TEKO CLASSES, H.O.D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रघुबर राखे टेक।।

रचितः मानव धर्म प्रणेता

सद्गुरु श्री रणछोड्दासनी महाराज

STUDY PACKAGE

Subject: Mathematics Topic: Sequence & Progression

Index

- 1. Theory
- 2. Short Revision
- 3. Exercise (Ex. 2 + 2 = 4)
- 4. Assertion & Reason (Extra File)
- 5. Que. from Compt. Exams
- 6. 34 Yrs. Que. from IIT-JEE
- 7. 10 Yrs. Que. from AIEEE

Student's Name	!
Class	.
Roll No.	.

ADDRESS: R-1, Opp. Raiway Track, New Corner Glass Building, Zone-2, M.P. NAGAR, Bhopal 🖀: (0755) 32 00 000, 98930 58881, www.tekoclasses.com

1. Trigonometric Equation :

An equation involving one or more trigonometric ratios of an unknown angle is called a trigonometric equation.

2. Solution of Trigonometric Equation :

A solution of trigonometric equation is the value of the unknown angle that satisfies the equation.

e.g. if
$$\sin \theta = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}, \frac{11\pi}{4}, \dots$$

Thus, the trigonometric equation may have infinite number of solutions (because of their periodic nature) and can be classified as:

General solution.

Principal solution

Principal solutions: The solutions of trigonometric equation which the а $[0, 2\pi)$ are called **Principal solutions**.

e.g Find the Principal solutions of the equation $\sin x = \frac{1}{2}$.

2.1

$$\therefore \quad \sin x = \frac{1}{2}$$

there exists two values

i.e.
$$\frac{\pi}{6}$$
 and $\frac{5\pi}{6}$ which lie in $[0, 2\pi)$ and whose sine is $\frac{1}{2}$

$$\therefore \qquad \text{Principal solutions of the equation sinx} = \frac{1}{2} \text{ are } \frac{\pi}{6}, \qquad \qquad \frac{5\pi}{6} \text{ Answer}$$

FREE Download Study Package from website: www.tekoclasses.com **General Solution:**

The expression involving an integer 'n' which gives all solutions of a trigonometric equation is called General solution.

General solution of some standard trigonometric equations are given below.

General Solution of Some Standard Trigonometric Equations:

(i) If
$$\sin \theta = \sin \alpha$$

$$\Rightarrow \theta = n \pi + (-1)^n \alpha$$

where
$$\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \quad n \in I.$$

(ii) If
$$\cos \theta = \cos \alpha$$

$$\Rightarrow \theta = 2 n \pi \pm \alpha$$

where
$$\alpha \in [0, \pi]$$
, $n \in \mathbb{R}$

(iii) If
$$\tan \theta = \tan \alpha$$

$$\Rightarrow \theta = n\pi + \alpha$$

where
$$\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, $n \in I$

(iv) If
$$\sin^2 \theta = \sin^2 \alpha$$

$$\Rightarrow \theta = n \pi \pm \alpha, n \in I.$$

(v) If
$$\cos^2 \theta = \cos^2 \alpha$$

$$\Rightarrow \theta = n \pi \pm \alpha, n \in I.$$

(vi) If
$$tan^2\theta = tan^2\alpha$$

$$\rightarrow \theta = n\pi + \alpha \quad n \in I$$

[**Note:** α is called the principal angle]

Some Important deductions :

(i)
$$\sin\theta = 0$$
 \Rightarrow

$$\theta = n\pi, \qquad \qquad n \in$$

(ii)
$$\sin\theta = 1$$

$$\theta = (4n + 1) \frac{\pi}{2}, n \in I$$

(iii)
$$\sin\theta = -1$$

$$\theta = (4n-1) \frac{\pi}{2}, n \in I$$

(iv)
$$\cos\theta = 0$$

$$\theta = (2n + 1) \frac{\pi}{2}, n \in I$$

(v)
$$\cos\theta = 1$$

(vi) $\cos\theta = -1$

$$\theta = 2n\pi, \quad n \in$$

 $\theta = (2n + 1)\pi, \quad n \in$

(vii)
$$tan\theta = 0$$

$$\theta = (2\Pi + 1)\pi, \quad \Pi \in$$

$$\theta = n\pi \qquad n \in$$

Solved Example # 1

Solve
$$\sin \theta = \frac{\sqrt{3}}{2}$$

Solution.

$$\because$$

$$\therefore \qquad \sin \theta = \frac{\sqrt{3}}{2}$$

$$\Rightarrow$$

$$\sin\theta = \sin\frac{\pi}{3}$$

$$\theta = n\pi + (-1)^n \frac{\pi}{3}, n \in I$$

Solved Example # 2

Solve
$$\sec 2\theta = -\frac{2}{\sqrt{3}}$$

Solution.

$$\because \sec 2\theta = -\frac{2}{\sqrt{3}}$$

$$\cos 2\theta = -\frac{\sqrt{3}}{2}$$
 \Rightarrow $\cos 2\theta = \cos \frac{5\pi}{6}$

$$\Rightarrow$$

$$\cos 2\theta = \cos \frac{5\pi}{6}$$

$$\Rightarrow$$

$$2\theta = 2n\pi \pm \frac{5\pi}{6} , n \in I$$

$$\Rightarrow$$

$$\theta = n\pi \pm \frac{5\pi}{12}, n \in I$$

....(i)

Ans.

Solved Example # 3

Solve
$$tan\theta = 2$$

Solution.

$$\therefore \quad \tan\theta = 2$$

$$\Rightarrow$$
 $\tan \theta = \tan \theta$

$$\theta = n\pi + \alpha$$
, where $\alpha = tan^{-1}(2)$, $n \in I$

Self Practice Problems:

Solve
$$\cot \theta = -1$$

Solve
$$\cos 3\theta = -\frac{1}{2}$$

$$\theta = n\pi - \frac{\pi}{4}, n \in$$

Ans. (1)
$$\theta = n\pi - \frac{\pi}{4}, n \in I$$
 (2) $\frac{2n\pi}{3} \pm \frac{2\pi}{9}, n \in I$

Solved Example # 4

Solve
$$\cos^2\theta = \frac{1}{2}$$

Solution.

$$\therefore \qquad \cos^2\theta = \frac{1}{2}$$

$$\Rightarrow \qquad \cos^2\theta = \left(\frac{1}{\sqrt{2}}\right)^2$$

$$\Rightarrow$$

$$\Rightarrow \qquad \cos^2\!\theta = \cos^2\!\frac{\pi}{4}$$

$$\Rightarrow$$

$$\theta = n\pi \pm \frac{\pi}{4}$$
, $n \in I$ Ans.

