SPACE TRANSPORTATION SYSTEM SPACE SHUTTLE ANYLOAD FLIGHT ASSIGNMENTS

OVEMBER 1985

2

CUSTOMER BERVICES DIVINION WASHINGTON D.C.

RECEIVED

JAN 6 2 1981

ITS VERSATILITY, COMBINED WITH COMI

SPACE TRANSPORTATION SYSTEM

SPACE SHUTTLE PAYLOAD FLIGHT ASSIGNMENTS

This schedule reflects the flight assignments as of 20-NOV-85 10-14:40. Changes will be negotiated with the payload organizations affected and will be included in the next monthly update.

APPROVED

HEADING ABBREVIATIONS

MSSN
eg 41-H
First digit Last digit of fiscal year
Second digit Launch site: 1=KSC:2=WAFB
Letter: Serial flight in fiscal year
ORBITR: Orbiter name
INCL: Orbit inclination
ALT: Orbit altitude (n.m.)
CRV: Number in crew
DUR: Flight duration
REO DATE: Requested date
UF: Utilization Factor

For further information regarding the STS payload assignments, please address:

Chester H. Lee Director, STS Customer Services, Hail Code HC NASA Headquarters, Washington, DC, U.S.A. 20546 Telephone (2021453-2347

	Fy85	Fy86	Fy87	Fy88	FyB9	Fy90
Flight Rate	8	15	18	18	24	24

ORBITAL FLIGHT TESTS

*** SHUTTLE FLIGHT ASSIGNMENTS FOR PAYLOADS *** SPACE SHUTTLE MISSIONS AS PERFORMED

MSSN	DATE	INCL	ICRVI	PAYLOAD	CARRIER	OTHER PAYLOADS
OFT-1	B1 4 12 COLUMBIA	10.3	2 1	DF I	DFI PLT	OEX
ØFT-2	81 11 12 COLUMBIA	38	121	OSTA-1 DF I	PALLET DFI PLT	I DEX
OFT-3 KSC	COLUMBIA	1 38 1 130 1	2 8	OSS-1 DF I	PALLET DFI PLT	I IECM I OEX I SSIP(I) I GAS TEST I MLR I EEVT
OFT-4 KSC	82 6 27 COLUMBIA	1 28.5 1 162 1	1 2 1 7 1	DOD 82-1	DFI PLT	I DEX I IECM I MLR I CFES I NOSL I SSIP(2) I GAS(1)

09-SEP-85 11 38

COMPLETED OPERATIONAL FLIGHTS
(STS-5 through STS 61-A)

MSSNI DATE INCLICRVI PAYLOAD CARRIE	R I OTHER I UF
31-A 92 1 1 28.5 4 SBS-C PAM-D 5 COLUMBIA 160 5 TELESAT-E PAM-D	IGLOW 10.93 ISSIP(3) IGAS(1)
31-8 83 4 4 128.5 4 TDRS-A TUS/2 6 ICHALLENGER 1581 5	ICFES 10.94 IMLR, NOSL I IGAS (3)
31-C 83 6 18 128.5 5 SPAS-0	ICFES 10.95 (MLR (GAS(7))
31-D 83 8 30 28.5 5 PDRS/PFTA 8 ICHALLENGER 160 6 IDIM INSAT 1-8 PAM-D	CFES 10 59 RME
41-A 83 11 28 157 Ø 6 ISPACELAB 1 LM+1P	11.00
1 41-B1 84 2 3 128.51 5 1SPAS-Ø1A 1 11 ICHALLENGER 1651 8 IPALAPA 8-2 PAH-D 1 IVESTAR- 6 PAH-D	IACES, IEF 10.71 IC-360c+b1 IRME, MLR I IGAS(5) I ISSIP(1) I
NOV85	20-NOV-85 10.14

*** SHUTTLE FLIGHT ASSIGNMENTS FOR PAYLOADS ***
NOVEMBER 1985 BASELINE

MSSN		INCLI		PAYLOAD	CARRIER	I OTHER	UF
41-C	84 4 6 CHALLENGER	28.51		LDEF-1 SMM REPAIR	FSS	IRME, IMAX IC-360b ISSIP(1)	0.85
41-D	84 8 30 DISCOVERY	28.51 1601	6 1	OAST-1 S8S-D TELSTAR 3-C SYNCOM IV-2	MPESS PAM-D PAM-D	ICFES III IIMAX IRME ISSIP(1) ICLOUDS	1 . 00
	84 10 5 CHALLENGER		8 1	OSTA-3 ER8S LFC/ORS	PALLET MPESS	IIMAX IRME IGAS(8) ITLD IAPE ICANEX	10.71
51-A 19	84 11 8 DISCOVERY	128.51	8 1	HS-376 RETV(2) TELESAT-H SYNCOM IV-1	2 PALLET	I DMOS	10.98
51-C 20	85 1 24 DISCOVERY	0.01	0	DOD			1.00

NOV85

	LICRY	PAYLOAD	CARRIER	I OTHER	UF
51-DI 85 4 12 128 23 DISCOVERY 25		ITELESAT-J ISYNCOM IV-3 I	PAM-D	ICFES IIII IAFE IPPE/SAS I ISSIP(2) IGAS(2)	
51-BI 85 4 29 157. 24 ICHALLENGERI 19		SPACELAB 3	LM+MPESS	IGAS (2)	1.00L
51-GI 85 6 17 128. 25 DISCOVERY! 19		ISPARTAN-1 IMORELOS-A IARABSAT-IB ITELSTAR 3-D	MPESS PAM-D PAM-D PAM-D	IFEE IFPE IADSF IHPTE IGAS(6)	0.94W
51-F1 85 7 29 150. 26 ICHALLENGERI 28		SPACELAB 2	IG+3P	ISAREX ISTTP	000
51-11 85 8 27 128. 27 DISCOVERY 19		IAUSSAT- 1 IASC- I ISYNCOM IV-4	PAM-D 'PAM-D	IPVTOS I ISYNCOM I	8 98v

*** SHUTTLE FLIGHT ASSIGNMENTS FOR PAYLOADS ***

		. IN	OAFLIBER 14	DASECTIVE			
MSSNI	DATE	I ALTIDUR			CARRIER	I OTHER IPAYLOADS	UF
	85 10 3 ATLANTIS		DOD				1 .00D
1 61-AI	85 10 30 CHALLENGE	157.01 8 RI 1751 7	SPACELAB	D-1	LM	GLOMR	1 . 00D
NOV85		-+	+			20-NOV-85	10:14

Ľ

-

MANIFESTED FLIGHTS (STS 61-B to STS 81-N)

Commercial customers making progress payments. NASA programs with authorized budgets and DOD missions with signed Form 100's.

*** SHUTTLE FLIGHT ASSIGNMENTS FOR PAYLOADS *** NOVEMBER 1985 BASELINE

				*	
MSSNI DATE	INCL ICRW		CARRIER	OTHER I	UF I
1 61-B1 85 11 26 1 31 ATLANTIS	1901 7	EASE/ACCESS MORELOS-8 ISATCOM KU-2 IAUSSAT- 2	PAM-D	IGAS(1) 10 ICFES 1 I IMAX 1 I DMOS 1 IMPSE 1	.99v
1 61-C1 85 12 18 1 32 COLUMBIA	1751 5	MSL- 2 ISATCOM KU-1 IGAS BRIDGE	MPESS PAM-D2	HH-G1	1.73L
1 51-L1 86 1 22 1 33 CHALLENGER		ISPARTAN-HALLEY ITDRS-B I	MPESS IUS/2	ITIS IN INTERPRETATION OF THE ITEMS INTERPRETATION OF THE	99W
1 61-E1 86 3 6 1 34 COLUMBIA	128.51 7	IASTRO-1	IG+2P	ICHAMP IELRAD I IELRAD I ISSIP(2) I IGAS(1) I	.59W
*	+	+			

NOV85

20-NOV-85 18:14

MSSNI	DATE ORBTR	INCLICA	PAYLOAD	CARRIER	I OTHER	I UF
	6 3 20 DISCOVERY		IDOD(V)		1	11.00D
	6 5 15 MALLENGER		IUL YSSES	CENTAUR		11.000
	6 5 20 TLANTIS		IGAL ILEO	CENTAUR		11.00D
1 61-HI 8	6 6 24 OLUMBIA	128.51 7	IVESTAR VI-S IPALAPA 8-3 ISKYNET-4A	PAM-D 'PAM-D PAM-D2		10.98V
1 61-M1 8	6 7 22 ALLENGER	28.51 6 1541 5	IEOS-I ITDRS-D	IUS/2		0.93V
1 61-J1 6	6 8 18	28.51 5 3201 5	THUBBLE SP TELS	-		1 00D
	6 9 4 OLUMBIA	0.01 0	DOD			1 000
NOV85			+		28-NOV-85	18-14

*** SHUTTLE FLIGHT ASSIGNMENTS FOR PAYLOADS *** NOVEMBER 1985 BASELINE

			A
TE IJNCLIC	RWI PAYLOAD	CARRIER	I OTHER I UF
			10.88L
			1 .00D
0 27 157.01 NTIS 1 1351	7 EOM-1/2	SM+1P+MP	1 11.00L
6 28.5 MBIA 160 	7 IGSTAR-II		1 10.85W
2 6 1 0.01 ENGERI 01			1 1 .00D
12 28.5 NTIS 1601		I G+2P PAM-D2	i i0.73V
1 27 128.51 DMBIA 1901	7 ISPARTAN-	PAM-D	1 10.78W
	97 1 ALTID 9 27 128.51 9 29 1 0 0 0 9 29 1 0 0 0 9 29 1 57.01 1 157.01 1 6 128.51 1 6 128.51 1 12 128.51 1 12 128.51 1 12 128.51 1 27 128.51	9 27 28.5 7 LDEF- RE ROGER 230 5 INSAT -C 9 29 0.0 0 DDD(V) OVERY 0 0 0 27 157.0 7 EOH- /2 NTIS 135 7 6 28.5 7 MSL - 3 16 18.5 7 GSTAR - II 2 6 0.0 0 DDD ENGER 0 0 1 2 28.5 7 ASTRO-2 NTIS 160 7 DDD PAM- 1 27 128.5 7 SMEAL - 1 MBIA 190 7 SPARTAN- 1 190 7 SPARTAN- 1 186 - 2	3TR ALTIDUR 9 27 28.51 7 LDEF RETR FNGER 230 5 INSAT - C

