

PROJEKT INŻYNIERSKI

Tytuł pracy dyplomowej inżynierskiej

Jakub KULA Nr albumu: 296849

Kierunek: Automatyka i Robotyka **Specjalność:** Technologie Informacyjne

PROWADZĄCY PRACĘ

dr inż. Szymon Ogonowski, prof. PŚ
KATEDRA Katedry Pomiarów i Systemów Sterowania
Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2023

Tytuł pracy

Tytuł pracy dyplomowej inżynierskiej

Streszczenie

(Streszczenie pracy – odpowiednie pole w systemie APD powinno zawierać kopię tego streszczenia.)

Słowa kluczowe

(2-5 slow (fraz) kluczowych, oddzielonych przecinkami)

Thesis title

Thesis title in English

Abstract

(Thesis abstract – to be copied into an appropriate field during an electronic submission – in English.)

Key words

(2-5 keywords, separated by commas)

Spis treści

1	Wst	tęp	1
	1.1	Cel i zakre pracy	1
	1.2	Aktualny stan wiedzy	1
	1.3	Charakterystyka rozdziałów	1
	1.4	Wkład autora	1
2	Zas	tosowane narzędzia w pracy	3
	2.1	Python	3
	2.2	Tensorflow	3
	2.3	Inne bibloteki	3
		2.3.1 Pandas	3
		2.3.2 Matlibplot	3
		2.3.3 Numpy	3
		2.3.4 Sckit-learn	3
	2.4	CUDA toolkit	3
3	Mo	delowanie sieci neuronowej	5
	3.1	Metodologia projektowania modelu sieci neuronowej	5
	3.2	Dane wejściowe i proces ich przetwarzania	5
	3.3	Projektowanie i ocena modeli	5
4	Mo	delowanie zbiornika CWU	7
	4.1	Metodologia	7
		4.1.1 Opis matematyczny modelu	7
	4.2	Wyniki symulacji	7
5	Opt	tymalizacja	9
	5.1	Funkcja kosztów	9
	5.2	Funkcja komfortu	9
6	Pod	dsumowanie i wnioski	11

Bibliografia	13
Spis skrótów i symboli	17
Źródła	19
Lista dodatkowych plików, uzupełniających tekst pracy	21
Spis rysunków	23
Spis tabel	25

$\operatorname{Wst} olimits \operatorname{\mathsf{ep}} olimits$

1.1 Cel i zakre pracy

wprowadzenie w problem/zagadnienie

1.2 Aktualny stan wiedzy

osadzenie tematu w kontekście aktualnego stanu wiedzy ($state\ of\ the\ art$) o poruszanym problemie

studia literaturowe [3, 4, 2, 1] - opis znanych rozwiązań (także opisanych naukowo, jeżeli problem jest poruszany w publikacjach naukowych), algorytmów,

1.3 Charakterystyka rozdziałów

Krótkie wprowadzenie do zawartości Zarys głównych punktów i celów rozdziału

1.4 Wkład autora

jednoznaczne określenie wkładu autora, w przypadku prac wieloosobowych – tabela z autorstwem poszczególnych elementów pracy

Wzory

$$y = \frac{\partial x}{\partial t} \tag{1.1}$$

jak i pojedyncze symbole x i y składa się w trybie matematycznym.

Zastosowane narzędzia w pracy

Opis narzędzi które były uzywane podczas programowania, Wiekszy opis pythona i tensorflow, ich "specyfikacja" plusy i minusy, jakie były inne mozliwe wybory oraz czemu zostały wybrane akurat te rozwiązania, krótszy opis pozostałych biblotek uzytych podczas programownia takich jak numpy, plotlib czy pandas

- 2.1 Python
- 2.2 Tensorflow
- 2.3 Inne bibloteki
- **2.3.1** Pandas
- 2.3.2 Matlibplot
- 2.3.3 Numpy
- 2.3.4 Sckit-learn

2.4 CUDA toolkit

Opis narzędzi które zostały uzyte w celu optymalizacji pracy pythona, takie jak wirtalne środowisko Conda, czy nydia CUDA

Modelowanie sieci neuronowej

3.1 Metodologia projektowania modelu sieci neuronowej

Wstep teoretyczny o modelowaniu, opisanie rzeczy takich jak, warstwy, neurony, funckje aktywacjie, funkcje kosztu, optymalizator, liczba epok, batch size, walidacha, funckaj strat

3.2 Dane wejściowe i proces ich przetwarzania

3.3 Projektowanie i ocena modeli

Opisanie prob wybrania modelu testowe, oraz na jakich zbiorach były uczone. Wyniki symulacji i przeprowadzanych testów. Wybór najlepszego modelu, dostrajanie go. Przedstawienie końcowych wyników, plotowanie rzeczy typu wykres loss od czasu.