Solved Example # 5

Solve
$$4 \tan^2 \theta = 3 \sec^2 \theta$$

Solution.

$$4 \tan^2 \theta = 3 \sec^2 \theta$$

For equation (i) to be defined
$$\theta \neq (2n + 1) \frac{\pi}{2}$$
, $n \in I$

equation (i) can be written as:

$$\frac{4\sin^2\theta}{\cos^2\theta} = \frac{3}{\cos^2\theta} \qquad \qquad \therefore \qquad \theta \neq (2n+1) \; \frac{\pi}{2} \, , \, n \in I$$

$$\therefore \quad \cos^2\theta \neq 0$$

$$\theta \neq (2n+1) \frac{\pi}{2}, n \in \mathbb{R}$$

$$\Rightarrow$$
 4 sin² θ = 3

$$\Rightarrow \qquad \sin^2\theta = \left(\frac{\sqrt{3}}{2}\right)^2$$

$$\Rightarrow \qquad \sin^2\theta = \sin^2\frac{\pi}{3}$$

$$\Rightarrow \qquad \theta = n\pi \pm \frac{\pi}{3}, \, n \in I \quad \text{Ans.}$$

Self Practice Problems:

1. Solve
$$7\cos^2\theta + 3\sin^2\theta = 4$$
.

2. Solve
$$2 \sin^2 x + \sin^2 2x = 2$$

Ans. (1)
$$n\pi \pm \frac{\pi}{3}, n \in I$$
 (2) $(2n + 1) \frac{\pi}{2}, n \in I$ or $n\pi \pm \frac{\pi}{4}, n \in I$

Types of Trigonometric Equations:

Type -1

Trigonometric equations which can be solved by use of factorization.

Solved Example # 6

Solve
$$(2\sin x - \cos x)(1 + \cos x) = \sin^2 x$$
.

Solution.

$$\begin{array}{lll} & \ddots & (2\sin x - \cos x) \; (1 + \cos x) = \sin^2 x \\ \Rightarrow & (2\sin x - \cos x) \; (1 + \cos x) - \sin^2 x = 0 \\ \Rightarrow & (2\sin x - \cos x) \; (1 + \cos x) - (1 - \cos x) \; (1 + \cos x) = 0 \\ \Rightarrow & (1 + \cos x) \; (2\sin x - 1) = 0 \\ \Rightarrow & 1 + \cos x = 0 \qquad \text{or} \qquad 2\sin x - 1 = 0 \\ \Rightarrow & \cos x = -1 \qquad \text{or} \qquad \sin x = \frac{1}{2} \\ \end{array}$$

$$\Rightarrow \qquad x = (2n+1)\pi, \ n \in I \qquad \text{or} \qquad \sin x = \sin \frac{\pi}{6} \qquad \qquad \Rightarrow x = n\pi + (-1)^n \frac{\pi}{6}, \ n \in I$$

$$(2n+1)\pi,\,n\in I\qquad \qquad \text{or}\qquad n\pi+(-1)^n\;\frac{\pi}{6}\,,\,n\in I\qquad \qquad \text{Ans.}$$

Self Practice Problems:

2. Solve
$$\cot^2 \theta + 3 \csc \theta + 3 = 0$$

Ans. (1)
$$(2n + 1)\pi, n \in I$$

(2)
$$2n\pi - \frac{\pi}{2}$$
, $n \in I$ or $n\pi + (-1)^{n+1} \frac{\pi}{6}$, $n \in I$

Type - 2

Trigonometric equations which can be solved by reducing them in quadratic equations.

Solved Example #7

Solve
$$2 \cos^2 x + 4 \cos x = 3 \sin^2 x$$

Solution.

$$\begin{array}{ll} \therefore & 2\cos^2 x + 4\cos x - 3\sin^2 x = 0 \\ \Rightarrow & 2\cos^2 x + 4\cos x - 3(1-\cos^2 x) = 0 \\ \Rightarrow & 5\cos^2 x + 4\cos x - 3 = 0 \end{array}$$

$$\Rightarrow \left\{\cos x - \left(\frac{-2 + \sqrt{19}}{5}\right)\right\} \left\{\cos x - \left(\frac{-2 - \sqrt{19}}{5}\right)\right\} = 0 \qquad \dots (ii)$$

$$\therefore \quad \cos x \in [-1, 1] \ \forall \ x \in R$$

$$\therefore \qquad \cos x \neq \frac{-2 - \sqrt{19}}{5}$$

equation (ii) will be true if

$$\cos x = \frac{-2 + \sqrt{19}}{5}$$

$$\Rightarrow \qquad \cos x = \cos \alpha, \quad \text{where} \quad \cos \alpha = \frac{-2 + \sqrt{19}}{5}$$

$$\Rightarrow \qquad x = 2n\pi \pm \alpha \quad \text{where} \qquad \alpha = \cos^{-1}\left(\frac{-2+\sqrt{19}}{5}\right), \ n \in I \qquad \qquad \text{Ans.}$$

2. $4\cos\theta - 3\sec\theta = \tan\theta$

Ans.

$$(1) 2n\pi \pm \frac{\pi}{3}, n \in I$$

$$2n\pi \pm \frac{\pi}{3}$$
, $n \in I$ or $2n\pi \pm \frac{\pi}{4}$, $n \in I$

$$n\pi + (-1)^n \alpha \quad \text{ where } \alpha = sin^{-1} \left(\frac{-1 - \sqrt{17}}{8} \right), \ n \in I$$

$$n\pi + (-1)^n \beta$$
 where $\beta = \sin^{-1} \left(\frac{-1 + \sqrt{17}}{8} \right), n \in I$

Type - 3

Trigonometric equations which can be solved by transforming a sum or difference of trigonometric ratios into their product.

d Example # 8

Solve $\cos 3x + \sin 2x - \sin 4x = 0$ $\cos 3x + \sin 2x - \sin 4x = 0$ $\cos 3x + \sin 2x - \sin 4x = 0$ $\cos 3x - 2\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$ $\cos 3x - 3\cos 3x \cdot \sin x = 0$

Solved Example #8

Solution.

$$cos3x + sin2x - sin4x = 0
cos3x - 2cos3x.sinx = 0$$

$$\Rightarrow \cos 3x + 2\cos 3x \cdot \sin(-x) = 0$$
$$\Rightarrow \cos 3x \cdot (1 - 2\sin x) = 0$$

$$\Rightarrow$$
 $\cos 3x = 0$

$$\Rightarrow$$
 cossx (1 – 2 or 1 – 2sinx = (

$$\Rightarrow \qquad \qquad x = (2n + 1)$$

$$x = n\pi + (-1)^n \frac{\pi}{6}, n \in$$

$$(2n+1) \frac{\pi}{6}, n \in I$$

$$n\pi + (-1)^n \frac{\pi}{6}, n \in \mathbb{R}$$

Self Practice Problems:

olve
$$\sin 7\theta = \sin 3\theta + \sin \theta$$

FREE Download Study Package from website: www.tekoclasses.com

olve
$$5\sin x + 6\sin 2x + 5\sin 3x + \sin 4x = 0$$

Solve
$$\cos\theta - \sin 3\theta = \cos 2\theta$$

$$\frac{n\pi}{3}, n \in I$$

$$\frac{n\pi}{2} \pm \frac{\pi}{12}, n \in \mathbb{R}$$

(2)
$$\frac{n\pi}{2}$$
, $n \in$

$$2n\pi \pm \frac{2\pi}{3}$$
 , $n \in I$

$$2n\pi - \frac{\pi}{2}$$
, $n \in \mathbb{R}$

$$n\pi + \frac{\pi}{4}, n \in \mathbb{R}$$

Type - 4

Solved Example # 9

Solution.

