PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶:

C12N 15/54, 15/82, 9/10, A01H 5/00

A2

(11) Numéro de publication internationale: WO 97/04103

(43) Date de publication internationale: 6 février 1997 (06.02.97)

(21) Numéro de la demande internationale: PCT/FR96/01125

(22) Date de dépôt international: 18 juillet 1996 (18.07.96)

(30) Données relatives à la priorité:
95/08979
19 juillet 1995 (19.07.95)
FR

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC AGROCHIMIE [FR/FR]; 14-20, rue Pierre-Baizet, F-69009 Lyon (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): LEBRUN, Michel [FR/FR]; 224, rue de Saint-Cyr, F-69009 Lyon (FR). SAILLAND, Alain [FR/FR]; 38, rue Ernest-Fabrègue, F-69009 Lyon (FR). FREYSSINET, Georges [FR/FR]; 21, rue de Nervieux, F-69450 Saint-Cyr-au-Mont-D'Or (FR).

(74) Mandataire: CHRETIEN, François; Rhône-Poulenc Agrochimie, Boîte postale 9163, F-69263 Lyon Cédex 09 (FR). (81) Etats désignés: AL, AU, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, brevet ARIPO (KE, LS, MW, SD, SZ, UG), brevet curasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Publiée

Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.

- (54) Title: MUTATED 5-ENOL PYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE, GENE CODING FOR SAID PROTEIN AND TRANSFORMED PLANTS CONTAINING SAID GENE
- (54) Titre: 5-ENOL PYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE MUTEE, GENE CODANT POUR CETTE PROTEINE ET PLANTES TRANSFORMEES CONTENANT CE GENE
- (57) Abstract

A mutated glyphosate resistance gene of 5-enol pyruvylshikimate-3-phosphate synthase (EPSPS) including at least one substitution of threonine 102 by isoleucine, and useful for producing glyphosate-resistant transformed plants, is disclosed.

(57) Abrégé

Gène de résistance au glyphosate. 1) Gène muté de résistance au glyphosate. 2) Gène EPSPS comprenant au moins une substitution de la Thréonine 102 par l'isoleucine. 3) Il est utilisable pour l'obtention de plantes transformées résistantes au glyphosate.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Arménie	GB	Royaume-Uni	MW	Malawi
AT	Autriche	GE	Géorgie	MX	Mexique
AU	Australie	GN	Guinée	NE	Niger
BB	Barbade	GR	Grèce	NL	Pays-Bas
BE	Belgique	HU	Hongrie	NO	Norvège
BF	Burkina Faso	IE	Irlande	NZ	Nouvelle-Zélande
BG	Bulgarie	IT	Italie	PL	Pologne
BJ	Bénin	JP	Japon	PT	Portugal
BR	Brésil	KE	Kenya	RO	Roumanie
BY	Bélarus	KG	Kirghizistan	RU	Fédération de Russie
CA	Canada	KP	République populaire démocratique	SD	Soudan
CF	République centrafricaine		de Corée	SE	Suède
CG	Congo	KR	République de Corée	SG	Singapour
CH	Suisse	KZ	Kazakhstan	SI	Slovénie
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovaquie
CM	Cameroun	LK	Sri Lanka	SN	Sénégal
CN	Chine	LR	Libéria	SZ	Swaziland
CS	Tchécoslovaquie	LT	Lituanie	TD	Tchad
CZ	République tchèque	ւս	Luxembourg	TG	Togo
DE	Allemagne	LV	Lettonie	TJ	Tadjikistan
DK	Danemark	MC	Monaco	TT	Trinité-et-Tobago
EE	Estonie	MD	République de Moldova	UA	Ukraine
ES	Espagne	MG	Madagascar	UG	Ouganda
FI	Finlande	ML	Mali	US ·	Etats-Unis d'Amérique
FR	France	MN	Mongolie	UZ	Ouzbékistan
GA	Gabon	MR	Mauritanie	VN	Viet Nam

WO 97/04103 PCT/FR96/01125

5-énol pyruvylshikimate-3-phosphate synthase mutée, gène codant pour cette protéine et plantes transformées contenant ce gène.

La présente invention concerne une nouvelle 5-enol pyruvylshikimate-3-phosphate synthase (ou EPSPS), qui présente une tolérance accrue vis à vis des herbicides inhibiteurs compétitifs vis à vis du phosphonoenolpyruvate (PEP) de l'activité EPSPS. Cette EPSP synthase plus tolérante présente au moins une substitution "Thréonine par Isoleucine". Elle concerne également un gène codant pour une telle protéine, des cellules végétales transformées par des constructions gènes chimères contenant ce gène, les plantes régénérées à partir de ces cellules ainsi que les plantes issues de croisement utilisant ces plantes tranformées.

5

10

15

20

25

30

35

Le glyphosate, le sulfosate ou la fosamétine sont des herbicides systémiques à large spectre de la famille des phosphonométhylglycines. Ils agissent essentiellement comme inhibiteurs compétitifs de la 5-enol pyruvylshikimate-3-phosphate synthase (EC 2.5.1.19) ou EPSPS vis à vis du PEP(phosphoenolpyruvate). Après leur application sur la plante, ils sont véhiculés dans la plante où ils s'accumulent dans les parties à croissance rapide, notamment les apex caulinaires et racinaires, provoquant l'altération jusqu'à la destruction des plantes sensibles.

L'EPSPS plastidiale, cible principale de ces produits est une enzyme de la voie de biosynthèse des acides aminés aromatiques, qui est codée par un ou des gènes nucléaires et synthétisée sous forme d'un précurseur cytoplasmique puis importée dans les plastes où elle s'accumule sous sa forme mature.

La tolérance des plantes au glyphosate et aux produits de la famille est obtenue par introduction stable dans leur génome d'un gène d'EPSPS d'origine végétale ou bactérienne mutée ou non quant aux caractéristiques d'inhibition par le glyphosate du produit de ce gène. Etant donné le mode d'action du glyphosate et le degré de tolérance au glyphosate du produit des gènes utlisés, il est intéressant de pouvoir exprimer le produit de la traduction de ce gène de façon à permettre son accumulation importante dans les plastes.

Il est connu, par exemple d'après le brevet américain 4 535 060, de conférer à une plante une tolérance à un herbicide du type ci-dessus, en particulier la N-phosphonométhylglycine ou glyphosate, par introduction dans le génome des plantes d'un gène codant pour une EPSPS portant au moins une mutation rendant cette enzyme plus résistante à son inhibiteur compétitif (le glyphosate) après localisation de l'enzyme dans le compartiment plastidial. Ces techniques demandent cependant à être améliorées pour obtenir une plus grande fiabilité dans l'emploi de ces plantes en conditions agronomiques.

Dans la présente description, on entend par "plante" tout organisme multicellulaire différencié capable de photosynthèse et par "cellule végétale" toute cellule issue d'une

WO 97/04103 PCT/FR96/01125

plante et pouvant constituer des tissus indifférenciés tels que des cals ou des tissus différenciés tels que des embryons ou des parties de plantes ou des semences.

La présente invention a pour objet la production de plantes transformées ayant une tolérance accrue aux herbicides de la famille des phosphonométhylglycines par régénération de cellules transformées à l'aide de nouveaux gènes chimères comportant un gène de tolérance à ces herbicides.

5

10

15

20

25

30

35

L'invention a également pour objet un gène chimère pour conférer aux plantes une tolérance accrue vis à vis d'un herbicide ayant pour cible l'EPSPS, comprenant, dans le sens de la transcription: une zone promotrice, éventuellement une zone peptide de transit, une séquence d'un gène codant pour une enzyme de tolérance au glyphosate et une zone signal de polyadénylation non traduite en 3', caractérisé en ce que le gène de tolérance au glyphosate comporte, par rapport au gène dont il est dérivé, une substitution "Thréonine 102 par Isoleucine" dans la zone "aroA"(EPSPS). De manière préférée, elle comprend en outre, dans la même zone une substitution "Proline 106 par Sérine". Ces substitutions peuvent être introduites, ou être présentes, dans une séquence d'EPSPS d'origine quelconque: notamment végétale, bactérienne, d'algues ou de champignon.

Les peptides de transit utilisables dans la zone de peptide de transit peuvent être en soi connus, d'origine végétale, par exemple issus de maïs, de tournesol, de pois, de tabac ou autres. Le premier et le second peptide de transit peuvent identiques, analogues ou différents. Ils peuvent en outre comprendre chacun une ou plusieurs unités peptide de transit selon la demande de brevet européen EP 0 508 909. Cette zone caractéristique a comme rôle de permettre le relargage d'une protéine mature et native, et en particulier l'EPSPS mutée ci-dessus, avec une efficacité maximale dans le compartiment plasmidique.

