Energy-based Multi-Modal Attention

Aurélien Werenne Supervisor: Dr. Raphaël Marée

September 10, 2019

Module learns how to compute attention scores based on the three properties,

Module learns how to compute attention scores based on the three properties,

• Relevance: intrinsic informativeness for the predictive task at hand.

Module learns how to compute attention scores based on the three properties,

- Relevance: intrinsic informativeness for the predictive task at hand.
- Failure intensity: the propensity to trigger undesirable activations in the neural network.

Module learns how to compute attention scores based on the three properties,

- Relevance: intrinsic informativeness for the predictive task at hand.
- Failure intensity: the propensity to trigger undesirable activations in the neural network.
- Coupling: the interdependencies with the other modes.

Regularization

Generalize robustness by using

- Capacity regularizer: minimize total amount of distributed attention.
- Energy regularizer: maximize influence of failure intensity.

	Hyperparameters			F1-score			
	ρ	λ_e	λ_c	-	uncorrupted	IP noisy	DM noisy
IP-only					0.8235	0.5926	
DM-only					0.6612		0.3920
base					0.8830	0.6441	0.6569
without					0.8671	0.7097	0.7683
other					0.7726	0.6129	0.6882
with	10-4	10^{-3}	10^{-2}		0.8881	0.7333	0.8077
with	10^{-4}	0	10^{-2}		0.8849	0.7285	0.8183
with	10^{-4}	10^{-4}	10^{-2}		0.8945	0.7333	0.8182
with	10^{-3}	10^{-3}	0		0.8809	0.7347	0.8186
with	10^{-4}	10^{-2}	10^{-3}		0.8736	0.7383	0.7848
with	10^{-1}	10^{-2}	0		0.8826	0.7467	0.7925
with	10^{-4}	10^{-3}	0		0.8786	0.7190	0.7826
with	10^{-3}	10^{-1}	10^{-2}		0.8800	0.7432	0.8344
with	10^{-4}	0	10^{-4}		0.8723	0.7051	0.7853
with	10^{-4}	10^{-4}	10^{-3}		0.8794	0.7053	0.7853

5/9

Figure 1: F1-score, noisy IP-mode

Figure 2: attention score, noisy IP-mode

Robustness generalization for DM mode

Figure 3: F1-score, noisy DM-mode

Figure 4: attention score, noisy DM-mode

Figure 5: F1-score, noisy IP-mode

Figure 6: No capacity regularization

Influence of capacity minimization

Figure 5: F1-score, noisy IP-mode

Figure 7: Good capacity regularization

Influence of capacity minimization

Figure 5: F1-score, noisy IP-mode

Figure 8: High capacity regularization

Summary

- **Problem?** Failing mode(s) ⇒ bad predictions.
- **Hypothesis?** Some redundancy of information between the modes.
- **Solution?** Attention module & regularizers.

Backup slides

Figure 9: F1-score, noisy IP-mode

Figure 10: No energy regularization

Figure 9: F1-score, noisy IP-mode

Figure 11: Good energy regularization

Figure 9: F1-score, noisy IP-mode

Figure 12: High energy regularization

Influence of energy regularizer for DM mode

Figure 13: F1-score, noisy IP-mode

Figure 14: No energy regularization

Influence of energy regularizer for DM mode

Figure 13: F1-score, noisy IP-mode

Figure 15: Good energy regularization

Influence of energy regularizer for DM mode

Figure 13: F1-score, noisy IP-mode

Figure 16: High energy regularization

Influence of capacity minimization for DM mode

Figure 17: F1-score, noisy IP-mode

Figure 18: No capacity regularization

Influence of capacity minimization for DM mode

-20-10 - NSR (dB)

