Instituto Tecnológico de Buenos Aires

22.12 ELECTRÓNICA III

Trabajo de laboratorio Nr.1 Unidad 1

 $\begin{array}{ccc} Grupo~4\\ {\rm Laguinge,~Juan~Mart\'{i}n} & 57430 \end{array}$

Índice

1. Conversor a codigo de Gray

 $\mathbf{2}$

1. Conversor a codigo de Gray

Para esté ejercicio, realizamos el desarrollo de un circuito lógico capaz de convertir un número binario de 4 bits a su equivalente de código de Gray, esto resulta en la siguiente tabla de verdad:

		rada		Salida			
X_1	X_2	X_3	X_4	Y_1	Y_2	Y_3	Y_4
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

De la tabla de verdad obtenemos las siguientes ecuaciones en función de los mintérminos:

$$Y_4 = m_1 + m_2 + m_5 + m_6 + m_9 + m_{10} + m_{13} + m_{14}$$

$$Y_3 = m_2 + m_3 + m_4 + m_5 + m_{10} + m_{11} + m_{12} + m_{13}$$

$$Y_2 = m_4 + m_5 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{11}$$

$$Y_1 = m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15}$$

Que al reemplazar cada mintérmino por su correspondiente expresión obtenemos:

$$Y_4 = \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + \overline{X_1} \cdot X_2 \cdot \overline{X_3} \cdot X_4 + \overline{X_1} \cdot X_2 \cdot X_3 \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline{X_4} + \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3}$$

Tenemos unas funciones muy larga y como las tenemos expresadas en mintérminos podemos simplificarlas por medio del mapa de Karnaugh. Ésto nos da a lugar a los siguientes mapas de Karnaugh y funciones de salida simplificadas:

X_3X_4	$^{1}X_{2} \\ 00$	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	0
10	1	1	1	1

$$Y_4 = X_3 \cdot \overline{X_4} + \overline{X_3} \cdot X_4$$
 Mapa de Karnaugh y formula de Y_4

X_3X_4	$^{1}X_{2} 00$	01	11	10
00	0	1	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	1

 $Y_3 = X_2 \cdot \overline{X_3} + \overline{X_2} \cdot X_3$ Mapa de Karnaugh y formula de Y_3

X_3X_4	$^{1}X_{2} 00$	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

$$Y_2 = X_1 \cdot \overline{X_2} + \overline{X_1} \cdot X_2$$
 Mapa de Karnaugh y formula de Y_2

$$X_1X_2 \\ 00 & 01 & 11 & 10 \\ 00 & 0 & 0 & 1 & 1 \\ 01 & 0 & 0 & 1 & 1 \\ 11 & 0 & 0 & 1 & 1 \\ 10 & 0 & 0 & 1 & 1 \\ \end{array}$$

 $Y_1 = X_1 \label{eq:Y1}$ Mapa de Karnaugh y formula de Y_1