TARGET BUSINESS CASE STUDY

```
-->> 1) Data type of columns in a table: SELECT TABLE_NAME, COLUMN_NAME, DATA_TYPE FROM target.INFORMATION_SCHEMA.COLUMNS;
```

Query results

<	JOB INFORMATION	RESULTS	JSON	EXECUTIO	N DETAILS I
Row	TABLE_NAME ▼	COL	JMN_NAME -	4	DATA_TYPE ▼
1	order_items	orde	r_id		STRING
2	order_items	orde	r_item_id		INT64
3	order_items	prod	uct_id		STRING
4	order_items	selle	r_id		STRING
5	order_items	shipp	oing_limit_date		TIMESTAMP
6	order_items	price			FLOAT64
_		, .			

```
        JOB INFORMATION
        RESULTS
        JSON
        EXECUTION DETAILS

        Row
        start_time
        ✓
        end_time
        ✓

        1
        2016-09-04 21:15:19 UTC
        2018-11-12 00:00:00 UTC
```

```
-->> 3)Cities and States covered in the dataset
select distinct customer_state , customer_city
from `target.customers`
group by 1 ,2
order by 1,2
```

JOB INFORMATION		RESULTS	JSON	EXECUTION DET
Row /	customer_state	~	customer_city	~
1	AC		brasileia	
2	AC		cruzeiro do sul	
3	AC		epitaciolandia	
4	AC		manoel urbano	
5	AC		porto acre	
6	AC		rio branco	

```
-->> 4) Is there a growing trend in e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
-- formula is ((current_order_count - prev_order_count)/prev_order_count)*100
--- for specfic month extract year , month from order table

SELECT *, ROUND(((orders_count - prev_order_count) / prev_order_count) * 100, 2) AS order_growth_rate_percent

FROM (SELECT *, LAG(orders_count) OVER(ORDER BY YEAR, MONTH) AS prev_order_count FROM (SELECT EXTRACT(YEAR FROM order_purchase_timestamp) AS YEAR, EXTRACT(MONTH FROM
```

order_purchase_timestamp) AS MONTH, COUNT(*) AS orders_count
FROM `target.orders` WHERE order_status = 'delivered' GROUP BY 1, 2 ORDER BY 1, 2) AS BASE1
ORDER BY YEAR, MONTH) AS BASE2;

JOB INFORMATION RESULTS JSON		N EXECUTION DETAILS EXECUTION GRAPH PR				
ow /	YEAR ▼	MONTH -	- /1	orders_count ▼	prev_order_count 🔻	order_growth_rate_pe
1	2016	i	9	1	null	nuli
2	2016	j	10	265	1	26400.0
3	2016	,	12	1	265	-99.62
4	2017	,	1	750	1	74900.0
5	2017	,	2	1653	750	120.4
6	2017	•	3	2546	1653	54.02

