CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 1

Sharan Vaswani

September 8, 2023

Introduction

- Supervised machine learning involves learning from a fixed, static dataset.
- Once a dataset is collected, supervised learning does not typically reason about how the data was acquired nor does it involve further interactions with the world.
- Applications in computational advertising, robotics, clinical trials involve collecting data in an online fashion, and reasoning about the decisions used to gather it.
- Sequential decision-making under uncertainty focuses on problems that involve
 interacting with the world, collecting data and reasoning about it, all with incomplete
 information about the world.

Introduction

- A typical problem in sequential decision-making involves an *agent* (e.g. marketer, robot, investor) sequentially interacting with the *environment* (e.g. online advertising platform, Mars terrain, stock market).
- An interaction involves the agent choosing an action and receiving feedback.
- For example, the feedback can be in the form of a *reward*) designed to measure the agent's performance in achieving its goal.
- One possible objective: Find a sequence of actions (referred to as a *policy*) that maximizes the *cumulative reward* across the sequence of interactions.

Motivating Applications

- Games. E.g.: Go and Atari by DeepMind.
- Conversational agents. Eg: ChatGPT by OpenAI.
- Chip design by Google AI
- Cooling the interior of large commercial buildings by DeepMind
- Recommendation system by Microsoft
- Healthcare and Clinical Trials.
- Autonomous Navigation of Stratospheric Balloons by Google AI.
- For more applications, refer to Glen Berseth's and Csaba Szepesvari's lists.

This Course

Motivation

- Typical algorithms used in practice are often (a) brittle (their performance is sensitive to hyper-parameters) (b) inefficient (require a large number of interactions to learn to make good decisions) and (c) do not have theoretical guarantees on their performance and can fail on simple problems.
- Numerous fundamental theoretical questions remain unanswered and there is a large discrepancy between the theory and practice.

Objective:

- Understand the foundational concepts in bandits and reinforcement learning (RL) from a theoretical perspective.
- Use this knowledge to inform the design of theoretically-principled, statistically and computationally efficient algorithms.

Course Logistics

Topics:

- Bandits: Multi-armed/Contextual Bandit framework, Algorithms for regret minimization
- Markov Decision Processes: Structural properties, (Approximate) Value/Policy Iteration, Linear Programming, Temporal Difference Learning, Policy Gradients
- Online & Batch RL: Q Learning, LSVI-UCB, Learning with access to a simulator

What we won't cover: Continuous state-action spaces, Constrained MDPs, Multi-objective RL

- Instructor: Sharan Vaswani. [sharan_vaswani@sfu.ca]
- Teaching Assistant: Michael Lu. [michael_lu_3@sfu.ca]
- Course Webpage: https://vaswanis.github.io/419_983-F23.html
- Piazza: https://piazza.com/sfu.ca/fall2023/cmpt419983/home
- Prerequisites: Probability, Linear Algebra, Calculus, Undergraduate Machine Learning

Course Logistics - Grading

Assignments $[4 \times 12\% = 48\%]$

- Assignments to be submitted online (via Coursys), typed up in Latex with accompanying code submitted as a zip file.
- Each assignment will be due in 3 weeks (at 11.59 pm PST).

Final Project [50%]

- Aim is to give you a taste of research in RL Theory.
- Projects to be done in groups of 3-4. Will maintain a list of possible topics. Can choose from the list or propose your own topic. (more details will be on Piazza)
- Project Proposal [10%] Discussion (before 20 October) + Report (due 20 October)
- Project Milestone [5%] Update (before 20 November)
- Project Presentation [10%] (tentatively 1, 4 December)
- Project Report [25%] (15 December)

Participation [2%] In class (during lectures, project presentations), on Piazza

Stochastic Multi-armed Bandits

Motivating Application: Clinical Trials

- Do not have complete information about the effectiveness or side-effects of the drugs.
- Aim: Maximize the number of patients healed.
- Each drug choice is mapped to an arm and the drug's effectiveness is mapped to the arm's mean reward.
- Administering a drug is an action that is equivalent to pulling the corresponding arm.
- Each time an arm is pulled, we get a *noisy* reward that models a patients reaction to the drug.
- The trial goes on for *T rounds*.
 - Other motivating applications: Recommendation systems, computational advertising.

