GRAPH THEORY ASSIGNMENT 2

Smilewin

CS19B1053

1. Show that the complete graph of four vertices is self-dual.

Answer:

In the above graph a,b,c,d are the vertices and e1-e6 are the edges.

Observing the graph, we identify 4 regions. Marking regions (F1-F4) and points (p1-p4) for the regions:

Now the dual of Graph G:

Final Graph G*:

On Observing the above graph, it's clear that it's a complete graph of four vertices.

Graph G and G* have the same number of vertices, same number of edges and one to one correspondence. Therefore, G and G* are isomorphic.

Hence a complete graph of 4 vertices is self dual.

2. Give another example of a self-dual graph and justify

Answer:

Consider the following Graph G

Number of Regions is 7. Marking regions and points of region:

Now the dual of Graph G, G*:

Since G and G* have same number of vertices, same number of edges and one to one correspondence. G and G* are isomorphic.

Hence Graph G is self dual.