Lecture Notes on Skip Lists

Lecture 12 — October 26, 2005 Erik Demaine

- Balanced tree structures we know at this point: red-black trees, B-trees, treaps.
- Could you implement them right now? Probably, with time... but without looking up any details?
- Skip lists are a simple randomized structure you'll never forget.

Starting from scratch

- Initial goal: just searches ignore updates (Insert/Delete) for now
- Simplest data structure: linked list
- Sorted linked list: $\Theta(n)$ time
- 2 sorted linked lists:
 - Each element can appear in 1 or both lists
 - How to speed up search?
 - Idea: Express and local subway lines
 - **Example:** 14, 23, 34, 42, 50, 59, 66, 72, 79, 86, 96, 103, 110, 116, 125 (What is this sequence?)
 - Boxed values are "express" stops; others are normal stops
 - Can quickly jump from express stop to next express stop, or from any stop to next normal stop
 - Represented as two linked lists, one for express stops and one for all stops:

- Every element is in bottom linked list (L_2) ; some elements also in top linked list (L_1)
- Link equal elements between the two levels
- To search, first search in L_1 until about to go too far, then go down and search in L_2

- Cost:

$$|L_1| + \frac{|L_2|}{|L_1|} = |L_1| + \frac{n}{|L_1|}$$

- Minimized when

- Resulting 2-level structure:

- 3 linked lists: $3 \cdot \sqrt[3]{n}$
- k linked lists: $k \cdot \sqrt[k]{n}$
- $\lg n$ linked lists: $\lg n \cdot \sqrt[\lg n]{n} = \lg n \cdot \underbrace{n^{1/\lg n}}_{=2} = \Theta(\lg n)$
 - Becomes like a binary tree:

- (In fact, a level-linked B⁺-tree; see Problem Set 5.)
- Example: Search for 72
 - * Level 1: 14 too small, 79 too big; go down 14
 - * Level 2: 14 too small, 50 too small, 79 too big; go down 50
 - * Level 3: 50 too small, 66 too small, 79 too big; go down 66
 - * Level 4: 66 too small, 72 spot on

Insert

- New element should certainly be added to bottommost level (Invariant: Bottommost list contains all elements)
- Which other lists should it be added to? (Is this the entire balance issue all over again?)
- Idea: Flip a coin
 - With what probability should it go to the next level?
 - To mimic a balanced binary tree, we'd like half of the elements to advance to the next-to-bottommost level
 - So, when you insert an element, flip a fair coin
 - If heads: add element to next level up, and flip another coin (repeat)
- Thus, on average:
 - -1/2 the elements go up 1 level
 - -1/4 the elements go up 2 levels
 - -1/8 the elements go up 3 levels
 - Etc.
- Thus, "approximately even"

Example

- Get out a real coin and try an example
- You should put a special value $-\infty$ at the beginning of each list, and always promote this special value to the highest level of promotion
- This forces the leftmost element to be present in every list, which is necessary for searching

... many coins are flipped ... (Isn't this easy?)

- The result is a skip list.
- It probably isn't as balanced as the ideal configurations drawn above.
- It's clearly good on average.
- Claim it's really really good, almost always.

Analysis: Claim of With High Probability

- **Theorem:** With high probability, every search costs $O(\lg n)$ in a skip list with n elements
- What do we need to do to prove this? [Calculate the probability, and show that it's high!]
- We need to define the notion of "with high probability"; this is a powerful technical notion, used throughout randomized algorithms
- Informal definition: An event occurs with high probability if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 O(1/n^{\alpha})$
- In reality, the constant hidden within $O(\lg n)$ in the theorem statement actually depends on c.
- Precise definition: A (parameterized) event E_{α} occurs with high probability if, for any $\alpha \geq 1$, E_{α} occurs with probability at least $1 c_{\alpha}/n^{\alpha}$, where c_{α} is a "constant" depending only on α .
- The term $O(1/n^{\alpha})$ or more precisely c_{α}/n^{α} is called the *error probability*
- The idea is that the error probability can be made very very small by setting α to something big, e.g., 100

