Osnovni koncepti vještačkih neuronskih mreža

- **Konekcionizam** teorijsko stanovište koje želi objasniti ljudske intelektualne sposobnosti konstruisanjem vještačke neuronske mreže.
 - Čovjekov mozak sadrži nekoliko tipova ćelija, a sveukupno 10^{11} neurona koji ostvaruju 10^{15} konekcija.
 - Ćelije međusobno komuniciraju tako što prenose signal iz jedne ćelije u drugu, uz pomoć neurotransmitera.
- Cilj vještačkih neuronskih mreža je definisati osnovne principe bioloških neuronskih mreža matematičkim opisom.

Karakteristike neuronskih mreža:

- Arhitektura
 - Definiše strukturu NM, kao što je broj neurona i način njihove međusobne povezanosti.
 - NM se sastoje od određenog broja međusobno povezanih neurona, sa sličnim karakteristikama kao što su ulazi, sinapse, sinaptičke težine, aktivacija, izlazi, bias,...
 - Sinapse veze od dendrita ka ćelijama. Postoji otpor u sinapsama, modeluje se određenim težinama.
 - Aktivacija prag koliko se mora "nakupiti" signala da bi neuron dao izlaz.
 - Bias otežanje u samom neuronu.

Neurodinamika

- Definiše "ponašanje" NM, odnosno kako one uče, kako pozivaju naučeno, kako vrše grupisanje, kako upoređuju nove podatke sa već postojećim znanjem, kako klasifikuju nove informacije i kako razvijaju novu klasifikaciju.
- VNM vrše procesiranje informacija.
 - Takvo procesiranje je pogodno za paralelizaciju više neurona istovremeno razlažu ulaznu informaciju, odrađuju je i davaju izlaz.
 - U poslednjih nekoliko desetina godina uložen značajan tehnološki trud kako bi se projektovala kola koja bi ličila na biološke NM sa svim karakteristikama.
 - Na taj način razvijeni su različiti modeli *NM* poznati pod nazivom **paradigme**.
 - Danas glavni zadatak jeste obrada slike, odnosno videa.
- Svi modeli VNM tradicionalno se opisuju diferencijalnim (diferencnim) jednačinama.
- Najbolje VNM idalje daleko inferiornije od najprimitivnijih oblika života.
- Da bi se razvio model VMN potrebno je razviti matematički model koji na najbolji mogući način opisuje funkcionalnost prirodnog sistema.

- Tada je moguće izvršiti računarsku simulaciju i ispitati u kojoj se mjeri slažu rezultati simulacije sa realnim ponašanjem biološke NM.
- Vrše se korekcije:
 - Ako su rezultati loši promjena parametara i strukture (usložnjavanje modela) (problem underfitting-a).
 - Ako su rezultati dobri uprošćavanje modela (problem overfitting-a).

Osnovni model neurona

- Neuron sastavni element svake NM.
 - Pod ovim nazivom podrazumijeva se procesni element VNM u smislu svoje funkcije, odnosno načina djelovanja
 - Ima n ulaza označenih sa $x_j, j = 1, 2, \dots, n$.
 - Svaki ulazni signal otežan prije nego što dođe do tijela procesnog elementa, odnosno neurona
 - Otežavanje se vrši množenjem vrijednosti ulaznog signala x_j sa njegovom odgovarajućom **težinom sinapse** w_j .
 - Takođe, postoji i slobodni član **bias** w_0 i prag (**treshold**) θ , koji određuju potrebni nivo signala za **aktivaciju** neurona.
 - Nelinearna funkcija f_j djeluje na pobudni signal R_j i formira izlaz neurona O_j .
 - Ovakva funkcija se naziva aktivaciona funkcija.
 - Izlaz neurona ${\cal O}_j$ predstavlja **ulaz** za neke druge neurone.
 - Često se neuron naziva i čvor.
 - Ako se VNM sastoji od više čvorova, dodaje se još jedan indeks koji služi da označi kom neuronu signal ili funkcija pripada, tako da je
 - x_{ij} j-ti ulaz i-tog neurona.
 - w_{ij} težina j-te sinapse i-tog neurona.

