પ્રશ્ન 1(અ) [3 ગુણ]

C લેંગ્વેજના કોઈ પણ છ કીવર્ડ લખો.

જવાબ:

કોષ્ટક: C લેંગ્વેજના છ કીવર્ડ

รใ น ร์	ઉપયોગ	
int	પૂર્ણાંક ડેટા પ્રકાર	
float	અપૂર્ણાંક ડેટા પ્રકાર	
if	શરતી નિવેદન	
while	લૂપ સ્ટ્રક્યર	
return	ફંક્શનમાંથી મૂલ્ય પાછું મેળવવા માટે	
void	ખાલી રિટર્ન પ્રકાર દર્શાવવા	

ਮੇਮਰੀ ਟ੍ਰੀs: "I Feel When Running Very Ill" (int, float, while, return, void, if)

પ્રશ્ન 1(બ) [4 ગુણ]

વેરિયેબલની વ્યાખ્યા લખો. C પ્રોગ્રામિંગમાં વેરિયેબલના નામ માટેના નિયમો લખો.

જવાબ:

વેરિયેબલ: એક નામાંકિત મેમરી સ્થાન જેનો ઉપયોગ પ્રોગ્રામના અમલ દરમિયાન સુધારી શકાય તેવા ડેટાને સંગ્રહિત કરવા માટે થાય છે.

કોષ્ટક: C માં વેરિયેબલના નામકરણના નિયમો

નિયમ	ઉદાહરણ
અક્ષર/અંડરસ્કોરથી શરૂ થવું જોઈએ	name, _value
અક્ષરો, અંકો, અંડરસ્કોર સમાવી શકે	user_1, count99
ખાલી જગ્યા કે વિશેષ અક્ષરો ન હોવા જોઈએ	✓: total_sum, X: total-sum
કેસ સેન્સિટિવ છે	Name ≠ name
રિઝર્વ કીવર્ડ્સનો ઉપયોગ ન કરી શકાય	🗴: int, while
મહત્તમ 31 અક્ષરો (સ્ટાન્ડર્ડ)	studentRegistrationNumber

મેમરી ટ્રીક: "Letters Lead, No Special Keys" (અક્ષરથી શરૂ, વિશેષ અક્ષરો નહીં, કીવર્ડ્સ નહીં)

પ્રશ્ન 1(ક) [7 ગુણ]

ફ્લોચાર્ટની વ્યાખ્યા લખો. ફ્લોચાર્ટના સિમ્બોલ દોરો અને સમજાવો. નીચેના સમીકરણનો ઉપયોગ કરીને સિમ્પલ ઇન્ટરેસ્ટની ગણતરી કરવા માટેનો પ્રોગ્રામ લખો. I=PRN/100 જ્યાં P=પ્રિન્સીપલ રકમ, R= વ્યાજનો દર અને N= સમયગાળો.

જવાબ:

ફ્લોચાર્ટ: એક પ્રશ્નનો ઉકેલ કરવા માટે જરૂરી ક્રમિક ઓપરેશન્સને દર્શાવવા માટે પ્રમાણભૂત પ્રતીકોનો ઉપયોગ કરીને અલ્ગોરિધમની ગ્રાફિકલ રજૂઆત.

કોષ્ટક: ફ્લોચાર્ટ સિમ્બોલ

સિમ્બોલ	નામ	ઉપયોગ
	ટર્મિનલ	શરૂઆત/અંત
	પ્રોસેસ	ગણતરી
	ઈનપુટ/આઉટપુટ	ડેટા વાંચવો/દર્શાવવો
	નિર્ણય	શરતો
	ફ્લો લાઈન	ક્રમ બતાવે છે

સિમ્પલ ઇન્ટરેસ્ટનું ફ્લોચાર્ટ:

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
{
    float p, r, n, i;

    printf("Enter principal amount: ");
    scanf("%f", &p);

    printf("Enter rate of interest: ");
    scanf("%f", &r);

    printf("Enter time period in years: ");
    scanf("%f", &n);

    i = (p * r * n) / 100;

    printf("Simple Interest = %.2f", i);
}
```

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Please Return Nice Interest" (Principal, Rate, Number of years, Interest)

પ્રશ્ન 1(ક) OR [7 ગુણ]

અલગોરિદ્યમની વ્યાખ્યા લખો. સિલિન્ડરનું ઘનફળ શોધવા માટેનું અલગોરિદ્યમ લખો. યુઝર પાસેથી સિલિન્ડરની ત્રિજ્યા(R) અને ઊંચાઈ(H) ઈનપુટ લઇ સિલિન્ડરના વોલ્યુમ(V)ની ગણતરી નીચેના સમીકરણનો ઉપયોગ કરીને પ્રિન્ટ કરવા માટેનો પ્રોગ્રામ લખો. V=πR²H

જવાબ:

અલગોરિદ્યમ: મર્યાદિત સમયમાં કોઈ સમસ્યાનો ઉકેલ કરવા માટેની પગલાવાર પ્રક્રિયા.

સિલિન્ડરના ઘનફળ માટેનું અલગોરિધમ:

- 1. શરૂ કરો
- 2. ત્રિજ્યા (R) અને ઊંચાઈ (H) ઇનપુટ લો
- 3. $V = \pi \times R^2 \times H$ સૂત્રનો ઉપયોગ કરીને ઘનફળની ગણતરી કરો
- 4. ઘનફળ પ્રદર્શિત કરો
- 5. સમાપ્ત

ડાયગ્રામ: સિલિન્ડર

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
{
    float radius, height, volume;
    float pi = 3.14159;

    printf("Enter radius of cylinder: ");
    scanf("%f", &radius);

    printf("Enter height of cylinder: ");
    scanf("%f", &height);

    volume = pi * radius * radius * height;

    printf("Volume of cylinder = %.2f", volume);
}
```

