICE ID (BCDDEVICE) MSB

USB3_HUB_PID_MSB OFFSET: 804Dh RESET = XXh			USB3 Hub Device ID MSB Base Address: BFCD_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB DID_MSB	R/W	Most Significant Byte of the USB3 Hub Device ID. This is a 16-bit value that is used for firmware or device revision tracking purposes.

Note 1: The default Device ID may change with silicon or firmware revisions.

TABLE 133: USB3 HUB MANUFACTURER STRING INDEX REGISTER

USB3_HUB_MFR_STR_INDEX OFFSET: 804Eh RESET = 03h		(USB3 Hub Manufacturer String Index Register Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_M- FR_STR_INDEX	R/W	Manufacturer String Index
			Set = '00b' if unused

TABLE 134: USB3 HUB PRODUCT STRING INDEX REGISTER

USB3_HUB_PRD_STR_INDEX OFFSET: 804Fh RESET = 01h			USB3 Hub Product String Index Register Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_PRD_S TR_INDEX	R/W	Product String Index Set = '00b' if unused

TABLE 135: USB3 HUB SERIAL STRING INDEX REGISTER

USB3_HUB_SER_STR_INDEX OFFSET: 8050h RESET = 02h		,	USB3 Hub Serial String Index Register Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_SER_ST R_INDEX	R/W	Serial String Index Set = '00b' if unused

TABLE 136: USB3 HUB LANG_ID[15:0] LANGUAGE IDENTIFIER

USB3_HUB_LANG_ID OFFSET: 80DAh RESET = 0409h			USB3 Hub USB-IF Language Identifier Base Address: BFCF_0000h
Bit	Name	R/W	Description
15:0	USB3_HUB_LANG_I D	R/W	USB-IF Language Identifier. Default is English (United States).

Note 1: 28FAh-[7:0], 28FBh-[15:8]

TABLE 137: USB3 HUB STRING DESCRIPTOR CONTAINER

USB3_HUB_STR_CONTAINER OFFSET: 80E0h			USB3 Hub String Container Base Address: BFCF_0000h
Byte	Name	R/W	Description
95:0	USB3_HUB_STRING S	R/W	Container for All HFC Strings. This must follow the formatting as described in the <i>USB2.0 Specification</i> for string descriptors. All Hub Feature Controller product, manufacturer, and serial string are contained within this register array.

Note 1: 80E0h-[7:0], 80E1h-[15:8], 80E2h-[23:16], 80E3h-[31:24], 80E4h-[39:32],... 819Fh-[95:88]

TABLE 3-1: USB3 HUB ATTRIBUTES DESCRIPTOR

USB3_HUB_ATTRIBUTES OFFSET: 805Fh RESET = 60h			USB3 Hub Attributes Descriptor Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	Reserved	R	Reserved, always set to '1b'
6	SELF_POWERED	R/W	0b = Hub is not self-powered. (Hub is powered from upstream port VBUS.) 1b = Hub is self-powered. (Hub has its own power source.)
5	REMOTE_WAKEUP	R/W	0b = Hub is not remote wakeup capable. 1b = Hub is remote wakeup capable.
4:0	Reserved	R	Reserved, always set to '0b'.

TABLE 138: USB3 HUB MAX POWER DESCRIPTOR

USB3_HUB_MAX_POWER OFFSET: 8060h RESET = 01h			USB3 Hub Max Power Descriptor Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_MAX- _POWER	R/W	Maximum power consumption of the hub from VBUS when fully operational. 2 mA intervals. The default setting for this value is 2 mA (indicating almost no power consumption from VBUS) as most USB3 hub applications are not bus-powered applications.

TABLE 139: USB3 HUB NUMBER OF PORTS DESCRIPTOR

USB3_HUB_NBR_PORTS OFFSET: 80CAh RESET = XXh			USB3 Hub Number of Ports Descriptor Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_N- BR_PORTS	R/W	The number of downstream ports on the USB3 side of the hub (does not include any USB2-only ports). The default value depends on the hub device. 00h = Invalid 01h = 1 USB3 downstream port 02h = 2 USB3 downstream ports 03h = 3 USB3 downstream ports 04h = 4 USB3 downstream ports 05h = 5 USB3 downstream ports 06h - FFh = Invalid

TABLE 140: USB3 HUB CHARACTERISTICS DESCRIPTOR

USB3_HUB_CHARACTERISTICS OFFSET: 80CBh RESET = 09h		CS	USB3 Hub Characteristics Descriptor Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:5	Reserved	R	Reserved

TABLE 140: USB3 HUB CHARACTERISTICS DESCRIPTOR

USB3_HUB_CHARACTERISTICS OFFSET: 80CBh RESET = 09h			USB3 Hub Characteristics Descriptor Base Address: BFCF_0000h
Bit	Name	R/W	Description
4:3	OVER_CURRENT MODE	R/W	00 = Global over-current protection. The hub reports overcurrent as a summation of all ports' current draw, without a breakdown of individual port over-current status.
			01b = Individual port overcurrent protection. The hub reports overcurrent on a per-port basis. Each port has an overcurrent status.
			1Xb = No overcurrent protection. This option is allowed only for bus-powered hubs that do not implement overcurrent protection.
2	COMPOUND_DE- VICE	R/W	0b = Hub is not part of a compound device.
			1b = Hub is part of a compound device. A USB3 device is permanently attached to one or more of the USB3 ports.
1:0	LOGICAL_POWER MODE	R/W	00 = Ganged power switching. All ports power at once from a single control signal.
			01b = Individual port power switching. Each port has an individual power switch with individual control signal.
			1Xb = Reserved

TABLE 141: USB3 HUB POWER-TO-POWER GOOD DESCRIPTOR

USB3_HUB_PWR2PWRGOOD OFFSET: 80CDh RESET = 64h)	USB3 Hub Power to Power Good Descriptor Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_P- WR2PWRGOOD	R/W	Time in 2 ms intervals from the time the power-on sequence begins on a port until power is good on that port. The USB system software uses this value to determine how long to wait before accessing a powered-on port. This value should be set to zero if power-switching is not supported in the system design.

Note 1: A 'zero' setting should never be used on a design which includes Type-C ports.

TABLE 142: USB3 HUB CHARACTERISTICS DESCRIPTOR

USB3_HUB_NON_REM OFFSET: 80D2h RESET = 00h			USB3 Hub Non Removable Ports Descriptor Base Address: BFCF_0000h
Bit	Name	R/W	Description
7:0	USB3_HUB_NON_R EM	R/W	A descriptor which communicates the non-removable settings for the LOG-ICAL port numbering. Ob = Device is removable 1b = Device is non-removable Bit 0 - Reserved Bit 1 - Port 1 Bit 2 - Port 2 Bit 3 - Port 2 Bit 4 - Port 2 Bit 5 - Port 2 Bit 6 - Reserved Bit 7 - Reserved

Note 1: Certain port settings are made with respect to LOGICAL port numbering, and other port settings are made with respect to PHYSICAL port numbering. LOGICAL port numbering is the numbering as communicated to the USB host. It is the end result after any port number remapping or port disabling. PHYSICAL port number is the port number with respect to the physical PHY on the chip. PHYSICAL port numbering is fixed, and the settings are not impacted by LOGICAL port renumbering/remapping.

TABLE 143: HFC PRODUCT ID LSB

HFC_PID_LSB OFFSET: 2856h RESET = 4Xh				Product ID LSB dress: BFD2_0000h
Bit	Name	R/W		Description
7:0	HFC_PID_LSB	R/W	,	C Product ID. This is a 16-bit value that ice. The default value depends on the feashown below: = 42h = 43h = 44h = 46h = 47h = 40h = 4Ah = 4Bh = 4Ch = 4Eh = 4Fh

TABLE 144: HFC PRODUCT ID MSB

HFC_PID_MSB OFFSET: 2857h RESET = 72h			HFC Product ID MSB Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	HFC_PID_MSB	R/W	Most Significant Byte of the HFC Product ID. This is a 16-bit value that uniquely identifies this HFC device.

TABLE 145: HFC VENDOR ID LSB

HFC_VID_LSB OFFSET: 2864h RESET = 24h			HFC Vendor ID LSB Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	HFC_DID_LSB	R/W	Least Significant Byte of the HFC Product ID. This is a 16-bit value that identifies the vendor of the product (as registers with USB-IF).

TABLE 146: HFC VENDOR ID MSB

HFC_VID_MSB OFFSET: 2865h RESET = 04h			HFC Vendor ID MSB Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	HFC_DID_MSB	R/W	Most Significant Byte of the HFC Product ID. This is a 16-bit value that identifies the vendor of the product (as registers with USB-IF).

TABLE 147: HFC DEVICE ID (BCDDEVICE) LSB

HFC_PID_MSB OFFSET: 2868h RESET = XXh			Hub Feature Controller Device ID LSB Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	HFC_DID_LSB	R/W	Least Significant Byte of the HFC Device ID. This is a 16-bit value that is used for firmware or device revision tracking purposes.

Note 1: The default Device ID may change with silicon or firmware revisions.

TABLE 148: HFC DEVICE ID (BCDDEVICE) MSB

HFC_PID_MSB OFFSET: 2869h RESET = XXh			Hub Feature Controller Device ID MSB Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	HFC_DID_MSB	R/W	Most Significant Byte of the HFC Product ID. This is a 16-bit value that is used for firmware or device revision tracking purposes.

Note 1: The default Device ID may change with silicon or firmware revisions.

TABLE 149: USB2.0 HFC MANUFACTURER STRING INDEX REGISTER

HFC_MFR_STR_INDEX OFFSET: 286Ah RESET = 03h			Hub Feature Controller Manufacturer String Index Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	MFR_STR_INDEX	R/W	Manufacturer String Index
			Set = '00b' if unused

TABLE 150: USB2.0 HFC PRODUCT STRING INDEX REGISTER

HFC_PRD_STR_INDEX OFFSET: 286Bh RESET = 01h			Hub Feature Controller Product String Index Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	PRD_STR_INDEX	R/W	Product String Index
			Set = '00b' if unused

TABLE 151: USB2.0 HFC SERIAL STRING INDEX REGISTER

HFC_SER_STR_INDEX OFFSET: 286Ch RESET = 02h			Hub Feature Controller Serial String Index Register Base Address: BF80_0000h
Bit	Name	R/W	Description
7:0	SER_STR_INDEX	R/W	Serial String Index
			Set = '00b' if unused

TABLE 152: HFC LANG_ID[15:0] LANGUAGE IDENTIFIER

HFC_LANG_ID OFFSET: 28FAh RESET = 0409h			HFC USB-IF Language Identifier Base Address: BFD2_0000h
Bit	Name	R/W	Description
15:0	LANG_ID	R/W	USB-IF Language Identifier. Default is English (United States).

Note 1: 28FAh-[7:0], 28FBh-[15:8]

TABLE 153: HFC PRODUCT STRING DESCRIPTOR CONTAINER

HFC_STR_CONTAINER OFFSET: 28FCh			USB2.0 HFC String Container Base Address: BFD2_0000h
Byte	Name	R/W	Description
95:0	Length	R/W	Container for All HFC Strings. This must follow the formatting as described in the <i>USB2.0 Specification</i> for string descriptors. All Hub Feature Controller product, manufacturer, and serial string are contained within this register array.

Note 1: 28FCh-[7:0], 28FDh-[15:8], 28FEh-[23:16], 28FFh-[31:24], 2900h-[39:32],... 295Bh-[95:88]

TABLE 154: USB2.0 HUB LANG_ID[15:0] LANGUAGE IDENTIFIER

USB2_HUB_LANG_ID OFFSET: 3202h RESET = 0409h			USB2.0 Hub USB-IF Language Identifier Base Address: BFD2_0000h
Bit	Name	R/W	Description
15:0	LANG_ID	R/W	USB-IF Language Identifier. Default is English (United States).

Note 1: 3202h-[7:0], 3203h-[15:8]

TABLE 155: USB2.0 HUB STRING DESCRIPTOR CONTAINER

USB2_HUB_STR_CONTAINER OFFSET: 3204h			USB2.0 Hub String Container Base Address: BFD2_0000h
Byte	Name	R/W	Description
95:0	Length	R/W	Container for All USB2.0 Hub Strings. This must follow the formatting as described in the <i>USB2.0 Specification</i> for string descriptors. All Hub Feature Controller Product, Manufacturer, and Serial string are contained within this register array.

