Tarea 04

David Gómez

VIGILADA MINEDUCACIÓN

Índice

1.	Just	tificaciones extra:
2.		ción 2.3
	2.1.	Punto 1
		2.1.1. a) $\vDash ((\phi \equiv \psi) \equiv (\psi \equiv \phi))$
		2.1.2. b) $\vDash ((\phi \equiv true) \equiv \phi)$
		2.1.3. f) $\vDash ((\phi \lor false) \equiv \phi) \ldots $
		2.1.4. g) $\vDash ((\phi \lor \phi) \equiv \phi)$
		2.1.5. k) $\models (\neg(\phi \land (\neg\phi)))$
		2.1.6. $ $
		2.1.7. n) $\models ((\phi \rightarrow \psi) \equiv ((\neg \psi) \rightarrow (\neg \phi)))$
	2.2.	Punto 2
		2.2.1. b) $((\neg p) \lor q)$
		$2.2.2.$ d) $(\neg(p \land (\neg q)))$
	2.3.	Punto 3
	2.4.	Punto 6
		2.4.1. b)
		2.4.2. d)
		2.4.3. f)
		2.4.4. g)
	2.5.	Punto 8
		2.5.1. a)
		2.5.2. b)
		2.5.3. c)
		2.5.4. d)
	2.6.	Punto 9
		2.6.1. a)
		2.6.2. b)
	2.7	Punto 10
		2.7.1. a)
		2.7.2. b)

1. Justificaciones extra:

Metateorema SS

- 1. $\mathbf{v}[\phi] = \mathbf{T}$ Es una proposicón X_1
- 1.1. $\mathbf{v}[\phi] = \mathbf{F}$ es igual a la proposición $(\neg X_1)$
- 2. $\mathbf{v}[\phi] = \mathbf{F}$ Es una proposicón X_2
- 2.1. $\mathbf{v}[\phi] = \mathbf{T}$ es igual a la proposición $(\neg X_2)$
- 3. Los conectores usados en las definiciones y metateoremas sobre valuaciones pueden ser reemplazados por conectores lógicos.

2. Sección 2.3

2.1. Punto 1

2.1.1. a) $\vDash ((\phi \equiv \psi) \equiv (\psi \equiv \phi))$

0. $\mathbf{v}[((\phi \equiv \psi) \equiv (\psi \equiv \phi))] = \mathbf{T}$

Enunciado

- 1. $\mathbf{v}[((\phi \equiv \psi) \equiv (\psi \equiv \phi))] = \mathbf{F}$
- suposición (intento por contradicción)
- 2. $\mathbf{v}[(\phi \equiv \psi)] \neq \mathbf{v}[(\psi \equiv \phi)]$
- 3. $(\mathbf{v}[(\phi \equiv \psi)] = T) \wedge (\mathbf{v}[(\psi \equiv \phi)] = F)$

suposición 1, MT 2.20

4. $|(\mathbf{v}[\phi] = \mathbf{v}[\psi]) \wedge (\mathbf{v}[\psi] \neq \mathbf{v}[\phi])$

 $MT 2.23 (\equiv)$

- 5. Contradicción
- 6. $|(\mathbf{v}[(\phi \equiv \psi)] = \mathbf{F}) \wedge (\mathbf{v}[(\psi \equiv \phi)] = \mathbf{T})|$

suposición 2

7. $|(\mathbf{v}[\phi] \neq \mathbf{v}[\psi]) \wedge (\mathbf{v}[\psi] = \mathbf{v}[\phi])$

MT 2.23 (\equiv)

- 8. Contradicción
- 9. \therefore $\models ((\phi \equiv \psi) \equiv (\psi \equiv \phi))$

Página 2 Taller 02

2.1.2. b) $\vDash ((\phi \equiv true) \equiv \phi)$

0.
$$\mathbf{v}[((\phi \equiv true) \equiv \phi)] = \mathbf{T}$$

Enunciado

1.
$$\mathbf{v}[((\phi \equiv true) \equiv \phi)] = \mathbf{F}$$

suposición (intento por contradicción)

