MAT1120

Robin A. T. Pedersen

November 19, 2016

Contents

1	For	ord		4
4	Kpt	.4 - V	ektorrom	4
	4.1^{-1}		r rom og underrom	4
		4.1.1	Definisjon - vektorrom	4
		4.1.2	Definisjon - underrom	5
		4.1.3	Teorem 1	5
	4.2	Nullro	om, kolonnerom og lineærtransformasjoner	5
		4.2.1	Definisjon - nullrom	5
		4.2.2	Teorem 2	5
		4.2.3	Definisjon - kolonnerom	5
		4.2.4	Teorem 3	6
		4.2.5	Definisjon - lineærtransformasjon	6
		4.2.6	Begrep - kjerne (kernel)	6
	4.3	Lineæ	ert uavhengige mengder: basiser	6
		4.3.1	Teorem 4	6
		4.3.2	Definisjon - basis	6
		4.3.3	Teorem 5 - utspennende mengde teoremet	6
		4.3.4	Teorem 6	6
	4.4	Koord	linatsystemer	7
		4.4.1	Teorem 7 - unik representasjon teoremet	7
		4.4.2	Definisjon - \mathcal{B} -koordinater	7
		4.4.3	Begrep - koordinatskiftematrise	7
		4.4.4	Teorem 8	7
		4.4.5	Begrep - isomorfi	7
	4.5	Dimer	nsjon av vektorrom	7
		4.5.1	Teorem 9	7
		4.5.2	Teorem 10	7
		4.5.3	Definisjon - dimensjon	8
		4.5.4	Teorem 11	8
		4.5.5	Teorem 12 - basisteoremet	8
		4.5.6	Observasjon - DimNul og DimCol	8

	4.6	Rang	
		4.6.1	Definisjon - radrom
		4.6.2	Teorem 13
		4.6.3	Definisjon - rang
		4.6.4	Teorem 14 - rangteoremet
		4.6.5	Teorem - invertibel matrise teoremet (fortsatt) 9
	4.7		kifte
	2	4.7.1	Teorem 15
		4.7.2	Begrep - koordinatskiftematrise
		4.7.3	Observasjon - Invers av koord.skiftematr
	4.8		ksamensrelevant
	4.9		delser til Markovkjeder
	4.9	4.9.1	Begrep - sannsynlighetsvektor
		4.9.1	
		-	0 1
		4.9.3	Begrep - markovkjede
		4.9.4	Begrep - tilstandsvektor
		4.9.5	Begrep - ekvilibriumsvektor
		4.9.6	Begrep - regulæritet
		4.9.7	Teorem 18
5	Knt	5 - E	genverdier og Egenvektorer 11
•	5.1		ektor og egenverdier
	0.1	5.1.1	Definisjon - egenvektor og egenverdi
		5.1.2	Begrep - egenrom
		5.1.2	Teorem 1
		5.1.4	Teorem 2
		5.1.5	
	5.2		arakteristisk ligningen
	5.2	5.2.1	
		5.2.1 $5.2.2$	
		5.2.2 $5.2.3$	9 1
			Begrep - karakteristisk ligning
		5.2.4	Teorem 4
	- 0	5.2.5	
	5.3		nalisering
		5.3.1	Teorem 5 - diagonaliseringsteoremet
		5.3.2	Metode - diagonalisering
		5.3.3	Teorem 6
		5.3.4	Teorem 7
	5.4		ektorer og lineærtransformasjoner
		5.4.1	Metode - relativ transformasjonsmatrise
		5.4.2	Metode - lin.transformasjon fra V til V
		5.4.3	Teorem 8 - Diagonal matrise representasjon
		5.4.4	
	5.5	_	lekse egenverdier
		5.5.1	Teorem 9
		552	Metode - Spesielt tilfelle 14

	5.6	Diskrete dynamiske systemer	14 14
		5.6.2 Observasjon - origos natur	15
	r 7	5.6.3	15
	5.7	Anvendelser til differensialligninger	15
		5.7.1 Repetisjon - Diffligninger	15
		5.7.2 Metode - initialverdiproblem	15
		5.7.3 Observasjon - frastøter, sadel, attraktor	15
		5.7.4 Metode - avkobling av dynamiske systemer	15
	- 0	5.7.5 Komplekse egenverdier	16
	5.8	Iterative estimater for egenverdier	16
		5.8.1 Metode - potensmetoden	16
		5.8.2 Metode - invers potensmetode	17
6	Kpt	6 - Ortogonalitet og Minstekvadrater	17
	6.1	Indre produkt, lengde og ortogonalitet $\ \ldots \ \ldots \ \ldots \ \ldots$	17
		6.1.1	17
	6.2	Ortogonale mengder	18
		6.2.1	18
	6.3	Ortogonal projeksjon	18
		6.3.1	18
	6.4	Gram-Schmidt prosessen	18
		6.4.1	18
	6.5	Minstekvadraters problem	18
		6.5.1	18
	6.6	Anvendelser til lineære modeller	18
		6.6.1	18
	6.7	Indreproduktrom	18
		6.7.1	18
	6.8	Anvendelser til indreproduktrom	18
		6.8.1	18
7	Kpt		18
	7.1^{-2}	Diagonalisering av symmetriske matriser	18
		7.1.1 Begrep - symmetrisk matrise	18
		7.1.2 Teorem 1	19
		7.1.3 Begrep - ortogonalt diagonaliserbar	19
		7.1.4 Teorem 2	19
		7.1.5 Teorem 3 - spektralteoremet for symmetriske matriser	19
		7.1.6 Observasjon - spektral dekomposisjon	19
	7.2	Kvadratisk form	19
		7.2.1 Definisjon - kvadratisk form	19
		7.2.2 Metode - koeffisienter fra matrisen	20
		7.2.3 Metode - kryssproduktledd	20
		7.2.4 Metode - variabelskifte	20
		7.2.5 Teorem 4 - prinsipalakseteoremet	20
		1 1	-

