Transformer Models for Generating Networked Time-Series Data

Yusuf Elnady

Transformer Models for Generating Networked Time-Series Data

Yusuf Elnady

- 1. Intro
- 2. Goal
- 3. Approach
- 4. Evaluation Plan

Intro

- Limited data access is a longstanding barrier to data-driven research.
- Data-driven techniques are central to networking and systems research.
 - allows network operators and system designers to take new data-driven management decisions.

• In practice, the benefits of data-driven research are restricted to **those who possess data**.

- Even when **collaborating stakeholders** have plenty to gain, they are reluctant to share datasets for fear of revealing business secrets and/or violating user privacy.
 - Example: an Internet Service Provider may need workload-specific optimizations from an equipment vendor.

Intro

- Why to have a generative framework for networked data?
 - Such a **framework** can **enhance the potential of data-driven techniques** by making it easier to obtain and share data.
 - By just obtaining a **few records of new attack** (small dataset), you can generate a lot of similar datapoints to increase the dataset size.
 - Large number of samples is always useful in data analytics and downstream tasks.

Goal

- My focus is on synthesizing multi-dimensional time series measurements (X)
 associated with multi-dimensional metadata (Classes).
 - Common in networking and systems applications.
- My goal is generating new samples that can outperform baseline algorithms on downstream tasks.

- Example of network and systems datasets
 - Cluster requests (e.g., Google Cluster Usage Trace)
 - The logs contains 1) measurements of task resource usage, and 2) the exit code of each task.
 - Web sessions (e.g., WWT)
 - Bandwidth measurements (e.g., FCC MBA)

Approach

Real Data

Time-Series
Transformer
Model

Generated
Data

Approach

- Why do I need to use transformer models?
 - It is the state-of-the-art model for processing sequential data.
 - It solves the problem of capturing long-term temporal correlations.
 - It uses *Attention* to boost the speed.
 - No RNN cells anymore.
 - It outperforms the previous king: RNNs, LSTMs, and GRUs.
 - They don't require sequential data to be processed in order.
 - You can run the code on multi cores of the GPU.
 - It facilitates training on large datasets.
- The challenge is applying transformer models on real-valued (time-series) data.

Real Data

Time-Series
Transformer
Model

Generated Data

Training Phase

Generated Data

Predictor

(MLP, Naïve Bayes, Logistic Regression)

Evaluation Phase

Real Data

Trained Predictor

(MLP, Naïve Bayes, Logistic Regression)

Predicted Class

Accuracy

Actual Class

References

- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
 & Illia Polosukhin. (2017). Attention Is All You Need.
- Charles Reiss, John Wilkes, and Joseph L Hellerstein. 2011. Google cluster-usage traces: format+ schema. Google Inc., White Paper (2011), 1–14.
- Federal Communications Commission. 2018. Raw Data Measuring Broadband America Seventh Report. (2018). https://www.fcc.gov/reportsresearch/ reports/measuring-broadband-america-seventh.
- Google. 2018. Web Traffic Time Series Forecasting. (2018). https://www.kaggle.com/c/web-traffic-time-series-forecasting.
- Lin, Z., Jain, A., Wang, C., Fanti, G., & Sekar, V. (2020). Using GANs for Sharing Networked Time Series Data. Proceedings of the ACM Internet Measurement Conference.

Thanks for Listening!

Any Questions?