МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе № 1 по дисциплине «Методы оптимизации»

Тема: Методы безусловной оптимизации

Студент гр. 0304	Асташёнок М.С.
Преподаватель	Мальцева Н.В.

Санкт-Петербург 2023

Цели работы.

- 1. Решение задачи безусловной минимизации функций с помощью стандартной программы.
- 2. Исследование и объяснение полученных результатов.

Постановка задачи (Вариант 15).

Минимизировать функцию

$$F(x_1, x_2, a) = (x_2 - x_1^2)^2 + a(x_1 - 1)^2$$

с точностью до 10⁻⁵, т.е.:

$$|F(x_{1k}, x_{2k}, a) - F(x_1^*, x_2^*, a)| < 10^{-5}$$

градиентными методами — методом с дроблением шага и методом наискорейшего спуска.

Оценить скорость и порядок сходимости обоих методов.

Провести сравнительный анализ эффективности методов в зависимости от начальной точки и величины шага.

Параметр a положить равным a = 20.

Основные теоретические положения.

<u>Формулы для оценки скорости и порядка сходимости градиентных</u> методов в данной лабораторной работе:

$$\lim_{k \to \infty} \frac{\ln \Delta_{k+1}}{\ln \Delta_k}$$
 - порядок сходимости метода, где $\Delta_k = ||\mathbf{x}_k - \mathbf{x}^*||$ $\phi(\mathbf{x}_k) - \phi(\mathbf{x}^*) < \text{const} \cdot \mathbf{q}^k$ – геометрическая скорость сходимости, где $\mathbf{q} < 1$

$$\phi(x_k)$$
 - $\phi(x^*) \le \text{const} \cdot q^{2k}$ – квадратичная скорость сходимости, где q<1

Градиентные методы.

В данной лабораторной работе мы рассматриваем следующую задачу:

$$\phi(x) \to min, x \in X$$
,

Где X — замкнутое ограниченное множество в $R^n, \phi(x)$ — непрерывная целевая функция над R^n .

Данная задача называется *задачей безусловной минимизации*. Применение градиентных методов в данной задаче заключается в построении релаксационной последовательности:

$$\{x_k\}: x_{k+1} = x_k - \alpha_k \phi'(x_k)$$

Градиентные методы, в частности, перечисленные ниже, различаются между собой способом выбора α_k .

Метод наискорейшего спуска.

Данный метод представляет собой одношаговый градиентный метод первого порядка.

На луче $\{x \in R^n : x = x_k - \alpha \phi'(x_k), \alpha \ge 0\}$, направленном по антиградиенту, вводится функция одной переменной:

$$\psi(\alpha) = \phi(x_k - \alpha \phi'(x_k)), \alpha \ge 0$$

И определяется α_k из условий:

$$\alpha_k = \arg\min \phi(x_k - \alpha \phi'(x_k))$$

Скорость сходимости данного метода линейная, а порядок сходимости равен единице. Стоит также отметить, что на каждом следующем шага метода направление спуска меняется на ортогональное (как показано на рисунке 1).

Рисунок 1. Спуск с помощью МНС с ортогональной сменой направления шага.

Метод с дроблением шага.

Метод с дроблением шага представляет собой одношаговый метод первого порядка.

Данный метод предлагает адаптивный способ выбора коэффициентов α_k . Выбираются некоторые $const\ \beta>0$ и $0<\lambda<1$ (обычно $\lambda=\frac{1}{2}$). Для коэффициента $\alpha=\beta$ проверяется выполнение условия $\phi(x_k-\alpha\phi'(x_k))\leq \phi(x_k)$. Если оно выполняется, то полагают $\alpha_k=\alpha$. Если нет, то производится дробление шага, т.е. принимается $\alpha=\lambda\beta$, и т.д. до тех пор, пока не выполнится требуемое неравенство.

Процесс дробления не может продолжаться бесконечно, поскольку $-\phi'(x)$ – направление убывания функции. Первое α , при котором условие выполнено и принимается за α_k .

Выполнение работы.

1. Выбор перечня вариантов запуска программы.

Функция $F(x_1,x_2,a)=(x_2-x_1^2)^2+20*(x_1-1)^2$ очевидно неотрицательная, т. к. она состоит из суммы неотрицательных выражений (квадратов разностей). Также очевидно, что функция принимает значение 0 при $x_1=1,x_2=1$ и любом значении параметра а. Таким образом, минимум функции достигается в точке $x^*=(x_1^*,x_2^*)=(1,1)$.

Для сравнения эффективности методов в зависимости от параметров x_1, x_2 можно выбрать начальные точки следующим образом:

Начальная точка	Комментарий
(5, 5)	Точка, близкая к точке минимума x^*
(50, 50)	Точка, далекая от точки минимума x^*
(5, 50)	Параметр x_1 близок к x_1^* , параметр x_2 далек от x_2^*
(50, 5)	Параметр x_1 далек от x_1^* , параметр x_2 близок к x_2^*

Для сравнения эффективности метода с дроблением шага в зависимости от выбора β , можно рассмотреть следующие значения этого коэффициента:

$$eta \in \{0.1, 1, 10, 100\}$$
, т. к. $eta - const$ и $eta > 0$

2. Решение задачи минимизации.

