이데이터링크 계층

가천대학교

- 2019학년도 1학기 -

Preview

❖ 데이터링크 계층

- 물리적으로 이웃하여 연결된 두 호스트 간의 신뢰성 있는 <u>데이터 전송</u> 지 원
- 물리계층에서 발생하는 전송 오류 감지 및 복구 기능 필요
- 네트워크 계층에 전송 오류가 발생하지 않는 논리적인 전송 선로 보장

❖ 오류 제어

- 물리 매체를 이용한 전송과정에서 오류가 발생했는지 감지
- 오류 감지 시 송수신 호스트 사이의 오류 복구 과정 수행(컴퓨터 네트워크 에서는 주로 재전송 기법 사용)

❖ 흐름 제어

Contents

❖ 학습목표

- 오류 제어, 흐름 제어의 원리와 동작 방식을 이해한다.
- 통신 프로토콜에서 윈도우의 개념과 동작 방식을 이해한다.
- 양방향 통신을 지원하는 슬라이딩 윈도우 프로토콜을 알아본다.
- HDLC 프로토콜을 통해 프로토콜을 구현하는 원리를 이해한다.

❖ 내용

- 데이터 링크 계층 프로토콜의 기초
- 슬라이딩 윈도우 프로토콜
- HDLC 프로토콜

- ❖ 데이터 링크 계층에서 두 호스트가 통신하려면 일대일(1:1)형식 의 점대점 방식으로 연결해야 함
 - 점대점 연결 : 주소 개념 불필요
 - 기본적으로 데이터 링크 계층 프로토콜은 (a)와 같은 구조에서 둘 사이의 전송 오류를 감지하고 복구 하는 기능 지원

- 멀티드롭 방식: 하나의 호스트가 다수의 호스트와 연결된 비대칭 형태.
 하나의 물리 매체를 여러 호스트가 공유
 임의의 호스트에서 전송한 프레임은 물리적으로 다른 모든 호스트에 전달
- 목적지 호스트를 지칭하기 위한 주소 개념 필요

그림 6-1 연결 구성도

- ❖ 데이터 링크 계층에서 물리계층을 통해 이루어지는 두 호스트간 의 물리적 전송 오류 감지 및 복구
 - 상위 계층에 신뢰성 있는 데이터 전송 보장
 - 물리 계층에서 오류 제어 방식으로 재전송 기법을 사용

❖ 프레임의 종류

- 정보 프레임Information Frame (Ⅰ프레임)
 - 상위 계층이 전송을 요구한 데이터를 수신 호스트에 전송하는 용도로 사용
 - 순서 번호, 송수신 호스트 정보 등이 포함됨
 - 순서 번호는 각 정보 프레임에 부여되는 고유의 일련번호. 수신 호스트가 중복 프레임을 구분할 수 있도록 해줌
- 긍정 응답 프레임Positive Acknowledgement (ACK 프레임)
 - 전송 데이터가 올바르게 도착했음을 회신하는 용도
 - 데이터를 수신한 호스트가 데이터를 송신한 호스트에게 전송
- 부정 응답 프레임Negative Acknowledgement (NAK 프레임)
 - 전송 과정에서 프레임 변형 오류가 발생했음을 회신하는 용도
 - 원래의 정보 프레임을 재전송하도록 요청
 - 송신 호스트는 오류가 발생한 프레임을 동일한 순서 번호로 다시 전송

- ACK 프레임, NAK 프레임에도 회신하고자 하는 정보 프레임의 순서 번호 포함
- 정보 프레임의 송신 호스트는 몇 번 프레임이 제대로 도착하고, 몇 번 프레임에서 오류가 발생했는지를 응답 프레임의 순서 번호로 판단

