Left-2-Right Dependency Parsing with Pointer Networks

Daniel Fernandez-Gonzalez, Carlos Gomez-Rodriguez

「NAACL19」 -- Universidade da Coruña

Speaker: AntNLP(<u>@TaoJi</u>)

Motivation

• Their left-to-right approach is simpler than the stack-pointer parser (not requiring a stack) and reduces decoder length from 2n-1 actions to n.

Contribution

- PTB dataset (96.04% UAS, 94.43% LAS)
- ullet Best accuracy: +0.17% UAS, +0.24% LAS
- Ours: (95.97% UAS, 94.31% LAS)
- ullet Speed: 10.24
 ightarrow 23.08 sent/s

Architecture

Likelihood

$$egin{aligned} P_{ heta}(y|x) &= \prod_{i=1}^k P_{ heta}\left(p_i|p_{< i}, x
ight) \ &= \prod_{i=1}^k \prod_{j=1}^{l_i} P_{ heta}\left(w_{i, j}|w_{i, < j}, p_{< i}, x
ight) \end{aligned}$$

" High-order Features: Grandparent and Sibling.

Likelihood

$$egin{aligned} P_{ heta}(y|x) &= \prod_{i=1}^n P_{ heta}\left(l_i|l_{< i}, x
ight) \ &= \prod_{i=1}^n P_{ heta}\left(w_h|w_i, l_{< i}, x
ight) \end{aligned}$$

" High-order Features:

Instead of using grandparent and sibling information, we just add e_{t-1}, e_{t+1} to generate d_t , which seems to be more suitable for L2R decoding.

Parser	UAS	LAS
Chen and Manning (2014)	91.8	89.6
Dyer et al. (2015)	93.1	90.9
Weiss et al. (2015)	93.99	92.05
Ballesteros et al. (2016)	93.56	91.42
Kiperwasser and Goldberg (2016)	93.9	91.9
Alberti et al. (2015)	94.23	92.36
Qi and Manning (2017)	94.3	92.2
Fernández-G and Gómez-R (2018)	94.5	92.4
Andor et al. (2016)	94.61	92.79
Ma et al. (2018)*	95.87	94.19
This work*	96.04	94.43
Kiperwasser and Goldberg (2016)	93.1	91.0
Wang and Chang (2016)	94.08	91.82
Cheng et al. (2016)	94.10	91.49
Kuncoro et al. (2016)	94.26	92.06
Zhang et al. (2017)	94.30	91.95
Ma and Hovy (2017)	94.88	92.96
Dozat and Manning (2016)	95.74	94.08
Ma et al. (2018)*	95.84	94.21

	Top-d	own	Left-to-right		
	UAS	LAS	UAS	LAS	
bu	94.42±0.02	90.70 ± 0.04	94.28 ± 0.06	90.66 ± 0.11	
ca	93.83 ± 0.02	91.96 ± 0.01	94.07 ± 0.06	92.26 ± 0.05	
cs	93.97 ± 0.02	91.23 ± 0.03	94.19 ± 0.04	91.45 ± 0.05	
de	87.28 ± 0.07	82.99 ± 0.07	87.06 ± 0.05	82.63 ± 0.01	
en	90.86 ± 0.15	88.92 ± 0.19	90.93 ± 0.11	88.99 ± 0.11	
es	93.09 ± 0.05	91.11 ± 0.03	93.23 ± 0.03	91.28 ± 0.02	
fr	90.97 ± 0.09	88.22 ± 0.12	90.90 ± 0.04	88.14 ± 0.10	
it	94.08 ± 0.04	92.24 ± 0.06	94.28 ± 0.06	92.48 ± 0.02	
nl	93.23 ± 0.09	90.67 ± 0.07	93.13 ± 0.07	90.74 ± 0.08	
no	95.02 ± 0.05	93.75 ± 0.05	95.23 ± 0.06	93.99 ± 0.07	
ro	91.44 ± 0.11	85.80 ± 0.14	91.58 ± 0.08	86.00 ± 0.07	
ru	94.43±0.01	93.08 ± 0.03	94.71±0.07	93.38±0.09	

On Difficulties of Cross-Lingual Transfer with Order Differences: A Case Study on Dependency Parsing

Wasi Uddin Ahmad, Zhisong Zhang, Xuezhe Ma Eduard Hovy, Kai-Wei Chang, Nanyun Peng 「NAACL19」 -- UC, CMU, USC

Speaker: AntNLP(<u>@TaoJi</u>)

Motivation

- order-free vs order-sensitive in dep-parsing
- measure language distance

Conclusion

- RNN-based architectures transfer well to languages that are close to English.
- Self-attentive models have better overall crosslingual transferability and perform especially well on distant languages.

