A Description of Enceladus' Plume Sources and Chemical Reactions Significant to the Plume-Magnetosphere Interaction

Jonathan S. Nickerson

Contents

1	Description of Sources	3
	1.1 Location / description of sources on Enceladus	3
	1.2 Properties of H ₂ O gas for each source	3
	1.3 Dust outflow	3
2	Chemistry	4
3	Source and Loss Equations for Each Individual Neutral Species	10
	3.1 H_2O	10
	3.2 OH	10
	3.3 H	10
	$3.4 H_2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	11
	3.5 O	11
4	Source and Loss Equations for Each Individual Ion Species	11
	$4.1 \text{ H}_2\text{O}^+ \dots \dots$	11
	$4.2 \ \text{H}_{3}^{-}\text{O}^{+} \ \dots $	11
	4.3 OH ⁺	12
	4.4 H ⁺	12
	$4.5 H_2^+ \dots \dots \dots \dots \dots \dots \dots \dots \dots $	12
	$4.6 O^{\stackrel{2}{+}} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	12
	4.7 O ⁺⁺	12
5	Source and Loss Equation for Electrons	13

Abstract

This document is an overview of the physical properties and locations of the jets on Enceladus' surface as well as the important chemical reactions, rates, and cross-sections needed by BATS-R-US in order to simulate the Enceladus plume and its interaction with Saturn's magnetosphere.

1 Description of Sources

1.1 Location / description of sources on Enceladus

These values are not terribly well constrained however they provide a good starting point for this simulation. The idea isn't to reproduce exactly every little blip seen by Cassini, but to get a general idea of what Cassini might see as it passes through certain features of the plume.

Table 1: There are 8 known sources (as of 2007) with the following locations [Spitale and Porco, 2007].

Source	Tiger Stripe	Latitude [°]	Longitude [°]	Azimuth [°]	Zenith [°]
I	Baghdad	-81.5	32.8	228.7	9.7
II	Damascus	-79.4	315.5	93.8	6.8
III	Damascus	-81.3	292.8	83.2	30.2
IV	Alexandria	-72.9	148.7	110.0	3.7
V	Cairo	-78.6	72.3	229.8	6.0
VI	Baghdad	-87.1	231.4	187.6	10.2
VII	Baghdad	-74.6	29.8	352.5	20.8
VIII	Cairo	-82.1	115.5	127.7	6.8

1.2 Properties of H₂O gas for each source

According to Hansen et al. [2011], the EUV spectral signature of the plume seen during a solar occultation was dominated by H_2O gas with negligible amounts of N_2 .

1.3 Dust outflow

! This section is incomplete - I will come back to this!

Hedman et al. [2013] says "This can be interpreted as a difference in the maximum launch velocity of the observed particles, with $v_{max} = 200 \pm 3$ m s⁻¹ when Enceladus is near pericentre and $v_{max} = 190 \pm 2$ m s⁻¹ when Enceladus is near apocentre. Hence the particles visible at 0.88-1.56 μ m seem to be launched with a slightly larger maximum speed"

Table 2: These values are for the plume as a whole, as we do not have a way of measuring/estimating the rate for individual jets. The values in this table come from [Hansen et al., 2011]. We have no estimate for the gas temperature.

Velocity	Line-of-site Column Density	Production Rate	Temperature
Exceeding 1000 $[m \ s^{-1}]$	$0.90 \pm 0.23 \times 10^{16} \text{ [cm}^{-2]}$	$\sim 200 {\rm \ kg \ s^{-1}}$?

