

# COHEN CHAP 6. ESTIMATION & T

For EDUC/PSY 6600

## PROBLEMS WITH Z-TESTS

Often don't know  $\sigma^2$ 

Cannot compute SE<sub>M</sub>

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}$$

Can't s replace  $\sigma$  in  $SE_M$  and do z-test?

- Small samples No, inaccurate results
- Large samples Yes (>300 participants)

$$z = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{N}}}$$

#### **Small samples**

- As  $N \downarrow$ , + skewness of sampling distribution of  $s^2 \uparrow$
- As skewness  $\uparrow$ ,  $s^2$  <u>underestimates</u>  $\sigma^2$
- As smaller  $s^2$  is used in denominator of z-statistic equation, z will  $\uparrow$ , an <u>overestimate</u>
- ↑ risk of <u>Type I error</u>

#### Large samples

- $s^2$  unbiased estimate of  $\sigma^2$  with <u>large</u> N
- σ is a constant
- s is NOT a constant
- Varies from sample to sample
- As N increases,  $s \rightarrow \sigma$

# THE T-DISTRIBUTION, "STUDENT'S T"

### 1908, William Gosset

- Guinness Brewing Company, England
- Invented t-test for small samples for brewing quality control
- \*Wrote paper using moniker "a student" discussing nature of SDM when using  $s^2$  instead of  $\sigma^2$
- Worked with Fisher, Neyman, Pearson, and Galton





# STUDENT'S T & NORMAL (Z) DISTRIBUTIONS

### **Similarities**

- Follows mathematical function
- Symmetrical, continuous, bell-shaped
- Continues to ± infinity
- $\square$  M = 0
- $\square$  Area under curve = p(event[s])
- $\square$  When N is large ( $\approx$  300), t=z

### **Differences**

- Family of distributions
  - $\square$  Different distribution for each N (or df)
- Larger area in tails (%) for any value of t corresponding to z
  - $\square$   $t_{\text{crit}}$  will be larger than  $z_{\text{crit}}$ , for a given  $\alpha$
- $\square$  More difficult to reject  $H_0$  w/ t-distribution
- $\Box$  df = N 1
- $\square$  As  $df \uparrow$ : critical value of  $t \rightarrow z$

# THE T-TABLE







#### LEVEL OF SIGNIFICANCE FOR ONE-TAILED TEST

|    | .10                                       | .05   | .025   | .01    | .005   | .0005   |  |  |  |
|----|-------------------------------------------|-------|--------|--------|--------|---------|--|--|--|
|    | LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST |       |        |        |        |         |  |  |  |
| df | .20                                       | .10   | .05    | .02    | .01    | .001    |  |  |  |
| 1  | 3.078                                     | 6.314 | 12.706 | 31.821 | 63.657 | 636.620 |  |  |  |
| 2  | 1.886                                     | 2.920 | 4.303  | 6.965  | 9.925  | 31.599  |  |  |  |
| 3  | 1.638                                     | 2.353 | 3.182  | 4.541  | 5.841  | 12.924  |  |  |  |
| 4  | 1.533                                     | 2.132 | 2.776  | 3.747  | 4.604  | 8.610   |  |  |  |
| 5  | 1.476                                     | 2.015 | 2.571  | 3.365  | 4.032  | 6.869   |  |  |  |
| 6  | 1.440                                     | 1.943 | 2.447  | 3.143  | 3.707  | 5.959   |  |  |  |
| 7  | 1.415                                     | 1.895 | 2.365  | 2.998  | 3.499  | 5.408   |  |  |  |
| 8  | 1.397                                     | 1.860 | 2.306  | 2.896  | 3.355  | 5.041   |  |  |  |
| 9  | 1.383                                     | 1.833 | 2.262  | 2.821  | 3.250  | 4.781   |  |  |  |
| 10 | 1.372                                     | 1.812 | 2.228  | 2.764  | 3.169  | 4.587   |  |  |  |
| 11 | 1.363                                     | 1.796 | 2.201  | 2.718  | 3.106  | 4.437   |  |  |  |
| 12 | 1.356                                     | 1.782 | 2.179  | 2.681  | 3.055  | 4.318   |  |  |  |
| 13 | 1.350                                     | 1.771 | 2.160  | 2.650  | 3.012  | 4.221   |  |  |  |
| 14 | 1.345                                     | 1.761 | 2.145  | 2.624  | 2.977  | 4.140   |  |  |  |
| 15 | 1 2/1                                     | 1 753 | 2 121  | 2 602  | 2 047  | 4.072   |  |  |  |