^{--&}gt;> 5) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?
-- from order table column = order_purchase_timestamp

```
select extract(time from order_purchase_timestamp) as timing
from `target.orders`
SELECT COUNTIF((TIME(order purchase timestamp) >= '05:00:00' AND
TIME(order purchase timestamp) < '06:00:00')) AS dawn orders count 5am 6am,
      COUNTIF((TIME(order_purchase_timestamp) >= '06:00:00' AND TIME(order_purchase timestamp)
< '12:00:00')) AS morning_orders_count_6am_12pm,
      COUNTIF((TIME(order_purchase_timestamp) >= '12:00:00' AND TIME(order_purchase_timestamp)
< '18:00:00')) AS afternoon_orders_count_12pm_6pm,
      COUNTIF((TIME(order_purchase_timestamp) >= '18:00:00' AND TIME(order_purchase_timestamp)
<= '23:59:59') OR (TIME(order_purchase_timestamp) >= '00:00:00' AND
TIME(order purchase timestamp) < '05:00:00')) AS night orders count 12am 5am FROM
`target.orders`;
    Query results
                                                                                            ù
    JOB INFORMATION
                               RESULTS
                                               JSON
                                                            EXECUTION DETAILS
                                                                                         EXE
  Row
            dawn_orders_count_
                                morning_orders_cour
                                                     afternoon_orders_co
                                                                         night_orders_count_1
       1
                         188
                                           22240
                                                                38361
                                                                                    38652
-->> 6)Get month-on-month orders by region, states
with cte2 as
             (SELECT *, LAG(orders_count) OVER(PARTITION BY customer_state, customer_city ORDER
BY YEAR, MONTH) AS prev_orders_count FROM (SELECT C.customer_state, C.customer_city,
EXTRACT(MONTH FROM order_purchase_timestamp) AS MONTH, EXTRACT(YEAR FROM
order_purchase_timestamp) AS YEAR, COUNT(*) AS orders_count FROM `target.customers` AS C
            JOIN
             (SELECT *, EXTRACT(MONTH FROM order_purchase_timestamp) AS MONTH, EXTRACT(YEAR
FROM order_purchase_timestamp) AS YEAR FROM `target.orders` WHERE order_status = 'delivered')
AS J2 ON C.customer_id = J2.customer_id GROUP BY 1, 2, 3, 4))
SELECT *, ROUND(((orders_count - prev_orders_count) / prev_orders_count) * 100, 2) AS
orders_count_growth_rate
FROM cte2
order by YEAR DESC ,orders_count_growth_rate DESC ;
Query results
                                                                         ≛ SAVE RESULTS ▼
                                                                                        JOB INFORMATION
                RESULTS
                                 EXECUTION DETAILS
                                                 EXECUTION GRAPH PREVIEW
                         JSON
   customer_state •
                        customer_city ~
                                                       YEAR •
                                                                   orders_count ▼
                                                                            prev_orders_count orders_count_growth
  1 RS
                                                              2018
                                                                           13
                                                                                                1200.0
                        novo hamburgo
  2 RS
                                                              2018
                                                                           13
                                                                                                1200.0
                        viamao
    PR
  3
                        pinhais
                                                              2018
                                                                           10
                                                                                                 900.0
  4 SP
                        ferraz de vasconcelos
                                                    7
                                                              2018
                                                                           10
                                                                                                 900.0
  5
    BA
                        itabuna
                                                    7
                                                              2018
                                                                           10
                                                                                                 900.0
```

2018

9

800.0

6 BA

```
--6.2) Distribution of customers across the states in Brazil

SELECT customer_state, customer_city ,

COUNT(DISTINCT customer_id) AS count_customer_id,

COUNT(DISTINCT customer_unique_id) AS count_customer_unique_id

FROM `target.customers`

GROUP BY 1, 2
```

ORDER BY 1, 2;

▲ SAVE RESULT:

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXECUT	TION GRAPH PREVIEW
Row	customer_state	▼	customer_city	~	count_customer_id_/	count_customer_unic
1	AC		brasileia		1	1
2	AC		cruzeiro do sul		3	3
3	AC		epitaciolandia		1	1
4	AC		manoel urbano		1	1
5	AC		porto acre		1	1
6	AC		rio branco		70	66

-->>7) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
WITH QUERY1 AS
(SELECT ROUND(SUM(price + freight_value), 2) AS total_cost_2017
FROM
     (SELECT 0.*, 0I.* FROM `target.orders` AS 0 JOIN `target.order_items` AS 0I ON
O.order id = OI.order id
     WHERE O.order_status = 'delivered' AND (EXTRACT(YEAR FROM O.order_purchase_timestamp) =
2017) AND EXTRACT(MONTH FROM O.order purchase timestamp) BETWEEN 1 AND 8)),
QUERY2 AS (SELECT ROUND(SUM(price + freight_value),2) AS total_cost_2018
FROM
     (SELECT 0.*, 0I.* FROM `target.orders` AS 0 JOIN `target.order_items` AS 0I ON
0.order id = OI.order id
     WHERE O.order_status = 'delivered' AND (EXTRACT(YEAR FROM O.order_purchase_timestamp) =
2018) AND EXTRACT(MONTH FROM O.order_purchase_timestamp) BETWEEN 1 AND 8))
SELECT Q1.total_cost_2017, Q2.total_cost_2018, ROUND(((Q2.total_cost_2018 -
Q1.total_cost_2017) / Q1.total_cost_2017) * 100, 2) AS cost_growth_rate
FROM QUERY1 AS Q1 CROSS JOIN QUERY2 AS Q2;
```

JOB INFORMATION			RESULTS		N EXECUTIO	N DETAILS
Row	total_cost_2017	V /1	total_cost_2018	8 • /	cost_growth_rate	
1	3472898.2	25	8451584	.77	143.36	

```
-->> 8)Mean & Sum of price and freight value by customer state
```

JOB INFORMATION		RESULTS JSON		EXI	EXECUTION DETAILS		
Row	customer_state	▼	avg_cost	→	sum_cost ▼	:	
1	GO			146.78	334212.35		
2	SP			124.22	5769703.15		
3	RS			140.44	861472.79		
4	BA			160.5	591137.81		
5	MG			140.82	1818891.67		

-->>9) Calculate days between purchasing, delivering, and estimated delivery QUERY:

```
SELECT order_id, order_purchase_timestamp, order_delivered_customer_date,
order_estimated_delivery_date,
(TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY)) AS
time_to_delivery,
(TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY)) AS
diff_estimated_delivery, (TIMESTAMP_DIFF(order_estimated_delivery_date,
order_delivered_customer_date, DAY)) AS diff_estim_date
FROM `target.orders`
WHERE order_status = 'delivered';
```

1	time_to_delivery 🔻	diff_estimated_delive	diff_estim_date ▼//
	20	61	40
	10	58	48
	28	57	29
	9	44	35
	10	52	41

```
--10) Create columns: * time_to_delivery = order_purchase_timestamp-
order_delivered_customer_date * diff_estimated_delivery =
order_estimated_delivery_date-order_delivered_customer_date
```

```
SELECT order id, order purchase timestamp, order delivered customer date,
order_estimated_delivery_date,
(TIMESTAMP DIFF(order delivered customer date, order purchase timestamp, DAY)) AS
time_to_delivery,
(TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS
diff estimated delivery
FROM `target.orders`
WHERE order_status = 'delivered';
-->>11) Group data by state, take mean of freight_value, time_to_delivery,
diff_estimated_delivery
SELECT C.customer_state, AVG(OI.freight_value) AS avg_freight_value,
       AVG(Q1.time_to_delivery) AS avg_time_to_delivery,
       AVG(Q1.diff_estimated_delivery) AS avg_diff_estimated_delivery
FROM `target.customers` AS C
    (SELECT *, TIMESTAMP DIFF(order delivered customer date, order purchase timestamp, DAY) AS
time_to_delivery,
    TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY) AS
diff_estimated_delivery,
    FROM `target.orders` WHERE order_status = 'delivered') AS Q1 ON C.customer_id =
Q1.customer id
    JOIN `target.order_items` AS OI ON Q1.order_id = OI.order_id GROUP BY C.customer_state;
```

1	customer_state ▼	avg_freight_value	avg_time_to_delivery	avg_diff_estimated_c
1	GO	22.56	14.95	26.63
2	SP	15.12	8.26	18.87
3	RS	21.61	14.71	28.27
4	BA	26.49	18.77	29.18
5	MG	20.63	11.51	24.26
6	MT	28.0	17.51	31.48

-->>12) Top 5 states with highest avg_freight_value:

```
SELECT C.customer_state, ROUND(AVG(OI.freight_value),2) avg_freight_value , FROM
`target.customers` AS C
JOIN `target.orders` AS O ON C.customer_id = O.customer_id
JOIN `target.order_items` AS OI ON O.order_id = OI.order_id
WHERE O.order_status = 'delivered'
GROUP BY C.customer_state
ORDER BY ROUND(AVG(OI.freight_value),2) DESC LIMIT 5
```

1	customer_state ▼	avg_freight_value
1	RR	43.09
2	PB	43.09
3	RO	41.33
4	AC	40.05
5	PI	39.12

-->>13)Top 5 states with lowest avg_freight_value:

```
SELECT C.customer_state, ROUND(AVG(OI.freight_value),2) avg_freight_value , FROM
`target.customers` AS C
JOIN `target.orders` AS O ON C.customer_id = O.customer_id
JOIN `target.order_items` AS OI ON O.order_id = OI.order_id
WHERE O.order_status = 'delivered'
GROUP BY C.customer_state
ORDER BY ROUND(AVG(OI.freight_value),2) LIMIT 5
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXE
Row /	customer_state	~	avg_freight_va	lue ブ
1	SP		1	5.12
2	PR		2	0.47
3	MG		2	0.63
4	RJ		2	0.91
5	DF		2	1.07

-->>14) top 5 states with the highest average time to delivery:

```
SELECT C.customer_state, ROUND(AVG(B.time_to_delivery), 2) AS avg_time_to_delivery
FROM `target.customers` AS C
JOIN
        (SELECT *, TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)
AS time_to_delivery,
        FROM `target.orders` WHERE order_status = 'delivered') AS B ON C.customer_id =
B.customer_id
GROUP BY C.customer_state ORDER BY AVG(B.time_to_delivery) DESC limit 5;
```

