Numerical Optimization

Lecture 4: Revised Simplex Method

王浩

信息科学与技术学院

Email: wanghao1@shanghaitech.edu.cn

本节内容:

- 启动单纯形法:人工变量&辅助问题-辅助问题的最 优解与原问题可行解的关系
- 两阶段法 每个阶段的初始化及其解的情况
- 单纯形法的表格实现 重点
- 修正单纯形法-难点
 - ◆ 转轴后基本可行解的基与转轴前对应基的关系
 - ✔ 理论上的表现
 - ✔ 实际的实现
 - ◆ 转轴后的单纯形乘子与转轴前单纯形乘子的关系
 - ◆ 修正单纯形法的表格实现

一、Initialization (单纯形法的启动)

初始基本可行解:人工变量

- 目标: 判断 $Ax = b, x \ge 0$ 是否有解;
- 方法: 有解时, 去掉冗余方程, 找一个基本可行解;
 - ◆给有需要的行乘以-1, 使得 $b \ge 0$
 - ◆引入人工变量(auxiliary variables): y_i , i = 1,...,m

辅助
$$\displaystyle egin{array}{ll} \displaystyle \min _{x \in \mathbb{R}^n, \ y \in \mathbb{R}^m} & \displaystyle \sum_{i=1}^m y_i \ \displaystyle \mathrm{in} & \displaystyle \mathrm{subject \ to} & \displaystyle Ax + y = b \ \displaystyle & \displaystyle x \geq 0, y \geq 0 \end{array}$$

x = 0, y = b是基本可行解

◆以x = 0, y = b作为初始 BFS,利用单纯形法求解辅助问题 假设最后得最优解(x', y'),最优值f',最优基B'

数值最优化 ShanghaiTech-SIST-CS

得到原问题的基本可行解

- f' > 0,原问题无可行解!
- f' = 0, 原问题有可行解, 且x'是潜在的基本可行解!
 - ◆基变量中无人工变量 $\rightarrow x'$ 是BFS, B'是对应的基
 - ◆基变量中有人工变量**→**继续转轴,驱赶人工变量出基

假设第i个基变量是人工变量,且当前单纯形表第i行的前n个数据是 $(y_{i1}, y_{i2}, \dots, y_{in})$

 $(y_{i1}, y_{i2}, \cdots, y_{in}) \neq 0$ 以任一非零元为转轴元转轴 得辅助问题的一个新的最优**BFS**,且基变量中少1个人工变量! $(y_{i1}, y_{i2}, \cdots, y_{in}) = 0$ 第i个约束冗余; 删除单纯形表的第i行数据

5

数值最优化 ShanghaiTech-SIST-CS

例1. 给出下面系统的一个基本可行解,或者说明其无解

$$egin{array}{lll} 2x_1+&x_2+&2x_3=4,\ 3x_1+&3x_2+&x_3=3,\ x_1\geq 0,&x_2\geq 0,&x_3\geq 0. \end{array}$$

引入人工变量 $x_4 \ge 0$, $x_5 \ge 0$, 并在目标上"惩罚"人工变量,添加目标为: minimize $x_4 + x_5$

	x_1	$oldsymbol{x_2}$	x_3	x_4	x_5	b	辅助问题的
	2	1	2	1	0	4	初始表格!
	3	3	1	0	1	3	$x = (0, 0, 0, 4, 3)^{\mathrm{T}}$
$\overline{c^T}$	0	0	0	1	1	0	T BFS

	x_1	$oldsymbol{x_2}$	x_3	x_4	x_5	\boldsymbol{b}	
	2	1	2	1	0	4	第一张
	3	3	1	0	1	3	单纯形表
	-5	-4	-3	0	0	$\overline{-7}$	
x_1	x_2	$x_{\mathfrak{s}}$	$oldsymbol{x}_4$	1	x_5	b	
0	-1	4/3] 1	L —	2/3	2	
1	1	1/3	3 ()	1/3	1	第二张
0	1	-4/3	3 ()	5/3	-2	单纯形表

数值最优化 \$hanghaiTech-\$IST-C\$

	$\boldsymbol{x_2}$			$oldsymbol{x_5}$	
0	-3/4	1	3/4	-1/2	3/2
1	5/4	0	-1/4	1/2	1/2
0	0	0	1	1	0

辅助问题的最优值是0.