મેમરી ટ્રીક: "Round Hat Volume" (Radius, Height, Volume)

પ્રશ્ન 2(અ) [3 ગુણ]

C પ્રોગ્રામિંગ ભાષામાં સપોર્ટ કરતા વિવિદ્ય ઓપરેટરોની યાદી બનાવો.

જવાબ:

કોષ્ટક: C પ્રોગ્રામિંગમાં ઓપરેટર્સ

ઓપરેટર પ્રકાર	ઉદાહરણો	ઉપયોગ
એરિથમેટિક	+, -, *, /, %	ગાણિતિક ઓપરેશન્સ
રિલેશનલ	<, >, ==, !=, <=, >=	મૂલ્યોની સરખામણી
લોજીકલ	&&, ,!	શરતોને જોડવા
એસાઇનમેન્ટ	=, +=, -=, *=, /=	મૂલ્યો આપવા
ઇનક્રિમેન્ટ/ડિક્રિમેન્ટ	++,	1 વધારવું/ઘટાડવું
બિટવાઇઝ	&, , ^, ~, <<, >>	બિટ મેનિપ્યુલેશન
કન્ડિશનલ	?:	ટૂંકા if-else

મેમરી ટ્રીક: "All Relationships Lead Ancestors Incrementally Beyond Conditions" (દરેક પ્રકારનો પ્રથમ અક્ષર)

પ્રશ્ન 2(બ) [4 ગુણ]

1 થી 50 નો સરવાળો અને સરેરાશ પ્રિન્ટ કરવા માટેનો પ્રોગ્રામ લખો.

જવાબ:

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
{
    int i, sum = 0;
    float avg;

    for(i = 1; i <= 50; i++)
    {
        sum = sum + i;
    }

    avg = (float)sum / 50;

    printf("Sum of numbers from 1 to 50 = %d\n", sum);
    printf("Average of numbers from 1 to 50 = %.2f", avg);
}</pre>
```

પ્રક્રિયા ડાયગ્રામ:

મેમરી ટ્રીક: "Summing And Dividing" (Sum, Average, Division)

પ્રશ્ન 2(ક) [7 ગુણ]

એરીથમેટીક અને રિલેશનલ ઓપરેટર ઉદાહરણ સાથે સમજાવો.

જવાબ:

એરિથમેટિક ઓપરેટર્સ:

કોષ્ટક: C માં એરિથમેટિક ઓપરેટર

ઓપરેટર	ઓપરેશન	ઉદાહરણ	પરિણામ
+	સરવાળો	5 + 3	8
-	બાદબાકી	7 - 2	5
*	ગુણાકાર	4 * 3	12
/	ભાગાકાર	8 / 4	2
%	મોક્યુલસ (બાકી)	7 % 3	1

રિલેશનલ ઓપરેટર્સ:

કોષ્ટક: C માં રિલેશનલ ઓપરેટર

ઓપરેટર	અર્થ	ઉદાહરણ	પરિણામ
<	કરતાં ઓછું	5 < 8	1 (સાથું)
>	કરતાં વધુ	9 > 3	1 (સાચું)
==	બરાબર	4 == 4	1 (સાથું)
!=	અસમાન	7 != 3	1 (સાથું)
<=	કરતાં ઓછું અથવા બરાબર	4 <= 4	1 (સાથું)
>=	કરતાં વધુ અથવા બરાબર	6 >= 9	0 (ખોટું)

કોડ ઉદાહરણ:

```
#include <stdio.h>
void main()
{
  int a = 10, b = 5;
```

```
// એરિથમેટિક ઓપરેટર્સ

printf("a + b = %d\n", a + b); // 15

printf("a - b = %d\n", a - b); // 5

printf("a * b = %d\n", a * b); // 50

printf("a / b = %d\n", a / b); // 2

printf("a %% b = %d\n", a % b); // 0

// રિલેશનલ ઓપરેટર્સ

printf("a < b: %d\n", a < b); // 0 (ખોટું)

printf("a > b: %d\n", a > b); // 1 (સાચું)

printf("a == b: %d\n", a == b); // 0 (ખોટું)

printf("a != b: %d\n", a != b); // 1 (સાચું)