JOB IN	IFORMATION	RESULTS	JSON	EXEC
Row /	customer_state	→	avg_time_to_c	delivery
1	RR		2	28.98
2	AP		2	26.73
3	AM		2	25.99
4	AL		2	24.04
5	PA		2	23.32

```
-->>15) top 5 states with the lowest average time to delivery:

SELECT C.customer_state, ROUND(AVG(B.time_to_delivery), 2) AS avg_time_to_delivery
FROM `target.customers` AS C

JOIN

(SELECT *, TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS time_to_delivery

FROM `target.orders` WHERE order_status = 'delivered') AS B ON C.customer_id = B.customer_id

GROUP BY C.customer_state ORDER BY AVG(B.time_to_delivery) ASC LIMIT 5;
```

JOB INFORMATION		RESULTS		JSON	EXECU
ow /	customer_state	~	/	avg_time_to_d	lelivery
1	SP				8.3
2	PR			1	1.53
3	MG			1	1.54
4	DF			1	2.51
5	SC			1	4.48

```
SELECT C.customer_state, ROUND(AVG(B.diff_estim_date), 2) AS avg_diff_estim_date
FROM `target.customers` AS C
JOIN
(SELECT *, TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)
AS diff_estim_date FROM `target.orders`
WHERE order_status = 'delivered') AS B ON C.customer_id = B.customer_id
GROUP BY C.customer_state ORDER BY AVG(B.diff_estim_date) DESC LIMIT 5;
```

JOB INFORMATION		RESULTS	JSON	EXEC
Row	customer_state	~	avg_diff_estim_d	ate
1	AC		19.7	76
2	RO		19.1	13
3	AP		18.7	73
4	AM		18.6	51
5	RR		16.4	41

-->>17)top 5 states where delivery is NOT SO FAST compared to the estimated date

```
SELECT C.customer_state, ROUND(AVG(B.diff_estim_date), 2) AS avg_diff_estim_date
FROM `target.customers` AS C

JOIN
(SELECT *, TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)
AS diff_estim_date FROM `target.orders`
WHERE order_status = 'delivered') AS B ON C.customer_id = B.customer_id
GROUP BY C.customer_state ORDER BY AVG(B.diff_estim_date) ASC LIMIT 5;
```

JOB IN	IFORMATION	RESULTS	JSON	EXE
Row	customer_state	~	avg_diff_estim	_date
1	AL			7.95
2	MA			8.77
3	SE			9.17
4	ES			9.62
5	BA			9.93

SELECT T2.*, ROUND(((T2.payment_type_count - T2.prev_count) / T2.prev_count) * 100, 2) AS count_growth_rate_percent FROM (SELECT payment_type, YEAR, MONTH, payment_type_count, LAG(payment_type_count) OVER(PARTITION BY payment_type ORDER BY YEAR, MONTH) AS prev_count FROM (SELECT DISTINCT P.payment_type, O.YEAR, O.MONTH, COUNT(*) OVER (PARTITION BY P.payment_type, O.YEAR, O.MONTH ORDER BY O.YEAR, O.MONTH) AS payment_type_count FROM `target.payments` AS P JOIN (SELECT order_id, EXTRACT(MONTH FROM order_purchase_timestamp) AS MONTH, EXTRACT(YEAR FROM order_purchase_timestamp) AS YEAR, FROM `target.orders` WHERE order_status = 'delivered') AS O ON P.order_id = O.order_id) AS T1) AS T2

JOB IN	IFORMATION	RESULTS	JSON EX	ECUTION DETAILS	EXECUTION GRA	APH PREVIEW	
low /	payment_type	~	YEAR ▼	MONTH ▼	payment_type_count	prev_count ▼	count_growth_rate_p
1	debit_card		2016	10	2	nuli	nuli
2	debit_card		2017	1	9	2	350.0
3	debit_card		2017	2	13	9	44.44
4	debit_card		2017	3	30	13	130.77
5	debit_card		2017	4	25	30	-16.67
6	debit_card		2017	5	29	25	16.0

-->>19)Count of orders based on the no. of payment and payment type installments

```
SELECT P.payment_installments, COUNT(*) AS orders_count
FROM `target.payments` AS P
JOIN
(SELECT * FROM `target.orders` WHERE order_status = 'delivered') AS O ON P.order_id =
O.order_id
GROUP BY 1;
```

JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS	
Row	payment_installment	payment_type	•	orders_count ▼	
1	0	credit_card		2	
2	1	voucher		5493	
3	1	credit_card		24759	
4	1	debit_card		1486	
5	1	UPI		19191	
6	2	credit_card		12075	