Домашнее задание №3 по курсу «Основы высшей алгебры и теории кодирования»

Задача 1 (1 балл)

Докажите:

$$HOД(k, n) = 1 \iff \exists t : t \cdot k \equiv 1 \mod n$$

Задача 2~(0,5~балла)

Вычислите $17^{668} \mod 27$.

 ${f 3}$ адача ${f 3}$ (1, ${f 5}^*$ балла) ${f B}$ ычислите $2^{21^{42069}}\mod 14.$

 $\Pi o \partial c \kappa a s \kappa a$: подумайте, чему равно $2^{3+1} \mod 14$

Задача 4 (0, 5 + 0, 5 балла)

Изоморфны ли группы:

- 1. $C_{13} \times C_{13}$ и C_{169}
- 2. $C_7 \times C_{15}$ и $C_5 \times C_{21}$

Задача 5 (1* балл)

Найдите все автоморфизмы группы $\langle \mathbb{Z}, + \rangle$

Задача 6 (1 балл)

Пусть G — абелева группа порядка n. Пусть число a такое, что HOД(a,n)=1. Докажите, что тогда отображение

$$\varphi: x \mapsto ax = \underbrace{x + x + \dots + x}_{a \text{ pas}}$$

является автоморфизмом группы G.

Задача 7 (1 балл)

Порождают ли перестановки порядка 3 группу S_{33} ?

То есть, верно ли, что множество всевозможных произведений всевозможных степеней перестановок из S_{33} , имеющих порядок 3, равно всему S_{33} ?

Задача 8 (1* балл)

Назовем группы G_1 и G_2 антиизоморфными, если существует биекция $f:G_1 \longrightarrow G_2$, такая что f(ab) = f(b)f(a) для всех $a,b \in G_1$. Докажите, что антиизоморфные группы изоморфны.

Задача 9 (2,5* балла)

Доказать, что если возведение в куб, то есть отображение $\varphi: G \to G \quad \forall a \in G \ \varphi(a) = a^3$ является автоморфизмом группы, то она абелева.

Задача 10 (2* балла)

Пусть абелева группа A изоморфна подгруппе группы B, а группа B изоморфна подгруппе группы A. Могут ли эти группы быть неизоморфными?