Prof. Hasselblatt and Tu

Final Exam (100 points)

December 15, 2022 8:30–10:30 a.m..

• Carefully PRINT your full name:

• CIRCLE your section: Section 1 (Tu) Section 2 (Tu) Section 3 (Hasselblatt)

Instructions: No books, notes, calculators, internet, or external help from any person or device are allowed. Except in the true-false questions or when instructed otherwise, justify all of your steps.

Write only in the space provided and do not attach any extra page.

• Please sign the following pledge:

I pledge that in this exam I have neither given nor received assistance or cheated in any other way.

Signature:		
0-0		

- 1. (10 points) Circle either True or False. You do not need to justify your choice.
 - (a) **True** / (False:) A subset of a metric space is sequentially compact if and only if it is closed and bounded. SEE SET RELOW
 - (b) True / False: A continuous function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies the intermediatevalue theorem. BLCAUST 12" IS CONNECTED
 - (c) True / False: If $f: D \to \mathbb{R}$ is continuous, where $D \subset \mathbb{R}^2$ is connected, then its graph $\{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in D \text{ and } z = f(x, y)\}$

IF F(X, M, Z) = (x, M, Flz)) ON IR, THEN FIS CONTINUOUS, AND THE GRAPH IS F(D). is connected.

- Every connected set is pathwise connected. Example:

 THE TOROLOGIST'S SINE CHEVE False (d) **True** /
- (e) **True** / **False:** The intersection of two connected sets in \mathbb{R}^n is connected. EXAMPLE:

2. (10 points) Let A be a subset of \mathbb{R}^n and $F \colon A \to \mathbb{R}^m$ a continuous mapping. For each of the following properties P, decide whether it is true that "if A is P, then F(A) is P." Write Yes or No; no justification is necessary.

- (a) No open CONSTANT F (b) No closed n=1, $A=\mathbb{R}$, $F(x)=e^{x}e^{x}$ $e^{x}e^{x}$ (c) Yes sequentially compact (d) Yes pathwise-connected e^{x} pathwise-connected
- connected

Carefully PRINT your full name:

- 3. (15 points) No justification is needed in this question.
 - (a) (3 pts) Let $\{p_k\}$ be a sequence in a metric space X with metric d.

(i) Define what it means for the sequence $\{p_k\}$ to be a *Cauchy sequence* in X: $\{p_k\}$ is a *Cauchy sequence* if

 $\forall \epsilon > 0$ $\exists K \in \mathbb{N} \ \forall k, l \geq K$ $d(p_n, p_e) < \epsilon$ $\forall \epsilon > 0, \exists K \in \mathbb{N} \ \text{Such that} \ \forall k, l \geq K, \ d(p_n, p_e) < \epsilon$

(ii) Define what it means for the metric space *X* to be *complete*: *X* is *complete* if

(TO A POINT IN X)

(b) (4 pts) State the definition of a separation: Let *X* be a metric space. Two open subsets *U*, *V* of *X* **separate** *X* if

 $\begin{array}{c}
U \neq \emptyset \\
V \neq \emptyset
\end{array}$

(c) (2 pts) Negate the statement: For all $x \neq 3$, if $|x - 3| < \delta$, then $|f(x) - f(3)| < \epsilon$.

THERE BYISTS AN X # 3 SICH THAT 1x-31<5 AND 1f67-f(3) = E.

(d) (3 pts) Give an example which shows that the union of infinitely many closed sets need not be closed.

[INDGED, ANY SET IS THE UNION OF ITS BURNEWIL]

(e) (3 pts) Let X and Y be metric spaces. Define a *contraction* $T: X \to Y$ and state the *contraction mapping principle* including all of its hypotheses and conclusions.

(i) A map $T: X \to Y$ is a contraction provided that

 $\exists c < | \forall x, y \in X : d(f_Gx) f_{GY}) = cd(x,y)$ $\exists c < | such that <math>\forall x, y \in X, d(f_Gx), f_{GY}) = cd(x,y)$

(ii) The contraction mapping principle:

AND T: X-> X 15 A CONTRACTION, THEN

THAS A UNIQUE FIXED POINTX.

[AND TOXI -> XT GROWENTIALLY FOR ALL K & X.]

- 4. (11 points) No justification is needed in this question.
 - (a) (3 pts) Sketch the open unit ball $B_1((0,0))$ in \mathbb{R}^2 with the taxicab metric defined by

$$d((x_1,y_1),(x_2,y_2)) = |x_1 - x_2| + |y_1 - y_2|.$$

(b) (8 pts) Let $X = \{p_1, p_2, p_3\}$ be a set of three points with the <u>discrete metric</u>. Determine whether each of the following sets is open, closed, sequentially compact, or connected. Check the appropriate boxes.

i.
$$A = \{p_1\}.$$

ii.
$$B = \{p_1, p_2\}.$$

	Open	Closed	Sequentially Compact	Connected
A	/	✓	✓	√ ←
В	\	V	V	(No)6
	Stys AM Au sh	t ance cross	FINITE SHS AND ARE	({P, } [P2]) IS A SHARATION
		Y FENSONS:		VAILL PROPERTY FUTED (BY CONTRUT PATH)

