ON THE SUBSET SUM PROBLEM OVER FINITE FIELDS

JIYOU LI AND DAQING WAN

ABSTRACT. The subset sum problem over finite fields is a well-known **NP**-complete problem. It arises naturally from decoding generalized Reed-Solomon codes. In this paper, we study the number of solutions of the subset sum problem from a mathematical point of view. In several interesting cases, we obtain explicit or asymptotic formulas for the solution number. As a consequence, we obtain some results on the decoding problem of Reed-Solomon codes.

1. Introduction

Let \mathbf{F}_q be a finite field of characteristic p. Let $D \subseteq \mathbf{F}_q$ be a subset of cardinality |D| = n > 0. Let $1 \le m \le k \le n$ be integers. Given m elements b_1, \dots, b_m in \mathbf{F}_q . Let $V_{b,k}$ denote the affine variety in \mathbf{A}^k defined by the following system of equations

$$\sum_{i=1}^{k} X_i = b_1,$$

$$\sum_{1 \le i_1 < i_2 \le k} X_{i_1} X_{i_2} = b_2,$$

$$\cdots,$$

$$\sum_{1 \le i_1 < i_2 < \dots < i_m \le k} X_{i_1} \cdots X_{i_k} = b_m,$$

$$X_i - X_i \ne 0 \ (i \ne j).$$

A fundamental problem arising from decoding Reed-Solomon codes is to determine for any given $b=(b_1,\cdots,b_m)\in \mathbf{F}_q^m$, if the variety $V_{b,k}$ has an \mathbf{F}_q -rational point with all $x_i\in D$, see section 5 for more details. This problem is apparently difficult due to several parameters of different nature involved. The high degree of the variety naturally introduces a substantial algebraic difficulty, but this can at least be overcome in some cases when D is the full field \mathbf{F}_q and m is small, using the Weil bound. The requirement that the x_i 's are distinct leads to a significant combinatorial difficulty. From computational point of view, a more substantial difficulty is caused by the flexibility of the subset D of \mathbf{F}_q . In fact, even in the case m=1 and so the algebraic difficulty disappear, the problem is known to be \mathbf{NP} -complete. In this case, the problem is reduced to the well known subset sum problem over $D\subseteq \mathbf{F}_q$, that is, to determine for a given $b\in \mathbf{F}_q$, if there is a non-empty subset $\{x_1,x_2,\cdots,x_k\}\subseteq D$ such that

$$x_1 + x_2 + \dots + x_k = b. (1.1)$$

This research is partially supported by the NSFC (10331030).

This subset sum problem is known to be **NP**-complete. Given integer $1 \le k \le n$, and $b \in \mathbf{F}_q$, a more precise problem is to determine

$$N(k, b, D) = \#\{\{x_1, x_2, \cdots, x_k\} \subseteq D \mid x_1 + x_2 + \cdots + x_k = b\},\$$

the number of k-element subsets of D whose sum is b. The decision version of the above subset sum problem is then to determine if N(k, b, D) > 0 for some k, that is, if

$$N(b,D) := \sum_{k=1}^{n} N(k,b,D) > 0.$$

In this paper, we study the approximation version of the above subset sum problem for each k from a mathematical point of view, that is, we try to approximate the solution number N(k, b, D). Intuitively, the problem is easier if D is close to be the full field \mathbf{F}_q , i.e., when q-n is small. Indeed, we obtain an asymptotic formula for N(k, b, D) when q-n is small. Heuristically, N(k, b, D) should be approximately $\frac{1}{q}\binom{n}{k}$. The question is about the error term. We have

Theorem 1.1. Let p < q, that is, \mathbf{F}_q is not a prime field. Let $D \subseteq \mathbf{F}_q$ be a subset of cardinality n. For any $1 \le k \le n \le q-2$, any $b \in \mathbf{F}_q$, we have the inequality

$$\left|N(k,b,D) - \frac{1}{q} \binom{n}{k} \right| \leq \frac{q-p}{q} \binom{k+q-n-2}{q-n-2} \binom{q/p-1}{\lfloor k/p \rfloor}.$$

Furthermore, let $D = \mathbf{F}_q \setminus \{a_1, \dots, a_{q-n}\}$ with $a_1 = 0$, and if b, a_2, \dots, a_{q-n} are linearly independent over \mathbf{F}_p , then we have the improved estimate

$$\left|N(k,b,D) - \frac{1}{q} \binom{n}{k} \right| \leq \max_{0 \leq j \leq k} \frac{p}{q} \cdot \binom{k+q-n-2-j}{q-n-2} \binom{q/p-1}{\lfloor j/p \rfloor}.$$

When q = p, that is, \mathbf{F}_q is a prime field, we have

$$\left|N(k,b,D) - \frac{1}{q} \binom{n}{k} + \frac{(-1)^k}{q} \binom{k+q-n-1}{q-n-1} \right| \leq \binom{k+q-n-2}{q-n-2}.$$

Theorem 1.1 assumes that $n \leq q-2$. In the remaining case $n \geq q-2$, that is, $n \in \{q-2, q-1, q\}$, the situation is nicer and we obtain explicit formulas for N(k, b, D). Here we first state the results for $q-n \leq 1$ and thus we can take $D = \mathbf{F}_q$ or \mathbf{F}_q^* .

Theorem 1.2. Define v(b) = -1 if $b \neq 0$, and v(b) = q - 1 if b = 0. Then

$$N(k, b, \mathbf{F}_q^*) = \frac{1}{q} \binom{q-1}{k} + (-1)^{k+\lfloor k/p \rfloor} \frac{v(b)}{q} \binom{q/p-1}{\lfloor k/p \rfloor}.$$

If $p \nmid k$, then

$$N(k, b, \mathbf{F}_q) = \frac{1}{q} \binom{q}{k}.$$

If $p \mid k$, then

$$N(k,b,\mathbf{F}_q) = \frac{1}{q} \binom{q}{k} + (-1)^{k+\frac{k}{p}} \frac{v(b)}{q} \binom{q/p}{k/p}.$$

When q - n = 2, note that we can always take $D = \mathbf{F}_q \setminus \{0, 1\}$.

Theorem 1.3. Let q > 2. Then we have

$$N(k, b, \mathbf{F}_q \setminus \{0, 1\}) = \frac{1}{q} {q-2 \choose k} + \frac{1}{q} (-1)^k R_k^2 - (-1)^k S(k, k-b),$$

where R_k^2 , S(k,b) are defined as in (3.2) and (3.3).

This paper is organized as follows: We first prove Theorem 1.2 and Theorem 1.3 in Section 2 and Section 3 respectively. Then we prove Theorem 1.1 in Section 4. Applications to coding theory are given in Section 5.

