Supplementary Material for the Submission "A Ranking Model Motivated by Nonnegative Matrix Factorization with Applications to Tennis Tournaments"

Rui Xia¹, Vincent Y. F. Tan¹, Louis Filstroff², and Cédric Févotte²

¹Department of Mathematics, National University of Singapore rui.xia@u.nus.edu, vtan@nus.edu.sg

²IRIT, Université de Toulouse, CNRS, France {louis.filstroff, cedric.fevotte}@irit.fr

S-1 Proof that likelihood is non-decreasing after truncation to zero

We first simplify the term $f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)}) - u_2(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)}|\mathbf{W})$ by writing out these terms as follows. Firstly, for $f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)})$, we have

$$f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)})$$

$$= \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) + \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \right]$$

$$= \sum_{m} \sum_{\substack{(i',j'):\\i',j' \neq i}} b_{i'j'}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'}) + \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj'}) \right]$$

$$+ \sum_{m} \sum_{j \neq i:(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right]$$

$$+ \sum_{m} \sum_{j \neq i:(i,j) \in \mathcal{P}_{m}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \right]$$

Next for $u_2(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)}|\mathbf{W})$, we have

$$\begin{split} &u_{2}(\tilde{\mathbf{H}}^{(l+1)},\tilde{\mathbf{H}}^{(l)}|\mathbf{W}) \\ &= \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log \left(\frac{\tilde{h}_{ki}^{(l+1)} + \epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} \right) \\ &+ \log \left([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj} \right) + \frac{\sum_{k} w_{mk}(\tilde{h}_{ki}^{(l+1)} + \tilde{h}_{kj}^{(l+1)} + 2\epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}} - 1 \right] \\ &= \sum_{m=1}^{M} \sum_{\substack{(i',j'):\\ i',j' \neq i}} b_{i'j'}^{(m)} \left[-\sum_{k} \frac{w_{mk}(\tilde{h}_{ki'}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'}} \log \left(\frac{\tilde{h}_{ki'}^{(l)} + \epsilon}{\tilde{h}_{ki'}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} \right) \right. \\ &+ \log \left([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj'} \right) + \frac{\sum_{k} w_{mk}(h_{ki'}^{(l)} + h_{kj'}^{(l)} + 2\epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj'}} - 1 \right] \\ &+ \sum_{m=1}^{M} \sum_{j \neq i: (i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log \left(\frac{\tilde{h}_{ki}^{(l+1)} + \epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} \right) \right] \\ &+ \sum_{m=1}^{M} \sum_{j \neq i: (i,j) \in \mathcal{P}_{m}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj} \right) + \frac{\sum_{k} w_{mk}(\tilde{h}_{ki}^{(l+1)} + \tilde{h}_{kj}^{(l+1)} + 2\epsilon)}{\sum_{k} w_{mk}(\tilde{h}_{ki}^{(l)} + \tilde{h}_{kj}^{(l)} + 2\epsilon)} - 1 \right] \end{aligned}$$

$$= \sum_{m=1}^{M} \sum_{\substack{(i',j'):\\i',j'\neq i}} b_{i'j'}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'}) + \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj'}) \right]$$

$$+ \sum_{m=1}^{M} \sum_{\substack{j\neq i:\\(i,j)\in\mathcal{P}_{m}}} b_{ij}^{(m)} \left[-\sum_{\substack{k'\neq k}} \frac{w_{mk'}(\tilde{h}_{k'i}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right]$$

$$- \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log(\frac{\epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right]$$

$$+ \sum_{m=1}^{M} \sum_{\substack{j\neq i:\\(i,j)\in\mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj})$$

$$+ \sum_{m=1}^{M} \sum_{\substack{j\neq i:\\(i,j)\in\mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\sum_{\substack{k'\neq k}} w_{mk'}(\tilde{h}_{ki}^{(l)} + \epsilon) + w_{mk}(\epsilon) + \sum_{k} w_{mk}(\tilde{h}_{kj}^{(l)} + \epsilon) - 1 \right]$$

$$\sum_{k} w_{mk}(\tilde{h}_{ki}^{(l)} + \tilde{h}_{kj}^{(l)} + 2\epsilon) - 1$$

When we calculate $f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)}) - u_2(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)}|\mathbf{W})$, the expressions in (S-1) and (S-2) cancel and we have:

$$\begin{split} & f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)}) - u_{2}(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)}|\mathbf{W}) \\ & = \sum_{m} \sum_{j \neq i: (i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right] \\ & + \sum_{m} \sum_{j \neq i: (i,j) \in \mathcal{P}_{m}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \right] \\ & - \sum_{m=1}^{M} \sum_{j \neq i:} b_{ij}^{(m)} \left[-\sum_{k' \neq k} \frac{w_{mk'}(\tilde{h}_{k'i}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right. \\ & - \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log(\frac{\epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right] \\ & - \sum_{m=1}^{M} \sum_{j \neq i:} (b_{ij}^{(m)} + b_{ji}^{(m)}) \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \\ & - \sum_{m=1}^{M} \sum_{j \neq i:} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\sum_{k' \neq k} w_{mk'}(\tilde{h}_{ki}^{(l)} + \epsilon) + w_{mk}(\epsilon) + \sum_{k} w_{mk}(\tilde{h}_{kj}^{(l)} + \epsilon) \\ & - \sum_{m=1}^{M} \sum_{j \neq i:} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\sum_{\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log(\frac{\epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon}) \right] \\ & + \sum_{m=1}^{M} \sum_{j \neq i:} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}} \right] \end{aligned}$$

Using the inequality when truncation to zero is invoked, i.e.,

$$\frac{\sum\limits_{m}\sum\limits_{j\neq i}b_{ij}^{(m)}\frac{w_{mk}(\tilde{h}_{ki}^{(l)}+\epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)}+\epsilon\mathbb{1})]_{mi}}}{\sum\limits_{m}\sum\limits_{j\neq i}(b_{ij}^{(m)}+b_{ji}^{(m)})\frac{w_{mk}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\mathbf{W}(\tilde{\mathbf{H}}^{(l)}+\epsilon\mathbb{1})]_{mj}}}\leq\epsilon$$

we obtain

$$\begin{split} &f_{\epsilon}(\mathbf{W},\tilde{\mathbf{H}}^{(l)}) - u_{2}(\tilde{\mathbf{H}}^{(l+1)},\tilde{\mathbf{H}}^{(l)}|\mathbf{W}) \\ &= -\log\Big(\frac{\tilde{h}_{ki}^{(l)} + \epsilon}{\epsilon}\Big) \bigg[\sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} b_{ij}^{(m)} \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}}\bigg] \\ &+ \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \bigg[\frac{w_{mk}\tilde{h}_{ki}^{(l)}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}}\bigg] \\ &\geq -\log\Big(\frac{h_{ki}^{(l)} + \epsilon}{\epsilon}\Big) \cdot \epsilon \cdot \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \bigg[\frac{w_{mk}\tilde{h}_{ki}^{(l)}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}}\bigg] \\ &+ \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \bigg[\frac{w_{mk}\tilde{h}_{ki}^{(l)}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}}\bigg] \\ &= \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \bigg[\frac{w_{mk}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}}\bigg(- \epsilon \log(\frac{\tilde{h}_{ki}^{(l)} + \epsilon}{\epsilon}) + \tilde{h}_{ki}^{(l)}\bigg)\bigg] \geq 0 \end{split}$$

The proof is done and the last inequality is satisfied since $x \ge \log(x+1)$ for all $x \ge 0$ with equality at x = 0.

