

planetmath.org

Math for the people, by the people.

free objects in the category of commutative algebras ${}^{\circ}$

 ${\bf Canonical\ name} \quad {\bf Free Objects In The Category Of Commutative Algebras}$

Date of creation 2013-03-22 19:18:13 Last modified on 2013-03-22 19:18:13

Owner joking (16130) Last modified by joking (16130)

Numerical id 6

Author joking (16130)
Entry type Theorem
Classification msc 13P05
Classification msc 11C08
Classification msc 12E05

Let R be a commutative ring and let $\mathcal{ALG}_c(R)$ be the category of all commutative algebras over R and algebra homomorphisms. This category together with the forgetful functor is a construct (i.e. it is a concrete category over the category of sets \mathcal{SET}). Therefore we can talk about free objects in $\mathcal{ALG}_c(R)$ (see http://planetmath.org/FreeObjectsInConcreteCategories2this entry for definitions).

Theorem. For any set \mathbb{X} the polynomial algebra $R[\mathbb{X}]$ (see parent object) is a free object in $\mathcal{ALG}_c(R)$ with \mathbb{X} being a basis. This means that for any commutative algebra A and any function

$$f: \mathbb{X} \to A$$

there exists a unique algebra homomorphism $F: R[X] \to A$ such that

$$F(x) = f(x)$$

for any $x \in \mathbb{X}$.

Proof. Assume that $f: \mathbb{X} \to A$ is a function. If $W \in R[\mathbb{X}]$, then there are finite subsets $A_1, \ldots, A_n \subseteq \mathbb{X}$ (not necessarily disjoint) and natural numbers $n(x, i), i = 1, \ldots, n$ such that W can be uniquely expressed as

$$W = \sum_{i=1}^{n} \left(\lambda_i \cdot \prod_{x \in A_i} x^{n(x,i)} \right)$$

with $\lambda_i \in R$. Define F(W) by putting

$$F(W) = \sum_{i=1}^{n} \left(\lambda_i \cdot \prod_{x \in A_i} f(x)^{n(x,i)} \right).$$

Of course F is well defined and obviously F(x) = f(x). We leave as a simple exercise that F is an algebra homomorphism. The uniqueness of F again follows from the explicit form of W. It is easily seen that F(W) depends only on F(x) for $x \in X$. This completes the proof. \square

Corollary 1. If \mathbb{X} is a set and $\mathbb{Y} \subseteq \mathbb{X}$, then the inclusion $i : \mathbb{Y} \to \mathbb{X}$ induces an algebra monomorphism

$$I: R[\mathbb{Y}] \to R[\mathbb{X}].$$

In particular we can treat R[Y] as a subalgebra of R[X].

Proof. We have a well-defined function $i: \mathbb{Y} \to R[\mathbb{X}], i(y) = y$. By the theorem we have an extension

$$I: R[\mathbb{Y}] \to R[\mathbb{X}]$$

such that I(y) = y. It remains to show, that I is "1-1". Indeed, assume that I(W) = 0 for some polynomial $W \in R[Y]$. But if we recall the expression of W as in proof of the theorem and remember that I is an algebra homomorphism, then it is easy to see that I(y) = y implies that

$$I(W) = W$$
.

In particular W=0, which completes the proof. \square

Corollary 2. If A is an R-algebra, then there exists a set \mathbb{X} such that

$$A \simeq R[X]/I$$

for some ideal I.

Proof. Let $\mathbb{X} = A$ as a set. Define

$$f: \mathbb{X} \to A$$

by f(x) = x. By the theorem we have an algebra homomorphism

$$F:R[\mathbb{X}]\to A$$

such that F(x) = x for $x \in \mathbb{X}$. In particular F is "onto" and thus by the First Isomorphism Theorem for algebras we have

$$A \simeq R[\mathbb{X}]/\mathrm{Ker} F$$

which completes the proof. \square