Prof. Dr. Leandro Alves Neves

Pós-graduação em Ciência da Computação

Aula 08

Processamento Digital de Imagens

^E Sumário

- Série de Fourier e Representação de Fourier
- Tipos de Representação de Fourier
- Fundamentos
- Transformada de Fourier 1D e 2D
- Filtragem no Domínio da Frequência

PI

Série de Fourier: Fundamentos

- Jean Baptiste Joseph Fourier (1768-1830)
 - Matemático e físico francês
 - Estudo da difusão de calor
 - Equações diferenciais que representavam o fluxo de calor.

- Pode ser expressa como a soma de senos e cossenos
- Qualquer função não periódica
 - Transformada de Fourier: integral de senos e cossenos multiplicada por uma função de ponderação

Propriedades de uma Onda Periódica – Caso Senoidal

- Nós, posições que permanecem em repouso durante a propagação da onda;
- Cristas e vales;
- Comprimento (λ), distância entre dois vales/cristas consecutivos ou três nós consecutivos
- □ Frequência (f), número de oscilações por unidade de tempo (T): f=1/T
- □ Período (T), intervalo de tempo de uma oscilação completa/ciclo: T=1/f

Propriedades de uma Onda Periódica – Caso Senoidal

Se uma fonte oscila com um período (T) de 0,1 segundos, qual é a frequência de oscilação?

f = 1/(0.1) = 10 Hz, realiza 10 oscilações em um segundo (10 Hz)

Se uma fonte oscila a cada 5 segundos, seu período (T) é 5 segundos. Logo, a frequência é:

$$f = 1/5 = 0.2 Hz$$
.

ΡΙ

Série de Fourier: Fundamentos 1

Onda Estacionária

- Uma onda incidente em uma corda
 - Com extremidades fixas (A): exemplo, corda de violão
- Encontra uma onda refletida (B) com a mesma amplitude e frequência

Consequência: pontos de interferência destrutiva (diminuição de amplitude)

Gera uma onda estacionária (C)

 A onda estacionária de um comprimento de onda tem nós e antinós (cristas e vales)

Características de uma Função Periódica

- **Período:** $f(t)=f(t+T_0)+f(t+2T_0)+f(t+3T_0)...$
 - Repetição da função a partir de um intervalo T_0
- Frequência Fundamental: $\omega_0 = \frac{2\pi}{T}$, dada em rad/s.
 - É a onda mais longa* que pode formar uma onda estacionária
 - Tem a menor frequência
- Conteúdos Harmônicos (conjunto de frequências)
 - Múltiplas da frequência fundamental \mathcal{O}_0
 - 2a. Harmônico: $2\omega_0$
 - 3^{a} . Harmônico: $3\omega_{0}$

Dado um Sinal (em função do Tempo)

- Representado por senoides complexas
 - Senoide: depende de uma frequência

Amplitude: 1

Frequência: 1/40

unidades de tempo

Amplitude: 0,5

Frequência: 1/20

unidades de tempo

Forma e Conteúdo Harmônico de v1. com uma frequência maior (V2)

Dobro da frequência -0.5 L múltiplos da frequência

fundamental: 2^a. Harmônico

Exemplo:

- Considere uma senoide
- Frequência fundamental:

$$\omega_0 = \frac{2\pi}{T} = \frac{2\pi}{2\pi} = 1 \Longrightarrow sin(1 \cdot t) = sin(t)$$
sendo que: $sin(c*t) \longrightarrow P = \frac{2\pi}{|c|}$, em que P é o período

- Conteúdos Harmônicos:
 - *1a. = $\omega_0 = sin(t)$
 - 2a. = $2\omega_0$
 - .
 - 5a. = $5\omega_0$

Tempo (s)

$$c_n = 1/T \int_{-T/2}^{T/2} f(t) e^{-ik\omega_0 t} dt.$$
 Domínio da frequência

período de f(t)

- **Senoide Complexa:** $e^{i\theta}$ Resolução a partir da **fórmula de Euler**
 - e (constante matemática): número exponencial de Euler
 - Aproximadamente igual a 2,71828

- Números Complexos, representados em Coordenadas Polares
 - Elementos do conjunto C
 - □ Permite representar uma solução: $x^2 + 1 = 0$
 - □ Existe um elemento que representa: $i^2 = -1$
 - Chamado imaginário (i)
- Forma algébrica: z = a + bi

parte real parte imaginária

- Plano Complexo:
 - Plano de Argand-Gauss

*Solução: NÚMEROS COMPLEXOS NA FORMATRIGONOMÉTRICA

 $|z=r\cdot e^{i\theta},|z|=r.$

i (Imaginário)

z=a + bi

 $a = |z| \cdot \cos \theta$

 $b = |z| \cdot \sin \theta$

Série de Fourier: Fundamentos 5

Representação trigonométrica de $z = r \cdot e^{i\theta}$, |z| = r.

