Бахышов Вахид, 409 группа

Отчёт по задаче "Итерационные методы решения систем линейных уравнений".

1 Задача 1.

Для решения системы линейных уравнений:

$$-\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} + py_k = f_k, \quad k = 1, \dots, N-1;$$

$$y(0) = y(1) = 0;$$

$$h = \frac{1}{N-1};$$

$$p \ge 0.$$

реализуйте метод Фурье (т.е. метод разложения по собственным векторам) для базисных функций:

$$\psi_k^{(n)} = \sin(\frac{\pi n}{N - 1} \cdot (k - \frac{1}{2})) \tag{1}$$

Решение. Сперва, найдём базисные функции:

$$-y_{k+1} + 2y_k - y_{k-1} + py_k h^2 = f_k h^2$$
$$y_{k+1} - 2(1 + \frac{ph^2}{2})y_k + y_{k-1} = -f_k h^2$$

Выпишем характеристическое уравнение и решим его однородный вариант:

$$y_{k+1} - 2(1 + \frac{ph^2}{2})y_k + y_{k-1} = 0, \quad q = 1 + \frac{ph^2}{2}$$
$$y_{k+1} - 2qy_k + y_{k-1} = 0$$

$$y(0) = 0 \iff \frac{y_0 + y_1}{2} = 0 \iff y_0 + y_1 = 0$$

 $y(1) = 0 \iff \frac{y_{N-1} + y_N}{2} = 0 \iff y_{N-1} + y_N = 0$

Краевые условия $y_0+y_1=0, y_{N-1}+y_N=0$ $y_{k+1}-2qy_k+y_{k-1}=0,$ где $p=(1+\frac{ph^2}{2})$ $y_k=\mu^k\Rightarrow \mu^2-2p\mu+1=0\Rightarrow \mu_{1,2}=p\pm\sqrt{p^2-1}\Rightarrow$

$$\Rightarrow \begin{cases} y_k = C_1 \mu_1^k + C_2 \mu_2^k, \ \mu_1 \neq \mu_2 \iff p^2 \neq 1 \\ y_k = C_1 \mu_1^k + C_2 k \mu_2^k, \ \mu_1 = \mu_2 = \mu \end{cases}$$
 (2)

II случай $\mu_1=\mu_2=\mu\Rightarrow y_k=C_1\mu^k+C_2k\mu^k$

$$\Rightarrow \begin{cases} C_1 \mu + C_2 \mu + C_1 + C_2 \cdot 0 = 0 \\ C_1 \mu^{N-1} + C_2 (N-1) \mu^{N-1} + C_1 \mu^N + C_2 N \mu^N = 0 \end{cases}$$
 (3)

$$\Rightarrow \begin{cases} C_1 \mu + C_2 \mu + C_1 = 0 \\ C_1 \mu + C_2 N \mu + C_1 + C_2 (N - 1) = 0 \end{cases}$$
 (4)

Вычитаем из 2-ого уравнение 1-ое и получаем, что

$$C_2N\mu + C_2(N-1) - C_2\mu = 0 \Rightarrow C_2\mu(N-1) + C_2(N-1) = 0$$

В итоге получаем, что $C_2(\mu+1)=0 \iff$

$$\iff \begin{cases} C_2 = 0 \Rightarrow C_1(1+\mu) = 0 \iff C_1 = 0 \text{ or } \mu = -1 \\ \mu = -1 \Rightarrow -C_1 - C_2 + C_1 = 0 \Rightarrow C_2 = 0 \end{cases}$$
 (5)

 $\Rightarrow y_k \equiv 0$ (ненулевые решения \nexists)

I случай $\mu_1 \neq \mu_2 \Rightarrow y_k = C_1 \mu_1^k + C_2 \mu_2^k \Rightarrow$

$$\Rightarrow \begin{cases} C_1 \mu_1 + C_2 \mu_2 + C_1 + C_2 = 0 \\ C_1 \mu_1^{N-1} + C_2 \mu_2^{N-1} + C_1 \mu_1^N + C_2 \mu_1^N = 0 \end{cases}$$
 (6)

упростив 1-ое уравнение, получаем $C_1(1 + \mu_1) + C_2(1 + \mu_2) = 0 \iff$

$$C_2(1+mu_2) = -C_1(1+mu_1)$$

$$\Rightarrow \begin{cases} C_2(1+\mu_2) = -C_1(1+\mu_1) \\ C_1\mu_1^{N-1}(1+\mu_1) + C_2\mu_2^{N-1}(1+\mu_2) = 0 \end{cases}$$
 (7)

подставляем результат 1-ого уравнения во 2-ое уравнение, получаем

$$C_1 \mu_1^{N-1} (1 + \mu_1) - \mu_2^{N-1} C_1 (1 + \mu_1) = 0 \mid : C_1 \iff$$

 $\mu_1 = -1 \text{ or } (\frac{\mu_1}{\mu_2})^{N-1} = 1$

Тогда
$$\mu_1 = -1$$
 or $\frac{\mu_1}{\mu_2} = e^{\frac{2\pi i}{N-1}n}$, $n = 0, 1, ..., N-2$

