Homework 2

1. Using the pandas_datareader package connect to yahoo database and load the stock value for the following giant companies. Pick the start date as '2000-01-01' and the end date " today date" (2/17/2022)

```
stocks = ['AAPL','ORCL', 'TSLA', 'IBM','YELP', 'MSFT']
               High
                          Low
                                   0pen
                                                   Volume
                                                           Adj Close
                                                                      Symbol
Date
           1.004464 0.907924
                                                                        AAPL
2000-01-03
                               0.936384
                                              535796800.0
                                                            0.855796
                                                                        AAPL
2000-01-04 0.987723 0.903460
                               0.966518
                                              512377600.0
                                                            0.783644
2000-01-05 0.987165 0.919643
                               0.926339
                                              778321600.0
                                                            0.795112
                                                                        AAPL
2000-01-06 0.955357 0.848214
                               0.947545
                                              767972800.0
                                                            0.726304
                                                                        AAPL
2000-01-07 0.901786 0.852679
                               0.861607
                                              460734400.0
                                                            0.760708
                                                                        AAPL
```

2. The database contains 6 features: "High", "Low", "Open", "Close", "Volume", "Adj Close" in USD(\$). Using the matplotlib.pyplot package and subplot command, plot the "High" columns for all companies in one figure with 3 rows and 2 columns graph. Make sure to add title, legend, x-label. y-label and grid to your plot. The plot should look like the following. Fig size = (16,8)

3. Repeat question 2 for, "Low", "Open", "Close", "Volume", "Adj Close".

Low Price (\$USD)

Close Price (\$USD)

Volume

4. Using the matplotlib.pyplot package and hist command, plot the histogram plot of the "High" columns for all companies in a 3x2 graph. Make sure to add title, legend, x-label. y-label and grid to your plot. The final plot should look like the following. # of bins = 50.

5. Repeat question 4 for, "Low", "Open", "Close", "Volume", "Adj Close".

Low Price (\$USD) Histogram

Open Price (\$USD) Histogram

Close Price (\$USD) Histogram

Volume Histogram

6. Using the pandas package and. corr() function calculate the person correlation coefficients between all 6 features for the "AAPL" company. Display the correlation coefficient matrix through a table on the console. Which two feature has the highest correlation coefficient and which two features has the lowest correlation coefficient?

	High	Low	0pen	Close	Volume	Adj Close
High	1.000000	0.999890	0.999937	0.999917	-0.412495	0.999620
Low	0.999890	1.000000	0.999911	0.999918	-0.414764	0.999586
0pen	0.999937	0.999911	1.000000	0.999840	-0.413401	0.999521
Close	0.999917	0.999918	0.999840	1.000000	-0.413642	0.999687
Volume	-0.412495	-0.414764	-0.413401	-0.413642	1.000000	-0.409563
Adj Close	0.999620	0.999586	0.999521	0.999687	-0.409563	1.000000
0.9999181	271093175					

AAPL ('Open', 'High') have highest correlation coefficient of 1.00 AAPL ('Volume', 'Low') lowest correlation coefficient of -0.41

7. Repeat question 6 for, "ORCL", "TSLA", "IBM", "YELP" and "MSFT".

Oracle

		High	Low	0pen	Close	Volume	Adj Close
	High	1.000000	0.999469	0.999711	0.999700	-0.551196	0.997452
	Low	0.999469	1.000000	0.999687	0.999697	-0.565413	0.997690
	0pen	0.999711	0.999687	1.000000	0.999467	-0.557553	0.997324
	Close	0.999700	0.999697	0.999467	1.000000	-0.558491	0.997813
	Volume	-0.551196	-0.565413	-0.557553	-0.558491	1.000000	-0.553658
	Adj Close	0.997452	0.997690	0.997324	0.997813	-0.553658	1.000000
0.9997000682397463							
OPCL ('Open' 'High') have highest coppelation coefficient of 1 00						£ 1 00	

ORCL ('Open', 'High') have highest correlation coefficient of 1.00 ORCL ('Volume', 'Low') lowest correlation coefficient of -0.57

