

STP19NB20 - STP19NB20FP STB19NB20-1

N-CHANNEL 200V - 0.15Ω - 19A - TO-220/TO-220FP/I²PAK PowerMESH™ MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP19NB20	200 V	< 0.18 Ω	19 A
STP19NB20FP	200 V	< 0.18 Ω	10 A
STB19NB20-1	200 V	< 0.18 Ω	19 A

- TYPICAL R_{DS}(on) = 0.15Ω
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED

DESCRIPTION

Using the latest high voltage MESH OVERLAYTM process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprieraty edge termination structure, gives the lowest RDS(on) per area, exceptional avalanche and dv/dt capabilities and unrivalled gate charge and switching characteristics.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR TELECOM, INDUSTRIAL AND CONSUMER ENVIRONMENT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Valu	е	Unit	
		STP(B)19NB20(-1)	STP19NB20FP		
V _{DS}	Drain-source Voltage (V _{GS} = 0)	200		V	
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	200		V	
V _{GS}	Gate- source Voltage	± 30)	V	
I _D	Drain Current (continuous) at T _C = 25°C	19	10	Α	
I _D	Drain Current (continuous) at T _C = 100°C	12	6.0	Α	
I _{DM} (•)	Drain Current (pulsed)	76	76	Α	
P _{TOT}	Total Dissipation at T _C = 25°C	125	35	W	
	Derating Factor	1	0.28	W/°C	
dv/dt (1)	Peak Diode Recovery voltage slope	5.5		V/ns	
V _{ISO}	Insulation Withstand Voltage (DC)	-	- 2500		
T _{stg}	Storage Temperature	-65 to	-65 to 150		
Tj	Max. Operating Junction Temperature	150	150		

(•)Pulse width limited by safe operating area August 2002

 $(1)I_{SD} \leq 19 \text{ A, di/dt} \leq 300 \text{A/}\mu\text{s, } V_{DD} \leq V_{(BR)DSS}, \ T_{j} \leq T_{JMAX}$

STP19NB20/FP/STB19NB20-1

THERMAL DATA

		TO-220/I ² PAK	TO-220FP	
Rthj-case	Thermal Resistance Junction-case Max	1	3.57	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5		°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300		°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	19	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	580	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	200			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V_{DS} = Max Rating, T_{C} = 125 °C			10	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 30V$			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 9.5 A		0.15	0.18	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 9.5 \text{ A}$	3			S
C _{iss}	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		1000		pF
Coss	Output Capacitance			285		pF
C _{rss}	Reverse Transfer Capacitance			45		pF

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 100V, I _D = 9.5 A		15		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 10V$ (see test circuit, Figure 3)		15		ns
Qg	Total Gate Charge	V _{DD} = 160V, I _D = 19 A,		29	40	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 10V$		9.5		nC
Q_{gd}	Gate-Drain Charge			13		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_{r(Voff)}$	Off-voltage Rise Time	V _{DD} = 160V, I _D = 19 A,		10		ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 5)		10		ns
t_{c}	Cross-over Time	(See test sheart, Figure 6)		20		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				19	Α
I _{SDM} (2)	Source-drain Current (pulsed)				76	Α
V _{SD} (1)	Forward On Voltage	I _{SD} = 19 A, V _{GS} = 0			1.5	V
t _{rr}	Reverse Recovery Time	I _{SD} = 19 A, di/dt = 100A/μs,		210		ns
Q_{rr}	Reverse Recovery Charge	$V_{DD} = 50V$, $T_j = 150$ °C (see test circuit, Figure 5)		1.5		μС
I_{RRM}	Reverse Recovery Current	(ooo toot on out, 1 igure o)		14.5		Α

Note: 1. Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 %.

2. Pulse width limited by safe operating area.

Safe Operating Area for TO-220/I²PAK

Safe Operating Area for TO-220FP

A7/₈

Thermal Impedance for TO-220/I²PAK

Output Characteristics

Tranconductance

Thermal Impedance for TO-220FP

Tranfer Characteristics

Static Drain-Source On Resistance

Gate Charge vs Gate-source Voltage

Capacitance Variations

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

47/.

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

TO-262 (I²PAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
е	2.4		2.7	0.094		0.106
Е	10		10.4	0.393		0.409
L	13.1		13.6	0.515		0.531
L1	3.48		3.78	0.137		0.149
L2	1.27		1.4	0.050		0.055

D²PAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	00		40			

D²PAK FOOTPRINT

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

* on sales type

57.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477.