La zone promotrice du gène chimère selon l'invention peut être composée avantageusement d'au moins un promoteur ou un fragment d'un promoteur de gène s'exprimant naturellement dans les plantes...(tubuline, introns actine, histone).

La zone signal de terminaison de la transcription non traduite en 3' du gène chimère peut être d'origine quelconque, par exemple bactérienne telle que celle du gène de la nopaline synthase, ou végétale telle que celle du gène histone H4A748 d' *Arabidopsis thaliana* selon la demande de brevet européen (demande européenne 633 317).

Le gène chimère selon l'invention peut comprendre, en plus des parties essentielles cidessus, au moins une zone intermédiaire non traduite (linker), qui peut être localisés entre les différentes régions transcrites décrites ci-dessus. Cette zone intermédiaire peut être d'origine quelconque, par exemple bactérienne, virale ou végétale.

Isolement d'un ADNc codant pour une EPSPS de maïs:

Les différentes étapes, qui ont conduit à l'obtention de l'ADNc d'EPSPS de maïs, qui a servi de substrat à l'introduction des deux mutations, sont décrites ci-dessous. Toutes les opérations décrites ci-dessous sont données à titre d'exemples et correspondent à un choix, effectué parmi les différentes méthodes disponibles pour parvenir au même résultat. Ce choix n'a aucune incidence sur la qualité du résultat et par conséquent, toute méthode adaptée peut être utilisée par l'homme de l'art pour parvenir au même résultat. La plupart des méthodes d'ingéniérie des fragments d'ADN sont décrites dans "Current Protocols in Molecular Biology" Volumes 1 et 2, Ausubel F.M. et al , publiés par Greene Publishing Associates et Wiley -Interscience (1989)(Par la suite, les références à des protocoles décrits dans cet ouvrage seront notées "réf. CPMB"). Les opérations concernant l'ADN, qui ont été effectuées selon les protocoles décrits dans cet ouvrage sont, en particulier les suivantes: ligation de fragments d'ADN, traitements par l'ADN polymérase de Klénow et la T4 ADN polymérase, préparation d'ADN de plasmides et de bactériophages λ soit en minipréparation soit en maxi préparation, analyses d'ADN et d'ARN respectivement selon les techniques de Southern et Northern. D'autres méthodes décrites dans cet ouvrage ont été suivies, et seules les modifications ou ajouts significatifs à ces protocoles ont été décrits cidessous.

20 Exemple 1:

5

10

15

30

- 1. Obtention d'un fragment d'EPSPS d' Arabidopsis thaliana
- a) deux oligonucleotides 20-mers de séquences respectives:
 - 5'- GCTCTGCTCATGTCTGCTCC -3'
 - 5'- GCCCGCCCTTGACAAAGAAA- 3'
- ont été synthétisés à partir de la séquence d'un gène d'EPSPS d'Arabidopsis thaliana (Klee H.J. et al. (1987) Mol. Gen. Genet., 210, 437-442). Ces deux oligonucleotides sont respectivement en position 1523 à 1543 et 1737 à 1717 de la séquence publiée et en orientation convergente.
 - b) L'ADN total d'Arabidopsis thaliana (var. columbia) a été obtenu chez Clontech (référence catalogue: 6970-1)
 - c) On mélange 50 nanogrammes(ng) d'ADN avec 300ng de chacun des oligonucleotides et soumis à 35 cycles d'amplification avec un appareil Perkin-Elmer 9600, dans les conditions de milieu standard pour l'amplification préconisées par le fournisseur. Le fragment de 204pb résultant constitue le fragment d'EPSPS d' *Arabidopsis thaliana*.
 - 2. Construction d'une bibliothèque d'un ADNc à partir d'une ligne cellulaire de ma \ddot{s} BMS .

- a) On broye 5 g de cellules filtrées dans l'azote liquide et les acides nucléiques totaux extraits selon la méthode décrite par Shure et al. avec les modifications suivantes:
 - le pH du tampon de lyse est ajusté à PH = 9,0;
 - -après la précipitation par l'isopropanol, le culot est repris dans l'eau et après dissolution, ajusté à 2,5 M LiCl. Après incubation pendant 12 h à °C, le culot de la centrifugation d 15 min. à 30000g à 4°C est resolubilisé. L'étape de précipitation par LiCl est alors répétée. Le culot resolublisé constitue la fraction ARN des acides nucléiques totaux.
- b) La fraction ARN-polyA+ de la fraction ARN est obtenue par chromatographie sur colonne oligo-dT cellulose telle que décrite dans "Current Protocols in Molecular Biology".
 - c) Synthèse d'ADNc double brin à extrémité synthétique EcoRI: elle est réalisée en suivant le protocole du fournisseur des différents réactifs nécessaires à cette synthèse sou forme d'un kit:le "copy kit" de la société In Vitrogen.
- Deux oligonucleotides simples brins et partiellement complémentaires de séquences respectives:
 - 5'- AATTCCCGGG -3'

25

30

5'- CCCGGG- 3' (ce dernier étant phosphorylé)

sont ligués avec les ADNc double brin à extrémités franches.

- Cette ligation des adaptateurs résulte en la création de sites Sma I accolés aux ADNc double brin et EcoRI sous forme cohésive à chaque extrélité des ADNC double brin.
 - d) Création de la bibliothèque:
 - Les ADNc présentant à leurs extrémités les sites artificiels cohésifs EcoRI sont ligués avec le ADNc du bactériophage λgt10 coupé par EcoRI et déphosphorylé selon le protocole du fournisseur Naew England Biolabs.
 - Une aliquote de la réaction de ligation a été encapsidée in vitro avec des extraits d'encapsidation: Gigapack Gold selon les instructions du fournisseur, cette librairie a été titrée en utilisant la bactérie E.coli C600hfl. la librairie ainsi obtenue est amplifiée et stockée selon les instructions du même fournisseur et constitue la librairie de ADNc de suspension cellulaire de maïs BMS.
 - 3. Criblage de la bibliothèque de ADNc de suspension cellulaire de maïs BMS avec la sonde EPSP d'Arabidopsis thaliana:
- Le protocole suivi est celui de "Current Protocols in Molecular Biology" Volumes 1 et 2, Ausubel F.M. et al, publiés par Greene Publishing Associates et Wiley-Interscience (1989)(CPMB). En bref, environ 10⁶ phages recombinants sont étalés sur boîte LB à une densité moyenne de 100 phages /cm². Les plages de lyses sont répliqués en doubles sur membrane Hybond N d'Amersham.

h) L'ADN a été fixé sur les filtres par traitement UV 1600kJ (Stratalinker de Stratagene). Les filtres iont été préhybridés dans: 6xSSC/0,1%SDS/0,25 lait écrémé pendant 2h à 65°C. La sonde EPSPS d'Arabidopsis thaliana a été marquée au 32p-dCTP par "random-priming" selon les instructions du fournisseur (Kit Ready to Go de Pharmacia). L'activité spécifique obtenue est de l'order de 108 cpm par µg de fragment. Après dénaturation pendant 5 min à 100°C, la sonde est ajoutée dans le milieu de préhybridation et l'hybridation est poursuivie pendant 14 heures à 55°C. Les filtres sont fluorographiés 48h à -80°C avec un film KodakXAR5 et des écrans renforçateurs Hyperscreen RPN d'Amersham. L'alignement des spots positifs sur le filtre avec les boîtes d'où ils sont issus permet de prélever, sur la boîte, des zones correspondant aux phages présentant une réponse d'hybridation positive avec la sonde EPSPS d'Arabidopsis thaliana. Cette étape d'étalement, transfert, hybridation, récupération est répétée jusqu'à ce que tous les spots de la boîte des phages successivement purifiés se révèlent positifs à 100% en hybridation. Une plage de lyse par phage indépendant est alors prélevée dans du milieu λ diluant (Tris-Cl pH= 7,5; MgSO4 10mM; NaCl 0,1M; gélatine 0,1%), ces phages en solution constituant les clones positifs de l'EPSP de la suspension cellulaire de maïs BMS.

4. Préparation et analyse de l'ADN des clones d'EPSP de la suspension cellulaire de maïs BMS.

On ajoute environ 5.10⁸ phages à 20 ml de bactéries C600hfl à 2 OD 600nm/ml et incubés 15 minutes à 37°C. Cette suspension est alors diluée dans 200ml de milieu de croissance des bactéries dans un Erlen de 11 et agitée dans un agitateur rotatif à 250 rpm. La lyse est constatée par clarification du milieu, correspondant à 1 lyse des bactéries turbides et se produit après environ 4 h d'agitation. Ce surnageant est alors traité comme décrit dans "Current Protocols in Molecular Biology". L'ADN obtenu correspond aux clones d'EPSP de la suspension cellulaire de maïs BMS.

