Journée « Modélisation conceptuelle » organisée par le RMT Modélia 18 sept 2012

Du système au modèle informatique

H.Raynal
(RECORD, INRA, Toulouse)
L.Perochon
(VETAGROSUP, Clermont-Ferrand)

Plan

- 1/ Situation du modèle conceptuel et de l'approche système par rapport au modèle informatique
- 2/ Qu'est ce qu'on attend du modèle conceptuel ?
- 3/ Outils et méthodes
 - Modélisation systémique
 - Choix des formalismes
 - Génération de code informatique
- 4/ Points de vigilance

Partie 1 Situation du modèle conceptuel et de l'approche système par rapport au modèle informatique

D.Hill P.Coquillart, 2009

FIGURE II.12. Processus de modélisation par objets.

Partie 2 Qu'est ce qu'on attend du modèle conceptuel pour faciliter le passage au simulateur informatique ?

Mise en place d'une sémantique et de concepts communs

partagés entre les différents acteurs dont : experts du domaine et informaticiens.

Exemple: vocabulaire partagé (nommage, unité...)

- Définition claire des objectifs et du modèle de connaissance utilisé, sous-jacent
- Représentation de la solution dans un formalisme graphique intégrant :
 - Des éléments du modèle de connaissance
 - Des éléments de la solution informatique (Ex : les objets)
 - Des éléments de la configuration matérielle (Ex : lien avec une bdd)

Etre validé

Phases Méthodes de validation	Analyse Validation des données	Analyse et conception Validation du modèle conceptuel	Implémentation Validation opérationnelle	Interprétation Validation des résultats
Par confrontation	X	X	X	X
Par répétitivité				X
Fonctionnelle		X	X	X
Graphique	X		X	X
Statistique	Χ	X	X	X

Respecter le principe de parcimonie

Informations que l'on peut retirer du modèle

Nb de variables dans le modèle

Complexité informatique

Nb de variables dans le modèle

Partie 3 : Outils et méthodes

Modélisation systémique

Application à la problématique des Agro-écosystèmes / RECORD

Motivation à l'utilisation de l'approche systémique

- Double intérêt :
 - Niveau modélisateur : Méthode intéressante pour l'analyse de systèmes complexes tels que les agro-écosystèmes
 - Niveau génie logiciel :
 - Induit naturellement un « code informatique modulaire »
 - Facilite la construction de modèles via une approche « composant », et donc avec partage possible de composants via une bibliothèque de composants
 - Va dans le sens de la capitalisation et de la réutilisation du code informatique développé

Motivation pour une approche systémique dans le contexte des agro-écosystèmes

Agro-écosystèmes

- Intègrent des modèles théoriques et des concepts méthodologiques issus de diverses disciplines.
- Nécessité de prendre en compte les propriétés d'interactions dynamiques entre les éléments de l'ensemble

Systémique : aide conceptuelle et méthodologique

(D.Sauvant, 2007)

Eléments de théorie : Définition

 « Totalité organisée, faite d'éléments solidaires ne pouvant être définis que les uns par rapport aux autres en fonction de leur place dans cette totalité » (F.de Saussure)

 « Ensemble d'éléments en interaction dynamique, organisés en fonction d'un but » (J.De Rosnay)

Eléments de théorie : Propriétés d'un système

- *Organisation*: agencement des relations entre les éléments qui composent le système
- *Totalité*: un système est plus que la somme de ses éléments. Emergence de propriétés
- *Interactions entre ses éléments*, dépassant les relations du type causeeffet
- Complexité: à conserver

Description structurelle:

Description fonctionnelle:

- Description structurelle:
 - Frontière

• Description fonctionnelle:

- Description structurelle:
 - Frontière
 - Différents éléments
 - Structure hiérarchique possible

Description fonctionnelle:

- Description structurelle:
 - Frontière
 - Différents éléments
 - Structure hiérarchique possible
 - Interactions entre les éléments (réseau)
- Description fonctionnelle:

- Description structurelle:
 - Frontière
 - Différents éléments
 - Structure hiérarchique possible
 - Interactions entre les éléments (réseau)
- Description fonctionnelle:
 - Dynamique des éléments
 - Dynamique des interactions entre les éléments (nature, centre de décision, rétroactions ...)