- Nelinearna funkcija se uvodi radi ograničavanja nivoa izlaznog signala (nekad neuron može dati izlazni signal koji je reda veličine beskonačnosti, te je potrebno ograničenje ništa u prirodi ne može dati signal beskonačne amplitude).
- Najčešći tipovi nelinearnih funkcija:
 - Hard Limit
 - Rampa
 - Sigmoida (veoma popularna jer je monotona, ograničena i jednostavno joj se računa prvi izvod)
 - Gausijan

Hard limit

y
1

1

x

0

O analitičkim izrazima ovih funkcija će biti reči kasnije

Primjer rada jednog neurona:

Primer rada jednog neurona

Učenje u VNM

- Proces učenja u *VNM* je proces podešavanja **promjenljivih težina sinapsi** (w_{ij}) u cilju postizanja odgovarajućeg izlaza O_j za dati pobudni signal x_{ij} .
 - Kada postignemo takve rezultate, kažemo da je VNM obučena, odnosno da je "stekla znanje".
 - Obuka se vrši prema algoritmima koji se opisuju jednačinama obuke.
- Tipovi algoritama obuke:
 - Učenje sa nadzorom (Supervised learning)
 - Učenje bez nadzora (Unsupervised learning)
 - Pojačano učenje (Reinforcement learning)
 - Kompetitivno učenje (Competitive learning)
 - Delta pravilo (Delta rule LMS)
 - Metoda opadajućeg gradijenta (Gradient descent rule)
 - Hebeovo učenje (Hebbian learning)

Osnovne karakteristike VNM

Kolektivna obrada podataka

 Program se izvršava kolektivno, sinergično, paralelno pa su time operacije decentralizovane.

Robusnost

• Operacije su neosjetljive na slučajne poremećaje i netačne ulaze.

Učenje

 VNM automatski uspostavlja preslikavanja (asocijacije), adaptira se "sa ili bez učitelja", ali svakako bez intervencije programera.

Asinhrono izvršavanje

VNM zahtjevaju vremensko usklađivanje.

Performanse

- Govore u kojoj je mjeri VNM sposobna da u procesu eksploatacije reprodukuje rezultate dobijene na skupu za obuku.
- 100% performansi je idealno, ali potrebno je da postoje granice.

Topologija VNM

- Kod svih topologija, mogu se uočiti sledeći elementi
 - Ulazni sloj
 - Izlazni sloj
 - Skriveni slojevi

Karakteristika	Feed-forward NN	Recurrent NN
Smer toka signala	Samo napred	Dvosmerno
Uvođenje kašnjenja	Ne	Da
Kompeksnost	Niska	Visoka
Nezavisnost neurona u istom sloju	Da	Ne
Brzina	Velika (brze)	Mala (spore)
Primena	Prepoznavanje oblika, govora, karaktera,	Prevod, konverzija govora u tekst, robotsko upravljanje,

Višeslojni perceptron Višeslojna VNM sa prostiranjem signala u napred Multilayer Feed Forward ANN

Višeslojna kooperativno/kompetetivna VNM Multilayer cooperative/competitive ANN

Dvoslojna VNM sa prostiranjem signala napred/nazad Bilayer feed forward/backward ANN

Jednoslojna VNM sa kombinovanom povratnom spregom

Monolayer hetero feedback ANN

- Broj slojeva u VNM
- Broj neurona po sloju
- Usvajanje algoritma obuke
- Broj iteracija po uzorku tokom treninga
- Brzina rada u eksploataciji
- Kapacitet VNM
 - Maksimalan broj uzoraka koji VNM može da nauči i kasnije pozove.

