Project- Ad Click Prediction

Group Members:

Edulakanti Richa Reddy Srikanth Reddy Baikadi Bojja Pranitha

Goal of the Project:

Goal of the project is to predict if a particular user is likely to click on particular ad or not based on his feature.

Problem statement:

Publicizing is a multi-billion-dollar industry that goes about as a scaffold among organizations and their clients. While the vast majority are aware of the promotions around them, they represent the intensity of those advertisements and the impact of publicizing all in all. Research proposes that basically making somebody mindful of items, occasions, and brands expands the chances of that individual really purchasing those items, going to those occasions, or supporting those brands. Further, if an advertisement catches a man's thoughtfulness regarding the degree that he or she has a prompt, positive response to it, those chances of direct item commitment spikes significantly.

In this project, we are going to work on an advertising dataset, indicating whether or not a particular internet user has clicked on an Advertisement.

The goal is to predict if a user would click on an advertisement based on the features of the user. Few assumptions made as a part of this project is:

- 1. User taken into consideration are between the age group of 19 to 61.
- 2. There is almost equal ratio of male and female internet users.
- 3. The ad topic is limited to what is given in the dataset.

Challenges Faced:

We are highly motivated to work on Ad click prediction dataset, few challenges in this area of study is:

- 1. There is very less publicly available data set for ad click.
- 2. New online ads that are coming up is not targeted to a particular set of users, using our prediction algorithm study companies will be able to target it to particular set of users.

Data Set:

The dataset consists of below features:

Daily Time Spent on Site: consumer time on site in minutes

Age: Customer age in years

Area Income: Avg. Income of geographical area of consumer

Daily Internet Usage: Avg. minutes a day consumer is on the internet

Ad Topic Line: Headline of the advertisement

City: City of consumer

Male: Whether or not consumer was male

Country: Country of consumer

We have done preliminary EDA(mention below) and we are planning to do more insight as we progress.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

dataframe = pd.read_csv("C:/Users/richa/Desktop/Ad-Click-Prediction-master/ad
vertising.csv")

dataframe

	Daily Time	Spent on Site	Age	Area Income	Daily Internet Usage \
0		68.95	35	61833.90	256.09
1		80.23	31	68441.85	193.77
2		69.47	26	59785.94	236.50
3		74.15	29	54806.18	245.89
4		68.37	35	73889.99	225.58
5		59.99	23	59761.56	226.74
6		88.91	33	53852.85	208.36
7		66.00	48	24593.33	131.76
8		74.53	30	68862.00	221.51
9		69.88	20	55642.32	183.82
10		47.64	49	45632.51	122.02
11		83.07	37	62491.01	230.87
12		69.57	48	51636.92	113.12
13		79.52	24	51739.63	214.23
14		42.95	33	30976.00	143.56
15		63.45	23	52182.23	140.64
16		55.39	37	23936.86	129.41
17		82.03	41	71511.08	187.53
18		54.70	36	31087.54	118.39
19		74.58	40	23821.72	135.51
20		77.22	30	64802.33	224.44
21		84.59	35	60015.57	226.54
22		41.49	52	32635.70	164.83
23		87.29	36	61628.72	209.93
24		41.39	41	68962.32	167.22

