Topic 28 - Mixed Model Example -Random Regression-

STAT 525 - Fall 2013

Mixed versus Fixed Effects Model

- Similar to GLM but data are permitted
 - To be correlated
 - To have nonconstant variance
- Need to model covariance arises when
 - Experimental units are grouped or clustered either by design or grouped in terms of spatial orientation
 - Repeat measurements on the same experimental unit

Topic 28

STAT 525

General Mixed Effect Linear Model

• Can be expressed as

$$Y = X\beta + Z\delta + \varepsilon$$

X and Z based on trt/design structure β is a vector of fixed-effect parameters δ is a vector of random-effect parameters ε is the error vector

- δ and ε assumed MVN and uncorrelated
 - means 0
 - covariance matrices G and R

STAT 525

DF Adjustments

- Various studies have looked at behavior of mixed model procedures on relatively "small" experiments and found two key issues
 - 1. Degrees of freedom adjustment
 - 2. Standard error bias
- Giesbrecht and Burns (1985) generalized Satterthwaite's degrees of freedom approximation for all linear models
- Both KR and SATTERTH adjust df in same manner

Topic 28

3

Topic 28

STAT 525

Standard Error Bias

- Harville (1984) showed that when estimated variance/covariance parameters are used the SEs are biased downward
 - This does not occur in balanced designs without covariance
 - Only slightly occurs in unbalanced designs without covariance
 - The more complex the design with covariance...the more severe the bias
- Kenward and Roger (1997) derived bias correction term

Example - Growth Curve

(Potthoff and Roy, 1964)

- Dental growth measurements of distance (mm) from pituitary gland to the pteryomaxillary fissure
- Measurements taken on 11 girls and 16 boys

```
data growth;
input Person Sex $ y1 y2 y3 y4;
y=y1; Age=8; Age1=-3; output; y=y2; Age=10; Age1=-1; output;
y=y3; Age=12; Age1=1; output; y=y4; Age=14; Age1=3; output;
drop y1-y4;
datalines;
1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
:
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;
```

Topic 28

STAT 525

Topic 28

Topic 28

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18

Profiles Plot

STAT 525

Linear Mixed Models

- General positive linear trend over age
- Males' distances typically larger than females' distances
- Will consider various linear models that describe distance as a function of age and sex
 - Two-factor ANOVA with factors AGE and SEX
 - Sex-specific regression lines

Topic 28

Mixed Models Considered

```
/* linear regression w/ unstructured covariance matrix */
proc mixed data=growth;
  class person sex;
  model y = sex age(sex) / noint s;
  repeated / type=un sub=person r=1;
  estimate 'diff in ints' sex 1 -1;
  estimate 'diff in slopes' age(sex) 1 -1;
/* linear regression w/ compound symmetry covariance matrix */
proc mixed data=growth;
   class person sex;
   model y = sex age(sex) / noint s;
   repeated / type=cs sub=person r=1;
 /* random regression coefficients model */
proc mixed data=growth;
   class person sex:
   model y = sex age(sex) / noint s;
   random intercept age / type=un sub=person g v=1;
run;
```

Topic 28

Mixed Models Considered

```
/* linear regression w/ compound symmetry - heterogeneity across sex */
proc mixed data=growth;
   class person sex;
   model y = sex age(sex) / noint s;
   repeated / type=cs sub=person group=sex r=1,12;
run;

/* linear regression w/ toeplitz*/
proc mixed data=growth;
   class person sex;
   model y = sex age(sex) / noint s;
   repeated / type=toep sub=person r=1;
run;

/* two-way ANOVA w/ CS - heterogeneity across sex*/
proc mixed data=growth;
   class person sex age;
   model y = sex|age / s;
   repeated / type=cs group=sex sub=person r=1;
run;
```

