Physics 3

March 3, 2022

Contents

1	Introduzione	1
2	Corpuscolarità della materia	1
	2.1 Distribuzione	4

Lecture 1

mar 01 mar 2022 15:30

1 Introduzione

Si trattano i costituenti della materia.

- Corpuscolarità della materia. Si osserva la teoria cinetica dei gas, la cui trattazione è
 statistica. Si accenna alla meccanica statistica. Si individuano alcuni problemi della
 trattazione classica.
- Corpuscolarità della carica. Si osservano gli esperimenti della scoperta dell'elettrone e della misura della sua carica.
- Si affronta l'argomento del corpo nero con cui si introducono i primi concetti di fisica quantistica.
- Calore specifico. Si risolve, con un nuovo modello che si basa sulla fisica quantistica il problema del calore specifico.
- Effetto fotoelettrico. Si partono dalle evidenze sperimentali che non si riescono a spiegare con le nozioni classiche, così bisogna introdurre il fotone con cui si riesce a spiegare la fenomenologia.
- Modelli atomici. Si vede in dettaglio il modello di Rutherford, ed il modello di Bohr che prende spunto dal corpo nero e dall'effetto fotoelettrico. Si spiegano le evidenze sperimentali degli spettri atomici.
- Raggi X.
- Onde materiali, dualismo onda-particella, principio di indeterminazione di Heisenberg.

Il filo conduttore sono i dati sperimentali in coppia con il modello che spiega tali dati.

2 Corpuscolarità della materia

Tutta la fisica in questo corso copre circa 70 anni fino al 1850 al 1925. Questo è l'anno della pubblicazione dell'equazione d'onda di Schrödinger e inizia l'utilizzo della meccanica quantistica. Ai primi del 1800, i chimici avevano capito che la materia è costituita da componenti uguali ed

fondamentali. Si formula la teoria cinetica dei gas in cui lo scopo è quello di legare delle proprietà cinematiche di meccanica alla temperatura. Si ricorda la legge dei gas perfetti

$$PV = n_{\text{moli}}RT$$

con $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$.

Le ipotesi della teoria cinetica sono

- ullet volume V fissato
- equilibrio termico
- \bullet N elementi interagiscono in modo elastico
- si trascurano le forze inter-molecolari
- non sono presenti forze esterne (il sistema è isolato)

Considerato un sottoinsieme N_i delle particelle con velocità v_i si considerano gli urti elastici con le pareti. [immagine]

Si calcola la variazione di momento lineare come

$$\Delta p_{x_i} = 2mv_{x_i}$$

e quindi la pressione

$$\frac{F}{A} = \frac{\frac{\Delta p}{\Delta t}}{A} = \frac{2mv_{x_i}}{A\Delta t}$$

dove la forza si calcola tramite il teorema dell'impulso. Questo vale per una particella, tuttavia, non tutte le particelle urtano la parete nell'intervallo Δt , ma solamente una frazione. Solamente le particelle nel volume dato da $Av_{x_i}\Delta t$ sono quelle che urteranno la parete. Pertanto, tale frazione è

$$\rho = \frac{v_{x_i} \Delta t A}{2V}$$

bisogna porre un fattore di $\frac{1}{2}$ perché una metà (in media) delle particelle si allontana dalla parete sempre con velocità v_{x_i} . Si calcola la pressione come

$$P_i = \frac{2mv_{x_i}}{A\Delta t} \frac{v_{x_i} \Delta t A}{2V} = \frac{mv_{x_i}^2}{V}$$

Ora bisogna sommare su tutte le possibili velocità. Dunque la pressione totale è

$$P_T = \sum_{i} P_i N_i = \frac{m}{V} \sum_{i} N_i v_{x_i}^2 = \frac{Nm}{V} \langle v_x^2 \rangle$$

si ricorda che

$$\left\langle v_x^2 \right\rangle = \frac{1}{N} \sum_i N_i v_{x_i}^2$$

Per isotropia dello spazio si ha

$$\left\langle v^{2}\right\rangle =\left\langle v_{x}^{2}\right\rangle +\left\langle v_{y}^{2}\right\rangle +\left\langle v_{z}^{2}\right\rangle =3\left\langle v_{x}^{2}\right\rangle$$