Note 1: 3204h-[7:0], 3205h-[15:8], 3206h-[23:16], 3207h-[31:24], 3208h-[39:32],... 3263h-[95:88]

TABLE 156: RUNTIME FLAGS MEMORY

OFFSE	ME_FLAGS T: 3400h = 0X00422228	Runtime Flags Base Address: BFD2_0000h	
Bit	Name	R/W	Description
31:28	RESERVED	R	Reserved, do not modify
27	GEN_EXCEPTION_RESET	R/W	 1 – If an exception occurs, reset the hub. 0 – If an exception occurs, code execution gets stuck in an infinite loop.
26	RESERVED	R	Reserved, do not modify
25	SS_MUX_FLIPPED	R/W	1 – Enable SS MUX flipped 0 – Disable SS MUX flipped ROM default value is 0.
24	RESERVED	R	Reserved, do not modify
23	DISABLE_CDP_MULTIPLE_HANDSHAKE	R/W	1 – Except the primary handshake in CDP mode, subsequent handshake by the downstream device while in CDP mode will be ignored by the firmware. 0 – Multiple handshakes by the downstream device while in CDP mode will be acknowledged by the firmware until a time period of BC_CDP_MULTIPLE_HANDSHAKE_TIMEOUT expires after the first handshake in CDP mode.
22	ENABLE_QUADSPI	R/W	0 – Quad SPI support is disabled in the firmware 1 – Quad SPI support is enabled in the firmware

TABLE 156: RUNTIME FLAGS MEMORY (CONTINUED)

OFFSE	ME_FLAGS T: 3400h = 0X00422228	Runtime Flags Base Address: BFD2_0000h	
Bit	Name	R/W	Description
21	DISABLE_I2CM_PULLUP_CHECK	R/W	0 – Presence of I ² C pull-up resistors will be checked prior to I ² C bridging and in any other operation involving the hub as I ² C master. 1 – Presence of I ² C pull-up resistors will not be checked prior to I ² C bridging and in any other operation involving the hub as I ² C master.
20	DISABLE_USB3HUB	R/W	Flag to disable USB3 hub 0 – USB3 hub is enabled 1 – USB3 hub is disabled Default ROM value is 0.
19	ENABLE_POWERSAVE	R/W	The clock control bits mentioned below will be turned off by the firmware, when not required. The clock control bits mentioned below will not be turned off by the firmware, once turned on. UDC1 CLK EN DUR SUSPEND
			UDC2_CLK_EN_DUR_SUSPEND
18:14	RESERVED	R	Reserved
13	ENABLE_CDP_TO_SDP_RECOVERY	R/W	 1 – Toggle downstream VBUS when a downstream device does not enumerate in CDP mode. 0 – Do not toggle downstream VBUS when a downstream device does not enumerate in CDP mode. Note that, by default in ROM, the flag is 1 to ensure that downstream device enumeration is prioritized. This bit needs to be cleared to zero
			to run battery charging compliance tests using PET tester.
12	OTP_LOCK	R/W	When set, this is a soft lock of the OTP.
11	DISABLE_CDC_REMOTEWAKEUP_FEATURE	R/W	 0 – CDC interface if enabled, reports as remote wakeup-capable. 1 – CDC interface is enabled, does not report as remote wakeup-capable.
10	DISABLE_125K_PU	R/W	 0 – 125K pull-up resistors are enabled in Chinamode battery charging. 1 – 125K pull-up resistors are disabled in Chinamode battery charging.
9	ENABLE_BC_UNIVERSAL	R/W	0 – Disable BC 1.2-compliant changes to Universal BC algorithm 1 – Enable BC 1.2-compliant changes to Universal BC algorithm regardless of BC12_DCP bit in Runtime BC Flags (0x413X) If this is set to 1, then the HEARTBEAT_UNIT will be 5 ms. If this is set to 0, then the HEARTBEAT_UNIT will be 10 ms.

TABLE 156: RUNTIME FLAGS MEMORY (CONTINUED)

OFFSE	ME_FLAGS T: 3400h = 0X00422228	Runtime Flags Base Address: BFD2_0000h	
Bit	Name	R/W	Description
8	RESERVED	R	Reserved, do not modify
7	ENABLE_SPI_BYTE_FLASH	R/W	0 – Generic SPI Flash commands issued for SPI Flash programming 1 – Microchip Byte Flash commands issued for SPI Flash programming
6	BYPASS_MCU_SUSPEND	R/W	0 – Default UDC suspend handling 1 – MCU will not handle UDC suspend and will ignore the same. Note that if there is a suspend hook function present, that will still be invoked.
5	TARGET_OTP	R/W	Set target OTP
			0 – Any command targeted to OTP (OTP read, OTP programming, and so on) is redirected to the pseudo OTP in SPI Flash physical address 0x40000 to 0x41FFF. 1 – Any command targeted to OTP (OTP read, OTP programming, and so on) is directed tot he OTP.
4	CFG_FROM_SPI	R/W	Load config from SPI
			1 – Configuration is loaded from pseudo OTP in SPI. 0 – Configuration will not be loaded from pseudo OTP in SPI.
3	CFG_FROM_OTP	R/W	Load config from OTP
			The firmware will load configuration from OTP. O – Configuration will not be loaded from OTP.
2	HUB_CFG_CLK	R/W	Enable Hubcfg interface power-down
			1 – Clock-to-hub configuration registers are turned off after hub-attach to USB. 0 – Clock-to-hub configuration registers are left on.
1	UPDRESET_THROUGH_GPIO	R/W	Reserved, do not modify
0	DISABLE_BC	R/W	Disable battery charging
			 1 – Battery charging logic is completely disabled. 0 – Battery charging logic is left enabled based on other flags. ROM default is 0.

TABLE 157: RUNTIME FLAGS 2 MEMORY

	ME_FLAGS2 T: 3408h = 0X00	Runtime Flags 2 Base Address: BFD2_0000h	
Bit	Name	R/W	Description
31:14	RESERVED	R	Reserved, do not modify
13	SPIPASSTHRU_RUN_FROM_ROM	R/W	Flag to enable SPI pass-through function running from SPI or ROM 0 – Running from SPI 1 – Running from ROM
12	PORTSPLIT_ENABLE_LTSSM_CHECK	R/W	Flag to disable LTSSM state machine 1 – LTSSM state check enabled 0 – LTSSM state check disabled ROM default value is 1.
11	I2CM_READ_MODE_INT	R/W	Flag to use Polling or Interrupt mode 1 – Interrupt mode 0 – Polling mode ROM default value is 1.
10	I2CM_WRITE_MODE_INT	R/W	Flag to use Polling or Interrupt mode 1 – Interrupt mode 0 – Polling mode ROM default value is 1.
9	BILLBOARD_ENABLE	R/W	Billboard Device functionality enable 0 – Billboard Device functionality disabled 1 – Billboard Device functionality enabled ROM default value is 0. See Section 7.0, Physical and Logical Port Mapping for more details.
8	DISABLE_UDC0_PORT	R/W	Flag to disable UDC0 port 0 – UDC0 port is enabled. 1 – UDC0 port is disabled. ROM default value is 0.
7	ENABLE_HIDBRIDGE	R/W	Flag to enable HID interface 0 – HID interface is disabled. 1 – HID interface is enabled. ROM default value is 0.
6:5	RESERVED	R	Reserved, do not modify
4	CDC_DISABLE	R/W	Flag to disable CDC interface when CDC configuration is selected through CFG_STRAP 0 – Not valid 1 – CDC interface is disabled in CDC mode ROM default value is 0.
3	I2S_DISABLE	R/W	Flag to disable I ² S interface when I ² S configuration is selected through CFG_STRAP 0 – Not valid 1 – I ² S interface is disabled in I ² S mode ROM default value is 0.
2	CONFIG_PORT_SPLIT	R/W	Flag to enable Port Split 0 – Port Split interface is disabled. 1 – Port Split interface is enabled. ROM default value is 0.

TABLE 157: RUNTIME FLAGS 2 MEMORY (CONTINUED)

RUNTIME_FLAGS2 OFFSET: 3408h RESET = 0X00			Runtime Flags 2 Base Address: BFD2_0000h
Bit	Name	R/W	Description
1	OTP_BASED_UDC_CONFIG	R/W	Flag to disable UDC configuration by ROM 0 – UDC port is configured by ROM. 1 – UDC port is configured by OTP/SMBus. ROM default value is 0.
0	HFC_DISABLE	R/W	Flag to disable the Hub Feature Controller (HFC) 0 – HFC is enabled. 1 – HFC is disabled. Default ROM value is 0.

TABLE 158: 12S FEATURE SELECT REGISTER

I2S_FEAT_SEL OFFSET: 3412h RESET = 03h			I ² S Feature Unit Select Register Base Address: BFD2_0000h
Bit Name R/W		R/W	Description
7:3	Reserved	R	Reserved
7:0	I2S_UNIT_SEL	R/W	Control features of the I ² S interface if an I ² S configuration is selected. 00h – I ² S is disabled. 001h – Audio IN through microphone is enabled. 02h – Audio OUT is enabled. 03h – Both Audio IN are enabled. All other values are reserved.

TABLE 159: 12S HID FEATURE SELECT REGISTER

I2S_HFEAT_SEL OFFSET: 3413h RESET = 00h			I ² S HID Feature Select Register Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	I2S_HID_SEL	R/W	Control features of the HID Control of the I ² S interface if an I ² S configuration is selected. 00h – No I ² S HID control 01h – Reserved 02h – HID interface controls speaker mute 03h – HID interface controls speaker mute and microphone mute All other values are reserved.

TABLE 160: SMBUS OTP RESULT

SMBUS_OTP_RES OFFSET: 3419h RESET = 00h			SMBUS OTP Result Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:1	RESERVED	R	Always reads 0
0	RESULT	R	Result of the last OTP command received through SMBus 0 – Command completed successfully 1 – Command failed

TABLE 161: OTP UDC ENUMERATION

OTP_UDC_ENABLE OFFSET: 341Bh RESET = 00h			OTP UDC Enumeration Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	MODE	R/W	Controls UDC Enumeration. 00h – No change from default ROM behavior 01h – Enable UDC enumeration 02h – Disable UDC enumeration
			All other values are reserved.

TABLE 162: HUB PID MSB

HUB_DEF_PIDM OFFSET: 341Eh RESET = 00h			Primary Hub Default PID MSB Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	PRIH_PIDM	R/W	USB Primary Hub Default PID MSB. Reflects the SKU based on the bond and strap options, and could be different from the product PID.

TABLE 163: HUB PID LSB

HUB_DEF_PIDL OFFSET: 341Fh RESET = 00h			Primary Hub Default PID LSB Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	PRIH_PIDL	R/W	USB Primary Hub Default PID LSB. Reflects the SKU based on the bond and strap options, and could be different from the product PID.

TABLE 164: PORT 1 BATTERY CHARGING CONFIGURATION

BC_CONFIG_P1 OFFSET: 3433h RESET = 00h			Port 1 Battery Charging Configuration Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:6	UCS_LIM	R/W	When controlling UCS through I ² C, this sets the current limit. 00b - 500 mA 01b - 1000 mA 10b - 1500 mA 11b - 2000 mA
5	DCP	R/W	USB-IF Dedicated Charging Mode Enable. If bit 4 is set, this bit is ignored. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 0 – DCP disabled 1 – DCP enabled
4	CHINA_MODE	R/W	China mode. Enables a 125k pull-up to D+/D– while shorting D+/D– together to allow certain Chinese market phones to charge. 0 – China mode disabled 1 – China mode enabled
3	Reserved	R/W	Reserved
2:1	SE1_EN[1:0]	R/W	Enables SE1 charging mode for certain devices. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. O0b – SE1 mode disabled O1b – SE1 1A mode enabled (D-: 2.7V, D+: 2.0V) 10b – SE1 2A mode enabled (D-: 2.0V, D+: 2.7V) 11b – SE1 2.5A mode enabled (D-: 2.7V, D+: 2.7V)
0	BC_EN	R/W	Battery Charging Support Enable. This bit enables CDP and must be set for any battery charging functions to be enabled. Other functions in addition to CDP are enabled by setting their respective bits in addition to this bit. 0 – Battery charging support disabled 1 – Battery charging support enabled

TABLE 165: PORT 2 BATTERY CHARGING CONFIGURATION

BC_CONFIG_P2 OFFSET: 3434h RESET = 00h			Port 2 Battery Charging Configuration Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:6	UCS_LIM	R/W	When controlling UCS through I ² C, this sets the current limit. 00b – 500 mA
			01b – 1000 mA 10b – 1500 mA 11b – 2000 mA
5	DCP	R/W	USB-IF Dedicated Charging Mode Enable. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 0 – DCP disabled
4:3	CHINA MODE	R/W	1 – DCP enabled China mode. Enables a 125k pull-up to D+/D- while shorting D+/D-
4.3	GI IIIVA_IVIODE	FX/VV	together to allow certain Chinese market phones to charge. 0 – China mode disabled 1 – China mode enabled
2:1	SE1_EN[1:0]	R/W	Enables SE1 charging mode for certain devices. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge.
			00b – SE1 mode disabled 01b – SE1 1A mode enabled (D-: 2.7V, D+: 2.0V) 10b – SE1 2A mode enabled (D-: 2.0V, D+: 2.7V) 11b – SE1 2.5A mode enabled (D-: 2.7V, D+: 2.7V)
0	BC_EN	R/W	Battery Charging Support Enable. This bit enables CDP and must be set for any battery charging functions to be enabled. Other functions in addition to CDP are enabled by setting their respective bits in addition to this bit.
			0 – Battery charging support disabled 1 – Battery charging support enabled

TABLE 166: PORT 3 BATTERY CHARGING CONFIGURATION

BC_CONFIG_P3 OFFSET: 3435h RESET = 00h			Port 3 Battery Charging Configuration Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:6	UCS_LIM	R/W	When controlling UCS through I ² C, this sets the current limit. 00b – 500 mA 01b – 1000 mA 10b – 1500 mA 11b – 2000 mA
5	DCP	R/W	USB-IF Dedicated Charging Mode Enable. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 0 – DCP disabled 1 – DCP enabled
4:3	CHINA_MODE	R/W	China mode. Enables a 125k pull-up to D+/D– while shorting D+/D– together to allow certain Chinese market phones to charge. 0 – China mode disabled 1 – China mode enabled
2:1	SE1_EN[1:0]	R/W	Enables SE1 charging mode for certain devices. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 00b – SE1 mode disabled 01b – SE1 1A mode enabled (D-: 2.7V, D+: 2.0V) 10b – SE1 2A mode enabled (D-: 2.7V, D+: 2.7V)
0	BC_EN	R/W	Battery Charging Support Enable. This bit enables CDP and must be set for any battery charging functions to be enabled. Other functions in addition to CDP are enabled by setting their respective bits in addition to this bit. 0 – Battery charging support disabled 1 – Battery charging support enabled

