

COMPUTER NETWORKS AND INTERNET PROTOCOLS

Data Link Layer - Ethernet

SOUMYA K GHOSH

COMPUTER SCIENCE AND ENGINEERING

IIT KHARAGPUR

SANDIP CHAKRABORTY

COMPUTER SCIENCE AND ENGINEERING IIT KHARAGPUR

1

Shared Access Networks

 Shared Access

Networks assume multiple nodes on the same physical link

Bus, ring and wireless structures

- Transmission sent by one node is received by all others
- No intermediate switches
- Methods for moderating access (MAC protocols)
 - Fairness
 - Performance

Random Access
MAC Protocols

- When node has packet to send
 Transmit at full
 - channel data rate R
 - No a priori coordination

among nodes

- Two or more transmitting nodes
- ☐ "collision" •

Random access

MAC protocol

specifies:

- How to detect collisions
- How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols: ALOHA

- Slotted ALOHA
- CSMA and CSMA/CD

Aloha – Basic Approach

First random MAC developed

- For radio-based communication in Hawaii (1970)
- Basic idea:
 - When you're ready, transmit
 - Receiver's send ACK for data
 - Detect collisions by timing out for ACK
 - Recover from collision by trying after random delay •
 Too short

 large number of collisions

• Developed by Norm Abramson at Univ. of Hawaii for use

with packet radio systems

- Any station can send data at any time
- Receiver sends an ACK for data
- Timeout for ACK signals that there was a collision
 - What happens if timeout is poorly timed?
- If there is a collision, sender will resend data after a random backoff
- Utilization (fraction of transmitted frames avoiding collision for N nodes) was pretty bad
 - Max utilization = 18%
- Slotted Aloha (dividing transmit time into windows) helped
 - Max utilization increased to 36%

Slotted Aloha

 Time is divided into equal size slots (i.e. packet transmission time) • Node (w/ packet) transmits at beginning of next slot

• If collision: retransmit packet in future slots with probability p, until successful

Success (S), Collision (C), Empty (E) slots

Pure (Unslotted) ALOHA

- Unslotted Aloha: simpler, no synchronization
- Packet needs transmission:
- Send without awaiting for beginning of slot
- Collision probability increases:

10, 100, 1000 Mbps

Metcalfe's Ethernet sketch

Ethernet MAC – Carrier Sense

- Basic idea:
 - Listen to wire before transmission
 - Avoid collision with active transmission

Hidden Exposed

• Why didn't ALOHA	NY	
have this?		

In wireless, relevant contention at the receiver, not sender

• Hidden terminal Chicago

CMU

• Exposed terminal St.Louis

Chicago CMU

NY

Multiple Access Methods

- Fixed assignment
- Partition channel so each node gets a slice of the bandwidth
- Essentially circuit switching thus inefficient
- Examples:
 TDMA, FDMA,
 CDMA (all used in wireless/cellular environments) •

Contention-based

- Nodes contends equally for bandwidth and recover from collisions
- Examples: Aloha, Ethernet
- Token-based or reservation-based
 - Take turns using the channel
 - Examples: Token ring

Ethernet

Background

Metcalfe's original Ethernet sketch

Ethernet Technologies: 10Base2

- 10: 10Mbps; 2: under 185 (~200) meters cable length
- Thin coaxial cable in a bus topology
- Repeaters used to connect multiple segments
- Repeater repeats bits it hears on one interface to its other interfaces: physical layer device only!

10BaseT and 100BaseT

- 10/100 Mbps rate
- **T** stands for Twisted Pair
- Hub(s) connected by twisted pair facilitate "star topology"
- Distance of any node to hub must be < 100M

Physical Layer

layer

configurations are specified in three parts \bullet Data rate (10, 100, 1000)

– 10, 100, 1000Mbps

• Physical

- Signaling method (base, broad)
 - Baseband
 - Digital signaling
 - Broadband
 - Analog signaling
- Cabling (2, 5, T, F, S, L)
 - 5 Thick coax (original Ethernet cabling)
 - F Optical fiber
 - S Short wave laser over multimode fiber

Ethernet Overview

Bus and Star topologies are to connect hosts – Hosts
 attach to network via Ethernet transceiver or hub or switch • Detects line state and sends/receives signals
 Hubs are used to facilitate shared connections

2500m

Most popular

packet-switched

LAN technology •

100Mbps, 1Gbps

Max bus length:

Bandwidths:

10Mbps,

All hosts on an Ethernet are competing for access to the medium •
 Switches break this model

- Any signal
- Switching
- Network layer

over an

encapsulating •

64 48 32

can be received by all hosts enables individual hosts to communicate packets are transmitted

definition is a broadcast

Ethernet by

Frame Format

48 16

Preamble CRC Src Dest addr Body addr Type

Switched Ethernet

• Switches forward and filter frames based on LAN addresses – It's not a bus or a router (although simple forwarding tables are

- Options for many interfaces
- Full duplex operation (send/receive frames
- simultaneously)

maintained) • Very

scalable

 Connect two or more "segments" by copying data frames between them – Switches only copy data when needed