Un à deux µg de cet ADN sont coupés par EcoRI et séparés sur gel d'agarose LGTA/TBE (réf. CPMB) à 0,8%. Une dernière vérification consiste à s'assurer que l' ADN purifié présente bien un signal d'hybridation avec la sonde EPSPS d'Arabidopsis thaliana. Après l'électrophorèse, les fragments d'ADN sont transférés sur membrane Hybond N d'Amersham selon le protocole de Southern décrit dans "Current Protocols in Molecular Biology". Le filtre est hybridé avec la sonde EPSPS d'Arabidopsis thaliana selon les conditions décrites au paragraphe 3 ci-dessus. Le clone présentant un signal d'hybridation avec la sonde EPSPS d'Arabidopsis thaliana et contenant le plus long fragment EcoRI a une taille estimée sur gel à environ 1,7kpb.

5. Obtention du clone pRPA-ML-711:

10

15

20

25

30

Dix µg de l'ADN du clone phagique contenant l'insert de 1,7kpb sont digérés par EcoRI et séparés sur gel d'agarose LGTA/TBE (réf. CPMB) à 0,8%. Le fragment de gel contenant l'insert de 1,7kpb est excisé du gel par coloration BET et le fragment est traité à la β-agarse selon le protocole du fournisseur New England Biolabs. L'ADN purifié du fragment de 1,7kpb est ligué à 12°C pendant 14h avec l'ADN du plasmide pUC 19 (New England Biolabs) coupé par EcoRI selon le protocole de ligation décrit dans "Current Protocols in Molecular Biology". Deux µl du mélange de ligation ci-dessus sont utilisés pour la transformation d'une aliquote d'E.coli DH10B électro compétentes ; la transformation se fait par électroporation en utilisant les conditions suivantes: le mélange de bactéries compétentes et et de milieu de ligation est introduit dans une cuvette d'électroporation d'épaisseur 0,2cm (Biorad) prélablement refroidie à 0°C. Les conditions physiques de l'électroporation utilisant un électroporateur de marque Biorad sont 2500 Volts, 25 μFarad et 200 Ω. Dans ces conditions, le temps de décharge moyen de condensateur est de l'ordre de 4,2 millisecondes. Les bactéries sont alors reprises dans 1 ml de milieu SOC (réf. CPMB) et agitées pendant 1 heure à 200 rpm sur un agitateur rotatif dans des tubes Corning de 15 ml. Après étalement sur milieu LB/agar supplémenté à 100 μg/ml de carbéniciline, les mini-préparations des clones bactériens ayant poussé après une nuit à 37 °C est réalisée selon le protocole décrit dans "Current Protocols in Molecular Biology". Après digestion par EcoRI de l'ADN et séparation en électrophorèse sur gel d'agarose LGTA/TBE (réf. CPMB) à 0,8%, les clones présentant un insert de 1,7kpb sont conservés. Une dernière vérification consiste à s'assurer que l' ADN purifié présente bien un signal d'hybridation avec la sonde EPSPS d'Arabidopsis thaliana. Après l'électrophorèse, les fragments d'ADN sont transférés sur membrane Hybond N d'Amersham selon le protocole de Southern décrit dans "Current Protocols in Molecular Biology". Le filtre est hybridé avec la sonde EPSPS d'Arabidopsis thaliana selon les conditions décrites au paragraphe 3 ci-dessus. Le clone plasmidique présentant un insert de 1,7kpb et hybridant avec la sonde EPSPS d'Arabidopsis thaliana a été préparé à plus grande échelle et l'ADN résultant de la lyse des bactéries purifié sur gradient de CsCl ainsi que décrit dans "Current Protocols in Molecular Biology". L'ADN purifié a été partiellement séquencé avec un kit Pharmacia en suivant les instructions du fournisseur et en utilisant comme amorces, les amorces universelles de M13 directes et inverses commandées chez le même fournisseur. La séquence partielle réalisée couvre environ 0,5 kpb. La séquence dérivée en acides aminés dans la région de la protéine mature (environ 50 résidus acides aminés) présente une identité de 100% avec la séquence aminée correspondante de l'EPSPS mature de maïs décrite dans le brevet américain USP 4 971 908). Ce clone correspondant à un fragment EcoRI de 1,7kpb de l'ADN de l' EPSP de la suspension cellulaire de maïs BMS a été nommé pRPA-ML-711. La séquence complète de ce clone a été réalisée sur les deux brins en utilisant le protocole du kit Pharmacia et en

10

15

20

25

30

synthétisant des oligonucléotides complémentaitres et de direction opposée tous les 250 pb environ. La séquence complète de ce clone de 1713 pb obtenue est présentée par SEQ ID N° 1.

6. Obtention du clone pRPA-ML-715:

5

10

15

20

25

30

35

L'analyse de la séquence du clone pRPA-ML-711 et en particulier la comparaison de la séquence d' acides aminés dérivés avec celle de maïs montre une extension de séquence de 92 pb en amont du codon GCG codant pour l'Alanine NH2-terminale de la partie mature de l'EPSPS de maïs (brevet américain USP 4 971 908). De même une extension de 288 pb en aval du codon AAT codant pour l'asparagine COOH-terminale de la partie mature de l'EPSPS de maïs (brevet américain USP 4 971 908) est observée. Ces deux parties pourraient correspondre, pour l'extension NH2-terminale à une portion de la séquence d'un peptide de transit pour la localisation plastidiale et pour l'extension COOH-terminale à la région 3' non traduite de l'ADNc.

Afin d'obtenir un ADNc codant pour la partie mature de l'ADNc de l'EPSPS de maïs, telle que décrite dans l'USP 4 971 908, les opérations suivantes ont été réalisées:

a) Elimination de la région 3' non traduite: construction de pRPA-ML-712:

Le clone pRPA-ML-711 a été coupé par l'enzyme de restriction AseI et les extrémités résultant de cette coupure rendues franches par traitement avec le fragment de Klenow de l'ADN polymérase I selon le protocole décrit dans CPMB. Une coupure par l'enzyme de restriction SacII a ensuite été effectuée. L'ADN résultant de ces opérations a été séparé par électrophorèse sur gel d'agarose LGTA/TBE (réf. CPMB) 1%.

Le fragment de gel contenant l'insert "AseI-extrémités franches/SacII" de 0,4 kpb a été excisé du gel et purifié selon le protocole décrit au paragraphe 5 ci-dessus. L'ADN du clone pRPA-ML-711 a été coupé par l'enzyme de restriction HindIII située dans le polylinker du vecteur de clonage pUC19 et les extrémités résultant de cette coupure ont été rendues franches par traitement avec le fragment de Klenow de l'ADN polymérase I. Une coupure par l'enzyme de restriction SacII a ensuite été effectuée. L'ADN résultant de ces manipulations a été séparé par électrophorèse sur gel d'agarose LGTA/TBE (réf. CPMB) 0,7%.

Le fragment de gel contenant l'insert HindIII-extrémités franches/SacII de environ 3,7kpb a été excisé du gel et purifié selon le protocole décrit au paragraphe 5 ci-dessus.

Les deux inserts ont été ligués, et 2 µl du mélange de ligation ont servi à transformer E. coli DHIOB ainsi que décrit plus haut au paragraphe 5.

On analyse le contenu en ADN plasmidique de différents clones selon la procédure décrite pour pRPA-ML-711. Un des clones plasmidique retenu contient un insert EcoRI-HindIII de 1,45 kpb environ. La séquence des extrémités terminales de ce clone révèle que

10

15

20

30

35

l'extrémité 5' de l'insert correspond exactement à l'extrémité correspondante de pRPA-ML-711 et que l'extrémité 3' terminale présente la séquence suivante:

" 5'-..<u>.AAT</u>TAAGCTCTAGAGTCGACCTGCAGGCATGCAAGCTT-3' ".

