人阐述哈希函数的概念和构造方法 吃希函数是一种能把化复、长度的输入面过特定等法受换或固 定长度新年的函数。其输出输为对于输入的治养值、散列值、消息 摘要或数多指设. 构造方法: ①抗弱碰撞性:治定大,找到 y+x 使 HIK)= HIY) 在计算上 不可行。 ②抗强溢撞性:找到绝的两个数据对 (x,y) y+x, 使 HIX)= Hiy)在计算上不可行。 2、完善 MD5算法 筋详油迁程。 ① 首先对消息M进行填充,便其企长对512年系的结果等于448, RP Len(M) mod 572 = 448 ②初始化·汽车值:在MIDS算法中有4个公传链接变量。分别为A.B.C D.它们的初始值被彻为们数 成魔术数 图计算的希值的特质的后的消息从知信书单位进行划分块海块 再从32位为单位划分分组。 12) 每块可分16个分组,即Mio、Miz, 、、Mirs 小歌水于消息长度 3)每块进行4轮 计算,每轮存的次准浅性变换。 14)完成4轮省环运算后,将 A.B.C.D分别加上 a.b.c.d,即 A-24-a. B= B+b, C= c+C, D= D+o (5)加载 T-7 为2位数据软性海运行算法 最后输出的A.B. C和D的 自联就是吃养值。 3、阐述消息认证的证务所属和特点。 ①消息和客:以消息整体力对象进行加密,并以加密方的意义作为认证标识。 图消息认证据:一个公开函数,加上一个密钥产生一个固定长度成值革从战作为认证标识。 ② 放到函数:一个公开函数,能够,将任重长度的,消息映射到一个固定长度的 教习值,从此作为江水标识。

Q/36 \$ 14.	报文的行行》	其捣盈1	内层得到 唯一的插手
B 1 to 14.	极为指集的共	沒具有知	快的速度、可以满足
要求转移的			
- X 3 27 (v) 10 v			III.
5、阐述身份认	证的概念、并	美港 法不同议	正方法的特点。
自伤认证是对	用户宣称的外	与 标识的有	效性进行较强和测试
心口含认证:	: 使用帐号和家	23.	at the transfer of the second
Q 14 45 1/2 21	站:面部、村	级、虹膜、	韦青等特征。
076 +13	其:是爱到林	TKM SLOT 1	0/生)。
	. 71. LAD 4 4/1	1-1/10 1-1	to the to
Ø \$ 13 1 3			
			The second of
<u> </u>			