2021-2022 Spring Semester

CS201- HW2: Algorithm Analysis

Name: İdil Atmaca

ID: 22002491

Course: CS201 – Fundamental Structures of Computer

Science 1

Section: 01

Date: 05/04/2022

Computer Specifation

ASUS Vivobook Pro 14 OLED

Processor 11th Gen Intel(R) Core(TM) i5-11300H @ 3.10GHz 3.11 GHz

Installed RAM 16.0 GB (15.7 GB usable)

System type 64-bit operating system, x64-based processor

TIME ELAPSED IN MILLISECONDS									
N	ALGORITHM 1			ALGORITHM 2					
	p = 101	p = 1009	p = 10007	p = 101	p = 1009	p = 10007	p = 50	p = 100	p = 1000
10^8	6557.31	6734.78	6467.47	34.37	1666.82	88416.8	8973.84	9386.58	8829.03
2*10^8	12814.52	12728.81	12633.7	30.702	1185.69	86585.2	16801.1	16837.1	17225.2
3*10^8	19549.74	18499.8	19363.6	31.368	1213.97	86098.6	26447.8	25065.2	25455.8
4*10^8	25535.73	24573.2	26050.9	30.853	705.744	91396.3	34672.3	35397.9	33405.8
5*10^8	32210.43	31259.8	31482.7	31.109	841.197	121161	42521.1	41599.8	43445
6*10^8	40851.85	39118.51	37687.5	30.678	990.404	113392	50471.6	50037.8	50744.2
7*10^8	46085.32	46017.7	43568.4	31.804	1143.68	88955.7	58198.8	58736.5	58736.5
8*10^8	50001.74	51326.33	49530.6	34.01	759.986	92464.1	68109.4	67204.7	67615.8
9*10^8	55727.83	57154.1	56121.3	41.603	925.386	134515	76812.9	78042.7	75546.2
10*10^8	62432.31	62657.5	64730.87	55.445	1057.6	89910.8	86388.3	84625.4	87068.5

TIME ELAPSED IN MILLISECONDS									
	ALGORITHM 3								
N	p = 101	p = 1009	p = 10007						
10^5	49803.51	50072.42	48934.2						
2*10^5	52162.71	52045.31	53413.9						
4*10^5	54949.73	55763.24	54781.61						
8*10^5	58211.52	58260.52	57675.63						
16*10^5	60686.35	60886.23	61120.3						
32*10^5	63945.72	63854.42	65146.2						
64*10^5	65819.13	69177.41	65841.6						
128*10^5	69176.23	68600.66	70444.61						
256*10^5	73231.64	72079.82	75683.62						
512*10^5	75189.81	76436.95	79419.41						

Blue, orange and green lines demonstrates for p = 101, 1009, 10007 respectively in figure 1 , 2 and 4.

k values for each algorithm is given in the graphs

ALGORITHM 1 (Naive algorithm)

Figure1

ALGORITHM 2 (Naive algorithm with Cycle shortcut)

Figure2: shows the time complexity of the algorithm for a and p values that are relatively prime

Figure3: shows the time complexity of the algorithm for a and p values that are not relatively prime

Blue, orange and green lines demonstrate for p = 50, 100,1000 respectively for this figure

ALGORTIHM 3 (Recursive Algorithm)

Figure4

N values increase by 2^n in order to demonstrate a better plot

Results

First algorithm is the slowest. Its time complexity is O(n) and its plots are linear. This happens because we iterate a for loop n times and update the result every time.

Second algorithms' time complexity depends on the relation between a and p. If they are relatively prime, its time complexity becomes O(i) because we iterate trough the for loop until find i where $a^i = p + 1$. However, if a and p are not relatively prime $a^i \mod p$ is never equal to 1 inside the scope. Since, there are no shortcut available in that scope, time complexity for second algorithm becomes the same as the first one. Thus, upper bound for second algorithm is O(n) and lower bound is O(i) or O(logp). Some fluctuations happen in the plots because how close a^i value gets to p + 1.

Third algorithms' time complexity is O(logN) since it is recursive. Some fluctuations happen because time complexity can change between odd and even n values. Other than that, algorithm continuously calls itself until we are left with number a itself and perform the required operations.