Notations. For $x \in \mathbb{R}$, let $(x)_0 = 1$ and $(x)_k = x(x-1)\cdots(x-k+1)$ for $k \in \mathbb{Z}^+ = \{1, 2, 3, \cdots\}$. For $k \in \mathbb{N} = \{0, 1, 2, \cdots\}$ define the binomial coefficient $\binom{x}{k} = \frac{(x)_k}{k!}$. For a real number a we denote $\lfloor a \rfloor$ to be the largest integer not greater than a

2. Proof of Theorem 1.2

When D equals q-1, it suffices to consider $N(k, b, \mathbf{F}_q^*)$ by a simple linear substitution. Let M(k, b, D) denote the number of ordered tuples (x_1, x_2, \dots, x_k) satisfying equation (1.1). Then

$$M(k, b, D) = k!N(k, b, D)$$

is the number of solutions of the equation

$$x_1 + \dots + x_k = b, x_i \in D, x_i \neq x_i \ (i \neq j).$$
 (2.1)

It suffices to determine M(k, b, D). We use a pure combinatorial method to find recursive relations among the values of $M(k, b, \mathbf{F}_q)$ and $M(k, b, \mathbf{F}_q^*)$.

Lemma 2.1. For $b \neq 0$ and D being \mathbf{F}_q or \mathbf{F}_q^* , we have M(k, b, D) = M(k, 1, D).

Proof. There is a one to one map sending the solution $\{x_1, x_2, \dots, x_k\}$ of (2.1) to the solution $\{x_1b^{-1}, x_2b^{-1}, \dots, x_kb^{-1}\}$ of (2.1) with b = 1.

Lemma 2.2.

$$M(k, 1, \mathbf{F}_a) = M(k, 1, \mathbf{F}_a^*) + kM(k - 1, 1, \mathbf{F}_a^*),$$
 (2.2)

$$M(k, 0, \mathbf{F}_q) = M(k, 0, \mathbf{F}_q^*) + kM(k - 1, 0, \mathbf{F}_q^*), \tag{2.3}$$

$$(q)_k = (q-1)M(k, 1, \mathbf{F}_q) + M(k, 0, \mathbf{F}_q),$$
 (2.4)

$$(q-1)_k = (q-1)M(k, 1, \mathbf{F}_q^*) + M(k, 0, \mathbf{F}_q^*). \tag{2.5}$$

Proof. Fix an element $c \in \mathbf{F}_q$. The solutions of (2.1) in \mathbf{F}_q can be divided into two classes depending on whether c occurs. By a linear substitution, the number of solutions of (2.1) in \mathbf{F}_q not including c equals $M(k, b - ck, \mathbf{F}_q^*)$. And the number of solutions of (2.1) in \mathbf{F}_q including c equals $kM(k-1, b-ck, \mathbf{F}_q^*)$. Hence we have

$$M(k, b, \mathbf{F}_q) = M(k, b - ck, \mathbf{F}_q^*) + kM(k - 1, b - ck, \mathbf{F}_q^*).$$
 (2.6)

Then (2.2) follows by choosing b=1, c=0. Similarly, (2.3) follows by choosing b=0, c=0. Note that $(q)_k$ is the number of k-permutations of \mathbf{F}_q , and $(q-1)_k$ is the number of k-permutations of \mathbf{F}_q^* . Thus, both (2.4) and (2.5) follows.

The next step is to find more relations between $M(k, b, \mathbf{F}_q)$ and $M(k, b, \mathbf{F}_q^*)$.

Lemma 2.3. If $p \nmid k$, we have $M(k, b, \mathbf{F}_q) = M(k, 0, \mathbf{F}_q)$ for all $b \in \mathbf{F}_q$ and hence

$$M(k, b, \mathbf{F}_q) = \frac{1}{q}(q)_k.$$

If $p \mid k$, we have $M(k, b, \mathbf{F}_q) = qM(k-1, b, \mathbf{F}_q^*)$ for all $b \in \mathbf{F}_q$.

Proof. Case 1: Since $p \nmid k$, we can take $c = k^{-1}b$ in (2.6) and get the relation

$$M(k, b, \mathbf{F}_q) = M(k, 0, \mathbf{F}_q^*) + kM(k - 1, 0, \mathbf{F}_q^*).$$

The right side is just $M(k, 0, \mathbf{F}_q)$ by (2.3).

Case 2: In this case, $p \mid k$. Then $M(k, b, \mathbf{F}_q)$ equals the number of ordered solutions of the following system of equations:

$$\begin{cases} x_1 + x_2 + \dots + x_k = b, \\ x_1 - x_2 = y_2, \\ \dots \\ x_1 - x_k = y_k, \\ y_i \in \mathbf{F}_q^*, \ y_i \neq y_j, \ 2 \leq i < j \leq k. \end{cases}$$

Regarding x_1, x_2, \dots, x_k as variables it is easy to check that the p-rank (the rank of a matrix over the prime field \mathbf{F}_p) of the coefficient matrix of the above system of equations equals k-1. The system has solutions if and only if $\sum_{i=2}^k y_i = -b$ and $y_i \in \mathbf{F}_q^*$ being distinct. Furthermore, since the p-rank of the above system is k-1, when y_2, y_3, \dots, y_k and x_1 are given then x_2, x_3, \dots, x_k will be uniquely determined. This means the number of the solutions of above linear system of equations equals to q times the number of ordered solutions of the following equation:

$$\begin{cases} y_2 + y_3 + \dots + y_k = -b, \\ y_i \in \mathbf{F}_q^*, & y_i \neq y_j, \ 2 \le i < j \le k. \end{cases}$$

This number of solutions of the above equation is just $M(k-1,b,\mathbf{F}_q^*)$ and hence $M(k,b,\mathbf{F}_q)=qM(k-1,b,\mathbf{F}_q^*)$.

We have obtained several relations from Lemma 2.2 and Lemma 2.3. To determine $M(k, b, \mathbf{F}_q)$, it is now sufficient to know $M(k, 0, \mathbf{F}_q^*)$. Define for k > 0,

$$d_k = M(k, 1, \mathbf{F}_q^*) - M(k, 0, \mathbf{F}_q^*).$$

Then by (2.5) we have

$$qM(k,0,\mathbf{F}_q^*) = (q-1)_k - (q-1)d_k. \tag{2.7}$$

Heuristically, $M(k, 0, \mathbf{F}_q^*)$ should be approximately $\frac{1}{q}(q-1)_k$. To obtain the explicit value of $M(k, 0, \mathbf{F}_q^*)$, we only need to know d_k . For convenience we set $d_0 = -1$.

