1 Coding (Jump up and down and move it all around).

How long does it take for a fractional Brownian motion $(W_t)_{t\geq 0}$ to hit the level $W_t = 1$? Make a histogram of first passage times for H = 1/4, H = 1/2, and H = 3/4 and compare.

2 Choose-your-own-adventure (Lemmings problem).

Let's use a CTMC to model lemmings (characters from a 1990s video game) climbing up and falling down a ladder. The system has states $\{0,1,2,\ldots,10\}$, which correspond to the ground level and the ten rungs of the ladder. A lemming at level i climbs up the ladder with a rate 1 for $i=0,1,\ldots,9$. A lemming at level i falls to the ground with a rate 1 for $i=1,2,\ldots,9$. What is the expected time to reach the top starting from the ground? Run a simulation or solve analytically.

Partial solution. Set N=10 and $h(i)=\mathbb{E}[\tau_N|X_0=i]$, where $\tau_N=\min\{t\geq 0: X_t=N\}$ is the first time to hit $X_t=N$. Then, introduce the rate matrix \mathbb{Q} and use the definition of a CTMC to argue for $1\leq i\leq N-1$

$$h(i) = \mathbb{E}[\tau_N | X_0 = i]$$

$$= \sum_{j=0}^N \mathbb{E}[\tau_N | X_\Delta = j, X_0 = i] \mathbb{P}\{X_\Delta = j | X_0 = j\}$$

$$= \sum_{j=0}^N \mathbb{E}[\tau_N | X_\Delta = j, X_0 = i] (\delta_{ij} + \Delta \mathbb{Q}_{ij} + \mathcal{O}(\Delta^2))$$

We also calculate

$$\begin{cases} \mathbb{E}[\tau_N|X_{\Delta}=j,X_0=i] = \Delta + h(j), & 1 \leq j \leq N-1, \\ \mathbb{E}[\tau_N|X_{\Delta}=N,X_0=i] \leq \Delta, \end{cases}$$

whence

$$h(i) = h(i) + \Delta + \Delta \sum_{j=0}^{N} \mathbb{Q}_{ij} h(j) + \mathcal{O}(\Delta^{2}).$$

Dividing by Δ and taking $\Delta \to 0$, we arrive at

$$0 = 1 + \sum_{i=0}^{N} \mathbb{Q}_{ij} h(j) = 1 + h(0) - 2h(i) + h(i+1)$$

and by rearrangement

$$h(i+1) = 2h(i) - h(0) - 1$$

$$= 4h(i-1) - (2+1)(h(0)+1)$$

$$= \cdots$$

$$= 2^{i+1}h(0) - (2^i + \cdots + 2+1)(h(0)+1) = h(0) - (2^{i+1}-1).$$

Observing h(N) = 0, we obtain the solution $h(i) = 2^N - 2^i$ and the expected hitting time is $h(0) = 2^{10} - 1 = 1023$.

3 Choose-your-own-adventure (Brownian motion).

What is the probability that a Brownian motion $(W_t)_{t\geq 0}$ hits $W_t = +10$ before $W_t = -1$? What is the expected time for W_t to hit one of the two boundaries? Run a simulation or solve analytically.

4 Coding (Michaelis-Menten model).

Let's simulate a CTMC representing four types of molecules in a solvent. We start with $x_1 = 300$ substrate molecules and $x_2 = 100$ enzyme molecules, and we represent the system as a vector $\mathbf{X} = (300, 100, 0, 0)^T$. With rate $k_1 = 2 \times 10^{-4} X_1 X_2$, an enzyme binds with a substrate to form an enzyme-substrate complex; $\mathbf{X} \leftarrow \mathbf{X} + (-1, -1, 1, 0)^T$. With rate $k_2 = 10^{-4} X_2$, an enzyme-substrate complex dissociates back into an enzyme and a substrate; $\mathbf{X} \leftarrow \mathbf{X} + (1, 1, -1, 0)^T$. With rate $k_3 = 10^{-3} X_3$, an enzyme-substrate complex forms a product (an altered enzyme) and a substrate; $\mathbf{X} \leftarrow \mathbf{X} + (0, 1, -1, 1)^T$. Plot the number of substrate and product molecules over time.

5 Choose-your-own-adventure (Karhunen-Loéve)

- (a) One way to approximate a Brownian motion $(W_t)_{0 \le t \le 1}$ is to linearly interpolate between the time points $t = 0, 1/N, 2/N, \ldots, 1 1/N, 1$. What is the mean square error in this approximation? Calculate the error on a computer or analytically.
- (b) Another way approximate a Brownian motion is to evaluate the coefficients

$$\langle e_i, W \rangle = \int_0^1 e_i(t) W_t dt, \qquad e_i(t) = \sqrt{2} \sin((i-1/2)\pi t),$$

and approximate $\hat{W} = \sum_{i=1}^{N} \langle e_i, W \rangle e_i$. What is the mean square error in this approximation?

6 Math (Divergence of Euler scheme).

Consider the Euler scheme for solving the SDE dX = X dW with initial condition $X_0 = 1$, where $(W_t)_{t>0}$ is a fractional Brownian motion.

