Complex Analysis Homework 7

Colin Williams

November 9, 2020

Question 1

Write down an expansion of the form $\sum_{n=0}^{\infty} a_n z^n$ for the following:

(a)
$$\frac{1}{(1+z)^3}$$
,

(b)
$$ze^{z^2}$$
.

In each case, specify where the expansion is valid.

Answer. (a)

Examine the following function:

$$f(z) := \frac{1}{1+z}$$

By taking derivatives, we can see that,

$$f'(z) = \frac{-1}{(1+z)^2}$$
$$f''(z) = \frac{2}{(1+z)^3}$$

Also, note that by using the fact that $\frac{1}{1-w} = \sum_{n=0}^{\infty} w^n$ for all |w| < 1. Thus,

$$f(z) = \frac{1}{1+z} = \frac{1}{1-(-z)} = \sum_{n=0}^{\infty} (-z)^n = \sum_{n=0}^{\infty} (-1)^n z^n$$
 for all $|z| < 1$

by the examination above

The function we are interested in is $\frac{1}{(1+z)^3} = \frac{1}{2}f''(z)$ for f defined above. Therefore,

$$\frac{1}{(1+z)^3} = \frac{1}{2} \frac{d^2}{dz^2} \left(\frac{1}{1+z} \right) = \frac{1}{2} \frac{d^2}{dz^2} \left(\sum_{n=0}^{\infty} (-1)^n z^n \right)$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{d^2}{dz^2} \left((-1)^n z^n \right)$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} \frac{d}{dz} \left(n(-1)^n z^{n-1} \right)$$

$$= \frac{1}{2} \sum_{n=2}^{\infty} (-1)^n n(n-1) z^{n-2}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n+2}}{2} (n+2)(n+1) z^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2} (n+1)(n+2) z^n$$

The first series was valid whenever |z| < 1 and since the derivative of a power series has the same radius of convergence, $(-1)^n$

our final series converges for |z| < 1 and for $a_n = \frac{(-1)^n}{2}(n+1)(n+2)$.

Answer. (b)

Recall the series expansion for e^w :

$$e^w = \sum_{n=0}^{\infty} \frac{1}{n!} w^n$$
 for all $z \in \mathbb{C}$

Thus, we can also find an expansion for $f(z) := e^{z^2}$:

$$f(z) = e^{z^2} = \sum_{n=0}^{\infty} \frac{1}{n!} (z^2)^n = \sum_{n=0}^{\infty} \frac{1}{n!} z^{2n}$$

Additionally, we can note that $f'(z) = 2ze^{z^2}$. Thus, the function we are interested in is $ze^{z^2} = \frac{1}{2}f'(z)$, so we can find it's expansion by doing the following:

$$ze^{z^2} = \frac{1}{2} \frac{d}{dz} \left(e^{z^2} \right) = \frac{1}{2} \frac{d}{dz} \left(\sum_{n=0}^{\infty} \frac{1}{n!} z^{2n} \right)$$
 by the examination above
$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{d}{dz} \left(\frac{1}{n!} z^{2n} \right)$$
$$= \frac{1}{2} \sum_{n=1}^{\infty} \frac{2n}{n!} z^{2n-1}$$
$$= \sum_{n=1}^{\infty} \frac{1}{(n-1)!} z^{2n-1}$$
$$= \sum_{n=1}^{\infty} \frac{1}{n!} z^{2n+1}$$

Since the first series was valid for all $z \in \mathbb{C}$ and the fact that the derivative of a power series has the same radius of convergence, we know that this final series converges for all $z \in \mathbb{C}$. Note this isn't quite the form we want for this question, so I will make the following definition:

$$a_n = \begin{cases} \frac{1}{k!} & \text{if } n \text{ is an odd number of the form } n = 2k+1 \text{ for } k \in \mathbb{N} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Thus, the above series is in the desired form of $\sum_{n=0}^{\infty} a_n z^n$ with the same convergence as discussed above.