	Study on pedigree data Importing necessary libraries and configurating ploting
In [1]:	<pre>import matplotlib.pyplot as plt import pandas as pd import numpy as np import plotly.io as pio</pre>
	<pre>import plotly.express as px from statistics import mode from sklearn.cluster import KMeans import scipy.interpolate import plotly.figure_factory as ff</pre>
	<pre>pio.renderers.default = 'browser' plt.close("all") Setting directory and uploading files.</pre>
	short:Contains the ID's, phenotype, first year, last year alive, esimation of flowers and total number of fruits for all the plants. pedigree:Contains the ID's,coordinates and phenotypes of kids and parents, the distance to the parents and the year of the seed, for the plants with parents identified.
In [2]:	<pre>dire='C:/Users/ferad/OneDrive/Escritorio/ISTA/dataFiles/' short=pd.read_csv(dire+'short.csv', low_memory=False) pedigree=pd.read_csv(dire+'pedigree.csv', low_memory=False) Looks for plants without a first ID and adds it based on the ID2 column</pre>
In [3]:	<pre>misLabel=short.loc[short.X.notna() & short.ID2.notna() & short.ID.isnull() & short.FirstYear.notna()].copy() #plants with all data except id1, must be given id2 misLabel['ID'] = misLabel['ID2'].str[0:5] print('Number of flowers with missed ID on the first column:', len(misLabel))</pre>
	Number of flowers with missed ID on the first column: 9 Generate a data frame with the info of the plants presented in short but not in pedigree
In [4]:	<pre>short=pd.concat([short,misLabel],axis=0) short=short[(short.X>=420000) & (short.X<=428000) & (short.Y>=4680000) & (short.Y<=4689000)] #filter data from the center of the hybrid zone del short['ID2'], misLabel short=short.dropna(subset = ["ID"]) short=short.dropna(subset = ["X"])</pre>
	<pre>missingParent=list((set(short['ID'].tolist()).difference(pedigree['Kid'].tolist()))) #id list missing p missP=short[short.ID.isin(missingParent)] #data frame from missingParent Classify parent based on distance, logarithmic transformation</pre>
In [5]:	<pre>pedigree['closeP']=np.where(pedigree['Dist_pa']<pedigree['dist_ma'],pedigree['pa'],pedigree['ma']) pedigree['distclose']="np.where(pedigree['Dist_pa']<pedigree['Dist_ma'],pedigree['Dist_pa'],pedigree['Dist_ma'])" pedigree['distfar']="np.where(pedigree['Dist_pa']<pedigree['Dist_ma'],pedigree['Dist_ma'],pedigree['Dist_pa'])</pre" pedigree['farp']="np.where(pedigree['Dist_pa']<pedigree['Dist_ma'],pedigree['Pa'])"></pedigree['dist_ma'],pedigree['pa'],pedigree['ma'])></pre>
	<pre>del pedigree['Ma'], pedigree['Dist_pa'],pedigree['Dist_ma'] distC=pedigree['distClose'].tolist() distC_log=np.log(np.array(distC)+1) distF=pedigree['distFar'].tolist()</pre>
	<pre>distF_log=np.log(np.array(distF)+1) #plot hist_data = [distC_log,distF_log] group_labels = ['Distance Close', 'Distance Far'] fig = ff.create_distplot(hist_data, group_labels, bin_size=10) fig.update_layout(title='Figure 1) Distance to parents')</pre>
	Figure 1) Distance from kid to parent with logarithmic conversion, dividing parents by distance in far and close Change data frame such that there is an entry of every parent plant for every year that it was alive
In [6]:	<pre>parents=short[short.ID.isin(pedigree['closeP'].tolist()) short.ID.isin(pedigree['farP'].tolist())] year=2019 x=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), 'X'].tolist()</pre>
	<pre>y=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), 'Y'].tolist() ID=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), 'ID'].tolist() noFl=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), ('TotalFlowers_'+str(year))].tolist() noFr=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), ('TotalFruit_'+str(year))].tolist() pheno=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), 'pheno'].tolist() years=[year]*len(x) data={'ID':ID, 'Year':years, 'Pheno':pheno,'X':x,'Y':y,'noFlow':noFl,'noFr':noFr}#add noft y nofr parentsY=pd.DataFrame(data) for i in range(int(min(parents['FirstYear'])),int(max(parents['LastAlive']))): #change from top to bottom</pre>
