Circle Measure

1. Geometrical Properties of Circles

 $\pi \ radians \approx 180^{\circ}$ $2\pi \ radians \approx 360^{\circ}$ $1 \ radian \approx 57.3^{\circ}$

1 Degree:

$$Arc\ Length = \frac{\theta^{\circ}}{360^{\circ}} * 2\pi r$$

$$Area\ of\ Sector = \frac{\theta^{\circ}}{360^{\circ}} * \pi r^2$$

Radian:

$$Arc\ Length = \theta r$$

$$Area\ of\ Sector = \frac{1}{2}\theta r^2$$

2 Degree:

$$Area\ of\ Segment = \frac{\theta^{\circ}}{360^{\circ}}*\pi r^2 - \frac{1}{2}r^2sin\theta$$

Radiant:

$$Area\ of\ Segment = \frac{\theta^{\circ}}{360^{\circ}}*\pi r^2 - \frac{1}{2}r^2sin\theta$$

2. Geometrical Properties of circles

2. Geometrical Properties of Circle	
Angle at the center of the circle is 2x the angle at the circumference subtended by the same arc:	P P P P P P P P P P P P P P P P P P P
Every angle subtended by the diameter of a semicircle is a 90 degree:	C
2 Right Angle of Semi-circle $\Delta ACB = 90^{\circ}$	A O B
Angle in the same segment of a circle have the same angle:	P P Q P
3 Angle in the same segment $\Delta APB = \Delta AQB = \Delta ARB$	A O'
	Figure 1 Figure 2
In a cyclic quadrilateral, the opposite angle add up to 180 degree: 4 Opposite angle of cycle quad	P
$\Delta Q + \Delta S = 180^{\circ}$ $\Delta P + \Delta R = 180^{\circ}$	Q
If one side of a cyclic quadrilateral is produced, the exterior angle formed is the same to the interior opposite angle: 5 Ext. angle of cycle quad	a d s
$ \Delta a = \Delta b \\ \Delta c = \Delta d $	R

A tangent to a circle is perpendicular to the radius	
6 Tangent perpendicular to radius	2 cent
$\Delta AXO = \Delta BXO = 90^{\circ}$	A1 B1 A X B
	Figure 2
	Figure 1
Tangent from external point	
	A
7 Congruent Triangle	
$\Delta OAP = \Delta OBP = 90^{\circ}$	O P
$\Delta APO = \Delta BPO = 30^{\circ}$	
$\Delta AOP = \Delta BOP = 60^{\circ}$	B
$\therefore \Delta PAB = Isos. \Delta$	В
An angle between a tangent and a	Y
chord through the point of contact is the same to the angle in the alternate	P 15°
segment	
8 Alternate Segment Theorem	200
$\Delta YPX = \Delta YXN$	M X N M X N
$\Delta RQX = \Delta RXN$	Figure 1 Figure 2
9 By Simmental Properties Δ	
$OM \perp AB$	
AM = MB	A B
10 Equal chords are equitant from the center	
	a c .
b = d $a = c$	b 0 d
u-c	