5. (9 points) For each phenomenon below, either give an example with a brief explanation or explain why none exists.
(a) A metric space with a closed and bounded set that is not sequentially compact.
EXAMPLES: O THE CLOSED BOUNDED SET B, (0) C C([0,1]).
IT CONTAINS THE SECUENCE If From PART C),
MUICH MAS NO CONVERTENT SUBSELLUGUES.
(2) AN INFINITE SERWITH THE DISCRETE METRIC:
AN INJECTIVE SECLIENCE HAS NO CONJERCENT SUBSECUENCE.
(b) A continuous function $f: \mathbb{R} \to \mathbb{R}$ which is not identically zero such that $f(x) = 0$ for all $x \in \mathbb{Q}$. (A function $f: \mathbb{R} \to \mathbb{R}$ is said to be <i>identically zero</i> if $f(x) = 0$ for all $x \in \mathbb{R}$.) In Possible: By Assumption $\mathbb{Q} = f^{-1}(\{0\})$
WHICH IS CLOSED BY CONTINUITY SO
R = o(Q = o(f'((0)) = f'((0)) c R,
1.6., f'({0}) = R, so f 15 106NT CALLY 76N
OR: FOR XER TAKE XNED WITH XN -> X TO GGT f(x)= f(lin x) = lin f(x) = lim 0 = 0
(c) A sequence $\{f_k\}$ of continuous functions on $[0,1]$ which converges pointwise, but not uniformly, to a function f on $[0,1]$.
EXAMPLE: $f_{\nu}(x) = x^{\nu} \longrightarrow \int_{1}^{\infty} x = 1$ Pointwise.
NOT UNIFORMLY, SINCE THE LIMIT IS DISCONTINUOUS
[NOTE: THE LAME HOURS FOR ANY SURSEQUENCE, SO
NO SUSSEQUENCE CONVERLES UNIFORMLY.]

- 6. (10 points) In this question you may use general theorems about uniform convergence, but you may not quote theorems about power series.
 - (a) Prove that the function $f: (-1,1) \to \mathbb{R}$ defined by

$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1} = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots$$

converges uniformly on the closed interval [-r, r], where r is any positive number less than 1.

SO THE WEIGHT STRASS M-TEST APPLIES.

NOTE THAT WE DO NOT KNOW UNIFORM CONVINGENCE ON (1,1). THAT & IS CONTINUOUS ON [-r,v] FOR ANY

UNIFORM WIMIT OF GOVTINUOUS FUNCTIONS

CONTINUOUS. T

SEE THAT I IS CONTINUOUS ON (-1,1)

- WHERE F IS CONTINUOUS BY (a)

- 7. (15 points) Let $C([0,1], \mathbb{R})$ be the space of continuous functions from [0,1] to \mathbb{R} with the uniform metric. For each positive integer k, define $f_k(x) = x x^k$ and $g_k(x) = \sin(x/k)$ for 0 < x < 1.
 - (a) Define what it means for a sequence $\{f_k\}$ of functions from $A \subset \mathbb{R}$ to \mathbb{R} to converge uniformly to a function $f: A \to \mathbb{R}$ on A.
 - (b) Find the pointwise limit of the sequence $\{f_k\}$ on [0,1].
 - (c) Find the pointwise limit of the sequence $\{g_k\}$ on [0,1].
 - (d) Is the sequence $\{f_k\}$ a Cauchy sequence in the metric space $C([0,1],\mathbb{R})$?
 - (e) Is the sequence $\{g_k\}$ a Cauchy sequence in the metric space $C([0,1],\mathbb{R})$?

Carefully PRINT your full name:	L

8. (10 points)

- (a) Let f and g be functions in $C([0,1],\mathbb{R})$. Define the distance d(f,g) in this metric space.
- (b) Let $A = \{ f \in C([0,1], \mathbb{R}) \mid \forall x \in [0,1], f(x) \leq 3 \}$. Prove that A is closed in $C([0,1], \mathbb{R})$.

(a)
$$d(f_{ig}) = \max_{x \in \{0,1\}} |f(x) - g(x)|$$

(6) Suppost A SEQUENCE | fix I IN A CONVEREDES

(UNFRAM) TO & (((3,17,112).

THEN FOR ALL X & CO, 1]

· fu(x) = 3, [f, EA]

· f (x) -> f (x)

MW4. fxx=3

THEREFORE PEA

ALTERNATIVE PROOF: PROVE (CAREEULY!) THAT

4: ((6,13,12)->12) + (4) = max f 15 [max y = g(xmax) = f(xmax) + d(y) = max f 15

(LIPSCHITT-) CONTINUOUS, THEN USE THAT

A = 4-1((-00,3]).

ALTERNATIVE PROOF: PROVE THAT THE COMPLEMENT

If E (([0,1], TR)] XE [0, I] SUCH THAT f(x)=3] IS OPEN.

[IF f(x) > 3 AND $d(g, f) < \delta := f(x) - 3 > 0$, THEN $g(x) > f(x) - \delta = 3$.]

9. (10 points) Let <i>X</i> be a sequentially compact metric space. Prove that a closed subset <i>X</i> of <i>X</i> is also sequentially compact.
IF {xu} IS A SEDVENCE IN K
THEN IX A SHENGING IN X , AND BY SEQUENTIAL COMPACTINESS OF X
4 FACT HAL A CONTRAGAT SYZSGRUGALF
χ _i —> χεΧ.
SINCE K IS CLOSED (AND XII. IS A CONVERGENT SEQUENTED IN K
XEK.
(End of Final Exam)