Appendix C 1199

Appendix C

Units And Conversion Factors

Units of Length

meter (m)	= 39.37 inches (in.) = 1.094 yards (yd)	
centimeter (cm)	= 0.01 m (exact, definition)	
millimeter (mm)	= 0.001 m (exact, definition)	
kilometer (km)	= 1000 m (exact, definition)	
angstrom (Å)	= 10 ⁻⁸ cm (exact, definition) = 10 ⁻¹⁰ m (exact, definition)	
yard (yd)	= 0.9144 m	
inch (in.)	= 2.54 cm (exact, definition)	
mile (US)	= 1.60934 km	

Table C1

Units of Volume

liter (L)	= 0.001 m ³ (exact, definition) = 1000 cm ³ (exact, definition) = 1.057 (US) quarts
milliliter (mL)	= 0.001 L (exact, definition) = 1 cm ³ (exact, definition)
microliter (μL)	= 10^{-6} L (exact, definition) = 10^{-3} cm ³ (exact, definition)
liquid quart (US)	= 32 (US) liquid ounces (exact, definition) = 0.25 (US) gallon (exact, definition) = 0.9463 L
dry quart	= 1.1012 L
cubic foot (US)	= 28.316 L

Table C2

Units of Mass

gram (g)	= 0.001 kg (exact, definition)
milligram (mg)	= 0.001 g (exact, definition)
kilogram (kg)	= 1000 g (exact, definition) = 2.205 lb

Table C3

1200 Appendix C

Units of Mass

ton (metric)	=1000 kg (exact, definition) = 2204.62 lb	
ounce (oz)	= 28.35 g	
pound (lb)	= 0.4535924 kg	
ton (short)	=2000 lb (exact, definition) = 907.185 kg	
ton (long)	= 2240 lb (exact, definition) = 1.016 metric ton	

Table C3

Units of Energy

4.184 joule (J)	= 1 thermochemical calorie (cal)	
1 thermochemical calorie (cal)	$= 4.184 \times 10^7 \text{ erg}$	
erg	= 10^{-7} J (exact, definition)	
electron-volt (eV)	= $1.60218 \times 10^{-19} \text{ J} = 23.061 \text{ kcal mol}^{-1}$	
liter-atmosphere	= 24.217 cal = 101.325 J (exact, definition)	
nutritional calorie (Cal)	= 1000 cal (exact, definition) = 4184 J	
British thermal unit (BTU)	= 1054.804 J ^[1]	

Table C4

Units of Pressure

torr	= 1 mm Hg (exact, definition)
pascal (Pa)	= N m ⁻² (exact, definition) = kg m ⁻¹ s ⁻² (exact, definition)
atmosphere (atm)	= 760 mm Hg (exact, definition) = 760 torr (exact, definition) = 101,325 N m ⁻² (exact, definition) = 101,325 Pa (exact, definition)
bar	= 10^5 Pa (exact, definition) = 10^5 kg m ⁻¹ s ⁻² (exact, definition)

Table C5

^{1.} BTU is the amount of energy needed to heat one pound of water by one degree Fahrenheit. Therefore, the exact relationship of BTU to joules and other energy units depends on the temperature at which BTU is measured. $59 \, ^{\circ}F$ ($15 \, ^{\circ}C$) is the most widely used reference temperature for BTU definition in the United States. At this temperature, the conversion factor is the one provided in this table.

Appendix D 1201

Appendix D

Fundamental Physical Constants

Fundamental Physical Constants

Name and Symbol	Value	
atomic mass unit (amu)	$1.6605402 \times 10^{-27} \text{ kg}$	
Avogadro's number	$6.0221367 \times 10^{23} \text{mol}^{-1}$	
Boltzmann's constant (k)	$1.380658 \times 10^{-23} \mathrm{JK^{-1}}$	
charge-to-mass ratio for electron (e/m _e)	$1.75881962 \times 10^{11} \mathrm{C kg^{-1}}$	
electron charge (e)	1.60217733 × 10 ^{−19} C	
electron rest mass (m_e)	$9.1093897 \times 10^{-31} \mathrm{kg}$	
Faraday's constant (<i>F</i>)	$9.6485309 \times 10^4 \mathrm{C \ mol^{-1}}$	
gas constant (<i>R</i>)	$8.205784 \times 10^{-2} \text{ L atm mol}^{-1} \text{ K}^{-1} = 8.314510 \text{ J mol}^{-1} \text{ K}^{-1}$	
molar volume of an ideal gas, 1 atm, 0 °C	22.41409 L mol ⁻¹	
molar volume of an ideal gas, 1 bar, 0 °C	22.71108 L mol ⁻¹	
neutron rest mass (m_n)	$1.6749274 \times 10^{-27} \mathrm{kg}$	
Planck's constant (h)	6.6260755 × 10 ⁻³⁴ J s	
proton rest mass (m_p)	1.6726231 × 10 ⁻²⁷ kg	
Rydberg constant (R)	$1.0973731534 \times 10^7 \mathrm{m}^{-1} = 2.1798736 \times 10^{-18} \mathrm{J}$	
speed of light (in vacuum) (c)	$2.99792458 imes10^{8}\mathrm{ms^{-1}}$	

Table D1

1202 Appendix D

Appendix E

Water Properties

Water Density (g/mL) at Different Temperatures (°C)

Temperature	Density (g/mL)
0	0.9998395
4	0.9999720 (density maximum)
10	0.9997026
15	0.9991026
20	0.9982071
22	0.9977735
25	0.9970479
30	0.9956502
40	0.9922
60	0.9832
80	0.9718
100	0.9584

Table E1

Water Vapor Pressure at Different Temperatures (°C)

Temperature	Vapor Pressure (torr)	Vapor Pressure (Pa)
0	4.6	613.2812
4	6.1	813.2642
10	9.2	1226.562
15	12.8	1706.522
20	17.5	2333.135
22	19.8	2639.776
25	23.8	3173.064
30	31.8	4239.64
35	42.2	5626.188
40	55.3	7372.707
45	71.9	9585.852
50	92.5	12332.29
55	118.0	15732
60	149.4	19918.31
65	187.5	24997.88
70	233.7	31157.35
75	289.1	38543.39
80	355.1	47342.64
85	433.6	57808.42
90	525.8	70100.71
95	633.9	84512.82
100	760.0	101324.7

Table E2

Vapor Pressure as a Function of Temperature

Water K_w and pK_w at Different Temperatures (°C)

Temperature	K _w 10 ⁻¹⁴	pK _w ^[1]
0	0.112	14.95
5	0.182	14.74
10	0.288	14.54
15	0.465	14.33
20	0.671	14.17
25	0.991	14.00
30	1.432	13.84
35	2.042	13.69
40	2.851	13.55
45	3.917	13.41
50	5.297	13.28
55	7.080	13.15
60	9.311	13.03
75	19.95	12.70
100	56.23	12.25

Table E3

Water pK_w as a Function of Temperature

Specific Heat Capacity for Water

$C^{\circ}(H_2O(I)) = 4.184 \text{ J}\cdot\text{g}^{-1}\cdot^{\circ}\text{C}^{-1}$
$C^{\circ}(H_2O(s)) = 1.864 \text{ J} \cdot \text{K}^{-1} \cdot \text{g}^{-1}$
$C^{\circ}(H_2O(g)) = 2.093 \text{ J} \cdot \text{K}^{-1} \cdot \text{g}^{-1}$

Table E4

Standard Water Melting and Boiling Temperatures and Enthalpies of the Transitions

	Temperature (K)	ΔH (kJ/mol)
melting	273.15	6.088
boiling	373.15	40.656 (44.016 at 298 K)

Table E5

Water Cryoscopic (Freezing Point Depression) and Ebullioscopic (Boiling Point Elevation) Constants

K _f = 1.86°C⋅kg⋅mol ⁻¹ (cryoscopic constant)	
$K_b = 0.51^{\circ}C \cdot kg \cdot mol^{-1}$ (ebullioscopic constant)	

Table E6

Figure E1 The plot shows the extent of light absorption versus wavelength for water. Absorption is reported in reciprocal meters and corresponds to the inverse of the distance light may travel through water before its intensity is diminished by 1/e (~37%).

