SMART INDIA HACKATHON 2025

TITLE PAGE

- Problem Statement ID SIH25051
- Problem Statement Title- Renewable
 - Energy Monitoring System
- Theme- Renewable/Sustainable Energy
- PS Category- Hardware
- Team ID-
- Team Name : Eco Trackers

IDEA TITLE

SMART INDIA HACKATHON 2025

Proposed Solution:

- ➤ IoT-based Renewable Energy Monitoring System designed for microgrids.
- It continuously tracks solar generation, battery health, and load consumption.
- A cloud-based dashboard allows remote monitoring and control.
- > The system provides **fault detection** with instant **alerts** to prevent failures.
- All data is securely stored on the cloud for predictive analytics and future analysis.

How to Addresses the Problem:

- > Provides real-time monitoring of solar and battery performance.
- > Predicts solar generation (1–2 hrs ahead) to optimize usage.
- Sends alerts for battery health, fast drain, and panel underperformance.
- Helps in cost estimation and load prioritization for efficient energy use.

Innovation & Uniqueness:

- Low-cost IoT-based solution.
- Easy-to-use dashboard (mobile/web).
- Future-ready for AI/ML-based energy prediction.
- Credential storage in SD card adds offline reliability for remote/rural deployment.

TECHNICAL APPROACH

Hardware:

- 1) ESP32: Main controller, collects sensor data and uploads via Wi-Fi & MQTT.
- **2) PZEM-004T :** Measures AC voltage, current, power, and energy.
- **3) BH1750**: Light sensor to measure sunlight level for solar prediction.
- **4) INA219 :** Measures DC voltage & current (battery and load).
- **5) Li-Ion Battery 3.7V 2500mAh :** Power supply for ESP32 and sensors.
- **6) DC to DC Buck Converter :** Steps down voltage for safe operation.
- **7) OLED Display**: Show sensor faults and battery %.
- **8) Solar Plate 6V 60mA :** Generates solar energy to charge the battery.
- 9) SD Card Module: Stores system data for offline use.
- **10)Max17048**: Used for bettery health(Real time Percentage).

Software:

- Arduino IDE / PlatformIO For programming ESP32 microcontroller.
- ► **MQTT Protocol** For communication between ESP32 and cloud server.
- ThingsBoard / Custom Web Dashboard For real-time data visualization and control.
- Open-Meteo Weather API For solar prediction using weather data.
- Google Sheets / Excel / Database For storing and analyzing collected data.
- Cloud Platform (AWS / Firebase / Local Server) For hosting data and dashboard.

Language:

- C / C++ For programming the ESP32 microcontroller on Arduino IDE.
- > **Python** For data analysis, cloud integration, and backend scripts.
- JavaScript (with HTML & CSS) For custom web dashboard and data visualization.
- > SQL / NoSQL For storing project data on cloud or local database.

FEASIBILITY AND VIABILITY

Feasibility:	Challenges:	Solutions:
 Low-cost IoT hardware (ESP32, sensors, solar panel) makes it affordable and scalable. Works in both urban and rural areas due to cloud + offline SD card storage. 	 Internet dependency in remote areas may cause delays in data upload. Sensor calibration issues can affect accuracy of monitoring. Battery limitations during cloudy/rainy days may reduce reliability. Battery limitations during cloudy/rainy days may reduce reliability. 	 Use offline SD card storage and sync data when internet is available. Impleament regular sensor calibration and fault alerts. Add backup power source (larger
 Easy to deploy and maintain with minimal technical skills. Supports future upgrades like Albased prediction and smart grid integration. 		 battery / hybrid energy input). Use data optimization to reduce network bandwidth requirement. Apply data encryption and secure authentication for cloud security.

IMPACT AND BENEFITS

Impact:	Benefits:
➤ Reliable microgrid management.	Social: Energy access for all.
➤ Helps rural areas achieve 24/7 Monitoring.	Social: Better quality of life in remote areas.
➤ Promotes renewable energy adoption.	Economic: Cost-efficient energy management.
Supports smart city and rural electrification initiatives.	Economic: Reduces dependency on expensive diesel generators.
Improves decision-making with real-time energy	Environmental: Reduced carbon footprint.
insights.	Environmental: Encourages clean and green energy usage.

RESEARCH AND REFERENCES

- ThingsBoard IoT Platform Documentation For cloud integration and data visualization
- ➤ IEEE Papers on Smart Microgrids and IoT Energy Monitoring For technical research and best practices
- Government of India Renewable Energy Policies & MNRE Guidelines For compliance and policy alignment
- LoRaWAN Documentation For long-range wireless communication in rural areas
- ➤ SD Card Data Logging Tutorials (ESP32) For local storage implementation
- ➤ Machine Learning in Energy Prediction (Research Articles) For future AI/ML integration in energy forecasting
- Link github: https://github.com/Saurabh8232