

Robótica Industrial

Mestrado Integrado em Engenharia Mecânica Mestrado em Engenharia de Automação Industrial

Matriz de Denavit-Hartenberg:

Elo	θ	α	l	d
1	$ heta_1$	0	L_1	0
2	$ heta_2$	0	L_2	0

Cinemática inversa do manipulador RR planar:

$$\theta_2 = \pm \cos^{-1} \left(\frac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1 L_2} \right)$$

 θ_2 tem uma redundância: duas soluções

$$\theta_1 = \tan^{-1} \left(\frac{y(L_1 + L_2 \cos(\theta_2)) - x(L_2 \sin(\theta_2))}{x(L_1 + L_2 \cos(\theta_2)) + y(L_2 \sin(\theta_2))} \right)$$

Jacobiano do manipulador RR planar:

$$\boldsymbol{J}^{-1} = \frac{1}{L_1 S_2} \begin{bmatrix} C_{12} & S_{12} \\ -L_1 C_1 - L_2 C_{12} & -L_1 S_1 - L_2 S_{12} \\ L_2 & L_2 \end{bmatrix}$$

Simulação