Pertanto, l'espressione della pressione totale risulta essere

$$P_T = \frac{1}{3} \frac{N}{V} m \langle v^2 \rangle = \frac{2}{3} n \langle K \rangle$$

si dice $\frac{N}{V}\equiv n$ densità di particelle. Inoltre, K è l'energia cinetica. Si lega la velocità alla temperatura tramite la legge dei gas perfetti

$$P_T V = \frac{1}{3} N m \langle v^2 \rangle = \frac{2}{3} N \langle K \rangle \equiv n_{\text{moli}} R T$$

pertanto

$$\langle K \rangle = \frac{3}{2} \frac{n_{\text{moli}}}{N} RT = \frac{3}{2} k_B T$$

ricordando che $n_{\text{moli}} = \frac{N}{N_A}$ e $k_B = \frac{R}{N_A}$ costante di Boltzmann (essa è una R specifica, che viene riscalata per un costituente di una mole) e vale $k_B = 1.38 \times 10^{-23} \, \text{J K}^{-1}$.

Si nota che k_BT ha le dimensioni di una energia. Per la temperatura ambiente di $T=300\,\mathrm{K},$ si ha

$$k_B T = 4.14 \times 10^{-21} \,\mathrm{J} = 25 \,\mathrm{meV}$$

Considerazioni. Su questo si fanno alcune considerazioni.

• Si è legata l'energia cinetica alla temperatura per un gas monoatomico: $\langle K \rangle = \frac{3}{2}k_BT$. Da cui la velocità a partire dalla temperatura risulta

$$\sqrt{\langle v^2 \rangle} = \sqrt{\frac{3k_BT}{m}}$$

• Moltiplicando l'energia cinetica media si ottiene l'energia cinetica totale da cui si può ricavare il calore specifico. Rircordando

$$c_V = \frac{1}{n_{\rm m}} \left(\frac{\partial U}{\partial T} \right)_V$$

Si ha un'energia totale di una mole

$$U = N_A \langle K \rangle = N_A \frac{3}{2} k_B T = \frac{3}{2} RT$$

pertanto il calore specifico risulta essere

$$c_V = \frac{3}{2}R$$

questa espressione funziona per alte temperature.

• Si deriva il teorema di equipartizione. Considerato

$$\frac{1}{2}m\langle v^2\rangle = \frac{3}{2}k_BT$$

l'energia cinetica ha un contributo per ogni asse a cui si associa

$$\frac{1}{2}m\langle v_x^2\rangle = \frac{1}{2}k_BT$$

e ciò si finalizza nel teorema di equipartizione.

Esempio. Si consideri l'elio ha 20 °C. Dunque la velocità (root mean square)

$$v_{\rm RMS} = \sqrt{\frac{3 \cdot (1.38 \times 10^{-23} \, {\rm J \, K^{-1}})(293 \, {\rm K})}{4 \cdot (1.66 \times 10^{-27} \, {\rm kg}})} = 1350 \, {\rm m \, s^{-1}}$$

Teorema. Considerato un sistema in equilibrio termico, il calore si ripartisce equamente tra i contributi quadratici indipendenti dell'energia con un fattore pari a $\frac{1}{2}k_BT$.

Esempio. Si vede l'oscillatore armonico in una dimensione. L'energia totale

$$E_T = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

dunque l'energia media alla temperatura T è

$$\langle E_T \rangle = 2 \cdot \frac{1}{2} k_B T = k_B T$$

Esempio. Si considera un gas costituito da molecole biatomiche. [immagine] Si vedono alcune ipotesi di base che poi si analizzano e rimuovono.

- La distanza tra i due atomi è fissa.
- Tre gradi di libertà traslazionali.
- Due gradi di libertà rotazionali (due perché essi sono rotazioni rispetto gli assi che non sono di simmetria).

Pertanto, l'energia totale ha cinque contributi:

$$E_T = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2 + \frac{1}{2}I_{x'}\omega_{x'}^2 + \frac{1}{2}I_{y'}\omega_{y'}^2$$

Dunque l'energia totale per una mole risulta essere

$$U = 5N_A \frac{1}{2} k_B T = \frac{5}{2} RT \implies c_V = \frac{5}{2} R$$

rimuovendo l'ipotesi di distanza fissa, bisogna considerare una forza di attrazione tra le due masse di tipo elastico, dunque si aggiungono due termini (perché si ottiene un oscillatore armonico). Quindi

$$c_V = \frac{7}{2}R$$

Se, invece, la molecola può anche ruotare attorno a z' allora si ha un altro contributo rotazione per cui

$$c_V = \frac{6}{2}R = 3R$$

I ragionamenti fatti non sono sempre veri. Da misure sperimentali, il calore specifico varia con la temperatura.