2 Chemistry

$$\frac{\partial n_{\alpha}}{\partial t} = S_{\alpha} - \mathcal{L}_{\alpha} \tag{1}$$

$$S_{\alpha}^{\text{neut}} = N_{\text{src},\alpha} \delta_{\alpha} + \sum_{\beta,j} \left(D_{\beta(j)} n_{\text{e}} + D_{\beta(j)}^{\text{h}} n_{\text{eh}} \right) n_{\beta} + \sum_{\beta,j} \left(I_{\beta(j)}^{\text{diss}} n_{\text{e}} + I_{\beta(j)}^{\text{diss},h} n_{\text{eh}} \right) n_{\beta} + \left(R_{\alpha_{+}} n_{\text{e}} + R_{\alpha_{+}}^{\text{h}} n_{\text{eh}} \right) n_{\alpha_{+}} + \sum_{\beta,j} \left(R_{\beta(j)}^{\text{diss}} n_{\text{e}} + R_{\beta(j)}^{\text{diss},h} n_{\text{eh}} \right) n_{\beta} + \sum_{\beta,j} \left(\kappa_{\beta(j)}^{\text{diss}} + \kappa_{\beta(j)}^{\text{diss},ion} \right) n_{\beta} + \sum_{\gamma,\beta,j} k_{\gamma\beta(j)} n_{\gamma} n_{\beta}$$

$$(2)$$

$$\mathcal{L}_{\alpha}^{\text{neut}} = \left(I_{\alpha} n_{\text{e}} + I_{\alpha}^{\text{h}} n_{\text{eh}} \right) n_{\alpha}
+ \sum_{j} \left(I_{\alpha(j)}^{\text{diss}} n_{\text{e}} + I_{\alpha(j)}^{\text{diss},h} n_{\text{eh}} \right) n_{\alpha}
+ \kappa_{\alpha}^{\text{ion}} n_{\alpha}
+ \sum_{j} \left(\kappa_{\alpha(j)}^{\text{diss}} + \kappa_{\alpha(j)}^{\text{diss},\text{ion}} \right) n_{\alpha}
+ \sum_{\beta,j} k_{\alpha\beta(j)} n_{\alpha} n_{\beta}
+ \sum_{j} \left(D_{\alpha(j)} n_{\text{e}} + D_{\alpha(j)}^{\text{h}} n_{\text{eh}} \right) n_{\alpha}$$
(3)

$$S_{\alpha}^{\text{ion}} = \left(I_{\alpha_{-}} n_{e} + I_{\alpha_{-}}^{h} n_{\text{eh}}\right) n_{\alpha_{-}}$$

$$+ \sum_{\beta,j} \left(I_{\beta(j)}^{\text{diss}} n_{e} + I_{\beta(j)}^{\text{diss},h} n_{\text{eh}}\right) n_{\beta}$$

$$+ \left(R_{\alpha_{+}} n_{e} + R_{\alpha_{+}}^{h} n_{\text{eh}}\right) n_{\alpha_{+}}$$

$$+ \sum_{\beta,j} \left(R_{\beta(j)}^{\text{diss}} n_{e} + R_{\beta(j)}^{\text{diss},h} n_{\text{eh}}\right) n_{\beta}$$

$$+ \kappa_{\alpha_{-}}^{\text{ion}} n_{\alpha_{-}}$$

$$+ \sum_{\beta,j} \left(\kappa_{\beta(j)}^{\text{diss}} + \kappa_{\beta(j)}^{\text{diss,ion}}\right) n_{\beta}$$

$$+ \sum_{\gamma,\beta,j} k_{\gamma\beta(j)} n_{\gamma} n_{\beta}$$

$$(4)$$

$$\mathcal{L}_{\alpha}^{\text{ion}} = \left(I_{\alpha} n_{\text{e}} + I_{\alpha}^{\text{h}} n_{\text{eh}} \right) n_{\alpha}
+ \sum_{j} \left(I_{\alpha(j)}^{\text{diss}} n_{\text{e}} + I_{\alpha(j)}^{\text{diss,h}} n_{\text{eh}} \right) n_{\alpha}
+ \left(R_{\alpha} n_{\text{e}} + R_{\alpha}^{\text{h}} n_{\text{eh}} \right) n_{\alpha}
+ \sum_{j} \left(R_{\alpha(j)}^{\text{diss}} n_{\text{e}} + R_{\alpha(j)}^{\text{diss,h}} n_{\text{eh}} \right) n_{\alpha}
+ \kappa_{\alpha}^{\text{ion}} n_{\alpha}
+ \sum_{j} \left(\kappa_{\alpha(j)}^{\text{diss}} + \kappa_{\alpha(j)}^{\text{diss,ion}} \right) n_{\alpha}
+ \sum_{\beta, i} k_{\alpha\beta(j)} n_{\alpha} n_{\beta}$$
(5)

