

Tentamen i IE1204/5 Digital Design Iördagen den 18/1 2014 14.00-18.00

Tentamensfrågor med lösningsförslag

Allmän information

Examinator: Ingo Sander.

Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204),

Fredrik Jonsson, tel 08-790 4169 (Valhallavägen IE1205),

Tentamensuppgifterna behöver inte återlämnas när du lämnar in din skrivning.

Hjälpmedel: Inga hjälpmedel är tillåtna!

Tentamen består av tre delar med sammanlagt 12 uppgifter, och totalt 30 poäng:

Del A1 (**Analys**) innehåller åtta korta uppgifter. Rätt besvarad uppgift ger för sex av uppgifterna en poäng och för två av uppgifterna två poäng. Felaktig besvarad ger 0 poäng. Det totala antalet poäng i del A1 är 10 poäng. För **godkänt på del A1 krävs minst 6p**, *är det färre poäng rättar vi inte vidare*.

Del A2 (**Konstruktionsmetodik**) innehåller två metodikuppgifter om totalt 10 poäng. För **godkänt på del A1+A2 krävs minst 11p**, *är det färre poäng rättar vi inte vidare*.

Del B (Designproblem) innehåller två friare designuppgifter om totalt **10 poäng**. Del B rättas bara om det finns minst 11p från tentamens A-del.

OBS! I slutet av tentamenshäftet finns ett inlämningsblad för del A1, som kan avskiljas för att lämnas in tillsammans med lösningarna för del A2 och del B.

För ett godkänt betyg (**E**) krävs **minst 11 poäng** från A1+A2.

Betyg ges enligt följande:

0 –	11 –	16 –	19 –	22 –	25
F	Е	D	C	В	A

Resultatet beräknas meddelas innan måndagen den 10/2 2014.

Del A1: Analysuppgifter.

Endast svar krävs på uppgifterna i del A1. Lämna svaren på inlämningsbladet för del A1 som du hittar på sista sidan av tentahäftet.

1. 2p/1p/0p

En funktion av tre varibler f(x, y, z) beskrivs med hjälp av exor-funktioner så här:

$$f(x, y, z) = z \cdot (\overline{x} \oplus y + x \oplus y)$$

$$\oplus$$
 = *exorfunktion*

a) ange den på normalform som en summa av mintermer (summa-av-produkter)!

$$f(x, y, z) = \{SoP\}_{\text{normal}} = ?$$

b) ange den som minimal summa-av-produkter!

$$f(x, y, z) = \{SoP\}_{\min} = ?$$

1. Lösningsförslag

$$f(x, y, z) = z(\overline{x} \oplus y + x \oplus y) = z(\overline{x}y + x\overline{y} + x\overline{y} + xy) =$$

$$= \overline{xyz} + x\overline{yz} + x\overline{yz} + xyz = z$$

$$x = xyz + xyz + xyz + xyz = z$$

$$x = xyz + xyz + xyz + xyz = z$$

$$x = xyz + xyz + xyz + xyz = z$$

$$x = xyz + xyz + xyz + xyz = z$$

$$x = xyz + xyz + xyz + xyz = z$$

$$x = xyz + xyz + xyz + xyz = z$$

$$x = xyz + xyz + xyz + xyz = z$$

2. 2p/1p/0p

Figuren visar en krets med fyra heladderare (FA). Två 4-bits heltal $y = y_3y_2y_1y_0$ och $x = x_3x_2x_1x_0$ "adderas" med varandra i denna krets.

- a) Antag att $y = 7_{10}$ vilket värde har då x om NOR-grindens utgång Z = 1? Svara med x som binärtal $x = x_3x_2x_1x_0$.
- **b**) vilket värde har då c_4 ?

- a) Det är en komparatorkrets. $y + x + 1 \Rightarrow x y$ i tvåkomplementrepresentation. NOR-grinden blir 1 då $s = s_3 s_2 s_1 s_0 = 0$, dvs. när x = y. $x = y = 7_{10} = 0111_2$.
- **b)** 1000+1+0111=(1)0000 det blir carry $c_4=1$.

