- Parcurgerea în lățime: se vizitează
- vârful de start s
- vecinii acestuia
- vecinii nevizitați ai acestora

etc

 Pentru gestionarea vârfurilor parcurse care mai pot avea vecini nevizitaţi – o structură de tip coadă

- Pentru gestionarea vârfurilor parcurse care mai pot avea vecini nevizitaţi – o structură de tip coadă
- se adaugă în coadă vârful de start (nevizitat) și se marchează ca fiind vizitat
- 2. cât timp mai sunt vârfuri în coadă
 - se scoate din coadă un vârf
 - se pun în coadă toți vecinii nevizitați ai acestuia și se marchează

Exemplu pentru graf neorientat

Vârf de start 1

3 5 9

+359

5 9 2 6

+3 5 9 2 6

135926

135926

135926478

1359 26478

Parcurgerea în lățime - graf neorientat

- Muchiile folosite pentru a descoperi vârfuri noi pornind din s formează un arbore cu rădăcina s (numit arbore BF), care este un arbore parțial al componentei conexe a lui s
- Arborele se memorează cu vector tata
 tata[v] = vârful din care v a fost descoperit (vizitat)

tata = [0, 3, 1, 9, 1, 3, 9, 9, 1]

Pseudocod

Informații necesare:

$$viz[i] = \begin{cases} 1, \text{ dacă i a fost vizitat} \\ 0, \text{ altfel} \end{cases}$$

Informații necesare:

$$viz[i] = \begin{cases} 1, \text{ dacă i a fost vizitat} \\ 0, \text{ altfel} \end{cases}$$

Opțional

tata[j] = acel vârf i din care este descoperit (vizitat) j
=> arborele BF

Informații necesare:

$$\mathbf{viz[i]} = \begin{cases} 1, \text{ dacă i a fost vizitat} \\ 0, \text{ altfel} \end{cases}$$

Opțional

- tata[j] = acel vârf i din care este descoperit (vizitat) j
 => arborele BF
- **d[j]** = lungimea drumului determinat de algoritm de la s la j =
 - = nivelul lui j în arborele asociat parcurgerii
 - = distanța de la s la j (vom demonstra)

```
d[j] = d[tata[j]] + 1
```

Informații necesare:

$$viz[i] = \begin{cases} 1, \text{ dacă i a fost vizitat} \\ 0, \text{ altfel} \end{cases}$$

Se poate nuanța:

- alb -nevizitat
- gri in explorarenegru finalizat

Opțional

- tata[j] = acel vârf i din care este descoperit (vizitat) j => arborele BF
- d[j] = lungimea drumului determinat de algoritm de la s la j =
 - = nivelul lui j în arborele asociat parcurgerii
 - = distanța de la s la j (vom demonstra)

```
d[j] = d[tata[j]] + 1
```


<u>Inițializări</u>

```
pentru fiecare x \in V executaviz[x] = 0 \longrightarrow Toate varfurile sunt albetata[x] = 0d[x] = \infty
```

```
BFS(s)

coada \ C = \emptyset

adauga(s, C)

viz[s] = 1; \ d[s] = 0

s devine gri
```

```
BFS(s)

coada \ C = \emptyset

adauga(s, C)

viz[s] = 1; \ d[s] = 0

cat \ timp \ C \neq \emptyset \ executa

i = extrage(C);

afiseaza(i);

pentru \ j \ vecin \ al \ lui \ i \ (ij \in E)
```

```
BFS(s)
   coada C = \emptyset
   adauga(s, C)
                                               s devine gri
   viz[s] = 1; d[s] = 0
   cat timp C \neq \emptyset executa
       i = extrage(C);
       afiseaza(i);
       pentru j vecin al lui i (ij \in E)
            daca viz[j]==0 atunci
                                               j devine gri
               adauga(j, C)
               viz[j] = 1
               tata[j] = i
               d[j] = d[i]+1
                                        i devine negru
                                        (s-a finalizat explorarea sa)
```

<u>Apel</u>

Pentru un vârf s procedura de parcurgere se apelează
 BFS(s)

Apel

- Pentru un vârf s procedura de parcurgere se apelează
 BFS(s)
- Pentru a parcurge <u>toate vârfurile grafului</u> se reia apelul subprogramului BFS pentru vârfuri rămase nevizitate:

```
pentru fiecare x ∈ V executa
    daca viz[x] == 0 atunci
    BFS(x)
```