Appendix F 1209

Appendix F

Composition Of Commercial Acids And Bases

Composition of Commercial Acids and Bases

Acid or Base ^[1]	Density (g/mL) ^[2]	Percentage by Mass	Molarity
acetic acid, glacial	1.05	99.5%	17.4
aqueous ammonia ^[3]	0.90	28%	14.8
hydrochloric acid	1.18	36%	11.6
nitric acid	1.42	71%	16.0
perchloric acid	1.67	70%	11.65
phosphoric acid	1.70	85%	14.7
sodium hydroxide	1.53	50%	19.1
sulfuric acid	1.84	96%	18.0

Table F1

^{1.} Acids and bases are commercially available as aqueous solutions. This table lists properties (densities and concentrations) of common acid and base solutions. Nominal values are provided in cases where the manufacturer cites a range of concentrations and densities.

^{2.} This column contains specific gravity data. In the case of this table, specific gravity is the ratio of density of a substance to the density of pure water at the same conditions. Specific gravity is often cited on commercial labels.

^{3.} This solution is sometimes called "ammonium hydroxide," although this term is not chemically accurate.

1210 Appendix F

Appendix G

Standard Thermodynamic Properties for Selected Substances

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{ extstyle}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)	
	aluminum			
Al(s)	0	0	28.3	
Al(g)	324.4	285.7	164.54	
Al ³⁺ (aq)	-531	-485	-321.7	
Al ₂ O ₃ (s)	-1676	-1582	50.92	
AIF ₃ (s)	-1510.4	-1425	66.5	
AICI ₃ (s)	-704.2	-628.8	110.67	
AlCl ₃ ·6H ₂ O(s)	-2691.57	-2269.40	376.56	
Al ₂ S ₃ (s)	-724.0	-492.4	116.9	
Al ₂ (SO ₄) ₃ (s)	-3445.06	-3506.61	239.32	
	antimony			
Sb(s)	0	0	45.69	
Sb(g)	262.34	222.17	180.16	
Sb ₄ O ₆ (s)	-1440.55	-1268.17	220.92	
SbCl ₃ (g)	-313.8	-301.2	337.80	
SbCl ₅ (g)	-394.34	-334.29	401.94	
Sb ₂ S ₃ (s)	-174.89	-173.64	182.00	
SbCl ₃ (s)	-382.17	-323.72	184.10	
SbOCl(s)	-374.0	_	_	
	arsenic			
As(s)	0	0	35.1	
As(g)	302.5	261.0	174.21	
As ₄ (g)	143.9	92.4	314	
As ₄ O ₆ (s)	-1313.94	-1152.52	214.22	
As ₂ O ₅ (s)	-924.87	-782.41	105.44	

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{ extstyle}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
AsCl ₃ (g)	-261.50	-248.95	327.06
As ₂ S ₃ (s)	-169.03	-168.62	163.59
AsH ₃ (g)	66.44	68.93	222.78
H ₃ AsO ₄ (s)	-906.3	_	_
	barium		
Ba(s)	0	0	62.5
Ba(g)	180	146	170.24
Ba ²⁺ (<i>aq</i>)	-537.6	-560.8	9.6
BaO(s)	-548.0	-520.3	72.1
BaCl ₂ (s)	-855.0	-806.7	123.7
BaSO ₄ (s)	-1473.2	-1362.3	132.2
	beryllium		
Be(s)	0	0	9.50
Be(g)	324.3	286.6	136.27
BeO(s)	-609.4	-580.1	13.8
	bismuth		
Bi(s)	0	0	56.74
Bi(g)	207.1	168.2	187.00
Bi ₂ O ₃ (s)	-573.88	– 493.7	151.5
BiCl ₃ (s)	-379.07	-315.06	176.98
Bi ₂ S ₃ (s)	-143.1	-140.6	200.4
	boron		
B(s)	0	0	5.86
B(<i>g</i>)	565.0	521.0	153.4
B ₂ O ₃ (s)	-1273.5	-1194.3	53.97
$B_2H_6(g)$	36.4	87.6	232.1
H ₃ BO ₃ (s)	-1094.33	-968.92	88.83
BF ₃ (g)	-1136.0	-1119.4	254.4
$BCl_3(g)$	-403.8	-388.7	290.1
B ₃ N ₃ H ₆ (/)	-540.99	-392.79	199.58
HBO ₂ (s)	-794.25	-723.41	37.66

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{ ext{-}}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
bromine			
Br ₂ (/)	0	0	152.23
Br ₂ (g)	30.91	3.142	245.5
Br(g)	111.88	82.429	175.0
Br ⁻ (aq)	-120.9	-102.82	80.71
BrF ₃ (g)	-255.60	-229.45	292.42
HBr(g)	-36.3	-53.43	198.7
	cadmium		
Cd(s)	0	0	51.76
Cd(g)	112.01	77.41	167.75
Cd ²⁺ (aq)	–75.90	-77.61	-73.2
CdO(s)	-258.2	-228.4	54.8
CdCl ₂ (s)	-391.5	-343.9	115.3
CdSO ₄ (s)	-933.3	-822.7	123.0
CdS(s)	-161.9	-156.5	64.9
	calcium		
Ca(s)	0	0	41.6
Ca(g)	178.2	144.3	154.88
Ca ²⁺ (<i>aq</i>)	-542.96	-553.04	-55.2
CaO(s)	-634.9	-603.3	38.1
Ca(OH) ₂ (s)	– 985.2	-897.5	83.4
CaSO ₄ (s)	-1434.5	-1322.0	106.5
CaSO ₄ ·2H ₂ O(s)	-2022.63	-1797.45	194.14
CaCO ₃ (s) (calcite)	-1220.0	-1081.4	110.0
CaSO ₃ ·H ₂ O(s)	-1752.68	-1555.19	184.10
carbon			
C(s) (graphite)	0	0	5.740
C(s) (diamond)	1.89	2.90	2.38
C(g)	716.681	671.2	158.1
CO(g)	-110.52	-137.15	197.7
CO ₂ (g)	-393.51	-394.36	213.8

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{\scriptscriptstyle -}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
CO ₃ ^{2–} (aq)	-677.1	-527.8	-56.9
CH ₄ (g)	-74.6	– 50.5	186.3
CH ₃ OH(I)	-239.2	-166.6	126.8
CH₃OH(g)	-201.0	-162.3	239.9
CCI ₄ (I)	-128.2	-62.5	214.4
CCl ₄ (g)	- 95.7	-58.2	309.7
CHCl ₃ (I)	-134.1	-73.7	201.7
CHCl ₃ (g)	-103.14	-70.34	295.71
CS ₂ (I)	89.70	65.27	151.34
CS ₂ (g)	116.9	66.8	238.0
C ₂ H ₂ (g)	227.4	209.2	200.9
C ₂ H ₄ (g)	52.4	68.4	219.3
C ₂ H ₆ (g)	-84.0	-32.0	229.2
CH ₃ CO ₂ H(I)	-484.3	-389.9	159.8
CH ₃ CO ₂ H(g)	-434.84	-376.69	282.50
C ₂ H ₅ OH(I)	-277.6	-174.8	160.7
C ₂ H ₅ OH(g)	-234.8	-167.9	281.6
HCO ₃ ⁻ (aq)	-691.11	-587.06	95
C ₃ H ₈ (<i>g</i>)	-103.8	-23.4	270.3
C ₆ H ₆ (g)	82.927	129.66	269.2
C ₆ H ₆ (<i>I</i>)	49.1	124.50	173.4
CH ₂ Cl ₂ (I)	-124.2	-63.2	177.8
CH ₂ Cl ₂ (g)	-95.4	-65.90	270.2
CH ₃ Cl(g)	-81.9	-60.2	234.6
C ₂ H ₅ CI(I)	-136.52	-59.31	190.79
C ₂ H ₅ Cl(g)	-112.17	-60.39	276.00
C ₂ N ₂ (g)	308.98	297.36	241.90
HCN(I)	108.9	125.0	112.8
HCN(g)	135.5	124.7	201.8
	cesium		
Cs ⁺ (aq)	-248	-282.0	133

