计算机组成原理

PRINCIPLES OF COMPUTER ORGANIZATION

第3次课: 3.2带符号的二进制数据的表示方法

杜国栋

信息科学与工程学院计算机科学与工程系gddu@ysu.edu.cn

计算机中数据的进制表示与中国传统文化

两弹一星的大数据与小算盘

课程目标

- ▶ 掌握将真值表示为原码、反码、补码和移码形式的机器数,或反之;
- ▶ 熟悉真值和机器数的概念;
- > 了解进位计数制,能够进行不同数制之间的转换。

下列数中最大的数是

 $(10010101)_2$

 $(227)_8$

 $(96)_{16}$

 $(143)_5$

下列数中最大的数是

 $(10010101)_2$

 $(227)_8$

 $(96)_{16}$

 $(143)_5$

下列数中最小的数是

 $(101001)_2$

 $(52)_8$

 $(00101001)_{BCD}$

 $(233)_{16}$

下列数中最小的数是

 $(101001)_2$

 $(52)_8$

 $(00101001)_{BCD}$

 $(233)_{16}$

预备知识:数的相关概念

- ▶ 真值: ±12.5、 ±83、 ±0.256;
- ▶ 机器数:数字化(0或1)的真值,可由 $x_n x_{n-1} ... x_1 x_0$ 表示;
- ▶ 机器字长: 计算机一次(1条指令)所能处理的最大数据长度;
- ▶ 机器数的编码:原码、反码、补码、移码;
- ▶ 进制的表示: 二进制、八进制、十进制、十六进制

 $(00101010.1)_{2/8/10/16}$ 或 00101010.1B/Q/D/H

预备知识: 进制转换

- ▶ 任意进制转换为十进制:
- ▶ 二进制、八进制、十六进制相互转换

$$(1 \ 101.010 \ 1)_2 \rightarrow ($$
 $)_8$
 $(1 \ 1101.0101)_2 \rightarrow ($ $)_{16}$
 $(15.24)_8 \rightarrow ($ $)_{16}$

$$(1 \ 101.010 \ 1)_2 \rightarrow (15.24)_8$$

 $(1 \ 1101.0101)_2 \rightarrow (1D.5)_{16}$
 $(15.24)_8 \rightarrow (D.5)_{16}$

预备知识: 进制转换

- ▶ 任意进制转换为十进制:
- ▶ 二进制、八进制、十六进制相互转换
- ▶ 十进制转换为任意进制

$$(725.9325)_{10} = ()_2 = ()_8 = ()_{16}$$

 $(725.9325)10 = (1011010101.1110)_2 = (1325.7)_8 = (2D5.E)_{16}$

预备知识: 进制转换

- ▶ 任意进制转换为十进制:
- ▶ 二进制、八进制、十六进制相互转换
- > 十进制转换为任意进制
- ➤ BCD码 (Binary-Coded Decimal, 用二进制表示十进制) -8421码 (有权)

```
0000 0 0001 1 0010 2
0011 3 0100 4 0101 5
0110 6 0111 7 1000 8 1001 9
1010~1111之间的6个编码被抛弃;
```


预备知识: 进制转换

➤ BCD码 (Binary-Coded Decimal, 用二进制表示十进制) -8421码 (有权)

① 如果任何两个对应位BCD数相加的结果向高一位无 进位,此时可能有两种情况: 若得到的结果小于或等 于9,则该位不需修正(x≤9);若得到的结果大于9且小 于16时,该位进行加6修正(9<x<16)。

② 如果任何两个对应位BCD数相加的结果向高一位有 进位时(即结果大于或等于16),该位进行加6修正 $(x \ge 16)_{\circ}$

44+27=71		
0100	0100	
+0010	0111	
0110	1011	
+	0110	
0110 (1)0001		
0111	0001	

99+99=198			
1001	1001		
+1001	1001		
(+1) 0011	0010		
+ 0110	0110		
(+1) 1001	1000		
100+98	8		

> 真值与机器数

真值:按一般书写形式表示的原值,在计算机技术中称为真值。

机器数: 机器中使用的连同数符一起数码化的数就称为机器数。

正号和负号同样用数码0或1表示,约定数的最高位为符号位。

▶ 原码的表示法

有符号定点整数 $x_n x_{n-1} \cdots x_1 x_0$

$$[x]_{\text{fi}} = \begin{cases} 0, x & 0 \le x < 2^n \\ 2^n - x & -2^n < x \le 0 \end{cases}$$

其中, x 为真值 (带 ± 号), n 为该数数值位数;

例:

$$x=+1110$$
 时, $[x]_{\bar{m}}=0,1110$

$$x=-1110 \ \text{lt}, \ [x]_{\text{fi}}=2^4-(-1110)=10000+1110=1,1110$$

有符号定点纯小数 $x_n \bullet x_{n-1} \cdots x_1 x_0$

$$[x]_{\text{fi}} = \begin{cases} x & 0 \le x < 1 \\ 1 - x & -1 < x \le 0 \end{cases}$$