Lang. Distance

- 1. The World Atlas of Language Structures (WALS)
 - word order typology
- 2. Empirical Way
 - (modifier_upos, head_upos, dep_rel)
 - 52 selected arc types → feature vector
 - hierarchical clustering (Manhattan distance)

Lang. Distance

Language Families	Languages		
Afro-Asiatic	Arabic (ar), Hebrew (he)		
Austronesian	Indonesian (id)		
IE.Baltic	Latvian (lv)		
IE.Germanic	Danish (da), Dutch (nl), English (en),		
	German (de), Norwegian (no),		
	Swedish (sv)		
IE.Indic	Hindi (hi)		
IE.Latin	Latin (la)		
IE.Romance	Catalan (ca), French (fr), Italian (it),		
	Portuguese (pt), Romanian (ro),		
	Spanish (es)		
IE.Slavic	avic Bulgarian (bg), Croatian (hr), Czech		
	(cs), Polish (pl), Russian (ru), Slovak		
	(sk), Slovenian (sl), Ukrainian (uk)		
Japanese	Japanese (ja)		
Korean	Korean (ko)		
Sino-Tibetan	Chinese (zh)		
Uralic	Estonian (et), Finnish (fi)		

Lang. Distance

Contextual Encoders

- 1. Deep-BiLSTM
- 2. Transformer
 - \circ absolute \rightarrow relative position
 - order-agnostic

Transformer

Input: x_1, \cdots, x_n Output: z_1, \cdots, z_n

$$z_i = \sum_{j=1}^n lpha_{ij} \left(x_j W^V + a_{ij}^V
ight)$$

Weight:
$$lpha_{ij} = rac{\exp e_{ij}}{\sum_{k=1}^n \exp e_{ik}}$$

Score:
$$e_{ij} = rac{x_i W^Q \left(x_j W^K + a_{ij}^K
ight)^T}{\sqrt{d_z}}$$

Posi. emb:
$$a_{ij}^K = w_{clip(|j-i|,k)}^K$$

Structured Decoders

- 1. Stack-Pointer Decoder
 - o order-sensitive
- 2. Graph-based Decoder
 - o order-free

Settings

- Source: English
- Target: 30 other languages
- Pre-trained emb: multi-lingual 300d FastText
- order-free: SelfAtt, Graph
- order-sensitive: RNN, Stack

