Notes du cours d'Analyse et Géometrie

Professeur: Christian Gérard

Yehor Korotenko

April 4, 2025

Abstract Ce sont les notes prises en cours OLMA251 - Analyse et Géometrie fait par le professeur Christian Gérard. Ces notes contient l'information prises pendant les CMs, mais aussi mon opinion, comprehension et les choses apprises apart ce cours.

CONTENTS

1	\mathbf{Intr}	oduction			
	1.1	Éspaces \mathbb{R}^d \mathbb{C}^d			
	1.2	Éspace \mathbb{C}^d			
	1.3	Distance sur \mathbb{R}^d			
2	Ésp	aces métriques			
	2.1	Boules dans un espace métrique			
	2.2	Parties bornées de (E,d)			
	2.3	Fonctions bornées			
	2.4	Distance entre ensembles			
	2.5	Topologie des espaces métriques			
	2.6	Algorithmes pour montrer qu'un ensemble est ouvert/fermé			
	2.7	Intérieur, adhérent, frontière			
		2.7.1 Intérieur			
		2.7.2 Adhérent			
		2.7.3 Frontière			
	2.8	Suite dans un éspace métrique			
	2.9	Suites de Cauchy			
	2.10	Sous-suites			
	2.11	Procédé de construction de l'intérieur et l'adhérence			
	2.12	Compacité			
		2.12.1 Compacité dans \mathbb{R}^n avec la distance usuelle			
	2.13	Limites et continuité			
		2.13.1 Limites			
3	Fonctions de plusieurs variables 30				
	3.1	Introduction			
	3.2	Comment montrer qu'un ensemble est ouvert ou fermé			
	3.3	Lien avec la compacité			
	3.4	Continuité partielle (inutile)			
4	Dér	ivation des fonctions de plusieurs variables 34			
	4.1	Introduction			
	4.2	DL à l'ordre 1			
	4.3	Extrema et points critiques			
	4.4	Dérivées partielles d'ordre ≥ 2			
	4.5	Formule de Taylor à l'ordre 2			
	4.6	Un rappel d'algèbre linéaire et le lien avec l'analyse			
	4.7	Nature des points critiques			
	4.8	La règle de dérivation en chaîne			
5	Esp	aces vectoriels normés 43			
	5.1	Introduction			
	5.2	Topologie des espaces vectoriels normés			
	5.3	Normes équivalentes			
	5.4	Compléments sur les espaces vectoriels normés			
		5.4.1 Suites de fonctions			

	5.4.2	Convergence simple:	18
	5.4.3	Convergence uniforme:	18
	5.4.4	Séries à valeurs dans un espace vectoriel normé	18
	5.4.5	Convergence normale	18
5.5	Applic	ations linéaires continues	19
	5.5.1	Norme sur $B(E,F)$	50
5.6	La nor	me des matrices	54
	5.6.1	Bonne norme sur $L(\mathbb{C}^n)$ (ou sur $\mathcal{M}_n(\mathbb{C})$)	54
	5.6.2	Comment "calculer" $ A $?	55
	5.6.3	Comment majorer $ A $	56

CHAPTER J

Introduction

1.1 Éspaces \mathbb{R}^d \mathbb{C}^d

Definition 1.1.

$$\mathbb{R}^d = \{X = (x_1, \dots, x_d), x_i \in \mathbb{R}\}\$$

 x_1, \ldots, x_d coordonnées cartésiennes de X

Example 1.2. d = 2 coordonnées polaires:

$$\begin{split} x &= r\cos\theta\\ y &= r\sin\theta\\ 0 &\leq r \leq \infty \quad \theta \in [0, 2\pi[\end{split}$$

Definition 1.3. \mathbb{R}^d est un espace vectoriel sur \mathbb{R}

$$\vec{X} + \vec{Y} = (x_1 + y_1, \dots, x_d + y_d)$$
$$\lambda X = (\lambda x_1, \dots, \lambda x_d) \quad \lambda \in \mathbb{R}$$
$$\vec{0}_d = \vec{0} = (0, \dots, 0)$$

Definition 1.4. Un produit scalaire:

$$X \cdot Y = x_1 y_1 + x_2 y_2 + \dots + x_d y_d = ||X|| ||Y|| \cos(\theta)$$
 (où θ est une angle entre X et Y)

Intuition. Ce produit nous dit how closely the vectors point in the same direction (cosinus tend vers 1 quand θ tend vers 0° , et cosinus tend vers 0 quand θ tend vers 0°). Et ce produit nous permet d'avoir une projection

de X sur Y par la formule:

$$Proj(X) = \frac{X \cdot Y}{\|Y\|} \cdot \frac{Y}{\|Y\|}$$

 $X \cdot Y$ donne la longeur de X et Y ensemble, en divisant cette longeur par $\|Y\|$ (la longeur de Y) on obtient la longeur de X sur Y, il nous reste de multiplier cette longeur par un vecteur unitaire(de longeur 1) qui pointe dans la même direction que Y, (on l'obtient par $\frac{Y}{\|Y\|}$)

Proposition 1.5. Produit scalaire respecte ces propriétés:

- 1. bilinaiarité $\lambda \in \mathbb{R}$
 - (a) $(X + Y) \cdot Z = X \cdot Z + Y \cdot Z$
 - (b) $(\lambda X) \cdot Z = \lambda (X \cdot Z)$
 - (c) $Z \cdot (X + Y) = Z \cdot X + Z \cdot Y$
 - (d) $Z \cdot (\lambda X) = \lambda (Z \cdot X)$
- 2. symétrie $X \cdot Y = Y \cdot X$
- 3. défini positif: $X \cdot X \ge 0$ et $X \cdot X = 0 \Leftrightarrow X = 0_d$

Proposition 1.6. Cauchy-Schwarz:

$$|X\cdot Y| \leq (X\cdot X)^{\frac{1}{2}}(Y\cdot Y)^{\frac{1}{2}}$$

Definition 1.7. La **norme euclidienne** d'un vecteur X est noté:

$$||X|| = \left(\sum_{i=1}^{d} x_i^2\right)^{\frac{1}{2}} = \sqrt{x_1^2 + \ldots + x_d^2} = (X \cdot X)^{\frac{1}{2}}$$

souvent noté $||X||_2$

Intuition. Par le théorème de Pythogore, c'est une longeur de ce vecteur.

Proposition 1.8. La norme suit ces propriétés:

- 1. $\|\lambda X\| = |\lambda| \|X\| X \in \mathbb{R}^d, \ \lambda \in \mathbb{R}$
- 2. $||X + Y|| \le ||X|| + ||Y||$ (inégalité triangulaire)
- 3. $||X|| \ge 0$ et $||X|| = 0 \Leftrightarrow X = 0_d$

Proof. de (2)

$$\begin{split} \|X+Y\|^2 &= (X+Y) \cdot (X+Y) = X \cdot (X+Y) + Y \cdot (X+Y) = X \cdot X + X \cdot Y + Y \cdot X + Y \cdot Y \\ &= \|X\|^2 + 2X \cdot Y + \|Y\|^2 \le \|X\|^2 + 2\|X\| \|Y\| + \|Y\|^2 = (\|X\| + \|Y\|)^2 \end{split}$$

Definition 1.9. Une <u>norme</u> sur \mathbb{R}^d est une application $N: \mathbb{R}^d \to \mathbb{R}$ tell que:

1.
$$N(\lambda X) = |\lambda| N(X)$$

2.
$$N(X + Y) \le N(X) + N(Y)$$

3.
$$N(X) \ge 0$$
 et $N(X) = 0 \Leftrightarrow X = 0_d$

Example 1.10.

$$||X||_1 = \sum_{n=1}^d |x_i|$$
$$||X||_{\infty} = \max_{1 \le i \le n} |x_i|$$

1.2 Éspace \mathbb{C}^d

Definition 1.11.

$$\mathbb{C}^d = \{X = (x_1, \dots, x_d) : x_i \in \mathbb{C}\}$$

$$z \in \mathbb{C} \quad \overline{z} = a - ib \quad \overline{z}z = a^2 + b^2 \quad |z| = \sqrt{\overline{z}z} = \sqrt{a^2 + b^2}$$

$$z = a + ib \quad a = Re z, b = Im z$$

$$Re X = (Re x_1, \dots, Re x_d) \in \mathbb{R}^d$$

$$Im X = (Im x_1, \dots, Im x_d) \in \mathbb{R}^d$$

$$X = Re X + i Im X$$

$$\in \mathbb{C}^d = Re X + i Im X$$

$$\in \mathbb{R}^d$$

 \mathbb{C}^d est un espace vécrotiel sur \mathbb{C} (même formules avec $\lambda \in \mathbb{C}$ corps des scalaires)

Definition 1.12. Produit scalaire:

$$(X|Y) = \sum_{n=1}^{d} \overline{x_i} y_i \in \mathbb{C}$$

Proposition 1.13. .

- 1. (X|Y) est "linéaire par rapport à Y"
 - (Z|X + Y) = (Z|X) + (Z|Y)
 - $(Z|\lambda X) = \lambda(Z|X) \quad \lambda \in \mathbb{C}$
 - $(Z|\lambda X + \mu Y) = \lambda(Z|X) + \mu(Z|Y)$
 - (X + Y|Z) = (X|Z) + (Y|Z)
 - $(\lambda X|Z) = \overline{\lambda}(X|Z) \quad \lambda \in \mathbb{C}$
 - $(\lambda X + \mu Y|Z) = \overline{\lambda}(X|Z) + \mu(Y|Z)$
- 2. $(Y|X) = \overline{(X|Y)}$
- 3. $(X|X) = \sum_{n=1}^d \overline{x_i} x_i = \sum_{n=1}^d |x_i|^2$ $(X|X) \ge 0$ et $(X|X) = 0 \Leftrightarrow X = 0_d$

Proof. On a Cauchy-Schwarz:

$$(X|Y) \le (X|X)^{\frac{1}{2}}(Y|Y)^{\frac{1}{2}}$$

même preuve qu'avant

On pose:

$$||X||$$
 (ou $||X||_2$)
= $(X|X)^{\frac{1}{2}} = \left(\sum_{n=1}^d |x_i|^2\right)^{\frac{1}{2}}$

norme hilbertienne

$$\|X\|^2 = \|\operatorname{Re}_{\in \mathbb{R}^d} X\|^2 + i \|\operatorname{Im}_{\in \mathbb{R}^d} X\|^2$$

Lemma 1.14.

$$\|X\| = \sup_{\|Y\| \le 1} (X|Y)|$$

Proof.
$$|(X|Y)| \le ||X|| ||Y|| \le ||X|| \text{ si } ||Y|| \le 1$$

$$\sup_{\|Y\| \leq 1} (X|Y)|$$

Autre sens:

$$\begin{split} X \neq 0 \quad Y &= \frac{X}{\|X\|} = \lambda X \quad \lambda = \frac{1}{\|X\|} \\ \|Y\| &= |\lambda| \|X\| = \frac{1}{\|X\|} \|X\| = 1 \\ (X|Y) &= (X|\frac{X}{\|X\|}) = \frac{1}{\|X\|} (X|X) = \|X\| \\ \sup\{|(X|Y)|: \|Y\| \leq 1\} \\ \|X\| \leq \sup\{|(X|Y)|: \|Y\| \leq 1\} \quad \text{(prendre } Y = \frac{X}{\|X\|}) \end{split}$$

Autres normes sur \mathbb{C}^d

•
$$||X||_1 = \sum_{n=1}^d |x_i|$$
 $X \in \mathbb{C}^d$

$$\bullet ||X||_{\infty} = \sup_{1 \le i \le d} |x_i|$$

1.3 Distance sur \mathbb{R}^d

On oublie norme et produit scalaire. On introduit la distance

Definition 1.15. Une distance est une application:

$$d: \mathbb{R}^d \longrightarrow \mathbb{R}$$
$$(X,Y) \longmapsto d((X,Y))$$

qui suit ces propriétés:

1.
$$d(X,Y) = d(Y,X)$$
 (symétrie)

2. $d(X,Y) \leq d(X,Z) + d(Z,Y)$ (inég. triangulaire) $\forall X,Y,Z$

3. $d(X,Y) \ge 0 \quad \forall X,Y \text{ et } d(X,Y) = 0 \Leftrightarrow X = Y$

Definition 1.16. La distance euclidienne

$$d(X,Y) = ||X - Y|| = \sqrt{\sum_{n=1}^{d} (x_i - y_i)^2}$$

Example 1.17. Distances

1. $d_2(X,Y) = ||X - Y||_2$ (distance euclidienne sur \mathbb{R}^d)

2.
$$d_1(X,Y) = ||X - Y||_1$$

 $d_{\infty}(X,Y) = ||X - Y||_{\infty}$

3. distance logarithmique sur \mathbb{R}_+ : d(a,b) = |b-a|

$$\log_{10}(a) = \frac{\log(a)}{\log(10)}$$

$$\begin{array}{l} x,y\in]0,+\infty[\\ d_{\log}(x,y)=|\log_{10}(\frac{y}{x})|\\ i \text{ est une distance sur }]0,+\infty[\\ d_{\log}(100,110)=\log_{10}(1,1) \end{array}$$

4. distance SNCF

d(X,Y) distance usuelle dans \mathbb{R}^2 on pose:

$$\delta(X,Y) = \begin{cases} d(X,Y) \text{ si } X,0,Y \text{ align\'es} \\ d(X,0) + d(0,Y) \text{ sinon} \end{cases}$$

Proposition 1.18. Soit E espace métrique et deux distances d_1 et d_2 . Les distances sont dites **équivalentes** si $\exists a, b \in \mathbb{R}$ tel que:

$$\forall x, y \in E, \quad a \cdot d_1(x, y) \le d_2(x, y) \le b \cdot d_1(x, y)$$

CHAPTER 2

ÉSPACES MÉTRIQUES

Definition 2.1. E muni d'une application de distance d (voir Definition 1.15) se note (E, d): espace métrique

Remark 2.2. si $d_1 \neq d_2$ (E, d_1) n'a rien à faire avec (E, d_2)

Remark 2.3. Retenir la version suivante de l'inégalité triangulaire:

$$|d(x,z) - d(y,z)| \le d(x,y)$$

Remark 2.4. <u>Distance induite:</u>

Si (E,d) espace métrique et $U \subset E$. Je peux restreidnre d à $U \times U$: (U,d) est aussi un éspace metrique.

2.1 Boules dans un espace métrique

Definition 2.5. (E,d) espace métrique. Soit $x_0 \in E$ et $r \geq 0$

- 1. $B(x_0, r) = \{x \in E : d(x_0, x) < r\}$ boule ouverte de centre x_0 , de rayon r
- 2. $B_f(x_0,r)=\{x\in E:d(x_0,x)\leq r\}$ boule fermée de centre x_0 , de rayon r

(a) boules ouverte (i.e $d(x_0, x) < r$)

(b) boules fermée (i.e $d(x_0, x) \leq r$)

Lemma 2.6.

