(Partial Differential Equations)

(Separation of variable Method)

	1	heat				
12.	go =	2 00	+ U	-		
p.istance	dx	9£-	ine single	devivative	W.Y.t	21-633
(length		-> single	derivativ	e with . Y. t	"x"	

Solution:

$$\frac{\partial x}{\partial 0} = \frac{\partial t}{\partial 0} + 0$$

U(x,t) = X(x).T(t)	$\ln x - x = 2 \ln$	T
$\frac{\partial y}{\partial x} = \chi'(x) \cdot T(t)$	K-method	
$\partial u/\partial t = X(x) \cdot T'(t)$	Let Both sides	= "K''
7 Ot	lnx-x=k	28nT=K
Put values in equation	lnx = K+x	QnT = K/2
<u> </u>	elnx = ek+x	$e^{\ln T} = e^{k/2}$
dx dt	$X = e^{k+x}$	T= e 42
X'(x),T(t) = 2(x(x),T'(t)) + X(x).T(t)	$x = e^k \cdot e^x$	
X'T = 2XT' + XT	x = kex	
x'T-xT = 2XT'	As	
(X'-X)T = 2XT'	U(x,t) = X(().T(t)
$\frac{X'-X}{X} = 2 \frac{T'}{T}$	$U(x,t) = ke^{x}$	
X		
$\frac{X'-X=2T'}{X}$		
x x T		
$\frac{\times'}{\times} - 1 = 2 \frac{\top'}{\top}$		
× T		- 1
$\int \underline{X'} - \int I = 2 \int \underline{T'}$		
XJ		
lnx - x = 2 lnT		HEDO
		PREMIUM

Difference 1	2/	Heat	De	Wave	Eq	juation

Wave Equ	ation
_tive) speed of wave {	wave function S describes the displacement
of wave propagation. $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial x^2}$	or amplitude of a wave
∂t^2	dime and space.
/ Stime	
double derivative w.r.t. t'	[space/spatial/Distance/Length]
(fime)	
double des	rivative wirt. "t"
second	(sportial)

HERO.

Heat Equation

$$\frac{\partial u}{\partial t} = c^2 \cdot \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial u}{\partial t} = X(x) \cdot T'(t) \qquad \text{ first derivative } w.r.t. "t"$$

$$\frac{\partial u}{\partial t} = X'(x) \cdot T(t)$$

$$\frac{\partial x}{\partial t} = X''(x) \cdot T(t) \qquad \text{ [second derivative } w.r.t. "x"]$$

Put values in equation

$$\frac{\partial u}{\partial t} = c^2 \cdot \frac{\partial^2 u}{\partial x^2}$$

$\times(x).T'(t) = c^{2}[\times''(x).T(t)]$	T'(t) = K $T(t)$
$\frac{T'}{T} = \frac{c^2 X''}{X}$	T(f)
, T ×	$\int \frac{T'}{dt} dt = \int K dt$
Let both sides = "k"	JT
$c^2X'' = K & T' = K$	(nitl = kt
× T	$e^{\ln(T)} = e^{\kappa t}$
K-Method	$e^{\ln(T)} = e^{\kappa t}$ $T_{(t)} = e^{\kappa t}$
$C^2 \underline{X''} = K$	
$\frac{C^2 \times'' = K}{\times C^2 \times'' = K \times}$	$U(x,t) = \chi(x).T(t)$
$c^2x''-Kx=0$	$U(x,t) = \left(c_1 e^{\sqrt{\lambda} x} + c_2 e^{-\sqrt{\lambda}}\right) e^{kt}$
$X'' - \frac{K}{c^2} X = 0$	
C ²	
$\left(D^2 - \lambda\right] \times = 0$	
$D^2 - \lambda = 0$	
$D = \pm \sqrt{\lambda}$	
$D = \pm \sqrt{\lambda}$ $X(x) = C_1 e^{\sqrt{\lambda} x} + C_2 \bar{e}^{\sqrt{\lambda} x}$	
7	

Wave	Eq	vation

	50	econd.	derivative	w.r.t	"t"	
second derivative w.r.t "x"	3	econd	derivative	w.r.t	"x"	

$$\frac{\partial^2 U}{\partial t^2} = c^2 \cdot \frac{\partial^2 U}{\partial x^2}$$

$$U(x,t) = X(x).T(t)$$

$\partial U = X(x) \cdot T'(t)$	$\frac{\partial U}{\partial t} = X'(x) \cdot T(t)$
$\partial t \partial^2 u = x(x) \cdot T''(t)$	$\frac{\partial x}{\partial^2 u} = X''(x).T_{(t)}$
dt2	9x2

Put values in equation

$$\frac{\partial^2 U}{\partial t^2} = c^2 \cdot \frac{\partial^2 U}{\partial x^2}$$

$X(x).T'(t) = c^2(X'(x).T(t))$	
$T'' = c^2 \times''$	T(4) =
TX	T(+)
4/ 22	,,

$$\frac{c^2 X''}{X} = K & \frac{T''}{X} = K$$
 $T'' - KT = 0$
 $(D^2 - K)T = 0$

$$K$$
-method $p^2-k=0$

$$C^2X''-K$$

$$Q^2=K$$

$$X D = \pm \sqrt{K}$$

$$C^2X'' = KX T(\pm) = C_3 e^{\sqrt{K}t} + C_4 e^{-\sqrt{K}t}$$

$$\frac{C^2 \times '' = K \times = 0}{U(\times_2 t) = \times (\times) \cdot T(t)}$$

$$(D_1-y)X=0$$

$$D_3 - y = 0$$

$$D^2 = \lambda$$

	V		
X (X)	= C,	e TXX	e-TAX

HERO PREMIUM