Recitation 4 - Proving Regularity and Nonregularity

John Chilton

June 8, 2007

- ▶ Proving Regularity
 - \rightarrow A^R
 - ▶ NOPREFIX(A)
- ▶ Proving Nonregularity Pumping Lemma
 - ▶ 1.47
 - \blacktriangleright { $w \mid |w|$ is prime}

Give a or describe a construction for a DFA, NFA, or regular expression that recognizes the required language.

▶ Alto of people came up with a correct construction, but many failed to prove it or argue why it works.

Given $w = w_1 w_2 \dots w_n \in A$. $w \in LANG(M) \implies \exists r_0 r_1 r_2 \dots r_n$ such that (P 40):

- $r_0 = q_0$
- $ightharpoonup r_n \in F$
- $ightharpoonup r_{i+1} = \delta(r_i, w_{i+1}) \text{ for } i = 0, 1, \dots, n-1$

Given $w = w_1 w_2 \dots w_n \in A$. $w \in LANG(M) \implies \exists r_0 r_1 r_2 \dots r_n$ such that (P 40):

- $r_0 = q_0$
- $ightharpoonup r_n \in F$
- $ightharpoonup r_{i+1} = \delta(r_i, w_{i+1}) \text{ for } i = 0, 1, \dots, n-1$

To show $w^R \in LANG(M')$ need to express w^R as $y = y_1y_2...y_m$ and find sequence of states $s_0s_1...s_m$ such that (Page 54):

- $ightharpoonup s_0 = q_0'$
- $ightharpoonup s_m \in F'$
- ► $s_{i+1} \in \delta'(s_i, y_{i+1})$ for i = 0, 1, ..., m-1

▶ If s can be written as xy for strings x and y, then x is a prefix of s.

- ▶ If s can be written as xy for strings x and y, then x is a prefix of s.
- ▶ If $y \neq \epsilon$, then x is a proper prefix of s.

- ▶ If s can be written as xy for strings x and y, then x is a prefix of s.
- ▶ If $y \neq \epsilon$, then x is a proper prefix of s.
- Example: 10 is a prefix and proper prefix of 1011.

- ▶ If s can be written as xy for strings x and y, then x is a prefix of s.
- ▶ If $y \neq \epsilon$, then x is a proper prefix of s.
- ▶ Example: 10 is a prefix and proper prefix of 1011.
- ▶ Example: 1011 is a prefix of 1011, but not a proper prefix.

Problem 1.40 part a.

 $NOPREFIX(A) = \{ w \in A \mid \text{no proper prefix of } w \text{ is a member of } A \}$

Problem 1.40 part a.

$$NOPREFIX(A) = \{ w \in A \mid \text{no proper prefix of } w \text{ is a member of } A \}$$

If
$$A = \{100, 101, 1011\}$$
, then $NOPREFIX(A) = \{100, 101\}$.

"Solution" from the book. Given NFA $M=(Q,\Sigma,\delta,q_0,F)$ which recognizes A, construct the following NFA, $M'=(Q,\Sigma,\delta',q_0,F)$ with:

$$\delta'(r,a) = \begin{cases} \delta(r,a) & \text{if } r \notin F \\ \phi & \text{if } r \in F \end{cases}$$

IDEA: If after reading some string, x, M is in an accept state and then M continues to read in characters and ends in the same or another accept state then we shouldn't accept that string because x is a proper prefix of the whole string and is in A. So drop all outgoing transitions on accept states.

Proof:

 \triangleright $w \in NOPREFIX(A)$:

▶ $w \notin NOPREFIX(A)$ and $w \in A$:

▶ $w \notin NOPREFIX(A)$ and $w \notin A$:

For every regular language A, there exists an integer p (the pumping length) such that any string $w \in A$ on length at least p can be expressed as w = xyz, with

- ▶ $|xy| \le p$
- ▶ $|y| \ge 1$ (y isn't empty)
- $\blacktriangleright xz \in A$, $xyz \in A$, $xy^2z = xyyz \in A$, $xy^3z \in A$

To show a language is nonregular, pick a string in A of length at least p, then show no possible way of assigning x, y, and z results in an assignment that can be pumped.

$$\Sigma = \{1, \#\}$$

$$Y = \{ w \mid w = x_1 \# x_2 \# \dots \# x_k \text{ with } x_i = 1^* \text{ and } x_i \neq x_j \}$$

▶ 11111 ∈ *Y*

- ▶ 11111 ∈ *Y*
- **▶** 111#1 ∈ *Y*

- ▶ 11111 ∈ *Y*
- **▶** 111#1 ∈ *Y*
- **▶** 1#111 ∈ *Y*

- ▶ 11111 ∈ *Y*
- **▶** 111#1 ∈ *Y*
- **▶** 1#111 ∈ *Y*
- ▶ 1#11#111 ∈ *Y*

- ▶ 11111 ∈ *Y*
- ▶ 111#1 ∈ Y
- ▶ 1#111 ∈ Y
- ▶ 1#11#111 ∈ Y
- **▶** 11#11 ∉ *Y*

- **▶** 11111 ∈ *Y*
- **▶** 111#1 ∈ *Y*
- **▶** 1#111 ∈ *Y*
- **▶** 1#11#111 ∈ *Y*
- ▶ 11#11 ∉ Y
- ► 11#1#11 ∉ *Y*

▶ One Idea: $1^p \# 1^{p+1}$

For
$$\Sigma = \{0, 1\}$$
, consider $A = \{w \mid |w| \text{ is prime}\}$.

- ▶ 111 ∈ A
- **▶** 1111 ∉ *A*

- ▶ Consider $w = 1^q$. Where q is the smallest prime number larger than the p.
- ▶ Assume *A* is regular and consider some decomposition of *w* as promised by the pumping lemma:

$$w = 1^q = xyz = 1^k 1^l 1^m$$

- For this decomposition we know:
 - q = k + l + m
 - $|xy| \le p \implies k+l \le p$
 - $|y| \ge 1 \implies l \ge 1$
 - ▶ If A is regular, then xy^nz should be of prime length for any n
 - ▶ Now we need to derive a contradiction, which will show *A* isn't regular.