1. (a) Prove that the series

$$\sum_{n=2}^{\infty} \frac{1}{(\log_2 n)^{p(\log_2 n)}}$$

is convergent for all p > 1. Here $\log_2 x$ denotes the logarithm base 2 of x. You may assume that $\log_2 n$ is increasing in n.

Proof. We attempt to satisfy the criterion in Rudin Theorem 3.27. Rewrite the series;

$$\sum_{k=1}^{\infty} \frac{2^k}{(\log_2 2^k)^{p \log_2 2^k}} = \sum_{k=1}^{\infty} \frac{2^k}{k^{pk}}$$
$$= \sum_{k=1}^{\infty} \left(\frac{2}{k^p}\right)^k.$$

4

(b) For a > 0 find the sum of the series

$$\sum_{k=2}^{\infty} \left(\frac{a}{a+1} \right)^k$$
 (show your work)

Solution: We notice a geometric series; since a > 0, we can say a < a + 1 and $\frac{a}{a+1} < 1$. Then the sum is given by:

$$\left(\frac{a}{a+1}\right)^2 \frac{1}{1 - \frac{a}{a+1}} = \left(\frac{a}{a+1}\right)^2 \frac{1}{\frac{a+1}{a+1} - \frac{a}{a+1}}$$

$$= \left(\frac{a}{a+1}\right)^2 \frac{1}{\frac{1}{a+1}}$$

$$= \left(\frac{a}{a+1}\right)^2 (a+1)$$

$$= \frac{a^2}{a+1}.$$

2. (a) Prove that $f(x) = \sin(x^2)$ is not uniformly continuous in $[0, \infty)$. f is uniformly continuous on $E \subset X$ if and only if $\forall \varepsilon > 0$, $\exists \delta > 0$, $d(x,y) < \delta \implies d(f(x),f(y)) < \varepsilon$ f is NOT uniformly continuous on $E \subset X$ if and only if $\exists \varepsilon > 0$, $\forall \delta > 0$, we can choose x,y so that $d(x,y) < \delta$ and $d(f(x),f(y)) \ge \varepsilon = 1$

Proof. Choose $\varepsilon = 1$, and let $\delta > 0$. Then we must choose $|x - y| < \delta$ but $|\sin x^2 - \sin y^2| \ge 1$ We attempt to choose x, y so that the function's value on one is 0, and on the other is ± 1 . Then let $x^2 = n\pi$ for some $n \in \mathbb{N}$, and $y^2 = n\pi + \frac{\pi}{2}$, and our final choice is

$$x = \sqrt{n\pi}, \quad y = \sqrt{n\pi + \frac{\pi}{2}}.$$

Then regardless of our choice of n, $|f(x) - f(y)| = |\sin(n\pi) - \sin\left(n\pi - \frac{\pi}{2}\right)|$. If n is odd, then $|\sin(n\pi) - \sin\left(n\pi - \frac{\pi}{2}\right)| = |\pm 1 - 0| = 1$, and if n is even, $|\sin(n\pi) - \sin\left(n\pi - \frac{\pi}{2}\right)| = |0 - \pm 1| = 1$. We now have guaranteed that |f(x) - f(y)| = 1 for any n, so now we must choose n so that $|x - y| < \delta$, for any given δ .

$$|y - x| = y - x$$

$$= \sqrt{n\pi + \frac{\pi}{2}} - \sqrt{n\pi}$$

$$= \frac{n\pi + \frac{\pi}{2} - n\pi}{\sqrt{n\pi + \frac{\pi}{2}} + \sqrt{n\pi}}$$

$$= \frac{\frac{\pi}{2}}{\sqrt{n\pi + \frac{\pi}{2}} + \sqrt{n\pi}}$$

$$< \frac{2}{\sqrt{n\pi + \frac{\pi}{2}} + \sqrt{n\pi}}$$

$$< \frac{2}{\sqrt{n}\left(\sqrt{\pi + \frac{\pi}{2\sqrt{n}}} + \sqrt{\pi}\right)}$$

$$< \frac{2}{\sqrt{n}\left(2\sqrt{\pi}\right)}$$

$$< \frac{1}{\sqrt{n}}.$$
Since $y > x$

So then choose $n > \frac{1}{\delta^2}$ (Which we can do by the Archimedian Property),

$$|y - x| = y - x$$

$$= \sqrt{n\pi + \frac{\pi}{2}} - \sqrt{n\pi}$$

$$< \sqrt{\frac{\pi}{\delta^2} + \frac{\pi}{2}} - \sqrt{\frac{\pi}{\delta^2}}$$

4

(b) Show an example of a continuous function in (0,1) which is not uniformly continuous (no proof necessary).

Solution: $f(x) = \sin(\frac{1}{x^2})$ is continuous in (0,1) however it is not uniformly continuous (as shown in class)