Modeliranje računalniških omrežij Študijsko leto 2013/2014

Modeliranje IPv6 omrežij

1. delno poročilo velike seminarske naloge

Nihad Kerić, 63099999 Miha Novak, 63100268 Gregor Bahor, 63090049 Darko Janković, 63100176

Ljubljana, 2. december 2013

Kazalo

1	Nal	oga		2
2	Opis 3 zgledov za modeliranje IPv6 omrežij v INET ogrodju.			
	2.1	Pv6Ne	Clients	2
	2.2	IPv6B	Bulk	2
	2.3	8 Nclients		
		2.3.1	NClientsEth	3
		2.3.2	NClientPPP	4
3	Pod	lrobna	analiza enega od zgledov	4

1 Naloga

Modelirajte bolj kompleksne primere IPv6 omrežja s pomočjo INET ogrodja v orodju OMNeT++.

2 Opis 3 zgledov za modeliranje IPv6 omrežij v INET ogrodju.

2.1 Pv6NClients

V datoteki NclientsEth.ned oz. NclientsPPP.ned imamo skonfigurirano omrežje s tremi IPv6 usmerjevalniki ter n IPv6 odjemalcev(komuniciranje preko aplikacije TelnetApp). Ipv6 odjemalci so strežnik in n klienti, kar je prikazano na sliki spodaj. Stevilo n-klientov v našem testnem primeru se doloci v konfiguraciji: [General]*.n=10, lahko tudi spremenimo čas izvajanja simulacije v nasem primeru 'sim-time-limit=168h' v datoteki omnetpp.ini. Vsi klienti so vezani na en usmerjevalnik r1. Med klienti in strežnikom so med seboj zaporedno vezani trije usmerjevalniki, strežnik je vezan na usmerjevalnik r3. Ob zagonu simulacije se vzpostavi stanje omrežja, nato pa se prične seja med strežnikom in klienti. Seje se izmenjujemo med razlicnimi klienti. Pri testiranju različno velikem številu klientov n=2,10,100,200 in pri simulacijskem času 168h ni prišlo do napak. Simulacija NClientsPPP je identična po zgradbi omrežja NclientsEth. Razlika med omrežjema se pojavi v načinu povezave fiberline ali ethernetline in stem se spremeni cas potovanja paketov in propustnost kanalov. Simulacija NclientsEth ima definirano hitrost prenosa podatkov datarate=100Mbps in je počasnejša od NClientsPPP, katera ima hitrost prenosa podatkov datarate=1Gbps.

2.2 IPv6Bulk

Omrežje sestavljajo strežnik, usmerjevalnik in trije odjemalci. Strežnik in vsi trije odjemalci so povezani z usmerjevalnikom, obstaja pa tudi direktna povezava med strežnikom in enimi izmed odjemalcem. Vse povezave so tipa in/out, hitrost prenosa podatkov po kanalu pa je 10Mbps z zakasnitvijo 0.1us. Ves promet v omrežju usmerja usmerjevalnik, ki usmerja tudi promet med strežnikom in odjemalcem.

Pred zagonom simulacije lahko izbiramo med različnimi implementacijami TCP (Transmission Control Protocol):

- TCP, je protokol za nadzor prenosa podatkov, ki zagotavlja, da se informacije med prenosom ne izgubijo, ne spremenijo in da se informacije vnovič dostavijo, če je prišlo med prenosom do napake.
- TCP_lwIP, TCP lightweight IP, je široko uporabljen odprtokodni TCP/IP protokolni sklad oblikovan za uporabo v vgrajenih sistemih.
- TCP_NSC, implementacija TCP, ki je bila razvita v okviru NSC projekta (Network Simulation Cradle project)

Opazujemo lahko izvajanje NDP (Neighbor Discovery Protocol) in TCP seje (trosmerno rokovanje, prenos podatkov).

Paketi, ki se prenašajo pri NDP (Neighbor Discovery Protocol):

- RSpacket (Router Solicitation)
- RApacket (Router Advertisement)
- NSpacket (Neighbour Solicitation)
- NApacket (Neighbour Advertisement)

Paketi, ki se prenašajo pri TCP seji

- SYN
- \bullet SYN + ACK

2.3 Nclients

Nclient ima dve mreži: 1) NClientsEth.ned 2) NClientsPPP.ned

2.3.1 NClientsEth

Pri tistem omrežiju imamo komunikaciju med odjemalcem in strežnikom,ali pač z n odjemalcov pa enim strežnikom preko 3 usmerjevalnika. Kateri so povezani preko ipv6 protokola, naslovi so razdelni na 8 naslovo. V NClientsEth.ned fielu imam dve vrsti kanalov (channel): - fiberline -ethernetline Kanali imata iste antribute z različnimi nastavitvi. fiberline (delay= 1us in datarate= 512 Mbps) ethernetline (delay= 0.1us in datarate= 10 Mbps) Usmerjevalniki komunicirajo preko tistih kanalov ,prvo uspostave povezavo

pošiljanjem različnih paketov kot so: NSpacket , RApacket, RSpacket , SYN, SYN+ACK. Po vzpostavljenoj povezavi se začneju pošiljati paketov. Strežnik pošlje paket proti odjemalcu kateri pol odgovori z pošiljanjem paketa ACK. Isto se zgodi pri pošiljanu paketov z strani odjemalca.

2.3.2 NClientPPP

Tudi v tem omrežiju imamo komunikaciju med n odjemalcev in strežnikom preko tri usmerjevalnika, ipv6 naslov je razdelen na 8 naslovo kateri so krajši od naslovo prve konfiguracije v temu se razlikujeta. V NClientsEth.ned fielu imam kanal (channel): -fiberline z nastavitvemi: (delay= 1us in datarate= 512 Mbps)

3 Podrobna analiza enega od zgledov

Za analizo smo izbrali zgled demonetworketh.

Omrežje je sestavljeno iz naslednjih gradnikov:

- configurator tipa FlatNetworkConfigurator6
- r1 tipa Router6
- r2 tipa Router6
- cli[n] tipa StandardHost6
- srv[n] tipa StandardHost6

 $\bullet \ \mbox{linemonitor}[n]$ tipa TCPDump

${\bf Flat Network Configurator 6}$

Konfigurira Ipv6 naslove in posredovalne tabele.

Router6

Predstavlja Ipv6 usmerjevalnik.

${\bf Standard Host 6}$

Ipv6 gostitelj s TCP, SCTP in UDP plastmi in aplikacijami.

TCPDump

Pregledovanje vsebine paketov.