Figure 17: F1-score, noisy IP-mode

Figure 19: Good capacity regularization

0.2

Influence of capacity minimization for DM mode

Figure 17: F1-score, noisy IP-mode

Figure 20: High capacity regularization

General framework

- Failure intensity, Ψ_i
- 2 Self-energy, $e_i = w_i \Psi_i + b_i$
- **3** Shared energies, $e_{ij} = w_{ij}e_i^{\gamma_{ij}}e_i^{1-\gamma_{ij}}$
- **1** Modal energy, $E_i = e_i + \sum_{i \neq i} e_{ij}$
- **1** Importance score, $\alpha_i = \frac{1}{Z}e^{-\rho E_i}$
- Attention score, $\beta_i = \max[0, \tanh(g_a\alpha_i b_a)]$

$$\tilde{\mathcal{L}} = \mathcal{L}(y, \hat{y}) + \lambda_c(g_a - b_a) \tag{1}$$

Figure 21: Attention function

Discrepancy minimization (Definition)

$$\tilde{\mathcal{L}} = \mathcal{L}(y, \hat{y}) - \lambda_e \Omega \tag{2}$$

with

$$\Omega = \sum_{k=1}^{M} \xi_k \log(\alpha_k) \quad \text{and} \quad \xi_k = \begin{cases} \xi_- = -1 & \text{if } \mathbf{x}_k \text{ is corrupted} \\ \xi_+ = +1 & \text{otherwise} \end{cases}$$
 (3)

Discrepancy minimization (Result)

If *M* is even,

$$E_{i}(\mathbf{x}_{i};\boldsymbol{\theta}_{i}^{(0)} - \epsilon \lambda_{e} \rho \xi_{i} \nabla_{\boldsymbol{\theta}_{i}} E_{i}) \approx E_{i}(\mathbf{x}_{i};\boldsymbol{\theta}_{i}^{(0)}) - \epsilon \lambda_{e} \rho \xi_{i} (\nabla_{\boldsymbol{\theta}_{i}} E_{i})^{T} \nabla_{\boldsymbol{\theta}_{i}} E_{i}$$
(4)

If *M* is uneven,

$$\boldsymbol{\theta}_{i} \leftarrow \begin{cases} \boldsymbol{\theta}_{i} - \epsilon \lambda_{e} \rho (1 - \alpha_{i}) \nabla_{\boldsymbol{\theta}_{i}} E_{i}, & \text{if } i \text{ is uncorrupted} \\ \boldsymbol{\theta}_{i} + \epsilon \lambda_{e} \rho (1 + \alpha_{i}) \nabla_{\boldsymbol{\theta}_{i}} E_{i} & \text{otherwise} \end{cases}$$
(5)

Multiple noisy modes

Figure 22: β -IP

Figure 23: β -DM

$$\frac{\partial \Psi(\tilde{\mathbf{x}})}{\partial \tilde{\mathbf{x}}} \propto -\frac{\partial \log p(\tilde{\mathbf{x}})}{\partial \tilde{\mathbf{x}}} \not\gg \Psi \propto -\log p \tag{6}$$

Figure 24: noisy DM-mode

Figure 25: noisy IP-mode

Potential Energy

Figure 26: DM-mode

Figure 27: IP-mode

F1-score?

F1-score at NSR = 5 dB:

1 normal 0.9029 0.09701 1 IP-noisy 0.6825 0.3174 1 DM-noisy 0.7297 0.2702 0 normal 0.9843 0.01563 0 IP-noisy 0.8770 0.1229				
1 IP-noisy 0.6825 0.3174 1 DM-noisy 0.7297 0.2702 0 normal 0.9843 0.01563 0 IP-noisy 0.8770 0.1229	groundtruth	noise	Correct	Wrong
1 DM-noisy 0.7297 0.2702 0 normal 0.9843 0.01563 0 IP-noisy 0.8770 0.1229	1			0.09701
0 normal 0.9843	1	IP-noisy	0.6825	0.3174
0 IP-noisy 0.8770 0.1229	1	DM-noisy	0.7297	0.2702
, l	0	normal	0.9843	0.01563
0 DM-noisy 0.9503 0.04962	0	IP-noisy	0.8770	0.1229
	0	DM-noisy	0.9503	0.04962

Figure 28: Model

Figure 29: F1-score