Lista 3

Weronika Jakimowicz

13.03.2024

Zadanie 1.

Pokaż, że nie istnieje takie zapytanie koniunkcyjne używające jako formuł atomowych wyłącznie perspektyw $P_3(x, y)$ i $P_4(x, y)$, które jest równoważne zapytanie $P_5(x, y)$.

Rozwiązanie.

Po pierwsze zauważmy, że dowolne zapytanie koniunkcyjne korzystające wyłącznie z P_3 i P_4 potrafi wytworzyć tylko i wyłącznie ścieżkę złożoną z patyków długości 3 i 4. Jest tak dlatego, że potrafimy tylko wyrazić istnienie ścieżki długości 3 i ścieżki długości 4 między pewnymi punktami, ale nie potrafimy powiedzieć czegokolwiek o punktach pomiędzy tymi końcami.

W takim razie, dowolne zapytanie z P_3 i P_4 tworzyłoby ścieżkę długości $\alpha 3 + \beta 4$ dla α , $\beta \in \mathbb{Z}_{\{\geq 0\}}$, a jeśli umielibyśmy zapytać przy jego pomocy P_5 , to wówczas $5 = \alpha 3 + \beta 4$. Licząc na paluszkach, mamy 3, 4 i kolejne to dopiero 7.

Zadanie 2.

Napisz zapytanie rrd (dozwolone \exists , \forall i wszystkie spójniki boolowskie), które korzysta wyłącznie z perspektyw $P_3(x, y)$ i $P_4(x, y)$ i jest równoważne zapytaniu $P_5(x, y)$

Rozwiązanie.

Tutaj zauważamy, że ścieżkę x - a - b - c - d - y można wyrazić jako istnienie ścieżki długości 4 od x do pewnego d, a potem dla każdej ścieżki długości 3 kończącej się w d wymagamy, by przedłużała się ona do ścieżki długości y (czyli ścieżki do y).

$$(\exists x, y) P_5(x, y) \iff [(\exists x, y, d) P_4(x, d) \land ((\forall b)P_3(b, d) \Rightarrow P_4(b, y)]$$

Zadanie 3.

Rozwiązanie.

Zakładam, że zapytania koniunkcyjne są w sobie zawarte $Q_1\subseteq Q_2$ i chcę z tego wnioskować, że istnieje homomorfizm $C_{Q_2}\to C_{Q_1}$.

Najpierw czym jest baza kanoniczna zapytania Q? Jest to baza zawierająca wszystkie atomy w tymże zapytaniu. To znaczy, że stają się one prawdą.

Co znaczy, że zapytanie Q_1 zawiera się w zapytaniu Q_2 ? To znaczy, że dla dowolnej bazy danych I mamy $Q_1(I) \subseteq Q_2(I)$, czyli zbiór krotek z I spełniających Q_1 jest zawsze zawarty w zbiorze

krotek z I spełniających Q₂.

Po pierwsze zauważmy, że skoro dla każdej bazy danych $Q_1(I)\subseteq Q_2(I)$, to gdy weźmiemy $I=C_{Q_1}$, to dostaniemy $C_{Q_1}=Q_1(C_{Q_1})\subseteq Q_2(C_{Q_1})$. Skoro $C_{Q_1}\subseteq Q_2(C_{Q_1})$, to chyba znaczy, że Q_2 zwraca całą bazę C_{Q_1} , czyli Q_2 jest dowodzalne w C_{Q_1} . To daje $C_{Q_1}\models Q_2$, co daje funkcją $C_{Q_2}\to C_{Q_1}$