Probability Spaces	$\underline{Monotonicity} \forall x_1, x_2 \in \mathbb{R}, x_1 < x_2 \Longrightarrow F_X(x_1) \in F_X(x_2)$			
Sample Space O J ⇒ set of all outcomes (mutually exclusive) of random experiment	$F_X(-\infty) = 0, F_X(\infty) = 1$ F_X is right-continuous			
Event E ⊆ Ω] => any <u>subset of sample space</u> Extreme Events => null event Ø] & universal event S	Simple Properties $0 \le F_{\chi}(x) \le 1, \forall x \in \mathbb{R}$			
Elementary Event ⇒ singleton subsets of S If $s \in E$ is experiment outcome, then E joccurred Null event Ø jnever & universal event S jalways -occurs For events $E_1, E_2,$	$\overline{P_X(a < X \le b) = F_X(b)} - F_X(a) \text{ for finite intervals } \underline{(a, b] \subseteq \mathbb{R}}$			
$ E_1 \underline{or} E_2 \underline{or} \Rightarrow \bigcup_i E_i $				
$E_1 \mid and E_2 \mid and \dots \Rightarrow \bigcap_i E_i$ $E_1, E_2, \dots \mid are \underline{Mutually Exclusive} \Rightarrow \forall i, j. E_i \cap E_j = \emptyset$ i.e.				
they're <u>pairwise-disjoint</u> E ₁ , E ₂ , are <u>Independent</u> =>				
$\frac{\bigcap_{j=1}^{n} E_{i_{j}}) = \prod_{j=1}^{n} P(E_{i_{j}})}{\{E_{i_{1}}, E_{i_{2}}, \dots, E_{i_{n}}\}} $ for any <u>finite subset</u>				
If events A, B are <u>independent</u> , then A, B are <u>also</u> independent				
g -algebra $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ => family of subsets of Ω s.t. nonempty: $\Omega \in \mathcal{F}$				
closed under <u>complements</u> : $E \in \mathcal{F} \Longrightarrow \overline{E} \in \mathcal{F}$ closed under <u>countable union</u> :				
$E_1, E_2, \dots \in \mathcal{F} \Longrightarrow \bigcup_i E_i \in \mathcal{F}$				
mmediate Basic Results: $\emptyset \in \mathcal{F}$ closed under <u>countable intersection</u> :				
$E_1, E_2, \dots \in \mathcal{F} \Longrightarrow \bigcap_i E_i \in \mathcal{F}$				
$\{\emptyset, \Omega\}$ is smallest & $\mathcal{P}(\Omega)$ is largest $\neg \sigma$ -algebras. Generated σ -algebras:				
$ \sigma(\mathcal{G}) $ \Rightarrow for family of subsets $\mathcal{G} \subseteq \mathcal{P}(\Omega)$, its smallest σ -algebra to contain \mathcal{G} (exists & unique)				
$\begin{array}{l} \neg (f) \big \Rightarrow \text{for } f: \Omega \to E \big \text{where } (E, \mathcal{E}) \big \text{is } \underline{measurable space}, \\ \neg (f) = (f^{-1}[F] F \in \mathcal{E}) \big \text{i.e. all } \underline{\text{pre-images}} \\ \text{trace } \sigma\text{-algebra of } \underline{B \in \mathcal{F}} \big \Rightarrow \mathcal{F}_B = \{B \cap A A \in \mathcal{F}\} \big \end{array}$				
Probability Measure $P: \mathcal{F} \rightarrow [0, 1] on (\Omega, \mathcal{F}) $				
-∀E ∈ F, 0 ≤ P(E) ≤ 1 i.e. between 0 and 1 -P(Ω) = 1 i.e. <u>universal event</u> S <u>always</u> occurs				
σ-additive (countably additive) ⇒ $P(\bigcup_i E_i) = \sum_i P(E_i)$ for pairwise-disjoint events $E_1, E_2, \dots ∈ \mathcal{F}$				
Immediate Basic Results:				
$\frac{P(\varnothing) = 0}{P(A \cup B) = P(A) + P(B) - P(A \cap B)}$				
Measurable Space (Ω, \mathcal{F}) \Rightarrow sample space Ω with				
g -algebra \mathcal{F} on it Probability Space $(\Omega, \mathcal{F}, P) \Rightarrow m$ -asurable space				
(Ω, F) with probability measure Plon it Conditional Probability				
Conditional Probability => $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ where $A, B \subseteq \Omega \mid \text{and } P(B) \neq 0 \mid$				
The conditional probability space is $(B, \mathcal{F}_B, P(\cdot \mid B))$ Sample space $B \subseteq \Omega$				
Trace σ -algebra $\mathcal{F}_B = \{B \cap A \mid A \in \mathcal{F}\}$				
Probability measure $P(\cdot \mid B)$ If A, B are independent then $P(A \mid B) = P(A)$				
A_1, A_2 are Conditionally Independent given B iff $P(A_1 \cap A_2 \mid B) = P(A_1 \mid B)P(A_2 \mid B)$				
Law Of Total Probability \Rightarrow for any events $\{B_1, B_2,\}$				
which partition Ω_i $P(A) = \sum_i P(A \mid B_i)P(B_i) = \sum_i P(A \cap B_i)$ Special Case =>				
$\frac{ P(A) = P(A \cap B) + P(A \cap \overline{B}) = P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B}) }{\text{Bayes Theorem}} \Rightarrow P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$				
General Random Variables				
Random Variable \Rightarrow measurable function $X : \Omega \rightarrow E$ $ (\Omega, \mathcal{F}, P) $ is a probability space, (E, \mathcal{E}) is a measurable space				
For every $\underline{B \in \mathcal{E}}$ the pre-image of \underline{B} under \underline{X} is in $\underline{\mathcal{F}}$, i.e. $X^{-1}[B] = \{s \in \Omega \mid X(s) \in B\} \in \mathcal{F}$				
i.e. $\sigma(X) \subseteq \mathcal{F}$ where $\sigma(X)$ is generated by function X . Induced Probability $P_X(X \in B)$ \Rightarrow probability that X .				
takes on value in $\underline{B \in \mathcal{E}}$ $P_X(X \in B) = P(X^{-1}[B]) = P(\{s \in \Omega \mid X(s) \in B\})$				
Also called Pushforward Measure of Plonto (E, \mathcal{E})				
induced by $XJ \Rightarrow (E, \mathcal{E}, P_X)$ is a <u>probability space</u> Also called the <u>Probability Distribution</u> of XJ Real Random Variables				
Real Random Variable is RV who's co-domain is $E = R$ Support supp(X) \Rightarrow is range of X i.e. supp(X) = $X[\Omega]$				
Simple RRV => finite supp(X) Discrete RRV => countable supp(X)				
Continuous RRV => uncountable supp(X)				
Induced Probability => $P_X(X \le x) = P(\{s \in \Omega \mid X(s) \le x\})$ Cumulative Distribution Func. (CDF) $F_X(x) = P_X(X \le x)$				
$F_X(x)$ is <u>right-continuous</u> \Rightarrow for any <u>decreasing</u> (x_n) .				
$\overline{\lim_{n\to\infty} x_n = x_L} \Longrightarrow \lim_{n\to\infty} F_X(x_n) = F_X(x_L)$ To <u>check that function is valid CDF</u> , must obey:				