	DEEP LEARNING CCS6005) DATE
*	PERCEPTRON: (SINGLE LAYER PERCEPTRON)
	- A limean model used for burary classification
	\Rightarrow Step Function for activation ie $f(x) = \begin{cases} 0, x \le \alpha \\ 1, x > \alpha \end{cases}$
	-> Contains only aput layor and output layor.
	BIAS INPUT weather the
	Newson should gire of not four of all the inputs are 'o'
(m r	nput) (n output).
	$\alpha_0 = \pm 1$ and
	At each output numor k we have, wox= b which is
	At each output number k we have, wor = b which is usually of bias Yk = f(\sum_{i=0}^{m} \cdot_{i} \wik) = > Dutput of kth number.
	=> The neights of the connections are update through. Perception young algorithm.
	A without newton the evolor Ex is Given by
	Ex = yx - yx where yx = prudicted value
	y k = actual value.
	classmate PAGE

	DATE
	if Ex > 0 => mights should be oreduced
	it Ex < 0 => mughts should lee to oreand
	→ DWik = - Ni (ýk-yk)
	Thrufare the weight updatton is green by.
	Wik = Wik + n Dwik = wik 1 n-2; (yk - yk)
	The parameter h is called as learning Rott. It dutes munis whom fast should the perception learn by controlling the amount of change is unique. If n is too high => retweek lucomes unstable.
	1) n is too low => cleaning with take large amount of lums
	0.1 < h<0.4 => optimal Range
2	DO TO THE PROPERTY OF THE PARTY
•	MULTILAYER PERCEPTRON (MULTILAYER FEED FORWARD NETWORK):
	- Nuns are arranged into groups called as
	layer
	Contains 3 many layers : 1 Input layers.
-	classmate 3 Durputlayer
	(AUL)

DATE	
→ one a given layer all the Neurons will he activation function	zui Sami.
For input layer, input will be activation of layer	data unto, pruvious
→ Number of numbers in the input layer will to number of features in the input.	le lqual.
4 un ham two main Slips:	
1 Forward Peropogation (Perudiction	g Owpur)
(Backward Propogation (Reducing E. (Backpropogation bias value	tyl and
Just number can be given a Seperate bjas unch layer can have a common bias vois Bard on the implementation	um, ans
=> BACKPROPOGATION: it is the method of calcular propagation woran from output layer to all [layer.	Hoden.
Jo vuduce the error we wing "optimis algorithm"	
function" => The goal of a to to to to to to my manuals the loss	ptuniser /
layer. Jo viduce the error we wing "optimis algorithm" wron is callculated using "levertion" => The goal of a	Ration Ration phinistr

linear Non-linear	
	DATE
=> ACTIVATION FUNCTION: UND	to inbroduce non-lunearity
in the decision boundary	(Because not all.
poroblims are linearly	Seperable)
without activat	con burnetton the neural
network was just	perform livar uights
Sum (Suronlar to li	var Regrusion).
1 LINEAR: f(N) = Wx.	1
⇒ idundity function	
⇒ Used in input layor	?
	f(x) = Wn
2 SIGMOID:	vanishing gradent
=	
=> Reduce the criput into	
the Range 0-1.	
→ Outputs independent	f(y) = 1
probability for each clan	1+6-2
	inary dauxticulion
 Output la	
 (3) TANH: (Hypenbolic Jang	jent)
=> Reduces input to the	
Runge -1 to 1	
ð ·	
 =) it can deal more ea	neg
with negative values	
	Con 2 2
	$f(x) = e^{x} - e^{-x}$
	61+6-1
Classmate	PAGE

