人工智能大赛 (高校组) 竞赛手册

#### 目录

| 一、场地介绍                  |
|-------------------------|
| 1.1 场地尺寸及材质介绍           |
| 1.2 各区域介绍               |
| 1.2.1 基地区               |
| 1.2.2 高台区               |
| 1.2.3 中央资源区             |
| 二、 程序下载                 |
| 2.1 手动机器人               |
| 2.1.1 手动机器人动作下载(pro)5   |
| 2.1.2 手动机器人动作下载(smart)6 |
| 2.2 调整机器人及手柄信道          |
| 2.2.1 调整手柄信道            |
| 2.2.2 调整机器人信道6          |
| 2.3 自动机器人               |
| 2.3.1 程序下载              |
| 2.3.2 颜色采集              |
| 2.3.3 程序使用及说明9          |
| 2.3.4 程序运行10            |
| 三、 刷机器人镜像11             |
| 四、 更新机器人代码13            |

# 一、场地介绍

# 1.1 场地尺寸及材质介绍

比赛场地尺寸为长 4.1 米, 宽 2.3 米, 地面材质为刀刮布, 包含木板等道具。

比赛场地分为红方基地区、蓝方基地区以及中立区域,其中中立区域包含一块中央资源区和两块高台区。



#### 1.2 各区域介绍

#### 1.2.1 基地区



整个基地区尺寸为长 2.2 米, 宽 1 米。红队基地区位于整个场地的下侧, 蓝队基地区位于场地上侧。

基地区由3个区域组成,分别是大本营、通道区和中转区。其中大本营宽60厘米,通道区宽95厘米,中转区宽65厘米。

通道区中包含数个障碍物,需在搬运资源块时避开。中转区中放置1个红色资源块作为每方的初始资源。

机器人需通过识别 ATtag 码通过通道区, ARtag 码粘贴位置 及说明见下图



#### 1.2.2 高台区



高台资源区位于场地左右两侧。高台高度为6厘米,可以通过台阶登上高台区。每级台阶宽40厘米,深15厘米,高2厘米。

高台上包含中立区域、红色区域和蓝色区域,比赛开始时有一个10cm\*10cm\*10cm的立方体放置于中立区域,双方可以通过将立方体搬运至本方颜色区域来占领高台区,占领后可以在最后计算总分数时获得50%的加成。

在搬运过程中如果立方体掉下高台视为犯规,将立方体放置到搬运开始前的位置,同时将犯规机器人放置于比赛开始区域。

# 1.2.3 中央资源区



中央资源区位于场地中央,长1米,宽60厘米。其中摆放分

数为30分的绿色海绵块5个,摆放分数为15分的红色海绵块10个。

# 二、程序下载

此处需要使用的机器人镜像、软件及对应下载链接如下:

· Aelos 机器人镜像:

https://aelosstatic.lejurobot.com/aelos\_pro\_img/aelos\_smart\_1\_0\_1.img.zip

• Aelos\_edu 软件: <a href="https://www.lejurobot.com/support-cn/#downloads">https://www.lejurobot.com/support-cn/#downloads</a>

MobaXterm: <a href="https://mobaxterm.mobatek.net/">https://mobaxterm.mobatek.net/</a>
Python: <a href="https://www.python.org/downloads/">https://www.python.org/downloads/</a>

VSCode: https://code.visualstudio.com/

#### 2.1 手动机器人

# 2.1.1 手动机器人动作下载 (pro)

•解压文件夹中"人工智能大赛-pro"的压缩包并用 Aelos\_edu 软件打开其中名为"人工智能大赛 2023.abe"的文件



- ·将位于机器人后面的电源打开并将数据线插到 USB 插口中,软件端点击连接机器人
- 点击动作下载,



• 您将在自定义一栏中找到刚刚下载的动作积木块。

# 2.1.2 手动机器人动作下载(smart)

• 解压文件夹中"2023 人工智能大赛-smart"的压缩包并用 Aelos\_edu 软件打开名为"比赛.abe"的文件



• 您可在左侧"自定义"一栏中找到比赛相关的动作积木块



### 2.2 调整机器人及手柄信道

### 2.2.1 调整手柄信道

• 详见下图



# 2.2.2 调整机器人信道

• 点击菜单栏"信道"按键



• 弹出此框,请输入您希望切换的信道,点击"确定"键完成更改。



#### 2.3 自动机器人

#### 2.3.1 程序下载

打开"MobaXterm"软件,远程连接 ssh。步骤一,通过以下步骤关闭自定义节点:

• 打开相关文件夹

cd /home/lemon/catkin ws/tools

• 关闭 overlay

sudo ./disable overlay after reboot.sh

• 执行后会重启机器人,等待重启完毕后输入如下指令,将代码移动至/mnt/leju\_data 下,并创建软链接,方便后续修改代码,不用每次都进行overlay 的开关操作:

• 完成后输入以下代码重启 overlay

cd /home/lemon/catkin\_ws/tools sudo ./enable\_overlay\_after\_reboot.sh 执行后请重启机器人

# 2.3.2 颜色采集

通过以下步骤使用 Aelos\_edu 软件的视觉回传功能进行颜色采集:

- 在连接串口后通过以下步骤使用 aelos\_edu 软件配置网络
- 点击配置网络按键
- 在弹出的对话框中选择配置网络的方式



• 配置成功后将弹出以下页面,蓝色区域将显示对应的 IP 地址



- 点击"通过串口获取"按键后,等待片刻,弹出显示 IP 地址页面即为成功配置网络。
- 点击"视觉回传"按键。将显示以下窗口。
- 点击画面红框内按键,使用取色器。



• 鼠标指针将变为按键内取色器样式,用时按键颜色也会发生变化



• 将指针挪到您希望采集颜色的区域,长按鼠标左键,并在采集区域拖动,尽可能拖动全部区域。然后松开鼠标左键,该区域 HSV 范围将在左侧方框内显示。



• 点击"确定"按键,查看取色情况,识别的区域将在画面中用红色方框标注。



• 采集完成点击右上角 " $\times$ " 关闭窗口,重新采集重新将取色器指针在对应区域拖动即可。

# 2.3.3 程序使用及说明

• 解压文件夹中"人工智能大赛-自动"的压缩包并用 Aelos\_edu 软件打开名为"人工智能大赛-自动.abe"的文件



•连接串口、配置网络后点击下载,并只勾选"动作函数"一项,等待下载,完成后重启机器人。



再次通过终端连接机器人,通过 VScode 打开以下路径中红框内文件:/home/lemon/catkin\_ws/src/aelos\_smart\_ros/contest\_code/botec/



将看到以下内容:



然后将采集到的 HSV 值替换到对应的颜色中,方法如下: 首先找到代码第 29 行和第 30 行,按下图内容理解代码含义



若想要替换 yellow\_door 这一物体的 HSV 值,需要将视觉回传页面采集到的对应的 HSV 最大值和最小值对应替换到程序中。

假设采集到的 yellow\_door 的 HSV 值为:

Hmin 20~Hmax 50, Smin 150~Smin 230, Vmin 100~Vmax 140 就需要将代码替换为

'yellow\_door':[(20,150,100),(50,230,140)] 替换后将弹出以下对话框,点击"Yes to all"选项即可



## 2.3.4 程序运行

然后通过 Mobaxterm 进行 ssh 连接后,启动终端:终端中输入以下两条指令:

# 三、刷机器人镜像

• 通过此地址下载机器人镜像

https://aelosstatic.lejurobot.com/aelos pro img/aelos smart 1 0 1.img.zip

• 首先关闭机器人背部电源,打开位于机器人胸部摄像头的树莓派开关,连接树莓派 USB。





• 下载软件 rpiboot 进行安装

下载链接: <a href="https://www.waveshare.net/w/upload/f/f3/Rpiboot\_setup.zip">https://www.waveshare.net/w/upload/f/f3/Rpiboot\_setup.zip</a>

- 双击压缩包内文件打开安装,安装过程中将有一个弹窗显示下载进度,请不要关闭。
- 打开安装位置的文件夹,打开名为 rpiroot 的应用程序
  - 等待程序运行完毕, 初始化后电脑将自动将机器人识别为 U 盘
- •通过此地址下载 SD Card Formater 工具,下载后通过①选择机器人的 U 盘。点击②将机器 人格式化。

http://www.downza.cn/soft/291378.html



• 通过以下地址下载 Win32DiskImager 工具并通过点击红框选择镜像文件所在地址,点击写入按键进行写入。

#### https://www.onlinedown.net/soft/110173.htm



# 四、更新机器人代码

•登陆终端后,输入以下代码,等待机器人重启即可完成比赛代码更新