第二次作业

第一部分: 计算题

- 1. 设一维特征空间中的窗函数 $\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$, 有 n 个样本 x_i , i=1,2...,n, 采用宽
 - 度为 h_n 的窗函数,请写出概率密度函数 p(x)的 Parzen 窗估计 $p_n(x)$ 。
- 2. 给定一维空间三个样本点 $\{-4,0,6\}$,请写出概率密度函数 p(x)的最近邻(1-NN)估计,并画出概率密度函数曲线图。
- 3. 现有 7 个二维向量: $\mathbf{x}_1 = (1, 0)^T$, $\mathbf{x}_2 = (0, 1)^T$, $\mathbf{x}_3 = (0, -1)^T$, $\mathbf{x}_4 = (0, 0)^T$, $\mathbf{x}_5 = (0, 2)^T$, $\mathbf{x}_6 = (0, -2)^T$, $\mathbf{x}_7 = (-2, 0)^T$ 。这里上标 T 表示向量转置。假定前三个为 ω_1 类,后四个为 ω_2 类。画出最近邻法决策面。
- 4. 请给出 K 近邻分类器的优点和缺点。
- 5. 现有四个来自于两个类别的二维空间中的样本,其中第一类的两个样本为 $(1,4)^T$ 和 $(2,3)^T$,第二类的两个样本为 $(4,1)^T$ 和 $(3,2)^T$ 。这里,上标 T 表示向量转置。若采用规范化增广样本表示形式,并假设初始的权向量 $\mathbf{a}=(0,1,0)^T$,其中向量 \mathbf{a} 的第三维对应于样本的齐次坐标。同时,假定梯度更新步长 η_k 固定为 $\mathbf{1}$ 。试利用批处理感知器算法求解线性判别函数 $\mathbf{g}(\mathbf{y})=\mathbf{a}^T\mathbf{y}$ 的权向量 \mathbf{a} 。(注:"规范化增广样本表示"是指对齐次坐标表示的样本进行规范化处理)。

第二部分: 编程题

1. 现有一维空间的 50 个样本点(实际上,这些样本点是在 Matlab 中按如下语句生成的: mu=5; std_var = 1; X=mvnrnd(mu, std_var, 50);)。现需要采用 Parzen 窗方法对概率密度函数进行估计。请分别编程实现**方窗和高斯窗**情形下的概率密度函数估计;请讨论窗宽的影响,并画出几种不同窗宽取值下所估计获得的概率密度函数曲线。50 样本点如下:

4.6019,	5.2564,	5.2200,	3.2886,	3.7942,
3.2271,	4.9275,	3.2789,	5.7019,	3.9945,
3.8936,	6.7906,	7.1624,	4.1807,	4.9630,
6.9630,	4.4597,	6.7175,	5.8198,	5.0555,
4.6469,	6.6931,	5.7111,	4.3672,	5.3927,
4.1220,	5.1489,	6.5319,	5.5318,	4.2403,
5.3480,	4.3022,	7.0193,	3.2063,	4.3405,
5.7715,	4.1797,	5.0179,	5.6545,	6.2577,
4.0729,	4.8301,	4.5283,	4.8858,	5.3695,
4.3814,	5.8001,	5.4267,	4.5277,	5.2760

2. 本题关于线性分类器的构造与训练。所使用的四类二维样本(共40个)如下:

	ω_1		ω_2		ω_3		ω_4	
sample	x_1	x_2	x_1	x_2	x_1	x_2	x_1	x_2
1	0.1	1.1	7.1	4.2	-3.0	-2.9	-2.0	-8.4
2	6.8	7.1	-1.4	-4.3	0.5	8.7	-8.9	0.2
3	-3.5	-4.1	4.5	0.0	2.9	2.1	-4.2	-7.7
4	2.0	2.7	6.3	1.6	-0.1	5.2	-8.5	-3.2
5	4.1	2.8	4.2	1.9	-4.0	2.2	-6.7	-4.0
6	3.1	5.0	1.4	-3.2	-1.3	3.7	-0.5	-9.2
7	-0.8	-1.3	2.4	-4.0	-3.4	6.2	-5.3	-6.7
8	0.9	1.2	2.5	-6.1	-4.1	3.4	-8.7	-6.4
9	5.0	6.4	8.4	3.7	-5.1	1.6	-7.1	-9.7
10	3.9	4.0	4.1	-2.2	1.9	5.1	-8.0	-6.3

(注: ω_3 和 ω_4 前 5 个点不是线性可分的)

子问题 1: Write a program to implement the "batch perception" algorithm (see page 44 or 45 in PPT).

- (a). Starting with ${\bf a}={\bf 0}$, apply your program to the training data from ω_1 and ω_2 . Note that the number of iterations required for convergence (即记录下收敛的步数)。
- (b). Apply your program to the training data from ω_3 and ω_2 . Again, note that the number of iterations required for convergence.

子问题 2: 请写一个程序,实现 MSE 多类扩展方法。每一类用前 8 个样本来构造分类器,用后两个样本作测试。请给出你的正确率。

注: 编程语言不限。