Both Sigmoid and tanh co possiblum (For extrem high	or cause is a sichio	Gradina
porobeim (For extrem high	6 / low value) 30	we luk Relu
4) SOFTMAX:	1	
	explodin	y Consolint
→ proceeds the probabil	by dubihution of	each claus.
\$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}	it output layer c runous and X lee	ontains M.
	value (activation	
$= x_i$ $\sum_{i=1}^{\infty} e^{x_i}$	(Sum of all well let 1)	
U	I (class with ma	oldedorg running
	will be the F	esuit).
(5) RECTIFIED LINEAR UNIT	(ReLV):	
⇒ ourcours varising	exploding	
gradunt problem.		
= ROLU is highly W	voc in	f(2) = max(0,2)
=) Some variet of	ReLU are:	
(i) Leakey Rell =	f(x) = max(0.0	1x1x).
(ii) Paramularc Rell] = f(x) = max (&x,	x).
(iii) Exponential R		c, if 2, >0
	()	(e2),1) x <0
	Ma	n (a (ez-1), n).
		PAGE
classmate		

	DATE
•	is how close the predicted.
For Green aughts IN L (N,B) as loss funct Yi = hw, B(X) Yi => Real value	ion => prudicted value for ith Samp
LDSS FUNCTION FOR REGRECSION	LOSS FUNCTION FOR CLASSIFICATION
(1) Mean Squared Everon $L(N,B) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i} - \hat{y}_{i})^{2}$ If more than one feature. If der in output $\sum_{i=1}^{N} (\sum_{j=1}^{N} (\hat{y}_{ij} - \hat{y}_{ij})^{2})^{2}$ $\sum_{i=1}^{N} \sum_{j=1}^{N} (\hat{y}_{ij} - \hat{y}_{ij})^{2}$ $\sum_{i=1}^{N} \sum_{j=1}^{N} (\hat{y}_{ij} - \hat{y}_{ij})^{2}$	Coros entropy low. (DE) Negertius Log Likehood. Binary Categorical. PCF = -1 5 Yilog Yi + (1-7i) N i=1
2) Mean Absolute Everen. L(N/B) = 1 \(\sum \frac{1}{N} \) \(\sum \frac{1} \) \(\sum \frac{1}{N} \) \(\sum \frac{1}{N} \) \(\sum \fra	Hing loss: Ling loss: Schright for SVM Viil. Punt should by -1/1 L (W/B) Zmaz (o, 1-7;x) L (W/B) Loraby N is 1
classmate	PAGE

	N M DATE TO THE TOTAL TO
	\[\sum_{i=1}^{N} \sum_{i=1}^{M} \left(0, \forall \cdots
	clausication
	MSE and MAE are priorie to outliers due to which
	all com use HURFK LOSS - For Regulation
	L (W,B) = { 1 (Y; - Ŷi)2, Y,-Ŷi ≤ S.
	$\left[\begin{array}{c c} 8 & y_i - \hat{y_i} - 1 & 8^2, \text{ els.} \end{array}\right]$
	(8 41 -1 o
	Her Sis a hyperameter which depets the
	to lisance to out wis. Thisir lon is like a
	Completed ADD MSE and MHE
*	GIRADIEN FERGUS
	-> An optionation algorithm for manumising the
	cost / loss function
	(i) Batch Gradient Descent
	2 C DIGOLAY
	(iii) Muri Barrey Colle action
	In (i) Hu complete Graving Set is und for every thration/
=>	In (i) Ha complete Graning ser
	spoch. Sample is used for one chown (18.
=)	In (i) Hu competer of Sample is used for one chown (ie. In (ii) Only Sanger Sample is used for one chown (ie. Number of Estrature) spock = Number of Samples in transmis
	Number of iteration
	Sit mounty
=)	from the Granning dataset.
	brum the Order of
=	Some other optivisors are: RMS Props, ADADELLIA, ADAGORDO,
	Adam.
	PAGE
	classmate

HYPERPARAMETERS

- important the performance of mode
- 1 No of Hidden Layers
- @ No. of Neurons in each layer
- 3 Activation Functions
- (4) Low Function
- 6 Optimina Function
- 6 No. of ephochs/ Henators
- @ Type of Rigularination
- @ Weight wateration
- a Learning Rutt & Mornintum

* BIAS AND VARIANCE: (Torade off)

- in the training data and true to generalize it.
- I BIAS is the measure of our models on ability to
- when model has HIGH BIRE => did not brain well to braining See when model has Low Bire => it has identified name partitions from Indiany.