S-2 Convergence Analysis: Proof of Theorem 1

S-2.1 Conditions for Convergence

The paper [1] shows that given a function f(x) to be minimized on domain $\mathcal{X} = \prod_{i=1}^n \mathcal{X}_i$, if the surrogate function (auxiliary function/majorizer) $F_i(\cdot|\cdot)$ satisfies the following five properties:

- **(P1)** $F_i(\tilde{x}_i|\tilde{x}) = f(\tilde{x})$, for any $\tilde{x} \in \mathcal{X}$
- **(P2)** $F_i(x_i|\tilde{x}) \leq f(\tilde{x}_1,...,x_i,...,\tilde{x}_n)$, for any $(x_i,\tilde{x}) \in \mathcal{X}_i \times \mathcal{X}$
- **(P3)** $F_i(\cdot|\cdot)$ is differentiable on $\operatorname{int} \mathcal{X}_i \times \operatorname{int} \mathcal{X}$, there exists a function $g(\cdot|\tilde{x}) : \nabla F_i(\cdot|\tilde{x}) = g(\cdot/\tilde{x}_i|\tilde{x})$
- (P4) Define $f_i(\cdot|\tilde{x}): x_i \mapsto f(\tilde{x}_1, ..., x_i, ..., \tilde{x}_n)$, for any $x_i \in \mathcal{X}_i$, and $\tilde{x} \in \mathcal{X}$. Then for any $\hat{x}_i \in \mathcal{X}_i$, $F_i'(x_i; \hat{x}_i x_i|\tilde{x})|_{x_i = \tilde{x}_i} = f_i'(x_i; \hat{x}_i x_i|\tilde{x})|_{x_i = \tilde{x}_i}$ where the directional derivative f'(x; d) is defined as $f'(x; d) := \lim_{\delta \to 0} [f(x + \delta d) f(x)]/\delta$
- **(P5)** $F_i(\cdot|\tilde{x})$ is strictly convex on \mathcal{X}_i , for any $\tilde{x} \in \mathcal{X}$

where,

$$\mathcal{X} = \mathbb{R}_{++}^{M \times K} \times \mathbb{R}_{++}^{K \times N}$$

$$f_{\epsilon}(\mathbf{W}, \mathbf{H}) = \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log\left([\mathbf{W}(\mathbf{H} + \epsilon \mathbb{1})]_{mi} \right) + \log\left([\mathbf{W}(\mathbf{H} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H} + \epsilon \mathbb{1})]_{mj} \right) \right]$$

$$F_{1}(x_{1}|\tilde{x}) = u_{1}(\mathbf{W}, \mathbf{W}^{(l)}|\mathbf{H}^{(l)})$$

$$F_{2}(x_{2}|\tilde{x}) = u_{2}(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)})$$

the sequence of iterates $\{(\mathbf{W}^{(l)}, \mathbf{H}^{(l)})\}_{l=0}^{\infty}$ generated by Algorithm 1 converges to the set of stationary points that minimizes the negative log-likelihood $f_{\epsilon}(\mathbf{W}, \mathbf{H})$.

Although there are truncations to zero during the update of **H**, the update:

$$\mathbf{H}^{(l+1)} = \underset{\mathbf{H} \in \mathbb{R}_{++}^{K \times N}}{\operatorname{argmin}} u_2(\mathbf{H}, \mathbf{H}^{(l)} | \mathbf{W}^{(l+1)})$$
(S-3)

is still satisfied. However, those h_{ki} that do not involve truncations are updated such that $\left[u_2(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)})\right]_{ki}$ is minimized. For those h_{ki} that involve truncations,

$$\left[u_2(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)})\right]_{ki}\Big|_{h_{ki}=0} \le \left[u_2(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)})\right]_{ki}\Big|_{h_{ki}}, \quad \forall h_{ki} \ge 0$$

is always satisfied by the fact that $x \ge \log(x+1), \forall x \ge 0$. Hence, the update rule in equation (S-3) is maintained. We only need to check the five properties.

S-2.2 Surrogate Functions

We have

$$u_{1}(\mathbf{W}, \mathbf{W}^{(l)}|\mathbf{H}^{(l)}) = \sum_{m} \sum_{(i,j)\in\mathcal{P}_{m}} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}^{(l)}(h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi}} \log \left(\frac{w_{mk}}{w_{mk}^{(l)}} [\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} \right) + \log \left([\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mj} \right) + \frac{[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mj}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi}} - 1 \right]$$

and

$$u_{2}(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)}) = \sum_{m} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}^{(l+1)}(h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log \left(\frac{h_{ki} + \epsilon}{h_{ki}^{(l)} + \epsilon} [\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} \right) + \log \left([\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right) + \frac{[\mathbf{W}^{(l+1)}(\mathbf{H} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}^{(l+1)}(\mathbf{H} + \epsilon \mathbb{1})]_{mj}}{[\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}} - 1 \right]$$

P1 and P2 are satisfied by the fact that u_1 and u_2 are surrogate functions for **W** and **H** respectively.

S-2.3 Checking P3 & P4

Firstly, we check slope with respect to W

$$\begin{split} & \left[\nabla_{\mathbf{W}} f_{\epsilon}(\mathbf{W}, \mathbf{H}^{(l)}) \right]_{mk} \\ &= \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{(h_{ki}^{(l)} + h_{kj}^{(l)} + 2\epsilon) [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - (h_{ki}^{(l)} + \epsilon) \left[[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right]}{([\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}) [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \\ &= \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{h_{kj}^{(l)} [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - h_{ki}^{(l)} [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} + \epsilon \left[[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right]}{\left[[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right] [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \end{split}$$

as well as the slope with respect to u_1

$$\begin{split} & \left[\nabla_{\mathbf{W}} u_{1}(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \right]_{mk} \\ & = \sum_{(i,j) \in \mathcal{P}} b_{ij}^{(m)} \left[-\frac{w_{mk}^{(l)} (h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \frac{1}{w_{mk}} + \frac{h_{ki}^{(l)} + h_{kj}^{(l)} + 2\epsilon}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}} \right] \end{split}$$

It is easy to check that:

$$\begin{split} & \left[\nabla_{\mathbf{W}} u_{1}(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \right|_{\mathbf{W} = \mathbf{W}^{(l)}} \right]_{mk} \\ &= \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\frac{h_{ki}^{(l)} + \epsilon}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} + \frac{h_{ki}^{(l)} + h_{kj}^{(l)} + 2\epsilon}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}} \right] \\ &= \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \frac{h_{kj}^{(l)} [\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - h_{ki}^{(l)} [\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} + \epsilon \left[[\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - [\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right] }{\left[[\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right] [\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \\ &= \left[\nabla_{\mathbf{W}} f(\mathbf{W}, \mathbf{H}^{(l)}) \right|_{\mathbf{W} = \mathbf{W}^{(l)}} \right]_{mk} \end{split}$$

