EDA-HabermanDataset

January 6, 2018

1 Exploratory Data analysis on HabermanDataset

1.1 Dataset Information:

```
Number of Instances: 306
Number of Attributes: 4 (including the class attribute)
Attribute Information:
Age of patient at time of operation (numerical)
Patient's year of operation (year - 1900, numerical)
Number of positive axillary nodes detected (numerical)
Survival status (class attribute):
1 = the patient survived 5 years or longer
2 = the patient died within 5 year
In [1]: import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import numpy as np
In [2]: #download the data set from
        #https://www.kaggle.com/gilsousa/habermans-survival-data-set/data
        # load the data set
        haberman=pd.read_csv("haberman.csv")
In [3]: # data-points and features
        print (haberman.shape)
(305, 4)
In [4]: #no column names mentioned in the data set. so will add headers to the columns.
        haberman.columns = ["Age", "Year", "Axillary nodes", "Survival status"]
        print (haberman.columns)
Index(['Age', 'Year', 'Axillary nodes', 'Survival status'], dtype='object')
In [5]: haberman.head()
```

Out[5]:		Age	Year	Axillary nodes	Survival status
	0	30	62	3	1
	1	30	65	0	1
	2	31	59	2	1
	3	31	65	4	1
	4	33	58	10	1

Out[6]: 1 224 2 81

Name: Survival status, dtype: int64

1.1.1 Obervation:

- 1. **Imbalanced** data set.
- 2. Clearly the data is not balanced as we have **224 patients survived more than 5 years and 81** patients died within 5 years.

1.2 2-D ScatterPlot


```
In [8]: sns.set_style("whitegrid");
    sns.FacetGrid(haberman, hue="Survival status", size=6) \
        .map(plt.scatter, "Age", "Axillary nodes") \
        .add_legend();
    plt.show();
```


1.2.1 Observation:

1. It seems most of the patients have 0 Auxillary nodes detected.

1.3 Pair Plot

1.3.1 Observation:

- 1. *Auxillary nodes versus Age* is the useful plot to atleast get the insight that most people who survived have 0 Auxillary nodes detected.
- 2. It looks like we cannot distinguish the data easily with the help of above scalar plots as most of them are *overlapping*.

1.4 Histogram, PDF

1.4.1 Observation:

- 1. From the above PDFS(Univariate analysis) both Age and Year are not good features for useful insights as the **distibution is more similar for both people who survived and also dead**.
- 2. **axillary nodes** is the only feature that is useful to know the survival status of patients as there is difference between the distributions for both classes(labels). From that distribution we can infer that **most survival patients have fall in to zero axillary nodes**.
- 3. From the year distribution, we can observe that people who didnt survive suddenly fall and rise in between 1958 and 1960. lets check the summary statistics to get more insights.

2 CDF

```
In [14]: counts, bin_edges = np.histogram(alive['Axillary nodes'], bins=30,
                                           density = True)
         pdf = counts/(sum(counts))
         print(pdf);
         print(bin edges)
         cdf = np.cumsum(pdf)
         plt.plot(bin_edges[1:],pdf)
         plt.plot(bin_edges[1:], cdf)
         plt.legend(['Pdf for the patients who survive more than 5 years',
                     'Cdf for the patients who survive more than 5 years'])
         plt.show()
[ 0.66517857
                          0.04464286
                                       0.02678571
                                                   0.02232143
                                                               0.03125
              0.125
  0.00892857
              0.00892857
                          0.00446429
                                      0.01785714
                                                   0.00446429
                                                               0.00446429
  0.00446429
              0.00446429
                          0.00892857
                                                   0.00446429
                                      0.
                                                               0.
  0.00446429
              0.00446429
                          0.
                                       0.
                                                   0.
                                                               0.
                                                                            0.
  0.
                                                   0.00446429]
              0.
                          0.
                                       0.
Γ 0.
                                                        6.13333333
                1.53333333
                             3.0666667
                                           4.6
  7.66666667
                9.2
                            10.73333333 12.26666667
                                                       13.8
                                                                    15.33333333
  16.8666667
               18.4
                            19.93333333
                                         21.46666667
                                                       23.
                                                                    24.53333333
  26.06666667
               27.6
                            29.13333333 30.66666667
                                                       32.2
                                                                    33.73333333
  35.26666667
               36.8
                            38.3333333 39.86666667 41.4
                                                                    42.93333333
  44.4666667
                          ٦
               46.
```


