Proyecto Segundo Parcial

Métodos Numéricos

Nicolás Gamboa Axel Correa Javier Tena Fernando Arrieta Juan Suástegui November 2, 2021

Instituto Tecnológico y de Estudios Superiores de Monterrey

Outline

- 1. Introducción
- 2. Desarrollo
- 3. Conclusión

Introducción

Descripción del problema a resolver

UNA COMPAÑÍA CONSTRUCTORA DE ESTRUCTURA TIENE LA SIGUIENTE DISTRIBUCIÓN DE PRODUCTOS Y MATERIALES: EN EL PRODUCTO A SE GASTAN 400 KG DE CEMENTO, 1700 KG DE HORMIGÓN Y 600 KG DE ACERO. EN B SE CONSUMEN 600 KG DE CEMENTO, 550 KG DE HORMIGÓN Y 450 KG DE ACERO Y FINALMENTE EN EL C. SE CONSUMEN 300 KG DE CEMENTO. 400 KG DE HORMIGÓN Y 375 ACERO. SI EL CONSUMO DENTRO DE LA EMPRESA HA SIDO DE 300 TONELADAS DE CEMENTO. 480 TONELADAS DE HORMIGÓN Y 375 TONELADAS DE ACERO. DETERMINA CUENTOS TIPOS DE PRODUCTOS DE CADA TIPO HAN CONSTRUIDO EN LA EMPRESA

Descripción del problema a resolver

	А	В	С	Consumo
Cemento	400	600	300	300,000
Hormigón	1700	550	400	480,000
Acero	600	450	375	375,000

Matriz de Problema

MEDIANTE EL ANÁLISIS DEL PROBLEMA OBSERVAMOS QUE ES UN SISTEMA DE ECUACIONES LINEALES A LAS CUALES SE LES APLICARA TRES MÉTODOS SELECCIONAMOS PARA OBSERVAR OUE RESULTADO OBTENDREMOS Y OBTENER LAS CONCLUSIONES PERTINENTES PARA EL PROBLEMA

- Método de eliminación. Gausiana.
- Método Gauss-Jordan.
- · Método de Cramer.

MÉTODO DE CRAMER

400	600	300000
1700	550	480000
600	450	375000
D-17	0.245.40	
DetZ=	-8.31E+10	

MÉTODO DE ELIMINACIÓN GAUSIANA

	X	У	Z	b
F1	400	600	300	300000
F2	1700	550	400	480000
F3	600	450	375	375000
F1	400	600	300	300000
F2-(7/4)*F1 -> F2	0	-2000	-875	-795000
F3	600	450	375	375000
F1	400	600	300	300000
F2	0	-2000	-875	-795000
F3-(3/2)*F1 ->F3	0	-450	-75	-75000
F1	400	600	300	300000
F2	0	-2000	-875	-795000
F3-(9/40)*F2 ->F3	0	0	121.875	103875

MÉTODO DE GAUSS-JORDAN

	×	y	Z	b	
F1	400	600	300	300000	
F2	1700	550	400	480000	
F3	600	450	375	375000	
F1/400>F1	1	1.5	0.75	750	
F2	1700	550	400	480000	
F3	600	450	375	375000	
F1	1	1.5	0.75	750	
F2-1700*F1>F2	0	-2000	-875	-795000	
F3-600*F1F3	0	-450	-75	-75000	
F1	1	1.5	0.75	750	
F2/-2000F2	0	1	0.4375	397.5	
F3	0	-450	-75	-75000	

F1-(3/2)*F2>F1	1	0	0	73.8461538
F2	0	1	0	24.6153846
F3	0	0	1	852.307692
	x	у	z	b
	1	0	0	73.8461538
	0	1	0	24.6153846
	0	0	1	852.307692
	z=	852.307692		
	y=	24.6153846		
	x=	73.8461538		

Conclusión

Conclusión

En conclusión después de aplicar todos tres métodos para la problemática mencionada nos damos cuenta que se fabricaron en total del Producto A = 74. Producto B = 25 y del Producto C = 852, asimismo se comprobó que el funcionamiento de los métodos es diferente en cada uno, sin embargo nos llevan al mismo resultado y que con la herramienta de MatLab es muy sencillo e eficiente para realizar estos cálculos.

MUCHAS GRACIAS

