

Initial Design

TEAM MAGENTA

Bryan Babines

Carly Cernic

Qaseem Chaudhry

Holden Jones

James Sun

Aaron Waner

Design

1.0 Introduction

1.1 Goals and Objectives

SmartTransit is a private transportation network utilized in an urban setting. Individual vehicles able to connect to the network can be controlled automatically by the system within the city limits. This creates a safe automated system for users that can also be manually controlled when needed.

1.2 Statement of Scope

This design is limited to describing the development of the data center and contained systems including the network communication and security system for an individual city within the United States of America.

Design

2.0 Data Model Description

2.1 System Context Diagrams

Level 0 Context Diagram

Design

Level 1 Diagram

Design

2.2 Class Diagrams

Swarm Class Diagram

Design

StreetAdr Class Diagram

GPos Class Diagram

2.3 Use Case Diagrams and Descriptions

Page 5

Design

Use Case Name	External Communications Use Case
Actors	In-car device, routing system, database system, communications system
Description	The in-car device sends one of three possible message types to the SmartTransit server through encrypted transmission, receiving a response in return.
Assumptions	SSL connection between car and communications server has been established, in-car device uses proper encryption.
Basic Flow	 The in-car device sends an initial route request The ST routing system sends back a confirmation message The ST routing system sends back the corrected route to the in-car device The in-car device sends regular location pings The ST database system returns a confirmation message for each ping
Alternative Flow	4a. If at any point the route is finished or the device does not respond for a long period of time, the active connection is stopped.

3.0 Architectural Design: Hierarchy Diagram

4.0 Component-Level Design

5.0 Dynamic Design Model: Activity Diagrams

Communications system activity diagram

Page 8

Design

Database system activity diagram

Design

Routing system activity diagram

Swarm system activity diagram

Page 10

Design

6.0 Restrictions, Limitations, and Constraints

6.1 Design Restrictions and Limitations

Requirements specification

- Vehicle laws
- Security standards

Design

• Tower or satellite connection from server to vehicle is needed for routing

Implementation of the software

- Server space
- Server maintenance
- Tower maintenance
- Hosting connections to the vehicles

6.2 Design and Implementation Constraints

SmartTransit must perform within the constraints of federal, state, and local transportation laws and regulations. The database infrastructure and signal transmission structures need time to set up. The database also requires multiple storages and central hubs in order for easier data manipulation through database management system in the datacenter. The artificial intelligence system will handle the majority of the connection between applications. The datacenter will use oracle database as the base technology and tools. The database will also

Design

use massive parallel processing or parallel database management system, for this system parallelizes the query execution of a database management system, splits queries and allocates them to multiple database management system nodes in order to process massive amounts of data concurrently. There will be multiple interface language options available to users.

Communication protocol and security will be handled during the information transmission through the network. In the database and system designs, the main navigation system will also show clear naming and functionality of the software; visualized hierarchy will appear as priority for the explanation and guidance for the functionality of the software.