Contents

1	Dualitat i Ortogonalitat d'espais vectorials	2
	1.1 Definicions i propietats	2
	1.2 Aplicacions lineals i dualitat	6

Chapter 1

Dualitat i Ortogonalitat d'espais vectorials

1.1 Definicions i propietats

Per començar aquest tema recordarem el concepte d'espai vectorial.

Definició 1.1

Un espai vectorial sobre un cos K és un conjunt no buit E sobre el què están definides dues operacions:

(a) una llei interna, que anomenarem suma:

$$+: E \times E \longrightarrow E$$
 $(u, v) \longrightarrow u + v$

que verifica les següents propietats:

- Commutativa: u + v = v + u, per tots $u, v \in E$;
- Associativa: (u+v)+w=u+(v+w), per tots $u,v,w\in E$;
- Element neutre: existeix $0 \in E$ tal que u + 0 = 0 + u = u, per tot $u \in E$;
- Element oposat: per tot $u \in V$ existeix $-u \in E$ tal que u + (-u) = (-u) + u = 0.
- (b) una llei externa, que anomenarem producte per un escalar:

$$\begin{array}{ccc} \cdot : & K \times E \longrightarrow & E \\ & (\lambda, u) \longrightarrow & \lambda \cdot u \end{array}$$

que verifica les següents propietats:

- $1 \cdot u = u$, per tot $u \in E$;
- associativitat mixta: $\alpha \cdot (\beta \cdot u) = (\alpha \beta) \cdot u$, per tots $\alpha, \beta \in K$, i per tot $u \in E$;
- distributiva de l'operació externa respecte de la suma de $K: (\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$, per tots $\alpha, \beta \in K$ i per tot $u \in E$;
- distributiva de l'operació externa respecte de la suma de $E: \alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$, per tot $\alpha \in K$ i per tots $u, v \in E$.

També direm que E és un K-espai vectorial, i de forma abreujada E és un K-e.v.

Als elements de l'espai vectorial E se'ls denomina vectors i els denotarem per lletres llatines (x, y, u, v, ...), mentre que als elements de K se'ls denomina escalars i els denotarem per lletres gregues $(\lambda, \alpha, \beta, ...)$. Observau que amb aquesta notació utilitzada pels elements d'E i pels elements de K, no es fa necessari emprar símbols distints per a les dues addicions (d'E i de K), ni tampoc per a les multiplicacions (interna

de K i externa sobre E). Així, per exemple, a la condició de la distributivitat respecte de la suma de K, el primer membre $(\alpha + \beta)u$, és el producte extern de l'escalar $\alpha + \beta$ i del vector u, mentre que el segon membre, $\alpha u + \beta u$, és la suma de dos vectors: αu i βu , i cadascun d'ells és a la vegada el producte extern dels escalars α i β pel vector u. Tampoc farem diferència entre els neutres: a l'expressió 0 + u = u, és clar que parlam del vector 0, en canvi en aquesta: $0 + \alpha = \alpha$ ens referim a l'escalar 0, etc.

Sigui E un K-e.v. Definim formalment a continuació l'espai (sobre K) de les aplicacions lineals entre E i K (K com a K-e.v.).

Definició 1.2

Sigue E un K-e.v. Anomenam espai dual de E, que denotam per E^* , al K-e.v

$$E^* = \{ f : E \to K | f \text{ \'es una aplicaci\'o lineal} \}.$$

Per tant, els elements de E^* són les formes lineals sobre E, és a dir $E^* = L(E, K)$.

EXEMPLE 1: Si consideram $E = \mathbb{R}^3$ llavors $E^* = \{f : \mathbb{R}^3 \to \mathbb{R} | f \text{ \'es lineal} \}$. És a dir, els elements de E^* són les formes lineals de \mathbb{R}^3 , que recordam són de la forma f(x, y, z) = ax + by + cz, amb $a, b, c \in \mathbb{R}$.

