Évolution de la population en Argentine

Le tableau ci-dessous indique la population de l'Argentine, en millions d'habitants, tous les dix ans, de 1970 à 2020, ainsi que le taux d'évolution de la population, en pourcentage, arrondi à 0,1 %, d'une décennie sur l'autre.

Année	1970	1980	1990	2000	2010	2020
Population en millions d'habitants	23,88	27,90	32,62	36,87	40,79	45,38
Taux d'évolution (en %)		+16,8	+16,9	?	+10,6	+11,3

Source: www.donneesmondiales.com

Ainsi, on lit qu'entre 1970 et 1980, la population de l'Argentine a augmenté de 16,8 % environ. Les deux parties de cet exercice sont indépendantes.

Partie A

1- Calculer le taux d'évolution de la population de l'Argentine entre 1990 et 2000. Le résultat sera donné en pourcentage arrondi à 0,01 %.

Différence de population = 36,87-32,62 = 4,25 millions

Taux d'évolution =
$$\frac{4,25}{32,62} \times 100 \approx 13,0\%$$
 (pour confirmer et être sûr.e de soi, on peut refaire le

calcul pour une des autres cases du tableau)

2- On admet que le taux d'évolution global de la population de l'Argentine entre 1970 et 2020 est de 90 % environ.

Montrer que le taux d'évolution annuel moyen de la population de l'Argentine entre 1970 et 2020 est d'environ 1,3 %.

On peut essayer de modéliser l'augmentation par une suite géométrique de raison 1,013 (ce qui correspond à une augmentation de 1,3%), avec u_0 la population en 1970 et u_n la population en 1970+n.

Alors le terme général de la suite donne :

$$u_n = u \times q^n = 23,88 \times 1,013^n$$

en particulier, pour 2020 :

$$u_{50} = 23,88 \times 1,013^{50} \approx 45,55$$
 millions

Donc un taux d'évolution annuel moyen de 1,3 % correspond assez bien à la situation.

Partie B

La situation économique en Argentine est particulièrement difficile, et la précarité touche plus encore la jeunesse.

En 2020, 24 % des argentins ont moins de 14 ans. Parmi ceux-ci, 41 % vivent en dessous du seuil de pauvreté.

Parmi ceux qui ont plus de 14 ans en 2020, 22 % vivent en dessous du seuil de pauvreté.

On interroge au hasard une personne vivant en Argentine. On considère les événements suivants :

- *J* : « la personne est âgée de moins de 14 ans » ;
- *S* : « la personne vit sous le seuil de pauvreté ».
- \overline{J} et \overline{S} sont respectivement les événements contraires de J et de S .
- 3- Recopier et compléter l'arbre de probabilité ci-contre.

$$p(J)=24\%=\frac{24}{100}=0,24$$

$$p_J(S) = 41\% = \frac{41}{100} = 0,41$$

$$p_{\bar{\jmath}}(S) = 22\% = \frac{22}{100} = 0,22$$

$$p(\bar{J})=1-0,24=0,76$$

$$p_J(\bar{S}) = 1 - 0.41 = 0.59$$

$$p_{J}(\bar{S})=1-0,22=0,78$$

4- Calculer la probabilité que la personne interrogée ait moins de 14 ans et vive en dessous du seuil de pauvreté.

On multiplie les probabilités des branches :

$$p(J \cap S) = 0.24 \times 0.41 \approx 0.0984$$

5- On admet que P(S) = 0,2656. On interroge au hasard une personne vivant en dessous du seuil de pauvreté. Est-il vrai que la probabilité qu'elle ait moins de 14 ans est supérieure à $\frac{1}{3}$? Justifier la réponse.

On nous demande de comparer $p_S(J)$ à 1/3.

Or $p(J \cap S) = p(S) \times p_S(J)$. (pour s'en convaincre on peut faire l'arbre en commençant par S et \bar{S}

On en déduit $p_S(J) = \frac{0.0984}{0.2656} \approx 0.3705$, qui est supérieure à $\frac{1}{3} \approx 0.3333$.