Sparse VFGLM using the block Wiedemann algorithm

Seung Gyu Hyun, Vincent Neiger, Hamid Rahkooy, Éric Schost University of Waterloo, DTU Compute

Introduction

 Compute the Gröbner basis for degrevlex ordering first (fast) and convert to lex ordering (better structure)

Main Problem

Input:

- Zero-dimensional ideal $I \subset \mathbb{K}[x_1, \dots, x_n]$ by means of a monomial basis $\mathbb{B} \subset Q$, $Q = \mathbb{K}[x_1, \dots, x_n]/I$
- Multiplication matrices $T_1, \ldots, T_n \in \mathbb{K}^{D \times D}$ of x_1, \ldots, x_n , with $D = dim_{\mathbb{K}}(Q)$

Output:

• Lex Gröbner basis of \sqrt{I}

Assumptions

- ullet Base field is larger than D
- x_n separates the points of V(I)
- Ensured by a generic change of coordinates
- Under assumption, \sqrt{I} is in shape position
- $I \subset \mathbb{K}[x_1, \dots, x_n]$ is in shape position if its Gröbner basis has the form $(x_1 - R_1(x_n), \dots, x_{n-1} - R_{n-1}(x_n), R(x_n))$

Sparse FGLM

- Sparse FGLM algorithm of [1] computes lex basis of an ideal I when I is in shape position
- Exploits the sparsity of T_i 's
- Difficult to parallelize

Differences

- If I is not in shape position, Sparse FGLM uses Berlekamp-Massey-Sakata to compute the lex basis
- We compute lex basis of \sqrt{I} (weaker), which is in shape position by assumption

Block Sparse VFGLM

Key idea: use sequences of small matrices, requires less terms than scalar sequences (cf. Coppersmith's block Wiedemann Algorithm)

Algorithm

Choose $U, V \in \mathbb{K}^{m \times D}$, where m is the number of threads supported

 $s = (UT_n^i V^t)_{0 \le i \le 2d}$, with $d = \frac{D}{m}$

 $S = \mathsf{MatrixBerlekampMassey}(s), \ N = S \sum_{i>0} \frac{s_i}{r^{i+1}}$

 $A, S, B = \mathsf{SmithForm}(S)$, with invariant factors $I_1, \ldots I_d$

 $a = \left[\frac{I_d b_1}{I_1} \frac{I_d b_2}{I_2} \cdots \frac{I_d b_{d-1}}{I_{d-1}} b_d\right] A$, where b_i is the i^{th} entry of the last row of B

 $N^* = (m, 1)$ -th entry of aN

 $R_n = \mathsf{SquareFreePart}(I_d)$

For j = 1 ... n - 1:

 $s_{i} = (UT_{n}^{i}T_{i}V^{t})_{0 \le i \le d} \text{ and } N_{i} = S \sum_{i \ge 0} \frac{s_{j,i}}{r^{i+1}}$

 $R_j = aN_j/N^* \mod R_n$

Correctness: follows from the analysis of Coppersmith's algorithm by [Villard '97] and [3], and generating series properties in [5]. See also [Kaltofen '95], [Kaltofen, Yuhasz '06].

Example

Input: $I = \langle f_1^2, f_2^2, f_3 \rangle \subset \mathbb{F}_{9001}[x_1, x_2, x_3]$ of degree D = 32, with

$$f_1 = 4979x_1^2 + 6202x_1x_2 + \dots, f_2 = 4682x_1^2 + 8290x_1x_2 + \dots, f_3 = 4199x_1^2 + 2325x_1x_2 + \dots$$

Step 1 with m=2

$$U = \begin{bmatrix} 1898 & 6830 & 3494 & 169 & 7991 & 3352 \dots \\ 3161 & 8858 & 8467 & 5882 & 8037 & 3726 \dots \end{bmatrix} \quad V = \begin{bmatrix} 7595 & 8416 & 2285 & 8351 & 550 & 7012 \dots \\ 823 & 5686 & 6539 & 7884 & 7105 & 3427 \dots \end{bmatrix}^t$$

