This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

❷特 許 公 報(B2) 平3-74438

®Int.Cl.⁵	i	識別記号	庁内整理番号	2000 公告	平成3年(1991)11月26日
G 07 D	5/08 5/00 5/02	1 0 3 1 0 2 1 0 3	8111-3E 8111-3E 8111-3E		
					発明の数 1 (全5頁)

❷発明の名称 硬貨検査装置

②特 頭 昭60-25288 前置審査に係属中 **⊗**公 閉 昭61-187091 经出 頤 昭60(1985) 2月14日 @昭61(1986)8月20日

@発 明 者 林 小 埼玉県坂戸市関間 1-11-2 攻 @発 明 者 杉 本 僿 埼玉県入間市久保稲荷1-7-7 @発 明 者 古 矢 米 蔵 埼玉県比企郡鳩山町大字石坂795-58 @発 明 者 = 上 埼玉県川越市古谷上2290-1 貧

の出 随 人 株式会社日本コンラツ 東京都千代田区内幸町2丁目2番2号

・クス

四代 理 人 弁理士 竹本 松司 外1名

審査官 新 海 岳

图参考文献 特開 昭60-258697 (JP, A) 特開 昭61-80491 (JP, A)

1

図特許請求の範囲

1 硬貨通路の一側部に発振コイルを、他側部に 上記発振コイルに対向させて受信コイルを配して 成る硬貨検査装置において、上記発振コイルはコ され、上記受信コイルはコイルの巻き軸方向が上 記硬貨通路面に対し垂直な2つの直列逆相接続さ れたコイルで構成され、かつ該2つのコイル中間 点と上記発振コイルの中間点をほぼ一致して配置が したことを特徴とする硬貨検査装置。

発明の詳細な説明

産業上の利用分野

本発明は、自動販発機あるいは両替機等の硬貨 選別装置に用いる硬貨検査装置に関する。

従来技術

従来、発振コイルと受信コイルを用いた硬貨検 査装置は、例えば、特公昭57-35510号公報、特 公昭57-35511号公報、特公昭55-17998号公報、 特公昭54-26200号公報、特公昭55-15756号公 報等ですでに公知である。しかし、これらの従来 技術においては、硬貨の材質の差異や径の差異を 検出することができても硬貨の中心とその周辺部 2

の凹凸模様の差異を検出することは非常に困難で あつた。第2-a図、第2-b図はこのような従 来公知の硬貨検出装置の一例で、第2 -- a 図は硬 貨の材質を検出する硬貨検査装置2を示すもので イルの巻き軸方向が上記硬貨通路面と平行に配設 5 発振コイル2aと2つの受信コイル2b, 2cを 側板P1, P2間に形成した硬貨通路間に相対し て配置し、かつ検査対象硬貨の中心部が通過する 位置に発振コイル2aの中心点が置かれ、かつ、 この発振コイル2aの中心線は2つの受信コイル 10 2 b, 2 c間の中間点と一致するように配置され ていた。また、第2-b図は硬貨の径を検出する 硬貨検査装置3を示すもので、硬貨通路1の両側 に発振コイル3aと2つの受信コイル3b.3c を対面させて配置し、かつ2つの受信コイル3 15 b, 3 cの中間点と発振コイル3 aの中心点を一 致させ、かつ検査対象硬貨の周辺部が涌過する位 置に配置していた。そして、第2-a図、第2b図で示す硬貨検査装置2,3を硬貨通路1の上 ・ 流及び下流に配置し、材質を検査する硬貨検査装 報、特公昭57-557号公報、実公昭55-17257号公 20 置2の発振コイル2aには25K比程度の低周波 を、また、径を検査する硬貨検査装置3の発振コ イル3aには100KH程度の高周波を印加し、硬 貸が通過するとき各々の受信コイル2b, 2c.

3 b、 3 cから得られる電圧波形のピーク値等に より、硬貨の材質と径を検査判別して硬貨の真 偽、種類を判別していた。しかし、硬貨の径がほ は同じで、かつ材質もほとんど同じであり、硬貨 の表面の凹凸模様や穴のあるなしによる差異しか 5 ない2つ以上の硬貨を選別するとき、特に、硬貨 の厚みが厚く発振コイル2a,3aと受信コイル 2b, 2c, 3b, 3c間の距離が大きくなる と、上記従来の方法では非常に困難で、上記受信 コイル2b, 2c, 3b, 3cから得られる電圧 10 波形はほとんど同じとなり選別することができな かつた。それは、例えば、第5図に示すように発 振コイル2 aからの磁束が拡散し、受信コイル2 b, 2 cに達する量が少なくなり、受信コイルの 出力レベルが小さくなることから硬貨の表面の凹 15 凸模様や穴のあるなしの微妙な差を検出できなく なることに起因している。そこで、硬貨の表面の 凹凸模様や穴のあるなしを検出選別する方法とし て、受信コイルに2つの直列逆相接続したコイル を用い、発振コイルの中間点と受信コイルの2つ 20 のコイルの中間点をずらして配置して凹凸模様や 穴のあるなしを選別する方法が特許出願人によつ で開発された(特公昭63-57835号公報参照)。