		7.2.6	Observasjon - geometrisk tolkning
		7.2.7	Definisjon - definit
		7.2.8	Teorem 5 - kvadratisk form og egenverdier
	7.3	Begrei	nset optimalisering
		7.3.1	Metode 1
		7.3.2	Teorem 6
		7.3.3	Teorem 7
		7.3.4	Teorem 8
	7.4	Singul	ærverdidekomposisjon
		7.4.1	Begrep - singulærverdier
		7.4.2	Teorem 9
		7.4.3	Teorem 10 - singulærverdidekomposisjon
		7.4.4	Metode - singulærverdidekomposisjon 23
		7.4.5	Teorem - IMT konkludert
		7.4.6	23
	7.5	Ikke p	ensum? TODO
8	Not	at 1	24
		8.0.1	
9	Not	at 2	24
		9.0.2	

1 Forord

Dette er en oversikt over alle definisjoner, teoremer og lignende fra læreboka i MAT1120.

NB! Noensteder har jeg skrevet $c \in \mathbb{R}$, men det kan hende at \mathbb{C} hadde fungert like fint. Lignende "feil" kan finnes andre steder.

NB! Noen av kapitlene er mangelfulle. Jeg har selv skrevet observasjoner og metoder.

4 Kpt.4 - Vektorrom

4.1 Vektor rom og underrom

4.1.1 Definisjon - vektorrom

Et vektorrom er en ikketom mengde V. Den består av såkalte *vektorer*. Disse vektorene må være beskrevet av 2 operasjoner: Addisjon og skalarmultiplikasjon.

De to operasjonene defineres av følgende aksiomer: La $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

- 1. $\mathbf{u} + \mathbf{v} \in V$
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

- 4. $\exists \mathbf{0} \in Vs.a.\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. $\forall \mathbf{u} \in V, \exists -\mathbf{u} \in V s.a.\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V, c \in \mathbb{R}$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1u = u

4.1.2 Definisjon - underrom

Et underrom H er en delmengde av V. H er et underrom av V. To egenskaper må være oppfylt:

- 1. H er lukket under addisjon. $\mathbf{u} + \mathbf{v} \in H, \ \forall \mathbf{u}, \mathbf{v} \in H$
- 2. H er lukket under skalarmultiplikasjon. $c\mathbf{u} \in H, \ \forall c \in \mathbb{R}$

4.1.3 Teorem 1

Hvis $\mathbf{v}_1,...,\mathbf{v}_p$ er i et vektorrom V, så er $\mathrm{Span}\{\mathbf{v}_1,...,\mathbf{v}_p\}$ et underrom av V.

4.2 Nullrom, kolonnerom og lineærtransformasjoner

4.2.1 Definisjon - nullrom

Nullromet til en $m \times n$ matrise A, er mengden av alle løsninger av $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} = \mathbf{0} \}$$

4.2.2 Teorem 2

Nullrommet til A $m \times n$, er et underrom av \mathbb{R}^n .

Med andre ord: $A\mathbf{x} = \mathbf{0}$ har m homogene lineære ligninger, med n ukjente. Mengden av løsninger er et underrom av \mathbb{R}^n .

4.2.3 Definisjon - kolonnerom

Kolonnerommet til $m \times n$ matrisen A, er mengden av alle lineærkombinasjoner av kolonnene i A.

$$A = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n]$$

$$\operatorname{Col}(A) = \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

4.2.4 Teorem 3

Kolonnerommet til A $m \times n$, er et underrom av \mathbb{R}^m .

Med andre ord: Kolonnene i A har m elementer i hver vektor. Kolonnerommet er alle lineærkombinasjoner av disse, og har derfor m elementer i hver vektor.

4.2.5 Definisjon - lineærtransformasjon

En lineærtransformasjon T fra et vektorrom V til et annet vektorrom W, er en regel som gir hver \mathbf{x} i V en unik vektor $T(\mathbf{x})$ i W.

To egenskaper må oppfylles

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$
- 2. $T(c\mathbf{u}) = cT(\mathbf{u}), \ \forall \ c \in \mathbb{R}^n$

4.2.6 Begrep - kjerne (kernel)

Praktisk talt synonymt med nullrom.

4.3 Lineært uavhengige mengder: basiser

4.3.1 Teorem 4

En mengde $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ (minst 2 vektorer) er lineært avhengig hvis (minst) en vektor kan skrives som en lineærkombinasjon av de andre vektorene.

