

1. Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n are

1) 
$$m = 7, n = 6$$

**2)** 
$$m = 6, n = 3$$

3) 
$$m = 5, n = 1$$

1) 
$$m=7, n=6$$
 2)  $m=6, n=3$  3)  $m=5, n=1$  4)  $m=8, n=7$ 



If  $\{x\}$  and [x] represent fractional and integral part of x, then find the value of  $[x]+\sum_{r=1}^{2011} \frac{\{x+r\}}{2011}$ .

**1)** 2000

**2)** *x* 

3)  $\{x\}$ 

**4)** 2x



With the usual notation in a 
$$\Delta ABC$$
  $\begin{vmatrix} 1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \sin^2 A & \sin^2 B & \sin^2 C \end{vmatrix} =$  1)  $\frac{1}{8R^3}(a-b)(b-c)(c-a)$  2)  $8R^3$  3)  $(a-b)(b-c)(c-a)$  4)  $\frac{1}{8R}(a-b)(b-c)(c-a)$ 

1) 
$$\frac{1}{8R^3}(a-b)(b-c)(c-a)$$
 2)

3) 
$$(a-b)(b-c)(c-a)$$

4) 
$$\frac{1}{8R}(a-b)(b-c)(c-a)$$



```
4. If ar{r}=3ar{p}+4ar{q} and 2ar{r}=ar{p}-3ar{q} then
```

**1)** ar r,ar q have same direction and |ar r|<2|ar q| **2)** ar r,ar q have opposite direction and |ar r|>2|ar q| and |ar r,ar q| have same direction and |ar r|<2|ar q|



The number of functions f from  $\{1,2,3,\ldots,20\}$  onto  $\{1,2,3,\ldots,20\}$  such that f(k) is a multiple of 3, whenever k is a multiple of 4, is 1)  $5^6 \times 15$  2)  $5! \times 6!$  3)  $(15)! \times 6!$  4)  $6^5 \times (15)!$ 



Let  $A=\{2,3,4,5,\ldots,30\}$  and ' $\simeq$ ' be an equivalence relation on  $A\times A$ , defined by  $(a,b)\simeq (c,d)$ , if and only if ad=bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4,3) is equal to :

**1)** 8

**2)** 5

**3)** 6

**4)** 7



If the sum of the first 15 terms of the series  $\left(\frac{3}{4}\right)^3+\left(1\frac{1}{2}\right)^3+\left(2\frac{1}{4}\right)^3+3^3+\left(3\frac{3}{4}\right)^3+\dots$  is equal to 225k, then k is equal to

**1)** 54

**2)** 108

**3)** 27

**4)** 9



#### 8. If the system of linear equations

$$x+y+z=5$$
  $x+2y+2z=6$   $x+3y+\lambda z=\mu, (\lambda,\mu\in R)$  , has infinitely many solutions, then the value of  $\lambda+\mu$  is 1) 7 2) 9 3) 10 4) 12



Let  $\alpha \in R$  and the three vectors  $\vec{a} = \alpha \hat{i} + \hat{j} + 3\hat{k}$ ,  $\vec{b} = 2\hat{i} + \hat{j} - \alpha \hat{k}$  and  $\vec{c} = \alpha \hat{i} - 2\hat{j} + 3\hat{k}$ . Then the set  $S = \{\alpha : \vec{a}, \vec{b} \text{ and } \vec{c} \text{ are coplanar}\}$  1) contains exactly two positive numbers 2) is empty 3) contains exactly two numbers only one of which is positive 4) is singleton



In a parallelogram ABCD,  $|\overrightarrow{AB}|=a;$   $|\overrightarrow{AD}|=b$  and  $|\overrightarrow{AC}|=c$  then  $\overrightarrow{DB}.\overrightarrow{AB}$  has the value

1) 
$$\frac{3a^2+b^2-c^2}{2}$$

**2)** 
$$\frac{a^2+3b^2-c^2}{2}$$

3) 
$$\frac{a^2-b^2+3c^2}{2}$$

1) 
$$\frac{3a^2+b^2-c^2}{2}$$
 2)  $\frac{a^2+3b^2-c^2}{2}$  3)  $\frac{a^2-b^2+3c^2}{2}$  4)  $\frac{a^2+3b^2+c^2}{2}$ 



variable straight lines  $L_1:y=2x+c_1$  and  $L_2:y=2x+c_2$  meet the x-axis in  $A_1$  and  $A_2$  respectively and y-axis in  $B_1$  and  $B_2$  respectively locus of intersection point of  $A_1B_2$  and  $A_2B_1$  is 1) y+x=0 2) y=x 3) y+2x=0 4) y=2x



When the origin is shifted to a suitable point, the equation  $2x^2 + y^2 - 4x + 4y = 0$  transformed as  $2x^2 + y^2 - 8x + 8y + 18 = 0$ . The point to which origin was shifted is

**1)** (1, 2)

**2)** (1, -2)

**3)** (-1, 2)

**4)** (-1, -2)



13. A straight line through the origin 'O' meets the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. then point O divides the segment PQ in the ratio

**1)** 1 : 2

**2)** 3 : 4

**3)** 2 : 1

**4)** 4 : 3



The vertex A of  $\Delta ABC$  is (3,-1). The equations of median BE and angle bisector CF are x-4y+10=0 and 6x+10y-59=0 , respectively. Equation of AC is

