i. Zbadaj wypukłość funkcji zadanej wzorem:

$$f(x) = \ln(x + \sqrt{1 + x^2}).$$

- **2**. Udowodnić, że równanie tgx = ax + b ma w przedziale $(-\pi/2, \pi/2)$ jedno, dwa lub trzy rozwiązania w zależności od wartości parametrów $a, b \in \mathbb{R}$.
- **3**. Pokaż, że warunek wypukłości funkcji f na przedziale A jest równoważny temu, że dla $n \in \mathbb{N}, x_1, ..., x_n \in A, t_1, ..., t_n \geq 0$ takich, że $t_1 + ... + t_n = 1$ mamy:

$$f\left(\sum_{k=1}^{n} t_k x_k\right) \le \sum_{k=1}^{n} t_k f(x_k).$$

Uzasadnij, że dla funkcji wklęsłej mamy podobny warunek z przeciwną nierównością.

- $\mathbf{\dot{4}}$. Korzystając z wklęsłości funkcji $\ln(x)$ oraz poprzedniego zadania udowodnij nierówność między średnią arytmetyczną i geometryczną.
- **5.** Niech $p > 0, x_1, ..., x_n > 0$ oraz

$$S_p = \left(\frac{x_1^p + \dots + x_n^p}{n}\right)^{1/p}.$$

Pokaż, że dla q>p>0 mamy $S_q\geq S_p$. Kiedy zachodzi równość?

6. Pokaż, że funkcja ciągła spełniająca dla dowolnych $x_1, x_2 \in (a, b)$ warunek:

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}$$

jest wypukła.

7. Znajdź ekstrema i zbadaj wypukłość funkcji $f:(0,e^2)\to\mathbb{R}$ zadanej wzorem:

$$f(x) = \frac{-2}{\ln(x) - 2},$$

- **8.** Niech f będzie funkcją z poprzedniego zadania. Czy istnieje takie $n \in \mathbb{N}$, że funkcja $(f(x))^n$ jest wypukła na przedziale $(0, e^2)$?
- 9. Funkcja $f:[a,b]\to [c,d]$ jest ściśle rosnąca, ciągła i wypukła. Wykaż, że funkcja odwrotna do f jest wklęsła.
- **10.** Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją wypukłą, a $c \in (a,b)$ będzie takie, że $f(c) \ge f(x)$ dla $x \in [a,b]$. Pokaż, że f jest stała.
- **İ1.** Niech $f: \mathbb{R} \to \mathbb{R}$ będzie funkcją wypukłą, f(0) > 0, f'(0) > 1. Wykaż, że f(x) > x dla x > 0.
- **12.** Wykazać, że jeśli funkcja f jest wypukła na każdym z przedziałów [a,b] i [b,c] oraz różniczkowalna w punkcie b, to jest wypukła na [a,c]. Pokazać przykład świadczący o tym, że założenie różniczkowalności w punkcie b jest istotne.