CS 3710 Advanced Topics in AI Lecture 10

Review of exact inference methods

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 3710 Probabilistic graphical models

Markov random fields

- Probabilistic models with symmetric dependences:
 - Full joint for the variables defined as:

$$P(\mathbf{x}) = \frac{1}{Z} \prod_{c \in Factors} f_c(\mathbf{x}_c)$$

 $f_c(\mathbf{x}_c)$ - A potential function (defined over factors)

$$Z = \sum_{x \in \{x\}} \prod_{c \in Factors} f_c(\mathbf{x}_c) - A \text{ partition function}$$

$$P(x) = \frac{1}{Z} \exp\left(-\sum_{c \in cl(x)} \phi_c(x_c)\right)$$

- Gibbs (Boltzman) distribution

Graphical representation of MRFs

MRF representation:

- An undirected network (also called independence graph)
- · Variables in factors are represented by cliques

Example:

- variables A,B ..H
- Assume the full joint of MRF

$$\begin{split} P(A,B,...H) &= \\ \phi_{1}(A,B,C)\phi_{2}(B,D,E)\phi_{3}(A,G) \\ \phi_{4}(C,F)\phi_{5}(G,H)\phi_{6}(F,H) \end{split}$$

CS 3710 Probabilistic graphical models

Graphical representation of MRFs

MRF representation:

- An undirected network (also called independence graph)
- Variables in factors are represented by cliques

Example:

- variables A,B ..H
- Assume the full joint of MRF

$$P(A,B,...H) = \phi_1(A,B,C)\phi_2(B,D,E)\phi_3(A,G)$$

$$\phi_4(C,F)\phi_5(G,H)\phi_4(F,H)$$

Bayesian belief networks

Two components:

- · Directed acyclic graph
 - Nodes correspond to random variables
 - (Missing) links encode independences

Parameters

 Local conditional probability distributions for every variable-parent configuration

$$\mathbf{P}(X_i \mid pa(X_i))$$

Where:

$$pa(X_i)$$
 - stand for parents of X_i

\mathbf{p} / \mathbf{A}	ום בי
P(A	IB.F)
- (/ 1	10,5,

В	Е	Т	F
Т	Т	0.95	0.05
Τ	F	0.94	0.06
F	Т	0.29	0.71
F	F	0.001	0.999

CS 3710 Probabilistic graphical models

Bayesian Belief Networks

Full joint distribution is defined in terms of local conditional distributions:

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

$$P(B, E, A, J, M) =$$

$$P(B)P(E)P(A \mid B, E)P(J \mid A)P(M \mid A)$$

BBN:
$$P(X_1, X_2, ..., X_n) = \prod_{i=1,..n} P(X_i \mid pa(X_i))$$

MRF:
$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,...n} \phi_i(X_i, pa(X_i))$$

CS 3710 Probabilistic graphical models

Factors

- Factor: is a function that maps value assignments for a subset of random variables to \Re (reals)
- The scope of the factor:
 - a set of variables defining the factor
- Example:
 - Assume discrete random variables x (with values a1,a2, a3) and y (with values b1 and b2)
 - Factor:

$\phi(x,y)$	→

Scope of the factor:

{	x	,	y)

al	b1	0.5
al	b2	0.2
a2	b1	0.1
a2	b2	0.3
a3	b1	0.2
a3	b2	0.4

Factor Product

$$\phi_1(x,y)\phi_2(y,z) = \tau(x,y,z)$$

bl	0.5
b2	0.2
bl	0.1
b2	0.3
bl	0.2
b2	0.4
	b2 b1 b2 b1

b1	cl	0.1
bl	c2	0.6
b2	cl	0.3
b2	c2	0.4

al	bl	cl	0.5*0.1
al	bl	c2	0.5*0.6
al	b2	cl	0.2*0.3
al	b2	c2	0.2*0.4
a2	ы	cl	0.1*0.1
a2	bl	c2	0.1*0.6
a2	b2	cl	0.3*0.3
a2	b2	c2	0.3*0.4
a3	ы	cl	0.2*0.1
a3	bl	c2	0.2*0.6
a3	b2	cl	0.4*0.3
a3	b2	c2	0.4*0.4

CS 3710 Probabilistic graphical models

Factor Product

$$\phi_1(x, y)\phi_2(y, z) = \tau(x, y, z)$$

al	bl	0.5
al	b2	0.2
a2	bl	0.1
a2	b2	0.3
a3	bl	0.2
a3	b2	0.4

al	ы	cl	0.5*0.1
al	bl	c2	0.5*0.6
al	b2	cl	0.2*0.3
al	b2	c2	0.2*0.4
a2	ы	cl	0.1*0.1
a2	bl	c2	0.1*0.6
a2	b2	cl	0.3*0.3
a2	b2	c2	0.3*0.4
a3	ы	cl	0.2*0.1
a3	bl	c2	0.2*0.6
a3	b2	cl	0.4*0.3
a3	b2	c2	0.4*0.4

Factor Sum (marginalization)

al	bI	cl	0.2
al	bl	c2	0.35
al	b2	cl	0.4
al	b2	c2	0.15
a2	bl	cl	0.5
a2	bl	c2	0.1
a2	b2	cl	0.3
a2	b2	c2	0.2
a3	bl	el	0.25
a3	bl	c2	0.45
a3	b2	cl	0.15
a3	b2	c2	0.25

$$\sum_{y} \phi(x, y, z) = \tau(x, z)$$

CS 3710 Probabilistic graphical models

Factor Sum (marginalization)

al	bl	cl	0.2
al	bl	c2	0.35
al	b2	cl	0.4
al	b2	c2	0.15
a2	bl	cl	0.5
a2	bl	c2	0.1
a2	b2	cl	0.3
a2	b2	c2	0.2
a3	bl	cl	0.25
a3	bl	c2	0.45
a3	b2	cl	0.15
a3	b2	c2	0.25

$$\sum_{y} \phi(x, y, z) = \tau(x, z)$$

Example:

$$P(B) = \sum_{A,C,D,..H} P(A,B,...H)$$

$$= \sum_{A,C,D,..H} \phi_1(A,B,C)\phi_2(B,D,E)\phi_3(A,G)\phi_4(C,F)\phi_5(G,H)\phi_6(F,H)$$

