

Properties of agent systems

Perspectives on Agents and Environments

Outline

- What is an agent?
- Intelligent agents and agent properties
- Environment properties
- Agent applications

What is an Agent?

- Remember *Autonomy* is a key point about agents
 - In other words, they are capable of acting independently, exhibiting control over their internal state
- Thus: an agent is a computer system capable of autonomous action in some environment in order to meet its design objectives

What is an Agent?

We think of an agent as being in a closed-couple continual interaction with its environment:

Outline

- What is an agent?
- Intelligent agents and agent properties
- Environment properties
- Agent applications

Simple (Uninteresting) Agents

- Thermostat
 - Goal to maintain room temperature
 - Goal delegated by user
 - Actions: heat on / heat off
 - Temperature sensor

Simple (Uninteresting) Agents

- Screen saver
 - Software that blanks the screen (or presents moving images) after a period of user inactivity
 - Goal avoid screen burning and to prevent other people from viewing desktop contents while the user is away
 - Actions: blank the screen / show desktop
- Why are they uninteresting?
 - They are trivial from a decision-making perspective

Intelligent Agents

- Intelligent agents typically exhibit the following types of behavior:
 - reactive
 - pro-active
 - social

Reactivity

- What happens if a program's environment is guaranteed to be fixed?
 - a program can just execute blindly
- However, the real world is not like that
 - Things change, information is incomplete.
 - Many (most?) interesting environments are dynamic

Reactivity

- Software is hard to build for dynamic domains
 - E.g., program must *take into account possibility of failure* ask itself whether it is worth executing!
- A reactive system is one that maintains an ongoing interaction with its environment, and responds to changes that occur in it (in time for the response to be useful)

Proactiveness

- Reacting to an environment is relatively easy to implement
 - E.g., stimulus → response rules
- But we generally want agents to do things for us
 - Hence having goal directed behavior
- Pro-activeness = generating and attempting to achieve goals
 - Not driven solely by events from the environment
 - Taking the initiative
 - Recognizing opportunities

Balancing Reactive and Goal-Oriented Behavior

- We want our agents to be reactive
 - Thus, responding to changing conditions in an appropriate (timely) fashion
- We want our agents to systematically work towards long-term goals
- However, these two considerations can be at odds with one another
- Designing an agent that can balance the two remains an open research problem

- The real world is a multi-agent environment
 - Hence, we cannot go around attempting to achieve goals without taking others into account

Some goals can only be achieved with the cooperation of others

- Social ability in agents is the ability to interact with other agents (and possibly humans)
 - through coordination, cooperation, negotiation and modeling others

Coordination is managing the interdependencies between activities

- For example:
 - A non-sharable resource in the environment
 - Agents need to coordinate to use this resource

Cooperation is working together as a team to achieve a shared goal

- Typically needed when:
 - No agent can achieve the goal alone
 - Cooperation obtains a better result

Negotiation is the ability to reach agreements on matter of common interest

- For example:
 - You have a TV in your house
 - You want to watch a movie
 - Your roommate wants to watch football
 - Deal: He watches football tonight and you watch a movie tomorrow

Other Agent Properties

- Are there other properties that characterize agents?
 - Autonomy
 - Adaptivity
 - Rationality
 - Curiosity
 - Believability
 - Mobility

Agent properties

Autonomy

 agent's ability to act independently and thus determine how to achieve its delegated goals/tasks

Adaptivity

 agent's ability to learn from experience (to better interact with the particular environment)

Agent properties

Rationality

 agent's ability to act in a way that maximizes some utility function

Curiosity

 Agent's ability to engage creative imaginative or inquisitive reasoning

Agent properties

Believability

- agent's ability to create a suspension of disbelief, temporarily leading a user to accept the agent as an alive or a real character
 - e.g., characters in game and films

Mobility

- agent's ability to change its location in the environment, being it the physical world (robots), or the virtual worl
 - e.g., virtual agents, Internet network

Outline

- What is an agent?
- Intelligent agents and agent properties
- Environment properties
- Agent applications

Environment

Agent systems further characterized by properties of the surrounding environment

Sensors: define the *perceptors* for the agent perceive the world

Effectors: define the *actuators* for the agent perform in the world

Interaction with environment

- sensors: cameras, speed sensor, gps, sonar
- actuators: start engine, accelerate, break, turn, start light, change gears

Environment properties

- accessibility
- determinism
- dynamism
- continuity
- memory

Agents...

- typically have only partial access and control over the environment
- have to decide what action to execute in order to attain goals

Accessible vs. Inaccessible

- accessible environment: agent can obtain complete, accurate, up-to-date data about the environment's state
- most moderately complex environments are inaccessible

Deterministic vs. non-deterministic

- deterministic environment: action has a single guaranteed effect
- physical world is for us (humans) non-deterministic

Static vs. dynamic

static environment: world does not change while the agent is deliberating

Discrete vs. continuous

• discrete environment: *fixed, finite number of possible actions and percepts*

Episodic vs. non-episodic

- Episodic environment: world can be divided in a series of intervals (episodes) independent of each other
- What happens in one episode has no influence on others

Outline

- What is an agent?
- Intelligent agents and agent properties
- Environment properties
- Agent applications

Agent applications

- Agent systems can exist in
 - physical space: robots
 - cyberspace: software and interface agents
 - *simulated physical space*: traffic simulators
 - *hybrid*: virtual agents interacting with humans

Agents in Games

AlphaGO

https://www.youtube.com/watch?v=8tq1C8spV_g

LLM/LWM ChatBots: ChatGPT, Gemini, DeepSeek

Thank You

rui.prada@tecnico.ulisboa.pt