

TRANSIMS Version 5 Network Files

January 20, 2011

David Roden - AECOM

Topics

- Overall goals and objectives
- Major concept changes
- File structure changes
- New data fields and features
- Presentation graphics

Goal - Improved User Interface

Simplify editing

- Simplify the network coding requirements
- Reduce the number of coded dependencies between files
- Use data nesting to avoid sorting problems and record inconsistencies

Reduce user errors

- Standardize control keys and key definitions
 - Directory and key names are the same as other files
 - Key names are simplified and clarified
- Interpret user-provided unit specifications
 - More intuitive/familiar units of measure (e.g., 25.3 mps = ??? mph)
- Simplify coding and editing

Goal - More Advanced Applications

Enhance capabilities

- Coordinated signal timing and phasing plans
 - Intersections coded with multiple nodes (e.g., divided arterials)
 - Near-by signal coordination and traffic circles
- Metered or random vehicle processing rates by lane
 - Toll plazas, ramp metering, security gates
- Vehicle type cost by lane and time of day
 - HOT lanes and variable tolls
- Parking cost and access/egress times by time of day
 - Parking lot choice
- Impact of vertical grades on truck speeds

Major Concept Changes

- Lane numbers and pocket lanes
- Multi-node signals
- Toll lanes and lane processing rates
- Process links → access links
- Link offsets

File Structure Changes

- Lane ranges
- Link direction
 - link-node → link-dir
- Parking time period nests
- Nested signal files
 - Signal time periods, timing plans, and phasing plans
- Transit schedules
 - route-run-stop list → route-stop-run columns (i.e., time tables)

New Data Fields

- Node subarea
- Link area type, grade, divided
- Location XY → link, offset, setback
- Parking time-in, time-out
- Lane Use toll, fixed and variable processing rates
- Timing Plans cycle length
- Phasing Plans movement
- Detectors use type

Facility Type Numbers

Vei	rsion	4	\rightarrow	Ve	rsion	5
V _				• •		

1 = Freeway Freeway

2 = Expressway Expressway

3 = Principal Principal Arterial

4 = Major Arterial

5 = Minor Minor Arterial

Local Thru

Frontage Road

Local

Ramp

6 = Collector Collector

7 = Local

8 = Frontage

9 = Ramp

10 = Bridge

Version 4 → Version 5

11 = Walkway Bridge

12 = Bikeway **Tunnel**

13 = Busway Other

14 = Light Rail Walkway

15 = Heavy Rail Bikeway

16 = Ferry Busway

17 = External Light Rail

18 = Heavy Rail

19 = Ferry

20 = External

Lane Numbers

- The link file no longer tracks pocket lanes
 - Pocket lanes are numbered separately L1, R1
- Lanes are now numbered from right to left
 - Greater consistency with other simulation packages and HCM

Lane Number Usage

Impacted network and output files

- Link, Pocket, Lane-Use, Detector
- Lane Connectivity → Connection
- Problem, Snapshot, Occupancy

Lane coding

- Version 4: most files require separate records for each lane or lane combination
- Version 5: all files use lane ranges or lane range combinations
 - Lane range examples: 1..3, R1..3, 3..L1, L1..L2, ALL
 - Fewer records to edit, add, delete, sort
 - Fewer coding errors and less time consuming
 - Software builds and validates the lane relationships

Chicago RTSTEP TRANSIMS Model

Lane Range Example - Lane Use

Limit all lanes to HOV in the AM Peak period

Lane Use Records:

Lane 1, HOV, period, etc.

Lane 2, HOV, period, etc.

Lane 3, HOV, period, etc.

Lane 4, HOV, period, etc.

Lane 5, HOV, period, etc.

Lane Use Records:

Lanes ALL, HOV, period, etc.

or

Lanes R1..L1, HOV, period, etc.

Add a Pocket Lane in Version 4

Add a pocket lane to a link with parking restrictions

to

Link File:

3 thru lanes

0 left pocket

0 right pocket

Lane Use File:

Lane 3, closed, period 1

Lane 3, closed, period 2

Lane 3, closed, period 3

Link File:

3 thru lanes

1 left pocket

0 right pocket

Lane Use File:

Lane 4, closed, period 1

Lane 4, closed, period 2

Lane 4, closed, period 3

Pocket File:

lane 1 turn

Add a Pocket Lane in Version 5

Add a pocket lane to a link with parking restrictions

to

Link File:

3 thru lanes

Lane Use File:

Lane 1, closed, period 1

Lane 1, closed, period 2

Lane 1, closed, period 3

Link File: (no change)

3 thru lanes

Lane Use File: (no change)

Lane 1, closed, period 1

Lane 1, closed, period 2

Lane 1, closed, period 3

Pocket File:

1 left turn

Link Connection Impacts

Version 4

- Lane numbers apply to both ends of the link
 - Pocket lanes at one end impacts lane numbers at the other end
 - Adding and deleting pocket lanes impacts all lane-related files

Version 5

- Lane numbers at each end are independent
 - Pocket lane changes require relatively few network changes

Version 4 Lane Connectivity Edits

Lane Connectivity:

Lane 1 to 1 \rightarrow Lane 1 to 2

Lane 2 to 2 \rightarrow Lane 2 to 3

Lane 3 to 3 \rightarrow Lane 3 to 4

Lane 1 to 3 \rightarrow Lane 1 to 4

Lane Connectivity:

Lane 1 to 1 \rightarrow Lane 2 to 1

Lane 2 to 2 \rightarrow Lane 3 to 3

Lane 3 to 3 \rightarrow Lane 4 to 2

Lane 3 to 1 \rightarrow Lane 4 to 1

Version 5 Connection Edits

Connection File:

Lane 1..3 to 1..3 (no change)
Lane 1 to 1 (no change)

Connection File:

Lane 1..3 to 1..3 (no change) Lane 1 to 1 (no change)

Chicago RTSTEP TRANSIMS Model

Link Offset

 Link offsets are measured from the beginning of the link in the direction of travel

- Version 4
 - Network offsets are measured from the end of the link
 - Microsimulator offsets are measured from the beginning of the link

Process Links → Access Link

- Version 5 does not need Process Links
 - Link-offsets are used to build direct two-way connections
 - Access Links are only used for special connections
 - Two-way or one-way links between nodes, locations, parking lots, and transit stops

Chicago RTSTEP TRANSIMS Model

Access Link Options

- Version 4 process links are required to connect
 - activity locations $\leftarrow \rightarrow$ parking and activity locations $\leftarrow \rightarrow$ transit stops
- Version 5 access links may connect
 - locations \leftarrow → parking, locations \leftarrow → stops, locations \leftarrow → nodes
 - locations \leftarrow → locations, stops \leftarrow → stops, nodes \leftarrow → nodes
 - parking \leftarrow \rightarrow stops, parking \leftarrow \rightarrow nodes, stops \leftarrow \rightarrow nodes
- Walk links with travel time, distance, and cost
- Transit stops no longer need activity locations
 - Activity locations with a zero zone number are deleted

Chicago RTSTEP TRANSIMS Model

Lane Use File

- Version 5 differences
 - Lane ranges, direction code, offsets, length units
- Version 4 toll file → Version 5 lane use file
 - Enables tolls by lane (e.g., HOT lanes)
- Lane processing rate added
 - Fixed and variable/random vehicle delays
 - Toll plazas, ramp metering, security gates

Parking File

- Nested record structure
 - Single and unique parking lot location link-offset and type
- Time-of-day and use/vehicle type nests
 - Variable parking costs
 - Access and egress times (~terminal time)
 - Time required to park or un-park the vehicle
 - Parking spaces
 - Shadow prices or access time can be used to model capacity constraints

Traffic Signals

Signalized node → signal controller

- Four cross-referenced files
 - Signal, Timing Plan, Phasing Plan, Detector
 - Signal Coordinator file dropped

Primary differences

- Multi-node signal coordination
- Re-usable timing and phasing plans
- Barrier, ring, and position codes
 - Greater compatibility with traffic signal software
- Detectors include use types (e.g., buses or trains)
- Nested file structures for tighter record management and fewer coding errors

Multi-Node Signal Controllers

Traffic Circles

Divided Roadways

Signal File

- Version 5 differences
 - Node → controller number
 - Controls a list of nodes
 - Nested time period records (with end times)
 - Improve record management and minimize coding mistakes
 - Re-useable timing and phasing ID numbers

Signal	Group	Times	Nodes
Start	End	Timing	Phasing
1	2	5	101 102 103
0:00	6:00	1	1
6:00	9:30	2	1
9:30	16:00	1	1
16:00	19:00	3	1
19:00	27:00	1	1

Timing Plan File

- Version 5 differences
 - Controller number + timing ID indexing
 - Signal type (timed/actuated), offset, and cycle length
 - Nested phase records
 - Improve record management and minimize coding mistakes
 - Barrier, ring, and position codes
 - Clearer sequencing and improved linkages to traffic signal software

Signal	Timing	Туре	Cycle	Offset	Phases	Notes		
Phase	Barrier	Ring	Position	Min_Green	Max_Green	Extension	Yellow	All_Red
1	1	Actuated	100	0	4	0:006:00		
1	1	1	1	5	5	0	0	0
2	1	1	2	20	39	12	3	1
3	1	1	3	5	9	3	0	0
4	1	1	4	20	39	12	3	1

Phasing Plan File

- Version 5 differences
 - Node → controller number and direction code
 - Multi-node signals and cross-referencing
 - Nested movements records
 - Improve record management and minimize coding mistakes
 - Movements descriptions
 - User help and improved linkages to traffic signal software

Signal	Phasing	Phase	Movements	Detectors	
Movement	lovement Link Dir		To_Link	Protection	
1	1	1	4	1 3	
EB_Left	4892	1	3164	Protected	
WB_Left	4202	0	439	Protected	
NB_Right	439	0	4202	Stop_Permit	
SB_Right	3164	1	4892	Stop_Permit	

Detector File

Version 5 differences

- Node → direction code
- Offset from the beginning of the link (meters/feet)
- Lane ranges with pocket lane codes
- Use types
- No signal coordinator

Detector	Link	Dir	Offset	Length	Lanes	Туре	Use	Notes
1	4892	1	1043.5	30	L1	Presence	Any	Left Turn
2	4892	1	1043.5	30	R12	Presence	Any	Thru Right
3	4202	0	1137.9	30	L1	Presence	Any	Left Turn

Presentation Graphics

ArcNet with curved connections

