NUCLEAR WALLET CARDS

October 2011

Jagdish K. Tuli

National Nuclear Data Center www.nndc.bnl.gov

Brookhaven National Laboratory P.O. Box 5000 Upton, New York 11973-5000 U.S.A.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor, or subcontractor thereof.

NUCLEAR WALLET CARDS

(Eighth edition)

October 2011

JAGDISH K. TULI

NATIONAL NUCLEAR DATA CENTER

(www.nndc.bnl.gov)

for

The U.S. Nuclear Data Program

Supported by Office of Nuclear Physics, Office of Science, US Department of Energy

Brookhaven National Laboratory*
Upton, New York 11973-5000, USA
* Operated by Brookhaven Science Associates
under contract No. DE-AC02-98CH10886 with
US Department of Energy

NUCLEAR WALLET CARDS

October 2011

CONTENTS

U. S. Nuclear Data Program	ii
Introduction	iii
Explanation of Table	iv
2000 Edition as $T_{\frac{1}{2}}$ Standard	vii
Acknowledgements	vii
References	viii
Nuclear Wallet Cards	1-84
Appendices:	

Ι	Table of Elemental Properties
II	Frequently-Used Constants
IΙa	Fundamental Constants
III	Energy-Equivalent Factors
IV	Observed A Hypernuclides
IVa	Half-lives of Ionized Atoms
Va	Decay Chains in Nature
Vb	Radioactive Nuclides in Nature
VIa	Periodic Table of Elements
VIb	List of Elements-Alphabetical
VIc	List of Elements-by Z

 $Centerfold: NNDC\ Web\ Services$

U.S. Nuclear Data Program

(www.nndc.bnl.gov/usndp/)

Argonne National Laboratory

Nuclear Data Program Nuclear Engineering Division 9700 South Cass Avenue Argonne, IL 60439

Brookhaven National Laboratory

National Nuclear Data Center Building 197D, P.O. Box 5000, Upton, NY 11973-5000

Lawrence Berkeley National Laboratory

Isotopes Project One Cyclotron Road Berkeley, CA 94720-8101

Lawrence Livermore National Laboratory

Computational Nuclear Physics Group P.O. Box 808, MS L-059 Livermore, CA 94551-0808

Los Alamos National Laboratory

Group T-2, Nuclear Physics MS B283 Los Alamos, NM 87545

Los Alamos National Laboratory

Group LANSCE-NS, Neutron and Nuclear Science, MS H-855 Los Alamos, NM 87545

McMaster University

Dept. of Physics and Astronomy Hamilton, Ontario L8S 4M1 Canada

National Institute of Standards and Technology

Nuclear Data Verification & Standardization Project 100 Bureau Dr Stop 8463 Gaithersburg, MD 20899-8463

Oak Ridge National Laboratory

Nuclear Data Project Physics Division MS 6354 P.O. Box 2008 Oak Ridge, TN 37831-6354

Triangle Universities Nuclear Laboratory

Nuclear Data Evaluation Project P.O. Box 90308, Durham, NC 27708-0308

INTRODUCTION

This is an updated edition of the 2005 booklet of the same name^{\dagger}.

This booklet presents selected properties of all known nuclides and some of their isomeric states. Properties of ionized atoms are presented as an appendix.

The data given here are taken mostly from the adopted properties of the various nuclides as given in the *Evaluated Nuclear Structure Data File* (ENSDF)[1]. The data in ENSDF are based on experimental results and are published in *Nuclear Data Sheets*[2] for A>20 and in *Nuclear Physics*[3] for A \leq 20. For nuclides for which either there are no data in ENSDF or those data that have since been superseded, the half-life and the decay modes are taken from Experimental Unevaluated Nuclear Data List (XUNDL)[4] covering recent literature[5].

For other references, experimental data, and information on the data measurements, please refer to the original evaluations [1-4]. The data were updated to **September 1, 2011**.

[†]The first *Nuclear Wallet Cards* was produced by F. Ajzenberg–Selove and C. L. Busch in 1971. The Isotopes Project, Lawrence Berkeley National Laboratory, produced the next edition in 1979 based upon the *Table of Isotopes*, 7th edition (1978)[9]. The subsequent editions: in years 1985, 1990, 1995, 2000, and the last in 2005, were produced by Jagdish K. Tuli, NNDC.

In 2004, Nuclear Wallet Cards for Radioactive Nuclides aimed at Homeland Security personnel was also produced by Jagdish K. Tuli.

Explanation of Table

Column 1, Nuclide (Z, El, A):

Nuclides are listed in the order of increasing atomic number (Z), and are subordered by increasing mass number (A). All isotopic species, as well as all isomers with half-life ≥ 0.1 s, and some with half-life ≥ 1 ms which decay by SF, α or p emissions, are included. A nuclide is given even if only its mass estimate [6] is known.

Isomeric states are denoted by the symbol "m" after the mass number and are given in the order of increasing excitation energy. Where the ground state is not well established all given states carry symbol "m".

The 235 U thermal fission products, with fractional cumulative yields $\geq 10^{-6}$, are *italicized* in the table. The information on fission products is taken from the ENDF/B-VI fission products file [8].

The names and symbols for elements are those adopted by the International Union of Pure and Applied Chemistry (2010). No names and symbols have as yet been adopted for Z>112.

Column 2, Jπ:

Spin and parity assignments, without and with parentheses, are based upon strong and weak arguments, respectively. See the introductory pages of the January issue of $Nuclear\ Data\ Sheets[2]$ for description of strong and weak arguments for $J\pi$ assignments.

Explanation of Table (cont.)

Column 3, Mass Excess, A:

Mass excesses, M-A, are given in MeV (from [6]) with Δ (1 2 C) = 0, by definition. For isomers the values are obtained by adding the excitation energy to the Δ (g.s.) values. Wherever the excitation energy is not known, the mass excess for the next lower isomer (or the g.s.) is given. The values are given to the accuracy determined by the uncertainty in Δ (g.s.) (maximum of three figures after the decimal). The uncertainty is \leq 9 in the last significant figure. An appended "s" denotes that the value is obtained from systematics [6].

Column 4, T_{1/2},Γ or Abundance:

The half-life and the abundance (in **bold face** from [7]) are shown followed by their units ("%" symbol in the case of abundance) which are followed by the uncertainty, in *italics*, in the last significant figures. For example, 8.1 s 10 means 8.1±1.0 s. For some very short-lived nuclei, level widths rather than half-lives are given. There also, the width is followed by units (e.g., eV, keV, or MeV) which are followed by the uncertainty in *italics*, if known. This field is left blank when the half-life is not known.

For $2\beta^-$ and 2ϵ decay only the lowest value of their several limits (e.g., for 0ν or 2ν , etc.) is given.

If a new measurement of half-life or decay mode has since become available [4] then its value is presented in place of the evaluated value in ENSDF.

Explanation of Table (cont.)

Column 5, Decay Mode:

Decay modes are given in decreasing strength from left to right, followed by the percentage branching, if known ("w" indicates a weak branch). The percentage branching is omitted where there is no competing mode of decay or no other mode has been observed. A "?" indicates an expected but not observed mode of decay. The various modes of decay are given below:

$\beta-$	β- decay
ε	ϵ (electron capture), or ϵ + β +, or β + decay
IT	isomeric transition (through γ or conver- sion-electron decay)
n,p,α,\dots	neutron, proton, alpha, decay
SF	spontaneous fission
2β -, 3α ,	double β^- decay $(\beta^-\beta^-)$, decay through emission of 3 α 's,
$\begin{array}{lll} \beta - n, \; \beta - p, \\ \beta - \alpha, \; \dots \end{array}$	$\begin{array}{l} \text{delayed } n,p,\alpha,\dots\\ \text{(emission following }\beta^-\\ \text{decay)} \end{array}$
$\epsilon p, \epsilon \alpha, \\ \epsilon SF,$	delayed p, α , SF, (emission following ϵ or β^+ decay)

NNDC Web Services

The centerfold presents the NNDC home page on the web (*www.nndc.bnl.gov*) and was prepared by Boris Pritychenko. The greatly expanded NNDC web services offer a wealth of Nuclear Physics information which includes analysis programs, reference data, and custom—tailored retrievals from its many databases. The ND2013 info is provided by Alejandro Sonzogni.

DOE Standard for Nuclear Material Inventory

The sixth edition (2000) of Nuclear Wallet Cards was adopted as the standard by the the US Department of Energy for the purposes of their nuclear material inventory. The sixth edition, as well as, the current edition are available through the NNDC web site.

Homeland Security

Nuclear Wallet Cards for Radioactive Nuclides, a reference for homeland security personnel based on this booklet was published in March 2004. The booklet, although limited to radioactive nuclides, contains additional radiation information. It is available only on the web and its printed form is no longer available.

Acknowledgements

The author is grateful for help from Eddie Browne, Tim Johnson, John Kelley, Filip Kondev, Elizabeth McCutchan, and Balraj Singh in checking parts of the table. Thanks to NNDC colleagues, especially, Michael Herman, Head, NNDC, for their support.

This research was supported by the Office of Nuclear Physics, Office of Science, US Department of Energy.

References

- 1. Evaluated Nuclear Structure Data Filea computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory (file as of August 15, 2011).
- 2. Nuclear Data Sheets Elsevier, Amsterdam. Evaluations published by mass number for A = 21 to 294. See page ii of any issue for the index to A-chains.
- 3. Nuclear Physics Elsevier, Amsterdam Evaluations for A = 3 to 20.
- 4. XUNDL, An Experimental Unevaluated Nuclear Data List, mostly prepared under supervision of Dr. Balraj Singh, McMaster U., Canada, and maintained by the National Nuclear Data Center, Brookhaven National Laboratory.
- 5. Nuclear Science Reference Filea bibliographic computer file of nuclear science references continually updated and maintained by the National Nuclear Data Center, Brookhaven National Laboratory.
- 6. Mid-term Atomic Mass Evaluation, private communication from G. Audi, W. Meng (2011).
- 7. Isotopic composition of the elements 2009, Michael Berglund, Michael E. Wieser, Pure Appl. Chem. 83, 397 (2011).
- 8. Evaluation and Compilation of Fission Product Yields 1993, T.R. England and B.F. Rider; Rept. LA-UR-94-3106 (1994). ENDF/B-VI evaluation; MAT #9228, Revision 1.

References (cont.)
9. Table of Isotopes (1978), 7th edition,
Editors: C.M. Lederer, V.S. Shirley, Authors:
E. Browne, J.M. Dairiki, R.E. Doebler, A.A.
Shihab-Eldin, J. Jardine, J.K. Tuli, and A.B.
Buyrn, John Wiley, New York.

	ucli		_	Δ	T½, Γ, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
0	n	1	1/2+	8.071	10.183 m <i>17</i>	β–
1	H	1	1/2+	7.289	99.9885% 70	
		2	1+	13.136	0.0115% 70	
		3	1/2+	14.950	12.32 y 2	β–
		4	2-	24.6		n
		5	(1/2+)	32.89	5.7 MeV 21	2n
		6	(2-)	41.9	1.6 MeV 4	n
		7	(1/2+)	47.9	$29 \times 10^{-23} \text{ y } 7$	
2	He	3	1/2+	14.931	0.000134% 3	
		4	0+	2.425	99.999866% 3	
		5	3/2-	11.23	0.60 MeV 2	α , n
		6	0+	17.592	801 ms 10	β–
		7 8	(3/2)– 0+	26.067 31.609	150 keV <i>20</i> 119.1 ms <i>12</i>	n g g n 1 <i>00</i> /-
		9	1/2+	39.78	113.1 IIIS 12	β- , β-n 16% n
		10	0+	48.81	300 keV 200	n
3	Li	3	0.1	29s	unbound	
3	ы	4	2-	25.3	6.03 MeV	p?
		5	$\frac{2-}{3/2-}$	11.68	≈1.5 MeV	p p, α
		6	1+	14.087	7.59% 4	ρ, α
		7	3/2-	14.907	92.41% 4	
		8	2+	20.945	839.9 ms 9	β -, β - α
		9	3/2-	24.954	178.3 ms 4	β-, β-n 50.8%
		10	(1-,2-)	33.05		n
		11	3/2-	40.728	8.75 ms 14	β-, β-n 83%,
						β –2n 4 . 1% ,
						β–nα 0.027%
		12		48.92	<10 ns	n?
		13		58.3		
4	Вe	5	(1/2+)	37s		p
		6	0+	18.375	92 keV 6	p , α
		7	3/2-	15.768	53.24 d 4	ε
		8	0+	4.941	5.57 eV 25	α
		9	3/2-	11.348	100.%	0
		$\frac{10}{11}$	0+ 1/2+	12.607	$1.387 \times 10^6 \text{ y } 12$	β-
		12	0+	$20.177 \\ 25.076$	13.81 s <i>8</i> 21.49 ms <i>3</i>	β -, β - α 3.1%
		13	(1/2-)	33.21	$2.7 \times 10^{-21} \text{ s } 18$	β-, β-n≤1% n
		14	0+	40.0	4.35 ms 17	β- , β-n 81%,
			0.1	10.0	1.00 ms 17	β-2n 5%
		15		49.8s	<200 ns	n?
		16	0+	57.7s	<200 ns	2n?
5	В	6		47s	unbound	2p?
		7	(3/2-)	27.87	1.4 MeV 2	α, p
		8	2+	22.921	770 ms 3	ε, εα
		9	3/2-	12.416	0.54 keV <i>21</i>	p, 2α
		10	3+	12.050	19.9% 7	
		11	3/2-	8.667	80.1% 7	
		12	1+	13.368	$20.20~\mathrm{ms}~2$	β -, β -3 α 1.58%
		13	3/2-	16.562	17.33 ms 17	β–
		14	2-	23.66	12.5 ms 5	β–
					1	

Nι	ıcli	de		Δ	T½, Γ, or	
${f Z}$	$\mathbf{E}\mathbf{l}$	A	Jπ	(MeV)	Abundance	Decay Mode
5	В	15		28.96	9.93 ms 7	β - , β -n 93.6%, β -2n 0.4%
		16	0-	37.12	<190 ps	n
		17	(3/2-)	43.8	5.08 ms 5	β-, β-n 63%, β-2n 11%, β-3n 3.5%, β-4n 0.4%
		18	(4-)	51.9s	<26 ns	n?
		19	(3/2-)	58.8s	2.92 ms <i>13</i>	β– , β–n 72%, β–2n 16%
		20		67.1s		
		21		75.7s		
6	\mathbf{C}	8	0+	35.08	230 keV 50	p , α
		9	(3/2-)	28.909	126.5 ms 9	ε, ερ 61.6%,
						εα 38.4%
		10	0+	15.698	19.308 s 4	ε
		11	3/2-	10.650	20.334 m 24	ε
		12	0+	0.000	98.93% 8	
		13	1/2-	3.125	1.07% 8	
		14	0+	3.020	5700 y <i>30</i>	β–
		15	1/2+	9.873	2.449 s 5	β_
		16	0+	13.694	0.747 s 8	β– , β–n 99%
		17	3/2+	21.03	193 ms <i>13</i>	β– , β–n 32%
		18	0+	24.92	92 ms 2	β-, β-n 31.5%
		19	1/2+	32.41	49 ms 4	β– , β–n 61%
		20	0+	37.6	14 ms + 6-5	β- , β-n 72%
		21	(1/2+)	45.6s	<30 ns	n?
		22	0+	52.1s	6.1 ms +14-12	β-, β-n 61%, β-2n<37%
		23		62.7s		
7	N	10		38.8		p
		11	1/2+	24.30	$0.83~{ m MeV}~3$	p
		12	1+	17.338	11.000 ms 16	ε
		13	1/2-	5.345	9.965 m 4	ε
		14	1+	2.863	$99.636\% \ 20$	
		15	1/2-	0.101	$0.364\%\ 20$	
		16	2-	5.683	7.13 s 2	β -, β - α 1.2×10 ⁻³ %
		17	1/2-	7.87	4.173 s 4	β – , β –n 95 . 1%
		18	1–	13.11	620 ms 8	β– , β–α 12.2%, β–n 7%
		19		15.86	336 ms 3	β– , β–n 41.8%
		20	2-	21.76	136 ms 3	β -, β -n 42.9%
		21	(1/2-)	25.25	83 ms 8	β-, β-n 90.5%
		22	(0-,1-)	32.0	20 ms 2	β-, β-n 33%, β-2n 12%
		23		38.4s	14.5 ms <i>14</i>	β -, β -n, β -2n
		24		47.5s	<52 ns	n?
		25		56.5s		
8	O	12	0+	32.05	$0.40~{\rm MeV}~25$	p
		13	(3/2-)	23.114	$8.58~\mathrm{ms}~5$	ϵ , ϵp
		14	0+	8.007	70.620 s 15	ε
		15	1/2-	2.855	122.24 s <i>16</i>	ε

Nυ	ıcli	de		Δ	Τ½, Γ, or	
${f Z}$	El	A	Jπ	(MeV)	Abundance	Decay Mode
8	O	16	0+	-4.737	$99.757\% \ 16$	
		17	5/2+	-0.809	0.038% 1	
		18	0+	-0.783	0.205%~14	
		19	5/2+	3.333	26.88 s 5	β–
		20	0+	3.796	13.51 s 5	β–
		21	(5/2+)	8.06	3.42 s 10	β-
		22	0+	9.28	2.25 s 9	β-, β-n<22%
		23	1/2+	14.62	97 ms 8	β-, β-n 7%
		24	0+	18.5	65 ms 5	β– , β–n 58%
		25	0.	27.3	.40	9
		26	0+	35.1s	<40 ns	n?
		$\frac{27}{28}$	0.	44.1s $52.9s$	<260 ns	n?
			0+		<100 ns	n?
9	\mathbf{F}	14	(2-)	31.96		p
		15	(1/2+)	16.81	1.0 MeV 2	p
		16	0-	10.680	40 keV 20	p
		17	5/2+	1.951	64.49 s 16	ε
		18	1+	0.873	109.77 m 5	ε
		19	1/2+	-1.487	100%	0
		20	2+	-0.017	11.07 s 6	β–
		21	5/2+	-0.047	4.158 ± 20	β_
		$\frac{22}{23}$	(4+) 5/2+	2.79 3.3	4.23 s 4 2.23 s 14	β -, β -n<11%
		$\frac{25}{24}$		$\frac{3.3}{7.56}$	390 ms 70	β-
		$\frac{24}{25}$	(1,2,3)+5/2+	11.36	80 ms 9	β-, β-n<5.9% β-, β-n 23.1%
		26	(1+)	18.67	9.7 ms 7	β-, β-n 11%
		27	(5/2+)	24.6	5.0 ms 2	β-, β-n 77%
		28	(0/21)	33.1s	<40 ns	р, рпти
		29	(5/2+)	40.0s	2.5 ms 3	β -, β -n
		30	(3/2.)	48.4s	2.0 ms o	n , p
		31		55.9s	>250 ns	β–n , β–
10	Ne	16	0+	24.00	$9 \times 10^{-21} \text{ s}$	2p
10	116	17	1/2-	16.500	109.2 ms 6	ε, ερ, εα
		18	0+	5.317	1.6670 s 17	ε, ερ, εω
		19	1/2+	1.752	17.22 s 2	ε
		20	0+	-7.042	90.48% 3	•
		$^{-1}_{21}$	3/2+	-5.731	$0.27\% \ 1$	
		22	0+	-8.024	$9.25\% \ 3$	
		23	5/2+	-5.154	37.24 ± 12	β–
		24	0+	-5.951	$3.38 \; \text{m} \; 2$	β_
		25	1/2 +	-2.06	602 ms 8	β_
		26	0+	0.48	197 ms 1	β-, β-n 0.13%
		27	(3/2+)	7.03	31.5 ms <i>13</i>	β- , β-n 2%
		28	0+	11.29	18.9 ms 4	β- , β-n 12%, β- 3 . 6%
		29	(3/2+)	18.40	14.8 ms 3	β- 3.0% β- , β-n 28%, β-2n 4%
		30	0+	23.0	7.3 ms 3	β-, β-n 13%, β-8.9%
		31		31	3.4 ms 8	β-, β-n
		32	0+	37.0s	3.5 ms 9	β , β n β β β β
		33	4 ·	46.0s	<180 ns	n , p
		- 0		00	3	

Nucli		T _	Δ (Μ. Υ.)	T½, Γ, or	D W 1
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
10 Ne	34	0+	52.8s	>60 ns	β–n , β–
11 Na	18	1-	25.0	$1.3{\times}10^{-21}~\mathrm{s}~4$	p
	19	(5/2+)	12.93	<40 ns	p
	20	2+	6.850	447.9 ms 23	ϵ , $\epsilon \alpha 20.05\%$
	21	3/2+	-2.184	22.49 s 4	ε
	22	3+	-5.181	2.6027 y 10	3
	23	3/2+	-9.530	100%	2
	24	4+	-8.417	14.997 h <i>12</i>	β-
	24m	1+	-7.945	20.18 ms 10	IT 99.95%, $\beta = 0.05\%$
	25	5/2+	-9.357	59.1 s 6	β-~0.00%
	26	3+	-6.860	1.07128 s 25	β_
	27	5/2+	-5.517	301 ms 6	β-, β-n 0.13%
	28	1+	-0.99	30.5 ms 4	β -, β -n 0.58%
	29	3/2+	2.67	44.9 ms 12	β-, β-n 21.5%
	30	2+	8.37	48 ms 2	β -, β -n 30%,
					β-2n 1.15%,
					β - α 5 . 5×10 ⁻⁵ %
	31	3/2(+)	12.5	17.0 ms 4	β-, β-n 37%,
					β –2n 0.87%,
					$\beta - 3n < 0.05\%$
	32	(3-,4-)	18.8	13.2 ms 4	β-, β-n 24%,
					β–2n 8%
	33	(3/2+)	24.0s	8.0 ms 4	β- , β-n 47%, β-2n 13%
	34		31.3s	5.5 ms 10	β -2n 13% β -, β -2n \approx 50%,
					β–n≈15%
	35		37.8s	$1.5~\mathrm{ms}~5$	β- , β-n
	36		45.9s	<180 ns	n
	37		53.1s	>60 ns	β –n , β –
12 Mg	19		31.83	4.0 ps 15	2p
	20	0+	17.56	90.8 ms 24	ϵ , $\epsilon p \approx 27\%$
	21	5/2 +	10.91	122 ms 3	ε, ερ 32.6%,
					$\varepsilon \alpha < 0.5\%$
	22	0+	-0.399	3.8755 s <i>12</i>	3
	23	3/2+	-5.473	11.317 s <i>11</i>	3
	24	0+	-13.933	78.99% 4	
	25	5/2+	-13.192	10.00% 1	
	26	0+ 1/2+	-16.214	11.01% 3 9.458 m <i>12</i>	Q
	$\frac{27}{28}$	0+	-14.586 -15.018	20.915 h 9	β– β–
	29	3/2+	-10.60	1.30 s 12	β–
	30	0+	-8.89	335 ms 17	β–
	31	1/2(+)	-3.19	232 ms 15	β-, β-n 1.7%
	32	0+	-0.91	86 ms 5	β -, β -n 5.5%
	33	3/2-	4.95	90.5 ms 16	β-, β-n 14%
	34	0+	8.56	20 ms 10	β , β
	35	(7/2-)	15.6	70 ms 40	β-, β-n 52%
	36	0+	20.4	3.9 ms 13	β -, β -n
	37	(7/2-)	28.3s	>260 ns	β-, β-n
	38	0+	34.1s	>260 ns	β -, β -n
	39		42.3s	<180 ns	n
				4	

Nucli Z El	de A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Dogov Modo
					Decay Mode
12 Mg		0+	48.6s	>170 ns	β – , β –n
13 Al	$\frac{21}{22}$	(5/2+)	27.1s	<35 ns	p c op 54 5%
	44	4+	18.2s	91.1 ms 5	ε, εp 54.5%, ε2p 1.1%, εα 0.04%
	23	5/2+	6.748	446 ms 6	ε, ερ 1.22%
	24	4+	-0.048	2.053 s 4	ϵ , ϵ p 1.6×10 ⁻³ %,
	24m	1+	0.378	130 ms 3	εα 0.04% IT 82.5%, ε 17.5%, εα 0.03%
	25	5/2+	-8.916	7.183 s <i>12</i>	ε
	26	5+	-12.210	$7.17{ imes}10^5$ y 24	ε
	26m		-11.982	6.3464 s 7	ε
	27	5/2+	-17.196	$\boldsymbol{100\%}$	
	28	3+	-16.850	2.2414 m <i>12</i>	β–
	29	5/2+	-18.215	6.56 m 6	β–
	30	3+	-15.87	$3.62 ext{ s } 6$ $644 ext{ ms } 25$	β– β–
	$\frac{31}{32}$	(3/2,5/2)+ 1+	-14.95 -11.06	33.0 ms 2	β-, β-n 0.7%
	33	(5/2)+	-8.44	41.7 ms 2	β -, β -n 8.5%
	34	(0/2)!	-3.05	42 ms 6	β-, β-n 27%
	35		-0.22	37.2 ms 8	β-, β-n 38%
	36		5.95	90 ms 40	β -, β -n < 31%
	37		9.8	10.7 ms <i>13</i>	β–
	38		16.2	7.6 ms 6	β -, β -n
	39		21.0s	7.6 ms 16	β-, β-n
	40		28.0s	>260 ns	β-, β-n
	$\frac{41}{42}$		33.9s $41.5s$	>260 ns >170 ns	β– β– , β–n
	43		48.4s	>170 ns	β -, β -n
14 Si	22	0+	33.0s	29 ms 2	ε, ερ 32%
	23	(5/2)+	23.1s	42.3 ms 4	ε, ερ 71%, ε2ρ 3.6%
	24	0+	10.75	140.5 ms 15	ε, ερ 45%
	25	5/2+	3.83	$220~\mathrm{ms}~3$	ε, ερ 35%
	26	0+	-7.140	2.229 s 3	ε
	27	5/2+	-12.384	4.15 s 4	ε
	$\frac{28}{29}$	0+ 1/2+	-21.493	$egin{array}{c} 92.223\% \ 19 \ 4.685\% \ 8 \end{array}$	
	30	0+	-21.895 -24.432	$3.092\% \ 11$	
	31	3/2+	-22.949	157.3 m 3	β–
	32	0+	-24.077	153 y <i>19</i>	β_
	33	3/2 +	-20.514	$6.11 \mathrm{\ s}\ 21$	β_
	34	0+	-19.96	2.77 ± 20	β–
	35		-14.36	0.78 s 12	β -, β -n < 5%
	36	0+	-12.42	0.45 s 6	β -, β -n < 10%
	37	(7/2-)	-6.59	90 ms 60	β-, β-n 17%
	$\frac{38}{39}$	0+	$\substack{-4.17\\2.32}$	>1 µs 47.5 ms 20	β -, β -n β -, β -n
	40	0+	$\frac{2.32}{5.4}$	33.0 ms 10	β -, β -n
	41	0.1	12.1	20.0 ms 25	β -, β -n?
	42	0+	16.6s	12.5 ms 35	β -, β -n
	43		23.1s	>60 ns	β -, β -n
	44	0+	28.5s	>360 ns	β-, β-n
				5	

Nucl	ide		Δ	T½, Γ, or	
Z El	Α	Jπ	(MeV)	Abundance	Decay Mode
14 Si	45		37.2s		
15 P	24	(1+)	32.8s		ε?, p?
	25	(1/2+)	19.7s	<30 ns	р
	26	(3+)	11.0s	43.7 ms 6	ε, ερ
	27	1/2 +	-0.71	260 ms 80	ε, ερ 0.07%
	28	3+	-7.149	$270.3~\mathrm{ms}~5$	ϵ , ϵ p 1.3×10 ⁻³ % ,
					$\varepsilon \alpha \ 8.6 \times 10^{-4}\%$
	29	1/2+	-16.952	4.142 s 15	ε
	30	1+	-20.200	2.498 m 4	ε
	31	1/2 +	-24.441	$\boldsymbol{100\%}$	
	32	1+	-24.304	14.262 d <i>14</i>	β–
	33	1/2+	-26.337	25.35 d <i>11</i>	β–
	34	1+	-24.548	12.43 s 8	β–
	35	1/2+	-24.857	47.3 s 7	β–
	36	4-	-20.25	5.6 s 3	β–
	37	(0.4.)	-19.00	2.31 s 13	β-
	38	(0-:4-)	-14.64	0.64 s 14	β-, β-n 12%
	39	(1/2+)	-12.80	0.28 s 4	β-, β-n 26%
	40	(2-,3-)	-8.1	125 ms 25	β-, β-n 15.8%
	41	(1/2+)	-4.98	100 ms 5	β-, β-n 30%
	42	(1/0)	1.0	48.5 ms 15	β-, β-n 50%
	43	(1/2+)	4.7	36.5 ms 15	β-, β-n
	$\frac{44}{45}$		$10.4\mathrm{s}$ $15.3\mathrm{s}$	18.5 ms 25 >200 ns	β-, β-n
	46		22.8s	>200 ns	β– β–
	47		22.0s 29.2s	>200 Hs	p=
16 S	26	0+	27.1s	<79 ns	0 2
10 5	$\frac{26}{27}$	(5/2+)	17.1s	15.5 ms 15	2p?
	21	(5/2+)	17.08	10.5 ms 15	ε, εp 2.3%, ε2p 1.1%
	28	0+	4.1	125 ms 10	ε, ερ 20.7%
	29	5/2 +	-3.16	187 ms 4	ε, ερ 47%
	30	0+	-14.062	$1.178 \mathrm{\ s}\ 5$	ε
	31	1/2+	-19.043	2.572 s 13	ε
	32	0+	-26.015	94.99% 26	
	33	3/2+	-26.586	0.75% 2	
	34	0+	-29.931	4.25% 24	
	35	3/2+	-28.846	87.37 d 4	β–
	36	0+ 7/0	-30.664	0.01% 1	0
	37	7/2-	-26.896	5.05 m 2	β_
	$\frac{38}{39}$	0+ (7/2)-	-26.861 -23.16	170.3 m 7 11.5 s 5	β– β–
	40	0+	-23.10 -22.9	8.8 s 22	β– β–
	41	(7/2-)	-22.9 -19.09	1.99 s 5	β– β– , β–n
	42	0+	-17.7	1.03 s 3	β-, β-11
	43	01	-12.07	0.28 s 3	β- , β-n 40%
	44	0+	-9.1	100 ms 1	β-, β-n 18%
	45	÷.	-4.0	68 ms 2	β-, β-n 54%
	46	0+	0.0s	50 ms 8	β-
	47	-	7.4s		•
	48	0+	12.8s	≥200 ns	β–
	49		21.2s	<200 ns	n
17 C	28	(1+)	27.5s	C	p?

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
17 Cl					-
17 61	$\frac{29}{30}$	(3/2+) $(3+)$	13.8s $4.4s$	<20 ns <30 ns	p
	31	(5+)	-7.07	150 ms 25	p ε, εp 0.7%
	$\frac{31}{32}$	1+	-13.335	298 ms 1	ε, ερ 0.7% ε, εα 0.05%,
	02	1.	10.000	200 ms 1	εp 0.03%
	33	3/2+	-21.003	2.511 s 4	ε ε
	34	0+	-24.440	1.5264 s 14	ε
	34m		-24.294	32.00 m 4	ε 55.4%, IT 44.6%
	35	3/2+	-29.013	75.76% 10	0 00 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1
	36	2+	-29.521	$3.01 \times 10^5 \text{ y } 2$	β-98.1%, ε 1.9%
	37	3/2+	-31.761	24.24% 10	,
	38	2-	-29.798	37.24 m 5	β–
	38m	n 5-	-29.127	715 ms 3	ĬТ
	39	3/2+	-29.800	56.2 m 6	β–
	40	2-	-27.56	1.35 m 2	β_
	41	(1/2+)	-27.31	38.4 s 8	β–
	42		-24.9	6.8 s 3	β–
	43	(1/2+)	-24.4	3.13 s 9	β–
	44	(2-)	-20.6	0.56 s 11	β -, β -n < 8%
	45	(1/2+)	-18.36	413 ms 25	β– , β–n 24%
	46		-13.8	232 ms 2	β– , β–n 60%
	47		-10.1s	101 ms 6	β -, β -n > 0%
	48		-4.1s	≥200 ns	β–
	49		1.1s	≥170 ns	β-
	50	(0.10)	8.4s	>620 ns	β -, β -n
	51	(3/2+)	14.5s	>200 ns	β–
18 Ar	30	0+	21.5s	<20 ns	p?
	31	5/2(+)	11.3s	14.4 ms 6	ε, ερ 62%, ε2ρ 8.5%
	32	0+	-2.200	100.5 ms 3	ε, ερ 35.6%
	33	1/2+	-9.384	173.0 ms 20	ε, ερ 38.7%
	34	0+ 3/2+	-18.377	844.5 ms 34	ε
	35		-23.047	1.7756 s 10	3
	$\frac{36}{37}$	0+ 3/2+	-30.231 -30.947	0.3336 % 21 35.04 d 4	ε
	38	0+	-34.714	0.0629% 7	č
	39	7/2-	-33.242	269 y 3	β–
	40	0+	-35.040	99.6035% 25	P
	41	7/2-	-33.067	109.61 m 4	β–
	42	0+	-34.422	32.9 y 11	β_
	43	(5/2-)	-32.009	5.37 m 6	β–
	44	0+	-32.673	11.87 m 5	β–
	45	5/2 - ,7/2 -	-29.770	21.48 s 15	β–
	46	0+	-29.73	8.4 s 6	β–
	47	(3/2)-	-25.21	1.23 s 3	β -, β -n < 0.2%
	48	0+	-22.6s	475 ms 40	β-
	49		-16.8s	170 ms 50	β-, β-n 65%
	50	0+	-12.8s	85 ms 30	β– , β–n 35%
	51	0	-5.9s	>200 ns	β_
	52	0+	-1.0s	>620 ns	β-?
	53		7.1s	>620 ns	β -?, β -n?, β -2n?
19 K	32		21.1s		p?
	33		7.0s	<25 ns	p

Nucli Z El	de A	Jπ	Δ (MeV)	Τ½, Γ, or Abundance	Decay Mode
19 K	34	(1+)	-1.2s	<25 ns	р
10 11	35	3/2+	-11.172	178 ms 8	ε, ερ 0.37%
	36	2+	-17.417	342 ms 2	ε, ερ 0.05%,
	00			5 1 2 1115 2	$\varepsilon \alpha 3.4 \times 10^{-3}\%$
	37	3/2+	-24.800	1.226 s 7	ε
	38	3+	-28.800	7.636 m 18	ε
	38r	n 0+	-28.670	924.3 ms 3	ε 99.97%, IT 0.03%
	39	3/2+	-33.807	93.2581% 44	
	40	4-	-33.535	$1.248{ imes}10^9~{ m y}~3$	β – 89 . 28%,
				0.0117% 1	$\epsilon~10.72\%$
	41	3/2+	-35.560	$6.7302\% \ 44$	
	42	2-	-35.022	12.321 h <i>25</i>	β–
	43	3/2+	-36.575	22.3 h 1	β–
	44	2-	-35.781	22.13 m <i>19</i>	β–
	45	3/2+	-36.615	17.81 m <i>61</i>	β–
	46	(2-)	-35.413	$105 \mathrm{~s}~10$	β–
	47	1/2+	-35.708	17.50 s 24	β–
	48	(2-)	-32.285	6.8 s 2	β– , β–n 1.14%
	49	(1/2+,3/2+)	-29.611	1.26 s 5	β- , β-n 86%
	50	(0-,1-,2-)	-25.74	472 ms 4	β- , β-n 29%
	51	(1/2+,3/2+)	-21.6s	$365~\mathrm{ms}~5$	β-, β-n 47%
	52	(2-)	-16.0s	118 ms 6	β -, β -n $\approx 73\%$
	53	(3/2+)	-11.1s	30 ms 5	β -, β -n $\approx 75\%$,
	54		-4.3s	10 ms 5	$\beta - 2n < 1\%$ $\beta - , \beta - n > 0\%$
	55		$^{-4.5s}$	>360 ns	β -, β -n
	56		8.7s	>620 ns	β , β in β , β - n ?, β - $2n$?
20 Ca	34	0+	13.9s	<35 ns	р
20 Ca	35	01	4.8s	25.7 ms 2	ε, ερ 95.9%,
	00		1.00	20.1 ms 2	ε2p 4.1%
	36	0+	-6.45	102 ms 2	ε, ερ 54.3%
	37	3/2+	-13.135	181.1 ms 10	ε, ερ 82.1%
	38	0+	-22.058	440 ms 12	ε
	39	3/2+	-27.282	859.6 ms 14	ε
	40	0+	-34.846	$> 3.0 \times 10^{21} \text{ y}$	2ϵ
				96.94% 16	
	41	7/2-	-35.137	$1.02{ imes}10^5~{ m y}~7$	ε
	42	0+	-38.547	$0.647\%\ 23$	
	43	7/2-	-38.408	$0.135\% \ 10$	
	44	0+	-41.468	$2.09\% \ 11$	
	45	7/2-	-40.812	162.61 d 9	β–
	46	0+	-43.139	$>0.28\times10^{16} \text{ y}$	2β–
		- 10		0.004% 3	2
	47	7/2-	-42.345	4.536 d 3	β-
	48	0+	-44.223	>5.8×10 ²² y	2β – 75%
	49	3/2-	-41.298	0.187% 21 8.718 m <i>6</i>	β_
	50	0+	-39.588	13.9 s 6	β–
	51	(3/2-)	-35.87	10.0 s 8	β- , β-n
	52	0+	-32.5	4.6 s 3	β , β in β , β in β , β in β .
	53	(3/2-,5/2-)	-27.5s	90 ms 15	β -, β -n>30%
	54	0+	-23.0s	86 ms 7	β-
					•

	lide		- (3)		Γ½, Γ, or		D 14 1
	il A				bundance		Decay Mode
20 C	a 55			.0s	22 ms 2		-, β-n
	56			.4s	11 ms 2		-, β-n?
	57		-5		>620 ns		-, β-n, β-2n
	58	0	+ –(.3s	>620 ns	β-	-, β–n
21 S			15	.5s		p	
	37		3	.6s		p	?
	38			.4s		p	
	39			. 17	<300 ns	p	
	40	4	20	. 523	182.3 ms 7		, ερ 0.44%,
		- /					α 0.02%
	41				96.3 ms 17	ε	
	42				681.3 ms 7	ε	
	42			.505	61.7 s 4	ε	
	43 44				3.891 h <i>12</i>	3	
	44			.816 .545	3.97 h <i>4</i> 58.61 h <i>10</i>	ε τ	Γ98.8%, ε1.2%
	45			.070	100%	1.	1 90.0%, & 1.2%
	45			.058	318 ms 7	ľ	r
	46			.759	83.79 d 4	β-	
	46			.617	18.75 s 4	I'.	
	47				3.3492 d <i>6</i>	β-	
	48			.502	43.67 h 9	β-	
	49				57.18 m <i>13</i>	β-	
	50			. 55	102.5 s 5	β-	
	50	m 2+	,3+ -44	. 29	0.35 s 4	I'.	$\Gamma > 97.5\%$, $\beta - < 2.5\%$
	51			. 23	12.4 s 1	β-	-
	52	3(+) -40	. 4	8.2 s 2	β-	_
	53	(7/	2-) -37	.5s	2.4 s 6	β-	-, β-n?
	54	(3)+ -38	.7s	526 ms <i>15</i>	β-	
	55	*	2)29		96 ms 2		-, β–n 17%
	56	,		.5s	26 ms 6		-, β–n?
	56	,		.5s	$75~\mathrm{ms}~6$		-, β-n>14%
	57			.1s	22 ms 2	β-	-, β-n
	58			.4s	12 ms 5		- , β-n
	59			.6s	>360 ns		- , β-n
	60			.4s	>360 ns		- , β–n
	61			.6s	>360 ns	p-	-, β–n
22 T				.6s			
	39	,			81 ms + 6-4		, ερ
	40			. 9	52.4 ms 3		, ερ 97.5%
	41		2+ -15		80.4 ms 9		, ερ
	42 43			.104 $.321$	199 ms 6 509 ms 5	3	
	44			.548	60.0 y 11	3 3	
	45			.008	184.8 m 5	3	
	46			. 127	8.25% 3	٤	
	47			.936	7.44% 2		
	48			. 491	73.72% 3		
	49			. 562	5.41% 2		
	50			.430	5.18% 2		
	51			.731	5.76 m 1	β-	_
	52	0		.468	1.7 m <i>1</i>	β-	
				Q		-	

Nucli Z El	de A	Jπ	<u>Δ</u> (MeV)	T½, Γ, or Abundance	Decay Mode
22 Ti	53	(3/2)-	-46.8	32.7 s 9	β–
	54	0+	-45.6	1.5 s 4	β–
	55	(1/2)-	-41.7	1.3 s 1	β–
	56	0+	-38.9	0.200 s 5	β-, β-n
	57	(5/2-)	-33.5	98 ms 5	β-, β-n
	58	0+	-30.7s	57 ms 10	β-, β-n
	59	(5/2-)	$-25.0\mathrm{s}$	$27.5~\mathrm{ms}~25$	β–
	60	0+	-21.5s	$22.4~\mathrm{ms}~25$	β–
	61	(1/2-)	-15.5s	15 ms 4	β– , β–n
	62	0+	-11.8s	>620 ns	β –, β –n
	63		-5.2s	>360 ns	β-, β-n
23 V	40		11.6s		p?
	41		0.0s		p?
	42		-7.6s	<55 ns	p
	43 44	(2+)	-18.0s	79.3 ms <i>24</i> 111 ms <i>7</i>	3
			$-24.1 \\ -24.1$		ε, εα
	44m 45	(6+) 7/2–	-24.1 -31.88	150 ms 3 547 ms 6	ε
	46	0+	-31.00 -37.074	422.50 ms 11	ε
	46m	3+	-36.272	1.02 ms 7	IT
	47	3/2-	-42.005	32.6 m 3	ε
	48	4+	-44.476	15.9735 d <i>25</i>	3
	49	7/2-	-47.960	330 d <i>15</i>	3
	50	6+	-49.224	$>2.1\times10^{17} \text{ y}$	$\varepsilon > 92.9\%$
				$0.250\% \ 2$	$\beta - < 7.1\%$
	51	7/2-	-52.203	$99.750\% \ 2$	
	52	3+	-51.443	$3.743~\mathrm{m}~5$	β–
	53	7/2-	-51.849	1.543 m <i>14</i>	β–
	54	3+	-49.89	49.8 s 5	β–
	55	(7/2-)	-49.2	$6.54 \mathrm{\ s}\ 15$	β–
	56	1+	-46.1	0.216 s 4	β– , β–n
	57	(7/2-)	-44.2	0.32 s 3	β –, β –n
	58	(1+)	-40.2	191 ms 10	β-, β-n
	59	(5/2-)	-37.1	97 ms 2	β -, β -n < 3%
	60		-32.6	68 ms 5	β-
	60m		-32.6	40 ms 15	β-, β-n
	60m 61	(3/2-)	$-32.6 \\ -29.5s$	122 ms <i>18</i> 52.6 ms <i>42</i>	β -, β -n
	62	(3/2-)	-29.5s -24.6s	33.5 ms 20	β- , β-n≥6% β- , β-n
	63	7/2-	-24.0s -21.1s	19.2 ms 24	β -, β -n $\approx 35\%$
	64	1/2-	-15.6s	19 ms 8	β-, β-n~35% β-
	65		-11.3s	>360 ns	β β-, β-n
	66		-5.3s	>360 ns	β -, β -n
24 Cr	42	0+	6.5s	13.3 ms 10	ε, ερ 94.4%
	43	(3/2+)	-1.9s	20.6 ms 9	ε, εp 81%, ε2p 7.1%, ε3p 0.08%
	44	0+	-13.1s	42.8 ms 6	ε, εp 14%
	45	(7/2-)	-19.4s	60.9 ms 4	ε, ερ 34.4%
	46	0+	-29.47	0.26 s 6	ε, ερ σ τ. τ.«
	47	3/2-	-34.56	500 ms 15	ε
	48	0+	-42.821	21.56 h 3	ε
	49	5/2-	-45.332	42.3 m 1	ε

Nuclio Z El	de A	Īσ	Δ (MaV)	T½, Γ, or	Doggy Mode
		Jπ	(MeV)	Abundance	Decay Mode
24 Cr	50	0+	-50.261	>1.3×10 ¹⁸ y	2ϵ
	E 1	7/0	E1 4E1	4.345% 13	
	$\frac{51}{52}$	7/2- 0+	-51.451 -55.418	27.7025 d <i>24</i> 83.789% <i>18</i>	3
	53	3/2-	-55.285	9.501% 17	
	54	0+	-56.933	2.365% 7	
	55	3/2-	-55.108	3.497 m 3	β–
	56	0+	-55.281	5.94 m 10	β–
	57	(3/2)-	-52.524	21.1 s 10	β_
	58	0+	-51.8	7.0 s 3	β_
	59	(1/2-)	-47.9	1.05 s 9	β_
	60	0+	-46.5	0.49 s 1	β_
	61	(5/2-)	-42.2	243 ms 11	β-, β-n
	62	0+	-40.4	206 ms 12	β -, β -n
	63	1/2-	-35.6s	129 ms 2	β– , β–n
	64	0+	-33.3s	42 ms 2	β–
	65	(1/2-)	-27.8s	28 ms 3	β–
	66	0+	-24.3s	23 ms 4	β–
	67		-18.5s		β– ?
	68	0+	$-14.9\mathrm{s}$	>360 ns	β– , β–n
25 Mn		(2-)	6.7s	<105 ns	ϵ , p
	45		-5.1s		
	46	(4+)	-12.0s	36.2 ms 4	ε, ερ 57%
	47	(5/2-)	-22.3s	88.0 ms 13	ε, εp<1.7%
	48	4+	-29.3	158.1 ms 22	ε, ερ 0.28%,
	40	E /0	27 61	200 7	$\varepsilon \alpha < 6.0 \times 10^{-4}\%$
	49	5/2- 0+	-37.61	382 ms 7	3
	50 50m	5+	-42.627 -42.402	283.19 ms <i>10</i> 1.75 m <i>3</i>	ε
	50m	5/2-	-42.402 -48.243	46.2 m 1	ء 3
	52	6+	-50.706	5.591 d 3	3
	52m	2+	-50.328	21.1 m 2	ε 98.25%, IT 1.75%
	53	7/2-	-54.689	$3.74 \times 10^6 \text{ y } 4$	ε
	54	3+	-55.556	312.12 d 6	ε, β -<2.9×10 ⁻⁴ %
	55	5/2-	-57.711	100%	, ·
	56	3+	-56.910	2.5789 h 1	β–
	57	5/2-	-57.486	85.4 s 18	β–
	58	1+	-55.827	3.0 s 1	β–
	58m	4+	-55.755	65.4 s 5	$\beta - \approx 90\%$, $IT \approx 10\%$
	59	(5/2)-	-55.525	4.59 s 5	β–
	60	1+	-52.967	$0.28 \mathrm{\ s}\ 2$	β–
	60m	4+	-52.695	1.77 s 2	β– 88.5%, IT 11.5%
	61	(5/2)-	-51.742	$0.67 \mathrm{\ s}$ 4	β–
	62m	(3+)	-48.180	671 ms 5	β -, β -n
	62m	(1+)	-48.180	92 ms 13	β-, β-n
	63	5/2-	-46.886	0.275 s 4	β -, β -n
	64	(1+)	-42.989	90 ms 4	β- , β-n 33%
	64m	(4+)	-42.814	0.50 ms 5	IT
	$\frac{65}{66}$	(5/2-)	-40.967 -36.75	84 ms 8 $65 ms 2$	β– β–
	67	(5/2+)	-30.75 -32.8s	51 ms 4	β - β -, β -n > 10%
	68	(5/2+) (>3)	-32.6s -28.0s	28 ms 3	β -, β - n
	00	(20)	20.05		P , P
				11	

