Corrigé épreuve STATISTIQUE 2008

Exercice I (4 points)

Réponses: C/A/C/C/B/C/A/B.

Exercice II (16,5 points)

Partie A: (11 points)

1) Tableau de calculs:

classe	ni	ai	ci	hi	ni ⁺
[0;5[56	5	2,5	22,40	56
[5; 10[100	5	2,5	40,00	156
[10; 12[123	2	1	123,00	279
[12; 14[150	2	1	150,00	429
[14; 18[200	4	2	100,00	629
[18;23[130	5	2,5	52,00	759
[23;30[250	7	3,5	71,43	1009
[30;40[300	10	5	60,00	1309
[40; 100[98	60	30	3,27	1407
[100; 150[26	50	25	1,04	1433
[150; 300[12	150	75	0,16	1445

Classe modale	[12; 14[car elle correspond à la hauteur hi la plus forte.		
Moyenne	39993/1445 = 27,68.		
D(4)	$\frac{4}{10} \times 1446 = 578,40$		
Qı	$Q_{(1)} = 361,50 \implies Q_1 = 13,10$ $\frac{Q_1 - 12}{14 - 12} = \frac{361,50 - 279}{429 - 279}$		
Médiane	Le rang de la me = $723 \Rightarrow$ me = $21,62$ $\frac{Q_2 - 18}{23 - 18} = \frac{723 - 629}{759 - 629}$		
SCE	$n \times s^2(x) = 1 \ 082 \ 174,07$		
CV	$(27,37/27,68)\times100 = 98,88 \Rightarrow \text{la série est très dispersée.}$		

2) Calcul du coefficient de Yule :

$$s = \frac{(32,52-21,62)-(21,62-13,10)}{(32,52-13,10)} = 0,12 \Rightarrow la série est un peu étalée à droite.$$

3)

La médiane correspond à l'abscisse du point d'ordonnée 723.

Partie B: (5,5 points)

1) Pour pouvoir comparer la dispersion des 2 zones, il faut comparer leur coefficient de variation.

Pour la zone Alpha, il est égal à 98,88.

Pour la zone Béta, il est égal à $\frac{30}{35} \times 100 = 85,71$.

La dispersion des surfaces est plus importante dans la zone Alpha.

2) a) La moyenne des surfaces dans la région Gama est égale à :

$$\frac{(1445 \times 27,68 + 1430 \times 35)}{(1445 + 1430)} = 31,32.$$

La variance intra :
$$\frac{(1445 \times 27,37^2 + 1430 \times 30^2)}{(1445 + 1430)} = 824,16.$$

La variance inter:
$$\frac{1445(27,68-31,32)^2+1430(35-31,32)^2}{(1445+1430)}=13,40.$$

La variance totale est donc égale à 824,16 + 13,40 = 837,56.

b) La dispersion des surfaces dans la région s'explique essentiellement par une forte dispersion des surfaces interne aux deux zones (à raison de 98,40 %). La dispersion des surfaces entre les 2 zones est par contre très faible (1,6 %).

La dispersion intra explique presque intégralement la variance globale.

Exercice III (6 points)

Hypothèse nulle : La répartition des groupes sanguins dans l'échantillon des 200 malades est **conforme** à celle observée dans la population en générale.

Effectifs théoriques :

Groupe sanguin	О	A	В	AB	total
Effectifs théoriques	94	86	14	6	200

Critère statistique calculé:	6,04
Nombre de degrés de liberté :	3
Critère statistique théorique :	7,81
Conclusion:	On accepte H ₀ car si on la refusait, on prendrait un risque de se tromper supérieur à 5 % (compris entre 10 % et 50 %)

Exercice IV (12 points)

Partie A (6 points)

La loi suivie par X est une loi normale de moyenne m et d'écart type σ .

1) On obtient un système :

$$P(X < 10) = P(T < \frac{10-m}{\sigma}) = 0.16 \Rightarrow \frac{10-m}{\sigma} = -0.9945$$

$$P(X < 14) = P(T < \frac{14 - m}{\sigma}) = 0.63 \Rightarrow \frac{14 - m}{\sigma} = 0.3319$$

$$\begin{cases} 10-m=-0.9945\sigma \\ 14-m=0.3319\sigma \end{cases} \Leftrightarrow \begin{cases} m=12.999\approx 13 \\ \sigma=3.0157\approx 3.02 \end{cases} \text{ on obtient l'écart type en faisant (2) -(1)}$$

2) Le premier quartile vérifie :

$$P(X < Q_1) = 0.25 \Rightarrow (Q_1 - 13)/3 = -0.674 \text{ soit } Q_1 = 10.98.$$

25% des candidats ont obtenu une note inférieure à 10,98.

