Микроэконометрика Модели с неслучайным отбором

Потанин Богдан Станиславович

старший преподаватель, кандидат экономических наук

2021-2022

Неслучайный отбор _{Мотивация}

• Иногда значение зависимой переменной наблюдается лишь при соблюдении некоторого условия (правила).

- Иногда значение зависимой переменной наблюдается лишь при соблюдении некоторого условия (правила).
- Например, зарплата наблюдается лишь для работающих индивидов, а затраты на покупку в приложении лишь для тех, кто им пользуется.

Мотивация

- Иногда значение зависимой переменной наблюдается лишь при соблюдении некоторого условия (правила).
- Например, зарплата наблюдается лишь для работающих индивидов, а затраты на покупку в приложении лишь для тех, кто им пользуется.
- В отличие от модели Тобина модели с неслучайным отбором предполагают, что правило, определяющее попадение наблюдений в выборку, моделируется отдельно.

Мотивация

- Иногда значение зависимой переменной наблюдается лишь при соблюдении некоторого условия (правила).
- Например, зарплата наблюдается лишь для работающих индивидов, а затраты на покупку в приложении лишь для тех, кто им пользуется.
- В отличие от модели Тобина модели с неслучайным отбором предполагают, что правило, определяющее попадение наблюдений в выборку, моделируется отдельно.
- Например, в моделях с неслучайным отбором одновременно моделируется как зарплата, так и занятость индивида. Причем различные факторы могут по разному (в том числе с разным знаком) влиять на ожидаемую зарплату и вероятность занятости.

Частный случай с односторонним усечением одной компоненты

ullet Случайные величины X_1 и X_2 имеют совместное нормальное распределение:

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

Частный случай с односторонним усечением одной компоненты

ullet Случайные величины X_1 и X_2 имеют совместное нормальное распределение:

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

• Напомним, что:

$$E(X_1|X_2=t) = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} (t - \mu_2),$$

Частный случай с односторонним усечением одной компоненты

ullet Случайные величины X_1 и X_2 имеют совместное нормальное распределение:

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

• Напомним, что:

$$E(X_1|X_2=t) = \mu_1 +
ho rac{\sigma_1}{\sigma_2} (t-\mu_2), \quad Var(X_1|X_2=t) = (1-
ho^2)\sigma_1^2$$

Частный случай с односторонним усечением одной компоненты

ullet Случайные величины X_1 и X_2 имеют совместное нормальное распределение:

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

• Напомним, что:

$$E(X_1|X_2=t) = \mu_1 +
ho rac{\sigma_1}{\sigma_2} (t-\mu_2), \quad Var(X_1|X_2=t) = (1-
ho^2)\sigma_1^2$$

Частный случай с односторонним усечением одной компоненты

ullet Случайные величины X_1 и X_2 имеют совместное нормальное распределение:

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

• Напомним, что:

$$E(X_1|X_2=t) = \mu_1 +
ho rac{\sigma_1}{\sigma_2} (t-\mu_2), \quad Var(X_1|X_2=t) = (1-
ho^2)\sigma_1^2$$

$$E(X_1|X_2>t)=\mu_1+\rho\sigma_1\sigma_2\lambda(t^*),$$

$$\lambda(t^*) = rac{\phi(t^*)}{1 - \Phi(t^*)}, \qquad \qquad t^* = rac{t - \mu_2}{\sigma_2}$$

Частный случай с односторонним усечением одной компоненты

ullet Случайные величины X_1 и X_2 имеют совместное нормальное распределение:

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

• Напомним, что:

$$E(X_1|X_2=t) = \mu_1 +
ho rac{\sigma_1}{\sigma_2} (t-\mu_2), \quad Var(X_1|X_2=t) = (1-
ho^2)\sigma_1^2$$

$$E(X_1|X_2 > t) = \mu_1 + \rho \sigma_1 \sigma_2 \lambda(t^*), \quad E(X_1|X_2 < t) = \mu_1 - \rho \sigma_1 \sigma_2 \lambda(-t^*)$$

$$\lambda(t^*) = rac{\phi(t^*)}{1 - \Phi(t^*)}, \qquad \qquad t^* = rac{t - \mu_2}{\sigma_2}$$

Частный случай с односторонним усечением одной компоненты

ullet Случайные величины X_1 и X_2 имеют совместное нормальное распределение:

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

• Напомним, что:

$$E(X_1|X_2=t) = \mu_1 +
ho rac{\sigma_1}{\sigma_2} (t-\mu_2), \quad Var(X_1|X_2=t) = (1-
ho^2)\sigma_1^2$$

$$\begin{split} E\left(X_{1}|X_{2}>t\right) &= \mu_{1} + \rho\sigma_{1}\sigma_{2}\lambda(t^{*}), \quad E\left(X_{1}|X_{2}< t\right) = \mu_{1} - \rho\sigma_{1}\sigma_{2}\lambda(-t^{*}) \\ \textit{Var}\left(X_{1}|X_{2}>t\right) &= \sigma_{1}^{2}\left(1 - \rho^{2}\delta(t^{*})\right), \\ \lambda(t^{*}) &= \frac{\phi\left(t^{*}\right)}{1 - \Phi\left(t^{*}\right)}, \quad \delta(t^{*}) = \lambda(t^{*})(\lambda(t^{*}) - t^{*}), \quad t^{*} = \frac{t - \mu_{2}}{\sigma_{2}} \end{split}$$

Частный случай с односторонним усечением одной компоненты

ullet Случайные величины X_1 и X_2 имеют совместное нормальное распределение:

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

• Напомним, что:

$$E(X_1|X_2=t) = \mu_1 +
ho rac{\sigma_1}{\sigma_2} (t-\mu_2), \quad Var(X_1|X_2=t) = (1-
ho^2)\sigma_1^2$$

$$E(X_1|X_2 > t) = \mu_1 + \rho \sigma_1 \sigma_2 \lambda(t^*), \quad E(X_1|X_2 < t) = \mu_1 - \rho \sigma_1 \sigma_2 \lambda(-t^*)$$

$$Var(X_1|X_2 > t) = \sigma_1^2 (1 - \rho^2 \delta(t^*)), \quad Var(X_1|X_2 < t) = \sigma_1^2 (1 - \rho^2 \delta(-t^*))$$

$$\lambda(t^*) = \frac{\phi(t^*)}{1 - \Phi(t^*)}, \quad \delta(t^*) = \lambda(t^*)(\lambda(t^*) - t^*), \quad t^* = \frac{t - \mu_2}{\sigma_2}$$

Формулировка

• Имеется два уравнения:

Целевое уравнение:
$$y_i^* = x_i \beta + \varepsilon_i$$

Уравнение отбора:
$$z_i^* = w_i \gamma + u_i$$

Формулировка

• Имеется два уравнения:

Целевое уравнение:
$$y_i^* = x_i \beta + \varepsilon_i$$

Уравнение отбора: $z_i^* = w_i \gamma + u_i$

• Значение y_i^* наблюдается лишь при соблюдении определенного условия (правила):

$$z_i = egin{cases} 1$$
, если $z_i^* \geq 0 \ 0$, в противном случае

$$y_i = egin{cases} y_i^*, ext{ если } z_i = 1 \ \text{не наблюдаем , в противном случае} \end{cases}$$

Формулировка

• Имеется два уравнения:

Целевое уравнение:
$$y_i^* = x_i \beta + \varepsilon_i$$

Уравнение отбора: $z_i^* = w_i \gamma + u_i$

• Значение y_i^* наблюдается лишь при соблюдении определенного условия (правила):

$$z_i = egin{cases} 1$$
, если $z_i^* \geq 0 \ 0$, в противном случае $y_i = egin{cases} y_i^*$, если $z_i = 1 \$ не наблюдаем , в противном случае

• Например, y_i^* может отражать потенциальную заработную плату индивида, которая наблюдается лишь в случае, когда индивид работает, то есть $z_i = 1$.

Формулировка

• Имеется два уравнения:

Целевое уравнение:
$$y_i^* = x_i \beta + \varepsilon_i$$

Уравнение отбора: $z_i^* = w_i \gamma + u_i$

• Значение y_i^* наблюдается лишь при соблюдении определенного условия (правила):

$$z_i = egin{cases} 1$$
, если $z_i^* \geq 0 \ 0$, в противном случае $y_i = egin{cases} y_i^*$, если $z_i = 1 \$ не наблюдаем , в противном случае

- Например, y_i^* может отражать потенциальную заработную плату индивида, которая наблюдается лишь в случае, когда индивид работает, то есть $z_i = 1$.
- Для простоты предположим, что случайные ошибки имеют совместное нормальное распределение:

$$(u_i, \varepsilon_i) \sim \mathcal{N}\left(\begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}1 & \rho\sigma\\ \rho\sigma & \sigma^2\end{bmatrix}\right)$$
, i.i.d.

Проблема оценивания

ullet Поскольку y_i наблюдается лишь при $z_i = 1$, то:

$$E(y_i|w_i,x_i) = E(y_i^*|z_i = 1, w_i,x_i) = x_i\beta + E(\varepsilon_i|u_i \ge -w_i\gamma, w_i,x_i),$$

Проблема оценивания

• Поскольку y_i наблюдается лишь при $z_i = 1$, то:

$$E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{i}^{*}|z_{i}=1,w_{i},x_{i}\right)=x_{i}\beta+E\left(arepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right),$$
 где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right)=\rho\sigma\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(w_{i}\gamma\right)}=\rho\sigma\lambda_{i}(w_{i}\gamma)=\rho\sigma\lambda_{i},$$

Проблема оценивания

ullet Поскольку y_i наблюдается лишь при $z_i = 1$, то:

$$E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{i}^{*}|z_{i}=1,w_{i},x_{i}\right)=x_{i}\beta+E\left(arepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right),$$
 где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right)=\rho\sigma\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(w_{i}\gamma\right)}=\rho\sigma\lambda_{i}(w_{i}\gamma)=\rho\sigma\lambda_{i},$$

ullet Отметим, что λ_i часто именуют лямбдой Хекмана.

Проблема оценивания

• Поскольку y_i наблюдается лишь при $z_i = 1$, то:

$$E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{i}^{*}|z_{i}=1,w_{i},x_{i}\right)=x_{i}\beta+E\left(arepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right),$$
 где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right)=\rho\sigma\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(w_{i}\gamma\right)}=\rho\sigma\lambda_{i}(w_{i}\gamma)=\rho\sigma\lambda_{i},$$

- ullet Отметим, что λ_i часто именуют лямбдой Хекмана.
- В результате регрессионное уравнение может быть записано как:

$$y_i = x_i \beta + \rho \sigma \lambda_i + v_i,$$

• Поскольку y_i наблюдается лишь при $z_i = 1$, то:

 $E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{i}^{*}|z_{i}=1,w_{i},x_{i}\right)=x_{i}\beta+E\left(arepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right),$ где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right)=\rho\sigma\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(w_{i}\gamma\right)}=\rho\sigma\lambda_{i}(w_{i}\gamma)=\rho\sigma\lambda_{i},$$

- ullet Отметим, что λ_i часто именуют лямбдой Хекмана.
- В результате регрессионное уравнение может быть записано как:

$$y_i = x_i \beta + \rho \sigma \lambda_i + v_i, \qquad v_i = \varepsilon_i - \rho \sigma \lambda_i \implies E(v_i | x_i, w_i) = 0$$

• Поскольку y_i наблюдается лишь при $z_i = 1$, то:

$$E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{i}^{*}|z_{i}=1,w_{i},x_{i}\right)=x_{i}\beta+E\left(arepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right),$$
 где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{i}|u_{i}\geq-w_{i}\gamma,w_{i},x_{i}\right)=\rho\sigma\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(w_{i}\gamma\right)}=\rho\sigma\lambda_{i}(w_{i}\gamma)=\rho\sigma\lambda_{i},$$

- ullet Отметим, что λ_i часто именуют лямбдой Хекмана.
- В результате регрессионное уравнение может быть записано как:

$$y_i = x_i \beta + \rho \sigma \lambda_i + v_i, \qquad v_i = \varepsilon_i - \rho \sigma \lambda_i \implies E(v_i | x_i, w_i) = 0$$

• Без учета λ_i при $\rho \neq 0$ и наличии корреляции между λ_i и x_i МНК оценки коэффициентов β окажутся несостоятельными вследствие проблемы пропущенной переменной.

