A symbolic execution semantics for TopHat

Appendices

Nico Naus Computer Science Open University of the Netherlands Heerlen, The Netherlands nico.naus@ou.nl

Tim Steenvoorden Software Science Radboud University Nijmegen, The Netherlands tim@cs.ru.nl

Markus Klinik Software Science Radboud University Nijmegen, The Netherlands m.klinik@cs.ru.nl

ACM Reference Format:

Nico Naus, Tim Steenvoorden, and Markus Klinik. 2020. A symbolic execution semantics for TopHat: Appendices. In Proceedings of International Symposium on Implementation and Application of Functional Languages (IFL'19).

1 COMPLETE SYMBOLIC SEMANTICS

1.1 Symbolic evaluation rules

1.2 Symbolic striding rules

$$\begin{array}{c} \begin{array}{c} \overline{l}_{1},\tilde{\sigma} \, \mapsto \, \overline{l'_{1},\tilde{\sigma'},\,\, \varphi} \\ \\ \overline{l}_{1} \, \mapsto \, \overline{c}_{2},\tilde{\sigma} \, \mapsto \, \overline{l'_{1}} \, \mapsto \, \overline{c}_{2},\tilde{\sigma'},\,\, \varphi \\ \\ \overline{l}_{1} \, \mapsto \, \overline{c}_{2},\tilde{\sigma} \, \mapsto \, \overline{l'_{1}} \, \mapsto \, \overline{c}_{2},\tilde{\sigma'},\,\, \varphi \\ \\ \hline \end{array} \begin{array}{c} \begin{array}{c} SS-ThenFall \\ \overline{l}_{1},\tilde{\sigma} \, \mapsto \, \overline{l'_{1},\tilde{\sigma'}},\,\, \varphi \\ \hline \\ \overline{l}_{1} \, \mapsto \, \overline{c}_{2},\tilde{\sigma} \, \mapsto \, \overline{l'_{1}} \, \mapsto \, \overline{c}_{2},\tilde{\sigma'},\,\, \varphi \\ \hline \end{array} \begin{array}{c} V\left(\overline{l'_{1}},\tilde{\sigma'}\right) = \tilde{v}_{1} \, \wedge \, \mathcal{F}\left(\overline{l}_{2},\tilde{\sigma''}\right) \\ \hline \\ \overline{l}_{1} \, \mapsto \, \overline{c}_{2},\tilde{\sigma} \, \mapsto \, \overline{l'_{1}},\,\, \overline{\sigma'},\,\, \varphi \\ \hline \end{array} \begin{array}{c} SS-ORLEFT \\ \overline{l}_{1},\tilde{\sigma} \, \mapsto \, \overline{l'_{1}},\,\, \overline{\sigma'},\,\, \varphi \\ \hline \\ \overline{l}_{1} \, \mapsto \, \overline{c}_{2},\tilde{\sigma'} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \varphi \\ \hline \end{array} \begin{array}{c} SS-ORREFT \\ \overline{l}_{1},\tilde{\sigma} \, \mapsto \, \overline{l'_{1}},\,\, \overline{\sigma'},\,\, \varphi \\ \hline \\ \overline{l}_{1} \, \mapsto \, \overline{l}_{2},\,\, \overline{\sigma} \, \mapsto \, \overline{l'_{1}},\,\, \overline{\sigma'},\,\, \varphi \\ \hline \end{array} \begin{array}{c} V\left(\overline{l'_{1}},\,\, \overline{\sigma'}\right) = \tilde{v}_{1} \, \wedge \, -\mathcal{F}\left(\bar{l}_{2},\,\, \overline{\sigma''}\right) \\ \hline \end{array} \begin{array}{c} SS-ORREFT \\ \overline{l}_{1},\,\, \overline{\sigma} \, \mapsto \, \overline{l'_{1}},\,\, \overline{\sigma'},\,\, \varphi \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l}_{2},\,\, \overline{\sigma''} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma'''},\,\, \varphi \\ \hline \end{array} \begin{array}{c} V\left(\overline{l'_{1}},\,\, \overline{\sigma'}\right) = 1 \\ \hline \end{array} \begin{array}{c} SS-ORROHT \\ \overline{l}_{1} \, \mapsto \, \overline{l'_{1}},\,\, \overline{\sigma'},\,\, \varphi \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma'''},\,\, \varphi \\ \hline \end{array} \begin{array}{c} V\left(\overline{l'_{1}},\,\, \overline{\sigma'}\right) = 1 \\ \hline \end{array} \begin{array}{c} V\left(\overline{l'_{1}},\,\, \overline{\sigma'}\right) = 1 \\ \hline \end{array} \begin{array}{c} SS-ORNONE \\ \overline{l}_{1} \, \mapsto \, \overline{l'_{1}},\,\, \overline{\sigma'},\,\, \varphi \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma'''},\,\, \varphi \\ \hline \end{array} \begin{array}{c} SS-ELIT \\ \hline \end{array} \begin{array}{c} SS-ELIT \\ \hline \end{array} \begin{array}{c} SS-FLIT \\ \hline \end{array} \begin{array}{c} SS-FLIT \\ \hline \end{array} \begin{array}{c} SS-FLIT \\ \hline \end{array} \begin{array}{c} SS-IDATE \\ \hline \end{array} \begin{array}{c} SS-AND \\ \hline \end{array} \begin{array}{c} \overline{l}_{1},\,\, \overline{\sigma} \, \mapsto \, \overline{l'_{1}},\,\, \overline{\sigma'},\,\, \varphi \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \varphi \\ \hline \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \overline{\varphi} \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \overline{\varphi} \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \varphi \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \overline{\varphi} \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \overline{\varphi} \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \overline{\varphi} \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \overline{\varphi} \\ \hline \end{array} \begin{array}{c} \overline{l}_{1} \, \mapsto \, \overline{l'_{2}},\,\, \overline{\sigma''},\,\, \overline{$$

1.3 Symbolic normalisation rules

$$\tilde{e}, \tilde{\sigma} \iff \overline{\tilde{t}, \tilde{\sigma}', \varphi}$$

$$\frac{\text{SN-Done}}{\tilde{e}, \tilde{\sigma} \ \, \underbrace{\tilde{t}, \tilde{\sigma}', \ \, \varphi_1} } \underbrace{\tilde{t}, \tilde{\sigma}', \ \, \varphi_1} \underbrace{\tilde{t}, \tilde{\sigma}', \ \, \varphi_2} \underbrace{\tilde{t}, \tilde{\sigma}', \ \, \varphi_1} \underbrace{\tilde{t}', \tilde{\sigma}'', \ \, \varphi_2} \underbrace{\tilde{t}', \tilde{\sigma}'', \ \, \varphi_2} \underbrace{\tilde{t}', \tilde{\sigma}'', \ \, \varphi_2} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_2} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}''', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}''', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}''', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}''', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}''', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\sigma}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \ \, \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \varphi_1 \land \varphi_2 \land \varphi_3} \underbrace{\tilde{t}'', \tilde{\tau}'', \varphi_1 \land$$

