Software Design Specifications

Patient Vitals Management System

Version: 1

Project Team:	Submission Date:
Aiman Rizwan – ar08513	28 th April '25
Hiba Shahid – hs08036	
Fatima Hasan – fh08026	

Document Sign-Off

Version	Sign-off Authority	Project Role	Signature	Sign-off
				Date
1.04	Ateeb Ahmed	Supervisor		23 rd Apr'18

Page 2 of 21

Document Information

Category	Information
Customer	Hospitals
Project	Patient Vitals Management System
Document	Software Design Specification
Document Version	1
Identifier	PVMS-2025
Status	Draft
Author(s)	Aiman Rizwan, Hiba Shahid, Fatima Hasan
Approver(s)	Ateeb Ahmed
Issue Date	28th April '25
Document Location	Karachi
Distribution	Advisor

Table of Contents

1	ır	ntroduction	5
	1.1	Purpose of Document	
	1.2	Intended Audience	
		Document Convention	
	1.3		
	1.4	Project Overview	5
	1.5	Scope	5
_	_		
2	D	Design Considerations	6
	2.1	Assumptions and Dependencies	
	2.2	Risks and Volatile Areas	
	2.2	Alsks und Volutile Aleus	
3	S	ystem Architecture	7
	3.1	System Level Architecture	
	3.2	Software Architecture	8
	_		
4	U	Design Strategy	13
5	_	Detailed System Design	1.
Э	U	etailed System Design	12
	5.1	Database Design	14
	5.	.1.1 ER Diagram	14
	5.	.1.2 Data Dictionary	15
	5.2	Application Design	18
		.2.1 Class Diagram	
	5.	.2.2 Sequence Diagram	
	5.	.2.3 State Diagrams	
	5.	.2.4 Activity Diagrams Error! Bookmark no	
	5.	.2.5 System User Interface	
_	_		24
6	ĸ	eferences	21
_	_	e.	21
7	Λ	nnendices	71

1 Introduction

1.1 Purpose of Document

This document provides the design specifications of the Patient Vitals Monitoring System. It outlines both the high-level and low-level structure of the system, including the interaction between endusers (doctors, nurses, and admin staff) and the system, as well as communication between various components like the data generators, anomaly detection engine, dashboards, and the database.

1.2 Intended Audience

This document is intended to be reviewed by the project sponsor, academic supervisors, and particularly, the development or IT teams responsible for deployment, maintenance, or future enhancements. It introduces them to both the process and technical structure of the system, should they intend to make modifications based on changing healthcare or technological requirements.

1.3 Document Convention

Font: Arial Size: 10

1.5 Space Gapping

1.4 Project Overview

The Patient Vitals Monitoring System is a healthcare-focused application developed to address the challenges of manually tracking patient vital signs, such as heart rate, blood pressure, body temperature, and oxygen saturation. Previously, these metrics were recorded manually by nursing staff, making them prone to human error and delays. The new system provides real-time data monitoring using synthetic and real datasets, with automatic alert generation for anomalies based on predefined thresholds. Medical professionals access this data via customized dashboards that allow both current status monitoring and historical trend analysis, significantly improving clinical decision-making and response times.

1.5 Scope

 To automatically record and store patient vitals from simulated data sources in real time.

- To display vitals dashboards tailored for different user roles (nurses see real-time only; doctors see historical + real-time).
- To generate alerts when vital signs cross safe thresholds and escalate those alerts based on severity.
- To allow healthcare staff to view historical trends of vitals for clinical assessment.
- To implement role-based access control to restrict or allow specific user capabilities within the system.