4.3.2 Definisjon - basis

La H være et underrom av vektorrommet V. En mengde $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_p\}$ i V, er en basis for H hvis:

- 1. \mathcal{B} er lineært uavhengig
- 2. underrommet utspent av \mathcal{B} er det samme som H. Altså, $H = \text{Span}\{\mathbf{b}_1, ..., \mathbf{b}_p\}$

4.3.3 Teorem 5 - utspennende mengde teoremet

La $S = \{\mathbf{v}_1,...,\mathbf{v}_p\}$ være en mengde i V, og la $H = \mathrm{Span}\{\mathbf{v}_1,...,\mathbf{v}_p\}.$

- 1. Hvis \mathbf{v}_k er en lin.komb. av de andre vektorene, så kan man fjerne den fra mengden og den vil fremdeles utspenne H.
- 2. Hvis $H \neq \{0\}$, så er en delmengde av S en basis for H.

4.3.4 Teorem 6

Pivotkolonnene til en matrise A, utgjør en basis for Col(A).

Man velger altså de kolonnene i A som er lineært uavhengige.

4.4 Koordinatsystemer

4.4.1 Teorem 7 - unik representasjon teoremet

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ være en basis for et vektorrom V. Da fins in unik mengde $c_1, ..., c_n \in \mathbb{R}$ s.a.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n, \quad \forall \ \mathbf{x} \in V$$

4.4.2 Definisjon - \mathcal{B} -koordinater

Hvis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ er en basis for V, og $\mathbf{x} \in V$. Koordinatene til \mathbf{x} relativt til \mathcal{B} , er vekter $c_1, ..., c_n$ s.a.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

Med andre ord: \mathcal{B} -koordinatene til $\mathbf{x} = [\mathbf{x}]_{\mathcal{B}} = (c_1, ..., c_n)$.

4.4.3 Begrep - koordinatskiftematrise

Koordinatskiftematrisen $P_{\mathcal{B}}$, tar en vektor fra \mathcal{B} til standardbasis i \mathbb{R} ,

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Hvor $P_{\mathcal{B}}$ lages enkelt ved

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$$

4.4.4 Teorem 8

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ være en basis for vektorrommet V. Da er koordinatavbildningen $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ en-til-en lineærtransformasjon fra V $p\mathring{a} \mathbb{R}^n$.

4.4.5 Begrep - isomorfi

En isomorfi er en en-til-en og på lineærtransformasjon. Altså: den dekker hele V og enhver \mathbf{x} har en unik $T(\mathbf{x})$.

4.5 Dimensjon av vektorrom

4.5.1 Teorem 9

Hvis et vektorrom V har en basis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$, så er alle mengder i V med fler enn n vektorer lineært avhengig.

4.5.2 Teorem 10

Hvis et vektorrom V har en basis med n vektorer, så må alle basiser for V ha nøyaktig n vektorer.

4.5.3 Definisjon - dimensjon

Hvis V er utspent av en endelig mengde, så er V endelig-dimensjonalt. Dimensjonen til V, Dim V, er antall vektorer i en basis for V.

Hvis V ikke er utspent av en endelig mengde, så er V uendelig-dimensjonalt. Dimensjonen til nullvektorrommet $\{\mathbf{0}\}$ er null.

4.5.4 Teorem 11

La H være et underrom av et endelig-dimensjonalt vektorrom V. Alle lineært uavhengige mengder i V kan utvides, hvis nødvendig, til en basis for H.

H er også endelig-dimensjonalt.

$$\dim H \leq \dim V$$

4.5.5 Teorem 12 - basisteoremet

La V være et p-dimensjonalt vektorrom, $p \ge 1$.

Alle lin.uavh. mengder med nøyaktig p elementer i V, er en basis for V. Alle mengder som spenner V med nøyaktig p elementer, er en basis for V.

4.5.6 Observasjon - DimNul og DimCol

Dimensjonen til Nul(A) er antall fri variable i $A\mathbf{x} = \mathbf{0}$. Dimensjonen til Col(A) er antall pivot-kolonner i A.

4.6 Rang

4.6.1 Definisjon - radrom

Radrommet til A, Row(A), er mengden av alle lineærkonbinasjoner av radvektorene i A.

4.6.2 Teorem 13

A og B er radekvivalente hvis Row(A) = Row(B).

Hvis B er på trappeform, så er ikkenull radene i B en basis for både Row(A) og Row(B).

4.6.3 Definisjon - rang

Rangen til A er dimensjonen til kolonnerommet til A.

$$rank(A) = dim(Col(A))$$

4.6.4 Teorem 14 - rangteoremet

Kolonne-rang er det samme som rad-rang:

$$\dim(\operatorname{Col}(A)) = \dim(\operatorname{Row}(A))$$

Rangen til A er lik antall pivotelementer i A. Rangen til A oppfyller:

$$rank(A) + dim(Nul(A))$$

4.6.5 Teorem - invertibel matrise teoremet (fortsatt)

Med $An \times n$, så er følgende påstander ekvivalente

- 1. A er invertibel.
- 2. Kolonnene i A er en basis for \mathbb{R}^n .
- 3. $Col(A) = \mathbb{R}^n$.
- 4. $\dim(\operatorname{Col}(A)) = n$.
- 5. rank(A) = n.
- 6. Nul(A) = 0.
- 7. $\dim(\text{Nul}(A)) = 0$.

