séance du 17/11/20

Ex6:

. Pour f8

for n'est pas injective: En effet, si on choisir n=2 et n'=-2, on a:

 $n, n' \in \mathbb{Z}$ er $n \neq n'$ er $f_8(n) = f_8(n')$

for m'est pas surjective: choisissons m=2. Alors:

men er frez, fa(n) = m

(car $\forall n \in \mathbb{Z}$, $n^2 \neq 2$: l'entre 2 n'est le corre)

Donc: 3 mell, Vne Z, f, (n) = m

for n'est pas bijective: can for n'est pas (par exemple) injective.

· Pour fg (uneisation Hil (iii)

fg estingettive: En effet, soient xi, x' & IR.

- (H) supposons que fa(x) = fg(x)
- (D) Alors $e^{x} = e^{x'}$. Donc $ln(e^{x}) = ln(e^{x'})$; donc:
- (C) x=x

La m'est pas surjective: Choisissons y=0. Alors:

 $y \in IR \text{ ev } \forall x \in IR, f_g(x) \neq y$ (can $e^x \neq 0$ purique $e^x \neq 0$) Il existe donc yell n'ayant pas d'antécédent.

fg n'est pas byedire : can f n'est pas sujecture

· Pour fin

les méthode:

figeor injective; socient 20, 2/6 12*

- (H) Supposons que f₁₄(x) = f₁₄(x')
- Done $\frac{1}{x} = \frac{1}{x'}$ if done;
- (C) x = x'

De plus $(f_{14})^{-1}$: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ $2 \mapsto f_{14}(x) = 1/x$

Pour
$$f_{15}$$
 $\left(f_{15}: \left[1 + \times C \rightarrow \mathbb{R}^{+} \right] \times \left[1 + \times C \rightarrow \mathbb{R}^{+}$

fis est injective:

Soverer x, x'e [11+00[

- (A) Suprosono que fix (2) = fix (2')
- (1) Alons $x^2 x = x'^2 x$; donc $x^2 = x'^2$; donc x=x' ou x=-x'; or $x,x'\in\{1,+\infty\}$, donc $x\neq -x'$ (car x>0 er x'>0)
- (c) Done x = n'

fis est surjective:

Sour y ∈ R+ ; pooms x= √1+y (qui est bien défini car y>0)

Alons $x \in [1,+\infty)$ (pursque $y \ge 0$) donc $1+y \ge 1$, donc $1+y \ge 1$) $f_{15}(x) = x^2 - 1 = (\sqrt{1+y})^2 - 1 = (\sqrt{1+y}) - 1 = y$

$$\int_{15}^{2} (x) = x^{2} - 1 = (\sqrt{1+y})^{2} - 1 = (\sqrt{1+y})^{-1} = y$$

Donc: Yyert, Fxe[11toc, fis(x)=4

fis est bijective: can fis est injective et surjective.

Autre methode:

Posons $g: \mathbb{R}_+ \longrightarrow [1+1+1]$ $x \longmapsto g(x) = \sqrt{1+x}$

Alors g est une application. De plus:

· gofis = Id can gofis: [11+xc -> [1+xc >c - (gof15)(2)= g(f15(2)) = g (x2-1) = VX+(22-X) $=\sqrt{2}^2$ = (2) $= \pi \left((\cos x \ge 0) \right)$

er

•
$$f_{15} \circ g = Id_{R+}$$
 can $f_{15} \circ g : R+ \rightarrow R+$
 $x \mapsto (f_{15} \circ g)(x) = f_{15}(g(x))$
 $= f_{15}(\sqrt{1+x})$
 $= (I+x)^2 - 1$
 $= (I+x) - X$

Je existe donc une application g: Rt ->[1,+x)(telle que go fis = Id [1,+x)(et fis og = Id R+. Donc fis est byective, donc fis est myective et surjective.

De plus
$$f_{15}^{-1}: \mathbb{R}_+ \longrightarrow [1+\infty]$$

$$\chi \longmapsto f_{15}^{-1}(\chi) = \sqrt{1+\chi} \qquad (Dapres \\ pape)$$

Exercice 8:

4)
$$f(12) = 1+2=3$$
, $f(831) = 8+3+1=12$; $f(709) = 7+0+9=16$, $f(11) = 1+1=2$, $f(111) = 1+1+1=6$

2) f n'est pas injective:

Choisissons
$$n = 15$$
 er $n' = 52$; alors: $(n,n') \in \mathbb{N}^2$, $n \neq n'$ er $f(n) = f(n')$

fer surective: Montrous que tout me IN, admet au moins un antécédent ne IV.

