Réunion GEOMEDIA Paris, 22-23 octobre 2012

Mesurer, évaluer, agréger l'information médiatique

Robin Lamarche-Perrin

Yves Demazeau
Jean-Marc Vincent

LIG-MAGMA

LIG-MESCAL

Objectifs de l'analyse de l'information

Objectifs de l'analyse de l'information

Objectifs de l'analyse de l'information

COUVERTURE ET REDONDANCE DU RÉSEAU DE CAPTEURS (APPROCHE EXOGÈNE)

Taille des flux RSS

(mai 2011 – sept. 2012)

Observation d'un évènement

Observation d'un évènement

Observation d'un évènement

Variable exogène

http://www.emsc-csem.org/#2w

Couverture du réseau de capteurs ?

- Couverture thématique
- Couverture linguistique
- Couverture politique
- Couverture temporelle
- Etc.

Redondance des sondes

Méthode générale

- Ce que l'on gagne :
 - En couverture, en précision
 - → Divergence de Kullback-Leibler

- Ce que l'on perd :
 - En complexité, en redondance
 - → Entropie de Shannon

GRANULARITÉ DE L'INFORMATION (APPROCHE ENDOGÈNE)

Visualisation de grands systèmes distribués

Sept. 2nd, 2012 Robin Lamarche-Perrin

Mesures en théorie de l'information

Que gagne-t-on?

Que perd-on?

Théorie de l'information

Entropie de Shannon

$$H = -\sum_{x} p(x) \log_2(p(x))$$

Divergence de Kullback-Leibler

$$D = -\sum_{x} p(x) \log_{2} \left(\frac{p(y)}{p(x)|y|} \right)$$

Critère informationnel

$$C_p = pG - (1 - p)D$$

Sept. 2nd, 2012 Robin Lamarche-Perrin 22

Méthode générale

- Ce que l'on gagne :
 - En structure, en généricité
 - En simplicité, en facilité de lecture
 - → Entropie de Shannon

- Ce que l'on perd :
 - En information
 - En précision, en détails
 - → Divergence de Kullback-Leibler

Agrégation pRIC-maximale

Maximiser le pRIC

Gain d'entropie vs. Divergence
$$pRIC = p \times G - (1-p) \times D$$

Comparaison des agrégats

Comparaison des agrégats

Comparaison des agrégats

Topologies et partitionnement

Hiérarchie

Agrégations possibles

$\{f_1, f$	$\{f_2, f_3, f_4, f_5\}$	
	$\{f_3, f_4, f_5\}$	
$\{f_1, f_2\}$	$\{f_3\}$ $\{f_4\}$ $\{f_5\}$	$\{f_6\}\{f_7\}$

D'autres topologies intéressantes ?

29 juin 2012

Réunion GEOMEDIA

Bilan

- Méthode applicable
 - Aux approches exogènes (pour évaluer les capteurs)
 - Aux approches endogènes (pour contrôler la granularité)