离散数学 (2023) 作业 XX

周帛岑 221900309

2023年5月10日

1 Problem 1

- (1): 解:由运算表可知,一共有 n^2 个位置,每一位都有 n 种选择,故一共有 n^3 种二元运算
- (2): 解:由运算表可知,可交换的二元运算关于对角线对称,每一位都有 n 种选择,故一共 有 $\mathbf{n} \times (\frac{n^2-n}{2}+\mathbf{n}) = \frac{n^3+n^2}{2}$ 种二元运算
- (3): 解:由运算表可知,幂等的二元运算对角线元素固定,剩下每一位都有 n 种选择,故一共有 $\mathbf{n} \times (n^2 n) = n^3 n^2$ 种二元运算
- (4): 解:由运算表,不满足幂等的对角线元素安排一共 n^2-1 种,不满足可交换的其余元素 安排一共有 $\frac{n^3-n^2}{2}$ 种。故一共有 $(n^2-1)\times\frac{n^3-n^2}{2}$ 种 订正:每一问均有错误:
 - (1): 解: 由运算表可知,一共有 n^2 个位置,每一位都有 n 种选择,故一共有 n^{n^2} 种二元运算
- (2): 解:由运算表可知,可交换的二元运算关于对角线对称,每一位都有 n 种选择,故一共 有 $n{\bf n}^2-n_{\overline 2}+{\bf n}=n^{\frac{n^2+n}{2}}$ 种二元运算
- (3): 解:由运算表可知,幂等的二元运算对角线元素固定,剩下每一位都有 n 种选择,故一共有 n^{n^2-n} 种二元运算
 - (4): 解:由容斥原理,一共有 n^{n^2} $n^{\frac{n^2+n}{2}}$ n^{n^2-n} + $n^{\frac{n^2-n}{2}}$ 种

2 Problem 2

(1): \mathbf{M} : $\mathbf{S} = \{(0,0),(0,1),(1,0),(1,1)\}$

(2): 解:

单位元为 (0,1), 右零元为 (0,0) 和 (1,1), 无左零元, (0,1) 和 (1,0) 的零元分别为其自身

	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	(0,0)	(0,0)	(1,1)	(1,1)
(0,1)	(0,0)	(0,1)	(1,0)	(1,1)
(1,0)	(0,0)	(1,0)	(0,1)	(1,1)
(1,1)	(0,0)	(1,1)	(0,0)	(1,1)

订正:两问均出错:(1):

 $f_0: f_0(0) = 0, f_0(1) = 0$

 $f_1: f_1(0) = 0, f_1(1) = 1$

 $f_2: f_2(0) = 1, f_2(1) = 0$

 $f_3: f_3(0) = 1, f_3(1) = 1$

(2):

0	f_0	f_1	f_2	f_3
f_0	f_0	f_0	f_3	f_3
f_1	f_0	f_1	f_2	f_3
f_2	f_0	f_2	f_1	f_3
f_3	f_0	f_3	f_0	f_3

单位元为 f1

f0 和 f3 均为右零元

f1 和 f2 互为逆元

3 Problem 3

(1): 不能,不妨设 a 为最大元,则 a+a 一定不在 A 内

(2): 能,分别取 a, b, c=-1, 0, 1,则此时对于乘法运算封闭

4 Problem 4

(1): 封闭

(2): 不封闭

(3): 封闭

(4): 不封闭

(5): 封闭

(6): 封闭

(7): 不封闭

(8): 不封闭

(9): 不封闭

订正: (5) 有错

应该为不封闭

5 Problem 5

 $(1): f_1$ 为可交换, 可结合的, 不为幂等的

 f_2 不为可结合,幂等,可交换的,

 f_3 为可交换, 可结合, 幂等的

 f_4 为可交换, 不为可结合, 幂等的

 $(2): f_1$ 的单位元为 1,零元为 0,每一个元素的逆元为其倒数

 f_2 的右单位元为 0,无左单位元,无零元,没有逆元

 f_3 无单位元,无零元,无逆元

 f_4 的单位元为 0,无零元,每一个元素的逆元为其相反数

(3):

	a	b
a	b	b
b	a	a

订正: 2 中有问题

 $(2): f_1$ 的单位元为 1,零元为 0,每一个元素的逆元为其倒数

 f_2 无单位元,无零元,没有逆元

 f_3 无单位元,无零元,无逆元

 f_4 无单位元,无零元,没有逆元

6 Problem 6

- (1): 能。满足交换律,不满足结合律,无单位元,零元为1
- (2): 不能
- (3): 能。满足交换律和结合律,单位元为1,零元为10
- (4): 能。不满足交换律和结合律,无单位元和零元 订正: (1),(4) 中出现问题:
 - (1): 能。满足交换律,满足结合律,无单位元,零元为1
 - (4): 不能

7 Problem 7

- (1): 2, 4 均在其中, 但 6 不在其中, 故不构成子代数
- (2): 构成
- (3):2, 3均在其中,但5不在其中,故不构成子代数
- (4):2, 15 均在其中, 但 17 不在其中, 故不构成子代数
- (5): 构成

订正: (1) 中出现问题:

(1): 构成

8 Problem 8

(1): 单位元为 a, 无零元, 子代数为 {a,b}

(2):

0	a	b	c	d
a	a	b	c	d
b	a	a	a	a
с	a	a	a	a
d	a	a	a	a

订正: 第2问中出现问题:

其中 x 为 a, b, c, d 中的任意一个

0	a	b	c	d
a	a	b	c	d
b	a	a	x	х
c	a	x	x	a
d	a	x	a	х

0	a	b	c	d
a	a	b	c	d
b	b	x	a	x
с	c	a	х	a
d	d	x	a	х

9 Problem 9

 $(1): 证: 对于 \oplus, 有 a \oplus (b \oplus c) = (a \oplus b) \oplus c, \ \text{则} \ f(a \oplus (b \oplus c)) = f((a \oplus b) \oplus c)$

 $\ \ \ \pm \ f(x \oplus y) = f(x) \odot f(y)$

 $\label{eq:factorization} \mbox{\em BP} \ f(a) \odot f(b \oplus c) = f((a \oplus b)) \odot f(c)$

即满足结合律

(2): 证: 对于 \oplus , 有 $a \oplus e = e \oplus a = a$, 则 $f(a \oplus e) = f(e \oplus a) = f(a)$

 $\label{eq:fa} \mbox{\ensuremath{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\engen}}}}}}}}} flumid mid plumid mid pl$

即 f (e) 是 (B, ⊙) 的单位元.

(3): 证: 对于 \oplus , 有 $a \oplus b = b \oplus a = e$, 则 $f(a \oplus b) = f(b \oplus a) = f(e)$

 $\label{eq:fa} \mbox{\ensuremath{\beta}} \mbox{\ensuremath{\beta}} \mbox{\ensuremath{f(a)}} \odot \mbox{\ensuremath{f(b)}} = \mbox{\ensuremath{f(b)}} \odot \mbox{\ensuremath{f(a)}} = \mbox{\ensuremath{f(e)}}$

即在 (B, ⊙) 中 f (a) 是 f (b) 的逆元.