EE5175: Image Signal Processing

Lab-6

DFT, Magnitude-Phase Dominance, and Rotation Property

- Perform 2D DFT on peppers.pgm using row-column decomposition. Plot the centred 2D magnitude spectrum.
- 2. Compute DFTs $F_1(k,l) = |F_1(k,l)|e^{j\phi_1(k,l)}$ and $F_2(k,l) = |F_2(k,l)|e^{j\phi_2(k,l)}$ of $I_1(\text{fourier.pgm})$ and I_2 (fourier_transform.pgm) respectively. Arrive at two new images I_3 and I_4 such that their DFTs are, respectively, $F_3(k,l) = |F_1(k,l)|e^{j\phi_2(k,l)}$ and $F_4(k,l) = |F_2(k,l)|e^{j\phi_1(k,l)}$.
- 3. Verify the rotation property of 2D DFT using peppers_small.pgm.

step 1: Compute rotated form of 2D DFT, $F(k,l) = \sum_{m} \sum_{n} f(m,n) e^{-j\frac{2\pi}{N} \underline{m}^T R \underline{k}}$, where $\underline{m} = \sum_{m} \sum_{n} f(m,n) e^{-j\frac{2\pi}{N} \underline{m}^T R \underline{k}}$

$$[m \ n]^T$$
, $\underline{k} = [k \ l]^T$, and $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

step 2: Rotate the input image f by θ and compare it with 2D IDFT of F.

Note 1: For the first two experiments, you may use built-in functions to compute 1D DFTs

Note 2: For the third experiment, all operations (computation of 2D DFT, rotation of 2D DFT, computation of 2D IDFT, and rotation of f in spatial domain) should be done such that the origin is at the center of the image.

-end-