MATH-2105: Matrices, Vector Analysis and Coordinate Geometry

Course Instructor:

Abdul Karim Lecturer, NSTU Cell: 01737184545

E-mail: akarim.amth@nstu.edu.bd

Physical quantities can be divided into two main groups, scalar quantities and vector quantities:

Scalar Quantities

A Physical Quantity which has magnitude only is called as a Scalar. Example: Time, Temperature, Mass, Density, Volume, Energy, Distance, Speed, Specific Heat etc. are examples of scalars. That is, the measurement of years, months, weeks, days, hours, minutes, seconds, and even milliseconds, A temperature of 15°C, A mass of 0.2 kg, etc.

Vector Quantities

A Physical Quantity which has both magnitude and direction is called as Vector Examples: velocity, displacement, acceleration, force, Weight, Momentum, Magnetic Field Intensity etc.

Some Examples:

- 01. A speed of 10 km/h is a scalar quantity, but a velocity of 10 km/h due north is a vector quantity.
- 02. A temperature of 1000 c is a scalar quantity.
- 03. The weight of a 7 kg mass is a vector quantity. [w = mg]

Magnitude and Sign Convention of Vectors

Two dimensional vector is

$$\overrightarrow{OA}$$
 or $\overrightarrow{A} = A_x \hat{\imath} + A_y \hat{\jmath} = \begin{bmatrix} A_x \\ A_y \end{bmatrix}$

Length or magnitude is
$$|\overrightarrow{OA}|$$
 or $|\overrightarrow{A}| = \sqrt{{A_x}^2 + {A_y}^2}$

Three dimensional vector is

$$\overrightarrow{OA} \text{ or } \overrightarrow{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k} = \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix}$$

Length or magnitude is
$$|\overrightarrow{OA}|$$
 or $|\overrightarrow{A}| = \sqrt{{A_x}^2 + {A_y}^2 + {A_z}^2}$

Example

Determine the vector having initial point P(1, 2, 3) and terminal point Q(5, 3, -1) and find its magnitude.

Solution

$$\overrightarrow{PQ} = (5-1)\hat{\imath} + (3-2)\hat{\jmath} + (-1-1)\hat{k} = 4\hat{\imath} + \hat{\jmath} - 2\hat{k}$$
$$|\overrightarrow{PQ}| = \sqrt{4^2 + 1^2 + (-2)^2} = \sqrt{21}$$

Physical Significance of The scalar or dot product: Work done

We know

Work = Force applied \times displacement happened

$$W = \vec{F} \cdot \vec{S}$$

Example

A block of mass m moves from point A to B along a smooth plane surface under the action of force as shown in the figure. Find the work done.

Figure 31

Figure 32

Solution

Workdone $W = \vec{F} \cdot \vec{S} = |\vec{F}| |\vec{S}| \cos \theta = 10.10 \cdot \cos 60^{\circ} = 10.10 \cdot \frac{1}{2} = 50$ joule

Dot Product of Two Vectors

If \vec{A} and \vec{B} are two vectors, then the dot product is defined by

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

If $\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$ and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$, then $\vec{A} \cdot \vec{B}$ can be found by

$$\vec{A}.\vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Note:

$$\hat{\imath}.\,\hat{\imath}=\hat{\jmath}.\,\hat{\jmath}=\hat{k}.\,\hat{k}=1$$
 and $\hat{\imath}.\,\hat{\jmath}=\hat{\jmath}.\,\hat{\imath}=\hat{\imath}.\,\hat{k}=\hat{k}.\,\hat{\imath}=\hat{\jmath}.\,\hat{k}=\hat{k}.\,\hat{\jmath}=0$

Example

If
$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$
 and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$, then show that