Lemma 2.4. If d_k is defined as above, then

$$d_k = \begin{cases} -1, & k = 0; \\ 1, & k = 1; \\ -kd_{k-1}, & p \nmid k, \ 2 \le k \le q - 1; \\ (q - k)d_{k-1}, & p \mid k, \ 2 \le k \le q - 1. \end{cases}$$

Proof. One checks that $d_1 = M(1, 1, \mathbf{F}_q^*) - M(1, 0, \mathbf{F}_q^*) = 1 - 0 = 1$. When $p \nmid k$, by Lemma 2.3 we have $M(k, 1, \mathbf{F}_q) = M(k, 0, \mathbf{F}_q)$. This together with Lemma 2.2 implies

$$M(k, 1, \mathbf{F}_q^*) - M(k, 0, \mathbf{F}_q^*) = k(M(k-1, 0, \mathbf{F}_q^*) - M(k-1, 1, \mathbf{F}_q^*)).$$

Namely, $d_k = -kd_{k-1}$. When $p \mid k$, using Lemma 2.3 we have

$$M(k,1,\mathbf{F}_q) - M(k,0,\mathbf{F}_q) = q(M(k-1,1,\mathbf{F}_q^*) - M(k-1,0,\mathbf{F}_q^*)) = qd_{k-1}.$$

By Lemma 2.2, the left side is $d_k + kd_{k-1}$. Thus, $d_k = (q-k)d_{k-1}$.

Corollary 2.5.

$$d_k = -(-1)^{k+\lfloor k/p\rfloor} k! \binom{q/p-1}{\lfloor k/p \rfloor}.$$

Proof. One checks $d_0 = -1$ and $d_1 = 1$ are consistent with the above formula for $k \le 1$. Let $k \ge 2$ and write k = np + m with $0 \le m < p$. By Lemma 2.4,

$$\frac{d_k}{k!} = (-1)^{n(p-1)+m+1} \prod_{i=1}^n \frac{(q-ip)}{ip}$$

$$= (-1)^{n(p-1)+m+1} \frac{\prod_{i=1}^n (q/p-i)}{n!}$$

$$= -(-1)^{k+n} \binom{q/p-1}{n}.$$

It is easy to check that if q = p, then we have $d_k = (-1)^{k-1} k!$, which is consistent with the definition $(0)_0 = 1$.

Proof of Theorem 1.2 Let M(k,b,D) be the number of solutions of (2.1). Note that M(k,b,D) = k!N(k,b,D) and $d_k = -(-1)^{k+\lfloor k/p\rfloor}k!\binom{q/p-1}{\lfloor k/p\rfloor}$. Thus it is sufficient to prove

$$M(k, b, \mathbf{F}_{q}^{*}) = \frac{(q-1)_{k} - v(b)d_{k}}{q};$$
$$M(k, b, \mathbf{F}_{q}) = \frac{(q)_{k} - v(b)(d_{k} + kd_{k-1})}{q}.$$

If b = 0, by (2.7), we obtain

$$qM(k, 0, \mathbf{F}_q^*) = (q-1)_k - (q-1)d_k.$$

If $b \neq 0$, then

$$qM(k, b, \mathbf{F}_q^*) = qM(k, 1, \mathbf{F}_q^*) = qd_k + qM(k, 0, \mathbf{F}_q^*) = (q-1)_k + d_k.$$

The formula for $M(k, b, \mathbf{F}_{q}^{*})$ holds.

If $p \nmid k$, then $d_k + kd_{k-1} = 0$ and the formula for $M(k, b, \mathbf{F}_q)$ holds by Lemma 2.3.

If $p \mid k$, then $d_k + kd_{k-1} = qd_{k-1}$. By Lemma 2.3 and the above formula for $M(k, b, \mathbf{F}_q^*)$, we deduce

$$M(k, b, \mathbf{F}_q) = qM(k-1, b, \mathbf{F}_q^*) = (q-1)_{k-1} - v(b)d_{k-1}.$$

The formula for $M(k, b, \mathbf{F}_q)$ holds. The proof is complete.

Now we turn to deciding when the solution number $N(k, b, \mathbf{F}_q^*) > 0$. A sequence $\{a_0, a_1, \dots, a_n\}$ is **unimodal** if there exits index k with $0 \le k \le n$ such that

$$a_0 \le a_1 \le \cdots a_{k-1} \le a_k \ge a_{k+1} \cdots \ge a_n$$
.

The sequence $\{a_0, a_1, \dots, a_n\}$ is called symmetric if $a_i = a_{n-i}$ for $0 \le i < n$.

Corollary 2.6. For any $b \in \mathbf{F}_q$, both the sequence $N(k, b, \mathbf{F}_q)$ $(1 \le k \le q)$ and the sequence $N(k, b, \mathbf{F}_q^*)$ $(1 \le k \le q - 1)$ are unimodal and symmetric.

Proof. The symmetric part can be verified using Theorem 1.1. A simpler way is to use the relation

$$\sum_{a \in \mathbf{F}_a} a = \sum_{a \in \mathbf{F}_a^*} a = 0.$$

To prove the unimodal property for $N(k, b, \mathbf{F}_q^*)$, by the symmetry it is sufficient to consider the case $k \leq \frac{q-1}{2}$. Then, by Theorem 1.1, we deduce

$$\begin{split} &q\left(N(k,0,\mathbf{F}_q^*)-N(k-1,0,\mathbf{F}_q^*)\right)\\ &\geq \binom{q-1}{k}-\binom{q-1}{k-1}-(q-1)\left(\binom{q/p-1}{\lfloor k/p\rfloor}-\binom{q/p-1}{\lfloor (k-1)/p\rfloor}\right). \end{split}$$

If $p \nmid k$, then $\lfloor k/p \rfloor = \lfloor (k-1)/p \rfloor$ and the right side is clearly positive. If $p \mid k$, then

$$q\left(N(k,0,\mathbf{F}_{q}^{*})-N(k-1,0,\mathbf{F}_{q}^{*})\right)$$

$$\geq \frac{q-2k}{k} \binom{q-1}{k-1} - (q-1) \frac{q/p-2k/p}{k/p} \binom{q/p-1}{k/p-1}$$

$$= \frac{q-2k}{k} \left(\binom{q-1}{k-1} - (q-1) \binom{q/p-1}{k/p-1}\right).$$
(2.8)

When p = 2 and k = 2, 4, or $q \le 9$, it is easy to checks that $\binom{q-1}{k-1} \ge (q-1)\binom{q/p-1}{k/p-1}$. Otherwise by the Vandermonde's convolution

$$\binom{q-1}{k-1} = \sum_{i=0}^{q/p-1} \binom{q/p-1}{i} \binom{q-q/p}{k-1-i},$$

it suffices to prove

$$\binom{q - q/p}{k - k/p} \ge q - 1.$$

This inequality follows by noting that

$$\binom{q - q/p}{k - k/p} \ge \binom{q/2}{2}$$

and q > 9. Thus $N(k, 0, \mathbf{F}_q^*)$ is unimodal. The proof for the unimodality of $N(k, b, \mathbf{F}_q)$ is similar. This completes the proof.

