Nome: Matrícula:	1.
$3^{\underline{a}}$ Prova - MTM1039 - T 12	2.
8 de Julho de 2015	3.
	4.
Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Res-	5.
postas sem justificativas ou que não incluam os cálculos necessários não serão consi-	

Questão 1. (2pts)

deradas.

(a) Encontre uma base para o espaço solução do sistema homogêneo $AX = \bar{0}$, em que:

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 & -1 \\ 1 & -1 & -3 & -1 \\ 0 & 1 & 3 & 0 \end{array} \right]$$

 \sum

(b) Para a base encontrada no item (a) use o processo de ortogonalização de Gram-Scmidt para obter uma base ortogonal (não é necessário normalizar).

Questão 2. (2pts) A matriz

$$A = \left[\begin{array}{rrr} 1 & 0 & 6 \\ 1 & 1 & 7 \\ 0 & 1 & 1 \end{array} \right]$$

é diagonalizável? Se sim, encontre as matrizes P invertível e D diagonal tais que $P^{-1}AP = D$.

Questão 3. (2pts) Considere o vetor $U_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.

- (a) Escolha U_2 de forma que $S = \{U_1, U_2\}$ seja base ortonormal de \mathbb{R}^2 . Mostre que S é base;
- (b) Escreva a matriz mudança de base $[M]_{SCC \leftarrow SCO}$ que realiza a mudança de coordenadas do novo sist. de coord. ortogonais (que manteve a origem O) $SCO = \{O, U_1, U_2\}$ para o sist. de coord. cartesianas usual $SCC = \{O, e_1, e_2\}$;
- (c) Considere $P = (\sqrt{3}, 3)$. Encontre $[P]_{SCO}$, as coordenadas de P no novo sistema de coordenadas SCO.

Questão 4. (2pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa:

- i-() Existem quatro vetores de \mathbb{R}^3 , V_1 , V_2 , V_3 e V_4 , sendo $\{V_1,V_2\}$ LI, $\{V_3,V_4\}$ LI, V_3 e V_4 não são combinação linear de V_1 e V_2 , V_1 e V_2 não são combinação linear de V_3 e V_4 ;
- ii-() Os vetores $W_1=(1,1,0),\,W_2=(0,1,1)$ geram o espaço $\mathbb{R}^3;$
- iii-() Os vetores $W_1=(1,1,0),\,W_2=(0,1,1)$ e $W_3=(2,3,1)$ geram o espaço \mathbb{R}^3 ,
- iv-() O plano de equação

$$\pi: x + y + z = 0$$

tem dimensão 1.

Questão 5. (2pts)

(a) Encontre matrizes P ortogonal $(P^{-1} = P^t)$ e D diagonal tais que $D = P^tAP$, onde

$$A = \left[\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right]$$

(b) Identifique a cônica de equação

$$3x^2 + 2xy + 3y^2 + 2\sqrt{2}x + 6\sqrt{2}y + 2 = 0$$

e reescreva a equação num novo sistema de coordenadas ortogonais que torne a equação uma soma (ou diferença) de quadrados.