

NONDETERMINISTIC FINITE AUTOMATA

NONDETERMINISTIC FINITE AUTOMATA (NFA)

- A nondeterministic finite automaton has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.
- Accept if any sequence of choices leads to a final state.

NONDETERMINISTIC FINITE AUTOMATA (NFA)

state transition diagram

FORMAL DEFINITION

- A deterministic finite automaton M is a 5-tuple, (Q, Σ , δ , q₀, F), consisting of:
 - Q = set of all states
 - Σ = input symbols
 - δ = transition function (Q × $\Sigma \rightarrow 2^Q$)
 - q0 = start state / initial state
 - F = set of final states

EXAMPLE 1

- From the given NFA diagram, describe an NFA accepting the language by:
 - a.) determining the 5-tuple
 - b.) building a DFA transition table

5-tuple

•
$$Q = \{A, B\}$$

•
$$\Sigma = \{0,1\}$$

•
$$\delta = \{A \times 0 \rightarrow A; A \times 0 \rightarrow B; A \times 1 \rightarrow A; B \times 0 \rightarrow \Phi; B \times 1 \rightarrow \Phi\}$$

•
$$q0 = A$$

Transition Table

	0	1
→ A	Α	AB
* B	Φ	Φ

EXAMPLE 2

- For each of the following languages, describe a NFA accepting the language by drawing an NFA diagram
 - L1 = set of all strings over {0,1} that ends with 1
 - L2 = set of all strings over {0,1} that contains 0
 - L3 = set of all strings over {a,b} that starts with ba