- 1. $B(x_0,0) = \emptyset$ (car impossible d'avoir des points qui en distance sont strictement plus petit que 0)
- 2. $B_f(x_0,0) = \{x_0\}$
- 3. $B(x_0, r_1) \subset B_f(x_0, r_1) \subset B(x_0, r_2)$ si $r_1 < r_2$
- 4. $B(x_1, r_1) \subset B(x_0, r)$ si $d(x_0, x_1) + r_1 \leq r$

Figure 2.2: Lemma 4

Proof. Je suppose que $d(x_0, x_1) \leq r$

Soit $x \in B(x_1, r_1)$ donc $d(x_1, x) < r_1$ à montrer: $x \in B(x_0, r)$ (i.e $d(x_0, x) < r$?)

L'inégalité triangulaire me dit:

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$

 $< d(x_0, x_1) + r_1 \le r$
 $\Rightarrow x \in B(x_0, r)$

Example 2.7. 1. $E = \mathbb{R}, \quad d(x, y) = |x - y|$

$$B(x_0, r) =]x_0 - r, x_0 + r[$$

2. $E = \mathbb{R}^d$, d = 2, 3, $X = (x_1, \dots, x_d)$

$$||X||_{2} = \left(\sum_{i=1}^{d} x_{i}^{2}\right)^{\frac{1}{2}}$$
$$||X||_{1} = \sum_{i=1}^{d} x_{i}$$
$$||X||_{\infty} = \max_{1 \le i \le d} |x_{i}|$$

$$d_2(X,Y) = ||Y - X||_2 = ||\vec{XY}||_2$$

$$d_1(X,Y), d_{\infty}(X,Y)$$

Property. Dans \mathbb{R}^n

- $d_{\infty}(X,Y) \leq d_1(X,Y) \leq nd_{\infty}(X,Y)$
- $d_{\infty}(X,Y) \leq d_2(X,Y) \leq \sqrt{n}d_{\infty}(X,Y)$

2.2 Parties bornées de (E,d)

Definition 2.8. Soit $A \subset E$. A est bornée si $\exists R > 0$ et $\exists x_0 \in E$ tel que

$$A \subset B(x_0, R)$$

Figure 2.3: Exemple d'un enesemble borné

Lemma 2.9. Les propriétés suivantes sont équivalentes:

- 1. A est bornée
- 2. $\forall x_0 \in E, \exists r > 0 \text{ tel que } A \subset B(x_0, r)$
- 3. $\exists r > 0$ tel que $\forall x, y \in A$ on a d(x, y) < r

Proof. de lemme

• (1) \Rightarrow (2): Hyp: $\exists x_1 \in E, \exists r_1 \in E \text{ tq } A \subset B(x_1, r_1)$ Soit $x_0 \in E$. But: trouver r tel que $A \subset B(x_0, r)$ si $x \in A$, on a: $d(x_1, x) < r_1$ <u>Je veux</u>: $d(x_0, x) < r$

$$d(x_0,x) \leq d(x_0,x_1) + d(x_1,x) \leq d(x_0,x_1) + r_1 < r \quad \text{ si } r > d(x_0,x_1) + r_1$$

Property. 1. Toute partie finie est bornée

- 2. Si Abornée et $B\subset A$ alors Bbornée
- 3. L'union d'un nombre <u>fini</u> de bornés est borné

Proof. de (3). A_1, \ldots, A_n sont bornés. Je fixe $x_0 \in E$, A_i borné $(1 \le i \le n)$, donc $\exists r_i > 0$ tel que $A_i \subset B(x_0, r_i)$ si

$$r = \max_{1 \le i \le n} r_i$$

$$A_i \subset B(x_0, r), \, \forall i \Rightarrow \bigcup_{i=1}^n A_i \subset B(x_0, r)$$

2.3 Fonctions bornées

Definition 2.10. Soit B un ensemble. Une fonction $F: B \to E$ est bornée si $F(B) = \{F(b) : b \in B\} \subset E$ est borné.

2.4 Distance entre ensembles

Definition 2.11. La distance entre deux ensembles A, B est:

$$d(A,B) := \inf_{x \in A, y \in B} d(x,y)$$

Intuitivement, on cherche deux points x et y tel que la distance est la plus petite possible.

Definition 2.12. La distance entre un points x et un ensemble B est:

$$d(x,B) := \inf_{y \in B} d(x,y)$$

La même intuition.

Property. $\forall x \in A, y \in B, d(x,y) \ge d(A,B)$ et $\forall \varepsilon > 0, \exists x \in A, y \in B$ tq $d(x,y) \le d(A,B) + \varepsilon$

Figure 2.4: Distance entre ensembles

2.5 Topologie des espaces métriques

distance $d(x,y) \longrightarrow \text{boules } B(x_0,r) \longrightarrow \text{ensembles ouverts}$

Definition 2.13. Soit (E, d) espace métrique.

- 1. $U \subset E$ est ouvert si $\forall x_0 \in U, \exists r > 0 \ r(x_0)$ tel que $B(x_0, r) \subset U$
- 2. $F\subset E$ est fermé si $E\setminus F$ est ouvert

 \emptyset est ouvert et E est ouvert. \emptyset est fermé et E est fermé.

(a) Un ensemble fermé

À la borne, il est impossible de trouver une boules qui appartient à F, car il est impossible d'avoir une boule ouverte de r=0. Exemple: circle bleu foncé Pour tout point dans $E\setminus F$ on peut trouver une boule ouverte

(b) Un ensemble ouvert pour tout point pres de la borne on peut trouver une boule infiniment petite avec des points autour ce point inclu dans U.

Figure 2.5: Démonstration des espaces ouverts et fermés

Remark 2.14. dans $\mathbb R$ les intervalles ouverts sont des ouverts (pareil pour fermés)

Remark 2.15. Une distance entre deux ensembles ouverts toujours existe et elle est infimum (qui n'est jamais atteint)

Lemma 2.16. 1. $B(x_0, r_0)$ est ouvert.

2. $B_f(x_0, r_0)$ est fermé.

Proof. 1. Soit $x_1 \in B(x_0, r_0)$ $(d(x_0, x_1) < r_0)$. But: touver $r_1 > 0$ tel que $B(x_1, r_1) \subset B(x_0, r_0)$?

$$x \in B(x_1, r_1) : d(x_1, x) < r_1$$

 $x \in B(x_0, r_0) \text{ si } d(x_0, x) < r_0$

facile:

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$

 $\le d(x_0, x_1) + r_1$
 $< r_0 \text{ si}$

$$r_1 < r_0 - d(x_0, x_1) > 0$$

Example 2.17. bizzare.

Soit $E = \mathbb{R}$, d(x, y) = |y - x|, A =]0, 1[ouvert, pas fermé dans \mathbb{R} .

Je regarde A comme partie de (A, d). Comme $A \setminus A = \emptyset$ qui est ouvert, donc A est fermé dans A. Par contre, les bornes ne sont jamais atteints, alors A est ouvert dans (A, d).

Theorem 2.18.

- 1. Soit U_i , $i \in I$ une collection d'ouverts. Alors, $\bigcup_{i \in I} U_i$ est ouvert. Translate: Une union quelconque des ensembles ouverts est ouvert.
- 2. Si U_1, \ldots, U_n sont ouverts

$$\bigcap_{i=1}^{n} U_i \text{ est ouvert.}$$

Translate: intersection finie des ensembles ouverts est ouvert.

- 1. Soit U_i , $i \in I$ une collection de fermés. Alors, $\bigcup_{i \in I} U_i$ est fermé. Translate: Une union quelconque des ensembles fermés est fermé.
- 2. Si U_1, \ldots, U_n sont fermés

$$\bigcap_{i=1}^{n} U_i \text{ est ferm\'e.}$$

Translate: intersection finie des ensembles fermés est fermé.

Proof. .

- 1. Soit $x \in U := \bigcup_{i \in I} U_i$. Il existe un i noté i_0 tel que $x \in U_{i_0}$, U_{i_0} est ouvert, donc $\exists r > 0$ tel que $B(x,r) \subset U_{i_0} \subset U := \bigcup_{i \in I} U_i$.

2. Soit $x \in U := \bigcap_{1 \le i \le n} U_i$.

On fixe i. $x \in U_i$, U_i ouvert, donc $\exists r_i > 0$ tel que $B(x,r) \subset U_i$, $1 \le i \le n$, donc $B(x,r) \subset U := 0$

2.6 Algorithmes pour montrer qu'un ensemble est ouvert/fermé

Montrer qu'un ensemble est ouvert

Montrer qu'un ensemble est fermé

• Utiliser la définition :

$$\forall x \in \mathcal{U}, \exists r > 0 \text{ tel que } B(x, r) \subset \mathcal{U}$$

- Montrer que $E \setminus \mathcal{U}$ est fermé.
- Montrer que \mathcal{U} est l'image réciproque d'un ouvert par une application continue.
- Exprimer \mathcal{U} comme une boule ouverte.
- Écrire \mathcal{U} comme :
 - une réunion d'ouverts ;
 - une intersection finie d'ouverts.
- $\mathcal{U} = \operatorname{Int}(U)$.
- Écrire $\mathcal{U} = I_1 \times \cdots \times I_n$ avec I_i ouvert.

- Utiliser la définition : $E \setminus V$ est ouvert.
- Caractérisation séquentielle : Toute suite convergente dans V, sa limite est aussi dans V.
- Montrer que V est l'image réciproque d'un fermé par une application continue.
- \bullet Montrer que V est compact.

2.7 Intérieur, adhérent, frontière

2.7.1 Intérieur

Definition 2.19. Soit $A \subset E$.

1. $x_0 \in E$ est intérieur à A si $\exists \delta > 0$ tel que:

$$B(x_0,\delta)\subset A$$

2. Int(A) (intérieur de A) = tous les points intériers à A. (aussi noté A)

Intuition. Int(A) est un ensemble qui se trouve totallement dans A et qui est loin des bords de A.

Proposition 2.20. Int(A) est le plus grand ouvert inclus dans A. De manière équivalente, Int(A) est l'union de tous les ouverts inclus dans A.

Proof. 1. $Int(A) \subset A$: clair

2. $\frac{Int(A) \text{ est ouvert:}}{\text{Soit } x_0 \in Int(A).}$

But: trouver δ_0 tel que $B(x_0, \delta_0) \subset Int(A)$. Trouver δ_0 tel que si $d(x_0, x) < \delta_0$ alors $x \in Int(A)$?

Hyp: $x_0 \in Int(A)$. $\exists \delta_1 > 0$ tel que $B(x_0, \delta_1) \subset A$. On a vu que $B(x_0, \delta_1)$ est ouvert. Je dis que $B(x_0, \delta_1) \subset Int(A)$.

Preuve: Soit $x \in B(x_0, \delta_1)$. $B(x_0, \delta_1)$ ouvert, donc $\exists \delta_2 > 0$ tel que $B(x, \delta_2) \subset B(x_0, \delta_1) \subset A$. Donc $x \in Int(A)$, donc $B(x_0, \delta_1) \subset Int(A)$.

Int(A) est ouvert.

3. Si U est ouvert et $U \subset A$ alors $U \subset Int(A)$? $x_0 \in U$. U ouvert $\Rightarrow \exists \delta$ tel que $B(x_0, \delta) \subset U \subset A \Rightarrow x_0 \in Int(A)$

Figure 2.6: Exemple d'un intérieur

2.7.2 Adhérent

Definition 2.21. Soit $A \subset E$.

- 1. $x_0 \in E$ est <u>adhérent</u> à A, si $\forall \delta > 0$, $B(x_0, \delta)$ intérsecte A. (équivalent à $d(x_0, A) = 0$)
- 2. Adh(A) (adhérence ou fermeture de A) = ensemble des points adhérents à A (aussi noté \overline{A})

Intuition. Adherent aide à completer des ensembles. Si A est ouvert, alors ses bords n'appartiennent pas à A, mais ils appartiennent à Adh(A).

Figure 2.7: Adhérent

Proposition 2.22. Adh(A) est le plus petit fermé qui contient A (l'intérsection de tous les fermés qui contiennent A)

Proof. 1. $A \subset Adh(A)$ clair

2. Adh(A) est fermé? On montre que $E \setminus Adh(A)$ est ouvert. $x_0 \in Adh(A) \Leftrightarrow \forall \delta > 0, \ B(x_0, \delta) \cap A \neq \emptyset$ $x_0 \notin Adh(A) \Leftrightarrow \exists \delta_0 > 0 \text{ tq } B(x_0, \delta_0) \cap A = \emptyset \Leftrightarrow \exists \delta_0 > 0 \text{ tq } B(x_0, \delta_0) \subset E \setminus A \Leftrightarrow x_0 \in Int(E \setminus A)$ Alors:

$$E \setminus Adh(A) = Int(E \setminus A)$$
$$Adh(A) = (Int(\underbrace{A^{c}}_{E \setminus A}))^{c}$$

Definition 2.23. Soit $A \subset B$. On dit que A est **dense** dans B si $B \subset Adh(A)$ Soit $x_0 \in B$, $\forall \varepsilon > 0 \exists x_\varepsilon \in A$ tel que $d(x_0, x_\varepsilon) < \varepsilon$

Example 2.24.

$$\mathbb{Q}^2 = \{(x,y): x,y \in \mathbb{Q}\}$$
 dense dans \mathbb{R}^2

Definition 2.25. alternative de densité. Soit $A \subset B$. A est dense dans B si toute boule ouverte de B contient au moins un élémens de A.

2.7.3 Frontière

Definition 2.26. Soit $A \subset E$. La **frontière** de A (ou le bord de A) noté Fr(A) ou ∂A c'est:

$$Adh(A) \cap Adh(E \setminus A)$$

Example 2.27. dans \mathbb{R}

- 1. $Int(\mathbb{Q}) = \emptyset$
- 2. $Int(\mathbb{R} \setminus \mathbb{Q}) = \emptyset$
- 3. $Adh(\mathbb{Q}) = \mathbb{R}$
- 4. $Adh(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$
- 5. $Fr(\mathbb{Q}) = \mathbb{R}$
- 6. $Fr(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$

Example 2.28. $E = \{a, b, c\}$ On pose:

- d(a,a) = d(b,b) = d(c,c) = 0
- d(a,b) = d(b,a) = d(b,c) = d(b,c) = 1
- d(a,c) = d(c,a) = 2

$$B(a,2) = \{a,b\} = Adh(B(a,2))$$

 $B_f(a,2) = \{a,b,c\}$

Proposition 2.29. 1. $Int(A) \subset A \subset Adh(A)$

- 2. $E = Int(E \setminus A) \cup Fr(A) \cup Int(A)$ (union disjointe)
- 3. $E \setminus Int(A) = Adh(E \setminus A)$

- 4. $E \setminus Adh(A) = Int(E \setminus A)$
- 5. $Fr(A) = Adh(A) \setminus Int(A)$

Proposition 2.30. 1. A ouvert $\Leftrightarrow A = Int(A)$

- 2. A fermé $\Leftrightarrow A = Adh(A)$
- 3. $x \in Adh(A) \Leftrightarrow d(x, A) = 0$
- 4. $x \in Int(A) \Leftrightarrow d(x, E \setminus A) > 0$

2.8 Suite dans un éspace métrique

Definition 2.31. E un ensemble. Une suite dans E: notée $(u_n)_{n\in\mathbb{N}}$ c'est une fonction $u:\mathbb{N}\to E$ où u(n) est noté u_n est le le n^{ième} terme de la suite $(u_n)_{n\in\mathbb{N}}$.

