



## Design Space Exploration for Compressed Deep Convolutional Neural Network on SCALE Sim

Peilin Chen, Xinyuan Fu, Hanyuan Gao 6501 Group6 2024/11/07

### > The hardware platform we use

■ Systolic CNN AccelErator Simulator (SCALE Sim)



Fig. Overview of SCALE Sim

SCALE Sim takes two files as input from the user: one is the hardware configuration, the other is the neural network topology (workload).

SCALE Sim generates two types of outputs: one is the cycle accurate traces for SRAM and DRAM, the other is the metrics like cycle counts, utilization, bandwidth requirements, total data movement, etc.

#### > What we want to do

■ Neural network quantization and hardware design space exploration

#### Software part

The CNNs we use

CNNs like LeNet-5, VGG, and ResNet are trained using FP32 or FP16 datatype.

**Quantization method** 

Weight and Activation co-quantization.

W16A16 (weight: int16, activation: int16)

W8A8

**W4A4** 

W2A2

Per-tensor, Per-channel, Group-wise.....

Object

Compress CNN as much as possible while maintaining the accuracy.

#### Hardware part

Systolic CNN AcceLErator Simulator (SCALE Sim).

The hardware we use

**Design space** 

Hardware design space exploration (DSE).

Systolic array size->Height and Width

IFMAP SRAM size

Filter/Kernel SRAM size

OFMAP SRAM size

Dataflow-> input stationary, output stationary, and weight stationary
Scale up or Scale out

. . . . . .

Explore and find the optimal hardware configurations for different CNNs.

Object

2024/11/7





# **Thanks**