## VERSION OF AMENDMENTS SHOWING MARKINGS

I claim:

(currently amended) A post packaging alignable optical coupling comprising:
 a base;

a first optical element for receiving or transmitting an optical signal, said first optical element located in a fixed condition on said base;

a second optical element <u>fixedly mounted to the base for</u> receiving or transmitting an optical signal <u>wherein at least one of the optical elements is an optical fiber or optical</u> waveguide;

a mirror interposed to directly intercept an optical signal from one or the other of said optical elements, said mirror moveable disposed with respect to said base;

a MEMS actuator, said MEMS actuator supporting said mirror to enable repositioning said mirror to thereby direct the optical signal directly intercepted by said mirror from said first optical element into alignment with said second optical element or vice versa; and

a shroud encompassing said optical elements with a free space located between said optical elements to therein enable remotely repositioning the mirror with the MEMS actuator when the shroud extends over the optical elements.

## 2-3 canceled

- 4. (currently amended) The optical coupling of claim 3 1 wherein the first optical element and the second optical element are located in a transvere condition from each other.
- 5. (original) The optical coupling of claim 4 wherein the first optical element and the second optical element are located at substantially a right angle to each other.

6. (currently amended) The optical coupling of claim 3 1 wherein the optical coupling includes at least four optical elements.

## 7-9 Canceled

10. (currently amended) A method of packaging an optical coupling comprising:

fixedly mounting a first optical element to a base wherein the first optical element

comprises an optical conductor;

mounting a positionable mirror on said base so that an optical signal from the first optical element directly impinges on the positionable mirror;

mounting a second optical element to the base;

placing a shroud over the optical elements and the mirror and at least a portion of the optical conductor to form an enclosure; and

repositioning the mirror after the optical coupling is packaged to bring the optical signal directly impinging the postionable mirror from the first optical element into alignment with the second optical element or vice versa.

- 11. (original) The method of claim 10 wherein the repositioning of the mirror to align an optical signal from said first optical element to said second optical element is done through rotation and tilting the mirror.
- 12. (original) The method of claim 10 including mounting a third optical element to said base and mounting a fourth optical element to said base and mounting a further repositionable mirror therebetween to thereby permit alignment of a further optical signal between said third optical element to said fourth optical element by repositioning said further repositionable mirror.

- 13. (Canceled)
- 14. (currently amended) The method of claim 13 10 wherein mounting the second optical element comprises fixedly mounted said second optical element to said base.
- 15. (original) The method of claim 10 where a MEMS actuator is mounted to said base and to said mirror to enable remote positioning of said mirror to thereby bring an optical signal from said first optical element into alignment with said second optical element or vice versa.
- 16. (currently amended) An optical coupling comprising:

a base;

a first optical element for receiving or transmitting an optical signal, said optical element located in a fixed condition on said base;

a second optical element having an optical port for receiving or transmitting an optical signal;

a repositionable mirror, said mirror having a reflecting surface larger than an-said optical port, said mirror positioned to directly intercept an optical signal emanating from said first optical element; and

a mirror positioning system located on said base to thereby allow an operator to reposition said mirror until the optical signal directly intercepted by said mirror from said first optical element is in optical communication with said second optical element with said mirror positioning system controllable from a position removed from the base.

17. (original) The optical coupling of claim 16 wherein the optical signal is reflected about 90 degrees.

- 18. (original) The optical coupling of claim 16 wherein each of the optical elements are fixedly mounted in the optical coupling.
- 19. (Canceled)
- 20. (original) The optical coupling of claim 17 wherein the optical coupling is assembled with the optical elements in a non optical communication and the optical elements are brought into optical communication after the optical coupling is packaged for shipment.

Respectfully submitted, JACOBSON AND JOHNSON

Carl L. Johnson, Reg. No. 24,273

Attorneys for applicant Suite 285 One West Water Street St. Paul, Minnesota 55107-2080

Telephone: 651-222-3775