

Рис. 1 - Чертеж ТУК-146

Найденный чертеж не является подробным, но позволяет определить габаритные размеры ТУК и сформировать объемную модель для последующих расчетов.

Материал	Модуль Юнга ЕХ, Па	Коэф-т Пуассона µ	Предел текучести σ0.2, Па	Предел прочности ов, Па	Остаточное удлинение δ5
ВЧ40	1.7*10^11	0.214	2.4*10^8	4.0*10^8	0.15
08X18H10T	2*10^11	0.3	2.36*10^8	5*10^8	0.37

Рис. 4 - Геометрия модели

После этого в поле Engineering Data были заданы механические свойства материалов.

В полях "Deliver form Young's Modulus and Poisson's Ratio >> Young's Modulus" и Deliver form Young's Modulus and Poisson's Ratio >> Poisson's Ratio" были заданы модуль Юнга, коэффициент Пуассона.

Рис. 5 - структура модели

В полях "Yield strength" и "Tensile Ultimate Strength" были заданы предел текучести и предел временного сопротивления.

Для упрощения последующего разбиения модели моделируем половину и после накладываем на сечение условие симметрии:

Рис. 6 - Применение условия Symmetry Region к модели

Далее были созданы закрепления для ТУКа — крепиться заделкой за внешнюю цилиндрическую часть Connection >> Body-to-Ground >> General >> All Fixed.

На нижнюю часть плиты так же было наложено закрепление, но с допущением перемещения по оси ${\rm Z}.$

Также между днищем ТУК и плитой была сформирована контактная пара Connection >> Body-to-Body >> Bonded.

Так же контактная пара была сформирована между корпусом и блоком демпфирующих труб Connection >> Body-to-Body >> Bonded.

Далее было принято разбиение модели Mesh >> Patch Conforming Method >> Sweep.

Рис. 7 - Сетка модели

4. Расчет

К нижней поверхности плиты было приложено давление, численно равное силе воздействия (площадь плиты $1 \text{ m}^2 - 1 \cdot M \cdot g \cdot h$, где M — масса половины ТУКа. Проведённый расчёт показал, что сетка показывает себя успешно — общее расчётное время составило 5 мин. Для данного эксперимента были получены картины деформации и главных напряжений. Результаты представлены в таблице 2.

Рис. 8 – Смещение плиты

Таблица 2

*M*g*	Н, Н	Δ , mm	*M*g*	Н, Н	Δ , mm
1	4,949e+005	1,0286e-004	20	9,898e+006	2,0572e-003
2	9,898e+005	2,0572e-004	25	1,2373e+007	2,5715e-003
3	1,4847e+006	3,0858e-004	30	1,4847e+007	3,0858e-003
4	1,9796e+006	4,1145e-004	35	1,7322e+007	3,6001e-003
5	2,4745e+006	5,1431e-004	40	1,9796e+007	4,1145e-003
10	4,949e+006	1,0286e-003	50	2,4745e+007	5,1431e-003
12	5,9388e+006	1,2343e-003	60	2,9694e+007	6,1717e-003
14	6,9286e+006	1,4401e-003	70	3,4643e+007	7,2003e-003
16	7,9184e+006	1,6458e-003	80	3,9592e+007	8,2289e-003
18	8,9082e+006	1,8515e-003	90	4,4541e+007	9,2575e-003

Данные вычисления проводились с определённой целью. Предполагалось определять максимальную силу при ударе ТУКа именно таким положением об плиту следующим способом. При ударе в момент, когда скорость ТУКа становится равной

Рис 9. – Перемещения

Рис 10. – S1

Рис 11. – S2

Рис 12. – S3

Рис 13 – Интенсивность напряжений

Как мы видим, ударная нагрузка приведет к частичному разрушению нижнего демпфирующего колпака (мы делаем данный вывод так как превышен предел прочности в 500 МПа), однако сильно гасит напряжения приходящиеся на сам упаковочный контейнер.

Чтобы понять будет ли разгерметизация ТУКа нужно определить пластические деформации внутреннего цилиндра и сравнить их с деформациями соответствующими пределу прочности.

Рис. 14