NOV85

20-NOV-85 10:14

	INCLICRY ALTIDUR	PAYLOAD	CARRIER	I OTHER	UF I
1 71-D1 87 2 16 1 47 ICHALLENGER			IUS/2	1	10.93WI
1 71-E1 87 3 16 1 48 1 ATLANTIS		ISLS- 1	LM	1	11.00Di
1 72-A1 87 3 18 1 3 DISCOVERY			1P+MPES	Si	
1 71-F1 87 3 24 1 49 COLUMBIA		IMSL- 5 IDOD PAM- 2 IDOD PAM- 3			10.89 W
1 71-G1 87 4 14 1 50 CHALLENGER	1 1601 7	ISSBUV- 1 IEOIM-III IMSL- 4(MEA IHS 376-R IDOD PAM- 4	MPESS MPESS PAM-D PAM-D2		10.75WI
1 71-H1 87 5 18 1 51 1 ATLANTIS	0.010	DOD		1	II BØDI
NOV85	+	+		20-NOV-85	18:14

*** SHUTTLE FLIGHT ASSIGNMENTS FOR PAYLOADS *** NOVEMBER 1985 BASELINE

MSSNI DATE IINCLICRVI PAYLOAD	CARRIER	I OTHER I UF I
1 71-11 87 5 27 128.51 7 11ML- 1 1 52 COLUMBIA 1601 7	LM	1 11.00D1
1 71-J1 87 6 9 157.01 5 ILDEF-2 (HNC) 1 53 ICHALLENGER1 2451 4 1		1 0.83VI
1 71-K1 87 7 15 128.51 5 IMSL- 7 15 1 ATLANTIS 1 1601 7 INTELSAT VI- 1 1 1 1000 PAM- 5	MPESS PAM-D2	1 11.00W1
71-L1 87 8 4 128.51 5 ISSBUV- 2 1 55 I COLUMBIA I 1601 7 IMSL- 6 (IMEA) 1 I SPARTAN-3 1 I I DOD PAH- 6 1 I I DOD PAH- 7	MPESS MPESS PAM-D2 PAM-D2	11.00W
1 71-H1 87 8 18 128.51 7 1ASTRO-3 1 56 ICHALLENGERI 1931 7 ICRRES	IG+2P	1 10.83W
1 71-NI 87 9 17 1 0.01 0 1DOD 1 57 1 ATLANTIS 1 01 0 1		1 1 .00D
NOVOE		28-NOV-85 18:14

I MSSNI DATE IINCLICRVI PAYLOAD CARR	TER I OTHER I UF I
71-0 87 9 28 57.0 5 SUNLA8- IG+ 158 COLUMBIA 256 7	P 10.99V
81-A 87 10 21 0.0 0 DOD 59 ICHALLENGER 0 0	11.00Di
81-B 87 1 9 28.5 5 MSL- 8 MPES 60 ATLANTIS 160 7 ISPARTAN 205 MPES 	S
81-C 87 16 28 5 6 SSBUY- 3 61 COLUMBIA 160 7 PL OPPTY 	10.84W
81-D 87 12 22 128-5 6	
81-E 88 25 0.0 0 DOD 63 ATLANTIS 0 0	1 11 00D1
NOV85	20-NOV-85 10 14

*** SHUTTLE FLIGHT ASSIGNMENTS FOR PAYLOADS ***

	NOAFLIBEK 1802 DY2	ELINE	
MSSNI DATE ORBIR	IINCLICRWI PAYLOAD	CARRIER I OT	HER I UF I
81-F1 88 2 2 64 COLUMBIA	128.51 6 IEOM- 3 1 1601 7 ISTC D0S-0 1 I IDOD PAM-11	IG+1P PAM-D2 PAM-D2	10.95W
81-G1 88 2 23 65 ICHALLENGER		LM I	11.00D
81-HI 88 3 24 66 COLUMBIA	128.51 5 IMSL- 9 1 1601 7 ISPARTAN 206 1 I IEURECA 1 I IDOD PAM-12	MPESS I MPESS I PAM-D2 I	Ø.86W
82-AI 88 4 I 4 I DISCOVERY	0.0 0 DOD(V)		11.000
81-11 88 4 6 67 ATLANTIS		CENTAUR I	11.00D
81-JI 88 5 4 68 ICHALLENGER	0.0 0 DOD		11.00D
81-KI 88 6 8 69 ATLANTIS	128.51 5 ISSBUV- 4 1601 7 IGRO 	PAM-D2	11.00W
	·		

NOV85

20-NOV-85 10:14

*** SHUTTLE FLIGHT ASSIGNMENTS FOR PAYLOADS ***

1012	HOLK 1000 DAGE THE	
MSSNI DATE IINCLICRWI PA	AYLOAD CARRIER OTHER PAYLOADS	UF
1 70 1 COLUMBIA 1 1601 7 ISPA	L-10 MPESS 10 ARTAN 211 MPESS 1 OPPTY 1 D PAM-14 PAM-D2 1	. 73L
82-B 88 7 15 199.0 5 1COE 5 DISCOVERY 160 7 PL	BE ! !! OPPTY ! !	.00v
81-M 88 7 20 28.5 7 SLS 71 CHALLENGER 160 7	S- 2 LM ! !!	.00D
1 81-NI 88 8 10 1 0.01 0 1001 1 72 1 ATLANTIS 1 01 0 1	D 1	.00D
NOV85	20-NOV-85 18	.14

CTC CHCTOMED DECILIBEMENTS

Commercial customers who have made earnest money payments but have not begun making progress payments. Commercial customers will be added to shuttle filights with receipt of progress payments. NASA programs with authorized budgets and DOD missions with signed Form 100's.

STS CUSTOMER REQUIREMENTS FOR 1988

MONI COMMERCIAL REQUIREMENTS	BOOKING DOD	I NASA I OTHER S I REQUIREMENTS I REQUIREMENTS
JANICHSC- I	184 10 151	ISPARTAN 207 INONE
WESTAR- 8	184 1 191	The second second
FEBISTC DBS-F	184 5 311	IMSL-11 INONE
MARI I WESTAR-A		I NONE I NONE
APRINONE		IMSL-12 ISPARTAN 204
MAYISTC DBS-C	184 7 31 INONE	INONE
JUNI INTELSAT VI- 3 I ITALSAT-1 I RCA-4002 I VESTAR-8	3185 5 311DOD PAM-15 183 5 101 185 8 11 184 1 191	INONE INONE
JULISBTS-A3 IINMARSAT II-1	182 8 251DOD PAM-16 185 7 231	IMSL-13 INONE ISPARTAN 209 I
AUG I RCA-4003	184 4 21	ILEASECRAFT-101 INONE

STS CUSTOMER REQUIREMENTS FOR 1988

MONI COMMERCIAL REQUIREMENTS	IBOOKING I DOD	NASA REQUIREMENTS	I OTHER I REQUIREMENTS
SEPIC2-SPACELINES ICBSC- 2 IEURECA RETR IINTELSAT VI- ISPACELAB D-2 ISPACENET-IV	184 10 151DOD PAM-17 184 12 41 4185 5 311 185 10 71	IDARK SKY ITSS-1 I	I NONE
OCTIINSAT 1-D ISPACELAB D-4	185 11 151DOD PAM-18 184 4 91	IMSL-14 ISHEAL- 2 ISPARTAN 210	I NONE
NOVIGALAXY KU-2	184 9 11DOD PAM-19 185 7 251	IEOM- 4 ILAGEOS- 2	I NONE
DEC INONE		IEUVE IMSAT	I NONE

STS CUSTOMER REQUIREMENTS FOR 1989

MONI COMMERCIAL REQUIREMENTS	1 BOOK I	NG I DOD I REQUIREMENTS	NASA REQUIREMENTS	OTHER REQUIREMENTS
JANIFASSC- 1 IORION-A IWESTAR- 9	185 3		IMSL-15 ISPARTAN 208	INONE
FEBIUSSB-B	185 7	25 DOD PAM-21	IIML- 2 ILEASECRAFT-RET	
MARIRCA-4004 IWESTAR-C IINMARSAT II-3	184 1	191	IMSL-16 ISUNLAB- 2	I NONE
APRIFASSC- 2 IORION-B		1 DOD 24 DOD PAM-22	INONE	I NONE
MAYINONE	I	IDOD PAM-23	IMSL-17	INONE
JUNIUSSB-C	184 5	151DOD 1DOD PAM-24	I VAMDII	INONE
JULIFASSC- 3 IINTELSAT VI- 6 IORION-C ITELESAT-L	181 3	161DOD PAM-25	IMAST- 1 IMSL-18 IOSTA-7	I NONE
AUGINONE		IDOD PAM-26	THUB SP TEL RET	

STS CUSTOMER REQUIREMENTS FOR 1989

MONI COMMERCIAL REQUIREMENTS	BOOKING DOD DATE REQUIREMENTS	I NASA I REQUIREMENTS I REC	OTHER DUIREMENTS
SEPIRCA-4005 S8TS-A4	184 4 21DOD(V) 182 8 251DOD PAM-27	IACTS INONE	
OCTIINTELSAT VI-	7 8 3 6 NONE 85 4 24	IUARS IGOES	
NOVINONE	1 INONE	IEOM- 5 INON	Ε
DECISAX	184 10 31 INONE	ISP PLASMA- 1 INON	E

STS CUSTOMER REQUIREMENTS FOR 1990

MONI COMMERCIAL I REQUIREMENT			NASA REQUIREMENTS	I PEQUIREMENTS
JANIINTELSAT VI-	8181	3 16 INONE 1 191	ISUNLAB- 3	GOES-J
FE8 I NONE	ı	INONE	10STA-9	INONE
MARITELESAT-K	185	7 23 I NONE	ILDEF-2 RETR	INONE
APRIINTELSAT VI-	9181	3 16 I NONE	IOMV	INONE
JUNIRCA-3001	185	8 TINONE	INONE	INONE
JUL I NONE	1	I NONE I	ICFMF- 1 IMAST- 2	INONE
AUG I NONE	1	INONE	IMARS OBSERVER	INOAA-L
SEPINONE	I	INONE	ISLS- 4 -	INONE
OCTIINTELSAT VI-	10181	3 16 I NONE	IEOM- 6 ISHEAL- 3	INONE
NOVITELESAT-M	181	7 GINONE	INONE	INONE
DECINONE	1	INONE	IRADARSAT	INONE

