A számításelmélet alapjai I. (Harmadik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. február 27.

Tematika

- i = 0 eset: nincs korlátozás,
- i = 1 eset:
 - (1) P minden szabálya $u_1 A u_2 \rightarrow u_1 v u_2$ alakú, ahol $u_1, u_2, v \in (N \cup \Sigma)^*, A \in N$, és $v \neq \varepsilon$,
 - (2) Egyetlen kivétel megengedünk: P tartalmaz**hat**ja az $S \to \varepsilon$ szabályt, de csak abban az esetben, ha S nem fordul elő P egyetlen szabályának jobb oldalán sem.
 - ("Korlátozott ε szabály" vagy röviden "KES")
- ▶ i = 2 eset: P minden szabálya $A \rightarrow v$ alakú, ahol $A \in N$ és $v \in (N \cup \Sigma)^*$,
- ▶ i = 3 eset: P minden szabálya vagy $A \rightarrow uB$ vagy $A \rightarrow u$, alakú, ahol $A, B \in N$ és $u \in \Sigma^*$.

Legyen
$$G_1 = (\{S\}, \{a, b\}, \{S \to abS, S \to a\}, S)$$
 és $G_2 = (\{S, S_1\}, \{a, b\}, \{S \to Sab, S \to aab\}, S)$.

- Bal- vagy jobb-lineárisak az előbbi grammatikák?
- Határozzuk meg $L(G_1)$ -t és $L(G_2)$ -t!

- *G*₁ jobb-lineáris, *G*₂ bal-lineáris.
- $L(G_1) = (ab)^* a$ és $L(G_2) = aab(ab)^*$

Jobb-lineáris grammatikák

Példa 2

Konstruáljunk jobb-lineáris grammatikát az $L = aab^*a$ nyelvhez!

Jobb-lineáris grammatikák

$$\textit{G} = (\{\textit{S},\textit{A},\textit{B}\}, \{\textit{a},\textit{b}\}, \{\textit{S} \rightarrow \textit{aA},\textit{A} \rightarrow \textit{aB},\textit{B} \rightarrow \textit{bB},\textit{B} \rightarrow \textit{a}\},\textit{S}).$$

Példa 3

Konstruáljunk jobb-lineáris és bal-lineáris grammatikát az $L = \{a^nb^m \mid n \geq 3, m \geq 2\}$ nyelvhez! Adjuk meg a^4b^3 jobb-lineáris és bal-lineáris levezetését!

- A jobb-lineáris grammatika: $G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow aaaA, A \rightarrow aA, A \rightarrow bbB, B \rightarrow bB, B \rightarrow \varepsilon\}, S)$.
- A bal-lineáris grammatika: $G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow Abb, A \rightarrow Ab, A \rightarrow Baaa, B \rightarrow Ba, B \rightarrow \varepsilon\}, S)$.
- A jobb-lineáris levezetés: $S \Longrightarrow aaaA \Longrightarrow aaaaA \Longrightarrow aaaabbB \Longrightarrow aaaabbbB \Longrightarrow aaaabbb.$
- A bal-lineáris levezetés: $S \Longrightarrow Abb \Longrightarrow Abbb \Longrightarrow Baaabbb \Longrightarrow Baaabbb \Longrightarrow aaaabbb.$

Példa 4

Legyen G = (N, T, P, S) bal-lineáris grammatika, ahol $N = \{S, A, B\}$, $T = \{a, b\}$, $P = \{S \rightarrow Abb, A \rightarrow Baa, B \rightarrow Aab, A \rightarrow aa\}$. Konstruáljunk meg egy G' jobb-lineáris grammatikát, amelyre L(G) = L(G') teljesül!

Példa 4

Megjegyzés

Legyen G = (N, T, P, S) bal-lineáris grammatika és legyen $N = \{S, A_1, \ldots, A_n\}$. Az általánosság megszorítása nélkül feltehetjük, hogy S nem fordul elő egyetlen szabály jobb oldalán sem. Megkonstruálunk egy G' = (N, T, P', S) jobb-lineáris grammatikát, amelyre L(G) = L(G') teljesül.

- $S \rightarrow u \in P'$ akkor és csak akkor, ha $S \rightarrow u \in P$, $u \in T^*$,
- $S \to uA_k \in P'$ akkor és csak akkor, ha $A_k \to u \in P, \ u \in T^*$,
- $A_j \to u A_k \in P'$ akkor és csak akkor, ha $A_k \to A_j u \in P, \ u \in T^*$,
- $A_j \to u \in P'$ akkor és csak akkor, ha $S \to A_j u \in P$, $u \in T^*$.