Problem Formulation

Input: K arms (possible actions) and their corresponding unknown reward distributions $\{\nu_a\}_{a=1}^K$. Define $\mu_a := \mathbb{E}_{r \sim \nu_a}[r]$ as the expected reward obtained by choosing action a.

Algorithm Generic Bandit Framework (K arms, T rounds)

- 1: for t=1 o T do
- 2: **SELECT**: Use a bandit algorithm to decide which arm(s) to pull.
- 3: **OBSERVE**: Pull the selected arm $a_t \in [K]$ and observe reward $R_t \sim \nu_{a_t}$.
- 4: **UPDATE**: Update the estimated reward for arm a_t .
- 5: end for

Bandit Feedback: Can only observe the noisy reward R_t from the pulled arm a_t .

Objective: Maximize $\mathbb{E}[\sum_{t=1}^{T} R_t]$ where the expectation is over both the randomness of the algorithm (if any) and the distribution of rewards.

Bandit problems are a special case of RL, and capture a lot of the underlying intricacy.

Problem Formulation

- Define $a^* := \arg \max_{a \in [K]} \mu_a$ as the best or optimal arm in hindsight, and $\mu^* := \max_a \mu_a$.
- ullet Maximizing cumulative rewards \Longrightarrow Select a^* as much as possible \Longrightarrow Minimize the cumulative regret.
- Cumulative Regret: Regret(T) := $\sum_{t=1}^{T} [\mu^* \mathbb{E}[R_t]] = T\mu^* \sum_{t=1}^{T} \mathbb{E}[R_t]$.
- Since the optimal arm is unknown, the algorithm needs to *explore* to narrow down on the best arm. If we can identify the best arm, the algorithm should *exploit* and always choose it.
- Need to find a policy that trades off exploration and exploitation to minimize Regret(T).
- Ideally, want Regret(T) = o(T) i.e. the regret grows sub-linearly with T, meaning that $\lim_{T\to\infty}\frac{\operatorname{Regret}(T)}{T}=0$.

9

Regret Decomposition

Claim: If $\Delta_a := \mu^* - \mu_a$ and $N_a(T)$ is the number of times arm a was chosen until round T, then,

$$Regret(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

Proof:

$$\mathsf{Regret}(T) = \mu^* T - \sum_{t=1}^T \mathbb{E}[R_t] = \mu^* T - \sum_{t=1}^T \mathbb{E}[\mu_{a_t}] = \sum_{t=1}^T \mathbb{E}\left[\mu^* - \mu_{a_t}\right]$$
(Taking the expectation w.r.t to the reward distribution)

$$= \sum_{t=0}^{K} [\mu^* - \mu_a] \mathbb{E} \left[\sum_{t=0}^{T} \mathcal{I} \left\{ a_t = a \right\} \right] = \sum_{t=0}^{K} [\mu^* - \mu_a] \mathbb{E} [N_a(T)]$$

$$\implies$$
 Regret $(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$

• Hence, to minimize the regret, an algorithm should (i) not pull arms with $\Delta_a > 0$ too often (exploit) which requires (ii) estimating the values of Δ_a to sufficient accuracy (explore).

Naive Strategy

Algorithm Naive Strategy

- 1: for $t = 1 \rightarrow K$ do
- 2: Select arm $a_t = t$ and observe reward R_t
- 3: end for
- 4: Calculate empirical mean reward for arm $a \in [K]$ as $\hat{\mu}_a(K) := \frac{\sum_{t=1}^K R_t \, \mathcal{I}\{a_t = a\}}{N_a(K)}$
- 5: for $t = K + 1 \rightarrow T$ do
- 6: Pull arm $\hat{a} := \arg \max_{a \in [K]} \hat{\mu}_a(K)$ (choose lower-indexed arm if there is a tie).
- 7: end for

Q: Will this naive strategy result in sublinear regret? Ans: No! Consider K=2, $\mu_1=\frac{1}{2}$, $\mu_2=\frac{1}{4}$ and ν_a to be Bernoulli distributions, i.e. $R_t\in\{0,1\}$.

$$\mathbb{E}[N_2(T)] = 1 + (T-2) \Pr[\hat{\mu}_2 > \hat{\mu}_1] + (0) \Pr[\hat{\mu}_2 \leq \hat{\mu}_1] = 1 + (T-2) \frac{1}{8} = \frac{T}{8} + \frac{3}{4}$$

Regret(Naive,
$$T$$
) = $\left(\frac{1}{2} - \frac{1}{4}\right) \left(\frac{T}{8} + \frac{3}{4}\right) = \frac{3}{16} + \frac{T}{32}$.

