TENG Gait Sensor Dataset for Machine Learning Classification

Quick Summary

Item	Details	
Dataset Name	TENG Gait Sensor Data (Oscilloscope + ADC)	
Total Subjects	12 (S01-S08: new data, S09-S12: previous healthy baseline)	
Activities	Stand, Walk, Run, Jump (84 recordings total)	
Sensors	1x TENG sensor (copper/PTFE) in shoe insole	
Data Sources	Oscilloscope (primary), ESP32 ADC (validation)	
Labels	QOM (Quality of Movement): 1-10 scale + Demographics	
Format	CSV (time-series voltage/current signals)	
Collection Date	October 2025	
Purpose	Multiclass gait classification + QOM regression + Bio-authentication	
4	•	

© Research Goals

Primary Objectives:

- 1. Activity Classification: Detect gait states (stand/walk/run/jump) using single TENG sensor
- 2. **QOM Assessment**: Predict movement quality (1-10 scale) from gait patterns
- 3. **Bio-authentication**: Predict user weight from stride patterns (novel feature)

Expected Outcomes:

- Activity classification accuracy: 95-98% (RF/XGBoost)
- QOM regression MAE: <1.5/10 (XGBoost)
- Weight prediction MAE: <8 kg (RF)
- Feature importance analysis showing demographics matter

Dataset Structure

```
| S01JUMP.csv | S01JUMP01.csv | S02STAND.csv | S02STAND.csv | S02STAND.csv | S02STAND.csv | S02STAND.csv | S02STAND.csv | S01STAND_ADC.csv | Time-series: Time(s), ADC_Value(0-4095) | S01WALK_ADC.csv | S01WALK_ADC.csv | S01WALK_ADC.csv | S01WALK_ADC.csv | Materials total) | C0M/ CABELS & METADATA | Gait_labels_qom.csv | Master labels file | README.md | This file
```

II Data Description

1. Primary Data: Oscilloscope Recordings ((User_Data_Labelled/))

File naming convention:

```
S[01-12][ACTIVITY][TRIAL].csv

Examples:
- S01STAND.csv → Subject 1, Standing, Trial 1
- S01WALK.csv → Subject 1, Walking, Trial 1
- S01WALK01.csv → Subject 1, Walking, Trial 2
- S01RUN.csv → Subject 1, Running, Trial 1
- S01JUMP01.csv → Subject 1, Jumping, Trial 2
```

CSV Format:

```
Time(s), Voltage(V)
0.000, 0.05
0.010, 0.12
0.020, 0.45
0.030, 0.68
...
```

Signal Characteristics:

- Sampling rate: ~100-200 Hz
- **Duration**: ~30 seconds per recording

- Amplitude range: 0-80V (open-circuit voltage from TENG)
- Frequency content: 0.5-5 Hz (gait frequencies)
- Noise level: Moderate (50 Hz powerline + contact noise)

Data Quality Notes:

- Stand: Low amplitude, near-zero signal (minimal foot movement)
- Walk: Periodic peaks (~1-2 Hz stride frequency)
- Run: Higher amplitude, faster frequency (~2-3 Hz)
- Jump: High amplitude spikes, variable repetition rate

2. Validation Data: ESP32 ADC Recordings ((ADC User Data Labelled ref/))

Purpose: Verify oscilloscope findings with portable ADC system

File naming: Same as primary data with ADC suffix

CSV Format:

Time(s), ADC_Value
0.000, 512
0.010, 1024
0.020, 2048
...

ADC Characteristics:

• **Resolution**: 12-bit (0-4095)

• Reference voltage: 3.3V

• Conversion: ADC_Value = (Voltage / 3.3V) × 4095

• Sampling rate: ~100 Hz

Use Case:

- Compare with oscilloscope for signal fidelity
- Demonstrate portability (thesis Section 4.2)
- NOT primary data for ML training

3. Labels & Metadata (QOM/gait_labels_qom.csv))

Master labels file with all subject information and ratings.

