SC310005 Artificial Intelligence

Lecture 7: Regression

teerapong.pa@chula.ac.th

Reference

- https://www.linkedin.com/pulse/understanding-linear-regression-machine-lear-ning-tool-jadhav
- https://medium.com/@rndayala/linear-regression-a00514bc45b0
- https://medium.com/@polanitzer/the-minimum-mean-absolute-error-mae-chall enge-928dc081f031
- https://www.investopedia.com/terms/p/positive-correlation.asp
- https://www.linkedin.com/pulse/correlation-vs-causality-krishnakumar-ramanat
 han

Understanding Linear Regression in Machine Learning: A Fundamental Tool for Predictive Modeling

Simple Linear Regression

Multiple Linear Regression

Linear Regression (Equation)

size (feet ²) (x)	$\mathbf{price}\;(\$)\;(y)$
815	165,000
1510	310,000
2100	410,000

Correlation

[, kor-ə-'lā-shən]

A statistic that measures the degree to which two securities move in relation to each other.

Positive Correlation

["pä-zə-tiv ,kor-ə-'lā-shən]

A relationship between two variables that move in the same direction.

SCATTERPLOT

Types of Correlation Coefficients

Correlation Vs. Causality!

@ MARK ANDERSON

WWW.ANDERTOONS.COM

"It's important to remember that correlation does not imply causation. Besides, we all know it was Brian."

CORRELATION WITH CAUSATION

CORRELATION WITHOUT CAUSATION

Pandas get_dummies (One-Hot Encoding)

Sample:

Pandas get_dummies (One-Hot Encoding)

city		Houston	Rome	Madrid	London
Houston	one-hot	1	0	0	0
Rome	encoding	0	1	0	0
Madrid	\rightarrow	0	0	1	0
London		0	0	0	1

Minimum Mean Absolute Error (MAE)

$\frac{1}{n}\sum_{t=1}^{n}e_{t}^{2}$
n

Root mean squared error
$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$$

Mean absolute error
$$MAE = \frac{1}{n} \sum_{t=1}^{n} |e^{-t}|^{t}$$

Let's Start Coding: Regression Model

Import necessary libraries:

```
[2] 1 import pandas as pd
     2 import numpy as np
     4 import matplotlib.pyplot as plt
     5 import seaborn as sns
     7 from sklearn.model_selection import train_test_split
     8 from sklearn.linear_model import LinearRegression
     9 from sklearn.metrics import mean_absolute_error, mean_squared_error
    10 import statsmodels api as sm
```

Load the dataset:

```
[3] 1 df = pd.read_csv('house_prices_dataset.csv')
```

EDA (Exploratory Data Analysis)

// [4] 1 df.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl

5 rows x 81 columns

```
(2919, 81)
[6] 1 df.columns
    Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
           'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
            'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
            'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd',
            'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
            'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
            'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
            'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
            'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
            'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
            'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
            'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
            'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
            'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
            'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
            'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
            'SaleCondition', 'SalePrice'],
          dtype='object')
```

[5] 1 df.shape

Data Fields

- SalePrice: The property's sale price in dollars. This is the target variable that you're trying to predict.
- MSSubClass: The building class
- MSZoning: The general zoning classification
- LotFrontage: Linear feet of street connected to the property
- LotArea: Lot size in square feet
- Street: Type of road access
- · Alley: Type of alley access
- LotShape: General shape of the property
- LandContour: Flatness of the property
- Utilities: Type of utilities available
- LotConfig: Lot configuration
- LandSlope: Slope of the property
- Neighborhood: Physical locations within Ames city limits
- Condition1: Proximity to the main road or railroad
- Condition2: Proximity to the main road or railroad (if a second is present)
- BldgType: Type of dwelling
- HouseStyle: Style of dwelling

Handle missing values:

```
1 # Check for missing values
 3 missing_values = df.isnull().sum()
 4 missing_values
Id
MSSubClass
MSZoning
LotFrontage
                  486
LotArea
                  . . .
MoSold
YrSold
SaleType
SaleCondition
SalePrice
                 1459
Length: 81, dtype: int64
```


1 missing_values = missing_values[missing_values > 0]
2 missing_values

df[col].fillna(df[col].mean(), inplace=True)

df[col].fillna(df[col].mode()[0], inplace=True)

9 for col in categorical_cols:

10

Goals Scored Over the Last 7 Games

3

The mean is the average.

- 1. Add up all the values to find a total
- 2. Divide the total by the number of values you added together.