Tesla

	High	Low	0pen	Close	Volume	Adj Close
High	1.000000	0.999595	0.999754	0.999671	0.100337	0.999671
Low	0.999595	1.000000	0.999617	0.999689	0.092262	0.999689
0pen	0.999754	0.999617	1.000000	0.999297	0.096341	0.999297
Close	0.999671	0.999689	0.999297	1.000000	0.097150	1.000000
Volume	0.100337	0.092262	0.096341	0.097150	1.000000	0.097150
Adj Close	0.999671	0.999689	0.999297	1.000000	0.097150	1.000000
0.9996885414916639						

TSLA ('High', 'Open') have highest correlation coefficient of 1.00 TSLA ('Volume', 'Low') lowest correlation coefficient of 0.09

IBM

	High	Low	0pen	Close	Volume	Adj Close
High	1.000000	0.999351	0.999556	0.999571	-0.383901	0.924120
Low	0.999351	1.000000	0.999544	0.999558	-0.402253	0.924675
0pen	0.999556	0.999544	1.000000	0.999125	-0.392540	0.924341
Close	0.999571	0.999558	0.999125	1.000000	-0.393058	0.924585
Volume	-0.383901	-0.402253	-0.392540	-0.393058	1.000000	-0.426075
Adj Close	0.924120	0.924675	0.924341	0.924585	-0.426075	1.000000
0.99955829	08527262					

IBM ('High', 'Close') have highest correlation coefficient of 1.00 IBM ('Volume', 'Adj Close') lowest correlation coefficient of -0.43

DATS 6401 Lydia Teinfalt Homework #2 02/17/2022

Yelp

	High	Low	0pen	Close	Volume	Adj Close
High	1.000000	0.998207	0.998754	0.998690	0.266151	0.998690
Low	0.998207	1.000000	0.998450	0.998843	0.237796	0.998843
0pen	0.998754	0.998450	1.000000	0.997186	0.250192	0.997186
Close	0.998690	0.998843	0.997186	1.000000	0.253014	1.000000
Volume	0.266151	0.237796	0.250192	0.253014	1.000000	0.253014
Adj Close	0.998690	0.998843	0.997186	1.000000	0.253014	1.000000
0.9987544196302479						
YELP ('Close', 'Low') have highest correlation coefficient of 1						f 1.00

YELP ('Close', 'Low') have highest correlation coefficient of 1.00 YELP ('Volume', 'Low') lowest correlation coefficient of 0.24

Microsoft

	111010301	,					
		High	Low	0pen	Close	Volume	Adj Close
	High	1.000000	0.999871	0.999926	0.999906	-0.375817	0.999165
	Low	0.999871	1.000000	0.999908	0.999917	-0.381045	0.999263
	0pen	0.999926	0.999908	1.000000	0.999835	-0.378182	0.999142
	Close	0.999906	0.999917	0.999835	1.000000	-0.378754	0.999303
	Volume	-0.375817	-0.381045	-0.378182	-0.378754	1.000000	-0.388660
	Adj Close	0.999165	0.999263	0.999142	0.999303	-0.388660	1.000000
	0.99991656	16092668					
MSFT ('High', 'Open') have highest correlation coefficient of 1.00						f 1.00	
MSFT ('Volume', 'Adj Close') lowest correlation coefficient of -0.39							

8. Using the matplotlib.pyplot package, subplot, and scatter() function plot the scatter plot for the "AAPL" company. You need to use the plt.subplots with 6x6 format to cover all the possible correlations between 6 feature. Add the calculated correlation coefficients in step 7 as a title to each subplot. Use two digits precision (.2f) for the correlation coefficients. Figure size = (16,16). The final plot should look like the following.

9. Repeat question 8 for, "ORCL", "TSLA", "IBM", "YELP" and "MSFT".

ORCL

DATS 6401 Lydia Teinfalt Homework #2 02/17/2022

TSLA

IBM

YELP

MSFT

10. Alternatively, one can use Pandas package to plot the scatter matrix. Using pandas package plot the scatter matrix plot of the "AAPL" company with the following parameters: hist_kwds= {'bins': 50}, alpha = 0.5, s = 10, diagonal = 'kde'. Hint: you can use the following command: pd.plotting.scatter_matrix()

