

AD-A104 478 JOHNS HOPKINS UNIV BALTIMORE MD DEPT OF MATHEMATICAL--ETC F 6 12/1
GENERALIZATION OF BILLINGSLEY'S INEQUALITIES.(U)
JUN 81 F MORICZ N00014-79-C-0801
UNCLASSIFIED TR-346 NL

UNCLASSIFIED **TR-346**

END
DATE
FILED
10-81
DTIC

DEPARTMENT OF MATHEMATICAL SCIENCES
The Johns Hopkins University
Baltimore, Maryland 21218

INTEL

AD A1 U 4478

GENERALIZATION OF BILLINGSLEY'S INEQUALITIES

1417-344
TK-81-L-111

by
István Moricz
University of Szeged, Hungary

Technical Report No. 346
ONR Technical Report No. 81-6
1981
June, 1981

DTIC
SELECTED
SEP 1981
S D

13

Research supported by the Army, Navy and Air Force under Office of Naval Research
Contract No. N00014-79-C-0801. Reproduction in whole or in part permitted for
any purpose of the United States Government.

Research performed while the author was a Visiting Professor at The Johns Hopkins University.

DISTRIBUTION STATEMENT A
Approved for public release:
Distri ^b to: Unrestricted

408348 9 20 039

FILE COPY

GENERALIZATION OF BILLINGSLEY'S INEQUALITIES

ABSTRACT

Let $\xi_1, \xi_2, \dots, \xi_m$ be arbitrary random variables and define $S_k = \xi_1 + \xi_2 + \dots + \xi_k$ for $1 \leq k \leq m$, $S_0 = 0$, $M_m = \max_{0 \leq i \leq k \leq m} |S_i|$, $M'_m = \max_{0 < k \leq m} \min\{|S_k|, |S_m - S_k|\}$ and $M''_m = \max_{0 \leq i \leq j \leq m} \min\{|S_j - S_i|, |S_k - S_i|\}$. In this paper we establish bounds for the quantities $P(M_m \geq \lambda)$, $P(M'_m \geq \lambda)$ and $P(M''_m \geq \lambda)$ in terms of corresponding similar bounds assumed for the quantities $P(|S_j - S_i| \geq \lambda)$, $P(S_j - S_i \geq \lambda)$, all $0 \leq i \leq j \leq m$. The bounds explicitly involve a nonnegative function $f(i,j)$ which is quasi-superadditive, i.e., $f(i,j) + f(j,k) \leq f(i,k)$, all $0 \leq i \leq j \leq k \leq m$, for a fixed Ω , $1 \leq \Omega < 2$. The results generalize theorems of Billingsley (1968) for the case $\Omega = 1$ and $f(i,j) = \sum_{k=i}^j u_k$, where u_1, \dots, u_m are nonnegative reals.

The results generalize theorems of Billingsley (1968) for the case $\Omega = 1$.

1. Introduction. Let $\xi_1, \xi_2, \dots, \xi_m$ be arbitrary random variables. It is not assumed that the ξ_i 's are independent or identically distributed. The only restrictions on the dependence will be those imposed by the assumed bounds on $P(|S_j - S_i| \geq \lambda)$, $P(|S_j - S_i| \geq \lambda)$, $P(|S_k - S_i| \geq \lambda)$, $|S_k - S_j| \geq \lambda$, where λ runs over an interval of the positive real line, and

$$S_j = \sum_{k=1}^j \xi_k \quad \text{for } 1 \leq j \leq m \quad \text{and} \quad S_0 = 0.$$

Following Billingsley (1968, pp. 87-103) (we use the same notation that can be found there), define

$$M_m = \max_{0 \leq k \leq m} |S_k|,$$

$$M'_m = \max_{0 \leq i \leq k \leq m} \min\{|S_k|, |S_m - S_k|\},$$

$$M''_m = \max_{0 \leq i \leq j \leq k \leq m} \min\{|S_j - S_i|, |S_m - S_i|\},$$

and

$$N_m = \min_{1 \leq \ell \leq m} \max_{0 \leq i \leq \ell} |S_i|, \quad \max_{1 \leq \ell \leq m} |S_m - S_i|.$$

We recall that

$$M'_m \leq M_m, \quad M''_m \leq M'_m, \quad \text{and} \quad M''_m \leq N_m.$$

Our main goal is to establish bounds for the quantities $P(M_m \geq \lambda)$, $P(M'_m \geq \lambda)$, $P(M''_m \geq \lambda)$ in terms of corresponding similar bounds assumed for the quantities listed above.