Corollary 2.7. Let |D| = q - 1 > 4. If p is an odd prime then for 1 < k < q - 2 the equation (1.1) always has a solution. If p = 2, then for 2 < k < q - 3 the equation (1.1) always has a solution.

Proof. For any $a \in \mathbf{F}_q$ we have $N(k,b,\mathbf{F}_q\backslash\{a\}) = N(k,b-ka,\mathbf{F}_q^*)$. Thus it is sufficient to consider $N(k,1,\mathbf{F}_q^*)$ and $N(k,0,\mathbf{F}_q^*)$ by Lemma 2.1. When p is odd and k=2, we have $N(2,0,\mathbf{F}_q^*) = \frac{1}{q}(\binom{q-1}{2}+(q-1)) = \frac{q-1}{2}>0$, and $N(2,1,\mathbf{F}_q^*) = \frac{1}{q}(\binom{q-1}{2}-1) = \frac{q-3}{2}>0$ from Theorem 1.2. Then, by the unimodality of $N(k,1,\mathbf{F}_q^*)$ and $N(k,0,\mathbf{F}_q^*)$, for 1< k< q-2, $N(k,b,\mathbf{F}_q\setminus\{a\})$ must be positive.

Similarly, when p = 2 and k = 3 we have $N(3, 0, \mathbf{F}_q^*) = \frac{1}{q}(\binom{q-1}{3} + (q-1)(\frac{q}{2} - 1)) = \frac{(q-1)(q-2)}{6} > 0$ and $N(3, 1, \mathbf{F}_q^*) = \frac{1}{q}(\binom{q-1}{3} - (\frac{q}{2} - 1)) = \frac{(q-2)(q-4)}{6} > 0$. By the unimodality and symmetry we complete the proof.

Corollary 2.8. Let $D = \mathbf{F}_q$. If p is an odd prime then the equation (1.1) always has a solution if and only if 0 < k < q. If p = 2, then for 2 < k < q - 2 the equation (1.1) always has a solution.

Proof. It is straightforward from Corollary 2.7 and Theorem 1.1. \Box

3. Proof of Theorem 1.3

Before our proof of Theorem 1.3, we first give several lemmas, which give some basic formulas for the summands of sign-alternating binomial coefficients.

Lemma 3.1. Let k, m be integers. Then we have

$$\sum_{k \le m} (-1)^k \binom{r}{k} = (-1)^m \binom{r-1}{m}.$$

Proof. It follows by comparing the coefficients of x^m in both sides of $(1-x)^{-1}(1-x)^r=(1-x)^{r-1}$.

Lemma 3.2. Let $\langle k \rangle_p$ be the least non-negative residue of k modulo p. For any positive integers a, k, we have

$$\sum_{i=0}^k -(-1)^{\lfloor j/p\rfloor} \binom{a}{\lfloor j/p\rfloor} = -p(-1)^{\lfloor k/p\rfloor} \binom{a-1}{\lfloor k/p\rfloor} + (p-1- < k >_p)(-1)^{\lfloor k/p\rfloor} \binom{a}{\lfloor k/p\rfloor},$$

and thus

$$\sum_{j=0}^{k} -(-1)^{\lfloor j/p\rfloor} \binom{a}{\lfloor j/p\rfloor} \le p \binom{a}{\lfloor k/p\rfloor}. \tag{3.1}$$

Proof. Let $j = n_j p + m_j$ with $0 \le m_j < p$. Applying Lemma 3.1 we have

$$\begin{split} &\sum_{j=0}^{k} - (-1)^{\lfloor \frac{j}{p} \rfloor} \binom{a}{\lfloor j/p \rfloor} \\ &= -p \sum_{n_j=0}^{n_k} (-1)^{n_j} \binom{a}{n_j} + (p-1-\langle k \rangle_p) (-1)^{n_k} \binom{a}{n_k} \\ &= -p (-1)^{\lfloor k/p \rfloor} \binom{a-1}{\lfloor k/p \rfloor} + (p-1-\langle k \rangle_p) (-1)^{\lfloor k/p \rfloor} \binom{a}{\lfloor k/p \rfloor}. \end{split}$$

The inequality (3.1) follows by noting the alternating signs before the two binomial coefficients.

Lemma 3.3. Let $R_k^1 = (-1)^k \frac{d_k}{k!} = -(-1)^{\lfloor k/p \rfloor} \binom{q/p-1}{\lfloor k/p \rfloor}$. Let $\langle k \rangle_p$ denote the least non-negative residue of k modulo p. Define $R_k^2 = \sum_{j=0}^k R_j^1$. Then we have

$$R_k^2 = -p(-1)^{\lfloor k/p \rfloor} \binom{q/p-2}{\lfloor k/p \rfloor} + (p-1-\langle k \rangle_p)(-1)^{\lfloor k/p \rfloor} \binom{q/p-1}{\lfloor k/p \rfloor}. \tag{3.2}$$

Moreover, let $b \in \mathbf{F}_p$. Define $\delta_{b,k} = 1$ if $\langle b \rangle_p$ is greater than $\langle k \rangle_p$ and $\delta_{b,k} = 0$ otherwise. Then we have

$$S(k,b) := \sum_{\substack{0 \le i \le k \\ i \equiv b \pmod{p}}} R_i^1 = -(-1)^{\lfloor k/p \rfloor} \binom{q/p-2}{\lfloor k/p \rfloor} + \delta_{b,k} (-1)^{\lfloor k/p \rfloor} \binom{q/p-1}{\lfloor k/p \rfloor}. (3.3)$$

Proof. Note that (3.2) is direct from Lemma 3.2 by setting a = q/p - 1. Since it is similar to that of Lemma 3.2, we omit the proof of (3.3).

We extend the equation (3.3) by defining S(k,b) = 0 for $b \notin \mathbf{F}_p$ and any integer k. Note that $S(k,b) \leq \binom{q/p-2}{\lfloor k/p \rfloor}$. In the following theorem, we give the accurate formula for N(k,b,D) when $D = \mathbf{F}_q \setminus \{a_1,a_2\}$ and first note that we can always assume $a_1 = 0$ and $a_2 = 1$ by a linear substitution.

