3. Ejercicios de teoremas y métodos de reducción

3.1 Calcular la corriente indicada. ¿Qué valor toma dicha corriente si la tensión de entrada aumenta a 10V?

 $\textit{Sol:}\ i_0 = 0\text{,}1\ A$ de G-286, G. Ing. Tec. Tel. unican.es

3.2 Para el circuito de la figura: a) Calcular la tensión y corriente indicadas si $v_{\scriptscriptstyle S}=1V$, b) Obtener la tensión y la corriente si $v_{\scriptscriptstyle S}=10V$, c) Obtener el valor de la tensión y la corriente si todas las resistencias son de 10Ω y $v_{\scriptscriptstyle S}=10V$.

Sol: a)
$$v_0 = \frac{v_s}{2}$$
, $i_0 = \frac{v_0}{R}$, b) $v_0 = 5V$, $i_0 = 5A$, c) $v_0 = 5V$, $i_0 = 500mA$ de G-286, G. Ing. Tec. Tel. unican.es

3.3 Calcular la tensión entre los terminales A y B empelando el principio de superposición.

 $\textit{Sol: } v_{AB} = 6V$ de G-286, G. Ing. Tec. Tel. unican.es

3.4 Calcular la tensión y corriente indicadas empelando el principio de superposición.

Sol: $v_0=18V$, $i_0=1.8A$ de G-286, G. Ing. Tec. Tel. unican.es

3.5 Reducir el circuito a una fuente de tensión en serie con una resistencia empleando transformación de fuentes.

Sol: V=22,8V, $R=5,7\Omega$ de G-286, G. Ing. Tec. Tel. unican.es

3.6 Calcular la tensión indicada realizando transformación de fuentes.

Sol: $V_{AB} = -48V$ de G-286, G. Ing. Tec. Tel. unican.es

3.7 Calcular la corriente indicada empleando transformación de fuentes.

Sol: $i_{\chi}=1$,6A de G-286, G. Ing. Tec. Tel. unican.es

3.8 Determinar el equivalente Thevenin de.

Sol: a)
$$R_{th}=8\Omega$$
, $V_{th}=16V$ b) $R_{th}=20\Omega$, $V_{th}=50V$ de G-286, G. Ing. Tec. Tel. unican.es

3.9 Determinar los equivalentes Thevenin vistos entre los terminales A-B y B-C.

Sol: : AB)
$$R_{th}=3.8\Omega$$
, $V_{th}=4V$ BC) $R_{th}=3.2\Omega$, $V_{th}=15V$ de G-286, G. Ing. Tec. Tel. unican.es

3.10 Determinar el equivalente Thevenin de.

Sol: $R_{th} = 2.8\Omega$, $V_{th} = 60V$

3.11 Determinar el equivalente Thevenin de.

Sol: $R_{th}=3$ 1,7 Ω , $V_{th}=0$ V de G-286, G. Ing. Tec. Tel. unican.es

3.12 Determinar el equivalente Thevenin de.

Sol: $R_{th} = -1\Omega$, $V_{th} = 0V$ de G-286, G. Ing. Tec. Tel. unican.es

3.13 Determinar el equivalente Thevenin de.

Sol: $R_N=10\Omega$, $I_N=666$,7A de G-286, G. Ing. Tec. Tel. unican.es

3.14 Determinar el equivalente Norton de.

Sol: $R_N = -3$, 3Ω , $I_N = 0A$ de G-286, G. Ing. Tec. Tel. unican.es

3.15 Para el circuito: a) Determinar el equivalente Thevenin, b) calcular la corriente en $R_L=8\Omega$, c) Hallar R_L para que la transferencia de potencia sea máxima y d) Obtener la esa potencia transferible a R_L .

Sol: a) $R_{th}=12\Omega$, $V_{th}=40V$ b) $i_L=2A$ d) p=33,3W de G-286, G. Ing. Tec. Tel. unican.es

3.16 Calcula el valor de una resistencia conectada a los terminales A y B que maximice la potencia absorbida del circuito. ¿Cuánto vale esa potencia?

3.17 Encontrar la máxima potencia que se puede transferir a la carga ${\cal R}_L$

Escola Politécnica Superior de Enxeñaría - Campus Terra (Lugo) – USC