1 Subshift

Seja $N \geq 2$. Definimos o conjunto Σ_N formado sequências de números naturais limitados entre 1 e N. Precisamente,

$$\Sigma_N = \{(x_n)_{n=0}^{\infty} \in \mathbb{N}^{\mathbb{N}} : 1 \le x_n \le N \}.$$

Definimos também a função $d_N: \Sigma_N \times \Sigma_N \to \mathbb{R}$ dada por

$$d_N(x,y) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{N^i},$$

onde $x=(x_n)_{n=0}^{\infty}$ e $y=(y_n)_{n=0}^{\infty}$. Como $\sum_{i=0}^{\infty}\frac{1}{N^i}<\infty,\ d_N$ está bem definida.

Proposição 1.1. (Σ_N, d_N) é um espaço métrico.

Demonstração. Se $x=(x_n)_{n=0}^{\infty}, y=(y_n)_{n=0}^{\infty}, z=(z_n)_{n=0}^{\infty}\in\Sigma_N$, então

- 1. $d_N(x,y) \ge 0$, pois $|x_i y_i| \ge 0$ para todo $i \ge 0$.
- 2. $d_N(x,y) = d_N(y,x)$, pois $|x_i y_i| = |y_i x_i|$ para todo $i \ge 0$.
- 3. $d_N(x,z) \le d_N(x,y) + d_N(y,z)$, pois $|x_i z_i| = |x_i y_i + y_i z_i| \le |x_i y_i| + |y_i z_i|$ para todo $i \ge 0$.

Desse modo, d_N é uma distância em Σ_N e (Σ_N, d_N) é um espaço métrico.

Proposição 1.2. Sejam $x = (x_n)_{n=0}^{\infty}, y = (y_n)_{n=0}^{\infty} \in \Sigma_N$.

- 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então $d_N(x, y) \le \frac{1}{N^k}$.
- 2. Se $d_N(x,y) < \frac{1}{N^k}$, então $x_i = y_i$ para todo $0 \le i \le k$.

Demonstração. 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então

$$d_N(x,y) \le \sum_{i=k+1}^{\infty} \frac{1}{N^i} = \frac{1}{N^{k+1}} \sum_{i=0}^{\infty} \frac{1}{N^i} = \frac{1}{N^{k+1}} \frac{N}{N-1} < \frac{1}{N^k}$$

2. Se $x_j \neq y_j$ para algum $0 \leq j \leq k$, então

$$d_N(x,y) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{N^i} \ge \frac{1}{N^j} \ge \frac{1}{N^k}$$

Seja $A = (a_{ij})_{1 \leq i,j \leq N}$ uma matriz quadrada de ordem N tal que $a_{ij} \in \{0,1\}$ para todo $1 \leq i,j \leq N$. Definimos o conjunto Σ_A como

$$\Sigma_A = \{(x_n)_{n=0}^{\infty} \in \Sigma_N : a_{x_i x_{i+1}} = 1 \text{ para todo } i \ge 0\}.$$

Seja $x = (x_n)_{n=0}^{\infty} \in \Sigma_A$. Observando que $a_{x_i x_{i+1}} = 1$ para todo $i \geq 1$, temos que $\sigma(x) = (x_n)_{n=1}^{\infty} \in \Sigma_A$. Desse modo, podemos definir a função $\sigma_A : \Sigma_A \to \Sigma_A$ como sendo a restrição de σ em Σ_A . Dizemos que σ_A é o subshift definido pela matriz de transição A.

Proposição 1.3. Σ_A é um subconjunto fechado de Σ_N .

Demonstração. Seja $(x_n)_{n=0}^{\infty}$ uma sequência de elementos em Σ_A convergente para $x = (\xi_n)_{n=0}^{\infty}$.

Suponha que $x \notin \Sigma_A$. Então, existe $j \geq 0$ tal que $a_{\xi_j \xi_{j+1}} = 0$. Por outro lado, pela definição de convergência, existe $n_0 \geq 0$ tal que $d(x_{n_0}, x) < \frac{1}{N^{j+1}}$ e, portanto, as j+1 primeiras entradas de x e x_{n_0} são iguais. Absurdo, pois $x_{n_0} \in \Sigma_A$.

