微分方程式と特殊函数

 ${\bf Twitter: @FugaciousShade}$

最終更新日: 2021 年 9 月 4 日

まえがき

This is Introduction.

目次

第I部	常微分方程式	3
第1章 1.1 1.2	ノルム	4
第 2 章	複素領域における線型常微分方程式	8
第 3 章	Frobenius の方法	9
参考文献		10
記法		
 R Z : N Re Im z* A[†] 	 : 複素数全体 : 実数全体 : 整数全体 : 非負整数全体 : 定之: 複素数 z の実部 (z): 複素数 z の虚部 : 複素数 z の複素共役 : 作用素 A の Hermite 共役(随伴) 用素 	 A := B : A を A = B によって定義する O, o : Landau 記号 (ⁿ_k) : 二項係数 δ_{ij} : Kronecker の delta 記号 det : 行列式 Mat(m,n,S) : S 上の (m,n) 行列全体 ^tA : 行列 A の転置行列 ∀ : 全称記号 ∃ : 存在記号

第Ⅰ部

常微分方程式

第1章

実領域における線型常微分方程式

この章では主に [高野] を参考にして、実領域における線型常微分方程式の一般論について述べる。

1.1 ノルム

ノルムに関する以下の定義や命題は [野村] に拠る。

定義 1.1 (ノルム). V を \mathbb{C} 上のベクトル空間とする。関数 $\|\cdot\|$: $V \to \mathbb{R}$ が以下の条件を満たすとき, $\|x\|$ を x のノルムという:

- (i) (正値性) $\forall x \in V, ||x|| \ge 0$
- (ii) (一意性) $\forall x \in V$, $\left[\|x\| = 0 \iff x = 0 \right]$
- (iii) (同次性) $\forall k \in \mathbb{C}, \ \forall x \in V, \ ||kx|| = |k|||x||$
- (iv) (三角不等式) $\forall x, \forall y \in V, \|x + y\| \le \|x\| + \|y\|$

ノルムの定義されたベクトル空間をノルム空間という。

命題 1.2 (三角不等式). ノルムは次の性質も満たす:

 $\forall x, \forall y \in V, |||x|| - ||y||| \le ||x - y||.$

Proof. まず、 $||x|| = ||(x-y) + y|| \le ||x-y|| + ||y||$ から $||x|| - ||y|| \le ||x-y||$ が従う。同様に

$$||y|| = ||(y-x) + x|| \le ||(-1)(x-y)|| + ||x|| = |-1|||x-y|| + ||x|| = ||x-y|| + ||x||$$

なので, $\|y\|-\|x\|\leq \|x-y\|$ である。また,絶対値の特徴付け $|a|=\max\{a,-a\}$ を用いると, $\|\|x\|-\|y\|\|=\max\{\|x\|-\|y\|,\|y\|-\|x\|\}\leq \|x-y\|$ である。これらにより, $\|\|x\|-\|y\|\|\leq \|x-y\|$ が成立する。

系 1.3. 命題 1.2 において, $y \mapsto -y$ として, 元の三角不等式と併せれば,

$$|||x|| - ||y||| \le ||x + y|| \le ||x|| + ||y||$$

が従う。

系 1.4 (ノルムの連続性). ノルムは連続関数である。

Proof. 示すべきことは以下の通り:

$$\forall x, \forall y \in V, \ \forall \varepsilon \in \mathbb{R}, \ \Big[\varepsilon > 0 \implies \Big(\exists \delta \in \mathbb{R}; \ \Big[\delta > 0 \ \land \ (\|x - y\| < \delta \implies |\|x\| - \|y\|| < \varepsilon) \Big] \Big) \Big].$$

実際, $\delta \coloneqq \varepsilon$ と取れば,命題 1.2 により, $|||x|| - ||y||| \le ||x-y|| < \delta = \varepsilon$ であるから,ノルムは連続関数である。