Proof of Theorem 1.3 Using the simple inclusion-exclusion sieving method by considering whether a_2 appears in the solution of equation (1.1) we have

$$\begin{split} &N(k,b,\mathbf{F}_{q}\backslash\{a_{1},a_{2}\})\\ &=N(k,b,\mathbf{F}_{q}\backslash\{a_{1}\})-N(k-1,b-a_{2},\mathbf{F}_{q}\backslash\{a_{1},a_{2}\})\\ &=N(k,b,\mathbf{F}_{q}\backslash\{a_{1}\})-(N(k-1,b-a_{2},\mathbf{F}_{q}\backslash\{a_{1}\})\\ &-N(k-2,b-2a_{2},\mathbf{F}_{q}\backslash\{a_{1},a_{2}\}))\\ &\cdots\\ &=\sum_{i=0}^{k-1}(-1)^{i}N(k-i,b-ia_{2},\mathbf{F}_{q}\backslash\{a_{1}\})\\ &+(-1)^{k}N(0,b-ka_{2},\mathbf{F}_{q}\backslash\{a_{1},a_{2}\}). \end{split}$$

One checks that the above equation holds if we define N(0, b, D) to be 1 if and only if b = 0 for a nonempty set D. Noting that $a_1 = 0$ we have

$$N(k, b, \mathbf{F}_q \setminus \{a_1, a_2\}) = \sum_{i=0}^{k} (-1)^i N(k - i, b - ia_2, \mathbf{F}_q^*).$$

From Theorem 1.1 we have the following formula

$$N(k, b, \mathbf{F}_q^*) = \frac{1}{q} \binom{q-1}{k} - \frac{1}{q} (-1)^k v(b) R_k^1$$

where $R_k^1 = -(-1)^{\lfloor k/p \rfloor} {q/p-1 \choose \lfloor k/p \rfloor}, v(b) = -1 \text{ if } b \neq 0 \text{ and } v(b) = q-1 \text{ if } b = 0.$ Thus

$$\begin{split} &N(k,b,\mathbf{F}_q\backslash\{a_1,a_2\})\\ &=\sum_{i=0}^k (-1)^i \left(\frac{1}{q}\binom{q-1}{k-i} - \frac{1}{q}(-1)^{k-i}v(b-ia_2)R_{k-i}^1\right).\\ &=\frac{1}{q}\left((-1)^k\sum_{k-i=0}^k (-1)^{k-i}\binom{q-1}{k-i} - (-1)^k\sum_{k-i=0}^k v(b-ia_2)R_{k-i}^1\right)\\ &=\frac{1}{q}\left((-1)^k\sum_{j=0}^k (-1)^j\binom{q-1}{j} - (-1)^k\sum_{j=0}^k v(b-ka_2+ja_2)R_j^1\right)\\ &=\frac{1}{q}\left(\binom{q-2}{k} - (-1)^k\sum_{j=0}^k v(b-ka_2+ja_2)R_j^1\right). \end{split}$$

The last equality follows from Lemma 3.1. Noting that $a_2 = 1$, and by the definition of v(b) we have

$$N(k, b, \mathbf{F}_q \setminus \{a_1, a_2\})$$

$$= \frac{1}{q} \binom{q-2}{k} - \frac{1}{q} (-1)^k \sum_{j=0}^k v(b-k+j) R_j^1$$

$$= \frac{1}{q} \binom{q-2}{k} - \frac{1}{q} (-1)^k \sum_{j=0}^k (-1) \cdot R_j^1 - \frac{1}{q} (-1)^k \sum_{\substack{0 \le j \le k \\ b-k+j=0}} q \cdot R_j^1$$

$$= \frac{1}{q} \binom{q-2}{k} + \frac{1}{q} (-1)^k R_k^2 - (-1)^k \cdot S(k,k-b).$$
(3.4)

The proof is complete.

Combining (3.4), (3.2) and (3.3) we obtain the following simple solution number formula compared with those stated in Theorem 1.2 and Theorem 1.3.

Corollary 3.4. If $\langle k \rangle_p = p-1$ and $b \in \mathbb{F}_p$, then we have

$$N(k,b,\mathbf{F}_q\backslash\{0,1\}) = \frac{1}{q}\binom{q-2}{k} + (-1)^{k+\lfloor k/p\rfloor}\frac{q-p}{q}\binom{q/p-2}{\lfloor k/p\rfloor}.$$

This shows that the estimate in Theorem 1.1 is nearly sharp for q - n = 2.

4. Proof of Theorem 1.1

Let $D = \mathbf{F}_q \setminus \{a_1, a_2, \cdots a_c\}$, where $a_1, a_2, \cdots a_c$ are distinct elements in \mathbf{F}_q . In this section, based on the explicit formula of N(k, b, D) for c = 2 given in Theorem 1.3, we first obtain a general formula for c > 2. Then we give the proof of Theorem 1.1. The solution number $N(k, b, \mathbf{F}_q \setminus \{a_1, a_2, \cdots a_c\})$ is closely related to the \mathbf{F}_p -linear relations among the set $\{a_1, \cdots a_c\}$ which we will see in Lemma 4.2. For the purpose of Theorem 1.1's proof and further investigations on the solution number N(k, b, D), we first state the following lemma.

Lemma 4.1. Let $R_k^1 = -(-1)^{\lfloor k/p \rfloor} \binom{q/p-1}{\lfloor k/p \rfloor}$. For c > 1 if we define recursively that $R_k^c = \sum_{j=0}^k R_j^{c-1}$, then we have

$$R_k^c = -\sum_{j=0}^k (-1)^{\lfloor j/p \rfloor} \binom{k+c-2-j}{c-2} \binom{q/p-1}{\lfloor j/p \rfloor}. \tag{4.1}$$

Proof. When c=2, this formula is just the definition of R_k^2 . Assume it is true for some $c\geq 2$, then we have

$$\begin{split} R_k^{c+1} &= \sum_{i=0}^k R_i^c \\ &= \sum_{i=0}^k (-1) \cdot \sum_{j=0}^i (-1)^{\lfloor j/p \rfloor} \binom{i+c-2-j}{c-2} \binom{q/p-1}{\lfloor j/p \rfloor} \\ &= -\sum_{j=0}^k \sum_{i=j}^k (-1)^{\lfloor j/p \rfloor} \binom{i+c-2-j}{c-2} \binom{q/p-1}{\lfloor j/p \rfloor} \\ &= -\sum_{j=0}^k (-1)^{\lfloor j/p \rfloor} \sum_{i=j}^k \binom{i+c-2-j}{c-2} \binom{q/p-1}{\lfloor j/p \rfloor} \end{split}$$

$$= -\sum_{j=0}^{k} (-1)^{\lfloor j/p \rfloor} \binom{k+c-1-j}{c-1} \binom{q/p-1}{\lfloor j/p \rfloor}.$$

The last equality follows from the following simple binomial coefficient identity

$$\sum_{j \le k} \binom{j+n}{n} = \binom{k+n+1}{n+1}.$$

It is easy to check that when $k > \frac{q-c}{2}$, we have

$$N(k, b, D) = N(q - c - k, -b - \sum_{i=1}^{c} a_i, D),$$

where $D = \mathbf{F}_q \setminus \{a_1, a_2, \dots, a_c\}$. Thus we may always assume that $k \leq \frac{q-c}{2}$. In the following lemma, for convenience we state two different types of formulas.