No restante dessa seção vamos estudar a dinâmica da função quadrática $F_{\mu}(x) = \mu x(1-x)$, onde o parâmetro $\mu = 3.839$ está fixado. Será omitido μ na notação da função e escreveremos apenas F.

Existe uma vizinhança V de 0.149888 tal que $F^3(V) \subset V$ e $|(F^3)'(V)| < 1$. Desse modo, existe um ponto periódico $a_1 \in V$ de período 3. Chamando a_1, a_2, a_3 os elementos dessa órbita, temos que

$$a_1 \simeq 0.149888,$$

 $a_2 \simeq 0.489149,$
 $a_3 \simeq 0.959299.$

Além disso, de acordo com o Teorema de Singer, essa é a única órbita atratora de F.

Observando o gráfico de F^3 , existe outra órbita de tamanho 3. Chamando b_1, b_2, b_3 os elementos dessa órbita, temos que

$$b_1 \simeq 0.169040,$$

 $b_2 \simeq 0.539247,$
 $b_3 \simeq 0.953837.$

Para cada b_i , existe \bar{b}_i do lado oposto de b_i em relação à a_i tal que $F^3(\bar{b}_i) = b_i$. Defina $A_1 = (\bar{b}_1, b_1), A_2 = (\bar{b}_2, b_2)$ e $A_3 = (b_3, \bar{b}_3)$. Observe que A_i é o intervalo maximal contendo a_i utilizado na demonstração do Teorema de Singer.

Sendo F^3 simétrica em relação à $\frac{1}{2}$, temos que $F(\bar{b}_2) = F(b_2) = b_3$. Além disso, $F(\bar{b}_1) = \bar{b}_2$ e $F(\bar{b}_3) = \bar{b}_1$.

Desse modo, F mapeia, de forma monótona, A_1 em A_2 e A_3 em A_1 . Além disso, o máximo de F é $0.95975 < \bar{b}_3$ e, portanto, $F(A_2) \subset A_3$. (???)

Sabemos que se $x \notin [0,1]$, então $\lim_{n\to\infty} F^n(x) = -\infty$. Além disso, o único ponto periódico de A_i é a_i e todos os pontos de A_i tendem para a órbita de a_i . Portanto, todos os outros infinitos pontos periódicos residem no complemento dos A_i 's em [0,1], que é formado por quatro intervalos fechados. Sejam $I_0 = [0, \bar{b}_1], I_1 = [b_1, \bar{b}_2], I_2 = [b_2, b_3], I_3 = [\bar{b}_3, 1]$ tais intervalos. Podemos dizer mais,

Proposição 1.4. Se $x \notin \{0, a_1, a_2, a_3\}$ é um ponto periódico de F, então $x \in I_1 \cup I_2$.

Demonstração. Observando que F é monótona nos I_k 's, temos que $F(I_0) = I_0 \cup A_1 \cup I_1$, $F(I_1) = I_2$, $F(I_2) = I_1 \cup A_2 \cup I_2$ e $F(I_3) = I_0$. Desse modo, se $x \in I_1 \cup I_2$ é periódico, então órbita de x permanece em $I_1 \cup I_2$.

Por outro lado, se $x \in I_0 - \{0\}$, existe um menor $n \ge 1$ tal que $F^n(x) \notin I_0$. Se $F^n(x) \in A_1$, então x não pode ser periódico, pois o único ponto periódico de A_1 é a_1 . Se $F^n(x) \in I_1$, então x não pode ser periódico, pois senão a órbita de x estaria contida em $I_1 \cup I_2$ e nunca retornaria para I_0 .

Finalmente, se $x \in I_3$, então $F(x) \in I_0$ e a análise segue como no parágrafo anterior.

Defina o conjunto Λ como

$$\Lambda = \{ x \in I_1 \cup I_2 : F^n(x) \in I_1 \cup I_2 \text{ para todo } n \ge 1 \}.$$

Pela Proposição anterior, todos os pontos periódicos de F estão em Λ , com exceção dos pontos $0, a_1, a_2$ e a_3 .

Lema 1.5. Existe $N \ge 1$ tal que $|(F^n)'(\Lambda)| > 1$ para todo $n \ge N$.

