CMOS 模拟集成电路原理 第一周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年10月31日

作业内容:已知要求 GBW DM =50MHz,GBW CM =100MHz,C L =5pF。设计一共模 & 差模相位裕度均大于 70 的运放。通过仿真给出: 差模增益 功耗 共模抑制比 CMRR

将上述设计的差分运放,通过电阻设置成 10 倍放大,观察输入差模和共模信号分别有 100mVpp, 10kHz 的正弦信号时,差模输出信号的大小,并分析是否符合预期。

图 1: 题目图

List of Figures

1	题目图	1
2	电路结构	3
3	饱和状态	3
4	差模增益	4
5	共模反馈电路	
6	共模反馈增益	4
7	源随器级电流	
8	共模电路	
9	共模增益	6
10	共模输入正弦波电路	6
11	共模输入正弦波波形	6

12	差模输入正弦波电路		 														6
13	差模输入正弦波波形		 		 										 		7

1 分析电路

M1 与 M2 构成一个 Cascode ,输出到一个共栅极,通过一个源随器和电阻对消除差模,之后通过对电流源的电流吸取,途径 M7 反馈到输出端。那么 $GBW_{DM}=g_{m1}/2\pi C_L$, $GBW_{CM}=g_{m7}/2\pi 2C_L$ 。

首先是差模放大部分,其跨导来自于 M1 ,因此为了使得 GBW_{DM} 大,应该调大其 g_M ;同时注意到,共栅极的 M4 是一个复制管,和误差放大器的电流应该保持一致;最后是共模反馈部分,其跨导来自 M7 。综上所述,为了增益带宽积大,需要调大 M1 和 M7 的电流,为了使得裕度更高,次级点的电流也应更大。同时 M4 的多次出现使得共栅极放大器的电流已经确定,因此需要控制的电流仅有源随器一级缓冲。

2 整体电路搭建

整体电路如 **图 2** ,接下来主要通过 $W=2I\cdot L/k/V_{gst}^2$ 进行估算,而阈值会产生一定的变化,通过打表进行估算,如 **表 1** 。

表 1: 在 1 微米下的阈值

	, , , , , , , , , , , , , , , , , , ,		741-412
n	阈值	p	阈值
0	437.8	1.8	443.6
0.1	466.7	1.7	474
0.2	494.1	1.6	503.4
0.3	520.4	1.5	531.3
0.4	545	1.3	531.3
0.5	569.9		
0.6	593		
0.7	615		
0.8	639		
0.9	657		
1.0	657		

计算得到两个关键管子 M1 和 M7 的跨导,分别是 1.5m ,6m ,进而可以得到两路的电流,同时 M4 的复制导致共源共栅极的电流也确定了,自行设定源随器一级的电流为 20u 。最终全

图 2: 电路结构

部饱和,如图3。

图 3: 饱和状态

3 性能

完成共模反馈后的差分增益如图4。

图 4: 差模增益

共模反馈的增益,保证共模状态的同时,开启反馈的小信号,如**图 5**,**图 6**。断开整体的差分电路,用理想电压源承载对应的静态工作点,测量输出和误差放大输入的比。

图 5: 共模反馈电路

图 6: 共模反馈增益

源随器级的电流可以用 OP 进行求解,如 **图 7** ,是 170 μ 。总功耗为 2 × (170 μ + 1.2m + 0.2m + 0.8m × 4)1.8 = 6.066mW 。

测量 CMRR 实用电阻匹配法, 电路如 ${\bf 8}$, 测量得到共模增益如 ${\bf 8}$, ${\it CMRR}$ =

图 7: 源随器级电流

 $A_{dm}/A_{cm} = 5.5/5.4m = 100$.

图 8: 共模电路

对其共模加入正弦信号,电路如图10,共模波形如图11。

图 9: 共模增益

图 10: 共模输入正弦波电路

图 11: 共模输入正弦波波形

对其差模加入正弦信号,电路如图10,差模波形如图11。

图 12: 差模输入正弦波电路

图 13: 差模输入正弦波波形