Some Problems About Consecutive Products of Primes

Trevor Klar Eli Moore

September 4, 2017

1 Introduction

Suppose p and q are both prime numbers with p < q. Consider all integers of the form $p^{\alpha}q^{\beta}$ with $\alpha, \beta \in \mathbb{N}$ and let $\{a_n\}$ be the sequence of these integers in increasing order.

Lemma 1. If $a_k = q^n$, then $a_{k+1} \neq q^{n+1}$.

PROOF (By Contradiction)

Suppose that $a_k = q^n$ and $a_{k+1} = q^{n+1}$.

 $1 which is a contradiction as <math>pq^n$ must be a term between a_k and a_{k+1}

Lemma 2. There exist at most finitely many $a_k = p^n$ such that $a_{k+1} = p^{n+1}$.

PROOF Consider the smallest $n \in \mathbb{N}$ such that $p^n < q < p^{n+1}$. Note that a_n begins as $\{1, p, p^2, ..., p^n, q, p^{n+1}, ...\}$. Claim: $\forall m \in \mathbb{N}, \ p^{n+m} < p^m q < p^{n+m+1}$. Let T(m) denote this statement. We now prove this claim by induction.

T(1) holds as $p^n < q < p^{n+1} \implies p^{n+1} < pq < p^{n+2}$.

We now assume T(m) and show T(m+1) holds.

 $p^{n+m} < p^m q < p^{n+m+1} \implies p^{n+m+1} < p^{m+1} q < p^{n+m+2}.$

As such, every integer $p^{n+m} > p^n$ is followed by the term $p^m q$ before p^{n+m+1} in the sequence a_n . Thus, $a_k = p^n$ and $a_{k+1} = p^{n+1}$ can only occur at the beginning of the sequence (finitely many times) as shown above.