Для решения задачи использовалась предоставленная программа. Количество шагов задается равным 100, интервал для печати — 1. Начальная точка, длина шага и метод задаются в зависимости от варианта запуска программы. В протокол работы включаются около 20 последних шагов.

Метод наискорейшего спуска:

				
1 2 3 4 5	1.469814 1.044794 0.998572 1.000598 0.999924	5.252156 0.979133 0.983730 0.999042 0.999132	13.9737493580 0.0527776347 0.0002207817 0.0000118049 0.0000006286	9 18 10 17 11
	Ри	сунок 2. МНС п	$p_{\rm H} \ {\rm x} = (5, 5)$	
1 2 3 4 5 6	6.435001 1.449773 0.987433 0.993331 0.999361 0.999683	49.788970 0.803326 0.850374 0.992722 0.992473 0.999676	661.0046355700 5.7320508494 0.0186961723 0.0009256783 0.0000472272 0.0000021098	9 20 11 17 11 17
	ГИС	зунок 3. МПС пр	ы x – (3, 30)	
12345678901123456789012234567890123456789012345678901234567890123456	-5.090879 1.531791 1.735263 1.310915 1.458723 1.168789 1.264473 1.090051 1.146134 1.047062 1.078092 1.024492 1.020793 1.006231 1.010495 1.003154 1.0005303 1.001578 1.000799 1.000799 1.000400	5.548753 5.958509 4.250167 4.199636 2.921052 2.887531 2.082122 2.061400 1.584220 1.572576 1.302611 1.158107 1.154893 1.079730 1.078109 1.040429 1.039599 1.040429 1.039599 1.010259 1.010259 1.010259 1.005139 1.0055034 1.002599	1156.8439221000 18.7034800730 12.3474226360 8.0894085961 4.8376659919 2.8846450885 1.6324274856 0.9246420008 0.5003259245 0.2710985151 0.1434702097 0.0760198186 0.0389401573 0.0199587248 0.01100694139 0.0050810052 0.0025764686 0.0013065607 0.0006553693 0.0003287852 0.0001663425 0.0000841569 0.0000221621 0.0000211229 0.0000106812	5 11 11 16 11 15 11 11 11 11 11 11 11 11 11 11
	D	4 14416	(50.5)	

Рисунок 4. МНС при x = (50, 5)

```
1.076879
1.057309
               1.005746
                                                                          0.0049314749
                                                                                                                 13
10
15
10
               1.010696
                                                                          0.0035698280
46
47
48
               1.004158
1.007744
1.003000
                                                                          0.0025851497
0.0018664223
                                           1.055655
1.041375
                                                                          0.0013479007
0.0009717535
                                            1.040184
                                           1.029828
1.028969
1.021556
1.020933
               1.005591
1.002159
49
50
51
53
55
55
56
57
60
61
                                                                                                                 14
10
10
10
10
10
10
10
10
10
10
10
10
10
                                                                          0.0007006805
                                                                          0.0007006805
0.0005062957
0.0003659010
0.0002639135
0.00019037688
0.0001376195
               1.004028
1.001560
1.002911
                                           1.015547
1.015099
1.011239
               1.001124
1.002099
1.000813
1.001517
1.000586
                                           1.010914
1.008110
1.007876
                                                                          0.0000994806
0.0000717810
                                                                          0.0000518003
0.0000374475
0.0000270741
               1.001094
1.000424
                                           1.005863
                                           1.005694
               1.000792
1.000306
                                                                          0.0000195387
                                           1.004231
62
63
                                           1.004109
                                                                          0.0000141005
               1.000571
                                           1.003059
                                                                          0.0000101956
               1.000221
                                           1.002971
                                                                          0.0000073724
                                                                                                                 10
```

Рисунок 5. МНС при x = (50, 50)

Градиентный метод с дроблением шага:

Длина шага β равна 0.1:

51	1.002819	1.028593	0.0006855023	3
52	1.000749	1.024004	0.0005176847	ĭ
53	1.002252	1.022878	0.0004388626	3
54	1.000608	1.019205	0.0003309830	$\bar{1}$
55	1.001800	1.018305	0.0002809445	3
56	1.000491	1.015365	0.0002116612	1
57	1.001439	1.014646	0.0001798417	3
58	1.000396	1.012292	0.0001353786	1
59	1.001904	1.011143	0.0001262598	2
60	1.000734	1.010776	0.0000974010	3
61	1.001522	1.008915	0.0000807709	1
62	1.000588	1.008621	0.0000623439	3
63	1.001217	1.007132	0.0000516753	1
64	1.000470	1.006897	0.0000399038	3
65	1.000973	1.005706	0.0000330630	1
66	1.000376	1.005518	0.0000255403	3
67	1.000778	1.004565	0.0000211556	1
68	1.000301	1.004415	0.0000163468	3
69	1.000622	1.003652	0.0000135371	1
70	1.000241	1.003532	0.0000104624	3
71	1.000498	1.002922	0.0000086625	1

