Leçon 122. Anneaux principaux. Applications.

1. HYPOTHÈSE. Au cours de cette leçon, tous les anneaux seront supposés commutatif et unitaire et leurs neutres seront respectivement notés par les chiffres 0 et 1.

1. Arithmétique dans un anneau principal

1.1. Notion d'idéal et de principalité

- 2. DÉFINITION. Un *idéal* d'un anneau A est un sous-groupe additif $I \subset A$ tel que, pour tous éléments $a \in A$ et $x \in I$, on ait $ax \in I$. Un idéal $I \subset A$ est *principal* s'il existe un élément $a \in A$ tel que $I = \langle a \rangle \coloneqq aA$.
- 3. EXEMPLE. Les parties A et $\{0\}$ sont toujours des idéaux principaux. Les parties $n\mathbf{Z}$ avec $n \in \mathbf{Z}$ sont des idéaux de l'anneau \mathbf{Z} .
- 4. DÉFINITION. Un anneau est principal si tous ses idéaux sont principaux.
- 5. Exemple. Un corps est un anneau principal. L'anneau ${\bf Z}$ est principal.
- 6. Théorème. Un anneau principal est factoriel.
- 7. COROLLAIRE ($lemme\ d'Euclide$). Soit A un anneau principal. Alors un élément est irréductible si et seulement s'il est premier.
- 8. Théorème. Soient A un anneau principal et $p \in A \setminus (A^{\times} \cup \{0\})$ un élément. Alors les points suivants sont équivalents :
 - l'élément p est premier;
 - l'idéal $\langle p \rangle$ est premier;
 - l'idéal $\langle p \rangle$ est maximal.
- 9. EXEMPLE. Pour un entier $n \geqslant 3$, l'anneau $\mathbf{Z}[i\sqrt{n}]$ n'est pas principal puisque l'élément 2 est irréductible et non premier.

1.2. PGCD et PPCM

- 10. DÉFINITION. Soit A un anneau. Le PGCD de deux éléments $a,b\in A\setminus\{0\}$ est un élément $d\in A$ vérifiant les points suivants :
 - $-d \mid a \text{ et } d \mid b;$
 - pour tout élément $c \in A$, si $c \mid a$ et $c \mid b$, alors $c \mid d$.

L'anneau A est à PGCD si tout couple $(a,b) \in (A \setminus \{0\})^2$ admet un PGCD.

- 11. Exemple. Deux PGCD des entiers 4 et 6 sont les entiers ± 2 .
- 12. Proposition. Un anneau principal est à PGCD.
- 13. Théorème (Bézout). Soient A un anneau principal et $a,b\in A\setminus\{0\}$ deux éléments non nuls. Soit $d\in A\setminus\{0\}$. Alors les points suivants sont équivalents :
 - l'élément d est un PGCD des éléments a et b;
 - on a (d) = (a) + (b).

Dans ce cas, il existe deux éléments $u, v \in A$ tels que d = au + bv.

14. Contre-exemple. L'hypothèse de principalité est nécessaire : dans l'anneau K[X,Y], les monômes X et Y sont premiers entre eux et pourtant

$$\langle X \rangle + \langle Y \rangle = \langle X, Y \rangle = K[X, Y].$$

15. Théorème (Gauss). Soient A un anneau principal et $a,b,c\in A$ trois éléments. Si $a\mid bc$ et $a\wedge b=1,$ alors $a\mid c$

1.3. Les anneaux euclidiens

16. DÉFINITION. Un anneau A est euclidien s'il existe une application $\nu\colon A\backslash\{0\}\longrightarrow \mathbf{N}$ vérifiant la propriété suivante :

pour tous éléments
$$a,b\in A$$
 avec $b\neq 0$, il existe deux éléments $q,r\in A$ tels que $a=bq+r$ avec $r=0$ ou $\nu(r)<\nu(b)$.

On dira que l'expression a = bq + r est la division euclidien de l'élément a par l'élément b et que les éléments q et r en sont respectivement le quotient et le reste. Une telle application ν est un stathme sur l'anneau A.

