

SÍLABO FÍSICA I

ÁREA CURRICULAR: MATEMÁTICAS Y CIENCIAS BÁSICAS

SESIÓN ACADÉMICA DE INVIERNO 2019

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Código de la asignatura : 09005603050

1.3Ciclo: III1.4Créditos: 51.5Horas semanales totales: 9

1.6.1 Horas lectivas (Teoría, Práctica. Laboratorio) : 7 (T=3, P=2, L=2))

1.6.2. Horas no lectivas : 4

1.6 Condición del Curso : Obligatorio

1.7 Requisito(s) : 09036602050 Álgebra Lineal.

09065502050 Cálculo I

1.9 Docentes : Ing. Juan Carlos Abad Escalante

Ing. Gian Scarpati Gálvez

II. SUMILLA

El curso de Física I es un curso teórico, práctico, experimental y de mediciones cuantitativas.

El propósito del curso es brindar al estudiante los conceptos y principios básicos de Física y sus aplicaciones en el mundo real, para que se pueda desarrollar en las áreas científicas y tecnológicas.

El desarrollo del curso comprende las siguientes unidades: Unidad I: Cinemática, Unidad II: Dinámica, Trabajo, Potencia y Energía, Unidad III: Momento lineal. Choques. Movimiento oscilatorio, Unidad IV: Mecánica de fluidos -Termodinámica.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- . Aprende los elementos básicos del análisis vectorial en un Sistema de Coordenadas Cartesianas aplicado a la mecánica.
- . Comprende y aplica a casos concretos la primera y tercera Ley de Newton.
- . Formula las ecuaciones del movimiento de una partícula, identificando el tipo de movimiento.
- . Plantea y resuelve problemas de cinemática.
- . Comprende y aplica la segunda ley de Newton para una partícula y para un sistema de partículas.
- . Plantea y resuelve problemas de dinámica.
- Comprende los conceptos de trabajo, energía y el principio de conservación y lo aplica a casos concretos.
- . Plantea y resuelve problemas de mecánica de fluido y termodinámica.

3.2 Componentes

Capacidades

- . Explica los métodos y técnicas para resolver problemas
- . Practica libremente las soluciones de problemas desarrollados en aula
- . Expone ejemplos de solución de problemas sobre un tema específico
- . Explica problemas de la realidad con los fundamentos físicos adquiridos y plantea su solución.

Contenidos actitudinales

- . Participa en la solución de problemas en clase.
- . Decide el método y técnica de solución de problemas de física, de acuerdo al tema.
- . Persevera en dar solución a problemas sobre física
- . Valora la física como base en temas tecnológicos y científicos.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : CINEMÁTICA

CAPACIDAD: Aplica las leyes de movimiento a la solución de problemas.

SEMANA	CONTENIDOS CONCEDTIALES	CONTENIDOS DEOCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НС	RAS
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	L	Lb.
1	Primera sesión: Introducción. Magnitudes físicas escalares y vectoriales. Unidades: conversión de unidades. Vectores en dos y tres dimensiones: definición y representación gráfica. Vector unitario. Vector opuesto. Segunda sesión: Adición y sustracción de vectores: propiedades, métodos gráficos (método del paralelogramo y método del polígono) y métodos analíticos método trigonométrico y descomposición rectangular). Resultante mínima y resultante máxima.	 Interpreta magnitudes escalares y vectoriales. Aplica el análisis escalar y vectorial para solucionar problemas básicos Realiza operaciones vectoriales y escalares utilizando los métodos gráficos 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h	5	4
'			Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h		
2	Primera sesión: Multiplicación de un vector por un escalar: propiedades. Vectores paralelos. Producto escalar: propiedades. Ángulo entre dos vectores. Vectores perpendiculares. Segunda sesión: Producto vectorial: propiedades. Aplicaciones geométricas y físicas de las operaciones con vectores.	 Conceptualiza el producto entre vectores y escalares Utiliza las propiedades del producto de vectores para dar solución a problemas Responde sobre aplicaciones vectoriales en tres dimensiones. Utiliza métodos experimentales 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	5	4
3	Primera sesión: Cinemática: definiciones (posición, desplazamiento, velocidad media e instantánea, aceleración media e instantánea). Aplicaciones. Segunda sesión: Movimiento en una dimensión: MRU y MRUV.	 Explica conceptos de desplazamiento posición, velocidad y aceleración Interpreta los movimientos MRU y MRUV Resuelve problemas básicos sobre cinemática 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	5	4
4	Primera sesión: Movimiento en dos dimensiones: Ley de movimiento. Tiro de proyectiles. Segunda sesión: Movimiento circular: definiciones y ecuaciones. Relación entre magnitudes lineales y angulares.	 Interpreta y explica sobre los movimientos de una partícula en dos dimensiones Explica sobre el movimiento circular, definiendo conceptos sobre el mismo. Desarrolla problemas sobre movimiento de proyectiles y movimiento circular 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	5	4

