PSQF 4143: Section 12

Brandon LeBeau

Example 1

- Does speed reading help or hurt reading comprehension?
- Random sample of UI freshman students, n = 100
- Divide randomly in 2 groups of 50
 - Independent groups
 - No matching
 - No equating
- Experimental group $(n_e = 50)$: take speed reading course
- Control group $(n_c = 50)$

Example 1 (cont).

- State the statistical hypotheses.
 - $-H_0$: The treatment has no effect
 - H_0 : The two groups are the same (after the speed reading course)
 - $H_0: \mu_E = \mu_C$
 - H_0 : $\mu_E \mu_C = 0$
- Conduct Experiment:

	Experimental	Control
n	50	50
\bar{X}	35	31
σ	8	6

- Is $\bar{X}_E \bar{X}_C = 4$ an unlikely result?
- To answer this, we need a probability distribution for $\bar{X}_E \bar{X}_C$

Sampling Distribution $\bar{X}_E - \bar{X}_C$

• The sampling distribution of the difference between two independent means (σ_E and σ_C known).

Example 1 (cont.)

$$\sigma_{\bar{X}_E - \bar{X}_C} = \sqrt{\frac{\sigma_E^2}{n_E} + \frac{\sigma_C^2}{n_C}}$$

- What is the $Pr(\bar{X}_E - \bar{X}_C \ge 4)$?

$$z = \frac{(\bar{X}_E - \bar{X}_C) - (\mu_E - \mu_C)_{HYP}}{\sigma_{\bar{X}_E - \bar{X}_C}}$$

Sampling Distribution Explanation

When population SDs are unknown

- Recall: $\sigma_{\bar{X}-\bar{Y}} = \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$ Assumption: $\sigma_X^2 = \sigma_X^2 = \sigma^2$

• Then: $\sigma_{\bar{X}-\bar{Y}} = \sqrt{\frac{\sigma^2}{n_X} + \frac{\sigma^2}{n_Y}}$

• Now: $\hat{\sigma}_{\bar{X}-\bar{Y}} = \sqrt{\frac{\hat{\sigma}^2}{n_X} + \frac{\hat{\sigma}^2}{n_Y}} = \sqrt{\hat{\sigma}^2 \left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}$

When population SDs are unknown 2

• $\hat{\sigma}_{\bar{X}-\bar{Y}} = \sqrt{\frac{\hat{\sigma}^2}{n_X} + \frac{\hat{\sigma}^2}{n_Y}} = \sqrt{\hat{\sigma}^2 \left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}$

• $\hat{\sigma}^2$ is a weighted average of the unbiased estimates of σ_X^2 and σ_Y^2 • Since σ_X^2 and σ_Y^2 are both not known to us: $\hat{\sigma}_{\bar{X}-\bar{Y}} = \sqrt{\frac{n_X S_X^2 + n_Y S_Y^2}{(n_X - 1) + (n_Y - 1)}} \left(\frac{1}{n_X} + \frac{1}{n_Y}\right)$

Putting all together: Pop SDs unknown

$$TS = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_X - \mu_Y\right)_{HYP}}{\hat{\sigma}_{\overline{X} - \overline{Y}}} \stackrel{.}{\sim} t_{df} \qquad df = n_X + n_Y - 2$$

Figure 1:

Example 2

- Does speed reading help or hurt reading comprehension?
- Random sample of UI freshman students, n = 100
- Divide randomly in 2 groups of 50

	Experimental	Control
n	50	50
\bar{X}	35	31
S	8	6

3

• Conduct the hypothesis test at $\alpha = 0.01$ significance level.

Summary

• If Population SDs are known:

$$\sigma_{\bar{X}-\bar{Y}} = \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$$

$$TS = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)_{HYP}}{\sigma_{\bar{X}-\bar{Y}}} \sim Z$$

• If Population Sds are **NOT** known:

$$\hat{\sigma}_{\bar{X}-\bar{Y}} = \sqrt{\frac{n_X S_X^2 + n_Y S_Y^2}{(n_X - 1) + (n_Y = 1)} \left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}$$

$$TS = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)_{HYP}}{\hat{\sigma}_{\bar{X}-\bar{Y}}} \sim t_{df}$$

$$df = n_X + n_Y - 2$$

Example 3

- 2 methods (A & B) of teaching addition of fractions
- Is method A more effective than Method B?
- Randomly sample 2 classes
- Results:

	A	В
n	10	24
\bar{X}	115	105
S	14	17

• Conduct the hypothesis test at the $\alpha = .05$ significance level.