Hence, the Naive strategy will suffer O(T) regret and $\lim_{T\to\infty} \frac{\text{Regret}(T)}{T} = \frac{1}{32} > 0$.

Explore-Then-Commit (ETC)

Algorithm Explore-Then-Commit

- 1: **Input**: $m \in \{1, \ldots, \lfloor \frac{T}{K} \rfloor \}$.
- 2: **for** $t = 1 \rightarrow mK$ **do**
- 3: Select arm $a_t = t \mod K + 1$ and observe reward R_t (Explore)
- 4: end for
- 5: Calculate empirical mean reward for arm $a \in [K]$ as $\hat{\mu}_a(mK) := \frac{\sum_{t=1}^{mK} R_t \, \mathcal{I}\{a_t = a\}}{N_a(mK)}$
- 6: for $t = mK + 1 \rightarrow T$ do
- 7: Pull arm $\hat{a} := \arg\max_{a \in [K]} \hat{\mu}_a(mK)$ (Commit)
- 8: end for

Q: Will ETC result in sublinear regret?

Yes! under suitable distributional assumptions on the rewards.

In particular, if $r \sim \nu_a$, we will assume that $r - \mu_a$ are sub-Gaussian random variables, then we will prove that ETC results in sub-liner regret. For this, we need to first recap some concentration (tail) inequalities from undergraduate probability.

Digression – Concentration inequalities

Concentration inequalities bound the probability that the r.v. takes a value much different from its mean.

Example: Consider a r.v. X that can take on only non-negative values and $\mathbb{E}[X] = 99.99$. Show that $\Pr[X \ge 300] \le \frac{1}{3}$.

$$Proof: \mathbb{E}[X] = \sum_{x \in \text{Range}(X)} x \ \Pr[X = x] = \sum_{x \mid x \ge 300} x \ \Pr[X = x] + \sum_{x \mid 0 \le x < 300} x \ \Pr[X = x]$$

$$\geq \sum_{x \mid x \ge 300} (300) \ \Pr[X = x] + \sum_{x \mid 0 \le x < 300} x \ \Pr[X = x]$$

$$= (300) \ \Pr[X \ge 300] + \sum_{x \mid 0 < x < 300} x \ \Pr[X = x]$$

If $\Pr[X \geq 300] > \frac{1}{3}$, then, $\mathbb{E}[X] > (300) \frac{1}{3} + \sum_{x|0 \leq x < 300} x \Pr[X = x] > 100$ (since the second term is always non-negative). Hence, if $\Pr[X \geq 300] > \frac{1}{3}$, $\mathbb{E}[X] > 100$ which is a contradiction since $\mathbb{E}[X] = 99.99$.

Digression – Markov's Theorem

Markov's theorem formalizes the intuition on the previous slide, and can be stated as follows. **Markov's Theorem**: If X is a non-negative random variable, then for all x > 0,

$$\Pr[X \ge x] \le \frac{\mathbb{E}[X]}{x}.$$

Proof: Define $\mathcal{I}\{X \geq x\}$ to be the indicator r.v. for the event $[X \geq x]$. Then for all values of X, $x\mathcal{I}\{X \geq x\} \leq X$.

$$\mathbb{E}[x \,\mathcal{I} \,\{X \geq x\}] \leq \mathbb{E}[X] \implies x \,\mathbb{E}[\mathcal{I} \,\{X \geq x\}] \leq \mathbb{E}[X] \implies x \,\mathsf{Pr}[X \geq x] \leq \mathbb{E}[X]$$

$$\implies \mathsf{Pr}[X \geq x] \leq \frac{\mathbb{E}[X]}{x}. \quad \Box$$

Since the above theorem holds for all x>0, we can set $x=c\mathbb{E}[X]$ for $c\geq 1$. In this case, $\Pr[X\geq c\mathbb{E}[X]]\leq \frac{1}{c}$. Hence, the probability that X is "far" from the mean in terms of the multiplicative factor c is upper-bounded by $\frac{1}{c}$.

