Busca em Largura

- 1. Para cada $v \in V(G)$ faça: $d[v] = \infty$
- 2. d[s], pai[s], S = 0, s, [s] ## S é uma fila
- 3. Enquanto $S \neq \emptyset$ faça:
 - v = desenfileire(S)
 - Para cada $w \in \operatorname{adj}[v]$ faça:
 - se $d[w] = \infty$ então: ## ainda não visitado
 - d[w], pai[w] = d[v] + 1, v
 - enfileire(w, S)

Algoritmo de Dijkstra

- 1. Para cada $v \in V(G)$ faça: $d[v] = \infty$
- 2. d[s], pai[s], S = 0, s, V(G)
- 3. Enquanto $S \neq \emptyset$ faça:
 - Escolha $v \in S$ tal que d[v] seja mínimo
 - S = S v
 - Para cada $w \in \operatorname{adj}[v]$ faça:
 - se d[w] > d[v] + c(v, w) então:

$$d[w], pai[w] = d[v] + c(v, w), v$$

Algoritmo de Dijkstra

- Qual é o tempo gasto por este algoritmo?
- Depende da implementação do algoritmo de seleção do vértice $v \in S$
- Implementação simples, em que se faz uma passada no vetor, procurando vértices marcados como pertencendo a $S \Rightarrow O(n^2)$
- Implementação utilizando fila de prioridade $\Rightarrow O(m \log n)$
- Nossa escolha da implementação depende
- Para grafos com menos de 3.000 vértices: $O(n^2)$
- Para grafos grandes em que $m = \Theta(n)$, vale a pena usar fila de prioridade

Algoritmo de Floyd-Warshall

- produz tabela completa, para todos os pares de vértices
- $\bigcirc O(n^3)$
- convenção: $c(v, w) = \infty$ para pares (v, w) não adjacentes
- para todo vértice v faça:
- para todo vértice w faça:
- se v = w então: d(v, v) = 0
- senão: d(v, w) = c(v, w)
- \blacksquare para cada vértice u faça:
- $lue{}$ para cada vértice v faça:
- para cada vértice w faça:

$$d(v, w) = \min(d(v, w), d(v, u) + d(u, w))$$

Algoritmo de Bellman-Ford

- para cada vértice v faça: $d(v) = \infty$
- d(s), pai(s) = 0, s
- para i = 1 até n 1 faça:
- para cada aresta (v, w) faça:
- se d(w) > d(v) + c(v, w) então:
- d(w), pai(w) = d(v) + c(v, w), v
- para cada aresta (v, w) faça:
- se d(w) > d(v) + c(v, w): retorne Falso
- retorne d