Introduction to Online Learning Algorithms

Yoav Freund

January 7, 2025

Outline

About this Course

Halving Algorithm

Perceptron

Estimating the mean

Class web site

All of the class material is available from the github repository https://github.com/yoavfreund/2025-online-learning

Class web site

 All of the class material is available from the github repository https://github.com/yoavfreund/2025-online-learning

Introduction (with Mean)

- Introduction (with Mean)
- Exponential weights algorithms

- Introduction (with Mean)
- Exponential weights algorithms
 - ► Hedge

- Introduction (with Mean)
- Exponential weights algorithms
 - ► Hedge
 - Mixability

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

Online learning and Coding

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

Online learning and game theory

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games
 - Internal regret.

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games
 - Internal regret.
 - Drifting games

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games
 - Internal regret.
 - Drifting games
 - NormalHedge

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games
 - Internal regret.
 - Drifting games
 - NormalHedge
- Online Convex Optimizatio

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games
 - Internal regret.
 - Drifting games
 - NormalHedge
- Online Convex Optimizatio
 - Follow the regularized leader

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games
 - Internal regret.
 - Drifting games
 - NormalHedge
- Online Convex Optimizatio
 - Follow the regularized leader
 - Dual Descent

- Introduction (with Mean)
- Exponential weights algorithms
 - Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal Coding
 - Continuous Experts
 - The Context Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games
 - Internal regret.
 - Drifting gamesNormalHedge
- Online Convex Optimizatio
 - Follow the regularized leader
 - Dual Descent
 - AdaGrad

HW / Evaluation

▶ 5 HW assignments for 5*15 = 75 opints

HW / Evaluation

- ▶ 5 HW assignments for 5*15 = 75 opints
- A final for 25 points.

expert1

expert2

expert3

expert4

expert5

expert6

expert7

expert8

alg.

```
expert1
```

expert2

expert3

expert4

expert5

expert6

expert7

expert8

alg.

outcome

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
```

alg.

Halving Algorithm

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

```
t = 1 t = 2
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

	t = 1	<i>t</i> = 2
expert1	1	1
expert2	1	0
expert3	0	-
expert4	1	0
expert5	1	0
expert6	0	-
expert7	1	1
expert8	1	1
alg.	1	0
outcome	1	

	t = 1	<i>t</i> = 2
expert1	1	1
expert2	1	0
expert3	0	-
expert4	1	0
expert5	1	0
expert6	0	-
expert7	1	1
expert8	1	1
alg.	1	0
outcome	1	1

```
t = 1 t = 2 t = 3
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

	t = 1	<i>t</i> = 2	<i>t</i> = 3
expert1	1	1	1
expert2	1	0	-
expert3	0	-	-
expert4	1	0	-
expert5	1	0	-
expert6	0	-	-
expert7	1	1	1
expert8	1	1	1
alg.	1	0	1
outcome	1	1	

	t = 1	<i>t</i> = 2	t = 3
expert1	1	1	1
expert2	1	0	-
expert3	0	-	-
expert4	1	0	-
expert5	1	0	-
expert6	0	-	-
expert7	1	1	1
expert8	1	1	1
alg.	1	0	1
outcome	1	1	1

	t = 1	t = 2	t = 3	t = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	-
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	
outcome	1	1	1	

	t = 1	<i>t</i> = 2	t = 3	<i>t</i> = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	-
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	1
outcome	1	1	1	

	t = 1	t = 2	t = 3	t = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	-
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	1
outcome	1	1	1	0

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	_
expert7	1	1	1	1	_
expert8	1	1	1	0	0
•					
alg.	1	0	1	1	
outcome	1	1	1	0	

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	-
expert7	1	1	1	1	-
expert8	1	1	1	0	0
•					
alg.	1	0	1	1	0
outcome	1	1	1	0	

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	-
expert7	1	1	1	1	-
expert8	1	1	1	0	0
alg.	1	0	1	1	0
outcome	1	1	1	0	0

► Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).

- ► Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.

- ► Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- ▶ Number of mistakes is at most log₂ N.

- ► Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.
- No stochastic assumptions whatsoever.

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.
- No stochastic assumptions whatsoever.
- Proof is based on combining a lower and upper bounds on the number of perfect experts.