Topic 28

10

12

STAT 525

Topic 28

Unstructered

Estimated R Matrix for Person 1						
Row	Col	1 Col2	Col3		Col4	
1	5.425	2 2.7092	3.8411	2	.7151	
2	2.709	2 4.1906	2.9745	3	.3137	
3	3.841	1 2.9745	6.2632	4	.1332	
4	2.715	1 3.3137	4.1332	4	.9862	
	1	Fit Statistic	s			
-2	Res Log	Likelihood	424.5			
AIC	(smalle	r is better)	444.5			
AIC	C (small	er is better)	446.9			
BIC	(smalle	r is better)	457.5			
Solution for Fixed Effects						
			Standard			
Effect	Sex	Estimate	Error	DF	t Value	Pr > t
Sex	F	17.4254	1.2612	25	13.82	<.0001
Sex	М	15.8423	1.0457	25	15.15	<.0001
Age(Sex)		0.4764	0.1066	25	4.47	0.0001
Age(Sex)	M	0.8268	0.08843	25	9.35	<.0001
			Estimates			
			Standard			
Label		Estimate	Error	DF	t Value	Pr > t
diff in		1.5831	1.6384	25	0.97	0.3432
diff in	slopes	-0.3504	0.1385	25	-2.53	0.0181

STAT 525

Compound Symmetry

			_		•	
F	Estimate	ed R Matrix fo	or Person 1			
Row	Col	11 Col:	2 Co13		Col4	
1	5.220	3.2986	3.2986	3	3.2986	
2	3.298	36 5.2207	3.2986	3	3.2986	
3	3.298	3.2986	5.2207	3	3.2986	
4	3.298	3.2986	3.2986	Ę	5.2207	
	F	it Statistics	3			
-2 Re	s Log I	ikelihood	433.8			
AIC ((smaller	r is better)	437.8			
AICC	(smalle	er is better)	437.9			
BIC (smaller	is better)	440.3			
		Soluti	ion for Fixed	Effect	s	
			Standard			
Effect	Sex	Estimate	Error	DF	t Value	Pr > t
Sex	F	17.3727	1.1835	104	14.68	<.0001
Sex	М	16.3406	0.9813	104	16.65	<.0001
Age(Sex)	F	0.4795	0.09347	79	5.13	<.0001
Age(Sex)	M	0.7844	0.07750	79	10.12	<.0001

Topic 28

STAT 525

Random Regression Coefficients

	Estim	ated G Mat	rix	
Row	Effect	Person	Col1	Col2
1	Intercept	1	5.7864	-0.2896
2	Age	1	-0.2896	0.03252
	Estim	ated V Mat	rix for Perso	on 1
Row	Col1	Co12	Co13	Co14

4.9502 3.1751 3.1162 3.0574 3.1751 4.9625 3.3176 3.3888 3.1162 3.3176 5.2351 3.7202 3.0574 3.3888 3.7202 5.7679

Fit Statistics

-2 Res Log Likelihood 432.6 AIC (smaller is better) 440.6 AICC (smaller is better) 441.0 BIC (smaller is better) 445.8

Solution for Fixed Effects

Standard Effect Sex Estimate Error t Value Pr > |t|Sex 17.3727 1.2284 25 <.0001 14.14 Sex 16.3406 1.0185 25 16.04 <.0001 0.4795 Age(Sex) 0.1037 25 4.62 <.0001 0.7844 0.08600 <.0001 Age(Sex) 9.12

Topic 28

Different CS for each sex

Co12 4.8870 4.2786 4.2786 4.2786 2 4.2786 4.8870 3 4.2786 4.2786 4.8870 4.2786 4.2786 4.2786 4.2786 Estimated R Matrix for Person 12 Col1 Co12 Co13 Col4 Row 1 5.4571 2.6407 2.6407 2.6407 2 2.6407 5.4571 2.6407 2.6407 2.6407 2.6407 5.4571 2.6407 2.6407 2.6407 2.6407 5.4571