Nuclio Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
25 Mn	69	5/2-	-24.4s	18 ms 4	β–
	70		-19.2s	>360 ns	β- , β-n
	71			>637 ns	β -, β -n, β -2n
26 Fe	45	(3/2+)	13.8s	1.89 ms +49-21	$2p 70\%$, $\epsilon \le 30\%$,
					εp 19%, ε2p 7.8%,
					ε3p 3.3%
	46	0+	0.8s	13.0 ms 20	ε, ερ 78.7%
	47	(7/2-)	-6.6s	21.9 ms 2	ε, ερ 88.4%, ε2p
	48	0+	-18.16s	45.3 ms 6	ε, ερ 15.9%
	49	(7/2-)	-24.8s	64.7 ms 3	ε, ερ 56.7%
	50	0+	-34.49	155 ms 11	ε, ερ?
	51	5/2-	-40.22	305 ms 5	ε
	52 50	0+	-48.332	8.275 h 8	E - III - 4 0 - 10 = 30/
	52m	12+ 7/2-	-41.374	45.9 s 6 8.51 m 2	ϵ , IT<4.0×10 ⁻³ %
	53 m		-50.946	8.51 m 2 2.54 m 2	ε IT
	54	0+	-47.906 -56.253	5.845% 35	11
	55	3/2-	-57.480	2.744 y 9	ε
	56	0+	-60.606	91.754% 36	C
	57	1/2-	-60.181	2.119% 10	
	58	0+	-62.154	0.282% 4	
	59	3/2-	-60.664	44.495 d 9	β–
	60	0+	-61.412	$2.62 \times 10^6 \text{ y } 4$	β_
	61	3/2-,5/2-	-58.920	5.98 m 6	β_
	62	0+	-58.877	68 s 2	β_
	63	(5/2-)	-55.635	$6.1~\mathrm{s}~6$	β_
	64	0+	-54.969	2.0 s 2	β_
	65	(1/2-)	-51.221	0.81 s 5	β–
	65m	(9/2+)	-50.819	1.12 s <i>15</i>	β–
	66	0+	-50.067	440 ms 60	β–
	67	(1/2-)	-45.7	0.40 s 4	β–
	68	0+	-43.1	180 ms <i>19</i>	β–
	69	1/2-	-38.4s	110 ms 6	β–
	70	0+	-36.3s	71 ms 10	β-
	71	0.	-31.0s	28 ms 5	β -, β -n
	$\frac{72}{72}$	0+	-28.3s	≥150 ns	β -, β -n 27.6%
	73 74	0+		>633 ns >638 ns	β -, β -n, β -2n β -, β -n, β -2n
~= ~		0+	40.0	>030 HS	p-, p-11, p-211
27 Co			10.3s		
	48		1.9s		
	49	(6.)	-9.6s	200 0	o on 70 E% of
	$\frac{50}{51}$	(6+) $(7/2-)$	-17.2s	38.8 ms 2 >200 ns	ε, ερ 70.5%, ε2ρ
	$\frac{51}{52}$	(6+)	-27.3s -33.92s	115 ms 23	ε ε
	53	(7/2-)	-33.928 -42.658	240 ms 9	ε
	53m		-39.461	247 ms 12	$\varepsilon \approx 98.5\%$, $p \approx 1.5\%$
	54	0+	-48.009	193.28 ms 7	ε~50.5%, p~1.5% ε
	54m		-47.812	1.48 m 2	ε
	55	7/2-	-54.029	17.53 h 3	ε
	56	4+	-56.039	77.236 d <i>26</i>	ε
	57	7/2-	-59.344	271.74 d 6	ε
	58	2+	-59.846	70.86 d <i>6</i>	ε
				10	

Nucli Z El	de A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					<u>-</u>
27 Co	58m	5+	-59.821	9.10 h 9	IT
	59	7/2-	-62.229	100%	0
	60	5+	-61.649	1925.28 d <i>14</i>	β-
	60m	$\frac{2}{7/2}$	-61.590	10.467 m 6	IT 99.76%, β-0.24%
	61		-62.897	1.650 h 5	β-
	62	2+	-61.43	1.50 m 4	β-
	62m	5+ 7/0	-61.41	13.91 m 5	$\beta - > 99\%$, IT < 1%
	63	7/2-	-61.84	27.4 s 5	β– β–
	64	1+	-59.79	0.30 s 3	•
	65 cc	(7/2)	-59.185	1.16 s 3	β– β–
	$\frac{66}{67}$	(3+)	-56.41	0.20 s 2	β– β–
	68	(7/2-)	-55.321	0.425 s 20 0.199 s 21	β– β–
		(7-)	-51.9		•
	68m	(3+)	-51.9	1.6 s 3	β–
	$\frac{69}{70}$	7/2-	-50.0	229 ms 24	β–
		(6-)	-45.6	108 ms 7	β-
	70m	(3+)	-45.6	0.50 s 18	β-
	71	(7/2-)	-43.9	80 ms 3	β-, β-n≤6%
	$\frac{72}{72}$	(6-,7-)	-39.7s	59.9 ms 17	β-, β-n≥6%
	73	0.	-37.2s	41 ms 4	β-
	74	0+	-32.7s	25 ms 5	β -, β -n $\approx 18\%$
	$75 \\ 76$	(7/2-)	-29.4s	>150 ns >634 ns	β-
					β -, β -2 n , β - n
28 Ni	48	0+	18.0s	2.1 ms + 14-6	$2p \approx 70\%$, ε
	49	_	8.7s	7.5 ms 10	ε, ερ 83%
	50	0+	-3.6s	18.5 ms 12	ε, ερ 86.7%, ε2p
	51	(7/2-)	-11.5s	23.8 ms 2	ε, ερ 87.2%
	52	0+	-22.9s	40.8 ms 2	ε, ερ 31.4%
	53	(7/2-)	-29.7s	55.2 ms 7	ε, ερ 23.4%
	54	0+	-39.22	104 ms 7	ε
	55	7/2-	-45.335	204.7 ms 37	3
	56	0+	-53.906	6.075 d <i>10</i>	ε
	57	3/2-	-56.083	35.60 h 6	ε
	58	0+	-60.228	68.077% 9	
	59	3/2-	-61.156	$7.6 \times 10^4 \text{ y } 5$	3
	60	0+	-64.472	26.223% 8	
	61	3/2-	-64.221	1.1399% 13	
	62	0+	-66.745	3.6346% 40	0
	63	1/2-	-65.512	101.2 y 15	β–
	64	0+	-67.098	0.9255% 19	0
	65	5/2-	-65.125	2.5175 h 5	β–
	66	0+	-66.006	54.6 h 3	β–
	67	(1/2)-	-63.742	21 s 1	β–
	68	0+	-63.463	29 s 2	β_
	68m	5-	-60.614	0.86 ms 5	IT
	69	9/2+	-59.978	11.2 s 9	β–
	69m	1/2-	-59.657	3.5 s 9	β–
	70 71	0+	-59.213	6.0 s 3	β–
	71 71m	(9/2+)	-55.405	2.56 s 3	β–
	71m	(1/2-)	-54.906	2.3 s 3	β–
	$\frac{72}{72}$	0+	-54.225	1.57 s 5	β–
	73	(9/2+)	-50.107	0.84 s 3	β–

Nucli Z El	de A	Јπ	Δ (MoV)	Τ½, Γ, or Abundance	Dogov Modo
			(MeV)		Decay Mode
28 Ni	74	0+	-48.7s	0.68 s 18	β-, β-n
	75 75	(7/2+)	-44.1s	344 ms 25	β- , β-n 10%
	76	0+	-41.6s	0.238 s + 15 - 18	β-, β-n
	77 78	0+	-36.7s -34.1s	128 ms + 36 - 32 0.11 s + 10 - 6	β-, β-n 30%
	79	0+	-54.18	>635 ns	β -, β -n β -, β -n, β -2n
		(0.)		>000 Hs	
29 Cu		(3+)	-1.9s	.0.00	p
	53	(3/2-)	-13.5s	<300 ns	ε, p
	54 55	(3+) $(3/2-)$	-21.4s -31.6s	<75 ns 27 ms 8	p o on 15%
	56	(3/2-) $(4+)$	-31.0s -38.2s	93 ms 3	ε, ερ 15% ε, ερ 0.4%
	57	3/2-	-36.28 -47.308	196.3 ms 7	ε, ερ σ. 4/0
	58	1+	-51.667	3.204 s 7	ε
	59	3/2-	-56.357	81.5 s 5	ε
	60	2+	-58.344	23.7 m 4	ε
	61	3/2-	-61.983	3.333 h 5	ε
	62	1+	-62.786	9.673 m 8	ε
	63	3/2-	-65.579	69.15% 15	
	64	1+	-65.424	12.701 h 2	$\epsilon 61.5\%$, β - 38.5%
	65	3/2-	-67.263	30.85% 15	
	66	1+	-66.257	5.120 m <i>14</i>	β–
	67	3/2-	-67.318	61.83 h <i>12</i>	β–
	68	1+	-65.567	$30.9 \mathrm{\ s}$ 6	β_
	68m	(6–)	-64.845	3.75 m 5	IT 84%, β– 16%
	69	3/2-	-65.736	2.85 m 15	β-
	70	(6-)	-62.976	44.5 s 2	β-
	70m	(3-)	-62.875	33 s 2	β– 52%, ΙΤ 48%
	70m	1+	-62.733	6.6 s 2	β-93.2%, IT 6.8%
	$71 \\ 72$	3/2(-) (2)	-62.711 -59.782	19.4 s <i>16</i> 6.63 s <i>3</i>	β– β–
	73	(3/2-)	-59.782 -58.987	4.2 s 3	β– β–
	74	(3/2-) (1+,3+)	-56.006	1.594 s 10	β– β–
	75	(5/2-)	-54.471	1.222 s 8	β-, β-n 3.5%
	76	(3,4)	-50.975	637 ms 7	β -, β -n 7.2%
	76m	(-, ,	-50.975	1.27 ± 30	β_
	77	(5/2-)	-48.3	468.1 ms 20	β-, β-n 30.3%
	78 (4-,5-,6-)	-44.5	335 ms <i>11</i>	β -, β -n > 65%
	79		-41.9s	188 ms 25	β – , β –n 55%
	80		-36.4s	0.17 s + 11 - 5	β–
	81			>632 ns	β -, β -2n, β -n
	82			>636 ns	β -, β -n, β -2n
30 Zn	54	0+	-6.0s	1.59 ms + 60 - 35	2p 92%
	55	(5/2-)	-14.4s	19.8 ms 13	ε, ερ 91%
	56	0+	-25.2s	30.0 ms 17	ε, ερ 86%
	57	(7/2-)	-32.5s	38 ms 4	ε, εp≥65%
	58	0+	-42.30	86 ms 8	ε, εp<3%
	59	3/2-	-47.214	182.0 ms 18	ε, ερ 0.1%
	60	0+	-54.173	2.38 m 5	ε
	61	3/2-	-56.34	89.1 s 2	£
	61m	$\frac{1/2}{3/2}$	-56.25	<430 ms	IT
	61m 61m	5/2- 5/2-	-55.92 -55.59	0.14 s 7 <0.13 s	IT IT
	OIII	0/Z-	-55.59	<0.10 S	11

Nucli		T _	Δ (Μ. Μ.)	Τ½, Γ, or	D W 1
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
30 Zn	62	0+	-61.167	9.186 h <i>13</i>	ε
	63	3/2-	-62.213	38.47 m 5	ε
	64	0+	-66.003	$\geq 7.0 \times 10^{20} \text{ y}$	2ϵ
	0.5	F /0	05 011	49.17% 75	
	65	5/2-	-65.911	243.93 d 9	ε
	66	0+	-68.899	27.73% 98	
	67	5/2-	-67.880	4.04% 16	
	68	0+ 1/2-	-70.006	18.45% 63	O
	69 69m	9/2+	-68.417 -67.978	56.4 m 9 13.76 h 2	β-
	70	9/2+ 0+	-67.578	$\geq 2.3 \times 10^{17} \text{ y}$	IT 99.97%, β– 0.03% 2β–
	10	UŦ	-09.504	0.61% 10	2p-
	71	1/2-	-67.328	2.45 m 10	β_
	71m	9/2+	-67.170	3.96 h 5	β-, IT≤0.05%
	72	0+	-68.145	46.5 h 1	β-
	73	(1/2)-	-65.593	23.5 s 10	β_
	73m	(1/2)	-65.593	5.8 s 8	β-, IT
	73m	(5/2+)	-65.397	13.0 ms 2	IT
	74	0+	-65.756	95.6 s 12	β_
	75	(7/2+)	-62.558	10.2 s 2	β_
	76	0+	-62.303	5.7 s 3	β_
	77	(7/2+)	-58.789	2.08 s 5	β_
	$77 \mathrm{m}$	(1/2-)	-58.017	1.05 s 10	TT>50%, β-<50%
	78	0+	-57.483	$1.47 \mathrm{\ s}\ 15$	β–
	79	(9/2+)	-53.432	0.995 s 19	β-, β-n 1.3%
	80	0+	-51.648	0.54 s 2	β- , β-n 1%
	81	(5/2+)	-46.199	304 ms <i>13</i>	β – , β –n 7.5%
	82	0+	-42.6s	>150 ns	β–
	83		$-36.7\mathrm{s}$	>300 ns	β- , β-n
	84	0+		>633 ns	β -, β -2n, β -n
	85			>637 ns	β -?, β -n?, β -2n?
31 Ga	56		-4.2s		p?
	57		$-15.6\mathrm{s}$		p?
	58		-23.8s		p?
	59	(a.)	-34.0s		p?
	60	(2+)	-39.8s	70 ms 13	ε 98.4%, εp 1.6%, εα<0.02%
	61	3/2-	-47.09	167 ms 3	ϵ , $\epsilon p < 0.25\%$
	62	0+	-51.986	116.121 ms <i>21</i>	ε, ερ
	63	3/2-	-56.547	32.4 s 5	ε
	64	0+	-58.833	2.627 m <i>12</i>	3
	65	3/2-	-62.657	15.2 m 2	ε
	66	0+	-63.724	9.49 h 3	ε
	67	3/2-	-66.878	3.2617 d 5	ε
	68	1+	-67.085	67.71 m 9	ε
	69	3/2-	-69.327	60.108% 9	0 00 500 0 410
	70	1+	-68.910	21.14 m 3	β-99.59%, ε 0.41%
	$71 \\ 72$	3/2- 3-	-70.139	39.892% 9	R
	72 73	3- 3/2-	-68.588 -69.699	14.10 h 2 4.86 h 3	β– β–
	74	(3-)	-68.049	8.12 m 12	β– β–
	74 74m	(0)	-67.989	9.5 s 10	P- IT 75%, β-<50%
	1 4111	(0)	01.000	0.0 5 10	11 10%, p-<00%

31 Ga 75 3 12 $^{-68}$ 464 12 68 5 6 $^{2+}$ $^{-66}$ 296 6 32 68 68 69 76 $^{2+}$ $^{-65}$ 592 13 28 29 29 29 29 28 28 28 28 29	Nucli Z El	de A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 Ga					'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						'
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(1,2,3)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(0.)			
85 (1/2-,3/2-) -40.2s						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
87			1/2-,3/2-)			
32 Ge $\begin{array}{cccccccccccccccccccccccccccccccccccc$				-54.5s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					>054 IIS	
60 0+ -27.6s >110 ns ϵp , ϵ 61 (3/2-) -33.7s 44 ms 6 ϵ , $\epsilon p > 58\%$ 62 0+ -42.2s 129 ms 35 ϵ , ϵp 63 3/246.92 150 ms 9 ϵ 64 0+ -54.315 63.7 s 25 ϵ 65 3/262.657 18.9 m 3 ϵ 66 0+ -61.606 2.26 h 5 ϵ 67 1/262.657 18.9 m 3 ϵ 68 0+ -66.978 270.95 d 16 ϵ 69 5/267.100 39.05 h 10 ϵ 70 0+ -70.561 20.57% 27 71 1/269.906 11.43 d 3 ϵ 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β- 77m 1/271.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81m (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -58.148 0.954 s 14 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8 s >150 ns β-, β-n 14% 87 (5/2+) -44.2 s ϵ >0.14 s β-, β-n ϵ	32 Ge		0+			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						•
62 0+ -42.2s 129 ms 35 ε, ερ 63 3/246.92 150 ms 9 ε 64 0+ -54.315 63.7 s 25 ε 65 3/256.480 30.9 s 5 ε, ερ 0.01% 66 0+ -61.606 2.26 h 5 ε 67 1/262.657 18.9 m 3 ε 68 0+ -66.978 270.95 d 16 ε 69 5/267.100 39.05 h 10 ε 70 0+ -70.561 20.57% 27 71 1/269.906 11.43 d 3 ε 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β- 77m 1/271.053 52.9 s 6 β-81%, IT 19% 78 0+ -71.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81 (9/2+) -66.291 7.6 s 6 β- 81 (9/2+) -65.612 7.6 s 6 β- 81 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8 s >150 ns β-, β-n 87 (5/2+) -44.2 s ≈0.14 s β-, β-n 87 (5/2+) -44.2 s ≈0.14 s β-, β-n 88 0+ -40.2 s ≥300 ns β-						
63 3/246.92 150 ms 9 ε 64 0+ -54.315 63.7 s 25 ε 65 3/256.480 30.9 s 5 ε, ερ 0.01% 66 0+ -61.606 2.26 h 5 ε 67 1/262.657 18.9 m 3 ε 68 0+ -66.978 270.95 d 16 ε 69 5/267.100 39.05 h 10 ε 70 0+ -70.561 20.57% 27 71 1/269.906 11.43 d 3 ε 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.053 52.9 s 6 β-81%, IT 19% 78 0+ -71.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81 (1/2+) -65.612 7.6 s 6 β- 81 (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -58.148 0.954 s 14 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8 s >150 ns β-, β-n 87 (5/2+) -44.2 s ≈0.14 s β-, β-n 87 (5/2+) -44.2 s ≈0.14 s β-, β-n 88 0+ -40.2 s ≥300 ns β-						
64 0+ -54.315 63.7 s 25 ε, εp 0.01% 66 3/256.480 30.9 s 5 ε, εp 0.01% 66 0+ -61.606 2.26 h 5 ε 67 1/2 - 62.657 18.9 m 3 ε 68 0+ -66.978 270.95 d 16 ε 69 5/267.100 39.05 h 10 ε 70 0+ -70.561 20.57% 27 71 1/2 - 69.906 11.43 d 3 ε 71m 9/2 + -69.708 20.41 m s 18 IT 72 0+ -72.585 27.45% 32 73 9/2 + -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β - 75m 7/2 + -71.716 47.7 s 5 IT 99.97%, β - 0.03% 76 0+ -73.212 7.73% 12 7.73% 12 7.77% 12 7.79m 1/2 - 71.053 52.9 s 6 β - 81%, IT 19% 78 0+ -71.862 88.0 m 10 β - 79 (1/2)69.53 18.98 s 3 β - 79m (7/2 +) -69.34 39.0 s 10 β - 96%, IT 4% 80 0+ -69.535 29.5 s 4 β - 81m (1/2 +) -65.612 7.6 s 6 β - 81m (1/2 +) -65.612 7.6 s 6 β - 82 0+ -65.415 4.56 s 26 β - 83 (5/2) + -60.976 1.85 s 6 β - 87 (1/2 +,5/2 +) -53.123 0.56 s 5 β -, β -n 10.2% 85 (1/2 +,5/2 +) -53.123 0.56 s 5 β -, β -n 10.2% 85 (1/2 +,5/2 +) -53.123 0.56 s 5 β -, β -n 14% 86 0 + -49.88 > 150 ns β - β - π 14 π 14 π 15 π 15 π 15 π 15 π 15 π 15						
65 3/256.480 30.9 s 5 ε, ερ 0.01% 66 0+ -61.606 2.26 h 5 ε 67 1/262.657 18.9 m 3 ε 68 0+ -66.978 270.95 d 16 ε 69 5/267.100 39.05 h 10 ε 70 0+ -70.561 20.57% 27 71 1/269.906 11.43 d 3 ε 171m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 7.73% 12 7.75% 12 7.79m 1/271.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β- 96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81m (1/2+) -65.612 7.6 s 6 β- 81m (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 81 (9/2+) -53.123 0.56 s 5 β- β- η- η- 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β- β- η- η- 10.2% 86 0+ -49.8 s >150 ns β- β- η- η- 87 (5/2+) -44.2 s ≈0.14 s β- , β- n 87 (5/2+) -44.2 s ≈0.14 s β- , β- n 87 (5/2+) -44.2 s ≈0.14 s β- , β- n 87 (5/2+) -44.2 s ≈0.14 s β- , β- n						
66 0+ -61.606 2.26 h 5 ε 67 1/262.657 18.9 m 3 ε 68 0+ -66.978 270.95 d 16 ε 69 5/267.100 39.05 h 10 ε 70 0+ -70.561 20.57% 27 71 1/269.906 11.43 d 3 ε 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β- 77m 1/271.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81 (1/2+) -65.612 7.6 s 6 β- 81 (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -58.148 0.954 s 14 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8s >150 ns β-, β-n 87 (5/2+) -44.2s ≈ 0.14 s β-, β-n 87 (5/2+) -44.2s ≈ 0.14 s β-, β-n						-
67 1/2− -62.657 18.9 m 3 ε 68 0+ -66.978 270.95 d 16 ε 69 5/2− -67.100 39.05 h 10 ε 70 0+ -70.561 20.57% 27 71 1/2− -69.906 11.43 d 3 ε 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/2− -71.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/2− -71.856 82.78 m 4 β− 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β−0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β− 77m 1/2− -71.862 88.0 m 10 β− 79 (1/2)− -69.53 18.98 s 3 β− 79m (7/2+) -69.34 39.0 s 10 β−96%, IT 4% 80 0+ -69.535 29.5 s 4 β− 81 (9/2+) -66.291 7.6 s 6 β− 81m (1/2+) -65.612 7.6 s 6 β− 82 0+ -65.415 4.56 s 26 β− 83 (5/2)+ -60.976 1.85 s 6 β− 84 0+ -58.148 0.954 s 14 β−, β−n 10.2% 86 0+ -49.88 >150 ns β−, β−n 14% 86 0+ -49.88 >150 ns β−, β−n 14% 86 0+ -49.88 >150 ns β−, β−n						, •
68 0+ -66.978 270.95 d 16 ε 69 5/267.100 39.05 h 10 ε 70 0+ -70.561 20.57% 27 71 1/269.906 11.43 d 3 ε 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β- 77m 1/271.053 52.9 s 6 β-81%, IT 19% 78 0+ -71.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81m (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -58.148 0.954 s 14 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 10.2% 86 0+ -49.88 >150 ns β-, β-n 87 (5/2+) -44.2s ≈0.14 s β-, β-n						-
69 5/2− -67.100 39.05 h 10 ε 70 0+ -70.561 20.57% 27 71 1/2− -69.906 11.43 d 3 ε 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/2− -71.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/2− -71.856 82.78 m 4 β− 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β− 0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β− 77m 1/2− -71.053 52.9 s 6 β−81%, IT 19% 78 0+ -71.862 88.0 m 10 β− 79 (1/2)− -69.53 18.98 s 3 β− 79m (7/2+) -69.34 39.0 s 10 β−96%, IT 4% 80 0+ -69.535 29.5 s 4 β− 81 (9/2+) -66.291 7.6 s 6 β− 81m (1/2+) -65.612 7.6 s 6 β− 81m (1/2+) -65.612 7.6 s 6 β− 81m (1/2+) -65.612 7.6 s 6 β− 82 0+ -65.415 4.56 s 26 β− 83 (5/2)+ -60.976 1.85 s 6 β− 84 0+ -58.148 0.954 s 14 β−, β−n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β−, β−n 14% 86 0+ -49.88 >150 ns β−, β−n 87 (5/2+) -44.2s ≈ 0.14 s β−, β−n 87 (5/2+) -44.2s ≈ 0.14 s β−, β−n 88 0+ -40.2s ≥300 ns β−						
70 0+ -70.561 20.57% 27 71 1/269.906 11.43 d 3 ε 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β- 77m 1/271.053 52.9 s 6 β-81%, IT 19% 78 0+ -71.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81 (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -49.88 >150 ns β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.88 >150 ns β-, β-n 87 (5/2+) -44.2s ≈0.14 s β-, β-n 88 0+ -40.2s ≥300 ns β-						
71 1/2− -69.906 11.43 d 3 ε 71m 9/2+ -69.708 20.41 ms 18 IT 72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/2− -71.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/2− -71.856 82.78 m 4 β− 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β−0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β− 77m 1/2− -71.862 88.0 m 10 β− 79 (1/2)− -69.53 18.98 s 3 β− 79m (7/2+) -69.34 39.0 s 10 β−96%, IT 4% 80 0+ -69.535 29.5 s 4 β− 81 (9/2+) -66.291 7.6 s 6 β− 81m (1/2+) -65.612 7.6 s 6 β− 82 0+ -65.415 4.56 s 26 β− 83 (5/2)+ -60.976 1.85 s 6 β− 84 0+ -49.8s 150 ns β−, β−n 10.2% 86 0+ -49.8s 150 ns β−, β−n 14% 86 0+ -49.8s 150 ns β−, β−n 87 (5/2+) -44.2s ≈0.14 s β−, β−n 88 0+ -40.2s ≥300 ns β−						ε
$ 71 \text{m} 9/2 + -69.708 20.41 \text{ ms } 18 \text{IT} $ $ 72 0 + -72.585 \textbf{27.45\% 32} $ $ 73 9/2 + -71.297 \textbf{7.75\% 12} $ $ 73 \text{m} 1/2 - -71.230 0.499 \text{ s } 11 \text{IT} $ $ 74 0 + -73.422 \textbf{36.50\% 20} $ $ 75 1/2 - -71.856 82.78 \text{ m } 4 \beta - $ $ 75 \text{m} 7/2 + -71.716 47.7 \text{ s } 5 \text{IT } 99.97\%, \beta - 0.03\% $ $ 76 0 + -73.212 \textbf{7.73\% 12} $ $ 77 7/2 + -71.213 11.30 \text{ h } 1 \beta - $ $ 77 1/2 - -71.053 52.9 \text{ s } 6 \beta - 81\%, \text{IT } 19\% $ $ 78 0 + -71.862 88.0 \text{ m } 10 \beta - $ $ 79 (1/2) - -69.53 18.98 \text{ s } 3 \beta - $ $ 79 \text{m} (7/2 +) -69.34 39.0 \text{ s } 10 \beta - 96\%, \text{IT } 4\% $ $ 80 0 + -69.535 29.5 \text{ s } 4 \beta - $ $ 81 (9/2 +) -66.291 7.6 \text{ s } 6 \beta - $ $ 81 (1/2 +) -65.612 7.6 \text{ s } 6 \beta - $ $ 82 0 + -65.415 4.56 \text{ s } 26 \beta - $ $ 83 (5/2) + -60.976 1.85 \text{ s } 6 \beta - $ $ 84 0 + -58.148 0.954 \text{ s } 14 \beta -, \beta - \text{n } 10.2\% $ $ 85 (1/2 +, 5/2 +) -53.123 0.56 \text{ s } 5 \beta -, \beta - \text{n } 14\% $ $ 86 0 + -49.88 > 150 \text{ n s } \beta -, \beta - \text{n } $ $ 87 (5/2 +) -44.28 \approx 0.14 \text{ s } \beta -, \beta - \text{n } $ $ 88 0 + -40.28 ≥ 300 \text{ n s } \beta - $						
72 0+ -72.585 27.45% 32 73 9/2+ -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β- 77m 1/271.862 88.0 m 10 β- 78 0+ -71.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81m (1/2+) -65.612 7.6 s 6 β- 81m (1/2+) -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -58.148 0.954 s 14 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8s >150 ns β-, β-n 87 (5/2+) -44.2s ≈0.14 s β-, β-n 88 0+ -40.2s ≥300 ns β-						
73 9/2+ -71.297 7.75% 12 73m 1/271.230 0.499 s 11 IT 74 0+ -73.422 36.50% 20 75 1/271.856 82.78 m 4 β- 75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β- 77m 1/271.053 52.9 s 6 β-81%, IT 19% 78 0+ -71.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81m (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -58.148 0.954 s 14 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8s >150 ns β-, β-n 87 (5/2+) -44.2s ≈0.14 s β-, β-n 88 0+ -40.2s ≥300 ns β-						11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. –				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						īT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						11
75m 7/2+ -71.716 47.7 s 5 IT 99.97%, β-0.03% 76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h I β-77m 1/271.053 52.9 s 6 β-81%, IT 19% 78 0+ -71.862 88.0 m I0 β-79 (1/2)69.53 18.98 s 3 β-79m (7/2+) -69.34 39.0 s I0 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β-81 (9/2+) -66.291 7.6 s 6 β-81m (1/2+) -65.612 7.6 s 6 β-82 0+ -65.415 4.56 s 26 β-82 0+ -65.415 4.56 s 26 β-83 (5/2)+ -60.976 1.85 s 6 β-84 0+ -58.148 0.954 s I4 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8s >150 ns β-, β-n 87 (5/2+) -44.2s ≈ 0.14 s β-, β-n 88 0+ -40.2s ≥300 ns β-						β_
76 0+ -73.212 7.73% 12 77 7/2+ -71.213 11.30 h 1 β- 77m 1/271.053 52.9 s 6 β-81%, IT 19% 78 0+ -71.862 88.0 m 10 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s 10 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81m (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -58.148 0.954 s 14 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8s >150 ns β-, β-n 87 (5/2+) -44.2s ≈0.14 s β-, β-n 88 0+ -40.2s ≥300 ns β-						•
77 7/2+ -71.213 11.30 h I β- 77m 1/271.053 52.9 s 6 β-81%, IT 19% 78 0+ -71.862 88.0 m I0 β- 79 (1/2)69.53 18.98 s 3 β- 79m (7/2+) -69.34 39.0 s I0 β-96%, IT 4% 80 0+ -69.535 29.5 s 4 β- 81 (9/2+) -66.291 7.6 s 6 β- 81m (1/2+) -65.612 7.6 s 6 β- 82 0+ -65.415 4.56 s 26 β- 83 (5/2)+ -60.976 1.85 s 6 β- 84 0+ -58.148 0.954 s I4 β-, β-n 10.2% 85 (1/2+,5/2+) -53.123 0.56 s 5 β-, β-n 14% 86 0+ -49.8s >150 ns β-, β-n 87 (5/2+) -44.2s ≈ 0.14 s β-, β-n 88 0+ -40.2s ≥300 ns β-						11 33.31%, р 0.00%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						ß_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		81m				β_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		82				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		83	(5/2)+	-60.976	1.85 ± 6	β_
86 0+ -49.8s >150 ns β-, β-n 87 (5/2+) -44.2s ≈ 0.14 s β-, β-n 88 0+ -40.2s ≥ 300 ns β-		84	0+		0.954 ± 14	β-, β-n 10.2%
86 0+ -49.8s >150 ns β-, β-n 87 (5/2+) -44.2s ≈ 0.14 s β-, β-n 88 0+ -40.2s ≥ 300 ns β-		85 (1/2+,5/2+)	-53.123	$0.56 \mathrm{\ s}\ 5$	β-, β-n 14%
88 0+ -40.2s ≥300 ns β-		86	0+	-49.8s	>150 ns	
·		87	(5/2+)	-44.2s	≈0.14 s	β -, β -n
89 –33.8s ≥300 ns β-?		88	0+	-40.2s	≥300 ns	β–
		89		-33.8s	≥300 ns	β-?

Nuclio Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
32 Ge	90	0+		>635 ns	β -, β -n, β -2n
33 As	60		-6.1s		p?
	61		-17.8s		p?
	62		-24.8s		p?
	63	3/2-	-33.5s	<43 ns	p
	64		-39.4s	18 ms + 43 - 7	ε
	65		-46.94	128 ms <i>16</i>	ε
	66	(0+)	-52.03	95.77 ms 23	ε
	67	(5/2-)	-56.585	42.5 s 12	3
	68	3+	-58.894	151.6 s 8	ε
	69	5/2-	-63.09	15.2 m 2	8
	70 71	$\frac{4+}{5/2-}$	-64.34	52.6 m 3 65.30 h 7	ε
	72	2-	-67.893 -68.229	26.0 h 1	ε
	73	$\frac{2-}{3/2-}$	-70.952	80.30 d <i>6</i>	ε
	74	2-	-70.859	17.77 d 2	ε 66%, β– 34%
	75	3/2-	-73.033	100%	C 00%, p 02%
	75m	9/2+	-72.729	17.62 ms 23	IT
	76	2-	-72.290	1.0942 d 7	β–
	77	3/2-	-73.916	38.83 h 5	β_
	78	2-	-72.817	$90.7~\mathrm{m}~2$	β–
	79	3/2-	-73.636	9.01 m <i>15</i>	β–
	80	1+	-72.17	15.2 s 2	β–
	81	3/2-	-72.533	33.3 s 8	β–
	82	(2-)	-70.103	19.1 s 5	β–
	82m	(5-)	-69.956	13.6 s 4	β–
		(5/2-,3/2-)	-69.669	13.4 s 3	β-
	$84 \\ 85$	(3-) $(3/2-)$	-65.853	4.2 s 5	β-, β-n 0.18%
	86	(3/2-)	-63.189 -58.962	$2.021 \text{ s } 10 \\ 0.945 \text{ s } 8$	β- , β-n 59 . 4% β- , β-n 26%
	87	(3/2-)	-55.617	0.56 s 8	β-, β-η 26% β-, β-η 15.4%
	88	(3/2-)	-50.9s	>300 ns	β-, β-11 13.4%
	89		-46.9s	>300 ns	β -?, β -n?
	90		-41.3s	>300 ns	β -, β -n
	91		-36.9s	>150 ns	β_
	92		-31.0s		β_
34 Se	64	0+	-26.9s	>180 ns	ε
	65	(3/2-)	-32.9s	33 ms 4	ε, ερ
	66	0+	-41.7s		
	67		-46.58	136 ms <i>12</i>	ε, ερ 0.5%
	68	0+	-54.189	35.5 s 7	ε
		(1/2-,3/2-)	-56.30	27.4 s 2	ε, ερ 0.05%
	70	0+	-61.929	41.1 m 3	ε
	71	(5/2-)	-63.146	4.74 m 5	ε
	72	0+	-67.868	8.40 d 8	ε
	73 73m	9/2+ 3/2-	-68.227 -68.201	7.15 h <i>8</i> 39.8 m <i>13</i>	ε IT 72.6%, ε 27.4%
	73m 74	3/2- 0+	-72.212	0.89% 4	11 12.0%, 8 21.4%
	7 4 75	5/2+	-72.212 -72.169	119.79 d <i>4</i>	ε
	76	0+	-75.251	9.37% 29	-
	77	1/2-	-74.599	7.63% 16	
	$77 \mathrm{m}$	7/2+	-74.437	17.4 s 8	IT

Νι	ıcli	de		Δ	T½, Γ, or	
${f z}$	$\mathbf{E}\mathbf{l}$	A	Jπ	(MeV)	Abundance	Decay Mode
34	Se	78	0+	-77.025	$23.77\% \ 28$	
0.1	20	79	7/2+	-75.917	$2.95 \times 10^5 \text{ y } 38$	β–
		79m	1/2-	-75.821	3.92 m 1	IT 99.94%, β-0.06%
		80	0+	-77.759	49.61% 41	11 00.01%, р 0.00%
		81	1/2-	-76.389	18.45 m 12	β–
		81m	7/2+	-76.286	57.28 m 2	IT 99.95%, β-0.05%
		82	0+	-77.594	8.73% 22	11 00.00%, р 0.00%
		83	9/2+	-75.340	22.3 m 3	β–
		83m	$\frac{3}{2}$	-75.340 -75.112	70.1 s 4	β–
		84	0+	-75.112	3.26 m 10	β–
		85	(5/2+)	-73.347 -72.413	32.9 s 3	β–
		86	0+	-72.413	14.3 s 3	β–
		87	(5/2+)	-66.426	5.50 s 12	β-, β-n 0.2%
		88	0+	-63.884	1.53 s 6	β -, β -n 0.67%
		89	(5/2+)	-58.992	0.41 s 4	β-, β-n 7.8%
		90	0+	-56.992 -55.9s	>300 ns	
		91	0+	-50.3s	0.27 s 5	β -, β -n
		91	0+	-30.3s $-46.7s$	0.27 S 3	β-, β-n 21%
			(1/2+)	-40.7s -40.7s		β– β–
		$\frac{93}{94}$	(1/2+) 0+	-40.7s -36.8s	>150 ns	β– β–
		94 95	0+	-50.6s	>100 ns >300 ns	•
95	D			20.0~	>500 ns	β -?, β -n?, β -2n?
39	Br	67		-32.8s	1.0	p?
		68		-38.7s	<1.2 μs	p?
		69	٥.	-46.5s	<24 ns	p?
		70	0+	-51.42	79.1 ms 8	3
		70m	9+	-49.13	2.2 s 2	ε
		71	(5/2)-	-56.502	21.4 s 6	ε
		72	1+	-59.067	78.6 s 24	3
		72m	(3-)	-58.966	10.6 s 3	IΤ, ε
		73	1/2-	-63.647	3.4 m 2	3
		74	(0-)	-65.285	25.4 m 3	3
		74m	4(+)	-65.271	46 m 2	3
		75 76	3/2-	-69.107	96.7 m 13	ε
		76	1-	-70.288	16.2 h 2	3
		76m	(4)+	-70.185	1.31 s 2	IT>99.4%, $\varepsilon < 0.6\%$
		77	3/2-	-73.234	57.036 h 6	8
		77m	9/2+	-73.128	4.28 m 10	IT
		78	1+	-73.452	6.45 m 4	$\varepsilon \ge 99.99\%$,
		70	0.70	70 000	FO COM 7	$\beta - \leq 0.01\%$
		79	3/2-	-76.068	50.69% 7	TM
		79m	9/2+	-75.860	5.1 s 4	IT
		80	1+	-75.889	17.68 m 2	β– 91.7%, ε 8.3%
		80m	5-	-75.803	4.4205 h 8	IT
		81	3/2-	-77.975	49.31% 7	0
		82	5-	-77.497	35.282 h 7	β-
		82m	2-	-77.451	6.13 m 5	IT 97.6%, β–2.4%
		83	3/2-	-79.006	2.40 h 2	β–
		84	2-	-77.79	31.76 m 8	β–
		84m	(6)–	-77.47	6.0 m 2	β–
		85	3/2-	-78.575	2.90 m 6	β–
		86	(1-)	-75.632	55.1 s 4	β-
		87	3/2-	-73.891	55.65 s 13	β-, β-n 2.6%

Nucli		Ιæ	Δ (MaV)	T½, Γ, or	Doggy Mode
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
35 Br	88	(2-)	-70.715	16.29 s 6	β -, β -n 6.58%
		3/2-,5/2-)	-68.274	4.40 s 3	β-, β-n 13.8%
	90		-64.000	1.91 s 1	β-, β-n 25.2%
	$\frac{91}{92}$	(2-)	-61.107 -56.232	0.541 s 5	β-, β-n 20% β-, β-n 33.1%
	93	(5/2-)	-50.252 -52.9s	0.343 s <i>15</i> 102 ms <i>10</i>	β-, β-η 68%
	94	(3/2-)	-32.3s -47.6s	70 ms 20	β -, β -n 68%
	95		-43.9s	≥150 ns	β-, β-n 34%
	96		-38.3s	≥150 ns	β -, β -n 27.6%
	97		-34.5s	>300 ns	β_
	98			>634 ns	β-, β-n, β-2n
36 Kr	69		-32.4s	32 ms 10	ε
	70	0+	-41.6s	52 ms 17	ε, εp≤1.3%
	71	(5/2-)	-46.3	100 ms 3	ϵ , ϵ p 2.1%
	72	0+	-53.940	17.1 s 2	ϵ , $\epsilon p < 1.0 \times 10^{-6}\%$
	73	3/2-	-56.551	27.3 s 10	ε, ερ 0.25%
	74	0+	-62.331	11.50 m <i>11</i>	ε
	75	5/2+	-64.323	4.29 m 17	ε
	76	0+	-69.014	14.8 h 1	ε
	77	5/2+	-70.169	74.4 m 6	3
	78	0+	-74.179	≥1.5×10 ²¹ y	2ε
	79	1/2-	-74.442	0.355 % 3 35.04 h <i>10</i>	c
	79m	7/2+	-74.312	50 s 3	ε IT
	80	0+	-77.892	2.286% 10	11
	81	7/2+	-77.694	$2.29 \times 10^{5} \text{ y } 11$	ε
	81m	1/2-	-77.503	13.10 s 3	IT, ε 2.5×10 ⁻³ %
	82	0+	-80.590	11.593% 31	
	83	9/2+	-79.990	11.500% <i>19</i>	
	83m	1/2-	-79.948	1.85 h 3	IT
	84	0+	-82.439	56.987% <i>15</i>	
	85	9/2+	-81.480	10.752 y 25	β-
	85m	1/2-	-81.175	4.480 h 8	β– 78.6%, IT 21.4%
	86 87	0+ 5/2+	-83.266 -80.709	17.279% 41 76.3 m 5	β–
	88	0+	-79.691	2.84 h 3	β– β–
	89	3/2(+)	-76.535	3.15 m 4	β_
	90	0+	-74.959	32.32 s 9	β_
	91	5/2(+)	-70.973	8.57 s 4	β_
	92	0+	-68.769	$1.840~\mathrm{s}~8$	β-, β-n 0.03%
	93	1/2 +	-64.135	1.286 s 10	β-, β-n 1.95%
	94	0+	-61.35	$212~\mathrm{ms}~5$	β-, β-n 1.11%
	95	1/2(+)	-56.16	0.114 s 3	β-, β-n 2.87%
	96	0+	-53.08	80 ms 6	β -, β -n 3.7%
	97	(3/2+)	-47.4	63 ms 4	β -, β -n 6.7%
	98	0+	-44.5s	46 ms 8	β-, β-n 7%
	99	0.1	-38.8s -35.2s	13 ms +34-6 7 ms +11-3	β-, β-n 11%
	$\begin{array}{c} 100 \\ 101 \end{array}$	0+	–əə.∠s	/ ms +11-3 >635 ns	β -, β -n β -, β -n, β -2n
97 D1			20.2~	>000 IIS	
37 Rb	$\frac{71}{79}$	(3.1)	-32.3s -38.1s	-1 9 u ~	p? p?
	$72 \\ 73$	(3+)	-38.1s -46.1s	<1.2 μs <30 ns	p: ε?, p>0%
	10		TU.15	19	c., p/0/0
				10	

Nuclide Z El A		T=	Δ (Ma¥)	T½, Γ, or	Dagon Mada
		Jπ	(MeV)	Abundance	Decay Mode
37 Rb		(0+)	-51.916	$64.9~\mathrm{ms}~5$	ε
	75	(3/2-)	-57.218	19.0 s <i>12</i>	ε
	76	1(-)	-60.478	36.5 s 6	ε , $\varepsilon \alpha 3.8 \times 10^{-7}\%$
	77	3/2-	-64.830	3.77 m 4	3
	78	0(+)	-66.936	17.66 m 3	3
	78m	4(-)	-66.825	5.74 m 3	ε 91%, IT 9%
	79	5/2+	-70.802	22.9 m 5	3
	80	1+	-72.175	33.4 s 7	ε
	81	3/2-	-75.456	4.572 h 4	£
	81m	9/2+	-75.370	30.5 m 3	IT 97.6%, ε 2.4%
	82	1+	-76.187	1.2575 m 2	. TTL . 0 . 2007
	82m	5-	-76.118	6.472 h 6	ϵ , IT<0.33%
	83	5/2-	-79.070	86.2 d 1	E - 0.0 107 0 0 007
	84	2-	-79.756	32.82 d 7	ε 96.1%, β–3.9%
	84m 85	6-	-79.292	20.26 m 4	IT
		5/2-	-82.167	72.17% 2	0 00 0007
	86	2–	-82.747	18.642 d <i>18</i>	eta – 99.99% , $\epsilon \ 5.2{ imes}10^{-3}\%$
	86m	6-	-82.191	$1.017 \; \text{m} \; 3$	IT, $\beta - < 0.3\%$
	87	3/2-	-84.597	$4.81 \times 10^{10} \text{ y } 9$	β–
				$27.83\% \ 2$	
	88	2-	-82.608	17.773 m <i>11</i>	β–
	89	3/2-	-81.712	15.15 m <i>12</i>	β–
	90	0-	-79.364	$158 \mathrm{\ s}\ 5$	β–
	90m	3-	-79.257	258 s 4	β- 97.4%, IT 2.6%
	91	3/2(-)	-77.746	58.4 s 4	β–
	92	0-	-74.772	4.492 s 20	β- , β-n 0.01%
	93	5/2-	-72.620	5.84 s 2	β– , β–n 1.39%
	94	3(-)	-68.561	2.702 s 5	β-, β-n 10.5%
	95	5/2-	-65.89	377.7 ms 8	β-, β-n 8.7%
	96	2(-)	-61.354	203 ms 3	β-, β-n 13.3%
	97	3/2+	-58.518	169.1 ms 6	β-, β-n 25.5%
	98	(0,1)	-54.03	102 ms 4	β-, β-n 13.8%, β-2n 0.05%
	98m	(3,4)	-53.76	96 ms 3	β–
	99	(5/2+)	-51.2	54 ms 4	β– , β–n 15.8%
	100	(3+,4-)	-46.5s	51 ms 8	β- , β-n 6%, β-2n 0 . 16%
	101	(3/2+)	-43.0s	32 ms 5	β-, β-n 28%
	102	(=, = .)	-37.9s	37 ms 3	β-, β-n 18%
	103			>633 ns	β -, β -n
38 Sr	73		$-32.0\mathrm{s}$	>25 ms	ε , $\varepsilon p > 0\%$
	74	0+	-40.8s	>1.2 µs	ε
	75	(3/2-)	-46.6	88 ms 3	ε, ερ 5.2%
	76	0+	-54.25	7.89 s 7	ε, εp 3.4×10 ⁻⁵ %
	77	5/2 +	-57.803	$9.0 \mathrm{\ s}\ 2$	ϵ , $\epsilon p < 0.25\%$
	78	0+	-63.173	$160 \mathrm{~s}~8$	3
	79	3/2(-)	-65.476	2.25 m 10	ε
	80	0+	-70.311	106.3 m 15	ε
	81	1/2-	-71.528	22.3 m 4	3
	82	0+	-76.009	25.34 d 2	ε
	83	7/2+	-76.797	32.41 h <i>3</i>	ε

