

שאלה 2 (20 נקודות)

בשאלה זו נתייחס למערכים דו-ממדיים **ריבועיים** בגודל NxN (כאשר N הוא קבוע המוגדר כ-define#). לצורך השאלה, נניח כי N הוא חזקה שלמה של 2. עבור מערך כזה, נגדיר חלוקה פנימית שלו לארבעה רובעים בגודל N/2xN/2, ממוספרים מ-1 עד 4, באופן הבא:

1	2
4	3

נאמר שהמערך הוא **סיבובי** אם כל האיברים ברובע 1 קטנים ממש מכל אלו שברובע 2, אלו שברובע 2 קטנים ממש מכל אלו שברובע 3, ואלו שברובע 3 קטנים ממש מכל אלו שברובע 3, ואלו שברובע 3, ואלו שברובע 3 קטנים ממש מכל אלו שברובע 3, ואלו שברובע 5, ואלו שברובע 5, ואלו שברובע 3 קטנים ממש מכל אלו שברובע 5, ואלו שברובע 5, ואל

1	5		
9	7		

לשם הנוחות, נגדיר גם כל מערך בגודל 1x1 כמערך סיבובי. כעת, נאמר שמערך NxN הוא **ממוין-סיבובית** אם הוא סיבובי, ארבעת הרובעים שלו סיבוביים, וכן הלאה עד לרובעים בגודל 1x1. לדוגמה, המערך הבא ממוין-סיבובית:

עליכם לממש פונקציה לחיפוש במערך ממוין-סיבובית (בעמוד הבא). הפונקציה מקבלת כפרמטר את המערך הדו-ממדי [N][N], ואת הערך לחיפוש x. במידה ו-x נמצא במערך, הפונקציה תחזיר 1 ותכתוב את הקואורדינאטות שלו למשתנים i,j הניתנים כפרמטרים. במידה ו-x אינו במערך, הפונקציה תחזיר 0 ואין חשיבות לתוכן של i,j.

דרישות סיבוכיות: על הפונקציה לעבוד בסיבוכיות זמן טובה ככל הניתן. פתרון לא אופטימאלי יזכה בניקוד חלקי לכל היותר. כמו כן על הפונקציה לעבוד בסיבוכיות מקום נוסף (O(1).

int	find2d(int	a[N][N],	int x,	int* i	., int*	i)	f
	•	/	•		,	٠.	·