Рисунок 6. Метод с дроблением шага при x = (5, 5) и $\beta = 0.1$

```
222
          1.002231
                          1.030849
                                           0.0007955312
                                                                  3
223
          1.003882
                          1.025572
                                           0.0006179910
                                                                  1313131313131313
224
225
226
227
                          1.024683
                                           0.0005093207
          1.001786
                          1.020461
                                           0.0003952504
          1.003099
          1.001430
                           1.019749
                                           0.0003260578
          1.002475
                          1.016371
                                           0.0002528260
228
229
230
231
232
233
234
                                           0.0002087245
          1.001144
                          1.015800
          1.001978
                          1.013098
                                           0.0001617403
          1.000916
                           1.012641
                                           0.0001336080
          1.001580
                          1.010480
                                           0.0001034790
                                           0.0000855215
          1.000733
                          1.010114
                                           0.0000662088
          1.001263
                          1.008384
                                           0.0000547402
          1.000586
                          1.008091
235
236
237
238
239
                          1.006708
1.006473
                                           0.0000423645
0.0000350370
          1.001010
          1.000469
                                           0.0000271087
0.0000224253
          1.000807
                          1.005366
          1.000375
                          1.005179
                          1.004293
          1.000646
                                           0.0000173472
240
          1.000300
                          1.004143
                                           0.0000143531
241
242
                                                                  13
          1.000516
                           1.003435
                                           0.0000111010
          1.000240
                          1.003315
                                           0.0000091864
```

Рисунок 7. Метод с дроблением шага при x = (5, 50) и $\beta = 0.1$

47	1.003185	1.031965	0.0008574612	3
48	1.000712	1.026848	0.0006564566	$\bar{1}$
49	1.002544	1.025577	0.0005489646	3
50	1.000582	1.021480	0.0004195425	$\bar{1}$
51	1.002033	1.020464	0.0003514348	3
52	1.000473	1.017186	0.0002682123	ĭ
53	1.001625	1.016374	0.0002249684	3
54	1.000383	1.013749	0.0001715078	ĭ
55	1.001299	1.013100	0.0001440055	3
56	1.000309	1.011000	0.0001096903	ĭ
57	1.001038	1.010481	0.0000921767	3
Š8	1.000249	1.008800	0.0000701640	ĭ
59	1.000830	1.008385	0.0000589999	3
6Ó	1.000201	1.007040	0.0000448858	ĭ
61	1.000664	1.006709	0.0000377634	3
62	1.000161	1.005633	0.0000287172	ĭ
63	1.000531	1.005367	0.0000241703	3
64	1.000331	1.004506	0.0000183740	ĭ
65	1.000425	1.004294	0.0000154699	3
66	1.000423	1.003605	0.0000117569	ĭ
67	1.000340	1.003435	0.0000117307	3
0.7	1.000310	1.000100	0.0000077012	J

Рисунок 8. Метод с дроблением шага при x = (50, 5) и $\beta = 0.1$

```
181
          1.002356
                            1.031908
                                             0.0008503166
                                                                     3131313131313131313
182
          1.003833
                            1.026470
                                             0.0006468416
183
184
          1.001886
                            1.025530
1.021179
                                             0.0005444073
0.0004137533
          1.003060
185
          1.001510
                            1.020427
                                             0.0003485255
                                             \begin{array}{c} 0.0002646878 \\ 0.0002231101 \end{array}
186
          1.002444
                            1.016946
187
          1.001208
                            1.016343
          1.001952
1.000967
                                             0.0001693421
0.0001428180
188
                            1.013558
189
                            1.013076
190
          1.001560
                            1.010847
                                             0.0001083493
          1.000774
1.001247
191
                            1.010461
                                             0.0000914176
192
                            1.008679
                                             0.0000693285
193
194
195
                            1.008369
                                             0.0000585145
          1.000619
          1.000997
                                             0.0000443626
                            1.006943
          1.000495
                            1.006696
                                             0.0000374530
196
          1.000797
                            1.005555
                                             0.0000283881
197
          1.000396
                            1.005357
                                             0.0000239718
198
                            1.004444
          1.000637
                                             0.0000181664
199
          1.000317
                            1.004286
                                             0.0000153429
200
          1.0005\overline{10}
                                                                     1
3
                            1.003555
                                             0.0000116255
          1.000254
                            1.003429
                                             0.0000098200
201
```

Рисунок 9. Метод с дроблением шага при x = (50, 50) и $\beta = 0.1$

Длина шага β равна 1:

