Материал курса Коммутативная алгебра, 2025

Содержание

l.	Базовая теория	. 2
	1.1. Кольца и идеалы	. 2
	1.2. Нильрадикал и радикал Джекобсона	
	1.3. Операции над идеалами	
	1.4. Аннуляторы	
	1.5. Расширение и сужение	

1. Базовая теория

1.1. Кольца и идеалы

Определение 1.1.1. (коммутативное кольцо): Кортеж $(A, +, \cdot, 0, 1)$ называется *коммутативным кольцом*, (или просто *кольцом*) если

$$+, \cdot : A \times A \to A, \quad 0, 1 : \{\emptyset\} \to A \quad (0, 1 \in A),$$

а также выполняются следующие свойства:

- (1) (A, +, 0) абелева группа; (то есть операция сложения + коммутативна и ассоциативна, 0 есть её нейтральный элемент, а также каждый элемент $x \in A$ имеет единственный противоположный $-x \in A$)
- (2) $(A,\cdot,1)$ коммутативная полугруппа; (то есть умножение \cdot коммутативно и ассоциативно, 1 есть её нейтральный элемент)
- (3) $\forall x,y,z\in A: \ x(y+z)=xy+xz$ (свойство дистрибутивности)

Замечание 1.1.2. Может статься, что 0=1 в кольце A. Тогда имеем $x=x\cdot 1=x\cdot 0=0$ и $A=\{0\}=:0$.

Определение 1.1.3. (гомоморфизм колец): Отображение $f:A\to B$ между кольцами A и B называется *гомоморфизмом*, если оно является гоморфизмом абелевых групп по сложению и полугрупп по умножению, то есть

- (1) $f(x +_A y) = f(x) +_B f(y), f(x \cdot_A y) = f(x) \cdot_B f(y);$
- (2) $f(0_A) = 0_B$, $f(1_A) = 1_B$.

Определение 1.1.4. (подкольца и идеалы):

- (1) Подмножество $S \subset A$ называется *подкольцом*, если $(S, +, \cdot, 0, 1)$ есть кольцо.
- (2) Подмножество $\mathfrak{a}\subset A$ называется идеалом, если $\mathfrak{a}\leqslant A$, а также $A\mathfrak{a}\subset \mathfrak{a};$
- (3) Для любого $x \in A$, множество $xA = \{xy \mid y \in A\}$ образует идеал, который обозначается (x). Идеалы вида (x) называются главными.

Определение 1.1.5. (факторкольцо): Пусть $\mathfrak{a} \leqslant A$. Тогда имеем $(A/\mathfrak{a}, +, \cdot, 0 + \mathfrak{a}, 1 + \mathfrak{a}) \in \mathrm{Ring}$, где

$$(x+\mathfrak{a}) +_{\mathfrak{a}} (y+\mathfrak{a}) = (x+y) + \mathfrak{a}, \quad (x+\mathfrak{a}) \cdot (y+\mathfrak{a}) = xy + \mathfrak{a}.$$

(Пусть $\mathfrak a$ — идеал в кольце A. Тогда абелева группа $A/\mathfrak a$ однозначно снабжается умножением, индуцированным с умножения в кольце A, что превращает её в кольцо, называемое факторкольцом $A/\mathfrak a$)

Отображение $\varphi:A o A/\mathfrak{a},\ \varphi(x)=x+\mathfrak{a},$ называется канонической проекцией.

Утверждение 1.1.6. Существует биекция

$$\tilde{\varphi}: \{\mathfrak{b} \leqslant A \,|\, \mathfrak{a} \subset \mathfrak{b}\} \leftrightarrow \{\overline{\mathfrak{b}} \leqslant A/\mathfrak{a}\},$$

сохраняющая включение.

Доказательство: Упражнение.

Определение 1.1.7. (делители нуля, нильпотенты, единицы):

- (1) Пусть $x \in A$. Если найдётся $y \neq 0$, что xy = 0, то x называется делителем нуля. $(x \mid 0)$
- (2) Кольцо $A \neq 0$, не имеющее ненулевых делителей нуля, называется областью целостности.
- (3) Элемент $x \in A$ называется *нильпотентом*, если $x^n = 0$ для некоторого $n \geqslant 1$. Всякий нильпотент является делителем нуля, но не всегда наоборот.
- (4) Пусть $x \in A$. Если для некоторого $y \in A$ выполняется xy = 1, то x называется *обратимым* $(x \mid 1)$. Обратимые элементы кольца A образуют абелеву группу по умножению.
- (5) Ненулевое кольцо A, в котором каждый ненулевой элемент обратим, называется *полем*.