1.4 Symbolic handling rules

SH-And
$$\underbrace{\tilde{t}_{1}, \tilde{\sigma} \, \rightsquigarrow \, \tilde{t}_{1}', \tilde{\sigma}_{1}, \, \tilde{\iota}_{1}, \varphi_{1}}_{\tilde{\iota}_{1}, \tilde{\sigma}_{1}, \, \tilde{\iota}_{1}, \varphi_{1}} \quad \tilde{t}_{2}, \tilde{\sigma} \, \rightsquigarrow \, \tilde{t}_{2}', \tilde{\sigma}_{2}, \, \tilde{\iota}_{2}, \varphi_{2}}$$

1.5 Symbolic driving rules

$$\tilde{t}, \tilde{\sigma} \approx \overline{\tilde{t}', \tilde{\sigma}', \tilde{\iota}, \varphi}$$

$$\frac{\text{SI-Handle}}{\tilde{t}, \tilde{\sigma} \leadsto \overline{\tilde{t}', \tilde{\sigma}', \overline{\tilde{\iota}, \varphi_1}}} \underbrace{\tilde{t}', \tilde{\sigma}' \ \ \, \underbrace{\tilde{t}'', \tilde{\sigma}'', \overline{\varphi_2}}}_{\tilde{t}, \tilde{\sigma} \approx \overline{\tilde{t}'', \tilde{\sigma}'', \overline{\tilde{\iota}, \varphi_1}}}$$

2 TOPHAT SEMANTICS

2.1 Typing rules

$$\Gamma, \Sigma \vdash e : \tau$$

$$\frac{\Gamma \text{-ConstBool}}{\Gamma, \Sigma \vdash c : \text{Bool}} \quad \frac{\Gamma \text{-ConstInt}}{\Gamma, \Sigma \vdash c : \text{Int}} \quad \frac{\Gamma \text{-ConstString}}{\Gamma, \Sigma \vdash c : \text{Int}} \quad \frac{\Gamma \text{-ConstString}}{\Gamma, \Sigma \vdash c : \text{String}} \quad \frac{\Gamma \text{-Unit}}{\Gamma, \Sigma \vdash c : \text{Unit}} \quad \frac{\Gamma \text{-Var}}{\Gamma, \Sigma \vdash \lambda : \tau} \quad \frac{\Gamma \text{-Loc}}{\Gamma, \Sigma \vdash \lambda : \tau} \quad \frac{\Sigma(I) = \beta}{\Gamma, \Sigma \vdash L : \text{Ref} \beta}$$

$$\frac{\Gamma \text{-Pair}}{\Gamma, \Sigma \vdash e_1 : \tau_1} \quad \frac{\Gamma, \Sigma \vdash e_2 : \tau_2}{\Gamma, \Sigma \vdash e_2 : \tau_2} \quad \frac{\Gamma \text{-First}}{\Gamma, \Sigma \vdash e_1 : \tau} \quad \frac{\Gamma \text{-Second}}{\Gamma, \Sigma \vdash e_1 : \tau} \quad \frac{\Gamma \text{-ListEmpty}}{\Gamma, \Sigma \vdash \text{snd}(e_1, e_2) : \tau} \quad \frac{\Gamma \text{-ListEmpty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListCons}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma, \Sigma \vdash e_2 : \tau}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \text{Int} \beta} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \tau_1 \mapsto \tau_2} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \tau_2 : \tau_1} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \tau_2 : \tau_1} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \tau_2 : \tau_1} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \tau_2 : \tau_1} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 : \tau_2} \quad \frac{\Gamma \text{-ListTempty}}{\Gamma, \Sigma \vdash e_1 :$$

2.2 Evaluation rules

$e, \sigma \downarrow v, \sigma'$

E-APP
$$\underbrace{e_{1},\sigma\downarrow\lambda x:\tau.e_{1}',\sigma'}_{e_{1}e_{2},\sigma\downarrow\nu_{1},\sigma'''} \underbrace{e_{2},\sigma'\downarrow\nu_{2},\sigma''}_{e_{1}e_{2},\sigma\downarrow\nu_{1},\sigma'''} \underbrace{e_{1}'[x\mapsto\nu_{2}],\sigma''\downarrow\nu_{1},\sigma'''}_{e_{1}e_{2},\sigma\downarrow\nu_{1},\sigma'''} \underbrace{\begin{array}{c} \text{E-IFTRUE} \\ e_{1},\sigma\downarrow\text{True},\sigma' & e_{2},\sigma'\downarrow\nu_{2},\sigma'' \\ \textbf{if} e_{1} \textbf{then} e_{2} \textbf{else} e_{3},\sigma\downarrow\nu_{2},\sigma'' \\ \textbf{if} e_{1} \textbf{then} e_{2} \textbf{else} e_{3},\sigma\downarrow\nu_{2},\sigma'' \\ \textbf{if} e_{1} \textbf{then} e_{2} \textbf{else} e_{3},\sigma\downarrow\nu_{2},\sigma'' \\ \textbf{if} e_{1} \textbf{then} e_{2} \textbf{else} e_{3},\sigma\downarrow\nu_{3},\sigma'' \\ \textbf{e}_{1},\sigma\downarrow\nu_{1},\sigma' \\ \textbf{e}_{2},\sigma\downarrow\nu_{1},\sigma' \\ \textbf{e}_{2},\sigma\downarrow\nu_{2},\sigma' \\ \textbf{e}_{2},\sigma\downarrow\nu_{2},\sigma' \\ \textbf{e}_{2},\sigma\downarrow\nu_{$$

2.3 Striding rules

$$\begin{array}{c} \left[t,\sigma \mapsto t',\sigma' \right] \\ \text{S-ThenStay} \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright e_2,\sigma \mapsto t_1' \blacktriangleright e_2,\sigma'} \, \mathcal{V} \left(t_1',\sigma' \right) = \bot \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright e_2,\sigma \mapsto t_1' \blacktriangleright e_2,\sigma'} \, \mathcal{V} \left(t_1',\sigma' \right) = \bot \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright e_2,\sigma \mapsto t_1' \blacktriangleright e_2,\sigma'} \, \mathcal{V} \left(t_1',\sigma' \right) = v_1 \wedge \mathcal{F} \left(t_2,\sigma'' \right) \\ \\ \text{S-ThenCont} \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright e_2,\sigma \mapsto t_2,\sigma''} \, \mathcal{V} \left(t_1',\sigma' \right) = v_1 \wedge \neg \mathcal{F} \left(t_2,\sigma'' \right) \\ \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright t_2,\sigma \mapsto t_2',\sigma''} \, \mathcal{V} \left(t_1',\sigma' \right) = v_1 \wedge \neg \mathcal{F} \left(t_2,\sigma'' \right) \\ \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright t_2,\sigma \mapsto t_2',\sigma''} \, \mathcal{V} \left(t_1',\sigma' \right) = \bot \wedge \mathcal{V} \left(t_2',\sigma'' \right) = v_2 \\ \\ \text{S-ORNone} \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright t_2,\sigma \mapsto t_2',\sigma''} \, \mathcal{V} \left(t_1',\sigma' \right) = \bot \wedge \mathcal{V} \left(t_2',\sigma'' \right) = \bot \\ \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright t_2,\sigma \mapsto t_1' \blacktriangleright t_2',\sigma''} \, \mathcal{V} \left(t_1',\sigma' \right) = \bot \wedge \mathcal{V} \left(t_2',\sigma'' \right) = \bot \\ \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright t_2,\sigma \mapsto t_1' \blacktriangleright t_2',\sigma''} \, \mathcal{V} \left(t_1',\sigma' \right) = \bot \wedge \mathcal{V} \left(t_2',\sigma'' \right) = \bot \\ \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \blacktriangleright t_2,\sigma \mapsto t_1' \blacktriangleright t_2',\sigma''} \, \mathcal{V} \left(t_1',\sigma' \right) = \bot \wedge \mathcal{V} \left(t_2',\sigma'' \right) = \bot \\ \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \mapsto t_1',\sigma'} \, \frac{t_2,\sigma' \mapsto t_2',\sigma''}{t_1 \mapsto t_1',\sigma'} \, \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \mapsto t_1',\sigma'} \, \frac{t_2,\sigma' \mapsto t_2',\sigma''}{t_1 \mapsto t_1',\sigma'} \\ \\ \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \mapsto t_1',\sigma'} \, \frac{t_2,\sigma' \mapsto t_2',\sigma''}{t_1 \mapsto t_1',\sigma'} \, \frac{t_1,\sigma \mapsto t_1',\sigma'}{t_1 \mapsto t_1',\sigma'} \,$$