67	1.000353	1.015057	0.0002084164	5
68	1.001706	1.014160	0.0001736638	6
69	1.000132	1.012817	0.0001579300	5
70	1.001536	1.012032	0.0001274392	6
71	1.000737	1.011472	0.0001108176	ĕ
72	1.001395	1.010223	0.0000941450	5
73	1.000581	1.009758	0.0000806397	ĕ
74	1.001278	1.008684	0.0000702041	Š
75	1.000447	1.008301	0.0000588559	ĕ
76	1.001182	1.007375	0.0000530351	Š
77	1.000332	1.007062	0.0000431437	ĕ
78	1.000717	1.006662	0.0000376116	ĕ
79	1.000232	1.006009	0.0000318215	Š
80	1.000635	1.005662	0.0000273546	ĕ
81	1.000146	1.005113	0.0000236771	Š
82	1.000566	1.004812	0.0000199502	ĕ
83	1.000070	1.004352	0.0000178330	Š
84	1.000509	1.004089	0.0000110038	ĕ
85	1.000005	1.003705	0.0000136547	Š
86	1.000461	1.003474	0.0000107596	ő
87	1.000204	1.003315	0.0000092798	ő
0.	I.000601	T.OUJJIJ	0.0000072770	U

Рисунок 10. Метод с дроблением шага при x = (5, 5) и $\beta = 1$

1	117	1.000847	1.015331	0.0002003021	6
1	118	1.002142	1.013626	0.0001789710	5
1	119	1.000634	1.013043	0.0001466717	6
1	120	1.001994	1.011571	0.0001369784	5
	$\bar{1}\bar{2}\bar{1}$	1.000451	1.011097	0.0001080168	6
	122	1.001162	1.010460	0.0000931835	6
	123	1.000292	1.009443	0.0000801861	5
	124	1.001035	1.008890	0.0000679117	6
	125	1.000155	1.008037	0.0000601985	5
	126	1.000927	1.007554	0.0000496759	6
	127	1.000035	1.006842	0.0000458907	5
	128	1.000838	1.006419	0.0000365295	Ğ
	129	1.000384	1.006122	0.0000316168	6
	130	1.000763	1.005453	0.0000270666	5
	131	1.000300	1.005208	0.0000230279	6
	132	1.000702	1.004632	0.0000202688	5
	133	1.000228	1.004430	0.0000168301	6
	134	1.000651	1.003933	0.0000154007	5
	135	1.000166	1.003769	0.0000123616	Ğ.
	136	1.000388	1.003554	0.0000107283	65665656565656566
	137	1.000113	1.003207	0.0000091438	Š
-					_

Рисунок 11. Метод с дроблением шага при x = (5, 50) и $\beta = 1$

```
73
74
75
76
77
78
80
81
82
83
84
85
89
91
92
93
           1.001029
                                                     0.0002211188
                                1.016199
                                                                                 65656566565656565656
                                1.014432
1.013779
1.012259
           1.001995
                                                     0.0001885580
           1.000808
                                                     0.0001609801
                                                    0.0001408788
0.0001175706
0.0001067008
           1.001830
                                1.011722
           1.000619
           1.001695
                                1.010411
           1.000455
                                1.009973
                                                     0.0000862628
                                1.009406
1.008485
           1.001019
1.000314
                                                    0.0000750479
0.0000637039
                                1.007994
1.007221
                                                    \begin{array}{c} 0.0000546038 \\ 0.0000474804 \end{array}
           1.000904
           1.000192
                                1.006794
                                                     0.0000398461
           1.000807
                                                    0.0000358433
0.0000292010
0.0000275281
0.0000215308
           1.000086
                                1.006146
1.005773
1.005233
           1.000725
           0.999993
           1.000658
                                1.004905
           1.000285
                                1.004681
                                                     0.0000185225
                                1.004167
           1.000601
                                                     0.0000160141
           1.000220
                                1.003981
                                                     0.0000135071
           1.000555
                                1.003539
                                                     0.0000120554
           1.000165
                                1.003387
                                                     0.0000098891
```

Рисунок 12. Метод с дроблением шага при x = (50, 5) и $\beta = 1$

96	1.000755	1.015338	0.0002026025	6
97	1.002328	1.013609	0.0001884428	5
98	1.000539	1.013050	0.0001491267	ĕ
99	1.001362	1.012302	0.0001288059	ĕ
100	1.000353	1.011105	0.0001106156	5
101	1.001212	1.010455	0.0000938501	
102	1.000192	1.009451	0.0000829493	Š
103	1.001086	1.008885	0.0000686239	Ğ
104	1.000052	1.008046	0.0000631363	5
105	1.000980	1.007549	0.0000504356	6
106	1.000454	1.007200	0.0000437061	ē.
107	1.000892	1.006413	0.0000373414	5
108	1.000356	1.006124	0.0000318254	6
109	1.000819	1.005448	0.0000279327	5
110	1.000272	1.005210	0.0000232515	6
111	1.000760	1.004626	0.0000211923	5
112	1.000199	1.004432	0.0000170693	6
113	1.000455	1.004180	0.0000148313	6
114	1.000136	1.003771	0.0000126167	5
115	1.000404	1.003553	0.0000107937	6
116	1.000081	1.003209	0.0000094159	656566565656565
· · —				-