Lemma 4.2. Let $D = \mathbf{F}_q \setminus \{a_1, a_2, \dots, a_c\}$ and $c \geq 3$, where $a_1 = 0, a_2 = 1, a_3, \dots, a_c$ are distinct elements in the finite field \mathbf{F}_q of characteristic p. Define the integer valued function v(b) = -1 if $b \neq 0$ and v(b) = q - 1 if b = 0. Then for any $b \in \mathbf{F}_q$, we have the formulas

$$N(k, b, D) - \frac{1}{q} \binom{q - c}{k}$$

$$= -\frac{1}{q} (-1)^k \cdot \sum_{i_1=0}^k \sum_{i_2=0}^{k-i_1} \cdots \sum_{i_{c-1}=0}^{k-i_1-\dots-i_{c-2}} v(b - i_1 a_c - \dots - (k - \sum_{j=1}^{c-1} i_j) a_2) R_j^1 \qquad (4.2)$$

$$= \frac{1}{q} (-1)^k R_k^c - (-1)^k \cdot \sum_{i_1=0}^k \sum_{i_2=0}^{k-i_1} \cdots \sum_{i_{c-2}=0}^{k-i_1-\dots-i_{c-3}} S(k - \sum_{j=1}^{c-2} i_j, k - \sum_{j=1}^{c-2} i_j - b + \sum_{j=1}^{c-2} i_j a_{c+1-j}), \qquad (4.3)$$

where R_k^c is defined by (3.2), and S(k,b) is defined by (3.3). Moreover, if $a_1 = 0$, and b, a_2, \dots, a_c are linear independent over \mathbf{F}_p , then we have

$$N(k, b, D) = \frac{1}{q} {q - c \choose k} + \frac{1}{q} (-1)^k R_k^c.$$
 (4.4)

Proof. Using the simple inclusion-exclusion sieving method we have

$$N(k, b, \mathbf{F}_{q} \setminus \{a_{1}, a_{2}, \cdots, a_{c}\})$$

$$= N(k, b, \mathbf{F}_{q} \setminus \{a_{1}, a_{2}, \cdots, a_{c-1}\})$$

$$-N(k-1, b-a_{c}, \mathbf{F}_{q} \setminus \{a_{1}, a_{2}, \cdots, a_{c-1}\})$$

$$= \cdots$$

$$= \sum_{i=0}^{k} (-1)^{i} N(k-i, b-ia_{c}, \mathbf{F}_{q} \setminus \{a_{1}, a_{2}, \cdots, a_{c-1}\}).$$

When c = 3, noting that $a_2 = 1$, (3.5) implies that

$$N(k, b, \mathbf{F}_q \setminus \{a_1, a_2, a_3\})$$

$$= \sum_{i=0}^{k} (-1)^{i} \left(\frac{1}{q} {q-2 \choose k-i} + \frac{1}{q} (-1)^{k-i} R_{k-i}^{2} - (-1)^{k-i} S(k-i, k-i-(b-ia_{3})) \right)$$

$$= \frac{1}{q} {q-3 \choose k} + \frac{1}{q} (-1)^{k} R_{k}^{3} - (-1)^{k} \sum_{i=0}^{k} S(k-i, k-i-b+ia_{3}).$$

By induction, (4.3) follows for $c \geq 3$. Similarly, (4.2) follows from (3.4).

If $b, a_2 = 1, a_3 \cdots, a_c$ are linear independent over \mathbf{F}_p , then first note that $b \notin \mathbf{F}_p$. Thus, when c = 2, by its extended definition we have S(k, k - b) = 0 for any integer k. When c > 2, since $b, a_2 = 1, a_3 \cdots, a_c$ are independent, we know that $k - \sum_{j=1}^{c-2} i_j - b + \sum_{j=1}^{c-2} i_j a_{c+1-j} \notin \mathbf{F}_p$ for any index tuple $(i_1, i_2, \cdots, i_{c-2})$ in the summation of (4.3). Thus this summation always vanishes for any c and the proof is complete.

Now we have obtained the two formulas of the solution number N(k, b, D). It suffices to evaluate R_k^c and the summation in (4.3), which is denoted by S_k^c . Unfortunately, S_k^c is extremely complicated when c is large. The **NP**-hardness of the subset sum problem indicates the hardness of precisely evaluating it. In the following lemmas we first deduce a simple bounds for R_k^c and S_k^c .

Lemma 4.3. Let p < q. Let

$$S_k^c = \sum_{i_1=0}^k \sum_{i_2=0}^{k-i_1} \cdots \sum_{i_{c-2}=0}^{k-i_1-\cdots-i_{c-3}} S(k - \sum_{j=1}^{c-2} i_j, k - \sum_{j=1}^{c-2} i_j - b + \sum_{j=1}^{c-2} i_j a_{c+1-j}).$$

Then we have

$$qS_k^c - R_k^c \le (q - p) \binom{k + c - 2}{c - 2} \binom{q/p - 1}{\lfloor k/p \rfloor}. \tag{4.5}$$

Proof. By the definition of R_k^c and the proof of Lemma 4.1 we have

$$R_k^c = \sum_{i_1=0}^k \sum_{i_2=0}^{k-i_1} \cdots \sum_{i_{c-2}=0}^{k-i_1-\cdots-i_{c-3}} R^2(k - \sum_{j=1}^{c-2} i_j),$$

where $R^2(k) = R_k^2$. From (3.2) and (3.3) it is easy to check that

$$R_k^2 - qS(k,b) \le (q-p) \binom{q/p-1}{\lfloor k/p \rfloor}$$

for any $b \in \mathbf{F}_q$ when p < q. Therefore (4.5) follows since both the two numbers of terms appear in the two summations of R_k^c and S_k^c are $\binom{k+c-2}{c-2}$.

Next we turn to giving a bound for R_k^c . Unfortunately, even though R_k^c can be written as a simple sum involving binomial coefficients, it seems nontrivial to evaluate it precisely. Using equation (4.1) and some combinatorial identities, we can easily obtain the following equality

$$R_{k}^{c} = -\sum_{j=0}^{\lfloor k/p \rfloor - 1} (-1)^{j} \left[\binom{k+c-1-ip}{c-1} - \binom{k+c-1-ip-p}{c-1} \right] \binom{q/p-1}{j} + \binom{\langle k \rangle_{p} + c - 1}{c-1} \binom{q/p-1}{\lfloor k/p \rfloor}.$$

$$(4.6)$$

It has been known that the simpler sum

$$\sum_{j=0}^{n} (-1)^{j} \binom{2n-1-3i}{n-1} \binom{n}{j},$$

which is the coefficient of x^n in $(1+x+x^2)^n$, has no closed form. That means it cannot be expressed as a fixed number of hypergeometric terms. For more details we refer to ([4], p. 160). This fact indicates that R_k^c also has no closed form. Thus, in the next lemma we just give a bound for R_k^c just using some elementary combinatorial arguments.

