Sequence Listing

<110> De Sauvage, Frederic Grewal, Iqbal Gurney, Austin L.														
<120>	<120> TYPE I CYTOKINE RECEPTOR TCCR													
<130>	<130> P1748R1													
<141>	<141> 2000-10-18													
<150> US 60/160,542 <151> 1999-10-20														
<160>	16													
<210> 1 <211> 636 <212> PRT <213> Homo sapiens														
<400>		Cl.r	C1.	7 20	Clv	בות	Pro	Dhe	Trn	T.011	Trn	Pro	Leu	Pro
ме с 1	Arg	GIY	GIY	5	GIY	ALG	PIO	FIIC	10	пец	пр	FIO	пец	15
Lys	Leu	Ala	Leu	Leu 20	Pro	Leu	Leu	Trp	Val 25	Leu	Phe	Gln	Arg	Thr 30
Arg	Pro	Gln	Gly	Ser 35	Ala	Gly	Pro	Leu	Gln 40	Cys	Tyr	Gly	Val	Gly 45
Pro	Leu	Gly	Asp	Leu 50	Asn	Cys	Ser	Trp	Glu 55	Pro	Leu	Gly	Asp	Leu 60
Gly	Ala	Pro	Ser	Glu 65	Leu	His	Leu	Gln	Ser 70	Gln	Lys	Tyr	Arg	Ser 75
Asn	Lys	Thr	Gln	Thr 80	Val	Ala	Val	Ala	Ala 85	Gly	Arg	Ser	Trp	Val 90
Ala	Ile	Pro	Arg	Glu 95	Gln	Leu	Thr	Met	Ser 100	Asp	Lys	Leu	Leu	Val 105
Trp	Gly	Thr	Lys	Ala 110	Gly	Gln	Pro	Leu	Trp 115	Pro	Pro	Val	Phe	Val 120
Asn	Leu	Glu	Thr	Gln 125	Met	Lys	Pro	Asn	Ala 130	Pro	Arg	Leu	Gly	Pro 135
Asp	Val	Asp	Phe	Ser 140	Glu	Asp	Asp	Pro	Leu 145	Glu	Ala	Thr	Val	His 150
Trp	Ala	Pro	Pro	Thr 155	Trp	Pro	Ser	His	Lys 160	Val	Leu	Ile	Сув	Gln 165
Phe	His	Tyr	Arg	Arg 170	Cys	Gln	Glu	Ala	Ala 175	Trp	Thr	Leu	Leu	Glu 180
Pro	Glu	Leu	Lys	Thr 185	Ile	Pro	Leu	Thr	Pro 190	Val	Glu	Ile	Gln	Asp 195

