NEC

NPN SILICON POWER TRANSISTOR 2SC2752

DESCRIPTION

The 2SC2752 is suitable for Low Power Switching regulator, DC-DC converter and High Voltage Switch.

FEATURES

- High Breakdown Voltage.
- Low Collector Saturation Voltage.
- High Speed Switching.
- Complementary to the NEC 2SA1156 PNP Transistor.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures						
Storage Temperature						
Junction Temperature +150 °C Maximum						
Maximum Power Dissipations						
Total Power Dissipation (T _a = 25 °C) 1.0 W						
			W			
Maximum Voltages and Currents (T _a = 25 °C)						
V _{CBO}	Collector to Base Voltage	500	٧			
V _{CEO}	Collector to Emitter Voltage	400	٧			
V _{EBO}	Emitter to Base Voltage	7.0	٧			
I _{C(DC)}	Collector Current	0.5	Α			
I _{C(pulse)} *	Collector Current	1.0	Α			
B(DC)	Base Current	0.25	Α			

^{*} PW \leq 10 ms, Duty Cycle \leq 50 %

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1 *	DC Current Gain	20		80	_	V _{CE} = 5.0 V, I _C = 0.05 A
hFE2 *	DC Current Gain	10			_	$V_{CE} = 5.0 \text{ V, } I_{C} = 0.3 \text{ A}$
ton	Turn On Time			1.0	μs	/IC = 0.3 A, I _{B1} = -I _{B2} = 0.06 A, PW = 50 με
t _{stg}	Storage Time			2.5	μs	R ₁ = 500 Ω, V _{CC} = 150 V
tf	Fall Time			1.0	μs	(1)[000 11) 1(0 1 100 1
VECO(sus)	Collector to Emitter Sustaining Voltage	400			V	Table 1, I _C = 0.3 A, I _{B1} = 0.06 A, L = 10 mH
V _{CEX} (sus)1	Collector to Emitter Sustaining Voltage	450			Ÿ,	Table 1, $I_C = 0.3$ A, $I_{B1} = -I_{B2} = 0.06$ A $V_{clamp} = Rated V_{CEX}$, $T_a = 125$ °C, L = 10 mH
VCEX (sus)2	Collector to Emitter Sustaining Voltage	400			٧	Table 1, I _C = 0.6 A, I _{B1} = 0.2 A, I _{B2} = -0.06 A V _{clamp} = Rated V _{CEX} , T _a = 125°C, L = 10 mH
CER	Collector Cutoff Current			1.0	mA	V_{CE} = 400 V, R_{BE} = 51 Ω , T_{a} = 125 $^{\circ}$ C
ICEX1	Collector Cutoff Current			10	μΑ	$V_{CE} = 400 \text{ V}, V_{BE(OFF)} = -1.5 \text{ V}$
CEX2	Collector Cutoff Current			1.0	mA	$(V_{CE} = 400 \text{ V}, V_{BE(OFF)} = -1.5 \text{ V}, $ $T_{a} = 125 \text{ °C}$
I _{EBO}	Emitter Cutoff Current			10	μΑ	V _{EB} = 5.0 V, I _C = 0
V _{CE(sat)} *	Collector Saturation Voltage			1.0	V	I _C = 0.3 A, I _B = 0.06 A
VBE(sat)*	Base Saturation Voltage			1.2	V	I _C = 0.3 A, I _B = 0.06 A

^{*} Pulsed / PW ≤ 350 μs, Duty Cycle ≤ 2 %

Classification of h_{FE1}

	161			
Rank	М	L	К	
Range	20 to 40	30 to 60	40 to 80	ĺ

Test Conditions: V_{CE} = 5.0 V, I_C = 0.05 A

TYPICAL CHARACTERISTICS (Ta = 25 °C)

TABLE 1. - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

	VCEO (SUS)	V _{CEX} (SUS)	RESISTIVE SWITCHING
INPUT	VIN Q1 R_{BB1} $= V_{EE} = 10 \text{ V}$ PW Varied to Attain $I_C = 10 \text{ A}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s Q ₁ = 2SA959
CIRCUIT	L_{coil} = 10 mH, V_{CC} = 10 V $R_{coil} \le 0.5 \Omega$ V_{clamp} (Unclamped)	L_{coil} = 10 mH, V_{CC} = 20 V $R_{coil} \le 0.5 \Omega$ V_{clamp} = Rated V_{CEX} Value	R _L = 500 Ω, V _{CC} ≒ 150 V
TEST CIRCUITS	INDUCTIVE TEST CIRCUIT T.U.T. D2 Vclamp D1 T D2 Vclamp D1=F114F D2=6FH4S	t Lcoil (IC pk)	RESISTIVE TEST CIRCUIT T.U.T. RL