This implies that

$$\nabla_{\mathbf{W}} u_1(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \bigg|_{\mathbf{W} = \mathbf{W}^{(l)}} = \nabla_{\mathbf{W}} f(\mathbf{W}, \mathbf{H}^{(l)}) \bigg|_{\mathbf{W} = \mathbf{W}^{(l)}}$$
(S-4)

Next define $f_{1,\epsilon}(\cdot|\mathbf{H}^{(l)}): \mathbf{W} \mapsto f(\mathbf{W},\mathbf{H}^{(l)})$. This is evaluated as follows

$$\begin{split} f_{1,\epsilon}'(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W} | \mathbf{H}^{(l)}) &= \lim_{\delta \to 0} \frac{f(\mathbf{W} + \delta(\widehat{\mathbf{W}} - \mathbf{W}) | \mathbf{H}^{(l)}) - f(\mathbf{W} | \mathbf{H}^{(l)})}{\delta} \\ &= \lim_{\delta \to 0} \frac{1}{\delta} \Bigg[\sum_{m} \sum_{(i,j)} b_{ij}^{(m)} \log \left(\frac{[(\mathbf{W} + \delta(\widehat{\mathbf{W}} - \mathbf{W})) (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [(\mathbf{W} + \delta(\widehat{\mathbf{W}} - \mathbf{W})) (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}}{[(\mathbf{W} + \delta(\widehat{\mathbf{W}} - \mathbf{W})) (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \\ &\times \frac{[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}}{[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}} \Bigg) \Bigg] \end{split}$$

For simplification, we denote $a = [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}$, $b = [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}$, $c = [\widehat{\mathbf{W}}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}$, $d = [\widehat{\mathbf{W}}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}$. Then the above simplifies to

$$f'_{1,\epsilon}(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W} | \mathbf{H}^{(l)}) = \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{(1-\delta)a + \delta c + (1-\delta)b + \delta d}{(1-\delta)a + \delta c} \frac{a}{a+b}$$

$$= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{1}{\delta} \log \frac{(1-\delta)a^2 + (1-\delta)ab + \delta ac + \delta ad}{(1-\delta)a^2 + (1-\delta)ab + \delta ac + \delta bc}$$

$$= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{1}{\delta} \log \left(1 + \frac{\delta ad - \delta bc}{(1-\delta)a^2 + (1-\delta)ab + \delta ac + \delta bc} \right)$$

For further simplification, we denote s = ad - bc, r = a(a + b), t = c(a + b). The above simplifies to

$$\begin{split} f_{1,\epsilon}'(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W}|\mathbf{H}^{(l)}) &= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{1}{\delta} \log \left(1 + \frac{\delta s}{(1-\delta)r + \delta t}\right) \\ &= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} \log \left(1 + \frac{\frac{s}{r}}{\frac{1}{\delta} + \frac{t-r}{r}}\right)^{\frac{1}{\delta}} \\ &= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \log \left(1 + \frac{\frac{s}{r}}{\frac{1}{\delta} + \frac{t-r}{r}}\right)^{\frac{1}{\delta} + \frac{t-r}{r}} - \log \left(1 + \frac{\frac{s}{r}}{\frac{1}{\delta} + \frac{t-r}{r}}\right)^{\frac{t-r}{r}} \end{split}$$

since $\left(1 + \frac{t}{f(x)}\right)^{f(x)} \to e^t$ as $f(x) \to \infty$ and $\frac{1}{\delta} + \frac{t-r}{r} \to \infty$ as $\delta \to 0$. Thus,

$$f'_{1,\epsilon}(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W} | \mathbf{H}^{(l)}) = \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{s}{r}$$

$$\begin{split} &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \frac{ad - bc}{a(a+b)} \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \frac{[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} [\widehat{\mathbf{W}}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} - [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} [\widehat{\mathbf{W}}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}}{[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} [[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}]} \end{split}$$

Similarly,

$$\begin{split} &u_{1}'(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W},\mathbf{W}^{(l)}|\mathbf{H}^{(l)})\\ &=\lim_{\delta\to0}\frac{\tilde{u}_{1}(\mathbf{W}+\delta(\widehat{\mathbf{W}}-\mathbf{W})|\mathbf{W}^{(l)},\mathbf{H}^{(l)})-\tilde{u}_{1}(\mathbf{W}|\mathbf{W}^{(l)},\mathbf{H}^{(l)})}{\delta}\\ &=\lim_{\delta\to0}\sum_{m}\sum_{(i,j)\in\mathcal{P}_{m}}b_{ij}^{(m)}\frac{1}{\delta}\left[-\sum_{k}\frac{w_{mk}^{(l)}(h_{ki}^{(l)}+\epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}\log\left(\frac{(1-\delta)w_{mk}+\delta\hat{w}_{mk}}{w_{mk}}\right)\right.\\ &+\frac{\delta\left([\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}\right)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}\right]\\ &=\lim_{\delta\to0}\sum_{m}\sum_{(i,j)\in\mathcal{P}_{m}}b_{ij}^{(m)}\left[-\sum_{k}\frac{w_{mk}^{(l)}(h_{ki}^{(l)}+\epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}\log\left(1+\frac{\frac{\hat{w}_{mk}-w_{mk}}{w_{mk}}}{\frac{1}{\delta}}\right)^{\frac{1}{\delta}}\\ &+\frac{\left([\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}\right)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}\right]} \end{aligned}$$

where the last equality again follows from the fact that $\left(1 + \frac{t}{f(x)}\right)^{f(x)} \to e^t$ as $f(x) \to \infty$. Thus,

$$u_{1}'(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) = \sum_{m} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}^{(l)} (h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \frac{\hat{w}_{mk} - w_{mk}}{w_{mk}} \right]$$
$$+ \frac{[(\widehat{\mathbf{W}} - \mathbf{W}) (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [(\widehat{\mathbf{W}} - \mathbf{W}) (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}}$$

Now we evaluate the expressions above at the point $\mathbf{W} = \mathbf{W}^{(l)}$ as follows

$$\begin{aligned} &u_{1}^{\prime}(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W},\mathbf{W}^{(l)}|\mathbf{H}^{(l)})\bigg|_{\mathbf{W}=\mathbf{W}^{(l)}} \\ &=\sum_{m}\sum_{(i,j)\in\mathcal{P}_{m}}b_{ij}^{(m)}\left[-\sum_{k}\frac{w_{mk}^{(l)}(h_{ki}^{(l)}+\epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}\frac{\hat{w}_{mk}-w_{mk}^{(l)}}{w_{mk}^{(l)}}+\frac{[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}+\frac{[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}+\frac{[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}-[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}\\ &=\sum_{m}\sum_{(i,j)\in\mathcal{P}_{m}}b_{ij}^{(m)}\frac{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}[\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}-[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}[\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}\\ &=b_{1,\epsilon}^{\prime}(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W}|\mathbf{H}^{(l)})\bigg|_{\mathbf{W}=\mathbf{W}^{(l)}}\end{aligned}$$

Together with equation (S-4), we have proved P4.