Si
$$E = \mathbb{R}^d$$

$$\mathbb{R}^d \ni X_n = (x_{1,n}, \dots, x_{d,n})$$

où $(x_{i,n})_{n\in\mathbb{N}}$ suites dans \mathbb{R}

Definition 2.32. Soit (x_n) une suite dans E et $x \in E$. On dit que $\lim_{n\to\infty} x_n = x$ si $\lim_{n\to\infty} d(x_n,x) = 0$. $(\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ tq si } n \geq N, d(x_n,x) < \varepsilon)$

Proposition 2.33. $(x_n)_{n\in\mathbb{N}}$ est bornée si $\{x_n:n\in\mathbb{N}\}(\subset E)$ est un ensemble borné.

Remark 2.34. dans \mathbb{R}^d muni de d_2 (distance euclidienne)

$$X_n = (x_{1,n}, \dots, x_{d,n})$$
$$X = (x_1, \dots, x_d)$$

$$\lim_{n \to \infty} X_n = X \Leftrightarrow \lim_{n \to \infty} x_{i,n} = x_i \quad (1 \le i \le d)$$

Proposition 2.35. la limite d'une suite convergente est unique.

Proof.

Si
$$X_n \xrightarrow[n \to \infty]{} X$$
 et $X_n \xrightarrow[n \to \infty]{} X'$

$$d(X, X') \le \underbrace{d(X, X_n)}_{\to 0} + \underbrace{d(X_n, X')}_{\to 0} \Rightarrow d(X, X') = 0 \Rightarrow X = X'$$

Proposition 2.36. (lien aven l'adhérence)

- 1. $x \in Adh(A)$ si et seulement s'il existe une suite (x_n) d'éléments de A telle que $\lim_{n\to\infty} x_n = x$
- 2. A est fermé ssi pour toute suite (x_n) d'éléments de A qui converge vers $x \in E$ on a $x \in A$

Intuition. 1. Si $(x_n)_{n\in\mathbb{N}}$ est d'éléments de A ($\forall n\in\mathbb{N}, x_n\in A$), donc elle converge vers un éléments x qui peut être soit dans A, soit à la borne des éléments de A, alors à la frontière.

2. Si la limite de toute suite $(x_n)_{n\in\mathbb{N}}$ des éléments de A est aussi dans A, alors la frontière de A est inclu dans A. Car l'une des suites tend vers la borne.

Proof. de Prop. 2.36

1. (\Leftarrow) Soit (x_n) avec $x_n \in A \quad \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} x_n = x$. J'ai $d(x_n, x) \xrightarrow[n \to \infty]{} 0$ et $x_n \in A$, donc

$$inf_{y \in A}(d(x,y)) = 0 = d(x,A)$$

$$d(x, A) = 0 \Leftrightarrow x \in Adh(A)$$

 (\Rightarrow) Soit $x \in Adh(A)$

$$\Leftrightarrow d(x,A)=0$$

$$\Leftrightarrow \forall \varepsilon>0, \ \exists x_\varepsilon\in A \ \text{tel que} \ d(x,x_\varepsilon)<\varepsilon$$

Prendre $\varepsilon = \frac{1}{n}$, je pose $u_n = x_{\frac{1}{n}}$. $u_n \in A$ $d(x, u_n) < \frac{1}{n}$, donc $\lim_{n \to \infty} u_n = x$

2. (\Rightarrow) Soit A fermé, donc

$$A = Adh(A)$$

Si (x_n) suite dans A qui converge vers x.

$$x \in Adh(A) = A$$

 (\Leftarrow) On dit que $Adh(A) \subset A$. Comme $A \subset Adh(A)$, donc A = Adh(A)

2.9 Suites de Cauchy

Definition 2.37. $(x_n)_{n\in\mathbb{N}}$ suite dans E est de Cauchy si:

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \in \mathbb{N} \text{ tel que } \forall n, p \geq N(\varepsilon), d(x_n, x_p) \leq \varepsilon$$

Intuition. Une suite de Cauchy c'est comme on mesure un point et on le localise, i.e:

- 1. On dit qu'il est entre 0 et 1.
- 2. Ensuite, on precise plus et on dit qu'il est entre 0.5 et 0.6.
- 3. Puis, entre 0.55 et 0.56

On peut infiniment augmenter le niveau de précision. C'est ça l'idée d'une suite de Cauchy.

Proposition 2.38. 1. Toute suite de Cauchy est bornée.

2. Toute suite convergente est de Cauchy

Proof. 1. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Alors, par définition

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ tq } \forall n, p \geq N, d(x_n, x_p) < \varepsilon$$

18

Soit $\varepsilon = 1$. Donc $\exists N \in \mathbb{N}$ tq $\forall n, p \geq N, d(x_n, x_p) < 1$, donc $\forall n \geq N, d(x_n, x_N) < 1$. On a donc:

$$\forall n \in N, d(x_n, x_N) < 1 + \underbrace{\sup_{1 \le i \le N} d(x_n, x_N)}_{1 \le i \le N}$$

Alors $\forall n \in \mathbb{N}, x_n \in B(x_N, 1 + r_0) \text{ donc } (x_n)_{n \in \mathbb{N}} \text{ bornée.}$

- 2. Soit (x_n) une suite avec $\lim_{n\to\infty} x_n = x$ avec $x\in E$.
 - Hyp: $\frac{\varepsilon}{2} > 0 \,\exists N(\frac{\varepsilon}{2}) \in \mathbb{N}$ tel que $\forall n \geq N(\frac{\varepsilon}{2}), d(x_n, x) \leq \varepsilon/2$
 - À montrer: $\varepsilon > 0 \exists M(\varepsilon) \in \mathbb{N}$ tel que $\forall n, p \geq M(\varepsilon), d(x_n, x_p) \leq \varepsilon$

$$d(x_n, x_p) < d(x_n, x) + d(x, x_p) \text{ si } n, p \ge N(\frac{\varepsilon}{2}) d(x_n, x_p) \le 2\frac{\varepsilon}{2} = \varepsilon$$

Definition 2.39. (E,d) est complet si toute suite de cauchy dans E est convergente.

Definition 2.40. Un éspace métrique (E,d) est **complet** si toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E converge vers une limite x qui appartient aussi à E.

Intuition. Ce n'est pas très correcte à dire, mais, on peut dire qu'une suite de Cauchy $(x_n)_{n\in\mathbb{N}}$ converge toujours car il existe un moment $N\in\mathbb{N}$ après lequel les éléments sont très proches mais la limite n'appartient pas toujours à l'ensemble dans lequel cette suite est de Cauchy.

Par exemple, une suite $(u_n)_{n\in\mathbb{N}}$ à valeur dans \mathbb{Q} qui converge vers $\sqrt{2}$ dans \mathbb{R} . Dans \mathbb{R} elle est convergente et de Cauchy, mais dans \mathbb{Q} elle est de Cauchy mais pas convergente car la limite $\sqrt{2} \notin \mathbb{Q}$.

Example 2.41. Un éspace métrique (]0,1],d) avec d une distance euclidienne n'est pas complet, car soit une suite: $x_n = \frac{1}{n}$ dont la limite est 0. Par contre, $0 \notin]0,1]$. Donc cet éspace n'est pas complet.

Figure 2.8: ([0,1],d) n'est pas complet

Example 2.42. Un éspace (\mathbb{Q}, d) n'est pas complet. Car on peut prendre une suite x_n tendant vers $\sqrt{2} \notin \mathbb{Q}$.

Figure 2.9: \mathbb{Q} pas complet

Proposition 2.43. \mathbb{R}^d muni de la distance usuelle est complet.

Proof.

$$X_n = (x_{1,n}, \dots, x_{d,n})$$

 $|x_i - y_i| \le d(X, Y) = ||X - Y||_2 \quad \forall 1 \le i \le d$

les suites réelles $(x_{i,n})_{n\in\mathbb{N}}$ sont de Cauchy si (X_n) est de Cauchy.

Property. \mathbb{R} est complet

Proof. (Suit de la propriété de la borne supérieure)

Il existe $x_i \in \mathbb{R}$ avec $1 \le i \le d$ tels que $|x_{i,n} - x_i| \xrightarrow[n \to \infty]{} 0$

$$d(X,Y) \le \sqrt{d} \max_{1 \le i \le d} |x_i - y_i|$$

donc
$$X_n \xrightarrow[n \to \infty]{} X$$
, $X = (x_1, \dots, x_d)$

2.10 Sous-suites

Definition 2.44. Soit $(x_n)_{n\in\mathbb{N}}$ une suite dans E. Une suite

$$(y_n)_{n\in\mathbb{N}}$$
 avec $y_n=x_{\phi(n)}$

où $\phi: \mathbb{N} \to \mathbb{N}$ est strictement croissante est appelée sous-suite de la suite (x_n) .

Example 2.45. Soit une application $\phi : \mathbb{N} \to \mathbb{N}$ telle que $\phi(n) = 2n$. Donc $(x_n)_{\phi(n)}$ est une sous-suite de $(x_n)_{n \in \mathbb{N}}$ et:

$$(x_n)_{\phi(n)} = \{x_0, x_2, x_4, \ldots\}$$

Proposition 2.46. 1. Toute sous-suite d'une suite convergente converge vers la limite de cette suite.

Cela signifie que, $\forall (x_n)_{n\in\mathbb{N}}$ tq $\exists x\in E, \lim_{n\to\infty} x_n = x$

$$\forall \phi: \mathbb{N} \to \mathbb{N}$$
 strictement croissante, $\lim_{n \to \infty} x_{\phi(n)} = x$

2. Si (x_n) est de Cauchy et admet une sous-suite qui converge vers X, alors (x_n) converge vers x.

Proof. 1. Soit (x_n) avec $\lim x_n = x$

$$\forall \varepsilon > 0 \,\exists M(\varepsilon) \text{ tq si } n \geq N(\varepsilon), d(x_n, x) \leq \varepsilon$$

Soit $y_n = x_{\phi(n)}$ une sous-suite.

• <u>But:</u> Soit $\varepsilon > 0$, trouver $N(\varepsilon)$ to si $n \ge N(\varepsilon)$, $d(\underbrace{y_n}_{z=x_{\sigma(n)}}, x) \le \varepsilon$

Je choisis $N(\varepsilon)$ tel que si $n \geq N(\varepsilon)$ alors $\phi(n) \geq M(\varepsilon)$, donc $d(y_n, x)d(x_{\phi(n)}, x) \leq \varepsilon$. C'est possible car $\phi(n) \xrightarrow[n \to \infty]{} \infty$, $N(\varepsilon) = M(\varepsilon)$

- 2. Hyp1: $\forall \varepsilon > 0 \,\exists M(\varepsilon) \text{ tq si } n, p \geq M(\varepsilon) \, d(x_n, x_p) \leq \varepsilon$
 - Hyp2: $\forall \varepsilon > 0 \,\exists P(\varepsilon) \text{ tq si } p \geq P(\varepsilon), d(y_p, x) \leq \varepsilon, d(y_p, x) = d(x_{\phi(p)}, x)$

$$d(x_n, x) \le d(x_n, x_{\phi(p)}) + d(x_{\phi(p)}, x)$$
 par l'inégalité triangulaire

$$d(x_n, x_{\phi(p)}) \le \varepsilon \text{ si } n \ge M(\varepsilon) \text{ et } \phi(p) \ge M(\varepsilon)$$

$$d(x_{\phi(p)}, x) \le \varepsilon \text{ si } p \ge P(\varepsilon)$$

Si $n \geq M(\varepsilon)$, je choisis p tel que $\phi(p) \geq M(\varepsilon)$ et $p \geq P(\varepsilon)$. Je fixe ce p!

si
$$n \geq M(\varepsilon)$$
 alors $d(x_n, x) \leq 2\varepsilon$

2.11 Procédé de construction de l'intérieur et l'adhérence

J'ai $A \subset \mathbb{R}$ ou \mathbb{R}^2 (ou \mathbb{R}^3). Je dois trouver Int(A) et Adh(A)

- 1. Je dessine A sur une feuille
- 2. Je pense que Int(A) = C (C dit être inclu dans A!)
 - (a) Je montre que <u>C est ouvert</u> (facile), donc

$$C \subset Int(A)$$

car Int(A) est le plus grand ouvert inclu dans A.

- (b) Je montre que $Int(A) \subset C$, i.e je montre que les points dans A mais pas dans C ne sont pas dans Int(A): je prends $X \in A, X \notin C$, je montre que $X \notin Int(A)$ Je construit une suite (X_n) avec $X_n \notin A$ mais $X_n \to X$.
- 3. Je pense que Adh(A) = B (il faut que $A \subset B$)
 - (a) Je montre que B est fermé (facile)

donc
$$Adh(A) \subset B$$

(b) On montre que $B \subset Adh(A)$: On fixe $X \in B$, on cherche une suite (X_n) avec $X_n \in A$ et $X_n \xrightarrow[n \to \infty]{} X$. On regarde seulement les $X \in B, X \notin A$

Example 2.47.

$$A = \{(x, y) \in \mathbb{R}^2 \mid 2x + 3y \le 4, x \ne y\}$$

Figure 2.10: Exemple de l'intérieur

.

- Je dévine que $Int(A) = C = \{(x, y) \mid 2x + 3y < 4, x \neq y\}$
- Convect: $\{(x,y) \mid 2x + 3y < 4, x < y\} \cup \{(x,y) \mid 2x + 3y < 4, x > y\}$

Je construit une suite (X_n) avec $X_n \not\in A$ mais $X_n \to X$. Soit $X \in A, X \not\in C, X = (x,y)$ donc: 2x + 3y = 4 $x \neq y$

$$X_n = (x, y + \frac{1}{n})$$

$$2x_n + 3y_n = 2x + 3y + \frac{3}{n} = 4 + \frac{3}{n} > 4$$

$$X_n \not\in A \text{ mais } X_n \to X$$

Example 2.48.

$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = x^{-1}\}\$$

 $Int(A) = \emptyset$? $C = \emptyset$

Figure 2.11: Exemple de l'intérieur de l'hyperbole

 $\emptyset \text{ ouvert, donc } C \subset Int(A)$ Soit $X \in A \quad X \not\in C,$ donc $X \in A.$

$$X_n := (x, y + \frac{1}{n}) \quad X_n \notin A$$

$$x_n y_n = xy + \frac{x}{n} = 1 + \frac{x}{n} \neq 1$$

$$X_n \xrightarrow[n \to \infty]{} X \text{ donc } X \notin Int(A)$$

$$Int(A) = \emptyset$$

Example 2.49.

$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = x^{-1}\}\$$

Adh(A) = ?