定義 1.5 (ノルムの同値性). 以下が成立するとき, V 上の 2 つのノルム $\|\cdot\|$, $\|\cdot\|_1$ が同値であるという:

$$\exists m, \exists M \in \mathbb{R}; \ \Big[0 < m \leq M \ \land \ (\forall x \in V, \ m \|x\|_1 \leq \|x\| \leq M \|x\|_1) \Big].$$

命題 1.6. ノルムの同値性は同値関係である。

Proof. ノルム $\|\cdot\|$, $\|\cdot\|$, が同値であることを $\|\cdot\| \sim \|\cdot\|$, と記すことにする。すなわち、

 $\|\cdot\|\sim\|\cdot\|_1 \ : \stackrel{\mathrm{def}}{\Longleftrightarrow} \ \exists m, \exists M \in \mathbb{R}; \ \Big[0 < m \leq M \ \land \ (\forall x \in V, \ m\|x\|_1 \leq \|x\| \leq M\|x\|_1)\Big].$ このとき関係 \sim が反射律,対称律,推移律を満たすことを示す。

• (反射律) 任意の $\|\cdot\|$ に対し, $\|\cdot\|$ ~ $\|\cdot\|$ が成立することを示す。実際, m=M=1 とすれば,

$$0 < m = 1 \le M = 1 \land (\forall x \in V, \ 1 \cdot ||x|| \le ||x|| \le 1 \cdot ||x||)$$

であるから成立。

(対称律) ||·|| ~ ||·||₁, すなわち

$$\exists m, \exists M \in \mathbb{R}; \ \left[0 < m \leq M \ \land \ (\forall x \in V, \ m\|x\|_1 \leq \|x\| \leq M\|x\|_1)\right]$$

のとき, $\|\cdot\|_1 \sim \|\cdot\|$ が成立することを示す。後半の不等式を書き直すと, $\frac{1}{M}\|x\| \leq \|x\|_1 \leq \frac{1}{m}\|x\|$ であり, $0 < m \leq M$ であるから $0 < \frac{1}{M} \leq \frac{1}{m}$ であるから, $m' \coloneqq \frac{1}{M}$, $M' \coloneqq \frac{1}{m}$ と取れば確かに $\|\cdot\|_1 \sim \|\cdot\|$ の成立が判る。

• (推移律) 3 つのノルム $\|\cdot\|$, $\|\cdot\|_1$, $\|\cdot\|_2$ に対し, $\|\cdot\| \sim \|\cdot\|_1$ と $\|\cdot\|_1$ $\sim \|\cdot\|_2$ のとき, $\|\cdot\| \sim \|\cdot\|_2$ が成立することを示す。仮定から,

$$\exists m_1, \exists M_2 \in \mathbb{R}; \ \left[0 < m_1 \le M_2 \land (\forall x \in V, \ m_1 \| x \|_1 \le \| x \| \le M_1 \| x \|_1) \right],$$

$$\exists m_2, \exists M_2 \in \mathbb{R}; \ \left[0 < m_2 \le M_2 \land (\forall x \in V, \ m_2 \| x \|_2 \le \| x \|_1 \le M_2 \| x \|_2) \right]$$

の両方が成立しているから, $\|x\| \le M_1 \|x\|_1 \le M_1 M_2 \|x\|_2$ 及び, $\|x\| \ge m_1 \|x\|_1 \ge m_1 m_2 \|x\|_2$ より, $m_1 m_2 \|x\|_2 \le \|x\| \le M_1 M_2 \|x\|_2$ が従う。これより, $m \coloneqq m_1 m_2$, $M \coloneqq M_1 M_2$ と取れば $0 < m_1 m_2 \le M_1 M_2$ も成立するので $\|\cdot\| \sim \|\cdot\|_2$ である。

以上により, ノルムの同値性は同値関係である。

定理 1.7. ベクトル空間 V が有限次元であれば、V 上の任意の 2 つのノルムは同値である。

 $Proof.\ V$ を有限次元ベクトル空間とし、 $n \coloneqq \dim V$ とする。V の基底として、 $\{e_k\}_{0 \le k \le n-1}$ を取り固定する。V の元 x を、 $x = \sum_{k=0}^{n-1} x_k e_k$ と表したときの成分 $\{x_k\}_{0 \le k \le n-1}$ を用いて、

$$\|\cdot\|: V \to \mathbb{R}; \ x \mapsto \|x\| \coloneqq \max_{0 < k < n-1} \{|x_k|\}$$
 (1.1)

