Association Rules

Created	@December 28, 2021 3:33 AM
∷ Tags	

在一個 Transaction table 中找出 attribute 的 co-occurrence(僅探討共同出現的可能性、而不是因果關係)

Example:超商的購物紀錄

Transaction Table

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Support

$$s = rac{\sigma(Milk, Diaper, Beer)}{|Transactions|} = 0.4$$

Confidence

$$c = \frac{\sigma(Milk, Diaper, Beer)}{\sigma(Milk, Diaper)} = 0.67$$

1

這邊套討出的 confidence value 其實並不具有統計意義,單純是一個絕對的計量值而已

- Simple Association Rules Mining

(1) Brute-force

演算法說明:

• 依序列舉出所有可能的 k itemset

Scan transaction table 來驗證其是
 否為 frequent itemset

分析:

如右圖所示,時間複雜度為O(NMw),其中 M 為candidates 的數量將高達 2^d

此方法有兩個明顯可優化的地方:

- 1. 窮舉出的 candidates 之間有繼承性,並不需要每一個都列出來驗證
- 2. Table 被不斷 scan,顯然不必要

(2) Apriori algorithm

核心概念:

Frequent itemset 的 subset 必定也會是 frequent itemset(因為條件必定更 寬鬆),這代表 non-frequent itemset 的 superset 必定也不會是 frequent itemset


```
\begin{split} L_1 = & \{\text{frequent 1-itemsets}\}; \\ & \text{for } (k=2; L_{k-1} \neq 0; k++) \text{ do begin } \\ & C_k = \text{apriori-gen}(L_{k-1}); \\ & \text{for each transactions } t \in D \text{ do begin } //\text{scan DB} \\ & C_r = \text{subset}(C_k, t) //\text{get the subsets of } t \text{ that are candidates } \\ & \text{for each candidate } c \in C_1 \text{ do } \\ & \text{c.count} + +; \\ & \text{end} \\ & L_k = & \{c \in C_k \mid c.\text{count} \geq \text{minsup}\} \\ & \text{end} \\ & \text{Answer} = \cup_k L_k; \end{split}
```

缺點:

- 1. 每個 candidate 還是要對 table scan 才能驗證,顯 然不必要
- 2. Candidates 的數量依舊龐 大

(3) FP-growth

從 frequency 最小的往回找 ⇒ 是因為他們最有可能被 prune 掉,讓每次 conditional FP-tree 的 size 盡可能縮小

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/1a2d881f-b5dd -4c99-9b0f-db68594ec58e/FPG_example.pdf

Rule Generation (by apriori algorithm)

二、Multilevel Association Rules Mining

通常人類只會對更 high-level 的 association 感興趣,太過 detail 的資訊反而 很難理解

Tx	Items bought
100	Shirt
200	Jacket, Hiking Boots
300	Ski Pants, Hiking Boots
400	Shoes
500	Shoes
600	Jacket

例如:association rule 的結果告訴我買了外套的人會買布鞋,但我只想知道買了衣服的人會不會順便買鞋子

(1) Mining Methods

1. 為所有 high level class 都額外新增一筆 transaction

Freq. pattern	Support
Jacket	2
Outerwear	3
Clothes	4
Shoes	2
Hiking Boots	2
Footwear	4
OW, HB	2
Clothes, HB	2
OW, FW	2
Clothes, FW	2

	sup(30%)	conf(60%)
OW -> HB	33%	66%
OW -> FW	33%	66%
HB -> OW	33%	100%
HB -> Clothes	33%	100%
Jacket -> HB	16%	50%
Ski Pants -> HB	16%	100%

會多算出很多我們並不感興趣的 rule,這個方法顯然不理想

2. 將 class level 置入 item 編號中

TID	Items
T1	{111, 121, 211, 221}
T2	{111, 211, 222, 323}
T3	{112, 122, 221, 411}
T4	{111, 121}
T5	{111, 122, 211, 221, 413}

(2) Uniform Support v.s. Reduced Support

越 high level 的 class 必定會有較的 support ⇒ min-support 值應要隨不同的 level class 而動熊調整,其調整策略在不同的 data 上會有不同的適配性

- Level-by-level independent
 - Each node is examined, regardless of whether or not its parent node is found to be frequent.
- Level-cross filtering by single item
 - An item at the i-th level is examined iff its parent node at the (i-1)-th level is frequent
- Level-cross filtering by k-itemset
 - Check parent k-itemset
- Controlled level-cross filtering by single item

Maximal Itemset v.s. Closed Itemset

(1) Closed-patterns

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

(2) Max-patterns

保留「最長」的 rules 就好,其訊號強度會 dominate 其他 rules 即不存在任何 frequent itemset 為其 superset

Min_sup=2 Tid Items
10 A,B,C,D,E
20 B,C,D,E,
30 A,C,D,F

- BCDE, ACD are max-patterns
- □ BCD is not a max-pattern

Quantitative Association Rules

資料的特性並非 binary 時,有可能是 multi-class 或 continuous

將連續的資料離散化,且讓資料分佈數量盡可能平衡即可

People

Record ID	Age	Married	NumCars
100	23	No	1
200	25	Yes	1
300	29	No	0
400	34	Yes	2
500	38	yes	2

Age	Married
2024:1 2529:2 3034:3 3539:4	Yes:1 No:2

After Mapping attributes

- 1	Record ID	Age	Married	NumCars	Frequent Itemset (Sample)	Support
	100	1	2	1	{Age:2529}	2
	200	2	1	1 1	{Age:3039}	2
	300	2	2	0	{Married:Yes}	3
	400	3	1	2	{Married:No}	2
	500	4	1	2	{NumCars:1}	2
					{NumCars:2}	2
					{ <age:3039>,<married:yes>}</married:yes></age:3039>	2
L						

Rules: Sample

Rule	Support	Confidence
<pre><age:3039>and<married:yes>=><numcars:2></numcars:2></married:yes></age:3039></pre>	40% 60%	100% 100%
<age:2029>=><numcars:01></numcars:01></age:2029>	00%	100%

Mining Association Rules with Weighted Items

有時產出的 association rules 彼此之間需要 ranking,找出效益最大的前 n 個 rules 就好

- •Weighted items
- •Weighted support
- Association rule with minimum weighted support
- •Given minimum weighted support 0.4

$$=> \{B,E\} ((0.3+0.9)*5/7=0.86)$$

code	Item	Profit	Weight
A	Apple	100	0.1
В	Orange	300	0.3
\mathbf{C}	Banana	400	0.4
D	Milk	800	0.8
E	Coca	900	0.9

Items
A, B, D, E
A, D, E
B, D, E
A, B, D, E
A, C, E
B, D, E
B, C, D, E