

approach

Electric Towers Segmentation by Unsupervised Domain **Adaptation Approach**

Group 15 0886035 陳心怡, 0856105 吳承翰

Scale

Introduction

Background Data preparation **2D Projections** Background **Target Data** Sketchup **Electric tower segmentation** (2496)Addition 3D Model (30)by using images captured from the smart drone for further automatic inspection Suffered from the lack of ground truth problem while Rotation Z segmented by deep learning Translation Y, Z

Proposed Method

Experimental Results

1. Segmentation on source dataset S (upper bound)

- Dice Loss
- Train/Val ratio: 0.8/0.2

mloU: 0.61

E-Tower Segmentation 0.61 0.60 Epoch

2. Segmentation on translated dataset S'

Cycle GAN

Seg.

Source Data

Translated Target data result data

Translated Target data data

Seg. result

3. Segmentation by unsupervised domain adaptation

Adapt. seg. model evaluation (mIoU: 0.58) Generator improvement (new generator/ old seg. model)

Reference

- [1] Y. Li, L. Yuan, and N. Vasconcelos. Bidirectional learning for domain adaptation of semantic segmentation. In *The IEEE* Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
- [2] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR, abs/1703.10593, 2017.