Je pense que Adh(A) = A (B = A). Il suffit de montrer que A <u>est fermé</u>.

$$x > 0$$
 $y \le \frac{1}{x}$ $y \ge \frac{1}{x}$

Si $X_n = (x_n, y_n)$ $X_n \in A$ et $X_n \to X$, alors $X \in A$

$$X = (x, y) \quad \begin{array}{ccc} x_n \to x & x_n \to x \\ y_n \to y & \frac{1}{x_n} \to y \end{array} \quad (x_n > 0)$$

donc x > 0 et $y = \frac{1}{x}$ donc $X \in A$

A est fermé

Example 2.50.

$$A = \{(x, y) \in \mathbb{R}^2 \mid 2x + 3y \le 4, x \ne y\}$$

Figure 2.12: example-adherence

1. B est fermé (facile), donc $Adh(A) \subset B$

2. Soit $X \in B$. On montre que $X \in Adh(A)$ (on cherche $X_n \in A$ avec $X_n \to X$) Je regarde juste $X \in B, X \not\in A$

$$X_n=(x_n,y_n)\in A\quad x_n\to x\text{ et }y_n\to y$$

$$x_n=x+\frac{1}{n},y_n=y=x$$

$$X_n\to X\text{ et }2x_n+3y_n=2x+3y-\frac{2}{n}\leq 4etx_n\neq y_n$$

donc $X_n \in A$

Example 2.51.

$$\begin{split} A &= \{(x,y) \mid |x| \leq 1, |y| < 1\} \\ Int(A) &= \{(x,y) \mid |x| < 1, |y| < 1\} \\ Adh(A) &= \{(x,y) \mid |x| \leq 1, |y| \leq 1\} \end{split}$$

Example 2.52.

$$A = \{(x, y) \mid x > 0, y = \sin(\frac{1}{n})\}\$$

$$Adh(A) = A \cup \{(0,y) \mid -1 \leq y \leq 1\} \ Int(A) =$$

2.12 Compacité

Definition 2.53. Soit $F \subset E$. Un recouvrement ouvert de F est une collection $(U_i)_{i \in I}$ où U_i sont des ouverts et $F \subset \bigcup_{i \in I} U_i$ ("les U_i recouvrent F")

Figure 2.13: recouvrement-ouvert

Example 2.54. • $U_x = B(x, \frac{1}{2})$

- $\bigcup_{x \in F} U_x$ contient F
- $(U_x)_{x \in F}$ recouvrement ouvert de F

Definition 2.55. $K \subset E$ est compact si de tout recouvrement ouvert $(U_i)_{i \in I}$ de F on peut extraire un sous-recouvrement fini: je peux choisir $i_1, \ldots, i_n \in I$ tels que

$$F \subset U_{i_1} \cup U_{i_2} \cup \ldots \cup U_{i_n}$$

Property. Un ensemble fini est compact.

$$F = \{a_1, \dots, a_p\} \quad a_j \in E$$

 $(U_i)_{i\in I}$ recouvre F. Je choisit a_j (point de F), il existe un $i\in I$ noté i(j) tel que

$$a_j \in U_{i(j)}$$
 $F \subset U_{i(1)} \cup \ldots \cup U_{i(p)}$

Theorem 2.56. Caractérisation à l'aide de suites.

 $K \subset E$ est compact s
si toute suite d'éléments de K admet une sous-suite qui converge vers un élément de K.

Figure 2.14: compactness-with-sequences

Example 2.57. \bullet $E = \mathbb{R}^2$

- $F = B(x_0, r)$ pas compact
- $x_n \in F, x_n \to x, x \notin F$
- si $y_n = x_{\phi(n)}, y_n \to x$ mais $x \notin F$

Figure 2.15: suite-sans-sous-suite-convergente

Example 2.58.

$$F = \{(x,y) : x \ge 0, -\frac{1}{x} \le y \le \frac{1}{x}\}$$

 $u_n = (n,0) (u_n)$ suite dans F sans sous-suite convergente.

Proposition 2.59. 1. K compact $\Rightarrow K$ fermé et borné. (réciproque est fausse en général!)

- 2. Si K compact et F fermé, alors $K \cap F$ est compact.
- 3. Si K compact, toute suite de Cauchy dans K converge dans K

Proof. 1. Soit K compact. K fermé si (u_n) suite dans K qui converge vers u, alors $u \in K$. <u>clair:</u> (u_n) a une suite-suite $v_n = u_{\phi(n)}$ avec $v_n \to v \in K$, $u_n \to u$, donc $v_n \to u \Rightarrow u = v \Rightarrow u \in K$ K est borné:

Soit $U_x = \bigcup_{x \in K} B(x,1)$ un recouvrement ouvert de K. Or K est compact, donc il existent $x_1, \ldots, x_n \in K$, tels que $K \subset \bigcup_{i=1,\ldots,n} B(x_i,1)$, donc K est borné.

- 2. K compact et F fermé. (u_n) une suite dans $K \cap F$. $u_n \in K$. \exists sous-suite $v_n = u_{\phi(n)}$ avec $v_n \to x \in K$. $v_n \in F, v_n \to x$, F fermé donc $x \in F$, $x \in K \cap F$.
- 3. Soit (u_n) suite de Cauchy dans K. (u_n) a une sous-suite $v_n = u_{\phi(n)}$ qui converge vers $x \in K$. $u_n \to x \in K$

2.12.1 Compacité dans \mathbb{R}^n avec la distance usuelle

Theorem 2.60. (Borel-Lebesgue)

dans \mathbb{R}^n avec la distance usuelle K est compact ssi K est fermé et borné

Proposition 2.61. Les boules fermées $B_f(x_0,r)$ sont compactes dans \mathbb{R}^n .

• Implique le théorème: Soit K fermé et borné. K borné, donc $K \subset B_f(0,r)$ avec r grand, donc $K = K \cap B_f(0,r)$. Donc K compact.

Proof. de la prop. 2.61

1. n = 1. À montrer: [a, b] est compact.

Soit $(U_i)_{i\in I}$ un recouvrement ouvert de [a,b]. Soit F: les $x\in [a,b]$ tels que [a,x] est récouvert par un nombre fini de U_i .

But: montrer que $b \in F$! (si $x \in F$, et $x' \le x$ $x' \in F$)

- (a) $F \neq \emptyset$: $a \in F [a, a] = \{a\}$
- (b) $c = \sup(F)$. On montre que c = b

Supposons que c < b.

- c appartient à un des U_i noté U_{i_0}
- U_{i_0} est ouvert, $c \in U_{i_0}$ donc $\exists \delta_0 > 0$ tel que $]c \delta_0, c + \delta_0[\subset U_{i_0}]$
- $c = \sup(F)$: $\forall \delta > 0$, $\exists x_{\delta} \in F$ avec $c \delta < x_{\delta} \le c$

$$\delta = \delta_{0,2} \quad \exists x_{\delta_0} \in F, c - \delta_{0,2} < x_{\delta_0}$$

 $[a, x_{\delta_0}]$ reconvert par $U_{i_1} \cup \ldots \cup U_{i_n}$ et $]c - \delta_0, c + \delta_0[\subset U_{i_0}$ donc $[a, c + \delta_{0,2}]$ est reconvert par $U_{i_0} \cup U_{i_1} \cup \ldots \cup U_{i_n}$, donc $c + \delta_{0,2} \in F$ contredit que $c = \sup(F)$. Donc c = b. F c'est [a, b[ou [a, b]. $b \in F \exists U_{i_1}, \ldots, U_{i_n}$ tq $[a, b] \subset U_{i_1} \cup \ldots \cup U_{i_n}$, [a, b] compact.

2.13 Limites et continuité

2.13.1 Limites

Je prends $(E_1, d_1), (E_2, d_2)$ deux espaces métriques et $F: E_1 \to E_2$. $x_0 \in E_1, l \in E_2$.

Definition 2.62.

1. Limite:

$$\lim_{x \to x_0} F(x) = l$$

27

si $\forall \varepsilon > 0, \exists \delta > 0$ tq si $d_1(x_0, x) < \delta$ alors $d_2(l, F(x)) < \varepsilon$

- 2. F continue en x_0 si $\lim_{x\to x_0} F(x) = F(x_0)$
- 3. F est continue (sur E) si elle est continue en tout x_0 de E

Proposition 2.63. Les propriétés suivantes sont équivalentes:

- 1. $F: (E_1, d_1) \to (E_2, d_2)$ est continue.
- 2. $\forall U_2 \subset E_2$ ouvert, $F^{-1}(U_2)$ est ouvert dans E_1 .
- 3. $\forall F_2 \subset E_2$ fermé, $F^{-1}(F_2) \subset E_1$ est fermé.
- 4. $\forall (x_n)$ suite dans E_1 avec $\lim_{n\to\infty} x_n = x$ on a:

$$\lim_{n \to \infty} F(x_n) = F(x)$$

Figure 2.16: continuite-topologique

Example 2.64.

$$U = \{(x, y) \in \mathbb{R}^2 : x \sin(y) - e^x > 1\}$$

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto F((x,y)) = x \sin(y) - e^x$

évidemment continue.

$$U = F^{-1}(\underbrace{]1, +\infty[}_{\text{ouvert de }\mathbb{R}})$$

Proof. $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$

 $1 \Rightarrow 2$: Hyp: F continue et $U_2 \subset E_2$ est ouvert.

Conclusion: $U_1 = F^{-1}(U_2)$ est ouvert?

Je fixe $x_0 \in U_1 \ (F(x_0) \in U_2)$.

- 1. U_2 ouvert $\Rightarrow \exists \varepsilon_0 > 0 \text{ tq } B_2(F(x_0), \varepsilon_0) \subset U_2$
- 2. F continue en x_0 :

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ tq } d_1(x_0, x) < \delta \Rightarrow d_2(F(x_0), F(x)) < \varepsilon$$

$$x \in B_1(x_0, \delta) \Rightarrow F(x) \in B_2(F(x_0), \varepsilon)$$

 $\delta_0 = \text{le } \delta$ qui marche pour ε_0

$$x \in B_1(x_0, \delta_0) \Rightarrow F(x) \in B_2(F(x_0), \varepsilon_0)$$

Donc $B_1(x_0, \delta_0) \subset F^{-1}(U_2)$. Donc $F^{-1}(U_2)$ ouvert.

 $2 \Rightarrow 3: : F^{-1}(U_2)^c = F^{-1}(U_2^c)$

Example 2.65. résultat de cette proposition. Prenons la fonction: $f(x) = x^2$. $f^{-1}(]4,9[) = \{x \in \mathbb{R} \mid 4 < x^2 < 9\} =]-3,-2[\cup]2,3[$. Autrement dire, la continuité de f (évident) donne que U=]4,9[ouvert, alors $f^{-1}(U)$ aussi ouvert.

Figure 2.17: Exemple en $f(x) = x^2$

CHAPTER 3

FONCTIONS DE PLUSIEURS VARIABLES

3.1 Introduction

Cadre: \mathbb{R}^n , \mathbb{R}^p $D \subset \mathbb{R}^n$

$$F:D\to\mathbb{R}^p$$

sur \mathbb{R}^n , \mathbb{R}^p distances usuelles, sur D la distance héritée de \mathbb{R}^n . avec des coordonnées cartésiennes

$$F(x_1,\ldots,x_n) = (F_1(x_1,\ldots,x_n), F_2(x_1,\ldots,x_n),\ldots,F_p(x_1,\ldots,x_n))$$

où $F_i:D\to\mathbb{R}$

$$F: D \to \mathbb{R}^p$$
 continue

on connaît:

Lemma 3.1.

 $F: D \to \mathbb{R}^p$ continue ssi:

chaque $F_i: D \to \mathbb{R}$ est continue

Proof.
$$Y_n = (Y_{1,n}, \dots, Y_{p,n})$$
 suite des \mathbb{R}^p . $Y_n \to Y$ ssi $Y_{i,n} \to Y_i$ $(1 \le i \le p)$

Proposition 3.2. Soit $f, g: D \to \mathbb{R}$ continue.

- $f + g, f \times g$ sont continues sur D
- si $g(X) \neq 0$, $\forall X \in D$, $\frac{f}{g}$ continue sur D
- si $f(D) \subset I$ intervalle et $\phi: I \to \mathbb{R}$ continue, alors $\phi \circ f: D \to \mathbb{R}$ est continue.

•

$$P: X \to \sum_{\alpha_1 + \dots + \alpha_n \le d} a_{\alpha_1, \dots, \alpha_n} x^{\alpha_1} \dots x^{\alpha_n}$$

 $a_{\alpha_1,\ldots,\alpha_n} \in \mathbb{R}, d = \text{degr\'e de } P.$

 $P: \mathbb{R}^n \to \mathbb{R}$ continue.

3.2 Comment montrer qu'un ensemble est ouvert ou fermé

D'apres la proposition 2.63, si $f: D \to Q$ est continue et $K \subset Q$ ouvert et $K_f \subset Q$ ferm, donc:

- $f^{-1}(K)$ est aussi ouvert
- $f^{-1}(K_f)$ est aussi fermé

Cela nous permet de simplifier les preuves qu'un ensemble est fermer ou ouvert. Voici quelques exemples:

Example 3.3.

$$D = \{(x_1, x_2, x_3) : x_1^2 + 2x_2x_3^2 < 2, \sin(x_1x_2) > 0\}$$
$$D = D_1 \cap D_2$$

$$D_1 = f_1^{-1}(] - \infty, 2[)$$

$$D_2 = f_2^{-1}(]0, +\infty[)$$

$$f_1(x) = x_1^2 + 2x_2x_3^2$$

$$f_2(x) = \sin(x_1x_2)$$

 D_1, D_2 sont ouverts, donc D ouvert.

Example 3.4.

$$D = \{(x_1, x_2) : \frac{e^{x_1 - 2x_2^2}}{x_1^2 + 3x_2^4} \ge 1\}$$

$$D = f^{-1}([1, +\infty[))$$

$$f(x) = \frac{e^{x_1 - 2x_2^2}}{x_1^2 + 3x_2^4}$$

 $[1,+\infty[$ est fermé dans $\mathbb{R},$ alors D
 est aussi fermé car f continue sur $[1,+\infty[$

3.3 Lien avec la compacité

Theorem 3.5. Soit $F: \mathbb{R}^n \to \mathbb{R}^p$ continue et $K \subset \mathbb{R}^n$ compact. Alors, F(K) est compact dans \mathbb{R}^p

Remark 3.6. On peut remplacer \mathbb{R}^n , \mathbb{R}^p par E, F espaces métriques.

Remark 3.7. *U* ouvert, *f* continue $\not\Rightarrow f(U)$ ouvert:

Example 3.8.

$$f(]0,1[) = [-1,1]$$
$$f(x) = \sin(2\pi x)$$

Figure 3.1: Exemple qu'une image de l'ouvert n'est pas ouvert

Example 3.9.

$$\begin{split} f: \mathbb{R} &\longrightarrow \mathbb{R} \\ x &\longmapsto f(x) = \arctan x. \end{split}$$

$$f(\underbrace{]-\frac{\pi}{2},\frac{\pi}{2}[}) = \underbrace{\mathbb{R}}_{\text{pas compact}}$$

Proof. Soit $(v_n)_{n\in\mathbb{N}}$ une suite dans F(K). On a: $v_n = F(u_n)$ où $u_n \in K$. $(u_n)_{n\in\mathbb{N}}$ suite dans K, K compact, donc: \exists sous suite $(u_{\phi(n)})_{n\in\mathbb{N}}$ avec

$$u_{\phi_n} \xrightarrow[n \to +\infty]{} u \in K$$

F continue: donc $F(u_{\phi(n)}) = v_{\phi(n)} \to F(u) \in K$. (v_n) a une sous suite $(v_{\phi(n)})$ qui converge vers $F(u) \in F(K)$, donc F(K) compact!

