UCE 456/1 MATHEMATICS

SCORING GRID

Item		Solution	Score	Comment
1	Let the actual are	ea of the swamp be p		
(a) (i)	Map	Ground		
	1cm =	250,000cm	I_1	Scale
	$1cm^2 =$	$6.25 \times 10^{10} cm^2$	I_1	Squaring
	$7.36cm^2 =$	$7.36 \times 6.25 \times 10^{10} cm^2$	I_1	Multiplying
	=	$4.6 \times 10^{11} cm^2$		
	1km =	= 100,000 cm		
	$1km^2 =$	$1\times10^{10}cm^2$	I_1	Squaring km ²
	p =	$4.6 \times 10^{11} cm^2$		
	$\frac{p \times 10^{10}}{10^{10}} =$	$= \frac{4.6 \times 10^{11}}{10^{10}}$	M_1	Manipulation
				of quotient
	p =	$=46km^{2}$	M_1	Correct Ans
	∴ The actual area	a of the swamp is $46km^2$		46
(ii)	Decision: I will	use excavator vehicle	A_1	Correct
	Reason: Becaus	e the actual area of the swamp is	A_1	decision Correct reason
	greater	than $40km^2$		
(b)	1 operator =	125,000		
	14 operators =	14×125,000	I_1	Multiplying
	=	Ugx 1,750,000	M_1	For 1,750,000
	1 day =	1,750,000 for operators		
	•	14×1,750,000	I_1	Multiplying
		Ugx 24,500,000	M_1	Multiplying
	The operators wi	Ill be paid Ugx 24,500,000		For 24 500 000s
				24,500,000s

(c)	Amount given to company $= 50,000,000$	I_1	50,000,000	
	Balance after paying		written in figures.	
	operators $= 50,000,000 - 24,500,000$	I_1	Subtracting	
	= Ugx 25,500,000	M_1	Answer 25.5m	
	My payment $=\frac{40}{100} \times 25,500,000$	I_1	%	
	= Ugx 10,200,000		multiplication	
	Maintenance & repair			
	Of vehicles $=\frac{18}{100} \times 25,500,000$	I_1	%	
			multiplication	
	= Ugx 4,590,000	1/1		
	Director's payment = $25,500,000 - 14,790,000$	M_1	Subtraction	
	= Ugx 10,710,000			
	Difference = $10,710,000 - 10,200,000$	I_1	Subtraction	
	= Ugx 510,000	M_1	For 510,000	
	TOTAL		20 SCORES	
2	T			
2	Let the length of the ware house be <i>l</i>			
(a)(i)	Let the length of the ware house be l Width - $(l-20)$			
	Width - $(l - 20)$ l(l - 20) = 800	F_1	Formation of	
	Width - $(l - 20)$ l(l - 20) = 800 $l^2 - 20l - 800 = 0$	_	equation	
	Width - $(l - 20)$ l(l - 20) = 800 $l^2 - 20l - 800 = 0$	F_1 M_1	equation Solving of	
	Width - $(l - 20)$ l(l - 20) = 800 $l^2 - 20l - 800 = 0$ $l = \frac{20 \pm \sqrt{(-20)^2 - 4(1)(-800)}}{2(1)}$	_	equation	
	Width - $(l - 20)$ l(l - 20) = 800 $l^2 - 20l - 800 = 0$	_	equation Solving of	
	Width - $(l - 20)$ l(l - 20) = 800 $l^2 - 20l - 800 = 0$ $l = \frac{20 \pm \sqrt{(-20)^2 - 4(1)(-800)}}{2(1)}$	_	equation Solving of	
	Width - $(l - 20)$ l(l - 20) = 800 $l^2 - 20l - 800 = 0$ $l = \frac{20 \pm \sqrt{(-20)^2 - 4(1)(-800)}}{2(1)}$ $l = \frac{20 \pm 60}{2}$ Either $l = 40m$ or $l = -20m$ \therefore Length = $40m$	M_1 M_1 M_1	equation Solving of equation	
	Width - $(l - 20)$ l(l - 20) = 800 $l^2 - 20l - 800 = 0$ $l = \frac{20 \pm \sqrt{(-20)^2 - 4(1)(-800)}}{2(1)}$ $l = \frac{20 \pm 60}{2}$ Either $l = 40m$ or $l = -20m$ \therefore Length = $40m$ Width = $20m$	M_1 M_1	equation Solving of equation Solutions to eqn	
	Width - $(l - 20)$ l(l - 20) = 800 $l^2 - 20l - 800 = 0$ $l = \frac{20 \pm \sqrt{(-20)^2 - 4(1)(-800)}}{2(1)}$ $l = \frac{20 \pm 60}{2}$ Either $l = 40m$ or $l = -20m$ \therefore Length = $40m$	M_1 M_1 M_1	equation Solving of equation Solutions to eqn For $l = 40$	

