10/5065 REC'D 15 AUG 2003 WIPO PCT

日本 国特許庁

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

PATENT OFFICE

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年 7月 3日

JAPAN

出 願 番 号 Application Number:

特願2002-195086

[ST. 10/C]:

. i

[JP2002-195086]

出 願 人
Applicant(s):

株式会社日立製作所 日立ビアメカニクス株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2003年 7月 9日

特許庁長官 Commissioner, Japan Patent Office 太田信一

23.07.03

BEST AVAILABLE COPY

特頭

【書類名】 特許願

【整理番号】 NTO2P0471

【提出日】 平成14年 7月 3日

【あて先】 特許庁長官 殿

【国際特許分類】 H01L 21/027

【発明者】

【住所又は居所】 神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所 生產技術研究所内

【氏名】 押田 良忠

【発明者】

【住所又は居所】 神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所 生產技術研究所内

【氏名】 丸山 重信

【発明者】

【住所又は居所】 神奈川県海老名市上今泉2100番地 日立ビアメカニ

クス株式会社内

【氏名】 小林 和夫

【発明者】

【住所又は居所】 神奈川県海老名市上今泉2100番地 日立ビアメカニ

クス株式会社内

【氏名】 内藤 芳達

【発明者】

【住所又は居所】 神奈川県海老名市上今泉2100番地 日立ビアメカニ

クス株式会社内

【氏名】 大坂 義久

【特許出願人】

【識別番号】 000005108

【氏名又は名称】 株式会社日立製作所

ページ: 2/E

【特許出願人】

【識別番号】 000233332

【氏名又は名称】 日立ビアメカニクス株式会社

【代理人】

【識別番号】 100068504

【弁理士】

【氏名又は名称】 小川 勝男

【電話番号】 03-3661-0071

【選任した代理人】

【識別番号】 100086656

. 【弁理士】

【氏名又は名称】 田中 恭助

【電話番号】 03-3661-0071

【手数料の表示】

【予納台帳番号】 081423

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【発明の名称】 照明方法並びに露光方法及びその装置

【特許請求の範囲】

【請求項1】

分離して1次元若しくは2次元に配列された複数の光源の各々から光を出射させ、該複数の光源の各々から出射された光を光インテグレータにより空間的に分解して多数の擬似2次光源を生成し、該生成された多数の擬似2次光源からの光をコンデンサレンズにより重ね合わせて被照明領域に照明することを特徴とする照明方法。

【請求項2】

前記複数の光源が配列された領域または前記複数の光源から得られる2次光源の発光領域を前記被照明領域の形状に相似にしたことを特徴とする請求項1記載の照明方法。

【請求項3】

前記光源は半導体レーザ光源であることを特徴とする請求項1記載の照明方法

【請求項4】

前記光インテグレータは複数のロッドレンズの配列からなり、各ロッドレンズの光軸に垂直な断面形状の縦横比 r_1 と前記被照明領域の縦横比 r_0 との比 r_1 / r_0 が0.8以上<math>1.2以下であることを特徴とする請求項1記載の照明方法。

【請求項5】

前記光インテグレータに入射する光または前記インテグレータを出射する光が 、波面を変化させる変調器を通過することを特徴とする請求項1記載の照明方法

【請求項6】

前記複数の光源の各々から出射する光束における発散角を、該出射光束の光軸 に垂直な面に向けて面内任意の2方向に対し1対1.5の比以内になるように調 整することを特徴とする請求項1記載の照明方法。

【請求項7】

【請求項8】

前記複数の光源または2次光源から出射する各々の出射光を、集光光学系により前記光インテグレータ上の対応する位置に入射させることを特徴とする請求項 1万至7の何れかに記載の照明方法。

【請求項9】

分離して1次元若しくは2次元に配列された複数の光源の各々から出射された 光を、被照明領域内の照度むらが±10%以内で、前記各光源から発する光のエネルギーの30%以上が被照明領域内に到達するように被照明領域に照明することを特徴とする照明方法。

【請求項10】

分離して1次元若しくは2次元に配列された複数の光源の各々から出射させ、 該複数の光源の各々から出射された光を光インテグレータにより空間的に分解し て多数の擬似2次光源を生成し、該生成された多数の擬似2次光源からの光をコ ンデンサレンズにより重ね合わせて露光すべきパターンを有する被照明領域に照 明し、

該照明された露光すべきパターンを透過もしくは反射した光を投影光学系により被露光物上の被露光領域に投影露光することを特徴とする露光方法。

【請求項11】

前記複数の光源が配列された領域または前記複数の光源から得られる2次光源の発光領域を前記被照明領域の形状に相似にしたことを特徴とする請求項11記載の露光方法。

【請求項12】

前記光源は半導体レーザ光源であることを特徴とする請求項11記載の露光方法。

【請求項13】

前記光インテグレータは複数のロッドレンズの配列からなり、各ロッドレンズ 光軸に垂直な断面形状の縦横比 r₁と上記被照明領域の縦横比 r₀との比 r₁/ r₀

が0.8以上1.2以下であることを特徴とする請求項11記載の露光方法。

【請求項14】

前記光インテグレータに入射する光または前記光インテグレータを出射する光 が、波面を変化させる変調器を通過することを特徴とする請求項11記載の露光 方法。

【請求項15】

分離した複数の光源を1次元若しくは2次元に配列した光源アレーと該光源ア レーの各光源から出射した光を集光させる集光光学系と該集光光学系で集光され た光を空間的に分解して多数の擬似 2 次光源を生成する光インテグレータと該光 インテグレータによって生成された多数の擬似2次光源からの光を重ね合わせて 露光すべきパターンを有する被照明領域に照明するコンデンサレンズとを有する 照明光学系と、

