Convex Optimization Problems

Ye Shi

ShanghaiTech University

Outline

- 1 Optimization Problems
- 2 Convex Optimization
- 3 Quasi-Convex Optimization
- 4 Classes of Convex Problems: LP, QP, SOCP, SDP

Optimization Problems in Standard Form I

minimize
$$f_0(\boldsymbol{x})$$
 subject to $f_i(\boldsymbol{x}) \leq 0$ $i=1,\cdots,m$
$$\underbrace{h_i(\boldsymbol{x})=0}_{\text{AX}=\textbf{b}} i=1,\cdots,p$$

- $\boldsymbol{x} = (x_1, \cdots, x_n)$ is the optimization variable
- •• $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $f_i: \mathbb{R}^n \to \mathbb{R} \quad i=1,\cdots,m$ are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R} \quad i = 1, \cdots, p$ are the equality constraint functions

Optimization Problems in Standard Form II

Feasibility:

- a point $x \in \text{dom } f_0$ is feasible if it satisfies all the constraints and infeasible otherwise
- a problem is feasible if it has at least one feasible point and infeasible otherwise.

Optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if problem is unbounded below

Optimal solution: x^* such that $f(x^*) = p^*$ (and x^* feasible).

Global and Local Optimality

- A feasible x is optimal if $f_0(x) = p^*$; X_{opt} is the set of optimal points.
- A feasible x is **locally optimal** if it is optimal within a ball, i.e., there is an R > 0 such that x is optimal for

minimize
$$f_0(oldsymbol{z})$$
 subject to $f_i(oldsymbol{z}) \leq 0$ $i=1,\cdots,m$ $h_i(oldsymbol{z}) = 0$ $i=1,\cdots,p$ $\|oldsymbol{z}-oldsymbol{x}\|_2 \leq R$

Example:

- $f_0(x) = 1/x$, dom $f_0 = \mathbb{R}_{++}$: $p^* = 0$, no optimal point
- •• $f_0(x) = x^3 3x$: $p^* = -\infty$, local optimum at x = 1.

Implicit Constraints

№ The standard form optimization problem has an explicit constraint:

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$$

- \mathcal{D} is the domain of the problem
- The constraints $f_i(x) \leq 0, h_i(x) = 0$ are the explicit constraints
- A problem is unconstrained if it has no explicit constraints
- Example:

$$\begin{array}{ll}
\text{minimize} & \log(b - \boldsymbol{a}^T \boldsymbol{x})
\end{array}$$

is an unconstrained problem with implicit constraint $b > a^T x$

Feasibility Problem

Sometimes, we don't really want to minimize any objective, just to find a feasible point:

subject to
$$f_i(\boldsymbol{x}) \leq 0$$
 $i=1,\cdots,m$ $h_i(\boldsymbol{x})=0$ $i=1,\cdots,p$

This feasibility problem can be considered as a special case of a general problem:

minimize
$$0$$
 subject to $f_i(\boldsymbol{x}) \leq 0 \quad i = 1, \cdots, m$ $h_i(\boldsymbol{x}) = 0 \quad i = 1, \cdots, p$

where $p^* = 0$ if constraints are feasible and $p^* = \infty$ otherwise.

Stationary Points

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$, a point $\boldsymbol{x} \in \mathbb{R}^n$ is called

- A stationary point, if $\nabla f(x) = 0$;
- A **local minimum**, if x is a stationary point and there exists a neighborhood $\mathcal{B} \subseteq \mathbb{R}^n$ of x such that $f(x) \leq f(y)$ for any $y \in \mathcal{B}$;
- A **global minimum**, if x is a stationary point and $f(x) \leq f(y)$ for any $y \in \mathbb{R}^n$;
- Saddle point, if x is a stationary point and for any neighborhood $\mathcal{B} \subseteq \mathbb{R}^n$ of x, there exist $y, z \in \mathcal{B}$ such that $f(z) \leq f(x) \leq f(y)$ and $\lambda_{\min}(\nabla^2 f(x)) \leq 0$.

Outline

- 1 Optimization Problems
- 2 Convex Optimization
- 3 Quasi-Convex Optimization
- 4 Classes of Convex Problems: LP, QP, SOCP, SDP

Convex Optimization Problem

Convex optimization problem in standard form:

where f_0, f_1, \dots, f_m are convex and equality constraints are affine.