Digression - Sub-Gaussian random variables

If a centered r.v. X (meaning that $\mathbb{E}[X] = 0$) is σ sub-Gaussian, then for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[\exp(\lambda X)\right] \leq \exp\left(rac{\lambda^2 \, \sigma^2}{2}
ight) \, .$$

Example 1: If $X \sim N(0,1)$, then its moment generating function $\mathbb{E}\left[\exp(\lambda X)\right] = \exp\left(\frac{\lambda^2 \sigma^2}{2}\right)$, meaning that Gaussian r.v. are sub-Gaussian.

Example 2: If $X \in [a, b]$ and $\mathbb{E}[X] = 0$, then X is (b - a) sub-Gaussian.

Properties: If X is centered and σ sub-Gaussian, then,

- (a) $\mathbb{E}[X] = 0$, $Var[X] \le \sigma^2$
- (b) For a constant $c \in \mathbb{R}$, cX is $|c| \sigma$ sub-Gaussian.
- (c) If $\{X_i\}_{i=1}^n$ are independent and σ_i sub-Gaussian respectively, then, $\sum_{i=1}^n X_i$ is $\sqrt{\sum_{i=1}^n \sigma_i^2}$ sub-Gaussian.

Need to prove some of these properties in Assignment 1!

Digression - Concentration inequalities for sub-Gaussian r.v's

Claim: If X is centered and σ sub-Gaussian, then for any $\epsilon \geq 0$, $\Pr[X \geq \epsilon] \leq \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$.

Proof: For some constant c > 0 to be tuned later,

$$\begin{split} \Pr[X \geq \epsilon] &= \Pr[cX \geq c\epsilon] = \Pr[\exp(c\,X) \geq \exp(c\,\epsilon)] \\ &\leq \mathbb{E}[\exp(c\,X)] \, \exp(-c\,\epsilon) & \text{(Markov's inequality)} \\ &\leq \exp\left(\frac{c^2\sigma^2}{2} - c\,\epsilon\right) & \text{(Def. of sub-Gaussian r.v's)} \\ &= \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right) \quad \Box & \text{(Setting } c = \epsilon/\sigma^2) \end{split}$$

Similarly,
$$\Pr[X \leq -\epsilon] \leq \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$$
. By the union bound, $\Pr[|X| \geq \epsilon] \leq 2 \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$. Setting $\delta = 2 \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right) \Longrightarrow \epsilon = \sqrt{2\sigma^2 \log(2/\delta)}$. Hence, w.p. $1 - \delta$, X will take on values in the range $\left[-\sqrt{2\sigma^2 \log(2/\delta)}, +\sqrt{2\sigma^2 \log(2/\delta)}\right]$.

Digression – Concentration inequalities for sub-Gaussian r.v's

Claim: Consider n i.i.d r.v's X_i such that $\mathbb{E}[X_i] = \mu$. If $X_i - \mu$ are σ sub-Gaussian and $\hat{\mu} := \frac{1}{n} \sum_{i=1}^n X_i$ is the empirical mean, then, $\Pr[|\hat{\mu} - \mu| \ge \epsilon] \le \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right)$.

Proof: Using property (c) of σ sub-Gaussian r.v's, $\sum_{i=1}^n [X_i - \mu]$ is $\sqrt{n\sigma^2}$ sub-Gaussian. Using property (b) of σ sub-Gaussian r.v's, $\frac{\sum_{i=1}^n [X_i - \mu]}{n}$ is $\frac{\sigma}{\sqrt{n}}$ sub-Gaussian. $\Rightarrow \hat{\mu} - \mu$ is $\frac{\sigma}{\sqrt{n}}$ sub-Gaussian. Using the concentration result from the previous slide, $\Pr[|\hat{\mu} - \mu| \ge \epsilon] \le 2 \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right)$.