	Dist. to	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack	Baseline	Supervised
Lang	English	(OF-OF)	(OS-OF)	(OF-OS)	(OS-OS)	(Guo et al., 2015)	(RNN-Graph)
en	0.00	90.35/88.40	90.44/88.31	90.18/88.06	91.82 [†] /89.89 [†]	87.25/85.04	90.44/88.31
no	0.06	80.80/72.81	80.67/72.83	80.25/72.07	81.75 [†] /73.30 [†]	74.76/65.16	94.52/92.88
sv	0.07	80.98/73.17	81.23/73.49	80.56/72.77	$82.57^{\dagger}/74.25^{\dagger}$	71.84/63.52	89.79/86.60
fr	0.09	77.87/72.78	$78.35^{\dagger}/73.46^{\dagger}$	76.79/71.77	75.46/70.49	73.02/64.67	91.90/89.14
pt	0.09	76.61 [†] /67.75	76.46/ 67.98	75.39/66.67	74.64/66.11	70.36/60.11	93.14/90.82
da	0.10	76.64/67.87	77.36/68.81	76.39/67.48	$78.22^{\dagger}/68.83$	71.34/61.45	87.16/84.23
es	0.12	74.49/66.44	$74.92^{\dagger}/66.91^{\dagger}$	73.15/65.14	73.11/64.81	68.75/59.59	93.17/90.80
it	0.12	80.80/75.82	81.10/76.23 [†]	79.13/74.16	80.35/75.32	75.06/67.37	94.21/92.38
hr	0.13	$61.91^{\dagger}/52.86^{\dagger}$	60.09/50.67	60.58/51.07	60.80/51.12	52.92/42.19	89.66/83.81
ca	0.13	73.83/65.13	$74.24^{\dagger}/65.57^{\dagger}$	72.39/63.72	72.03/63.02	68.23/58.15	93.98/91.64
pl	0.13	74.56 [†] /62.23 [†]	71.89/58.59	73.46/60.49	72.09/59.75	66.74/53.40	94.96/90.68
uk	0.13	60.05/52.28 [†]	58.49/51.14	57.43/49.66	59.67/51.85	54.10/45.26	85.98/82.21
sl	0.13	$68.21^{\dagger}/56.54^{\dagger}$	66.27/54.57	66.55/54.58	67.76/55.68	60.86/48.06	86.79/82.76
nl	0.14	68.55/60.26	67.88/60.11	67.88/59.46	$69.55^{\dagger}/61.55^{\dagger}$	63.31/53.79	90.59/87.52
bg	0.14	79.40 [†] /68.21 [†]	78.05/66.68	78.16/66.95	78.83/67.57	73.08/61.23	93.74/89.61
ru	0.14	60.63/51.63	59.99/50.81	59.36/50.25	60.87/51.96	55.03/45.09	94.11/92.56
de	0.14	71.34 [†] /61.62 [†]	69.49/59.31	69.94/60.09	69.58/59.64	65.14/54.13	88.58/83.68
he	0.14	55.29/48.00 [†]	54.55/46.93	53.23/45.69	54.89/40.95	46.03/26.57	89.34/84.49
cs	0.14	63.10 [†] /53.80 [†]	61.88/52.80	61.26/51.86	62.26/52.32	56.15/44.77	94.03/91.87
ro	0.15	65.05 [†] /54.10 [†]	63.23/52.11	62.54/51.46	60.98/49.79	56.01/44.04	90.07/84.50
sk	0.17	66.65/58.15 [†]	65.41/56.98	65.34/56.68	66.56/57.48	57.75/47.73	90.19/86.38
id	0.17	49.20 [†] /43.52 [†]	47.05/42.09	47.32/41.70	46.77/41.28	40.84/33.67	87.19/82.60
lv	0.18	70.78/49.30	71.43 [†] /49.59	69.04/47.80	70.56/48.53	62.33/41.42	83.67/78.13
fi	0.20	66.27/48.69	66.36/48.74	64.82/47.50	66.25/48.28	58.51/38.65	88.04/85.04
et	0.20	65.72 [†] /44.87 [†]	65.25/44.40	64.12/43.26	64.30/43.50	56.13/34.86	86.76/83.28
zh*	0.23	42.48 [†] /25.10 [†]	41.53/24.32	40.56/23.32	40.92/23.45	40.03/20.97	73.62/67.67
ar	0.26	38.12 [†] /28.04 [†]	32.97/25.48	32.56/23.70	32.85/24.99	32.69/22.68	86.17/81.83
la	0.28	47.96 [†] /35.21 [†]	45.96/33.91	45.49/33.19	43.85/31.25	39.08/26.17	81.05/76.33
ko	0.33	34.48 [†] /16.40 [†]	33.66/15.40	32.75/15.04	33.11/14.25	31.39/12.70	85.05/80.76
hi	0.40	35.50 [†] /26.52 [†]	29.32/21.41	31.38/23.09	25.91/18.07	25.74/16.77	95.63/92.93
ja*	0.49	28.18 [†] /20.91 [†]	18.41/11.99	20.72/13.19	15.16/9.32	15.39/08.41	89.06/78.74
Average	0.17	64.06 [†] /53.82 [†]	62.71/52.63	62.22/52.00	62.37/51.89	57.09/45.41	89.44/85.62

Model	UAS%	LAS%
SelfAtt-Relative (Ours)	64.57	54.14
SelfAtt-Relative+Dir	63.93	53.62
RNN	63.25	52.94
SelfAtt-Absolute	61.76	51.71
SelfAtt-NoPosi	28.18	21.45

Table 3: Comparisons of different encoders (averaged results over all languages on the original training sets).

Thank, you! Q&A