The bounds will be related in specific ways to the variables S_j , S_i , $0 \leq i \leq j \leq m$, through some function $f(i,j)$ assumed to be nonnegative, nondecreasing in j for each fixed i , and Q -superadditive with $1 \leq Q < 2$. The latter property was introduced by Morris, Serfling and Stout (1961).

A function $f(i,j)$, $0 \leq i \leq j \leq m$, is said to be quasi-superadditive with index Q (or simply Q -superadditive) if

$$f(i,j) + f(j,k) \leq Qf(i,k), \quad \text{all } 1 \leq i \leq j \leq k \leq m.$$

Accession For	
NTIS GRA&I	X
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes:	
Avail and/or	
Dist Special	

The case $Q = 1$ corresponds to the usual notion of superadditivity.

We note that there is a slight difference in notation between this paper and the paper mentioned above. The relation between the function $f(i,j)$ occurring here and the function $g(i,j)$ used there is the following:
 $f(i,j) = g(i+1,j)$ (and similarly, $s_j - s_i = g(i+1,j)$, the latter being also used there).

For later reference we collect the assumed properties of $f(i,j)$ as follows

$$(1.1a) \quad f(i,j) \geq 0, \quad f(i,i) = 0, \quad \text{all } 0 \leq i \leq j \leq 1,$$

$$(1.1b) \quad f(i,j) \leq f(i,j+1), \quad \text{all } 0 \leq i \leq j < m,$$

$$(1.1c) \quad f(i,j) + f(j,k) \leq f(i,k), \quad \text{all } 0 \leq i \leq j \leq k \leq m.$$

In Billingsley's book (pp. 67-103) the case $f(i,j) = \sum_{1 \leq k \leq j} u_k$ is treated, where u_1, u_2, \dots, u_m are nonnegative reals. This function $f(i,j)$ is clearly superadditive (even additive).

2. Main Results.

THEOREM 1. (The generalization of [1, Theorem 12.1].) Let $\alpha > 1/2$. Suppose that there exist a function $f(i,j)$ satisfying (1.1)

$$(2.1) \quad P(|s_j - s_i| \geq \lambda, |s_k - s_j| \geq \lambda) \leq \frac{1}{\phi(\lambda)} f^2(i,k), \quad \text{all } 0 < \lambda < \lambda_0 \quad \text{and} \quad 0 \leq i \leq j \leq k \leq m,$$

with a $Q, 1 \leq Q < 2^{(2\alpha-1)/\alpha}$, and a $\lambda_0, 0 < \lambda_0 \leq +\infty$, such that

$$(2.2) \quad P(|s_k - s_i| \geq \lambda, |s_h - s_k| \geq \lambda) \leq \frac{\lambda}{\phi(\lambda)} f^2(i,h), \quad \text{all } 0 < \lambda < \lambda_0 \quad \text{and} \quad 0 \leq i \leq k \leq h \leq m,$$

where $\phi(\lambda) > 0$ for $0 < \lambda < \lambda_0$ and for each constant $C, 0 < C < 1$, we have

$$(2.3) \quad \inf_{0 < Q < Q_0} \frac{\chi(C)}{\phi(\lambda)} = \chi(C) > 0, \quad \lim_{C \rightarrow 1-0} \chi(C) = 1.$$

Then there exists a constant $K \geq 1$, depending on α and Q but not on m or $\{s_k\}$ or otherwise on f , such that

$$(2.4) \quad P(M_m \geq \lambda) \leq \frac{K}{\phi(\lambda)} f^2(0,m), \quad \text{all } 0 < \lambda < \lambda_0.$$

$$(2.5) \quad P(h, m) \leq \frac{Q}{2} f(0,m).$$

We note that $\phi(U) = \lambda^U$ satisfies condition (2.2) for each $\gamma \geq 0$.

Actually, Theorem 1 was proved by Billingsley (1968) in the special case that $\phi(U) = \lambda^{2Y}, Y \geq 0$, and $f(i,j) = \sum_{1 \leq k \leq j} u_k, u_k \geq 0$. This remark pertains to the subsequent Theorem 2 and Corollaries 1 and 2.

The following corollary can be deduced from Theorem 1 in the same way that Theorem 12.2 is deduced from Theorem 12.1 in [1].

