logistic regression = basics

classification and representation

classification

the assignments in a single class classification problem are typically as follows:

$$y \in \{0,1\}$$
 \rightarrow 0: "negative class" 1: "positive class"

although circumstances could allow linear regression to predict a proper output for the predicted values, Applying linear regression to classification problems is generally not effective; it does not fit outliers and will result in false negatives and positives:

threshold classifier output $h_{\theta}(x)$ at 0.5:

if
$$h_{\theta}(x) \geq 0.5$$
, predict " $y = 1$ "

if
$$h_{\theta}(x) < 0.5$$
, predict " $y = 0$ "

Which of the following statements is true?

- If linear regression doesn't work on a classification task as in the previous example shown in the video, applying feature scaling may help.
- If the training set satisfies $0 \le y^{(i)} \le 1$ for every training example $(x^{(i)}, y^{(i)})$, then linear regression's prediction will also satisfy $0 \le h_{\theta}(x) \le 1$ for all values of x.
- If there is a feature x that perfectly predicts y, i.e. if y=1 when $x\geq c$ and y=0 whenever x< c (for some constant c), then linear regression will obtain zero classification error.
- None of the above statements are true

Correct Response

additionally, linear regression often experiences values where $h_{\theta}(x)$ can predict values > 1 or < 0; the latter is outside of the classifications of y = 0 or y = 0

hypothesis representation

the logistic regression models requires outputs within the range $0 \le h_{\theta}(x) \le 1$

therefore, the linear regression function is altered: $h_{\theta}(x) = \theta^T X \to g(\theta^T X)$

intuition expansion:

$$h_{\theta}(x) = g(\theta^T X)$$
 $g(z) = \frac{1}{1 + e^{-z}}$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T X}} \rightarrow \text{sigmoid/logistic function}$$

interpretation of the hypothesis' output

 $h_{\theta}(x)$ = the estimated probability that y = 1 on input x:

if
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{some measured value} \end{bmatrix}$$

and $h_{\theta}(x) = 0.7$ then there is a 70% probability the measured value is the **positive class** indicated in the problem set

 $h_{\theta}(x) = P(y = 1 | x : \theta)$; "probability that y = 1 given x, parameterized by θ "

concretely, because logistic regression can only return outputs of y = 0 and y = 1:

$$P(y = 0|x:\theta) + P(y = 1|x:\theta) = 1$$

$$P(y = 0 | x : \theta) = 1 - P(y = 1 | x : \theta)$$

Suppose we want to predict, from data x about a tumor, whether it is malignant (y=1) or benign (y=0). Our logistic regression classifier outputs, for a specific tumor,

 $h_{ heta}(x) = P(y=1|x; heta) = 0.7$, so we estimate that there is a 70% chance of this tumor being malignant. What should be our estimate for $P(y=0|x;\theta)$, the probability the tumor is benign?

$$P(y=0|x;\theta)=0.3$$

Correct Response

$$P(y = 0|x;\theta) = 0.7$$

$$P(y=0|x;\theta)=0.7^2$$

$$P(y=0|x;\theta)=0.3\times0.7$$

decision boundary

$$h_{\theta}(x) = g(\theta^T X) = P(y = 1 | x : \theta)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

assuming a prediction of "y=1" if $h_{\theta}(x) \geq 0.5$ and a prediction of "y=0" if $h_{\theta}(x) < 0.5$

looking at the sigmoid function; $g(z) \ge 0.5$ when $z \ge 0$. therefore, since the hypothesis for logistic regression is $h_{\theta}(x) = g(\theta^T X)$, then $h_{\theta}(x) = g(\theta^T X) \ge 0.5$, whenever $\theta^T X \ge 0$ because $\theta^T X$ effectively taken on the value of z in the sigmoid function g(z)

conversely, when $h_{\theta}(x) < 0.5$ then $g(z) \le 0.5$ considering that $h_{\theta}(x) = g(\theta^T X)$ illustrated above. Therefore when $h_{\theta}(x) = g(\theta^T X) < 0.5$, whenever $\theta^T X < 0$ because $\theta^T X$ effectively taken on the value of z in the sigmoid function g(z)

determination of the decision boundary example

given the function $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ with the following parameters:

$$\theta_0 = -3$$
, $\theta_1 = 1$, $\theta_2 = 1$ produces the parameter vector $\theta = \begin{bmatrix} -3\\1\\1 \end{bmatrix}$

referring to the above formulas, "y=1" will be predicted if $\theta^T X=-3+x_1+x_2\geq 0$ any example of (x_a,x_2) that satisfies the equation $-3+x_1+x_2\geq 0$ will predict "y=1" additional rule notation is as follows: $(-3+x_1+x_2\geq 0)=(x_1+x_2\geq 3)$

Consider logistic regression with two features x_1 and x_2 . Suppose $\theta_0=5$, $\theta_1=-1$, $\theta_2=0$, so t hat $h_{\theta}(x)=g(5-x_1)$. Which of these shows the decision boundary of $h_{\theta}(x)$?

nonlinear decision boundaries

adding additional higher order polynomial terms can adapt to fitting nonlinear datasets

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

determination of the decision boundary example

given the function $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$; with the parameters:

$$\theta_0 = -1, \theta_1 = 0, \theta_2 = 0, \theta_3 = 1, \theta_4 = 1$$
 produces the parameter vector $\theta = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$

with the above formulas, "y=1" will be predicted if $\theta^T X=-1+x_1^2+x_2^2\geq 0$ simplified rule notation is as follows: $(-1+x_1^2+x_2^2\geq 0)=(x_1^2+x_2^2\geq 1)$

adding more complex polynomial features allows the algorithm to fit more complex decision boundaries. an important principal of logistic regression is that the **decision boundary** is a property **not** of the **training set**, but of the **hypothesis** under the parameters. therefore, as long as parameter vector θ is known, it will define the decision boundary. the training set does not define the decision boundary but can be used to fit the parameters θ

finally, the function determines the complexity:

decision boundary

 X_1

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2)$

