

Mechatronic Modeling and Design with Applications in Robotics

Linear Graph Toolbox and Examples

Linear Graph Vs. Bond Graph

Schematic Model of a Mass-Spring-Damper System

LG Model BG Model

LG theory for the modeling of dynamic systems has some significant benefits over the BG modeling approach:

- The close resemblance which LG models have to their respective systems
- The intuitive nature in which these models can be constructed when compared to the BG approach
- The network-like representation of the LG method facilitates the analogous application of familiar node and loop equations commonly used in circuit analysis to systems outside of the electrical energy-domain
- The variables used as a result of the across and through analogy of the LG approach results in an easily understood state-space model consisting of common state-variable types, as opposed to the generalized displacements and momentums used in BG modeling

Index Values of Element Types and Energy Domains

Index	Element Type	Index	Energy Domain
1	Across-Variable Source	0	Generalized
2	A-Type Element	1	Electrical
3	Transformer	2	Mechanical Translational
4	Gyrator	3	Mechanical Rotational
5	D-Type Element	4	Hydraulic/Fluid
6	T-Type Element	5	Thermal
7	Through-Variable Source		

Example


```
LG.S = [2 2 3 4 5 5 5];
LG.T = [1 3 4 1 1 1 1];
LG.Type = [1 5 6 3 3 5 2];
LG.Domain = [1 \ 1 \ 1 \ 1 \ 3 \ 3 \ 3];
syms s R L TFa TFb B J
LG. Var Names = [s R L TFa TFb B J];
syms i_TFa(t) Tau_TFb(t) Omega_J(t)
LG.y = [i_TFa(t) Tau_TFb(t) Omega_J(t)];
[Model] = LGtheory(LG);
```

Check Model Inputs

CheckModel(LG);

Conversion to Incidence Matrix Representation

[Model] = IncidenceMatrix(LG);

Building the Normal Tree

[Model] = BuildNormalTree(LG,Model);

Variable Classification

[Model] = ClassifyVariables(LG,Model);

Constitutive Equations

[Model] = ElementalEquations(LG,Model);

Network Equations

[Model] = NetworkEquations(Model);

Creating the State-Space Matrices

[Model] = StateSpaceMatrices(LG,Model);

Standard State-Space Form Conversion

[Model] = StandardForm(Model);

Simscape Model of a DC Motor with an Inertial Load

Example 1: Mechanical Translational System

$$\begin{bmatrix} \dot{v}_{m_m} \\ \dot{v}_{m_c} \\ \dot{F}_K \end{bmatrix} = \begin{bmatrix} -\frac{b_m}{m_m} & 0 & -\frac{1}{m_m} \\ 0 & -\frac{b_c}{m_c} & \frac{1}{m_c} \\ K & -K & 0 \end{bmatrix} \begin{bmatrix} v_{m_m} \\ v_{m_c} \\ F_K \end{bmatrix} + \begin{bmatrix} \frac{1}{m_m} & 0 \\ 0 & \frac{1}{m_c} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} F_m \\ F_c \end{bmatrix}$$

$$\begin{bmatrix} v_{m_m} \\ v_{m_c} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} v_{m_m} \\ v_{m_c} \\ F_K \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} F_m \\ F_c \end{bmatrix}$$

Example 2: Hydro-mechanical System


```
LG.S = [2 2 3 3 3 4 5 5 5 5];
          [1 1 1 1 4 1 1 1 1];
LG.T =
LG.Type = [1 3 3 5 5 4 4 5 6 2];
LG.Domain = [3 3 4 4 4 4 2 2 2 2];
syms s TF R_1 R_f A B K m
LG.Var_Names = [s TF TF R 1 R f 1/A 1/A]
B K m];
syms P_R_f(t) v_m(t)
LG.y = [P R f(t) v m(t)];
[Model] = LGtheory(LG);
```

42.5µH

Circuit Design

Embryo Model

Matlab:

- LGtheory toolbox
- GP-based MATLAB toolbox developed by Sara Silva at the University of Coimbra

Mobile Robot

LG Model and the Normal tree of the Husky robot electrical subsystem.

Simplified LG model and the normal tree of the left-side drivetrain subsystem.

left-side drivetrain subsystem overlaid on the profile

Translational and rotational dynamic subsystem

Completed Model

$$A = \begin{bmatrix} \frac{-B_{FL} - B_{RL}}{J_L} & 0 & \frac{B_{FL}TF_3 + B_{RL}TF_1}{J_L} & \frac{B_{FL}TF_4 + B_{RL}TF_2}{J_L} & \frac{T_{ML}}{J_L} & 0 \\ 0 & \frac{-B_{FR} - B_{RR}}{J_R} & \frac{B_{FR}TF_5 + B_{RR}TF_7}{J_R} & \frac{B_{FR}TF_5 + B_{RR}TF_7}{J_R} & \frac{B_{FR}TF_6 + B_{RR}TF_8}{J_R} & 0 & \frac{T_{MR}}{J_R} \\ \frac{B_{FL}TF_3 + B_{RL}TF_1}{M_H} & \frac{B_{FR}TF_5 + B_{RR}TF_7}{M_H} & \frac{-B_{RL}TF_1^2 - B_{FL}TF_3^2 - B_{FR}TF_5^2 - B_{RR}TF_7^2}{M_H} & \frac{-B_{FL}TF_3TF_4 - B_{FR}TF_5TF_6 - B_{RL}TF_1TF_2 - B_{RR}TF_7TF_8}{M_H} & 0 & 0 \\ \frac{B_{FL}TF_4 + B_{RL}TF_2}{J_H} & \frac{B_{FR}TF_6 + B_{RR}TF_8}{J_H} & \frac{-B_{FL}TF_3TF_4 - B_{FR}TF_5TF_6 - B_{RL}TF_1TF_2 - B_{RR}TF_7TF_8}{J_H} & \frac{-B_{RL}TF_2^2 - B_{FL}TF_4^2 - B_{FR}TF_6^2 - B_{RR}TF_8^2 - B_H}{J_H} & 0 & 0 \\ \frac{T_{ML}}{J_L} & 0 & 0 & 0 & -\frac{R_1}{L_1} & 0 \\ 0 & -\frac{T_{MR}}{L_2} & 0 & 0 & 0 & 0 & -\frac{R_2}{L_2} \end{bmatrix}$$

System Identification

Description	Parameter	Value	Units
Voltage Inputs	V_{s1} , V_{s2}	±24	V
Internal Motor Resistance	R_{1} , R_{2}	0.46	Ω
Internal Motor Inductance	$L_{ m 1}$, $L_{ m 2}$	0.22	mH
Motor Torque Constant	k_t	0.044488	$N \cdot m/A$
Gear Ratio	GR	78.71:1	Gear Ratio
Motor Transformer Ratio	T_{ML} , T_{MR}	$k_t \times GR$	$N \cdot m/A$
Drivetrain Inertia	J_{LW} , J_{RW}	80.0	$kg \cdot m^2$
Drivetrain Damping	$B_{RL,FL,FR,RR}$	Unknown	$rad/(N \cdot m \cdot s)$
Power Conversion	TF_{odd}	$TF_{odd} = \frac{1}{r_W}$	
Transformer Ratios	TF_{even}	$TF_{even} = \pm \cos(\theta_{W_i}) \cdot$	$r_{C_i} \cdot \frac{1}{r_W}$
Husky Mass	M_{Husky}	48.39	kg
Husky Rotational Damping	B_{Husky}	Unknown	$rad/(N \cdot m \cdot s)$
Husky Inertia	J_{Husky}	3.0556	$kg \cdot m^2$

Experimentation Result

The End!!