原问题的BFS:

$$x_1 = 1/2, \quad x_2 = 0, \quad x_3 = 3/2$$

例2. 利用两阶段法求解下面的问题

minimize
$$4x_1 + x_2 + x_3$$

subject to $2x_1 + x_2 + 2x_3 = 4$, $3x_1 + 3x_2 + x_3 = 3$, $x_1 \geq 0, x_2 \geq 0, x_3 \geq 0$

第 I 阶段:辅助问题

minimize
$$x_4+x_5$$
 subject to $2x_1+x_2+2x_3+x_4=4,$ $3x_1+3x_2+x_3+x_5=3,$ $x_1,x_2,x_3,x_4,x_5\geq 0.$

辅助问题的最后一张单纯形表

	$\boldsymbol{x_2}$		x_4	x_5	b
0	-3/4	1	$3/4 \\ -1/4$	-1/2	3/2
1	5/4	0	-1/4	1/2	1/2
0	0	0	1	1	0

原问题的初始表格:

	x_1	$\boldsymbol{x_2}$	x_3	\boldsymbol{b}
	0	-3/4 $5/4$	1	3/2
	1	5/4	0	1/2
$\overline{c^T}$	4	1	1	0

继续转轴.....

	x_1		x_2	x_3	\boldsymbol{b}
	0	-:	3/4	1	3/2
	1	5	/4	0	1/2
r^T	0	-13	3/4	0	-7/2
		x_1	x_2	x_3	\boldsymbol{b}
		$\frac{x_1}{3/5}$	$egin{array}{c} x_2 \ 0 \ \end{array}$	$egin{array}{c} x_3 \ 1 \ \end{array}$	$\frac{b}{9/5}$

原问题的最优解: $x_1 = 0$, $x_2 = 2/5$, $x_3 = 9/5$

两阶段法的例子

minimize
$$x_1 - x_2$$

subject to $-x_1 + 2x_2 + x_3 = 2$
 $-4x_1 + 4x_2 - x_3 = 4$
 $-5x_1 + 6x_2 = 6$
 $x_1 - x_3 = 0$
 $x_1, x_2, x_3 > 0$

两阶段法: 可求解任意的线性规划问题

- 第 I 阶段: 启动单纯形法
 - ◆构造、求解辅助问题
 - ◆判断原问题不可行、或可行
 - ◆可行时,去掉冗余约束并找到BFS及其对应的规范形
- 第 Ⅱ 阶段: 利用单纯形法求原问题
 - ◆从上述BFS出发,求解所给问题
 - ◆原问题无界或者有解

数值最优化 ShanghaiTech-SIST-CS

大M法(Big M)

辅助
问题 subject to
$$Ax + y = b$$

 $x \ge 0, y \ge 0$

其中是M > 0给定的充分大的参数

二、Revised Simplex Method (修正单纯形法)

修正单纯形法(单纯形法的一种实现方式)

给定基B及对应BFS,即 $B^{-1}b$

$$egin{aligned} A &= [B \ N], \ x &= (x_B^\mathrm{T}, \ x_N^\mathrm{T})^\mathrm{T}, \ c &= (c_B^\mathrm{T}, c_N^\mathrm{T})^\mathrm{T} \ && ext{minimize} \quad c_B^\mathrm{T} x_B + c_N^\mathrm{T} x_N \ && ext{subject to} \quad B x_B + N x_N = b \ && x_B \geq 0, x_N \geq 0 \end{aligned}$$

用非基变量表示基变量:

$$x_B + B^{-1}Nx_N = B^{-1}b \Longrightarrow x_B = B^{-1}b - B^{-1}Nx_N$$

用非基变量表示目标函数:

$$f=c_B^{
m T}B^{-1}b+(c_N^{
m T}-c_B^{
m T}B^{-1}N)x_N$$
vector of reduced costs $r_N^{
m T}=c_N^{
m T}-c_B^{
m T}B^{-1}N$ shanghaiTech-SIST-CS

