Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Лабораторная работа № 1 по дисциплине "Теория автоматов"

Вариант: 12

Выполнил: Чебыкин И. Б.

Группа: Р3301

Проверяющий: Ожиганов А. А.

1 Описание работы

Цель – практическое освоение методов взаимного преобразования автоматных моделей Милли и Мура. Проверка абстрактных автоматов Мили и Мура на эквивалентность.

Исходный абстрактный автомат задан графическим способом. При переходе от автомата Мура к Мили и наоборот учесть, что их входные и выходные алфавиты должны совпадать.

2 Порядок выполнения задания

- 1. В соответствии с выбранным номером варианта осуществить преобразование автомата Мили в автомат Мура (Мура в Мили).
- 2. Сформировать входное слово необходимой длины. Длина входного слова должна быть минимальна, но достаточна для осуществления всех имеющихся в графах автоматов переходов.
- 3. Используя сформированное входное слово, осуществить проверку исходного и полученного в результате преобразования автоматов на эквивалентность. В качестве исходного состояния выбрать состояние a1.

3 Выполнение

3.1 Граф автомата Мили

3.2 Преобразованный автомат Мура

4 Этапы преобразования автоматов

 $S_b = (A_b, Z_b, W_b, \delta_b, \lambda_b, a_{1b})$ где

 A_b – множество состояний автомата Мили;

 Z_b – входной алфавит;

 W_b – выходной алфавит;

 δ_b – функция переходов автомата;

 λ_b – функция выходов автомата;

 a_{1b} – начальное состояние.

В эквивалентном автомате Мура $Z_b = Z_a, W_b = W_a.$

Построим таблицу автомата Мили:

δ	a_1	a_2	a_3	a_4	a_5
z_1	a_2	a_3	a_5	a_3	a_5
z_2	a_3	a_5		a_4	a_1
z_3	a_4	a_2			

Таблица 1. Таблица переходов автомата Мили

λ	a_1	a_2	a_3	a_4	a_5
z_1	w_1	w_2	w_1	w_1	w_2
z_2	w_2	w_2		w_2	w_1
z_3	w_1	w_2			

Таблица 2. Таблица выходов автомата Мили

По таблице определим пары (a_s, w_g) , определяющие эквивалентные состояния в автомате Mvpa.

$$A_1 = \{(a_1, w_1)\} = \{b_1\}$$

$$A_2 = \{(a_2, w_1), (a_2, w_2)\} = \{b_2, b_3\}$$

$$A_3 = \{(a_3, w_1), (a_3, w_2)\} = \{b_4, b_5\}$$

$$A_4 = \{(a_4, w_1), (a_4, w_2)\} = \{b_6, b_7\}$$

$$A_5 = \{(a_5, w_1), (a_5, w_2)\} = \{b_8, b_9\}$$

Составим таблицу переходов для автомата Мура. Для этого смотрим на состояние в исходной паре, ищем следующее множество состояний для автомата Мура из функции $\delta(a_s,z_f)$ и определяем состояние для автомата Мура из функции $\lambda(a_s,z_f)$ для автомата Мили.

δ	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9
λ	w_1	w_1	w_2	w_1	w_2	w_1	w_2	w_1	w_2
z_1	b_2	b_5	b_5	b_8	b_8	b_4	b_4	b_8	b_8
z_2	b_5	b_9	b_9	-	-	b_7	b_7	b_3	b_3
z_3	b_6	b_2	b_2	-	-	-	-	-	-

Таблица 3. Таблица выходов автомата Мура

5 Реакции автоматов на входное слово

5.1 Входное слово минимальной длины

Находим слово минимальной длины методом перебора:

 $z_1z_3z_1z_1z_1z_2z_1z_2z_2z_2z_1z_2z_3z_2z_1\\$

Реакция автоматов

Состояние	Слово
(a_1, z_1)	w_1
(a_2, z_3)	w_2
(a_2, z_1)	w_2
(a_3, z_1)	w_1
(a_5, z_1)	w_2
(a_5, z_2)	w_1
(a_1, z_1)	w_1
(a_2, z_2)	w_2
(a_5, z_2)	w_1
(a_1, z_2)	w_2
(a_3, z_1)	w_1
(a_5, z_2)	w_1
(a_1, z_3)	w_1
(a_4, z_2)	w_2
(a_4, z_1)	w_1

Таблица 4. Реакция автомата Мили

Состояние	Слово
(b_1, z_1)	-
(b_2, z_3)	w_1
(b_3, z_1)	w_2
(b_5, z_1)	w_2
(b_8, z_1)	w_1
(b_8, z_2)	w_2
(b_1,z_1)	w_1
(b_2, z_2)	w_1
(b_9, z_2)	w_2
(b_1,z_2)	w_1
(b_5, z_1)	w_2
(b_8, z_2)	w_1
(b_1, z_3)	w_1
(b_6, z_2)	w_1
(b_7, z_1)	w_2
(b_4)	w_1

Таблица 5. Реакция автомата Мура

Реакция автомата Мили: $w_1w_2w_2w_1w_1w_1w_1w_2w_1w_2w_1w_1w_2w_1$. Реакция автомата Мура: $w_1w_2w_2w_1w_1w_1w_2w_1w_2w_1w_2w_1w_2w_1$.

Реакции двух автоматов совпадают, значит можно сказать, что автоматы эквивалентны.

6 Вывод

В ходе выполнения данной лабораторной работы были изучены автоматы Мили и Мура и способы их преобразования. В данной работе был использован табличный способ преобразования автоматов. Исходя из результата преобразования можно заметить, что в эквивалентном автомате Мура больше состояний, следовательно, в данном случае лучше подходит автомат Мили.