	<pre>year=int(i) x=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), 'X'].tolist() y=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), 'Y'].tolist() ID=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), 'ID'].tolist() #noFL=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), ('TotalFLowers_'+str(year))].tolist() pheno=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), 'pheno'].tolist() years=[year]*len(x) try: noFr=parents.loc[lambda parents: ((parents['FirstYear']<=year) & (parents['LastAlive']>=year)), ('TotalFruit_'+str(year))].tolist()</pre>
	<pre>except: noFr=[np.nan]*len(x) pass data={'ID':ID, 'Year':years, 'Pheno':pheno, 'X':x, 'Y':y, 'noFr':noFr}#add noft y nofr parentsB=pd.DataFrame(data) parentsY=pd.concat([parentsY,parentsB])</pre>
In [7]:	After this change we can find a small amount of parents that were not recorded on the year of seed production ##kids an number of total flowers
	<pre>year=pedigree.groupby('year_seed') closeP=year['closeP'].value_counts().to_frame() farP=year['farP'].value_counts().to_frame() farP.index.names=['year_seed','closeP'] a=closeP.add(farP, fill_value=0)</pre>
	<pre>a=a.fillna(0) p=a['closeP']+a['farP'] p=p.reset_index() p.columns = ['Year','ID','noKids'] parents=pd.merge(parentsY,p,on=['ID', 'Year'],how='outer')</pre>
	<pre>print("Percentage of parents that weren't found in the year of seed production:") print(parents['X'].isna().sum()/len(parents)*100, " %") notyear=parents[parents.X.isna()]['Year'] Percentage of parents that weren't found in the year of seed production:</pre>
In [8]:	7.907091672844083 % Does the year of the plant influences the probability of not finding the parent in the year of seed production? notyear=parents[parents.X.isna()]['Year']
	<pre>##normalized freqNot=notyear.value_counts() freqP=short['FirstYear'].value_counts() ratio=freqNot/freqP ratio=ratio.fillna(0)</pre>
	<pre>fig = px.histogram(notyear, x="Year",labels={'x':'year', 'y':'missing recording of parents'},title='Figure 2) Histogram of missing parents on year of seed production fig.show() fig = px.bar(ratio,labels={'x':'year', 'y':'missing recording of parents normalized by total plants in short'},title='Figure 3) Normalized histogram of missing parent fig.show()</pre>
	Figure 2) Histogram of occurrences on missing parents on year of seed production Figure 3) normalized occurrences on missing parents on year of seed production
In [9]:	<pre>Graph of the parent plants, the size determines the number of kids and the color of the phenotype, the year scale is the year of the seed production for i in ['Pheno','X','Y','noFlow','noFr']: ##filling values year not encontered ref=parents.groupby('ID')[i].first().to_frame() parents[i] = parents[i].fillna(parents['ID'].map(ref[i]))</pre>
	<pre>parents['Pheno'].fillna('NotIdentified', inplace=True) parents['Pheno'] = parents['Pheno'].astype(str) parents['Pheno']=parents['Pheno'].apply(lambda x: mode(x.split(';'))) parents=parents.reset_index()</pre>
	<pre>parents['noKids'].fillna(0, inplace=True) parents=parents.sort_values(by=['Year']) fig = px.scatter(parents, x="X", y="Y",animation_frame ='Year', animation_group ='ID',</pre>
	color_discrete_sequence=["red", "grey", "yellow", "darkorange", "salmon", "sandybrown", "white"]) #range_x=[100,100000], range_y=[25,90], fig["layout"].pop("updatemenus") # optional, drop animation buttons fig.show() Figure 4) Data points on all the parents in pedigree, color determining the phenotype, size the amount of kids and the scale of time in years the year of seed production
	Which phenotype appears more frequently as a parent in pedigree?
In [10]:	<pre>##pie proportion with kids and color fig = px.pie(parents, values='noKids', names='Pheno', title='Figure 5) Pie graph of the phenotype of parents',</pre>
In [11]:	<pre>##normalized with total in short short=short.drop(14182) freqCP=parents['Pheno'].value_counts() freqC=short['pheno'].value_counts() ratio=freqCP/freqC fig = px.pie(values=ratio.values, names=ratio.index, title='Figure 6) Normalized phenotype of parents',</pre>
	Figure 6) Normalized pie graph of the phenotype of parents
In [13]:	Would plants that live for longer have more kids? years=parents.groupby('ID', as_index=False).agg(alive=('ID','count'),