Stepen adaptivnosti

• U kom stepenu je VNM sposobna da se adaptira poslije okončanja procesa obuke.

Vrijednost bias-a

Često unaprijed postavljeno.

Vrijednost praga (threshold)

Često unaprijed postavljeno na neku fiksnu težinu.

Ograničenje težina sinapsi

- Za bolje performanse i otpornost prema šumu.
- Izbor nelinearne aktivacione funkcije
- Otpornost VNM na šum
 - Stepen u kojem šum, smetnja i anomalija na ulaznom signalu uzrokuje šum na izlaznom signalu.

Vrijednost težina u stacionarnom stanju

Stanje VNM nakon obuke

Modelovanje VNM

- Matematičkom analizom može se doći do sledećih podataka o mreži
 - Kompleksnost
 - Koliko bi trebalo da VNM bude velika da bi izvršila zadatak.
 - Kapacitet

Koliko bita informacija se može pohraniti u jednoj VNM.

Izbor modela

Koji tip VNM je najpogodniji za datu primjenu.

Performanse

- Koja VNM ima najbolje rezultate i performanse.
- Koliko brzo uči.
- Kolikom brzinom VNM daje odziv nakon dejstva signala na ulazu.

Pouzdanost

Da li VNM daje uvijek isti odziv za istu pobudu.

Osjetljivost na šum

Koliko tačno VNM reprodukuje željeni izlaz u prisustvu šuma.

Osjetljivost na otkaz

Koliko tačno VNM radi ako jedan njen dio ne funkcioniše.

Obuka i programiranje VNM

• Matematički opis načina kako se mijenjaju težine sinapsi w_{ij} tokom procesa obuke *VNM* naziva se **algoritam obuke**.

Obuka sa nadzorom (Supervised learning)

Iterativni postupak, zahtjeva više prolaza kroz skup za obuku.

Generalno: promena težina je proporcionalna signalu greške tokom obuke i stimulaciji (ulazu) neurona.

Obuka i-tog neurona može se opisati izrazom

$$rac{\partial w_{ij}}{\partial t} = \mu E_i(O_i, T_i) X_i(t)$$

gdje je μ mala pozitivna konstanta poznata kao **korak obuke** (*learning rate*).

Diskretna formulacija bi glasila

$$w_{ij}(k+1) = w_{ij}(k) + \underbrace{\mu E_i(O_i, T_i) X_i(k)}_{ ext{iznos korekcije}}$$

Algoritmi obuke

- Matematički alat koji predstavlja metod kojim će se određenom brzinom uspješno doći do stacionarnog stanja parametara - težina i pragova VNM.
- Obuka počinje definisanjem kriterijumske funkcije (funkcije greške) koju je potrebno minimizirati.
 - Izražava se preko težina i pragova VNM, te se na taj način obezbjeđuje da kriterijumska funkcija bude u direktnoj vezi sa promjenljivim veličinama VNM.

Primer obuke VNM bez nadzora

```
T_i – vektor željenih izlaza, ne postoji (nije poznat)
f = sgn(.) – nelinearnost je bipolarna funkcija (+1,-1)
\mathbf{w}_{ij} = [\mathbf{w}_{i1} \ \mathbf{w}_{i2} \ ... \ \mathbf{w}_{in}] – vektor težina ulaza i-tog neurona, na početku obuke male pozitivne i negativne vrednosti
\mathbf{x}_{ij} = [\mathbf{x}_{i1} \ \mathbf{x}_{i2} \ ... \ \mathbf{x}_{in}] – vektor ulaza i-tog neurona
\mu – korak učenja; mali, pozitivan broj
k – broj iteracije
O_{\mathbf{i}}(\mathbf{k}) = f \begin{pmatrix} \mathbf{n} \\ \mathbf{j} \\ \mathbf{n} \end{pmatrix}
\Delta w_{ij} = \mu O_{i}(\mathbf{k}) \mathbf{x}_{ij}
w_{i}(\mathbf{k}+1) = w_{i}(\mathbf{k}) + \mu O_{i}(\mathbf{k}) \mathbf{x}_{ij}
```