Demonstração. Como F'' < 0, F' é decrescente. Observando que A_2 é uma bola centrada em $\frac{1}{2}$, temos que $|F'(x)| \ge \nu = F'(\bar{b}_2) \simeq 0.3$ para todo $x \in I_1 \cup I_2$.

Observando o gráfico de F^3 , observamos que o subconjunto de $I_1 \cup I_2$ onde $|F'| \leq 1$ é formado por três intervalos fechados B_1, B_2, B_3 , que estão numerados da esquerda para direita. Utilizando a simetria do gráfico de F^3 e o fato de que $(F^3)'(b_1) > 1$, temos que $F^3(B_3) \subset A_1$ e, portanto, $B_3 \cap \Lambda = \emptyset$.

Por outro lado, $B_2 \subset [0.661, 0.683]$, já que $(F^3)'(0.661) > 1$ e $(F^3)'(0.683) < -1$. Desse modo, $F(B_2) \subset A_3$. Utilizando novamente a simetria do gráfico de F^3 , $F(B_1) \subset A_3$. Portanto, $B_1 \cap \Lambda = \emptyset$ e $B_2 \cap \Lambda = \emptyset$. Concluímos assim que $|(F^3)'(\Lambda)| > \lambda$ para algum $\lambda > 1$.

Seja $K \ge 1$ tal que $\nu^2 \lambda^K > 1$.

Para as demonstrações dos próximos resultados, vamos considerar a matriz de transição

$$A = (0, 1//1, 1)$$

Podemos definir a função $S: \Lambda \to \Sigma_A$ por $S(x) = (x_n)_{n=0}^{\infty}$, onde $x_i = 1$ quando $F^i(x) \in I_1$ e $x_i = 2$ quando $F^i(x) \in I_2$. Observe que está bem definida. De fato, $F(I_1) = I_2$ e $F(I_2) \subset I_1 \cup I_2$ e, portanto, $a_{x_i x_{i+1}} = 1$ para todo $i \geq 0$.

Lema 1.6. A não contém intervalos.

Demonstração. Suponha que Λ contém algum intervalo. Sejam $x, y \in \Lambda$, com x < y, tais que $[x, y] \subset \Lambda$. Pelo Lema anterior, existe $N \ge 1$ tal que $|(F^n)'(\Lambda)| > \lambda > 1$ para todo $n \ge N$. Utilizando a notação do Lema anterior, seja $k \ge N$ tal que $|x - y| \nu^N \lambda^{k-N} > 1$. Pelo Teorema do Valor Médio, existe $c \in [x, y]$ tal que

$$|F^{k}(x) - F^{k}(y)| = |(F^{k})'(c)||x - y|$$

$$= \left| \prod_{i=0}^{k-1} F'(F^{i}(c)) \right| |x - y|$$

$$= \left| \prod_{i=0}^{N-1} F'(F^{i}(c)) \right| \left| \prod_{i=N}^{k-1} F'(F^{i}(c)) \right| |x - y|$$

$$> \nu^{N} \lambda^{k-N} > 1$$

e, portanto, $F^k(x)$ ou $F^k(y)$ não está em [0,1]. Absurdo.

Proposição 1.7. S é um homeomorfismo.

Demonstração. 1. S é injetora.

Sejam $x, y \in \Lambda$, com x < y, e suponha que S(x) = S(y). Desse modo, $F^n(x)$ e $F^n(y)$ está no mesmo lado em relação ao ponto crítico e, portanto, F é monótona no intervalo entre $F^n(x)$ e $F^n(y)$ para todo $n \geq 0$. Absurdo, pois implica que $[x, y] \subset \Lambda$.

2. S é sobrejetora.

Seja $(x_n)_{n=0}^{\infty} \in \Sigma_A$. Vamos provar que existe $x \in \Lambda$ tal que $S(x) = (x_n)_{n=0}^{\infty}$. Inicialmente, para cada $n \geq 0$, considere

$$I_{x_0 \cdots x_n} = \{ x \in [0, 1] : x \in I_{x_0}, \dots, F^n(x) \in I_{x_n} \}.$$

Observe que $x \in I_{x_0 \cdots x_n}$ se, e somente se, $x \in I_{x_0}$ e $F(x) \in \{y \in [0,1] : y \in I_{x_1}, \dots, F^{n-1}(y) \in I_{x_n}\}$. Desse modo, $I_{x_0 \cdots x_n} = I_{x_0} \cap F^{-1}(I_{x_1 \cdots x_n})$.