該照明光学系で照明された露光すべきパターンを透過もしくは反射した光を被 露光物上の被露光領域に投影露光する投影光学系とを備えたことを特徴とする露 光装置。

【請求項16】

前記照明光学系において、前記光源アレーにおける複数の光源が配列された領 域または前記複数の光源から得られる2次光源の発光領域を前記被照明領域の形 状に相似にしたことを特徴とする請求項15記載の露光装置。

【請求項17】

前記照明光学系の前記光源アレーにおいて、前記光源が半導体レーザ光源から なることを特徴とする請求項15記載の露光装置。

【請求項18】

前記照明光学系の前記光インテグレータは、複数のロッドレンズの配列からな り、各ロッドレンズ光軸に垂直な断面形状の縦横比 r 1と上記被照明領域の縦横 比 r_0 との比 r_1 / r_0 が0. 8以上1. 2以下であるように構成したことを特徴 とする請求項15記載の露光装置。

【請求項19】

前記照明光学系において、前記光インテグレータの入射側または前記光インテ

グレータの出射側に光の波面を変化させる変調器を共帰することを特徴とする調 求項15記載の露光装置。

【請求項20】

前記照明光学系において、前記光源アレーの各光源から出射する光の発散角を調整する発散角調整光学系を有することを特徴とする請求項15記載の露光装置

【請求項21】

前記発散角調整光学系は、シリンドリカルレンズを含むことを特徴とする請求 項20記載の露光装置。

【請求項22】

前記照明光学系において、前記光源アレーの前記光源から出射する光のエネルギーを制御する光源制御手段を具備することを特徴とする請求項15記載の露光 装置。

【請求項23】

前記照明光学系において、前記光源アレーの前記光源から出射する光の強度を 計測する検出器を備えたことを特徴とする請求項15記載の露光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、被照明領域に均一で効率の良い照明光を照射する照明方法及びこの 照明法を用いた露光方法に関し、また、この露光方法を用いてパターンを露光す る露光装置に関する。特に半導体レーザを多数用いる照明方法、露光方法、及び 露光装置に関する。

[0002]

【従来の技術】

従来、被照明物体を照明したり、被露光物体をする露光するには水銀ランプを 光源にしたり、エキシマレーザを用いていた。これら光源は駆動するために投入 するエネルギーのほとんどが熱に変わり、非常に効率の悪い光源であった。

[0003]

近年、半導体レーザ(LD)の短波長化が進み、400 nm近くの発光波長のLDが出現し、このため水銀ランプに代わる光源として露光に用いる可能性がでてきた。しかし1個のLDの出力には限界があり、複数のLDを使わざるを得ない。LDを多数並べてそれぞれの光源から出射する光を被照明物体に一様に照射しようとしても、それぞれの光源から出射する光の指向性はガウス分布に近くなり、照射領域の中心付近が強く周辺が弱くなる。また、LDの出射主光線に垂直な方向の内、1方向の広がり角は小さいが、これと垂直な方向は大きくなり、この広がり角の比は1:3から1:4程度ある。このような各LDからの光を所望の被照明領域に均一にかつ効率良く照射することは不可能であった。即ち、均一に照明しようとすると、効率が低下するし、効率を高くしようとすると均一性が悪くなるという相反する現象が起こってしまっていた。

[0004]

本発明の目的は、上記課題を解決すべく、半導体レーザ等の1個当りの発光エネルギーが小さな光源を複数用いて、高い効率で、かつ均一に被照射物に照射することができるようにして、省エネルギーで高性能な照明を実現した照明方法およびその装置を提供することにある。

また、本発明の他の目的は、基板等にパターンを露光する際、高スループットで、良好なパターン露光を実現することができる露光方法およびその装置を提供することにある。

[0005]

【課題を解決するための手段】

上記目的を達成するために、本発明は、分離して1次元若しくは2次元に配列された複数のLD等の光源の各々から光を出射させ、該複数の光源の各々から出射された光を光インテグレータにより空間的に分解して多数の擬似2次光源を生成し、該生成された多数の擬似2次光源からの光をコンデンサレンズにより重ね合わせて被照明領域に照明することを特徴とする。光源アレーとしては、多数の光源または該光源から得られる2次光源を被照明領域の形状に概ね相似な領域内にほぼ均一な分布に配列させる。このように構成することにより均一で効率の高

[0006]

また、本発明は、上記光インテグレータを複数のロッドレンズの配列から成り立つようにし、各ロッドレンズの断面形状の縦横比が被照明領域の縦横比にほぼ等しくすることによって、2次元平面上に並ぶ光源もしくは2次光源の出射光を最も効率良く被照明領域に均一に照明でき、かつ照明光学系を比較的小型に構成することが可能になる。