- 17. THÉORÈME. L'anneau ${\bf Z}$ est euclidien pour le stathme $x\longmapsto |x|$. Pour un corps K, l'anneau K[X] pour le stahme $P\longmapsto \deg P.$
- 18. COROLLAIRE. Soit A un anneau. Alors l'anneau A[X] est principal si et seulement si l'anneau A est un corps.
- 19. EXEMPLE. On retrouve que l'anneau $K[X,Y] \simeq K[X][Y]$ n'est pas principal.
- 20. COROLLAIRE. Soit L/K une extension de corps. Alors le PGCD dans L de deux polynômes à coefficients dans K est le même que dans K.
- 21. THÉORÈME. Un anneau euclidien est principal.
- 22. COROLLAIRE. Soient K un corps et $P \in K[X]$ un polynôme. Alors l'anneau quotient $K[X]/\langle P \rangle$ est un corps si et seulement si le polynôme P est irréductible.
- 23. Définition. On considère l'anneau l'anneau

$$\mathbf{Z}[\alpha] = \{a + b\alpha \mid a, b \in \mathbf{Z}\}$$
 avec $a := \frac{1}{2}(1 + i\sqrt{19})$

On introduit la norme $N\colon \mathbf{Z}[\alpha] \longrightarrow \mathbf{N}$ définie par l'égalité

$$N(z) = z\overline{z} = a^2 + ab + 5b^2, \qquad z = a + b\alpha \in \mathbf{Z}[\alpha].$$

- 24. LEMME. Soit A un anneau euclidien. Alors il existe un élément $x \in A \setminus A^{\times}$ tel que la restriction $A^{\times} \cup \{0\} \longrightarrow A/\langle x \rangle$ de la projection canonique soit surjective.
- 25. Proposition. L'anneau $\mathbf{Z}[\alpha]$ n'est pas euclidien.
- 26. LEMME. Soient $a,b \in \mathbf{Z}[\alpha] \setminus \{0\}$ deux éléments non nuls. Alors il existe deux éléments $q,r \in \mathbf{Z}[\alpha]$ vérifiant les points suivants :
 - r = 0 ou N(r) < N(b);
 - -a = bq + r ou 2a = bq + r.
- 27. Proposition. L'anneau $\mathbf{Z}[\alpha]$ est principal.

2. Résolution de problèmes arithmétiques

${\bf 2.1.}$ L'algorithme d'Euclide dans le cas euclidien

- 28. Théorème (algorithme d'Euclide étendu). Soient $a, b \in A \setminus \{0\}$ deux éléments non nuls d'un anneau euclidien A. Considérons les suites $(r_i)_{i \in \mathbb{N}}$, $(u_i)_{i \in \mathbb{N}}$ et $(v_i)_{i \in \mathbb{N}}$ de A définies de la manière suivante :
 - $r_0 = a \text{ et } r_1 = b;$
 - $-u_0=1 \text{ et } u_1=0;$
 - $-v_0=0 \text{ et } v_1=1;$
 - si $r_i \neq 0$, alors

- o l'élément r_{i+1} est le reste d'une division euclidienne de r_{i-1} par r_i , associé au quotient q_i ,
- \circ si i > 1, alors $u_{i+1} = u_{i-1} q_i u_i$ et $v_{i+1} = v_{i-1} q_i v_i$.
- si $r_i = 0$, alors $r_{i+1} = 0$.

Soit $N \in \mathbb{N}$ le plus petit entier tel que $r_{N+1} = 0$. Alors

$$\operatorname{pgcd}(a,b) \sim r_N$$
 et $u_N a + v_N a = r_N$.

29. EXEMPLE. Plaçons-nous dans l'anneau **Z**. On veut calculer une relation de Bézout associée aux entiers 15 et 36. On trouve successivement

$$36 = 1 \times 36 + 0 \times 15,$$

$$15 = 0 \times 36 + 1 \times 15,$$

$$6 = 1 \times 36 - 2 \times 15,$$

$$3 = -2 \times 36 + 5 \times 15.$$

- 30. Théorème. L'algorithme d'Euclide étendu calcul le PGCD de deux polynômes non nuls $P, Q \in K[X] \setminus \{0\}$ en $O(\deg P \deg Q)$ opérations sur le corps K.
- 31. THÉORÈME. L'algorithme d'Euclide étendu calcul le PGCD de deux entiers non nuls $a,b \in \mathbf{Z}^*$ en $O(\log a \log b)$ opérations binaires.
- 32. APPLICATION. Dans l'anneau $\mathbf{R}[X]/\langle X^2+1\rangle\simeq \mathbf{C}$, l'inverse d'un élément $\overline{a+bX}$ avec $(a,b)\neq (0,0)$ est la classe du polynôme $(a-iX)/(a^2+b^2)$.