Leu	Glu	Leu	Ala	Thr 200	Gly	Tyr	Lys	Val	Tyr 205	Gly	Arg	Cys	Arg	Met 210
Glu	Lys	Glu	Glu	Asp 215	Leu	Trp	Gly	Glu	Trp 220	Ser	Pro	Ile	Leu	Ser 225
Phe	Gln	Thr	Pro	Pro 230	Ser	Ala	Pro	Lys	Asp 235	Val	Trp	Val	Ser	Gly 240
Asn	Leu	Cys	Gly	Thr 245	Pro	Gly	Gly	Glu	Glu 250	Pro	Leu	Leu	Leu	Trp 255
Lys	Ala	Pro	Gly	Pro 260	Cys	Val	Gln	Val	Ser 265	Tyr	Lys	Val	Trp	Phe 270
Trp	Val	Gly	Gly	Arg 275	Glu	Leu	Ser	Pro	Glu 280	Gly	Ile	Thr	Cys	Cys 285
Cys	Ser	Leu	Ile	Pro 290	Ser	Gly	Ala	Glu	Trp 295	Ala	Arg	Val	Ser	Ala 300
Val	Asn	Ala	Thr	Ser 305	Trp	Glu	Pro	Leu	Thr 310	Asn	Leu	Ser	Leu	Val 315
Cys	Leu	Asp	Ser	Ala 320	Ser	Ala	Pro	Arg	Ser 325	Val	Ala	Val	Ser	Ser 330
Ile	Ala	Gly	Ser	Thr 335	Glu	Leu	Leu	Val	Thr 340	Trp	Gln	Pro	Gly	Pro 345
Gly	Glu	Pro	Leu	Glu 350	His	Val	Val	Asp	Trp 355	Ala	Arg	Asp	Gly	Asp 360
Pro	Leu	Glu	Lys	Leu 365		Trp	Val	Arg	Leu 370	Pro	Pro	Gly	Asn	Leu 375
Ser	Ala	Leu	Leu	Pro 380		Asn	Phe	Thr	Val 385	Gly	Val	Pro	Tyr	Arg 390
Ile	Thr	Val	Thr	Ala 395		Ser	Ala	Ser	Gly 400	Leu	Ala	Ser	Ala	Ser 405
Ser	Val	Trp	Gly	Phe 410		Glu	Glu	Leu	Ala 415	Pro	Leu	Val	Gly	Pro 420
Thr	Leu	Trp	Arg	Leu 425		Asp	Ala	. Pro	Pro 430	Gly	Thr	Pro	Ala	11e 435
Ala	Trp	Gly	/ Glu	Val 440		Arg	, His	Gln	Leu 445	Arg	Gly	His	Leu	Thr 450
His	ту1	Thi	r Lev	Cys 455		Gln	ser	Gly	Thr 460		Pro	Ser	Val	Cys 465
Met	Ası	ı Va	l Ser	Gly		n Thr	Glr	ser	Val		Leu	Pro	Asp	Leu 480
Pro	Tr	Gly	y Pro	Cys 485		ı Lev	ı Trp	Val	Thr 490		Ser	Thr	: Ile	Ala 495

				-										
Gly	Gln	Gly	Pro	Pro 500	Gly	Pro	Ile	Leu	Arg 505	Leu	His	Leu	Pro	Asp 510
Asn	Thr	Leu	Arg	Trp 515	Lys	Val	Leu	Pro	Gly 520	Ile	Leu	Phe	Leu	Trp 525
Gly	Leu	Phe	Leu	Leu 530	Gly	Cys	Gly	Leu	Ser 535	Leu	Ala	Thr	Ser	Gly 540
Arg	Cys	Tyr	His	Leu 545	Arg	His	Lys	Val	Leu 550	Pro	Arg	Trp	Val	Trp 555
Glu	Lys	Val	Pro	Asp 560	Pro	Ala	Asn	Ser	Ser 565	Ser	Gly	Gln	Pro	His 570
Met	Glu	Gln	Val	Pro 575	Glu	Ala	Gln	Pro	Leu 580	Gly	Asp	Leu	Pro	Ile 585
Leu	Glu	Val	Glu	Glu 590	Met	Glu	Pro	Pro	Pro 595	Val	Met	Glu	Ser	Ser 600
Gln	Pro	Ala	Gln	Ala 605	Thr	Ala	Pro	Leu	Asp 610	Ser	Gly	Tyr	Glu	Lys 615
His	Phe	Leu	Pro	Thr 620	Pro	Glu	Glu	Leu	Gly 625	Leu	Leu	Gly	Pro	Pro 630
Arg	Pro	Gln	Val	Leu 635	Ala									
<210> 2 <211> 623 <212> PRT <213> Mus musculus														
<400: Met 1		Arg	Leu	Arg 5	Val	Ala	Arg	Leu	Thr 10	Pro	Leu	Glu	Leu	Leu 15
Leu	Ser	Leu	Met	Ser 20	Leu	Leu	Leu	Gly	Thr 25	Arg	Pro	His	Gly	Ser 30
Pro	Gly	Pro	Leu	Gln 35	Cys	Tyr	Ser	Val	Gly 40	Pro	Leu	Gly	Ile	Leu 45
Asn	Cys	Ser	Trp	Glu 50	Pro	Leu	Gly	Asp	Leu 55	Glu	Thr	Pro	Pro	Val 60
Leu	Tyr	His	Gln	Ser 65	Gln	Lys	Tyr	His	Pro 70	Asn	Arg	Val	Trp	Glu 75
Val	Lys	Val	Pro	Ser 80	Lys	Gln	Ser	Trp	Val 85	Thr	Ile	Pro	Arg	Glu 90
Gln	Phe	Thr	Met	Ala	Asp	Lys	Leu	Leu	Ile	Trp	Gly	Thr	Gln	Lys

