F. Factory Safety Inspection Chain

Constraint: Time Limit: 1 seconds, Memory: 128MB

Background

The **Novatek** chemical plant has strict safety protocols: before ending their shift, engineers must inspect all critical areas.

The plant is modeled as an **undirected graph** consisting of:

- **n** areas (numbered from 1 to n), $2 \le n \le 15$
- **m** corridors connecting areas bidirectionally
- Each corridor has a **travel time** w (in minutes), $1 \le w \le 1000$

Engineers start from the **central control room** (area s) and must end at the **data storage** room (area t), $s \neq t$. During the journey, engineers must visit at least once all p critical areas (containing hazardous chemicals, reaction tanks, high-pressure systems).

Requirements

Find the minimum total time for an engineer to travel from s to t while visiting all p ($0 \le p \le n-2$) mandatory areas at least once. Mandatory areas do not include s and t ($r_i \ne s$ and $r_i \ne t$).

If no valid route exists, output -1.

Input/Output Format

Input	Output
- Line 1: Five integers n , m , p , s , t	A single integer:
 n: number of areas m: number of corridors p: number of mandatory areas to visit 	 Minimum total time (in minutes), or -1 if no valid route exists

- s: starting area (control room)
- t: ending area (storage room)
- Next **m** lines, each contains 3 integers **u**, **v**, **w**:
 - Describes a bidirectional corridor between areas u and v with travel time w minutes
- Last line: p integers r₁, r₂, ..., r_p
 - List of mandatory areas to visit

Example 1

Input	Output
67216	12
1 2 3	
2 3 4	
3 6 5	
1 4 2	
452	
5 3 2	
5 6 3	
25	

- The plant has 6 areas and 7 corridors
- Start from area 1, end at area 6
- Must visit 2 mandatory areas: 2 and 5

Optimal route: $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 6$

Calculation:

• $1 \rightarrow 2: 3 \text{ minutes}$

• $2 \rightarrow 3: 4 \text{ minutes}$

• $3 \rightarrow 5$: 2 minutes

• $5 \rightarrow 6$: 3 minutes

• Total: 12 minutes

This is the shortest route that satisfies visiting both areas 2 and 5

Example 2

Input	Output
7 21 3 1 7	13
126	
1 3 3	
1 4 20	
1 5 17	
1 6 14	
1711	
2 3 14	
2 4 11	
258	
265	
272	
3 4 2	
3 5 19	
3 6 16	
3 7 13	
4 5 10	
467	
474	
5 6 18	
5 7 15	
676	
2 3 4	

Chosen route

 $1 \rightarrow 3 \rightarrow 4 \rightarrow 7 \rightarrow 2 \rightarrow 7$

Total cost: 13