PAYLOAD NAME	I CARRIER	FOR OPT	FLT	DATE	I AVL			-85 8KG		
ACTS ARABSAT-IB ASC- I ASC- 2 ASTRO-I	IPAM-D IPAM-D IPAM-D IPAM-D IIG+2P	NA 51-G 51-I 71-C 61-E	85 85 87 86	8 0 6 17 8 27 1 27 3 6	89 85 85 86 86	95993	6	84 79 79 82 80	2 2	19 12 12 18 15
ASTRO-2 ASTRO-3 AUSSAT- 1 AUSSAT- 2 C2-SPACELINES	IG+2P IG+2P IPAM-D IPAM-D	71-A 1 71-M 1 51-I 1 61-8 1 NA	87 87 85 85	1 12 8 18 8 27 11 26 0 0	1 87 1 85 1 85	10 7 7 10 9	27 19 1 1	80 80 80 80 80 85	99669	15
CBSC- 1 CBSC- 2 CFMF- 1 COBE CRRES	IPAM-D IPAM-D IPALLET	NA NA NA NA 1 82-B 1 71-M	0 0 0 88 87	0 0 0 0 7 15 8 18	88 90 88	1 9 7 4 6	1 1 1 1	84 84 83 79 84	10 6 9 6	15
DARK SKY DBS LUX-A DBS LUX-B DBS LUX-C DOD	IIG+2P IPAM-D IPAM-D IPAM-D	NA NA NA NA NA	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 99	999912	9 9 2	85 83 83 83 83	3 12 12 12 12	23 23 23
DOD DOD DOD DOD DOD		51-J 71-8 71-H NA 81-A	85 86 87 87	10 3 12 6 5 16 0 6	8 86 8 87 8 88	5 12	1	0	0000	8 8 8

PAYLOAD NAME	AYLOAD DATA	FOR OP		NOV85 DATE	AVL DATE	-85 11:01 BKG DATE
I DOD I DOD I DOD I DOD I DOD		1 81-J 1 81-E 1 NA 1 NA	88 88 0 8	5 4 1 25 0 0 8 8	88 4 1 88 1 1 88 8 1 88 12 1 89 6 1	2 8 0 8 0 0 0 8 0 8 8 0
IDOD IDOD IDOD PAM- 1 IDOD PAM- 2	IPAM-D2	NA 1 71-N 1 61-N 1 71-A 1 71-F	87 86 87 87	0 0 9 17 9 4 1 12 3 24	89 4 1 87 9 1 86 9 1 86 8 22 86 11 7	0 0 0 0 0 0 0 0 0 82 3 23
DOD PAM- 3 DOD PAM- 4 DOD PAM- 5 DOD PAM- 6 DOD PAM- 7	IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2	71-F 171-G 171-K 171-L 171-L	87 87 87 87 87	3 24 4 14 7 15 8 4 8 4	86 12 19 87 2 20 87 4 3 87 5 15 87 6 26	82 3 23 82 3 23 82 3 23 82 3 23 82 3 23 82 3 23
IDOD PAM- 8 IDOD PAM- 9 IDOD PAM- 10 IDOD PAM- 11 IDOD PAM- 12	IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2	81-C 81-D 81-D 81-F 81-H	87 87 87 88 88	11 16 12 22 12 22 2 2 3 24	87 8 7 87 9 18 87 10 30 87 12 15 88 2 5	82 3 23 82 3 23 82 3 23 82 3 23 82 3 23 82 3 23
DOD PAM-13 DOD PAM-14 DOD PAM-15 DOD PAM-16 DOD PAM-17	IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2	81-K 81-L NA NA	88 88 8	6 8 6 14 Ø Ø Ø Ø	88 3 18 88 4 29 88 6 10 88 7 22 88 9 2	82 3 23 82 3 23 82 3 23 82 3 23 82 3 23

PAYLOAD NAME	I CARRIER			DATE I	AVL	DATE		DATE
DOD PAM-18 DOD PAM-19 DOD PAM-20 DOD PAM-21 DOD PAM-22	IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2	NA INA INA INA INA INA INA I	0 0 0	0 0 0		10 14 11 25 1 13 2 24 4 7	82 82 82 82 82 82	3 23 3 23 3 23 3 23 3 23 3 23
DOD PAM-23 DOD PAM-24 DOD PAM-25 DOD PAM-26 DOD PAM-27	IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2	I NA I NA I NA I NA	0 0	0 0 0 0 0 0 0 0 0 0	89 89 89 89	5 12 6 16 7 21 8 25 9 29	82 82 82 82 82	3 23 3 23 3 23 3 23 3 23 3 23
DOD (V) DOD (V) DOD (V) DOD (V) DOD (V)		1 62-A 1 NA 1 NA 1 NA 1 NA	86	3 20 0 0 0 0 0 0	86 88 88 89	3 1 9 1 12 1 9 1 7 1	0 0 0	0 0 0 8 0 0 8 8 8 0
DOD(V) DOD(V) DOD-PATIE EASE/ACCESS EOIM-IJI	ILM IMPESS IMPESS	82-A 62-B NA 61-8 71-G	88 86 0 85 85	4 1 9 29 0 0 11 26 4 14	88 86 87 85 85	4 1 9 1 6 1 11 1 9 1	0 85 83 85	0 0 0 0 6 27 10 18 8 8
EOM- 3 EOM- 4 EOM- 5 EOM- 6 EOM- 7	IG+1P IG+1P IG+1P IG+1P IG+1P	I 81-F I NA I NA I NA	88	2 2 0 0 0 0 0 0 0 0	88	10 1 11 1 11 1 10 1 10 1	82 83 83 83 83	9 18 7 11 7 11 7 11 7 11

PAYLOAD NAME	CARRIER	MSSN	TION NOV85	I AVL DATE	-85 11:01 BKG DATE
EOM- 8 EOM- 9 EOM-1/2 EOM-10 EOM-11		NA NA 1 61-K 1 NA 1 NA	0 0 0 0 0 0 1 86 10 27 1 0 0 0	1 92 10 1 1 93 10 1 1 86 8 1 1 94 10 1	83 7 11 83 7 11 83 11 2 83 7 11 83 7 11
EOM-12 EOS-1 EOS-2 ERBS EURECA	IG+1P	NA 61-M 71-D 41-G 81-H	0 0 0 86 7 22 87 2 16 84 10 5 88 3 24	1 96 10 1 1 85 11 1 1 86 6 1 1 84 5 1 1 88 3 1	83 7 11 81 6 29 81 6 29 79 6 15 84 12 4
EURECA RETR EUVE FASSC- 1 FASSC- 2 FASSC- 3		NA NA NA NA		1 88 9 1 1 88 12 1 1 89 1 1 1 89 4 1 1 89 7 1	84 12 4 94 6 6 95 1 1 95 1 1
GALAXY KU-1 GALAXY KU-2 GALILEO GAS BRIDGE GOES-1	ICENTAUR	81-D NA 1 61-G 1 61-C	87 12 22 0 0 0 1 86 5 20 1 85 12 18 1 0 0 0	1 87 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	84 9 1 84 9 1 77 9 12 83 6 14 83 7 20
GOES-J GRO GSTAR-III MS 376-R MS-376 RETV(2)	IPAM-D IPAM-D2 IPAM-D I2 PALLET	NA 1 81-K 1 61-L 1 71-G	1 0 0 0 1 88 6 8 1 86 11 6 1 87 4 14 1 84 11 8	90 1 1 88 5 1 85 7 1 85 7 1 85 7 1 84 11 2	83 7 20 79 9 15 80 4 7 78 12 12 9 9 9

PAYLOAD NAME	LOAD DATA			DATE	AVL	DATE				
HUB SP TEL RET HUBBLE SP TELS IML- 1 IML- 2 INMARSAT II-1	ILM ILM+1P IPAM-D	NA 61-J 71-I NA NA	86 87 20	0 0 8 18 5 27 0 0	89 86 87 89 88	8 6 5 2 7 2		83 83 81 83 85	6 12	25 25 1 22 23
INMARSAT II-3 INSAT 1-B INSAT 1-C INSAT 1-D INTELSAT VI- 1	IPAM-D IPAM-D IPAM-D	1 NA 1 31-D 1 61-I 1 NA 1 71-K	93 96 96 97	8 30 9 27 0 0 7 15	89 83 86 88 87	3 2: 7 6 10 6		85 77 82 85 85	7 10 11 11	23 19 13 15 23
INTELSAT VI- 2 INTELSAT VI- 3 INTELSAT VI- 4 INTELSAT VI- 5 INTELSAT VI- 6		I NA I NA I NA I NA	0 0	0 0 0 0 0 0 0 0	87 88 88 91 89	1 6 9 9 7		81 85 85 81 81	35533	16 31 31 16 16
INTELSAT VI- 7 INTELSAT VI- 8 INTELSAT VI- 9 INTELSAT VI- 10 INTELSAT VI- 11		I NA I NA I NA I NA	0 0	0 0 0 0 0 0 0 0	89 90 90 90 91	10 1 10 1	1 1	81 81 81 81	33333	16 16 16 16
ITALSAT-1 LAGEOS- 2 LDEF-1 LDEF-1 RETR LDEF-2 (HNC)	PAM-D2	NA NA 41-C 61-I 71-J	0 0 84 86 87	9 9 9 9 4 6 9 27 6 9	88 88 84 85 87	6 11 1 1 5		83 85 77 77 84	55776	10 31 26 26

