ColorTool: simple, fast, free, effective & diverse for everybody in color calculation

Vinh Trinh

Content

- 1. Motivation
- 2. Installation
- 3. Main mode "Run what you want": to evaluate the color quality of your spectra
- 4. Mode "Calculation correlation": find 2D & 3D correlations as SPSS
- 5. Mode "Calculation Optimization": optimize color quality & synthesis PID for regulators
- 6. Mode "Calculate Color": calculate all color difference, chroma difference, represent correct test color sample with their true color under different light sources
- 7. Mode "Generate": generate standard spectra, locus of MacAdam-Ellipse, spectra of semiconductor LED and phosphors
- 8. Mode "ISD Space": read, arrange and save ISD data from spectrometers

1- Motivation

How to evaluate color quality of spectra?

How to evaluate and represent color objects?

How to find correlations like as SPSS?

How to have 1-2..MacAdam-Ellipse for desired CCT or xy?

How to read, arrange & save ISD data from spectrometer?

How to optimize the color quality?

How to generate standard light sources with desired CCTs?

How to generate spectra of semiconductor LEDs?

mow to generate spectral emission of phosphors?

I can't work with .csv, but only Excel or txt?

I have no money to buy Matlab/SPSS

2-Installation

you need a MCR Matlab as runtime like Java, .Net & Setup file

3- Main Mode "Run what you want"

Import, analysis & evaluate your spectra

3- Main Mode "Run what you want"

Import, analysis & evaluate your spectra

Name	WW6	WW11	WW14	WW15	WW71	WW371	WW372	WW373	WW374
ССТ	2887	2869	2826	2756	3003	2700	2800	3000	3300
DCCT	2,60E-04	5,28E-03	5,45E-03	4,82E-03	3,58E-05	2,91E-06	2,81E-06	2,64E-06	2,42E-06
R1	68,13	70,68	70,74	70,67	88,96	100	100	100	100
R2	85,45	87,19	87,06	86,94	86,24	100	100	100	100
R3	88,81	87,16	87,42	87,29	81,49	100	100	100	100
R4	67,62	71,95	71,92	71,44	85,29	100	100	100	100
R5	71,27	74,03	73,92	73,69	84,34	100	100	100	100
R6	81,50	86,66	86,35	85,85	68,81	100	100	100	100
R7	82,50	81,54	81,97	82,48	80,46	100	100	100	100
R8	59,47	54,86	55,64	577,07	73,27	100	100	100	100
R9	21,29	9,65	11,54	\$3,47///	46,95	100	100	100	100
R10	74,22	78,93	78,69	78,71	67,56	100	100	100	100
R11	63,50	72,50	72,28	71,25	70,58	100	100	100	100
R12	76,41	76,34	75,74	75,53	62,09	100	100	100	100
R13	70,45	73,88	73,79	73,46	54,89	100	100	100	100
R14	92,03	91,14	91,29	91,15	90,37	100	100	100	100
Ra	75,59	76,76	76,88	76,93	81,11	100	100	100	100
R114	71,62	72,61	72,74	72,93	76,49	//100	100	100	100
GAIt	58,84	71,02	69,98	66,47	54,42	49,14	52,24	58,07	65,83
GAIr	50,20	62,39	61,57	58,41	52,21	49,14	52,24	58,07	65,83
GAIrel	117,21	113,83	113,66	113,80	104,23	100	100	100	100
Qa	84,58	89,80	89,94	89,74	83,41	100	100	100	100
Qf	80,11	83,20	83,32	83,46	82,15	100	100	100	100
Qg	106,92	114,10	114,32	113,89	93,93	100	100	100	100
Qp	89,79	102,25	102,53	101,89	73,05	87,83	88,78	90,33	91,98
CRI2012a	87,26	91,26	91,40	91,55	79,09	100,00	100,00	100,00	100,00
Se2012	2,00	1,74	1,73	1,72	2,46	1,07	1,07	1,07	1,07
MCRIa	91,52	93,21	93,10	92,73	86,31	89,26	89,59	90,05	90,45
FCI	142,52	144,82	145,02	145,17	113,20	123,72	122,97	121,37	118,92
R_f	80,98	85,45	85,51	85 <i>,</i> 56	77,66	100	100	100	100
R_g	103,15	108,78	108,88	108,57	92,66	100	100	100	100

3- Main Mode "Run what you want"

Import, analysis & evaluate your spectra

4- Sub-Mode 1 "Calculation Correlation"

a- 2D - Correlation

4- Sub-Mode 1 "Calculation Correlation"

b- 3D Correlation

MCRI-R ²	$R_{\rm a}$	R ₁₁₄	Q_{f}	CRI ₂₀₁₂	R_{f}					
GAI _{abs}	0,53	0,69	0,51	0,76	0,78					
GAI _{rel}	0,70	0,78	0,50	0,76	0,76					
$Q_{\rm g}$	0,56	0,72	0,46	0,72	MCRI-a	R_{a}	R ₁₁₄	$Q_{\scriptscriptstyle \mathrm{f}}$	CRI ₂₀₁₂	$R_{\scriptscriptstyle \mathrm{f}}$
FCI	0,65	0,78	0,60	0,79	GAI _{abs}	-1,2E-03	-6,1E-04	6,5E-03	1,7E-05	1,2E-04
R_{g}	0,50	0,67	0,50	0,71	GAI _{rel}	4,4E-02	3,1E-02	1,0E-02	7,6E-03	1,6E-02
-						4,7E-02	3,8E-02	3,7E-02	1,7E-02	2,4E-02
					Q _g FCI	8,8E-03	8,9E-03	1,3E-03	2,2E-03	3,8E-03
					(///	5,5E-02	4,7E-02	6,8E-02	3,6E-02	4,0E-02
O D2				CDI	R _g //	73,31-02	4,7L-02	0,01-02	3,0L-02	4,0L-02
Q _p -R ²	R_a	R ₁₁₄	Q _f	CRI ₂₀₁₂	R _f		7			
GAI _{abs}	0,54	0,58	0,86	0,58	0,66	4 4//				
GAI _{rel}	0,49	0,49	0,94	0,54	0,57	4				
$Q_{\rm g}$	0,44	0,50	0,97	0,57	0,62					
FČI	0,47	0,48	0,96	0,49	0,55					
$R_{\rm g}$	0,43	0,51	0,95	0,52	Q _n -a	R _a	R ₁₁₄	Q_{f}	CRI ₂₀₁₂	$R_{\rm f}$
					GAI _{abs}	-1,8E-02		1,9E-03	-1,7E-02	-1,6E-02
					GAI _{rel}	2,8E-02	1,2E-02	4,8E-03	-1,1E-02	-2,3E-04
					Q_{g}	-1,9E-03	-1,3E-02	8,5E-03	-3,8E-02	-2,8E-02
					FČI	6,2E-03	3,7E-03	1,9E-03	-3,7E-03	-7,8E-04
					R _g	-2,7E-02	-3,9E-02	2,0E-02	-5,2E-02	-4,6E-02

4- Sub-Mode 1 "Calculation Correlation"

b-3D Correlation

5- Sub-Mode 2 "Calculate Optimization"

6- Sub-Mode 4 "Calculate Color"

a- Import TCSs & represent with their true colors

6- Sub-Mode 4 "Calculate Color"

b- Color Distribution in 2D - 3D Color diagram under different CCTs

6- Sub-Mode 4 "Calculate Color"

c- Calculate & represent hue & chroma difference under color spaces

Color Space Latitude Latitude

7- Sub-Mode 4 "Generate"

8- Sub-Mode 5 "ISD Space"