Оценивание

• Идея метода: истинное значение λ_i исследователю неизвестно, поскольку зависит от неизвестных параметров γ . Однако, оценив параметры γ можно получить состоятельную оценку $\hat{\lambda_i}$ и использовать ее вместо λ_i для того, чтобы избежать смещения в оценках вследствие пропущенной переменной.

- Идея метода: истинное значение λ_i исследователю неизвестно, поскольку зависит от неизвестных параметров γ . Однако, оценив параметры γ можно получить состоятельную оценку $\hat{\lambda_i}$ и использовать ее вместо λ_i для того, чтобы избежать смещения в оценках вследствие пропущенной переменной.
- Двухшаговая процедура оценивания:
 - Первый шаг: при помощи пробит модели оцениваются параметры γ . В силу инвариантности ММП оценок состоятельная оценка λ_i рассчитывается как $\hat{\lambda_i} = \lambda_i \left(w_i \hat{\gamma} \right)$.

- Идея метода: истинное значение λ_i исследователю неизвестно, поскольку зависит от неизвестных параметров γ . Однако, оценив параметры γ можно получить состоятельную оценку $\hat{\lambda_i}$ и использовать ее вместо λ_i для того, чтобы избежать смещения в оценках вследствие пропущенной переменной.
- Двухшаговая процедура оценивания:

- Первый шаг: при помощи пробит модели оцениваются параметры γ . В силу инвариантности ММП оценок состоятельная оценка λ_i рассчитывается как $\hat{\lambda_i} = \lambda_i \left(w_i \hat{\gamma} \right)$.
- Второй шаг: В регрессионное уравнение для y_i подставляется $\hat{\lambda}_i$ в качестве дополнительного регрессора с коэффициентом $\rho\sigma$. Затем β и $\rho\sigma$ оцениваются при помощи МНК.

- Идея метода: истинное значение λ_i исследователю неизвестно, поскольку зависит от неизвестных параметров γ . Однако, оценив параметры γ можно получить состоятельную оценку $\hat{\lambda_i}$ и использовать ее вместо λ_i для того, чтобы избежать смещения в оценках вследствие пропущенной переменной.
- Двухшаговая процедура оценивания:
 - Первый шаг: при помощи пробит модели оцениваются параметры γ . В силу инвариантности ММП оценок состоятельная оценка λ_i рассчитывается как $\hat{\lambda_i} = \lambda_i \left(w_i \hat{\gamma} \right)$.
 - Второй шаг: В регрессионное уравнение для y_i подставляется $\hat{\lambda}_i$ в качестве дополнительного регрессора с коэффициентом $\rho\sigma$. Затем β и $\rho\sigma$ оцениваются при помощи МНК.
- Состоятельные оценки $\hat{\sigma}^2$ и $\hat{\rho}$ можно получить как:

$$\hat{\sigma}^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + (\widehat{\rho}\widehat{\sigma})^2 \, \hat{\lambda}_i \left(\hat{\lambda}_i - w_i \hat{\gamma} \right),$$

- Идея метода: истинное значение λ_i исследователю неизвестно, поскольку зависит от неизвестных параметров γ . Однако, оценив параметры γ можно получить состоятельную оценку $\hat{\lambda_i}$ и использовать ее вместо λ_i для того, чтобы избежать смещения в оценках вследствие пропущенной переменной.
- Двухшаговая процедура оценивания:
 - Первый шаг: при помощи пробит модели оцениваются параметры γ . В силу инвариантности ММП оценок состоятельная оценка λ_i рассчитывается как $\hat{\lambda_i} = \lambda_i \left(w_i \hat{\gamma} \right)$.
 - Второй шаг: В регрессионное уравнение для y_i подставляется $\hat{\lambda}_i$ в качестве дополнительного регрессора с коэффициентом $\rho\sigma$. Затем β и $\rho\sigma$ оцениваются при помощи МНК.
- Состоятельные оценки $\hat{\sigma}^2$ и $\hat{\rho}$ можно получить как:

$$\hat{\sigma}^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + (\widehat{\rho}\widehat{\sigma})^2 \, \hat{\lambda}_i \left(\hat{\lambda}_i - w_i \hat{\gamma} \right), \qquad \hat{\rho} = \frac{\widehat{\rho}\widehat{\sigma}}{\sqrt{\widehat{\sigma}^2}}$$

Тестирование гипотез

• Случайные ошибки гетероскедастичны, поскольку по свойствам усеченного двумерного нормального распределения:

$$E(v_i^2|z_i=1,w_i,x_i)=\sigma^2(1-\rho^2\delta_i), \qquad \delta_i=\lambda_i(\lambda_i+w_i\gamma)$$

Тестирование гипотез

• Случайные ошибки гетероскедастичны, поскольку по свойствам усеченного двумерного нормального распределения:

$$E(v_i^2|z_i=1,w_i,x_i)=\sigma^2(1-\rho^2\delta_i), \qquad \delta_i=\lambda_i(\lambda_i+w_i\gamma)$$