```
+ + + + +
```

```
+ + + + +
```


- $\blacktriangleright \|\vec{V}\| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}$.

- ▶ $\|\vec{V}\| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}$.
- $\blacktriangleright \ \forall \vec{X}, \ \|\vec{X}\| \leq R.$

- $||\vec{V}|| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}$.
- $ightharpoonup \forall \vec{X}, \ \|\vec{X}\| \leq R.$
- $\forall (\vec{X}, y), \\ y(\vec{X} \cdot \vec{V}) \geq g$

▶ An online algorithm. Examples presented one by one.

- ▶ An online algorithm. Examples presented one by one.
- ightharpoonup start with $\vec{W}_0 = \vec{0}$.

- An online algorithm. Examples presented one by one.
- ightharpoonup start with $\vec{W}_0 = \vec{0}$.
- ▶ If mistake: $(\vec{W}_i \cdot \vec{X}_i) y_i \leq 0$

- An online algorithm. Examples presented one by one.
- ightharpoonup start with $\vec{W}_0 = \vec{0}$.
- ▶ If mistake: $(\vec{W}_i \cdot \vec{X}_i) y_i \leq 0$
 - $\qquad \qquad \textbf{Update } \vec{W}_{i+1} = \vec{W}_i + y_i X_i.$

Bound on number of mistakes

The number of mistakes that the perceptron algorithm can make is at most $\left(\frac{R}{g}\right)^2$.

Bound on number of mistakes

- The number of mistakes that the perceptron algorithm can make is at most $\left(\frac{R}{g}\right)^2$.
- ▶ Proof by combining upper and lower bounds on $\|\vec{W}\|$.

Pythagorian Lemma

If $(\vec{W}_i \cdot X_i)y < 0$ then

Pythagorian Lemma

If
$$(\vec{W}_i \cdot X_i)y < 0$$
 then

$$\|\vec{W}_{i+1}\|^2 = \|\vec{W}_i + y_i \vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$$

Pythagorian Lemma

If
$$(\vec{W}_i \cdot X_i)y < 0$$
 then

$$\|\vec{W}_{i+1}\|^2 = \|\vec{W}_i + y_i \vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$$

Upper bound on $\|\vec{W}_i\|$

Upper bound on $\|\vec{W}_i\|$

Proof by induction

► Claim: $\|\vec{W}_i\|^2 \le iR^2$

Upper bound on $\|\vec{W}_i\|$

Proof by induction

► Claim: $\|\vec{W}_i\|^2 \le iR^2$

► Base: i = 0, $\|\vec{W}_0\|^2 = 0$

Upper bound on $\|\hat{W}_i\|$

Proof by induction

- ightharpoonup Claim: $\|\vec{W}_i\|^2 < iR^2$
- ► Base: i = 0, $\|\vec{W}_0\|^2 = 0$
- Induction step (assume for i and prove for i + 1):

$$\|\vec{W}_{i+1}\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + R^2 \le (i+1)R^2$$

$$\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$$
 because $\|\vec{V}\| = 1$.

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. Let *i* denote the number of mistakes made so far.

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. Let *i* denote the number of mistakes made so far.

We prove a lower bound on $\vec{W}_i \cdot \vec{V}$ by induction over i

► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. Let *i* denote the number of mistakes made so far.

- ► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. Let *i* denote the number of mistakes made so far.

- ► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for i and prove for i+1): $\vec{W}_{i+1} \cdot \vec{V} = (\vec{W}_i + \vec{X}_i y_i) \vec{V}$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. Let *i* denote the number of mistakes made so far.

- ► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for i and prove for i+1): $\vec{W}_{i+1} \cdot \vec{V} = (\vec{W}_i + \vec{X}_i y_i) \vec{V}$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. Let *i* denote the number of mistakes made so far.

- ► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for i and prove for i+1): $\vec{W}_{i+1} \cdot \vec{V} = (\vec{W}_i + \vec{X}_i y_i) \vec{V} = \vec{W}_i \cdot \vec{V} + y_i \vec{X}_i \cdot \vec{V}$ > iq + q = (i+1)q

Combining the upper and lower bounds

Combining the upper and lower bounds

$$(ig)^2 \leq \|\vec{W}_i\|^2 \leq iR^2$$

Combining the upper and lower bounds

$$(\textit{ig})^2 \leq \|\vec{W}_i\|^2 \leq \textit{iR}^2$$

Thus:

$$i \leq \left(\frac{R}{g}\right)^2$$

▶ An adversary choses a real number $y_t \in [0, 1]$ and keeps it secret.

- ▶ An adversary choses a real number $y_t \in [0, 1]$ and keeps it secret.
- You make a guess of the secret number x_t

- ▶ An adversary choses a real number $y_t \in [0, 1]$ and keeps it secret.
- You make a guess of the secret number x_t
- ▶ The adversary reveals the secret and you pay $(x_t y_t)^2$

- ▶ An adversary choses a real number $y_t \in [0, 1]$ and keeps it secret.
- You make a guess of the secret number x_t
- ▶ The adversary reveals the secret and you pay $(x_t y_t)^2$
- ► You want to minimize $\frac{1}{T} \sum_{t=1}^{T} (x_t y_t)^2$

- ▶ An adversary choses a real number $y_t \in [0, 1]$ and keeps it secret.
- You make a guess of the secret number x_t
- ▶ The adversary reveals the secret and you pay $(x_t y_t)^2$
- ▶ You want to minimize $\frac{1}{T} \sum_{t=1}^{T} (x_t y_t)^2$
- Impossible without additional constraints.

▶ Suppose that the adversary draws $y_1, y_2, ..., y_T$ IID from a fixed distribution over [0, 1] with mean μ and std σ .

- ▶ Suppose that the adversary draws $y_1, y_2, ..., y_T$ IID from a fixed distribution over [0, 1] with mean μ and std σ .
- ▶ Optimal prediction $x_t = \mu$

- Suppose that the adversary draws y_1, y_2, \dots, y_T IID from a fixed distribution over [0, 1] with mean μ and std σ .
- ▶ Optimal prediction $x_t = \mu$
- $\blacktriangleright E_{\mathsf{Y}}\left[(\mu-\mathsf{Y})^2\right]=\sigma^2$

- Suppose that the adversary draws $y_1, y_2, ..., y_T$ IID from a fixed distribution over [0, 1] with mean μ and std σ .
- ▶ Optimal prediction $x_t = \mu$
- $E_Y \left[(\mu Y)^2 \right] = \sigma^2$
- ▶ Online prediction: predict x_{t+1} from $Y^t = \langle Y_1, Y_2, \dots, Y_t \rangle$.

- Suppose that the adversary draws y₁, y₂,..., y_T IID from a fixed distribution over [0, 1] with mean μ and std σ.
- ▶ Optimal prediction $x_t = \mu$
- ▶ Online prediction: predict x_{t+1} from $Y^t = \langle Y_1, Y_2, \dots, Y_t \rangle$.
- **Expected regret**: compare performance of algorithm to Regret = $E_{Y^T} [(x_t Y_t)^2] \sigma^2$

Make no assumption about how the sequence is generated.

- Make no assumption about how the sequence is generated.
- ▶ The best constant value for *x* in hind-sight:

$$x_T^* \doteq \underset{x \in [0,1]}{\operatorname{argmin}} \sum_{t=1}^T (x - y_t)^2, \ \ x_T^* = \frac{1}{T} \sum_{t=1}^T y_t$$

- Make no assumption about how the sequence is generated.
- ▶ The best constant value for *x* in hind-sight:

$$x_T^* \doteq \underset{x \in [0,1]}{\operatorname{argmin}} \sum_{t=1}^T (x - y_t)^2, \ \ x_T^* = \frac{1}{T} \sum_{t=1}^T y_t$$

