Cheatsheet WuS

Nicolas Wehrli

June 2023

1 Grundbegriffe

1.1 Wahrscheinlichkeitsraum

Axiome von Kolmogorov

Das Tuple $(\Omega, \mathcal{A}, \mathbb{P})$ ist ein Wahrscheinlichkeitsraum mit

- I. Grundraum Ω mit $\Omega \neq \emptyset$, wobei $\omega \in \Omega$ ein Elementarereignis ist.
- II. σ -Algebra $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ wobei gilt:
 - 1. $\Omega \in \mathcal{A}$
 - 2. $A \in \mathcal{A} \implies A^{\complement} \in \mathcal{A}$
 - 3. $A_1, A_2, \dots \in \mathcal{A} \implies \bigcup_i A_i \in \mathcal{A}$
- III. Wahrscheinlichkeitsmass \mathbb{P} auf (Ω, \mathcal{A}) ist eine Abbildung $\mathbb{P}: \mathcal{A} \mapsto [0, 1]$, wobei gilt:
 - 1. $\mathbb{P}(\Omega) = 1$
 - 2. $A_1, A_2, \dots \in \mathcal{A}, \forall i \neq j : A_i \cap A_j = \emptyset$ $\Longrightarrow \mathbb{P}(\bigcup_i A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$

De-Morgan

Sei $(A_i)_{i\geq 1}$ eine Folge von beliebigen Mengen. Dann gilt

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^{\mathfrak{C}} = \bigcap_{i=1}^{\infty} (A_i)^{\mathfrak{C}}$$

Daraus folgt

- 1. $A_1, A_2, \dots \in \mathcal{A} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$
- 2. $A, B \in \mathcal{A} \implies (A \cup B), (A \cap B) \in \mathcal{A}$

und für $A, B \in \mathcal{A}$

- 1. $\mathbb{P}(A^{\complement}) = 1 \mathbb{P}(A)$
- $2. \ A \subseteq B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Sei $A_1, A_2, \dots \in \mathcal{A}$, dann gilt:

Union Bound

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Siebformel

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

Atome

Sei Ω nicht leer und diskret. Sei \mathcal{F} eine beliebige σ -Algebra über Ω .

Eine nichtleere Menge $A \in \mathcal{F}$ heisst **atomare** Mengee von \mathcal{F} falls für alle $B \in \mathcal{F}$ gilt:

$$B \subseteq A \implies B = \emptyset \lor B = A$$

(Intuitiv: Aist die kleinste nichtleere Menge bezüglich der Inklusion in $\mathcal{F})$

Die Menge der atomaren Mengen von $\mathcal F$ bezeichnen wir mit $\operatorname{Atom}(\mathcal F).$

Jedes Element von \mathcal{F} lässt sich als abzählbare Vereinigung von Elementen aus $Atom(\mathcal{F})$ schreiben.

1.2 Bedingte Wahrscheinlichkeiten

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum.

Bedingte Wahrscheinlichkeit

Sei $A, B \in \mathcal{A}$ und $\mathbb{P}(B) > 0$, dann ist die bedingte Wahrscheinlichkeit von A gegeben B

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Satz der totalen Wahrscheinlichkeit

Sei $(B_i)_{i\in I}$ eine Partition von Ω . Dann gilt für jedes beliebige $A\in\mathcal{A}$

$$\mathbb{P}(A) = \sum_{i: \ \mathbb{P}(B_i) > 0} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

Satz von Bayes

Aus der Definition der bedingten W'keit folgt sofort die Bayessche Formel, welche den Zusammenhang zwischen $\mathbb{P}(A|B)$ und $\mathbb{P}(B|A)$ beschreibt:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

Mit dem Satz der totalen W'keit können wir $\mathbb{P}(A)$ umschreiben und kommen auf folgende Form:

Sei $(B_i)_{i\in I}$ eine **Partition** von Ω . Dann gilt für jedes beliebige $A\in\mathcal{A}, \mathbb{P}(A)>0$

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}{\sum_{j: \ \mathbb{P}(B_j) > 0} \mathbb{P}(A|B_j) \cdot \mathbb{P}(B_j)}$$

Intuition Bayessche Statistik

In dieser Form würde man A als das **eingetretene Ereignis** und die B_i als die verschiedene **Hypothesen** verstehen.

In der Bayesschen Statistik versucht man die Hypothese zu finden, so dass $\mathbb{P}(B_i|A)$ maximiert wird.

(Wurde in der Vorlesung nicht weiter behandelt)

1

1.3 Unabhängigkeit

Unabhängigkeit von zwei Ereignissen

Zwei Ereignisse $A, B \in \mathcal{A}$ heissen **unabhängig**, wenn

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

- $\mathbb{P}(A) \in \{0,1\} \implies A$ zu jedem Ereignis unabhängig
- A zu sich selbst unabhängig $\Longrightarrow \mathbb{P}(A) \in \{0,1\}$
- A, B unabhängig $\implies A, B^{\complement}$ unabhängig

Wenn $\mathbb{P}(A) > 0, \mathbb{P}(B) > 0$ gilt:

A, B unabhängig $\iff \mathbb{P}(A|B) = \mathbb{P}(A) \iff \mathbb{P}(B|A) = \mathbb{P}(B)$

Wir können die Definition der Unabhängigkeit auf beliebige Mengen von Ereignissen erweitern.

Allgemeine Unabhängigkeit

Eine Kollektion von Ereignissen $(A_i; i \in I)$ heisst (stochastisch) unabhängig, wenn

$$J \subseteq I$$
 endlich $\implies \mathbb{P}\left(\bigcap_{i \in J} A_i\right) = \prod_{i \in J} \mathbb{P}(A_i)$

2 Zufallsvariablen

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein diskreter Wahrscheinlichkeitsraum.

Zufallsvariable

Eine (reellwertige) **Zufallsvariable** auf Ω ist eine messbare Funktion $X: \Omega \to \mathbb{R}$.

$$X: \Omega \to \mathbb{R} \text{ messbar} \iff \forall x \in \mathbb{R}: X^{-1}(\{x\}) \in \mathcal{A}$$

Die Eigenschaft **messbar** ist bezüglich dem Wahrscheinlichkeitsmass \mathbb{P} relevant (i.e. dann ist $\mathbb{P}(X=x):=\mathbb{P}(\{\omega\in\Omega\mid X(\omega)=x\})$ wohldefiniert).

Diese Definition von **messbar** ist für diskrete Ω äquivalent zu derjenigen der Vorlesung, die die rechte Seite vom ' \iff ' für alle abgeschlossenen Teilmengen $B \subset \mathbb{R}$ fordert.

Für die Messbarkeit von X ist nur $X(\Omega) \subseteq \mathbb{R}$ entscheidend und jede Teilmenge $A \subseteq X(\Omega)$ ist abzählbar (da Ω abzählbar). Somit kann $X^{-1}(A)$ als abzählbare Vereinigung von $\bigcup_{x \in A} X^{-1}(\{x\})$ geschrieben werden.

 $(\Longrightarrow X^{-1}(A) \in \mathcal{A} \text{ per Def. } \sigma\text{-Algebra})$

2.1 Verteilungsfunktion

Die **Verteilungsfunktion** ist die Abbildung $F_X : \mathbb{R} \to [0,1]$ definiert durch:

$$F_X(t) := \mathbb{P}(X \le t), \forall t \in \mathbb{R}$$

Die Funktion erfüllt folgende Eigenschaften:

- 1. F_X ist monoton wachsend
- 2. F_X ist rechtsstetig, i.e. $\lim_{h\downarrow 0} F_X(x+h) = F_X(x)$
- 3. $\lim_{x\to-\infty} F_X(x) = 0$ und $\lim_{x\to\infty} F_X(x) = 1$
- 4. $\forall a, b \in \mathbb{R}, a < b : \mathbb{P}(a < X \le b) = F_X(b) F_X(a)$

Linksstetigkeit

Die Verteilungsfunktion ist nicht immer linksstetig. Sei $F_X(a-) := \lim_{h \downarrow 0} F_X(a-h)$ für $a \in \mathbb{R}$ beliebig. Dann gilt:

$$\mathbb{P}(X = a) = F_X(a) - F_X(a-)$$

Intuitiv folgt daraus

- Wenn F_X in einem Punkt $a \in \mathbb{R}$ nicht stetig ist, dann ist die "Sprunghöhe" $F_X(a) F_X(a-)$ gleich der Wahrscheinlichkeit $\mathbb{P}(X=a)$.
- Falls F_X stetig in einem Punkt $a \in \mathbb{R}$, dann gilt $\mathbb{P}(X = a) = 0$.

