CC1-S1

2017-2018

Correction - Algèbre -

Exercice 1

Soient les suites réelles $(u_n), (v_n)$ et (w_n) définies par :

$$(u_0, v_0, w_0) = (1, 1, -1)$$
 et $\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = u_n - v_n + w_n \\ v_{n+1} = -u_n + v_n + w_n \\ w_{n+1} = -u_n - v_n + 3w_n \end{cases}$

1. Montrer que la matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 3 \end{pmatrix}$ est diagonalisable, et la diagonaliser. $\chi_A = (X-1)(X-2)^2$; le polynôme caractéristique est scindé. $E_1 = \text{Vect}\{(1,1,1)\}, E_2 = \text{Vect}\{(1,0,1),(0,1,1)\}.$

 $\dim(E_1) = m(1), \dim(E_2) = m(2), \text{ donc } A \text{ est diagonalisable, et on a :}$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}.$$

Determiner la matrice
$$A^n$$
, pour tout $n \in \mathbb{N}$.
 $\forall n \in \mathbb{N}, A^n = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 2^n \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 - 2^n & 2^n - 1 \\ 1 - 2^n & 1 & 2^n - 1 \\ 1 - 2^n & 1 - 2^n & 2^{n+1} - 1 \end{pmatrix}.$

3. Expliciter les termes u_n , v_n et w_n en fonction de $n \in \mathbb{N}$.

Pour $n \in \mathbb{N}$, on note : $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$. On a donc, pour tout $n \in \mathbb{N}, X_{n+1} = AX_n$.

Une récurrence immédiate donne, pour tout $n \in \mathbb{N}$: $X_n = A^n X_0 = \begin{pmatrix} 3 - 2^{n+1} \\ 3 - 2^{n+1} \\ 2 & 2^{n+2} \end{pmatrix}$.

Exercice 2

E désigne un espace vectoriel de dimension $n \in \mathbb{N}^*$.

- 1. Soit p un projecteur de E, non nul, et différent de Id_E .
 - Montrer que Im(p) et Ker(p) sont supplémentaires dans E. Soit $x \in \text{Im}(p) \cap \text{Ker}(p)$; $x \in \text{Im}(p)$ donc il existe $a \in E$ tel que x = p(a). p étant un projecteur, on en déduit que p(x) = p(a), donc x = p(a) = p(x) = 0 car $x \in \text{Ker}(p)$. Ainsi, $\text{Im}(p) \cap \text{Ker}(p) = \{0_E\}$. Le théorème de rang donne de plus $\dim(\operatorname{Im}(p)) + \dim(\operatorname{Ker}(p)) = \dim(E)$, d'où : $\operatorname{Im}(p) \oplus \operatorname{Ker}(p) = E$.
 - **b.** Montrer que le spectre de p est $\{0,1\}$, et déterminer ses espaces propres. D'après la question précédente, on peut former une base de E en concaténant une base de Im(p) et une base de Ker(p).

Si $x \in \text{Im}(p)$, il existe $a \in E$ tel que x = p(a), alors p(x) = p(p(a)) = p(a)

Ainsi, en notant r = rg(p), dans cette nouvelle base, la matrice de p est $\begin{pmatrix} I_r & 0_{n-r} \\ 0_r & 0_{n-r} \end{pmatrix}$.

On en déduit que 0 est une valeur propre de p d'espace propre Ker(p), et 1 est une valeur propre de p d'espace propre Im(p).

c. En déduire que Tr(p) = rg(p) (où Tr(p) désigne la trace de p). La trace étant un invariant de similitude, de la question précédente, on obtient immédiatement : $\operatorname{Tr}(p) = r = \operatorname{rg}(p).$

Spé PT Page 1 sur 2

- **d.** Soit u un endomorphisme de E tel que Tr(u) = rg(u). u est-il nécessairement un projecteur? Non! Considérons l'endomorphisme u de \mathbb{R}^2 canoniquement associé à la matrice $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$. On a Tr(u) = rg(u) = 2 et $u \circ u \neq u$.
- **2.** Soit u un endomorphisme de E de rang 1.
 - a. Montrer qu'il existe une base \mathcal{B} de E telle que la matrice de u dans \mathcal{B} est de la forme :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 0 & \cdots & 0 & a_1 \\ 0 & \cdots & 0 & a_2 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & a_n \end{pmatrix} \in M_n(\mathbb{R}), \quad \text{où} \quad a_1, a_2, \cdots a_n \text{ sont des réels}$$

D'après le théorème du rang, on a : $\dim(\operatorname{Ker}(u)) = n - 1$. En complétant une base de $\operatorname{Ker}(u)$, on obtient une base \mathscr{B} de E dans laquelle la matrice de u a la forme attendue.

- b. Montrer que u est diagonalisable si, et seulement si la trace de u est non nulle. D'après la question précédente, le polynôme caractéristique $\chi_u = X^{n-1}(X-a_n)$ est scindé. 0 est donc une valeur propre de u, de multiplicité m(0) = n-1 si $a_n \neq 0$, et m(0) = n si $a_n = 0$. dim $(\operatorname{Ker}(u)) = n-1$, donc u est diagonalisable si, et seulement si m(0) = n-1 ce qui équivaut à $a_n \neq 0$, ce qui équivaut encore à $\operatorname{Tr}(u) = (n-1) \times 0 + a_n \neq 0$.
- c. On suppose que Tr(u) = rg(u). Montrer que u est un projecteur. Si Tr(u) = rg(u) = 1, alors u est diagonalisable, et il existe une base \mathscr{B} de E telle que la matrice de

$$u \text{ dans } \mathscr{B} \text{ est } \operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 0 & \cdots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}.$$

$$C'_{\text{cot log}} \text{ restriction and } F_{\text{cot}} \text{ restriction and } F_{\text{co$$

C'est la matrice de la projection sur E_1 parallèlement à E_0 .

d. Soit la matrice $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$. Justifier sans calcul que A est la matrice d'un projecteur, puis en donner les éléments caractéristiques.

On a : rg(A) = Tr(A) = 1. On déduit des questions précédentes que A est la matrice de la projection sur $E_1 = \text{Vect}\{(1,1,1)\}$ parallèlement à $E_0 = \text{Vect}\{(1,0,1),(0,1,1)\}$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 2