CS 577 — Deep Learning — Final exam practice problems

1 Automatic differentiation for scalars

1.1 x^4

Draw the computational graph for the following function. Then compute x.grad using backpropagation.

```
1 x = ag.Scalar(2.0, label="z1\nleaf(x)")
2 z1 = x
3 z2 = z1*z1
4 z3 = z2*z2
5 z3.backward()
6 print(x.grad)
```

1.2 $\log(\exp(xy))$

Draw the computational graph for the following function. Then compute x.grad and y.grad using backpropagation.

```
7  x = ag.Scalar(2.0, label="z1\nleaf(x)")
8  y = ag.Scalar(3.0, label="z2\nleaf(y)")
9
10  z1 = x
11  z2 = y
12  z3 = z1*z2
13  z4 = ag.exp(z3)
14  z5 = ag.log(z4)
15  z5.backward()
16  print(x.grad, y.grad)
```

1.3 Recurrent neural networks

Draw the computational graph for the following function. Then compute wr.grad, wi.grad, and wo.grad using backpropagation.

```
x1 = ag.Scalar(2.0, label="z1\nleaf(x1)")

x1 = ag.Scalar(2.0, label="z1\nleaf(x1)")
wr = ag.Scalar(4.0, label="z3\nleaf(wr)")
wi = ag.Scalar(5.0, label="z4\nleaf(wi)")
wo = ag.Scalar(6.0, label="z5\nleaf(wo)")
22
23 z1 = x1
24 z2 = h0
_{25} z3 = wr
26 \ z4 = wi
z_{5} = z_{3}*z_{2} # wr*h_{0}
28 z6 = z4*z1 # wi*x1
29 z7 = z5 + z6
z8 = ag.relu(z7) # relu(wr*h0 + wi*x1)
31 \ z9 = wo
32 z10 = z8*z9
33 z10.backward()
print(wr.grad, wi.grad, wo.grad)
```

2 Convolutional networks

2.1 im2col

What is the shape of the im2col_mat_sparse matrix constructed below? Give your answer in terms of N, Cin, Hin, Win, K and S.

```
def im2col_matrix_sparse(Xin, K, S=1):
       N, Cin, Hin, Win = Xin.shape
37
      \mathtt{CHW} = \mathtt{Cin} * \mathtt{Hin} * \mathtt{Win}
       Hout = (Hin - K)//S + 1
39
       Wout = (Win - K)//S + 1
40
       P = Hout * Wout # Total number of patches per image
41
       patch_size = Cin * K * K # Size of each flattened patch
42
       data = [1 for _ in range(P*patch_size)]
44
       row_indices = []
       col_indices = list(range(P*patch_size))
46
47
       patch_idx = 0
48
       for hout in range(Hout):
49
           for wout in range(Wout):
50
               for cin in range(Cin):
51
                    for hker in range(K):
52
                        for wker in range(K):
                            input_index = cin * Hin * Win + hout * S * Win + wout * S + hker *
54
       Win + wker
                            row_indices.append(input_index)
               patch_idx += 1
57
       im2col_mat_sparse = csr_matrix((data, (row_indices, col_indices)), shape=(CHW, P *
58
       patch_size))
      return im2col_mat_sparse
```

2.2 Convolution layer time and space complexities

- What is the time complexity of computing Xout_flat in the 2D convolution layer defined below? Give your answer in terms of N, Cin, Cout, Hin, Win, K and S.
- How much memory is required to store Xin_im2col? Give your answer in terms of bytes. (Assume entries of the array are in float64, which requires 8 bytes)

```
class Conv2d(Module):
60
          def __init__(self, in_channels, out_channels, kernel_size, stride=1):
61
62
               super().__init__()
               self.in_channels = in_channels # Cin
63
               self.out_channels = out_channels # Cout
64
               self.kernel_size = kernel_size # K
65
66
               self.stride = stride # S
67
               kaiming_he_init_constant = np.sqrt(2 / (in_channels * kernel_size**2))
68
69
               self.weight = ag.Tensor(np.random.randn(in_channels*kernel_size**2, out_channels
70
      ) * kaiming_he_init_constant)
71
               self.bias = ag.Tensor(np.zeros(out_channels))
72
73
               self._parameters['weight'] = self.weight
74
               self._parameters['bias'] = self.bias
75
76
               self.im2col_mat = None # im2col_mat will be cached
77
78
          79
80
               N, Cin, Hin, Win = Xin.shape
               assert(Cin == self.in_channels)
81
82
              K = self.kernel_size
83
               S = self.stride
84
               Hout = (Hin - K) // S + 1
85
               Wout = (Win - K) // S + 1
86
87
              P = Hout * Wout # Total number of patches per image
              patch_size = Cin * K * K # Size of each flattened patch
88
               Cout = self.out_channels
89
90
               Xin_flat = Xin.reshape(-1, Cin * Hin * Win)
91
92
               if self.im2col_mat is None: # Cache the im2col matrix
93
94
                   self.im2col_mat = im2col_matrix_sparse(Xin, K, S)
95
               Xin_im2col = ag.spcmatmul(Xin_flat, self.im2col_mat)
96
               Xin_patches_flat = Xin_im2col.reshape(N, P, patch_size)
97
98
               Xout_flat = (Xin_patches_flat @ self.weight) + self.bias
               Xout_flat = ag.moveaxis(Xout_flat, 1, 2)
100
               Xout = Xout_flat.reshape(N, Cout, Hout, Wout)
              return Xout # Xout.shape == (N, Cout, Hout, Wout)
```