TABLE 167: PORT 4 BATTERY CHARGING CONFIGURATION

BC_CONFIG_P4 OFFSET: 3436h RESET = 00h			Port 4 Battery Charging Configuration Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:6	UCS_LIM	R/W	When controlling UCS through I ² C, this sets the current limit. 00b - 500 mA 01b - 1000 mA 10b - 1500 mA 11b - 2000 mA
5	DCP	R/W	USB-IF Dedicated Charging Mode Enable. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 0 – DCP disabled 1 – DCP enabled
4:3	CHINA_MODE	R/W	China mode. Enables a 125k pull-up to D+/D– while shorting D+/D– together to allow certain Chinese market phones to charge. 0 – China mode disabled 1 – China mode enabled
2:1	SE1_EN[1:0]	R/W	Enables SE1 charging mode for certain devices. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. Obb – SE1 mode disabled Obb – SE1 1A mode enabled (D-: 2.7V, D+: 2.0V) Dbb – SE1 2A mode enabled (D-: 2.7V, D+: 2.7V)
0	BC_EN	R/W	Battery Charging Support Enable. This bit enables CDP and must be set for any battery charging functions to be enabled. Other functions in addition to CDP are enabled by setting their respective bits in addition to this bit. 0 – Battery charging support disabled 1 – Battery charging support enabled

TABLE 168: PORT 5 BATTERY CHARGING CONFIGURATION

BC_CONFIG_P5 OFFSET: 3437h RESET = 00h			Port 5 Battery Charging Configuration Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:6	UCS_LIM	R/W	When controlling UCS through I ² C, this sets the current limit. 00b - 500 mA 01b - 1000 mA 10b - 1500 mA 11b - 2000 mA
5	DCP	R/W	USB-IF Dedicated Charging Mode Enable. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 0 – DCP disabled 1 – DCP enabled
4:3	CHINA_MODE	R/W	China mode. Enables a 125k pull-up to D+/D– while shorting D+/D– together to allow certain Chinese market phones to charge. 0 – China mode disabled 1 – China mode enabled
2:1	SE1_EN[1:0]	R/W	Enables SE1 charging mode for certain devices. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 00b – SE1 mode disabled 01b – SE1 1A mode enabled (D-: 2.7V, D+: 2.0V) 10b – SE1 2A mode enabled (D-: 2.7V, D+: 2.7V)
0	BC_EN	R/W	Battery Charging Support Enable. This bit enables CDP and must be set for any battery charging functions to be enabled. Other functions in addition to CDP are enabled by setting their respective bits in addition to this bit. 0 – Battery charging support disabled 1 – Battery charging support enabled

TABLE 169: PORT 6 BATTERY CHARGING CONFIGURATION

BC_CONFIG_P6 OFFSET: 3438h RESET = 00h			Port 6 Battery Charging Configuration Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:6	UCS_LIM	R/W	When controlling UCS through I ² C, this sets the current limit. 00b – 500 mA 01b – 1000 mA 10b – 1500 mA 11b – 2000 mA
5	DCP	R/W	USB-IF Dedicated Charging Mode Enable. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 0 – DCP disabled 1 – DCP enabled
4:3	CHINA_MODE	R/W	China mode. Enables a 125k pull-up to D+/D- while shorting D+/D- together to allow certain Chinese market phones to charge. 0 – China mode disabled 1 – China mode enabled
2:1	SE1_EN[1:0]	R/W	Enables SE1 charging mode for certain devices. This mode is only activated when a USB host is not present. When a host is present, the mode of operation is CDP. When SE1 mode and DCP mode are both enabled, the hub toggles between the two modes of operation as necessary to ensure the device can charge. 00b – SE1 mode disabled 01b – SE1 1A mode enabled (D-: 2.7V, D+: 2.0V) 10b – SE1 2A mode enabled (D-: 2.7V, D+: 2.7V) 11b – SE1 2.5A mode enabled (D-: 2.7V, D+: 2.7V)
0	BC_EN	R/W	Battery Charging Support Enable. This bit enables CDP and must be set for any battery charging functions to be enabled. Other functions in addition to CDP are enabled by setting their respective bits in addition to this bit. 0 – Battery charging support disabled 1 – Battery charging support enabled

TABLE 3-2: FLEX_IN_PORT1

FLEX_IN_PORT1 OFFSET: 3442h RESET = 00h			FlexConnect Trigger Input Configuration Port 1 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_IN_EN	R/W	This bit is used to enable FlexConnect trigger for Port 1 through the PIO input. The PIO is specified in the FLEX_IN_IO field. 0b – FlexConnect trigger is disabled. 1b – FlexConnect trigger is enabled.
6:3	RESERVED	R/W	Reserved
2:0	FLEX_IN_IO	R/W	Selects the PIO used for FlexConnect trigger 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 3-3: FLEX_IN_PORT2

FLEX_IN_PORT2 OFFSET: 3443h RESET = 00h			FlexConnect Trigger Input Configuration Port 2 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_IN_EN	R/W	This bit is used to enable FlexConnect trigger for Port 2 through the PIO input. The PIO is specified in the FLEX_IN_IO field. 0b – FlexConnect trigger is disabled. 1b – FlexConnect trigger is enabled.
6:3	RESERVED	R/W	Reserved
2:0	FLEX_IN_IO	R/W	Selects the PIO used for FlexConnect trigger 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 170: FLEX_IN_PORT3

FLEX_IN_PORT3 OFFSET: 3444h RESET = 00h			FlexConnect Trigger Input Configuration Port 3 Base Address: BFD2_0000h
Bit	Name R/W		Description
7	FLEX_IN_EN	R/W	This bit is used to enable FlexConnect trigger for Port 3 through the PIO input. The PIO is specified in the FLEX_IN_IO field. 0b - FlexConnect trigger is disabled. 1b - FlexConnect trigger is enabled.
6:3	RESERVED	R/W	Reserved
2:0	FLEX_IN_IO	R/W	Selects the PIO used for FlexConnect trigger 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 171: FLEX_IN_PORT4

FLEX_IN_PORT4 OFFSET: 3445h RESET = 00h			FlexConnect Trigger Input Configuration Port 4 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_IN_EN	R/W	This bit is used to enable FlexConnect trigger for Port 4 through the PIO input. The PIO is specified in the FLEX_IN_IO field. 0b - FlexConnect trigger is disabled. 1b - FlexConnect trigger is enabled.
6:3	RESERVED	R/W	Reserved
2:0	FLEX_IN_IO	R/W	Selects the PIO used for FlexConnect trigger 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 172: FLEX_IN_PORT5

FLEX_IN_PORT5 OFFSET: 3446h RESET = 00h			FlexConnect Trigger Input Configuration Port 5 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_IN_EN	R/W	This bit is used to enable FlexConnect trigger for Port 5 through the PIO input. The PIO is specified in the FLEX_IN_IO field. 0b - FlexConnect trigger is disabled. 1b - FlexConnect trigger is enabled.
6:3	RESERVED	R/W	Reserved
2:0	FLEX_IN_IO	R/W	Selects the PIO used for FlexConnect trigger 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 173: FLEX_IN_PORT6

FLEX_IN_PORT6 OFFSET: 3447h RESET = 00h			FlexConnect Trigger Input Configuration Port 6 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_IN_EN	R/W	This bit is used to enable FlexConnect trigger for Port 6 through the PIO input. The PIO is specified in the FLEX_IN_IO field. 0b – FlexConnect trigger is disabled. 1b – FlexConnect trigger is enabled.
6:3	RESERVED	R/W	Reserved
2:0	FLEX_IN_IO	R/W	Selects the PIO used for FlexConnect trigger 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 174: FLEX_OUT_PORT1

FLEX_OUT_PORT1 OFFSET: 3448h RESET = 00h			FlexConnect State Indicator Configuration Port 1 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_OUT_EN	R/W	This bit is used to enable the FlexConnect state indicator for Port 1 through the PIO input. The PIO is specified in the FLEX_OUT_IO field. 0b - FlexConnect state indicator is disabled. 1b - FlexConnect state indicator is enabled.
6	FLEX_OUT ACTIVE_HIGH	R/W	Selects PIO Active state polarity 0b – PIO is driven active-low in Flexstate. 1b – PIO is driven active-high in Flexstate.
5	FLEX_OUT_OD	R/W	This bit is used to enable open drain output. 0b – PIO output is set as standard push-pull. 1b – PIO output is set as open drain.
4:3	RESERVED	R/W	Reserved
2:0	FLEX_OUT_IO	R/W	Selects the PIO used as the FlexConnect state indicator 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 175: FLEX_OUT_PORT2

FLEX_OUT_PORT2 OFFSET: 3449h RESET = 00h			FlexConnect State Indicator Configuration Port 2 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_OUT_EN	R/W	This bit is used to enable the FlexConnect state indicator for Port 2 through the PIO input. The PIO is specified in the FLEX_OUT_IO field. 0b - FlexConnect state indicator is disabled. 1b - FlexConnect state indicator is enabled.
6	FLEX_OUT ACTIVE_HIGH	R/W	Selects PIO Active state polarity 0b – PIO is driven active-low in Flexstate. 1b – PIO is driven active-high in Flexstate.
5	FLEX_OUT_OD	R/W	This bit is used to enable open drain output. 0b – PIO output is set as standard push-pull. 1b – PIO output is set as open drain.
4:3	RESERVED	R/W	Reserved
2:0	FLEX_OUT_IO	R/W	Selects the PIO used as the FlexConnect state indicator 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 176: FLEX_OUT_PORT3

FLEX_OUT_PORT3 OFFSET: 344Ah RESET = 00h			FlexConnect State Indicator Configuration Port 3 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_OUT_EN	R/W	This bit is used to enable the FlexConnect state indicator for Port 3 through the PIO input. The PIO is specified in the FLEX_OUT_IO field. 0b - FlexConnect state indicator is disabled. 1b - FlexConnect state indicator is enabled.
6	FLEX_OUT ACTIVE_HIGH	R/W	Selects PIO Active state polarity 0b – PIO is driven active-low in Flexstate. 1b – PIO is driven active-high in Flexstate.
5	FLEX_OUT_OD	R/W	This bit is used to enable open drain output. 0b – PIO output is set as standard push-pull. 1b – PIO output is set as open drain.
4:3	RESERVED	R/W	Reserved
2:0	FLEX_OUT_IO	R/W	Selects the PIO used as the FlexConnect state indicator 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 177: FLEX_OUT_PORT4

FLEX_OUT_PORT4 OFFSET: 344Bh RESET = 00h			FlexConnect State Indicator Configuration Port 4 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_OUT_EN	R/W	This bit is used to enable the FlexConnect state indicator for Port 4 through the PIO input. The PIO is specified in the FLEX_OUT_IO field. 0b - FlexConnect state indicator is disabled. 1b - FlexConnect state indicator is enabled.
6	FLEX_OUT ACTIVE_HIGH	R/W	Selects PIO Active state polarity 0b – PIO is driven active-low in Flexstate. 1b – PIO is driven active-high in Flexstate.
5	FLEX_OUT_OD	R/W	This bit is used to enable open drain output. 0b – PIO output is set as standard push-pull. 1b – PIO output is set as open drain.
4:3	RESERVED	R/W	Reserved
2:0	FLEX_OUT_IO	R/W	Selects the PIO used as the FlexConnect state indicator 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 178: FLEX_OUT_PORT5

FLEX_OUT_PORT5 OFFSET: 344Ch RESET = 00h			FlexConnect State Indicator Configuration Port 5 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_OUT_EN	R/W	This bit is used to enable the FlexConnect state indicator for Port 5 through the PIO input. The PIO is specified in the FLEX_OUT_IO field. 0b - FlexConnect state indicator is disabled. 1b - FlexConnect state indicator is enabled.
6	FLEX_OUT ACTIVE_HIGH	R/W	Selects PIO Active state polarity 0b – PIO is driven active-low in Flexstate. 1b – PIO is driven active-high in Flexstate.
5	FLEX_OUT_OD	R/W	This bit is used to enable open drain output. 0b – PIO output is set as standard push-pull. 1b – PIO output is set as open drain.
4:3	RESERVED	R/W	Reserved
2:0	FLEX_OUT_IO	R/W	Selects the PIO used as the FlexConnect state indicator 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 179: FLEX_OUT_PORT6

FLEX_OUT_PORT6 OFFSET: 344Dh RESET = 00h			FlexConnect State Indicator Configuration Port 6 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_OUT_EN	R/W	This bit is used to enable the FlexConnect state indicator for Port 6 through the PIO input. The PIO is specified in the FLEX_OUT_IO field. 0b - FlexConnect state indicator is disabled. 1b - FlexConnect state indicator is enabled.
6	FLEX_OUT ACTIVE_HIGH	R/W	Selects PIO Active state polarity 0b – PIO is driven active-low in Flexstate. 1b – PIO is driven active-high in Flexstate.
5	FLEX_OUT_OD	R/W	This bit is used to enable open drain output. 0b – PIO output is set as standard push-pull. 1b – PIO output is set as open drain.
4:3	RESERVED	R/W	Reserved
2:0	FLEX_OUT_IO	R/W	Selects the PIO used as the FlexConnect state indicator 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 180: FLEX_PRTCTL_PORT1

