

Data analysis and databases

Course description sheet

Basic information

Field of study
Automatics and Robotics

Major
Course code
EAiRS.li100.811

Organisational unit

Lecture langua

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Study level First-cycle (engineer) programme

Form of study Full-time studies

Profile

General academic

021/2022

EAiRS.li10O.811a7be671602359ef5b7f33eda3b39d.21

Lecture languages Polish

Mandatoriness

Elective

Block

General Modules

Course related to scientific research

Yes

Course coordinator	Jerzy Baranowski
Lecturer	Jerzy Baranowski

Period Semester 5	Method of verification of the learning outcomes Completing the classes	Number of ECTS credits
	Activities and hours Lectures: 28 Laboratory classes: 28	

Goals

C1 Celem kształcenia jest zapoznanie studentów i pozyskanie przez nich niezbędnych umiejętności do rozwiązywania problemów analizy i zarządzania danymi pochodzącymi z różnych dziedzin życia.

Course's learning outcomes

Code	Outcomes in terms of	Learning outcomes prescribed to a field of study	Methods of verification
Knowledg	ge - Student knows and understands:		
W1	Student zna podstawową terminologię związana z relacyjnymi bazami danych i zasady tworzenia modeli relacyjnych baz danych	AiR1A_W04	Execution of laboratory classes
W2	Student zna podstawowe metody analizy danych i terminologię z tym związaną	AiR1A_W04	Activity during classes, Execution of laboratory classes
Skills - St	udent can:		
U1	Student potrafi tworzyć zapytania SQL i analizować relację pomiędzy danymi	AiR1A_U01	Activity during classes, Execution of laboratory classes
U2	Student potrafi przeprowadzić analizę zbioru danych, stworzyć adekwatnego modelu i ocenić jego przydatność.	AiR1A_U01	Execution of laboratory classes
Social co	mpetences - Student is ready to:		
K1	Zna i rozumie znaczenie analizy danych oraz baz danych w społeczeństwie.	AiR1A_K02	Execution of laboratory classes

Student workload

Activity form	Average amount of hours* needed to complete each activity form
Lectures	28
Laboratory classes	28
Preparation for classes	28
Preparation of project, presentation, essay, report	20
Student workload	Hours 104
Workload involving teacher	Hours 56

^{*} hour means 45 minutes

Program content

No.	Program content	Course's learning outcomes	Activities
-----	-----------------	----------------------------	------------

Wstęp do analizy danych Wizualizacja i eksploracja Przekształcanie danych Importowanie danych Tworzenie modeli Komunikacja wyników analizy Obsługa tabel Podstawowe pojęcia związane z relacyjnymi bazami danych Mechanizmy działania serwerów relacyjnych baz danych Zasada ACID w relacyjnych bazach danych		W ramach wykładu będą omawiane następujące zagadnienia - kolejność nie jest określona		
Sposoby reprezentacji danych w relacyjnych bazach danych	1	 Wstęp do analizy danych Wizualizacja i eksploracja Przekształcanie danych Importowanie danych Tworzenie modeli Komunikacja wyników analizy Obsługa tabel Podstawowe pojęcia związane z relacyjnymi bazami danych Mechanizmy działania serwerów relacyjnych baz danych Zasada ACID w relacyjnych bazach danych Sposoby reprezentacji danych w relacyjnych bazach 	W1, W2, K1	Lectures

2.	W ramach laboratoriów będą przerabiane następujące zagadnienia - kolejność nie jest określona # Wprowadzenie do języka R # Wprowadzenie do Quarto # Import danych # Przetwarzanie danych tabelarycznych # Przetwarzanie wstępne danych # Konstrukcja zapytań Select # Łączenie tabel w zapytaniach # Funkcje agregacyjne w zapytaniach # Zapytania dotyczące łańcuchów znaków używające wyrażenia regularne # Wizualizacja danych # Eksploracja danych # Tworzenie modeli # Tworzenie raportów	W1, W2, U1, U2, K1	Laboratory classes
----	---	--------------------	--------------------

Extended information/Additional elements

Teaching methods and techniques:

Lecture

Activities	Methods of verification	Credit conditions
Lectures	Activity during classes, Execution of laboratory classes	
Lab. classes	Activity during classes, Execution of laboratory classes	

Rules of participation in given classes, indicating whether student presence at the lecture is obligatory

Lectures: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego. Laboratory classes: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu.

Literature

Obligatory

- 1. Connolly T., Begg C.: Database Systems: A Practical Approach to Design, Implementation and Management, Addison Wesley, 2009.
- 2. Tiwari S.: Professional NoSQL, Wiley and Sons, 2011.
- 3. Garcia-Mollina H., Ullman J.D., Widom J.: Database Systems the Complete Book, Prentice Hall, 2008.
- 4. Microsoft on Edx, Developing SQL Databases, online course: https://www.edx.org/course/developing-sql-databases-0
- 5. Microsoft on Edx, Introduction to NoSQL Data Solutions, online course: #https://courses.edx.org/courses/course-v1:Microsoft+DAT221x+3T2018
- 6. Zumel N., Mount J. Practical Data Science with R, Manning, 2019
- 7. G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer New York, 2013.
- 8. Hadley Wickha, Minę Cetinkaya-Rundel, Garrett Grolemund, R for Data Science Import, Tidy, Transform, Visualise and Model Data. https://r4ds.hadley.nz