2.2. Les systèmes de congruence

33. Théorème (des restes chinois). Soient A un anneau unitaire et $I_1, \ldots, I_n \subset A$ des idéaux deux à deux étrangers $(I_i + I_j = A \text{ si } i \neq j)$. Alors l'application

$$\begin{vmatrix} A \longrightarrow A/I_1 \times \dots \times A/I_n, \\ x \longmapsto (x \mod I_1, \dots, x \mod I_n) \end{vmatrix}$$

est un morphisme d'anneaux surjectif de noyau $I_1 \cap \cdots \cap I_n = I_1 \cdots I_n$. En particulier, il induit un isomorphisme d'anneaux

$$A/I_1 \cdots I_n \longrightarrow A/I_1 \times \cdots \times A/I_n$$
.

34. COROLLAIRE (des restes chinois dans \mathbf{Z}). Soient $m_1, \ldots, m_n \in \mathbf{N}^*$ des entiers deux à deux premiers entre eux et $v_1, \ldots, v_n \in \mathbf{Z}$ d'autres entiers. Alors il existe une unique solution $x \in [0, m_1 \cdots m_n - 1]$ du système

$$\forall i \in [1, r], \qquad x \equiv v_i \mod m_i. \tag{1}$$

35. PROPOSITION (interpolation de Lagrange). En reprenant les notations précédentes, pour tout indice $i \in [1, r]$, il existe un entier $N_i \in [0, m_i - 1]$ tel que $N_i M_i \equiv 1$ mod m_i avec $M_i = m_1 \cdots m_r / m_i$. Alors l'unique solution du système (1) est l'entier

$$\sum_{i=1}^{n} v_i N_i M_i.$$

36. Remarque. Les inverses N_i des entiers M_i modulo m_i se trouvent grâce à l'algorithme d'Euclide étendu.

37. Exemple. On souhaite résoudre le système

$$\begin{cases} x \equiv 0 & \mod 2, \\ x \equiv 2 & \mod 3, \\ x \equiv -2 & \mod 7. \end{cases}$$

On calcul d'abord $M := 2 \times 3 \times 7 = 42$. Les entiers 2, 3 et 7 étant premiers, ce système admet une unique solution dans l'intervalle [0, 41].

- L'élément $M_1 := M/2 = 21 \equiv 1$ est d'inverse $N_1 = 1$ dans $\mathbb{Z}/2\mathbb{Z}$.
- L'élément $M_2 := M/3 = 14 \equiv -1$ est d'inverse $N_2 = -1$ dans $\mathbb{Z}/3\mathbb{Z}$.
- L'élément $M_3 := M/7 = 6 \equiv -1$ est d'inverse $N_2 = -1$ dans $\mathbb{Z}/7\mathbb{Z}$.

Finalement, l'unique solution est $0 \times 21 \times 1 + 2 \times 14 \times (-1) - 2 \times 6 \times (-1) = -16$.

2.3. Le théorème des deux carrés

- 38. Cadre. On souhaite trouver les nombres entiers $n \in \mathbb{N}$ qui peuvent s'écrire sous la forme $n = a^2 + b^2$ avec $a, b \in \mathbb{N}$. On note $\Sigma \subset \mathbb{N}$ leur ensemble.
- 39. REMARQUE. Pour un entier de Gauss $z=a+ib\in \mathbf{Z}[i]$, on introduit sa norme comme étant la quantité réelle $N(z):=z\overline{z}=a^2+b^2$. Alors un entier appartient à l'ensemble Σ si et seulement s'il est la norme d'un entier de Gauss.
- 40. THÉORÈME. La norme $N: \mathbf{Z}[i] \longrightarrow \mathbf{N}$ est une application multiplicative. De plus, les éléments inversibles de l'anneau $\mathbf{Z}[i]$ sont les nombres ± 1 et $\pm i$.
- 41. Proposition. L'ensemble Σ est stable par multiplication.
- 42. Proposition. L'anneau $\mathbf{Z}[i]$ est euclidien pour le stathme N.
- 43. LEMME. Un élément $p \in \mathbf{Z}[i]$ appartient à l'ensemble Σ si et seulement s'il est irréductible dans l'anneau $\mathbf{Z}[i]$.
- 44. THÉORÈME. Soit p un nombre premier. Alors

$$p \in \Sigma \iff p \equiv 1, 2 \mod 4.$$

- 45. EXEMPLE. Le nombre 41 est premier et s'écrit $41 = 4^2 + 5^2$.
- 46. COROLLAIRE. Soit $n \ge 2$ un entier qu'on écrit sous la forme

$$n = \prod_{p \in \mathscr{P}} p^{\nu_p(n)}.$$

Alors il appartient à l'ensemble Σ si et seulement si, pour tout nombre premier p tel que $p \equiv 3 \mod 4$, l'entier $\nu_p(n)$ est pair.

