Tutorial Sheet 4 Vector Space, Subspace

- 1. Find all the vector subspaces of \mathbb{R} , \mathbb{R}^2 and \mathbb{R}^3 .
- 2. Is \mathbb{R}^2 a vector space over \mathbb{Z}_2 .
- 3. Let $V = \mathbb{R}$. Define x + y = x y and $\alpha . x = -\alpha x$. Which vector space axioms are not satisfied here?
- 4. Let $V = \mathbb{R}^+ = \text{set of all positive real numbers}$.
 - (a) Show that V is not a vector space over \mathbb{R} with respect to usual addition and scalar multiplication.
 - (b) for $\alpha \in \mathbb{R}$, $u, v \in \mathbb{R}^+$, define u + v = uv and $\alpha u = u^{\alpha}$. Then show that V is a vector space over \mathbb{R} .
- 5. Recall that $M_n(\mathbb{C})$ is the complex vector space of all $n \times n$ complex matrices. Which of the following subsets are subspaces of $M_n(\mathbb{C})$.
 - (a) $sl_n = \{ A \in M_n(\mathbb{C}) : trace(A) = 0 \}.$
 - (b) $Sym_n = \{ A \in M_n(\mathbb{C}) : A = A^{\theta} \}.$
 - (c) $Skew_n = \{ A \in M_n(\mathbb{C}) : A + A^{\theta} = 0 \}.$
 - (d) Is set of all invertible matrices subspace of $M_n(\mathbb{R})$.
- 6. Let C([-1,1]) be the set of all real valued continuous functions on the interval [-1,1]. Let

$$W_1 = \left\{ f \in C([-1,1]) : f\left(\frac{1}{2}\right) = 0 \right\},$$

and

$$W_2 = \left\{ f \in C([-1,1]) : f\left(\frac{1}{4}\right) = 5 \right\}.$$

Are W_1 , W_2 subspaces of C([-1,1])?

- 7. Let U and W be two subspaces of a vector space V. Show that $U \cap W$ is a subspace of V. Also show that $U \cup W$ need not to be a subspace of V. When is $U \cup W$ a subspace of V?
- 8. Let U and W be two subspaces of a vector space V. Define $U + W = \{u + w : u \in U, w \in W\}$. Show that U + W is a subspace of V. Also show that $L(U \cup W) = U + W$.

1

- 9. Is (4,5,5) a linear combination of (1,2,3), (1,1,4) and (3,3,2)?
- 10. Find the linear span of $S = \{(1, 1, 1), (2, 1, 3)\}$ over \mathbb{R} .