Nuclide			Δ	T½, Γ, or		
\mathbf{Z}	Εl	A	Jπ	(MeV)	Abundance	Decay Mode
38	Sr	83m	1/2-	-76.538	4.95 s 12	IT
		84	0+	-80.649	0.56% 1	
		85	9/2+	-81.103	64.850 d 7	ε
		85m	1/2-	-80.864	67.63 m 4	IT 86.6%, ε 13.4%
		86	0+	-84.523	9.86% 1	,
		87	9/2 +	-84.880	7.00% 1	
		87m	1/2-	-84.492	2.815 h <i>12</i>	IT 99.7%, ε 0.3%
		88	0+	-87.921	82.58% 1	
		89	5/2 +	-86.208	50.53 d 7	β-
		90	0+	-85.949	28.90 y 3	β-
		91	5/2 +	-83.652	9.63 h 5	β–
		92	0+	-82.867	2.66 h 4	β–
		93	5/2 +	-80.086	7.43 m 3	β–
		94	0+	-78.843	75.3 s 2	β–
		95	1/2 +	-75.123	23.90 ± 14	β–
		96	0+	-72.932	$1.07 \; \mathrm{s} \; 1$	β–
		97	1/2 +	-68.591	$429~\mathrm{ms}~5$	β -, β -n \leq 0.05%
		98	0+	-66.436	$0.653 \mathrm{\ s}\ 2$	β– , β–n 0.25%
		99	3/2 +	-62.529	$0.269 \mathrm{\ s}\ 1$	β-, β-n 0.1%
		100	0+	-59.833	$202~\mathrm{ms}~3$	β -, β -n 0.78%
		101	(5/2-)	-55.56	118 ms 3	β -, β -n 2.37%
		102	0+	-52.4s	69 ms 6	β -, β -n 5.5%
		103		-47.5s	68 ms +48-20	β–
		104	0+	-43.9s	43 ms + 9 - 7	β–
		105		$-38.6\mathrm{s}$	40 ms + 36 - 13	β-
		106	0+		>392 ns	β -, β -n, β -2n
		107			>395 ns	β -, β -n, β -2n
39	Y	76	(= 10 \	-38.6s	>200 ns	ϵ , p
		77	(5/2+)	-46.78s	57 ms +22-12	ε, ερ, ρ
		78	(0+)	-52.5s	53 ms 8	ε, ερ
		78m	(5+)	-52.5s	5.8 s 6	ε, ερ
		79	(5/2+)	-58.4	14.8 s 6	ε, ερ
		80	(4-)	-61.148	30.1 s 5	ε, ερ
		80m	(1-)	-60.919	4.8 s 3	IT 81%, ε 19%
		81	(5/2+)	-65.713	70.4 s 10	ε
		82	1+	-68.064	8.30 s 20	ε
		83 83m	9/2+ 3/2-	$-72.21 \\ -72.14$	7.08 m 6 2.85 m 2	E
		84	(6+)	-72.14 -73.894	39.5 m 8	ε 60%, IT 40%
		84m	1+	-73.894 -73.827	4.6 s 2	ε
		85	(1/2)-	-73.827 -77.84	2.68 h 5	ε
		85m	9/2+	-77.82	4.86 h 20	ϵ , IT<2.0×10 ⁻³ %
		86	4-	-79.28	14.74 h 2	ε, 11 2.0 10 %
		86m	(8+)	-79.06	48 m 1	IT 99.31%, ε 0.69%
		87	1/2-	-83.018	79.8 h 3	ε
		87m	9/2+	-82.637	13.37 h 3	IT 98.43%, ε 1.57%
		88	4-	-84.298	106.626 d <i>21</i>	ε
		89	1/2-	-87.709	100%	
		89m	9/2+	-86.800	15.663 s 5	IT
		90	2-	-86.495	64.053 h 20	β–
		90m	7+	-85.813	3.19 h <i>6</i>	IT, β-1.8×10 ⁻³ %
		91	1/2-	-86.352	58.51 d <i>6</i>	β_

Nuclide			Δ	T½, Γ, or		
${f z}$	El	A	Jπ	(MeV)	Abundance	Decay Mode
39	Y	91m	9/2 +	-85.796	49.71 m 4	IT, β-<1.5%
		92	2-	-84.817	3.54 h 1	β_
		93	1/2-	-84.23	10.18 h 8	β–
		93m	(9/2)+	-83.47	0.82 s 4	IT
		94	$^{2-}$	-82.352	18.7 m 1	β–
		95	1/2-	-81.213	10.3 m <i>1</i>	β–
		96	0-	-78.344	5.34 s 5	β–
		96m	8+	-77.204	9.6 s 2	β–
		97	(1/2-)	-76.130	3.75 ± 3	β- , β-n 0.06%
		97m	(9/2)+	-75.463	1.17 s 3	β ->99.3%, IT<0.7%, β -n<0.08%
		97m	(27/2-)	-72.607	142 ms 8	IT 98.4%, β-1.6%
		98	(0)-	-72.303	0.548 s 2	β-, β-n 0.33%
		98m	(4,5)	-72.303 -71.893	2.0 s 2	β ->80%, IT<20%,
		Join	(4,0)	-71.030	2.0 5 2	β->00%, 11<20%, β-n 3.4%
		99	(5/2+)	-70.658	1.484 s 7	β-, β-n 1.7%
		100	1-,2-	-67.34	$735~\mathrm{ms}~7$	β– , β–n 0.92%
		100m	(3,4,5)	-67.19	0.94 s 3	β–
		101	(5/2+)	-65.070	0.45 s 2	β– , β–n 1.94%
		102m	HighJ	-61.2s	0.36 s 4	β-, β-n 4.9%
		102m	LowJ	-61.2s	0.298 s 9	β-, β-n 4.9%
		103	(5/2+)	-58.50	0.23 s 2	β- , β-n 8%
		104		-54.1s	197 ms 4	β- , β-n
		105		-50.8s	85 ms + 5-4	β -, β -n < 82%
		106		-46.1s	62 ms + 25 - 14	β–
		107	(5/2+)	$-42.4\mathrm{s}$	41 ms + 15 - 9	β–
		108		-37.3s	25 ms + 66 - 10	β- , β-n
		109			>393 ns	β -, β -n, β -2n
40	\mathbf{Zr}	78	0+	-41.3s	>170 ns	ε
		79		-47.1s	56 ms 30	ε, ερ
		80	0+	-56	4.6 s 6	ε, ερ
		81	(3/2-)	-58.4	5.5 s 4	ε, ερ 0.12%
		82	0+	$-63.9\mathrm{s}$	32 s 5	ε
		83	(1/2-)	-65.911	41.6 s 24	ϵ , ϵp
		84	0+	-71.421	$25.8~\mathrm{m}~5$	ε
		85	(7/2+)	-73.175	7.86 m 4	ε
		85m	(1/2-)	-72.883	10.9 s 3	$\text{IT} \le 92\%$, $\varepsilon > 8\%$
		86	0+	-77.969	16.5 h <i>1</i>	ε
		87	(9/2)+	-79.347	1.68 h <i>1</i>	ε
		87m	(1/2)-	-79.011	14.0 s 2	IT
		88	0+	-83.629	83.4 d 3	ε
		89	9/2+	-84.876	78.41 h <i>12</i>	ε
		89m	1/2-	-84.288	4.161 m 17	IT 93.77%, ε 6.23%
		90	0+	-88.774	51.45% 40	T.M.
		90m	5-	-86.455	809.2 ms 20	IT
		91	5/2+	-87.897	11.22% 5	
		92	0+	-88.460	17.15% 8	0
		93	5/2+	-87.123	$1.61 \times 10^6 \text{ y } 5$	β–
		94	0+	-87.272	17.38% 28	0
		95	5/2+	-85.663	64.032 d 6	β_
		96	0+	-85.447	$2.35 \times 10^{19} \text{ y } 21$	2β–
					2.80% 9	

Nuclide X By (MeV) Abundance Decay Mode 40 Zr 97 1/2+ -82.951 16.749 h 8		٠.				m/ F	
40 Zr 97 1/2+ -82.951 16.749 h 8 β-98 0+ -81.295 30.7 s 4 β-99 (1/2+) -77.63 2.1 s I β-100 0+ -76.384 7.1 s 4 β-101 (3/2+) -73.173 2.3 s I β-102 0+ -71.595 2.9 s 2 β-103 (5/2-) -67.824 1.32 s II β-105 105 -61.47 0.66 s 7 β-β-n≤1% 105 -61.47 0.66 s 7 β-β-n≤2% 106 0+ -59.0s 191 ms I9 β-β-n≤2% 108 0+ -51.4s 73 ms 4 β-β-n≤2% 109 -46.2s 63 ms +38-17 β-β-n≤2% 110 0+ -42.9s 37 ms +17-9 β-111 112 0+ -42.9s 37 ms +17-9 β-1112 0+ -47.2s <00 ns ε 82 (0+) -52.2s 50 ms 5 ε ε ρ 85 (1/2-) -66.279 20.5 s I2 ε ε 85 (1/2-) -73.874 3.75 m 9 ε IT 85 88 (4-) -76.18 7.3 m 9 ε IT 85 88 (4-) -76.18 1.455 m 6 ε 88 (4-) -76.18 1.455 m 6 ε 88 (4-) -76.18 1.455 m 6 ε 89 (1/2) -80.65 2.03 h 7 ε 80 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 95 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 95 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 95 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 95 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 95 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 97 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 97 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 97 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 99 (1/2) -80.65 3.61 d 3 17 94.4%, β-5.6% 99 (1/2) -				τ			Dagas Mada
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	\mathbf{Zr}					•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0+			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0+			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_			
112 0+				0+	$-42.9\mathrm{s}$		'
41 Nb 81							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			112	0+		>394 ns	β -, β -n, β -2n
83 (5/2+) -58.4 3.8 s 2 ε 84 (1+,2+,3+) -61.0 s 9.8 s 9 ε, εp 85 (9/2+) -66.279 20.5 s 12 ε 85	41	Nb	81		-47.2s	<200 ns	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			82	(0+)	-52.2s	50 ms 5	ε, ερ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			83	(5/2+)	-58.4	3.8 s 2	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			84 (1+,2+,3+)	-61.0s	$9.8 \; s \; 9$	ε, ερ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			85	(9/2+)	-66.279	20.5 s 12	ε
86 (6+) -69.134 88 s 1 ε 87 (1/2-) -73.874 3.75 m 9 ε 87m (9/2+) -73.870 2.6 m 1 ε 88 (8+) -76.18 14.55 m 6 ε 88m (4-) -76.18 7.78 m 5 ε 89 (9/2+) -80.65 2.03 h 7 ε 89m (1/2)80.61 66 m 2 ε 90 8+ -82.663 14.60 h 5 ε 90m 482.538 18.81 s 6 IT 91 9/2+ -86.639 6.8×10 ² y 13 ε 91m 1/286.534 60.86 d 22 IT 96.6%, ε 3.4% 92 (7)+ -86.454 3.47×10 ⁷ y 24 ε, β-<0.05% 92m (2)+ -86.318 10.15 d 2 ε 93 9/2+ -87.214 100% 93m 1/287.183 16.12 y 12 IT 94 6+ -86.370 2.03×10 ⁴ y 16 β-94m 3+ -86.329 6.263 m 4 IT 99.5%, β-0.5% 95 9/2+ -86.786 34.991 d 6 β-95m 1/286.550 3.61 d 3 IT 94.4%, β-5.6% 96 6+ -85.608 23.35 h 5 β-97 9/2+ -85.610 72.1 m 7 β-97m 1/284.867 58.7 s 18 IT 98 1+ -83.533 2.86 s 6 β-98m (5+) -83.449 51.3 m 4 β-99.9%, IT<0.2% 99 9/2+ -82.33 15.0 s 2 β-99m 1/281.96 2.5 m 2 β->96.2%, IT<3.8% 100 1+ -79.806 1.5 s 2 β-99m 1/281.96 2.5 m 2 β->96.2%, IT<3.8% 100 1+ -79.806 1.5 s 2 β-			85m		-66.279	12 s 5	ε, ΙΤ
87 (1/2-) -73.874 3.75 m 9 ε 87m (9/2+) -73.870 2.6 m 1 ε 88 (8+) -76.18 14.55 m 6 ε 88m (4-) -76.18 7.78 m 5 ε 89 (9/2+) -80.65 2.03 h 7 ε 89m (1/2)80.61 66 m 2 ε 90 8+ -82.663 14.60 h 5 ε 90m 482.538 18.81 s 6 IT 91 9/2+ -86.639 6.8×10 ² y 13 ε 91m 1/286.534 60.86 d 22 IT 96.6%, ε 3.4% 92 (7)+ -86.454 3.47×10 ⁷ y 24 ε, β-<0.05% 92m (2)+ -87.214 100% 93m 1/287.183 16.12 y 12 IT 94 6+ -86.370 2.03×10 ⁴ y 16 β- 94m 3+ -86.329 6.263 m 4 IT 99.5%, β-0.5% 95 9/2+ -86.786 34.991 d 6 β- 95m 1/286.550 3.61 d 3 IT 94.4%, β-5.6% 96 6+ -85.608 23.35 h 5 β- 97 9/2+ -85.610 72.1 m 7 β- 97m 1/284.867 58.7 s 18 IT 98 1+ -83.533 2.86 s 6 β- 98m (5+) -83.449 51.3 m 4 β-99.9%, IT<0.2% 99 9/2+ -82.33 15.0 s 2 β- 99m 1/281.96 2.5 m 2 β->96.2%, IT<3.8% 100 1+ -79.806 1.5 s 2 β-			85m	(1/2-,3/2-)	-66.279	3.3 s 9	ε, ΙΤ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			86	(6+)	-69.134	88 s 1	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			87	(1/2-)	-73.874	3.75 m 9	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			87m	(9/2+)	-73.870	2.6 m 1	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			88	(8+)	-76.18	14.55 m 6	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			88m	(4-)	-76.18	7.78 m 5	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			89	(9/2+)	-80.65	2.03 h 7	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			89m	(1/2)-	-80.61	66 m 2	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			90	8+	-82.663	14.60 h 5	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			90m	4-	-82.538	18.81 s 6	IT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			91	9/2+	-86.639	$6.8 \times 10^2 \text{ y } 13$	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			91m	1/2-	-86.534	60.86 d 22	IT 96.6%, ε 3.4%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			92	(7)+	-86.454	$3.47 \times 10^7 \text{ y } 24$	ϵ , $\beta - < 0.05\%$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			92m	(2)+	-86.318	10.15 d 2	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			93	9/2+	-87.214	100%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			93m	1/2-	-87.183	16.12 y <i>12</i>	IT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			94	6+	-86.370	$2.03 \times 10^4 \text{ y } 16$	β–
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			94m	3+	-86.329	6.263 m 4	IT 99.5%, β – 0.5%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			95	9/2+		34.991 d <i>6</i>	β–
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			95m	1/2-	-86.550	3.61 d <i>3</i>	IT 94 . 4% , β– 5 . 6%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			96	6+	-85.608	23.35 h <i>5</i>	β–
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			97		-85.610	72.1 m 7	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			97m	1/2-	-84.867	58.7 ± 18	IT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							r
99m 1/281.96 2.5 m 2 β ->96.2%, IT<3.8% 100 1+ -79.806 1.5 s 2 β - 100m (5+) -79.492 2.99 s 11 β -			98m				β - 99.9%, IT<0.2%
100 1+ -79.806 1.5 s 2 β- $100m$ (5+) -79.492 2.99 s 11 β-			99	9/2+	-82.33	$15.0~\mathrm{s}~2$	β–
100m (5+) -79.492 2.99 s 11 β -			99m	1/2-	-81.96	2.5 m 2	$\beta -> 96.2\%$, IT $< 3.8\%$
·			100	1+			•
101 $(5/2+)$ -78.886 $7.1 \text{ s } 3$ $\beta-$			100m	(5+)	-79.492	2.99 s 11	β–
			101	(5/2+)	-78.886	7.1 s 3	β–

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
41 Nb 102	(4+)	-76.313	4.3 s 4	β_
102r		-76.313	1.3 s 2	β-
103 104	(5/2+)	-75.023 -71.828	1.5 s 2	β– β– , β–n 0.06%
104 104r	(1+)	-71.628	4.9 s 3	β -, β -n 0.05%
1041	(5/2+)	-69.910	0.94 s <i>4</i> 2.95 s <i>6</i>	β-, β-η 1.7%
105	(3/2+)	-66.197	0.93 s 4	β -, β -n 4.5%
107		-63.718	300 ms 9	β -, β -n 8%
107	(2+)	-65.716 -59.6	220 ms 18	β-, β-η 8%
109	(5/2)	-56.8s	106 ms 9	β -, β -n < 15%
110	(0/2)	-50.3s	86 ms 6	β-, β-n 40%
111	(5/2+)	-32.3s -49.0s	51 ms +6-5	β-, β-11 40%
112	(2+)	-44.4s	33 ms + 9 - 6	β_
113	(21)	-40.6s	>300 ns	β_
114		40.05	>392 ns	β -, β -n, β -2n
115			>394 ns	β ,
		40.5		
42 Mo 83	0	-46.7s	6 ms +30-3	ε
84	0+	-54.5s	2.3 s 3	ε, ερ
85	(1/2-)	-57.51	3.2 s 2	ε, εp≈0.14%
86	0+	-64.110	19.1 s 3	£
87	7/2+	-66.882	14.02 s 26	ε, ερ 15%
88	0+	-72.686	8.0 m 2	ε -
89	(9/2+)	-75.014	2.11 m 10	ε IT
89m	, ,	-74.627	190 ms 15	
90 91	0+ 9/2+	-80.174	5.56 h 9	ε
91 91m		-82.21 -81.56	15.49 m <i>1</i> 64.6 s <i>6</i>	ε ε 50%, IT 50%
92	0+	-86.809	14.53% 30	ε 50%, 11 50%
93	5/2+	-86.807	$4.0 \times 10^3 \text{ y } 8$	ε
93m		-84.382	6.85 h 7	IT 99.88%, ε 0.12%
94	0+	-88.414	9.15% 9	11 33.00%, € 0.12%
95	5/2+	-87.711	$15.84\% \ 11$	
96	0+	-88.794	16.67% 15	
97	5/2+	-87.544	9.60% 14	
98	0+	-88.116	24.39% 37	
99	1/2+	-85.970	65.976 h 24	β–
100	0+	-86.187	$7.3 \times 10^{18} \text{ y } 4$	2β_
			9.82% 31	•
101	1/2+	-83.514	14.61 m 3	β–
102	0+	-83.572	11.3 m 2	β_
103	(3/2+)	-80.970	67.5 s 15	β_
104	0+	-80.359	60 s 2	β_
105	(5/2-)	-77.346	35.6 s 16	β_
106	0+	-76.144	8.73 s 12	β_
107	(5/2+)	-72.561	3.5 s 5	β–
108	0+	-70.765	1.09 s 2	β -, β -n < 0.5%
109	(7/2-)	-66.68	660 ms 45	β-, β-n 1.3%
110	0+	-64.55	0.27 s 1	β- , β-n 2%
111		-60.1s	220 ms +41-36	β -, β -n $\leq 12\%$
112	0+	-57.6s	120 ms +13-11	β–
113		-52.9s	78 ms + 6-5	β–
114	0+	-50.0s	60 ms + 13 - 9	β–

Nuclide Z El A	Јπ	Δ (MeV)	Τ½, Γ, or Abundance	Decay Mode
	9.0			=
42 Mo 115 116	0+	-44.7s	51 ms +79-19 >391 ns	β -, β -n β -, β -n
117	UΨ		>391 ns	β -, β -n?, β -2n?
43 Tc 85		-46.0s	≈0.5 s	p?
86	(0+)	-40.0s -51.3s	54 ms 7	=
87	(9/2+)	-57.690	2.2 s 2	ε, εp ε
88m	(3+)	-61.679	5.8 s 2	ε
88m	(6+)	-61.679	6.4 s 8	ε
89	(9/2+)	-67.394	12.8 s 9	ε
89m	(1/2-)	-67.331	12.9 s 8	ϵ , IT<0.01%
90m	1+	-70.723	8.7 s 2	ε
90m	(6+)	-70.223	49.2 s 4	ε
91	(9/2)+	-75.987	$3.14~\mathrm{m}~2$	ε
91m	(1/2)-	-75.848	3.3 m 1	ε, IT<1%
92	(8)+	-78.924	4.25 m <i>15</i>	ε
93	9/2+	-83.606	2.75 h 5	ε
93m	1/2-	-83.214	43.5 m 10	IT 77.4%, ε 22.6%
94	7+	-84.158	293 m 1	8
94m	(2)+	-84.082	52.0 m 10	ε, IT<0.1%
95	9/2+	-86.021	20.0 h 1	3 100 100 100
95m	1/2-	-85.982	61 d 2	ε 96.12%, IT 3.88%
96	7+	-85.821	4.28 d 7	E
96m 97	4+ 9/2+	$-85.787 \\ -87.224$	51.5 m 10 4.21×10 ⁶ y 16	IT 98%, ε 2%
97m	$\frac{9/2+}{1/2-}$	-87.224 -87.127	91.0 d 6	ε IT 96.06%, ε 3.94%
98	(6)+	-86.431	$4.2 \times 10^6 \text{ y } 3$	β-
99	9/2+	-87.327	$2.111 \times 10^5 \text{ y } 12$	β_
99m	1/2-	-87.184	6.0067 h 5	IT, β-3.7×10 ⁻³ %
100	1+	-86.020	15.46 s 19	β -, ϵ 2.6×10 ⁻³ %
101	9/2+	-86.34	14.02 m 1	β_
102	1+	-84.569	5.28 ± 15	β_
102m	(4,5)	-84.569	4.35 m 7	β– 98%, IT 2%
103	5/2 +	-84.600	54.2 s 8	β–
104	(3+)	-82.51	18.3 m 3	β–
105	(3/2-)	-82.29	7.6 m 1	β–
106	(2+)	-79.77	$35.6 \mathrm{\ s}$ 6	β–
107	(3/2-)	-78.746	21.2 s 2	β–
108	(2)+	-75.919	5.17 s 7	β-
109	(5/2+)	-74.279	0.86 s 4	β -, β -n 0.08%
110	(2+) $(5/2+)$	-71.030	0.92 s 3	β-, β-n 0.04%
111 112	(9/4+)	-69.02 -65.253	350 ms <i>21</i> 0.29 s <i>2</i>	β- , β-n 0 . 85% β- , β-n 4%
113	>5/2	-62.88	160 ms +50-40	β -, β -n 2.1%
114m		-58.9s	100 ms 20	β -, β -n?
114m		-58.9s	90 ms 20	β -, β -n?
115	(= .)	-56.1s	83 ms +20-13	β -, β -n
116		-51.5s	56 ms +15-10	β_
117	(5/2+)	-48.4s	85 ms +95-30	β_
118	•	-43.8s		β_
119			>392 ns	β -, β -n?, β -2n?
120			>394 ns	β -, β -n?, β -2n?
44 Ru 87		-45.9s	>1.5 µs	ε?
			25	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
44 Ru	88	0+	-54.4s	1.2 s + 3-2	ε
	89	(9/2+)	-58.1s	1.5 s 2	ε , $\varepsilon p < 0.15\%$
	90	0+	-64.883	11.7 s 9	ε
	91	(9/2+)	-68.238	7.9 s 4	ε
	91m	(1/2-)	-68.238	7.6 s 8	IT, $\varepsilon > 0\%$, $\varepsilon p > 0\%$
	92	0+	-74.301	3.65 m 5	ε
	93	(9/2)+	-77.213	59.7 s 6	ε
	93m	(1/2)-	-76.479	$10.8 \; \mathrm{s} \; 3$	ε 78%, IT 22%,
					εр 0.03%
	94	0+	-82.579	51.8 m 6	ε
	95	5/2 +	-83.457	1.643 h <i>13</i>	ε
	96	0+	-86.080	5.54%~14	
	97	5/2 +	-86.120	2.83 d 23	ε
	98	0+	-88.224	$1.87\% \ 3$	
	99	5/2 +	-87.620	$12.76\% \ 14$	
	100	0+	-89.222	12.60% 7	
	101	5/2 +	-87.952	$17.06\% \ 2$	
	102	0+	-89.101	31.55% 14	
	103	3/2 +	-87.262	39.247 d 13	β–
	104	0+	-88.092	18.62% 27	
	105	3/2 +	-85.931	4.44 h 2	β–
	106	0+	-86.320	371.8 d <i>18</i>	β–
	107	(5/2)+	-83.859	3.75 m 5	β–
	108	0+	-83.657	4.55 m 5	β–
	109	(5/2+)	-80.734	34.5 s 10	β–
	110	0+	-80.069	$11.6 \mathrm{\ s}\ 6$	β–
	111	5/2 +	-76.781	2.12 s 7	β–
	112	0+	-75.627	1.75 s 7	β–
	113	(1/2+)	-71.87	$0.80 \mathrm{\ s}\ 5$	β–
	113m	(7/2-)	-71.87	510 ms 30	β–
	114	0+	-70.21	$0.52 \mathrm{\ s}\ 5$	β–
	115	(3/2+)	-66.19	318 ms <i>19</i>	β–
	115m		-66.19	$740~\mathrm{ms}~80$	β-, β-n
	115m		-66.19	270 ms 38	β- , β-n
	115m	_	-66.19	76 ms 6	β- , β-n
	116	0+	-64.2s	204 ms +32-29	β–
	117		-59.6s	142 ms +18-17	β-
	118	0+	-57.3s	123 ms +48-35	β- , β-n
	119	0	-52.6s	>300 ns	β-
	120	0+	-50.0s	>150 ns	β-
	121	0.		>390 ns	β -, β -n
	122	0+		>392 ns	β -, β -n
	123	0.		>394 ns	β -, β -n, β -2n
	124	0+		>396 ns	β- , β-n
45 Rh			$-46.0\mathrm{s}$	>1.5 µs	ε?, p?
	90		$-52.0\mathrm{s}$	12 ms + 9-4	ε?
	90m		-52.0s	1.0 s + 3-2	ε?
	91	(9/2+)	-58.8s	1.47 s 22	ε
	91m	(1/2-)	-58.8s	1.46 s 11	ε
	92?	(6+)	-62.999	4.66 s 25	ε
	92m	(2+)	-62.999	0.53 ± 37	ε
	93	(9/2+)	-69.017	12.2 s 7	ε

Nucli	de		Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
45 Rh	94	(4+)	-72.907	66 s 6	ε, ερ 1.8%
	94m	(8+)	-72.607	25.8 s 2	ε
	95	9/2 +	-78.342	5.02 m 10	ε
	95m	(1/2)-	-77.799	1.96 m 4	IT 88%, ε 12%
	96	≥ 6+	-79.69	9.90 m 10	ε
	96m	3+	-79.64	1.51 m 2	IT 60%, ε 40%
	97	9/2+	-82.60	30.7 m 6	ε
	97m	1/2-	-82.34	46.2 m <i>16</i>	ε 94.4%, IT 5.6%
	98	(2)+	-83.18	8.72 m <i>12</i>	ε
	98m	(5+)	-83.18	3.6 m 2	IT 89%, ε 11%
	99	1/2-	-85.576	16.1 d 2	3
	99m	9/2+	-85.511	4.7 h 1	ε>99.84%, IT<0.16%
	100	1-	-85.59	20.8 h 1	ε
	100m	(5+)	-85.48	4.6 m 2	$IT \approx 98.3\%$, $\varepsilon \approx 1.7\%$
	101	1/2-	-87.411	3.3 y 3	ε
	101m	9/2+	-87.254	4.34 d <i>1</i>	ε 92.8%, IT 7.2%
	102	(1-,2-)	-86.778	207.3 d <i>17</i>	ε 78%, β-22%
	102m	6(+)	-86.637	3.742 y 10	ε 99.77%, IT 0.23%
	103	1/2-	-88.025	100%	
	103m	7/2+	-87.985	56.114 m 9	IT
	104	1+	-86.953	42.3 s 4	β - 99.55%, ϵ 0.45%
	104m	5+	-86.824	4.34 m 3	IT 99.87%, β-0.13%
	105	7/2+	-87.848	35.36 h 6	β–
	105m	1/2-	-87.718	42.9 s 3	IT
	106	1+	-86.360	30.07 s 35	β–
	106m	(6)+	-86.223	131 m 2	β–
	107	7/2+	-86.86	21.7 m 4	β-
	108	1+	-85.03	16.8 s 5	β-
	108m	(5+)	-85.03	6.0 m 3	β-, IT
	109 110m	7/2+ (≥4)	-85.010	80 s 2 28.5 s 15	β– β–
			-82.84 -82.84	3.2 s 2	ρ– β–
	110m <i>111</i>	$\frac{1+}{(7/2+)}$	-82.304	11 s 1	β– β–
	111 112m	1+	-32.304 -79.73	3.45 s 37	β_
		(4,5,6)	-79.73	6.73 s 15	β_
	113	(7/2+)	-78.767	2.80 s 12	β_
	114	1+	-75.71	1.85 s 5	β_
	114m	(7-)	-75.51	1.86 s 6	β_
	115	(7/2+)	-74.229	$0.99 \mathrm{\ s}\ 5$	β_
	116	1+	-70.74	0.68 s 6	β_
	116m	(6-)	-70.59	0.57 ± 5	β–
	117	(7/2+)	-68.897	0.44 s 4	β–
	118		-64.89	266 ms +22-21	β– , β–n 3 . 1%
	119	(7/2+)	-62.8s	171 ms 18	β -, β -n 6.4%
	120		-58.8s	136 ms +14-13	β -, β -n < 5.4%
	121		-56.4s	151 ms +67-58	β -, β -n
	122		-52.4s	>300 ns	β -, β -n
	123			>403 ns	β-, β-n
	$124 \\ 125$			>391 ns >393 ns	β -, β -n, β -2n β -, β -n
	126			>395 ns	β -, β -2n, β -n
	120			2000 IIS	р, р 211, р 11

Nucli	de		Δ	T½, Γ, or	
Z El	A	Јπ	(MeV)	Abundance	Decay Mode
46 Pd	91		-46.3s	>1 µs	ε?
	92	0+	-55.1s	0.7 s + 4-2	ε
	93	(9/2+)	-59.1s	1.00 s 9	ϵ , ϵp
	94	0+	-66.102	9.6 s 2	ε
	95	(9/2+)	-69.966	5 s 3	ε
	95m	(21/2+)	-68.091	$13.3 \mathrm{\ s}\ 3$	ε 89%, IT 11%,
					εр 0.93%
	96	0+	-76.183	122 s 2	ε
	97	(5/2+)	-77.805	3.10 m 9	ε
	98	0+	-81.320	17.7 m 3	ε
	99	(5/2)+	-82.184	21.4 m 2	ε
	100	0+	-85.23	3.63 d 9	ε
	101	5/2+	-85.431	8.47 h 6	ε
	102	0+ 5/2+	-87.928 -87.482	1.02 % <i>1</i> 16.991 d <i>19</i>	0
	$\frac{103}{104}$	0+	-89.393	11.14% 8	ε
	105	5/2+	-88.416	22.33% 8	
	106	0+	-89.905	27.33% 3	
	107	5/2+	-88.370	$6.5 \times 10^6 \text{ y } 3$	β–
	107m	11/2-	-88.155	21.3 s 5	IT
	108	0+	-89.521	26.46% 9	
	109	5/2+	-87.603	13.7012 h <i>24</i>	β–
	109m	11/2-	-87.414	4.696 m 3	İT
	110	0+	-88.348	11.72% 9	
	111	5/2 +	-86.003	23.4 m 2	β–
	111m	11/2-	-85.831	5.5 h 1	IT 73%, β– 27%
	112	0+	-86.323	21.03 h 5	β–
	113	(5/2+)	-83.590	93 s 5	β–
	113m	(9/2-)	-83.509	$0.3 \; \mathrm{s} \; 1$	IT
	114	0+	-83.490	2.42 m 6	β–
	115	(5/2+)	-80.43	25 s 2	β-
		(11/2-)	-80.34	50 s 3	β– 92%, IT 8%
	116	0+	-79.831	11.8 s 4	β–
	117	(5/2+)	-76.424	4.3 s 3	β-
	118 119	0+	-75.391 -71.407	1.9 s 1	β– β–
	120	0+	-71.407 -70.309	$0.92 \text{ s } 1 \\ 0.5 \text{ s } 1$	β– β–
	$\frac{120}{121}$	(3/2+)	-66.3s	285 ms 24	β - β - $n \le 0.8\%$
	122	0+	-64.7s	175 ms 16	$\beta - \ge 97.5\%$,
		٠.	01	2.0 1110 10	$\beta - n \le 2.5\%$
	123		-60.6s	174 ms +38-34	β_
	124	0+	-58.8s	38 ms +38-19	β_
	125			>230 ns	β-, β-n
	126	0+		>230 ns	β -, β -n
	128	0+		>394 ns	β – , β – n
47 Ag	93		-46.3s		p, ε, εp
	94	(0+)	-52.4s	26 ms +26-9	ε, ερ
	94m	(7+)	-52.4s	0.60 s 2	ε, ερ 20%
	94m	(21+)	-45.7s	0.40 s 4	ε 95.4%, ερ 27%,
					p 4.1%, 2p 0.5%
	95	(9/2+)	-59.6s	1.75 ± 12	ϵ , ϵp
	95m	(1/2-)	-59.3s	<500 ms	IT

Nuclid	la.		Δ	T½, Γ, or	
Z El	A	$J\pi$	(MeV)	Abundance	Decay Mode
47 Ag	96m	(8)+	-64.62	4.40 s 6	ε, ερ 8.5%
B	96m	(2+)	-64.62	6.9 s 6	ε, ερ 18%
	97	(9/2+)	-70.8	25.5 s 3	ε
	98	(6+)	-73.05	47.5 s 3	ϵ , $\epsilon p 1 . 1 \!\!\times\! 10^{-3} \! \%$
	99	(9/2)+	-76.712	124 s 3	ε
	99m	(1/2-)	-76.206	10.5 s 5	IT
	100	(5)+	-78.137	2.01 m 9	ε
	100m	(2)+	-78.121	2.24 m 13	ε, ΙΤ
	101	9/2+	-81.334	11.1 m 3	ε
	101m	(1/2)-	-81.060	3.10 s 10	IT
	102	5(+)	-82.246	12.9 m 3	ε
	102m	2+	-82.237	7.7 m 5	ε 51%, ΙΤ 49%
	103	7/2+	-84.800	65.7 m 7	ε
	103m	1/2-	-84.665	5.7 s 3	IT
	104	5+	-85.114	69.2 m 10	ε
	104m	2+	-85.107	33.5 m <i>20</i>	ε 99.93%, IT<0.07%
	105	1/2-	-87.070	41.29 d 7	ε
	105m	7/2+	-87.045	7.23 m <i>16</i>	IT 99.66%, ε 0.34%
	106	1+	-86.940	23.96 m 4	$\epsilon 99.5\%$, $\beta - < 1\%$
	106m	6+	-86.850	8.28 d 2	ε
	107	1/2-	-88.405	51.839% 8	
	107m	7/2 +	-88.312	44.3 s 2	IT
	108	1+	-87.605	2.382 m 11	β- 97.15%, ε 2.85%
	108m	6+	-87.495	438 y 9	ε 91.3%, IT 8.7%
	109	1/2-	-88.719	48.161% 8	T.M.
	109m	7/2+	-88.631	39.6 s 2	IT
	110	1+	-87.457	24.6 s 2	β-99.7%, ε 0.3%
	110m	6+	-87.339	249.76 d <i>4</i>	β– 98.64%, IT 1.36%
	111	1/2-	-88.217	7.45 d 1	β-
	111m	7/2+	-88.157	64.8 s 8	IT 99.3%, β–0.7%
	$\frac{112}{113}$	2(-) $1/2-$	-86.583	3.130 h 9	β– β–
		1/2- 7/2+	-87.03 -86.99	5.37 h 5	•
	113m <i>114</i>	1/2+	-86.99 -84.930	$68.7 \text{ s } 16 \\ 4.6 \text{ s } 1$	IT 64%, β– 36% β–
	$114 \\ 115$	1/2-	-84.98	20.0 m 5	β– β–
	115 115m	7/2+	-84.94	18.0 s 7	β– 79%, IT 21%
	116	(0-)	-82.542	237 s 5	β-
	116m	(3+)	-82.494	20 s 1	β– 93%, IT 7%
	116m	(6-)	-82.412	9.3 s 3	β- 92%, IT 8%
	117	(1/2-)	-82.18	72.8 s +20-7	β- 62π, 11 σπ
	117m	(7/2+)	-82.15	5.34 s 5	β- 94%, IT 6%
	118	1(-)	-79.553	3.76 s 15	β-
	118m	4(+)	-79.425	2.0 s 2	β– 59%, IT 41%
	119m	(1/2-)	-78.64	6.0 s 5	β_
	119m	(7/2+)	-78.64	2.1 s 1	β_
	120	3(+)	-75.651	1.23 s 4	β -, β -n < 3.0×10 ⁻³ %
	120m	6(-)	-75.448	0.40 s 3	$\beta - \approx 63\%$, IT $\approx 37\%$
	121	(7/2+)	-74.40	0.78 ± 2	β-, β-n 0.08%
	122	(3+)	-71.11	0.529 ± 13	β-99.8%, β-n 0.2%
	122m	(1-)	-71.11	0.55 ± 5	β-, IT, β-n
	122m	(9-)	-71.03	0.20 s 5	β -, β -n
	123	(7/2+)	-69.55	0.300 s 5	β-, β-n 0.55%

Nucli Z El		Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					•
47 Ag		≥2	-66.2	$0.172 \mathrm{\ s}\ 5$	β-, β-n 1.3%
	125	(9/2+)	-64.4s	166 ms 7	β– , β–n
	126		-60.9s	107 ms <i>12</i>	β –, β –n
	127		-58.8s	109 ms 25	β-
	128		-54.9s	58 ms 5	β -, β -n
	129	(9/2+)	$-52.6\mathrm{s}$	46 ms + 5 - 9	β -, β -n
	129m	(1/2-)	$-52.6\mathrm{s}$	≈160 ms	β– , β–n
	130		-46.3s	≈50 ms	β– , β–n
48 Cd	95		-46.6s		εp?, ε?
	96	0+	-55.6s	1.03 s + 24 - 21	ε
	97	(9/2+)	-60.5s	1.10 s 7	ε, ερ 12%
	97m	(25/2+)	-60.5s	3.70 s 8	ε, ερ 25%
	98	0+	-67.62	9.2 s 3	ε , $\varepsilon p < 0.03\%$
	99	(5/2+)	-69.931	16 s 3	ε , $\varepsilon \alpha < 1.0 \times 10^{-4}\%$,
					εp 0.17%
	100	0+	-74.194	49.1 s 5	ε
	101	(5/2+)	-75.836	1.36 m 5	ε
	102	0+	-79.659	5.5 m 5	ε
	103	(5/2)+	-80.652	7.3 m 1	ε
	104	0+	-83.968	57.7 m 10	ε
	105	5/2 +	-84.333	55.5 m 4	ε
	106	0+	-87.130	$> 3.6 \times 10^{20} \text{ y}$	2ϵ
				$1.25\% \ 6$	
	107	5/2 +	-86.990	6.50 h 2	ε
	108	0+	-89.252	$>1.9\times10^{18} \text{ y}$	2ϵ
				$0.89\% \ 3$	
	109	5/2 +	-88.504	461.4 d <i>12</i>	ε
	110	0+	-90.350	12.49% 18	
	111	1/2 +	-89.254	12.80% 12	
	111m	11/2-	-88.858	48.50 m 9	IT
	112	0+	-90.577	$24.13\% \ 21$	
	113	1/2 +	-89.046	$8.00 \times 10^{15} \text{ y } 26$	β–
				12.22% 12	
	113m	11/2-	-88.783	14.1 y 5	β- 99.86%, IT 0.14%
	114	0+	-90.018	$>2.1\times10^{18} \text{ y}$	2β–
				$28.73\% \ 42$	
	115	1/2 +	-88.087	53.46 h 5	β–
	115m	(11/2)-	-87.906	44.56 d 24	β–
	116	0+	-88.716	$3.3 \times 10^{19} \text{ y } 4$	2β-
				7.49% 18	
	117	1/2 +	-86.422	2.49 h 4	β–
	117m	(11/2)-	-86.286	3.36 h 5	β–
	118	0+	-86.71	50.3 m 2	β–
	119	3/2 +	-83.98	2.69 m 2	β–
	119m	(11/2-)	-83.83	2.20 m 2	β–
	120	0+	-83.957	50.80 ± 21	β–
	121	(3/2+)	-81.06	13.5 s 3	β–
		(11/2-)	-80.84	8.3 s 8	β–
	122	0+	-80.616	5.24 s 3	β–
	123	(3/2+)	-77.32	2.10 s 2	β–
		(11/2-)	-77.00	1.82 s 3	$\beta - \leq 100\%$, IT
	124	0+	-76.697	1.25 s 2	β–

Nucli Z El	de A	T=	Δ (MaV)	T½, Γ, or	Dagar Mada
		Jπ	(MeV)	Abundance	Decay Mode
48 Cd		(3/2+)	-73.35	0.68 s 4	β–
		(11/2-)	-73.35	0.48 s 3	β-
	126	0+	-72.256	0.515 s 17	β-
	127	(3/2+)	-68.43	0.37 s 7	β-
	128	0+	-67.25	0.28 s 4	β–
	129	(3/2+)	-63.3s	0.27 s 4	0 0 0 50
	130	0+	-61.5	162 ms 7	β -, β -n 3.5%
	131	(7/2-)	-55.4s	68 ms 3	β -, β -n 3.5%
	132	0+	-50.9s	97 ms 10	β-, β-n 60%
	133	(7/2-)		57 ms 10	β -, β -n, β -2n
49 In			-47.2s		ε?, p?
	98		-53.9s	32 ms +32-11	ε
	98m		-53.9s	1.2 s + 12 - 4	ε
	99		-61.4s	3.0 s 8	ε
	100	(6+,7+)	-64.3	5.9 s 2	ε, ερ 1.6%
	101	(9/2+)	-68.6s	15.1 s 3	ε, ερ
	102	(6+)	-70.694	23.3 s 1	ε, εp 9.3×10 ⁻³ %
	103	(9/2)+	-74.629	65 s 7	ε
	103m	, ,	-73.997	34 s 2	ε 67%, IT 33%
	104	(6+)	-76.182	1.80 m 3	8
	104m	(3+)	-76.089	15.7 s 5	IT 80%, ε 20%
	105	9/2+	-79.64	5.07 m 7	3
	105m		-78.97	48 s 6	IT
	106	7+	-80.60	6.2 m 1	ε
	106m 107	(2)+ 9/2+	-80.57 -83.56	5.2 m <i>1</i> 32.4 m <i>3</i>	ε
	107 107m	1/2-	-82.89	50.4 s 6	IT
	107111	7+	-84.116	58.0 m 12	ε
	108m	2+	-84.110 -84.086	39.6 m 7	ε
	100m	9/2+	-86.488	4.167 h <i>18</i>	ε
	109m	1/2-	-85.838	1.34 m 7	IT
		(19/2+)	-84.386	0.209 s 6	IT
	110	7+	-86.47	4.9 h <i>1</i>	ε
	110m	2+	-86.41	69.1 m 5	ε
	111	9/2+	-88.393	2.8047 d 4	ε
	111m	1/2-	-87.856	7.7 m 2	IT
	112	1+	-87.992	14.97 m 10	ϵ 56%, β – 44%
	112m	4+	-87.835	20.56 m 6	IT
	113	9/2+	-89.368	4.29% 5	
	113m	1/2-	-88.976	99.476 m 23	IT
	114	1+	-88.570	71.9 s 1	β - 99.5%, ϵ 0.5%
	114m	5+	-88.380	49.51 d <i>1</i>	IT 96.75%, ε 3.25%
	115	9/2+	-89.536	$4.41 \times 10^{14} \text{ y } 25$	β–
				95.71% 5	
	115m	1/2-	-89.200	4.486 h 4	IT 95% , β – 5%
	116	1+	-88.249	14.10 s 3	β – 99.98%, ϵ 0.02%
	116m	5+	-88.122	54.29 m <i>17</i>	β–
	116m	8-	-87.959	2.18 s 4	IT
	117	9/2+	-88.943	43.2 m 3	β-
	117m	1/2-	-88.628	116.2 m 3	β- 52.9%, IT 47.1%
	118	1+	-87.228	5.0 s 5	β–
	118m	5+	-87.168	4.45 m 5	β–

Νι	ıcli	de		Δ	Τ½, Γ, or	
\mathbf{Z}	El	A	Jπ	(MeV)	Abundance	Decay Mode
49	In	118m	8-	-87.028	8.5 s 3	IT 98 . 6% , β – 1 . 4%
		119	9/2+	-87.699	2.4 m 1	β-
		119m	1/2-	-87.388	18.0 m 3	β-95.6%, IT 4.4%
		120	1+	-85.73	3.08 s 8	β-
		120m	(8–)	-85.73	47.3 s 5	β_
		120m	(5)+	-85.66	46.2 s 8	β_
		121	9/2+	-85.84	23.1 s 6	β-
		121m 122	1/2- 1+	-85.52 -83.57	3.88 m <i>10</i> 1.5 s <i>3</i>	β– 98.8%, IT 1.2% β–
		122m	5+	-83.57 -83.53	10.3 s 6	β-
		122m	(8-)	-83.28	10.8 s 4	β_
		123	(9/2)+	-83.43	6.17 s 5	β_
		123m	(1/2)-	-83.10	47.4 s 4	β_
		124	(1)+	-80.87	3.12 s 9	β_
		124m	(8-)	-80.82	3.7 s 2	β_
		125	9/2+	-80.48	2.36 s 4	β–
		125 m	1/2(-)	-80.12	12.2 s 2	β_
		126	3(+)	-77.81	1.53 s 1	β–
		126m	(8-)	-77.71	1.64 s 5	β–
		127	(9/2+)	-76.89	1.09 s 1	β -, β -n \leq 0.03%
			(1/2-)	-76.43	3.67 s 4	β-, β-n 0.69%
			(21/2-)	-75.03	1.04 s 10	β–
		128	(3)+	-74.36	$0.84 \mathrm{\ s}$ 6	β -, β -n<0.05%
		128m	(8-)	-74.02	0.72 s 10	β -, β -n<0.05%
		129	(9/2+)	-72.81	0.61 s 1	β-, β-n 0.25%
		129m	(1/2-)	-72.44	$1.23 \mathrm{\ s}\ 3$	$\beta - > 99.7\%$, $\beta - n 2.5\%$,
		199m	(23/2-)	-71.18	0.67 s 10	IT<0.3% β_
		130	1(-)	-69.89	0.29 s 2	β-, β-n 0.93%
		130m	(10-)	-69.84	0.54 s 1	β-, β-n 1.65%
		130m	(5+)	-69.49	0.54 s 1	β-, β-n 1.65%
		131	(9/2+)	-68.05	$0.28 \ s \ 3$	β-, β-n≤2%
		131m	(1/2-)	-67.75	0.35 s 5	$\beta - \ge 99.98\%$, $\beta - n \le 2\%$,
						$\text{IT} \leq 0.02\%$
		131m	(21/2+)	-64.29	$0.32~\mathrm{s}~6$	$\beta - > 99\%$, IT < 1%,
		100	(.	00 41	0.005.0	$\beta - n \approx 0.03\%$
		132	(7-)	-62.41	0.207 s 6	β -, β -n 6.3%
		133	(9/2+)	-57.8s	165 ms 3	β -, β -n 85%
			(1/2-) 4- to 7-)	-57.4s -52.0s	180 ms <i>15</i> 140 ms <i>4</i>	β -, IT, β -n
		135	4-107-)	-32.0s -47.2s	92 ms 10	β- , β-n 65% β- , β-n
5 0	o				52 ms 10	
90	SIL	99 100	0+	-47.7s	0.86 s +37-20	ε?, εp?
		101	(5/2+)	-56.9 -59.9s	1.7 s 3	ε, εp<17% ε, εp 26%
		101	0+	-64.9	3.8 s 2	ε, ερ 20%
		103	(5/2+)	-66.97	7.0 s 2	ε, ερ 1.2%
		104	0+	-71.624	20.8 s 5	ε, ερ 1.2π
		105	(5/2+)	-73.337	32.7 s 5	ε, ερ 0.01%
		106	0+	-77.353	115 s 5	ε
		107	(5/2+)	-78.512	2.90 m 5	ε
		108	0+	-82.071	10.30 m 8	ε
		109	5/2 +	-82.632	18.0 m 2	ε
					32	

