ME564 L20

0(075) x 1/2 > 0(074)

Local O (Dt5)
global Q (Dt4)

2) proprional to ot

Not true to Chaptiz System!

Integrating Chaotic system, just a little local integration error

could lead to total Chaos (exponetral growth)

E ext D Lyapunov exponent

still saturated at some points

like Lorentz tacker

Eezt

10-16 et assume 2 =1

we can get

machine precision when t=?

to telerant our

ervor

How to evaluate precision?

- out st smaller

Sympletic Integrators

Hamiltonion Lagrangian

HATE =>

$$H(g,p) = T + V =$$
 $\dot{g} = -\frac{\partial H}{\partial p}$
 $\dot{p} = \frac{\partial H}{\partial g}$

mathean some conservation properties

(79.7)	
$ \frac{d}{d\tau} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \omega_1 \\ \omega_2 \end{bmatrix} = \int \left(\begin{bmatrix} \theta_1 \\ \theta_2 \\ \omega_1 \\ \omega_2 \end{bmatrix} \right) $	
$d\tau \left[\omega_{i} \right] = \frac{1}{2} \left[\omega_{i} \right]$	
$\lfloor \omega_2 \rfloor$	
Ollin	
double perdulum & three-body problem	
	LAVE
	130 10000
	KOKEYO LOOSE TEAF RISB 6 mm mind x 41 Roes