Unabhängigkeit von Zufallsvariablen

Seien $X_1,...,X_n$ Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega,\mathcal{A},\mathbb{P})$. Dann heissen $X_1,...,X_n$ unabhängig, falls

$$\forall x_1,...,x_n \in \mathbb{R}$$
:

$$\mathbb{P}(X_1 \le x_1, ..., X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdot ... \cdot \mathbb{P}(X_n \le x_n).$$

Unendlich viele Bernoulli-Experimente

TBD

2.2 Diskrete Zufallsvariablen

Sei $A \in \mathcal{F}$ ein Ereignis.

Wir sagen A tritt fast sicher (f.s.) ein, falls $\mathbb{P}(A) = 1$.

Seien $X,Y:\Omega\to\mathbb{R}$ Zufallsvariablen:

$$X \leq Y \text{ f.s. } \Longleftrightarrow \ \mathbb{P}(X \leq Y) = 1$$

Diskrete Zufallsvariable

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst **diskret**, falls eine endliche oder abzählbare Menge $W\subset\mathbb{R}$ existiert, sodass

$$\mathbb{P}(X \in W) = 1$$

Falls Ω endlich oder abzählbar ist, dann ist X immer diskret.

Die **Verteilungsfunktion** einer diskreten ZV X:

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{y \in W} p(y) \cdot \mathbb{1}_{y \le x}$$

Die **Gewichtsfunktion** einer diskreten ZV X:

$$\forall x \in X(\Omega): p(x) = \mathbb{P}(X=x)$$
wobei $\sum_{x \in X(\Omega)} p(x) = 1$

2.3 Diskrete Verteilungen

Bernoulli-Verteilung $(X \sim Ber(p))$:

 $X(\Omega) = \{0,1\}$ und die Gewichtsfunktion ist definiert durch

$$p(1) := \mathbb{P}(X = 1) = p \text{ und } p(0) := \mathbb{P}(X = 0) = 1 - p.$$

Binomialverteilung ($X \sim Bin(n, p)$):

Wiederholung von n unabhängigen Bernoulli-Experimenten mit gleichem Parameter p.

$$p(k) := \mathbb{P}(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k} \quad \forall k \in \{0, 1, \dots, n\}$$

Geometrische Verteilung $(X \sim \text{Geo}(p))$:

Warten auf den 1-ten Erfolg.

$$p(k) := \mathbb{P}(X = k) = (1 - p)^{k - 1} \cdot p \quad \forall k \in \mathbb{N} \setminus \{0\}$$

Poisson-Verteilung ($X \sim \text{Poisson}(\lambda)$):

Grenzwert der Binomialverteilung für grosse n und kleine p.

$$p(k) := \mathbb{P}(X = k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda} \quad \forall k \in \mathbb{N}_0, \lambda > 0$$

- 1. Für $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$ gilt $\lim_{n \to \infty} \mathbb{P}(X_n = k) = \mathbb{P}(Y = k)$ wobei $Y \sim \text{Poisson}(\lambda)$.
- 2. Seien $X_1 \sim \text{Poisson}(\lambda_1)$ und $X_2 \sim \text{Poisson}(\lambda_2)$ unabhängig. Dann gilt $(X_1 + X_2) \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

2.4 Stetige Zufallsvariablen

Stetige Zufallsvariablen, Dichte

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst **stetig**, wenn ihre Verteilungsfunktion F_X wie folgt geschrieben werden kann

$$F_X(a) = \int_{-\infty}^a f(x) dx = \text{ für alle } a \in \mathbb{R}.$$

wobei $f: \mathbb{R} \to \mathbb{R}^+$ eine nicht-negative Funktion ist. f wird dann als **Dichte** von X benannt.

Wenn $f:(\mathbb{R},\mathcal{B})\to(\mathbb{R},\mathcal{B})$ messbar ist, ist die Zufallsvariable X absolut stetig.

Intuition: f(x) dx ist die Wahrscheinlichkeit, dass $X \in [x, x + dx]$.

Von F_X zu f:

Sei X eine Zufallsvariable mit stetiger Verteilungsfunktion F_X und F_X stückweise \mathcal{C}^1 , d.h. es gibt $x_0 = -\infty < \ldots < x_{n-1} < x_n = +\infty$, sodass F_X auf jedem Intervall (x_i, x_{i+1}) Element von \mathcal{C}^1 ist.

Dann ist X eine stetige Zufallsvariable und die Dichte f kann wie folgt konstruiert werden:

$$\forall x \in (x_i, x_{i+1}) \quad f(x) = F_X'(x).$$

TODO: Beispielrechnung -Dichte finden

2.5 Stetige Verteilungen

Gleichverteilung $(X \sim \mathcal{U}([a,b]))$:

Die Dichte ist auf dem Intervall [a, b] gleich.

$$f_{a,b}(x) = \begin{cases} 0 & x \notin [a,b] \\ \frac{1}{b-a} & x \in [a,b] \end{cases}$$

Exponentialverteilung $(T \sim \text{Exp}(\lambda))$:

Lebensdauer oder Wartezeit eines allg. Ereignisses (Stetiges Äquivalent zur Geometrischen Verteilung).

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

Normalverteilung $(X \sim \mathcal{N}(m, \sigma^2))$:

Häufig verwendete Verteilung. Undefiniert für $\sigma = 0$

$$f_{m,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

1. Seien X_1, \ldots, X_n unabhängige normalverteilte ZV mit Parametern $(m_1, \sigma_1^2), \ldots, (m_n, \sigma_n^2)$, dann ist

$$Z = m_0 + \lambda_1 X_1 + \ldots + \lambda_n X_n$$

eine normalverteilte ZV mit Parametern $m = m_0 + \lambda_1 m_1 + \dots + \lambda_n m_n$ und $\sigma^2 = \lambda_1^2 \sigma_1^2 + \dots + \lambda_n^2 \sigma_n^2$.

2. Sei $Z \sim \mathcal{N}(0,1)$ eine **standardnormalverteilte** Zufallsvariable. Dann gilt für $X \sim \mathcal{N}(m,\sigma^2)$

$$X = m + \sigma \cdot Z$$

3 Erwartungswert

Erwartungswert - Diskrete ZV

Sei $X:\Omega\to\mathbb{R}$ eine diskrete Zufallsvariable, $W_X:=X(\Omega)$ und $\phi:\mathbb{R}\to\mathbb{R}$ eine Abbildung. Falls die Summe wohldefiniert ist, gilt:

$$\mathbb{E}(\phi(X)) := \sum_{x \in W_X} \phi(x) \cdot \mathbb{P}(X = x)$$

Wenn $X: \Omega \to \mathbb{N}_0$, kann man auch den Erwartungswert als

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} \mathbb{P}(X > n)$$

schreiben.

Erwartungswert - Stetige ZV

Sei $X:\Omega\to\mathbb{R}$ eine stetige Zufallsvariable mit Dichte f. Sei $\phi:\mathbb{R}\to\mathbb{R}$ eine Abbildung, sodass $\phi(X)$ eine Zufallsvariable ist. Dann gilt

$$\mathbb{E}(\phi(X)) = \int_{-\infty}^{\infty} \phi(x) f(x) \, dx,$$

solange das Integral wohldefiniert ist.

