Numerical Methods in Mechanics and Environmental Flows

OCT 27, 2017

S.K. OOI

1-D DIFFUSION DETAILS

Deriving gradient relationship (Fick's law)

The problem of randomness allows us to approach diffusion from a

statistical approach

$$q = -D\frac{dc}{dx}$$

A simple budget allows us to derive a diffusive flux equation:

- With the following assumptions
- 1. No net flow from one box to another \rightarrow if there is a flow from 1-2 there must be a compensating and equal flow from 2-1.
- 2. Multiply by dx and take limit to infinitestimal

What is D and what units for D?

D is diffusion coefficient or diffusivity (m2/s)

An important point: $q \propto \frac{dc}{dc}$ \rightarrow what does this imply?

• No gradient, no flux. Larger d_{g}^{x} radient, larger flux.

Analogous to Fourier's law of heat conduction

If we then use a mass budget

Budget:

$$V \frac{uc}{dt} = Q_i - Q_o = q_i A - q_o A = q_{(x,t)} A - q_{(x+\Delta x,t)} A$$

Dividing by V;

$$\frac{dc}{dt} = -\frac{q_{(x+\Delta x,t)} - q_{(x,t)}}{\Delta x}$$

Taking limits:

$$\frac{\partial c}{\partial t} = -\frac{\partial q}{\partial x}$$

Putting it all together

From mass budget,
$$\frac{\partial c}{\partial t} = -\frac{\partial q}{\partial x}$$

From Fick's $q = -D\frac{dc}{dx}$

This results in
$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right)$$

- This is the 1D diffusion equation.
- Most times the equation is simplified by treating D as constant in space → Is this realistic?

What do we need to solve this?

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right)$$

Initial conditions

• How many and what?

Boundary conditions

• How many and what?

Similarity Solution to the 1D Diffusion Equation

First recognize that this is a linear Equation

• > Possible to add solutions!

Therefore start with a simple (elementary) problem:

- Instantaneous
- Localized release
- Infinite Domain free of the concentration
- Constant D

Solution can be derived through a combination of

- Dimensional analysis
- Pure mathematical solution

The Simple Problem

Problem

- 1D Narrow, Infinite Pipe (r = a)
- Impose C at +/- infinity = 0 [2 B.C] $C(\pm \infty, t) = 0$
- Point source of Mass M is injected uniformly across at x, point=0 [1 I.C]
 - Thus total injected mass is

$$C(x,0) = (\frac{M}{A})\delta(x)$$

Solution Step (1)

Dimensional analysis [revise on your own].

Essentially one ends up with 2 dimensionless groups

0

• And
$$\pi_1 = f(\pi_2)$$

Which implies our solution for C is $c(x,t) = \frac{M}{A\sqrt{Dt}} f\left(\frac{x}{Dt}\right)$

To solve this we will use similarity solution method

Solution Step (2)

First create a variable, $\eta = x/\sqrt{Dt}$

Create two derivatives
$$\frac{\partial \eta}{\partial t} = -\frac{\eta}{2t}$$
; $\frac{\partial \eta}{\partial x} = \frac{1}{\sqrt{Dt}}$

Use chain rule to then obtain $\frac{\partial C}{\partial t}$ and $\frac{\partial^2 C}{\partial x^2}$

Substituting results in an ODE

$$\frac{\partial^2 f}{\partial \eta^2} + 0.5 \left(f + \eta \frac{\partial f}{\partial \eta} \right) = 0$$

Solution Step (3)

Using identity, we obtain
$$\frac{\partial}{\partial \eta} \left[\frac{\partial f}{\partial \eta} + 2f \eta \right] = 0$$

Integrating twice, taking $C_0=0$ at both ends leads us to $f=C_1\exp(-\eta^2/4)$

Using coordinate transformation and solving for C1 gives us $C_1 = \frac{1}{m}$

$$C_1 = \frac{1}{\int\limits_{\infty}^{\infty} \exp(-\frac{1}{4}\eta^2) d\eta}$$

• Which can be found to be $C_1 = 1/(2\sqrt{\pi})$

Which then becomes our final solution

$$c(x,t) = \frac{M}{A\sqrt{4\pi Dt}} \exp\left(\frac{-x^2}{4Dt}\right)$$

Solving for spread (1)

Diffusion → spread → spatial extent grows with time

• This is really what we want. How do we quantify this?