2.
$$\mathbf{v}[(\phi \equiv true)] \neq \mathbf{v}[\phi]$$

3.
$$|(\mathbf{v}[(\phi \equiv true)] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})|$$

suposición 1, MT 2.20

4.
$$|(\mathbf{v}[\phi] = \mathbf{v}[true]) \wedge (\mathbf{v}[\phi]) = \mathbf{F}$$

MT 2.23

5.
$$|(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})|$$

6. Contradicción

7.
$$[\mathbf{v}[(\phi \equiv true)] = \mathbf{F}) \wedge (\mathbf{v}[\phi] = \mathbf{T})$$

suposición 2, MT 2.20

8. $|(\mathbf{v}[\phi] \neq \mathbf{v}[true]) \wedge (\mathbf{v}[\phi]) = \mathbf{T}$

MT 2.23

9.
$$|(\mathbf{v}[\phi] = \mathbf{F}) \wedge (\mathbf{v}[\phi] = \mathbf{T})|$$

10. Contradicción

11.
$$\therefore$$
 $\vDash ((\phi \equiv true) \equiv \phi)$

2.1.3. f) $\vDash ((\phi \lor false) \equiv \phi)$

0.
$$\mathbf{v}[((\phi \lor false) \equiv \phi)] = \mathbf{T}$$

Enunciado

1.
$$\mathbf{v}[((\phi \lor false) \equiv \phi)] = \mathbf{F}$$

suposición (intento por contradicción)

2. $\mathbf{v}[(\phi \lor false)] \neq \mathbf{v}[\phi]$

3. $|(\mathbf{v}[(\phi \vee false)] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})|$

suposición 1, MT 2.20

4.
$$|((\mathbf{v}[\phi] = \mathsf{T}) \vee (\mathbf{v}[false] = \mathsf{T})) \wedge (\mathbf{v}[\phi] = \mathsf{F})|$$

MT 2.23

5.
$$|(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})|$$

6. Contradicción

7.
$$|(\mathbf{v}[(\phi \vee false)] = \mathbf{F}) \wedge (\mathbf{v}[\phi] = \mathbf{T})|$$

suposición 2, MT 2.20

8.
$$((\mathbf{v}[\phi] = F) \wedge (\mathbf{v}[false] = F)) \wedge (\mathbf{v}[\phi] = T)$$

MT 2.23

9.
$$|(\mathbf{v}[\phi] = \mathbf{F}) \wedge (\mathbf{v}[\phi] = \mathbf{T})|$$

simplificación (8)

10. Contradicción

11.
$$\therefore$$
 $\models ((\phi \lor false) \equiv \phi)$

Página 3 Taller 02

2.1.4. g) $\vDash ((\phi \lor \phi) \equiv \phi)$

suposición (intento por contradicción)	$\mathbf{v}[((\phi\vee\phi)\equiv\phi)]=\mathtt{F}$
MT 2.23 (\equiv)	$\mathbf{v}[(\phi \lor \phi)] \neq \mathbf{v}[\phi]$
suposición 1, MT 2.20	$(\mathbf{v}[(\phi \lor \phi)] = \mathtt{T}) \land (\mathbf{v}[\phi] = \mathtt{F})$
MT 2.20	$((\mathbf{v}[\phi] = \mathtt{T}) \lor (\mathbf{v}[\phi] = \mathtt{T})) \land (\mathbf{v}[\phi] = \mathtt{F})$
suposición 1.1	$((\mathbf{v}[\phi] = \mathtt{T}) \wedge (\mathbf{v}[\phi] = \mathtt{T})) \wedge (\mathbf{v}[\phi] = \mathtt{F})$
	Contradicción
suposición 1.2	$((\mathbf{v}[\phi] = F) \land (\mathbf{v}[\phi] = T)) \land (\mathbf{v}[\phi] = F)$
	Contradicción
suposición 1.3	$((\mathbf{v}[\phi] = F) \wedge (\mathbf{v}[\phi] = T)) \wedge (\mathbf{v}[\phi] = F)$
	Contradicción
suposición 2, MT 2.20	$(\mathbf{v}[(\phi \lor \phi)] = \mathbf{F}) \land (\mathbf{v}[\phi] = \mathbf{T})$
MT 2.23	$((\mathbf{v}[\phi] = \mathbf{F}) \land (\mathbf{v}[\phi] = \mathbf{F})) \land (\mathbf{v}[\phi] = \mathbf{T})$
	Contradicción

