Εργασία στο Μάθημα "Αρχιτεκτονική Υπολογιστών"

Kristi Cami 3882

Παρακάτω βρίσκεται ο κώδικας που πρέπει να εκτελεστή σε έναν επεξεργαστή MIPS με αρχιτεκτονική pipline 6 στάδιων (**IF, ID**, **RR**, **EX**, **M**, **WB**).

```
Loop: lw $2, 400($1)
lw $3, 800($1)
xor $5, $5, $2
sw $5, 600($4)
addi $1, $1, $4
add $6, $1, $2
addi $9, $9, -imm
bne $9, $0, Loop
```

Σύμφωνα με τα δεδομένα η αρχική τιμή του καταχωρητή \$t9 είναι ίση με 50 + τελευταίο_ψηφίο_του_ΑΕΜ δηλαδη 50 + 2 = 52. Επίσης, το όρισμα imm είναι ίσο με το προτελευταίο_ψηφίο_του_ΑΕΜ δηλαδη με 8.

Συμπερασματικά έχουμε **\$t9: 52, imm: 8**. Άρα ξαναγράφοντας τον κωδικά έχουμε:

```
Loop: lw $2, 400($1)

lw $3, 800($1)

xor $5, $5, $2

sw $5, 600($4)

addi $1, $1, 4

add $6, $1, $2

addi $9, $9, -8

bne $9, $0, Loop
```

Παρατηρώντας της τιμές που παίρνει ο καταχωρητής \$t9 βλέπουμε ότι ο κώδικας θα κάνει άπειρες επανάληψης (\$t9 != 0)

Στον παραπάνω κώδικα φαίνονται με χρωματιστό χρώμα **τέσσερις κίνδυνοι (hazards)** που πρέπει να αντιμετωπιστούν. Αναλυτικότερα με πράσινο χρώμα έχουμε τον καταχωρητη \$2, το πρόβλημα που αντιμετωπίζετε εδώ είναι ότι ο καταχωρητης \$2 δεν έχει προλάβει να γραφτεί όταν η εντολή χοι τον διαβάζει (η ανάγνωση του οποίου γίνεται στο στάδιο RR) γίνεται διαθέσιμος στο τέλος του κύκλου 6 (στάδιο WB) απο την εντολη lw . Με μπλε χρώμα έχουμε τον καταχωρητη \$5 που παίρνει τιμή από την χοι, το πρόβλημα που αντιμετωπίζουμε εδώ βρίσκεται στην εντολή sw που προσπαθεί να αποθηκεύσει την τιμή του \$5 ενώ ακόμα δεν έχει προλάβει να γραφτεί (γίνεται διαθέσιμος στο τέλος του κύκλου 9). Ανάλογα προβλήματα συναντάμε και στους καταχωρητές \$1 (γίνεται διαθέσιμος στο τέλος του κύκλου 13) και \$9(γίνεται διαθέσιμος στο τέλος του κύκλου 17) .

Το δεύτερο στιγμιότυπο της εντολής lw \$2, 400(\$1) αρχίζει να εκτελείται από τον κύκλο 20, διότι η απόφαση για την διακλάδωση ελήφθη στον κύκλο 19.

СС	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	24
lw	IF	ID	RR	EX	М	WB																			
lw		IF	ID	RR	EX	М	WB																		
xor			IF	ID	RR		EX	М	WB																
sw				IF	ID		RR			EX	М	WB													
addi					IF	\bigcirc	ID		\bigcirc	RR	EX	М	WB												
add							IF		(ID	RR		0	EX	М	WB									
addi						\bigcirc			\bigcirc	IF	ID			RR	EX	М	WB								
bne									0		IF			ID	RR			EX	М	WB					
lw																				IF	ID	RR	EX	М	МВ

Όπως αναφέραμε και παραπάνω ο βρόγχος είναι ατέρμον άρα δεν μπορούμε να υπολογίσουμε τους συνολικούς κύκλους που απαιτούνται για την εκτέλεση του κώδικα. Για την πρώτη επανάληψη όμως όπως παρατηρούμε και παραπάνω χρειάζονται 19 κύκλοι.