La séquence soulignée correspond au codon de l'acide aminé COOH-terminal asparagine, le codon suivant correspondant au codon stop de la traduction. Les nucléotides en aval correspondent à des éléments de séquence du polylinker de pUCI9. Ce clone comprenant la séquence de pRPAML-711 jusqu'au site de terminaison de la traduction de l'EPSPS mature de maïs et suivie de séquences du polylinker de pUC 19 jusqu'au site HindIII a été nommé pRPA-ML-712.

b) Modification de l'extrémité 5' de pRPA-ML-712: construction de pRPA-ML-715

Le clone pRPA-ML-712 a été coupé par les enzymes de restrictions PstI et HindIII. L'ADN résultant de ces manipulations a été séparé par électrophorèse sur gel d'agarose LGTA/TBE (réf. CPMB) 0,8%. Le fragment de gel contenant l'insert PstI/EcoRI de 1,3 kpb a été excisé du gel et purifié selon le protocole décrit au paragraphe 5 ci-dessus. Cet insert a été mis en ligation en présence de quantité équimoléculaire de chacun des deux oligonucléotides partiellement complémentaires, de séquence:

Oligo 1: 5'-GAGCCGAGCTCCATGGCCGGCGCCGAGGAGATCGTGCTGCA-3' Oligo 2: 5'-GCACGATCTCCTCGGCGCCCGGCCATGGAGCTCGGCTC-3'

ainsi qu'en présence d'ADN du plasmide pUCl9 digéré par les enzymes de restrictions BamHI et HindIII.

Deux µl du mélange de ligation ont servi à transformer *E. coli* DHIOB ainsi que décrit plus haut au paragraphe 5. Après analyse du contenu en ADN plasmidique de différents clones selon la procédure décrite ci-dessus au paragraphe 5, un des clones présentant un insert d'environ 1,3 kpb a été conservé pour analyses ultérieures. La séquence de l'extrémité 5' terminale du clone retenu révèle que la séquence ADN dans cette région est la suivante: séquence du polylinker de pUC19 des sites EcoRI à BamHI, suivi de la séquence des oligonucléotides utilisés lors du clonage, suivi du reste de la séquence présente dans pRPAML-712. Ce clone a été nommé pRPA-ML-713. Ce clone présente un codon methionine ATG inclu dans un site NcoI en amont du codon Alanine N-terminal de l'EPSPSynthase mature. De plus, les codons alanine et glycine de l'extrémité N-terminale ont été conservées, mais modifiées sur la troisième base variable : GCGGT initial donne GCCGGC modifié.

Le clone pRPA-ML-713 a été coupé par l'enzyme de restriction HindIII et les extrémités de cette coupure rendues franches par traitement avec le fragment de Klenow de la ADN polymérase I. Une coupure par l'enzyme de restriction SacI a ensuite été effectuée. L'ADN résultant de ces manipulations a été séparé par électrophorèse sur gel d'agarose LGTA/TBE (réf. CPMB) 0,8%. Le fragment de gel contenant l'insert "HindIII-extrémités

franches/SacI" de 1,3 kpb a été excisé du gel et purifié selon le protocole décrit au paragraphe 5 ci-dessus. Cet insert a été mis en ligation en présence d'ADN du plasmide pUC19 digéré par l'enzyme de restriction XbaI et les extrémités de cette coupure rendues franches par traitement avec le fragment de Klenow de l'ADN polymérase I. Une coupure par l'enzyme de restriction SacI a ensuite été effectuée. Deux µl du mélange de ligation ont servi à transformer E. coli DHlOB ainsi que décrit plus haut au paragraphe 5. Après analyse du contenu en ADN plasmidique de différents clones selon la procédure décrite cidessus au paragraphe 5, un des clones présentant un insert d'environ 1,3 kpb a été conservé pour analyses ultérieures. La séquence des extrémités terminales du clone retenu révèle que la séquence ADN est la suivante: séquence du polylinker de pUC19 des sites EcoRI à SacI, suivie de la séquence des oligonucléotides utilisés lors du clonage délétée des 4 pb GATCC de l'oligonucléotide 1 décrit ci-dessus, suivi du reste de la séquence présente dans pRPA-ML-712 jusqu'au site HindIII et séquence du polylinker de pUC19 de XbaI à HindIII. Ce clone a été nommé pRPA-ML-715.

15

20

25

30

35

10

7) Obtention d'un ADNc codant pour une EPSPS de mais mutée

Toutes les étapes de mutagénèse ont été réalisées avec le U.S.E. mutagenesis kit de Pharmacia en suivant les instructions du fournisseur. Le principe de ce système de mutagénèse est le suivant: l'ADN plasmidique est dénaturé par la chaleur et réassocié en présence d'un excès molaire d'une part de l'oligonucléotide de mutagénèse, et d'autre part d'un oligonucléotide permettant d'éliminer un site d'enzyme de restriction unique présent dans le polylinker. Après l'étape de réassociation, la synthèse du brin complémentaire est réalisée par l'action de la T4 ADN polymérase en présence de T4 ADN ligase et de protéine du gène 32 dans un tampon approprié fourni. Le produit de synthèse est incubé en présence de l'enzyme de restriction, dont le site est supposé avoir disparu par mutagénèse. La souche d'E. coli présentant, en particulier, la mutation mutS est utilisée comme hôte pour la transformation de cet ADN. Après croissance en milieu liquide, l'ADN plasmidique total est préparé, incubé en présence de l'enzyme de restriction utilisée précédemment. Après ces traitements, la souche d'E. coli DHIOB est utilisée comme hôte pour la transformation. L'ADN plasmidique des clones isolés est préparé et la présence de la mutation introduite vérifiée par séquencage.

A)- modifications de sites ou de séquence sans incidence a priori sur le caractère de résistance de l'EPSPS de maïs aux produits inhibiteurs compétitifs de l'activité EPSP synthase: élimination d'un site NcoI interne de pRPA-ML-715.

La séquence de pRPA-ML-715 est numérotée arbitrairement en plaçant la première base du codon Alanine N-terminal GCC en position 1. Cette séquence présente un site NcoI en position 1217. L'oligonucléotide de modification du site présente la séquence :

5'-CCACAGGATGGCGATGGCCTTCTCC-3'.

Après séquençage selon les références données ci-dessus, la séquence lue après mutagénèse correspond à celle de l'oligonucléotide utilisé. Le site NcoI a bien été éliminé et la traduction en acides aminés dans cette région conserve la séquence initiale présente sur pRPA-ML-715.

PCT/FR96/01125

5 Ce clone a été nommé pRPA-ML-716.

La séquence de 1340 bp de ce clone est présentée SEQ ID N° 2 et SEQ ID N° 3.

- B) modifications de séquence permettant l'augmentation du caractère de résistance de l'EPSPS de maïs aux produits inhibiteurs compétitifs de l'activité EPSP synthase.
- 10 Les oligonucléotides suivants ont été utilisés :
 - a) mutation Thr 102 → Ile.
 5'-GAATGCTGGAATCGCAATGCGGCCATTGACAGC-3'
 - b) mutation Pro 106 → Ser.
 5'-GAATGCTGGAACTGCAATGCGGTCCTTGACAGC-3'
 - c) mutations Gly 101

 Ala et Thr 102

 Ile.
 5'-CTTGGGGAATGCTGCCATCGCAATGCGGCCATTG-3'
- d) mutations Thr 102 ⇒ Ile et Pro 106 ⇒ Ser.
 5'-GGGGAATGCTGGAATCGCAATGCGGTCCTTGACAGC-3'

Après séquençage, la séquence lue après mutagénèse sur les trois fragments mutés est identique à la séquence de l'ADN parental pRPA-ML-716 à l'exception de la région mutagénéisée qui correspond à celle des oligonucléotides de mutagénèse utilisés. Ces clones ont été nommés : pRPA-ML-717 pour la mutation Thr 102 ➡ Ile, pRPA-ML-718 pour la mutation Pro 106 ➡ Ser, pRPA-ML-719 pour les mutations Gly 101 ➡ Ala et Thr 102 ➡ Ile et pRPA-ML-720 pour les mutations Thr 102 ➡ Ile et Pro 106 ➡ Ser.

La séquence de 1340 bp de pRPA-ML-720 est présentée SEQ ID N° 4 et SEQ ID N° 5.

30

25

15

L'insert NcoI-HindIII de 1395 pb est à la base de toutes les constructions utilisées pour la transformation des plantes pour l'introduction de la résistance aux herbicides inhibiteurs compétitifs de l'EPSPS et en particulier la résistance au glyphosate. Cet insert sera nommé dans la suite des descriptions "le double mutant de l'EPSPS de maïs".

35

Exemple 2:

Tolérance au glyphosate des différents mutants in vitro. 2.a: Extraction de l'EPSP synthase.

15

20

30

Les différents gènes d'EPSP synthases sont introduits sous forme d'une cassette NcoI-HindIII dans le vecteur plasmidique pTrc99a (Pharmacia, ref : 27-5007-01) coupé par NcoI et HindIII. Les *E. coli* DH10B recombinantes surexprimant les différents EPSP synthases sont soniquées dans 40 ml de tampon par 10 g de cellules culottées et lavées avec ce même tampon (tris HCl 200 mM pH 7,8, mercaptoethanol 50 mM, EDTA 5 mM et PMSF 1 mM), auxquels on ajoute 1 g de polyvinylpirrolidone. La suspension est agitée pendant 15 minutes à 4°C, puis centrifugée 20 minutes à 27000g et 4°C.