2.1.5. k) $\models (\neg(\phi \land (\neg\phi)))$

1. $\mathbf{v}[(\neg(\phi \land (\neg\phi)))] = \mathbf{F}$ suposición (intento por contradicción) 2. $\mathbf{v}[(\phi \land (\neg\phi))] = \mathbf{T}$ MT 2.23 (\neg) 3. $(\mathbf{v}[\phi] = \mathbf{T}) \land (\mathbf{v}[(\neg\phi)] = \mathbf{T})$ MT 2.23 (\land) 4. $(\mathbf{v}[\phi] = \mathbf{T}) \land (\mathbf{v}[\phi] = \mathbf{F})$ MT 2.23 (\neg) 5. Contradicción 6. $\therefore \models (\neg(\phi \land (\neg\phi)))$	0.	$\mathbf{v}[(\neg(\phi\wedge(\neg\phi)))] = \mathtt{T}$	Enunciado
3. $(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[(\neg \phi)] = \mathbf{T})$ MT 2.23 (\wedge) 4. $(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})$ MT 2.23 (\neg) 5. Contradicción	1.	$\mathbf{v}[(\neg(\phi\wedge(\neg\phi)))] = F$	suposición (intento por contradicción)
4. $(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})$ MT 2.23 (\neg) 5. Contradicción	2.	$\mathbf{v}[(\phi \wedge (\neg \phi))] = \mathtt{T}$	MT 2.23 (¬)
5. Contradicción	3.	$(\mathbf{v}[\phi] = \mathtt{T}) \wedge (\mathbf{v}[(\neg \phi)] = \mathtt{T})$	MT 2.23 (\land)
	4.	$(\mathbf{v}[\phi] = \mathtt{T}) \wedge (\mathbf{v}[\phi] = \mathtt{F})$	MT 2.23 (¬)
$6. \therefore \models (\neg(\phi \land (\neg\phi)))$	_ 5.	Contradicción	
	6.	$\therefore \qquad \vDash (\neg(\phi \land (\neg\phi)))$	

2.1.6. 1) $\models (\phi \to (\psi \to \phi))$

	0.	$\mathbf{v}[(\phi o (\psi o \phi))] = \mathtt{T}$	Enunciado
	1.	$\mathbf{v}[(\phi \to (\psi \to \phi))] = \mathtt{F}$	suposición (intento por contradicción)
	2.	$(\mathbf{v}[\phi] = \mathtt{T}) \wedge (\mathbf{v}[(\psi \to \phi)] = \mathtt{F})$	MT 2.23 (\rightarrow)
	3.	$(\mathbf{v}[\phi] = \mathtt{T}) \wedge ((\mathbf{v}[\psi] = \mathtt{T}) \wedge ((\mathbf{v}[\phi] = \mathtt{F})))$	MT 2.23 (\rightarrow)
_	4.	Contradicción	
	5.	$\therefore \qquad (\phi \to (\psi \to \phi))$	

Página 4 Taller 02

2.1.7. n) $\vDash ((\phi \rightarrow \psi) \equiv ((\neg \psi) \rightarrow (\neg \phi)))$

