MATEMÁTICA

PROVA, SERÃO UTILIZADOS SEGUINTES SÍMBOLOS E CONCEITOS COM OS **RESPECTIVOS SIGNIFICADOS:**

R: Conjunto dos números reais.

log x: logaritmo de x na base 10.

 $C_{n,n}$: combinação de "n" elementos tomados "p" a "p".

 $A_{n,p}$: arranjo de "n" elementos tomados "p" a "p".

26. O valor de

$$\sqrt{\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\ ...\cdot\left(1-\frac{1}{100}\right)}\,\acute{e}$$

- (A) $\frac{1}{10}$.
- (B) $\frac{1}{100}$.
- (C) 1.
- (D) 2.
- (E) 3.
- **27.** Considere as seguintes afirmações sobre números racionais.

I - Se
$$0 < \frac{a}{b} < \frac{c}{d}$$
, então $\left(\frac{a}{b}\right)^2 < \left(\frac{c}{d}\right)^2$.

II - Se
$$\frac{a}{b} < 0 < \frac{c}{d}$$
, então $\frac{c}{d} + \frac{a}{b} > 0$.

III- Toda fração da forma $\frac{a}{h}$ é irredutível.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas II e III.
- (E) I, II e III.
- **28.** Se a equação $x^2 + 2x 8 = 0$ tem as raízes ae b, então o valor de $\left(\frac{1}{a} + \frac{1}{b}\right)^2$ é
 - (A) $-\frac{1}{16}$.
 - (B) $-\frac{1}{4}$.
 - (C) $\frac{1}{16}$.
 - (D) $\frac{1}{4}$.
 - (E) 1.

29. Na figura abaixo, tem-se um retângulo ABCD, de lados $\overline{AB}=3$ e $\overline{AD}=5$, e um triângulo equilátero BEC, construído sobre o lado \overline{BC} .

A medida de \overline{DE} é

(A)
$$\sqrt{34 + 15\sqrt{2}}$$
.

(B)
$$\sqrt{34 - 15\sqrt{3}}$$
.

- (C) 7.
- (D) $\sqrt{19}$.
- (E) $\sqrt{34 + 15\sqrt{3}}$.
- 30. Considere dois círculos de centros A e C, raio 1 e tangentes entre si. O segmento AC é diagonal do quadrado ABCD. Os círculos de centros B e D são tangentes aos círculos de centros A e C, como mostra a figura abaixo.

O raio dos círculos de centros B e D é

- (A) $\sqrt{2} 1$.
- (B) 1.
- (C) 2.
- (D) $\sqrt{2} + 1$.
- (E) $2\sqrt{2}$.

sitário

31. Considere o hexágono regular ABCDEF de lado 1. Sobre o lado AF do hexágono, constrói-se o quadrado AGHF, como mostra a figura abaixo. Sendo M o ponto médio de \overline{GH} , constrói-se o triângulo CDM.

A área do triângulo CDM é

- (A) $\sqrt{3} 1$.
- (B) $\frac{\sqrt{3}-1}{2}$.
- (C) $\frac{\sqrt{3}+1}{2}$. (D) $\frac{\sqrt{3}}{4}$.
- (E) $\frac{\sqrt{3}}{2}$.
- 32. Considere o cubo ABCDEFGH, representado na figura abaixo, cuja aresta mede 4 e M é o ponto médio da aresta AB.

A área do triângulo MHG é

- (A) $2\sqrt{2}$.
- (B) $4\sqrt{2}$.
- (C) $8\sqrt{2}$.
- $(D) 16\sqrt{2}$.
- (E) $32\sqrt{2}$.

33. Considere o cubo e os tetraedros ABCD, EFGD e HIJD, nos quais os pontos A, C, E, G, H e J são pontos médios de arestas do cubo, como representado na figura abaixo.

A razão entre a soma dos volumes dos tetraedros ABCD, EFGD e HIJD e o volume do cubo é

- (A) $\frac{1}{8}$.
- (B) $\frac{1}{6}$.
- (C) $\frac{1}{3}$.
- (D) $\frac{2}{3}$.
- (E) $\frac{3}{4}$.
- **34.** Considere os pontos A, B e C, de coordenadas inteiras, que determinam os vértices do triângulo ABC, representado no sistema de coordenadas cartesianas abaixo.