(ii)	$Volume = 40 \times 20 \times 10$	M_1	Substitution
	$=8000m^3$	M_1	For 8000
b(i)	Let x –Number of type A mattresses y – Number of type B mattresses $x \le 200$ (i) $y < 100$	F ₁ F ₁ F ₁	For correct (i) For correct (ii) For correct (iii)
	2x + 5y = 800 When $x = 0$, $y = 160$ (0,160) When $y = 0$, $x = 400$ (400,0)	M_1 M_1 M_1 M_1 M_1	Labeling axes Line $x = 200$ Line $y = 100$ Line $2x + 5y = 800$ Correct feasible region Shading of $x = 0 & x & y = 0$
	3,0 50 (40 150 300 340 300 3,0		

(iii)	(200,80)		
	x + y = 200 + 80	I_1	x + y or
	= 280	4	200 + 80
	∴ 200 mattresses of type A and 80 mattresses of	A_1	For 200 & 20
	type B will be stored for the warehouse to have		
	highest capacity of mattresses and the highest	A_1	For 280
	number of mattresses will be 280		
	TOTAL	20 SC	CORES
3 (a)	A Venn diagram showing the analysis of the data	T_1	For title
	$n(\varepsilon) = 58$		
	n(J) $n(G) = 24$	I_1	For 58
		I_1	For 24
	$\left \left(\begin{array}{cc} 6 \\ \end{array} \right) \right \times \left \begin{array}{cc} x \\ \end{array} \right $	I_1	For 3
	$\left[\left(\begin{array}{c} 3 \\ 7 \end{array} \right) \right]$	I_1	For 6
	$\left[\begin{array}{ccc} \left(\begin{array}{c} 1 \\ y \end{array}\right) & 9 \end{array}\right]$	I_1	For 7
		I_1	For 9
	5	I_1	For 5
	$z \sim n(l)$		Correctly
			placed in
	x + 9 + 7 + 6 = 24		correct
	x=2		position
	z + 5 + 9 + 2 = 38		
	z = 22	A_1	For solving for
	22 + 5 + 9 + 2 + y + 3 + 6 + 7 = 58 $y = 4$		x, y & z
	n(J) = 3 + 6 + 7 + 4	A_1	for n(J)
	= 20 $n(I) = 5 + 9 + 4 + 7$	A_1	for n(I)
	= 25		
	n(G) = 24	4	
	Decision: The company should increase number of	A_1	for correct
	vehicles imported from Italy		decision
	Reason: Because it is the country with highest	A_1	for correct
	number of customers		reason
<u> </u>		<u> </u>	

(b)	Probability = $\frac{22}{58}$	A_1	Probability
	= 0.38		
	Decision: Yes, the company will start importing vehicles from china	A_1	Correct decision
	Reason: Because the probability of those who do not like vehicles from any of the three countries is greater than 0.35	A_1	Correct reason
(c)	n(J) + (G) + n(I) = 20 + 24 + 25	A_1	Addition
	= 69 customers	$\overline{A_1}$	Correct Ans
(d)	Number of customers = $3 + 6 + 2 + 22$ = 33 Probability = $\frac{33}{58}$	A_1 A_1	Obtaining 33 Probability
	TOTAL	20 SC	CORES
4 (a)	Matrices showing the purchase and cost of items L S P Margie (2 3 4) Jesca (3 4 2)	I_1 I_1 I_1	For title Matrix Order
	$ \begin{array}{c} 2 \times 3 \\ \mathbf{L} \begin{pmatrix} 5500 \\ 3700 \\ \mathbf{P} \end{pmatrix} \\ 3 \times 1 \end{array} $	I_1 I_1 I_1	Matrix Order
	$ \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 2 \end{pmatrix} \begin{pmatrix} 5500 \\ 3700 \\ 350 \end{pmatrix} = \begin{pmatrix} 11000 + 11100 + 1400 \\ 16500 + 14800 + 700 \end{pmatrix} $ $ = \begin{pmatrix} 23500 \\ 32000 \end{pmatrix} $	A_1 A_1	Matrix multiplication Correct manipulation
	Margie spent Shs. 23,500 Jesca spent Shs. 32,000 Decision: Jesca is the one who went with less money Reason: Because her expenditure is more than the money she went with	A_1 A_1	For correct decision For correct reason