• Для коррекции ковариационной матрицы оценок регрессионных коэффициентов необходимо учесть как гетероскедастичность, так и то, что вместо истинного значения λ_i используется его оценка, зависящая от $\hat{\gamma}$, откуда:

$$\widehat{\mathsf{As.Cov}}\left(\hat{\beta}^*\right) = \hat{\sigma}^2 \left(X_*^\mathsf{T} X_*\right)^{-1} \left(\hat{A}_1 + \hat{A}_2\right) \left(X_*^\mathsf{T} X_*\right)^{-1}$$

Тестирование гипотез

• Случайные ошибки гетероскедастичны, поскольку по свойствам усеченного двумерного нормального распределения:

$$E\left(v_i^2|z_i=1,w_i,x_i\right)=\sigma^2\left(1-\rho^2\delta_i\right),\qquad \delta_i=\lambda_i\left(\lambda_i+w_i\gamma\right)$$

• Для коррекции ковариационной матрицы оценок регрессионных коэффициентов необходимо учесть как гетероскедастичность, так и то, что вместо истинного значения λ_i используется его оценка, зависящая от $\hat{\gamma}$, откуда:

$$\widehat{\mathsf{As.Cov}}\left(\hat{\beta}^*\right) = \hat{\sigma}^2 \left(X_*^T X_*\right)^{-1} \left(\hat{A}_1 + \hat{A}_2\right) \left(X_*^T X_*\right)^{-1}$$

$$\hat{A}_1 = X_*^T \left(I - \hat{\rho}^2 \widehat{\triangle}\right) X_*,$$

Тестирование гипотез

• Случайные ошибки гетероскедастичны, поскольку по свойствам усеченного двумерного нормального распределения:

$$E(v_i^2|z_i=1,w_i,x_i)=\sigma^2(1-\rho^2\delta_i), \qquad \delta_i=\lambda_i(\lambda_i+w_i\gamma)$$

• Для коррекции ковариационной матрицы оценок регрессионных коэффициентов необходимо учесть как гетероскедастичность, так и то, что вместо истинного значения λ_i используется его оценка, зависящая от $\hat{\gamma}$, откуда:

$$\widehat{\mathsf{As.Cov}}\left(\hat{\beta}^*\right) = \hat{\sigma}^2 \left(X_*^T X_*\right)^{-1} \left(\hat{A}_1 + \hat{A}_2\right) \left(X_*^T X_*\right)^{-1}
\hat{A}_1 = X_*^T \left(I - \hat{\rho}^2 \widehat{\triangle}\right) X_*, \quad \hat{A}_2 = \hat{\rho}^2 \left(X_* \widehat{\triangle} W\right) \widehat{\mathsf{As.Cov}}\left(\hat{\gamma}\right) \left(X_* \widehat{\triangle} W\right)^T,$$

Тестирование гипотез

• Случайные ошибки гетероскедастичны, поскольку по свойствам усеченного двумерного нормального распределения:

$$E(v_i^2|z_i=1,w_i,x_i)=\sigma^2(1-\rho^2\delta_i), \qquad \delta_i=\lambda_i(\lambda_i+w_i\gamma)$$

• Для коррекции ковариационной матрицы оценок регрессионных коэффициентов необходимо учесть как гетероскедастичность, так и то, что вместо истинного значения λ_i используется его оценка, зависящая от $\hat{\gamma}$, откуда:

$$\widehat{\mathsf{As.Cov}}\left(\hat{\beta}^*\right) = \hat{\sigma}^2 \left(X_*^T X_*\right)^{-1} \left(\hat{A}_1 + \hat{A}_2\right) \left(X_*^T X_*\right)^{-1}$$

$$\hat{A}_1 = X_*^T \left(I - \hat{\rho}^2 \widehat{\triangle}\right) X_*, \quad \hat{A}_2 = \hat{\rho}^2 \left(X_* \widehat{\triangle} W\right) \widehat{\mathsf{As.Cov}}\left(\hat{\gamma}\right) \left(X_* \widehat{\triangle} W\right)^T,$$

где $\beta_* = (\beta, \rho\sigma)^T$ и X_* является матрицей регрессоров, полученной за счет присоединения столбца $\hat{\lambda}$ к матрице X справа.

Тестирование гипотез

• Случайные ошибки гетероскедастичны, поскольку по свойствам усеченного двумерного нормального распределения:

$$E(v_i^2|z_i=1,w_i,x_i)=\sigma^2(1-\rho^2\delta_i), \qquad \delta_i=\lambda_i(\lambda_i+w_i\gamma)$$

• Для коррекции ковариационной матрицы оценок регрессионных коэффициентов необходимо учесть как гетероскедастичность, так и то, что вместо истинного значения λ_i используется его оценка, зависящая от $\hat{\gamma}$, откуда:

$$\widehat{\mathsf{As.Cov}}\left(\hat{\beta}^*\right) = \hat{\sigma}^2 \left(X_*^T X_*\right)^{-1} \left(\hat{A}_1 + \hat{A}_2\right) \left(X_*^T X_*\right)^{-1}$$

$$\hat{A}_1 = X_*^T \left(I - \hat{\rho}^2 \widehat{\triangle}\right) X_*, \quad \hat{A}_2 = \hat{\rho}^2 \left(X_* \widehat{\triangle} W\right) \widehat{\mathsf{As.Cov}}\left(\hat{\gamma}\right) \left(X_* \widehat{\triangle} W\right)^T,$$

где $\beta_* = (\beta, \rho\sigma)^T$ и X_* является матрицей регрессоров, полученной за счет присоединения столбца $\hat{\lambda}$ к матрице X справа. Также, $\hat{\triangle}$ – диагональная матрица, такая, что $\hat{\triangle}_i = 1 - \rho^2 \delta_i$.

