重心是原点的椭圆(或圆)内接三角形性质再探

杨 同 伟 (陕西省西安市昆仑中学, 710043)

笔者在文[1] 中给出了重心是原点的椭圆(或圆)内接三角形的三个有趣性质. 近期又对此问题进行了深入研究, 得到了重心是原点的椭圆(或圆)内接三角形的另外几个有趣性质.

引理 若 $\triangle A_1 A_2 A_3$ 是椭圆(或圆): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的内接三角形, 且 $\triangle A_1 A_2 A_3$ 的重心是原点,则 A_1 , A_2 , A_3 的离心角分别为 θ , $\theta + 120^{\circ}$, $\theta - 120^{\circ}$.

上述引理实质是文[1]中定理1的一种改述,这 里无需再来证明.下面着重介绍最近发现的重心是 原点的椭圆(或圆)内接三角形的又几个新性质,愿与各位同仁共同分享.

定理 1 若 $A_i(x_i, y_i)$ (i=1, 2, 3) 是椭圆(或圆): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 上的三个不同点,且 $\triangle A_1 A_2 A_3$ 的重心是原点,则

$$\sum_{1 \le i \le j \le 3} x_i x_j = -\frac{3}{4} a^2, \sum_{1 \le i \le j \le 3} y_i y_j = -\frac{3}{4} b^2.$$

证明 不妨设点 A_1 的离心角为 θ , 由引理可知, A_2 , A_3 的离心角分别为 $\theta+120^\circ$, $\theta-120^\circ$, 于是 $x_1=a\cos\theta$, $x_2=a\cos(\theta+120^\circ)$, $x_3=a\cos(\theta-120^\circ)$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 得
$$\frac{\left(\frac{a^2 \overline{x}}{x^2 + y^2}\right)^2}{a^2} - \frac{\left(\frac{a^2 \overline{y}}{x^2 + y^2}\right)^2}{b^2} = 1$$
, 即有线

段 MN 中点的轨迹方程为 $(\frac{x^2}{a^2} + \frac{y^2}{a^2})^2 = \frac{x^2}{a^2} - \frac{y^2}{b^2}$.

对于抛物线, 我们也可以仿文[1] 有如下轨迹:

轨迹 $\mathbf{1}'$ 过抛物线 $C: y^2 = 2px$ 的相关圆 $x^2 + y^2 = p^2$ 上位于抛物线外的任意一点 P 作抛物线 C 的两条切线 PM, PN, 切点分别为 M, N, 则线段 MN 中点的轨迹方程是 $(y^2 - px)^2 + p^2y^2 = p^4$.

由结论 3, 将
$$\begin{cases} x_0 = \frac{1}{p} \bar{y}^2 - \bar{x}, \\ y_0 = \bar{y} \end{cases}$$
 代入相关圆 $x^2 + y_0 = \bar{y}$

 $y^2 = p^2$ 得 $(\frac{1}{p}\bar{y}^2 - \bar{x})^2 + \bar{y}^2 = p^2$, 即有线段 MN 中点的轨迹方程为 $(y^2 - px)^2 + p^2y^2 = p^4$.

轨迹 $\mathbf{2}'$ 过抛物线 $C: y^2 = 2px$ 上位于相关圆 $x^2 + y^2 = p^2$ 之外的任意一点 P 作相关圆的两条切线 PM, PN, 切点分别为 M, N, 则线段 MN 中点的轨迹是 $py^2 = 2x(x^2 + y^2)$.

曲结论 1 的特殊情况: 将
$$\begin{cases} x_0 = \frac{p^2 \bar{x}}{\bar{x}^2 + \bar{y}^2}, \\ y_0 = \frac{p^2 \bar{y}}{\bar{x}^2 + \bar{y}^2} \end{cases}$$
 代入

 $y^2 = 2px$ 得 $(\frac{p^2 \overline{y}}{x^2 + \overline{y}^2})^2 = 2p(\frac{p^2 \overline{x}}{x^2 + \overline{y}^2})$,即有线段 MN 中点的轨迹方程为 $pv^2 = 2x(x^2 + y^2)$.

文[1] 还介绍了轨迹 2, 4, 7, 8, 它们研究的是一条曲线 C_1 在点 T 处的切线与另一曲线 C_2 相交于 P, Q, 弦 PQ 的中点为 M, 当 T 在曲线 C_1 上变化时, 求中点 M 的轨迹方程. 我们可以仿上述结论证明中的方法, 把 PQ 作为 C_1 的切线和 C_2 的中点弦分别求出方程, 通过系数成比例, 找出用点 M 的坐标表示点 T 坐标的关系式, 代入 C_1 的方程也可容易地求出 M 点的轨迹方程, 有兴趣的读者不妨一试.

