Verjetnost 1

Zapiski po predavanjih prof. dr. Romana Drnovška Napisal: Jon Pascal Miklavčič

Kazalo

1	Neformalni uvod v verjetnost	1
2	Aksiomatična definicija verjetnosti	5
3	Pogojna verjetnost	11
4	Zaporedja neodvisnih ponovitev poskusa	17
5	Slučajne spremenljivke	21
	5.1 Diskretne slučajne spremenljivke	24
	5.2 Zvezne slučajne spremenljivke	27
6	Slučajni vektorji in neodvisnost	33
7	Matematično upanja oz. pričakovana vrednost	37
8	Disperzija, kovarianca in korelacijski koeficient	4 5
9	Pogojna porazdelitev in pogojno matematično upanje	5 3
10	Rodovne funkcije	57
11	Višji momenti in vrstilne karakteristike	63
12	Momentno rodovna funkcija	60

iv KAZALO

Poglavje 1

Neformalni uvod v verjetnost

Začetki verjetnosti so v 17. stoletju, iz iger na srečo (kartanje, kockanje, ...):

- 17. stol.: Fermant, Pascal, Bernulli;
- 18./19. stol.: Laplace, Poisson, Čebišev, Markov;
- 20. stol.: Kolmogorov.

Izvajamo poskus in opazujemo določen pojav, ki ga imenujemo dogodek. Ta se lahko zgodi ali ne.

Zgled. Poskus je met kocke. Da pade šestica, da pade sodo število pik pa sta dogodka.

Poskus ponovimo n-krat. Opazujemo dogodek A. S $k_n(A)$ označimo frekvenco dogodka A, t.j. število tistih ponovitev poskusa, pri katerih se je dogodek A zgodil. Naj bo $f_n(A) = \frac{k_n(A)}{n}$ relativna frekvenca dogodka A. Dokazati je mogoče, da zporedje $\{f_n(A)\}_n$ konvergira k nekemu številu $p \in [0,1]; f_n(A) \xrightarrow{n \to \infty} p$. Dobimo:

Statistično definicijo verjetnosti:

$$P(A) := p$$

Pogosto lahko verjetnost določimo vnaprej in sicer s:

Klasično definicijo verjetnosti:

$$P(A) := \frac{\# \text{ ugodnih izidov za dogodek } A}{\# \text{ vseh izidov}}$$

pri pogoju, da imajo vsi izidi enake možnosti.

Zgled. Met poštene kocke:

$$P(\text{sodo število pik}) = \frac{3}{6} = \frac{1}{2}$$

Zgled. Kolikšna je verjetnost, da pri metu dveh poštenih kock znaša vsota pik 7? Možne vsote so: $2, 3, 4, \dots, 12$. Opazimo, da je vseh vsot 11 in od tega 1 ugodna. Ali to pomeni, da $P(A) = \frac{1}{11}$. Ne! Izidi niso enkaoverjetni.

Na primer 2 lahko dobimo samo kot 2 = 1 + 1, 5 pa kot 5 = 2 + 3 = 1 + 4 = 4 + 1 = 3 + 2. Torej vsi možni izidi, bodo urejeni pari (x, y), kjer $x, y \in [1, 6] \subseteq \mathbb{N}$:

Vseh izidov je torej 36 in od tega je 6 ugodnih. Torej $P(A) = \frac{6}{36} = \frac{1}{6}$.

Če je izidov neskončno, si lahko pomagamo s **Geometrijsko definicijo verjetno**sti.

Zgled. Osebi se dogovorita za srečanje med 10. in 11. uro. Čas prihoda je slučajen. Vsak od njiju po prihodu čaka največ 20 minut. Če v tem času drugega ni, odide. Najdlje čaka do 11. ure. Kolišna je vrejetnost srečanja?

Čas začnemo šteti ob 10. uri. Vsi izidi so urejeni pari $(x,y) \in [0,1] \times [0,1]$. Ugodni izidi so $|x-y| \leq \frac{1}{3}$. Torej:

1)
$$x \ge y : x - \frac{1}{3} \le y$$

2) $x \le y : y - x \le \frac{1}{3} \iff y \le x + \frac{1}{3}$

Torej je

$$P(\text{srečanja}) = \frac{1 - (\frac{2}{3})^2}{1} = \frac{5}{9}$$

Slika 1.1: Prostor vseh možnih izidov

Teorija mere se ukvarja z splošnim zapisom geometrijske definicije.

Zgled. Vzamemo $m, n \in \mathbb{N}$, m > n. n krogljic slučajno razporedimo v m posod. Kolikšna je verjetnost dogodka, da so vse krogljice v prvih n posodah, v vsaki ena?

To je pomankljivo zastavljena naloga. Ne vemo namreč, ali med seboj krogljice razlikujemo, ali ne. Za dodatno predpostavko se ponujajo 3 možnosti:

1. Krogljice razlikujemo:

Število vseh izidov v tem primeru je ravno število *variacij* m elementov na n mestih s ponavljanjem. Za vsako od n-tih kroglic imamo m možnosti, torej je vseh možnosti $m \cdot m \cdots m = m^n$.

Število ugodnih izidov pa je ravno število permutacij n krogljic v prvih n posodah. Torej je ugodnih možnosti $n(n-1)\ldots 2\cdot 1=n!$.

Torej je:

$$P(A) = \frac{n!}{m^n}$$

2. Krogljic ne razlikujemo:

V vsaki posodi je lahko več krogljic. Število vseh izidov je ravno število kom-binacij s ponavljanjem. Število kombinacij m elementov s ponavljanjem na n mestih je:

$$\binom{n+m-1}{n} = \binom{n+m-1}{m-1}$$

Postavimo n krogljic in med njih razporedimo m-1 črtic, ki predstavljajo stene posod:

$$\left|\underbrace{\circ \left| \circ \left| \circ \circ \right| \circ \circ \cdots \circ \circ \right|}_{n \text{ krogljic, } m-1 \text{ črtic}}\right|$$

Na n+m-1 mestih moramo določiti n krogljic. Ugoden izid je samo eden:

Torej je:

$$P(A) = \frac{1}{\binom{n+m-1}{n}}$$

3. Krogljic ne razlikujemo, v vsaki posodi je kvečjemu ena krogljica:

Število vseh izidov je ravno število kombinacij brez ponavljanja $\binom{m}{n}$. Ugoden izid je eden.

Torej je:

$$P(A) = \frac{1}{\binom{m}{n}}$$

Opomba. V fiziki so krogljice delici (atomi, molekule, ...), posode pa fazna stanja, v katerih so lahko delci. Glede na zgornje primere ločimo:

- 1. Maxwell-Boltzmannovo statistiko, ki velja za molekule plina.
- 2. Bose-Einsteinovo statistiko, ki velja za delce imenovane bozoni.
- 3. Fermi-Diracovo statistiko, ki velja za fermione.

Diracovo izključitveno načelo.

Poglavje 2

Aksiomatična definicija verjetnosti

Imamo prostor vseh izidov oz. $vzorčni \ prostor \ \Omega$ (možna oznaka je tudi \mathcal{G}). Dogodki so nekatere (ne nujno vse) podmnozice Ω .

Zgled. Met kocke. Vzorčni prostor je $\Omega = \{1, 2, 3, 4, 5, 6\}$, dogodki pa so poljubne podmnožice Ω , to je $\mathcal{P}(\Omega) = 2^{\Omega}$. Na primer $A = \{2, 4, 6\}$ je dogodek, da pade sodo število pik.

Računanje z dogodki:

1. Vsota dogodkov oz. unija dogodkov (zgodi se vsaj enden od dogodkov):

$$A + B = A \cup B$$

2. Produkt dogodkov oz. presek dogodkov (zgodita se oba dogodka hkrati):

$$A \cdot B = A \cap B$$

3. Nasprotni dogodek oz. komplement dogodka (dogodek se ne zgodi):

$$\bar{A} = A^c$$

Pravila za računanje z dogodki:

1. idempotentnost: $A \cup A = A = A \cap A$

2. **komutativnost**: $A \cup B = B \cup A$, $A \cap B = B \cap A$

3. asociativnost:

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

4. distributivnost:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

5. de Morganova zakona:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Še več:

$$\left(\bigcap_{i} A_{i}\right)^{c} = \bigcup_{i} A_{i}^{c}, \quad \left(\bigcup_{i} A_{i}\right)^{c} = \bigcap_{i} A_{i}^{c}$$

V splošnem ni vsaka podnožica množice Ω dogodek. Neprazna družina podmnožic (dogodkov) \mathcal{F} v Ω je σ -algerba, če zanjo velja:

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- 3. $A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Elementi v \mathcal{F} so dogodki. Če v točki 3. zahtevamo manj:

$$3.* A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$$

potem pravimo, da je \mathcal{F} algebra.

V algebri imamo potem tudi zaprtost za končne unije: $A_1, A_2, \ldots, A_n \in \mathcal{F} \implies A_1 \cup A_2 \cup \cdots \cup A_n \in \mathcal{F}$. Ker po de-Morganu velja $\bigcap_i A_i = (\bigcup_i A_i^c)^c$, je algebra zaprta za končne preseke, σ -algebra pa celo za števne preseke. Ker velja $A \setminus B = A \cap B^c$, je algebra zaprta za razlike.

Vsaka algebra vsebuje $\{\emptyset, \Omega\}$. Ker je \mathcal{F} neprazna, obstaja $A \in \mathcal{F}$ in zato tudi $\Omega = A \cup A^c \in \mathcal{F}$ in $\emptyset = \Omega^c \in \mathcal{F}$. Tako dobimo, da je $\{\emptyset, \Omega\}$ najmanšja možna $(\sigma$ -)algebra, $\mathcal{P}(\Omega)$ pa največja možna $(\sigma$ -)algebra.

Zgled. Za $A \neq \emptyset \neq \Omega$ je najmanjša $(\sigma$ -)algebra, ki vsebuje A enaka $\{\emptyset, A, A^c, \Omega\}$. Za $\Omega = \{1, 2, 3\}$ in $A = \{1, 2\}$, je potem taka σ -algebra $\{\emptyset, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$. \Diamond

Dogodka A in B sta disjunkta oz. nezdružljiva če je $A \cap B = \emptyset$.

Zaporedje $\{A_i\}_i$ (končno ali števno mnogo) je popoln sistem dogodkov, če velja:

$$\bigcup_{i} A_i = \Omega \quad \text{in} \quad A_i \cap A_j = \emptyset \quad \text{za} \quad i \neq j.$$

Naj bo $\mathcal F$
 σ -algebra na $\Omega.$ Verjetnost na
 $(\Omega,\mathcal F)$ je preslikava $P:\mathcal F\to\mathbb R$ z lastnostmi:

- 1. Za vsak $A \in \mathcal{F}$: $P(A) \geq 0$
- 2. $P(\Omega) = 1$
- 3. Za poljubne paroma nezdružljive dogodke $\{A_i\}_{i=1}^{\infty}$ velja števna aditivnost:

$$P\left(\bigcup_{j=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$$

Lastnosti verjetnosti P:

(a) $P(\emptyset) = 0$.

Dokaz. V lastnosti 3. vzamamo $A_i = \emptyset$ za vsak i:

$$P\left(\bigcup_{i}\emptyset\right) = P(\emptyset) + P(\emptyset) + P(\emptyset) + \dots = 0 + 0 + 0 + \dots = 0$$

(b) P je končno aditivna, t.j. za končno mnogo paroma nezdružljivih dogodkov $\{A_i\}_{i=1}^n$ velja:

$$P(A_1 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$

Dokaz. V lastnosti 3. vzamemo $A_{n+1}=A_{n+2}=\cdots=\emptyset$ in upoštevamo lastnost (a). $\hfill\Box$

(c) P je monotona, t.j. velja:

$$A \subseteq B \implies P(A) \le P(B)$$

Še več: iz $A \subseteq B$ sledi $P(B \setminus A) = P(B) - P(A)$.

Dokaz. Ker je $B = A \cup (B \setminus A)$ in $A \cap (B \setminus A) = \emptyset$ je $P(B) = P(A) + P(B \setminus A)$ zaradi lastnosti (b).

