1º Bachillerato CNS Derivadas - 1

EJERCICIOS DE DERIVADAS

<u>FUNCIÓN</u> <u>DERIVADA</u>

1.- y=3y'=02.- y=x+5 $y'=7x^6$ 3.- $y = x^7$ 4.- $y = x^6 - x^3$ $y' = 6x^5 - 3x^2$ 5.- $y = 2x^4$ $y' = 8x^3$ 6.- y = ax + by'=a7.- y=5x-2y' = 58.- $y = a^5$ y'=09.- $v = ax^2 + bx + c$ y' = 2ax + b10.- y = x(x-1)v'=2x-1

10.- y=x(x-1)11.- y=(x+1)(x-1) y'=2x-1y'=2x

12.- $y = ax^3 + bx^2 + cx + d$ $y' = 3ax^2 + 2bx + c$ 13.- $y = x^3 - x^2 + 4x - 5$ $y' = 3x^2 - 2x + 4$

14.- $y=x^4-4x^3+5x^2$ $y'=4x^3-12x^2+10x$

15.- $y = 2x^3 + 3x^2 - 6x + 5$ $y' = 6x^2 + 6x - 6$

16.- $y=(x+1)(x^2-x+3)$ $y'=3x^2+2$

17.- $y=x(x-1)^2$ $y'=3x^2-4x+1$

y = x(x + 1)

18.- $y = a(x-1)^2$ y' = 2a(x-1)

19.- $y = a(a-1)^2$ y' = 0

 $20.- y = x^{-2}$

21.- $y = \frac{1}{x+1}$

22.- $y = \frac{x^2 - 3}{x^3 + x}$ $y' = \frac{-x^4 + 10x^2 + 3}{(x^3 + x)^2}$

 $23.- y = \frac{x+1}{x}$ $y' = \frac{-1}{x^2}$

24.- $y = \frac{x(x+1)(x-1)}{3x^2-3}$ $y' = \frac{3x^4-6x^2+3}{(3x^2-3)^2}$

25.- $y = \frac{x(x+2)^2}{x^2 + 4x + 4}$

26.- $y = \sqrt{3x-2}$ $y' = \frac{3}{2\sqrt{3x-2}}$

$$27. \quad y = \sqrt{2x-1} \qquad \qquad y' = \frac{1}{\sqrt{2x-1}} \\ 28. \quad y = \sqrt{x^2+1} \qquad \qquad y' = \frac{x}{\sqrt{x^2+1}} \\ 29. \quad y = \sqrt{\frac{1-x}{1+x}} \qquad \qquad y' = \frac{-1}{(1+x)^2\sqrt{\frac{1-x}{1+x}}} \\ 30. \quad y = \frac{1-x}{\sqrt{1-x^2}} \qquad \qquad y' = \frac{1}{(-1-x)\sqrt{1-x^2}} \\ 31. \quad y = e^{4x} \qquad \qquad y' = 4e^{4x} \\ 32. \quad y = 5^{2x} \qquad \qquad y' = 2\cdot 5^{2x} \cdot \ln 5 \\ 33. \quad y = e^{3-x^2} \qquad \qquad y' = 2\cdot 2\cdot 5^{2x} \cdot \ln 5 \\ 34. \quad y = \frac{e^x + e^{-x}}{2} \qquad \qquad y' = \frac{e^x - e^{-x}}{x^2} \\ 35. \quad y = x^3 \cdot 2^x \cdot e^x \qquad \qquad y' = \frac{4}{(e^x + e^{-x})^2} \\ 36. \quad y = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \qquad y' = \frac{4}{(e^x + e^{-x})^2} \cdot \frac{4}{(e^x + e^{-x})^2} \\ 37. \quad y = a^{x+x+1} \qquad \qquad y' = (2x+1) \cdot a^{x^2+x+1} \cdot \ln a \\ 38. \quad y = \ln(x^2 + 1) \qquad \qquad y' = \frac{2x}{x^2+1} \cdot \ln a \\ 39. \quad y = \ln(ax^2 + bx + c) \qquad \qquad y' = \frac{2x}{x^2+1} \cdot \ln a \\ 40. \quad y = \ln^5 3x \qquad \qquad y' = \frac{2x}{x^2 + bx + c} \cdot a \\ 40. \quad y = \ln^5 3x \qquad \qquad y' = \frac{2x}{1+x^2} \cdot \ln a \\ 41. \quad y = x^5 \ln x \qquad \qquad y' = x^2 \cdot (5 \ln x + 1) \\ 42. \quad y = y^2 \ln(2-x) \qquad \qquad y' = x^2 \cdot (5 \ln x + 1) \\ 43. \quad y = \frac{\ln x}{x} \qquad \qquad y' = \frac{1-\ln x}{x^2} \cdot a \\ 44. \quad y = lg_1(1+x^2) \qquad \qquad y' = \frac{2x}{1+x^2} \cdot \log_2 e \\ 45. \quad y = \ln(x-5) \qquad \qquad y' = \frac{6x}{3x^2 + 5} \cdot lg_2 \cdot e \\ 47. \quad y = x \cdot \ln x - x \qquad \qquad y' = \ln x \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_2 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \qquad \qquad y' = \frac{x}{1+x^2} \cdot lg_3 \cdot e \\ 48. \quad y = \ln \sqrt{1+x^2} \cdot lg_3 \cdot$$

