Ordinary Differential Equations

Jacob Denson

October 8, 2017

Table Of Contents

1 Vector Fields on \mathbb{RP}^n

2

Chapter 1

Vector Fields on RPⁿ

On \mathbb{R}^n , local flows related to a smooth vector field v may fail to extend to global flows because solutions approach ∞ in finite time. However, often we may be able to embed \mathbb{R}^n in a compact manifold K, and extend v to a smooth vector field on K. Since K is compact, all local flows extend to global flows, and thus we can consider a global flow on \mathbb{R}^n which 'passes through ∞ ' in finite time.

For instance, recall that the space \mathbf{RP}^n is the compact quotient space of $\mathbf{R}^{n+1} - \{0\}$ by the group action of \mathbf{R}^{\times} by scaling, so that x is identified with λx for any $\lambda \neq 0$. The quotient structure gives it a natural topological structure, which can also be identified with the topology which makes the projection maps on each of the coordinate systems

$$x_i: [x] \mapsto (x^1/x^i, \dots, \widehat{x^i/x^i}, \dots, x^{n+1}/x^i)$$

defined on $U_i = \{[x] : x_i \neq 0\}$, homeomorphisms. It is a smooth manifold if we consider the x_i as diffeomorphisms.

Example. The classic example of a vector field which cannot be extended to a global flow is $v(x) = x^2$ on **R**, which has a flow

$$\varphi_t(x) = \frac{x}{1 - xt}$$

Which has a singularity at $t = x^{-1}$. Note, however, that if we write this map in projective coordinates, then we find $\varphi_t[x:y] = [x:y-tx]$. In this formulation, it is easy to see that each map φ_t can be extended uniquely to a smooth map

from \mathbf{RP}^1 to \mathbf{RP}^1 , and the group equation still holds.

$$\varphi_{t+s}[x:y] = [x:y-x(t+s)] = [x:(y-sx)-tx] = \varphi_t(\varphi_s[x:y])$$

An alternate way to see this is to let y = 1/x denote the inverse coordinate system on projective space. We then calculate that for $y \neq 0, \infty$, that

$$v(y) = x^2 \partial_x(y) = -x^2 y^2 = -\partial_y$$

and v can be uniquely extended to a smooth vector field on \mathbf{RP}^1 by defining $v(\infty) = \partial_y$, and therefore generates a global flow on \mathbf{RP}^1 because \mathbf{RP}^1 is compact. This technique is not general, however. If we consider the vector field $v(x) = x^3 \partial_x$, then we find that $v(y) = -y^{-1} \partial_y$, which cannot be extended to a smooth vector field at y = 0. This is because solutions approach infinity 'too fast' – we find the flows take the form

$$\varphi_t(y) = \sqrt{y^2 - 2t}$$

And these solutions approach y = 0 with infinite slope.

Sometimes the geometry of projective space provides an enlightening viewpoint on a particular differential equation.

Example. Consider the differential equation $\ddot{u} + \alpha u = 0$, as α ranges over **R**. This corresponds to the two dimensional first order system specified by the vector field $v(u,w) = (w, -\alpha u)$. This means that on the integral curves defined by this vector field,

$$-\alpha u du = w dw$$

so the integral curves lie on the level curves to $w^2 + \alpha u^2$. For $\alpha > 0$, this value is always positive, and defines an ellipse. Since v does not vanish on any ellipse of a positive radius, we see these ellipses must describe the integral curves. For $\alpha < 0$, the level curves of $w^2 + \alpha u^2$ describe hyperbolas not passing through the origin, so these hyperbolas are the integral curves. For $\alpha = 0$, the integral curves are easily seen to be the lines parallel to the x axis. Switching to the coordinates x = u/w, y = 1/w, we find that for $y \neq 0$,

$$\begin{split} v(x,y) &= (w\partial_u(x) - \alpha u\partial_w(x), w\partial_u(y) - \alpha u\partial_w(y)) \\ &= (1 + \alpha u^2/w^2, \alpha u/w^2) = (1 + \alpha x^2, \alpha xy) \end{split}$$

This function can be extended to a smooth vector field on the whole of \mathbb{RP}^2 by defining $v(x,0) = (1 + \alpha x^2, 0)$.

Bibliography