Locally Equivalent Weights for Bayesian MrP

Ryan Giordano, Alice Cima, Erin Hartman, Jared Murray, Avi Feller UT Austin Statistics Seminar September 2025

Are US non-voters becoming more Republican?

Blue Rose research says yes:

"Politically disengaged voters have become much more Republican, and because less-engaged voters swung away from [Democrats], an expanded electorate meant a more Republican electorate."

> (Blue Rose Research 2024) (major professional pollsters)

On Data and Democracy says no:

"Claims of a decisive pro-Republican shift among the overall non-voting population are not supported by the most reliable, large-scale post-election data currently available."

> (Bonica et al. 2025) (major professional researchers)

Are US non-voters becoming more Republican?

Blue Rose research says yes:

"Politically disengaged voters have become much more Republican, and because less-engaged voters swung away from [Democrats], an expanded electorate meant a more Republican electorate."

> (Blue Rose Research 2024) (major professional pollsters)

On Data and Democracy says no:

"Claims of a decisive pro-Republican shift among the overall non-voting population are not supported by the most reliable, large-scale post-election data currently available."

(Bonica et al. 2025) (major professional researchers)

- The problem is very hard (it's difficult to accurately poll non-voters)
- · Different data sources
- *** Different statistical methods
 - · Blue Rose uses Bayesian hierarchical modeling (MrP)
 - · On Data and Democracy is using calibration weighting (CW)

Are US non-voters becoming more Republican?

Blue Rose research says yes:

"Politically disengaged voters have become much more Republican, and because less-engaged voters swung away from [Democrats], an expanded electorate meant a more Republican electorate."

> (Blue Rose Research 2024) (major professional pollsters)

On Data and Democracy says no:

"Claims of a decisive pro-Republican shift among the overall non-voting population are not supported by the most reliable, large-scale post-election data currently available."

> (Bonica et al. 2025) (major professional researchers)

- The problem is very hard (it's difficult to accurately poll non-voters)
- · Different data sources
- *** Different statistical methods
 - · Blue Rose uses Bayesian hierarchical modeling (MrP)
 - · On Data and Democracy is using calibration weighting (CW)

Our contribution

We define "MrP local equivalent weights" (MrPlew) that:

- · Are easily computable from MCMC draws and standard software, and
- Provide MrP versions of key diagnostics that motivate calibration weighting.
- ⇒ MrPlew provides direct comparisons between MrP and calibration weighting.

Outline

- Introduce the statistical problem and two methods (CW and MrP)
- · Describe covariate balance, one of the classical CW diagnostics
- · Define MrPlew weights and connect them to covariate balance
- · Example of real-world results
- · Future directions

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

Observe
$$(\mathbf{x}_i, y_i)$$
 for $i = 1, \dots, N_S$

Observe
$$\mathbf{x}_j$$
 for $j = 1, \dots, N_T$

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

The problem is that the populations may be very different.

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

The problem is that the populations may be very different.

Our survey results may be biased.

How can we use the covariates to say something about the target responses?

We want $\mu := rac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target population y_j .

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of \boldsymbol{x} may be different in the survey and target.

We want $\mu := rac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target population y_j .

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)

Bayesian hierarchical modeling (MrP)

We want $\mu := rac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target population y_j .

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- ► Take $\hat{\mu}_{\text{CW}} = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$

Bayesian hierarchical modeling (MrP)

- lacksquare Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | ext{Survey data})} \left[y | \mathbf{x}_j
 ight]$ and $\hat{\mu}_{ ext{MrP}} = rac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target population y_j .

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- lacksquare Take $\hat{\mu}_{\mathsf{CW}} = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - \triangleright Dependence on y_i is clear

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})} \left[y | \mathbf{x}_j \right]$ and $\hat{\mu}_{\text{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target population y_j .

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- ightharpoonup Take $\hat{\mu}_{\text{CW}} = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - ightharpoonup Dependence on y_i is clear

- ▶ Weights give interpretable diagnostics:
 - · Frequentist variability
 - · Partial pooling
 - · Regressor balance

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})} \left[y | \mathbf{x}_j \right]$ and $\hat{\mu}_{\text{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$

▶ Black box

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target population y_j .