2.4 Normalisation rules

2.5 Handling rules

2.6 Driving rules

I-HANDLE
$$t, \sigma \xrightarrow{i} t', \sigma' \quad t', \sigma' \downarrow t'', \sigma''$$

$$t, \sigma \Rightarrow i \quad t'', \sigma''$$

3 SOUNDNESS PROOFS

3.1 Proof of soundness of symbolic evaluation semantics

PROOF. We prove Lemma 6.5 by induction over the derivation of the symbolic evaluation $e, \sigma \ \ \ \overline{\tilde{e}, \tilde{\sigma}, \varphi}$.

Case SE-VALUE

Since this case does not generate constraints, any M will do. Since neither the state, nor the expression is altered by the evaluation rule E-Value, this case holds trivially.

Case SE-FAIL

Since this case does not generate constraints, any M will do. Since neither the state, nor the expression $\frac{1}{2}$ is altered by the evaluation rule E-FAIL, this case holds trivially.

Case SE-Pair

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that $\langle e_1, e_2 \rangle$, $\sigma \downarrow \langle v_1, v_2 \rangle$, σ'' with $M\langle \tilde{v}_1, \tilde{v}_2 \rangle \equiv \langle v_1, v_2 \rangle$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.\tilde{e}_1, \tilde{\sigma} \ \ \ \ \overline{\tilde{v}_1, \tilde{\sigma}', \varphi_1} \land M_1\varphi_1 \supset e_1, \sigma \ \ \downarrow \ v_1, \sigma' \land M_1\tilde{v}_1 \equiv v_1 \land M_1\tilde{\sigma}' \equiv \sigma' \ \text{and} \ \forall M_2.M_2\varphi_2 \supset e_2, \sigma' \ \ \downarrow \ v_2, \sigma'' \land M_2\tilde{v}_2 \equiv v_2 \land M_2\tilde{\sigma}'' \equiv \sigma''.$ Note that we have omitted from the second application of the induction hypothesis, the requirement that the symbolic step exists. The fact that this step exists is obtained from SE-pair and omitted to increase readability of this and any following proofs.

Since M satisfies both φ_1 and φ_2 , we obtain from E-PAIR and the induction steps above that $\langle e_1, e_2 \rangle, \sigma \downarrow \langle v_1, v_2 \rangle, \sigma'', M\langle \tilde{v}_1, \tilde{v}_2 \rangle \equiv \langle v_1, v_2 \rangle$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SE-First

For all mappings M such that $M\varphi$, we need to show that fst $e, \sigma \downarrow v_1, \sigma'$ with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e,\sigma \downarrow \langle v_1,v_2\rangle,\sigma' \wedge M_1\langle \tilde{v}_1,\tilde{v}_2\rangle \equiv \langle v_1,v_2\rangle \wedge M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from E-First and the induction step above that fst $e, \sigma \downarrow v_1, \sigma'$ with $M\tilde{v}_1 \equiv v_1 s$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Second

For all mappings M such that $M\varphi$, we need to show that snd $e, \sigma \downarrow v_2, \sigma'$ with $M\tilde{v}_2 \equiv v_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow \langle v_1, v_2 \rangle, \sigma' \land M_1 \langle \tilde{v}_1, \tilde{v}_2 \rangle \equiv \langle v_1, v_2 \rangle \land M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from E-Second and the induction step above that snd e, $\sigma \downarrow v_2$, σ' with $M\tilde{v}_2 \equiv v_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Cons

For all mappings M such that $M\varphi$, we need to demonstrate that $e_1 :: e_2, \sigma \downarrow v_1 :: v_2, \sigma''$ with $M\tilde{v}_1 :: \tilde{v}_2 \equiv v_1 :: v_2$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow v_1, \sigma' \land M_1\tilde{v}_1 \equiv v_1 \land M_1\tilde{\sigma}' \equiv \sigma' \text{ and } \forall M_2.M_2\varphi_2 \supset e_2, \sigma' \downarrow v_2, \sigma'' \land M_2\tilde{v}_2 \equiv v_2 \land M_2\tilde{\sigma}'' \equiv \sigma''$

Since M satisfies both φ_1 and φ_2 , we obtain from E-Cons and the induction steps above that $e_1 :: e_2, \sigma \downarrow v_1 :: v_2, \sigma''$ with $M(\tilde{v}_1 :: \tilde{v}_2) \equiv v_1 :: v_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SE-HEAD

For all mappings M such that $M\varphi$, we need to show that head $e, \sigma \downarrow v_1, \sigma'$ with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow v_1 :: v_2, \sigma' \land M_1(\tilde{v}_1 :: \tilde{v}_2) \equiv v_1 :: v_2 \land M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from E-Head and the induction step above that head $e, \sigma \downarrow v_1, \sigma'$ with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-TAIL

For all mappings M such that $M\varphi$, we need to show that tail $e, \sigma \downarrow v_2, \sigma'$ with $M\tilde{v}_2 \equiv v_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow v_1 :: v_2, \sigma' \land M_1(\tilde{v}_1 :: \tilde{v}_2) \equiv v_1 :: v_2 \land M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from E-Tail and the induction step above that tail $e, \sigma \downarrow v_2, \sigma'$ with $M\tilde{v}_2 \equiv v_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-App

For all mappings M such that $M(\varphi_1 \wedge \varphi_2 \wedge \varphi_3)$, we need to demonstrate that e_1e_2 , $\sigma \downarrow v_1$, σ''' with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}''' \equiv \sigma'''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow \lambda x : \tau.e_1', \sigma' \land M_1\lambda x : \tau.\tilde{e}_1' \equiv \lambda x : \tau.e_1' \land M_1\tilde{\sigma}' \equiv \sigma' \text{ and } \forall M_2.M_2\varphi_2 \supset e_2, \sigma' \downarrow v_2, \sigma'' \land M_2\tilde{v}_2 \equiv v_2 \land M_2\tilde{\sigma}'' \equiv \sigma'' \text{ and } \forall M_3.M_3\varphi_3 \supset e_1'[x \mapsto v_2], \sigma'' \downarrow v_1, \sigma''' \land M_3\tilde{v}_1 \equiv v_1 \land M_3\tilde{\sigma}''' \equiv \sigma'''.$

Since M satisfies φ_1 , φ_2 and φ_3 , we obtain from E-APP and the induction steps above that e_1e_2 , $\sigma \downarrow v_1$, σ''' with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}''' \equiv \sigma'''$.