FLEX_PRTCTL_PORT1 OFFSET: 344Eh RESET = 00h			FlexConnect PRTCTL Configuration Port 1 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_PRTCTL_EN	R/W	This bit is used to enable Flex PRTCTL for PORT 1. The PIO is specified in the FLEX_PRTCTL_IO field. 0b - Disables Flex PRTCTL1 output 1b - Enables Flex PRTCTL1 output
6:5	PRTCTL_OUT[1:0]	R/W	Selects the Flex PRTCTL1 output mode 00b – PRTCTL1 is tristated. 01b – PRTCTL1 is driven high. 10b – PRTCTL1 is driven low. 11b – PRTCTL1 is pulled up with internal pull-up.
4	RESERVED	R/W	Reserved
3	FLEX_PRTCTL_OEN	R/W	This bit is used to enable the Flex PRTCTL1 to output. 0b – Flex PRTCTL1 output is disabled. 1b – Flex PRTCTL1 output is enabled.
2:0	FLEX_PRTCTL_IO	R/W	Selects the PIO used as Flex PRTCTL1 000b - PF6 001b - PF7 010b - PF14 011b - PF19 100b - PF26 101b - PF27 110b - PF28 111b - PF29

TABLE 181: FLEX_PRTCTL_PORT2

FLEX_PRTCTL_PORT2 OFFSET: 344Fh RESET = 00h			FlexConnect PRTCTL Configuration Port 2 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_PRTCTL_EN	R/W	This bit is used to enable Flex PRTCTL for PORT 2. The PIO is specified in the FLEX_PRTCTL_IO field. 0b – Disables Flex PRTCTL2 output 1b: Enables Flex PRTCTL2 output
6:5	PRTCTL_OUT[1:0]	R/W	Selects the Flex PRTCTL2 output mode 00b – PRTCTL2 is tristated. 01b – PRTCTL2 is driven high. 10b – PRTCTL2 is driven low. 11b – PRTCTL2 is pulled up with internal pull-up.
4	RESERVED	R/W	Reserved
3	FLEX_PRTCTL_OEN	R/W	This bit is used to enable the Flex PRTCTL2 to output. 0b – Flex PRTCTL2 output is disabled. 1b – Flex PRTCTL2 output is enabled.
2:0	FLEX_PRTCTL_IO	R/W	Selects the PIO used as Flex PRTCTL2 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 182: FLEX_PRTCTL_PORT3

FLEX_PRTCTL_PORT3 OFFSET: 3450h RESET = 00h			FlexConnect PRTCTL Configuration Port 3 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_PRTCTL_EN	R/W	This bit is used to enable Flex PRTCTL for PORT 3. The PIO is specified in the FLEX_PRTCTL_IO field. 0b - Disables Flex PRTCTL3 output 1b - Enables Flex PRTCTL3 output
6:5	PRTCTL_OUT[1:0]	R/W	Selects the Flex PRTCTL3 output mode 00b – PRTCTL3 is tristated. 01b – PRTCTL3 is driven high. 10b – PRTCTL3 is driven low. 11b – PRTCTL3 is pulled up with internal pull-up.
4	RESERVED	R/W	Reserved
3	FLEX_PRTCTL_OEN	R/W	This bit is used to enable the Flex PRTCTL3 to output. 0b – Flex PRTCTL3 output is disabled. 1b – Flex PRTCTL3 output is enabled.
2:0	FLEX_PRTCTL_IO	R/W	Selects the PIO used as Flex PRTCTL3 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 183: FLEX_PRTCTL_PORT4

FLEX_PRTCTL_PORT4 OFFSET: 3451h RESET = 00h			FlexConnect PRTCTL Configuration Port 4 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_PRTCTL_EN	R/W	This bit is used to enable Flex PRTCTL for Port 4. The PIO is specified in the FLEX_PRTCTL_IO field. 0b – Disables Flex PRTCTL4 output 1b – Enables Flex PRTCTL4 output
6:5	PRTCTL_OUT[1:0]	R/W	Selects the Flex PRTCTL4 output mode 00b – PRTCTL4 is tristated. 01b – PRTCTL4 is driven high. 10b – PRTCTL4 is driven low. 11b – PRTCTL4 is pulled up with internal pull-up.
4	RESERVED	R/W	Reserved
3	FLEX_PRTCTL_OEN	R/W	This bit is used to enable the Flex PRTCTL4 to output. 0b – Flex PRTCTL4 output is disabled. 1b – Flex PRTCTL4 output is enabled.
2:0	FLEX_PRTCTL_IO	R/W	Selects the PIO used as Flex PRTCTL4 000b - PF6 001b - PF7 010b - PF14 011b - PF19 100b - PF26 101b - PF27 110b - PF28 111b - PF29

TABLE 184: FLEX_PRTCTL_PORT5

FLEX_PRTCTL_PORT5 OFFSET: 3452h RESET = 00h			FlexConnect PRTCTL Configuration Port 5 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_PRTCTL_EN	R/W	This bit is used to enable Flex PRTCTL for Port 5. The PIO is specified in the FLEX_PRTCTL_IO field. 0b - Disables Flex PRTCTL5 output 1b - Enables Flex PRTCTL5 output
6:5	PRTCTL_OUT[1:0]	R/W	Selects the Flex PRTCTL5 output mode 00b – PRTCTL5 is tristated. 01b – PRTCTL5 is driven high. 10b – PRTCTL5 is driven low. 11b – PRTCTL5 is pulled up with internal pull-up.
4	RESERVED	R/W	Reserved
3	FLEX_PRTCTL_OEN	R/W	This bit is used to enable the Flex PRTCTL5 to output. 0b – Flex PRTCTL5 output is disabled. 1b – Flex PRTCTL5 output is enabled.
2:0	FLEX_PRTCTL_IO	R/W	Selects the PIO used as Flex PRTCTL5 000b - PF6 001b - PF7 010b - PF14 011b - PF19 100b - PF26 101b - PF27 110b - PF28 111b - PF29

TABLE 185: FLEX_PRTCTL_PORT6

FLEX_PRTCTL_PORT6 OFFSET: 3453h RESET = 00h			FlexConnect PRTCTL Configuration Port 6 Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_PRTCTL_EN	R/W	This bit is used to enable Flex PRTCTL for PORT 6. The PIO is specified in the FLEX_PRTCTL_IO field. 0b - Disables Flex PRTCTL6 output 1b - Enables Flex PRTCTL6 output
6:5	PRTCTL_OUT[1:0]	R/W	Selects the Flex PRTCTL6 Output mode 00b – PRTCTL6 is tristated. 01b – PRTCTL6 is driven high. 10b – PRTCTL6 is driven low. 11b – PRTCTL6 is pulled up with internal pull-up.
4	RESERVED	R/W	Reserved
3	FLEX_PRTCTL_OEN	R/W	This bit is used to enable the Flex PRTCTL6 to output. 0b – Flex PRTCTL6 output is disabled. 1b – Flex PRTCTL6 output is enabled.
2:0	FLEX_PRTCTL_IO	R/W	Selects the PIO used as Flex PRTCTL6 000b – PF6 001b – PF7 010b – PF14 011b – PF19 100b – PF26 101b – PF27 110b – PF28 111b – PF29

TABLE 186: FLEX_VBUSDET

FLEX_VBUSDET OFFSET: 3454h RESET = 00h			FlexConnect VBUSDET Configuration Base Address: BFD2_0000h
Bit	Name	R/W	Description
7	FLEX_VBUSDET_EN	R/W	This bit is used to select the source for VBUS_DET while in Flex state. 0b - VBUS_DET Hub pin is the VBUS_DET in Flex state. 1b - PFx pin selected in FLEX_VBUSDET_IO is the VBUS_DET in Flex state.
6	FLEX_VBUSDET_HIGH	R/W	0b – VBUS_DET is driven as selected by FLEX_VBUSDET_EN. 1b – VBUS_DET is driven high internally.
5:3	RESERVED	R/W	Reserved
2:0	FLEX_VBUSDET_IO	R/W	Selects the PFx used as Flex VBUSDET 000b - PF6 001b - PF7 010b - PF14 011b - PF19 100b - PF26 101b - PF27 110b - PF28 111b - PF29

TABLE 187: FLEXCONNECT HUB ATTACH DELAY

FLEX_ATTACH_DELAY OFFSET: 3455h RESET = 00h			FlexConnect Hub Attach Delay Base Address: BFD2_0000h
Bit	Bit Name R/W		Description
7:0	FLEX_ATTACH_DELAY	R/W	This field specifies the delay in 10-millisecond increments after Flex-Connect is initiated before the Hub is attached. This might be required to provide a debounce time between a USB device detach and a subsequent attach.

TABLE 188: ROLE SWITCH DELAY

ROLE_SWITCH_DELAY OFFSET: 3450h RESET = 00h			Role Switch Delay Base Address: BFD2_0000h
Bit	Bit Name R/W		Description
7:0	ROLE_SWITCH_DELAY	R/W	This field specifies the delay in 10-millisecond increments after the SET_ROLE_SWITCH command is initiated before the role switch is done. This might be required to provide a debounce time between a USB device detach and a subsequent attach.

TABLE 189: MANUFACTURER STRING LENGTH

MFG_STR_LEN OFFSET: 346Ah RESET = 1Eh			Manufacturer String Length Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	Length	R/W	Manufacturer String Descriptor size. This must be the same as the value in the Length field of the Manufacturer String Descriptor .

TABLE 190: PRODUCT STRING LENGTH

PROD_STR_LEN OFFSET: 3472h RESET = 10h			Product String Length Base Address: BFD2_0000h
Bit	Name	R/W	Description
7:0	Length	R/W	Product String Descriptor size. This must be same as the value in the Length field of the Product String Descriptor .

4.0 SMBUS CONFIGURATION

The SMBus configuration begins in the SOC Configuration Stage. In this stage, the SOC may modify any of the configuration settings to customize the hub to their purposes. The SOC can configure the hub as Full-Speed only or can have the hub report a port as non-removable. The SOC can also disable a port entirely to conserve power. The hub can be addressed at the address **2Dh** and interprets the data bytes as shown in the following sub-sections.

4.1 SMBus Block Write

The SMBus block write consists of an Address+Direction(0) byte followed by the 16-bit memory address, split into two bytes. The address is used for special commands and as a pointer to the hub's internal memory. Following the address, the next byte of data corresponds to the count of data bytes that follows, which is up to 128 bytes in a block. Finally, a 00h write is used to terminate the write operation, followed by the SMBus stop signal. See Table 191.

TABLE 191: SMBUS BLOCK WRITE

Field	Description
Start bit (S)	Start Condition
I2C Address	7-bit SMBus Address (2Dh)
Direction	1-bit, 0 = Write
ACK	Acknowledge from SMBus slave
Offset MSB	Most significant byte of address to internal buffer (00h)
ACK	Acknowledge from SMBus slave
Offset LSB	Least significant byte of address to internal buffer (00h)
ACK	Acknowledge from SMBus slave
Count	Start Condition
ACK	Acknowledge from SMBus slave
Data 0	First byte of data
ACK	Acknowledge from SMBus slave
Data 1	Second byte of data
ACK	Acknowledge from SMBus slave
Data n	Last byte of data
ACK	Acknowledge from SMBus slave
Stop (P)	Stop Condition

Note: The 7-bit address of the hub is **2Dh**, or the first byte is **5Ah** for an SMBus Write.

4.2 SMBus Block Read

The SMBus block read consists of an Address+Direction(0) byte with the 16-bit memory address, followed by a repeat Start signal and an Address+Direction(1) byte. The hub then starts to output the count (128 bytes) and the contents of the internal registers starting at the 16-bit address specified. See Table 192.

TABLE 192: SMBUS BLOCK READ

Field	Description
Start bit (S)	Start Condition
I2C Address	7-bit SMBus Address (2Dh)
Direction	1-bit, 0 = Write
ACK	Acknowledge from SMBus slave
Offset MSB	Most Significant Byte of address to internal buffer (00h)
ACK	Acknowledge from SMBus slave
Offset LSB	Least Significant Byte of address to internal buffer (00h)
ACK	Acknowledge from SMBus slave
Start bit (Sr)	Repeated Start condition
I2C Address	7-bit SMBus Address (2Dh)
Direction	1-bit, 1 = Read
ACK	Acknowledge from SMBus slave
Count	Number of bytes to read from slave
ACK	Acknowledge from SMBus master
Data 0	First byte of data from SMBus slave
ACK	Acknowledge from SMBus master
Data 1	Second byte of data from SMBus slave
ACK	Acknowledge from SMBus master
Data n	Last data byte from SMBus slave
ACK	Acknowledge from SMBus master
Stop (P)	Stop condition

Note: The 7-bit address of the hub is **2Dh**, or the first byte is **5Ah** for a write and **5Bh** for a read.

4.3 Special Commands

Special commands can be sent in the place of the 16-bit address bytes. These commands are used to enumerate the hub, access the configuration registers, or reset the device. The commands consist of the 16-bit command followed by a 00h byte to terminate the command. See Table 193.

TABLE 193: SPECIAL SMBUS COMMANDS

Operation	OPCODE	Description
Configuration Register Access	9937h	Read and Write Configuration Registers
USB Attach	AA55h	Exit SOC_CONFIG and Enter HUB_CONFIG stage
USB Attach with SMBus Runtime Access	AA56h	Exit SOC_CONFIG and Enter HUB_CONFIG stage with SMBus slave enabled
OTP Program	9933h	Permanently program configuration commands to the OTP
OTP Read	9934h	Read the values of the OTP register

Note: OTP Program and OTP Read commands reference data starting at configuration register 4800h.