2+2+3+5+5+7+11 = 35 (There are 7 values)

> $35 \div 7 = 5$ →The mean is 5

Mean Median

The median is the middle value.

- 1. Write the values in numerical order 2. The median is the middle value. If
- there are 2 values in the middle, find the average of these 2 numbers.

2, 2, 3 5 5, 7, 11 →The median is 5

Mode

The mode is the most frequent value.

- 1. Count how many of each value appears
- 2. The mode is the value that appears the

Note: You can have more than one mode.

The modes are 2 and 5

Range

The range is the difference between the lowest and highest value

1. Subtract the lowest value from the highest value in the data set

11 - 2 = 9

→The range is 9

There are two modes

```
[10]
      1 # Reassessing for any remaining missing values
      3 missing_values = df.isnull().sum()
      4 missing_values
    Id
    MSSubClass
    MSZoning
    LotFrontage
    LotArea
    MoSold
    YrSold
    SaleType
    SaleCondition
    SalePrice
    Length: 81, dtype: int64
```

Correlation

A statistic that measures the degree to which two securities move in relation to each other.

```
1 # Calculate the correlations
2 correlation_matrix = df.iloc[:, -10:].corr()
3
4 # Set the figure size
5 plt.figure(figsize=(12, 10))
6
7 # Create a heatmap
8 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
9 plt.title('Correlation Heatmap of House Prices Dataset')
10 plt.show()
```



```
1 # Calculate correlations of features with the target 'SalePrice'
2 correlation_with_target = df.corr()['SalePrice'].sort_values(ascending=False)
3
4 # Plotting correlations with the target
5 plt.figure(figsize=(10, 8))
6 correlation_with_target.drop('SalePrice').plot(kind='bar')
7 plt.title('Correlation of Features with SalePrice')
8 plt.xlabel('Features')
```

9 plt.ylabel('Correlation with SalePrice')

10 plt.show()

KitchenAbvGr

```
1 # Calculate correlations of features with the target 'SalePrice'
2 correlation_with_target = df.corr()['SalePrice'].abs().sort_values(ascending=False)
3
4 # Select the top five features correlated with SalePrice
5 top_five_features = correlation_with_target[1:6] # Excluding SalePrice itself
6
7 # Display the top five correlated features
8 top_five_features
```

```
OverallQual 0.548617
GrLivArea 0.520311
GarageCars 0.444406
GarageArea 0.437654
TotalBsmtSF 0.431912
Name: SalePrice, dtype: float64
```

Dummy Code (One-Hot Encoding)

dtype='object')

```
[14] 1 df['SaleCondition'].unique()
       array(['Normal', 'Abnorml', 'Partial', 'AdjLand', 'Alloca', 'Family'],
             dtype=object)
[15] 1 # Assuming 'data' is your DataFrame containing both numerical and categorical columns
        2 df = pd.get_dummies(df)
        1 df.columns[-20:]
       Index(['Fence_MnWw', 'MiscFeature_Gar2', 'MiscFeature_Othr',
              'MiscFeature_Shed', 'MiscFeature_TenC', 'SaleType_COD', 'SaleType_CWD',
```

'SaleType_Con', 'SaleType_ConLD', 'SaleType_ConLI', 'SaleType_ConLw', 'SaleType_New', 'SaleType_Oth', 'SaleType_WD', 'SaleCondition_Abnorml', 'SaleCondition_AdjLand', 'SaleCondition_Alloca', 'SaleCondition_Family',

'SaleCondition Normal', 'SaleCondition Partial'],

```
[14] 1 df.shape # before using get_dummies
        (2919, 81)
                     get dummies
```

[18] 1 df.shape # after using get_dummies (2919, 290)

Feature selection based on correlation:

Replace 'Feature1', 'Feature2', 'Feature3', 'Feature5' with the names of the top 5 features you've identified from the correlation plot.

```
[14] 1 selected_features = ['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5']

[15] 1 selected_features = ['OverallQual', 'GrLivArea', 'GarageCars', 'GarageArea', 'TotalBsmtSF']
```

```
1 X = df[selected_features]
2 y = df['SalePrice']
```

1 sns.pairplot(data=df, y_vars=['SalePrice'], x_vars=selected_features) <seaborn.axisgrid.PairGrid at 0x7f4640474250> 600000

Split the dataset into training and testing sets:

Create and fit a Linear Regression model:

```
[19] 1 model = LinearRegression()
[20]
     1 model.fit(X_train, y_train)
      ▼ LinearRegression
      LinearRegression()
```