Can the solution $c(x,t) = \frac{M}{A\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$ give us the answer?

Solving for spread (2)

To proceed we resort to integral quantities, the first 3 moments (revise mathematics please):

$$\int_{-\infty}^{+\infty} c dx = M / A = const$$

$$\int_{-\infty}^{+\infty} x c dx = 0$$

$$\int_{-\infty}^{+\infty} (x - x)^2 c dx = 0$$

The first moment gives us the total amount.

The second moment gives us the mean position.

The issue of spreading (3)

Focusing on the third moment:

$$\int_{-\infty}^{+\infty} (x - \bar{x})^2 c dx = 0$$

For ease we define:

$$\sigma^{2} = \frac{1}{M/A} \int_{-\infty}^{+\infty} (x - \bar{x})^{2} c dx = 0 \qquad M/A = \int_{-\infty}^{+\infty} c dx; \qquad \bar{x} = \frac{1}{M/A} \int_{-\infty}^{+\infty} x c dx$$

This results in:

$$\sigma = \sqrt{2Dt}$$

 The implication is that the distance grows with the square root of time; never stopping but gradually slowing

The issue of spreading (4)

How wide is wide? $\sigma = \sqrt{2Dt}$

The c(x,t) essentially obeys the Bell Curve

So if we normalize the distribution we obtain this distribution: $\frac{c}{c_{\text{max}}} = \exp\left[-\frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}\right]$

Spreading (5)

Since it's Gaussian

We know that $2\sigma = 64.2\%$; $4\sigma = 95.4\%$

→ For practical purposes we use 4.

Application Example - Lake

Mildly stratified, thermocline of 3 m depth, contaminated by arsenic

Determine magnitude and direction of mass flux of arsenic through thermocline due to molecular diffusion if $A = 2 \times 10^4 \text{ m}^2$ and $D = 1 \times 10^{-10} \text{ m}2/\text{s}$

Application Example – Lake (2)

Solution steps

- Calculate concentration gradient at z = 3. How?
- Use 1D Fick's Law
- Mass flux from multiplying over the area

Application example - Spill

Ship leaks in a narrow straits

100l of pollutant that has a density of 0.879kg/L

Assume rapid mixing across the straits (10m deep, 50m wide) and $D = 3m^2/s$

What are the concentrations of the pollutant 0.5,2, 4, and 8 hours; 350m away?

What is the time at x = 350m when concentration is maximum?

Solution steps

Find mass of spill

Find mass of spill over channel cross-section

Find at x = 0, $c = m/sqrt(4\pi Dt)$ this will become c_{max}

Then use
$$\sigma = \sqrt{2Dt}, \frac{c}{c_{\text{max}}} = \exp\left[-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2\right]$$
 to find at $x = 350$,

More realistic Diffusion Cases

More realistic cases

Finite area release (instead of point)?

Finite domain

Sources

Decay

Can we solve these cases?

→ Remember this is a linear equation therefore we can superposition solutions.

Finite Area release (1)

Assume many infinitely small releases, we can accommodate by

$$c(x,t) = \int_{-\infty}^{+\infty} \frac{dM(\xi)}{\sqrt{4\pi Dt}} \exp\left[-\frac{(x-\xi)^2}{4Dt}\right]$$

• If we now say $dM(\xi) = \frac{dM(\xi)}{d\xi} d\xi = c_0(\xi) d\xi$

ite
$$c(x,t) = \int_{-\sqrt{4\pi Dt}}^{+\infty} \frac{c_0(\xi)}{\sqrt{4\pi Dt}} \exp\left(-\frac{(x-\xi)^2}{4Dt}\right)$$

We can then rewrite

This is called a convolution

Finite Area release (2)

Mathematically this process of superposition is called a

$$c(x,t) = \int_{-\infty}^{+\infty} \frac{c_0(\xi)}{\sqrt{4\pi Dt}} \exp\left(-\frac{(x-\xi)^2}{4Dt}\right)$$

convolution.