4.4 Accessing Configuration Registers

The Configuration Register Access command allows the SMBus master to read or write to the internal registers of the hub. When the Configuration Register Access command is sent, the hub interprets the memory starting at offset 0000h as in Table 194.

TABLE 194: MEMORY FORMAT FOR CONFIGURATION REGISTER ACCESS

Buffer Address	Description	Notes
0000h	Direction	0 = Register Write, 1 = Register Read
0001h	Data Length	Number of bytes to Read/Write, maximum of 128 bytes
0002h-0005h	Memory Address	32-bit memory address to read or write in big endian format
0006h~ 0084h	Data	Data to write or read from the Memory Address, number of bytes specified in the Data Length field

4.4.1 CONFIGURATION REGISTER WRITE EXAMPLE

To write to a configuration register:

- 1. Write the command block to the buffer area.
- 2. Execute the special Configuration Register Access command.

EXAMPLE 4-1: FORMATTING SMBUS MESSAGES TO SET HUB VID TO CUSTOM VALUE

The following example shows how the SMBus messages are formatted to set the VID of the hub to a custom value, 1234h:

1. Write the command block to the buffer area (See Table 195.):

TABLE 195: SMBUS WRITE COMMAND BLOCK FOR REGISTER WRITE

Byte	Value	Comment
0	5Ah	Slave address plus write bit (2Dh left shifted by 1)
1	00h	Buffer address MSB 00 00h
2	00h	Buffer address LSB 00 00 h
3	08h	Number of bytes to write to command block buffer area
4	00h	Write VID Register
5	02h	Writing two bytes to VID register
6	BFh	VID is in register BF 80_3000h
7	80h	VID is in register BF 80 _3000h
8	30h	VID is in register BF80_3000h
8	00h	VID is in register BF80_30 00 h
Α	34h	LSB of Vendor ID 1234h
В	12h	MSB of Vendor ID 1234h

2. Execute the Configuration Register Access command (See Table 196.):

TABLE 196: CONFIGURATION REGISTER ACCESS COMMAND

Byte	Value	Comment
0	5Ah	Address plus write bit
1	99h	Command 9937h
2	37h	Command 9937h
3	00h	Command completion

4.4.2 CONFIGURATION REGISTER READ EXAMPLE

To read configuration registers:

- 1. Write the command block to the buffer area.
- 2. Execute the Configuration Register Access command.
- 3. Read the data from the memory.

EXAMPLE 4-2: READING THE PID

The example below shows how to read the PID.

1. Write the data to the memory of the hub (See Table 197.):

TABLE 197: SMBUS WRITE COMMAND BLOCK FOR REGISTER READ

Byte	Value	Comment
0	5Ah	Slave address plus write bit (2Dh left shifted by 1)
1	00h	Memory address 00 00h
2	00h	Memory address 00 00 h
3	06h	Number of bytes to write to memory
4	01h	Read Configuration Register
5	02h	Reading two bytes from PID register
6	BFh	VID is in register BF 80_3002h
7	80h	VID is in register BF 80 _3002h
8	30h	VID is in register BF80_3002h
9	02h	VID is in register BF80_30 02 h

2. Execute the Configuration Register Access command (See Table 198.):

TABLE 198: CONFIGURATION REGISTER ACCESS COMMAND

Byte	Value	Comment
0	5Ah	Address plus write bit (2Dh left shifted by 1)
1	99h	Command 9937h
2	37h	Command 9937h
3	00h	Command completion

3. Read back data starting at memory offset 04h, which is where the Data byte starts (See Table 199.):

TABLE 199: EXAMPLE SMBUS READ COMMAND

Byte	Value	Comments			
0	5Ah	Slave address plus write bit (2Dh left shifted by 1)			
1	00h	Memory Address 0006h			
2	06h	Memory Address 00 06 h			
3	5Bh	Slave address plus read bit (2Dh left shifted by 1 + 1)			
4	08h	Device sends a count of 8 bytes			
5	16h	PID LSB			
6	49h	PID MSB			

Note 1: Although the device can send out 8 bytes, it is not necessary to read the 8 bytes. The SMBus Master can send a stop at any time.

4.5 SMBus Runtime

After the hub is enumerated (after USB Attach with SMBus Runtime Access), the same registers can be accessed during runtime.

5.0 OTP CONFIGURATION

The USB7202/USB7206/USB725x hubs have 8k bytes of one-time programmable (OTP) memory to enable customization and limited firmware updates in the field. OTP memory organization and OTP configuration are described in the next sections.

5.1 OTP Memory Organization

The OTP memory is divided into four regions as follows:

- · OTP Flags
- · Configuration Commands
- · Blank Memory
- · Configuration Index Records

Figure 2 shows the OTP memory organization example. Each product will have unique default contents.

FIGURE 2: OTP MEMORY ORGANIZATION

	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
0000h	OTP	Flags														
0010h							Cor	nfigura	tion C	omma	nds					
0020h																
0030h								00h	00h	00h	00h	00h	00h	00h	00h	00h
0040h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
0050h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
	00h	00h	00h	00h	00h			Blar	ık Mer	nory			00h	00h	00h	00h
	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FC0h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FD0h	00h	00h	00h	00h	00h	00h	00h									
1FE0h							Conf	igurati	on Ind	ex Re	cords					
1FF0h																

5.1.1 OTP FLAGS

The first 2-4 bytes of the OTP memory are the OTP Flags indicating how many times the OTP has been programmed by the MPLAB Connect Configurator tool (when programming via SMBus, these bits are not updated). For an unprogrammed part, these two bytes are 0000h. Every time the OTP is programmed using MPLAB Connect Configurator, a bit is set. When the first OTP is programmed, this becomes 0001h, then 0003h, 0007h, and continues until all bits are set. After all OTP Flag bits are set, OTP programming is still possible as long as OTP space is available.

5.1.2 CONFIGURATION COMMANDS

The configuration commands section grows from the start of the OTP data. These are the commands that are appended every time a Program OTP command is sent through SMBus and can vary in length depending on how many configuration registers have been manipulated.

5.1.3 BLANK MEMORY

This memory region is initially 00h on an unprogrammed part and decreases in size as configuration commands and configuration index records are programmed.

5.1.4 CONFIGURATION INDEX RECORDS

The Configuration Index Records area contains Configuration Index Records that are automatically generated when the OTP data is programmed. A Configuration Index Record is always 8 bytes per OTP program and is appended to the back of the OTP memory space every time the Program OTP command is sent. It contains a checksum to confirm that the configuration command was written correctly as well as information on the location of the configuration commands within the OTP memory space and total length. The Configuration Index Record format is shown in Figure 3.

The CheckSum algorithm for the CheckSum byte is Checksum8-Xor.

FIGURE 3: CONFIGURATION INDEX RECORD FORMAT

BYTE	1	2	3	4	5	6	7	8
Description	Signature			Checksum	CFG AD	DRESS	CFG LI	ENGTH
Contents	I	D	Х	Checksum	MSB	LSB	MSB	LSB
Contents	(49h)	(44h)	(58h)	Checksum	IVIOD	LOD	IVIOD	LOD

5.2 OTP Configuration Using MPLAB Connect Configurator

The easiest method to program the USB7202/USB7206/USB725x Hub OTP is with the **MPLAB Connect Configurator** tool, available at: http://www.microchip.com/design-centers/usb/mplab-connect-configurator.

MPLAB Connect Configurator programs the configuration in the next available slot in the configuration commands area, programs the Index Record in the Configuration Index Records area, and updates the OTP Flags count field.

This tool can be used to generate a configuration file (.cfg) and to program the generated configuration file permanently to the hub's OTP memory space using USB commands.

Alternatively, the .cfg file can be constructed manually using a binary/hex editor. Follow the formatting instructions shown in Table 200, and see the example in Section 5.3.1, OTP Configuration File Examples.

5.3 OTP Configuration Using SMBus

The OTP memory can be programmed through the SMBus interface in the SOC_CONFIG stage (during start-up). The OTP memory is configured as a series of commands that manipulates the configuration registers. The USB7202/USB7206/USB725x hubs have a total of 8 kB of OTP memory space, and each byte of OTP memory may be written only once. The OTP memory space can be successively written to (each programming instance appends the new command to the bottom of the OTP memory space) until the space is completely filled.

During the HUB_CONFIG stage, temporary OTP configuration registers are written to. The contents in the OTP configuration registers are then permanently loaded to the OTP memory space after sending a special OTP program command. These registers permanently change the default behavior of the hub during normal operation. These commands are stored into the OTP memory as shown in Figure 2.

TABLE 200: OTP STORAGE COMMANDS

Command	OPCODE	Length	Description
NULL	00h	N/A	No action; advance memory counter by 1 and move to the next instruction.
MODIFY_BYTES	01h-7Fh	OPCODE	Modifies the following bytes starting at the current memory address for length = OPCODE. The previously used SET MODE command is used for select.
			The previously used SET_MODE command is used for selecting the bit operation.
			The default MODE is WRITE_BYTES if there is no preceding SET_MODE command.
SET_MEMORY ADDRESS	80h XXh XXh XXh XXh	N/A	Load the MEMORY_ADDRESS register with the four XXh XXh XXh bytes.
			Example: 80h BFh 80h 30h 00h sets the memory address to BF80_3000h.
SKIP_MEMORY_WRITE	81h-FDh	OPCODE [6:0]	Skip the length number of bytes starting at the location of the MEMORY_ADDRESS register. At the end of the operation, the MEMORY_ADDRESS register is incremented by length = OPCODE[6:0].
SET_MODE_WRITE_BYTE	FEh 00	N/A	If the byte following SET_MODE = 00h, all writes replace the memory value at that location.
SET_MODE_SET_BITS	FEh 01h	N/A	If the byte following SET_MODE = 01h, all writes are OR'ed in. This is a mechanism to set the selected bits in a register without changing the others. Set the bits to be set.
SET_MODE_CLEAR_BITS	FEh 02h	N/A	If the byte following SET_MODE = 02h, all writes are NAND'ed in. This is a mechanism to clear the selected bits in a register without changing the others. Set the bits to be cleared.
STOP	FFh	N/A	After the storage commands are complete, this indicates the termination of the command sequence.

5.3.1 OTP CONFIGURATION FILE EXAMPLES

Example 5-1 and Example 5-2 show the hex data in a configuration file.

EXAMPLE 5-1: CONFIGURING PF28 AS AN OUTPUT GPIO

To configure PF28 as an output assuming that PF28 is already configured as a GPIO (as it is in USB7202, all CFG_STRAP options), the corresponding bit in the output enable register must be set, which from Table 4 is GPIO92.

TABLE 201: SET BIT COMMAND SEQUENCE EXAMPLE

Byte	Value	Comment
1	80h	SET_ADDRESS command
2	BFh	Address BF80_090Bh
3	80h	Address BF80_090Bh
4	09h	Address BF80_090Bh
5	01h	Address BF80_09 0B h
6	FEh	SET_MODE command
7	01h	SET_BITS mode
8	01h	Data length of 1 byte
9	04h	Set PIO96_OEN[Bit 28]
10	FFh	Stop command

EXAMPLE 5-2: CHANGING THE USB DOWNSTREAM PORT 1 BOOST REGISTER TO INCREASE THE HS OUTPUT CURRENT BY 5%

TABLE 202: WRITE BYTE COMMAND SEQUENCE EXAMPLE

Byte	Value	Comment
1	80h	SET_ADDRESS command
2	BFh	Address BF80_64CAh
3	80h	Address BF80_64CAh
4	64h	Address BF80_64CAh
5	CAh	Address BF80_64 CA h
6	FEh	SET_MODE command
7	01h	WRITE_BYTE mode
8	01h	Data length of 1 byte
9	03h	Increase HS output current by 5%
10	FFh	Stop command

5.3.2 OTP CONFIGURATION VIA SMBUS

The commands in Table 203 can be used to access and program the OTP memory. These can be used by an automated test equipment (ATE) equipment.

TABLE 203: SPECIAL OTP SMBUS COMMANDS

Operation	OPCODE	Description
SMB_CMD_OTP	9933h	Execute OTP Command based on CMD_TYPE
SMB_CMD_READ_OTP	9934h	Read OTP register
SMB_CMD_OTP_ATE	9939h	Execute OTP Command based on CMD_TYPE. This command is for use with ATE. Command success or failure is reported via signal pins. The device does not respond afterwards until reset.
		Command status pin: PRT_PWR1 (0 = Passed, 1 = OTP Failed)
		Command completion pin: PRT_PWR2 (0 = In progress, 1 = done)

Note 1: Before any OTP commands can be executed, a data structure must be created in the memory using SMBus block writes.

5.3.3 SMBUS OTP COMMAND STRUCTURE

The OTP command structure in Table 204 is used for accessing the OTP memory.

TABLE 204: SMBUS OTP COMMAND STRUCTURE

Buffer Address	Description	Notes
BFD2_2100h	CMD_TYPE	Command Type is one of the commands in the OTP Command Type table.
BFD2_2101h	ADDR[15:0]	OTP Address to read from or write to; set to 0000h.
BFD2_2103h	LENGTH[15:0]	Number of bytes to transfer
BF90_7000h	Data	Data for OTP transaction. MULTI_HOST_CLK_EN and MHB_MEM_CLK_EN bits must be set before accessing the DATA_BUFFER.
BFD2_3419h	SMBusOTPResult	Result of OTP operation as specified in the OTP Return Status

TABLE 205: OTP COMMAND TYPE

Code	CMD_TYPE	Description
00h	SMB_OTP_RAW_PGM	Raw OTP Programming mode *ADVANCED*
		OTP will be programmed starting at the OTP memory offset of ADDR for size LENGTH. The OTP memory at any location with the OTP can be programmed. No signature is generated.
		It is possible to corrupt existing configuration using this mode.
		A new OTP configuration block programmed using this mode will also need a valid signature to be manually added to the correct signature memory location.
		Status on completion:
		00h = OTP was programmed and verified successfully.
		01h = OTP programming failed.

