

Assignment Project Exam Help

https://pmws.com

$Add \underset{\rm School \ of \ Computer \ Science}{We Chat \ powcoder}$

University of New South Wales

10. LINEAR PROGRAMMING

Linear Programming problems - Example 1

Problem:

Signification de la Source de l

- its price per gram p_i ;
- the number of calories c_i per gram, and
- The content v(i,j) of milligrams of vitamin V_j in one gram of food source f_i .
- Your task: to find a combination of quantities of food sources such that:
 - the total number of calcries in all of the chosen food is equal to a \sim on her decovariation due of \sim 0 cm (i.e., \sim 0 cm)
 - the total intake of each vitamin V_i at least the recommended daily intake of w_j milligrams for all $1 \le j \le 13$;
 - the price of all food per day is as low as possible.

Linear Programming problems - Example 1 cont.

- To obtain the corresponding constraints let us assume that we take x_i grams of each food source f_i for $1 \le i \le n$. Then:
 - the total number of calories must satisfy

Assignment Projecto Exam Help

• for each vitamin V_j the total amount in all food must satisfy

$$https://prowcoder.com$$

- an implicit assumption is that all the quantities must be non-negative with the characteristic $x_i \ge 0$, the property of t
- Our goal is to minimise the objective function which is the total cost

$$y = \sum_{i=1}^{n} x_i p_i.$$

• Note that all constraints and the objective function, are linear.

Linear Programming problems - Example 2

Problem:

• Assume now that you are politician and you want to make certain promises to the electorate which will ensure that your party will win in Stephense elections Project Exam Help

- a certain number of bridges, each 3 billion a piece;
- a certain number of rural airports, each 2 billion a piece, and
- a certain number of olympic swimming pools each a billion a piece.
- You MILLOS John Dows Goder. Com
 - each bridge you promise brings you 5% of city votes, 7% of suburban votes and 9% of rural votes:
 - each rural airport you promise brings you no city votes, 2% of
 - saburdan votes and 16% through vets DIMS COCCTity votes, 3% of suburban votes and no rural votes.
- In order to win, you have to get at least 51% of each of the city, suburban and rural votes.
- You wish to win the election by cleverly making a promise that **appears** that it will blow as small hole in the budget as possible, i.e., that the total cost of your promises is as low as possible.

Linear Programming problems - Example 2

- We can let the number of bridges to be built be x_h , number of airports x_a and the number of swimming pools x_n .
- We now see that the problem amounts to minimising the objective

ssignment Project Exam Help

```
+0.12x_n \ge 0.51 (securing majority of city votes)
0.05x_{h}
0.07x_b + 0.02x_a + 0.03x_p \ge 0.51 (securing majority of suburban votes)
0.09 ttps://pewcederigotomal votes)
x_b, x_a = 0.
```

- However, there is a very significant difference with the first example:

 you can eat 150 grans of encodat Ober WCOCCI

 - you cannot promise to build 1.56 bridges, 2.83 airports and 0.57 swimming pools!
- The second example is an example of an **Integer Linear Programming problem**, which requires all the solutions to be integers.
- Such problems are MUCH harder to solve than the "plain" Linear Programming problems whose solutions can be real numbers.

Linear Programming problems

• In the **standard form** the *objective* to be maximised is given by

Assignment Project Exam Help

• the constraints are of the form $\underbrace{ \text{https:/powcoder.com}}_{\sum_{j=1}^{i} a_{ij}x_{j} \leq b_{i}} (1)$

Add WeChat powcoder (2)

- Let the boldface **x** represent a (column) vector, $\mathbf{x} = \langle x_1 \dots x_n \rangle^{\mathsf{T}}$.
- To get a more compact representation of linear programs we introduce a partial ordering on vectors $\mathbf{x} \in \mathbf{R}^n$ by $\mathbf{x} \leq \mathbf{y}$ if and only if the corresponding inequalities hold coordinate-wise, i.e., if and only if $x_j \leq y_j$ for all $1 \leq j \leq n$.

Linear Programming

- maximize $\mathbf{c}^\mathsf{T} \mathbf{x}$
- subject to the following two (matrix-vector) constraints: https://powcader.com

and

- Thus the top rovide a triplet $(A, \mathbf{b}, \mathbf{c})$; $\mathbf{x} \ge \mathbf{0}$.
- This is the usual form which is accepted by most standard LP solvers.

Linear Programming

• The value of the objective for any value of the variables which makes the constraints satisfied is called a *feasible solution* of the LP problem.

Since positive constraints of the prime a_i a_i

- In general, a "natural formulation" of a problem as a Linear Program does not necessarily produce the non-negativity constrains for all of the variabet tos://powcoder.com

 • However, in the standard form such constraints are required for all of the
- variables.
- This poses no problem, because each occurrence of an unconstrained variable x_j call be implaced by the expression x' C where x' x_j^* are new variables satisfying the constraints $\sum_{j=0}^{j} \sum_{j=0}^{j} \sum$
- If $\mathbf{x} = (x_1, \dots, x_n)$ is a vector, we let $|\mathbf{x}| = (|x_1|, \dots, |x_n|)$. Some problems are naturally translated into constraints of the form $|A\mathbf{x}| \leq \mathbf{b}$. This also poses no problem because we can replace such constraints with two linear constraints: $A\mathbf{x} < \mathbf{b}$ and $-A\mathbf{x} < \mathbf{b}$ because |x| < y if and only if $x \leq y$ and $-x \leq y$.