(d) $P(A^c) = 1 - P(A)$

 $Dokaz. \ V \ (c) \ vzamemo \ B = \Omega.$

(e) P je zvezna, t.j.:

(i)
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \implies P\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} P\left(A_n\right)$$

(ii)
$$B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots \implies P\left(\bigcap_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} P\left(B_n\right)$$

Dokaz. (i) Definiramo $C_1 = A$ in $C_i = A_i \setminus A_{i-1}$ za $i = 2, 3, \ldots$ Potem je $A_n = C_1 \cup \ldots \cup C_n$, kjer velja $C_i \cap C_j = \emptyset$ za $i \neq j$ in $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} C_i$. Torej je:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{i=1}^{\infty} C_i\right)$$

$$= \sum_{i=1}^{\infty} P(C_i)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(C_i)$$

$$= \lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} C_i\right)$$

$$= \lim_{n \to \infty} P(A_n)$$

(ii) Ker $B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots$, je potem $B_1^c \subseteq B_2^c \subseteq B_3^c \subseteq \cdots$. Po (i) potem velja

$$P\left(\bigcup_{i=1} B_i^c\right) = \lim_{i \to \infty} P\left(B_i^c\right)$$

Toda

$$\bigcup_{i=1}^{\infty} B_i^c = \left(\bigcap_{i=1}^{\infty} B_i\right)^c \implies 1 - P\left(\bigcap_{i=1}^{\infty} B_i\right) = \lim_{i \to \infty} (1 - P(B_i))$$

Od koder sledi željena enakost.

Verjetnostni prostor je trojica (Ω, \mathcal{F}, P)

Zgled (Končni ali števni verjetnostni prostor). $\Omega = \{\omega_2, \omega_2, \omega_3, \ldots\}$ končno ali števno mnogo izidov. $\{\omega_1\}, \{\omega_2\}, \{\omega_3\}, \ldots$ je popoln sistem dogodkov, neka podmnožica v Ω je končna ali števna unija teh dogodkov. Torej $\mathcal{F} = \mathcal{P}(\Omega)$. Vzamemo:

$$A = \bigcup_{i:\omega_i \in A} \{\omega_0\}$$

Če označimo $P(\{\omega_i\}) = p_i \ge 0$ je $\sum_i p_i = 1$ in $P(A) = \sum_{i:\omega_i \in A} p_i$, $A \subseteq \Omega$.

Če ima Ω n elementov in $p_i = \frac{1}{n}$ za i = 1, 2, ..., n. Potem je $P(A) = \frac{|A|}{n} = \frac{\text{moč}(A)}{n}$. To je klasična definicija verjetnosti.

Zgled (Neskončni neštevni verjetnostni prostor). Primer srečanja dveh oseb, kjer $\Omega = [0,1] \times [0,1]$. Za σ -algebro \mathcal{F} ne moremo vzeti vseh podmnožic, radi pa bi jih vzeli čim več.

 \mathcal{F} naj bo najmanjša σ -algebra, ki vsebje vse odprte pravokotnike $(a,b) \times (c,d)$ (izkaže se, da je isto, če vzamemo zaprte pravokotnike). \mathcal{F} imenujemo $Borelova \sigma$ -algebra.

Verjetnost definiramo na pravokotnikih kot:

$$P((a,b) \times (c,d)) = (b-a)(d-c)$$

Ni lahko videti, da lahko P razširimo do verjetnosti na \mathcal{F} . P pa ne moremo razširiti na $\mathcal{P}(\Omega)$. Problem je števna aditivnost.

To je geometrijska definicija verjetnosti.

 \Diamond

Poglavje 3

Pogojna verjetnost

Naj bo (Ω, \mathcal{F}, P) verjetnostni prostor. Fiksirajmo dogodek $B \in P(B) > 0$. Pogojna verjetnost dogodka A glede na dogodek B je:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Zgled. V posodi sta dve beli in ena črna krogljica. Dvakrat zaporedoma izvlečemo krogljico. Kolikšna je verjetnost, da smo drugič izbrali belo krogljico, če smo prvič izbrali belo?

(a) Krogljice vrečamo.

Vseh izidov je 9:

$$B_1B_1$$
 B_1B_2 B_1 Č
 B_2B_1 B_2B_2 B_2 Č
Č B_1 Č B_2 ČČ

$$\begin{split} &P(\text{prvič belo}) = \frac{6}{9} = \frac{2}{3} \\ &P(\text{prvič in drugič belo}) = \frac{4}{9} \\ &P(\text{drugič belo} \mid \text{prvič belo}) = \frac{4/9}{6/9} = \frac{4}{6} = \frac{2}{3} \\ &P(\text{drugič belo}) = \frac{6}{5} = \frac{2}{3} \end{split}$$

(b) Krogljic ne vračamo.

Vseh izidov je 6:

$$B_1B_2$$
 B_1 Č B_2B_1 B_2 Č Č B_1 Č B_2

$$P(\text{prvič belo}) = \frac{4}{6} = \frac{2}{3}$$

$$P(\text{prvič in drugič belo}) = \frac{2}{6} = \frac{1}{3}$$

$$P(\text{drugič belo} \mid \text{prvič belo}) = \frac{2/6}{4/6} = \frac{1}{2} = \frac{2}{4}$$

$$P(\text{drugič belo}) = \frac{4}{6} = \frac{2}{3}$$

Iz definicije pogojne verjetnosti dobimo:

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

Za 3 dogodke A, B, C, kjer velja $P(B \cap C) > 0$ dobimo:

$$P(A \cap B \cap C) = P(A \mid B \cap C) \cdot P(B \cap C) = P(A \mid B \cap C) \cdot P(B \mid C) \cdot P(C)$$

Če to posplošimo na n dogodkov dobimo:

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdots P(A_n \mid A_1 \cap \cdots \cap A_{n-1})$$

Če desno stran razpišemo, res dobimo:

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot \dots \cdot P(A_n \mid A_1 \cap \dots \cap A_{n-1})$$

$$= P(A_1) \cdot \frac{P(A_1 \cap A_2)}{P(A_1)} \cdot \dots \cdot \frac{P(A_1 \cap \dots \cap A_n)}{P(A_1 \cap \dots \cap A_{n-1})}$$

$$= P(A_1 \cap A_2 \cap \dots \cap A_n)$$

Zgled. V posodi imamo 6 modrih, 5 rdečih in 4 zelene krogljice. Brez vračanja izberemo 3 krogljice. Kolikšna je verjetnost, da so vse rdeče?

Označimo s A_k dogodek, da je k-ta krogljica rdeče za k=1,2,3. Nalogo laho rešimo na dva načina:

1.
$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 \cap A_2)$$
$$= \frac{5}{15} \cdot \frac{4}{14} \cdot \frac{3}{13} = \frac{2}{7 \cdot 13} = \frac{2}{91}$$

2.
$$P(\text{vse rde\'e}) = \frac{\binom{5}{3}}{\binom{15}{3}} = \frac{\frac{5\cdot 4\cdot 3}{3!}}{\frac{15\cdot 14\cdot 13}{3!}} = \frac{2}{91}$$

Imejmo poskus, ki ga opravimo v 2 korakih (fazah).

- 1. V prvem koraku se zgodi natanko enden izmed paroma nezdružljivih dogodkov H_1, H_2, H_3, \ldots (končno ali števno mnogo).
- 2. V drugem koraku pa nas zanima dogodek A. Izrazimo P(A) z verjetnostmi:

$$P(H_i)$$
 in $P(A | H_i)$ za $i = 1, 2, 3, ...$

Ker je $\{H_i\}_i$ popoln sistem dogodkov, je:

$$A = A \cap \Omega = A \cap \left(\bigcup_{i} H_i\right) = \bigcup_{i} A \cap H_i$$

in zato

$$P(A) = \sum_{i} P(A \cap H_i) = \sum_{i} P(H_i) \cdot P(A \mid H_i)$$

To je formula za popolno verjetnost.

Zgled. Pri srečolovu je n srečk, od tega je m dobitnih (m < n). Ali imamo večje možnosti za dobitek, če izbiramo prvi ali drugi?

Če izbiramo prvi je:

$$P(\text{dobitka}) = \frac{m}{n}$$

Če izbiramo drugi je:

$$\begin{split} P(\text{dobitka}) &= P(\text{prvi dobi}) \cdot P(\text{dobitka} \mid \text{prvi dobi}) \\ &\quad + P(\text{prvi ne dobi}) \cdot P(\text{dobitka} \mid \text{prvi ne dobi}) \\ &= \frac{m}{n} \cdot \frac{m-1}{n-1} + \frac{n-m}{n} \cdot \frac{m}{n-1} = \frac{m}{n} \end{split}$$

 \Diamond

Pogosto nas v dvofaznem poskusu zanima:

$$P(H_k \mid A) = \frac{P(H_k \cap A)}{P(A)} = \frac{P(H_k) \cdot P(A \mid H_k)}{\sum_i P(H_i) \cdot P(A \mid H_i)}$$

To je Bayesova formula.

Zgled. Test s poligrafom (detektorjem laži). Resnicoljub opravi test s poligrafom z verjetnostjo 0.95. Z enako verjetnostjo poligraf prepozna lažnivca. Izmed 1000 oseb, med kateremi je natanko en lažnivec, slučajno izberemo eno osebo za katero poligraf pravi, da je lažnivec. Kolikšna je pogojna verjetnost, da je oseba zares lažnivec?

Označimo sL dogodek, da je izbrana oseba lažnivec, L_p pa dogodek, da poligraf za osebo pravi, da je lažnivec. Potem:

$$P(L_p \mid L) = 0.95, \quad P(L_p \mid L^c) = 0.05 \text{ in } P(L) = 0.001$$

Zanima nas $P(L \mid L_p)$. Po Bayesovi formuli je:

$$P(L \mid L_p) = \frac{P(L) \cdot P(L_p \mid L)}{P(L) \cdot P(L_p \mid L) + P(L^c) \cdot P(L_p \mid L^c)}$$

$$= \frac{0.55 \cdot 0.001}{0.55 \cdot 0.001 + 0.05 \cdot 0.999}$$

$$= \frac{95}{5090} = \frac{1}{50} = 0.02$$

 \Diamond

Dogodka A in B sta neodvisna, če velja:

$$P(A \cap B) = P(A) \cdot P(B)$$

Če je P(B) > 0, to enakost lahko zapišemo kot:

$$P(A) = \frac{P(A \cap B)}{P(B)} = P(A \mid B)$$

Če imamo več dogodkov, so dogodki $\{A_i\}_i$ so *neodvisni*, če za poljuben končen nabor različnih dogodkov $A_{i_1}, A_{i_2}, \ldots, A_{i_k}$ velja:

$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k})$$

Če zahtevamo to le za k=2, torej A_i in A_j sta neodvisna za vsak $i \neq j$, potem rečemo, da so dogodki paroma neodvisni. To je šibkejši pogoj kot neodvisnost.

Zgled. Met tetraedra.
$$\Omega = \{1, 2, 3, 4\}$$
 in $P(\{i\}) = \frac{1}{4}$ za $i = 1, 2, 3, 4$.

Če označimo $A=\{1,2\}, B=\{1,3\}, C=\{1,4\},$ vidimo $A\cap B=A\cap C=B\cap C=\{1\}$ kar implicira $P(A\cap B)=P(A\cap C)=P(B\cap C)=\frac{1}{4}=\frac{1}{2}\cdot\frac{1}{2}.$ To implicira, da so dogodki $\{A,B,C\}$ paroma neodvisni. Toda $P(A\cap B\cap C)=P(\{1\})=\frac{1}{4}\neq\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2},$ zato dogodki niso neodvisni.

Trditev 1. Če sta dogodka A in B neodvisna, potem sta neodvisna tudi dogodka A in B^c , dogodka A^c in B, ter dogodka A^c in B^c .

Dokaz. (i) Ker je $A \cap B^c = A \setminus A \cap B$ velja:

$$P(A \cap B^c) = P(A) - P(A \cap B)$$

$$= P(A) - P(A)2P(B)$$

$$= P(A)(1 - P(B))$$

$$= P(A)P(B^c)$$

(ii) Za A^c in B dokažemo podobno.

(iii)

$$P(A^{c} \cap B^{c}) = 1 - P(A \cup B)$$

$$= 1 - P(A) - P(B) + P(A \cap B)$$

$$= P(A^{c}) - P(B) + P(A) \cdot P(B)$$

$$= P(A^{c}) - P(B)(1 - P(A))$$

$$= P(A^{c}) - P(B)P(A^{c})$$

$$= P(A^{c}) P(B^{c})$$

Poglavje 4

Zaporedja neodvisnih ponovitev poskusa

Imejmo zaporedje n neodvisnih ponovitev poskusa določenega z verjetnostnim prostorom (Ω, \mathcal{F}, P) v katerem je možen dogodek A s P(A) = p. Označimo še $q := P(A^c) = 1 - p$.

