Change Detection

Sagar Verma

24 Stony Brook Road Belmont MA, 02478 USA

November, 2018

Table Of Contents

- 1. Problem Statement
- 2. Background
- 3. Dataset and Experiments
- 4. Results and Conclusions

Problem Statement

- 1. Detect pixel wise change.
- 2. Input: Multiple dates' images of same location.
- 3. Output: Change mask between start and end dates.

Problem Statement

Challenges

- 1. How to handle multiple dates as input?
- 2. Unsupervised model, if data scarcity?
- 3. Supervised model, if data abundance?
- 4. Evaluation criteria for change.

Background

- 1. Recurrent Neural Networks
- 2. Long-Short Term Memory
- 3. 3D Convolution

Background

Recurrent Neural Networks

- 1. Perform same task for every element of a sequence.
- 2. Output depends on previous elements.
- 3. RNNs can be seen as a neural network having "memory".

$$h_t = \tanh(Wx_t + Uh_{t-1}), \tag{1}$$

where W and U are weights, h is the hidden vector and x_t is the input at time t.

Figure: RNN unrolled in time.

Background

Sequential Networks: Long-Short Term Memory

- 1. RNNs have vanishing and exploding gradients problem.
- 2. LSTM resolves above problems.
- 3. Computes when to forget and when to remember.

Figure: LSTM Cell.

3D Convolution

- 1. 4D data, height, width, time/depth, and channel
- 2. 3D kernel, 3D convolve operation
- 3. Convolve along height, width and time/depth
- 4. Used in video tasks and 3d medical images

Figure: LSTM Cell.

Dataset and Experiments Dataset

- 1. ONERA dataset.
- 2. 24 locations through out world.
- 3. Image pairs, two dates.
- 4. 14 location for training, 10 for testing.
- 5. 13 bands, sentinel data.
- 6. Change mask, but everything reprojected.

Dataset and Experiments

Unsupervised Change Detection

- 1. Multiple dates, single pixel as input.
- 2. Try to reconstruct the input.
- 3. If change occurs reconstruction error is high.

Dataset and Experiments

Supervised Change Detection: 3D CNN

- 1. Use labeled data, change mask.
- 2. Stack multiple dates as input.
- 3. Apply 3D convolution, then 2d convolution.
- 4. SegNet like architecture.

Results and Conclusions

Model Convergence

Results and Conclusions

Example Outputs

Results and Conclusions

Thank you! Questions?