(b)	A probability tree showing all the possible	T_1	Title
	outcomes $G_2 - \frac{3}{12}$ $R_2 - \frac{3}{12}$	I_1	Any correct tree
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I_1	Any other correct tree
	$\frac{\text{Tracy's probability}}{(G_1 \cap R_2) + (G_1 \cap Y_2) + (R_1 \cap G_2) + (R_1 \cap Y_2) + (Y_1 \cap G_2) + (Y_1 \cap R_2)}$		
	$= \left(\frac{4}{13} \times \frac{3}{12}\right) + \left(\frac{4}{13} \times \frac{6}{12}\right) + \left(\frac{3}{13} \times \frac{4}{12}\right) + \left(\frac{3}{13} \times \frac{6}{12}\right) + \left(\frac{6}{13} \times \frac{4}{12}\right) + \left(\frac{6}{13} \times \frac{3}{12}\right)$	A_1	Analysis
	$= \frac{108}{156} \\ = \frac{9}{13}$	A_1	Correct prob
	$\frac{\text{Maria's probability}}{(G_1 \cap G_2) + (R_1 \cap R_2) + (Y_1 \cap Y_2)}$		
	$= \left(\frac{4}{13} \times \frac{3}{12}\right) + \left(\frac{3}{13} \times \frac{2}{12}\right) + \left(\frac{6}{13} \times \frac{5}{12}\right)$	A_1	Analysis
	$= \frac{48}{156} \\ = \frac{4}{13}$	A_1	Correct prob

	Molly's probability		
	$(G_1 \cap R_2) + (R_1 \cap R_2) + (Y_1 \cap R_2)$		
		A_1	Analysis
	$= \left(\frac{4}{13} \times \frac{3}{12}\right) + \left(\frac{3}{13} \times \frac{2}{12}\right) + \left(\frac{6}{13} \times \frac{3}{12}\right)$		
	$=\frac{36}{156}$	A_1	Correct prob
	$=\frac{3}{13}$		
	13	A_1	Correct
	Decision: Tracy won the first prize		decision
	Reason: Because her probability is the highest	A_1	Correct reason
	TOTAL	20 SCORES	
5		A_1	For side
(a) (i)	Side	A_1 A_1	For side For side
	C:do D C:1 Ton	A_1	For side
	Side Base Side Top	A_1 A_1	For base For top
	Side	A_1	T of top
(ii)	2(LW + LH + WH) = 422.8	A_1	Substitution
	$(12.4 \times 5.55 + 12.4H + 5.5H) = 211.4$	M_1	
	17.9 <i>H</i> 143.2	M_1	
	$\overline{17.9} = \overline{17.9}$	M_1	H = 8
	H = 8cm		
(iii)	$Volume = 12.4 \times 5.5 \times 8$	A_1	Substitution
	$= 545.6cm^3$	M_1	545.6

(b)	1 box = 950		
	$500 \text{ boxes} = 950 \times 500$	M_1	
	= <i>Shs</i> . 475,000	M_1	
	$(80)^2$	M_1	
	$A = 475,000 \left(1 + \frac{80}{100}\right)^2$	M_1	
	$=475,000(1.8)^2$	M_1	
	= <i>Shs</i> . 1,539,000	M_1	
	Decision: Umaru will not achieve his target	A_1	Correct
	Reason: Because the money he will get after	A_1	decision Correct reason
	selling the cow is less than his target amount	1	Correct reason
	TOTAL	20 SC	CORES
6	Subject Name	A_1	For 45 ⁰
(a) (i)	Main start Mone - Main start = 425	A_1	For 8.5 <i>cm</i>
	Scott Some When wast - officer = 3000	A_1	For 180 ⁰
	Other	A_1	For 6cm
	Accurate dragtom		
	A for Sessing		
	Trace Afferm wood A. G. 130		
	h for cent		
	Gany		
	X Home		
	Offices A. for Bound		
	My home of 3,00m leave of fright rather within the first		
	Myore A		
	St. will take byten 15 minutes		

Description		
My home is 300m East of organization offices	A_1	For 300m
	A_1	For East or 90° or $N90^{\circ}E$
(ii) Time = $\frac{300}{20}$	A_1	Substitution
= 15 minutes It will take 15 minutes	A_1	For 15
(b) Let the taxable income be P	4	
	A_1	
$100,000 \times \frac{15}{100} = 15,000$	A_1	
$(P - 300,000) \times \frac{20}{100} = 0.2P - 60,000$		
Total income tax = $0.2P - 40,000$ $\Rightarrow 0.2P - 40,000 = 26,900$ 0.2P - 66900	A_1	
$\frac{0.27}{0.2} = \frac{0.334}{0.2}$ $P = 334,500$	M_1	
$\begin{array}{c ccc} \underline{\textbf{Allowances}} \\ \text{Transport} & 3000 \times 30 & = 90,000 \\ \text{Medical} & = 40,000 \end{array}$	M_1	
Insurance $\frac{300,000}{} = 25.000$	M_1	
Water & electricity = 75,000 Housing = 90,000		
Total allowances = $320,000$ Gross monthly income = $334,500 + 320,000$ = $Shs. 654,500$	M_1 M_1	
Number of employees = $\frac{10,000,000}{654,500}$ = 15.2788	M_1	
∴ The organization will recruit 15 employees	A_1	
(ii) Percentage = $\frac{26900}{654,500} \times 100$ = 4.1%	M_1 M_1	
TOTAL	20 SCC	DRES