- . Si m=0: alors 0 est un antécédont qui est 0 (con f(0)=0)
- · SIMEND : Proons n= 11----1

 m fois le chiffe 1

3) Sour g:
$$N \longrightarrow N$$
 $m \longrightarrow 0$ sim=0

 $21....1$ sim $\neq 0$
 m fois le chiftes

Alons:

fog:
$$N \longrightarrow N$$
 $m \longrightarrow (fog)(m) = f(g(m)) = f(J1...1) = J+1+...+1 = m Sim \neq 0$

$$f(g(m)) = f(g(m)) = f(J1...1) = J+1+...+1 = m Sim \neq 0$$

$$f(g(m)) = f(g(m)) = f(J1...1) = J+1+...+1 = m Sim \neq 0$$

Donc fog = Id N

on a: gof + IdN. En effet (gof) (4) = g(f(4)) = g(4) = 1111

Donc (gof)(4) +4, ce qui prouve que gof + Id,N

L'ene methodes supposons que l'on aut gof = IdN. Dans ce cas on aurait house q ta gof = IdN et for = IdN. Donc il byective (ex f'=g). Alosside (can finish pas byective au non injective)

Ex 12;

Pour f

 $f: \mathbb{R} \longrightarrow \mathbb{R}$ byedie $\chi \longmapsto f(\chi) = \chi + 1$ $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ non byedie $\chi \longmapsto f(\chi) = \chi + 1$

- est une application; can il y a un ensemble de dépaut (IN), un ensemble d'arrivée (IN), et pour chaque entrier neil, not set bien défini et note en
- · L'est injective: can si n, n'e IN et n+x=n'+x alors n=n'
- . fn'est pas sujective : can On'a pas d'antecedent.(puisque: $\forall n \in \mathbb{N}$, f(n) = n + 1 > 1, $donc f(n) \neq 0$)
- · f n'est pas byective; ca f n'est pas surjective.

f n'admer donc pas d'application réciproque (car f n'est pas bijective)

- g est une application; car il y a un ensemble de départ (IN), un ensemble d'arrivée (IN) et pour chaque entrer n, g(n) est bien défini et $g(n) \in \mathbb{N}$ (En effet, si n'est pair, n'éauti 2b, donc $g(n) = \frac{n}{2} = k$ est bien défini et $g(n) = k \in \mathbb{N}$; et si n'est impair, g(n) = n est bien défini et $g(n) = n \in \mathbb{N}$)
 - g n'est pas injective: car g(6) = g(3) er $6 \neq 3$
 - . g est surjective: En effet, soit $m \in \mathbb{N}$, poons n = lm.

 Alors $n \in \mathbb{N}$ et $g(n) = \frac{n}{2} = \frac{lm}{2} = m$ Con $n \in \mathbb{N}$ ever $g(n) = \frac{n}{2} = \frac{lm}{2} = m$

Donc tout me in admer un antécédent neil.

· g n'est pas bijective : can q n'est pas injective.

g n'a pas d'application réciproque (can q n'est pas bijective.)

Pour A

- Prestrume application: Il y a un ensemble de départ et un ensemble d'arrivée; d'autre part, chaque $n \in \mathbb{N}$ admet une unique image $h(n) \in \mathbb{N}$ (En effet: si n est pair, $h(n) = n \in \mathbb{N}$ et si n est impair alors $h(n) = n 1 \in \mathbb{N}$ (puisque si n'est impair alors n > 1 et donc $n 1 \in \mathbb{N}$)
 - In m'est pas injective: can $f_1(4) = f_1(5)$ et $4 \neq 5$

R m'est pas surjective; can 1 m'a pas d'antécédent En effet, si n e IN est pain; $h(n) = n \neq 1$ (can nest pain est 1 est simpain :) n = 1; $h(n) = h(1) = 1 - 1 = 0 \neq 1$ $\begin{cases} n \neq 1 \\ n \neq 3 \end{cases}$; $h(n) = n - 1 \geq 2$ $\begin{cases} douch(n) \neq 1 \end{cases}$

Donc: Ynell, R(n) #1

. A n'est pas bijective con A n'est pas injective

h n'admer pas d'application récuproque con finéed pas byective

FIN

E× 10 11 13 11 14