1

Assignment 17

Sri Harsha CH

Abstract—This document explains the representation of transformations by matrix.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment17/code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment17

1 Problem

Let T be a linear operator on $\mathbf{F^n}$, let \mathbf{A} be the matrix of T in the standard ordered basis for $\mathbf{F^n}$, and let W be the subspace of $\mathbf{F^n}$ spanned by the column vectors of \mathbf{A} . What does W have to do with T?

2 EXPLANATION

Refer Table 0.

Let $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ be an ordered basis of \mathbf{F}^n	
Given	Explanation
T is a linear operator F ⁿ	As T is linear,
	$T(\mathbf{x}) = \mathbf{A}\mathbf{x} \tag{2.0.1}$
	$\mathbf{A} = \begin{pmatrix} T\epsilon_1 & T\epsilon_2 & \cdots & T\epsilon_n \end{pmatrix} \tag{2.0.2}$
	From equation (2.0.2), columns of $\bf A$ are the images of the standard basis elements of $\bf F^n$.
Range of T	$range(T) = \{T\epsilon_1, T\epsilon_2, \cdots, T\epsilon_n\} $ (2.0.3)
	From equation (2.0.2) and (2.0.3), columns of A generate the range of T.
W spanned by column vectors A	Since any generating set contains a basis for the generated space, we can say that the columns of A contains a basis of the range of T. As W is spanned by column vectors of A , we can say that W contains a basis for the range of T.

TABLE 0: Expanation