An Integrated trust and reputation model for open multi-agent systems

A paper by Trung Dong Huynh, Nicholas R. Jennings & Nigel R. Shadbolt (2006)

Jaspreet Singh & Daniël Stekelenburg

Overview

- 1. Terminology
- 2. The FIRE Model
- 3. Results
- 4. Conclusions

.. an open MAS?

"...systems in which agents can freely join and leave at any time and where the agents are owned by various stakeholders with different aims and objectives."

.. an open MAS?

"...systems in which agents can freely join and leave at any time and where the agents are owned by various stakeholders with different aims and objectives."

This causes some uncertainties:

- 1. Agents tend to be self-interested and may be unreliable
- 2. No agent can know everything about the environment
- 3. No central authority can control everything

Sources of trust/reputation

Source	Туре
Direct experience Witness experience Role-bases rules Third-party references	Interaction trust Witness reputation Role-based trust Certified reputation

Fire

Uses all four sources of information

Works, based on the following assumptions:

- Agents are willing to share their experiences with others (as witnesses or as referees)
- Agents are honest in exchanging information with one another.

Fire

Uses all four sources of information

Works, based on the following assumptions:

- Agents are willing to share their experiences with others (as witnesses or as referees)
- Agents are honest in exchanging information with one another.

So... we do not consider the problem of lying and inaccuracy.

How to quantify trust/reputation? - The old way

Just take the average of all the ratings.

How to quantify trust/reputation? - The old way

Just take the average of all the ratings.

However... these ratings are not equally relevant:

- Older ratings might not be as relevant as new ones
- Some ratings are more credible than other depending on the source

So in what other way can we quantify trust?

How to quantify trust? - The FIRE way

Every rating is a tuple r = (a, b, c, i, v).

Where a and b are the agents participating in transaction i. Value $v \in [-1, +1]$ is the rating given by agent a to agent b regarding regarding topic c (e.g. quality, honesty).

These ratings are stored in the agent's local database.

How to quantify trust? - The FIRE way

Every rating is a tuple r = (a, b, c, i, v).

Where a and b are the agents participating in transaction i. Value $v \in [-1, +1]$ is the rating given by agent a to agent b regarding regarding topic c (e.g. quality, honesty).

These ratings are stored in the agent's local database.

Since ratings become outdated over time, an agent only stores the latest ${\cal H}$ transactions it gave to other agents.

How to quantify trust? - Trust value ${\mathcal T}$

Use a rating weight function (reliability function) ω_K for every type of trust, where $K \in \{I, R, W, C\}$.

How to quantify trust? - Trust value ${\mathcal T}$

Use a rating weight function (reliability function) ω_K for every type of trust, where $K \in \{I, R, W, C\}$.

This gives us:

$$\mathcal{T}_K(a,b,c) = \frac{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i) \cdot v_i}{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i)}$$
(1)

- ▶ $\mathcal{T}_K(a, b, c)$ is the trust value of agent a towards agent b on topic c_i regarding K.
- $ightharpoonup \mathcal{R}_K(a,b,c)$ are the ratings collected on K.
- ▶ $\mathcal{T}_K(a,b,c) \in [-1,+1]$

How to quantify trust? - Reliability

- ightharpoonup We now have a trust value \mathcal{T}_K
- ▶ How reliable is \mathcal{T}_K ?

How to quantify trust? - Reliability

- lacktriangle We now have a trust value \mathcal{T}_K
- ▶ How reliable is \mathcal{T}_K ?
- ightharpoonup We need a value to express how reliable the calculated trust value \mathcal{T}_K is!

How to express reliability?

- lacktriangle We know how to calculate how reliable each individual rating is: ω_K
- We use this to express:
 - ightharpoonup Rating reliability ho_{RK} : The total reliability of the individual ratings.
 - ▶ Deviation reliability ρ_{DK} : The higher the variance in the ratings is, the more volatile the agent is likely to fulfilling its agreements.

How to express reliability? - Rating reliability

The total reliability of the individual ratings. → The sum of reliability of the individual ratings.

$$\rho_{RK}(a,b,c) = 1 - exp\left(-\gamma_K\left(\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i)\right)\right) \quad \text{(2)}$$

Figure 1: Rating reliability function [Faculty of Science Universiteit Utrecht]

Figure 1: Rating reliability function [Faculty of Sciences]

Sciences]

How to express reliability? - Deviation reliability

- ► The higher the variability in the ratings is, the more volatile the agent is likely to fulfilling its agreements.
- ➤ The higher the variability the lower the deviation reliability is.

$$\rho_{DK}(a,b,c) = 1 - \frac{1}{2} \cdot \frac{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i) \cdot |v_i - \mathcal{T}_K(a,b,c)|}{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i)}$$
(3)

How to express reliability?

- Now we know how to calculate both the rating reliability ρ_{RK} and deviation reliability ρ_{DK} .
- \blacktriangleright We combine both values and get a single value for the reliability of \mathcal{T} :

$$\rho_K(a, b, c) = \rho_{RK}(a, b, c) \cdot \rho_{DK}(a, b, c) \tag{4}$$

Interaction trust

- Is built from the direct experiences of an agent and models the direct interactions between two agents.
- ▶ The reliability $\omega_I(r_i)$ of a single interaction is determined by its recency:

$$\omega_I(r_i) = exp\left(-\frac{\Delta t(r_i)}{\lambda}\right)$$
 (5)

- $ightharpoonup \Delta t(r_i)$ is the difference in time between now and the time when r_i was recorded.
- $ightharpoonup \lambda$ is the recency scaling factor.

Interaction trust

Figure 2: Behavior of the weight function $\omega_I(r_i)$.

Role-based trust

- ▶ Models trust resulting from role-based relations.
- ► For example: provider-consumer relationship.
- ▶ The reliability $\omega_R(r_i)$ of a single interaction is determined by a set of rules:

$$rule = (role_a, role_b, c, e, v)$$
 (6)

- ightharpoonup v is the expected performance.
- ightharpoonup e is the amount of influence this rule has on the total value.
- $\blacktriangleright \ \omega_R(r_i) = e_i$

Witness reputation

- Is built on observations on the agents behavior by other agents.
- \blacktriangleright Need to find other agents that have interacted with b.
- ► This might be problematic in large environment:
 - Limited resources available;
 - Need to find these witnesses in reasonable time.
- ▶ Once all the ratings have been collected, the weight is determined by $\omega_W(ri) = omega_W(ri)$.

Witness reputation

Universiteit Utrecht

Information and Computing Sciences

Figure 3: How to find witnesses

Certified reputation

Putting it all together

Summary

