

Algèbre linéaire et analyse 1

(HLMA101 - Année universitaire 2020-2021)

Feuille d'exercices Nº10

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. Soit f une fonction dérivable. Vrai ou faux?

- (a) Si f' > 0 alors f est strictement croissante.
- (b) Si f est strictement croissante, alors f' > 0.

Question 2. Les assertions suivantes sont-elles vraies pour toute fonction f de [0,1] dans \mathbb{R} , continue sur [0,1], dérivable sur [0,1], et vérifiant f(0) = 0 et f(1) = 1?

- (a) $\forall x \in]0, 1[, |f'(x)| \le 1;$
- (b) $\exists x \in]0, 1[, |f'(x)| \le 1;$
- (c) $\exists x \in]0, 1[, f'(x) = 1.$

2. Travaux dirigés

Exercice 1. Trouver des réels a et b de manière à ce que la fonction f définie sur \mathbb{R}_+ par $f(x) = \sqrt{x}$ si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ si x > 1 soit dérivable sur \mathbb{R}_+^* .

Exercice 2 (d'après Examen 2ème session, 2014-2015, remanié). On pose $f(x) = \frac{\sin(x)}{\sqrt{|x|}}$ pour tout $x \neq 0$.

- (a) Déduire de la dérivabilité du sinus que $\lim_{\substack{x\to 0\\x\neq 0}} \frac{\sin(x)}{x} = 1$, puis que f a une limite nulle en 0.
- (b) Démontrer que f est dérivable sur son domaine de définition et calculer sa dérivée.
- (c) On appelle h la fonction définie sur \mathbb{R} obtenue en prolongeant f par h(0)=0. Montrer que h n'est pas dérivable en 0.

Exercice 3. Déterminer le nombre de solutions réelles de l'équation $e^x - 2x - 1 = 0$.

Exercice 4 (d'après Examen 1ère session 2017-2018, simplifié). Soit une fonction $h : \mathbb{R} \to \mathbb{R}$ à valeurs strictement positives. On suppose que $\lim_{x \to +\infty} h(x) e^{h(x)} = e$, et l'objectif de cet exercice est de montrer que $\lim_{x \to +\infty} h(x)$ existe et vaut 1.

- (a) Soit $k:[0,+\infty[\to\mathbb{R}$ la fonction définie par $k(x)=xe^x$ pour tout $x\in[0,+\infty[$. Montrer que k est une bijection continue et de réciproque continue de $[0,+\infty[$ dans lui-même.
- (b) En déduire que $\lim_{x\to +\infty} h(x)$ existe et vaut 1.

Exercice 5. On pose $f(x) = x \ln(x) - x$ pour tout x > 0 et f(0) = 0.

- (a) Étudier sa continuité, sa dérivabilité et dresser son tableau de variations.
- (b) Montrer que f réalise une bijection de $[1, +\infty[$ dans $[-1, +\infty[$.
- (c) Si g est la réciproque de cette bijection, calculer g(0) et g'(0).

Exercice 6. En utilisant les accroissements finis, montrer que $\sqrt{1+x} < 1+x/2$ pour tout x > 0.

Exercice 7. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue. On suppose que f est dérivable sur \mathbb{R}^* et que f' a une limite ℓ en 0. Montrer que f est dérivable en 0 et que $f'(0) = \ell$.

3. Révisions et approfondissement

Exercice 8. Soient f, g, h trois fonctions définies et dérivables sur \mathbb{R} : quelle est la dérivée de fgh? De $f \circ g \circ h$?

Exercice 9 (d'après Examen 1ère session 2017-2018). Soit g la fonction définie par $g(x) = \sqrt[3]{x^3 + 1}$ si $x \ge -1$ et $g(x) = \arccos\left(\frac{1}{x}\right) - \pi$ si x < -1.

- (a) Montrer que g est définie et continue sur \mathbb{R} .
- (b) Déterminer les limites en $\pm \infty$ de g.
- (c) Montrer que g est dérivable sur $\mathbb{R} \setminus \{-1\}$ et calculer sa dérivée.
- (d) La fonction g est-elle dérivable en -1?

Exercice 10. Soit f la fonction définie par $f(x) = \frac{1}{\sin(x)}$; montrer que f définit une bijection de $[\frac{\pi}{2}, \pi[$ dans $[1, +\infty[$ et exprimer f^{-1} à l'aide de la fonction arcsin.

Exercice 11. Soit $a \in \mathbb{R}$ et f_a la fonction définie par $f_a(x) = a + \frac{x}{2(x^2+1)}$

- (a) Étudier les variations de f_a et montrer qu'il existe un unique réel x tel que $f_a(x) = x$ (point fixe de f_a).
- (b) On suppose à partir de maintenant que a>0 et on note $\varphi(a)$ le point fixe de f_a ; montrer que $\varphi(a)>a$.
- (c) Montrer que $0 < f_a(x) a < \frac{1}{2x}$ pour tout x > 0 et en déduire que $a < \varphi(a) < a + \frac{1}{2a}$ pour tout a > 0.

Défi. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable et bornée. Montrer que f'' s'annule au moins une fois.