Nucli		_	Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
50 Sn	110	0+	-85.84	4.11 h <i>10</i>	3
	111	7/2+	-85.941	35.3 m 6	ε
	112	0+	-88.657	$< 1.3 \times 10^{21} \text{ y}$	2ϵ
				$0.97\% \ 1$	
	113	1/2+	-88.330	115.09 d 3	ε
	113m	7/2+	-88.253	21.4 m 4	IT 91.1%, ε 8.9%
	114	0+	-90.559	0.66% 1	
	115	1/2+	-90.033	0.34% 1	
	116	0+	-91.525	14.54% 9	
	117	1/2+	-90.397	7.68% 7	TM
	117m	11/2-	-90.082	13.76 d 4	IT
	118	0+	-91.652	24.22% 9	
	119	1/2+	-90.065	8.59% 4	TM
	119m	11/2-	-89.976	293.1 d 7	IT
	$\frac{120}{121}$	0+ 3/2+	-91.098 -89.197	32.58% 9 27.03 h <i>4</i>	β_
	121 121m	3/2+ 11/2-	-89.191	43.9 y 5	F- IT 77.6%, β-22.4%
	121m 122	0+	-89.191	4.63% 3	11 11.0%, p- 22.4%
	123	11/2-	-87.817	129.2 d 4	β_
	123 123m	$\frac{11}{2}$	-87.792	40.06 m 1	β_
	124	0+	-88.237	$>1.2\times10^{21} \text{ y}$	2β-
	121	0.1	00.20.	5.79% 5	- P
	125	11/2-	-85.898	9.64 d 3	β-
	125m	3/2+	-85.870	9.52 m 5	β_
	126	0+	-86.02	$2.30 \times 10^5 \text{ y } 14$	β_
	127	(11/2-)	-83.47	2.10 h 4	β–
	127m	(3/2+)	-83.46	4.13 m 3	β–
	128	0+	-83.34	59.07 m <i>14</i>	β–
	128m	(7-)	-81.24	6.5 s 5	IT
	129	(3/2+)	-80.59	2.23 m 4	β–
	129m	(11/2-)	-80.56	6.9 m 1	β -, IT<2.0×10 ⁻³ %
	130	0+	-80.137	3.72 m 7	β–
	130m	(7-)	-78.190	1.7 m <i>1</i>	β–
	131	(3/2+)	-77.271	56.0 s 5	β–
		(11/2-)	-77.271	58.4 s 5	β-, IT
	132	0+	-76.548	39.7 s 8	β-
	133	7/2-	-70.85	1.46 s 3	β-, β-n 0.03%
	134	0+	-66.3	1.050 s 11	β-, β-n 17%
	135	(7/2-)	-60.6s	530 ms 20	β-, β-n 21%
	136	0+	-56.3s	0.25 s 3	β-, β-n 30%
	137	0.	-50.3s	190 ms 60	β -, β -n 58%
	138	0+		>408 ns	β-, β-n
51 Sb			-56.2s	>1.5 µs	ε?
	104	(F(0.)	-59.2s	0.44 s + 15 - 11	ε , $\varepsilon p < 7\%$, $p < 1\%$
	105	(5/2+)	-63.85	1.22 s 11	ε 99%, p 1%
	106	(2+)	-66.473	0.6 s 2	3
	107	(5/2+)	-70.653	4.0 s 2 $7.4 s 3$	3
	$\frac{108}{109}$	(4+) $(5/2+)$	-72.445 -76.251	1.4 s 3 17.0 s 7	ε
	110	(3+,4+)	-76.231 -77.449	23.0 s 4	ε
	111	(5/2+)	-80.836	75 s 1	ε
	112	3+	-81.60	51.4 s 10	3
		9.	01.00	01.1510	~

Nucli		_	Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
51 Sb	113	5/2+	-84.42	6.67 m 7	ε
	114	3+	-84.50	3.49 m 3	ε
	115	5/2 +	-87.00	32.1 m 3	ε
	116	3+	-86.822	15.8 m 8	ε
	116m	8-	-86.439	60.3 m <i>6</i>	ε
	117	5/2 +	-88.642	2.80 h 1	ε
	118	1+	-87.996	3.6 m 1	ε
	118m	8-	-87.746	5.00 h 2	ε
	119	5/2+	-89.474	38.19 h <i>22</i>	ε
		(27/2+)	-86.632	0.85 s 9	IT
	120	1+	-88.417	15.89 m 4	ε
	120m	8-	-88.417	5.76 d 2	ε
	121	5/2+	-89.599	57.21% 5	
	122	2-	-88.334	$2.7238 \; \mathrm{d} \; 2$	β - 97.59%, ϵ 2.41%
	122m	(8)–	-88.170	4.191 m 3	IT
	123	7/2+	-89.226	42.79% 5	_
	124	3-	-87.622	60.20 d 3	β-
	124m	5+	-87.611	93 s 5	IT 75%, β– 25%
	124m	(8)–	-87.585	20.2 m 2	IT
	125	7/2+	-88.257	2.75856 y 25	β–
	126	(8–)	-86.40	12.35 d 6	β-
	126m	(5+)	-86.38	19.15 m 8	β– 86%, IT 14%
	126m	(3–)	-86.36	≈11 s	IT
	127	7/2+	-86.700	3.85 d <i>5</i>	β–
	128	8-	-84.61	9.01 h 4	β-
	128m	5+ 7/9	-84.61	10.4 m 2	β-96.4%, IT 3.6%
	129	7/2+	-84.63	4.40 h <i>1</i>	β-
		(19/2-)	-82.78	17.7 m 1	β– 85%, IT 15%
	130	(8-)	-82.29	39.5 m 8	β–
	130m		-82.29	6.3 m 2	β–
	131 132	(7/2+)	-81.98	23.03 m 4	β– β–
	132m	(4)+ (8–)	-79.67 -79.67	2.79 m <i>7</i> 4.10 m <i>5</i>	β–
	132m 133	(7/2+)	-78.94	2.34 m 5	β–
	134	(0-)	-74.17	0.78 s 6	β–
	134m	(7–)	-73.89	10.07 s 5	β-, β-n 0.09%
	135 135	(7/2+)	-69.79	1.679 s 15	β-, β-η 0.03%
	136	1-	-64.5s	0.923 s 14	β -, β -n 16.3%
	137	(7/2+)	-60.4s	492 ms 25	β -, β -n 49%
	138	(.,,	-54.8s	350 ms 15	β-, β-n 72%
	139		-50.3s	93 ms +14-3	β -, β -n 90%
	140		30.32	>407 ns	β -, β -n, β -2n
52 Te		(5/9.)	59 Ga		
52 1e	106	(5/2+) 0+	−52.6s −58.2	0.62 μs 7 70 μs <i>17</i>	α
	$100 \\ 107$	0+	-36.2 -60.54	•	α 70% ς 30%
	107	0+		3.1 ms 1	α 70%, ε 30%
	100	υŦ	-65.783	2.1 s 1	ε 51%, α 49%, ερ 2.4%
	109	(5/2+)	-67.715	4.6 s 3	ε 96.1%, εp 9.4%,
	100	(U/ 4T)	01.110	T.U B U	α 3.9%,
					$\varepsilon \alpha < 5.0 \times 10^{-3}\%$
	110	0+	-72.229	18.6 s 8	ε , $\alpha \approx 3.0 \times 10^{-3}\%$
	111	(5/2)+	-73.587	19.3 s 4	ε, ερ
		/ .			-, -r

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
52 Te	112	0+	-77.567	2.0 m 2	ε
0_ 10	113	(7/2+)	-78.35	1.7 m 2	ε
	114	0+	-81.89	15.2 m 7	ε
	115	7/2+	-82.06	5.8 m 2	ε
	115m		-82.04	6.7 m 4	ε≤100%, IT
	116	0+	-85.27	2.49 h 4	ε
	117	1/2+	-85.10	62 m 2	ε
		(11/2-)	-84.80	103 ms 3	IT
	118	0+	-87.68	6.00 d 2	ε
	119	1/2+	-87.181	16.05 h 5	ε
	119m	11/2-	-86.920	4.70 d 4	ϵ , IT<8.0×10 ⁻³ %
	120	0+	-89.369	0.09% 1	•
	121	1/2+	-88.54	19.17 d 4	ε
	121m	11/2-	-88.25	164.2 d 8	ΙΤ 88.6%, ε 11.4%
	122	0+	-90.315	2.55% 12	
	123	1/2+	-89.173	$>9.2\times10^{16} \text{ y}$	ε
				0.89% 3	
	123m	11/2-	-88.925	119.2 d <i>1</i>	IT
	124	0+	-90.526	4.74% 14	
	125	1/2+	-89.024	$7.07\% \ 15$	
	125m	11/2-	-88.879	57.40 d <i>15</i>	IT
	126	0+	-90.066	$18.84\% \ 25$	
	127	3/2 +	-88.283	9.35 h 7	β–
	127m	11/2-	-88.195	106.1 d 7	IT 97.6%, β -2.4%
	128	0+	-88.993	$2.41 \times 10^{24} \text{ y } 39$	2β-
				31.74% 8	
	129	3/2+	-87.004	69.6 m 3	β–
	129m	11/2-	-86.898	33.6 d 1	IT 63% , β– 37%
	130	0+	-87.352	$\geq 3.0 \times 10^{24} \text{ y}$	2β–
				34.08% 62	
	131	3/2+	-85.211	25.0 m 1	β–
	131m	11/2-	-85.029	33.25 h <i>25</i>	β – 74.1%, IT 25.9%
		(23/2+)	-83.271	93 ms <i>12</i>	IT
	132	0+	-85.180	3.204 d <i>13</i>	β–
	133	(3/2+)	-82.94	12.5 m 3	β–
		(11/2-)	-82.61	55.4 m 4	β – 83.5%, IT 16.5%
	134	0+	-82.56	41.8 m 8	β–
	135	(7/2-)	-77.90	19.0 s 2	β–
	136	0+	-74.48	17.63 s 8	β-, β-n 1.31%
	137	(7/2-)	-69.3	2.49 s 5	β-, β-n 2.99%
	138	0+	-65.8	1.4 s 4	β -, β -n 6.3%
	139	(7/2-)	-60.4s	>150 ns	β -, β -n
	140	0+	-56.6s	>300 ns	β-, β-n
	141	_	-51.0s	>150 ns	β –?, β –n?
	142	0+	-46.9s	400	
	143			>408 ns	β -, β -n, β -2n
53 I	107		-49.6s		
	108	(1)	-52.6s	36 ms 6	α 91%, ϵ 9%, $p < 1\%$
	109	1/2 +	-57.675	93.5 μs <i>3</i>	$p~99.99\%,~\alpha~0.01\%$
	110		-60.46	0.65 ± 2	ϵ 83%, α 17%, ϵ p 11%,
					εα 1.1%
	111	(5/2+)	-64.953	2.5 s 2	$\epsilon 99.9\%$, $\alpha \approx 0.1\%$

Nucl Z El		Jπ	Δ (MeV)	Τ½, Γ, or Abundance	Doory Mode	
		ວາເ			Decay Mode	
53 I	112		-67.06	3.42 s 11	ε , $\alpha \approx 1.2 \times 10^{-3}\%$	
	113	5/2 +	-71.119	6.6 s 2	ϵ , α 3.3×10 ⁻⁷ %	
	114	1+	-72.8s	2.1 s 2	ε, ερ	
	114m		-72.5s	6.2 s 5	ε 91%, IT 9%	
	115	(5/2+)	-76.34	1.3 m 2	ε	
	116	1+	-77.49	2.91 s 15	ε	
	117	(5/2)+	-80.43	2.22 m 4	ε	
	118	2-	-80.97	13.7 m 5	3	
	118m	(7-)	-80.87	8.5 m 5	$\varepsilon < 100\%$, IT	
	119	5/2+	-83.76	19.1 m 4	3	
	120	2-	-83.75	81.6 m 2	ε	
	120m	(7-)	-83.43	53 m 4	ε	
	121	5/2+	-86.253	2.12 h 1	ε	
	122	1+	-86.081	3.63 m 6	ε	
	123	5/2+	-87.945	13.2235 h <i>19</i>	ε	
	124	2-	-87.367	4.1760 d 3	ε	
	125	5/2+	-88.838	59.407 d <i>10</i>	E 50 500 0 45 000	
	126	2-	-87.912	12.93 d 5	$\epsilon 52.7\%, \beta - 47.3\%$	
	127	5/2+	-88.984	100%	0 00 10 0 00	
	128	1+	-87.739	24.99 m 2	β-93.1%, ε6.9%	
	129	7/2+	-88.507	$1.57 \times 10^7 \text{ y } 4$	β_	
	130	5+	-86.936	12.36 h 1	β-	
	130m	2+	-86.896	8.84 m 6	IT 84%, β– 16%	
	131	7/2+	-87.442	8.0252 d 6	β_	
	132	4+	-85.698	2.295 h <i>13</i>	β-	
	132m	(8–)	-85.578	1.387 h <i>15</i>	IT 86%, β– 14%	
	133	7/2+	-85.886	20.83 h 8	β_	
		(19/2-)	-84.252	9 s 2	IT	
	134	(4)+	-84.072	52.5 m 2	β-	
	134m	(8)–	-83.756	3.52 m 4	IT 97.7%, β–2.3%	
	135	7/2+	-83.791	6.58 h 3	β_	
	136	(1-)	-79.57	83.4 s 10	β_	
	136m	(6-)	-78.93 -76.51	$46.9 \text{ s } 10 \\ 24.5 \text{ s } 2$	β-	
	$\begin{array}{c} 137 \\ 138 \end{array}$	(7/2+)		6.23 s 3	β-, β-n 7.14%	
	$130 \\ 139$	(2-) $(7/2+)$	-71.9s -68.5	2.280 s 11	β -, β -n 5.56%	
	140	(4-)	-63.6	0.86 s 4	β-, β-n 10% β-, β-n 9.3%	
	141	(4-)	-60.3	0.43 s 2	β -, β -n 21.2%	
	$141 \\ 142$		-55.0s	222 ms 12		
	143		-51.1s	130 ms 45	β-, β-n? β-?	
	144		-31.1s -45.8s	>300 ns	β-: β-?	
	145		-40.08	>407 ns	β -, β -n	
- 4 37			40. 5	> 40 T IIS	р,рп	
54 Xe		0+	-42.7s	10 0		
	109	(7/2+)	-45.9s	13 ms 2	α	
	110	0+	-51.9	93 ms 3	α 64%, ε, ερ	
	111	(7/2+)	-54.39	0.81 ± 20	ε 90%, α 10%	
	$\frac{112}{112}$	0+	-60.028	2.7 s 8	ε 99.16%, α 0.84%	
	113	(5/2+)	-62.203	2.74 s 8	ε , εp 7%, $\alpha \approx 0.01\%$,	
	114	0.	67 09	10 0 a 1	$\varepsilon \alpha \approx 7.0 \times 10^{-3}\%$	
	114	0+ (5/2+)	-67.08	10.0 s 4	E on 0, 24%	
	115	(5/2+)	-68.66	18 s 4	ε, εp 0.34%, α3.0×10 ⁻⁴ %	
					α 3. U×1U ~%	

Nucli Z El		T.ee	Δ (MeV)	T½, Γ, or Abundance	Doggy Mode
		Jπ			Decay Mode
54 Xe		0+	-73.05	59 s 2	E 0. 0. 10-307
	117	5/2(+)	-74.18	61 s 2	ϵ , ϵ p 2.9×10 ⁻³ %
	118	0+	-78.08	3.8 m 9	3
	119	(5/2+)	-78.79	5.8 m 3	ε
	120	0+	-82.17	40 m 1	3
	121	5/2(+)	-82.47	40.1 m 20	ε
	122	0+	-85.35	20.1 h 1	3
	123	(1/2)+	-85.249	2.08 h 2	3
	124	0+	-87.661	≥1.6×10 ¹⁴ y	2ϵ
	125	1/9(+)	97 109	0.0952% 3	
	125 125m	1/2(+)	-87.193	16.9 h <i>2</i> 57 s <i>1</i>	ε IT
	125m 126	9/2(-) 0+	-86.940 -89.146	0.0890% 2	11
	$\frac{120}{127}$	1/2+	-88.322	36.346 d 3	C
	127m			69.2 s 9	ε IT
	127m 128	0+	-88.025 -89.860	1.9102% 8	11
	129	1/2+	-88.696	26.4006% 82	
	129 129m		-88.460	8.88 d 2	IT
	130	0+	-89.880	4.0710% 13	11
	131	3/2+	-88.413	21.232% 30	
	131m		-88.249	11.84 d 4	IT
	132	0+	-89.279	26.9086% 33	11
	132m		-86.527	8.39 ms 11	IT
	133	3/2+	-87.643	5.2475 d <i>5</i>	β_
	133m		-87.410	2.198 d <i>13</i>	IT
	134	0+	-88.124	$>5.8\times10^{22} \text{ y}$	2β-
	101	٠.	00.121	10.4357% 21	-p
	134m	7-	-86.159	290 ms 17	IT
	135	3/2+	-86.417	9.14 h 2	β_
	135m		-85.890	15.29 m 5	IT>99.4%, β-<0.6%
	136	0+	-86.429	$>2.4\times10^{21} \text{ y}$	2β–
				8.8573% 44	,
	137	7/2-	-82.383	3.818 m <i>13</i>	β–
	138	0+	-79.975	14.08 m 8	β_
	139	3/2-	-75.644	39.68 s 14	β_
	140	0+	-72.986	13.60 s 10	β_
	141	5/2(-)	-68.197	1.73 s 1	β-, β-n 0.04%
	142	0+	-65.229	1.23 s 2	β-, β-n 0.21%
	143	5/2-	-60.202	0.511 s 6	β-, β-n 1%
	144	0+	-56.872	0.388 s 7	β- , β-n 3%
	145		-51.49	188 ms 4	β- , β-n 5%
	146	0+	-47.95	146 ms 6	β-, β-n 6.9%
	147	(3/2-)	$-42.5\mathrm{s}$	0.10 s + 10 - 5	β -, β -n < 8%
	148	0+		>408 ns	β , β -n
55 Cs	112	(0+,3+)	-46.29	0.5 ms 1	p
	113	(3/2+)	-51.765	$16.7 \ \mu s \ 7$	ρ, α
	114	(1+)	-54.68	$0.57\ \mathrm{s}\ 2$	ε 99.98%, ερ 8.7%,
					$\epsilon\alpha0.19\%,\alpha0.02\%$
	115		-59.7s	1.4 s 8	ϵ , $\epsilon p \approx 0.07\%$
	116	(1+)	-62.1s	0.70 s 4	ϵ , ϵ p 2.8%,
					εα 0.05%
	116m	4+,5,6	$-62.0\mathrm{s}$	3.85 s 13	ε, ερ 0.51%,
				37	$\varepsilon \alpha \ 8.0 \times 10^{-3}\%$
				٠.	

Nuclide Z El A	Јπ	Δ (MeV)	Τ½, Γ, or Abundance	Decay Mode
				-
55 Cs 117n	(9/2+) (3/2+)	-66.49 -66.49	8.4 s 6 6.5 s 4	ε ε
118	2	-68.41	14 s 2	ε, εp<0.04%,
110	2	-00.41	1482	$\varepsilon < 2.4 \times 10^{-3}\%$
118m	n 6,7,8	-68.41	17 s 3	ε , $\varepsilon p < 0.04\%$,
11011	1 0,1,0	00.11	1,50	$\varepsilon \alpha < 2.4 \times 10^{-3}\%$
119	9/2+	-72.31	43.0 s 2	ε
119n		-72.31	30.4 s 1	ε
120	2(+)	-73.888	61.3 s 11	ϵ , $~\epsilon\alpha~2.0{\times}10^{-5}\%$,
				εp 7.0×10 ⁻⁶ %
120n	n (7-)	-73.888	57 s 6	ε
121	3/2(+)	-77.10	155 s 4	ε
121n	9/2(+)	-77.03	122 s 3	ε 83%, IT 17%
122	1+	-78.14	21.18 s <i>19</i>	ε
122m		-78.01	0.36 s 2	IT
122n		-78.00	3.70 m <i>11</i>	3
123	1/2+	-81.04	5.88 m 3	8
	n (11/2)-	-80.89	1.64 s 12	IT
124 124n	1+	-81.731	30.9 s 4	ε IT
12411	n (7)+ 1/2(+)	$-81.268 \\ -84.087$	6.3 s 2 46.7 m 1	
	1/2(7)	-83.821	0.90 ms 3	ε IT
126	1+	-84.34	1.64 m 2	ε
127	1/2+	-86.240	6.25 h 10	ε
128	1+	-85.931	3.66 m 2	ε
129	1/2+	-87.499	32.06 h 6	ε
130	1+	-86.899	29.21 m 4	ε 98.4%, β-1.6%
130n	n 5-	-86.736	3.46 m 6	IT 99.84%, ε 0.16%
131	5/2 +	-88.058	9.689 d <i>16</i>	ε
132	2+	-87.155	6.480 d <i>6</i>	$\epsilon~98.13\%,~\beta~1.87\%$
133	7/2+	-88.070	100%	
134	4+	-86.891	2.0652 y 4	β -, $\epsilon \ 3.0 \times 10^{-4}\%$
134n		-86.752	2.912 h 2	IT
135	7/2+	-87.581	$2.3 \times 10^6 \text{ y } 3$	β_
135n		-85.948	53 m 2	IT
<i>136</i> 136n	5+ n 8-	-86.339	13.04 d 3	β_ ε ττς 00%
130H 137	7/2+	$-85.821 \\ -86.545$	17.5 s 2 30.08 y 9	β-, IT>0% β-
138	3-	-82.887	33.41 m 18	β_
138n		-82.807	2.91 m 8	IT 81%, β– 19%
139	7/2+	-80.701	9.27 m 5	β-
140	1-	-77.050	$63.7 \mathrm{s} 3$	β_
141	7/2+	-74.48	24.84 s 16	β-, β-n 0.04%
142	0-	-70.53	1.684 s 14	β-, β-n 0.09%
143	3/2+	-67.67	1.791 s 7	β-, β-n 1.64%
144	1(-)	-63.27	0.994 ± 6	β – , β –n 3.03%
144n		-63.27	<1 s	β–
145	3/2+	-60.06	0.587 s 5	β-, β-n 14.7%
146	1-	-55.57	0.321 s 2	β-, β-n 14.2%
147	(3/2+)	-52.02	0.230 s 1	β-, β-n 28.5%
148		-47.3	146 ms 6	β-, β-n 25.1%
149		-43.8s	>50 ms	β- , β-n

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
55 Cs 150		-39.0s	>50 ms	β-, β-n
151		-35.0s -35.1s	>50 ms	β -, β -n
56 Ba 112	0+	-36.1s		
113	0	-39.8s	0.40 00.15	00 10 000
114	0+	-46.0	0.43 s +30-15	ε 99.1%, εp 20%, α 0.9%, ¹² C<0.0034%
115	(5/2+)	-49.0s	0.45 s 5	ε, ερ>15%
116	0+	-54.6s	1.3 s 2	ε, ερ 3%
117	(3/2)	-57.5	1.75 s 7	ε , $\varepsilon \alpha > 0\%$, $\varepsilon p > 0\%$
118	0+	-62.4s	5.5 s 2	ε, ερ
119	(5/2+)	-64.6	5.4 s 3	ε, εp<25%
120	0+	-68.9	24 s 2	ε
121	5/2(+)	-70.7	29.7 ± 15	ε
122	0+	-74.61	1.95 m <i>15</i>	ε
123	5/2(+)	-75.65	2.7 m 4	ε
124	0+	-79.09	11.0 m 5	3
125	1/2(+)	-79.67	3.3 m 3	3
126	0+	-82.67	100 m 2	ε
127	1/2+	-82.82	12.7 m 4	ε
127m	7/2-	-82.73	1.9 s 2	IT
128	0+	-85.379	2.43 d 5	ε
129	1/2+	-85.06	2.23 h 11	3 10007 TM
129m	7/2+	-85.06	2.16 h 2	ε≤100%, IT
130	0+ 8-	-87.261	0.106% <i>1</i> 9.4 ms <i>4</i>	IT
130m 131	6- 1/2+	-84.786 -86.684	9.4 ms 4 11.50 d 6	ε
131m	9/2-	-86.496	14.6 m 2	IT
131m 132	0+	-88.434	$>3.0\times10^{21} \text{ y}$	2ε
102	01	00.101	0.101% 1	20
133	1/2 +	-87.553	10.551 y 11	ε
133m	11/2-	-87.265	38.93 h <i>10</i>	IT 99.99%, ε 0.01%
134	0+	-88.950	2.417% 18	,
135	3/2 +	-87.850	6.592% 12	
135m	11/2-	-87.582	28.7 h 2	IT
136	0+	-88.887	7.854% 24	
136m	7-	-86.856	0.3084 s 19	IT
137	3/2+	-87.721	11.232% 24	
137m	11/2-	-87.059	2.552 m 1	IT
138	0+	-88.261	71.698% 42	0
139	7/2-	-84.914	83.06 m 28	β–
140	0+ 3/2-	-83.270	12.7527 d <i>23</i> 18.27 m <i>7</i>	β–
141 142	0+	-79.733 -77.845	10.6 m 2	β– β–
143	5/2-	-73.937	10.0 m 2 $14.5 s 3$	β– β–
144	0+	-73.337 -71.767	14.5 s 3 $11.5 s 2$	β-, β-n 3.6%
145	5/2-	-67.516	4.31 s 16	β-, β-11 3.0%
146	0+	-64.94	2.22 s 7	β_
147	(3/2-)	-60.26	0.894 s 10	β -, β -n 0.06%
148	0+	-57.59	0.612 s 17	β -, β -n 0.4%
149		-53.2s	0.344 s 7	β-, β-n 0.43%
150	0+	-50.3s	$0.3 \mathrm{s}$	β -, β -n
			39	

Nu Z	ıcli El		T.=	Δ (MaV)	T½, Γ, or Abundance	Dagay Mada
		A	Jπ	(MeV)		Decay Mode
56	Ba	151		-45.6s	>300 ns	β -, β -n
		152	0+	-42.4s	>406 ns	β- , β-n
		153		-37.2s		β-?
57	La		3/2+,3/2-)	-46.5s	$23.5~\mathrm{ms}~26$	p 93.9%, ε 6.1%
			(9/2+)	-46.3s	10 ms 5	p 97.4%, ε 2.6%
		118		-49.6s		ε?
		119		-55.0s		ε?
		120m		-57.7s	2.8 s 2	ε , $\varepsilon p > 0\%$
		121		-62.4s	5.3 s 2	ε
		122		-64.5s	8.6 s 5	ϵ , ϵp
		123	(0.)	-68.7s	17 s 3	ε
		124m	(8–)	-70.26	29.21 s 17	ε
		124m	(9/9.)	-70.26	21 s 4	ε
		125 125m	(3/2+)	-73.76 -73.65	64.8 s 12 0.39 s 4	3
		126m	(5+)	-73.03 -74.97	54 s 2	ε>0%
			(0-,1,2-)	-74.97	<50 s	ε , IT
		127	(11/2-)	-77.89	5.1 m <i>1</i>	ε, 11
			(3/2+)	-77.88	3.7 m 4	ε, ΙΤ
		128	(5+)	-78.63	5.18 m 14	ε, 11
			(1+,2-)	-78.63	<1.4 m	ε
		129	3/2+	-81.33	11.6 m 2	ε
		129m	11/2-	-81.15	0.56 ± 5	IT
		130	3(+)	-81.63	8.7 m 1	ε
		131	3/2 +	-83.77	59 m 2	ε
		132	2-	-83.72	4.8 h 2	ε
		132m	6-	-83.53	24.3 m 5	IT 76%, ε 24%
		133	5/2 +	-85.49	3.912 h 8	ε
		134	1+	-85.22	6.45 m <i>16</i>	ε
		135	5/2+	-86.65	19.5 h 2	ε
		136	1+	-86.04	9.87 m 3	ε
		136m	(8+)	-85.81	114 ms 3	IT
		137	7/2+ 5+	-87.11 -86.521	$6 \times 10^4 \text{ y } 2$ $1.02 \times 10^{11} \text{ y } 1$	E
		138	9+	-00.521	0.08881% 71	ε 65.6%, β– 34.4%
		139	7/2+	-87.228	99.9119% 71	p- 54.4%
		140	3-	-84.317	1.67855 d <i>12</i>	β–
		141	(7/2+)	-82.934	3.92 h 3	β_
		142	2-	-80.022	91.1 m 5	β_
		143	(7/2)+	-78.171	14.2 m 1	β_
		144	(3-)	-74.83	40.8 s 4	β–
		145	(5/2+)	-72.83	24.8 s 20	β_
		146	2-	-69.05	6.27 s 10	β_
		146m	(6-)	-69.05	10.0 s 1	β–
		147	(3/2+)	-66.68	4.06 s 4	β-, β-n 0.04%
		148	(2-)	-62.71	1.26 s 8	β – , β –n 0.15%
		149	(3/2-)	-60.2	1.05 s 3	β -, β -n 1.43%
		150	(3+)	-56.6s	0.86 s 5	β-, β-n 2.7%
		151		-53.9s	>300 ns	β- , β-n
		152		-49.7s	>150 ns	β-
		153		-46.6s	>100 ns	β-?
		154		-42.0s		β– ?

Nu Z	ıcli El	de A	Jπ	Δ (MeV)	Τ½, Γ, or Abundance	Decay Mode
		155	•••	-38.5s	110 411 4411 6 6	β-?
						•
58	Ce	119	0	-43.9s		ε?
		120	0+	-49.5s	11.1	ε?
		121	(5/2)	-52.5s	1.1 s <i>1</i>	ε, εp≈ 1%
		122	0+	-57.7s	3.8 s 2	ε, ερ
		123	(5/2)	-60.1s -64.6s		ε , $\varepsilon p > 0\%$
		$124 \\ 125$	0+ (7/2-)	-64.6s -66.7s	$6~\mathrm{s}~2 \ 9.7~\mathrm{s}~3$	3 00
		126	0+	-70.82	51.0 s 3	ε, ερ
		127	(1/2+)	-70.82 -71.97	34 s 2	ε
		127m	(5/2+)	-71.97 -71.97	28.6 s 7	ε
		128	0+	-75.53	3.93 m 2	ε
		129	5/2+	-76.29	3.5 m 5	ε > 0%
		130	0+	-79.42	22.9 m 5	ε
		131	7/2+	-79.71	10.3 m 3	ε
		131m		-79.64	5.4 m 4	ε, IT
		132	0+	-82.47	3.51 h <i>11</i>	ε
		132m	(8-)	-80.13	9.4 ms 3	IT
		133	1/2+	-82.42	97 m 4	ε
		133m	9/2-	-82.39	5.1 h 3	ε, ΙΤ
		134	0+	-84.83	3.16 d 4	ε
		135	1/2(+)	-84.62	17.7 h 3	ε
			(11/2-)	-84.18	20 s 1	IT
		136	0+	-86.47	$>0.7\times10^{14} \text{ y}$	2ε
					$0.185\% \ 2$	
		137	3/2+	-85.88	9.0 h 3	ε
		137m	11/2-	-85.63	34.4 h 3	IT 99 . 21% , ϵ 0 . 79%
		138	0+	-87.56	$\geq 0.9 \times 10^{14} \text{ y}$	2ϵ
					$0.251\% \ 2$	
		138m	7-	-85.43	8.65 ms 20	IT
		139	3/2+	-86.949	137.641 d <i>20</i>	ε
		139m	11/2-	-86.195	54.8 s 10	IT
		140	0+	-88.078	$88.450\% \ 51$	
		141	7/2-	-85.435	32.508 d <i>13</i>	β–
		142	0+	-84.532	$>5 \times 10^{16} \text{ y}$	2β–
					11.114% 51	
		143	3/2-	-81.605	33.039 h 6	β–
		144	0+	-80.431	284.91 d 5	β–
		145	(5/2-)	-77.09	3.01 m 6	β–
		146	0+	-75.64	13.52 m <i>13</i>	β–
		147	(5/2–)	-72.013	56.4 s 10	β-
		148	0+	-70.40	56 s 1	β–
		149	(3/2-)	-66.67	5.3 s 2	β_
		150	0+	-64.85	4.0 s 6	β_
		151	(5/2+)	-61.22	1.76 s 6	β-
		151m	0.	-61.22	1.02 s 6	β_
		152	0+	-59.3s	1.4 s 2	β_
		153	0.	-55.2s	>100 ns	β-?
		154	0+	-52.7s -48.3s	>100 ns >300 ns	β- β-?
		$155 \\ 156$	0.1	-46.3s -45.3s	>500 HS	β-?
		156	0+	-45.3s -40.4s		
		191		-40.48		β-?

Nucli	de		Δ	Τ½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
59 Pr	121	(3/2)	-41.4s	10 ms + 6 - 3	p
	122		-44.7s	≈0.5 s	ε?
	123		-50.1s	≈0.8 s	ε?
	124		-53.0s	1.2 s 2	ε , $\varepsilon p > 0\%$
	125		-57.7s	3.3 s 7	ϵ , ϵp
	126	>3	-60.1s	3.14 s 22	ϵ , ϵp
	127		-64.3s	4.2 s 3	ε
	128	4,5,6	-66.33	2.84 s 9	ε
	129	(11/2-)	-69.77	30 s 4	ε > 0%
	130?	(7,8)	-71.18	40 s 4	ε
	130?	(4+,5+)	-71.18 -71.18	40 s 4 $40 s 4$	3
	130? 131	(2+) $(3/2+)$	-71.18 -74.30	1.51 m 2	ε
		(3/2+) $(11/2-)$	-74.30 -74.15	5.73 s 20	IT 96.4%, ε 3.6%
	132	(2)+	-74.13 -75.21	1.6 m 3	ε
	133	(3/2+)	-77.94	6.5 m 3	ε
		(11/2-)	-77.74	1.1 s 2	IT
	134m	(6-)	-78.51	≈11 m	3
	134m	2-	-78.51	17 m 2	ε
	135	3/2(+)	-80.93	24 m 1	ε
	136	2+	-81.33	13.1 m <i>1</i>	ε
	137	5/2+	-83.18	1.28 h 3	ε
	138	1+	-83.13	1.45 m 5	ε
	138m	7-	-82.76	2.12 h 4	ε
	139	5/2 +	-84.820	4.41 h 4	ε
	140	1+	-84.690	3.39 m 1	ε
	141	5/2+	-86.015	100%	0 00 000 0 000
	142	$\frac{2}{5}$	-83.787	19.12 h 4	β-99.98%, ε 0.02%
	142m	5- 7/2+	-83.783	14.6 m 5	IT
	$143 \\ 144$	1/2+ 0-	-83.067 -80.749	13.57 d <i>2</i> 17.28 m <i>5</i>	β– β–
	144 144m	3-	-80.749 -80.690	7.2 m 3	IT 99.93%, β-0.07%
	145	3- 7/2+	-79.626	5.984 h 10	β-
	146	(2)-	-76.68	24.15 m 18	β_
	147	(5/2+)	-75.44	13.4 m 3	β_
	148	1-	-72.54	2.29 m 2	β_
	148m	(4)	-72.44	2.01 m 7	β_
	149	(5/2+)	-71.039	2.26 m 7	β_
	150	(1)-	-68.299	6.19 s <i>16</i>	β_
	151	(3/2-)	-66.78	18.90 s 7	β–
	152	(4+)	-63.76	3.57 s 18	β–
	153		-61.58	4.28 s 11	β–
	154	(3+)	-58.2	2.3 s 1	β-
	155		-55.8s	>300 ns	β-?
	156		-51.9s	>300 ns	β-?
	157		-49.0s		β-?
	158		-44.7s		β-?
	159		-41.5s		β-?
60 Nd		0+	-44.3s		ε?
	125	(5/2)	-47.4s	0.65 s 15	ε , $\varepsilon p > 0\%$
	126	0+	-52.6s	>200 ns	ε, ερ
	127		-55.3s	1.8 s 4	ε, ερ

Nucli			Δ (17. Υ))	T½, Γ, or	D 15 1
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
60 Nd	128	0+	-60.1s	5 s	ϵ , ϵp
	129	(5/2+)	-62.2s	4.9 s 2	$\varepsilon > 0\%$, $\varepsilon p > 0\%$
	130	0+	-66.60	21 s 3	ε
	131	(5/2+)	-67.77	25.4 s 9	ε , $\varepsilon p > 0\%$
	132	0+	-71.43	94 s 8	ε
	133	(7/2+)	-72.33	70 s 10	ε
	133m	(1/2+)	-72.20	≈70 s	ϵ , IT
	134	0+	-75.65	8.5 m <i>15</i>	ε
	135	9/2(-)	-76.21	12.4 m 6	3
	135m		-76.15	5.5 m <i>5</i>	ε>99.97%, IT<0.03%
	136	0+	-79.20	50.65 m <i>33</i>	ε
	137	1/2+	-79.58	38.5 m <i>15</i>	ε
	137m	11/2-	-79.06	1.60 s 15	IT
	138	0+	-82.02	5.04 h 9	ε
	139	3/2+	-82.01	29.7 m 5	3
	139m	11/2-	-81.78	5.50 h 20	ε 88.2%, IT 11.8%
	140	0+	-84.25	3.37 d 2	ε
	140m	7-	-82.03	0.60 ms 5	IT
	141	3/2+	-84.192	2.49 h 3	£
	141m	11/2-	-83.436	62.0 s 8	IT, $\varepsilon < 0.05\%$
	142	0+	-85.949	27.152% 40	
	143	7/2- 0+	-84.001 -83.747	12.174% 26 2.29×10 ¹⁵ y 16	
	144	0+	-65.141	23.798% 19	α
	145	7/2-	-81.431	8.293% 12	
	146	0+	-80.925	17.189% 32	
	147	5/2-	-78.146	10.98 d <i>1</i>	β–
	148	0+	-77.406	$5.756\%\ 21$	r
	149	5/2-	-74.374	1.728 h 1	β–
	150	0+	-73.683	$0.79 \times 10^{19} \text{ y } 7$	•
				$5.638\% \ 28$	
	151	3/2+	-70.946	12.44 m 7	β–
	152	0+	-70.15	11.4 m 2	β–
	153	(3/2)-	-67.34	31.6 s 10	β–
	154	0+	-65.7	25.9 s 2	β–
	155		-62.5s	8.9 s 2	β–
	156	0+	-60.5	5.06 s 13	β–
	157		-56.8s	>100 ns	β– ?
	158	0+	-54.4s	>50 ns	β–
	159		-50.2s		β-?
	160	0+	-47.4s		β-?
	161		-43.0s		β-?
61 Pm	126		-38.8s		ε?
	127		-44.4s		p?, ε?
	128		-47.6s	1.0 s 3	$\epsilon \;,\; \alpha,\; \epsilon p$
	129	(5/2-)	-52.5s	2.4 s 9	ε
	130	(4,5,6)	-55.2s	2.6 s 2	ϵ , ϵp
		(11/2-)	-59.6s	6.3 s 8	ε σ. 10-5α
	132	(3+)	-61.6s	6.2 s 6	ε , $\varepsilon p \approx 5.0 \times 10^{-5}\%$
	133	(3/2+)	-65.41	13.5 s 21	E
	133m	(11/2-)	-65.28	<8.8 s	IΤ, ε

Nuclid	e	Δ	T½, Γ, or	
Z El		(MeV)	Abundance	Decay Mode
61 Pm 1	34 (2+)	-66.74	≈5 s	ε
1	34m (5+)	-66.74	22 s 1	ε
1	35m(3/2+,5/2+)	-69.98	49 s 3	ε
1	35m (11/2-)	-69.91	45 s 4	ε
1	36m (5-)	-71.20	$107 \mathrm{\ s}\ 6$	ε
	36m (2+)	-71.20	47 s 2	ε
	37 11/2-	-74.07	2.4 m 1	ε
	38	-74.94	10 s 2	ε
	38m	-74.92	3.24 m 5	ε
	39 (5/2)+	-77.50	4.15 m 5	E
	39m (11/2)-	-77.31	180 ms 20	IT 99.94%, ε 0.06%
	40 1+ 40m 8-	-78.21 -78.21	9.2 s <i>2</i> 5.95 m <i>5</i>	ε
	41 5/2+	-80.52	20.90 m 5	ε ε
	42 1+	-81.16	40.5 s 5	ε
	42m (8)-	-80.27	2.0 ms 2	IT
	43 5/2+	-82.960	265 d 7	ε
	44 5-	-81.415	363 d 14	ε
1	45 5/2+	-81.267	17.7 y 4	ϵ , α 2.8×10 ⁻⁷ %
1	46 3-	-79.453	5.53 y 5	ε 66%, β-34%
1	47 7/2+	-79.041	2.6234 y 2	β–
1	48 1-	-76.865	5.368 d 2	β–
1	48m 5-,6-	-76.727	41.29 d <i>11</i>	β– 95 . 8% , IT 4 . 2%
	49 7/2+	-76.063	53.08 h 5	β–
	50 (1–)	-73.60	2.68 h 2	β–
	51 5/2+	-73.388	28.40 h 4	β–
	52 1+	-71.25	4.12 m 8	β-
	52m (8)	-71.11	13.8 m 2	β-, IT≥0%
	52m 4- 53 5/2-	-71.11	7.52 m 8	β-
	53 5/2- 54 (3,4)	-70.68 -68.49	5.25 m 2 2.68 m 7	β– β–
	54 (5,4) 54m (0-,1-)	-68.49	1.73 m 10	β–
	55 5/2-	-66.97	41.5 s 2	β_
	56m 4-	-64.21	26.70 s 10	β_
	57 (5/2-)	-62.4	10.56 s 10	β_
	58	-59.1	4.8 s 5	β_
	59	-56.8	1.5 s 2	β_
1	60	-53.1s		β-?
1	61	-50.4s		β– ?
1	62	-46.3s		β-?
1	63	-43.1s		β– ?
62 Sm 1	28 0+	-38.0s		ε?, p?
1	29 (1/2+,3/2+)	-41.3s	0.55 s 10	ϵ , $\epsilon p > 0\%$
	30 0+	-46.9s		ε
	31	-49.6s	1.2 s 2	ε , $\varepsilon p > 0\%$
	32 0+	-54.7s	4.0 s 3	ε, ερ
	33 (5/2+)	-56.8s	2.89 s 16	ε , $\varepsilon p > 0\%$
	33m (1/2-)	-56.8s	3.5 s 4	ε, ΙΤ, ερ
	34 0+	-61.2s -62.9	9.5 s 8	ε en 0 02%
	35 (3/2+,5/2+) 36 0+	-62.9 -66.81	$10.3~\mathrm{s}~5 \ 47~\mathrm{s}~2$	ε, εp 0.02% ε
	37 (9/2–)	-68.03	45 s 1	ε
-	·-·= /			

Nucli	de		Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
62 Sm	138	0+	-71.50	3.1 m 2	ε
	139	1/2+	-72.38	2.57 m 10	ε
	139m	11/2-	-71.92	10.7 s 6	IT 93.7%, ε 6.3%
	140	0+	-75.46	14.82 m <i>12</i>	ε
	141	1/2 +	-75.934	10.2 m 2	ε
	141m	11/2-	-75.758	22.6 m 2	$\epsilon~99.69\%,~IT~0.31\%$
	142	0+	-78.987	72.49 m 5	ε
	143	3/2+	-79.516	8.75 m 6	ε
	143m		-78.762	66 s 2	IT 99.76%, ε 0.24%
		23/2(-)	-76.722	30 ms 3	IT
	144	0+	-81.965	3.07% 7	
	145	7/2-	-80.651	340 d 3	ε
	146	0+	-80.995	$10.3 \times 10^7 \text{ y } 5$	α
	147	7/2-	-79.265	$1.060 \times 10^{11} \text{ y } 11$	α
	1.10		5 0 00 5	14.99% 18	
	148	0+	-79.335	$7 \times 10^{15} \text{ y } 3$	α
	1.10	= 10		11.24% 10	
	149	7/2-	-77.135	13.82% 7	
	150	0+	-77.050	7.38% 1	0
	151	5/2-	-74.575	90 y 8	β–
	152	0+	-74.762	26.75% 16	0
	153 153m	3/2 + 11/2 -	-72.559 -72.461	46.284 h <i>4</i> 10.6 ms <i>3</i>	β– IT
				22.75% 29	11
	$154 \\ 155$	0+ 3/2-	-72.454 -70.190	22.75% 29 22.3 m 2	β–
	156	0+	-69.362	9.4 h 2	β– β–
	157	(3/2-)	-66.72	8.03 m 7	β–
	158	0+	-65.21	5.30 m 3	β–
	159	5/2-	-62.24	11.37 s 15	β–
	160	0+	-60.4s	9.6 s 3	β_
	161	٠.	-56.8	4.8 s 4	β_
	162	0+	-54.8s	2.4 s 5	β_
	163		-50.9s		β-?
	164	0+	-48.2s		β-?
	165		-43.8s		β-?
63 Eu	130	(1+)	-33.0s	0.90 ms +49-29	p
	131	3/2 +	-38.7s	17.8 ms 19	p 89%, ε 11%
	132		-41.9s		p, ε
	133		-47.1s		ε?
	134		-49.7s	0.5 s 2	ϵ , $\epsilon p > 0\%$
	135		-54.1s	1.5 s 2	ϵ , ϵp
	136m	(7+)	-56.1s	$3.3 \mathrm{\ s}\ 3$	ε, ερ 0.09%
	136m		-56.1s	3.8 s 3	ε, ερ 0.09%
	137	(11/2-)	-60.0s	11 s 2	ε
	138	(6–)	-61.75	12.1 s 6	ε
	139	(11/2)-	-65.40	17.9 s 6	ε
	140	1+	-66.99	1.51 s 2	E
	140m	, ,	-66.99	125 ms 2	IT, ε<1%
	141	5/2+	-69.93	40.7 s 7	E IT 97% - 0 19%
	141m 142		-69.83	2.7 s 3	IT 87%, ε 13%
	142 142m	1+ 8-	-71.31 -71.31	2.34 s <i>12</i> 1.223 m <i>8</i>	ε
	144III	0-	-11.31	1.440 III 0	С

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					•
63 Eu		5/2+	-74.24	2.59 m 2	ε
	144	1+	-75.62	10.2 s 1	ε
	145	5/2+	-77.991	5.93 d 4	ε
	146	4-	-77.117	4.61 d 3	3 2 10-30
	147	5/2+	-77.544	24.1 d 6	ε , $\alpha 2.2 \times 10^{-3}\%$
	148	5-	-76.30	54.5 d <i>5</i>	ε , $\alpha 9.4 \times 10^{-7}\%$
	149	5/2+	-76.440	93.1 d 4	ε
	150	5-	-74.791	36.9 y 9	3
	150m	0-	-74.749	12.8 h <i>1</i>	β– 89%, ε 11%,
		~ /0			$IT \le 5.0 \times 10^{-8}\%$
	151	5/2 +	-74.651	≥1.7×10 ¹⁸ y	α
				47.81% 3	
	152	3-	-72.887	13.528 y <i>14</i>	ε 72.1%, β-27.9%
	152m	0-	-72.841	9.3116 h <i>13</i>	β– 72%, ε 28%
	152m	8-	-72.739	96 m 1	IT
	153	5/2+	-73.366	52.19% 6	
	154	3-	-71.736	8.601 y <i>10</i>	β-99.98%, ε 0.02%
	154m	8-	-71.591	46.3 m 4	IT
	155	5/2+	-71.816	4.753 y <i>14</i>	β-
	156	0+	-70.085	15.19 d 8	β-
	157	5/2+	-69.459	15.18 h 3	β–
	158	(1-)	-67.20	45.9 m 2	β–
	159	5/2+	-66.045	18.1 m <i>1</i>	β–
	160	1	-63.24	38 s 4	β-
	161		-61.80	26 s 3	β–
	162		-58.69	10.6 s 10	β–
	163		-56.80	7.7 s 4	β–
	164		-53.4s	4.2 s 2	β-
	165		-50.8s	2.3 s 2	β-
	166		-46.8s		β-?
	167		-43.8s		β–?
64 Gd	133		-35.6s		
	134	0+	-41.1s		ε?
	135	(5/2+)	-44.0s	1.1 s 2	ε, ερ 18%
	136	0+	-48.9s	≥200 ns	
	137	(7/2)	-51.2s	2.2 s 2	ϵ , ϵp
	138	0+	$-55.7\mathrm{s}$	4.7 s 9	ε
	139	(9/2-)	-57.6s	5.8 s 9	$\epsilon p > 0\%$, $\epsilon > 0\%$
	139m		-57.6s	4.8 s 9	$\epsilon p > 0\%$, $\epsilon > 0\%$
	140	0+	-61.78	$15.8 \; \mathrm{s} \; 4$	ε
	141	1/2 +	-63.22	14 s 4	ε, ερ 0.03%
	141m	11/2-	-62.85	24.5 s 5	ε 89%, IT 11%
	142	0+	-66.96	70.2 s 6	ε
	143	(1/2)+	-68.2	39 s 2	ε
		(11/2-)	-68.1	110.0 s <i>14</i>	ε
	144	0+	-71.76	$4.47~\mathrm{m}~6$	ε
	145	1/2+	-72.93	23.0 m 4	ε
	145m	11/2-	-72.18	85 s 3	IT 94.3%, ε 5.7%
	146	0+	-76.087	48.27 d 10	ε
	147	7/2-	-75.356	38.06 h <i>12</i>	ε
	148	0+	-76.269	70.9 y 10	α
	149	7/2-	-75.126	9.28 d 10	ε , $\alpha 4.3 \times 10^{-4}\%$

