Tutorial-2

- 1. An amplifier has a gain of 50dB. Bandwidth of 250KHz, distortion of 12%, input impedance of $30K\Omega$ and an output impedance of $2K\Omega$. If the voltage series negative feedback of 2.9% is given to this amplifier, calculate the gain, input impedance, output impedance, bandwidth and distortion of the amplifier with negative feedback.
- 2. In the voltage follower circuit, op amp used is ideal in all respects, except it has a finite gain, A. Determine v_o/v_{in} . If A is equal to 1000, calculate the error of the gain from that of the voltage follower with an ideal op amp.
- 3. Draw the summer circuits, using two ideal op amps, and calculate the different resistor values to obtain a) $v_0 = 2v_1-4v_2+6v_3$ b) $v_0 = v_1+3v_2+5v_3-7v_4-9v_5-11v_6$, where v_1,v_2,v_3,v_4,v_5 and v_6 are the available inputs.
- 4. The output signal of an op amp with a slew rate of $2.5V/\mu s$, has a peak to peak value of 18V. Find the maximum frequency for undistorted output voltage.
- 5. An op amp has a differential gain of 2×10^4 and a CMRR of 86dB. Determine the output, if the differential input is $10\mu V$ and the common mode input is 10mV.
- 6. In the following circuits of figs, determine the output voltage, v_o. Assume the op amps to be ideal.