Le surnageant est additionné de sulfate d'ammonium pour amener la solution à 40% de la saturation en sulfate d'ammonium. Le mélange est centrifugé 20 minutes à 27000g et 4°C.

Le nouveau surnageant est additionné de sulfate d'ammonium pour amener la solution à 70% de la saturation en sulfate d'ammonium. Le mélange est centrifugé 30 minutes à 27000g et 4°C. L'EPSP synthase, présente dans ce culot protéique, est reprise dans 1 ml de tampon (tris HCl 20 mM pH 7,8 et mercaptoethanol 50 mM). Cette solution est dialysée une nuit contre deux litres de ce même tampon à 4°C.

2.b: Activité enzymatique.

L'activité de chaque enzyme ainsi que sa résistance au glyphosate est mesurée in vitro sur 10 minutes à 37°C dans le mélange réactionnel suivant: acide maléique 100 mM pH 5,6, phosphoénol pyruvate 1 mM, shikimate-3-phosphate 3 mM (préparé selon Knowles P.F. et Sprinson D.B. 1970. Methods in Enzymol 17A, 351-352 à partir de Aerobacter aerogenes strain ATCC 25597) et fluorure de potassium 10 mM. L'extrait enzymatique est ajouté au dernier moment après l'addition de glyphosate dont la concentration finale varie de 0 à 20 mM.

L'activité est mesurée par dosage du phosphate libéré selon la technique de Tausky H.A. et Shorr E. 1953. J. Biol. Chem. 202, 675-685.

Dans ces conditions, l'enzyme sauvage (WT) est inhibée à 85% dès la concentration de 0,12 mM de glyphosate. A cette concentration, l'enzyme mutante connue Ser106 n'est inhibée qu'à 50% et les trois autres mutants Ile102, Ile102/Ser106, Ala101/Ile102 ne sont pas ou peu inhibées.

Il faut multiplier la concentration de glyphosate par dix, soit 1,2 mM, pour inhiber l'enzyme mutante Ile102 à 50%, les mutants Ile102/Ser106, Ala/Ile et Ala n'étant toujours pas inhibés.

Il faut noter que l'activité des mutants Ala/Ile et Ala n'est pas inhibée jusqu'à des concentrations de 10 mM de glyphosate, et que celle du mutant Ile102/Ser106 n'est pas réduite même si la concentration en glyphosate est multipliée par 2, soit 20 mM.

35 <u>Exemple 3:</u>

Résistance des plantes de tabac transformés.

1-1- Transformation.

Le vecteur pRPA-RD-173 est introduit dans la souche d'Agrobacterium tumefaciens EHA101 (Hood et al.,1987) porteuse du cosmide pTVK291 (Komari et al.,1986). La technique de transformation est basée sur la procédure de Horsh et al.(1985).

1-2- Régénération.

5

15

20

30

35

La régénération du tabac PBD6 (provenance SEITA France) à partir d'explants foliaires est réalisée sur un milieu de base Murashige et Skoog (MS) comprenant 30g/1 de saccharose ainsi que 200 μg/ml de kanamycine. Les explants foliaires sont prélevés sur des plantes cultivées en serre ou *in vitro* et transformées selon la technique des disques foliaires (Science,1985,Vol 227,p.1229-1231) en trois étapes successives: la première comprend l'induction des pousses sur un milieu additionné de 30g/1 de saccharose contenant 0,05 mg/l d'acide naphtylacétique (ANA) et 2mg/1 de benzylaminopurine (BAP) pendant 15 jours. Les pousses formées au cours de cette étape sont ensuite développées pendant 10 jours par culture sur un milieu MS additionné de 30g/1 de saccharose mais ne contenant pas d'hormone. Puis on prélève des pousses développées et on les cultive sur un milieu d'enracinement MS à teneur moitié en sels, vitamines et sucre et ne contenant pas d'hormone. Au bout d'environ 15 jours, les pousses enracinées sont passées en terre.

1-3- Résistance au glyphosate.

Vingt plantes transformées ont été régénérées et passées en serre pour la construction pRPA-RD-173. Ces plantes ont été traitées en serre au stade 5 feuilles avec une suspension acqueuse de RoundUp correspondant à 0,8kg de matière active glyphosate par hectare.

Les résultats correspondent à l'observation d'indices de phytotoxicité relevés 3 semaine après traitement. Dans ces conditions, on constate que les plantes transformées par la construction pRPA-RD-173 présentent une très bonne tolérance alors que les plantes témoins non transformées sont complètement détruites.

Ces résultats montrent clairement l'amélioration apportée par l'utilisation d'un gène chimère selon l'invention pour un même gène codant pour la tolérance au glyphosate.

Exemple 4:

Transformation et sélection de cellules de maïs.

Des cellules de maïs BMS (Black Mexican Sweet) en phase exponentielle de croissance sont bombardées avec la contruction pRPA-RD-130 selon le principe et le protocole décrit par Klein et al 1987 (Klein TM, Wolf ED, Wu R and Sandford JC (1987): High velocity microprojectiles for delivering nucleic acids into livings cells NATURE vol 327 p 70-73)

Deux jours après le bombardement, les cellules sont transférées sur le même milieu contenant 2mM de N(phosphométhyl)glycine.

Après 8 semaines de sélection sur ce milieu, des cals se développant sont sélectionnés puis amplifiés et analysés par PCR et révèlent clairement la présence du gène chimère PTO-EPSPS.

Les cellules non bombardées et mises en croissance sur le même milieu contenant 2mM de N(phosphométhylglycine) sont bloquées par l'herbicide et ne se développent pas.

5

Les plantes transformées selon l'invention peuvent être utilisées comme parents pour l'obtention de lignées et d'hybrides ayant le caractère phénotypique correspondant à l'expression du gène chimère introduit.

15

20

25

30

35

Description des constructions des plamides

pRPA-RD-124: Addition d'un signal de polyadénylation "nos" à pRPA-ML-720 avec création d'une cassette de clonage contenant le gène d'EPSPS double mutant de maïs (Thr 102 → Ile et Pro 106 → Ser). pRPA-ML-720 est digéré avec Hind III, traité avec le fragment de Klenow de l'ADN polymérase I d'E. coli pour produire une extrémité franche. On effectue une seconde digestion avec Nco I et le fragment EPSPS est purifié. Le gène EPSPS est ensuite ligué avec pRPA-RD-12 purifié (une cassette de clonage contenant le signal de polyadénylation de la nopaline synthase) pour donner pRPA-RD-124. Pour obtenir le vecteur pRPA-RD-12 purifié utile, il a fallu que celui-ci soit préalablement digéré par Sall, traité avec l'ADN polymérase de Klenow, puis digéré une seconde fois avec Ncol.

pRPA-RD-125: Addition d'un peptide de transit optimisé (PTO) à pRPA-RD-124 avec création d'une cassette de clonage contenant le gène d'EPSPS ciblé sur les plasmides. pRPA-RD-7 (demande de brevet européen EP 652 286) est digérée avec Sph I, traité avec la T4 ADN polymérase, puis digérée avec Spe 1 et le fragment PTO est purifié. Ce fragment PTO est cloné dans pRPA-RD-124 qui a été préalablement digérée par NcoI, traité avec l'ADN polymérase de Klenow pour enlever la partie protubérante 3', puis digérée par Spe I. Ce clone est alors séquencé pour assurer la fusion traductionnelle correcte entre le PTO et le gène d'EPSPS. On obtient alors pRPA-RD-125.

pRPA-RD-130: Addition du promoteur d'histone de maïs H3C4 et de séquences d'intron 1 adhl de pRPA-RD-123 (demande de brevet EP 507 698) à pRPA-RD-125 avec création d'une cassette pour expression dans les plantes pour l'expression du gène d'EPSPS double mutant dans les tissus de monocotylédones. pRPA-RD-123 (une cassette contenant le promoteur d'histone de maïs H3C4 fusionné avec l'intron 1 adhl) est digérée avec Nco I et Sac I. Le fragment d'ADN contenant le promoteur dérivé de pRPA-RD-123 est ensuite purifié et ligué avec pRPA-RD-125, qui a été préalablement digéré avec Nco I et Sac I.

pRPA-RD-159: Addition du promoteur double d'histone de d'arabidopsis H4A748 (demande de brevet EP 507 698) à pRPA-RD-125 avec création d'une cassette pour expression dans les plantes pour l'expression du gène "PTO- gène d'EPSPS double mutant" dans les tissus de dicotylédones. pRPA-RD-132 (une cassette contenant le promoteur double H4A748 (demande de brevet EP 507 698)) est digérée avec Nco I et Sac I. Le fragment purifié du promoteur est ensuite cloné dans qui a été digéré avec Eco I et Sac I.

pRPA-RD-173: Addition du gène "promoteur H4A748-PTO-gène d'EPSPS double mutant" de pRPA-RD-159 dans plasmide pRPA-BL-150A (demande de brevet européen 508 909) avec création d'un vecteur de transformation Agrobacterium tumefaciens. pRPA-

RD-159 est digéré avec Not I et traité avec la polymérase de Klenow. Ce fragment est ensuite cloné dans pRPA-BL-150A avec Sma I.