❖ 프로토콜 설계 과정에서 다루는 내용

- 오류 제어
- 흐름 제어
- 양방향.단방향 전송 방식 등

❖ 오류·흐름 제어가 없는 프로토콜

- 가정 : 가장 이상적인 통신환경
 - 단방향 통신 : 데이터는 송신 호스트에서 수신 호스트로만(한쪽 방향으로만) 전달
 - 전송 오류 없는 물리 매체 : 통신 채널에서는 전송 오류가 발생하지 않음
 - 무한 개의 수신 버퍼 : 수신 호스트의 버퍼 수는 무한함

■ 단순 프로토콜

- 송신 호스트는 원하는 만큼 자유롭게 프레임을 전송할 수 있음
- 오류 제어 : 프레임 분실/변형 오류가 발생하지 않음
- 흐름 제어 : 수신 버퍼가 무한이므로 분실 오류 없음

그림 6-2 단순 프로토콜

❖ 오류 제어가 없는 프로토콜

- 가정 : 수신 호스트의 버퍼 개수가 유한(버퍼 개수 제한)
 - 단방향 통신 : 데이터는 송신 호스트에서 수신 호스트로만(한쪽 방향으로만) 전달
 - 전송 오류 없는 물리 매체 : 통신 채널에서는 전송 오류가 발생하지 않음
- ➢송신 호스트가 전송한 정보 프레임의 수신 작업이 늦어질 때, 버퍼에 일시적으로 보관할 수 있는 프레임의 개수가 제한됨
- ▶버퍼 용량 부족으로 프레임 분실 오류 발생 가능
- > 송수신 호스트사이에 흐름 제어 필요
- ▶주로 수신호스트가 송신 호스트의 프레임 전송 시점을 제어

- 정지-대기 프로토콜 1
 - ACK 프레임 : 송신 호스트에 긍정 응답의 기능을 수행, 다음 프레임을 전송하도록 지시하는 흐름 제어 기능도 수행
 - 정지-대기^{Stop-and-Wait} 방식 : 수신 호스트가 회신하는 ACK 프레임이 도착해야 다음 프레임을 전송할 수 있는 프로토콜 방식

❖ 단방향 프로토콜

- 가정 : 오류 제어와 흐름 제어 기능 지원
 - 단방향 통신 : 데이터는 송신 호스트에서 수신 호스트로만(한쪽 방향으로만) 전달
- 오류 제어와 흐름 제어가 모두 필요
- 프레임 변형 오류를 해결하기 위한 수신 호스트의 NAK 기능 필요
- 프레임 <u>분실</u> 오류를 해결하기 위한 송신 호스트의 <u>타임아웃</u> 기능 필요