(a) Show that the approximation from Euler's scheme

$$\hat{X}_{i\Delta} = \hat{X}_{(i-1)\Delta} + \hat{X}_{(i-1)\Delta}(W_{i\Delta} - W_{(i-1)\Delta}).$$

can be written

$$\hat{X}_T = \exp\left(\sum_{i=1}^{T/\Delta} \log(1 + W_{i\Delta} - W_{(i-1)\Delta})\right).$$

(b) Applying a Taylor series expansion to part (a), argue that

$$\hat{X}_T = \exp\left(\sum_{i=1}^{T/\Delta} \left[W_{i\Delta} - W_{(i-1)\Delta} - \frac{1}{2} \left(W_{i\Delta} - W_{(i-1)\Delta} \right)^2 + \cdots \right] \right).$$

Identify the limit as $\Delta \to 0$ and the rate of convergence for different values of $H \in (0,1)$ (hint: use the law of large numbers and the central limit theorem). Note there are other non-Euler schemes that converge faster (Hu, Liu, & Nualart, 2016).

Partial solution. We observe that

$$\frac{1}{T/\Delta} \sum_{i=1}^{T/\Delta} \left(\frac{W_{i\Delta} - W_{(i-1)\Delta}}{\Delta^H} \right)^2$$

is a sample average of stationary, decorrelating mean-one random variables, and the weak law of large numbers (e.g., Shao, 1995) guarantees

$$\frac{1}{T/\Delta} \sum_{i=1}^{T/\Delta} \left(\frac{W_{i\Delta} - W_{(i-1)\Delta}}{\Delta^H} \right)^2 = 1 + o_p(1) \tag{1}$$

and consequently

$$\sum_{i=1}^{T/\Delta} (W_{i\Delta} - W_{(i-1)\Delta})^2 = T\Delta^{2H-1} (1 + o_p(1))$$

as $\Delta \to 0$. By examining this expression, we can immediately guarante

$$\begin{cases} \hat{X} \rightarrow e^W & \text{at a rate } \Delta^{2H-1} \text{ if } H > 1/2, \\ \hat{X} \rightarrow 0 & \text{if } H < 1/2. \end{cases}$$

The remaining H=1/2 case is the subtlest. In this case, we observe the increments $W_{i\Delta}-W_{(i-1)\Delta}$ are independent, and they have second moment Δ and fourth moment $3\Delta^2$, which implies a central limit theorem

$$\frac{1}{\sqrt{T/\Delta}} \sum_{i=1}^{T/\Delta} \left[\left(\frac{W_{i\Delta} - W_{(i-1)\Delta}}{\Delta^{1/2}} \right)^2 - 1 \right] \stackrel{\mathcal{D}}{\to} \mathcal{N}(0,2).$$

Consequently, we can sharpen (1) to yield

$$\frac{1}{T/\Delta} \sum_{i=1}^{T/\Delta} \left(\frac{W_{i\Delta} - W_{(i-1)\Delta}}{\Delta^{1/2}} \right)^2 = 1 + O_p(\Delta^{1/2})$$

and consequently

$$\sum_{i=1}^{T/\Delta} (W_{i\Delta} - W_{(i-1)\Delta})^2 = T + O_p(\Delta^{1/2})$$

as $\Delta \to 0$. We conclude

$$\begin{cases} \hat{X} \rightarrow e^W & \text{at a rate } \Delta^{2H-1} \text{ if } H > 1/2, \\ \hat{X} \rightarrow e^{W-t/2} & \text{at a rate } \Delta^{1/2} \text{ if } H = 1/2, \\ \hat{X} \rightarrow 0 & \text{if } H < 1/2. \end{cases}$$

To make this Taylor series expansion rigorous, make sure to treat the second order term as the remainder term for $H \neq 1/2$ and treat the fourth order term as the remainder term for H = 1/2. We can talk about how to do this during office hours but warning: it's technical stuff.

7 Math (Convergence of Euler scheme).

Consider the Euler scheme for solving the SDE dX = -X dt + dW with initial condition $X_0 = 0$, where $(W_t)_{t>0}$ is a fractional Brownian motion.

(a) Show that the approximation from Euler's scheme

$$\hat{X}_{i\Delta} = \hat{X}_{(i-1)\Delta} - \Delta \hat{X}_{(i-1)\Delta} + W_{i\Delta} - W_{(i-1)\Delta}.$$

can be written

$$\hat{X}_T = \sum_{i=1}^{T/\Delta} (1 - \Delta)^{T/\Delta - i} (W_{i\Delta} - W_{(i-1)\Delta}).$$

Turning sums into integrals, write down the limit as $\Delta \to 0$.

(b) Compare the Euler's scheme solution with mesh size Δ and mesh size $\Delta/2$. Show the difference is a mean-zero Gaussian random variable and bound the variance in terms of Δ and H (hint: covariances among fractional Gaussian noise increments are negative for H < 1/2, positive for H > 1/2). What is the convergence rate of Euler's scheme? For more insights, see Butkovsky, Dareiotis, & Gerencsér (2021) and Huang & Wang (2023).

8 Math (Making sense of SDEs).

Consider the SDE $dX = b(X) dt + \sigma(X) dW$, with initial condition $X_0 = x_0$, where $(W_t)_{t\geq 0}$ is a fractional Brownian motion. For appropriate drift functions b, diffusion functions σ , and Hurst parameters $H \in (0,1)$, we can sometimes establish existence and uniqueness using Picard iteration:

$$\hat{X}^{(i)}(t) = x_0 + \int_0^t b(\hat{X}_s^{(i-1)}) \, ds + \int_0^t \sigma(\hat{X}_s^{(i-1)}) \, dW_s, \qquad \hat{X}^{(0)}(t) = x_0.$$

When does this work? When does this fail? Hint: start with the case of constant σ and use Gronwall's inequality.