 $Z A_n(k)$ označimo dogodek, da se v n ponovitvah poskusa, dogodek A zgodi natanko k-krat, za $k = 0, 1, 2, \ldots, n$. Izračunajemo verjetnost:

$$P_n(k) := P(A_n(k))$$

 $A_n(k)$ je dijunktna unija $\binom{n}{k}$ dogodkov, da se A zgodi na predpisanih k mestih, na ostalih pa A^c . Verjetnost teh dogodkov je $p^k \cdot q^{n-k}$. Zato je:

$$P_n(k) = \binom{n}{k} \cdot p^k \cdot q^{n-k}$$
 za $k = 0, 1, 2, \dots, n$

To je Bernoullijeva formula.

Zgled. Kaljivost semen je 0.95. Kolikšna je verjetnost, da izmed 1000 semen v zavojčku vzkali točno 950 semen?

Aje dogodek, da seme vzkali. Potem je p=P(A)=0,05, q=0.95, k=50. Zato:

$$P_{1000}(50) = {1000 \choose 50} \cdot 0.05^{50} \cdot 0.95^{950} = 0.05779$$

To je težko izračunati, tudi če bi uporabljali Stirlingovo formulo: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Kjer:

$$a_n \sim b_n \iff \lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

Torej:

$$\lim_{n \to \infty} \frac{\sqrt{2\pi n}}{n!} \left(\frac{n}{e}\right)^n = 1$$

Aproksimativni formuli za $P_n(k)$:

(a) Poissonova formula:

Če je p blizu 0 in n velik, potem je:

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$
 kjer je $\lambda = np$

Dokaz.

$$P_n(k) = \frac{n(n-1)\cdots n(n-k+1)}{k!} p^k (1-p)^{n-k}$$

$$= \frac{n(n-1)\cdots (n-k+1)}{k!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k}{k!} \frac{n(n-1)\cdots (n-k+1)}{\underbrace{n\cdot n\cdot n\cdots n}} \left(1-\frac{\lambda}{n}\right)^n \left(1-\frac{\lambda}{n}\right)^{-k}$$

$$\approx \frac{\lambda^k}{k!} e^{-\lambda}$$

Zadnja aproksimacija velja v limiti.

Zgled (Kaljivost semen).

$$P_{1000}(50) = {1000 \choose 50} \cdot 0.05^{50} \cdot 0.95^{950}$$

$$\approx \frac{50^{50}}{50!} \cdot e^{-50}$$

$$= \frac{1}{50!} \left(\frac{50}{e}\right)^{50}$$

$$\approx \frac{1}{\sqrt{2\pi \cdot 50}}$$

$$\approx 0.05642$$

(b) Laplaceova lokalna formula:

Za velike n velja:

$$P_n(k) = \frac{1}{\sqrt{2\pi npq}} \cdot e^{-\frac{(k-np)^2}{2npq}}$$

Kasneje boste dokazali še splošnejši izrek (centralni limitni izrek).

Narišimo zaporedje $\{P_n(k)\}_{k=0}^n$, kjer je n fiksen. Dobimo:

$$P_n(0) = \binom{n}{0} p^0 q^n = q^n$$

$$P_n(1) = \binom{n}{1} p^1 q^{n-1}$$

$$\vdots$$

Kdaj velja $P_n(k) \le P_n(k+1)$?

$$\frac{P_n(k+1)}{P_n(k)} \ge 1 \qquad \iff \\ \frac{n-k}{k+1} \cdot \frac{p}{q} \ge 1 \qquad \iff \\ np - kp \ge (k+1)q = kq + q \qquad \iff \\ np \ge k + q$$

To je premaknjena in raztegnjena "normalna porazdelitev".

Gausova ali normalna porazdelitev:

$$f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$$

Zgled (Kaljivost semen). p = 0.05, np = 50:

$$P_{1000}(50) \approx \frac{1}{\sqrt{2\pi \cdot 50 \cdot 0.95}} = \frac{1}{\sqrt{95 \cdot \pi}} = 0.05788$$

Poglavje 5

Slučajne spremenljivke

Danemu poskusu priredimo številsko količino, katere vrednost je odvisna od slučaja. Imenujemo jo slučajna spremenljivka.

Zgled.

- 1. Met kocke; število pik je slučajna spremenljivka.
- 2. Streljanje v tarčo; razdalja zadetka od središča tarče je slučajna spremenljivka. Na primer, verjetnost, da je razdalja $\leq x$ je sorazmerna z x^2 .

 \Diamond

Definicija 1. Realna slučajna spremenljivka na verjetnostnem prostoru (Ω, \mathcal{F}, P) je funkcija $X : \Omega \to \mathbb{R}$, z lastnostjo, da je za vsak $x \in \mathbb{R}$ množica:

$$\{\omega \in \Omega : X(\omega) \le x\}$$

v \mathcal{F} , se pravi dogodek.

Oznaka:

$$\{\omega\in\Omega:X(\omega)\leq x\}\equiv X^{-1}\left((-\infty,x]\right)\equiv (X\leq x)$$

Definicija 2. Naj bo X slučajna spremenljivka. Funkcija $F_X : \mathbb{R} \to \mathbb{R}$, definirana s predpisom:

$$F_X(x) := P(X \le x)$$

se imenuje porazdelitvena funkcija slučajne spremenljivke X.

Lastnosti porazdelitvene funkcije $F = F_X$:

- 1. $0 \le F(x) \le 1$ za vsak $x \in \mathbb{R}$.
- 2. F je naraščujoča funkcija:

$$x_1 < x_2 \implies F(x_1) \le F(x_2)$$

Dokaz. Sledi iz $(X \leq x_1) \subseteq (X \leq x_2)$ in monotonosti preslikave P.

3.

$$\lim_{x \to \infty} F(x) = 1, \quad \lim_{x \to -\infty} F(x) = 0$$

Dokaz. Naj bo $\{x_n\}_n\subseteq\mathbb{R}$ ne
omejeno strogo naraščujoče zaporedje. Potem je:

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} F(x_n)$$

$$= \lim_{n \to \infty} P(X \le x_n)$$

$$= P\left(\bigcup_{n=1}^{\infty} (X \le x_n)\right) \tag{**}$$

$$= P(\Omega) = 1 \tag{**}$$

kjer smo v (\star) vrstici uporabili zveznost P, $(\star\star)$ vrstici pa $\forall \omega \in \Omega : \exists n : X(\omega) \leq x_n$, torej $\omega \in (X \leq x_n)$.

Podobno se dokaže tudi druga limita.

4. F je z desne zvezna, t.j.:

$$F(x+) = F(x)$$
, kjer je $F(x+) = \lim_{\substack{h>0\\h\to 0}} F(x+h)$

Dokaz. Naj zaporedje $\{x_n\}\subseteq\mathbb{R}$ strogo pada protix. Potem je:

$$F(x+) = \lim_{n \to \infty} F(x_n)$$

$$= \lim_{n \to \infty} P(X \le x_n)$$

$$= P\left(\bigcap_{n=1}^{\infty} (X \le x_n)\right) \qquad (\star)$$

$$= P(X \le x) \qquad (\star\star)$$

$$= F(x)$$

 (\star) velja, zaradi zveznosti P, $(\star\star)$ pa velja saj je:

$$\bigcap_{n=1}^{\infty} (X \le x_n) = (X \le x)$$

Tukaj je:

⊇: očitna

 \subseteq :

$$\exists \omega \in \bigcap_{n=1}^{\infty} (X \le x_n) : X(\omega) \le x_n \quad \forall n$$

$$\implies X(\omega) \le x, \text{ t.j. } \omega \in (X \le x)$$

5. •
$$P(x_1 < X \le x_2) = P(X \in (x_1, x_2])$$

 $= P((X \le x_2) \setminus (X \le x_1))$
 $= P(X \le x_2) - P(X \le x_1)$
 $= F(x_2) - F(x_1)$

•
$$P(x_1 < X < x_2) = P(X < x_2) - P(X \le x_1)$$

= $F(x_2 -) - F(x_1)$

Saj je:

$$P(X < x) = P\left(\bigcup_{n=1}^{\infty} \left(X \le x - \frac{1}{n}\right)\right) = \lim_{n \to \infty} P\left(X \le x - \frac{1}{n}\right) = F(x - 1)$$

•
$$P(x_1 \le X \le x_2) = P(X \le x_2) - P(X < x_1)$$

= $F(x_2) - F(x_1 - x_1)$

•
$$P(x_1 \le X < x_2) = P(X < x_2) - P(X < x_1)$$

= $F(x_2-) - F(x_1-)$

Oglejmo si dva najpomembnejša razreda slučajnih spremenljivk.

5.1 Diskretne slučajne spremenljivke

Slučajna spremenljivka X je diskretno porazdeljena, če je njena zaloga vrednosti končna ali števna množica števil $\{x_1, x_2, x_3, \ldots\}$.

Tedaj vpeljemo verjetnostno funkcijo:

$$p_k = P(X = x_k)$$
 za $k = 1, 2, 3, ...$

in shemo:

$$X: \left(\begin{array}{ccc} x_1 & x_2 & x_3 & \cdots \\ p_1 & p_2 & p_3 & \cdots \end{array}\right), \quad \sum_k p_k = 1$$

Tukaj je $\{(X=x_k)\}_k$ popol
n sistem dogodkov.

Porazdelitvena funkcija je:

$$F(x) = P(X \le x) = P\left(\bigcup_{k: x_k \le x} (X = x_k)\right) = \sum_{k: x_k \le x} p_k$$

F je odsekoma konstantna.

Na primer za $x_1 < x_2 < x_3$ in $p_1 + p_2 + p_3 = 1$:

$$X: \left(\begin{array}{ccc} x_1 & x_2 & x_3 \\ p_1 & p_2 & p_3 \end{array}\right)$$

Pomembnejše diskretne porazdeitve:

1. Enakomerna diskretna porazdelitev na n točkah x_1, x_2, \ldots, x_n :

$$X: \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n \\ \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{array}\right)$$

Zgled. Met poteven kocke, n = 6:

$$X: \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{array}\right)$$

2. Bernoullijeva porazdelitev $Ber(p), p \in (0,1), q = 1 - p$:

$$x: \left(\begin{array}{cc} 0 & 1 \\ q & p \end{array}\right)$$

(X = 1) je dogodek, da se dogodek A zgodi.

(X = 0) je dogodek, da se dogodek A ne zgodi.

Indikatorska funkcija:

$$\mathbb{1}_A(\omega) = \begin{cases} 1, & w \in A \\ 0, & w \notin A \end{cases}$$

3. Binomska porazdelitev $Bin(n, p), n \in \mathbb{N}, p \in (0, 1)$:

$$X: \left(\begin{array}{ccccc} 0 & 1 & 2 & 3 & \cdots & n \\ p_0 & p_1 & p_2 & p_3 & \cdots & p_n \end{array}\right)$$

$$p_k = P(X = k) = \binom{n}{k} p^k q^{n-k}$$
, kjer je $q = 1 - p$

(X=k) je dogodek, da se dogodek A zgodi natanko k-krat v n ponovitvah poskusa.

Zgled. Mečemo kocko. X je število šestic v n metih. $X \sim \text{Bin}(n, \frac{1}{6})$.

4. Poissonova porazdelitev $Poi(\lambda)$, $\lambda > 0$:

$$p_k = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \text{ za } k = 0, 1, 2, \dots$$

Res velja:

$$\sum_{k=0}^{\infty} p_k = e^{-\lambda} \left(\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \right) = e^{-\lambda} e^{\lambda} = 1$$

Zgled. Število klicev v telefonskem omrežju v minuti. n je število naročnikov. Recimo, da je $n=10^6$ in vsak se z verjetnostjo p odloči, da bo klical. $X \sim \text{Bin}(n,p) \approx \text{Poi}(np)$. Primer je tudi število napačnih črk v časopisu.

5. Geometrijska porazdelitev $geo(p), p \in (0, 1)$:

Ponavljanjo poskus in opazujmo dogodek A s P(a) = p. X je število potrebnih ponovitev, da se zgodi dogedek A prvič.

(X = k) je dogodek, da se A zgodi prvič k k-ti ponovitvi poskusa:

$$\underline{\bar{A}}\underline{\bar{A}}\underline{\bar{A}}\dots\underline{\bar{A}}A$$

$$p_k = P(X = k) = pq^{k-1}$$
, za $k = 1, 2, 3, ...$

Res velja:

$$\sum_{k=1}^{\infty} p_k = p \sum_{k=1}^{\infty} q^{k-1} = p \frac{1}{1-q} = 1$$

Zgled. Mečemo kocko. X je število potrebnih metov, da pade šestica prvič. $X \sim \text{geo}(\frac{1}{6})$.