0.	$\mathbf{v}[((\phi \to \psi) \equiv ((\neg \psi) \to (\neg \phi)))] = T$	Enunciado	
1.	$\mathbf{v}[(\phi \to \psi)] = \mathbf{v}[((\neg \psi) \to (\neg \phi))]$	MT 2.23 (\equiv)	
2.	Partiendo de $(\phi \to \psi)$		
3.	$\mathbf{v}[(\phi o \psi)] = \mathtt{F}$	suposición 1	
4.	$(\mathbf{v}[\phi] = \mathtt{T}) \wedge (\mathbf{v}[\psi] = \mathtt{F})$	MT 2.23 (\rightarrow)	
5	$(\mathbf{v}[\psi] = F) \wedge (\mathbf{v}[\phi] = T)$	Conmutativa de \wedge	
6.	$(H_{\neg}(\mathbf{v}[\psi]) = \mathtt{T}) \wedge (H_{\neg}(\mathbf{v}[\phi]) = \mathtt{F})$	Doble negación (5)	
7.	$(\mathbf{v}[(\neg \psi)] = \mathtt{T}) \wedge (\mathbf{v}[(\neg \phi)]) = \mathtt{F}$	Def. 2.18 (\neg)	
8.	$\mathbf{v}[((\neg\psi)\to(\neg\phi))]=\mathtt{F}$	MT 2.23 (\rightarrow)	
9.	$\mathbf{v}[(\phi o \psi)] = \mathtt{T}$	suposición 2	
10.	$(\mathbf{v}[\phi] = \mathtt{F}) \lor (\mathbf{v}[\psi] = \mathtt{T})$	MTT 2.23 (\rightarrow)	
11.	$(\mathbf{v}[\psi] = \mathtt{T}) \lor (\mathbf{v}[\phi] = \mathtt{F})$	Conmutativa de \vee	
12.	$(H_{\neg}(\mathbf{v}[\psi]) = F) \lor (H_{\neg}(\mathbf{v}[\phi]) = T)$	Doble negación (10)	
13.	$(\mathbf{v}[(\neg \psi)] = F) \lor (\mathbf{v}[(\neg \phi)]) = T$	Def. 2.18 (¬)	
14.	$\mathbf{v}[((\neg \psi) \to (\neg \phi))] = T$	MT 2.23 (\rightarrow)	
15.	$\therefore \qquad \vDash ((\phi \to \psi) \equiv ((\neg \psi) \to (\neg \phi)))$		

2.2. Punto 2

2.2.1. b) $((\neg p) \lor q)$

0.	$(\exists \mathbf{v}, \mathbf{w} (\mathbf{v}[((\neg p) \vee q)] = \mathtt{T}) \wedge (\mathbf{w}[((\neg p) \vee q)] = \mathtt{F}))$	Enunciado
1.	$\mathbf{v}[((\neg p) \lor q)] = \mathtt{T}$	suposición 1
2.	$(\mathbf{v}[(\neg p)] = \mathtt{T}) \lor (\mathbf{v}[q] = \mathtt{T})$	MT $2.23 (\lor)$
3.	$(\mathbf{v}[p] = \mathtt{F}) \lor (\mathbf{v}[q] = \mathtt{T})$	Doble negación (2)
4.	$\mathbf{v} = \{p \mapsto \mathtt{F}, q \mapsto \mathtt{T}\}$	
5.	$(\exists \mathbf{v} \mathbf{v}[((\neg p) \vee q)] = \mathtt{T})$	
6.	$\mathbf{w}[((\neg p) \lor q)] = F$	suposición 2
7.	$(\mathbf{w}[(\neg p)] = \mathbf{F}) \wedge (\mathbf{w}[q] = \mathbf{F})$	MT $2.23 (\lor)$
8.	$(\mathbf{w}[p] = \mathtt{T}) \wedge (\mathbf{w}[q] = \mathtt{F})$	Doble negación (2)
9.	$\mathbf{w} = \{p \mapsto \mathtt{T}, q \mapsto \mathtt{F}\}$	
10.	$(\exists \mathbf{w} \mathbf{w}[((\neg p) \vee q)] = \mathbf{f})$	
11.	$\therefore (\exists \mathbf{v}, \mathbf{w} \mid (\mathbf{v}[((\neg p) \lor q)] = \mathbf{T}) \land (\mathbf{w}[((\neg p) \lor q)] = \mathbf{I})$	F))