- **Local and global optima:** any locally optimal point of a convex problem is globally optimal △
- Most problems are not convex when formulated
- Reformulating a problem in convex form is an art, there is no systematic way

Example

▶ The following problem is nonconvex (why not?):

minimize
$$x_1^2 + x_2^2$$

subject to $x_1/(1+x_2^2) \le 0$
 $(x_1+x_2)^2 = 0$

- The objective is convex.
- The equality constraint function is not affine; however, we can rewrite it as $x_1 = -x_2$ which is then a linear equality constraint.
- The inequality constraint function is not convex; however, we can rewrite it as $x_1 \le 0$ which again is linear.
- We can rewrite it as

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 = -x_2$

x* is a local minimum. Hy there exist a small o< 0<1 $f(x^*) < f(x^* + \theta(y - x^*))$ $f(x^* + \theta(y - x^*)) = f(\theta y + (-\theta) x^*)$ $\leq 0 f(y) + (1-\theta) f(x^*) \Theta$ $f(x^*) < \theta f(y) + (1-\theta) f(x^*)$ $\Rightarrow \qquad \theta \neq (x^*) < \theta \neq (y) \qquad \forall y$ f (x*). is a globally minimizer

Global and Local Optimality

Any locally optimal point of a convex problem is globally optimal. **Proof:** Suppose x is locally optimal (around a ball of radius R) and y is optimal with $f_0(y) < f_0(x)$. We will show this cannot be.

Just take the segment from x to y: $z = \theta y + (1 - \theta)x$. Obviously the objective function is strictly decreasing along the segment since $f_0(y) < f_0(x)$:

$$\theta f_0(y) + (1 - \theta) f_0(x) < f_0(x) \qquad \theta \in (0, 1]$$

Using now the convexity of the function, we can write

$$f_0(\theta \boldsymbol{y} + (1 - \theta)\boldsymbol{x}) < f_0(\boldsymbol{x}) \qquad \theta \in (0, 1]$$

Finally, just choose θ sufficiently small such that the point z is in the ball of local optimality of x, arriving at a contradiction.

Optimality Criterion for Differentiable f_0 **I**

Minimum Principle: A feasible point x is optimal if and only if

$$\frac{2 = x + \theta(y-x), \quad \theta \in [0,1]}{d\theta} = \frac{d}{d\theta} \left(f(x + \theta(y-x)) \middle|_{\theta=0} \right)$$

$$= \nabla f_{0}(x) (y-x) < 0 \quad \downarrow$$

$$f(x) < f(x)$$

$$\Rightarrow 2 \quad \text{Cleavely}.$$

$$2 \Rightarrow 3 \quad y = x - \theta \quad \nabla f_{0}(x), \quad \theta > 0 \quad \text{small}$$

$$\nabla f_{0}(x) (y-x) = -\theta \quad || \nabla f_{0}(x) ||^{2} \leq 0$$

$$\Rightarrow 0 \quad || \Rightarrow 0 \quad || = 0 \quad ||$$

Optimality Criterion for Differentiable f_0 II

Unconstrained problem: *x* is optimal iff

$$x \in \text{dom } f_0, \qquad \nabla f_0(x) = 0$$

Equality constrained problem: $\min f_0(\boldsymbol{x})$ s.t. $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ x is optimal iff

$$x \in \text{dom } f_0, \qquad Ax = b, \ \nabla f_0(x) + A^T \nu = 0$$

Minimization over nonnegative orthant: $\min_{x} f_0(x)$ s.t. $x \succeq 0$ x

is optimal iff
$$x \in \text{dom } f_0, \qquad x \succeq 0, \quad \begin{cases} \nabla_i f_0(x) & \text{s.t. } x \succeq 0 \\ \nabla_i f_0(x) \geq 0 \\ \nabla_i f_0(x) = 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \geq 0 \\ \nabla_i f_0(x) = 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \geq 0 \\ \nabla_i f_0(x) = 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) = 0 \\ \nabla_i f_0(x) = 0 \end{cases}$$

$$L(x,v) = \int_{a}^{b} (x) + v'(Ax-b)$$

$$\frac{\partial L}{\partial x} = \nabla f_0(x) + A^T v = 0$$

$$\frac{\partial L}{\partial v} = Ax - b = 0$$

Equivalent Reformulations I

Eliminating/introducing equality constraints:

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $\sqrt{}$ $Am{x}=m{b}$

is equivalent to

minimize
$$f_0(\mathbf{F}\mathbf{z} + \mathbf{x}_0)$$

subject to $f_i(\mathbf{F}\mathbf{z} + \mathbf{x}_0) \le 0$ $i = 1, \dots, m$

where F and x_0 are such that $Ax = b \iff x = Fz + x_0$ for some z.

$$A(Fz + X_0) = b$$

$$\Rightarrow AFz + AX_0 = b$$

$$\frac{F_{\xi}}{\mathcal{N}(A)} = \left\{ \frac{x}{R^n} \right\} A = 0$$

$$\frac{F_{\xi}}{A} \in \mathcal{N}(A)$$

Equivalent Reformulations II

Introducing slack variables for linear inequalities:

minimize
$$f_0(\boldsymbol{x})$$
 subject to $\boldsymbol{a}_i^T \boldsymbol{x} \leq b_i \quad i = 1, \cdots, m$

is equivalent to

minimize
$$f_0(\boldsymbol{x})$$
 subject to $\boldsymbol{a}_i^T \boldsymbol{x} + s_i = b_i$ $i = 1, \cdots, m$ $s_i \geq 0$

Equivalent Reformulations III

Epigraph form: a standard form convex problem is equivalent to

Proof: P, => P2 suppose x* is the minimizer of P1. then $f_0(x^*) \in f_0(x)$, $\forall x \in dom f_0$. $f_{o}(x^{*}) \leq f_{o}(x) \leq t$ f. (x) is the minimizer for t Pz > P1: Suppose (X*, t*) is minimizer of Pz $f(x^*) \leq t^* \leq t \quad \forall t$ If fix*) is not the minimizer of P, then $\frac{1}{2}x'$. f(x') < f(x')Let t = f(x'), t < f(x'') < t' < tconflict!

Equivalent Reformulations IV

Minimizing over some variables:

minimize
$$f_0(\boldsymbol{x}, \boldsymbol{y})$$
 subject to $f_i(\boldsymbol{x}) \leq 0$ $i = 1, \cdots, m$

is equivalent to

$$\begin{aligned} & \underset{\boldsymbol{x}}{\text{minimize}} & & \tilde{f}_0(\boldsymbol{x}) \\ & \text{subject to} & & f_i(\boldsymbol{x}) \leq 0 \quad i = 1, \cdots, m \end{aligned}$$

where
$$\tilde{f}_0(\boldsymbol{x}) = \inf_{\boldsymbol{y}} f_0(\boldsymbol{x}, \boldsymbol{y})$$

Outline

- 1 Optimization Problems
- 2 Convex Optimization
- 3 Quasi-Convex Optimization
- 4 Classes of Convex Problems: LP, QP, SOCP, SDP

Quasiconvex Optimization

$$\begin{array}{ll} \underset{m{x}}{\text{minimize}} & f_0(m{x}) \\ \text{subject to} & f_i(m{x}) \leq 0 \quad i=1,\cdots,m \\ & m{A} m{x} = m{b} \end{array}$$

where $f_0: \mathbb{R}^n \longrightarrow \mathbb{R}$ is quasiconvex and f_1, \cdots, f_m are convex

Observe that it can have locally optimal points that are not (globally) optimal:

Quasiconvex Optimization

Convex representation of sublevel sets of a quasiconvex function f_0 : there exists a family of convex functions $\phi_t(\mathbf{x})$ for fixed t such that

Example:

$$f_0(x) = \frac{p(x)}{q(x)}$$

 $f_0(x)=\frac{p(x)}{q(x)}$ \$\frac{\frac{1}{2}}{q(x)}\$ \$\frac{1}{2}\$ on dom \$f_0\$. We can choose:

$$\underbrace{\phi_t(\boldsymbol{x})}_{\boldsymbol{\Delta}} = \underbrace{p(\boldsymbol{x}) - tq(\boldsymbol{x})}_{\boldsymbol{\Delta}}$$

- for $t \geq 0$, $\phi_t(\boldsymbol{x})$ is convex in \boldsymbol{x}
- $p(\boldsymbol{x})/q(\boldsymbol{x}) \leq t$ if and only if $\phi_t(\boldsymbol{x}) \leq 0$

Quasiconvex Optimization

Solving a quasiconvex problem via convex feasibility problems: the idea is to solve the epigraph form of the problem with a sandwich technique in *t*:

• for fixed t the epigraph form of the original problem reduces to a feasibility convex problem

$$\phi_t(\mathbf{x}) \leq 0, \quad f_i(\mathbf{x}) \leq 0 \forall i, \quad \mathbf{A}\mathbf{x} \leq \mathbf{b}$$

- \bullet if t is too small, the feasibility problem will be infeasible
- \bullet if t is too large, the feasibility problem will be feasible
- \bullet start with upper and lower bounds on t (termed u and l, resp.) and use a sandwich technique (bisection method): at each iteration use

$$t = (l + u)/2$$
 and update the bounds according to the feasibility or

22

infeasibility of the problem.