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{ ext{-}}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
chlorine			
Cl ₂ (g)	0	0	223.1
CI(g)	121.3	105.70	165.2
Cl⁻(aq)	-167.2	-131.2	56.5
CIF(g)	-54.48	– 55.94	217.78
CIF ₃ (g)	-158.99	-118.83	281.50
Cl ₂ O(g)	80.3	97.9	266.2
Cl ₂ O ₇ (<i>l</i>)	238.1	_	_
Cl ₂ O ₇ (g)	272.0		_
HCI(g)	-92.307	-95.299	186.9
HCIO ₄ (I)	-40.58	_	_
	chromium		
Cr(s)	0	0	23.77
Cr(g)	396.6	351.8	174.50
CrO ₄ ^{2–} (aq)	-881.2	- 727.8	50.21
Cr ₂ O ₇ ^{2–} (aq)	-1490.3	-1301.1	261.9
Cr ₂ O ₃ (s)	-1139.7	-1058.1	81.2
CrO ₃ (s)	– 589.5	_	_
(NH ₄) ₂ Cr ₂ O ₇ (s)	-1806.7	_	_
	cobalt		
Co(s)	0	0	30.0
Co ²⁺ (aq)	-67.4	– 51.5	–155
Co ³⁺ (aq)	92	134	-305.0
CoO(s)	-237.9	-214.2	52.97
Co ₃ O ₄ (s)	-910.02	-794.98	114.22
Co(NO ₃) ₂ (s)	-420.5	_	_
copper			
Cu(s)	0	0	33.15
Cu(g)	338.32	298.58	166.38
Cu ⁺ (aq)	51.9	50.2	-26
Cu ²⁺ (aq)	64.77	65.49	-99.6

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^-$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
CuO(s)	-157.3	-129.7	42.63
Cu ₂ O(s)	-168.6	-146.0	93.14
CuS(s)	-53.1	-53.6	66.5
Cu ₂ S(s)	– 79.5	-86.2	120.9
CuSO ₄ (s)	-771.36	-662.2	109.2
Cu(NO ₃) ₂ (s)	-302.9	_	_
	fluorine		
F ₂ (g)	0	0	202.8
F(g)	79.4	62.3	158.8
F ⁻ (aq)	-332.6	-278.8	-13.8
F ₂ O(<i>g</i>)	24.7	41.9	247.43
HF(g)	-273.3	-275.4	173.8
	hydrogen		
H ₂ (g)	0	0	130.7
H(g)	217.97	203.26	114.7
H ⁺ (aq)	0	0	0
OH ⁻ (aq)	-230.0	-157.2	-10.75
H ₃ O ⁺ (aq)	-285.8		69.91
H ₂ O(I)	-285.83	-237.1	70.0
H ₂ O(<i>g</i>)	-241.82	-228.59	188.8
H ₂ O ₂ (I)	-187.78	-120.35	109.6
$H_2O_2(g)$	-136.3	-105.6	232.7
HF(g)	-273.3	-275.4	173.8
HCI(g)	-92.307	-95.299	186.9
HBr(g)	-36.3	-53.43	198.7
HI(g)	26.48	1.70	206.59
H ₂ S(g)	-20.6	-33.4	205.8
H ₂ Se(g)	29.7	15.9	219.0
iodine			
l ₂ (s)	0	0	116.14
l ₂ (g)	62.438	19.3	260.7

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^-$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
l(g)	106.84	70.2	180.8
l⁻(aq)	-55.19	-51.57	11.13
IF(g)	95.65	-118.49	236.06
ICI(g)	17.78	-5.44	247.44
IBr(g)	40.84	3.72	258.66
IF ₇ (g)	-943.91	-818.39	346.44
HI(g)	26.48	1.70	206.59
	iron		
Fe(s)	0	0	27.3
Fe(g)	416.3	370.7	180.5
Fe ²⁺ (aq)	-89.1	- 78.90	-137.7
Fe ³⁺ (aq)	-48.5	-4.7	-315.9
Fe ₂ O ₃ (s)	-824.2	-742.2	87.40
Fe ₃ O ₄ (s)	-1118.4	-1015.4	146.4
Fe(CO) ₅ (I)	-774.04	-705.42	338.07
Fe(CO) ₅ (g)	-733.87	-697.26	445.18
FeCl ₂ (s)	-341.79	-302.30	117.95
FeCl ₃ (s)	-399.49	-334.00	142.3
FeO(s)	-272.0	-255.2	60.75
Fe(OH) ₂ (s)	– 569.0	-486.5	88.
Fe(OH) ₃ (s)	-823.0	-696.5	106.7
FeS(s)	-100.0	-100.4	60.29
Fe ₃ C(s)	25.10	20.08	104.60
	lead		
Pb(s)	0	0	64.81
Pb(g)	195.2	162.	175.4
Pb ²⁺ (aq)	-1.7	-24.43	10.5
PbO(s) (yellow)	-217.32	-187.89	68.70
PbO(s) (red)	-218.99	-188.93	66.5
Pb(OH) ₂ (s)	-515.9	_	_
PbS(s)	-100.4	-98.7	91.2

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{ extstyle}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
Pb(NO ₃) ₂ (s)	-451.9	_	_
PbO ₂ (s)	-277.4	-217.3	68.6
PbCl ₂ (s)	-359.4	-314.1	136.0
	lithium		
Li(s)	0	0	29.1
Li(g)	159.3	126.6	138.8
Li ⁺ (aq)	-278.5	-293.3	13.4
LiH(s)	-90.5	-68.3	20.0
Li(OH)(s)	-487.5	–441.5	42.8
LiF(s)	-616.0	– 587.5	35.7
Li ₂ CO ₃ (s)	-1216.04	-1132.19	90.17
	magnesium		
Mg ²⁺ (aq)	-466.9	-454.8	-138.1
	manganese		
Mn(s)	0	0	32.0
Mn(g)	280.7	238.5	173.7
Mn ²⁺ (<i>aq</i>)	-220.8	-228.1	-73.6
MnO(s)	-385.2	-362.9	59.71
MnO ₂ (s)	-520.03	-465.1	53.05
Mn ₂ O ₃ (s)	-958.97	-881.15	110.46
Mn ₃ O ₄ (s)	-1378.83	-1283.23	155.64
MnO ₄ [–] (aq)	-541.4	-447.2	191.2
MnO ₄ ^{2–} (aq)	-653.0	-500.7	59
	mercury		
Hg(/)	0	0	75.9
Hg(<i>g</i>)	61.4	31.8	175.0
Hg ²⁺ (<i>aq</i>)		164.8	
Hg ²⁺ (<i>aq</i>)	172.4	153.9	84.5
HgO(s) (red)	-90.83	– 58.5	70.29
HgO(s) (yellow)	-90.46	-58.43	71.13
HgCl ₂ (s)	-224.3	-178.6	146.0

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^-$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
Hg ₂ Cl ₂ (s)	-265.4	-210.7	191.6
HgS(s) (red)	-58.16	-50.6	82.4
HgS(s) (black)	-53.56	<i>–</i> 47.70	88.28
HgSO ₄ (s)	-707.51	-594.13	0.00
	nickel		
Ni ²⁺ (aq)	-64.0	-46.4	-159
	nitrogen		
N ₂ (g)	0	0	191.6
N(g)	472.704	455.5	153.3
NO(g)	90.25	87.6	210.8
NO ₂ (g)	33.2	51.30	240.1
N ₂ O(<i>g</i>)	81.6	103.7	220.0
N ₂ O ₃ (g)	83.72	139.41	312.17
NO ₃ ⁻ (aq)	-205.0	-108.7	146.4
N ₂ O ₄ (g)	11.1	99.8	304.4
N ₂ O ₅ (g)	11.3	115.1	355.7
NH ₃ (g)	-45.9	-16.5	192.8
NH ₄ ⁺ (aq)	-132.5	-79.31	113.4
N ₂ H ₄ (I)	50.63	149.43	121.21
N ₂ H ₄ (g)	95.4	159.4	238.5
NH ₄ NO ₃ (s)	-365.56	-183.87	151.08
NH ₄ Cl(s)	-314.43	-202.87	94.6
NH ₄ Br(s)	-270.8	-175.2	113.0
NH ₄ I(s)	-201.4	-112.5	117.0
NH ₄ NO ₂ (s)	-256.5	_	_
HNO ₃ (/)	-174.1	-80.7	155.6
HNO ₃ (g)	-133.9	–73.5	266.9
oxygen			
O ₂ (g)	0	0	205.2
O(g)	249.17	231.7	161.1
O ₃ (g)	142.7	163.2	238.9

