Caio Brighenti

COSC 302 - Analysis of Algorithms - Spring 2019

Lab 2

My assigned problem was #1. Problems 6,7, and 9 are my other three problems completed.

1. Prove or disprove each of the following:

(a)
$$f(n) = O(g(n)) \implies g(n) = O(f(n))$$

We disprove by counterexample. Let f(n) = n and $g(n) = n^2$. $n = O(n^2)$, but $n^2 \neq O(n)$. Thus, the claim is false.

(b)
$$f(n) + g(n) = \Theta(min(f(n), g(n)))$$

We disprove by counterexample. Let f(n) = n and $g(n) = n^2$. Then $n^2 + n \neq \Theta(n)$, therefore the claim is false.

(c)
$$f(n) = O(g(n)) \implies log(f(n)) = O(log(g(n)))$$

We proceed by direct proof.

$$f(n) \le c_2 g(n)$$
 definition of $O(g(n))$ (1)

$$log(f(n)) \le log(c_2g(n))$$
 log both sides (2)

$$\leq log(c_2) + log(g(n))$$
 log properties (3)

We now must find a constant d such that $log(f(n)) \leq dlog(g(n))$

As we have that $f(n) \leq log(c_2) + log(g(n))$ we look for a d such that

 $log(c_2) + log(g(n)) \le dlog(g(n)).$

For this, since $g(n) \ge 1$, we can have d = log(c) + 1. Thus, we have:

 $f(n) \le log(c_2) + log(g(n)) \le dlog(g(n)).$

As this is meets the definition of log(f(n)) = O(log(g(n))), the claim must be true.

6. Give definitions for $\Omega(g(n,m))$ and $\Theta(g(n,m))$

 $\Omega(g(n,m)) = \{f(n,m) : \text{there exists positive constants } c_2, n_0, \text{ and } m_0 \text{ such that } f(n,m) \leq c_2(g(n,m))$

for all $n \geq n_0$ and $m \geq m_0$.

 $\Theta(g(n,m)) = \{f(n,m) : \text{there exists positive constants } c_1, c_2, n_0, \text{ and } m_0 \text{ such that } c_1(g(n,m)) \leq f(n,m) \leq c_2(g(n,m)) \text{ for all } n \geq n_0 \text{ and } m \geq m_0 \}.$

7. Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$?

We have $2^{n+1}=2\cdot 2^n$. As $2\cdot 2^n=\Theta(2^n)$, it follows that $2^{n+1}=\Theta(2^n)$.

The second case is not true. We proceed by contradiction. Assume that $2^{2n} = O(2^n)$. We must thus have that:

 $2^{2n} \leq c_2 2^n$ by the definition of $\Theta(g(n))$. By rearranging, we have that:

 $\frac{2^{2n}}{2^n} \le c_2$ and finally that:

 $\tilde{2^n} \leq c_2$.

This statement is impossible, as a constant cannot be greater than or equal to a variable that grows to infinity. Thus, we have a contradiction, and the claim cannot be true.

6. Let f(n) and g(n) be asymptotically non-negative functions. Using the basic definition of Θ -notation, prove that $max(f(n),g(n))=\Theta(f(n)+g(n))$.

As f(n) and g(n) are both asymptotically nonnegative, then for all $n > n_0$ it must be that f(n) > 0 and g(n) > 0. Thus, we must have that:

$$f(n) + g(n) \ge f(n) \ge 0$$
 and that $f(n) + g(n) \ge g(n) \ge 0$.

Let h(n) = max(f(n), g(n)).

As h(n) will always equal the biggest of the two functions, it is true that $h(n) \ge f(n)$ and $h(n) \ge g(n)$. Thus, we can substitute h(n) and obtain the following:

$$f(n) + g(n) \ge h(n) \ge 0$$

If we add a constant c_2 , we can have that:

$$h(n) = max(f(n), g(n)) \le c_2(f(n) + g(n))$$

Thus, we have max(f(n), g(n)) = O(f(n) + g(n)).

We also can write that $0 \le f(n) \le h(n)$ and $0 \le g(n) \le h(n)$. Adding these two inequalities results in:

$$0 \le f(n) + g(n) \le 2h(n)$$

Thus, by rearranging this we have:

$$h(n) = max(f(n), g(n)) \ge c_1(f(n) + g(n))$$

Thus, $max(f(n), g(n)) = \Omega(f(n) + g(n)).$

Since we have that $\max(f(n), g(n)) = O(f(n) + g(n))$ and that $\max(f(n), g(n)) = \Omega(f(n) + g(n))$, it must be that $\max(f(n), g(n)) = \Theta(n) + g(n)$.