Case SE-IF

For all mappings M such that $M(\varphi_1 \wedge \varphi_2 \wedge \tilde{v}_1)$, we need to demonstrate that **if** e_1 **then** e_2 **else** e_3 , $\sigma \downarrow v_2$, σ'' with $M\tilde{v}_2 = v_2$ and $M\tilde{\sigma}'' = \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow v_1, \sigma' \land M_1\tilde{v}_1 \equiv v_1 \land M_1\tilde{\sigma}' \equiv \sigma' \text{ and } \forall M_2.M_2\varphi_2 \supset e_2, \sigma' \downarrow v_2, \sigma'' \land M_2\tilde{v}_2 \equiv v_2 \land M_2\tilde{\sigma}'' \equiv \sigma''.$ Since M satisfies φ_1, φ_2 and \tilde{v}_1 , we know that $v_1 = \text{True}$.

From E-IfTrue and the induction steps above, we obtain that if e_1 then e_2 else e_3 , $\sigma \downarrow v_2$, σ'' with $M\tilde{v}_2 = v_2$ and $M\tilde{\sigma}'' = \sigma''$.

For all mappings M such that $M(\varphi_1 \wedge \varphi_3 \wedge \neg \tilde{v}_1)$, we need to demonstrate that **if** e_1 **then** e_2 **else** e_3 , $\sigma \downarrow v_3$, σ'' with $M\tilde{v}_3 = v_3$ and $M\tilde{\sigma}'' = \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow v_1, \sigma' \land M_1\tilde{v}_1 \equiv v_1 \land M_1\tilde{\sigma}' \equiv \sigma' \text{ and } \forall M_3.M_3\varphi_3 \supset e_3, \sigma' \downarrow v_3, \sigma'' \land M_3\tilde{v}_3 \equiv v_3 \land M_3\tilde{\sigma}'' \equiv \sigma''.$ Since M satisfies φ_1, φ_3 and $\neg \tilde{v}_1$, we know that $v_1 = \text{False}$.

From E-IFFALSE and the induction steps above, we obtain that if e_1 then e_2 else e_3 , $\sigma \downarrow v_3$, σ'' with $M\tilde{v}_3 = v_3$ and $M\tilde{\sigma}'' = \sigma''$.

Case SE-Ref

For all mappings M such that $M\varphi$, we need to demonstrate that $\mathbf{ref}\,e,\sigma\downarrow l,\sigma'[l\mapsto v]$ with $Ml\equiv l$ and $M\tilde{\sigma}'[l\mapsto \tilde{v}]\equiv \sigma'[l\mapsto v]$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow \upsilon, \sigma' \land M_1\tilde{\upsilon} \equiv \upsilon \land M_1\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ , we obtain from E-Ref and the induction steps above that $\mathbf{ref}\,e,\sigma\,\downarrow\,l,\sigma'[l\mapsto v]$.

We assume that the assignment of location references happens in a deterministic manner, and that we can therefore conclude that exactly the same l is used in both cases. Since l cannot contain any symbols, $Ml \equiv l$ holds trivially.

This, together with $M\tilde{\sigma}' \equiv \sigma'$ obtained from the induction hypothesis, we can conclude that $M\tilde{\sigma}'[l \mapsto \tilde{v}] \equiv \sigma'[l \mapsto v]$.

Case SE-Deref

For all mappings M such that $M\varphi$, we need to demonstrate that $!e,\sigma \downarrow \sigma'(l),\sigma'$ with $M\tilde{\sigma}'(l) \equiv \sigma'(l)$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi\supset e,\sigma\downarrow l,\sigma'\wedge M_1l\equiv l\wedge M_1\tilde{\sigma}'\equiv\sigma'.$

Since M satisfies φ , we obtain from E-Deref and the induction step above that !e, $\sigma \downarrow \sigma'(l)$, σ' with $M\tilde{\sigma}'(l) \equiv \sigma'(l)$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Assign

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that

 $e_1 := e_2, \sigma \downarrow \langle \rangle, \sigma''[l \mapsto v_2]$ with $M \langle \rangle \equiv \langle \rangle$, which holds true trivially, and $M \tilde{\sigma}''[l \mapsto \tilde{v}_2] \equiv \sigma''[l \mapsto v_2]$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1\supset e_1,\sigma\downarrow l,\sigma'\land M_1l\equiv l\land M_1\tilde{\sigma}'\equiv\sigma' \text{ and } \forall M_2.M_2\varphi_2\supset e_2,\sigma'\downarrow \upsilon_2,\sigma''\land M_2\tilde{\upsilon}_2\equiv\upsilon_2\land M_2\tilde{\sigma}''\equiv\sigma''$

Since M satisfies both φ_1 and φ_2 , we obtain from E-Assign and the induction steps above that $e_1 := e_2, \sigma \downarrow \langle \rangle, \sigma''[l \mapsto v_2]$ with $M\tilde{\sigma}''[l \mapsto \tilde{v}_2] \equiv \sigma''[l \mapsto v_2]$.

Case SE-EDIT

For all mappings M such that $M\varphi$, we need to demonstrate that $\Box e, \sigma \downarrow \Box v, \sigma'$ with $M \Box \tilde{v} \equiv \Box v$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following. $\forall M_1.M_1 \emptyset \supset e, \sigma \mid v, \sigma' \land M_1 \tilde{v} \equiv v \land M_1 \tilde{\sigma}' \equiv \sigma'$.

Since M satisfies φ , we obtain from E-EDIT and the induction step above that $\Box e, \sigma \downarrow \Box v, \sigma'$ with $M \Box \tilde{v} \equiv \Box v$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Update

For all mappings M such that $M\varphi$, we need to demonstrate that $\blacksquare e, \sigma \downarrow \blacksquare l, \sigma'$ with $M \blacksquare l \equiv \blacksquare l$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following. $\forall M_1.M_1\varphi \supset e, \sigma \downarrow l, \sigma' \land M_1l \equiv l \land M_1\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ , we obtain from E-UPDATE and the induction step above that $\blacksquare e, \sigma \downarrow \blacksquare l, \sigma'$ with $M \blacksquare l \equiv \blacksquare l$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-THEN

For all mappings M such that $M\varphi$, we need to demonstrate that $e_1 \triangleright e_2, \sigma \downarrow t_1 \triangleright e_2, \sigma'$ with $M\tilde{t}_1 \triangleright \tilde{e}_2 \equiv t_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following. $\forall M_1.M_1\varphi \supset e, \sigma \downarrow t_1, \sigma' \land M_1\tilde{t}_1 \equiv t_1 \land M_1\tilde{\sigma}' \equiv \sigma'$.

Since M satisfies φ , we obtain from E-Then and the induction step above that $e_1 \triangleright e_2$, $\sigma \downarrow t_1 \triangleright e_2$, σ' with $M\tilde{t}_1 \triangleright \tilde{e}_2 \equiv t_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Next

For all mappings M such that $M\varphi$, we need to demonstrate that $e_1 \triangleright e_2$, $\sigma \downarrow t_1 \triangleright e_2$, σ' with $M\tilde{t}_1 \triangleright e_2 \equiv t_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$. From the induction hypothesis, we obtain the following. $\forall M_1.M_1\varphi \supset e, \sigma \downarrow t_1, \sigma' \land M_1\tilde{t}_1 \equiv t_1 \land M_1\tilde{\sigma}' \equiv \sigma'$.