Рисунок 13. Метод с дроблением шага при x = (50, 50) и $\beta = 1$

Длина шага β равна 10:

```
39
        1.000364
                                        0.0001550673
                        1.013073
                                                              99999999999989999
40
        1.001725
                        1.012109
                                        0.0001344438
                                        0.0001166720
0.0001013193
41
        1.000384
                        1.011433
\overline{42}
        1.001451
                        1.010600
43
                        1.009998
1.009278
        1.000388
                                        0.0000880536
44
        1.001223
                                        0.0000765696
        1.000381
45
                        1.008744
                                        0.0000666244
46
47
48
        1.001034
                                        0.0000579995
                        1.008121
                                        0.0000505165
        1.000365
                        1.007648
        1.000876
                        1.007107
                                        0.0000440170
49
        1.000345
                        1.006689
                                        0.0000383695
50
        1.000744
                        1.006220
                                        0.0000334579
51
52
                                        0.0000291847
0.0000254645
        1.000322
                        1.005851
                        1.005444
        1.000633
53
54
55
        0.999961
                        1.004791
                                        0.0000237369
        1.000783
                        1.004411
                                        0.0000203434
        1.000005
                        1.004188
                                        0.0000174663
56
57
                        1.003862
        1.000650
                                        0.0000150179
        1.000035
                                        0.0000129325
                        1.003662
                                                              9
58
        1.000542
                        1.003381
                                        0.0000111509
59
        1.000054
                        1.003202
                                        0.0000096274
```

Рисунок 14. Метод с дроблением шага при x = (5, 5) и $\beta = 10$

197	1.001764	1.013366	0.0001589602	9
198	1.000547	1.012598	0.0001383090	9
199	1.001490	1.011699	0.0001203994	9
200	1.000526	1.011018	0.0001048636	9
201	1.001262	1.010240	0.0000913697	9
202	1.000497	1.009637	0.0000796458	9
203	1.001072	1.008962	0.0000694498	9
204	1.000463	1.008429	0.0000605796	9
205	1.000912	1.007843	0.0000528572	9
206	0.999944	1.006903	0.0000492743	8
207	1.001128	1.006355	0.0000422261	9
208	1.000007	1.006035	0.0000362535	9
209	1.000937	1.005564	0.0000311698	9
210	1.000050	1.005276	0.0000268413	9
211	1.000781	1.004872	0.0000231431	9
212	1.000078	1.004613	0.0000199810	9
213	1.000652	1.004265	0.0000172700	9
214	1.000096	1.004034	0.0000149435	9
215	1.000546	1.003733	0.0000129427	9
216	1.000105	1.003527	0.0000112203	9
217	1.000459	1.003268	0.0000097350	9

Рисунок 15. Метод с дроблением шага при x = (5, 50) и $\beta = 10$

```
1.012355
89
         1.001996
                                           0.0001495301
                                                                   999999999
90
         1.000186
                          1.011702
                                           0.0001290418
91
92
         1.001666
                          1.010817
                                           0.0001114781
         1.000234
                          1.010232
                                           0.0000964271
                          1.009469
93
         1.001394
                                           0.0000834852
                                           0.0000834852
0.0000723556
0.0000627596
0.0000544829
94
95
96
         1.000261
                          1.008289
         1.001170
1.000272
                          1.007825
1.007256
97
         1.000985
                                           0.0000473297
98
         1.000273
                          1.006843
                                           0.0000411446
99
         1.000831
                          1.006351
                                           0.0000357882
                           1.005985
1.005559
          1.000266
                                             0.0000311470
100
                                                                    9999999899
\bar{1}\bar{0}1
          1.000703
                                             0.0000271207
                           1.005234
1.004865
          1.000254
                                            0.0000236259
102
                                            0.0000205897
          1.000596
103
104
          1.000239
                           1.004578
                                             0.0000179506
105
          1.000506
                            1.004258
                                             0.0000156549
106
          1.000223
                           1.004004
                                             0.0000136571
107
108
          1.000639
                           1.003448
1.003279
                                            0.0000128816
                                             0.0000110300
          1.000530
                           1.003019
109
                                             0.0000094598
```

Рисунок 16. Метод с дроблением шага при x = (50, 5) и $\beta = 10$

```
176
177
                                             0.0001700082
          0.997685
                            0.987450
          1.000067
                            0.988069
                                             0.0001456457
                                                                     99999999
178
179
          0.998077
                            0.989012
                                             0.0001250176
          0.999967
                            0.989570
                                             0.0001074408
                            0.990380
0.990881
          0.998399
0.999899
                                             0.0000924878
0.0000797055
\overline{180}
181
                            0.991578
182
          0.998664
                                             0.0000687857
183
          0.999854
                            0.992027
                                             0.0000594224
          0.998882
184
                            0.992627
                                             0.0000513941
          0.999827
0.999062
                            0.993029
0.993546
                                             0.0000444906
0.0000385525
185
186
187
                                                                     99999
          0.999813
0.999212
                            0.993904
0.994351
                                             0.0000334332
188
                                             0.0000290177
          0.999807
                            0.994669
                                             0.0000252024
189
          0.999336
                            0.995056
190
                                             0.0000219038
191
          0.999809
                            0.995338
                                             0.0000190479
                            0.995672
192
          0.999439
                                             0.0000165739
                                                                     9
                            0.995923
193
          0.999815
                                             0.0000144282
                                                                     9
                           0.996213
0.996434
                                                                     ģ
          0.999525
0.999824
194
                                             0.0000125663
195
                                             0.0000109491
196
          0.999597
                            0.996685
                                             0.0000095438
```