2 Design Considerations

2.1 Assumptions and Dependencies

The proper functioning of the Patient Vitals Monitoring System is based on several software and hardware assumptions. It is assumed that the system will be deployed on a computer or server equipped with a compatible Python environment, including Flask for the backend, SQLAlchemy for ORM-based database management, and access to a SQLite database. In terms of performance, the system requires sufficient RAM and CPU resources to handle the continuous generation and analysis of real-time patient data. A stable TCP/IP network connection is necessary to ensure seamless communication between backend services and the frontend interface. For visualization and user interaction, it is assumed that healthcare staff will access the dashboards using modern web browsers such as Google Chrome or Mozilla Firefox. Furthermore, the system relies on the assumption that both synthetic and real patient data will be correctly formatted and reliably inserted into the database using pre-configured automated scripts. Any deviation from these assumptions may impact the accuracy and usability of the system.

2.2 Risks and Volatile Areas

The most sensitive and volatile components of the system include the vitals data, threshold ranges, alert records, and access control mappings. Since vitals data is updated in real time, any corruption or interruption in this data stream—especially involving timestamps—can directly affect the system's ability to detect anomalies accurately or generate proper visualizations. Threshold values are critical to alert generation; any improper updates to these gender- and age-based thresholds may result in false alarms or missed critical warnings. Alerts themselves are highly sensitive since they trigger clinical responses—if alerts are not generated or recorded accurately, healthcare staff may overlook urgent patient conditions. Finally, the patient-to-staff access mappings govern which doctor or nurse can view or manage a specific patient's information. Errors in these assignments could either prevent critical care or result in the unintended disclosure of confidential medical data. For these reasons, any updates to these components must be handled with caution, preferably by system administrators with proper validation mechanisms in place.

System Architecture

2.3 System Level Architecture

The decomposition level diagram has been provided to break down the Patient Vitals Monitoring System at a high level in a way that sets the foundation for deeper technical design. It outlines what the system does functionally without delving into implementation specifics. The system is centered around three primary actors: patients, medical staff (doctors and nurses), and administrative users, with a separate layer for automated internal processes.

At the patient level, the system continuously receives and records vital signs, stores historical records, and monitors for abnormalities using pre-defined thresholds. Staff, based on their role, log in to access dashboards that reflect the current and historical health status of patients assigned to them, and they can view alerts when abnormalities are detected.

Admins handle data setup and access control, including adding patients, updating thresholds, and assigning staff to patients. The automated backend process is responsible for anomaly detection and the creation of alerts, ensuring that real-time patient data is evaluated continuously. A reporting module is planned as a future enhancement to generate downloadable patient summaries and trends for clinical use or documentation.

2.4 Software Architecture

Figure 1: Login screen

Figure 2: Patient Details access page for non-doctors (nurse, head-nurse)

Figure 3: Patient Details access screen for doctors

Figure 4: Alert shows as pop-up (same on the doctor access page as well)

Figure 5(a): Patient information/report display

Figure 5(b): Patient information/report display

Figure 5(c): Patient information/report display

Figure 6: Unauthorized access alert screen

Figure 7(a): Patient Vitals graph display screen

Figure 7(b): Patient Vitals graph display screen

3 Design Strategy

The system was developed as a web-based application using Python with Flask for the backend and modern HTML/CSS/JavaScript for the frontend. This approach was selected to ensure:

- Cross-platform accessibility from any modern web browser
- Real-time data visualization capabilities
- Secure role-based access control
- Easy deployment in hospital network environments
- The technology stack includes:
- Backend: Python 3.7+ with Flask framework
- Database: SQLite (with PostgreSQL compatibility)
- ORM: SQLAlchemy for database interactions
- Frontend: Chart.js for real-time vital sign visualization
- Authentication: Werkzeug security for password hashing

The system is designed with extensibility in mind, allowing for future enhancements such as:

- Mobile application integration
- EHR system interoperability
- Advanced analytics modules
- Multi-hospital deployment capabilities

4 Detailed System Design

4.1 Database Design

4.1.1 ER Diagram

4.1.2 Data Dictionary

4.1.2.1 Data 1 - Patient Table

Field Name	Data Type	Constraint	Description	
id	INT	PK	unique patient identifier	
name	VARCHAR(100)	not null	full name of patient	
admission_date	DATETIME	not null	date/time of hospital admission	
discharge_date	DATETIME	nullable	date/time of discharge (null if still admitted)	
department_id	INT	FK	department where patient is admitted	
date_of_birth	DATETIME	not null	patients birth date	
gender	VARCHAR(10)	not null	patients gender	
primary_contact	VARCHAR(15)	not null	primary phone no.	
secondary_contact	VARCHAR(15)	nullable	secondary phone no.	