其中, x 为真值 (带 ± 号), n 为该数数值位数; 例:

$$x=+0.1101$$
 时, $[x]_{\bar{p}}=0.1101$

$$x=-0.1101$$
 时, $[x]_{\text{原}}=1$ - $(-0.1101)=1.0000+0.1101=1.1101$

▶ 补码的表示法

即逆时针拨 2 格, 顺时针方向拨 10 格。 我们称在模 12 的情况下, -2 与 10 互为补数。

 $-2 \equiv 10 \qquad \text{(mod 12)}$

模: 也称为溢出量, 例如 16 进制(4位二进制表示)时, 16(10000)就为 溢出量。

若机器数 (字长) 格式 $x_n x_{n-1} \cdots x_1 x_0$, 其溢出量为 $2^{(n+1)}$

在此基础上,存在负数转换为其补数的可能,即负数+2(n+1)

▶ 补码的表示法

有符号定点整数 $x_n x_{n-1} \cdots x_1 x_0$

$$[x]_{\hat{\pi}^{h}} = \begin{cases} 0, x & 0 \le x < 2^{n} \\ 2^{n+1} + x & -2^{n} \le x < 0 \end{cases}$$
 (mod 2^{n+1})

其中, x 为真值 (带 ± 号), n 为该数数值位数;

例:

$$x=+1110 \ \text{Pt}, \ [x]_{*} = 0,1110$$

$$x=-1110 \text{ pt}, \quad [x]_{*} = 2^5 + (-1110) = 100000 - 1110 = 1,0010$$

有符号定点纯小数 $x_n \bullet x_{n-1} \cdots x_1 x_0$

$$[x]_{\hat{\uparrow}\uparrow} = \begin{cases} x & 0 \le x < 1 \\ 2+x & -1 \le x < 0 \end{cases} \pmod{2}$$

其中, x 为真值 (带 ± 号), n 为该数数值位数; 例:

$$x=+0.1101$$
 时, $[x]_{*}=0.1101$

$$x=-0.1101$$
 时, $[x]_{\dagger}=2+(-0.1101)=10.0000-0.1101=1.0011$

▶ 补码的表示法

当 x=0 时, $[+0.0000]_{\rm T} = 0.0000$ $[-0.0000]_{\frac{1}{2}} = 2 + (-0.0000) = 10.0000 = 0.0000$ (mod 2)由此可见, $[+0]_{\stackrel{}{\scriptscriptstyle{h}}}=[-0]_{\stackrel{}{\scriptscriptstyle{h}}}$,即补码中零的形式唯一。

$$[-1]_{\stackrel{?}{\Rightarrow}} = 2 + (-1) = 10.0000 - 1.0000 = 1.0000$$

求补码 1.0001 的真值?
 $x = [x]_{\stackrel{?}{\Rightarrow}} - 2 = 1.0001 - 10.0000 = -0.1111$


```
例: [x]补=1000, 求x?
x=-8 (111)->1000
例: [x]补=010011011, 求x?
x=155 (10011011) 128+16+8+2+1
例: [x]补=110011011, 求x?
x=-101 01100100->01100101 64+32+4+1=101
```

若[X]补=10000H,则X=???

▶ 反码的表示法

有符号定点整数 $x_n x_{n-1} \cdots x_1 x_0$

$$[x]_{\mathbb{R}} = \begin{cases} 0, x & 0 \le x < 2^n \\ (2^{n+1} - 1) + x & -2^n < x \le 0 \end{cases}$$
 (mod 2ⁿ⁺¹-1)

其中, x 为真值 (带 ± 号), n 为该数数值位数;

例:

$$x=+1110$$
 时, $[x]_{5}=0,1110$

$$x=-1110$$
 时, $[x]_{5}=2^5+(-1110)=100000-0001-1110=1,0001$

有符号定点纯小数 $x_n \bullet x_{n-1} \cdots x_1 x_0$

$$[x]_{\mathbb{R}} = \begin{cases} x & 0 \le x < 1 \\ (2 - 2^{-n}) + x & -1 < x \le 0 \end{cases}$$
 (mod 2-2⁻ⁿ)

其中, x 为真值 (带 ± 号), n 为该数数值位数;

$$x=+0.1101$$
 时, $[x]_{55}=0.1101$

$$x=-0.1101$$
) \uparrow , $[x]_{\text{1}}=2-0.0001+(-0.1101)=10.0000-0.1101=1.0010$

0≤[*x*]₈≤**255**

带符号数的表示(数的机器码表示)