Упражнение 1.1.8. Докажите следующие простые свойства кольца:

- (1) $x \cdot 0 = 0$;
- (2) $f: A \to B, g: B \to C \text{ homo} \Longrightarrow (g \circ f): A \to C \text{ homo};$

(композиция гомоморфизмов – гомоморфизм)

- (3) $f: A \to B$ инъекция \iff ker f = 0;
- (4) $x \mid 0 \Longrightarrow x \nmid 1$.

(всякий делитель нуля необратим)

Утверждение 1.1.9. Пусть A — ненулевое кольцо. Следующие условия равносильны:

- (1) A nоле;
- (2) $\mathfrak{a} \leqslant A \Longrightarrow \mathfrak{a} = 0 = \{0\} \lor \mathfrak{a} = (1) = A;$

 $(B\ A\$ нет идеалов, кроме $0=\{0\}\ u\ (1))$

(3) $\forall B \neq 0, \forall f : A \rightarrow B : f - uh$.

(всякий гомоморфизм из A в ненулевое кольцо инъективен)

Доказательство:

- $(1)\Longrightarrow (2)$: Если $\mathfrak{a}\leqslant A$ и $\mathfrak{a}\neq 0$, то \mathfrak{a} содержит некий обратимый элемент $x\in A$. Тогда $1=xy\in A$ для некоторого y, а значит $\forall z\in A:\ z=z\cdot 1\in \mathfrak{a},$ и $\mathfrak{a}=(1).$
- $(2)\Longrightarrow (3)$: Если $B\neq 0$, то для гомоморфизма $f:A\to B$ имеем f(1)=1, а значит $\ker f\neq A$. Следовательно, $\ker f=0$, и f инъективно.
- $(3)\Longrightarrow (1)$: Пусть $x\in A, x\neq 0$. Рассмотрим каноническую проекцию $\varphi:A\to A/(x)$. Так как $\varphi(0)=\varphi(x)=(x)$, мы заключаем, что φ не инъективно. Тогда A/(x)=0, а значит (x)=A, и 1=xy для некоторого $y\in A$.

Определение 1.1.10. (простые и максимальные идеалы):

- (1) Идеал $\mathfrak{p} \subset A$ называется *простым*, если $\mathfrak{p} \neq A$ и включение $xy \in \mathfrak{p}$ влечёт $x \in \mathfrak{a}$ либо $y \in \mathfrak{p}$.
- (2) Идеал $\mathfrak{m}\subset A$ называется максимальным, если $\mathfrak{m}\neq A$ и не существует идеала \mathfrak{b} , такого что $\mathfrak{m}\subsetneq\mathfrak{b}\subsetneq A$.

Утверждение 1.1.11. Пусть $A - \kappa ольцо.$

- (1) Идеал $\mathfrak{p} \subset A$ простой $\iff A/\mathfrak{p}$ область целостности;
- (2) Идеал $\mathfrak{m}\subset A$ максимальный $\Longleftrightarrow A/\mathfrak{m}-$ поле.

Доказательство: Упражнение.

Следствие 1.1.12. Всякий максимальный идеал прост.

Теорема 1.1.13. В каждом кольце $A \neq 0$ есть максимальный идеал.

Доказательство: Для доказательства сформулируем лемму Цорна:

Предложение 1.1.14. (Лемма Цорна): Пусть (P, \leqslant) — непустое частично упорядоченное множество. Тогда если каждое линейно упорядоченное подмножество в P имеет мажоранту, то в P существует по крайней мере один максимальный элемент.

Это утверждение мы оставим без доказательства, отметив только, что оно эквивалентно *аксиоме выбора.*

Далее, рассмотрим множество Σ всех собственных идеалов в A, частично упорядоченное по включению. Это множество непусто, так как содержит нулевой идеал 0.