Тестирование гипотез

• Случайные ошибки гетероскедастичны, поскольку по свойствам усеченного двумерного нормального распределения:

$$E\left(v_i^2|z_i=1,w_i,x_i\right)=\sigma^2\left(1-\rho^2\delta_i\right),\qquad \delta_i=\lambda_i\left(\lambda_i+w_i\gamma\right)$$

• Для коррекции ковариационной матрицы оценок регрессионных коэффициентов необходимо учесть как гетероскедастичность, так и то, что вместо истинного значения λ_i используется его оценка, зависящая от $\hat{\gamma}$, откуда:

$$\widehat{\mathsf{As.Cov}}\left(\hat{\beta}^*\right) = \hat{\sigma}^2 \left(X_*^T X_*\right)^{-1} \left(\hat{A}_1 + \hat{A}_2\right) \left(X_*^T X_*\right)^{-1}$$

$$\hat{A}_1 = X_*^T \left(I - \hat{\rho}^2 \widehat{\triangle}\right) X_*, \quad \hat{A}_2 = \hat{\rho}^2 \left(X_* \widehat{\triangle} W\right) \widehat{\mathsf{As.Cov}}\left(\hat{\gamma}\right) \left(X_* \widehat{\triangle} W\right)^T,$$

где $\beta_* = (\beta, \rho\sigma)^T$ и X_* является матрицей регрессоров, полученной за счет присоединения столбца $\hat{\lambda}$ к матрице X справа. Также, $\hat{\triangle}$ – диагональная матрица, такая, что $\hat{\triangle}_i = 1 - \rho^2 \delta_i$. Элементы \hat{A}_1 и \hat{A}_2 позволяют учесть гетероскедастичность и использование оценок λ_i вместо истинных значений соответственно.

Ограничения исключения (exclusion restrictions)

• Лямбда Хекмана $\lambda(w_i\gamma)$ крайне близка к линейной функции при $w_i\gamma\in (-\infty,2)$, то есть в данном диапазоне $\lambda(w_i\gamma)\approx cw_i\gamma$, где $c\in R_{++}$.

- Лямбда Хекмана $\lambda(w_i\gamma)$ крайне близка к линейной функции при $w_i\gamma\in (-\infty,2)$, то есть в данном диапазоне $\lambda(w_i\gamma)\approx cw_i\gamma$, где $c\in R_{++}$.
- Из-за этого при сильном сходстве между x_i и w_i может возникнуть сильная коллинеарность между $\lambda(w_i\gamma)$ и x_i .

- Лямбда Хекмана $\lambda(w_i\gamma)$ крайне близка к линейной функции при $w_i\gamma\in (-\infty,2)$, то есть в данном диапазоне $\lambda(w_i\gamma)\approx cw_i\gamma$, где $c\in R_{++}$.
- Из-за этого при сильном сходстве между x_i и w_i может возникнуть сильная коллинеарность между $\lambda(w_i\gamma)$ и x_i .
- Эта коллинеарность часто приводит к существенному снижению в эффективности оценок.

- Лямбда Хекмана $\lambda(w_i\gamma)$ крайне близка к линейной функции при $w_i\gamma\in (-\infty,2)$, то есть в данном диапазоне $\lambda(w_i\gamma)\approx cw_i\gamma$, где $c\in R_{++}$.
- Из-за этого при сильном сходстве между x_i и w_i может возникнуть сильная коллинеарность между $\lambda(w_i\gamma)$ и x_i .
- Эта коллинеарность часто приводит к существенному снижению в эффективности оценок.
- Для смягчения проблемы коллинеарности, как правило, исследователи пытаются обеспечить наличие **ограничений исключения**: регрессоров, входящих в w_i и не входящих в x_i .

- Лямбда Хекмана $\lambda(w_i\gamma)$ крайне близка к линейной функции при $w_i\gamma\in (-\infty,2)$, то есть в данном диапазоне $\lambda(w_i\gamma)\approx cw_i\gamma$, где $c\in R_{++}$.
- Из-за этого при сильном сходстве между x_i и w_i может возникнуть сильная коллинеарность между $\lambda(w_i\gamma)$ и x_i .
- Эта коллинеарность часто приводит к существенному снижению в эффективности оценок.
- Для смягчения проблемы коллинеарности, как правило, исследователи пытаются обеспечить наличие **ограничений исключения**: регрессоров, входящих в w_i и не входящих в x_i .
- Например, исследователь может предположить, что количество детей влияет на вероятность занятости (входит в w_i), но не влияет на зарплату индивида (не входит в x_i).

- Лямбда Хекмана $\lambda(w_i\gamma)$ крайне близка к линейной функции при $w_i\gamma\in (-\infty,2)$, то есть в данном диапазоне $\lambda(w_i\gamma)\approx cw_i\gamma$, где $c\in R_{++}$.
- Из-за этого при сильном сходстве между x_i и w_i может возникнуть сильная коллинеарность между $\lambda(w_i\gamma)$ и x_i .
- Эта коллинеарность часто приводит к существенному снижению в эффективности оценок.
- Для смягчения проблемы коллинеарности, как правило, исследователи пытаются обеспечить наличие **ограничений исключения**: регрессоров, входящих в w_i и не входящих в x_i .
- Например, исследователь может предположить, что количество детей влияет на вероятность занятости (входит в w_i), но не влияет на зарплату индивида (не входит в x_i).
- В качестве более устойчивой к отсутствию ограничений исключения альтернативы вместо двухшаговой процедуры можно воспользоваться методом максимального правдоподобия.