Fit Statistics

-2 Res Log Likelihood 414.7
AIC (smaller is better) 422.7
AICC (smaller is better) 423.1
BIC (smaller is better) 427.8

Solution for Fixed Effects

Standard Effect Sex Estimate Error t Value Pr > |t| 17.3727 0.8587 <.0001 Sex 27.6 20.23 16.3406 Sex 1.1287 14.48 <.0001 0.4795 Age(Sex) 0.05259 32 9.12 <.0001 Age(Sex) 0.7844 0.09382 8.36 <.0001

Topic 28

14

STAT 525

Topic 28

Toeplitz

	Estimated R	Matrix for	Person 1	
Row	Col1	Col2	Col3	Col4
1	5.2826	3.3659	3.6804	2.5285
2	3.3659	5.2826	3.3659	3.6804
3	3.6804	3.3659	5.2826	3.3659
4	2.5285	3.6804	3.3659	5.2826

Fit Statistics

-2 Res Log Likelihood 429.4
AIC (smaller is better) 437.4
AICC (smaller is better) 437.8
BIC (smaller is better) 442.6

Solution for Fixed Effects

			Standard			
Effect	Sex	Estimate	Error	DF	t Value	Pr > t
Sex	F	17.4089	1.2932	41.2	13.46	<.0001
Sex	M	16.2704	1.0732	41.2	15.17	<.0001
Age(Sex)	F	0.4759	0.1046	28.1	4.55	<.0001
Age(Sex)	M	0.7973	0.08674	28.1	9.19	<.0001

STAT 525

ANOVA w/ Heterogenity CS

	Estimated F	R Matri	x for P	erson 1		
Row	Col1		Col2	Col3	Col4	
1	4.9159	4.	2689	4.2689	4.2689	
2	4.2689	4.	9159	4.2689	4.2689	
3	4.2689	4.	2689	4.9159	4.2689	
4	4.2689	4.	2689	4.2689	4.9159	
	Estimated F	R Matri	x for Pe	erson 12		
1	5.4901	2.	6297	2.6297	2.6297	
2	2.6297	5.	4901	2.6297	2.6297	
3	2.6297	2.	6297	5.4901	2.6297	
4	2.6297	2.	6297	2.6297	5.4901	
	-					
Fit Statistics						
-2 Res Log Likelihood 406					.4	
	AIC (smaller	is be	tter)	414	.4	
	AICC (smalle	er is b	etter)	414	.8	
	BIC (smaller	is be	tter)	419	.5	
	_					
Type 3 Tests of Fixed Effects						
		Num	Den			
	Effect	DF	DF	F Value	Pr > F	
	Sex	1	19.6	8.80	0.0077	

15 Topic 28 16

45.08

3.01

< .0001

0.0360

68.4

68.4

Sex*Age

Warning!!

- Appears ANOVA model is best fitting but the fixed effects structure has changed.
- This is not accounted for when using REML estimation.
- Need to compare this model to others using ML estimates

```
/* Two-way ANOVA w/ CS by gender*/
proc mixed data=growth method=ml;
   class person sex age;
   model y = sex|age / noint s ddfm=kr;
   repeated / type=cs sub=person group=sex r=1;
run;

/* linear regression w/ compound symmetry - heterogeneity across sex */
proc mixed data=growth method=ml;
   class person sex;
   model y = sex age(sex) / noint s ddfm=kr;
   repeated / type=cs sub=person group=sex r=1,12;
run;
```

Topic 28 17

STAT 525

Comparison

***Linear Regression

Fit Statistics	
-2 Log Likelihood	408.8
AIC (smaller is better)	424.8
AICC (smaller is better)	426.3
BIC (smaller is better)	435.2

***ANOVA

Fit Statistics	
-2 Log Likelihood	407.4
AIC (smaller is better)	429.4
AICC (smaller is better)	432.1
BIC (smaller is better)	443.6

Linear Regression Model best fitting model *

Topic 28 18