HOMEWORK TWO

This homework problem set can be accomplished with the help of references. Every problem worths 2 point and DO NOT LEAVE ANY PROBLEM BLANK! It is due to 11:59 pm on November 27 (sharp).

Exercise 1. Recall that we have defined an operator $T: C_0^{\infty}(\mathbb{C}; \mathbb{C}) \to C_0^{\infty}(\mathbb{C}; \mathbb{C})$ by

$$T(f) := \partial_z(\varphi * f)$$

where $\varphi(w) = \frac{1}{\pi w}$ defined on $\mathbb{C}\setminus\{0\}$. Prove that $\|Tf\|_{L^2} = \|f\|_{L^2}$ for any $f \in C_0^{\infty}(\mathbb{C};\mathbb{C})$. In particular, T extends to an isometry of $L^2(\mathbb{C},\mathbb{C})$. (In class, we state a theorem: for any $f \in C_0^{\infty}(\mathbb{C};\mathbb{C})$ and $1 , we have <math>\|Tf\|_{L^p} \leq C_p\|f\|_{L^p}$. This exercise asks to manually verify this conclusion for p = 2, with equality in the conclusion and $C_2 = 1$.

Exercise 2. Let $D: X \to Y$ be a Fredholm operator. Then, for a sufficiently small bounded linear operator $P: X \to Y$ such that D+P is also a Fredholm operator, prove that $\operatorname{ind}(D+P) = \operatorname{ind}(D)$.

Exercise 3. Complete, with as many details as possible, the proof that the linearization of the *J*-holomorphic operator $\bar{\partial}_J: \mathcal{B} \to \mathcal{E}$, denoted by

$$D_u: W^{k,p}(u^*TM) \to W^{k-1,p}(\Omega^{0,1}(\Sigma, u^*TM)),$$

is a Fredholm operator for any $u \in W^{k,p}(\Sigma, M) \cap C^1(\Sigma, M)$ where $k \geq 1$ and p > 2. Recall that in class, we sketched the proof that D_u is *semi-Fredholm* in the sense that $\ker(D_u)$ has finite dimension and its image is closed, therefore, it suffices to consider dual or adjoint operator of D_u .

Exercise 4. Consider the following operator discussed in the class:

$$A = -J\frac{\partial}{\partial t} - S: W^{1,2}(S^1, \mathbb{R}^2) \to L^2(S^1, \mathbb{R}^2)$$

where J is the standard almost complex structure on \mathbb{R}^2 and $S: S^1 \to \operatorname{Sym}(2)$ is a constant symmetric matrix with negative determinant. Prove that $\ker(A) = \{0\}$ (in other words, the value 0 is not in the set of the eigenvalues of A).

Exercise 5. Show that function $u: \mathbb{R}^n \to \mathbb{R}$ defined by $u(x) = \log \log \left(1 + \frac{1}{|x|}\right)$ for $x \neq 0$ and u(0) = 0 satisfies $\int_{B_1(0)} |\nabla u|^n d\text{vol} < \infty$ for all $n \geq 2$, where $B_1(0)$ is the ball centered at $0 \in \mathbb{R}^n$ with radius 1. Therefore, $\chi u \in W^{1,n}(\mathbb{R}^n)$ for every $\chi \in C_0^{\infty}(\mathbb{R}^n)$. In particular, Sobolev embedding theorem for p > n case fails to extend to the "borderline" case where p = n.