Exemplu pentru graf orientat cu calculul distanței

Vârf de start 1

	1	2	3	4	5	6	7	8	9
tata	0	0	0	0	0	0	0	0	0
d	0	∞	∞	∞	∞	∞	∞	∞	∞

1	- 1

	1	2	3	4	5	6	7	8	9
tata	0	0	0	0	0	0	0	0	0
d	0	∞	∞	∞	∞	∞	∞	∞	∞

C:

	1	2	3	4	5	6	7	8	9
tata	0	0	1	0	0	0	0	0	1
d	0	∞	1	∞	∞	∞	∞	∞	1

	1	2	3	4	5	6	7	8	9
tata	0	0	1	0	0	0	0	0	1
d	0	∞	1	∞	∞	∞	∞	∞	1

c: 13926

	1	2	3	4	5	6	7	8	9
tata	0	3	1	0	0	3	0	0	1
d	0	2	1	∞	∞	2	∞	∞	1

c: 13926478

c: +3926478
d: 0 1 1 2 2 2 2 2

Inițializări O(n) + Pentru fiecare vârf i se execută cel mult o dată instrucțiunea pentru de parcurgere a vecinilor:

```
pentru j vecin al lui i
```

Inițializări O(n) + Pentru fiecare vârf i se execută cel mult o dată instrucțiunea pentru de parcurgere a vecinilor:

```
pentru j vecin al lui i
```

De câte ori se execută corpul acestei instrucțiunii repetitive (care conține un număr constant de operații) ?

Iniţializări O(n) + Pentru fiecare vârf i se execută cel mult o dată instrucţiunea pentru de parcurgere a vecinilor:

```
pentru j vecin al lui i
```

De câte ori se execută corpul acestei instrucțiunii repetitive (care conține un număr constant de operații)?

Depinde de modalitatea de reprezentare a grafului:

- Matrice de adiacență j ia pe rând toate valorile de la 1 la n
- Liste de adiacență j ia ca valori doar vecinii lui i (ia atâtea valori cât este gradul/gradul de ieșire al lui i)

Complexitate

- Matrice de adiacență $O(n + \sum_{i=1}^{n} n) = O(n^2)$
- Liste de adiacență $O(n + \sum_{i=1}^{n} d(i)) = O(n + m)$

Proprietăți

- Muchiile folosite pentru a descoperi vârfuri noi pornind din s formează un arbore cu rădăcina s (numit arbore BF)
- Dacă parcurgem toate vârfurile => pădure BF (cu câte un arbore parțial pentru fiecare componentă)

Muchiile din graf care nu sunt în arbore închid cicluri (cu muchiile din arbore/pădure)

Exemplu - caz orientat:

Exemplu - caz orientat:

BF(1): 1, 3, 5, 9, 2, 6, 7, 8, 4

Arbore BF – tot arbore dacă ignorăm orientarea – arcele corespunzătoare – orientate spre frunze

În arborele BF dacă adăugăm restul arcelor între vârfuri vizitate <u>nu</u> se închid neapărat <u>circuite</u>

Parcurgerea în lățime -Aplicații

Determinarea componentelor conexe

G = (V,E) graf neorientat

BF(s) => arbore parţial pentru componenta conexă care conţine s (cu rădăcina s) = arbore BF

Determinarea componentelor conexe

```
G = (V,E) graf neorientat
```

- BF(s) => arbore parţial pentru componenta conexă care conţine s (cu rădăcina s) = arbore BF
- Toate componentele conexe reluăm BFS din vârfuri nevizitate
 pădure BF, cu arbori parțiali pentru fiecare componentă

```
nr_componente = 0
pentru fiecare x ∈ V executa
    daca viz[x] == 0 atunci
    BFS(x)
    nr_componente += 1
```

Determinarea componentelor conexe

```
G = (V,E) graf neorientat
```

- BF(s) => arbore parţial pentru componenta conexă care conţine s (cu rădăcina s) = arbore BF
- Toate componentele conexe reluăm BFS din vârfuri nevizitate
 pădure BF, cu arbori parțiali pentru fiecare componentă

```
nr_componente = 0
pentru fiecare x ∈ V executa
    daca viz[x] == 0 atunci
    BFS(x)
    nr_componente += 1
```

Pădure parțială / arbore parțial: muchiile
 { tata[x], x}, tata[x] ≠ 0

Aplicație - arbore parțial

- Determinarea unui arbore parțial al unui graf conex
- Pransmiterea unui mesaj în rețea: Între participanții la un curs s-au legat relații de prietenie și comunică și în afara cursului. Profesorul vrea să transmită un mesaj participanților și știe ce relații de prietenie s-au stabilit între ei. El vrea să contacteze cât mai puțini participanți, urmând ca aceștia să transmită mesajul între ei. Ajutați-l pe profesor să decidă cui trebuie să transmită inițial mesajul și să atașeze la mesaj o listă în care să arate fiecărui participant către ce prieteni trebuie să trimită mai departe mesajul, astfel încât mesajul să ajungă la fiecare participant la curs o singură dată.

