S[ASSAY]

GHB Detection for Drug Facilitated Sexual Assault Prevention

Melissa Ferranti, Yash Patel, Kara Walp

Molecular & Tissue Engineering, & Drug Delivery (Category 2)

Introducing The S[ASSAY] Team

Melissa Ferranti

Computer Engineering

Minor in Mathematical Statistics

Class of 2025

Kara Walp

Biomedical Engineering

Concentration in Machine Learning

Class of 2025

Yash Patel

Biomedical Engineering

Concentration in Nanotechnology

Class of 2025

Joshua Dupaty

Biomedical Engineering

The Klapperich Lab

Mentor, PhD Candidate

GHB

Properties

Prescribed to treat narcolepsy Endogenous to the body

Short-Term Effects^[17]

Drowsiness, dizziness
Lack of inhibition
Memory lapses
Hallucinations

Long-Term Effects^[17]

Respiratory arrest
Overdose
Death

The Problem

Common date-rape drug

35.4% of sexual assault survivors are estimated to be victims of DFSA^[25]

Sexual assault occurs **every 68 seconds** in the U.S.^[23]

Nearly **1 in 5** Black women in the U.S. experience rape^[24]

Less likely to report and seek help

The Solution

Allow users to detect a drink that has been spiked with GHB

Accurately, quickly, and discretely

Create a **safer environment** without placing the blame on the victim

Silver Nanoparticle Based Detection

GHB Triggers

Agglomeration of
Silver Nanoparticles

Increase in Effective Size

Red Shift in LSPR (Localized Surface Plasmon Resonance)

The Ligands and Their Production

L1 has a **2-amino- apthoxazole moiety**that reduces the **carboxylate group**of GHB^[10]

L2 has a phenanthroline group that has affinity to the alcohol group of GHB^[10]

The GHB serves as a linking mechanism between NPs

The Ligands and Their Production

Synthetic Pathway for **L1** Synthesis

Synthetic Pathway for **L2** Synthesis

The Prototype

Modeling Bifunctionalized
AgNPs with Citrate Capped
AgNPs

Detection of Analyte Using Citrate-Capped NPs

Transient Response of Absorbance Spectra After Introduction of Analyte

The Design

A Lateral Flow Assay (LFA) for Gamma Hydroxybutyric Acid (GHB) detection.

A lateral flow assay is a paper based microfluidic assay that required a small sample to detect the presence of a compound.

LFA Design Using Biotin-Streptavidin Conjugation

Our Product in the Market

Objectives	Our Solution
Accurate	> 98% Accuracy [10]
Rapid Results	< 2 minutes ^[6]
Portable	4.85 x 1.25 x 0.40 inches
Discrete	Indistinguishable from everyday item
Convenient	No specialty equipment required
Affordable	< \$5 per test

[18]

Manufacturing & Production

Housing & Enclosure

2 hrs, 38.6g, \$1.12 (PLA)

