Paramètre Définition Type Commentaires

Parametre	Deminion	iype	Commentanes
x_min	Limite gauche du domaine	double	Les valeurs négatives sont admises
x_max	Limite droite		
y_min	Limite du bas		
y_max	Limite du haut		
N	Nombre de mailles suivant l'horizontale	Int	
М	Nombre de mailles suivant la verticale	Int	Nombre total de mailles = (N+2)*(M+2) en incluant la couche de mailles fantômes.
С	Vitesse de la lumière	double > 0	
а	Constante radiative	double > 0	$E_r = aT_r^4$ pour un corps noir à l'équilibre thermodynamique
C_v	Capacité thermique du domaine	double > 0	
CFL	Condition de stabilité du modèle	0 < double < 1	dt = CFL * dx/c. En pratique, il faut prendre $CFL <= 0.5$ pour éviter des NaN.
precision	Précision sur les résultats de l'étape 1	double > 0	Précision = 1e-6 pour la majorité des cas
t_0	Temps initial	double >= 0	
t_f	Temps final	double > 0	
rho	Densité du domaine	string $\rho(x,y)$	Une fonction de x et y Ecrire $crenau(pos_x,pos_y,h1,h2)$ - sans espace - pour placer un créneau de hauteur $h2$ situe en (pos_x,pos_y) . La valeur de la densité en dehors du créneau est $h1$.
sigma_a	Opacité d'absorption	string $\sigma_{\rm a}(\rho,T)$	Juste une fonction de rho et T
sigma_c	Opacité de scattering	string $\sigma_c(\rho, T)$	
E_0	Énergie des photons initiale	string $E_0(t_0, x, y)$	
F_0_x	Flux initial (abscisse)	string $F_0(t_0, x, y)$	Composante x du vecteur F_0
F_0_y	Flux initial (ordonné)		Composante y du vecteur F_0
T_0	Température initiale	string $T_0(t_0, x, y)$	
E_I	Énergie imposée sur l'extrémité gauche du domaine	string $E_l(t,y)$	Une fonction de t et de y Ecrire " $neumann$ " pour avoir des conditions de sortie libre dans les mailles fantômes $E_l[j] = E[j]$ suivant la verticale. Ecrite " $ponctuel(start, end)$ " – sans espace - pour placer une source ponctuelle ($perturbation$ $sinusoïdale$ $d'amplitude$ 5 et de $fréquence$ 500) commençant à $start$ et se terminant à end . Si $start = end$, la source se trouve dans une seule maille.
F_I_x		string $F_l(t, y)$	Ecrire "neumann" pour avoir des sorties libre
F_I_y			Ecrire "neumann" pour avoir des sorties libre
T_I		string $F_l(t, y)$	Ecrire "neumann" pour avoir des sorties libre

E_r	Énergie imposée sur	string $E_r(t, y)$	Une fonction de t et de y
	l'extrémité droite du domaine		Ecrire " $neumann$ " pour $E_r[j] = E[j]$ suivant la verticale
			Ecrire " <i>ponctuel</i> (<i>start</i> , <i>end</i>)" pour placer une source ponctuelle (sans espace)
F_r_x		string $F_r(t, y)$	
F_r_y			
T_r		string $F_r(t, y)$	
E_u	en haut	string $E_u(t,x)$	Une fonction de t et de x $ \label{eq:continuous} $
			Ecrire "ponctuel(start, end)" pour placer une source ponctuelle (sans espace)
F_u_x			
F_u_y			
T_u E_d	en bas	string $E_d(t,x)$	Une fonction de t et de x
L_u	Cirbas	$\mathcal{L}_{d}(t,x)$	Ecrire " $neumann$ " pour $E_d[i] = E[i]$ suivant l'horizontale
F 4 1/2			une source ponctuelle (éviter les espace)
F_d_x F_d_y			
T_d			
E_exact	Solution exacte	string	Paramètre facultatif
L_exact	Joidtion exacte	E(t,x,y)	
F_exact_x		string $F(t, x, y)$	Paramètre facultatif
F_exact_y			Paramètre facultatif
T_exact		string $T(t, x, y)$	Paramètre facultatif
export_file	Fichier dans lequel sont écrites toutes les données (soit au format csv ou au format binaire)	string	Chemin d'accès du fichier à partir du répertoire racine
export_mode	Mode d'exportation des données.		Ecrite "dataframe" pour exporter au format CSV (ce mode exporte aussi des fichiers pour faire des animations). Ecrite "binary" pour exporter au format binaire (SDS). Il faut alors une fonction spéciale pour les lires.
write_mode	Mode d'écriture dans le fichier d'exportation	string	Ecrite " <i>append</i> " pour ajouter dans le fichier Ecrite " <i>truncate</i> " pour remettre le fichier à 0 avant d'écrire.
simu_count	Nombre de simulations à faire	Int	Paramètre facultatif