Max. Marks: 80

Code No: Z0224

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, December - 2017 MATHEMATICAL METHODS

(Common to EEE, ME, ECE, CSE, IT)

Time: 3 hours

Answer any five questions All questions carry equal marks

- - -

- 1.a) Find the rank of a matrix $\begin{vmatrix} 0 & 2 & 8 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 8 & 1 & 6 \\ 0 & 1 & 0 & 1 \end{vmatrix}$ using Echelon from.
 - b) Solve 10x-2y-2z=6, -x+10y-2z=7 and -x-y+10z=8 by using LU decomposition method. [8+8]
- 2.a) Find the Eigen values and Eigen vectors of $\begin{bmatrix} 3 & 2 & 2 \\ 1 & 2 & 1 \\ -2 & -2 & -1 \end{bmatrix}$.
 - b) Let λ is an Eigen value of non-singular matrix A, prove that Eigen value of adj(A) is $\frac{|A|}{\lambda}$. [8+8]
- 3. Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 2xy + 4zx 4yx$ to the normal form by an orthogonal transformation and hence find its rank, index, signature and nature of the quadratic form. Also find the orthogonal transformation. [16]
- 4.a) Find a positive real root of the equation $x \sin x + \cos x = 0$, correct to four decimal places using False position method.
 - b) Define interpolation and Find the interpolate polynomial from the following data.

X	0	1	2	3	4
у	3	6	11	18	27

18+8

5.a) Fit a straight line of the following data.

			0			
X	1	3	5	7	9	
y	1.5	2.8	4.0	4.7	6.0	

b) Evaluate $\int_{0}^{2} \sin x^{2} dx$ using Trapezoidal rule as well as Simpson's rule, taking step size h=0.2. [8+8]

- 6.a) Using Euler's method, find the numerical solutions of $\frac{dy}{dx} = x^2 + y^2$, y(0)=1 for x = 0 to 1 with step size h=0.2.
- b) Using Runge Kutta method of fourth order, find y(0.1) and y(0.2) from $\frac{dy}{dx} = x y$, y(0) = 1. [8+8]
- 7.a) Let $\bar{f}_s(p)$ and $\bar{f}_c(p)$ are Fourier sine and cosine transform of f(x), Prove that $F_s(xf(x)) = \frac{d}{dp} \bar{f}_s(p)$ and $F_s(xf(x)) = -\frac{d}{dp} \bar{f}_c(p)$.
 - b) Obtain the Fourier series expansion of f(x) = |x| in $(-\pi, \pi)$ and hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ [8+8]
- 8.a) Form the partial differential equation by eliminating the arbitrary function f from $z = f(x^2 y^2)$.
 - b) Solve $(p^2 + q^2)y = qz$
 - c) Find the Z-transformation of $na^n + 1$, a > 0. [16]

---00000---