Synthesis of Bifunctional Ligands

\$0.14 for 246mL of ligand solution

Synthesis of Functional LFA

\$3.51 per assay

Scaled Manufacturing Costs

\$22.18 for 1 device with 6 tests

References

- Alina Adumitrăchioaie, Alina, et al. "Electrochemical Methods Based on Molecularly Imprinted Polymers for Drug Detection. A Review." Researchgate.net, International Journal of ELECTROCHEMICAL SCIENCE, 5 Feb. 2018, https://www.researchgate.net/profile/Mihaela-Tertis/publication/323254620_Electrochemical_Methods_Based_on_Molecularly_Imprinted_Polymers_for_Drug_Detection_A_Review/links/5a8d5e440f7e9b2225d6f1d0/Electrochemical-Methods-Based-on-Molecularly-Imprinted-Polymers-for-Drug-Detection-A_Review.odf.
- 2. Garrido, Eva & Hernández-Sigüenza, Guillermo & Climent, Estela & Marcos, M. & Rurack, Knut & Gaviña, Pablo & Parra, Margarita & Sancenón, Félix & Martí-Centelles, Vicente & Martínez-Máñez, Ramón. (2023). Strip-based lateral flow-type indicator displacement assay for γ-hydroxybutyric acid (GHB) detection in beyerages. Sensors and Actuators B: Chemical. 377. 133043. 10.1016/i.snb.2022.133043.
- 3. Han, W., & Shin, J. H. (2021, March 9). Low-cost, open-source 3D printed antibody dispenser for development and small-scale production of lateral flow assay strips. ScienceDirect. Retrieved April 27, 2023, from https://doi.org/10.1016/j.ohx.2021.e00188
- 4. Hu, M., Han, Q., & Xing, B. (2020). Metallic Nanoparticle-Enabled Sensing of a Drug-of-Abuse: An Attempt at Forensic Application. Chembiochem: a European journal of chemical biology, 21(17), 2512–2517. https://doi.org/10.1002/cbic.202000157
- 5. Heuer-Jungemann, Amelie and Feliu, Neus and Bakaimi, Ioanna and Hamaly, Majd and Alkilany, Alaaldin and Chakraborty, Indranath and Masood, Atif and Casula, Maria F. and Kostopoulou, Athanasia and Oh, Eunkeu and Susumu, Kimihiro and Stewart, Michael H. and Medintz, Igor L. and Stratakis, Emmanuel and Parak, Wolfgang J. and Kanaras, Antonios G. (2019). The role of ligands in the chemical synthesis and applications of ... ACS Publications. Retrieved April 28, 2023, from https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00733
 - Junghyun Ryu, Youngmi Kim, Overcoming interferences in the colorimetric and fluorimetric detection of γ-hydroxybutyrate in spiked beverages, Sensors and Actuators B: Chemical, 10.1016/j.snb.2022.131861, 364, (131861), (2022).
- Libretexts. (2022, September 15). 14.5: Reactions of alcohols. Chemistry LibreTexts. Retrieved April 27, 2023, from
- https://chem.libretexts.org/Bookshelves/introductory_Chemistry/Basics_of_General_Organic_and_Biological_Chemistry_(Ball_et_al.)/14%3A_Organic_Compounds_of_Oxygen/14.05%3A_Reactions_of_Alcohols
- 8. Lu, W., Wang, K., Xiao, K. et al. Dual Immunomagnetic Nanobeads-Based Lateral Flow Test Strip for Simultaneous Quantitative Detection of Carcinoembryonic Antigen and Neuron Specific Enolase. Sci Rep 7, 42414 (2017). https://doi.org/10.1038/srep42414
- 9. Parolo, C., Sena-Torralba, A., Bergua, J.F. et al. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 15, 3788–3816 (2020). https://doi.org/10.1038/s41596-020-0357-x
- 10. Rodríguez-Nuévalos, S., Costero, A. M., Gil, S., Parra, M., & Gaviña, P. (2021, June 25). Bifunctionalized gold nanoparticles for the colorimetric detection of the drug y-hydroxybutyric acid (GHB) in beverages. MDPI. Retrieved April 27, 2023, from https://doi.org/10.3390/chemosensors9070160
- 11. Richer, L. A., Fields, L., Bell, S., Heppner, J., Dodge, J., Boccellari, A., & Shumway, M. (2017). Characterizing Drug-Facilitated Sexual Assault Subtypes and Treatment Engagement of Victims at a Hospital-Based Rape Treatment Center. Journal of Interpersonal Violence, 32(10), 1524–1542. https://doi.org/10.1177/0886260515589567
- 12. Swan, S.C., Lasky, N.V., Fisher, B.S., Woodbrown, V.D., Bonsu, J.E., Schramm, A.T., Warren, P., Coker, A.L., & Williams, C.M. (2017). Just a Dare or Unaware? Outcomes and Motives of Drugging ("Drink Spiking") Among Students at Three College Campuses. Psychology of Violence, 7, 253–264.
- 13. The role of ligands in the chemical synthesis and applications of ... (n.d.). Retrieved April 27, 2023, from https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00733
- 14. Sena-Torralba, A., Alvarez-Diduk, R., Parolo, C., Piper, A., & Merkoci, A. (2022, September 6). High-throughput glycomic methods | chemical reviews ACS publications. ACS Publications. Retrieved April 27, 2023, from https://pubs.acs.org/doi/10.1021/acs.chemrev.1c01031
- 15. Shellaiah, M., & Sun, K.-W. (2022, December 16). Review on anti-aggregation-enabled colorimetric sensing applications of gold and silver nanoparticles. Chemosensors. Retrieved April 27, 2023, from https://doi.org/10.3390/chemosensors10120536
- 16. Vauthier, C., Cabane, B., & Labarre, D. (2008). How to concentrate nanoparticles and avoid aggregation?. European journal of pharmaceutics and biopharmaceutics official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 69(2), 466–475. https://doi.org/10.1016/j.ejpb.2008.01.025
- 17. Promises Five Palms. (2023, February 24). What is GHB? Promises Five Palms. Retrieved April 27, 2023, from https://www.my5palms.com/addiction-blog/what-is-GHB/
- 18. BLYNK Social. (n.d.). Nightcap®: Drink Spiking Prevention Products. NightCaplt. Retrieved April 28, 2023, from https://nightcapit.com/
- 19. Wgn-Tv. (2014, August 26). This nail polish could help prevent a sexual assault. WGN. Retrieved April 28, 2023, from https://wgntv.com/news/this-nail-polish-could-help-prevent-a-sexual-assault/
- 20. Patel, Yash (2021) "Investigating Alternative Synthesis and Impregnation Methods for Silver Nanoparticles," Journal of the South Carolina Academy of Science: Vol. 19: Iss. 1, Article 9. Available athttps://scholarcommons.sc.edu/jscas/vol19/iss1/9
- 21. DeGue, S. (n.d.). The cost of rape. National Sexual Violence Resource Center. Retrieved April 29, 2023, from https://www.nsvrc.org/blogs/cost-rape
- 22. Voices in Action. (2022, March 11). Statistics & Discrete Voices IN ACTION. Retrieved April 29, 2023, from https://voicesinaction.org/statistics-facts/
- 23. Rainn. (n.d.). Scope of the problem: Statistics. RAINN. Retrieved April 29, 2023, from https://www.rainn.org/statistics/scope-problem
- 24. Civic Nation. (2021, April 8). Survivors of color prevalence rates. End Rape on Campus. Retrieved April 29, 2023, from https://endrapeoncampus.org/centering-margins/survivors-of-color/survivors-of-color-prevalence-rates/
- 25. Negrusz, A., Juhascik, M., & Dry, Gaensslen, R. E. (2005). (rep.). Estimate of the Incidence of Drug-Facilitated Sexual Assault in the U.S. (p. 3).
- 26. Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J., & Kanaras, A. G. (2019). The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical reviews, 119(8), 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733