 Set property.
- => VARIANCE is the measure of models fluctation in performance when there is a chance is duty sut

DATE
⇒ UNDERFITTING: when a model does not perform.
will in training data.
(HIGH BIRE).
⇒ OVERFITTING: when a model perform well in train data but it lacks performance in letting data
(LDW. BIAS, HIGH VARIANCE)
→ A Good model Should have LOW BIRS and LOW VARIANCE.
MACHINE LEARNING: A Algorithm is said to be. learning from experience E with Respect to Some. task I and performance measure P if the performer P increases with increase in experience E.
TYPES OF MACHINE, LEARINGS. CLASSIFICATION REGRESSION
(1) SUPERVISED REGRESSION
(2) UNSUPERVISED (CLUSTERING.).
3 SEMI-SUPERVISED
(4) REINFORCEMEN T
LINEAR SEPERABILITY:
A data is Soud to be liverary Seperable. y only a single lim / Plane / Hypeplane can.
partition the data into 2 clams.
classmate

DATE		
DATE		

Eg: Purciption can only work on a data Set that is Invary Seperable

-) One of the main vieason for MLP insprovement

LINEAR REGRESSION:

Consider the following equation
$$y = bant \cdot 0.01$$

Livean origination

Cruts to fix a live of

Critic form on the

Griun dataset.

$$E = \frac{1}{N} \sum_{i=1}^{N} (\hat{Y}_i - \hat{Y}_i)^2 \Rightarrow \text{when } \hat{Y}_i \text{ is the predicted}$$
value and \hat{Y} is the predicted value

The winon E is could as MFAN SQUARED ERROE. We have to Requer this hunce the is called LFAST SQUARE REGRESSION.

$$E = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i} - y_{i})^{2} = \frac{1}{N} \sum_{i=1}^{N} (\theta_{0} x_{i} + \theta_{1} - y_{i})^{2}.$$

$$\frac{\partial E}{\partial \theta} = \frac{1}{2} \times 1 \times \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{\theta} \right) - \frac{1}{2} \left(\frac{\theta}{\theta} \times \frac{1}{2} + \frac{\theta}{$$

$$= O_0 \overline{XY} + O_1 \overline{X} - \overline{XY} = 0. - 0$$

$$\frac{\partial E}{\partial \theta_{1}} = \cancel{Z} \times \cancel{L} \times \cancel{\sum}_{i=1}^{N} (\Theta_{0} \times_{i} + \Theta_{1} - Y_{i})(O + 1 - O) = O$$

$$= \theta_0 \overrightarrow{X} + \theta_1 - \overrightarrow{Y} = 0$$

from and and au how

$$\Theta_0 \overline{X^2} + (\overline{Y} - \Theta_0 \overline{X}) \cdot \overline{X} - \overline{X} \cdot \overline{Y} = 0$$

$$\theta_0 = \overline{X \cdot Y} - \overline{X} \cdot \overline{Y}$$

$$\overline{X^2} - \overline{Y}^2$$

$$\Theta_0 = \overline{X} \cdot \overline{Y} - \overline{X} \cdot \overline{Y}$$

$$\overline{X}^2 - \overline{X}^2$$

$$\Theta_1 = \overline{Y} - \Theta_D \cdot \overline{X}$$

=> why Huber Loss for Regression?

MSE is Highly Sensories to outlier because we Square the own all error value. MAE just take the absolute value of error it give same neighbor to all errors due to which outlier can be campbelle negleted. Huber Low Proutet Balance (8).