Nucli Z El		Jπ	Δ (MeV)	Τ½, Γ, or Abundance	Decay Mode
					-
64 Gd		0+	-75.763	$1.79 \times 10^6 \text{ y } 8$	α ο ο 10-7α
	151	7/2-	-74.187	123.9 d 10	ε , $\alpha \approx 8.0 \times 10^{-7}\%$
	152	0+	-74.706	1.08×10 ¹⁴ y 8 0.20% 1	α
	153	3/2-	-72.882	240.4 d 10	ε
	154	0+	-73.705	2.18% 3	
	155	3/2-	-72.069	14.80% 12	
	155m	11/2-	-71.948	31.97 ms 27	IT
	156	0+	-72.534	20.47% 9	
	157	3/2-	-70.823	$15.65\% \ 2$	
	158	0+	-70.689	24.84% 7	
	159	3/2-	-68.560	18.479 h 4	β–
	160	0+	-67.940	$>3.1\times10^{19} \text{ y}$	2β-
				21.86% 19	•
	161	5/2-	-65.505	3.66 m 5	β–
	162	0+	-64.279	8.4 m 2	β_
	163 (5	5/2-,7/2+)	-61.47	68 s 3	β_
	164	0+	-59.9s	45 s 3	β_
	165		-56.6s	10.3 s 16	β_
	166	0+	-54.5s	4.8 s 10	β_
	167		-50.8s		β-?
	168	0+	-48.3s		β-?
	169		-44.2s		β-?
65 Tb	135	(7/2-)	-32.6s	0.94 ms +33-22	p
	136		-35.9s		ε?
	137		-40.7s		p?, ε?
	138m		-43.5s	≥200 ns	ϵ , p
	139		-48.0s	1.6 s 2	ε, ερ?
	140	(7+)	-50.5	2.0 s 5	ε, ερ 0.26%
	141	(5/2-)	-54.5	3.5 s 2	ε
	141m		-54.5	7.9 s 6	3
	142	1+	-56.6	597 ms <i>17</i>	ε, εp 2.2×10 ⁻³ %
	142m	5-	-56.3	303 ms 17	IT
		(11/2-)	-60.42	12 s 1	ε
	143m	_	-60.42	<21 s	ε
	144	1+	-62.37	≈1 s	3
	144m	(6–)	-61.97	$4.25 \mathrm{~s}~15$	IT 66%, ε 34%
	145	(11/0)	-65.88	000	ε?
		(11/2-)	-65.88	30.9 s 6	3
	146	1+	-67.76	8 s 4	3
	146m 146m	5-	-67.76	23 s 2	ε IT
	146m 147	(10+) $(1/2+)$	-66.98 -70.742	1.18 ms <i>2</i> 1.64 h <i>3</i>	ε
			-70.742 -70.691	1.83 m 6	
	147m 148	(11/2-) 2-	-70.691 -70.54	60 m 1	ε
	148m	2- (9)+	-70.34 -70.45	2.20 m 5	ε
	149m	1/2+	-70.45 -71.489	4.118 h 25	ε 83.3%, α 16.7%
	149m	1/2+ $11/2-$	-71.453	4.116 m 25 4.16 m 4	ε 99.98%, α 0.02%
	150	(2-)	-71.495 -71.105	3.48 h <i>16</i>	ε , α <0.05%
	150m	9+	-71.103 -70.631	5.8 m 2	ε, α<0.03/6
	151	1/2(+)	-71.622	17.609 h <i>14</i>	ε 99.99%,
	101	±, = (1)	.1.022	11.000 11 14	$\alpha 9.5 \times 10^{-3}\%$

Nucli Z El		Δ (MeV)	Τ½, Γ, or Abundance	Doory Mode
				Decay Mode
65 Tb	151m (11/2-)	-71.522	25 s 3	IT 93.4%, ε 6.6%
	152 2-	-70.72	17.5 h <i>1</i>	ε , α <7.0×10 ⁻⁷ %
	152m 8+	-70.21	4.2 m 1	IT 78.8%, ε 21.2%
	153 5/2+	-71.313	2.34 d 1	3
	154 0	-70.15	21.5 h 4	ε , β -<0.1%
	154m 7-	-70.15	22.7 h 5	ε 98.2%, IT 1.8%
	154m 3-	-70.15	9.4 h 4	ε 78.2%, IT 21.8%,
	155 9/9.	71 05	r 00 1 C	$\beta - < 0.1\%$
	155 3/2+	-71.25	5.32 d 6	ε
	156 3- 156m (7-)	-70.090	5.35 d 10	£
		$-70.040 \\ -70.002$	24.4 h 10	IT < 100% 0 > 0%
	156m (0+) 157 3/2+	-70.002 -70.762	5.3 h 2	IT<100%, $\varepsilon > 0\%$
	157 3/2+	-69.469	71 y 7	ε ε 83.4%, β– 16.6%
	158	-69.359	180 y <i>11</i> 10.70 s <i>17</i>	
	190111 0-	-09.339	10.70 S 17	IT, $\beta - < 0.6\%$, $\epsilon < 0.01\%$
	158m 7-	-69.081	0.40 ms 4	IT
	159 3/2+	-69.531	100%	11
	160 3-	-67.835	72.3 d 2	β_
	161 3/2+	-67.460	6.89 d 2	β_
	162 1-	-65.67	7.60 m 15	β_
	163 3/2+	-64.594	19.5 m 3	β_
	164 (5+)	-62.1	3.0 m 1	β_
	165 (3/2+)	-60.7s	2.11 m 10	β_
	166 (2-)	-57.88	25.1 s 21	β_
	167 (3/2+)	-55.9s	19.4 s 27	β_
	168 (4-)	-52.6s	8.2 s 13	β_
	169	-50.2s		β-?
	170	-46.5s		β-?
	171	-43.8s		β-?
66 Dy		-34.8s		ε?
оо Бу	139 (7/2+)	-37.6s	0.6 s 2	ε, ερ
	140 0+	-42.7s	0.0 5 2	ε, ερ
	141 (9/2-)	-45.2s	0.9 s 2	ε, ερ
	142 0+	-49.9s	2.3 s 3	ε, ερ 0.06%
	143 (1/2+)	-52.17	5.6 s 10	ε, ερ
	143m (11/2-)	-51.86	3.0 s 3	ε, ερ
	144 0+	-56.570	9.1 s 4	ε, ερ
	145 (1/2+)	-58.242	6 s 2	ε , $\varepsilon p \approx 50\%$
	145m (11/2-)	-58.124	14.1 s 7	ε, εp≈50%
	146 0+	-62.554	29 s 3	ε
	146m (10+)	-59.618	150 ms 20	IT
	147 (1/2+)	-64.194	67 s 7	ε, ερ 0.05%
	147m (11/2-)	-63.444	55.2 s 5	ε 68.9%, IT 31.1%
	148 0+	-67.859	$3.3 \; {\rm m} \; 2$	ε
	149 (7/2-)	-67.702	4.20 m 14	ε
	149m (27/2-)	-65.041	0.490 ± 15	IT 99.3%, ε 0.7%
	150 0+	-69.310	7.17 m 5	$\epsilon~64\%~,~\alpha~36\%$
	151 7/2(-)	-68.752	17.9 m 3	$\epsilon~94.4\%,~\alpha~5.6\%$
	152 0+	-70.118	2.38 h 2	$\epsilon~99.9\%,~\alpha~0.1\%$
	153 7/2(-)	-69.142	6.4 h 1	ε 99.99%,
				$lpha$ 9 . 4×10 $^{-3}$ %

Nuclide		Δ	T½, Γ, or	
Z El A	Jπ	(MeV)	Abundance	Decay Mode
66 Dy 154	. 0+	-70.392	$3.0 \times 10^6 \text{ y } 15$	α
155		-69.15	9.9 h 2	ε
156		-70.522	0.056% 3	
157		-69.420	8.14 h 4	ε
157		-69.221	21.6 ms 16	IT
158		-70.404	$0.095\% \ 3$	
159		-69.166	144.4 d 2	ε
160		-69.671	2.329% 18	
161		-68.054	18.889% 42	
162		-68.179	$25.475\% \ 36$	
163		-66.379	24.896% 42	
164		-65.966	28.260% 54	
165		-63.610	2.334 h 1	β–
165		-63.502	1.257 m 6	IT 97.76%, β-2.24%
166		-62.583	81.6 h <i>1</i>	β_
167		-59.93	6.20 m 8	β_
168		-58.6	8.7 m 3	β_
169		-55.6	39 s 8	β_
170	, ,	-53.7s	30 5 0	β_
171		-50.1s		β-?
172		-47.8s		β-?
173		-43.7s		β-?
			C 0	•
	7/9	-29.2s	6 ms 3	p
141 142		-34.3s	4.1 ms 3	p
	. , , ,	-37.2s	0.4 s 1	ε , $\varepsilon p > 0\%$
143		-42.0s	0.7 ~ 1	ε?, ερ?
144		-44.609	0.7 s 1	ε, ερ
145	. ,	-49.120	2.4 s 1	ε
146		-51.238	$3.6 ext{ s } 3$	ε
147	. ,	-55.757	5.8 s 4	ε
148		-57.99 57.00	2.2 s 11	3
148		-57.99 -57.30	9.59 s <i>15</i> 2.35 ms <i>4</i>	ε, εp 0.08% IT
148 149		-61.66	2.55 ms 4 $21.1 s 2$	
		-61.60 -61.62		3
149 150		-61.62 -61.95	$56 ext{ s } 3 $ $72 ext{ s } 4$	ε ε
150		-61.45	24.1 s 5	
151		-61.45 -63.622	35.2 s 1	ε, ε78%, α22%
		-63.522	47.2 s 13	α 80%, ε 20%
151				,
152 152		-63.61	161.8 s 3	ε 88%, α 12%
153		-63.45 -65.012	50.0 s 4 2.01 m 3	ε 89.2%, α 10.8% ε 99.95%, α 0.05%
153		-64.943	9.3 m 5	ε 99.82%, α 0.18%
154		-64.639	11.76 m <i>19</i>	ε 99.98%, α 0.02%
154		-64.639	3.10 m 14	ε 99.98%, α 0.02% ε , α <1.0×10 ⁻³ %
154		-66.04	48 m 1	ε, α<1.0×10 %
155		-65.04 -65.90	0.88 ms 8	E IT
156		-65.47	56 m 1	ε
156		-65.47	9.5 s 15	E IT
156		-65.42	7.8 m 3	ε 75%, IT 25%
157		-66.83	12.6 m 2	ε 15%, 11 25% ε
157		-66.18	12.6 m 2 11.3 m 4	ε
198	ง อ+	-00.18	11.0 III 4	c

Nuc	clide		Δ	Τ½, Γ , or	
\mathbf{Z}	El A	Jπ	(MeV)	Abundance	Decay Mode
67 I	Ho 158m	2-	-66.12	28 m 2	IT>81%, $\varepsilon < 19\%$
	158m	(9+)	-66.00	21.3 m 23	$\varepsilon \ge 93\%$, IT $\le 7\%$
	159	7/2-	-67.328	33.05 m 11	ε
	159m	1/2 +	-67.122	8.30 s 8	IT
	160	5+	-66.38	$25.6~\mathrm{m}~3$	ε
	160m	2-	-66.32	5.02 h 5	IT 73%, ε 27%
	160m	(9+)	-66.21	3 s	IT
	161	7/2-	-67.195	2.48 h 5	ε
	161m	1/2 +	-66.984	6.76 s 7	IT
	162	1+	-66.040	15.0 m 10	ε
	162m	6-	-65.934	67.0 m 7	IT 62%, ε 38%
	163	7/2-	-66.376	4570 y 25	ε
	163m	1/2 +	-66.078	$1.09 \ s \ 3$	IT
	164	1+	-64.980	29 m 1	ϵ 60%, β – 40%
	164m	6-	-64.840	37.5 m + 15-5	IT
	165	7/2-	-64.897	100%	
	166	0-	-63.070	26.824 h <i>12</i>	β–
	166m	7-	-63.064	$1.20 \times 10^3 \text{ y } 18$	β–
	167	7/2-	-62.279	3.003 h 18	β–
	168	3+	-60.06	2.99 m 7	β–
	168m	(6+)	-60.00	132 s 4	$IT \ge 99.5\%$, $\beta - \le 0.5\%$
	169	7/2-	-58.80	4.72 m 10	β–
	170	(6+)	-56.24	2.76 m 5	β–
	170m	(1+)	-56.12	43 s 2	β–
	171	(7/2-)	-54.5	53 s 2	β–
	172		-51.5s	25 s 3	β–
	173		-49.2s		β-?
	174		$-45.7\mathrm{s}$		β-?
	175		-43.1s		β–?
68 I	Er 142	0+	-28.1s		
	143		-31.2s		ε?
	144	0+	-36.7s	≥200 ns	ε
	145	(1/2+)	-39.4s		ε?
	145m	(11/2-)	-39.2s	1.0 s 3	ε, ερ
	146	0+	-44.322	1.7 s 6	ε, ερ
	147	(1/2+)	-46.61	2.5 s 2	ε , $\varepsilon p > 0\%$
	147m	(11/2-)	-46.61	$1.6 \mathrm{\ s}\ 2$	ε , $\varepsilon p > 0\%$
	148	0+	-51.48	4.6 s 2	ε
	149	(1/2+)	-53.74	4 s 2	ε, ερ 7%
	149m	(11/2-)	-53.00	8.9 s 2	ε 96.5%, IT 3.5%,
					εр 0.18%
	150	0+	-57.83	18.5 s 7	ε
	151	(7/2-)	-58.26	23.5 s 20	ε
		(27/2-)	-55.68	0.58 s 2	ΙΤ 95.3%, ε 4.7%
	152	0+	-60.500	10.3 s 1	α 90%, ε 10%
	153	(7/2-)	-60.475	37.1 s 2	α 53%, ε 47%
	154	0+	-62.606	3.73 m 9	ε 99.53%, α 0.47%
	155	7/2-	-62.209	5.3 m 3	ε 99.98%, α 0.02%
	156	0+	-64.21	19.5 m 10	ϵ , α 1.7×10 ⁻⁵ %
	157	3/2-	-63.41	18.65 m 10	3
	157m	(9/2+)	-63.26	76 ms 6	IT
	158	0+	-65.30	2.29 h 6	3
				50	

Nuclide	Δ	T½, Γ, or	
$Z El A J\pi$	(MeV)	Abundance	Decay Mode
68 Er 159 3/2-	-64.560	36 m 1	ε
160 0+	-66.06	28.58 h 9	ε
161 3/2-	-65.199	3.21 h 3	ε
162 0+	-66.332	0.139% 5	
163 5/2-	-65.166	75.0 m 4	ε
164 0+	-65.941	$1.601\% \ 3$	
165 5/2-	-64.520	10.36 h 4	ε
166 0+	-64.924	$33.503\% \ 36$	
167 7/2+	-63.289	22.869%9	
167m 1/2-	-63.081	2.269 s 6	IT
168 0+	-62.989	26.978% 18	
169 1/2-	-60.921	9.392 d <i>18</i>	β–
170 0+	-60.108	$14.910\% \ 36$	
171 5/2-	-57.718	7.516 h 2	β–
172 0+	-56.482	49.3 h 3	β–
173 (7/2-)	$-53.7\mathrm{s}$	1.4 m <i>1</i>	β–
174 0+	-51.9s	3.2 m 2	β–
175 (9/2+)	$-48.7\mathrm{s}$	1.2 m 3	β–
176 0+	-46.6s		β-?
177	-42.9s		β– ?
69 Tm 144 (10+)	-22.2s	$1.9 \ \mu s + 12 - 5$	p > 0%
145 (11/2-)	-27.7s	$3.17~\mu s~20$	p
146 (5–)	-31.2s	80 ms 10	p, ε
146m (8+)	-31.1s	200 ms 10	p, ε
147 11/2 -	-35.974	$0.58 \mathrm{\ s}\ 3$	ϵ 85%, p 15%
$147 \mathrm{m} - 3/2 +$	-35.906	$0.36~\mathrm{ms}~4$	p
148m (10+)	-38.76	0.7 s 2	ε
149 (11/2–)	-43.9s	$0.9 \mathrm{\ s}\ 2$	ε, ερ 0.2%
150 (6–)	$-46.5\mathrm{s}$	2.20 s 6	ε
150m (10+)	-45.8s	$5.2~\mathrm{ms}~3$	IT
151 (11/2–)	-50.78	4.17 s <i>11</i>	ε
151m (1/2+)	-50.78	6.6 ± 20	ε
152 (2)-	-51.77	8.0 s 10	ε
152m (9)+	-51.77	5.2 s 6	3
153 (11/2-)	-53.99	1.48 s 1	α 91%, ε 9%
153m (1/2+)	-53.95	2.5 s 2	α 92%, ε 8%
154 (2-)	-54.43	8.1 s 3	α 54%, ε 46%
154m 9+ 155 11/2-	-54.43 -56.626	3.30 s 7	α 58%, ε 42%, ΙΤ
155 11/2- 155m 1/2+		21.6 s 2	ε 99.11%, α 0.89%
156 2-	-56.585 -56.84	45 s <i>3</i> 83.8 s <i>18</i>	$\varepsilon > 98\%$, $\alpha < 2\%$ $\varepsilon 99.94\%$, $\alpha 0.06\%$
157 1/2+	-58.71	3.63 m 9	ε 33.34%, α 0.00%
158 2-	-58.71	3.98 m 6	ε
158m (5+)	-58.70	≈20 s	ε?
159 5/2+	-60.57	9.13 m 16	ε:
160 1-	-60.30	9.4 m 3	ε
160m 5	-60.23	74.5 s 15	IT 85%, ε 15%
161 7/2+	-61.90	30.2 m 8	ε
162 1-	-61.47	21.70 m 19	ε
162m 5+	-61.47	24.3 s 17	ΙΤ 81%, ε 19%
163 1/2+	-62.727	1.810 h 5	ε
164 1+	-61.90	2.0 m 1	ε

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
69 Tm 164m	n 6-	-61.90	5.1 m <i>1</i>	$IT \approx 80\%$, $\epsilon \approx 20\%$
165	1/2+	-62.928	30.06 h 3	ε
166	2+	-61.89	7.70 h 3	ε
166m		-61.78	340 ms 25	IT
167	1/2+	-62.542	9.25 d 2	ε
168	3+	-61.312	93.1 d 2	$\epsilon 99.99\%, \beta - 0.01\%$
169	1/2+	-61.274	100%	, I
170	1-	-59.795	128.6 d 3	β-99.87%, ε0.13%
171	1/2+	-59.210	1.92 y 1	β_
172	2-	-57.373	63.6 h 2	β_
173	(1/2+)	-56.253	8.24 h 8	β_
174	(4)-	-53.86	5.4 m 1	β_
174m	n 0+	-53.61	2.29 s 1	IT 99%, β-<1%
175	(1/2+)	-52.31	15.2 m 5	β–
176	(4+)	-49.4	1.9 m 1	β–
177m	(7/2-)	-47.5s	90 s 6	β_
178		-44.1s	>300 ns	β–
179		-41.6s		β-?
70 Yb 148	0+	-30.2s		ε?
149	(1/2+,3/2+)	-33.2s	0.7 s 2	ϵ , ϵp
150	0+	-38.6s	≥200 ns	ε?
151	(1/2+)	-41.5	1.6 s 1	ε , $\varepsilon p > 0\%$
151m	(11/2-)	-41.5	1.6 s 1	ε, IT≈0.4%, εp
152	0+	-46.3	$3.03 \mathrm{\ s}$ 6	ϵ , ϵp
153	7/2-	-47.1s	4.2 s 2	α 60%, ϵ 40%
154	0+	-49.93	0.409 s 2	$\alpha~92.6\%,~\epsilon~7.4\%$
155	(7/2-)	-50.50	1.793 s 19	α 89%, ϵ 11%
156	0+	-53.265	26.1 s 7	ε 90%, α 10%
157	7/2-	-53.43	38.6 s 10	ε 99.5%, α 0.5%
158	0+	-56.008	1.49 m <i>13</i>	$\alpha \approx 2.1 \times 10^{-3}\%$, ϵ
159	5/2(-)	-55.84	1.67 m 9	ε
160	0+	-58.16	4.8 m 2	ε
161	3/2-	-57.84	4.2 m 2	ε
162	0+	-59.83	18.87 m <i>19</i>	ε
163	3/2-	-59.30	11.05 m 35	ε
164	0+	-61.02	75.8 m 17	ε
165	5/2-	-60.29	9.9 m 3	ε
166	0+	-61.594	56.7 h 1	ε
167	5/2-	-60.588	17.5 m 2	ε
$168 \\ 169$	0+ 7/2+	-61.580	0.123 % 3 32.018 d <i>5</i>	ō
169m		-60.376 -60.352	46 s 2	ε IT
170	1 1/2- 0+	-60.352 -60.763	2.982% 39	11
171	1/2-	-59.306	$14.09\% \ 14$	
171 171m		-59.211	5.25 ms 24	IT
17111	0+	-59.211 -59.255	21.68% 13	11
173	5/2-	-59.255 -57.551	16.103% 63	
173	0+	-56.944	32.026% 80	
175	(7/2-)	-50.544 -54.695	4.185 d <i>1</i>	β–
175 175m		-54.180	68.2 ms 3	IT
176	0+	-53.488	12.996% 83	
176m		-52.438	11.4 s 3	IT
011	-	- /		

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
70 Yb 177 177m	(9/2+)	-50.983	1.911 h 3	β– IT
177m 178	(1/2–) 0+	-50.652 -49.69	6.41 s 2 74 m 3	β_
179	(1/2-)	-49.09 -46.4s	8.0 m 4	β– β–
180	0+	-40.4s -44.4s	2.4 m 5	β_
181	01	-40.8s	2.4 m 0	β-?
	(9.)		45	'
71 Lu 150 151	(2+) $11/2-$	-24.6s	45 ms 3 80.6 ms 20	p 70.9%, ε 29.1% p 63.4%, ε 36.6%
	4-,5-,6-)	-30.1s -33.4s	0.7 s 1	ρ 65.4%, ε 56.6% ε, ερ 15%
152 (11/2-	-38.4s -38.4	0.7 s 1 0.9 s 2	ε, ερ 15% α≈70%, ε≈30%
154	(2-)	-39.6s	0.3 8 2	u~ 10/0, E~ 30/0
154m	(9+)	-39.6s	1.12 s 8	ε
154m 155	11/2-	-42.55	68 ms 1	α 90%, ε 10%
155m	1/2+	-42.53	138 ms 8	α 76%, ε 24%
	(25/2-)	-40.77	2.69 ms 3	α
156	(2)-	-43.75	494 ms 12	$\alpha \approx 95\%$, $\epsilon \approx 5\%$
156m	9+	-43.75	198 ms 2	α
	1/2+,3/2+)	-46.46	6.8 s 18	α>0%
	(11/2-)	-46.43	4.79 s 12	ε 94%, α 6%
158		-47.21	10.6 s 3	ε 99.09%, α 0.91%
159		-49.71	$12.1 \mathrm{\ s}\ 10$	ε, α0.1%
160		-50.27	36.1 s 3	ϵ , $\alpha \le 1.0 \times 10^{-4}\%$
160m		-50.27	40 s 1	$\epsilon \leq 100\%$, α
161	1/2 +	-52.56	77 s 2	3
161m		-52.40	7.3 ms 4	IT
162	1-	-52.84	1.37 m 2	ε ≤ 100%
162m		-52.84	1.9 m	ε ≤ 100%
162m	(4-)	-52.84	1.5 m	ε≤100%
163	1/2(+)	-54.79	3.97 m <i>13</i>	ε
164	1(-)	-54.64	3.14 m 3	ε
165 166	1/2+	-56.44	10.74 m 10	3
166m	6- 3(-)	-56.02 -55.99	2.65 m <i>10</i> 1.41 m <i>10</i>	ε ε 58%, IT 42%
166m	0-	-55.98	2.12 m 10	ε > 80%, IT < 20%
167	7/2+	-57.50	51.5 m 10	ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
167m	1/2+	-57.50	≥1 m	ε, ΙΤ
168	6(-)	-57.07	5.5 m 1	ε
168m	3+	-56.87	6.7 m 4	$\varepsilon > 99.6\%$, IT<0.8%
169	7/2+	-58.083	34.06 h 5	ε
169m	1/2-	-58.054	160 s 10	IT
170	0+	-57.30	2.012 d <i>20</i>	3
170m	(4)-	-57.21	0.67 s 10	IT
171	7/2+	-57.828	8.24 d 3	ε
171m	1/2-	-57.757	79 s 2	IT
172	4-	-56.736	6.70 d 3	ε
172m	1-	-56.694	3.7 m 5	IT
173	7/2+	-56.881	1.37 y 1	ε
174	(1)-	-55.570	3.31 y 5	8
174m	(6)-	-55.399	142 d 2	IT 99.38%, ε 0.62%
175	7/2+	-55.166	97.401% 13	ρ
176	7–	-53.382	3.76×10 ¹⁰ y 7 2.599 % <i>13</i>	β–
			4.000% 13	

Nucl	ide		Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
71 Lu	176m	1-	-53.259	3.664 h 19	β-99.9%, ε 0.09%
	177	7/2+	-52.384	6.647 d 4	β_
	177m	23/2-	-51.414	160.44 d <i>6</i>	β-78.6%, IT 21.4%
	177m	(39/2-)	-49.644	6 m + 3 - 2	β-, IT?
	178	1(+)	-50.338	28.4 m 2	β–
	178m	(9-)	-50.214	23.1 m 3	β–
	179	7/2+	-49.059	4.59 h <i>6</i>	β–
	179m	1/2 +	-48.467	$3.1~\mathrm{ms}~9$	IT
	180	5+	-46.68	5.7 m 1	β-
	181	(7/2+)	-44.7s	$3.5 \; { m m} \; 3$	β–
	182		-41.9s	2.0 m 2	β–
	183	(7/2+)	-39.5s	58 s 4	β–
	184	(3+)	-36.4s	19 s 2	β–
72 Hf	153		-27.3s	>60 ns	ε?
	154	0+	-32.7s	2 s 1	ε, α?
	155		-34.1s	$0.84 \mathrm{\ s}\ 3$	ε
	156	0+	-37.9	23 ms 1	α
	156m	8+	-35.9	$0.52~\mathrm{ms}~1$	α
	157	7/2-	-38.8s	110 ms 6	α 86%, ε 14%
	158	0+	-42.10	2.85 s 7	ε 55.7%, α 44.3%
	159	7/2-	-42.85	5.6 s 4	ε 65%, α 35%
	160	0+	-45.938	13.6 s 2	ε 99.3%, α 0.7%
	161	0	-46.32	18.2 s 5	$\epsilon > 99.87\%, \alpha < 0.13\%$
	162	0+	-49.166	39.4 s 9	ε 99.99%,
	163		-49.29	40.0 s 6	$\begin{array}{l} \alpha \ 8.0 \times 10^{-3}\% \\ \epsilon \ , \ \alpha < 1.0 \times 10^{-4}\% \end{array}$
	164	0+	-43.23 -51.83	111 s 8	ε, α<1.0×10 %
	165	(5/2-)	-51.63	76 s 4	ε
	166	0+	-53.86	6.77 m 30	8
	167	(5/2)-	-53.47	2.05 m 5	ε
	168	0+	-55.36	25.95 m 20	ε
	169	5/2-	-54.72	3.24 m 4	ε
	170	0+	-56.25	16.01 h <i>13</i>	ε
	171	7/2+	-55.43	12.1 h 4	ε
	171m	1/2-	-55.41	29.5 s 9	IT≤100%, ε
	172	0+	-56.40	1.87 y 3	ε
	173	1/2-	-55.41	23.6 h 1	ε
	174	0+	-55.845	$2.0 \times 10^{15} \text{ y } 4$	α
				0.16% 1	
	175	5/2(-)	-54.482	70 d 2	3
	176	0+	-54.576	5.26% 7	
	177	7/2-	-52.885	18.60% 9	T/D
	177m	23/2+	-51.569	1.09 s 5	IT
	177m	37/2-	-50.145	51.4 m 5	IT
	178	0+ 8-	-52.439	27.28% 7	īΤ
	178m 178m	8- 16+	-51.292 -49.993	4.0 s 2 31 y 1	IT IT
	178m 179	9/2+	-49.993 -50.467	13.62% 2	11
	179 179m	1/2-	-50.467 -50.092	18.67 s 4	IT
	179m	$\frac{1}{2}$	-30.032 -49.361	25.05 d 25	IT
	180	0+	-49.783	35.08% 16	
	180m	8-	-48.641	5.47 h 4	IT 99.7%, β-0.3%
	100111	J	10.011	O. I. II T	11 00.170, p 0.070

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
72 Hf 181	1/2-	-47.407	42.39 d <i>6</i> 1.5 ms <i>5</i>	β– IT
1811	0+	-45.665 -46.053	$8.90 \times 10^6 \text{ y } 9$	β_
182m		-46.035 -44.880	61.5 m 15	β- 54%, IT 46%
183	(3/2-)	-44.880 -43.29	1.018 h 2	β- 54%, 11 46%
184	0+	-43.29 -41.50	4.12 h 5	β– β–
184m		-41.30 -40.23	48 s 10	ρ– IT
185	(0)	-38.4s	3.5 m 6	β_
186	0+	-36.4s	2.6 m 12	β_
187m		-32.8s	0.27 µs 8	β_
188	0+	-30.9s	0.21 μ5 0	β_
189	0.1	50.05		P
73 Ta 155m	11/2-	-24.0s	2.9 ms +15-11	p
156	(2-)	-25.8s	144 ms 24	p, ε
156m	n 9+	-25.7s	0.36 s 4	ε 95.8%, p 4.2%
157	1/2 +	-29.6	10.1 ms 4	α 96.6%, p 3.4%
157m	11/2-	-29.6	4.3 ms 1	α
157m	(25/2-)	-28.0	1.7 ms 1	α
158	(2-)	-31.0s	55 ms 15	$\alpha \approx 91\% \; , \; \; \epsilon \approx 9\%$
158m	n (9+)	-30.9s	36.7 ms 15	$\alpha~95\%$, $\epsilon~5\%$
159	1/2+	-34.44	0.83 s 18	ϵ 66%, α 34%
159m	11/2-	-34.38	0.56 ± 6	$lpha~55\%,~\epsilon~45\%$
160		-35.87	1.55 s 4	ϵ 66%, α 34%
160m	1	-35.87	1.7 s 2	
161	(1/2+)	-38.71		ε, α
161m	(11/2-)	-38.71	3.08 s 11	ε, α
162		-39.78	3.57 s 12	$\epsilon 99.93\%, \alpha 0.07\%$
163		-42.54	10.6 s <i>18</i>	$\epsilon \approx 99.8\%$, $\alpha \approx 0.2\%$
164	(3+)	-43.28	14.2 s 3	ε
165		-45.85	31.0 s 15	ε
166	(2)+	-46.10	34.4 s 5	ε
167	(3/2+)	-48.35	80 s 4	ε
168	(2-,3+)	-48.39	2.0 m 1	ε
169	(5/2+)	-50.29	4.9 m 4	ε
170	(3+)	-50.14	6.76 m 6	ε
171	(5/2-)	-51.72	23.3 m <i>3</i> 36.8 m <i>3</i>	ε
$172 \\ 173$	(3+) 5/2-	-51.33 -52.40	3.14 h <i>13</i>	ε
173	3+	-52.40 -51.74	1.14 h 8	ε
175	7/2+	-51.74 -52.41	10.5 h 2	ε
176	(1)-	-52.41 -51.37	8.09 h 5	ε
177	7/2+	-51.719	56.56 h 6	ε
178m		-50.50	9.31 m 3	ε
178m		-50.50	2.36 h 8	ε
178m		-49.03	58 ms 4	IT
178m		-47.60	290 ms 12	IT
179	7/2+	-50.361	1.82 y 3	ε
	(25/2+)	-49.044	9.0 ms 2	IT
	(37/2+)	-47.722	54.1 ms 17	IT
180	1+	-48.936	8.154 h 6	ε 86%, β-14%
180m	n 9–	-48.859	$>1.2\times10^{15} \text{ y}$	ε?
			$0.01201\% \ 32$	

Nucli			Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
73 Ta	180m	9–	-48.859	>1.2×10 ¹⁵ y 0.01201% 32	β-?
	181	7/2+	-48.441	99.98799% 32	
	182	3-	-46.433	114.74 d <i>12</i>	β–
	182m	5+	-46.417	283 ms 3	IT
	182m	10-	-45.913	15.84 m 10	IT
	183	7/2+	-45.296	5.1 d <i>1</i>	β–
	184	(5-)	-42.84	8.7 h 1	β–
	185	(7/2+)	-41.40	49.4 m 15	β–
		(21/2)	-40.14	>1 ms	0
	186	(2-,3-)	-38.61	10.5 m 3	β-
	186m	(7/0)	-38.61	1.54 m 5	β-
	187	(7/2+)	-36.8s	2.3 m 6	β-
		(27/2-)	-35.0s	22 s 9	β-?, IT?
	188	(41/2+)	-33.8s -33.7s	>5 m 19.6 s <i>20</i>	β-?, IT? β-
	189?		-33.7s -31.8s	1.6 μs 2	β-?
	190		-28.7s	5.3 s 7	β- :
	191		-26.5s	>300 ns	β-?
	192	(1,2)	-23.1s	2.2 s 7	β-
74 W	157	(7/2-)	-19.3s	275 ms 40	ε
	158	0+	-23.7s	1.25 ms 21	α
	158m	(8+)	-21.8s	0.143 ms 19	IT, α
	159		-25.2s	$7.3~\mathrm{ms}~27$	$\alpha \approx 99.9\% \; , \; \; \epsilon \approx 0.1\%$
	160	0+	-29.4	91 ms 5	α 87%
	161		-30.4s	409 ms 18	α 73%, ϵ 27%
	162	0+	-34.00	1.36 s 7	$\epsilon~54.8\%,~\alpha~45.2\%$
	163	7/2-	-34.91	2.67 s 10	ϵ 86%, α 14%
	164	0+	-38.235	6.3 s 2	$\epsilon~96.2\%$, $\alpha~3.8\%$
	165	(5/2-)	-38.86	$5.1 \mathrm{~s}~5$	ε , α <0.2%
	166	0+	-41.88	19.2 s 6	ε 99.96%, α 0.04%
	167	(+)	-42.09	19.9 s 5	ε 99.96%, α 0.04%
	168	0+	-44.90	50.9 s 19	ε , α 3.2×10 ⁻³ %
	169	(5/2-)	-44.92	74 s 6	ε
	$\begin{array}{c} 170 \\ 171 \end{array}$	0+ $(5/2-)$	-47.29 -47.09	2.42 m <i>4</i> 2.38 m <i>4</i>	3
	171 172	0+	-47.09 -49.10	6.6 m 9	3
	173	5/2-	-49.10 -48.73	7.6 m 2	ε
	174	0+	-50.23	33.2 m 21	ε
	175	(1/2-)	-49.63	35.2 m 6	ε
	176	0+	-50.64	2.5 h 1	ε
	177	1/2-	-49.70	132 m 2	ε
	178	0+	-50.41	21.6 d 3	ε
	179	7/2-	-49.29	37.05 m 16	ε
	179m	1/2-	-49.07	6.40 m 7	IT 99 . 71% , ϵ 0 . 29%
	180	0+	-49.636	≥6.6×10 ¹⁷ y	2ε
	101	0/9 :	40 050	0.12% 1	0
	181	9/2+	-48.253 -48.247	121.2 d <i>2</i> 26.50% <i>16</i>	ε
	$\begin{array}{c} 182 \\ 183 \end{array}$	0+ 1/2-	-46.247 -46.367	>1.3×10 ¹⁹ y	α
	100	1,4-	10.007	14.31% 4	•
	183m	11/2+	-46.057	5.2 s 3	IT
				56	
				-	

Νι	ıcli	de		Δ	Τ½, Γ, or	
\mathbf{Z}	El	\mathbf{A}	Jπ	(MeV)	Abundance	Decay Mode
74	w	184	0+	-45.707	30.64% 2	
		185	3/2-	-43.389	75.1 d 3	β–
		185m	11/2+	-43.192	1.67 m 3	ÏТ
		186	0+	-42.510	$>2.3\times10^{19} \text{ y}$	2β–
					28.43% 19	•
		186m	(16+)	-38.967	>3 ms	IT
		187	3/2-	-39.906	24.000 h 4	β–
		188	0+	-38.669	69.78 d 5	β–
		189	(3/2-)	-35.5	10.7 m 5	β–
		190	0+	-34.3	30.0 m 15	β–
		190m	(10-)	-31.9	≤3.1 ms	IT
		191		-31.1s	>300 ns	β– ?
		192	0+	-29.6s		β– ?
		193		-26.2s	>300 ns	β– ?
		194	0+	-24.4s	>300 ns	β– ?
75	\mathbf{Re}	159	(1/2+)	-14.8s		
		160	(2-)	-16.7s	0.82 ms + 15 - 9	p 91%, α 9%
		161	1/2 +	-20.9	0.44 ms 1	$p, \alpha \leq 1.4\%$
		161m	11/2-	-20.8	14.7 ms 3	α93%, p7%
		162	(2-)	-22.4s	107 ms <i>13</i>	α 94%, ε 6%
		162m	(9+)	-22.2s	77 ms 9	α 91%, ϵ 9%
		163	1/2 +	-26.01	390 ms 72	ϵ 68%, α 32%
		163m	11/2-	-25.89	$214~\mathrm{ms}~5$	α 66%, ϵ 34%
		164		-27.52	0.85 s + 14 - 11	$\alpha \approx 58\% \; , \;\; \epsilon \approx 42\%$
		164m		-27.45	0.86 s + 15 - 11	IT, $\alpha \approx 3\%$
		165	(1/2+)	-30.65	≈1 s	α, ε
		165m	(11/2-)	-30.60	$2.1 \mathrm{~s}~3$	ϵ 87%, α 13%
		166		-31.89	2.25 s 21	$\epsilon > 76\%$, $\alpha < 24\%$
		167	(9/2-)	-34.84s	5.9 s 3	$\epsilon \approx 99\%$, $\alpha \approx 1\%$
		167m		-34.84s	3.4 s 4	α
		168	(7+)	-35.79	4.4 s 1	ε , $\alpha \approx 5.0 \times 10^{-3}\%$
		169	(9/2-)	-38.41	8.1 s 5	ε , $\alpha < 0.01\%$
			5/2+,3/2+)	-38.41	15.1 s 15	ϵ , IT, $\alpha \approx 0.2\%$
		170	(5+)	-38.92	9.2 s 2	ε
		171	(9/2-)	-41.25	15.2 s 4	3
		172m 172m	(2) (5)	-41.52 -41.52	$55 ext{ s } 5$ $15 ext{ s } 3$	3
		172m 173	(5/2-)	-41.52 -43.55	1.98 m 26	ε
		174	$(5/2-)$ (≤ 4)	-43.67	2.40 m 4	ε
		175	(5/2-)	-45.07 -45.29	5.89 m 5	ε
		176	(3+)	-45.06	5.3 m 3	ε
		177	5/2-	-46.27	14 m 1	ε
		178	(3+)	-45.65	13.2 m 2	ε
		179	5/2+	-46.58	19.5 m 1	ε
			7/2,49/2+	-41.18	0.466 ms 15	IT
		180	(1)-	-45.84	2.44 m 6	ε
		181	5/2+	-46.52	19.9 h 7	ε
		182	7+	-45.4	64.0 h 5	ε
		182m	2+	-45.4	12.7 h 2	ε
		183	5/2 +	-45.811	70.0 d <i>14</i>	ε
		183m	(25/2)+	-43.903	1.04 ms 4	IT
		184	3(-)	-44.224	35.4 d 7	ε

Nucli		_	Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
75 Re	184m	8(+)	-44.036	169 d 8	IT 74.5%, ϵ 25.5%
	185	5/2 +	-43.822	$37.40\% \ 2$	
	186	1-	-41.930	3.7186 d <i>5</i>	β - 92.53%, ϵ 7.47%
	186m	(8+)	-41.781	$2.0 \times 10^5 \text{ y}$	IT
	187	5/2 +	-41.218	$4.33 \times 10^{10} \text{ y } 7$	β-,
				$62.60\% \ 2$	$\alpha < 1.0 \times 10^{-4}\%$
	188	1-	-39.018	17.003 h <i>3</i>	β–
	188m	(6)-	-38.846	18.59 m 4	IT
	189	5/2 +	-37.980	24.3 h 4	β–
	190	(2)-	-35.6	$3.1 \; \text{m} \; 3$	β–
	190m	(6-)	-35.4	3.2 h 2	β- 54.4%, IT 45.6%
	191 (3	3/2+,1/2+)	-34.35	9.8 m 5	β–
	192		-31.8s	16 s 1	β–
	193?		-30.2s		
	194m		-27.4s	5 s 1	β–
	194m		-27.4s	$25 \mathrm{\ s}\ 8$	β–
	194m		-27.4s	100 s 10	β–
	195		-25.6s	6 s 1	β–
	196		-22.5s	3 + 1 - 2	β–
	198				
76 Os	161	(7/2-)	-9.9s	0.64 ms 6	α
	162	0+	-14.5s	2.1 ms 1	$\alpha \approx 99\%$
	163	(7/2-)	-16.1s	$5.5~\mathrm{ms}~6$	α, ε
	164	0+	-20.5	21 ms 1	α 98%, ϵ 2%
	165	(7/2-)	-21.6s	$71~\mathrm{ms}~3$	$\alpha > 60\%$, $\epsilon < 40\%$
	166	0+	-25.44	199 ms 3	α 72% , ϵ 18%
	167	(7/2-)	-26.50	$0.81~\mathrm{s}~6$	$lpha$ 57%, ϵ 43%
	168	0+	-29.992	$2.1 \mathrm{~s}~1$	ϵ 57%, α 43%
	169	(5/2-)	-30.72	3.43 s 14	ϵ 86.3%, α 13.7%
	170	0+	-33.92	7.37 s 18	$\epsilon~90.5\%$, $\alpha~9.5\%$
	171	(5/2-)	-34.29	8.3 s 2	ϵ 98.2%, α 1.8%
	172	0+	-37.24	19.2 s 9	ϵ 99.8%, α 0.2%
	173	(5/2-)	-37.44	22.4 s 9	ε, α0.4%
	174	0+	-40.00	44 s 4	$\epsilon 99.98\%, \alpha 0.02\%$
	175	(5/2-)	-40.11	1.4 m <i>1</i>	ε
	176	0+	-42.10	3.6 m 5	ε
	177	1/2-	-41.95	3.0 m 2	ε
	178	0+	-43.55	5.0 m 4	ε, α
	179	1/2-	-43.02	6.5 m 3	ε
	180	0+	-44.35	21.5 m 4	ε
	181	1/2-	-43.55	105 m 3	ε
	181m	7/2-	-43.50	2.7 m 1	ε, IT≤3%
	182	0+	-44.61	21.84 h 20	ε
	182m	(8)–	-42.78	0.78 ms 7	IT
	183	9/2+	-43.66	13.0 h 5	£
	183m	1/2-	-43.49	9.9 h 3	ε 85%, IT 15%
	184	0+	-44.256	>5.6×10 ¹³ y	α
	195	1/9	49 900	0.02% 1	C
	185	1/2- 0+	-42.809	$93.6 \text{ d } 5 \ 2.0 \times 10^{15} \text{ y } 11$	3
	186	UΤ	-43.002	1.59% 3	α
	187	1/2-	-41.220	1.96% 2	
	101	1/2-	41.220	1.00/02	

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					Beeny mone
76 Os	189	0+	-41.139	13.24% 8	
	189m	3/2-9/2-	-38.988 -38.957	16.15% 5 5.81 h 6	IT
	190	9/2- 0+	-38.709	26.26% 2	11
	190m	(10)-	-37.004	9.9 m 1	IT
	191	9/2-	-36.396	15.4 d <i>1</i>	β_
	191m	3/2-	-36.322	13.10 h 5	IT
	192	0+	-35.883	40.78% 19	11
	192m	(10-)	-33.868	5.9 s 1	IT>87%, β -<13%
	193	3/2-	-33.395	30.11 h <i>1</i>	β-
	194	0+	-32.437	6.0 y 2	β_
	195	0.1	-29.7	≈9 m	β_
	196	0+	-28.28	34.9 m 2	β_
	197	0.1	-25.3s	2.8 m 6	β_
	198	0+	-23.8s	2.0 m o	β_
	199	٠.	-20.5s	5 s + 4 - 2	β_
	200	0+	-18.9s	6 s + 4 - 3	β_
	201	٠.	10.00	>300 ns	β-?
	202	0+		>300 ns	β-?
77 Ir		(9+)	-7.3s	94 μs 27	$p > 0\%$, α , ϵ
	165	(1/2+)	-11.6s	<1 μs	$p? \alpha$, α , ϵ
	165m	11/2-	-11.4s	0.30 ms 6	p 87%, α 13%
	166	(2-)	-13.2s	10.5 ms 22	α 93%, p 7%
	166m	(9+)	-13.0s	15.1 ms 9	α 98.2%, p 1.8%
	167	1/2+	-17.08	35.2 ms 20	α 48%, p 32%, ε 20%
	167m	11/2-	-16.90	25.7 ms 8	α 80%, ε 20%, ρ 0.4%
	168		-18.72	222 ms +60-40	α≤100%, ε, p
	168m		-18.72	159 ms +16-13	α 77%, $\epsilon \leq 23\%$, p
	169	(1/2+)	-22.08	0.353 s 4	α 45%, ε, ρ
	169m	(11/2-)	-21.93	0.281 s 4	α72%, ε, p
	170	(3-)	-23.36s	0.87 s + 18 - 12	ε 94.8%, α 5.2%
	170m	(8+)	-23.36s	811 ms <i>18</i>	$\text{IT} \le 62\%$, $\epsilon \le 62\%$,
					α 38%
	171	(1/2+)	-26.43	3.2 s + 13 - 7	$\alpha > 0\%$, p, ϵ
	171m	(11/2-)	-26.43	1.40 s <i>10</i>	$\alpha 58\%, p \le 42\%,$
					$\varepsilon \leq 42\%$
	172	(3+)	-27.38	4.4 s 3	ε 98%, α≈2%
	172m	(7+)	-27.24	2.0 s 1	ε 77%, α 23%
		3/2+,5/2+)	-30.27	9.0 s 8	$\varepsilon > 93\%$, $\alpha < 7\%$
		(11/2-)	-30.04	2.4 s 9	ε, α 7%
	174	(3+)	-30.87	7.9 s 6	ε 99.5%, α 0.5%
	174m	(7+)	-30.67	4.9 s 3	ε 97.5%, α 2.5%
	175	(5/2-)	-33.39	9 s 2	ε 99.15%, α 0.85%
	176	F /0	-33.86	8.7 s 5	ε 96.9%, α 3.1%
	177	5/2-	-36.05	30 s 2	ε 99.94%, α 0.06%
	178	(5/9)	-36.25	12 s 2	3
	179	(5/2)-	-38.08	79 s 1	ε
	180	(4,5)	-37.98	1.5 m <i>1</i> 4.90 m <i>15</i>	3
	$\begin{array}{c} 181 \\ 182 \end{array}$	5/2- 3+	-39.47 -39.05	4.90 m 15 15 m 1	ε
	183	5+ 5/2-	-39.03 -40.20	57 m 4	ε
	184	5/2-	-39.61	3.09 h 3	ε
	104	υ <u>–</u>	99.01	0.00 11 0	C