$$V = \frac{1}{3}\pi r^2 h$$
$$= \frac{1}{3}\pi r^2 (v dt) \tag{6}$$

but $r = v dt \tan \theta$ so

$$V = \frac{1}{3}\pi (vdt)^3 \tan^2 \theta \tag{7}$$

and assume $\theta = \frac{\pi}{6}$.

Because the plume is dominantly water vapor gas we will neglect other trace molecules. This study will focus only on the dominant reactions involving water group ions (W⁺ \equiv O⁺ + OH⁺ + H₂O⁺ + H₃O⁺).

There are 7 groups of reactions that must be considered: 1) charge exchange reactions, 2) photolytic reactions, 3) impact dissociation reactions, 4) electron impact ionization reactions,

5) electron impact ionization-dissociation reactions, 6) electron recombination reactions, and 7) dissociative electronic recombination reactions. In addition, for electron impact ionization and dissociation one must account for a "hot electron" population. The following tables of reactions were provided by [Fleshman et al., 2010]. Bold facing guides the eye to the most important reactions.

Table 3: Charge exchange reactions / rates

	Reaction		$k_{\alpha\beta} \; [\text{cm}^3 \; \text{s}^{-1}]$
$\mathrm{H^{+} + H}$	\rightarrow	$\mathbf{H} + \mathbf{H}^+$	9.7×10^{-9}
$\mathrm{H^+} + \mathrm{H_2}$	\rightarrow	$\mathrm{H} + \mathrm{H}_2^+$	1.6×10^{-9}
$\mathrm{H^+} + \mathrm{O}$	\rightarrow	$\mathbf{H} + \mathbf{O}^+$	3.0×10^{-9}
$\mathrm{H^+}+\mathrm{OH}$	\rightarrow	$\mathrm{H}+\mathrm{OH^+}$	3.0×10^{-10}
$\mathbf{H}^++\mathbf{H}_2\mathbf{O}$	\rightarrow	$\mathrm{H}+\mathrm{H}_2\mathrm{O}^+$	2.0×10^{-8}
$\mathrm{H_2^+} + \mathrm{H_2}$	\rightarrow	$\mathrm{H}_2^{}+\mathrm{H}_2^{+}$	3.6×10^{-9}
$H_2^+ + O$	\rightarrow	$H + OH^+$	1.0×10^{-9}
$H_2^+ + OH$	\rightarrow	$H + H_2O^+$	7.6×10^{-10}
$H_2^+ + OH$	\rightarrow	$H_2 + OH^+$	7.6×10^{-10}
$\mathrm{H_2^+} + \mathrm{H_2O}$	\rightarrow	$H + H_3O^+$	3.4×10^{-9}
$\mathrm{H_2^+} + \mathrm{H_2O}$	\rightarrow	$H_2 + H_2O^+$	3.9×10^{-9}
${f O}^++{f H}$	\rightarrow	$O+H^+$	3.4×10^{-9}
$\mathrm{O^{+}} + \mathrm{H_{2}}$	\rightarrow	$H + OH^+$	1.6×10^{-9}
$\mathbf{O}^+ + \mathbf{O}$	\rightarrow	$O+O^+$	6.2×10^{-9}
$\mathrm{O^{+}+OH}$	\rightarrow	$\mathrm{O}+\mathrm{OH^+}$	3.0×10^{-10}
${f O}^++{f H}_2{f O}$	\rightarrow	$\mathrm{O}+\mathrm{H}_2\mathrm{O}^+$	2.3×10^{-9}
$O^{++} + O$	\rightarrow	$O^+ + O^+$	5.2×10^{-10}
$O^{++} + O$	\rightarrow	$O + O^{++}$	5.4×10^{-9}
$\mathrm{OH^{+}+H_{2}}$	\rightarrow	$H + H_2O^+$	1.1×10^{-9}
$OH^+ + OH$	\rightarrow	$\mathrm{O}+\mathrm{H}_2\mathrm{O}^+$	7.0×10^{-10}
$\mathrm{OH^+} + \mathrm{H_2O}$	\rightarrow	$O + H_3O^+$	1.3×10^{-9}
$\mathrm{OH^+} + \mathrm{H_2O}$	\rightarrow	$\mathrm{OH}+\mathrm{H}_2\mathrm{O}^+$	1.6×10^{-9}
$\mathrm{H_2O^+} + \mathrm{H_2}$	\rightarrow	$H + H_3O^+$	6.1×10^{-10}
$\mathbf{H}_2\mathbf{O}^++\mathbf{H}_2\mathbf{O}$	\rightarrow	$\mathbf{OH}+\mathbf{H}_3\mathbf{O}^+$	2.1×10^{-9}
$\mathbf{H}_2\mathbf{O}^+ + \mathbf{H}_2\mathbf{O}$	\rightarrow	$\mathrm{H_2O}+\mathrm{H_2O^+}$	7.9×10^{-9}

