Cerca de punts estacionaris sobre superfícies QM/MM

Mireia Garcia-Viloca
Xavier Prat-Resina
Gerald Monard (U.de Nancy)
Josep Maria Bofill (UB)
Àngels González-Lafont
Josep Maria Lluch

<u>Sumari</u>

- 1. Cerca de punts estacionaris
 - 1.1. Sense derivades
 - 1.2. Amb primeres derivades
 - 1.3. Amb primeres i segones derivades
 - 1.3.1. Mètodes Quasi-Newton-Raphson (qNR)
 - 1.3.2. Mètode Rational Function Optimization (RFO)
 - 1.3.3. Updates de la matriu hessiana
- 2. Sistemes QM/MM amb molts graus de llibertat
- 3. Implementació del mètode
- 4. Tests dels algoritmes sobre superfícies QM/MM
 - 4.1. Mínims (qNR vs RFO)
 - 4.2. Estats de transició (RFO)
- 5. Conclusions

- 1. Cerca de punts estacionaris:
 - 1.1.Mètodes sense derivades
 - Simplex
 - Grid search (TS)
 - Reaction coordinate (TS)
 - 1.2 Mètodes amb primeres derivades
 - steepest descent

$$\Delta q_k = -g_k / |g_k|$$

• conjugate gradient

$$\Delta q_k = -g_k + \frac{g_k \cdot g_k}{g_{k-1} \cdot g_{k-1}} \Delta q_{k-1}$$

- 1. Cerca de punts estacionaris:
 - 1.3. Mètodes amb segones derivades
 - 1.3.1. Mètode Quasi-Newton-Raphson (qNR)

$$\Delta q_k = -B_k^{-1} g_k$$

1.3.2. Mètode Rational Function Optimization (RFO)

Augmented Hessian:
$$\begin{pmatrix} 0 & \mathbf{g}_{k}^{T} \\ \mathbf{g}_{k} & \mathbf{B}_{k} \end{pmatrix}$$

$$\Delta q_k = \frac{1}{\mathbf{V}_{1,\upsilon}^{(\mathbf{k})}} \mathbf{V}_{\upsilon}^{'(\mathbf{k})} \begin{cases} v=1 \text{ per minims} \\ v=2 \text{ per estats de transició} \end{cases}$$

on:

$$\mathbf{v}_{\upsilon}^{(k)} = (\mathbf{v}_{2,\upsilon}^{(k)}, ..., \mathbf{v}_{n+1,\upsilon}^{(k)})$$

- 1. Cerca de punts estacionaris:
 - 1.3. Mètodes amb segones derivades1.3.3. Updates de la matriu hessiana

$$\mathbf{B}_{k+1} = \mathbf{B}_0 + \sum_{i=0}^{k} \left[\mathbf{j}_i \mathbf{u}_i^{\mathrm{T}} + \mathbf{u}_i \mathbf{j}_i^{\mathrm{T}} - \left(\mathbf{j}_i^{\mathrm{T}} \Delta \mathbf{q}_i \right) \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}} \right] \qquad k = 0, 1, \dots$$

$$\mathbf{j}_{i} = \mathbf{g}_{i+1} - \mathbf{g}_{i} - \mathbf{B}_{i} \Delta \mathbf{q}_{i}$$
$$\mathbf{u}_{i} = \mathbf{M}_{i} \Delta \mathbf{q}_{i} / (\Delta \mathbf{q}_{i}^{T} \mathbf{M}_{i} \Delta \mathbf{q}_{i})$$

$$M_i = I$$
 Powell formula
 $M_i = a_i B_{i+1} + b_i B_i$ Powell formula

2. Sistemes QM/MM

Interacció:

$$\hat{H} = \hat{H}_{\mathrm{QM}} + \hat{H}_{\mathrm{MM}} + \hat{H}_{\mathrm{QM/MM}} + \hat{H}_{\mathrm{Boundary}}$$

