安徽大学 2020—2021 学年第一学期

《概率论与数理统计A》期中考试试题参考答案及评分标准

1. (D) 2. (A) 3. (C) 4. (B) 5. (C)

一. 选择题(每小题2分,共10分)

二. 填空题 (每小题 2 分, 共 10 分)
6. 0.8 7. $\frac{16}{45}$ 8. $\frac{4}{5}$ 9. $\begin{pmatrix} 0 & 1 & 4 \\ \frac{1}{4} & \frac{7}{12} & \frac{1}{6} \end{pmatrix}$ 10. $\frac{7}{24}$
三. 计算题(每小题 12 分,共 72 分) 11. 【解 】 设事件 A 表示"从乙袋中取出的是白球", B 表示"从甲袋中取出的两球中恰有 i 个白球", i = 0,1,2,
由全概率公式,
$P(A) = \sum_{i=0}^{2} P(B_i) P(A \mid B_i) = \frac{C_2^2}{C_5^2} \cdot \frac{4}{10} + \frac{C_3^1 C_2^1}{C_5^2} \cdot \frac{5}{10} + \frac{C_3^2}{C_5^2} \cdot \frac{6}{10} = \frac{13}{25}$
12. 【解】从 5 个纪念章中任取 3 个,共有 $C_5^3 = 10$ 种取法,
$X = 3$,只有一种取法(1, 2, 3),所以 $P(X = 3) = \frac{1}{10}$;
$X = 4$,有 $C_3^2 = 3$ 种取法,所以 $P(X = 4) = \frac{3}{10}$;
$X = 5$,有 $C_4^2 = 6$ 种取法,所以 $P(X = 4) = \frac{6}{10} = \frac{3}{5}$,
(10分)
故 X 的分布律为 $\frac{X}{P} \begin{vmatrix} 3 & 4 & 5 \\ \frac{1}{10} & \frac{3}{10} & \frac{3}{5} \end{vmatrix}$.
13. 【解】 (1) $\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} x dx + \int_{1}^{2} (A - x) dx = \frac{1}{2} + A - \frac{3}{2} = 1,$
所以 A = 2
(2) $P(-1 < X < 1) = \int_{-1}^{1} f(x) dx = \int_{0}^{1} x dx = 0.5$.
(12 分)

四.证明题(每小题8分,共8分)

17. 【证明】

$$X$$
的密度函数为 $f_X(x) = \begin{cases} 2e^{-2x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$

.....(2分)

则 Y的分布函数为 $F_Y(y) = P\{Y \le y\} = P\{1 - e^{-2X} \le y\} = P\{e^{-2X} \ge 1 - y\}$,

当y < 0时, $F_Y(y) = P\{e^{-2X} \ge 1 - y\} = P(X \le 0) = 0$;

当 $y \ge 1$ 时, $F_Y(y) = P\{e^{-2X} \ge 1 - y\} = 1$;

 $\stackrel{\text{def}}{=} 0 \le y < 1 \text{ fb}, \quad F_Y(y) = P\{e^{-2X} \ge 1 - y\} = P\{X \le -\frac{1}{2}\ln(1 - y)\} = \int_0^{-\frac{1}{2}\ln(1 - y)} 2e^{-2x} dx,$

.....(6分)

利用变限积分求导,得 $F'_{Y}(y) = 2e^{\ln(1-y)} \cdot \frac{1}{2} \cdot \frac{1}{1-y} = 1$,

于是 $f_{Y}(y) = F'_{Y}(y) = \begin{cases} 1, & 0 < y < 1 \\ 0, & \text{其他} \end{cases}$, 即 Y在(0,1)上服从均匀分布.

.....(8分)