Machine Learning

Week One

What is ML?

- Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.
- Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
 - o Example: playing checkers.
 - E = the experience of playing many games of checkers
 - \circ T = the task of playing checkers.
 - \circ P = the probability that the program will win the next game.
- ML Algorithms: supervised learning, unsupervised learning, reinforcement learning, recommender systems.

Supervised Learning (right answers given)

- In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
- (a) Regression Given a picture of a person, we have to predict their age on the basis of the given picture. Continuous output
- (b) Classification Given a patient with a tumor, we have to predict whether the tumor is malignant or benign. Discrete output

Unsupervised Learning

 Unsupervised learning allows us to approach problems with little or no idea what our results should look like.

- With unsupervised learning there is no feedback based on the prediction results.
- Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.
- Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).
 [W, s, v] = svd ((repmat (sum (x.*x,1), size (x,1),1).*x)*x');

Model Representation

• x^i denote as "input" variable and y^i denote as the output variable. (x^i, y^i) is called a training example. When y is continuous, regression; if y is discrete, classification.

Cost Function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

Goal:
$$\min_{\theta_0,\theta_1}$$
 $J(\theta_0,\theta_1)$

3

Gradient Descent

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) }$$

Correct: Simultaneous update

- $temp0 := \theta_0 \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$
- $\stackrel{\longleftarrow}{\rightarrow} \underbrace{\text{temp1}}_{:=} := \theta_1 \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$ $\stackrel{\longrightarrow}{\rightarrow} \underbrace{\theta_0 := \text{temp0}}_{:=}$
- $\rightarrow \theta_1 := \text{temp1}$

Incorrect:

- temp0 := $\theta_0 \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$ temp1 := $\theta_1 \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

batch gradient descent

repeat until convergence: {

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$$

$$heta_1 := heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i)$$

Suppose that for some linear regression problem (say, predicting housing prices as in the lecture), we have some training set, and for our training set we managed to find some θ_0 , θ_1 such that $J(\theta_0, \theta_1) = 0$.

False

Gradient descent is likely to get stuck at a local minimum and fail to find the global minimum.

Let f be some function so that $f(\theta_0,\theta_1)$ outputs a number. For this problem, f is some arbitrary/unknown smooth function (not necessarily the cost function of linear regression, so f may have local optima). Suppose we use gradient descent to try to minimize $f(\theta_0,\theta_1)$ as a function of θ_0 and θ_1 . Which of the

False

If θ_0 and θ_1 are initialized so that θ_0 = θ_1 , then by symmetry (because we do simultaneous updates to the two parameters), after one iteration of gradient descent, we will still have θ_0 = θ_1 .

Consider a hypothetical cost function which is J=0.5 θ1² and the gradient descent is θ_j=θ_j
 - a*d/dj (J) ==> θ_0= θ_0 and θ_1 = θ_1 - a*θ_1.

Week Two

Multivariate Linear Regression

Multiple Features

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)		
× 1	×5	*3	**	9		
2104	5	1	45	460 7		
> 1416	3	2	40	232 + M = 47		
1534	3	2	30	315		
852	2	1	36	178		
Notation: $n = \text{number of features}$ $n =$						

• $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$

$$h_{ heta}(x) = \left[egin{array}{cccc} heta_0 & & heta_1 & & \dots & & heta_n
ight] egin{bmatrix} x_0 \ x_1 \ dots \ x_n \end{bmatrix} = heta^T x$$

Gradient Descent

repeat until convergence:
$$\{$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)}$$

$$\cdots$$
} repeat until convergence: $\{$

repeat until convergence: {
$$\theta_j := \theta_j - \alpha \, \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \qquad \text{for j} := 0...n}$$
 }

Feature Scaling & Mean Normalization

$$x_i := \frac{x_i - \mu_i}{s_i}$$

Where μi is the **average** of all the values for feature (i) and Si is the range of values (max - min), or Si is the standard deviation.

Learning Rate

If α is too small: slow convergence.

If α is too large: may not decrease on every iteration and thus may not converge.

Polynomial Regression

Computing Parameters Analytically

Normal Equation

Examples: m=4.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
_	x_0	x_1	x_2	x_3	x_4	y	_
	1	2104	5	1	45	460	7
	1	1416	3	2	40	232	
	1	1534	3	2	30	315	
	1	852	2	_1	_36	178	7
	<u></u>	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $534 3 2$ $852 2 1$ $\mathbf{m} \times (\mathbf{n} + \mathbf{i})$ $(\mathbf{n} + \mathbf{i})^{-1} X^{T} y$	2 30 36	$\underline{y} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	460 232 315 178	## Cade: _

 θ is an (n+1)-vector. And this θ will minimize J

Gradient Descent	Normal Equation		
Need to choose alpha	No need to choose alpha		
Needs many iterations	No need to iterate		
$O(kn^2)$	O (n^3) , need to calculate inverse of $X^T X$		
Works well when n is large(10 ⁶)	Slow if n is very large		

There is **no need** to do feature scaling with the normal equation.

The cost function $J(\theta)$ for linear regression has no local optima.

Matlab tutorial

Vectorization example.

$$h_{\theta}(x) = \sum_{j=\theta}^{n} \theta_{j} x_{j}$$
$$= \theta^{T} x$$

Unvectorized implementation

Vectorized implementation

```
prediction = theta' * x;

Activat
```