25	78.74	28	64828.00	204.79	
26	48.53	28	38067.08	134.14	
27	51.95	52	58295.82	129.23	
28	70.20	34	32708.94	119.20	
29	76.02	22	46179.97	209.82	
	• • •		• • •	• • •	
970	40.18	29	50760.23	151.96	
971	45.17	48	34418.09	132.07	
972	50.48	50	20592.99	162.43	
973	80.87	28	63528.80	203.30	
974	41.88	40	44217.68	126.11	
975	39.87	48	47929.83	139.34	
976	61.84	45	46024.29	105.63	
977	54.97	31	51900.03	116.38	
978	71.40	30	72188.90	166.31	
979	70.29	31	56974.51	254.65	
980	67.26	57	25682.65	168.41	
981	76.58	46	41884.64	258.26	
982	54.37	38	72196.29	140.77	
983	82.79	32	54429.17	234.81	
984	66.47	31	58037.66	256.39	
985	72.88	44	64011.26	125.12	
986	76.44	28	59967.19	232.68	
987	63.37	43	43155.19	105.04	
988	89.71	48	51501.38	204.40	
989	70.96	31	55187.85	256.40	
990	35.79	44	33813.08	165.62	
991	38.96	38	36497.22	140.67	
992	69.17	40	66193.81	123.62	
993	64.20	27	66200.96	227.63	
994	43.70	28	63126.96	173.01	
995	72.97	30	71384.57	208.58	
996	51.30	45	67782.17	134.42	
997	51.63	51	42415.72	120.37	
998	55.55	19	41920.79	187.95	
999	45.01	26	29875.80	178.35	
			Ad Topic Line	City	Male
\					
0	Cloned 5thgener	ration	orchestration	Wrightburgh	0
1	Monitored national standardization			West Jodi	1
2	Organic bottom-line service-desk			Davidton	0
3	Triple-buffered reciprocal time-frame			West Terrifurt	1
4	Robust logistical utilization			South Manuel	0
5	Sharable client-driven software			Jamieberg	1
6	Enhanced dedicated support			Brandonstad	0
7			ocal challenge	Port Jefferybury	1
8			erent function	West Colin	1
9	Mandatory homog			Ramirezton	1
10	Centralized	d neut	ral neural-net	West Brandonton	0

11	Team-oriented grid-enabled Local Area Network	East Theresashire	1
12	Centralized content-based focus group	West Katiefurt	1
13	Synergistic fresh-thinking array	North Tara	0
14	Grass-roots coherent extranet	West William	0
15	Persistent demand-driven interface	New Travistown	1
16	Customizable multi-tasking website	West Dylanberg	0
17	Intuitive dynamic attitude	Pruittmouth	0
18	Grass-roots solution-oriented conglomeration	Jessicastad	1
19	Advanced 24/7 productivity	Millertown	1
20	Object-based reciprocal knowledgebase	Port Jacqueline	1
21	Streamlined non-volatile analyzer	Lake Nicole	1
22	Mandatory disintermediate utilization	South John	0
23	Future-proofed methodical protocol	Pamelamouth	1
24	Exclusive neutral parallelism	Harperborough	0
25	Public-key foreground groupware	Port Danielleberg	1
26	Ameliorated client-driven forecast	West Jeremyside	1
27	Monitored systematic hierarchy	South Cathyfurt	0
28	Open-architected impactful productivity	Palmerside	0
29	Business-focused value-added definition	West Guybury	0
 970	Enhanced intangible portal	 Lake Tracy	
971	Down-sized background groupware	Taylormouth	1
972	Switchable real-time product	Dianaville	0
973	Ameliorated local workforce	Collinsburgh	0
974	Streamlined exuding adapter	Port Rachel	1
975	Business-focused user-facing benchmark	South Rebecca	1
976	Reactive bi-directional standardization	Port Joshuafort	1
977	Virtual bifurcated portal	Robinsontown	1
978		Beckton	0
978 979	Integrated 3rdgeneration monitoring	New Frankshire	1
980	Balanced responsive open system Focused incremental Graphic Interface	North Derekville	1
981	Secured 24hour policy	West Sydney	0
982	·	Lake Matthew	0
983	Up-sized asymmetric firmware Distributed fault-tolerant service-desk		1
983 984		Lake Zacharyfurt	1
_	Vision-oriented human-resource synergy	Lindsaymouth	_
985	Customer-focused explicit challenge	Sarahland Port Julie	0
986 987	Synchronized human-resource moderator Open-architected full-range projection	Michaelshire	1
988	Versatile local forecast	Sarafurt	1
	Ameliorated user-facing help-desk	South Denise	1
989	•	North Katie	0
990 991	Enterprise-wide tangible model	Mauricefurt	1
	Versatile mission-critical application		1
992	Extended leadingedge solution	New Patrick	0
993	Phased zero tolerance extranet	Edwardsmouth	1
994	Front-line bifurcated ability	Nicholasland	0
995	Fundamental modular algorithm	Duffystad	1
996	Grass-roots cohesive monitoring	New Darlene	1
997	Expanded intangible solution	South Jessica	1
998	Proactive bandwidth-monitored policy	West Steven	0
999	Virtual 5thgeneration emulation	Ronniemouth	0