Sei X eine stetige ZV mit X > 0 f.s., dann gilt:

$$\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X > x) \, dx$$

3.1 Rechnen mit Erwartungswerten

Linearität des Erwartungswertes:

Seien $X,Y:\Omega\to\mathbb{R}$ ZV mit $\lambda\in\mathbb{R}$, Falls die Erwartungswerte wohldefiniert sind, gilt:

$$\mathbb{E}(\lambda \cdot X + Y) = \lambda \cdot \mathbb{E}(X) + \mathbb{E}(Y)$$

Falls X, Y unabhängig, dann gilt auch:

$$\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$$

Eine generellere Form wäre folgende Äquivalenz:

 $X_1, X_2, ..., X_n$ unabhängig

Für jede $\phi_1:\mathbb{R}\to\mathbb{R},\dots,\phi_n:\mathbb{R}\to\mathbb{R}$ stückweise stetig, beschränkt gilt

$$\mathbb{E}(\phi_1(X_1)\cdots\phi_n(X_n))=\mathbb{E}(\phi_1(X_1))\cdots\mathbb{E}(\phi_n(X_n))$$

3.2 Ungleichungen

Monotonie

Seien X, Y ZV mit $X \leq Y$ f.s., dann gilt:

$$\mathbb{E}(X) \leq \mathbb{E}(Y)$$

Markov Ungleichung

Sei X eine ZV und ferner $g: X(\Omega) \to [0, +\infty)$ eine wachsende Funktion. Für jedes $c \in \mathbb{R}$ mit q(c) > 0 gilt dann

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}(g(X))}{g(c)}$$

Einfache Version:

Sei X eine ZV mit $X \ge 0$ f.s., dann gilt für jedes t > 0:

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}$$

Chebyshev Ungleichung

Sei Y eine ZV mit endlicher Varianz. Für jedes b > 0 gilt dann

$$\mathbb{P}(|Y - \mathbb{E}(Y)| \ge b) \le \frac{\operatorname{Var}(Y)}{b^2}$$

Jensen Ungleichung

Sei X eine ZV und $\phi : \mathbb{R} \to \mathbb{R}$ eine konvexe Funktion, dann gilt:

$$\phi(\mathbb{E}(X)) \le \mathbb{E}(\phi(X))$$

3.3 Varianz

Varianz

Sei X eine ZV, sodass $\mathbb{E}(X^2) < \infty$. Die **Varianz** von X ist definiert durch

$$Var(X) = \sigma_X^2 = \mathbb{E}((X - m)^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

wobei $m = \mathbb{E}(X)$. Dabei wird σ_X als **Standardabweichung** von X bezeichnet und beschreibt den Erwartungswert für die Distanz von X zu $\mathbb{E}(X)$.

1. Sei X ein ZV, sodass $\mathbb{E}(X^2) < \infty$ und $\lambda \in \mathbb{R}$:

$$Var(a \cdot X + b) = a^2 \cdot Var(X)$$

2. Seien $X_1, ..., X_n$ paarweise unabhängig. Dann gilt

$$Var(X_1 + \ldots + X_n) = Var(X_1) + \ldots + Var(X_n)$$

Kovarianz

Seien X, Y ZV mit $\mathbb{E}(X^2) < \infty$, $\mathbb{E}(Y^2) < \infty$. Wir definieren die **Kovarianz** zwischen X und Y durch

$$Cov(X, Y) := \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

- 1. Cov(X, X) = Var(X)
- 2. X, Y unabhängig \implies Cov(X, Y) = 0 (Die Umkehrung ist falsch!)
- 3. Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

3.4 Bedingter Erwartungswert

Sei $(\Omega,\mathcal{A},\mathbb{P})$ ein diskreter Wahrscheinlichkeitsraum und $X:\Omega\to\mathbb{R}$ eine Zufallsvariable.

Für ein beliebiges $B\in A, \mathbb{P}(B)>0$ definieren wir den **bedingten** Erwartungswert X bedingt durch B als

$$\mathbb{E}(X \mid B) = \frac{\mathbb{E}(\mathbb{1}_B X)}{\mathbb{P}(B)} = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x \mid B)$$
$$= \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\} \mid B)$$

TODO: Beispielrechnung

Bedingter Erwartungswert als Zufallsvariable

Wir betrachten eine Partition $\mathcal{B} = (B_i)_{i \in I}$ von Ω (B_i sind disjunkt und nichtleer, I abzählbar).

Dann definieren wir die Zufallsvariable

$$\mathbb{E}(X \mid \mathcal{B})(\omega) = \sum_{i \in I, \mathbb{P}(B_i > 0)} \mathbb{E}(X \mid B_i) \mathbb{1}_{B_i}(\omega)$$

 Intuition: Die Information, die durch die Partition gegeben ist, ist dass eines der B_i eintreten wird. Bei der Realisierung durch das Eintreten des Elementarereignisses ω wird E(X | B) zu dem E(X | B_i) realisiert, bei welchem ω ∈ B_i. Bemerkung: Das B hat in der Vorlesung 2 verschiedene Bedeutungen. Es wird als Variable für sowohl die Borelsche σ-Algebra als auch die Partition von Ω verwendet.

TODO: Beispielrechnung

4 Mehrere Zufallsvariablen

Gemeinsame Verteilung

Die gemeinsame Verteilungsfunktion von n Zufallsvariablen X_1, \ldots, X_n (stetig oder diskret) ist die Abbildung $F: \mathbb{R}^n \to [0,1],$

$$(x_1,\ldots,x_n)\mapsto F(x_1,\ldots,x_n):=\mathbb{P}(X_1\leq x_1,\ldots,X_n\leq x_n)$$

4.1 Diskreter Fall - Gewichtsfunktion

Für n diskrete ZV X_1, \ldots, X_n definieren wir ihre **gemeinsame** Gewichtsfunktion $p: \mathbb{R}^n \to [0,1]$ durch

$$p(x_1,\ldots,x_n):=\mathbb{P}(X_1=x_1,\ldots,X_n=x_n)$$

Aus der gemeinsamen Gewichtsfunktion p bekommt man die gemeinsame Verteilungsfunktion mit

$$F(x_1, \dots, x_n) = \mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n)$$

$$= \sum_{y_1 \le x_1, \dots, y_n \le x_n} \mathbb{P}(X_1 = y_1, \dots, X_n = y_n)$$

$$= \sum_{y_1 \le x_1, \dots, y_n \le x_n} p(y_1, \dots, y_n)$$

Konstruktion einer ZV

Seien X_1, \ldots, X_n diskrete Zufallsvariablen in $(\Omega, \mathcal{F}, \mathbb{P})$, sodass $X_1 \in W_1, \ldots, X_n \in W_n$ f.s. für $W_1, \ldots, W_n \subset \mathbb{R}$ endlich oder abzählbar.

Für $\phi : \mathbb{R}^n \to \mathbb{R}$ beliebig, ist $Z = \phi(X_1, \dots, X_n)$ eine diskrete Zufallsvariable mit $Z \in W = \phi(W_1 \times \dots \times W_n)$ f.s. .

Die Gewichtsfunktion von Z ist gegeben durch $p_Z:W\to [0,1]$:

$$p_Z(t) := \mathbb{P}(Z=t) = \sum_{\substack{x_1 \in W_1, \dots, x_n \in W_n \\ \phi(x_1, \dots, x_n) = t}} p(x_1, \dots, x_n)$$

 Mit dem vorherigen Satz können wir aus der gemeinsamen Verteilung die Randverteilung einer Zufallsvariablen extrahieren (wegsummieren). Wir verwenden dafür einfach die Funktion

$$\phi(x_1,\ldots,x_n)=x_i$$

2. Der Erwartungswert des Bildes der Funktion $\phi: \mathbb{R}^n \to \mathbb{R}$ ist

$$\mathbb{E}(\phi(X_1,\ldots,X_n)) = \sum_{x_1,\ldots,x_n} \phi(x_1,\ldots,x_n) p(x_1,\ldots,x_n)$$

3. Wir haben eine Äquvalenz:

$$X_1,\ldots,X_n$$
unabhängig
$$\iff \forall x_1\in W_1,\ldots,x_n\in W_n$$
 $p(x_1,\ldots,x_n)=\mathbb{P}(X_1=x_1)\cdot\ldots\cdot\mathbb{P}(X_n=x_n)$

4.2 Stetiger Fall - Gemeinsame Dichte

Gemeinsame Dichte

Falls die gemeinsame Verteilungsfunktion von n Zufallsvariablen X_1,\dots,X_n sich schreiben lässt als

$$F(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(t_1,\ldots,t_n) dt_n \ldots dt_1$$

für eine Funktion $f: \mathbb{R}^n \to [0, \infty)$, so heisst $f(x_1, \dots, x_n)$ die gemeinsame Dichte von $X_1, \dots X_n$.

- 1. $f(x_1, \ldots, x_n) \ge 0$, und = 0 ausserhalb von $\mathcal{W}(X_1, \ldots, X_n)$.
- 2.

$$\mathbb{P}((X_1,\ldots,X_n)\in A)=\int \cdots \int f(x_1,\ldots,x_n)\,dx_1\ldots dx_1$$

für $A \subseteq \mathbb{R}^n$ beliebig.

3. Haben X, Y die gemeinsame Verteilungsfunktion $F_{X,Y}$, so ist $F_X : \mathbb{R} \to [0,1]$,

$$F_X(x) := \mathbb{P}(X \le x) = \mathbb{P}(X \le x, Y \le \infty) = \lim_{y \to \infty} F_{X,Y}(x,y)$$

die Verteilungsfunktion der Randverteilung von X. Analoges gilt für ${\cal F}_Y.$

4. Falls X, Y eine gemeinsame Dichte f(x, y) haben, so haben auch die Randverteilungen von X und Y Dichten $f_X : \mathbb{R} \to [0, \infty)$ und $F_Y : \mathbb{R} \to [0, \infty)$.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 bzw. $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

Die **Dichtefunktion** einer Randverteilung (Randdichte) entsteht aus der gemeinsamen Dichtefunktion durch "Wegintegrieren" der anderen Variable(n).