▶ 移码的表示法

-128<*x*≤127

当真值用补码表示时, 真值和符号位一起编码, 与习惯上的表示不同, 人们 很难从补码形式上直接判断其真值的大小,例如

x=21 时,对应的二进制为+10101,则[x]补=0,10101

x=-21 时,对应的二进制为-10101,则[x]补=1,01011

从人们习惯上看,1,01011>0,10101,但事实正好相反,所以为了解决此类问 题(抑或浮点数阶码问题),引入移码的概念。

$$[x]_{x} = 2^n + x$$
 $-2^n \le x < 2^n$

▶ 移码的表示法

移码与补码之间的关系:

由移码和补码的定义可得:

$$[x]_{8} = \begin{cases} [x]_{\frac{1}{2^{n}}} + 2^{n} & 0 \le x < 2^{n} \\ [x]_{\frac{1}{2^{n}}} - 2^{n} & -2^{n} \le x < 0 \end{cases}$$

由此可得, x 真值对应的移码等于 x 真值对应的补码的符号位取反。

▶ 移码的表示法

真值 x (n=5)	$[x]_{\not = h}$	[x] _移	[x] _移 对应的 十进制整数
-100000	100000	000000	0
- 11111	$1 \; 0 \; 0 \; 0 \; 0 \; 1$	000001	1
- 11110	$1 \; 0 \; 0 \; 0 \; 1 \; 0$	000010	2
:	:	:	:
- 00001	111111	011111	31
± 00000	000000	100000	32
+ 00001	$0\ 0\ 0\ 0\ 0\ 1$	100001	33
+ 00010	000010	100010	34
:		•	:
+ 11110	011110	111110	62
+ 11111	011111	111111	63

码值为80H

若为真值0,则为[填空1]码;若为真值-127,则为[填空2]码;

若表示-128,则为[填空3]码;若表示-0,则为[填空4]码;

码值为80H 若为真值0,则为()码;若为真值-127,则为()码; 若表示-128,则为()码;若表示-0,则为()码;

80H 1000 0000 移码 反码 补码原码

码值为FFH

若为真值127,则为[填空1]码;若为真值-127,则为[填空2]码;

若表示-1,则为[填空3]码;若表示-0,则为[填空4]码;

码值为FFH 若为真值127,则为()码;若为真值-127,则为()码; 若表示-1,则为()码;若表示-0,则为()码;

FFH 1111 1111 移码原码 补码反码

若小数点约定在8位二进制数的最右端(整数), 试分 别写出下列各种情况下的W、X、Y和Z的真值。

(1)
$$[W]_{h} = [X]_{g} = [Y]_{g} = [Z]_{8} = 00H$$

(2)
$$[W]_{h} = [X]_{g} = [Y]_{g} = [Z]_{8} = 80H$$

(3)
$$[W]_{i} = [X]_{i} = [Y]_{i} = [Z]_{i} = FFH$$

若小数点约定在8位二进制数的最右端(整数),试分别写出下列各种情况下的W、X、Y和Z的真值。

(1)
$$X=W=Y=0$$
 $Z=-128$

(2)
$$X=-0 Y=-127 W=-128 Z=0$$

(3)
$$X=-127 Y=-0 W=-1 Z=127$$

字长为8位, 机器数的移码为27、0和255的真值分别为:

字长为8位,机器数的移码为27、0和255的真值分别为:

111	100	011
-127	000	+127
100 1000 0001	111 000	011
-128 -127	-1 0	+127
100	111	011
-127	000 0	+127
000 0000 0001	011 100	111
-128 -127	-1 0	+127 移行

已知定点小数x的反码为 $1.x_1x_2x_3$,且x<-0.75,则必须有()

A.
$$x_1=0$$
, $x_2=0$, $x_3=1$

B.
$$x_1 = 1$$

C.
$$x_1=0$$
,且 x_2 , x_3 不全为0

D.
$$x_1=0$$
, $x_2=0$, $x_3=0$

已知定点小数x的反码为 $1.x_1x_2x_3$,且x<-0.75,则必须有()

A.
$$x_1=0$$
, $x_2=0$, $x_3=1$

A.
$$x_1=0$$
, $x_2=0$, $x_3=1 == (x)_{g} = 1.001 x=-0.75$

B.
$$x_1 = 1$$

$$==$$
 $[x]_{\cancel{5}} = 1.1x_2x_3 \quad x < -0.5$

C.
$$x_1=0$$
, 且 x_2 , x_3 不全为0

D.
$$x_1=0$$
, $x_2=0$, $x_3=0$

D.
$$x_1=0$$
, $x_2=0$, $x_3=0$ == \Rightarrow [x]_x=1.000 x=-0.875

总结

111	100	011
-127 (-2 ⁷ -1)	000	+127
100	0 111 000	011
-128 (-2 ⁷)	-1 0	+127 补码
100	111	011
-127	000 0	+127
000	011 100	111
-128	-1 0	 移码 +127

课后习题: P67 3.4 3.5 3.6 3.12

有问题欢迎随时跟我讨论

办公地点: 西校区信息馆423

邮 箱: gddu@ysu.edu.cn