Finite Area Release (3)

However even for a simple problem like this,

$$c(x,t) = \int_0^\infty \frac{c_0}{\sqrt{4\pi Dt}} \exp\left[-\frac{(x-\xi)^2}{4Dt}\right] d\xi.$$

We have a solution of the form:

$$c(x,t) = \frac{c_0}{\sqrt{\pi}} \int_{-\infty}^{x/\sqrt{4Dt}} \exp(-\zeta^2) d\zeta$$

Which can only be solved through a function called the error function: $\frac{2}{2} \int_{-\infty}^{\infty} dx$

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-\zeta^2) d\zeta$$

This results in the final solution: $c(x,t) = \frac{c_0}{2} \left[1 + \operatorname{erf} \left(\frac{x}{\sqrt{4Dt}} \right) \right]$

Finite Area Release (4)

Final solution:

Technically you can solve a semi-infinite domain with a continuous release with this solution by adapting it, resulting in the following solution:

$$c(x,t) = c_0 \left[1 - \operatorname{erf}\left(\frac{x}{\sqrt{4Dt}}\right) \right]$$

Finite domain (1)

Why do we need to consider this? [Think!]

Impermeable boundary \rightarrow flux = 0,

$$q_{(x=0)} = -D\frac{\partial c}{\partial x} = 0$$

Create an equal and opposite flux at a symmetric

distance away

Resulting in the solution

$$c(x,t) = \frac{M}{\sqrt{4\pi Dt}} \left[\exp\left(-\frac{(x-L)^2}{4Dt}\right) + \exp\left(-\frac{(x+L)^2}{4Dt}\right) \right]$$

Finite domain (2)

What does this \rightarrow

→ practically adds to the solution in the boundary

Finite domain (3)

For two boundaries the same method with care, can be used:

Resulting in:

$$c(x,t) = \frac{M}{\sqrt{4\pi Dt}} \left[\exp\left(-\frac{\left(x - 2mL - a\right)^2}{4Dt}\right) + \exp\left(-\frac{\left(x - 2mL + a\right)^2}{4Dt}\right) \right]$$

∘ Normally we only go out to the first 5 − 7 terms

Final Concentration and Required Mixing Time

We can now proceed to get the required mixing time in a limited domain to obtain

$$c_{final} = c_{average} = M / L$$

- T (for release in the middle of the domain; L/2) = 0.134 L^2/D
- T (for release at x=0 ot x=L) = 0.536 L^2/D

Source and Decay (1)

Budget:
$$V\frac{dc}{dt} = Q_i - Q_o = q_i A - q_o A + S - KVc$$
$$\frac{dc}{dt} = -\frac{q_{(x+\Delta x,t)} - q_{(x,t)}}{\Delta x} + \frac{S}{V} - Kc$$

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + s - Kc$$

→ Solution for decay is simple.

$$c(x,t) = \frac{M}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt} - Kt\right)$$

Source and Decay (2)

Continuous release at a fixed location or source.

Difficult to solve

To solve, assume steady-state → simplifying the equation and reduces the solution to the form:

$$c(x) = \frac{\dot{M}}{2\sqrt{DK}} \exp\left(+\sqrt{\frac{K}{D}}x\right) for \quad 0 > x$$

$$c(x) = \frac{\dot{M}}{2\sqrt{DK}} \exp\left(-\sqrt{\frac{K}{D}}x\right) for \quad 0 < x$$

Where
$$c(\max) = \frac{\dot{M}}{2\sqrt{DK}}$$

2-D / 3-D Diffusion

The real-world

While some systems can be modeled as 1-D, most real-world systems are 2-D (vertical or horizontal) or 3-D.

Therefore starting with

$$q_i = -D \frac{\partial c}{\partial x_i}$$

Budget

$$\frac{\partial c}{\partial t} = -\frac{\partial q_i}{\partial x_i}$$

Results in

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x_i^2}$$

Solution?

Actually quite simple for the elemental solution \rightarrow Just super position

And if D is same in all directions \rightarrow

• 3D
$$c(x, y, z, t) = \frac{M}{(\sqrt{4\pi Dt})^3} \exp\left(-\frac{x^2 + y^2 + z^2}{4Dt}\right)$$

o 2D
$$c(x, y, t) = \frac{M}{\left(\sqrt{4\pi Dt}\right)^2} \exp\left(-\frac{x^2 + y^2}{4Dt}\right)$$