Osservazione. Quarta considerazione. Si può applicare il teorema di equipartizione anche ai solidi. Dalla legge di Dulong-Petit si trova che il calore specifico è $c_V=3R$. Per tanti elementi, tale valore rimane costante per certi intervalli estesi di temperatura.

.[immagine] Si ricava la legge di Dulong-Petit dal teorema di equipartizione. In prima approssimazione, gli atomi del solido sono legati da potenziali armonici. Quindi, per quanto visto, si hanno tre contributi armonici (uno per ogni asse) per cui

$$U = 6N_A \frac{1}{2} k_B T = 3RT \implies c_V = 3R$$

Questo vale ad alte temperature. A basse temperature il calore specifico tende a zero. [immagine] La teoria cinetica funziona, ma non sempre. Nella fisica nota fin'ora non si è in grado di spiegare l'abbassamento del calore specifico: questo richiede i primi concetti di fisica quantistica.

2.1 Distribuzione

Si vede la distribuzione di probabilità delle velocità delle particelle di un gas. Le ipotesi sono

- Lungo le tre coordinate sia ha la stessa distribuzione.
- Tali tre distribuzioni sono indipendenti.
- Vale

$$\frac{1}{2}m\langle v^2\rangle = \frac{3}{2}k_BT$$

così si estende quanto visto fin'ora.

Si cerca una distribuzione $F(v_x^2,v_y^2,v_z^2)$ di probabilità delle velocità. Il numero di particelle con velocità v_i compresa tra v_i e $v_i + dv_i$ (con i=x,y,z) risulta

$$NF(v_x^2, v_y^2, v_z^2) dv_x dv_y dv_z$$

con N numero totale di particelle.

Si applicano le prime due ipotesi. Per la seconda ipotesi, la distribuzione F si può fattorizzare e, insieme alla prima, si ha

 $F(v_x^2, v_y^2, v_z^2) = f(v_x^2) f(v_y^2) f(v_z^2)$

si impone come vincolo che $v^2 = v_x^2 + v_y^2 + v_z^2$. Risulta essere un problema di massimizzazione, bisogna trovare f tale da massimare la probabilità F sotto il vincolo precedente. Si utilizzano i moltiplicatori di Lagrange. Si considera il logaritmo:

$$\mathcal{L} = \ln F + \lambda (v_x^2 + v_y^2 + v_z^2)$$

quindi

$$\partial_{v_x^2} \mathcal{L} = \frac{1}{f(v_x^2)} \, \mathrm{d}_{v_x^2} f + \lambda = 0 \iff \mathrm{d}_{v_x^2} f = -\lambda f(v_x^2)$$

la cui soluzione risulta essere

$$f(v_x^2) = f_0 e^{-\lambda v_x^2}$$

per determinare i due parametri basta imporre la normalizzazione e la terza ipotesi (cioè il teorema di equipartizione): si calcola la velocità quadratica media e si utilizza la relazione dell'ipotesi. Si impone la normalizzazione

$$\int_{-\infty}^{+\infty} f_0 e^{-\lambda v_x^2} \, \mathrm{d}v_x \equiv 1$$

posto $\lambda=A^2$, tale integrale fa parte della famiglia degli integrali di Gauss. Si definisce l'integrale di Gauss di ordine zero:

$$I_0 = \int_{\mathbb{D}} e^{-A^2 x^2} \, \mathrm{d}x$$

Considerato

$$I = \int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}x = \int_{\mathbb{R}} e^{-y^2} \, \mathrm{d}y$$

segue

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-x^{2} - y^{2}} dx dy = \int_{0}^{+\infty} \int_{0}^{2\pi} r e^{-r^{2}} d\theta dr = \pi \implies I = \sqrt{\pi}$$

Pertanto

$$I_0 = \int_{\mathbb{R}} e^{-A^2 x^2} dx = \frac{1}{A} \int_{\mathbb{R}} e^{-A^2 x^2} d(Ax) = \frac{1}{A} \sqrt{\pi}$$

A questo punto si ottiene

$$\int_{\mathbb{R}} f_0 e^{-A^2 v_x^2} \, \mathrm{d}v_x = f_0 \frac{\sqrt{\pi}}{A} \equiv 1 \implies f_0 = \frac{A}{\sqrt{\pi}} = \sqrt{\frac{\lambda}{\pi}}$$