Rysunek 3.1: Podpis rysunku po rysunkiem.

Modelowanie zbiornika CWU

4.1 Metodologia

4.1.1 Opis matematyczny modelu

$$\frac{dT_{wo}^3}{dt} = b_1^3 F_z (T_{zi} - T_{wo}^3) - b_2^3 F_w (T_{wo}^3 - T_{wo}^2) - b_3^4 (T_{wo}^3 - T_{ot})$$
(4.1)

$$\frac{dT_{zi}}{dt} = p_1 Q_g - p_2 F_z (T_{zi} - T_{wo}^3) - p_3 (T_{zi} - T_{ot})$$
(4.2)

$$\frac{dT_{wo}^2}{dt} = b_1^2 F_z (T_{zi} - T_{wo}^2) - b_2^2 F_w (T_{wo}^2 - T_{wo}^1) - b_2^3 (T_{wo}^2 - T_{ot}) - b_2^4 (T_{wo}^2 - T_{wo}^1) + b_2^5 (T_{wo}^3 - T_{wo}^2)$$
(4.3)

$$\frac{dT_{wo}^1}{dt} = -b_1^1 F_w (T_{wo}^1 - T_{wi}) - b_1^3 (T_{wo}^1 - T_{ot}) + b_1^5 (T_{wo}^2 - T_{wo}^1)$$
(4.4)

Przedstawienie modelu warstwowego, równań stanu, pokazanie wyników symulacji modelu

4.2 Wyniki symulacji

Krótka wstawka kodu w linii tekstu jest możliwa, np. **int** a; (biblioteka listings). Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rys 4.1, a naprawdę długie fragmenty – w załączniku.

Rysunek 4.1: Pseudokod w listings.

Optymalizacja

5.1 Funkcja kosztów

$$G = \int p_1 Q_g \, dt \tag{5.1}$$

5.2 Funkcja komfortu

$$J = \int (T_{wo} - T_{wym})^2 \left| \frac{\text{sign}(T_{wo} - T_{wym} - \delta) + \text{sign}(T_{wo} - T_{wym} + \delta)}{2} \right| dt$$
 (5.2)

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tabela 5.1: Nagłówek tabeli jest nad tabelą.

				metoda			
				alg. 3	alg. 4	$\gamma = 2$	
ζ	alg. 1	alg. 2	$\alpha = 1.5$	$\alpha = 2$	$\alpha = 3$	$\beta = 0.1$	$\beta = -0.1$
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724

Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

Bibliografia

- [1] Imię Nazwisko i Imię Nazwisko. *Tytuł strony internetowej.* 2021. URL: http://gdzies/w/internecie/internet.html (term. wiz. 30.09.2021).
- [2] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu konferencyjnego".
 W: Nazwa konferecji. 2006, s. 5346–5349.
- [3] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu w czasopiśmie". W: *Tytuł czasopisma* 157.8 (2016), s. 1092–1113.
- [4] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. *Tytuł książki*. Warszawa: Wydawnictwo, 2017. ISBN: 83-204-3229-9-434.

Dodatki

Spis skrótów i symboli

```
DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)
```

```
MVC \mod - \text{widok} - \text{kontroler (ang. } model-view-controller)
```

- ${\cal N}\,$ liczebność zbioru danych
- $\mu\,$ stopnień przyleżności do zbioru
- $\mathbb E \,$ zbi
ór krawędzi grafu
- ${\cal L}\,$ transformata Laplace'a

Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść w to miejsce.

Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- dane testowe,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

Spis rysunków

3.1	Podpis rysunku po rysunkiem	5
4.1	Pseudokod w listings	8

Spis tabel

5.1	Nagłówek tabeli	jest nad	tabela.		 									1	10