Отчет по лабораторной работе №2

Задача о погоне. (Вариант 70)

Кроз Елена Константиновна | НФИбд-02-18

Содержание

Цель работы	1
Задание	
Выполнение лабораторной работы	
Условие задачи	
Решение	
Выволы	

Цель работы

Приведем один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска. Например, рассмотрим задачу преследования браконьеров береговой охраной. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии к км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

Задание

- 1. Провести необходимые рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n раз.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Определить по графику точку пересечения катера и лодки.

Выполнение лабораторной работы

Принимаем за $t_0=0$, $X_0=0$ - место нахождения лодки браконьеров в момент обнаружения, $X_0=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров $x_0=0$ ($\theta=x_0=0$), а полярная ось r проходит через точку нахождения катера береговой охраны.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x-k (или x+k, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{x+k}{v}$ (для второго случая $\frac{x-k}{v}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние можно найти из следующего уравнения: $\frac{x}{v} = \frac{x+k}{v}$ - в первом случае, $\frac{x}{v} = \frac{x-k}{v}$ во втором случае.

Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев.

$$x_1 = \frac{k}{n+1}$$
,при $\theta = 0$

$$x_2 = \frac{k}{n-1}$$
,при $\theta = -\pi$

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_t - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $v = \frac{dr}{dt}$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус $r, vr = r \frac{d\theta}{dt}$ Найдем тангенциальную скорость для нашей задачи $v_t = r \frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t = \sqrt{n^2v_r^2 - v^2}$. Поскольку, радиальная скорость равна v, то тангенциальную скорость находим из уравнения $v_t = \sqrt{n^2v^2 - v^2}$. Следовательно, $v_t = v\sqrt{n^2 - 1}$.

Тогда получаем $r \frac{d\theta}{dt} = v \sqrt{n^2 - 1}$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = v\sqrt{n^2 - 1} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{k}{n+1} \end{cases}$$
$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{k}{n-1} \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению: $\frac{dr}{d\theta} = \frac{r}{\sqrt{n^2-1}}$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах. Теперь, когда нам известно все, что нам нужно, построим траекторию движения катера и лодки для двух случаев.

```
//Вариант 70. По условию n - разница в скорости катера и лодки. k - начальное
расстояние между катером и лодкой
n=6.0;
k=25.0;
fi=3*%pi/4;
//функция, описывающая движение катера береговой охраны
function dr=f(tetha, r)
dr=r/sqrt(n*n-1);
endfunction;
//функция, описывающая движение лодки браконьеров
r0=k/(n+1);
tetha0=0;
tetha=0:0.01:2*%pi;
r=ode(r0,tetha0,tetha,f);
function xt=f2(t)
    xt=cos(fi)*t;
endfunction
t=0:1:800;
plot2d(t,f2(t),style = color('red')); //построение траектории движения
браконьерской лодки
polarplot(tetha,r,style = color('green')); //построение траектории движения
катера в полярных координатах
//Построение второго случая
r0=k/(n-1);
tetha0=-%pi;
figure();
r=ode(r0,tetha0,tetha,f);
```

```
plot2d(t,f2(t),style = color('red')); //построение траектории движения браконьерской лодки polarplot(tetha,r,style = color('green')); //построение траектории движения катера в полярных координатах
```

Условие задачи

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 25 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 6 раза больше скорости браконьерской лодки

Решение

траектории для случая 1

Точка пересечения красного и зеленого графиков - точка пересечения катера и лодки, исходя из графика, имеет параметры

$$\begin{cases} \theta = 325 \\ r = 9 \end{cases}$$

траектории для случая 2

Точка пересечения красного и зеленого графиков - точка пересечения катера и лодки, исходя из графика, имеет параметры

$$\begin{cases} \theta = 325 \\ r = 22 \end{cases}$$

Наблюдаем, что при погоне «по часовой стрелке» для достижения цели потребуется пройти значительно меньшее расстояние.

Выводы

В ходе лабораторной работы я рассмотрела и смодедлировала задачу о погоне, провела анализ и вывод дифференциальных уравнений.