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- lacksquare Take $\hat{\mu}_{\mathsf{CW}} = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - ightharpoonup Dependence on y_i is clear

- ▶ Weights give interpretable diagnostics:
 - · Frequentist variability
 - · Partial pooling
 - · Regressor balance

Bayesian hierarchical modeling (MrP)

- ► Choose $\mathbb{E}\left[y|\mathbf{x},\theta\right] = m(\theta^\intercal\mathbf{x})$, choose prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$ (e.g. Hierarchical logistic regression)
- ▶ Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})} \left[y | \mathbf{x}_j \right]$ and $\hat{\mu}_{\text{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ► Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$

Black box

 \leftarrow We open this box, providing analogues of all these diagnostics

Prior work

Gelman (2007b) observes that MrP is a CW estimator when one uses linear regression to form \hat{y} :

$$\hat{\mu}_{ ext{MrP}} = rac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j = rac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\mathbf{x}_j^\intercal \hat{eta}}_{ ext{Linear in } y}$$

Most existing literature on comparing CW and MrP focus on such linear models. ¹

Let's spend some time discussing why it is reasonable to even attempt such a thing as forming approximate equivalent weights for non–linear estimators.

¹For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).

Gelman (2007b) observes that MrP is a CW estimator when one uses linear regression to form \hat{y} :

$$\hat{\mu}_{\text{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j = \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\mathbf{x}_j^{\mathsf{T}} \hat{\beta}}_{\text{Linear in } y_i}$$

Most existing literature on comparing CW and MrP focus on such linear models. ¹ But what if you use a non–linear link function? Or a hierarchical model?

"It would also be desirable to use nonlinear methods ... but then it would seem difficult to construct even approximately equivalent weights. Weighting and fully nonlinear models would seem to be completely incompatible methods." — (Gelman 2007a)

Let's spend some time discussing why it is reasonable to even attempt such a thing as forming approximate equivalent weights for non–linear estimators.

¹For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).

Consider logistic regression MrP:

- Model $m(\mathbf{x}^\intercal \beta) = \operatorname{Logistic}(\mathbf{x}^\intercal \beta)$
- Let $\hat{\beta}$ be the MLE
- MrP is $\hat{\mu}_{\mathrm{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta})$.

Suppose $\mathbf{x} \in \mathcal{X}$ is discrete and saturated.

Then logistic MrP is a CW estimator.

Consider logistic regression MrP:

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$
- Let $\hat{\beta}$ be the MLE
- MrP is $\hat{\mu}_{MrP} = \frac{1}{N_T} \sum_{i=1}^{N_T} m(\mathbf{x}_i^{\mathsf{T}} \hat{\beta})$.

Suppose $\mathbf{x} \in \mathcal{X}$ is discrete and saturated.

Then logistic MrP is a CW estimator.

- Let \overline{y}_S^c denote the survey average among $\mathbf{x} = c$ for $c \in \mathcal{X}$
- For $\mathbf{x} = c$, $m(\hat{\beta}^{\mathsf{T}}\mathbf{x}) = \overline{y}_{S}^{c}$
- Let N_S^c (or N_S^c) denote the # of survey (or target) observations with $\mathbf{x}_n = c$.

$$\begin{split} \hat{\mu}_{\text{MrP}} &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}) = \frac{1}{N_T} \sum_{c \in \mathcal{X}} \underbrace{N_T^c \overline{y}_S^c}_{\text{Linear in } y_i} = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i^{\text{MrP}} y_i \\ w_i^{\text{MrP}} &= \frac{N_T^c / N_T}{T} \text{ when } \mathbf{x}_i = c. \end{split}$$

For
$$w_i^{\text{MrP}} = \frac{N_T^c/N_T}{N_S^c/N_S}$$
 when $\mathbf{x}_i = c$.

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$, with MLE $\hat{\beta}$.
- MrP is $\hat{\mu}_{\text{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta})$.

Suppose $\mathbf{x} \in \mathcal{X}$ is continuous, but there exists α such that $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$.

Then logistic MrP is approximately a CW estimator.

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$, with MLE $\hat{\beta}$.
- MrP is $\hat{\mu}_{\text{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}).$

Suppose $\mathbf{x} \in \mathcal{X}$ is continuous, but there exists α such that $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^\mathsf{T} \mathbf{x}$.

Then logistic MrP is approximately a CW estimator.

$$\hat{\mu}_{\mathrm{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta})$$

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$, with MLE $\hat{\beta}$.
- MrP is $\hat{\mu}_{\text{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}).$

Suppose $\mathbf{x} \in \mathcal{X}$ is continuous, but there exists α such that $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^\mathsf{T} \mathbf{x}$.

Then logistic MrP is approximately a CW estimator.

$$\begin{split} \hat{\mu}_{\text{MrP}} &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\beta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \end{split} \tag{Law of large numbers)}$$

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$, with MLE $\hat{\beta}$.
- MrP is $\hat{\mu}_{MrP} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}).$

Suppose $\mathbf{x} \in \mathcal{X}$ is continuous, but there exists α such that $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^\mathsf{T} \mathbf{x}$.