参考文献

[1] 玉云化. 椭圆、双曲线与相关圆生成的轨迹方程. 数学通讯. 2012(1)(下半月).

120°), $y_1 = b\sin\theta$, $y_2 = b\sin(\theta + 120°)$, $y_3 = b\sin(\theta - 120°)$.

所以 $\sum_{\substack{1 \le \kappa \ne 3}} x_i x_j = a^2 [\cos \theta \cos (\theta + 120^\circ) + \cos(\theta + 120^\circ) \cos(\theta - 120^\circ) + \cos(\theta - 120^\circ) \cos \theta]$ $= a^2 (-\frac{1}{2}\cos^2 \theta - \frac{\sqrt{3}}{2}\sin \theta \cos \theta + \frac{1}{4}\cos^2 \theta - \frac{3}{4}\sin^2 \theta - \frac{1}{2}\cos^2 \theta + \frac{\sqrt{3}}{2}\sin \theta \cos \theta)$ $= a^2 (-\frac{3}{4}\sin^2 \theta - \frac{3}{4}\cos^2 \theta) = -\frac{3}{4}a^2,$

同理可得, $\sum_{1 \leqslant i \leqslant j \leqslant 3} y_i y_j = -\frac{3}{4} b^2$.

定理 2 $\triangle A_1 A_2 A_3$ 是椭圆(或圆): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的内接三角形, 且 $\triangle A_1 A_2 A_3$ 的重心是原点,则 $|A_1 A_2|^2 + |A_2 A_3|^2 + |A_3 A_1|^2 = \frac{9}{2}(a^2 + b^2)$.

证明 设 $A_i(x_i, y_i)$ (i=1, 2, 3),一方面,由文 [1] 中的定理 2 可知, $\sum_{i=1}^3 x_i^2 = \frac{3}{2}a^2$, $\sum_{i=1}^3 y_i^2 = \frac{3}{2}b^2$; 另一方面,由本文中的定理 1 可知, $\sum_{1 \le i < j \le 3} x_i x_j$ = $-\frac{3}{4}a^2$, $\sum_{1 \le i < j \le 3} y_i y_j = -\frac{3}{4}b^2$. $\therefore |A_1A_2|^2 + |A_2A_3|^2 + |A_3A_1|^2$ = $\sum_{1 \le i < j \le 3} [(x_i - x_j)^2 + (y_i - y_j)^2]$ = $2(\sum_{i=1}^3 x_i^2 + \sum_{i=1}^3 y_i^2 - \sum_{1 \le i < j \le 3} x_i x_j - \sum_{1 \le i < j \le 3} y_i y_j)$ = $2(\frac{3}{2}a^2 + \frac{3}{2}b^2 + \frac{3}{4}a^2 + \frac{3}{4}b^2) = \frac{9}{2}(a^2 + b^2)$.

定理 3 $\triangle A_1 A_2 A_3$ 是椭圆(或圆): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的内接三角形, 且 $\triangle A_1 A_2 A_3$ 的重心是原点, 若 $\triangle A_1 A_2 A_3$ 的三边 $A_1 A_2$, $A_2 A_3$, $A_3 A_1$ 分别存在非零斜率 k_1 , k_2 , k_3 . 则($\sum_{i=1}^{3} k_i$) $^{\circ}(\sum_{i=1}^{3} \frac{1}{k_i}) = 9$.

证明 不妨设点 A_1 的离心角为 θ , 由引理可知, A_2 , A_3 的离心角分别为 $\theta+120^\circ$, $\theta-120^\circ$, 则 $A_1(a\cos\theta, b\sin\theta)$, $A_2(a\cos(\theta+120^\circ), b\sin(\theta+120^\circ))$, $A_3(a\cos(\theta-120^\circ), b\sin(\theta-120^\circ))$.