Theorem 3.10. Soit $F: \mathbb{R}^n \to \mathbb{R}$ continue et $K \subset \mathbb{R}^n$ compact. Alors f est bornée sur K et atteint ses bornes. I.e, Q := f(K) est bornée et atteint les bornes.

Proof. Weierstrass: $f : \mathbb{R} \to \mathbb{R}$ K = [a, b].

Je prends (E,d) à la place de \mathbb{R}^n . f bornée sur K: $\exists c_1, c_2$ telles que

$$c_1 \le f(x) \le c_2, \forall x \in K \Leftrightarrow f(K) \subset [c_1, c_2]$$

C'est clair car f(K) est compact dans \mathbb{R} , donc bornée.

$$m = \inf_{x \in K} f(x) = \inf f(K) \qquad M = \sup_{x \in K} f(x) = \sup f(K)$$

À montrer: $\exists x \in K$ tel que f(x) = m et $\exists x' \in K$ tel que f(x') = M $m = \inf f(K)$, ça veut dire que

- 1. $f(K) \subset [m, +\infty[$ (m minorant de f(K))
- 2. $\forall \varepsilon > 0, \exists y \in f(K)$ tel que $y \leq m + \varepsilon$

 $\varepsilon = \frac{1}{n}$ donne une suite $y_n \in f(K)$ telle que $y_n \to m$

$$y_n = f(x_n) x_n \in K$$

K compact: \exists sous suite $x_{\phi(n)}$ telle que

$$x_{\phi(n)} \xrightarrow[n \to \infty]{} x \in K$$

 $f: E \to \mathbb{R}$ continue, donc

$$f(x_{\phi(n)}) = y_{\phi(n)} \to f(x)$$

Mais, $y_n \to m$, donc $y_{\phi(n)} \to m$ et $y_{\phi(n)} \to f(x)$, donc m = f(x), m est atteint. Pour montrer que M est atteint la preuve est identique.

3.4 Continuité partielle (inutile)

$$D \subset \mathbb{R}^n$$
 $f: D \to \mathbb{R}$ continue D ouvert

Soit $A = (a_1, \ldots, a_n) \in D$, il existe des intervalles ouverts I_1, \ldots, I_n avec $a_i \in I_i$ tels que $I_1 \times \ldots \times I_n \subset D$

Je peux poser

$$f_i(t) = f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_n)$$
 $t \in I_i$

Example 3.11.

$$n=2$$
 $f_1(t) = f(t, a_2)$ $f_2(t) = f(a_1, t)$

Figure 3.2: f est continue en $A = (a_1, a_2)$

Definition 3.12. f est partiellement continue en $A = (a_1, \ldots, a_n)$ si les $f_i(t)$ sont continues en a_i $(1 \le i \le n)$

- continuité: $f(x_1, x_2) \xrightarrow[(x_1, x_2) \to (a_1, a_2)]{} f(a_1, a_1)$
- partielle: $f(x_1, a_2) \xrightarrow[x_1 \to a_1]{} f(a_1, a_2)$ et $f(a_1, x_2) \xrightarrow[x_2 \to a_2]{} f(a_1, a_2)$
- Bonne notion: continuité implique la continuité partielle (réciproque fausse)

Example 3.13.

$$f(x_1, x_2) = \begin{cases} \frac{x_1 x_2}{x_1^2 + x_2^2} & \text{si } (x_1, x_2) \neq (0, 0) \\ 0 & \text{si } (x_1, x_2) = (0, 0) \end{cases}$$

continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$

• partiellement continue en (0,0)

$$f(x_1, 0) = \begin{cases} 0 \text{ si } x_1 = 0 \\ 0 \text{ si } x_1 \neq 0 \end{cases}$$
$$f(0, x_2) = 0 \,\forall x_2$$

• pas continue en (0,0):

$$x_1 = r\cos(\theta) \quad x_2 = r\sin(\theta)$$

$$f(r\cos(\theta), r\sin(\theta)) = \begin{cases} 0 \text{ si } r = 0\\ \frac{r^2\cos(\theta)\sin(\theta)}{r^2} = \cos(\theta)\sin(\theta) \text{ si } r \neq 0 \end{cases}$$

$$\lim_{r \to 0} f(r\cos(\theta), r\sin(\theta)) = \cos(\theta)\sin(\theta) \neq 0 \text{ si } \theta \neq 0, \pi, \frac{\pi}{2}, \dots$$

$^{ extsf{GHAPTER}}4$

DÉRIVATION DES FONCTIONS DE PLUSIEURS VARIABLES

4.1 Introduction

n=1: comment définir $f'(x_0)$?

1.
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

2. DL:
$$f(x) = f(x_0) + a_1(x - x_0) + (x - x_0)\varepsilon(x)$$
 où $a_1 = f'(x_0)$

$$f: D \to R$$
 D ouvert $X_0 \in D$ $D \subset \mathbb{R}^n$

Definition 4.1. f est dérivable en X_0 dans la direction $\vec{u} \neq \vec{0}$ si la fonction

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $t \longmapsto g(t) = f(X_0 + t\vec{u}).$

est dérivable en t=0

Autrement dire, la dérivée directionnelle (dans la direction de vecteur \vec{u}) est donnée par:

$$D_u f(X_0) = \lim_{t \to 0} \frac{f(X_0 + t\vec{u}) - f(X_0)}{t}$$
(4.1)

Dans le cas \mathbb{R} on a eu la définition de la dérivée:

$$f'(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t}$$

La diréction était toujours la même (l'axe x), on peut voir ça comme prendre un vecteur u = (1) et utiliser comme la direction seulement l'axe x et on obtient l'eq. (4.1)

Figure 4.1: Dérivée directionnelle

 $\vec{e_1}, \dots, \vec{e_n}$ base canonique de \mathbb{R}^n , f admet des dérivées partielles en X_0 si f dérivable en X_0 dans les directions $\vec{e_1}, \dots, \vec{e_n}$.

$$\frac{d}{dt}f(X_0 + t\vec{e_i})\mid_{t=0}$$

noté

$$\frac{\partial f}{\partial x_i}(X_0)$$

Par contre, une fonction peut être dérivable dans <u>toutes les diréctions</u> en un point mais <u>ne pas être</u> continue en ce point, voici

Example 4.2.

$$f(x_1, x_2) = \begin{cases} 1 \text{ si } x_2 = x_1^2 \text{ et } (x_1, x_2) \neq (0, 0) \\ 0 \text{ sinon} \end{cases}$$

Figure 4.2: Exemple dérivable mais pas continue

$$f((0,0) + t\vec{u}) = f(t\vec{u}) = 0$$

si $t \neq 0$ et t petit, on a f dérivable dans toutes les directions. Mais, f n'est pas continue en (0,0):

$$X_n = (\frac{1}{n}, \frac{1}{n^2}) \quad X_n \to (0, 0)$$

$$\forall n, f(X_n) = 1 \quad f(X_n) \xrightarrow[n \to \infty]{} f(0,0)$$

Definition 4.3. Soient $D \subset \mathbb{R}^n$ ouvert et $X_0 \in D$, la fonction $f: D \to \mathbb{R}$ est **différentiable** en X_0 s'il existe un vecteur $\vec{u} \in \mathbb{R}^n$ tel que

$$f(X_0 + \vec{X}) = f(X_0) + \vec{u} \cdot \vec{X} + ||\vec{X}|| \varepsilon(\vec{X})$$

où $\lim_{\vec{X}\to\vec{0}}\varepsilon(\vec{X})=0$

Intuition. Je propose de réflechir sur ce que cette définition signifie. Rappelons ce que signifie intuitivement la dérivée au cas $\mathbb{R}^n = \mathbb{R}$ (n = 1). Intuitivement, si on zoom la fonction qu'on dérive elle se comporte et a l'air d'être une ligne. Dans le cas $\mathbb{R}^n = \mathbb{R}^2$, si on zoom la fonction elle a l'air d'être un plan. En effet, c'est ça l'idée de la dérivée, que si on fait un petit petit pas d'un fourmit, le deplacement et aussi petit et uniforme. En augmentant n, la dérivée donne des scalaire pour contruire un sous-éspace de dimension n-1 de l'espace \mathbb{R}^n .

Note. Pour montrer qu'une fonction est différentiable il suffit de montrer que ces dérivées partielles sont continues.

4.2 DL à l'ordre 1

Cette représentation de la dérivée comme un sous-éspace lors qu'on zoom est représenté par le DL à l'ordre 1. De la définition 4.3, ce vecteur \vec{u} se note $\vec{\nabla} f(X_0)$ (gradient de f en X_0)

Proposition 4.4. f différentiable en $X_0 \Rightarrow f$ dérivable dans toutes les directions en X_0 , et alors:

$$\vec{\nabla}f(X_0) = \begin{pmatrix} \frac{\partial f}{\partial x_1} f(X_0) \\ \dots \\ \frac{\partial f}{\partial x_n} f(X_0) \end{pmatrix}$$

dans la base $\vec{e_1}, \dots, \vec{e_n}$

Proof. f est continue en $X_0 | \vec{u} \cdot X | \leq |\vec{u}| |X|$

1. continuité

$$|f(X_0 + X) - f(X_0)| \le |\vec{u} \cdot X| + ||X|| ||\varepsilon(X)||$$

 $\le ||X|| (||\vec{u}|| + |\varepsilon(x)|) \le c||X||$

donc: $f(X_0 + X) \xrightarrow[X \to \vec{0}]{} f(X_0)$

2. .

$$\begin{split} g(t) &= f(X_0 + t\vec{v}) = f(X_0) + \vec{\nabla} f(X_0) \cdot t\vec{v} + ||t\vec{v}|| \cdot \varepsilon(t\vec{v}) \\ &= f(X_0) + t\vec{\nabla} f(X_0) \cdot \vec{v} + |t|||\vec{v}||\varepsilon_1(t) \\ &= f(X_0) + t\vec{\nabla} f(X_0) \cdot \vec{v} \end{split}$$

donc:

$$\frac{d}{dt}f(X_0 + t\vec{v}) \mid_{t=0} = \vec{\nabla}f(X_0) \cdot \vec{v}$$

(prendre $\vec{v} = \vec{e_1}, \dots, \vec{e_n}$ pour les coordonnées de $\vec{\nabla} f(X_0)$)

Definition 4.5.

 $D \subset \mathbb{R}^n$ D ouvert $f: D \to \mathbb{R}$ est \mathcal{C}^1 sur D

Soit $D \subset \mathbb{R}^n$ ouvert, alors la fonction $f:D \to \mathbb{R}$ est de classe \mathcal{C}^1 sur D si f est différentiable en tout $X \in D$ et la fonction

$$: D \longrightarrow \mathbb{R}^n$$
$$X \longmapsto \vec{\nabla} f(X)$$

est continue.

Theorem 4.6. f de classe C^1 sur D ssi f admet des dérivées partielles continues en tout point de D.

Example 4.7.

$$f(X) = f(X_0) + \vec{\nabla}f(X_0) \cdot (X - X_0) + ||X - X_0|| \varepsilon (X - X_0)$$

linéaire

Dans \mathbb{R}^3 : f(x,y,z)

$$S = \{(x, y, z) : f(x, y, z) = 0\}$$

S: surface dans \mathbb{R}^3 , $X_0 \in S$ plan tangent à S en X_0 , plan d'équation:

$$f(X_0) + \vec{\nabla}f(X_0) \cdot X = 0$$

Figure 4.3: Exemple d'une surface differentiable

4.3 Extrema et points critiques

Definition 4.8. Extremum (local) de f est un minimum ou un maximum (local) de f

• X_0 est un maximum local de f si: $\exists \delta > 0$ tel que

$$\forall X \in D, f(X) \leq f(X_0) \text{ avec } d(X, X_0) \leq \delta$$

• X_0 est un minimum local de f si: $\exists \delta > 0$ tel que

$$\forall X \in D, f(X) \geq f(X_0) \text{ avec } d(X, X_0) \leq \delta$$

Definition 4.9. Soit $f: D \to \mathbb{R}$ et $X_0 \in D$, alors si

$$\vec{\nabla}f(X_0) = \vec{0}$$

donc X_0 est un **point critique**.

Intuition. Le lien entre les extremums et le point critique:

- 1. pour que l'extremum existe, il faut qu'il existe au moins un point critique c'est un critère nécessaire mais pas suffisant.
- 2. tout extremum local est un point critique

Les points critiques falicites la recherche des extremums locaux.

Theorem 4.10. Soit $f:D\longrightarrow \mathbb{R}$ différentiable, D ouvert et $X_0\in D$ (sinon, si D pas ouvert, il faut $X_0\in \mathrm{Int}(D)$) alors:

 X_0 extremum local $\Rightarrow X_0$ point critique

Example 4.11. Pas tout point critique est un extremum local

Figure 4.4: Point critique qui n'est pas un extremum local

Dérivées partielles d'ordre ≥ 2 4.4

Definition 4.12. Soit D, alors $f: D \to \mathbb{R}$ est C^k si $f: D \to \mathbb{R}$ est C^1 et $\partial_{x_i} f: D \to \mathbb{R}$ sont C^{k-1}

Definition 4.13. Soient $\alpha = (\alpha_1, \dots, \alpha_n)$ $\alpha_i \in \mathbb{N}$. On pose

$$\partial_x^{\alpha} f = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdot \dots \cdot \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}$$

est la notation pour la dérivée d'ordre supérieure.

$$\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1} f \stackrel{?}{=} \frac{\partial^2}{\partial x_1^2} \frac{\partial}{\partial x_2} f$$

Theorem 4.14. Lemme de Schwarz

Si $f \in \mathcal{C}^2(D)$ alors

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(X) = \frac{\partial^2 f}{\partial x_i \partial x_i}(X) \qquad \forall X \in D, \forall i,j$$

Example 4.15. où une fonction admet des dérivées partielles d'ordre supérieure mais $\frac{\partial^2 f}{\partial x_i \partial x_j}(X) \neq$

$$f(x_1, x_2) = \begin{cases} x_1 x_2 \frac{x_1^2 - x_2^2}{x_1^2 + x_2^2} & \text{si } (x_1, x_2) \neq (0, 0) \\ 0 & \text{si } (x_1, x_2) = 0 \end{cases}$$

$$r^2\sin(\theta)\cos(\theta)\cos(2\theta) = \frac{1}{4}r^2\sin(4\theta)$$

On calcule $\frac{\partial^2 f}{\partial_{x_1} \partial_{x_2}}(0,0)$? C'est $\frac{\partial}{\partial x_1} g(x_1)$ en $x_1 = 0$ pour $g(x_1) = \frac{\partial f}{\partial x_2}(x_1,x_2)|_{x_2=0}$. Calcul de $g(x_1)$:

1. si
$$x_1 \neq 0$$
 $\frac{\partial f}{\partial x_2}(x_1, x_2) = x_1 \frac{x_1^2 - x_2^2}{x_1^2 + x_2^2}$, donc si $x_1 \neq 0$ $\frac{\partial f}{\partial x_2}(x_1, 0) = x_1$
2. si $x_1 = 0$ $f(0, x_2) = 0$

2. si
$$x_1 = 0$$
 $f(0, x_2) = 0$

Conclusion:

$$\frac{\partial f}{\partial x_2}(x_1, 0) = x_1 \quad \forall x_1$$

donc:

$$\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} f(0,0) = 1$$

 $\frac{\partial}{\partial x_2}\frac{\partial}{\partial x_1}f(0,0)=?.$ On voit que, $f(x_2,x_1)=-f(x_1,x_2)$ donc

$$\frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1} f(0,0) = -\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} f(0,0) = -1$$

4.5 Formule de Taylor à l'ordre 2

Definition 4.16. Soit $f \in \mathcal{C}^2(D)$. Matrice hessienne: matrice $n \times n$

$$H_f(X_0) = \left[\frac{\partial^2}{\partial x_i \partial x_j}(X_0)\right] 1 \le i, j \le n$$

Le lemme 4.14 nous donne que $H_f(X_0)$ est symmetrique si $f \in \mathcal{C}^2(D)$

Rappel:

$$\vec{\nabla}f(X_0) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(X_0) \\ \vdots \\ \frac{\partial f}{\partial x_n}(X_0) \end{pmatrix}$$

Theorem 4.17. De Taylor à l'ordre 2 Soit $f \in C^2(D)$, $X_0 \in D$. Alors

$$f(X_0 + \vec{X}) = f(X_0) + \vec{\nabla}f(X_0) \cdot \vec{X} + \frac{1}{2}\vec{X} \cdot H_f(X_0)\vec{X}$$

exemple en \mathbb{R}^1

$$f(x_0 + x) = f(x_0) + f'(x_0)x + \frac{1}{2}f''(x_0)x^2 + \dots$$

Intuition. Alors, la matrice hessienne sert à calculer la dérivée d'ordre 2.