Nuc	lide		Δ	T½, Γ, or	
Z E		Jπ	(MeV)	Abundance	Decay Mode
77 I	r 185	5/2-	-40.33	14.4 h <i>1</i>	ε
	186	5+	-39.17	16.64 h 3	ε
	186m	n 2-	-39.17	1.90 h 5	$\epsilon \approx 75\% \;,\;\; IT \approx 25\%$
	187	3/2 +	-39.532	10.5 h 3	ε
	187m	9/2-	-39.346	30.3 ms 6	IT
	188	1-	-38.351	41.5 h 5	ε
	188m	1	-37.428	$4.2~\mathrm{ms}~2$	ε?, IT
	189	3/2 +	-38.46	13.2 d <i>1</i>	ε
	189m	11/2-	-38.08	13.3 ms 3	IT
	189m	(25/2)+	-36.12	$3.7~\mathrm{ms}~2$	IT
	190	4-	-36.755	11.78 d <i>10</i>	ε
	190m		-36.729	1.120 h 3	IT
	190m		-36.379	3.087 h <i>12</i>	ε 91.4%, IT 8.6%
	191	3/2+	-36.710	37.3% 2	
	191m		-36.539	4.899 s 23	IT
	191m		-34.663	5.5 s 7	IT
	192	4+	-34.837	73.829 d <i>11</i>	β - 95.24%, ϵ 4.76%
	192m		-34.780	1.45 m 5	IT 99.98%, β-0.02%
	192m		-34.669	241 y 9	IT
	193	3/2+	-34.538	62.7% 2	T/D
	193m		-34.458	10.53 d 4	IT
	194	1-	-32.533	19.28 h <i>13</i>	β–
	194m	1 4+ $1 (10,11)$	-32.386 -32.343	31.85 ms 24	IT
	19411	3/2+	-32.343 -31.694	171 d <i>11</i> 2.5 h <i>2</i>	β– β–
	195m		-31.094 -31.594	3.8 h 2	β- β- 95%, IT 5%
	196	(0-)	-29.44	52 s 1	β- 33%, 11 3%
		(0)	-29.03	1.40 h 2	β-, IT<0.3%
	197	3/2+	-28.26	5.8 m 5	β-
	197m		-28.15	8.9 m 3	β-99.75%, IT 0.25%
	198		-25.8s	8 s 1	β-
	199		-24.40	6 s + 5 - 4	β_
	200		-21.6s	>300 ns	β_
	201		-19.9s	>300 ns	β_
	202	(1-,2-)	-17.0s	11 s 3	β–
	203			>300 ns	β-?
	204				
78 P	t 166	0+	-4.8s	300 μs <i>100</i>	α
	167		-6.5s	$0.9\mathrm{ms}3$	α
	168	0+	-11.0	2.02 ms 10	α
	169	(7/2-)	-12.4s	$7.0~\mathrm{ms}~2$	α
	170	0+	-16.30	13.8 ms 5	α 98%, ε
	171	(7/2-)	-17.47	$45.5~\mathrm{ms}~25$	α 90%, ε 10%
	172	0+	-21.10	97.6 ms 13	α94%, ε6%
	173	(5/2-)	-21.94	$382~\mathrm{ms}~2$	α, ε?
	174	0+	-25.31	0.889 s 17	$lpha~76\%,~\epsilon~24\%$
	175	7/2-	-25.69	2.53 s 6	$\alpha~64\%~,~\epsilon~36\%$
	176	0+	-28.93	6.33 ± 15	$\epsilon~60\%,~\alpha~40\%$
	177	5/2-	-29.37	10.6 s 4	ε 94.3%, α5.7%
	178	0+	-32.00	20.7 s 7	ε 92.3%, α7.7%
	179	1/2-	-32.270	21.2 s 4	ε 99.76%, α 0.24%
	180	0+	-34.44	56 s 2	ε , $\alpha \approx 0.3\%$
				60	

Nuclide		Δ	Τ½, Γ , or	
	El A Jπ	(MeV)	Abundance	Decay Mode
78 I	Pt 181 1/2-	-34.37	52.0 s 22	ε , $\alpha \approx 0.08\%$
	182 0+	-36.17	2.67 m 12	ε 99.96%, α 0.04%
	183 1/2-	-35.77	6.5 m 10	ε , $\alpha \approx 1.3 \times 10^{-3}\%$
	183m (7/2)-	-35.74	43 s 5	ϵ , $\alpha < 4.0 \times 10^{-4}\%$, IT
	184 0+	-37.33	17.3 m 2	ε , $\alpha \approx 1.0 \times 10^{-3}\%$
	184m 8-	-35.49	$1.01~\mathrm{ms}~5$	IT
	185 9/2+	-36.68	70.9 m <i>24</i>	ε<100%
	185m 1/2-	-36.58	33.0 m 8	ε 99%, IT<2%
	186 0+	-37.86	2.08 h 5	ε , $\alpha \approx 1.4 \times 10^{-4}\%$
	187 3/2-	-36.71	2.35 h 3	E 0 C 10 507
	188 0+ 189 3/2-	-37.828	10.2 d 3	ε , α 2 · 6×10 ⁻⁵ %
	189 3/2- 190 0+	-36.49 -37.325	10.87 h <i>12</i> 6.5×10 ¹¹ y <i>3</i>	3
	190 0+	-37.323	0.012% 2	α
	191 3/2-	-35.701	2.83 d 2	ε
	192 0+	-36.292	0.782% 24	C
	193 1/2-	-34.481	50 y 6	ε
	193m 13/2+	-34.331	4.33 d <i>3</i>	IT
	194 0+	-34.762	32.86% 40	
	195 1/2-	-32.796	$33.78\% \ 24$	
	195m 13/2+	-32.537	4.010 d 5	IT
	196 0+	-32.646	25.21% 34	
	197 1/2-	-30.421	19.8915 h <i>19</i>	β–
	197m 13/2+	-30.021	95.41 m <i>18</i>	IT 96.7%, β–3.3%
	198 0+	-29.905	$7.36\% \ 13$	_
	199 5/2-	-27.390	30.80 m 21	β-
	199m (13/2)+		13.6 s 4	IT
	200 0+	-26.60	12.6 h 3	β–
	201 (5/2-)	-23.74	2.5 m 1	β_
	202 0+ 202m (7-)	-22.6s -20.8s	44 h 15 0.28 ms +42-19	β– IT
	20211 (7-)	-20.6s -19.7s	10 s 3	β_
	204 0+	-13.7s -18.1s	10.3 s 14	β–
	205	-12.8s	>300 ns	β–
70 4	Au 169	-1.8s	7000 110	•
19 A	170 (2-)	-1.6s -3.6s	286 μs +50-40	p?, α? p89%, α11%
	170 (2-) 170m (9+)	-3.6s	617 μs +50-40	p 58%, α 42%
	170 m (31) $171 (1/2+)$	-7.57	17 μs +9-5	p, α
	171m (11/2-)		1.02 ms 10	α 54%, p 46%
	172	-9.37	22 ms + 6-4	α, ε, p
	172m	-9.37	7.7 ms 14	α , p<0.02%, ϵ
	173 (1/2+)	-12.82	25 ms 1	α94%, ε, p
	173m (11/2-)	-12.61	14.0 ms 9	α92%, ρ, ε
	174	-14.24s	139 ms 3	$\alpha > 0\%$
	175 (1/2+)	-17.44		ε?, α?
	175m (11/2-)		156 ms 5	$\alpha~94\%,~\epsilon~6\%$
	176	-18.40		
	176m (3-)	-18.40	1.05 s 1	ϵ , α
	176m (9+)	-18.40	1.36 s 2	
	177 (1/2+,3/2		1.53 s 7	α 40%, ε
	177m 11/2-	-21.39	1.00 s 20	α 66%, ε
	178	-22.33	2.6 s 5	$\varepsilon \leq 60\%$, $\alpha \geq 40\%$

Nucli Z El		Δ (MaV)	T½, Г, or Abundance	Dogov Modo
		(MeV)		Decay Mode
79 Au	179 (1/2+,3/2+)	-24.98	7.1 s 3	ε 78%, α 22%
	180	-25.60	8.1 s 3	$\varepsilon \leq 98.2\%$, $\alpha \geq 1.8\%$
	181 (3/2-)	-27.87	13.7 s 14	ε 97.3%, α2.7%
	182 (2+)	-28.30	15.5 s 4	ε 99.87%, α 0.13%
	183 (5/2)-	-30.19	42.8 s 10	ε 99.45%, α 0.55%
	184 5+	-30.32	20.6 s 9	ε, α≤0.02%
	184m 2+	-30.25	47.6 s 14	ε 70%, IT 30%,
	105 5/0	21 07	4 95 mg C	$\alpha \leq 0.02\%$
	185 5/2-	-31.87	4.25 m 6	ε 99.74%, α 0.26%
	185m 186 3-	-31.87 -31.71	6.8 m <i>3</i> 10.7 m <i>5</i>	$\varepsilon < 100\%$, IT ε , $\alpha 8.0 \times 10^{-4}\%$
	187 1/2(+)	-31.71 -33.01	8.3 m 2	ε , $\alpha 3.0 \times 10^{-3}\%$
	187m 9/2(-)	-32.88	2.3 s 1	ε, α 5.0×10 π IT
	187 III 3/2(-) 188 1(-)	-32.30	8.84 m 6	ε
	189 1/2+	-32.50 -33.58	28.7 m 3	ε , α <3.0×10 ⁻⁵ %
	189m 11/2-	-33.33	4.59 m 11	ε, α<5.0×10 %
	190 1-	-32.88	42.8 m 10	ε , α <1.0×10 ⁻⁶ %
	190m (11-)	-32.88	125 ms 20	IT
	191 3/2+	-33.81	3.18 h 8	ε
	191m (11/2-)	-33.54	0.92 s 11	IT
	192 1-	-32.78	4.94 h 9	ε
	192m (5)+	-32.64	29 ms	IT
	192m (11-)	-32.34	160 ms 20	IT
	193 3/2+	-33.405	17.65 h <i>15</i>	ε
	193m 11/2-	-33.115	3.9 s 3	IT 99.97%, $\varepsilon \approx 0.03\%$
	194 1-	-32.26	38.02 h 10	ε
	194m (5+)	-32.15	600 ms 8	IT
	194m (11-)	-31.79	420 ms 10	IT
	195 3/2 +	-32.569	186.098 d 47	ε
	195m 11/2-	-32.250	30.5 s 2	IT
	196 2-	-31.139	6.1669 d <i>6</i>	ε 93% , β– 7%
	196m 5+	-31.054	$8.1 \mathrm{~s}~2$	IT
	196m 12-	-30.543	9.6 h <i>1</i>	IT
	197 3/2+	-31.140	100%	
	197m 11/2-	-30.731	7.73 s 6	IT
	198 2-	-29.581	2.6948 d <i>12</i>	β
	198m (12-)	-28.769	2.272 d <i>16</i>	IT
	199 3/2+	-29.094	3.139 d 7	β–
	199m (11/2)-	-28.545	0.44 ms 3	IT
	200 (1-)	-27.27	48.4 m 3	β-
	200m 12-	-26.31	18.7 h 5	β– 84%, IT 16%
	201 3/2+	-26.401	26.0 m 8	β–
	202 (1–)	-24.4	28.4 s 12	β–
	203 3/2+	-23.143	60 s 6	β–
	204 (2-)	-20.8s	39.8 s 9	β– β–
	205 (3/2+) 205m (11/2-)	-18.9s -18.0s	$32.5 ext{ s } 14$ $6 ext{ s } 2$	•
	206 (11/2–)	-16.0s -14.3s	>300 ns	β– , IT β–
	207	-14.3s -10.8s	>300 ns	β- β-, β-n
	208	-6.1s	>300 ns	β -, β -n
	209	-2.5s	>300 ns	β -, β -n
	210	2.3s	>300 ns	β , β n β β β β β
				r , r

Nuclide		Δ	T½, Γ, or	
Z El A	Jπ	(MeV)	Abundance	Decay Mode
80 Hg 171		3.5s	59 μs +36-16	α
172	0+	-1.1	$231~\mu s~9$	α
173		-2.6s	0.6 ms + 5-2	α
174	0+	-6.65	2.1 ms + 18 - 7	α 99 . 6%
175	(7/2-)	-7.97	10.6 ms 4	α
176	0+	-11.78	20.3 ms 14	α 94%
177	(7/2-)	-12.78	118 ms 8	α
178	0+	-16.31	266.5 ms 24	$\alpha \approx 70\% \; , \;\; \epsilon \approx 30\%$
179	(7/2-)	-16.92	1.05 s 3	$\alpha 55\%$, $\epsilon 45\%$,
				$\varepsilon p \approx 0.15\%$
180	0+	-20.25	$2.58 \mathrm{\ s}\ 1$	ϵ 52%, α 48%
181	1/2-	-20.66	3.6 s 1	ε 73%, α 27%,
				εp 0.01%,
100		00 550	10.00	εα 9.0×10 ⁻⁶ %
182	0+	-23.576	10.83 s 6	ε 84.8%, α 15.2%
183	1/2-	-23.806	9.4 s 7	ε 88.3%, α 11.7%,
104	٥.	96 95	00.07 - 00	εp 2.6×10 ⁻⁴ %
184	0+	-26.35	30.87 s 26	ε 98.89%, α 1.11%
185	1/2-	-26.17	49.1 s 10	ε 94%, α 6%
185m	13/2+	-26.08	21.6 s 15	IT 54%, ϵ 46%, $\alpha \approx 0.03\%$
186	0+	-28.54	1.38 m 6	$\epsilon 99.98\%, \alpha 0.02\%$
187	3/2(-)	-28.34 -28.12	2.4 m 3	ϵ , $\alpha < 3.7 \times 10^{-4}\%$
	13/2(+)	-28.12	1.9 m 3	ε , $\alpha < 3.7 \times 10^{-4}\%$
188	0+	-30.20	3.25 m 15	ε , α 3.7×10 ⁻⁵ %
189	3/2-	-29.63	7.6 m 1	ϵ , α <3.0×10 ⁻⁵ %
189m	13/2 +	-29.63	8.6 m 1	ϵ , $\alpha < 3.0 \times 10^{-5}\%$
190	0+	-31.37	20.0 m 5	ε , $\alpha < 3.4 \times 10^{-7}\%$
191	3/2(-)	-30.59	49 m 10	ϵ , α 5 . 0×10 ⁻⁶ %
191m	13/2(+)	-30.59	50.8 m <i>15</i>	ε
192	0+	-32.01	4.85 h 20	3
193	3/2(-)	-31.06	3.80 h <i>15</i>	ε
	13/2(+)	-30.92	11.8 h 2	ε 92.8%, IT 7.2%
194	0+	-32.19	444 y 77	3
195	1/2-	-31.00	10.53 h 3	E
195m		-30.82	41.6 h 8	IT 54.2%, ε 45.8%
196	0+	-31.826	0.15% 1	_
197 197m	$\frac{1/2-}{13/2+}$	-30.540	64.14 h 5	ε IT 91.4%, ε 8.6%
197111	0+	-30.241 -30.954	23.8 h <i>1</i> 9.97 % 20	11 91.4%, 8 0.0%
199	1/2-	-30.534 -29.546	$16.87\% \ 22$	
199m	13/2+	-29.014	42.67 m 9	IT
200	0+	-29.503	23.10% 19	
201	3/2-	-27.662	13.18% 9	
202	0+	-27.345	29.86% 26	
203	5/2-	-25.269	46.594 d <i>12</i>	β–
204	0+	-24.690	$6.87\%\ 15$	
205	1/2-	-22.287	5.14 m 9	β–
205m	13/2 +	-20.731	1.09 ms 4	IT
206	0+	-20.95	8.32 m 7	β–
207	(9/2+)	-16.2	2.9 m 2	β–
208	0+	-13.27	41 m + 5 - 4	β–

Nucli		Δ (Ma¥/)	Τ½, Γ, or	Dagge Mada
Z El		(MeV)	Abundance	Decay Mode
80 Hg		-8.5s	35 s + 9 - 6	β–
	210 0+	-5.4s	>300 ns	β-?
	211	-0.5s	>300 ns	β -, β -n
	212 0+	2.8s	>300 ns	β-, β-n
	213	7.8s	>300 ns	β-, β-n
	214 0+	11.2s	>300 ns	β-, β-n
	215	16.3s	>300 ns	β– , β–n
	216 0+	19.9s	>300 ns	β– , β–n
81 Tl	176 (3-,4-,5-	-) 0.58	5.2 ms + 30 - 14	p
	177 (1/2+)	-3.33	18 ms 5	α73%, p27%
	178	-4.8s	254 ms + 11 - 9	$\alpha \approx 53\%$, $\epsilon \approx 47\%$
	179 (1/2+)	-8.30	0.23 s 4	α <100%, ϵ , p
	179m (11/2-)	-8.30	1.5 ms 3	$\alpha \le 100\%$, p, ϵ , IT
	180 (4-,5-)	-9.26	1.09 s 1	ε 94%, α 6%,
				$\varepsilon SF \approx 1.0 \times 10^{-4}\%$
	181 (1/2+)	-12.799	3.2 s 3	ε, α≤10%
	181m (9/2-)	-11.963	$1.40~\mathrm{ms}~3$	IT 99.6%, α0.4%
	182 (7+)	-13.35	3.1 s 10	$\epsilon 97.5\%$, $\alpha < 5\%$
	183 (1/2+)	-16.589	6.9 s 7	$\alpha, \epsilon > 0\%$
	183m (9/2-)	-15.959	53.3 ms 3	IT, ε, α 2%
	184	-16.89	$10.1 \mathrm{\ s}\ 5$	ϵ 97.9%, α 2.1%
	185 (1/2+)	-19.75	19.5 s 5	ε
	185m (9/2-)	-19.30	1.93 s 8	α, IT
	186m (7+)	-19.87	27.5 s 10	ε , $\alpha \approx 6.0 \times 10^{-3}\%$
	186m (10-)	-19.50	2.9 s 2	IT
	187 (1/2+)	-22.443	≈51 s	ε , $\alpha \approx 0.03\%$
	187m (9/2-)	-22.109	15.60 s <i>12</i>	ε<99.9%, IT<99.9%,
	100 (0)			α 0.15%
	188m (2-)	-22.35	71 s 2	ε
	188m (7+)	-22.35	71 s 1	ε
	188m (9-)	-22.08	41 ms 4	IΤ, ε
	189 (1/2+)	-24.60	2.3 m 2	3 2000 177
	189m (9/2-)	-24.34	1.4 m 1	ε<100%, IT<4%
	190m 2(-)	-24.31	2.6 m 3	ε
	190m 7(+)	-24.31	3.7 m 3	3
	190m (8–)	$-24.15 \\ -26.282$	0.75 ms 4	IT
	191 (1/2+) 191m 9/2(-)	-26.282 -26.282	5.22 m <i>16</i>	
	191m 9/2(-) 192 (2-)	-26.262 -25.87	9.6 m 4	0
	192 (2-) 192m (7+)	-25.72	10.8 m 2	ε
	193 1/2(+)	-23.72 -27.30	21.6 m 8	ε
	193m (9/2-)	-26.93	2.11 m 15	IT≤75%, ε≥25%
	194 2-	-26.8	33.0 m 5	ε , $\alpha < 1.0 \times 10^{-7}\%$
	194m (7+)	-26.8	32.8 m 2	ε, α<1.0×10 π
	195 1/2+	-28.16	1.16 h 5	ε
	195m 9/2-	-27.67	3.6 s 4	IT
	196 2-	-27.50	1.84 h 3	ε
	196m (7+)	-27.10	1.41 h 2	ε 96.2%, IT 3.8%
	197 1/2+	-28.34	2.84 h 4	ε
	197m 9/2-	-27.73	0.54 s 1	IT
	198 2-	-27.49	5.3 h <i>5</i>	ε
	198m 7+	-26.95	1.87 h 3	ε 55.9%, IT 44.1%
				,

	lide	T-	Δ (M - W)	Τ½, Γ, or	Danier Mada
ZE	El A	Jπ	(MeV)	Abundance	Decay Mode
81 T	TI 198m	(10-)	-26.75	32.1 ms 10	IT
	199	1/2+	-28.06	7.42 h 8	ε
	199m	9/2-	-27.31	28.4 ms 2	IT
	200	2-	-27.047	26.1 h 1	3
	200m	7+	-26.293	34.0 ms 9	IT
	201	1/2+	-27.18	3.0421 d <i>17</i>	8
	201m	(9/2–)	-26.26	2.01 ms 7	IT
	202	2-	-25.99	12.31 d 8	ε
	203	1/2+	-25.762	29.524% 1	0 0= 000 0 000
	204	2-	-24.346	3.783 y 12	β - 97.08%, ϵ 2.92%
	205	1/2+	-23.821	70.48% 1	0
	206	0-	-22.254	4.202 m 11	β–
	206m	(12-)	-19.611	3.74 m 3	IT
	207	1/2+	-21.034	4.77 m 3	β–
	207m	11/2-	-19.686	1.33 s 11	IT
	208	5+	-16.752	3.053 m 4	β–
	209	(1/2+)	-13.637	2.161 m 7	β-
	210	(5+)	-9.25	1.30 m 3	β -, β -n 7.0×10 ⁻³ %
	211		-5.9s	>300 ns	β-?
	212		-1.5s	>300 ns	β-?
	213		1.76	101 s +486-46	β_
	214		6.5s	>300 ns	β-, β-n
	215		10.1s	>300 ns	β-, β-n
	216		14.7s	>300 ns	β-, β-n
	217		18.4s	>300 ns	β– , β–n
82 P	b 178	0+	3.57	0.12 ms +22-5	α
	179	(9/2-)	2.05	3.5 ms + 14 - 8	α
	180	0+	-1.93	4.2 ms 5	α
	181	(9/2-)	-3.10	36 ms 2	α
		(13/2+)	-3.10	45 ms 20	α<100%
	182	0+	-6.82	55 ms 5	$\alpha \approx 98\%$, $\epsilon \approx 2\%$
	183	(3/2-)	-7.57	535 ms 30	$\alpha \approx 90\%$
		(13/2+)	-7.47	415 ms 20	α
	184	0+	-11.05	490 ms 25	α 80%, ε 20%
	185	3/2-	-11.54	6.3 s 4	ε, α 34%
	185m	13/2+	-11.54	4.3 s 2 4.82 s 3	α 50%, ε
	$\frac{186}{187}$	0+ (13/2+)	-14.68 -14.990	18.3 s 3	ε 60%, α 40% ε 88%, α 12%
	187m		-14.950 -14.957	15.2 s 3	ε 90.5%, α 9.5%
	188	0+	-14.937 -17.82	25.1 s 1	ε 90.7%, α 9.3%
	189	(3/2-)	-17.82 -17.88	$39 ext{ s } 8$	ε, α<1%
		(3/2+)	-17.84	50 s 3	ε, α<1%
	190	0+	-20.42	71 s <i>1</i>	ε 99.6%, α 0.4%
	191	(3/2-)	-20.12	1.33 m 8	ε 99.99%, α 0.01%
		(13/2+)	-20.25	2.18 m 8	ε, α≈0.02%
	192	0+	-22.56	3.5 m 1	ε 99.99%,
		٠.	00	5.5 m 1	α 5 . 9×10 ⁻³ %
	193	(3/2-)	-22.19		ε
		(13/2+)	-22.19	5.8 m 2	ε
	194	0+	-24.21	10.7 m 6	ϵ , α 7 . $3 \times 10^{-6}\%$
	195	3/2-	-23.71	≈15 m	ε
	195m		-23.51	15.0 m <i>12</i>	ε

Nucli		T _	Δ (Μ. Υ.)	Τ½, Γ, or	D W 1
Z El		Jπ	(MeV)	Abundance	Decay Mode
82 Pb		0+	-25.36	37 m 3	ϵ , $\alpha \le 3.0 \times 10^{-5}\%$
	197	3/2-	-24.748	8.1 m <i>17</i>	ε
	197m	13/2+	-24.429	42.9 m 9	ε 81%, IT 19%
	198	0+	-26.05	2.4 h 1	ε
	199	3/2-	-25.231	90 m 10	3
		(13/2+)	-24.806	12.2 m 3	$IT \approx 93\%$, $\epsilon \approx 7\%$
	200	0+	-26.25	21.5 h 4	3
	201	5/2-	-25.26	9.33 h 3	£
	201m	13/2+	-24.63	60.8 s 18	IT
	202 202m	0+ 9-	-25.937	52.5×10 ³ y 28 3.54 h 2	E
	202m 203	9- 5/2-	-23.767 -24.787	51.92 h 3	IT 90.5%, ε 9.5%
	203 203m	3/2- 13/2+	-24.767 -23.962	6.21 s 11	ε IT
	203m	29/2-	-23.902 -21.838	480 ms 7	IT
	203m 204	2 <i>9</i> /2-	-21.030 -25.110	$\geq 1.4 \times 10^{17} \text{ y}$	α
	204	0+	-25.110	1.4% 1	u
	204m	9-	-22.924	66.93 m 10	IT
	205	5/2-	-23.770	$1.73 \times 10^7 \text{ y } 7$	ε
	205m	13/2 +	-22.756	$5.55~\mathrm{ms}~2$	IT
	206	0+	-23.786	24.1% <i>1</i>	
	207	1/2-	-22.452	22.1% 1	
	207m	13/2 +	-20.819	$0.806 \mathrm{\ s}\ 5$	IT
	208	0+	-21.749	52.4% 1	
	209	9/2 +	-17.615	3.253 h <i>14</i>	β-
	210	0+	-14.729	22.20 y 22	β -, $\alpha 1.9 \times 10^{-6}\%$
	211	9/2+	-10.491	36.1 m 2	β–
	212	0+	-7.553	10.64 h <i>1</i>	β–
	213	(9/2+)	-3.200	10.2 m 3	β–
	214	0+	-0.181	26.8 m 9	β-
	215	0.	4.5s	147 s 12	β-
	216	0+	7.7s	>300 ns	β–
	217	0.	12.4s	>300 ns >300 ns	β–
	$\frac{218}{219}$	0+	$15.6\mathrm{s} \ 20.5\mathrm{s}$	>300 ns	β– β–
	$\frac{219}{220}$	0+	20.3s $23.9s$	>300 ns	β–
83 Bi	184m	01	1.19	13 ms 2	α
00 1	184m		1.19	6.6 ms 15	α
	185	1/2+	-2.3s	58 μs 4	p 90%, α 10%
	186	(3+)	-3.17	15.0 ms 17	α
	186m	(10-)	-3.17	9.8 ms 13	α
	187	(9/2-)	-6.39	37 ms 2	α
	187m	(1/2+)	-6.27	0.370 ms 20	α
	188m	(10-)	-7.20	265 ms 15	α, ε?
	188m	(3+)	-7.20	60 ms 3	α, ε?
	189	(9/2-)	-10.06	674 ms 11	$\alpha > 50\%$, $\epsilon < 50\%$
	189m	(1/2+)	-9.88	5.0 ms 1	$\alpha > 50\%$, $\epsilon < 50\%$
	190m	(3+)	-10.59	6.3 s 1	$\alpha90\%,~\epsilon10\%$
	190m	(10-)	-10.59	6.2 s 1	$\alpha~70\%,~\epsilon~30\%$
	191	(9/2-)	-13.240	12.4 s 3	$\alpha~51\%~,~\epsilon~49\%$
	191m	(1/2+)	-12.999	125 ms <i>13</i>	α 68% , IT 32%, ϵ
	192	(3+)	-13.55	34.6 s 9	ϵ 88%, α 12%
	192m	(10-)	-13.40	39.6 s 4	ϵ 90%, α 10%

Nucl: Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
83 Bi	102	(9/2-)	-15.872	63.6 s <i>30</i>	ε 96.5%, α3.5%
69 DI	193 193m	(9/2-) $(1/2+)$	-15.572 -15.564	3.2 s 5	α 84%, ε 16%
	194	(3+)	-15.97	95 s 3	ε 99.54%, α 0.46%
		(6+,7+)	-15.97	125 s 2	ε
	194m	(10-)	-15.97	115 s 4	ε 99.8%, α0.2%
	195	(9/2-)	-18.025	183 s 4	ε 99.97%, α 0.03%
	195m	(1/2+)	-17.624	87 s 1	ε 67%, α 33%
	196	(3+)	-18.01	308 s 12	ϵ , α 1.2×10 ⁻³ %
	196m	(7+)	-17.84	0.6 s 5	ε, ΙΤ
	196m	(10-)	-17.74	$240~\mathrm{s}~3$	ε 74.2%, IT 25.8%, α 3.8×10 ⁻⁴ %
	197	(9/2-)	-19.686	9.33 m <i>50</i>	ϵ , α 1.0×10 ⁻⁴ %
	197m	(1/2+)	-19.186	5.04 m <i>16</i>	α 55%, ε 45%, IT<0.3%
	198	(2+,3+)	-19.37	10.3 m 3	ε
	198m	(7+)	-19.37	11.6 m 3	ε
	198m	10-	-19.12	7.7 s 5	IT
	199	9/2-	-20.80	27 m 1	ε
	199m	(1/2+)	-20.13	24.70 m <i>15</i>	$\epsilon 99\%$, IT $\leq 2\%$, $\alpha \approx 0.01\%$
	200	7+	-20.37	36.4 m 5	ε
	200m	(2+)	-20.37	31 m 2	$\varepsilon \leq 100\%$
	200m	(10-)	-19.94	0.40 s 5	IT
	201	9/2-	-21.42	103 m 3	3
	201m	1/2+	-20.57	57.5 m <i>21</i>	$\epsilon > 91.1\%, \text{ IT} \leq 8.6\%, \\ \alpha \approx 0.3\%$
	202	5+	-20.74	1.71 h <i>4</i>	ε
	203	9/2-	-21.52	11.76 h 5	ε
	203m	1/2+	-20.43	305 ms 5	IT
	204	6+	-20.645	11.22 h <i>10</i>	ε
	204m	10-	-19.840	13.0 ms 1	IT
	204m	17+	-17.812	1.07 ms 3	IT
	205	9/2-	-21.064	15.31 d 4	ε
	206	6+	-20.028	6.243 d 3	3
	206m	10- 9/2-	-18.983	0.89 ms 1	IT
	$\frac{207}{208}$	9/2- 5+	-20.055 -18.870	31.55 y 4 $3.68 \times 10^5 \text{ y } 4$	ε
	208m	10-	-17.299	2.58 ms 4	IT
	209	9/2-	-18.259	100%	11
	210	1-	-14.792	5.012 d <i>5</i>	β -, α 1.3×10 ⁻⁴ %
	210m	9-	-14.521	$3.04 \times 10^6 \text{ y } 6$	α
	211	9/2-	-11.858	2.14 m 2	α 99.72%, β-0.28%
	212	1(-)	-8.120	60.55 m 6	β - 64.06%, α 35.94%
	212m	(8-,9-)	-7.870	25.0 m 2	α 67%, β– 33%, β–α 30%
	212m	≥16	-6.210	7.0 m 3	β–
	213	9/2-	-5.230	45.59 m 6	β-97.8%, α2.2%
	214	1-	-1.20	19.9 m 4	β - 99.98%, α 0.02%
	215	(9/2-)	1.65	7.6 m 2	β–
	215m	>23/2-	3.00	36.9 s 6	IT 76.2%, β – 23.8%
		(6-,7-)	5.87	$2.25~\mathrm{m}~5$	$\beta - \leq 100\%$
	216m	(3)	5.87	6.6 m <i>21</i>	$\beta - \leq 100\%$

	ıcli		T _	Δ (Μ. Μ)	Τ½, Γ, or	ъ м.
\mathbf{Z}	El	A	Jπ	(MeV)	Abundance	Decay Mode
83	Bi	217	(9/2-)	8.9s	98.5 s 8	β–
		218		13.2s	33 s 1	β–
		219		16.3s	>300 ns	β–
		220		20.7s	>300 ns	β–
		221		24.0s	>300 ns	β- , β-n
		222		28.4s	>300 ns	β–
		223		31.9s	>300 ns	β– , β–n
		224		36.4s	>300 ns	β– , β–n
84	Po	186	0+	4.10		
		187 (1/2-,5/2-)	2.83	1.40 ms 25	α
		188	0+	-0.54	0.275 ms 30	ε, α
		189	(7/2-)	-1.42	$3.5~\mathrm{ms}~5$	α
		190	0+	-4.56	$2.46~\mathrm{ms}~5$	α
		191	(3/2-)	-5.05	22 ms 1	α 99%
		191m	(13/2+)	-5.01	93 ms 3	α 96%
		192	0+	-8.07	32.2 ms 3	$\alpha \approx 99.5\%$, $\epsilon \approx 0.5\%$
		193m	(13/2+)	-8.36	245 ms 22	α≤100%
		193m	(3/2-)	-8.36	370 ms +46-40	$\alpha \leq 100\%$
		194	0+	-11.01	0.392 s 4	α, ε
		195	(3/2-)	-11.07	4.64 s 9	α 75%, ε 25%
		195m	(13/2+)	-10.84	1.92 s 2	$\alpha \approx 90\%$, $\epsilon \approx 10\%$,
						IT<0.01%
		196	0+	-13.47	$5.8 \mathrm{\ s}\ 2$	$\alpha \approx 98\%$, $\epsilon \approx 2\%$
		197	(3/2-)	-13.36	84 s 16	ε 56%, α 44%
		197m	(13/2+)	-13.15	32 s 2	α 84%, ε 16%,
						IT 0.01%
		198	0+	-15.47	1.77 m 3	α 57%, ϵ 43%
		199	(3/2-)	-15.21	5.47 m 15	ϵ 92.5%, α 7.5%
		199m	(13/2+)	-14.90	4.17 m 5	ϵ 73.5%, α 24%,
						IT 2.5%
		200	0+	-16.95	11.51 m 8	ε 88.9%, α 11.1%
		201	3/2-	-16.524	15.6 m <i>1</i>	ϵ 98.87%, α 1.13%
		201m	13/2 +	-16.100	8.96 m 12	IT 56.2%, ε 41.4%,
						lpha~2 . $4%$
		202	0+	-17.92	44.6 m 4	$\epsilon~98.08\%,~\alpha~1.92\%$
		203	5/2-	-17.310	36.7 m 5	$\epsilon 99.89\%$, $\alpha 0.11\%$
		203 m	13/2 +	-16.668	45 s 2	IΤ, ε
		204	0+	-18.34	3.519 h <i>12</i>	$\epsilon~99.33\%,~\alpha~0.67\%$
		205	5/2-	-17.51	1.74 h 8	$\epsilon 99.96\%$, $\alpha 0.04\%$
		205m	13/2 +	-16.63	0.645 ms 20	IT
		205m	19/2-	-16.05	57.4 ms 9	IT
		206	0+	-18.185	8.8 d 1	$\epsilon~94.55\%,~\alpha~5.45\%$
		207	5/2-	-17.146	5.80 h 2	$\epsilon 99.98\%$, $\alpha 0.02\%$
		207 m	19/2-	-15.763	2.79 s 8	IT
		208	0+	-17.470	2.898 y 2	α , ϵ 4.0×10 ⁻³ %
		209	1/2-	-16.366	$102 \; \mathrm{y} \; 5$	$\alpha99.52\%,\epsilon0.48\%$
		210	0+	-15.953	138.376 d 2	α
		211	9/2+	-12.433	0.516 s 3	α
		211m	(25/2+)	-10.971	25.2 s 6	$\alpha99.98\%,IT0.02\%$
		212	0+	-10.370	$0.299~\mu s~2$	α
		212 m	(18+)	-7.448	45.1 s 6	$\alpha99.93\%,IT0.07\%$
		213	9/2 +	-6.654	$3.72~\mu s~2$	α

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
223 26.8s >300 ns β- 224 0+ 29.7s >300 ns β-	
224 0+ 29.7s >300 ns β-	
,	
225 34.3s >300 ns β- 226 0+ 37.3s >300 ns β-	
•	
•	
85 At 191 (1/2+) 3.86 1.7 ms +11-5 α	
191m (7/2-) 3.92 2.1 ms +4-3 α	
192m 2.92 11.5 ms 6α	
$192 \text{m}(9-,10-)$ 2.92 88 ms 6 α $193 (1/2+)$ -0.06 28 ms +5-4 α	
· · · ·	
193m (7/2-) -0.06 21 ms 5 α 193m (13/2+) -0.03 27 ms +4-3 IT 76%, α 24%	
193m (13/2+) -0.03 27 ms +4-3 11 70%, 0.24% 194m (9-10-) -0.70 310 ms 8 α	
194m (9-10-) -0.70 S10 ms δ α 194m -0.70 253 ms 10 α	
$\frac{194 \text{ m}}{195}$ $\frac{-0.70}{12+}$ $\frac{233 \text{ ms } 10}{328 \text{ ms } 20}$ α	
$195 \text{ m} 7/23.476 326 \text{ ms} \ 20 \alpha$ $195 \text{m} 7/23.476 147 \text{ ms} \ 5 \alpha$	
196 (3+) -3.92 0.388 s 7 $\alpha \approx 95.1\%$, $\epsilon \approx 4.9\%$	%
197 (9/2-) -6.34 0.388 s 6 α 96.1%, ϵ 3.9%	,,,
197m (1/2+) -6.29 2.0 s 2 α≤100%, ε,	
$IT \le 4.0 \times 10^{-3}\%$	
198 (3+) -6.65 3.8 s 4 α 90%, ϵ 10%	
198m (10–) -6.55 1.04 s 15 α 84%, ϵ 16%	
199 (9/2–) -8.822 7.03 s 15 α 90%, ϵ 10%	
200 (3+) -8.99 43 s 1 α 52%, ϵ 48%	
200m (7+) -8.88 47 s 1 $\varepsilon \le 57\%$, $\alpha 43\%$	
200m (10-) -8.64 7.3 s +26-15 ε<89.5%, IT<89.5 α≈10.5%	. 5%,
201 (9/2-) -10.789 85.2 s 16 α 71%, ϵ 29%	
202 $(2+,3+)$ -10.59 184 s 1 ϵ 63%, α 37%	
202m (7+) -10.59 182 s 2 ϵ 91.3%, α 8.7%	
202m (10-) -10.20 0.46 s 5 IT 99.9%, α 0.1%	
203 9/212.16 7.4 m 2 ϵ 69%, α 31%	
204 7+ -11.88 9.12 m 11 ϵ 96.09%, α 3.91%	%
204m 1011.29 108 ms 10 IT	
205 9/212.97 26.9 m 8 ϵ 90%, α 10%	
206 (5)+ -12.43 30.6 m 8 ϵ 99.1%, α 0.9%	
207 $9/2 -13.23$ $1.81 \text{ h } 3$ $\epsilon 91.4\%, \alpha 8.6\%$	
208 6+ -12.469 1.63 h 3 ϵ 99.45%, α 0.55%	%
209 9/212.882 5.41 h 5 ϵ 95.9%, α 4.1%	_,
210 (5)+ -11.972 8.1 h 4 ϵ 99.82%, α 0.18%	
211 9/211.648 7.214 h 7 ε 58.2%, α 41.8%	
212 (1–) -8.628 0.314 s 2 α , $\epsilon < 0.03\%$, $\beta - < 2.0 \times 10^{-6}\%$	

Nuclide Z El A	Jπ	Δ (MeV)	Τ½, Γ, or Abundance	Decay Mode
85 At 212m	(9-)	-8.405	0.119 s 3	$\alpha > 99\%$, IT < 1%
213	9/2-	-6.580	125 ns 6	α
214	1-	-3.380	558 ns 10	α
215	9/2-	-1.255	0.10 ms 2	α
216	1-	2.254	$0.30~\mathrm{ms}~3$	α , $\beta - < 6.0 \times 10^{-3}\%$,
217	9/2-	4.395	32.3 ms 4	$\epsilon < 3.0 \times 10^{-7}\%$ $\alpha 99.99\%$, $\beta - 7.0 \times 10^{-3}\%$
218		8.10	1.5 s 3	$\alpha \; 99 . 9\% , \; \beta - 0 . 1\%$
219	0	10.397	56 s 3	$\alpha \approx 97\%$, $\beta = 3\%$
$\begin{array}{c} 220 \\ 221 \end{array}$	3	14.35	3.71 m <i>4</i> 2.3 m <i>2</i>	β - 92%, α 8%
$\begin{array}{c} 221 \\ 222 \end{array}$		16.8s $20.6s$	2.5 m 2 54 s 10	β– β–
$\begin{array}{c} 222 \\ 223 \end{array}$		20.6s $23.4s$	54 s 10 50 s 7	β– β–
$\frac{223}{224}$		27.45 27.71	76 s +138-23	β- β-?
$\frac{224}{225}$		30.2s	>300 ns	β- : β-
226		34.2s	>300 ns	β– β–
$\frac{220}{227}$		37.2s	>300 ns	β_
228		41.4s	>300 ns	β_
229		44.6s	>300 ns	β -, β -n
86 Rn 193	(3/2-)	9.05	$1.15~\mathrm{ms}~27$	α
194	0+	5.72	0.78 ms 16	α
195	3/2-	5.06	6 ms + 3 - 2	α
195m	13/2 +	5.12	5 ms + 3-2	α
196	0+	1.97	4.4 ms + 13-9	$\alpha~99.9\%~,~\epsilon\approx0.1\%$
197	(3/2-)	1.48	53 ms + 7 - 5	α
	(13/2+)	1.48	25 ms + 3-2	α
198	0+	-1.23	65 ms 3	α, ε
199	(3/2-)	-1.51	0.59 s 3	α 94%, ε 6%
	(13/2+)	-1.33	0.31 s 2	α 97%, ε 3%
200	0+	-4.01	1.03 s + 20 - 11	α 86%, ε 14%
201	(3/2-)	-4.07	7.0 s 4	α, ε
	(13/2+)	-4.07	3.8 s 1	ε, α
$\frac{202}{203}$	0+	-6.28 -6.16	$9.7 ext{ s } 1 \\ 44 ext{ s } 2$	α 78%, ε 22%
	(3/2-) (13/2+)	-6.16 -5.80	26.9 s 5	α 66%, ε 34% α 75%, ε 25%
203m 204	0+	-7.98	74.5 s 14	α 72.4%, ε 27.6%
205	5/2-	-7.70	170 s 4	ε 75.4%, α 24.6%
206	0+	-9.12	5.67 m 17	α 62%, ε 38%
207	5/2-	-8.634	9.25 m 17	ε 79%, α 21%
208	0+	-9.66	24.35 m 14	α 62%, ε 38%
209	5/2-	-8.93	28.5 m 10	ε 83%, α 17%
210	0+	-9.601	2.4 h 1	α 96%, ε 4%
211	1/2-	-8.756	14.6 h 2	ϵ 72.6%, α 27.4%
212	0+	-8.660	23.9 m <i>12</i>	α
213	(9/2+)	-5.699	19.5 ms 1	α
214	0+	-4.320	$0.27~\mu s~2$	α
215	9/2+	-1.169	2.30 μs <i>10</i>	α
216	0+	0.254	$45~\mu s~5$	α
217	9/2 +	3.657	$0.54~\mathrm{ms}~5$	α
218	0+	5.216	$35~\mathrm{ms}~5$	α
219	5/2+	8.831	3.96 s 1	α

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
86 Rn 220		10.607	55.6 s 1	-
221		14.473	25 m 2	α β – 78% , α 22%
222		16.373	3.8235 d 3	α α
223		20.40	24.3 m 4	β_
224		22.43	107 m 3	β_
225		26.56	4.66 m 4	β_
226		28.74	7.4 m 1	β_
227		32.87	20.8 s 7	β–
228	0+	35.25	65 s 2	β_
229		39.36	12.0 s + 12 - 13	β–
230	0+	42.1s	>300 ns	β–
231		46.5s	>300 ns	β–
87 Fr 199		6.76	12 ms + 10-4	$\alpha > 0\%$, ϵ
200	(3+)	6.12	49 ms 4	α
201	(9/2-)	3.60	$62~\mathrm{ms}~5$	α
201	m (1/2+)	3.60	19 ms + 19 - 6	α
202	(3+)	3.16	0.30 s 5	α
202	m (10-)	3.16	0.29 s 5	α
203		0.877	0.55 s 1	$\alpha \leq 100\%$
204		0.61	1.8 s 3	α 92%, ε 8%
204		0.65	1.6 s + 5 - 3	α 90%, ε 10%
204		0.92	0.8 s 2	α 74%, ε 26%
205		-1.309	3.97 s 4	α 98.5%, ε 1.5%
206		-1.24	≈16 s	$\alpha \approx 84\%$, $\epsilon \approx 16\%$
206		-1.24	≈16 s	$\alpha \approx 84\%$, $\epsilon \approx 16\%$
206		$-0.71 \\ -2.84$	$0.7 ext{ s } 1 \\ 14.8 ext{ s } 1$	IT 95%, α 5% α 95%, ε 5%
$\frac{207}{208}$		-2.64 -2.67	59.1 s 3	α 89%, ε 11%
200		-2.07 -3.77	50.5 s 7	α 89%, ε 11%
210		-3.33	3.18 m 6	α 71%, ε 29%
211		-4.14	3.10 m 2	α 87%, ε 13%
212		-3.515	20.0 m 6	ε 57%, α 43%
213		-3.553	34.82 s 14	α 99.44%, ε 0.56%
214		-0.959	$5.0~\mathrm{ms}~2$	α
214		-0.837	3.35 ms 5	α
215		0.317	86 ns 5	α
216	(1-)	2.970	700 ns 20	α
217	9/2-	4.313	$19~\mu s~3$	α
218		7.058	1.0 ms 6	α
218		7.144	22.0 ms 5	α≤100%, IT
219		8.617	20 ms 2	α
220		11.480	27.4 s 3	$\alpha 99.65\%, \beta - 0.35\%$
221		13.278	286.1 s 10	α , β -<0.1%
222		16.35	14.2 m 3	β_
223	3/2(-)	18.384	22.00 m 7	β- 99.99%, α 6.0×10 ⁻³ %
224	1-	21.65	3.33 m <i>10</i>	β-
225		21.03 23.82	3.95 m 14	β–
226		27.4	49 s 1	β-
227		$\frac{27.1}{29.7}$	2.47 m 3	β_
228		33.3s	38 s 1	β−≤100%
229		35.82	50.2 ± 20	β_
			71	
			, .	

