MA2102: LINEAR ALGEBRA

Lecture 27: Diagonalization

3rd November 2020

Suppose $T:V\to V$ is a linear map. In order to compute trace and determinants of T^k , it definitely helps if there exist a basis β such that $[T]_\beta$ is a diagonal matrix. In that case,

$$\operatorname{trace}(T^k) = \operatorname{trace}([T^k]_{\beta}) = \operatorname{trace}(([T]_{\beta})^k),$$

which is easy to compute. Similarly, determinant of T becomes the product of the diagonal entries of $[T]_{\beta}$. As determinant is multiplicative,

$$\det(T^k) = \det([T^k]_{\beta}) = \det([T]_{\beta})^k.$$

Definition [Diagonalizable] A matrix $A \in M_n(F)$ is called diagonalizable if A is similar to a diagonal matrix, i.e., there exists an invertible matrix $C \in M_n(F)$ such that CAC^{-1} is diagonal.

A linear map $T:V\to V$ is called diagonalizable if $[T]_{\beta}$ is diagonal for some basis β .

Remark If γ is another basis of V, then $[T]_{\gamma}$, being similar to $[T]_{\beta}$, is diagonalizable as a matrix. Conversely, suppose $[T]_{\gamma}$ is diagonalizable for some basis γ , then $Q[T]_{\gamma}Q^{-1}$ is diagonal for some matrix Q. Use Q to define a basis β such that $[T]_{\beta}$ is diagonal. Thus, $T:V\to V$ is diagonalizable if $[T]_{\gamma}$ is diagonalizable for any basis γ .

If such a basis β exists, then write $\beta = \{v_1, \dots, v_n\}$ and

$$[T]_{\beta} = D(\lambda_1, \dots, \lambda_n).$$

In other words, $v_j \neq 0$ and $T(v_j) = \lambda_j v_j$.

Definition [Eigenvector] A non-zero vector $v \in V$ is called an eigenvector of $T: V \to V$ if $T(v) = \lambda v$ for some scalar $\lambda \in F$. The scalar λ is called the eigenvalue of the eigenvector v.

Definition [Eigenvector] A non-zero vector $v \in F^n$ is called an eigenvector of $A \in M_n(F)$ if $Av = \lambda v$ for some $\lambda \in F$. The scalar λ is called the eigenvalue of A corresponding to the eigenvector v.

Remark Eigenvalues are also called proper values, latent values, spectral values or characteristic values. 'Eigen' is a German word meaning *own*.

Geometrically, if v is an eigenvector of T, then consider the 1-dimensional subspace L spanned by v. It follows that $T(L) \subseteq L$, where equality is achieved if and only if the eigenvalue if non-zero.

Example (1) Any non-zero vector v in the null space of $T: V \to V$ is an eigenvector with eigenvalue 0.

(2) Any non-zero vector v is an eigenvector of $I_V:V\to V$ with eigenvalue 1.

Theorem [Characterization of eigenvalues]

The following conditions are equivalent:

- (a) λ is an eigenvalue for T;
- (b) $T \lambda I_V$ is not invertible;
- (c) $\det(T \lambda I_V) = 0$.

Proof.

- (a) \Rightarrow (b): There exists $v \neq 0$ such that $T(v) = \lambda v$, whence $v \in N(T - \lambda I_V)$. Thus, $T - \lambda I_V$ is not invertible.
- (b) \Rightarrow (c): If $T \lambda I_V$ is not invertible as a linear map, then $[T - \lambda I_V]_{\beta}$ is not invertible as a matrix, whence $\det([T]_{\beta} - \lambda I_n) = 0$.
- (c) \Rightarrow (a): The assumption implies that $T \lambda I_V$ is not invertible, i.e., it is not of full rank. Thus, there exists a non-zero v such that $(T-\lambda I_V)(v)=0.$

Observe that λ is an eigenvalue of T if and only is λ is an eigenvalue of $[T]_{\beta}$ for any ordered basis β .

Example (1) If $A \in M_n(F)$ is upper triangular, then λ is an eigenvalue if and only if $\lambda = a_{jj}$ for some $j \in \{1, ..., n\}$. Note that $\det(A)$ is the product of the eigenvalues.

(2) If $v \in V$ satisfies $T(v) = \lambda v$, then $T^k(v) = \lambda^k v$. Thus, eigenvectors of T are always eigenvectors of T^k for $k \in \mathbb{N}$. More generally, let $p(x) = a_0 + a_1 x + \cdots + a_k x^k$ be a polynomial of degree k. It follows that v is an eigenvector of p(T) since

$$p(T)(v) = (a_0 I_V + a_1 T + \dots + a_k T^k)(v) = (a_0 + a_1 \lambda + \dots + a_k \lambda^k)v.$$

(3) Let $T: V \to V$ be linear and V be finite dimensional.

Then T is invertible if and only if 0 is not an eigenvalue of T.

(4) Recall that $[T^*]_{\beta^*} = [T]_{\beta}^t$ for $T: V \to V$ and any basis

 β of V. Thus,

$$\det([T^*]_{\beta^*} - \lambda I_n) = \det([T]_{\beta}^t - \lambda I_n) = \det([T]_{\beta} - \lambda I_n).$$

Therefore, eigenvalues of T and T^* coincide.

Note that not all linear maps admit eigenvalues. For instance, let R_{θ} denotes the counter-clockwise rotation on the plane by an angle θ , i.e.,

$$R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Let $\theta \neq 0, \pi$, i.e., R_{θ} is not $\pm I_2$. If (a,b) is an eigenvector with *real* eigenvalue λ , then

$$a\cos\theta - b\sin\theta = \lambda a$$
, $a\sin\theta + b\cos\theta = \lambda b$.

Squaring both equations and adding, we obtain $a^2 + b^2 = \lambda^2(a^2 + b^2)$, whence $\lambda = \pm 1$ as $a^2 + b^2 \neq 0$. Show that $\lambda = \pm 1$ is not possible.

Consider the complexified map

$$R_{\theta}: \mathbb{C}^2 \to \mathbb{C}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

By condition (c) of the Theorem, we solve for

$$0 = (\cos \theta - \lambda)(\cos \theta - \lambda) + \sin^2 \theta = \lambda^2 - 2\lambda \cos \theta + 1.$$

This indeed has two complex roots although it has no real roots.

Remark The map R_{θ} is an isometry and the eigenvalues (real or complex) of any isometry must have absolute value 1. From geometry, we see that if v is an eigenvector, then only rotation by 0 or π maps v to v or -v respectively.