

Polynôme

Author: CatMono

Date: September, 2025

Version: 0.1

Contents

Preface		11
Chapter	1 Preliminaries	1
Chapter	2 Univariate Polynomial Ring	2
2.1	Univariate Polynomials	2
2.2	Division	2
2.3	Greatest Common Divisor and Relatively Prime	2
2.4	Least Common Multiple	3
Chapter	3 Factorization and Roots	4
3.1	Irreducible Polynomials	4
3.2	Polynomials with Rational Coefficients	4
3.3	Relation between Roots and Coefficients	4
3.4	Root of Unity	5
Chapter	4 Integral Valued Polynomials	7
4.1	Lagrange Interpolation Polynomial	7
Chapter	5 Multivariate Polynomial	8
5.1	Symmetric Polynomial	8

Preface

This is the preface of the book...

Chapter 1 Preliminaries

Chapter 2 Univariate Polynomial Ring

2.1 Univariate Polynomials

2.2 Division

Theorem 2.1 (Euclidean Division (Division with Remainder))

Let $f(x), g(x) \in P[x]$ with $g(x) \neq 0$. Then there exist unique polynomials $q(x), r(x) \in P[x]$ such that

$$f(x) = g(x) \cdot q(x) + r(x)$$

where r(x) = 0 or deg(r) < deg(g).

Definition 2.1 (Exact Division)

If there exists $h(x) \in P[x]$ such that $f(x) = g(x) \cdot h(x)$, we say that g(x) divides f(x) and write $g(x) \mid f(x)$. (In other words, the remainder f(x) = 0.)

Property

ACaution In Euclidean division, $g(x) \neq 0$ is required. However, in the case of $g(x) \mid f(x)$, g(x) can equal 0. In this situation, $f(x) = g(x)h(x) = 0 \cdot g(x) = 0$, meaning that the **zero polynomial can only divide the zero polynomial**.

2.3 Greatest Common Divisor and Relatively Prime

¶ Greatest Common Divisor

Definition 2.2 (Greatest Common Divisor (GCD))

Let $f(x), g(x) \in P[x]$. A polynomial $d(x) \in P[x]$ is called a greatest common divisor of f(x) and g(x) if:

- 1. $d(x) \mid f(x)$ and $d(x) \mid g(x)$;
- 2. For any polynomial $h(x) \in P[x]$, if $h(x) \mid f(x)$ and $h(x) \mid g(x)$, then $h(x) \mid d(x)$.

The greatest common divisor of f(x) and g(x), whose leading coefficient is 1 (also called **monic**), is denoted as (f(x), g(x)).

Property

Theorem 2.2 (Fuclidean Algorithm

For all $f(x), g(x) \in P[x]$, there exists $d(x) \in P[x]$, where d(x) is a greatest common divisor of f(x) and g(x), and d(x) can be expressed as a linear combination of f(x) and g(x), i.e., there exist $u(x), v(x) \in P[x]$ such that

$$d(x) = u(x)f(x) + v(x)g(x).$$

 \Diamond

The converse proposition does not hold in general.

\P Relatively Prime

Definition 2.3 (Relatively Prime)

Two polynomials f(x) and g(x) in P[x] are called relatively prime if (f(x), g(x)) = 1, meaning they have no common divisor other than the zero-degree polynomial (nonzero constant).

2.4 Least Common Multiple

Chapter 3 Factorization and Roots

3.1 Irreducible Polynomials

Definition 3.1 (Irreducible Polynomial)

A polynomial p(x) of degree ≥ 1 over a field P is called an irreducible polynomial over the field P if it cannot be expressed as the product of two polynomials of lower degree than p(x) over the field P.

Proposition 3.1

For all $f(x), g(x) \in P[x], p(x)$ is an irreducible polynomial in P[x], which is equivalent to the following two propositions:

- 1. Either p(x) | f(x) or (p(x), f(x)) = 1;
- 2. If $p(x) \mid f(x)g(x)$, then either $p(x) \mid f(x)$ or $p(x) \mid g(x)$.

Similarly, monic polynomial p(x), with degree greater than 0, is a power of an irreducible polynomial over the field P if and only if for all f(x), $g(x) \in P[x]$,

- 1. Either $p(x) | f^m(x) (m \in \mathbb{N}^*)$ or (p(x), f(x)) = 1;
- 2. If $p(x) \mid f(x)g(x)$, then either $p(x) \mid f^m(x) \ (m \in \mathbb{N}^*)$ or $p(x) \mid g(x)$.

3.2 Polynomials with Rational Coefficients

Definition 3.2 (Primitive Polynomial)

A polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ with integer coefficients is called a **primitive polynomial** if the greatest common divisor of its coefficients is ± 1 , i.e., $(a_n, a_{n-1}, \dots, a_1, a_0) = \pm 1$.

Lemma 3.1 (Gauss's Lemma)

The product of two primitive polynomials is also a primitive polynomial.