と定めると ||・|| はノルムになる。以下 ||・|| がノルムであることを確かめる:

- (正値性)どの k についても $0 \le |x_k|$ であり, $\|x\| = \max_{x}\{|x_k|\} \ge 0$ であるから成立。
- (一意性) x=0 のとき, どの k についても $x_k=0$ であるから $\|x\|=\max_k\{|x_k|\}=0$ である。また, $\|x\|=0$ のとき, 任意の k に対し, 絶対値の非負性から $0\leq |x_k|$ であって, $|x_k|\leq x=0$ であるから $|x_k|=0$ である。これより x=0 となる。
- (同次性) 絶対値の非負性と同次性から, $\|cx\| = \max_k \{|cx|\} = |c| \cdot \max_k \{|x_k|\} = |c| \|x\|$ が 従う。
- (三角不等式) 絶対値の三角不等式から,各 k に対して $|x_k + y_k| \le |x_k| + |y_k|$ であるから 最大値に関してもこの不等号が成り立つので $||x + y|| \le ||x|| + ||y||$ が従う。

以上により式 (1.1) で定められた $\|\cdot\|$ はノルムである。

次に、V 上の勝手なノルム $\|\cdot\|_1$ を取ってきたときに、式 (1.1) で定義した $\|\cdot\|_1$ と $\|\cdot\|$ が同値になってしまうことを示す。V のコンパクト集合 S を S := $\{y \in V; \|y\| = 1\}$ によって定め、関数 $f\colon S \to \mathbb{R}$ を $f(y) := \|y\|_1$ と定める。f の連続性(系 1.4)と S がコンパクト集合であることから、f の値域には最小元 m と最大元 M が存在する。S 上で $y \neq 0$ であり、ノルムの正値性から $0 < m \le M$ である。特に、 $\|y\| = 1$ ならば $y \in S$ であり、m, M の定義から $m \le f(y) \le M$ 及び $f(y) = \|y\|_1$ なので $m \le \|x\|_1 \le M$ が従う。ここで、V 上の一般の $x \neq 0$ に対して $y := x/\|x\|$ とすると $\|y\| = \|x/\|x\|\| = \|x\|/\|x\| = 1$ より $y \in S$ であるから $f(y) = \|x/\|x\|\|_1 = \|x\|_1/\|x\|$ であって、 $m \le \|x\|_1/\|x\| \le M$ より $m\|x\| \le \|x\|_1 \le M\|x\|$ である。x = 0 についても $\|0\| = \|0\|_1 = 0$ であって、 $m\|0\|_1 \le \|0\| \le M\|0\|_1$ は成立するので、 $\|\cdot\|_1$ と $\|\cdot\|$ は同値である。

有限次元ベクトル空間 V 上で与えられた任意の 2 つのノルム $\|\cdot\|_1$, $\|\cdot\|_2$ はそれぞれ式 (1.1) で 定義された $\|\cdot\|$ と同値であり,ノルムの同値は同値関係(命題 1.6)なので, $\|\cdot\|_1$ と $\|\cdot\|_2$ も同値である。

1.2 Picard の逐次近似法

第2章

複素領域における線型常微分方程式

この章では主に [高野] を参考にして複素領域における線型常微分方程式の一般論に ついて述べる。

第3章

Frobenius の方法

This is abstract.

aaa

参考文献

[高野] 朝倉 復刊セレクション 新数学講座『常微分方程式』高野 恭一, 朝倉書店 (1994年)

[原岡] すうがくの風景 7『超幾何関数』原岡 喜重, 朝倉書店 (2002年)

[小松] 復刊 近代数学講座 5『特殊函数』小松 勇作, 朝倉書店 (2004年)

[野村]『球面調和函数と群の表現』野村 隆昭, 日本評論社 (2018年)