2022-2023 学年线性代数 I (H) 期末

任课老师: 统一命卷 考试时长: 120 分钟

一、(10分)求线性方程组

$$\begin{cases} x_1 + kx_2 + x_3 = 1 \\ x_1 - x_2 + x_3 = 1 \\ kx_1 + x_2 + 2x_3 = 1 \end{cases}$$

在 k 为多少时有解, 并求出一般解.

- 二、(10 分)给定二次型 $f(x_1,x_2,x_3)=x_1^2-x_3^2+2x_1x_2+2x_2x_3$,请将其化为标准型,并求出此时的线性变换矩阵,以及该二次型的正、负惯性指数.
- 三、 $(10 \ \beta)$ 已知三阶矩阵 A 的伴随矩阵 $A^* = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$,求 A.
- 四、 (10 分) 设 $A \in \mathbf{R}^{p \times m}, B \in \mathbf{R}^{m \times n}, r(A) = r, r(B) = s, r(AB) = t.$ 令 $V = \{X \in \mathbf{R}^n \mid ABX = 0\}, W = \{Y \in \mathbf{R}^m \mid Y = BX, X \in V\}.$
 - (1) 证明 $V \in \mathbf{R}^n$ 上的子空间, $W \in \mathbf{R}^m$ 上的子空间.
 - (2) 求 $\dim V$, $\dim W$.
- 五、(10 分)设三阶矩阵 A,满足 |A-E|=|A-2E|=|A+E|=0.
 - (1) 求 A 的所有特征值.
 - (2) 求 |A+3E|.

六、(15分)

- (1) 设 A 为 n 阶矩阵,满足 r(A)=r,证明:存在可逆的矩阵 P,使得 $P^{-1}AP$ 的后 n-r 列均为 0.
- (2) 设 A 为 n 阶矩阵,满足 r(A)=1, A 主对角线上元素之和为 1,证明: $A^2=A$.
- 七、(15 分)定义 $\mathbf{R}_3[x] = \{a_2x^2 + a_1x + a_0 \mid a_0, a_1, a_2 \in \mathbf{R}\}$. 设 $\mathbf{R}_3[x]$ 对 $\mathbf{R}^{2\times 2}$ 的映射 σ 满足:

$$\sigma(p(x)) = \begin{pmatrix} p(1) - p(2) & 0\\ 0 & p(0) \end{pmatrix}$$

证明: σ 为线性映射.

- (2) 试分别写出 $\mathbf{R}_3[x]$, $\mathbf{R}^{2\times 2}$ 上的两组基 B_1, B_2 , 并求出 σ 关于这两组基的矩阵.
- (3) \bar{x} Im σ , ker σ .
- (4) 分别给出 $\mathbf{R}_3[x]$ 的一个与 $\mathrm{Im}\sigma$ 同构的子空间,和 $\mathbf{R}^{2\times 2}$ 的一个与 $\mathrm{Ker}\sigma$ 同构的子空间.
- 八、(20分)判断下列命题的真伪,若它是真命题,请给出简单的证明;若它是伪命题,给出理由或举反例将它否定.
 - (1) 若 $\alpha_1, \alpha_2, \dots, \alpha_n, \beta$ 的秩大于 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的秩, 则 $\alpha_1, \alpha_2, \dots, \alpha_n, \beta$ 线性无关;
 - (2) 设 U, V, W 为 V_0 关于数域 F 的线性空间, 若 U+V=U+W, 则 V=W;
 - (3) 任意不为 0 矩阵的二阶矩阵可以表示为若干初等矩阵的乘积;
 - (4) 若 A, B 相似或者相合,则 A, B 相抵.