▶ Regret: the loss over and above the loss of x_T^* . for the worst-case sequence

Regret_T =
$$\sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_T^* - y_t)^2$$

- Make no assumption about how the sequence is generated.
- ► The best constant value for x in hind-sight:

$$x_T^* \doteq \underset{x \in [0,1]}{\operatorname{argmin}} \sum_{t=1}^T (x - y_t)^2, \ \ x_T^* = \frac{1}{T} \sum_{t=1}^T y_t$$

▶ Regret: the loss over and above the loss of x_T^* . for the worst-case sequence

Regret_T =
$$\sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_t^* - y_t)^2$$

▶ **Goal:** sublinear regret $\lim_{T\to\infty} \frac{\text{Regret}_T}{T} = 0$

Follow the Leader

ldea: set x_{t+1} to be the best constant prediction on y_1, \dots, y_t

Follow the Leader

- ldea: set x_{t+1} to be the best constant prediction on y_1, \dots, y_t
- $X_{t+1} = \operatorname{argmin}_{x \in [0,1]} \sum_{i=1}^{t} (x y_i)^2 = X_t^*$

Follow the Leader

- ldea: set x_{t+1} to be the best constant prediction on y_1, \dots, y_t
- $x_{t+1} = \operatorname{argmin}_{x \in [0,1]} \sum_{i=1}^{t} (x y_i)^2 = x_t^*$
- We will prove that the regret of this algorithm is upper bound by 2 + 2 ln T

Regret Bound

Theorem

Let $y_t \in [0,1]$ for t=1,...T an arbitrary sequence of numbers. Let the algorithm output be $x_t = x_{t-1}^* = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i$, then

$$Regret_T = \sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_T^* - y_t)^2 \le 2(1 + \ln T)$$

Lemma

Let $x_1, x_2,...$ be the squence of predictions produced by FTL. Then for all $u \in R$ (In particular, for $u = x_T^*$):

$$\sum_{t=1}^{T} \left((x_t - y_t)^2 - (u - y_t)^2 \right) \le \sum_{t=1}^{T} \left((x_t - y_t)^2 - (x_t^* - y_t)^2 \right)$$

Proof Sketch:

Subtract $\sum_{t=1}^{T} (x_t - y_t)^2$ from both sides to get an equivalent claim:

$$\sum_{t=1}^{T} (x_t^* - y_t)^2 \leq \sum_{t=1}^{T} (u - y_t)^2$$

The inequality is proven by induction on T.

▶ Base case (T = 1): $(x_1^* - y_1)^2 = (y_1 - y_1)^2 = 0 \le (u - y_1)^2$

- ▶ Base case (T = 1): $(x_1^* y_1)^2 = (y_1 y_1)^2 = 0 \le (u y_1)^2$
- ▶ Induction hypothesis: $\sum_{t=1}^{T-1} (x_t^* y_t)^2 \le \sum_{t=1}^{T-1} (u y_t)^2$

- ▶ Base case (T = 1): $(x_1^* y_1)^2 = (y_1 y_1)^2 = 0 \le (u y_1)^2$
- ▶ Induction hypothesis: $\sum_{t=1}^{T-1} (x_t^* y_t)^2 \le \sum_{t=1}^{T-1} (u y_t)^2$
- Induction step:

$$\sum_{t=1}^{T-1} (x_t^* - y_t)^2 \le \sum_{t=1}^{T-1} (x_{T-1}^* - y_t)^2 \le \sum_{t=1}^{T-1} (x_T^* - y_t)^2$$

Adding $(x_T^* - y_T)^2$ to both sides gives:

$$\sum_{t=1}^{T} (x_t^* - y_t)^2 \le \sum_{t=1}^{T} (x_T^* - y_t)^2 \le \sum_{t=1}^{T} (u - y_t)^2$$

Proof of the theorem

First, note that in FTL we have:

$$x_t = x_{t-1}^* = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i = \frac{t}{t-1} \cdot \left(\frac{1}{t} \sum_{i=1}^t y_i - \frac{y_t}{t} \right) = \frac{t}{t-1} \cdot \left(x_t^* - \frac{y_t}{t} \right)$$

Subtracting x_t^* from both sides, we get $x_t - x_t^* = \frac{x_t^* - y_t}{t-1}$. Then:

Regret_T =
$$\sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_t^* - y_t)^2$$

 $\leq \sum_{t=1}^{T} (x_t - y_t)^2 - (x_t^* - y_t)^2$ (Lemma)
= $\sum_{t=1}^{T} (x_t + x_t^* - 2y_t)(x_t - x_t^*) \leq \sum_{t=1}^{T} \frac{2}{t-1} \leq 2(1 + \ln T)$