Assim, por indução, vemos que $I_{x_0\cdots x_n}$ é um intervalo fechado não vazio. Além disso, $I_{x_0\cdots x_n}=I_{x_1\cdots x_{n-1}}\cap F^{-n}(I_{x_n}).$

Desse modo, $(I_{x_0}, I_{x_0x_1}, \dots)$ é uma sequência de intervalos encaixantes e existe $x \in \bigcap_{n=0}^{\infty} I_{x_0 \cdots x_n}$. Observe que $x \in \bigcap_{n=0}^{\infty} I_{x_0 \cdots x_n}$ é único, pois S é injetora. Como $F^i(x) \in I_{x_i}$ e, portanto, $S(x) = (x_n)_{n=0}^{\infty}$.

S é contínua.

Seja $x \in \Lambda$, com $S(x) = (x_n)_{n=0}^{\infty}$. Sejam também $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{N^k} < \varepsilon$.

Como $I_{x_0...x_k}$ um intervalo fechado e $x \in I_{x_0...x_k}$, tome $\delta > 0$ tal que $|x - y| < \delta$ implica que $y \in I_{x_0...x_k}$. Desse modo, S(x) e S(y) são iguais nas primeiras k + 1 entradas e, portanto, $d_N(S(x), S(y)) \leq \frac{1}{N^{k+1}} < \varepsilon$.

Teorema 1.8. $S \circ F|_{\Lambda} = \sigma_A \circ S$.

Demonstração. Seja $x \in \Lambda$. Utilizando a notação da Proposição anterior, se $S(x) = (x_n)_{n=0}^{\infty}$, então x é o único elemento de $\bigcap_{n=0}^{\infty} I_{x_0 \cdots x_n}$.

Como $I_{x_0...x_n} = I_{x_0} \cap \cdots \cap F^{-n}(I_{x_n})$, temos que

$$F(I_{x_0...x_n}) = I_{x_1} \cap \cdots \cap F^{-n+1}(I_{x_n}),$$

pois $F(I_{x_0}) \subset I_{x_1}$ (??). Desse modo,

$$S \circ F|_{\Lambda}(x) = S(F(\cap_{n=0}^{\infty} I_{x_0 \cdots x_n}))$$
$$= S(\cap_{n=1}^{\infty} I_{x_0 \cdots x_n})$$
$$= (x_n)_{n=1}^{\infty} = \sigma \circ S(x)$$

Proposição 1.9. Seja A uma matriz de transição de ordem N. Então σ_A possui $Tr(A^k)$ pontos periódicos de período k.

Demonstração. Temos que $x = (x_n)_{n=0}^{\infty} \in \Sigma_A$ é um ponto periódico de período k se, e somente se, $x_i = x_{i+k}$ para todo $i \ge 0$, ou seja,

$$x = (x_0, x_1, \dots, x_{k-1}, x_0, x_1, \dots, x_{k-1}, \dots).$$

Além disso, se $x \in \Sigma_A$ implica que $a_{x_0x_1} = a_{x_1x_2} = \cdots = a_{x_{k-1}x_0} = 1$ e, portanto $a_{x_0x_1}a_{x_1x_2}\cdots a_{x_{k-1}x_0} = 1$. Desse modo, a quantidade de pontos periódicos de período k é dada por

$$\sum_{x_0=1}^N \cdots \sum_{x_{k-1}=1}^N a_{x_0 x_1} a_{x_1 x_2} \cdots a_{x_{k-1} x_0}.$$

Por outro lado, utilizando a definição de multiplicação de matrizes podemos mostrar por indução que $A^k=(c_{ij})_{1\leq i,j\leq N},$ onde

$$c_{ij} = \sum_{x_1=1}^{N} \cdots \sum_{x_{k-1}=1}^{N} a_{ix_1} a_{x_1 x_2} \cdots a_{x_{k-1} j}$$

e, portanto,

$$\operatorname{Tr}(A^k) = \sum_{x_0=1}^N c_{x_0x_0} = \sum_{x_0=1}^N \cdots \sum_{x_{k-1}=1}^N a_{x_0x_1} a_{x_1x_2} \cdots a_{x_{k-1}x_0}.$$