Primeiro, o eixo real:
$$\cos \theta$$

Segundo, o eixo imaginário: $i \sin \theta$

$$|z|=1$$

Logo, é possível indicar:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

- Também, considerando $z = r \cdot e^{-i\theta}$, |z| = r:
 - Temos: $e^{-i\theta} = \cos\theta i\sin\theta$

k: senoides complexas

Período Fundamental: $e^{ik\omega_0t}$

Período Fundamental (T)

k: múltiplos da frequência fundamental

- Número inteiro
- Por exemplo:

$$\omega_0 = \frac{2\pi}{T} = \frac{2\pi}{2\pi} = 1$$

Exemplo:

- □ Dada uma função f(t) periódica de frequência $\omega_{0:}$
 - Podemos representar como:

$$\widetilde{f}(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$$

- □ Para n=1, temos a frequência fundamental
 - $\mathbf{F}(t)$: Representada pela soma de infinitos conteúdos harmônicos
 - Desafio: Determinar os coeficientes a, b
 - Após isso, temos $\widetilde{f}(t) = f(t)$

Ы

Série de Fourier: Exemplo

Exemplo:

Série de Fourier: Exemplo

Exemplo:

Representação de Fourier

Tipos de representação a partir do sinal

	Periódico	Não Periódico
Contínuo	Série de Fourier	Transformada de Fourier
Discreto	Série de Fourier de Tempo Discreto	Transformada de Fourier de Tempo Discreto

Processamento de Sinais

Função não periódica é considerada como função periódica de período espacial infinito

Transformada de Fourier

- Sinal Discreto e Não Periódico
 - Representá-lo por amostras de N valores
 - Intervalos uniformemente espaçados

f(x)

$$\Box$$
 { $f(0), f(1), f(2), \dots, f(N)$ }

- O par de transformadas discretas de Fourier
 - Soma finita de exponenciais complexas

- O domínio da frequência
 - Considerado como discreto e representado por:
 - $u = (0, \Delta u, 2\Delta u, ..., (N-1)\Delta u)$, onde $\Delta u = 1/N\Delta x$.

Transformada discreta de Fourier (DFT 1D)

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) exp(-j2\pi xu/N)$$
Exponenciais complexas*
$$cos(2\pi xu/N) - j sin(2\pi xu/N)$$

- F(u): soma finita de senos e cossenos;
- u=0,...,N-1: denominado variável de frequência;
- Frequência espacial: u, intervalo $\Delta u = \frac{2\pi}{\Delta t}$.
 - Se período $N \rightarrow \infty$, intervalo Δ é infinitesimal
 - f(x) tende a uma função contínua

Função não periódica é considerada como função periódica de período espacial infinito

*Em processamento de sinais, a parte imaginária *i* é comumente indicada como j. E, exp é usada para expressar o número de Euler, 2,71828.

Transformada discreta de Fourier (DFT 1D)

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) exp(-j2\pi xu/N)$$
Exponenciais complexas*
$$cos(2\pi xu/N) - j sin(2\pi xu/N)$$

- **■ F**(**u**): soma finita de senos e cossenos;
- u=0,...,N-1: denominado variável de frequência;
- Importante 1:
- Precisamos calcular F(u) para cada u de 0 a N-1.
 - N: número de pontos do sinal de entrada
- u: índice que define a frequência do u-ésimo componente do sinal transformado no domínio da frequência;
 - Calculado como u vezes a frequência de amostragem do sinal original, dividido pelo número total de amostras.

Transformada discreta de Fourier (TFD 1D)

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) exp(-j2\pi xu/N)$$
Exponenciais complexas*
$$cos(2\pi xu/N) - j sin(2\pi xu/N)$$

- F(u): soma finita de senos e cossenos;
- u=0,...,N-1: denominado variável de frequência;

Importante 2: *u* indica:

"Quantas oscilações completas o sinal original se repete no período correspondente ao comprimento do sinal."

Exemplo: um sinal com 4 amostras e u=1, indica que

"O u-ésimo componente do sinal transformado representa uma frequência de 1/4 da frequência de amostragem, o que corresponde a uma oscilação completa do sinal no período de 4 amostras."