SEQUENCE LISTING

(1) GENERAL, INFORMATIO	ın:
-------------------------	-----

- (1) APPLICANT: Lebrun, Michel Do Rose, Richard T Salliand, Alain
- (ii) TITLE OF INVENTION: 5-enol pyruvylshikimate-3-phosphate synthase mutee, gene codant pour cette proteine et plantes transformees contenant ce gene
- (iii) NUMBER OF SEQUENCES: 5
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: François Chretien
 - (B) STREET: 1420 rue Pirre Baizet
 - (C) CITY: Lyon Cedex 09
 (E) COUNTRY: France
 (F) ZIP: 69263
- (V) COMPUTER READABLE FORM:

 - AMPUTER REALIABLE FORM:

 (A) MEDIUM TYPE: Floppy disk

 (B) COMPUTER: IBM PC compatible

 (C) OPERATING SYSTEM: PC-DOS/MS-DOS

 (D) SOFTWARE: Patentin Release #1.0, Version #1.25
- (V1) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
- (v111) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Chretien, Francois
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (33)72-29-26-46 (B) TELEFAX: (33)72-29-28-43
- (2) INFORMATION FOR SEQ ID NO:1:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: CDNA
 - (vi) ORIGINAL SOURCE:

 - (A) ORGANISM: Zea mays (B) STRAIN: Black Mexican Sweet (F) TISSUE TYPE: Callus
 - (v11) IMMEDIATE SOURCE:
 - (A) LIBRARY: lambda gt10 (B) CLONE: pRPA-ML-711
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AATCAATTTC	ACACAGGAAA	CAGCTATGAC	CATGATTACG	AATTOGGGCC	CGGCGCGTG	60
ATCCGGCGGC	GGCAGCGGCG	GOGGCGGTGC	AGGCGGGTGC	CGAGGAGATC	GTGCTGCAGC	120
CCATCAAGGA	GATCTCCGGC	ACCGTCAAGC	TGCCGGGGTC	CAAGTOGCTT	TOCAACOGGA	180
TOCTCCTACT	CCCCCCCTG	TCCGAGGGGA	CAACAGTGGT	TGATAACCTG	CTGAACAGTG	240
AGGATGTCCA	CTACATGCTC	GGGGCCTTGA	GGACTCTTGG	TCTCTCTGTC	GAAGCGGACA	300
AAGCTGCCAA	AAGAGCTGTA	GTTGTTGGCT	GTGGTGGAAA	GTTCCCAGTT	GAGGATGCTA	360
AAGAGGAAGT	GCAGCTCTTC	TTGGGGAATG	CTGGAACTGC	AATGCGGCCA	TTGACAGCAG	420
CTGTTACTGC	TGCTGGTGGA	AATGCAACTT	ACGTGCTTGA	TGGAGTACCA	AGAATGAGGG	480

AGAGACCCAT TEGCHACTEG CTTGTCGGAT TGAAGCAGCT TGGTGCAGAT CTTGATTGTT	54
TCCTTIGGAC TGACTICCCA CCTITTCGTG TCAATGGAAT CGGAGGCTA CCTGGTGGCA	60
ASSTCANGUL STCTSSCTC ALCASCASTC ASTACTISAS TSCCTISCIS ATSSCTGCTC	66
CTTTGGCTCT TGGGGATGTG GAGATTGAAA TCATTGATAA ATTAATCTCC ATTCCGTACG	72
TOGAAATGAC ATTGAGATTG ATGGAGCGTT TTGGTGTGAA AGCAGAGCAT TCTGATAGCT	78
GGGACAGATT CTACATTAAG GGAGGTCAAA AATACAAGTC CCCTAAAAAT GCCTATGTTG	84
AAGGTGATGC CTCAAGCGCA AGCTATTTCT TGGCTGGTGC TGCAATTACT GGAGGGACTG	90
TGACTGTGGA AGGTTGTGGC ACCACCAGTT TGCAGGGTGA TGTGAAGTTT GCTGAGGTAC	96
TGGAGATGAT GGGAGCGAAG GTTACATGGA CCGAGACTAG CGTAACTGTT ACTGGCCCAC	102
CGCGGGAGCC ATTTGGGAGG AAACACCTCA AGGCGATTGA TGTCAACATG AACAAGATGC	108
CIGATGTCGC CATGACTCTT GCTGTGGTTG CCCTCTTTGC CGATGGCCCG ACAGCCATCA	114
GAGACGTGGC TTCCTGGAGA GTAAAGGAGA CCGAGAGGAT GGTTGCGATC CGGACGGAGC	120
TAACCAAGCT GGGAGCATCT GTTGAGGAAG GGCCGGACTA CTGCATCATC ACGCCGCCGG	126
AGAAGCTGAA CETGACGGCG ATCGACACGT ACGACGACCA CAGGATGGCC ATGGCCTTCT	132
CCCTTGCCGC CTGTGCCGAG GTCCCCGTCA CCATCCGGGA CCCTGGGTGC ACCCGGAAGA	138
CCTTCCCCGA CTACTTCGAT GTGCTGAGCA CTTTCGTCAA GAATTAATAA AGCGTGCGAT	144
ACTACCACGC AGCITGATIG AAGTGATAGG CITGTGCTGA GGAAATACAT TTCTTTTGTT	150
CIGITITICI CITICACGGG ATTAAGTITI GAGTCIGTAA CGTTAGTIGT TIGTAGCAAG	156
TITICIATITC GGATCITAAG TITIGIGCACI GTAAGCCAAA TITICATITCA AGAGTGGTTC	162
бттббалтал талбалталт алаттасстт тслетсалал алалалала алалалала	168
AAAAAAAAA AAAAAAAAA AACCCGGGAA TTC	171
(2) INFORMATION FOR SEQ ID NO:2:	
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1340 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(11) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Zee mays(B) STRAIN: Black Mexican Sweet	
(vii) IMMEDIATE SOURCE: (B) CLONE: pRPA-ML-716	
(1x) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 61337	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
CCATG GCC GGC GAG GAG ATC GTG CTG CAG CCC ATC AAG GAG ATC Ala Gly Ala Glu Glu Ile Val Leu Gln Pro Ile Lye Glu Ile 1 5	43
TCC GGC ACC GTC AAG CTG CCG GGG TCC AAG TCG CTT TCC AAC CGG ATC Ser Gly Thr Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile 15 20 25 30	95
CTC CTA CTC GCC GCC CTG TCC GAG GGG ACA ACA GTG GTT GAT AAC CTG Leu Leu Leu Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu 35 40 45	143

CTG AAC AGT GAG GAT GTC CAC TAC ATG CTC GGG GCC TTG AGG ACT CTT Leu Asn Ser Glu Asp Val His Tyr Met Leu Gly Ala Leu Arg Thr Leu