Since M satisfies φ , we obtain from E-NexT and the induction step above that $e_1 \triangleright e_2$, $\sigma \downarrow t_1 \triangleright e_2$, σ' with $M\tilde{t}_1 \triangleright e_2 \equiv t_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-OR

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that $e_1 \blacklozenge e_2, \sigma \downarrow t_1 \blacklozenge t_2, \sigma''$ with $M\tilde{t}_1 \blacklozenge \tilde{t}_2 \equiv t_1 \blacklozenge t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1\supset e_1,\sigma\downarrow t_1,\sigma'\wedge M_1\tilde{t}_1\equiv t_1\wedge M_1\tilde{\sigma}'\equiv\sigma' \text{ and } \forall M_2.M_2\varphi_2\supset e_2,\sigma'\downarrow t_2,\sigma''\wedge M_2\tilde{t}_2\equiv t_2\wedge M_2\tilde{\sigma}''\equiv\sigma''$

Since M satisfies both φ_1 and φ_2 , we obtain from E-OR and the induction steps above that $e_1 \blacklozenge e_2, \sigma \downarrow t_1 \blacklozenge t_2, \sigma''$ with $M\tilde{t}_1 \blacklozenge \tilde{t}_2 \equiv t_1 \blacklozenge t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SE-AND

For all mappings M such that $M(\varphi_1 \land \varphi_2)$, we need to demonstrate that $e_1 \bowtie e_2, \sigma \downarrow t_1 \bowtie t_2, \sigma''$ with $M\tilde{t}_1 \bowtie \tilde{t}_2 \equiv t_1 \bowtie t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1\supset e_1,\sigma\downarrow t_1,\sigma'\wedge M_1\tilde{t}_1\equiv t_1\wedge M_1\tilde{\sigma}'\equiv\sigma' \text{ and } \forall M_2.M_2\varphi_2\supset e_2,\sigma'\downarrow t_2,\sigma''\wedge M_2\tilde{t}_2\equiv t_2\wedge M_2\tilde{\sigma}''\equiv\sigma''$

Since M satisfies both φ_1 and φ_2 , we obtain from E-AND and the induction steps above that $e_1 \bowtie e_2, \sigma \downarrow t_1 \bowtie t_2, \sigma''$ with $M\tilde{t}_1 \bowtie \tilde{t}_2 \equiv t_1 \bowtie t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

3.2 Proof of soundness of symbolic striding semantics

PROOF. We prove Lemma 6.4 by induction over the derivation $t, \sigma \mapsto \overline{\tilde{t}, \tilde{\sigma}, \varphi}$.

Case SS-THENSTAY, SS-THENFAIL

For all mappings M such that $M\varphi$ we need to demonstrate that $t_1 \blacktriangleright e_2, \sigma \mapsto t_1' \blacktriangleright e_2, \sigma'$ with $M\tilde{t}_1' \blacktriangleright e_2 \equiv t_1' \blacktriangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following. $\forall M_1.M_1\varphi \supset t_1, \sigma \mapsto t_1', \sigma' \land M_1\tilde{t}_1' \equiv t_1' \land M_1\tilde{\sigma}' \equiv \sigma'$.

Since M satisfies φ , we obtain from S-ThenStay and S-ThenFail respectively, and the induction step above that $t_1 \triangleright e_2$, $\sigma \mapsto t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SS-THENCONT

For all mappings M such that $M\varphi_1 \wedge M\varphi_2$ we need to demonstrate that $t_1 \triangleright e_2, \sigma \mapsto t_2, \sigma''$ with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

From the induction hypothesis, we obtain the following. $\forall M_1.M_1\varphi_1 \supset t_1, \sigma \mapsto t_1', \sigma' \supset M_1\tilde{t}_1' \equiv t_1' \land M_1\tilde{\sigma}' \equiv \sigma'.$

From Lemma 6.5 we know that $\forall M_2.M_2\varphi_2 \supset e_2v_1, \sigma' \downarrow t_2, \sigma'' \qquad M_2\tilde{t}_2 \equiv t_2 \land M_2\tilde{\sigma}'' \equiv \sigma''.$

Since M satisfies both φ_1 and φ_2 , we obtain from S-ThenCont, the induction step and application of Lemma 6.5 above that $t_1 \triangleright e_2$, $\sigma \mapsto t_2$, σ'' with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SS-OrLeft

For all mappings M such that $M\varphi$ we have to demonstrate that $t_1 \blacklozenge t_2, \sigma \mapsto t_1', \sigma'$ with $M\tilde{t}_1' \equiv t_1'$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following. $\forall M_1.M_1\varphi \supset t_1, \sigma \mapsto t_1', \sigma' \qquad M_1\tilde{t}_1' \equiv t_1' \land M_1\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ , we obtain from S-OrLeft and the induction step above that $t_1 \blacklozenge t_2, \sigma \mapsto t_1', \sigma'$ with $M\tilde{t}_1' \equiv t_1'$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SS-OrRight

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$ we need to demonstrate that $t_1 \blacklozenge t_2, \sigma \mapsto t_2', \sigma''$ with $M\tilde{t}_2' \equiv t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1\supset t_1,\sigma\mapsto t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma' \text{ and } \forall M_2.M_2\varphi_2\supset t_2,\sigma'\mapsto t_2',\sigma''\wedge M_2\tilde{t}_2'\equiv t_2'\wedge M_2\tilde{\sigma}''\equiv\sigma''.$

Since M satisfies both φ_1 and φ_2 , and from the premise we have that $\mathcal{V}(\tilde{t}', \tilde{\sigma}') = \bot$, we obtain from S-OrRight and the induction steps above that $t_1 \blacklozenge t_2, \sigma \mapsto t_2', \sigma''$ with $M\tilde{t}_2' \equiv t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SS-OrNone

For all mappings M such that $M(\varphi_1 \land \varphi_2)$ we need to demonstrate that $t_1 \blacklozenge t_2, \sigma \mapsto t_1' \blacklozenge t_2', \sigma''$ with $M\tilde{t}_1' \blacklozenge \tilde{t}_2' \equiv t_1' \blacklozenge t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1\supset t_1,\sigma\mapsto t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma' \text{ and } \forall M_2.M_2\varphi_2\supset t_2,\sigma'\mapsto t_2',\sigma''\wedge M_2\tilde{t}_2'\equiv t_2'\wedge M_2\tilde{\sigma}''\equiv\sigma''.$

Since M satisfies both φ_1 and φ_2 , we obtain from S-Ornone and the induction steps above that $t_1 \blacklozenge t_2, \sigma \mapsto t_1' \blacklozenge t_2', \sigma''$ with $M\tilde{t}_1' \blacklozenge \tilde{t}_2' \equiv t_1' \blacklozenge t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SS-Edit

For all mappings M, we need to demonstrate that $\Box v, \sigma \mapsto \Box v, \sigma$ with $M \Box v \equiv \Box v$ and $M\sigma \equiv \sigma$. This follows trivially from S-EDIT.

Case SS-Fill

For all mappings M, we need to demonstrate that $\boxtimes \beta$, $\sigma \mapsto \boxtimes \beta$, σ with $M \boxtimes \beta \equiv \boxtimes \beta$ and $M\sigma \equiv \sigma$. This follows trivially from S-Fill.