Transformada discreta de Fourier (TFD 1D)

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) exp(-j2\pi xu/N)$$
Exponenciais complexas*
$$cos(2\pi xu/N) - j sin(2\pi xu/N)$$
Exponenciais complexas*

- F(u): soma finita de senos e cossenos;
- u=0,...,N-1: denominado variável de frequência;

Importante 3:

- u=0, representa a frequência mais baixa (frequência fundamental);
- u=1 até N/2, representam as frequências positivas;
- u=N/2+1 até N-1, representam frequências negativas (simétricas em relação ao eixo da frequência);

- Transformada discreta de Fourier (1D)
 - Coeficientes de Fourier ou Transformada inversa

$$F(x) = \frac{1}{N} \sum_{u=0}^{N-1} f(u) \exp(j2\pi ux/N)$$

- F(x): sinal resultante no espaço;
- x=0,...,N-1

- Transformada discreta de Fourier (1D)
 - ullet Resumindo, a transformada de Fourier de uma função f(x):
 - F(u) = R(u) + jI(u)
 - Propriedades:
 - **Magnitude** de F(u): **Espectro de Fourier de** f(x)
 - Quanto (relevância, nível etc) de um certo componente de frequência está presente
 - $\Box |F(u)|$
 - Ângulo de fase: $\phi(u) = \arctan\left(\frac{I(u)}{R(u)}\right)$
 - Onde o componente está presente

Exemplo:

Ângulo de fase

Exemplo:

a) Senóide com freqüência f₀, amplitude A e fase -90°.

b) Senóide com freqüência 2f₀, amplitude A/2 e fase -45°.

Ângulo de fase

- Transformada discreta de Fourier (1D)
 - □ Transformada de Fourier de uma função f(x): Espectro de Fourier
 - Representação do resultado obtido a partir de uma função f(x)

f(x): espaço (linha da imagem)

Variando o valor de *u*: é possível obter infinitas amplitudes das frequências que definem f(x)

- Transformada discreta de Fourier (1D)
 - Transformada de Fourier de uma função f(x)
 - Formato de uma Imagem como uma linha de amplitudes em escala de cinza

- Transformada discreta de Fourier (1D)
 - □ Transformada de Fourier de uma função f(x)
 - As funções contínuas devem ser discretizadas antes de serem processadas em um computador;
 - Isso é realizado por meio da amostragem e quantização;
 - Ideia: discretizar uma função contínua f(x) em uma sequência de N amostras separadas de Δx unidades

Transformada discreta de Fourier (1D)

□ Transformada de Fourier de uma função f(x):

f(0)=2; f(1)=3; f(2)=4; f(3)=4;

Transformada discreta de Fourier (1D)

 $F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \exp(-j2\pi x u/N)$ Transformada de Fourier de uma função f(x):

$$f(0)=2; f(1)=3; f(2)=4; f(3)=4;$$

$$= \frac{1}{4} * (f(0) * exp(-j*2\pi*0*0/4) + f(1) * exp(-j*2\pi*0*1/4) + f(2) * exp(-j*2\pi*0*2/4) + f(3) * exp(-j*2\pi*0*3/4))$$

$$= \frac{1}{4} * (2 * exp(0) + 3 * exp(0) + 4 * exp(0) + 4 * exp(0))$$

$$= \frac{1}{4} * (2 + 3 + 4 + 4)$$

$$= (1/4)*13 = 3,25 \therefore \omega_0$$

Transformada discreta de Fourier (1D)

 $F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) exp(-j2\pi xu/N)$ Transformada de Fourier de uma função f(x):

$$f(0)=2; f(1)=3; f(2)=4; f(3)=4;$$

$$= \frac{1}{4}* (-2 + j)$$
 ... \mathcal{O}_1

Transformada discreta de Fourier (1D)

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) exp(-j2\pi x u/N)$$
Transformada de Fourier de uma função $f(x)$:

$$f(0)=2; f(1)=3; f(2)=4; f(3)=4;$$

$$= \frac{1}{2} = \frac{1}{2} * (f(0) * exp(-j*2\pi*2*0/4) + f(1) * exp(-j*2\pi*2*1/4) + f(2) * exp(-j*2\pi*2*2/4) + f(3) * exp(-j*2\pi*2*3/4))$$

$$= \frac{1}{2} * (2*exp(0) + 3*exp(-j*\pi) + 4*exp(-j*2\pi) + 4*exp(-j*3\pi))$$

$$= \frac{1}{2} * (2+3*(\cos(\pi) - j\sin(\pi)) + 4*(\cos(2\pi) - j\sin(2\pi)) + 4*(\cos(3\pi) - j\sin(3\pi)))$$

$$= \frac{1}{2} * (2+3*(-1) + 4*(1) + 4*(-1))$$

$$= \frac{1}{2} * (2-3+4-4) = -1/4 \therefore \Theta_2$$

Transformada discreta de Fourier (1D)

