ANALYSE DATA-VISUALISATION

Transparence Santé

Figure 1 - Répartition des entreprises françaises et étrangères.

CHOIX DES LANGAGES

<u>R</u>

- Chargement du jeu de données en raison de la taille des BD
- Capacités de traiter des données volumineuses
- Commandes simplifiées dans une étude statistique

Python

- Langage le plus travaillé depuis le début de la formation
- Représentation des données

<u>S</u>

2

- Étudier plus précisément les intérêts des langages R et Python.
- Observer la correspondance des résultats obtenus.

- Capacités à effectuer des nettoyages du jeu de données.
 - 1. La recherche et suppression des lignes pluri-présentes.
 - 2. Déceler l'existence de potentielles données aberrantes.
 - 3. Une étude indépendante des colonnes pour cerner leurs intérêts. (rôle, catégories de valeurs)
 - 4. Possibilité de modifier des valeurs identiques saisies différemment.

Exemples: "54000" transformé en "54000",

"101 avenue Anatole France" ayant différentes écritures)

ANALYSE DES DONNÉES

Statistique


```
> summary(avantage$avant montant ttc)
      Min. 1st Qu. Median
                          Mean 3rd Qu.
                                              Max.
      10.0 23.0 40.0 143.9 60.0 3000000.0
> summary(convention$conv montant ttc)
     Min. 1st Qu. Median
                           Mean 3rd Qu. Max.
                                                NA's
    -16707
         25 57 1880 299 33655638 4181071
> summary(remuneration$remu montant ttc)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
      10
           120
                  600 5338 1800 4843939
```

Figure 1 - Répartition des quartiles sur les montants TTC.

	variable	g_zeros	p_zeros	q_na	p_na	q_inf	p_inf	type	unique
1	entreprise_identifiant	0	0.00	0	0.00	0	0	factor	828
	•								
8	benef_prenom	4	0.00	0	0.00	0	0	factor	9358
9	benef_qualite_code	0	0.00	0	0.00	0	0	factor	24
10	qualite	0	0.00	0	0.00	0	0	factor	24
11	benef_adressel		0.00	6	0.00	0	0	factor	7110
12	benef_adresse2	262	0.06	4	0.00	0	0	factor	2348
13	benef_adresse3	398	0.09	0	0.00	0	0	factor	952
14	benef_adresse4	292	0.06	0	0.00	0	0	factor	144
34	remu_convention_lies	0	0.00	0	0.00	.0	0	factor	35024

Figure 2 - Quantité des valeurs uniques prises par les variables considérées.

ANALYSE DES DONNÉES

Associée aux entreprises

Nombre d'entreprise par secteurs

Montant investi par catégorie d'entreprise

Investissement total par entreprise

ANALYSE TEMPORELLE

de la rémunération

Moyenne des rémunérations par mois

Moyenne des rémunérations totales par mois

Cas GlaxoSmithKline

Diagramme de Gantt