Proposició 1.1

Si $\{e_1, \ldots, e_n\}$ és una base de E, podem construir a partir d'ella una base de E^* , que anomenarem base dual de $\{e_1, \ldots, e_n\}$ i representarem per $\{e_1^*, \ldots, e_n^*\}$, de la següent manera:

$$e_i^*(e_j) = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}, i = 1, \dots, n.$$

Prova. És fàcil veure que efectivament es tracta d'una base de E^* . Vegem que són formes lineals LI: $a_1e_1^*+\cdots+a_ne_n^*=0$ vol dir $(a_1e_1^*+\cdots+a_ne_n^*)(x)=0$ per tot $x\in E$. Si feim $x=e_i, i=1,\ldots,n$ tenim $(a_1e_1^*+\cdots+a_ne_n^*)(e_i)=0$, per tot $i=1,\ldots,n$ per tant $a_1e_1^*(e_i)+\cdots+a_ne_n^*(e_i)=0$, per tot $i=1,\ldots,n$ o sigui $a_i=0$ per tot $i=1,\ldots,n$.

Per demostrar que el conjunt $\{e_1^*,\ldots,e_n^*\}$ genera E^* , sigui $\omega\in E^*$ una forma lineal sobre E qualsevol i vegem que existeixen escalars a_1,\ldots,a_n tals que $\omega=a_1e_1^*+\cdots+a_ne_n^*$. En efecte, basta considerar $a_i=\omega(e_i), i=1,\ldots,n$, ja que en aquest cas, $\omega(e_j)=(a_1e_1^*+\cdots+a_ne_n^*)(e_j)$ per tot $j=1,\ldots,n$, i per tant $\omega=a_1e_1^*+\cdots+a_ne_n^*$.

De la proposició anterior se dedueix trivialment el següent resultat

Corol·lari 1.1

Si E és un e.v. de dimensió finita llavors dim $E^* = \dim E$.

Exemples 2

(1) Si consideram l'e.v. \mathbb{R}^3 amb la base canònica llavors la seva base dual és el conjunt $\{e_1^*, e_2^*, e_3^*\}$ tals que $e_i^*(x_1, x_2, x_3) = x_i$, per i = 1, 2, 3.

Efectivament, perquè sigui la base dual ha de verificar la condició de la proposició anterior:

$$\begin{aligned} e_1^*(e_1) &= e_1^*(1,0,0) = 1, e_1^*(e_2) = e_1^*(0,1,0) = 0, e_1^*(e_3) = e_1^*(0,0,1) = 0, \\ e_2^*(e_1) &= e_2^*(1,0,0) = 0, e_2^*(e_2) = e_2^*(0,1,0) = 1, e_2^*(e_3) = e_2^*(0,0,1) = 0, \\ e_3^*(e_1) &= e_3^*(1,0,0) = 0, e_3^*(e_2) = e_3^*(0,1,0) = 0, e_3^*(e_3) = e_3^*(0,0,1) = 1. \end{aligned}$$

(2) Considerem a \mathbb{R}^2 las base $B = \{(1, -2), (3, 4)\}$. Trobam la seva base dual $B^* = \{\varphi_1, \varphi_2\}$ a l'e.v. $(\mathbb{R}^2)^*$.

Com que f_1, f_2 són aplicacions lineal de \mathbb{R}^2 en \mathbb{R} llavors les seves expressions han de ser $f_1(x, y) = a_1x + b_1y, f_2(x, y) = a_2x + b_2y$. Usant que ha de ser la base dual de B tenim les següents equacions que han de verificar les dues aplicaciones lineals:

$$\left\{ \begin{array}{l} \varphi_1(1,-2) = 1, \\ \varphi_1(3,4) = 0 \end{array} \right. \left. \left\{ \begin{array}{l} \varphi_2(1,-2) = 0, \\ \varphi_2(3,4) = 1 \end{array} \right.$$

Usant les expressions proposades per f_1, f_2 obtenim les equacions:

$$\begin{cases} a_1 - 2b_1 = 1, \\ 3a_1 + 4b_1 = 0 \end{cases} \begin{cases} a_2 - 2b_2 = 0, \\ 3a_2 + 4b_2 = 1 \end{cases}$$

Resolute els dos sistemes obtenim: $\varphi_1(x,y) = \frac{1}{10}(4x-3y), \ \varphi_2(x,y) = \frac{1}{10}(2x+y).$

Comentari: Sigui $B = \{v_1, \dots, v_n\}$ una base de l'e.v. de dimensió finita E i sigui $B^* = \{\varphi_1, \dots, \varphi_n\}$ la seva base dual.