In [15]: counts, bin_edges = np.histogram(dead['Axillary nodes'], bins=30, density=True)

```
pdf = counts/(sum(counts))
        print(pdf);
        print(bin_edges)
        cdf = np.cumsum(pdf)
        plt.plot(bin edges[1:],pdf)
        plt.plot(bin_edges[1:], cdf)
        plt.legend(['Pdf for the patients who dead Within 5 years',
                     'Cdf for the patients who dead within 5 years'])
        plt.show()
[ 0.33333333  0.14814815
                         0.08641975
                                      0.03703704
                                                  0.04938272
                                                               0.0617284
                          0.03703704
                                      0.01234568
                                                  0.02469136
  0.04938272
             0.04938272
                                                               0.01234568
  0.02469136 0.04938272
                                      0.
                                                   0.
                                                               0.
                                                                           0.
  0.
              0.01234568
                         0.
                                                   0.
                                                               0.
                                                                           0.
                                      0.
  0.
              0.
                          0.
                                      0.01234568]
[ 0.
                1.73333333
                             3.4666667
                                          5.2
                                                       6.93333333
  8.6666667
                            12.13333333 13.86666667
                                                       15.6
               10.4
                                                                    17.33333333
               20.8
                            22.53333333 24.26666667
                                                       26.
                                                                    27.73333333
  19.0666667
               31.2
                                                       36.4
  29.46666667
                            32.93333333 34.66666667
                                                                    38.13333333
               41.6
                            43.3333333 45.06666667
                                                      46.8
                                                                    48.53333333
  39.86666667
  50.26666667
              52.
                          1
```


In [16]: # check also summary statistics below to get an idea to distinguish the #survival and not survival

3 Mean, Variance and Std-dev

Summary Statistics of Patients who are alive for more than 5 years:

Out[17]:		Age	Year	Axillary nodes	Survival status
	count	224.000000	224.000000	224.000000	224.0
	mean	52.116071	62.857143	2.799107	1.0
	std	10.937446	3.229231	5.882237	0.0
	min	30.000000	58.000000	0.000000	1.0
	25%	43.000000	60.000000	0.000000	1.0
	50%	52.000000	63.000000	0.000000	1.0
	75%	60.000000	66.000000	3.000000	1.0
	max	77.000000	69.000000	46.000000	1.0

Summary Statistics of Patients who are dead within 5 years:

Out[18]:		Age	Year	Axillary nodes	Survival status
	count	81.000000	81.000000	81.000000	81.0
mean std min 25% 50%	mean	53.679012	62.827160	7.456790	2.0
	std	10.167137	3.342118	9.185654	0.0
	min	34.000000	58.000000	0.000000	2.0
	25%	46.000000	59.000000	1.000000	2.0
	50%	53.000000	63.000000	4.000000	2.0
	75%	61.000000	65.000000	11.000000	2.0
	max	83.000000	69.000000	52.000000	2.0

3.0.1 Observations:

- 1. From both the tables we can observe that almost for all the features the statistics are **similar except for Axillary nodes**.
- 2. The **auxillary nodes mean(average) is more** for people who died within 5 years than people who live more than 5 years
- 3. From the observation of Cdfs, we can infer that patients **above 46 axillary nodes detected** can be considered as dead within 5 years.

4 Box plot and Whiskers

```
In [19]: sns.boxplot(x='Survival status',y='Axillary nodes', data=haberman)
    plt.show()
```


4.1 Violin plots

In [22]: # Denser regions of the data are fatter, and sparser ones thinner $\#in\ a\ violin\ plot$

 $sns.violinplot(x=\begin{tabular}{ll} sns.violinplot(x=\begin{tabular}{ll} status',y=\begin{tabular}{ll} Year', data=haberman, size=8) \\ plt.show() \end{tabular}$

In [23]: sns.violinplot(x='Survival status',y='Axillary nodes', data=haberman,size=8)
 plt.show()

4.1.1 Observation:

1. From box, violin plots we can say that more no of patients who are dead have **age between 46-62, year between 59-65** and the patients who survived have **age between 42-60**, **year between 60-66**.

