Unit #4

Feb. 3, 2023

PROBLEMS

Due Friday Feb. 10, 2023 @ 4pm

1. Consider the cost function

$$J(\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \boldsymbol{\beta}^\mathsf{T} \mathbf{R}\boldsymbol{\beta}$$

for a fixed matrix **R** for which $\mathbf{R} + \mathbf{R}^{\mathsf{T}}$ is positive definite. Show $\beta_{\mathsf{opt}} = \arg\min_{\beta} J(\beta)$ equals

$$\boldsymbol{eta}_{\mathsf{opt}} = (\mathbf{X}^\mathsf{T}\mathbf{X} + \frac{1}{2}\mathbf{R} + \frac{1}{2}\mathbf{R}^\mathsf{T})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}.$$

 Hint : Use the gradient-zeroing technique that was used to derive β_{ls} in the lecture.

2. Suppose that we have a model

$$y = \widehat{f}(x; \theta) + \epsilon$$

with zero-mean σ^2 -variance Gaussian noise ϵ and

$$\widehat{f}(x;\theta) = e^{\theta}x$$

with unknown $\theta \in \mathbb{R}$. We would like to fit θ to a dataset $\{(x_i, y_i)\}_{i=1}^n$ of independent draws from this model.

- (a) Derive an expression for the negative log likelihood function. Simplify as much as possible
- (b) Find the maximum-likelihood estimate of θ . Hint: Set the gradient of the negative loglikelihood to zero.
- 3. Say that $\mathbf{y} = [y_1, \dots, y_n]^\mathsf{T}$ are independent samples of a Gaussian random variable Y with mean 1 and unknown variance σ^2 . That is, the pdf of Y equals

$$p_Y(y \mid \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y-1)^2\right).$$

- (a) Derive an expression for the maximum-likelihood estimate of the standard deviation σ from \mathbf{y} , i.e., $\widehat{\sigma} = \arg \max_{\sigma} p(\mathbf{y} \mid \sigma^2)$.
- (b) Derive an expression for the maximum-likelihood estimate of the variance σ^2 from \mathbf{y} , i.e., $\widehat{\sigma^2} = \arg\max_{\sigma^2} p(\mathbf{y} \mid \sigma^2)$. Does it agree with your answer to part (a)?

In your derviations, be very careful to distinguish scalar quantities like y from vector quantities like y. (When writing by hand, it's typical to underline vector quantities.)

P. Schniter, 2023