与基矩阵 B 对应的单纯形表

单纯形乘子

17

重要事实:

- ◆单纯形法的迭代次数典型地为2m ~ 3m
- ◆每次迭代需要的数据单纯形表的最后一行、某列、 最后一列
- ◆每次迭代所涉及运算的信息: B^{-1} , \mathscr{B} , 以及原问题 的信息

数值最优化 线性规划 ShanghaiTech-SIST-CS

修正单纯形法的计算

• 每次迭代需要的数据

单纯形表的最后一行、中间某列和最后一列 $r_j=c_j-\lambda^Ta_j,\ y_q=B^{-1}a_q,\ ar{b}=B^{-1}b$ 其中 $\lambda^T=c_B^TB^{-1}$ 核心计算: B^{-1}

• 核心问题

数值最优化 ShanghaiTech-SIST-CS

基的逆和单纯形乘子的转换

- 设旧基 $B = [a_1, ..., a_p, ..., a_m]$
- a_q 进基 a_p 出基后所得新基

$$\hat{B} = [a_1, \dots, a_{p-1}, a_{p+1}, a_m, a_q]$$

选定初始基
$$[a_1,\ldots,a_p,\ldots,a_m,\ldots,a_p,\ldots,I]$$
 $[e_1,\ldots,e_p,\ldots,e_m,\ldots,y_q,\ldots,\hat{B}^{-1}]$ $[e_1,\ldots,y_p,\ldots,e_m,\ldots,e_q,\ldots,\hat{B}^{-1}]$ 新基进基

可见 $\hat{\mathbf{B}}^{-1}$ 和 \mathbf{B}^{-1} 之间关系为:

$$\hat{b}_{ij} = \begin{cases} b_{ij} - \frac{y_{iq}}{y_{pq}} b_{pj} & i \neq p \\ \frac{b_{pj}}{y_{pq}} & i = p \end{cases}$$

19

数值最优化 ShanghaiTech-SIST-CS

基的逆和单纯形乘子的转换

 $\lambda^T = c_B^T B^{-1}$ 转轴后的单纯形乘子 $\hat{\lambda}^T = \lambda^T + \frac{r_q}{y_{pq}} u_p$,其中 u_p 表示 B^{-1} 的第p行

$$\bar{\lambda} = (c_B + (0, \dots, 0, -c_p + c_q, 0, \dots, 0))^T E_{pq} B^{-1}
= c_B^T E_{pq} B^{-1} + [0, \dots, 0, (-c_p + c_q) v_p, 0, \dots, 0] B^{-1}
= c_B^T (I - (\mathbf{0}, \dots, \mathbf{0}, e_p - v, \mathbf{0}, \dots, \mathbf{0})) B^{-1} + [0, \dots, 0, (-c_p + c_q) v_p, 0, \dots, 0] B^{-1}
= \lambda^T + [0, \dots, 0, -c_p + c_B^T v + (-c_p + c_q) v_p, 0, \dots, 0] B^{-1}.
- c_p + c_B^T v + (-c_p + c_q) v_p
= -c_p + c_1 v_1 + \dots + c_p v_p + \dots + c_m v_m - c_p v_p + c_q v_q
= -\frac{1}{y_{pq}} (c_1 y_{1q} + c_2 y_{2q} + \dots + c_p y_{pq} + \dots + c_m y_{mq}) + \frac{c_q}{y_{pq}}
= \frac{1}{y_{pq}} (c_q - z_q)
= \frac{r_q}{y_{pq}}.$$

利用初等行变换可以实现上述基的逆和单纯形乘子的转换!