relații de prietenie/comunicare

traseu de transmitere a unui mesaj

relații de prietenie/comunicare

traseu de transmitere a unui mesaj

Determinarea de distanțe și lanțuri/drumuri minime de la un vârf la celelalte

Amintim aplicații:

- Numărul Erdös
- Traseu între două puncte cu număr minim de stații intermediare
- Traseul minim în labirint la una dintre ieşiri
 - BFS în matrice algoritmul lui Lee

Determinarea de distanțe și lanțuri/drumuri minime de la un vârf la celelalte

Determinarea unui lanț/drum minim între două vârfuri date u și v

Determinarea de distanțe și lanțuri/drumuri minime de la un vârf la celelalte

Determinarea unui lanț/drum minim între două vârfuri date u și v

Se apelează BFS(u), apoi se afișează drumul de la u la v folosind vectorul tata (ca la arbori), dacă există

```
BFS(u)
daca viz[v] == 1 atunci
    lant(v)
altfel
    scrie "nu exista"
```

Parcurgerea BFS(u) se poate opri atunci când este vizitat v

Determinarea de distanțe și lanțuri/drumuri minime de la un vârf la celelalte

leşirea din labirint cu număr minim de paşi

Se dă un labirint sub forma unei matrice cu elemente 0 și 1, 1 semnificând perete (obstacol) iar 0 celula liberă. Prin labirint ne putem deplasa doar din celula curentă într-una din celulele vecine (N,S,E,V) care sunt libere. Dacă ajungem într-o celulă liberă de la periferia matricei (prima sau ultima linie/coloană) atunci am găsit o ieșire din labirint. Date două coordonate x și y, să se decidă dacă există un drum din celula (x,y) prin care se poate ieși din labirint. În caz afirmativ să se afișeze un drum minim către ieșire.

1	1	1	1	0	1
0	0	1	0	0	0
1	0	0	0	1	1
1	1	0	0	0	1
0	0	1	1	0	1
1	1	1	1	1	1

1	1	1	1	0	1
0	0	1	0	0	0
1	0	0	0	1	1
1	1	0	0	0	1
0	0	1	1	0	1
1	1	1	1	1	1

Determinarea de distanțe și lanțuri/drumuri minime de la un vârf la celelalte

- leşirea din labirint cu număr minim de paşi
- Matrice labirint => graf cu vârfuri corespunzătoare celulelor
 și muchii corespunzătoare celulelor vecine libere
 (cu valoarea 0)
- Soluţie: Parcurgere BF din celula în care ne aflăm până găsim o ieşire (!!!prima ieşire vizitată în BF este şi cea mai apropiată)
 - viz, d, tata devin matrice

Determinarea de distanțe și lanțuri/drumuri minime de la un vârf la celelalte

Drumuri minime ale calului pe tabla de şah

Parcurgerea în lățime

Propoziție - Corectitudinea BF

La finalul algoritmului BFS(s), pentru orice vârf v avem

$$d[v] = \delta_{G}(s, v)$$

În plus, arborele BF de rădăcină s (notat T) memorat în vectorul tata conservă distanțele din graf de la s la celelalte vârfuri, deci este un arbore de distanțe față de s:

 $\delta_{T}(s, v) = \delta_{G}(s, v)$, pentru orice vârf v

$$\delta_{G}(1,v) = \delta_{T}(1,v)$$

Observaţia 1. Dacă P este un drum/lanţ minim de la s la u, atunci P este drum/lanţ elementar.

Observaţia 2. Dacă P este un drum minim de la s la u şi z este un vârf al lui P, atunci subdrumul lui P de la s la z este drum minim de la s la z.