4.6 Un rappel d'algèbre linéaire et le lien avec l'analyse

$$\vec{X} \cdot A\vec{X} = \sum_{1 \le i, j \le n} x_i a_{i,j} x_j$$

Si
$$\vec{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} A = \begin{bmatrix} a_{i,j} \end{bmatrix}$$
 on a: $X \mapsto X \cdot AX$ à étudier. Si $A = A^T, A \in \mathcal{M}_n(\mathbb{R})$

"A admet une base orthonormée de vecteurs propres"

Il existe une base $\vec{u_1}, \ldots, \vec{u_n}$ de \mathbb{R}^n avec $\vec{u_i} \cdot \vec{u_j} = \delta_{i,j}$ (1 si i = j et 0 sinon) et des réels $\lambda_1, \ldots, \lambda_n (\lambda_i = \lambda_j)$ possible) tels que

$$A\vec{u_i} = \lambda_i \vec{u_i}$$

$$\vec{X} = \sum_{j=1}^n y_j \vec{u_j}$$

$$\vec{X} \cdot \vec{u_i} = \sum_{i=1}^n y_j \vec{u_i} \vec{u_i} = y_i$$

$$\|\vec{X}\|^{2} = \vec{X} \cdot \vec{X} = \left(\sum_{j=1}^{n} y_{j} \vec{u_{j}}\right) \cdot \left(\sum_{i=1}^{n} y_{i} \vec{u_{i}}\right)$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} y_{j} y_{i} \vec{u_{j}} \cdot \vec{u_{i}}$$

$$= \sum_{j=1}^{n} y_{j}^{2}$$

$$A\vec{X} = A\sum_{j=1}^{n} y_j \vec{u_j} = \sum_{j=1}^{n} y_j A \vec{u_j} = \sum_{j=1}^{n} \lambda_j y_j \vec{u_j}$$
$$\vec{X} \cdot A\vec{X} = \sum_{i=1}^{n} \lambda_i y_i^2$$

1. si
$$\lambda_i > 0 \ (1 \le i \le n)$$

$$C = \min \lambda_i > 0$$

$$X \cdot AX \ge C \sum_{i=1}^n y_i^2 = C \|X\|^2$$

2. si
$$\lambda_i < 0 \ (1 \le i \le n)$$

$$-C = \max \lambda_i < 0$$
$$X \cdot AX < -C||X||^2$$

Example 4.18. n = 2

$$f(y_1, y_2) = -y_1^2 + 3y_2^2$$
$$\lambda_1 = -1 \qquad \lambda_2 = 3$$
$$f(y_1, 0) < f(0, 0) < f(0, y_2)$$

4.7 Nature des points critiques

Theorem 4.19. (Nature des points critiques)

Soient $f \in \mathcal{C}^2(D), X_0 \in D, D$ ouvert et $\nabla f(X_0) = \vec{0}$

- 1. si toutes les valeurs propres de $H_f(X_0)$ sont > 0 (resp < 0) X_0 est minimum (resp. maximum) local.
- 2. si toutes les valeurs propres de $H_f(X_0)$ sont <u>non nulles</u> mais pas de même signe, X_0 n'est pas un extremum local: X_0 est un point selle (un col).
- 3. si 0 valeurs propres de $H_f(X_0)$, pas de conclusion, $(X_0$ point critique dégénéré) i.e on ne peut rien conclure

Proof. du théorème 4.19

$$f(X_0 + X) - f(X_0) = \frac{1}{2}X \cdot H_f(X_0)X + ||X||^2 \varepsilon(X)$$

1. si $\lambda_i > 0$ $\frac{1}{2}X \cdot H_f(X_0)X \ge C||X||^2 C > 0$

$$f(X_0 + X) - f(X_0) \ge ||X||^2 (C + \varepsilon(X)) \ge \frac{C}{2} ||X||^2$$
 si $||X||$ assez petit

 $\Rightarrow X_0$ minimum local

2. si
$$\lambda_1 < 0$$
 et $\lambda_2 > 0$

$$H_f(X_0)\vec{u_i} = \lambda_i \vec{u_i}$$

$$f(X_0 + t\vec{u_i}) = f(X_0) + \frac{1}{2}\lambda_i t^2 + t^2 \varepsilon(t)$$

$$\varepsilon(t\vec{u_i}) = \varepsilon(t)$$

$$f(X_0 + t\vec{u_i}) - f(X_0) = t^2(\frac{1}{2}\lambda_i + \varepsilon(t))$$

si i=1<0 |t| petit, i=2>0 |t| petit, alors X_0 n'est pas un extremum local

Example 4.20.

$$f(x,y) = \frac{1}{2}(x^2 - y^2)$$

$$H_f(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$I_f = \{(x,y,z) : z = \frac{1}{2}(x^2 - y^2)\}$$

Figure 4.5: Exemple de point selle.

Les lignes rouges représentent les dérivées partielles et on voit bien que les uns sont croissants et les autres décroissants, donc ce point n'est ni le minimum ni le maximum

Example 4.21. n = 2

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$$

 $(a_{1,2} = a_{2,1})$

Valeurs propres: racines du pol. Caractéristique:

$$P(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a_{1,1} - \lambda & a_{1,2} \\ a_{2,1} & a_{2,2} - \lambda \end{vmatrix} = (\lambda - a_{1,1})(\lambda - a_{2,2}) - a_{1,2}a_{2,1}$$

$$\lambda^{2} - (a_{1,1} + a_{2,2})\lambda + a_{1,1}a_{2,2} - a_{2,1}a_{1,2}$$

$$a_{1,1} + a_{2,2} = Tr(A)$$

$$a_{1,1}a_{2,2} - a_{2,1}a_{1,2} = \det(A)$$

$$x^{2} - Sx + P = x^{2} - (\lambda_{1} + \lambda_{2})x + \lambda_{1}\lambda_{2}$$

det(A) = produit des valeurs propresTr(A) = somme des valeurs propres

$$A = H_f(X_0)$$

- 1. si det(A) < 0, X_0 point col
- 2. si det(A) > 0
 - (a) Tr(A) > 0, X_0 minimum
 - (b) $Tr(A) < 0, X_0$ maximum
- 3. det(A) = 0, X_0 point critique dégénéré

4.8 La règle de dérivation en chaîne

Definition 4.22. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue est différentiable et des fonction $g_1: \mathbb{R} \to \mathbb{R}$, ..., $g_n: \mathbb{R} \to \mathbb{R}$ des fonctions dérivables et continues et

$$h: \mathbb{R} \longrightarrow \mathbb{R}$$

 $t \longmapsto h(t) = f(g_1(t), g_2(t), \dots, g_n(t))$

alors

$$h'(t) = \frac{\partial g_1}{\partial h} g_1'(t) + \frac{\partial g_2}{\partial h} g_2'(t) + \ldots + \frac{\partial g_n}{\partial h} g_n'(t)$$

Definition 4.23. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue est différentiable et des fonction $g_1: \mathbb{R}^p \to \mathbb{R}$, ..., $g_n: \mathbb{R}^p \to \mathbb{R}$ des fonctions dérivables i.e

$$\forall i \in \{1, \dots, n\}, \quad g_i : \mathbb{R}^p \longrightarrow \mathbb{R}$$

$$(t_1, \dots, t_n) \longmapsto g_i(t_1, \dots, t_n)$$

 et

$$h: \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$(x_1, \dots, x_n) \longmapsto h(g_1(t_1, \dots, t_n), \dots, g_n(t_1, \dots, t_n)).$$

donc

$$\frac{\partial h}{\partial t_i} = \frac{\partial h}{\partial x_1} \frac{\partial g_1}{\partial t_i} + \ldots + \frac{\partial h}{\partial x_n} \frac{\partial g_n}{\partial t_i}$$

CHAPTER 5

ESPACES VECTORIELS NORMÉS

5.1 Introduction

Definition 5.1. Soit E un \mathbb{K} -espace vectoriel et $\lambda \in \mathbb{R}$, la **norme** sur E est une application $N: E \to \mathbb{R}_+$ avec:

- 1. $N(\lambda u) = |\lambda| N(u)$ $u \in E$
- $2. \ N(u+v) \le N(u) + N(v)$
- 3. $N(u) = 0 \Leftrightarrow u = 0_E$

semi-norme: 1 et 2 seulement.

On peut interpreter 2 comme:

$$|N(u) - N(v)| \le N(u - v)$$

Proposition 5.2. Norme induite: Si $F \subset E$ un sous-espace vectoriel, je restreins N à F, alors (F, N) est un espace vectoriel normé.

Example 5.3. $E = \mathbb{K}^n$ avec $x = (x_1, \dots, x_n) \in E$

- $||x||_1 = \sum_{i=1}^n |x_i|$
- $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$
- $\bullet ||x||_{\infty} = \max_{1 \le i \le n} |x_i|$
- $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ avec $1 \le p < \infty$

Proposition 5.4. L'inégalité triangulaire pour p > 2 s'appelle l'inégalité de Minkowski:

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}$$

Definition 5.5. Soit U un ensemble et $E = \{f : U \to \mathbb{K} \text{ born\'ee}\}\$

$$||f||_{\infty} = \sup_{x \in U} |f(x)|$$
 norme sur E

Definition 5.6. $R([a,b],\mathbb{K})=\{ \text{ les } f:[a,b]\to\mathbb{K} \text{ intégrables au sens de Riemann}^a \}$

 a La fonction est Riemann intégrable (pas forcément continue) si on peut calculer l'air en utilisant l'intégration par les sommes de Riemann. Alors, si f discontinue, elle est Riemann intégrable si la discontinuité est négligable.

Example 5.7.

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}} \text{ avec } 1 \le p < \infty$$

 $\|.\|_p$ est une semi-norme sur $R([a,b],\mathbb{K})$ (inégalité de Minkowski). $\|f\|_p=0$ n'entraine pas que f=0 (e.g: $[a,b]=[-1,1],\ f(x)=x,\ p=3).$

$$||u+v||_p \le ||u||_p + ||v||_p$$

Sur $E = \mathcal{C}([a,b],\mathbb{K})$, $\|.\|_p$ est une norme: si $f:[a,b] \to \mathbb{K}$ continue et $\int_a^b |f(x)|^p dx = 0$ alors $f(x) = 0 \forall x \in [a,b]$

Example 5.8. $E = \mathbb{K}^{\mathbb{N}}$ un ensemble des suites u à valeurs dans \mathbb{K}

$$u = (u_1, u_2, \dots, u_n, \dots)$$

pour $1 \le p < \infty$

$$l^p(\mathbb{N}, \mathbb{K}) = \{(u_n) : \sum_{n \in \mathbb{N}} |u_n|^p \text{ est convergente } \}$$

$$||u||_p = \left(\sum_{n=0}^{\infty} |u_n|^p\right)^{\frac{1}{p}}$$

est une norme sur $l^p(\mathbb{N}, \mathbb{K})$

$$p = \infty$$
 $l^{\infty}(\mathbb{N}, \mathbb{K}) = \{u \text{ born\'ee }\}$
$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$

5.2 Topologie des espaces vectoriels normés

Proposition 5.9. Soit $(E, \|.\|)$ un espace vectoriel normé avec

$$d(u, v) = ||u - v||$$

une distance sur E (induite par $\|.\|$), alors (E, d) est un espace métrique.

Definition 5.10. Un espace vectoriel normé complet s'appelle un espace de Banach.

Cas de dimension finie:

- 1. Tout espace vectoriel normé de dimension finie est complet (rappel: proposition 2.43) (voir plus bas)
- 2. Si E de dim finie:

K compact $\Leftrightarrow K$ fermé et borné

Lemma 5.11.

$$(\mathcal{C}([0,1],\mathbb{R}),\|.\|_1)$$

n'est pas complet.

Proof. On construit une suite de fonctions continues $(f_n)_{n\in\mathbb{N}}$ sur [0,1] qui converge en norme $\|\cdot\|_1$ vers une fonction f discontinue. Cela montrera que la limite de cette suite dans la norme $\|\cdot\|_1$ n'appartient pas à $\mathcal{C}([0,1],\mathbb{R})$, donc que cet espace n'est pas complet.

Figure 5.1: Lemma avec un espace pas complet

Définition de la suite (f_n) : pour chaque $n \in \mathbb{N}$, on définit $f_n : [0,1] \to \mathbb{R}$ par

$$f_n(x) = \begin{cases} 0 & \text{si } x \le \frac{1}{2} - \frac{1}{2n}, \\ 2n\left(x - \frac{1}{2} + \frac{1}{2n}\right) & \text{si } \frac{1}{2} - \frac{1}{2n} < x < \frac{1}{2} + \frac{1}{2n}, \\ 1 & \text{si } x \ge \frac{1}{2} + \frac{1}{2n}. \end{cases}$$

Chaque f_n est continue sur [0,1] car elle est affine par morceaux avec raccords continus.

Définition de la fonction limite : posons

$$f(x) = \begin{cases} 0 & \text{si } x < \frac{1}{2}, \\ 1 & \text{si } x > \frac{1}{2}, \\ \text{valeur quelconque} & \text{si } x = \frac{1}{2}. \end{cases}$$

Alors f est **discontinue** en $x = \frac{1}{2}$, donc $f \notin \mathcal{C}([0,1], \mathbb{R})$.