Теперь пусть $\left\{\mathfrak{a}_{\alpha}\right\}_{\alpha\in\mathcal{I}}$ — некое линейно упорядоченное подмножество Σ . Рассмотрим объединение

$$\mathfrak{b} = \bigcup_{\alpha \in \mathcal{I}} \mathfrak{a}_{\alpha}.$$

Очевидно, что \mathfrak{b} — идеал (упражнение), и кроме того $1 \notin \mathfrak{b}$, так как $1 \notin \mathfrak{a}_{\alpha}$ при всех $\alpha \in \mathcal{I}$. Следовательно, $\mathfrak{b} \in \Sigma$, а значит \mathfrak{b} является мажорантой множества $\{\mathfrak{a}_{\alpha}\}_{\alpha \in \mathcal{I}}$.

Наконец, по лемме Цорна мы заключаем, что множество Σ имеет максимальный элемент \mathfrak{m} , то есть максимальный идеал в кольце A.

Следствие 1.1.15. Каждый собственный идеал $\mathfrak{a} < A$ содержится в некотором максимальном идеале, и всякий необратимый элемент содержится в некотором максимальном идеале.

| Доказательство: Достаточно рассмотреть кольцо A/\mathfrak{a} и применить предыдущую теорему.

Определение 1.1.16. Кольцо A, имеющее всего один максимальный идеал, называется *покальным.* Если множество максимальных идеалов кольца A конечно, то кольцо A называется *полулокальным.*

Утверждение 1.1.17. Пусть A — некоторое кольцо.

- (1) Если \mathfrak{a} такой собственный идеал, что всякий элемент $x \in A \setminus \mathfrak{a}$ обратим, то кольцо A локально, и \mathfrak{a} его максимальный идеал.
- (2) Если \mathfrak{m} максимальный идеал в A, и всякий элемент $1+x\in 1+\mathfrak{m}$ обратим, то A является локальным.

Доказательство:

- (1) Пусть \mathfrak{m} некий максимальный идеал. Тогда если $x \in \mathfrak{m}$, то x необратим и следовательно $x \in \mathfrak{a}$. Тогда $\mathfrak{m} \subset \mathfrak{a}$, а значит $\mathfrak{m} = \mathfrak{a}$, так как идеал \mathfrak{m} максимальный. Итого, все максимальные идеалы в A совпадают с \mathfrak{a} , ч.т.д.
- (2) Допустим, что $x \in A \setminus \mathfrak{m}$. Так как \mathfrak{m} максимален, идеал, порождённый \mathfrak{m} и x, совпадает со всем кольцом A. Поэтому найдутся такие элементы $y \in A, t \in \mathfrak{m}$, что xy+t=1. Следовательно, $xy=1-t \in 1+m$, а значит xy обратим. Тогда x обратим. Остаётся только воспользоваться утверждением (1).

1.2. Нильрадикал и радикал Джекобсона

Утверждение 1.2.1. Множество $\mathfrak N$ всех нильпотентов кольца A является идеалом. В кольце $A/\mathfrak N$ нет ненулевых нильпотентов.

Доказательство: Очевидно, что если $x \in \mathfrak{N}$, то $ax \in \mathfrak{N}$ для любого $a \in A$. Теперь рассмотрим два элемента $x,y \in \mathfrak{N}$, причём $x^n=0$ и $y^m=0$. Тогда выражение $(x+y)^{m+n}$ по теореме Ньютона раскрывается следующим образом:

$$(x+y)^{n+m} = \sum_{i+j=n+m} a_{ij} x^i y^j.$$

При этом для каждой пары (i,j), либо $i\geqslant n$, либо $j\geqslant m$. Следовательно, каждое слагаемое $a_{ij}x^iy^j$ равно нулю, а значит $(x+y)^{n+m}=0$, и $x+y\in\mathfrak{N}$.

Далее, рассмотрим элемент $x+\mathfrak{N}\in A/\mathfrak{N}$ и допустим, что $(x+\mathfrak{N})^n=\mathfrak{N}$. Это означает, что $x^n\in\mathfrak{N}$, и для некоторого $k\in\mathbb{N}$

$$x^{nk} = (x^n)^k = 0 \Longrightarrow x \in \mathfrak{N} \Longrightarrow x + \mathfrak{N} = \mathfrak{N}.$$

Определение 1.2.2. Идеал $\mathfrak N$ называется *нильрадикалом* кольца A.

Теорема 1.2.3. Нильрадикал кольца A совпадает с пересечением всех его простых идеалов.

Доказательство: Пусть P — пересечение всех простых идеалов кольца A.

Во-первых, очевидно, что всякий нильпотент лежит во всяком простом идеале (упражнение), так что $\mathfrak{N}\subset P$.