TABLE 205: OTP COMMAND TYPE (CONTINUED)

Code	CMD_TYPE	Description
03h	SMB_OTP_PGM	"Smart" OTP Programming mode
		This programs the OTP configuration block automatically after the last programmed OTP record.
		The hub will automatically generate and program the signature at the end of the OTP memory space in the next available memory space including the IDX signature, record checksum, start offset, and length.
		The LENGTH and DATA buffer must be initialized before issuing this command.
		Status on completion:
		 00h = OTP was programmed and verified successfully. 01h = OTP programming failed.
05h	SMB_OTP_BLANKCHECK	This verifies that the OTP is blank and has not been programmed. Status on completion:
		 00h = PASS; OTP is blank and has not been programmed. 01h = FAIL; OTP blank check failed.
06h	SMB_OTP_RESET	This resets the OTP core. Status on completion:
07h	SMB OTP READ	00h = OTP_NO_ERROR This command reads the number of bytes specified in the LENGTH
0711	OMB_OTI_NEAD	field and stores them in data buffer.
		Status on completion:
		00h = OTP data was read successfully.
		01h = OTP read failed.

5.3.4 STEPS FOR PROGRAMMING OTP USING SMBUS

- 1. Write the OTP memory structure.
- 2. Send the Execute OTP command.
- 3. Read SMBusOTPResult.

EXAMPLE 5-3: SMBUS OTP "SMART" PROGRAMMING

The "Smart" OTP programming method allows users to program an OTP configuration block without the calculation of OTP memory offset and manual generation/programming of configuration index signature. In "Smart" OTP Programming mode, the hub automatically places the Configuration data into the next available memory space, and generates/programs the correct Configuration Index signature.

This example changes the PID LSB at BF803002h to 34h, and the PID MSB at BF803003h to 12h.

The OTP configuration data for this is 80 BF 80 30 02 02 34 12 FF.

Write OTP Memory Structure

- 1. Write 86, C7, O1, E0 to BF80 0B00h: 00 00 0A 00 04 BF 80 0B 00 86 C8 00 E0
- 2. Write SMBus Configuration Register Access command: 5A 99 37 00
- 3. Resume HFC Operation: 00 00 07 00 01 BF 80 2C 02 C2
- 4. Write SMBus Configuration Register Access command: 5A 99 37 00
- 5. Write OTP Patch to Data Area at BF90_7000h: 5A 00 00 0F 00 09 BF 90 70 00 80 BF 80 30 02 02 34 12 FF
- 6. Write SMBus Configuration Register Access command: 5A 99 37 00
- 7. Write OTP "03" to BFD2_2100 to indicate "Smart OTP" programming to program to next available OTP space: 00 00 07 00 01 BF D2 21 00 03
- 8. Write SMBus Configuration Register Access command: 5A 99 37 00
- 9. Write OTP patch length (09h) to BFD2_2103h: 00 00 08 00 02 BF D2 21 03 00 09
- 10. Write SMBus Configuration Register Access command: 5A 99 37 00

Send the Execute OTP Command

11. Write to SMBus: 5A 99 33 00

Read SMBus OTP Result Register

- 12. Set the command block for status read at BFD2_3419h: 5A 00 00 06 01 01 BF D2 34 19
- 13. Write SMBus Configuration Register Access command: 5A 99 37 00
- 14. Read Data: 5A 00 06 5B 08 XX

Note: xx is the status returned: 00 = Pass.

EXAMPLE 5-4: SMBUS OTP "RAW" PROGRAMMING (ADVANCED)

The Raw OTP Programming method allows any byte or block of bytes to be programmed within the hub OTP memory. Generally, when programming typical configuration memory blocks, the standard OTP programming method should be used.

The Raw OTP Programing feature can be used to intentionally corrupt a previously programmed configuration block's CheckSum byte in the Configuration Index signature. Doing this prevents the configuration block from being loaded. This technique can be used to recover a hub that was rendered non-functional by an incorrectly formatted configuration data block.

For example, if the CheckSum byte of the configuration block that needs to be prevented from being loaded is located at memory offset 1FEBh (meaning, it was the third configuration block to be programmed into the hub's OTP memory), then the following commands can be followed to overwrite that byte with an FFh to intentionally corrupt that byte.

Write OTP Memory Structure

- 1. Write 86, C7, 01, E0 to BF80 0B00h: 00 00 0A 00 04 BF 80 0B 00 86 C8 00 E0
- 2. Write SMBus Configuration Register Access command: 5A 99 37 00
- 3. Resume HFC Operation: 00 00 07 00 01 BF 80 2C 02 C2
- 4. Write SMBus Configuration Register Access command: 5A 99 37 00
- 5. Write OTP Patch to Data Area at BF90_7000h: 5A 00 00 07 00 01 BF 90 70 00 FF
- 6. Write SMBus Configuration Register Access command: 5A 99 37 00
- 7. Write OTP "00" to BFD2_2100 to indicate "Smart OTP" programming to program to next available OTP space: 00 00 07 00 01 BF D2 21 00 00
- 8. Write SMBus Configuration Register Access command: 5A 99 37 00
- 9. Write OTP patch memory offset (1FEBh) to BFD2_2101h to overwrite the data payload (FFh) to the third Configuration Index signature location: 00 00 08 00 02 BF D2 21 01 1F FE
- 10. Write SMBus Configuration Register Access command: 5A 99 37 00
- 11. Write OTP patch length (01h) to BFD2 2103h: 00 00 08 00 02 BF D2 21 03 00 01
- 12. Write SMBus Configuration Register Access command: 5A 99 37 00

Send the Execute OTP Command

13. Write to SMBus: 5A 99 33 00

Read SMBus OTP Result Register

- 14. Set the command block for status read at BFD2 3419h: 5A 00 00 06 01 01 BF D2 34 19
- 15. Write SMBus Configuration Register Access command: 5A 99 37 00
- 16. Read data: 5A 00 06 5B 08 XX

EXAMPLE 5-5: SMBUS OTP READ

The OTP memory of the hub can be read via SMBus in its entirety or in selected chunks.

The following example shows how to read back the entire OTP memory.

General Setup

- 1. Set up CLK_CTL_REG BF80_0B00h: 5A 00 00 0A 00 04 BF 80 0B 00 86 C8 00 E0
- 2. Write SMBus Configuration Register Access command: 5A 99 37 00
- 3. Start-up HFC Execution, Length at BF80_2CC2h: 5A 00 00 07 00 01 BF 80 2C 02 C2
- 4. Write SMBus Configuration Register Access command: 5A 99 37 00

Configure for read-back of first 4 kB of OTP Memory Space

- 5. Configure to take the first 4 kB of OTP memory and dump to BF90_7000h space: 5A 00 00 0B 00 05 BF D2 21 00 07 00 00 10 00
- 6. Write SMBus Configuration Register Access command: 5A 99 37 00

Send the Execute OTP Command

7. Write to SMBus: 5A 99 33 00

Read SMBus OTP Result Register

- 8. Set the command block for status read at BFD2_3419h: 5A 00 00 06 01 08 BF D2 34 19
- 9. Write SMBus Configuration Register Access command: 5A 99 37 00
- 10. Read data: 5A 00 06 5B 06 XX

Note: xx is the status returned: 00 = Pass.

Read Back first 4 kB of OTP Memory

- 11. Set the command block for read-back of first 128 kB chunk of OTP starting from BF90_7000h: 5A 00 00 06 01 80 BF 90 70 00
- 12. Write SMBus Configuration Register Access command: 5A 99 37 00
- 13. Read data: 5A 00 06 5B 06 XX_0 XX_{127}

Note: $XX_0 - XX_{127}$ is returned 128 kB of OTP memory

- 14. Set the command block for read-back next 128 kB chunk of OTP starting from BF90_7080h: 5A 00 00 06 01 80 BF 90 70 80
- 15. Write SMBus Configuration Register Access command: 5A 99 37 00
- 16. Read data: 5A 00 06 5B 06 XX_{128} XX_{255}

 XX_{128} - XX_{255} is returned 128 kB of OTP memory

- 17. Set the command block for read-back next 128 kB chunk of OTP starting from BF90_7100h: 5A 00 00 06 01 80 BF 90 71 00
- 18. Write SMBus Configuration Register Access command: 5A 99 37 00
- 19. Read data: 5A 00 06 5B 06 XX_{256} XX_{383}

 ${\it XX}_{\it 256}$ - ${\it XX}_{\it 383}$ is returned 128 kB of OTP memory

20. Continue until the first 4 kB of OTP memory is retrieved.

Configure for read-back of second 4 kB of OTP memory space

- **21.** Configure to take the second 4 kB of OTP memory and dump to BF90_7000h space: 5A 00 00 0B 00 05 BF D2 21 00 07 10 00 10 00
- 22. Write SMBus Configuration Register Access command: 5A 99 37 00

Send the Execute OTP Command

23. Write to SMBus: 5A 99 33 00

Read Back second 4 kB of OTP Memory

- 24. Set the command block for read-back next 128 kB chunk of OTP starting from BF90_7100h: 5A 00 00 06 01 80 BF 90 70 00
- 25. Write SMBus Configuration Register Access command: 5A 99 37 00
- **26.** Read data: 5A 00 06 5B 06 XX_{4,096} XX_{4,223}
- $XX_{4,096}$ $XX_{4,223}$ is returned 128 kB of OTP memory
- 27. Continue until the second 4 kB of OTP memory is retrieved.

5.4 OTP Configuration via USB

The following are the steps to configure OTP via USB:

- 1. Read OTP Setup Transaction
- 2. Set OTP Program Code
- 3. Program OTP Transaction to Program OTP Configuration Data to OTP
- 4. Get Status OTP Transaction

5.4.1 READ OTP SETUP TRANSACTION

To program OTP via USB, the entire OTP memory contents must be read to obtain the correct memory offset location for the OTP configuration block and the signature. Refer to the Section 5.1, OTP Memory Organization for the OTP memory organization.

The new configuration block should be programmed to the next byte following the end of the most recently programmed configuration block (configuration command blocks work forward from the beginning of the OTP memory space). The new Configuration Index signature should begin 8 bytes before the start of the most recently programmed Configuration Index signature (signatures are added backwards from the end of the memory space).

Note:

Two to four bytes at the very beginning of the OTP memory are left intentionally blank at the time of production. The MPLAB Connect Configurator tool uses these bytes to keep track of the number of times the tool has been used to update the OTP memory. When programming OTP via USB manually, these bits may be optionally used to keep track of the number of additional times the hub OTP memory has been programmed. The hub FW does not actually use these bytes for any purpose.

Issue the command in Table 206 to read the OTP memory.

TABLE 206: OTP READ SETUP PACKET

SETUP Packet	Value	Description
bmRequestType	0xC1	Device-to-host to data transfer, using vendor-specific command, targeting interface
bRequest	0x01	CMD_OTP_READ
wValue	OTP_ADRESS	Address of the OTP ROM to be read
wIndex	0x00	Reserved
wLength	Data Length	Length of data to be read

Note 1: Command phase: Receives the SETUP packet with the parameters specified above.

Data phase: Sends the data bytes of length wLength from address wValue.

Status phase:

•STALL - on read error

•ACK - on successful completion of command

5.4.2 SET OTP PROGRAM CODE

The OTP memory can be programmed by either the PROGRAM command or the PROGRAMVERIFY command. CMD_OTP_SET_PROGRAM_MODE selects the internal command that the ROM will issue to the OTP during subsequent CMD_OTP_PROGRAM commands. (See Table 207 and Table 208.)

The default mode in the ROM is PROGRAMVERIFY (without requiring the Set OTP Program Mode command to be issued always).

TABLE 207: SET OTP PROGRAM MODE SETUP PACKET

SETUP Packet	Value	Description
bmRequestType	0x41	Host-to-device to data transfer, using vendor-specific command, targeting interface
bRequest	0xF1	CMD_OTP_SET_PROGRAM_MODE
wValue	Programming Option	Indicates if the future CMD_OTP_PROGRAM commands will issue the PROGRAMVERIFY or PROGRAM command • 0x01 – PGMVFY • 0x02 – PROGRAM
wIndex	0x0000	Reserved
wLength	Data Length	No Data Command

Note 1: Command phase: Receives the SETUP packet as specified in the table. **Status phase:**

5.4.3 PROGRAM OTP TRANSACTION TO PROGRAM OTP CONFIGURATION DATA TO OTP

Method 1: Program the entire 8 kB in a single step.

This method allows the OTP to be updated with a signal program command, but requires transferring 8 kB to the hub before sending the program command.

To simplify the update process, it is recommended to first read back the entire 8 kB OTP memory space, insert the new Configuration data block and index signature to the read back file, and transfer the entire amended 8 kB back to the hub. Overwriting previously written to bytes with the same redundant data is supported and will have no negative effect.

With this method, OTP_ADDRESS is always 0x000, and wLength is always 0x1FFF.

Method 2: Program only the new configuration data block and signature index in two separate programming steps.

This method allows the hub OTP to be updated with the minimum amount of data transfer possible, but requires two separate program commands to achieve.

