第2章 逻辑代数基础

第三讲:逻辑函数化简

2.2 逻辑函数及描述方法

逻辑函数:输出变量相对于输入变量的逻辑关系。

真值表 逻辑表达式 逻辑电路图 卡诺图

例 判奇电路: 三个输入信号中没有或仅有奇数个高电平时,输出为高电平。否则,输出为低电平。

A、B、C——输入信号 F——输出信号 "1"——高电平 "0"——低电平

2.2.1 逻辑函数式

逻辑代数式: 把逻辑函数的输入、输出关系写成与、或、非等逻辑运算的组合式。也称为逻辑函数式,通常采用"与或"的形式。

例: F = ABC + ABC + ABC + ABC + ABC

<u>最小项:</u> 若表达式中的乘积包含了所有变量的 原变量或反变量,则这一项称为最小项。

上例中每一项都是最小项。

逻辑相邻: 若两个最小项只有一个变量以原、反区别,则称它们逻辑相邻。

例: ABC与ABC逻辑相邻。

最小项: 在 n 变量逻辑函数中,若 m 是包含 n 个因子的乘项积,而且这n个变量均以原变量或反变量的形式在 m 中出现一次,则称m 为该组变量的最小项。

1、二变量的全部最小项

A B	最小项	编号
0 0	$\overline{\mathrm{A}}\overline{\mathrm{B}}$	m 0
0 1	$\overline{A} B$	m_1
1 0	\overline{AB}	m ₂
1 1	AΒ	m ₃

3、四变量的全部最小项

编号为 m0~ m15 (略)

2、三变量的全部最小项

ABC	最小项	编号
0 0 0	$\bar{A}\bar{B}\bar{C}$	m ₀
0 0 1	$\overline{A}\overline{B}C$	m1
010	$\overline{A}B\overline{C}$	m_2
0 1 1	ĀBC	m ₃
100	$A \overline{B} \overline{C}$	m4
1 0 1	$A \overline{B} C$	m5
1 1 0	$AB\overline{C}$	m ₆
1 1 1	ABC	m7

$$\mathbf{F} = \overline{\mathbf{ABC}} + \overline{\mathbf{ABC}} + \overline{\mathbf{ABC}} + \overline{\mathbf{ABC}} + \overline{\mathbf{ABC}} + \overline{\mathbf{ABC}} + \overline{\mathbf{ABC}}$$

逻辑相邻

K • O

 $\overline{ABC} + \overline{ABC} = \overline{BC}$

逻辑相邻的项可以合并,消去一个因子

2.2.2 逻辑图

把相应的逻辑关系用逻辑符号和连线表示出来, 就构成了逻辑图。

2.2.3 真值表

将输入、输出的所有可能状态一一对应地列出。

A	В	C	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

注意: n个变量可以有 2n个组合,一般按二进制的顺序,输出与输入 制的顺序,输出与输入 状态一对应,列出所有可能的状态。

м

2.2.4 卡诺图

卡诺图的构成: 将n个输入变量的全部最小项用小方块阵列图表示,并且将逻辑相临的最小项放在相临的几何位置上,所得到的阵列图就是n变量的卡诺图。

卡诺图的每一个方块(最小项)代表 一种输入组合,并且把对应的输入组合注 明在阵列图的上方和左方。

编号为0010的 单元对应于最 小项: ABCD

函数取0、1 均可,称为 无所谓状态。

四变量卡诺图

\ \\ \\ _	3 0	1
$\begin{bmatrix} \mathbf{A} \\ 0 \end{bmatrix}$	1	0
1	0	1

两变量卡诺图

B	C ₀₀	01	11	10
0	1	1	0	1
1	1	0	ф	1

三变量卡诺图

有时为了方便,用二进制对应的十进制表示单元格的编号。单元格的值用函数式表示。

B	C 00	01	11	10
0	0	1	3	2
1	4	5	7	6

 $F(A,B,C)=\Sigma(1,2,4,7)$

1,2,4,7单元取 1,其它取0

CE AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

四变量卡诺图单 元格的编号

2.2.5 标准表达式

十进制	变量坐标	最小项	最小项符号	函数F	F
0	000	A·B·C	m ₀	f ₀	\overline{f}_0
1	001	Ā·B·C	m ₁	f ₁	\overline{f}_1
2	010	A-B-C	m ₂	f ₂	$\overline{f_2}$
3	011	Ā·B·C	m ₃	f ₃	\overline{f}_3
4	100	A·B·C	m ₄	f ₄	\overline{f}_4
5	101	A·B·C	m ₅	f ₅	$\overline{f_5}$
6	110	A·B·C	m ₆	f ₆	\overline{f}_{6}
7	111	A·B·C	m ₇	f ₇	$\overline{f_7}$

