# **Wine Quality Automated Report**

Author: Denitsa Panova *Date: 2023-11-13* 

Disclaimer: The objective of this report is to present the outcomes generated by four distinct machine learning learning techniques: correlation analysis, principal components analysis (PCA), random forest, and logistic regression. A specialized interpretation is essential to derive accurate conclusions regarding the chemical factors influencing the high-quality wine.

## Dependant variable distribution

#### Original Variable



#### Created Variable



## **Correlation Analysis**



- 1.0

- 0.8

- 0.6

0.4

0.2

0.0

-0.2

-0.4

## **PCA**

The explained variance for the first principal component is 0.95

## **Independent Logistic Regressions**



## **Lasso Logistic Regression Results**

The model accuracy is 0.732

The model precision is 0.731

The model precision is 0.73

Below is a graph representing the distribution of the misclassified quality classes



Below is a graph representing the confusion matrix



#### **Lasso Logistic Regression Drivers**

Feature fixed acidity has a coefficient 0.062

Feature volatile acidity has a coefficient 2.847

Feature citric acid has a coefficient 0.312

Feature residual sugar has a coefficient -0.01

Feature free sulfur dioxide has a coefficient -0.025

Feature total sulfur dioxide has a coefficient 0.019

Feature pH has a coefficient 2.005

Feature sulphates has a coefficient -0.996

Feature alcohol has a coefficient -0.842

### **Random Forest Results**

The model accuracy is 0.805

The model precision is 0.804

The model precision is 0.804

Below is a graph representing the distribution of the misclassified quality classes



Below is a graph representing the confusion matrix



Page 6

## **Random Forest Drivers**