以上説明した構成によれば、被照射物体上で空間周波数の低いむらはほとんど無くすことが可能となる。

[0007]

しかし、光源にLDを用い、各LDから出射した光が複数のロッドレンズからなる光インテグレータを通すと1つのLDから出射し、各ロッドレンズを透過した光は被照射物体上で干渉し、干渉縞を形成する。このため、照明光に空間周波数の高いむらが生じる。複数のLDの数が非常に大きくなると、この空間周波数の高いむらは少なくなるが、完全には無くならない。

[0008]

そこで、本発明は、上記光インテグレータに入射する直前の光路または光イン テグレータを出射する直後の光路中に波面を変化させる変調器を挿入することに より、上記の空間周波数の高いむらが変化し、時間平均した照明光は空間周波数 に依らずほぼ完全に一様にすることが可能になる。

[0009]

また、本発明は、上記複数の光源または該光源から得られる2次光源から出射する光の発散角が出射光の光軸に垂直な面に向けて面内任意の2方向に対し1対1.5の比以内になるようビーム発散角を調整することにより、通常円形の有効径を有する光インテグレータの入射面に光源からの出射光を有効に照明光として用いることが可能になる。即ち、上記ビーム発散角の調整は、シリンドリカルレンズを用いて行う。具体的には、ビーム発散角の調整は、LDの直交する2軸の発散角に応じて焦点距離の異なる2種類のシリンドリカルレンズを光路に沿って前後に配列して行う。

また、本発明は、更に、複数の光源から出射するそれぞれの光のエネルギーが 所望の一定値以内になるよう個々の光源のエネルギーを制御する。このようにす ることにより、照明光の一様性が得られると共に、照明光強度を一定に保てる。

また、本発明は、上記複数の光源または該光源から得られる2次光源より出射する各々の出射光を、集光光学系により上記光インテグレータ上の対応する位置に入射させることにより、照明場所に依存せず一様で指向性の均一な照明を実現することが可能になる。

[0011]

以上説明した照明方法によれば、分離した多数の光源から一様な照明光を得ることが可能になり、マスクあるいは2次元光変調器等の被照明領域内の照度むらは±10%以内となり、複数の光源から発する光のエネルギーの30%以上が被照明領域内に到達することが初めて可能になった。

[0012]

また、本発明は、上記照明方法あるいは照明装置を用い、分離した複数の光源、特に複数の半導体レーザを配列した光源からの出射光を被照明物であるマスク、レチクル、あるいはマスクレス露光に用いる2次元光変調器、即ち液晶型の2次元光変調器やディジタル・ミラー・デバイス等に照射し、露光する。このようにすることにより、一様な強度分布と、所望の指向性を備えた良好な露光照明光が得られる。

[0013]

特に、複数の光源を例えば方形形状の被照明領域と相似な形状に配列し、これら光源から得られる光を光インテグレータに所望の入射角で入射させ、出射光を被照明領域に照射する光として用いることにより、高効率で一様な照明を実現する。光源として半導体レーザを用いる場合には光インテグレータの前又は後に波面を変化させる変調器を用いれば、レーザ光の干渉縞むらを除去し、一様照明を得ることができる。この照明を基板の露光に用いることにより、スループットが高く、良好なパターンが露光できる。

[0014]

本発明に係る照明方法並びに露光方法及びその装置の実施の形態について図面を用いて説明する。

[0015]

まず、本発明に係る露光装置の第1の実施の形態を図1を用いて説明する。分離した複数の光源を1次元或いは2次元に配列した光源アレーである、LDアレー1は、405mm付近(380~420mm)の波長の光が30mW程度の出力で出射する青(紫)色半導体レーザ11を基板の上に2次元配列して構成される。個々の半導体レーザ11からの出射光は、集光レンズ(集光光学系)12により、後に図5及び図6を用いて詳細な説明を行う光インテグレータ13に入射する。光インテグレータ13を透過した光は、照射光学手段であるコンデンサレンズ(コリメートレンズ)14を通り、ミラー15で反射してマスク2に照射する。マスク2は、通常のクロムまたは酸化クロムマスク2aでも良いし、マスクの機能を有する例えば液晶やディジタル・ミラー・デバイス(Digital Mirror Device)等の2次元光変調器2bでも良い。光インテグレータ13は、集光レンズ(集光光学系)12により集光された2次元に配列された多数の半導体レーザ11からの出射光束を空間的に分解して多数の擬似2次光源を生成して重ね合わせて照明する光学系である。

[0016]

このマスク2 a または2次元光変調器2 b のパターン表示部21 (例えば方形形状で形成される。)を透過もしくは反射した光は、投影レンズ3により、被露光基板5上の露光エリア51にパターン21を投影露光する。基板チャック及びxyステージからなる基板移動機構4によって基板5が移動されることにより、基板5上の所望のエリアに亘り、パターンを次々と露光して行く。通常のマスク2 a を用いる場合にはマスク上に描画されたパターンが繰り返して露光される。また、2次元光変調器2 b を用いる場合には基板5のほぼ全体に所望のパターンが1セット、あるいは数セット露光されることになる。