Hence, as we collect more data, the empirical mean concentrates around the true mean at an exponential rate.

Back to Explore-Then-Commit (ETC)

Algorithm Explore-Then-Commit

- 1: **Input**: $m \in \{1, \ldots, \lfloor \frac{T}{K} \rfloor \}$.
- 2: **for** $t = 1 \rightarrow mK$ **do**
- 3: Select arm $a_t = (t \mod K) + 1$ and observe reward R_t (Explore)
- 4: end for
- 5: Calculate empirical mean reward for arm $a \in [K]$ as $\hat{\mu}_a(mK) := \frac{\sum_{t=1}^{mK} R_t \, \mathcal{I}\{a_t = a\}}{N_a(mK)}$
- 6: for $t = mK + 1 \rightarrow T$ do
- 7: Pull arm $\hat{a} := \arg\max_{a \in [K]} \hat{\mu}_a(mK)$ (Commit)
- 8: end for

Distributional Assumption: The noise $\eta_t := R_t - \mu_{a_t}$ is 1 sub-Gaussian. \Longrightarrow after pulling each arm m times in the **exploration** phase, for all $a \in [K]$, $|\hat{\mu}_a - \mu_a|$ is $\frac{\sigma}{\sqrt{m}}$ sub-Gaussian and hence, $\Pr[|\hat{\mu}_a - \mu_a| \ge \epsilon] \le 2 \exp\left(-\frac{m\epsilon^2}{2\sigma^2}\right)$.

Intuitively, the **exploration** phase estimates the gap Δ_a for each arm upto a certain error. After this initial estimation, the algorithm **commits** to the *best empirical arm*.

Explore-Then-Commit – Regret Analysis

Claim: For any $m \in \{1, \ldots, \lfloor T/K \rfloor\}$,

$$\mathsf{Regret}(\mathsf{ETC},\,T) \leq m \sum_{a=1}^K \Delta_a + (T-m\,K) \sum_{a=1}^K \Delta_a \, \exp\left(-\frac{m\,\Delta_a^2}{4}\right)$$

Proof: Without loss of generality, assume that arm 1 is the best arm. Using the regret decomposition, we know that Regret(ETC, T) = $\sum_a \Delta_a \mathbb{E}[N_a(T)]$. For each arm $a \neq 1$, $\mathbb{E}[N_a(T)] = m + (T - mK)$ Pr[algorithm commits to arm a].

$$\Pr[\text{algorithm commits to arm } a] = \Pr[\hat{\mu}_a > \max_{j \neq a} \hat{\mu}_j] \leq \Pr[\hat{\mu}_a > \hat{\mu}_1]$$

Explore-Then-Commit – Regret Analysis

Recall that Regret(ETC, T) = $\sum_a \Delta_a [m + (T - mK)]$ Pr[algorithm commits to arm a] and Pr[algorithm commits to arm a] \leq Pr[$X_a - X_1 \geq \Delta_a$] where $X_a = \hat{\mu}_a - \mu_a$. Because of our assumption, both X_a and X_1 are $\frac{1}{\sqrt{m}}$ sub-Gaussian. Using property (c) of sub-Gaussian r.v's, $X_a - X_1$ is $\frac{\sqrt{2}}{\sqrt{m}}$ sub-Gaussian. Using the concentration result for sub-Gaussian r.v's,

$$\Pr[X_a - X_1 \ge \Delta_a] \le \exp\left(-\frac{m\,\Delta_a^2}{4}\right)$$

Putting everything together,

$$\mathsf{Regret}(\mathsf{ETC},T) \leq \sum_{a} \Delta_{a} \left[m + (T - m\,K) \, \exp\left(-\frac{m\,\Delta_{a}^{2}}{4}\right) \right]$$

$$\implies \mathsf{Regret}(\mathsf{ETC},T) \leq m \sum_{a=1}^{K} \Delta_{a} + (T - m\,K) \sum_{a=1}^{K} \Delta_{a} \, \exp\left(-\frac{m\,\Delta_{a}^{2}}{4}\right) \quad \Box$$

Explore-Then-Commit - Regret Analysis

Recall that Regret(ETC, T) $\leq m \sum_{a=1}^{K} \Delta_a + (T - m K) \sum_{a=1}^{K} \Delta_a \exp\left(-\frac{m \Delta_a^2}{4}\right)$.

