Suma de subespacios afines

Definición

Sean $\mathcal{A}'=(A',F')$ y $\mathcal{A}''=(A'',F'')$ dos subespacios afines de $\mathcal{A}=(A,V)$. La suma afín, denotada por $\mathcal{A}'+\mathcal{A}''$, es el subespacio afín de \mathcal{A} cuyo conjunto de puntos se obtiene por la intersección de los conjuntos de puntos de todos los subespacios afines de \mathcal{A} que contienen todos los puntos del conjunto $A'\cup A''$.

Definición

Sean $\mathcal{A}'=(A',F')$ y $\mathcal{A}''=(A'',F'')$ dos subespacios afines de $\mathcal{A}=(A,V)$. La suma afín, denotada por $\mathcal{A}'+\mathcal{A}''$, es el subespacio afín de \mathcal{A} cuyo conjunto de puntos se obtiene por la intersección de los conjuntos de puntos de todos los subespacios afines de \mathcal{A} que contienen todos los puntos del conjunto $A'\cup A''$.

¿Cómo determinar los puntos y la dirección de A' + A''?

① $F = \langle \overrightarrow{a'a''} \rangle + F' + F''$ es un subespacio vectorial de V.

- ① $F = \langle \overrightarrow{a'a''} \rangle + F' + F''$ es un subespacio vectorial de V.
- ② (a'+F,F) es un subespacio afín de $\mathcal{A}=(A,V)$.

- ① $F = \langle \overrightarrow{a'a''} \rangle + F' + F''$ es un subespacio vectorial de V.
- ② (a'+F,F) es un subespacio afín de $\mathcal{A}=(A,V)$.
- 3 $A' \cup A'' \subseteq a' + F = a'' + F$.

- ① $F = \langle \overrightarrow{a'a''} \rangle + F' + F''$ es un subespacio vectorial de V.
- ② (a'+F,F) es un subespacio afín de $\mathcal{A}=(A,V)$.
- 3 $A' \cup A'' \subseteq a' + F = a'' + F$.
- **4** Si $\mathcal{A}' + \mathcal{A}'' = (B, E)$, entonces F es un subespacio vectorial de E, por AF1.

- ① $F = \langle \overrightarrow{a'a''} \rangle + F' + F''$ es un subespacio vectorial de V.
- ② (a'+F,F) es un subespacio afín de $\mathcal{A}=(A,V)$.
- 3 $A' \cup A'' \subseteq a' + F = a'' + F$.
- 4 Si $\mathcal{A}' + \mathcal{A}'' = (B, E)$, entonces F es un subespacio vectorial de E, por AF1.

- ② (a'+F,F) es un subespacio afín de $\mathcal{A}=(A,V)$.
- 3 $A' \cup A'' \subseteq a' + F = a'' + F$.
- 4 Si $\mathcal{A}' + \mathcal{A}'' = (B, E)$, entonces F es un subespacio vectorial de E, por AF1.
- **6** En resumen, $\mathcal{A}' + \mathcal{A}'' = (a' + F, F)$.

Proposición

Sean $\mathcal{A}'=(A',F')$ y $\mathcal{A}''=(A'',F'')$ dos subespacios afines de $\mathcal{A}=(A,V)$. Las siguientes afirmaciones se cumplen.

• Si $A' \cap A'' \neq \emptyset$, entonces

$$\dim(\mathcal{A}'+\mathcal{A}'')=\dim(\mathcal{A}')+\dim(\mathcal{A}'')-\dim(\mathcal{A}'\cap\mathcal{A}'').$$

• Si $A' \cap A'' = \emptyset$, entonces

$$\dim(\mathcal{A}'+\mathcal{A}'')=\dim(\mathcal{A}')+\dim(\mathcal{A}'')-\dim(F'\cap F'')+1.$$

 $\bullet \ \operatorname{Sea} \ L = \langle \overrightarrow{a'a''} \rangle \ \operatorname{con} \ a' \in A' \ \operatorname{y} \ a'' \in A''.$

- Sea $L = \langle \overrightarrow{a'a''} \rangle$ con $a' \in A'$ y $a'' \in A''$.
- Nótese que, $\dim(\mathcal{A}' + \mathcal{A}'') = \dim(F' + F'' + L)$.

- Sea $L = \langle \overrightarrow{a'a''} \rangle$ con $a' \in A'$ y $a'' \in A''$.
- Nótese que, $\dim(\mathcal{A}' + \mathcal{A}'') = \dim(F' + F'' + L)$.
- Por un lado, si $A' \cap A'' \neq \emptyset$, entonces $\overrightarrow{a'a''} \in F' + F''$, de ahí que $\dim(F' + F'' + L) = \dim(F' + F'')$.

- Sea $L = \langle \overrightarrow{a'a''} \rangle$ con $a' \in A'$ y $a'' \in A''$.
- Nótese que, $\dim(\mathcal{A}' + \mathcal{A}'') = \dim(F' + F'' + L)$.
- Por un lado, si $A' \cap A'' \neq \emptyset$, entonces $\overrightarrow{a'a''} \in F' + F''$, de ahí que $\dim(F' + F'' + L) = \dim(F' + F'')$.
- Por otro lado, si $A' \cap A'' = \emptyset$, tenemos $\overrightarrow{a'a''} \notin F' + F''$, y entonces $\dim(F' + F'' + L) = \dim(F' + F'') + 1$.

- Sea $L = \langle \overrightarrow{a'a''} \rangle$ con $a' \in A'$ y $a'' \in A''$.
- Nótese que, $\dim(\mathcal{A}' + \mathcal{A}'') = \dim(F' + F'' + L)$.
- Por un lado, si $A' \cap A'' \neq \emptyset$, entonces $\overrightarrow{a'a''} \in F' + F''$, de ahí que $\dim(F' + F'' + L) = \dim(F' + F'')$.
- Por otro lado, si $A' \cap A'' = \emptyset$, tenemos $\overrightarrow{a'a''} \not\in F' + F''$, y entonces $\dim(F' + F'' + L) = \dim(F' + F'') + 1$.
- Finalmente, como

$$\dim(F'+F'')=\dim(F')+\dim(F'')-\dim(F'\cap F''),$$

el resultado se deduce.

Corolario

- Dos rectas paralelas no idénticas determinan un plano.
- Dos rectas que comparten un único punto determinan un plano.