Wenn X_1, \ldots, X_n stetige ZV mit Dichten f_1, \ldots, f_n , dann sind die folgenden Aussagen äquivalent:

- X_1, \ldots, X_n unabhängig
- (X_1, \ldots, X_n) ist stetig mit gemeinsamer Dichte

$$f(x_1,\ldots,x_n)=f_1(x_1)\cdot\ldots\cdot f_n(x_n)$$

• Für alle $\phi_1: \mathbb{R} \to \mathbb{R}, \dots, \phi_n: \mathbb{R} \to \mathbb{R}$ die stückweise stetig und beschränkt sind, gilt

$$\mathbb{E}(\phi_1(X_1)\cdot\ldots\cdot\phi_n(X_n))=\mathbb{E}(\phi_1(X_1))\cdot\ldots\cdot\mathbb{E}(\phi_n(X_n))$$

4.3 Transformation von Zufallsvariablen

Transformationssatz

Sei Z ein n-dimensionaler Zufallsvektor und $g:(\mathbb{R}^n,\mathcal{B}^n)\to (\mathbb{R}^m,\mathcal{B}^m)$ eine messbare Abbildung. Dann ist

$$H(\omega) = g(Z(\omega))$$

ein m-dimensionaler Zufallsvariable und ferner gilt

$$\mathbb{P}(H \in A) = \mathbb{P}(X \in g^{-1}(A)).$$

Wenn g linear und umkehrbar (i.e. g(x) = m + Bx mit $\det(B) \neq 0$) und unter Vorraussetzung, dass die Verteilung von Z absolut stetig ist, dann ist H auch absolut stetig und es gilt:

$$f_H(x) = \frac{1}{|\det(B)|} f_Z(B^{-1}(x-m)).$$

Beispielrechnung

Z = (X,Y)2-dim Zufallsvektor. Wir wollen die Dichte von X+Yberechnen

Man wäre versucht die Matrix B und den Vektor m wie folgt zu definieren:

$$B = \begin{pmatrix} 1 & 1 \end{pmatrix} \text{ und } m = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Longrightarrow g((X, Y)) = \begin{pmatrix} 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = X + Y$$

Dann wäre aber B (und somit g) nicht invertierbar! Deshalb wollen wir B so wählen, dass q((X,Y)) = (X,X+Y):

$$\begin{pmatrix} X \\ X+Y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$\det(B) = 1 \neq 0 \implies B \text{ invertierbar}$$

$$B^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Nach dem Transformationssatz gilt

$$f_{X,X+Y}(x,z) = \frac{1}{|\det(B)|} f_{X,Y} \left(B^{-1} \cdot \begin{pmatrix} x \\ z \end{pmatrix} \right)$$
$$= 1 \cdot f_{X,Y} \left(\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} \right)$$
$$= f_{X,Y} (x, z - x)$$

Aus der gemeinsamen Dichte $f_{X,X+Y}$ können wir die Dichte f_{X+Y} bestimmen.

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_{X,X+Y}(x,z) dx$$
$$= \int_{-\infty}^{\infty} f_{X,Y}(x,z-x) dx$$

Falls X und Y unabhängig

$$= \int_{-\infty}^{\infty} f_X(x) \cdot f_Y(z - x) \, dx$$

Transformation von Zufallsvariablen

Sei $\phi: \mathbb{R}^n \to \mathbb{R}$ eine Abbildung und X_1, \dots, X_n ZV mit gemeinsamer Dichte f. Dann lässt sich $\mathbb{E}(Z)$ für die Zufallsvariable $Z = \phi(X_1, \dots, X_n)$ mit

$$\mathbb{E}(Z) = \int \cdots \int \phi(x_1, \dots, x_n) \cdot f(x_1, \dots, x_n) dx_n \dots dx_1$$

berechnen.

Beispielrechnung

Wir können diese Art den Erwartungswert zu berechnen nutzen, um die Dichte einer transformierten Zufallsvariable zu berechnen. Seien X und Y zwei Zufallsvariablen mit gemeinsamer Dichtefunktion

$$f(x,y) = \begin{cases} \frac{1}{x^2 y^2} & \text{für } x \ge 1, y \ge 1\\ 0 & \text{sonst.} \end{cases}$$

Bestimme die Dichtefunktion f_V der Zufallsvariable V = XY. Wir definieren $\phi(x, y) = xy$ und berechnen

$$\mathbb{E}(V) = \mathbb{E}(\phi(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x,y) f(x,y) \, dx \, dy$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \phi(x,y) \frac{1}{x^{2}y^{2}} \, dx \, dy$$
Substition $v = xy, dv = y \, dx$

$$= \int_{1}^{\infty} \int_{y}^{\infty} \frac{v}{y} \frac{1}{v^{2}} \, dv \, dy$$

$$A = \{(v,y) \in \mathbb{R}^{2} \mid 1 \leq y < \infty, y \leq v < \infty\}$$

$$= \{(v,y) \in \mathbb{R}^{2} \mid 1 \leq y \leq v, 1 \leq v < \infty\}$$
Zeichnung hilft;)
$$= \int_{1}^{\infty} \int_{1}^{v} \frac{1}{vy} \, dy \, dv$$

$$= \int_{1}^{\infty} \frac{\ln(v)}{v} \, dv$$

$$= \int_{-\infty}^{\infty} v \cdot \frac{\ln(v)}{v^{2}} \mathbb{1}_{v \in [1,\infty)} \, dv$$

$$\implies f_{V}(t) = \frac{\ln(v)}{v^{2}} \mathbb{1}_{v \in [1,\infty)}$$

5 Konvergenz in Wahrscheinlichkeitsräumen

Unabhängigkeit einer Folge und iid./uiv.

Eine Folge von ZV X_1, X_2, \ldots ist unabhängig, wenn X_1, \ldots, X_n unabhängig ($\forall n \in \mathbb{N}$, nach der Definition in 2.1). Sie ist zudem **uiv./iid.**, falls $F_{X_i} = F_{X_j}, \forall i, j \in \mathbb{N}$.

In einem Wahrscheinlichkeitsraum können wir für eine Folge von Zufallsvariablen X_1, X_2, \ldots und einer ZV Z zwischen 3 Arten von Konvergenz unterscheiden:

1. schwache Konvergenz / Konvergenz in Verteilung

Wir definieren $X_n \stackrel{d}{\longrightarrow} Z$ (d for distribution) als

$$\lim_{n \to \infty} \mathbb{P}(X_n \le x) = \lim_{n \to \infty} F_{X_n}(x) = F_Z(x) = \mathbb{P}(Z \le x)$$

für jede Stetigkeitsstelle $x \in \mathbb{R}$ von F_Z .

2. Konvergenz in Wahrscheinlichkeit

Wir definieren $X_n \stackrel{\mathbb{P}}{\longrightarrow} Z$ als

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}(|X_n - Z| > \varepsilon) = 0$$

3. Fast-sichere Konvergenz

Wir definieren $X_n \xrightarrow{\mathbf{f.s.}} Z$ als

$$\mathbb{P}(\{\omega \in \Omega \mid \lim_{n \to \infty} X_n(\omega) = Z(\omega)\}) = 1$$

Wir haben dann auch

$$X_n \xrightarrow{\mathbf{f.s.}} Z \implies X_n \xrightarrow{\mathbb{P}} Z \implies X_n \xrightarrow{d} Z$$

Die Umkehrung der Implikationen gilt nicht, wie folgende Beispiele zeigen:

1.
$$X_n \xrightarrow{d} Z \implies X_n \xrightarrow{\mathbb{P}} Z$$

Sei $\Omega = \{0,1\}$ und für alle $n \in \mathbb{N}$

$$\mathbb{P}(X_n = 0) = \mathbb{P}(X_n = 1) = \frac{1}{2}, \ X_n(\omega) = \begin{cases} 0 & \omega = 0 \\ 1 & \omega = 1 \end{cases}$$

und

$$\mathbb{P}(Z=0) = \mathbb{P}(Z=1) = \frac{1}{2}, \ Z(\omega) = \begin{cases} 1 & \omega = 0 \\ 0 & \omega = 1 \end{cases}$$

Aus $F_{X_n} = F_Z$ folgt direkt $X_n \stackrel{d}{\longrightarrow} Z$.

