קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(3א/85 מועד - 2009 מועד 19.2.2009 מועד 19.2.2009 מועד 19.2.2009

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

במעגל שלהלן, כל אחד מחמשת המתגים <u>סגור</u> בהסתברות 0.7 (ואז <u>יכול לעבור בו זרם</u>). כמו כן, כל מתג פועל באופן בלתי-תלוי באחרים.

- (6 נקי) א. אם מתג 3 פתוח, מהי ההסתברות שעובר זרם מ-A ל-B!
- (6 נקי) ב. אם מתג 3 סגור, מהי ההסתברות שעובר זרם מ-A ל-B!
 - (6 נקי) ג. מהי ההסתברות שעובר זרם מ-A ל-B? **רמז:** השתמש בתוצאות שני הסעיפים הקודמים.
- (7 נקי) ד. אם <u>לא</u> עובר זרם, מהי ההסתברות שבדיוק 3 מתגים סגורים!

שאלה 2 (25 נקודות)

בחבילת נרות-חנוכה יש 45 נרות, שהאורך של כל אחד מהם מקרי.

אין תלות בין אורכי נרות שונים.

- א. במפעל א מייצרים נרות-חנוכה, שהתפלגות האורך (בסיימ) של כל אחד מהם היא נורמלית עם א. במפעל הפרמטרים 13 ו- 0.1^2 .
- 1. מהי ההסתברות שבחבילה מקרית יהיו בדיוק 30 נרות שהאורך שלהם בין 12.82 סיימ (7 נקי) ל- 13.06 סיימ!
 - ממנו? מהו אורך-הנר ש- 92% מהנרות קצרים ממנו?
- עם היא נורמלית שה מהם היא כל (בסיימ) בחנוכה, שהתפלגות נורמלית נורמלית מהם היא נורמלית עם (בסיימ) בי. במפעל ב σ^2 ו- 15 הפרמטרים 15 ו- σ^2

ידוע שההסתברות שהנר הקצר ביותר בחבילה מקרית (של 45 נרות) ארוך מ- 14.6 סיימ היא 0.354206.

 $.\sigma$ מצא את

שאלה 3 (25 נקודות)

- ה. א. הייו X ו- χ משתנים מקריים פואסוניים בלתי-תלויים עם הפרמטרים X ו- χ בהתאמה. א. (12 נקי) א. הירו χ ו- χ משתנה המקרי χ איש התפלגות פואסונית עם הפרמטר χ
- ב. בין שני עמודים לצד הדרך מתוחים 2 כבלי חשמל, האחד מעל השני. התפלגות מספר הציפורים שיושבות על כל אחד מן הכבלים היא בינומית עם הפרמטרים $\frac{1}{2}$ 30 ו- $\frac{1}{2}$ 0.5

אין תלות בין מספרי הציפורים על כל אחד מן הכבלים.

- (6 נקי) 1. מהי ההסתברות שעל שני הכבלים יחדיו יושבות בסך-הכל 27 ציפורים!
 - X יהיו: X מספר הציפורים על הכבל התחתון (7 נקי) .2

. מספר הציפורים על שני הכבלים יחדיוY

. $\rho(X,Y)$ חשב את

שאלה 4 (25 נקודות)

נתונה קבוצה של 30 אנשים -15 גברים ו-15 נשים.

מחלקים באקראי את הקבוצה לזוגות.

יהי X מספר הזוגות המעורבים (כלומר, זוגות המורכבים מגבר ואישה) שנוצרים בחלוקה.

- $P\{X=15\}$ א. חשב את (7 נקי)
- X ב. חשב את התוחלת של (9 נקי)
- X ג. חשב את השונות של (9 נקי)

שאלה 5 (25 נקודות)

 $\frac{10}{20}$ בנום ו- 10 בנום בנות.

. מחלקים לילדים באקראי 20 כובעים צבעוניים 10-1 אדומים, 5 כחולים ו20-1 ירוקים

כל אחד מהילדים מקבל כובע אחד, ואין הבדל בין כובעים <u>מאותו</u> הצבע.