In Section 2 we have defined the unimodality of a sequence. A stronger property than unimodality is logarithmic concavity. First recall that a function f on the real line is concave if whenever x < y we have $f((x+y)/2) \ge (f(x)+f(y))/2$. Similarly, a sequence $a_0, a_1 \cdots, a_n$ of positive numbers is **log concave** if $\log a_i$ is a concave function of i which is to say that $(\log a_{i-1} + \log a_{i+1})/2 \le \log a_i$. Thus a sequence is \log concave if $a_{i-1}a_{i+1} \le a_i^2$. Using the properties of logarithmic concavity we have the following lemma.

Lemma 4.4.

$$R_k^c \le p \cdot \max_{0 \le j \le k} \binom{k+c-2-j}{c-2} \binom{q/p-1}{|j/p|}. \tag{4.7}$$

Proof. It is easy to check that both the two sequences $\binom{k+c-2-j}{c-2}$ and $\binom{q/p-1}{\lfloor j/p\rfloor}$ are log concave on j. Thus the sequence $a_j = \binom{k+c-2-j}{c-2} \binom{q/p-1}{\lfloor j/p\rfloor}$ is also log concave on j by the definition of logarithmic concavity. Since a log concave sequence must be unimodal, $\{a_i\}$ is unimodal on j. Then we have

$$R_k^c = -\sum_{j=0}^k (-1)^{\lfloor j/p \rfloor} a_j$$

$$= -\sum_{i=0}^{\lfloor k/p \rfloor} (-1)^i a_{ip} - \dots - \sum_{i=0}^{\lfloor k/p \rfloor} (-1)^i a_{ip+\langle k \rangle_p} \dots - \sum_{i=0}^{\lfloor k/p \rfloor - 1} (-1)^i a_{ip+p-1}.$$

Thus (4.7) follows from the following simple inequality

$$\sum_{i=0}^{k} (-1)^i a_i \le \max_{0 \le i \le k} a_i,$$

and the proof is complete.

Proof of Theorem 1.1 When q > p we rewrite (4.3) to be

$$N(k, b, D) = \frac{1}{q} {q - c \choose k} + \frac{1}{q} (-1)^k (R_k^c - q M_k^c).$$

Applying (4.5) we obtain

$$\left| N(k,b,D) - \frac{1}{q} \binom{q-c}{k} \right| \le \frac{q-p}{q} \binom{k+c-2}{c-2} \binom{q/p-2}{\lfloor k/p \rfloor}. \tag{4.8}$$

If $a_1 = 0$, and b, a_2, \dots, a_c are linear independent over \mathbf{F}_p , then $S_k^c = 0$ for any k. Thus from (4.4) and Lemma 4.4 we have the improved bound

$$\left| N(k,b,D) - \frac{1}{q} {q-c \choose k} \right| \le \frac{p}{q} \max_{0 \le j \le k} {k+c-2-j \choose c-2} {q/p-1 \choose \lfloor j/p \rfloor}. \tag{4.9}$$

Thus we only need to verify the case q = p. When q = p, from Lemma 4.1 we have

$$R_k^c = -\sum_{j=0}^k {k+c-2-j \choose c-2} = -{k+c-1 \choose c-1}.$$

And S(k,b) equals 0 or -1 by its definition given in Lemma 3.3. Thus from (4.3) we deduce that

$$N(k,b,D) = \frac{\binom{p-c}{k} - (-1)^k \binom{k+c-1}{k}}{p} + (-1)^k M_k^c$$
 (4.10)

with $0 \le M_k^c \le {k+c-2 \choose k}$. Thus

$$\left| N(k,b,D) - \frac{1}{q} \binom{q-c}{k} + \frac{(-1)^k}{q} \binom{k+c-1}{c-1} \right| \le \binom{k+c-2}{c-2}.$$

Note that c = q - n and the proof is complete.

Example 4.5. Choose p=2, q=128, c=4 and k=5. Then $R_k^c=-6840$. Let ω be a primitive element in \mathbf{F}_{128} . Let $D=F_{128}\backslash\{0,\omega,\omega^2,\omega^3\}$ and b=1. Since $1,\omega,\omega^2,\omega^3$ are linear independent, (4.4) gives that there are N=1759038 solutions of the equation (1.1) compared with the average number $\frac{1}{q}\binom{q-c}{k}\approx 1758985$.

Remark. If one obtains better bounds for S_k^c , then we can improve the bound given by (4.8). However, it is much more complicated to evaluate S_k^c than R_k^c . Let

$$I = \{[i_1, i_2, \cdots, i_{c-2}], 0 \le i_t \le k - \sum_{j=1}^{t-1} i_j, 1 \le t \le c - 2: b - \sum_{j=1}^{c-2} i_j a_{c+1-j} \in \mathbf{F}_p\}.$$

Simple counting shows that $0 \leq |I| \leq {k+c-2 \choose c-2}$. In the proof of (4.8) we use the upper bound $|I| \leq {k+c-2 \choose c-2}$ and in the proof of (4.4) it is the special case |I| = 0. We can improve the above bound if we know more information about the cardinality of I, which is determined by the set b, a_2, \cdots, a_c . For example, if we know more about the rank of the set $\{b, a_2, \cdots, a_c\}$, then we can improve the bound given by (4.8). The details are omitted.

5. Applications to Reed-Solomon Codes

Let $D=\{x_1,\cdots,x_n\}\subset \mathbf{F}_q$ be a subset of cardinality |D|=n>0. For $1\leq k\leq n$, the Reed-Solomon code $D_{n,k}$ has the codewords of the form

$$(f(x_1),\cdots,f(x_n))\in \mathbf{F}_a^n$$

where f runs over all polynomials in $\mathbf{F}_q[x]$ of degree at most k-1. The minimum distance of the Reed-Solomon code is n-k+1 because a non-zero polynomial of degree at most k-1 has at most k-1 zeroes. For $u=(u_1,u_2,\cdots,u_n)\in \mathbf{F}_q^n$, we can associate a unique polynomial $u(x)\in \mathbf{F}_q[x]$ of degree at most n-1 such that

$$u(x_i) = u_i,$$

for all $1 \le i \le n$. The polynomial u(x) can be computed quickly by solving the above linear system. Explicitly, the polynomial u(x) is given by the Lagrange interpolation formula

$$u(x) = \sum_{i=1}^{n} u_i \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Define d(u) to be the degree of the associated polynomial u(x) of u. It is easy to see that u is a codeword if and only if $d(u) \le k - 1$.