Da aber $|X_n(\omega) - Z(\omega)| = 1, \forall \omega \in \Omega$ und demzufolge $\lim_{n \to \infty} \mathbb{P}(|X_n - Z| > \epsilon) \longrightarrow 0$ für $n \to \infty$, gilt

$$X_n \xrightarrow{\mathbb{P}} Z$$

2. $X_n \stackrel{\mathbb{P}}{\longrightarrow} Z \implies X_n \stackrel{\mathbf{f.s.}}{\longrightarrow} Z$

Wir betrachten den Wahrscheinlichkeitsraum ([0, 1], \mathcal{B}, \mathbb{P}). Für ein beliebiges $n \in \mathbb{N}$ sei $k = \lfloor \log_2(n) \rfloor$ und $j \in \{0, \dots, 2^k - 1\}$, sodass $n = 2^k + j$.

Dann definieren wir

$$X_n(\omega) = \mathbb{1}_{\left[\frac{j}{2^k}, \frac{j+1}{2^k}\right]}(\omega).$$

und

$$Z(\omega) = 0 \quad \forall \omega \in \Omega = [0, 1]$$

Zur Visualisierung würde die Folge so aussehen

$$X_1 = \mathbb{1}_{[0,1]}, X_2 = \mathbb{1}_{\left[0,\frac{1}{2}\right]}, X_3 = \mathbb{1}_{\left[\frac{1}{2},1\right]}, X_4 = \mathbb{1}_{\left[0,\frac{1}{4}\right]}$$
 etc.

Wir hätten dann

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}(|X_n - Z| > \varepsilon) = 0 \implies X_n \stackrel{\mathbb{P}}{\longrightarrow} Z$$

Aber für jedes $\omega \in [0,1]$ finden wir unendlich viele X_n mit $X_n(\omega) = 1$ und deshalb

$$\mathbb{P}(\{\omega \in [0,1] \mid \lim_{n \to \infty} X_n(\omega) = Z(\omega)\}) = 0 \implies X_n \xrightarrow{\mathbf{f.s.}} Z$$

5.1 Gesetz der grossen Zahlen

starkes Gesetz der grossen Zahlen

Sei X_1,X_2,\ldots eine Folge von uiv. Zufallsvariablen. Sei $\mathbb{E}(|X_1|)<\infty$ und $\mu=\mathbb{E}(X_1)$. Für

$$\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

gilt dann

$$\overline{X}_n \longrightarrow \mu$$
 f.s.

Dies ist eine fast-sichere Konvergenz.

schwaches Gesetz der grossen Zahlen

Sei X_1, X_2, \dots eine Folge von paarweise unkorrelierten Zufallsvariablen, die alle den gleichen Erwartungswert $\mathbb{E}(X_i) = \mu$ und die gleiche Varianz $\mathrm{Var}(X_i) = \sigma^2$ haben. Sei

$$\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Dann konvergiert \overline{X}_n für $n \to \infty$ in Wahrscheinlichkeit gegen $\mu = \mathbb{E}(X_i)$, d.h.

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}(|\overline{X}_n - \mu| > \varepsilon) = 0 \text{ i.e. } \overline{X}_n \stackrel{\mathbb{P}}{\longrightarrow} \mu$$

Bemerkung:

Zur Erinnerung:

$$X_i, X_i$$
 unkorreliert \iff $Cov(X_i, X_i) = 0$

Wir haben auch

 X_i, X_j unabhängig $\Longrightarrow X_i, X_j$ unkorreliert

5.2 Zentraler Grenzwertsatz

Zentraler Grenzwertsatz

Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von iid. Zufallsvariablen mit $\mathbb{E}(X_i) = \mu < \infty$ und $\operatorname{Var}(X_i) = \sigma^2 < \infty$. Dann gilt

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \Phi(x) \quad \forall x \in \mathbb{R}$$

also

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1)$$

Bemerkungen:

Man verwendet auch oft die Form für $\overline{X}_n = \frac{1}{n}S_n$ als

$$\frac{X_n - \mu}{\sigma / \sqrt{n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1)$$

beziehungsweise

$$S_n \xrightarrow{d} \mathcal{N}(n\mu, n\sigma^2) \text{ und } \overline{X}_n \xrightarrow{d} \mathcal{N}\left(\mu, \frac{1}{n}\sigma^2\right)$$

Beispielrechnung:

Seien $(X_i)_{i\geq 1}, (Y_i)_{i\geq 1}$ und $(Z_i)_{i\geq 1}$ Folgen von iid. ZV mit

$$\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}$$

und analog für Y_1 und Z_1 . Wir definieren

$$S_n^{(x)} := \sum_{i=1}^n X_i, \quad S_n^{(y)} := \sum_{i=1}^n Y_i, \quad S_n^{(z)} := \sum_{i=1}^n Z_i$$

Die Folge $\left((S_n^{(x)},S_n^{(y)},S_n^{(z)})\right)_{n\geq 1}$ wird zufällige Irrfahrt in \mathbb{Z}^3 genannt. Sei $\alpha>\frac12$. Zeige, dass

$$\mathbb{P}\left(\left\|(S_n^{(x)},S_n^{(y)},S_n^{(z)})\right\|_2 \le n^{\alpha}\right) \longrightarrow 1 \text{ für } n \to \infty,$$

wobei $\|(x,y,z)\|_2 := \sqrt{x^2 + y^2 + z^2}$ die euklidische Norm ist. Schritt 1: Für alle $\alpha > 1/2$ zeigen wir $\mathbb{P}(|S_n^{(x)}| \leq n^{\alpha}) \stackrel{n \to \infty}{\longrightarrow} 1$. Da $\mathbb{E}(X_i) = 0$ und $\mathrm{Var}(X_i) = 1$ folgt für $a \in \mathbb{R}$ beliebig per ZGS

$$\mathbb{P}\left(S_n^{(x)} \le a\sqrt{n}\right) = \mathbb{P}\left(\frac{S_n^{(x)}}{\sqrt{n}} \le a\right) \stackrel{n \to \infty}{\longrightarrow} \Phi(a)$$

und somit auch

$$\mathbb{P}\left(|S_n^{(x)}| \le a\sqrt{n}\right) = \mathbb{P}\left(S_n^{(x)} \le a\sqrt{n}\right) - \mathbb{P}\left(S_n^{(x)} \le -a\sqrt{n}\right)$$

$$\stackrel{n \to \infty}{\longrightarrow} \Phi(a) - \Phi(-a) = 2\Phi(a) - 1$$

Sei $\alpha = 1/2 + \beta, \beta > 0$. Dann instanzieren wir mit $a = n^{\beta}$.

$$\mathbb{P}\left(|S_n^{(x)}| \le n^{\alpha}\right) = \mathbb{P}\left(|S_n^{(x)}| \le n^{\beta}\sqrt{n}\right) \longrightarrow \lim_{n \to \infty} (2\Phi(n^{\beta}) - 1) = 1$$

Dies gilt analog für $S_n^{(y)}$ und $S_n^{(z)}$. Schritt 2: $\forall \alpha > 1/2, \mathbb{P}\left(\left\|\left(S_n^{(x)}, S_n^{(y)}, S_n^{(z)}\right)\right\|_2 \leq n^{\alpha}\right) \stackrel{n \to \infty}{\longrightarrow} 1$. Sei $\alpha' \in (1/2, \alpha)$. Dann folgt

$$\left\{ |S_n^{(x)}| \le n^{\alpha'} \wedge |S_n^{(y)}| \le n^{\alpha'} \wedge |S_n^{(z)}| \le n^{\alpha'} \right\}$$

$$\subseteq \left\{ \left\| \left(S_n^{(x)}, S_n^{(y)}, S_n^{(z)} \right) \right\|_2 \le \sqrt{3} \cdot n^{\alpha'} \right\}$$

Da $n^{\alpha} \geq \sqrt{3}n^{\alpha'}$ für grosse n, folgt

$$\begin{split} & \lim_{n \to \infty} \mathbb{P}\left(\left\|\left(S_n^{(x)}, S_n^{(y)}, S_n^{(z)}\right)\right\|_2 \le n^{\alpha}\right) \\ & \ge \lim_{n \to \infty} \mathbb{P}\left(\left\|\left(S_n^{(x)}, S_n^{(y)}, S_n^{(z)}\right)\right\|_2 \le \sqrt{3} \cdot n^{\alpha'}\right) \\ & \ge \lim_{n \to \infty} \mathbb{P}\left(\left|S_n^{(x)}\right| \le n^{\alpha'}, \left|S_n^{(y)}\right| \le n^{\alpha'}, \left|S_n^{(z)}\right| \le n^{\alpha'}\right) = 1 \end{split}$$

6 Schätzer

Wir treffen folgende Annahmen:

- Parameterraum $\Theta \subset \mathbb{R}^m$
- Familie von Wahrscheinlichkeitsmassen (P_θ)_{θ∈Θ} auf (Ω, F);
 für jedes Element im Parameterraum existiert ein Modell /
 Wahrscheinlichkeitsraum (Ω, F, P_θ).
- Zufallsvariablen X_1, \ldots, X_n auf (Ω, \mathcal{F})

Wir nennen die Gesamtheit der beobachteten Daten x_1, \ldots, x_n (wobei $x_i = X_i(\omega)$) und die ZV X_1, \ldots, X_n Stichprobe.