Gly Arg Pro Leu Trp Ser Ser Val Ser Val Asn Leu Glu Thr Gln

Met Lys Pro Asp Thr Pro Gln Ile Phe Ser Gln Val Asp Ile Ser

	125		130		135
Glu Glu Ala T	r Leu Glu 140	Ala Thr Val	Gln Trp Ala 145	Pro Pro	Val . 150
Trp Pro Pro G	n Lys Ala 155	Leu Thr Cys	Gln Phe Arg 160	Tyr Lys	Glu - 165
Cys Gln Ala G	u Ala Trp 170	Thr Arg Lev	ı Glu Pro Gln 175	Leu Lys	Thr 180
Asp Gly Leu T	r Pro Val 185	Glu Met Glr	n Asn Leu Glu 190	Pro Gly	Thr 195
Cys Tyr Gln V	al Ser Gly 200	Arg Cys Glr	n Val Glu Asn 205		Pro 210
Trp Gly Glu T	p Ser Ser 215	Pro Leu Sei	Phe Gln Thr 220	Pro Phe	Leu 225
Asp Pro Glu A	p Val Trp 230	Val Ser Gly	Thr Val Cys 235	Glu Thr	Ser 240
Gly Lys Arg A	a Ala Leu 245	Leu Val Tr	Lys Asp Pro 250	Arg Pro	Су <i>в</i> 255
Val Gln Val T	r Tyr Thr 260	Val Trp Phe	e Gly Ala Gly 265	Asp Ile	Thr 270
Thr Thr Gln G	u Glu Val 275	Pro Cys Cys	Lys Ser Pro 280		Ala 285
Trp Met Glu T	p Ala Val 290	Val Ser Pro	Gly Asn Ser 295	Thr Ser	Trp 300
Val Pro Pro T	ar Asn Leu 305	Ser Leu Val	Cys Leu Ala 310	Pro Glu	Ser 315
Ala Pro Cys A	sp Val Gly 320	Val Ser Ser	Ala Asp Gly 325	Ser Pro	Gly 330
Ile Lys Val T	r Trp Lys 335	Gln Gly Thi	Arg Lys Pro 340	Leu Glu	Tyr 345
Val Val Asp T	p Ala Gln 350	Asp Gly Asp	Ser Leu Asp 355		Asn 360
Trp Thr Arg L	eu Pro Pro 365	Gly Asn Let	Ser Thr Leu 370		Gly 375
Glu Phe Lys G	y Gly Val 380	Pro Tyr Arg	g Ile Thr Val 385	Thr Ala	Val 390
Tyr Ser Gly G	y Leu Ala 395	Ala Ala Pro	Ser Val Trp 400	Gly Phe	Arg 405
Glu Glu Leu V	l Pro Leu 410	Ala Gly Pro	Ala Val Trp 415	Arg Leu	Pro 420
Asp Asp Pro P	to Gly Thr 425	Pro Val Val	Ala Trp Gly 430	Glu Val	Pro 435

)