The same idea can be applied to the surrogate function with respect to **H**, hence we conclude that:

$$\begin{aligned} u_1'(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \bigg|_{\mathbf{W} = \mathbf{W}^{(l)}} &= f_{1,\epsilon}'(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W} | \mathbf{H}^{(l)}) \bigg|_{\mathbf{W} = \mathbf{W}^{(l)}} \\ u_2'(\mathbf{H}; \widehat{\mathbf{H}} - \mathbf{H}, \mathbf{H}^{(l)} | \mathbf{W}^{(l+1)}) \bigg|_{\mathbf{H} = \mathbf{H}^{(l)}} &= f_{2,\epsilon}'(\mathbf{H}; \widehat{\mathbf{H}} - \mathbf{H} | \mathbf{W}^{(l+1)}) \bigg|_{\mathbf{H} = \mathbf{H}^{(l)}} \end{aligned}$$

S-2.4 Checking P5

We have,

$$\begin{split} &\frac{\partial^2}{\partial w_{mk}^2} u_1(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) = \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \bigg(\frac{w_{mk}^{(l)} (h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \frac{1}{w_{mk}^2} \bigg) \\ &\frac{\partial^2}{\partial h_{ki}^2} u_2(\mathbf{H}, \mathbf{W}^{(l+1)} | \mathbf{H}^{(l)}) = \sum_{m} \sum_{j \neq i: (i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \bigg(\frac{w_{mk}^{(l+1)} (h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l+1)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \frac{1}{(h_{ki} + \epsilon)^2} \bigg) \end{split}$$

Hence, u_1, u_2 are strictly convex if $w_{mk} > 0$ and $h_{ki} \ge 0$. This is satisfied since (\mathbf{W}, \mathbf{H}) are both initialized to be positive, i.e., $\mathbf{W}^{(0)} \in \mathbb{R}_{++}^{M \times K}$, $\mathbf{H}^{(0)} \in \mathbb{R}_{++}^{K \times N}$, and during the update of \mathbf{W} and \mathbf{H} , entries are kept positive for \mathbf{W} and nonnegative for \mathbf{H} .

The five properties are satisfied and hence by [1] the sequence converges to the set of stationary points.

Remark 1: While we have verified that all 5 properties hold, the proof of Theorem 1 differs slightly from the original proof in [1]. Firstly, in the original proof of [1], the regularization terms in the objective function guarantees that the set $S_0 \triangleq \{(\mathbf{W}, \mathbf{H}) \in \mathbb{R}_{++}^{M \times K} \times \mathbb{R}_{++}^{K \times N} \mid \ell(\mathbf{W}, \mathbf{H}) \leq \ell(\mathbf{W}^0, \mathbf{H}^0)\}$ is bounded. However, in our theorem, boundedness of the corresponding set is ensured by normalization where $\sum_k w_{mk} = 1$ or $\sum_k w_{mk} = 1$, and $\sum_{k,i} h_{ki} = 1$. Secondly, in the last step of Algorithm 1, we perform normalization for both \mathbf{W} and \mathbf{H} . Denote the result after the **Update** step in Algorithm 1 as $(\tilde{\mathbf{W}}, \tilde{\mathbf{H}})$ and the result after the **Normalization** step as (\mathbf{W}, \mathbf{H}) . Although $f_{\epsilon}(\tilde{\mathbf{W}}, \tilde{\mathbf{H}}) = f_{\epsilon}(\mathbf{W}, \mathbf{H})$, the derivatives differ. This does not affect the last part of the proof in [1], because if we denote the normalization operation as a function, where $\mathbf{W} = N(\tilde{\mathbf{W}})$, application of the chain rule suggests that $f'_{1,\epsilon}(\mathbf{W}; \hat{\mathbf{W}} - \mathbf{W}|H) = f'_{1,\epsilon}(\tilde{\mathbf{W}}; \hat{\mathbf{W}} - \tilde{\mathbf{W}}|H) \cdot N'(\tilde{\mathbf{W}})$, where $N'(\tilde{\mathbf{W}})$ are positive as one can easily observe from the **Normalization** step in Algorithm 1. Hence, the directional derivatives of $f'_{1,\epsilon}$ and $f'_{2,\epsilon}$ are still non-negative at the limit points.

S-3 Non-decreasing likelihood

Figure S-1: Plot of the evolution of negative log-likelihoods

Fig. S-1 shows that the likelihood is non-decreasing (negative log-likelihood is non-increasing).

S-4 Histogram of negative log-likelihood

Histograms of the negative log-likelihoods in the 150 trials are shown in Figs. S-2(a) and S-2(b) for K=2 and K=3 respectively.

Figure S-2: Histogram of negative log-likelihood in the 150 trials

S-5 Partial men's dataset for the French Open

A submatrix consisting of the statistics of matches played between Nadal, Djokovic, Federer, and Murray at the French Open is shown in Table S-1.

Against	R. Nadal	N. Djokovic	R. Federer	A. Murray
R. Nadal	0	5	3	2
N. Djokovic	1	0	1	2
R. Federer	0	1	0	0
A. Murray	0	0	0	0

Table S-1: Partial men's dataset for the French Open

S-6 Sparsity Check

The distributions over the three types of zeros and non-zero entries in the collected dataset for male and female players, as mentioned in the main file, are presented in Table S-2.

	N	I ale	Fe	male
Total Entries	$14 \times 20 >$	$\times 20 = 5600$	$16 \times 20 >$	< 20 = 6400
	Number	Percentage	Number	Percentage
Non-zero	1024	18.30%	788	12.31%
Zeros on the diagonal	280	5.00%	320	5.00%
Missing data	3478	62.10%	4598	71.84%
True zeros	818	14.60%	694	10.85%

Table S-2: Sparsity of datasets $\{b_{ij}^{(m)}\}$

S-7 Numerical Results for K = 3 for men

Tables S-3 and S-4 show the **W** and **H** matrices for the men when K=3. The matrix $\Lambda=\mathbf{WH}$ when K=3 is displayed in Tables S-5 and S-6.

