Practical MR session using R

Daniele Bottigliengo

Institute for Biomedicine, Eurac Research, Bolzano, Italy

July 22th, 2021

Outline

1. Introduction

- Two-sample MR framework
- R packages for Two-sample MR

2. Data preparation

- Summary GWAS data
- Data harmonization

3. Performing MR analysis

- MendelianRandomization and TwoSampleMR functions
- Displaying results

4. Sensitivity analyses

- Evaluating MR assumptions
- Using MR robust methods

5. Case study

Introduction

• Two sample MR analysis

• Summary instrument-exposure and instrument-outcome association results

• Summary-level data from GWAS

Non-overlapping sets of individuals

R packages

TwoSampleMR

- GWAS database
- Data harmonization
- Most commonly used MR methods
- Visualization and sensitivity analyses
- Installation from Github:

```
install.packages("remotes")
remotes::install_github("MRCIEU/TwoSampleMR")
```

MendelianRandomization

- GWAS database
- Several MR methods are implemented
- Visualization and sensitivity analyses
- Installation from CRAN:

install.packages("MendelianRandomization", dependencies

Data sources

- Retrieving summary-level GWAS data:
 - NHGRI-EBI GWAS Catalog
 - dbGaP CHARGE Consortium GWAS results (study accession phs000930)
 - Neale lab
 - GeneATLAS
 - FinnGen cohort
 - Phenoscanner → MendelianRandomization
 - IEU GWAS database → TwoSampleMR
 - GWAS consortium websites, e.g. CKDGen, GIANT, MAGIC, ENIGMA, ThyroidOmics, COVID-19 HGI

IVs selection

• Several strategies for selecting genetic instruments

- Accounting for:
 - weak instrument bias
 - linkage disequilibrium (LD), i.e. correlations between instruments
 - horizontal pleiotropy

IVs selection

- 1. Selection of genome-wide significant instruments from GWAS exposure data $(p-value < 5 imes 10^{-8})$
 - One can select functional genetic variants, i.e. genome-wide significant SNPs in the encoding gene
 - \circ Check F-statistic to evaluate the strength of the instrument
- 2. Perform LD clumping to select independent genetic instruments
 - \circ Choice of r^2 threshold might depend on the situation
 - $\circ r^2 < 0.001$ is very conservative but might not work well for rare variants in small samples
 - $\circ r^2 < 0.01$ is less conservative but acceptable for many situations
 - \circ Some studies used more liberal thresholds, e.g. < 0.2
- 3. Proxies can be used to replace exposure variants that are missing in the outcome dataset
 - The proxy should be in high LD with the missing genetic instrument
- 4. Applying Steiger filter to remove IVs for which there might evidence of reverse causation

Data harmonization

https://elifesciences.org/articles/34408

See here for more details.

MR analysis

https://mrcieu.github.io/TwoSampleMR/articles/perform_mr.html

Sensitivity analyses

• Evaluation of MR assumptions

- Check for the presence of pleiotropic effects
 - \circ Heterogeneity of Wald estimates using Q-statistic or I^2
 - Intercept of MR-Egger

• Leave-one-out analysis to assess the reliance of MR analysis on a particular variant

Robust MR methods

- Valid causal inferences under weaker assumptions than the standard IVW methods
- Using multiple methods that make different assumptions about the nature of the underlying pleiotropy
- Most commonly used robust methods:
 - ∘ *MR-Egger* → TwoSampleMR and MendelianRandomization
 - \circ Median based method \to TwoSampleMR and MendelianRandomization
 - \circ Mode based method o TwoSampleMR and MendelianRandomization
 - ∘ MR-PRESSO → MR-PRESSO R package
- A simulation study¹ has shown that two recent methods have good statistical properties in a wide range of scenarios:
 - Contamination mixture → implemented in MendelianRandomization with mr_conmix function
 - \circ MR-Mix \rightarrow MR-Mix R package

[1] Slob EAW, Burgess S. A comparison of robust Mendelian randomization methods using summary data. Genetic Epidemiology. 2020;44:313–29.

Other approaches to sensitivity analysis

• Using different datasets

Positive and negative control outcomes

Subgroup analyses

• Evaluate association with potentially pleiotropic variables

Case study

• **Aim**: to evaluate the causal relationship between kidney function and blood pressure (BP)

• **Exposure**: estimated glomerular filtration rate from serum creatinine (eGFRcr)

• Outcome: systolic blood pressure (SBP)

Case study

Two sets of IVs:

ullet 256 SNPs associated with eGFRcr at genome-wide threshold $(p-value < 5 imes 10^{-8})$

• 40 SNPs associated with both eGFRcr and blood urea nitrogen (BUN) at genome-wide threshold $(p-value < 5 \times 10^{-8}) \rightarrow \text{prioritizing IVs most likely relevant for kidney function}$

The case study was inspired the study from Yu et al. (2020)²

[2] Yu Z, Coresh J, Qi G, Grams M, Boerwinkle E, Snieder H, Teumer A, Pattaro C, Köttgen A, Chatterjee N, Tin A. **A bidirectional Mendelian randomization study supports causal effects of kidney function on blood pressure.** *Kidney Int.* 2020 Sep;98(3):708-716. doi: 10.1016/j.kint.2020.04.044. Epub 2020 May 23. PMID: 32454124; PMCID: PMC7784392.