PAYLOAD NAME	YLOAD DATA		FLT DATE	AVL DATE	-85 11.01 BKG DATE
ILDEF-2 RETR ILEASECRAFT-101 ILEASECRAFT-102 ILEASECRAFT-RET ILFC	IMPESS	NA NA NA NA	0 0 0	98 3 1 88 8 24 89 8 1 89 2 1 84 1	80 9 22 84 1 11 84 1 11 84 1 11 81 12 21
ILFC/ORS IMARS OBSERVER IMAST- I IMAST- 2 IMORELOS-A	IMPESS IPALLET IPALLET IPAM-D	41-G NA NA NA 51-G	84 10 5 0 0 0 0 0 0 0 0 0 85 6 17	84 7 1 90 8 20 89 7 1 90 7 1 85 5 1	79 9 15 85 7 25 84 4 19 84 4 19 82 6 1
MORELOS-B MSAT MSL- 2 MSL- 3 MSL- 4 (MEA)	IPAM-D IMPESS IMPESS	61-B NA 61-C 61-L 71-G	85 11 26 1 9 9 9 1 85 12 18 1 86 11 6 1 87 4 14	85 9 1 88 12 1 85 8 1 85 12 1 86 3 1	82 6 1 85 2 21 79 9 15 77 9 12 83 8 17
MSL- 5 MSL- 6 (MEA) MSL- 7 MSL- 8 MSL- 9	MPESS IMPESS IMPESS IMPESS IMPESS	71-F 71-L 71-K 81-B	87 3 24 1 87 8 4 1 87 7 15 1 87 11 9 1 88 3 24	86 4 1 86 10 1 87 3 1 1 87 4 1 1 87 9 1 1	80 9 15 79 9 15 83 8 17 81 7 7 83 8 17
MSL-10 MSL-11 MSL-12 MSL-13 MSL-14	IMPESS IMPESS IMPESS IMPESS IMPESS	BI-L NA NA NA NA	88 6 14 1	87 10 1 1 86 2 1 1 86 4 1 1 86 7 1 1 88 10 1 1	79 9 15 83 8 17 82 9 18 83 8 17 83 12 22

PAYLOAD NAME	I CARRIER	FOR OP		DATE	AVL DATE	-85 11.01 BKG DATE
	IMPESS IMPESS IMPESS IMPESS	NA NA NA NA	0	8 0 0 0 0 0 0 0	89 1 1 1 89 3 1 1 89 5 1 1 89 7 1	83 12 22 83 12 22 83 12 22 83 12 22 83 12 22
INDAA-K INDAA-L INDAA-M INDAA-N INDAA-O		NA NA NA NA	0 0	0 0 0 0 0 0 0 0 0 0	89 10 1 90 8 1 91 3 1 92 8 1	83 9 2 83 9 2 83 9 2 83 9 2 83 9 2
INOAA-P IOAST-1 IOAST-3 IOJM IOMV	IMPESS IMPESS	NA 1 41-D 1 NA 1 31-D 1 NA	84 0 83 0	0 0 8 30 0 0 8 30 0 0	94 8 1 84 4 1 87 6 1 83 8 11	83 9 2 79 1 22 81 7 7 83 5 4 84 10 25
IORION-A IORION-B IORION-C IORION-D IOSTA-II	IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2 IPALLET	I NA I NA I NA I NA	0 0	0 0 0 0 0 0 0 0	89 1 1 89 4 1 89 7 1 89 10 1	85 3 11 85 4 24 85 4 24 85 4 24 85 4 18
10STA-2 10STA-3 10STA-7 10STA-9 1PALAPA B-1	IMPESS IPALLET IPALLET IPALLET IPAM-D	7 41-G NA NA 7	83 84 0 0 83	6 18 10 5 0 0 0 0 6 18	83 4 20 84 7 1 89 7 1 90 2 1 83 3 1	79 1 22 79 9 15 85 4 18 85 4 18 78 12 12

PAYLOAD NAME	I CARRIER	FOR OP	FLT DATE	AVL DATE	-85 11.01 BKG DATE
PALAPA 8-2 PALAPA 8-3 PDRS/PFTA PL DPPTY OR RADARSAT	IPAM-D IPAM-D	41-8 61-H 31-D NA NA	84 2 3 86 6 24 83 8 30 0 0 0	83 6 1 86 7 1 82 5 1 9 9 9	78 12 12 84 10 20 76 1 1 81 1 1 84 10 22
RCA-3001 RCA-3002 RCA-4001 RCA-4002 RCA-4003	ISCOTS ISCOTS ISCOTS ISCOTS	NA NA 81-8 NA NA	0 0 0 0 0 0 87 11 9 0 0 0	90 6 1 91 1 1 87 11 1 88 6 1 88 8 1	85 8 1 79 11 16 81 9 2 85 8 1 84 4 2
RCA-4004 RCA-4005 RCA-4006 ROSAT SATCOL-A	ISCOTS ISCOTS ISCOTS	NA NA NA 71-0	8 0 0 0 0 0 0 0 0 87 9 28 0 0 0	89 3 1 89 9 1 91 6 1 87 9 1	85 8 1 84 4 2 85 2 1 82 7 2 82 10 18
SATCOL-8 SATCOM KU-1 SATCOM KU-2 SAX SBS- 6	PAM-D IPAM-D2 IPAM-D2 IIRIS	NA 61-C 61-8 NA 81-C	0 0 0 1 85 12 18 1 85 11 26 1 0 0 0 1 87 11 16	99 9 9 1 85 9 1 85 9 1 87 11 1	1 82 10 18 79 11 16 1 81 9 2 1 84 10 31 1 85 1 25
S8S-C S8S-D SBS-E S8TS-A3 S8TS-A4	IPAM-D IPAM-D IPAM-D IPAM-D IPAM-D	31-A 41-D NA NA	82 11 11 84 8 30 0 0 0 0 0 0	82 11 84 8 86 0 88 7 89 9 6	77 2 2 79 12 27 83 4 27 82 8 25 82 8 25

PAYLOAD NAME	AYLOAD DATA	FOR OPT		I AVL DATE	V-85 11:01 1 8KG DATE 1
ISHARE ISHEAL - 1 ISHEAL - 2 ISHEAL - 3 ISKYNET - 4A	I SPOC I SPOC I SPOC I PAM-D2	NA 71-C NA NA 61-H	0 0 0 87 1 27 0 0 0 0 0 0 86 6 24	85 1 1 86 7 1 88 10 1 1 90 10 1 1 86 5 1	84 10 5 84 1 25 81 7 7 83 12 22 82 3 23
ISKYNET-4B ISLS- 1 ISLS- 2 ISLS- 3 ISLS- 4	IPAM-D2 ILM ILM ILM ILM	71-C 71-E 81-M NA	87 1 27 87 3 16 88 7 20 0 0 0	1 86 10 1 1 87 2 1 1 88 7 1 1 89 9 1 1 90 9 1	82 3 23 77 9 12 84 1 7 80 9 15 83 12 22
ISMM REPAIR ISOT-I ISP PLASMA- I ISP PLASMA- 2 ISPACELAB 1	IFSS IIG+2P IIG+1P IIG+2P ILM+1P	41-C NA NA NA NA 1 41-A	84 4 6 0 0 0 0 0 0 0 0 0 83 11 28	84 4 91 6 89 12 91 12 83 9 30	81 8 24 1 80 9 15 1 83 4 11 1 83 12 22 1 78 5 18
ISPACELA8 2 ISPACELA8 3 ISPACELA8 D-1 ISPACELA8 D-2 ISPACELA8 D-4	IIG+3P ILM+MPESS ILM ILM IIG+2P	51-F 51-8 61-A NA	85 7 29 85 4 29 85 10 30 0 0 0	85 4 85 22 85 8 15 88 9 88 10	76 4 7 1 76 4 4 1 7 1 78 1 3 1 85 1Ø 7 1 84 4 9 1
ISPACELAB J ISPACENET-IV ISPARTAN 204 ISPARTAN 205 ISPARTAN 206	ILM IPAM-D IMPESS IMPESS	81-G NA NA 81-8 81-H	88 2 23 9 9 9 87 11 9 1 88 3 24	88 88 9 88 4 87 4 87 7	81 6 1 85 1 23 85 4 19 85 4 19

PAYLOAD NAME	YLOAD DATA	FOR OP	ION NOV85	AVL DATE	7-85 11:01 BKG DATE
SPARTAN 207 SPARTAN 208 SPARTAN 209 SPARTAN 210 SPARTAN 211	IMPESS IMPESS IMPESS IMPESS	NA NA NA NA 81-L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 1 1 89 1 1 88 7 1 88 10 1 87 10 1	85 4 19 85 4 19 85 4 19 85 4 19 85 4 19
SPARTAN-1 SPARTAN-2 SPARTAN-3 SPARTAN-HALLEY SPAS-01	IMPESS IMPESS IMPESS	51-G 71-C 71-L 51-L	85 6 17 87 1 27 87 8 4 86 1 22 83 6 18	85 5 1 86 9 1 86 12 1 86 1 1 83 4 1	79 11 6 79 11 6 79 11 6 79 11 6 84 5 23 78 5 12
SPAS-01A SRL- 2 SS8UV- 1 SS8UV- 2 SS8UV- 3	IP+MPESS	41-8 72-A 71-G 71-L 81-C	84 2 3 87 3 18 87 4 14 87 8 4 87 11 16	84 1 1 87 2 1 86 10 1 87 4 1 87 10 1	89 9 9 84 10 19 85 3 28 85 3 28 85 3 28
SSBUY- 4 STC DBS-A STC DBS-8 STC DBS-C STC DBS-D	IPAM-D2 IPAM-D2 IPAM-D	81-K 81-8 81-F NA	88 6 8 8 8 8 1 8 7 1 1 9 1 8 2 2 1 1 9 9 9 9 1 9 9 9 1 9 1 9 1 9 1 9	88 4 1 86 10 1 86 12 1 88 5 1 87 10 1	85 3 28 85 5 14 85 5 14 85 5 14 84 7 31 83 11 1
STC DBS-E STC DBS-F SUNLAB- 1 SUNLAB- 2 SUNLAB- 3	IPAM-D IPAM-D IIG+IP IIG+IP	NA NA 71-0 NA NA	0 0 0 1 0 0 0 1 87 9 28 1 0 0 0 1	87 11 1 1 88 2 1 1 87 5 1 1 89 3 1	84 4 13 84 5 31 83 8 9 83 9 23 83 12 22