Arg His Gln Leu Arg Gly Gln Ala Thr His Tyr Thr Phe Cys Ile Gln Ser Arg Gly Leu Ser Thr Val Cys Arg Asn Val Ser Ser Gln 455 460 Thr Gln Thr Ala Thr Leu Pro Asn Leu His Ser Gly Ser Phe Lys Leu Trp Val Thr Val Ser Thr Val Ala Gly Gln Gly Pro Pro Gly 485 490 495 Pro Asp Leu Ser Leu His Leu Pro Asp Asn Arg Ile Arg Trp Lys Ala Leu Pro Trp Phe Leu Ser Leu Trp Gly Leu Leu Met Gly 515 520 Cys Gly Leu Ser Leu Ala Ser Thr Arg Cys Leu Gln Ala Arg Cys 530 535 Leu His Trp Arg His Lys Leu Leu Pro Gln Trp Ile Trp Glu Arg 545 550 Val Pro Asp Pro Ala Asn Ser Asn Ser Gly Gln Pro Tyr Ile Lys 560 565 Glu Val Ser Leu Pro Gln Pro Pro Lys Asp Gly Pro Ile Leu Glu 575 580 Val Glu Glu Val Glu Leu Gln Pro Val Val Glu Ser Pro Lys Ala 590 595 Ser Ala Pro Ile Tyr Ser Gly Tyr Glu Lys His Phe Leu Pro Thr 605

Pro Glu Glu Leu Gly Leu Leu Val 620

<210> 3

<211> 2646

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 2433

<223> unknown base

<400> 3

gtgggttegg etteeegttg egeeteggg getgtaecea gagetegaag 50
aggageageg eggeeegeae eeggeaagge tgggeeggae teggggetee 100
egagggaege eatgegggga ggeagggeg eeeetttetg getgtggeeg 150
etgeeeaage tggegetget geetetgttg tgggtgettt teeageggae 200
gegteeeag ggeagegeeg ggeeaetgea gtgetaegga gttggaeeet 250

tgggcgactt gaactgctcg tgggagcctc ttggggacct gggagccccc 300 teegagttae aceteeagag eeaaaagtae egtteeaaca aaacecagae 350 tgtggcagtg gcagccggac ggagctgggt ggccattcct cgggaacagc 400 tcaccatgtc tgacaaactc cttgtctggg gcactaaggc aggccagcct 450 ctctggcccc ccgtcttcgt gaacctagaa acccaaatga agccaaacgc 500 cccccggctg ggccctgacg tggacttttc cgaggatgac cccctggagg 550 ccactqtcca ttgggcccca cctacatggc catctcataa agttctgatc 600 tgccagttcc actaccgaag atgtcaggag gcggcctgga ccctgctgga 650 accggagetg aagaccatac ceetgaceee tgttgagate caagatttgg 700 agetageeac tggetacaaa gtgtatggee getgeeggat ggagaaagaa 750 gaggatttgt ggggcgagtg gagccccatt ttgtccttcc agacaccgcc 800 ttctgctcca aaagatgtgt gggtatcagg gaacctctgt gggacgcctg 850 gaggagagga acctttgctt ctatggaagg ccccagggcc ctgtgtgcag 900 gtgagctaca aagtctggtt ctgggttgga ggtcgtgagc tgagtccaga 950 aggaattacc tgctgctgct ccctaattcc cagtggggcg gagtgggcca 1000 gggtgtccgc tgtcaacgcc acaagctggg agcctctcac caacctctct 1050 ttggtctgct tggattcagc ctctgccccc cgtagcgtgg cagtcagcag 1100 categotggg ageaeggage tactggtgae etggcaaceg gggcetgggg 1150 aaccactgga gcatgtagtg gactgggctc gagatgggga ccccctggag 1200 aaactcaact gggtccggct tccccctggg aacctcagtg ctctgttacc 1250 agggaatttc actgtcgggg tcccctatcg aatcactgtg accgcagtct 1300 ctgcttcagg cttggcctct gcatcctccg tctgggggtt cagggaggaa 1350 ttagcacccc tagtggggcc aacgctttgg cgactccaag atgcccctcc 1400 agggaccccc gccatagcgt ggggagaggt cccaaggcac cagcttcgag 1450 gccacctcac ccactacacc ttgtgtgcac agagtggaac cagcccctcc 1500 gtctgcatga atgtgagtgg caacacacag agtgtcaccc tgcctgacct 1550 teettggggt eeetgtgage tgtgggtgae ageatetace ategetggae 1600 agggccctcc tggtcccatc ctccggcttc atctaccaga taacaccctg 1650 aggtggaaag ttetgeeggg eatectatte ttgtgggget tgtteetgtt 1700 ggggtgtggc ctgagcctgg ccacctctgg aaggtgctac cacctaaggc 1750 acaaagtget geecegetgg gtetgggaga aagtteetga teetgeeaac 1800