4.7 Basisskifte

4.7.1 Teorem 15

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ og $\mathcal{C} = \{\mathbf{c}_1, ..., \mathbf{c}_n\}$ være basiser for V. Da finnes en unik $n \times n$ matrise $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ s.a.

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}}$$

Hvor

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} \dots [\mathbf{b}_n]_{\mathcal{C}}]$$

4.7.2 Begrep - koordinatskiftematrise

Matrisen $\mathop{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ kalles for koordinatskiftematrisen fra \mathcal{B} til $\mathcal{C}.$

4.7.3 Observasjon - Invers av koord.skiftematr.

$$\begin{pmatrix} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{pmatrix}^{-1} = P \\ \mathcal{B} \leftarrow \mathcal{C}$$

4.8 Ikke eksamensrelevant

Ikke eksamensrelevant.

4.9 Anvendelser til Markovkjeder

4.9.1 Begrep - sannsynlighetsvektor

En sannsynlighetsvektor: har ikkenegative elementer, og summerer til 1.

4.9.2 Begrep - stokastisk matrise

En stokastisk matrise: en kvadratisk matrise med sannsynlighetsvektorer som kolonner.

4.9.3 Begrep - markovkjede

En markovkjede er en følge av sannsynlighetsvektorer, sammen med en stokastisk matrise ${\bf P}$ s.a.

$$\mathbf{x}_{k+1} = P\mathbf{x}_k, \quad k = 0, 1, 2, \dots$$

4.9.4 Begrep - tilstandsvektor

Et element \mathbf{x}_k i markovkjeden.

4.9.5 Begrep - ekvilibriumsvektor

Tilstandsvektorene i markovkjeden forandres for hver iterasjon, men hvis man finner en vektor som ikke endres, er det en ekvilibriumsvektor.

$$P\mathbf{q} = \mathbf{q}$$

Alle stokastiske matriser har en ekvilibriumsvektor.

4.9.6 Begrep - regulæritet

Hvis en potens av stokastisk matrise P^k kun inneholder positive elementer, så er den regulær.

4.9.7 Teorem 18

Hvis P er regulær og stokastisk, så vil markovkjeden konvergere mot den unike ekvilibriumsmatrisen.

$$\{\mathbf{x}_k\} \to \mathbf{q}$$
 når $k \to \infty$

5 Kpt.5 - Egenverdier og Egenvektorer

5.1 Egenvektor og egenverdier

5.1.1 Definisjon - egenvektor og egenverdi

En egenvektor til matrisen A, er en ikkenul vektor ${\bf x}$ s.a.

$$A\mathbf{x} = \lambda \mathbf{x}$$

Hvor λ er en egenverdi til A hvis det finnes en ikketriviell løsning.

5.1.2 Begrep - egenrom

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$A\mathbf{x} - \lambda\mathbf{x} = 0$$

$$(A - \lambda I)\mathbf{x} = 0$$

Mengden av alle løsninger kalles egenrommet til A for λ .

5.1.3 Teorem 1

Egenverdiene til en triangulær matrise er elementene langs hoveddiagonalen.

5.1.4 Teorem 2

Hvis $\mathbf{v}_1,...,\mathbf{v}_r$ er egenvektorer til $\lambda_1,...,\lambda_r$, for en matrise A, så er mengden $\{\mathbf{v}_1,...,\mathbf{v}_r\}$ lineært uavhengig.

5.1.5

TODO Egenvektorer og differensligninger

5.2 Den karakteristisk ligningen

5.2.1 Teorem - IMT fortsatt

Invertibel matrise teoremet:

Følgende er ekvivalent:

1. A er invertibel.

- 2. 0 er ikke en egenverdi til A.
- 3. $det(A) \neq 0$.

For A 3 × 3, så er $|\det(A)|$ volumet utspent av kolonnene. Hvis volumet er null, så har kolonnene kollapset inn i hverandre og er lineært avhengige.

5.2.2 Teorem 3 - egenskaper til determinanter

La A og B være $n \times n$ matriser. Da gjelder følgende:

- 1. A er invertibel \iff det $(A) \neq 0$.
- 2. det(AB) = (det(A))(det(B)).
- 3. $det(A^T) = det(A)$.
- 4. A triangulær \implies det(A) = produktet av diagonalelementene.
 - a Radmultippel endrer ikke determinanten.
 - b Radbytte endrer determinantens fortegn.
 - c Radskalering, skalerer determinanten.

5.2.3 Begrep - karakteristisk ligning

 λ er en egenverdi for A \iff $\det(A - \lambda I) = 0$.

5.2.4 Teorem 4

Hvis Matrisene A,B $n \times n$ har samme karakteristiske polynom, altså samme egenverdier med lik multiplisitet, så er de similære.

$$B = P^{-1}AP$$

5.2.5

TODO Anvendelse til dynamiske systemer

5.3 Diagonalisering

5.3.1 Teorem 5 - diagonaliseringsteoremet

A $n \times n$ er diagonaliserbar \iff A har n lin.uavh. egenvektorer.

$$A = PDP^{-1} \iff P = n \text{ lin.uavh. egenvek. til A, og D} = \text{diag(egenverdiene)}$$

Altså: A diagonaliserbar hhvis nok egenvek. til en basis for \mathbb{R}^n .

