Worksheet 6 Review 2

Hyungmo Gu

April 13, 2020

Question 1

a. $\forall x \in \mathbb{N}, P(123) \land P(x) \Rightarrow x \leq 123$

Correct Solution:

$$P(123) \land (\forall x \in \mathbb{N}, P(x) \Rightarrow x \le 123)$$

b. $IsCD(x, y, d): d \mid x \wedge d \mid y$, where $x, y, d \in \mathbb{Z}$

 $IsGCD(x, y, d): \forall n \in \mathbb{N}, IsCD(x, y, n) \Rightarrow \exists d \in \mathbb{N}, IsCD(x, y, d) \land n \leq d$

Correct Solution:

 $IsCD(x, y, d): d \mid x \wedge d \mid y$, where $x, y, d \in \mathbb{Z}$

 $IsGCD(x,y,d): (x=0 \land y=0 \Rightarrow d=0) \land (x \neq 0 \land y \neq 0 \Rightarrow IsCD(x,y,d) \land (\forall d_1 \in \mathbb{Z}, IsCD(x,y,d_1) \Rightarrow d_1 \leq d)), \text{ where } x,y,d \in \mathbb{Z}$

Notes:

- Realized the definition of *IsGCD* extends from previous question
- Noticed professor defines if...else conditions in a predicate logic the following way

(case $1 \Rightarrow$ statement 1) \land (case $2 \Rightarrow$ statement 2)

• Hm... I feel puzzled about \land operator used in between cases (i.e. $(x = 0 \land y = 0 \Rightarrow d = 0) \land (x \neq 0...)$). At glimpse, I felt \lor is more appropriate since if this case is not true, then we want other case should be true.

c. Statement: $IsCD(x,0,x) \land (\forall d_1 \in \mathbb{Z}, IsCD(x,0,d_1) \Rightarrow d_1 \leq x)$

Proof. Let $x \in \mathbb{Z}^+$

We need to prove x is a common divisor to both 0 and x, and we need to prove all common divisors d_1 of 0 and x is less than or equal to x.

First, we need to show there is $k_1 \in \mathbb{Z}$ such that $x = k_1 \cdot x$ and we need to show $k_2 \in \mathbb{Z}$ such that $0 = k_2 \cdot x$.

Let $k_1 = 1$ and $k_2 = 0$.

Then, we can calculate that

$$x = 1 \cdot x = k_1 \cdot x \tag{1}$$

$$0 = 0 \cdot x = k_2 \cdot x \tag{2}$$

Now, we need to show all integers d_1 that is a common divisor to both 0 and x is less than equal to x.

Let $d_1 \in \mathbb{Z}$ and assume $d_1 \mid x$ and $d_1 \mid 0$.

We need to show $d_1 \leq x$.

The hint tells us

$$\forall n \in \mathbb{Z}^+, \, \forall d \in \mathbb{Z}, \, d \mid n \Rightarrow d \le n \tag{3}$$

Because we know from assumption that $d_1 \mid x$, by using the hint, we can conclude

$$d_1 \le x \tag{4}$$

Pseudoproof:

Let $x \in \mathbb{Z}^+$

We need to prove x is a common divisor to both 0 and x, and we need to prove all common divisors d_1 of 0 and x is less than or equal to x.

1. Show IsCD(x, 0, x)

We need to show there is $k_1 \in \mathbb{Z}$ such that $x = k_1 \cdot x$ and we need to show $k_2 \in \mathbb{Z}$ such that $0 = k_2 \cdot x$.

Let $k_1 = 1$ and $k_2 = 0$.

• Show $x = k_1 \cdot x$ and $0 = k_2 \cdot 0$

Then, we can calculate that

$$x = 1 \cdot x = k_1 \cdot x \tag{5}$$

$$0 = 0 \cdot x = k_2 \cdot x \tag{6}$$

2. Show $\forall d_1 \in \mathbb{Z}, IsCD(x, 0, d_1) \Rightarrow d_1 \leq x$

Let $d_1 \in \mathbb{Z}$ and assume $d_1 \mid x$ and $d_1 \mid 0$.

We need to show $d_1 \leq x$.

1. Use fact ' $\forall n \in \mathbb{Z}^+$, $\forall d \in \mathbb{Z}$, $d \mid n \Rightarrow d \leq n$ ' to show $d_1 \leq x$.

The hint tells us

$$\forall n \in \mathbb{Z}^+, \, \forall d \in \mathbb{Z}, \, d \mid n \Rightarrow d \le n \tag{7}$$

Because we know from assumption that $d_1 \mid x$, by using the hint, we can conclude

$$d_1 \le x \tag{8}$$

d. $\forall a, b \in \mathbb{Z}, (a \neq 0) \lor (b \neq 0) \Rightarrow \exists p, q \in \mathbb{Z}, pa + qb = \gcd(a, b)$

Question 2

a. Pseudoproof:

Assume Even(n). That is $\exists k \in \mathbb{Z}, n = 2k$.

We need to show there is an integer k_1 such that $n^2 - 3n = 2k_1$.

Let $k_1 = (2k^2 - 3k)$.

• Show $n^2 - 3n = 2k_1$ by using assumption.

The assumption tells us n = 2k.

Then, by using this fact, we can write

$$n^2 - 3n = (2k)^2 - 3(2k) (9)$$

$$=4k^2 - 6k \tag{10}$$

$$= 2(2k^2 - 3k) \tag{11}$$

$$=2k_1\tag{12}$$

Question 3