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{ extstyle}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)	
	phosphorus			
P ₄ (s)	0	0	164.4	
P ₄ (g)	58.91	24.4	280.0	
P(g)	314.64	278.25	163.19	
PH ₃ (g)	5.4	13.5	210.2	
PCl ₃ (g)	-287.0	-267.8	311.78	
$PCl_5(g)$	-374.9	-305.0	364.4	
P ₄ O ₆ (s)	-1640.1	_	_	
P ₄ O ₁₀ (s)	-2984.0	-2697.0	228.86	
PO ₄ ^{3–} (aq)	-1277	-1019	-222	
HPO ₃ (s)	-948.5	_	_	
HPO ₄ ^{2–} (aq)	-1292.1	-1089.3	-33	
H ₂ PO ₄ ^{2–} (aq)	-1296.3	-1130.4	90.4	
H ₃ PO ₂ (s)	-604.6	_	_	
H ₃ PO ₃ (s)	-964.4	_	_	
H ₃ PO ₄ (s)	-1279.0	-1119.1	110.50	
H ₃ PO ₄ (I)	-1266.9	-1124.3	110.5	
H ₄ P ₂ O ₇ (s)	-2241.0	_	_	
POCI ₃ (I)	-597.1	-520.8	222.5	
POCl ₃ (g)	-558.5	-512.9	325.5	
	potassium			
K(s)	0	0	64.7	
K(g)	89.0	60.5	160.3	
K ⁺ (aq)	-252.4	-283.3	102.5	
KF(s)	-576.27	– 537.75	66.57	
KCl(s)	-436.5	-408.5	82.6	
rubidium				
Rb ⁺ (aq)	-246	-282.2	124	
silicon				
Si(s)	0	0	18.8	
Si(g)	450.0	405.5	168.0	

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^-$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
SiO ₂ (s)	-910.7	-856.3	41.5
SiH ₄ (g)	34.3	56.9	204.6
H ₂ SiO ₃ (s)	-1188.67	-1092.44	133.89
H ₄ SiO ₄ (s)	-1481.14	-1333.02	192.46
SiF ₄ (g)	-1615.0	-1572.8	282.8
SiCl ₄ (I)	-687.0	-619.8	239.7
SiCl ₄ (g)	-662.75	-622.58	330.62
SiC(s, beta cubic)	-73.22	-70.71	16.61
SiC(s, alpha hexagonal)	-71.55	-69.04	16.48
	silver		
Ag(s)	0	0	42.55
Ag(g)	284.9	246.0	172.89
Ag ⁺ (aq)	105.6	77.11	72.68
Ag ₂ O(s)	-31.05	-11.20	121.3
AgCl(s)	-127.0	-109.8	96.3
Ag ₂ S(s)	-32.6	-40.7	144.0
sodium			
Na(s)	0	0	51.3
Na(g)	107.5	77.0	153.7
Na ⁺ (aq)	-240.1	-261.9	59
Na ₂ O(s)	-414.2	- 375.5	75.1
NaCl(s)	-411.2	-384.1	72.1
	strontium		
Sr ²⁺ (aq)	-545.8	– 557.3	-32.6
	sulfur		
S ₈ (s) (rhombic)	0	0	256.8
S(g)	278.81	238.25	167.82
S ²⁻ (aq)	41.8	83.7	22
SO ₂ (g)	-296.83	-300.1	248.2
SO ₃ (g)	-395.72	-371.06	256.76
SO ₄ ^{2–} (aq)	-909.3	–744.5	20.1

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^-$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
S ₂ O ₃ ^{2–} (aq)	-648.5	– 522.5	67
H ₂ S(g)	-20.6	-33.4	205.8
HS ⁻ (aq)	-17.7	12.6	61.1
H ₂ SO ₄ (I)	-813.989	690.00	156.90
HSO ₄ ^{2–} (aq)	-885.75	- 752.87	126.9
H ₂ S ₂ O ₇ (s)	-1273.6	_	_
SF ₄ (g)	-728.43	-684.84	291.12
SF ₆ (g)	-1220.5	-1116.5	291.5
SCI ₂ (I)	– 50	_	_
SCl ₂ (g)	-19.7	_	_
S ₂ Cl ₂ (I)	-59.4	_	_
$S_2Cl_2(g)$	-19.50	-29.25	319.45
SOCl ₂ (g)	-212.55	-198.32	309.66
SOCI ₂ (I)	-245.6	_	_
SO ₂ Cl ₂ (I)	-394.1	_	_
SO ₂ Cl ₂ (g)	-354.80	-310.45	311.83
tin			
Sn(s)	0	0	51.2
Sn(g)	301.2	266.2	168.5
SnO(s)	-285.8	-256.9	56.5
SnO ₂ (s)	– 577.6	– 515.8	49.0
SnCl ₄ (I)	-511.3	-440.1	258.6
SnCl ₄ (g)	-471.5	-432.2	365.8
	titanium		
Ti(s)	0	0	30.7
Ti(g)	473.0	428.4	180.3
TiO ₂ (s)	-944.0	-888.8	50.6
TiCl ₄ (I)	-804.2	-737.2	252.4
TiCl ₄ (g)	-763.2	-726.3	353.2
	tungsten		
W(s)	0	0	32.6

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{ extstyle}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	S° (J K ⁻¹ mol ⁻¹)
W(g)	849.4	807.1	174.0
WO ₃ (s)	-842.9	-764.0	75.9
	zinc		
Zn(s)	0	0	41.6
Zn(g)	130.73	95.14	160.98
Zn ²⁺ (aq)	-153.9	-147.1	-112.1
ZnO(s)	-350.5	-320.5	43.7
ZnCl ₂ (s)	-415.1	-369.43	111.5
ZnS(s)	-206.0	-201.3	57.7
ZnSO ₄ (s)	-982.8	-871.5	110.5
ZnCO ₃ (s)	-812.78	-731.57	82.42
	complexes		
[Co(NH ₃) ₄ (NO ₂) ₂]NO ₃ , cis	-898.7	_	_
[Co(NH ₃) ₄ (NO ₂) ₂]NO ₃ , trans	-896.2	_	_
NH ₄ [Co(NH ₃) ₂ (NO ₂) ₄]	-837.6	<u>—</u>	_
[Co(NH ₃) ₆][Co(NH ₃) ₂ (NO ₂) ₄] ₃	-2733.0	<u> </u>	_
[Co(NH ₃) ₄ Cl ₂]Cl, cis	-874.9	_	_
[Co(NH ₃) ₄ Cl ₂]Cl, trans	-877.4	_	_
[Co(en) ₂ (NO ₂) ₂]NO ₃ , cis	-689.5	_	_
[Co(en) ₂ Cl ₂]Cl, cis	-681.2	_	_
[Co(en) ₂ Cl ₂]Cl, trans	– 677.4	_	_
[Co(en) ₃](ClO ₄) ₃	– 762.7	_	_
[Co(en) ₃]Br ₂	– 595.8	_	_
[Co(en) ₃]I ₂	– 475.3	_	_
[Co(en) ₃]I ₃	– 519.2	<u>—</u>	_
[Co(NH ₃) ₆](ClO ₄) ₃	-1034.7	-221.1	615
[Co(NH ₃) ₅ NO ₂](NO ₃) ₂	-1088.7	-412.9	331
[Co(NH ₃) ₆](NO ₃) ₃	-1282.0	-524.5	448
[Co(NH ₃) ₅ Cl]Cl ₂	-1017.1	– 582.5	366.1
[Pt(NH ₃) ₄]Cl ₂	–725.5	_	_
[Ni(NH ₃) ₆]Cl ₂	-994.1	_	_

