Electrochemical Impedance Spectroscopy

M. Skocic, PhD Electrochemistry and Materials

Contents

Introduction

Basics

Applications

Introduction

Time domain (incomplete!) [1]:

- Polarisation: I = f(U)
- ▶ Potential step: ΔU , I(t)
- ightharpoonup Zero Resistance Ammeter: $\int j_{gal} \cdot dt$

Frequency domain [1]:

► Electrochemical Impedance Spectroscopy

Advantages of EIS [1]:

- Measurement in small perturbations (approximately linear)
- Different processes have different time constants
- ▶ Large frequency range from μHz to GHz

Assume a black box with terminals .

One applies a voltage and measures the current response (or vice versa).

Periodic signal with an angular frequency $\omega = 2\pi f$ with $0 \le \omega < \infty$:

- ▶ Voltage $V(\omega) = V_0 e^{j\omega t}$
- ▶ Voltage $I(\omega) = I_0 e^{j\omega t}$

What is EIS?

а

References I

 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. New York: John Wiley & Sons, Inc., 2001.