3.3 Relation between Roots and Coefficients

Theorem 3.1 (Vièta's Formulas)

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial of degree n over field P, and let its n roots (counting multiplicities) be r_1, r_2, \dots, r_n in an extension field of P. Then the following relations hold:

$$r_1 + r_2 + \dots + r_n = -\frac{a_{n-1}}{a_n},$$

$$r_1 r_2 + r_1 r_3 + \dots + r_{n-1} r_n = \frac{a_{n-2}}{a_n},$$

$$\vdots$$

$$r_1 r_2 \dots r_n = (-1)^n \frac{a_0}{a_n}.$$

3.4 Root of Unity

Definition 3.3 (Root of Unity)

Let P be a number field and $n \in \mathbb{N}^*$. An element $\omega \in P$ is called an n-th root of unity if it satisfies the equation $x^n - 1 = 0$, i.e., $\omega^n = 1$.

$$\omega_k = \exp \frac{2k\pi i}{n} = \cos \left(\frac{2k\pi}{n}\right) + i\sin \left(\frac{2k\pi}{n}\right), \quad k = 0, 1, \dots, n-1.$$

Obviously, the modulus of each n-th root of unity is 1, i.e., $|\omega_k| = 1$, and they are evenly distributed on the unit circle in the complex plane, with an angle of $\frac{2\pi}{n}$ between adjacent roots.

Property

1. The n-th roots of unity form a cyclic group under multiplication, with $\omega=\exp{2\pi i\over n}$ as a generator.

Proposition 3.2 (Formulas for Sums and Differences of Powers)

For $n \in \mathbb{N}^+$ and n being odd:

$$a^{n} + b^{n} = (a+b)(a^{n-1}b^{0} - a^{n-2}b^{1} + a^{n-3}b^{2} - \dots - a^{1}b^{n-2} + a^{0}b^{n-1}).$$

When n is even, there is no general formula for the n-th power sum.

For $n \in \mathbb{N}^+$:

$$a^{n} - b^{n} = (a - b)(a^{n-1}b^{0} + a^{n-2}b^{1} + a^{n-3}b^{2} + \dots + a^{0}b^{n-1}).$$

Commonly used special cases:

$$a^{2} - b^{2} = (a+b)(a-b).$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2}), \quad a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2}).$$

$$a^{4} - b^{4} = (a^{2} + b^{2})(a^{2} - b^{2}) = (a^{2} + b^{2})(a+b)(a-b),$$

$$= (a-b)(a^{3} + a^{2}b + ab^{2} + b^{3}).$$

When b = 1,

$$x^{n} + 1 = (x+1)(x^{n-1} - x^{n-2} + x^{n-3} - \dots + x - 1), \quad n \in \mathbb{N}^{+}, n \text{ is odd.}$$

 $x^{n} - 1 = (x-1)(x^{n-1} + x^{n-2} + x^{n-3} + \dots + x + 1), \quad n \in \mathbb{N}^{+}.$

Chapter 4 Integral Valued Polynomials

4.1 Lagrange Interpolation Polynomial

Chapter 5 Multivariate Polynomial

5.1 Symmetric Polynomial

Definition 5.1 (Symmetric Polynomial)

A polynomial $f(x_1, x_2, ..., x_n)$ in n variables is called a **symmetric polynomial** if it remains unchanged under any permutation of its variables. In other words, for any permutation σ of the set $\{1, 2, ..., n\}$, the following holds:

$$f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = f(x_1, x_2, \dots, x_n).$$

Some common symmetric polynomials include:

Elementary Symmetric Polynomials:

$$e_k(x_1, x_2, \dots, x_n) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}, \quad k = 1, 2, \dots, n.$$

That is,

$$e_0 = 1,$$
 $e_1 = x_1 + x_2 + \dots + x_n,$
 $e_2 = \sum_{1 \le i < j \le n} x_i x_j,$
 \vdots
 $e_n = x_1 x_2 \cdots x_n,$
 $e_k = 0, \quad k > n.$

Power Sum Symmetric Polynomials:

$$p_k(x_1, x_2, \dots, x_n) = x_1^k + x_2^k + \dots + x_n^k, \quad k = 1, 2, \dots$$

Complete Homogeneous Symmetric Polynomials:

$$h_k(x_1, x_2, \dots, x_n) = \sum_{i_1 + i_2 + \dots + i_n = k} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}, \quad k = 1, 2, \dots$$

Theorem 5.1 (Newton's Identities

For $k \geq 1$, the following relations hold between the elementary symmetric polynomials e_k and the power sum symmetric polynomials p_k :

$$ke_k = \sum_{i=1}^k (-1)^{i-1} e_{k-i} p_i,$$

where $e_0 = 1$ and $e_k = 0$ for k > n.

Bibliography

- [1] 南秀全,黄振国. 多项式理论. 哈尔滨工业大学出版社, 2016.
- [2] Author2, Title2, Journal2, Year2. This is another example of a reference.