Documentación clara y detallada del CuboMovilidadSV y del proceso ETL con su análisis.

ETL y Análisis OLAP en SQL Server

Introducción

Esta guía te ayudará a entender y ejecutar **el proceso ETL (Extract, Transform, Load) y la creación de un cubo OLAP en SQL Server Analysis Services (SSAS)**. Abordaremos la estructura de datos, consultas en SQL y MDX, y visualización de resultados en herramientas como **Power BI y Excel**.

Objetivo: Analizar la movilidad en distintos departamentos de **El Salvador** durante la pandemia de **COVID-19** usando datos de un archivo CSV.

1. Proceso ETL

El **ETL** (**Extract**, **Transform**, **Load**) es el proceso de preparación de datos antes de analizarlos en el cubo OLAP. **Tiene tres fases fundamentales:**

Extracción: Se importan los datos desde un archivo CSV a SQL Server. **Transformación:** Se limpian, organizan y estructuran los datos para análisis.

Carga: Se insertan en tablas dimensionales y de hechos.

1.1 Extracción de Datos

Fuente de Datos: El archivo movilidad.csv contiene las siguientes columnas:

- fecha
- pais
- departamento
- parks_percent_change
- grocery_percent_change
- transit_percent_change

- workplaces_percent_change
- residential_percent_change

Creación de la Tabla Temporal para Importar Datos

```
CREATE TABLE MovilidadTemporal (
fecha DATE,
pais VARCHAR(50),
departamento VARCHAR(100),
parks FLOAT,
grocery FLOAT,
transit FLOAT,
workplaces FLOAT,
residential FLOAT
);
```

Importación de Datos desde el Archivo CSV

```
BULK INSERT MovilidadTemporal
FROM 'C:\ruta_del_archivo\movilidad.csv'
WITH (
FIELDTERMINATOR = ',',
ROWTERMINATOR = '\n',
FIRSTROW = 2
);
```

Este paso almacena los datos crudos antes de procesarlos.

1.2 Transformación de Datos

Antes de insertar los datos en las tablas finales, validamos la calidad de los datos.

Verificar valores nulos

SELECT * FROM MovilidadTemporal WHERE fecha IS NULL OR departamento IS NULL;

Identificar duplicados

```
SELECT fecha, departamento, COUNT(*)
FROM MovilidadTemporal
GROUP BY fecha, departamento
HAVING COUNT(*) > 1;
```

Revisar rangos de movilidad

SELECT MIN(parks) AS Min_Movilidad, MAX(parks) AS Max_Movilidad FROM MovilidadTemporal;

Cualquier dato incorrecto se corrige antes de la carga.

1.3 Creación del Modelo Dimensional

Para optimizar el análisis OLAP, organizamos los datos en un esquema dimensional.

Tablas de Dimensiones

```
CREATE TABLE DimTiempo (
 idTiempo INT PRIMARY KEY IDENTITY(1,1),
 fecha DATE NOT NULL,
 anio AS (YEAR(fecha)) PERSISTED,
 mes AS (MONTH(fecha)) PERSISTED,
 dia AS (DAY(fecha)) PERSISTED
);
CREATE TABLE DimUbicacion (
 idUbicacion INT PRIMARY KEY IDENTITY(1,1),
 pais VARCHAR(50) NOT NULL,
 departamento VARCHAR(100) NOT NULL
);
CREATE TABLE DimMovilidad (
 idCategoria INT PRIMARY KEY IDENTITY(1,1),
 tipoMovilidad VARCHAR(50) NOT NULL
);
Tabla de Hechos
CREATE TABLE HechosMovilidad (
 idHechosMovilidad INT PRIMARY KEY IDENTITY(1,1),
 idTiempo INT FOREIGN KEY REFERENCES DimTiempo(idTiempo),
 idUbicacion INT FOREIGN KEY REFERENCES DimUbicacion(idUbicacion),
 idCategoria INT FOREIGN KEY REFERENCES DimMovilidad(idCategoria),
 porcentajeCambio FLOAT NOT NULL
);
```

Este modelo facilita el análisis multidimensional.

1.4 Carga de Datos en Tablas Finales

Insertar registros en las dimensiones

INSERT INTO DimTiempo (fecha)
SELECT DISTINCT fecha FROM MovilidadTemporal;

INSERT INTO DimUbicacion (pais, departamento)
SELECT DISTINCT pais, departamento FROM MovilidadTemporal;

INSERT INTO DimMovilidad (tipoMovilidad) VALUES ('Parques'), ('Supermercados'), ('Transporte'), ('Trabajo'), ('Residencial');

Insertar registros en la tabla de hechos

INSERT INTO HechosMovilidad (idTiempo, idUbicacion, idCategoria, porcentajeCambio)
SELECT dt.idTiempo, du.idUbicacion, dm.idCategoria, mt.parks
FROM MovilidadTemporal mt
JOIN DimTiempo dt ON mt.fecha = dt.fecha
JOIN DimUbicacion du ON mt.pais = du.pais AND mt.departamento = du.departamento
JOIN DimMovilidad dm ON dm.tipoMovilidad = 'Parques';

Este paso consolida los datos en el esquema dimensional para análisis.

2. Creación del Cubo OLAP

En SQL Server Analysis Services (SSAS), configuramos un cubo multidimensional.

Pasos en SSAS

Crear un proyecto en SQL Server Data Tools (SSDT).

Definir el origen de datos (MovilidadElSalvador).

Agregar las tablas DimTiempo, DimUbicacion, DimMovilidad, HechosMovilidad. Configurar el cubo y seleccionar porcentajeCambio como medida principal.

Procesar el cubo OLAP.

3. Consultas en MDX para OLAP

consultas_OLAP_MDX.mdx

Comparación de movilidad por departamento

SELECT

[DimUbicacion].[Departamento].Members ON ROWS, [Measures].[PorcentajeCambio] ON COLUMNS FROM [CuboMovilidadSV];

Análisis de movilidad en parques

SELECT

[DimTiempo].[Mes].Members ON ROWS, [Measures].[PorcentajeCambio] ON COLUMNS FROM [CuboMovilidadSV] WHERE ([DimMovilidad].[TipoMovilidad].[Parques]);

4. Visualización de Datos

Las consultas pueden visualizarse en:

Power BI → Dashboards dinámicos con gráficos de movilidad. Excel (PivotTables) → Conexión con SSAS para reportes. Python (Matplotlib) → Gráficos personalizados en código.

Ejemplo en Python:

import pandas as pd import matplotlib.pyplot as plt

df = pd.read_sql("SELECT departamento, AVG(porcentajeCambio) AS movilidad FROM HechosMovilidad JOIN DimUbicacion ON HechosMovilidad.idUbicacion = DimUbicacion.idUbicacion GROUP BY departamento", conn)

plt.bar(df['departamento'], df['movilidad'])
plt.xlabel("Departamento")
plt.ylabel("Cambio de Movilidad (%)")
plt.title("Promedio de Movilidad por Departamento")
plt.xticks(rotation=45)
plt.show()