Then logistic MrP is approximately a CW estimator.

$$\begin{split} \hat{\mu}_{\text{MrP}} &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\beta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^{\mathsf{T}} \hat{\beta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \end{split}$$

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$, with MLE $\hat{\beta}$.
- MrP is $\hat{\mu}_{MrP} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}).$

Suppose $\mathbf{x} \in \mathcal{X}$ is continuous, but there exists α such that $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^\mathsf{T} \mathbf{x}$.

Then logistic MrP is approximately a CW estimator.

$$\begin{split} \hat{\mu}_{\text{MrP}} &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\boldsymbol{\beta}}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\boldsymbol{\beta}}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\boldsymbol{\beta}}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int \left(\alpha^\mathsf{T} \mathbf{x}\right) m(\mathbf{x}^\mathsf{T} \hat{\boldsymbol{\beta}}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \end{split}$$

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$, with MLE $\hat{\beta}$.
- MrP is $\hat{\mu}_{MrP} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}).$

Suppose $\mathbf{x} \in \mathcal{X}$ is continuous, but there exists α such that $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^\mathsf{T} \mathbf{x}$.

Then logistic MrP is approximately a CW estimator.

$$\begin{split} \hat{\mu}_{\text{MrP}} &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^{\mathsf{T}} \mathbf{x}) m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \\ &\approx \alpha^{\mathsf{T}} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i m(\mathbf{x}_i^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \qquad \qquad \text{(Law of large numbers)} \end{split}$$

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$, with MLE $\hat{\beta}$.
- MrP is $\hat{\mu}_{MrP} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta}).$

Suppose $\mathbf{x} \in \mathcal{X}$ is continuous, but there exists α such that $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^\mathsf{T} \mathbf{x}$.

Then logistic MrP is approximately a CW estimator.

$$\begin{split} \hat{\mu}_{\text{MrP}} &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^{\mathsf{T}} \mathbf{x}) m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \text{(By assumption)} \\ &\approx \alpha^{\mathsf{T}} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i m(\mathbf{x}_i^{\mathsf{T}} \hat{\boldsymbol{\beta}}) \qquad \text{(Law of large numbers)} \\ &= \alpha^{\mathsf{T}} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i y_i \qquad \text{(Property of exponential family MLEs)} \end{split}$$

- Model $m(\mathbf{x}^{\mathsf{T}}\beta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\beta)$, with MLE $\hat{\beta}$.
- MrP is $\hat{\mu}_{\mathrm{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\beta})$.

Suppose $\mathbf{x} \in \mathcal{X}$ is continuous, but there exists α such that $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^\mathsf{T} \mathbf{x}$.

Then logistic MrP is approximately a CW estimator.

$$\hat{\mu}_{\text{MrP}} = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\intercal \hat{\beta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \alpha^\intercal \mathbf{x}_i y_i + \text{Small error}$$

We don't observe $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})}$, so it's hard to estimate α directly.

Key idea (informal)

If
$$\hat{\mu}_{\mathrm{MrP}} pprox rac{1}{N_S} \sum_{i=1}^{N_S} w_i^{\mathrm{MrP}} y_i$$
 for some w_i^{MrP} , then $rac{\partial \hat{\mu}_{\mathrm{MrP}}}{\partial y_i} pprox w_i^{\mathrm{MrP}}$.

The weights can look very different!

Does this mean anything? Are the differences important?

Figure 1: Comparison between raking and MrPlew weights for a particular example

What are we weighting for?²

We want:

Target average response
$$=\frac{1}{N_T}\sum_{i=1}^{N_T}y_j \approx \frac{1}{N_S}\sum_{i=1}^{N_S}w_iy_i = \text{Weighted survey average response}$$

We can't check this, because we don't observe y_j .

 $^{^2\,\}mathrm{Pun}$ attributable to Solon, Haider, and Wooldridge (2015)

What are we weighting for?²

We want:

Target average response
$$=\frac{1}{N_T}\sum_{j=1}^{N_T}y_jpprox rac{1}{N_S}\sum_{i=1}^{N_S}w_iy_i$$
 = Weighted survey average response

We can't check this, because we don't observe y_j . But we can check whether:

$$\frac{1}{N_T} \sum_{j=1}^{N_T} \mathbf{x}_j = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i \mathbf{x}_i$$

Such weights satisfy "covariate balance" for x.

You can check covariate balance for any calibration weighting estimator, and any function $f(\mathbf{x})$.

²Pun attributable to Solon, Haider, and Wooldridge (2015)

What are we weighting for?²

We want:

Target average response
$$=\frac{1}{N_T}\sum_{j=1}^{N_T}y_jpprox rac{1}{N_S}\sum_{i=1}^{N_S}w_iy_i$$
 = Weighted survey average response

We can't check this, because we don't observe y_j . But we can check whether:

$$\frac{1}{N_T} \sum_{j=1}^{N_T} \mathbf{x}_j = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i \mathbf{x}_i$$

Such weights satisfy "covariate balance" for x.

