Familienname:	1	2	3	4	5	6	7	\sum
Vorname:								
Matrikelnummer:								
Studienkennzahl(en):		Note:						

Reelle Analysis in mehreren und komplexe Analysis in einer Variable für LAK

Roland Steinbauer, Sommersemester 2013

3. Prüfungstermin (16.12.2013)

Gruppe A

- 1. Funktionenfolgen.
 - (a) Erkläre den Begriff der gleichmäßigen Konvergenz von Funktionenfolgen (auf $A \subseteq \mathbb{R}$) anschaulich und fertige eine Skizze an. (2 Punkte)
 - (b) Formuliere die folgende Aussage exakt und beweise sie:

Der gleichmäßige Limes stetiger Funktionenfolgen ist stetig.

Begründe jeden deiner Beweisschritte. Wo geht die Stetigkeit bzw. die glm. Konvergenz der Funktionenfolge ein? (4 Punkte)

- (c) Formuliere das Lemma von Riemann-Lebesgue und erkläre seine anschauliche Bedeutung. Fertige eine Skizze an. (3 Punkte)
- 2. Potenzreihen.
 - (a) Sei $\sum c_k(z-z_0)^k$ eine (komplexe) Potenzreihe, die in $z_1 \in \mathbb{C}$ konvergiert und sei $0 < r < |z_1 z_0|$. Zeige dass die Potenzreihe, dann auf $K_r(z_0) = \{z \in \mathbb{C} : |z-z_0| \le r\}$ absolut und gleichmäßig konvergiert. Begründe alle deine Beweisschritte! (5 Punkte)
 - (b) Definiere den Begriff des Konvergenzradius einer (komplexen) Potenzreihe. (1 Punkt)
- 3. Topologie des \mathbb{R}^n .
 - (a) Definiere die Begriffe offene und abgeschlossene Teilmenge des \mathbb{R}^n und diskutiere die Aussage "Offen ist das Gegenteil von abgeschlossen". (2 Punkte)
 - (b) Formuliere und beweise den Satz von Bolzano-Weierstraß im \mathbb{R}^n . Erkläre den Beweisverlauf in Worten. (4 Punkte).
- 4. Differential rechnung.
 - (a) Definiere den Begriff der Differenzierbarkeit für eine Funktion $f: G \to \mathbb{R}^m$ $(G \subseteq \mathbb{R}^n \text{ offen})$ in einem Punkt $\xi \in G$. Ist dieser Begriff äquivalent zur Existenz aller partiellen Ableitungen von f in ξ ? Warum, bzw. warum nicht? (3 Punkte)

Bitte umblättern

(b) Jeder linearen Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ entspricht lt. linearer Algebra eine $(m \times n)$ -Matrix. Diskutiere die folgende Aussage (2 Punkte):

,, Die Ableitung einer linearen Abbildung ist (in jedem Punkt de
s $\mathbb{R}^n)$ die Matrix (selbst)."

5. Integralrechnung.

Betrachte das glatte Vektorfeld auf $G = \mathbb{R}^2 \setminus \{(0,0)\}$

$$v(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

und bearbeite die folgenden Punkte (je 2 Punkte):

- (a) Zeige, dass auf G die Integrabilitätsbedingungen erfüllt sind.
- (b) Zeige, dass v kein Gradientenfeld ist.
- (c) Warum ergeben (a) und (b) keinen Widerspruch?

6. Rechenaufgaben.

- (a) Berechne das Volumen der Einheitskugel, also den Inhalt |B| der Menge $B:=\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^2+z^2=1\}.$ (2 Punkte)
- (b) Berechne die Jacobi-Matrix der Funktion $f: \mathbb{R}^3 \to \mathbb{R}^2$ (2 Punkte)

$$f(x, y, z) = (e^{xy\sin(z)}, \log(x^2 + y^2 + 1)).$$

7. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel an. (Je 2 Punkte)

- (a) Ist eine Funktion $f: \mathbb{R}^n \to \mathbb{R}^m$ in $\xi \in \mathbb{R}^n$ partiell differenzierbar, dann ist sie in ξ auch stetig.
- (b) Für die Taylorreihe $T_n[f, x_0]$ einer glatten Funktion f mit Entwicklungspunkt $x_0 \in \mathbb{R}$ gilt: Es gibt eine Umgebung U von x_0 auf der die Taylorreihe punktweise gegen f konvergiert, d.h. für alle $x \in U$: $T_n[f, x_0](x) \to f(x)$.