I PAYLOAD NAME	AYLOAD DATA	FOR OP		OV85		9-NO	V-85 I	
ISYNCOM IV-1 ISYNCOM IV-2 ISYNCOM IV-3 ISYNCOM IV-4 ISYNCOM IV-5		1 51-A 1 41-D 1 51-D 1 51-I 1 61-L	85	1 8 1 8 30 1 4 12 1 8 27 1 1 6 1	85 2	5 1 7 1 2 1 7 1 2 1	78 1 78 1 78 1 78 1 78 1	1 6
ITDRS-A ITDRS-8 ITDRS-C ITDRS-D ITELESAT-E	IUS/2 IUS/2 IUS/2 IUS/2 PAM-D	1 6 1 51-L 1 71-D 1 61-M 1 31-A	86 87 86	4 4 1 22 2 16 7 22 1 11	85 86	1 20 3 1 1 1 7 1 1 11	1 77	5 18 7 11 8 3 3 1 3 8
ITELESAT-F ITELESAT-H ITELESAT-I ITELESAT-J ITELESAT-K	IPAM-D IPAM-D IPAM-D IPAM-D2 IPAM-D2	7 1 51-A 1 51-D 1 NA 1 NA	84 1 85 85	6 18 1 1 8 1 4 12 1 0 0 1	84 H 84 92	4 1 2 1 4 1 5 1 3 1	77 1 78 1 77 1 84 1 85	3 8 9 25 3 8 4 14 7 23
ITELESAT-L ITELESAT-M ITELESAT-N ITELSTAR 3-B ITELSTAR 3-C	IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D2 IPAM-D	I NA I NA I NA I NA I 41-D	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90 1	7 1 1 1 2 1 5 1 7 1		7 6 7 6 7 6 1 30 6 13
ITELSTAR 3-D ITEMPS-111-B ITSS-1 IUARS IULYSSES	IPAM-D - IPALLET IMMS ICENTAUR	51-G NA NA NA NA NA NA	0	6 17 10 0 0 0 0 0 0 0 5 15	86 88 89	5 1 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	1 84 1 85 1 84 1	6 13 8 1 2 26 1 13 0 1

SPACE SHUTTLE CREW ASSIGNMENTS

				C - COMMANDER P - PILOT	MS - MISSION SPECIALIST PS - PAYLDAD SPECIALIST SFP - SPACE FLIGHT PARTICIPANT
STS-1 LAUNCH: LANDING: COLUMBIA				C: P:	JOHN M. YOUNG (USM, RET.) ROBERT L. CRIPPEN (CAPT., USM)
STS-2 LAUNCH: LANDING: COLUMBIA	14	NOV	1981 1981	C: P:	JOE H. ENGLE (COL., USAF) RICHARD H. TRULY (CAPT., USN)
STS-3 LAUNCH: LANDING: COLUMBIA	22	MAR MAR	1982 1982	C: P:	JACK R. LOUSMA (COL., USMC) CHARLES G. FULLERTON (COL., USAF)
STS-4 LAUNCH: LANDING: COLUMBIA			1982 1982	C: P:	THOMAS K. MATTINGLY II (CAPT., USN) HENRY W. HARTSFIELD, JR. (USAF, RET.)
STS-5 LAUNCH: LANDING: COLUMBIA			1982 1982	C: P: MS: MS:	VANCE D. BRAND (CIVILIAN) ROBERT F. OVERMYER (COL., USMC) JOSEPH P. ALLEN (PND - PHYSICS) WILLIAM B. LENOIR (PND - SCIENCE)
STS-6 LAUNCH: LANDING: CHALLENGE	09			C: P: MS: MS.	PAUL J. MEITZ (CAPT., USN, RET.) KAROL J. BOBKO (COL., USAF) DONALD H. PETERSDN (COL., USAF, RET.) F. STOREY MUSGRAVE (M.D.)
					27

PAYLOAD NAME	I CARRIER	FOR OP	FLT			AVE			V-85		
USS8-A USS8-8 USS8-C VRM WAMDII	ICENTAUR ISPOC	NA N	88	99949	999	88 89 89 88 88	112646	1 1 6 1	85 85 84 83 85	77565	25 25 15 16
WESTAR VI-S WESTAR- 6 WESTAR- 8 WESTAR- 9 WESTAR-10	IPAM-D IPAM-D IPAM-D IPAM-D IPAM-D	61-H 41-8 NA NA	86	62000	24	85 84 88 89 90	9111	29	82 83 84 84 84	7 3 1 1 1	15 28 19 19
VESTAR-II VESTAR-12 VESTAR-13 VESTAR-14 VESTAR-15	IPAM-D IPAM-D IPAM-D IPAM-D IPAM-D	I NA I NA I NA I NA	0 0	00000	0	92 92 94 95 98	372102	1	84 84 84 84 84 84		199
WESTAR-16 WESTAR-17 WESTAR-A WESTAR-8 WESTAR-C	IPAM-D IPAM-D IPAM-D2 IPAM-D2 IPAM-D2	I NA I NA I NA I NA I NA	0 0	00000	0 1	99 88 88 89	20363	1 0 1	84 84 84 84 84	1 1 1 1	19 19 19
WESTAR-D WESTAR-E WESTAR-F	IPAM-D2 IPAM-D2 IPAM-D2	I NA I NA I NA	0	000	9 1	98	4 7 4	1	84 84 84	1 1 1	19

STS-7 LAUNCH: 1B JUN 1983 LANDING: 24 JUN 1983 CHALLENGER	C: ROBERT L. CRIPPEN (CAPT., USN) P: FREDERICK H. HAUCK (CAPT., USN) MS: JOHN M. FABIAN (COL., USAF) MS: SALLY K. RIDE (PPO - PHYSICS) MS: NORMAM E. THAGARO (M.O.)	41-G LAURCH: 05 OCT 1984 P: JOH A. HEBRIDE (CDR., USH) LANDING: 13 OCT 1984 MS: KATHRYN D. SULLIVAN (PAD - GEOLOGY) CHALLENGER MS: SALLY K. RIDE (PAD - PHYSICS) MS: DAVID C. LESTIMA (LT. COR., USH) PS: MARC GARNEAU (NRCC, CANADA)	
STS-8 LAUNCH: 30 AUG 1983 LANDING: 05 SEP 1983 CHALLENGER	C: RICHARD H. TRULY (CAPT., USW) P: DANIEL C. BRANDESTEIN (COR., USW) MS: DALE A. GARDNER (LT. COM., USW) MS: GUION S. BLUFOOD (MAJ., USAF) MS: WILLIAM E. THORNTON (M.D.)	PS: PAUL O. SCULLY-POWER (U.S. NAVY CIVILIAM) 51-A LAUNCH: 08 NOV 1984 P: DAVIO M. NALKER (COR., USM) LANDING: 16 NOV 1984 MS: ANNA L. FISHER (M.O., USM) 015COVERY MS: OALE A. GRADRER (LT. COR., USM)	
STS-9 LAUNCH: 28 MOV 1983 LANDING: 08 DEC 1983 COLUMBIA	C: JOHN W. YOUNG (USH, RET.) P: BREWSTER M. SHAM, JM. (WAJ., USAF) MS: OWEN K. GARRIOTT (PhD - ELECTRICAL ENGINEERING) MS: ROBERT A. PARKER (PhD - ASTRONOMY) PS: ULF MERBOOL, ESA (PHYSICIST) PS: ULF MERBOOL, ESA (PHYSICIST) PS: BYRON K. LICHTENBERG, MIT (PhD - BIOMEDICAL ENGINEERING)	MS: JOSEPH P. ALLEN (PHD - PHYSICS) 51-C C: THOMAS K. MATTINGLY II (CAPT., USM) LAUNCH: 24 JAN 1985 P: LOREN J. SHRIVER (LT. COL., USAF) LANGTING: 27 JAN 1985 MS: JANES F. BUCHLI (LT. COL., USAF) DISCOVERY MS: ELLISON S. ONIZURA (MAJ., USAF) PS: GARY E. PRYTOM (MAJ., USAF)	
41-B LAUNCH: 03 FE8 1984 LANDING: 11 FE8 1984 CHALLENGER	C: VANCE O. BRAND (CLYLLLAN) P: ROBERT L. GISSON (LT. CDR., USN) MS: BRUCE McCANDLESS II (CDR., USN) MS: ROBERT L. STEMART (MAJ., USA) MS: ROBALD E. MCAIRT (MAJ., USA) MS: ROBALD E. MCAIRT (MAJ., USA)	51-D LAUICH: 12 APR 1985 LAMOING: 17 APR 1985 MS: M. RHEA SEGOOM (M.O.) 01SCOVERY MS: JEFFREY A. HOFFMAN (Ph.D - ASTROPHYSICS) MS: S. OAVIO GRIGGS (COL., USAF)	
41-C LAUNCH: 06 APR 1984 LANDING: 13 APR 1984 CHALLENGER	C: ROBERT L. CRIPPEN (CAPT. USN) P: FRANCIS R. SCOBEE (USN', RET.) MS: GCORG C. MEISON (PhD - ASTRONOMY) MS: TERRY J. HART (M.S ELECTRICAL ENGINEERING) MS: JAMES D. VAN HOFTEN (PhD - FULD MECHANICS)	PS: CHARLES D. MALKER (MCDONNELL DOUGLAS) PS: E. JAKE GARN (U.S. SENATE) 51-8 LAUCHS: 29 APR 1985 P: FREDERICK D. GREGORY (LT. COL., USAF) LANDING: 06 MAY 1985 NS: DOWL L. LIND (PRO — HIGH EMERGY MUCLEAR PHYSICS)	
41-0 LAUNCH: 30 AUG 1984 LANDING: 05 SEP 1984 DISCOVERY	C: HENRY W. HARTSFIELD (USAF, RET.) P: MICHAEL L. COATS (LT. CORT, USAF) MS: RICHARD A. MULLAGE (MAJ., USAF) MS: STEVEN A. MANLEY (PND - ASTRONOMY/ASTROPHYSICS) MS: JUDITH A RESNIK (PND - ELECTRICAL ENGINEERING) PS: CHARLES D. MALKER (MCDOMNELL DOUGLAS)	CHALLENGER MS: MORMAN E. THÁRARD (M.D.) MS: MILLIAM E. THORNTON (M.D.) PS: LODEWIJK VAN DEN BERG (EGÅG CORP.) PS: TAYLOR G. WANG (JET PROPULSION LABORATORY)	