COROLLARY 1. (The generalization of [1, Theorem 12.2].) Let $\alpha > 1$ be a given real. Suppose that there exist a function $f(i,j)$ satisfying (1.1)

with a $Q, 1 \leq Q < 2^{(\alpha-1)/\alpha}$, and a $\lambda_0, 0 < \lambda_0 \leq +\infty$, such that

$$P(|s_j - s_i| \geq \lambda) \leq \frac{1}{\phi(\lambda)} f^2(i,j), \quad \text{all } 0 < \lambda < \lambda_0 \quad \text{and} \quad 0 \leq i \leq j \leq m,$$

where $\phi(U) > 0$ for $0 < \lambda < \lambda_0$ and (2.2) is satisfied for each $C, 0 < C < 1$. Then there exists a constant $K' \geq 1$, depending on α, Q and X but not on m or $\{s_k\}$ or otherwise on f , such that

$$P(M_m \geq \lambda) \leq \frac{K'}{\phi(\lambda)} f^2(0,m), \quad 0 < \lambda < \lambda_0.$$

This result, using a direct proving method (and a somewhat different notation), was proved by Móricz, Serfling and Stout (1981, Theorem 3.1).

PROOF OF THEOREM 1. It goes along the same lines as the proof of [1, Theorem 12.1], i.e., by induction on m . The result is trivial for $m = 1$ and can be simply proved for $m = 2$.

Assume now as induction hypothesis that the result holds for each integer $m < n$. We shall prove it for n itself. We may assume $f(0,m) > 0$. By (1.1), there exists an integer $h, 1 \leq h \leq m$, such that

$$(2.4) \quad P(0, h-1) \leq \frac{Q}{2} f(0,m) \leq f(0,h).$$

Then, by (1.1) and (2.4), we have

Following Billingsley's proof, consider the next four quantities:

$$U_1 = \max_{0 \leq i \leq h-1} \min\{|s_i|, |s_{h-i} - s_i|\},$$

$$U_2 = \max_{h \leq j \leq m} \min\{|s_j - s_h|, |s_m - s_j|\},$$

$$D_1 = \min\{|s_{h-1}|, |s_m - s_{h-1}|\},$$

$$D_2 = \min\{|s_h|, |s_m - s_h|\}.$$

By (1), (12.37) and (12.38),

$$(2.6) \quad P(N_m \geq \lambda) \leq P(U_1 + D_1 \geq \lambda) + P(U_2 + D_2 \geq \lambda)$$

and

$$(2.7) \quad P(U_1 + D_1 \geq \lambda) \leq P(U_1 \geq p\lambda) + P(D_1 \geq q\lambda),$$

where p and q are positive reals and $p+q=1$.

By the induction hypothesis and (2.4), we have

$$P(U_1 \geq p\lambda) \leq \frac{\lambda}{\phi(p\lambda)} f^{2\alpha}(0, h-1) \leq \frac{\lambda}{\phi(p\lambda)} \frac{Q^{2\alpha}}{2^2 \alpha} f^{2\alpha}(0, m).$$

By (2.1),

$$P(D_1 \geq q\lambda) \leq \frac{1}{\phi(q\lambda)} f^{2\alpha}(0, m).$$

Taking (2.2) into account, from (2.7) it follows that

$$P(U_1 + D_1 \geq \lambda) \leq \frac{Kf^{2\alpha}(0, m)}{\phi(t)} \left(\frac{1}{\chi(p)} \frac{Q^{2\alpha}}{2^2 \alpha} + \frac{1}{KX(q)} \right).$$

The same inequality holds for $U_2 + D_2$ (using (2.5) instead of (2.4)).

By (2.6), therefore,

$$P(N_m \geq \lambda) \leq \frac{Kf^{2\alpha}(0, m)}{\phi(t)} \left(\frac{1}{\chi(p)} \frac{Q^{2\alpha}}{2^{2\alpha+1}} + \frac{2}{KX(q)} \right).$$

By assumption $Q^{2\alpha}/2^{2\alpha+1} < 1$. Thus, thanks to (2.2), we can define p ,

$0 < p < 1$, in such a way that

$$\frac{1}{\chi(p)} \frac{Q^{2\alpha}}{2^{2\alpha+1}} < 1.$$

Then let $q = 1-p$ and define K by the condition

$$\frac{1}{\chi(p)} \frac{Q^{2\alpha}}{2^{2\alpha+1}} + \frac{2}{KX(q)} \leq 1.$$

This completes the induction step and the proof of Theorem 1.

