Exercise 0: Explain your system:

Hardware and Software	Specification
Processor	Intel®core™ i3-5005U CPU @2.00GHz
Number of cores	2
Logical processors	4
RAM	4.00 GB
OS	Windows 10
Python	3.6

Distributed Computing with Apache Spark:

Apache Spark Basics:

Part a) Basic Operations on Resilient Distributed Dataset (RDD):

1. Perform rightOuterJoin and fullOuterJoin operations between a and b briefly explain your solution.

FullOuterJoin:

```
['python',
'create',
'context',
'apache',
'operation',
'spark',
'scala',
'partition',
'class',
'rdd',
'parallel',
'lambda']
```

RightOuterJoin:

```
['apache', 'operation', 'scala', 'partition', 'parallel', 'lambda']
```

2. Using map and reduce functions to count how many times the character "s" appears in all a and b.

```
('total number of occurances of s in a :', 3)
('total number of occurances of s in b :', 1)
('total count of s in a and b is:', 4)
```

3. Using aggregate function to count how many times the character "s" appears in all a and b.

```
('The total count of s in list 1 is :', [3.0])
('The total count of s in list 2 is :', [1.0])
('The total count of s in both list1 and list2 is :', [4.0])
```

Part b) Basic Operations on DataFrames

Initial student Dataframe

1	course	+ 	dob	first_name	 last_name	 points	s_id
Ĭ	Humanities and Art	October 14,	1983	Alan	Joe	10	1
ĺ	Computer Science	September 26,	1980	Martin	Genberg	17	2
	Graphic Design	June 12,	1982	Athur	Watson	16	3
le	Graphic Design	April 5,	1987	Anabelle	Sanberg	12	4
	Psychology	November 1,	1978	Kira	Schommer	11	5
	Business	17 February	1981	Christian	Kiriam	10	6
	Machine Learning	1 January	1984	Barbara	Ballard	14	7
	Deep Learning	January 13,	1978	John	null	10	8
	Machine Learning	26 December	1989	Marcus	Carson	15	9
	Physics	30 December	1987	Marta	Brooks	11	10
	Data Analytics	June 12,	1975	Holly	Schwartz	12	11
	Computer Science	July 2,	1985	April	Black	null	12
	Computer Science	July 22,	1980	Irene	Bradley	13	13
	Psychology	7 February	1986	Mark	Weber	12	14
	Informatics	May 18,	1987	Rosie	Norman	9	15
	Business	August 10,	1984	Martin	Steele	7	16
	Machine Learning	16 December	1990	Colin	Martinez	9	17
	Data Analytics		null	Bridget	Twain	6	18
	Business	7 March	1980	Darlene	Mills	19	19
	Data Analytics	June 2,	1985	Zachary	null	10	20
+			+	++		+	+

1. Replace the null value(s) in column points by the mean of all points.

+	+	+		+	++	+
course		dob	first_name	last_name	points	s_id
+	+				++	+
Humanities and Art					: :	
Computer Science				_	: :	
Graphic Design	June 12,	1982	Athur	Watson	16	3
Graphic Design	April 5,	1987	Anabelle	Sanberg	12	4
Psychology	November 1,	1978	Kira	Schommer	11	5
Business	17 February	1981	Christian	Kiriam	10	6
Machine Learning	1 January	1984	Barbara	Ballard	14	7
Deep Learning	January 13,	1978	John	null	10	8
Machine Learning	26 December	1989	Marcus	Carson	15	9
Physics	30 December	1987	Marta	Brooks	11	10
Data Analytics	June 12,	1975	Holly	Schwartz	12	11
Computer Science	July 2,	1985	April	Black	11	12
Computer Science	July 22,	1980	Irene	Bradley	13	13
Psychology	7 February	1986	Mark	Weber	12	14
Informatics	May 18,	1987	Rosie	Norman	9	15
Business				Steele	1 7 j	
Machine Learning				Martinez		
Data Analytics		null				
Business				Mills		
Data Analytics				null		
+	+				 	+

2. Replace the null value(s) in column dob and column last name by "unknown" and "--" respectively.

+	L					+
course		dob	first_name	last_name	points	s_id
Humanities and Art	October 14,	1983	Alan	Joe	10	1
Computer Science	September 26,	1980	Martin	Genberg	17	2
Graphic Design	June 12,	1982	Athur	Watson	16	3
Graphic Design	April 5,	1987	Anabelle	Sanberg	12	4
Psychology	November 1,	1978	Kira	Schommer	11	5
Business	17 February	1981	Christian	Kiriam	10	6
Machine Learning	1 January	1984	Barbara	Ballard	14	7
Deep Learning	January 13,	1978	John		10	8
Machine Learning	26 December	1989	Marcus	Carson	15	9
Physics	30 December	1987	Marta	Brooks	11	10
Data Analytics	June 12,	1975	Holly	Schwartz	12	11
Computer Science	July 2,	1985	April	Black	11	12
Computer Science	July 22,	1980	Irene	Bradley	13	13
Psychology	7 February	1986	Mark	Weber	12	14
Informatics	May 18,	1987	Rosie	Norman	9	15
Business	August 10,	1984	Martin	Steele	7	16
Machine Learning	16 December	1990	Colin	Martinez	9	17
Data Analytics	Unl	cnown	Bridget	Twain	6	18
Business	7 March	1980	Darlene	Mills	19	19
Data Analytics	June 2,	1985	Zachary		10	20
+	·	+	+	+		+

