- Review of <u>LLM Talk by Vishal Misra</u>
- Cofounded Cricinfo
- ESPN acquired Cricinfo later, and kept the original interface
- Used GPT-3 to create text2sql interface. AskCricInfo running in production.
- Take query -> Get intent -> Convert to DSL -> Send to LLM -> Get the answer.
- · Based primarily on "in-context learning".
 - No need to train model.
- How does it work? Why does it work?

Roadmap

- Focus on training objective of LLMs
- Interpret the text gen process as approximating a (very) large matrix of multinomial distributions.
- Prove a universal representation theorem of multinomial distributions as a linear combination of dirichlet distributions.
- Show the emergence of in-context-learning to be consistent with with Bayesian learning where
 - Prior -> Pre-trained model multinomial distribution
 - Prompt -> new evidence / likelihood
 - Bayesian posterior -> multinomial distribution used in text generation.

ChatGPT

- Ability to perform new tasks from only instructions
- Intuitive chat interface
- Free and open

Training Objective - Language Modelling

- Predict the next word in a sequence
- Model has vocab. Model produces distribution over words in the vocab.
- Once generated, sample from the distribution.
- Append to the text.
- Repeat

Through this, it learns many concepts such as:

- Grammar
- World Knowledge
- Arithmetic P(2+2=4) > P(2+2=5)

Test-time => Zero-shot / in-context learning

- Quickly learn new task with no/few labelled examples without updating model paramteers
- Why do we care?
 - save annotation efforts
 - Change time scale of learning to real time
 - This is the one true emergent ability of LLMs

Zero-shot Learning	What is the sentiment of this review? This		
$I \circ x^{\text{target}} \longrightarrow \hat{y}^{\text{target}}$	movie is boring □ Negative		
In-context (Few-shot) Learning			
$^{\prime} \circ x_{1} \circ y_{1} \circ x_{2} \circ y_{2} \circ x^{\text{target}} $	What is the sentiment of this review? I like the movie! Positive. Horrible movie! Negative. This movie is boring □ Negative		
COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK But it goes beyond that: learns	s completely new tasks		

Examples of In-context Learning

Examples of In-context learning

semantically-unrelated label ICL is the most difficult task, and emerged with LLMs.

Walking through AskCricInfo

- Created MetaLanguage to interpret query intent
 - Query: What are the best bowling figures in an IPL final?
 - Adjusted query: What are the best bownling figures in an Tournament0 final
 - Metalanguage: {'final_type': ['tournament final'], 'groupby':
 ['innings'], 'tournament': ['Tournament0'], 'type': ['bowling']}
 - Tournament0 used to make it a generic query that can work for any tournament. Replace it before answering with the right tournament name.

"Zero-shot" query to ChatGPT

- What is mohammed siraj's best bowling figures in ODIs?
 - Metalanguage format: Person0's best bowling figures in Tournament0 were 5-20.
- Numbers are completely made up.
- After giving few-shot examples, metalanguage query generated is correct.

Very quickly picks up the pattern

LLM Primer

- four kinds of parameter
 - Token size ("vocabulary" of the LLM)
 - Context size ("memory" of the LLM)
 - Parameter count (roughly weights of neural net)
 - Embedding vector (a vector space to represent words/tokens)
- For ChatGPT
 - Token size: ~50000
 - Context size: 8192 tokens for GPT 3.5
 - Parameter count: 175 billion (known for ChatGPT)
 - Embedding vector size: 12880 (recently another version has 1536)

First Generative text model

- Trained by Claude Shannon
- Model based on simple 1st order markov chain
- LLMs are n'th order Markov Chains, where "n" is the prompt or context length

Huge probability matrix

- Probability matrix size: $50000^{8000} X 50000$
- Each row represents a unique combination of upto 8000 words, from a vocab of 50,000 words
- The column values in each row represent the multinomial distribution to the next word
- The number of rows in this matrix exceeds the number of atoms across across all galaxies....

Fortunately, the matrix is extremely sparse

- Most rows individually occur with 0 probability
- Even for rows that occur with relatively high prob in real word, the multinomial distribution row is sparse i.e not all column values will be the same. Eg: "The cat sat on a " is unlikely to be followed by "mRNA"
- Still, 175 billion or even a trillion parameters are not enough to "represent" this matrix
- Use of embeddings further compresses representation

So what are LLMs trying to do?

They are trying to come up with the above matrix representation

The Matrix

50, 000 columns

Training and Generation of LLMs

- Training process consists of LLMs minimizing the multinomial distribution error of each row P("The cat sat on the mat") based on training data
- In the limit, the generation process reproduces the empirical distribution induced by the training set

Continuity Theorm

Suppose T is a mapping frmo an embedding space to the space of multinomial distributions, and is convexity preserving.

$$T(\alpha e^2 + (1 - \alpha)e^2 = \alpha T(e^1) + (1 - \alpha)Te^2$$

ELI5: Allows mapping of multinomial distribution from unseen embeddings as a linear combination of mappings of "closest" known embeddings.

Universal representation theorem

Any continuous multinomial distribution

$$u(p_1, p_2, \dots p_n)$$

can be approximated as a mixture of dirichlet distributions

$$D(p|k_1+1,k_2+1...k_m+1)$$

where

$$\sum k_i = n$$

, each distribution has parameters **k**

$$p(heta|k) = rac{1}{B(k)} \prod_{i=1}^m heta_i^{k-1}$$

and we determine the mixing constants

$$u^*(\frac{k_1}{n},\frac{k_2}{n}..)$$

Special case of Dirichlet: Beta distribution

Conceptual multinomial distribution generation process

Bayes theorem:

$$\operatorname{Posterior} = \frac{\operatorname{Prior} X \operatorname{likelihood}}{\operatorname{Evidence}}$$

Given prompt(Eg: The cat sat on the) (this is the "likelihood")

- Convert to embedding
- From the LLM pre-trained LLM, Using the continuity and universal representation theorem,
 Find embedding close to the prompt. This is the "approximate prior" for the bayesian model
- Model looks at the promt again. This is the "likelihood"
- Using this, performs the "Bayes update" and computes the posterior multinomial distribution.
- Posterior is used to generate the next token. This is repeated for every token.

In-context learning is like a Bayesian update mechanism. It can be some other mechanism, but it displays abilities consistent with Bayesian Updating. Occam's Razor:)

An exercise: In Context Learning

Pick the most difficult case: Semantically unrelated label in context learning

- Let the prior or pre-trained label for a prompt be "A"
- Let the distribution of labels be a Beta prior, with two labels A and B

$$Beta(\alpha_a, \beta_b)$$

If the training data is primarily label A with the rare occurrence of B, then we will have

$$\alpha_a >> \beta_b$$

We produce "n" samples of a prompt X, and labels A and B

Bayesian update

- Now conside ICL. Here, we are replacing A by B in n prompts
- Thus we have $x_b = n$ prompts of B and $x_a = 0$ prompts of A
- The posterior probabilities p_a and p_b with n samples of label B for the prompts is given by

$$E(p_a|x_a,x_b)=lpha_a/(lpha_a+eta_b+n)$$
 $E(p_b|x_a,x_b)=(eta_b+n)/(lpha_A+eta_B+n)$

Two cases with different α_A and β_B , maintaining ratio

n	$E(p_A n)$	$E(p_B n)$
0	0.968	0.032
1	0.229	0.771
2	0.13	0.87
3	0.091	0.909

When α_A and β_B are *small*, the probabilities **flip** with only **3** samples.

Table 1: Behavior of $E(p_A|n)$, $E(p_A|n)$ with n prompts and $\alpha = 0.3 \beta = 0.01$

n	$E(p_A n)$	$E(p_B n)$
0	0.968	0.032
1	0.732	0.268
2	0.588	0.412
3	0.492	0.508

With larger α_A and β_B probabilities are slower to change

Table 2: Behavior of $E(p_A|n)$, $E(p_A|n)$ with n prompts and $\alpha = 3\beta = 0.1$

Even if we had a small model, but had a larger context size, we could've flipped this probability with enough examples.

Interpretation of α_A and β_B and generalization

- The parameters α_A and β_B directly correspond to the size of the network(and the training data)
 - The larger the network(parametr space), the smaller are the individual values of these parameters
 - With diverse training data,a the probabilities get scattered across many more labels resulting in smaller α_A and β_B
 - In-context-learning "emerges" in larger networks because fewer examples are needed to move the probabilities via Bayesian updating.
 - The examples and intuition can be generalized to any multimodal distribution by the universal representation theorem.

Implications

- Some kind of bayesian switch is getting turned on in these networks to enabled optimal predictions
- Embeddings play a key role, especially continuity of embeddings to multinomial distributions
- Given that other architectures like Mamba etc. are showing similar behaviour,
 Transformers/Attention may not be the key => next token prediction is the key.
- Model explains phonomena like Chain of Thought reasoning(good priors exist for component steps in training data)
 - Smaller steps are likely seen in the training data before, leading to better overall results
 - When sampling tokens, if you pick the token in such a way that the entropy reduces, it means that the model is becoming more confident.
 - Model has likely seen smaller steps, hence the entropy of selecting these tokens will be low, thereby leading to higher confidence, and a better final result.