• Donat $v \in E$, aquest vector el podem escriure com $v = \sum_{i=1}^{n} a_i v_i$, amb $a_i \in K$. Llavors, per a cada $j \in \{1, \dots, n\}$ se té

$$\varphi_j(v) = \varphi_j(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n \varphi_j(v_i) = a_j.$$

Aleshores, les coordenades del vector v en base B són les seves imatges per la base dual, és a dir: $(v)_B = (\varphi_1(v), \dots, \varphi_n(v))$.

• Recíprocament, donat $\varphi \in E^*$, existeixen $b_i \in K$ tals que $\varphi = \sum_{i=1}^n b_i \varphi_i$. Llavors, per a cada $j \in \{1, \dots, n\}$ se té

$$\varphi(v_j) = (\sum_{i=1}^n b_i \varphi_i)(v_j) = \sum_{i=1}^n b_i \varphi_i(v_j) = b_j.$$

Aleshores, les coordenades de φ en base B^* són les imatges de la base B per φ , és a dir: $(\varphi)_{B^*} = (\varphi(v_1), \dots, \varphi(v_n))$.

EXEMPLE 3: Sigui $B = \{(1, -2), (3, 4)\} \subset \mathbb{R}^2$ la base de l'exemple anterior i $B^* = \{\varphi_1, \varphi_2\}$ la seva base dual. Si volem trobar les coordenades, per exemple, del vector v = (1, 1) a la base B, tenint en compte el comentari anterior, resulta

$$(1,2)_B = (\varphi_1(1,2), \varphi_2(1,2)) = (-\frac{1}{5}, \frac{2}{5}).$$

Per altra part, si consideram la forma lineal $\varphi \in (\mathbb{R}^2)^*$ donada per $\varphi(x,y) = 5x - 3y$ i volem trobar les seves coordenades en la base B^* , seguint el comentari anterior es té

$$(\varphi)_{B^*} = (\varphi(1, -2), \varphi(3, 4)) = (11, 3).$$

A continuació, donat un sub-e.v. X d'un e.v. E considerarem el conjut de totes les equacions lineals que s'anul·len sobre els elements de X. Veurem, a més a més, que aquest conjunt té una estructura de sub-e.v.

Definició 1.3

Sigui E un K-e.v. i E^* el seu dual. Si $X \subset E, X \neq \emptyset$, definim l'ortogonal de X de la manera següent: $X^{\perp} = \{w \in E^* | w(x) = 0 \text{ per tot } x \in X\}.$

Comentari: A l'espai ortogonal de X se l'anomena també espai anul·lador de X.

De la pròpia definició es pot demostrar fàcilment el següent resultat.

Proposició 1.2

 X^{\perp} és un sub-e.v. de E^* .

Comentari: Casos particulars extrems són: $\{0\}^{\perp} = E^*$ i $E^{\perp} = \{0\}$. Observau que si $X \subset Y$ llavors $Y^{\perp} \subset X^{\perp}$.

Proposició 1.3

Si E és de dimensió finita n i si X és un sub-e.v. de E, llavors dim $X^{\perp} = n - \dim X$.

Prova. Sigui $\{e_1, \ldots, e_r\}$ una base de X i sigui $B = \{e_1, \ldots, e_r, e_{r+1}, \ldots, e_n\}$ una ampliació a una base de E. Sigui $B^* = \{e_1^*, \ldots, e_r^*, e_{r+1}^*, \ldots, e_n^*\}$ la base dual de la base B i vegem que $\{e_{r+1}^*, \ldots, e_n^*\}$ és una base de X^{\perp} .