Scientific research and publications

Research

- 1. Przewidywanie i wykrywanie usterek procesów, NCN OPUS
- 2. MOTIONAL Mobility managemenT multImodal emvirOnment aNd digitAl enabLers, Horyzont Europa Europe's Rail Joint Undertaking
- 3. IAM4RAIL holistic and Integrated Asset Management for Europe's RAIL System, Horyzont Europa Europe's Rail Joint Undertaking

Publications

- 1. Dudek, A., Baranowski, J. Spatial Modeling of Air Pollution Using Data Fusion (2023) Electronics (Switzerland), 12 (15), art. no. 3353, .
- 2. Jarzyna, K., Rad, M., Piątek, P., Baranowski, J. Bayesian Fault Diagnosis for Induction Motors During Startup in Frequency Domain (2023) Lecture Notes in Networks and Systems, 709 LNNS, pp. 14-24.
- 3. Baranowski, J. Application of Bayesian Functional Gaussian Mixture Model Classifier for Cable Fault Isolation (2023) Lecture Notes in Networks and Systems, 545 LNNS, pp. 254-265. Cited 1 time.
- 4. Grobler-Dębska, K., Kucharska, E., Żak, B., Baranowski, J., Domagała, A. Implementation of Demand Forecasting Module of ERP System in Mass Customization Industry—Case Studies (2022) Applied Sciences (Switzerland), 12 (21), art. no. 11102, .
- 5. Poręba, J., Baranowski, J. Functional Logistic Regression for Motor Fault Classification Using Acoustic Data in Frequency Domain (2022) Energies, 15 (15), art. no. 5535,
- 6. Dudek, A., Baranowski, J. Gaussian Processes for Signal Processing and Representation in Control Engineering (2022) Applied Sciences (Switzerland), 12 (10), art. no. 4946, .
- 7. Baranowski, J. Predicting IoT failures with Bayesian workflow (2022) Eksploatacja i Niezawodnosc, 24 (2), pp. 248-259.
- 8. Kraszewska, M., Kashpruk, N., Baranowski, J., Kapusta, M. Forecasting models for Polish coal mining accidents (2022) 2022 26th International Conference on Methods and Models in Automation and Robotics, MMAR 2022 Proceedings, pp. 399-402.
- 9. Baranowski, J., Grobler-Dębska, K., Kucharska, E. Recognizing vsc dc cable fault types using bayesian functional data depth (2021) Energies, 14 (18), art. no. 5893,
- 10. Stief, A., Ottewill, J.R., Baranowski, J., Orkisz, M. A PCA and Two-Stage Bayesian Sensor Fusion Approach for Diagnosing Electrical and Mechanical Faults in Induction Motors (2019) IEEE Transactions on Industrial Electronics, 66 (12), art. no. 8611306, pp. 9510-9520.
- 11. Stief, A., Tan, R., Cao, Y., Ottewill, J.R., Thornhill, N.F., Baranowski, J. A heterogeneous benchmark dataset for data analytics: Multiphase flow facility case study (2019) Journal of Process Control, 79, pp. 41-55.
- 12. Stief, A., Ottewill, J.R., Orkisz, M., Baranowski, J. Two stage data fusion of acoustic, electric and vibration signals for diagnosing faults in induction motors (2017) Elektronika ir Elektrotechnika, 23 (6), pp. 19-24.
- 13. Bauer, W., Dylag, K.A., Lysiak, A., Stomal-Slowinska, M., Kawala-Sterniuk, Initial study on quantitative electroencephalographic analysis of bioelectrical activity of the brain of children with fetal alcohol spectrum disorders (FASD) without epilepsy, (2023) Scientific Reports, 13(1), 109
- 14. Bauer, W., Dudek, A., Baranowski, J. Recognizing Commutator Motors Fault from Acoustics Signals Using Bayesian Functional Data Depth 2022 26th International Conference on Methods and Models in Automation and Robotics, MMAR

Learning outcomes prescribed to a field of study

Code	Content		
AiR1A_K02	wypełniania zobowiązań społecznych, współorganizowania działalności na rzecz środowiska społecznego; nicjowania działań na rzecz interesu publicznego; myślenia i działania w sposób przedsiębiorczy		
AiR1A_U01	wykorzystywać posiadaną wiedzę – formułować i rozwiązywać złożone i nietypowe problemy oraz wykonywać zadania w warunkach nie w pełni przewidywalnych przez: - właściwy dobór źródeł i informacji z nich pochodzących, dokonywanie oceny, krytycznej analizy i syntezy tych informacji, - dobór oraz stosowanie właściwych metod i narzędzi, w tym zaawansowanych technik informacyjno-komunikacyjnych		
AiR1A_W04	podstawy programowania obiektowego i strukturalnego wraz z elementami inżynierii oprogramowania; metody realizacji obliczeń i optymalizacji w środowiskach informatycznych oraz wizualizacji tych wyników; sposoby realizacji projektów informatycznych; przetwarzanie informatyczne informacji, ze szczególnym uwzględnieniem danych wizyjnych; oraz metodykę tworzenia ciągłych i dyskretnych modeli matematycznych.		