A revolução do triângulo ABC, em torno do eixo x, gera o sólido P, e a revolução do triângulo ABC, em torno do eixo y, gera o sólido Q.

A razão entre os volumes de P e Q é

- (A) $\frac{2}{3}$.
- (B) 1.
- (C) $\frac{3}{2}$.
- (D) 18.
- (E) 36.

sitário

- **35.** A área da região determinada pela interseção das desigualdades $y > \frac{3}{2}x \frac{3}{2}$, $y > -\frac{2}{3}x + 5$ e $(x-3)^2 + (y-3)^2 < 9$ é
 - (A) $\frac{3\pi}{4}$.
 - (B) $\frac{3\pi}{2}$.
 - (C) $\frac{9\pi}{4}$.
 - (D) $\frac{9\pi}{2}$.
 - (E) 9π .
- **36.** Considere um retângulo ABCD, de lados $\overline{AB} = 12$ e $\overline{AD} = 8$, e um ponto P construído sobre o lado \overline{AB} . Traçando a reta r perpendicular ao lado \overline{AB} que passa pelo ponto P, determina-se o polígono ADEF, em que E e F são pontos de interseção de r com os segmentos \overline{DC} e \overline{AC} , respectivamente, como mostra a figura abaixo.

Tomando x como a medida do segmento \overline{AP} , a função A(x) que expressa a área de ADEF em função de x, entre as alternativas abaixo, é

(A)
$$A(x) = 8x - \frac{x^2}{6}$$
, para $0 \le x \le 12$.

(B)
$$A(x) = 8x - \frac{2x^2}{3}$$
, para $0 \le x \le 12$.

(C)
$$A(x) = 16x - \frac{2x^2}{3}$$
, para $0 \le x \le 12$.

(D)
$$A(x) = 8x - \frac{x^2}{3}$$
, para $0 \le x \le 12$.

(E)
$$A(x) = 8x - \frac{3x^2}{4}$$
, para $0 \le x \le 12$.

37. Considere as funções f(x) = |x + 1| e g(x) = -|x| - 1.

O intervalo tal que f(x) > g(x) é

- (A) $(-\infty, -1) \cup (1, +\infty)$.
- (B) $\left(-\frac{1}{2}, \frac{1}{2}\right)$.
- (C) $(-\infty,0) \cup (1,+\infty)$.
- (D) $(-1, +\infty)$.
- (E) $(-\infty, +\infty)$.
- **38.** A concentração de alguns medicamentos no organismo está relacionada com a meia-vida, ou seja, o tempo necessário para que a quantidade inicial do medicamento no organismo seja reduzida pela metade.

Considere que a meia-vida de determinado medicamento é de 6 horas. Sabendo que um paciente ingeriu 120 mg desse medicamento às 10 horas, assinale a alternativa que representa a melhor aproximação para a concentração desse medicamento, no organismo desse paciente, às 16 horas do dia seguinte.

- (A) 2,75 mg.
- (B) 3 mg.
- (C) 3,75 mg.
- (D) 4 mg.
- (E) 4,25 mg.
- **39.** Considere o padrão de construção de triângulos com palitos, representado nas figuras abaixo.

Etapa 1

Etapa 2

Etapa 3

Na etapa n, serão utilizados 245 palitos. Nessas condições, n é igual a

- (A) 120.
- (B) 121.
- (C) 122.
- (D) 123.
- (E) 124.

40. A figura a seguir é formada por quadrados de lados $\overline{P_1P_2}$, $\overline{P_2P_3}$, $\overline{P_3P_4}$, e assim sucessivamente.

A construção é tal que os pontos P_1 , P_2 , P_3 , ..., P_4 são colineares, P_4 e as bases dos quadrados têm medidas $\overline{P_1P_2}=1$, $\overline{P_2P_3}=\frac{1}{2}$, $\overline{P_3P_4}=\frac{1}{4}$ e assim por diante. O ponto A é vértice do quadrado de lado $\overline{P_1P_2}$, como representado na figura abaixo.

A medida do segmento AB é

- (A) 1.
- (B) $\sqrt{2}$.
- (C) $\sqrt{3}$.
- (D) 2.
- (E) $\sqrt{5}$.