5.3.2 Metode - diagonalisering

- 1. Finn egenverdiene til A.
- 2. Finn lineært uavhengige egenvektorer.
- 3. Lag $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n].$
- 4. Lag $D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.

5.3.3 Teorem 6

En $n \times n$ matrise med n distinkte egenverdier er diagonaliserbar.

Merk: Det trenger ikke finnes n distinkte egenverdier.

5.3.4 Teorem 7

La A være en $n \times n$ matrise, med distinkte egenverdier $\lambda_1, ..., \lambda_p$. Da gjelder følgende:

- 1. Dimensjonen til en egenverdis egenrom, er mindre eller lik multiplisiteten.
- 2. A diagonaliserbar \iff sum av dimensjon til egenrommene er lik n. Det er kun tilfellet hhvis:
 - a Karakteristisk polynom kan faktoriseres til lineære faktorer.
 - b Dimensjonen til egenrom er lik tilsvarende multiplisitet.
- 3. Hvis A er diag.bar og \mathcal{B}_k er basis for egenrom til λ_k : Så er $\mathcal{B}_1,...,\mathcal{B}_p$ egenvektorbasis for \mathbb{R}^n .

5.4 Egenvektorer og lineærtransformasjoner

5.4.1 Metode - relativ transformasjonsmatrise

La V være n-dimensjonalt vektorrom, W et m-dimensjonalt vektorrom, \mathcal{B} basis for V, og \mathcal{C} basis for W, og $T: V \to W$.

Da kan man finne en matrise M s.a.

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}}$$

ved at

$$M = [T(\mathbf{b}_1)]_{\mathcal{C}} \quad [T(\mathbf{b}_2)]_{\mathcal{C}} \quad \dots \quad [T(\mathbf{b}_n)]_{\mathcal{C}}$$

M kalles for: Matrisen til T relativ til basisene \mathcal{B} og \mathcal{C} .

5.4.2 Metode - lin.transformasjon fra V til V

Matrisen M for T relativ til \mathcal{B} kalles her for $[T]_{\mathcal{B}}$.

$$[T(\mathbf{x})]_{\mathcal{B}} = M[\mathbf{x}]_{\mathcal{B}}$$

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

 $[T]_{\mathcal{B}}$ er \mathcal{B} -matrisen til T.

5.4.3 Teorem 8 - Diagonal matrise representasjon

Hvis $A = PDP^{-1}$, og \mathcal{B} formes fra kolonnene i P til å være en basis for \mathbb{R}^n . Da er D \mathcal{B} -matrisen til $\mathbf{x} \mapsto A\mathbf{x}$.

$$D = [T]_{\mathcal{B}}$$

5.4.4

TODO Similaritet av matriserepresentasjoner

5.5 Komplekse egenverdier

5.5.1 Teorem 9

A 2 × 2 reell matrise, med kompleks egenverdi $\lambda=a-bi,\,b\neq0,$ og tilhørende $\mathbf{v}\in\mathbb{C}^2.$

Da er

$$A = PCP^{-1}, \quad P = [\text{Re } \mathbf{v} \mid \text{Im } \mathbf{v}], \quad C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

5.5.2 Metode - Spesielt tilfelle

Hvis $C=\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, hvor $a,b\in\mathbb{R}$ og $a,b\neq 0$. Så vil egenverdine til C være $\lambda=a+bi$.

La $r = |\lambda| = \sqrt{a^2 + b^2}$. Da er

$$C = r \begin{bmatrix} a/r & -b/r \\ b/r & a/r \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

5.6 Diskrete dynamiske systemer

5.6.1 Metode - følger

For systemer av typen $\mathbf{x}_{k+1} = A\mathbf{x}_k$:

Anta at A er diag.bar med n lin.uavh. egenvek. $\mathbf{v}_1,...,\mathbf{v}_n$ med tilsvarende (ordnede) egenverdier $|\lambda_1| \geq ... \geq |\lambda_n|$.

Initialvektor egenvektordekomposisjon:

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

Iterasjon:

$$\mathbf{x}_1 = A\mathbf{x}_0 = \dots = c_1\lambda_1\mathbf{v}_1 + \dots + c_n\lambda_n\mathbf{v}_n$$

Generelt:

$$\mathbf{x}_k = c_1(\lambda_1)^k \mathbf{v}_1 + \dots + c_n(\lambda_n)^k \mathbf{v}_n$$

5.6.2 Observasjon - origos natur

- 1. Alle $|\lambda| < 1 \implies$ origo er attraktor.
- 2. Alle $|\lambda| > 1 \implies$ origo er frastøter.
- 3. Minst én $|\lambda| > 1$ og én $|\lambda| < 1 \implies$ origo er sadelpunkt.