基于初等行变换(转轴运算)的数据更新

设转轴元是 y_{pq} ,则 a_q 进基 a_p 出基后

变量指标		B^{-1}		x_B	y_q
i_1				${ar b}_1$	y_{1q}
:				:	• •
i_p				${ar b}_2$	y_{pq}
:				•	•
i_m				$ar{b}_m$	y_{mq}
λ^T	λ_1	• • •	λ_m	f	$-r_q$

以ypq为转轴元,转轴后即得新基对应的数据!

数值最优化 \$hanghaiTech-SIST-CS 22

修正单纯形法的计算步骤

单纯形乘子

步 $\mathbf{0}$ 给定BFS及对应的 B^{-1} . 计算 $\bar{b}=B^{-1}b$, $\lambda^T=c_B^{\bar{T}}B^{-1}$

步1 计算 $r_N^T = c_N^T - \lambda^T N$. 如果 $r_N \ge 0$, 停;得最优解.

- 步2 选取q满足 $\mathbf{r}_q = \min\{\mathbf{r}_j \mid \mathbf{r}_j < 0, j = 1,...,n\}$
- 步3 计算 $y_q = B^{-1}a_q$; 若 $y_q = (y_{1q}, y_{2q}, ..., y_{mq})^T \le 0$, 问题无界;否则,选p满足 $\frac{\bar{b}_p}{y_{pq}} = \min \left\{ \frac{\bar{b}_i}{y_{iq}} \mid y_{iq} > 0, i = 1, ..., m \right\}$

步4 更新 B^{-1} , $B^{-1}b$ 和 λ^T , 返步1.

例1 求解例(如果是两阶段法呢?)

$\overline{a_1}$	a_2	a_3	a_4	a_5	a_6	b
2	1	1	1	0	0	2
1	${f 2}$	3	0	1	0	5
2	2	1	0	0	1	6

$$r_N^T = c_N^T - \lambda^T N = (-3, -1, -3)$$

变量		B^{-1}		x_B	y_1
4	1	0	0	2	2
5	0	1	0	5	1
6	0	0	1	6	2
$oldsymbol{\lambda^{ ext{T}}}$	0	0	0	0	3

24

数值最优化 ShanghaiTech-SIST-CS

转轴:

变量		B^{-1}		x_B	y_1
4	1	0	0	2	2
5	0	1	0	5	1
6	0	0	1	6	2
$\boldsymbol{\lambda^{\mathrm{T}}}$	0	0	0	0	3

变量		B^{-1}		x_B
1	$\frac{1}{2}$	0	0	1
5	$-\frac{1}{2}$	1	0	4
6	$-\bar{1}$	0	1	4
λ^{T}	$-\frac{3}{2}$	0	0	-3

计算
$$r_2 = \frac{1}{2}$$
, $r_3 = -\frac{3}{2}$, $r_4 = \frac{3}{2}$, $q = 3$
计算 $y_3 = \mathbf{B}^{-1}\mathbf{a}_3 = (\frac{1}{2}, \frac{5}{2}, 0)^T$

变量		B^{-1}		x_B	y_3
1	$rac{1}{2}$	0	0	1	$\frac{1}{2}$
5	$-rac{1}{2}$	1	0	4	$\frac{5}{2}$
6	-1	0	1	4	0
$\lambda^{ ext{T}}$	$-rac{3}{2}$	0	0	-3	$\frac{3}{2}$

变量		B^{-1}		x_B
1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{1}{5}$
3	$-\frac{1}{5}$	$\frac{2}{5}$	0	$\frac{8}{5}$
6	-1	0	1	4
λ^{T}	$-\frac{6}{5}$	$-\frac{3}{5}$	0	$-rac{27}{5}$

计算:
$$r_2 = \frac{7}{5}$$
, $r_3 = \frac{6}{5}$, $r_4 = \frac{3}{5}$

最优值:
$$z^* = -27/5$$

最优解:
$$\mathbf{x}^* = (\frac{1}{5}, 0, \frac{8}{5}, 0, 0, 4)^T$$

变量有界形式 (另一种标准型)

• 施加上下界约束

min
$$c^T x$$

s.t. $Ax = b$
 $l \le x \le u$

• 同样可以定义基本解、基本可行解、设计 simplex method等(见[1] 3.5节)

