

Massive Data Computing Lab @ HIT

大数据算法

第八讲 MapReduce算法例析

哈尔滨工业大学 王宏志 wangzh@hit.edu.cn

本讲内容

- 8.1 连接(Join)算法
- 8.2 图算法

笛卡尔积运算

- 元组的串接(Concatenation)
 - 若 $r = (r_1, ..., r_n)$, $s = (s_1, ..., s_m)$, 则定义r与s的 串接为:
- $\overrightarrow{rs} = (r_1, \ldots, r_n, s_1, \ldots, s_m)$
 - 两个关系R, S, 其度分别为n, m,则它们的笛卡尔积是所有这样的元组集合:元组的前n个分量是R中的一个元组,后m个分量是S中的一个元组
 - R×S的度为R与S的度之和, R×S的元组个数为R和S 的元组个数的乘积

$$R \times S = \{ \widehat{rs} \mid r \in R \land s \in S \}$$

笛卡尔积运算

r

Α	В
α	1
β	2

S

С	D	Ε
α	10	а
β	10	a
β	20	b
γ	10	b

 α α </

10

20

a

b

b

rxs

笛卡尔积运算

•
$$\sigma_{A=C}(r \times s)$$

Α	В	С	D	Ε
α	1	α	10	а
α	1	β	19	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

•
$$\sigma_{A=C}(r \times s)$$

Α	В	С	D	Ε
$\begin{bmatrix} \alpha \\ \beta \\ \beta \end{bmatrix}$	1 2 2	$egin{array}{c} lpha \ eta \ eta \end{array}$	10 20 20	a a b

θ连接

- 定义
 - —从两个关系的笛卡儿积中选取给定属性间满足一定 条件的元组

$$R \bowtie S = \{ \widehat{rs} \mid r \in R \land s \in S \land r[A]\theta s[B] \}$$

$$A \theta B$$

A, B为R和S上度数相等且可比的属性列 θ为算术比较符,为等号时称为等值连接

$$- \underset{A \in B}{\mathbb{R}} = \sigma_{r[A] \theta_{S}[B]} (R \times S)$$

示例

R

 A
 B
 C

 1
 2
 3

 4
 5
 6

 7
 8
 9

S

D	E
3	1
6	2

101 REE

 $\underset{B < D}{R \bowtie S}$

A	В	C	D	E
1	2	3	3	1
1	2	3	6	2
4	5	6	6	2

自然连接

- 定义
 - 从两个关系的广义笛卡儿积中选取在相同属性 列B上取值相等的元组。

 $R \bowtie S = \{ \widehat{rs}[\overline{B}] \mid r \in R \land s \in S \land r[B] = s[B] \}$

- 自然连接与等值连接的不同
 - 自然连接要在结果中去掉重复的属性,而等值连接则不必。

自然连接

III AAR III REE

基于MapReduce的连接算法

- Map-Reduce-Merge: Simplified Relational Data Processing on Large Clusters sigmod07
- Semi-join Computation on Distributed File Systems Using Map-Reduce-Merge Model Sac10
- Optimizing joins in a map-reduce environment
- A Comparison of Join Algorithms for Log Processing in MapReduce sigmod 10

Map-Reduce-Merge关系连接算法的实现

Sort-merger join	Мар	区间partitioner,生成排序的桶,每个桶对应一个reducer	
	Reduce	从所有mapper读取桶并且将其归并到一个排序的集合中	
	Merge	从连个数据集合中读取排序的桶并执行sort-merge join	
Hash join	Мар	Hash partitioner,桶哈希,每个桶对应一个reducer	
	Reduce	从所有mapper中读取桶,使用hash表分组和聚集这些记录(使用和mapper相同的hash函数),无需排序	
	Merge	内存hash join	
Block Nested loop join	Мар	同hash join	
	Reduce	同hash join	
	Merge	Nested loop join	

例子: Hash Join

- •从两个共享相同hash桶的reducer输出集合中读取数据s
- •其中之一用于构建集合,另一个用于探测

从每个mapper中读取制定的 块

使用哈希partitioner

repartition join(Hive)

函数	改进
Map函数	输出键变化为连接键和表名的组合
Partitioning函数	Hashcode仅从组合键的连接键计算
Grouping函数	仅根据连接键分组记录

MapReduce上的2路 Join

表	元组	map	Partition& sort	
R	(a ,b)	b ->(a, R)	Hash(b) ->(a, R)	b->(a, c)
S	(b,c)	b ->(c, S)	Hash(b) ->(c, S)	

一次处理多个连接

$R(A,B)\bowtie S(B,C)\bowtie T(C,D)$

输入

Reduce输入

value

R

Α	В
a0	b0
a1	b1

5

В	C
b0	c0
b0	c1
b1	c2
	•••

Map

	C	D
	c0	d0
	c1	d1
	c2	d2
200		

,,,,			
(b0, -)	(a0, R)		
(b1, -)	(a1, R)		
•••	•••		
(b0, c0)	(-, S)		
(b0, c1)	(-, S)		
•••	•••		
(-, c0)	(d0, T)		
(-, c1)	(d1, T)		
(-, c2)	(d2, T)		

key

value		
(a0, R)		
(a1, R)		
(-, S)		
•••		
(d0, T)		
(d1, T)		
(d2, T)		