5.6.3

TODO bytte av variabel, komplekse egenverdier

5.7 Anvendelser til differensialligninger

5.7.1 Repetisjon - Diffligninger

La x(t) være en funksjon og $a \in \mathbb{R}$. Gitt ligningen

$$x'(t) = a \cdot x(t)$$

Så er

$$x(t) = c \cdot e^{a \cdot t}$$

5.7.2 Metode - initialverdiproblem

Gitt egenverdier λ_1, λ_2 , og egenvektorer $\mathbf{v}_1, \mathbf{v}_2$, og initialverdi $\mathbf{x}(0)$: Løs ligningen $\mathbf{x}'(t) = A\mathbf{x}$.

Løsning

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$$

5.7.3 Observasjon - frastøter, sadel, attraktor

Hvis egenverdiene er positive, så er origo en frastøter.

Hvis egenverdiene er negative, så er origo en attraktor.

Hvis egenverdiene er blandet, så er origo et sadelpunkt.

5.7.4 Metode - avkobling av dynamiske systemer

Når vi har $\mathbf{x}'=A\mathbf{x}$, med A diagonaliserbar $A=PDP^{-1}$. Så kan vi gjøre et variabelskifte $\mathbf{y}=P^{-1}\mathbf{x}$.

$$x' = \frac{d}{dt}(P\mathbf{y}) = A(p\mathbf{y}) = (PDP^{-1})P\mathbf{y} = PD\mathbf{y}$$

Venstremultipliser med P^{-1} og få

$$\mathbf{y}' = D\mathbf{y}$$

Det er mye enklere å løse.

5.7.5 Komplekse egenverdier

Hvis matrisen A har komplekse egenverdier λ og egenvektorer $\mathbf{v},$ så kan vi finne generelle løsninger.

Kompleks generell løsning

På vanlig vis:

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$$

Reell generell løsning

$$\mathbf{x}(t) = c_1 \mathbf{y}_1(t) + c_2 \mathbf{y}_2(t)$$

$$\mathbf{y}_1 = \operatorname{Re} \ \mathbf{x}_1 = ([\operatorname{Re} \ \mathbf{v}] \cos bt - [\operatorname{Im} \ \mathbf{v}] \sin bt)e^{at}$$

$$\mathbf{y}_2 = \operatorname{Re} \ \mathbf{x}_2 = ([\operatorname{Re} \ \mathbf{v}] \sin bt + [\operatorname{Im} \ \mathbf{v}] \cos bt)e^{at}$$
hvor $\lambda_1 = a + bi \text{ og } \mathbf{x}_1 = \mathbf{v}_1 e^{\lambda_1 t}$.

5.8 Iterative estimater for egenverdier

5.8.1 Metode - potensmetoden

Teori

Potensmetoden gjelder $n \times n$ matriser A med en Strengt dominant egenverdi.

$$|\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_n|$$

Vis ser på ${\bf x}$ skrevet som

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
$$A^k \mathbf{x} = c_1 (\lambda_1)^k \mathbf{v}_1 + \dots + c_n (\lambda_n)^k \mathbf{v}_n$$

Vi deler på den største egenverdien

$$\frac{1}{(\lambda_1)^k}A^k\mathbf{x} = c_1\mathbf{v}_1 + c_2\left(\frac{\lambda_2}{\lambda_1}\right)^k\mathbf{v}_2 + \dots + c_n\left(\frac{\lambda_n}{\lambda_1}\right)^k\mathbf{v}_n$$

Fordi λ_1 er størst får man

$$(\lambda_1)^{-k} A^k \mathbf{x} \to c_1 \mathbf{v}_1, \quad k \to \infty$$

Altså har vi at $A^k \mathbf{x}$ går i ca samme retning som \mathbf{v}_1 .

Algoritme

- 1. Vel initialvektor \mathbf{x}_0 med største komponent 1.
- 2. For k = 0, 1, ...
 - a Beregn $A\mathbf{x}_k$
 - b La μ_k være komponenten i $A\mathbf{x}_k$ med størst abs.
 - c Beregn $\mathbf{x}_{k+1} = (1/\mu_k)A\mathbf{x}_k$
- 3. For nesten alle \mathbf{x}_0 vil $\mu_k \to \lambda_1$ og $\mathbf{x}_k \to \mathbf{v}_1$

5.8.2 Metode - invers potensmetode

Teori

Metoden tilnærmer hvilkensomhelst egenverdi, gitt at initialgjetning α er nærme nok $\lambda.$

La $B = (A - \alpha I)^{-1}$ og bruk potensmetoden på B.

Egenverdiene til A er $\lambda_1, ..., \lambda_n$, og egenverdiene til B er $\frac{1}{\lambda_1 - \alpha}, ..., \frac{1}{\lambda_n - \alpha}$.

Egenverdiene til A vil ligge innenfor $[-|\lambda_1|, |\lambda_1|]$.