Обратно, пусть элемент $f \in A$ не является нильрадикалом. Нам нужно показать, что он не содержится в каком-либо простом идеале. Рассмотрим множество Σ всех идеалов $\mathfrak a$ со свойством

$$\forall n \in \mathbb{N}: f^n \notin \mathfrak{a}.$$

Множество Σ непусто, поскольку $0 \in \Sigma$. Рассуждение из <u>теоремы 1.2.3</u> показывает применимость леммы Цорна ко множеству Σ , в результате чего получаем максимальный элемент $\mathfrak{p} \in \Sigma$. Покажем, что \mathfrak{p} — простой идеал.

Пусть $x,y \notin \mathfrak{p}$. Тогда идеалы $\mathfrak{p} + (x)$ и $\mathfrak{p} + (y)$ строго содержат \mathfrak{p} , и следовательно, не принадлежат Σ . Иначе говоря, имеем

$$f^m \in \mathfrak{p} + (x), \qquad f^n \in \mathfrak{p} + (y),$$

для некоторых $m,n\in\mathbb{N}$. отсюда следует, что

$$f^{m+n} \in \mathfrak{p} + (xy) \Longrightarrow p + (xy) \notin \Sigma \Longrightarrow xy \notin \mathfrak{p}.$$

Тем самым, мы построили простой идеал, не содержащий f, и потому $f \notin P$.

Определение 1.2.4. Пересечение $\mathfrak R$ всех максимальных идеалов кольца A называется радикалом Джекобсона.

Утверждение 1.2.5. $x \in \Re \iff 1 - xy$ обратим в кольце A для всех $y \in A$.

Доказательство:

 \Longrightarrow : Допустим, что элемент 1-xy необратим. Тогда, по следствию 1.1.15, этот элемент содержится в некотором максимальном идеале \mathfrak{m} . Но $x\in\mathfrak{R}\subset\mathfrak{m}$, а значит $1=(1-xy)+y\cdot x\in\mathfrak{m}$, противоречие.

 \Leftarrow : Предположим, что $x \notin \mathfrak{m}$ для некоторого максимального идеала \mathfrak{m} . Тогда имеем $A = \mathfrak{m} + (x)$, а потому 1 = u + xy для некоторых $u \in \mathfrak{m}$ и $y \in A$. Следовательно, $1 - xy = u \in \mathfrak{m}$, что невозможно, так как 1 - xy обратим.

1.3. Операции над идеалами

Определение 1.3.1.

- (1) Пусть \mathfrak{a} , \mathfrak{b} идеалы в кольце A. Тогда $\mathfrak{a} + \mathfrak{b}$ идеал, состоящий из сумм x + y, где $x \in \mathfrak{a}$, $y \in \mathfrak{b}$. Это наименьший идеал, содержащий \mathfrak{a} и \mathfrak{b} . Он называется *суммой* \mathfrak{a} и \mathfrak{b} .
- (2) Также, для любого семейсва идеалов $\{\mathfrak{a}_{\alpha}\}_{\alpha\in\mathcal{I}}$, можно определить сумму $\sum_{\alpha\in\mathcal{I}}\mathfrak{a}_{\alpha}$ как идеал всевозможных *конечных* сумм элементов из \mathfrak{a}_{α} ;
- (3) Пересечение любого семейства идеалов является идеалом. Таким образом, идеалы кольца A образуют полную структуру по включению;
- (4) Возникает определение *идеала, порождённого множеством:* если $S \subset A$, то $\langle S \rangle$ определяется как пересечение всех идеалов, содержащих S.
- (5) Произведением двух идеалов \mathfrak{a} и \mathfrak{b} называется идеал, порождённый всевозможными произведениями xy, где $x \in \mathfrak{a}, y \in \mathfrak{b}$:

$$\mathfrak{a}\cdot\mathfrak{b}=\langle\{xy\,|\,x\in\mathfrak{a},y\in\mathfrak{b}\}\rangle=\Bigg\{\sum_{i=1}^nx_iy_i\,\Bigg|\,x_i\in\mathfrak{a},y_i\in\mathfrak{b}\Bigg\}.$$

Замечание 1.3.2. Все три операции коммутативны и ассоциативны (упражнение). Кроме того, справедлив дистрибутивный закон:

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Определение 1.3.3. Если $\mathfrak{a} + \mathfrak{b} = (1)$, то идеалы \mathfrak{a} и \mathfrak{b} называются взаимно простыми.