Analysis: Warmup

- Lemma: With high probability, skip list with n elements has $O(\lg n)$ levels
- (In fact, the number of levels is $\Theta(\log n)$, but we only need an upper bound.)
- Proof:
 - $\Pr\{\text{element }x\text{ is in more than }c\lg n\text{ levels}\}=1/2^{c\lg n}=1/n^c$
 - Recall Boole's inequality / union bound:

$$\Pr\{E_1 \cup E_2 \cup \dots \cup E_k\} \le \Pr\{E_1\} + \Pr\{E_2\} + \dots + \Pr\{E_k\}$$

- Applying this inequality: $Pr\{\text{any element is in more than } c \lg n \text{ levels}\} \le n \cdot 1/n^c = 1/n^{c-1}$
- Thus, error probability is polynomially small and exponent ($\alpha=c-1$) can be made arbitrarily large by appropriate choice of constant in level bound of $O(\lg n)$

Analysis: Proof of Theorem

- Cool idea: Analyze search backwards—from leaf to root
 - Search starts at leaf (element in bottommost level)
 - At each node visited:
 - * If node wasn't promoted higher (got TAILS here), then we go [came from] left
 - * If node was promoted higher (got HEADS here), then we go [came from] up
 - Search stops at root of tree
- Know height is $O(\lg n)$ with high probability; say it's $c \lg n$
- Thus, the number of "up" moves is at most $c \lg n$ with high probability
- Thus, search cost is at most the following quantity:

How many times do we need to flip a coin to get $c \lg n$ heads?

• Intuitively, $\Theta(\lg n)$

Analysis: Coin Flipping

- Claim: Number of flips till $c \lg n$ heads is $\Theta(\lg n)$ with high probability
- Again, constant in $\Theta(\lg n)$ bound will depend on α
- Proof of claim:
 - Say we make $10c \lg n$ flips
 - When are there at least $c \lg n$ heads?

$$- \Pr\{\text{exactly } c \lg n \text{ heads}\} = \underbrace{\begin{pmatrix} 10c \lg n \\ c \lg n \end{pmatrix}}_{\text{orders}} \cdot \underbrace{\left(\frac{1}{2}\right)^{c \lg n}}_{\text{heads}} \cdot \underbrace{\left(\frac{1}{2}\right)^{9c \lg n}}_{\text{tails}}$$

$$- \Pr\{\text{at most } c\lg n \text{ heads}\} \leq \underbrace{\begin{pmatrix} 10c\lg n \\ c\lg n \end{pmatrix}}_{\text{overestimate}} \cdot \underbrace{\begin{pmatrix} \frac{1}{2} \end{pmatrix}^{9c\lg n}}_{\text{tails}}$$

- Recall bounds on $\binom{y}{x}$:

$$\left(\frac{y}{x}\right)^x \le \left(\frac{y}{x}\right) \le \left(e\,\frac{y}{x}\right)^x$$

- Applying this formula to the previous equation:

$$\begin{split} \Pr\{\text{at most } c \lg n \text{ heads}\} & \leq \left(\frac{10c \lg n}{c \lg n}\right) \left(\frac{1}{2}\right)^{9c \lg n} \\ & \leq \left(\frac{e \cdot 10c \lg n}{c \lg n}\right)^{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n} \\ & = \left(10e\right)^{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n} \\ & = 2^{\lg(10e) \cdot c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n} \\ & = 2^{(\lg(10e) - 9)c \lg n} \\ & = 2^{-\alpha \lg n} \\ & = 1/n^{\alpha} \end{split}$$

- The point here is that, as $10 \to \infty$, $\alpha = 9 \lg(10e) \to \infty$, independent of (for all) c
- End of proof of claim and theorem

Acknowledgments

This lecture is based on discussions with Michael Bender at SUNY Stony Brook.