	<pre>fig = px.pie(years, values='noKids', names='alive', title='Figure 7) Pie graph of the number of parents and years alive') fig.show() fig = px.box(years, x="alive", y="noKids", points="all",title='Figure 8) Box plot number of kids based on years alive of the parent',</pre>
	Figure 7) Pie graph of the number of parents based on how many years they live Figure 8) Box plot of the number of kids classified by how many years the parent live
In [14]:	How common is for a plant to have parents from the other road? ###Line for crossing roads
	<pre>coor=pedigree[['X_kid','Y_kid']].values coor=coor+pedigree[['X_ma','Y_ma']].values coor=coor+pedigree[['X_pa','Y_pa']].values coor=pedigree.loc[:,['X_kid','Y_kid']] coor.columns = ['X','Y']</pre>
	<pre>ma=pedigree.loc[:,['X_ma','Y_ma']] ma.columns = ['X','Y'] pa=pedigree.loc[:,['X_pa','Y_pa']] pa.columns = ['X','Y'] coor=pd.concat([coor,ma],axis=0) coor=pd.concat([coor,pa],axis=0)</pre>
	coor=pedigree.drop(1046) #value too far x_line=[421350,422220,423210,423630,424380,425820] y_line=[4686250,4686520,4686320,4686110,4686200,4685910]
	<pre>interpolations=scipy.interpolate.interp1d(x_line, y_line) coor['class_kid']=coor.apply(lambda data: np.sign(data['Y_kid']-interpolations(data['X_kid'])),axis=1) coor['class_ma']=coor.apply(lambda data: np.sign(data['Y_ma']-interpolations(data['X_ma'])),axis=1) coor['class_pa']=coor.apply(lambda data: np.sign(data['Y_pa']-interpolations(data['X_pa'])),axis=1)</pre>
In [15]:	Clasifying plants based on which road they are (upper and lower) upper=coor.loc[coor['class_kid']==1,['X_kid','Y_kid']] upper=coor.loc[coor['class_pa']==1,['X_pa','Y_pa']] upper=coor.loc[coor['class_ma']==1,['X_ma','Y_ma']]
	<pre>lower=coor.loc[coor['class_kid']==-1,['X_kid','Y_kid']] lower=coor.loc[coor['class_pa']==-1,['X_pa','Y_pa']] lower=coor.loc[coor['class_ma']==-1,['X_ma','Y_ma']] plt.figure()</pre>
	<pre>plt.scatter(upper['X_ma'].tolist(),</pre>
	plt.show() le6 Plants in different roads 4.6872
	4.6868 - 4.6866 - 4.6864 -
	4.6860 - 4.6858 - 421500 422000 422500 423000 423500 424000 425000 425500
In [16]:	<pre>### crossing roads between parents and children coor['change_ma']=coor['class_kid']!=coor['class_ma'] coor['change_pa']=coor['class_kid']!=coor['class_pa'] coor['change_both']=coor['change_ma'] & coor['change_pa']</pre>
	<pre>counts = coor['change_ma'].value_counts().to_dict() counts2 = coor['change_pa'].value_counts().to_dict() counts3=coor['change_both'].value_counts().to_dict() print('Percentage of plants in pedigree that have one parent in the other road ') print(((counts[True]+counts2[True]-counts3[True])(len(coon))*100</pre>
	<pre>print(((counts[True]+counts2[True]-counts3[True])/len(coor))*100, ' %') print('Percentage of plants in pedigree that have one parent in the other road ') print((counts3[True]/len(coor))*100, ' %') Percentage of plants in pedigree that have one parent in the other road 2.9461998292058067 %</pre>
	Percentage of plants in pedigree that have one parent in the other road 0.29888983774551664 % Plot of the plants and parents where the part (upper and lower) of the road of the parent is different to the one of the children
In [17]:	<pre>##plot plt.figure() plt.scatter(coor.loc[lambda coor:(coor['change_ma']==True), 'X_ma'].tolist(),coor.loc[lambda coor:(coor['change_ma']==True), 'Y_ma'].tolist(),</pre>
	<pre>plt.scatter(coor.loc[lambda coor:(coor['change_ma']==True), 'X_kid'].tolist(),coor.loc[lambda coor:(coor['change_ma']==True), 'Y_kid'].tolist(),</pre>
	<pre>plt.scatter(coor.loc[lambda coor:(coor['change_both']==True), 'X_pa'].tolist(),coor.loc[lambda coor:(coor['change_both']==True), 'Y_pa'].tolist(),</pre>
	plt.legend() plt.show() le6 Kids different roads parent different road
	4.6868 4.6866 4.6864 4.6864
	4.6862 4.6860 4.6858
	422000 422500 423000 424500 425000 425500

Figure 1) Distance to parents

Figure 2) Histogram of missing parents on year of seed production

Figure 3) Normalized histogram of missing parents on year of seed production

Figure 4) Data points of parents

Figure 5) Pie graph of the phenotype of parents

Figure 6) Normalized phenotype of parents

WR FR W FO WO

Figure 7) Pie graph of the number of parents and years alive

11

Figure 8) Box plot number of kids based on years alive of the parent

