Homework #1

Jonathan McFadden

TCSS - 580 : Winter 2018 Information Theory

Problem 2.3): Let \mathbb{P}^n be the set of all *n*-dimensional probability vectors. Furthermore, let \vec{p} be any element of \mathbb{P}^n $(\vec{p} \in \mathbb{P}^n)$ and define \vec{p} as $\vec{p} = (p_1, p_2, \dots, p_i, \dots, p_n)$, where $i \in \mathbb{Z}^+ \ni i \le n$. By the definition of a probability space, we must have

$$\vec{p} \cdot \vec{1} = \sum_{i=1}^{n} \{p_i\} = 1 \ , \ \forall \vec{p} \in \mathbb{P}^n,$$

where $\vec{1} = (1, 1, \dots, 1, \dots, 1)$ is the *n*-dimensional vector having the value 1 for each of its components. Additionally, we may equivalently state, that for $i \in \mathbb{Z}^+ \ni i \le n$, the vector $\vec{1}$ can be defined as $\vec{1} = (q_1, q_2, \dots, q_i, \dots, q_n)$ where $q_i = 1, \forall i \in [1, n] \subseteq \mathbb{Z}^+$.

Now, $\forall i \in \mathbb{Z}^+ \ni i \leq n$, it is clear that the relation $p_i \log_2[p_i] \geq 0$, holds. Moreover, it is also apparent that the relation $p_i \log_2[p_i] \geq 0$ simplifies to equality $(p_i \log_2[p_i] = 0)$ for the cases where either $p_i = 0$ or $p_i = 1$.

It is clear that, $p_i \log_2 [p_i] \ge 0$ hold $\forall i \in \mathbb{Z}^+ \ni i \le n$. Moreover, it is also clear that $p_i \log_2 [p_i] = 0$ only for the case where $p_i = 0$ or $p_i = 1$.