Finite-Sample Symmetric Mean Estimation with Fisher Information Rate

Shivam Gupta ¹ Jasper C.H. Lee ² Eric Price ¹

¹The University of Texas at Austin

²University of Wisconsin–Madison

Mean Estimation

- Given n samples from an unknown variance- σ^2 distribution, the empirical mean has variance $\frac{\sigma^2}{n}$ and asymptotically converges to a Gaussian
- In the *finite-sample* setting, [Catoni; 2012], [Lee, Valiant; 2022] show estimator $\hat{\mu}$ of the mean μ , such that with probability 1δ ,

$$|\hat{\mu} - \mu| \le \sigma \sqrt{\frac{2\log\frac{2}{\delta}}{n}} (1 + o(1))$$

• Natural Question: Is it possible to do better?

Location Estimation

• Given n samples from a **Gaussian** with variance σ^2 , optimal estimator is the empirical mean, which has $1-\delta$ confidence radius $\sigma\sqrt{\frac{2\log\frac{1}{\delta}}{n}}$

• For the **Laplace** distribution, the median achieves error $\sigma\sqrt{\frac{\log\frac{1}{\delta}}{n}}$, a factor $\sqrt{2}$ savings over the above

Given a density f (up to shift), and n samples X_1, \ldots, X_n , what is the best estimator of the mean? **Mean Estimation with known density**.

- Fit samples to density, aka Maximum Likelihood Estimation (MLE)
- Asymptotic convergence to Gaussian with variance \mathcal{I}^{-1}/n , where \mathcal{I} is the **Fisher Information**
- Tight: Cramér-Rao bound says must have variance at least \mathcal{I}^{-1}/n

Finite-Sample Setting – Smoothed MLE

- When density known, might expect $|\hat{\mu} \mu| \le \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}}}$. Unfortunately, impossible!
- Solution: Smoothing [Gupta, Lee, Price, Valiant; NeurIPS 2022]

Smooth samples and distribution with a radius $r \approx \sigma/n^{1/6}$ Gaussian, then run (variant of) MLE. With probability $1 - \delta$,

$$|\hat{\mu} - \mu| \le \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}_r}}(1 + o(1))$$

Symmetric Mean Estimation

- If we don't know the density, is it still possible to get Fisher Information rate? In general, no. [Dang, Lee, Song, Valiant; 2023]. However, if the distribution is symmetric, yes!
- Idea: Estimate density using the Kernel Density Estimate (KDE) on the first (say) $n^{1/100}$ samples

- Naive algorithm: Run (smoothed) MLE/Find zero of estimated score close to initial estimate of mean. Two issues:
- 1. Bias
- 2. Inability to estimate score well in "atypical" regions

Correcting the KDE

1. Bias

- Performing MLE wrt a different distribution introduces bias
- For a *symmetric* distribution, MLE with respect to *any* (possibly different) symmetric distribution is an unbiased estimator
- Idea: Anti-symmetrize the KDE score.

2. Atypical regions

• Consider the distribution $\frac{n-2}{n}\mathcal{N}(0,1) + \frac{1}{n}\mathcal{N}(c,1) + \frac{1}{n}\mathcal{N}(-c,1)$.

- ullet Since we use only the first $n^{1/100}$ samples to compute the KDE, we only see samples from the central Gaussian with high probability
- This score just corresponds to the empirical mean, which can be arbitrarily bad for the remaining $n\cdot(1-o(1))$ samples
- Solution: Clipping

Summary

- Use the first (say) $n^{1/100}$ samples to compute the KDE
- Anti-symmetrize and clip the KDE score appropriately
- Run (variant of) smoothed MLE using the anti-symmetrized and clipped KDE score on remaining samples

Let \mathcal{I}_r be the r-smoothed Fisher information. For large enough r decaying polynomially in n, with probability $1 - \delta$, our estimator $\hat{\mu}$ satisfies

$$|\hat{\mu} - \mu| \le (1 + o(1)) \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}_r}}$$

COLT 2023