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) exp(-j2\pi xu/N)$$
Transformada de Fourier de uma função $f(x)$:

$$f(0)=2; f(1)=3; f(2)=4; f(3)=4;$$

$$= \frac{1}{4} * (f(0) * exp(-j*2\pi*3*0/4) + f(1) * exp(-j*2\pi*3*1/4) + f(2) * exp(-j*2\pi*3*2/4) + f(3) * exp(-j*2\pi*3*3/4))$$

$$= \frac{1}{4} * (2 + 3 * exp(-j*3\pi/2) + 4*exp(-j3\pi) + 4*exp(-j9\pi/2))$$

$$= \frac{1}{4} * (2+3*(\cos(3\pi/2) - j\sin(3\pi/2)) + 4*(\cos(3\pi) - j\sin(3\pi)) + 4*(\cos(9\pi/2) - j\sin(9\pi/2)))$$

$$= (1/4) * (2+3*(0-j(-1)) + 4*(-1) + 4*(0-j(1))$$

$$= (1/4) * (2+3j-4-4j)$$

=
$$(1/4)^* (-2 - j) = -(1/4)^* (2+j)$$
 ... ω_3

Transformada discreta de Fourier (1D)

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) exp(-j2\pi xu/N)$$
Transformada de Fourier de uma função $f(x)$:

$$f(0)=2; f(1)=3; f(2)=4; f(3)=4;$$

Magnitude do Espectro de Fourier

$$|F(0)| = 3,25$$

$$|F(1)| = \left[\left(\frac{2}{4} \right)^2 + \left(\frac{1}{4} \right)^2 \right]^{1/2} = \frac{\sqrt{5}}{4}$$

$$|F(2)| = \left[\left(\frac{1}{4} \right)^2 \right]^{1/2} = \frac{1}{4}$$

$$|F(3)| = \left[\left(\frac{2}{4} \right)^2 + \left(\frac{1}{4} \right)^2 \right]^{1/2} = \frac{\sqrt{5}}{4}$$

$$1 \quad 2 \quad 3$$

Quanto de um certo componente de frequência está presente

python

Transformada discreta de Fourier (1D)

```
import numpy as np
import matplotlib.pyplot as plt
# Sequência de entrada
x = [2, 3, 4, 4]
# Calcula a DFT usando a função fft do numpy
X = np.fft.fft(x)
# Calcula as magnitudes das componentes da DFT
magnitudes = np.abs(X)
# Cria um array com as frequências normalizadas
freqs = np.arange(len(x))/len(x)
# Plota o gráfico da DFT
plt.stem(freqs, magnitudes, use line collection=True)
plt.xlabel('Frequência normalizada')
plt.ylabel('Magnitude')
plt.title('Gráfico da DFT')
plt.show()
```

- Transformada discreta de Fourier (1D)
 - Transformada discreta de uma onda quadrada
 - Resultado é um deslocamento

- Transformada discreta de Fourier (1D): interpretação do gráfico
 - \Box Primeiros N/2 k coeficientes de frequência: valores abaixo de π
 - Pontos que se movimentam no sentido anti-horário do plano complexo

- Transformada discreta de Fourier (1D): interpretação do gráfico
 - \Box Coeficientes entre N/2 e N-1: valores acima que π
 - Pontos que se movimentam no sentido horário do plano complexo

Transformada discreta de Fourier (2D)

$$F(u,v) = R(u,v) + jI(u,v)$$

O par de Transformadas Discretas de Fourier de uma função f(x,y) amostrada (M x N), é dado por:

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \exp[-j2\pi (\frac{ux}{M} + \frac{vy}{N})]$$

- $\mathbf{F}(\mathbf{u},\mathbf{v})$: soma finita de senos e cossenos;
- u=0,...,M-1; v=0,...,N-1 denominados variáveis de frequências;

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \exp[j2\pi (\frac{ux}{M} + \frac{vy}{N})]$$

- f(x,y): soma finita de senos e cossenos;
- x=0,...,M-1; y=0,...,N-1

Transformada discreta de Fourier (2D)

Exemplo

- f = zeros(30,30);
- f(5:24,13:17)=1;
- imshow(f);
- F =fft2(f);
- $F2 = \log(abs(F));$
- imshow(F2,[-1, 5]);
- colormap(jet); colorbar;