$$\hat{H}_{\text{QM/MM}} = -\sum_{iM} \frac{q_M}{r_{iM}} + \sum_{\alpha M} \frac{Z_{\alpha}q_M}{R_{\alpha M}} + \sum_{\alpha M} \left\{ \frac{A_{\alpha M}}{R_{\alpha M}^{12}} - \frac{B_{\alpha M}}{R_{\alpha M}^{6}} \right\}$$

$$E = \frac{\left\langle \Psi / \hat{H}_{\text{QM}} + \hat{H}_{\text{QM/MM}} / \Psi \right\rangle}{\left\langle \Psi / \Psi \right\rangle} + E_{\text{MM}} + E_{\text{Boundary}}$$

2. Sistemes QM/MM

Nivell de teoria: QM: PM3 o AM1

MM: Amber Force Field

Sistemes de gran tamany: matriu hessiana inicial numèrica

3.Implementació del mètode

paquet de programes **ROAR 2.0**. = AMBER 5.0 + MOPAC 7.0

- -implementat en FORTRAN77:
- -càlcul numèric de la hessiana
- -per mínims
- •qNR amb BFGS
- •qNR amb L-BFGS (amb L=5 steps anteriors)
- •RFO amb m-BFGS
- -per estats de transició
- •RFO amb Powell

4. Tests dels algoritmes: Sistemes

DHAP: 30(qm)+15(mm)

PHTAL: 27(qm)+30(mm)

TIM: 21(qm)+36(mm)

LDH: 90(qm)+75(mm)

ANTA: 48(qm)+249(mm)

4.Tests dels algoritmes: 4.1. Mínims

System	Number of QM + MM coordinates	Initial gradient norm)E (kcal/ mol)	qNR-L- BFGS	qNR- BFGS	RFO-m- BFGS(HI)	RFO-m- BFGS(HF)
DHAP	30+15	10.811	11.2	96/104	34/77	46/77	10/11
PHTAL	27+30	11.739	3.48	35/41	39/83	63/108	28/43
TIM1	21+36	5.191	0.55	121/129	68/146	81/128	37/48
TIM2	21+36	5.429	0.71	123/130	56/117	90/142	57/66
LDH	90+75	15.39	76.04	4101/4196	479/965	1852/1935	1838/1959
LDH	165+0	18.47	26.86	972/1014	215/433	716/809	282/302
ANTA	0+270	8.044	10.2	403/423	268/539	321/544	58/60
ANTA	48+249	124.61	815.0	3215/3340	625/1258	1949/2054	1459/1467

Nosteps / Noenergy calls

La norma del gradient front al número d'steps

4. Tests dels algoritmes:

4.2. Estats de transició

SYSTEM	Number of QM + MM coordinates	Initial gradient norm)E (kcal/mol)	RFO- Powell(HF)
DHAP	30+15	6.86	22.82	56/59
PHTAL	27+30	1.18	4.03	39/54
TIM	21+36	11.17	3.70	65/88
LDH	165+0	6.78	4.19	614/636
LDH	36+129	3.24	0.87	316/392
ANTA	0+270	8.04	7.78	291/315
ANTA	48+249	2.10	1.25	421/598

5. Conclusions

- -Podem trobar mínims i estats de transició en superfícies QM/MM
- -En el moment en què treballem amb tota la matriu hessiana hi ha acoblament entre els àtoms QM i els MM

-Per minims:

- ·el mètode RFO-m-BFGS(HF) és el més efectiu
- ·el mètode qNR-L-BFGS és l'únic capaç de tractar amb sistemes de milers d'àtoms

-Per estats de transició:

·el mètode RFO-Powell(HF) funciona eficaçment

-En procés:

implementar el RFO per tractar sistemes de milers d'àtoms diagonalitzant l'augmented hessian amb un procediment de tipus Lanczos i fent un update "Limited-Powell"