CSV Format:

```
csv
subject_id,height_cm,weight_kg,gender,activity,trial,qom,file_path
S01,175,70,M,stand,1,8,S01STAND.csv
S01,175,70,M,walk,1,7,S01WALK.csv
S01,175,70,M,walk,2,7,S01WALK01.csv
```

Column Descriptions:

Column	Туре	Description	Example
subject_id	String	Subject identifier	S01, S02, S12
height_cm	Integer	Height in centimeters	175
weight_kg	Integer	Weight in kilograms	70
gender	String	Gender (M/F)	M
activity	String	Activity type	stand, walk, run, jump
trial	Integer	Trial number (1 or 2)	1
qom	Integer	Quality of Movement (1-10 scale)	7
file_path	String	Corresponding data file	S01STAND.csv
4	•	•	>

QOM Rating Scale:

```
1-3: POOR
                - Obvious gait abnormalities
4-6: NEEDS ATTENTION - Moderate quality, monitor
7-10: GOOD
                 - Normal/excellent gait patterns
```

Subject Groups:

- S01-S08: Newly collected data (varied QOM ratings)
- **S09-S12**: Previous baseline data (healthy subjects, QOM=8)

Data Collection Protocol

Hardware Setup:

- 1. **TENG Sensor**: Copper/PTFE triboelectric layers (6 layers stacked)
- 2. **Placement**: Front of shoe insole (captures heel strike + push-off)

- 3. Signal conditioning: $10M\Omega$ series resistor, Butterworth low-pass filter
- 4. Acquisition:
 - Primary: Rigol RTB2004 oscilloscope (high precision)
 - Validation: ESP32 12-bit ADC (portable system)

Data Collection:

- Environment: Indoor laboratory, flat surface
- **Instructions**: "Perform [activity] naturally for ~30 seconds"
- Activities:
 - Stand: Static standing, minimal movement
 - Walk: Normal walking pace (~1-2 steps/sec)
 - Run: Jogging pace (~2-3 steps/sec)
 - Jump: Vertical jumps, 10 repetitions × 2 trials
- Repetitions: 1-2 trials per activity per subject
- Total duration: ~7 min per subject (including setup)

QOM Rating Methodology:

- Rater: Researcher with sports background (athlete-level assessment)
- Criteria: Visual observation of:
 - Stride symmetry (left vs right)
 - Balance and stability
 - Movement smoothness
 - Landing technique (for jump)
 - Gait pattern consistency
- Confidence: High for stand/walk, medium for run/jump
- Validation: To be cross-checked by physiotherapist (ground truth)

Machine Learning Pipeline

Recommended Workflow:

Step 1: Feature Extraction

Extract from each CSV file:

Time-Domain Features:

Peak-to-peak range RMS (root mean square) Signal energy Zero-crossing rate Stride duration (peak-to-peak time) Number of peaks (stride count) Frequency-Domain Features: Dominant frequency (FFT) Power spectral density Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis Zith/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes)	 Peak amplitude (max voltage) 	
 Signal energy Zero-crossing rate Stride duration (peak-to-peak time) Number of peaks (stride count) Frequency-Domain Features: Dominant frequency (FFT) Power spectral density Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Peak-to-peak range	
 Zero-crossing rate Stride duration (peak-to-peak time) Number of peaks (stride count) Frequency-Domain Features: Dominant frequency (FFT) Power spectral density Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• RMS (root mean square)	
 Stride duration (peak-to-peak time) Number of peaks (stride count) Frequency-Domain Features: Dominant frequency (FFT) Power spectral density Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Signal energy	
 Number of peaks (stride count) Frequency-Domain Features: Dominant frequency (FFT) Power spectral density Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Zero-crossing rate	
Frequency-Domain Features: Dominant frequency (FFT) Power spectral density Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes)	• Stride duration (peak-to-peak time)	
 Dominant frequency (FFT) Power spectral density Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Number of peaks (stride count)	
 Power spectral density Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes)	Frequency-Domain Features:	
 Spectral entropy Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Dominant frequency (FFT)	
 Frequency bandwidth Statistical Features: Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Power spectral density	
Statistical Features: • Mean, median, std • Skewness, kurtosis • 25th/75th percentiles Demographic Features: • Height (cm) • Weight (kg) • BMI = weight / (height/100)² • Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes)	Spectral entropy	
 Mean, median, std Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	 Frequency bandwidth 	
 Skewness, kurtosis 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	Statistical Features:	
 25th/75th percentiles Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Mean, median, std	
 Demographic Features: Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Skewness, kurtosis	
 Height (cm) Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• 25th/75th percentiles	
 Weight (kg) BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	Demographic Features:	
 BMI = weight / (height/100)² Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes) 	• Height (cm)	
• Gender (encoded as 0/1) Step 2: Model Training Task A: Activity Classification (4 classes)	• Weight (kg)	
Step 2: Model Training Task A: Activity Classification (4 classes)	• BMI = weight / $(height/100)^2$	
Task A: Activity Classification (4 classes)	• Gender (encoded as 0/1)	
	Step 2: Model Training	
python	Task A: Activity Classification (4 classes)	
	python	

```
# Target: activity (stand/walk/run/jump)

# Models: Random Forest + XGBoost

# Expected accuracy: 95-98%

from sklearn.ensemble import RandomForestClassifier

from xgboost import XGBClassifier

X = features # Extracted features
y = labels['activity']

rf_model = RandomForestClassifier(n_estimators=200)
xgb_model = XGBClassifier(n_estimators=200)

# Train, evaluate, compare
```

Task B: QOM Regression (1-10 scale)

```
python
# Target: qom (movement quality)
# Model: XGBoost Regressor
# Expected MAE: <1.5/10

from xgboost import XGBRegressor

X = features
y = labels['qom']

qom_model = XGBRegressor(n_estimators=100, max_depth=4)</pre>
```

Task C: Weight Prediction (Bio-auth)

```
python

# Target: weight_kg (for user identification)

# Model: Random Forest Regressor

# Expected MAE: <8 kg

from sklearn.ensemble import RandomForestRegressor

X = features # Gait features only
y = labels['weight_kg']

weight_model = RandomForestRegressor(n_estimators=200)</pre>
```

Step 3: Evaluation

- Activity: Confusion matrix, F1-score per class
- QOM: MAE, R², prediction scatter plot
- Weight: MAE, feature importance (stride duration matters most)

Expected Results (Reference)

Based on TENG gait paper (Li et al., 2023, Nano Energy):

Task	Metric	Expected	Notes
Activity Classification	Accuracy	95-98%	Stand easiest, run/jump harder
QOM Regression	MAE	0.8-1.5/10	Demographics improve accuracy
Weight Prediction	MAE	5-10 kg	Novel bio-auth feature
✓	•		·

Feature Importance (Predicted):

1. Stride duration: ~18% (temporal)

2. Peak amplitude: ~14% (intensity)

3. Weight: ~12% (demographics)

4. Height/BMI: ~10% (demographics)

5. Dominant frequency: ~9% (spectral)

🚹 Known Limitations

1. Sample size: 12 subjects (small, need 50+ for clinical validity)

2. **Demographics**: Mostly healthy young adults (limited variability)

3. Single sensor: Paper uses 8 sensors (more spatial info)

4. **QOM rating**: Single rater (needs physiotherapist validation)

5. **Environment**: Controlled lab (real-world deployment untested)

6. Activities: Only 4 classes (missing stairs, sit-to-stand, etc.)

Mitigation strategies (discuss in thesis):

- Cross-validation for robust evaluation
- Compare with TENG paper (8-sensor system)
- Acknowledge as pilot study, future: clinical population
- Plan physiotherapist review for ground truth

1. Load Data

```
python
import pandas as pd
import glob

# Load all oscilloscope CSVs
data_files = glob.glob('User_Data_Labelled/*.csv')
signals = {f: pd.read_csv(f) for f in data_files}

# Load labels
labels = pd.read_csv('QOM/gait_labels_qom.csv')
```

