

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE CÓMPUTO

Introducción a los microcontroladores

Profesor: Aguilar Sánchez Fernando

Práctica 03 "Convertidor BCD a 7 segmentos"

Integrantes del Equipo:

- Arizmendi Alvarado Brian
- Rodríguez López Ricardo

Objetivo

Al término de la sesión, los integrantes del equipo contarán con la habilidad de realizar un contador BCD empleando arreglos.

Introducción Teórica

Un convertidor BCD a 7 segmentos es un circuito electrónico que se utiliza para convertir un número en formato BCD (Binary Coded Decimal) a un formato visualmente legible en un display de 7 segmentos.

El código BCD es una forma de representar números decimales utilizando 4 bits, donde cada uno de los dígitos decimales es representado por su equivalente binario. Por ejemplo, el número decimal 7 en BCD se representa como 0111.

Por otro lado, un display de 7 segmentos es un componente electrónico que se utiliza para mostrar números y letras en formato visual. Está formado por siete segmentos que se pueden encender o apagar de forma independiente, permitiendo mostrar diferentes dígitos y caracteres.

Número	Combinaciones								Valor
Display		g	\mathbf{f}	e	\mathbf{d}	c	ь	a	Hexadecimal
0	0	0	1	1	1	1	1	1	0x3F
1	0	0	0	0	0	1	1	0	0x06
2	0	1	0	1	1	0	1	1	0x5B
3	0	1	0	0	1	1	1	1	0x4F
4	0	1	1	0	0	1	1	0	0x66
5	0	1	1	0	1	1	0	1	0x6D
6	0	1	1	1	1	1	0	1	0x7C
7	0	0	0	0	0	1	1	1	0x07
8	0	1	1	1	1	1	1	1	0x7F
9	0	1	1	0	1	1	1	1	0x6F

El convertidor BCD a 7 segmentos toma un número en formato BCD y lo convierte en las señales de control necesarias para encender los segmentos del display de 7 segmentos, de manera que se muestre el dígito correspondiente. Dependiendo del tipo de display de 7 segmentos utilizado, el convertidor puede requerir una lógica específica para manejar los segmentos comunes (ánodo o cátodo) del display.

El convertidor BCD a 7 segmentos es un componente muy utilizado en proyectos electrónicos que requieren mostrar números en un formato visual, como en relojes digitales, medidores de temperatura, entre otros. Es una herramienta útil y eficiente para convertir números decimales en un formato visualmente legible en un display de 7 segmentos.

Materiales y Equipo empleado

- CodeVision AVR
- AVR Studio 4
- Microcontrolador ATmega 8535
- Display ánodo común
- Display cátodo común
- 14 resistores de 330 Ohms a ¼ W

Código

```
// I/O Registers definitions
#include <mega8535.h>

// Declare your global variables here
unsigned char var1, var2;
const char seven [10]=(0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7c,0x07,0x7f,0x6f);

void main(void)
{
    // Declare your local variables here

// Input/Output Ports initialization
// Port A initialization
// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out Bit0=Out
DDRA=(1x<DDA7) | (1x<DDA6) | (1x<DDA6)
```

```
// Port D initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD5) | (0<<DDD4) | (0<<DDD7) | (0<<DDD0) | (0<<DDD0);
// State: Bit7=P Bit5=P Bit5=P Bit4=P Bit3=P Bit1=P Bit1=P Bit0=P
PORTD=(1<<PORTD7) | (1<<PORTD6) | (1<<PORTD6) | (1<<PORTD5) | (1<<PORTD4) | (1<<PORTD7) | (1</p>

PORTD6 | (1

PORTD6 | (1

PORTD6 | (1<<PORTD7) | (1</p>

PORTD6 | (1

PORTD6 | (1

PORTD6 | (1<<PORTD7) | (1<<PORTD7) | (1<<PORTD7) | (1<<PORTD7) | (1</
```

```
TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10);

TCCR1B=(0<<ICNC1) | (0<<ICS1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) | (0<<CS10);

TCNT1H=0x00;

TCNT1L=0x00;

ICR1L=0x00;

OCR1AH=0x00;

OCR1AH=0x00;

OCR1BH=0x00;

OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected

ASSR=0<<AS2;

TCCR2=(0<<WGM20) | (0<<COM21) | (0<<CM20) | (0<<CS22) | (0<<CS21) | (0<<CS20);

TCNT2=0x00;

OCR2=0x00;
```

```
TIMSK = (0 < < OCIE2) \mid (0 < < TOIE2) \mid (0 < < TOIE2) \mid (0 < < TOIE1) \mid (0 < < OCIE1A) \mid (0 < < TOIE1) \mid (0 < < OCIE1B) \mid (0 < < TOIE1) \mid (0 < < OCIE0B) \mid (0 < TOIE1A) \mid (0 < OCIE1B) \mid (0 < TOIE1A) \mid (0 < OCIE1B) \mid (0 < TOIE1A) \mid (0 < OCIE1B) \mid (0 < TOIE1A) \mid
\label{eq:mcucr} \texttt{MCUCR=}(\emptyset << \text{ISC11}) \ \big| \ (\emptyset << \text{ISC10}) \ \big| \ (\emptyset << \text{ISC01}) \ \big| \ (\emptyset << \text{ISC00});
MCUCSR=(0<<ISC2);
UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<TXBB) | (0<<TXBB) | (0<<TXBB) | (0<<TXBB) | (0<<TXBB);
ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIC) | (0<<ACIS) | (0<<ACIS1) | (0<<ACIS1) | (0<<ACIS0);
SFIOR=(0<<ACME);</pre>
ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADTE) | (0<<ADF) | (0<<ADPS0);
 SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) | (0<<SPR0);
   ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0);
   SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) | (0<<SPR0);
   TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);
                             var1=PIND&0x0f;
                              var2=PINC&0x0f;
                              if (var1<10)
                                           PORTB=seven[var1];
                                           PORTB=0x79;
                               if (var2<10)
                                           PORTA=~(seven[var2]);
                              else if (var2>=10)
                                           PORTA=\sim(0x79);
```

Pruebas

Simulación

Conclusiones

Arizmendi Alvarado Brian

Podemos concluir que los números decimales pueden ser representados tanto en binario como en decimal (como comúnmente los conocemos). El convertidor toma un número en binario y manda señales de control a un display para representarlo en forma decimal.

La importancia de este proceso es que facilita a un usuario visualizar el número con el que se está trabajando, en otras palabras, convierte el número binario a algo más natural e intuitivo.

Este componente es ampliamente utilizado en diversos proyectos electrónicos, como relojes digitales o medidores de temperatura.

Rodríguez López Ricardo

Al finalizar la práctica me quedó claro la importancia del BCD pues nos permite representar números en un estado muy básico. La importancia del convertidor BCD a 7 segmentos radica en su capacidad para proporcionar una interfaz visual eficiente y precisa para mostrar números decimales en proyectos electrónicos, lo que lo convierte en un componente esencial para muchas aplicaciones electrónicas.

Referencias Bibliográficas:

jfvilla. (2020, 20 de abril). Decodificadores de BCD a 7 segmentos. *Robot Mobile Education and Engineering*. https://wp.7robot.net/decodificadores-de-bcd-a-7-segmentos/