Tournaments	Ro	w Normalizati	on	Colu	ımn Normaliza	ition
Australian Open	2.25E-01	3.61E-01	4.14E-01	1.87E-02	4.00E-02	3.65E-02
Indian Wells Masters	2.74E-01	2.79E-01	4.47E-01	4.21E-02	8.02E-02	5.24E-02
Miami Open	6.28E-02	8.45E-01	9.25E-02	1.56E-02	2.68E-02	2.56E-01
Monte-Carlo Masters	8.32E-01	6.06E-101	1.68E-01	1.96E-01	4.63E-02	2.02E-72
Madrid Open	0.00E+00	1.00E-00	1.89E-33	0.00E+00	8.73E-14	2.03E-01
Italian Open	7.65E-01	2.35E-01	0.00E+00	1.64E-01	0.00E+00	6.14E-02
French Open	6.17E-01	1.02E-01	2.81E-01	9.10E-02	4.83E-02	1.83E-02
Wimbledon	3.94E-01	6.11E-10	6.06E-01	5.51E-02	9.92E-02	1.40E-20
Canadian Open	0.00E+00	0.00E+00	1.00E-00	0.00E+00	2.55E-01	0.00E+00
Cincinnati Masters	4.95E-01	3.31E-16	5.05E-01	1.51E-01	1.80E-01	2.30E-38
US Open	3.36E-01	2.82E-01	3.82E-01	5.60E-02	7.42E-02	5.73E-02
Shanghai Masters	9.85E-167	6.45E-01	3.55E-01	1.04E-141	7.92E-02	1.51E-01
Paris Masters	7.48E-01	1.47E-01	1.06E-01	1.88E-01	3.09E-02	4.49E-02
The ATP Finals	1.46E-01	6.32E-01	2.21E-01	2.26E-02	3.99E-02	1.19E-01

Table S-3: Learned dictionary matrix **W** for the men's dataset when K=3

Players		matrix \mathbf{H}^T	
Novak Djokovic	3.66E-02	3.37E-02	1.81E-01
Rafael Nadal	1.38E-01	1.30E-02	4.03E-02
Roger Federer	6.44E-03	6.25E-02	6.03E-02
Andy Murray	4.40E-32	4.45E-02	3.31E-02
Tomas Berdych	1.62E-02	0.00E+00	1.03E-02
David Ferrer	2.29E-02	0.00E+00	1.04E-02
Stan Wawrinka	2.87E-02	0.00E+00	1.02E-02
Jo-Wilfried Tsonga	1.77E-03	3.05E-02	6.69E-04
Richard Gasquet	1.05E-02	4.02E-03	3.09E-03
Juan Martin del Potro	3.62E-03	1.56E-02	1.84E-02
Marin Cilic	0.00E+00	1.86E-02	7.38E-10
Fernando Verdasco	5.53E-03	1.26E-02	1.81E-03
Kei Nishikori	0.00E+00	1.56E-03	3.09E-02
Gilles Simon	3.16E-03	1.10E-02	2.07E-03
Milos Raonic	7.13E-03	1.10E-02	9.22E-04
Philipp Kohlschreiber	4.58E-03	4.09E-07	1.12E-06
John Isner	1.63E-02	2.13E-03	0.00E+00
Feliciano Lopez	0.00E+00	6.14E-03	1.02E-02
Gael Monfils	9.27E-03	0.00E+00	2.63E-03
Nicolas Almagro	2.25E-06	5.91E-03	0.00E+00

Table S-4: Learned transpose of coefficient matrix \mathbf{H}^T with column normalization of \mathbf{W} for the men's dataset when K=3

S-8 Numerical Results for Λ for K=2 for the men

The matrix $\Lambda = \mathbf{W}\mathbf{H}$ when K = 2 for the men players is displayed in Tables S-7 and S-8.

S-9 Numerical Results for K = 2 for women

Table S-9 show the learned dictionary matrix **W** for the women's dataset when K=2.

S-10 Numerical Results for Λ for K=2 for the women

The matrix $\Lambda = \mathbf{WH}$ when K = 2 for the women players is displayed in Tables S-10 and S-11.

Tournament	Novak Djokovic	Rafael Nadal	Roger Federer	Andy Murray	Tomas Berdych	David Ferrer	Stan Wawrinka	Jo-Wilfried Tsonga	Richard Gas- quet	Juan Martin del Potro
Australian Open	8.64E-03	4.58E-03	4.82E-03	2.99E-03	6.78E-04	8.09E-04	9.11E-04	1.28E-03	4.70E-04	1.36E-03
Indian Wells Masters	1.37E-02	8.97E-03	8.45E-03	5.31E-03	1.22E-03	1.51E-03	1.74E-03	2.56E-03	9.26E-04	2.36E-03
Miami Open	4.78E-02	1.28E-02	1.72E-02	9.68E-03	2.88E-03	3.03E-03	3.07E-03	1.02E-03	1.06E-03	5.18E-03
Monte-Carlo Masters	8.75E-03	2.77E-02	4.16E-03	2.06E-03	3.18E-03	4.49E-03	5.64E-03	1.76E-03	2.24E-03	1.43E-03
Madrid Open	3.68E-02	8.18E-03	1.23E-02	6.73E-03	2.09E-03	2.12E-03	2.08E-03	1.36E-04	6.29E-04	3.73E-03
Italian Open	1.71E-02	2.51E-02	4.76E-03	2.03 E-03	3.28E-03	4.39E-03	5.33E-03	3.31E-04	1.91E-03	1.72E-03
French Open	8.28E-03	1.39E-02	4.71E-03	$2.76\mathrm{E}\text{-}03$	1.66E-03	2.27E-03	2.80E-03	1.65E-03	1.20E-03	1.42E-03
Wimbledon	5.36E-03	8.90E-03	6.56E-03	4.41E-03	8.94E-04	1.26E-03	1.58E-03	3.13E-03	9.76E-04	1.74E-03
Canadian Open	8.59E-03	3.31E-03	1.60E-02	1.14E-02	0.00E+00	0.00E+00	0.00E+00	7.80E-03	1.03E-03	3.97E-03
Cincinnati Masters	1.16E-02	2.32E-02	1.22E-02	8.00E-03	2.45E-03	3.46E-03	4.34E-03	5.76E-03	2.31E-03	3.34E-03
US Open	1.49E-02	1.10E-02	8.46E-03	5.20E-03	1.50E-03	1.88E-03	2.19E-03	2.40E-03	1.06E-03	2.41E-03
Shanghai Masters	3.00E-02	7.11E-03	1.41E-02	8.53E-03	1.55E-03	1.58E-03	1.54E-03	2.52E-03	7.86E-04	4.01E-03
Paris Masters	1.60E-02	2.81E-02	5.85E-03	$2.86 \hbox{E-}03$	3.50E-03	4.76E-03	5.84E-03	1.31E-03	2.23E-03	1.99E-03
ATP World Tour Finals	2.38E-02	8.44E-03	9.83E-03	5.72E-03	1.59E-03	1.76E-03	1.87E-03	1.34E-03	7.66E-04	2.89E-03

Table S-5: Learned $\mathbf{\Lambda} = \mathbf{WH}$ matrix for first 10 men players when K=3