Lema 1. Dacă în coada \mathbf{C} avem: $v_1, v_2, ..., v_r$ (la un moment al execuției algoritmului), atunci

$$d[v_1] \le d[v_2] \le \dots \le d[v_r] \le d[v_1] + 1$$
 (nodurile în coadă – crescător după d)

Lema 1. Dacă în coada **C** avem: v_1 , v_2 ,..., v_r (la un moment al execuției algoritmului), atunci

$$d[v_1] \le d[v_2] \le ... \le d[v_r] \le d[v_1] + 1$$

Evidențiem operațiile - Inducție

Lema 1. Dacă în coada **C** avem: v_1 , v_2 ,..., v_r (la un moment al execuției algoritmului), atunci

$$d[v_1] \le d[v_2] \le ... \le d[v_r] \le d[v_1] + 1$$

Evidențiem operațiile - Inducție

Prima operație: C =[s] și d[s] = tata[s] = 0 - se verifică

Lema 1. Dacă în coada **C** avem: v_1 , v_2 ,..., v_r (la un moment al execuției algoritmului), atunci

$$d[v_1] \le d[v_2] \le ... \le d[v_r] \le d[v_1] + 1$$

Evidențiem operațiile - Inducție

- Prima operație: C =[s] și d[s] = tata[s] = 0 se verifică
- Presupunem adevărat la pasul curent (intrare in while)
 - \triangleright extragem $i = v_1$

$$C = [v_2, ..., v_r]$$
 şi $d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$

Lema 1. Dacă în coada C avem: v₁, v₂,..., v_r (la un moment al execuției algoritmului), atunci

$$d[v_1] \le d[v_2] \le ... \le d[v_r] \le d[v_1] + 1$$

Evidențiem operațiile - Inducție

- Prima operație: C =[s] și d[s] = tata[s] = 0 se verifică
- Presupunem adevărat la pasul curent (intrare in while)
 - > extragem $i = v_1$ $C = [v_2,...,v_r]$ și $d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$
 - Inserăm pe rând vecinii w_i ai lui v₁ nevizitați:

$$d[w_i] = d[v_1] + 1 \le d[v_2] + 1 \Rightarrow$$

 $C = [v_2,...,v_r, w_1,...w_i]$ verifică relația

Lema 2. Dacă d[v] = k, atunci există în G un drum de la s la v de lungime k şi acesta se poate determina din vectorul tata, mai exact tata[v] = predecesorul lui v pe un drum de la s la v de lungime k.

Lema 2. Dacă d[v] = k, atunci există în G un drum de la s la v de lungime k şi acesta se poate determina din vectorul tata, mai exact tata[v] = predecesorul lui v pe un drum de la s la v de lungime k.

Inducție - adevărat pentru vârfurile deja vizitate

$$d[j] = d[i] + 1 = 1([s_P_i,j])$$

tata[j] = i

Consecințe.

Dacă x a fost extras din C înaintea lui y, avem

$$d[x] \leq d[y]$$

- $d[v] \ge \delta(s,v)$ (d[v] este o "supraestimare")
- $\delta(s,v) = \infty \Rightarrow d[v] = \infty$

Parcurgerea în lățime

Propoziție - Corectitudinea BF

La finalul algoritmului BFS(s), pentru orice vârf v avem

$$d[v] = \delta_{G}(s, v)$$

În plus, arborele BF de rădăcină s (notat T) memorat în vectorul tata conservă distanțele din graf de la s la celelalte vârfuri, deci este un arbore de distanțe față de s:

$$\delta_{T}(s, v) = \delta_{G}(s, v)$$
, pentru orice vârf v

<u>Demonstrație</u> (schița)

Fie y vârful cel mai apropiat de s cu d[y] calculat incorect:

$$d[y] > \delta(s, y)$$
 (consec. Lema 2)

Fie x predecesorul lui pe un drum minim P de la s la y

<u>Demonstrație</u> (schița)

Fie y vârful cel mai apropiat de s cu d[y] calculat incorect:

$$d[y] > \delta(s, y)$$
 (consec. Lema 2)

Fie x predecesorul lui pe un drum minim P de la s la y

Avem
$$I(P) = \delta(s,x) + 1 = \delta(s,y) < d[y]$$

(subdrumul lui P de la s la x este tot drum minim iar $d[x] = \delta(s,x)$, deoarece x este mai apropiat de s decât y) \Rightarrow

Demonstrație (**schița**)

Din modul de funcționare al BF, cand x este scos din coada, **y este în una** din situațiile:

- ▶ deja vizitat şi extras din coadă (**negru**) \Rightarrow d[y] \leq d[x] (Lema 1)
- ▶ deja vizitat și încă în coadă (**gri**) \Rightarrow d[y] \leq d[x] + 1 (Lema 1)
- este **nevizitat** încă (**alb**) \Rightarrow va fi vizitat din x, deci d[y]=d[x]+1.
- Rezultă d[y] \leq d[x]+1 = l(P) = δ (s,y)<d[y], contradicție Detalii - Cormen