Página 5 Taller 02

2.2.2. d) $(\neg(p \land (\neg q)))$

1. $\mathbf{v}[(\neg(p \land (\neg q)))] = \mathbf{F}$ 2. $\mathbf{v}[(p \land (\neg q))] = \mathbf{T}$ 3. $(\mathbf{v}[p] = \mathbf{T}) \land (\mathbf{v}[(\neg q)] = \mathbf{T})$	suposición 1 Def. $2.18 (\neg)$
3. $(\mathbf{v}[p] = T) \wedge (\mathbf{v}[(\neg q)] = T)$	Def. 2.18 (\neg)
([1/] /	Dei: 2.10 (·)
	MT $2.23 (\land)$
4. $ (\mathbf{v}[p] = \mathtt{T}) \wedge (\mathbf{v}[q] = \mathtt{F})$	Def. 2.18 (\neg)
5. $\mathbf{v} = \{ p \mapsto \mathtt{T}, q \mapsto \mathtt{F} \}$	
6. $ (\exists \mathbf{v} \mid \mathbf{v}[(\neg(p \land (\neg q)))] = \mathbf{T}) $	
7. $\mathbf{w}[(\neg(p \land (\neg q)))] = T$	suposición 2
8. $ \mathbf{w}[(p \wedge (\neg q))] = \mathbf{F}$	Def. 2.18 (\neg)
9. $(\mathbf{w}[p] = F) \lor (\mathbf{w}[(\neg q)] = F)$	
10. $ (\mathbf{w}[p] = \mathbf{F}) \lor (\mathbf{w}[q] = \mathbf{T})$	Def. 2.18 (\neg)
11. $\mathbf{w} = \{ p \mapsto \mathtt{F}, q \mapsto \mathtt{T} \}$	
12. $ (\exists \mathbf{w} \mid \mathbf{w}[(\neg(p \land (\neg q)))] = \mathtt{T}) $	

2.3. Punto 3

$$\bullet(\phi \wedge (\neg \phi))$$

$$\bullet((\phi \to \psi) \equiv (\phi \land (\neg \psi)))$$

$$\bullet((\phi \leftarrow \psi) \equiv ((\neg \phi) \land \psi))$$

2.4. Punto 6

2.4.1. b)

Se tiene de entrada que false, al ser una constante, no hace de operador entre 2 proposiciones, por lo que la única opción es:

0.	$\models (false)$	suposición/ enunciado
1.	$\mathbf{v}[false] = \mathtt{T}$	Def.(p0)
2.	F = T	Def. 2.18 (false) (p1)
3.	Contradicción	
4.	No existe dicha proposición mencionada en el enunciado	

Página 6 Taller 02

2.4.2. d)

0.
$$\models (\phi \not\equiv \psi)$$
 suposición/ enunciado

1.
$$\mathbf{v}[(\phi \neq \psi)] = \mathbf{T}$$
 Def.(p0)

2.
$$\mathbf{v}[(\phi \not\equiv \psi)] = \mathbf{F}$$
 suposición (intento por contradicción)

3.
$$\mathbf{v}[\phi] = \mathbf{v}[\psi]$$
 MT 2.23 $(\not\equiv)$ (p2)

4.
$$\mathbf{v}[\phi] = \mathbf{T}$$
 suposición 1 , MT 2.19 N 2.20

5.
$$\mathbf{v}[\psi] = \mathsf{T}$$
 $\mathsf{p}(3,4)$

6.
$$\therefore$$
 $(\exists \mathbf{v} \mid \mathbf{v}[(\phi \not\equiv \psi)] = \mathbf{F})$

2.4.3. f)

$$0. \models (\phi \land \psi)$$
 suposición/ enunciado

1.
$$\mathbf{v}[(\phi \wedge \psi)] = \mathbf{T}$$
 Def.(p0)