Tournament	Marin Cilic	Fernando Ver- dasco	Gilles Simon	Milos Raonic	John Isner	Philipp Kohlschreiber	John Isner	Feliciano Lopez	Gael Monfils	Nicolas Alma- gro
Australian Open	7.45E-04	6.75E-04	1.19E-03	5.73E-04	6.09E-04	8.59E-05	3.90E-04	6.16E-04	2.70E-04	2.37E-04
Indian Wells Masters	1.49E-03	1.34E-03	1.74E-03	1.12E-03	1.23E-03	1.93E-04	8.55E-04	1.03E-03	5.28 E-04	4.75E-04
Miami Open	4.99E-04	8.89E-04	7.94E-03	8.73E-04	6.43E-04	7.18E-05	3.11E-04	2.77E-03	8.18E-04	1.59E-04
Monte-Carlo Masters	8.61E-04	1.67E-03	7.20E-05	1.13E-03	1.91E-03	9.00E-04	3.29E-03	2.84E-04	1.82E-03	2.74E-04
Madrid Open	1.50E-10	3.68E-04	6.27E-03	4.20E-04	1.87E-04	2.28E-07	1.86E-16	2.07E-03	5.34E-04	5.16E-16
Italian Open	4.53E-11	1.02E-03	1.90E-03	6.45E-04	1.22E-03	7.50E-04	2.66E-03	6.24E-04	$1.68 \hbox{E-}03$	3.68E-07
French Open	9.00E-04	1.15E-03	6.41E-04	8.55E-04	1.20E-03	4.17E-04	1.58E-03	4.83E-04	8.91E-04	2.86E-04
Wimbledon	1.85E-03	1.56E-03	1.54E-04	1.26E-03	1.49E-03	2.53E-04	1.11E-03	6.09E-04	5.11E-04	5.87E-04
Canadian Open	4.75E-03	3.22E-03	3.97E-04	2.80E-03	2.82E-03	1.04E-07	5.44E-04	1.57E-03	0.00E+00	1.51E-03
Cincinnati Masters	3.35E-03	3.11E-03	2.80E-04	2.45E-03	3.06E-03	6.92E-04	2.84E-03	1.10E-03	1.40E-03	1.06E-03
US Open	1.38E-03	1.35E-03	1.88E-03	1.11E-03	1.27E-03	2.57E-04	1.07E-03	1.04E-03	6.70E-04	4.39E-04
Shanghai Masters	1.47E-03	1.27E-03	4.78E-03	1.18E-03	1.01E-03	2.02E-07	1.69E-04	2.02E-03	3.97E-04	4.69E-04
Paris Masters	5.76E-04	1.51E-03	1.43E-03	1.02E-03	1.72E-03	8.59E-04	3.11E-03	6.46E-04	1.86E-03	1.83E-04
ATP World Tour Finals	7.43E-04	8.45E-04	3.74E-03	7.55E-04	7.12E-04	1.04E-04	4.53E-04	1.46E-03	5.23E-04	2.36E-04

Table S-6: Learned ${\bf \Lambda}={\bf WH}$ matrix for last 10 men players when K=3

Tournament	Novak Djokovic	Rafael Nadal	Roger Federer	Andy Murray	Tomas Berdych	David Ferrer	Stan Wawrinka	Jo-Wilfried Tsonga	Richard Gas- quet	Juan Martin del Potro
Australian Open	2.16E-02	1.54E-02	1.47E-02	9.13E-03	2.47E-03	2.67E-03	3.34E-03	3.97E-03	1.77E-03	4.41E-03
Indian Wells Masters	2.29E-02	1.42E-02	1.68E-02	1.06E-02	2.13E-03	2.30E-03	2.88E-03	4.63E-03	1.72E-03	4.84E-03
Miami Open	2.95E-02	2.30E-02	1.90E-02	1.17E-02	3.80E-03	4.12E-03	5.15E-03	5.07E-03	2.55E-03	5.89E-03
Monte-Carlo Masters	1.19E-02	1.53E-02	4.46E-03	2.27E-03	2.90E-03	3.14E-03	3.92E-03	9.12E-04	1.46E-03	1.94E-03
Madrid Open	1.38E-02	1.51E-02	6.63E-03	3.75E-03	2.75E-03	2.97E-03	3.72E-03	1.57E-03	1.50E-03	2.45E-03
Italian Open	1.19E-02	1.84E-02	2.78E-03	1.00E-03	3.59E-03	3.89E-03	4.87E-03	3.23E-04	1.68E-03	1.71E-03
French Open	1.39E-02	1.43E-02	7.12E-03	4.11E-03	2.57E-03	2.79E-03	3.48E-03	1.74E-03	1.45E-03	2.52E-03
Wimbledon	2.63E-02	1.66E-02	1.91E-02	1.20E-02	2.50E-03	2.71E-03	3.39E-03	5.27E-03	2.00E-03	5.54E-03
Canadian Open	1.16E-02	2.40E-03	1.11E-02	7.32E-03	0.00E+00	1.26E-39	2.42E-51	3.25E-03	5.31E-04	2.81E-03
Cincinnati Masters	1.82E-02	1.43E-02	1.17E-02	7.17E-03	2.36E-03	2.56E-03	3.20E-03	3.10E-03	1.58E-03	3.62E-03
US Open	1.17E-02	9.42E-03	7.38E-03	4.51E-03	1.58E-03	1.71E-03	2.13E-03	1.95E-03	1.03E-03	2.31E-03
Shanghai Masters	8.12E-03	4.38E-03	6.29E-03	4.01E-03	6.09E-04	6.59E-04	8.24E-04	1.76E-03	5.64E-04	1.76E-03
Paris Masters	7.29E-03	9.37E-03	2.73E-03	1.39E-03	1.77E-03	1.92E-03	2.40E-03	5.58E-04	8.94E-04	1.19E-03
ATP World Tour Finals	1.13E-02	8.13E-03	7.63E-03	4.74E-03	1.31E-03	1.41E-03	1.77E-03	2.06E-03	9.29E-04	2.30E-03

Table S-7: Learned $\mathbf{\Lambda} = \mathbf{WH}$ matrix for first 10 men players when K=2

Tournament	Marin Cilic	Fernando Ver- dasco	Gilles Simon	Milos Raonic	John Isner	Philipp Kohlschreiber	John Isner	Feliciano Lopez	Gael Monfils	Nicolas Alma- gro
Australian Open	2.36E-03	2.24E-03	2.87E-03	1.84E-03	2.21E-03	4.38E-04	1.47E-03	1.86E-03	1.09E-03	7.23E-04
Indian Wells Masters	2.79E-03	2.42E-03	2.72E-03	2.06E-03	2.42E-03	3.77E-04	1.37E-03	2.12E-03	9.39E-04	8.56E-04
Miami Open	2.98E-03	3.02E-03	4.20E-03	2.43E-03	2.95E-03	6.75E-04	2.18E-03	2.43E-03	1.68E-03	9.12E-04
Monte-Carlo Masters	4.10E-04	1.11E-03	2.58E-03	6.96E-04	9.77E-04	5.14E-04	1.43E-03	5.95E-04	1.28E-03	1.26E-04
Madrid Open	8.34E-04	1.34E-03	2.59E-03	9.37E-04	1.23E-03	4.87E-04	1.41E-03	8.64E-04	1.21E-03	2.56E-04
Italian Open	0.00E+00	1.05E-03	3.03E-03	5.47E-04	8.63E-04	6.38E-04	1.71E-03	3.95E-04	1.59E-03	7.68E-07
French Open	9.48E-04	1.36E-03	2.49E-03	9.82E-04	1.27E-03	4.57E-04	1.34E-03	9.22E-04	1.14E-03	2.91E-04
Wimbledon	3.17E-03	2.77E-03	3.17E-03	2.36E-03	2.77E-03	4.45E-04	1.59E-03	2.42E-03	1.11E-03	9.72E-04
Canadian Open	2.05E-03	1.32E-03	6.84E-04	1.27E-03	1.40E-03	2.26E-07	2.62E-04	1.38E-03	2.46E-19	6.27E-04
Cincinnati Masters	1.82E-03	1.86E-03	2.60E-03	1.49E-03	1.81E-03	4.20E-04	1.35E-03	1.49E-03	1.04E-03	5.58E-04
US Open	1.14E-03	1.19E-03	1.71E-03	9.49E-04	1.16E-03	2.80E-04	8.94E-04	9.42E-04	6.97E-04	3.49E-04
Shanghai Masters	1.08E-03	8.69E-04	8.72E-04	7.62E-04	8.82E-04	1.08E-04	4.26 E-04	7.92E-04	2.69E-04	3.29E-04
Paris Masters	$2.51\mathrm{E}\text{-}04$	6.78E-04	1.58E-03	4.26E-04	5.97E-04	3.14E-04	8.72E-04	3.64E-04	7.82E-04	7.73E-05
ATP World Tour Finals	1.22E-03	1.17E-03	1.51E-03	9.61E-04	1.15 E-03	2.32E-04	7.76E-04	9.70E-04	5.77E-04	3.75E-04