4.1.2.2 Data 2 – Vitals Table

Field Name	Data Type	Constraint	Description
id	INT	PK	unique vital reading id
patient_id	INT	FK	associated patient id
systolic	INT	not null	systolic blood pressure
diastolic	INT	not null	diastolic blood pressure
pulse_rate	INT	not null	heart rate
blood_sugar	FLOAT	not null	blood gluscose level
oxygen_volume	FLOAT	not null	oxygen saturation
timestamp	DATETIME	not null	time of measurement

4.1.2.3 Data 3 - Staff Table

Field Name	Data Type	Constraint	Description
id	INT	PK	staff member id
name	VARCHAR(100)	not null	staff member name
department_id	INT	FK	department assignment
role	VARCHAR(20)	not null	role(doctor/nurse/admin)
contact	VARCHAR(15)	not null	contact number

4.1.2.4 Data 4 – Emergency_Contact Table

Field Name	Data Type	Constraint	Description
patient_id	INT	PK, FK	associated patient id
name	VARCHAR(100)	not null	contact persons name
relation	VARCHAR(50)	not null	relationship to patient
contact	VARCHAR(15)	not null	emergency contact number

4.1.2.5 Data 5 – Alert Table

Field Name	Data Type	Constraint	Description
id	INT	PK	Alert id
patient_id	INT	FK	associated patient id
message	VARCHAR(255)	not null	alert description
severity	VARCHAR(10)	not null	severity
timestamp	DATETIME	not null	time of alert

4.1.2.6 Data 6 - PatientStaff Table (Assignment)

Field Name	Data Type	Constraint	Description
patient_id	INT	PK, FK	pateint id
staff_id	INT	PK, FK	staff id
role	VARCHAR(20)	not null	role

4.1.2.7 Data 7 - Threshold Table

Field Name	Data Type	Constraint	Description
id	INT	PK	THRESHOLD ID
age_lower	INT	not null	minimum age for range
age_upper	INT	not null	minimum age for range
gender	VARCHAR(10)	not null	gender
systolic_lower	INT	not null	minimum normal systolic bp
systolic_upper	INT	not null	minimum normal systolic bp
diastolic_lower	INT	not null	minimum normal diastolic bp
diastolic_upper	INT	not null	minimum normal diastolic bp
blood_sugar_lower	FLOAT	not null	minimum normal gluscose
blood_sugar_upper	FLOAT	not null	minimum normal gluscose
pulse_rate_lower	INT	not null	minimum normal heart rate
pulse_rate_upper	INT	not null	minimum normal heart rate
oxygen_levels_lower	FLOAT	not null	minimum normal spO2
oxygen_levels_upper	FLOAT	not null	minimum normal spO3

4.1.2.8 Data 8 - Credentials Table

Field Name	Data Type	Constraint	Description
staff_id	INT	PK, FK	staff member id
password_hash	VARCHAR(128)	not null	hashed password
password_plaintext	VARCHAR(50)	nullable	plain text password

4.1.2.9 Data 9 - Department Table

Field Name	Data Type	Constraint	Description
id	INT	PK	department id
name	VARCHAR(50)	not null	department name

4.2 Application Design

4.2.1 Class Diagram

4.2.2 Sequence Diagram

4.2.2.1 Sequence Diagram 1 – Client Actor

4.2.3 State Diagrams

4.2.3.1 Patient Vital Monitoring State

4.2.3.2 Alert state

start new alert active alert

acknowledged escalated

resolved

4.2.4 System User Interface

Not Applicable.

5 References

The template for the SDS was given by Mr. Ateeb Ahmed, everything else is original.

6 Appendices

Not Applicable.

Page 21 of 21