Principal component analysis

Ingo Blechschmidt December 17th, 2014

December 17th, 2014

Outline

1 Theory

- Singular value decomposition
- Pseudoinverses
- Low-rank approximation

Singular value decomposition

Let $A \in \mathbb{R}^{n \times m}$. Then there exist

- numbers $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_m \geq 0$,
- \blacksquare an orthonormal basis $\mathbf{v}_1, \dots, \mathbf{v}_m$ of \mathbb{R}^m , and
- \blacksquare an orthonormal basis $\mathbf{w}_1, \dots, \mathbf{w}_n$ of \mathbb{R}^n ,

such that

$$A\mathbf{v}_i = \sigma_i \mathbf{w}_i, \quad i = 1, \dots, m.$$

In matrix language:

$$A = W \Sigma V^t,$$
 where $V = (\mathbf{v}_1 | \dots | \mathbf{v}_m) \in \mathbb{R}^{m \times m}$ orthogonal, $W = (\mathbf{w}_1 | \dots | \mathbf{w}_n) \in \mathbb{R}^{n \times n}$ orthogonal, $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_m) \in \mathbb{R}^{n \times m}.$

- The singular value decomposition (SVD) exists for any real matrix, even rectangular ones.
- The singular values σ_i are unique.
- The basis vectors are not unique.
- If A is orthogonally diagonalizable with eigenvalues λ_i (for instance, if A is symmetric), then $\sigma_i = |\lambda_i|$.
- $||A||_{\mathsf{Frobenius}} = \sqrt{\sum_{ij} A_{ij}^2} = \sqrt{\mathsf{tr}(A^t A)} = \sqrt{\sum_i \sigma_i^2}$.
- There exists a generalization to complex matrices. In this case, the matrix A can be decomposed as $W\Sigma V^*$, where V^* is the complex conjugate of V^t , and W and V are unitary matrices.
- The singular value decomposition can also be formulated in a basis-free manner as a result about linear maps between finite-dimensional Hilbert spaces.

Existence proof (sketch):

- 1. Consider the eigenvalue decomposition of the symmetric and positive-semidefinite matrix A^tA : We have an orthonormal basis \mathbf{v}_i of eigenvectors corresponding to eigenvalues λ_i .
- 2. Set $\sigma_i := \sqrt{\lambda_i}$.
- 3. Set $\mathbf{w}_i := \frac{1}{\sigma_i} A \mathbf{v}_i$ (for those i with $\lambda_i \neq 0$).
- 4. Then $A\mathbf{v}_i = \sigma_i \mathbf{w}_i$ holds trivially.
- 5. The \mathbf{w}_i are orthonormal: $(\mathbf{w}_i, \mathbf{w}_j) = \frac{1}{\sigma_i \sigma_j} (A^t A \mathbf{v}_i, \mathbf{v}_j) = \frac{\lambda_i \delta_{ij}}{\sigma_i \sigma_j}$.
- 6. If necessary, extend the \mathbf{w}_i to an orthonormal basis.

This proof gives rise to an algorithm for calculating the SVD, but unless A^tA is small, it has undesirable numerical properties. Since the 1960ies, there exists a stable iterative algorithm by Golub and van Loan.

The pseudoinverse of a matrix

Let $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$. Then the solutions to the optimization problem

$$\|A\mathbf{x} - \mathbf{b}\|_2 \longrightarrow \min$$

under $\mathbf{x} \in \mathbb{R}^m$ are given by

$$\mathbf{x} = A^+ \mathbf{b} + V \begin{pmatrix} 0 \\ \star \end{pmatrix},$$

where $A = W\Sigma V^t$ is the SVD and

$$A^{+} = V\Sigma^{+}W^{t},$$

$$\Sigma^{+} = \operatorname{diag}(\sigma_{1}^{-1}, \dots, \sigma_{m}^{-1}).$$

- In the formula for Σ^+ , set $0^{-1} := 0$.
- The pseudoinverse can be used for interpolation: Let data points $(x_i, y_i) \in \mathbb{R}^2$, $1 \le i \le N$, be given. Want to find a polynomial $p(z) = \sum_{k=0}^{n} \alpha_i z^i$, $n \ll N$, such that

$$\sum_{i=1}^{N} |p(x_i) - y_i|^2 \longrightarrow \min.$$

In matrix language, this problem is written

$$\|A\mathbf{u} - \mathbf{v}\|_2 \longrightarrow \min$$

where
$$\mathbf{u} = (\alpha_0, \dots, \alpha_N)^T \in \mathbb{R}^{n+1}$$
 and
$$A = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^n \end{pmatrix} \in \mathbb{R}^{N \times (n+1)}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N.$$

Low-rank approximation

Let $A = W \Sigma V^t \in \mathbb{R}^{n \times m}$ and $1 \le r \le n, m$. Then a solution to the optimization problem

$$||A - M||_{\mathsf{Frobenius}} \longrightarrow \mathsf{min}$$

under all matrices M with rank $M \le r$ is given by

$$M = W \Sigma_r V^t,$$
 where $\Sigma_r = \mathrm{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0).$

The approximation error is

$$||A - W\Sigma_r V^t||_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_m^2}.$$