Discrete Distributions Practice Problems Solutions

1. Utilizing the data below concerning ratings of a new intake system at a local hospital's emergency room, calculate the mean and standard deviation of the system's ratings.

X, Rating	P(<i>X</i>)	<i>X</i> •P(<i>X</i>)	$(X - \mu)^2 \cdot P(X)$
1	0.07	0.07	0.573
2	0.07	0.14	0.242
3	0.22	0.66	0.163
4	0.21	0.84	0.004
5	0.43	2.15	0.559
		$\mu = 3.86$	$\sigma^2 = 1.540$
			σ = 1.2411

Soln: The mean rating is 3.86 and the standard deviation is 1.2411.

2. The following table summarizes investment outcomes and corresponding probabilities for a particular oil well: (calculate the mean and standard deviation of the profits)

X, Outcome in \$	P(<i>X</i>)	<i>X</i> •P(<i>X</i>)	$(X - \mu)^2 \cdot P(X)$
-40,000 (no oil)	0.25	-10000.000	410062500.00
10,000 (some oil)	0.70	7000.000	63175000.00
70,000 (much oil)	0.05	3500.000	241512500.00
		$\mu = 500.00$	$\sigma^2 = 714750000$
			$\sigma = 26734.81

Soln: The expected profit is \$500 and the standard deviation is \$26,734.81.

3. An insurance company sells a \$20,000 whole life insurance policy for an annual premium of \$300. Actuarial tables show that a person who would be sold such a policy with this premium has a 0.001 probability of death during a year. Let *X* be a random variable representing the insurance company's profit made on one of these policies during a year. Find the expected profit and standard deviation for the insurance company. The probability distribution of *X* is:

X, Profit	P(<i>X</i>)	<i>X</i> ⋅P(<i>X</i>)	$(X - \mu)^2 \cdot P(X)$
\$300	0.999	299.70	399.60
(if policyholder lives)			
\$300-\$20,000 = -\$19,700	0.001	-19.70	399200.40
(if policyholder dies)			
		$\mu = 280.00$	σ^2 =399600.00
			σ = \$632.14

Soln: The expected profit is \$280 and the standard deviation is \$632.14.

4. The Bay Street Inn is a seven-room bed-and-breakfast in the California city of Santa Theresa. Demand for rooms generally is strong during February, a prime month for tourists. However, experience shows that demand is quite variable. The probability distribution of room rentals during February (from historical data) is shown below, where X = number of rooms rented.

X, Rooms Rented	P(<i>X</i>)	<i>X</i> ⋅P(<i>X</i>)	$(X - \mu)^2 \cdot P(X)$
0	0.05	0.00	1.109
1	0.05	0.05	0.688
2	0.06	0.12	0.441
3	0.10	0.30	0.292
4	0.13	0.52	0.066
5	0.20	1.00	0.017
6	0.15	0.90	0.250
7	0.26	1.82	1.363
		μ= 4.71	σ^2 =4.226

- a) What is the mean, or expected value of the number of rooms rented? Soln: The mean number of rooms rented is 4.71.
- b) What is the standard deviation of the rooms rented? Soln: The standard deviation is the square root of 4.226, which is 2.056.
- c) What is the probability that fewer than 4 rooms are rented? Soln: There is a 0.05 + 0.05 + 0.06 + 0.10 = 0.26 = 26% chance that fewer than 4 are rented.