$$\Rightarrow$$
 sin8x + sin2x = \Rightarrow 2sin2x.cos2x -

$$\Rightarrow$$
 \Rightarrow

$$2\sin 5x.\cos 3x = 2\sin 6x.\cos 2$$

$$\rightarrow$$
 cin2v = 0

$$2\cos 2x - 1 = 0$$

$$\rightarrow$$

$$\Rightarrow$$
 2x = n π , n \in I or

$$\cos 2x = \frac{1}{2}$$

$$\Rightarrow$$
 $x = \frac{n\pi}{2}, n \in I$ or

$$2x = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{R}$$

$$\Rightarrow$$
 x = n $\pi \pm \frac{\pi}{6}$, n \in

$$\frac{n\pi}{2}$$
, $n \in I$

$$n\pi \pm \frac{\pi}{6}, n \in \mathbb{R}$$

Type - 5

Trigonometric Equations of the form $a \sin x + b \cos x = c$, where $a, b, c \in R$, can be solved by dividing both sides of the equation by $\sqrt{a^2 + b^2}$.

Solved Example # 10

Solve $\sin x + \cos x = \sqrt{2}$

Solution.

 $sinx + cosx = \sqrt{2} \\
a = 1, b = 1.$ Here

divide both sides of equation (i) by $\sqrt{2}$, we get

$$\sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} = 1$$

$$\Rightarrow \qquad \sin x. \sin \frac{\pi}{4} + \cos x. \cos \frac{\pi}{4} = 1$$

$$\Rightarrow \qquad \cos\left(x - \frac{\pi}{4}\right) = 1$$

$$\Rightarrow \qquad x - \frac{\pi}{4} = 2n\pi, \, n \in I$$

$$\Rightarrow \qquad x = 2n\pi + \frac{\pi}{4}, \ n \in I$$

$$\therefore \qquad \text{Solution of given equation is}$$

$$2n\pi + \frac{\pi}{4}$$
, $n \in I$ Ans.

Note: Trigonometric equation of the form a sinx + b cosx = c can also be solved by changing sinx and cosx into their corresponding tangent of half the angle.

Solved Example # 11

Solve $3\cos x + 4\sin x = 5$

Solution.

$$3\cos x + 4\sin x = 5 \qquad(i$$

$$\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \qquad \& \qquad \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$

equation (i) becomes

$$\Rightarrow 3\left(\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)+4\left(\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)=5 \qquad(ii)$$

Let
$$\tan \frac{x}{2} = t$$

 $\tan \frac{x}{2} = t$ equation (ii) becomes

$$3\left(\frac{1-t^2}{1+t^2}\right) + 4\left(\frac{2t}{1+t^2}\right) = 5$$

$$4t^2 - 4t + 1 = 0$$

$$(2t - 1)^2 = 0$$

$$\Rightarrow 4t^2 - 4t + 1 = 0$$

$$\Rightarrow (2t-1)^2 = 0$$

$$\Rightarrow \qquad t = \frac{1}{2} \qquad \qquad : \qquad t = \tan \frac{x}{2}$$

$$\Rightarrow$$
 $\tan \frac{x}{2} = \frac{1}{2}$

$$\Rightarrow \qquad \tan \frac{x}{2} = \tan \alpha, \text{ where } \tan \alpha = \frac{1}{2}$$

$$\Rightarrow \frac{x}{2} = n\pi + \alpha$$

$$\Rightarrow \qquad x = 2n\pi + 2\alpha \quad \text{where } \alpha = \tan^{-1}\left(\frac{1}{2}\right), \, n \in I \quad \text{Ans.}$$

Self Practice Problems:

 $\sqrt{3} \cos x + \sin x = 2$ Solve 1.

$$) \qquad 2n\pi + \frac{\pi}{6}, n \in I$$

$$(2) x = 2n\pi, n \in I$$

Type - 6

Trigonometric equations of the form $P(\sin x \pm \cos x, \sin x \cos x) = 0$, where p(y, z) is a polynomial, can be solved by using the substitution $\sin x \pm \cos x = t$.

Solved Example # 12

Solve sinx + cosx = 1 + sinx.cosx

Solution.

$$\begin{array}{ll} :: & \text{sinx} + \text{cosx} = 1 + \text{sinx.cosx} & \dots \dots (i) \\ \text{Let} & \text{sinx} + \text{cosx} = t \\ \Rightarrow & \text{sin}^2 x + \text{cos}^2 x + 2 \text{sinx.cosx} = t^2 \\ & & t^2 - 1 \end{array}$$

$$\Rightarrow \qquad \text{sinx.cosx} = \frac{t^2 - 1}{2}$$

Now put
$$\sin x + \cos x = t$$
 and $\sin x \cdot \cos x = \frac{t^2 - 1}{2}$ in (i), we get

$$t = 1 + \frac{t^2 - 1}{2}$$

$$t^2 - 2t + 1 - 0$$

$$\Rightarrow t^2 - 2t + 1 = 0$$

$$t = sinx + cosx$$

$$\Rightarrow$$
 $\sin x + \cos x = 1$

divide both sides of equation (ii) by $\sqrt{2}$, we get

$$\Rightarrow \qquad \sin x. \, \frac{1}{\sqrt{2}} \, + \cos x. \, \frac{1}{\sqrt{2}} \, = \, \frac{1}{\sqrt{2}}$$

$$\Rightarrow \qquad \cos\left(x - \frac{\pi}{4}\right) = \cos\frac{\pi}{4}$$

$$\Rightarrow \qquad x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}$$

 $x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}$ if we take positive sign, we get

$$x = 2n\pi + \frac{\pi}{2}$$
, $n \in I$ Ans.

if we take negative sign, we get $x = 2n\pi$, $n \in I$ Ans. (ii)

Self Practice Problems:

Type-7

$$t = 1 + \frac{t^2 - 1}{2}$$

$$\Rightarrow t^2 - 2t + 1 = 0$$

$$\Rightarrow t = 1$$

$$\Rightarrow sinx + cosx = 1$$

$$divide both sides of equation (ii) by $\sqrt{2}$

$$\Rightarrow sinx. \frac{1}{\sqrt{2}} + cosx. \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow cos\left(x - \frac{\pi}{4}\right) = cos\frac{\pi}{4}$$

$$\Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}$$
(i) if we take positive sign, we get $x = 2n\pi, n \in I$ Ans.
(ii) if we take negative sign, we get $x = 2n\pi, n \in I$ Ans.
(iii) a single take negative sign, we get $x = 2n\pi, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.
(iv) $x = 2n\pi + \frac{\pi}{2}, n \in I$ Ans.$$

2. Solve
$$3\cos x + 3\sin x + \sin 3x - \cos 3x = 0$$

3. Solve
$$(1 - \sin 2x) (\cos x - \sin x) = 1 - 2\sin^2 x$$
.

Ans. (1)
$$n\pi - \frac{\pi}{4}$$
, $n \in I$

(2)
$$n\pi - \frac{\pi}{4}, n \in I$$

(3)
$$2n\pi + \frac{\pi}{2}, n \in I$$

$$2n\pi$$
, $n \in I$

$$n\pi + \frac{\pi}{4}, n \in$$

Type - 7

Trigonometric equations which can be solved by the use of boundness of the trigonometric ratios sinx and cosx.

Solved Example # 13

Solve
$$\sin x \left(\cos \frac{x}{4} - 2\sin x\right) + \left(1 + \sin \frac{x}{4} - 2\cos x\right)\cos x = 0$$

Solution.

$$\therefore \qquad \sin x \left(\cos \frac{x}{4} - 2\sin x \right) + \left(1 + \sin \frac{x}{4} - 2\cos x \right) \cos x = 0 \qquad \dots \dots (i)$$

$$\Rightarrow \qquad \sin x \cdot \cos \frac{x}{4} - 2\sin^2 x + \cos x + \sin \frac{x}{4} \cdot \cos x - 2\cos^2 x = 0$$

$$\Rightarrow \left(\sin x \cdot \cos \frac{x}{4} + \sin \frac{x}{4} \cdot \cos x\right) - 2\left(\sin^2 x + \cos^2 x\right) + \cos x = 0$$

$$\Rightarrow \qquad \sin\frac{5x}{4} + \cos x = 2$$

Page: 7 of 15 TRIG. EQUATIONS

$$\Rightarrow$$

$$\frac{5x}{4} \, = \, 2n\pi \, + \, \frac{\pi}{2} \, , \, \, n \, \in \, I$$

 $\quad \text{and} \qquad \quad x \, = \, 2m\pi, \ m \, \in \, \, I$

$$\Rightarrow$$

$$x = \frac{(8n+2)\pi}{5}, n \in I$$

$$x = 2m\pi, m \in I$$

Page: 8 of 15 TRIG. EQUATIONS

TEKO CLASSES, H.O.D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 98930 58881, BHOPAL, (M.P.)

.....(iv)

Now to find general solution of equation (i)

$$\frac{(8n+2)\pi}{5} = 2m\pi$$

$$\Rightarrow$$
 8n + 2 = 10m

$$\Rightarrow$$
 $n = \frac{5m-1}{4}$

$$\begin{array}{ll} \text{if} & m=1\\ \text{if} & m=5 \end{array}$$

$$\begin{array}{ll} \dots \dots \\ \text{if} & m=4p-3, \ p\in I \end{array}$$

then
$$n = 5p - 4, p \in I$$

.....(iii)

- \therefore general solution of given equation can be obtained by substituting either m = 4p 3 in equation (iv) or n = 5p 4 in equation (iii)
- general solution of equation (i) is $(8p 6)\pi$, $p \in I$ Ans.

Self Practice Problems:

- 1. Solve $\sin 3x + \cos 2x = -2$
- 2. Solve $\sqrt{3\sin 5x \cos^2 x 3} = 1 \sin x$
 - **Ans.** (1) $(4p-3) \frac{\pi}{2}, p \in I$
- (2) $2m\pi + \frac{\pi}{2}, m \in I$

SHORT REVISION

TRIGONOMETRIC EQUATIONS & INEQUATIONS

THINGS TO REMEMBER:

- 1. If $\sin \theta = \sin \alpha \implies \theta = n \pi + (-1)^n \alpha$ where $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, $n \in I$.
- 2. If $\cos \theta = \cos \alpha \implies \theta = 2 n \pi \pm \alpha$ where $\alpha \in [0, \pi], n \in I$.
- 3. If $\tan \theta = \tan \alpha \implies \theta = n\pi + \alpha \text{ where } \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), n \in I$.
- 4. If $\sin^2 \theta = \sin^2 \alpha \Rightarrow \theta = n \pi \pm \alpha$.
- 5. $\cos^2 \theta = \cos^2 \alpha \Rightarrow \theta = n\pi \pm \alpha$.
- 6. $\tan^2 \theta = \tan^2 \alpha \Rightarrow \theta = n\pi \pm \alpha$. [Note: α is called the principal angle]

7. TYPES OF TRIGONOMETRIC EQUATIONS:

- (a) Solutions of equations by factorising. Consider the equation; $(2 \sin x \cos x) (1 + \cos x) = \sin^2 x$; $\cot x \cos x = 1 \cot x \cos x$
- (b) Solutions of equations reducible to quadratic equations. Consider the equation: $3\cos^2 x 10\cos x + 3 = 0$ and $2\sin^2 x + \sqrt{3}\sin x + 1 = 0$
- (c) Solving equations by introducing an Auxilliary argument . Consider the equation : $\sin x + \cos x = \sqrt{2} \; ; \; \sqrt{3} \; \cos x + \sin x = 2 \; ; \sec x 1 = (\sqrt{2} 1) \tan x$
- (d) Solving equations by Transforming a sum of Trigonometric functions into a product. Consider the example: $\cos 3x + \sin 2x \sin 4x = 0$; $\sin^2 x + \sin^2 2x + \sin^2 3x + \sin^2 4x = 2$; $\sin x + \sin 5x = \sin 2x + \sin 4x$
- (e) Solving equations by transforming a product of trigonometric functions into a sum.

- (f) Solving equations by a change of variable :
 - (i) Equations of the form of $a \cdot \sin x + b \cdot \cos x + d = 0$, where $a \cdot b \cdot d$ are real numbers & $a \cdot b \neq 0$ can be solved by changing $\sin x \cdot d \cos x$ into their corresponding tangent of half the angle. Consider the equation $3 \cos x + 4 \sin x = 5$.

Page: 9 of 15 TRIG. EQUATIONS

98930 58881, BHOPAL, (M.P.)

