

Course Objectives

- Provides essence and fundamentals of communication networks
 - Learn terminology
 - Learn system context
 - Learn basics about underlying technologies

Learn how Internet works

Course Objectives

- Perform analysis of communications systems
 - Key parameters: Rate (speed), throughput (effective speed), delay

Relate requirements to network design, system capabilities and characteristics

Objectives of This Unit

- Course logistical information
- Applications of telecommunication networks
- Networks basics

Course Logistics

- Instructor: Mai Abdelhakim, PhD
- Contact me if you for question or need to discuss anything
 - E-mail address: <u>maia@pitt.edu</u>

- Graduate teaching Assistant: Mr. Xiangyu Yin
 - Contact: <u>eric.yin@pitt.edu</u>

Office hours & Zoom rooms ==check Canvas

Course Logistics

- Class meetings:
 - Time: Mon & Wed 1:15pm-2:30pm
 - Location:
 - Mainly Zoom
 - In-person option to be announced: 152 Chevron Science Center
 - pending arrangements, based on risk postures
 - Survey due by next lecture: ECE 1150:
 https://pitt.co1.qualtrics.com/jfe/form/SV_8e8alxLFOjpISHY

Risk postures

Current status: Elevated risk posture

- University policy and instructions
 - https://www.policy.pitt.edu/sites/default/files/covid/In struction%20REVISED.pdf

- Gathering capacity
 - Elevated risk: capacity any location 25

Canvas

 Syllubus, Course material, assignments will be on Canvas

Please update notification to be "notify me right away"

Any changes will be announced on Canvas

Course Requirements

- Participation (Top Hat)
- Assignments (homeworks and term report)
- Periodic quizzes (~ every other week)
 - On Canvas
- Midterm and Final exams
 - Online

 Assignments (homework, reading, term-report ~10%) & Participation: 40%

• Quizzes: 15%

• Midterm: 20%

• Final: 25%

Policy

- Academic integrity: Your work is your own!
- No credits for vague answers
- It is your responsibility to make sure that you uploaded your correct submissions
- Late submission not accepted without permission

References

- [Textbook] Computer Networks, A. S. Tanenbaum and D. J. Wetherall, 5th Ed.
- Queuing Theory and Telecommunications: Networks and Applications, Giovanni Giambene, 2014, 2nd ed. (available online through library.pitt.edu)
- Computer Networking A Top-Down Approach, Jim Kurose and Keith W. Ross, Addison-Wesley
- Business data communications and IT infrastructures, 2nd Edition, by Agrawal & Sharma
- Wireless Communications Network & Systems, C. Beard and W. Stallings.
- Business Data Communications and Networking, J. FitzGerald et al

Comments

- My slides are from a lot of places and derived from many textbooks
 - Author's of references (e.g. Agrawal, Tanenbaum, Kurose,
 Stallings), Dr. Weiss, Dr. Krishnamurthy,..

Strategies for Success

- It is recommended to take notes that you can review before exams
- In lecture feel free to ask questions via speaking up or chat
 - You can send message private to me if you wish
 - In chat, take sure to use appropriate language and refrain form using acronyms that some may not understand
- Ask questions on discussion on canvas, in lecture, join office hours
- Time Management don't start assignment last min

Why Networks are Important?

Use network at work, home, and on-the-go

 The information exchange industry is one of the world's largest industries by revenue

Internet is used for everything

Easy access to knowledge

Sharing information

Online banking & paymemt systems

Electronic commerce

Social networks

Online virtual meetings (Zoom)

• In 2016, Cisco estimates that over 3,000 Petabytes of information transferred over the Internet **DAILY**!

Petabytes = Million Gigabyte!

 Netflix accounts for around 1/3 of primetime downstream traffic

- As of 2012, every **DAY** on Facebook there are:
 - 2.7 Billion Likes
 - 300 Million Photos uploaded
 - >500 Terabytes of data transmitted

Giga=10⁹ Terra=10¹²

Source: Business Data Communications and Networking

Why is networks getting even more important?

- Internet of Things concept
 - Connecting 'things' together and to the Internet

IoT Application – Smart Energy Grid

Efficient distribution of power resources

IoT Application – Smart Home

Connected devices in home can be accessed remotely through the internet. e.g. turn on the sprinkler while you are away, control lighting, heating

IoT Application - Healthcare

Monitor patients remotely

 Remotely adjust medical equipment, ex. breathing Internet ventilator system. Gateway Blood Pulse Nano-micro interface nanosenso Healthcare provider

IoT Application - Manufacturing

- Parts in the production process are connected and can be managed and analyzed through the Internet
 - Create automated and self-running factories

IoT Application – Smart Cities

 Autonomous vehicles, smart parking, intelligent traffic management

Impact of Communication Networks

Numerous Applications: autonomous vehicles, smart cities, smart home, energy systems, healthcare, military, cyber-manufacturing, agriculture, ...

