PRÁCTICA 2

EL COMPORTAMIENTO DE LA INSOLACIÓN Y LA RADIACIÓN SOLAR EN AMBITOS LOCALES.

1.- OBJETIVO.

El objetivo de la práctica es aprender a calcular la insolación recibida en cualquier lugar del planeta a partir de sus coordenadas geográficas y los datos relativos a su topografía y la del entorno, así como inferir la radiación solar interceptada por ese punto.

2.- PROCEDIMIENTOS.

2.1. LA INSOLACIÓN.

2.1.1. Cálculo de las coordenadas solares. Se realiza en sucesivas etapas:

A. Cálculo de la declinación.

$$\delta = 23,45 \bullet sen \left[\frac{360 \bullet (284 + J)}{365} \right]$$

donde:

 $J = n^{\circ}$ del día del año desde 1 de enero = 1 hasta 31 de diciembre = 365.

B. Cálculo del ángulo horario de media jornada (ω_0).

Cos
$$\omega_0$$
 = -tang δ • tang L

Donde:

L =latitud.

C. Cálculo de la duración del día (D).

$$D = \frac{2\omega_0}{15}$$

D. Cálculo de la hora del orto y el ocaso (t_{or} y t_{oc}).

$$t_{\rm or} = 12 - \frac{D}{2}$$

$$t_{oc} = 12 + \frac{D}{2}$$

E. Cálculo de la altura solar de cada hora (h).

Sen
$$h = \text{sen } L \bullet \text{sen } \delta + \text{cos } L \bullet \text{cos } H \bullet \text{cos } \delta$$

Donde:

H = Angulo horario, el cual se calcula para cada hora sabiendo que a las 12 del mediodía vale 0° y que el sol recorre 15° en cada hora, de forma tal que a las 11 de la mañana valdrá - 15° a las 10 de la mañana -

 30° y así sucesivamente. Lo mismo sucedería por la tarde, pero con signo positivo, siendo el ángulo horario de $+15^{\circ}$ a las 13 horas, $+30^{\circ}$ a las 14 horas y así sucesivamente.

También se podría calcular directamente a partir del conocimiento de la latitud, la declinación y la hora del día. De todos modos, es útil conocer el método de cálculo de la duración del día o de la hora del orto y el ocaso o de la duración del día.

F. Cálculo del acimut de cada hora (A).

$$\cos A = \frac{senL \bullet senh - sen\delta}{\cos L \bullet \cosh}$$

Para el orto y el ocaso el acimut se calcularía con arreglo a la siguiente fórmula:

Sen
$$A = \cos \delta \bullet \sin \omega_0$$

2.1.2. Dibujo de la carta solar.

Las coordenadas solares para cada mes del año y cada hora del día se llevan al diagrama de Fisher y esto permite obtener la carta solar.

2.1.3. Incorporación del efecto de la orientación.

Constituye una limitación a la insolación obtenida mediante la carta solar dado que en cada orientación un punto sólo puede recibir el sol en un itinerario de 180°.

2.1.4. Incorporación del efecto de posibles obstáculos.

El efecto de sombra ejercido por cualquier obstáculo sobre un punto se calcula en sucesivas etapas:

Cálculo del acimut de los extremos del obstáculo

Ubicación del obstáculo en la posición adecuada.

2.1.5. El efecto de los obstáculos determinados por una orografía compleja.

Con la ayuda del mapa topográfico se inventarían los obstáculos existentes en el entorno del punto y se calcula su efecto obstaculizador de la insolación como en el punto anterior.

2.2. LA RADIACIÓN SOLAR.

2.2.1. Cálculo de la radiación solar en función de la topografía.

 $S = S_i \bullet \cos \theta$

Donde:

S = densidad de flujo radiante incidente sobre una superficie.

S_i = Densidad de flujo radiante perpendicular al rayo solar

 θ = Angulo formado entre el rayo solar y la normal a la superficie. Este a su vez se calcula mediante la siguiente expresión:

 $\cos \theta = \cos p \cdot \cos Z + \sin p \cdot \sin Z \cdot \cos (A_{sol} - A_p)$

Donde:

p = pendiente en grados

Z = ángulo cenital, es decir, ángulo formado entre el rayo solar y el cenit.

 $A_{sol} = acimut del sol$

 A_p = acimut de la pendiente.

2.2.2.- El efecto de la travesía de la atmósfera sobre la radiación solar.

$$S_{\text{sup}} = S_{\text{ext}} \bullet \text{ct}^{1/\text{senh}}$$

Donde:

 S_{sup} = Densidad de flujo radiante en la superficie

 S_{ext} = Densidad de flujo radiante en el límite exterior de la atmósfera

Ct = coeficiente de transparencia de la atmósfera

h = altura solar.

EJERCICIOS DE LA PRÁCTICA 2. El comportamiento de la insolación en ámbitos locales.

- 1. Construir la carta solar para un lugar situado a 45°N
- 2. Evaluar y comentar la insolación asociada a cada una de las 8 direcciones principales
- 3. Supuesto un edificio situado en el acimut sur, calcular y comentar el efecto de sombra ejercido sobre dicho edificio por un obstáculo de 10 m de altura y 5 de anchura situado a 5 m de distancia de él y en el acimut sureste.
- 4. Calcular las sombras ejercidas por el mismo obstáculo, pero supuesto que el edificio estuviera ubicado en el acimut este.
- 5. Calcular las sombras ejercidas por el mismo obstáculo, pero supuesto que el acimut del obstáculo fuera suroeste y el del edificio fuera sursuroeste.
- 6. Completar el efecto de sombra ejercido por el relieve en el ejemplo del cuaderno de prácticas del valle situado a 53° de latitud norte (de 20° en 20°).