La independència lineal és clara ja que són vectors d'una base, per tant, es tracta de veure ara que aquestes formes generen X^{\perp} . Per veure-ho, sigui $\omega \in X^{\perp}$. Com que B^* és una base de X^{\perp} , existeixen a_1,\ldots,a_n tals que $\omega=a_1e_1^*+\ldots+a_re_r^*+a_{r+1}e_{r+1}^*+\cdots+a_ne_n^*$. Però com que $\omega\in X^{\perp}$ i $e_i\in X$ per $i=1,\ldots,r$ resulta que $\omega(e_i)=a_i=0$ per tot $i=1,\ldots,r$. Per tant $a_1=\cdots=a_r=0$ i d'aquí s'obté $\omega=a_{r+1}e_{r+1}^*+\cdots+a_ne_n^*$.

$$\operatorname{Aix}\left\{e_{r+1}^{*},\ldots,e_{n}^{*}\right\} \text{ és una base de } X^{\perp} \text{ i } \dim X^{\perp}=n-\dim X.$$

EXEMPLE 4: Sigui $X = \langle (1,1,1), (1,2,1) \rangle \subset \mathbb{R}^3$. Per trobar una base de X^{\perp} procedim com a la demostració del resultat anterior. Ampliam la base de X a una base de \mathbb{R}^3 , per exemple

$$B = \{(1, 1, 1), (1, 2, 1), (1, 0, 0)\}.$$

Si $B^* = \{\varphi_1, \varphi_2, \varphi_3\}$ és la base dual de B, podem deduir que $\{\varphi_3\}$ és una base de X^{\perp} . A partir de les condicions $\varphi_3(1,1,1) = 0, \varphi_3(1,2,1) = 0, \varphi_3(1,0,0) = 1$ obtenim que $\varphi_3(x,y,z) = x - z$.

També podem definir l'ortogonal d'una part no buida, diguem-li W, de E^* .

Definició 1.4

$$W^{\perp} = \{x \in E | \omega(x) = 0 \text{ per tot } \omega \in W\}.$$

Igual que abans podem veure que W^{\perp} és un sub-e.v. de E. Tenim també $\{0\}^{\perp} = E$ i $(E^*)^{\perp} = \{0\}$. Per altra part, tenim una fórmula anàloga per calcular la dimensió de W^{\perp} (si W és un sub-e.v. de E^* i E és de dimensió finita n): dim $W^{\perp} = n - \dim W$.

Proposició 1.4

Si $X \subset E$, llavors $X \subset (X^{\perp})^{\perp}$. En cas de dimensió finita i X un sub-e.v. de E, es verifica $X = (X^{\perp})^{\perp}$.

Prova. La primera inclusió es demostra fàcilment.

Per demostrar la segona part, com que $X \subset (X^{\perp})^{\perp}$ i $\dim(X^{\perp})^{\perp} = n - \dim X^{\perp} = n - (\dim E - \dim X) = \dim X$ llavors, $(X^{\perp})^{\perp} = X$.

EXEMPLE 5: $A \mathbb{R}^3$, l'ortogonal de $X = \langle (1,1,1) \rangle$ és $X^{\perp} = \{ \omega \in (\mathbb{R}^3)^* | \omega(u) = 0 \text{ per tot } u \in X \} = \{ \omega \in (\mathbb{R}^3)^* | \omega(1,1,1) = 0 \}$. Si $\omega(x,y,z) = ax + by + cz$, ha de ser $\omega(1,1,1) = a + b + c = 0$. Per tant, les formes lineals de X^{\perp} tenen l'expressió $\omega(x,y,z) = ax + by - (a+b)z$ on $a,b \in \mathbb{R}$. És clar que dim $X^{\perp} = 2$.

Notau que si $X = \langle u_1, \dots, u_r \rangle$, llavors $X^{\perp} = \{ \omega \in E^* | \omega(u) = 0 \text{ per tot } u \in X \} = \{ \omega \in E^* | \omega(u_i) = 0 \text{ per tot } i = 1, \dots, r \}$. Això ho hem aplicat a l'exemple anterior.

Vegem a continuació com es comporta l'ortogonal amb la suma i la intersecció de subespais.

Proposició 1.5

Sigui ${\cal E}$ un e.v. i ${\cal S}, {\cal T}$ subespais de ${\cal E}.$ Llavors:

1.
$$(S+T)^{\perp} = S^{\perp} \cap T^{\perp}$$
.