UNIDAD II: DINÁMICA - TRABAJO, POTENCIA Y ENERGIA

CAPACIDAD: Aplicar las leyes de Newton a situaciones reales. - Demuestra que la variación de las formas de energía se transforman en trabajo

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS Lb.
5	Primera sesión: Dinámica: Conceptos de Equilibrio, inercia, masa y fuerza. Tipos de fuerzas. Diagrama de cuerpo libre. Leyes de Newton. Segunda sesión: Aplicaciones de las Leyes de Newton sin fricción.	 Interpreta los conceptos sobre equilibrio, masa y fuerza Aplica el diagrama de cuerpo libre en problemas Aplica la primera ley de Newton en problemas sin fricción Utiliza métodos experimentales sobre el tema. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	_ 5	4
6	Primera sesión: Fuerza de rozamiento: rozamiento estático y rozamiento cinético. Aplicaciones de las Leyes de Newton con fricción. Segunda sesión: Dinámica circular: fuerza centrípeta. Aplicaciones.	 Interpreta los conceptos sobre rozamiento estático y cinético Aplica las leyes de Newton con fricción Aplica la dinámica en problemas simples 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	5	4
7	Primera sesión: Trabajo: definición, trabajo de una fuerza constante, trabajo de una fuerza variable. Potencia. Aplicaciones. Segunda sesión: Energía: definición. Energía cinética. Teorema del trabajo y la energía cinética. Aplicaciones	 Conceptualiza fuerza y trabajo de fuerzas variables. Ejemplifica sobre potencia y su aplicación Aplica potencia trabajo y energía en problemas de aplicación real 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	5	4
9	Primera sesión: Fuerzas conservativas y no conservativas. Energía potencial gravitatoria y energía potencial elástica. Segunda sesión: Conservación de la energía. Conservación de la energía mecánica. Aplicaciones.	 Aplica la conservación de energía en ejemplos reales. Utiliza los conceptos de la conservación de energía en problemas aplicativos. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	5	4
8	Revisión de temas previos	Desarrolla ejercicios de temas previos.	Lectivas (L): · Ejercicios en aula - 5 h Laboratorio(Lb): · Explicación del tema - 1 h · Trabajo Aplicativo - 3h	5	4

UNIDAD III: MOMENTO LINEAL, CHOQUES Y MOVIMIENTO OSCILATORIO

CAPACIDAD: Utiliza el modelo físico: sistema masa – resorte para explicar y aplicar los parámetros del Movimiento Armónico Simple.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS Lb.
10	Primera sesión: Momento lineal. Impulso. Conservación del momento lineal. Aplicaciones Segunda sesión: Colisiones en una dimensión: coeficiente de restitución. Colisiones en dos dimensiones. Centro de masa. Aplicaciones.	 Interpreta sobre momento lineal y colisiones Desarrolla problemas sobre momento lineal, y colisiones Realiza experimentos sobre los temas tratados 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h	5	4
10			Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h		
11	Primera sesión: Movimiento Armónico Simple. Cinemática del Movimiento Armónico Simple. Consideraciones energéticas del Movimiento Armónico Simple. Aplicaciones.	 Expresa con certeza los temas sobre la cinemática del movimiento. Analiza los movimientos y explica sus características Resuelve problemas sobre movimiento armónico, sistemas de masa y sobre péndulo. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb):	5	4
	gunda sesión: tema masa – resorte. Péndulo simple. Aplicaciones.	Explicación del tema - 1 hTrabajo Aplicativo - 3h			

