Batch	Agent1	Agent2	t-Test: Paired Two Sample for Means		
1	7.7	8.5		4	4
2	9.2	9.6	-	Agent1	Agent2
3	6.8	6.4	Mean	8.25	8.683333
4	9.5	9.8	Variance	1.059091	1.077879
5	8.7	9.3	Observations	12	12
6	6.9	7.6	Pearson Correlation	0.901056	
7	7.5	8.2	Hypothesized Mean Difference	0	
8	7.1	7.7	df	11	
9	8.7	9.4	t Stat	-3.26394	
10	9.4	8.9	P(T<=t) one-tail	0.003773	
11	9.4	9.7	t Critical one-tail	1.795885	
12	8.1	9.1	P(T<=t) two-tail	0.007546	
			t Critical two-tail	2.200985	
			Difference in Means	-0.43333	

Interpretation Exercise 8.4

There is a small difference in Means between the two agents, Agent 2 being slightly larger then Agent 1 by 0.43.

As the two tailed P value of 0.007 is less than the significance value of 0.01 it cannot be proven that the population mean impurity differs between the two filtration agents.

Interpretation Exercise 8.5
The one-tail test shows a P value of 0.003 and would not change the conclusion of the two tailed test; the Agents produce similar results.