On Recovering IP Information from EM Data

Doug Oldenburg*, Dave Marchant, Dikun Yang, Seogi Kang, and Eldad Haber

Outline

- Background for IP problem
- Forward problem in the time domain
- Inverse problem
- Field example Mt. Milligan
- Conclusions and the path ahead

| Electrical conductivity is complex

$$\vec{J} = \sigma(\omega)\vec{E}$$

$$\sigma(\omega) = \sigma_{\infty} \left[(1 - \frac{\eta}{1 + (1 - \eta)(i\omega\tau)^{c}}) \right]$$

 σ_a : Conducti at zero frequency

 η : Chargeability

 ω : Angular frequency

 τ : Time constant

c: Frequency dependence

Different experiments

Inverse problem: two paths

1. Directly in time domain

2. Linearized inversion

Complex conductivity

$$\sigma(\omega) = \sigma_{\infty} \left[\left(1 - \frac{\eta}{1 + (1 - \eta)(i\omega\tau)^{c}} \right) \right] = \sigma_{\infty} + \Delta\sigma(\omega)$$

 $\sigma(\omega)$: Conductivity

 σ_o : Conducti at zero frequency

 η : Chargeability

 ω : Angular frequency

 τ : Time constant

c: Frequency dependence

- σ_∞ is background conductivity
- Obtained from early times that are not contaminated with IP effects.
- The IP effect is a perturbation. This is a good approximation when η is small and has been traditionally used

IP data and EM coupling removal

Conductivity

$$\sigma(\omega) = \sigma_{\infty} + \Delta \sigma(\omega) \qquad \tilde{\eta}(\omega) = \frac{\eta}{1 + (1 - \eta)(i\omega\tau)^{c}}$$

Background conductivity

Removing EM coupling

Removing EWI coupling
$$+ \frac{dF}{d\sigma} \Delta \sigma(t)$$

$$F[\sigma_{\infty} + \Delta \sigma(t)] - F[\sigma_{\infty}] = d^{IP}(t) = -\frac{dF(t)}{d\sigma} \sigma_{\infty} \eta(t)$$

$$d^{IP}(t) = G(t)\eta(t)$$

$$G(t) = -\frac{dF(t)}{d\log(\sigma)}$$

Routh and Oldenburg (2001)

Need background conductivity (σ_{∞})

 Carry out 3D inversion of the AEM data (leave out time channels that have negative transients)

 Methodology: Yang and Oldenburg [AGU, 2012, ASEG 2012]

Local mesh for forward modelling and sensitivities

Stochastic selection of transmitters

Synthetic example

True model

- ✓ Discretization
 - 20 m core cells
 - 69 x 69 x 50 cells
- ✓ Background

$$\sigma_{half} = 5e-4 \text{ S/m}$$

✓ Target

$$-\sigma_{\infty} = 6.25e-2 \text{ S/m}$$

$$-\eta = 0.2$$

$$-\tau = 0.01$$

- 80m x 80m x 80m
- 60m below surface

Synthetic example

Geometry

- ✓ VMD source30m above surfaceCollocated Rx
- \checkmark 7×31 = 217 Txs
- ✓ Receivers
 - Collocated with Tx
 - Measuring db/dt
 - 14 time channels
 - $-10^{-3}-10^{-1}$ seconds

• At x = 0 m (EW) and y = 0 m (NS)

 $F[\sigma_{\infty} + \Delta \sigma(t)]$

 $F[\sigma_{\infty}]$

Time (s)

 d^{L}

-100

• db/dt data at time = 0.003s

200

-200

-300

-200

200

-200

200

0

db/dt data at time = 0.006s

• db/dt data at time = 0.012s

• db/dt data at time = 0.024s

200

0

-200

-300

-200

0

200

n

200

-200

|Linear Inversion

At each time

$$\min \quad \phi = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$$

s.t. $0 \le \mathbf{m}$

$$\phi_d = \sum_{i=1}^{N} \left(\frac{\vec{d}_i^{pred} - \vec{d}_i^{obs}}{\epsilon_i} \right)^2$$

$$\phi_m = ||\mathbf{W_m}(m - m_{ref})||_2^2$$

$$d^{IP}(t) = G(t)\tilde{\eta}(t)$$

$$G(t) = -\frac{dF(t)}{d\log(\sigma)}$$

3D volume of $\tilde{\eta}(t)$

Recovered pseudo chargeability

<Cross section>

Without depth weighting

Sensitivity volume

With depth weighting

Depth weighting

Recovered pseudo chargeability

At four different time channels

Effects of background conductivity

Procedure

Invert TEM to recover a background 3D σ model

Compute d^{IP} data at multiple time channels

Estimate a regional field

Subtract regional to obtain IP data

Invert individual time channels

- ✓ Attempt to avoid soundings/times that have IP coupling effects
- ✓ Easy if there are negative transients

Assume IP data are composed of a smoothly varying regional plus true IP data

✓ Not easy; but this issue is confronted before

Field example: Mt. Milligan VTEM

Geotech (2007)

√ Observed data (db/dt)

✓ Recovered 3D conductivity model

db/dt data at time = 0.00463s

db/dt data at time = 0.00473s

db/dt data at time = 0.00488s

• db/dt data at time = 0.00508s

db/dt data at time = 0.00537s

db/dt data at time = 0.00577s

db/dt data at time = 0.00635s

db/dt data at time = 0.00715s

Observed data for all channels

d^{IP} data for all channels

Removal of a regional

 d^{IP}

regional

data for inversion

Inversion Results

Summary and path forward

- Estimating σ_∞, 3D background conductivity. (be mindful of IP coupling)
- $\mathbf{d}^{IP} = \mathbf{d}^{obs} \mathbf{F}[\boldsymbol{\sigma}_{\infty}]$
- For each time channel:
 - ✓ Assume: d^{IP} = d^{IP}(true) + smooth background signal
- Estimate background signal (challenge)
- Individual inversions and then attempt to extract spectral information

Summary and path forward

 More advanced inversions to work with all time channels at once.

 Current progress provides optimism that we can invert the data if it is sufficiently high quality

Acknowledgements

- This work was carried out under NSERC CRD and IRC programs and sponsoring companies: Cameco, Teck, Newmont, Barrick, Vale, Xstrata Nickel and Anglo American.
- The authors thank Roman Shekhtman for his assistance in programming.
- Dikun Yang, Seogi Kang, Dave Marchant