 $k_1 = \frac{b[\sin(\theta + 120^{\circ}) - \sin\theta]}{a[\cos(\theta + 120^{\circ}) - \cos\theta]}$ $=\frac{2b\cos(\theta+60^{\circ})\sin 60^{\circ}}{-2a\sin(\theta+60^{\circ})\sin 60^{\circ}}=-\frac{b}{a}\cot(\theta+60^{\circ});$ $k_{2} = \frac{b[\sin(\theta + 120^{\circ}) - \sin(\theta - 120^{\circ})]}{a[\cos(\theta + 120^{\circ}) - \cos(\theta - 120^{\circ})]}$ $=\frac{2b\cos\theta\sin 120^{\circ}}{-2a\sin\theta\sin 120^{\circ}}=-\frac{b}{a}\cot\theta;$ $k_3 = \frac{b[\sin\theta - \sin(\theta - 120^{\circ})]}{a[\cos\theta - \cos(\theta - 120^{\circ})]}$ $= \frac{2b\cos(\theta - 60^{\circ})\sin 60^{\circ}}{-2a\sin(\theta - 60^{\circ})\sin 60^{\circ}} = -\frac{b}{a}\cot(\theta - 60^{\circ}).$ $\therefore \sum_{i=1}^{3} k_{i} = -\frac{b}{a} \left[\cot(\theta - 60^{\circ}) + \cot\theta + \cot(\theta + \theta) \right]$ $(60^\circ)] = -\frac{b}{a} \left(\frac{1 + \sqrt{3} \tan \theta}{\tan \theta - \sqrt{3}} + \frac{1}{\tan \theta} + \frac{1 - \sqrt{3} \tan \theta}{\tan \theta + \sqrt{3}} \right)$ $=-\frac{b}{a}$ ° $[(1+\sqrt{3}\tan\theta)(\tan\theta+\sqrt{3})\tan\theta+(\tan\theta+$ $\sqrt{3}$) $(\tan\theta - \sqrt{3}) + (1 - \sqrt{3}\tan\theta)(\tan\theta - \sqrt{3})\tan\theta$] / $[\tan \theta (\tan^2 \theta - 3)]$ $= -\frac{b}{a} \cdot \frac{3(3\tan^2\theta - 1)}{\tan\theta(\tan^2\theta - 3)}.$ $\therefore \sum_{i=1}^{3} \frac{1}{k_i} = -\frac{a}{b_i} \left[\tan(\theta - 60^\circ) + \tan\theta + \tan(\theta + \frac{1}{b_i}) \right]$ $[60^{\circ})] = -\frac{a}{b} \left(\frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta} + \tan \theta + \frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \right)$ = $-\frac{a}{b}$ °[$(1-\sqrt{3}\tan\theta)$ ($\tan\theta-\sqrt{3}$) + $(1+\sqrt{3}\tan\theta)$ (1 $-\sqrt{3}\tan\theta$) $\tan\theta + (\tan\theta + \sqrt{3})(1+\sqrt{3}\tan\theta)$]/(1- $3\tan^2\theta$ $= -\frac{a}{b} \cdot \frac{3\tan\theta(3-\tan^2\theta)}{1-3\tan^2\theta}.$

故 $(\sum_{i=1}^{3} k_i)(\sum_{i=1}^{3} \frac{1}{k_i}) = 9$.

证明 不妨设点 A_1 的离心角为 θ (0° \leq 0 \leq 120°),由引理可知, A_2 , A_3 的离心角分别为 θ +120°, θ -120°, 则 $A_1(a\cos\theta, b\sin\theta)$, $A_2(a\cos(\theta+120^\circ))$

 $-120^{\circ})$).

(1) 当 $\theta = 0^{\circ}$ 时, $A_{1}(a, 0)$, $A_{2}(-\frac{1}{2}a, \frac{\sqrt{3}}{2}b)$, $A_{3}(-\frac{1}{2}a, -\frac{\sqrt{3}}{2}b)$,此时, $l_{1} \perp x$ 轴, $A_{2}A_{3} \perp x$ 轴,从而 $l_{1} /\!\!/ A_{2}A_{3}$;又切线 l_{2} 的方程为 $-\frac{x}{2a} + \frac{\sqrt{3}y}{2b} = 1$,切线 l_{3} 的方程为 $-\frac{x}{2a} - \frac{\sqrt{3}y}{2b} = 1$,所以 $k_{l_{2}} = \frac{\sqrt{3}b}{3a}$, $k_{l_{3}} = -\frac{\sqrt{3}b}{3a}$,而 $k_{l_{1}}A_{3} = \frac{\sqrt{3}b}{3a}$, $k_{l_{1}}A_{2} = -\frac{\sqrt{3}b}{3a}$,故 $l_{2} /\!\!/ A_{1}A_{3}$, $l_{3} /\!\!/ A_{1}A_{2}$;

同理可证明 $\theta=60^{\circ},120^{\circ}$ 等情况下, 命题也成立.