Рисунок 17. Метод с дроблением шага при x = (50, 50) и $\beta = 10$

Длина шага β равна 100:

```
26
27
28
         0.995839
                          0.958087
                                            0.0014758110
                                                                   13
                          0.971215
0.972836
         1.002197
                                            0.0011977732
                                                                   10
         0.996804
                                            0.0006362195
                                                                   13
                                                                   12
12
         0.999000
29
                          0.974865
                                            0.0005552939
30
         0.996438
                          0.977125
                                            0.0005022396
         0.998382
                          0.977894
31
32
                                            0.0004085285
                                                                   13
         0.996299
0.999199
                          0.985267
                                            0.0003279561
0.0001759859
                                                                   10
                          0.985625
0.986873
33
                                                                   13
                                            0.0001533427
34
         0.998271
                                                                   12
         0.999762
35
                          0.987817
                                            0.0001381848
                                                                   12
36
37
         0.998851
                          0.988389
                                            0.0001131604
                                                                   13
         1.000555
                          0.992028
                                            0.0000886715
                                                                   10
38
39
         0.999125
0.999705
                          0.992471
0.993036
                                            0.0000487107
                                                                   13
12
                                            0.0000423805
         0.999036
0.999547
                          0.993658
                                                                   12
40
                                            0.0000380777
41
                          0.993874
                                            0.0000313560
                                                                   13
42
         0.999012
                          0.995913
                                            0.0000239902
                                                                   10
         0.999771
                          0.996016
                                                                   13
12
\overline{43}
                                            0.0000134815
44
         0.999530
                          0.996360
                                            0.0000117081
         0.999921
0.999684
                          0.996624
0.996781
                                            0.0000104802
0.0000086903
45
                                                                   12
46
```

Рисунок 18. Метод с дроблением шага при x = (5, 5) и $\beta = 100$

```
1.000896
                           1.039630
                                             0.0014476809
139
                                                                   12
140
          1.003719
                           1.037783
                                             0.0011965931
                                                                   13
141
                           1.025935
                                             0.0008916641
                                                                   \overline{10}
          0.998446
          1.002795
                                             0.0005141817
0.0004454611
                                                                   13
12
142
                           1.024517
143
          1.001041
                           1.022669
                                                                   12
13
144
          1.003032
                            1.020659
                                             0.0003966349
145
                                             0.0003321248
          1.001500
                            1.019947
                           1.013328
1.012974
                                                                   10
13
          1.003042
                                             0.0002373677
146
                                             0.0001424426
0.0001231540
147
          1.000780
                                                                   12
12
148
          1.001488
                            1.011860
149
          1.000320
                            1.010992
                                             0.0001092274
150
151
152
153
          1.001019
0.999666
                                                                   13
10
                            1.010487
                                             0.0000921314
                            1.007187
                                             0.0000639313
          1.000759
                                                                   \tilde{1}\tilde{3}
                            1.006803
                                             0.0000394494
          0.999860
                            1.005771
                                             0.0000370049
                                                                   11
13
          1.000588
154
155
                            1.005476
                                             0.0000253959
          0.999973
                            1.004636
                                             0.0000220045
                                                                   11
13
          1.000457
156
157
                            1.004407
                                             0.0000163763
          1.000036
                                             0.0000133734
                            1.003725
                                                                   11
                           1.003546
1.002441
                                             0.0000105724
158
159
          1.000358
0.999776
                                                                   13
                                             0.0000093448
                                                                   10
```

Рисунок 19. Метод с дроблением шага при x = (5, 50) и $\beta = 100$

40	1.001970	1.036276	0.0011229452	13
41	1.004449	1.033118	0.0009815408	12
42	1.000507	1.030755	0.0008896262	12
43	1.002918	1.029303	0.0007205857	13
44	0.998504	1.020139	0.0005796814	10
45	1.002220	1.019010	0.0003107137	13
46	1.000735	1.017588	0.0002705709	12
47	1.002450	1.016014	0.0002434233	12
48	1.001145	1.015471	0.0001999327	13
49	1.002510	1.010323	0.0001540335	10
50	1.000577	1.010064	0.0000860370	13
51	1.001191	1.009194	0.0000747483	12
52	1.000197	1.008529	0.0000669516	12
53	1.000799	1.008132	0.0000554499	13
54	0.999663	1.005580	0.0000413714	10
55	1.000603	1.005275	0.0000238188	13
56	1.000221	1.004877	0.0000206481	12
57	1.000656	1.004444	0.0000184128	12
58	1.000321	1.004291	0.0000153753	13
59	1.000661	1.002866	0.0000111311	10
60	1.000166	1.002791	0.0000065954	13