51-G LAUNCH: 17 JUN 1985 LANDING: 24 JUN 1985 DISCOVERY	C: DANIEL C. BRANDENSTEIN (CAPT., USN) P: JOHN O. CREIGHTON (CDR., USN) MS: SHANNON N. LUCID (PRD - BIOCHEMISTRY) MS: STEVEN R. MAGEL (IT. COL., USNA') MS: JOHN H. AGEIN (COL., USNA') PS: SALWAN ABOLEAZIE AL-SALUÍ CARABSAT) PS: PATRICK BAUDRY (FRANCE)	61-B LANICH: 26 NOV 1985 LANDING: 03 DEC 1985 ATLANTIS	C: BREMSTER H. SHAM, JR. (LT. COL., USAF) P: BRYAN D. O'CONHOR (LT. COL., USAG) MS: MARY L. CLEAVE PPD - CIVIL TROINTERING) MS: SHERMODO C. SPRING (LT. COL., USA) MS: JERRY L. ROSK, MAJ., USAF) PS: RUDOLFO NETI VELA (MORELOS) PS: CHARLES MALKER (MCDONNELL DOUGLAS)
51-F LAUNCH: 29 JUL 1985 LANDING: 05 AUG 1985 CHALLENGER	C: CHARLES G, FULLERTON (COL., USAF) P: ROY D, BRIDGES (COL., USAF) HS: F. STORY MUSGRAVE (M.D.) HS: ANTHONY W. EMBLAND (PHO - EARTH & PLANETARY SCIENCE) HS: KARL G, HEIZE (PHO - ASTRONOMY) PS: LOREN M. ACTON (LOCKHEED) PS: JOHN-DAVID BARTOE (U.S. NAVY CIVILIAN)	61-C. LAINCH: 18 DEC 1985 LANDING: 23 DEC 1985 COLUMBIA	C: ROBERT L. GIBSON (LT. COR., USN) P: CHARLES F. BOLDEN, JR. (MAJ., USNC) MS: FRANKLIN R. CHARGO-DIAZ (PHO - PLASMA PHYSICS) MS: STEVEN A. HAMLEY (PHO - ASTROPHYSICS) MS: GOORGE D. NELSON (PHO - ASTROPHY) PS: ROBERT CEN
51-I LANDING: 24 AUG 1985 LANDING: 01 SEP 1985 DISCOVERY	C: JOE H. ENGLE (COL., USAF) P: RICHARD O. COVEY (LT. COL., USAF) MS: JAMES VAN HOFTEN (PND - FLUID RECHANICS) MS: JOHN M. LOUNGE (M.S ASTROPHYSICS) MS: HILLIAM F. FISHER (M.D.) C: KAROL BOBKO (COL., USAF)	51-L LAUNCH: 22 JAN 1986 LANDING: 2B JAN 1986 CHALLENGER	C: FRANCIS R. SCOBEE (USAF, RET.) P: MICHAEL J. SHITH (CDR., USH) MS: JUDITH A. RESMIK (PHD - ELECTRICAL ENGINEERING) MS: ELISON ONIZUMA (MAJ., USAF) MS: ROMALD E. MCMAIR (PHD - PHYSICS) PS: GREGORY JANUS (HUGHES)
LAUNCH: 01 OCT 1985 LANDING: ATLANTIS	P: ROMALD J. GRABE (LT. COL., USAF) MS: ROBERT STEMANT (COL., USA) MS: DAVID HILLERS (MAJ., USAC) PS: WILLIAM A. PALES (MAJ., "USAF)	61-E LAUNCH: 06 MAR 1986 LANDING: 15 MAR 1986	SFP: CHRISTA MCAULIFFE (TEACHER IN SPACE) C: JOH A MCBRIDE (CDR., USN) P: RICHARD N. RICHARDS (LT. CDR., USN) MS: ROBERT A. R. PARKER (PhD)
61-A LAUNCH: 30 OCT 1985 LANDING: 06 NOV 1985 CHALLENGER	C: HENRY M. HARTSFIELD (USAF, RET.) P: STEVEN R. NAGEL (MAJ., USAF) MS: JAMES F. BUCHLI (T. COL., USAC) MS: GUION S. BLUFORD, JR. (LT. COL., USAF) MS: BONNE J. DUNBAR (PDD BIOMODICAL FNGINFFRING)	COLUMBIA	MS: DAVID C. LEESTMA (LT. COR., USH) MS: DAVID C. LEESTMA (LT. COR., USH) MS: JEFFREY A. HOFFMAN (PHD) PS: SAMUEL T. DURRANCE (PHD - JOHN HOPKIMS UNIVERSITY) PS: RONALD A. PARISE (PHD - COMPUTER SCIENCES CORPORATION)
	MS: BONNIE J. DUMBAR (PND - BIOMEDICAL ENGINEERING) PS: REINHARD FURRER (POFULR) (GERMAN) PS: ERNST MESSERSCHMID (OFVLR) (CERMAN) PS: MUBBO OCKELS (OFVLR) (DUTCH)	62-A LAUNCH: 20 MAR 1986 LANDING: DISCOVERY	C: ROBERT L. CRIPPEN (CAPT., USW) P: GUY S. GARDWER (LT. COL., USAF) MS: DALE A. GARDMER (COR., USM) MS: JERRY L. ROSS (MAJ., USAF) MS: RICHARD M. MULLAME (LT. COL., USAF) PS: EDMARD C. ALDRIDGE, JR. (U.S. AIR FORCE) PS: BRET WATTERSON (U.S. AIR FORCE)

61-F LAUNCH: 15 MAY 1986 LANDING: 19 MAY 1986 CHALLENGER	C: FREDERICK H. HAUCK (CAPT., USH) P: ROY D. BRIDGES (COL., USAF) MS: DAVID C. HILMERS (MAJ., USMC) MS: JOHN M. LOUNGE (M.S ASTROPHYSICS)	61-1 LAUNCH: 27 SEP 1986 LANDING: 01 OCT 1986 CHALLENGER	C: DOMALD E. WILLIAMS (CDR., USN) P: MICHAEL J. SMITH (CDR., USN) MS: JAMES P. BAGIAM (M.D.) MS: BONNIE J. DUNBAR (PDD - BIOMEDICAL ENGINEERING) MS: MANLEY L. "SOMMY" CARTER (CDR., USN)
61-G LAUNCH: 20 MAY 1986 LANDING: 24 MAY 1986 ATLANTIS	C: DAVID M. WALKER (COR., USH) P: ROMALD J. GRABE (LT. COL., USAF) MS: MORMAM E. THAGARD (M.D.) MS: JAMES D. VAM HOFTEN (PHD - FLUID MECHANICS)	62-B LAUNCH: 29 SEP 1986	PS: INDIA PAYLOAD SPECIALIST SFP: JOURNALIST IN SPACE PROJECT CREW ASSIGNMENT UNDER REVIEW
61-H LAUNCH: 24 JUN 1986 LANDING: 01 JUL 1986 COLUMBIA	C: MICHAEL L. COATS (COR., USH) P: JOHL. BLANK (COL., USAF) MS: JANK L. FISHER (C.L., USAF) MS: JANK S. F. BUCHL (TUT. COL., USAF)	LANDING: DISCOVERY	C: VANCE D. BRAND (CIVILIAN)
COLUMBIA	MS: JAMES F. BUCHLI (LT. COL., USAF) MS: ROBERT C. SPRINGER (LT. COL., USMC) PS: PRATIMI SUDARMONO (INDONESIA) PS: NIGEL MODO (SQN. LDR. RAF – SKYNET)	LAUNCH: 27 OCT 1986 LANDING: D3 NOV 1986 ATLANTIS	P: S. DAVID GRIGGS (COL., USAF) MS: ROBERT L. STEWART (MAJ., USA) MS: OWEN K. GARRIOTT (PhD - ELECTRICAL ENGINEERING) MS: CLAUDE NICOLLIER. ESA (M.S PHYSICS)
61-M LAUNCH: 22 JUL 1986 LANDING: 27 JUL 1986 CHALLENGER	C: LOWER J. SHRIVER (LT. COL., USAF) P: BRYAN D. O'COMPR (LT. COL., USAF) MS: SALLY K. RIDE (PND - PHYSICS) MS: MILLIAM F. FISHER (M.D.)	61-L	PS: MICHAEL LAMPTON (PhD - 'U. CBERKELEY) PS: BYRON K. LICHTENBERG (PhD - MIT) CREW ASSIGNMENT UNDER REVIEW
	MS: MARK C. LEE (CAPT. USAF) PS: ROBERT WOOD (McDONNELL DOUGLAS)	LAUNCH: 06 NOV 1986 LANDING: 13 NOV 1986 COLUMBIA	PS: JOHN H. KONRAD (HUGHES)
61-J LANDING: 18 AUG 1986 LANDING: 23 AUG 1986 ATLANTIS	C: JOHN M. YOUNG (USN, RET.) P: CHARLES F. BOLDEN, R. (MAJ., USMC) MS: KATHRYN SULLIVAN (PDD - GEOLOGY) MS: STEVEN HANLEY (PDD - ASTRONOMY/ASTROPHYSICS) MS: BRUCE M:CANDLESS (CDR., USN)	71-B LAUNCH: OG DEC 1986 LANDING: CHALLENGER	CREW ASSIGNMENT UNDER REVIEW
61-N LAUNCH: D4 SEP 1986 LAMDING: COLUMBIA	CREM ASSIGNMENT UNDER REVIEW	71-A LAUDING: 12 JAN 1986 LANDING: 19 JAN 1986 ATLANTIS	CREW ASSIGNMENT UNDER REVIEW PS: ASTRO-2 PAYLOAD SPECIALIST PS: ASTRO-2 PAYLOAD SPECIALIST

71-C LAUNCH: 27 JAN 1987 LANDING: 03 FE8 1987 COLUMBIA CREW ASSIGNMENT UNDER REVIEW
PS: PETER LONGHURST (SKYNET)
PS: ASC PAYLOAD SPECIALIST

71-0 LAUNCH: 16 FE8 1987 LANDING: 23 FE8 1987 CREW ASSIGNMENT UNDER REVIEW
PS: ROBERT WOOD (MCDONNELL DOUGLAS)

PAYLOAD ACRONYM LIST

ACRONYM	NAME	DESCRIPTION
ACES	Acoustic Containerless Experiment System	technical demonstration to obtain early microgravity tests of gas transport phenomena in a 3-axis levitation furnace.
ACTS	Advanced Communication Technology Satellite	flight verification of high risk communications technology to support future communication systems.
ADSF	Automatic Directional Solidification Furnace	technology demonstration of directional solidification of magnetic materials, immiscibles, and IR detection materials.
AFE	American Flight Echocardiograph	collects quantitative in-flight data on cardiovascular changes in the crew.
ALE	Atmospheric Luminosity Experiment	investigates the ion chemistry of the atmosphere and orbiter surfaces. $% \left\{ 1\right\} =\left\{ $
APE	Aurora Photography Experiment	enhance understanding of the geographic extent and dynamics of the aurora.
ARABSAT	ARABSAT	communications satellite of the Arab Satellite Communications Organization.
ARC	Aggregation of Red Cells	studies aggregation of red cells and blood viscosity under low-g conditions.
ART	Amateur Radio Transceiver	establishes communication between radio operator on the Shuttle and operator on the ground. $ \\$
ASC	American Satellite Company	provides commercial communication service via satellite to continental United States, Hawaii, Alaska, and Puerto Rico.