## CALCULATING THE T-STATISTIC

- $\triangleright$  Interval/ratio data (ordinal okay: ≥ 10-16 values)
- $\succ$  Like z-, t-statistic represents a SD score ( # of SEs  $\overline{X}$  deviates from  $\mu$ )
- When  $\sigma$  is known, t-statistic is sometimes computed (rather than z-statistic) if N is small

 $\triangleright$  Estimate pop.  $SE_M$  with sample data:

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}} = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{N}}} = \frac{\overline{X} - \mu}{\sqrt{\frac{s^2}{N}}}, \ df = N - 1$$

 $\triangleright$  Estimated  $SE_M$  is amount observed mean <u>may</u> have deviated from true or population value

# ASSUMPTIONS (SAME AS Z TESTS)

1. Sample was drawn at random (at least as representative as possible)

Nothing can be done to fix NON-representative samples!

Can not statistically test

2. SD of the sampled population = SD of the comparison population Very hard to judge

Can not statistically test

Variables have a normal distribution

Not as important if the sample is large (Central Limit Theorem)

IF the sample is far from normal &/or small n, might want to transform variables

**Look at plots:** histogram, boxplot, & QQ plot (straight 45° line) ← sensitive to outliers!!!

**Skewness & Kurtosis:** Divided value by its SE &  $> \pm 2$  indicates issues

**Shapiro-Wilks test** (small N):  $p < .05 \rightarrow$  not normal

Kolmogorov-Smirnov test (large N):

### **EXAMPLE:** 1-SAMPLE T-TEST

A physician states that, in the past, the average number of times he saw each of his patients during the year was 5. However, he believes that his patients have visited him significantly more frequently during the past year. In order to validate this statement, he randomly selects 10 of his patients and determines the # of office visits during the past year. He obtains the values presented to the below.

Do the data support his contention that the average number of times he has seen a patient in the last year

is different than 5?

## **CONFIDENCE INTERVALS**

Statistics are point estimates, or population parameters, with error

How close is estimate to pop. parameter?

- Confidence interval (CI) around point estimate (Range of values)
- Confidence limits (CL)
  - Values that bound CI
  - Upper limit: UL or UCL
  - Lower limit: LL or LCL

### <u>CI expresses our confidence in a statistic & the width depends on $SE_M$ and $t_{crit}$ </u>

- $\blacksquare$  Both are function of N
- Larger  $N \rightarrow$  Smaller CI
  - More confident that sample point estimate (statistic) approximates population parameter

Narrow CI 

Less confidence, more precision (less error)

Wide CI → More confidence, less precision (more error)

## STEPS TO CONSTRUCT A CONFIDENCE INTERVAL

- 1) Select your random sample size
- 2) Select the Level of Confidence
  - Generally 95% (can by 80, 90, or even 99%)
- 3) Select random sample and collect data
- 4) Find the region of Rejection
  - Based on  $\alpha$  & # of tails
- Calculate the Interval

Est 
$$\pm CV \times SE_{est}$$

Narrow CIWider CILarge Nsmaller NLower %Higher %

Example: 95% CI with z-score  $\bar{X} \pm 1.96 \times \frac{\sigma}{\sqrt{n}}$ 

Example: 99% CI with z-score  $\bar{X} \pm 2.58 \times \frac{\sigma}{\sqrt{n}}$ 

## **EXAMPLE: CONFIDENCE INTERVAL FOR THE MEAN**

A physician states that, <u>in the past</u>, the average number of times he saw each of his patients during the year was 5. However, he believes that his patients have visited him significantly more frequently during the past year. In order to validate this statement, he randomly selects 10 of his patients and determines the # of office visits during the past year. He obtains the values presented to the below.

Construct a 95% confidence interval for the mean number of visits per patient.