3. Further Inequalities.

THEOREM 2. (The generalization of [1, Theorem 12.5]) Let $\alpha > 1/2$ be a given real. Suppose that there exist a function $f(i,j)$ satisfying

(1.1) with $Q, 1 \leq Q < 2(\alpha+1)/2\alpha$, and $\lambda_0' 0 < \lambda_0 \leq +\infty$, such that condition (2.1) holds, where $\phi(\lambda) > 0$ for $0 < \lambda < \lambda_0$ and (2.2) is satisfied for each $C, 0 < C < 1$. Then there exists a constant K^* ≥ 1 , depending on α, Q and X but not on m or $\{t_k\}$ or otherwise on f , such that we have both

$$P\{N_m \geq \lambda\} \leq \frac{K^*}{\phi(\lambda)} f^{2\alpha}(0, m), \text{ all } 0 < \lambda < \lambda_0,$$

and

$$P\{N_m \geq \lambda\} \leq \frac{K^*}{\phi(\lambda)} f^{2\alpha}(0, m), \text{ all } 0 < \lambda < \lambda_0.$$

The proof of Theorem 2 closely follows that of [1, Theorem 12.5], using the same modifications we performed in the proof of Theorem 1. We do not enter into details.

COROLLARY 2. (The generalization of [1, Theorem 12.6]) Let $\alpha > 1/2$ be a given real. Suppose that there exist a function $f(i,j)$ satisfying

(1.1) with $Q = 1$ and $\lambda_0' 0 < \lambda_0 \leq +\infty$, such that

$$(3.1) \quad P\{|s_j - s_1| \geq \lambda, |s_k - s_j| \leq \lambda\} \leq \frac{1}{\phi(\lambda)} f^{2\alpha}(1, j) f^{2\alpha}(1, k).$$

all $0 < \lambda < \lambda_0$ and $0 \leq i \leq j \leq k \leq m$, where $\phi(\lambda) > 0$ for $0 < \lambda < \lambda_0$ and (2.2) is satisfied for each $C, 0 < C < 1$. Then there exists a constant

$\kappa'' \geq 1$, depending on α and x but not on n or $\{t_k\}$ or otherwise on f , such that we have both

$$(3.2) \quad P(N_m \geq \lambda) \leq \frac{\kappa''}{\phi(\lambda)} f^{2\alpha}(0, m) \min_{1 \leq i \leq m} \left[1 - \frac{f(h-1, h)}{f(0, m)} \right]^\alpha$$

and

$$(3.3) \quad P(N_m \geq \lambda) \leq \frac{\kappa''}{\phi(\lambda)} f^{2\alpha}(0, m) \min_{1 \leq i \leq m} \left[1 - \frac{f(h-1, h)}{f(0, m)} \right]^\alpha$$

for all $0 < \lambda < \lambda_0'$.

PROOF OF COROLLARY 2. Choose h to minimize the final factor in (3.3).

Following [1, (12.70), (12.71) and (12.74)] write

$$\lambda_1 = \min_{1 \leq i \leq h} \max_{0 \leq j \leq i} |s_j|, \quad \max_{i \leq j \leq h} |s_{h-1} - s_i|,$$

$$\lambda_2 = \min_{h < i \leq m} \max_{h \leq j \leq i} |s_j - s_h|, \quad \max_{i \leq j \leq m} |s_m - s_i|,$$

and

$$B = \max\{u(0, h-1, m); u(0, h-1, h); u(h-1, h, m); u(0, h, m)\},$$

where

$$u(i, j, k) = \min\{|s_j - s_i|, |s_k - s_j|\}.$$

Since (3.1) implies (2.1), by virtue of Theorem 2 we have

$$P(\lambda_1 \geq \lambda) \leq \frac{\kappa''}{\phi(\lambda)} f^{2\alpha}(0, h-1)$$

and

$$P(\lambda_2 \geq \lambda) \leq \frac{\kappa''}{\phi(\lambda)} f^{2\alpha}(0, m) .$$

Owing to (1.1) for $Q = 1$,

$$f(0, h-1) \leq f(0, h) - f(h-1, h) \leq f(0, m) - f(h-1, h)$$

and

$$f(h, m) \leq f(0, m) - f(0, h) \leq f(0, m) - f(h-1, h).$$

Combining the last two inequalities with the two preceding ones, we obtain

$$(3.4) \quad P(\lambda_1 \geq \lambda) \leq \frac{\kappa''}{\phi(\lambda)} f^{2\alpha}(0, m) \left[1 - \frac{f(h-1, h)}{f(0, m)} \right]^\alpha$$

and

$$(3.5) \quad P(\lambda_2 \geq \lambda) \leq \frac{\kappa''}{\phi(\lambda)} f^{2\alpha}(0, m) \left[1 - \frac{f(h-1, h)}{f(0, m)} \right]^\alpha$$

Finally, due to (3.1),

$$P(u(0, h-1, m) \geq \lambda) \leq \frac{1}{\phi(\lambda)} f^{2\alpha}(0, h-1) f^{2\alpha}(0, m) \leq \frac{f^{2\alpha}(0, m)}{\phi(\lambda)} \left[1 - \frac{f(h-1, h)}{f(0, m)} \right]^\alpha .$$

and there is a similar inequality for each of the other u 's occurring in B .