11/21/85

ASTRO	Ultraviolet Astronomy Telescope (formerly OSS-3)	three-mission program designed to obtain UV data on astronomical objects.
AUSSAT	Australian Communication Satellite	direct broadcast communication satellite which provides services to continental Australia and off-shore territories.
8105	Biostack Middeck Experiment	Study of damage to biological materials resulting from the \ensuremath{HZE} component of cosmic rays.
BRE	Blood Rheology Experiment	technology demonstration of this apparatus to study aggregation of red blood cells and blood viscosity under low-g conditions.
C2-SPACELINES	Commercial Cargo Spacelines	performs launch and other required services for C2 mixed cargo.
C-360	Cinema-360	35mm motion picture camera for the purpose of photographing crew and mission activities.
CANEX	Canadian Payload Specialist Experiment	experiment package flown with Canadian payload specialists on mission 41-G.
CBDE	Carbonated Beverage Dispenser Evaluation	Pepsico, Inc. experiment to evaluate packaging and dispensing techniques for space flight consumption of carbonated beverages."
CBSC	China Broadcasting Satellite	television and sound broadcasting satellite.
CENTAUR	Centaur	General Dynamics hydrogen/oxygen upper stage.
CFES	Continuous Flow Electrophoresis System	demonstrates the technology of pharmaceutical processing in space. \\
CFMF	Cryogenic Fluid Management Facility	re-usable research facility to establish technology base for 0-g cryogenic fluid management system.

CHAMP	Comet Halley Active Monitoring Program	observe Comet Halley on approximately six STS flights from October 1985 through April 1986.
CLOUDS	Structures Photography Experiments	cloud formation, dissipation and opaqueness observations.
COBE	Cosmic Background Explorer	study the diffuse radiation of the universe.
CPL	Capillary Pump Loop Explorer	determine 0-g performance of a capillary pump loop heat acquisition system.
CRRES	Combined Release and Radiation Effects Satellite	study the upper atmosphere and ionosphere by releasing trace metal vapors.
CST	Contrast Sensitivity Tester	
DARK SKY		conducts sky survey for extended infrared sources, X-ray imaging of galaxy clusters and makes cosmic ray measurements.
085	Direct Broadcast Satellite	
DBS LUX		Radio-Tele-Luxembourg direct broadcast satellite.
DMOS	Diffusive Mixing of Organic Solutions	grow crystals of organic compounds for research programs within the 3M Corporation's Science Research Laboratory.
DOD	Department of Defense	
DOD-PATIE	Department of Defense- Pointing and Tracking Integrated Experiment	acquire rapidly moving instrumented targets in space or fixed targets on the ground and the ability to do high pre cision pointing and tracking with a low power marker laser

EASE/ACCESS	Experimental Assembly of Structures in EVA/Assembly Concept for Construction of Erectable Space Structures	measures the human factors while assembling structures in space during EVA.
EEVT	Electrophoresis Equipment Verification Test	technology demonstration of apparatus to evaluate the effects of electrophoresis of biological cells in 0-g.
ELRAD	Earth-Limb Radiance Experiment	obtain measurements of earth-limb radiance for various positions of the sun from near limb up to 9 degrees below earth horizon.
EML	Electromagnetic Levitation Payload	technology demonstration to observe the flow of the surface of a containerless molten metal.
111-M103	Evaluation of Oxygen Inter- action with Materials-III	expand and verify Space Space Station environmental interaction data base to support materials development and systems design.
ЕОМ	Environmental Observation Mission	measure long term variability in the total energy radiated by the sun and determine the variability in the solar spectrum.
EOS	Electrophoresis Operation in Space	produce pharmaceuticals for large scale tests leading to FDA approval and commercial production.
ERBS	Earth Radiation Budget Satellite	collects global earth radiation budget data.
EURECA	Europe Retrievable Carrier	platform placed in orbit for six months offering conventional services to experimenters.
EUVE	Extreme Ultraviolet Experiment	survey the sky in the EUV band (100 - 1,000 angstrom).

FDE	Fluid Dynamics Experiment	
FEE (formerly ECHO)	French Echocardiograph Equipment	obtains on-orbit cardiovascular system data.
FASSC		Ford Aerospace Satellite Services Corporation communication satellite.
FPE	French Postural Experiment	studies sensory-motor adaptations in weightlessness.
FTOI	Fluid Transfer Dynamic Investigation	evaluates fluid dynamics associated with filling capillary/screen retention propellant tanks.
GALAXY-KU	GALAXY-KU Band	Hughes domestic and commercial communication satellite.
GALILEO	GALILEO	investigates the chemical compostion and physical state of Jupiter's atmosphere and satellites.
GARD	Gamma Radiation Detection	measures gamma radiation levels in the Shuttle environment.
GAS	Get Away Special	small self-contained payload containers providing conventional support to experiments.
GAS BRIDGE	Get Away Special Bridge	structure in the payload bay that can hold up to twelve GAS canisters.
GLOW	GLOW	atmospheric luminosities investigation.
GLOMR	Global Low Orbit Message Relay	packet data relay satellite.
GOES	Geostationary Operational Environmental Satellite	provides continuous weather coverage of the western hemisphere.
GPS	Global Positioning System	DOD navigation and positioning system.
GRO	Gamma Ray Observatory	investigate extraterrestrial gamma-ray sources.

GSTAR	GSTAR	GTE (General Telephone and Electronics Satellite Corp.) communications satellite.
нвт	Heflex Bioengineering Test	determines proper soil moisture content for maximum growth in 0-g.
HH-G	Hitchhiker (Goddard Space Flight Center version)	GSFC payload carrier for intermediate size experiments attached to the sill of the cargo bay.
нн-м	Hitchhiker (Marshall Space Flight Center version)	MSfC payload carrier for intermediate size experiments attached in the shuttle bay.
HNC	Heavy Muclei Collector	obtains a sample of actinide nuclei (thorium, uranium, etc.) in cosmic radiation.
HPCG	Handheld Protein Crystal Growth Middeck Experiment	develop techniques to produce in low-G protein crystals of sufficient size and quality to permit molecular analysis by diffraction techniques.
HPTE	High Precision Tracking Experiment	demonstrates ability to propagate a low power laser beam through the atmosphere.
HST	Hubble Space Telescope	observes the universe to gain information about its origin, evolution and disposition of stars, galaxies, etc.
IBSE	Initial Blood Storage Equipment	evaluates changes in blood tissue during various storage conditions.
IEF	Isoelectric Focussing Experiment	gather experimental data on the extent of electro-osmosis in space.
IMAX	Imax, Inc. of Toronto, Ontario, Canada	produces motion pictures of orbiter launch, inflight operations and landings suitable for viewing in IMAX theaters such as the Smithsonian.

IML	International Microgravity Laboratory	microgravity missions devoted to material sciences and life sciences studies.
INSAT	Indian National Satellite System	communication and meteorological satellite.
INTELSAT	International Tele- communications Satellite	international telecommunications satellite network.
IOCM	Interim Operational Contamination Monitor	measures molecular and particle contamination in the Shuttle bay. $ \\$
IRAS	Infrared Astronomical Satellite	infrared telescope.
IR-IE		infrared video camera used to measure temperature gradients on the orbiter surface.
IRIS	Italian Research Interim Stage	an expendable vehicle capable of placing payloads up to 950 kg into geosynchronous transfer orbit.
IRT	Integrated Rendezvous Radar Target	a target for testing of Shuttle orbiter rendezvous techniques and capabilities in orbit.
ISAL	Investigation of STS Atmospheric Luminosities	determine the spectral content of the orbital luminosity
ISTP	International Solar Terrestrial Program	performs optical and in-site measurements on the outer atmosphere of the sun, the solar interior, the corona and the solar wind.
ITALSAT	Italian Communication Satellite System	satellite housing telecommunication and propagation experiments. $ \\$
IUS	Inertial Upper Stage	solid rocket booster developed to place satellites in high orbits.

LAGEOS	Laser Geodynamics Satellite	high precision geographical measurements.
LANDSAT		earth resources monitoring satellite.
LOEF	Long Duration Exposure Facility	free-flying satellites providing accommodations for experiments requiring long-duration exposure to the space environment.
LDEF RETR	Long Duration Exposure Facility Retrieval	retrieve and return the LDEF to earth so results may be analyzed.
LEASECRAFT	Leasecraft	Fairchild modular utility satellite - a shuttle-serviced low-orbiting space platform for lease.
LFC	Large Format Camera	acquire synoptic, high-resolution images of the Earth's surface.
LM	Long Module	Spacelab element composed of a core segment and an experiment segment.
LS-0	Landsat Repair (Landsat 0)	rendezvous, capture, repair, and deploy a Landsat D spacecraft using the STS.
MARC-DN	Measurement of Atmospheric Radiance Camera-Day/Night	test fly TV camera against celestial, earthlimb and ground targets with various lighting conditions.
MARS OBSERVER		return scientific data from Mars orbit.
MAST	Structural Technology Demonstration	demonstrate structural integrity through deployment, retraction and restowage, and develop techniques for dis tributed control and adaptive control methods.
MEA	Materials Equipment Assembly	conducts materials processing experiments in low-g environment.
MLR	Monodisperse Latex Reactor	produces monodisperse latex particles in the two to forty micron range.