Case SS-Update

For all mappings M, we need to demonstrate that $\blacksquare l, \sigma \mapsto \blacksquare l, \sigma$ with $M \blacksquare l \equiv \blacksquare l$ and $M\sigma \equiv \sigma$. This follows trivially from S-Update.

Case SS-FAIL

For all mappings M, we need to demonstrate that $\xi, \sigma \mapsto \xi, \sigma$ with $M \notin \xi \notin \xi$ and $M\sigma \equiv \sigma$. This follows trivially from S-FAIL.

Case SS-XOF

For all mappings M, we need to demonstrate that $e_1 \diamond e_2$, $\sigma \mapsto e_1 \diamond e_2$, σ with $Me_1 \diamond e_2 \equiv e_1 \diamond e_2$ and $M\tilde{\sigma} \equiv \sigma$. This follows trivially from S-Xor.

Case SS-Next

For all mappings M such that $M\varphi$, we need to demonstrate that $t_1 \triangleright e_2$, $\sigma \mapsto t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$. From the induction hypothesis, we obtain the following. $\forall M_1.M_1\varphi \supset t_1, \sigma \mapsto t_1', \sigma' \land M_1\tilde{t}_1' \equiv t_1' \land M_1\tilde{\sigma}' \equiv \sigma'$.

Since M satisfies φ , we obtain from S-Next and the induction step above that $t_1 \triangleright e_2$, $\sigma' \mapsto t'_1 \triangleright e_2$, σ' with $M\tilde{t}'_1 \triangleright e_2 \equiv t'_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SS-AND

For all mappings M such that $M(\varphi_1 \land \varphi_2)$ we need to demonstrate that $t_1 \bowtie t_2, \sigma \mapsto t_1' \bowtie t_2', \sigma''$ with $M\tilde{t}_1' \bowtie \tilde{t}_2' \equiv t_1' \bowtie t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1\supset t_1, \sigma\mapsto t_1', \sigma' \qquad M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv \sigma' \text{ and } \forall M_2.M_2\varphi_2\supset t_2, \sigma'\mapsto t_2', \sigma'' \qquad M_2\tilde{t}_2'\equiv t_2'\wedge M_2\tilde{\sigma}''\equiv \sigma''.$

Since M satisfies both φ_1 and φ_2 , we obtain from S-AND and the induction steps above that $t_1 \bowtie t_2, \sigma \mapsto t_1' \bowtie t_2', \sigma''$ with $M\tilde{t}_1' \bowtie \tilde{t}_2' \equiv t_1' \bowtie t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$.

3.3 Proof of soundness of symbolic normalisation semantics

PROOF. We prove Lemma 6.3 by induction over the derivation $e, \sigma \ \ \ \overline{\tilde{t}, \tilde{\sigma}, \varphi}$.

The base case is when the SN-Done rule applies. Provided that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that $e, \sigma \Downarrow t, \sigma'$ with $M\tilde{t} \equiv t$ and $M\tilde{\sigma}' \equiv \sigma'$.

By Lemma 6.5 and 6.4, we know that

 $\forall M_1.M_1\varphi_1 \supset e, \sigma \downarrow t, \sigma' \land M_1\tilde{t} \equiv t \land M_1\tilde{\sigma}' \equiv \sigma' \text{ and } \forall M_2.M_2\varphi_2 \supset t, \sigma' \mapsto t', \sigma'' \land M_2\tilde{t}' \equiv t' \land M_2\tilde{\sigma}'' \equiv \sigma''.$

Since *M* satisfies both φ_1 and φ_2 , we have $e, \sigma \downarrow t, \sigma'$ with $M\tilde{\sigma}' \equiv \sigma'$.

The induction step is when SN-Repeat applies. In this case, for all mappings M such that $M(\varphi_1 \wedge \varphi_2 \wedge \varphi_3)$, we need to demonstrate that $e, \sigma \Downarrow t'', \sigma'''$ with $M\tilde{t}'' \equiv t''$ and $M\tilde{\sigma}''' \equiv \sigma'''$.

Again by Lemma 6.5 and 6.4, we know that

 $\forall M_1.M_1\varphi_1\supset e,\sigma\downarrow t,\sigma'\wedge M_1\tilde{t}\equiv t\wedge M_1\tilde{\sigma}'\equiv \sigma' \text{ and } \forall M_2.M_2\varphi_2\supset t,\sigma'\mapsto t',\sigma''\wedge M_2\tilde{t}'\equiv t'\wedge M_2\tilde{\sigma}''\equiv \sigma''.$

Furthermore, we know by applying the induction hypothesis that $\forall M_3.M_3\varphi_3\supset t',\sigma''\downarrow t'',\sigma'''\land M_3\tilde{t}''\equiv t''\land M_3\tilde{\sigma}'''\equiv\sigma'''.$

Since M satisfies φ_1, φ_2 and φ_3 , we obtain from N-Repeat, the application of lemmas and the induction step above that $e, \sigma \Downarrow t'', \sigma'''$ with $M\tilde{t}'' \equiv t''$ and $M\tilde{\sigma}''' \equiv \sigma'''$.

3.4 Proof of soundness of symbolic handling semantics

Proof. We prove Lemma 6.2 by induction over the derivation $t,\sigma \rightsquigarrow \tilde{t},\tilde{\sigma},\tilde{\imath},\varphi$.

Case SH-Change

For all mappings M, we need to demonstrate that $\Box v, \sigma \xrightarrow{Ms} \Box Ms, \sigma$ with $M \Box s \equiv \Box Ms$ and $M\sigma \equiv \sigma$. This follows trivially from H-Change.

Case SH-FILL

For all mappings M, we need to demonstrate that $\boxtimes \beta$, $\sigma \xrightarrow{Ms} \square Ms$, σ with $M \square s \equiv \square Ms$ and $M\sigma \equiv \sigma$. This follows trivially from H-Fill.

Case SH-UPDATE

For all mappings M, we need to demonstrate that

$$\blacksquare l, \sigma \xrightarrow{Ms} \blacksquare l, \sigma[l \mapsto Ms] \text{ with } M \blacksquare l \equiv \blacksquare l \text{ and } M\sigma[l \mapsto s] \equiv \sigma[l \mapsto Ms].$$

 $\blacksquare l, \sigma \xrightarrow{Ms} \blacksquare l, \sigma[l \mapsto Ms] \text{ follows trivially from H-Update. } M \blacksquare l \equiv \blacksquare l \text{ follows trivially, since locations cannot contain symbols.} \\ M\sigma[l \mapsto s] \equiv \sigma[l \mapsto Ms] \text{ follows trivially.}$

Case SH-Next

For all mappings M such that $M\varphi_1$, we need to demonstrate that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{\imath}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

By the induction hypothesis we obtain the following. $\forall M_1.M_1\varphi_1\supset t_1,\sigma\xrightarrow{M_1\tilde{t}}t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'$

Since M satisfies φ_1 , we obtain from H-PassNexT and the induction step above that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{t}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

For all mappings M such that $M\varphi_2$, we need to demonstrate that $t_1 > e_2$, $\sigma \xrightarrow{C} t_2$, σ' with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From Lemma 6.3 we obtain that $\forall M_1.M_1\varphi \supset e_2v_1, \sigma \Downarrow t_2, \sigma' \land M\tilde{t}_2 \equiv t_2 \land M\tilde{\sigma}' \equiv \sigma'$.