}
```

મેમરી ટ્રીક: "Add Subtract Multiply Divide Remainder" (એરિથમેટિક), "Less Greater Equal Not" (રિલેશનલ)

પ્રશ્ન 2(અ) OR [3 ગુણ]

gets(S) અને scanf("%s",S) ફંક્શન વચ્ચેનો તફાવત લખો જ્યાં S સ્ટ્રીંગ છે.

જવાબ:

કોષ્ટક: gets(S) અને scanf("%s",S) વચ્ચેનો તફાવત

લક્ષણ	gets(S)	scanf("%s",S)
સ્પેસ હેન્ડલિંગ	શબ્દો વચ્ચે સ્પેસ વાંચે છે	સ્પેસ પર વાંચવાનું બંધ કરે છે
ઇનપુટ સમાપ્તિ	ન્યૂલાઇન પર સમાપ્ત થાય છે	વ્હાઇટસ્પેસ પર સમાપ્ત થાય છે
બફર ઓવરફ્લો	અસુરક્ષિત, લંબાઈ ચકાસણી નથી	વિડ્થ લિમિટ સાથે સુરક્ષિત
ઉદાહરણ વર્વન	"Hello World" → "Hello World"	"Hello World" → "Hello"
સુરક્ષા	ઓવરફલો જોખમને કારણે અવમૂલ્યિત	વિડ્થ સ્પેસિફાયર સાથે વધુ સારું

મેમરી ટ્રીક: "Gets Spaces, Scanf Stops" (gets સ્પેસ વાંચે છે, scanf સ્પેસ પર અટકે છે)

પ્રશ્ન 2(બ) OR [4 ગુણ]

બે સંખ્યાની અદલાબદલી કરવાનો પ્રોગ્રામ લખો.

જવાબ:

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
{
  int a, b, temp;
```

```
printf("Enter value of a: ");
scanf("%d", &a);

printf("Enter value of b: ");
scanf("%d", &b);

printf("Before swapping: a = %d, b = %d\n", a, b);

// ટેમ્પ વેરિયેબલનો ઉપયોગ કરીને અદલાબદલી
temp = a;
a = b;
b = temp;

printf("After swapping: a = %d, b = %d", a, b);
}
```

અદલાબદલી ડાયગ્રામ:

મેમરી ટ્રીક: "Temporary Assists Swapping" (ટેમ્પ વેરિયેબલ અદલાબદલી માટે મદદ કરે છે)

પ્રશ્ન 2(ક) OR [7 ગુણ]

લોજીકલ ઓપરેટર અને બીટ-વાઈસ ઓપરેટર ઉદાહરણ સાથે સમજાવો.

જવાબ:

લોજીકલ ઓપરેટર્સ:

કોષ્ટક: C માં લોજીકલ ઓપરેટર

ઓપરેટર	વર્ણન	ઉદાહરણ	પરિણામ
&&	લોજીકલ AND	(5>3) && (8>6)	1 (બંને સાચાં)
11	લોજીકલ OR	(5<3) (8>6)	1 (એક સાથું)
!	લોજીકલ NOT	!(5>3)	0 (સાચાને ખોટામાં ફેરવે)

બિટવાઇઝ ઓપરેટર્સ:

કોષ્ટક: C માં બિટવાઇઝ ઓપરેટર

ઓપરેટર	વિગત	ઉદાહરણ	બાઇનરી પરિણામ
&	બિટવાઇઝ AND	5 & 3	101 & 011 = 001 (1)
1	બિટવાઇઝ OR	5 3	101 011 = 111 (7)
٨	બિટવાઇઝ XOR	5 ^ 3	101 ^ 011 = 110 (6)
~	બિટવાઇઝ NOT	~5	~0101 = 1010 (-6)
<<	લેફ્ટ શિફ્ટ	5 << 1	101 << 1 = 1010 (10)
>>	રાઇટ શિફ્ટ	5 >> 1	101 >> 1 = 10 (2)

કોડ ઉદાહરણ:

```
#include <stdio.h>
void main()
   int a = 5, b = 3;
   // લોજીકલ ઓપરેટર્સ
   printf("a>3 && b<5: %d\n", (a>3) && (b<5)); // 1 (원형)
   printf("a<3 || b>1: %d\n", (a<3) || (b>1)); // 1 (원형)
   printf("!(a>b): %d\n", !(a>b));
                                                 // 0 (ખોટું)
   // બિટવાઇઝ ઓપરેટર્સ
   printf("a & b: %d\n", a & b);  // 1
   printf("a | b: %d\n", a | b); // 7
   printf("a ^ b: %d\n", a ^ b);  // 6
   printf("~a: %d\n", ~a);
   printf("a << 1: %d\n", a << 1); // 10</pre>
   printf("a >> 1: %d\n", a >> 1); // 2
}
```

મેમરી ટ્રીક: "AND OR NOT" (લોજીકલ ઓપરેટર્સ), "AND OR XOR NOT SHIFT" (બિટવાઇઝ ઓપરેટર્સ)

પ્રશ્ન 3(અ) [3 ગુણ]

ઉદાહરણ સાથે multiple if-else સ્ટેટમેન્ટ સમજાવો.

