Assignment 1 & 2 Course 10401

NICKLAS KIHM (S143286) RASMUS KRONBORG FINNEMANN WIUFF (S163977)

January 17, 2019

Introduction

Assignment 1

TITLE Fusion power plant

GOAL Design a tokamak using a modified version of the model presented in Freidberg's book.

Assignment 2

- TITLE Design of interferometer for DTU tokamak
- GOAL # 1 To calculate the phase shift induced by O-mode radiation and investigate different microwave sources
- GOAL # 2 To design a lens system to accommodate the beam propagation in the small DTU tokamak

FUSION POWER PLANT- FREIDBERG'S MODEL

Freidberg assumes a circular plasma cross section. Output parameters presented in the textbook are calculated given a few input parameters.

INPUT PARAMETERS

Symbol	Quantity	
$n_{\rm flux\ fraction}$	n flux in breeder end/n flux in breeder start	[]
C_F	Fixed cost propotionality constant	[\$]
C_I	Nuclear island cost propotionality constant	$[\$ \cdot W/m^3]$
P_E	Desired output power	[MW]
P_W	Maximum wall load	$[MW/m^2]$
$B_{ m max}$	Magnetic field at the edge of the coil	[T]
$\sigma_{ m max}$	Tensile strenght of the magnetic field coils	[atm]
η_t	Energy conversion efficiency	

OUTPUT PARAMETERS

Symbol	Quantity	Obtained values	
b	Blanket-and-shield thickness	1.2037	m
c	Magnet coil thickness	0.7993	m
a	Minor radius	2.0098	m
R_0	Major radius	4.9583	m
A	Aspect ratio	2.4670	
A_p	Plasma surface	393.4152	m^2
V_p	Plasma volume	395.3509	m^3
$P_{ m dens}$	Power density	4.9685e06	W/m
p	Plasma pressure	7.3672e05	Pa
n	Particle density	1.5327e20	$1/\mathrm{m}^3$
B_0	Magnetic field at magnetic axis	4.5744	Т
β	Normalised plasma pressure	8.85	%
$ au_{E_{\min}}$	Min confinement time for $(p imes au_E)_{\min}$	1.1415	S

Model Sensitivity

Introduction

 $P_{\rm E}$, $P_{\rm W}$, $B_{\rm max}$ and $\sigma_{\rm max}$ are changed. Many output parameters were unaffected or changed linearly. But some interesting results were found.

ELLIPTIC PLASMA-CHANGES IN MODEL

Now the plasma is modeled as an ellipse. The thickness of the blanket is not constant. Rather the outer and inner ellipses are kept as true ellipses.

$$V_{\rm I} = 2 \pi^2 R_0 \left((a_{\rm min} + b + c)^2 - a_{\rm min}^2 \right) \kappa$$
 (1)

$$c = \frac{2\xi}{1-\xi} \left(\kappa \, a_{\min} + b \right) \quad (2)$$

ELLIPTICAL MODEL OUTPUT PARAMETERS

Symbol	Quantity	Obtained values
c	Magnet coil thickness	1.30 m↑
A_p	Plasma surface	$1210\mathrm{m}^2\uparrow$
V_p	Plasma volume	793 m ³ ↑
$P_{ m dens}$	Power density	$2.48 \times 10^6 \mathrm{W/m} \downarrow$
p	Plasma pressure	$5.20 imes 10^5 Pa \!\!\downarrow$
n	Particle density	$1.08 imes 10^{20}/\mathrm{m}^3$ \downarrow
β	Normalised plasma pressure	6.17%↓
$ au_{E_{\min}}$	Min confinement time for $(p imes au_E)_{\min}$	1.62 s↑

Symbol	Quantity	Obtained values
b	Blanket-and-shield thickness	1.20 m
c	Magnet coil thickness	1.30 m
a	Minor radius	2.01 m
R_0	Major radius	9.95 m↑
A	Aspect ratio	4.95↑
A_p	Plasma surface	$2.41 imes 10^3 \text{m}^2 \!\!\uparrow$
V_p	Plasma volume	$1.59 imes 10^3\mathrm{m}^3\!\!\uparrow$
P_{dens}	Power density	$2.48 imes 10^6 \mathrm{W/m}$
p	Plasma pressure	$5.20 imes 10^5$ Pa
n	Particle density	$1.08 imes10^{20}/\mathrm{m}^3$
B_0	Magnetic field at magnetic axis	8.80 T ↑
β	Normalised plasma pressure	1.69%↓
$ au_{E_{\min}}$	Min confinement time for $(p imes au_E)_{\min}$	1.62 s