2.
$$\mathbf{v}[(\phi \wedge \psi)] = \mathbf{F}$$
 suposición (intento por contradicción)

3.
$$(\mathbf{v}[\phi] = \mathbf{F}) \lor (\mathbf{v}[\psi] = \mathbf{F})$$
 MT 2.23 (p2)

4.
$$|\mathbf{v}[\phi]| = F$$
 suposición 1, MT 2.19 N 2.20

5.
$$\mathbf{v}[(\phi \wedge \psi)] = \mathbf{F}$$
 MT 2.23, p4

6.
$$(\exists \mathbf{v} \mid \mathbf{v}[(\phi \land \psi)] = \mathbf{F})$$

2.4.4. g)

0.
$$\models (\phi \rightarrow \psi)$$
 suposición/ enunciado

1.
$$\mathbf{v}[(\phi \to \psi)] = \mathbf{T}$$
 Def.(p0)

2.
$$\mathbf{v}[(\phi \to \psi)] = \mathbf{F}$$
 suposición (intento por contradicción)

3.
$$(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\psi] = \mathbf{F})$$

4.
$$\therefore$$
 $(\exists \mathbf{v} | \mathbf{v}[(\phi \to \psi)] = F)$

Página 7 Taller 02

2.5. Punto 8

2.5.1. a)

0. Si $\models (\phi \rightarrow \psi)$ y $\models (\psi \rightarrow \tau)$, entonces $\models (\phi \rightarrow \tau)$ Enunciado 1. $((\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \land (\mathbf{v}[(\psi \to \tau)] = \mathbf{T})) \implies (\mathbf{v}[(\phi \to \tau)] = \mathbf{T})$ Def. (p0) 2. $(\exists \mathbf{v} \mid \mathbf{v}[(\phi \to \tau)] = \mathbf{F})$ suposición , MT 2.19 N 2.20 (\rightarrow) (p1) 3. $(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\tau] = \mathbf{F})$ MT 2.23 (\rightarrow) (p2) 4. se tiene que $((\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \land (\mathbf{v}[(\psi \to \tau)] = \mathbf{T}))$ 5. $\mathbf{v}[\phi] = \mathbf{T}$ Caso $(true \rightarrow \xi)$ (p4, p3) Caso $(true \rightarrow \xi)$ (p4, p5) 6. $\mathbf{v}[\tau] = \mathbf{T}$ 7. Contradicción (p6, p3)Si $\models (\phi \rightarrow \psi)$ y $\models (\psi \rightarrow \tau)$, entonces $\models (\phi \rightarrow \tau)$ Enunciado

2.5.2. b)

0. Si $\models (\phi \rightarrow \psi)$ y $\models (\phi)$, entonces $\models (\psi)$ Enunciado 1. $((\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \land (\mathbf{v}[\phi] = \mathbf{T})) \implies (\mathbf{v}[\psi] = \mathbf{T})$ Def.(p0)2. $(\exists \mathbf{v} \mid \mathbf{v}[\psi] = \mathbf{F})$ suposición, MT 2.19 N 2.20 3. Se tiene que $((\mathbf{v}[(\phi \to \psi)] = T) \land (\mathbf{v}[\phi] = T))$ 4. $((\mathbf{v}[\phi] = \mathbf{F}) \lor (\mathbf{v}[\psi] = \mathbf{T})) \land (\mathbf{v}[\phi] = \mathbf{T})$ MT 2.23 (\rightarrow) (p3) 5. Nótese que por un lado (mediante \vee) ($\mathbf{v}[\phi] = \mathbf{F}$) y por otro ($\mathbf{v}[\phi] = \mathbf{T}$) 6. $\mathbf{v}[\psi] = \mathbf{T}$ Caso $(false \lor \xi)$ 7. Contradicción (p6, p2)Si $\models (\phi \rightarrow \psi)$ y $\models (\phi)$, entonces $\models (\psi)$ Enunciado

2.5.3. c)