発明が解決しようとする課題

表面の凹凸模様や穴のあるなしの差しかないよう な2つ以上の硬貨に対しても、その凹凸模様と穴 のあるなしにより硬貨の選別ができるようにする もので、上記符公昭63-57835号公報記載の発明 る。

課題を解決するための手段

硬貨通路の―側部にコイルの巻き軸方向が該硬 貨通路面と平行になった発振コイルが配設され、 に対し垂直で、直列逆相接続した2つのコイルか らなる受信コイルを配設し、該2つの受信コイル 間の中間点と上記発展コイルの中間点をほぼ一致 させて配設する。

作用

上記発振コイルに低周波を印加し、硬貨通路に 硬貨を流下させると、上記2つの受信コイルには 硬貨の材質、凹凸模様、穴のあるなしに応じてビ ーク電圧の異なる電圧波形が生じ、この電圧波形

より硬貨の種類、正偽を判別できる。 実施例

第1図は本発明の一実施例を示す断面図で、1 は硬貨通路で、側板P1, P2及び底板P3で該 硬貨通路1は形成されており、これら側板P1, P2、底板P3は非磁性材料で形成され、上記硬 **貨通路1は傾斜し、硬貨が該硬貨通路を傾斜した** 底板P3に従って落下するようになつている(第 1図中紙面垂直方向に底板P3上を転動しながら 硬貨は落下する)。4 aは傾斜硬貨通路1の一側 部に配置された発振コイルで、コイルの巻き軸方 向が上記硬貨通路1面と平行になるよう配置さ れ、、通過する検査対象硬貨の中心部と、該発掘コ イル中間点がほぼ一致するように配置されてい る。4b, 4cは硬貨通路1の他側部に配設され た受信コイルで、該受信コイル46,40のコイ ルの巻き軸方向は上記硬貨通路 1 面に対し垂直方 向に配置され、かつ上記受信コイル4b,4c間 の中間点と上記発振コイル4 aの中間点はほぼ一 致して配設されている。そして、この受信コイル '4 b, 4 c はほぼ同じコイルを直列逆相接続して ある。なお、本実施例では硬貨の材質と表面模様 の違いにより硬貨を選択するものとして落下する 硬貨の中心部と発振コイル 4 a の中間点を一致さ 本発明は上記従来技術の欠点を改善し、硬貨の 25 せるようにしたが、硬貨の外径と表面模様の違い により硬貨を選別する場合は、落下する硬貨の周 辺部に発振コイル4 a を配置するようにしてもよ 60

上述したような発振コイル4 aと受信コイル4 とは異なる手段でこの問題点を解決するものであ 30 b, 4 c を第3図に示すように従来例と同じよう に、発振コイル4aには発振器に接続し、受信コ イル4b, 4cには増幅回路6を介して判別回路 7に接続している。判別回路7はこれも従来例と 同じように受信コイル4b, 4cで検出した波形 他側部にはコイルの巻き軸方向が上記硬貨通路面 35 の電圧レベルを検出して検査コイルを判別するも のである。

> 発振器 5 を25K比程度の周波数で発振させ発振 コイル4aを励磁させると受信コイル4b,4c には発振コイル4 aにより発生した磁束により電 ・・・40 流が発生するが、受信コイル4b,4cを通る磁 束の向きが逆であり、また、受信コイル4b. 4 cは逆相に接続してあるから、受信コイル4b, 4 cからの出力は通常一定レベルの出力が出され ている。しかし、硬貨通路1を転下してきた硬貨

1

:該

1,

硬

た

第

36

が該硬貨検査装置を通過すると、この上記一定レ ベルの状態がくずれ、受信コイル4b, 4cの出 力端に生じた電圧は増幅回路6で増幅され、判別 回路7に入力されるが、この受信コイル46,4 済磁率や形状、模様で異なり、これを判別回路7 によつて判別し正貨、偽貨、硬貨の種類を判別す る。従来のこの種の硬貨検査装置に比べ、本発明 の硬貨検査装置は、硬貨の材質によつて測定電圧 レベルは異なることはもちろん、硬貨厚みが大き 10 く、発振コイルと受信コイル間の距離が大きくな り従来の硬貨検査装置で検出することが困難であ つた硬貨面の凹凸模様や穴のあるなしの差異を検 出することが容易になった。これは、第4図に示 すように、発振コイル 4 a から出力された磁束が 15 受信コイル4b, 4cにとどく量が多くなり、受 信側での検出レベルが高くなるとにより、検出電 圧の変化値が大きくなり硬貨の表面の凹凸模様や 穴のあるなしの差異を識別できるものである。特 する特公昭63-57835号公報に記載した発明と比 ・ 第6-a図、第6-b図である。 較し、検出出力の差異が大きくなり、より正確な 選別を可能にしている。