After k iteration, the insternal is
$$\frac{\mu-l}{2k} \leq \varepsilon$$

$$\Rightarrow k > \log_2 \frac{\mu-l}{\varepsilon}$$

Outline

- 1 Optimization Problems
- 2 Convex Optimization
- 3 Quasi-Convex Optimization
- 4 Classes of Convex Problems: LP, QP, SOCP, SDP

Linear Programming (LP)

minimize
$$c^T x + d$$
 subject to $Gx \leq h$ $Ax = b$

- Convex problem: affine objective and constraint functions.
- Feasible set is a polyhedron:

ℓ_1 - and ℓ_∞ - Norm Problems as LPs I

ℓ_{∞} -norm minimization:

minimize
$$\|x\|_{\infty}$$
 subject to $Gx \leq h$ $Ax = b$

is equivalent to the LP

minimize
$$t$$
 subject to $-t\mathbf{1} \preceq \mathbf{x} \preceq t\mathbf{1}$ $G\mathbf{x} \leq \mathbf{h}$ $A\mathbf{x} = \mathbf{b}$

ℓ_1 - and ℓ_∞ - Norm Problems as LPs II

\bullet ℓ_1 -norm minimization:

minimize
$$\|x\|_1$$
 subject to $Gx \leq h$ $Ax = b$

is equivalent to the LP

$$egin{array}{ll} ext{minimize} & \sum_i t_i \ ext{subject to} & -oldsymbol{t} \preceq oldsymbol{x} \preceq oldsymbol{t} \ ext{} & Goldsymbol{x} \leq oldsymbol{h} \ ext{} & Aoldsymbol{x} = oldsymbol{b} \end{array}$$

Examples: Chebyshev Center of a Polyhedron I

Chebyshev center of a polyhedron

$$\mathcal{P} = \{ \boldsymbol{x} \mid \boldsymbol{a}_i^T \boldsymbol{x} \leq b_i, \ i = 1, \cdots, m \} \sqrt{1}$$

is center of largest inscribed ball

$$\mathcal{B} = \{ \boldsymbol{x}_c + \boldsymbol{u} \mid \|\boldsymbol{u}\| \le r \}$$

 $\mathcal{B} = \{ \boldsymbol{x}_c + \boldsymbol{u} \mid \|\boldsymbol{u}\| \leq r \} \mathcal{J}$ Let's solve the problem

$$\begin{array}{ll} \underset{r, \boldsymbol{x}_c}{\text{maximize}} & \underline{r} \\ \text{subject to} & \boldsymbol{x} \in \mathcal{P} \quad \text{for all} \quad \boldsymbol{x} = \boldsymbol{x}_c + \boldsymbol{u} \text{ with } \|\boldsymbol{u}\| \leq r \end{array}$$

Observe that $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

Examples: Chebyshev Center of a Polyhedron II

Using Schwartz inequality, the supremum condition can be rewritten as

$$\|\boldsymbol{a}_i^T \boldsymbol{x}_c + r \|\boldsymbol{a}_i\|_2 \le b_i$$

Hence, the Chebyshev center can be obtained by solving:

maximize
$$r$$
 ∞ subject to $\mathbf{a}_i^T \mathbf{x}_c + r \|\mathbf{a}_i\|_2 \leq b_i, \quad i = 1, \cdots, m$

which is an LP.