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Solution

Given vectors are $\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$ and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$

$$\vec{A}.\vec{B} = A_x B_x(\hat{\imath}.\hat{\imath}) + A_x B_y(\hat{\imath}.\hat{\jmath}) + A_x B_z(\hat{\imath}.\hat{k}) + A_y B_x(\hat{\jmath}.\hat{\imath}) + A_y B_y(\hat{\jmath}.\hat{\jmath}) + A_y B_z(\hat{\jmath}.k) + A_z B_x(\hat{k}.\hat{\imath}) + A_z B_y(\hat{k}.\hat{\jmath}) + A_z B_z(\hat{k}.\hat{k})$$

$$= A_x B_x + A_y B_y + A_z B_z$$

Orthogonal (Perpendicular) Vectors

When two vectors \vec{A} and \vec{B} are perpendicular to each other, their dot product is always zero, that is

$$\vec{A} \cdot \vec{B} = 0$$

Since

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta = |\vec{A}| |\vec{B}| \cos 90^\circ = 0$$

Example

Determine whether the vectors $\vec{A} = 3\hat{\imath} + 5\hat{\jmath} - 2\hat{k}$ and $\vec{B} = 2\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$ are perpendicular.

Solution

Given that $\vec{A} = 3\hat{\imath} + 5\hat{\jmath} - 2\hat{k}$ and $\vec{B} = 2\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$

Now
$$\vec{A} \cdot \vec{B} = (3\hat{\imath} + 5\hat{\jmath} - 2\hat{k}) \cdot (2\hat{\imath} - 2\hat{\jmath} - 2\hat{k}) = 3.2 + 5 \cdot (-2) + (-2) \cdot (-2) = 0$$

Since $\vec{A} \cdot \vec{B} = 0$, the vectors \vec{A} and \vec{B} are perpendicular to each other.

Cross Product of Two Vectors

If \vec{A} and \vec{B} are two vectors, then the dot product is defined by

$$\vec{A} \times \vec{B} = \hat{n} |\vec{A}| |\vec{B}| \sin \theta$$

where \hat{n} is the unit vector which will indicate the direction of $\vec{A} \times \vec{B}$.

If $\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$ and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$, then $\vec{A} \times \vec{B}$ can be found by

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Example

If
$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$
 and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$, then show that

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Solution

Given vectors are $\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$ and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$

$$\vec{A} \times \vec{B} = A_{x}B_{x}(\hat{\imath} \times \hat{\imath}) + A_{x}B_{y}(\hat{\imath} \times \hat{\jmath}) + A_{x}B_{z}(\hat{\imath} \times \hat{k}) + A_{y}B_{x}(\hat{\jmath} \times \hat{\imath}) + A_{y}B_{y}(\hat{\jmath} \times \hat{\jmath})$$

$$+ A_{y}B_{z}(\hat{\jmath} \times k) + A_{z}B_{x}(\hat{k} \times \hat{\imath}) + A_{z}B_{y}(\hat{k} \times \hat{\jmath}) + A_{z}B_{z}(\hat{k} \times \hat{k})$$

$$= A_{x}B_{x}.0 + A_{x}B_{y}\hat{k} + A_{x}B_{z}(-\hat{\jmath}) + A_{y}B_{x}(-\hat{k}) + A_{y}B_{y}.0 + A_{y}B_{z}\hat{\imath} + A_{z}B_{x}\hat{\jmath} + A_{z}B_{y}(-\hat{\imath}) + A_{z}B_{z}.0$$

$$= \hat{\imath}(A_{y}B_{z} - A_{z}B_{y}) + \hat{\jmath}(A_{x}B_{z} - A_{z}B_{x}) + \hat{k}(A_{x}B_{y} - A_{y}B_{x})$$

$$= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \end{vmatrix}$$

Parallel Vectors

When two vectors \vec{A} and \vec{B} are parallel to each other, their cross product is always zero, that is

$$\vec{A} \times \vec{B} = 0$$

Since

$$\vec{A} \times \vec{B} = \hat{n} |\vec{A}| |\vec{B}| \sin \theta = \hat{n} |\vec{A}| |\vec{B}| \sin 0^{\circ} = 0$$

Example

Determine whether the vectors $\vec{A} = 3\hat{\imath} + 5\hat{\jmath} - 2\hat{k}$ and $\vec{B} = 2\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$ are parallel.