Table 4: Photolytic reactions / rates

	Reaction		$\kappa_{\alpha}^{\rm ion} \ [{\rm cm}^3 \ {\rm s}^{-1}]$
$H + \gamma$ $H_2 + \gamma$ $O + \gamma$ $OH + \gamma$ $H_2O + \gamma$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$H^{+} + e$ $H_{2}^{+} + e$ $O^{+} + e$ $OH^{+} + e$ $H_{2}O^{+} + e$	8.0×10^{-10} 5.9×10^{-10} 2.3×10^{-9} 3.7×10^{-9} 3.7×10^{-9}
$H_2 + \gamma$ $OH + \gamma$ $H_2O + \gamma$ $H_2O + \gamma$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$egin{aligned} \mathrm{H} + \mathrm{H} \\ \mathrm{O} + \mathrm{H} \\ \mathrm{H} + \mathrm{OH} \\ \mathrm{H}_2 + \mathrm{O} \end{aligned}$	$\frac{\kappa_{\alpha}^{\text{diss}} \text{ [cm}^3 \text{ s}^{-1}]}{4.9 \times 10^{-10}}$ 5.5×10^{-8} 1.1×10^{-7} 1.5×10^{-8}
$\begin{aligned} \mathbf{H_2} + \gamma \\ \mathbf{H_2O} + \gamma \\ \mathbf{H_2O} + \gamma \\ \mathbf{H_2O} + \gamma \end{aligned}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$H^{+} + H + e$ $H^{+} + OH + e$ $O^{+} + H_{2} + e$ $OH^{+} + H + e$	1.4×10^{-10} 6.4×10^{-11}

Table 5: Impact dissociation reactions / rates

	Reaction		$D_{\alpha} \; [\mathrm{cm}^3 \; \mathrm{s}^{-1}]$
$\begin{aligned} \mathbf{H}_2 + \mathbf{e} \\ \mathbf{OH} + \mathbf{e} \\ \mathbf{H}_2 \mathbf{O} + \mathbf{e} \end{aligned}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	H + H + e $O + H + e$ $OH + H + e$	1.9×10^{-9} 6.7×10^{-11} 1.2×10^{-9}
			$\underline{D_{\alpha}^{\rm h} \; [\rm cm^3 \; s^{-1}]}$
$H_2 + e_h$	\rightarrow	H + H + e	2.3×10^{-6}
$\mathrm{OH} + \mathrm{e_h}$	\rightarrow	O + H + e	8.4×10^{-8}
$H_2O + e_h$	\rightarrow	OH + H + e	1.5×10^{-6}