3. La principalité de l'anneau des polynômes sur un corps

3.1. Application à la théorie des corps

- 47. DÉFINITION. Soit L/K une extension. Un élément $x \in L$ est algébrique sur le corps K s'il existe un polynôme non nul $P \in K[X]$ tel que P(x) = 0.
- 48. EXEMPLE. Dans l'extension \mathbb{C}/\mathbb{Q} , le réel $\sqrt{2}$ est algébrique sur \mathbb{Q} puisqu'il est annulé par le polynôme X^2-2 .
- 49. Proposition. Soit $x \in L$ un élément algébrique sur K. Alors l'ensemble

$$\{P \in K[X] \mid P(x) = 0\}$$

est un idéal de l'anneau principal K[X], donc il est engendré par un unique polynôme unitaire $\pi_x \in K[X]$.

- 50. PROPOSITION. Soit $x \in L$ un élément. S'il existe un polynôme irréductible non nul $P \in K[X]$ vérifiant P(x) = 0, alors $\pi_x = P$.
- 51. EXEMPLE. Dans l'extension \mathbb{C}/\mathbb{Q} , on a $\pi_{\sqrt{2}} = X^2 2$.
- 52. PROPOSITION. Soit $x \in L$ un élément algébrique sur K. Alors le polynôme π_x est irréductible sur K.
- 53. Théorème (de l'élément primitif). Soient L/K une extension finie de caractéristique nulle. Alors il existe un élément $z \in L$ vérifiant L = K(z).

3.2. Application à l'algèbre linéaire

54. Proposition. Soient K un corps et E un K-espace vectoriel de dimension finie. Soit $u \in \mathcal{L}(E)$ un endomorphisme. Alors l'ensemble

$$\{P \in K[X] \mid P(u) = 0\}$$

est un idéal de l'anneau principal K[X], donc il est engendré par un unique polynôme unitaire $\pi_u \in K[X]$.

- 55. Remarque. Attention, le polynôme minimal d'un endomorphisme n'est pas toujours irréductible : un endomorphisme nilpotent d'un espace vectoriel de dimension n est de polynôme minimal X^n .
- 56. Théorème. Le polynôme caractéristique χ_u divise le polynôme minimal π_u .
- 57. THÉORÈME (lemme des noyaux). Soient $P_1, \ldots, P_k \in K[X]$ des polynômes deux à deux premiers entre eux. Notons $P := P_1 \cdots P_k$. Alors

$$\operatorname{Ker} P(u) = \operatorname{Ker} P_1(u) \oplus \cdots \oplus \operatorname{Ker} P_k(u).$$

De plus, les projections sur chacun des sous-espaces $\operatorname{Ker} P_i(u)$ associés à cette décomposition sont des polynômes en l'endomorphisme u.

58. APPLICATION. On suppose que le polynôme χ_u est scindé et qu'on peut donc l'écrire sous la forme $\chi_u = \prod_{i=1}^r (X - \lambda_i)^{m_i}$. Alors

$$E = \bigoplus_{i=1}^{r} \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{m_i}.$$

- 59. Théorème. Soit $u \in \mathscr{L}(E)$ un endomorphisme. Alors les points suivants sont équivalents :
 - l'endomorphisme u est diagonalisable;
 - l'endomorphisme u admet un polynôme annulateur scindé simple;
 - son polynôme minimal π_u est scindé simple;
 - son polynôme caractéristique χ_u est scindé et, pour toute racine $\lambda \in K$ du polynôme χ_u de multiplicité m, on a $m = \dim \operatorname{Ker}(u \lambda \operatorname{Id}_E)$.

^[1] Alin Bostan et al. Algorithmes Efficaces en Calcul Formel. 2017.

² Xavier Gourdon. Algèbre. 2^e édition. Ellipses, 2009.

^[3] Daniel Perrin. Cours d'algèbre. Ellipses, 1996.

Jean-Étienne Rombaldi. Mathématiques pour l'agrégation. Algèbre et géométrie. 2° édition. De Boeck Supérieur, 2021.