S[ASSAY]

Questions?

Melissa Ferranti, Yash Patel, Kara Walp

Molecular & Tissue Engineering, & Drug Delivery (Category 2)

AgNPs@C + HCl Methodology

Synthesize AgNPs with Citrate Cap

- 1. Boil 50 mL 0.5mM AgNO₃
- Over a span of 4 mins add 4
 mL of 1% Trisodium Citrate

NP synthesis should cause solution to turn yellow

NP size controlled by temperature, rate of addition of 1% TrisC solution, and stirring rate.

Further control can be achieved by addition of Tannic Acid solution, during nucleation reaction.

Adding HCl to Trigger Aggregation

1. Add 20µL of 0.8M HCl solution to 1 mL of AgNPs@C solution.

NP aggregation should trigger red shift in absorbance spectra

Collected Data

Absorbance Spectra NP-Size (DLS) Z-Potential (Surface Potential)

AgNPs @ L1&L2 + GHB Methodology 2

Synthesize Bifunctional AgNPs AgNPs @ L1&L2

- Mix Milli-Q water with 0.5M
 NaOH (200:1 volume ratio)
- 2. Add AgNPs
- Add L1 (0.5mM) and L2
 (0.32mM) simultaneously
- 4. Stir for 1 hour
- 5. Dilute with Milli-Q water
- 6. Centrifuge for 10 min (105e2 rpm)

Conjugation of Bifunctional AgNPs to Nitrocellulose Membranes

1. Add 20µL of 0.8M HCl solution to 1 mL of AgNPs@C solution.

NP aggregation should trigger red shift in absorbance spectra

[10]

[10]

Ligand Chemistry Breakdown

L1

phenanthroline group

H
N
O
amide

Carbonyl and Amide anchoring groups can be conjugated to both noble metal (Au) and transition metal oxide (Ag) nanoparticles^[26]

