	Teste de Matemática A					
	2021 / 2022					
Teste N.º 5 Matemática A						
Duração do Teste: 90 minutos						
11.º Ano de Escolaridade						
Nome do aluno:	N.º: Turma:					

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Uma criança construiu um cata-vento para colocar no seu jardim.

O cata-vento é composto por pás levemente torcidas, como uma hélice, dispostas sobre um suporte que, neste caso, era um espeto de madeira com 40 cm de comprimento.

Durante o movimento circular do cata-vento, a distância h, em centímetros, da extremidade de uma pá ao solo, em função da amplitude α , em radianos, do ângulo orientado que essa pá faz com a horizontal durante uma volta, é dada por:

$$h(\alpha) = 40 + 11 \operatorname{sen}(\alpha), \alpha \in [0, 2\pi]$$

- 1.1. Qual é o diâmetro, em centímetros, da circunferência descrita pela extremidade de uma pá numa volta?
 - **(A)** 11
- **(B)** 20
- **(C)** 22
- **(D)** 40
- **1.2.** Determine o valor da taxa de variação média da função h no intervalo $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$ e interprete-o no contexto descrito. Apresente o valor da taxa de variação média arredondado às décimas. Em cálculos intermédios, não proceda a arredondamentos.
- **1.3.** Considere, para um certo valor de θ , pertencente ao intervalo $[0, \pi]$, a altura da extremidade de uma pá ao solo. Sabe-se que, quando esse valor de θ aumenta meio radiano, a altura da pá ao solo aumenta 2 centímetros.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de θ , sabendo que, no intervalo considerado, esse valor existe e é único.

Apresente o resultado com aproximação às centésimas.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.
- **2.** Considere um triângulo isósceles [ABC], do qual se sabe que:
 - $\overline{AB} = \overline{BC} = \sqrt{3}$
 - $B\hat{A}C = 67.5^{\circ}$

Qual é o valor do produto escalar \overrightarrow{BA} . \overrightarrow{CB} ?

(A)
$$\frac{3\sqrt{2}}{2}$$

(B)
$$-\frac{3\sqrt{2}}{2}$$
 (C) $3\sqrt{2}$

(C)
$$3\sqrt{2}$$

(D)
$$-3\sqrt{2}$$

3. Na figura está representada, num referencial o.n. Oxyz, a pirâmide regular de base quadrada [ABCD] e vértice E. Sabe-se que:

- a base da pirâmide está contida no plano xOz;
- o vértice A pertence ao semieixo positivo Oz;
- o vértice *B* pertence ao semieixo negativo *Ox*;
- o vértice E tem coordenadas (−2,5,2);
- o vetor \overrightarrow{BE} tem coordenadas (-1,5,2);
- o volume da pirâmide é 30.
- **3.1.** Qual das condições define a esfera de centro em E e tangente ao plano xOy?

(A)
$$(x-2)^2 + (y+5)^2 + (z+2)^2 \le 2$$

(B)
$$(x-2)^2 + (y+5)^2 + (z+2)^2 \le 4$$

(C)
$$(x+2)^2 + (y-5)^2 + (z-2)^2 \le 2$$

(D)
$$(x+2)^2 + (y-5)^2 + (z-2)^2 \le 4$$

- **3.2.** Determine uma equação cartesiana do plano mediador do segmento de reta [BE].
- **3.3.** Sem recorrer à calculadora, determine as coordenadas do ponto *A*.
- **4.** Seja f a função real de variável real definida, em \mathbb{R} , por:

$$f(x) = \begin{cases} \sqrt{x^2 + 1}, & x < 0 \\ 2\sqrt{x + 1}, & x \ge 0 \end{cases}$$

Seja (u_n) a sucessão de termo geral $u_n = \frac{n^2+2}{-n^3+3}$.

A que é igual $\lim f(u_n)$?

(A) 0

- **(B)** 1
- **(C)** 2
- (D) $+\infty$
- **5.** Para um determinado número real a, tem-se que a+4, a+1 e $-a+\frac{7}{2}$ são três termos consecutivos de uma progressão geométrica (v_n) .

Sabe-se que (v_n) é monótona decrescente.

Determine, recorrendo a processos analíticos, a razão da progressão.

6. Seja f a função real de variável real definida por $f(x) = \frac{2x-5}{x-4}$.

Resolva as seguintes alíneas, recorrendo a processos exclusivamente analíticos.

- **6.1.** Determine para que valores reais de x as ordenadas dos pontos do gráfico de f são superiores às respetivas abcissas.
- **6.2.** Recorrendo à definição de derivada de uma função num ponto, determine f'(1).
- **6.3.** Considere o gráfico da função f, representado num referencial o.n. 0xy, e sejam r e s as assíntotas, respetivamente horizontal e vertical, ao gráfico de f.

Sejam A o ponto de interseção do gráfico de f com o eixo Ox e B o ponto de interseção das retas r e s.

Determine o valor exato da área do triângulo [OAB].

7. De uma função g, diferenciável em todo o seu domínio \mathbb{R} , sabe-se que a inclinação da reta tangente ao seu gráfico no ponto de abcissa 2 é 45°.

Qual é o valor de $\lim_{x\to 2} \frac{g(x)-g(2)}{4-x^2}$?

- **(A)** $-\frac{1}{4}$
- (B) $\frac{1}{4}$

- **(C)** -1
- **(D)** 1

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.1.	1.2.	1.3.	2.	3.1.	3.2	3.3.	4.	5.	6.1.	6.2.	6.3.	7.	
10	20	20	10	10	20	20	10	15	20	15	20	10	200