最后输出

Reduce	Α	В	C	D
	a0	b0	c0	d0
	a0	b0	c1	d1
	a1	b1	c2	d2

一次处理多个连接

$R(A,B)\bowtie S(B,C)\bowtie T(C,D)$

• 令h为取值范围在 1,2,...,*m*的hash 函数

- S(b, c) -> (h(b), h(c)) h(b) = 0
- R(a, b) -> (h(b), all)
- T(c, d) -> (all, h(c))
- 每个Reduce进程 计算其接收到元 组上的连接

(Reduce进程的数量: 4² = 16) m=4, k=16

相似连接

相似查询为何不够?

应用案例

3 HU

- · 在如twitter的社交网站上寻找相似用户
- · 寻找相似产品, e.g网飞公司的电影推荐和Youtube的相似视频

基于MR设计多相似连接的算法

- · 问题: 一对来自两个数据集的记录,如果他们的相似性超过一 定的程度,它们应该被连接,相似度可以根据特定应用来定义
- 朴素解法

用MR进行多重集相似连接的算法

$$M_1 = \{ \langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 3 \rangle \}, M_2 = \{ \langle a, 1 \rangle, \langle c, 2 \rangle, \langle d, 2 \rangle \}$$

- Jaccard 相似性
$$\frac{|M_1\cap M_2|}{|M_1\cup M_2|}=\frac{|< a, min(2,1)>, < c, min(3,2)>|}{|< a, max(2,1)>, < b, 1>, < c, max(3,2)>, < d, 2>|}=\frac{1+2}{2+1+3+2}=\frac{3}{8}$$

• Cosine 相似性
$$\frac{M_1 \cap M_2}{\sqrt{|M_1| + |M_2|}} = \frac{1+2}{\sqrt{(2+1+3) + (1+2+2)}} = \frac{3}{\sqrt{11}}$$

・ Dice相似性
$$2 imes rac{|M_1 \cap M_2|}{|M_1| + |M_2|} = rac{2 imes (1+2)}{(2+1+3) + (1+2+2)} = rac{6}{11}$$

- 常见计算
- 单元函数, e.g.,

· 合取函数, e.g.,

$$|M_1 \cap M_2|$$

· 析取函数, e.g.,

$$|M_1 \cup M_2| = |M_1| + |M_2| - |M_1 \cap M_2|$$

- 自相似连接的可扩展性
 - 第一个 MapReduce 工作, MR_{uni}计算单元函数值
 - 其他 MapReduce 工作, MR_{sim} 计算合取函数值和相似性

多重集合相似连接算法

多重集合相似连接的算法

多集合相似连接的算法

- MR_{uni} 的变型
- 通过两个任务查找单元函数值

本讲内容

- 8.1 连接算法
- 8.2 图算法

- 例子: 我是我朋友的最好朋友么?
 - 步骤 #1: 去掉无关的边和结点

alice→sunita: 0.9

sunita \rightarrow alice: 0.9 sunita \rightarrow jose: 0.3

jose→sunita: 0.3

- 例子: 我是我朋友的最好朋友么?
 - 步骤 #1: 去掉无关的边和结点
 - 步骤 #2: 用朋友列表标记每个结点
 - 步骤 #3: 沿着每条边下推标签

sunita \rightarrow alice: 0.9 alice \rightarrow sunita: 0.9 sunita \rightarrow alice: 0.9 sunita \rightarrow jose: 0.3 jose \rightarrow sunita: 0.3 sunita \rightarrow jose: 0.3 alice \rightarrow sunita: 0.9 sunita \rightarrow alice: 0.9 jose \rightarrow sunita: 0.3 sunita \rightarrow jose: 0.3

- 例子: 我是我朋友的最好朋友么?
 - 步骤 #1: 去掉无关的边和结点
 - 步骤 #2: 用朋友列表标记每个结点
 - 步骤 #3: 沿着每条边下推标签

- 例子: 我是我朋友的最好朋友么?
 - 步骤 #1: 去掉无关的边和结点
 - 步骤 #2: 用朋友列表标记每个结点
 - 步骤 #3: 沿着每条边下推标签
 - 步骤 #4: 为每个结点确定结果

可否用MapReduce实现?

```
map(key: node, value: [<otherNode, relType, strength>])
{

} reduce(key: ____, values: list of ____)
{
}
```

• 使用邻接表表示?

可否用MapReduce实现?

```
map(key: node, value: <otherNode, relType, strength>)
{

}
reduce(key: _____, values: list of _____)
{
}
```

• 使用单边数据表示?

一个实际用例

- 一个在社交网络中常见的变种: 谁是我多个朋友的朋友?
- 朋友推荐!
 - 这些人可能是也是我的朋友!

更一般的情况...