જવાબ:

Multiple if-else: શરતોનો ક્રમ અનુસાર ચકાસણી થાય છે જ્યાં સૌથી પહેલી સાચી શરત મળે ત્યાં સુધી.

સ્ટ્રક્ચર:

```
if (condition1)
    statement1;
else if (condition2)
    statement2;
else if (condition3)
    statement3;
else
    default_statement;
```

કોડ ઉદાહરણ:

```
#include <stdio.h>
void main()
    int marks;
    printf("Enter marks: ");
    scanf("%d", &marks);
    if (marks >= 80)
        printf("Grade: A");
    else if (marks >= 70)
        printf("Grade: B");
    else if (marks >= 60)
        printf("Grade: C");
    else if (marks >= 50)
        printf("Grade: D");
    else
        printf("Grade: F");
}
```

ડાયગ્રામ:

મેમરી ટ્રીક: "Check Each Condition in Sequence" (CECS)

પ્રશ્ન 3(બ) [4 ગુણ]

While લૂપ અને for લૂપનું વર્કિંગ જણાવો.

જવાબ:

કોષ્ટક: While લૂપ vs For લૂપ

લક્ષણ	While લૂપ	For લૂપ
સિન્ટેક્સ	<pre>while(condition) { statements; }</pre>	<pre>for(init; condition; update) { statements; }</pre>
ક્યારે વાપરવું	જ્યારે પુનરાવર્તનની સંખ્યા અજ્ઞાત હોય	જ્યારે પુનરાવર્તનની સંખ્યા જાણીતી હોય
ઇનિશિયલાઇઝેશન	લૂપની બહાર	લૂપના ડિક્લેરેશનમાં
અપડેટ	લૂપ બોડીની અંદર કરવું જોઈએ	લૂપ ડિક્લેરેશનમાં આપોઆપ થાય છે
એક્ઝિટ કંટ્રોલ	માત્ર શરૂઆતમાં	માત્ર શરૂઆતમાં
ઉદાહરણ	યુઝર ઇનપુટ ચકાસવા	નિશ્ચિત વખત પુનરાવર્તન કરવા

While લૂપ ફ્લો:

For લૂપ ફ્લો:

મેમરી ટ્રીક: "While Checks Then Acts" (WCTA), "For Initializes Tests Updates" (FITU)

પ્રશ્ન 3(ક) [7 ગુણ]

આપેલ સંખ્યાના ફેક્ટોરિયલ શોધવા માટેનો પ્રોગ્રામ લખો.

જવાબ:

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
{
    int num, i;
    unsigned long fact = 1;

    printf("Enter a number: ");
    scanf("%d", &num);

    if (num < 0)
        printf("Factorial not defined for negative numbers");
    else
    {
        for(i = 1; i <= num; i++)
        {
            fact = fact * i;
        }
        printf("Factorial of %d = %lu", num, fact);
    }
}</pre>
```

ફેક્ટોરિયલ ગણતરી કોષ્ટક:

ઉદાહરણ તરીકે, જો num = 5:

પુનરાવર્તન	i	fact = fact * i	નવી fact કિંમત
પ્રારંભિક	-	-	1
1	1	1 * 1	1
2	2	1 * 2	2
3	3	2 * 3	6
4	4	6 * 4	24
5	5	24 * 5	120

ફેક્ટોરિયલ ગણતરી ડાયગ્રામ:

ਮੇਮਰੀ ਟ੍ਰੀਡ: "Find And Count The Numbers!" (FACTN! - Factorial)

પ્રશ્ન 3(અ) OR [3 ગુણ]

ઉદાહરણ સાથે switch-case સ્ટેટમેન્ટની કામગીરી સમજાવો.

જવાબ:

Switch-Case: એક પસંદગી નિવેદન જે મૂલ્યોની યાદી (કેસ) સામે વેરિયેબલની સમાનતા ચકાસવાની મંજૂરી આપે છે.

સ્ટ્રક્ચર:

```
switch(expression) {
    case value1:
        statements1;
        break;
    case value2:
        statements2;
        break;
    default:
        default_statements;
}
```

કોડ ઉદાહરણ:

```
#include <stdio.h>
void main()
   int day;
    printf("Enter day number (1-7): ");
    scanf("%d", &day);
    switch(day) {
            printf("Monday");
           break;
        case 2:
            printf("Tuesday");
           break;
        case 3:
            printf("Wednesday");
            break;
        case 4:
            printf("Thursday");
            break:
        case 5:
            printf("Friday");
            break;
        case 6:
            printf("Saturday");
        case 7:
            printf("Sunday");
            break;
        default:
```