Table G1

Substance	$\Delta H_{ m f}^{\circ}$ (kJ mol $^{ extstyle}$)	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{ extstyle -1}$)	S° (J K ⁻¹ mol ⁻¹)
[Ni(NH ₃) ₆]Br ₂	-923.8	_	_
[Ni(NH ₃) ₆]I ₂	-808.3	_	_

Table G1

Appendix H

Ionization Constants Of Weak Acids

Ionization Constants of Weak Acids

Acid	Formula	K _a at 25 °C	Lewis Structure
acetic	CH₃CO2H	1.8 × 10 ⁻⁵	н—с—с—о: Н—то—с—о: Н—то
	H ₃ AsO ₄	5.5 × 10 ⁻³	
arsenic	H ₂ AsO ₄ =	1.7 × 10 ⁻⁷	.;;- П он-ль-он
	HAsO ₄ 2-	3.0×10^{-12}	ю́н
arsenous	H ₃ AsO ₃	5.1 × 10 ⁻¹⁰	H :0-As-0; -0:-H
boric	H ₃ BO ₃	5.4 × 10 ⁻¹⁰	H O H
	H ₂ CO ₃	4.3 × 10 ⁻⁷	75.
carbonic	HCO ₀ -	4.7 × 10 ⁻¹¹	HÖ C=Ö
cyanic	HCNO	2 × 10 ⁻⁴	, N=c=o;

Table H1

Ionization Constants of Weak Acids

Acid	Formula	K _a at 25 °C	Lewis Structure
formic	HCO ₂ H	1.8 × 10 ⁻⁴	÷Ö H G Ğ⊩
hydrazoic	HN ₃	2.5 × 10 ⁻⁵	N—N≡N:
hydrocyanic	HCN	4.9×10^{-10}	
hydrofluoric	HF	6.4×10^{-4}	
hydrogen peroxide	H ₂ O ₂	2.4 × 10 ⁻¹²	н—й—й—н
	H ₂ Se	1.29×10^{-4}	
hydrogen selenide	HSe⁻	1×10^{-12}	
hydrogen sulfate ion	HSO ₄ ⁻	1.2 × 10 ⁻²	:Ö—H 0—H 0—H
bydrogon cylfide	H ₂ S	8.9 × 10 ⁻⁸	
hydrogen sulfide	HS ⁻	1.0×10^{-19}	
hydrogen telluride	H ₂ Te	2.3×10^{-3}	
nydrogen tellunde	HTe⁻	1.6×10^{-11}	
hypobromous	HBrO	2.8×10^{-9}	
hypochlorous	HCIO	2.9×10^{-8}	
nitrous	HNO ₂	4.6 × 10 ⁻⁴	:o ^N ∼öH
	H ₂ C ₂ O ₄	6.0×10^{-2}	**************************************
oxalic	HC ₂ O ₄ ⁻	6.1 × 10 ⁻⁵	H-ü-c-c-ü-H

Table H1

Ionization Constants of Weak Acids

Acid	Formula	K _a at 25 °C	Lewis Structure
	H ₃ PO ₄	7.5×10^{-3}	
phosphoric	H ₂ PO ₄ =	6.2 × 10 ⁻⁸	
	HPO ₄ 2-	4.2×10^{-13}	H
	H ₃ PO ₃	5 × 10 ⁻²	346
phosphorous	H ₂ PO ₃ =	2.0×10^{-7}	HÖ—B—ÖH
	H ₂ SO ₃	1.6×10^{-2}	22400
sulfurous	HSO ₃ -	6.4 × 10 ⁻⁸	:он !о—s—он

Table H1

Appendix I 1229

Appendix I

Ionization Constants Of Weak Bases

Ionization Constants of Weak Bases

Base	Lewis Structure	K₀ at 25 °C
ammonia	н— <u>;;</u> —н	1.8 × 10 ⁻⁵
dimethylamine	H—C—N—C—H	5.9 × 10 ⁻⁴
methylamine	н—с—й—н 	4.4 × 10 ⁻⁴
phenylamine (aniline)	H C C H H	4.3 × 10 ⁻¹⁰
trimethylamine	H - C - H - C	6.3 × 10 ⁻⁵

Table I1

1230 Appendix I

Appendix J

Solubility Products

Substance	K _{sp} at 25 °C	
aluminum		
Al(OH) ₃	2 × 10 ⁻³²	
barium		
BaCO ₃	1.6×10^{-9}	
BaC ₂ O ₄ ·2H ₂ O	1.1×10^{-7}	
BaSO ₄	2.3×10^{-8}	
BaCrO ₄	8.5×10^{-11}	
BaF ₂	2.4×10^{-5}	
Ba(OH) ₂ ⋅8H ₂ O	5.0×10^{-3}	
Ba ₃ (PO ₄) ₂	6 × 10 ⁻³⁹	
Ba ₃ (AsO ₄) ₂	1.1×10^{-13}	
bismuth		
BiO(OH)	4×10^{-10}	
BiOCI	1.8×10^{-31}	
Bi ₂ S ₃	1×10^{-97}	
cadmium		
Cd(OH) ₂	5.9×10^{-15}	
CdS	1.0×10^{-28}	
CdCO ₃	5.2×10^{-12}	
calcium		
Ca(OH) ₂	1.3×10^{-6}	
CaCO ₃	8.7×10^{-9}	
CaSO4·2H ₂ O	6.1×10^{-5}	
CaC ₂ O ₄ ·H ₂ O	1.96×10^{-8}	
Ca ₃ (PO ₄) ₂	1.3×10^{-32}	
CaHPO ₄	7×10^{-7}	
CaF ₂	4.0×10^{-11}	
chromium		

Table J1

Substance	K _{sp} at 25 °C
Cr(OH)₃	6.7×10^{-31}
cobalt	
Co(OH) ₂	2.5×10^{-16}
CoS(α)	5 × 10 ⁻²²
CoS(β)	3×10^{-26}
CoCO ₃	1.4×10^{-13}
Co(OH) ₃	2.5×10^{-43}
copper	
CuCl	1.2×10^{-6}
CuBr	6.27×10^{-9}
Cul	1.27×10^{-12}
CuSCN	1.6×10^{-11}
Cu ₂ S	2.5×10^{-48}
Cu(OH) ₂	2.2×10^{-20}
CuS	8.5×10^{-45}
CuCO ₃	2.5×10^{-10}
iron	
Fe(OH) ₂	1.8×10^{-15}
FeCO ₃	2.1×10^{-11}
FeS	3.7×10^{-19}
Fe(OH) ₃	4×10^{-38}
lead	
Pb(OH) ₂	1.2×10^{-15}
PbF ₂	4 × 10 ⁻⁸
PbCl ₂	1.6×10^{-5}
PbBr ₂	4.6×10^{-6}
Pbl ₂	1.4×10^{-8}
PbCO ₃	1.5×10^{-15}
PbS	7×10^{-29}
PbCrO₄	2×10^{-16}
PbSO ₄	1.3×10^{-8}

Table J1

Substance	K _{sp} at 25 °C	
Pb ₃ (PO ₄) ₂	1×10^{-54}	
magnesiun		
Mg(OH) ₂	8.9 × 10 ⁻¹²	
MgCO ₃ ·3H ₂ O	$ca.1 \times 10^{-5}$	
MgNH ₄ PO ₄	3×10^{-13}	
	6.4×10^{-9}	
MgF ₂	7×10^{-7}	
MgC ₂ O ₄		
manganes		
Mn(OH) ₂	2×10^{-13}	
MnCO ₃	8.8×10^{-11}	
MnS	2.3×10^{-13}	
mercury		
Hg₂O·H₂O	3.6×10^{-26}	
Hg ₂ Cl ₂	1.1×10^{-18}	
Hg ₂ Br ₂	1.3×10^{-22}	
Hg ₂ l ₂	4.5×10^{-29}	
Hg ₂ CO ₃	9×10^{-15}	
Hg₂SO₄	7.4×10^{-7}	
Hg ₂ S	1.0×10^{-47}	
Hg ₂ CrO ₄	2 × 10 ⁻⁹	
HgS	1.6×10^{-54}	
nickel		
Ni(OH) ₂	1.6×10^{-16}	
NiCO ₃	1.4×10^{-7}	
NiS(α)	4×10^{-20}	
NiS(β)	1.3×10^{-25}	
potassium		
KClO₄	1.05×10^{-2}	
K ₂ PtCl ₆	7.48×10^{-6}	
KHC ₄ H ₄ O ₆	3×10^{-4}	
silver		