Table 6: Electron impact ionization reactions / rates

	Reaction		$I_{\alpha} \left[\text{cm}^3 \text{ s}^{-1} \right]$
$H + e$ $O + e$ $O^+ + e$ $OH + e$ $H_2O + e$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$H^{+} + 2e$ $O^{+} + 2e$ $O^{++} + 2e$ $OH^{+} + 2e$ $H_{2}O^{+} + 2e$	1.1×10^{-11} 1.3×10^{-11} 2.4×10^{-16} 5.3×10^{-11} 7.0×10^{-12}
$egin{aligned} \mathbf{H} + \mathbf{e}_h \ \mathbf{O} + \mathbf{e}_h \ \mathbf{O}^+ + \mathbf{e}_h \ \mathbf{OH} + \mathbf{e}_h \ \mathbf{H}_2 \mathbf{O} + \mathbf{e}_h \end{aligned}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$H^{+} + 2e$ $O^{+} + 2e$ $O^{++} + 2e$ $OH^{+} + 2e$ $H_{2}O^{+} + 2e$	$\frac{I_{\alpha}^{h} [\text{cm}^{3} \text{ s}^{-1}]}{3.2 \times 10^{-8}}$ 9.0×10^{-8} 2.7×10^{-8} 1.2×10^{-7} 9.1×10^{-8}

Table 7: Electron impact ionization-dissociation reactions / rates

	Reaction		$I_{\alpha}^{\mathrm{diss}} \; [\mathrm{cm^3 \; s^{-1}}]$
$H_2O + e$ $H_2O + e$ $H_2O + e$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$H^{+} + OH + 2e$ $O^{+} + 2H + 2e$ $OH^{+} + H + 2e$	5.3×10^{-14} 3.2×10^{-15} 1.1×10^{-12}
$egin{aligned} \mathbf{H}_2\mathbf{O} + \mathbf{e}_h \ \mathbf{H}_2\mathbf{O} + \mathbf{e}_h \ \mathbf{H}_2\mathbf{O} + \mathbf{e}_h \end{aligned}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$H^{+} + OH + 2e$ $O^{+} + 2H + 2e$ $OH^{+} + H + 2e$	

Table 8: Electron recombination reactions / rates

	Reaction		$R_{\alpha} \ [\mathrm{cm}^3 \ \mathrm{s}^{-1}]$
$H^{+} + e$ $O^{+} + e$ $O^{++} + e$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Н О О ⁺	8.5×10^{-11} 3.2×10^{-13} 1.9×10^{-12}
$H^{+} + e_{h}$ $O^{+} + e_{h}$ $O^{++} + e_{h}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Н О О ⁺	$\frac{R_{\alpha}^{\rm h} \; [\rm cm^3 \; s^{-1}]}{6.4 \times 10^{-12}}$ 3.0×10^{-13} 1.5×10^{-12}

Table 9: Dissociative electronic recombination reactions / rates

	Reaction		$R_{\alpha}^{\mathrm{diss}} \; [\mathrm{cm}^3 \; \mathrm{s}^{-1}]$
$H_{2}^{+} + e$ $OH^{+} + e$ $H_{2}O^{+} + e$ $H_{3}O^{+} + e$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$H + H$ $O + H$ $OH + H$ $OH + H_2$	
			$R_{\alpha}^{\rm diss,h} \ [{\rm cm}^3 \ {\rm s}^{-1}]$
$\mathrm{H}_2^+ + \mathrm{e}_h$	\rightarrow	H + H	2.0×10^{-8}
$OH^+ + e_h$	\rightarrow	O + H	1.1×10^{-9}
$H_2O^+ + e_h$	\rightarrow	OH + H	8.9×10^{-11}
$H_3O^+ + e_h$	\rightarrow	$OH + H_2$	4.7×10^{-11}

