SPŠ a VOŠ technická	LABORATORNÍ	Třída: L4A		
Brno, Sokolská 1	Jméno a příjmení:	Poř. Číslo:		
Název úlohy: F	Číslo úlohy:			
Zkoušený předr	Skupina:			
Datum měření:	2.3.2023	Datum odevzdání: 3.3.2023	Klasifikace:	

Teorie

Pro dolní i horní propust (RC filtr) platí:

$$f_m = \frac{1}{2\pi RC} \tag{1}$$

Kde f_m je mezní frekvence, R je odpor rezistoru a C je kapacita kondenzátoru.

Zadání

Zapojte horní (1b) a dolní (1a) propust dle schémat.

Obrázek 1: Schémata zapojení

Použijte destičky s odpory a kondenzátory. Posílejte sinusový signál z generátoru funkcí a měřte amplitudu na osciloskopu. Změřte *R*1, *R*2, *C*1, *C*1 a vypočítejte mezní frekvenci. Měření proveď te pro frekvence z tabulky

Vypracování

R1 = 1,0 kΩ, R2 = 5,0 kΩ, C1 = 1,0 μF, C2 = 0,9 μF. Tudíž dle vzorce (1) $f_{m1} = \frac{1}{2\pi \cdot 1,0 \text{k}\Omega \cdot 1,0 \text{μF}} = 159,2 \text{ Hz a}$ $f_{m2} = \frac{1}{2\pi \cdot 5,0 \text{k}\Omega \cdot 0,9 \text{μF}} = 35,4 \text{ Hz}$

Tabulka 1: Tabulka měřených hodnoty

Frekvence [Hz]	Dolni propust [V]	Horni propust [V]	Dolni propust 2 [V]	Horni propust 2 [V]
4.7	13.84	2.48	14	0.2
10	13.12	4.8	14	0.24
22	10.96	8.64	14	0.4
47	7.28	11.92	14	0.56
100	4.08	13.36	14	1.04
220	2	13.84	13.92	2.16
470	1.04	14	13.36	4.2
1,000	0.24	14	11.44	7.6
2,200	0.24	14	7.92	11
4,700	0.24	14	4.4	12.72
10,000	0.24	14	2.16	12.64
22,000	0.24	14	1.12	13.36
47,000	0.24	14	0.64	13.52

Obrázek 2: Naměřené hodnoty amplitudy, čára ukazuje mezní frekvenci

Závěr

Po měření jsme vypočetli mezní frekvenci zjistili jsme že měření odpovídá očekávání.

Použité pomůcky:						
Přístroj – pomůcka	Тур	Rozsah (pouze analogové)	Poznámka			
Osciloskop						
Generátor funkcí			Oscilátor			