B. Gluttony

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices $S = \{x_1, x_2, ..., x_k\}$ $(1 \le x_i \le n, 0 \le k \le n)$ the sums of elements on that positions in a and b are different, i. e.

Input

The first line contains one integer n ($1 \le n \le 22$) — the size of the array.

The second line contains n space-separated distinct integers $a_1, a_2, ..., a_n$ ($0 \le a_i \le 10^9$) — the elements of the array.

Output

If there is no such array b, print -1.

Otherwise in the only line print n space-separated integers $b_1, b_2, ..., b_n$. Note that b must be a permutation of a.

If there are multiple answers, print any of them.

Examples

input	
2	
1 2	
output	
2 1	

```
input
4
1000 100 10 1

output
100 1 1000 10
```

Note

An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x.

Note that the empty subset and the subset containing all indices are not counted.