			50					55					60			
GLY	CTC	TCT Sec 65	GTC Val	GAA	GCG	GAC Asp	AAA eyj 70	Αla	GCC Ala	AAA Lys	AGA Arg	GCT Ala 75	GTA Val	GTT Va L	GTT Val	239
Gly	тст Сүз 80	GΙγ	GGA Glγ	DAA Lys	TTC Phe	CCA Pro 85	GTT Val	GAG	GAT Asp	GCT Ala	D FAR VAV	GAG Glu	GAA Glu	GTG Val	CAG Gln	287
95 Fed	Phe	Leu	Gly	Asn	Ala 100	Gly	The	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	110	. 335
Val	The	Ala	GCT Ala	Gly 115	Gly	Asn	Als	Thr	Tyr 120	Val	Leu	Asp	Gly	Val 125	Pro	383
Arg	Met	Arg	GAG Glu 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Val	Gly	Leu 140	Lys	Gln	431
reu	GIĄ	145		Val	Asp	Cys	Phe 150	Leu	Gly	Thr	Asp	Cys 155	Pro	Pro	Val	479
Arg	160	Asn	GGA Gly	Ile	Gly	Gly 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	527
175	ser	110	AGC Ser	Ser	Gln 180	Tyr	Leu	Ser	Als	Leu 185	Leu	Met	Ala	Als	Pro 190	575
Leu	Ala	Leu	GGG	Asp 195	Val	Glu	Ile	Glu	11e 200	Ile	qaA	Lys	Leu	11e 205	Ser	623
116	Pro	Tyr	GTC Val 210	Glu	Met	Thr	Leu	Arg 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	671
Lys	ALI	225	CAT	Ser	Asp	Ser	7rp 230	qsA	Arg	Phe	Tyr	11e 235	Lys	Gly	Gly	719
Gin	240	Tyr	AAG Lys	Ser	Pro	Lys 245	Asn	Ala	Tyr	Val	G1u 250	Gly	Asp	Ala	Ser	767
255	Ala	Ser	TAT	Phe	Leu 260	Ala	Gly	Ala	Ala	11e 265	Thr	Gly	Gly	Thr	Val 270	815
The	Val	Glu	GGT	Cys 275	Gly	Thr	Thr	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	863
VIE	GIU	Val	CTG Leu 290	Glu	Met	Met	Gly	Ala 295	Lys	Val	Thr	Trp	Thr 300	Glu	Thr	911
Ser	Val	Thr 305	GTT Val	The	Gly	Pro	Pro 310	Arg	Glu	Pro	Phe	Gly 315	Arg	Lys	His	959
Leu	120	Ala	ATT Ile	Asp	Val	Asn 325	Met	Asn	Γλε	Met	Pro 330	Asp	Val	Ala	Met	1007
335	Leu	Ala	GTG Val	Val	Ala 340	Leu	Phe	Ala	Asp	Gly 345	Pro	Thr	Ala	Ile	Arg 350	1055
Asp	Val	Ala	TCC Ser	7rp 355	Arg	Val	Lys	Glu	Thr 360	Glu	Arg	Met	Val	Ala 365	Ile	1103
CGG Arg	ACG Thr	GAG Glu	CTA Leu	ACC Thr	AAG Lys	CTG Leu	GGA Gly	GCA Ala	TCT Ser	GTT Val	GAG Glu	GAA Glu	GGG Gly	CCG Pro	GAC A sp	1151

TAC TGC ATC ATC ACC CCG CCG GAG AAG CTC AAC GTG ACC GGC ATC GAC 1199
Tyr Cys tlo tle Thr Pro Pro Glu Lys Leu Asn Val Thr Ala Ile Asp 390

ACG TAC GAC GAC CAC ACG ATG GCC ATG GCC TTC TCC CTT GCC GCC TGT Thr Tyr Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys 400

GCC GAG GTC CCC GTC ACC ACC ATC GGG GAC CCT GGG TGC ACC CGG AAG ACC ALa Glu Val Pro Val Thr Ile Arg Asp Pro Gly Cys Thr Arg Lys Thr 430

TTC CCC GAC TAC TTC GAT GTG CTG AGC ACT TTC GTC AAG AAT A35

TTC CCC GAC TAC TTC GAT GTG CTG AGC ACT TTC GTC AAG AAT A35

TAA

TAA

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ala Gly Ala Glu Glu Ile Val Leu Gln Pro Ile Lys Glu Ile Ser Gly
1 5 10 15

Thr Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu 20 25 30

Leu Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Asn $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Glu Asp Val His Tyr Met Leu Gly Ala Leu Arg Thr Leu Gly Leu 50 60

Ser Val Glu Ala Asp Lys Ala Ala Lys Arg Ala Val Val Gly Cys 65 70 75 80

Gly Gly Lys Phe Pro Val Glu Asp Ala Lys Glu Glu Val Gln Leu Phe 85 90 95

Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr 100 105 110

Ala Ala Gly Gly Asn Ala Thr Tyr Val Leu Asp Gly Val Pro Arg Met 115 120 125

Arg Glu Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly 130 135 140

Ala Asp Val Asp Cys Phe Leu Gly Thr Asp Cys Pro Pro Val Arg Val 145 150 155 160

Asn Gly Ile Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser 165 170 175

Ile Ser Ser Gln Tyr Leu Ser Ala Leu Leu Met Ala Ala Pro Leu Ala 180 185 190

Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Ile Pro 195 200 205

Tyr Val Glu Met Thr Leu Arg Leu Met Glu Arg Phe Gly Val Lys Ala 210 215 220

Glu His Ser Asp Ser Trp Asp Arg Phe Tyr Ile Lys Gly Gly Gln Lys 225 230 240

Tyr Lys Ser Pro Lys Asn Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala 245 250 255

Sur Tyr Phe Leu Ala Gly Ala Ala Ile Thr Gly Gly Thr Val Thr Val 260 265 270											
Glu Gly Cys Gly Thr Thr Sor Leu Gln Gly Asp Val Lys Phe Ala Glu 275 280 285											
Val Leu Glu Met Met Gly Ala Lys Val Thr Trp Thr Glu Thr Ser Val 290 295 300											
Thr Val Thr Gly Pro Pro Arg Glu Pro Phe Gly Arg Lys His Leu Lys 305 310 315 320											
Ala Ile Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 330 335											
Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Ala Ile Arg Asp Val 340 345 350											
Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Val Ala Ile Arg Thr 355 360 365											
Glu Leu Thr Lys Leu Gly Ala Ser Val Glu Glu Gly Pro Asp Tyr Cys 370 375 380											
Ile Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Ala Ile Asp Thr Tyr 385 390 395 400											
Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Glu 405 410 415											
Val Pro Val Thr Ile Arg Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro											
Asp Tyr Phe Asp Val Leu Ser Thr Phe Val Lys Asn 435 440											

(2) INFORMATION FOR SEQ ID NO:4:											
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1340 base pairs											
(8) TYPE: nucleic scid (C) STRANDEDNESS: double											
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA											
(v1) ORIGINAL SOURCE:											
(A) ORGANISM: Zea mays (B) STRAIN: Black Mexican Sweet											
(vii) IMMEDIATE SOURCE: (B) CLONE: prpa-ml-720											
(ix) FEATURE:											
(A) NAME/KEY: CDS (B) LOCATION: 61337											
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:4:											
CCATG GCC GGC GCC GAG GAG ATC GTG CTG CAG CCC ATC AAG GAG ATC	47										
Ala Gly Ala Glu Glu Ile Val Leu Gln Pro Ile Lys Glu Ile 1 5 10											
TCC GGC ACC GTC AAG CTG CCG GGG TCC AAG TCG CTT TCC AAC CGG ATC Ser Gly Thr Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile 15 20 25 30	95										
CTC CTA CTC GCC GCC CTG TCC GAG GGG ACA ACA GTG GTT GAT AAC CTG Leu Leu Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu 35 40	43										
CTG AAC AGT GAG GAT GTC CAC TAC ATG CTC GGG GCC TTG AGG ACT CTT Leu Asn Ser Glu Asp Val His Tyr Met Leu Gly Ala Leu Arg Thr Leu 50 55 60	.91										
GGT CTC TCT GTC GAA GCG GAC AAA GCT GCC AAA AGA GCT GTA GTT GTT Gly Leu Ser Val Glu Ala Asp Lys Ala Ala Lys Arg Ala Val Val 65 70 75	:39										

