Recap of the cr3bp

Wakker, K.F., *Fundamentals of Astrodynamics*, Lecture Notes, Delft University of Technology, 2015, Sections 3.1-3.3 (3.4,3.6)

- The three-body problem
 - Three bodies

- The three-body problem
 - Three bodies
- The restricted three-body problem
 - \circ $m_3 \ll m_1$
 - \circ $m_3 \ll m_2$
 - o Eg., Sun + Earth + spacecraft

- The three-body problem
 - Three bodies
- The restricted three-body problem
 - \circ $m_3 \ll m_1$
 - \circ $m_3 \ll m_2$
 - o Eg., Sun + Earth + spacecraft
 - System center of mass along the line m₁ m₂

- The three-body problem
 - Three bodies
- The restricted three-body problem
 - \circ $m_3 \ll m_1$
 - \circ $m_3 \ll m_2$
 - Eg., Sun + Earth + spacecraft
 - System center of mass along the line m₁ m₂
- Circular restricted three-body problem
 - o m₁ and m₂ orbit in circular orbits around barycenter
 - Location of m₁ and m₂ along connecting line is fixed

- The three-body problem
 - Three bodies
- The restricted three-body problem
 - \circ $m_3 \ll m_1$
 - \circ m₃ << m₂
 - Eg., Sun + Earth + spacecraft
 - System center of mass along the line m₁ m₂
- Circular restricted three-body problem
 - o m₁ and m₂ orbit in circular orbits around barycenter
 - Location of m₁ and m₂ along connecting line is fixed
- Validity of assumptions?

System	Eccentricity
Sun – Venus	0.007
Sun – Neptune	0.009
Sun – Earth	0.017
Sun – Uranus	0.046
Sun - Jupiter	0.048
Sun – Saturn	0.057
Sun – Mars	0.093
Sun – Mercury	0.206
Sun – Pluto	0.249

- The three-body problem
 - Three bodies
- The restricted three-body problem
 - \circ $m_3 \ll m_1$
 - \circ m₃ << m₂
 - Eg., Sun + Earth + spacecraft
 - System center of mass along the line m₁ m₂
- Circular restricted three-body problem
 - o m₁ and m₂ orbit in circular orbits around barycenter
 - Location of m₁ and m₂ along connecting line is fixed
- Validity of assumptions?

System	Eccentricity	
Sun – Venus	0.007	-
Sun – Neptune	0.009	-
Sun – Earth	0.017	-
Sun – Uranus	0.046	_
Sun - Jupiter	0.048	_
Sun – Saturn	0.057	_
Sun – Mars	0.093	Where
Sun – Mercury	0.206	draw the line?
Sun – Pluto	0.249	

- Define an inertial reference frame I(X,Y,Z)
 - Centered at barycenter
 - (X,Y)-plane in orbital plane of m₁ and m₂

- Define an inertial reference frame I(X,Y,Z)
 - Centered at barycenter
 - (X,Y)-plane in orbital plane of m₁ and m₂
- Define the position vectors of m₃ with respect to
 - Barycenter → r
 - $\circ m_1 \rightarrow r_1$
 - $\circ m_2 \rightarrow r_2$

- Define an inertial reference frame I(X,Y,Z)
 - Centered at barycenter
 - (X,Y)-plane in orbital plane of m₁ and m₂
- Define the position vectors of m₃ with respect to
 - Barycenter → r
 - $\circ m_1 \rightarrow r_1$
 - $\circ m_2 \rightarrow r_2$
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - \circ x-axis along the line $m_1 m_2$
 - o z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame

Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - o z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - o Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - o Rotates with the orbital motion of m_1 and $m_2 \rightarrow$ location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - o Rotates with the orbital motion of m_1 and $m_2 \rightarrow$ location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

$$\ddot{\mathbf{r}}|_{R} = \ddot{\mathbf{r}}|_{I} + \text{non-inertial terms}$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) + \text{non-inertial terms}$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - \circ x-axis along the line $m_1 m_2$
 - o z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) - \dot{\boldsymbol{\omega}} \times \mathbf{r}$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - \circ x-axis along the line $m_1 m_2$
 - o z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times \left(\mathbf{\omega} \times \mathbf{r}\right) - \dot{\mathbf{\omega}} \times \mathbf{r}$$

$$\mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^{T}$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - \circ x-axis along the line $m_1 m_2$
 - o z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

Equations of motion in rotating frame

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) - \dot{\boldsymbol{\omega}} \times \mathbf{r}$$

