Chapitre 12 et 13)

Devoir Surveillé

EDS Première

7 Conditions d'évaluation

Calculatrice: autorisée. Durée: 45min

Compétences évaluées :

- ☐ Etudier les variations d'une fonction
- ☐ Déterminer les extremums d'une fonction
- ☐ Résoudre un problème d'optimisation
- □ Utiliser les propriétés algébriques de la fonction exponentielle
- ☐ Etudier le signe d'une expression avec des exponentielles
- ☐ Résoudre des équations et inéquations avec la fonction exponentielle
- ☐ Etudier une fonction contenant des exponentielles

Exercice 1 QCM

(7 points)

Pour chacune des questions, indiquer la (ou les) bonne(s) réponse(s). Vous justifierez vos réponses à partir de la question 4.

	a	ь	C
1. La fonction exponentielle est :	croissante sur [0;+∞[croissante sur $]-\infty$; $+\infty[$	strictement positive sur $]-\infty$; $+\infty[$
2. e ⁰ =	0	1	e
3. e =	2,718	exp(1)	1
4. $e^5 \times e^3 =$	e ⁸	e ²	e ¹⁵
5. $\frac{e^{-1} \times e^3}{e \times e^2} =$	$\frac{1}{e}$	е	e ⁻¹
6. Pour tout réel x , on $\alpha (e^x)^2 =$	e ^{x+2}	2 e ^x	e^{2x}
7. Pour tout réel x , on $\alpha e^x \times e^{-x} =$	0	e^{2x}	1
9. Si $f(x) = 5e^{2x} + 10x$, alors:	$f'(x) = e^{2x} + 10$	$f'(x) = 10(e^{2x} + 1)$	$f'(x) = 5e^{2x} + 10$
10. Si $f(x) = e^{3x+1}$, alors:	$f'(x) = e^{3x+1}$	$f'(x) = 3e^{3x+1}$	$f'(x) = 3e^3$
11. Si $f(t) = 5e^{0.1t}$, alors:	$f'(t) = 0,5e^{0,1t}$	$f'(t) = \frac{1}{2} e^{0.1t}$	$f'(t) = 0.5e^{0.1}$
12. Si $f(t) = 2e^{1.256t}$, alors $\frac{f(t+1)}{f(t)} =$	2e ^{1,256} r+1 2e ^{1,256} r	e ^{1,256}	3,511347967

Le tableau ci-dessous représente le tableau de variations dune fonction f définie sur $\mathbb R$:

x	$-\infty$ -4 -2 -1 2 $+\infty$
Signe de f'	
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} \text{Signes} \\ \text{de } f \end{array}$	

Compléter les lignes du signe de la fonction f' et du signe de la fonction f. Vous citerez la propriété utilisée pour compléter la première ligne du tableau.

Exercice 3 Concentration de médicament

(7 points)

On injecte à un patient un médicament et on mesure régulièrement, pendant 15 heures, la concentration de ce médicament dans le sang, en gramme par litre (g/L). On obtient la courbe suivante.

- 1. Avec la précision permise par le graphique, indiquer :
 - (a) la concentration à l'instant initial;
 - (b) l'intervalle de temps pendant lequel la concentration est supérieure ou égale à 0,4 g/L.
- 2. On admet que la concentration peut être modélisée par la fonction f définie sur $[0; +\infty[$ par :

$$f(t) = (t+2) \times e^{-0.5t}$$

où t représente le nombre d'heures écoulées depuis l'instant initial et f(t) est la concentration du médicament dans le sang (en g/L).

(a) Justifier que pour tout réel $t \in [0; 15]$, on a :

$$f'(t) = -0.5t \times e^{-0.5t}$$

(b) Résoudre l'inéquation suivante :

$$-0.5t \times e^{-0.5t} \ge 0$$

(c) En déduire le tableau de variations complet de f.

d On estime que le médicament n'est plus actif lorsque sa concentration est strictement inférieure à 0,1 g/L. À l'aide de la calculatrice, déterminer pendant combien de temps le médicament est actif, à 0,1 h près.