$11a_{145} (K11a_{145})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{41} + u^{40} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 41 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{41} + u^{40} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3}+u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2}+1\\-u^{4}-2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7}+4u^{5}+4u^{3}\\-u^{7}-3u^{5}-2u^{3}+u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7}+4u^{5}+4u^{3}\\-u^{7}-3u^{5}-2u^{3}+u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{11}-6u^{9}-12u^{7}-8u^{5}-u^{3}-2u\\u^{11}+5u^{9}+8u^{7}+3u^{5}-u^{3}+u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{15}+8u^{13}+24u^{11}+32u^{9}+18u^{7}+8u^{5}+8u^{3}\\-u^{15}-7u^{13}-18u^{11}-19u^{9}-6u^{7}-2u^{5}-4u^{3}+u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{30}+15u^{28}+\cdots-8u^{4}+1\\-u^{30}-14u^{28}+\cdots+8u^{4}-u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{17}-8u^{15}-25u^{13}-38u^{11}-31u^{9}-20u^{7}-14u^{5}-4u^{3}-u\\u^{19}+9u^{17}+32u^{15}+55u^{13}+45u^{11}+19u^{9}+16u^{7}+10u^{5}-3u^{3}+u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{17}-8u^{15}-25u^{13}-38u^{11}-31u^{9}-20u^{7}-14u^{5}-4u^{3}-u\\u^{19}+9u^{17}+32u^{15}+55u^{13}-38u^{11}-31u^{9}-20u^{7}-14u^{5}-4u^{3}-u\\u^{19}+9u^{17}+32u^{15}+55u^{13}+45u^{11}+19u^{9}+16u^{7}+10u^{5}-3u^{3}+u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{40} + 4u^{39} + \cdots 12u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{41} - u^{40} + \dots + u - 1$
c_{2}, c_{6}	$u^{41} + 15u^{40} + \dots + 5u - 1$
c_3, c_4, c_9	$u^{41} - u^{40} + \dots + u - 1$
c_7, c_{10}, c_{11}	$u^{41} + 5u^{40} + \dots - 23u - 3$
<i>c</i> ₈	$u^{41} + u^{40} + \dots - 53u - 37$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{41} + 15y^{40} + \dots + 5y - 1$
c_2, c_6	$y^{41} + 23y^{40} + \dots + 85y - 1$
c_3, c_4, c_9	$y^{41} + 39y^{40} + \dots + 5y - 1$
c_7, c_{10}, c_{11}	$y^{41} + 43y^{40} + \dots - 131y - 9$
c ₈	$y^{41} + 19y^{40} + \dots - 34931y - 1369$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.036967 + 1.143640I	0.42753 - 2.65969I	8.24093 + 3.41095I
u = -0.036967 - 1.143640I	0.42753 + 2.65969I	8.24093 - 3.41095I
u = -0.660133 + 0.477624I	-8.57548 - 2.18961I	0.00248 + 3.13615I
u = -0.660133 - 0.477624I	-8.57548 + 2.18961I	0.00248 - 3.13615I
u = -0.684144 + 0.440280I	-4.27384 - 8.98491I	4.35745 + 7.89511I
u = -0.684144 - 0.440280I	-4.27384 + 8.98491I	4.35745 - 7.89511I
u = -0.623584 + 0.512428I	-4.55106 + 4.63624I	3.54482 - 1.91862I
u = -0.623584 - 0.512428I	-4.55106 - 4.63624I	3.54482 + 1.91862I
u = 0.664139 + 0.434640I	-2.78722 + 3.54108I	6.45783 - 3.37439I
u = 0.664139 - 0.434640I	-2.78722 - 3.54108I	6.45783 + 3.37439I
u = 0.612358 + 0.486042I	-3.00487 + 0.67608I	5.83606 - 3.00610I
u = 0.612358 - 0.486042I	-3.00487 - 0.67608I	5.83606 + 3.00610I
u = -0.096872 + 1.325610I	-3.50591 - 1.71670I	0
u = -0.096872 - 1.325610I	-3.50591 + 1.71670I	0
u = -0.199961 + 1.317980I	-1.40317 - 2.83072I	0
u = -0.199961 - 1.317980I	-1.40317 + 2.83072I	0
u = 0.217658 + 1.339710I	-2.15015 + 8.22064I	0
u = 0.217658 - 1.339710I	-2.15015 - 8.22064I	0
u = 0.614559 + 0.176529I	2.60925 + 5.20134I	10.53591 - 7.82962I
u = 0.614559 - 0.176529I	2.60925 - 5.20134I	10.53591 + 7.82962I
u = -0.600363 + 0.128544I	3.10340 + 0.06542I	12.57860 + 1.49885I
u = -0.600363 - 0.128544I	3.10340 - 0.06542I	12.57860 - 1.49885I
u = 0.148692 + 1.391290I	-6.92446 + 3.50964I	0
u = 0.148692 - 1.391290I	-6.92446 - 3.50964I	0
u = 0.047931 + 1.399990I	-5.03762 - 1.88806I	0
u = 0.047931 - 1.399990I	-5.03762 + 1.88806I	0
u = 0.093172 + 0.540106I	0.77518 - 2.43453I	4.67673 + 2.83072I
u = 0.093172 - 0.540106I	0.77518 + 2.43453I	4.67673 - 2.83072I
u = 0.440573 + 0.308368I	-1.55862 + 1.34593I	1.69201 - 5.88103I
u = 0.440573 - 0.308368I	-1.55862 - 1.34593I	1.69201 + 5.88103I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.24207 + 1.47345I	-8.94893 + 6.85378I	0
u = 0.24207 - 1.47345I	-8.94893 - 6.85378I	0
u = 0.21537 + 1.47971I	-9.35158 + 3.69269I	0
u = 0.21537 - 1.47971I	-9.35158 - 3.69269I	0
u = -0.24862 + 1.47854I	-10.4751 - 12.3911I	0
u = -0.24862 - 1.47854I	-10.4751 + 12.3911I	0
u = -0.21135 + 1.49072I	-11.04330 + 1.60938I	0
u = -0.21135 - 1.49072I	-11.04330 - 1.60938I	0
u = -0.23235 + 1.48781I	-14.9420 - 5.4434I	0
u = -0.23235 - 1.48781I	-14.9420 + 5.4434I	0
u = -0.404356	0.648370	15.5210

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{41} - u^{40} + \dots + u - 1$
c_2, c_6	$u^{41} + 15u^{40} + \dots + 5u - 1$
c_3, c_4, c_9	$u^{41} - u^{40} + \dots + u - 1$
c_7, c_{10}, c_{11}	$u^{41} + 5u^{40} + \dots - 23u - 3$
<i>c</i> ₈	$u^{41} + u^{40} + \dots - 53u - 37$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{41} + 15y^{40} + \dots + 5y - 1$
c_{2}, c_{6}	$y^{41} + 23y^{40} + \dots + 85y - 1$
c_3, c_4, c_9	$y^{41} + 39y^{40} + \dots + 5y - 1$
c_7, c_{10}, c_{11}	$y^{41} + 43y^{40} + \dots - 131y - 9$
c ₈	$y^{41} + 19y^{40} + \dots - 34931y - 1369$