Frame angular velocity vector

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}) - \mathbf{\omega} \times \mathbf{r}$$

$$= 0$$

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$
Coriolis acceleration

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - o z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

Equations of motion in rotating frame

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}}\left(-\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})\right)$$

Centripetal acceleration

- Define a rotating reference frame R(x,y,z)
 - Centered at barycenter
 - x-axis along the line m₁ m₂
 - z-axis perpendicular to orbital plane of m₁ and m₂
 - y-axis completes the right-handed frame
 - Rotates with the orbital motion of m_1 and m_2 → location of m_1 and m_2 is fixed along the x-axis
- Equations of motion in inertial frame

$$\ddot{\mathbf{r}}\big|_{I} = -G\left(\frac{m_1}{r_1^3}\mathbf{r}_1 + \frac{m_2}{r_2^3}\mathbf{r}_2\right)$$

Equations of motion in rotating frame

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}}\left(-\mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})\right)$$

Centripetal acceleration

- Simplify eqs. of motion by introducing new units for
 - o Mass [kg] \rightarrow sum of masses of m₁ and m₂
 - Length [km]
 - o Time [s]

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

- Simplify eqs. of motion by introducing new units for
 - Mass [kg] \rightarrow sum of masses of m₁ and m₂
 - Length [km] → distance between m₁ and m₂
 - Time [s]

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

- Simplify eqs. of motion by introducing new units for
 - Mass [kg] \rightarrow sum of masses of m₁ and m₂
 - Length [km] \rightarrow distance between m₁ and m₂
 - Time [s] \rightarrow inverse of mean motion of m_1/m_2

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

Dimensionless form				Dimensional form
System	Mass	Length	Time	Unit mass Unit length Unit time
Sun – Mercury	1	1	1	1.989×10 ³⁰ kg 0.387 au 1,209,606 s
Sun – Venus	1	1	1	1.989×10 ³⁰ kg 0.723 au 3,089,688 s
Sun – Earth	1	1	1	1.989×10 ³⁰ kg 1 au 5,022,415 s
Sun – Mars	1	1	1	1.989×10 ³⁰ kg 1.524 au 9,446,301 s
Earth – Moon	1	1	1	6.047×10 ²⁴ kg 384,401 km 377,492 s
•••				

Dimensionless form	Dimensional form
--------------------	------------------

System	Mass	Length	Time	Unit mass Unit length	Unit time
Sun – Mercury	1	1	1	1.989×10 ³⁰ kg 0.387 au	1,209,606 s
Sun – Venus	1	1	1	1.989×10 ³⁰ kg 0.723 au	3,089,688 s
Sun – Earth	1	1	1	1.989×10 ³⁰ kg 1 au	5,022,415 s
Sun – Mars	1	1	1	1.989×10 ³⁰ kg 1.524 au	9,446,301 s
Earth – Moon	1	1	1	6.047×10 ²⁴ kg 384,401 km	377,492 s

...

Dimensionless form

Dimensional form

Mass	Length	Time	Period	Unit mass	Unit length	Unit time	Period
1	1	1	2π	1.989×10 ³⁰ kg	0.387 au	1,209,606 s	0.24 yr
1	1	1	2π	1.989×10 ³⁰ kg	0.723 au	3,089,688 s	0.61 yr
1	1	1	2π	1.989×10 ³⁰ kg	1 au	5,022,415 s	1 yr
1	1	1	2π	1.989×10 ³⁰ kg	1.524 au	9,446,301 s	1.88 yr
1	1	1	2π	6.047×10 ²⁴ kg	384,401 km	377,492 s	27.4 days
	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 2 π 1.989×10 ³⁰ kg 1 1 1 1 2 π 1.989×10 ³⁰ kg 1 1 1 1 2 π 1.989×10 ³⁰ kg 1 1 1 1 2 π 1.989×10 ³⁰ kg	1 1 1 2 π 1.989×10 ³⁰ kg 0.387 au 1 1 1 2 π 1.989×10 ³⁰ kg 0.723 au 1 1 1 1 2 π 1.989×10 ³⁰ kg 1 au 1 1 1 2 π 1.989×10 ³⁰ kg 1.524 au	1 1 1 2 π 1.989×10 ³⁰ kg 0.387 au 1,209,606 s 1 1 1 1 2 π 1.989×10 ³⁰ kg 0.723 au 3,089,688 s 1 1 1 1 2 π 1.989×10 ³⁰ kg 1 au 5,022,415 s

...