Definition Schätzer

Ein Schätzer ist eine Zufallsvariable $T:\Omega\mapsto\mathbb{R}$ von der Form

$$T = t(X_1, \dots, X_n), \quad t : \mathbb{R}^n \mapsto \mathbb{R}$$

Ein Schätzer T ist **erwartungstreu**, falls für alle $\theta \in \Theta$ gilt:

$$\mathbb{E}_{\theta}[T] = \theta$$

Sei $\theta \in \Theta$ und T ein Schätzer. Der Bias (erwartete Schätzfehler) von T im Modell \mathbb{P}_{θ} ist definiert als:

$$\mathbb{E}_{\theta}[T] - \theta$$

Der mittlere quadratische Schätzfehler (MSE) von T im Modell \mathbb{P}_{θ} ist definiert als:

$$MSE_{\theta}[T] = \mathbb{E}_{\theta}[(T - \theta)^{2}]$$

$$MSE_{\theta}[T] = Var_{\theta}(T) + (\mathbb{E}_{\theta}[T] - \theta)^{2}$$

6.1 Maximum-Likelihood-Methode

6.1.1 Likelihood-Funktion, ML-Schätzer

Die Likelihood-Funktion ist definiert als

$$L(x_1, \dots, x_n; \theta) = \begin{cases} p(x_1, \dots, x_n; \theta) & \text{(diskret)} \\ f(x_1, \dots, x_n; \theta) & \text{(stetig)} \end{cases}$$

Für jedes $x_1,\ldots,x_n\in W$ sei $t_{ML}(x_1,\ldots,x_n)$ der Wert, welcher die Funktion $\Theta\mapsto L(x_1,\ldots,x_n;\theta)$ maximiert. Ein Maximum-Likelihood-Schätzer ist dann definiert als

$$T_{ML} = t_{ML}(X_1, \ldots, X_n)$$

6.1.2 Anwendung der Methode

Die Maximum-Likelihood-Methode ist ein Weg, um systematisch einen Schätzer zu bestimmen.

- 1. Gemeinsame Dichte/Verteilung der ZV finden
- 2. Bestimme davon die Log-Likelihood-Funktion $f(\theta) := \ln(L(x_1, \dots, x_n; \theta))$
- 3. $f(\theta)$ nach θ ableiten
- 4. Nullstelle von $f'(\theta)$ finden
- 5. $f''(\theta) < 0$ oder anderes Argument, dass wir das Maximum gefunden haben (evtl. Randstellen überprüfen!).

Beispielrechnung mit Randstelle:

Wir betrachten den Parameterraum $\Theta = \mathbb{R}_+ \times R_+$ mit $\theta = (\theta_1, \theta_2)$ und die Modellfamilie $(\mathbb{P}_{\theta})_{\theta \in \Theta}$, wobei die ZV X_1, \ldots, X_n iid. mit

$$f_{\theta_1,\theta_2}(x) = \begin{cases} \theta_2 e^{\theta_1 \theta_2 - \theta_2 x} & \text{falls } x \ge \theta_1, \\ 0 & \text{sonst.} \end{cases}$$

Bestimme den ML-Schätzer für $\theta = (\theta_1, \theta_2)$:

Die Likelihood-Funktion ist

$$L(x_1, ..., x_n; \theta_1, \theta_2) = \prod_{i=1}^n f_{\theta_1, \theta_2}(x_i) = \prod_{i=1}^n \theta_2 e^{\theta_1 \theta_2 - \theta_2 x_i} \mathbb{1}_{x_i \in [\theta_1, \infty)}$$

$$= \theta_2^n \exp\left(n\theta_1 \theta_2 - \theta_2 \sum_{i=1}^n x_i\right) \prod_{i=1}^n \mathbb{1}_{x_i \in [\theta_1, \infty)}$$

$$= \theta_2^n \exp\left(n\theta_1 \theta_2 - \theta_2 \sum_{i=1}^n x_i\right) \mathbb{1}_{\min(x_i) \ge \theta_1}$$

Wenn wir davon jetzt die Log-Likelihood Funktion nehmen würden, und diese ableiten, kommen wir auf etwas undefiniertes. Das liegt daran, dass sobald $\theta_1 > \min(x_i)$ gibt es einen Sprung zu 0. Da $\theta_2 > 0$ folgt

$$L(x_1, ..., x_n; \theta_1, \theta_2) > 0 \iff \forall i \in \{1, ..., n\} : x_i \ge \theta_1$$

Um $L(x_1,...,x_n;\theta_1,\theta_2)$ zu maximieren, schränken wir den Ursprungsraum mit $\theta_1 \leq \min_{1 \leq i \leq n} (x_i)$ ein und bestimmen die Log-Likelihood Funktion als

$$f(\theta_1, \theta_2) = \log(L(x_1, ..., x_n; \theta_1, \theta_2)) = n\log(\theta_2) + n\theta_1\theta_2 - \theta_2 \sum_{i=1}^n x_i$$

Da $\theta_2 > 0$ ist (unter der Einschränkung) die Log-Likelihood Funktion für $\theta_1 = \min_{1 \leq i \leq n}(x_i)$ maximal (unabhängig von θ_2). Somit können wir θ_1 so fixieren und $\log(L)$ separat nach θ_2 maximieren.

$$\frac{\delta f}{\delta \theta_2} = \frac{n}{\theta_2} + n\theta_1 - \sum_{i=1}^n x_i = 0$$

$$n\theta_1 - \sum_{i=1}^n x_i = -\frac{n}{\theta_2}$$

$$\theta_2 = \frac{n}{\sum_{i=1}^n x_i - n\theta_1}$$

Überprüfen des kritischen Punktes:

$$\frac{\delta^2}{\delta^2 \theta_2^2} f\left(\theta_1, \frac{n}{\sum_{i=1}^n x_i - n\theta_1}\right) = -\frac{n}{\left(\sum_{i=1}^n x_i - n\theta_1\right)^2}$$
$$= -\left(\sum_{i=1}^n x_i - n\theta_1\right)^2 < 0$$

Daraus erhalten wir die Maximimum-Likelihood-Schätzer für θ_1 und θ_2 :

$$T_1 = \min_{1 \le i \le n} X_i \text{ und } T_2 = \frac{n}{\sum_{i=1}^n X_i - nT_1}$$

7 Tests

Null- und Alternativhypothese

Die Nullhypothese H_0 und die Alternativhypothese H_A sind zwei Teilmengen $\Theta_0 \subseteq \Theta, \Theta_A \subseteq \Theta$ wobei $\Theta_0 \cap \Theta_A = \emptyset$. Falls keine explizite Alternativhypothese spezifiziert ist, so hat man $\Theta_A = \Theta \setminus \Theta_0$.

Eine Hypothese heisst *einfach*, falls die Teilmenge aus einem einzelnen Wert besteht; sonst *zusammengesetzt*.

Definition Test

Ein Test ist ein Tupel (T,K), wobei T eine ZV der Form $T=t(X_1,\ldots,X_n)$ und $K\subseteq\mathbb{R}$ eine deterministische Teilmenge von \mathbb{R} ist. Wir nennen T die T der T der

Wir wollen nun anhand der Daten $(X_1(\omega), \ldots, X_n(\omega))$ entscheiden, ob die Nullhypothese akzeptiert oder verworfen wird. Zuerst berechnen wir die Teststatistik $T(\omega) = t(X_1(\omega), \ldots, X_n(\omega))$ und gehen dann wie folgt vor:

- Die Hypothese H_0 wird verworfen, falls $T(\omega) \in K$.
- Die Hypothese H_0 wird akzeptiert, falls $T(\omega) \notin K$.