2.
$$(S \cap T)^{\perp} = S^{\perp} + T^{\perp}$$
.

Prova.

1. Sigui $\varphi \in E^*$. Es té:

$$\begin{split} \varphi \in (S+T)^\perp &\iff & \varphi(s+t) = 0 \text{ per tot } s \in S, t \in T \\ &\iff & \varphi(s) = 0 \text{ per tot } s \in S \text{ i } \varphi(t) = 0 \text{ per tot } t \in T \\ &\iff & \varphi \in S^\perp \cap T^\perp. \end{split}$$

2. Sigui $\varphi \in S^{\perp} + T^{\perp}$. Llavors $\varphi = \varphi_S + \varphi_T$, amb $\varphi_S \in S^{\perp}$, $\varphi_T \in T^{\perp}$. Per a cada $x \in S \cap T$ es té que $\varphi(x) = \varphi_S(x) + \varphi_T(x) = 0 + 0 = 0$. Llavors $\varphi \in (S \cap T)^{\perp}$ amb el que ja tenim una inclusió. Observem que

$$\dim(S^{\perp} + T^{\perp}) = \dim S^{\perp} + \dim T^{\perp} - \dim(S^{\perp} \cap T^{\perp}) = \dim S^{\perp} + \dim T^{\perp} - \dim(S + T)^{\perp}$$
$$= (n - \dim S) + (n - \dim T) - (n - \dim(S + T)) = n - (\dim S + \dim T - \dim(S + T))$$
$$= n - \dim(S \cap T) = \dim(S \cap T)^{\perp}.$$

Per tant, $(S \cap T)^{\perp} = S^{\perp} + T^{\perp}$.

Acabam la secció relacionant la suma directa amb l'ortogonalitat.

Proposició 1.6

 $\overline{\text{Si }E=F\oplus G\text{ llavors }E^*=F^\perp\oplus G^\perp}.$

Prova. Si $E = F \oplus G$ llavors E = F + G i, a més a més, $F \cap G = \{0\}$. Com que $\{0\} = E^{\perp} = (F + G)^{\perp} = F^{\perp} \cap G^{\perp}$ i per altra banda $E^* = \{0\}^{\perp} = (F \cap G)^{\perp} = F^{\perp} + G^{\perp}$ llavors hem provat que $E^* = F^{\perp} \oplus G^{\perp}$.

1.2 Aplicacions lineals i dualitat

Per acabar aquest capítol de continuació del curs anterior, estudiarem la transposició de matrius i veurem què té a veure amb la dual d'una aplicació lineal.

Observem que, fixada una aplicació lineal $f:E\to F$, cada element $\omega\in F^*$ ens dóna un element $\omega\circ f\in E^*$, seguint el següent diagrama:

$$E \quad \stackrel{f}{\longrightarrow} \quad F$$

$$\searrow \quad \downarrow \omega$$

$$\omega \circ f \quad K.$$

El definim formalment.

Definició 1.5

Si $f: E \to F$ és lineal, llavors podem definir una aplicació $f^*: F^* \to E^*$ de la forma següent: $f^*(\omega) = \omega \circ f$, per tot $\omega \in F^*$. L'anomenam aplicació dual de f.

Evidentment, quan no sigui estrictament necessari, obviarem el símbol de composició i escriurem $f^*(\omega) = \omega f$ per tot $\omega \in F^*$.

Provam a continuació que f^* està ben definida, ja que ωf és lineal.

Proposició 1.7

L'aplicació f^* és lineal.

Prova. Vegem, per exemple, que f^* satisfà la condició $f^*(\omega + \omega') = f^*(\omega) + f^*(\omega')$. Es tracta de provar que per tot $x \in E : [f^*(\omega + \omega')](x) = [f^*(\omega) + f^*(\omega')](x)$. En efecte,

$$[f^*(\omega + \omega')](x) = [(\omega + \omega') \circ f](x) = (\omega + \omega')(f(x)) = \omega(f(x)) + \omega'(f(x)) = (\omega \circ f)(x) + (\omega' \circ f)(x) = (f^*(\omega))(x) + (f^*(\omega')(x)) = [f^*(\omega) + f^*(\omega')](x).$$

