Project Machine Learning

Effect of feature weighting in Fuzzy-Rough nearest neighbour classification algorithms

Victor Miclotte and Bram Verbeke

December 2017

Fuzzy-Rough set theory

Similarity relation Fuzzy Quantifiers Classifiers

Feature Weights

Calculating weights

Experiments

Impact of KPerformance comparison

- ▶ Introduction to Fuzzy-Rough nearest neighbour classification
- Proposed several weighting methods

Fuzzy set theory

Remember a fuzzy set is a mapping $A: X \rightarrow [0,1]$.

For an element $x \in X$, A(x) would represent the membership degree of x to the fuzzy set A.

Rough set theory

Recall the problem of incomplete data.

Two objects could be indiscernible according to all features, but appeared to be different in class label.

If A is the set of all features, we can associate, with any subset $B \subseteq A$ a relation

$$R_B = \{(x, y) \in X^2 | \forall a \in B : a(x) = a(y) \}$$

This is an equivalence relation. So we could partition our universe X into these equivalence classes $[x]_B$.

Rough set theory

Remember we could approximate a decision class \boldsymbol{A} by a lower and upper approximation.

$$R_{B} \downarrow A = \{x \in X | [x]_{B} \subseteq A\}$$

$$R_{B} \uparrow A = \{x \in X | [x]_{B} \cap A \neq \emptyset\}$$

But now we can fuzzify this relation R_B as well

$$R_B = \{(x, y) \in X^2 | \forall a \in B : a(x) = a(y) \}$$

This would result in a fuzzy relation R where

$$R:X^2\to [0,1]$$

where R(x, y) denotes to what degree x is equal to y. We call this a similarity relation.

Frame Title

There are many examples of similarity relations, in this project we used

$$R(x,y) = 1 - \frac{||x - y||}{d_{max}}$$

where $d_{max} = \max_{x,y \in X} ||x-y||$. Here ||x-y|| was defined as the L^2 -norm

$$||x - y|| = \sqrt{\sum_{a \in A} (a(x) - a(y))^2}$$

where we could insert our weight vector like this

$$||x - y|| = \sqrt{\sum_{a \in A} (w(a) \cdot (a(x) - a(y)))^2}$$

Fuzzy Quantifiers

To construct these approximations we used the Vaguely Quantified Rough Set model (VQRS).

Here is an example of a fuzzy quantifier

$$Q_{(\alpha,\beta)}(x) = \begin{cases} 0, & x \le \alpha \\ \frac{2(x-\alpha)^2}{(\beta-\alpha)^2}, & \alpha \le x \le \frac{\alpha+\beta}{2} \\ 1 - \frac{2(x-\beta)^2}{(\beta-\alpha)^2}, & \frac{\alpha+\beta}{2} \le x \le \alpha \\ 1, & \beta \le x \end{cases}$$

with parameters α and β .

Lower and upper approximation

$$(R \downarrow A)(x) = Q_l \left(\frac{\sum_{y \in X} \min(R(x, y), A(y))}{\sum_{y \in X} \min R(x, y)} \right)$$
$$(R \uparrow A)(x) = Q_u \left(\frac{\sum_{y \in X} \min(R(x, y), A(y))}{\sum_{y \in X} \min R(x, y)} \right)$$

where $Q_I = Q_{(0.1,0.6)}$ and $Q_u = Q_{(0.2,1)}$.

AverageClassifier

```
Input: X: training data, C: set of decision classes, y: the
object to be classified
Output: Classlabel for y
N \leftarrow getNearestNeighbours(y, K)
\tau \leftarrow 0. Class \leftarrow \emptyset
for all C \in \mathbb{C} do
  if ((R \downarrow C)(y) + (R \uparrow C)(y))/2 > \tau then
      Class ← C
     \tau \leftarrow ((R \downarrow C)(y) + (R \uparrow C)(y))/2
   end if
end for
output Class
```

LowClassifier

```
Input: X: training data, C: set of decision classes, y: the
object to be classified
Output: Classlabel for v
N \leftarrow getNearestNeighbours(y, K)
\tau \leftarrow 0, Class \leftarrow \emptyset
for all C \in \mathbb{C} do
  if (R \downarrow C)(y) + (R \uparrow C)(y))/2 \ge r then Class \leftarrow C

\tau \leftarrow ((R \downarrow C)(y)) + (R \uparrow C)(y))/2
   end if
                              Input: X: training data, C: set of decision classes, y: the
end for
                              object to be classified
                              Output: Classlabel for y
                               N \leftarrow getNearestNeighbours(y, K) (similarity relation R)
                              \tau \leftarrow 0. Class \leftarrow \emptyset
                              for all \epsilon \in \mathbb{C} do
                                  if (R \downarrow C)(y) \geq \tau then
                                     Class ← C
                                     \tau \leftarrow (R \downarrow C)(y)
                                  end if
                              end for
```

UpClassifier

```
Input: X: training data, C: set of decision classes, y: the
object to be classified
Output: Classlabel for y
N \leftarrow getNearestNeighbours(y, K)
\tau \leftarrow 0, Class \leftarrow \emptyset
for all C \in \mathbb{C} do
   if (R \uparrow C)(y) \ge \tau then
      Class \leftarrow C
      \tau \leftarrow (R \uparrow C)(y)
   end if
end for
output Class
```