\	Country	Timestamp
\ 0	Tunisia	2016-03-27 00:53:11
1	Nauru	2016-04-04 01:39:02
2	San Marino	2016-03-13 20:35:42
3	Italy	2016-01-10 02:31:19
4	Iceland	2016-06-03 03:36:18
5	Norway	2016-05-19 14:30:17
6	Myanmar	2016-01-28 20:59:32
7	Australia	2016-03-07 01:40:15
8	Grenada	2016-04-18 09:33:42
9	Ghana	2016-07-11 01:42:51
10	Qatar	2016-03-16 20:19:01
11	Burundi	2016-05-08 08:10:10
12	Egypt	2016-06-03 01:14:41
13	Bosnia and Herzegovina	2016-04-20 21:49:22
14	Barbados	2016-03-24 09:31:49
15	Spain	2016-03-09 03:41:30
16	Palestinian Territory	2016-01-30 19:20:41
17	Afghanistan	2016-05-02 07:00:58
18	British Indian Ocean Territory (Chagos Archipe	2016-02-13 07:53:55
19	Russian Federation	2016-02-27 04:43:07
20	Cameroon	2016-01-05 07:52:48
21	Cameroon	2016-03-18 13:22:35
22	Burundi	2016-05-20 08:49:33
23	Korea	2016-03-23 09:43:43
24	Tokelau	2016-06-13 17:27:09
25	Monaco	2016-05-27 15:25:52
26	Tuvalu	2016-02-08 10:46:14
27	Greece	2016-07-19 08:32:10
28	British Virgin Islands	2016-04-14 05:08:35
29	Bouvet Island (Bouvetoya)	2016-01-27 12:38:16
	•••	• • •
970	Hong Kong	2016-06-25 04:21:33
971	Palau	2016-01-27 14:41:10
972	Malawi	2016-05-16 18:51:59
973	Uruguay	2016-02-27 20:20:25
974	Cyprus	2016-02-28 23:54:44
975	Mexico	2016-06-13 06:11:33
976	Niger	2016-05-05 11:07:13
977	France	2016-07-07 12:17:33
978	Japan	2016-05-24 17:07:08
979	Norfolk Island	2016-03-30 14:36:55
980	Bulgaria	2016-05-27 05:54:03
981	Uzbekistan	2016-01-03 16:30:51
982	Mexico	2016-06-25 18:17:53
983	Brunei Darussalam	2016-02-24 10:36:43
984	France	2016-03-03 03:13:48
985	Yemen	2016-04-21 19:56:24

986 Northern Mariana Islands 987 Poland 988 Bahrain 989 Saint Pierre and Miquelon 990 Tonga	2016-04-20 13:36:42 2016-07-21 16:02:40
991 Comoros 992 Montenegro 993 Isle of Man 994 Mayotte 995 Lebanon 996 Bosnia and Herzegovina 997 Mongolia 998 Guatemala 999 Brazil	2016-04-04 03:57:48 2016-02-11 21:49:00 2016-04-22 02:07:01 2016-02-01 17:24:57 2016-03-24 02:35:54
1 0 903 147 04 2 0 111 184 03 3 0 939 103 01 4 0 805 96 06 5 0 282 158 05 6 0 46 145 01 7 1 671 12 03 8 0 884 82 04 9 0 712 78 07 10 1 878 171 03 11 0 180 34 05 12 1 907 60 06 13 0 606 26 04 14 1 944 18 03 15 1 541 197 03 16 1 892 161 01 17 0 707 0 05 18 1 298 29 02	or 00 01 00 02 03 04 00 01 09 01 00 08 01 01 09 03 03 04 07 07

. .

. . .

. . .

. . .

. . .

. . .

973	0	94	227	02	20
974	1	694	53	02	23
975	1	813	136	06	06
976	1	677	154	05	11
977	1	739	70	07	12
978	0	29	105	05	17
979	0	492	156	03	14
980	1	567	32	05	05
981	0	936	228	01	16
982	1	397	136	06	18
983	0	412	31	02	10
984	0	423	70	03	03
985	1	759	234	04	19
986	0	679	157	04	17
987	1	459	168	03	12
988	0	758	16	02	07
989	0	787	181	06	07
990	1	580	213	04	13
991	1	444	46	07	16
992	1	520	141	03	11
993	0	191	101	02	23
994	1	547	135	04	03
995	1	126	116	02	21
996	1	488	26	04	02
997	1	798	140	02	17
998	0	935	85	03	02
999	1	744	28	06	21

[1000 rows x 14 columns]

dataframe.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):

Daily Time Spent on Site 1000 non-null float64 1000 non-null int64 Age 1000 non-null float64 Area Income Daily Internet Usage 1000 non-null float64 Ad Topic Line 1000 non-null object City 1000 non-null object 1000 non-null int64 Male Country 1000 non-null object 1000 non-null object Timestamp Clicked on Ad 1000 non-null int64

dtypes: float64(3), int64(3), object(4)

memory usage: 78.2+ KB

Are there any duplicate records present?

```
dataframe.duplicated().sum()
0
```

As the value above is zero, there areno duplicates.