1º Bachillerato CNS Derivadas - 3

70.- $y = \ln \sqrt{\frac{1 + \cos x}{1 - \cos x}}$ 71.- $y = \ln \sqrt{\sin x}$ $y' = -\csc x$ $y' = -\csc x$

72.-
$$y = \operatorname{arcsec} x^2$$

73.-
$$y = arcctg(2x+1)$$

74.-
$$y = sen(sen 2x)$$

75.-
$$y = sen(ln(3x+5))$$

76.-
$$y = arcsen(cosx - x)$$

77.-
$$y = \ln(x + \ln x)$$

78.-
$$y = arcsen\left(\frac{1}{1+x^2}\right)$$

79.-
$$y = lg\left(\frac{lgx}{x}\right)$$

80.-
$$y = \ln^{1/2} sen 2x$$

81.-
$$y = x^2 \cos 3x$$

82.-
$$y = x^{x+1}$$

83.-
$$y = \left(1 + \frac{1}{x}\right)^x$$

84.-
$$y = (x^5)^{x^2+1}$$

85.-
$$y = x^{e^x}$$

86.-
$$y=(3x+1)^{2x+3}$$

87.-
$$y = (senx)^x$$

88.-
$$y = x^{sen(2x-9)}$$

89.-
$$y=(sen x)^{\cos x}$$

90.-
$$y = (lnx)^{lnx}$$

91.-
$$y = (x^2 - 1)^{senx}$$

$$y' = \frac{2}{x\sqrt{x^4 - 1}}$$

$$y' = \frac{-2}{(2x+1)^2+1}$$

$$y' = 2\cos 2x \cdot \cos(sen2x)$$

$$y' = \frac{3}{3x+5}\cos(\ln(3x+5))$$

$$y' = \frac{-sen x - 1}{\sqrt{1 - (\cos x - x)^2}}$$

$$y' = \frac{x+1}{x^2 + x \ln x}$$

$$y' = \frac{-2}{(1+x^2)\sqrt{x^2+2}}$$

$$y' = \frac{\log e - \log x}{x \log x} \log e$$

$$y' = \frac{ctg2x}{\sqrt{\ln sen2x}}$$

$$y' = 2x \cos 3x - 3x^2 \sin 3x$$

$$y' = \left[lnx + \frac{x+1}{x} \right] x^{x+1}$$

$$y' = \left[\ln \frac{x+1}{x} - \frac{1}{x-1}\right] \left(1 + \frac{1}{x}\right)^x$$

$$y' = \left[10x \ln x + \frac{5x^2 + 5}{x}\right] (x^5)^{x^2 + 1}$$

$$y' = \left[e^x \ln x + \frac{e^x}{x}\right] x^{e^x}$$

$$y' = \left[2\ln(3x+1) + \frac{6x+9}{3x+1}\right](3x+1)^{2x+3}$$

$$y' = [\ln(senx) + x ctgx](senx)^x$$

$$y' = \left[2\cos(2x-9)lnx + \frac{sen(2x-9)}{x}\right]x^{sen(2x-9)}$$

$$y' = [-senx \ln(senx) + cosx ctgx](senx)^{\cos x}$$

$$y' = \frac{1}{x} [\ln(\ln x) + 1] (\ln x)^{\ln x}$$

$$y' = \left[cosx \ln (x^2 - 1) + \frac{2x senx}{x^2 - 1} \right] (x^2 - 1)^{senx}$$

