A Data Scientist's Value: Are you worth more than the median Salary?

Victor Palacios

Who should care?

- DS Employers trying to evaluate their workers
- DS Job-seekers trying to figure out how best to stand out
- DS Students wondering which major will help most with a Data Science career

Problem: Can these predict salary?

- 1. Gender (i.e., Male or Female)
- 2. Age
- 3. Education (i.e., Bachelors, Masters, or PhD)
- 4. Experience (i.e., # of years in current position)
- 5. Major
- 6. Industry

Data: 2018 Kaggle ML & DS Survey

Original Dataset: 23,859 rows and 395 columns
This Capstone: 751 rows and 7 columns

Why? Limited to:

- (1) Residents of the USA,
- (2) Share their salary details, and
- (3) Are employed as Data Scientists

Salary Distribution for Kaggle Data Scientists

Hypothesis'

Positively Effect

- 1) Older Age
- 2) More Experience
- 3) STEM Majors
- 4) PhD

Negatively Effect

- 1) Younger Age
- 2) Less Experience
- 3) non-STEM Majors
- 4) Bachelor's

The Older, The Richer

More Experience, More Salary

PhD = Higher Salary

Male? Higher Salary

A Trumped Government Does Worst

Major did not correlate with Salary

Results

Positively Effect

- Older Age
- 2) More Experience
- 3) STEM Majors
- 4) PhD
- 5) Male*

Negatively Effect

- 1) Younger Age
- 2) Less Experience
- 3) non-STEM Majors
- 4) Bachelor's
- 5) Female*

^{*} Simpson's paradox did not appear to be at play.

Machine Learning

Classifier	ROC AUC Score	Best Parameters
Logistic Regression	0.729	C = 0.1
K-Nearest Neighbor	0.677	n_neighbors = 12
Random Forest	0.708	criterion = 'entropy', max_depth = 3, max_features = 'auto', n_estimators = 30
Gaussian Naive Bayes	0.734	var_smoothing = 0.1
Xtreme Gradient Boosting	0.704	alpha = 10, lambda = 10, max_depth = 2

Best model was Gaussian Naive Bayes

Forward Selection Stepwise Regression

Forward selection used for feature reduction

Confusion Matrix

Large number of false negatives ~= true positives

P, R & ACC, vs Threshold

Benchmarks used for measuring model usefulness

F-Beta Scores vs Threshold

Varying Beta gives more weight to precision or recall

Business Case Example

Background: Economic hardship

Problem: Not feasible to pay employee desired salary or give raises, but it is also dangerous to pay them below their market value as they may leave.

Solution: More weight to precision; F 0.5 achieves its maximum score of 0.73 when the threshold is set to 0.69.

Actionable Recommendations

- DS Employers: Value women equally; Stop asking for Quantitative Majors.
- DS Job-seekers: Government typically pays lower than other sectors; avoid if a high salary is desired.
- DS Students: If in doubt, go with Physics.