1) 
$$5x + 18y = 37$$

2) 
$$15x + 8y = 37$$

3) 
$$15x - 8y = 37$$

1) 
$$5x + 18y = 37$$
 2)  $15x + 8y = 37$  3)  $15x - 8y = 37$  4)  $15x + 8y + 37 = 0$ 



Let a, b, c be in arithmetic progression. Let the centroid of the triangle with vertices (a,c),(2,b) and (a,b) be  $\left(\frac{10}{3},\frac{7}{3}\right)$ . If  $\alpha,\beta$  are the roots of the equation  $ax^2+bx+1=0$ , then the value of

$$lpha^2+eta^2-lphaeta$$
 is

1) 
$$\frac{71}{256}$$
 2)  $-\frac{69}{256}$  3)  $-\frac{71}{256}$  4)  $\frac{69}{256}$ 

$$\frac{69}{256}$$

$$-\frac{71}{256}$$

**4)** 
$$\frac{69}{256}$$



The circumcentre of triangle formed by lines  $2x^2-3xy-2y^2=0\,$  and  $3x+4y-20=0\,$  is

**1)** (2,3)

**2)** (3,2)

**3)** (3,3)

**4)** (0,5)



If the equation  $x^3 + ax^2y + bxy^2 + y^3 = 0$  represents three lines two of which are perpendicular then equation of third line is 1) y = ax 2) y = bx 3) y = x 4) y = -x



A tetrahedron has vertices at O(0,0,0). A(1,2,1), B(2,1,3) and C(-1,1,2). Then the angle between the faces OAB and ABC will be

1) 
$$\pi/2$$

2) 
$$\cos^{-1}\left(\frac{19}{35}\right)$$
 3)  $\cos^{-1}\left(\frac{17}{31}\right)$  4)  $\pi/6$ 

3) 
$$\cos^{-1}\left(\frac{17}{31}\right)$$

4) 
$$\pi/6$$



Equation of the bisector of the angle between the planes x+2y+2z-9=0, 4x-3y+12z+13=0 containing the origin is

1) 
$$25x+17y+62z-78=0$$
 2)  $x+35y-10z-156=0$  3)  $25x+17y+62z-156=0$  4)  $x+35y-10z-78=0$ 

On which of the lines lies the point of intersection of  $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$  and x+y+z=2

1) 
$$\frac{x-2}{2} = \frac{y-3}{2} = \frac{z+3}{3}$$

1) 
$$\frac{x-2}{2} = \frac{y-3}{2} = \frac{z+3}{3}$$
 2)  $\frac{x-4}{3} = \frac{y-5}{1} = \frac{z-5}{-1}$  3)  $\frac{x-1}{1} = \frac{y-3}{2} = \frac{z+4}{-5}$  4)  $\frac{x+3}{3} = \frac{4-y}{3} = \frac{z+1}{-2}$ 

3) 
$$\frac{x-1}{1} = \frac{y-3}{2} = \frac{z+4}{-5}$$

4) 
$$\frac{x+3}{3} = \frac{4-y}{3} = \frac{z+1}{-2}$$



Let  $ec r=(a imes b)\sin x+(b imes c)\cos y+2(ar c imesar a)$  where ar a,ar b,ar c are non zero non coplanar vectors. If ec r is orthogonal to ar a+ar b+ar c then find minimum value of  $rac{20}{\pi^2}(x^2+y^2)$ 

If  $\log_{12}18=lpha$  and  $\log_{24}54=eta$  then find the value of  $\left(rac{1-lphaeta}{lpha-eta}
ight)$ 



If 
$$2f(xy)=(f(x))^y+(f(y))^x\ orall\ x,y$$
 and  $f(1)=2$  then  $\left\lceil\sum\limits_{n=1}^9rac{f(n)}{2^{10}}
ight
ceil$  where [.] is the greatest value function



If 
$$D_k=egin{array}{c|cccc} 1&n&n&n\ 2k&n^2+n+1&n^2+n\ 2k-1&n^2&n^2+n+1 \end{array}$$
 and  $\sum\limits_{k=1}^n D_k=56$  then find value of  $n.$ 

and 
$$\sum\limits_{k=1}^n D_k = 56$$
 then find value of  $n$ .



If ar a, ar b are two unit vectors then value of  $(1-ar a, ar b)^2+|ar a+ar b+(ar a imesar b)|^2$  is equal to

The distance between the line  $rac{x-1}{2}=rac{y-2}{3}=rac{z-3}{4}$  and the plane x+y-z+10=0 is\_\_\_\_\_



The number of integral value of  $\lambda$  such that the plane through  $A(-\lambda^2,1,1)B(1,-\lambda^2,1)$  and  $C(1,1,-\lambda^2)$  also passes through P(-1,-1,1) is \_\_\_\_\_



If Q(0,-1,-3) is image of P in the plane 3x-y+4z=2 and R(3,-1,-2). Area triangle PQR is K then  $(4K^2-91)$  is \_\_\_\_\_



<sup>29.</sup> Centriod and one vertex of an equilateral triangle are G(1,1) and A(1,2) other two vertices are  $B(x_1,y_1),C(x_2,y_2)$  then  $|x_1+x_2-2(y_1+y_2)|=$ 



Two sides of a rectangle are 3x + 4y + 5 = 0, 4x - 3y + 15 = 0 and one of its vertices is (0, 0). Then area of rectangle is \_\_\_\_\_.