[0017]

制御回路6は、半導体レーザ11を露光のタイミング毎に点燈させ、所望の露

9/

光量が基板5になされたら消える制御を行う。即ち、光路中に設けられたビーム スプリッタ171に入射する光の1%前後の光を光検出器17に取りこむ。光検 出器17で検出された光強度は制御回路6で積分される。この積分値は基板5に 露光する露光照明光の積算露光量になるので、この値があらかじめ制御回路6に 記憶させておいた所望の設定値(最適露光量)に達した段階で半導体レーザ11 をOFFにして、露光を終了する。

[0018]

また、制御回路6は、2次元光変調器2bの表示2次元パターン情報に基づき 2次元光変調器2bを駆動制御する信号を送る。また、制御回路6は基板移動機 構4を駆動し、基板上に所望のパターンをほぼ基板全体に露光するように、基板 5を2次元光変調器2bの表示情報と同期させながら移動させる。

[0019]

ステージ4を連続移動して基板5にスキャン露光する場合には、制御回路6は 、上記露光モニタしている光検出器17の信号強度に基づきステージの走査速度 を制御する。また、2次元光変調器2bを用いる場合には、制御回路6は、この , 駆動と、上記光検出器17の信号とステージの駆動信号をトータル制御する。 .

[0020]

複数の半導体レーザ11は、個別にON-OFFできるので、図1に示す光検 出器17を用いて個々のレーザ出力を順次モニタすることが可能である。従って 、制御回路6は個々のLD11に順次点滅の信号を送り、これと同期して、光検 出器17の信号強度を検出することにより、LD11の劣化に伴う出力低下が分 かる。そこで、制御回路6は、出力が低下すれば出力が所望の一定値以内になる ように電流値をある値まで上げて、個々の光源のエネルギーを制御する。即ち、 制御回路6は、多数の光源11から出射するそれぞれの光のエネルギーが所望の 一定値以内になるよう個々の光源11のエネルギーを制御する。このようにする ことにより、照明光の一様性が得られると共に、照明光強度を一定に保てること が可能となる。

[0021]

図1に示す複数の半導体レーザ11は等ピッチの均一な密度分布で配列されて

[0022]

半導体レーザ11は通常その出射光の広がり角が図2の紙面内の方向(x方向)と紙面に直角な方向(y方向)で異なる。半導体レーザ11の出射光の広がり角は、図2の紙面内の方向(x方向)では例えば最大値に対する半値を与える場所の方向が光軸から測り28度程度、紙面と直角な方向(y方向)では8度程度になる。このため、この両方向(x方向及びy方向)の広がり角をほぼ等しくするか、支障のない最大値として1.5倍以内にする必要がある。このようにすると後に説明するように光インテグレータ13に入射する各半導体レーザからの光の強度分布が回転対称にほぼ等しくなる。

[0023]

そして、後述するように、光インテグレータ入射光の強度分布は、光インテグレータ出射光の強度分布と等しくなる。また、光インテグレータ出射位置は、投影露光レンズ3の入射瞳と結像関係になる。このため、投影露光レンズ3の瞳上で回転対称の強度分布になるような露光照明が実現する。このように投影露光レンズ3の瞳上で強度分布を回転対称にすることにより、マスク2aもしくは2次元光変調器2bのパターンの方向に依存せずほぼ等しい照明の指向性が得られる。この結果パターンの方向に依存しない解像特性が得られ、基板上に歪(いびつ)になることなく正確に露光されることになる。なお、103は、光インテグレータ出射位置に設けられた視野絞りである。

[0024]

このように図2に示すシリンドリカルレンズ112は半導体レーザ(LD)の 光源の虚像を11′の位置に結像することにより、あたかも11′の点光源から 出射するようになり、LD出射時には紙面内(x方向)に光軸から28度程度の 広がり角を持っていたレーザビームが1度程度の広がり角になる。同様に紙面に 垂直方向に並ぶシリンドリカルレンズ113はLDの光源の虚像をほぼ11′の 位置に結像することにより、あたかも11′の点光源から出射するようになり、 L D 出射時には紙面に直角方向(y 方向)に光軸から8度程度の広がり角を持っていたレーザビームが1度程度の広がり角になる。このようにどのL D 1 1 から 出射したレーザビームも、シリンドリカルレンズ112と113によりほぼ回転 対称の強度分布が実現する。即ち、シリンドリカルレンズ系100で2次光源11′から出射する光の発散角が、出射光の光軸に垂直な面に向けて面内任意の2方向(例えば、x 方向及び y 方向)に対し、1対1.5の比以内になるようビーム発散角を調整することにより、通常円形の有効径を有する光インテグレータ13の入射面に光源11からの出射光を有効に照明光として用いることが可能になる。その結果、先に説明したように投影露光レンズ3の瞳上で回転対称の強度分布が実現し、マスク2 a または2次元光変調器2bで表示されたパターンを正確に露光することができる。

なお、図3に示すように、LDの直交する2軸の発散角に応じて焦点距離の異なる2種類のシリンドリカルレンズ112、113を、光路に沿って前後に配列することによりビーム発散角を調整することが可能となる。