Метод Хекмана: метод максимального правдоподобия Оценивание

• Оценки параметров β , ρ и σ можно также получить за счет максимизации функции правдоподобия:

$$L(\beta, \gamma, \rho, \sigma; y, z | X, W) = \prod_{i: z_i = 1} f_{y_i | x_i, w_i}(y_i) P(z_i = 1 | y_i, x_i, w_i) \prod_{i: z_i = 0} P(z_i = 0 | x_i, w_i) =$$

Метод Хекмана: метод максимального правдоподобия Оценивание

• Оценки параметров β , ρ и σ можно также получить за счет максимизации функции правдоподобия:

$$L(\beta, \gamma, \rho, \sigma; y, z | X, W) = \prod_{i:z_i=1} f_{y_i|x_i, w_i}(y_i) P(z_i = 1 | y_i, x_i, w_i) \prod_{i:z_i=0} P(z_i = 0 | x_i, w_i) =$$

$$= \prod_{i:z_i=1} \frac{1}{\sigma} \phi\left(\frac{y_i - x_i \beta}{\sigma}\right) \Phi\left(\frac{\rho\left(y_i - x_i \beta\right) / \sigma + w_i \gamma}{\sqrt{1 - \rho^2}}\right) \prod_{i:z_i=0} (1 - \Phi\left(w_i \gamma\right))$$

Метод Хекмана: метод максимального правдоподобия

Оценивание

• Оценки параметров β , ρ и σ можно также получить за счет максимизации функции правдоподобия:

$$L(\beta, \gamma, \rho, \sigma; y, z | X, W) = \prod_{i:z_i=1} f_{y_i | x_i, w_i}(y_i) P(z_i = 1 | y_i, x_i, w_i) \prod_{i:z_i=0} P(z_i = 0 | x_i, w_i) =$$

$$= \prod_{i:z_i=1} \frac{1}{\sigma} \phi\left(\frac{y_i - x_i \beta}{\sigma}\right) \Phi\left(\frac{\rho\left(y_i - x_i \beta\right) / \sigma + w_i \gamma}{\sqrt{1 - \rho^2}}\right) \prod_{i:z_i=0} (1 - \Phi\left(w_i \gamma\right))$$

• Оценки ММП метода более эффективны, чем оценки двухшаговой процедуры.

Метод Хекмана: метод максимального правдоподобия

• Оценки параметров β , ρ и σ можно также получить за счет максимизации функции правдоподобия:

$$\begin{split} L\left(\beta,\gamma,\rho,\sigma;y,z|X,W\right) &= \prod_{i:z_i=1} f_{y_i|x_i,w_i}(y_i) P(z_i=1|y_i,x_i,w_i) \prod_{i:z_i=0} P(z_i=0|x_i,w_i) = \\ &= \prod_{i:z_i=1} \frac{1}{\sigma} \phi\left(\frac{y_i-x_i\beta}{\sigma}\right) \Phi\left(\frac{\rho\left(y_i-x_i\beta\right)/\sigma+w_i\gamma}{\sqrt{1-\rho^2}}\right) \prod_{i:z_i=0} (1-\Phi\left(w_i\gamma\right)) \end{split}$$

- Оценки ММП метода более эффективны, чем оценки двухшаговой процедуры.
- Недостаток ММП заключается в сложности технической реализации, связанной с возможностью наличия несколько локальных максимумов функции правдоподобия.

Метод Хекмана: метод максимального правдоподобия

• Оценки параметров β , ρ и σ можно также получить за счет максимизации функции правдоподобия:

$$\begin{split} L\left(\beta,\gamma,\rho,\sigma;y,z|X,W\right) &= \prod_{i:z_i=1} f_{y_i|x_i,w_i}(y_i) P(z_i=1|y_i,x_i,w_i) \prod_{i:z_i=0} P(z_i=0|x_i,w_i) = \\ &= \prod_{i:z_i=1} \frac{1}{\sigma} \phi\left(\frac{y_i-x_i\beta}{\sigma}\right) \Phi\left(\frac{\rho\left(y_i-x_i\beta\right)/\sigma+w_i\gamma}{\sqrt{1-\rho^2}}\right) \prod_{i:z_i=0} (1-\Phi\left(w_i\gamma\right)) \end{split}$$

- Оценки ММП метода более эффективны, чем оценки двухшаговой процедуры.
- Недостаток ММП заключается в сложности технической реализации, связанной с возможностью наличия несколько локальных максимумов функции правдоподобия.
- Для тестирования гипотезы о наличии неслучайного отбора достаточно проверить $H_0: \rho=0$ для ММП или $H_0: \rho\sigma=0$ для двухшаговой процедуры. Если нулевая гипотеза отвергается, то МНК оценки несостоятельны, что мотивирует применение метода Хекмана.

Метод Хекмана

Предельные эффекты

• Предельный эффект переменной x_{ik} на обычное математическое ожидание имеет такой же вид, как в случае с обычной линейной регрессией:

$$\frac{\partial E\left(y_i^*|x_i\right)}{\partial x_{ik}} = \beta_k$$

Метод Хекмана

Предельные эффекты

• Предельный эффект переменной x_{ik} на обычное математическое ожидание имеет такой же вид, как в случае с обычной линейной регрессией:

$$\frac{\partial E\left(y_{i}^{*}|x_{i}\right)}{\partial x_{ik}} = \beta_{k}$$

• Предельный эффект на условное математическое ожидание рассчитывается как:

$$\frac{\partial E\left(y_{i}^{*}|z_{i}=1\right)}{\partial x_{ik}}=\beta_{k}-\gamma_{*}\rho\sigma\delta_{i},$$

где γ_* является коэффициентом при x_{ki} в уравнении отбора, если x_{ki} входит в w_i . В противном случае $\gamma_*=0$.

Предельные эффекты

• Предельный эффект переменной x_{ik} на обычное математическое ожидание имеет такой же вид, как в случае с обычной линейной регрессией:

$$\frac{\partial E\left(y_{i}^{*}|x_{i}\right)}{\partial x_{ik}} = \beta_{k}$$

• Предельный эффект на условное математическое ожидание рассчитывается как:

$$\frac{\partial E\left(y_{i}^{*}|z_{i}=1\right)}{\partial x_{ik}}=\beta_{k}-\gamma_{*}\rho\sigma\delta_{i},$$

где γ_* является коэффициентом при x_{ki} в уравнении отбора, если x_{ki} входит в w_i . В противном случае $\gamma_*=0$.

