

Summary

- Ins of the study
- Outs of the study
- Our thougths on the asked question
- How the problem fits in the context of the study

As in, we have a dataset of 1884 rows and 32 columns:

	1	0.49788	0.48246	-0.05921	0.96082	0.12600	0.31287	-0.57545	-0.58331	-0.91699	CL0.4	CL0.5	CL0.6	CL0.7	CL0.8	CL0.9	CL0.10	CL2.2	CL0.11	CL0.12
0	2	-0.07854	-0.48246	1.98437	0.96082	-0.31685	-0.67825	1.93886	1.43533	0.76096	CL4	CL0	CL2	CL0	CL2	CL3	CL0	CL4	CL0	CL0
1	3	0.49788	-0.48246	-0.05921	0.96082	-0.31685	-0.46725	0.80523	-0.84732	-1.62090	CL0	CL0	CL0	CL0	CL0	CL0	CL1	CL0	CL0	CL0
2	4	-0.95197	0.48246	1.16365	0.96082	-0.31685	-0.14882	-0.80615	-0.01928	0.59042	CL0	CL0	CL2	CL0	CL0	CL0	CL0	CL2	CL0	CL0
3	5	0.49788	0.48246	1.98437	0.96082	-0.31685	0.73545	-1.63340	-0.45174	-0.30172	CL1	CL0	CL0	CL1	CL0	CL0	CL2	CL2	CL0	CL0
4	6	2.59171	0.48246	-1.22751	0.24923	-0.31685	-0.67825	-0.30033	-1.55521	2.03972	CL0	CL6	CL0	CL0						
1879	1884	-0.95197	0.48246	-0.61113	-0.57009	-0.31685	-1.19430	1.74091	1.88511	0.76096	CL0	CL0	CL0	CL3	CL3	CL0	CL0	CL0	CL0	CL5
1880	1885	-0.95197	-0.48246	-0.61113	-0.57009	-0.31685	-0.24649	1.74091	0.58331	0.76096	CL2	CL0	CL0	CL3	CL5	CL4	CL4	CL5	CL0	CL0
1881	1886	-0.07854	0.48246	0.45468	-0.57009	-0.31685	1.13281	-1.37639	-1.27553	-1.77200	CL4	CL0	CL2	CL0	CL2	CL0	CL2	CL6	CL0	CL0
1882	1887	-0.95197	0.48246	-0.61113	-0.57009	-0.31685	0.91093	-1.92173	0.29338	-1.62090	CL3	CL0	CL0	CL3	CL3	CL0	CL3	CL4	CL0	CL0
1883	1888	-0.95197	-0.48246	-0.61113	0.21128	-0.31685	-0.46725	2.12700	1.65653	1.11406	CL3	CL0	CL0	CL3	CL3	CL0	CL3	CL6	CL0	CL2
1884 ro	ws × 32	columns																		

The 32 columns are as follows:

- Age
- Education_Level
- Ethnicity
- Extraversion
- Ascore
- Impulsive
- Alcohol
- Caffeine
- Chocolat
- Crack
- Heroin

- Legalh
- Meth
- Nicotine
- VSA
- Gender
- Country
- Nscore
- Oscore
- Cscore
- SS
- Amphet

- Benzos
- Cannabis
- Cocaïne
- Ecstasy
- Ketamine
- LSD
- Mushrooms
- Semer
- ID

	ID	Age	Gender	Education_Level	Country	Ethnicity	Nscore	Extraversion	Oscore	Ascore	Ecstasy	Heroin	Ketamine	Legalh	LSD	Meth	Mushrooms	Nicotine	Semer	VSA
0	2	-0.07854	-0.48246	1.98437	0.96082	-0.31685	-0.67825	1.93886	1.43533	0.76096	CL4	CL0	CL2	CL0	CL2	CL3	CL0	CL4	CL0	CL0
1	3	0.49788	-0.48246	-0.05921	0.96082	-0.31685	-0.46725	0.80523	-0.84732	-1.62090	CL0	CL0	CL0	CL0	CL0	CL0	CL1	CL0	CL0	CL0
2	4	-0.95197	0.48246	1.16365	0.96082	-0.31685	-0.14882	-0.80615	-0.01928	0.59042	CL0	CL0	CL2	CL0	CL0	CL0	CL0	CL2	CL0	CL0
3	5	0.49788	0.48246	1.98437	0.96082	-0.31685	0.73545	-1.63340	-0.45174	-0.30172	CL1	CL0	CL0	CL1	CL0	CL0	CL2	CL2	CL0	CL0
4	6	2.59171	0.48246	-1.22751	0.24923	-0.31685	-0.67825	-0.30033	-1.55521	2.03972	CL0	CL0	CL0	CL0	CL0	CL0	CL0	CL6	CL0	CL0

Features	For Visualization	For Modelization
Age	18-24	18
	25-34	25
	35-44	35
	45-54	45
	55-64	55
	65+	65
Gender	0 (Male)	0
	1 (Female)	1
Education	Left school before 16 years	0
Level	Left school at 16 years	1
	Left school at 17 years	2
	Left school at 18 years	3
	Some college or university, no certificate or	4
	degree	
	Professional certificate/ diploma	5
		_
	university	6
	Masters degree	7
	Doctorate degree / PHD	8
Country	Australia	0
	Canada	1
	New Zealand	2
	Republic of Ireland	3
	UK	4
	USA	5
	Other	6
Ethnicity	Asian	0
	Black	1
	Mixed-Black/Asian	2
	Mixed-White/Asian	3
	Mixed-White/Black	4
	White	6
	Other	5

Features	For Visualization	For Modelization
Nscore (Neuroticism)	Scores : from 12 to 61	idem
Extraversion	Scores: 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59	Idem
Oscore (Openness to experience)	Scores: 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60	Idem
Ascore (Agreeableness)	Scores: 12, 16, 18, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60	Idem
Cscore (Conscientiousness)	Scores: 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59	Idem
Impulsivity	Scores: 20, 276, 307, 355, 257, 216, 195, 148, 104, 7	Idem
SS (Sensation seeking)	Scores: 71, 87, 132, 169, 211,223,219,249,211,210,103	Idem
Drugs:	0 (Never Used)	0
Alaahal Amanbat Amad	1 (Used over a Decade Ago)	1
Alcohol, Amphet, Amyl,	2 (Used in Last Decade)	2
Benzos, Caffeine, Cannabis,	5 (USEU III Last Teal)	3
Chocolat, Cocaine, Crack,	4 (Used in Last Month)	4
Ecstasy, Heroin, Ketamine, Legalh, Meth, Mushrooms,	5 (Used in Last Week)	5
Nicotine, Semer (fictitious drug), VSA	6 (Last Day)	6
ID	Depends on the line	Idem

We removed everyone who said he had used Semer. Indeed the Semer is a false drug, so all the people claiming to consume Semer are liars. 8 people said they had consumed semer, so we deleted their line. Finally, we have deleted the semer column.

We also deleted the ID column because an identifier is unique, so this column will not help us make predictions

At the end of the cleaning, we have 1876 rows and 30 columns

	Age	Gender	Education_Level	Country	Ethnicity	Nscore	Extraversion	Oscore	Ascore	Cscore	 Crack	Ecstasy	Heroin	Ketamine	Legalh	LSD	Meth	Mushr
	25- 34		PHD		White	29.0												
	35- 44		college with degree		White													
	18- 24		masters		White	34.0												
	35- 44		PHD		White													
			quit at 18	Canada	White	29.0												
1879	18- 24		college without degree	USA	White				48									
1880	18- 24		college without degree		White													
1881	25- 34		university	USA	White													
1882	18- 24		college without degree		White													
1883	18- 24		college without degree	Ireland	White	31.0												
1876 ro	ws × 3	0 columns																

Outs of the study

Outs of the study

As outs, we predicted for an individual all the mastiffs that they are likely to consume. In the columns we find the quantity of drugs consumed, and in the row, the details of the drugs consumed.

Let's take an example:

For a given dataset, we are going to focus on the first row, so the first individual. The first individual is a 25–35-year-old white American male with a doctorate who scored 29, 52, 55, 48, 41, 307, 223 on the personality test. The model predicts that this person will probably take 5 drugs: Alcohol, Caffeine, Cannabis, Chocolate and Nicotine.

More generally, a prediction is made in the following format:

Ins:

	Age	Gender	Education_Level	Country	Ethnicity	Nscore	Extraversion	Oscore	Ascore	Cscore	Impulsive	SS
0	25	0	8	5	6	29.0	52	55	48	41	307	223
1	35				6	31.0	45	40	32	34	276	249
2	18	1	7		6	34.0	34	46	47	46	276	132
3	35	1	8	5	6	43.0	28	43	41	50	355	223
4	65	1		1	6	29.0	38	35	55	52	276	87

Outs:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	Alcohol	Caffeine	Cannabis	Chocolat	Nicotine									
1	Alcohol	Caffeine	Chocolat											
2	Alcohol	Caffeine	Chocolat											
3	Alcohol	Caffeine	Chocolat											
4	Alcohol	Caffeine	Chocolat	Nicotine										
1853	Alcohol	Amphet	Caffeine	Cannabis	Chocolat	Ecstasy	Legalh	LSD	Mushrooms	Nicotine				
1854	Alcohol	Caffeine	Cannabis	Chocolat	Ecstasy	Legalh	LSD	Mushrooms	Nicotine					
1855	Alcohol	Amphet	Benzos	Caffeine	Cannabis	Chocolat	Cocaine	Nicotine						
1856	Alcohol	Amphet	Benzos	Caffeine	Cannabis	Chocolat	Cocaine	Ecstasy	Legalh	LSD	Meth	Mushrooms	Nicotine	
1857	Alcohol	Amphet	Caffeine	Cannabis	Chocolat	Ecstasy	Legalh	Mushrooms	Nicotine	-	-	-	-	-

Outs of the study

To make the last prediction, we tested several models.

Random Forest with grid search offering the best results with over 86.3% accuracy, it is the one we used for the final prediction.

	Model
Score Test	
86.352	Random Forest Grid with Cross Val
86.210	Random Forest
85.890	Logistic Regression

Our thougths on the asked question

Our thoughts on the asked question

There was a lot of research capability with this dataset. We were offered the following problems:

- Seven class classifications for each drug separately.
- Problem can be transformed to binary classification by union of part of classes into one new class. For example, "Never Used", "Used over a Decade Ago" form class "Non-user" and all other classes form class "User".
- The best binarization of classes for each attribute.
- Evaluation of risk to be drug consumer for each drug.

Our thoughts on the asked question

We decided to respond to as many problems as possible by posing an even more general problem:

"What drugs is an individual likely to take?"

This question involves a search by classification for each drug and also the transformation of the dataset to make it a binary search (an individual takes or doesn't take a drug)