Facultad Politécnica - Departamento de Informática - Carrera: Ingeniería Informática Algoritmos y Estructura de Datos III - Primer Examen Parcial - 1er Semestre - Sección TQ

Prof. Cristian Cappo Sábado, 20/04/2013 Puntos: 60

Nombre v Apellido:	Nro. CIC:

Tema 1 (10p)

Considere las siguientes funciones escritas en Java

```
int descubreme1 ( int [] a ) {
                                                   void descubreme2 ( int [] a ) {
     int n = a.length;
                                                        int n = a.length;
                                                        int tmp, i, j;
for ( i=0; i < n ; i++ )</pre>
     int tmp = 0, i, j;
     for ( i=0; i < n; i++ )
         for (j=i+1; j < n; j++)
                                                             if (a[i]%2 == 0)
             if ( Math.abs(a[j]-a[i]) > tmp )
                tmp = Math.abs(a[j]-a[i]);
                                                                tmp=a[i];
     return tmp;
                                                                for (j=i; j > 0; j--)
}
                                                                    a[j] = a[j-1];
                                                                a[0]=tmp;
                                                             }
```

Por cada una de ellas, se pide:

- a) ¿Qué calcula la función? (2p)
- b) Calcule teniendo en cuenta el peor caso: T(n) y O. (4p)
- c) Según a), proponga una función con mejor rendimiento, lo que tiene que fundamentar (4p)

Tema 2 (12p)

Utilizando las definiciones de O y Ω , encontrar la n_0 y c para las siguientes funciones (utilice el nombre de las constantes indicadas en cada caso).

f(n)	()	Ω		
f(n)	n_0	С	n_0	С	
$c_1 n$					
$c_2 n^3 + c_3$					
$c_6 2^n + c_7 n^6$					

Tema 3 (10p)

Complete las siguientes oraciones de manera corta y precisa:

a)	El lazo invariante consiste en
b)	El factor de carga en una tabla de dispersión con resolución de colisión abierta indica
c)	Una excepción derivada de <i>RuntimeException</i> tiene la característica principal consistente en
d)	Un algoritmo es eficiente cuando
e)	Un iterador en una estructura de datos consiste en

Defina un iterador utilizando el API de Java para la estructura de datos Pila genérica (asuma que ya se tiene implementada las operaciones básicas sobre esta estructura: pop(), push(), empty(), etc.)

Tema 4 (8p)

Coloque la letra de la respuesta correcta al lado de la frase (exi	(siste solo una) (-1p por cada respuesta marcada e incorrecta)
--	--

1.		Un algoritmo toma 10 segundos para un tamaño N de 50. Si el algoritmo es cúbico, aproximadamente cuanto tiempo omará para resolver un problema de tamaño 100.					e cuanto tiempo	
	a) 40 segundos	b) 8000 segundos	c) 2000	segundos	d) 80 segundos	e) ninguna de la	as anteriores	
2.	Un algoritmo toma 6 segundos para un tamaño de 100 y 10 minutos para resolver el un problema de tamaño 1000. ¿Cua es el comportamiento asintótico del tiempo de ejecución del algoritmo?							
	a) constante	b) lineal	c) cuadrático	d) cúbico	e) ninguna de las	anteriores		
3.	En Java, se pue	ede invocar a un mé	etodo estático en l	los siguientes cas	sos.			
	a) Solamente con el nombre de la clase que lo contiene c) Con el nombre o con la instancia de la clase		b) Solamente con la instancia de la clase d) Con el nombre de la clase Padre e) Solo con la clase Object					
4.	Para la inserción de un solo ítem en un árbol AVL de <i>n</i> elementos, ¿el máximo número de rotaciones requerida es? (asuma que una rotación doble es una sola rotación).						equerida es?	
	a) 1 b)) 2 c) a	prox. log n	d) aprox. 1.	44 log n e)	ninguna de las an	teriores	
5.	Los siguientes	ítems son insertado	s en un árbol AV	L: 1,2,3,8,6. ¿Cս	iántas rotaciones so	on realizadas?		
	a) no hay rotaciones	b) una simple	c) una doble	d) una simp	ole y una doble e)	ninguna de las an	teriores	
6.	Dada la rutina recurs : int recurs (int n) { if (n == 0) return 0; else return n + recurs (n/2) + recurs (n/2 + 1); } la misma viola las siguientes reglas de la recursión:							
	a) No tiene caso base	b) No pro	ogresa	c) Realiza trabaj	o redundante	d) b y c	e) a, b y c	
7.	El algoritmo de <i>Strassen</i> para multiplicación de dos matrices de tamaño NxN, realiza siete(7) llamadas recursivas para multiplicar dos matrices de N/2 x N/2. El tiempo adicional que se suma a las llamadas recursivas es cuadrático. Entonces, la solución se encuentra en:							
	a) O(N ²)	b) O(N ³)	c) O(N ^{2.81})	d) O(N ^{2.5})	e) ninguna de las	anteriores.		
8.	¿Cual de los si	guientes costos son	iguales en una ta	bla Hash?				
	a) Inserción y búsque d) Inserción, búsqued	da exitosa la exitosa y búsqueda		ción y búsqueda si na de las anteriore		ueda con éxito y b	oúsqueda sin éxito	
Ter a)	ma 5 (10p) Encuentre el costo encontrarlo (5p)	asintótico en térmir $T(n) = \begin{cases} 2T(n-1) \\ 0 \end{cases}$		`	ia. Puede utilizar c	ualquier método	conocido para	

b) Encuentre la O más ajustada para esta sumatoria y luego dé un código posible en Java que el corresponda (5p)

$$\sum_{i=1}^{n-1} (n-i)i$$

Tema 6 (10p)

Encuentre la forma cerrada de la sumatoria de los *n* primeros números múltiplos de 5. Luego demuestre por inducción matemática que la forma cerrada es correcta.

Por ejemplo si n=3, la suma sería 5+10+15 = 30