Convergence de (f_n) vers f dans $\|\cdot\|_1$:

On a

$$||f_n - f||_1 = \int_0^1 |f_n(x) - f(x)| dx.$$

Mais $f_n(x) = f(x)$ sauf sur l'intervalle $\left[\frac{1}{2} - \frac{1}{2n}, \frac{1}{2} + \frac{1}{2n}\right]$ de longueur $\frac{1}{n}$, et sur cet intervalle, $|f_n(x) - f(x)| \le 1$, donc:

$$||f_n - f||_1 \le \int_{\frac{1}{2} - \frac{1}{2n}}^{\frac{1}{2} + \frac{1}{2n}} 1 \, dx = \frac{1}{n} \xrightarrow[n \to \infty]{} 0.$$

Ainsi, $f_n \to f$ dans la norme $\|\cdot\|_1$.

Conséquence : la suite (f_n) est de Cauchy dans $(\mathcal{C}([0,1],\mathbb{R}), \|\cdot\|_1)$, car :

$$||f_n - f_p||_1 \le ||f_n - f||_1 + ||f - f_p||_1 \le \frac{1}{n} + \frac{1}{p} \xrightarrow[n, p \to \infty]{} 0.$$

Cependant, la limite f n'est pas continue, donc $f \notin \mathcal{C}([0,1], \mathbb{R})$.

Conclusion: Il existe une suite de Cauchy dans $(\mathcal{C}([0,1],\mathbb{R}),\|\cdot\|_1)$ qui ne converge pas dans cet espace. Par conséquent, cet espace n'est pas complet.

Lemma 5.12. Dans $E = l^1(\mathbb{N}, \mathbb{R})$ muni de

$$||u||_1 = \sum_{n=0}^{\infty} |u_n|$$

 $B_f(0,1)$ n'est pas compact.

Proof. On construit une suite d'éléments de $B_f(0,1)$ sans sous-suite convergente.

$$u \in E \quad u : \mathbb{N} \to \mathbb{R}$$

Je note u(p) au lieu de u_p suite dans E noté $(u_n), u_n \in E$. $u_n(p)$ p-ième terme de u_n . Je pose

$$u_n(p) = \delta_{n,p} = \begin{cases} 1 \text{ si } n = p \\ 0 \text{ sinon} \end{cases}$$

$$||u_n||_1 = \sum_{n=0}^{\infty} |u_n(p)| = |u_n(n)| = 1$$

Donc $u_n \in B_f(0,1) \forall n$. Si $v \in l^1(\mathbb{N}, \mathbb{R})$

$$|v(p)| \le \sum_{p=0}^{\infty} |v(p)| = ||v||_1$$

si $||v_n - v||_1 \xrightarrow[n \to \infty]{} 0$ alors $\forall p, v_n(p) \to v(p)$. Supposons que $(v_n) = (u_{\phi(n)})$ est une sous-suite de (u_n) qui converge vers v pour $\|.\|$. Je fixe $p \in \mathbb{N}$, $v_n(p) = u_{\phi(n)}(p) \xrightarrow[n \to \infty]{} v(p)$, mais $v_n(p) \xrightarrow[n \to \infty]{} 0$, donc $v(p) = 0 \forall p. \ v$: suite nulle, aussi

$$||v_n||_1 = 1 \forall n \text{ et } ||v_n||_1 \xrightarrow[n \to \infty]{} ||v||_1$$

contradiction

5.3 Normes équivalentes

Definition 5.13. Deux normes N_1 et N_2 sur E sont équivalentes $(N_1 \sim N_2)$ si $\exists c_1, c_2 > 0$ telles que

- $N_1(u) \le c_1 N_2(u) \quad \forall u \in E$ $N_2(u) \le c_2 N_1(u) \quad \forall u \in E$

 $\exists c > 0$ telle que

$$cN_1(u) \le N_2(u) \le cN_1(u)$$

Definition 5.15. Les normes N_1 et N_2 sont topologiquement équivalentes si elles définissent les mêmes ensembles ouverts.

Theorem 5.16. Soientt N_1, N_2 deux normes, alors:

 N_1, N_2 topologiquement équivalentes $\Leftrightarrow N_1, N_2$ équivalentes

Example 5.17. 1. $E = \mathcal{C}([0,1],\mathbb{R})$

- 2. $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$

3. $||f||_1 = \int_0^1 |f(x)| dx$ On remarque que $||f||_1 \le ||f||_\infty$. Est-ce que $\exists c > 0$ telle que

$$||f||_{\infty} \le c||f_1|| \forall f \in E$$

? Pour le voir, construire une suite (f_n) dans E telle que $||f_n||_1 \to 0$ mais $||f_n||_{\infty} \not\to 0$

Theorem 5.18. Soit E un espace de dimension finie. Alors toutes normes sur E sont équivalentes.

Proof. Puisque E est de dimension finie, il existe une base de E et donc un isomorphisme linéaire entre E et \mathbb{R}^n (ou \mathbb{C}^n). En conséquence, on peut se ramener à l'étude de normes sur \mathbb{R}^n .

Considérons la norme $\|\cdot\|_1$ sur E et définissons la sphère unité associée :

$$S = \{x \in E : ||x||_1 = 1\}.$$

Dans un espace de dimension finie, la sphère unité S est compacte (cela repose sur le fait que dans \mathbb{R}^n , les ensembles fermés et bornés sont compacts).

La fonction

$$f: S \to \mathbb{R}, \quad f(x) = ||x||_2$$

est continue car $\|\cdot\|_2$ est une norme (et donc une fonction continue). Par le théorème de Weierstrass, fatteint ses bornes sur S. Il existe donc :

- Un minimum $m = \min_{x \in S} f(x) > 0$ (la stricteté de m > 0 s'explique par le fait que $x \neq 0$ pour $x \in S$).
- Un maximum $M = \max_{x \in S} f(x)$.

Soit $x \in E$ quelconque, $x \neq 0$. On écrit $x = ||x||_1 y$ avec $y = \frac{x}{||x||_1}$ qui appartient à S. Alors,

$$||x||_2 = ||x||_1 ||y||_2.$$

Or, puisque $y \in S$, on a

$$m \leq ||y||_2 \leq M$$
.

Ainsi,

$$m \|x\|_1 \le \|x\|_2 \le M \|x\|_1.$$

En posant c = m et C = M, nous obtenons exactement l'équivalence des normes.

Pour x = 0, l'inégalité est triviale car $||0||_1 = ||0||_2 = 0$.

5.4Compléments sur les espaces vectoriels normés

Suites de fonctions 5.4.1

X ensemble $(X \subset \mathbb{R}), f_n : X \to \mathbb{R}(\mathbb{C})$ et $(f_n)_{n \in \mathbb{N}}$. Utile pour la suite du chapitre: $B(X, \mathbb{R})$ désigne un ensemble des fonctions $f: X \to \mathbb{R}$ bornées

5.4.2Convergence simple:

Definition 5.19. $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f si $\forall x_0\in X,\ f_n(x_0)\xrightarrow[n\to\infty]{} f(x_0)$ (ne provient pas d'une norme).

5.4.3Convergence uniforme:

Definition 5.20. $f \in B(X, \mathbb{R})$ si $\sup_{x \in X} |f(x)| = ||f||_{\infty} < \infty$ (f bornée sur X). Convergence uniforme: $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ tq } \forall n \geq N \forall x \in X |f_n(x) - f(x)| < \varepsilon \text{ équivalent à}$

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ tq } \forall n \geq N, \|f_n - f\|_{\infty} < \varepsilon$$

 $f_n \to f \text{ dans } (B(X, \mathbb{R}), \|\cdot\|_{\infty})$

Definition 5.21. Limite uniforme de fonctions continues: $X = [a, b], C([a, b], \mathbb{R}) \subset B([a, b], \mathbb{R})$ (sous espaces vectoriels). $\mathcal{C}([a,b],\mathbb{R})$ est fermé dans $(B([a,b],\mathbb{R}),\|\cdot\|_{\infty})$

5.4.4 Séries à valeurs dans un espace vectoriel normé.

Definition 5.22. Soient $(E, \|\cdot\|_{\infty})$ e.v.n^a, $(u_n)_{n\in\mathbb{N}}$ suite dans E. La série $\sum u_n$ converge dans $(E, \|\cdot\|)$ si la suite $S_N = \sum_{n=0}^N u_n$ converge dans $(E, \|\cdot\|)$. $\lim_{N\to\infty} S_N$ notée $\sum_{n=0}^\infty u_n (\in E)$

^aespace vectoriel normé

Remark 5.23. Si $\sum u_n$ et $\sum v_n$ convergent, alors

- $\sum u_n + v_n$ converge et $\sum \lambda u_n$ converge $\sum_{n=0}^{\infty} u_n + v_n = \sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} v_n$ $\sum_{n=0}^{\infty} \lambda u_n = \lambda \sum_{n=0}^{\infty} u_n$

5.4.5Convergence normale

Definition 5.24. $\sum u_n$ converge normalement dans $(E, \|\cdot\|)$ si $\sum \|u_n\|$ converge dans \mathbb{R} .

Example 5.25. $E = \mathbb{R}, ||x|| = |x|$. cv. normale = cv. absolue $(\sum u_n \text{ converge})$

Example 5.26. $\sum u_n$ peut converger sans converger normalement, comme: $u_n = \frac{(-1)^n}{n}$

Theorem 5.27. Si $(E, \|\cdot\|)$ est complet, toute série normalement convergente est convergente et

$$\|\sum_{n=0}^{\infty} u_n\| \le \sum_{n=0}^{\infty} \|u_n\|$$

Proof. $S_n = \sum_{k=0}^n u_k \text{ et } T_n = \sum_{k=0}^n \|u_k\|$

$$n > p$$
 $||S_n - S_p|| = ||\sum_{k=p+1}^n u_k|| \le \sum_{k=p+1}^n ||u_k|| = T_n - T_p = |T_n - T_p|$

 (T_n) converge dans \mathbb{R} , donc (T_n) de Cauchy:

$$\forall \varepsilon > 0, \exists N \text{ tq } \forall n > p \geq N |T_n - T_p| \leq \varepsilon$$

donc (S_n) de Cauchy dans $(E, \|\cdot\|)$. E complet: (S_n) converge vers $S \in E$.

5.5 Applications linéaires continues

Pour toute section B_E désigne une boule <u>fermé!</u>

Soient E, F 2 espaces vectoriels normés avec $\|\cdot\|_E$ et $\|\cdot\|_F$ les normes associés,

- $A \in \mathcal{L}(E, F)$
- $\lambda A \in \mathcal{L}(E, F)$ et $\lambda Ax = \lambda(Ax)$
- $A + B \in \mathcal{L}(E, F)$ et (A + B)x = Ax + Bx
- $0x = 0_F \ \forall x \in E$

$$\mathcal{L}(E) = \mathcal{L}(E, E)$$

- (AB)x = A(Bx) où $AB = A \circ B$
- $(\lambda A)B = \lambda (AB)$
- $\bullet \ A(B+C) = AB + AC$
- (A+B)C = AC + BC
- 0A = 0
- $AB \neq BA$ (en général)
- A(BC) = (AB)C

Theorem 5.28. Soit $A \in \mathcal{L}(E, F)$. Les propriétés suivantes sont équivalentes:

- 1. $A: E \to F$ est continue
- 2. A est continue en 0_E
- 3. $\exists C \geq 0$ telle que

$$||Ax||_F \le C||x||_E \quad \forall x \in E$$

cela s'appelle que A est bornée

4. A est bornée sur $B_E(0,R) \ \forall R > 0$

On dit que A est bornée (si A est continue et linéaire)

Proof. • 1) \Rightarrow 2) : évident

•
$$2) \Rightarrow 3)$$
:

- Hyp:
$$\forall \varepsilon > 0, \exists \delta > 0$$
 tq $||x - 0_E||_E \le \delta \Rightarrow ||Ax - A0_E||_F \le \varepsilon ||x||_E \le \delta \Rightarrow ||Ax||_F \le \varepsilon$

$$-\varepsilon = 1 \exists \delta > 0 \text{ tq } ||x||_E \leq \delta \Rightarrow ||Ax||_F \leq 1$$

- Soit
$$x \in E$$
 et $x \neq 0_E$

$$-y = \frac{\delta}{\|x\|_E} x$$
 donc $\|y\|_E = \delta \Rightarrow \|Ay\|_F \le 1$

$$-Ay = \frac{\delta}{\|x\|_E}Ax$$
 et A linéaire

$$- \|Ay\|_F = \frac{\delta}{\|x\|_F} \|Ax\|_F \le 1 \Rightarrow \|Ax\|_F \le \frac{1}{\delta} \|x\|_E$$

•
$$3) \Rightarrow 1)$$

- Je fixe
$$x_0 \in E$$
. à voir: A continue en x_0 ?

$$- \|Ax - Ax_0\|_F = \|A(x - x_0)\|_F \le C\|x - x_0\|_E$$

– Donc si
$$||x - x_0||_E \le \frac{\varepsilon}{c} = \delta(\varepsilon), ||Ax - Ax_0||_F \le \varepsilon$$

Notation.

$$B(E,F) = \{ A \in \mathcal{L}(E,F) : A \text{ continue } \}$$

$$B(E,E) = B(E)$$

Lemma 5.29. Si E est de dimension finie, alors

$$\mathcal{L}(E,F) = B(E,F)$$

C'est faux si $\dim E = \infty$

Proof. (e_1, \ldots, e_n) base de E. Sur E toutes les normes sont équivalentes.