1 y_pred = model.predict(X_test)

os [21]

Calculate evaluation metrics: (RMSE, MAE, MSE)

```
1 mae = mean_absolute_error(y_test, y_pred)
2 mse = mean_squared_error(y_test, y_pred)
3 rmse = np.sqrt(mse)
4
5 # Print the calculated metrics
6 print(f"Mean Absolute Error (MAE): {mae}")
7 print(f"Mean Squared Error (MSE): {mse}")
8 print(f"Root Mean Squared Error (RMSE): {rmse}")
```

Mean Absolute Error (MAE): 31831.12330200309 Mean Squared Error (MSE): 1852270153.820561 Root Mean Squared Error (RMSE): 43038.00824643911 Perform statistical analysis using p-values and obtain regression model summary:

```
1 X_train = sm.add_constant(X_train)
2 model_sm = sm.OLS(y_train, X_train).fit()
3 p_values = model_sm.pvalues
4 print("P-values:")
5 print(p_values)
6 print("Regression Model Summary:")
7 print(model_sm.summary())
```

P-values:

1 210041- 10

const OverallQual GrLivArea GarageCars GarageArea TotalBsmtSF	1.2198416 2.4187886 1.0073866 2.7290366 4.3825396 1.1029336	e-30 e-38 e-01 e-02				
dtype: float6		5-10				
Regression Mo		/:				
			ssion Resu	lts		
Dep. Variable Model: Method:		SalePrice OLS Least Squares	Adj. R- F-stati	squared: stic:		0.400 0.398 310.0
Date: Fri, 05 Jan 2024 Prob (F-statistic): Time: 06:17:57 Log-Likelihood:):	7.89e-255
Time: No. Observati	06:17:57 2335		elinood:		-28303. 5.662e+04	
Df Residuals:		2329				5.665e+04
Df Model:		5	5201			310030.01
Covariance Ty	pe:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	3.672e+04	4131.783	8.888	0.000	2.86e+04	4.48e+04
OverallQual		940.561	11.612	0.000	9077.150	
GrLivArea	30.2332	2.281	13.257	0.000	25.761	34.705
GarageCars		2732.404	1.097	0.273	-2361.680	8354.714
GarageArea TotalBsmtSF	19.3333 16.9178	9.586 2.610	2.017 6.482	0.044	0.536 11.799	38.131 22.036
==========	10.3170	2.010		========	=========	22.030
Omnibus: 1075.456					1.991	
Prob(Omnibus): Skew:		0.000 1.780			16166.517 0.00	
Kurtosis: 15.389			Cond. N			8.99e+03
==========						

```
P-values:
const 1.219841e-18
OverallQual 2.418788e-30
GrLivArea 1.007386e-38
GarageCars 2.729036e-01
GarageArea 4.382539e-02
TotalBsmtSF 1.102933e-10
dtype: float64
Regression Model Summary:
```

Dep. Variable:

Model:

Method:

Omnibus:

Kurtosis:

Skew:

Prob(Omnibus):

OLS Regression Results

R-squared:

F-statistic:

Durbin-Watson:

Prob(JB):

Cond. No.

Jarque-Bera (JB):

Adj. R-squared:

0.400

0.398

310.0

1.991

0.00

16166.517

8.99e+03

SalePrice

1075,456

0.000

1.780

15.389

Least Squares

OLS

Fri. 05 Jan 2024 Prob (F-statistic): Date: 7.89e-255 Time: 06:17:57 Log-Likelihood: -28303.No. Observations: 2335 AIC: 5.662e+04 Df Residuals: 2329 BIC: 5.665e+04 Df Model: 5 nonrobust Covariance Type: coef std err P>|t| [0.025 0.9751 const 3.672e+04 4131.783 8.888 0.000 2.86e+04 4.48e+04 OverallOual 1.092e+04 940.561 11.612 0.000 9077.150 1.28e+04 GrLivArea 30.2332 2.281 13.257 0.000 25,761 34.705 2996.5169 2732.404 1.097 0.273 -2361.6808354.714 GarageCars 19.3333 9.586 2.017 0.536 38.131 GarageArea 0.044 TotalBsmtSF 16,9178 2.610 6.482 0.000 11,799 22,036

Explain the regression equation

Week 7: Assignment

Apply regression modelling techniques to predict house prices accurately.

The primary objective of this assignment is to create regression models using the House Prices dataset to predict property sale prices accurately.