Eliminate E
$$= \sum_{A,C,D,F,G,H} \phi_1(A,B,C) \left[\sum_{E} \phi_2(B,D,E) \right] \phi_3(A,G) \phi_4(C,F) \phi_5(G,H) \phi_6(F,H)$$

$$= \frac{1}{\sigma_1(B,D)} \int_{CS 3710 \text{ Probabilistic graphical models}} \frac{1}{\sigma_1(B,D)} \int_{$$

CS 3710 Probabilistic graphical models

MRF variable elimination inference

Example (cont):

$$P(B) = \sum_{A,C,D,...H} P(A,B,...H)$$

Eliminate D
$$= \sum_{A,C,F,G,H} \phi_1(A,B,C) \left[\sum_{D} \tau_1(B,D) \right] \phi_3(A,G) \phi_4(C,F) \phi_5(G,H) \phi_6(F,H)$$

$$\tau_2(B)$$

Example (cont):

$$P(B) = \sum_{A,C,D,..H} P(A,B,...H)$$

$$= \sum_{A,C,F,G,H} \phi_{1}(A,B,C)\tau_{2}(B)\phi_{3}(A,G)\phi_{4}(C,F)\phi_{5}(G,H)\phi_{6}(F,H)$$
minate H

Eliminate H

CS 3710 Probabilistic graphical models

MRF variable elimination inference

Example (cont):

$$P(B) = \sum_{A,C,D,..H} P(A,B,...H)$$

$$= \sum_{A,C,F,G} \phi_1(A,B,C) \tau_2(B) \phi_3(A,G) \phi_4(C,F) \tau_4(F,G) A G$$

Eliminate F

$$= \sum_{A,C,G} \phi_1(A,B,C)\tau_2(B)\phi_3(A,G) \left[\sum_F \phi_4(C,F)\tau_4(F,G) \right]$$

$$\tau_5(C,F,G)$$

$$\tau_6(G,C)$$

Example (cont):

$$P(B) = \sum_{A,C,D,..H} P(A,B,...H)$$

$$= \sum_{A,C,G} \phi_1(A,B,C) \tau_2(B) \phi_3(A,G) \tau_6(C,G)$$

Eliminate G

$$= \sum_{A,C} \phi_{1}(A,B,C)\tau_{2}(B) \left[\sum_{F} \phi_{3}(A,G)\tau_{6}(C,G) \right] \\ \tau_{7}(A,C,G)$$

$$\tau_{8}(A,C)$$

CS 3710 Probabilistic graphical models

MRF variable elimination inference

Example (cont):

$$P(B) = \sum_{A,C,D,..H} P(A,B,...H)$$

$$= \sum_{A,C} \phi_1(A,B,C) \tau_2(B) \tau_8(A,C)$$

Eliminate C

$$= \sum_{A} \tau_{2}(B) \left[\sum_{C} \phi_{1}(A,B,C) \tau_{8}(A,C) \right]^{D}$$

$$\tau_{9}(A,B,C)$$

$$\tau_{10}(A,B)$$

Example (cont):

$$P(B) = \sum_{A,C,D,...H} P(A,B,...H)$$

$$= \sum_{A} \tau_{2}(B)\tau_{10}(A,B)$$

$$= \tau_{2}(B)\sum_{A} \tau_{10}(A,B)$$

Eliminate A

$$= \tau_2(B) \underbrace{\sum_A \tau_{10}(A, B)}_{\tau_{11}(B)}$$
$$= \tau_2(B) \tau_{11}(B)$$

CS 3710 Probabilistic graphical models

Tree decomposition of the graph

- A tree decomposition of a graph G:
 - A tree T with a vertex set associated to every node.
 - For all edges $\{v,w\} \in G$: there is a set containing both v and w in T.
 - Running intersection: For every $v \in G$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

- A tree decomposition of a graph G:
 - A tree *T* with a vertex set associated to every node.
 - For all edges $\{v,w\} \in G$: there is a set containing both v and w in T.
 - Running intersection: For every v ∈ G: the nodes in T that contain v form a connected subtree.

CS 3710 Probabilistic graphical models

Triangulation

A way to build a tree decomposition T of a graph G

- Add undirected links to G so that cycles of 4 or more are broken
- Make cliques in the new G the clusters of the tree T

Triangulation

Is this graph triangulated?

CS 3710 Probabilistic graphical models

Triangulation

Is this graph triangulated?

Triangulation

Is this graph triangulated?

CS 3710 Probabilistic graphical models

Tree decomposition of the graph

 Many tree decompositions of a graph G exist

Treewidth of the graph

• Width of the tree decomposition:

$$\max_{i \in I} |X_i| - 1$$

• Treewidth of a graph G: tw(G)= minimum width over all tree decompositions of G.

CS 3710 Probabilistic graphical models

Treewidth of the graph

- Why it matters? The decomposition affects probabilistic calculations
- Treewidth gives the best case complexity
- Caveat: finding the best tree decomposition is NP-hard

Variable elimination and tree decompositions

- Variable elimination on linear structures is easy
- Sum things out according to the tree structure
- Clique trees (or cluster graphs) introduce the elimination order

