Regularisierung von linearer Regression

Philipp Grafendorfer, Michael Kastner, Raphael Peer

Daten

Ames House price Dataset

Datensatz:

- 1460 Häuser
- 79 erklärende Variablen (numerisch und kategorisch)
- bekannter Übungsdatensatz

Quelle: https://www.kaggle.com/c/house-prices-advanced-regression-techniques

Fehlende Werte: Übersicht

Fehlende Werte: Strategie

Umgang mit fehlenden Werten:

- Bei mehr als 10% Fehlenden Werten: Variable verworfen
- Bei numerischen Variablen: NA durch Median der Variable ersetzt
- Bei kategorischen Variablen: NA als eigene Kategorie (Kategorie 'unbekannt')

Problem mit validation-set: seltene Factor-levels

data-frame

einige levels im validation-set aber nicht im trainings-set

unbekannte dummy
Variablen im validation-set

 \implies error

design-matrix

einige levels in validation-set aber nicht im trainings-set

 \implies dummy variable immer null im trainings set

 \implies Koeffizeint pprox 0

⇒ kein Einfluss

Standard lineare Regression

Einfaches Model mit allen Variablen

Interpretierbare Koeffizienten

Nachteil unstandardisierter Regressionskoeffizienten

- Von den Maßeinheiten für X und Y abhängig
- Daher schlechtere Vergleichbarkeit

Lösung: Standardisierte Koeffizienten

Beta-Koeffizienten im Vergleich

Regularisierung

Problemstellung I

Figure 1: Quelle: kdnuggets.com

- Bias- Variance Tradeoff
- OLS Schätzer ist "unbiased" aber kann große Varianz haben

Problemstellung II

Wann tritt große Varianz auf?

- Wenn die Prediktoren hohe Korrelation aufweisen
- Bei vielen Prediktoren. Wenn die Anzahl Prediktoren nahe bei Anzahl der Beobachtungen geht die Varianz gegen unendlich.

Lösung

Verringerung der Varianz auf Kosten des Bias

Figure 2: Quelle: researchgate.net

Ridge Regression

$$L_{ridge}(\hat{\beta}) = \sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2 + \lambda \sum_{j=1}^{m} \hat{\beta}_j^2 = ||y - X \hat{\beta}||^2 + \lambda ||\hat{\beta}||^2$$

Man erhält für jeden Parameter λ ein set von Schätzern $\hat{\beta}$. Falls $\lambda \Rightarrow 0$, dann $\hat{\beta}_{ridge} \Rightarrow \hat{\beta}_{OLS}$ Frage: wie wird der Regularisierungs- Parameter gewählt?

- Crossvalidierung (hier)
- Minimierung eines weiteren Informationskriteriums (AIC, BIC etc.)

Ridge Regression: Crossvalidierung

Figure 3: Lambda Tuning

Lasso Regression

Lasso, or Least Absolute Shrinkage and Selection Operator

Ridge: L2 Penalty Lasso: L1 Penalty

$$L_{lasso}(\hat{\beta}) = \sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2 + \lambda \sum_{i=1}^{m} |\hat{\beta}_i| = ||y - X \hat{\beta}||^2 + \lambda ||\hat{\beta}||_1$$

Tuning:

- Crossvalidierung (hier)
- Minimierung eines weiteren Informationskriteriums (AIC, BCI etc.)

Lasso Regression: Crossvalidierung

Figure 4: Lambda Tuning

Lasso Regression: Koeffizienten

Figure 5: Lambda Tuning

Vergleich der Modelle

Modelle	R ²	MAD
OLS	0.933	20117
Ridge	0.903	19624
Lasso	0.904	30010

Anmerkungen

- Feature Selection mit Lasso möglich, mit Ridge nicht.
- Beide Methoden können gut mit Multikolinearität umgehen (Ridge: korrelierte Koeffizienten sind ähnlich groß, Lasso: ein Koeffizient groß, die von korrelierten Prediktoren sind nahe bei Null)

Verallgemeinerte Regularisierung linearer Modelle: Elastic Net

$$L_{enet}(\hat{\beta}) = \frac{\sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2}{2n} + \lambda (\frac{1 - \alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j|)$$

Fragen und Diskussion

Vielen Dank für eure Aufmerksamkeit!