TEKO CLASSES, H.O.D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

(ii) Many equations can be solved by introducing a new variable .eg. the equation $\sin^4 2x + \cos^4 2x = \sin 2x$. $\cos 2x$ changes to

$$2(y+1)\left(y-\frac{1}{2}\right)=0$$
 by substituting, $\sin 2x \cdot \cos 2x = y$.

(g) Solving equations with the use of the Boundness of the functions $\sin x \& \cos x$ or by making two perfect squares. Consider the equations:

$$\sin x \left(\cos \frac{x}{4} - 2\sin x\right) + \left(1 + \sin \frac{x}{4} - 2\cos x\right) \cdot \cos x = 0 ;$$

$$\sin^2 x + 2\tan^2 x + \frac{4}{\sqrt{3}}\tan x - \sin x + \frac{11}{12} = 0$$

8. TRIGONOMETRIC INEQUALITIES: There is no general rule to solve a Trigonometric inequations and the same rules of algebra are valid except the domain and range of trigonometric functions should be kept in mind.

Consider the examples :
$$\log_2 \left(\sin \frac{x}{2} \right) < -1$$
; $\sin x \left(\cos x + \frac{1}{2} \right) \le 0$; $\sqrt{5 - 2\sin 2x} \ge 6\sin x - 1$

EXERCISE-I

- Q.1 Solve the equation for x, $5^{\frac{1}{2}} + 5^{\frac{1}{2} + \log_5(\sin x)} = 15^{\frac{1}{2} + \log_{15}\cos x}$
- Q.2 Find all the values of θ satisfying the equation; $\sin \theta + \sin \theta = \sin \theta$ such that $0 \le \theta \le \pi$.
- Q.3 Find all value of θ , between $0 \& \pi$, which satisfy the equation; $\cos \theta \cdot \cos 2\theta \cdot \cos 3\theta = 1/4$.
- Q.4 Solve for x, the equation $\sqrt{13 18 \tan x} = 6 \tan x 3$, where $-2\pi < x < 2\pi$.
- Q.5 Determine the smallest positive value of x which satisfy the equation, $\sqrt{1 + \sin 2x} \sqrt{2} \cos 3x = 0$.

Q.6
$$2 \sin \left(3x + \frac{\pi}{4} \right) = \sqrt{1 + 8 \sin 2x \cdot \cos^2 2x}$$

- Q.7 Find the general solution of the trigonometric equation $3^{\left(\frac{1}{2} + \log_3(\cos x + \sin x)\right)} 2^{\log_2(\cos x \sin x)} = \sqrt{2}.$
- Q.8 Find all values of θ between 0° & 180° satisfying the equation; $\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$.
- Q.9 Find the solution set of the equation, $\log_{\frac{-x^2-6x}{10}}(\sin 3x + \sin x) = \log_{\frac{-x^2-6x}{10}}(\sin 2x)$.
- Q.10 Find the value of θ , which satisfy $3 2\cos\theta 4\sin\theta \cos 2\theta + \sin 2\theta = 0$.
- Q.11 Find the general solution of the equation, $\sin \pi x + \cos \pi x = 0$. Also find the sum of all solutions in [0, 100].
- Q.12 Find the least positive angle measured in degrees satisfying the equation $\sin^3 x + \sin^3 2x + \sin^3 3x = (\sin x + \sin 2x + \sin 3x)^3$.

$$(\sin\theta) x^2 + (2\cos\theta)x + \frac{\cos\theta + \sin\theta}{2}$$
 is the square of a linear function.

- $\sin x \cdot \cos 4x \cdot \sin 5x = -1/2$ Prove that the equations (a) $\sin x \cdot \sin 2x \cdot \sin 3x = 1$ (b) have no solution.
- Let $f(x) = \sin^6 x + \cos^6 x + k(\sin^4 x + \cos^4 x)$ for some real number k. Determine 0.15
- (a) all real numbers k for which f(x) is constant for all values of x.
- all real numbers k for which there exists a real number 'c' such that f(c) = 0. (b)
- (c) If k = -0.7, determine all solutions to the equation f(x) = 0.
- If α and β are the roots of the equation, $a\cos\theta + b\sin\theta = c$ then match the entries of **column-I** Q.16 with the entries of column-II.

Column-I	Column-II

(A)
$$\sin \alpha + \sin \beta$$

$$(P) \qquad \frac{2b}{a+c}$$

Page: 10 of 15 TRIG. EQUATIONS

D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 98930 58881, BHOPAL,

(B)
$$\sin \alpha \cdot \sin \beta$$

(Q)
$$\frac{c-a}{c+a}$$

(C)
$$\tan \frac{\alpha}{2} + \tan \frac{\beta}{2}$$

(R)
$$\frac{2bc}{a^2+b^2}$$

(D)
$$\tan \frac{\alpha}{2} \cdot \tan \frac{\beta}{2} =$$

(S)
$$\frac{c^2 - a^2}{a^2 + b^2}$$

- Find all the solutions of, $4\cos^2 x \sin x 2\sin^2 x = 3\sin x$. Q.17
- Q.18 Solve for x, $(-\pi \le x \le \pi)$ the equation; $2(\cos x + \cos 2x) + \sin 2x (1 + 2\cos x) = 2\sin x$.
- Solve the inequality $\sin 2x > \sqrt{2} \sin^2 x + (2 \sqrt{2})\cos^2 x$. Q.19
- Find the set of values of 'a' for which the equation, $\sin^4 x + \cos^4 x + \sin 2x + a = 0$ possesses solutions. Also find the general solution for these values of 'a'.
- Solve: $\tan^2 2x + \cot^2 2x + 2 \tan 2x + 2 \cot 2x = 6$. Q.21
- Solve: $\tan^2 x \cdot \tan^2 3x \cdot \tan 4x = \tan^2 x \tan^2 3x + \tan 4x$. Q.22
- Find the set of values of x satisfying the equality

$$\sin\left(x - \frac{\pi}{4}\right) - \cos\left(x + \frac{3\pi}{4}\right) = 1$$
 and the inequality $\frac{2\cos 7x}{\cos 3 + \sin 3} > 2^{\cos 2x}$.

Q.24 Let S be the set of all those solutions of the equation, $(1 + k)\cos x \cos (2x - \alpha) = (1 + k\cos 2x)\cos(x - \alpha)$ which are independent of k & α . Let H be the set of all such solutions which are dependent on k & α . Find the condition on k & α such that H is a

Q.25 Solve for x & y,
$$x \cos^3 y + 3x \cos y \sin^2 y = 14$$

 $x \sin^3 y + 3x \cos^2 y \sin y = 13$

- non-empty set, state S. If a subset of H is $(0, \pi)$ in which k = 0, then find all the permissible values of α .