Nucli		_	Δ	Τ½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
87 Fr			39.50	$19.1 \mathrm{\ s\ } 5$	β–
	231	(1/2+)	42.3s	17.6 s 6	β–
	232	(5)	46.1s	5.5 s 6	β–
	233		49.2s	>300 ns	β–
88 Ra	201m	(13/2+)	11.8s	1.6 ms + 77 - 7	α, ε
	202	0+	9.09	16 ms + 30 - 7	α
	203	(3/2-)	8.66	31 ms + 17 - 9	α
		(13/2+)	8.66	24 ms + 6-4	α
	204	0+	6.06	57 ms +11-5	α
	205	(3/2-)	5.84	210 ms +60-40	α≤100%, ε
		(13/2+)	5.84	170 ms +60-40	α≤100%, ε
	206	0+	3.56	0.24 s 2	α
		3/2-,5/2-)	3.54	1.35 s -13+22	$\alpha \approx 86\%$, $\epsilon \approx 14\%$
		(13/2+)	4.09	59 ms 4	IT≥85%, α≤15%
	208	0+	1.71	1.3 s 2	α 95%, ε 5%
	209	5/2-	1.85	4.6 s 2 3.7 s 2	$\alpha \approx 90\%$, $\epsilon \approx 10\%$ $\alpha \approx 96\%$, $\epsilon \approx 4\%$
	$\begin{array}{c} 210 \\ 211 \end{array}$	0+ 5/2(-)	$\begin{array}{c} 0.46 \\ 0.832 \end{array}$		$\alpha \approx 96\%$, $\epsilon \approx 4\%$ $\alpha > 93\%$, $\epsilon < 7\%$
	$\frac{211}{212}$	0+	-0.20	13 s 2 $13.0 s 2$	$\alpha \approx 85\%$, $\epsilon \approx 15\%$
	213	1/2-	0.36	2.73 m 5	α 80%, ε 20%
		(17/2-)	2.13	2.20 ms 5	IT $\approx 99.4\%$, $\alpha \approx 0.6\%$
	214	0+	0.095	2.46 s 3	α 99.94%, ε 0.06%
	215	(9/2+)	2.532	1.55 ms 7	α
	216	0+	3.290	182 ns 10	α , $\epsilon < 1.0 \times 10^{-8}\%$
	217	(9/2+)	5.886	$1.6~\mu s~2$	α
	218	0+	6.65	$25.2~\mu\mathrm{s}~3$	α
	219	(7/2)+	9.393	10 ms 3	α
	220	0+	10.272	18 ms 2	α
	221	5/2 +	12.963	28 s 2	α , ¹⁴ C 1×10 ⁻¹² %
	222	0+	14.320	38.0 s 5	α , ¹⁴ C 3.0×10 ⁻⁸ %
	223	3/2+	17.234	11.43 d <i>5</i>	α , ¹⁴ C 8.9×10 ⁻⁸ %
	224	0+	18.821	3.6319 d <i>23</i>	α , ¹⁴ C 4.0×10 ⁻⁹ %
	225	1/2+	21.995	14.9 d 2	β-
	226	0+	23.668	1600 y 7	α , ¹⁴ C 3.2×10 ⁻⁹ %
	227	3/2+	27.178	42.2 m 5	β–
	228	0+	28.946	5.75 y 3	β-
	229	5/2+	32.56	4.0 m 2	β–
	$\frac{230}{231}$	0+ $(5/2+)$	34.52	93 m 2	β–
	$\frac{231}{232}$	(5/2+) 0+	$38.22 \\ 40.50$	104.1 s 8 4.2 m 8	β– β–
	233	0+	44.6s	30 s 5	β–
	234	0+	47.2s	30 s 10	β–
	235	01	51.4s	00 5 10	þ
89 Ac		(2.)		22 ma 10 5	~
oo Ac	206 206m	(3+) (10-)	13.53 13.53	22 ms +9-5 33 ms +22-9	α
	200m 207	(9/2-)	13.55 11.15	27 ms +11-6	α
	208	(3/2-) (3+)	10.76	95 ms + 24 - 16	$\alpha \approx 99\%$, $\epsilon \approx 1\%$
	208m	(10-)	10.70 11.27	25 ms + 24 - 10	$\alpha \approx 90\%$, $\epsilon \approx 10\%$
	209	(9/2-)	8.84	0.10 s 5	$\alpha \approx 99\%$, $\epsilon \approx 1\%$
	210	(0, =)	8.79	0.10 s 5 0.35 s 5	$\alpha 91\%$, $\epsilon \approx 9\%$
	211		7.20	0.21 s 3	ασιπ, εποπ
	212		7.27	0.93 s 5	$\alpha \approx 57\%$, $\epsilon \approx 43\%$
	_			79	,

Nucli Z El	ide A	Jπ	Δ (MeV)	Τ½, Γ, or Abundance	Decay Mode
89 Ac	213		6.16	738 ms 16	α≤100%
00 110	214	(5+)	6.44	8.2 s 2	$\alpha \ge 89\%$, $\epsilon \le 11\%$
	215	9/2-	6.03	0.17 s 1	α 99.91%, ε 0.09%
	216	(1-)	8.14	440 μs <i>16</i>	α
	216m	(9–)	8.19	441 µs 7	α
	217	9/2-	8.70	69 ns 4	α, ε≤2%
	218	(1-)	10.84	1.08 µs 9	α
	219	9/2-	11.57	11.8 µs <i>15</i>	α
	220	(3-)	13.742	26.4 ms 2	α , $~\epsilon$ 5.0×10 ⁻⁴ %
	221	(3/2-)	14.52	$52~\mathrm{ms}~2$	α
	222	1-	16.620	5.0 s 5	α99%, ε1%
	222m		16.620	63 s 3	$\alpha \ge 88\%$, IT $\le 10\%$, $\epsilon \ge 0.7\%$
	223	(5/2-)	17.826	2.10 m 5	α 99%, ε 1%
	224	0-	20.231	2.78 h 17	ε 90.9%, α 9.1%, β-<1.6%
	225	(3/2-)	21.638	10.0 d <i>1</i>	α , ¹⁴ C 4×10 ⁻¹² %
	226	(1)	24.309	29.37 h 12	β-83%, ε 17%,
					$\alpha \ 6.0 \times 10^{-3}\%$
	227	3/2-	25.851	21.772 y 3	β - 98.62%, α 1.38%
	228	3+	28.900	6.15 h 2	β–
	229	(3/2+)	30.75	62.7 m 5	β–
	230	(1+)	33.8	$122 \mathrm{\ s\ } 3$	β - , β -F 1.2×10 ⁻⁶ %
	231	(1/2+)	35.9	7.5 m 1	β–
	232	(1+)	39.2	$119 \mathrm{\ s}\ 5$	β–
	233	(1/2+)	41.5s	$145 \mathrm{~s}~10$	β–
	234		45.0s	44 s 7	β–
	235		47.6s	60 s 4	β-
	236		51.27		β– ?
	237		54.3s		
90 Th	208	0+	16.68	1.7 ms + 17 - 6	α
	209	(5/2-)	16.54	2.5 ms + 17 - 7	α
	210	0+	14.06	16 ms 4	$\alpha 99\%$, $\epsilon \approx 1\%$
	211		13.90	0.04 s + 3 - 1	α
	212	0+	12.10	31.7 ms <i>13</i>	α , $\epsilon \approx 0.3\%$
	213	_	12.12	144 ms 21	α≤100%
	214	0+	10.71	87 ms 10	α
	215	(1/2-)	10.921	1.2 s 2	α
	216	0+	10.29	26.0 ms 2	α , $\varepsilon \approx 0.01\%$
	216m	8+	12.33	134 μs <i>4</i>	α2.8%, IT
	217	(9/2+)	12.22	0.241 ms 5	α
	218	0+	12.37	117 ns 9	α
	$\begin{array}{c} 219 \\ 220 \end{array}$	0+	$14.47 \\ 14.67$	1.05 μs 3 9.7 μs <i>6</i>	$\begin{array}{l} \alpha \\ \alpha \ , \ \epsilon \ 2 \ .0 \times 10^{-7} \% \end{array}$
	$\begin{array}{c} 220 \\ 221 \end{array}$	(7/2+)	16.937	1.68 ms 6	α, ε 2.0×10 %
	$\frac{221}{222}$	0+	10.937 17.20	2.8 ms 3	α
	$\frac{222}{223}$	(5/2)+	19.384	0.60 s 2	α
	$\frac{223}{224}$	0+	20.00	0.81 s 10	α
	$\frac{224}{225}$	(3/2+)	20.00 22.309	8.75 m 4	$\alpha \approx 90\%$, $\epsilon \approx 10\%$
	226	0+	23.196	30.57 m 10	α
	227	1/2+	25.806	18.68 d 9	α
	228	0+	26.766	1.9116 y <i>16</i>	α , ²⁰ O 1×10 ⁻¹¹ %
					•

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
90 Th 229	5/2+	29.587	7932 y 28	α
229	0 m (3/2+)	29.587	2 m 1	IT?
230	0+	30.863	$7.54 \times 10^4 \text{ y } 3$	α , ^{24}Ne $6{\times}10^{-11}\!\%$, $\text{SF}{\leq}4{\times}10^{-12}\!\%$
231	5/2+	33.816	25.52 h 1	β -, $\alpha \approx 4 \times 10^{-11}\%$
232	2 0+	35.452	1.40×10 ¹⁰ y <i>1</i>	α,
			100%	SF 1.1×10 ⁻⁹ %
233	3 1/2+	38.737	21.83 m 4	β–
234	l 0+	40.615	24.10 d 3	β–
235	(1/2+)	44.26	7.2 m 1	β–
236	6 0+	46.5s	37.3 m <i>15</i>	β–
237	(5/2+)	50.2s	4.7 m 6	β–
238		52.6s	9.4 m 20	β–
239)	56.6s		
91 Pa 212	2	21.61	5.1 ms +61-19	α
213	3	19.66	5.3 ms + 40 - 16	α
214	<u> </u>	19.49	17 ms 3	$\alpha \leq 100\%$
215	5	17.87	$14~\mathrm{ms}~2$	α
216	3	17.80	0.15 s + 6-4	$\alpha \approx 98\% \; , \;\; \epsilon \approx 2\%$
217	7	17.07	$3.6~\mathrm{ms}~8$	α
217	m	18.92	$1.2~\mathrm{ms}~2$	lpha 73%, IT 27%
218		18.68	113 μs <i>10</i>	α
219		18.54	53 ns 10	α
220		20.40	0.78 μs <i>16</i>	α , ε 3.0×10 ⁻⁷ %
221		20.38	5.9 μs <i>17</i>	α
222		22.11s	2.9 ms + 6-4	α
223		22.32	5.1 ms 6	α
224		23.861	0.85 s 2	α
225		24.34	1.7 s 2	0.
$\frac{226}{227}$		26.03	1.8 m 2	α 74%, ε 26%
228	, ,	26.831	38.3 m <i>3</i> 22.4 h <i>10</i>	α 85%, ε 15% ε 98.15%, α 1.85%
229		28.921	1.50 d 5	ε 99.52%, α 0.48%
230		$29.898 \\ 32.173$	17.4 d 5	ε 92.2%, β-7.8%,
200	, (2)	02.110	17.4 4 0	$\alpha \ 3.2 \times 10^{-3}\%$
231	3/2-	33.425	$3.276 \times 10^4 \text{ y } 11$	α , SF $\leq 2 \times 10^{-11}\%$
232		35.941	1.32 d 2	β -, ϵ
233		37.491	26.975 d <i>13</i>	β-
234		40.342	6.70 h 5	β_
234		40.416	1.159 m <i>11</i>	β-99.84%, IT 0.16%
235		42.33	24.44 m 11	β_
236	3 1(-)	45.3	9.1 m 1	β_
237	(1/2+)	47.6	8.7 m 2	β–
238	3 (3-)	50.77	2.27 m 9	β–
239	(3/2)	53.3s	1.8 h 5	β–
240)	56.8s		β– ?
241	L	59.7s		
92 U 217	7	22.71	16 ms +21-6	$\alpha \le 100\%$
218	3 0+	21.91	0.51 ms + 17 - 10	α
218	8m (8+)	24.02	0.56 ms + 26 - 14	α
219)	23.30	$42~\mu s + 34 - 13$	α
220	0+	23.0s		α?, ε?

Nu Z	cli El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
	U	221		24.6s	700 ns	Beedy 1.10de
92	U	$\begin{array}{c} 221 \\ 222 \end{array}$	(9/2+) 0+	24.6s $24.3s$	100 ns 1.0 μs +12-4	α
		223	0+	24.38 25.84	1.0 μs +12-4 18 μs +10-5	α, ε 0.2%
		$\frac{223}{224}$	0+	25.34 25.71	0.9 ms 3	α, ε υ. 2/ν
		$\frac{224}{225}$	UТ	$\frac{25.71}{27.38}$	95 ms 15	α
		226	0+	27.33	0.35 s 15	α
		227	(3/2+)	29.02	1.1 m <i>1</i>	α
		228	0+	29.22	9.1 m 2	$\alpha > 95\%$, $\epsilon < 5\%$
		229	(3/2+)	31.209	58 m 3	$\varepsilon \approx 80\%$, $\alpha \approx 20\%$
		230	0+	31.613	20.8 d	α , SF<1×10 ⁻¹⁰ %, 22 Ne 5×10 ⁻¹² %
		231	(5/2-)	33.807	4.2 d 1	ε , $\alpha \approx 4.0 \times 10^{-3}\%$
		232	0+	34.604	68.9 y 4	α , SF $3\times10^{-12}\%$
		233	5/2+	36.921	$1.592 \times 10^5 \text{ y } 2$	α , ²⁴ Ne 9×10 ⁻¹⁰ %, SF<6×10 ⁻¹¹ %, ²⁸ Mg<1.×10 ⁻¹³ %
		234	0+	38.148	$2.455 \times 10^5 \text{ y } 6$	Mg<1.×10 //
		204	0+	30.140	0.0054% 5	SF 1.6×10 ⁻⁹ %,
					0.0004703	Mg $1 \times 10^{-11}\%$,
						Ne 9×10 ⁻¹² %
		235	7/2-	40.921	$7.04 \times 10^{8} \text{ y } 1$	α,
					$0.7204\% \ 6$	SF $7.0 \times 10^{-9}\%$, 28 Mg $8. \times 10^{-10}\%$,
						Ne $\approx 8. \times 10^{-10}\%$
		235m	1/2+	40.921	≈26 m	IT
		236	0+	42.447	$2.342 \times 10^{7} \text{ y } 4$	α , SF 9.4×10 ⁻⁸ %
		237	1/2 +	45.393	6.75 d 1	β–
		238	0+	47.310	$4.468 \times 10^9 \text{ y } 3$	α,
		200	F 10		99.2742% 10	SF 5 . 5×10 ⁻⁵ %
		239	5/2+	50.575	23.45 m 2	β–
		240	0+	52.716	14.1 h <i>1</i>	β_
		241	0	56.2s	100 5	β-?
		242	0+	58.6s	16.8 m 5	β–
		243		62.4s		
93	Np	225	(9/2-)	31.59		α
		226		32.74s	35 ms 10	α
		227		32.56	$0.51 \mathrm{~s}~6$	α
		228		33.59	61.4 s <i>14</i>	ε 60%, α 40%
		229		33.78	4.0 m 2	α 68%, ε 32%
		230	(F (O)	35.24	4.6 m 3	ε≤97%, α≥3%
		231	(5/2)	35.62	48.8 m 2	ε 98%, α 2%
		232	(4+)	37.4s	14.7 m 3	ε , $\alpha 2.0 \times 10^{-4}\%$
		233	(5/2+)	37.95	36.2 m 1	ε , $\alpha \le 1.0 \times 10^{-3}\%$
		234	(0+)	39.957	4.4 d <i>1</i>	E 0 C10=30/
		235	5/2+	41.045	396.1 d <i>12</i>	ϵ , $\alpha 2.6 \times 10^{-3}\%$
		236	(6–)	43.37	$153 \times 10^3 \text{ y } 5$	$\epsilon \ 86.3\%, \ \beta-13.5\%, \ \alpha \ 0.16\%$
		236m	1	43.37	22.5 h 4	β- 50%, ε 50%
		237	5/2 +	44.874	$2.144 \times 10^6 \text{ y } 7$	α , SF $\leq 2 \times 10^{-10}\%$
		238	2+	47.457	2.117 d 2	β–
		239	5/2+	49.313	2.356 d 3	β–
		240	(5+)	52.32	61.9 m 2	β–

Nuclide Z El A	T-	Δ (M-W)	Τ½, Γ, or	D W. J.
	Јπ	(MeV)	Abundance	Decay Mode
93 Np 240m		52.32	7.22 m 2	β- 99.88%, IT 0.12%
241	5/2+	54.26	13.9 m 2	β–
242	(1+)	57.4	2.2 m 2	β–
242m		57.4	5.5 m 1	β–
243	(5/2-)	59.88s	1.85 m 15	β–
$\frac{244}{245}$	(7-)	63.2s $65.9s$	2.29 m 16	β–
	_			
94 Pu 228	0+	36.08	1.1 s +20-5	α τος σε σε
229	(3/2+)	37.39	67 s +41-19	ε 50%, α 50%, SF < 7%
230	0+	36.93	102 s 10	α≤100%
231	(3/2+)	38.28	8.6 m 5	$\varepsilon \le 99.8\%, \ \alpha > 0.2\%$
$\frac{232}{233}$	0+	$38.36 \\ 40.05$	33.8 m 7 20.9 m 4	ε 90%, α 10% ε 99.88%, α 0.12%
$\frac{233}{234}$	0+	40.03	8.8 h 1	$\varepsilon \approx 94\%$, $\alpha \approx 6\%$
235	(5/2+)	40.346 42.18	25.3 m 5	$\varepsilon \sim 34\%$, $\alpha \approx 0\%$ ε , $\alpha \approx 2.8 \times 10^{-3}\%$
236	0+	42.10 42.896	2.858 y 8	α , SF 1.9×10 ⁻⁷ %
237	7/2-	45.094	45.64 d 4	ε , $\alpha 4.2 \times 10^{-3}\%$
237m		45.240	0.18 ± 2	IT
238	0+	46.166	87.7 y 1	α , SF 1.9×10 ⁻⁷ %
239	1/2+	48.591	24110 y 30	α , SF 3 .×10 ⁻¹⁰ %
240	0+	50.128	6561 y 7	α , SF 5.7×10 ⁻⁶ %
241	5/2+	52.958	14.325 y 6	β -, $\alpha 2.5 \times 10^{-3}\%$,
				$SF < 2 \times 10^{-14}\%$
242	0+	54.719	$3.75{ imes}10^5$ y 2	α , SF 5 . 5×10 ⁻⁴ %
243	7/2+	57.756	4.956 h 3	β–
244	0+	59.806	$8.00 \times 10^7 \text{ y } 9$	α 99.88%, SF 0.12%
245	(9/2-)	63.18	10.5 h <i>1</i>	β-
246	0+	65.40	10.84 d 2	β–
247		69.1s	2.27 d 23	β–
95 Am 230			≈17 s	ε
231		42.4s	70.0	α?, ε?
232		43.4s	79 s 2	$\varepsilon \approx 97\%$, $\alpha \approx 3\%$
$\frac{233}{234}$		43.2s $44.5s$	3.2 m <i>8</i> 2.32 m <i>8</i>	α>3%, ε
235	5/2-	44.62	10.3 m 6	ε, α ε 99.6%, α 0.4%
236	5-	46.0s	3.6 m 2	α, ε
236m		46.0s	2.9 m 2	α, ε
237	5/2(-)	46.57s	73.6 m 8	ε 99.97%, α 0.03%
238	1+	48.42	98 m 2	ε , α 1.0×10 ⁻⁴ %
239	(5/2)-	49.393	11.9 h <i>1</i>	ε 99.99%, α 0.01%
240	(3-)	51.51	50.8 h 3	ϵ , α 1.9×10 ⁻⁴ %
240m		54.51	$0.94~\mathrm{ms}~4$	SF≤100%
241	5/2-	52.937	432.6 y 6	α , SF 4×10 ⁻¹⁰ %
242	1-	55.471	16.02 h 2	β– 82.7%, ε 17.3%
242m	5-	55.520	141 y 2	IT 99.55%, α0.45%,
949m	(2+,3-)	57.671	14.0 ms 10	SF<4.7×10 ⁻⁹ % SF, IT,
∠+∠III	(4+,0-)	01.011	14.0 1118 10	$\alpha < 5.0 \times 10^{-3}\%$
243	5/2-	57.177	7370 y <i>40</i>	α , SF 3.7×10 ⁻⁹ %
244	(6-)	59.882	10.1 h <i>1</i>	β-
244m		59.882	0.90 ms 15	SF≤100%
244m	1+	59.968	26 m 1	$\beta \ 99 \ . \ 96\% \ , \ \ \epsilon \ \ 0 \ . \ 04\%$
			76	

Nucli		_	Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
95 Am	245	(5/2)+	61.901	2.05 h 1	β–
	246	(7–)	65.00	39 m <i>3</i>	β–
	246m	2(-)	65.00	25.0 m 2	β -, IT<0.02%
	247	(5/2)	67.2s	23.0 m <i>13</i>	β–
	248		70.6s	≈10 m	β–
	249		73.1s		β-?
96 Cm	233	(3/2+)	47.29	23 s + 13 - 6	ϵ 80%, α 20%
	234	0+	46.72	51 s <i>12</i>	$\alpha \approx 40\%$, $SF \approx 40\%$, $\epsilon \approx 20\%$
	235		47.9s		α?, ε?
	236	0+	47.86		ϵ , α
	237		49.25		ϵ , α < 1%
	238	0+	49.44	2.4 h 1	$\epsilon \ge 90\%$, $\alpha \le 10\%$
	239	(7/2-)	51.15	≈2.9 h	ε , $\alpha < 0.1\%$
	240	0+	51.719	27 d 1	SF $3.9 \times 10^{-6}\%$,
					$\alpha > 99.5\%, \ \epsilon < 0.5\%$
	241	1/2+	53.704	32.8 d 2	ε 99%, α 1%
	242	0+	54.806	162.8 d 2	α , SF 6.2×10 ⁻⁶ %, 34 Si 1.×10 ⁻¹⁴ %
	243	5/2+	57.184	29.1 y <i>1</i>	$\alpha 99.71\%$, $\epsilon 0.29\%$, SF $5.3 \times 10^{-9}\%$
	244	0+	58.455	18.1 y <i>1</i>	α , SF 1 . 4×10 ⁻⁴ %
	244m	6+	59.495	$34~\mathrm{ms}~2$	IT
	245	7/2+	61.006	8423 y 74	α , SF 6.1×10 ⁻⁷ %
	246	0+	62.619	4706 y_40	$\alpha 99.97\%$, SF 0.03%
	247	9/2-	65.535	$1.56 \times 10^{7} \text{ y } 5$	α
	248	0+	67.393	$3.48{ imes}10^5~{ m y}~6$	α 91.61%, SF 8.39%
	249	1/2+	70.751	64.15 m 3	β–
	250	0+	72.99	≈8.3×10 ³ y	$SF \approx 74\%$, $\alpha \approx 18\%$, $\beta - \approx 8\%$
	251	(1/2+)	76.65	16.8 m 2	β-
	252	0+	79.1s	<2 d	
97 Bk	234			$1.4 \times 10^2 \text{ s} + 14 - 5$	$\alpha \ge 80\%$, $\epsilon \le 20\%$
	235		52.7s		ε?, α?
	236		53.4s		
	237		53.1s	≈1 m	ε?, α?
	238		54.3s	$144 \mathrm{\ s}\ 5$	ε, εSF 0.048%
	239m(7/2+,3/2-)	54.3s		$\varepsilon > 99\%$, $\alpha < 1\%$,
	0.40		FF 0-	4.0 0	SF<1%
	240	(7/9.)	55.7s	4.8 m 8	ε , ε SF 2.0×10 ⁻³ %
	241	(7/2+)	56.1s	4.6 m 4	α, ε
	242	(2/9)	57.7s	7.0 m 13	ε≤100%
	$\frac{243}{244}$	(3/2-) $(4-)$	58.692 60.72	4.5 h <i>2</i> 4.35 h <i>15</i>	$\varepsilon \approx 99.85\%$, $\alpha \approx 0.15\%$ $\varepsilon 99.99\%$,
	244	(4-)	00.72	4.55 11 15	$\alpha 6.0 \times 10^{-3}\%$
	245	3/2-	61.816	4.95 d 3	$\epsilon~99.88\%,~\alpha~0.12\%$
	246m	2(-)	63.97	1.80 d 2	ε
	247	(3/2-)	65.491	1380 y <i>250</i>	$\alpha \leq 100\%$
	248		68.08s	>9 y	α
	248m	1(-)	68.08s	23.7 h 2	β- 70%, ε 30%
	249	7/2+	69.850	330 d <i>4</i>	β-, α 1.4×10 ⁻³ %, SF 4.7×10 ⁻⁸ %
				77	of 4.7×10 %

Nuclide Z El A		Δ (MeV)	T½, Γ, or Abundance	Decay Mode
97 Bk 25		72.952	3.212 h 5	β–
25	, ,	75.23	55.6 m <i>11</i>	β–
25		78.5s		0.0
25		80.9s		β-?
25		84.4s		
98 Cf 23		57.94	0.8 s 2	SF 70%, α 30%
23		57.2s	$21~\mathrm{ms}~2$	SF
23		58.1s	39 s + 37 - 12	ε, α
24		58.01	64 s 9	α 98.5%, SF 1.5%
24	, ,	59.3s	3.78 m 70	$\epsilon \approx 75\% \; , \; \; \alpha \approx 25\%$
24	2 0+	59.38	3.7 m 5	α 80%, ε 20%, SF≤0.01%
24	3 (1/2+)	60.9s	10.7 m 5	$\varepsilon \approx 86\%$, $\alpha \approx 14\%$
24		61.473	19.4 m 6	α≤100%
24		63.388	45.0 m 15	ε 64.7%, α 35.3%
24		64.093	35.7 h 5	α , $\varepsilon < 4.0 \times 10^{-3}\%$,
				SF 2.4×10 ⁻⁴ %
24	6m	66.593	45 ns 10	SF≤100%
24	7 (7/2+)	66.10	3.11 h <i>3</i>	$\epsilon 99.97\%$, $\alpha 0.04\%$
24	8 0+	67.241	333.5 d 28	α , SF 2.9×10 ⁻³ %
24	9 9/2-	69.726	351 y 2	α , SF 5.0×10 ⁻⁷ %
25	0 0+	71.173	13.08 у 9	α 99.92%, SF 0.08%
25	1 1/2+	74.137	898 y 44	α, SF
25	0+	76.035	2.645 y 8	α 96.91%, SF 3.09%
25	3 (7/2+)	79.302	17.81 d 8	β - 99.69%, α 0.31%
25	4 0+	81.34	60.5 d 2	SF 99.69%, a 0.31%
25	5 (7/2+)	84.8s	85 m 18	β–
25	6 0+	87.0s	12.3 m <i>12</i>	SF, $\beta - < 1\%$,
	_			$\alpha \approx 1.0 \times 10^{-6}\%$
99 Es 24		64.2s		α?, ε?
24		63.8s	8 s +6-5	ε, α
24		64.9s	17.8 s 16	α 57%, ε 43%
24		64.7s	23 s 3	α 61%, ε 39%, SF<1%
24		66.0s	37 s 4	ε 96%, α 4%
24	, ,	66.4s	1.1 m <i>1</i>	ε 60%, α 40%
	6m	67.9s	7.5 m 5	ε 90.1%, α 9.9%
24	7 (7/2+) 7m	$68.58 \\ 68.58$	4.55 m <i>26</i> 625 d <i>84</i>	$\epsilon \approx 93\%$, $\alpha \approx 7\%$
24		70.30s	27 m 5	ε 99.7%, α≈0.25%
24	. , ,	70.30s 71.18s	102.2 m 6	ε 99.43%, α 0.57%
25		73.2s	8.6 h 1	$\varepsilon > 97\%$, $\alpha < 3\%$
	00m 1(-)	73.2s	2.22 h 5	$\varepsilon \leq 100\%$
25		74.513	33 h 1	ε 99.5%, α 0.5%
25		77.29	471.7 d <i>19</i>	α 78%, ε 22%
25		79.015	20.47 d 3	SF $8.7 \times 10^{-6}\%$, α
25		81.993	275.7 d <i>5</i>	α , β – 1.7×10 ⁻⁴ % ,
25	4m 2+	82.077	39.3 h 2	SF<3.0×10 ⁻⁶ % β-98%, IT<3%,
				α 0.32%, ε 0.08%, SF<0.05%
25	5 (7/2+)	84.09	39.8 d <i>12</i>	β- 92%, α 8%, SF 4.1×10 ⁻³ %

	clide	_	Δ	Τ½, Γ, or	
ZI	El A	Jπ	(MeV)	Abundance	Decay Mode
99 I	Es 256	(1+,0-)	87.2s	25.4 m 24	β–
	256m	(8+)	87.2s	7.6 h	β_
	257		89.4s	7.7 d 2	β-, SF
	258		92.7s		α?, ε?
100 F	'm 241			0.73 ms 6	SF>78%, α <14%, ϵ <12%
	242	0+	68.4s	<4 µs	$SF \le 100\%$
	243	(7/2+)	69.3s	231 ms 9	α 91%, SF 9%, ϵ < 10%
	244	0+	69.0s	3.12 ms 8	SF>97%, ε <2%, α <1%
	245		70.2s	4.2 s 13	α≤100%
	246	0+	70.19	1.54 ± 4	$\alpha 93.2\%$, SF 6.8%, $\epsilon \le 1.3\%$
	247	(7/2+)	71.6s	31 s <i>1</i>	$\alpha \ge 84\%$, $\epsilon \le 16\%$
	247m	(1/2+)	71.6s	5.1 s 2	α 84%
	248	0+	71.894	36 s 2	α 93%, ε 7%, SF 0.1%
	249	(7/2+)	73.521	2.6 m 7	ϵ 67%, α 33%
	250	0+	74.074	30 m 3	$\alpha > 90\%$, $\epsilon < 10\%$,
	0.50		5 4 0 5 4	100 15	SF 6.9×10 ⁻³ %
	250m	(0.10.)	74.074	1.93 s 15	IT
	251	(9/2-)	75.95	5.30 h 8	ε 98.2%, α 1.8%
	$\begin{array}{c} 252 \\ 253 \end{array}$	0+	76.818 79.349	25.39 h <i>4</i> 3.00 d <i>12</i>	SF $2.3 \times 10^{-3}\%$, α ϵ 88%, α 12%
	$\begin{array}{c} 255 \\ 254 \end{array}$	(1/2)+ 0+	80.905	3.240 h 2	α 99.94%, SF 0.06%
	$\frac{254}{255}$	7/2+	83.801	20.07 h 7	α , SF 2.4×10 ⁻⁵ %
	256	0+	85.487	157.6 m 13	SF 91.9%, α8.1%
	$\frac{257}{257}$	(9/2+)	88.590	100.5 d 2	α 99.79%, SF 0.21%
	258	0+	90.4s	370 µs 43	SF≤100%
	259		93.7s	1.5 s 3	SF
	260	0+	95.8s	$\approx 4 \text{ ms}$	SF
101 M	Id 245	(1/2-)	75.3s	0.90 ms 25	α, SF
	245m	(7/2)	75.6s	0.35 s +23-16	ε, α
	246m		76.2s	$0.9 \mathrm{\ s}\ 2$	α΄
	246m		76.2s	4.4 s 8	$\varepsilon > 77\%$, $\alpha < 23\%$
	246m		76.2s	0.9 s 2	SF?, ε?
	247	(7/2-)	75.9s	$1.2 \mathrm{~s}~1$	$\alpha 99.9\%$, SF < 0.1%
	247m	(1/2-)	75.9s	0.25 s 4	α 79%, SF 21%
	248	(= (0)	77.1s	13 s +15-4	α 58%, ε 42%
	249	(7/2-)	77.3s	21.7 s 20	$\alpha > 60\%$, $\epsilon \le 40\%$
	249m	(1/2-)	77.3s	1.9 s 9	α?
	$\frac{250}{251}$	(7/2-)	$78.6\mathrm{s} \\ 78.97$	25 s +10-5 4.3 m 6	ε 93%, α 7% ε 90%, α 10%
	$\begin{array}{c} 251 \\ 252 \end{array}$	(1/2-)	80.5s	2.3 m 8	ε 50%, α 10% ε ≤ 100%
	$\frac{252}{253}$	(7/2-)	81.18s	6 m +12-3	ε≤100% ε≤100%, α
	254m	(1/2)	83.5s	28 m 8	ε≤100%, ω ε≤100%
	254m		83.5s	10 m 3	ε≤100%
	255	(7/2-)	84.844	27 m 2	ε 92%, α 8%, SF<0.15%
	256	(1-)	87.61	77 m 2	ε 90.8%, α 9.2%, SF<3%
	257	(7/2-)	88.997	5.52 h <i>5</i>	ε 85%, α 15%, SF < 1%
	258	•	91.689	51.5 d 3	α, SF
				79	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
101 Md	258m		91.689	57.0 m 9	$\epsilon \geq 70\%$, SF
	259		93.6s	96 m 3	SF, $\alpha < 1.3\%$
	260		96.6s	31.8 d <i>5</i>	$SF \ge 42\%$, $\alpha \le 25\%$, $\epsilon \le 23\%$, $\beta - \le 10\%$
	261		98.6s		α?
	262		101.6s		SF?, α ?
102 No	248	0+	80.6s	<2 μs	SF?
	249		81.8s		
	250	0+	81.6s	$4.2 \ \mu s + 12 - 9$	SF, $\alpha < 2\%$
	251	(7/2+)	82.8s	0.80 s 1	α 84%, SF<0.3%, ϵ
	251m		82.9s	1.02 s 3	α
	252	0+	82.867	2.47 s 2	α 70.7%, SF 29.3%, ε<1.1%
	252m	(8-)	82.867	110 ms <i>10</i>	IT
	253	(9/2-)	84.360	1.62 m 15	α≈80%, ε
	254	0+	84.72	51 s <i>10</i>	α 90%, ε 10%, SF 0.17%
	254m	0+	84.72	0.28 s 4	IT>80%
	255	1/2 +	86.81	3.52 m 21	ϵ 70%, α 30%
	256	0+	87.825	2.91 s 5	$\alpha99.47\%,~SF0.53\%$
	257	(7/2+)	90.251	25 s 3	$\alpha \le 100\%$, $SF \le 1.5\%$
	258	0+	91.5s	$1.2~\mathrm{ms}~2$	$SF \le 100\%$
	259		94.1s	58 m 5	$lpha$ 75%, ϵ 25%, SF<10%
	260	0+	95.6s	106 ms 8	SF
	261	(3/2+)	98.5s		α?
	262	0+	100.1s	≈5 ms	SF
	263		103.1s		α ?, SF?
	264	0+	105.2s		α?
103 Lr			87.9s		ε?, α?
	252		88.7s	0.27 s + 18 - 8	α, ε
	253	(7/2-)	88.7s	0.57 s + 7 - 6	$\alpha \approx 98.7\% \;,\; SF \approx 1.3\%$
	253m	(1/2-)	88.7s	1.49 s +30-21	α 92%, SF 8%
	254		89.9s	18.4 s <i>18</i>	α 71.7%, ε 28.3%
	255	1/2-	89.95	31.1 s <i>13</i>	α 85%, ε 15%
	255m	7/2-	89.98	2.53 s 13	IT 60%, α 40%
	256		91.75	27 s 3	α 85%, ε 15%, SF<0.03%
	257		92.61s	≈4 s	α≤100%
	258		94.8s	$4.1 \mathrm{~s}~3$	$\alpha > 95\%$, SF < 5%
	259		95.85s	6.2 s 3	α 78%, SF 22%
	260		98.3s	180 s 30	$\alpha 80\%$, $\epsilon < 40\%$, SF < 10%
	261		99.6s	39 m <i>12</i>	SF
	262		102.0s	≈4 h	SF < 10% , ϵ , α
	263		103.7s		α?
	264		106.4s		SF?, α ?
	265		108.3s		SF?, α ?
	266		111.4s		α ?, SF?
104 Rf	253m 253m		93.8s $93.8s$	48 μs +17-10 ≈1.8 s	$SF \le 100\%$, α $\alpha \approx 50\%$, $SF \approx 50\%$
	200111		00.03	~1.0 5	w 30%, Di ~ 00%

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
104 Rf	254	0+	93.2s	$23~\mu s~3$	SF≤100%
	255	(9/2-)	94.2s	2.3 s + 8 - 5	α 52%, SF 48%, ε?1%
	256	0+	94.22	6.4 ms 2	SF 99.68%, α0.32%
	257	(1/2+)	95.87	4.7 s 3	$\alpha < 100\%$, SF $\leq 1.4\%$, $\epsilon > 0\%$
	257m	(11/2-)	95.87	4.1 s 7	α<100%, SF≤1.4%, ε>0%
	$\frac{258}{259}$	0+	$\frac{96.34}{98.36}$	14.7 ms +12-10 3.2 s 6	SF 69%, α 31% α 92%, SF 8%
	259m		98.36s	2.5 s + 4 - 3	ε 15%
	260 260	0+	99.2s	21 ms 1	SF≤100%, α?
	261m	٠.	101.32	1.9 s 4	SF 73%, α 27%
	261m		101.32	78 s +11-6	$\alpha > 74\%$, $\epsilon < 15\%$, SF < 11%
	262	0+	102.4s	2.3 s 4	$SF \le 100\%$, $\alpha < 3\%$
	263		104.8s	10 m 2	SF, α
	264	0+	106.2s		α?
	265m		108.8s		SF
	266	0+	110.2s		SF?, α ?
	267		113.4s		
	268	0+	115.4s		α ?, SF?
105 Db	255		99.7s	1.6 s + 6 - 4	$\alpha 80\%$, SF $\approx 20\%$
	256		100.5s	1.9 s 4	$\alpha \approx 70\%$, $\epsilon \approx 30\%$, $SF \approx 0.02\%$
	257	(9/2+)	100.3s	1.82 s + 27 - 21	$\alpha~94\%~,~SF\approx6\%$
	257m		100.3s	0.58 s + 13 - 9	α , SF
	258		101.8s	4.2 s + 4 - 3	α 65%, ϵ 35%, SF < 1%
	258m		101.8s	20 s 10	ε
	259		101.99	0.51 s 16	α
	260		103.36	1.52 s <i>13</i>	$\alpha \ge 90.4\%$, SF $\le 9.6\%$, $\epsilon < 2.5\%$
	261		104.2s	1.8 s 4	$\alpha \ge 82\%$, SF $\le 18\%$
	262		106.3s	35 s 5	$\alpha \approx 67\%$, SF
	263		107.1s	27 s + 10 - 7	SF 55%, α 41%, ε 3%
	264		109.4s		α?
	265		110.5s		α?
	266 267m		$112.7\mathrm{s} \\ 114.2\mathrm{s}$	73 m +350-33	α?, SF? SF
	268m		114.2s 117.0s	32 h +11-7	SF
	269		117.0s 119.1s	52 H +11-7	α ?, SF?
	270m		122.0s	23 h	SF, α
106 Sg		0+	105.3s	2.9 ms + 13 - 7	SF≤100%, α?
	259	(1/2+)	106.5s	0.32 s + 8 - 6	α 96%, SF 4%
	259m	0.	106.5s	0.28 s 5	OE 5007 5007
	260	0+	106.54	3.6 ms 9	SF 50%, α 50%
	260m		106.54	4.95 ms 33	SF 71%, α 29%
	$\begin{array}{c} 261 \\ 262 \end{array}$	0+	108.01 108.4s	0.23 s 6 6.9 ms +38-18	α , SF < 1% SF \geq 78%, $\alpha \leq$ 22%
	263	UT	100.4s $110.19s$	1.0 s 2	$\alpha > 70\%$, SF < 30%
	263m		110.19s	0.12 s	IT, α
	264	0+	110.13s	37 ms +27-11	SF, α <36%
	265m	· .	112.8s	16.2 s +47-35 81	$\alpha \ge 65\%$, SF $\le 35\%$

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
106 Sg	265m		113.0s	8.9 s + 27 - 19	
100 85	266	0+	113.7s	21 s +20-12	SF > 50%, α > 18%
	267	0+	115.7s	21 5 720-12	DF 250%, W210%
		٥.			CIE 9 9
	268	0+	116.9s		SF?, α ?
	269	_	120.0s		
	270	0+	121.3s		α ?, SF?
	271m		124.4s	2.4 m + 43 - 10	$\alpha \approx 50\%$, SF $\approx 50\%$
	272	0+	126.4s		α ?, SF?
	273		129.8s		SF?
107 Bh	260		113.3s	35 ms +19-9	α≤100%
10. 11	261		113.2s	11.8 ms +39-24	α_100%
	262m		114.5s	22 ms 4	α<100%
	262m		114.5s $114.5s$	83 ms 14	α<100% α<100%
				00 IIIS 14	
	263		114.5s	0.44 00.10	α?
	264		115.7s	0.44 s + 60 - 16	α≤100%
	265		116.4s	0.9 s + 7 - 3	α
	266m		118.2s	1.7 s + 82 - 8	α
	267m		118.9s	17 s + 14 - 6	α
	268		120.9s		
	269		121.7s		
	270?		124.2s	$6 \times 10^{1} \text{ s} + 29 - 3$	α
	271?		125.8s		α?
	272m		128.6s	10 s + 12 - 4	α
	273		130.5s		α ?, SF?
	274		133.3s	0.9 m + 42 - 4	α, SF
	275		135.4s		SF?
108 Hs				0.74	or < 1,000/ CVE + 0 40/
108 HS		٥.	120.0s	0.74 ms + 48 - 21	α≤100%, SF<8.4%
	264	0+	119.56	≈0.8 ms 1.9 ms 2	$SF \approx 50\%$, $\alpha \approx 50\%$
	265		121.17		$\alpha < 100\%$, SF $\leq 1\%$
	265m		121.47	0.3 ms + 2 - 1	α<100%
	266	0+	121.1s	2.3 ms + 13-6	α, SF<1.4%
	267	(3/2+)	122.65s	52 ms + 13 - 8	$\alpha \ge 80\%$, SF<20%
	267m		122.65s	0.8 s + 38 - 4	α
	268	0+	122.8s	0.4 s + 18-2	α
	269		124.6s	3.6 s + 8 - 14	α
	269m		124.6s	9.7 s + 97 - 33	α
	270	0+	125.1s	$22 \mathrm{\ s}$	α
	271		127.8s		α ?, SF?
	272	0+	129.1s		SF?, α ?
	273		132.1s		α
	274	0+	133.3s		SF?, α ?
	275m		136.3s	0.15 s + 27 - 6	α
	276	0+	138.0s		α ?, SF?
	277		141.1s		,
100 M/L			126.6s		or 2
109 Mt				1.7 : 10. 10	α?
	266m		128.0s	1.7 ms +18-16	α≤100%
	267		127.8s	0.1	α?
	268m		128.9s	21 ms + 8-5	α
	269		129.3s		
	270m		130.8s	5.0 ms + 24 - 3	α
	271		131.5s		α?

Nucli			Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
109 Mt	272		133.7s		α ?, SF?
	273		134.8s		α ?, SF?
	274m		137.1s	0.44 s + 81 - 17	α , SF
	275?		138.4s	9.7 ms + 460 - 44	α
	276m		140.9s	0.72 s + 87 - 25	α
	277		142.5s		
	278m		145.1s	8 s + 37 - 4	α, SF
	279		146.8s		α?, SF?
110 Ds	267m		134.3s	$2.8 \ \mu s + 133 - 12$	α
	268?	0+	133.6s	1	α
	269m		135.03	179 μs +245-66	α
	270	0+	134.7s	0.10 ms + 14-4	α , SF<0.2%
	270m		135.9s	6.0 ms + 82 - 22	$\alpha > 70\%$, IT $\leq 30\%$
	271		135.95s	1.63 ms + 44 - 29	α
	271m		135.95s	69 ms +56-21	$\alpha > 0\%$, IT?
	272	0+	136.0s		SF
	273	_	138.4s	0.17 ms + 17-6	α
	274?	0+	138.9s		SF?, α?
	275?	^	141.2s		α?
	276?	0+	142.2s		SF?, α ?
	277?	0	145.3s		α?
	278?	0+	145.8s	0.10 7.0	SF?, α?
	279m	٥.	148.6s	0.18 s + 5 - 3	$SF \approx 90\%$, $\alpha \approx 10\%$
	280 281	0+	149.6s 152.4s	20 ~ . 20 7	CE 0507 or 1507
			152.4s $152.4s$	20 s +20-7 9.6 s +50-25	SF 85%, α 15% SF
	281m				
111 Rg			142.8s	3.8 ms + 14 - 8	α
	273		143.1s	0.4 007 00	α?
	274m		144.7s	6.4 ms +307-29	α
	275?		145.4s 147.4s		α?
	276? 277?		147.4s 148.4s		α?, SF? SF?, α?
	277: 278m		140.4s 150.4s	4.2 ms +76-17	α , SF
	279m		150.4s 151.3s	0.17 s +81-8	α, επ
	280m		151.5s 153.4s	3.6 s +43-13	α
	281m		154.6s	26 s +25-8	SF, α
	282m		156.7s	0.5 s + 25 - 2	α , SF
	283?		158.1s	0.0 5 120 2	SF?, α ?
112 Cn	276	0+	150.6s		,
112 011	277	UT	150.0s $152.4s$		
	278?	0+	152.4s 152.7s		α ?, SF?
	279?	UT	154.7s		SF?, α ?
	280?	0+	155.4s		α ?, SF?
	281m	. .	158.1s		α., ει.
	282m		158.2s	0.50 ms +33-14	SF
	283m		160.7s	4.0 s +13-7	α≥90%, SF≤10%
	283m		160.7s	6.9 s + 69 - 23	SF 50%, α 50%
	284m		161.5s	101 ms +41-22	SF
	285		164.1s	30 s +30-10	α
113	278m		159.0s	0.24 ms +114-11	α
110	279iii		159.0s 159.5s	0.24 ms +114-11	u
	210		100.08		

Nuclide			Δ	T½, Γ, or	
\mathbf{Z}	El A	Jπ	(MeV)	Abundance	Decay Mode
113	280		161.2s		
	281		161.9s		
	282m		163.6s	0.07 s + 13 - 3	α
	283m		164.0s	100 ms +490-45	α
	284m		166.0s	0.48 s + 58 - 17	α
	285m		166.9s	5.5 s + 50 - 18	α , SF
	286m		168.9s	20 s + 94 - 9	α , SF
	287?		170.1s		α ?, SF?
114	285m		171.2s		α
	286m	0+	171.0s	0.16 s + 7 - 3	$SF \approx 60\%$, $\alpha \approx 40\%$
	287		173.2s	0.51 s + 18 - 10	α
	288	0+	174.0s	0.52 s + 22 - 13	α
	289		176.5s	0.97 s + 97 - 32	α
	289m		176.5s	2.7 s + 14 - 7	α
115	287?		177.2s	32 ms + 155 - 14	α
	288m		179.0s	87 ms + 105 - 30	α
	289		179.8s	0.22 s + 26 - 8	α , SF
	290		181.6s	16 ms + 76 - 7	α , SF
	291?		182.8s		α ?, SF?
116	289		184.8s		
	290	0+	184.4s	15 ms + 26 - 6	α
	291		186.6s	6.3 ms +116-25	α
	292	0+	187.2s	18 ms + 16-6	α
	293		189.6s	53 ms + 62 - 19	α
117	291?		191.0s		SF?, α ?
	292?		192.7s		SF?, α?
	293		193.4s	14 ms + 11 - 4	α , SF
	294		195.1s	0.08 s + 37 - 4	α
118	294		198.7s	0.9 ms + 11 - 3	α, SF≤50%
	295		200.7s		•

Z	El	Atomic Weight ^a	Density (g/cc) ^b	Melting Pt. (°C) ^b	Boiling Pt. (°C) ^b	$Valence^b$
$\frac{1}{2}$	H He	1.008 4.002602 2	$\substack{8.988 \times 10^{-5} d \\ 1.785 \times 10^{-4} f}$	-259.34 < -272.2	-252.87 -268.93	1 0
				(26 atm)		
3	Li	6.94	0.534c	180.5	1342	1
4	Be	9.0121823	1.848c	1287	2471	2
			,		(5 mm)	
5	В	10.81	2.34h	2075	4000	3
	~				(subl.)	
6	C	12.011	1.8 to 2.1i	≈3550	4827	2,3,4
7	N	14.007	0.0012506J	-210.00	-195.798	3,5
8	O	15.999	0.001308k	-218.79	-182.953	2
9	F	18.9984032 5	0.001696		-188.12g	1
	Ne	20.1797 6	8.9990×10^{-4} 0.971°		-246.053g	
	Na M.		1.738 ^c	97.80 650	883	1 2
	Mg Al	26.9815386 8	2.6989c	660.32	1090 2519	3
	Si	28.085	2.33e	1414	3265	4
15		30.973762 2	1.82l	44.15l	280.5l	3,5
16		32.06	2.07cm	115.21m	444.61	2,4,6
	Cl	35.45	0.003214	-101.5	-34.04	1,3,5,7
	Ar	39.948	0.003214	-189.36	-185.85	0
19		39.0983	0.89	63.5	759	1
	Ca	40.078 4	1.54 ^c	842	1484	2
	Sc	44.955912 6	2.989e	1541	2836	3
	Ti	47.867	4.51	1668	3287	2 to 4
23		50.9415	6.0	1910	3407	2 to 5
			(18.7°C)			
24	Cr	51.99616	7.15c	1907	2671	2,3,6
25	Mn	54.9380455	7.21 to 7.44n	1246	2061	1 to 4,6,7
26	Fe	55.8452	7.874c	1538	2861	2,3,4,6
27	Co	58.9331955	8.9c	1495	2927	2,3
28	Ni	58.69342	8.902e	1455	2913	0 to 3
	Cu	63.5463	8.96c	1084.62	2562	1,2
30	Zn	65.38~2	7.134e	419.53	907	2
31	Ga	69.723	5.904	29.76	2204	2,3
			(29.6°C)			
	Ge	72.63	5.323e	938.25	2833	2,4
33	As	74.921602	5.75^{0}	8170	616°	$0,\pm 3,5$
	_			(28 atm)	(subl.)	
	Se	78.96 3	4.79P	221p	685P	-2,4,6
	Br	79.904	3.12u	-7.2	58.8	1,3,5,7
	Kr	83.798 2	0.003733	-157.36	-153.34	0
	Rb	85.4678 3	1.532 ^c	39.30	688	1
39	Sr v	87.62 88.90585 2	2.64 4.469e	$777 \\ 1522$	1382 3345	2 3
	r Zr	91.2242	4.469e 6.52c	1855	4409	3 2 to 4
	Zr Nb	91.224 2 92.90638 2	8.57 ^c	2477	4744	2, 10, 4 2, 3, 4?, 5
		95.96 2	10.22¢	2623	4639	2,5,41,5 2 to 6
	Тс	(98)	10.22¢ 11.50t	2023 2157	4265	0,2,4 to 7
	Ru	101.07 2	12.1¢	2334	4150	0,2,4 to 7
	Rh	102.90550 2	12.41 ^c	1964	3695	3
		000002				-

Z El	Atomic	Density	Melting	Boiling	$Valence^b$
2 11	Weighta	(g/cc) ^b	Pt. (°C) ^b	Pt. (°C) ^b	varence
46 Pd	106.42	12.02^{c}	1554.9	2963	2 to 4
47 Ag	107.86822	10.50c	961.78	2162	1
48 Cd	112.4118	8.69c	321.07	767	2
49 In	$114.818 \ 3$	7.31c	156.60	2072	1 to 3
50 Sn	118.7107	5.779	231.93	2602	2,4
51 Sb	121.760	6.68c	630.63	1587	$0,\pm 3,5$
52 Te	$127.60\ 3$	6.23c	449.51	988	2,4,6
53 I	126.904473	$4.93^{ m v}$	113.7	184.4	1,3,5,7
54 Xe	131.2936	$0.005887 \mathrm{W}$	-111.74	-108.09	0
$55 \mathrm{Cs}$	132.9054519	2 1.873c	28.44	671	1
56 Ba	137.3277	3.62c	727	1897	2
57 La	138.905477	6.145e	920	3464	3
58 Ce	140.116	6.770^{e}	799	3443	3,4
59 Pr	140.907652	6.773r	931	3520	3
		6.64^{8}			
60 Nd	$144.242\ 3$	7.008	1016	3074	3
61 Pm	(145)	7.264^{e}	1042	3000	3
62 Sm	150.362	7.520r	1072	1794	2,3
		7.40s			
63 Eu	151.964	5.244e	822	1596	2,3
64 Gd	$157.25\ 3$	7.901e	1313	3273	3
65 Tb	158.92534 2	8.230	1356	3230	3,4
66 Dy		8.551e	1412	2567	3
67 Ho		8.795e	1472	2700	3
68 Er	$167.259 \ 3$	9.066e	1529	2868	3
69 Tm		9.321^{e}	1545	1950	3
70 Yb	173.0545	6.903r	824	1196	2,3
	4=40000	6.966s			
71 Lu	174.9668	9.841e	1663	3402	3
72 Hf	178.49 2	13.31c	2233	4603	4
73 Ta	180.94788 2	16.4	3017	5458	2?,3,4?,5
74 W	183.84	19.3¢	3422	5555	2 to 6
75 Re	186.207	20.8¢	3185	5596	4,6,7
76 Os	190.23 3	22.587	3033	5012	0 to 8
77 Ir	192.217 3	22.562c	2446	4428	3,4
78 Pt	195.084 9	21.45¢	1768.2	3825	1?,2,3
79 Au			1064.18	2856	1,3
80 Hg 81 Tl	200.592 204.38	13.546 ^c 11.85 ^c	-38.83 304	$356.62 \\ 1473$	$\frac{1,2}{1,3}$
82 Pb	204.38	11.35 ^c	327.46	1749	$^{1,3}_{2,4}$
83 Bi	208.98040	9.747¢	$\frac{327.46}{271.4}$	1564	3,5
84 Po	(209)	9.20	$\frac{271.4}{254}$	962	$0,\pm 2,3?,4,6$
85 At	(210)	9.20	302	902	1,3,5,7
86 Rn	(222)	0.00973x	-71	-61.7	0
87 Fr	(223)	0.00010	$\frac{-71}{27}$	01.1	1
88 Ra	(226)	5	696		2
89 Ac	(227)	10.07 ^t	1050	3198	3
90 Th		11.72	1750	4788	2?,3?,4
91 Pa	231.03588 2	15.37 ^t	1572	1.00	4,5
92 U	238.02891 3	19.1	1135	4131	2 to 6
93 Np		20.25c	644	3902	3 to 6
P	/				

Z]	El	Atomic Weight ^a	Density (g/cc) ^b	Melting Pt. (°C) ^b		Valence ^b
94	Pu	(244)	19.84 ^e	640	3228	3,to 6
95	Am	(243)	12c	1176	2011	2 to 6
96	Cm	(247)	13.51^{t}	1345		3,4
97	Bk	(247)	14 ^t	996		3,4
98	Cf	(251)	15.1	900		3
99	$\mathbf{E}\mathbf{s}$	(252)		860^{t}		3
100	Fm	(257)		1527		3
101	Μd	(258)		827		2,3
102	No	(259)		827		2,3
103	$_{ m Lr}$	(262)		1627		3?