- Klasifikacioni problemi
 - Obučena VNM sposobna je prepoznati i klasifikovati različite vrste podataka.
 - Sposobnost klasifikacije maksimalan broj tačaka koje VNM može da klasifikuje, odnosno tačno identifikuje, i za koje može da generiše jedinstveni izlaz.
 - Prema sposobnosti klasifikacije, VNM se dijele na
 - Linearne
 - Multilinearne
 - Nelinearne

Linearni klasifikatori

VNM - linearni klasifikatori

Kako se ovo može upotrebiti?

Multilinearni klasifikatori

VNM - multilinearni

VNM - Ekskluzivno ILI

VNM – nelinearni klasifikatori

Perceptron

McCulloh - Pitt-ov model neurona

- Prva generacija, prvi pokušaj da se modeluje biološki neuron.
- Ne postoji obuka, kao ni adaptacija parametara.
- Izlaz definisan izrazom

Model perceptrona

- Naredna generacija vještačkih neuronskih mreža, bazirana na McCulloh-Pit-ovom modelu uz dodavanje povratne sprege, odnosno mogućnosti učenja i adaptacije.
- Originalni perceptron zahtjeva učenje sa nadzorom.

- Razvijen je kao klasifikator uzoraka koji raspoznaje apstraktne i geometrijske oblike dovedene na optički ulaz.
- Sastoji se iz tri nivoa:
 - Sloj senzora
 - Sloj pridruživanja
 - Sloj odziva

Model pojedinačnog perceptrona

Greška izlaza perceptrona: **E** = **T** - **O**

Korekcija težina sinapsi se računa prema izrazu:

$$\Delta \mathbf{w} = \mu [\mathbf{T} - f(\mathbf{w}(k)\mathbf{x})]\mathbf{x}$$

odnosno:

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mu[\mathbf{T} - f(\mathbf{w}(k)\mathbf{x})]\mathbf{x}$$

- Pripremni koraci za obuku neurona su:
 - Odrediti skup ulaznih vektora x
 - Odrediti skup željenih izlaza T, gdje jedan izlazni podatak odgovara jednom ulaznom
 - Izabrati mali pozitivan korak učenja μ i kriterijum po kojem će se taj parametar mijenjati tokom obuke
 - Izabrati nelinearnost (aktivacionu funkciju neurona) i ako je potebno, njene parametre
 - Odrediti kriterijum za završetak obuke (maksimalna dozvoljena greška izlaza, maksimalni broj iteracija,...)

- Obuka se vrši kroz nekoliko koraka:
 - Izabrati inicijalne vrijednosti za pragove Θ_i i težine w_{ij} kao male slučajne vrijednosti (najčešće u intervalu [-1,1])
 - Dovesti na ulaz uzorak x_p i odgovarajući izlaz T_p , gdje je p broj tekućeg uzorka
 - Izračunati tekući izlaz O, prema izrazu

$$O(k) = f\left(\sum_{j=0}^n w_j(k) x_j
ight) = f(w^T(k) x)$$

Izvršiti adaptaciju težina prema iterativnoj relaciji

$$w(k+1) = w(k) + \mu(T(k) - f(w^T(k)x)))x$$

- Provjeriti kriterijum zaustavljanja
- VNM sačinjena od jednog perceptrona (jednoslojni perceptron) može se smatrati
 klasifikatorom za rješavanje problema razgraničenja dvije klase podataka u okviru
 nekog uzorka. Takav perceptron je i logička jedinica i u zavisnosti od vrijednosti
 njegovih parametara, može implementirati različite logičke funkcije (ali ne sve).

