Домашнее задание № 2. Алгоритмы и модели вычислений

Матвей Морозов, 678 группа

25 февраля 2018 г.

Задача 2

A – мужик сказал, что выпала 6.

B – выпадает 6.

$$\mathbb{P}(\mathbb{A}) = \frac{1}{6},\, \mathbb{P}(B) = \frac{1}{6},\, \mathbb{P}(A|B) = \frac{3}{4}$$

По формуле Байеса: $\mathbb{P}(B|A) = \frac{\mathbb{P}(B)}{\mathbb{P}(\mathbb{A})} \cdot \mathbb{P}(A|B) = \frac{3}{4}$

Задача 3

$$\mathbb{E}[\max\{X_1,X_2\}] + \mathbb{E}[\min\{X_1,X_2\}] = \mathbb{E}[\max\{X_1,X_2\} + \min\{X_1,X_2\}] = \mathbb{E}[X_1 + X_2] = 2 \cdot \mathbb{E}[X_1] = 7$$

$$\mathbb{E}[X_1] = \frac{1+2+3+4+5+6}{6} = \frac{7}{2}$$

Задача 7

По определению события называются независимыми, если вероятность пересечения событий равна произведению вероятность каждого события.

Вероятность выпадания чётного числа: $\mathbb{P}\{2,4,6\}=\frac{1}{2}$ Вероятность выпадения кратного 3 чётного числа: $\mathbb{P}\{6\}=\frac{1}{6}$ Вероятность выпадания кратного 3 числа: $\mathbb{P}\{3,6\}=\frac{1}{3}$

$$\mathbb{P}{6} = \mathbb{P}{2,4,6} \cdot \mathbb{P}{3,6}$$

Значит, события независимы.

Задача 1

(i) Количество случаев, в которых число орлов 5 равно C_{10}^5 . Всего возможных комбинаций 2^{10} .

Вероятность выпадения равного числа орлов и решек $C_{10}^5 \cdot 2^{-10}$

(ii)Вероятность того, что выпало не поровну $(1-C_{10}^5\cdot 2^{-10})$ Вероятность того, что выпало больше орлов, чем решек, $\frac{1}{2}$

Итого
$$\frac{1}{2}(1-C_{10}^5\cdot 2^{-10})$$

(iii) Для первых 5 бросков количество комбинаций 2^5 . Количество комбинаций для следующих 5 бросков тоже 2^5 .

Нас же интересует только 1 из последних 2^5 вариантов.

Итого 2^{-5}

Задача 4

1) X – количество бросков до выпадания двух 6.

 X_1 – количество бросков до выпадания одной 6.

 X_2 – количество бросков после X_1 до выпадания двух 6.

Пусть $X_1 = k$.

$$\mathbb{P}[X_1] = \frac{1}{6} \cdot (\frac{5}{6})^{k-1} = \frac{5^{k-1}}{6^k}$$

$$\mathbb{E}[X_1] = \sum_{k=1}^{\infty} k \frac{5^{k-1}}{6^k} = \sum_{k=1}^{\infty} (k+1) \frac{5^{k-1}}{6^k} - \sum_{k=1}^{\infty} \frac{5^{k-1}}{6^k} = \frac{6}{5} \sum_{k=1}^{\infty} k \frac{5^{k-1}}{6^k} - \frac{6}{5}$$

$$\mathbb{E}[X_1] = \frac{6}{5} \mathbb{E}[X_1] - \frac{6}{5}$$

$$\mathbb{E}[X_1] = 6$$

По формуле полного математического ожидания $\mathbb{E}[X_2] = \frac{1}{6}\mathbb{E}[X_2|$ после X_1 выпала $6] + \frac{5}{6}\mathbb{E}[X_2|$ после X_1 не выпала $6] = \frac{1}{6} + \frac{5}{6}(1 + \mathbb{E}[X]) = 1 + \frac{5}{6}\mathbb{E}[X]$

$$\mathbb{E}[X] = 7 + \frac{5}{6}\mathbb{E}[X]$$
$$\mathbb{E}[X] = 42$$

2)

POP:

 X_1 – количество бросков до выпадения первой решки.

 X_2 – количество бросков после X_1 до выпадения орла.

 X_3 – количество бросков после X_2 до выпадения решки.

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3]$$

$$\mathbb{E}[X_1] = \mathbb{E}[X_2] = 2$$

По формуле полного математического ожидания $\mathbb{E}[X_3] = \frac{1}{2}\mathbb{E}[X_3|$ после X_2 выпал орёл] + $\frac{1}{2}\mathbb{E}[X_3|$ после X_2 выпала решка $] = \frac{1}{2} + \frac{1}{2}(1 + \mathbb{E}[X]) = 1 + \frac{1}{2}\mathbb{E}[X]$

$$\mathbb{E}[X] = 5 + \frac{1}{2}\mathbb{E}[X]$$

$$\mathbb{E}[X] = 10$$

PPO:

 X_1 – количество бросков до выпадения первой решки.

 X_2 – количество бросков после первой решки до выпадения второй решки.

 X_3 – количество бросков после X_2 до выпадения орла.

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3]$$

$$\mathbb{E}[X_1] = 2$$

$$\mathbb{E}[X_2] = 4$$

По формуле полного математического ожидания $\mathbb{E}[X_3] = \frac{1}{2}\mathbb{E}[X_3|$ после X_2 выпал орёл]+ $\frac{1}{2}\mathbb{E}[X_3|$ после X_2 выпала решка $] = \frac{1}{2} + \frac{1}{2}(1 + \mathbb{E}[X_3]) = 1 + \frac{1}{2}\mathbb{E}[X_3]$

$$\mathbb{E}[X_3] = 2$$

$$\mathbb{E}[X] = 2 + 4 + 2 = 8$$

Значит, раньше встретится РРО.

Задача 6

Человек должен взять n спичек из одной коробки и n-k спичек из другой. Это можно сделать C^k_{2n-k} вариантами.

Всего вариантов выбора 2n-k спичек 2^{2n-k} . Итого: $\frac{C_{2n-k}^k}{2^{2n-k}}$