DERIVATION

OF

LAGRANGE INTERPOLATING POLYNOMIAI

Supervi

Lagrange Interpolation Devivalion. we have $f(x) = a_0 + a_1x + a_2x^2 \dots a_n x^n \rightarrow 0$ $\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0) - f(x_0)}{x_0 - x_0}$ can be rearranged as: $f_{1}(x) = f(x_{0}) + f(x_{1}) - f(x_{0}) + (x-x_{0}) \rightarrow (x-x_{0})$ The largrange outer polating polynomial can be derived directly from Newton's formulation. Here we are doning only for first order case. For example, the first divided difference $f[x_1,x_0] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \Rightarrow (f)$ can be regormulated as $xf(x_1,x_0) = \frac{f(x_1)}{x_1-x_0} + \frac{f(x_0)}{x_0-x_1} \longrightarrow B$

Which is referred to as the symmetric form. Substituting eq (B) into eq (D), we get: $f(x) = f(x_0) + \frac{\chi - \chi_0}{\chi_1 - \chi_0} f(x_1) + \frac{\chi - \chi_0}{\chi_0 - \chi_1} f(x_0)$ finally grouping similar terms and Simplifying yeids the Lagrange form $f_{1(x)} = \frac{\chi - \chi_{1}}{\chi_{1} - \chi_{0}} f(\chi_{0}) + \frac{\chi - \chi_{0}}{\chi_{1} - \chi_{0}} f(\chi_{1})$

The Lagrangian interpolating polynomial is given by

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

where n in $f_n(x)$ stands for the nth order polynomial that approximates the function y = f(x) given at n + 1 data points as $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)$, and

$$\underline{L}_{i}(x) = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

 $L_i(x)$ is a weighting function that includes a product of n-1 terms with terms of j=i omitted. The application of Lagrangian interpolation will be clarified using an example.