```
printf("Invalid day");
}
```

Switch-Case ડાયગ્રામ:

મેમરી ટ્રીક: "Select Value, Exit with Break" (SVEB)

પ્રશ્ન 3(બ) OR [4 ગુણ]

break અને continue સ્ટેટમેન્ટ ઉપયોગ લખો.

જવાબ:

ຣາ້າຂຣ: Break vs Continue Keywords

લક્ષણ	break	continue
ઉદ્દેશ	વર્તમાન લૂપ/સ્વિચમાંથી બહાર નીકળે છે	વર્તમાન પુનરાવર્તન છોડી, આગલા પુનરાવર્તનમાં જાય છે
લૂપ પર અસર	લૂપને સમાપ્ત કરે છે	આગલા પુનરાવર્તનમાં આગળ વધે છે
ક્યાં વપરાય છે	લૂપ્સ & સ્વિચ સ્ટેટમેન્ટ્સ	માત્ર લૂપ્સમાં
કંટ્રોલ ફ્લો	લૂપ પછીના સ્ટેટમેન્ટ પર જાય છે	લૂપની શરત ચકાસણી પર જાય છે
ઉપયોગનું ઉદાહરણ	શરત પૂરી થાય ત્યારે લૂપમાંથી નીકળવું	ચોક્કસ પુનરાવર્તનો છોડવા

ફ્લો ડાયગ્રામ - break:

ફ્લો ડાયગ્રામ - continue:

મેમરી ટ્રીક: "Break Exits, Continue Skips" (BECS)

પ્રશ્ન 3(ક) OR [7 ગુણ]

કીબોર્ડ પરથી લીટીઓની સંખ્યા (n) વાંચી અને નીચે દર્શાવેલ ત્રિકોણ પ્રિન્ટ કરવા માટેનો પ્રોગ્રામ લખો. ઉદાહરણ તરીકે, n=5

```
1 2 3 4 5
1 2 3 4
1 2 3
1 2
```

જવાબ:

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
{
  int n, i, j;
```

```
printf("Enter number of lines: ");
scanf("%d", &n);

for(i = n; i >= 1; i--)
{
    for(j = 1; j <= i; j++)
    {
        printf("%d ", j);
    }
    printf("\n");
}</pre>
```

પેટર્ન લોજિક કોષ્ટક:

n = 5 หเล้:

i	j	આઉટપુટ
5	j=1 થી 5	12345
4	j=1 થી 4	1 2 3 4
3	j=1 થી 3	1 2 3
2	j=1 થી 2	1 2
1	j=1 થી 1	1

પેટર્ન વિઝ્યુલાઇઝેશન:

```
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
```

પ્રોગ્રામ ફ્લો:

મેમરી ટ્રીક: "Decreasing Rows With Increasing Values" (DRWIV)

પ્રશ્ન 4(અ) [3 ગુણ]

નેસ્ટેડ if-else સ્ટેટમેન્ટ ઉદાહરણ સાથે સમજાવો.

જવાબ:

નેસ્ટેડ if-else: બીજા if અથવા else બ્લોકની અંદરનું if-else સ્ટેટમેન્ટ.

સ્ટ્રક્ચર:

```
if (condition1) {
    if (condition2) {
        statements1;
    } else {
        statements2;
    }
} else {
    statements3;
}
```

કોડ ઉદાહરણ:

```
#include <stdio.h>
void main()
{
    int age, weight;
    printf("Enter age: ");
    scanf("%d", &age);
    if (age >= 18) {
        printf("Enter weight: ");
        scanf("%d", &weight);
        if (weight >= 50) {
            printf("Eligible to donate blood");
        } else {
            printf("Underweight, not eligible");
        }
    } else {
        printf("Age below 18, not eligible");
}
```

નેસ્ટેડ if-else ડાયગ્રામ:

મેમરી ટ્રીક: "Check Outside Then Inside" (COTI)

પ્રશ્ન 4(બ) [4 ગુણ]

Pointer arguments નો ઉપયોગ કરીને બે પૂર્ણાંક સંખ્યાની અદલાબદલી કરવાનો પ્રોગ્રામ લખો.

જવાબ:

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
   int a, b, temp;
   int *p1, *p2;
    printf("Enter value of a: ");
    scanf("%d", &a);
    printf("Enter value of b: ");
    scanf("%d", &b);
    p1 = &a; // p1 a ને પોઇન્ટ કરે છે
    p2 = &b; // p2 b ને પોઇન્ટ કરે છે
    printf("Before swapping: a = %d, b = %d\n", a, b);
    // પોઇન્ટર્સનો ઉપયોગ કરીને અદલાબદલી
    temp = *p1;
    *p1 = *p2;
    *p2 = temp;
    printf("After swapping: a = %d, b = %d", a, b);
}
```

પોઇન્ટર અદલાબદલી ડાયગ્રામ:

```
+---+ +---+
| 5 | <-----|p1 |
a -> +---+ +---+
| 10 | <-----|p2 |
b -> +---+ +---+

After swapping:

+---+ +---+
| 10 | <-----|p1 |
a -> +---+ +---+
```

```
+---+ +---+
| 5 |<-----|p2 |
b -> +---+ +---+
```

મેમરી ટ્રીક: "Pointers Exchange Memory Values" (PEMV)

પ્રશ્ન 4(ક) [7 ગુણ]

Array ની વ્યાખ્યા લખો. One dimensional array નું initialization અને declaration સમજાવો.

જવાબ:

Array: એક જ ડેટા પ્રકારના તત્વોનો સમૂહ જે સળંગ મેમરી સ્થાનોમાં સંગ્રહિત થાય છે અને ઇન્ડેક્સ વડે ઍક્સેસ થાય છે.

કોષ્ટક: Array ડિક્લેરેશન & ઇનિશિયલાઇઝેશન

ઓપરેશન	સિન્ટેક્સ	ઉદાહરણ
ડિક્લેરેશન	data_type array_name[size];	int marks[5];
ડિક્લેરેશન સમયે ઇનિશિયલાઇઝેશન	<pre>data_type array_name[size] = {values};</pre>	int nums[4] = {10, 20, 30, 40};
આંશિક ઇનિશિયલાઇઝેશન	<pre>data_type array_name[size] = {values};</pre>	int nums[5] = {10, 20};
સાઇઝ વિના	data_type array_name[] = {values};	int nums[] = {10, 20, 30};
વ્યક્તિગત તત્વ	array_name[index] = value;	marks[0] = 95;

કોડ ઉદાહરણ:

```
#include <stdio.h>
void main()
{

// Ssd2eH
int marks[5];

// Ssd2eH us sfl8euss2eH
marks[0] = 85;
marks[1] = 90;
marks[2] = 78;
marks[3] = 92;
marks[4] = 88;

// Ssd2eH साथ sfl8euss2eH
int scores[] = {95, 89, 76, 82, 91};

// अेरे dcdl ऑडसेस seal
printf("marks[2] = %d\n", marks[2]);
printf("scores[3] = %d\n", scores[3]);
```

```
}
```

એરે રજૂઆત:

મેમરી રજૂઆત:

મેમરી ટ્રીક: "Declare, Initialize, Access With Index" (DIAWI)

પ્રશ્ન 4(અ) OR [3 ગુણ]

do while loop ઉદાહરણ સાથે સમજાવો.

જવાબ:

do-while loop: એક લૂપ જે શરતની ચકાસણી કરતા પહેલા ઓછામાં ઓછી એકવાર લૂપ બોડી ચલાવે છે.

સ્ટ્રક્ચર:

```
do {
    statements;
} while(condition);
```

ક્રોડ ઉદાહરણ:

```
#include <stdio.h>
void main()
{
   int num, sum = 0;

   do {
      printf("Enter a number (0 to stop): ");
      scanf("%d", &num);
      sum += num;
   } while(num != 0);

   printf("Sum of entered numbers = %d", sum);
}
```

do-while લૂપ ફ્લો:

while લૂપથી મુખ્ય તફાવતો:

- બોડી ઓછામાં ઓછી એકવાર ચલાવે છે
- સ્ટેટમેન્ટ્સ ચલાવ્યા પછી કંડીશન ચેક કરે છે
- કંડીશન પછી સેમિકોલોન જરૂરી છે

ਮੇਮਣੀ ਟ੍ਰੀs: "Do First, Check Later" (DFCL)

પ્રશ્ન 4(બ) OR [4 ગુણ]

નીચે આપેલ ફંકશન ઉદાહરણ સાથે સમજાવો: (1) gets() (2) puts() (3) strlen() (4) strcpy()

જવાબ:

કોષ્ટક: C માં સ્ટ્રિંગ ફંકશન્સ

ફંકશન	હેતુ	સિન્ટેક્સ	ઉદાહરણ
gets()	સ્પેસ સાથે સ્ટ્રિંગ વાંચે છે	gets(string);	gets(name);
puts()	ન્યૂલાઇન સાથે સ્ટ્રિંગ દર્શાવે છે	puts(string);	puts(name);
strlen()	સ્ટ્રિંગની લંબાઈ આપે છે	strlen(string);	n = strlen(name);
strcpy()	સોર્સને ડેસ્ટિનેશનમાં કોપી કરે છે	strcpy(dest, src);	strcpy(str1, str2);

ક્રોડ ઉદાહરણ:

ਮੇਮਰੀ ਟ੍ਰੀs: "Gets Puts String's Length and Copies" (GPSLC)

પ્રશ્ન 4(ક) OR [7 ગુણ]

Recursion ની વ્યાખ્યા આપી ઉદાહરણ સાથે સમજાવો. Recursion નો ઉપયોગ કરીને આપેલા નંબરનો ફેક્ટોરીયલ શોધવાનો પ્રોગ્રામ લખો.

જવાલ:

Recursion: એક પ્રક્રિયા જેમાં ફંક્શન સીધી કે પરોક્ષ રીતે પોતાને જ ચોક્કસ શરત પૂરી થાય ત્યાં સુધી કૉલ કરે છે.

Recursion ના ઘટકો:

- 1. બેઝ કેસ: રિકર્ઝન રોકવા માટેની શરત
- 2. રિકર્સિવ કેસ: ફંકશન પોતે જ પોતાને કૉલ કરે છે

કોડ ઉદાહરણ:

```
#include <stdio.h>
```

```
// ફેક્ટોરિયલ શોધવા માટે રિકર્સિવ ફંક્શન
unsigned long factorial(int n)
{
    // બેઝ કેસ
    if (n == 0 || n == 1)
        return 1;
    // રિકર્સિવ કેસ
    else
       return n * factorial(n-1);
}
void main()
{
    int num;
    unsigned long result;
    printf("Enter a number: ");
    scanf("%d", &num);
    if (num < 0)
        printf("Factorial not defined for negative numbers");
    else
        result = factorial(num);
        printf("Factorial of %d = %lu", num, result);
}
```

રિકર્સિવ ફેક્ટોરિયલ ગણતરી:

factorial(5) ਮ।2

કોષ્ટક: રિકર્ઝન ટ્રેસ

	રિટર્ન	ગણતરી
factorial(5)	5 × factorial(4)	5 × 24 = 120
factorial(4)	4 × factorial(3)	4 × 6 = 24
factorial(3)	3 × factorial(2)	3 × 2 = 6
factorial(2)	2 × factorial(1)	2 × 1 = 2
factorial(1)	1	બેઝ કેસ

રિકર્ઝન ડાયગ્રામ:

મેમરી ટ્રીક: "Function Calling Itself, Bottoming Out" (FCIBO)

પ્રશ્ન 5(અ) [3 ગુણ]

array અને structure વચ્ચેનો તફાવત લખો.

જવાબ:

ຣາເຣາະ Array vs Structure

લક્ષણ	Array	Structure
ડેટા પ્રકાર	બધા તત્વો માટે એક જ ડેટા પ્રકાર	વિવિધ ડેટા પ્રકાર સંગ્રહી શકે છે
ઍક્સેસ	ઇન્ડેક્સનો ઉપયોગ (arr[0])	મેમ્બર નામનો ઉપયોગ (s.name)
મેમરી ફાળવણી	સળંગ	સળંગ પરંતુ વિવિદ્ય સાઇઝ
સાઇઝ	ડિક્લેરેશન સમયે ફિક્સ સાઇઝ	બદ્યા મેમ્બર્સની સાઇઝનો સરવાળો
હેતુ	સમાન વસ્તુઓનો સંગ્રહ	વિવિદ્ય પ્રકારના સંબંધિત ડેટાનું ગ્રુપિંગ
ડિક્લેરેશન	<pre>int arr[5];</pre>	<pre>struct student { int id; char name[20]; };</pre>

ડાયગ્રામ:

ਮੇਮરੀ ਟ੍ਰੀਡ: "Arrays for Same, Structures for Different" (ASSD)

પ્રશ્ન 5(બ) [4 ગુણ]

આપેલ 10 કિંમતમાંથી મહત્તમ કિંમત શોધવાનો C પ્રોગ્રામ array નો ઉપયોગ કરીને લખો.

જવાબ:

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
{
   int arr[10], i, max;

   // 10 โร๊ษต์โ ฮะหนู2
   printf("Enter 10 values:\n");
   for(i = 0; i < 10; i++)
   {
      printf("Enter value %d: ", i+1);
}
```

```
scanf("%d", &arr[i]);
}

// भ๕๓ษ โร๊ษด ยา๊ยต์

max = arr[0]; // หยษ ๙๙ ษ๕๓ษ ษเกี ผา๋

for(i = 1; i < 10; i++)

{
    if(arr[i] > max)
        max = arr[i];
}

printf("Maximum value is: %d", max);
}
```

અલ્ગોરિધમ ફ્લો:

મેમરી ટ્રીક: "Compare And Replace Maximum" (CARM)

પ્રશ્ન 5(ક) [7 ગુણ]

Structure ને વ્યાખ્યા લખો. Book નામથી એક structure બનાવો કે જેમાં book વિશેની માહિતી Book title, Name of author, Price and Number of pages સ્ટોર કરી શકાય.

જવાબ:

Structure: વિવિધ ડેટા પ્રકારના સંબંધિત વેરિયેબલ્સને એક જ નામ હેઠળ ગ્રુપ કરતું યુઝર-ડિફાઇન્ડ ડેટા પ્રકાર.

Book Structure sis:

```
#include <stdio.h>

struct book {
    char title[50];
    char author[30];
    float price;
    int pages;
};

void main()
{
    struct book b1;

    // પુસ્તકની વિગતો ઇનપુટ
    printf("Enter book title: ");
    gets(b1.title);
```

```
printf("Enter author name: ");
gets(b1.author);

printf("Enter price: ");
scanf("%f", &b1.price);

printf("Enter number of pages: ");
scanf("%d", &b1.pages);

// પુસ્તકની વિગતો પ્રદર્શિત
printf("\nBook Details:\n");
printf("Title: %s\n", b1.title);
printf("Author: %s\n", b1.author);
printf("Price: Rs. %.2f\n", b1.price);
printf("Pages: %d", b1.pages);
}
```

Structure મેમરી રજૂઆત:

Structure ડાયગ્રામ:

char char author[30] float int pages

મેમરી ટ્રીક: "Title Author Price Pages" (TAPP)

પ્રશ્ન 5(અ) OR [3 ગુણ]

સ્ટ્રીંગ શું છે? સ્ટ્રીંગ ઉપર કયા ઓપરેશન પરફોર્મ થાય છે.

