第七届全国大学生数学竞赛决赛三、四年级试卷 (数学类, 2016年3月)

考试形式: _ 闭卷 _ 考试时间: _ 180 _ 分钟 满分: _ 100 _ 分

								总分
题号	_	=	Ξ	四				1077
满分	20	15	15	20	10	10	10	100
得分								

注意: 1. 前4大题是必答题, 再从五到十大题中任选3题, 题号要填入上面的表中.

- 2. 所有答题都须写在此试卷纸密封线右边, 写在其它纸上一律无效.
- 3. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 4. 如答题空白不够, 可写在当页背面, 并标明题号.

得分	
评阅人	

一、(本题 20 分)填空题(每小题 5 分)

(1) 设 Γ 为形如下列形式的 2016 阶矩阵全体: 矩阵 的每行每列只有一个非零元素,且该非零元素为1.则

(2) 令 $a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$. 若 $\sum_{n=1}^{\infty} a_n^p$ 收敛, 则 p 的取值范围是

(3) 设 $D: x^2 + 2y^2 \le 2x + 4y$, 则积分 $I = \iint_{\mathbb{R}} (x+y) dx dy = 1$

(4) 若实向量 $X=(a,b,c)$ 的三个分量 a,b,c 满足 $($ 位方阵,则 $X=$	$\begin{pmatrix} a \\ 0 \end{pmatrix}$	$\begin{pmatrix} b \\ c \end{pmatrix}^{20}$	$=I_{2},$	I ₂ 为2阶单
1位万阵,则 A =				

答题时不要超过此线 所在院校:

考生座位号:

惟考证号:

得分	
评阅人	

二、(本题 15 分) 在空间直角坐标系中, 设 S 为椭圆柱面 $x^2+2y^2=1$, σ 是空间中的平面, 它与 S 的交集是一个圆. 求所有这样平面 σ 的法向量.

	得分评阅人	三、证明题(15分)设 A $\operatorname{tr}((AB)^2) \leqslant \operatorname{tr}(A^2B^2)$.	1, B 为 n 阶实对称矩阵. 证明
母:	1 1 1 1		
* * * * * * * * * * * * * * * * * * *	1		
	答题时不要超过此线		
	客题时不要		
所在院校:	搬工		
	1 1 1		
准考证号	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	1		
姓名:	Ó	第3页(共10页)	

得分	
评阅人	

四、(本题20分)设单位圆 Γ 的外切n边形 $A_1A_2\cdots A_n$ 各边与 Γ 分别切于 $B_1,\ B_2,\ \cdots,\ B_n$ 。令 P_A,P_B 分别表示多边形 $A_1A_2\cdots A_n$ 与 $B_1B_2\cdots B_n$ 的周长。求证: $P_A^{\frac{1}{3}}P_B^{\frac{2}{3}}>2\pi$.

得分	
评阅人	

六、 (本题10分) 设 $E\subset\mathbb{R}^1$, E 是 L-可测的, 若 m(E)>a>0, 则存在无内点的有界闭集 $F\subset E$, 使得 m(F)=a.

得分	八、(本题 10 分)实系数多项式 $p(x)$ 的模 1 范数定
	义为: $ p _1 := \int_0^1 p(x) dx$. 1. 求二次实系数多项式 $p(x)$ 使得 $p(x) \le x^3$ 对任意
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$x \in [0,1]$ 成立,且 $ x^3 - p(x) _1$ 达到最小;

 $x \in [0,1]$ 成立,且 $||x^3 - p(x)||_1$ 达到最小; 达到最小。

九、(本题10分)设 $D=\{z\in\mathbb{C}:\,|z|<1\}$ 是单位圆 得分 盘, f(z) 在 D 上解析, f(0) = 0, 且在 D 上有 $\operatorname{Re} f(z) \leqslant 1$. 求证: 在 D 上有 $\operatorname{Re} f(z) \leqslant \frac{2|z|}{1+|z|}$ 评阅人 密封线 答题时不要超过此线 〇一 第9页(共10页)

得分	
评阅人	

十、(本题10分)甲袋中有N-1(N>1)个白球和1个 黑球,乙袋中有N个白球,每次从甲、乙两袋中分别取出一个球并交换放人另一袋中,这样经过了n次,求黑球出现在甲袋中的概率 p_n ,并计算 $\lim_{n\to\infty}p_n$.