数值最优化 ShanghaiTech-SIST-CS

三、Complexity (单纯形法的复杂度)

单纯形法的效率

有效性问题: 给定一个问题, 求解它需要多长时间(时间复杂度)? 求解它需要多少存储空间(空间复杂度)? 两种解答

- ➤ 平均情况(average case): 典型问题需要多少时间
 - 从数学上研究很困难
 - 经验研究
- ➤最坏情况(worst case): 最难的问题需要多少时间
 - 数学上是可处理的
 - 有限值

数值最优化 ShanghaiTech-SIST-CS 29

度量(measures)

度量规模(measures of size) - 问题的度量

- ➤ 约束的个数 m 和/或者变量的个数 n
- ➤ 数据个数mn
- > 非零数据的个数
- ➤ 尺寸,比如以bytes为单位

度量时间(measuring time) - 算法的度量

- > 迭代次数
- > 每次迭代的算术运算次数
- ➤ 每次算术运算的时间(依赖于硬件)

数值最优化 ShanghaiTech-SIST-CS

Klee-Minty问题(1972)

maximize
$$\sum\limits_{i=1}^n 2^{n-i}x_i$$
 subject to $2\sum\limits_{i=1}^{j-1} 2^{j-i}x_i+x_j\leq 100^{j-1},\;\;j=1,2,\cdots,n$ $x_i\geq 0,\;\;\;i=1,2,\cdots,n$

n = 3 时:

$$egin{array}{lll} ext{maximize} & 4x_1 + 2x_2 + x_3 \ ext{subject to} & x_1 & \leq & 1 \ & 4x_1 + x_2 & \leq & 100 \ & 8x_1 + 4x_2 + x_3 & \leq & 10000 \ & x_1, \ x_2, \ x_3 & \geq & 0 \ \end{array}$$

扭曲的立方体(A distorted Cube)

约束集是如下立方体的稍微(minor)扭曲:

$$0 \le x_1 \le 1$$

 $0 \le x_2 \le 100$
:

$$0 \le x_n \le 100^{n-1}$$

指数 (Exponential)

Klee-Minty的问题说明:

- 当求解具有n个变量和约束的问题时,最小系数规则有可能需要 $2^n 1$ 次转轴(因此遍历了扭曲立方体的 2^n 个顶点)
- 假设 1 秒钟迭代 1000 次,求解这个问题需要 400 亿年; 宇宙的估计年龄是 137 亿年.
- · 然而每天求解的问题中,变量在10,000到100,000之间的很普遍.

Worst case analysis is just that: worst case.

数值最优化 ShanghaiTech-SIST-CS

与九成(0	1:4\	n	n^2	n^3	2^n
复杂度(C	omplexity)	1	1	1	1
		2	4	8	4
排序: O(n1	$\log n$)	3	9	27	8
	E 0(2)	4	16	64	16
矩阵乘以向		5	25	$\bf 125$	32
矩阵乘以矩阵: $O(n^3)$		6	36	216	64
		7	47	343	128
解线性方程:	组: $O(n^3)$	8	64	512	256
		9	81	729	512
		10	100	1000	$\boldsymbol{1024}$
单纯形法:		12	144	1728	4096
➤ 最坏情况: <i>O</i> (<i>n</i> ² 2 ⁿ)		14	196	2744	$\boldsymbol{16384}$
	. ,	16	256	4096	65536
➤ 平均情况	$: O(n^3)$	18	$\bf 324$	$\bf 5832$	262144
▶问師: 月.7	否存在求解线性规划的	20	400	8000	$\boldsymbol{1048576}$
, , , , , , , , , , , , , , , , , , , ,		22	484	10648	4194304
方法,它的抗	最坏性能分析是多项式	${\bf 24}$	576	13824	16777216
的?		26	676	17576	67108864
HJ		28	784	$\boldsymbol{21952}$	268435456
		30	900	27000	1073741824
粉店具保ル	经州土田七山		Shanghai	Toch_SIST_CS	35