Proposition de démarche

Définir les aspects structurels du système

1/ Définir la frontière du système

- Ce qui est en dehors du système n'est pas modélisé (donnée d'entrée)
- Exemple:

Cas 1: Dates d'irrigation sont des données d'entrée du système

Données météo

Système

Dates d'irrigation sont modélisées

Données météo

Système

Module Decision Irrigation

Définir les aspects structurels du système

2/ Décomposer le système en sous-systèmes suivant démarche d'analyse descendante

- Suivant quelles règles?
 - Fortes interactions entre élts d'un sous-syst. et faibles interactions entre les sous-syst.
 - Cohérence avec la **sémantique** (regrouper ce qui a du sens)
 - Granularité de la décomposition à adapter.

Pas nécessaire d'aller jusqu'à 1 équation = 1 processus = 1 module

Grain minimal = **Module** (Modèle atomique (sens DEVS) Classe (sens C++))

Définir les aspects fonctionnels du système

3/ Identifier ce que le système échange avec l'extérieur:

- · Variables d'entrée (INPUT) ex: Tmin, Tmax, précipitations
- Variables de sortie (OUTPUT): ex: Qtité de nitrate émise vers la nappe phréatique, rendement
- Temporalité (ex: quotidienne sur 1 an)

(penser à définir les unités)

Définir les aspects fonctionnels du système

4/ Identifier les relations entre les éléments du système (à tous les niveaux de hiérarchie)

ce qui est échangé entre les sous-systèmes: flux de matière, une information ...

Var d'entrée de chaque sous-système: INPUT

Var de sortie de chaque sous-système : **OUTPUT**

· La temporalité et la synchronisation

Définir les aspects fonctionnels du système

- 5 / Identifier la nature et les propriétés de chaque module
 - · Le ou les processus modélisés

(Ex: croissance racinaire, la dynamique de l'eau dans le sol ...)

Variables d'états (Nom + Unité) de chaque module.
 (Var d'état= grandeur qui évolue, qui est calculée à chaque pas de temps ex: LAI, profondeur racinaire ...)

· Formalisme à utiliser pour représenter chaque processus

Cadre RECORD-VLE propose plusieurs formalismes qui sont des outils pour exprimer la dynamique de chaque module:

Temps discret et var d'état continues ---> formalisme des éq aux différences VarX(t+1) = f(VarX(t), u)

Temps continu et var d'état continues ---> formalisme des éq diffrentielles

$$d VarX / dt = f (VarX, u)$$

· Les paramètres du modèle

Représentation graphique du système

Quelle représentation graphique?

plusieurs types de diagramme peuvent être utilisés pour représenter le système (classiquement Forrester);

Cadre RECORD-VLE propose d'utiliser l'interface graphique gvle qui permet de représenter:

- · Les éléments du système
- · La décomposition hiérarchique descendante du système
- · Les interactions entre les sous-systèmes
- · Les sous-systèmes et leurs entrées sorties
- Le type de formalisme de chaque sous-système (la dynamique hérite d'une Classe de formalisme)

Représentation sous gvle/RECORD du système

Partie 3 : Outils et méthodes

Choix des formalismes de modélisation

Les formalismes de modélisation

Après avoir défini les éléments structuraux et fonctionnels du système, il faut définir pour chacun d'entre eux le formalisme de modélisation le plus adapté.

Sur quels critères faire le choix ?

- Processus continu, discret ou évènementiel
- Processus spatialisé
- Maîtrise par le modélisateur du formalisme (Ex/ Modèlisation à la Forrester)
- Contraintes techniques : émulation possible ou non de ces formalismes au niveau du cadre informatique

FIG. 1.3 – Classification des formalismes selon les aspects continus ou discrets des variables du temps et de l'espace (Source : [Ramat, 2003]).

Partie 3 : Outils et méthodes Génération de code à partir du modèle conceptuel

Visualisation du modèle conceptuel dans une approche « Modèles à compartiments » / Forrester.

Dans l'interface graphique gvle, de l'outil informatique RECORD

Partie 4: Points de vigilance

Premier danger : comment retrouver mon modèle conceptuel au milieu des ajouts techniques ?

Deuxième danger: Evolution

Les changements se font souvent directement dans le modèle informatisé qui s'éloigne du modèle conceptuel

Model Driven

Garder à jour son modèle conceptuel

Model Driven

- •C'est un changement de métier pour l'informaticien
- •Implique une mise en œuvre initiale lourde

Modèle informatisé

Ingénierie inverse

Attention!

- •ceci n'est possible que pour certains langagesinformatique, et majoritairement pour obtenir des diagrammes UML
- •Les diagrammes obtenus ne sont que le reflet du code, avec ses ajouts d'aspects techniques. La forme simple / éléments principaux du modèle conceptuel ne peut être retrouvée ainsi.

Merci de votre attention ...

Info:

Prochaine journée RECORD « Modélisation conceptuelle de la décision » 25 janvier 2013 à Rennes