[0025]

図2に示す13は光インテグレータであり、図5は光インテグレータ13を光軸方向から見た図である。光インテグレータ13は、ガラスロッド方式と、レンズアレイ方式とに大別できる。光インテグレータ13がガラスロッド方式の場合には、複数のロッドレンズ131からなっている。各ロッドレンズ131は図6に示す構造を持っている。入射側の端面1311は球凸面であり、出射側の端面1312も同じく球凸面である。この両凸面の曲率半径をRとし、ロッドレンズガラスの屈折率をnとすると、ロッドレンズの長さLはnR/(n-1)となる。このようなロッドレンズ131に図6(A)に示すように光軸にθx´の角度で入射するビーム成分Bxy´は、入射面1311の球凸レンズの効果により、出射端面に絞り込まれる。さらに絞り込まれた後この出射端1312から出射するビームBxyは、この出射面の球凸レンズの効果により、入射光の入射角θx´依存せず、総て光軸(ロッドレンズの軸に平行)に平行な主光線を持つ出射光となる。

前述の通りシリンドリカルレンズ112と113により、11´の虚像位置から出射した広がり角1度程度のレーザビームは、集光レンズ12に入射する。この集光レンズ12の前側焦点は虚像位置11´に、後側焦点は光インテグレータ13の入射端にある。従って、この集光レンズ12を透過した各LD11から出たレーザ光は平行ビームとなり、光インテグレータ13に入射し、かつ上記のロッドレンズ131の入射端に入射するビーム成分Bxy´の光インテグレータ13への入射の角度(θ x´、 θ y´)は、図3および図4に示す半導体レーザ11の配列位置(x、y)に対応している。即ち、LDアレー1は、例えば、図4に示すようにLD11を配列している。この配列は、一つのLDのx方向の径をDLDx、y方向の径をDLDy、x方向のピッチPLDx、y方向のピッチPLDy、x方向の個数 m_x 、y方向の個数 n_y としたとき、x方向の長さ w_{LDAx} 、およびy方向の長さ w_{LDAx} を次に示す(1)式及び(2)式で表すことができる。

[0027]

$$W_{LDAx} = (m_x - 1) P_{LDx}$$
 (1)

$$H_{LDAy} = (n_y - 1) P_{LDy}$$
 (2)

このように、集光レンズ(コリメートレンズ) 12によって、LD11のピッチ(P_{LDx} 、 P_{LDy})と光インテグレータ13を構成するロッドレンズ131のピッチ(Wx、Hy)とを対応させて、2次光源11′より出射する各々の出射光を、光インテグレータ13上の同一位置に入射させることにより、照明場所に依存せず一様で指向性の均一な照明を実現することが可能になる。

[0028]

このように各LD11から光インテグレータ13に照射するビームB'は、平行ビームで回転対称に近く光インテグレータ13の入射面の中心(光軸)に中心を持つガウス分布となる。光インテグレータ13は多数のロッドレンズ131の集まりであるので、1個のロッドレンズ131に入射する光はガウス分布の微小な一部となる。このため、1個のロッドレンズ131内ではほぼ一様な強度になっている。また、ロッドレンズ入射光の入射端面1311での位置と出射光の出射方向が対応している。この結果、出射光は光軸を中心にしたどの広がり角への

[0029]

[0030]

$$\theta \times m = n \times 2 L \tag{3}$$

$$\theta \ y \ m = n \ H \ y / 2 \ L \tag{4}$$

光インテグレータ出射面1312とマスク2a或いは2次元光変調器2bは、 焦点距離fcのコリメートレンズ14のそれぞれ前側焦点面と後側焦点面である ため、マスク2a或いは2次元光変調器2bを照射するビームの(x, y)座標 範囲Wmx及びHmyは次に示す(5)式及び(6)式で与えられる。

[0031]

$$Wm x = f c \cdot \theta x m = Wx \cdot n f c / 2 L$$
 (5)

$$Hmy = f c \cdot \theta y m = Hy \cdot n f c / 2 L$$
 (6)

即ち、各ロッドレンズの光軸に垂直な断面形状の縦横比 r_1 (=Wx/Hy)と、被照明領域(21)の縦横比 r_0 (=W m_x /H m_y)の比 r_1 / r_0 を1にすることにより、マスク2a或いは2次元光変調器2bの必要な部分にのみ一様な光で露光することが可能になる。上記比 r_1 / r_0 は、0.8以上1.2以下であれば、従来の露光照明方法に比べ十分有効な光利用効率が実現する。

[0032]

光インテグレータ13がレンズアレイ方式の場合には、光源に近い方を第1の

[0033]

次に、本発明に係る露光装置の第2の実施の形態について図7を用いて説明する。図7に示す部品番号と図1に示す部品番号が同じものについては同一の物を表す。第2の実施の形態において、第1の実施の形態と相違する点は、照明光を空間周波数に依らずほぼ完全に一様になるようにして干渉縞の発生を防止するために、波面を変化させる変調器であるディフューザ16を設置したことにある。この構成により、各LD光源11から出射した光は、シリンドリカルレンズ112、113からなるシリンドリカルレンズ系100及び集光レンズ12を通過し、回転対称に近い強度分布を持つ平行ビームB′として光インテグレータ13に入射する前にディヒューザ16を通過する。