Quadratic Programming (QP)

minimize
$$(1/2) x^T P x + q^T x + r$$
 \mathcal{J} subject to $\mathbf{G} x \leq \mathbf{h}$ $\mathbf{A} x = \mathbf{b}$

- Convex problem (assuming $P \in \mathbb{S}^n_+ \succeq \mathbf{0}$): convex quadratic objective and affine constraint functions.
- Minimization of a convex quadratic function over a polyhedron:

Quadratically Constrained QP (QCQP)

minimize
$$(1/2) \mathbf{x}^T \mathbf{P}_0 \mathbf{x} + \mathbf{q}_0^T \mathbf{x} + r_0$$
subject to
$$(1/2) \mathbf{x}^T \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0 \qquad i = 1, \dots, m \quad \mathbf{\sqrt{Ax = b}}$$

Convex problem (assuming $P_i \in \mathbb{S}^n_+ \succeq \mathbf{0}$): convex quadratic objective and constraint functions.

Second-Order Cone Programming (SOCP)

minimize
$$f^T x$$

subject to $\|A_i x + b_i\| \le c_i^T x + d_i$ $i = 1, \dots, m$
 $Fx = g$
 $-(c_i^T x + d_i) \le A_i x + b_i \le c_i^T x + d_i$

- Convex problem: linear objective and second-order cone constraints
- For A_i row vector, it reduces to an LP

For
$$c_i = 0$$
, it reduces to a QCQP

(A: $x+bi$) (A: $x+bi$)

More general than QCQP and LP

$$= (x^7 A^2 + b^2) (A: x+bi)$$

Robust LP as an SOCP

- Sometimes, the parameters of an optimization problem are imperfect
- Consider the robust LP:

№ It can be rewritten as the SOCP:

minimize
$$\boldsymbol{c}^T \boldsymbol{x}$$
 \bigvee subject to $\bar{\boldsymbol{a}}_i^T \boldsymbol{x} + \|\boldsymbol{P}_i^T \boldsymbol{x}\|_2 \leq b_i$ $i = 1, \cdots, m$

Generalized Inequality Constraints

Convex problem with generalized inequality constraints:

minimize
$$f_0(m{x})$$
 subject to $m{f}_i(m{x}) \preceq_{K_i} m{0}$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

where f_0 is convex and f_i are K_i -convex w.r.t. proper cone K_i

- It has the same properties as a standard convex problem
- **Conic form problem:** special case with affine objective and constraints:

minimize
$$oldsymbol{c}^T oldsymbol{x}$$
 subject to $oldsymbol{F} oldsymbol{x} + oldsymbol{g} \preceq_K oldsymbol{0}$ $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$

Semidefinite Programming (SDP)

minimize
$$m{c}^Tm{x}$$
 subject to $x_1m{F}_1+x_2m{F}_2+\cdots+x_nm{F}_n\preceq m{G}$ $m{A}m{x}=m{b}$

- Inequality constraint is called linear matrix inequality (LMI)
- Convex problem: linear objective and linear matrix inequality (LMI) constraints
- Observe that multiple LMI constraints can always be written as a single one

SDPI

LP and equivalent SDP:

minimize
$$m{c}^Tm{x}$$
 minimize $m{c}^Tm{x}$ subject to $m{A}m{x} \preceq m{b}$ subject to $ext{diag}(m{A}m{x} - m{b}) \preceq m{0}$

№ SOCP and equivalent SDP:

minimize
$$f^T x$$
 subject to $\|A_i x + b_i\| \le [c_i^T x + d_i]$ $i = 1, \dots, m$ minimize $f^T x$ subject to $\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ A_i x + b_i & c_i^T x + d_i \end{bmatrix} \succeq \mathbf{0}, \quad i = 1, \dots, m$

$$X = \begin{bmatrix} A & B \\ D & C \end{bmatrix} \ge 0 \iff A - BC'D \ge 0, C \ge 0 \iff C - CA'B \ge 0, A \ge 0$$

SDP II

Eigenvalue minimization:

$$\min_{\boldsymbol{x}} \underbrace{\lambda_{\max}(\boldsymbol{A}(\boldsymbol{x}))}_{\boldsymbol{x}}$$
 where $\boldsymbol{A}(\boldsymbol{x}) = \boldsymbol{A}_0 + x_1\boldsymbol{A}_1 + \dots + x_n\boldsymbol{A}_n$, is equivalent to SDP
$$\min_{\boldsymbol{x},t} \quad t$$
 subject to
$$\boldsymbol{A}(\boldsymbol{x}) \preceq t\boldsymbol{I}$$

$$\lambda_{\max}(\boldsymbol{A}(\boldsymbol{x})) \leq t \iff \boldsymbol{A}(\boldsymbol{x}) \preceq t\boldsymbol{I}$$

Reference

Chapter 4 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.