U.D.L Sidi Bel Abbès Module : Mathématiques Financières Faculté des Sciences Exactes Responsable : Malika HAMMAD Département : Probabilités-Statistique Mardi 22/01/2019 Master 2 : Statistique et ses Applications Durée : 1h30mn

Examen de moyenne durée

Problème. (Modèle de Black et Scholes).

On considère un marché financier \mathcal{M} à temps continu et de base stochastique $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$, comportant un actif sans risque de prix S_t^0 à l'instant t et de taux d'intérêt r (r constante positive) et de prix initial $S_0^0 = 1$ et un actif risqué de prix S_t de drift μ et de coefficient de volatilité σ (μ et σ deux constante) et de prix initial $S_0 = x_0 > 0$. W_t est un mouvement Browmien standard modélisant le prix de l'action S_t . Ici \mathcal{F}_t est la filtration naturelle de W_t .

- 1) Décrire le modèle qui régit l'évolution des cours S_t^0 et S_t .
- 2) Déterminer les solutions $(S_t^0)_{t>0}$ et $(S_t)_{t>0}$ de ces équations différentielles.

On considère maintenant un portefeuille de valeur V_t à l'instant t, de stratégie $(\phi_t)_{t\in[0,T]} = ((H_t^0, H_t))$, à valeurs dans \mathbb{R}^2 , \mathcal{F}_t -adapté, où H_t^0 et H_t sont les quantités d'actifs sans risque et d'actif risqué respectivement détenues en portefeuille à l'instant t.

- 3) Préciser la valeur du portefeuille V_t à l'instant t.
- 4) Écrire la condition d'autofinancement de la stratégie $(\phi_t)_t$.
- 5) Quelle condition doit-on imposé sur cette égalité pour qu'elle ait un sens.

Nous noterons $\widetilde{S}_t = e^{-rt} \cdot S_t$ le cours actualisé de l'actif risqué.

- 6) Démontrer en utilisant la formule d'Itô de différenciation du produit que $d\widetilde{V}_t = H_t \cdot d\widetilde{S}_t$.
- 7) Montrer en utilisant le théorème de Girsanov qu'il existe une probabilité \mathbb{P}^* équivalente à la probabilité initiale \mathbb{P} , sous laquelle \widetilde{S}_t est une martingale.
- 8) Quelle condition doit satisfaire la stratégie ϕ pour qu'elle soit admissible.

Soit h une variable aléatoire, positive, \mathcal{F}_T -mesurable et de carré intégrable sous la probabilité \mathbb{P}^* et telle que $V_T = h$.

9) Démontrer que $\forall t \in [0, T]$ la valeur du porte feuille simulant est donnée par : $V_t = \mathbb{E}^*(e^{-r(T-t)}h|\mathcal{F}_t)$.