Hash Tables

Set ADT:

boolean find (ElementType x)
void insert (ElementType x)
void remove (ElementType x)

Dictionary ADT:

AnotherType find (ElementType x) void insert (ElementType x, AnotherType y) void remove (ElementType x)

Here the dictionary acts as a function or mapping: find(x) = y

Sets or dictionaries maybe implemented as:

- Linked lists (inefficient)
- Hash tables
- Search trees

Hash tables are based on arrays

An array maps an index to a location This index is an integer in a bounded range

A hash table uses a *hash function* to map a key to a location

This key can be an unbounded integer, or even a non-integer type such as string or float. The same hash function must be used during all operations (find, insert, and remove)

Hash function: $\{\text{keys}\} \rightarrow \{\text{locations}\}$

Examples of hash functions

```
If keys are unbounded integers:
        H(key) = key \% N
        int H (int key) { return key % N; }
        N = size of hash table (often prime number)
    If keys are strings:
        int H (string key) {
            int sum = 0;
            for (int j=0; j<key.length; j++)
                sum = (C*sum + int(key[i])) % N;
            }
        where C = some constant
Ideally compute index = H(key) and then access the
    location or slot in the hash table: Table[index]
However, collisions can occur:
```

H(key1) = H(key2), where $\text{key1} \neq \text{key2}$

Several kinds of hash tables

The main difference is how collisions are handled

Closed addressing or Separate chaining:

Hash function H(key) = key % 7 Insert keys 50, 55, 39, 27, 100, 18, 76, 40, 71

index Table chains (linked lists)

0 null

1 $\rightarrow 71 \rightarrow 50$ 2 $\rightarrow 100$ 3 null

4 $\rightarrow 18 \rightarrow 39$ 5 $\rightarrow 40$ 6 $\rightarrow 76 \rightarrow 27 \rightarrow 55$

Suppose n keys, N slots, H(key) = key % N, separate chaining Worst-case: $\theta(n)$ time per operation (insert, find, remove) Average-case: $\theta(n/N)$ time per operation, which is $\theta(1)$ if $n \le cN$

Open addressing:

No separate chains, all keys must be stored in the table Only one key per slot

Requires n≤N

When collision occurs, look in another slot (Which slot?) Several varieties of open addressing are popular

Linear probing:

Search sequentially

Hash function H(key) = key % 11 Insert keys 50, 55, 39, 27, 100, 18, 76, 40, 71

H(50) = 6		Table
H(55) = 0	0	55
H(39) = 6 occupied	1	100
H(27) = 5	2	71
H(100) = 1	3	
H(18) = 7 occupied	4	
H(76) = 10	5	27
H(40) = 7 occupied	6	50
H(71) = 5 occupied	7	39
	8	18
	9	40
	10	76

Suppose n keys, N slots, H(key) = key % N, linear probing Worst-case: $\theta(n)$ time per operation (insert, find, remove) Average-case: $\theta(1)$ time if $n \le N/2$

Disadvantages of linear probing:

Clustering, especially when n > N/2

Removing a key is complicated and inefficient

Example: how to remove key 39?

Usually mark as "deleted" rather than remove

Other kinds of open addressing aim to reduce clustering, although they cannot eliminate it completely

Quadratic probing:

for (j=0; jlook in slot (H(key) +
$$j^2$$
) % N

Hash function H(key) = key % 11

Insert keys 29, 14, 51, 36, 73, 58, 55

H(29) = 7		Table
H(14) = 3	0	73
H(51) = 7 occupied	1	58
offset 1	2	
H(36) = 3 occupied	3	14
offset 1	4	36
H(73) = 7 occupied	5	
offsets 1, 4	6	
H(58) = 3 occupied	7	29
offsets 1, 4, 9	8	51
H(55) = 0 occupied	9	55
offsets 1, 4, 9	10	

Double hashing:

H is primary hash function, H' is secondary hash function

Primary hash function H(key) = key % 11
Secondary hash function H'(key) = (key % 7) + 1,
because H'(key) must never evaluate to 0

Insert keys 29, 14, 51, 36, 73, 58, 55

H(29) = 7		
H(14) = 3		Table
H(51) = 7 occupied	0	73
H'(51) = 3	1	
H(36) = 3 occupied	2	55
H'(36) = 2	3	14
H(73) = 7 occupied	4	
H'(73) = 4	5	36
H(58) = 3 occupied	6	58
H'(58) = 3	7	29
H(55) = 0 occupied	8	
H'(55) = 7	9	
offsets 7, 14,	10	51
21, 28, 35		