Fehler 1. und 2. Art

Ein Fehler 1. Art ist, wenn H_0 fälschlicherweise verworfen wird, obwohl sie richtig ist.

$$\mathbb{P}_{\theta}(T \in K), \quad \theta \in \Theta_0$$

Ein Fehler 2. Art ist, wenn H_0 fälschlicherweise akzeptiert wird, obwohl sie falsch ist.

$$\mathbb{P}_{\theta}(T \notin K) = 1 - \mathbb{P}_{\theta}(T \in K), \quad \theta \in \Theta_A$$

Bemerkung: Da T eine ZV und somit bezüglich dem Mass \mathbb{P}_{θ} : $\mathcal{F} \to [0,1]$ messbar ist, gilt $\{T \in K\} \in \mathcal{F}$ und somit ist $\mathbb{P}_{\theta}(T \in K)$ wohldefiniert.

7.1 Signifikanzniveau und Macht

Ein Test hat Signifikanzniveau $a \in [0, 1]$ falls

$$\forall \theta \in \Theta_0 \quad \mathbb{P}_{\theta}[T \in K] \leq a$$

Es ist meist unser primäres Ziel, die Fehler 1. Art zu minimieren. Das sekundäre Ziel ist, Fehler 2. Art zu vermeiden. Hierfür definieren wir die Macht eines Tests als Funktion:

$$\beta: \Theta_A \mapsto [0,1], \quad \theta \mapsto \mathbb{P}_{\theta}[T \in K]$$

Zu beachten ist, dass eine kleine Wahrscheinlichkeit für einen Fehler 2. Art einem $grossen~\beta$ entspricht.

7.2 Konstruktion von Tests

Wir nehmen an, dass X_1, \ldots, X_n diskret oder gemeinsam stetig unter \mathbb{P}_{θ_0} und \mathbb{P}_{θ_A} sind, wobei $\theta_0 \neq \theta_A$ einfach sind. Der Likelihood-Quotient ist somit wohldefiniert:

$$R(x_1, \dots, x_n) = \frac{L(x_1, \dots, x_n; \theta_A)}{L(x_1, \dots, x_n; \theta_0)}$$

(Falls $L(x_1,\ldots,x_n;\theta_0)=0$ setzen wir $R(x_1,\ldots,x_n)=+\infty$.) Wenn $R\gg 1$, so gilt $H_A>H_0$ und analog $R\ll 1\implies H_A< H_0$.

Likelihood-Quotient-Test

Der Likelihood-Quotient-Test (LQ-Test) mit Parameter $c \geq 0$ ist definiert durch:

$$T = R(x_1, \dots, x_n)$$
 und $K = (c, \infty]$

Der LQ-Test ist optimal, da jeder andere Test mit kleinerem Signifikanzniveau auch eine kleinere Macht hat (Neyman-Pearson-Lemma).

7.3 p-Wert

Sei $T = t(X_1, \ldots, X_n)$ eine Teststatistik und $(T, K_t)_{t \geq 0}$ eine Familie von Tests.

Geordnete Teststatistik

Eine Familie von Tests heisst geordnet bzgl. T falls $K_t \subset \mathbb{R}$ und $s \leq t \implies K_t \subset K_S$. Beispiele:

- $K_t = (t, \infty)$ (rechtsseitiger Test)
- $K_t = (-\infty, -t)$ (linksseitiger Test)
- $K_t = (-\infty, -t) \cup (t, \infty)$ (beidseitiger Test)

Definition p-Wert

Sei $H_0: \theta = \theta_0$ eine einfache Nullhypothese. Sei $(T,K_t)_{t\geq 0}$ eine geordnete Familie von Tests. Der p-Wert ist definiert als ZV G(t), wobei

$$G: \mathbb{R}_+ \mapsto [0,1], \quad G(t) = \mathbb{P}_{\theta_0}[T \in K_t]$$

Der p-Wert hat folgende Eigenschaften:

- 1. Sei T stetig und $K_t = (t, \infty)$. Dann ist der p-Wert unter \mathbb{P}_{θ_0} auf [0, 1] gleichverteilt.
- 2. Für einen p-Wert γ gilt, dass alle Tests mit Signifikanzniveau $\alpha > \gamma$ die Nullhypothese verwerfen.

Insgesamt gilt also:

kleiner p-Wert $\implies H_0$ wird wahrscheinlich verworfen

8 Konfidenzintervalle

Definition Konfidenzintervall

Sei $\alpha \in [0,1]$. Ein Konfidenzintervall für θ mit Niveau $1-\alpha$ ist ein Zufallsintervall I=[A,B], sodass gilt

$$\forall \theta \in \Theta \quad \mathbb{P}_{\theta}[A < \theta < B] > 1 - \alpha$$

wobei A und B Zufallsvariablen der Form $A = a(X_1, \ldots, X_n), B = b(X_1, \ldots, X_n)$ mit $a, b : \mathbb{R}^n \to \mathbb{R}$ sind.

Wenn wir einen Schätzer $T = T_{ML} \sim \mathcal{N}(m, \frac{1}{n})$ haben, suchen wir ein Konfidenzintervall der Form

$$I = [T - c/\sqrt{n}, T + c/\sqrt{n}]$$

Hierbei gilt:

$$\begin{split} \mathbb{P}_{\theta}[T - c/\sqrt{n} \leq m \leq T + c/\sqrt{n}] \\ &= \mathbb{P}_{\theta}[-c \leq Z \leq c] \end{split}$$

wobei $Z = \sqrt{n}(T - m)$ ist.

8.1 Häufige Fälle

Normalverteilt - μ unbekannt, σ^2 bekannt (z-Test)

Erwartungstreuer Schätzer: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ Verteilung unter $\mathbb{P}_{\theta} : \frac{\overline{X}_n - \theta_0}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0, 1)$

- 1. Modell $X_1, \ldots, X_n \sim \mathcal{N}(\theta, \sigma^2)$ uiv. unter \mathbb{P}_{θ}
- 2. Hypothesen $H_0: \theta = \theta_0$, z.B. $H_A: \theta \neq \theta_0$
- 3. Test $T = \frac{\overline{X}_n \mu}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0,1)$
- 4. Verwerfungsbereich $]-\infty,-c[\ \cup\]c,\infty$ für c>0

Normalverteilt - μ , σ^2 unbekannt (t-Test)

Wir definieren $\vec{\theta} = (\mu, \sigma^2)$ und den Varianz-Schätzer $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

- 1. Modell $X_1, \ldots, X_n \sim \mathcal{N}(\theta, \sigma^2)$ uiv. unter $\mathbb{P}_{\vec{\theta}}$
- 2. Test $T = \frac{\overline{X}_n \mu_0}{\sqrt{S^2/n}} \sim t_{n-1}$

8.2 Approximatives Konfidenzintervall

Wir können den zentralen Grenzwertsatz benutzen, um eine standardnormalverteilte ZV zu erhalten, und damit die Konfidenzintervalle zu bestimmen.

9 Aufgaben

9.1 Multiple Choice

Seien X,Y zwei ZV mit gemeinsamer Dichte $f_{X,Y}$. Welche Aussage ist korrekt?

 $\checkmark X, Y \text{ sind immer stetig}$

☐ Die ZV sind nicht notwendigerweise stetig.

Seien $(X_i)_{i=1}^n$ uiv. mit Verteilungsfunktion $F_{X_i} = F$. Was ist die Verteilungsfunktion von $M = \max(X_1, ..., X_n)$?

- $\checkmark F_M(a) = F(a)^n$
- $\square F_M(a) = 1 F(a)^n$
- $\Box F_M(a) = (1 F(a))^n$

Seien X,Y unabhängig und lognormalverteilt ($\ln X, \ln Y$ sind normalverteilt). Welche Aussage ist korrekt?