Т.к
$$\mu^2 - 2p\mu + 1 = 0 \Rightarrow$$
 по т.Виета $\mu_1 \mu_2 = 1 \Rightarrow \mu_2 = \frac{1}{\mu_1} \Rightarrow \mu_1^2 = e^{\frac{2\pi i}{N-1}n} \Rightarrow$ $\Rightarrow \mu_1 = e^{\frac{\pi i}{N-1}n}$ и $\mu_1 = e^{-\frac{\pi i}{N-1}n}$, т.е $\mu_1 = \frac{1}{\mu_2} = e^{\frac{\pi i}{N-1}n}$, $n = 0, 1, ..., N-2$ всего (N - 1) различных корней из единицы

$$\begin{split} &C_2(1+\mu_2) = -C_1(1+\mu_1) \Rightarrow C_2 = -C_1\frac{1+\mu_1}{1+\mu_2} = \{\mu_2 = \frac{1}{mu_1}\} = -C_1\frac{1+\mu_1}{1+1/\mu_1} = \\ &= -C_1\mu_1, \text{ тогда } y_k = C_1\mu_1^k + C_2\mu_2^k = C_1(\mu_1^k - \mu_1\mu_2^k) = C_1(e^{\frac{\pi in}{N-1}k} - e^{\frac{\pi in}{N-1}} \cdot e^{-\frac{\pi in}{N-1}k}) \\ &= -C_1(e^{\frac{\pi in}{N-1}k} - e^{\frac{\pi in}{N-1}(1-k)}) = C_1[\cos(\frac{\pi n}{N-1}k) + i \cdot \sin(\frac{\pi n}{N-1}k) - e^{-\frac{\pi in}{N-1}(1-k)}) \\ &- \cos(\frac{\pi n}{N-1}(1-k)) - i \cdot \sin(\frac{\pi n}{N-1}(1-k))] = c_1[2i \cdot \sin(\frac{\pi n}{N-1}k - \frac{\pi n}{N-1}(1-k)) \cdot cos(\frac{\pi n}{N-1}k + \frac{\pi n}{N-1}(1-k)) - 2sin(\frac{\pi n}{N-1}k - \frac{\pi n}{N-1}(1-k))] = \\ &- cos(\frac{\pi n}{N-1}k + \frac{\pi n}{N-1}(1-k)) - 2sin(\frac{\pi n}{N-1}k - \frac{\pi n}{N-1}(1-k)) - 2sin(\frac{\pi n}{N-1}k - \frac{\pi n}{N-1}(1-k))] = \\ &= c_1[2i \cdot \sin(\frac{\pi n}{N-1} \cdot \frac{2k-1}{2}) \cdot cos(\frac{\pi n}{2(N-1)}) - 2sin(\frac{\pi n}{2(N-1)}) \cdot sin(\frac{\pi n}{N-1} \cdot \frac{2k-1}{2})] = \\ &= sin(\frac{\pi n}{N-1} \cdot \frac{2k-1}{2}) \cdot C_1[2i \cdot cos(\frac{\pi n}{2(N-1)}) - 2sin(\frac{\pi n}{2(N-1)})] = C \cdot sin(\frac{\pi n}{N-1} \cdot \frac{2k-1}{2}) \\ &= C \cdot sin(\frac{\pi n}{N-1} \cdot (k - \frac{1}{2})) \end{split}$$

Таким образом, $y_k = C \cdot sin[\frac{\pi n}{N-1} \cdot (k-\frac{1}{2})]$, где k=0,...,N и n=1,...,N-2

Пусть
$$t = \frac{\pi n}{N-1}$$
, $y_k = \psi_k^{(n)} = \sin[t \cdot (k - \frac{1}{2})]$

Вычислим λ_n и заодно проверим, является ли найденная функция собственной:

$$\begin{split} A\psi_k^{(n)} &= -\frac{\psi_{k+1}^{(n)} - 2\psi_k^{(n)} + \psi_{k-1}^{(n)}}{h^2} + p\psi_k^{(n)} = -\frac{\sin[t\cdot(k+\frac{1}{2})] - 2\sin[t\cdot(k-\frac{1}{2})] + \sin[t\cdot(k-\frac{3}{2})]}{h^2} + \\ &+ p\sin[\frac{\pi n}{N-1}\cdot(k-\frac{1}{2})] = -\frac{2\sin[t\cdot(k-\frac{1}{2})]\cdot\cos(t) - 2\sin[t\cdot(k-\frac{1}{2})]}{h^2} + p\sin[t\cdot(k-\frac{1}{2})] = -\frac{\sin[t\cdot(k-\frac{1}{2})] - \sin[t\cdot(k-\frac{1}{2})]}{h^2} + p\sin[t\cdot(k-\frac{1}{2})] - \frac{\sin[t\cdot(k-\frac{1}{2})] - \sin[t\cdot(k-\frac{1}{2})]}{h^2} + p\sin[t\cdot(k-\frac{1}{2})]} - \frac{\sin[t\cdot(k-\frac{1}{2})] - \sin[t\cdot(k-\frac{1}{2})]}{h^2} + p\sin[t\cdot(k-\frac{1}{2})] - \frac{\sin[t\cdot(k-\frac{1}{2})] - \sin[t\cdot(k-\frac{1}{2})]}{h^2} + p\sin[t\cdot(k-\frac{1}{2})]} - \frac{\sin[t\cdot(k-\frac{1}{2})]}{h^2} + p\sin[t\cdot(k-\frac{1}{2})]} - \frac{\sin[t\cdot(k-\frac{1}{2})]}{h^2} + p\sin[t\cdot(k-\frac{1}{2})]} - \frac{\sin[t\cdot(k-\frac{1}{2})]}{h^2} + \frac{\sin$$

