Análisis de Algoritmos y Matemáticas Discretas Tarea 4

Antonio Barragán Romero

Analisis de complejidad de MO-LTE

Sea N la cantidad de elementos en nuestro arreglo y Q la cantidad de queries. Como se vio en clase el Algoritmo de Mo contesta las queries en cierto orden y para ello lo que hace es que mantiene un arreglo [l,r], que se "expande" o se "contrae" (al pasar de una querie a otra), el cual matiene la respuesa para ese intervalo. Entonces la complejidad depende de que tanto [l,r] se "expande" o se "contrae", ademas de la complejidad de obtener la respuesta.

Para contar la cantidad de numeros o iguales a cierta M en cierto [l,r], lo que haremos sera tener un arreglo $[0,10^6]$ el cual contara las repeticiones de cada numero en [l,r]. Entonces cuando requiramos la cantidad de numeros menores o iguales a cierta M en [l,r], simplemente tendremos que sumar la cantidad de repeticiones en [0,M]. Por ello usaremos un Fenwick Tree¹, pues nos permite calcular la suma de repeticiones en [0,M] en $O(\log N)$ ademas de que permite actualizar la cantidad de repetionces de un elemento en $O(\log N)$.

Como se vio en clase la complejidad esta dada por la cantidad de movientos de l y de r la cual , notemos ademas que anteriormente vimos que cada movimiento es $O(\log N)$. Para contar la cantidad que se mueve el r, notemos que en cada bloque mueve O(N), hay \sqrt{N} bloques y cada moviento cuesta $O(\log N)$, entonces su complejidad es $O\left(N\sqrt{N}\log(N)\right)$. Para el caso de la l, notemos que como se ordenan por bloque se puede mover a lo mas \sqrt{N} y eso por cada queri, como cada movimiento cuesta $O(\log N)$ tenemos que la complejidad es $O\left(Q\sqrt{N}\log(N)\right)$. Ademas notemos que el obtener la respuesta cuesta $O(\log(N))$ y eso se hace por cada queri, entonces la complejidad es $O(Q\log(N))$. En total la complejidad es

$$O\Big((N+Q)\sqrt{N}\log(N)\Big) + O(Q\log(N)) = O\Big((N+Q)\sqrt{N}\log(N)\Big).$$

 $^{^{1}} https://cp\text{-}algorithms.com/data_structures/fenwick.html \\$