જવાબ:

સ્ટ્રીંગ: NULL કેરેક્ટર '\0' દ્વારા સમાપ્ત થતા અક્ષરોની શ્રેણી.

કોષ્ટક: C માં સ્ટ્રીંગ ઓપરેશન્સ

ઓપરેશન	ફંક્શન	ઉદાહરણ
ઇનપુટ	gets(), scanf()	gets(str), scanf("%s", str)
આઉટપુટ	puts(), printf()	puts(str), printf("%s", str)
લંબાઈ	strlen()	len = strlen(str)
કોપી	strcpy()	strcpy(dest, src)
જોડાણ	strcat()	strcat(str1, str2)
સરખામણી	strcmp()	result = strcmp(str1, str2)
શોધ	strchr(), strstr()	ptr = strchr(str, 'a')
રૂપાંતર	strlwr(), strupr()	strlwr(str), strupr(str)

સ્ટ્રીંગ રજૂઆત:

```
+---+---+---+---+
| H | e | l | l | o | \0|
+---+---+---+
```

મેમરી ટ્રીક: "Input Output Length Copy Concat Compare Search Convert" (IOLCCSC)

પ્રશ્ન 5(બ) OR [4 ગુણ]

A to Z ની ASCII વેલ્યુ પ્રિન્ટ કરવા માટેનો પ્રોગ્રામ લખો.

જવાબ:

પ્રોગ્રામ:

```
#include <stdio.h>
void main()
{
    char ch;

    printf("ASCII values from A to Z:\n");
    printf("Character\tASCII Value\n");
    printf("----\n");

for(ch = 'A'; ch <= 'Z'; ch++)
    {</pre>
```

```
printf(" %c\t\t %d\n", ch, ch);
}
```

સેમ્પલ આઉટપુટ કોષ્ટક:

Character	ASCII Value
A	65
В	66
Z	90

ASCII ચાર્ટ રજૂઆત:

```
ASCII Values:
A(65) B(66) C(67) ... Z(90)
```

મેમરી ટ્રીક: "Alphabets Sequentially Creating Integer Indices" (ASCII)

પ્રશ્ન 5(ક) OR [7 ગુણ]

user defined અને library function શું છે? દરેકના બે ઉદાહરણ સાથે સમજાવો.

જવાબ:

Library Functions: C ભાષા દ્વારા પૂરા પાડવામાં આવતા પહેલેથી વ્યાખ્યાયિત ફંક્શન્સ જે ઉપયોગ માટે તૈયાર છે.

User-Defined Functions: પ્રોગ્રામર દ્વારા ચોક્કસ કાર્યો કરવા માટે બનાવેલા ફંક્શન્સ.

sìષ્ટક: Library vs User-Defined Functions

લક્ષણ	Library Functions	User-Defined Functions
વ્યાખ્યા	હેડર ફાઈલોમાં પહેલેથી વ્યાખ્યાયિત	પ્રોગ્રામર દ્વારા બનાવવામાં આવે છે
ડિક્લેરેશન	વ્યાખ્યા કરવાની જરૂર નથી	વ્યાખ્યા કરવી જ જોઈએ
ઉદાહરણો	printf(), scanf(), strlen()	calculateArea(), findMax()
હેડર ફાઇલ્સ	stdio.h, string.h, math.h, etc.	કોઈ હેડર જરૂરી નથી
હેતુ	સામાન્ય કાર્યો	કસ્ટમાઇઝ્ડ કાર્યો

Library Functions ના ઉદાહરણો:

1. strlen() - સ્ટ્રિંગ લંબાઈ

```
#include <stdio.h>
#include <string.h>
void main()
{
    char str[] = "Hello";
    int length = strlen(str); // Library function
    printf("Length of string: %d", length);
}
```

2. sqrt() - **นว**์หุด

```
#include <stdio.h>
#include <math.h>
void main()
{
    float num = 25, result;
    result = sqrt(num); // Library function
    printf("Square root of %.0f = %.2f", num, result);
}
```

User-Defined Functions ના ઉદાહરણો:

1. calculateArea() - લંબચોરસનું ક્ષેત્રફળ

```
#include <stdio.h>

// User-defined function
float calculateArea(float length, float width)
{
    return length * width;
}

void main()
{
    float length = 10.5, width = 5.5, area;
    area = calculateArea(length, width); // User function call
    printf("Area of rectangle = %.2f", area);
}
```

2. findMax() - ત્રણ સંખ્યાઓમાંથી મહત્તમ

```
#include <stdio.h>

// User-defined function
int findMax(int a, int b, int c)
{
   if(a >= b && a >= c)
      return a;
   else if(b >= a && b >= c)
      return b;
```

```
return c;
}

void main()
{
  int x = 10, y = 25, z = 15, max;
  max = findMax(x, y, z); // User function call
  printf("Maximum number is: %d", max);
}
```

મેમરી ટ્રીક: "Libraries Provide, Users Create" (LPUC)