Assignment 7 Christopher Chapline

Problem 1

Prove r from $(p \land \neg p)$.

1	$(p \land \neg p)$	Premise
2	$\neg r$	Proof by contradiction
3	p	1, Simp.
4	$(\neg p \land p)$	1, Comm.
5	$\neg p$	4, Simp.
6	r	3, 5 Contradiction

Problem 2

Prove $\neg r$ from $(p \land \neg p)$.

1	$(p \land \neg p)$	Premise
2	r	Proof by contradiction
3	p	1, Simp.
4	$(\neg p \land p)$	1, Comm.
5	$\neg p$	4, Simp.
6	$\neg r$	3, 5 Contradiction

Problem 3

Draw a configuration of worlds where $(\neg p \land \Box \Diamond p)$ and explain clearly why it works.

One set of worlds might look like this:

$$W_1 = \{\neg p\}$$

$$W_2 = \{p\}$$

In this configuration, one world, W_1 satisfies the $\neg p$. The second world, W_2 satisfies that it be necessary that p is possible.

Problem 4

 $(\Box p \to \Diamond p)$ is a tautology. Explain clearly why.

If you have a configuration of worlds such that $\Box p$ is true, then each world in the configuration has p. Thus, $\Diamond p$ would be true for this configuration. If the configuration of worlds does not satisfy $\Box p$, then the implication is satisfied regardless of $\Diamond p$.