- 假设我们希望超越直接的朋友关系
 - 例如: 有多少我朋友的朋友把我当做他们最好朋友 (距离为2的邻居)的最好朋友?
 - 我们需要做什么?

• 距离k>2的情况如何?

• 为了计算答案,我们需要运行多轮 MapReduce!

迭代 MapReduce

• 基本模型:

```
从输入路径拷贝文件 → dir 1
(可选: 进行预处理)

while (!结束条件) {
    map 从dir 1
    reduce 到dir 2
    move 文件: 从dir 2 → dir1
}

(可选: 后处理)
从dir 2 → 输出路径移动文件
```

- 注意reduce的输出必须和map的输入兼容!
 - 如果我们将mapper或者reducer中的一些信息过滤掉,会发生什么?

图算法和MapReduce

- 一个中心式算法通常每次扫描树或者图中的一个项(仅有一个游标)
 - 深度优先广度优先

- 许多图的算法需要多个map/reduce阶段
 - 一些时候需要迭代MapReduce, 另外一些时候需要map/reduce链

图算法和MapReduce

- 假设我们需要:
 - 为图中的每个点计算函数
 - 使用至多k-hop以外顶点中的数据
- 我们可以这样做:
 - 将信息延着边推送
 - "像结点一样思考"
 - 在每个结点上完成计算
- 可能需要多于一个MapReduce阶段
 - 迭代MapReduce: 阶段i的输出 → 阶段i+1的输入

基于路径的算法

- 目标是计算结点间关于路径的信息
 - 边的标记包括代价, 距离, 或者相似性

- 这类问题的例子:
 - 单源最短路径
 - 最小生成树
 - Steiner树 (连接给定集合的最小代价树)
 - 拓扑排序

单源最短路径: 如何并行化?

- Dijkstra算法每次沿着一个中间结点遍历 图,基于总路径长度定义遍历的优先级
 - 这里无需并行化!

- 直观的看,我们需要从源辐射的出来的点,每次增加一跳
 - 在下一轮开始之前,向外的每一步可以并行 的做

SSSP: 重温递归定义

```
bestDistanceAndPath(v) {
  if (v == source) then {
    return <distance 0, path [v]>
  } else {
    find argmin_u (bestDistanceAndPath[u] + dist[u,v])
    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>
  }
}
```

- Dijkstra算法仔细考察每个u,从而可以安全删除确定顶点
- 我们对每个v考察所有潜在的u
 - 通过保存u的前沿集合迭代计算(距离源i条边)

SSSP: MapReduce正规化

- 初始化: 从源到结点ID的最短路径长度为∞...
 - 对于每个结点node ID → ₹∞, -, {<succ-node-ID,edge-cost>}>

... 路径上的下一个结点

- map:
 - 考虑结点ID → <dist, next, {<succ-node-ID,edge-cost>}>
 - 对于每个succ-node-ID:

区是从源到succ-node-ID新 孤的路径

结点ID的邻接表

- 传送succ-node ID → {< node ID, distance+edge-cost > 无需最短}
- 传送ID → distance,{<succ-node-ID,edge-cost>}

为何必要?

reduce:

- distance := 前驱的最小代价; next := 具有最小代价的前驱.
- 传送ID → <distance, next, {<succ-node-ID,edge-cost>}>
- 重复,直到不发生变化
- 后处理: 去掉邻接表

阶段0:基本情况

mapper: (a,<s,10>) (c,<s,5>)

reducer: (a,<10, ...>) (c,<5, ...>)

阶段1

mapper: (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,9>) (b,<a,11>)

(b,<c,14>) (d,<c,7>)

reducer: (a,<8, ...>) (c,<5, ...>) (b,<11, ...>) (d,<7, ...>)

阶段2

mapper: (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,9>) (b,<a,11>) (b,<c,14>)

(d,<c,7>) (b,<d,13>) (d,<b,15>)

reducer: (a,<8>) (c,<5>) (b,<11>) (d,<7>)

不变化! 收敛!

阶段3

mapper: (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,9>) (b,<a,11>)

(b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>)

reducer: (a,<8>) (c,<5>) (b,<11>) (d,<7>)

SSSP摘要

- 基于路径的算法经常涉及到迭代 map/reduce
- · 经常把迭代正规化为"waves"或者"阶段", 类似BFS
 - 允许并行化
 - 需要收敛检测
- 例子: SSSP
 - Dijkstra算法难以并行化
 - 但是我们可以让其通过"wave" 方法运行

计算MST

- 问题:找到一个稠密图的最小生成树
- 算法
 - 随机划分顶点为k部分
 - 对于每一对顶点集,找到这两个集合导出二分子图的 MST
 - 对这样求出的所有MST的边取并集,生成图H
 - 计算H的MST

寻找MST

- 该算法易于并行化
 - 每个子图的MST 可以被并行计算
- 为何有效?
 - 定理: H的MST树 是 G的 MST
 - 证明: 当稀疏化输入图G时, 我们没有抛弃任何相关的边

致谢

• 本讲义部分内容来自于Rui Zhang, A. Haeberlen和Z. Ives的讲义