Billions of devices!

- Huge impact on the economy
 - IoT could generate up to \$11.1 trillion a year in economic value by 2025.

Reference: McKinsey

Broad Course Contents

- Application
 - Web browsing
- Internet Protocol Stack
 - 5 Layers
 - Application Protocols
 - HTTP
 - Transport (TCP, UDP)
 - Internet Protocol (IP)
 - Helpers Address Resolution (ARP)
 - DHCP, DNS

- Lower Layers (Main focus)
 - Medium Access layer (MAC)
 - Fixed, Random, Hybrid access
 - Ethernet, WiFi, Cellular
 - Physical Layer (PHY)
 - Signal Constellation, modulation, data rates
- Performance
 - Throughput, delay, jitter
 - Reliability
- Management Issues

Generic Approach

- Description (What is X?)
 - What problems it solves?
- Context
 - Where does X fit in a system?
- Evaluation
 - How well does X work?
 - What are X's limitations?

What is Computer Network?

System of interconnected

devices

 Enables exchange of information

Source: Agrawal et al.

Representation

Cloud as a generic network

Parts of a Network

Abstract Model

Network is composed of

-Nodes:

End devices

Interconnecting devices

-Links:

Wired or wireless

End Devices

- End devices can be
 - Clients: a user device that access network
 - Desktops, laptops, tablets, phones, etc.
 - Servers: stores and transmits data to clients
 - Web server, mail server, file server

Component Names

Component	Function	Example
Application, or app, user	Uses the network	Skype, iTunes, Amazon
End-device, Host, , edge device, node, source, sink	Supports apps	Laptop, mobile, desktop
Interconnecting device, Router, or switch, node, hub, intermediate system	Relays messages between links	Access point
<u>Link</u> , or channel	Connects nodes	Wires, wireless

Classification Based on Direction of Communications

- Simplex
- Half-duplex
- Full-duplex

Simplex Communications

- Communication in one direction (unidirectional) only at all time:
 - e.g. broadcast radio, some satellite services

Half Duplex

- Communication is bidirectional, but only one direction possible at a time
 - Can't talk and hear at the same time
 - E.g. Walkie-talkie, local network with a hub, some Bluetooth devices

Full Duplex

- Communications possible is both directions (bidirectional) at the same time
- E.g. Cell phone

Network Classification

- Based on size:
 - Personal Area Network (PAN)
 - Local Area Network (LAN)
 - Metropolitan Area Network (MAN)
 - Wide Area Network (WAN)

Network names by scale

Туре	Example
PAN (Personal Area Network)	Bluetooth (e.g., headset)
LAN (Local Area Network)	WiFi, Ethernet
MAN (Metropolitan Area Network)	Cable, DSL
WAN (Wide Area Network)	Large ISP
The Internet (network of all networks)	The Internet!

Internet can be considered as a large WAN

Local Area Network (LAN)

Metropolitan Area Network (MAN)

Wide Area Network (WAN)

Internet

Backbone network/Core network: connects various smaller networks together forming a larger network

Network Types

Different architecture, technologies and protocols depending on size and application!

Network Classification: Based on Topology

- Topology defines how nodes are connected
- Possible topologies: Star, Tree, Mesh, Ring

Star Topology

- All nodes are connected to a central node
- Advantages:
 - Simpler management
- Disadvantages
 - Susceptible to traffic problems
 - Failure of the central entity causes complete network failure

Tree Topology

- Tree topology:
 - Interconnecting
 node can be a
 parent of one or
 more child nodes
 - End device can only be a child node in the tree
 - Extend networkcoverage over star

Ring Topology

- All devices are connected in a loop
- Disadvantage:
 communication
 latency for long routes

Mesh Topology

 Nodes establish links directly with each other

Advantage: Flexible, more reliable

 Disadvantage: Expensive, harder to manage

Mesh Topology

Full mesh

Partial mesh

Top Hat: Q_Network topology

Choose correct answer:

A key advantage of the mesh topology is that

- A) It is easier to manage and troubleshoot
- **B)** It enables low power consumption at all devices
- C) There is no single point of failure

Typical Wired Network Structure

Key Takeaways

- Numerous applications
- Abstract model: Network is composed of devices and links
- Based on direction of communications, network can be
 - Simplex, half duplex, full duplex
- Networks can be classified based on geographical coverage
 - PAN, LAN, MAN, WAN
- Network has a topology, which defines how devices are connected
 - Star, tree, mesh, ring