[0034]

このディヒューザ16は、波面を変化させる変調器であり、例えば、図8に示すように、直結されたモータ161を回転駆動させてガラス円板16を回転させて構成される。ガラス円板16は放射状に光学研磨されており、図9(A)のCC断面のガラス表面の形状は、図9(B)に示すように概ね正弦波状の高さ変化をしている。この高さ(粗さ)変化量は数 μ mである。ところで、163は、ディヒューザ16に入射するビーム光束を示し、162は、上記ビーム光束163の中心のディヒューザ16上における回転軌跡を示す。

1周期の長さは円板16の回転数と露光時間により決まり、概ね1ステップ露光の間に露光光軸上で1周期程度変化するようにする。また、スキャン露光を行う場合には、1絵素分移動する間に1~数周期程度変化するようにする。これら回転速度の制御は制御回路6により2次元光変調器2bの表示制御、ステージ4の移動制御と同期させて制御するが、一旦回転を開始すると上記した速度で一定回転させる。その結果、マスク2a或いは2次元光変調器2bに対する照明光において、空間周波数の高いむらを変化させて時間平均させることによって空間周波数に依らずほぼ完全に一様になるようにして干渉縞の発生を防止することが可能となる。なお、図7に示した波面を変化させる変調器16は、光インテグレータ13の直前に設置されているが、光インテグレータ13の直後に設置しても同様の効果が得られる。

[0036]

次に、本発明に係る第3の実施の形態について図10を用いて説明する。第3の実施の形態において、第1及び第2の実施の形態と相違する点は、LDアレーを複数設置して露光光量を増大させるものである。半導体レーザ11の出射光は直線偏光であるため、例えばN個ある総てのLDアレー1aからの出射光がx方向の直線偏光であるように向きを揃えてLD11を設置する。他方LDアレー1bはy方向が直線偏光であるようにN個ある総てのLD11を設置する。LDアレー1aから出射されるx方向の直線偏光は、偏光ビームスプリッタ114でほぼ100%が透過してP偏光となる。他方LDアレー1bから出射されるy方向の直線偏光は、偏光ビームスプリッタ114でほぼ100%が反射してS偏光となる。この結果、2N個のLD11からのレーザ光は総てロス無く露光光学系に導かれる。

[0037]

上記説明では、LDアレー1bはy方向が直線偏光であるように設置されているが、LDアレー1aと同様にx方向が直線偏光であるように設置することもできる。この場合には、LDアレー1bから出射し、偏光ビームスプリッタ114に入射するまでの途中の光路に1/4波長板を設置し、この1/4波長板を透過

[0038]

半導体レーザ、LDは通常透明な窓を有する小さい管に封じられているが、この管の直径は6mm弱程度であるため、2次元的な配列の数に限界がある。そのため、本第3の実施の形態によれば、複数のLDアレーを設けることによって、この数の限界を倍増させる効果が得られる。

[0039]

偏光ビームスプリッタ114を通過したレーザ光は直交する2方向の偏光成分を含み、集光レンズ12、光インテグレータ13、コリメータレンズ14、マスク2或いは2次元光変調器2、投影露光レンズ3を通り、基板に至る。これら光路途中の部品は偏光に係わり無く、レーザ光を通過させるので、基板上に2倍の露光量を照射させることができる。この結果、露光時間は2分の1で済むことになり、スループットの高速化が実現できる。

[0040]

なお、制御回路6から露光するパターンの情報を元に、2次元光変調器2bが 駆動され、この駆動情報に同期して、ステージ2及びLDアレー1a及び1bが 駆動される。制御回路6からのLD11の駆動は、露光光が基板5の感度に対し 最適になるように点燈時間が制御され、露光を行わないタイミングではLDが消 える。

[0041]

次に、本発明に係る露光装置の第4の実施の形態について図11を用いて説明する。第4の実施の形態において、第1~第3の実施の形態と相違する点は、マスク2としての2次元光変調器2bとして、透過型を用いたのに対して反射型を用いることにある。要するに、2次元光変調器2bは、透過型でも反射型でもよい。第4の実施の形態では、反射型液晶2次元光変調器等の反射型の2次元光変調器2bbを用いている。そして、LD光源1から出射したレーザビームをビームスプリッタ145により2分して2つの露光光学系に導いている。144は2次元光変調器の表示部と共役な位置関係にある視野絞りである。この視野絞りの像がレンズ142a,143a及び142b、143bにより2次元光変調器2

[0042]

半導体レーザ11を出射した光は図の基板面即ち水平面に平行な直線偏光である。そこで光インテグレータ13を通過した後1/4波長板105により円偏光にする。ビームスプリッタ145は偏光ビームスプリッタであるので、ビームスプリッタ145に入射する円偏光のうち水平偏光成分であるP偏光成分は偏光ビームスプリッタ145で反射する。反射したS偏光成分は垂直方向の直線偏光であり、ミラー151bと152bで反射し、水平な直線偏光となる。

[0043]