Attribute Type Classification

Determing the type of attributes in the given dataset

```
numeric_columns = ['Daily Time Spent on Site', 'Age', 'Area Income', 'Daily I
nternet Usage' ]

categorical_columns = [ 'Ad Topic Line', 'City', 'Male', 'Country', 'Clicked
on Ad' ]
```

Exploratory Data Analysis

What age group does the dataset majorly consist of?

```
plt.figure(figsize=(10,7))
sns.distplot(dataframe['Age'], bins = 20, kde=True, hist_kws=dict(edgecolor="k", linewidth=1))
<matplotlib.axes._subplots.AxesSubplot at 0x1aff9441cf8>
```


Here, we can see that most of the internet users are having age in the range of 26 to 42 years.

```
print('Age of the oldest person:', dataframe['Age'].max(), 'Years')
print('Age of the youngest person:', dataframe['Age'].min(), 'Years')
print('Average age in dataset:', dataframe['Age'].mean(), 'Years')
```

Age of the oldest person: 61 Years Age of the youngest person: 19 Years Average age in dataset: 36.009 Years

What is the income distribution in different age groups?

```
sns.jointplot(x='Age', y='Area Income', color= "green", data= dataframe)
<seaborn.axisgrid.JointGrid at 0x1aff92560f0>
```


Here, we can see that mostly teenagers are higher earners with age group of 20-40 earning 50k-70k.

Which age group is spending maximum time on the internet?

```
sns.jointplot(x='Age', y='Daily Time Spent on Site', data= dataframe)
<seaborn.axisgrid.JointGrid at 0x1aff91992e8>
```


From the above plot its evident that the age group of 25-40 is most active on the internet.

Which gender has clicked more on online ads?

Based on above data we can see that a greater number of females have clicked on ads compared to male.

Maximum number of internet users belong to which country in the given dataset?

```
pd.crosstab(index=dataframe['Country'],columns='count').sort_values(['count']
, ascending=False)
```

, ,		
col_0	count	
Country		
France	9	
Czech Republic	9	
Afghanistan	8	
Australia	8	
Turkey	8	
South Africa	8	
Senegal	8	
Peru	8	
Micronesia	8	
Greece	8	
Cyprus	8	
Liberia	8	
Albania	7	
Bosnia and Herzegovina	7	
Taiwan	, 7	
Bahamas	, 7	
Burundi	, 7	
Cambodia	, 7	
Venezuela	, 7	
Fiji	, 7	
Ethiopia	7	
Luxembourg	7	
Eritrea	7	
Western Sahara	7	
Madagascar	6	
Zimbabwe	6	
Malta		
	6	
Croatia	6	
Mexico	6	
Costa Rica	6	
	•••	
Slovakia (Slovak Republic)	2	
Mauritania	2	
Montenegro	2	
Djibouti	2	
Namibia	2	
New Caledonia	2	

```
2
Norway
                                                            2
Panama
Pitcairn Islands
                                                            2
Reunion
                                                            2
Saint Barthelemy
                                                            2
Benin
                                                            2
Saint Lucia
                                                            2
Sao Tome and Principe
                                                            2
                                                            2
Andorra
Sierra Leone
                                                            2
British Indian Ocean Territory (Chagos Archipel...
                                                            1
Cape Verde
                                                            1
Bermuda
                                                            1
Slovenia
                                                            1
Lesotho
                                                            1
Germany
                                                            1
Jordan
                                                            1
Kiribati
                                                            1
Marshall Islands
                                                            1
Montserrat
                                                            1
Mozambique
                                                            1
Romania
                                                            1
Saint Kitts and Nevis
                                                            1
Aruba
                                                            1
```

[237 rows x 1 columns]

Based on the above data frame we can observe that maximum number of users are from France and Czech.

