Correction de l'Examen Calcul stochastique

Questions de cours : Voir le Cours

Exercice 1:

Soit

$$X_t = \int_0^t s \, \mathrm{d}B_s \; .$$

1. Calculer $\mathbb{E}(X_t)$ et $Var(X_t)$.

 X_t étant l'intégrale d'un processus adapté, on a $\mathbb{E}(X_t) = 0$. Par conséquent, l'isométrie d'Itô donne $\mathrm{Var}(X_t) = \mathbb{E}(X_t^2) = \int_0^t s^2 \,\mathrm{d}s = \frac{1}{3}t^3$.

2. Quelle est la loi de X_t ?

 X_t suit une loi normale centrée de variance $\frac{1}{3}t^3$.

3. Calculer $d(tB_t)$ à l'aide de la formule d'Itô.

La formule d'Itô avec u(t,x) = tx donne $d(tB_t) = B_t dt + t dB_t$.

4. En déduire une relation entre X_t et

$$Y_t = \int_0^t B_s \, \mathrm{d}s \; .$$

Comme $B_s ds = d(sB_s) - s dB_s$, on a la formule d'intégration par parties

$$Y_t = \int_0^t \mathrm{d}(sB_s) - \int_0^t s \, \mathrm{d}B_s = tB_t - X_t \ .$$

 Y_t suit donc une loi normale de moyenne nulle.

5. Calculer la variance de Y_t ,

(a) directement à partir de sa définition;

Comme $\mathbb{E}(B_s B_u) = s \wedge u$,

$$\mathbb{E}(Y_t^2) = \mathbb{E} \int_0^t \int_0^t B_s B_u \, ds \, du = \int_0^t \int_0^t (s \wedge u) \, ds \, du$$
$$= \int_0^t \left[\int_0^u s \, ds + \int_u^t u \, ds \right] du = \int_0^t \left[\frac{1}{2} u^2 + ut - u^2 \right] du = \frac{1}{3} t^3.$$

(b) en calculant d'abord la covariance de B_t et X_t , à l'aide d'une partition de [0,t]. Pour calculer la covariance, on introduit une partition $\{t_k\}$ de [0,t], d'espacement 1/n. Alors

$$cov(B_t, X_t) = \mathbb{E} (B_t X_t)$$

$$= \mathbb{E} \int_0^t s B_t dB_s$$

$$= \lim_{n \to \infty} \sum_k t_{k-1} \mathbb{E} (B_t (B_{t_k} - B_{t_{k-1}}))$$

$$= \lim_{n \to \infty} \sum_k t_{k-1} (t_k - t_{k-1})$$

$$= \int_0^t s ds = \frac{1}{2} t^2.$$

Il suit que

$$Var(Y_t) = Var(tB_t) + Var(X_t) - 2cov(tB_t, X_t) = t^3 + \frac{1}{3}t^3 - 2t cov(B_t, X_t) = \frac{1}{3}t^3.$$

En déduire la loi de Y_t .

 $Y_t = tB_t - X_t$ étant une combinaison linéaire de variables normales centrés, elle suit également une loi normale centrée, en l'occurrence de variance $t^3/3$. Remarquons que Y_t représente l'aire (signée) entre la trajectoire Brownienne et l'axe des abscisses.