6. Pascalova oz. nenegativna binomska porazdelitev $\operatorname{Pas}(m,p), m \in \mathbb{N}, p \in (0,1)$: X je število potrebnih ponovitev poskusa, da se dogodek A zgodi m-krat. (X = k) je dogodek, da se A zgodi m-tič v k-ti ponovitvi.

$$\underbrace{AA\bar{A}A\bar{A}\dots\bar{A}A}_{m-1}\underbrace{A}_{k-m}\underbrace{A}_{\bar{A}}$$

$$p_k = P(x = k) = {k-1 \choose m-1} p^m q^{k-m}, \text{ za } k = m, m+1, m+2, \dots$$

 $\sum_{k=m}^{\infty} p_k = 1$ se dokaže računsko z (m-1)-kratnim odvajanjem vrste $1+q+q^2+\cdots=\frac{1}{1-q}$ ali pa direktno z uporabo vrste $(1-q)^{-m}=\sum_{j=0}^{\infty} {-m \choose j} (-q)^j$.

Geometrijska porazdelitev je poseben primer Pascalove: Pas(1, p) = geo(p)

Zgled. Mečemo kocko. X je število potrebnih meto, da šestica pade m krat. $X \sim \operatorname{Pas}(m, \frac{1}{6})$.

7. Hipergeometrijska porazdelitev Hip(n; M, N), n ≤ min{M, N − M}:
V posodi imamo M belih in (N − M) črnih krogljic. Slučajno izvlečemo n krogljic. X naj bo število belih krogljic med izvlečenimi:

$$p_k = P(x = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

Ker je $\{(X=k)_{k=0}^n$ popol
n sistem dogodkov, je $\sum_{k=0}^n p_k = 1$. Torej velja:

$$\sum_{k=0}^{n} \binom{M}{k} \binom{N-M}{n-k} = \binom{N}{n}$$

Zgled. V jezeru je N rib, od tega je M krapov. Ulovimo n rib. Naj bo X število ujetih krapov. $X \sim \text{Hip}(n; M, N)$.

Vzemimo, da je $n \ll \min\{M, N-M\}$. Tedaj ne naredimo velike napake, če krogljice vrečamo. Tedaj je $X \sim \text{Bin}(n, \frac{M}{N})$ ozirioma $p_k = \binom{n}{k} \left(\frac{M}{N}\right)^k \left(\frac{N-M}{N}\right)^{n-k}$ za $k = 0, 1, \ldots, n$.

5.2 Zvezne slučajne spremenljivke

Slučajna spremenljivka X je zvezno porazdeljena, če obstaja nenegativna integrabilna funkcija p_X , imenovana gostota verjetnosti, da za vsak $x \in \mathbb{R}$ velja:

$$F_X(x) = \int_{-\infty}^x p_X(t) dt$$

Pogosto se gostota označuje s f_X .

Tedaj je $F_X = F$ zvezna funkcija. Toda obstajajo tudi zvezne porazdelitvene funkcije, ki nimajo gostote.

Ker je $\lim_{x\to\infty} F(x) = 1$, je $\int_{-\infty}^{\infty} p(t) dt = 1$.

Če je p zvezna v toči x, potem je F odvedljiva v x in velja F'(x) = p(x).

Za vsak $x \in \mathbb{R}$ velja P(X = x) = F(x) - F(x-) = 0. Če je $x_1 \le x_2$, je potem:

$$P(x_1 \le X_1 \le x_2) = F(x_2) - F(x_1 -) = \int_{x_1}^{x_2} p(t) dt$$

Nekatere pomembnejše zvezne porazdelitve:

1. Enakomerna zvezna porazdelitev na [a, b], a < b:

$$p(x) = \begin{cases} \frac{1}{b-a}, & \text{\'e } a \le x \le b \\ 0, & \text{sicer} \end{cases}$$

$$F(x) = \int_{-\infty}^{x} p(t) dt = \begin{cases} 0, & \text{\'e } x \le a \\ \frac{x-a}{b-a}, & \text{\'e } a \le x \le b \\ 1, & \text{\'e } x \ge b \end{cases}$$

2. Normalna ali Gaussova porazdelitev $N(\mu, \sigma), (\mu \in \mathbb{R}, \sigma > 0)$:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Če je σ majhen:

Če je σ velik:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} dt \stackrel{\star}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{1}{2}s^{2}} ds = \frac{1}{2} + \phi\left(\frac{x-\mu}{\sigma}\right)$$

Kjer smo v enakosti \star uvedli novo spremenljivko $s=\frac{t-\mu}{\sigma}.$

Tukaj je:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{2\pi t^2} dt$$

N(0,1): standardna normalna porazdelitev:

$$p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Laplaceova formula: za velike n je:

$$Bin(n, p) \approx N(np, \sqrt{npq})$$

Zgled. Sistolični krvni tlak je an populciji približno normalno porazdeljen:

delež ljudi, ki imajo tlak med 120 in 130 mm Hg.

3. Eksponenta porazdelitev $\text{Exp}(\lambda), \lambda > 0$:

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{ \'e } x \ge 0\\ 0, & \text{ sicer} \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & \text{ \'e } x \ge 0\\ 0, & \text{ sicer} \end{cases}$$

Zgled. Radioaktivni razpad - potreben čas, da se nekaj zgodi.

4. Cauchyjeva porazdelitev:

$$p(x) = \frac{1}{\pi (1+x^2)}, \quad \text{za } x \in \mathbb{R}$$

$$F(x) = \int_{-\infty}^{x} \frac{dt}{\pi (1 + t^2)} = \frac{1}{\pi} \arctan t dt \Big|_{-\infty}^{x} = \frac{1}{\pi} \arctan x + \frac{1}{2}$$

Zgled. Primer slučajne spremenljivke, ki ni niti diskretno niti zvezno porazdeljena.

Vržemo pošten kovanec. Če pade grb, postavimo X=1; če pade cifra, naj bo X slučajno izbrano število na intervalu [0,2].

Izračunajmo $F(x) = P(X \le x)$:

- 1) Če je x < 0, je F(x) = 0. Če je x > 2, je F(x) = 1.
- 2) Vzemimo, da je $0 \le x \le 2$. Potem je:

$$F(x) = P(grb)P(X \le x \mid grb) + P(cifra)P(X \le x \mid cifra)$$

Če je
$$x < 1$$
, je $F(x) = \frac{1}{2} \cdot \frac{x}{2} = \frac{x}{4}$.

Če je
$$x \ge 1$$
, je $F(x) = \frac{1}{2} + \frac{1}{2} \cdot \frac{x}{2} = \frac{1}{2} + \frac{x}{4}$.

Torej je:

$$F(x) = \begin{cases} 0, & \text{\'e } x < 0 \\ \frac{x}{4}, & \text{\'e } 0 \le x < 1 \\ \frac{1}{2} + \frac{x}{4}, & \text{\'e } 1 \le x \le 2 \\ 1, & \text{\'e } x > 2 \end{cases}$$

KerFni zvezna, Xni zvezno porazdeljena. KerFni odsekoma konstantna, Xni diskretno porazdeljena. $\quad \diamondsuit$

Poglavje 6

Slučajni vektorji in neodvisnost

Definicija 3. Slučajni vektor je n-terica slučajnih spremenljivk $X = (X_1, \ldots, X_n)$, to je preslikava $X : \Omega \to \mathbb{R}^n$ z lastnostjo, da je množica:

$$(X_1 \le x_1, \dots, X_n \le x_n) := \{ \omega \in \Omega : X_1(\omega) \le x_1, \dots, X_n(\omega) \le x_n \}$$

dogodek, za vsako *n*-terico $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

Definicija 4. Porazdelitvena funkcija $F_X : \mathbb{R}^n \to \mathbb{R}$ je definirana s:

$$F_X(x) \equiv F_{(X_1,...,X_n)}(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n)$$

Za vsak $x \in \mathbb{R}^n$ je $F(x) \in [0, 1]$.

Glede na vsako spremenljivko je F naraščujoča in z desne zvezna:

$$\lim_{x_i \to \infty \, \forall i} F(x_1, \dots, x_n) = 1$$
$$\lim_{x_i \to -\infty} F(x_1, \dots, x_n) = 0$$

Če pošljemo proti ∞ samo nekatere spremenljivke, dobimo porazdelitvene funkcije podvektorjev, na primer:

$$\lim_{x_{n}\to\infty} F_{(X_{1},\dots,X_{n})}(x_{1},\dots,x_{n}) = F_{(X_{1},\dots,X_{n-1})}(x_{1},x_{2},\dots,x_{n-1})$$

$$\lim_{x_{2}\to\infty} F_{(X_{1},\dots,X_{n})}(x_{1},x_{2},\dots,x_{n}) = F_{X_{1}}(x_{1})$$

$$\vdots$$

$$x_{n}\to\infty$$

Take porazdelitvene funkcije za X_1 imenujemo tudi, robne (marginalne) porazdelitve.

Oglejmo si dvorazsežen primer:

$$(X,Y): \Omega \to \mathbb{R}^2$$

 $\omega \mapsto (X(\omega), Y(\omega))$

Porazdelitvena funkcija je:

$$F_{(X,Y)}(x,y) = P(X \le x, Y \le y)$$

Robni porazdelitvi sta:

$$F_X(x) = \lim_{y \to \infty} F_{(X,Y)}(x,y)$$
$$F_Y(y) = \lim_{x \to \infty} F_{(X,Y)}(x,y)$$

Izpeljimo analog formule $P(x_1 < X \le x_2) = F(x_2) - F(x_1)$, t.j. izračunajmo verjetnost:

$$P(a < X \le b, c < y \le d)$$

s pomočjo porazdelitvene funkcije $F_{(X,Y)} = F$.

Najprej si oglejmo:

$$P(a < X \le b, Y \le d) = P((X \le b, Y \le d) \setminus (X \le a, Y \le d))$$
$$= P(X \le b, Y \le d) - P(X \le a, Y \le d)$$
$$= F(b, d) - F(a, d)$$

V splošnem primeru:

$$P(a < X \le b, c < Y \le d) = P(a < X \le b, Y \le d) - P(a < X \le b, Y \le c)$$

$$= F(b, d) - F(a, d) - (F(b, c) - F(a, c))$$

$$= F(b, d) - F(a, d) - F(b, c) + F(a, c)$$

Omejimo se na diskretne porazdelitve.

Zaloga vrednosti slučajnih vektorjev $X = (X_1, \ldots, X_n)$ je največ števna množica v \mathbb{R}^n . Omejimo se na n = 2: $(X, Y) : \Omega \to \mathbb{R}^2$ z največ števno zalogo vrednosti.

Naj bo $\{x_1, x_2, \ldots\}$ zaloga vrednosti za $X, \{y_1, y_2, \ldots\}$ pa zaloga vrednosti za Y. Očitno je zaloga vrednosti (X, Y) vsbovana v množica:

$$\{(x_i, y_j) : i = 1, 2, \dots, j = 1, 2, \dots\}$$

Verjetnostna funkcija:

$$p_{ij} := P(X = x_i, Y = y_j)$$
 za $i = 1, 2, ...$ in $j = 1, 2, ...$

$$p_i = P(X = x_i) = \sum_j P(X = x_i, Y = y_j) = \sum_j p_{ij}$$

 $q_j = P(Y = y_j) = \sum_i p_{ij}$

Zgled. Met dveh kock:

 \Diamond

Slučajne spremenljivke X_1, X_2, \dots, X_n so neodvisne, če velja:

$$F_{(X_1,X_2,...,X_n)}(x_1,x_2,...,x_n) = F_{X_1}(x_n) \cdot F_{X_2}(x_2) \cdot \cdot \cdot F_{x_n}(x_n)$$

za vse $(x_2, x_2, \dots x_n) \in \mathbb{R}^n$, torej dogodki $(X_1 \le x_1), (X_2 \le x_2), \dots, (X_n \le x_n)$ so neodvisni.

Trditev 2. Naj bo (X,Y) diskreten slučajni vektor, $p_{ij} = P(X = x_i, Y = y_j)$, $p_i = P(x = x_i)$, $q_j = P(Y = y_j)$ za i = 1, 2, ..., j = 1, 2, ...