Példa 4

Az előbbiek alapján a jobb-lineáris grammatika szabályhalmaza:

$$P' = \{S \rightarrow aaA, A \rightarrow bb, B \rightarrow aaA, A \rightarrow abB\}.$$

Példa 5

Legyen G=(N,T,P,S) reguláris grammatika, ahol $N=\{S,A,B\}$, $T=\{a,b\},\ P_1=\{S\rightarrow aaA,A\rightarrow bbB,A\rightarrow B,A\rightarrow aa,B\rightarrow bb\}$. Konstruáljunk G-hez egy G' reguláris grammatikát, amely normálformájú és amelyre L(G')=L(G)!

Példa 5

Megjegyzés

- Normálforma alatt a 3-as típusú grammatikák normálformáját értjük.
- Legyen G = (N, T, P, S) 3-típusú grammatika. Ismeretes, hogy G szabályai vagy $A \to uB$, vagy $A \to u$ alakúak, ahol $A, B \in N$ és $u \in T^*$.
- Minden 3-típusú, azaz reguláris nyelv generálható egy olyan grammatikával, amelynek szabályai vagy $X \to aY$, ahol $X, Y \in N$ és $a \in \mathcal{T}$, vagy $X \to \varepsilon$ alakúak, ahol $X \in N$.

Példa 5

Megjegyzés

- Először ún. hosszredukciót hajtunk végre:
 - minden egyes $A \to a_1 \dots a_n B$, $n \ge 2$, alakú szabályt egy $\{A \to a_1 Z_1, Z_1 \to a_2 Z_2, \dots, Z_{n-1} \to a_n B\}$ szabályhalmazzal helyettesítünk, ahol Z_1, \dots, Z_{n-1} új, a szabályhoz bevezetett nemterminálisok, és
 - minden egyes $A \to a_1 \dots a_m$, $m \ge 1$ alakú szabályt pedig helyettesítünk egy $\{A \to a_1 Y_1, Y_1 \to a_2 Y_2, \dots, Y_{m-1} \to a_m Y_m, Y_m \to \varepsilon\}$ szabályhalmazzal, ahol Y_1, \dots, Y_m a szabályhoz bevezetett új nemterminálisok.
- Az így kapott új P'' szabályhalmaz elemei $X \to aY, X \to Y, X \to \varepsilon$ alakúak, ahol $X, Y \in N$ és $a \in T$.

Példa 5

Megjegyzés

- Ezután elimináljuk a láncszabályokat.
- Legyen N' a P" szabályhalmazban előforduló nemterminálisok halmaza (az új nemterminálisokat is beszámítva). Legyen bármely X ∈ N' nemterminálisra U(X) = {Y | Y ⇒* X}.
- Definiáljuk a P' szabályhalmazt a következőképpen:
 - $X \to aY \in P'$ akkor és csak akkor, ha létezik olyan $Z \in N'$, amelyre $X \in U(Z)$ és $Z \to aY \in P''$, valamint
 - ▶ $X \to \varepsilon \in P'$ akkor és csak akkor, ha létezik olyan $Z \in N'$, amelyre $X \in U(Z)$ és $Z \to \varepsilon \in P''$.
 - Más szabály nincs P'-ben.

Példa 5

Tekintsük a feladatban szereplő G grammatikát!

- Az első lépés a hosszredukció: az S oup aaA szabály helyett az $S oup aA_1, A_1 oup aA$, az A oup bbB helyett az $A oup bB_1, B_1 oup bB$, az A oup aa helyett az $A oup aA_2, A_2 oup aZ$, $Z oup \varepsilon$, valamint a B oup bb helyett a $B oup bB_2, B_2 oup bZ$, $Z oup \varepsilon$ szabályokat vesszük.
- Az új szabályhalmaz $P' = \{S \rightarrow aA_1, A_1 \rightarrow aA, A \rightarrow bB_1, B_1 \rightarrow bB, A \rightarrow aA_2, A_2 \rightarrow aZ, B \rightarrow bB_2, B_2 \rightarrow bZ, Z \rightarrow \varepsilon, A \rightarrow B\}.$
- Ezután elimináljuk az egyetlen láncszabályt, $A \rightarrow B$ -t.
- Az új szabályhalmaz $P_1' = \{S \rightarrow aA_1, A_1 \rightarrow aA, A \rightarrow bB_1, B_1 \rightarrow bB, A \rightarrow aA_2, A_2 \rightarrow aZ, A \rightarrow bB_2, B \rightarrow bB_2, B_2 \rightarrow bZ, Z \rightarrow \varepsilon\}$ lesz.
- Az új grammatika $G' = (N'_1, T, P'_1, S)$ lesz, ahol $N'_1 = \{S, A, B, Z, A_1, A_2, B_1, B_2\}.$