Замечание 1.3.4. В кольце \mathbb{Z} , идеалы (n) и (m) взаимно просты тогда и только тогда, когда числа n и m взаимно просты.

| Доказательство: Упражнение.

Упражнение 1.3.5. Правда ли, что всякий простой идеал $\mathfrak p$ взаимно прост с любым другим идеалом $\mathfrak a$, таким, что $\mathfrak a \not\subset \mathfrak p$?

Определение 1.3.6. Пусть $A_1, A_2, ..., A_n$ — некоторые кольца. Их *прямым произведением*

$$A = \prod_{k=1}^{n} A_k$$

называется множество $A_1 \times A_2 \times ... \times A_n$ с поточечными операциями. Проекции $p_k : A \to A_k$ являются гомоморфизмами колец.

Теорема 1.3.7. Пусть A- кольцо, $\mathfrak{a}_1,\mathfrak{a}_2,...,\mathfrak{a}_n-$ его идеалы. Определим гомоморфизм

$$\varphi:A\to \prod_{k=1}^n (A/\mathfrak{a}_k)$$

формулой $\varphi(x)=(x+\mathfrak{a}_1,x+\mathfrak{a}_2,...,x+\mathfrak{a}_n).$ Тогда:

- (1) Если идеалы \mathfrak{a}_i и \mathfrak{a}_j взаимно просты при $i \neq j$, то $\prod a_k = \bigcap a_k$;
- (2) Гомоморфизм φ сюръективен \Longleftrightarrow $\mathfrak{a}_i, \mathfrak{a}_j$ взаимно просты при $i \neq j;$
- (3) Гомоморфизм φ инъективен $\iff \bigcap \mathfrak{a}_k = (0)$.

Доказательство:

- (1) Первый пункт доказывается индукцией по n:
 - <u>База:</u> n=2. Имеем такие идеалы $\mathfrak{a},\mathfrak{b}\leqslant A$, что $\mathfrak{a}+\mathfrak{b}=(1)$. Очевидно, $\mathfrak{a}\mathfrak{b}\subset\mathfrak{a}\cap\mathfrak{b}$. Обратно, имеем

$$\mathfrak{a}\cap\mathfrak{b}=(1)\cdot(\mathfrak{a}\cap\mathfrak{b})=(\mathfrak{a}+\mathfrak{b})\cdot(\mathfrak{a}\cap\mathfrak{b})=\mathfrak{a}(\mathfrak{a}\cap\mathfrak{b})+\mathfrak{b}(\mathfrak{a}\cap\mathfrak{b})\subset\mathfrak{a}\mathfrak{b}+\mathfrak{b}\mathfrak{a}=\mathfrak{a}\mathfrak{b}.$$

• $\underline{\text{Переход:}}\ n-1 \to n$. Пусть $n\geqslant 3$, и для идеалов $\mathfrak{a}_1,\mathfrak{a}_2,...,\mathfrak{a}_{n-1}$ результат верен. Положим

$$\mathfrak{b} = \bigcap_{k=1}^{n-1} \mathfrak{a}_k.$$

Так как $\mathfrak{a}_i+\mathfrak{a}_n=(1)$, имеем $x_k+y_k=1$ для некоторых $x_k\in\mathfrak{a}_k,y_k\in\mathfrak{a}_n.$ Следовательно,

$$\prod_{k=1}^{n-1} x_i = \prod_{k=1}^{n-1} (1-y_k) \in 1 + \mathfrak{a}_n.$$

Тогда $\mathfrak{a}_n+\mathfrak{b}=(1)$, а значит

$$\prod_{k=1}^n \mathfrak{a}_k = \mathfrak{b} a_n = b \cap \mathfrak{a}_n = \bigcap_{k=1}^n \mathfrak{a}_n.$$

(2) \Longrightarrow : Покажем, что \mathfrak{a}_1 и \mathfrak{a}_2 взаимно просты. Поскольку φ сюръективно, найдётся такой элемент $x \in A$, что

$$\varphi(x) = (1 + \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, ..., \mathfrak{a}_n).$$

Тогда имеем $x \in 1 + \mathfrak{a}_1$ и $x \in \mathfrak{a}_2$, откуда $\mathfrak{a}_1 + \mathfrak{a}_2 = (1)$.

