From Data to Dialogue

Leveraging LLMs for Financial Analytics & Risk Management

FINM 31006: Project Lab

MS Financial Mathematics

The University of Chicago

Dec 18th, 2024

Project Objective

AI has emerged as a transformative force in the rapidly-evolving financial industry, enabling firms to automate processes and enhance risk management.

There is a significant accessibility barrier for users without technical expertise, particularly when tasked to query data from large databases and perform technical analysis.

Develop an interactive AI-powered financial chatbot that translates user questions into SQL queries, extracts data, and acts as a report copilot tool that produces easy access technical insights.

Data Overview

Retrieve quarterly US equities financial data from **2006-2024** from Nasdaq's Quandl using an API key.

- Pre-process and merge the downloaded datasets.
- Compute key financial metrics such as Price-to-Earnings
 (PE) ratio, Debt-to-Equity ratio, etc.
- Store processed data into a structured local database for execution.

What are Large Language Models (LLMs)?

- LLMs are AI models based on deep learning, designed to generate, understand, and process human language.
- LLMs are trained on vast amounts of text data to predict, analyze, and transform language patterns.
- Developed by OpenAI, *ChatGPT-40* is a widely known implementation of LLMs.

What is Prompt Engineering?

- The practice of crafting and optimizing input prompts that guide LLMs to produce accurate, relevant, and desired outputs.
- Effective prompts improve the quality, efficiency, and precision of responses.

Eg. Input: "Make me a profitable investment portfolio."

• Output: Low return savings account with minimal growth

Eg. **Input**: "Create a diversified portfolio with 80% allocated to equities and 20% allocated to fixed income products that achieves an annual return > 10%."

• Output: A tailored portfolio that better aligns with your financial goals and risk tolerance

What is Prompt Engineering?

What is Fine-Tuning?

Model Performance Evaluation

Model	Accuracy
Original ChatGPT 4o Model	61%
Prompt-engineered ChatGPT 4o Model	78%
Fine-tuned ChatGPT 4o Model	89%

- Created **100 prompts** with corresponding SQL queries for initial evaluation
- Fine-tuned the prompt-engineered model using these 100 prompts
- Created **75 new prompts** to evaluate performance of the fine-tuned model

Streamlit: Online Chatbot Deployment

- **Streamlit** is an open-source platform that enables developers to quickly build and deploy interactive web applications.
- By integrating the platform with GitHub, we can automatically host our chatbot online for others to use.

Future Directions

- Further minimize model errors
- Increase data sources and time range of data
- Incorporate interactive data visualization functionality
- Improve the model's ability to interpret complex user prompts and understand nuanced financial queries

Model Applications in Banking

Benefits

- **Accessibility**: Empowers users without technical expertise to query and analyze data.
- **Efficiency**: Reduces time for data collection and analysis.

Challenges

- Limited Utility: Current chatbot is unable to handle complex tasks.
- **Data Privacy**: Ensuring sensitive financial data remains secure.
- Model Reliability: Maintaining consistent and accurate outputs for complex queries.
- **Integration**: Seamlessly incorporating model into existing systems and workflows.

Questions

- **Data Source**: Quandl (The Zacks Fundamentals Collection A)
- Data Coverage: Quarterly data (2006-2024), 9,500+ U.S. and Canadian equities,
 10,000+ delisted stocks

Database Schema:

- Financial Core (t_zacks_fc): EPS, Net long-term debt, Company information
- Financial Ratios (t_zacks_fr): ROI, Debt-to-equity ratios
- Market Value (t_zacks_mktv): Market capitalization
- Shares Outstanding (t_zacks_shrs): Shares outstanding
- Sector Description (t_zacks_sectors): Financial sector codes

Generate a SQL query based on the following natural language question and database schema.

Natural Language Question:

" Insert "

Database Schema:

Table 1: t zacks fc

- Columns: 'ticker' = Zacks Identifier, ticker or trading symbol, 'comp_name' = Company name, 'exchange' = Exchange traded, 'per_end_date' = Period end date, 'per_type' = Period type, 'filing_date' = Filing date, 'filing_type' = Filing type: 10-K, 10-Q, PRELIM, 'zacks_sector_code' = Zacks sector code, 'eps_diluted_net_basic' = Earnings per share (EPS) (diluted) net, 'Iterm_debt_net_tot' = Net long-term debt.
- Keys: ticker, per_end_date, per_type

Table 2: t zacks fr

- Columns: 'ticker' = Zacks Identifier, ticker or trading symbol, 'per_end_date' = Period end date, 'per_type' = Period type, 'ret_invst' = Return on investments, 'tot debt tot equity' = Total debt / total equity.
- Keys: ticker, per_end_date, per_type.

Table 3: t zacks mktv

- Columns: 'ticker' = Zacks Identifier, ticker or trading symbol, 'per_end_date' = Period end date, 'per_type' = Period type, 'mkt_val' = Market Cap (shares out x last monthly price per share).
- Keys: ticker, per_end_date, per_type.

Table 4: t zacks shrs

- Columns: 'ticker' = Zacks Identifier, ticker or trading symbol, 'per_end_date' = Period end date, 'per_type' = Period type, 'shares_out' = Common Shares Outstanding from the front page of 10K/Q.
- Keys: ticker, per_end_date, per_type.

Few-shot prompting with examples for each prompt type:

Prompts that produce SQL queries with one value answers:

Example prompt: Output ticker with the largest market value recorded on any given period end date.

Correct output: SELECT ticker, per_end_date, MAX(mkt_val) AS max_market_value FROM t_zacks_mktv GROUP BY per_end_date

ORDER BY max_market_value DESC LIMIT 1;

Incorrect output: SELECT MAX(mkt val), ticker FROM t zacks mktv GROUP BY ticker

Prompts that produce SQL queries that filter one table:

Example prompt: Filter t_zacks_fc to only show companies with a total debt-to-equity ratio greater than 1.

Correct output: SELECT * FROM t zacks fr WHERE tot debt tot equity > 1;

Incorrect output: SELECT * FROM t zacks fr WHERE t zacks mktv > 1;

Prompts that produce SQL queries that require merging and filtering two or more tables:

Example prompt: Combine t_zacks_mktv and t_zacks_shrs to show tickers with market cap and shares outstanding in the latest period end date.

Correct output and Incorrect Output provided

Original Prompt					
Model	Correct Outputs	Total Outputs	Accuracy		
ChatGPT 4o	61	100	61%		
Llama 3.2 3B	25	100	25%		

Modified Prompt					
Model	Correct Outputs	Total Outputs	Accuracy		
ChatGPT 4o	78	100	78%		
Llama 3.2 3B	31	100	31%		
Llama 3.1 8B	30	100	30%		

After thoroughly comparing the accuracy of both original and modified prompts, we chose to use the **ChatGPT 4o model** for fine-tuning.

Disadvantages of Llama compared to GPT:

- Lack of Memory
- Slow Response Time
- Poor Context Recognition
- Limited Prompt Tuning Effectiveness

Training Loss of SQL Query Generator Model

Training Loss of PDF-Generator Model (No convergence)

Thank you!