MORELOS	MORELOS	Mexican communication satellite system.
MPESS	Mission Peculiar Experiment Support Structure	experiment carrier.
MPSE		experiment in support of the MORELOS payload specialist.
MSAT	Mobile Satellite	provides channel capacity for NASA technology validation experiments and accelerates introduction of commercial mobile satellite service in the U.S.
MSL	Materials Science Laboratory	performs materials processing experiments in low-g.
NOAA	National Oceanic and Atmospheric Administration	provides continuation of Polar Operational Meteorological Satellite System for the Department of Commerce (NOAA).
NOSL	Night/Day Optical Survey of Lightning	optical survey of lightning.
OAS1S	OEX (orbiter experiments) Autonomous Supporting Instrumentation System	independent system that can be flown with a payload to acquire and store environment data.
0AST	Office of Aeronautics and and Space Technology	demonstration of a large light-weight solar array which is capable of being restowed in flight.
OIM	Oxygen Interaction with Materials	
OMV	Orbital Maneuvering Vehicle	supplements the STS capability for satellite payload delivery, retrieval and maneuvering.

OPEN	Origin of Plasmas in Earth's Neighborhood	obtain the first quantitative assessment of the flow of energy through the geospace environment.
ORION	Orion	Orion Satellite Corporation communications satellite.
ORS	Orbiter Refueling System	demonstrates STS's ability to perform on-orbit satellite refueling. $ \\$
OSS-2 OXS	Office of Space Science Diffuse X-Ray Spectrometer	conducts x-ray observations on a variety of objects in the 44 to 84 angstrom wavelength region.
055-3	Office of Space Science (currently ASTRO)	obtain UV data on astronomical objects.
OSTA-2	Office of Space and Terrestrial Applications	cooperative mission with the Federal Republic of Germany on materials processing experiments in low-gravity.
OSTA-3/5/7	Office of Space and Terrestrial Applications	acquire photographic and radar images of the Earth's surface. $% \label{eq:continuous} % \begin{subarray}{ll} \end{subarray} % \begin{subarray}{l$
PALAPA	Indonesian Communication Satellite	synchronous satellite communication system for the Republic of Indonesia.
PAM-A	Payload Assist Module A	upper stage designed to deliver up to 4400 lbs to a geosynchronous transfer orbit.
PAM-D	Payload Assist Module D	upper stage designed to deliver up to 2850 lbs to a geosynchronous transfer orbit.
PAM-D II	Payload Assist Module D II	McDonnell Douglas upper stage designed to deliver up to 4160 lbs to a geosynchronous transfer orbit.
PDRS/PFTA	Payload Deployment and Retrieval System/Payload Flight Test Article	first object to be deployed and retrieved by the remote manipulator system and is used to test reaction of RMS joints.

PPE	Phase Partitioning Experiment	study separation behavior of two phase systems generated by the mixture in water of polyglucose and polyethylene glycol.
PVTOS	Physical Vapor Transport of Organic Solids	grow crystaline films on selected substrates of organic solids.
RADARSAT	RADARSAT	collaborative program designed to remotely monitor the oceans, ice and land over a five year period.
RCA DBS	RCA Direct Broadcasting System	satellite system for Radio Corporation of America.
RME	Radiation Monitoring Equipment (formerly Space Radiation Test)	measures gamma radiation levels in the Shuttle environment.
ROSAT	Roentgensatellit	conducts an all-sky survey.
SAS	Space Adaptation Syndrom	measures vestibular function, motion sickness susceptibility and spatial orientation ability during prolonged weightlessness.
SAREX	Shuttle Amateur Radio Experiment	space to ground voice and slow scan TV.
SATCOL		Colombian communications satellite.
SATCOM		RCA communications satellite.
SAX	X-Ray Astronomy Satellite	scientific study of celestial x-ray sources.
SBS	Satellite Business Systems	all digital domestic communication system servicing large industry, the government, etc.
SBTS-A4		Brazilian telecommunications satellite system.

SEMS	Shuttle Environment Monitoring System	measures Space Shuttle cargo bay environment under launch, flight, and landing conditions.
SFPP	Space Flight Participant Program	
SHARE (formerly TEMPS-III-A)	Large, High Capacity Heat Pipe Radiator	evaluate on-orbit thermal performance of a heat pipe radiator element designed for Space Station heat rejection system application.
SHEAL	Shuttle High Energy Astrophysics Laboratory	study of astronomical objects, obtaining images, spectra and timing data on celestial x-ray sources.
SIRTF	Shuttle Infrared Telescope Facility	facility which hosts experiments that increase our understanding of the formation and evolution of stars, planets, galaxies, and unusual galactic objects.
SKYNET	United Kingdom Communication Satellite	military communication satellite.
SL 1	Spacelab 1	demonstrate Spacelab's capabilities for multidisciplinary research.
SL 2	Spacelab 2	demonstrate Spacelab's capabilities for multidisciplinary research and verify system performance.
SL 3	Spacelab 3	dedicated materials processing mission emphasizing $0-g$ research.
SLS-1	Space Life Sciences Laboratory 1	investigate the effects of weightlessness exposure using both man and animal specimans.
SLS-2	Space Life Sciences Laboratory 2	reflight of SLS-1.
SLS-3	Space Life Sciences Laboratory 3	exploration of the effects of acute weightlessness on living systems.

SLS-4	Space Life Sciences Laboratory 3	generic life sciences laboratory mission.
SMRM	Solar Maximum Repair Mission	conducts a technology demonstration of the STS capability to rendezvous, service, checkout and deploy.
TOS	Solar Optical Telescope	performs very high spatial resolution observations of the sun.
SPACELAB D-1	German Spacelab Mission D-1	first dedicated DFVLR mission (Deutche Forschungs-und Versuchsanstalt für Luftund Raumfahrt e.V.).
SPACELAB D-2	German Spacelab Mission D-2	dedicated application and technology science mission.
SPACELAB D-4	German Spacelab Mission D-4	GIRL - German Infrared Radiation Laboratory.
SPACELAB J	Japanese Spacelab Mission	microgravity mission with emphasis on materials processing and life science experiments.
SPACENET	Southern Pacific Satellite Company Communications Satellite	a 3-axis stabilized telecommunication satellite used to provide domestic/commercial common carrier.
SPARTAN- 1	Spartan	x-ray astronomy, medium energy survey mission.
SPARTAN- 2	Spartan	study of solar physics.
SPARTAN- 3	Spartan	ultra violet imaging of a variety of sources.
SPARTAN-HALLEY		search for molecules containing nitrogen, carbon or sulfur and observes the UV spectrum between 2100 and 3400A.
SPARTAN 204		obtains simultaneous measurements of the absolute solar flux, the solar spectral content, the solar helium line shape and band width, and the interplanetary hydrogen and helium glow.

SPARTAN 205		obtains high resolution EUV solar spectra in two dimensions and maps absolute systematic velocities on the sun's disc.
SPARTAN 206		studies high energy physics (broad band x-ray imaging spectrometer).
SPARTAN 207		studies astronomical criteria below 2000 angstrom using the Interstellar Medium Absorption Profile Spectrograph (IMAPS).
SPARTAN 208		measures the sulfur dioxide in the atmosphere of Venus; repeats measurement in 1988 and 1990.
SPARTAN 209		studies cosmic x-ray spectra from selected celestial sources.
SPARTAN 210		study the physical conditions in coronal loops and the fine structure and dynamics of the magnetic field.
SPARTAN 211		studies spectra of faint extended emission-line objects in the wavelength range between 900 and 1150 angstrom.
SPAS-01	German Shuttle Pallet Satellite	demonstrates the utilization of the MBB platform and systems as a carrier for science experiments.
SP PLASMA	Space Plasma Laboratory	
SRL	Space Radar Laboratory	aquires photographic and radar images of the Earth's land and oceanic surfaces.
SRT	Space Radiation Test (now RME)	measure gamma radiation levels in the Shuttle environment.
SSBUV	Shuttle Solar Backscatter Ultra-Violet Instrument	measures ozone characteristics of the atmosphere.

SSC	Solid Surface Combustion	determine flame spread mechanisms and rates over solid surfaces in the absence of gravity-induced free convec- tion and externally imposed flow.
SSIP	Shuttle Student Involvement Projects	student projects flown on Shuttle.
STC DBS	Satellite Television Corp. Direct Broadcast Satellite	direct broadcast satellite subscription TV.
STTP	Life Sciences Space Technology Training Program	develop and encourage interest on the part of sellege students in space biology and med line
SUNLAB	Spacelab 2 Solar Telescope	study small-scale structures on the Sun's measure the coronal helium abundance.
SYNCOM	Hughes Geosynchronous Communication Satellite	provides communication services from principally to the US government.
SYNCOM-SALVAGE		salvage of Syncom IV-3 launched on VI VIII
TDRS	Tracking and Data Relay Satellite	NASA Communication Satellite.
TELESAT	Canadian Telecommunication Satellite	communication satellite built by letter to provide voice and TV coverage in the of Earth stations.
TELSTAR	AT & T Communications Satellite	AT & T COMSTAR replacement - proving services to the continental US, Alama, Puerto Rico.
TEMPS-III-A	Large, High Capacity Heat Pipe Radiator	evaluate on-orbit thermal performa radiator element designed for Space system application.
TIS	Teacher in Space	middeck locker supporting the Space Program's teacher in space.

TLD	Thermoluminescent Dosimeter	obtains gammam ray measurements of the Shuttle environment.
TOPEX	Ocean Topography Experiment	remotely sense the global oceans.
TSS	Tethered Satellite System	demonstrate system capabilities by deploying and retrieving tethered satellite and measuring engineering data from payload on satellite.
UARS	Upper Atmospheric Research Satellite	study the physical processes acting within and upon the stratosphere, mesosphere and lower thermosphere.
ULYSSES	formerly ISPM (Inter- national Solar Polar Mission)	investigates the properties of the heliosphere (sun and its environment.
UNISAT (USL)	United Satellite, LTD.	British communications satellite which provides direct broadcast TV services to the BBC and the ITA.
USAT	United States Satellite Corporation	domestic communication satellite system.
BZZU	US Satellite Broadcast System	provides direct to home radio and TV broadcasting.
UVAM	Ultraviolet Astronomy Mission	
UVX	Ultraviolet Experiment	measures the galactic and extragalactic contribution to the diffuse ultraviolet background radiation in the 600 - 3200 angstrom region.
VRM	Venus Radar Mapper	globally map the surface of Venus.
WESTAR	Western Union Telegraph Communication Satellite	a C-band satellite to replenish and expand the Westar system (Western Union domestic communication system). 60

NOTES