Table J1

Substance	K _{sp} at 25 °C	
${}_2^1\mathrm{Ag}_2\mathrm{O}(\mathrm{Ag}^+ + \mathrm{OH}^-)$	2 × 10 ⁻⁸	
AgCl	1.6×10^{-10}	
AgBr	5.0×10^{-13}	
AgI	1.5×10^{-16}	
AgCN	1.2×10^{-16}	
AgSCN	1.0×10^{-12}	
Ag ₂ S	1.6×10^{-49}	
Ag ₂ CO ₃	8.1×10^{-12}	
Ag ₂ CrO ₄	9.0×10^{-12}	
Ag ₄ Fe(CN) ₆	1.55×10^{-41}	
Ag ₂ SO ₄	1.2×10^{-5}	
Ag ₃ PO ₄	1.8×10^{-18}	
strontium		
Sr(OH) ₂ ⋅8H ₂ O	3.2×10^{-4}	
SrCO ₃	7×10^{-10}	
SrCrO ₄	3.6×10^{-5}	
SrSO ₄	3.2×10^{-7}	
SrC ₂ O ₄ ·H ₂ O	4×10^{-7}	
thallium		
TICI	1.7×10^{-4}	
TISCN	1.6×10^{-4}	
Tl ₂ S	6 × 10 ⁻²²	
Tl(OH)₃	6.3×10^{-46}	
tin		
Sn(OH) ₂	3×10^{-27}	
SnS	1×10^{-26}	
Sn(OH) ₄	1.0×10^{-57}	
zinc		
ZnCO ₃	2×10^{-10}	

Table J1

Appendix K 1235

Appendix K

Formation Constants For Complex Ions

Formation Constants for Complex Ions

Equilibrium	K _f
$Al^{3+} + 6F^- \Rightarrow [AlF_6]^{3-}$	7×10^{19}
$Cd^{2+} + 4NH_3 \implies [Cd(NH_3)_4]^{2+}$	1.3×10^{7}
$Cd^{2+} + 4CN^{-} \Rightarrow [Cd(CN)_4]^{2-}$	3 × 10 ¹⁸
$\text{Co}^{2+} + 6\text{NH}_3 \implies [\text{Co}(\text{NH}_3)_6]^{2+}$	1.3×10^{5}
$\text{Co}^{3+} + 6\text{NH}_3 \implies \left[\text{Co}(\text{NH}_3)_6\right]^{3+}$	2.3×10^{33}
$Cu^+ + 2CN \Rightarrow [Cu(CN)_2]^-$	1.0 × 10 ¹⁶
$Cu^{2+} + 4NH_3 \implies [Cu(NH_3)_4]^{2+}$	1.7×10^{13}
$Fe^{2+} + 6CN^{-} \Rightarrow [Fe(CN)_{6}]^{4-}$	1.5 × 10 ³⁵
$Fe^{3+} + 6CN^{-} \Rightarrow [Fe(CN)_{6}]^{3-}$	2 × 10 ⁴³
$Fe^{3+} + 6SCN^{-} \Rightarrow [Fe(SCN)_6]^{3-}$	3.2×10^{3}
$\mathrm{Hg}^{2+} + 4\mathrm{Cl}^{-} \ \rightleftharpoons \ [\mathrm{HgCl}_4]^{2-}$	1.1×10^{16}
$Ni^{2+} + 6NH_3 \implies [Ni(NH_3)_6]^{2+}$	2.0 × 10 ⁸
$Ag^{+} + 2Cl^{-} \Rightarrow [AgCl_{2}]^{-}$	1.8×10^{5}
$Ag^{+} + 2CN^{-} \rightleftharpoons [Ag(CN)_{2}]^{-}$	1×10^{21}
$Ag^+ + 2NH_3 \approx [Ag(NH_3)_2]^+$	1.7×10^{7}
$Zn^{2+} + 4CN^{-} \Rightarrow [Zn(CN)_4]^{2-}$	2.1×10^{19}
$Zn^{2+} + 4OH^{-} \rightleftharpoons [Zn(OH)_4]^{2-}$	2 × 10 ¹⁵
$Fe^{3+} + SCN^{-} \Rightarrow [Fe(SCN)]^{2+}$	8.9×10^{2}
$Ag^{+} + 4SCN^{-} \Rightarrow [Ag(SCN)_{4}]^{3-}$	1.2×10^{10}
$Pb^{2+} + 4I^- \Rightarrow [PbI_4]^{2-}$	3.0 × 10 ⁴
$Pt^{2+} + 4Cl^{-} \Rightarrow [PtCl_4]^{2-}$	1 × 10 ¹⁶

Table K1

1236 Appendix K

Formation Constants for Complex Ions

Equilibrium	K _f
$Cu^{2+} + 4CN \Rightarrow \left[Cu(CN)_4 \right]^{2-}$	1.0×10^{25}
$Co^{2+} + 4SCN^{-} \Rightarrow [Co(SCN)_4]^{2-}$	1 × 10 ³

Table K1

Appendix L

Standard Electrode (Half-Cell) Potentials

Half-Reaction	<i>E</i> ° (V)
$Ag^+ + e^- \longrightarrow Ag$	+0.7996
$AgCl + e^{-} \longrightarrow Ag + Cl^{-}$	+0.22233
$[Ag(CN)_2]^- + e^- \longrightarrow Ag + 2CN^-$	-0.31
$Ag_2CrO_4 + 2e^- \longrightarrow 2Ag + CrO_4^{2-}$	+0.45
$[Ag(NH_3)_2]^+ + e^- \longrightarrow Ag + 2NH_3$	+0.373
$[Ag(S_2O_3)_2]^{3+} + e^- \longrightarrow Ag + 2S_2O_3^{2-}$	+0.017
$[AlF_6]^{3-} + 3e^- \longrightarrow Al + 6F^-$	-2.07
$Al^{3+} + 3e^{-} \longrightarrow Al$	-1.662
$Am^{3+} + 3e^{-} \longrightarrow Am$	-2.048
$Au^{3+} + 3e^{-} \longrightarrow Au$	+1.498
$Au^+ + e^- \longrightarrow Au$	+1.692
$Ba^{2+} + 2e^{-} \longrightarrow Ba$	-2.912
$Be^{2+} + 2e^{-} \longrightarrow Be$	-1.847
$Br_2(aq) + 2e^- \longrightarrow 2Br^-$	+1.0873
$Ca^{2+} + 2e^{-} \longrightarrow Ca$	-2.868
$Ce^3 + 3e^- \longrightarrow Ce$	-2.483
$Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$	+1.61
$Cd^{2+} + 2e^{-} \longrightarrow Cd$	-0.4030
$[Cd(CN)_4]^{2-} + 2e^- \longrightarrow Cd + 4CN^-$	-1.09
$\left[\operatorname{Cd}(\operatorname{NH}_3)_4\right]^{2+} + 2e^{-} \longrightarrow \operatorname{Cd} + 4\operatorname{NH}_3$	-0.61
$CdS + 2e^{-} \longrightarrow Cd + S^{2-}$	-1.17
$Cl_2 + 2e^- \longrightarrow 2Cl^-$	+1.35827