Classmate

	DATE
*	BAYESIAN STATISTICS:
	BAYESIAM STATISTICS: (multods librat used Bayes Theorem)
	BAYES THEORM: Funds the probability of an event. Occurring, given the probability of another event that has already occurred L. (Called as conditional probability
	$P(A B) = P(B A) \cdot P(A)$ $P(B)$
	→ Hure, P(B) is called as evidence.
	.) P(A) is called as prior probability (i.e., probability occurrence of event A without considering event B)
	·) P(AIB) is called as posterion Probability (1:e , probability of Occurance of went to with considering event B)
	\Rightarrow we can $P(Y X)$ using about multipod.
	Y => Jargut Clan and X = Feature Veeter.
	=> P(X1 X1, X2,, XM) = 00000000000000000000000000000000000
	$= \frac{P(Y_1 X_1) \cdot P(Y_1 X_2) \cdots P(Y_1 X_m) \cdot P(Y_1)}{P(X_1) \cdot P(X_2) \cdots P(X_m)}$
	since procedere is San.
	for all targe we can ignor
	Classmate

classmate

=)	Rosult was en class ; having man P(Y; IX).
	Flure are various variation of Natur Bayes algorithms like
	(i) Gaussian Normal NB (ii) Multinomial NB (iii) Bernoully NB
-	=> Important assumption for Navu Bayus algorithm is all the features are independent. [i.e. P(X; X) = P(X) (X)
*	HEBBIAN LEARNING RULE (HEBB NETWORK) → cripuls can only be I and -1
	→ cratituse all roughts and bias to 0.
	$X_0 = 1$ and $W_0 = 0$ (Bias)
	$x_1 \bigcirc w_1$ $w_1 \downarrow w_2$ $w_1 \downarrow w_2$ $w_2 \downarrow w_3$ $w_1 \downarrow w_2$ $w_2 \downarrow w_3$ $w_3 \downarrow w_4$ $w_4 \downarrow w_2$ $w_4 \downarrow w_4$
	For wach brawning sample und do the following
	classmate PAGE PAGE

			DATE	
\Rightarrow	Δω; = x;y	and wi = u	v; + Dw;	
		- ×		
		A		
				9
c	ASSMATE			PAGE

(T) PERCEPTRON INFIGHT UPDATION:

$$F = \sum_{i=1}^{N} \sum_{j=1}^{M} (\hat{y}_{ij} - \hat{y}_{ij})^{2} \quad (OR) = \sum_{i=1}^{N} (\hat{y}_{i} - \hat{y}_{i})^{2}$$

$$E = \sum_{i=1}^{N} \frac{M}{i=1} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right)$$

$$E = \begin{cases} \sum_{i=1}^{N} \sum_{i=1}^{M} (\gamma_{ii} - \gamma_{ii})^{2} \\ i = 1 \end{cases} (De) E = \sum_{i=1}^{N} (\hat{\gamma}_{i} - \gamma_{i})^{2}$$

$$E = \begin{cases} \frac{1}{2} \left(y_i - \hat{y}_i \right)^2, & \text{if } |y_i - \hat{y}_i| \leq 8 \\ 8 |y - \hat{y}_i| - \frac{1}{2} 8^2, & \text{otherwise} \end{cases}$$

	DATE
	(II) CLASSIFKATION:
	⇒ HINGIF LOSS:
	⇒ CROSSENTROPY LDSS
	E = -\(\sum_{i=1}^{N}\) \(\frac{M}{i}\) \(\text{Log Yis (Multiple Claus =)}\) \(\text{Catignorical CE}\).
	$E = -\sum_{i=1}^{N} Y_i \log Y_i + (1-Y_i) \log (1-\hat{Y_i})$
	(Binary Clau ≥) Binary (E).
	Binary (F).
3	SOME ACTIVATION FUNCTION !
	(i) Sigmoid: (ii) Jan H:
	g(2) = 1
	1 + e-x: ex + e-x
	(::) Parametorie: g(x) = mar (ax,
	Cin) Rell:
	g(2) = max(0,2) - Liaky: g(x) = max (0.012, 2)
	-> Exponential. g(x) = max(x(ex-1),
	Classmate

DATE	

Civ) Softman:

(V) LINEAR :

$$9(xi) = \frac{e^{xi}}{2}$$

g (2) = xx.

A NAINE BAYES:

FOR M target clanes from we have to find more of

ROOTO DOO DOO

5 MULTILAYER PERCEPTRON: