Computer Networks. Unit 4: LANs

Notes of the subject Xarxes de Computadors, Facultat Informàtica de Barcelona, FIB

Llorenç Cerdà-Alabern

May 6, 2019

Contents

4		nit 4: LANs			
	4.1	1 WAN vs LAN	 	 	
	4.2	2 IEEE LAN Architecture	 	 	
	4.3	3 Ethernet	 	 	
	4.4	4 Ethernet MAC	 	 	
	4.5	5 CSMA/CD	 	 	
	4.6	6 Ethernet Frame	 	 	
	4.7	7 IEEE Ethernet standards	 	 	
	4.8	8 Ethernet Switches	 	 	
	4.9	9 Virtual LANs, VLANs	 	 	
	4.10	10 Broadcast domains	 	 	
	4.11	11 Switch flow control	 	 	
	4.12	12 Spanning Tree Protocol (STP)	 	 	
	4.13	13 Wireless LANs (WiFi)	 	 	

4 Unit 4: LANs

4.1 WAN vs LAN

- LANs:
 - Multy-access network with shared media
 - Medium Access Control (MAC) protocol
 - Ethernet has evolved to a **switched** network

4.2 IEEE LAN Architecture

• LLC sublayer (802.2): Generic L2 layer common to all LAN standards (802.x)

OSI Reference model:

4.2.1 LAN encapsulation

4.2.2 LLC header

SAP: Service Access Point

- Identify the **protocols** handling the frame
- Standardized by IEEE
- SNAP allows non IEEE protocol IDs

SAP (hex)	Protocol]
06	ARPANET Internet Protocol (IP)]
08	SNA]
42	3IEEE 802.1 Bridge Spanning Tree Protocol]
98	ARPANET Address Resolution Protocol (ARP)]
AA	SubNetwork Access Protocol (SNAP)]
E0	Novell Netware]
F0	IBM NetBIOS	7
FF	Global LSAP]

Example of some IEEE SAP values.

SNAP: used in TCP/IP

4.2.3 Ethernet with IEEE Sub-Network Access Protocol (SNAP)

- Used in TCP/IP
- **Type** field identifies the Ethernet frame payload.
- Values standarized by **IETF** in **RFC1700** (Assigned Numbers Ether Types)

4.2.4 Types of MACs

• Token Passing:

Only the station having the token can transmit. After transmission the token is passed to another station.

• Examples: FDDI and Token-Ring

• Random:

There is no token. Instead, there is a non null collision probability. In case of **collision**, the frame is retransmitted after a **random backoff time**.

• Examples: Ethernet, WiFi

4.3 Ethernet

- Designed by **Bob Metcalfe** at Xerox in mid-1970s
- Original design: random access, bus topology
- Initially was commercialized by Digital, Intel and Xerox consortium (DIX)
- Standardized by IEEE (802.3) in 1983
- Nowadays Ethernet is the leading LAN technology

Original figure Bob Metcalfe

4.4 Ethernet MAC

- Carrier Sense Multiple Access/Collision Detection (CSMA/CD)
 - Is a random MAC where the stations **listen** the medium (**carrier sense**) before transmission.
 - When the medium is becomes free the frame is transmitted immediately, and the medium is listened to detect collisions.
 - In case of collision, the frame is retransmitted after a random backoff time.

4.5 CSMA/CD

Legend:

- InterPacket Gap (IPG): 96 bits.
- JAM: 32 bits that produce an erroneus CRC.
- backoff = $n T_{512}$
- T_{512} : *SlotTime* (51,2 µs at 10 Mbps)
- $n = \text{random}\{0, 2^{\min\{N, 10\}} 1\},$
 - *N*: number of retransmission of the same frame (1, 2...)
- The transmitting station must detect the collision (no ack is sent).

4.5.1 CSMA/CD: Collision example

4.5.2 Half Duplex and full-duplex

- Half Duplex: only one NIC can be simultaneously transmitting into the medium. CSMA/CD is used
- Full Duplex: When 2 Ethernet NICs are connected **point-to-point**, some Ethernet standards allow a full-duplex Tx. **CSMA/CD** is NOT used (no collisions can occur).
- Ethernet NICs have an **auto-negotiation** mechanism to detect the full-duplex availability and bitrate (backward compatible)

4.6 Ethernet Frame

• DIX

+	-+	+	+	++
Preamble	Destination Source MAC	Frame type	Payload	CRC
(8 bytes)	MAC Address Address	(2 bytes)	(46 to	(4 bytes)
	(6 bytes) (6 bytes)	•	1500 bytes)	
+	-+	+	+	+

• IEEE

+	+			+		÷
Preamble				•	CRC	i
(8 bytes)	MAC Address	Address	the frame	(46 to	(4 bytes)	Ĺ
	(6 bytes)	(6 bytes)	(2 bytes)	1500 bytes)		
+	+			+		ı

- Minimum payload of 46 bytes when CSMA/CD is used
- Length (IEEE): Payload size (0~1500)
- Type (DIX): Identifies the upper layer protocol (IP, ARP, etc.) RFC1700, Assigned numbers. Always > 1500
- TCP/IP with IEEE encapsulation uses SNAP
- The MSS indicated by TCP would be of 1460 with DIX and 1452 with IEEE (8 bytes of LLC+SNAP)

4.7 IEEE Ethernet standards

Standard: 802.3xx. Name convention:

Commercial						UTP/OF			segment	distance*
name	bps	Standard	year	Name	Cabling	Pairs	Connector	Codification	Half duplex	Full duplex
		802.3	1983	10Base5	Coax-thick	-	AUI	Manchester	500m	n/a
Ethernet	10Mbps	802.3a	1985	10Base2	Coax-thin	-	BNC	Manchester	185m	n/a
Enlemen	Tolvibbs	802.3i	1990	10BaseT	UTP-cat3	2	RJ45	Manchester	100m	100m
		802.3j	1993	10BASE-FL	FO	2	SC	on/off Manchester	2000m	>2000m
Fast		802.3u	1995	100BaseTX	UTP-cat5	2	RJ45	4B/5B	100m	100m
Ethernet	100Mbps	802.3u	1995	100BaseFX	FO	2	SC	4B/5B	412m	2000m
Luieniet		TIA/EIA-785	1999	100BaseSX	FO/led	2	SC	4B/5B	300m	300m
		802.3z	1998	1000BaseSX	FO	2	SC	8B/10B	275-316m	275-550m
Gigabit-Eth.	1Gbps	802.3z	1998	1000BaseLX	FO	2	SC	8B/10B	316m	550-10000m
Оідаріешіі.	TOnhs	802.3z	1998	1000BaseLH	FO	2	SC	8B/10B	n/a	100km
		802.3ab	1999	1000BaseT	UTP-cat.5e	4	RJ45	PAM5	100m	100m
		802.3ae	2002	10GBASE-CX4	InfiniBand	4	CX4	8B/10B	n/a	15m
10Gigabit-	10Gbps	802.3ae	2002	10GBASE-SR	FO	2	SC	64B/66B	n/a	26-300m
Eth.	Toophs	802.3ae	2002	10GBASE-LR	FO	2	SC	64B/66B	n/a	10km
		802.3ae	2002		FO	2	SC		n/a	

*With OF the distance depends on the OF type.

10BaseT

4.8 Ethernet Switches

- CSMA/CD (hub): with many stations collisions are inefficient
- Solution: Ethernet bridge

- In each **port** there is a NIC
- The source address is used to learn which MAC is in each port (MAC table)
- If dest. address is not in the table: **flooding** (Tx in all ports). Otherwise, Tx only in 1 port (segments the **collision domain**)
- An Ethernet switch is a multiport bridge

Switch#show mac	address-table
Address	Dest Interface
00D0.5868.F583	FastEthernet 2
00E0.1E74.6ADA	FastEthernet 1
00E0.1E74.6AC0	FastEthernet 1
0060.47D5.2770	FastEthernet 3
00D0.5868.F580	FastEthernet 5

MAC Table in a CISCO Switch

Edge and backbone CISCO switches.

4.8.1 Ethernet switch capabilities

- Each port is different a collision domain
- Different ports can Tx/Rx simultaneously
- Ports can have different bitrates
- Ports can be full-duplex
- There can be ports half or full duplex
- Link aggregation: several links can be aggregated acting as a single link of higher capacity
- Security: stations see only traffic of their collision domain

4.9 Virtual LANs, VLANs

- Motivation: Adapt logic to physical topology
- The switch isolates different VLANs: Each VLAN is equivalent to a different switch

Practice Workers 192.168.0.0/24 Programmers 192.168.10.0/24

4.9.1 VLAN Trunking

- The port configured as trunk belongs to all VLANs
- VLANs are distinguished by tagging

• IEEE-802.1Q (VLAN tagging)

Preamble				Length of		CRC
(8 bytes)	MAC Address	Address		the frame	(46 to	(4 bytes)
1	(6 bytes)		 			

- Tag Protocol Identifier (TPID): 8100 for Ethernet
- Tag Control Information (TCI): VLAN ID (12 bits)

4.10 Broadcast domains

- Set of stations that will received a **broadcast frame** sent by any of them
- ARP cannot solve an @IP out of the broadcast domain
- Hubs and switches does not partition broadcast domains
- To leave the broadcast domain a router is required

4.11 Switch flow control

- Flow control techniques
 - Jabber signal (half duplex, CSMA/CD): The switch sends a signal into the port which need to be throttled down, such that CSMA see the medium busy
 - Pause frames (full duplex): The switch send special pause frames indicating the time that the NICs receiving
 the frame must be silent

Flow Control head of line blocking

The slow link may trigger the flow control and send pause frames towards the server, causing under-utilization of the switch-server link.

• We shall assume an ideal flow control in the problems, which allow achieving the maximum throughput

4.12 Spanning Tree Protocol (STP)

- loops can produce a ${\bf broadcast\ storm}$ and the network blocks:

• Solution: IEEE 802.1D Spanning Tree Protocol (STP)

4.13 Wireless LANs (WiFi)

ISM: Industrial Scientific and Medical, no license required

Year	standard	max bitrate	ISM band
1997	802.11	2 Mbps	2,4 GHz
1999	802.11a	54 Mbps	5 GHz
1999	802.11b	10 Mbps	2,4 GHz
2003	802.11g	54 Mbps	2,4 GHz
2009	802.11n	600 Mbps	2,4/5 GHz
2013	802.11ac	6,9 Gpbs	5 GHz

4.13.1 802.11 Components

- Basic Service Set, BSS: Identifies a WiFi Network
 - Service Set identifier (SSID) or Network name
 - BSS Identifier (**BSSID**): 48 bits number (MAC address of the AP)
- Distribution System (**DS**): Exchange frames with other networks. (e.g. an Ethernet switch)

- An station must associate with an AP.
- All transmissions go through the APs.

• Practical example:

sudo iw wlan0 scan

4.13.2 802.11 MAC

- In WiFi collisions cannot be detected while transmitting
- Carrier Sense Multiple Access with Collision Avoidance CSMA/CA: In contrast to CSMA/CD, always wait a random backoff before Tx
- Acks are used to detect whether a unicast transmitted frame collided
- Collisions of broadcast frames is not detected
- 802.11 Addresses
 - Designed to be compatible with Ethernet

- Use non overlapping ranges with Ethernet
- The frame may have up to 4 addresses

2	2	6	6	6	2	6	Variable: 0-2312	4
Fram Contr	Puration	Address 1	Address 2	Address 3	Seq Ctrl	Address 4	Payload	FCS

General data frame format

4.13.3 802.11 Addresses

Use 3/4 addresses depending on the to-DS/from-DS bits of the frame control field

Scenario	Usage	to-DS	from-DS	Address1	Address2	Address3	Address4
STA → STA	Ad-hoc	0	0	DA	SA	BSSID	-
STA → AP	Infrastructure	1	0	BSSID	SA	DA	
AP → STA	Infrastructure	0	1	DA	BSSID	SA	-
AP→AP	WDS	1	1	RA	TA	DA	SA

Legend: Destination Address (DA), Source Address (SA), Receiver Address (RA), Transmitter Address (TA)

Transmission with an AP in bridge mode

4 addresses

Scenario	Usage	to-DS	from-DS	Address1	Address2	Address3	Address4
STA → STA	Ad-hoc	0	0	DA	SA	BSSID	-
STA → AP	Infrastructure	1	0	BSSID	SA	DA	
AP → STA	Infrastructure	0	1	DA	BSSID	SA	-
AP→AP	WDS	1	1	RA	TA	DA	SA

Legend: Destination Address (DA), Source Address (SA), Receiver Address (RA), Transmitter Address (TA)

Transmission with APs in WDS mode

4.13.4 Hidden Node Problem

- When A transmits to AP, B cannot detect the transmission using the carrier sense mechanism
- If **B** transmits, a collision will occur at AP

• Solution 802.11 RTS/CTS

802.11 RTS/CTS

- Upon receiving a RTS/CTS, the station use a **virtual carrier sensing**
- RTS/CTS is only used for unicast Tx