Método DFT centrada

- F2=fftshift(F);
- F3=log(abs(F2));
- imshow(F3,[-1, 5]);
- colormap(jet); colorbar;

- Transformada discreta de Fourier (2D)
 - Propriedades que facilitam a sua utilização

- Transformada discreta de Fourier (2D)
 - Teorema da Convolução
 - Convolução de uma máscara na imagem no espaço

No espectro: Multiplicação da transformada da imagem pela transformada da máscara

$$f(x,y)*g(x,y) \Leftrightarrow F(u,v)G(u,v)$$

 $f(x,y)g(x,y) \Leftrightarrow F(u,v)*G(u,v)$

Convolução (espaço) Multiplicação(frequência)

- Transformada discreta de Fourier (2D)
 - Etapas do Processo de Filtragem: Domínio da Frequência

- Transformada discreta de Fourier (2D)
 - Etapas do Processo de Filtragem: Domínio da Frequência

Interpretação do espectro de Fourier resultante da aplicação da DFT bidimensional

- Transformada discreta de Fourier (2D)
 - Filtragem no Domínio da Frequência

- Passa Baixa
 - Suavização

- Passa Alta
 - Realce

- Transformada discreta de Fourier (2D)
 - Filtragem no Domínio da Frequência: Filtro Ideal
 - Realiza um corte de frequências
 - Frequências dentro de um círculo de raio R
 - Centro alinhado com o centro da imagem

$$L(u,v) = \begin{cases} 1, & \text{se } D(u,v) \leq D_I \\ 0, & \text{no c.c.} \end{cases}$$

$$H(u,v) = \begin{cases} 1, & \text{se } D(u,v) \geq D_h \\ 0, & \text{no c.c.} \end{cases}$$

 \Box D₁ e D_h: valores empíricos > 0

- Transformada discreta de Fourier (2D)
 - Filtragem no Domínio da Frequência: Filtro Ideal de Suavização

- Transformada discreta de Fourier (2D)
 - Filtragem no Domínio da Frequência: Filtro Ideal de Realce

- Transformada discreta de Fourier (2D)
 - Filtragem no Domínio da Frequência: Filtro Ideal Passa/Rejeita Faixa

- Transformada discreta de Fourier (2D)
 - Filtragem no Domínio da Frequência: Filtro Ideais
 - Problemas: Gera Falsas Bordas (Ruído Oscilatório)

 Solução: filtros com uma variação mais suave em torno das frequências de corte

- Transformada discreta de Fourier (2D)
 - Filtragem no Domínio da Frequência: Filtro Gaussiano
 - corte suave
 - não apresenta ruído oscilatório

- D(μ,ν): distância entre um ponto (μ,ν) no domínio da frequência e o centro da função de frequência
- □ D₀ é a frequência de corte (distância da origem)

- Transformada discreta de Fourier (2D)
 - Filtragem no Domínio da Frequência: Filtro Gaussiano

□ Filtro Passa Alta Gaussiano: $L(\mu, v) = 1 - H(\mu, v)$

Exercícios

- 1. Calcule a DFT para a sequência $f(x)=\{1,2,0,1\}$. Apresente a magnitude do espectro e a transformada inversa.
- 2. Para facilitar a elaboração dessa atividade, converta a imagem abaixo para níveis de cinza, 8 bits de quantização. Aplique o ruído gaussiano sobre a imagem. Em seguida, aplique a DFT sobre a imagem com ruído. Apresente o espectro de Fourier com o deslocamento da origem do plano de frequências. Proponha dois filtros no domínio da frequência. O objetivo é suavizar o ruído inserido previamente. Apresente os espectros de Fourier antes e após a etapa de processamento, bem como as imagens reconstruídas após cada processo de filtragem. Explique detalhadamente cada etapa e os filtros propostos. Indique qual foi o filtro que forneceu o melhor resultado em termos de minimização da presença. É permitido o uso de pacote DFT, disponível em ferramentas de PDI, a fim de facilitar o processamento da transformada e exibição de cada espectro. Não é permitido o uso de filtros disponíveis em ferramentas de PDI.

Referências

Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008.

Leitura: Capítulo 3, tópico 3.2.

González, R. C., Woods, R. E. Processamento de Imagens Digitais. São Paulo: Edgard Blücher Itda, 2000.

Leitura: Capítulo 4.

Backes, A. R., Sá Junior, J. J. De M. Introdução à Visão Computacional Usando MatLab. Rió de Janeiro: Alta Books, 2016.

Leitura: Capítulo 5, tópico 5.2.