Рисунок 20. Метод с дроблением шага при x = (50, 5) и $\beta = 100$

66	1.006646	1.038786	0.0015311640	12
67	1.002658	1.037543	0.0011794632	13
68	1.004896	1.031250	0.0009388895	11
69	1.002218	1.030204	0.0007621084	13
7Ó	1.005061	1.020140	0.0006120775	10
71	1.001099	1.020140	0.0003287529	13
72	1.002364	1.017948	0.0002864079	12
73	1.000333	1.016658	0.0002579329	12
74	1.001570	1.015877	0.0002114594	13
75	0.999269	1.010902	0.0001635475	10
76	1.001189	1.010299	0.0000909953	13
77	1.000415	1.009525	0.0000790551	12
78	1.001304	1.008676	0.0000708031	12
79	1.000624	1.008380	0.0000586475	13
80	1.001326	1.005594	0.0000437929	$\bar{1}\bar{0}$
81	1.000319	1.005450	0.0000251959	$\bar{1}\bar{3}$
82	1.000637	1.004980	0.0000218457	12
83	1.000118	1.004618	0.0000194881	12
84	1.000431	1.004404	0.0000162621	13
85	0.999834	1.003021	0.0000117968	10
86	1.000324	1.002857	0.0000069762	13

Рисунок 21. Метод с дроблением шага при x = (50, 50) и $\beta = 100$

3. Оценка скорости и порядка сходимости методов.

1) Метод наискорейшего спуска.

При a = 20, x = (50, 50).

k	$l_k = \frac{ln(x_{k+1} - x *)}{ln(x_k - x *)}$	$\frac{\phi(x_{k+1}) - \phi(x^*)}{\phi(x_k) - \phi(x^*)}$
50	1.0125083754342323	0.721078337191519
51	1.0794574436787117	0.7226077683202289
52	1.0114449386352498	0.722659658724128
53	1.0732464877522676	0.7212291749205365

54	1.0105397897105346	0.7214511994080437
55	1.0670250504581107	0.7229085383150334
56	1.0097778959463144	0.7227659599228649
57	1.0625744466566645	0.7214766192413926
58	1.0091116378583809	0.7218647376935962
59	1.0580038122237962	0.7225587067349827
60	1.0085115602417558	0.7233482763229012
61	1.0546927007758642	0.7219489704380166
62	1.0080236178275808	0.7213353757706429
63	1.0511183225219172	0.7229562074051841
64	1.0075452455755596	0.7231785342922039

Исходя из данных выше, метод наискорейшего спуска имеет линейную скорость с коэффициентом $q \to 0.73$ и первый порядок сходимости $(l_k \to 1)$.

Также необходимо отметить, что с уменьшением значений координат начальной точки, также уменьшалось количество итераций для достижения минимума функции. Это правило соблюдалось как при одновременном уменьшении обоих координат, так и при уменьшении только одной из координат. Однако можно заметить, что, уменьшив координату x_1 и оставив прежней координату x_2 , нам потребовалось куда меньше итераций, чем если бы мы уменьшили координату x_2 и оставили бы прежней координату x_1 .

Полученные результаты сходятся с теоретическими.

2) Метод с дроблением шага.

При a = 20, x = (50, 50), $\beta = 0.1$.

k	$l_k = \frac{ln(x_{k+1} - x *)}{ln(x_k - x *)}$	$\frac{\phi(x_{k+1}) - \phi(x^*)}{\phi(x_k) - \phi(x^*)}$
187	1.0107687807535128	0.8428186816817107
188	1.0436095379278958	0.7589767549611282
189	1.0101921384997332	0.843460798518329
190	1.0413867649845787	0.7585565876850209
191	1.009690901440844	0.843747728099855
192	1.0393342034380184	0.7584875158874195

193	1.0092599474679398	0.8438562255409091
194	1.0375113970416938	0.7582253430288355
195	1.0088116059031436	0.8443114243445393
196	1.0358445582700362	0.757917644558312
197	1.0084427095209476	0.8444958465618385
198	1.0343252135395316	0.7575549246005089
199	1.0080728774497199	0.8449728618898172
200	1.0329452086962814	0.7576432089824856
201	1.0077339954068143	0.8447805286305201

Исходя из данных выше, метод с дроблением шага с начальным размером шага $\beta=0.1$ имеет линейную сходимость и первый порядок сходимости ($l_k\to 1$). Однако точно установить значение параметра q не представляется возможным, т.к. его значение на каждом шаге варьируется между 0.75 и 0.85.

Из полученных данных можно сделать вывод, что только увеличение значения x_1 почти никак не уменьшает скорость минимизации (скорее наоборот — ускоряет процесс минимизации), однако увеличение параметра x_2 или увеличение обоих параметров одновременно заметно увеличивают необходимое число итераций для достижения минимума функции.