Logička operacija "I"

Logička operacija "ILI"

Logička operacija "NE"

Logička operacija "PLURALNOST"

Višeslojni perceptron

- Predstavlja mrežu sačinjenu od većeg broja običnih perceptrona koji čine hijerarhijsku strukturu sa prostiranjem signala u unaprijed (Multilayer Feed Forward ANN).
- Osnovni perceptroni organizovani u slojeve, kojih između ulaznog i izlaznog može biti i više - broj skrivenih slojeva nije fiksan.
- Svaki perceptron ima naziv neuron.
- Svaki sloj može sadržati različit broj neurona u zavisnosti od namjene (ne postoji
 preporuka niti formalan način da se odredi optimalan broj neurona po sloju metoda
 probe i greške).
 - Više neurona rješavanje složenijih problema ali problem overfit-ovanja
- Uobičajeni postupci obuke:
 - Delta pravilo
 - Prostiranje greške unazad (Back propagation)
- Može se koristiti za
 - Implementaciju proizvoljne Bulove logičke funkcije koja vrši podjelu prostora uzoraka (dovoljna su dva sloja)
 - Klasifikaciju uzoraka (dovoljna su dva ili tri sloja)
 - Implementacija nelinearnih funkcija (dovoljna su dva ili tri sloja)

Sigmoidna funkcija

- Često korištena aktivaciona funkcija
- Oblik

$$f_S(R) = rac{1}{1+e^{-kR}}$$

Osobina prvog izvoda jeste da je

$$f_S'(R) = rac{ke^{-kR}}{\left(1 + e^{-kR}
ight)^2} = kf_S(R)(1 - f_S(R)))$$

Delta pravilo

- Bazira se na metodi minimizacije kvadrata greške.
- Cilj pravila jeste da minimizuje razliku između željenog i stvarnog izlaza preko ulaza i težina VNM (primjetiti da se ovdje koriguju samo greške u izlaznim težinama).
- Na početku, definiše se kvadrat greške (E) na osnovu razlike stvarnog (O) i željenog izlaza (T) VNM

$$E = rac{1}{2}(T_i - O_i)^2 = rac{1}{2}(T_i - f(w_i^T x_i))^2$$

gdje je w_i matrična reprezentacija skupa težina i-tog neurona a x vektor ulaza i-tog neurona.

Vektor gradijenta greške je

$$abla E = -(T_i - O_i) f'(w_i^T x_i) x_i$$

a kako se traži minimum greške, korekcija težina će se vršiti na osnovu negativnog gradijenta, odnosno

$$\Delta w_i = -\mu \nabla E$$

Na osnovu gornja dva izraza dobija se da je

$$\Delta w_i = \mu(T_i - O_i)f'(w_i^T x_i)x_i$$

te su korigovane vrijednosti težina u narednoj (k+1) iteraciji

$$w_i(k+1) = w_i(k) + \mu(T_i - O_i)f'(w_i^Tx_i)x_i$$

• Ako se usvoji da je aktivaciona funkcija *sigmoida* i parametar k=1, dobijamo da je

$$w_i(k+1)=w_i(k)+\mu(T_i-O_i)(O_i-O_i^2)x_i$$

ADALINE (Adaptivni linearni neuron) i MADALINE (Many ADALINE)

- Aktivaciona funkcija hard limit.
- Izlaz binarni (1 ili -1).
- Greška se ne računa kao razlika željene i ostvarene vrijednosti izlaza već kao razlika željene vrijednosti i izlaza neurona prije nelinearnosti

$$E = T - R$$

ADALINE

ADAptivni Linearni NEuron

Korekcija sinapsi (težina) vrši se prema izrazu

$$\Delta w_{ij} = \alpha (T - R) x_{ij}$$

gdje $0 < \alpha < 1$.

- MADALINE se formira povezivanjem u paralelni rad više ADALINE-a.
 - Svakoj od ADALINE na ulaz dovodi se isti signal.
 - MADALINE ima jedan izlaz koji se formira od izlaza svih izlaza ADALINE-a koristeći određena pravila. Ako se primjeni logičko I, tada izlaz MADALINE ima vrijednost 1 samo kada izlaz svih ADALINE perceptrona bude 1.