Algoritme

- 1. Velg initial gjetning α nærme λ
- 2. Velg initialvektor \mathbf{x}_0 med største komponent 1.
- 3. For k = 0, 1, ...
 - a Beregn $(A \alpha I)\mathbf{y}_k = \mathbf{x}_k$
 - b La μ_k være komponent i \mathbf{y}_k med størst abs.
 - c Beregn $v_k = \alpha + (1/\mu_k)$
 - d Beregn $\mathbf{x}_{k+1} = (1/\mu_k)\mathbf{y}_k$
- 4. $v_k \to \lambda \text{ og } \mathbf{x}_k \to \mathbf{v}$

6 Kpt.6 - Ortogonalitet og Minstekvadrater

6.1 Indre produkt, lengde og ortogonalitet

6.1.1

TODO

6.2 Ortogonale mengder
6.2.1
TODO
6.3 Ortogonal projeksjon
6.3.1
TODO
6.4 Gram-Schmidt prosessen
6.4.1
TODO
6.5 Minstekvadraters problem
6.5.1
TODO
6.6 Anvendelser til lineære modeller
6.6.1
TODO
6.7 Indreproduktrom
6.7.1
TODO
6.8 Anvendelser til indreproduktrom
6.8.1
TODO
7 Kpt.7 - Symmetriske Matriser og Kvadratisk Form
7.1 Diagonalisering av symmetriske matriser

7.1.1 Begrep - symmetrisk matrise

Hvis A er s.a. $A=A^T,$ så er den symmetrisk.

7.1.2 Teorem 1

Hvis A er symmetrisk, så er egenvektorer fra ulike egenrom ortogonale mot hverandre.

7.1.3 Begrep - ortogonalt diagonaliserbar

A $n \times n$ er ortogonalt diag.
bar hvis det fins: ortogonal matrise P s.a. $P^{-1} = P^T$, og en diagonal matrise D s.a.

$$A = PDP^{-1} = PDP^{T}$$

7.1.4 Teorem 2

A $n \times n$ er ortogonalt diag.bar \iff A er symmetrisk matrise.

7.1.5 Teorem 3 - spektralteoremet for symmetriske matriser

For A $n \times n$ gjelder:

- 1. A har n reelle egenverdier, med multiplisitet.
- 2. Dimensjon til egenrom er lik multiplisiteten til dets egenverdi.
- 3. Egenvektorer fra ulike egenrom er ortogonale på hverandre.
- 4. A er ortogonalt diagonaliserbar.

7.1.6 Observasjon - spektral dekomposisjon

$$A = PDP^{T} = \lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T} + \dots + \lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T}$$

7.2 Kvadratisk form

7.2.1 Definisjon - kvadratisk form

En kvadratisk form på \mathbb{R}^n er en funksjon Q s.a.

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

Hvor A er en symmetrisk matrise.

7.2.2 Metode - koeffisienter fra matrisen

Forholdet mellom A og kvadratisk form:

$$A = \begin{bmatrix} a & d/2 & e/2 \\ d/2 & b & f/2 \\ e/2 & f/2 & c \end{bmatrix}$$

$$ax_1^2 + bx_2^2 + cx_3^2 + dx_1x_2 + ex_1x_3 + fx_2x_3$$

7.2.3 Metode - kryssproduktledd

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} . & . & . \\ . & . & . \\ . & . & . \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

For å se hvilken koeffisent som går til hvilken $x_i x_k$ kan man se på tabellen:

	x1	x2	x3
x1			
x2			
x3			

7.2.4 Metode - variabelskifte

Hvis A ikke er diagonal kan det være lurt med variabelskifte.

$$\mathbf{x} = P\mathbf{v}, \quad \mathbf{v} = P^{-1}\mathbf{x}$$

Her er y koordinatvektor til x for en basis \mathcal{B} , slik som i kpt 4.4.

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}, \qquad P = [\mathbf{b}_1 \dots \mathbf{b}_n]$$

Kvadratisk form blir nå enklere

$$\mathbf{x}^T A \mathbf{x} = (P \mathbf{y})^T A (P \mathbf{y}) = \mathbf{y}^T P^T A P \mathbf{y} = \mathbf{y}^T (P^T A P) \mathbf{y}$$

Men A er symmetrisk så

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y}$$

7.2.5 Teorem 4 - prinsipalakseteoremet

Hvis A $n\times n$ er symmetrisk, så fins et ortogonalt variabelskifte $\mathbf{x}=P\mathbf{y}$ s.a.

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y}$$

uten kryssproduktledd.

Kolonnene i P kalles prinsipalaksene til den kvadratiske formen.

7.2.6 Observasjon - geometrisk tolkning

For invertibel A $n \times n$ og kvadrtisk form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, kan man velge en konstant c og se på

$$\mathbf{x}^T A \mathbf{x} = c$$

Det tilsvarer ligningen for enten en hyperbel, ellipse, to kryssende linjer, et punkt, eller ingen punkter.

7.2.7 Definisjon - definit

Kvadratisk form Q er:

- 1. Positiv definit hvis $Q(\mathbf{x}) > 0$, $\forall \mathbf{x} \neq \mathbf{0}$.
- 2. Negativ definit hvis $Q(\mathbf{x}) < 0$, $\forall \mathbf{x} \neq \mathbf{0}$.
- 3. Indefinit hvis $Q(\mathbf{x})$ har både pos. og neg. tall.

7.2.8 Teorem 5 - kvadratisk form og egenverdier

Kvadratisk form er

- 1. Positiv definit \iff egenverdiene til A er kun positive.
- 2. Negativ definit \iff egenverdiene til A er kun negative.
- 3. Indefinit \iff A har både pos. og neg. egenverdier.

