

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

AVERAGE AND PROBABILITY.

70. Proposed by Professor MILLER.

A ship at A observes another at B, whose course is unknown. Supposing their speed the same, prove that the chance of their coming within a given distance, d, of each other is always $(2/\pi)\sin^{-1}(d/a)$, whatever the course taken by A; provided its inclination to AB is not greater than $\cos^{-1}(d/a)$, where AB=a. [From Cambridge Mathematical Tripos, 1871.]

Solution by G. B. M. ZERR, A. M., Ph.D., Professor of Chemistry and Physics. The Temple College, Philadelphia, Pa.

Let AB=a, $\angle CAB$ which ship A makes with $AB=\theta$, $\angle CBD$ which ship B makes with $AB=\varphi$ where C is the intersection of the two courses. Then $\angle ACB=(\varphi-\theta)$.

Let v=velocity of each ship, AC=b, BC=c.

Then in time t, the ship is distant from C, b-vt. B is distant from C, c-vt.

$$\therefore d^{2} = (b-vt)^{2} + (c-vt)^{2} - 2(b-vt)(c-vt)\cos(\varphi-\theta)$$
....(1).

$$v(b-vt)+v(c-vt)=[v(c-vt)+v(b-vt)]\cos(\varphi-\theta).$$

$$\therefore t = (b+c)/2v \dots (2).$$

Substituting (2) in (1) we get $d=(b-c)\cos \frac{1}{2}(\varphi-\theta)$.

But $b=a\sin\varphi/\sin(\varphi-\theta)$, $c=a\sin\theta/\sin(\varphi-\theta)$.

$$\therefore d = \frac{a\cos\frac{1}{2}(\varphi - \theta)(\sin\varphi - \sin\theta)}{\sin(\varphi - \theta)}.$$

Now $\sin \varphi - \sin \theta = 2\cos \frac{1}{2}(\varphi + \theta)\sin \frac{1}{2}(\varphi - \theta)$.

$$\therefore d = a\cos \frac{1}{2}(\varphi + \theta).$$

$$\therefore \varphi = 2\cos^{-1}(d/a) - \theta = \theta_1.$$

Let $\cos^{-1}(d/a) = \beta$.

$$\therefore \text{ Chance } = \frac{\int_{-\beta}^{\beta} \int_{\theta_1}^{2\pi - \theta_1} d\theta d\varphi}{\int_{-\beta}^{\beta} \int_{0}^{2\pi} d\theta d\varphi} = \frac{\int_{-\beta}^{\beta} (2\pi - 2\theta_1) d\theta}{4\pi\beta} = \frac{(\pi - 2\beta)}{\pi}.$$

$$p=(2/\pi)[\frac{1}{2}\pi-\cos^{-1}(d/a)]=(2/\pi)\sin^{-1}(d/a).$$