Homework 2 (Due Friday, March 15, 2019)

Please turn in solutions to any 4 of the following 5 problems.

Problem 1. Let H be a complex separable Hilbert space and let T_1 , $T_2 \in \mathcal{L}(H, H)$ be Hilbert-Schmidt operators. Let $T = T_2T_1$. Show that

$$\operatorname{Tr} T = \sum (Te_j, e_j)$$

exists if e_j is an orthonormal basis for H, and prove that the sum is independent of the choice of basis.

Problem 2. When $a(x,\xi) \in \mathcal{S}(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$, let us consider the Weyl quantization of a,

$$a^{w}(x, D_{x})u(x) = \frac{1}{(2\pi)^{n}} \iint e^{i(x-y)\xi} a\left(\frac{x+y}{2}, \xi\right) u(y) dy d\xi,$$

acting on the Schwartz space $\mathcal{S}(\mathbb{R}^n)$.

• Show that $a^w(x, D_x)$ is symmetric on $\mathcal{S}(\mathbb{R}^n)$,

$$(a^{w}(x, D_{x})u, v)_{L^{2}} = (u, a^{w}(x, D_{x})v)_{L^{2}}, \quad u, v \in \mathcal{S}(\mathbb{R}^{n}),$$

precisely when a is real-valued.

• Suppose now that $a = a(\xi)$ is real-valued and depends only on the momentum variable ξ . Show that $a^w(D_x)$ is unitarily equivalent to a multiplication operator by $a(\xi)$. What is the spectrum of $a^w(D_x)$?

Problem 3. Let us consider the Sturm-Liouville operator

$$P = -\frac{d}{dt} \left(p(t) \frac{d}{dt} \right) + q(t),$$

where $p \in C^1(\mathbb{R})$, p > 0, and $q \in C(\mathbb{R})$, $q \geq 0$. Show that the operator P, equipped with the domain $C_0^{\infty}(\mathbb{R})$, is essentially selfadjoint on $L^2(\mathbb{R})$.

Hint. Show that it suffices to verify that the range $(P+1)(C_0^{\infty}(\mathbb{R}))$ is dense in $L^2(\mathbb{R})$ and establish this property.

Problem 4. Let T be a closed densely defined operator in a complex separable Hilbert space. Show that the operators T^*T and TT^* are self-adjoint, when equipped with their natural domains of definition.

Problem 5. Let

$$P = -\Delta + V$$

on $L^2(\mathbb{R}^n)$, where the potential $V \in C(\mathbb{R}^n; \mathbb{R})$ is bounded from below. Let us equip P with the domain $\mathcal{D}(P) = C_0^{\infty}(\mathbb{R}^n)$, so that P becomes essentially self-adjoint. Assume that $V(x) \to +\infty$ as $|x| \to \infty$. Show that the spectrum of the closure \overline{P} is discrete, consisting of isolated real eigenvalues of finite multiplicity,

accumulating at $+\infty$ only. Show also that there is an orthonormal basis of $L^2(\mathbb{R}^n)$, consisting of eigenfunctions of \overline{P} .