 Solve for x & y, $x \cos^3 y + 3x \cos y \sin^2 y = 14$ Solve for x & y, $x \sin^3 y + 3x \cos^2 y \sin y = 13$ Find the value of α for which the three elements set $S = \{\sin \alpha, \sin 2\alpha, \sin 3\alpha\}$ is equal to the three element set $T = \{\cos \alpha, \cos 2\alpha, \cos 3\alpha\}$ element set $T = \{\cos \alpha, \cos 2\alpha, \cos 3\alpha\}$.
- Find all values of 'a' for which every root of the equation, $a \cos 2x + |a| \cos 4x + \cos 6x = 1$ is also a root of the equation, $\sin x \cos 2x = \sin 2x \cos 3x - \frac{1}{2} \sin 5x$, and conversely, every root

(A)
$$\cos 3x \cdot \cos^3 x + \sin 3x \cdot \sin^3 x = 0$$

(P)
$$n \pi \pm \frac{\pi}{3}$$

(B)
$$\sin 3\alpha = 4 \sin \alpha \sin(x + \alpha) \sin(x - \alpha)$$

(Q)
$$n\pi + \frac{\pi}{4}, n \in I$$

where α is a constant $\neq n\pi$.

(C)
$$|2 \tan x - 1| + |2 \cot x - 1| = 2$$
.

$$(R) \qquad \frac{n\pi}{4} + \frac{\pi}{8} \quad , \quad n \in I$$

(D)
$$\sin^{10}x + \cos^{10}x = \frac{29}{16}\cos^4 2x$$
.

(S)
$$\frac{n\pi}{2} \pm \frac{\pi}{4}$$

EXERCISE–II

$$5^{(\cos \operatorname{ec}^2 x - 3 \sec^2 y)} = 1 \quad \text{and} \quad 2^{(2 \csc x + \sqrt{3} |\sec y|)} = 64.$$

Q.2 The number of integral values of k for which the equation
$$7\cos x + 5\sin x = 2k + 1$$
 has a solution is (A) 4 (B) 8 (C) 10 (D) 12 [JEE 2002 (Screening), 3]

Q.3
$$\cos(\alpha - \beta) = 1$$
 and $\cos(\alpha + \beta) = 1/e$, where $\alpha, \beta \in [-\pi, \pi]$, numbers of pairs of α, β which satisfy both the equations is

Q.4 If
$$0 < \theta < 2\pi$$
, then the intervals of values of θ for which $2\sin^2\theta - 5\sin\theta + 2 > 0$, is

$$(A)\bigg(0,\frac{\pi}{6}\bigg) \cup \bigg(\frac{5\pi}{6},\,2\pi\bigg) \ \ (B)\left(\frac{\pi}{8},\frac{5\pi}{6}\right) \ \ (C)\left(0,\frac{\pi}{8}\right) \cup \bigg(\frac{\pi}{6},\frac{5\pi}{6}\bigg) \quad \ (D)\left(\frac{41\pi}{48},\pi\right) [\text{JEE 2006, 3}]$$

The number of solutions of the pair of equations

$$2\sin^2\theta - \cos 2\theta = 0$$

$$2\cos^2\theta - 3\sin\theta = 0$$

in the interval $[0, 2\pi]$ is

ANSWER **EXERCISE-I**

Q.1
$$x = 2n\pi + \frac{\pi}{6}, n \in I$$
 Q.2 $0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6} \& \pi$

$$0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6} \& \pi$$

Q.3
$$\frac{\pi}{8}, \frac{\pi}{3}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{2\pi}{3}, \frac{7\pi}{8}$$

Q.4
$$\alpha - 2\pi$$
; $\alpha - \pi$, α , $\alpha + \pi$, where $\tan \alpha = \frac{2}{3}$

Q.5
$$x = \pi/16$$

The number of integral values of k for which the equation
$$7\cos x + 5\sin x = 2k + 1$$
 has a solution in $(A) 4$ $(B) 8$ $(C) 10$ $(D) 12$ $(D) 12$

Q.9
$$x = -\frac{5\pi}{3}$$
 Q.10 $\theta = 2 n \pi$ or $2 n \pi + \frac{\pi}{2}$; $n \in I$ **Q.11** $x = n - \frac{1}{4}$, $n \in I$; sum = 5025 **Q.12** 72°

Q.13
$$2n\pi + \frac{\pi}{4}$$
 or $(2n+1)\pi - \tan^{-1}2$, $n \in I$ **Q.15** (a) $-\frac{3}{2}$; (b) $k \in \left[-1, -\frac{1}{2}\right]$; (c) $x = \frac{n\pi}{2} \pm \frac{\pi}{6}$

Q.16 (A) R; (B) S; (C) P; (D) Q **Q.17**
$$n\pi$$
; $n\pi + (-1)^n \frac{\pi}{10}$ or $n\pi + (-1)^n \left(-\frac{3\pi}{10}\right)$

Q.18
$$\frac{\pm \pi}{3}, \frac{-\pi}{2}, \pm \pi$$

Q.19
$$n\pi + \frac{\pi}{8} < x < n\pi + \frac{\pi}{4}$$

Q.21
$$x = \frac{n\pi}{4} + (-1)^n \frac{\pi}{8}$$
 or $\frac{n\pi}{4} + (-1)^{n+1} \frac{\pi}{24}$

Q.22 $\frac{(2n+1)\pi}{4}$, $k\pi$, where $n, k \in I$

Q.23
$$x = 2n\pi + \frac{3\pi}{4}$$
, $n \in I$

 $\textbf{Q.24} \quad (i) \ \left| \ k \ \sin \alpha \ \right| \, \leq \, 1 \quad \ (ii) \ \ S \, = \, n \, \, \pi \, , \ \ n \, \in \, I \quad (iii) \ \ \alpha \, \in \, (- \, m \, \pi \, , \, 2 \, \pi \, - \, m \, \pi) \ \ m \, \in \, I$

Q.25
$$x = \pm 5\sqrt{5}$$
 & $y = n\pi + \tan^{-1} \frac{1}{2}$ **Q.26** $\frac{n\pi}{2} + \frac{\pi}{8}$

Q.28 (A) S; (B) P; (C) Q; (D) R **Q.27** a = 0 or a < -1

<u>EXERCISE–II</u>

 $x = n\pi + (-1)^n \frac{\pi}{6}$ and $y = m\pi \pm \frac{\pi}{6}$ where m & n are integers.