3. 1p/0p

Givet är ett Karnaughdiagram för en funktion av fyra variabler.

Ange funktionen som minimerad produkt-av-summor, PoS-form. ("-" i diagrammet står för "don't care")

$$f(a,b,c,d) = \{PoS\}_{min} = ?$$

,	C	d			
a b	\setminus	00	01	11	10
D	0	0	0	1	-
	0 1	•	1	1	-
	1	ı	1	0	0
	1 0	0	0	1	0

3. Lösningsförslag

4. 1p/0p

NOR är komplett logik, alla andra grindtyper kan konstrueras med bara NOR-grindar.

a) Ställ upp ett förenklat uttryck för Q=f(A,B)=? så att det framgår vilken funktion det gäller.

$$Q = \overline{A + \overline{A + B}} + \overline{\overline{A + B} + B} = AB + \overline{AB} = \overline{A \oplus B} \quad xnor$$

5. 1p/0p

Ange den logiska funktionen som realiseras av CMOS-kretsen i figuren?

$$Y = f(A, B, C, D) = ?$$

5. Lösningsförslag

6. 1p/0p

Sekvensnätet startar i tillståndet $q_1 = q_0 = 0$. Analysera kretsen och fyll i utsignalen z i tidsdiagrammet. En kopia av diagrammet finns även på inlämningsbladet.

7. 1p/0p

Studera sekvensnätet till uppgift 6. Beräkna den *kortaste* tid som kan följa mellan klockpulserna, utan att sekvensnätets funktion äventyras. Rita in "the critical path" i figuren på inlämningsbladet.

Följande tider anges för komponenterna [ns]:

$$t_{\text{AND}} = 0.4$$
 $t_{\text{OR}} = 0.4$ $t_{\text{NOT}} = 0.1$ $t_{\text{Setup}} = 0.3$ $t_{\text{cQ}} = 0.2$

7. Lösningsförslag

$$t_{cQ} + t_{NOT} + t_{AND} + t_{OR} + t_{Setup} =$$

= 0,2 + 0,1 + 0,4 + 0,4 + 0,3 = 1,4 ns

8. 1p/0p

VHDL-koden beskriver en sekvenskrets. Rita sekvenskretsens tillståndsdiagram, rita tillståndsövergångar mellan de fyra tillstånden på inlämningsbladet. Ange vilkor för tillståndsövergångarna.

```
CASE state IS

WHEN 0 => nextstate = 1;

WHEN 1 =>

IF ( k=0) THEN

nextstate = 2;

ELSE

nextstate = 3;

END IF;

WHEN 2 => nextstate = 0;

WHEN OTHERS nextstate = 0;

END CASE;
```


Del A2: Konstruktionsmetodik.

Observera! Del A2 rättas endast om Du är godkänd på del A1 (≥6p).

9. 5p

Konstruera ett grindnät som omkodar BCD-kod (samma som binärkod, fast bara talen 0...9) till kodens 9-komplement i BCD-kod. Ex. talet 3 (0011 $_{BCD}$) har 9-komplementet 6 (0110 $_{BCD}$) eftersom 9 – 3 = 6.

- **a**) (1p) Ställ upp sanningstabellen $y_3y_2y_1y_0 = f(x_3x_2x_1x_0)$. använd don't care.
- **b**) (2p) Minimera funktionerna y_3 , y_2 , y_1 , y_0 , använd don't care.
- **c**) (1p) Rita kretsens schema med användande av valfria **grindar**. Antag att alla variabler även finns tillgängliga i inverterad form.
- **d**) (1p) Rita schemat för funktionen y_2 med bara användande av en 2:1 MUX av den typ som visas i figuren. Antag att alla variabler även finns tillgängliga i inverterad form.

