Exercice 1 - D'un produit à l'autre

Soit $A \in \mathcal{M}_{3,2}(\mathbb{R}), B \in \mathcal{M}_{2,3}(\mathbb{R})$ tels que

$$AB = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Démontrer que $BA = I_2$.

Exercice 2 - Base adaptée à un endomorphisme dont le carré est nul

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f \neq 0$ et $f^2 = 0$.

- 1. Démontrer que $\dim(\ker(f)) = 2$.
- 2. En déduire qu'il existe une base \mathcal{B} de \mathbb{R}^3 dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 3 - Intégration par parties itérée

1. Soient $f,g:[a,b]\to\mathbb{R}$ deux fonctions de classe $C^n.$ Montrer que

$$\int_{a}^{b} f^{(n)}g = \sum_{k=0}^{n-1} (-1)^{k} \left(f^{(n-k-1)}(b)g^{(k)}(b) - f^{(n-k-1)}(a)g^{(k)}(a) \right) + (-1)^{n} \int_{a}^{b} fg^{(n)}.$$

2. Application : On pose $Q_n(x) = (1 - x^2)^n$ et $P_n(x) = Q_n^{(n)}(x)$. Justifier que P_n est un polynôme de degré n, puis prouver que $\int_{-1}^1 Q P_n = 0$ pour tout polynôme Q de degré inférieur ou égal à n-1.

Exercice 4 - Retrouver la fonction

Soit $f:[a,b]\to\mathbb{R}$ continue telle que $|f(x)|\leq 1$ pour tout $x\in[a,b]$ et $\int_a^b f(x)dx=b-a$. Que dire de f?

Exercice 5 - Valeur moyenne

Soit $f:[a,b]\to\mathbb{R}$ continue. Démontrer que sa valeur moyenne est atteinte : il existe $c\in[a,b]$ tel que

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(t)dt.$$

Cette feuille d'exercices a été conçue à l'aide du site https://www.bibmath.net