Therefore,

$$(3.6) \quad P(B \geq \lambda) \leq \frac{4f^{2\alpha}(0, m)}{\phi(\lambda)} \left[1 - \frac{f(h-1, h)}{f(0, m)} \right]^\alpha .$$

By [1, (12.76)],

$$N_m \leq \max(\lambda_1, \lambda_2) + 2B;$$

consequently,

$$P(N_m \geq \lambda) \leq P(\lambda_1 \geq \frac{1}{2}\lambda) + P(\lambda_2 \geq \frac{1}{2}\lambda) + P(B \geq \frac{1}{4}\lambda) .$$

Applying inequalities (3.4), (3.5) and (3.6), and taking (2.2) into account,

we have

$$P(N_m \geq \lambda) \leq \left(\frac{2\kappa''}{\lambda(\lambda)} + \frac{4}{\lambda^2} \right) \frac{f^{2\alpha}(0, m)}{\phi(\lambda)} \left[1 - \frac{f(h-1, h)}{f(0, m)} \right]^\alpha .$$

This is the desired inequality (3.3).

Hence (3.2) immediately follows since $N_m \leq 2N_m$.

REFERENCES

- [1] Billingsley, P. (1968). *Convergence of Probability Measures*. Wiley, New York.
- [2] Móricz, F., Serfling, R. J. and Stout, W. (1981). Moment and probability bounds with quasi-supradditive structure for the maximum partial sum.

Johns Hopkins University Mathematical Sciences Report No. 141, (UNR Technical
Report No. 91-1), June, 1981.
Baltimore, Maryland.

University of Szeged

Bolyai Institute

University of Szeged

Aradi v韗ut醕 t醞 1

Szeged 6720, Hungary

SECURITY CLASSIFICATION OF THIS PAGE		REPORT DOCUMENTATION DATE	REF ID: A704479
1. REPORT NUMBER	2. GOVT ACQUISITION NO.	3. RECIPIENT CATALOG NUMBER	
ONR No. H1-6			
4. TITLE		5. TYPE OF REPORT & PERIOD COVERED	
GENERALIZATION OF BILLINGSLEY'S INEQUALITIES		Technical Report	
6. PERFORMING ORGANIZATION REPORT NO.			
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)	
F. M鷇rtez		ONR No. N00014-79-C-0801	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Department of Mathematical Sciences The Johns Hopkins University Baltimore, Maryland 21218			
11. CONTROLLING OFFICE NAME & ADDRESS		12. REPORT DATE	
Office of Naval Research Statistics and Probability Program Arlington, Virginia 22217		June, 1981	
13. NUMBER OF PAGES		14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	
8		15. SECURITY CLASS (of this report)	
		Unclassified	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this report)			
Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS			
Maximum partial sum; quasi-superadditivity; dependent random variables.			
20. ABSTRACT			
<p>Let $\xi_1, \xi_2, \dots, \xi_m$ be arbitrary random variables and define $S_k = \xi_1 + \xi_2 + \dots + \xi_k$ for $1 \leq k \leq m$, $S_0 = 0$, $M_m = \max_{0 \leq k \leq m} S_k$, $M'_m = \max_{0 \leq k \leq m} \min\{ S_k , S_{m-k}$ and $M''_m = \max_{0 \leq i \leq k \leq m} \min\{ S_j - S_i , S_{k-j} - S_j \}$. In this paper we establish bounds for the quantities $P(M_m \geq \lambda)$, $P(M'_m \geq \lambda)$ and $P(M''_m \geq \lambda)$ in terms of corresponding similar bounds assumed for the quantities $P(S_j - S_i \geq \lambda)$, $P(S_j - S_{j+1} \geq \lambda)$, $P(S_j - S_{j+1} \geq \lambda, S_k - S_j \geq \lambda)$, all $0 \leq i \leq j \leq k \leq m$. The bounds explicitly involve a nonnegative function $f(i,j)$ which is quasi-superadditive, i.e., $f(i,j) + f(j,k) \leq f(i,k)$, all $0 \leq i \leq j \leq k \leq m$, for a fixed Q, $1 \leq Q \leq 2$.</p> <p>The results generalize theorems of Billingsley (1968) for the case $Q = 1$ and $f(i,j) = \sum_{1 \leq k \leq j} u_k$, where u_1, \dots, u_m are nonnegative reals.</p>			