	X_{BCD}	Y_{BCD}			
	$x_3 x_2 x_1 x_0$		$y_3 y_2 y_1 y_0$		
0	0000	(9)	1001		
1	0001	(8)	1000		
2	0010	(7)	0111		
3	0011	(6)	0110		
4	0100	(5)	0101		

	X_{BCD}	Y_{BCD}			
	$x_3 x_2 x_1 x_0$		$y_3 y_2 y_1 y_0$		
5	0101	(4)	0100		
6	0110	(3)	0011		
7	0111	(2)	0010		
8	1000	(1)	0001		
9	1001	(0)	0000		

$$y_{3} = \overline{x}_{3} \overline{x}_{2} \overline{x}_{1}$$

$$y_{2} = x_{2} \overline{x}_{1} + \overline{x}_{2} x_{1} = x_{2} \oplus x_{1}$$

$$y_{1} = x_{1} \quad y_{0} = \overline{x}_{0}$$

10. 5p

En synkron Moore-automat har fyra tillstånd kodade som q_1q_0 00, 10,

11, 01. I tillståndet 11 är utsignalen z = 1, annars 0. Automaten har en insignal w.

b) (2p) Tag fram **funktionerna för nästa tillstånd och för utsignalen** $q_1^+ = f(q_1q_0, w)$ $q_0^+ = f(q_1q_0, w)$ $z = f(q_1q_0)$

c) (1p) Realisera räknaren med D-vippor och valfria grindar. Rita ett **fullständigt** schema över kretsen.

d) (2p) Ett *annat* synkront sekvensnät har tillståndsdiagrammet enligt figuren till höger. Minimera antalet tillstånd och rita **tillståndsdiagrammet** över det tillståndsminimerade sekvensnätet.

	0	1	_	ı	v^{q}	I_{1}^{+}	
$q_{\scriptscriptstyle 1}q_{\scriptscriptstyle 0}$	W = 0	W = 1	<i>Z</i> I	$q_{\scriptscriptstyle 1}q_{\scriptscriptstyle 0}$	0	1	
00	10	11	0	00	1	1	
01	w = 0 10 01 10	00	0	01	0	0	$q_1^+ =$
11	10 01 10 11	11 00 01 00	1	11	Π	0	$q_1 q_0 + q_0$
10	11	00	0	10	1	0	$\begin{vmatrix} q_1^+ = \\ \\ q_1 q_0 + e \end{vmatrix}$

Del B: Designproblem.

Observera! Del B rättas endast om Du har mer än 11p på del A1+A2.

11. 4p

En synkron Moore-automat har en insignal w och en utsignal z. För ingångssekvensen w = 1 följt av w = 1 ska utsignalen bli z = 1. För ingångssekvensen w = 0 följt av w = 0 ska utsignalen bli z = 0. För alla övriga ingångssekvenser behålles utsignalens värde. Tag fram automatens **tillståndstabell**, vid behov – minimera den så långt det går. Rita automatens **tillståndsdiagram**.

11. Lösningsförslag

Eventuellt kan man **direkt** resonera sig fram till tillståndstabellen!

Annars kan man "följa" de beskrivna sekvenserna och skapa tillstånd vid behov. Onödiga tillstånd tas sedan bort med tillståndsminimering.

Sekvensen med två 1:or i följd ska leda till utsignal 1. Sekvensen med två 0:or i följd ska leda till utsignalen 0. Under vägen behålls rådande utsignal, detta kräver dubbla tillstånd för första 1:an och första 0:an. Fler 1:or efter två i följd är också två i följd, och motsvarande gäller för 0:or. Om sekvensen av 1:or bryts går man till det tillstånd för insignal 0 som har samma utsignal, och motsvarande gäller om sekvensen av 0:or bryts.

12. 6p

Konstruera ett asynkront sekvensnät som frekvensdelar en symmetrisk fyrkantvåg *w* till en likadan fyrkantvåg *z* men med tredjedelen av frekvensen. Se figuren.

Svaret ska innehålla ett **tillståndsdiagram** (med 6 tillstånd) en **flödestabell**, och en lämplig **tillståndstilldelning** med en **exitations-tabell** som ger ett kapplöpningsfritt nät. Du ska ta fram de hasardfria **uttrycken för nästa tillstånd**, och ett **uttryck för utgångsvärdet**, men Du behöver *inte* rita grindnäten.

Hoppas det gick bra!