GGC TOT GG GLy Cys Gl 80	T GGA AAC Y Gly Lyc	TTC CCA Phe Pro 85	Val G	AG GAT	GCT AAA Ala Lyu 90	GAG GAA Glu Glu	OTO C/ Val GI	NG 287 In
CTC TTC TT Leu Phe Le 95	d ddd A∧t u Gly A∷r	GCT GGA Ala Gly 100	ATC GO	CA ATG	CGG TCC Arg Ser 105	TTG ACA Leu Thr	GCA GC Ala Al 11	a
GTT ACT GO Val Thr Al	a Ala Gly 115	Gly Asn	Ala Ti	hr Tyr 120	Val Leu	Asp Gly	Val Pr 125	:o.,
AGA ATG AG Arg Met Ar	g Glu Arg 130	Pro Ile	Gly A	sp Leu 35	Val Val	Gly Leu 140	Lys G	.n
CTT GGT GC Leu Gly Al	a Asp Val 5	. Asp Cys	Phe Lo	eu Gly	Thr Asp	Cys Pro 155	Pro Va	11
CGT GTC AA Arg Val As 160	n Gly Ile	Gly Gly 165	Leu P	ro Gly	Gly Lys 170	Val Lys	Leu Se) <u>r</u>
GGC TCC AT Gly Ser Il 175	e Ser Sei	Gln Tyr 180	Leu S	er Ala	Leu Leu 185	Met Ala	Ala Pa	70 10
TTG GCT CT Leu Ala Le	u Gly Asp 195	Val Glu	Ile G	lu Ile 200	Ile Asp	Lys Leu	11e Se 205	ır
ATT CCG TA	r Val Glu 210	Met Thr	Leu Ai	rg Leu 15	Met Glu	Arg Phe 220	Gly Va	1
AAA GCA GA Lys Ala G1 22	u His Ser 5	Asp Ser	Trp A: 230	sp Arg	Phe Tyr	Ile Lys 235	Gly Gl	Y
CAA AAA TA Gln Lys Ty 240	r Lys Ser	Pro Lys 245	Asn A	la Tyr	Val Glu 250	Gly Asp	Ala Se	ır
AGC GCA AG Ser Ala Se 255	r Tyr Phe	Leu Ala 260	Gly A	la Ala	Ile Thr 265	Gly Gly	Thr Va	0
ACT GTG GA Thr Val Gl	u Gly Cys 275	Gly Thr	Thr Se	er Leu 280	Gln Gly	Asp Val	Lys Pr 285	18
GCT GAG GT Ala Glu Va	l Leu Glu 290	Met Met	Gly Al	la Lys 95	Val Thr	Trp Thr 300	Glu Th	ır
AGC GTA AC Ser Val Th 30	r Val Thr 5	Gly Pro	Pro A	rg Glu	Pro Phe	Gly Arg 315	Lys Hi	.6
CTC AAG GC Leu Lys Al 320	a Ile Asp	Val Asn 325	Met A	an Lya	Met Pro 330	Asp Val	Ala Me	t
ACT CTT GC Thr Leu Al 335	a Val Val	Ala Leu 340	Phe A	la Asp	Gly Pro 345	Thr Ala	Ile Ar	i0
GAC GTG GC Asp Val Al	a Ser Trp 355	Arg Val	Lys G	lu Thr 360	Glu Arg	Met Val	Ala II 365	.e
CGG ACG GA Arg Thr Gl	u Leu Thr 370	. TAR Ten	Gly A	la Ser 75	Val Glu	Glu Gly 380	Pro As	P
TAC TGC AT Tyr Cys Il 38	e Ile Thr	CCG CCG	GAG AV Glu Ly 390	AG CTG Ys Leu	AAC GTG Asn Val	ACG GCG Thr Ala 395	ATC GA	IC 1199

ACG The	TAC Tyr 400	GAC Asp	GAC A≝p	CAC	AGG Arg	ATG Met 405	GCG Ala	ATG Met	GCC Ala	TTC Phe	TCC Ser 410	CTT Leu	GCC Ala	GCC Ala	TGT Cys	1217
GCC Ala 415	GAG Glu	GTC Val	CCC Pro	GTC Val	ACC Thr 420	ATC Ile	CGG Arg	GAC Asp	CCT Pro	GGG Gly 425	TGC Cys	ACC Th <i>r</i>	CGG Arg	AAG Lys	ACC Thr 130	1295
TTC Phe	Pro CCC	GAC Asp	TAC Tyr	TTC Phe 435	GAT Asp	GTG Val	CTG Leu	AGC Ser	ACT Thr 440	TTC Phe	GTC Val	AAG Lys	TAA neA			1337
TAA																1340

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ala Gly Ala Glu Glu Ile Val Leu Gln Pro Ile Lys Glu Ile Ser Gly 1 5 10 15

Thr Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu 20 25 30

Leu Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Asn $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Glu Asp Val His Tyr Met Leu Gly Ala Leu Arg Thr Leu Gly Leu 50 60

Ser Val Glu Ala Asp Lys Ala Ala Lys Arg Ala Val Val Gly Cys 65 70 75 80

Gly Gly Lys Phe Pro Val Glu Asp Ala Lys Glu Glu Val Gln Leu Phe 85 90 95

Leu Gly Asn Ala Gly Ile Ala Met Arg Ser Leu Thr Ala Ala Val Thr 100 105 110

Ala Ala Gly Gly Asn Ala Thr Tyr Val Leu Asp Gly Val Pro Arg Met 115 120 125

Arg Glu Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly 130 140

Ala Asp Val Asp Cys Phe Leu Gly Thr Asp Cys Pro Pro Val Arg Val 145 150 155 160

Asn Gly Ile Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser 165 170 175

Ile Ser Ser Gln Tyr Leu Ser Ala Leu Leu Met Ala Ala Pro Leu Ala 180 195 196

Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Ile Pro 195 200 205

Tyr Val Glu Met Thr Leu Arg Leu Met Glu Arg Phe Gly Val Lys Ala 210 215 220

Glu His Ser Asp Ser Trp Asp Arg Phe Tyr Ile Lys Gly Gly Gln Lys 225 230 235

Tyr Lys Ser Pro Lys Asn Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala 245 250 255

Ser Tyr Phe Leu Ala Gly Ala Ala Ile Thr Gly Gly Thr Val Thr Val 260 265 270

Glu Gly Cys Gly Thr Thr Ser Leu Gln Gly Asp Val Lys Phe Ala Glu 275 280 285

Val Leu Glu Met Mot Gly Ala Lys Val Thr Trp Thr Glu Thr Ser Val 290 295 300

The Val The Gly Pro Pro Arg Glu Pro Phe Gly Arg Lys His Leu Lys 30% 310 315 320

Ala lie Asp Val Ash Met Ash Lys Met Pro Asp Val Ala Met Thr Leu 325 \$330\$

Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Ala Ile Arg Asp Val 340 345

Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Val Ala Ile Arg Thr 355 360 365

Glu Leu Thr Lys Leu Gly Ala Ser Val Glu Glu Gly Pro Asp Tyr Cys 370 375 380

Ile Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Ala Ile Asp Thr Tyr 385 390 395 400

Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Glu 405 410 415

Val Pro Val Thr Ile Arg Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro 420 425 430

Asp Tyr Phe Asp Val Leu Ser Thr Phe Val Lys Asn 435

REVENDICATIONS

- Gène ADN codant pour une 5-enol pyruvylshikimate-3-phosphate synthase (EPSPS) mutée, caractérisé en ce qu'il comprend au moins une substitution Thréonine 102 →
 Isoleucine.
 - 2. Gène ADN selon la revendication 1, caractérisé en ce qu'il comprend en plus au moins une seconde mutation dans l'EPSPS, distincte de la première.
- 3. Gène ADN selon la revendication 2, caractérisé en ce qu'il comprend en plus une mutation constituée par une substitution Proline 106 par la Sérine.
 - 4. Gène ADN selon la revendication 2, caractérisé en ce qu'il comprend en plus une mutation constitué par une substitution de la Glycine 101 par l'Alanine.
 - 5 Gène ADN selon l'une des revendications 1 à 4, caractérisé en ce qu'il est d'origine bactérienne.
- 6. Gène ADN selon la revendication 5, caractérisé en ce qu'il est issu d'une bactérie du genre Salmonella typhimurium.
 - 7. Gène ADN selon l'une des revendications 1 à 4, caractérisé en ce qu'il est d'origine végétale.
- Gène ADN selon la revendication 7, caractérisé en ce qu'il est d'origine de maïs.
 - 9. Protéine EPSPS mutée caractérisée en ce qu'elle comprend au moins une substitution de la Thréonine 102 par l'isoleucine.
- 30 10. Gène chimérique comprenant une séquence codante ainsi que des éléments de régulation en position 5' et 3' hétérologues pouvant fonctionner dans les plantes, caractérisé en ce qu'il comprend, comme séquence codante, au moins une séquence selon l'une des revendications 1 à 8.
- 35 11. Gène chimérique selon la revendication 9, caractérisé en ce qu'il comprend un promoteur de virus de plante.

PCT/FR96/01125

- 12. Gène chimérique selon la revendication 10, caractérisé en ce qu'il comprend un promoteur de plante (ex: α tubuline, histone, introns, actine...).
- 13. Vecteur pour la transformation des plantes, caractérisé en ce qu'il comprend, au moins un gène selon l'une des revendications 10 à 12.
 - 14. Cellule végétale, caractérisée en ce qu'elle comprend au moins un gène selon l'une des revendications 10 à 12.
- 10 15. Plante, caractérisée en ce qu'elle est obtenue par régénération à partir d'une cellule selon la revendication 14.
- 16. Procédé pour la production de plantes de tolérance améliorée à un herbicide ayant pour cible l'EPSP synthase, caractérisé en ce qu'on transforme des cellules végétales ou protoplates avec un gène selon l'une des revendications 1 à 8 et qu'on soumet les cellules transformées à une régénération.
 - 17. Procédé de traitement des plantes avec un herbicide ayant l'EPSPS pour cible, caractérisé en ce qu'on applique l'herbicide à des plantes selon la revendication 15.
 - 18. Procédé selon la revendication 17, caractérisé en ce qu'on applique du glyphosate ou un précurseur du glyphosate.