

Grupo L1_7

- Pablo Pastor Martín
- Isaac Manuel Aimán Salas
- Javier Ramos Fernández

Introducción

El problema del corte de vástagos busca, dada una relación de precios para fragmentos de un cierto tamaño, maximizar el precio resultante de la hipotética venta de los mismos.

- Es un problema típicamente relacionado con la programación dinámica.
- Es posible enfocarlo mediante Divide y Vencerás, pero su rendimiento es pobre.

- Se solución óptima se basa en la composición de una o varias divisiones de la barra.
- Complejidad: $T(n) = \sum_{k=0}^{n-1} T(j) = (\sum_{k=0}^{n-1} 2^j) + 1 = 2^n$
 - · Es fácilmente demostrable mediante inducción.
- Por tanto, la complejidad es <u>exponencial</u>, lo que hace que este enfoque no sea el adecuado para resolver este problema.
- Esto es debido a que se hacen llamadas innecesarias.

Pseudocódigo:

```
CUT-ROD(p, n)
1    if (n == 0)
2    return 0
3    q = -inf
4    for i = 1 to n
5         q = max(q, p[i] + CUT-ROD(p, n - i))
6    return q
```

Tamaño de entrada	Tiempo de ejecución
23	34
25	143
27	551
29	2175
31	8610
33	34874
34	70550

Enfoque mediante Programación Dinámica (Bottom Up)

- Se resuelven los problemas empezando por longitudes de cuerda pequeñas.
- En un vector de tamaño n + 1, guardamos los beneficios óptimos para cada longitud de corte.
- Complejidad: $\sum_{i=1}^{n} \sum_{j=1}^{i} c = \sum_{i=1}^{n} jc = c \frac{(1+n)n}{2} = \Theta(n^2)$

n	i	j	Total
1	1	1	2
2	2	3	5
3	3	6	9
4	4	10	14
5	5	15	20

Pseudocódigo:

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
    Sean r[0..n] y s[0..n] nuevos arrays
   r[0] = 0
    for j = 1 to n
         q = -inf
         for i = 1 to j
               if q < p[i] + r[j - i]
                    q = p[i] + r[j - i]
                    s[j] = i
         r[j] = q
    return (r, s)
```

Enfoque mediante Programación Dinámica (Bottom Up)

Tamaño de entrada	Tiempo de ejecución
10000	168
20000	869
30000	1918
40000	3381
50000	5305
60000	7625
70000	10389

Resumiendo

- La diferencia entre los tiempos de ejecución es abismal
- Podemos concluir que la programación dinámica es el enfoque más adecuado para resolver el problema

Tiempo(ms)	programación	Tamaño para divide y vencerás
1100	24000	28
8600	64000	31

Conclusiones

• La eficiencia de un algoritmo es una característica importantísima del mismo, puesto que permitirá trabajar con mayores volúmenes de datos requiriendo un menor tiempo.

• En esta asignatura hemos aprendido que el paradigma Divide y Vencerás es tremendamente eficiente en ciertos casos (MergeSort)

 Sin embargo, en ocasiones como este problema, este paradigma se ve ampliamente superado por otros como la Programación Dinámica

Divide y vencerás

Programación dinámica

¿Preguntas?

Bibliografía

- Proving number of calls made in cutrod algorithm. (2017). Cs.stackexchange.com. Revisado el 19 maezo de 2017, desde http://cs.stackexchange.com/questions/29661/provingnumberofcalls-madeincutrodalgorithm
- Pecelli, P. (2009). Analysis of Algorithms Dynamic Programming for Rod Cutting. Revisado el 19 de marzo de 2017, desde http://www.cs.uml.edu/~kdaniels/courses/ALG_503_F12/Dynamic
 RodCutting.pdf
- Lecture 12: Dynamic Programming Rod Cutting. (2017). Faculty.ycp.edu. Revisado el de 19 marzo de 2017, desde http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture12.html
- Kretchmar, R. (2017). Rod Cutting: Example DP Solution (1st ed.). Revisado el 19 de marzo de 2017 desde http://personal.denison.edu/~kretchmar/271/DPRodCuttingExample.pdf