Calculating weights: Entropy-based

- 1. Entropy $H(X) := E[-\log(P(X))] = -\sum_{x} P(x) \log P(x)$
- 2. Information gain

$$IG(C,A) := H(C) - H(C|A)$$

- 3. Information gain ratio $IGR(C, A) := \frac{H(C) H(C|A)}{H(A)}$
- 4. Symmetrical uncertainty coefficient $SymmU(C,A) := \frac{H(C)U(C|A) + H(A)U(A|C)}{H(C) + H(A)}$

Calculating weights: Kullback-Leibler

- 1. Kullback-Leibler measure $\mathcal{KL}(C|a_{ij}) = \sum_{c} P(c|a_{ij}) \log \frac{P(c|a_{ij})}{P(c)}$
- 2. Weight of feature *i*, wavg(*i*), is weighted average of the KL measures across the feature values.
- 3. $wavg(i) = \sum_{j} \frac{\#(a_{ij})}{N} \mathcal{KL}(C|a_{ij})$
- 4. $\#(a_{ij})$ is the number of instances that have value a_{ij} for feature i
- 5. *N* is the total number of training instances

Calculating weights: (Multiclass) Support Vector Machines

Binary-class:

- 1. Build a support vector machine
- 2. Use the weights from the SVM as feature weights

Multi-class:

- 1. Build pairwise SVM's (aka 1-vs-1)
- Compute the average of weights across all SVM's for each feature
- 3. Use these averages as feature weights

Calculating weights: Relief feature selection

A feature selection algorithm that computes weights for every feature. Originally developed for binary-class data.

```
Algorithm 4 Relief
  Input: X: data, A: set of N attributes, C: binary
  set of decision classes, M: number of samples, w =
  (0, . . . , 0): N-dimensional vector
  Output: Weight vector w = (w_{attr1}, \dots, w_{attrN})
  for m = 1 : M \text{ do}
    randomly select x \in X
    find NH(x) and MH(x)
    for all A \in A do
      w_A =
      w_A - |A(x) - A(NH(x))| + |A(x) - A(NM(x))|
    end for
  end for
  output Weight vector w
```

Calculating weights: Relief feature selection

- 1. NH(x) is the "nearest hit" of x, the nearest instance with same class label
- 2. MH(x) is the "nearest miss" of x, the nearest instance with a different class label
- 3. Multi-class: using RELIEFF, consider multiple near misses and average their contribution when calculating weights

Calculating weights: OneR

A simple classification algorithm that finds the most relevant attribute and builds a classification rule based on just this one attribute.

```
Algorithm 4 OneR
```

```
Input: X: training data, A: set of attributes, C: set of decision classes

Output: Optimal attribute and its rule for all Attribute A \in A do create a rule R_A for all Value a \in A do find the most frequent class C add rule to R_A: if A = a then C = C end for calculate the error rate of R_A end for output A \in A with lowest error rate for its rule R_A, R_A
```

Calculating weights: OneR

- 1. For every attribute A a rule R_A is created and an error rate err_A is computed.
- 2. We use $1 err_A$ as weight for attribute A.
- 3. A low *err*_A indicates that A is rather relevant and it will get a higher weight.

Preprocessing: discretization

- 1. Calculation of probabilities P(A = a), P(C = c|A = a)
- 2. A certain value will rarely occur multiple times, when the attribute is continuous
- 3. We discretized every attribute using k-means with k = numClasses.
- 4. Discretization did not improve the performance of any of the algorithms
- 5. We decided to work with raw data

Experiments

Table: Datasets

Data set	NUMBER OF	NUMBER OF	TYPE
	FEATURES	INSTANCES	
APPENDICITIS	7	106	NUMERIC
Glass	9	214	NUMERIC
Heart	13	294	NUMERIC
Iris	4	150	NUMERIC
Water2	38	521	NUMERIC
WINE	13	178	NUMERIC

Experiments

For every dataset, we made 10 folds to conduct cross-validation.

These folds were stored in separate files so we would experiment on the same folds every time.

In the following figures

- ► LowClassifier is pointed in black
- AverageClassifier in green
- and UpClassifier in blue.

Impact of K

Figure: Balanced accuracy, dataset: Water2

Impact of K

Figure: Balanced accuracy, dataset: Wine

Impact of K

Figure: Balanced accuracy, dataset: Glass

From now on we will compare the performance of our weighting methods with a fixed number of neighbours K = 3.

Figure: Balanced accuracy, dataset: Appendicitis

Figure: Balanced accuracy, dataset: Wine

Figure: Balanced accuracy, dataset: Glass

Figure: Balanced accuracy, dataset: Water2

Figure: Balanced accuracy, dataset: Iris

Figure: Balanced accuracy, dataset: Heart

Conclusion

- 1. Feature weighting has the potential to improve Fuzzy-Rough nearest neighbour classification algorithms
- Multiple feature weighting methods have been tested but none of them consistently improve the classification algorithms nor make them perform worse
- Consider using different feature weighting methods to optimize the performance of Fuzzy-Rough nearest neighbour classification algorithms