Table L1

Half-Reaction	<i>E</i> ° (V)
$ClO_4^- + H_2O + 2e^- \longrightarrow ClO_3^- + 2OH^-$	+0.36
$ClO_3^- + H_2O + 2e^- \longrightarrow ClO_2^- + 2OH^-$	+0.33
$ClO_2^- + H_2O + 2e^- \longrightarrow ClO^- + 2OH^-$	+0.66
$ClO^- + H_2O + 2e^- \longrightarrow Cl^- + 2OH^-$	+0.89
$ClO_4^- + 2H_3O^+ + 2e^- \longrightarrow ClO_3^- + 3H_2O$	+1.189
$\text{ClO}_3^- + 3\text{H}_3\text{O}^+ + 2\text{e}^- \longrightarrow \text{HClO}_2 + 4\text{H}_2\text{O}$	+1.21
$HClO + H_3O^+ + 2e^- \longrightarrow Cl^- + 2H_2O$	+1.482
$HCIO + H_3O^+ + e^- \longrightarrow \frac{1}{2}Cl_2 + 2H_2O$	+1.611
$HClO_2 + 2H_3O^+ + 2e^- \longrightarrow HClO + 3H_2O$	+1.628
$\text{Co}^{3+} + \text{e}^{-} \longrightarrow \text{Co}^{2+} (2 \text{ mol } // \text{H}_2 \text{SO}_4)$	+1.83
$Co^{2+} + 2e^{-} \longrightarrow Co$	-0.28
$\left[\operatorname{Co(NH_3)_6}\right]^{3+} + e^{-} \longrightarrow \left[\operatorname{Co(NH_3)_6}\right]^{2+}$	+0.1
$Co(OH)_3 + e^- \longrightarrow Co(OH)_2 + OH^-$	+0.17
$Cr^3 + 3e^- \longrightarrow Cr$	-0.744
$Cr^{3+} + e^{-} \longrightarrow Cr^{2+}$	-0.407
$Cr^{2+} + 2e^{-} \longrightarrow Cr$	-0.913
$[Cu(CN)_2]^- + e^- \longrightarrow Cu + 2CN^-$	-0.43
$\operatorname{CrO}_4{}^{2-} + 4\operatorname{H}_2\operatorname{O} + 3\operatorname{e}^- \longrightarrow \operatorname{Cr}(\operatorname{OH})_3 + 5\operatorname{OH}^-$	-0.13
$Cr_2O_7^{2-} + 14H_3O^+ + 6e^- \longrightarrow 2Cr^{3+} + 21H_2O$	+1.232
$[Cr(OH)_4]^- + 3e^- \longrightarrow Cr + 4OH^-$	-1.2
$Cr(OH)_3 + 3e^- \longrightarrow Cr + 3OH^-$	-1.48
$Cu^{2+} + e^{-} \longrightarrow Cu^{+}$	+0.153
$Cu^{2+} + 2e^{-} \longrightarrow Cu$	+0.34
$Cu^+ + e^- \longrightarrow Cu$	+0.521
$F_2 + 2e^- \longrightarrow 2F^-$	+2.866
$Fe^{2+} + 2e^{-} \longrightarrow Fe$	-0.447

Table L1

Half-Reaction	<i>E</i> ° (V)
$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	+0.771
$[\operatorname{Fe}(\operatorname{CN})_6]^{3-} + e^- \longrightarrow [\operatorname{Fe}(\operatorname{CN})_6]^{4-}$	+0.36
$Fe(OH)_2 + 2e^- \longrightarrow Fe + 2OH^-$	-0.88
$FeS + 2e^- \longrightarrow Fe + S^{2-}$	-1.01
$Ga^{3+} + 3e^{-} \longrightarrow Ga$	-0.549
$Gd^{3+} + 3e^{-} \longrightarrow Gd$	-2.279
$\frac{1}{2}H_2 + e^- \longrightarrow H^-$	-2.23
$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$	-0.8277
$H_2O_2 + 2H_3O^+ + 2e^- \longrightarrow 4H_2O$	+1.776
$2H_3O^+ + 2e^- \longrightarrow H_2 + 2H_2O$	0.00
$HO_2^- + H_2O + 2e^- \longrightarrow 3OH^-$	+0.878
$Hf^{4+} + 4e^{-} \longrightarrow Hf$	-1.55
$Hg^{2+} + 2e^{-} \longrightarrow Hg$	+0.851
$2Hg^{2+} + 2e^{-} \longrightarrow Hg_2^{2+}$	+0.92
$Hg_2^{2+} + 2e^- \longrightarrow 2Hg$	+0.7973
$[HgBr_4]^{2-} + 2e^- \longrightarrow Hg + 4Br^-$	+0.21
$Hg_2Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^-$	+0.26808
$[Hg(CN)_4]^{2-} + 2e^- \longrightarrow Hg + 4CN^-$	-0.37
$[HgI_4]^{2-} + 2e^- \longrightarrow Hg + 4I^-$	-0.04
$HgS + 2e^- \longrightarrow Hg + S^{2-}$	-0.70
$I_2 + 2e^- \longrightarrow 2I^-$	+0.5355
$In^{3+} + 3e^{-} \longrightarrow In$	-0.3382
$K^+ + e^- \longrightarrow K$	-2.931
$La^{3+} + 3e^{-} \longrightarrow La$	-2.52
$Li^+ + e^- \longrightarrow Li$	-3.04
$Lu^{3+} + 3e^{-} \longrightarrow Lu$	-2.28

Table L1

Half-Reaction	<i>E</i> ° (V)
$Mg^{2+} + 2e^{-} \longrightarrow Mg$	-2.372
$Mn^{2+} + 2e^- \longrightarrow Mn$	-1.185
$MnO_2 + 2H_2O + 2e^- \longrightarrow Mn(OH)_2 + 2OH^-$	-0.05
$MnO_4^- + 2H_2O + 3e^- \longrightarrow MnO_2 + 4OH^-$	+0.558
$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	+1.23
$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	+1.507
$Na^+ + e^- \longrightarrow Na$	-2.71
$Nd^{3+} + 3e^{-} \longrightarrow Nd$	-2.323
$Ni^{2+} + 2e^{-} \longrightarrow Ni$	-0.257
$\left[\text{Ni(NH}_3)_6\right]^{2+} + 2e^- \longrightarrow \text{Ni} + 6\text{NH}_3$	-0.49
$NiO_2 + 4H^+ + 2e^- \longrightarrow Ni^{2+} + 2H_2O$	+1.593
$NiO_2 + 2H_2O + 2e^- \longrightarrow Ni(OH)_2 + 2OH^-$	+0.49
$NiS + 2e^- \longrightarrow Ni + S^{2-}$	+0.76
$NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$	+0.957
$NO_3^- + 3H^+ + 2e^- \longrightarrow HNO_2 + H_2O$	+0.92
$NO_3^- + H_2O + 2e^- \longrightarrow NO_2^- + 2OH^-$	+0.10
$Np^{3+} + 3e^{-} \longrightarrow Np$	-1.856
$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	+0.401
$O_2 + 2H^+ + 2e^- \longrightarrow H_2O_2$	+0.695
$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	+1.229
$Pb^{2+} + 2e^{-} \longrightarrow Pb$	-0.1262
$PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \longrightarrow PbSO_4 + 2H_2O$	+1.69
$PbS + 2e^{-} \longrightarrow Pb + S^{2-}$	-0.95
$PbSO_4 + 2e^- \longrightarrow Pb + SO_4^{2-}$	-0.3505
$Pd^{2+} + 2e^{-} \longrightarrow Pd$	+0.987
$[PdCl_4]^{2-} + 2e^- \longrightarrow Pd + 4Cl^-$	+0.591

