

<u>Help</u>

sandipan_dey >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

()

Next >

2. Bounce

☐ Bookmark this page

< Previous</pre>

Problem Set B due Sep 15, 2021 20:30 IST

Practice

Setup

In <u>Recitation 5</u>, you practiced finding an outgoing velocity vector of a particle that bounces off a wall. In this problem, you will generalize this calculation and express the answer using matrices.

The following image depicts the setup:

In the picture, \vec{v} is the velocity of the projectile before it hits the wall, and \vec{w} is the velocity of the projectile after it hits the wall. The vector \vec{n} is a normal vector to the wall. Assume $|\vec{n}| = 1$.

Physics tells us that the angle of incidence equals the angle of reflection – the two marked angles in the picture are equal. It also tells us that if there is no friction, then $|\vec{v}| = |\vec{w}|$. Given \vec{v} and \vec{n} , our goal is to find \vec{w} .

We will break this big problem into several steps. We begin by breaking \vec{v} into a piece parallel to \vec{n} and a piece perpendicular to \vec{n} , as in the following picture.

Find w from a and b

1/1 point (graded)

Find a formula for \vec{w} in terms of \vec{a} and \vec{b} . Write veca and vecb for \vec{a} and \vec{b} .

Solution:

Bouncing off the wall reverses $ec{m{b}}$ and leaves $ec{m{a}}$ the same. Therefore, $ec{m{w}} = ec{m{a}} - ec{m{b}}$.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Find length of b from v and n

1/1 point (graded)

What is the length of the vector \vec{b} ? Enter a formula in terms of \vec{v} and \vec{n} .

Write vecv for \vec{v} and vecn for \vec{n} . You may write a dot product such as $\vec{u}\cdot\vec{w}$ using vecu * vecw.

$$|ec{b}| = oxed{vecv^*vecn}$$
 $ightharpoonup Answer: vecv^*vecn$

Solution:

By trigonometry we have $|\vec{b}|=|v|\cos\theta$, where θ is the angle between \vec{v} and \vec{b} . Since \vec{b} is parallel to \vec{n} , this θ is also the angle between \vec{v} and \vec{n} . Since $|\vec{n}|=1$, we have $\cos\theta=\frac{\vec{v}\cdot\vec{n}}{|\vec{v}|}$. Substituting this $\cos\theta$ in to the above formula for $|\vec{b}|$ we obtain $|\vec{b}|=\vec{v}\cdot\vec{n}$.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Could not format HTML for problem. Contact course staff in the discussion forum for assistance.

Find a from v and n

1/1 point (graded)

Find a formula for \vec{a} from \vec{v} and \vec{n} .

Write vecv for \vec{v} and vecn for \vec{n} . You may also write a dot product between two vectors using *. To write a scaled vector such as $2\vec{v}$, enter 2*vecv.

Solution:

Since $\vec{v} = \vec{a} + \vec{b}$, we have $\vec{a} = \vec{v} - \vec{b}$. Substituting the value for \vec{b} found in the previous problem, we obtain $\vec{a} = \vec{v} - (v \cdot \vec{n}) \, \vec{n}$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Find w from v and n

1/1 point (graded)

Find a formula for $\vec{\boldsymbol{w}}$ from $\vec{\boldsymbol{v}}$ and $\vec{\boldsymbol{n}}$.

Write vecv for \vec{v} and vecn for \vec{n} . You may also write a dot product between two vectors using * . To write a scaled vector such as $2\vec{v}$, enter 2*vecv.

$\vec{w} = \int_{0}^{\infty}$	vecv - 2*(vecv*vecn)*vecn	✓ Answer: vecv-2*(vecv*vecn)*vecr
-------------------------------	---------------------------	-----------------------------------

Solution:

Since $\vec{w}=\vec{a}-\vec{b}$, and $\vec{v}=a+b$, we have $\vec{w}=\vec{v}-2\vec{b}$. Substituting the value for \vec{b} found in the previous problem, we obtain $\vec{w}=\vec{v}-2\,(v\cdot\vec{n})\cdot\vec{n}$.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Could not format HTML for problem. Contact course staff in the discussion forum for assistance.

2. Bounce

Topic: Unit 4: Matrices and Linearization / 2. Bounce

Add a Post

Hide Discussion

Previous	Next >

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

<u>Careers</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>