- NAK가 없는 경우
 - 정보 프레임 분실: 송신 호스트의 타임아웃 기능으로 오류 복구

(a) 정보 프레임 분실 오류

그림 6-4 정지-대기 프로토콜 2: NAK가 없는 경우

• ACK 프레임 분실: 송신 호스트의 타임아웃 기능으로 오류 복구

(b) ACK 프레임 분실 오류

그림 6-4 정지-대기 프로토콜 2: NAK가 없는 경우

• 프레임 변형 오류 : 송신 호스트의 타임아웃 기능으로 오류 복구

그림 6-5 프레임 변형 오류

- NAK가 있는 경우
 - 프레임 변형 오류 : 수신 호스트의 NAK 프레임 응답으로 오류 복구

그림 6-6 정지-대기 프로토콜 3: NAK가 있는 경우

• 프레임 분실 오류 : 송신 호스트의 타임아웃 기능으로 오류 복구

(b) 프레임 분실 오류

그림 6-6 정지-대기 프로토콜 3: NAK가 있는 경우

- 양방향 통신을 지원
- 오류 제어와 흐름 제어 기능을 모두 지원
- 기본 절차
 - 송신 호스트는 정보 프레임(전송 데이터, 순서 번호, 오류 검출 코드)을 순서 번호
 에 따라 순차적으로 전송함
 - 정보 프레임을 수신한 수신 호스트가 응답하는 순서 번호는 정상적으로 수신한 번호가 아닌 다음에 수신하기를 기대하는 번호를 회신하는 것이 일반적임
 - 송신 호스트가 관리하는 송신 윈도우는 전송은 되었지만 긍정 응답이 회신되지
 않은 프레임을 보관함
 - 수신 호스트가 관리하는 수신 윈도우는 프로토콜의 방식에 따라 크기가 다름
 - 선택적 재전송Selective Retransmission 방식에서는 송신 윈도우 크기와 같음
 - Stop-and-Wait (크기가 1인 고백 Ngo-Back-N)방식에서는 크기가 1 임 책(200p 하단)에 설명이 잘못되었다고 언급하신 부분 Stop-and-Wait 방식은 크기가 1인게 맞는데 go-Back-N 방식은 크기가 1인게 아니고 양쪽이 같아야 함?

❖ 흐름 제어

- 순서 번호
 - 프레임 별로 부여되는 일련 번호
 - 0 부터 임의의 최댓값까지 순환 방식으로 사용
 - 일반적으로 순서 번호의 최댓값이 송신 윈도우 크기보다 커야 함
 - 프레임에서 순서 번호의 공간 크기 = n 비트 : 순서 번호의 범위는 0 ~ 2ⁿ 1
- 윈도우 크기
 - 수신 호스트로부터 긍정 응답 프레임을 받지 않고 전송할 수 있는 정보 프레임의
 최대 개수

• 슬라이딩 윈도우 프로토콜의 동작 과정 1(송신 윈도우 크기=3)

그림 6-7 슬라이딩 윈도우 프로토콜의 동작 과정 1(송신 윈도우 크기=3)

• 슬라이딩 윈도우 프로토콜의 동작 과정 2(송신 윈도우 크기=3)

그림 6-8 슬라이딩 윈도우 프로토콜의 동작 과정 2(송신 윈도우 크기=3)

❖ 연속형 전송

- 정지-대기 프로토콜은 송신 윈도우 크기가 1인 경우
- 연속형Pipelining 정지: ACK 프레임을 받지 않고 여러 프레임을 연속 전송
- 장점 : 오류 가능성이 적은 환경에서 효율적
- 오류 해결 방법
 - 선택적 재전송 : 오류가 발생한 프레임만 재전송
 - 고백 N : 오류가 발생한 프레임 이후의 모든 프레임을 재전송

- 고백 NGo-Back-N 방식
 - 오류가 발생한 12번 프레임을 포함해 이후에 전송된 모든 정보 프레임을 재전송

그림 6-9 고백 NGo-Back-N

- 선택적 재전송Selective Retransmission 방식 : 오류가 발생한 프레임만 선택적으로 복구하는 방식
 - 부정 응답 프레임을 사용해 오류가 발생한 정보 프레임을 처리하는 경우

❖ 피기배킹

- 정보 프레임을 전송하면서 응답 기능까지 함께 수행, 전송 효율 높임
 - 피기배킹을 사용하지 않는 경우
 - 개별 정보 프레임에 대해 긍정 응답 혹은 부정 응답 프레임이 순서 번호와 함께 별도 처리

(a) 피기배킹을 사용하지 않는 경우

- 피기배킹을 사용하는 경우
 - 정보 프레임의 표기방식은 I(i, j)로 재정의
 - i는 자신이 전송하는 데이터의 순서 번호, j는 제대로 수신한 프레임의 순서 번호를 의미

(b) 피기배킹을 사용하는 경우

그림 6-11 피기배킹

- HDLCHigh-level Data Link Control 프로토콜
 - 일대일 혹은 일대다로 연결된 환경에서 데이터의 송수신 기능 제공
- 호스트 종류
 - 주국Primary Station 에서 전송되는 메세지를 명령Command이라 정의
 - 종국Secondary Station 의 회신을 응답Response이라 함
 - 혼합국Combined Station : 주국과 종국 기능을 모두 지닌 호스트

