1. Given $0^{\circ} \le x < 360^{\circ}$, and $\tan x = 2 \sin x$, find all solutions for x.

Solution: We write $\tan x = \frac{\sin x}{\cos x} = 2 \sin x$, so either $\sin x = 0$ or $\frac{1}{\cos x} = 2$. In the first case, we get the solutions $x = 0^{\circ}$ and $x = 180^{\circ}$. In the second case, we get $\cos x = 1/2$, so drawing the unit circle, we get $x = 60^{\circ}$ and $x = 300^{\circ}$. These are the four solutions, after checking for division by zero.

2. Given $0^{\circ} \le x < 360^{\circ}$ and $\sin 3x \cos 2x = 1 - \cos 3x \sin 2x$, find the sum of all solutions for x.

Solution: We move all trigonometric terms to the left and recognize the sine addition formula, $\sin(a+b) = \sin a \cos b + \sin b \cos a$, with a=3x and b=2x, so $\sin 5x=1$. From the restricted range of x, $0^{\circ} \le 5x < 1800^{\circ}$. Since $\sin 5x=1$, $5x=90^{\circ}$, 450° , 810° , 1170° , 1530° . This gives us the five solutions $x=18^{\circ}$, 90° , 162° , 234° , 306° , and their sum is 810.

3. Given $\sin(90^{\circ} + x)\cos(180^{\circ} + x) + \sec 300^{\circ}\cos(270^{\circ} + x) = \csc 210^{\circ}\csc(x - 180^{\circ})$ and $0^{\circ} \le x < 360^{\circ}$, find all solutions for x.

Solution: We use the unit circle to deduce that $\sin(90^\circ + x) = \cos x$, $\cos(180^\circ + x) = -\cos x$, $\sec 300^\circ = 2$, $\cos(270^\circ + x) = \sin x$, $\csc 210^\circ = -2$, and $\csc(x - 180^\circ) = -1/\sin x$, so the equation becomes $-\cos^2 x + 2\sin x = 2/\sin x$. Moving the $2\sin x$ term to the right, we get the equation $-\cos^2 x = 2\left(\frac{1}{\sin x} - \sin x\right) = 2\left(\frac{1-\sin^2 x}{\sin x}\right) = 2\cos^2 x/\sin x$, so either $\cos^2 x = 0$ or $-1 = 2/\sin x$. In the first case, using the unit circle, we get the solutions $x = 90^\circ$ and $x = 270^\circ$. In the second case, we get $\sin x = -2$, which is impossible since $|\sin x| \le 1$. The two solutions in the first case are thus the only two solutions, after checking for division by zero.