Potem sta X in Y neodvisni slučajni spremenljivki $\iff p_{ij} = p_i \cdot q_j \quad \forall i, \forall j.$

 $Dokaz. \ (\Longrightarrow):$

$$\begin{split} p_{ij} &= \lim_{h \to 0+} P\left(x_i - h < X \le x_i, y_j - h < Y \le y_j\right) \\ &= \lim_{h \to 0} \left(F\left(x_i, y_j\right) - F\left(x_i - h, y_j\right) - F\left(x_i, y_j - h\right) + F\left(x_i - h, y_j - h\right)\right) \\ &= \lim_{h \to 0} \left(F_X\left(x_i\right) F_Y\left(y_j\right) - F_X\left(x_i - h\right) F_Y\left(y_j\right) - F_X\left(x_i\right) F_Y\left(y_j - h\right) + \\ &\quad + F_X\left(x_i - h\right) F_y\left(y_j - h\right)\right) \\ &= \lim_{h \to 0} \left(F_X\left(x_i\right) - F_X\left(x_i - h\right)\right) \cdot \left(F_Y\left(y_j\right) - F_Y\left(y_j - h\right)\right) \\ &= P\left(X = x_i\right) \cdot P\left(Y = y_j\right) \\ &= p_i q_j \end{split}$$

Kjer smo v vrstici (\star) uporabili neodvisnost.

$$(\Leftarrow =)$$
:

$$F_{(X,Y)}(x,y) = \sum_{\{i,j:x_i \le x_1, y_j \le y\}} p_{ij}$$

$$= \sum_{\{i,j:x_i \le x, y_j \le y\}} p_i p_j$$

$$= \left(\sum_{\{i:x_i \le x\}} p_i\right) \left(\sum_{\{j:y_j \le y\}} q_j\right)$$

$$= P(X \le x) P(Y \le y)$$

$$= F_X(x) F_Y(y)$$

Poglavje 7

Matematično upanja oz. pričakovana vrednost

Za končno slučajno spremenljivko $X: \left(\begin{array}{ccc} x_1 & x_2 & \cdots & x_n \\ p_1 & p_2 & \cdots & p_n \end{array}\right)$ je matematično upanje definirano kot:

$$E(x) := \sum_{k=1}^{n} x_k p_k$$

Tako je v primeru $p_1=p_2=\ldots=p_n=\frac{1}{n}$ matematično upanje enako povprečni vrednosti: $E(x)=\frac{x_n+x_2+\cdots+x_n}{n}$.

Naj ima sedaj X neskončno zalogo vrednosti. Če je X diskretna slučajna spremenljivka, s $p_k = P(X = x_k)$ za $k \in \mathbb{N}$, potem ima X matematično upanje, če je:

$$\sum_{k=1}^{\infty} |x_k| \, p_k < \infty$$

Tedaj je matematično upanje definirano kot vsota vrste:

$$E(x) := \sum_{k=1}^{\infty} x_k p_k$$

Če je X zvezna slučajna spremenljivka, z gostoto p(x), ima X matematično upanje, če je:

$$\int_{-\infty}^{\infty} |x| p(x) \, dx < \infty$$

Tedaj je matematično upanje definirano kot:

$$E(x) = \int_{-\infty}^{\infty} x \, p(x) \, dx$$

Zgled.

1.
$$X \sim \mathrm{Ber}(p), p > 0, X: \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$
:
$$E(x) = 0 \cdot q + 1 \cdot p = p$$

2. Izrojena ali degenerirana slučajna spremenljivka $\exists x_0 \in \mathbb{R} : P(X = x_0) = 1,$ t.j.: $X : \begin{pmatrix} x_0 \\ 1 \end{pmatrix}$:

$$E(x) = x_0 \cdot 1 = x_0$$

3. $X \sim \text{Poi}(\lambda), \lambda > 0, p_k = \frac{\lambda^k}{k!} e^{-\lambda} \text{ in } x_k = k, \text{ za } k = 0, 1, 2, \dots$

$$E(x) = \sum_{k=0}^{\infty} x_k \, p_k = \sum_{k=0}^{\infty} k \, \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = e^{-\lambda} \lambda e^{\lambda} = \lambda$$

4. Enakomerna zvezna porazdelitev na [a, b]:

$$E(X) = \int_{-\infty}^{\infty} x \, p(x) \, dx$$
$$= \int_{a}^{b} x \, \frac{1}{b-a} \, dx$$
$$= \frac{1}{b-a} \int_{a}^{b} x \, dx$$
$$= \frac{1}{b-a} \frac{x^{2}}{2} \Big|_{a}^{b}$$
$$= \frac{b^{2} - a^{2}}{(b-a)2}$$
$$= \frac{a+b}{2}$$

5. $X \sim N(0,1), p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$:

$$\int_{-\infty}^{\infty} |x|e^{-\frac{x^2}{2}} dx = 2 \int_0^{\infty} x e^{-\frac{x^2}{2}} dx$$

$$= 2 \int_0^{\infty} e^{-u} du$$

$$= 2 \left(-e^{-u}\right)\Big|_0^{\infty} = 2 < \infty$$

$$(\star)$$

 $\implies X$ ima matematično upanje. V vrstici (\star) smo uporabili per-partes.

$$E(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{-\frac{x^2}{2}} dt \stackrel{\text{liha}}{=} 0$$

6. Cauchyjeva porazdelitev, $p(x) = \frac{1}{\pi(1+x^2)}$:

$$\int_{-\infty}^{\infty} |x| \frac{1}{\pi (1+x^2)} dx = \frac{2}{\pi} \int_{0}^{\infty} \frac{x}{1+x^2} dx = \frac{1}{\pi} \ln (1+x^2) \Big|_{0}^{\infty} = \infty$$

 $\implies X$ nima matematičnega upanja.

7. $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$ pogojno konvergentna vrsta. Če vzamemo:

$$x_k p_k = \frac{(-1)^{k+1}}{k}$$
, za $k = 1, 2, \dots$

$$p_k = 2^{-k} = \frac{1}{2^k}, \quad \sum_{k=1}^{\infty} p_k = 1, \quad x_k = \frac{(-1)^{k+1}}{k} 2^k$$

X nima matematičnega upanja, ker vrsta ne konvergira absolutno.

 \Diamond

Trditev 3. Naj bo $f : \mathbb{R} \to \mathbb{R}$ funkcija:

(a) Če je
$$X: \begin{pmatrix} x_1 & x_2 & x_3 & \cdots \\ p_1 & p_2 & p_3 & \cdots \end{pmatrix}$$
, potem je:

$$E(f \circ X) = \sum_{k} f(x_k) p_k$$

če matematično upanje obstaja, t.j. vrsta absolutno konvergira.

(b) Če je X zvezno porazdeljena z gostoto p(x), potem je:

$$E(f \circ X) = \int_{-\infty}^{\infty} f(x)p(x) dx$$

če je integral absolutno konvergenten.

Dokaz. (samo (a))

$$f \circ X \equiv f(X) : \begin{pmatrix} f(x_1) & f(x_2) & f(x_3) & \cdots \\ p_1 & p_2 & p_3 & \cdots \end{pmatrix}$$
$$E(f \circ x) = \sum_h f(x_k) p_k$$

Posledica 1. Slučajna spremenljivka X ima matematično upanje \iff |X| ima matematično upanje. Tedaj velja:

$$|E(X)| \le E(|X|)$$

Dokaz.

$$|E(X)| = \left| \sum_{k} x_k p_k \right| \le \sum_{k} |x_k| \, p_k = E(|X|)$$

Posledica 2. $Za \ a \in \mathbb{R}$ in slučajno spremenljivko X z matematičnim upanjem velja:

$$E(a \cdot x) = a \cdot E(x)$$

Upanje je homogeno.

Dokaz. Vzamemo:

$$f(x) = a \cdot x$$

Podobno kot zadnjo trditev se dokaže:

Trditev 4. Naj bo $f: \mathbb{R}^2 \to \mathbb{R}$ funkcija, (X,Y) pa diskretno porazdeljen slučajni vektor:

$$p_{ij} = P(x = x_i, y = y_j), \quad za \quad i, j = 1, 2, \dots$$

Potem je $f(X,Y): \Omega \to \mathbb{R}$ slučajna spremenljivka in velja:

$$E(f(X,Y)) = \sum_{i} \sum_{j} f(x_i, y_j) p_{ij}$$

če vrsta absolutno konvergira.

Trditev 5. Če imata X in Y matematično upanje, ga ima tudi X + Y in velja:

$$E(X + Y) = E(X) + E(Y)$$

Upanje je aditivno.

Dokaz.

$$E(X + Y) = \sum_{i} \sum_{j} (x_i + y_j) p_{ij}$$

$$= \sum_{i} x_i \sum_{j} p_{ij} + \sum_{j} y_j \sum_{i} p_{ij}$$

$$= \sum_{i} x_i p_i + \sum_{j} y_j q_j$$

$$= E(X) + E(Y)$$

Posledica 3. Za slučajne spremenljivke X_1, X_2, \dots, X_n , ki imajo matematično upanje, velja:

$$E(a_1X_1 + a_2X_2 + \ldots + a_nX_n) = a_1E(X_1) + a_2E(X_2) + \cdots + a_nE(X_n)$$

 $kjer\ so\ a_1, a_2, \ldots, a_n \in \mathbb{R}.$

Zgled.

1. Naj ima X matematično upanje. Potem je:

$$E(X - E(X)) = E(X) - E(\underbrace{E(X)}_{\text{konst.}}) = E(X) - E(X) = 0$$

2.
$$X_k \sim \operatorname{Ber}(p)$$
, torej $X_k : \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$ za $k = 1, 2, \dots, X := X_1 + \dots + X_n$:
$$E(X) = E(X_1) + \dots + E(X_n) = np$$

Imejmo Bernoullijevo zaporedje neodvisnih ponovitev poskusa A, P(A) = p. $X_k : \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$; $(X_k = 1)$, če se dogodek A zgodi v k-ti ponovitvi poskusa. Potem je $X = X_1 + \cdots + X_n$ frekvenca dogodka A v n ponovitvah. Tedaj je $X \sim \text{Bin}(n,p)$.

Torej je E(X) = np. To se lahko vidi tudi direktno:

$$E(x) = \sum_{k=0}^{n} k \binom{n}{k} p^k q^{n-k}$$

$$= \sum_{k=1}^{n} k \frac{n}{k} \binom{n-1}{k-1} p^k q^{n-k}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k}$$

$$= np (p+q)^{n-1}$$

$$= np$$

Zgled. $X \sim N(\mu, \sigma), \ \mu \in \mathbb{R}, \sigma > 0$:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Na vajah: $Y = \frac{X-\mu}{\sigma} \sim N(0,1)$. Ker je E(Y) = 0, je:

$$E(x) = E(\sigma Y + \mu) = \sigma E(Y) + \mu = \mu$$

 \Diamond

Trditev 6. Če obstaja $E(X^2)$ in $E(Y^2)$, potem obstaja tudi E(|XY|) in velja:

$$E(|XY|) \le \sqrt{E(X^2) E(Y^2)}$$

To je Cauchy-Schwarzova neenakost.

 $Enakost\ velja\iff$

$$|Y| = \sqrt{\frac{E(Y^2)}{E(X^2)}}|X|$$
 z verjetnostjo 1.

Dokaz. Za poljubni nenegativni števili u in v velja:

$$uv \le \frac{1}{2} \left(u^2 + v^2 \right) \qquad \left(\iff (u - v)^2 \ge 0 \right)$$

Torej za nanegativni slučajni spremenljivki U in V velja:

$$UV \le \frac{1}{2} \left(U^2 + V^2 \right)$$

kjer velja enačaj, le za $\omega \in \Omega$, v katerih je $U(\omega) = V(\omega)$.

Če vstavimo U = a|X| in $V = \frac{1}{a}|Y|$ za a > 0, dobimo neenakost:

$$|XY| \le \frac{1}{2} \left(a^2 X^2 + \frac{1}{a^2} Y^2 \right)$$

in zato je:

$$E(|XY|) \le \frac{1}{2} \left(a^2 E\left(X^2\right) + \frac{1}{a^2} E\left(Y^2\right) \right)$$

Če vstavimo $a^2 = \sqrt{\frac{E(Y^2)}{E(X^2)}}$, je desna stran enaka:

$$\frac{1}{2}\left(\sqrt{\frac{E\left(Y^{2}\right)}{E\left(X^{2}\right)}}E\left(X^{2}\right) + \sqrt{\frac{E\left(X^{2}\right)}{E\left(Y^{2}\right)}}E\left(Y^{2}\right)\right) = \sqrt{E\left(X^{2}\right)E\left(Y^{2}\right)}$$

torej je:

$$E(|XY|) \le \sqrt{E\left(X^2\right)E\left(Y^2\right)}$$

Enačaj velja, če je $a|X| = \frac{1}{a}|Y|$, torej je:

$$|Y| = a^2 |X| = \sqrt{\frac{E(Y^2)}{E(X^2)}} |X|$$

Posledica 4. Če obstaja $E(X^2)$, potem obstaja tudi E(|X|) in velja:

$$(E(|X|))^2 \le E\left(X^2\right)$$

Dokaz.
$$Y \equiv 1$$

Trditev 7. Naj bosta X in Y neodvisni slučajni spremenljivki, ki imata matematično upanje. Potem obstaja tudi matematično upanje za XY in velja:

$$E(XY) = E(X)E(Y)$$

Dokaz. (samo diskreten primer)

$$E(XY) = \sum_{i} \sum_{j} x_i y_j p_{ij}$$

po trditvi, kjer je $p_{ij} = P(X = x_i, Y = y_j)$.

