5.7 5.24 is the error function in multi-class classification.

$$\frac{\partial E}{\partial a_k} = \frac{\partial}{\partial a_k} \left(-\sum_{j=1}^K \left\{ t_{nj} \ln y_{nj} \right\} \right)$$

$$= -\sum_{j=1}^K \frac{\partial \left\{ t_{nj} \ln y_{nj} \right\}}{\partial a_k}$$

$$= -\sum_{j=1}^K t_{nj} \left(\frac{\partial \left\{ \ln y_{nj} \right\}}{\partial a_k} \right)$$

$$= -\sum_{j=1}^K t_{nj} \left(\frac{1}{y_{nj}} \right) \left(\frac{\partial y_{nj}}{\partial a_k} \right)$$

Here, y_{nk} is given by the softmax function. We calculated it's derivative w.r.t a_k in exercise 4.17, which gave us $\frac{\partial y_j}{\partial a_k} = y_j(I_{jk} - y_k)$. Applying this result here, we get:

$$= -\sum_{j=1}^{K} t_{nj} \left(\frac{1}{y_{nj}} \right) (y_{nj} (I_{jk} - y_{nk}))$$

$$= -\sum_{j=1}^{K} t_{nj} (I_{jk} - y_{nk})$$

$$= -\sum_{j=1}^{K} t_{nj} I_{jk} + \sum_{j=1}^{K} t_{nj} y_{nk}$$

$$= -t_{nk} + y_{nk} \sum_{j=1}^{K} t_{nj}$$

 t_{nj} will be 1 for one j, and 0 for the rest. So the expression becomes:

$$= -t_{nk} + y_{nk}$$
$$= y_{nk} - t_{nk}$$

which satisfies 5.18.