An alternate method is to perform an OTP memory dump, locate the offset of the configuration data block, and program only the new configuration block to the proper memory offset. Then, in a separate programming step, add the new configuration index signature to the correct memory offset.

An optional read-back step can be performed to ensure the data is correctly stored.

[•]ACK - On successful completion of the command

TABLE 208: OTP PROGRAM SETUP PACKET

SETUP Packet	Value	Description
bmRequestType	0x41	Host-to-device data transfer, using vendor-specific command, targeting interface
bRequest	0x00	CMD_OTP_PROGRAM
wValue	OTP_ADDRESS	Address of the OTP memory for the Configuration Data block to be written
wIndex	0x00	Reserved
wLength	Data Length	Length of data to be written

Note 1: Command phase: Receives the SETUP packet with the parameters specified above.

Data phase: Receives the data bytes of length wLength and programs the OTP accordingly.

Status phase:

•STALL - on programming error

•ACK - on successful completion of programming

Use CMD_OTP_GET_STATUS to get the status for more information on the failure.

Note:	Programming OTP via USB requires that a valid signature at the end of OTP is also manually generated
	and programmed to the correct memory location. There is no automated signature generation option when
	programming OTP via USB. For a configuration block to be loaded by the hub FW, steps 5 and 6 must also
	be followed correctly.

5.4.4 GET STATUS OTP TRANSACTION

To ensure the previous Configuration block was programmed to OTP successfully, issue the command in Table 209 to get the OTP status.

TABLE 209: OTP GET STATUS SETUP PACKET

SETUP Packet	Value	Description
bmRequestType	0xC1	Device-to-host to data transfer, using vendor-specific command, targeting interface
bRequest	0x02	CMD_OTP_GET_STATUS
wValue	0x0000	Address of the OTP ROM to be read
wIndex	0x0000	Reserved
wLength	0x01	One byte status to be returned

Note 1: Command phase: Receives the SETUP packet with the parameters specified above.

Data phase: Sends the status byte.

Status phase:

•STALL - on read error

•ACK - on successful completion of command

The status code returned is shown in Table 210.

TABLE 210: OTP STATUS CODES

Status Code Description			
0x00	Command successful completion		
0x01	Generic error		

EXAMPLE 5-6: OTP PROGRAMMING EXAMPLE

An OTP patch is generated to change the value of register $0xBF80_3000 = 0x34$ and $0xBF80_3001 = 0x12$, such that the VID is changed to 0x1234.

The OTP contents for this patch would be:

80 BF 80 30 00 FE 00 02 34 12 FF

Step 1: An OTP memory read-back is performed, and the following data is returned (See Figure 4.):

FIGURE 4: EXAMPLE RETURNED OTP READ

	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
0000h								OTP	Flags							
0010h	ОТР	Flags	80	BF	CF	80	8E	10	00	00	00	00	00	00	00	0B
0020h	12	1A	04	03	01	02	80	BF	D2	2E	1A	10	00	00	00	00
0030h	00	00	00	0B	24	0B	12	1A	04	03	01	02	FFh	00h	00h	00h
0040h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
0050h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
	00h	00h	00h	00h	00h			Blaı	nk Men	nory			00h	00h	00h	00h
	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FC0h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FD0h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FE0h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FF0h	00h	00h	00h	00h	00h	00h	00h	00h	49h	44h	58h	D8h	00h	12h	00h	2Dh
			•		•	•		•			•		•	•	•	

Step 2: The Configuration Data should be placed as shown in yellow in Figure 5 at memory offset 003Dh - 0047h.

The Configuration Index signature should be placed in the next available signature location as shown in yellow in Figure 5 at memory offset 1FF0h – 1FF7h.

FIGURE 5: OTP MEMORY WITH NEW CONFIGURATION DATA INSERTED

	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
0000h								OTP	Flags							
0010h	OTP	Flags	80	BF	CF	80	8E	10	00	00	00	00	00	00	00	0B
0020h	12	1A	04	03	01	02	80	BF	D2	2E	1A	10	00	00	00	00
0030h	00	00	00	0B	24	0B	12	1A	04	03	01	02	FFh	80h	BFh	80h
0040h	30h	00h	Feh	00h	02h	34h	12h	FFh	00h	00h	00h	00h	00h	00h	00h	00h
0050h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
	00h	00h	00h	00h	00h			Blaı	nk Men	nory			00h	00h	00h	00h
	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FC0h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FD0h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FE0h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h
1FF0h	49h	44h	58h	AAh	00h	3Dh	00h	0Bh	49h	44h	58h	D8h	00h	12h	00h	2Dh

The signature data is generated based upon the data contents, a checksum, the location that it is placed within the OTP memory, and the length. Hence, the signature for this example is shown in Figure 6.

FIGURE 6: **EXAMPLE CONFIGURATION INDEX**

BYTE	1	2	3	4	5	6	7	8	
Description		Signature		Checksum	CFG AD	DRESS	CFG LENGTH		
Contents	(49h)	D (44h)	X (58h)	AAh	00h	3Dh	00h	0Bh	

Step 3: Send the CMD OTP PROGRAM command with the 8 kB of amended OTP data as the data payload for the USB transaction.

Step 4: Verify that programming was successful by sending CMD OTP GET STATUS and verifying that the returned payload is 0x00.

Step 5: Perform another OTP memory read to confirm programming was successful.

5.5 Memory Access during Runtime via USB

The hub memory mapped registers can be accessed during runtime via USB. See Table 211 and Table 212.

Note: Not all registers should be modified during runtime as this could affect normal operation.

TABLE 211: MEMORY WRITE SETUP PACKET

SETUP Packet	Value	Description
bmRequestType	0x40	Host-to-device data transfer, vendor class, targeted to interface
bRequest	0x03	CMD_MEMORY_WRITE
wValue	ADDR_LO	Lower 16 bits of the Target Memory Address in little-endian format
wIndex	ADDR_HI	Upper 16 bits of the Target Memory Address in little-endian format
wLength	Data Length	Length of data to be written

Note 1: Command phase: Receives the SETUP packet with the parameters specified above.

Data phase: Receives the data bytes of length wLength and writes data starting at the target memory address.

Status phase:

•ACK - on successful completion of memory write

TABLE 212: MEMORY READ SETUP PACKET

SETUP Packet	Value	Description
bmRequestType	0xC0	Device-to-host data transfer, vendor class, targeted to interface
bRequest	0x04	CMD_MEMORY_READ
wValue	ADDR_LO	Lower 16 bits of the Target Memory Address in little-endian format
wIndex	ADDR_HI	Upper 16 bits of the Target Memory Address in little-endian format
wLength	Data Length	Length of data to read

Note 1: Command phase: Receives the SETUP packet with the parameters specified above.

Data phase: Sends the data bytes of length wLength starting from the target memory address.

Status phase:

•ACK - on successful completion of programming

EXAMPLE 5-7: USB MEMORY WRITE

This example changes the PID at location BF80_3002h.

Memory Write SETUP Phase Transaction: The USB host sends the SETUP packet to the Hub Feature Controller at Endpoint 0. See Table 213 and Figure 7.

TABLE 213: MEMORY WRITE SETUP PACKET

SETUP Packet	Value	Description
bmRequestType	0x40	Host-to-device data transfer, vendor class
bRequest	0x03	CMD_MEMORY_WRITE
wValue	0x3002	Lower 16 bits of the Target Memory Address in little-endian format
wIndex	0xBF80	Upper 16 bits of the Target Memory Address in little -endian format
wLength	0x0002	Length of data to be written

FIGURE 7: MEMORY WRITE SETUP TRANSACTION

Memory Write Data Phase OUT Transaction: The USB host sends two data bytes to set BF803002 = 5678h.
 See Figure 8.

FIGURE 8: MEMORY WRITE OUT TRANSACTION

3. **Memory Write Status Phase IN Transaction:** The USB host sends an IN packet to complete the transfer. The Hub Feature Controller responds with a zero length data packet. See Table 213 and Figure 9.

FIGURE 9: MEMORY WRITE IN TRANSACTION

EXAMPLE 5-8: USB MEMORY READ

This example reads the PID at location BF80_3002h.

1. **Memory Read SETUP Phase Transaction:** The USB host sends the SETUP packet below to the Hub Feature Controller at Endpoint 0. See Table 214 and Figure 10.

TABLE 214: READ SETUP PACKET

SETUP Packet	Value	Description
bmRequestType	0xC0	Device-to-host data transfer, vendor class
bRequest	0x04	CMD_MEMORY_READ
wValue	0x3002	Lower 16 bits of the Target Memory Address in little-endian format
wlndex	0xBF80	Upper 16 bits of the Target Memory Address in little-endian format
wLength	0x0002	Length of data to read

FIGURE 10: MEMORY READ SETUP TRANSACTION

FIGURE 11: MEMORY READ IN TRANSACTION

- Memory Read Data Phase IN Transaction: The USB host sends an IN packet to read the data. The Hub Feature Controller returns two bytes of data to complete the transfer. Data 5678h is read from location BF803002h. See Figure 11.
- 3. **Memory Read Status Phase OUT Transaction:** The USB host sends an OUT packet to complete the transfer. The Hub Feature Controller responds with a zero length data packet. See Figure 12.

FIGURE 12: MEMORY READ OUT TRANSACTION

6.0 HUB PRODUCT IDS

6.1 Hub Feature Controller (UDC0)

The Hub Feature Controller (UDC0) is enabled by default, thus reported as a non-removable device.

The Hub Feature Controller exposes different USB interfaces depending on the state of the configuration straps (CONFIG_STRAPx pins), enabling the features relevant to the selected PFx pins. Exposing a different PID for different configurations is required so that the correct USB client drivers are loaded.

The base PID is maintained as 0x7240. However, the last nibble is maintained to reflect the enabled features as shown in Table 215, with bit 0 indicating the presence of I^2S HID, bit 1 indicating the presence of I^2S Audio, bit 2 indicating the presence of CDC, and bit 3 indicating the presence of Generic USB Device (WinUSB on Windows).

TABLE 215: HUB FUNCTION CONTROLLER (UDC0) PIDS

WinUSB	CDC	I ² S Audio	I ² S HID	UDC0 Device Configuration	PID
No	No	No	No	No interface present; will not enumerate	NA
No	No	No	Yes	Invalid	NA
No	No	Yes	No	I ² S Audio	7242h
No	No	Yes	Yes	I ² S Audio, I ² S HID	7243h
No	Yes	No	No	CDC Data, CDC Control	7244h
No	Yes	No	Yes	Invalid	NA
No	Yes	Yes	No	CDC Data, CDC Control, I ² S Audio	7246h
No	Yes	Yes	Yes	CDC Data, CDC Control, I ² S Audio, I ² S HID	7247h
Yes	No	No	No	Generic USB Device (WinUSB on Windows)	7240h
Yes	No	No	Yes	Invalid	NA
Yes	No	Yes	No	Generic USB Device (WinUSB on Windows)	724Ah
Yes	No	Yes	Yes	Generic USB Device (WinUSB on Windows), I ² S Audio, I ² S HID	724Bh
Yes	Yes	No	No	Generic USB Device (WinUSB on Windows), CDC Data, CDC Control	724Ch
Yes	Yes	No	Yes	Invalid	NA
Yes	Yes	Yes	No	Generic USB Device (WinUSB on Windows), CDC Data, CDC Control, I ² S Audio	724Eh
Yes	Yes	Yes	Yes	Generic USB Device (WinUSB on Windows), CDC Data, CDC Control, I ² S Audio, I ² S HID	724Fh

6.2 Hub PID Selection

Table 216 shows the Primary Hub, Secondary Hub, UDC1, and UDC2 PIDs based on part number.

TABLE 216: PID SELECTION OPTIONS

Device	Package	USB2 HUB PID	USB3 HUB PID	Multi-Host Endpoint Reflector UDC1 PID (Upstream Port Side)	Multi-Host Endpoint Reflector UDC2 PID (Downstream Port Side)
USB7202	QFN100	4202h ¹	7202h ¹	7210h	7220h
USB7206	QFN100	4206h ¹	7206h ¹	7210h	7220h
USB7250	QFN100	4250h ¹	7250h ¹	7210h	7220h
USB7251	QFN100	4251h ¹	7251h ¹	7210h	7220h
USB7252	QFN100	4252h ¹	7252h ¹	7210h	7220h
USB7256	QFN100	4256h ¹	7256h ¹	7210h	7220h

7.0 PHYSICAL AND LOGICAL PORT MAPPING

USB7202/USB7206/USB7251/US7252/USB7256 family of devices are based upon a common architecture, but all have different modifications and/or pin bond outs to achieve the various device configurations.

The base chip is composed of a total of 6 USB3 PHYs and 7 USB2 PHYs. These PHYs are physically arranged on the chip in a certain way, which is what is referred to as the PHYSICAL port mapping.

The actual port numbering may be remapped by default in different ways on each product. This changes the way that the ports are numbered from the USB host's perspective. This is referred to as LOGICAL mapping.

The various configuration options available for these devices may, at times, be with respect to PHYSICAL mapping or LOGICAL mapping. Each individual configuration option which has a PHYSICAL or LOGICAL dependency is declared as such within the register description.

The PHYSICAL vs. LOGICAL mapping is described within each device's respective data sheet, and is also abbreviated from Table 217 to Table 220.

Note: The device datasheets also include visual aids for describing the LOGICAL vs. PHYSICAL mapping.

