

Intelligent Systems

Exercise 2- Design

Simon Reichhuber, Ingo Thomsen

18. November 2020

Christian-Albrechts-Universität zu Kiel, Winter Semester 2020

CONTENT

- 1. Organisatorial issues
- 2. Observer/Controller Pattern
- 3. Distribution variants
- 4. Python Visualisation: WSA Lübeck

Organisatorial issues

TEAMS

Finalise the composition of the student groups.

ORGANISATORIAL ISSUES

Exercise 1	Organisation & Python Intro	<u> </u>	We, 11.11.2020, 10:15
Exercise 2	Design / Intro to FT	/	We, 18.11.2020, 10:15
FTI	FT I Preprocessing		Mo, 23.11.2020, 14:15
FTI	FT I Preprocessing Presentation		We, 25.11.2020, 10:15
Exercise 3	Preprocessing		We, 02.12.2020, 10:15
Exercise 4	Representation		We, 09.12.2020, 10:15
FT II	FT II Feature Selection		Mo, 14.12.2020, 14:15
FT II	FT II Feature Selection Presentation.		We, 16.12.2020, 10:15
Exercise 5	Similarities / Segmentation		We, 06.01.2021, 10:15
Exercise 6	Clustering		We, 13.01.2021, 10:15
Exercise 8	Classification		We, 20.01.2021, 10:15
FT III	FT III Model Selection		We, 27.01.2021, 10:15
FT III	FT III Model Selection Presentation		We, 27.01.2021, 12:15
Exercise 9	Quantification/Eval.		We, 03.02.2021, 10:15
Exercise 10	RL / Quantification		We, 10.02.2021, 10:15

Tabelle 1: Roadmap - no changes (yet)

Observer/Controller - Pattern

EXERCISE 1 - OBSERVER/CONTROLLER PATTERN

Explain the Observer/Controller pattern by choosing your own example. In detail, start with a real-world application and explain how the system can be optimised with the O/C Pattern by Observation and Control.

OBSERVER/CONTROLLER PATTERN

MULTI LEVEL

- Additional layer 2 for offline learning
- Complex optimisation techniques on layer 2 (EA, Simulations, ...)
- Different time scales (online/offline) for learning on layer 1 and layer 2

OBSERVER/CONTROLLER PATTERN - HOW TO

Be sure to define the following points:

- · System boundaries
- Goal
- · Sensors (internal/external)
- Actions

OBSERVER/CONTROLLER PATTERN - EXAMPLES

The example from the lecture for controlling traffic lights (OTC).

Other candidates:

- · Self-controlled heating system
- Elevator
- Cam Stabiliser
- ..

Distribution variants

EXERCISE 2 - DISTRIBUTION VARIANTS

- A. Classify the given distributed systems into one of the categories: fully centralised, fully decentralised and hybrid.
- B. Explain your decision by describing communication channels, process flows and the level of autonomy.

DISTRIBUTION VARIANTS - FULLY CENTRALISED

- System parameters globally accessible/adaptable
- · No homogeneous agents
- Superagent

DISTRIBUTION VARIANTS - FULLY DECENTRALISED

- No global state accessible; but agent-specific local view and neighbourhoods
- Homogeneous agents possible

DISTRIBUTION VARIANTS - HYBRID

- Global state accessible and agent-specific local view and neighbourhoods
- Heterogeneous structure of agents

EXERCISE 2 - DISTRIBUTION VARIANTS

- A. Classify the given distributed systems into one of the categories: fully centralised, fully decentralised and hybrid.
- B. Explain your decision by describing communication channels, process flows and the level of autonomy.

EXERCISE 2 - DISTRIBUTION VARIANTS DISTRIBUTION AND COMMUNICATION

Name	Dist.	Communication Channel
P2P-Network	originally: fully-decentralised	Network packages
VCS GIT	fully-centralised	ssh
Ant colony	fully-decentralised	pheromones
Internet	hybrid	Internet protocol

Tabelle 2: Distribution variant examples

EXERCISE 2 - DISTRIBUTION VARIANTS PROCESSES AND AUTONOMY

Name	Process flow	Autonomy
P2P-Network	Ask / Provide	no autonomy
VCS GIT	pull/change/add/commit/push	deep copy of root
Ant colony	exploration / exploitation	no autonomy
Internet	REST-Queries	"no" client state

Tabelle 3: Distribution variant examples

Python Visualisation: WSA

Lübeck

PYTHON

Python Visualisation: WSA Lübeck → https://www.pegelonline.wsv.de/webservices/files/Wasserstand+Rohdaten/OSTSEE/LT+KIEL