

dineas Separation is not possible!

Loaening the XOR function with Feed Forward Notworks

Revisit our XOR Truth table.

	XOR(
XI	X2	7*
0	0	0
0	1	
	0	1
o de la companya de l	1	0
1		

Consider the following Feed fund network

Consider a support as follows

$$f(x:\omega,b) = x^T \omega + b$$

y = 12 (h: w,b) Napping of output to hidden.

here h = 9 (Watc)

g is the activation function to be used.

Solving XOR by Lineas Tunetions.

Considu original 2 space as shown below.

 $\frac{x_1}{x_2} = 0 = 0 = 0$

Let us try Felting Lineau Fenchions with beights w, w, w)
Thus For the pus points in question, we have the
following.

$$w_1 x 0 + w_2 x 0 + b = 0 - 0$$
 $w_1 x 0 + w_2 x 1 + b = 0 - 0$
 $w_1 x 1 + w_2 x 0 + b = 0 - 0$
 $w_1 x 1 + w_2 x 1 + b = 0 - 0$

if from (1) we get b=0

and from (2), (2) if w1=1 or w2=1

Then (4) does Not hold!

Thus a Linear Fit is not directly possible!

Drawbacks of Linear Model. Veder of weights + Scalar bias parameter Affine transformation from 2 bb. (1) Entire (voctor but bias parameters would be needed! (2) Activation Function to be applied element-wise. consider the following. hi = 9 (xTw: i + ci) Relu - Rechified Liveau Unit. C) how do we model this? g(Z) = max (0,Z) Thus our final output maps to input in the following f(x: W, C, w, b) = w Max 90, (w = +e) + b RELU - Activation Function.

Consider input to hidden Layer diagram; (h) < I hidden

(h2) < hidden layer Node 2

Thus we have; for the 1st hidden node

 $OXW_{1,1} + OXW_{2,1} + C_1 = h_1^{\prime}$ $0 \times \omega_{1} + 1 \times \omega_{2 \times 1} + C_{1} =$ $1 \times \omega_{1,1} + O \times \omega_{2\times 1} + C_2 = h_1^3$ $1\times\omega_{1,1}+1\times\omega_{2,1}+c_2$ and Similarly for the 2nd hidden Node

0xw, +0xw, 2,2+6,- h2

0 x w_{1,2} + 1 x w_{2x2} + 1xw1,2 + 0xw2x2 + 0

1x W1,2 + Ox W2x2 +C2

Now Combining together:

Combined Matrix Form
$$\begin{bmatrix} O & O \\ O & I \\ I & I \end{bmatrix} \begin{bmatrix} W_{1,1} & W_{1,2} \\ W_{2,1} & W_{2,2} \end{bmatrix} + \begin{bmatrix} C_1 & C_2 \\ C_1 & C_2 \\ C_1 & C_2 \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_1 & h_2 \end{bmatrix}$$

Where we have.

$$\chi = \frac{2}{2} \left| \frac{2}{0} \right|^{2} \frac{3}{9}$$

$$X = \chi^T = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Parameters Assumed or solution are as follows:

$$C = \begin{bmatrix} CI \\ C2 \end{bmatrix} = \begin{bmatrix} O \\ -I \end{bmatrix} \leq \text{bias Vector}$$

$$(\text{input} \rightarrow \text{hidden})$$

Computing the Solution with Assumed Pasameters. Step 1: Multiply Input matrix with 1st Layer weights [4x2] [4 x2] Step2: Add the bias vector [X][W]+C Transformed Space. Space and Transformed Space 2, 22 1 (0,0) ORIGINAL 2 (0,1) Vanstaamod INPUT SPACE SPACE 3 (1,0) 4 (1,1) 4 (2,1)

Step3] Apply Relu Activation

8

of Consider 1st trade of hidden layer. (h,)

Original input			
	h,	ReLU	9 (h1)
(0,0)	0	9.Chi)	0
(0,1)		9(h ₁ ²)	
(1,0)		9 (h ₁ ³)	La la labol t
(C1,1)	2	9 (h,4)	2
1 0 1	1		

I Consider for End Node of hidden Lager (hz)

conginal	h ₂	Relu	g (hz)
(0,0)	-1	9 (hz) '	0
(0,1)	0	9 (h2)2	0
(1,0) (1,1)	0	9 (h2) ³ 9 (h2) ⁴	0
	3	g (n ₂)	1
		1	. 41-13

(10)

Now Consider Solution parameters as proposed.

$$\omega = \begin{bmatrix} \omega_{1,y} \\ \omega_{2,y} \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$b = \begin{bmatrix} 0 \end{bmatrix}$$

Thus we have.

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Now Compare!

XOR

α_{i}	× 2	XOR(X1, X2)
0	0	0
0	1	
	0	1.01.00 01
1	1	()

Food For thought?

00	Utput	From FFN
31 85	10	71
miletan	1	XCR lable
	I	72: 18
5 0	0	
01	10	

How do we get the bias and weights?