

Significance

- IoT devices will continue to manifold due to cheap electronics & batteries
- IoT devices and AI can be used to predict necessary railway maintenance better
- → IoT devices influence railway safety
- →AI can be easily maliciously altered, if training data is tampered
 - → Al controlled IoT endpoints need to be protected in railway maintenance

Key literature

- Kour, R., Karim, R. and Thaduri, A. (2020) 'Cybersecurity for railways-A maturity model', *Journal of rail and rapid transit*, 234(10), pp. 1129–1148. doi: 10.1177/0954409719881849.
- Valdivia, L. J. et al. (2018) 'Cybersecurity-The Forgotten Issue in Railways: Security Can Be Woven into Safety Designs; Cybersecurity-The Forgotten Issue in Railways: Security Can Be Woven into Safety Designs', IEEE Vehicular Technology Magazine, 13. doi: 10.1109/MVT.2017.2736098.
- Kour, R. et al. (2019) 'eMaintenance in railways: Issues and challenges in cybersecurity', 223(10), pp. 1012–1022. doi: 10.1177/0954409718822915

Significance/contribution to the discipline/research problem

Tools & technology to secure IoT endpoints in a modern AI railway maintenance system

→ Topic not yet discussed in literature, whilst there is a need to do so

Research Question

What tools & technology can secure IoT railway endpoints cost effectively and what is their performance?

Methodology/development strategy/research design

Quantitative Research

- Experiment:
 - Create IoT nodes (Docker) feeding to an AI
 - Use various methods (Authentication, IDS, block chain) to secure the nodes
 - Attack nodes (replay attack, Denial of Service) and measure the impact on performance of the AI
 - Rate cyber security methods by performance impact, cost & exploitability

Conclusive Research: Descriptive research design

Objectives

1. Overview of current state of the art in the technology

Objectives

1. Overview of current state of the art in the technology

Month	1	2	3	4	5	6
Objective 1						

- 1. Overview of current state of the art in the technology
- 2. Investigate technologies that can be utilized for the experiment

Month	1	2	3	4	5	6
Objective 1						

- 1. Overview of current state of the art in the technology
- 2. Investigate technologies that can be utilized for the experiment

Month	1	2	3	4	5	6
Objective 1						
Objective 2						

- 1. Overview of current state of the art in the technology
- 2. Investigate technologies that can be utilized for the experiment
- 3. Simulation & Analysis of experiment

Month	1	2	3	4	5	6
Objective 1						
Objective 2						

- 1. Overview of current state of the art in the technology
- 2. Investigate technologies that can be utilized for the experiment
- 3. Simulation & Analysis of experiment

Month	1	2	3	4	5	6
Objective 1						
Objective 2						
Objective 3						

- 1. Overview of current state of the art in the technology
- 2. Investigate technologies that can be utilized for the experiment
- 3. Simulation & Analysis of experiment
- 4. Reporting

Month	1	2	3	4	5	6
Objective 1						
Objective 2						
Objective 3						

- 1. Overview of current state of the art in the technology
- 2. Investigate technologies that can be utilized for the experiment
- 3. Simulation & Analysis of experiment
- 4. Reporting

Month	1	2	3	4	5	6
Objective 1						
Objective 2						
Objective 3						
Objective 4						

Ethical considerations

- No surveys, interviews etc. No human participation
- No data collection from any external sources
- No data is analysed that contains sensitive or personal identifiable information

→ No University of Essex Online (UoEO) ethical approval necessary

Risk assessment

	Item	Severity	Likeliness	Risk
1.				
2.				

Risk assessment

	Item	Severity	Likeliness	Risk
1.	Implementation of technology to complex	Medium	Medium	Medium
2.				

Risk assessment

	Item	Severity	Likeliness	Risk
1.	Implementation of technology to complex	Medium	Medium	Medium
2.	Literature already discussing this exact topic	Medium	Low	Low

Description of artefacts that will be created

- Master of Science Thesis
- Code for nodes, security counter measures, AI, training data, test scripts
- Test reports

Conclusion

Tools & technology to secure IoT endpoints in a modern Al railway maintenance system

- Close a significant gap in scientific literature
- Sufficient literature basis, with an appropriate gap to still do a Master thesis
- Aims and objectives (code, testing document, master thesis) fit into a six month timeline
- Methodology (experiment) fit for this purpose
- Ethical considerations conducted
- Only Medium risks expected

→ Suitable, challenging, relevant and realistic topic

References

British Research Methodology (BRM) (n.d.) Research Design

Dawson, C. (2015) Projects in Computing and Information Systems A Student's Guide Third Edition

Mitchell, J. (2018) Ethics vs Morality

Miessler, D. (2020) The Difference between Deductive and Inductive Reasoning

Sage (2021) Sage Research Methods: Methods Map

Saunders, M., Lewis, P. & Thornhill, A. (2012) Research Methods for Business Students 6th ed. Pearson Education Limited