Table L1

Half-Reaction	<i>E</i> ° (V)
$Pt^{2+} + 2e^- \longrightarrow Pt$	+1.20
$[PtBr_4]^{2-} + 2e^- \longrightarrow Pt + 4Br^-$	+0.58
$[PtCl_4]^{2-} + 2e^- \longrightarrow Pt + 4Cl^-$	+0.755
$[PtCl_6]^{2-} + 2e^- \longrightarrow [PtCl_4]^{2-} + 2Cl^-$	+0.68
$Pu^3 + 3e^- \longrightarrow Pu$	-2.03
$Ra^{2+} + 2e^{-} \longrightarrow Ra$	-2.92
$Rb^+ + e^- \longrightarrow Rb$	-2.98
$[RhCl_6]^{3-} + 3e^- \longrightarrow Rh + 6Cl^-$	+0.44
$S + 2e^- \longrightarrow S^{2-}$	-0.47627
$S + 2H^{+} + 2e^{-} \longrightarrow H_{2}S$	+0.142
$Sc^{3+} + 3e^{-} \longrightarrow Sc$	-2.09
$Se + 2H^+ + 2e^- \longrightarrow H_2 Se$	-0.399
$[SiF_6]^{2-} + 4e^- \longrightarrow Si + 6F^-$	-1.2
$SiO_3^{2-} + 3H_2O + 4e^- \longrightarrow Si + 6OH^-$	-1.697
$SiO_2 + 4H^+ + 4e^- \longrightarrow Si + 2H_2O$	-0.86
$Sm^{3+} + 3e^{-} \longrightarrow Sm$	-2.304
$Sn^{4+} + 2e^{-} \longrightarrow Sn^{2+}$	+0.151
$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$	-0.1375
$[SnF_6]^{2-} + 4e^- \longrightarrow Sn + 6F^-$	-0.25
$SnS + 2e^{-} \longrightarrow Sn + S^{2-}$	-0.94
$Sr^{2+} + 2e^{-} \longrightarrow Sr$	-2.89
$TeO_2 + 4H^+ + 4e^- \longrightarrow Te + 2H_2O$	+0.593
$Th^{4+} + 4e^{-} \longrightarrow Th$	-1.90
$Ti^{2+} + 2e^- \longrightarrow Ti$	-1.630
$U^{3+} + 3e^{-} \longrightarrow U$	-1.79
$V^{2+} + 2e^{-} \longrightarrow V$	-1.19

Table L1

Half-Reaction	<i>E</i> ° (V)
$Y^{3+} + 3e^{-} \longrightarrow Y$	-2.37
$Zn^{2+} + 2e^{-} \longrightarrow Zn$	-0.7618
$[Zn(CN)_4]^{2-} + 2e^- \longrightarrow Zn + 4CN^-$	-1.26
$\left[\operatorname{Zn}(\operatorname{NH}_3)_4\right]^{2+} + 2e^- \longrightarrow \operatorname{Zn} + 4\operatorname{NH}_3$	-1.04
$Zn(OH)_2 + 2e^- \longrightarrow Zn + 2OH^-$	-1.245
$[Zn(OH)_4]^2 + 2e^- \longrightarrow Zn + 4OH^-$	-1.199
$ZnS + 2e^- \longrightarrow Zn + S^{2-}$	-1.40
$Zr^4 + 4e^- \longrightarrow Zr$	-1.539

Table L1

Appendix M 1243

Appendix M

Half-Lives For Several Radioactive Isotopes

Half-Lives for Several Radioactive Isotopes

Isotope	Half-Life ^[1]	Type of Emission ^[2]	Isotope	Half-Life ^[3]	Type of Emission ^[4]
¹⁴ ₆ C	5730 y	(<i>β</i> ⁻)	²¹⁰ ₈₃ Bi	5.01 d	(<i>β</i> ⁻)
¹³ ₇ N	9.97 m	(<i>β</i> ⁺)	²¹² ₈₃ Bi	60.55 m	$(\alpha \text{ or } \beta^-)$
¹⁵ ₉ F	$4.1 \times 10^{-22} \mathrm{s}$	(p)	²¹⁰ ₈₄ Po	138.4 d	(α)
²⁴ Na	15.00 h	(β ⁻)	²¹² ₈₄ Po	$3 \times 10^{-7} \text{s}$	(α)
³² ₁₅ P	14.29 d	(β ⁻)	²¹⁶ ₈₄ Po	0.15 s	(α)
⁴⁰ ₁₉ K	1.27 × 10 ⁹ y	$(\beta \text{ or } E.C.)$	²¹⁸ ₈₄ Po	3.05 m	(α)
⁴⁹ ₂₆ Fe	0.08 s	(\beta^+)	²¹⁵ ₈₅ At	$1.0 \times 10^{-4} \text{s}$	(α)
⁶⁰ ₂₆ Fe	2.6 × 10 ⁶ y	(<i>β</i> ⁻)	²¹⁸ ₈₅ At	1.6 s	(α)
⁶⁰ ₂₇ Co	5.27 y	(β ⁻)	²²⁰ ₈₆ Rn	55.6 s	(α)
87 37 Rb	$4.7 \times 10^{10} \mathrm{y}$	(<i>β</i> ⁻)	²²² ₈₆ Rn	3.82 d	(α)
90 38 Sr	29 y	(<i>β</i> ⁻)	²²⁴ ₈₈ Ra	3.66 d	(α)
¹¹⁵ ₄₉ In	5.1 × 10 ¹⁵ y	(<i>β</i> ⁻)	²²⁶ ₈₈ Ra	1600 y	(α)
¹³¹ ₅₃ I	8.040 d	(β ⁻)	²²⁸ ₈₈ Ra	5.75 y	(<i>β</i> ⁻)
¹⁴² ₅₈ Ce	5 × 10 ¹⁵ y	(α)	²²⁸ ₈₉ Ac	6.13 h	(<i>β</i> ⁻)
²⁰⁸ ₈₁ Tl	3.07 m	(<i>β</i> ⁻)	²²⁸ ₉₀ Th	1.913 y	(α)
²¹⁰ ₈₂ Pb	22.3 y	(β ⁻)	²³² ₉₀ Th	$1.4 \times 10^{10} \mathrm{y}$	(α)
²¹² ₈₂ Pb	10.6 h	(β ⁻)	²³³ ₉₀ Th	22 m	(β ⁻)
²¹⁴ ₈₂ Pb	26.8 m	(<i>β</i> ⁻)	²³⁴ ₉₀ Th	24.10 d	(<i>β</i> ⁻)

Table M1

^{1.} y = years, d = days, h = hours, m = minutes, s = seconds

^{2.} *E.C.* = electron capture, *S.F.* = Spontaneous fission

^{3.} y = years, d = days, h = hours, m = minutes, s = seconds

^{4.} E.C. = electron capture, S.F. = Spontaneous fission

1244 Appendix M

Half-Lives for Several Radioactive Isotopes

Isotope	Half-Life	Type of Emission	Isotope	Half-Life	Type of Emission
²⁰⁶ ₈₃ Bi	6.243 d	(E.C.)	²³³ ₉₁ Pa	27 d	(β ⁻)
²³³ ₉₂ U	1.59 × 10 ⁵ y	(α)	²⁴² ₉₆ Cm	162.8 d	(α)
²³⁴ ₉₂ U	$2.45 \times 10^5 \mathrm{y}$	(α)	²⁴³ ₉₇ Bk	4.5 h	$(\alpha \text{ or } E.C.)$
²³⁵ ₉₂ U	7.03 × 10 ⁸ y	(α)	²⁵³ ₉₉ Es	20.47 d	(α)
²³⁸ ₉₂ U	4.47 × 10 ⁹ y	(α)	²⁵⁴ ₁₀₀ Fm	3.24 h	$(\alpha \text{ or } S.F.)$
²³⁹ ₉₂ U	23.54 m	(β ⁻)	²⁵⁵ ₁₀₀ Fm	20.1 h	(a)
²³⁹ ₉₃ Np	2.3 d	(β ⁻)	²⁵⁶ ₁₀₁ Md	76 m	$(\alpha \text{ or } E.C.)$
²³⁹ ₉₄ Pu	$2.407 \times 10^4 \mathrm{y}$	(α)	²⁵⁴ ₁₀₂ No	55 s	(a)
²³⁹ ₉₄ Pu	$6.54 \times 10^3 \mathrm{y}$	(α)	²⁵⁷ ₁₀₃ Lr	0.65 s	(α)
²⁴¹ ₉₄ Pu	14.4 y	$(\alpha \text{ or } \beta^-)$	²⁶⁰ ₁₀₅ Ha	1.5 s	$(\alpha \text{ or } S.F.)$
²⁴¹ ₉₅ Am	432.2 y	(α)	²⁶³ ₁₀₆ Sg	0.8 s	$(\alpha \text{ or } S.F.)$

Table M1