Table S-8: Learned $\Lambda = \mathbf{WH}$ matrix for last 10 men players when K = 2

Tournaments	Row Norm	nalization	Column Nor	rmalization
Australian Open	1.00E-00	3.74E-26	1.28E-01	3.58E-23
Qatar Open	6.05E-01	3.95E-01	1.05E-01	4.94E-02
Dubai Tennis Championships	1.00E-00	1.42E-43	9.47E-02	3.96E-39
Indian Wells Open	5.64E-01	4.36E-01	8.12E-02	4.51E-02
Miami Open	5.86E-01	4.14E-01	7.47E-02	3.79E-02
Madrid Open	5.02E-01	4.98E-01	6.02E-02	4.29E-02
Italian Open	3.61E-01	6.39E-01	5.22E-02	6.63E-02
French Open	1.84E-01	8.16E-01	2.85E-02	9.04E-02
Wimbledon	1.86E-01	8.14E-01	3.93E-02	1.24E-01
Canadian Open	4.59E-01	5.41E-01	5.81E-02	4.92E-02
Cincinnati Open	9.70E-132	1.00E-00	5.20E-123	1.36E-01
US Open	6.12E-01	3.88E-01	8.04E-02	3.66E-02
Pan Pacific Open	1.72E-43	1.00E-00	7.82E-33	1.57E-01
Wuhan Open	1.00E-00	6.87E-67	1.41E-01	1.60E-61
China Open	2.26E-01	7.74E-01	4.67E-02	1.15E-01
WTA Finals	1.17E-01	8.83E-01	9.30E-03	5.03E-02

Table S-9: Learned dictionary matrix **W** for the women's dataset when K=2

S-11 Numerical Results for BTL and Mixture-BTL models

The learned skill vectors λ for the mixture-BTL models with K=1 and K=2 across two almost-optimal trials are displayed in Table S-12. Two other trials with K=2 and similar likelihoods are displayed in Table S-13.

References

[1] Zhao, R., Tan, V. Y. F.: A unified convergence analysis of the multiplicative update algorithm for regularized nonnegative matrix factorization. IEEE Transactions on Signal Processing. 66(1), 129–138 (2018)

Tournament	Serena Williams	Agnieszka Radwanska	Victoria Azarenka	Caroline Woz- niacki	Maria Shara- pova	Simona Halep	Petra Kvitova	Angelique Kerber	Samantha Stosur	Ana Ivanovic
Australia Open	6.13E-03	2.48E-03	7.27E-03	3.13E-03	8.67E-04	1.55E-03	2.47E-03	7.05E-04	4.29E-05	9.88E-04
Qatar Open	1.30E-02	3.23E-03	6.80E-03	3.92E-03	5.18E-03	3.01E-03	3.94E-03	2.26E-03	2.13E-03	2.26E-03
Dubai Tennis Championships	4.53E-03	1.83E-03	5.38E-03	2.31E-03	6.41E-04	1.15E-03	1.83E-03	5.21E-04	3.17E-05	7.30E-04
Indian Wells Open	1.12E-02	2.66E-03	5.36E-03	3.22E-03	4.63E-03	2.57E-03	3.31E-03	1.98E-03	1.94E-03	1.95E-03
Miami Open	9.69E-03	2.36E-03	4.87E-03	2.86E-03	3.93E-03	2.24E-03	2.90E-03	1.70E-03	1.63E-03	1.69E-03
Madrid Open	9.80E-03	2.20E-03	4.12E-03	2.64E-03	4.29E-03	2.23E-03	2.81E-03	1.79E-03	1.83E-03	1.72E-03
Italian Open	1.32E-02	2.61E-03	4.06E-03	3.08E-03	6.35E-03	2.96E-03	3.56E-03	2.54E-03	2.82E-03	2.34E-03
French Open	1.59E-02	2.74E-03	3.11E-03	3.16E-03	8.37E-03	3.52E-03	4.03E-03	3.23E-03	3.83E-03	2.87E-03
Wimbledon	2.18 E-02	3.76E-03	4.28E-03	4.34E-03	1.15E-02	4.82E-03	5.52E-03	4.42E-03	5.25E-03	3.93E-03
Canadian Open	1.07E-02	2.31E-03	4.11E-03	2.76E-03	4.84E-03	2.43E-03	3.02E-03	1.99E-03	2.10E-03	1.89E-03
Cincinnati Open	2.20E-02	3.30E-03	2.25E-03	3.71E-03	1.23E-02	4.77E-03	5.24E-03	4.62E-03	5.75E-03	3.99E-03
US Open	9.75E-03	2.44E-03	5.17E-03	2.96E-03	3.85E-03	2.26E-03	2.96E-03	1.68E-03	1.57E-03	1.69E-03
Pan Pacific Open	2.54 E-02	3.81E-03	2.60E-03	4.29E-03	1.42E-02	5.52E-03	6.06E-03	5.35E-03	6.66E-03	4.61E-03
Wuhan Open	6.77E-03	2.73E-03	8.03E-03	3.45E-03	9.57E-04	1.71E-03	2.73E-03	7.77E-04	4.73E-05	1.09E-03
China Open	2.08 E-02	3.68E-03	4.55E-03	4.27E-03	1.07E-02	4.60E-03	5.33E-03	4.16E-03	4.87E-03	3.72E-03
WTA Finals	8.56E-03	1.40E-03	1.36E-03	1.60E-03	4.61E-03	1.88E-03	2.12E-03	1.76E-03	2.13E-03	1.54E-03