Dimensionless form

Dimensional form

Mass	Length	Time	Period	Unit mass	Unit length	Unit time	Period
1	1	1	2π	1.989×10 ³⁰ kg	0.387 au	1,209,606 s	0.24 yr
1	1	1	2π	1.989×10 ³⁰ kg	0.723 au	3,089,688 s	0.61 yr
1	1	1	2π	1.989×10 ³⁰ kg	1 au	5,022,415 s	1 yr
1	1	1	2π	1.989×10 ³⁰ kg	1.524 au	9,446,301 s	1.88 yr
1	1	1	2π	6.047×10 ²⁴ kg	384,401 km	377,492 s	27.4 days
	1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 2 π 1.989×10 ³⁰ kg 1 1 1 1 2 π 1.989×10 ³⁰ kg 1 1 1 2 π 1.989×10 ³⁰ kg 1 1 1 1 2 π 1.989×10 ³⁰ kg	1 1 1 2 π 1.989×10 ³⁰ kg 0.387 au 1 1 1 2 π 1.989×10 ³⁰ kg 0.723 au 1 1 1 2 π 1.989×10 ³⁰ kg 1 au 1 1 1 2 π 1.989×10 ³⁰ kg 1.524 au	1 1 1 2 π 1.989×10 ³⁰ kg 0.387 au 1,209,606 s 1 1 1 2 π 1.989×10 ³⁰ kg 0.723 au 3,089,688 s 1 1 1 2 π 1.989×10 ³⁰ kg 1 au 5,022,415 s 1 1 1 2 π 1.989×10 ³⁰ kg 1.524 au 9,446,301 s

...

- Simplify eqs. of motion by introducing new units for
 - Mass [kg] \rightarrow sum of masses of m₁ and m₂
 - Length [km] \rightarrow distance between m₁ and m₂
 - Time [s] \rightarrow inverse of mean motion of m_1/m_2
- Some results of the new units
 - \circ G=1

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

- Simplify eqs. of motion by introducing new units for
 - Mass [kg] \rightarrow sum of masses of m₁ and m₂
 - Length [km] \rightarrow distance between m₁ and m₂
 - Time [s] \rightarrow inverse of mean motion of m_1/m_2
- Some results of the new units
 - \circ G=1
- Introduce mass parameter

$$\mu = \frac{m_1}{m_1 + m_2}$$
 Erratum: this should be $\mu = \frac{m_2}{m_1 + m_2}$

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

- Simplify eqs. of motion by introducing new units for
 - Mass [kg] \rightarrow sum of masses of m₁ and m₂
 - Length [km] \rightarrow distance between m₁ and m₂
 - Time [s] \rightarrow inverse of mean motion of m_1/m_2
- Some results of the new units
 - \circ G=1
- Introduce mass parameter

$$\mu = \frac{m_1}{m_1 + m_2}$$
 Erratum: this should be $\mu = \frac{m_2}{m_1 + m_2}$

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

- Simplify eqs. of motion by introducing new units for
 - Mass [kg] \rightarrow sum of masses of m₁ and m₂
 - Length [km] \rightarrow distance between m₁ and m₂
 - Time [s] \rightarrow inverse of mean motion of m_1/m_2
- Some results of the new units
 - \circ G=1
- Introduce mass parameter

$$\mu = \frac{m_1}{m_1 + m_2}$$
 Erratum: this should be $\mu = \frac{m_2}{m_1 + m_2}$

Equations of motion in rotating frame – dimensional

$$\ddot{\mathbf{r}}\big|_{R} = -G\left(\frac{m_{1}}{r_{1}^{3}}\mathbf{r}_{1} + \frac{m_{2}}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

- Simplify eqs. of motion by introducing new units for
 - Mass [kg] \rightarrow sum of masses of m₁ and m₂
 - Length [km] \rightarrow distance between m₁ and m₂
 - Time [s] \rightarrow inverse of mean motion of m_1/m_2
- Some results of the new units
 - \circ G=1
- Introduce mass parameter

$$\mu = \frac{m_1}{m_1 + m_2}$$
 Erratum: this should be $\mu = \frac{m_2}{m_1 + m_2}$

Equations of motion in rotating frame – dimensionless

$$\ddot{\mathbf{r}}\big|_{R} = -\left(\frac{1-\mu}{r_{1}^{3}}\mathbf{r}_{1} + \frac{\mu}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

