Ch-01 函数

数学分析主要由微积分和级数理论组成,研究对象为实函数,即以实数为自变量并且在实数中取值的函数($\mathbb{R} \to \mathbb{R}$)。首先介绍实数系的连续性,然后介绍函数的概念和有关的基本知识。

1.1 实数

1.1.1 数集

集合是将具有某种特性的对象的全体放在一起得到的整体,这些对象称为元素。

集合通常用大写字母表示,集合中的元素通常用小写字母表示。若 a 是 A 中的元素,则记为 a ∈ A,读作 a 属于 A;如果 a 不是 A 中的元素,则记为 a ∉ A,读作 a 不属于 A.

集合有**列举法**和**描述法**两种表示法,后者更为常用。若集合 A 中的每一个元素 x 都属于集合 B,则称 B 包含 A,记作 $A \subseteq B$,也称 A 是 B 的子集。如果 $A \subseteq B$ 和 $B \subseteq A$ 同时成立,则认为 A, B 为同一个集合,记为 A = B.

若 $A \subseteq B$ 且 $A \ne B$,则称 A 是 B 的真子集,记作 $A \subseteq B$. 我们引入空集 \emptyset , \emptyset 中不包含任何元素, \emptyset 是任何集合的子集。

 $A \cup B = \{x : x \in A \text{ 或 } x \in B\}$ 称为 $A \ni B$ 的并。 $A \cap B = \{x : x \in A \perp x \in B\}$ 称为 $A \ni B$ 的交。 $A \setminus B = \{x : x \in A \perp x \notin B\}$ 称为 $A \ni B$ 的差。

1.1.2 实数系的连续性

自然数系不是一个完整的数系,只能自由地进行加、乘运算,而不能自由地进行加、乘运算的逆运算,具有**离散性和不完备性**。引入负数后得到**整数系**,可以自由地进行加、减运算。对整数系中的任意两个数进行加、减、乘、除(除数非零)后得到的数的全体记为**有理数系**。

对一个数集 K,若 K 中至少含有一个非零元素,且 K 中任意两个元素的加、减、乘、除(除数非零)运算后的结果仍属于 K,则称 K 关于四则运算封闭,称 K 是一个数域。有理数集是一个数域(且任何一个数域都包含有理数集)。任何两个有理数之间必有有理数存在(有理数有稠密性),但没有连续性。

定义 **1.1.1** 设 S 是一个有大小顺序的非空数集,A 和 B 是它的两个子集,如果它们满足以下条件:

- (1) $A \neq \emptyset$, $B \neq \emptyset$ (2) $A \cup B = S$
- $(3) \forall a \in A, \forall b \in B$,都有 a < b (4) A 中无最大数则我们将 A, B 称为 S 的一个分划,记为 (A|B).

考虑有理数 \mathbb{Q} 的分划,对 \mathbb{Q} 的任意分划 (A|B),必有以下两种情形之一发生:

- (1) B 中存在最小数,此时称 (A|B) 是一个有理分划
- (2) B 中不存在最小数,此时称 (A|B) 是一个无理分划

有理数系 $\mathbb Q$ 的所有分划构成了一个集合,我们称这个集合为**实数系**,并记为 $\mathbb R$. 有理数集与 $\mathbb R$ 中的有理分划是一一对应的,故 $\mathbb R$ 可以被认为是由有理数集加上无理分划所构成。我们称 $\mathbb R$ 中的这些无理分划为无理数,即 $\mathbb R$ 是由全体有理数与无理数所构成的集合。

定理 1.1.1 戴德金分割定理 对 \mathbb{R} 的任一分划(A|B), B 中必有最小数

戴德金分割定理说明实数系具有**连续性**。对于一个数集 A,若任意两个数 a, $b \in A$, a, b 之间的所有的数都在 A 中,则称 A 是**连通**的。实数集是一个有序的连通域, \mathbb{R} 中的数与数轴上的点之间一一对应。

1.1.3 有界集与确界

设集合 $E\subseteq\mathbb{R}$, $E\neq\varnothing$,如果存在 $M\in\mathbb{R}$,使得对 $\forall x\in E$,有 $x\leq M$,则称 E 是有上界的,并且说 M 是 E 的一个上界。如果存在 $m\in\mathbb{R}$,使得对 $\forall x\in E$,有 $x\geq m$,则称 E 是有下界的,并且说 m 是 E 的一个下界。如果 E 既有上界又有下界,则称 E 是有界的。E 是有界的 $\Leftrightarrow \exists M>0, \forall x\in E$, $|x|\leq M$.

定义 1.1.2 设 $E\subset\mathbb{R}$ 为一个非空数集,若有 $M\in\mathbb{R}$ 满足 (1) M 是 E 的一个上界, \forall $x\in E$, $x\leq M$ (2) 对 \forall $\epsilon>0$, \exists $x'\in E$, $x'>M-\epsilon$ 则称 M 是 E 的上确界,记为 $M=\sup E=\sup\{x\}$.

若有 $m \in \mathbb{R}$ 满足

(1) m 是 E 的一个下界, $\forall x \in E, x \geq m$ (2) 对 $\forall \epsilon > 0, \exists x' \in E, x' < m + \epsilon$ 则称 m 是 E 的下确界, 记为 $m = \inf E = \inf_{x \in E} \{x\}.$

如果 $\sup E \in E$,则 $\sup E$ 可记为 $\max E$,上确界即为 E 中最大数。如果 $\inf E \in E$,则 $\inf E$ 可记为 $\min E$,下确界即为 E 中最小数。

引入记号 $+\infty$ 和 $-\infty$,分别表示正无穷大和负无穷大。当数集 E 无上界时,记 做