Solution

Given that
$$\vec{A} = 3\hat{\imath} + 5\hat{\jmath} - 2\hat{k}$$
 and $\vec{B} = 2\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$

Now
$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 5 & -2 \\ 2 & -2 & -2 \end{vmatrix}$$

$$= (-10 - 4)\hat{i} + (-4 + 6)\hat{j} + (-6 - 10)\hat{k}$$

$$= -14\hat{i} + 2\hat{j} - 16\hat{k}$$

$$\neq 0$$

Hence the given vectors are not mutually parallel.

Example

Find the angle between the vectors $\vec{A} = 2\hat{\imath} - 3\hat{\jmath} + \hat{k}$ and $\vec{B} = 4\hat{\imath} + \hat{\jmath} - 3\hat{k}$.

Solution

Given that
$$\vec{A} = 2\hat{\imath} - 3\hat{\jmath} + \hat{k}$$
 and $\vec{B} = 4\hat{\imath} + \hat{\jmath} - 3\hat{k}$. Now
$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$
$$\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|}$$
$$\cos \theta = \frac{2.4 + (-3).1 + 1.(-3)}{\sqrt{2^2 + (-3)^2 + 1^2} \sqrt{4^2 + 1^2 + (-3)^2}}$$
$$\cos \theta = \frac{2}{\sqrt{14}\sqrt{26}}$$
$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{14}\sqrt{26}}\right)$$

Example

Determine the angles α , β , γ which the vector $\vec{A} = 2\hat{\imath} - 3\hat{\jmath} + \hat{k}$ makes with the positive directions of the coordinate axes and show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

Solution

Given vector is $\vec{A} = 2\hat{\imath} - 3\hat{\jmath} + \hat{k}$

Unit vector along the x-axis is \hat{i}

Thus, the angle α making by the vector \vec{A} with the x-axis is given by

$$\alpha = \cos^{-1}\left(\frac{\vec{A}.\,\hat{\imath}}{|\vec{A}||\hat{\imath}|}\right)$$

$$= \cos^{-1}\left(\frac{2.1+(-3).0+1.0}{\sqrt{2^2+(-3)^2+1^2}.\sqrt{1^2+0^2+0^2}}\right)$$

$$= \cos^{-1}\left(\frac{2}{\sqrt{14}}\right)$$

Unit vector along the y-axis is \hat{j}

Thus, the angle β making by the vector \vec{A} with the x-axis is given by

$$\beta = \cos^{-1}\left(\frac{\vec{A} \cdot \hat{j}}{|\vec{A}||\hat{j}|}\right)$$

$$= \cos^{-1}\left(\frac{2.0 + (-3).1 + 1.0}{\sqrt{2^2 + (-3)^2 + 1^2}.\sqrt{0^2 + 1^2 + 0^2}}\right)$$

$$= \cos^{-1}\left(-\frac{3}{\sqrt{14}}\right)$$

Unit vector along the z-axis is \hat{k}

Thus, the angle γ making by the vector \vec{A} with the x-axis is given by

$$\gamma = \cos^{-1}\left(\frac{\vec{A}.\hat{k}}{|\vec{A}||\hat{k}|}\right)$$

$$= \cos^{-1}\left(\frac{2.0 + (-3).0 + 1.1}{\sqrt{2^2 + (-3)^2 + 1^2}.\sqrt{1^2 + 0^2 + 0^2}}\right)$$

$$= \cos^{-1}\left(\frac{1}{\sqrt{14}}\right)$$

Example

A particle acted on by constant forces $\vec{F_1} = 4\hat{\imath} + \hat{\jmath} - 3\hat{k}$ and $\vec{F_2} = 3\hat{\imath} + \hat{\jmath} - \hat{k}$ (both measured in Newton), is displaced from the point (1, 2,3) to the point (5,4,1) (measured in meters). Find the total work done by the forces.

Solution

fsajh

Scalar triple product

If
$$A = [a_{ij}]$$
 where $a_{ij} = \begin{cases} 0, & when \ i < j \\ i+j, & when \ i = j \\ 2i-j, & when \ i > j \end{cases}$

Example

Find a unit vector in the direction to the vector $\vec{a} = 2\hat{i} + 4\hat{j} - 5\hat{k}$.