2.3 逻辑函数的化简

- 2.3.1 利用逻辑代数的基本公式
- ▶并项法: AB+AB′=A
- **➢吸收法:** A+AB =A
- ▶消项法: AB+A' C+BC =AB+A'C
- ▶消因子法: A+A'B=A+B
- \rightarrow 配项法: A+A=A A+A'=1

例1:
$$F = ABC + ABC + ABC$$
 提出AB
$$= ABC + AB(C + C)$$

$$= ABC + AB$$

$$= ABC + AB$$

$$= A(BC + B)$$

$$= A(C + B)$$

$$= AC + AB$$

例2:
$$F = \overline{AB + \overline{AB} \cdot BC + \overline{BC}}$$

$$=(AB+\overline{AB})+(BC+\overline{BC})$$

反演

配项

被吸收

$$= AB + AB(C+C)$$

$$+BC(A+A)+BC$$

$$= AB + ABC + ABC$$

$$+ABC+ABC+BC$$

$$= AB + AC(B+B) + BC$$

$$= AB + AC + BC$$

2.3.2 利用卡诺图化简

$$F=AB+BC$$

利用卡诺图化简的规则

1. 相邻单元的个数是2^N个,并组成矩形时,可以合并。

C	D	01	11	10
AB \ 00	0	0	0	0
01	0	0	1	0
(AD)	0	-1	1	0
10	1	1	1	0

- 2. 先找面积尽量大的组合进行化简,可以减少每项的因子数。
- 3. 各最小项可以重复使用。
- 4. 注意利用无所谓状态,可以使结果大大简化。
- 5. 所有的1都被圈过后, 化简结束。
- 6. 化简后的逻辑式是各化简项的逻辑和。

例1: 化简 F(A,B,C,D)=Σ(0,2,3,5,6,8,9,10,11,12,13,14,15)

$$F = A + CD + BC + BD + BCD$$

例2: 化简

$$F = \overline{ABD}$$

例3: 已知真值表如图,用卡诺图化简。

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	1	0	1
1	1	1	1

101状态未给出,即是无所谓状态。

化简时可以将无所谓状态当作1或 0, 目的 是得到最简结果。

F=A

例4 化简逻辑函数
$$Y = \overline{ABCD} + \overline{ABCD} + ABCD$$

已知约束条件为

$$\overline{ABCD} + \overline{ABCD} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD} = 0$$

CD				
AB	00	01	11	10
00	0	1	X	0
01	0	×	1	0
11	X	0	×	X
10	1	X	0	X

$$Y = \overline{AD} + A\overline{D}$$

例5 判断一位十进制数是否为偶数。

ABCD	Y	ABCD	Y	说明
0000	1	1000	1	
0001	0	1001	0	
0010	1	1010	×	不会出现
0011	0	1011	×	不会出现
0100	1	1100	×	不会出现
0101	0	1101	×	不会出现
0110	1	1110	×	不会出现
0111	0	1111	×	不会出现

CD				
AB	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	×	×	×	×
10	1	0	X	×

输入变量A,B,C,D取值为0000~1001时,逻辑函数Y有确定的值,根据题意,偶数时为1,奇数时为0。

$$Y(A,B,C,D) = \Sigma m(0,2,4,6,8)$$

无关项:

 $\Sigma d(10,11,12,13,14,15) = 0$

CD00 AB10 01 00 01 X X X 11 10

 $Y(A,B,C,D) = \Sigma m(0,2,4,6,8) + \Sigma d(10,11,12,13,14,15)$

不利用无关项的 化简结果为:

$$Y = A'D' + B'C'D'$$

利用无关项的 化简结果为:

$$Y = D'$$

м

作业:

```
2.2 (4)
2.3 (b)
2.7 (a)
2.8
2.10 (6)
2.11 (5)
              (10)
2.13 (4) (6)
2.16 (2) (8)
2.18 (b) (d)
2.20 (b) (d)
2.24
2.26 (2)
2.27 (2)
```