ECE2810J Data Structures and Algorithms

Graphs

Learning Objectives:

- Know some basics about graph
- Know how to represent graphs in computer

Graphs

- A graph is a set of nodes $V = \{v_1, v_2, ..., v_n\}$ and edges $E = \{e_1, e_2, ..., e_m\}$ that connects pairs of nodes.
 - Nodes also known as vertices.
 - ► Edges also known as arcs.

Two nodes are directly connected if there is an edge connecting them, e.g., v_1 and v_2 are directly connected, but not v_1 and v_3 .

Graphs

Directly connected nodes are adjacent to each other (e.g., v_1 and v_2), and one is the neighbor of the other.

The edge directly connecting two nodes are incident to the nodes, and the nodes incident to the edge.

Simple Graphs

 \triangleright Two nodes may be directly connected by more than one parallel edges, e.g., e_1 and e_2 .

- An edge connecting a node to itself is called a self-loop, e.g., e_4 .
- A simple graph is a graph without parallel edges and self-loops.
 - Unless otherwise specified, we will work only with simple graphs in this course.

Complete Graphs

▶ A complete graph is a graph where every pair of nodes is directly connected.

▶ How many edges are there in a complete graph of *N* nodes?

$$\text{Number of edges} = \frac{N \times (N-1)}{2}$$

Directed Graphs

Directed graph (digraph): edges are directional.

- Nodes incident to an edge form an ordered pair.
 - \triangleright e = (v_1 , v_2) means there is an edge from v_1 to v_2 . However, there is no edge from v_2 to v_1 .
- Examples: rivers and streams, one-way streets, provider-customer relationships.

Undirected Graphs

Undirected graph: all edges have no orientation.

- ▶ There is no ordering of nodes on edges.
 - \triangleright e = (v₁, v₂) means there is an edge between v₁ and v₂.
- Examples: friendship and two-way roads.

Paths

- \blacktriangleright A path is a series of nodes $v_1, ..., v_n$ that are connected by edges.
 - For a directed graph, if v_1 , ..., v_n is a path, then there is an edge from v_i to v_{i+1} for each i.

► For an undirected graph, if v_1 , ..., v_n is a path, then there is an edge between v_i and v_{i+1} for each i.

Simple Paths

- ► A simple path is a path with no node appearing twice
 - \triangleright e.g., v_1 , v_2 , v_3 is a simple path; v_1 , v_2 , v_3 , v_4 , v_2 is not.

Connected Graphs

- A connected graph is a graph where a simple path exists between all pairs of nodes.
- ▶ A directed graph is strongly connected if there is a simple directed path between any pair of nodes.

Connected Graphs

▶ A directed graph is **weakly connected** if there is a simple path between any pair of nodes in the underlying undirected graph.

The directed graph is weakly connected, but not strongly connected.

Node Degree

The degree of a node is the number of edges incident to the node, e.g., degree(v_2) = 3, degree(v_3) = 2.

- What is the relationship between the sum of degrees of all nodes and the number of edges?
 - Sum(degrees) = 2 * Number(edges)

Node Degree for Directed Graphs

- For directed graphs, we differentiate between incoming edges and outgoing edges of a node.
 Thus we differentiate between a node's in-degree and its out-degree.
 - ▶ in-degree: number of incoming edges of a node
 - out-degree: number of outgoing edges of a node

in-degree $(v_2) = 1$ out-degree $(v_2) = 2$

- Nodes with zero in-degree are source nodes, e.g., v₁.
- Nodes with zero out-degree are sink nodes, e.g., v_3 .
- What is the sum of in-degrees/out-degrees of all nodes?

Cycles and Directed Acyclic Graphs

- ► A cycle is a path starting and finishing at the same node.
 - ► A self-loop is a cycle of length 1.
 - A simple cycle has no repeated nodes, except the first and the last node, e.g., v_1 , v_2 , v_3 , v_1 .

- ► A graph with no cycle is called an acyclic graph.
- A directed graph with no cycles is called a directed acyclic graph, or DAG for short.

Directed Acyclic Graphs (DAG)

Are the following graphs DAGs?