This together with H-Next gives us exactly what we need to prove this case.

Case SH-PASSNEXT

For all mappings M such that $M\varphi$, we need to demonstrate that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{t}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

By the induction hypothesis we obtain the following. $\forall M_1.M_1\varphi_1 \supset t_1, \sigma \xrightarrow{M_1\tilde{\iota}} t_1', \sigma' \land M_1\tilde{\iota}_1' \equiv t_1' \land M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from H-PASSNEXT and the induction step above that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{t}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-PASSNEXTFAIL

For all mappings M such that $M\varphi$, we need to demonstrate that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{t}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

By the induction hypothesis we obtain the following. $\forall M_1.M_1\varphi_1 \supset t_1, \sigma \xrightarrow{M_1\tilde{t}} t'_1, \sigma' \land M_1\tilde{t}'_1 \equiv t'_1 \land M_1\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ and from the premise of SH-PASSNEXTFAIL we have $\mathcal{F}(\tilde{t}_2, \tilde{\sigma}'')$, we obtain from H-PASSNEXTFAIL and the induction step above that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{t}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-PassThen

For all mappings M such that $M\varphi$, we need to demonstrate that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{\imath}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

By the induction hypothesis we obtain the following. $\forall M_1.M_1\varphi_1 \supset t_1, \sigma \xrightarrow{M_1\tilde{\iota}} t'_1, \sigma' \land M_1\tilde{\iota}'_1 \equiv t'_1 \land M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from H-PassThen and the induction step above that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{\iota}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-Pick

We have that $M\varphi_1$ and/or $M\varphi_2$. In the first case, the proof is identical to the SH-PickLeft rule. In the second case, the proof is identical to the SH-PickRight rule.

Case SH-PickLeft

For all mappings M such that $M\varphi_1$, we need to demonstrate that $e_1 \diamond e_2, \sigma \xrightarrow{\mathsf{L}} t_1, \sigma'$ with $M\tilde{t}_1 \equiv t_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

From Lemma 6.3 we obtain that $\forall M_1.M_1\varphi \supset e_1, \sigma \downarrow t_1, \sigma' \land M\tilde{t}_1 \equiv t_1 \land M\tilde{\sigma}' \equiv \sigma'$.

Since M satisfies φ_1 , we obtain from H-PickLeft and the application of Lemma 6.3 above that $e_1 \diamond e_2, \sigma \xrightarrow{\mathsf{L}} t_1, \sigma'$ with $M\tilde{t}_1 \equiv t_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-Ріск Rіднт

For all mappings M such that $M\varphi_2$, we need to demonstrate that $e_1 \diamond e_2$, $\sigma \xrightarrow{R} t_2$, σ' with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}_2 \equiv \sigma'$.

From Lemma 6.3 we obtain that $\forall M_1.M_1\varphi \supset e_2, \sigma \Downarrow t_2, \sigma' \land M\tilde{t}_2 \equiv t_2 \land M\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ_2 , we obtain from H-PickRight and the application of Lemma 6.3 above that $e_1 \diamond e_2$, $\sigma \xrightarrow{R} t_2$, σ' with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}_2 \equiv \sigma'$.

Case SH-AND

For all mappings M such that $M\varphi_1$, we need to demonstrate that $t_1 \bowtie t_2$, $\sigma \xrightarrow{M \vdash \tilde{t}} t_1' \bowtie t_2$, σ' with $M\tilde{t}_1' \bowtie t_2 \equiv t_1' \bowtie t_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

By the induction hypothesis we obtain the following. $\forall M_1.M_1\varphi_1\supset t_1,\sigma\xrightarrow{M_1\tilde{t}}t'_1,\sigma'\wedge M_1\tilde{t}'_1\equiv t'_1\wedge M_1\tilde{\sigma}'\equiv\sigma'.$

Since M satisfies φ_1 , we obtain from H-FirstAnd and the induction step above that $t_1 \bowtie t_2$, $\sigma \xrightarrow{M \vdash \tilde{\imath}} t'_1 \bowtie t_2$, σ' with $M\tilde{t}'_1 \bowtie t_2 \equiv t'_1 \bowtie t_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

For all mappings M such that $M\varphi_2$, we need to demonstrate that $t_1 \bowtie t_2$, $\sigma \xrightarrow{M \bowtie \tilde{t}} t_1 \bowtie t_2'$, σ' with $Mt_1 \bowtie \tilde{t}_2' \equiv t_1 \bowtie t_2'$ and $M\tilde{\sigma}' \equiv \sigma'$. By the induction hypothesis we obtain the following. $\forall M_1.M_1\varphi_1 \supset t_2, \tilde{\sigma} \xrightarrow{M_1\tilde{t}} t_2', \sigma' \wedge M_1\tilde{t}_2' \equiv t_2' \wedge M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ_2 , we obtain from H-Second And and the induction step above that $t_1 \bowtie t_2, \sigma \xrightarrow{M \le \tilde{t}} t_1 \bowtie t_2', \sigma'$ with $Mt_1 \bowtie \tilde{t}_2' \equiv t_1 \bowtie t_2'$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-OR

This case is proven in the same way as SH-AND.

3.5 Proof of soundness of symbolic interacting semantics

PROOF. We prove Theorem 6.1 by induction on $\tilde{t}, \tilde{\sigma} \approx \overline{\tilde{t}', \tilde{\sigma}', \tilde{\iota}, \varphi}$. There is only one rule that applies, namely SI-Handle. Provided that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that $t, \sigma \Rightarrow M\tilde{\iota} t'', \sigma''$ with $M\tilde{t}'' \equiv t''$ and $M\tilde{\sigma}'' \equiv \sigma''$. Lemma 6.3 and Lemma 6.2 respectively give us that

 $\forall M_1.M_1\varphi_1 \supset t, \sigma \xrightarrow{M_1\tilde{t}} t', \sigma' \land M_1\tilde{t}' \equiv t' \land M_1\tilde{\sigma}' \equiv \sigma' \text{ and } \forall M_2.M_2\varphi_2 \supset t', \sigma' \Downarrow t'', \sigma'' \land M_2\tilde{t}'' \equiv t'' \land M_2\tilde{\sigma}'' \equiv \sigma''.$ Since M satisfies both φ_1 and φ_2 , we obtain exactly what we need to prove, namely $t, \sigma \Rightarrow \tilde{t} t'', \sigma'' M\tilde{t}'' \equiv t'' \text{ and } M\tilde{\sigma}'' \equiv \sigma''.$

4 COMPLETENESS PROOFS

4.1 Proof of completeness of the symbolic handling semantics

PROOF. We prove Lemma 6.8 by induction over the derivation $t, \sigma \xrightarrow{i} t', \sigma'$.

Case H-Change

By the SH-Change rule, we have $\Box v, \sigma \leadsto \Box s, \tilde{\sigma}, s$, True, and $s \sim v'$ holds by definition of input simulation.

Case H-FILL

By the SH-Fill rule, we have $\boxtimes \beta, \sigma \leadsto \Box s, \tilde{\sigma}, s$, True, and $s \sim v$ holds by definition of input simulation.

Case H-Updati

By the SH-Update rule, we have $\blacksquare l$, $\sigma \leftrightarrow \blacksquare l$, $\tilde{\sigma}[l \mapsto s]$, s, True, and $s \sim v$ holds by definition of input simulation.