Q.5 Q.3

Exercise - 1

(Objective Questions)

Part: (A) Only one correct option

The solution set of the equation $4\sin\theta.\cos\theta - 2\cos\theta - 2\sqrt{3}\sin\theta + \sqrt{3} = 0$ in the interval $(0, 2\pi)$ is

$$(A) \left\{ \frac{3\pi}{4}, \frac{7\pi}{4} \right\}$$

(B)
$$\left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$$

(B)
$$\left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$$
 (C) $\left\{\frac{3\pi}{4}, \pi, \frac{\pi}{3}, \frac{5\pi}{3}\right\}$ (D) $\left\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6}\right\}$

$$(D) \left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6} \right\}$$

TEKO CLASSES, H.O.D. MATHS : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 98930 58881 , BHOPAL, (M.R) Page: 12 of 15 TRIG. EQUATIONS

All solutions of the equation, $2 \sin\theta + \tan\theta = 0$ are obtained by taking all integral values of m and n in:

(A)
$$2n\pi + \frac{2\pi}{3}$$
 , $n \in I$

(B)
$$n\pi$$
 or $2m\pi \pm \frac{2\pi}{3}$ where $n, m \in I$

(C)
$$n\pi$$
 or $m\pi \pm \frac{\pi}{3}$ where $n, m \in I$

(D)
$$n\pi$$
 or $2m \pi \pm \frac{\pi}{3}$ where $n, m \in I$

FREE Download Study Package from website: www.tekoclasses.com If $20 \sin^2 \theta + 21 \cos \theta - 24 = 0 & \frac{7\pi}{4} < \theta < 2\pi$ then the values of $\cot \frac{\theta}{2}$ is:

(B)
$$\frac{\sqrt{15}}{3}$$

(B)
$$\frac{\sqrt{15}}{3}$$
 (C) $-\frac{\sqrt{15}}{3}$

The general solution of sinx + sin5x = sin2x + sin4x is:

(A)
$$2 n\pi$$
; $n \in I$

(B)
$$n\pi$$
 ; $n \in I$

(C)
$$n\pi/3$$
; $n \in I$

(C)
$$n\pi/3$$
 ; $n \in I$ (D) $2 n\pi/3$; $n \in I$

A triangle ABC is such that $\sin(2A + B) = \frac{1}{2}$. If A, B, C are in A.P. then the angle A, B, C are respectively.

(A)
$$\frac{5\pi}{12}$$
, $\frac{\pi}{4}$, $\frac{\pi}{3}$

(B)
$$\frac{\pi}{4}$$
, $\frac{\pi}{3}$, $\frac{5\pi}{12}$

(A)
$$\frac{5\pi}{12}$$
, $\frac{\pi}{4}$, $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{5\pi}{12}$ (C) $\frac{\pi}{3}$, $\frac{\pi}{4}$, $\frac{5\pi}{12}$ (D) $\frac{\pi}{3}$, $\frac{5\pi}{12}$, $\frac{\pi}{4}$

(D)
$$\frac{\pi}{3}$$
, $\frac{5\pi}{12}$, $\frac{\pi}{4}$

6. The maximum value of 3sinx + 4cosx is

7. If $\sin \theta + 7 \cos \theta = 5$, then $\tan (\theta/2)$ is a root of the equation

(A)
$$x^2 - 6x + 1 = 0$$

(B)
$$6x^2 - x - 1 = 0$$

(C)
$$6x^2 + x + 1 = 0$$
 (D) $x^2 - x + 6 = 0$

(D)
$$x^2 - x + 6 = 0$$

(A)
$$\theta \in \left(0, \frac{\pi}{2}\right)$$

(B)
$$\theta \in \left(\frac{\pi}{2}, \pi\right)$$

(C)
$$\theta \in \left(\pi, \frac{3\pi}{2}\right)$$

(A)
$$\theta \in \left(0, \frac{\pi}{2}\right)$$
 (B) $\theta \in \left(\frac{\pi}{2}, \pi\right)$ (C) $\theta \in \left(\pi, \frac{3\pi}{2}\right)$ (D) $\theta \in \left(\frac{3\pi}{2}, 2\pi\right)$

9. The number of integral values of a for which the equation $\cos 2x + a \sin x = 2a - 7$ possesses a solution

The principal solution set of the equation, $2 \cos x = \sqrt{2 + 2\sin 2x}$ is 10.

$$(A) \left\{ \frac{\pi}{8}, \frac{13\pi}{8} \right\}$$

(B)
$$\left\{\frac{\pi}{4}, \frac{13\pi}{8}\right\}$$

(B)
$$\left\{ \frac{\pi}{4}, \frac{13\pi}{8} \right\}$$
 (C) $\left\{ \frac{\pi}{4}, \frac{13\pi}{10} \right\}$ (D) $\left\{ \frac{\pi}{8}, \frac{13\pi}{10} \right\}$

(D)
$$\left\{\frac{\pi}{8}, \frac{13\pi}{10}\right\}$$

The number of all possible triplets (a_1, a_2, a_3) such that : $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$ for all x is 11.

If $2\tan^2 x - 5\sec x - 1 = 0$ has 7 different roots in $\left[0, \frac{n\pi}{2}\right]$, $n \in \mathbb{N}$, then greatest value of n is 12. FREE Download Study Package from website: www.tekoclasses.com

13. The solution of $|\cos x| = \cos x - 2\sin x$ is

(A)
$$x = n\pi, n \in I$$

(B)
$$x = n\pi + \frac{\pi}{4}$$
, $n \in I$

(C)
$$x = n\pi + (-1)^n \frac{\pi}{4}, n \in I$$

(D)
$$(2n + 1)\pi + \frac{\pi}{4}, n \in I$$

The arithmetic mean of the roots of the equation $4\cos^3 x - 4\cos^2 x - \cos(\pi + x) - 1 = 0$ in the interval [0, 315] is equal to

(A)
$$49\pi$$

(B)
$$50\pi$$

(C)
$$51\pi$$

(D)
$$100\pi$$

Number of solutions of the equation $\cos 6x + \tan^2 x + \cos 6x \cdot \tan^2 x = 1$ in the interval $[0, 2\pi]$ is: 15.

(A) 4

Part: (B) May have more than one options correct

16. $\sin x - \cos^2 x - 1$ assumes the least value for the set of values of x given by:

(A)
$$x = n\pi + (-1)^{n+1} (\pi/6)$$
, $n \in I$

(B)
$$x = n\pi + (-1)^n (\pi/6)$$
, $n \in I$

(C)
$$x = n\pi + (-1)^n (\pi/3), n \in I$$

(D)
$$x=n\pi-(-1)^n\;(\pi/6)$$
 , $n\in\;I$

 $\cos 4x \cos 8x - \cos 5x \cos 9x = 0$ if

$$(A) \cos 12x = \cos 14 x$$

(B)
$$\sin 13 x = 0$$

(C)
$$sinx = 0$$

(D)
$$\cos x = 0$$

The equation $2\sin\frac{x}{2}$. $\cos^2 x + \sin^2 x = 2\sin\frac{x}{2}$. $\sin^2 x + \cos^2 x$ has a root for which

