Master 2 MCCA

Dans le problème qui suit, on désignera par Z l'anneau des entiers relatifs et par Q le corps des nombres rationnels.

Il sera tenu compte de la clarté et de la concision de la rédaction.

Problème

Soit α une racine du polynôme $f(X) := X^3 + 6X^2 - 3$. Notons

 $F := \mathbf{Q}(\sqrt{29});$

 $K := \mathbf{Q}(\alpha)$ et \mathcal{O}_K son anneau d'entiers;

 $L := FK = \mathbf{Q}(\mathbf{A}, \alpha)$ le corps des racines de f sur \mathbf{Q} .

- 1. justifier que f(X) est irréductible sur \mathbb{Q} .
- 2. Montrer que le discriminant de f(X) est égal à $disc(f) = 2349 = 3^4.29$
- 3. justifier que 3 ne divise pas l'indice $[\mathcal{O}_K : \mathbf{Z}[\alpha])$.
- 4. En déduire que $\mathcal{O}_K = \mathbf{Z}[\alpha]$
- 5. Quels sont les nombres premiers qui se ramifient dans K?
- 6. Quels sont les nombres premiers qui se ramifient dans $\mathbf{Q}(\sqrt{29})$?
- 7. Justifier que $L := \mathbf{Q}(\sqrt{29}, \alpha)$ est le corps des racines de f(X) sur \mathbf{Q} .
- 8. justifier que le groupe de Galois $Gal(L/\mathbb{Q})$ est le groupe symétrique S_3 .
- 9. Décrire la décomposition des premiers p=2,3,5 et 13 dans l'anneau o_L des entiers de L.
- 10. A-t-on ainsi obtenu toutes sortes de décompositions possibles pour un premier dans o_L ?

Exercice

Soit K un corps de nombres avec \mathcal{O}_K son anneau d'entiers. On se fixe un entier naturel $a \geq 1$. Montrer que, à multiplication par une unité de \mathcal{O}_K près, il n'y a qu'un nombre fini de $\alpha \in \mathcal{O}_K$ tel que la norme $N_{K/\mathbb{Q}}(\alpha) = a$.