41. Se $\log 2 = x$ e $\log 3 = y$, então $\log 288$ é

- (A) 2x + 5y.
- (B) 5x + 2y.
- (C) 10xy.
- (D) $x^2 + y^2$.
- (E) $x^2 y^2$.

42. O gráfico de $f(x) = x^3$ está representado na imagem a seguir.

O esboço do gráfico de $g(x) = x^3 + 3x^2 + 3x + 1$ está representado na alternativa

(C)

- **43.** O valor máximo da função trigonométrica $f(x) = \sqrt{2}sen(x) + \sqrt{2}cos(x)$ é
 - (A) $\sqrt{2}$.
 - (B) 2.
 - (C) 3.
 - (D) $\sqrt{5}$.
 - (E) π .
- **44.** Considere dois círculos tangentes entre si, de centros A e B sobre a reta r, e tais que o raio de cada um tenha medida 10.

Os segmentos \overline{CD} e \overline{FE} são tangentes aos círculos e têm extremidades nos pontos de tangência C, D, E e F, como representado na figura a seguir.

A área da região sombreada é

- (A) $100 25\pi$.
- (B) $200 50\pi$.
- (C) $200 + 50\pi$.
- (D) $400 100\pi$.
- (E) $400 + 100\pi$.
- **45.** A área do quadrilátero formado pelos pontos de interseção da circunferência de equação $(x+1)^2 + y^2 = 4$ com os eixos coordenados é
 - (A) $\sqrt{3}$.
 - (B) $2\sqrt{3}$.
 - (C) $3\sqrt{3}$.
 - (D) $4\sqrt{3}$.
 - (E) 12.

46. Para que o sistema de equações lineares

$$\begin{cases} x + y = 7 \\ ax + 2y = 9 \end{cases}$$

seja possível e determinado,

é necessário e suficiente que

- (A) $a \in \mathbf{R}$.
- (B) a = 2.
- (C) a = 1.
- (D) $a \neq 1$.
- (E) $a \neq 2$.
- 47. Um aplicativo de transporte disponibiliza em sua plataforma a visualização de um mapa com ruas horizontais e verticais que permitem realizar deslocamentos partindo do ponto A e chegando ao ponto B, conforme representado na figura abaixo.

O número de menores caminhos possíveis que partem de A e chegam a B, passando por C, é

- (A) 28.
- (B) 35.
- (C) 100.
- (D) 300.
- (E) 792.

sitário

48. Um jogador, ao marcar números em um cartão de aposta, como o representado na figura abaixo, decidiu utilizar apenas seis números primos.

[01] [02] [03] [04] [05] [06] [07] [08] [09] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60]

A probabilidade de que os seis números sorteados no cartão premiado sejam todos números primos é

- (A) $\frac{C_{17,6}}{C_{60,6}}$.
- (B) $\frac{1}{C_{60,6}}$. (C) $\frac{C_{60,6}}{C_{17,6}}$.
- (D) $\frac{A_{17,6}}{A_{60,6}}$. (E) $\frac{A_{60,6}}{A_{17,6}}$.

49. Após a aplicação de uma prova de Matemática, em uma turma de Ensino Médio com 30 estudantes, o professor organizou resultados, conforme a tabela a seguir.

Número de estudantes	Nota
5	3,0
10	6,0
7	8,0
8	9,5

A nota mediana dessa prova de Matemática é

- (A) 6,0.
- (B) 7,0.
- (C) 8,0.
- (D) 9,0.
- (E) 9,5.

50. O gráfico abaixo representa a quantidade de dados armazenados no mundo inteiro, em zettabytes.

Fonte: Gráfico adaptado de UNECE Statistics Wikis (United Nations Economic Commission for Europe).

Com base nos dados do gráfico, considere as afirmações abaixo.

- I Em relação a 2019, a expectativa é que a quantidade de dados armazenados cresça mais de 20% em 2020.
- II De 2017 a 2019, em termos percentuais, a quantidade de dados armazenados cresceu mais de 100%.
- III- Em termos percentuais, pode-se afirmar que a quantidade de dados armazenados cresceu mais no período de 2012 a 2016 do que no período de 2019.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) I, II e III.