Ligands previous designed for AuNPs can be applied to AgNPs

Final Materials Sourcing & Cost Calculations

Product	Vendor	Price	Quantity Needed (g/peices)	Molar Mass	Price Per Mole	Concentration Required	Volume Required	Cost (\$)
3-amino-2-naphthol	Sigma Aldrich	\$38.00	5.00E+00	1.59E+02	4.77E-02	1.26E-03	2.00E-01	1.20E6-5
4-methoxyphenyl isothiocyanate	Sigma Aldrich	\$108.00	5.00E+00	1.65E+02	1.31E-01	1.00E+00	1.80E-04	2.35E6-5
Boron Tribromide	Sigma Aldrich	\$202.00	1.00E+02	2.51E+02	8.06E-03	8.30E-04	8.30E-04	5.55E6-9
lpha-Lipoic-acid	Sigma Aldrich	\$620.00	5.00E+01	2.06E+02	6.01E-02	2.20E-04	4.60E+01	6.08E6-4
4-(Dimethylamino) pyridine	Sigma Aldrich	\$572.00	5.00E+03	1.22E+02	9.36E-04	8.10E-05	1.00E+01	7.58E6-7
EDC	Sigma Aldrich	\$173.00	5.00E-04	2.51E+02	1.38E+03	1.00E+00	4.00E-05	5.51E6-2
Tetrahydrofuran	Sigma Aldrich	\$771.00	1.20E+03	7.21E+01	8.91E-03	1.00E+00	1.00E-01	8.91E6-4
11-mercaptoundecanoic acid	Sigma Aldrich	\$345.00	2.50E+01	2.18E+02	6.32E-02	4.60E-04	1.00E+02	2.91E6-3
Thionyl Chloride	Sigma Aldrich	\$168.00	1.00E+00	1.19E+02	1.41E+00	4.70E-04	4.00E-05	2.65E6-8
EDC	Sigma Aldrich	\$173.00	5.00E-03	2.51E+02	1.38E+02	1.00E+00	2.00E-02	2.75E6+0
Acetylthiocholine iodide	Sigma Aldrich	\$495.00	2.50E+01	2.89E+02	6.85E-02	4.70E-04	4.00E-05	1.29E6-9
1,10-phenanthrolin-5-amine	Sigma Aldrich	\$550.00	5.00E+00	1.05E+02	1.05E+00	4.60E-04	9.00E+01	4.33E6-2
Silver Nitrate	Sigma Aldrich	\$1,410.00	5.00E+02	1.69E+02	1.67E-02	5.00E-02	5.00E+01	4.17E6-2
Trisodium Citrate	Sigma Aldrich	\$1,200.00	2.50E+04	2.94E+02	1.63E-04			0.00E6+0
Tannic Acid	Sigma Aldrich	\$154.00	5.00E+02	1.70E+03	1.81E-04			0.00E6+0
Biotin	Sigma Aldrich	\$1,530.00	2.50E+01	2.44E+02	2.51E-01			0.00E6+0
Biotin-Streptaviden Conjugated Nitrocellulose Membranes	EBAY	\$200.00	3.00E+01		6.67E+00			2.67E6+1
Chromotography Paper	<u>Amazon</u>	\$15.99	3.00E+02		5.33E-02			2.13E6-1
							Total Cost	\$29.78
							for 6-strips	

Commercialization & Introduction to Market

\$122K per Survivor amounting to \$3.1 Trillion in costs per rape survivors [21] Health care is 16% higher for women who were sexually abused as children and 36% higher for women who were physically and sexually abused as children [22]

Summary of Data							
Treatments							
	1	2	3	4	5	Total	
N	9	9				18	
ΣX	266.1	3755				4021.1	
Mean	29.5667	417.2222				223.394	
ΣX^2	8336.21	2006853				2015189.21	
Std.Dev.	7.6528	234.5697				256.3199	

Result Details					
Source	SS	df	MS		
Between- treatments	676245.7339	1	676245.7339	F= 24.55437	
Within- treatments	440652.0756	16	27540.7547		
Total	1116897.8094	17			

ANOVA & Post HOC Tukey Performed on NP Size Distribution

The f-ratio value is 24.55437. The p-value is .000143. The result is significant at p < .05.

Summary of Data							
	Treatments						
	1	2	3	4	5	Total	
N	36	36				72	
ΣX	17001	20822				37823	
Mean	472.25	578.3889				525.319	
ΣX^2	8103965	12130670				20234635	
Std.Dev.	46.3659	49.9876				71.7466	

Result Details						
Source	SS	df	MS			
Between- treatments	202778.3472	1	202778.3472	F= 87.24367		
Within- treatments	162699.3056	70	2324.2758			
Total	365477.6528	71				

ANOVA & Post HOC Tukey Performed on Calculated Peaks of Spectra Data

The f-ratio value is 87.24367. The p-value is < .00001. The result is significant at p < .05.

Shift in Absrobace Spectra Over 3 mins