3 Source and Loss Equations for Each Individual Neutral Species

$3.1 \quad H_2O$

$$S_{\rm H_2O} = 1.2044 \times 10^{29} \left[\frac{\rm molecules}{s} \right] + \left[(K13) \cdot n_{\rm H_2O^+} \right] \cdot n_{\rm H_2O}$$
 (8)

$$\mathcal{L}_{\text{H}_2\text{O}} = \left[J04 + J05 + J10 + J11 + J12 + J13 + (D02 + I04 + ID01 + ID02 + ID03) \cdot n_{\text{e}} + (K04) \cdot n_{\text{H}^+} + (K08) \cdot n_{\text{O}^+} + (K10 + K11) \cdot n_{\text{OH}^+} + (K12 + K13) \cdot n_{\text{H}_2\text{O}^+} + (K19 + K20) \cdot n_{\text{H}_2^+}^+ \right] \cdot n_{\text{H}_2\text{O}}$$

$$(9)$$

3.2 OH

$$S_{\text{OH}} = [J04 + J11 + D02 + (ID01) \cdot n_{\text{e}}] \cdot n_{\text{H}_2\text{O}} + [(RD02) \cdot n_{\text{e}}] \cdot n_{\text{H}_2\text{O}^+} + [(RD03) \cdot n_{\text{e}}] \cdot n_{\text{H}_3\text{O}^+}$$
(10)

$$\mathcal{L}_{\text{OH}} = [J02 + J03 + (D01 + I01) \cdot n_e] \cdot n_{\text{OH}}$$
 (11)

3.3 H

$$S_{\rm H} = [J04 + J13 + D02 + (2 \cdot ID02 + ID03) \cdot n_e] \cdot n_{\rm H_2O} + [J03 + D01] \cdot n_{\rm OH} + [J08 + J09 + 2 \cdot D03] \cdot n_{\rm H_2} + [(R01) \cdot n_e] \cdot n_{\rm H^+} + [(RD01) \cdot n_e] \cdot n_{\rm OH^+} + [(RD02) \cdot n_e] \cdot n_{\rm H_2O^+} + [(2 \cdot RD04) \cdot n_e] \cdot n_{\rm H_2^+}$$

$$(12)$$

$$\mathcal{L}_{\mathrm{H}} = [J06 + (I02) \cdot n_{\mathrm{e}}] \cdot n_{\mathrm{H}} \tag{13}$$

3.4 H_2

$$S_{\rm H_2} = [J05 + J12] \cdot n_{\rm H_2O} + [(RD03) \cdot n_{\rm e}] \cdot n_{\rm H_3O^+}$$
 (14)

$$\mathcal{L}_{\text{H}_2} = [J07 + J08 + J09 + (D03) \cdot n_{\text{e}}] \cdot n_{\text{H}_2}$$
 (15)

3.5 O

$$S_{\rm O} = [J05] \cdot n_{\rm H_{2O}} + [J03 + D01] \cdot n_{\rm OH} + [(R02) \cdot n_{\rm e}] \cdot n_{\rm O^{+}} + [(RD01) \cdot n_{\rm e}] \cdot n_{\rm OH^{+}}$$
(16)

$$\mathcal{L}_{\mathcal{O}} = [J01 + (I03) \cdot n_{\mathbf{e}}] \cdot n_{\mathcal{O}} \tag{17}$$

4 Source and Loss Equations for Each Individual Ion Species

4.1 H_2O^+

$$S_{\rm H_2O^+} = [J10 + (I04) \cdot n_{\rm e}] \cdot n_{\rm H_2O}$$
 (18)

$$\mathcal{L}_{\text{H}_2\text{O}^+} = [(RD02) \cdot n_{\text{e}}] \cdot n_{\text{H}_2\text{O}^+}$$
 (19)

4.2 H_3O^+

$$\mathcal{S}_{\mathrm{H}_2\mathrm{O}^+} = 0 \tag{20}$$

$$\mathcal{L}_{\text{H}_2\text{O}^+} = [(RD03) \cdot n_{\text{e}}] \cdot n_{\text{H}_3\text{O}^+}$$
 (21)