Weighted Graphs

- Weighted graph: edges of a graph may have different costs or weights.
 - ▶ For example, the weights on edges represent the distance between two nodes.

Graph Size and Complexity

- The size of a graph and the complexity of a graph algorithms are usually defined in terms of
 - \triangleright number of edges |E|
 - ightharpoonup number of vertices |V|
 - or both
- Sparse graph: a graph with few edges.
 - \blacktriangleright $|E| \ll |V|^2$ or $|E| \approx \Theta(|V|)$
 - Example: tree
- Dense graph: a graph with many edges.
 - $|E| \approx \Theta(|V|^2)$
 - ► Example: complete graph

Linked Lists, Trees, and Graphs

Linked Lists, Trees, and Graphs

Graph Representation Adjacency Matrix

- ▶ Adjacency matrix: a $|V| \times |V|$ matrix representation of a graph.
- A(i,j) = 1, if (v_i, v_j) is an edge; otherwise A(i,j) = 0.

	1	2	3	4	5
1	0	1	1	0	0
2	1	0	0	1	0
3	1	0	0	1	0
4	0	1	1	0	1
5	0	0	0	1	0

Adjacency Matrix for Weighted Graph

▶ If (v_i, v_j) is an edge and its weight is w_{ij} , then $A(i,j) = w_{ij}$; otherwise $A(i,j) = \infty$.

	1	2	3	4	5
1	∞	4	2	∞	∞
2	∞	∞	∞	5	∞
3	∞	∞	∞	∞	∞
4	∞	∞	7	∞	3
5	∞	∞	∞	∞	∞

Question: why not use 0 to represent a missing edge?

Adjacency Matrix Properties

- Space complexity: $|V|^2$ units
 - For an undirected graph, may store only the lower or upper triangle. Thus, (|V|-1)|V|/2 units.
- Nhat is the time complexity for finding if node v_i is adjacent to node v_i ?
 - **▶** 0(1)
- \blacktriangleright What is the time complexity for finding <u>all</u> nodes adjacent to a given node v_i ?
 - **▶** 0(|V|)

Graph Representation Adjacency List

- Adjacency list: an array of |V| linked lists.
 - ► Each array element represents a node and its linked list represents the node's neighbors.

Graph Representation

Adjacency List

- Each edge in an undirected graph is represented twice.
 - ► Each edge is treated as bidirectional.

- ▶ Each edge in a directed graph is represented once.
- Weighted graph stores edge weight in linked-list node.

Adjacency List

Properties

What is the space complexity?

$$O(|E| + |V|)$$

- What is the worst case time complexity for checking if node v_i is adjacent to node v_j ?
- What is the worst case time complexity for finding all nodes adjacent to a given node v_i ?

O(|V|)

O(|V|)

Comparison of Graph Representation

- Worst case time complexity for two common operations:
- 1. Determine whether v_i is adjacent to v_i
 - Adjacency matrix: O(1); Adjacency list: O(|V|)
- 2. Determine all the nodes adjacent to v_i
 - **b** Both adjacency matrix and adjacency list: O(|V|)
- Adjacency list often requires less space than adjacency matrix.
- Dense graphs are more efficiently represented as adjacency matrices and sparse graphs as adjacency lists.

Sample Graph Problems

- Path finding problems
 - ▶ Find if there exists a path between two given nodes.
 - Find the shortest path between two given nodes.
- Connectedness problems
 - Find if the graph is a connected graph.

Exercise 1

Problem 997. Find the Town Judge

Exercise 2

Problem 1791. Find Center of Star Graph

Dynamic Programming 471 Math 463 Greedy € Expand × Array 1502 String 644 Hash Table 522 Sorting 349 冒 All Topics Algorithms Database pandas (§) JavaScript \$> Shell Lists Difficulty ~ Status V Tags Q 997 **(6)** Pick One 997 🔞 S Reset Title Status Solution Acceptance Difficulty Frequency 2391. Minimum Amount of Time to Collect G... Medium 85.6% **₽** 997. Find the Town Judge 49.2% 1 50 / page ~