Zaradi neodvisnosti je $p_{ij} = p_i q_j$, kjer je $p_i = P(X = x_i)$ in $q_j = P(Y = y_j)$.

Torej je:

$$E(XY) = \sum_{i} \sum_{j} x_i y_j p_i q_j = \left(\sum_{i} x_i p_i\right) \left(\sum_{j} y_j q_j\right) = E(X)E(Y)$$

Če za X in Y velja E(XY) = E(X)E(Y), potem sta X in Y nekorelirani slučajni spremenljivki. Sicer sta korelirani.

Po trditvi iz neodvisnosti sledi nekoreliranost. Obrat ne velja.

Zgled.

$$U: \left(\begin{array}{ccc} 0 & \frac{\pi}{2} & \pi \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array}\right)$$

$$X = \sin U : \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$
$$Y = \cos U : \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

Velja:

$$XY = \sin U \cdot \cos U \equiv 0 \Rightarrow E(XY) = 0$$

 \Diamond

$$E(X) = \frac{1}{3}, \quad E(Y) = -\frac{1}{3} + 0 + \frac{1}{3} = 0$$

 $\implies X, Y$ sta nekorelirani.

Poglejmo še neodvisnost:

X,Y sta odvisni slučajni spremenljivki.

Domača naloga: Za:

$$X: \left(\begin{array}{cc} x_1 & x_2 \\ p_1 & p_2 \end{array} \right), \quad Y: \left(\begin{array}{cc} y_1 & y_2 \\ q_1 & q_2 \end{array} \right)$$

Dokaži: X in Y sta nekorelirani \iff neodvisni.

Poglavje 8

Disperzija, kovarianca in korelacijski koeficient

Naj obstaja $E(X^2)$. Disperzija oz. varianca je definirana kot:

$$D(X) \equiv \operatorname{Var}(X) := E\left((X - E(X))^2\right)$$

D(X) meri razpršenost okoli E(X).

Velja tudi:

$$\begin{split} E\left((X - E(X))^{2}\right) &= E\left(X^{2} - 2E(X)X + (E(X))^{2}\right) \\ &= E\left(X^{2}\right) - 2E(X)E(X) + (E(X))^{2} \\ &= E\left(X^{2}\right) - (E(X))^{2} \end{split}$$

Zato je:

$$D(x) = E(X^{2}) - (E(X))^{2}$$

Lastnosti D(X):

1.
$$D(X) \ge 0 \text{ in } D(X) = 0 \iff P(X = E(X)) = 1, \text{ t.j.: } X : \begin{pmatrix} E(X) \\ 1 \end{pmatrix}.$$

2.
$$D(aX) = a^2 D(X)$$
 za $a \in \mathbb{R}$.

3. Za vsak
$$a \in \mathbb{R}$$
 je $E((X-a)^2) \geq D(X)$. Enačaj velja $\iff a = E(X)$.

Dokaz.

$$E((X - a)^{2}) = E(X^{2} - 2aX + a^{2})$$

$$= E(X^{2}) - 2aE(X) + a^{2}$$

$$= (a - E(X))^{2} - (E(X))^{2} + E(X^{2})$$

$$= (a - E(X))^{2} + D(X) \ge D(X)$$

Standardna deviacija oz. standardni odklon je definirana kot:

$$\sigma(X) := \sqrt{D(X)}$$

Zanjo velja $\sigma(aX) = |a| \sigma(X)$ za $a \in \mathbb{R}$.

Pregled nakaterih E(X) in D(X):

- 1. Enakomerna diskretna porazdelitev, $X: \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$: $E(X) = \frac{x_1 + \cdots + x_n}{n}, \qquad D(X) = \frac{x_1^2 + \cdots + x_n^2}{n} \left(\frac{x_1 + \cdots + x_n}{n}\right)^2$
- 2. Binomska porazdelitev, Bin(n, p):

$$E(X) = np,$$
 $D(X) = npq,$ $\sigma(X) = \sqrt{npq}$

3. Poissonova porazdelitev, $Poi(\lambda)$:

$$E(X) = D(X) = \lambda$$

4. Geometrijska porazdelitev, geo(p):

$$E(X) = \frac{1}{p}$$
, $D(x) = \frac{q}{p^2}$, za $q = 1 - p$

5. Pascalova porazdelitev, Pas(m, p):

$$E(X) = \frac{m}{p}$$
, $D(X) = \frac{mq}{p}$, za $q = 1 - p$

6. Enakomerna zvezna porazdelitev na [a, b]:

$$E(X) = \frac{a+b}{2}, \qquad D(X) = \frac{(b-a)^2}{12}$$

7. Normalna porazdelitev, $N(\mu, \sigma)$:

$$E(X) = \mu,$$
 $D(X) = \sigma^2,$ $\sigma(x) = \sigma$

8. Eksponenta porazdelitev, $Exp(\lambda)$:

$$E(X) = \frac{1}{\lambda}, \qquad D(x) = \frac{1}{\lambda^2}$$

Dokaz. (samo (4.)) Velja: $p_k=p(X=k)=pq^{k-1}$ za
 $k=1,2,3,\ldots$

$$E(X) = \sum_{k=1}^{\infty} kpq^{k-1}$$

$$= p \sum_{k=1}^{\infty} kq^{k-1}$$

$$= p \left(\sum_{k=0}^{\infty} q^k\right)'$$

$$= p \left(\frac{1}{1-q}\right)'$$

$$= p \frac{1}{(1-q)^2}$$

$$= \frac{1}{p}$$

$$E(X(X+1)) = \sum_{k=1}^{\infty} k(k+1)pq^{k-1}$$

$$= p \sum_{k=1}^{\infty} (k+1)kq^{k-1}$$

$$= p \left(\sum_{k=-1}^{\infty} q^{k+1}\right)''$$

$$= p \left(\frac{1}{1-q}\right)''$$

$$= p \left(\frac{1}{(1-q)^2}\right)'$$

$$= p \frac{2}{(1-q)^3}$$

$$= \frac{2}{p^2}$$

$$\implies D(X) = E(X(X+1)) - E(X) - (E(X))^2 = \frac{2}{p^2} - \frac{1}{p} - \frac{1}{p^2} = \frac{1}{p^2} - \frac{1}{p} = \frac{q}{p^2}$$

Ш

Zgled. Met kocke. X je število potrebnih metov, da pade prva šestica. $X \sim \text{geo}(\frac{1}{6})$.

$$E(X) = 6,$$
 $D(X) = \frac{\frac{5}{6}}{\frac{1}{36}} = 30,$ $\sigma(X) = \sqrt{30}$

$$p_1 = p, \quad p_2 = pq, \quad p_3 = pq^2, \quad p_4 = pq^3, \quad \dots$$

Kovarianca slučajne spremenljivke X in Y se definirana kot:

$$K(Y,X) \equiv \text{Cov}(X,Y) := E((X - E(X))(Y - E(Y)))$$

$$= E(XY - E(X)Y - XE(Y) + E(X)E(Y))$$

$$= E(XY) - E(X)E(Y) - E(Y)E(X) + E(X)E(Y)$$

$$= E(XY) - E(X)E(Y)$$

Lastnosti kovariance:

- 1. K(X, X) = D(X)
- 2. X in Y sta nekorelirani $\iff K(X,Y) = 0$
- 3. K je simetrična in bilinearna funkcija:

$$K(X,Y) = K(Y,X),$$
 za $a, b \in \mathbb{R}$
 $K(aX + bY, Z) = aK(X, Z) + bK(Y, Z)$

4. Kovarianca obstaja, če obstaja D(X) in D(Y). Tedaj velja:

$$|K(X,Y)| \le \sqrt{D(X)D(Y)} = \sigma(X)\sigma(Y),$$

kar sledi iz Cauchy-Schwarzove neenakosti za X-E(X) in Y-E(Y).

Enakost velja
$$\iff Y - E(Y) = \pm \frac{\sigma(Y)}{\sigma(X)} (X - E(X))$$
 z verjetnostjo 1.

5. Če imata X in Y disperzijo, potem jo ima tudi X + Y in velja:

$$D(X+Y) = D(X) + D(Y) + 2K(X,Y)$$

Če sta X in Y nekorelirani, je potem:

$$D(X+Y) = D(X) + D(Y)$$

Dokaz. Sledi iz enakosti:

$$(X + Y - E(X + Y))^{2} = ((X - E(X)) + (Y - E(Y)))^{2}$$
$$= (X - E(X))^{2} + (Y - E(Y))^{2} +$$
$$+ 2(X - E(X))(Y - E(Y))$$

6. Posplošitev zadnje lastnosti:

$$D(X_1 + \dots + X_n) = \sum_{k=1}^{n} D(X_k) + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} K(X_i, X_j)$$

Posebej: če so $X_1, \ldots X_n$ paroma nekorelirane potem je:

$$D(X_1 + \cdots + X_n) = D(X_1) + \cdots + D(X_n)$$

Zgled. Za $X \sim \text{Bin}(n, p)$, je $X = X_1 + \cdots + X_n$, kjer velja:

$$X_k : \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$
, oziroma $X_k = \begin{cases} 1, & \text{zgodi se } A \text{ v } k\text{-ti ponovitvi} \\ 0, & \text{sicer} \end{cases}$

 $X_1, \ldots X_n$ so neodvisne slučajne spremenljivke, zato je:

$$D(X_k) = E(X_k^2) - (E(X_k))^2 = p - p^2 = p(1-p) = pq$$

in potem:

$$D(X) = D(X_1 + \dots + X_n) = D(X_1) + \dots + D(X_n) = npq$$

 \Diamond

Standardizacija slučajne spremenljivke X je slučajna spremenljivka:

$$X_s = \frac{X - E(X)}{\sigma(X)}$$

Tedaj je $E(X_s) = 0$ in $D(X_s) = 1$, saj je:

$$D(X_s) = \frac{1}{\sigma(X)^2} \frac{D(X - E(X))}{D(X)} = 1$$

Zgled. Na vajah boste pokazali:

$$X \sim N(\mu, \sigma) \implies X_s = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 \Diamond

Korelacijski koeficient slučajnih spremenljivk X in Y je:

$$r(X,Y) = \frac{K(X,Y)}{\sigma(X)\sigma(Y)} = \frac{E((X - E(X))(Y - E(Y))}{\sigma(X)\sigma(Y)} = E(X_sY_s)$$

Lastnosti:

1. $r(X,Y) = 0 \iff X \text{ in } Y \text{ sta nekorelirani.}$

$$2. -1 \le r(X, Y) \le 1$$

Dokaz. Sledi iz lastnosti (4) za K.

3.
$$r(X,Y) = 1 \iff Y = \frac{\sigma(Y)}{\sigma(X)}(X - E(X)) + E(Y)$$
 z verjetnostjo 1
$$r(X,Y) = -1 \iff Y = -\frac{\sigma(Y)}{\sigma(X)}(X - E(X)) + E(Y)$$
 z verjetnostjo 1

Zgled. Vržemo 2 kocki. X je število pik na prvi kocki in Y število pik na drugi kocki. Zaradi neodvisnosti je K(X,Y)=0.

Definiramo Z = X + Y. Izračunajmo r(X, Z):

$$E(X) = E(Y) = \frac{7}{2}$$

$$E(X^{2}) = \frac{1}{6}(1 + 4 + 9 + 16 + 25 + 36) = \frac{91}{6}$$

$$D(X) = E\left(X^2\right) - (E(X))^2 = \frac{91}{6} - \frac{49}{4} = \frac{182 - 147}{12} = \frac{35}{12}$$

$$K(X, Z) = K(X, X + Y) = K(X, X) + K(X, Y) = D(X) + 0 = \frac{35}{12}$$

$$D(Z) = D(X) + D(Y) = 2 \cdot \frac{35}{12} = \frac{35}{6}, \text{ ker sta } X \text{ in } Y \text{ neodvisni.}$$

$$r(X, Z) = \frac{K(X, Z)}{\sqrt{D(X)D(Z)}} = \frac{\frac{35}{12}}{\sqrt{\frac{35}{12} \cdot \frac{35}{6}}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Poglavje 9

Pogojna porazdelitev in pogojno matematično upanje

Fiksirajmo dogodek B s P(B) > 0. Pogojna porazdelitvena funkcija slučajne spremenljivke X gleda na pogoj B je:

$$F_X(x \mid B) = P(X \le x \mid B) = \frac{P((X \le x) \cap B)}{P(B)}$$

Ima enake lastnosti kot porazdelitvena funkcija.