3 Attention

- How much memory is required to store the following intermediate activations in SingleHeadAttention portion of the transformer block?: Queries, Keys, KQ, expKQ, softmaxKQ, P.
- How about the MLP? Namely how much memory is required to store the following?: hidden

```
class SingleHeadAttention:
104
105
       def __init__(self, n_features):
           self.Wq = ag.Tensor(np.random.randn(n_features, n_features), label="Wq")
106
           \verb|self.Wk| = \verb|ag.Tensor(np.random.randn(n_features), n_features)|, | label="Wk"||
107
           \texttt{self.Wv = ag.Tensor(np.random.randn(n\_features, n\_features), label="Wv")}
108
       def __call__(self, Xin):
           # Xin is a (n_samples, n_context, n_features) tensor
           # Xout is *also* a (n_samples, n_context, n_features) tensor
112
           Queries = Xin @ self.Wq
           Keys = Xin @ self.Wk
           KQ = (Keys @ ag.moveaxis(Queries, 1,2))
114
           expKQ = ag.exp(KQ)
           softmaxKQ = expKQ / ag.sum(expKQ, axis=1, keepdims=True)
           P = ag.moveaxis(Xin,1,2) @ softmaxKQ
117
           Xout = ag.moveaxis(P, 1,2) @ self.Wv
118
119
           return Xout
120
   class MLP:
121
       def __init__(self, n_features, n_hidden):
           \verb|self.Wh| = \verb|ag.Tensor(np.random.randn(n_features, n_hidden), label="Whidden")|
           self.bh = ag.Tensor(np.random.randn(n_hidden), label="bhidden")
           self.wo = ag.Tensor(np.random.randn(n_hidden, n_features), label="Wout")
125
           self.bo = ag.Tensor(np.random.randn(n_features), label="bout")
126
127
       def __call__(self, Xin):
128
           hidden = ag.relu((Xin @ self.Wh) + self.bh)
129
           return hidden @ self.wo + self.bo
130
131
   class TransformerBlock:
132
       def __init__(self, n_features, n_hidden):
           self.att = SingleHeadAttention(n_features)
           self.mlp = MLP(n_features, n_hidden)
135
       def __call__(self, Xin):
136
137
           return self.mlp(self.att(Xin))
```

4 Tensor rematerialization (aka checkpointing)

4.1 No rematerialization

How much memory (in MB) does computing the forward function below require for the .value fields for the intermediate activations (so excluding the input and the output ag.sum(x))?

```
class Tensor: # Tensor with grads
           def __init__(self,
                         value,
140
141
                         requires_grad=False,
                         rematerializer = None, # None means don't rematerialize, i.e., keep
143
                         op="",
                         _backward= lambda : None,
144
145
                         inputs=[],
                         label=""):
146
147
                if type(value) in [float ,int]:
                    value = np.array(value)
149
150
                self.requires_grad = requires_grad
151
                self.rematerializer = rematerializer
153
                self.value = 1.0*value
154
                self.grad = None
155
156
                if self.requires_grad:
157
                    self.grad = np.zeros_like(self.value)
158
160 # [...]
161
162 num_layers = 10
num_samples = 4096
164 \text{ dim\_hidden} = 1000
165
weights = [ag.Tensor(0.02*np.random.randn(dim_hidden, dim_hidden),
                         requires_grad = True) for _ in range(num_layers)]
168 X = ag.Tensor(np.random.randn(num_samples, dim_hidden))
169
def forward(x, weights):
     for w in weights:
171
172
           x = ag.matmul(x, w)
   return ag.sum(x)
```

4.2 With rematerialization

One way to implement rematerialization for the model considered in the previous part is to pass a "rematerializer" to the intermediate tensor to reconstruct the .value field:

```
def forward_with_rematerializer(x, weights, checkpoints):
176
       farthest_checkpoint = 0
       x_at_farthest_checkpoint = x
       for i, w in enumerate(weights):
179
           if i in checkpoints:
180
181
               x = ag.matmul(x, w)
               farthest_checkpoint = i
182
               x_at_farthest_checkpoint = x
           else:
184
                def _rematerializer():
185
                    xval = x_at_farthest_checkpoint.value
186
                    for w in weights[farthest_checkpoint:(i+1)]:
187
                        xval = np.matmul(xval,w.value)
                    return xval
189
                x = ag.matmul(x, w)
                x.rematerializer = _rematerializer
191
193
       return ag.sum(x)
```

Once the .value field is no longer needed during the forward computation, it is discarded:

```
# inside ag.Tensor class definition:

def discard_value_if_has_rematerializer(self):

if self.rematerializer is not None:

self.value = None

return None
```

How much memory (in MB) is used for allocating the .value fields if we call forward_with_rematerializer with the following inputs?