3. Let's consider granting some points for good performed students in the class. For each student, if his point is larger than 1 standard deviation of all points, then we update his current point to 20, which is the maximum. See Annex 1 for a tutorial on how to calculate standard deviation.

+	+			·	++	+
course		dob	first_name	last_name	points	s_id
Humanities and Art	t October 11	1093	Alan	Joe	 10	1
Computer Science			'		: :	
Graphic Design					: :	
Graphic Design					: :	
	November 1,			Schommer	11	
Business	17 February	1981	Christian	Kiriam	10	6
Machine Learning	1 January	1984	Barbara	Ballard	14	7
Deep Learning	January 13,	1978	John		10	8
Machine Learning	26 December	1989	Marcus	Carson	20	9
Physics	30 December	1987	Marta	Brooks	11	10
Data Analytics	June 12,	1975	Holly	Schwartz	12	11
Computer Science	July 2,	1985	April	Black	11	12
Computer Science	July 22,	1980	Irene	Bradley	13	13
Psychology	7 February	1986	Mark	Weber	12	14
Informatics	May 18,	1987	Rosie	Norman	9	15
Business	August 10,	1984	Martin	Steele	7	16
Machine Learning	16 December	1990	Colin	Martinez	9	17
Data Analytics		null	Bridget	Twain	6	18
Business	7 March	1980	Darlene	Mills	20	19
Data Analytics	June 2,	1985	Zachary		10	20
+	+	+		+	++	+

4. Create a histogram on the new points created in previous task

Manipulating Recommender Dataset with Apache Spark

Tags.dat initial Dataframe

+	+			++
User	·Id	MovieId	Tag	Timestamp
+	+			++
	15	4973	excellent!	1215184630
	20	1747	politics	1188263867
	20	1747	satire	1188263867
	20	2424	chick flick 212	1188263835
1	20	2424	hanks	1188263835
	20	2424	ryan	1188263835
ĺ	20	2947	action	1188263755
ĺ	20	2947	bond	1188263756
ĺ	20	3033	spoof	1188263880
	20	3033	star wars	1188263880
	20	7438	bloody	1188263801
	20	7438	kung fu	1188263801
	20	7438	Tarantino	1188263801
	21	55247	R	1205081506
	21	55253	NC-17	1205081488
	25	50	Kevin Spacey	1166101426
	25	6709	Johnny Depp	1162147221
1	31	65	buddy comedy	1188263759
1	31	546	strangely compelling	1188263674
Ī	31	1091	catastrophe	1188263741
+	4			++
only	sho	wing tor	20 rows	

only showing top 20 rows

1. A tagging session for a user can be defined as the duration in which he/she generated tagging activities. Typically, an inactive duration of 30 mins is considered as a termination of the tagging session. Your task is to separate out tagging sessions for each user.

+	+					
UserId TagSession						
+	+					
1806	0					
1806	0					
1806	1					
1806	2					
1806	2					
1806	2					
1806	2					
1806	2					
1806	2					
1806	2					
1806	2					
1806	2					
1806	2					
1806	3					
1806	3					
1806	3					
1806	4					
1806	5					
2040	0					
2040	0					
+	+					
only showing	top 20 rows					

2. Once you have all the tagging sessions for each user, calculate the frequency of tagging for each user session

+		++
UserId	TagSession	count
+		++
1806	0	2
1806	1	1
1806	2	10
1806	3	3
1806	4	1
1806	5	1
2040	0	2
15437	0	1
15663	0	1
15846	0	9
18295	0	1
18295	1	3
18730	0	1
19141	0	1
25649	0	1
25649	1	1
25649	2	1
25649	3	1
27919	0	1
27919	1	2
+	+	++

only showing top 20 rows

3. Find a mean and standard deviation of the tagging frequency of each user.

+	+			++
UserId TagSessi	on	count	mean each user	std_each_user
+	+			· +
1806	0	2	3.0	3.521363372331802
1806	1	1	3.0	3.521363372331802
1806	2	10	3.0	3.521363372331802
1806	3	3	3.0	3.521363372331802
1806	4	1	3.0	3.521363372331802
1806	5	1	3.0	3.521363372331802
2040	0	2	2.0	0.0
15437	0	1	1.0	0.0
15663	0	1	1.0	0.0
15846	0	9	9.0	0.0
18295	0	1	2.0	1.4142135623730951
18295	1	3	2.0	1.4142135623730951
18730	0	1	1.0	0.0
19141	0	1	1.0	0.0
25649	0	1	1.0	0.0
25649	1	1	1.0	0.0
25649	2	1	1.0	0.0
25649	3	1	1.0	0.0
27919	0	1	1.5	0.7071067811865476
27919	1	2	1.5	0.7071067811865476
+	+			·+
only showing top	20	rows		