Naj bo (X,Y) diskreten slučajni vektor:

$$p_{ij} = P(X = x_i, Y = y_i), \quad B := (Y = y_i), \quad P(B) = P(Y = y_i) = q_i$$

Potem je pogojna porazdelitvena funkcija slučajne spremenljivke X glede na $Y = y_j$:

$$F_X(x \mid y_j) = F_X(x \mid Y = y_j)$$

$$= P(X \le x \mid Y = y_j)$$

$$= \frac{1}{q_j} P((X \le x) \cap (Y = y_j))$$

$$= \frac{1}{q_j} \sum_{i:x_i \le x} p_{ij}$$

Vpeljemo pogojno verjetnostno funkcijo:

$$p_{i|j} = P(X = x_i \mid Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_i)} = \frac{p_{ij}}{q_i}$$

Tedaj je:

$$F_X(x \mid Y = y_j) = \sum_{i: x_i < x} p_{i|j}$$

 $Pogojno\ matematično\ upanje\ slučajne\ spremenljivke\ X\ gleda\ na\ Y=y_j$ je matematično upanje te porazdelitve:

$$E(X \mid y_j) \equiv E(X \mid Y = y_j) = \sum_{i} x_i p_{i|j} = \frac{1}{q_j} \sum_{i} x_i p_{ij}$$

Tako dobimo novo slučajno spremenljivko:

$$E(X \mid Y) : \begin{pmatrix} E(X \mid y_1) & E(X \mid y_2) & \cdots \\ q_1 & q_2 & \cdots \end{pmatrix}$$

 $Pogojno\ matematično\ upanje\ slučajne\ spremenljivke\ X\ glede na slučajno\ spremenjivko\ Y.$

Označimo $\varphi(y_j) := E(X \mid y_j)$ za vse j in dobimo:

$$E(X \mid Y) := \varphi(Y) : \begin{pmatrix} \varphi(y_1) & \varphi(y_2) & \cdots \\ q_1 & q_2 & \cdots \end{pmatrix}$$

 φ je regresijska funkcija.

Za E(X,Y) velja zveza:

$$E(E(X | Y)) = \sum_{j} E(X | y_{j}) q_{j}$$

$$= \sum_{j} \sum_{i} x_{i} p_{ij}$$

$$= \sum_{i} x_{i} \left(\sum_{j} p_{ij}\right)$$

$$= \sum_{i} x_{i} p_{i}$$

$$= E(X)$$

Vzemeimo, da sta X in Y neodvisni. Tedaj:

$$p_{i|j} = \frac{p_{ij}}{q_j} = p_i \implies E(X \mid y_j) = \sum_i x_i p_i = E(X)$$

torej je $E(X \mid Y)$ izrojena slučajna spremenljivka.

Zgled. Kokš znese N jajc, kjer je $N \sim \text{Poi}(\lambda)$. Iz vsakega jajca se zvali piščanec s verjetnostjo $p \in (0,1)$, neodvisno od drugih jajc.

Naj bo K število piščancev. Določimo $E(K \mid N), E(K)$ in $E(N \mid K)$.

$$P(N=n) = \frac{\lambda^n}{n!} e^{-\lambda}, \quad \text{za} \quad n = 0, 1, 2, \dots$$

$$P(K=k \mid N=h) = \binom{n}{k} p^k q^{n-k}, \quad q = 1-p \quad \text{in za} \quad k = 0, 1, 2, \dots$$

$$E(K \mid N=n) = E(\text{Bin}(n,p)) = np =: \varphi(n)$$

$$E(K \mid N) = pN = \varphi(N)$$

$$E(K) = E(E(K \mid N)) = E(pN) = pE(N) = p\lambda$$

Dokažimo, da je $K \sim \text{Poi}(\lambda)$:

$$\begin{split} P(K=k) &= \sum_{n=k}^{\infty} P(K=k \mid N=n) P(N=n) \\ &= \sum_{n=k}^{\infty} \binom{n}{k} p^k \, q^{n-k} \, \frac{\lambda^n}{n!} e^{-\lambda} \\ &= e^{-\lambda} \frac{p^k}{k!} \lambda^k \sum_{n=k}^{\infty} \frac{q^{n-k} \, \lambda^{n-k}}{(n-k)!} \\ &= e^{-\lambda} \frac{(p\lambda)^k}{k!} e^{q\lambda} = \frac{(p\lambda)^k}{k!} e^{-p\lambda} \end{split}$$

$$\begin{split} P(N=n\mid K=k) &= \frac{P(N=n,K=k)}{P(K=k)} \\ &= \frac{P(K=k\mid N=n)P(N=n)}{P(K=k)} \\ &= \binom{n}{k} p^k q^{n-k} \frac{\lambda^n}{n!} e^{-\lambda} \frac{k!}{(p\lambda)^k} e^{p\lambda} \\ &= \frac{1}{(n-k)!} q^{n-k} \, \lambda^{n-k} e^{-q\lambda} \\ &= \frac{(q\lambda)^{n-k}}{(n-k)!} e^{-q\lambda} \end{split}$$

za $n=k, k+1, k+2, \ldots$, kar je Poissonova porazdelitev, premaknjena za k v desno: $k+\operatorname{Poi}(q\lambda)$. Zato je regresijska funkcija:

$$\varphi(k) = E(N \mid K = k) = E(k + \text{Poi}(q\lambda)) = k + q\lambda$$

torej je:

$$E(N \mid K) = \varphi(K) = K + q\lambda$$

Preizkus:

$$E(E(N \mid K)) = E(K + q\lambda) = E(K) + q\lambda = p\lambda + q\lambda = \lambda = E(N)$$

Poglavje 10

Rodovne funkcije

Naj bo X slučajna spremenljivka z vrednostmi v $\mathbb{N} \cup \{0\}$:

$$p_k = P(X = k), \text{ za } k = 0, 1, 2, \dots, p_k \ge 0, \sum_{k=0}^{\infty} p_k = 1$$

Rodovna funkcija slučajne spremenljivke X je:

$$G_X(s) := p_0 + p_1 s + p_2 s^2 + p_3 s^3 + \dots = \sum_{k=0}^{\infty} p_k s^k$$

za vse $s \in \mathbb{R}$, za katere vrsta absolutno konvergira.

Očitno je $G_X(0) = p_0$, $G_X(1) = \sum_{k=0}^{\infty} p_k = 1$ in $G_X(s) = E\left(s^X\right)$, saj je:

Za $s \in [-1,1]$ velja $\left| p_k s^k \right| \leq p_k$ in $\sum_{k=0}^{\infty} p_k = 1$, zato vrsta $\sum_{k=0}^{\infty} \left| p_k s^k \right|$ konvergira. Torej je konvergenčni radij vrste vsaj 1.

Zgled.

1. $X \sim \text{geo}(p), p_k = P(X = k) = p q^{k-1} \text{ za } k = 1, 2, 3, \dots$

$$G_X(s) = \sum_{k=1}^{\infty} p \, q^{k-1} s^k = ps \sum_{k=1}^{\infty} (qs)^{k-1} = ps \frac{1}{1 - qs} = \frac{ps}{1 - qs}$$

za vse $s \in \mathbb{R},$ za katere je |qs| < 1,torej je konvergenčni radij $\frac{1}{q}.$

2.
$$X \sim \text{Poi}(\lambda), p_k = p(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \text{ za } k = 0, 1, 2, ...$$

$$G_X(s) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} s^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

za vse $s \in \mathbb{R}$.

Iz teorije Taylorjevih vrst dobimo izrek o enoličnosti.

Izrek 1. Naj imata X in Y rodovni funkciji G_X in G_Y . Potem za $s \in [-1, 1]$ velja:

$$G_X(s) = G_Y(s) \iff P(X = k) = P(Y = k)$$
 za vse $k = 0, 1, 2, \dots$

Tedej velja:

$$P(X = k) = \frac{1}{k!}G_X^{(k)}(0)$$

Velja:

$$G_X(s) = \sum_{k=0}^{\infty} p_k s^k, \quad G'_X(s) = \sum_{k=1}^{\infty} p_k k s^{k-1}$$

za vse $s \in (-1, 1)$. Od koder sledi:

$$\lim_{s \uparrow 1} G_X'(s) = \sum_{k=1}^{\infty} p_k k = E(X)$$

Izrek 2. Naj ima X rodovno funkcijo G_X in $n \in \mathbb{N}$. Potem je:

$$G_X^{(n)}(1-) = E(X(X-1)(X-2)\cdots(X-n+1))$$

kjer je:
$$G_X^{(n)}(1-) = \lim_{s \uparrow 1} G_X^{(n)}(s)$$

Dokaz. Za $s \in [0,1)$ je:

$$G_X^{(n)}(s) = \left(\sum_{k=0}^{\infty} p_k \, s^k\right)^{(n)} = \sum_{k=n}^{\infty} k(k-1)\cdots(k-n+1)s^{k-n} \, p_k$$

Ko gre $s \uparrow 1$, z uporabo Abelove leme dobimo:

$$\lim_{s \uparrow 1} G_X^{(n)}(s) = \sum_{k=n}^{\infty} k(k-1) \cdots (k-n+1) p_k = E(X(X-1)(X-2) \cdots (X-n+1))$$

Posledica 5.

$$E(X) = G'_X(1-)$$

$$D(X) = E(X(X-1)) + E(X) - (E(X))^2$$

$$= G''_X(1-) + G'_X(1-) - (G'_X(1-))^2$$

Izrek 3. Naj bosta X in Y neodvisni slučajni spremenljivki z rodovnima funkcijama G_X in G_Y . Potem je za $s \in [0,1]$:

$$G_{X+Y}(s) = G_X(s) G_Y(s)$$

Dokaz.

$$G_{X+Y}(s) = E\left(s^{X+Y}\right)$$

$$= E(s^X \cdot s^Y)$$

$$= E(s^X) E(s^Y)$$

$$= G_X(s) G_Y(s)$$
 $(*)$

Enakost (\star) velja, saj sta s^X in s^Y neodvisni slučajni spremenljivki. \square

Posplošitev: Če je $S_n = X_1 + \cdots + X_n$ vsota neodvisnih slučajnih spremenljivk z vrednostmi v $\mathbb{N} \cup \{0\}$, potem je za $s \in [-1, 1]$:

$$G_{S_n}(s) = G_{X_1}(s) G_{X_2}(s) \cdots G_{X_n}(s)$$

Posebej: če so X_1, \ldots, X_n enako porazdeljene, potem je:

$$G_{S_n}(s) = (G_X(s))^n$$

Kakšne so rodovne funkcije slučajne spremenljivke $S_N = X_1 + X_2 + \cdots + X_N$, kjer so X_1, X_2, \ldots enako porazdeljene in N slučajna spremenljivka z rodovno funkcijo G_N ?