• Предельный эффект на условное математическое ожидание целевой переменной складывается из предельного эффекта на безусловное математическое ожидание β_k и части, обусловленной наличием неслучайного отбора $\gamma_* \rho \sigma \delta_i$.

Оценивание

• При нарушении допущения о совместном нормальном распределении случайных ошибок оценки метода Хекмана могут оказаться несостоятельными.

Оценивание

- При нарушении допущения о совместном нормальном распределении случайных ошибок оценки метода Хекмана могут оказаться несостоятельными.
- В качестве альтернативы допущению о конкретной форме совместного распределения случайных ошибок условное математическое ожидание случайной ошибки основного уравнения можно аппроксимировать при помощи полинома *k*-й степени:

$$E\left(arepsilon_{i}|z_{i}=1,w_{i},x_{i}
ight)pprox\sum_{t=0}^{k} au_{t}g(w_{i}\gamma)^{t},\quad au=(au_{1},..., au_{k}),$$

Оценивание

- При нарушении допущения о совместном нормальном распределении случайных ошибок оценки метода Хекмана могут оказаться несостоятельными.
- В качестве альтернативы допущению о конкретной форме совместного распределения случайных ошибок условное математическое ожидание случайной ошибки основного уравнения можно аппроксимировать при помощи полинома k-й степени:

$$E\left(arepsilon_{i}|z_{i}=1,w_{i},x_{i}
ight)pprox\sum_{t=0}^{k} au_{t}\mathbf{g}(w_{i}\gamma)^{t},\quad au=(au_{1},..., au_{k}),$$

где $g(w_i\gamma)$ является произвольно выбираемой сглаживающей функцией, в качестве которой, как правило, рассматривают $g(w_i\gamma)=w_i\gamma$ или $g(w_i\gamma)=\lambda(w_i\gamma)$.

Оценивание

- При нарушении допущения о совместном нормальном распределении случайных ошибок оценки метода Хекмана могут оказаться несостоятельными.
- В качестве альтернативы допущению о конкретной форме совместного распределения случайных ошибок условное математическое ожидание случайной ошибки основного уравнения можно аппроксимировать при помощи полинома *k*-й степени:

$$E\left(arepsilon_{i}|z_{i}=1,w_{i},x_{i}
ight)pprox\sum_{t=0}^{k} au_{t}g(w_{i}\gamma)^{t},\quad au=(au_{1},..., au_{k}),$$

где $g(w_i\gamma)$ является произвольно выбираемой сглаживающей функцией, в качестве которой, как правило, рассматривают $g(w_i\gamma) = w_i\gamma$ или $g(w_i\gamma) = \lambda(w_i\gamma)$.

• На первом шаге параметры γ оцениваются при помощи полупараметрической модели бинарного выбора (например, метода Галланта и Нички), а на втором шаге все k переменных $g(w_i\hat{\gamma})^t$ подставляются в целевое уравнение в качестве регрессоров (в дополнении к x_i), в котором параметры β и τ оцениваются с помощью МНК.

Оценивание

- При нарушении допущения о совместном нормальном распределении случайных ошибок оценки метода Хекмана могут оказаться несостоятельными.
- В качестве альтернативы допущению о конкретной форме совместного распределения случайных ошибок условное математическое ожидание случайной ошибки основного уравнения можно аппроксимировать при помощи полинома k-й степени:

$$E\left(\varepsilon_{i}|z_{i}=1,w_{i},x_{i}\right)pprox\sum_{t=0}^{k} au_{t}g(w_{i}\gamma)^{t},\quad au=(au_{1},..., au_{k}),$$

где $g(w_i\gamma)$ является произвольно выбираемой сглаживающей функцией, в качестве которой, как правило, рассматривают $g(w_i\gamma) = w_i\gamma$ или $g(w_i\gamma) = \lambda(w_i\gamma)$.

- На первом шаге параметры γ оцениваются при помощи полупараметрической модели бинарного выбора (например, метода Галланта и Нички), а на втором шаге все k переменных $g(w_i\hat{\gamma})^t$ подставляются в целевое уравнение в качестве регрессоров (в дополнении к x_i), в котором параметры β и τ оцениваются с помощью МНК.
- Оценки данного метода состоятельные и асимптотически нормальные. Для тестирования гипотез и оценивания асимптотической ковариационной матрицы оценок регрессионных коэффициентов, как правило, применяют бутстрап.

Кросс-валидация

• По мере увеличения степени полинома k растет точность аппроксимации, что позволяет снизить смещение оценок. Однако, вместе с ростом k увеличивается и число оцениваемых параметров, а также усугубляется проблема коллинеарности, что приводит к росту дисперсии оценок.

- По мере увеличения степени полинома k растет точность аппроксимации, что позволяет снизить смещение оценок. Однако, вместе с ростом k увеличивается и число оцениваемых параметров, а также усугубляется проблема коллинеарности, что приводит к росту дисперсии оценок.
- ullet Оптимальная степень полинома k, как правило, подбирается с помощью leave-one-out кросс-валидации.

- По мере увеличения степени полинома k растет точность аппроксимации, что позволяет снизить смещение оценок. Однако, вместе с ростом k увеличивается и число оцениваемых параметров, а также усугубляется проблема коллинеарности, что приводит к росту дисперсии оценок.
- ullet Оптимальная степень полинома k, как правило, подбирается с помощью leave-one-out кросс-валидации.
- Создается n (объем исходной выборки) выборок объема n-1, каждая из которых формируется за счет исключения из исходной выборки одного (каждый раз разного) наблюдения.

- По мере увеличения степени полинома k растет точность аппроксимации, что позволяет снизить смещение оценок. Однако, вместе с ростом k увеличивается и число оцениваемых параметров, а также усугубляется проблема коллинеарности, что приводит к росту дисперсии оценок.
- ullet Оптимальная степень полинома k, как правило, подбирается с помощью leave-one-out кросс-валидации.
- Создается n (объем исходной выборки) выборок объема n-1, каждая из которых формируется за счет исключения из исходной выборки одного (каждый раз разного) наблюдения.
- На каждой из этих выборок при заданном k методом Ньюи оцениваются параметры модели, а затем с их помощью предсказывается \hat{y}_i значение исключенного из выборки наблюдения y_i .