4. Find a mean and standard deviation of the tagging frequency for across users.

```
('total mean across all users:', 7.300084014358817)
('total std across all users:', 22.26429305026497)
```

5. Provide the list of users with a mean tagging frequency within the two standard deviation from the mean frequency of all users

+	-+			+
UserId TagSessio	n	count	mean_each_user	std_each_user
+	-+			+
2030	0	72	72.0	0.0
20729	0	110	52.875	83.38797018412531
20729	1	238	52.875	83.38797018412531
20729	2	45	52.875	83.38797018412531
20729	3	10	52.875	83.38797018412531
20729	4	1	52.875	83.38797018412531
20729	5	7	52.875	83.38797018412531
20729	6	11	52.875	83.38797018412531
20729	7	1	52.875	83.38797018412531
44049	0	57	57.0	0.0
61519	0	55	128.0	103.23759005323593
61519	1	201	128.0	103.23759005323593
57022	0	82	82.0	0.0
29850	0	3	53.3333333333333	87.17989064763348
29850	1	154	53.33333333333333	87.17989064763348
29850	2	3	53.33333333333333	87.17989064763348
11114	0	256	256.0	0.0
17044	0	7	64.0	70.8660708661063
17044	1	106	64.0	70.8660708661063
17044	2	142	64.0	70.8660708661063
+	-+			++

only showing top 20 rows

Bonus (Optional Question): Analysis of Movie dataset using Apache Spark MapReduce (5 points)

Data frame after merging movie.dat and rating.dat.

+ MovieId	Title	Genre	-+s UserId	++ Ratings
1090 Platoon	(1986)	 Drama Wa	r 18	++ 4.0
1090 Platoon	(1986)	Drama Wa	r 34	4.0
1090 Platoon	(1986)	Drama Wa	r 51	: :
1090 Platoon	(1986)	Drama Wa	r 73	4.0
1090 Platoon				4.0
1090 Platoon	(1986)	Drama Wa	r 81	4.0
1090 Platoon	(1986)	Drama Wa	r 96	3.0
1090 Platoon	(1986)	Drama Wa	r 104	5.0
1090 Platoon				3.0
1090 Platoon	(1986)	Drama Wa	r 112	3.0
1090 Platoon	(1986)	Drama Wa	r 122	4.0
1090 Platoon	(1986)	Drama Wa	r 123	5.0
1090 Platoon	(1986)	Drama Wa	r 126	2.5
1090 Platoon	(1986)	Drama Wa	r 135	4.0
1090 Platoon	(1986)	Drama Wa	r 137	3.0
1090 Platoon	(1986)	Drama Wa	r 138	4.0
1090 Platoon	(1986)	Drama Wa	r 139	5.0
1090 Platoon	(1986)	Drama Wa	r 140	4.0
1090 Platoon	(1986)	Drama Wa	r 143	3.0
1090 Platoon	(1986)	Drama Wa	r 144	4.5
+			-+	++

only showing top 20 rows

1. Find the movie title which has the maximum average ratings?

++	+
Title Rat	ings
++	+
Eight Days a Week	5.0
Trouble with Ange	5.0
Marathon Family,	5.0
Soul Food (1997)	5.0
Seven Chances (1925)	5.0
New Age, The (1994)	5.0
After Dark, My Sw	5.0
Gabbeh (1996)	5.0
Queen Christina (5.0
Place in the Sun,	5.0
+	+
only showing top 10 rows	

2. Find the user who has assign the lowest average ratings among all the users the number of ratings greater than 40?

+	++		
UserId	Ratings		
+	++		
672	2.0		
739	: :		
556			
160	:		
276	2.25		
34	2.5		
759	2.5		
426	2.5		
307	2.5		
480	2.5		
+	++		
only sho	owing top	10	rows

3. Find the movie genre with the highest average ratings?

+	+ -				
Genre	Ratings				
+	+				
Adventure Romance	5.0				
Documentary Fantasy	5.0				
Drama Mystery Rom	4.75				
Comedy Drama Film	4.66666666666667				
Drama Film-Noir H	4.5				
Adventure Drama F	4.5				
Action Drama Fant	4.5				
Adventure Drama S	4.5				
Horror Musical My	4.5				
Children Comedy C	4.5				
+	+				
only showing top 10 rows					