При a = 20, x = (50, 50), $\beta = 1$.

k	$l_k = \frac{ln(x_{k+1} - x*)}{ln(x_k - x*)}$	$\phi(x_{k+1}) - \phi(x^*)$
	$l_k = \frac{1}{\ln(\ x_k - x^*\)}$	$\overline{\phi(x_k)-\phi(x^*)}$
102	1.0235898231690188	0.8838051449135272
103	1.01170194041905	0.8274726349518113
104	1.0226004438605092	0.9197648726935439
105	1.0114927867664183	0.7989017119215734
106	1.0110099224958276	0.866654014872676
107	1.0219310070711056	0.8541390486873259
108	1.0107157740187391	0.8523991863430976
109	1.0210999213083742	0.8775454331440808

110	1.0104745440822047	0.832570771697944
111	1.020345418923482	0.9116193941905146
112	1.010284112089275	0.8051113263117619
113	1.0099036954782932	0.8691573878017791
114	1.0197769463195845	0.8503743502980564
115	1.0096374369222505	0.856150592425414
116	1.0191598300542302	0.8719204992096768

Исходя из данных выше, метод с дроблением шага с начальным размером шага $\beta=1$ имеет линейную сходимость и первый порядок сходимости ($l_k \to 1$). Однако точно установить значение параметра q не представляется возможным, т.к. его значение на каждом шаге варьируется от 0.80 до 0.92.

Из полученных данных можно сделать такой же вывод: только увеличение значения x_1 почти никак не уменьшает скорость минимизации (скорее наоборот — ускоряет процесс минимизации), однако увеличение параметра x_2 или увеличение обоих параметров одновременно заметно увеличивают необходимое число итераций для достижения минимума функции.

При а = 20, x = (50, 50), β = 10.

k	$l_k = \frac{ln(x_{k+1} - x*)}{ln(x_k - x*)}$	$\boldsymbol{\phi}(x_{k+1}) - \boldsymbol{\phi}(x^*)$
	$l_k = \frac{1}{\ln(\ x_k - x * \)}$	$\phi(x_k) - \phi(x^*)$
182	1.0144879763981416	0.8628130892883598
183	1.0142948695365837	0.8639660966822212
184	1.0140718859588558	0.8649659898391834
185	1.013875009047534	0.8655548966041692
186	1.0137028827881933	0.86678727777897
187	1.0134754978713738	0.8671795840623207
188	1.013322786459369	0.867594028516126
189	1.0131359473293098	0.8685120802455251
190	1.0129524365784681	0.8689673897553015

191	1.0128173888725782	0.8699233186787402
192	1.0126079192033162	0.8701483073478308
193	1.0124540056434175	0.8703898845262557
194	1.012337642369324	0.8707766803401474
195	1.0121807463623287	0.8716136527700591
196	1.0119816160488821	0.8716437115956533

Исходя из данных выше, метод с дроблением шага с начальным размером шага $\beta=10$ имеет линейную сходимость со значением $q\to 0.88$ и первый порядок сходимости $(l_k\to 1)$.

Из полученных данных видно, что как отдельное увеличение одного из параметров x_1 и x_2 , так и их совместное увеличение, увеличивают и количество необходимых для минимизации функции итераций.

При a = 20, x = (50, 50), $\beta = 100$.

k	$l_k = \frac{ln(x_{k+1} - x*)}{ln(x_k - x*)}$	$\phi(x_{k+1}) - \phi(x^*)$
	$l_k = \frac{1}{\ln(\ x_k - x^*\)}$	$\overline{\phi(x_k)-\phi(x^*)}$
72	1.0138302326866633	0.8711342536827091
73	1.0212987471971002	0.9007219688334447
74	1.02068666759503	0.8197696542228828
75	1.0105877864972799	0.7733735232447544
76	1.0914804328452818	0.5563952206927967
77	1.011628809122806	0.8686759373986387
78	1.0183403634063584	0.8958027912845151
79	1.017868104372985	0.8282557451225137
80	1.009104105645873	0.7470160449861939
81	1.079425338017649	0.5749662948709781
82	1.0100222233472893	0.867295308657968
83	1.0160795382316126	0.8916763231934527
84	1.0157259170767263	0.8346731391470456
85	1.007997965016185	0.725325027244729
86	1.070138482072953	0.5917421516937795

Исходя из данных выше, метод с дроблением шага с начальным размером шага $\beta=100$ имеет линейную сходимость и первый порядок сходимости ($l_k \to 1$). Однако точно установить значение параметра q не представляется возможным, т.к. его значение на каждом шаге варьируется от 0.55 до 0.91.

Из полученных данных можно сделать вывод, что увеличение хотя бы одного из параметров x_1 или x_2 или их одновременное увеличение также замедляет работу алгоритма минимизации.

4. Сравнение методов

Сравнение методов происходило по количеству шагов, необходимых для вычисления минимума функции с точность 10⁻⁵.

Начальные	Количество шагов				
координаты точек	Метод наискорейшего	N	Метод с дроблением шага		га
	спуска	$\beta = 0.1$	$\beta = 1$	$\beta = 10$	$\beta = 100$
(5, 5)	5	71	87	59	46
(5, 50)	6	242	137	217	159
(50, 5)	26	67	93	109	60
(50, 50)	64	201	201	60	86

Для заданной функции метод наискорейшего спуска совершает меньшее число шагов, чем метод с дроблением шага почти для всех параметров β .

Выводы.

В ходе данной работы были рассмотрены два метода решения задачи безусловной минимизации функций: метод с дроблением шага и метод наискорейшего спуска.

Метод наискорейшего спуска и дробления шага имеют линейную сходимость порядка 1. Однако значение q для метода с дроблением шага точно установить не удалось, т.к. его значение из шага в шаг сильно разнилось.