DEMO output parameters with $\kappa=2$ and A=3

Symbol	Quantity	Obtained values
b	Blanket-and-shield thickness	1.20 m
c	Magnet coil thickness	1.30 m
a	Minor radius	2.01 m
R_0	Major radius	6.03 m ↓
A	Aspect ratio	3 ↓
A_p	Plasma surface	$1.46 imes 10^3 extsf{m}^2 \downarrow$
V_p	Plasma volume	$962\mathrm{m}^3\downarrow$
P_{dens}	Power density	$4.01 imes 10^6 \mathrm{W/m} \uparrow$
p	Plasma pressure	$6.68 imes 10^5$ Pa \uparrow
n	Particle density	$1.39 imes 10^{20}/ ext{m}^3 \uparrow$
B_0	Magnetic field at magnetic axis	6.07 T ↓
β	Normalised plasma pressure	4.55% ↑
$ au_{E_{\min}}$	Min confinement time for $(p imes au_E)_{\min}$	1.26 s ↓

DEMO WITH κ AND A AS FREE PARAMETERS

We have chosen to optimise the engineering volume and β using κ and A as free parameters. This yields optimum R_0 and κ

$$R_0 = \sqrt{a^3/b} \tag{3}$$

$$\kappa = \frac{6 a_{\min} \xi - b \xi - 6 a_{\min} - b}{2 a_{\min} \xi} \tag{4}$$

DEMO output parameters with κ and A as free parameters

Quantity	Obtained values
Blanket-and-shield thickness	1.20 m
Magnet coil thickness	1.30 m
Minor radius	2.01 m
Major radius	2.60 m ↓
Aspect ratio	1.29 ↓
Plasma surface	$630\mathrm{m}^2$
Plasma volume	$414\mathrm{m}^3\downarrow$
Power density	$9.49 imes 10^6 \mathrm{W/m} \downarrow$
Plasma pressure	$1.02 imes 10^5 ext{Pa}$
Particle density	$2.12 imes 10^{20}/ ext{m}^3 \downarrow$
Magnetic field at magnetic axis	−3.09 T ↓
Normalised plasma pressure	26.9% ↑
Min confinement time for $(p imes au_E)_{\min}$	1.26 s
	Blanket-and-shield thickness Magnet coil thickness Minor radius Major radius Aspect ratio Plasma surface Plasma volume Power density Plasma pressure Particle density Magnetic field at magnetic axis Normalised plasma pressure

Cut off

$$n_e < n_c = \omega^2 \frac{\epsilon_0 \cdot m_{e0}}{e^2} \tag{5}$$

At densities of $10^{18}/m^3$ the minimum frequency is:

$$\frac{\omega}{2\pi} > \frac{\sqrt{\frac{10^{18}/\text{m}^3}{0.000314}}}{2\pi}$$

$$\psi$$

$$f \approx 9 \,\text{GHz}$$
(8)

Introduction

FOUR SOURCES

At a density of $10^{18}/\mathrm{m}^3$ the minimum frequency of the wave is: $f \approx 9\,\mathrm{GHz}$

- ► 2.45 GHz (Transparent)
- ▶ 60 GHz
- ▶ 98 GHz
- ▶ 130 GHz

PHASESHIFTS

Frequency [GHz]	Phase $at[2\pi]$	
	$n_e=10 imes10^{16}/\mathrm{m}^3$	Phase at $n_e=10 imes 10^{18}/\mathrm{m}^3$
2.45	0.8620	86.17
60	0.0352	3.519
98	0.0215	2.154
130	0.0162	1.624

Gaussian Telescope

Input parameters: w_0 , freq, d_0 , f_0 , f_1 Output distances: $d_1=0.1619$, $d_2=0.0881$, $d_3=0.0563$ Output beamwaists: $w_1=0.0116$, $w_2=0.0069$ Wavelenght: $\lambda=0.005$

QUESTIONS

NICKLAS KIHM (S143286) RASMUS KRONBORG FINNEMANN WIUFF (S163977)

January 17, 2019