第6-a図及び第6-b図は本発明と従来例の 実験結果を示す図で、実験に使用した硬貨は50円 25 硬貨と25センチモス硬貨(フィリッピンの孔なし 白銅貨)である。

50円硬貨及び25センチモス硬貨は次のような特 性を有している。

50円硬貨

外形: 21.0 (孔有り)

厚み;1.75歳 .

材質;白銅

25センチモス硬貨

外形;21.0元 (孔なし)

厚み:1.75=

材質:白銅

以上のように50円硬貨と25センチモス硬貨は孔 が有るか否かの相違で非常に類似した形状特徴を 有している。

そして、発振コイル、受信コイルの配置を従来 例は第2-a図の配置とし、第1図に示す本発明 の配置と実験を行ない比較した。この場合、発振 コイルの中心位置を硬貨通路底面より10.5㎜の位

置に配置し、硬貨通路の反対側に2つの受信コイ ルを上記発振コイルの中心線より3.5mmそれぞれ 反対方向に離れた位置に該2つの受信コイルの中 心線位置がくるように配置した。 すなわち、第2 cの出力端に生じる測定電圧は通過硬貨の材質の 5 -a 図の従来例の配置と第1図に示す本発明の配 置は発振コイルの向きを90度かえただけの差異で 有る。そして、動作条件は次のとおり同一条件で 爽験した。

発振周波数;25KHz

発振コイル;1000µH

受信コイル: 1000μH× 2個

発捩レベル;15Vp-p

コイル外形;直径6.2元、長さ3.6元

コイル材質:フエライト

及び従来例は2つの受信コイルを直列順相接続 し、本願発明は直列逆相接続する。

以上のように、同一発振コイル、受信コイルを 用い、同一電気的条件で、発振コイルの向き及び 受信コイルの接続を変えるだけで、50円硬貨と25 に、硬貨面の凹凸模様や穴のあるなしの差を検出 20 センチモス硬貨を使用して実験を行なつた結果が

> 第6-a図は第2-a図に示す従来例の場合 で、検出出力波形は50円硬貨、25センチモス硬貨 共にほぼ同一で差を検出することができない。

一方、第6-b図は本発明を実施したときの検 出出力波形を示す図で、検出出力波形に明確に差 が出ており、2つの硬貨を識別することができる ことを示している。

このように、本発明によると、従来検出できな 30 かつた孔の有りなしによる差異の2つの硬貨を簡 単に検出し2つの硬貨を識別できることを示して いる。

発明の効果

本発明は従来の硬貨の材質を検査する発振コイ 35 ルと受信コイルにおいて、発振コイルの巻き軸方 向を硬貨通路面と平行にし、受信コイルの2つの コイルの巻き軸方向は硬貨通路面に垂直にして受 信コイルの2つのコイル間の中間点と発振コイル の中間点をほぽ一致するように配置することによ 40 り発振コイルから出力された磁束が受信コイルに 交差する量を多くして、検出レベルを高くしたの で、硬貨の材質の異なるものはもちろん、材質、 外径が同じで、硬貨の表面の凹凸模様や穴のある なしをも判別でき、従来不可能であつた判別を簡 単な構成によって容易に判別できるというきわめ て多大な効果を発揮できるものである。

図面の簡単な説明

第1図は本発明の一実施例の硬貨検査装置の発 振コイル、受信コイルの配置を示す図、第2-a 5 1 ·····・硬貨通路、4 a ····・・発振コイル、4 b, 図、第2-b図は従来の効果の材質及び外径を検 査する硬貨検査装置を示す図、第3図は本発明の 一実施例のブロック図、第4図は本発明の一実施

例の磁束の分布を説明する図、第5図は従来例の 磁束の分布を説明する図、第6-a図、第6-b 図は従来例と本発明の一実施例の検出出力波形を 示す図である。

4 c ······受信コイル、P1, P2······ 側板、P3 ------底板。

第1図

L47

第2図 a

第2図 b

第3図

刊の - b 彡を

۶€ b, ٦3

