Практическая работа 14. Функции от матриц.

Цель работы: приобретение навыков работы с функциями от матриц в среде MatLab.

1. Задание к работе

- 1.1. Найти сингулярные числа заданной матрицы, число обусловленности заданной матрицы, квадратный корень из заданной матрицы, спектральную норму матрицы, первую (столбцовую) норму матрицы, бесконечную (строчную) норму матрицы. Матрица А определяется в следующем виде:
 - A=[a b; c 0], где a, b, c число букв в Вашей фамилии, имени, отчестве.
- 1.2. Найти сингулярные числа заданной матрицы, число обусловленности заданной матрицы, квадратный корень из заданной матрицы, спектральную норму матрицы, первую (столбцовую) норму матрицы, бесконечную (строчную) норму матрицы. Матрица задана в соответствии с таблицей 1.

Таблица 1. Матрица А

1

N	Матрица	N	Матрица
1	$A = \begin{pmatrix} 4 & 2 & -2 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end{pmatrix},$	5	$A = \begin{pmatrix} -2 & 1 & 2 \\ -1 & 0 & 2 \\ -2 & 0 & 3 \end{pmatrix},$
2	$A = \begin{pmatrix} 2 & 0 & -1 \\ 1 & -1 & 0 \\ 3 & -1 & -1 \end{pmatrix},$	6	$A = \begin{pmatrix} 1 & -2 & 2 \\ 1 & 4 & -2 \\ 1 & 5 & -3 \end{pmatrix},$
3	$A = \begin{pmatrix} -3 & 2 & 2 \\ -3 & -1 & 1 \\ -1 & 2 & 0 \end{pmatrix},$	7	$A = \begin{pmatrix} 3 & -3 & 1 \\ 3 & -2 & 2 \\ -1 & 2 & 0 \end{pmatrix},$
4	$A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 3 & -1 & -2 \end{pmatrix},$	8	$A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix},$

1.3. Объект описываются дифференциальным уравнением (таблица 2). Требуется получить графики y(t) при четырех вариантах начальных условий для y(0) (например, с шагом 0.25 или 0.5). Изменить начальные условия для y(0) при необходимости.

Таблица 2. Система ОДУ

N	Система ОДУ	N	Система ОДУ
1	y'' - 4y' + 2y = 0	6	y'' - y' - 2y = 0
	y(0)=4 $y'(0)=-5$		y(0)=2 $y'(0)=-5$
2	y'' - y' + 4y = 0	7	y'' - 6y' + 9y = 0
	y(0) = -1 $y'(0) = 0$		y(0)=1 $y'(0)=4$
3	y "+ y '=1	8	y "+ y =1
	y(1)=1 $y'(0)=0$		$y(0)=0$ $y'(\pi/2)=0$
4	$y''+y=4e^{x}$	9	$y'' - 4y' + 3y = 3e^{2x}$
	y(0)=4 $y'(0)=-3$		y(0) = -1 $y'(0) = -2$
5	y" - 2 y '=2e ^x	10	y"-2y'+y=1+x
	y(1)=-1 $y'(1)=0$		y(0)=2 $y'(0)=-3$

Порядок выполнения работы.

- 1. Ознакомиться с теоретическими сведениями.
- 2. Выполнить задание к практической работе (п.1).
- 3. Оформить отчет по проделанной работе. Отчет должен содержать: титульный лист, цель работы, задание, ход выполнения работы, результаты работы, анализ результатов и выводы по работе.