UNIDAD IV: MECÁNICA DE FLUIDOS - TERMODINÁMICA

CAPACIDAD: Aplicar las leyes de la hidrostática a situaciones reales - Usa el modelo físico de un gas encerrado en un recipiente provisto de un pistón para analizar los procesos termodinámicos

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	5 5	RAS
SEIVIANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	L	Lb.
12	Primera sesión: Fluido. Densidad. Peso específico. Presión en un fluido, Presión atmosférica y presión manométrica. Unidades. Principio de Pascal. Aplicaciones. Segunda sesión: Presión barométrica y manométrica. Principio de Arquímedes. Aplicaciones.	 Interpreta correctamente sobre los fluidos y sus características Aplica los principios de Pascal y Arquímedes en planteamientos de problemas. Aplica los principios de los temas tratados para resolver problemas. Construye experimentalmente ejemplos prácticos sobre los temas. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	_ 5	4
13	Primera sesión: Flujo de fluidos. Ecuación de continuidad. Ecuación de Bernoulli, aplicaciones. Segunda sesión: Aplicaciones: Ecuación de Torricelli, tubo de Venturi para medir la velocidad de un fluido, fuerza de sustentación en el ala de un avión	 Interpreta correctamente sobre los fluidos y la ecuación de Bernoulli. Aplica los principios de Bernoulli y Torricelli en planteamientos de problemas. Aplica los principios de continuidad y velocidad de fluido en problemas. Construye experimentalmente ejemplos prácticos sobre los temas. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	_ 5	4
14	Primera sesión: Temperatura. Escalas de temperatura: conversión. Expansión térmica de sólidos y líquidos. Aplicaciones. Calor. Unidades. Equivalente mecánico. Capacidad calorífica y calor específico. Calor latente. Equilibrio térmico. Aplicaciones. Segunda sesión: Primera ley de la termodinámica. trabajo realizado por un gas ideal, energía interna de un gas ideal y calor que entra o sale de un sistema termodinámico.	 Demuestra conocimiento de conversión de temperaturas y calorimetría. Maneja habilidad para resolver problemas calor específico y equilibrio térmico. Demuestra cómo solucionar problemas sobre los temas tratados. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Laboratorio(Lb): Explicación del tema - 1 h Trabajo Aplicativo - 3h	- 5	4
15	Examen Final			•	,
16	Entrega de promedios finales y acta del curso.				

V. ESTRATEGIAS METODOLÓGICAS

- · Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- · Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia. Materiales: Separatas, pizarra, plumones, manual universitario.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final se obtiene del siguiente modo

PF = (2*PE + PL + EF) / 4

PE = (P1 + P2 + P3 + P4 + P4 - MN) / 4

PL = (Lb1 + Lb2 + Lb3 + Lb4 + Lb5 + Lb6 + Lb7 - MN) / 6

Donde:

PF : Promedio final

PE : Promedio de prácticas calificadas (cuatro mejores de cinco)
PL : Promedio de prácticas de laboratorio (seis mejores de siete)

EF : Examen final (escrito)

P1,..., P4 : Prácticas Calificadas (escritas)

MN : Menor nota Lb1,.., Lb7 : Nota de Laboratorio

VIII. FUENTES DE CONSULTA

7.1 Bibliográficas

- Serway, R. & Jewett, J. (2008): Physics for scientists and engineers Volume 1. Seventh Edition.
 U.S.A.: Thomson Brooks/Cole.
- Serway Jewet, (2004) Física I 3ª Ed. Ed. International Thomson S.A,
- Giancoli, Douglas C, (2006) Física para universitarios, Vol. I, 6ª Ed. Edit. México: Pearson Educación

7.2 Electrónicas

- http://search.msn.es/results.aspx?srch=105&FORM=AS5&q=http%2f%2fwww.edu.aytolacoruna.es
- %2faula%2ffisica%2fapplets%2fHwang%2fntnujava%2findexH.html.
- http://www.ucm.es/info/hcontemp/leoc/hciencia.htm.
- http://www.sc.ehu.es/sbweb/fisica/unidades/unidadMedida.htm.
- http://es.wikipedia.org/wiki/M%C3%A1quina_simple

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del estudiante (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial e Ingeniería Civil, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacío = no aplica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K

(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K

El aporte del curso al logro de los resultados del estudiante (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

	I	
a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	K
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	K
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	R
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	K
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	