Did we match our baseline that we set?

```
dataframe.groupby('Clicked on Ad')['Clicked on Ad', 'Daily Time Spent on Site
', 'Age', 'Area Income',
                            'Daily Internet Usage'].mean()
              Clicked on Ad Daily Time Spent on Site Age Area Income
Clicked on Ad
0
                        0.0
                                             76.85462 31.684 61385.58642
1
                        1.0
                                             53.14578 40.334 48614.41374
              Daily Internet Usage
Clicked on Ad
0
                         214.51374
1
                         145.48646
```

What is the relationship between different features?

sns.pairplot(dataframe, hue='Clicked on Ad')

C:\Users\prani\Anaconda3\lib\site-packages\statsmodels\nonparametric\kde.py:4

87: RuntimeWarning: invalid value encountered in true_divide binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)

C:\Users\prani\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools

.py:34: RuntimeWarning: invalid value encountered in double_scalars

FAC1 = 2*(np.pi*bw/RANGE)**2

<seaborn.axisgrid.PairGrid at 0x1aff9341160>

Data Cleaning

sns.heatmap(dataframe.isnull(), yticklabels=False)
<matplotlib.axes._subplots.AxesSubplot at 0x1affa60f710>

As we see, we don't have any missing data

Considering the 'Advertisement Topic Line', we decided to drop it. In any case, if we need to extract any form of interesting data from it, we can use Natural Language Processing.

As to 'City' and the 'Nation', we can supplant them by dummy variables with numerical features, Nonetheless, along these lines we got such a large number of new highlights.

Another methodology would be thinking about them as a categorical features and coding them in one numeric element.

Changing 'Timestamp' into numerical value is more complicated. So, we can change 'Timestamp' to numbers or convert them to spaces of time/day and consider it to be categorical and afterwards we converted it into numerical values. And we selected the month and the hour from the timestamp as features

```
dataframe['City Codes'] = dataframe['City'].astype('category').cat.codes
dataframe['Country Codes'] = dataframe['Country'].astype('category').cat.code
dataframe[['City Codes', 'Country Codes']].head(5)
   City Codes Country Codes
0
          961
                         215
          903
1
                         147
2
          111
                         184
3
          939
                         103
          805
                          96
dataframe['Month'] = dataframe['Timestamp'].apply(lambda x: x.split('-')[1])
dataframe['Hour'] = dataframe['Timestamp'].apply(lambda x: x.split(':')[0].sp
lit(' ')[1])
dataframe[['Month', 'Hour']].head(5)
  Month Hour
     03
          00
0
1
     94
          01
2
     03
          20
3
     01
          02
4
     96
          03
```

Data Model Implementation

```
Dropping
```

```
X = dataframe.drop(labels=['Ad Topic Line','City','Country','Timestamp','Clic
ked on Ad'], axis=1)
Y = dataframe['Clicked on Ad']
```

Splitting Dataset

```
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, rand
om_state = 42)
```

Implementing Logistic Regression Model

```
from sklearn.linear_model import LogisticRegression
```

```
log_reg_model = LogisticRegression()
log_reg_model.fit(X_train, Y_train)
C:\Users\prani\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
    FutureWarning)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
log_reg_pred = log_reg_model.predict(X_test)
```

Implementing Naive Bayes Model

```
from sklearn.naive_bayes import GaussianNB
nav_bayes_model = GaussianNB()
nav_bayes_model.fit(X_train, Y_train)
GaussianNB(priors=None, var_smoothing=1e-09)
nav_bayes_pred = nav_bayes_model.predict(X_test)
```

Implementing Decision Tree Model

Finding accuracy in each model

from sklearn.metrics import accuracy_score

Logistic Regression

```
log_reg_accuracy = accuracy_score(log_reg_pred, Y_test)
print(log_reg_accuracy*100)
90.0
```

Naive Bayes

```
nav_bayes_accuracy = accuracy_score(nav_bayes_pred, Y_test)
print(nav_bayes_accuracy*100)
96.0
```

Decision Tree

Conclusion

Comparing all the above implementation models, we conclude that Naive Bayes Algorithm gives us the maximum accuracy for determining the click probability. We believe in future there will be fewer ads, but they will be more relevant. And also these ads will cost more and will be worth it.