- key difference from repeaters
- Higher link bandwidth
 - Collisions are completely avoided
- Much greater aggregate bandwidth
 - Separate segments can send at once

Preamble is a sequence of 7 bytes,

each set to

- "10101010" Used to synchronize receiver before actual data is sent
- Addresses
 - unique, 48-bit unicast address assigned to each adapter
 - example: 38:10:e4:b1:29:07

· Dadre can contain up to 1500 button of data

- Each manufacturer gets their own address range
- broadcast: all 1s
- multicast: first bit is **1**
- *Type* field is a demultiplexing key used to determine which higher level protocol the frame should be delivered to

attention to what other nodes might be doing

- Ethernet uses CSMA/CD listens to line before/during sending
 If line is idle (no carrier sensed)
 - send packet immediately
 - upper bound message size of 1500 bytes
 - must wait 9.6us between back-to-back frames
- If line is busy (carrier sensed)
 - wait until idle and transmit packet immediately
 - called *1-persistent* sending
- If collision detected
 - Stop sending and jam signal
 - Try again later

State Diagram fo CSMA/CD

Packet?

COMPUTER NETWORKS AND INTERNET PROTOCOLS

Data Link Layer - Ethernet (contd.)

SOUMYA K GHOSH

COMPUTER SCIENCE AND ENGINEERING

IIT KHARAGPUR

SANDIP CHAKRABORTY

COMPUTER SCIENCE AND ENGINEERING IIT KHARAGPUR

23

Ethernet

Background

adaptors transmit at the same time (adaptors sense collision based on voltage differences) • Both found line to be idle

• Both had been waiting to for a busy line to become idle

А

A starts at time 0

Message almost

there at time T when B starts – collision!

ΑВ

How can we be sure A knows about the collision?

• How can A place?

There must mechanism to

be a insure

retransmission on collision – A's message reaches B at time T

- B's message reaches A at time 2T
- So, A must still be transmitting at 2T
- IEEE 802.3 specifies max value of 2T to be 51.2us

- This relates to maximum distance of 2500m between hosts
- At 10Mbps it takes 0.1us to transmit one bit so 512 bits (64B) take 51.2us to send
- So, Ethernet frames must be at least 64B long
 - 14B header, 46B data, 4B CRC
 - Padding is used if data is less than 46B
- Send jamming signal after collision is detected to insure all hosts see collision –

Collision
Detection
(contd...)

time = 0

10 hit signal

ΑВ

time = 2T

Exponentia Backoff

- If a collision is detected, delay and try again
- Delay and try againDelay time is selected using
- binary exponential backoff
- 1st time: choose K from {0,1} then delay = K * 51.2us
- 2nd time: choose K from

- $\{0,1,2,3\}$ then delay = K * 51.2us
- *nth* time: delay = $K \times 51.2$ us, for $K=0..2^n 1$ • Note max value for k = 1023
- give up after several tries (usually 16)
- Report transmit error to host
- If delay is not random, then there is a chance that sources would retransmit in lock step
- Why not just choose from small set for K
 - This works fine for a small number of hosts

algorithm from the Receiver Side

- Senders handle allReceivers simply
- read frames
 - with acceptable address –
 - Address to host
 - Address to
 - Address to belongs

All frames if

A

broadcast multicast to which host

access control

Ethernet
Frame (as per 802.3

- Preamble informs the receiving system that a frame is starting and enables synchronization. SFD (Start Frame Delimiter) signifies that the Destination MAC Address field begins with the next byte. Destination MAC identifies the receiving system.
- Source MAC identifies the sending system.
- Type defines the type of protocol inside the frame, for example IPv4 or IPv6.
- Data and Pad contains the payload data. Padding data is added to meet the minimum length requirement for this field (46 bytes).
- FCS (Frame Check Sequence) contains a 32-bit Cyclic Redundancy Check (CRC) which allows detection of corrupted data.

Ethernet Address?

Fast and Gigabit Ethernet

- Fast Ethernet

 (100Mbps) has
 technology very
 similar to

 10Mbps Ethernet
- Uses different physical layer encoding (4B5B)
- Many NIC's are 10/100

capable

- Can be used at either speed
- Gigabit Ethernet (1,000Mbps)
 - Compatible with lower speeds
 - Uses standard framing and CSMA/CD algorithm
 - Distances are severely limited
 - Typically used for backbones and inter-router connectivity
 - Becoming cost competitive
 - How much of this bandwidth is realizable?

facts

- Ethernets work best under light loads
 - Utilization over 30% is considered heavy
 - Network capacity is wasted by collisions
- Most networks
- are limited to about 200 hosts
 - Specification allows for up to 1024
- Most networks are much shorter
 - 5 to 10 microsecond RTT

- Transport level flow control helps reduce load (number of back to back packets)
- Ethernet is inexpensive, fast and easy to administer!

Ethernet Issues

•

Ethernet's peak utilization is pretty

low • Peak

worst with

throughput

More

- More collisions needed to identify single sender
- Smaller packet sizes
 - More frequent arbitration
- Longer links

hosts

llisions take longer to observe, more wasted bandwidth ciency cane be improved by avoiding these conditions

