Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

P		7	-	4	n
	1	2	3	4	Запас
					Ы
1	7	4	7	4	16
2	2	5	2	5	12
3	2	6	5	3	11
Потре	7	10	15	7	
бност					
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum a = 16 + 12 + 11 = 39$$

$$\sum b = 7 + 10 + 15 + 7 = 39$$

Занесем исходные данные в распределительную таблицу.

	1	2	3	4	Запас
					Ы
1	7	4	7	4	16
2	2	5	2	5	12
3	2	6	5	3	11
Потре	7	10	15	7	
Потре бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	7	4[10]	7[6]	4	16
2	2[7]	5	2[5]	5	12
3	2	6	5[4]	3[7]	11
Потре	7	10	15	7	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 4*10 + 7*6 + 2*7 + 2*5 + 5*4 + 3*7 = 147$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 7$	$v_2 = 4$	$v_3 = 7$	$v_4 = 5$
$u_1 = 0$	7	4[10]	7[6]	4

$u_2 = -5$	2[7]	5	2[5]	5
$u_3 = -2$	2	6	5[4]	3[7]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (3;1): 2

Для этого в перспективную клетку (3;1) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

theer stake (", ", ", ".						
	1	2	3	4	Запас	
					Ы	
1	7	4[10]	7[6]	4	16	
2	2[7][-]	5	2[5][+	5	12	
]			
3	2[+]	6	5[4][-]	3[7]	11	
Потре	7	10	15	7		
бност						
И						

Цикл приведен в таблице (3,1; 3,3; 2,3; 2,1;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(3, 3) = 4. Прибавляем 4 к объемам грузов, стоящих в плюсовых клетках и вычитаем 4 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

yildia iony inii nobbii onopiibii iiian.						
	1	2	3	4	Запас	
					Ы	
1	7	4[10]	7[6]	4	16	
2	2[3]	5	2[9]	5	12	
3	2[4]	6	5	3[7]	11	
Потре	7	10	15	7		
бност						
И						

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 7$	v ₂ =4	v ₃ =7	v ₄ =8
$u_1 = 0$	7	4[10]	7[6]	4
$u_2 = -5$	2[3]	5	2[9]	5
$u_3 = -5$	2[4]	6	5	3[7]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (1;4): 4

Для этого в перспективную клетку (1;4) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

	1	2	3	4	Запас
					Ы
1	7	4[10]	7[6][-]	4[+]	16
2	2[3][-]	5	2[9][+	5	12
]		
3	2[4][+	6	5	3[7][-]	11
]				
Потре	7	10	15	7	
бност					
И					

Цикл приведен в таблице (1,4; 1,3; 2,3; 2,1; 3,1; 3,4;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(2, 1) = 3. Прибавляем 3 к объемам грузов, стоящих в плюсовых клетках и вычитаем 3 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

	1	2	3	4	Запас
					Ы
1	7	4[10]	7[3]	4[3]	16
2	2	5	2[12]	5	12
3	2[7]	6	5	3[4]	11
Потре	7	10	15	7	
бност					
И					

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 3$	$v_2 = 4$	v ₃ =7	$v_4 = 4$
$u_1 = 0$	7	4[10]	7[3]	4[3]
$u_2 = -5$	2	5	2[12]	5
u ₃ =-1	2[7]	6	5	3[4]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (3;3): 5

Для этого в перспективную клетку (3;3) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

щ	цисся знаки «-», «+», «-».							
		1	2	3	4	Запас		
						Ы		
	1	7	4[10]	7[3][-]	4[3][+	16		
]			
	2	2	5	2[12]	5	12		
	3	2[7]	6	5[+]	3[4][-]	11		
	Потре	7	10	15	7			
	бност							
	И							

Цикл приведен в таблице (3,3; 3,4; 1,4; 1,3;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. $y = \min(1, 3) = 3$. Прибавляем 3 к объемам грузов, стоящих в плюсовых клетках и вычитаем 3 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

٠.	ysibiaic nosty min nobbin onopiibin iisian.								
		1	2	3	4	Запас			
						Ы			
	1	7	4[10]	7	4[6]	16			
	2	2	5	2[12]	5	12			
	3	2[7]	6	5[3]	3[1]	11			
	Потре	7	10	15	7				
	бност								
	И								

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ij}$, полагая, что $u_1 = 0$.

	$v_1 = 3$	$v_2 = 4$	$v_3 = 6$	$v_4 = 4$
$u_1 = 0$	7	4[10]	7	4[6]
$u_2 = -4$	2	5	2[12]	5
$u_3 = -1$	2[7]	6	5[3]	3[1]

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют

условию $u_i + v_i \le c_{ij}$.

Минимальные затраты составят:

$$F(x) = 4*10 + 4*6 + 2*12 + 2*7 + 5*3 + 3*1 = 120$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.