agcagttcag gccageccca catggagcaa gtacetgagg cecageceet 1850 tggggacttg cccatcctgg aagtggagga gatggagccc ccgccggtta 1900 tggagtcctc ccagecegee caggecaceg ceeegettga etetgggtat 1950 gagaagcact teetgeeeac acetgaggag etgggeette tggggeeece 2000 caggccacag gttctggcct gaaccacacg tctggctggg ggctgccagc 2050 caggetagag ggatgeteat geaggttgea ceceagteet ggattageee 2100 tettgatgga tgaagaeact gaggaeteag agaggetgag teaettaeet 2150 gaggacaccc agccaggcag agctgggatt gaaggacccc tatagagaag 2200 ggcttggccc ccatggggaa gacacggatg gaaggtggag caaaggaaaa 2250 tacatgaaat tgagagtggc agctgcctgc caaaatctgt tccgctgtaa 2300 cagaactgaa tttggacccc agcacagtgg ctcacgcctg taatcccagc 2350 actttggcag gccaaggtgg aaggatcact tagagctagg agtttgagac 2400 cageetggge aatatageaa gaceeeteae tanaaaaata aaacateaaa 2450 aacaaaaaca attagctggg catgatggca cacacctgta gtccgagcca 2500 cttgggaggc tgaggtggga ggatcggttg agcccaggag ttcgaagctg 2550 cagggacete tgattgeace actgeactee aggetgggta acagaatgag 2600

<400> 4

teggttetat egatgggee atgaacegge teegggttge aegeeteaeg 50 cegttggage ttetgetgte getgatgteg etgetgeteg ggaegeggee 100 ceaeggeagt eeaggeeeae tgeagtgeta eagegteggt eeeetgggaa 150 teetgaactg eteetgggaa eettgggeg aeetggagae teeaeetgtg 200 etgtateaee agagteagaa ataceateee aatagagtet gggaggtgaa 250 ggtgeettee aaacaaagtt gggtgaeeat teeeegggaa eagtteaeea 300 tggetgaeaa aeteeteate tgggggaeae aaaagggaeg geetetgtgg 350 teetetgtet etgtgaacet ggagaeeeaa atgaageeag aeaeaeetea 400 gatettetet eagtggata tteetgagga ageaaeeetg gaggeeaetg 450 tgeagtggge geegeeegtg tggeeaeege agaaagetet eaeetgteag 500