$$(A) \sin 2x = 1$$

(B)
$$\sin 2x = -1$$

(C)
$$\cos x = \frac{1}{2}$$

(D)
$$\cos 2x = -\frac{1}{2}$$

19. $\sin^2 x + 2 \sin x \cos x - 3\cos^2 x = 0$ if

(A)
$$\tan x = 3$$

(B)
$$tanx = -1$$

(C)
$$x = n\pi + \pi/4, n \in I$$

(D)
$$x = n\pi + tan^{-1} (-3), n \in I$$

20. $\sin^2 x - \cos 2x = 2 - \sin 2x$ if

(A)
$$x = n\pi/2, n \in I$$

(B)
$$x = n\pi - \pi/2, n \in I$$

(C)
$$x = (2n + 1) \pi/2, n \in I$$

(D)
$$x = n\pi + (-1)^n \sin^{-1}(2/3), n \in I$$

2. Solve
$$\cot\left(\frac{x}{2}\right) - \csc\left(\frac{x}{2}\right) = \cot x$$

3. Solve
$$\cot^2\theta + \left(\sqrt{3} + \frac{1}{\sqrt{3}}\right)\cot\theta + 1 = 0.$$

- 4. Solve $\cos 2\theta + 3 \cos \theta = 0$.
- 5. Solve the equation: $\sin 6x = \sin 4x \sin 2x$.
- 6. Solve: $\cos \theta + \sin \theta = \cos 2\theta + \sin 2\theta$.
- 7. Solve $4 \sin x \cdot \sin 2x \cdot \sin 4x = \sin 3x$.
- 8. Solve $\sin^2 n\theta \sin^2(n-1)\theta = \sin^2 \theta$, where n is constant and $n \neq 0$, 1
- 9. Solve $\tan\theta + \tan 2\theta + \sqrt{3} \tan \theta \tan 2\theta = \sqrt{3}$.
- **10.** Solve: $\sin^3 x \cos 3x + \cos^3 x \sin 3x + 0.375 = 0$

11. Solve the equation,
$$\frac{\sin^3 \frac{x}{2} - \cos^3 \frac{x}{2}}{2 + \sin x} = \frac{\cos x}{3}.$$

- **12.** Solve the equation: $\sin 5x = 16 \sin^5 x$.
- 13. If $\tan \theta + \sin \phi = \frac{3}{2} \& \tan^2 \theta + \cos^2 \phi = \frac{7}{4}$ then find the general value of $\theta \& \phi$.
- 14. Solve for x, the equation $\sqrt{13 18 \tan x} = 6 \tan x 3$, where $-2\pi < x < 2\pi$.
- **15.** Find the general solution of $\sec 4\theta \sec 2\theta = 2$.
- 16. Solve the equation $\frac{\sqrt{3}}{2} \sin x \cos x = \cos^2 x$.
- 17. Solve for x: $2 \sin \left(3x + \frac{\pi}{4} \right) = \sqrt{1 + 8 \sin 2x \cdot \cos^2 2x}$.
- 18. Solve the equation for $0 \le \theta \le 2\pi$; $\left(\sin 2\theta + \sqrt{3}\cos 2\theta\right)^2 5 = \cos\left(\frac{\pi}{6} 2\theta\right)$.
- **19.** Solve: $\tan^2 x \cdot \tan^2 3x \cdot \tan 4x = \tan^2 x \tan^2 3x + \tan 4x$.
- **20.** Find the values of x, between 0 & 2π , satisfying the equation; $\cos 3x + \cos 2x = \sin \frac{3x}{2} + \sin \frac{x}{2}$.

nswers

EXERCISE # 1

- 1. D 2. B 3. D 4. C 5. B 6. C 7. B
- **8.** B **9.** D **10.** A **11.** D **12.** D **13.** D **14.** C **10.** $x = \frac{n \pi}{4} + (-1)^{n+1} \frac{\pi}{24}$, $n \in I$
- **15**. D **16**. AD **17**. ABC 18. ABCD 19. CD
- 20. BC

EXERCISE # 2

1.
$$\left(n+\frac{1}{2}\right)\frac{\pi}{9}, n \in I$$

- **2.** $x = 4n\pi \pm \frac{2\pi}{3}$, $n \in I$
- 3. $\theta = n\pi \frac{\pi}{3}$, $n \in I$ or $n\pi \frac{\pi}{6}$, $n \in I$
- 4. $2n\pi \pm \alpha$ where $\alpha = \cos^{-1}\left(\frac{\sqrt{17}-3}{4}\right)$, $n \in I$
- 5. $\frac{n\pi}{4}$, $n \in I$ or $n\pi \pm \frac{\pi}{6}$, $n \in I$
- **6.** $2n\pi, n \in I \text{ or } \frac{2n\pi}{3} + \frac{\pi}{6}, n \in I$
- 7. $x = n \pi, n \in I$ or $\frac{n \pi}{3} \pm \frac{\pi}{9}, n \in I$
- **8.** $m\pi, m \in I$ or $\frac{m\pi}{n-1}, m \in I$ or $\left(m+\frac{1}{2}\right) \frac{\pi}{n}, m \in I$ **21.** ϕ

$$\textbf{9.} \quad \left(n+\frac{1}{3}\right) \, \frac{\pi}{3} \, , \, n \in I$$

10.
$$X = \frac{n \kappa}{4} + (-1)^{n+1} \frac{\kappa}{24}$$
, $n \in$

11.
$$x = (4n + 1)\frac{\pi}{2}, n \in I$$

12.
$$x = n \pi$$
; $x = n \pi \pm \frac{\pi}{6}$, $n \in I$

13.
$$\theta = n \pi + \frac{\pi}{4}$$
, $\phi = n \pi + (-1)^n \frac{\pi}{6}$, $n \in I$

14.
$$\alpha - 2\pi$$
; $\alpha - \pi$, α , $\alpha + \pi$, where $\tan \alpha = \frac{2}{3}$

TEKO CLASSES, H.O.D. MATHS : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 98930 58881 , BHOPAL, (M.R.) Page: 15 of 15 TRIG. EQUATIONS

15.
$$\frac{2n\pi}{5} \pm \frac{\pi}{10}$$
 or $2n\pi \pm \frac{\pi}{2}$, $n \in I$

16.
$$x = (2n + 1)\pi$$
, $n \in I$ or $2n\pi \pm \frac{\pi}{3}$, $n \in I$

17.
$$(24\ell + 1) \frac{\pi}{12}$$
, $\ell \in I$ or $x = (24k - 7) \frac{\pi}{12}$, $k \in I$

18.
$$\theta = \frac{7 \pi}{12}, \ \frac{19 \pi}{12}$$

19.
$$\frac{(2n+1)\pi}{4}$$
, $k\pi$, where $n, k \in I$

20.
$$\frac{\pi}{7}$$
, $\frac{5\pi}{7}$, π , $\frac{9\pi}{7}$, $\frac{13\pi}{7}$

22.
$$x = (2n + 1)\frac{\pi}{2}$$
, $n \in I$