TD2: Espaces euclidiens, notions de base

Questions métriques

Exercice 1 (Perpendiculaire commune)

On se place dans l'espace \mathbb{R}^3 .

- a) Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites distinctes de l'espace. Justifier l'existence d'une perpendiculaire commune à ces deux droites. Sous quelles conditions est-elle unique?
- **b)** Donner des équations de la perpendiculaire commune aux droites \mathcal{D}_1 d'équations $\{x+y-z-1=0, \ 2x+y+z=0\}$ et \mathcal{D}_2 déterminée par le point A de coordonnées (1,0,1) et le vecteur directeur \overrightarrow{u} de composantes (1,-1,0).
- c) Quelle est la distance entre \mathcal{D}_1 et \mathcal{D}_2 ?

Exercice 2 (Distance pondérée à un ensemble de points)

Soit $(A_i, \lambda_i)_{1 \le i \le n}$ un système pondéré de n points d'un espace affine euclidien de poids total $\sum_{i=1}^{n} \lambda_i$ non nul. Pour tout point M on définit la fonction

$$\phi(M) = \sum_{i=1}^{n} \lambda_i |\overrightarrow{MA_i}|^2.$$

a) Soit G le barycentre du système pondéré $(A_i, \lambda_i)_{1 \leq i \leq n}$, montrer que :

$$\phi(M) = (\sum_{i=1}^{n} \lambda_i) |\overrightarrow{MG}|^2 + \phi(G).$$

b) Discuter des lignes de niveau de la fonction ϕ dans le plan et dans l'espace.

Exercice 3 (L'espace euclidien des matrices)

On se place dans l'espace vectoriel $M_3(\mathbb{R})$ des matrices 3×3 .

- a) Rappeler comment munir $M_3(\mathbb{R})$ d'une structure d'espace euclidien. En donner une base orthonormée.
- b) Donner une base orthonormée de l'espace des matrices antisymétriques.
- c) Calculer l'orthogonal des matrices antisymétriques.

d) Calculer la distance de la matrice $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ au sous-espace des matrices diagonales.

Exercice 4 (Théorème de Sylvester-Gallai)

- a) Étant donné un nombre fini de points dans un plan affine (euclidien), montrer qu'on a l'alternative suivante :
 - soit tous les points sont alignés,
 - soit il existe une droite qui contient exactement deux points de l'ensemble.

Indication : Considérer un couple (P, \mathcal{D}) , où \mathcal{D} est une droite contenant au moins deux points de l'ensemble et $P \notin \mathcal{D}$ est un point de l'ensemble, tel que la distance $d(P, \mathcal{D})$ est minimale.

- b) Est-ce que la question précédente reste vraie si les points sont dans un espace de dimension quelconque?
- c) Est-ce que la première question reste vraie pour un nombre infini de points?

Convexes

Exercice 5 (Convexes euclidiens)

Soient \mathcal{C} un convexe fermé non vide d'un espace euclidien et $P \notin \mathcal{C}$ un point de cet espace.

- a) Montrer qu'il existe un unique point $Q \in \mathcal{C}$ tel que $d(P,Q) = d(P,\mathcal{C})$.

 On dit que Q est la projection de P sur \mathcal{C} .
- b) Montrer que l'hyperplan \mathcal{H} passant par Q et orthogonal à \overrightarrow{QP} est un plan de support, c'est-à-dire que \mathcal{H} rencontre \mathcal{C} , mais pas son intérieur.
- c) Montrer que tout convexe fermé peut s'écrire comme l'intersection de demi-espaces affines.
- d) Est-ce que la question précédente reste vraie si on se place dans un espace affine de dimension finie, plutôt que dans un espace euclidien?

Exercice 6 (Séparation de convexes)

Étant donnés deux convexes compacts disjoints dans un espace affine de dimension finie, montrer qu'il existe un hyperplan qui les sépare strictement (c'est-à-dire qu'il ne les rencontre pas et que les deux convexes ne sont pas dans le même demi-espace délimité par cet hyperplan).

Isométries

Exercice 7 (Isométries du triangle)

- a) Déterminer le groupe des isométries d'un triangle dans le plan, la discussion sera menée en fonction des propriétés métriques du triangle.
- b) Même question avec un quadrilatère.

Exercice 8 (Isométries du tétraèdre)

Montrer que le groupe des isométries affines qui préserve un tétraèdre régulier est isomorphe à \mathfrak{G}_4 , le groupe de permutations de 4 points.

Exercice 9 (Nature de certaines isométrie)

- a) Soit l'isométrie linéaire $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Décrire la nature de cette isométrie.
- b) Soient R et T une rotation et une translation de \mathbb{R}^3 . Quelle est la nature de $T \circ R$?
- c) Quelle est la composée de trois symétries de plans parallèles de \mathbb{R}^3 ?

Exercice 10 (Capes 2007, 2^e épreuve)

Partie V. GROUPES DIÉDRAUX

1. Soit E un plan affine euclidien orienté. Soit $p \in \mathbb{N}$, $p \geq 2$. On appelle groupe diédral d'ordre 2p, noté D_{2p} , le groupe des isométries laissant invariant un polygone régulier

$$\mathcal{P}_p = \{M_0, \dots, M_{p-1}\}$$

à p sommets, parcourus dans le sens direct. On pose $M_p=M_0$.

- a) Montrer que le sous-groupe C_p de D_p constitué des isométries directes est un groupe cyclique d'ordre p engendré par la rotation ρ de centre O et d'angle $\frac{2\pi}{p}$, où O est le centre du polygone \mathcal{P}_p .
- b) Préciser une symétrie orthogonale σ laissant le polygone \mathcal{P}_p invariant.
- c) Montrer que

$$D_{2p} = \{ \rho^i \circ \sigma^j ; i \in \{1, \dots, p-1\} \text{ et } j \in \{0, 1\} \}$$

et en déduire que D_{2p} est un groupe d'ordre 2p.

d) Soit $k \in \{1, ..., p-1\}$. Montrer que $\sigma \circ \rho^k \circ \sigma = \rho^{p-k}$.