- $||x||_E$ norme donnée.
- $\bullet ||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

où
$$x = \sum_{i=1}^{n} x_i e_i$$

$$||Ax||_F = ||\sum_{i=1}^n x_i A e_i|| = \sum_{i=1}^n |x_i| ||Ae_i||_F$$

$$||Ax||_F \le ||x||_{\infty} \times \sum_{i=1}^n ||Ae_i||_F = C||x||_{\infty}$$

 $(\|x\|_{\infty}\| \leq C'\|x\|_E).$ Donc: $\|Ax\|_F \leq CC'\|x\|_E.$ Alors: $A \in B(E,F)$

5.5.1 Norme sur B(E,F)

Theorem 5.30. Soit $A \in B(E, F)$, on pose $||A|| = \sup_{x \in E, ||x||_E \le 1} ||Ax||_F = \sup_{x \in B_E(0, 1)} ||Ax||_F$

- 1. $\|\cdot\|$ est une norme sur B(E,F) appelée norme uniforme.
- 2. On a: $||Ax||_F \le ||A|| ||x||_E \quad \forall x \in E$
- 3. $||A|| = \text{la plus petite constante } C \text{ telle que } ||Ax||_F \le C||x||_E \quad \forall x \in E$

Remark 5.31. 1. On peut écrire $||A||_{B(E,F)}$ au lieu de ||A||

- 2. Parfois on trouve |||A||| pour ||A||
- 3. Soit $I^+ =$ ensemble des $C \ge 0$ telle que $||Ax||_F \le C||x||_E \quad \forall x \in E$. $I^+ \ne \emptyset$ (car $A \in B(E,F)$) et $I^+ \subset [0,+\infty[$. (2) et (3) disent que ||A|| est le plus petit élément de I^+

$$\inf I^+ = \min I^+ = ||A||$$

Proof. 1. $A \in B(E, F) \Leftrightarrow \sup_{x \in B_E(0,1)} ||Ax||_F < \infty \Leftrightarrow ||A||$ bien définie.

$$||(A+B)x||_F = ||Ax + Bx||_F \le ||Ax||_F + ||Bx||_F$$

$$\Rightarrow \sup_{x \in B_E(0,1)} ||(A+B)x||_F \le \sup_{x \in B_E(0,1)} ||Ax||_F + \sup_{x \in B_E(0,1)} ||Bx||_F$$

$$||A+B|| \le ||A|| + ||B||$$
 et $A, B \in B(E, F) \Rightarrow A+B$ aussi

$$\|\lambda A\| = |\lambda| \|A\|$$
 et $A \in B(E, F) \Rightarrow \lambda A$ aussi

Si ||A|| = 0, alors $||Ax||_F = 0 \forall x \in B_E(0, 1) \Rightarrow Ax = 0_F \forall x \in B_E(0, 1)$

$$Ax = \|x\|_E A \frac{x}{\|x\|_E}$$

$$Ax = 0_F \forall x \in E \Rightarrow A = 0_{L(E,F)}$$

$$C \in I^+ \text{ si } ||Ax||_F \le C||x||_E \quad \forall x \in E$$

$$||A|| \in I^+ \Rightarrow ||Ax||_F \le ||A|| ||x||_E \forall x$$

- Clair si $x = 0_E$.
- Si $x \neq 0_E$, $y = \frac{x}{\|x\|_E} \in B_E(0,1)$ donc

$$||Ay||_F = \frac{1}{||x||_E} ||Ax||_F \le ||A|| \Rightarrow ||Ax||_F \le ||A|| ||x||_E$$

Soit $C \in I^+$ donc

$$||Ax||_F < C||x||_E$$

donc $||Ax||_F \leq C \quad \forall x \in B_E(0,1)$, donc $||A|| \leq C$, alors

$$||A|| = \min I^+ =$$
 "meilleure constante C"

Example 5.32. $E = \mathcal{C}([a, b], \mathbb{R}), \|f\|_{\infty} = \sup_{x \in [a, b]} |f(x)|, F = \mathbb{R}, u \in \mathcal{C}([a, b], \mathbb{R})$

$$A: E \longrightarrow F$$

$$f \longmapsto A(f) = \int_{a}^{b} f(x)u(x) dx.$$

A est bornée: à voir: $\exists C \geq 0$ telle que

$$\left| \int_{a}^{b} f(x)u(x) \, dx \right| \le C \sup_{x \in [a,b]} |f(x)|$$

?

$$\left| \int_a^b f(x) u(x) \ dx \right| \leq \int_a^b |f(x)| |u(x)| \ dx \leq \int_a^b \|f\|_\infty |u(x)| \ dx = \|f\|_\infty \int_a^b |u(x)| \ dx$$

$$C = \int_{a}^{b} |u(x)| dx$$
 convient

(En fait $||A|| = \int_a^b |u(x)| dx$). $E = \mathcal{C}^1([0,1],\mathbb{R})$ muni de $||f||_{\infty}$, $F = \mathbb{R}$, Af = f'(0) linéaire mais pas continue. On construit une suite (f_n) dans E telle que $||f_n||_E \xrightarrow[n \to \infty]{} 0$ mais $||Af_n||_F \neq 0$

$$f_n(x) = \frac{1}{n}\sin(nx)$$

Proposition 5.33. Soit $A \in B(E, F)$ et $||A|| = \sup_{\|x\|_E \le 1} ||A||_F$ une norme uniforme. ||A|| = plus petit c tel que

$$||Ax||_F \le c||x||_E \quad \forall x \in E$$

Proof. $E = \mathcal{C}([a,b],\mathbb{R})$ et $||f||_1 = \int_a^b |f(x)| dx$ norme sur $\mathcal{C}([a,b],\mathbb{R})$. Je fixe $m \in \mathcal{C}([a,b],\mathbb{R})$ et $A: f \to mf$. Af(x) = m(x)f(x).

- $A \in L(E)$ évident
- $A \in B(E)$?

Trouver $c \ge 0$ telle que

$$||Af||_1 \le c||f||_1 \quad \forall f \in E$$

$$||Af||_1 = \int_a^b |m(x)f(x)| dx$$

$$|m(x)f(x)| \le |m(x)||f(x)| \le ||m||_{\infty}|f(x)|$$

$$||m||_{\infty} = \sup_{x \in [a,b]} |m(x)|$$

$$\int_a^b |m(x)f(x)| \ dx \le \|m\|_\infty \int_a^b |f(x)| \ dx = \|m\|_\infty \|f\|_1$$

$$c = ||m||_{\sim}$$

On a: $A \in B(E)$ et $||A|| \leq ||m||_{\infty}$. Montrons que $||A|| = ||m||_{\infty}$

$$\|A\| = \sup_{\|f\|_1 \le 1} \|Af\|_1 \stackrel{?}{=} \|m\|_{\infty} = \sup I \text{ avec } I = \{\|Af\|_1 : \|f\|_1 \le 1\}$$

Notons $\alpha = \sup I$

- 1. α majorant de I
- 2. $\exists (a_n) \, a_n \in I \text{ avec } a_n \xrightarrow[n \to \infty]{} \alpha$

Dans notre cas:

- But: trouver une suite $f_n \in E \|f_n\|_1 \le 1$ et $\|Af_n\|_1 \to \|m\|_{\infty}$
- $a_n = ||Af_n||_1 ||m||_{\infty} = \sup \text{ de la fonction } |m| \sup [a, b].$
 - |m| continue: $\exists x_0 \in [a, b]$ tel que $||m||_{\infty} = |m|(x_0)$

$$|m|(x) = |m(x)|$$

Figure 5.2: f_n

$$|m(x)f_n(x)| = |Af(x)|$$
 proche de $|m(x_0)||f_n(x)|$

$$||f_n||_1 = 1 \text{ si } c_n \le 2n$$

$$f_n(x) = \begin{cases} 0 \text{ si } a \le x \le x_0 - \frac{1}{2n} \\ 2n(1 - n|x - x_0|) \text{ si } |x - x_0| \le \frac{1}{2n} \\ 0 \text{ si } x_0 + \frac{1}{2n} \le x \le b \end{cases}$$

Figure 5.3: f_n

$$|m(x)f_n(x) - m(x_0)f_n(x)| \le |m(x) - m(x_0)||f_n(x)| \le \varepsilon_n|f_n(x)|$$

Là où $f_n(x) \neq 0 |x - x_0| \leq \frac{1}{n}$ donc

$$|m(x) - m(x_0)| \le \varepsilon_n \quad \varepsilon_n \xrightarrow[n \to \infty]{} 0$$

alors m continue en x_0 .

$$\|Af_n\|_1 = \int_a^b |m(x)f_n(x)| \ dx \leq \int_a^b |m(x) - m(x_0)| |f_n(x)| \ dx + \int_a^b |m(x_0)| |f_n(x)| \ dx$$

- 1^{er} terme: $\leq \varepsilon_n ||f_n||_1 = \varepsilon_n$
- 2^{eme} terme: $:= ||m||_{\infty} ||f_n||_1 = ||m||_{\infty}$

Alors:

$$||f_n||_1 = 1$$

 $||Af_n||_1 \to ||m||_{\infty}$
donc $||A|| = ||m||_{\infty}$

Proposition 5.34. Le cas de B(E):

Si $A, B \in B(E), A \circ B \text{ (noté } AB) \in B(E) \text{ et}$

$$||AB|| \le ||A|| ||B||$$

(très utile)

Proof.

$$||A \underbrace{Bx}_{X}||_{E} \le ||A|| ||Bx||_{E} \le \underbrace{||A|| ||B||}_{c} \cdot ||x||_{E}$$

donc $||AB|| \le ||A|| ||B||$

Theorem 5.35. Si N_1, N_2 sont deux normes sur E. N_1 et N_2 sont topologiquement équivalentes $\Leftrightarrow N_1$ et N_2 sont équivalentes.

Proof. E_1 c'est $(E, N_1), E_2 = (E, N_2).$

 N_1 et N_2 topologiquement équivalentes veut exactement dire:

1. $Id: E_1 \to E_2$ sont continue

2. et $Id: E_2 \to E_1$

Donc:

1. Ω ouvert pour $N_2 \Rightarrow \Omega$ ouvert pour N_1

2. Ω ouvert pour $N_1 \Rightarrow \Omega$ ouvert pour N_2

1. $\Leftrightarrow N_2(Idu)(=N_2(u)) \leq c_1N_1(u)$

2. $\Leftrightarrow N_1(Id u)(=N_1(u)) \le c_2 N_2(u)$

car Id continue et linéaire, donc bornée $\exists c$ tq $\underbrace{Id\,u}_{\in E_2} \leq c\underbrace{u}_{E_1}$ donc $N_2(Id\,u) \leq cN_1(u)$

(1) et (2) $\Leftrightarrow N_1$ et N_2 équivalentes.

5.6 La norme des matrices

 $A \in \mathcal{M}_n(\mathbb{C})$ identifié à $A \in L(\mathbb{C}^n)$

$$\left((Ax)_i = \sum_{j=1}^n a_{i,j} x_j \right) \quad x = (x_1, \dots, x_n) \in \mathbb{C}^n$$

• $(x|y) = \sum_{i=1}^{n} \overline{x_i} y_i$

•
$$||x|| = (x|x)^{\frac{1}{2}} = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$

Matrice adjointe A^* $(A^*)_{i,j} = \overline{(A)_{j,i}}$

$$(x|Ay) = (A^*x|y) \quad \forall x, y$$

5.6.1 Bonne norme sur $L(\mathbb{C}^n)$ (ou sur $\mathcal{M}_n(\mathbb{C})$)

||A|| norme uniforme sur $L(\mathbb{C}^n)$ (= $B(\mathbb{C}^n)$) obtenue à partir de $||\cdot||_2$

Lemma 5.36.

$$||A|| = ||A^*|| = ||A^*A||^{\frac{1}{2}}$$

Proof. $||x||_2 = \sup_{||y||_2 \le 1} |(y|x)|$. Donc:

$$||A|| = \sup_{\|x\|_2 \le 1} ||Ax||_2 = \sup_{\|x\|_2 \le 1, \|y\|_2 \le 1} |(y|Ax)|$$

$$(y|Ax) = (A^*y|x) = \overline{(x|A^*y)}$$

donc $|(y|Ax)| = |(x|A^*y)|$

$$||A|| = \sup_{\|x\| \le 1, \|y\| \le 1} |(x|A^*y)| = ||A^*||$$

$$\|A^*A\| \leq \|A^*\| \|A\| = \|A\|^2 = \sup_{\|x\| \leq 1} \|Ax\|^2$$

$$||Ax||^2 = (Ax|Ax) = (x|A^*Ax) \le ||x|| ||A^*Ax||$$
 (Cauchy-Schwarz)
 $\le ||x|| ||A^*A|| ||x|| = ||A^*A|| ||x||^2$

$$||Ax||^2 \le ||A^*A|| ||x||^2$$

$$||Ax||_2 \le ||A^*A||^{\frac{1}{2}} ||x||_2 \Rightarrow ||A||^2 \le ||A^*A||^{\frac{1}{2}}$$

 $||A|| = ||A^*A||^{\frac{1}{2}}$

5.6.2 Comment "calculer" ||A||?

Theorem 5.37. $||A|| = \max_{1 \le i \le n} \mu_i$ avec $\mu_i = \lambda_i^{\frac{1}{2}}$ où $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^+$ valeurs propres de A^*A .

Proof.

$$||A|| = ||A^*A||^{\frac{1}{2}}$$

À montrer: $||A^*A|| = \max_{1 \le i \le n} \lambda_i \ (\lambda_i \ge 0)$

$$(AB)^* = B^*A^*$$

$$(A^*A)^* = A^*A^{**} = A^*A$$

Soit $B = A^*A$, $B = B^*$ et $(x|Bx) = (x|A^*Ax) = (Ax|Ax) = ||Ax||^2 \ge 0$. Donc:

$$\forall x, (x|Bx) \geq 0$$

Il existe une b.o.n (u_1, \ldots, u_n) de \mathbb{C}^n et $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tels que

$$Bu_i = \lambda_i u_i \quad 1 \le i \le n$$

$$\lambda_i = (u_i | \lambda_i u_i) = (u_i | Bu_i) \ge 0$$

Si $u = \sum_{i=1}^{n} x_i u_i \|u\|^2 = \sum_{i=1}^{n} |x_i|^2$

$$Bu = \sum_{i=1}^{n} x_i Bu_i = \sum_{i=1}^{n} \lambda_i x_i u_i$$

$$||Bu||^{2} = \sum_{i=1}^{n} \lambda_{i}^{2} |x_{i}|^{2} \leq \max \lambda_{i}^{2} \cdot \sum_{i=1}^{n} |x_{i}|^{2} = \max \lambda_{i}^{2} ||u||^{2}$$
$$||B|| \leq \max_{1 \leq i \leq n} \lambda_{i}$$

Si $\lambda_1 = \max_{1 \le i \le n} \lambda_i$

$$||Be_1|| = ||\lambda_1 e_1|| = \lambda_1 ||e_1|| \le ||B|| ||e_1||$$

donc $||B|| \ge \lambda_1$

5.6.3 Comment majorer ||A||

Proposition 5.38. On a: $||A|| \le ||A||_{HS}$ où

$$||A||_{HS}^2 = \sum_{1 \le i,j \le n} |a_{i,j}|^2$$

Proof.

$$\mathcal{M}_n(\mathbb{C}) \sim \mathbb{C}^{n \times n}$$

 $\|\cdot\|_{HS}$ norme canonique sur $\mathbb{C}^{n\times n}$!

$$(Ax)_i = \sum_{i=1}^n a_{i,j} x_j$$

$$(y|Ax) = \sum_{i=1}^{n} \overline{y_i} \sum_{j=1}^{n} a_{i,j} x_j = \sum_{1 \le i,j \le n} a_{i,j} \overline{y_i} x_j$$

Soit $b_{i,j} = y_i \overline{x_j}$

$$(y|Ax) = \sum_{i,j} \overline{b_{i,j}} a_{i,j}$$

$$|(y|Ax)| \le \left(\sum_{i,j} |a_{i,j}|^2\right)^{\frac{1}{2}} \times \left(\sum_{i,j} |b_{i,j}|^2\right)^{\frac{1}{2}}$$

$$\left(\sum_{i,j} |b_{i,j}|^2\right)^{\frac{1}{2}} = \left(\sum_{1 \le i, j \le n} |y_i|^2 |x_i|^2\right)^{\frac{1}{2}} = \left(\sum_{1 \le i \le n} |y_i|^2\right)^{\frac{1}{2}} \times \left(\sum_{1 \le j \le n} |x_j|^2\right)^{\frac{1}{2}} = ||y|| ||x||$$

$$|(y|Ax)| \le ||A||_{HS} ||x|| ||y|| \Rightarrow ||A|| \le ||A||_{HS}$$

BIBLIOGRAPHY

- $[1]\$ Christian Gérard. Analyse et Géométrie (OLMA251). fre.
- [2] Christian Gérard. Cours Magistral d'Analyse et Géométrie (OLMA251) à l'Université Paris-Saclay. 2024-2025.