❖ 프레임 구조

- 상단의 숫자는 비트 수.
- 프레임의 좌우에 위치한 01111110 플래그는 프레임의 시작과 끝을 구분
- Address(주소) : 일대다 환경에서 특정 호스트를 구분, 지칭하는 목적으로 사용
- Control(제어) : 프레임의 종류를 구분
- Data(데이터) : 가변 크기의 전송 데이터가 포함
- Checksum(체크섬): CRC-CCITT를 생성 다항식으로 하는 오류 검출 용도로 사용

❖ 프레임 종류

- 정보 프레임Information Frame
 - 네트워크 계층의 데이터 전송을 위해 정의
 - 3비트의 순서 번호를 이용한 슬라이딩 윈도우 프로토콜을 사용
 - 순서 번호는 0~7의 순서 번호 8개를 순환하여 사용
 - Seq : 정보 프레임의 송신용 순서 번호로 사용
 - Next : 피기배킹을 이용한 응답 기능으로 사용
 - P/F : 값이 1로 지정되었을 경우에 한하여 Poll 혹은 Final의 의미를 갖음

- 감독 프레임Supervisor Frame
 - 정보 프레임에 대한 응답 기능을 수행하는 프레임
 - 긍정 응답 프레임과 부정 응답 프레임으로 구분

그림 6-13 감독 프레임

- Type 0 : RR로 정의된 긍정 응답 프레임
- Type 1 : REJ로 정의된 부정 응답 프레임
- Type 2 : RNR로 정의된 응답 프레임으로 흐름 제어 기능까지 제공
- Type 3 : SREJ로 정의된 프레임, 선택적 재전송 방식에서 부정 응답 기능을 지웠/45

- 비번호 프레임Unnumbered Frame : 순서 번호가 없는 프레임을 정의
 - 프레임 종류
 - SABM^{Set ABM}: 비동기 균형^{Asynchronous Balanced} 모드의 연결 설정을 요구
 - SNRMSet NRM: 정규 응답Normal Response 모드의 연결 설정을 요구
 - SARMSet ARM : 비동기 응답Asynchronous Response 모드의 연결 설정을 요구
 - DISCDISConnect : 연결 설정 해제를 요구
 - RSETRESET: 비정상적인 프로토콜의 동작에 따른 리셋 기능을 수행
 - FRMRFRaMe Reject : 비정상적인 프레임의 수신을 거부
 - UAUnnumbered ACK: 비번호 프레임에 대한 응답 기능을 수행

표 6-1 세 가지 연결 모드

연결모드	설명
정규 응답Normal Response	불균형 모드를 의미하기 때문에 호스트 하나는 주국으로 동작하고, 다른 하나는 종국으로 동작한다. SNRM을 이용하여 연결 설정을 요구하며, 종국에서 데이터를 전송하려면 반드시 주국의 허락을 받아야 한다.
비동기 균형Asynchronous Balanced	두 개의 호스트가 동일한 능력을 갖는 혼합국으로 동작하며, 양쪽에서 명령과 응답을 모두 전송할 수 있다. 따라서 둘 중 임의의 호스트에서 SABM을 이용한 연결 설정 요 구를 수행할 수 있다.
비동기 응답Asynchronous Response	불균형 모드이나 종국이 주국의 허락 없이도 데이터를 전송할 수 있는 권한을 갖는다. 즉, 주국의 허가가 없어도(주국에 의한 P/F 비트의 Poll 지정이 없어도) 종국에서 먼저 SARM 응답을 보낼 수 있다.

❖ LAP 프로토콜

- LAPLink Access Protocol : 비동기 응답 모드인 ARM으로 동작하는 프로토콜
 - 주국에서 전송된 SARM 명령에 대하여 종국에서 UA 응답을 전송함으로써 완료

- 종국에서 주국으로 SARM 응답을 전송하여 연결 설정을 요구
- 종국에서 시작된 연결 설정은 3단계로 이루어지는 효과가 발생

그림 6-14 LAP에서의 연결 설정

❖ LAPB 프로토콜

■ 양쪽 호스트가 혼합국으로 동작, 누구나 먼저 명령을 전송 가능

그림 6-15 LAPB에서의 연결 설정

Thank You