	duration_sec	start_time	end_time	start_station_id	start_station_name	start_station_latitude	start_station_longitude	end_station_id	end_statio
0	52185		2019-03-01 08:01:55.9750	21.0	Montgomery St BART Station (Market St at 2nd St)	37.789625	-122.400811	13.0	Commercia Montgomer
1	42521	2019-02-28 18:53:21.7890	2019-03-01 06:42:03.0560	23.0	The Embarcadero at Steuart St	37.791464	-122.391034	81.0	Berry St at
2	61854	2019-02-28 12:13:13.2180	2019-03-01 05:24:08.1460	86.0	Market St at Dolores St	37.769305	-122.426826	3.0	Powell St B Station (Ma at 4th St)
3	36490	2019-02-28 17:54:26.0100	2019-03-01 04:02:36.8420	375.0	Grove St at Masonic Ave	37.774836	-122.446546	70.0	Central Ave St
4	1585	2019-02-28 23:54:18.5490	2019-03-01 00:20:44.0740	7.0	Frank H Ogawa Plaza	37.804562	-122.271738	222.0	10th Ave at St

```
## remove unwanted columns
df.drop(['start_station_latitude','start_station_longitude', 'end_station_latitude', 'end_station_longitude','bike_share_for_all_trip'],
axis=1, inplace=True)
df.head()
```

Steps

convert member birth year into int

make column for age

convert duration sec to duration min

convert duration min from float to int

drop null value

seperate start time and end time into date column and time column

Univariate Exploration¶

We are going to making histogram to get the relation between trip duration and frequency to remove outliers

From this graph we find that most trips are from 1 minute to 50 So we are going to make a new plot without outliers

most frequent trips are from 2 minutes to 20 minutes

**Identifying the major category that use bikeshare

Subscriber clients are have the largest share of using bikeshare

Identifing Relation between Clients age and Trips frequency

.

The most frequent segment is between 25 and 45

distribution of trips among the whole year

distribution of trips among the weekdays

Bivariate Exploration¶

**Relation between gender and Trip duration considering other factors

Male have more frequent trips with similar proportion to females and others

Males Use bikes more frequent than females

**The relation between the User type(Subscriber/Customer) and the time spended on the bike

Multivariate Exploration¶

Others and females have have greater duration than males which might be due to driving slower than Males

Alsofrom this graph we conclude that the trip duration increase in holidays which might be beacause customers go in picnics or driving slowly as there is no need for rush for jobs

Females have the least mean ages Than others and Males in Using bikes