FUNDAMENTOS DE CÁLCULO

SEGUNDA PRÁCTICA DIRIGIDA SEMESTRE ACADÉMICO 2021-0

Horario: Todos. Duración: 110 minutos

Elaborada por todos los profesores.

Problemas Obligatorios

1. Dadas las funciones

$$h(x) = 5 + \sqrt{3-x}$$
 y $f(x) = 4x^2 + x$

- *a*) Halle el dominio y la regla de correspondencia de $h \circ f$.
- *b*) Grafique $h \circ f$.
- 2. Justifique la veracidad o falsedad de las siguientes proposiciones:
 - a) La función $f(x) = \frac{x}{x |x|}$ es constante.
 - b) Las funciones $f(x) = \frac{\sqrt{x-5}}{\sqrt{x-1}}$ y $g(x) = \sqrt{\frac{x-5}{x-1}}$ son iguales.

Problemas Complementarios

1. Dadas las funciones

$$f(x) = |4 - x^4|, -5 \le x < 2$$
 y $g(x) = \sqrt{x+3}$

- a) Halle el dominio y la regla de correspondencia de $\frac{f}{g}$ y $f\circ g.$
- *b*) Grafique $f \circ g$.

2. A continuación se muestra la gráfica de f.

- *a*) Grafique g(x) = 3 2f(1 x).
- *b*) Sea $h(x) = \frac{1}{x+3}$. Halle el dominio de $h \circ g$.
- c) Halle el rango de $h \circ g$.
- 3. Sea -2 < b < -1.

$$f(x) = \begin{cases} bx^2 - 3bx + 2 &, 1 < x \le 5 \\ \sqrt{x - b} &, 0 < x \le 1. \end{cases}$$

- a) Grafique f.
- b) Si $h:[-5,5] \to \mathbb{R}$ es una función impar tal que h(x) = f(x) para todo $0 < x \le 5$. Grafique h y halle su regla de correspondencia.
- 4. Esboce la gráfica de la región

$$\begin{cases} y^2 \ge 3 + x^2 \\ |x - y| \le \sqrt{3} \end{cases}$$

- 5. Justifique la veracidad o falsedad de las siguientes proposiciones:
 - a) Las funciones $f(x) = \sqrt{x^4(x-1)}$ y $g(x) = x^2\sqrt{x-1}$ son iguales.
 - *b*) Si f(2x-1)=0 para todo $x \in \mathbb{R}$, entonces f(x)=0 para todo $x \in \mathbb{R}$.
 - c) Si $f:[-a,a] \to \mathbb{R}$ es una función impar, entonces $f^2 + f$ es una función impar.
 - *d*) Sean $f: \mathbb{R} \to \mathbb{R}$ y $g: \mathbb{R} \to \mathbb{R}$. Si ran $(g \circ f) = [0, +\infty[$ entonces ran $f = [0, +\infty[$.