In order to gain some intuition about how to set m, consider K=2 with $\Delta:=\mu_1-\mu_2$.

$$\mathsf{Regret}(\mathsf{ETC},T) \leq m\Delta + (T-2m)\Delta \, \exp\left(-\frac{m\,\Delta^2}{4}\right) < m\Delta + T\Delta \, \exp\left(-\frac{m\,\Delta^2}{4}\right)$$

Optimizing the RHS w.r.t m, we get $m=\frac{4}{\Delta^2}\log\left(\frac{\Delta^2T}{4}\right)$. Since m is an integer ≥ 1 , we should set $m=\max\left\{1,\lceil\frac{4}{\Delta^2}\log\left(\frac{\Delta^2T}{4}\right)\rceil\right\}$. Plugging this value back,

$$\implies \mathsf{Regret}(\mathsf{ETC}, T) \leq \Delta + \frac{4}{\Delta} \left[1 + \log_+ \left(\frac{\Delta^2 T}{4} \right) \right] \qquad \qquad (\log_+(x) := \max\{0, \log(x)\})$$

Hence, ETC with $m=O(1/\Delta^2)$ achieves $O\left(\frac{\log(T)}{\Delta}\right)$ instance or gap-dependent regret.

Q: What is the problem with this bound? Ans: As $\Delta \to 0$, Regret(ETC, T) $\to \infty$ implying that for some instances, the bound on the gap-dependent regret can be very large.

Explore-Then-Commit – Regret Analysis

To overcome the previous problem, one can bound the worst-case problem-independent regret.

Claim: For $\Delta \leq 1$, ETC results in an $O(1+\sqrt{T})$ worst-case bound on the regret.

Proof: In the worst-case, we pull the sub-optimal arm in every round. Hence, the regret for any algorithm is upper-bounded by $T\Delta$. Putting this together with the bound on the previous slide,

$$\mathsf{Regret}(\mathsf{ETC}, T) \leq \min \left\{ T\Delta, \Delta + \frac{4}{\Delta} \left[1 + \log_+ \left(\frac{\Delta^2 T}{4} \right) \right] \right\}$$

If $\Delta < \frac{1}{\sqrt{T}}$, Regret(ETC, T) $\leq \sqrt{T}$. On the other hand, if $\Delta \geq \frac{1}{\sqrt{T}}$,

$$\begin{split} & \mathsf{Regret}(\mathsf{ETC}, T) \leq \Delta + 4\sqrt{T} + \left[\frac{4}{\Delta} \log_+ \left(\frac{\Delta^2 T}{4}\right)\right] \leq \Delta + 4\sqrt{T} + 4 \max_{z>0} \frac{\log_+ (Tz^2/4)}{z} \\ & \mathsf{Regret}(\mathsf{ETC}, T) \leq \Delta + 4\sqrt{T} + \frac{4\sqrt{T}}{e} \leq 1 + \sqrt{T} \left(4 + \frac{4}{e}\right) \end{split} \tag{Since } \Delta \leq 1) \end{split}$$

• In general, for K arms, it can be shown that ETC results in $O(\sqrt{KT})$ worst-case regret.

Explore-Then-Commit – Regret Analysis

We have seen that ETC with $m=O(1/\Delta^2)$ achieves an $O(\Delta+\sqrt{T})$ regret for any instance.

Q: What is the problem with the ETC algorithm? Ans: Requires knowledge of Δ to set m!

Claim: For $\Delta \leq 1$, there exists C > 0 s.t. ETC with $m = T^{2/3}$ results in (1 + C) $T^{2/3}$ regret.

Proof: Need to prove this in Assignment 1!

Hint: Starting from the expression, Regret(ETC, T) $\leq m\Delta + T\Delta \exp\left(-\frac{m\Delta^2}{4}\right)$, upper-bound the second term independent of Δ and then choose m.

References i