You can check covariate balance for any calibration weighting estimator, and any function $f(\mathbf{x})$.

Even more, covariate balance is the criterion for a popular class of calibration weight estimators:

Raking calibration weights

"Raking" selects weights that

- · Are as "close as possible" to some reference weights
- · Under the constraint that they balance some selected regressors.

²Pun attributable to Solon, Haider, and Wooldridge (2015)

We want to balance $f(\mathbf{x})$ because we think $\mathbb{E}[y|\mathbf{x}]$ might plausibly vary $\propto f(\mathbf{x})$, and want to check whether our estimator can capture this variability.

We want to balance $f(\mathbf{x})$ because we think $\mathbb{E}\left[y|\mathbf{x}\right]$ might plausibly vary $\propto f(\mathbf{x})$, and want to check whether our estimator can capture this variability.

Balance-informed sensitivity check (BISC) (informal)

Pick a small $\delta>0$ and an $f(\cdot)$. Define a new response variable \tilde{y} such that

$$\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x}).$$

We know the change this is supposed to induce in the target population.

Covariate balance checks whether our estimators produce the same change.

We want to balance $f(\mathbf{x})$ because we think $\mathbb{E}[y|\mathbf{x}]$ might plausibly vary $\propto f(\mathbf{x})$, and want to check whether our estimator can capture this variability.

Balance-informed sensitivity check (BISC) (formal)

Pick a small $\delta > 0$ and an $f(\cdot)$. Define a new response variable \tilde{y} such that

$$\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x}).$$

We know the expected change this perturbation produces in the target distribution:

$$\mathbb{E}\left[\mu(\tilde{y}) - \mu(y)|\mathbf{x}\right] = \frac{1}{N_T} \sum_{j=1}^{N_T} \left(\mathbb{E}\left[\tilde{y}|\mathbf{x}_p\right] - \mathbb{E}\left[y|\mathbf{x}_p\right]\right) = \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j)$$

Then, check whether your estimator $\hat{\mu}(\cdot)$ produces the same change for observed \tilde{y}, y :

$$\hat{\underline{\mu}}(\tilde{y}) - \hat{\mu}(y) \overset{\text{check}}{\approx} \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j).$$
 Replace weighted averages with changes in an estimator

We want to balance $f(\mathbf{x})$ because we think $\mathbb{E}[y|\mathbf{x}]$ might plausibly vary $\propto f(\mathbf{x})$, and want to check whether our estimator can capture this variability.

Balance-informed sensitivity check (BISC) (formal)

Pick a small $\delta > 0$ and an $f(\cdot)$. Define a new response variable \tilde{y} such that

$$\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x}).$$

We know the expected change this perturbation produces in the target distribution:

$$\mathbb{E}\left[\mu(\tilde{y}) - \mu(y)|\mathbf{x}\right] = \frac{1}{N_T} \sum_{j=1}^{N_T} \left(\mathbb{E}\left[\tilde{y}|\mathbf{x}_p\right] - \mathbb{E}\left[y|\mathbf{x}_p\right]\right) = \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j)$$

Then, check whether your estimator $\hat{\mu}(\cdot)$ produces the same change for observed \tilde{y}, y :

$$\hat{\underline{\mu}}(\tilde{y}) - \hat{\mu}(y) \overset{\text{check}}{\approx} \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j).$$
 Replace weighted averages with changes in an estimator

When $\hat{\mu}(\cdot) = \hat{\mu}_{CW}(\cdot)$, BISC recovers the standard covariate balance check.

When $\hat{\mu}(\cdot) = \hat{\mu}_{\mathrm{MrP}}(\cdot)$ and δ is small, BISC recovers our proposal.

References

B., Eli, Avi F., and Erin H. (2021). Multilevel calibration weighting for survey data. arXiv: 2102.09052 [stat.ME].

Blue Rose Research (2024). 2024 Election Retrospective Presentation. https://data.blueroseresearch.org/2024retro-download. Accessed on 2024-10-26.

Bonica, A. et al. (Apr. 2025). Did Non-Voters Really Flip Republican in 2024? The Evidence Says No.

https://data4democracy.substack.com/p/did-non-voters-really-flip-republican.

Chattopadhyay, A. and J. Zubizarreta (2023). "On the implied weights of linear regression for causal inference". In: Biometrika 110.3, pp. 615-629.

Gelman, A. (2007a). "Rejoinder: Struggles with survey weighting and regression modelling". In: Statistical Science 22.2, pp. 184-188.

(2007b), "Struggles with survey weighting and regression modeling", In.

Solon, G., S. Haider, and J. Wooldridge (2015). "What are we weighting for?" In: Journal of Human resources 50.2, pp. 301-316.