このように偏光ビームスプリッタ145で分岐した2つの露光ビームは共に水平な直線偏光となり、偏光ビームスプリッタ153a及び153bに入射する。これらの偏光ビームスプリッタ153a及び153bにとって入射光はS偏光であるので、100%反射し、反射型液晶からなる2次元光変調器2bba及び2bbbに垂直に入射する。この反射型液晶2次元光変調器2bba及び2bbbの各表示絵素に表示情報に応じて電圧印加のON,OFFを行うと、これに応じて反射光の偏光がそのまま又は直角に変化する。従って、反射光が再び偏光ビームスプリッタ153a及び153bを通過させると、偏光が直角に変化した絵素のみがこのビームスプリッタ153a及び153bを通過してくる。

このようにして得られた2次元光情報は、投影露光レンズ3a及び3bにより、基板5上の151a及び151b上に露光パターンとして結像投影される。

[0044]

次に、本発明に係る露光装置の第5の実施の形態について図12を用いて説明する。第5の実施の形態は、反射型2次元光変調器としてディジタル・ミラー・デバイス (Digital Mirror Device) 2 b b c を用いたものである。ディジタル・ミラー・デバイス2 b b c は、各絵素に電気信号で駆動するメンプレンミラーを設けて構成される。各ミラーに照射した露光光は信号がONの部分ではθだけミラーが傾き、OFF部ではミラーが傾かない。例えば露光光をミラー154で

[0045]

次に、本発明に係る露光装置の第6の実施の形態について図13を用いて説明する。第6の実施の形態は、光源アレー1として、複数の半導体レーザ11から出射した光を図示しないレンズ等の導光光学系により受け入れ、光ファイバー1101で導いて2次光源になる出射端1102から出射するように構成するものである。光ファイバー1101の各ファイバ端から出射した光はビーム成形光学系1103により、所望の広がり角を持って出射する。2次光源となる出射端1102は2次元光変調器2bの表示領域21とほぼ相似な発光領域を有する。このようにすることにより既に説明したように2次光源を出射した光は効率良く、かつ一様に2次元光変調器2bを照明する。

[0046]

次に、本発明に係る光源アレーであるLDアレイの実施例について図14を用いて具体的に説明する。これらLDアレイの実施例において、図14(A)に示すLDアレイ・1 Aは今まで説明したものであり、LD配列がxy方向に等ピッチで配列されている。他方、図14(B)に示すLDアレイ1Bは最稠密配列されている。即ち正三角形の頂点にLD11が配列している。この実施例の場合にはLDパッケージの円の外径Dに対し、配列ピッチをPとすると、Pは例えば1.07~1.1D程度にすることが可能である。図14(A)と(B)の112はLDの実装領域を描いた互いに合同な矩形である。最稠密実装の(B)の方が高実装密度になる。具体的な数値評価を行うと、LDアレイ1AのLD実装密度は1/P²となるのに対し、LDアレイ1Bでは1.154/P²となり、実装密度を高く、即ち光源の出力を15%程度大きくすることが可能になる。

[0047]

図14に示す111は、多数配列したLDから発生する熱によりLDが高温に

[0048]

本発明は、以上説明したLDアレイの実施例に限定されるものではない。即ち、用いる光源として、比較的指向性の高い光源、例えば発光ダイオード(LED) やそれ以外の発光面積の小さなランプを用いても、本発明を実現させることが可能である。また、半導体レーザ以外の複数のレーザ光源を用いても実現できる

[0049]

次に、本発明に係る光源アレーについての他の実施例について図15を用いて 説明する。この光源アレー1は、比較的発散角の小さな、通常のガスレーザ光源 や、固体レーザ光源を用いるものであるが、レーザ光源そのものは2次元に配列 しているわけではない。即ち、どのレーザからも同じ方向にレーザ光を発射させ る必要がない。光軸方向のレーザ断面積が大きい場合、図15に示すようにミラ ー115p、115qを用いて光路を折り返すことにより、複数のビームの密度 をレーザの実装密度より高くすることが可能である。

[0050]

図15の実線部(1P)は、紙面内の断面でのレーザ光源11pの配列であり、点線(1Q)は、紙面と平行で一定の間隔にある断面でのレーザ光源11qの配列である。実際にはこのような面が3面以上存在している。ミラー115pや115q等で折り返されたビームは図の左側に進み、2次元分布している。1106はマイクロレンズであり、各マイクロレンズの光軸を各ビームの中心に一致させている。このマイクロレンズ1106を通過した光は、2次光源面1105にそれぞれのビームが集光する。そして、この2次光源面1105は、図1、図2、図7、図10~図12に示す集光レンズ12の前側焦点面に一致するように配置される。

[0051]

[0052]

光源アレー1Aとして、複数の波長のLEDやLDを用いる場合には、図1~図4或いは図14に示すように構成される。そして、複数の光源11は、図16に示すように、例えば波長の異なる複数の種類の光源11A、11B、11C、11Dからなる。このように複数の種類の光源を各種類で複数用いる場合には図16に示すように各種類が偏りなく分布するよう配列する事が望ましい。

[0053]