Algoritam prostiranja greške unazad (Back Propagation Learning Algorithm)

- Najčešće korišćen alogirtam obuke za višeslojne VNM sa prostiranjem signala unaprijed.
- VNM obučena ovim algoritmom sposobna je aproksimirati funkcije sa visokim stepenom nelinearnosti.
- Obukom se vrši korekcija težina sinapsi koje povezuju neurone sa svim slojevima, pa i skrivenim.
 - Korekcija se vrši na osnovu greške izlaza neurona koja se unazad propagira.
 - Iterativni postupak, jednostavan za primjenu na računaru.
 - Cilj obuke odrediti skup težina sinapsi VNM za koji će greška izlaza biti minimalna.
 - Prije početka obuke odrediti obučavajući skup, vrijednost koraka učenja, kriterijum zaustavljanja algoritma, način korekcije težina sinapsi, aktivacionu funkciju (najčešće sigmoida) i inicijalne vrijednosti težina sinapsi (obično mali slučajni brojevi).

Matematička analiza procesa obuke

Matematička analiza procesa obuke

Posmatra se VNM sa prostiranjem signala u napred i sledećim parametrima:

VNM se sastoji od L slojeva i N_I neurona na sloju I;

— težina između i-tog neurona na sloju I+1 i j-tog
neurona na sloju I;

O'_j(x_p) – aktuelni izlaz j-tog neurona na sloju / za p-ti ulazni uzorak (nakon nelinearnosti, aktivacione funkcije);

 $T^{L}_{j}(\mathbf{x}_{p})$ – željeni izlaz j-tog neurona na sloju L za p-ti ulazni uzorak;

 $R'_j(\mathbf{x}_p)$ – aktivacioni izlaz *j*-tog neurona na sloju *l* za *p*-ti ulazni uzorak (pre nelinearnosti, aktivacione funkcije);

P – skup za obuku;

χ_ρ – p-ti obučavajući uzorak, p-ti elemenat skupa za obuku.

U cilju ilustracije BP algoritma posmatra se i-ti neuron na sloju l+1 koji prima signale od j-tog neurona sa sloja l, preko težine w^l_{ji} .

Izlaz *i-*tog neurona sa sloja *l*+1, za *k-*ti ulazni obučavajući vektor je opisan izrazom:

$$O_{i}^{l+1}(k) = f\left(\sum_{j=1}^{N_{l}} w_{ij}^{l} O_{j}^{l}(k) - \theta_{i}^{l+1}\right) = f\left(\sum_{j=1}^{N_{l}+1} w_{ij}^{l} O_{j}^{l}(k)\right)$$

Ako se za aktivacionu funkciju usvoji sigmoida, važe izrazi:

$$f(x) = \frac{1}{1 + e^{-\beta x}}$$
 $f'(x) = \beta f(x)(1 - f(x))$

Ukupna greška (E) mreže, za ceo obučavajući skup sa K uzoraka se definiše kao suma kvadrata greški svih neurona sa izlaznog sloja L:

$$E = \sum_{k=1}^{K} E_k = \sum_{k=1}^{K} \left(\frac{1}{2} \sum_{i=1}^{N_L} \left[T_i(k) - O_i^L(k) \right]^2 \right)$$

Cilj je odrediti skup svih težina VNM koji minimizira E

Pravilo obuke definiše da je promena težina srazmerna negativnom gradijentu greške izlaza:

$$\Delta w_{nm}^{l} \approx -\frac{\partial E_{k}}{\partial w_{nm}^{l}}$$

Da bi se odredila vrednost prethodnog izraza primenjuje se pravilo ulančavanja izvoda:

$$\frac{\partial E_k}{\partial w_{nm}^I} = \frac{\partial E_k}{\partial O_i^L(k)} \frac{\partial O_i^L(k)}{\partial w_{nm}^I}$$

