

Andres Olivera Eduardo Alfonso Razo Clarie Hutin

Table of contents

01

Case Study

02

Data
Summary &
Preprocessing

03

Modeling

04

Results

1. Case Study

Explanation of the problem

Case Study

- Kaggle competition: using data from residential homes of Aimes, Iowa, USA, try to predict the sale price of the houses.
- Regression problem
- Target = Sale price
- 81 dependant variables

2. Summary & Preprocessing

Exploration of the dataset and steps to prepare de data

Data Summary

Train

Variables:81

Observations:1460

Categorical	Numerical	Dates	
29	49	3	

Test

Variables:80

Observations:1459

Processing

Top 11 correlated variables with the Sale Price

Overall Quality, Living Area above ground and the amount of garages are the most relevant variables at first glance

Processing

Sales price Distribution

Sales price Distribution Logged

Handling Missing Values

1

Flag Missing

19 and 33 new columns flagged for train and test respectively

2

Replace Numerical

10 replaced by 0 1 replaced by **median** 3

Replace Categorical

7 with specific string for both. 1 and 15 replaced by 'None' respectively.

Other Pre-Processing

Transform numerical that are actually categorical

5

Dates and factors

Change character variables into integers

17

Mostly describing qualities For better easiness of reading in data Removing variable

1

Utilities = 0 variance

Log of IVariables

13

Log of variables' which skewness is >0.5 or <-0.5

Feature Engineering

Basement area

Addition of the following features:

- TotalBsmtSF
- X1stFlrSF
- X2ndFlrSF

Number of bathroom

Addition of the following features:

- FullBath
- HalfBath * 0.5
- BsmtFullBath
- BsmtHalfBath *0.5

House remodeled

Boolean:

If YearBuilt==YearRem odAdd

0 = No remodeling 1 = Remodeling House age

Subtraction of the following features:

- YrSold
- YearRemodAdd

Feature Engineering

House new

Boolean:

If YrSold==YearBuilt

> 0 = no new1 = New

Total area

Addition of the following features:

GrLivArea + TotalBsmtSF Sale price per neighborhood

Grouping

3 groups: 0, 1, 2

Dummy encoding

Encoding of categorical variables

0 = No1 = Yes

Feature Selection

Boruta

Wrapper of Random Forest.

Selects variables by measuring their importance

Variables

256 ---> 101

4. Modeling

The models selected to conduct the benchmark the sale price

Modeling

Gradient Boosting Machine

Random Forest Regression

2 Linear Regression

5 Lasso

3 XGBoost

6 Ge Lin

Generalized Linear Regression

Hyperparameter Tunning GBM

Resampling method	Iterations	Performance metrics	n.trees	
Cross Validation	12	RMSE	500	

Root Mean Square Error

Hyperparameter Tunning Linear Regression

Resampling method	Iterations	Performance metrics
Cross Validation	10	RMSE Root Mean Square Error

Hyperparameter Tunning XGBoost

Resampling method

Cross Validation

Iterations

100

RMSE

Root Mean Square Error

Performance metrics

nrounds

200 - 600

Max_depth

3 - 20

Lambda

0.00055 - 0.0060

Gamma

0.5 - 0.60

4. Results

The metrics to evaluate the performance of the model

Results

Evaluation					
Metric	GBM	Linear R	XGboost		
RMSE	0.1340	0.1436	0.1447		

Performance of best models