

厦门大学《微积分 I-2》课程期末试卷

试卷类型: (理工类 A 卷) 考试日期 2016.6.15

- 一、计算下列各题: (每小题 5 分, 共 10 分)
- (1) 考察级数 $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n} \right)^{n^2}$ 的收敛性.

得 分	
阅卷人	

(2) 将函数 $\frac{1}{(3-x)^2}$ 展开成x 的幂级数,并指出其收敛域.

- 二、计算下列各题: (每小题 5 分, 共 10 分)
 - (1) 计算曲线积分 $\int_{\Gamma} \frac{-y dx + x dy + dz}{x^2 + y^2 + z^2}$, 其中 Γ 为曲线

得分	
阅卷人	

 $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$ 上对应于t 从0到2的一段弧.

(2) 计算 $\oint_L (2|x|+y) ds$, 其中L为圆周 $x^2 + y^2 = 4$.

三、计算
$$\iint_{\Sigma} (x+y+z) dS$$
,其中 Σ 是曲面 $x^2+y^2+z^2=a^2$
$$(a>0) 在 z \ge 0$$
 的部分. (8分)

得分	
阅卷人	

四、计算下列曲面积分:

$$\bigoplus_{\Sigma} y(x-z) dydz + x^2 dzdx + (y^2 + xz) dxdy ,$$

得 分	
阅卷人	

其中 Σ 是正立方体: $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$ 的表面取外侧. (8分)

五、求由曲面 $z = \sqrt{5 - x^2 - y^2}$ 及 $x^2 + y^2 = 4z$ 所围成的 立体图形的体积. (8分)

得 分	
阅卷人	

六、讨论级数 $\sum_{n=1}^{\infty} (-1)^n [\sqrt{n+1} - \sqrt{n}]$ 的敛散性. (10 分)

得 分	
阅卷人	

七、求无穷级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n(n+1)}$ 的和函数 S(x),指出 其收敛域,并计算 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$. (10 分)

得分	
阅卷人	

八、计算曲线积分 $\oint_L \frac{x+y}{x^2+y^2} dx + \frac{y-x}{x^2+y^2} dy$, 其中L为椭圆

$\frac{(x-a)^2}{(x-a)^2} + (y-a)^2 = 1$ 取正向,	常数 $a > 0$ 且 $a \neq \frac{2\sqrt{5}}{5}$.(10分)
4	5

得 分	
阅卷人	

九、将函数 $f(x) = |x|(-\pi < x < \pi)$ 展开为傅里叶级数, 并求 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 与 $\sum_{n=1}^{\infty} \frac{1}{(2n)^2}$ 的值.(10 分)

得 分	
阅卷人	

十、 计算 $\iint_{\Sigma} yz dy dz + xz dz dx + dx dy$, 其中 Σ 是抛物面 $z = 1 - x^2 - y^2$ 在第一卦限部分,方向取下侧. (8分)

得 分	
阅卷人	

十一、设
$$u_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^n x dx$$
,(1)求级数 $\sum_{n=1}^{\infty} \frac{1}{n} (u_n + u_{n+2})$

的值;(2)证明: 对任意参数 $\lambda > 0$, 级数 $\sum_{n=1}^{\infty} \frac{u_n}{n^{\lambda}}$ 收

得 分	
阅卷人	

敛. (8分)