## ESTIMATING THE POPULATION MEAN

 $\triangleright$  Point estimate (M) is in the center of CI

Est 
$$\pm CV \times SE_{est}$$

- $\blacktriangleright$  Degree of confidence determined by lpha and corresponding  $t_{crit}$ 
  - Common to use 95% CI ( $\alpha = .05$ )
  - Can also compute a .90, .99, or any size CI
- $\geq$  z-distribution: Known population variance or N is large ( $\approx$ 300)

$$\bar{X} \pm z_{crit} \times \frac{\sigma}{\sqrt{n}}$$

 $\blacktriangleright$  t-distribution: Do not know population variance or N is small

$$\bar{X} \pm t_{crit} \times \frac{s}{\sqrt{n}}$$

#### NOT the meaning of a 95% CI

There is NOT a 95% chance that the population M lies between the 2 CLs from your sample's C1 !!!

Each random sample will have a different CI with different CLs and a different M value

### Meaning of a 95% CI

95% of the CIs that could be constructed over repeated sampling will contain M Yours MAY be one of them

5% chance our sample's 95% CI does not contain  $\mu$  Related to Type I error

## BOOTSTRAPPED CONFIDENCE INTERVALS

- Avoids assuming that your variable is normally distributed
- Computer-intensive...not by hand!
- Easy as pie for SPSS

IBM SPSS seems to have removed the bootstrap option from the basic software and offers it as an add on now???

Do NOT do chap 6 section C #4

#### Basic Idea:

- 1. Draw a random sample from your sample (with replacement)  $\leftarrow$  some may be chosen multiple times or no times
- 2. compute this sample's mean, SD, and t-score
- 3. repeat 1 & 2 lots of times, like 1,000+ (this is the not-by-hand part;)
- 4. Use the set of t-scores (1,000+ of them) & see where the original t-score falls in the distribution

## APA: RESULTS OF A 1-SAMPLE Z-TEST

> Z-test (happens to be a statistically significant difference):

The hourly fee (M = \$72) for our sample of current psychotherapists is significantly greater, z = 4.0, p < .001, than the 1960 hourly rate ( $\mu = $63$ , in current dollars).

> T-test (happens to be quite reach .05 significance level):

Although the mean hourly fee for our sample of current psychotherapists was considerably higher (M = \$72, SD = 22.5) than the 1960 population mean ( $\mu$  = \$63, in current dollars), this difference only approached statistical significance, t(24) = 2.00, p = .06.

## SPSS: PERFORM A 1-SAMPLE T-TEST & CI

#### T-Test

\* t-test come with a confidence interval.

#### T-TEST

/TESTVAL=50 /VARIABLES=AGE /CRITERIA=CI(.95).

st change the confidenc elevel to 99%.

#### T-TEST

/TESTVAL=50 /VARIABLES=AGE /CRITERIA=CI(.99)

#### One-Sample Statistics

|                               | N  | Mean  | Std. Deviation | Std. Error<br>Mean |
|-------------------------------|----|-------|----------------|--------------------|
| AGE Patient's Incoming<br>Age | 25 | 59.64 | 12.932         | 2.586              |

#### One-Sample Test

|                               | Test Value = 50 |    |                 |                                          |       |       |
|-------------------------------|-----------------|----|-----------------|------------------------------------------|-------|-------|
|                               |                 |    |                 | 95% Confidence Interv<br>Mean Difference |       |       |
|                               | t               | df | Sig. (2-tailed) | Difference                               | Lower | Upper |
| AGE Patient's Incoming<br>Age | 3.727           | 24 | .001            | 9.640                                    | 4.30  | 14.98 |

| One-Sample Test               |               |    |                 |            |                                              |       |  |  |
|-------------------------------|---------------|----|-----------------|------------|----------------------------------------------|-------|--|--|
|                               | st Value = 50 |    |                 |            |                                              |       |  |  |
|                               |               |    |                 | Mean       | 99% Confidence Interval of the<br>Difference |       |  |  |
|                               | t             | df | Sig. (2-tailed) | Difference | Lower                                        | Upper |  |  |
| AGE Patient's Incoming<br>Age | 3.727         | 24 | .001            | 9.640      | 2.41                                         | 16.87 |  |  |