Cauchy-folger (etterslep)

Skal vise: Enhver Cauchy-folge er konvergent

Bevis A. Cauchy-folger er begronset

Velg $\mathcal{E} = \{ (sieme noe annet) \}$. Fra nr \mathcal{N} Så vil $|\overline{X}_N - \overline{X}_N| < \{ 1 \}$ $|\overline{X}_N| + |\overline{X}_N - \overline{X}_N| < |\overline{X}_N| + |\overline{X}_N| < |\overline{X}_N| + |\overline{X}_N| < |\overline{X}_N| + |\overline{X}_$

Iterasjon

$$\frac{\text{Def}}{\text{P:}A \to \mathbb{R}^m} \quad \overline{x} \in A \text{ er et FIKSPUNKT for F}$$

$$\text{dersom } \overline{F(\overline{x})} = \overline{x}$$

Def
$$\emptyset
otan A \subseteq \mathbb{R}^m$$
 F kalles en KONTRAKSJON dersom

 $F: A \rightarrow A$ $\exists 0 < k < 1$ (Kontraksjons Califor)

 $Shat_{|F(\bar{x}) - F[\bar{y}]| \le |K \cdot |\bar{x} - \bar{y}|} \forall \bar{x}, \bar{y} \in A$

Lemma:
$$F: A \to A$$
 $\forall \bar{x}, \bar{y} \in A$ og $n \in \mathbb{N}$, so vil
kontraksjon $\left| F^{n}(\bar{x}) - F^{n}(\bar{y}) \right| \leq K^{n} \left| \bar{x} - \bar{y} \right|$
faktor: K

Banachs Lixpunktsteoren

$$\emptyset + A \subseteq \mathbb{R}^{m}$$
1) F hav noyabling ett skixpunlit \bar{x} i A
 $F: A \to A$
2) $\forall \bar{x}_{o} \in A \quad \left[\bar{x}_{n} - F^{n}(\bar{x}_{o})\right] \longrightarrow \bar{x}$ og

konthaksjon, K

$$\left[\bar{x}_{n} - \bar{x}\right] \leq \frac{K^{n}}{1-K} \left[\bar{x}_{i} - \bar{x}_{o}\right] \quad \forall n$$

Beris: A. Fkan ha max ett fixpunkt Anta to, X, y, dus F(x)= x, F(y)= y. $|\bar{x} - \bar{y}| = |F(\bar{x}) - F(\bar{y})| \in K|\bar{x} - \bar{y}|$, K<1 Motsigalse B $\{\bar{X}_n\}$ er Coucly $\{\bar{X}_n\}$ er Coucly $\{\bar{X}_n\}$ or $\leq |\bar{x}_{n} - \bar{y}_{n-1}| + |\bar{x}_{n-1} - \bar{x}_{n-2}| + \cdots + |\bar{x}_{n-1} - \bar{y}_{n-1}|$ $\in \mathbb{K}^{n} | \bar{x}_{1} - \bar{x}_{0}| + \mathbb{K}^{n-1} | \bar{x}_{1} - \bar{x}_{0}| + \cdots + \mathbb{K}^{n+1} | \bar{x}_{1} - \bar{x}_{0}|$ $= \left(K^{n+} K^{n-1} + \cdots + K^{k+1} \right) \left(\bar{X}_1 - \bar{Y}_0 \right)$ $= K^{k+1} \cdot \frac{1}{1} | \bar{x}_1 - \bar{x}_0 | \longrightarrow 0$ c. Grense punhlet er et lix prunht $\overline{X} = \lim_{n \to \infty} \overline{X}_{n+1} = \lim_{n \to \infty} F(\overline{X}_n) = F(\lim_{n \to \infty} \overline{X}_n) = F(\overline{X})$ $|X_{\eta}-X_{\nu_{\epsilon}}| \leq \frac{K^{k+1}}{1-|x|}|\bar{x}_{1}-\bar{x}_{\delta}|$) 1x-x, (Kk+1) x,-x,

Newtons metade ; flere variable

$$3x^{2}y + 2e^{2+x} = 0$$

 $2z^{2}\cos(xy^{2}+z) + e^{x} = 0$ (\$\phi s\)
 $y^{3}(y^{2}+z) = 0$

Lineanisening:

$$F: \mathbb{R}^{m} \to \mathbb{R}^{n}$$

$$T_{\bar{x}_{o}} \vdash (\bar{x}) = \vdash (\bar{x}_{o}) + \vdash (\bar{x}_{o}) (\bar{x} - \bar{x}_{o})$$

Def (Newtons metode)

deriverbar

$$\bar{x}_{o} \in A$$
 (stat punlit)

F: A -) Rm, A = Rm Newtons metode gir oss

en følge

$$\bar{\chi}_{o}, \bar{\chi}_{i}, \bar{\chi}_{a}, \dots$$

der
$$\overline{X}_{n+1} = \overline{X}_n - F^{1}(\overline{X}_n)^{-1} \cdot F(\overline{X}_n)$$

Motivagin:
$$(\overline{x}) = \overline{X} - F'(\overline{x})^{-1} F(\overline{x})$$

Newtons metode er fisspunktsikragin av G.

Kantorovitsj teorem (Konvegens av Newtons metode) $F: U \rightarrow \mathbb{R}^{m}$ 1) $\exists M; |F(\bar{x}) - F'(\bar{y})| \in M \cdot |\bar{x} - \bar{y}| \quad \forall \bar{x}, \bar{y} \in U$ deriverbar åpen, konveks denverbene for C^{2}) $\dot{x}_{0} \in U$ 2) $F'(\dot{x}_{0})$ er invarbed $|F'(\dot{x}_{0})^{-1}| \in K$ 3) $\dot{B}(\dot{x}_{0}), \dot{K}_{M}$ $\subset U$ what

4) Hars $|\bar{x}_{1} - \dot{x}_{0}| = |F'(\dot{x}_{0})^{-1}, F(\dot{x}_{0})| \in \mathcal{X}_{K}_{M}$ so $c \in F'(\bar{x})$ inverterbar $\forall \bar{x} \in \mathcal{B}(\bar{x}_{0}, \dot{k}_{M})$ $\dot{x}_{0} \in \mathcal{X}_{0}$ $\dot{x}_{0} \in \mathcal{X}_{0}$