$$=\sin[t\cdot(k-\frac{1}{2})]\cdot(-\frac{2\cos(t)-2}{h^2}+p)=\sin[t\cdot(k-\frac{1}{2})]\cdot[p-\frac{2}{h^2}(\cos(t)-1)]=\\=\sin[\frac{\pi n}{N-1}\cdot(k-\frac{1}{2})]\cdot[p-\frac{2}{h^2}(\cos(\frac{\pi n}{N-1})-1)].,$$
 где $h=\frac{1}{N-1}$ Отсюда:

$$\lambda_n = p - 2 \cdot (N - 1)^2 \cdot (\cos(\frac{\pi n}{N - 1}) - 1).$$

Указание. Перепишем задачу в матричном виде относительно вектора $\mathbf{y} = [y_1, \dots, y_{N-1}]^T$, т.е. $A\mathbf{y} = \mathbf{f}$, где $\mathbf{y}, \mathbf{f} \in \mathbf{R}^{N-1}$. Для собственных чисел λ_n и собственных векторов $\psi^{(n)}$ данной матрицы известны аналитические формулы, а собственные векторы ортогональны относительно стандартного скалярного произведения, т.е. образуют базис в пространстве \mathbf{R}^{N-1} . Следовательно, формально существует разложение $\mathbf{y} = \sum_{n=1}^{N-1} c_n \psi^{(n)}$. Подставив соотношение в исходную систему, получим

$$A\left(\sum_{n=1}^{N-1} c_n \psi^{(n)}\right) = \mathbf{f} \Rightarrow \sum_{n=1}^{N-1} c_n \lambda_n \psi^{(n)} = \mathbf{f}$$

Умножим равенство скалярно на $\psi^{(m)}, m = 1, \dots, N-1$. С учетом ортогональности базиса найдем:

$$\left(\sum_{n=1}^{N-1} \lambda_n c_n \psi^{(n)}, \psi^{(m)}\right)_h = \left(\mathbf{f}, \psi^{(m)}\right)_h \quad \Rightarrow \quad c_m = \frac{\left(\mathbf{f}, \psi^{(m)}\right)_h}{\lambda_m \left(\psi^{(m)}, \psi^{(m)}\right)_h}$$

Таким образом $c_m = d_m/\lambda_m$, где величины $d_m = \frac{(\mathbf{f},\psi^{(m)})_h}{(\psi^{(m)},\psi^{(m)})_h}$ являются коэффициентами в разложении вектора $\mathbf{f} = \sum_{m=1}^{N-1} d_m \psi^{(m)}$. Определив набор коэффициентов $\{c_m\}$, далее вычисляем координаты искомого вектора $\mathbf{y}_k = \sum_{m=1}^{N-1} c_m \psi_k^{(m)}, k = 0, \dots, N$.

Отметим, что в данном случае $(\psi^{(m)}, \psi^{(m)})_h = \frac{1}{2}$ при всех $m = 1, \ldots, N-1$, а нахождение коэффициентов d_m и восстановление решения y_k можно существенно ускорить за счет арифметических свойств

собственных функций при помощи так называемого быстрого преобразования Фурье.

Кроме того, из указания к задаче:

$$c_n = \frac{\left(f, \psi^{(n)}\right)}{\lambda_n \left(\psi^{(n)}, \psi^{(n)}\right)} = \frac{2\left(f, \psi^{(n)}\right)}{\lambda_n}.$$

Решение же можно найти в виде:

$$y_k = \sum_{n=1}^{N-1} c_n \psi_k^{(n)}.$$

2 Задача 3.

Для решения системы линейных уравнений:

$$-\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} + p_k y_k = f_k, \qquad k = 1, \dots, N-1;$$

$$y_0 = -y_1;$$

$$y_N = -y_{N-1};$$

$$h = \frac{\pi}{N};$$

$$p_k = 1 + \sin^2(\pi kh).$$

реализуйте метод с предобуславливателем в виде функции с прототипом "'double BSolver(double *x, const double *A, const double *B, const double *b, double tau, int n, double eps, int mIter); "'

возвращающей найденное приближенное решение x и норму $\|\mathbf{r}\|_h$ вектора невязки $\mathbf{r} = \mathbf{b} - A\mathbf{x}$. В качестве B возьмите матрицу из Задачи 1 и примените для ее обращения метод Фурье. Сравните теоретическую и практическую скорости сходимости в указанной норме.

Рис. 1: Ошибка метода решения СЛУ, определяемого матрицей типа Φ урье (задача 3), с предобуславливателем.