Pontificia Universidad Católica del Perú Especialidad de Finanzas

25 de octubre de 2024

Práctica Dirigida 6 FIN 203

Profesor: José Gallardo

Jefes de práctica: Marcelo Gallardo y Karen Montoya

Ejercicio 1. Considere el siguiente juego

	L	С	R
T	(2, 0)	(1, 1)	(4, 2)
M	(3, 4)	(1, 2)	(2, 3)
В	(1, 3)	(0, 2)	(3, 0)

Determine las estrategias que sobreviven al proceso iterativo de eliminación y los posibles equilibrios de Nash.

Ejercicio 2. Efectué el mismo análisis del Ejercicio 1 considerando

	Izquierda	Centro	Derecha
Arriba	(1, 0)	(1, 2)	(0, 1)
Abajo	(0, 3)	(0, 1)	(2, 0)

Ejercicio 3. ¿Es siempre posible aplicar el procedimiento de eliminiación de estrategias dominadas?

Ejercicio 4. El problema de los comunes. Considere n granjeros en una villa. Cada verano, los granjeros llevan su ganado a pastar. Denotemos por g_i el número de animales que posee el granjero i. Así, el número total de animales es $G = \sum_{1 \le i \le n} g_i$. El costo de tener un animal es c y no depende de cuántos animales el granjero ya tenga. El valor de criar un animal cuando hay G animales pastando es $v(G)^1$ Dado que los animales necesita un mínimo de comida, existe un número máximo de animales que pueden coexistir: $G_{\text{máx}}$. Así, v(G) > 0 para $G < G_{\text{máx}}$ y v(G) = 0 si $G \ge G_{\text{máx}}$. Además, como los animales compiten por comida, debemos tener v'(G) < 0 para $G < G_{\text{máx}}$ y v''(G) < 0 (agregar un animal al inicio genera poco impacto en los demás,

¹Depende de cuánto come.

pero conforme hay más animales, agregar uno tiene un impacto mayor negativo en el resto). Durante la primavera, los granjeros deciden cuántos animales adquirir. Por simplicidad, asumimos que este número es perfectamente divisible.

- Determine el espacio de estrategias para cada agente.
- Demuestre que en un equilibrio de Nash,

$$v(G^*) + \frac{1}{n}G^*v'(G^*) - c = 0.$$

• Analice si la solución del equilibrio de Nash difiere con lo socialmente óptimo.

Ejercicio 5. Suponga que en un oligopolio de Cournot hay n firmas. Sea q_i la cantidad producida por la firma i y $Q = \sum_{i=1}^n q_i$. Considere la siguiente función inversa de demanda P(Q) = a - Q (para Q < a, 0 caso contrario). Suponga además que $C(q_i) = cq_i$ donde 0 < c < a. Determine (el/un) equilibrio de Nash y analice qué sucede cuando $n \to \infty$.

Ejercicio 6. Considere un duopolio de Cournot donde la función inversa de demanda es P(Q) = a - Q y considere esta vez que las firmas tienen costos marginales distintos: c_1, c_2 . Encuentre el equilibrio de Nash si $0 < c_i < a/2$. Analice qué sucede si $c_1 < c_2 < a$ pero $2c_2 > a + c_1$.

Ejercicio 7. Encuentre el equilibrio con estrategias mixtas de Nash para el siguiente juego en forma normal:

	L	R
T	(2, 1)	(0, 2)
В	(1, 2)	(3, 0)

Ejercicio 8. Dos firmas tienen una única vacante. Las firmas ofrecen salarios distintos w_1, w_2 tales que $w_1/2 < w_2 < 2w_1$. Imagine que hay dos trabajadores y cada uno puede postular a solo una firma. Esto es, si aplican a diferentes firmas, reciben el salario completo. Si aplican a la misma firma, la firma escoge uno al azar. Encuentre el/los equilibrios de Nash de este juego.

Sea q la probabilidad de que el Jugador 2 aplique a la Empresa 1 y (1-q) la probabilidad de que aplique a la Empresa 2. Análogamente, p es la probabilidad de que el Jugador 1 aplique a la Empresa 1 y (1-p) la probabilidad de que aplique a la Empresa 2.

	Empresa 1	Empresa 2
Empresa 1	$\frac{1}{2}w_1, \frac{1}{2}w_1$	w_1, w_2
Empresa 2	w_2, w_1	$\frac{1}{2}w_2, \frac{1}{2}w_2$

Ejercicio 9. Provea un juego donde no existe un equilibrio de Nash con estrategias puras. ¿Y si son mixtas?