

A bead of mass m moves on a smooth circular wire, with centre O and radius a, in a vertical plane. The bead has speed v_A when it is at the point A where OA makes an angle α with the downward vertical through O, and $\cos \alpha = \frac{3}{5}$. Subsequently the bead has speed v_B at the point B, where OB makes an angle θ with the upward vertical through O. Angle AOB is a right angle (see diagram). The reaction of the wire on the bead at B is in the direction OB and has magnitude equal to $\frac{1}{6}$ of the magnitude of the reaction when the bead is at A.

Find, in terms of m and g , the magnitude of the reaction at B .	[6]

© UCLES 2023 9231/32/O/N/23

••••			 	
(b) Given	that $v_A = \sqrt{kag}$, find	the value of k .		[2]
•••••			 	
••••	•••••	••••••	 ••••••	
••••			 	
•••••			 	
•••••			 	
•••••			 	
••••			 	