Case H-Next

By the SH-Next rule, we have $t_1 \triangleright e_2$, $\sigma \leftrightarrow \overline{\tilde{t}_1' \triangleright e_2, \tilde{\sigma}_1, \tilde{\iota}, \varphi_1} \cup \overline{t_2, \tilde{\sigma}_2, C, \varphi_2}$, and $C \sim C$ holds by definition of input simulation.

Case H-PassNext

By application of the induction hypothesis, we obtain the following.

For all t_1, σ, i such that $t_1, \sigma \xrightarrow{i} t'_1, \sigma'$ there exists an $\tilde{i} \sim i$ such that $t_1, \sigma \leadsto \overline{\tilde{t}_1, \tilde{\sigma}, \tilde{i}, \varphi}$. From this we can conclude that there exists a symbolic execution $t_1 \triangleright e_2, \sigma \leadsto \overline{\tilde{t}_1} \triangleright e_2, \tilde{\sigma}, \tilde{i}, \varphi$, and that $\tilde{i} \sim i$.

Case H-PassThen

By application of the induction hypothesis, we obtain the following.

For all t_1, σ, i such that $t_1, \sigma \xrightarrow{i} t'_1, \sigma'$ there exists an $\tilde{i} \sim i$ such that $t_1, \sigma \leadsto \overline{\tilde{t}_1, \tilde{\sigma}, \tilde{i}, \varphi}$. From this we can conclude that there exists a symbolic execution $t_1 \triangleright e_2, \sigma \leadsto \overline{\tilde{t}_1} \triangleright e_2, \tilde{\sigma}, \tilde{i}, \varphi$, and $\tilde{i} \sim i$.

Case H-PICKLEFT

Lemma 6.9 gives us the following.

There exists a symbolic execution e_1 , $\sigma \ \ \ \ \tilde{t}_1$, $\tilde{\sigma}$, φ_1 . There exists a symbolic execution e_2 , $\tilde{\sigma} \ \ \ \ \tilde{t}_2$, $\tilde{\sigma}'$, φ_2 .

We can now conclude that a symbolic execution exists. Either by the SH-PickLeft rule, in case $\mathcal{F}(\tilde{t}_2, \tilde{\sigma}')$, or by the SH-Pick rule in case $\neg \mathcal{F}(\tilde{t}_2, \tilde{\sigma}')$. We have that $L \sim L$ holds by definition.

Case H-Ріск Rіднт

Lemma 6.9 gives us the following.

There exists a symbolic execution $e_1, \sigma \not \ \ \overline{t_1, \tilde{\sigma}, \varphi_1}$. There exists a symbolic execution $e_2, \tilde{\sigma} \not \ \ \overline{t_2, \tilde{\sigma}', \varphi_2}$.

We can now conclude that a symbolic execution exists. Either by the SH-PICKRIGHT rule, in case $\mathcal{F}(\tilde{t}_1, \tilde{\sigma})$, or by the SH-PICK rule in case $\neg \mathcal{F}(t_1, \tilde{\sigma})$.

We have that $R \sim R$ holds by definition.

Case H-FirstOr

By application of the induction hypothesis, we obtain the following. For all t_1, σ, i such that $t_1, \sigma \xrightarrow{i} t'_1, \sigma'$ there exists an $\tilde{\iota} \sim i$ such that $t_1, \sigma \rightsquigarrow \tilde{t}_1, \tilde{\sigma}, \tilde{\iota}, \varphi$.

From SH-Or, and the conclusion of the induction hypothesis, we can conclude that there exists a symbolic input, namely $F\tilde{\imath}$, such that $t_1 \blacklozenge t_2, \sigma \leadsto \overline{\tilde{t}_1' \blacklozenge t_2, \tilde{\sigma}, F\tilde{\imath}, \varphi}$. From $\tilde{\imath} \sim i$ and by definition of input simulation, we can conclude that $F\tilde{\imath} \sim Fi$.

Case H-SecondOr

By application of the induction hypothesis, we obtain the following. For all t_2, σ, i such that $t_2, \sigma \xrightarrow{i} t'_2, \sigma'$ there exists an $\tilde{\iota} \sim i$ such that $t_2, \sigma \leadsto \tilde{t}_2, \tilde{\sigma}, \tilde{\iota}, \varphi$.

From SH-OR, and the induction step above, we can conclude that there exists a symbolic input such that $t_1 \blacklozenge t_2, \sigma \rightsquigarrow \tilde{t}_1 \blacklozenge t_2', \tilde{\sigma}', S \tilde{\iota}, \varphi$, namely $S \tilde{\iota}$. From $\tilde{\iota} \sim i$ and by definition of input simulation, we can conclude that $S \tilde{\iota} \sim S i$.

Case H-FirstAnd

By application of the induction hypothesis, we obtain the following. For all t_1, σ, i such that $t_1, \sigma \xrightarrow{i} t'_1, \sigma'$ there exists an $\tilde{i} \sim i$ such that $t_1, \sigma \rightsquigarrow \tilde{t}_1, \tilde{\sigma}, \tilde{i}, \varphi$.

From SH-And, and the conclusion of the induction step above, we can conclude that there exists a symbolic input, namely F \tilde{i} such that $t_1 \bowtie t_2, \sigma \rightsquigarrow \tilde{t}_1' \bowtie t_2, \tilde{\sigma}, F \tilde{i}, \varphi$. From $\tilde{i} \sim i$ and by definition of input simulation, we can conclude that F $\tilde{i} \sim F i$.

Case H-SecondAnd

By application of the induction hypothesis, we obtain the following. For all t_2, σ, i such that $t_2, \sigma \xrightarrow{i} t'_2, \sigma'$ there exists an $\tilde{\iota} \sim i$ such that $t_2, \sigma \rightsquigarrow \tilde{t}_2, \tilde{\sigma}, \tilde{\iota}, \varphi$.

From SH-AND, and the conclusion of the induction step above, we can conclude that there exists a symbolic input, namely $S\tilde{\imath}$ such that $t_1 \bowtie t_2, \sigma \rightsquigarrow \overline{t_1 \bowtie \tilde{t}_2, \tilde{\sigma}, S\tilde{\imath}, \varphi}$. From $\tilde{\imath} \sim i$ and by definition of input simulation, we can conclude that $S\tilde{\imath} \sim Si$.

4.2 Proof of completeness of the symbolic interaction semantics

Proof. The proof of Theorem 6.7 consists of one case, since the interacting semantics consists of one rule, namely I-Handle

$$\frac{t,\sigma \xrightarrow{i} t',\sigma' \quad t',\sigma' \Downarrow t'',\sigma''}{t,\sigma \ \Rightarrow i \ t'',\sigma''} \ .$$

By Lemma 6.8 we obtain the following. $t, \sigma \xrightarrow{i} t', \sigma' \supset \exists \tilde{\imath}.t, \sigma \leadsto \tilde{t}, \tilde{\sigma}, \tilde{\imath}, \varphi \land \tilde{\imath} \sim i$ Then by Lemma 6.9 we obtain the following. $t', \sigma' \Downarrow t'', \sigma'' \supset t', \sigma' \ngeq \tilde{t}', \tilde{\sigma}', \varphi'$

From the above, together with the SI-Handle rule, we can conclude that there exists a symbolic execution $t, \sigma \approx \tilde{t}'', \tilde{\sigma}'', \tilde{\iota}, \varphi \wedge \tilde{\iota} \sim i$.