- $\checkmark XY$ ist lognormalverteilt
- \square XY ist normalverteilt
- $\Box e^{X+Y}$ ist normalverteilt

9.2 Aufgaben Wahrscheinlichkeit

Dichte von $max(X_1, X_2)$

Seien $X_1, X_2 \sim \mathcal{U}[0, 1]$ unabhängige ZV und sei $X = \max(X_1, X_2)$. Berechne die Dichtefunktion von X und $\mathbb{P}[X_1 \leq x \mid X \geq y]$.

$$\begin{split} F_X(t) &= \mathbb{P}[\max(X_1, X_2) \leq t] \\ &= \mathbb{P}[X_1 \leq t] \cdot \mathbb{P}[X_2 \leq t] = F_{X_1}(t) \cdot F_{X_2}(t) \\ f_X(t) &= \frac{d}{dt} F_{X_1}(t) \cdot F_{X_2}(t) = \frac{d}{dt} t^2 \cdot \mathbb{I}_{0 \leq t \leq 1} = 2t \cdot \mathbb{I}_{0 \leq t \leq 1} \end{split}$$

Für die Wahrscheinlichkeit brauchen wir eine Fallunterscheidung:

1. x < 0 oder 1 < x:

$$\mathbb{P}[X_1 \le x \mid X \ge y] = 0$$

2. $0 \le x \le y \le 1$:

$$\frac{\mathbb{P}[X_1 \le x \cap X \ge y]}{\mathbb{P}[X > y]} = \frac{x(1-y)}{1-y^2}$$

3. $0 \le y \le x \le 1$:

$$\frac{\mathbb{P}[X_1 \le x \cap X \ge y]}{\mathbb{P}[X \ge y]} = \frac{x - y^2}{1 - y^2}$$

Gemeinsame Dichte

Bestimme die gemeinsame Dichte von $P \sim \mathcal{U}[0,1]$ und $H \sim \mathcal{U}[0,P]$. Wir wissen:

$$f_P(p) = \mathbb{I}_{p \in [0,1]} \quad f_{H|P}(h \mid p) = \frac{1}{p} \cdot \mathbb{I}_{h \in [0,p]}$$

Somit ist:

$$f_{P,H}(p,h) = f_P(p) \cdot f_{H|P}(h \mid p) = \frac{1}{p} \cdot \mathbb{I}_{0 \le h \le p \le 1}$$

10 Quellen

Dieses Cheatsheet wurde stark vom Cheatsheet von Danny Camenisch inspiriert. Ausserdem stammen Teile der Tabellen aus dem Buch "Formeln, Tabellen und Konzepte". Die Definitionen sind grösstenteils vom offiziellen Vorlesungsskript (V. Tassion) übernommen.

11 Tabellen

11.1 Grenzwerte

$\lim_{x \to \infty} \frac{e^x}{x^m} = \infty$	$\lim_{x \to -\infty} x e^x = 0$
$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^b = 1$	$\lim_{x \to \infty} n^{\frac{1}{n}} = 1$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to \infty} (1 - \frac{1}{x})^x = \frac{1}{e}$
$\lim_{x \to \pm \infty} (1 + \frac{k}{x})^{mx} = e^{km}$	$\lim_{x \to \infty} \left(\frac{x}{x+k}\right)^x = e^{-k}$
$\lim_{x \to 0} \frac{\log 1 - x}{x} = -1$ $\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$	$\lim_{x \to 0} x \log x = 0$
$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$
$\lim_{x \to 0} \frac{1}{x} = 0$ $\lim_{x \to 1} \frac{\ln(x)}{x-1} = 1$	$\lim_{x \to 0} \frac{1}{x} = 1$ $\lim_{x \to \infty} \frac{\log(x)}{x^a} = 0$

Partielle Integration

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

- Meist gilt: Polynome ableiten (g(x)), wo das Integral periodisch ist $(\sin, \cos, e^x,...)$ integrieren (f'(x))
- Teils: mit 1 multiplizieren, um partielle Integration anwenden zu können (z.B. im Fall von $\int \log(x) dx$)

Substitution

Um $\int_a^b f(g(x)) dx$ zu berechnen: Ersetze g(x) durch u und integriere $\int_{g(a)}^{g(b)} f(u) \frac{\mathrm{d}u}{g'(x)}$.

- g'(x) muss sich herauskürzen, sonst nutzlos.
- Grenzen substituieren nicht vergessen.
- Alternativ: unbestimmtes Integral berechnet werden und dann u wieder durch x substituieren.

11.2 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{a}{x^{a+1}}$
$\frac{-a+1}{x^{a+1}}$	$x^a \ (a \neq 1)$	$a \cdot x^{a-1}$
$\frac{\overline{a+1}}{k \ln(a)} a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\frac{\ln x }{2}$	$\frac{1}{x}$	$-\frac{1}{x^2}$ $\frac{1}{2\sqrt{x}}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$ $\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$ cos(x) $ $ sin^2(x) $	$-\sin(x)$ $2\sin(x)\cos(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$ $\frac{1}{2}(x + \frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{\frac{1}{\cos^2(x)}}{1 + \tan^2(x)}$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\frac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\frac{\ln x }{\ln x}$	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{\frac{1}{x}}{\frac{1-\ln(x)}{x_1^2}}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$\frac{1}{\ln(a)x}$

11.3 Weitere Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}_{-1}$
$\arccos(x)$	$\frac{\sqrt{\frac{1}{1}x^2}}{\sqrt{1-x^2}}$
$\arctan(x)$	$x^{x} \cdot \frac{1}{1+x^{2}}$ $x^{x} \cdot (1+\ln x)$
$x^x (x > 0)$	$x^x \cdot (1 + \ln x)$

11.4 Integrale

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$
$\int f'(x)f(x)dx$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)} dx$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2} dx$	$\sqrt{\pi}$
$\int (ax+b)^n dx$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$
$\int x(ax+b)^n dx$	$\frac{\frac{1}{a(n+1)}(ax+b)^{n+1}}{\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}}$ $\frac{(ax^p+b)^{n+1}}{(ax^p+b)^{n+1}}$
$\int (ax^p + b)^n x^{p-1} dx$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$
$\int (ax^p+b)^{-1}x^{p-1}dx$	$\frac{1}{ap} \ln ax^p + b $
$\int \frac{ax+b}{cx+d} dx$ $\int \frac{1}{x^2+a^2} dx$	$\frac{ax}{c} - \frac{ad-bc}{c^2} \ln cx+d $
	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{1}{x^2 - a^2} dx$	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $
$\int \sqrt{a^2 + x^2} dx$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$

11.5 Diskrete Verteilungen

Verteilung	Parameter	$\mathbb{E}[X]$	$\operatorname{Var}(X)$	$p_X(t)$	$F_X(t)$
Gleichverteilung	n : Anzahl Ereignisse x_i : Ereignisse	$\frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} x_i \right)^2$	$\frac{1}{n}$	$\frac{ \{k{:}x_k{\le}t\} }{n}$
Bernoulli	$p: \mathrm{ErfolgsWK}$	p	$p \cdot (1-p)$	$p^t(1-p)^{1-t}$	$1-p \text{ für } 0 \leq t < 1$
Binomial	n: Anzahl Versuche p : ErfolgsWK	np	np(1-p)	$\binom{n}{t}p^t(1-p)^{n-t}$	$\sum_{k=0}^{t} \binom{n}{k} p^k (1-p)^{n-k}$
Geometrisch	p: ErfolgsWK t : Anzahl Versuche	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p(1-p)^{t-1}$	$1 - (1-p)^t$
Poisson	λ : Erwartungswert und Varianz	λ	λ	$rac{\lambda^t}{t!}e^{-\lambda}$	$e^{-\lambda} \sum_{k=0}^{t} \frac{\lambda^k}{k!}$

11.6 Stetige Verteilungen

Verteilung	Parameter	$\mathbb{E}[X]$	Var(X)	$f_X(t)$	$F_X(t)$
Gleichverteilung	[a,b]: Intervall	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$	$\begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{sonst} \end{cases}$	$\begin{cases} 0 & x \le a \\ \frac{t-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$
Exponentialverteilung	$\lambda:rac{1}{\mathbb{E}[X]}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\begin{cases} \lambda e^{-\lambda t} & t \ge 0\\ 0 & t < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda t} & t > 0 \\ 0 & t \le 0 \end{cases}$
Normalverteilung	σ^2 : Varianz $\mu : \mathbb{E}[X]$	μ	σ^2		$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2} \mathrm{d}y$
χ^2 -Verteilung	n: Freiheitsgrad	n	2n	$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}t^{\frac{n}{2}-1}e^{-\frac{t}{2}} \text{ für } t>0$	$P\left(\frac{n}{2},\frac{t}{2}\right)$
t-Verteilung	n: Freiheitsgrad	$\begin{cases} 0 & n > 1 \\ \text{undef.} & \text{sonst} \end{cases}$	$\begin{cases} \frac{n}{n-2} & n > 2\\ \infty & 1 < n \le 2\\ \text{undef. sonst} \end{cases}$	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\cdot\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^2}{n}\right)^{-\frac{n+1}{2}}$	I'd rather not

Gamma-Funktion

$$\Gamma(v) := \int_0^\infty t^{v-1} e^{-t} dt, v \ge 0.$$

Es gilt $\Gamma(n) = (n-1)!$ für $n \in \mathbb{N}$.