Exemplo 1

Exemplo básico de Programação Linear

Seja uma empresa que produz quatro produtos, A, B, C e D. A fabricação de cada unidade desses produtos exige mão-de-obra, matéria-prima e processamento mecânico, gerando um dado lucro, de acordo com a Tabela 1.1:

TABELA 1.1 Dados do Exemplo 1.1

Recursos	A	В	C	D	Disponibilidade
Mão-de-obra (homens-hora/unidade)	8	3	5	6	15.000 hh
Matéria-prima (kg/unidade)	5	7	4	5	20.000 kg
Processamento mecânico (horas-máquina)	12	9	8	7	40.000 hm
Lucro (\$/unidade)	3	6	5	4	

O suprimento semanal de matéria-prima é restrito a 20.000 kg. A disponibilidade semanal de mão-de-obra é de 15.000 horas, e a quantidade de horas-máquina é de 40.000 hm. Pede-se determinar o plano de produção semanal, de forma a maximizar o lucro.

Exemplo 2

Investimentos Financeiros

Seja um investidor que dispõe de \$10.000 e várias opções de investimento. O investidor pretende maximizar seu capital ao final de um ano, levando em conta os investimentos potenciais. No investimento A, cada real aplicado hoje produz uma renda trimestral de \$0,04 e devolve o principal ao final de um ano. No investimento B, cada real aplicado hoje retorna \$1,40 ao final de um ano. O investimento C estará disponível ao início do 2º trimestre, e cada real aplicado retornará \$1,25 ao final do ano. Sabe-se que qualquer real não-investido pode ser mantido em fundos de renda fixa que remuneram o investidor em \$0,03 por trimestre. Por outro lado, o investidor deseja diversificar

e evitar concentrar suas aplicações em um único investimento. Assim, nenhuma alternativa deverá aplicar mais do que \$5.000.

Exemplo 3

Modelo de Misturas

O dono de um aviário precisa fabricar uma ração especial para as suas aves, de forma a atender diversas exigências alimentares. A produção desejada dessa ração é de 90 kg, e a mistura deve ser formada por dois ingredientes básicos: milho e farelo de arroz, que custam \$0,90 e \$0,30 por kg respectivamente. Além disso, sabe-se que a ração precisa ter pelo menos 7% de proteína e 3% de fibra na sua composição, de forma a atender às necessidades das aves.

A partir da Tabela 1.2, com a composição porcentual de fibra e proteína do milho e do farelo de arroz, pede-se formular um modelo de Programação Linear para atender às necessidades diárias a um custo mínimo.

TABELA 1.2 Composição de cada ingrediente

Ingredientes	Proteína	Fibra	
Milho	9%	2%	
Farelo de arroz	5%	6%	

Exemplo 4

Planejamento da Produção

Durante os próximos seis meses, o Artesanato Itaipava Ltda. deve atender aos seguintes compromissos de sua seção de malharia:

Jan.	4000 peças	Abr.	1000 peças
Fev.	2000 peças	Mai.	4000 peças
Mar.	5000 peças	Jun.	2000 peças

Ao final de dezembro, há 500 peças em estoque e a empresa só tem capacidade para produzir 3000 peças mensais. Entretanto, usando horas extras, a empresa pode produzir até 600 peças a mais que sua capacidade nominal.

O custo variável de produzir uma peça é de \$3 por peça, e o custo de produzir em horas extras é de \$3,40 por peça. Além disso, peças que ficam em estoque de um mês para outro provocam um custo aproximado de \$0,25 por peça.

Pede-se um modelo de Programação Linear que satisfaça a demanda, mas minimizando os custos de produção.

Exemplo 5

Processos Químicos

A empresa Petro dispõe de duas fontes de petróleo bruto, denominadas Óleo A e Óleo B, vendidos em barris (bbl), que ela pode adquirir para processamento. O óleo A custa \$28,00/bbl e o óleo B, \$22,00/bbl; as quantidades disponíveis são de 10.000 bbl/dia e 7000 bbl/dia, respectivamente.

Esses óleos podem passar por dois processos sucessivos, nos quais não há perdas em volume: primeiro uma destilação que agrupa os óleos em suas frações leves e pesadas, as quais podem ser vendidas ou processadas novamente. O segundo processo é um craqueamento que os transforma em dois produtos finais: gasolina e diesel. As Tabelas 1.3a e 1.3b indicam as proporções resultantes dos dois processos.

TABELA 1.3a % das frações por tipo de óleo

Tipo de óleo	Frações leves	Frações pesadas
Óleo A	25%	75%
Óleo B	78%	22%

TABELA 1.3b % de gasolina e diesel por fração

Tipo de fração	Gasolina	Diesel
Frações leves	80%	20%
Frações pesadas	35%	65%

Sabe-se que as frações leves podem ser vendidas a \$20/bbl e as pesadas, por \$27/bbl; a gasolina é vendida por \$35/bbl, enquanto o diesel é vendido a \$30/bbl.

Exemplo 6

Exemplo de Programação por Metas

Seja o mesmo Exemplo 1.1 examinado antes, mas no qual a empresa enfrente diversos conflitos que não podem ser expressos por uma função uniobjetivo de maximizar os lucros. Em particular, suponha três condicionantes, a saber: (i) a empresa gostaria de alcançar um lucro mínimo de valor L; (ii) ela possui o compromisso de operar com 15.000 hh, sendo penalizada pela eventual violação para mais ou para menos; e (iii) contrato de aquisição de 20.000 kg de matéria-prima deve ser respeitado sob penalidade em caso de desvios. Visto nessa ótica, o modelo se enquadra em uma situação que possui relevante aplicabilidade, a qual é conhecida como Programação por Metas.