- (8 נקי) א. מהי ההסתברות שכל הכובעים הכחולים יינתנו לְבַּנים!
- . ב. יהי X המשתנה המקרי המוגדר על-ידי מספר הבנות שמקבלות כובעים אדומים.
 - X מצא את פונקציית ההסתברות של X
 - X חשב את השונות של .2

X יהה את ההתפלגות של והה את המפלגות אל

(8 נקי) ג. לאחר שמחלקים לילדים את הכובעים, הם מסתדרים באופן אקראי בשורה. מהי ההסתברות שלא יהיו בשורה שני ילדים סמוכים שלשניהם כובעים ירוקים!

בהצלחה!

$\Phi(x)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^{2}/2} \, dy$$

х	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.0	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(x)$									
x	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(x)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
x	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	<i>ה</i> שונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	пр	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1,, n$	בינומית
$pe^{t}/(1-(1-p)e^{t})$ $t<-\ln(1-p)$	$(1-p)/p^2$	1/p	$(1-p)^{i-1} \cdot p$, $i = 1, 2,$	גיאומטרית
$\exp\left\{\lambda(e^t-1)\right\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$ \frac{\left(pe^t/(1-(1-p)e^t)\right)^r}{t < -\ln(1-p)} $	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0, 1,, m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a) , a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

נוסחת הבינום
$$P(A) = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 כלל ההכלה וההפרדה

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
הסתברות מותנית

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdot ... \cdot P(A_n \mid A_1 \cap A_2 \cap ... \cap A_{n-1})$$
 נוסחת הכפל

$$P(A) = \sum\limits_{i=1}^n P(A \,|\, B_i) P(B_i)$$
 , S אורים ואיחודם הוא $\{B_i\}$

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum\limits_{i=1}^n P(A \mid B_i)P(B_i)} \quad , \quad S \text{ אורים ואיחודם הוא } \{B_i\}$$

$$E[X] = \sum_{x} x p_X(x) = \int x f(x) dx$$
 תוחלת

$$E[g(X)] = \sum_{x} g(x) p_X(x) = \int g(x) f(x) dx$$
 תוחלת של פונקציה של מ"מ

$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

$$E[aX+b]=aE[X]+b$$
 תוחלת ושונות של פונקציה לינארית

 $Var(aX + b) = a^2 Var(X)$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+t ig|X>t\}=P\{X>s\}$$
 , $s,t\geq 0$ תכונת חוסר-הזכרון
$$E[X\mid Y=y]=\sum_{x}xp_{X\mid Y}(x\mid y)=\int xf_{X\mid Y}(x\mid y)dx$$
 תוחלת מותנית

$$\begin{aligned} & \text{Var}(X\mid Y=y) = E[X^2\mid Y=y] - (E[X\mid Y=y])^2 \Sigma \\ & \text{E}[X] = E[E[X\mid Y]] = \sum_y E[X\mid Y=y] p_y(y) \\ & \text{Ution a militim admittion and an entition and entiti$$

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי P(A)/[P(A)+P(B)] המאורע A יתרחש לפני המאורע
- שלילי). סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי). ullet
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.
- (p אותו עם בינומיים (בינומיים אותו Y ו-Y מיימ פואסוניים (בינומיים עם אותו X בהינתן אותו עם התפלגות היפרגיאומטרית).

$$\begin{split} \sum_{i=0}^{n} i &= \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^{\infty} \frac{x^i}{i!} &= e^x \qquad ; \qquad \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \qquad ; \qquad \sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \quad , \quad -1 < x < 1 \\ \int (ax+b)^n dx &= \frac{1}{a(n+1)} (ax+b)^{n+1} \quad , \quad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a} \ln(ax+b) \\ &= \int e^{ax} dx = \frac{1}{a} e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a \ln b} b^{ax} \qquad ; \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \end{split}$$