BiLSTM (双向长短时记忆网络)

RNN

普通的神经网络不容易处理训练样本输入为连续序列的情况,比如一段语音、一段文字,于是 RNN 就诞生了。RNN 的运行机制如下图:

从图中看出,与普通神经网络不同的一点在于,神经元接受两个值:一个是当前时刻的输入 x_t ,一个是上一个神经元的输出 a_{t-1} ,通过将前一时刻的运算结果添加到当前的运算中,从而实现"考虑上文信息"的功能。

如果不仅要考虑上文的信息,还要考虑下文的信息,可以使用 BiRNN,BiRNN 正反向分别计算,然后将正反向结果堆叠,生成最终的结果:

RNN 存在的问题

对某些简单的问题,可能只需要最后输入的少量时序信息即可解决。但对于某些复杂问题,可能需要更早的一些信息,而 RNN 难以记忆间隔太久的输入信息(梯度消失),这时候就需要用到 LSTM 了。

LSTM

LSTM 最核心的是引入了"门"的概念,门实际上是一种全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设 W 是门的权重向量,b 是偏置项,那么门可以表示为:

$$g(x) = \sigma(Wx + b)$$

结果表示有多少信息量可以通过这个结构。在 LSTM 中,一共有3种门结构,分别是遗忘门、输入门和输出门,如图所示:

可以看出,LSTM 每个神经元都有三个输入, X_t 是该时刻新加入的信息, h_{t-1} 和 C_{t-1} 是上文信息的表示,输出 C_t 和 h_t 。

1. 遗忘门

遗忘门在 LSTM 中以一定概率控制是否遗忘上一层的隐藏细胞状态,遗忘门子结构如下图所示:

例如,我们需要使用这个模型尝试根据之前的单词学习预测下个单词。在这个问题中,单元状态包括了当前 主语的性别,应该能够正确使用。但我们见到一个新主语时,希望让它能够忘记之前主语的性别。

2. 输入门和状态门

两个输入合并的向量分别进行了 σ 变换和 tanh 变换,成为 i_t 和 C_t 进入输入门。其中 i_t 的值用于决定是否要接受输入信息(即 C_t)。

之后,根据 f_t 的值决定是否保留上一时刻隐藏层的输出(C_{t-1}),再将经过 i_t 缩放之后的输入 $\overset{\circ}{C_t}$ 累加到 C_{t-1} 中,成为 C_t 。

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

3. 输出门

在输出门中, o_t 决定是否将经过 tanh 变换的 C_t 输出,作为下一时刻输入的一部分。

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$