0.	Si $\models (\phi \rightarrow \psi)$ y $\models (\psi \equiv \tau)$, entonces $\models (\phi \rightarrow \tau)$	Enunciado
1.	$((\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \land (\mathbf{v}[(\psi \equiv \tau)] = \mathbf{T})) \implies (\mathbf{v}[(\phi \to \tau)] = \mathbf{T})$	Def. (p0)
2.	$(\exists \mathbf{v} \mathbf{v}[(\phi \to \tau)] = \mathtt{T})$	suposición, MT 2.19 N 2.20
3.	$(\mathbf{v}[\phi] = \mathtt{T}) \wedge (\mathbf{v}[au] = \mathtt{F})$	MT 2.23 (\rightarrow) (p2)
4.	Se tiene que $((\mathbf{v}[(\phi \to \psi)] = \mathtt{T}) \land (\mathbf{v}[(\psi \equiv \tau)] = \mathtt{T}))$	
5.	$\mathbf{v}[\psi] = \mathtt{F}$	MT 2.23 (\equiv) (p4, p3)
6.	$\mathbf{v}[(\phi o \psi)] = \mathtt{F}$	MT 2.23 (\rightarrow) (p5, p3)
7.	Contradicción	(p6, p3)
8.	Si $\vDash (\phi \to \psi)$ y $\vDash (\psi \equiv \tau)$, entonces $\vDash (\phi \to \tau)$	

Página 8 Taller 02

2.5.4. d)

0. Si
$$\models (\phi \equiv \psi)$$
 y $\models (\psi \rightarrow \tau)$, entonces $\models (\phi \rightarrow \tau)$ Enunciado
1. $((\mathbf{v}[(\phi \equiv \psi)] = \mathbf{T}) \land (\mathbf{v}[(\psi \rightarrow \tau)] = \mathbf{T})) \implies (\mathbf{v}[(\phi \rightarrow \tau)] = \mathbf{T})$ Def. (p0)
2. $(\exists \mathbf{v} \mid \mathbf{v}[(\phi \rightarrow \tau)] = \mathbf{F})$ suposición, MT 2.19 N 2.20
3. $(\mathbf{v}[\phi] = \mathbf{T}) \land (\mathbf{v}[\tau] = \mathbf{F})$ MT 2.23 (\rightarrow) (p2)
4. Se tiene que $((\mathbf{v}[(\phi \equiv \psi)] = \mathbf{T}) \land (\mathbf{v}[(\psi \rightarrow \tau)] = \mathbf{T}))$
5. $\mathbf{v}[\psi] = \mathbf{T}$ MT 2.23 (\equiv) , (p4, p3)
6. $\mathbf{v}[(\psi \rightarrow \tau)] = \mathbf{F}$ MT 2.23 (\rightarrow) , (p5, p3)
7. Contradicción (p6, p3)

2.6. Punto 9

2.6.1. a)

0.	ϕ Es insatisfacible si y solo si $\vDash (\phi \equiv \mathit{false})$	Enunciado
1.	Si ϕ Es insatisfacible, entonces $\vDash (\phi \equiv false)$	demostración 1
2.	$\mathbf{v}[\phi] = \mathtt{F}$	MT 2.19 N 2.20
3.	$\mathbf{v}[false] = \mathtt{F}$	Def 2.18 (false)
4.	$egin{aligned} \mathbf{v}[\phi] &= \mathbf{v}[\mathit{false}] \ \mathbf{v}[(\phi \equiv \mathit{false})] &= \mathtt{T} \end{aligned}$	(p3, p2)
5.	$\mathbf{v}[(\phi \equiv \mathit{false})] = \mathtt{T}$	MT 2.23 (\equiv) (p4)
l I		
	Si $\models (\phi \equiv false)$ entonces ϕ Es insatisfacible	demostración 2
7.	$egin{aligned} \mathbf{v}[(\phi \equiv \mathit{false})] &= \mathtt{T} \ \mathbf{v}[\phi] &= \mathbf{v}[\mathit{false}] \end{aligned}$	MT 2.19 N 2.20
8.	$\mathbf{v}[\phi] = \mathbf{v}[\mathit{false}]$	MT 2.23 (\equiv) (p7)
9.	$\mathbf{v}[\phi] = \mathtt{F}$	Def. 2.18 (false)
10.	\therefore ϕ Es insatisfacible si y solo si $\vDash (\phi \equiv \mathit{false}$	2)