 \Leftarrow : Достаточно показать, что для некоторого $x \in A$ выполняется

$$\varphi(x) = (1 + \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, ..., \mathfrak{a}_n).$$

Так как \mathfrak{a}_1 и \mathfrak{a}_k взаимно просты при $k\geqslant 2$, найдутся элементы $u_k\in\mathfrak{a}_1$ и $v_k\in\mathfrak{a}_k$ со свойством $1=u_k+v_k$. Тогда положим $x=\prod v_i$. Имеем

$$x = \prod (1-u_k) \in 1+\mathfrak{a}_1 \quad \text{и} \quad x \in \mathfrak{a}_k \Longrightarrow \varphi(x) = (1+\mathfrak{a}_1,\mathfrak{a}_2,...,\mathfrak{a}_n).$$

(3) Очевидно, поскольку $\bigcap \mathfrak{a}_k = \ker \varphi$,

что и требовалось.

Утверждение 1.3.8.

- (1) Пусть $\mathfrak{p}_1,\mathfrak{p}_2,...,\mathfrak{p}_n$ простые идеалы, \mathfrak{a} идеал, содержащийся в $\bigcup_{k=1}^n \mathfrak{p}_k$. Тогда $\mathfrak{a} \subset \mathfrak{p}_k$ для некоторого k.
- (2) Пусть $\mathfrak{a}_1, \mathfrak{a}_2, ..., \mathfrak{a}_n$ некоторые идеалы, \mathfrak{p} простой идеал, содержащий $\bigcap_{k=1}^n \mathfrak{a}_k$. Тогда \mathfrak{p} содержит некоторый \mathfrak{a}_k . Если $\mathfrak{p} = \bigcap \mathfrak{a}_k$, то $\mathfrak{p} = \mathfrak{a}_k$ для некоторого k.

Доказательство:

(1) Проведём доказательство индукцией по n в следующей форме:

$$(\forall k: \mathfrak{a} \not\subset \mathfrak{p}_k) \Longrightarrow \mathfrak{a} \not\subset \bigcup_{k=1}^n \mathfrak{p}_k.$$

- <u>База:</u> n = 1. Очевидно.
- <u>Переход:</u> $n-1 \to n$. Тогда для каждого k существует такой элемент $x_k \in \mathfrak{a}$, что $x_k \notin \mathfrak{p}_i$ при каждом $i \neq k$. Если для некоторого k ещё $x_k \notin \mathfrak{p}_k$, то всё доказано. В противном случае рассмотрим элемент

$$y = \sum_{k=1}^{n} x_1 x_2 ... x_{k-1} x_{k+1} ... x_n.$$

Имеем $y \in \mathfrak{a}$. При всех k, так как $x_k \in \mathfrak{p}_k$, имеем $y \notin \mathfrak{p}_k$. Следовательно, $x \notin \bigcup_{k=1}^n \mathfrak{p}_k$.

(2) Предположим, что $\mathfrak{a}_k \not\subset \mathfrak{p}$ при всех k. Тогда найдутся элементы $x_k \in \mathfrak{a}_k$, $x_k \notin \mathfrak{p}$. Заметим, что $\prod x_k \in \prod \mathfrak{a}_k \subset \bigcap \mathfrak{a}_k$. При этом $\prod x_k \notin \mathfrak{p}$ (поскольку \mathfrak{p} прост). Следовательно, имеем $\bigcap \mathfrak{a}_k \not\subset \mathfrak{p}$, противоречие. Наконец, если $\mathfrak{p} = \bigcap \mathfrak{a}_k$, то $\mathfrak{p} \subset \mathfrak{a}_k$, а значит $\mathfrak{p} = \mathfrak{a}_k$ для некоторого k.

1.4. Аннуляторы

Определение 1.4.1. Пусть $\mathfrak{a},\mathfrak{b}$ — идеалы в кольце A. Тогда их *частным* называется множество

$$(\mathfrak{a}:\mathfrak{b}) = \{x \in A \,|\, x\mathfrak{b} \subset \mathfrak{a}\},\$$

которое само является идеалом (упражнение). В частности, частное $(0:\mathfrak{b})$ называется аннулятором идеала \mathfrak{b} и обозначается $\mathrm{Ann}(\mathfrak{b})$. Множество всех делителей нуля в кольце A можно представить как

$$D = \bigcup_{x \neq 0} \operatorname{Ann}((x)).$$

Если $\mathfrak{b}=(x)$ — главный идеал, то мы будем писать $(\mathfrak{a}:x)$ вместо $(\mathfrak{a}:(x))$.