1º Bachillerato CNS Derivadas - 5

REGLAS DE DERIVACIÓN

A. Suma y resta.	$y=u+v \rightarrow y'=u'+v'$	$y=u-v \rightarrow y'=u'-v'$
B. Producto y cociente.	$y=u\cdot v \rightarrow y'=u'\cdot v+u\cdot v'$	$y = \frac{u}{v} \rightarrow y' = \frac{u' \cdot v - u \cdot v'}{v^2}$
C. Producto por un nº	$y=a\cdot u \rightarrow y'=a\cdot u'$	
D. Composición	$y = a \cdot u \rightarrow y' = a \cdot u'$ $y = [g(f(x))]' = g'(f(x)) \cdot f'(x)$	
TIPOS	FORMAS	
	SIMPLES	COMPUESTAS
1. Tipo Potencial	$y = x^n \to y' = n x^{n-1}$	$y = u^n \rightarrow y' = nu^{n-1}u'$
	$y = k \rightarrow y' = 0$	
	$y = \sqrt{x} \to y' = \frac{1}{2\sqrt{x}}$ $y = \ln x \to y' = \frac{1}{x}$	$y = \sqrt{u} \to y' = \frac{u'}{2\sqrt{u}}$ $y = \ln u \to y' = \frac{u'}{u}$
2. Tipo logarítmico	$y = lnx \rightarrow y' = \frac{1}{x}$	$y = \ln u \to y' = \frac{u'}{u}$
	$y = lg_a x \rightarrow y' = \frac{1}{x} lg_a e$ $y = e^x \rightarrow y' = e^x$	$y = lg_a u \rightarrow y' = \frac{u'}{u} lg_a e$
3. Tipo exponencial	$y=e^x \rightarrow y'=e^x$	$y = e^u \rightarrow y' = e^u \cdot u'$
	$y=a^x \rightarrow y'=a^x lna$	$y=a^u \rightarrow y'=a^u \cdot u' \cdot lna$
4. Tipo circular	$y = sen x \rightarrow y' = cos x$	$y = sen u \rightarrow y' = cos u \cdot u'$
	$y = \cos x \rightarrow y' = -\sin x$	$y = \cos x \rightarrow y' = - \operatorname{sen} u \cdot u'$
	$y=tg x \rightarrow y'=1+tg^2x=sec^2x$	$y = tg u \rightarrow y' = (1 + tg^2 u) \cdot u' = sec^2 u \cdot u'$
	$y = cosec x \rightarrow y' = -cosec x \cdot ctg x$	$y = cosec u \rightarrow y' = -cosec u \cdot ctg u \cdot u'$
	$y = \sec x \rightarrow y' = \sec x \cdot tg x$	$y = \sec u \rightarrow y' = \sec u \cdot tg u \cdot u'$
	$y = ctg x \rightarrow y' = -cosec^2 x$	$y = ctgu \rightarrow y' = -cosec^2u \cdot u'$
5. Tipo funciones arco	$y = arcsen x \rightarrow y' = \frac{1}{\sqrt{1 - x^2}}$	$y = arcsenu \rightarrow y' = \frac{u'}{\sqrt{1 - u^2}}$
	$y = \arccos x \to y' = \frac{-1}{\sqrt{1 - x^2}}$	$y = \arccos u \to y' = \frac{-u'}{\sqrt{1 - u^2}}$
	$y = arctg x \rightarrow y' = \frac{1}{1 + x^2}$	$y = arctgu \rightarrow y' = \frac{u'}{1 + u^2}$
	$y = arccosec x \rightarrow y' = \frac{-1}{x\sqrt{x^2 - 1}}$	$y = \operatorname{arccosec} u \rightarrow y' = \frac{-u'}{u\sqrt{u^2 - 1}}$
	$y = \operatorname{arcsec} x \to y' = \frac{1}{x\sqrt{x^2 - 1}}$	$y = \operatorname{arcsec} u \to y' = \frac{u'}{u\sqrt{u^2 - 1}}$
	$y = \operatorname{arcctg} x \to y' = \frac{-1}{1 + x^2}$	$y = \operatorname{arcctg} u \to y' = \frac{-u'}{1 + u^2}$