Compression in Language Modeling

Team: MIT-Han-Lab

Demi Guo*2, Hanrui Wang*1, Zhongxia Yan*1, Phillip Isola1 and Song Han1

¹Massachusetts Institute of Technology ²Harvard University

*Equal contribution, alphabetical order

Observations

- Desirable model properties
 - Predictive (< 35 PPL)
 - Fast to train
 - Efficient inference
- Score = param/159M + compute/318M
 - No penalty for non-parametric memory
 - Rely more on memory!

- Sequential in time, slow to train
- Harder to learn long-term dependencies

This is a sentence

- Sequential in time, slow to train
- Harder to learn long-term dependencies

- Sequential in time, slow to train
- Harder to learn long-term dependencies

- Sequential in time, slow to train
- Harder to learn long-term dependencies

- Sequential in time, slow to train
- Harder to learn long-term dependencies

- Sequential in time, slow to train
- Harder to learn long-term dependencies

- Transformer attention is parallel in time
- Absolute position embedding → recomputation during inference

This is a long sentence!

- Transformer attention is parallel in time
- Absolute position embedding → recomputation during inference

- Transformer attention is parallel in time
- Absolute position embedding → recomputation during inference

- Transformer attention is parallel in time
- Absolute position embedding → recomputation during inference

- Transformer attention is parallel in time
- Absolute position embedding → recomputation during inference

- Transformer attention is parallel in time
- Absolute position embedding → recomputation during inference

Relative position embedding → efficient inference

This is a long sentence!

Relative position embedding → efficient inference

This is a long sentence

Relative position embedding → efficient inference

Relative position embedding → efficient inference

- E.g. Weight-tied transformer, Deep Equilibrium (DEQ) transformer
- Only one layer of weight
 - But: wider, more parameters and computation per layer

- E.g. Weight-tied transformer, Deep Equilibrium (DEQ) transformer
- Only one layer of weight
 - But: wider, more parameters and computation per layer

- E.g. Weight-tied transformer, Deep Equilibrium (DEQ) transformer
- Only one layer of weight
 - But: wider, more parameters and computation per layer

- E.g. Weight-tied transformer, Deep Equilibrium (DEQ) transformer
- Only one layer of weight
 - But: wider, more parameters and computation per layer

- E.g. Weight-tied transformer, Deep Equilibrium (DEQ) transformer
- Only one layer of weight
 - But: wider, more parameters and computation per layer

- E.g. Weight-tied transformer, Deep Equilibrium (DEQ) transformer
- Only one layer of weight
 - But: wider, more parameters and computation per layer

Our Base Model

Fully differentiable transformer-XL

Observations

- Large vocab size: 267735
- Naive word embedding: 267735 x 256 = 69M params
 - 138M mul/add's at output embedding
- Rare words need less representation!

Adaptive Word Embedding

- Sort vocabulary and divide into 3 bins by frequency
- Low-rank decomposition

Adaptive Softmax

Adaptive Softmax

Performance

- Learning rate = 1e-3
- Cosine learning rate decay
- 1 RTX 2080 Ti → ~1 day
- Compute ~ 2 * Params

Layers	Embed Param (M)	Param (M)	Val PPL	Q, K, V	Inner
5	3.3	7.8	39.4	48	1024
6	3.3	8.3	37.9	32	1024
8	3.3	8.3	37.2	24	768
LSTM Baseline*	138	159	29.0		

Observations

 Rare words have a much higher probability of recurring than occurring

Vancouver was originally named Gastown and began as a settlement which grew around the site of a makeshift tavern on the western edges of Hastings Mill built on July 1, 1867, and owned by proprietor Gassy Jack. The original site is marked by the Gastown steam clock. Gastown then formally registered as a townsite dubbed Granville, Burrard Inlet.

How to compensate for short attention context (97)?

- Keep most recent activations in differentiable cache!
 - 0 parameters
 - Adds some computation

Adaptive Softmax

Cache

Differentiable Cache

Performance

Param	Cache	Val PPL
8.3M	0	37.2
11.0M	0	35.3
15.2M	0	31.5
18.1M	0	30.1
8.3M	1000	33.1
8.3M	2000	32.0

Model Compression

- Knowledge distillation
- Pruning
- Quantization

• Large teacher: 53M params, Test PPL 22

- Large teacher: 53M params, Test PPL 22
- Student: 8.3M params

- Large teacher: 53M params, Test PPL 22
- Student: 8.3M params
- Top 30 soft labels

- Large teacher: 53M params, Test PPL 22
- Student: 8.3M params
- Top 30 soft labels
- Teacher annealing, first learn from teacher then learn from ground truth

Performance

Model	Param (M)	Val PPL
Original	8.3	32.0
Distilled	8.3	30.7
Baseline	159	29.0

Pruning

Trained Small Student Model

Pruned Small Student Model

Pruning

Trained Small Student Model

Pruned Small Student Model

Sensitivity Check

Sensitivity Check

Pruning

Trained Small Student Model

Pruned Small Student Model

- Sensitivity Check
- More sensitive layers will be pruned less

Pruning

Trained Small Student Model

Pruned Small Student Model

- Sensitivity Check
- More sensitive layers will be pruned less
- Automatic gradual pruning

Performance

Model	Sparsity (%)	Param (M)	Compute (M)	Val PPL
1	42.1	5.06	11.8	34.3
2	40.1	5.22	12.1	34.0
3	33.9	5.74	13.1	34.3
Baseline	0	159	318	29.0

Pruned Student Model

Quantized & Pruned Small Student Model

Pruned Student Model

Quantized & Pruned Small Student Model

Quantize weight, bias and activations of pruned model

Pruned Student Model

Quantized & Pruned Small Student Model

- Quantize weight, bias and activations of pruned model
- Linear-range symmetric quantization

Pruned Student Model

Quantized & Pruned Small Student Model

- Quantize weight, bias and activations of pruned model
- Linear-range symmetric quantization
- Quantize to 8 or 9 bits based on trade-offs between quantization and pruning ratio

Results

Entry	Sparsity (%)	Quantize (bits)	32-bit Param (M)	32-bit Compute (M)	Val PPL	Test PPL	Score
1	42.1	9	1.61	7.83	34.3	34.95	0.0347
2	40.1	9	1.65	8.03	34.0	34.7	0.0356
3	33.9	8	1.63	8.48	34.3	34.95	0.0369
Baseline	0	16 (freebie)	~79.5	~239	29.0	29.2	~1.25

Score = param/159M + compute/318M

50x #params reduction and 31x computation reduction than baseline

Open Source

GitHub open source of our models

Thank you!