 $(2) \ \, \exists \ \, \theta \neq 0 \, {\rm \^{\circ}}, \ \, 60 \, {\rm \^{\circ}}, \ \, 120 \, {\rm \^{\circ}} \, {\rm H}, \ \, A_1, \ \, A_2, \ \, A_3 \, \, \hbox{不可能}$ 是椭圆(或圆) $: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ \, (a > 0, \, b > 0)$ 的左右顶点,此时,切线 l_1 的方程为 $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$,切线 l_2 的方程为 $\frac{x\cos(\theta + 120 \, {\rm \^{\circ}})}{a} + \frac{y\sin(\theta + 120 \, {\rm \^{\circ}})}{b} = 1$,切线 l_3 的方程为 $\frac{x\cos(\theta - 120 \, {\rm \^{\circ}})}{a} + \frac{y\sin(\theta - 120 \, {\rm \^{\circ}})}{b} = 1$,所以 $k_{l_1} = -\frac{b}{a}\cot\theta, \ \, k_{l_2} = -\frac{b}{a}\cot(\theta + 120 \, {\rm \^{\circ}}) = -\frac{b}{a}\cot(\theta - 60 \, {\rm \^{\circ}}), \ \, k_{l_3} = -\frac{b}{a}\cot(\theta - 120 \, {\rm \^{\circ}}) = -\frac{b}{a}$ $\cot(\theta + 60 \, {\rm \^{\circ}}).$

又由定理 3 的证明可知, $k_{A_1A_2} = -\frac{b}{a}\cot(\theta + 60^\circ)$, $k_{A_1A_3} = -\frac{b}{a}\cot(\theta - 60^\circ)$, $k_{A_2A_3} = -\frac{b}{a}\cot\theta$. 故有, l_1 $/\!/\!A_2A_3$, l_2 $/\!/\!A_1A_3$, l_3 $/\!/\!A_1A_2$.

定理 5 $\triangle A_1 A_2 A_3$ 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的内接三角形,且 $\triangle A_1 A_2 A_3$ 的重心是原点,若 $\triangle A_1 A_2 A_3$ 的一边经过椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的焦点 F,则椭圆 C 的离心率 e 满足 $\frac{1}{2} < e < 1$.

证明 不妨设 F_1 , F_2 是椭圆 C 的左右焦点, 再设点 A_1 的离心角为 $\theta(0^\circ \leq \theta \leq 120^\circ)$, 由引理可 知, A_2 , A_3 的离心角分别为 $\theta+120^\circ$, $\theta-120^\circ$, 则 $+120^{\circ}$)), $A_3(a\cos(\theta-120^{\circ}), b\sin(\theta-120^{\circ}))$.

(1) 当 $\theta = 0^\circ$ 时, $A_1(a,0)$, $A_2(-\frac{1}{2}a,\frac{\sqrt{3}}{2}b)$, $A_3(-\frac{1}{2}a,-\frac{\sqrt{3}}{2}b)$,要使 $\triangle A_1A_2A_3$ 的一边经过椭圆的焦点,只能是 A_2A_3 经过左焦点 $F_1(-c,0)$,此时有 $-\frac{1}{2}a=-c$,即离心率 $e=\frac{1}{2}$;

当 $\theta = 120^{\circ}$ 时, $A_1(-\frac{1}{2}a, \frac{\sqrt{3}}{2}b)$, $A_2(-\frac{1}{2}a, -\frac{\sqrt{3}}{2}b)$, $A_3(a, 0)$,要使 $\triangle A_1A_2A_3$ 的一边经过椭圆的焦点,只能是 A_1A_2 经过左焦点 $F_1(-c, 0)$,此时有 $-\frac{1}{2}a = -c$,即离心率 $e = \frac{1}{2}$;

(2) 当 $\theta \neq 0^{\circ}$, 120° 时, 不妨设 A_1A_3 经过右焦点 $F_2(c,0)$, 而 $\overline{A_1F_2} = (c - a\cos\theta, -b\sin\theta)$, $\overline{A_3F_2} = (c - a\cos(\theta - 120^{\circ}), -b\sin(\theta - 120^{\circ}))$,

 $\vdots -b\sin(\theta - 120^{\circ})(c - a\cos\theta) = -b\sin\theta[c - a\cos(\theta - 120^{\circ})],$

 $(-\frac{1}{2}\sin\theta - \frac{\sqrt{3}}{2}\cos\theta)(c - a\cos\theta) = \sin\theta(c + \frac{1}{2}a\cos\theta - \frac{\sqrt{3}}{2}a\sin\theta),$

即 $-\frac{1}{2}c\sin\theta - \frac{\sqrt{3}}{2}c\cos\theta + \frac{\sqrt{3}}{2}a\cos^2\theta = c\sin\theta - \frac{\sqrt{3}}{2}a\sin^2\theta$,

 $\in [\frac{1}{2}, 1).$

综合(1), (2) 可知椭圆的离心率 e 满足 $\frac{1}{2} \leqslant e$ < 1.

参考文献:

- [1] 杨同伟. 重心是原点的椭圆(或圆)内接三角形性质初探. 数学通讯. 2012(1)(下半月).
- [2] 李加军.解两道保送生考试题. 中等数学, 2011(7).

 $A_1(a\cos\theta,b\sin\theta),A_2(a\cos(\theta+120^\circ),b\sin(\theta))$ (以稿日期,2011—12—19) (C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net