Arquitetura de Computadores 2 Exercício Prático 02 – Prof. Romanelli 812839 – Vinícius Miranda de Araújo

1ª Parte – ULA 1 bit

Figura 1 - Circuito de um multiplexador com uma única chave de seleção

Multiplexador 2x1

Figura 2 - Circuito de um multiplexador com duas chaves de seleção

Multiplexador 4x2

Figura 3 - Circuito de uma ULA de 1 bit

Testes - ULA 1 bit

Figura 4 - Teste ULA 1 bit - AND(A, B)

Figura 5 - Teste ULA 1 bit - OR(A, B)

Figura 6 - Teste ULA 1 bit - SOMA(A, B)

Figura 7 - Teste ULA 1 bit - NOT(A)

Figura 8 - Teste ULA 1 bit - SOMA(A, -B)

ULA 4 bits

Figura 9 - Circuito de uma ULA de 4 bits utilizando ULAs de 1 bit

Testes - ULA 4 bits

Figura 10 - Teste ULA 4 bits - AND(A, B)

.A3 . .A2 . .A1 . .A0 . Blnvert B3 B2 B1 B0 0 ULA ULA ULA S3-ULA OP0 Carry Out

Figura 11 - Teste ULA 4 bits - OR(A, B)

Figura 12 - Teste ULA 4 bits - SOMA(A, B)

Figura 13 - Teste ULA 4 bits - NOT(A)

Figura 14 - Teste ULA 4 bits - AND(B, A)

Tabela – ULA 4 bits

Instrução Realizada	Binário (<mark>A</mark> , B, OpCode)	Valor de Hexa (0x)	Resultado em Binário
AND(A,B)	0010 0001 00	$(0000\ 1000\ 0100) = 0x084$	0000
OR(A,B)	0010 0011 01	(00 <mark>00 1000 1101</mark>) = 0x08D	0011
SOMA(A,B)	0010 0011 11	(00 <mark>00 1000 1111</mark>) = 0x08F	0101
NOT(A)	1100 0011 10	(00 <mark>11 00</mark> 00 1110) = 0x30E	0011
AND(B, A)	1100 1101 00	$(0011\ 0011\ 0100) = 0x334$	1100

Parte 2 - ULA 74LS181

Figura 15 – ULA - 74LS181

Tabela - ULA 74LS181

Instruções	Binário	Resultado da Operação
450	0100 0101 0000	1010
CB1	1100 1011 0001	0111
A32	1010 0011 0010	0001
C43	1100 0100 0011	0000
124	0001 0010 0100	1110
7 85	0111 1000 0101	1000
9B6	1001 1011 0110	0010
CD7	1100 110 10111	0000
FE8	1111 1110 1000	0001
649	0110 0100 1001	0010
D9A	1101 1001 1010	1001
FCB	1111 1100 1011	1100
63C	0110 0011 1100	1111
98D	1001 1000 1101	1111
76E	0111 0110 1110	0111
23F	0010 0011 1111	0010

Teste – ULA 74LS181

Figura 16 - Teste ULA 74LS181 - 23F

Pergunta: Se o objetivo fosse realmente testar esta ULA, quantas linhas a nossa tabela verdade deveria ter, ou seja na verdade a tabela que você preencheu deveria ter quantas linhas?

R.: A tabela verdade deveria ter $2^{12} = 4096$ linhas, isso porque são 12 bits de entrada na **ULA 74LS181**.

FIM