<210> 4

<211> 2005

<212> DNA

<213> Mus musculus

ttccggtaca aggaatgcca ggctgaagca tggacccggc tggagcccca 550 gctgaagaca gatgggctga ctcctgttga gatgcagaac ctggaacctg 600 gcacctgcta ccaggtgtct ggccgctgcc aggtggagaa cggatatcca 650 tggggcgagt ggagttegee cetgteette cagaegeeat tettagatee 700 tgaagatgtg tgggtatcgg ggaccgtctg tgaaacttct ggcaaacggg 750 cagccctgct tgtctggaag gacccaagac cttgtgtgca ggtgacttac 800 acagtotggt ttggggotgg agatattact acaactcaag aagaggtocc 850 gtgctgcaag tcccctgtcc ctgcatggat ggagtgggct gtggtctctc 900 ctggcaacag caccagetgg gtgcctccca ccaacctgtc tctggtgtgc 950 ttggctccag aatctgcccc ctgtgacgtg ggagtgagca gtgctgatgg 1000 gagcccaggg ataaaggtga cctggaaaca agggaccagg aaaccattgg 1050 agtatgtggt ggactgggct caagatggtg acagcctgga caagctcaac 1100 tggaccegte tececeetgg aaaceteage acattgttae caggggagtt 1150 caaaggaggg gtcccctatc gaattacagt gactgcagta tactctggag 1200 gattagctgc tgcaccctca gtttggggat tcagagagga gttagtaccc 1250 cttgctgggc cagcagtttg gcgacttcca gatgaccccc cagggacacc 1300 tgttgtagcc tggggagaag taccaagaca ccagctcaga ggccaggcta 1350 ctcactacac cttctgcata cagagcagag gcctctccac tgtctgcagg 1400 aacgtgagca gtcaaaccca gactgccact ctgcccaacc ttcactcggg 1450 ttccttcaag ctgtgggtga cggtgtccac cgttgcagga cagggcccac 1500 ctggtcccga cctttcactt cacctaccag ataataggat caggtggaaa 1550 getetgeeet ggtttetgte eetgtggggt ttgettetga tgggetgtgg 1600 cctgagcctg gccagtacca ggtgcctaca ggccaggtgc ttacactggc 1650 gacacaagtt gcttccccag tggatctggg agagggttcc tgatcctgcc 1700 aacagcaatt ctgggcaacc ttacatcaag gaggtgagcc tgccccaacc 1750 gcccaaggac ggacccatcc tggaggtgga ggaagtggag ctacagcctg 1800 ttgtggagtc ccctaaagcc tctgccccga tttactctgg gtatgagaaa 1850 cactteetge ceacaceaga ggagetggge ettetagtet gatetgetta 1900 cggctagggg ctgtacccct atcttgggct agacgttcta gagtcgaccg 1950 cagaagettg geogecatgg eccaacttgt ttattgcage ttataatgtt 2000 aaata 2005

```
<210> 5
<211> 20
<212> DNA
<213> Mus musculus
<400> 5
tggtctctcc tggcaacagc 20
<210> 6
<211> 20
<212> DNA
<213> Mus musculus
<400> 6
agccaagcac accagagaca 20
<210> 7
<211> 21
<212> DNA
<213> Mus musculus
<400> 7
 cagctgggtg cctcccacca a 21
<210> 8
<211> 20
<212> DNA
<213> Mus musculus
<400> 8
atccgcaagc ctgtgactgt 20
<210> 9
<211> 18
<212> DNA
<213> Mus musculus
<400> 9
 tcgggccagg gtgttttt 18
<210> 10
<211> 18
<212> DNA
<213> Mus musculus
<400> 10
 ttcccgggct cgttgccg 18
<210> 11
<211> 18
<212> DNA
<213> Mus musculus
<400> 11
 tcgcgtctct gggaagct 18
<210> 12
<211> 24
<212> DNA
```

<213> Mus musculus

```
<400> 12
  tttaagccaa tgtatccgag actg 24
 <210> 13
 <211> 20
 <212> DNA
 <213> Mus musculus
<400> 13
  cgccagcgtc ctcctcgtgg 20
 <210> 14
 <211> 21
 <212> DNA
 <213> Mus musculus
 <400> 14
  caagcatttg catcgctatc a 21
 <210> 15
 <211> 19
 <212> DNA
 <213> Mus musculus
 <400> 15
  aatgcctttt gccggaagt 19
 <210> 16
 <211> 24
 <212> DNA
```

acgaattgag aacgtgccca ccgt 24

<213> Mus musculus

<400> 16