Пример 1.4.2. Пусть $A=\mathbb{Z}$, $\mathfrak{a}=(m)$, $\mathfrak{b}=(n)$. Тогда $(\mathfrak{a}:\mathfrak{b})=(q)$, где $q=m/\gcd(m,n)$, где $\gcd(m,n)$ — наибольший общий делитель m и n.

Доказательство: Пусть

$$n = \prod_i p_i^{\alpha_i}, \quad m = \prod_i p_i^{\beta_i}.$$

Условие $x \in (\mathfrak{a} : \mathfrak{b})$ равносильно $x\mathfrak{b} \subset \mathfrak{a} \Longleftrightarrow xn \in \mathfrak{a} \Longleftrightarrow xn : m$. Если положить

$$x = \prod_{i} p_i^{\chi_i},$$

то последнее условие означает, что $\chi_i+\alpha_i\geqslant \beta_i$. Порождающий элемент $(\mathfrak{a}:\mathfrak{b})$ — это минимальное число x, обладающее этим свойством. Тогда это число x содержит p_i в минимальных степенях $\chi_i=\max(0,\beta_i-\alpha_i)$, то есть

$$x = \prod_i p_i^{\max(0,\beta_i - \alpha_i)} = \prod_i p_i^{\beta_i - \min(\alpha_i,\beta_i)} = m/\gcd(m,n).$$

Упражнение 1.4.3. Покажите, что в кольце A

- (1) $\mathfrak{a} \subset (\mathfrak{a} : \mathfrak{b});$
- (2) $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subset \mathfrak{a}$;
- (3) $((\mathfrak{a}:\mathfrak{b}):\mathfrak{c})=(\mathfrak{a}:\mathfrak{bc})=((\mathfrak{a}:\mathfrak{c}):\mathfrak{b});$
- (4) $\left(\mathfrak{a}:\sum_{i}\mathfrak{b}_{i}\right)=\bigcap_{i}(\mathfrak{a}:\mathfrak{b}_{i}).$

Определение 1.4.4. Пусть $\mathfrak{a} \leqslant A$ — произвольный идеал. Его *радикалом* называется множество

$$r(\mathfrak{a}) = \{ x \in A \mid \exists n \in \mathbb{N}, \ x^n \in \mathfrak{a} \}.$$

Имеем $r(\mathfrak{a})=arphi^{-1}ig(\mathfrak{N}_{A/\mathfrak{a}}ig)$, так что $r(\mathfrak{a})$ — идеал в кольце A.

Упражнение 1.4.5. Пусть $\mathfrak{a}, \mathfrak{b}$ — идеалы в кольце A. Тогда

- (1) $r(r(\mathfrak{a})) = r(\mathfrak{a});$
- (2) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b});$
- (3) $r\left(\bigcup_{\alpha}\mathfrak{a}_{\alpha}\right)=\bigcup_{\alpha}r(\mathfrak{a}_{\alpha});$
- (4) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}));$
- (5) $r(\mathfrak{a}) = (1) \iff a = (1);$
- (6) Если $\mathfrak p$ простой, то $r(\mathfrak p^n)=r(\mathfrak p)$

Упражнение 1.4.6. Пусть $f:A\to B$ — сюръективный гомоморфизм колец. Покажите, что идеал $\mathfrak{b}\leqslant B$ прост тогда и только тогда, когда прост $f^{-1}(\mathfrak{b})\leqslant A$.

Утверждение 1.4.7. Пусть A- кольцо, $\mathfrak{a} \leqslant A$. Тогда радикал $r(\mathfrak{a})$ совпадает с пересечением всех простых идеалов, содержащих \mathfrak{a} .

$$r(\mathfrak{a}) = \bigcap \ \{\mathfrak{p} \leqslant A \ | \ \mathfrak{p} \ \textit{npocmoй}, \mathfrak{p} \supset \mathfrak{a} \}.$$

Доказательство: Применим теорему 1.2.3 к A/\mathfrak{a} . Имеем

$$\begin{split} r(a) &= \varphi^{-1} \Big(\mathfrak{N}_{A/\mathfrak{a}} \Big) = \varphi^{-1} \Big(\bigcap \left\{ \mathfrak{p} \leqslant A/\mathfrak{a} \, | \, \mathfrak{p} \, \text{ прост в } A/\mathfrak{a} \right\} \Big) = \bigcap \left\{ \varphi^{-1} (\mathfrak{p}) \, \middle| \, \mathfrak{p} \, \text{ прост} \right\} = \\ &= \bigcap \left\{ \mathfrak{p} \leqslant A \, \middle| \, \mathfrak{p} \, \text{ прост и } \mathfrak{p} \subset \mathfrak{a} \right\}, \end{split}$$

что и требовалось.