4.3 OH⁺

$$S_{\text{OH}^{+}} = [J13 + (ID03) \cdot n_{\text{e}}] \cdot n_{\text{H}_2\text{O}} + [J02 + (I01) \cdot n_{\text{e}}] \cdot n_{\text{OH}}$$
 (22)

$$\mathcal{L}_{\text{OH}^+} = [(RD01) \cdot n_{\text{e}}] \cdot n_{\text{OH}^+} \tag{23}$$

4.4 H⁺

$$S_{H^{+}} = [J11 + (ID01) \cdot n_{e}] \cdot n_{H_{2}O}$$

$$+ [J06 + (I02) \cdot n_{e}] \cdot n_{H}$$

$$+ [J09] \cdot n_{H_{2}}$$
(24)

$$\mathcal{L}_{\mathrm{H}^{+}} = [(R01) \cdot n_{\mathrm{e}}] \cdot n_{\mathrm{H}^{+}} \tag{25}$$

4.5 H_2^+

$$S_{\rm H_2^+} = [J07] \cdot n_{H_2} \tag{26}$$

$$\mathcal{L}_{\rm H_2^+} = [(RD04) \cdot n_{\rm e}] \cdot n_{\rm H_2^+} \tag{27}$$

4.6 O⁺

$$S_{O^{+}} = [J12 + (ID02) \cdot n_{e}] \cdot n_{H_{2}O}$$

$$+ [J01 + (I03) \cdot n_{e}] \cdot n_{O}$$

$$+ [(R03) \cdot n_{e}] \cdot n_{O^{++}}$$
(28)

$$\mathcal{L}_{O^{+}} = [(I05 + R02) \cdot n_{e}] \cdot n_{O^{+}}$$
(29)

4.7 O⁺⁺

$$S_{O^{++}} = [I05 \cdot n_e] \cdot n_{O^{+}}$$
 (30)

$$\mathcal{L}_{O^{++}} = [(R03) \cdot n_e] \cdot n_{O^{++}}$$
 (31)

5 Source and Loss Equation for Electrons

$$S_{e} = [J11 + J12 + J13 + D02 + 2 \cdot (I04 + ID01 + ID02 + ID03)] \cdot n_{H_{2}O} + [J02 + D01 + 2 \cdot I01] \cdot n_{OH} + [J06 + 2 \cdot I02] \cdot n_{H} + [J07 + J09 + D03] \cdot n_{H_{2}} + [J01 + 2 \cdot I03] \cdot n_{O} + [2 \cdot I05] \cdot n_{O+}$$

$$(32)$$

$$\mathcal{L}_{e} = [D02 + I04 + ID01 + ID02 + ID03] \cdot n_{H_{2}O} + [D01 + I01] \cdot n_{OH} + [I02] \cdot n_{H} + [D03] \cdot n_{H_{2}} + [I03] \cdot n_{O} + [I05 + R02] \cdot n_{O+} + [R01] \cdot n_{H+} + [R03] \cdot n_{O++} + [RD01] n_{OH+} + [RD02] n_{H_{2}O+} + [RD04] n_{H_{2}^{+}}$$

$$(33)$$

References

- Fleshman, B. L., P. A. Delamere, and F. Bagenal (2010), Modeling the enceladus plumeplasma interaction, *Geophysical Research Letters*, 37(3), n/a–n/a, doi: 10.1029/2009GL041613.
- Hansen, C. J., et al. (2011), The composition and structure of the enceladus plume, Geophysical Research Letters, 38(11), n/a-n/a, doi:10.1029/2011GL047415.
- Hedman, M. M., C. M. Gosmeyer, P. D. Nicholson, C. Sotin, R. H. Brown, R. N. Clark, K. H. Baines, B. J. Buratti, and M. R. Showalter (2013), An observed correlation between plume activity and tidal stresses on enceladus, *Nature*, (7461), 182184, doi:10.1038/nature12371.
- Spitale, J. N., and C. C. Porco (2007), Association of the jets of enceladus with the warmest regions on its south-polar fractures, *Nature*, (7163), 695697, doi:10.1038/nature06217.