# My title\*

## My subtitle if needed

Talia Fabregas Fatimah Yunusa Aamishi Sundeep

March 9, 2024

The 2024 U.S. Presidential Election ...

#### 1 Introduction

The 2024 U.S. Presidential Election will take place on Tuesday November 5 2024. Incumbent President Joseph R. Biden Jr. will seek a second term. Former President Donald J. Trump GOP nominee.

Delegates to secure the nomination, Nikki Haley has dropped out of GOP

You can and should cross-reference sections and sub-sections. We use R Core Team (2023) and (rohan?).

The remainder of this paper is structured as follows. Section 2 discusses the survey and post-stratification data used.

Clear gap that needs to be filled ... what is the research gap and why is this important?

- 2024 US Presidential Election
- how consequential this election is
- what is on the ballot
- women's rights
- trump's project 2025 thing

If someone's done it before not on this data set not in this context

Previous groups have looked at ...

R Core Team (2023) was usd

<sup>\*</sup>Code and data are available at: https://github.com/taliafabs/US-Election-Forecast-2024.git

### 2 Data

Our data is from ...

#### 2.1 Survey Data

Survey data is from Iyengar, Lelkes, and Westwood (2024) This section should talk about the survey data set

#### 2.1.1 Survey Data figures and tables go here

#### 2.2 Post Stratification Data

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

### 3 Model

logistic regression

binary

predicts support for trump or biden

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

#### 3.1 Model set-up

Define  $y_i$  as the number of seconds that the plane remained a loft. Then  $\beta_i$  is the wing width and  $\gamma_i$  is the wing length, both measured in millimeters.

$$y_i | \mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \alpha + \beta_i + \gamma_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\gamma \sim \text{Normal}(0, 2.5)$$
 (5)

$$\sigma \sim \text{Exponential}(1)$$
 (6)

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

#### 3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance  $\theta$ .

### 4 Results

Our results are summarized in ?@tbl-modelresults.

### 5 Discussion

#### 5.1 First discussion point

If my paper were 10 pages, then should be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

# 5.2 Second discussion point

# 5.3 Third discussion point

# 5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

# **Appendix**

# A Additional data details

# **B** Model details

### **B.1** Posterior predictive check

In **?@fig-ppcheckandposteriorvsprior-1** we implement a posterior predictive check. This shows...

In **?@fig-ppcheckandposteriorvsprior-2** we compare the posterior with the prior. This shows...

Examining how the model fits, and is affected by, the data

Figure 1: ?(caption)

### **B.2 Diagnostics**

?@fig-stanareyouokay-1 is a trace plot. It shows... This suggests...

?@fig-stanareyouokay-2 is a Rhat plot. It shows... This suggests...

Checking the convergence of the MCMC algorithm

Figure 2: ?(caption)

# References

- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- Iyengar, Shanto, Yphtach Lelkes, and Sean Westwood. 2024. America's Political Pulse. https://polarizationresearchlab.org/americas-political-pulse/.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.