7.3 Begrenset optimalisering

7.3.1 Metode 1 -

En vanlig begrensning er $\mathbf{x}^T\mathbf{x} = 1$.

Anta at Q ikke har kryssproduktledd, og at $a \ge b \ge c$:

$$Q = ax_1^2 + bx_2^2 + cx_3^2 \le ax_1^2 + ax_2^2 + ax_3^2 = a(x_1^2 + x_2^2 + x_3^2) = a \cdot \mathbf{x}^T \mathbf{x} = a$$

Så vi fant en maksimumsverdi

$$Q \leq a$$

7.3.2 Teorem 6

La A være symmetrisk og

$$m = \min\{\mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1\}$$
$$M = \max\{\mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1\}$$

Da er $M=\lambda_1$ største egenverdi til A, og $Q(\mathbf{x})=M$ når \mathbf{x} er en enhetsvektor \mathbf{u}_1 tilsvarende M.

Tilsvarende er m minste egenverdi til A, og $Q(\mathbf{x}) = m$ når \mathbf{x} er en enhetsvektor tilsvarende m.

7.3.3 Teorem 7

La $A, \lambda_1, \mathbf{u}_1$ være som i teorem 6. Maksimum av Q under begrensningene

$$\mathbf{x}^T \mathbf{x} = 1, \quad \mathbf{x}^T \mathbf{u}_1 = 0$$

er den nest største egenverdien λ_2 . Den verdien fåes når $\mathbf{x}=\mathbf{u}_2$ egenvektor tilsvarende λ_2 .

7.3.4 Teorem 8

A $n \times n$, ortog.diag. $A = PDP^{-1}$, $D = \text{diag}(\lambda_1 \ge ... \ge \lambda_n)$, kolonner i P er tilsvarende enhetsegenvektorer $\mathbf{u}_1, ..., \mathbf{u}_n$.

Da vil max av Q under begrensningene være

$$\mathbf{x}^T \mathbf{x} = 1$$
, $\mathbf{x}^T \mathbf{u}_1 = 0$, ..., $\mathbf{x}^T \mathbf{u}_{k-1} = 0$

egenverdi λ_k , og maks gitt ved $\mathbf{x} = \mathbf{u}_k$.

7.4 Singulærverdidekomposisjon

7.4.1 Begrep - singulærverdier

For en ikkekvadratisk A $m \times n$, så kan vi regnu ut $A^T A$.

Videre kan vi regne ut egenverdiene λ_i til A^TA .

Singulærverdiene σ til A er da

$$\sigma_i = \sqrt{\lambda_i}$$

Vanligvis sorteser de s.a.

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n$$

7.4.2 Teorem 9

Hvis egenvektorene til A^TA kan gjøres til en ortonormal basis $\mathbf{v}_1,...,\mathbf{v}_n$, ordnet slik at $\lambda_1 \geq ... \geq \lambda_n$. Og hvis A har r ikkenull singulærverdier.

Så er $\{A\mathbf{v}_1,...,A\mathbf{v}_r\}$ en ortogonal basis for $\operatorname{Col}(A)$, og $\operatorname{rank}(A)=r$.

7.4.3 Teorem 10 - singulærverdidekomposisjon

La A være $m \times n$ med rang r.

Da fins det en Σ $m \times n$ på formen

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$$

hvor $D = \operatorname{diag}(\sigma_1 \ge \dots \ge \sigma_r \ge 0)$.

Og det fins også en ortogonal U $m \times m$, og en ortogonal V $n \times n$ s.a.

$$A = U\Sigma V^T$$

U og V er ikke unikt bestemt.

7.4.4 Metode - singulærverdidekomposisjon

Ortogonalt diagonaliser A^TA

Finn egenverdiene og tilsvarende ortonormal mengde egenvektorer.

Konstruer V

Sorter egenverdiene til A^TA i synkende rekkefølge, og bruk tilsvarende egenvektorer som kolonner i V

$$V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n \]$$

Konstruer Σ

Bruk singulærverdiene og la $D={\rm diag}(\sigma_1\geq ...\geq \sigma_r\geq 0).$ Konstruer Σ til å være $m\times n$

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$$

Konstruer U

Enten kan man bruke matrisemultiplikasjon og inverse for å finne U, eller så kan man bruke

$$U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \mathbf{u}_n]$$
$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$$

7.4.5 Teorem - IMT konkludert

For A $n \times n$ er følgende ekvivalent

- 1. A er invertibel.
- 2. $(Col(A))^{\perp} = \{\mathbf{0}\}\$
- 3. $(\operatorname{Nul}(A))^{\perp} = \mathbb{R}^n$
- 4. $\operatorname{Row}(A) = \mathbb{R}^n$
- 5. A har n ikkenull singulærverdier.

7.4.6

TODO condition number, basis for fundamentale underrom, redusert SVD, pseudoinvers av A, minste kvadrater.

7.5 Ikke pensum? TODO

Ikke pensun? TODO

8 Notat 1

8.0.1

TODO

9 Notat 2

9.0.2

TODO TODO egenfunksjon