For a given $u \in \mathbf{F}_q^n$, define

$$d(u, D_{n,k}) := \min_{v \in D_{n,k}} d(u, v).$$

The maximum likelihood decoding of u is to find a codeword $v \in D_{n,k}$ such that $d(u,v) = d(u,D_{n,k})$. Thus, computing $d(u,D_{n,k})$ is essentially the decision version for the maximum likelihood decoding problem, which is **NP**-complete for general subset $D \subset \mathbf{F}_q$. For standard Reed-Solomon code with $D = \mathbf{F}_q^*$ or \mathbf{F}_q , the complexity of the maximum likelihood decoding is unknown to be **NP**-complete. This is an important open problem. It has been shown by Cheng-Wan [2, 3] to be at least as hard as the discrete logarithm problem.

When $d(u) \leq k-1$, then u is a codeword and thus $d(u, D_{n,k}) = 0$. We shall assume that $k \leq d(u) \leq n-1$. The following simple result gives an elementary bound for $d(u, D_{n,k})$.

Theorem 5.1. Let $u \in \mathbf{F}_q^n$ be a word such that $k \leq d(u) \leq n-1$. Then,

$$n - k \ge d(u, D_{n,k}) \ge n - d(u).$$

Proof. Let $v = (v(x_1), \dots, v(x_n))$ be a codeword of $D_{n,k}$, where v(x) is a polynomial in $\mathbf{F}_q[x]$ of degree at most k-1. Then,

$$d(u,v) = n - N_D(u(x) - v(x)),$$

where $N_D(u(x) - v(x))$ denotes the number of zeros of the polynomial u(x) - v(x) in D. Thus,

$$d(u, D_{n,k}) = n - \max_{v \in D_{n,k}} N_D(u(x) - v(x)).$$

Now u(x) - v(x) is a polynomial of degree equal to d(u). We deduce that

$$N_D(u(x) - v(x)) \le d(u).$$

It follows that

$$d(u, D_{n,k}) \ge n - d(u)$$
.

The lower bound is proved. To prove the upper bound, we choose a subset $\{x_1, \dots, x_k\}$ in D and let $g(x) = (x - x_1) \cdots (x - x_k)$. Write

$$u(x) = g(x)h(x) + v(x),$$

where $v(x) \in \mathbf{F}_q[x]$ has degree at most k-1. Then, clearly, $N_D(u(x)-v(x)) \geq k$. Thus

$$d(u, D_{n,k}) \leq n - k$$
.

The theorem is proved.

We call u to be a deep hole if $d(u, D_{n,k}) = n - k$, that is, the upper bound in the equality holds. When d(u) = k, the upper bound agrees with the lower bound and thus u must be a deep hole. This gives $(q-1)q^k$ deep holes. For a general Reed-Solomon code $D_{n,k}$, it is already difficult to determine if a given word u is a deep hole. In the special case that d(u) = k+1, the deep hole problem is equivalent to the subset sum problem over \mathbf{F}_q which is \mathbf{NP} -complete if p > 2.

For the standard Reed-Solomon code, that is, $D = \mathbf{F}_q^*$ and thus n = q - 1, there is the following interesting conjecture of Cheng-Murray [1].

Conjecture Let q = p. For the standard Reed-Solomon code with $D = \mathbf{F}_p^*$, the set $\{u \in \mathbf{F}_p^n | d(u) = k\}$ gives the set of all deep holes.

Using the Weil bound, Cheng and Murray proved that their conjecture is true if p is sufficiently large compared to k.

The deep hole problem is to determine when the upper bound in the above theorem agrees with $d(u, D_{n,k})$. We now examine when the lower bound n - d(u) agrees with $d(u, D_{n,k})$. It turns out that the lower bound agrees with $d(u, D_{n,k})$ much more often. We call u **ordinary** if $d(u, D_{k,n}) = n - d(u)$. A basic problem is then to determine for a given word u, when u is ordinary.

Without loss of generality, we can assume that u(x) is monic and d(u) = k + m, $0 \le m \le n - k$. Let

$$u(x) = x^{k+m} - b_1 x^{k+m-1} + \dots + (-1)^m b_m x^k + \dots + (-1)^{k+m} b_{k+m}$$

be a monic polynomial in $\mathbf{F}_q[x]$ of degree k+m. By definition, $d(u,D_{n,k})=n-(k+m)$ if and only if there is a polynomial $v(x)\in\mathbf{F}_q[x]$ of degree at most k-1 such that

$$u(x) - v(x) = (x - x_1) \cdots (x - x_{k+m}),$$

with $x_i \in D$ being distinct. This is true if and only if the system

$$\sum_{i=1}^{k+m} X_i = b_1,$$

$$\sum_{1 \le i_1 < i_2 \le k+m} X_{i_1} X_{i_2} = b_2,$$

$$\cdots,$$

$$\sum_{1 \le i_1 < i_2 < \dots < i_m \le k+m} X_{i_1} \cdots X_{i_m} = b_m.$$

has distinct solutions $x_i \in D$. This explains our motivational problem in the introduction section.

When d(u)=k, then u is always a deep hole. The next non-trivial case is when d(u)=k+1. Using the bound in Theorem 1.1, we obtain some positive results related to the deep hole problem in the case d(u)=k+1 (i.e., the case m=1) if q-n is small. When $q-n\leq 1$, by Corollary 2.7 we first have the following simple consequence.

Corollary 5.2. Let $q \ge n \ge q-1$ and q > 5. Let d(u) = k+1 with 2 < k < q-3. Then u cannot be a deep hole.

Proof. By the above discussion, u is not a deep hole if and only if the equation

$$x_1 + x_2 + \dots + x_{k+1} = b$$

always has distinct solutions in D for any $b \in F_q$. Thus the result follows from Corollary 2.7.

Remark. Similarly, using Theorem 1.1, a simple asymptotic argument implies that when q-n is a constant, and d(u)=k+1 with 2 < k < q-3, then u cannot be a deep hole for sufficient large q. Furthermore, for given q, n, asymptotic analysis can give sufficient conditions for k to ensure a degree-k+1 word u not being a deep hole.

In the present paper, we studied the case m=1 and explored some of the combinatorial aspects of the problem. In a future article, we plan to study the case m>1 by combining the ideas of the present papers with algebraic-geometric techniques such as the Weil bound.

References

- [1] Q. Cheng and E. Murray, On deciding deep holes of Reed-Solomon codes, TAMS 2007, to appear.
- [2] Q. Cheng and D. Wan, On the list and Bounded distance Decodibility of Reed-Solomon Codes, FOCS (2004), 335-341.
- [3] Q. Cheng and D. Wan, On the list and bounded distance decodability of Reed-Solomon codes, SIAM J. Comput. 37 (2007), no. 1, 195-209.
- [4] M. Petkovsek, H. S. Wilf and D. Zeilberger, A=B, Wellesley, MA:A. K. Peters, 1996.

School of Mathematical Sciences, Peking University, Beijing, P.R. China $E\text{-}mail\ address:\ joe@math.pku.edu.cn}$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, CA 92697-3875, USA *E-mail address*: dwan@math.uci.edu