Løsningsforslag Oblig 1 TRE1400 høsten 2024

1.
$$V_0 = 4.0 \frac{m}{5}$$
 $t = 10s$ $a = konst.$ $s = 2$
 $V = 13.2 \frac{m}{5}$
 $S = \frac{V_0 + V}{2} \cdot t = \frac{(4.0 + 13.2) \frac{m}{5}}{2} \cdot 10s = \frac{86m}{2}$

2.
$$t = 15.0s$$

 $V_0 = 60 \frac{km}{h} = 60 \cdot \frac{1000m}{3600s} = 16.66 \frac{m}{s}$
 $V = 30 \frac{km}{h} = 30 \cdot \frac{1000m}{3600s} = 8.333 \frac{m}{s}$
 $\overline{a} = \frac{2}{3600} = \frac{2}{$

3.
$$V_o = 0.12 \frac{m}{s}$$
 $V^2 - V_o^2 = 2as$
 $S = 0.80 \text{ m}$ $V^2 = 2as + V_o^2$
 $a = 2.65 \frac{m}{s^2}$ $V = \sqrt{2as + V_o^2}$
 $V = \sqrt{2} \cdot 2.65 \frac{m}{s^2} \cdot 0.80 \text{ m} + (0.12 \text{ m})^2 = 2.1 \frac{m}{s}$

4.
$$V_0 = 0$$
 + $V_0 = 0$ + V