2. Extract Features

```
python

def extract_features(signal_df):
    """Extract features from voltage-time signal"""
    voltage = signal_df['Voltage(V)'].values
    time = signal_df['Time(s)'].values

features = {
        'peak_amplitude': voltage.max(),
        'rms': np.sqrt(np.mean(voltage**2)),
        'energy': np.sum(voltage**2),
        #... add more features
    }
    return features

# Extract for all files
feature_df = pd.DataFrame([extract_features(signals[f]) for f in data_files])
```

3. Train Model

python python

```
from sklearn.ensemble import RandomForestClassifier

X = feature_df
y = labels['activity']

model = RandomForestClassifier(n_estimators=200)
model.fit(X_train, y_train)

accuracy = model.score(X_test, y_test)
print(f''Accuracy: {accuracy*100:.1f}%'')
```

📊 Data Visualization

See (plot_sample_signals.png) for example voltage-time plots showing signal characteristics for each activity.

Key observations:

- Stand: Near-zero signal, slight drift
- Walk: Periodic peaks at ~1-2 Hz (stride frequency)
- Run: Higher amplitude, faster frequency (~2-3 Hz)
- Jump: Sharp high-amplitude spikes, irregular timing

References

- 1. **TENG Gait Paper**: Li et al. (2023). "A triboelectric gait sensor system for human activity recognition and user identification." *Nano Energy*, 112, 108473.
 - Their system: 8 sensors, 97.9% activity accuracy, 99.4% user ID accuracy
 - Our system: 1 sensor (simpler, lower cost)

2. Similar Work:

- Lin et al. (2019): TENG insole for gait monitoring
- Zhang et al. (2020): TENG smart socks with deep learning

Contact & Support

Dataset Creator: [Your Name] Institution: M.Sc ESE, University of Freiburg Date: October 2025

Questions?

- Dataset issues: [Your Email]
- ML pipeline: See (gait analysis.py) in package

• Feature extraction: See example code above

Data Quality Checklist

Before using this dataset, verify:

All 84 oscilloscope CSV files present in (User_Data_Labelled/)

All 84 ADC CSV files present in (ADC_User_Data_Labelled_ref/)

gait labels qom.csv has 84 rows (excluding header)

No missing values in height/weight columns (except S02-S08 if not filled)

QOM ratings present for all recordings

CSV files load without errors

■ Signal amplitude reasonable (0-80V for oscilloscope, 0-4095 for ADC)

Data Validation Script: See (validate_dataset.py) in package

Thesis Integration

How to use this dataset in your thesis:

Chapter 3 (Methodology):

- Section 3.1: TENG sensor design (cite Li et al. paper)
- Section 3.2: Data collection protocol (use this README)
- Section 3.3: Signal processing pipeline
- Section 3.4: QOM rating methodology

Chapter 4 (Results):

- Section 4.1: Activity classification (RF vs XGBoost comparison)
- Section 4.2: QOM regression (MAE, R², feature importance)
- Section 4.3: Weight prediction (novel bio-auth feature)
- Section 4.4: Confusion matrices, error analysis

Chapter 5 (Discussion):

- Compare 1-sensor vs 8-sensor system (Li et al.)
- Discuss demographic features importance
- Limitations: sample size, single rater, healthy subjects
- Future work: clinical validation, more sensors, real-world deployment

Version: 1.0 (October 26, 2025)

Last Updated: October 26, 2025

What's in the ZIP?

```
User_Gait_Data_Master.zip

— User_Data_Labelled/ (84 oscilloscope CSVs)

— ADC_User_Data_Labelled_ref/ (84 ADC CSVs)

— QOM/

— gait_labels_qom.csv

— README.md (this file)

— plot_sample_signals.png (visualization)

— validate_dataset.py (data check script)

— gait_analysis.py (ML pipeline starter)
```

Ready to use! Unzip, validate, and start training your models. 🖋