Footnotes and References

a) Atomic weights of many elements are not invariant and depend on the origin and treatment of the material. The values given here apply to elements as they exist naturally on earth and are from M. E. Wieser, T.B. Coplen Pure Appl. Chem. 83, 359 (2011). Uncertainty is 1 in last significant figure, unless expressly given.

Masses are scaled to 12 for $^{12}\mathrm{C}$.

Parenthetical whole numbers represent the mass numbers (A) of the longest lived isotopes for radioactive elements.

Isotopic masses (and more precise atomic weights for some monoisotopic elements) may be calculated as $A+(\Delta/931.494),$ where A is the mass number and Δ is the mass excess as given in the $\it Nuclear\ Wallet\ Cards.$

- b) C.R. Hammond, in CRC Handbook of Chemistry and Physics, 92nd edition, 2011. Where specified, exact temperature and pressure conditions are given; the conditions for all gases have been inferred to be 0°C and 1 atm. The densities for the following gaseous elements are for diatomic molecules: H, N, O, F, Cl. In general, densities for gases (in g/cc) may be approximated by the formula: density=MP/82.05T, where M is the molecular weight in g, P the pressure in atm, and T the temperature in °K. The reported oxidation states do not include some uncommon states, or those states predicted by periodicity, but not confirmed chemically.
- c) At 20° C.
- d) For gas; density (liquid)=0.0708 g/cc at b.p.; density (solid)=0.0706 g/cc at $-262^{\circ}\mathrm{C}.$
- e) At 25° C.
- f) For gas; density (liquid)=0.125 g/cc at b.p.
- g) At 1 atm.
- h) For crystal form; density (amorphous)=2.37 g/cc. $App{-}I{-}iii$

- i) For amorphous carbon; density (graphite)=1.9 to 2.3 g/cc; density (gem diamond)=3.513 g/cc at $25\,^{\circ}$ C; density (other diamond)=3.15 to 3.53 g/cc.
- j) For gas; density (liquid)=0.808 g/cc at b.p.; density (solid)=1.026 g/cc at -252°C.
- k) For gas; density (liquid)=1.14 g/cc at b.p. For Ozone: density=0.001962; m.p.=-193, b.p.=-111.35
- l) For white phosphorus; density (red)=2.20 g/cc; density (black)=2.25 to 2.69 g/cc.
- m) For rhombic sulfur; melting point (monoclinic)=119.0 $^{\circ}$ C; density (monoclinic)=2.00 g/cc at 20 $^{\circ}$ C.
- n) Depending on allotropic form.
- o) For gray arsenic; density (yellow)=1.97 g/cc.
- p) For gray selenium; density (vitreous)=4.28 g/cc.
- q) For gray tin; density (white)=7.29 g/cc.
- r) For α modification.
- s) For β modification.
- t) Calculated.
- u) For liquid at 20°C; 0.00759 g/cc for gas.
- v) For solid at 20°C; 0.01127 g/cc for gas.
- w) For gas; density (liquid)=2.95 g/cc at -109 °C.
- x) For gas; density (liquid)=4.4 g/cc at -62°C .

Appendix-II Frequently-Used Constants

The frequently used constants are given below in familiar units. Only approximate values are given; see App-IIa for values to current known precision.

Symbol Constant			Value	
$1/\alpha$ = $\hbar c/e^2$	Fine structure cons	stant	137.0	
c	Speed of light in va	icuum	$2.998{\times}10^{10}~{\rm cm/s}$	
$\begin{array}{l} h \\ \hbar\!=\!h/2\pi \\ \hbarc \end{array}$	Planck constant		6.626×10 ⁻²⁷ erg s 6.582×10 ⁻²² MeV s 197.3 MeV fm	
$k=R/N_A$	Boltzmann constan	t	$8.617{\times}10^{-11}\;{\rm MeV/K}$	
$r_e = e^2/m_e c^2$	Classical e ⁻ radius		2.818 fm	
$\lambda_{\mathrm{C,e}} \text{=} \hbar/m_{\mathrm{e}} c$	Compton waveleng	th of e-	386.2 fm	
$\lambda_{\mathrm{C},p} = \hbar/m_p c$	Compton waveleng	th of p	0.210 fm	
$\chi_{\mathrm{C},\pi} {=} \hbar/m_\pi c$	Compton waveleng	th of π	1.414 fm	
u	Atomic mass unit		$931.5~\rm MeV/c^2$	
m_{e}	Electron mass		$0.511~\rm MeV/c^2$	
m_n	Neutron mass		$939.6~\rm MeV/c^2$	
m_p	Proton mass		$938.3~\rm MeV/c^2$	
m_d	Deuteron mass		$1875.6~\mathrm{MeV/c^2}$	
$m_\pi^{}\pm$	$\pi^{\pm}\;mass$		$139.6~\rm MeV/c^2$	
m_{π°	π^0 mass		$135.0~\rm MeV/c^2$	
$m_{\overline{W}}$	W^{\pm} boson mass		$80.2~\mathrm{GeV/c^2}$	
m_{Z}	${\bf Z}^0$ boson mass		$91.2~\rm GeV/c^2$	
$\mu_N \text{=} \hbar e/2 m_p c$	Nuclear magneton		$3.152{ imes}10^{-18}~{ m MeV/Gauss}$	
$\mu_{\mathbf{p}}$	Proton magnetic m	oment	$2.793\;\mu_N$	
$\mu_{\mathbf{n}}$	Neutron magnetic	moment	$-1.913\;\mu_N$	
1 fm=10 ⁻¹³ cm		1 Å= 10^{-8} cm π =3.1416		
1 barn=10 ⁻²⁴ c		1.783×10^{-33}	_	
1 joule=10 ⁷ erg		$1 \text{ coulomb=} 2.998 \times 10^9 \text{ esu}$		
1 newton=10 ⁵	dyne 1 tesla=	1 tesla=10 ⁴ gauss		

Unless otherwise noted, the information presented in this table is from CODATA Values of Fundamental Physical Constants: 2006. $^{\rm a}$ The constants are arranged alphabetically according to the symbols by which they are denoted. The numbers in italics are the one-standard-deviation uncertainty in the last digits of the values given. The unified atomic mass scale ($^{\rm 12}{\rm C}\!=\!12$) has been used throughout. Values are given for both SI and cgs units. In cgs units "permittivity of vacuum" μ_0 and "permeability of vacuum" ϵ_0 are dimensionless unit quantities; in SI units they have the values $^{\rm f}$

$$\begin{array}{l} \mu_0\!=\!4\pi\times10^{-7}\ m\cdot\! kg\cdot\! s^{-2}\!\cdot\! A^{-2}\!=\!4\pi\times10^{-7}\ N\cdot\! A^{-2}\!=\!4\pi\times10^{-7}\ T\cdot\! A^{-1} \\ \epsilon_0\!=\!1/\mu_0c^2 \end{array}$$

The factor in square brackets given in the definition of a quantity is to be omitted to obtain the expression in cgs units^f.

The following abbreviations are used:

```
A = ampere
C = coulomb
cm = centimeter
emu = electromagnetic unit
esu = electrostatic unit
G = gauss
g = gram
Hz = hertz = cycles/sec
J = joule
K = degree Kelvin
kg = kilogram
m = meter
mol = mole
N = newton
s = second
T = tesla
u = atomic mass unit (unified scale)
V = volt
W = watt
```

Wb = Weber

	Symbol	Constant	Value	Units (SI) ^b	Units (cgs) ^b
	$a_0 {=} r_e/\alpha^2$	Bohr radius	5.2917721092 17	10^{-11} m	$10^{-9}\ \mathrm{cm}$
	$_{1/\alpha}^{\alpha=e^2/\hbar c[4\pi\epsilon_0]}$	Fine structure constant	$0.0072973525698\ 24$ $137.035999679\ 94$		
	c	Speed of light in vacuum	2.99792458 ^(e)	$10^8~\mathrm{m}~\mathrm{s}^{-1}$	$10^{10}\ {\rm cm\ s^{-1}}$
	$c_1 = 2\pi hc^2$	First radiation constant	3.74177153 <i>17</i>	$10^{-16}~\mathrm{W}~\mathrm{m}^2$	$10^{-5}~{\rm erg}~{\rm cm}^2~{\rm s}^{-1}$
	$c_2 = hc/k$	Second radiation constant	1.4387770 13	$10^{-2}~\mathrm{m}~\mathrm{K}$	cm K
App.	e	Elementary charge	1.602176565 <i>35</i>	$10^{-19} \; { m C}$	$10^{-20}~\mathrm{emu}$
App–IIa–ii	2e/h	Josephson frequency-voltage ratio	4.83597870 11	$10^{14}~{ m Hz}~{ m V}^{-1}$	
	$-e/m_e$	Electron specific charge	$-1.758820088\ 39$	$10^{11}~{\rm C~kg^{-1}}$	$10^7~\rm emu~g^{-1}$
	$F=N_A^{}e$	Faraday constant	9.64853365 21	$10^4~\mathrm{C~mol^{-1}}$	$10^3~{ m emu~mol^{-1}}$
	γ_{p}	Gyromagnetic ratio of proton	2.675222005 63	$10^8 \ { m s}^{-1} \ { m T}^{-1}$	$10^4~{ m s}^{-1}~{ m G}^{-1}$
		Proton magnetic shielding correction	0.000025694 14		
	G	Gravitational constant	6.67384 80	$10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$	$10^{-8} \text{ cm}^{-3} \text{ g}^{-1} \text{ s}^{-2}$

	Symbol	Constant	Value	Units (SI) ^b	Units (cgs) ^b
	h	Planck constant	6.62606957 29	$10^{-34} \; \mathrm{J \; s}$	$10^{-27}\ \mathrm{erg\ s}$
	$\hbar = h/2\pi$		1.054571726 47	$10^{-34}~\mathrm{J~s}$	$10^{-27}~{ m erg~s}$
	h/2e	Quantum of magnetic flux	2.067833758 46	$10^{-15}~\mathrm{Wb}$	$10^{-7}~\mathrm{G~cm^2}$
	$k=R/N_A$	Boltzmann constant	1.3806488 13	$10^{-23}~{ m J}~{ m K}^{-1}$	$10^{-16}~{ m erg}~{ m K}^{-1}$
	$\lambda_{\mathrm{C,e}} = h/m_{\mathrm{e}}c$	Compton wavelength of electron	2.4263102389 <i>16</i>	$10^{-12} \ \mathrm{m}$	$10^{-10} \ {\rm cm}$
Αŗ	$\lambda_{\mathrm{C},p} = h/m_p c$	Compton wavelength of proton	1.32140985623 94	$10^{-15} \ \mathrm{m}$	$10^{-13} \; {\rm cm}$
App–IIa–iii	$\lambda_{\mathrm{C},n} = h/m_n c$	Compton wavelength of neutron	1.3195909068 11	$10^{-15} \ \mathrm{m}$	$10^{-13}\;\mathrm{cm}$
a-iii	m_{e}	Electron mass	5.4857990946 22	$10^{-4} \ { m u}$	$10^{-4} \ \mathrm{u}$
	m_{H}	Mass of hydrogen atom	1.00782503207 10 ^(c)	u	u
	\boldsymbol{m}_{μ}	Muon mass	0.1134289267 29	u	u
	$\mathbf{m}_{\mathbf{n}}$	Neutron mass	1.00866491600 55	u	u
	m_{p}	Proton mass	1.00727646681290	u	u
	$m_{\pi^{\pm}}$	$\pi^{\pm} \; mass$	139.57018 <i>35</i> ^(d)	MeV	
	$m_{\pi 0}$	$\pi^0 \; mass$	134.9766 6 ^(d)	MeV	

	Symbol	Constant	Value	Units (SI) ^b	Units (cgs) ^b		
	$\mu_B \text{=[c]e}\hbar/2m_e^{}c$	Bohr magneton	9.27400968 20	$10^{-24}~{ m J}~{ m T}^{-1}$	$10^{-21}~{ m erg}~{ m G}^{-1}$		
	μ_e/μ_B	Magnetic moment of electron	$-1.00115965218076\ 27$				
	μ_{μ}	in units of µ _B Muon magnetic moment	-4.49044807 15	$10^{-26}~{ m J}~{ m T}^{-1}$	$10^{-23} { m \ erg \ Gs^{-1}}$		
	$\mu_N\text{=[c]e}\hbar/2m_pc$	Nuclear magneton	5.05078353 11	$10^{-27}~{ m J}~{ m T}^{-1}$	$10^{-24}~{ m erg}~{ m G}^{-1}$		
	N_A	Avogadro constant	6.02214129 27	$10^{23}\ {\rm mol^{-1}}$	$10^{23}\ { m mol^{-1}}$		
App-	R	Molar gas constant	8.3144621 75	$\rm J~mol^{-1}~K^{-1}$	$10^7~{\rm erg}~{\rm mol}^{-1}~{\rm K}^{-1}$		
-1. V	$R_{\infty} \text{=} m_{e} c \alpha^{2} / 2 h$	Rydberg constant for infinite mass	1.0973731568539 <i>55</i>	$10^7 \; \mathrm{m}^{-1}$	$10^5~\mathrm{cm}^{-1}$		
	$r_e = \hbar \alpha / m_e c$	Classical e ⁻ radius	2.8179403267 27	$10^{-15} \ m$	$10^{-13}\ \mathrm{cm}$		
	$\sigma = \\ (\pi^2/60)k^4/\hbar^3c^2$	Stefan-Boltzmann constant	5.670373 21	$10^{-8}~W~m^{-2}~K^{-4}\\erg~cm^{-2}~s^{-1}~K^{-4}$	10^{-5}		
	$u = 1/N_A$	Atomic mass unit	1.66053873 <i>13</i> ^(c) 931.494013 <i>37</i> ^(c)	$10^{-27}~\mathrm{kg}$ MeV	$10^{-24}~\mathrm{g}$		

1 year (sidereal) = 365.25636 days = 3.1558150×10^7 s, 1 year (tropical) = 365.242 days = 3.15569×10^7 s

- a) P.J. Mohr, B.N. Taylor, and D.B. Newell Jl. of Phys. and Chem. Ref. Data 37, 1187 (2008); Rev. Mod. Phys. 80, 633 (2008). Data taken from http://physics.nist.gov/constants.
- b) Quantities are given in the International System of Units (SI) except for the atomic mass unit; this unit is not part of the SI.
- c) The AME 2003 atomic mass evaluation, G. Audi, A.H. Wapstra, and C. Thibault, *Nuclear Physics* A729, 337 (2003)
- d) Review of Particle Physics, C. Amsler, et al., Physics Letters B667, 1 (2008); http://pdg.lbl.gov/
- e) Speed of light in vacuum is an exact constant as a result of redefinition of the meter [P. Giacomo, Metrologia 20, 25 (1984)].
- f) General Section by H.L. Anderson and E.R. Cohen in A Physicist's Desk Reference, H.L. Anderson, Editor-in-Chief, AIP, New York (1989)

Appendix-III Energy-Equivalent Factors†

	units	erg	eV	s^{-1}	cm^{-1}		
-	erg	1.0	$1.602176565\ 35 \times 10^{-12}$	$6.62606957\ 29\times10^{-27}$	1.986445684 88×10 ⁻¹⁶		
	eV	$6.24150934~14\!\!\times\!\!10^{11}$	1.0	$4.135667516\ 91\times10^{-15}$	$1.239841930\ 27\!\!\times\!\!10^{-4}$		
Α	s^{-1}	$1.509190311~67\!\!\times\!\!10^{26}$	$2.417989348\ 53\!\!\times\!\!10^{14}$	1.0	$2.99792458\times \! 10^{10}$		
	cm^{-1}	$5.03411701\ 22{\times}10^{15}$	$8.06554429~18{\times}10^{3}$	$3.335640951\!\!\times\!\!10^{-11}$	1.0		
	K	$7.2429716\ 22{\times}10^{15}$	$1.1604519\ 11\times10^{4}$	$4.7992434~44\!\!\times\!\!10^{-11}$	1.4387770 13		
	g	$1.112650056\!\!\times\!\!10^{-21}$	$1.782661845\ 39{\times}10^{-33}$	$7.37249668\ 33{\times}10^{-48}$	$2.210218902\ 98{\times}10^{-37}$		
	u	$6.70053662\ 53{\times}10^2$	$1.073544150~\textit{24}{\times}10^{-9}$	$4.4398216689\ 31\times10^{-24}$	$1.33102505120~94\!\!\times\!\!10^{-13}$		
-111-	ı	(1 cal = 4.1840 J, 1 J =	10 ⁷ erg)				

Note: In the above table all entries in the same column are equivalent. The various units of energy are connected as follows:

$$1 \text{ erg} = 1/c^2 \text{ g} = 1/(mc^2) \text{ u} = 1/(hc) \text{ cm}^{-1} = 1/h \text{ s}^{-1} = 1/k \text{ }^0 \text{K} = 1/e \text{ eV}$$

Examples: 1 eV =
$$1.602..\times10^{-12}$$
 erg = $1.073..\times10^{-9}$ u= $3.829..\times10^{-20}$ cal

$$e/h = 2.417..\times10^{14}~{\rm s}^{-1},~e/(hc) = 8.0654..\times10^{3}~cm^{-1}$$

$$e/c^2 = 1.782..\times10^{-33} g$$
, $e/mc^2 = 1.073..\times10^{-9} u$

$$e/k = 1.160.. \times 10^4 \text{ K}$$

Appendix-III Energy-Equivalent Factors†

	units	deg K	g	u
	erg	$1.3806488\ 13\times10^{-16}$	$8.987551787 \times 10^{20}$	$1.492417954\ 66 \times 10^{-3}$
	eV	$8.6173324\ 78{\times}10^{-5}$	$5.60958885~12{\times}10^{32}$	$9.31494061~21\times10^{8}$
	s^{-1}	$2.0836618\ 19{\times}10^{10}$	$1.356392608~60\!\!\times\!\!10^{47}$	$2.2523427168\ 16{\times}10^{23}$
	cm^{-1}	$6.9503476\ 63\!\!\times\!\!10^{-1}$	$4.52443873\ 20{\times}10^{36}$	$7.5130066042\ 53{\times}10^{12}$
	K	1.0	$6.5096582\ 59{\times}10^{36}$	$1.08095408~98{\times}10^{13}$
	g	$1.5361790\ 14\!\!\times\!\!10^{-37}$	1.0	$1.660538921\ 73{\times}10^{-24}$
App-I	u	$9.2510868~84{\times}10^{-14}$	$6.02214129\ 27{\times}10^{23}$	1.0
=	· ·			

Note: In the above table all entries in the same column are equivalent.

Example: $1u = 1.492.. \times 10^{-3} \text{ erg} = 9.314.. \times 10^{8} \text{ eV} = 3.567.. \times 10^{-11} \text{ cal, etc.}$

[†] From CODATA Values of Fundamental Physical Constants: 2006, P.J. Mohr, B.N. Taylor, and D.B. Newell, Jour. of Phys. and Chem. Ref. Data 37, 1187 (2008), Rev. Mod. Phys. 80, 633 (2008). Data taken from http://physics.nist.gov/constants (Aug, 2011)

Appendix-IV Observed A Hypernuclides†

El	A	J (g.s.)	$B_{\Lambda}(g.s.)$	Excited states (MeV)
н	3	1/2+	0.13 5	
	4	0+	2.04 4	1.05 4 1+
Не	5 6 8	0+ 1/2+	2.39 3 3.12 2 4.18 10 7.16 70	1.15 4 1+
Li	6 7	1/2 + a	5.58 3	0.692 2 3/2+,2.050 1 5/2+, 2.521 2 7/2+,3.878 5 1/2+
	8 9	1-	6.80 <i>3</i> 8.50 <i>12</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Be	7	1/2 +	5.168	
	8 9 10	1/2+	6.84 5 6.71 4 9.11 22	3.024 4 5/2+, 3.067 4 3/2+
В	9 10 11		8.29 <i>18</i> 8.89 <i>12</i> 10.24 <i>5</i>	0.263 1 7/2+, 1.483 1 1/2+,
	12	1-	11.37 6	1.987 1 3/2+
C	12 13	1- 1/2+	10.80 18 ^b 11.69 12	0.161 1 2-, 2.832 3 1- 4.88 2 3/2+,10.83 6 3/2-,
	14		12.17 33	10.98 6 1/2-
N	14			
	15	3/2+ ^c	19.70.1cd	2.268 <i>I</i> 1/2+, 4.229 <i>I</i> 1/2+, 4.710 <i>I</i> 3/2+
•	16	0	13.76 16 ^d	0.000.0.1 0.700.0.1
О	18	0-	12.42 5	0.026 2 1-, 6.562 2 1-, 6.786 6 2-
Al	27			
	28	e		
\mathbf{Si}	28		16.6 2	BΛ=7.0 2 (p)
\mathbf{s}	32			
Ca	40			
\mathbf{v}	51		20.02	BΛ=11.2 3 (p), 2.6 3 (d)
Fe	56			
Y	89		23.1 5	BA=16.5 14 (p), 9.1 13 (d), 2.3 12 (f)
La	139		24.5 12	BA=20.4 6 (p), 14.3 6 (d), 8.0 6 (f), 1.6 6 (g)
Pb	208		26.3 8	$B\Lambda=21.9~6~(p),~16.8~7~(d),~11.7~6~(f),~6.6~6~(g)$
Bi	209			

Appendix-IV Observed A Hypernuclides†

† This table has been prepared by **D.J. Millener** (BNL). The Λ binding energies (s_{Λ} single-particle energies), $B\Lambda$, for $A \le 14$ come from emulsion data compiled by D.H. Davis and J. Pniewski, Contemp. Phys. 27, 91 (1986). Most of the rest of the data comes from a review by O. Hashimoto and H Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006), which lists all counter experiments for hypernuclei up to 2004. The B Λ values for A>16 from (π +,K+) reactions, as do the Λ single-particle binding energies for higher orbits (listed by their orbital angular momentum p, d, f, or g).

The precise excitation energies given for bound excited states of hypernuclei from A=7 to A=16 come from γ -rays measured in coincidence with the outgoing meson in $(\pi+,K+)$ or $(K-,\pi-)$ reactions by a Ge detector array (NaI for A=13); for the latest results, see H. Tamura et al., Nucl. Phys. A835, 3 (2010). Many particle unbound states of these nucei are seen in $(\pi+,K+),(K-,\pi-)$, and (e,e'K+) reactions.

In addition to these single- Λ hypernuclides, several instances of double- Λ species have been reported, including the important case of $^6_{\Lambda\Lambda}$ He, as reviewed by K. Nakazawa *Nucl. Phys.* A835, 207 (2010).

- a J. Sasao et al., Phys. Lett. B579, 258 (2004).
- b P. Dluzewski et al., Nucl. Phys. A484, 520 (1988).
- c M. Agnello et al., Phys. Lett. B681, 139 (2009).
- d F. Cusanno et al., Phys. Rev. Lett. 103, 202501 (2009).
- e O. Hashimoto Nucl. Phys. A835, 121 (2010).

Half-lives of fully-ionized (bare) and highly-charged atoms†

El	A	T1/2(bare)	T1/2(neutral)	Decay mode	Ref
Ne	19	18.5(6) s #	17.22(2) s	ε	[1]
Mn	52m	22.7(30) m	21.1(2) m	ϵ ,IT	[2]
Fe	52	12.5(+15-12) h	8.275(8) h	ε	[2]
	53	8.5(3) m	8.51(2) m	ε	[2]
	53m	2.48(5) m	2.54(2) m	IT	[2]
$\mathbf{S}\mathbf{b}$	133m	>60 µs	16.54(19) μs	IT?	[15]
Се	125m	2.2(+11-1) m	4.4 s (est.)	IT	[3]
\mathbf{Pr}	140	7.3(4) m	3.39(1) m	ε	[5]
		3.04(9) m &			[5]
		3.84(17) m \$			[5]
Pm	142	56.4(32) s	40.5(5) s	ε	[6]
		39.2(7) s &			[6]
		39.6(14) s \$			[6]
$^{\mathrm{Tb}}$	144m	12(2) s	4.25(15) s	ϵ, IT	[7]
$\mathbf{D}\mathbf{y}$	149m	11(1) s	$0.490(15) \mathrm{s}$	IT,ϵ	[7]
	163	47(+5-4) d	stable	β–	[8]
Ηo	163	beta-stable	4570(25) y	ε	[8]
\mathbf{Er}	151m	19(3) s	0.58(2) s	IT,ϵ	[7]
$_{\mathrm{Hf}}$	183m	10(+48-5) s &		$IT,\beta-?$	[16]
	184m1	1.9(+12-7) m	48(10) s	IT	[16]
	184m2	12(+10-4) m		$IT,\beta-?$	[16]
	186m	>20 s		$IT,\beta-?$	[16]
Ta	168	5.2(7) m	2.0(1) m	ε	[4]
	186m	3.4(+24-14) m &	& 1.54(5) m	$IT,\beta-?$	[16]
	187	2.3(6) m		β-	[16]
	187m1	22(9) s		IT, β -?	[16]
	187m2	>5 m	10	IT, β -?	[16]
Re	187	32.9(20) y	$4.33(7)\times10^{10} \text{ y}$		[9]
	192m	61(+40-20) s		IT	[18]
Hg	205	5.61(9) m	5.14(9) m	β–	[11]
Tl	207	4.25(19) m	4.77(3) m	β-	[10]
	207	4.72(19) m	4.77(3) m	β-	[11]
	207m	1.47(32) s	1.33(11) s	IT	[12]
	213	1.7(+81-8) m		β-	[14]
Po	221	1.9(+10-5) m @		β-	[14]
	222	2.4(+116-11) m		β-	[14]
At	224	1.3(+23-4) m @	\	β–	[14]
Ac	234	45(2) s \$	44(7) s	β-	[13]
	235	62(4) s &	6% longer (est.	•	[13]
	236	1.2(+58-6) m		β–	[14]

 $^{\&}amp; \quad H{\rm -lik}\,e$

† Table prepared by **Yuri A. Litvinov** (GSI, Darmstadt and MPI, Heidelberg) and **Balraj Singh** (McMaster Univ.) September 12, 2011, on the basis of review article [17] and other papers cited here for fully-ionized (bare) or highly-charged (H-like, He-like) atoms.

^{\$} He-like

^{# 11%} contamination by beta-decay of O-15 is suggested [1].

[@] Can be a mixture of bare, H-like and He-like states [14].

Half-lives of fully-ionized (bare) and highly-charged atoms†

REFERENCES

- [1] H. Geissel et al., Phys. Rev. Lett. 68 (1992) 3412
- [2] H. Irnich et al., Phys. Rev. Lett. 75 (1995) 4182
- [3] B. Sun et al., Eur. Phys. J. A31 (2007) 393
- [4] F. Attallah et al., Nucl. Phys. A 701 (2002) 561c
- [5] Yu.A. Litvinov et al., Phys. Rev. Lett. 99 (2007) 262501
- [6] N. Winckler et al., Phys. Lett. B679 (2009) 36
- [7] Yu.A. Litvinov et al., Phys. Lett. B 573 (2003) 80
- [8] M. Jung et al., Phys. Rev. Lett. 69 (1992) 2164
- [9] F. Bosch et al., Phys. Rev. Lett. 77 (1996) 5190
- [10] T. Ohtsubo et al., Phys. Rev. Lett. 95 (2005) 052501
- [11] J. Kurcewicz et al., Acta Phys. Pol. B41 (2010) 525
- [12] F. Bosch et al., Int. J. Mass Spectrometry 251 (2006) 212
- [13] L. Chen, Ph.D. Thesis, Justus-Liebig University, Giessen (2008)
- [14] L. Chen et al., Phys. Lett. B 691 (2010) 234
- [15] B. Sun et al., Phys. Lett. B 688 (2010) 294
- $[16]\ M.\ Reed\ et\ al.,\ Phys.\ Rev.\ Lett.\ 105\ (2010)\ 172501$
- [17] Y.A. Litvinov and F. Bosch: Rep. Prog. Phys. 74 (2011) 016301
- [18] M. Reed et al., J. Phys. Conf. Series (to be published)

Radioactive Decay Chains in Nature

The following three radioactive decay chains occur in nature:

The Thorium Series:

```
\begin{array}{l} ^{232}Th(\alpha)^{228}Ra(\beta^{-})^{228}Ac(\beta^{-})^{228}Th(\alpha) \\ ^{224}Ra(\alpha)^{220}Rn(\alpha)^{216}Po(\alpha)^{212}Pb(\beta^{-}) \\ ^{212}Bi(\beta^{-})^{212}Po(\alpha)^{208}Pb, \\ ^{212}Bi(\alpha)^{208}Tl(\beta^{-})^{208}Pb \end{array}
```

The Uranium Series:

```
\begin{array}{l} ^{238}U(\alpha)^{234}Th(\beta^{-})^{234}Pa(\beta^{-})^{234}U(\alpha) \\ ^{230}Th(\alpha)^{226}Ra(\alpha)^{222}Rn(\alpha)^{218}Po(\beta^{-}) \\ ^{218}At(\alpha)^{214}Bi(\beta^{-})^{214}Po(\alpha)^{210}Pb(\beta^{-}), \\ ^{218}Po(\alpha)^{214}Pb(\beta^{-})^{214}Bi(\alpha)^{210}Tl(\beta^{-}) \\ ^{210}Pb(\beta^{-})^{210}Bi(\alpha)^{206}Tl(\beta^{-})^{206}Pb, \\ ^{210}Pb(\alpha)^{206}Hg(\beta^{-})^{206}Tl(\beta^{-})^{206}Pb, \\ ^{210}Bi(\beta^{-})^{210}Po(\alpha)^{206}Pb \end{array}
```

The Actinium Series

```
\begin{array}{l} ^{235}U(\alpha)^{231}Th(\beta^{-})^{231}Pa(\alpha)^{227}Ac(\beta^{-}) \\ ^{227}Th(\alpha)^{223}Ra(\alpha), ^{227}Ac(\alpha)^{223}Fr(\beta^{-}) \\ ^{223}Ra(\alpha)^{219}Rn(\alpha), ^{223}Fr(\alpha)^{219}At(\beta^{-}) \\ ^{219}Rn(\alpha)^{215}Po(\alpha), ^{219}At(\alpha)^{215}Bi(\beta^{-}) \\ ^{215}Po(\beta^{-})^{215}At(\alpha)^{211}Bi(\beta^{-})^{211}Po(\alpha) \\ ^{207}Pb, ^{215}Po(\alpha)^{211}Pb(\beta^{-})^{211}Bi(\alpha) \\ ^{207}Tl(\beta^{-})^{207}Pb \end{array}
```

Radioactive Nuclides in Nature

Nuclide	Half-life	Decay Modes
1 H 3	12.32 y	β–
4 Be 7	53.24 d	ε
6 C 14	5700 y	β–
19 K 40	1.248×10 ⁹ y	β_
23 V 50	$>2.1\times10^{17} \text{ y}$	ε, β–
37 Rb 87	$4.81 \times 10^{10} \text{ y}$	β_
48 Cd 113	$8.00 \times 10^{15} \text{ y}$	β_
49 In 115	$4.41 \times 10^{14} \text{ y}$	β_
52 Te 123	$>9.2\times10^{16} \text{ y}$	ε
57 La 138	1.02×10 ¹¹ v	ε, β–
60 Nd 144	$2.29 \times 10^{15} \text{ y}$	α
62 Sm 147	1.060×10 ¹¹ v	α
148	$7 \times 10^{15} \text{ y}$	α
64 Gd 152	1.08×10 ¹⁴ y	α
71 Lu 176	$3.76 \times 10^{10} \text{ y}$	β–
72 Hf 174	$2.0 \times 10^{15} \text{ y}$	α
73 Ta 180m	$>1.2\times10^{15} \text{ y}$	ε, β-
75 Re 187	$4.33 \times 10^{10} \text{ y}$	β-, α
76 Os 186	$2.0 \times 10^{15} \text{ y}$	α
78 Pt 190	$6.5 \times 10^{11} \text{ y}$	α
81 Tl 206	4.202 m	β_
207	4.77 m	β_
208	3.053 m	β–
210	1.3 m	β-, β-n
82 Pb 210	22.2 y	β -, α
211	36.1 m	β–
$\begin{array}{c} 212 \\ 214 \end{array}$	10.64 h 26.8 m	β– β–
83 Bi 210	5.012 d	•
211	2.14 m	$\beta-$, α α , $\beta-$
212	1.009 h	β -, α
214	19.9 m	β-, α
215	7.6 m	β–
84 Po 210	138.4 d	α
211	$0.516 \mathrm{\ s}$	α
212	$0.299~\mu \mathrm{s}$	α
214	164.3 μs	α
$\begin{array}{c} 215 \\ 216 \end{array}$	1.781 ms 0.145 s	α, β–
218	0.145 s 3.098 m	α α, β–
85 At 215	0.1 ms	α, ρ
218	1.5 s	α, β–
219	56 s	α, β–
86 Rn 219	$3.96 \mathrm{\ s}$	α
220	$55.6 \mathrm{\ s}$	α
	A TT1	

App-Vb

Radioactive Nuclides in Nature

		Decay
Nuclide	Half-life	Modes
86 Rn 222	3.823 d	α
87 Fr 223	22 m	β -, α
88 Ra 223	11.43 d	$\stackrel{\alpha}{\scriptstyle{,}} \stackrel{14}{\scriptstyle{,}} \stackrel{12}{\scriptstyle{,}} \stackrel{14}{\scriptstyle{,}} \stackrel{14}$
$\begin{array}{c} 224 \\ 226 \end{array}$	3.632 d 1600 y	α , ¹⁴ C
228	5.75 y	β–
89 Ac 227	21.77 y	β-, α
228	6.15 h	β–
90 Th 227	18.68 d	α
228	1.912 y	$lpha$, $^{20}\!\mathrm{O}$
230	$7.54 \times 10^4 \text{ y}$	α , Ne , SF
231	1.063 d	β-, α
232	$1.40 \times 10^{10} \text{ y}$	α , SF
234	24.1 d	β–
91 Pa 231	$3.276 \times 10^4 \text{ y}$	α , SF
234	6.7 h	β–
92 U 234	$2.455 \times 10^{5} \text{ y}$	$\alpha,\mathrm{SF},\mathrm{Mg},\mathrm{Ne}$
235	$7.04 \times 10^{8} \text{ y}$	α , SF, Mg, Ne
238	$4.468 \times 10^9 \text{ y}$	α , SF

Appendix-VIa Periodic Table of Elements

IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIII		IΒ	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
H 1																	Не 2
$_3^{ m Li}$	Ве 4											B 5	C 6	N 7	O 8	F 9	Ne 10
Na 11	Mg 12											Al 13	Si 14	P 15	S 16	Cl 17	Ar 18
K 19	Са 20	$\frac{\mathrm{Sc}}{21}$	Ti 22	V 23	$rac{\mathrm{Cr}}{24}$	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	$^{\rm As}_{33}$	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Тс 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Те 52	I 53	Xe 54
$\frac{\mathrm{Cs}}{55}$	Ва 56	* 57-	$^{ m Hf}_{72}$	Та 73	W 74	Re 75	Os 76	Ir 77	Pt 78	Au 79	Hg 80	Tl 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra 88	** 89-	Rf 104	Db 105	$_{106}^{ m Sg}$	Bh 107	Hs 108	Mt 109	$^{\mathrm{Ds}}_{110}$	Rg 111	Cn 112	113	114	115	116	117	118
*	La 57	Ce 58	Pr 59	N d 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dу 66	Но 67	Er 68	Tm 69	Yb 70	Lu 71	Lant	hanides
**	Ac 89	Th 90	Ра 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	$_{103}^{\rm Lr}$	Acti	nides

Appendix-VIb List of Elements - Alphabetical								
Appendix- Name	Symbol Symbol	tore Z	Liements – Alp Name	nabetic Symbol	aı Z			
	•		- 1 - 1 - 1 - 1	-				
Actinium	Ac	89	Meitnerium	Mt	109			
Aluminum	Al Am	13 95	Mendelevium	Md	101			
Americium	Sh	95 51	Mercury	Hg Mo	$\frac{80}{42}$			
Antimony	Ar	18	Molybdenum Neodymium	N d	60			
Argon Arsenic	Ar	33	Neon	Nu Ne	10			
Astatine	At	85	Neptunium	Np	93			
Barium	Ва	56	Nickel	Ni	28			
Berkelium	Bk	97	Niobium	Nb	41			
Beryllium	Be	4	Nitrogen	N	7			
Bismuth	Bi	83	Nobelium	No	102			
Bohrium	Bh	107	Osmium	Os	76			
Boron	В	5	Oxygen	0	8			
Bromine	Br	35	Palladium	Pd	46			
Cadmium	Cd	48	Phosphorus	P	15			
Calcium	Ca	20	Platinum	Pt	78			
Californium	Cf	98	Plutonium	Pu	94			
Carbon	C	6	Polonium	Po	84			
Cerium	Ce	58	Potassium	K	19			
Cesium	Cs	55	Praseodymium	Pr	59			
Chlorine	C1	17	Promethium	Pm	61			
Chromium	Cr	24	Protactinium	Pa	91			
Cobalt	Co	27	Radium	Ra	88			
Copernicium	Cn	112	Radon	Rn	86			
Copper	Cu	29	Roentgenium	Rg	111			
Curium	Cm	96	Rhenium	Re	75			
Darmstadtium	$_{\mathrm{Ds}}$	110	Rhodium	Rh	45			
Dubnium	Db	105	Rubidium	Rb	37			
Dysprosium	Dy	66	Ruthenium	Ru	44			
Einsteinium	Es	99	Rutherfordium	$\mathbf{R}\mathbf{f}$	104			
Erbium	\mathbf{Er}	68	Samarium	Sm	62			
Europium	Eu	63	Scandium	\mathbf{Sc}	21			
Fermium	\mathbf{Fm}	100	Selenium	Se	34			
Fluorine	\mathbf{F}	9	Seaborgium	Sg	106			
Francium	\mathbf{Fr}	87	Silicon	Si	14			
Gadolinium	Gd	64	Silver	Ag	47			
Gallium	Ga	31	Sodium	Na	11			
Germanium	$_{ m Ge}$	32	Strontium	\mathbf{Sr}	38			
Gold	Au	79	Sulfur	\mathbf{S}	16			
Hafnium	$_{ m Hf}$	72	Tantalum	Ta	73			
Hassium	$_{ m Hs}$	108	Technetium	Tc	43			
Helium	He	2	Tellurium	Te	52			
Holmium	Ho	67	Terbium	${ m Tb}$	65			
Hydrogen	H	1	Thallium	Tl	81			
Indium	In	49	Thorium	$\mathbf{T}\mathbf{h}$	90			
Iodine	I	53	Thulium	Tm	69			
Iridium	Ir	77	Tin	Sn	50			
Iron	Fe	26	Titanium	Ti	22			
Krypton	Kr	36	Tungsten	W	74			
Lanthanum	La	57	Uranium	U	92			
Lawrencium	Lr	103	Vanadium	V	23			
Lead	Pb	82	Xenon	Xe	54			
Lithium	Li	3	Ytterbium	Yb	70			
Lutetium	Lu M	71	Yttrium	Y	39			
Magnesium	Mg	12	Zinc	Zn Zn	30			
Manganese	Mn	25 App	Zirconium -VIb	\mathbf{Zr}	40			
		rr						

Appendix-VIc List of Elements - by Z

		Appendix-VIc I	List			
z s	ymbo	l Name		$\mathbf{z} \mathbf{s}$	ymbo	ol Name
1	Н	Hydrogen		57	La	Lanthanum
2	He	Helium		58	Ce	Cerium
3	Li	Lithium		59	Pr	Praseodymium
4	Ве	Beryllium		60	Nd	Neodymium
5	В	Boron		61	Pm	Promethium
6	$\overline{\mathbf{C}}$	Carbon		62	Sm	Samarium
7	N	Nitrogen		63	Eu	Europium
8	O	Oxygen		64	Gd	Gadolinium
9	F	Fluorine		65	Tb	Terbium
10	Ne	Neon		66	Dy	Dysprosium
11	Na	Sodium		67	Ho	Holmium
12	Mg	Magnesium		68	Er	Erbium
13	Al	Aluminum		69	Tm	Thulium
14	Si	Silicon		70	Yb	Ytterbium
15	P	Phosphorus		71	Lu	Lutetium
16	s	Sulfur		72	Hf	Hafnium
17	Č1	Chlorine		73	Ta	Tantalum
18	Ar	Argon		74	W	Tungsten
19	K	Potassium		75	Re	Rhenium
20	Ca	Calcium		76	Os	Osmium
21	Sc	Scandium		77	Ir	Iridium
22	Ti	Titanium		78	Pt	Platinum
23	V	Vanadium		79	Au	Gold
24	Ċr	Chromium		80	Hg	Mercury
25	Mn	Manganese		81	Tl	Thallium
26	Fe	Iron		82	Pb	Lead
$\frac{20}{27}$	Со	Cobalt		83	Bi	Bismuth
28	Ni	Nickel		84	Po	Polonium
29	Cu	Copper		85	At	Astatine
30	Zn	Zinc		86	Rn	Radon
31	Ga	Gallium		87	Fr	Francium
32	Ge	Germanium		88	Ra	Radium
33	As	Arsenic		89	Ac	Actinium
34	Se	Selenium		90	Th	Thorium
35	Br	Bromine		91	Pa	Protactinium
36	Kr	Krypton		92	U	Uranium
37	Rb	Rubidium		93	Np	Neptunium
38	Sr	Strontium		94	Pu	Plutonium
39	Y	Yttrium		95	Am	Americium
40	Zr	Zirconium		96	Cm	Curium
41	Nb	Niobium		97	Bk	Berkelium
42	Mo	Molybdenum		98	Cf	Californium
43	Тс	Technetium		99	Es	Einsteinium
44	Ru	Ruthenium			Fm	Fermium
45	Rh	Rhodium			Md	Mendelevium
46	Pd	Palladium		101		Nobelium
47	Ag	Silver		102		Lawrencium
48	Cd	Cadmium		103		Rutherfordium
49	In	Indium		104		Dubnium
50	Sn					
50 51	Sn Sb	Tin		106		Seaborgium Bohrium
51 52	Te	Antimony		107		
		Tellurium		108		Hassium
53	I v.	Iodine		109		Meitnerium
54	Xe	Xenon		110		Darmstadtium
55 56	Cs	Cesium		111		Roentgenium
56	Ва	Barium	App-	112 VIc	Cn	Copernicium
			-144-	, 10		

Additional Copies Of These Wallet Cards May Be Obtained From

National Nuclear Data Center Brookhaven National Laboratory Building 197D P.O. Box 5000 Upton, New York 11973-5000 U.S.A.

> E-mail: nndc@bnl.gov Tel: (631) 344-2902 Fax: (631) 344-2806