3) If faut trouver x tel que $P(13 - x \le X \le 13 + x) = 0.95$.

Or
$$P(T \le x/3) - P(T \le x/3) = 2P(T \le x/3) - 1 \Rightarrow P(T \le x/3) = 0.975$$
.

Dans la table 2 de la loi normale on lit la valeur 1,96 = x/3. D'où l'intervalle centré sur la moyenne [7,12; 18,88].

Il y a 95% de chances pour que la note d'un membre du personnel soit comprise dans cet intervalle.

Partie B (2,5 points)

- 1) L(Y) = B(20; 0,10). (répétition dans les mêmes conditions d'une expérience à 2 issues)
- 2) $E(Y) = 20 \times 0.10 = 2$ et $V(Y) = 20 \times 0.10 \times 0.90 = 1.8$ d'où $\sigma(Y) = 1.34$.
- 3) On cherche $P(Y \le 5) = 0.9887$.

Partie C (3,5 points)

- 1) Z suit une loi de Poisson de paramètre 4.
- a) $P(Z > 2) = 1 P(Z \le 2) = 1 0.2381 = 0.7619$.
- **b)** $P(2 \le Z \le 7) = P(Z \le 7) P(Z \le 2) = P(Z \le 7) P(Z \le 1) = 0.9489 0.0916 = 0.8573$.
- 2) U: « nombre d'accidents pour le prochain semestre »
- a) Z suit une loi de Poisson de paramètre 4

 $U = \sum_{i=1}^{6} Z_i$ où Z_i est la variable aléatoire représentant le nombre d'accidents pour le mois i.

U est donc la somme de 6 variables aléatoires indépendantes suivant des lois de Poisson de paramètres respectifs égaux à 4 ⇒ U suit une loi de Poisson de paramètre 24.

b) La loi de U peut être approchée par un loi normale N(24 ; $\sqrt{24}$) car le paramètre de la loi de Poisson dépasse 18.

$$P(U < 30) = P(T < 1,22) = 0,8888.$$

Exercice V (5,5 points)

Le centre de gravité a pour coordonnées (226 ; 280).

SPE (X; Y) = n×COV(X; Y) =
$$10 \times \left(\frac{472000}{10} - 226 \times 280\right)$$
 = - 160800.

$$s^{2}(X) = \frac{624400}{10} - 226^{2} = 11364.$$

La pente de la droite est égale à = $b = \frac{COV(X;Y)}{s^2(X)} = \frac{-16080}{11364} = -1,4150 (X et Y varient en sens inverse).$

 $s^{2}(Y) = SCE(yi)/n = 230800/10 = 23080.$

On en déduit
$$r = \frac{COV(X;Y)}{s(X) \times s(Y)} = \frac{-16080}{\sqrt{11364 \times 23080}} = -0,9929 \Rightarrow l'ajustement est d'excellente qualité.$$

La variance résiduelle $s^2(ei) = (1-r^2) \times s^2(Y) = (1-(-0.9929)^2) \times 23080 = 326,57$.

Exercice VI (6 points)

Hypothèse nulle : la série peut être ajustée par une loi de Poisson de paramètre 3.

xi	pi	$ni' = n \times pi$	
0	0,0498	2,49	
1	0,1494	7,47	
2	0,224	11,2	
3	0,224	11,2	
4	0,168	8,4	
5	0,1008	5,04	
6	0,0504	2,52	
7 et plus	0,0336	1,68	

Les effectifs théoriques doivent être inférieurs ou égaux à 5, mais on tolère un effectif théorique supérieur à 5 à chaque extrémité. On va donc regrouper les deux dernières lignes.

xi	ni	ni' = n×pi
0	3	2,49
1	7	7,47
2	11	11,2
3	11	11,2
4	8	8,4
5	5	8,4 5,04
6 et plus	5	4,2

Critère statistique calculé: 0,3129

<u>Critère statistique théorique</u>: 11,10 pour un ddl de 5 (7-1-1) et un risque de 5%. Si on néglige le nombre de paramètre estimé soit 1, le ddl est égal à 6 et le critère statistique théorique vaut 12,6.

Conclusion: On accepte H_o, car si on la refuse on prend un risque de se tromper supérieur à 5% (risque réel compris entre 99,5 % et 99,9 % pour un ddl de 5 et supérieur à 99,9 % pour un ddl de 6).