EXEMPLE 6: Donada $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida per f(x, y, z) = (y + z, x + z). La dual de f serà $f^*: (\mathbb{R}^2)^* \to (\mathbb{R}^3)^*$ és $f^*(\omega) = \omega \circ f$, és a dir, si $\omega(x, y) = ax + by$, llavors

$$[f^*(\omega)](x,y,z) = (\omega f)(x,y,z) = \omega[f(x,y,z)] = \omega(y+z,x+z) = a(y+z) + b(x+z) = bx + ay + (a+b)z.$$

Abreujant, podríem dir que f^* transforma la forma lineal (a,b) en la forma lineal (b,a,a+b).

Proposició 1.8

La dual d'una aplicació lineal verifica les seguüents propietats:

- 1) $(id_E)^* = id_{E^*}$.
- 2) $(qf)^* = f^*q^*$.
- 3) Suposem E i F de dimensions finites. Sigui $f: E \to F$ lineal i $f^*: F^* \to E^*$ la dual de f. Es verifiquen les igualtats següents:
 - a) $(\operatorname{Im} f)^{\perp} = \operatorname{Nuc} f^*$.
 - b) (Nuc f) $^{\perp} = \text{Im } f^*$.

Prova.

- 1) En efecte: $(id_E)^*(\omega) = \omega \circ id_E = \omega$ per tot $\omega \in E^*$.
- 2) En efecte: $(g \circ f)^*(\omega) = \omega \circ (g \circ f) = (\omega \circ g) \circ f = f^*(\omega \circ g) = f^*(g^*(\omega)) = (f^* \circ g^*)(\omega)$.
- 3) Per demostrar l'apartat a), sigui $\omega \in (\operatorname{Im} f)^{\perp}$, llavors $\omega(y) = 0$ per tot $y \in \operatorname{Im} f$. Per tant $\omega(f(x)) = 0$ per tot $x \in E$, o sigui $(\omega \circ f)(x) = 0$ per tot $x \in E$ i d'aquí $[f^*(\omega)](x) = 0$ per tot $x \in E$ d'on $f^*(\omega) = 0$, és a dir, $\omega \in \operatorname{Nuc} f^*$. Hem demostrat fins ara que: $(\operatorname{Im} f)^{\perp} \subset \operatorname{Nuc} f^*$. Per veure l'altra inclusió basta invertir el raonament anterior.

Demostrarem l'apartat b). Si $\omega \in Imf^*$ és $\omega = f^*(\omega')$ per alguna $\omega' \in F^*$. Per tant $\omega = \omega' \circ f$ d'on $\omega(x) = (\omega'f)(x) = \omega'(f(x)) = \omega'(0) = 0$ per tot $x \in \operatorname{Nuc} f$, així que $\operatorname{Im} f^* \subset (\operatorname{Nuc} f)^{\perp}$. Falta per acabar veure que $(\operatorname{Nuc} f)^{\perp} \subset \operatorname{Im} f^*$. Es tracta de demostrar que si $\omega \in (\operatorname{Nuc} f)^{\perp}$ llavors existeix $\omega' \in F^*$ tal que $f^*(\omega') = \omega$, és a dir, tal que $\omega'f = \omega$. Per construir ω' , facem $F = \operatorname{Im} f \oplus H$ i definim $\omega'(z) = \omega(x)$ on z = y + t amb $y \in \operatorname{Im} f, t \in H$ i f(x) = y.

Recordem que si $f: E \to F$ és lineal, amb E i F de dimensions finites, el rang de f és la dimensió de Im f. Podem ara establir una relació important entre els rangs d'una aplicació lineal i la seva dual.

Proposició 1.9

 $\operatorname{rang} f = \operatorname{rang} f^*.$

Prova. En efecte, rang $f^* = \dim(\operatorname{Im} f^*) = \dim(\operatorname{Nuc} f)^{\perp} = \dim E - \dim\operatorname{Nuc} f = \dim(\operatorname{Im} f) = \operatorname{rang} f$. Observau que hem utilitzat la igualtat b), però també podem fer-ho a partir de la igualtat a): rang $f = \dim(\operatorname{Im} f) = \dim F - \dim(\operatorname{Im} f)^{\perp} = \dim F - \dim(\operatorname{Nuc} f^*) = \dim F^* - \dim(\operatorname{Nuc} f^*) = \operatorname{rang} f^*$.

