Weighted Projection Quantiles Algorithm

October 7, 2014

Algorithm to calculate weighted projection quantile along the vector $\mathbf{u} \in \mathbb{R}^p$, given a set of observations $\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_n$:

- 1. Compute $Q_{proj}(\mathbf{u})$, projection quantile along \mathbf{u}
 - Project each \mathbf{X}_i along \mathbf{u} to obtain $X_{\mathbf{u}i} = \frac{\langle \mathbf{X}_i, \mathbf{u} \rangle}{\|\mathbf{u}\|}$, for i = 1, 2, ..., n.
 - Find $\alpha = \frac{1+\|\mathbf{u}\|}{2}$ -th quantile of $X_{\mathbf{u}1}, ..., X_{\mathbf{u}n}$, say $q_{\mathbf{u}}$...
 - $Q_{proj}(\mathbf{u}) = q_{\mathbf{u}}\mathbf{e}_{\mathbf{u}}, \, \mathbf{e}_{\mathbf{u}} = \mathbf{u}/\|\mathbf{u}\|$ being the unit vector along \mathbf{u} .
- 2. Compute Weights corresponding to this projection quantile $Q_{proj}(\mathbf{u})$
 - Compute global weights for the direction vector u by k-mean distance;
 - Compute k-mean distance corresponding to $Q_{proj}(\mathbf{u})$ using $d_k = \frac{1}{n} \sum_{i=1}^{n} d_i \mathbb{I}_{\{d_i < d_{(k)}\}}$, where d_i is the euclidean distance of \mathbf{X}_i from $Q_{proj}(\mathbf{u})$ given by $\|\mathbf{X}_i Q_{proj}(\mathbf{u})\|$. k is a tuning parameter.
 - Compute the weights corresponding to **u**:

$$w_{\mathbf{u}} = \exp(-a.d_k)$$

where a is a tuning parameter.

- Compute weights for each sample point X_i ; i = 1, 2, ..., n:
 - Compute the orthogonal Norms by $\|\mathbf{X}_{\mathbf{u}\perp i}\| = \|\mathbf{X}_i X_{\mathbf{u}i}\mathbf{e}_{\mathbf{u}}\|$.
 - Compute weight of i^{th} sample:

$$w_{2i} = \begin{cases} \exp\left[-b\frac{\|\mathbf{X}_{\mathbf{u}\perp i}\|}{\|\mathbf{X}_i\|}\right] & \text{if}\|\mathbf{X}_i\| \le \epsilon \\ 0 & \text{otherwise} \end{cases}$$

 b, ϵ being tuning parameters.

- 3. Compute the weighted projection quantile
 - Define $\tilde{X}_{\mathbf{u}i} = w_{\mathbf{u}}w_{2i}X_{\mathbf{u}i}$ for i = 1, ..., n.
 - Find $\alpha = \frac{1+\|\mathbf{u}\|}{2}$ th quantile of $\tilde{X}_{\mathbf{u}1},...,\tilde{X}_{\mathbf{u}n}$. Let it be $\tilde{q}_{\mathbf{u}}$.
 - Find the weighted projection quantile as $\tilde{Q}_{proj}(\mathbf{u}) = \tilde{q}_{\mathbf{u}}\mathbf{e}_{\mathbf{u}}$.

Algorithm for weighted projection quantile based data depth given data $X_1,...,X_n$ and a new point p

- 1. Compute Projection Quantiles for all n sample points along the direction of \mathbf{p} .
- 2. Find two closest points along the grid and their corresponding quantile values, say α_1 and α_2 corresponding to u_{p1} and u_{p2} .
- 3. Approximate the quantile value for p by interpolation $\alpha_p = \frac{(\alpha_1 \alpha_2)(\|p\| \|u_1\|)}{\|u_1\| \|u_2\|} + \alpha_1$.
- 4. Define **projection quantile depth** as $d_p = \exp(-\alpha_p)$.

Algorithm for weighted projection depth based classification scheme

- 1. Given data with k classes and a new observation p find the data depth for p for each class k.
- 2. Classify p in class j if $d_{pj}=\min\{d_{pi}; i\in\{1,...,k\}\}$