ON SCHEMES FOR EXPONENTIAL DECAY

Hans Petter Langtangen^{1,2}

Center for Biomedical Computing, Simula Research Laboratory¹

Department of Informatics, University of Oslo²

Sep 26, 2014

GOAL

The primary goal of this demo talk is to demonstrate how to write talks with DocOnce and get them rendered in numerous HTML formats.

LAYOUT

This version utilizes beamer slides with the theme vintage.

WE AIM TO SOLVE THE (ALMOST) SIMPLEST POSSIBLE DIFFERENTIAL EQUATION PROBLEM

$$u'(t) = -au(t) \tag{1}$$

$$u(0) = I \tag{2}$$

Here,

- $t \in (0,T]$
- a, I, and T are prescribed parameters
- u(t) is the unknown function
- The ODE (??) has the initial condition (??)

THE ODE PROBLEM IS SOLVED BY A FINITE DIFFERENCE SCHEME

- Most in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u": numerical approx to the exact solution

The θ rule.

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

contains the Forward Euler ($\theta = 0$), the Backward Euler ($\theta = 1$), and the Crank-Nicolson ($\theta = 0.5$) schemes.

THE ODE PROBLEM IS SOLVED BY A FINITE DIFFERENCE SCHEME

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u^n : numerical approx to the exact solution at t_n

The θ rule.

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

contains the Forward Euler ($\theta = 0$), the Backward Euler ($\theta = 1$), and the Crank-Nicolson ($\theta = 0.5$) schemes.

THE ODE PROBLEM IS SOLVED BY A FINITE DIFFERENCE SCHEME

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u^n : numerical approx to the exact solution at t_n

The θ rule,

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

contains the Forward Euler ($\theta = 0$), the Backward Euler ($\theta = 1$), and the Crank-Nicolson ($\theta = 0.5$) schemes.

THE FORWARD EULER SCHEME EXPLAINED

http://youtube.com/PtJrPEIHNJw

IMPLEMENTATION

The numerical method is implemented in a Python function:

THE CRANK-NICOLSON METHOD SHOWS OSCILLATORY BEHAVIOR FOR NOT SUFFICIENTLY SMALL TIME STEPS, WHILE

Exact solution of the scheme:

$$A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta a}{1 + \theta a\Delta t}$

Key results

- Stability: |A| < 1
- No oscillations: A > 0
- Always for Backward Euler ($\theta = 1$)
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A
- No oscillations: A > 0
- Always for Backward Euler ($\theta = 1$)
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- Always for Backward Euler ($\theta = 1$)
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- Always for Backward Euler ($\theta = 1$)
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)