Assumptions

- 1. Each sample is drawn at random from its respective population
- 2. The two samples must be independently selected.
- 3. Sampling with replacement, or n < 5% of N.
- 4. The two populations (of raw scores) are normally distributed.
- 5. The unknown population variances are equal (homogeneity of variances assumption).

Assumptions 1 - 3

- In Example 2, we analyzed the data as if we had drawn each of the two samples
 - independent (assumption 2)
 - from its respective population randomly (assumption 1)
 - with replacement (assumption 3)
- However, that is not how the experiment was done.
 - First, we randomly sampled without replacement from a single population
 - Then, we randomly assigned each participant to one of two groups (experimental or control)
 - This is called a randomized experiment

Assumptions 1 - 3 (cont)

- In other words, a random sampling model (Independent Means t-Test) was used to analyze data that came from two groups formed by random assignment
- Technically, a random assignment model (Permutation Test) should have been used to analyze the data
- Two mistakes when analyzing the data as we did
 - 1. Draws were made without replacement (inflates the SE)
 - 2. There was a slight degree of dependency between the two groups (deflates the SE)

Assumptions 1 - 3 (cont)

- It is a lucky break that in randomized experiments, the first mistake outweighs the second
 - Thus, when the random sampling model is applied to randomized experiments, the statistical test is conservative (the SE tends to be overestimated)
- For most randomized experiments, using the random sampling model yields the same statistical conclusions as the random assignment model
- However, with only random assignment of available participants, conclusions do not generalize beyond
 - the participants studied, and
 - the conditions of the study

Random Sampling vs Random Assignment

- Random Sampling
 - a method for obtaining a sample from an experimentally accessible population

- a basic assumption underlying statistical inference
- this is what makes it possible for us to make statistical conclusions based on theoretical probability models, and generalize those conclusions to a population
- Random Assignment
 - a method for dividing an available group of participants into two or more subgroups
 - its purpose is to make the comparison groups randomly equivalent to each other prior to any treatment(s)
 - it controls for extraneous variables (known and unknown)

The normality assumption

- The independent means t-test is robust with respect to violations of the normality assumption
 - If the two sample sizes are equal, the t-test gives fairly accurate p-values for a broad range of population distributions, provided the populations
 - * have similar shapes
 - * are unimodal
 - * have no outliers
 - This holds for sample sizes as small as $n_X = n_Y = 5$
- When n_X and n_Y are both greater than 30, the normality assumption is unimportant, thanks to the central limit theorem

The homogeneity of variance assumption

- The independent means t-test is robust with respect to violations of the assumption of equal population variances, provided that $n_X = n_Y$
- There is a statistical test of the equality of population variances
 - F-test
- If the population variances are unequal, and if $n_X \neq n_Y$, the sample variances should not be pooled
 - A modified t-statistic with modified df can be used, often times called the Welch t-test

Confidence Intervals

• Recall the speed reading data:

	Experimental		Control
n	50		50
\bar{X}	35		31
S	8	6	6

- Find a 99% CI for $\mu_E \mu_C$
- Confidence form looks as follows:

$$(\bar{X} - \bar{X}) \pm t_{crit} \hat{\sigma}_{\bar{X} - \bar{Y}}$$

Confidence Interval Interpretations

- Interpretations for 99% CI [0.24, 7.76]:
 - 1. Does μ fall in this interval?
 - 2. Is there a 99% chance that μ falls in this interval?
 - 3. If 100 intervals were constructed, about how many intervals would contain μ ?
 - 4. If we constructed an infinte number of intervals, how many would contain μ ?

Using confidence intervals to conduct a two-tailed hypothesis

- You can use a confidence interval to conduct a two-tailed hypothesis of any null hypothesis.
 - If the hypothesized value falls within the CI, fail to reject H_0
 - If the hypothesized value falls outside the CI, reject H_0
- Using the previous example [0.24, 7.76], would we fail to reject or reject H_0 ?