Step 2 & 3 with d = 16

$$s = \left(\begin{bmatrix} 31 & 6977 \\ 1178 & 1695 \end{bmatrix}, \begin{bmatrix} 8212 & 1663 \\ 4811 & 4837 \end{bmatrix} \dots \right) \qquad \underbrace{\text{MatrixBerlekampMassey}}_{\text{MatrixBerlekampMassey}} \\ S = \begin{bmatrix} \boldsymbol{x^{16}} + \dots & 423\boldsymbol{x^{15}} + \dots \\ 6426\boldsymbol{x^{15}} + \dots & \boldsymbol{x^{16}} + \dots \end{bmatrix} \\ N = \begin{bmatrix} 6191\boldsymbol{x^{15}} + \dots & 8101\boldsymbol{x^{15}} + \dots \\ 7116\boldsymbol{x^{15}} + \dots & 2129\boldsymbol{x^{15}} + \dots \end{bmatrix}$$

Step 4:
$$a = \begin{bmatrix} 2575x^7 + \dots & x^8 + \dots \end{bmatrix}$$

Step 5: $[N^*] = \begin{bmatrix} 2575x^7 + \dots & x^8 + \dots \end{bmatrix} \begin{bmatrix} 6191x^{15} + \dots \\ 7116x^{15} + \dots \end{bmatrix} = \begin{bmatrix} 1178x^{23} + 8727x^{22} + \dots \end{bmatrix}$

Step 6 for j = 1

$$s_1 = \begin{pmatrix} \begin{bmatrix} 3029 \ 8903 \\ 1538 \ 5610 \end{bmatrix}, \begin{bmatrix} 1914 \ 3734 \\ 5221 \ 5431 \end{bmatrix} \dots \end{pmatrix} \longrightarrow N_1 = \begin{bmatrix} 1374 \boldsymbol{x^{15}} + \dots \ 3271 \boldsymbol{x^{15}} + \dots \\ 4027 \boldsymbol{x^{15}} + \dots \ 1575 \boldsymbol{x^{15}} + \dots \end{bmatrix}$$

Step 7:
$$[N_1^*] = \begin{bmatrix} 2575\boldsymbol{x^7} + \dots & \boldsymbol{x^8} + \dots \end{bmatrix} \begin{bmatrix} 1374\boldsymbol{x^{15}} + \dots \\ 4027\boldsymbol{x^{15}} + \dots \end{bmatrix} = \begin{bmatrix} 1538\boldsymbol{x^{23}} + 6498x^{22} + \dots \end{bmatrix}$$

Parallel Computations

- Bottleneck is computing the sequence $(UT_n^i)_{0 \le i < 2d}$
- Can parallelize by computing the sequences $(U_1T_n^i),\ldots,(U_mT_n^i)$ separately, where U_i is the i^{th} row of U
- When m=1, same computation as Sparse FGLM

Conclusion

References

[1] J.-C. Faugère and C. Mou.

Sparse FGLM algorithms.

Journal of Symbolic Computation, 80(3):538–569, 2017.

[2] Don Coppersmith.

Solving linear equations over GF(2): block Lanczos algorithm.

Linear Algebra and its Applications, 192:33–60, 1993.

[3] E. Kaltofen and G. Villard.

On the complexity of computing determinants.

Comput. Complexity, 13(3-4):91-130, 2004.

[4] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):329–344, 1993.

[5] A. Bostan, B. Salvy, and É. Schost.

Fast algorithms for zero-dimensional polynomial systems using duality.

Applicable Algebra in Engineering, Communication and Computing, 14:239–272, 2003.

[6] V. Neiger.

Bases of relations in one or several variables: fast algorithms and applications.

PhD thesis, École Normale Supérieure de Lyon, November 2016.

[7] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Polynomial Systems Solving by Fast Linear Algebra. https://hal.archives-ouvertes.fr/hal-00816724, 2013.