Table S-10: Learned $\Lambda = \mathbf{WH}$ matrix for first 10 women players

Marion Bartoli	1.50E-03	2.16E-03	1.11E-03	1.80E-03	1.59E-03	1.51E-03	1.86E-03	2.04E-03	2.79E-03	1.61E-03	2.56E-03	1.63E-03	2.97E-03	1.65E-03	2.71E-03	1.06E-03
Roberta Vinci	4.28E-03	3.52E-03	3.17E-03	2.72E-03	2.50E-03	2.01E-03	1.75E-03	9.52E-04	1.32E-03	1.94E-03	1.74E-124	2.69E-03	2.62E-34	4.72E-03	1.56E-03	3.11E-04
Karolina Pliskova	1.03E-03	2.15E-03	7.58E-04	1.85E-03	1.60E-03	1.62E-03	2.17E-03	2.62E-03	3.59E-03	1.77E-03	3.60E-03	1.61E-03	4.17E-03	1.13E-03	3.42E-03	1.41E-03
Sara Errani	8.27E-05	1.56E-03	6.11E-05	1.42E-03	1.19E-03	1.34E-03	2.04E-03	2.75E-03	3.77E-03	1.53E-03	4.11E-03	1.16E-03	4.76E-03	9.12E-05	3.50E-03	1.53E-03
Elina Svitolina	5.20E-04	1.53E-03	3.85E-04	1.34E-03	1.15E-03	1.20E-03	1.69E-03	2.14E-03	2.92E-03	1.34E-03	3.04E-03	1.14E-03	3.52E-03	5.74E-04	2.76E-03	1.16E-03
Lucie Safarova	1.27E-24	1.75E-03	1.40E-40	1.60E-03	1.34E-03	1.52E-03	2.35E-03	3.21E-03	4.39E-03	1.75E-03	4.83E-03	1.30E-03	5.58E-03	5.67E-63	4.07E-03	1.78E-03
Dominika Cibulkova	3.07E-03	3.10E-03	2.27E-03	2.48E-03	2.23E-03	1.94E-03	2.03E-03	1.74E-03	2.39E-03	1.97E-03	1.59E-03	2.36E-03	1.83E-03	3.39E-03	2.46E-03	8.09E-04
Carla Suarez Navarro	3.63E-03	2.99E-03	2.68E-03	2.30E-03	2.12E-03	1.71E-03	1.48E-03	8.07E-04	1.12E-03	1.65E-03	8.71E-07	2.28E-03	1.01E-06	4.00E-03	1.33E-03	2.64E-04
Anastasia Pavlyuchenkova	7.15E-04	1.33E-03	5.28E-04	1.13E-03	9.83E-04	9.77E-04	1.28E-03	1.51E-03	2.07E-03	1.06E-03	2.03E-03	9.95E-04	2.35E-03	7.89E-04	1.98E-03	8.03E-04
Jelena Jankovic	1.21E-04	1.29E-03	8.92E-05	1.16E-03	9.84E-04	1.09E-03	1.65E-03	2.21E-03	3.02E-03	1.24E-03	3.28E-03	9.57E-04	3.79E-03	1.33E-04	2.81E-03	1.22E-03
Tournament	Australia Open	Qatar Open	Dubai Tennis Championships	Indian Wells Open	Miami Open	Madrid Open	Italian Open	French Open	Wimbledon	Canadian Open	Cincinnati Open	US Open	Pan Pacific Open	Wuhan Open	China Open	WTA Finals

Table S-11: Learned $\Lambda = \mathbf{WH}$ matrix for last 10 women players

Players	K = 1	K :	= 2
Novak Djokovic	2.14E-01	7.14E-02	1.33E-01
Rafael Nadal	1.79E-01	1.00E-01	4.62E-02
Roger Federer	1.31E-01	1.35E-01	1.33E-02
Andy Murray	7.79E-02	6.82E-02	4.36E-03
Tomas Berdych	3.09E-02	5.26E-02	2.85E-04
David Ferrer	3.72E-02	1.79E-02	4.28E-03
Stan Wawrinka	4.32E-02	2.49E-02	4.10E-03
Jo-Wilfried Tsonga	2.98E-02	3.12E-12	1.08E-01
Richard Gasquet	2.34E-02	1.67E-03	2.97E-03
Juan Martin del Potro	4.75E-02	8.54E-05	4.85E-02
Marin Cilic	1.86E-02	3.37E-05	2.35E-03
Fernando Verdasco	2.24E-02	5.78E-02	8.00E-09
Kei Nishikori	3.43E-02	5.37E-08	3.58E-02
Gilles Simon	1.90E-02	7.65E-05	5.16E-03
Milos Raonic	2.33E-02	2.61E-04	6.07E-03
Philipp Kohlschreiber	7.12E-03	1.78E-25	3.55E-03
John Isner	1.84E-02	2.99E-02	1.75E-08
Feliciano Lopez	1.89E-02	1.35E-02	3.10E-04
Gael Monfils	1.66E-02	5.38E-10	6.53E-03
Nicolas Almagro	7.24E-03	1.27E-15	1.33E-03
Mixture weights	1.00E+00	4.72E-01	5.28E-01
Log-likelihoods	-682.13	-657	7.56

Table S-12: Learned $\boldsymbol{\lambda}$'s for the BTL (K=1) and mixture-BTL (K=2) models

Players	K = 2 Trial 1		K=2 Trial 2	
Novak Djokovic	1.20E-01	2.91E-02	3.40E-05	9.42E-05
Rafael Nadal	1.07E-01	2.25E-02	1.47E-05	1.15E-04
Roger Federer	1.53E-01	1.11E-02	9.29E-03	1.83E-05
Andy Murray	1.43E-01	4.39E-03	2.46E-05	1.52E-05
Tomas Berdych	2.37E-12	6.59E-03	6.51E-19	1.60E-05
David Ferrer	4.74E-02	2.19E-03	1.56E-05	5.89E-06
Stan Wawrinka	6.26E-07	7.21E-03	2.11E-05	6.29E-06
Jo-Wilfried Tsonga	2.03E-01	5.88E-04	9.90E-01	1.04E-06
Richard Gasquet	4.98E-04	1.62E-03	5.30E-08	4.81E-06
Juan Martin del Potro	4.26E-06	8.01E-03	1.90E-05	7.19E-06
Marin Cilic	1.56E-09	2.12E-03	3.49E-16	4.11E-06
Fernando Verdasco	2.75E-17	7.12E-03	6.54E-05	9.72E-07
Kei Nishikori	1.83E-12	8.58E-03	4.18E-23	1.77E-05
Gilles Simon	5.14E-06	1.31E-03	2.47E-10	4.13E-06
Milos Raonic	2.07E-07	2.84E-03	3.99E-08	6.00E-06
Philipp Kohlschreiber	0.00E+00	1.13E-03	7.99E-06	5.0E-324
John Isner	6.93E-02	3.21E-04	1.73E-22	9.47E-06
Feliciano Lopez	3.67E-02	4.93E-04	8.57E-06	1.38E-06
Gael Monfils	6.05E-14	2.85E-03	1.06E-12	4.00E-06
Nicolas Almagro	4.18E-07	2.14E-04	1.04E-14	8.10E-07
Assignments	4.72E-01	5.28E-01	3.32E-01	6.68E-01
Log-likelihoods	-657.56		-656.47	

Table S-13: Learned $\pmb{\lambda}$ skill vectors for the mixture-BTL model with K=2