Što se može napisati u obliku:

$$-\frac{\partial E_k}{\partial w_{nm}^I} = \sum_{i=1}^{N_L} \! \left(T_i(k) - O_i^L(k) \right) \! \frac{\partial O_i^L(k)}{\partial w_{nm}^I}$$

Pošto je pretpostavljena sigmoidna aktivaciona funkcija, za *l*=*L*-1 (težine izlaznog sloja) može se pisati sledeći izraz:

Na osnovu prethodnog izraza se piše:

$$-\frac{\partial E_{k}}{\partial w_{nm}^{l}} = \left(T_{n} - O_{n}^{L}\right) \beta O_{n}^{L} \left(1 - O_{n}^{L}\right) O_{m}^{L-1}$$

pa je izraz za korekciju težina sinapsi neurona izlaznog sloja:

$$\Delta w_{nm}^{L} = \eta \left(T_{n} - O_{n}^{L} \right) O_{n}^{L} \left(1 - O_{n}^{L} \right) \left[O_{m}^{L-1} \right]$$
 korak učenja

Ako je sada $l \neq L-1$, O^{L-1}_m i dalje zavisi od w_{nm} , i zavisnost greške od težina se ponovo može odrediti, primenom pravila ulančavanja:

$$-\frac{\partial E_k}{\partial w_{nm}^l} = \sum_{i=1}^{N_L} \left(T_i - O_i^L\right) f'\left(O_i^L\right) \sum_{j=1}^{N_{L-1}+1} w_{ij}^{L-1} \frac{\partial O_j^{L-1}}{\partial w_{nm}^l}$$

Ako je l=L-2 (poslednji skriveni sloj), prethodna jednačina se može napisti u obliku:

$$-\frac{\partial E_k}{\partial w_{nm}^l} = \sum_{i=1}^{N_L} \! \left(T_i - o_i^L \right) \! f' \! \left(o_i^L \right) \! w_{in}^{L-1} \! f' \! \left(o_n^{L-1} \right) \! o_m^{L-2}$$

odnosno:

$$-\frac{\partial E_k}{\partial w_{nm}^{l}} = f' \bigg(O_n^{L-1} \bigg) \Bigg[\sum_{i=1}^{N_L} \bigg(T_i - O_i^L \bigg) f' \bigg(O_i^L \bigg) w_{in}^{L-1} \Bigg] O_m^{L-2}$$

pa je izraz za korekciju težina sinapsi neurona poslednjeg skrivenog sloja:

$$\Delta w_{nm}^{L-2} = \eta \left[f' \bigg(O_n^{L-1} \bigg) \sum_{i=1}^{N_L} \bigg(T_i - O_i^L \bigg) f' \bigg(O_i^L \bigg) w_{in}^{L-1} \right] O_m^{L-2}$$

Winner Takes All algoritam

- Algoritam kompetitivne odluke bez nadzora.
- Pretpostavka je da VNM ima jedan sloj sa N neurona i da svakom neuronu odgovara vektor težina w_i .

Svaki čvor (neuron) pobuđuje se istim setom ulaznih podataka tako da je odziv i-tog neurona

$$O_i = \sum_{j=1}^m w_{ij} x_j$$

Čvor sa "najboljim" odzivom za dati ulazni vektor je pobjednik i korekcija njegove težine računa se prema izrazu

$$\Delta w_n = lpha(k)(x-w_n)$$

Korekcija težina je proporcionalna razlici $(\mathbf{x} - \mathbf{w}_n)$, tako da "pobeđuje" onaj vektor \mathbf{w}_n koji je najbliži ulaznom vektoru \mathbf{x} .