- По мере увеличения степени полинома k растет точность аппроксимации, что позволяет снизить смещение оценок. Однако, вместе с ростом k увеличивается и число оцениваемых параметров, а также усугубляется проблема коллинеарности, что приводит к росту дисперсии оценок.
- ullet Оптимальная степень полинома k, как правило, подбирается с помощью leave-one-out кросс-валидации.
- Создается n (объем исходной выборки) выборок объема n-1, каждая из которых формируется за счет исключения из исходной выборки одного (каждый раз разного) наблюдения.
- На каждой из этих выборок при заданном k методом Ньюи оцениваются параметры модели, а затем с их помощью предсказывается \hat{y}_i значение исключенного из выборки наблюдения y_i .
- ullet Рассчитывается RMSE $_k = \sqrt{rac{1}{n}\sum_{i=1}^n \left(y_i \hat{y}_i
 ight)^2}$ мера качества модели при данной степени полинома.

- По мере увеличения степени полинома k растет точность аппроксимации, что позволяет снизить смещение оценок. Однако, вместе с ростом k увеличивается и число оцениваемых параметров, а также усугубляется проблема коллинеарности, что приводит к росту дисперсии оценок.
- ullet Оптимальная степень полинома k, как правило, подбирается с помощью leave-one-out кросс-валидации.
- Создается n (объем исходной выборки) выборок объема n-1, каждая из которых формируется за счет исключения из исходной выборки одного (каждый раз разного) наблюдения.
- На каждой из этих выборок при заданном k методом Ньюи оцениваются параметры модели, а затем с их помощью предсказывается \hat{y}_i значение исключенного из выборки наблюдения y_i .
- ullet Рассчитывается RMSE $_k = \sqrt{rac{1}{n}\sum_{i=1}^n \left(y_i \hat{y}_i
 ight)^2}$ мера качества модели при данной степени полинома.
- К счастью существует аналитическая формула, позволяющая рассчитать RMSE $_k$ без необходимости n раз оценивать параметры модели.

- По мере увеличения степени полинома k растет точность аппроксимации, что позволяет снизить смещение оценок. Однако, вместе с ростом k увеличивается и число оцениваемых параметров, а также усугубляется проблема коллинеарности, что приводит к росту дисперсии оценок.
- ullet Оптимальная степень полинома k, как правило, подбирается с помощью leave-one-out кросс-валидации.
- Создается n (объем исходной выборки) выборок объема n-1, каждая из которых формируется за счет исключения из исходной выборки одного (каждый раз разного) наблюдения.
- На каждой из этих выборок при заданном k методом Ньюи оцениваются параметры модели, а затем с их помощью предсказывается \hat{y}_i значение исключенного из выборки наблюдения y_i .
- ullet Рассчитывается $\mathsf{RMSE}_k = \sqrt{rac{1}{n}\sum_{i=1}^n \left(y_i \hat{y}_i
 ight)^2}$ мера качества модели при данной степени полинома.
- К счастью существует аналитическая формула, позволяющая рассчитать RMSE $_k$ без необходимости n раз оценивать параметры модели.
- Выбирается степень k с наименьшим RMSE $_k$.

- По мере увеличения степени полинома k растет точность аппроксимации, что позволяет снизить смещение оценок. Однако, вместе с ростом k увеличивается и число оцениваемых параметров, а также усугубляется проблема коллинеарности, что приводит к росту дисперсии оценок.
- ullet Оптимальная степень полинома k, как правило, подбирается с помощью leave-one-out кросс-валидации.
- Создается n (объем исходной выборки) выборок объема n-1, каждая из которых формируется за счет исключения из исходной выборки одного (каждый раз разного) наблюдения.
- На каждой из этих выборок при заданном k методом Ньюи оцениваются параметры модели, а затем с их помощью предсказывается $\hat{y_i}$ значение исключенного из выборки наблюдения y_i .
- ullet Рассчитывается RMSE $_k = \sqrt{rac{1}{n}\sum_{i=1}^n \left(y_i \hat{y}_i
 ight)^2}$ мера качества модели при данной степени полинома.
- К счастью существует аналитическая формула, позволяющая рассчитать RMSE $_k$ без необходимости n раз оценивать параметры модели.
- ullet Выбирается степень k с наименьшим RMSE $_k$.
- При использовании бутстрапа кросс-валидацию необходимо проводить каждую итерацию.

Модели с неслучайным отбором

Краткие дполнительные комментарии

• Помимо метода Ньюи существуют и иные подходы к ослаблению допущения о совместном нормальном распределении случайных ошибок в моделях с неслучайным отбором. Например, можно воспользоваться методом Галланта и Нички для аппроксимации соответствующего совместного распределения и получить оценки за счет максимизации функции квази-правдоподобия.

Модели с неслучайным отбором

Краткие дполнительные комментарии

- Помимо метода Ньюи существуют и иные подходы к ослаблению допущения о совместном нормальном распределении случайных ошибок в моделях с неслучайным отбором. Например, можно воспользоваться методом Галланта и Нички для аппроксимации соответствующего совместного распределения и получить оценки за счет максимизации функции квази-правдоподобия.
- Во многих исследованиях рассматриваются альтернативные механизмы
 неслучайного отбора наблюдений. Например, в качестве уравнения отбора можно
 использовать мультиномиальную логит модель или порядковую пробит модель.
 Также, рассматриваются модели с несколькими правилами отбора, когда, например,
 наблюдения по зарплате доступны лишь для работающих индивидов (первое
 правило), согласившихся ответить на вопрос о зарплате (второе правило).