- Standard Form: maximize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.
- Any vector \mathbf{x} which satisfies the two constraints is called a *feasible* solution, regardless of what the corresponding objective value $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ might

Assignment-Project Exam-Help

maximize
$$z(x_1, x_2, x_3) = 3x_1 + x_2 + 2x_3 \tag{3}$$

subject to the constraints

https://powcoder.com
$$\leq 30$$
 (4)

$$4x_1 + x_2 + 2x_3 \le 36 \tag{6}$$

- $\begin{array}{c} \text{Add}_{\text{How large can the value of the objective}} \underbrace{\text{Chat}_{\text{posterior}} \underbrace{\text{Cas}}_{x_2, x_3} \underbrace{\text{Cas$
- be, without violating the constraints?
- If we add inequalities (4) and (5), we get

$$3x_1 + 3x_2 + 8x_3 \le 54 \tag{8}$$

 \bullet Since all variables are constrained to be non-negative, we are assured that

$$3x_1 + x_2 + 2x_3 \le 3x_1 + 3x_2 + 8x_3 \le 54$$

maximize:
$$z(x_1, x_2, x_3) = 3x_1 + x_2 + 2x_3$$
 (3) with constraints: $x_1 + x_2 + 3x_3 \le 30$ (4)

Assignment Property $x_1 + x_2 + 2x_3 \le 36$ Help $x_1, x_2, x_3 \ge 0$ (7)

- Thus phe pip give z/z power of the precion $z(x_1, x_2, x_3) = 34$.
- Can we obtain a tighter bound? We could try to look for coefficients $y_1, y_2, y_3 \ge 0$ to be used to for a linear combination of the constraints:

Add Wey $(x_1 + x_2 + 3x_3) = 30$ coder $y_3(4x_1 + x_2 + 2x_3) \le 36y_3$

• Then, summing up all these inequalities and factoring, we get $x_1(y_1 + 2y_2 + 4y_3) + x_2(y_1 + 2y_2 + y_3) + x_3(3y_1 + 5y_2 + 2y_3) \le 30y_1 + 24y_2 + 36y_3$

maximize:
$$z(x_1, x_2, x_3) = 3x_1 + x_2 + 2x_3$$
 (3)

with constraints:

$$x_1 + x_2 + 3x_3 \le 30$$

Assignment Project^{2x}1+2x2+5x2+5x4 am Help $x_1, x_2, x_3 \ge 0$

• So we got

• If we compare this with our objective (3) we see that if we choose
$$y_1, y_2$$

and y_3 so that:

Add WeChat+powcoder $3y_1 + 5y_2 + 2y_3 \ge 2$

then

$$3x_3 + x_2 + 2x_3 \le x_1(y_1 + 2y_2 + 4y_3) + x_2(y_1 + 2y_2 + y_3) + x_3(3y_1 + 5y_2 + 2y_3)$$

Combining this with (9) we get:

$$30y_1 + 24y_2 + 36y_3 \ge 3x_1 + x_2 + 2x_3 = z(x_1, x_2, x_3)$$

• Consequently, in order to find as tight upper bound for our objective $z(x_1, x_2, x_3)$ of the problem P:

Assing maximize:
$$Project + Exam Help$$
 (5)

$$4x_1 + x_2 + 2x_3 \le 36 \tag{6}$$

https://powcoder.com
we have to look for y_1, y_2, y_3 which solve problem P^* :

minimise:
$$z^*(y_1, y_2, y_3) = 30y_1 + 24y_2 + 36y_3$$
 (10)

$$\overset{\text{with constraint}}{\text{Add}}\overset{\text{with constraint}}{\text{WeChat }} p \overset{\text{y}_1}{\text{w}_2} \overset{\text{+}}{\text{2}} \overset{\text{y}_2}{\text{y}_3} \overset{\text{+}}{\text{e}} \overset{\text{+}}}{\text{e}} \overset{\text{+}}{\text{e}} \overset{\text{+}}{\text{e}} \overset{\text{+}}} \overset{\text{+}}{\text{e}} \overset$$

$$3y_1 + 5y_2 + 2y_3 \ge 2 \tag{13}$$

$$y_1, y_2, y_3 \ge 0 \tag{14}$$

then $z^*(y_1, y_2, y_3) = 30y_1 + 24y_2 + 36y_3 \ge 3x_1 + x_2 + 2x_3 = z(x_1, x_2, x_3)$ will be a tight upper bound for $z(x_1, x_2, x_3)$

• The new problem P^* is called the *dual problem* for the problem P.