Izrek 4. Naj bodo za vsak $n \in \mathbb{N}$ slučajne spremenljivke N, X_1, X_2, \dots, X_n . Naj ima N rodovno funkcijo G_N , X_n pa rodovno funkcijo G_X za vsak $n \in \mathbb{N}$. Potem ima slučajna spremenljivka $S = X_1 + X_2 + \dots + X_N$ rodovno funkcijo:

$$G_S(s) = G_N(G_X(s))$$
 za $s \in [-1, 1]$

Dokaz. Zaradi neodvisnosti imamo:

$$P(S = k) = \sum_{n=1}^{\infty} P(S = k, N = n)$$

$$= \sum_{n=1}^{\infty} P(N = n, X_1 + X_2 + \dots + X_k = k)$$

$$= \sum_{n=1}^{\infty} P(N = n) P(X_1 + \dots + X_n = k)$$
(*)

Kjer vrstica (\star) velja zaradi neodvisnosti. Zato je:

$$G_{S}(s) = \sum_{k=0}^{\infty} P(S=k)s^{k}$$

$$= \sum_{n=1}^{\infty} P(N=N) \sum_{k=0}^{\infty} P(X_{1} + \dots + X_{n} = k) s^{k}$$

$$= \sum_{n=1}^{\infty} P(N=n) G_{X_{1} + \dots + X_{n}}(s)$$

$$= \sum_{n=1}^{\infty} P(N=n) (G_{X}(s))^{n}$$

$$= G_{N}(G_{X}(s))$$

Posledica 6. Waldova enakost:

$$E(S) = E(N) E(X)$$

Dokaz.

$$E(S) = G'_{S}(1-)$$

$$= G'_{N}(\underbrace{G_{X}(1-)}_{1-}) G'_{X}(1-)$$

$$= E(N) E(X)$$

Zgled (Kokoš, jajca, piščanci). N jajc, $N \sim \text{Poi}(\lambda)$, $\lambda > 0$. K piščancev. Vpeljemo slučajne spremenljivke X_1, X_2, \ldots , kjer $(X_i = 1)$, če se iz i-tega jajca izvali piščanec, sicer pa je $(X_i = 0)$. Potem je:

$$X_i: \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}, \quad K = X_1 + X_2 + \dots + X_N$$

 \Diamond

Ker je $G_N(s) = e^{\lambda(s-1)}$ in $G_X(s) = q + ps$ je:

$$G_K(s) = G_N(G_X(s)) = e^{\lambda(q+ps-1)} = e^{\lambda p(s-1)}$$

od koder sledi
$$K \sim \text{Poi}(\lambda p)$$
.

Poglavje 11

Višji momenti in vrstilne karakteristike

Naj bo $k \in \mathbb{N}$ in $a \in \mathbb{R}$. Moment reda k glede na a je:

$$m_k(a) = E\left((X-a)^k\right)$$

če obstaja.

Za a običajno vzamemo:

1.
$$a = 0$$
: $z_k = m_k(0) = E(X^k)$; začetni moment.

2.
$$a = E(X)$$
: $m_k = m_k(E(X)) = E\left((X - E(X))^k\right)$; centralni moment reda k.

Očitno je $z_1 = E(X)$ in $m_2 = D(X)$.

Trditev 8. Če obstaja $m_n(a)$, potem obstaja tudi $m_k(a)$ za vsak k < n.

Dokaz.

$$E(|X - a|^{k}) = \sum_{i:|x_{i} - a|^{k}} |x_{i} - a|^{k} p_{i}$$

$$= \sum_{i:|x_{i} - a| \le 1} \underbrace{|x_{i} - a|^{k}}_{\le 1} p_{i} + \sum_{i:|x_{i} - a| > 1} |x_{i} - a|^{k} p_{i}$$

$$\leq \sum_{i} p_{i} + \sum_{i} |x_{i} - a|^{n} p_{i}$$

$$= 1 + E(|X_{i} - a|^{n}) < \infty$$

saj $m_n(a)$ obstaja.

Trditev 9. Če obstaja začetni moment z_n , potem obstaja tudi $m_n(a)$ za poljuben $a \in \mathbb{R}$.

Dokaz.

$$E(|X - a|^n) \le E((|X| + |a|)^n)$$

$$= \sum_{n=0}^h \binom{n}{k} |a|^{n-k} E(|X|^k) < \infty$$

po prejšnji trditvi.

Velja:

$$m_n(a) = E((X - a)^n) = \sum_{k=0}^n \binom{n}{k} (-a)^{n-k} \underbrace{E(X^k)}_{x_k}$$

Tako lahko centralne momente izračunamo z začetnimi momenti:

$$m_n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} z_1^{n-k} z_k$$

Asimetrija slučajne spremenljivke X je:

$$A(X) := E\left(X_s^3\right) = E\left(\left(\frac{X - E(X)}{\sigma(X)}\right)^3\right) = \frac{m_3}{m_2^{\frac{3}{2}}}$$

Na primer: $A(N(\mu, \sigma)) = 0$, $A(\lambda X) = A(X)$ za $\lambda > 0$.

Sploščenost (kurtozis) slučajne spremenljivke X je:

$$K(X) := E\left(X_s^4\right) = E\left(\left(\frac{X - E(X)}{\sigma(X)}\right)^4\right) = \frac{m_4}{m_2^2}$$

Na primer: $K(N(\mu, \sigma)) = 3$, $K(\lambda X) = K(X)$ za $\lambda > 0$.

Nekateri definirajo sploščenost kot K(X)-3, torej je v primeru $N(\mu,\sigma)$ enaka 0.

Za razliko od momentov vedno obstajajo vrstilne karakteristike.

Mediana slučajne spremenljivke X je vsaka vrednost $x \in \mathbb{R}$, za katero velja:

$$P(X \le x) \ge \frac{1}{2}$$
 in $P(X \ge x) \ge \frac{1}{2}$

Ker je $P(X \ge x) = 1 - P(X < x) = 1 - F(x-)$, lahko pogoj za mediano zapišemo kot:

$$F(x-) \le \frac{1}{2} \le F(x)$$

Če je X zvezno porazdeljena, je pogoj enak $F(x) = \frac{1}{2}$.

Te vrednosti (lahko jih je več) označimo z $x_{\frac{1}{2}}.$

Zgled.

1.
$$X: \begin{pmatrix} 0 & 1\\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}, x_{\frac{1}{2}} = 1, E(X) = \frac{4}{5}$$
:

1. $X: \begin{pmatrix} 0 & 1\\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}$

3.
$$X \sim N(\mu, \sigma), x_{\frac{1}{2}} = \mu = E(X)$$

4.

 \Diamond

 $\mathit{Kvantil}$ reda pje vsaka vrednost $x_p,$ za katero velja:

$$P(X \le x_p) \ge p$$
 in $P(X \ge x_p) \ge 1 - p$

Oziroma ekvivalentno:

$$F(x_p-) \le p \le F(x_p), \quad 0$$

Če je Xzvezno porazdeljena, je pogoj za kvantil:

$$F(x_p) = p \iff \int_{-\infty}^{x_p} p_X(t) dt = p$$

Kvartil:
$$x_{\frac{1}{4}}, x_{\frac{2}{4}} = x_{\frac{1}{2}}, x_{\frac{3}{4}}$$

(per)centil:
$$x_{\frac{1}{100}}, x_{\frac{2}{100}}, \dots, x_{\frac{99}{100}}$$

 \Diamond

Zgled. Telesna višina odraslih moških:

(Semi)kvartilni razmik je:

$$s = \frac{1}{2} \left(x_{\frac{3}{4}} - x_{\frac{1}{4}} \right)$$

ki je nadomestek za standardno deviacijo.

Zgled.

1. $X \sim N(0, 1)$:

$$s = \frac{1}{2} \left(x_{\frac{3}{4}} - x_{\frac{1}{4}} \right) = x_{\frac{3}{4}} \approx 0.67$$

2. Cauchyjeva porazdelitev, $p(x) = \frac{1}{\pi(1+x^2)}$ nima momentov.

Zaradi simetrije velja $x_{\frac{1}{2}}=0.$

$$\int_0^{x_{\frac{3}{4}}} \frac{1}{\pi (1+x^2)} \, dx = \frac{1}{4}$$

$$\frac{1}{\pi} \operatorname{arctg} x \Big|_{0}^{x_{\frac{3}{4}}} = \frac{1}{4} \implies \operatorname{arctg} x_{\frac{3}{4}} = \frac{\pi}{4}$$

Torej je:

$$x_{\frac{3}{4}} = 1 = s$$
 in $x_{\frac{1}{4}} = -1$

Poglavje 12

Momentno rodovna funkcija

 $Momentno \ rodovna \ funkcija \ slučajne \ spremenljivke \ X$ je:

$$M_X(t) = E\left(e^{tX}\right)$$

za tiste $t\in\mathbb{R}$ za katere obstaja matematično upanje, t.j.: $E\left(e^{tX}\right)<\infty.$ Kadar ima X vrednosti v $\mathbb{N}\cup\{0\}$, je:

$$M_X(t) = E\left(\left(e^t\right)^X\right) = G_X\left(e^t\right)$$

torej, gre za posplošitev rodovne funkcije.

Če je X zvezno porazdeljena z gostoto p(x), je:

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} \, p(x) \, dx$$

kar je *Laplaceova transformacija* funkcije p.

Zgled. $X \sim N(0,1)$:

$$M_X(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-\frac{x^2}{2}} dx$$

$$= e^{\frac{t^2}{2}} \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-t)^2} dx}_{\text{gostota za } N(t,1)}$$

$$= e^{\frac{t^2}{2}}$$

Izrek 5. Naj obstaja $\delta > 0$, da je $M_X(t) < \infty$, za vse $t \in (-\delta, \delta)$. Potem je porazdelitev X natanko določena z M_X , vsi začetni momenti obstajajo:

$$z_k = E\left(X^k\right) = M_X^{(k)}(0)$$
 za vse $k \in \mathbb{N}$
 $M_X(t) = \sum_{k=0}^{\infty} \frac{z_k}{k!} t^k$ za vse $t \in (-\delta, \delta)$

Dokaz. (skica)

$$M_X(t) = E\left(e^{tX}\right)$$

$$= E\left(\sum_{k=0}^{\infty} \frac{X^k}{k!} t^k\right)$$

$$= \sum_{k=0}^{\infty} \frac{E\left(X^k\right)}{k!} t^k$$

$$= \sum_{k=0}^{\infty} \frac{z_k}{k!} t^k$$

Trditev 10.

$$M_{aX+b}(t) = e^{bt} M_X(at)$$
 za $a \neq 0, b \in \mathbb{R}$

Dokaz.

$$M_{aX+b}(t) = E\left(e^{t(aX+b)}\right)$$
$$= E\left(e^{(at)X}e^{bt}\right)$$
$$= e^{bt}M_X(at)$$

Trditev 11. $Za \ X \sim N(\mu, \sigma) \ velja$:

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

Dokaz. Definiramo: $U:=\frac{X-\mu}{\sigma}\sim N(0,1),$ zato $X=\sigma U+\mu$:

$$M_X(t) = M_{\sigma U + \mu}(t)$$

$$= e^{\mu t} M_U(\sigma t)$$

$$= e^{\mu t} e^{\frac{\sigma^2 t^2}{2}}$$

$$= e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

Izrek 6. Če sta X in Y neodvisni slučajni spremenljivki, potem je:

$$M_{X+Y}(t) = M_X(t) M_Y(t)$$

Dokaz.

$$M_{X+Y}(t) = E\left(e^{t(X+Y)}\right)$$

$$= E\left(e^{tX}e^{tY}\right)$$

$$= E\left(e^{tX}\right)E\left(e^{tY}\right)$$

$$= M_X(t) M_Y(t)$$
(*)

Kjer smo v (⋆) vrstici upoštevali neodvisnost.

Trditev 12. Imejmo $X \sim N(\mu_X, \sigma_X)$ in $Y \sim N(\mu_Y, \sigma_Y)$ neodvisni slučajne spremenljivki. Potem je:

$$X + Y \sim N\left(\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2}\right)$$

Opomba.

$$E(X + Y) = E(X) + E(Y) = \mu_X + \mu_Y$$

 $D(X + Y) = D(X) + D(Y) = \sigma_X^2 + \sigma_Y^2$

Dokaz.

$$M_{X+Y}(t) = M_X(t) M_Y(t)$$

$$= e^{\mu_X t + \frac{\sigma_X^2 t^2}{2}} e^{\mu_Y t + \frac{\sigma_Y^2 t^2}{2}}$$

$$= e^{(\mu_X + \mu_Y)t + \frac{\sigma_X^2 + \sigma_Y^2}{2}t^2}$$

od koder zaradi enoličnosti sledi:

$$X + Y \sim N\left(\mu_X \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2}\right)$$

Zgled. Za N(0,1) izračunajmo vse momente:

$$M_X(t) = e^{\frac{t^2}{2}}$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{t^2}{2}\right)^k$$

$$= \sum_{k=0}^{\infty} \frac{t^{2k}}{2^k k!}$$

$$\implies z_{2k+1} = 0 \quad \forall k$$

Po drugi strani pa je:

$$M_X(t) = \sum_{k=0}^{\infty} \frac{z_k}{k!} t^k$$

Po primerjavi koeficientov dobimo:

$$\frac{z_{2k}}{(2k)!} = \frac{1}{2^k \, k!}$$

Od tod sledi:

$$z_{2k} = \frac{(2k)!}{2^k k!} = \frac{1 \cdot 2 \cdot 3 \cdots 2k}{2 \cdot 4 \cdot 6 \cdots 2k} = 1 \cdot 3 \cdot 5 \cdot 7 \cdots (2k-1) = (2k-1)!!$$