以上説明した光源アレーは、分離した複数の光源を2次元配列しているが、照明領域が長細い場合には1次元に配列したしても良いことは明らかである。

[0054]

また、以上説明した実施の形態によれば、多数の半導体レーザを配列し、出射 光を効率良く照明光に用いることが可能になり、従来の水銀ランプを光源にする 場合に比べ投入電気エネルギーを有効に基板の露光に用いることが可能になり、 省エネルギーに貢献できる。また固体光源を用いることが可能になり、光源の長 寿命が実現し、メンテナンスが容易になった。

[0055]

【発明の効果】

本発明によれば、半導体レーザ等の1個当りの発光エネルギーが小さな光源を 複数用いて、高い効率で、かつ均一に被照射物に照射することができるようにし て、省エネルギーで高性能な照明を実現した効果を奏する。

また、本発明によれば、省エネルギーで高性能な照明を実現することにより、 基板等にパターンを露光する際、高スループットで、良好なパターン露光を実現 することができる効果を奏する。

【図面の簡単な説明】

本発明に係る露光装置の第1の実施の形態を示す構成斜視図である。

[図2]

半導体レーザ光源とそのビーム成形と光インテグレータ部との関係を示す図で ある。

【図3】

シリンドリカルレンズによるビーム成形を示す斜視図である。

【図4】

半導体レーザの配列を説明するための図である。

【図5】

光インテグレータにおけるロットレンズの配列状態を示す図である。

【図6】

光インテグレータを構成するロッドレンズへの入射光と出射光との関係を説明 するだめの図である。

【図7】

本発明に係る露光装置の第2の実施の形態を示す構成斜視図である。

図8

波面を変化させる変調器と光インテグレータとの関係を説明するための図である。

【図9】

波面を変化させる変調器の詳細説明図。

【図10】

本発明に係る露光装置の第3の実施の形態を示す構成斜視図である。

【図11】

本発明に係る露光装置の第4の実施の形態を示す構成斜視図である。

【図12】

本発明に係る露光装置の第5の実施の形態を示す構成斜視図である。

【図13】

本発明に係る露光装置の第6の実施の形態を示す構成斜視図である。

【図14】

複数個光源を配列する実施例を説明するための図である。

【図15】

光源アレーとして複数のレーザ光源を用いる場合を示した図である。

【図16】

複数の種類の光源を用いる場合の配列を示す図である。

【符号の説明】

1、1 a、1 b、1 A…光源アレー(LDアレー)、2…マスク、2 a…クロムマスク、2 b…2次元光変調器、2 b a…透過型2次元光変調器、2 b b、2 b b a、2 b b b…反射型2次元光変調器、2 b b c …DMD、3、3 a、3 b …投影露光レンズ、4 …ステージ(基板移動機構)、5 …基板、6 …制御回路、11…光源(LD)、11' …2次光源(光源の虚像)、11 p、11 q …レーザ光源、12 …集光レンズ(集光光学系)、13 …光インテグレータ、14 …コンデンサレンズ(コリメートレンズ)、15 …ミラー、16 …波面を変化させる変調器、17 …光検出器、21 …パターン領域、51 …露光エリア、100 …シリンドリカルレンズ系、103 …視野絞り、105 …1 / 4 波長板、112、113 …シリンドリカルレンズ、114、145 …偏光ビームスプリッタ、115 p、115 q …ミラー、131 …ロッドレンズ、144 …視野絞り、153 a、153 b …偏光ビームスプリッタ、154 …ミラー、171 …ビームスプリッタ、1101 …光ファイバー、1103 …ビーム成形光学系、1105 …2次光源面、1106 …マイクロレンズ。

[図1]

【図3】

【図4】

【図6】

【図9】

図 9

(B) CC 断面上の形状

図15

【図16】

【要約】

【課題】

半導体レーザ等の1個当りの発光エネルギーが小さな光源を複数用いて、高い効率で、かつ均一に被照射物に照射することができるようにして、省エネルギーで高性能な照明を実現し、その結果、基板等にパターンを露光する際、高スループットで、良好なパターン露光を実現することができる。

【解決手段】

複数の光源11を2次元配列し、これら光源11から出射した光を光インテグレータ13に導く。この光インテグレータ13は多数のロッドレンズ131の配列からなり、各ロッドレンズ131の光軸に垂直な断面形状の縦横比 r_1 と上記被照明領域21の縦横比 r_0 の比 r_1 / r_0 は0.8以上<math>1.2以下である。上記光源11が半導体レーザ等コヒーレントな光の場合、光インテグレータに入射または出射する光を、波面を変化させる変調器16を通過させる。

【選択図】 図1

特願2002-195086

出願人履歴情報

識別番号

[000005108]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所

東京都千代田区神田駿河台4丁目6番地

氏 名

株式会社日立製作所

特願2002-195086

出願人履歴情報

識別番号

[000233332]

1. 変更年月日 [変更理由] 住 所

1990年 8月31日 新規登録 神奈川県海老名市上会身2

神奈川県海老名市上今泉2100日立精工株式会社

2. 変更年月日 [変更理由] 住 所

1999年 4月15日 名称変更

住 所 神奈川県海老名市上今泉2100 氏 名 日立ビアメカニクス株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.