(7)

- Let us now repeat the whole procedure with P^* in place of P, i.e., let us find the dual program $(P^*)^*$ of P^* .
- We are now looking for $z_1, z_2, z_3 \ge 0$ to multiply inequalities (11)-(13)

Assignment $\Pr_{z_2(y_1,y_2,y_2,y_3) \geq z_2}$

$$z_3(3y_1 + 5y_2 + 2y_3) \ge 2z_3$$

• Suming these up and factoring produce
$$y_1(z_1 + z_2 + 3z_3) + y_2(2z_1 + 2z_2 + 3z_3) + y_3(4z_1 + z_2 + 2z_3) = 3z_1 + z_2 + 2z_3$$
(15)

• If we choose multipliers z_1, z_2, z_3 so that

$$Add\ WeChat_5^{\sharp 2} \stackrel{3}{powcoder} \quad {}^{\tiny (16)}_{\tiny (17)}$$

$$4z_1 + z_2 + 2z_3 \le 36 \tag{18}$$

we will have:

$$y_1(z_1 + z_2 + 3z_3) + y_2(2z_1 + 2z_2 + 5z_3) + y_3(4z_1 + z_1 + 2z_3) \le 30y_1 + 24y_2 + 36y_3$$

• Combining this with (15) we get

$$3z_1 + z_2 + 2z_3 \le 30y_1 + 24y_2 + 36y_3$$

COMP3121/9101

• Consequently, finding the dual program $(P^*)^*$ of P^* amounts to maximising the objective $3z_1 + z_2 + 2z_3$ subject to the constraints

Assignment Projects Exam Help

$$2z_1 + 2z_2 + 5z_3 \le 24$$
$$4z_1 + z_2 + 2z_3 \le 36$$

- https://powcoder.com

 But note that, except for having different variables, $(P^*)^*$ is exactly our starting program P. Thus, the dual program $(P^*)^*$ for program P^* is just P itself, i.e., $(P^*)^* = P$.
- So, a Add sight, locing that nupper y1, C2, 3 der help much, because it only reduced a maximisation problem to an equally hard minimisation problem.
- It is now useful to remember how we proved that the Ford Fulkerson Max Flow algorithm in fact produces a maximal flow, by showing that it terminates only when we reach the capacity of a **minimal cut**.

Linear Programming - primal/dual problem forms

• The original, primal Linear Program P and its dual Linear Program can be easily described in the most general case:

Assignment Project Exam Help subject to the constraints $\sum a_{ij}x_j \le b_i; \quad 1 \le i \le m$

https://powcoder. e^{x_n} e^{x_n

Add We Chat powcoder

 $y_1,\ldots,y_m\geq 0$

or, in matrix form,

 $P: \text{ maximize } z(\mathbf{x}) = \mathbf{c}^{\mathsf{T}} \mathbf{x}, \text{ subject to the constraints } A\mathbf{x} \leq \mathbf{b} \text{ and } \mathbf{x} \geq 0;$ P^* : minimize $z^*(\mathbf{y}) = \mathbf{b}^\mathsf{T} \mathbf{y}$, subject to the constraints $A^\mathsf{T} \mathbf{y} > \mathbf{c}$ and $\mathbf{y} > 0$.

Weak Duality Theorem

• Recall that any vector \mathbf{x} which satisfies the two constraints, $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$ is called a *feasible solution*, regardless of what the corresponding objective value $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ might be.

Assignment in the light of the

 $z(x) = \sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} b_j y_i = z^*(y)$ **https://powcoder.com**of: Since x and y are basic feasible solutions for P and P* respectively,

Proof: Since x and y are basic feasible solutions for P and P^* respectively, we can use the constraint inequalities, first from P^* and then from P to obtain

$$z(x) = \sum_{j=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} \left(\sum_{j=1}^{n} y_{i} \right) \right) \right) + \sum_{i=1}^{m} \left(\sum_{j=1}^{n} y_{i} \right) + \sum_{i=1}^{n} \left(\sum_{j=1}^{n$$

- Thus, the value of (the objective of P^* for) any feasible solution of P^* is an upper bound for the set of all values of (the objective of P for) all feasible solutions of P, and
- \bullet every feasible solution of P is a lower bound for the set of feasible solutions for $P^*.$

Assignment Project Exam Help Solutions for P* https://powcoder.com

- Thus, if we find a feasible solution for P which is equal to a feasible solution to P^* , such solution must be the maximal feasible value of the objective of P and the minimal feasible value of the objective of P^* .
- If we use a search procedure to and an optimal solution for P we know when to stop: when such a value is also a feasible solution for P^* .
- This is why the most commonly used LP solving method, the SIMPLEX method, produces optimal solution for P, because it stops at a value of the primal objective which is also a value of the dual objective.
- See the Lecture Notes for the details and an example of how the SIMPLEX algorithm runs.

Assignment Project Exam Help

Five sisters are alone in their house. Sharon is reading a book, Jennifer is playing less Sthring Collin (Arch done). What is Helen, the fifth sister, doing?

Add WeChat powcoder