A system design in schematics and layout is generally performed using the pinout from the device datasheet, which is assigned by the default LOGICAL mapping. Hence it is necessary to cross reference the PHYSICAL vs. LOGICAL look up tables when determining the hub configuration.

Note: The MPLAB Connect tool makes configuration simple; the settings can be selected by the user with respect to the LOGICAL port numbering. The tool handles the necessary linking to the PHYSICAL port settings.

TABLE 217: USB7202 PYSICAL VS. LOGICAL PORT MAPPING

Device	Pin Name (as in datasheet)	LC	GICA	AL PO	RT N	IUMB	ER	F	PHYS	SICAL PORT NUMBER				
Pin	Pin Name (as in datasneet)	0	1	2	3	4	5	0	1	2	3	4	5	6
5	USB2DN_DP1		Х						Х					
6	USB2DN_DM1		Х						Х					
7	USB3DN_TXDP1A		Х						Х					
8	USB3DN_TXDM1A		Х						Х					
10	USB3DN_RXDP1A		Х						Х					
11	USB3DN_RXDM1A		Х						Х					
14	USB2DN_DP3				Х					Х				
15	USB2DN_DM3				Х					Х				
16	USB3DN_TXDP1B		Х							Х				
17	USB3DN_TXDM1B		Х							Х				
19	USB3DN_RXDP1B		Х							Х				
20	USB3DN_RXDM1B		Х							Х				
29	USB2DN_DP2			Х							Х			
30	USB2DN_DM2			Х							Х			
31	USB3DN_TXDP2A			Х							Х			
32	USB3DN_TXDM2A			Х							Х			
34	USB3DN_RXDP2A			Х							Х			
35	USB3DN_RXDM2A			Х							Х			
37	USB2DN_DP4					Х						Х		
38	USB2DN_DM4					Х						Х		
39	USB3DN_TXDP2B			Х								Х		
40	USB3DN_TXDM2B			Х								Х		
42	USB3DN_RXDP2B			Х								Х		
43	USB3DN_RXDM2B			Х								Х		

TABLE 217: USB7202 PYSICAL VS. LOGICAL PORT MAPPING

Device	Din Name (as in datasheat)	LO	GICA	L PC	RT N	UMB	ER	F	PHYSICAL PORT NUMBER 1 2 3 4 5 X X X X X X					
Pin	Pin Name (as in datasheet)	0	1	2	3	4	5	0	1	2	3	4	5	6
81	USB3UP_TXDMB	Х											Х	
82	USB3UP_TXDPB	Х											Х	
84	USB3UP_RXDMB	Х											Х	
85	USB3UP_RXDPB	Х											Х	
89	USB2UP_DM	Х						Х						
90	USB2UP_DP	Х						Х						
91	USB3UP_TXDMA	Х						Х						
92	USB3UP_TXDPA	Х						Х						
94	USB3UP_RXDMA	Х						Х						
95	USB3UP_RXDPA	Х						Х						

TABLE 218: USB7206 PYSICAL VS. LOGICAL PORT MAPPING

Device	Din Name (as in detach ast)	LOGICAL PORT NUMBER						PHYSICAL PORT NUMBER							
Pin	Pin Name (as in datasheet)	0	1	2	3	4	5	6	0	1	2	3	4	5	6
5	USB2DN_DP1		Х							Х					
6	USB2DN_DM1		Х							Х					
7	USB3DN_TXDP1		Х							Х					
8	USB3DN_TXDM1		Х							Х					
10	USB3DN_RXDP1		Х							Х					
11	USB3DN_RXDM1		Х							Х					
14	USB2DN_DP2			Х							Х				
15	USB2DN_DM2			Х							Х				
16	USB3DN_TXDP2			Х							Х				
17	USB3DN_TXDM2			Х							Х				
19	USB3DN_RXDP2			Х							Х				
20	USB3DN_RXDM2			Х							Х				
27	USB2DN_DP3				Х							Х			
28	USB2DN_DM3				Х							Х			
29	USB3DN_TXDP3				Х							Х			
30	USB3DN_TXDM3				Х							Х			
32	USB3DN_RXDP3				Х							Х			
33	USB3DN_RXDM3				Х							Х			
34	USB2DN_DP4					Х							Х		
35	USB2DN_DM4					Х							Х		
36	USB3DN_TXDP4					Χ							Х		
37	USB3DN_TXDM4					Х							Х		
39	USB3DN_RXDP4					Χ							Х		
40	USB3DN_RXDM4					Χ							Х		
41	USB2DN_DP6							Х							Х
42	USB2DN_DM6							Х							Х
81	USB2DN_DP5						Х							Х	
82	USB2DN_DM5						Х							Х	

TABLE 218: USB7206 PYSICAL VS. LOGICAL PORT MAPPING

Device	Pin Name (as in datasheet)		LOGI	CAL	PORT	NUN	IBER	2	F	PHYS	ICAL	POR	T NU	MBEF	₹
Pin	Pili Name (as in datasneet)	0	1	2	3	4	5	6	0	1	2	3	4	5	6
83	USB3DN_TXDM5						Х							Х	
84	USB3DN_TXDP5						Х							Х	
86	USB3DN_RXDM5						Х							Χ	
87	USB3DN_RXDP5						Х							Х	
89	USB2UP_DM	Х							Х						
90	USB2UP_DP	Х							Х						
91	USB3UP_TXDMA	Х							Х						
92	USB3UP_TXDPA	Х							Х						
94	USB3UP_RXDMA	Х							Х						
95	USB3UP_RXDPA	Χ							Χ						

TABLE 219: USB7250, USB7251, USB7252 PYSICAL VS. LOGICAL PORT MAPPING

Device Pin	Pin Name (as in datasheet)			CAL I	PORT	Γ	F	PHYS	ICAL	POR	T NU	T NUMBER		
Pin		0	1	2	3	4	0	1	2	3	4	5	6	
5	USB2DN_DP1		Х					Х						
6	USB2DN_DM1		Х					Х						
7	USB3DN_TXDP1A		Х					Х						
8	USB3DN_TXDM1A		Х					Х						
10	USB3DN_RXDP1A		Х					Х						
11	USB3DN_RXDM1A		Х					Х						
14	USB2DN_DP4					Х			Х					
15	USB2DN_DM4					Х			Х					
16	USB3DN_TXDP1B		Х						Х					
17	USB3DN_TXDM1B		Х						Х					
19	USB3DN_RXDP1B		Х						Х					
20	USB3DN_RXDM1B		Х						Х					
29	USB2DN_DP2			Х						Х				
30	USB2DN_DM2			Х						Х				
31	USB3DN_TXDP2A			Х						Х				
32	USB3DN_TXDM2A			Х						Х				
34	USB3DN_RXDP2A			Х						Х				
35	USB3DN_RXDM2A			Х						Х				
37	USB3DN_TXDP2B			Х							Х			
38	USB3DN_TXDM2B			Х							Х			
40	USB3DN_RXDP2B			Х							Х			
41	USB3DN_RXDM2B			Х							Х			
81	USB2DN_DP3				Х							Х		
82	USB2DN_DM3				Х							Х		
83	USB3DN_TXDM3				Х							Х		
84	USB3DN_TXDP3				Х							Х		
86	USB3DN_RXDM3				Х							Х		

TABLE 219: USB7250, USB7251, USB7252 PYSICAL VS. LOGICAL PORT MAPPING

Device Pin	Pin Name (as in datasheet)			CAL I	_	Γ	F	PHYS	ICAL	POR	T NU	MBE	₹
FIII		0	1	2	3	4	0	1	2	3	4	5	6
87	USB3DN_RXDP3				Х							Х	
89	USB2UP_DM	Х					Х						
90	USB2UP_DP	Х					Х						
91	USB3UP_TXDM	Х					Х						
92	USB3UP_TXDP	Х					Х						
94	USB3UP_RXDM	Х					Х						
95	USB3UP_RXDP	Х					Х						

TABLE 220: USB7256 PYSICAL VS. LOGICAL PORT MAPPING

Device	Die Name (as in datash ast)	LOGICAL PORT NUMBER							ı	PHYS	ICAL	POR	T NU	MBE	₹
Pin	Pin Name (as in datasheet)	0	1	2	3	4	5	6	0	1	2	3	4	5	6
5	USB2DN_DP1		Х							Х					
6	USB2DN_DM1		Х							Х					
7	USB3DN_TXDP1A		Х							Х					
8	USB3DN_TXDM1A		Х							Х					
10	USB3DN_RXDP1A		Х							Х					
11	USB3DN_RXDM1A		Х							Х					
14	USB2DN_DP5						Х				Х				
15	USB2DN_DM5						Х				Х				
16	USB3DN_TXDP1B		Х								Х				
17	USB3DN_TXDM1B		Х								Х				
19	USB3DN_RXDP1B		Х								Х				
20	USB3DN_RXDM1B		Х								Х				
27	USB2DN_DP2			Х								Х			
28	USB2DN_DM2			Х								Х			
29	USB3DN_TXDP2			Х								Х			
30	USB3DN_TXDM2			Х								Х			
32	USB3DN_RXDP2			Х								Х			
33	USB3DN_RXDM2			Х								Х			
34	USB2DN_DP3				Х								Х		
35	USB2DN_DM3				Х								Х		
36	USB3DN_TXDP3				Х								Х		
37	USB3DN_TXDM3				Х								Х		
39	USB3DN_RXDP3				Х								Х		
40	USB3DN_RXDM3				Х								Х		
41	USB2DN_DP6							Х							Х
42	USB2DN_DM6							Х							Х
81	USB2DN_DP4					Х								Х	
82	USB2DN_DM4					Х								Х	
83	USB3DN_TXDM4					Х								Х	
84	USB3DN_TXDP4					Х								Х	

AN2935

TABLE 220: USB7256 PYSICAL VS. LOGICAL PORT MAPPING

Device	Pin Name (as in datasheet)		LOGI	CAL	PORT	NUN	IBER	2	PHYSICAL PORT NUMBER							
Pin	Pili Name (as in datasneet)	0	1	2	3	4	5	6	0	1	2	3	4	5	6	
86	USB3DN_RXDM4					Х								Х		
87	USB3DN_RXDP4					Х								Х		
89	USB2UP_DM	Х							Х							
90	USB2UP_DP	Х							Х							
91	USB3UP_TXDMA	Х							Х							
92	USB3UP_TXDPA	Х							Х							
94	USB3UP_RXDMA	Х							Х							
95	USB3UP_RXDPA	Х							Х							

8.0 BILLBOARD DEVICE

An internal Billboard device is used to communicate certain conditions within a Power Delivery system, such as a failure top establish a DisplayPort Alternate mode. For device with native Power Delivery support (USB7250, USB7251, USB7252, USB7256), the hub firmware will automatically determine the appropriate timing for attaching and detaching the Billboard device.

Devices without native Power Delivery support may still be used within a Power Delivery system, and the internal Bill-board device may still be used. These hubs require control from an external Power Delivery controller. The external Power Delivery controller can force the Billboard device to attach or detach through:

- · Hub SMBus Slave interface
- · Hub GPIO pin

The Billboard device attaches as an added interface to the existing Hub Feature Controller interface, UART COM interface, and I²S Audio interface that are enabled.

8.1 Enabling Billboard Device Functionality

The BILLBOARD_ENABLE (bit 9) in Runtime Flags 2 Memory must be set to 1 in order for the billboard device to be enabled with the options below.

8.1.1 BILLBOARD DEVICE CONTROL THROUGH SMBUS

Issue the special command via SMBus during hub runtime stage to control the attach or detach of the Billboard device. See Table 221.

TABLE 221: SPECIAL SMBUS COMMANDS

Operation	OPCODE	Description
Billboard Device Attach	AA 5C 00h	Attach the Billboard Interface
Billboard Device Detach	AA 5D 00h	Detach the Billboard Interface

8.1.2 BILLBOARD DEVICE CONTROL THROUGH GPIO

A pin which is not allocated for any other purpose in the hub configuration may be assigned the role of Billboard enable GPIO.

The pin is selected through the register below, which can be configured through OTP or through SMBus configuration.

A 'High-to-Low' transition will trigger the Billboard device to attach.

A 'Low-to-High' transition will trigger the Billboard device to detach.

See Table 222.

TABLE 222: BILLBOARD DEVICE

GBYBBGPIO ADDRESS: BFD2_458Eh RESET = 14h			Billboard Device Control Input GPIO Assignment
Bit	Name	R/W	Description
7:3	Reserved	R	Reserved
2:0	GPIO_SELECT	R/W	Value selects the GPIO to be used for Billboard Device control input: Selects the PIO used for FlexConnect trigger 000b: PF6 001b: PF7 010b: PF14 011b: PF19 100b: PF26 101b: PF27 110b: PF28 111b: PF29

8.2 Billboard Device Detach Timer

The Billboard device can be configured to automatically detach after a timer expires. This timer can be configured using the register in Table 223.

TABLE 223: BILLBOARD DETACH TIMER

GBYBBDETACHHBUNIT ADDRESS: BFD2_458Ch RESET = 00h			Billboard Device Auto Detach Timer
Bit	Name	R/W	Description
7:0	Reserved	R/W	Timer for automatic detach of the Billboard device. This is configured in 5 ms intervals.
			0000_0000: Timer disabled 0000_0001: Detach after 5 ms
			1111_1111: Detach after 1,275 ms

NOTES:

9.0 APPLICATION NOTE REVISION HISTORY

TABLE 0-1: REVISION HISTORY

Revision Level & Date	Section/Figure/Entry	Correction
DS00002935A (3-27-19)	Initial release	

NOTES:

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-4329-2

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820