Introduction

- Type of deep learning network
- Most commonly applied for computer vision
- CNNs learn local patterns
- Local patterns translational invariant
- Layers learn different hierarchical patterns (from simple to complex)

Convolution

0	1	0	1	1
0	0	1	1	0
1	1	0	1	0
0	1	0	0	1
0	0	1	1	0

	0	1	0
‹	1	-4	1
	0	1	0

4	-3	-1
-2	3	-3
-3	2	3

Input Image Matrix

Convolutional Filter (Edge Detector)

Feature Map

Convolution - Example

0	1	0
1	-4	1
0	1	0

Input Image

Edge Detector

Feature Map

Convolution - Example

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Input Image Blur Filter Feature Map

Convolution - Stride

- Stride equals step size
- Example: Stride = 2

0	1	0	1	1
0	0	1	1	0
1	1	0	1	0
0	1	0	0	1
0	0	1	1	0

	0	1	0
(1	-4	1
	0	1	0

4	-1
-3	3

Input Image Matrix

Convolutional Filter (Edge Detector)

Feature Map

Convolutional Layer

Max Pooling

4	-3	-1
-2	3	-3
-3	2	3

Feature Map

Max Pooling

Example Network Setup

Example Network Setup

- Count of feature maps increase with layers from (from 32 to 64)
- Size of feature maps decreases (from 148x148 to 16x16)
- Very typical for CNNs

Layer (type)	Output	Shape	Param #
conv2d_19 (Conv2D)	(None,	148, 148, 32)	320
max_pooling2d_16 (MaxPooling2	(None,	74, 74, 32)	0
conv2d_20 (Conv2D)	(None,	72, 72, 32)	9248
max_pooling2d_17 (MaxPooling2	(None,	36, 36, 32)	0
conv2d_21 (Conv2D)	(None,	34, 34, 64)	18496
conv2d_22 (Conv2D)	(None,	32, 32, 64)	36928
max_pooling2d_18 (MaxPooling2	(None,	16, 16, 64)	0
dropout_17 (Dropout)	(None,	16, 16, 64)	0
flatten_7 (Flatten)	(None,	16384)	0
dense_13 (Dense)	(None,	512)	8389120
dropout_18 (Dropout)	(None,	512)	0
dense_14 (Dense)	(None,	10)	5130
Total params: 8,459,242 Trainable params: 8,459,242 Non-trainable params: 0			

Advantages / Disadvantages

- Most powerful technique for computer vision tasks
- Achieves high quality predictions

- Many parameters
- Requires a lot of experience
- Very computationally expensive