Més endavant veurem una altra manera més fàcil de demostrar que rang $f = \operatorname{rang} f^*$.

Recordam a continuació, com ja hem fet en el tema de Preliminars, el concepte i les propietats més bàsiques de la transposada d'una matriu.

Definició 1.6

Si $A \in M_{m \times n}(K)$, anomenam transposada de A, A^T , a la matriu que té per files les columnes de $A : A^T = (b_{ij})$ on $b_{ij} = a_{ji}, i = 1, \ldots, n, j = 1, \ldots, m$.

Així aquesta operació (unària) ens defineix una aplicació $M_{m\times n}(K)\to M_{n\times m}(K)$ amb les propietats següents.

Proposició 1.10

- 1) L'aplicació trasposada és bijectiva.
- 2) És involutiva: $(A^T)^T = A$.
- 3) $(A+B)^T = A^T + B^T$; $(aA)^T = aA^T$.

Definició 1.7

Una matriu $A \in M_{n \times n}(K)$ deim que és ortogonal si es verifica $A \cdot A^T = A^T \cdot A = I$. És a dir, si és invertible i la seva inversa coincideix amb la transposada: $A^{-1} = A^T$.

Proposició 1.11

El conjunt de les matrius ortogonals, $MO_{n\times n}(K)$, amb l'operació de multiplicació és un grup, que anomenam grup ortogonal.

Sigui $f: E \to F$ una aplicació lineal i A la seva matriu $m \times n$ sobre K respecte d'unes bases $\{e_1, \ldots, e_n\}$ i $\{v_1, \ldots, v_m\}$ de E i F respectivament. Per altra part, sigui $f^*: F^* \to E^*$ la dual de f. Podem demostrar el resultat següent

Proposició 1.12

La matriu de f^* respecte de les bases duals de les bases $\{v_1, \ldots, v_m\}$ i $\{e_1, \ldots, e_n\}$ és A^T , és a dir, la transposada de la matriu de f respecte de les bases $\{e_1, \ldots, e_n\}$ i $\{v_1, \ldots, v_m\}$.

Prova. Sigui $A=(a_{ij})$ la matriu de f respecte de $\{e_1,\ldots,e_n\}$ i $\{v_1,\ldots,v_m\}$ i sigui $B=(b_{ij})$ la matriu de f^* respecte de $\{v_1^*,\ldots,v_m^*\}$ i $\{e_1^*,\ldots,e_n^*\}$. És $f^*(v_k^*)=\sum b_{rk}e_r^*$ i si aplicam a e_j tenim

$$[f^*(v_k^*)](e_j) = \left(\sum b_{rk}e_r^*\right)(e_j) = b_{jk}.$$

Però per altra part,

$$[f^*(v_k^*)](e_j) = (v_k^* \circ f)(e_j) = v_k^*(f(e_j)) = v_k^* \left(\sum a_{ij} v_i\right) = \sum a_{ij} v_k^*(v_i) = a_{kj}.$$

Per tant $B = A^T$.

Com a consequencia del resultat anterior podem establir la seguent proposició.

Proposició 1.13

- 1) Una aplicació lineal : $E \to F$ i la seva dual $f^*: F^* \to E^*$ tenen el mateix rang.
- 2) Si $A \in M_{m \times n}(K)$ i $B \in M_{n \times r}(K)$, llavors $(AB)^T = B^T A^T$.

Prova.

- 1) Sabem que, si A és la matriu de l'apliació lineal f llavors rang f = rang A. Per altra part, sabem que rang $A = \text{rang } A^T$, per tant, rang $f = \text{rang } A = \text{rang } A^T = \text{rang } f^*$.
- 2) Per demostrar l'apartat b, basta utilitzar la proposició 1.12 i la propietat $(g \circ f)^* = f^* \circ g^*$ ja demostrada al tema anterior.