Página 9 Taller 02

2.6.2. b)

0.	ϕ Es insatisfacible si y solo si $\models (\neg \phi)$	Enunciado
1.	Si ϕ es insatisfacible, entonces $\vDash (\neg \phi)$	demostración 1
2.	$\mathbf{v}[\phi] = \mathtt{F}$	MT $2.19 \text{ N } 2.20$
3.	$H_{ eg}()\mathbf{v}[\phi]=\mathtt{T}$	doble negación (p2)
4.	$H_{ eg}()\mathbf{v}[\phi] = \mathtt{T} \ \mathbf{v}[(eg \phi)] = \mathtt{T}$	
5.	Si $\vDash (\neg \phi)$, entonces ϕ es insatisfacible	demostración 2
6.	$\mathbf{v}[(\neg\phi)] = \mathtt{T}$	MT $2.19 \text{ N } 2.20$
7.	$egin{aligned} \mathbf{v}[(eg\phi)] &= \mathtt{T} \ \mathbf{v}[\phi] &= \mathtt{F} \end{aligned}$	MT $2.23 (\neg) (p6)$
8.	$\therefore \phi \text{ Es insatisfacible si y solo si } \vDash (\neg \phi)$	

2.7. Punto 10

2.7.1. a)

0.	$\models (\phi \equiv \psi) \text{ si y solo si } \models (\phi) \text{ y } \models (\psi)$	Enunciado
1.	Si $\vDash (\phi \equiv \psi)$ entonces $\vDash (\phi)$ y $\vDash (\psi)$	demostración 1
2.	$\mathbf{v}[(\phi\equiv\psi)]=\mathtt{T}$	MT $2.19 \text{ N } 2.20$
3.	$\mathbf{v}[\phi] = \mathbf{v}[\psi]$	MT 2.23 (\equiv) $(p2)$
4.	Tomando $\mathbf{v} \mathbf{v}[\phi] = \mathbf{F}$	MT $2.19 \text{ N } 2.20$
5.	$\mathbf{v}[\psi] = \mathtt{F}$	MT 2.23 (\equiv) (p4, p3)
6.	∴ No se cumple el enunciado	

2.7.2. b)

$0. \models (\phi \land \psi) \text{ si}$	$y \text{ solo si } \vDash (\phi) \ y \vDash (\psi)$	Enunciado
1. Si $\models (\phi \land \psi)$	(v) , entonces $\vDash (\phi)$ y $\vDash (\psi)$	demostración 1
2. $ \mathbf{v}[(\phi \wedge \psi)] =$	= T	MT $2.19 \text{ N } 2.20$
3. $\left (\mathbf{v}[\phi] = \mathtt{T}) \right $	$\setminus (\mathbf{v}[\phi] = \mathtt{T})$	MT 2.23 (\land) (p2)
4. $\models (\phi) y \models (\phi) $	$\psi)$	Def. (p4)
5. Si $\models (\phi)$ y	$\vDash (\psi)$, entonces $\vDash (\phi \land \psi)$	demostración 2
6. $\left (\mathbf{v}[\phi] = \mathtt{T}) \right $	$\setminus (\mathbf{v}[\psi] = \mathtt{T})$	Def. (p5)
7. $\left (\mathbf{v}[(\phi \wedge \psi)] \right $	= T)	MT 2.23 (\wedge) (p6)
8 · ⊨ (d)	$(\land \psi)$ si y solo si $\models (\phi)$ y $\models (\psi)$	Enunciado

Página 10 Taller 02