Утверждение 1.4.8.

$$D=\{x\in A\,|\,\exists y\neq 0,\ xy=0\}=\bigcup_{x\neq 0}r(\mathrm{Ann}\ (x)).$$

Доказательство: Очевидно, что если $x^n \in D$, то $x \in D$, поэтому D = r(D). Тогда мы имеем

$$D = r(D) = r\left(\bigcup_{x \neq 0} \operatorname{Ann}(x)\right) = \bigcup_{x \neq 0} r(\operatorname{Ann}(x)),$$

что и требовалось доказать.

Пример 1.4.9. Пусть $A = \mathbb{Z}$, $\mathfrak{a} = (m)$. Разложим m на простые множители:

$$m = \prod_{i=1}^k p_i^{\alpha_i}.$$

Для каждого i имеем $r((p_i))=(p_i)$ (упражнение). Тогда

$$r(\mathfrak{a}) = r\Bigg(\left(\prod_{i=1}^k p_i^{\alpha_i}\right)\Bigg) = r\Bigg(\prod_{i=1}^k \left(p_i^{\alpha_i}\right)\Bigg) = \bigcap_{i=1}^k r\big((p_i)^{\alpha_i}\big) = \bigcap_{i=1}^k (p_i).$$

Утверждение 1.4.10. Если радикалы $r(\mathfrak{a})$, $r(\mathfrak{b})$ идеалов \mathfrak{a} , \mathfrak{b} в кольце A взаимно просты, то \mathfrak{a} и \mathfrak{b} взаимно просты.

Доказательство: Имеем

$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})) = r(1) = (1) \Longrightarrow \mathfrak{a} + \mathfrak{b} = (1),$$

что и требовалось.

1.5. Расширение и сужение

Определение 1.5.1. Пусть $f: A \to B$ — некий гомоморфизм колец. Если $\mathfrak{a} \leqslant A$ — идеал, то множество $f(\mathfrak{a})$, вообще говоря, не обязано быть идеалом в B (приведите соответствующий пример).

 $Pacширением\ \mathfrak{a}^e$ идеала \mathfrak{a} называется идеал $\langle f(a) \rangle = Bf(a) \leqslant B$, порождённый образом $f(\mathfrak{a})$. Допускается представление

$$\mathfrak{a}^e = \left\{ \sum_i y_i f(x_i) \,\middle|\, x_i \in A, y_i \in B \right\}$$

Пусть теперь $\mathfrak{b}\leqslant B$ — некоторый идеал в B. Тогда $f^{-1}(\mathfrak{b})$ — идеал в A, который называется сужением \mathfrak{b} и обозначается \mathfrak{b}^c .

Замечание 1.5.2. Если $\mathfrak b$ прост, то $\mathfrak b^c$ тоже прост. Если $\mathfrak a$ прост, то $\mathfrak a^e$ не обязательно прост (например, $f: \mathbb Z \to \mathbb Q$, $\mathfrak a = (2)$).

Замечание 1.5.3. Гомоморфизм $f:A \to B$ можно разложить в композицию

$$A \stackrel{p}{\longrightarrow} f(A) \stackrel{i}{\longrightarrow} B,$$

где p сюръективно, а i инъективно. Связь между идеалами A и f(A) очень проста: первая теорема о гомоморфизме $(A/\ker f\cong f(A))$ устанавливает соответствие между идеалами f(A) и теми идеалами A, которые содержат $\ker f$. При этом простые идеалы отвечают простым. Напротив, для гомоморфизма i ситуация в общем случае очень сложная.

Пример 1.5.4. Рассмотрим вложение $f: \mathbb{Z} \to \mathbb{Z}[i]$, где $\mathbb{Z}[i]$ — расширение целых чисел комплексной единицей $i = \sqrt{-1}$, то есть $\mathbb{Z} = \{a + bi \mid a, b \in \mathbb{Z}\}$, и f(n) = n + 0i.