Solution

Given vector is $\vec{a} = 2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$

The magnitude of the vector \vec{a} is

$$|\vec{a}| = \sqrt{2^2 + 4^2 + (-5)^2} = \sqrt{45}$$

Thus, the unit vector parallel to the vector \vec{a} is

$$\hat{e} = \frac{2\hat{i} + 4\hat{j} - 5\hat{k}}{\sqrt{45}} = \frac{2}{\sqrt{45}}\hat{i} + \frac{4}{\sqrt{45}}\hat{j} - \frac{5}{\sqrt{45}}\hat{k}$$

Example

Find a unit vector parallel to the resultant of vectors $\vec{a} = 2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$ and $\vec{b} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$.

Solution

the resultant of vectors $\vec{a} = 2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$ and $\vec{b} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ is given by

$$\vec{R} = \vec{a} + \vec{b}$$

$$= (2+1)\hat{i} + (4+2)\hat{j} + (-5+3)\hat{k}$$

$$= 3\hat{i} + 6\hat{j} - 2\hat{k}$$

Magnitude of the resultant, $|\vec{R}| = \sqrt{3^2 + 6^2 + (-2)^2} = \sqrt{49} = 7$

Thus, the unit vector parallel to the resultant of vectors \vec{a} and \vec{b} is

$$\hat{e} = \frac{\vec{R}}{|\vec{R}|} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{7} = \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k}$$

Example

Find a unit vector perpendicular to the vectors $\vec{a} = 3\hat{\imath} + \hat{\jmath}$ and $\vec{b} = -\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$.

Solution

A vector perpendicular to \vec{a} and \vec{b} is $\vec{a} \times \vec{b}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 1 & 0 \\ -1 & 2 & 2 \end{vmatrix} = \hat{\imath}(2 - 0) - \hat{\jmath}(6 - 0) + \hat{k}(6 + 1) = 2\hat{\imath} - 6\hat{\jmath} + 7\hat{k}$$

Now, a unit vector perpendicular to \vec{a} and \vec{b} is obtained by dividing the vector $\vec{a} \times \vec{b}$ by its magnitude.

$$\hat{c} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \frac{2\hat{i} - 6\hat{j} + 7\hat{k}}{\sqrt{2^2 + (-6)^2 + 7^2}} = \frac{2\hat{i} - 6\hat{j} + 7\hat{k}}{\sqrt{89}} = \frac{2}{\sqrt{89}}\hat{i} - \frac{6}{\sqrt{89}}\hat{j} + \frac{7}{\sqrt{89}}\hat{k}$$

Example

Show that $\vec{A} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$, $\vec{B} = 2\hat{\imath} - \hat{\jmath} + 2\hat{k}$ and $\vec{C} = 3\hat{\imath} + \hat{\jmath} - \hat{k}$ are coplanar.

Solution

The necessary and sufficient condition for three vectors $\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$, $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$ and $\vec{C} = C_x \hat{\imath} + C_y \hat{\jmath} + C_z \hat{k}$ to be coplanar is

$$\begin{bmatrix} \vec{A} \ \vec{B} \ \vec{C} \end{bmatrix} = 0 \text{ or } \begin{vmatrix} A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z} \end{vmatrix} = 0$$

$$\text{Now } \begin{bmatrix} \vec{A} \ \vec{B} \ \vec{C} \end{bmatrix} = \begin{vmatrix} A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 2 & -3 \\ 2 & -1 & 2 \\ 3 & 1 & -1 \end{vmatrix}$$

Therefore, the vectors \vec{A} , \vec{B} , \vec{C} are coplanar.

Example

If $\vec{A} \cdot \vec{B} = \sqrt{3}$ and $\vec{A} \times \vec{B} = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$, find the angle between \vec{A} and \vec{B} .

Solution

Given

Example

Find all vectors \vec{V} such that $(\hat{i} + 2\hat{j} + \hat{k}) \times \vec{V} = 3\hat{i} + \hat{j} - 5\hat{k}$.

Solution

Given

Differentiation of Vectors: velocity and acceleration

Example

A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where t is the time.

- (a) Determine its velocity and acceleration at any time
- (b) Find the magnitudes of the velocity and acceleration at t = 0.

Solution

We perform some