- VNM koja koristi Winner Takes All algoritam sastoji se od dva sloja međusobno povezanih sinapsama sa adaptivnim težinama:
 - Ulazni sloj (adaptivni filteri, memorijski nivo)
 - Izlazni sloj (filter maksimalne vrijednosti, kodirajući nivo)

Obuka:

Pravila i proces obuke

- Neuroni datog sloja su podeljeni u nepreklapajuće klastere;
- Svaki neuron u klasteru utiče na sve ostale. Neuroni u klasteru rade po "winner-takes-all" konceptu;
- Svaki element klastera prima ulazne signale na isti način. Za svaki ulaz se određuje najveći izlaz i "pobednički" neuron. Njegov izlaz je maksimalan (1), dok ostali neuroni u klasteru imaju minimalan izlaz (0);
- Obučava se samo "pobednički" neuron iz klastera;
- Ulazni uzorak x_j je binaran. Aktivni elemenat ima vrednost 1, a neaktivni 0:
- Svaki neuron ima **fiksiranu ukupnu vrednost težina** w_{ij} (**sve su pozitivne**) i one su raspodeljene po ulaznim sinapsama.
- Vrednost sume svih težina w_{ii} po neuronu je jednaka 1.
- Obuka se može vršiti sa i bez učitelja

Linear Vector Quantization

- Primjer klasifikatora.
- Obuka sa učiteljem.
- VNM ima dva sloja ulazni i izlazni.
- Tokom obuke se vrši određivanje pripadnosti ulaznih podataka nekom od datih skupova (grupa, klastera).
- Koristi se Winner Takes All algoritam.
- Ovim algoritmom se vrši pomjeranje granica grupa ka njihovim optimalnim vrijednostima.
 - Primjena u okviru prepoznavanja štamparskih karaktera, konverzije govora u štampani tekst i sl.

Self Organizing Feature Map

- Samoorganizujući algoritam za klastering.
- Obuka bez učitelja.
- Proizvodi niskodimenzionalnu (tipično 2D) diskretnu reprezentaciju ulaznih podataka za obuku, koju zovemo mapa
- Za razliku od drugih VNM, SOM primjenjuju kompetitivnu obuku, a ne obuku minimizacije greške kao kod Back Propagation algoritma.
- Za razliku od LVQ algoritma (klasifikacioni problem), ovdje se set ulaznih uzoraka dijeli
 na unaprijed nepoznat skup klastera (predodređen skup vrijednosti, skup grupa).
- Vektor težina je iste dimenzije kao i vektor ulaznih podataka.
- Za određivanje neurona koji je najbliži datom uzorku koristi se metod određivanja udaljenosti između vektora (pobjeđuje neuron čije su težine najsličnije ulaznom vektoru).
- Cilj obuke je da različiti dijelovi mreže daju sličan odziv na određene oblike ulaznih podataka.
- Motivacija je proistekla iz toga kako se vizuelne, auditorne i druge senzorne informacije obrađuju u različitim dijelovima ljudskog mozga.
- Na kraju obuke, svaki izlazni neuron predstavlja jedan klaster.

Radial Basis Function

- Problemi klasifikacije i regresije (pattern recognition).
 - Da primjete koliko su ulazi udaljeni od željenih izlaza.
- Sastoje se od dva sloja.
- Na izlaznom sloju se formira linearna kombinacija funkcija izračunatih na skrivenom sloju.
- Bazna funkcija na skrivenom sloju daje značajan nenulti izlaz u slučaju kada pobudni signal uzima vrijednost iz određenog intervala.
- Najčešće pobudne funkcije na skrivenom sloju sigmoida i Gausijan.
- Algoritam obuke:
 - Početi obuku skrivenog sloja metodom obuke bez nadzora.
 - Nastaviti sa obukom izlaznog sloja metodom obuke sa nadzorom.
 - Istovremeno primjeniti obučavanje sa nadzorom na skriveni i izlazni sloj radi finog podešavanja mreže (backprop algoritam za kraj).