Equations of motion in rotating frame – dimensionless

$$\ddot{\mathbf{r}}\big|_{R} = -\left(\frac{1-\mu}{r_{1}^{3}}\mathbf{r}_{1} + \frac{\mu}{r_{2}^{3}}\mathbf{r}_{2}\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

$$\circ \mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T, \dot{\mathbf{r}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}^T, \ddot{\mathbf{r}} = \begin{bmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}^T$$

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

$$\circ \mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T, \dot{\mathbf{r}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}^T, \ddot{\mathbf{r}} = \begin{bmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}^T$$

$$O \mu = \frac{m_1}{m_1 + m_2}$$
 Erratum: this should be $\mu = \frac{m_2}{m_1 + m_2}$

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

$$\circ \mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T, \dot{\mathbf{r}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}^T, \ddot{\mathbf{r}} = \begin{bmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}^T$$

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

$$\circ \mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T, \dot{\mathbf{r}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}^T, \ddot{\mathbf{r}} = \begin{bmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}^T$$

$$\rho = \frac{m_1}{m_1 + m_2}$$
 Erratum: this should be $\mu = \frac{m_2}{m_1 + m_2}$

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

$$\circ \mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T, \dot{\mathbf{r}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}^T, \ddot{\mathbf{r}} = \begin{bmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}^T$$

• Equations of motion in rotating frame – dimensionless

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

$$\circ \mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T, \dot{\mathbf{r}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}^T, \ddot{\mathbf{r}} = \begin{bmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}^T$$

$$\rho = \frac{m_1}{m_1 + m_2}$$
 Erratum: this should be $\mu = \frac{m_2}{m_1 + m_2}$

Matlab GUI – "STA_cr3bp"

Equations of motion in rotating frame – dimensionless

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

$$\circ \mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T, \dot{\mathbf{r}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}^T, \ddot{\mathbf{r}} = \begin{bmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}^T$$

$$\rho = \frac{m_1}{m_1 + m_2}$$
 Erratum: this should be $\mu = \frac{m_2}{m_1 + m_2}$

$$\circ \mathbf{r}_1 = \begin{bmatrix} x + \mu & y & z \end{bmatrix}^T$$

$$\circ \mathbf{\omega} = \begin{bmatrix} 0 & 0 & \omega \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$

• Equations of motion are fully parameterized by μ

• Equations of motion in rotating frame – dimensionless

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

$$\circ \mathbf{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T, \dot{\mathbf{r}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}^T, \ddot{\mathbf{r}} = \begin{bmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}^T$$

$$\circ \mathbf{r}_1 = \begin{bmatrix} x + \mu & y & z \end{bmatrix}^T$$

$$\circ \mathbf{\omega} = \begin{bmatrix} 0 & 0 & \omega \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$

• Equations of motion are fully parameterized by μ

	System	μ
	Sun – Mercury	1.6600 × 10 ⁻⁷
	Sun – Venus	2.4476 × 10 ⁻⁶
	Sun – Earth	3.0032×10^{-6}
	Sun – Mars	3.2268 × 10 ⁻⁷
	Earth – Moon	0.01215

cr3bp – the equations of motion in dimensionless form + potential formulation

Equations of motion in rotating frame – dimensionless

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\mathbf{\omega} \times \dot{\mathbf{r}} - \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$

These terms can be written in potential form

cr3bp – the equations of motion in dimensionless form + potential formulation

Equations of motion in rotating frame – dimensionless

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

These terms can be written in potential form

$$U = -\left(\frac{1-\mu}{r_1} + \frac{\mu}{r_2}\right) - \frac{1}{2}\left(x^2 + y^2\right)$$
 Effective potential

cr3bp – the equations of motion in dimensionless form + potential formulation

Equations of motion in rotating frame – dimensionless

$$\ddot{\mathbf{r}} = -\left(\frac{1-\mu}{r_1^3}\mathbf{r}_1 + \frac{\mu}{r_2^3}\mathbf{r}_2\right) - 2\boldsymbol{\omega} \times \dot{\mathbf{r}} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

These terms can be written in potential form

$$U = -\left(\frac{1-\mu}{r_1} + \frac{\mu}{r_2}\right) - \frac{1}{2}\left(x^2 + y^2\right)$$
 Effective potential

$$\ddot{\mathbf{r}} = -2\mathbf{\omega} \times \dot{\mathbf{r}} - \nabla U$$

cr3bp – why of interest?

- Interesting dynamical features
 - Equilibria
 - Invariant manifolds
 - Periodic orbits
 - Quasi-periodic orbits
- Exploitable for
 - Space mission applications
 - Understanding the formation and evolution of the Solar System

End of video

