

These slides are based on the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley - http://ai.berkeley.edu.

The artwork is by Ketrina Yim.

Today

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes' Rule
 - Inference
 - Independence

Uncertainty

General case:

- Observed variables (evidence): Agent knows certain things about the state of the world (sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables. Agent can also learn the model (coming up in a couple of weeks)
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Fuzzy Logic vs Probability

- Probability uses numeric values to model our ignorance
 - 40% chance of rain tomorrow
- Fuzzy logic uses degrees of truth to model vagueness
 - It is hot today (82°F 110 °F)
 - It is warm today (60°F 85°F)
 - It is cold today (32°F 65 °F)
 - A variable in fuzzy logic has a truth value associated with it

Probabilistic Reasoning Example

Random Variables

- A random variable represents some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the pit?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

Weather:

P(T)	
Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions

P(T)	
Т	Р
hot	0.5
cold	0.5

D/m

<u> </u>	
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

P(W)

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

• Must have:
$$\forall x \ P(X=x) \ge 0$$
 and $\sum_x P(X=x) = 1$

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
...

OK if all domain entries are unique

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

• Must obey:
$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold sun 0.2		0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d: dⁿ
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: how likely assignments (outcomes) are
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny? 0.4
 - Probability that it's hot? 0.5
 - Probability that it's hot OR sunny? 0.7
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold sun 0.2		0.2
cold	rain	0.3

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

P	Γ	')

D/D

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

Definition of conditional probability:

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Conditional Probabilities

Definition of conditional probability:

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(r|h) = \frac{P(r,h)}{P(h)} = \frac{0.1}{0.4+0.1} = 0.2$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distributions

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

W	Р
sun	0.4
rain	0.6

Normalization Trick

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

P(c,W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection (make it sum to one)

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

To Normalize

(Dictionary) To bring or restore to a normal condition

All entries sum to ONE

- Procedure:
 - Step 1: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z
- Example 1

W	Р
sun	0.2
rain	0.3

W	Р
sun	0.4
rain	0.6

Example 2

Т	W	Р
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15

Probabilistic Inference

Probabilistic inference: compute a desired probability from other known probabilities

We generally compute conditional probabilities

■ P(on time | no reported accidents) = 0.90

■ These represent the agent's *beliefs* given the evidence

- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

General case:

 $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ $All \ variables$ Evidence variables: Query* variable: Hidden variables:

We want: multiple query variables, too $P(Q|e_1 \dots e_k)$

* Works fine with

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

Inference by Enumeration

P(W | winter)? Q: W, E: S = winter, H: T

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and

evidence

Step 3: Normalize

W	Р
sun	0.25
rain	0.25

W	Р
sun	0.5
rain	0.5

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

Problems?

- Worst-case time complexity O(dⁿ)
- Space complexity O(dⁿ) to store the joint distribution

The Product Rule

Sometimes we have conditional distributions but want the joint distribution:

$$P(y)P(x|y) = P(x,y) \qquad \Longrightarrow \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

P(W)

R	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D,W)

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

The Chain Rule

• More generally, we can always write any joint distribution as an incremental product of conditional distributions:

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:
$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

Why is this at all helpful?

- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other is simple
- Foundation of many systems in Al(speech recognition machine translation)

In the running for most important AI equation!

Given:

P(W)

R	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

What is P(W | dry)?

$$P(sun|dry) = \frac{P(dry \mid sun) P(sun)}{P(dry)}$$

$$P(rain \mid dry) = \frac{P(dry \mid rain) P(rain)}{P(dry)}$$

Let's calculate P(dry)

Given:

P(W)		
R	Р	
sun	0.8	

rain

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

What is P(dry) ?

$$P(dry) = P(dry, rain) + P(dry, sun)$$

0.2

$$P(x,y) = P(x|y)P(y)$$

$$P(dry) = P(dry \mid rain) \times P(rain) + P(dry \mid sun) \times P(sun)$$

$$P(dry) = 0.3 \times 0.2 + 0.9 \times 0.8 = 0.78$$

Given:

P(W)		
R	Р	
sun	0.8	

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

What is P(W | dry)?

$$P(sun|dry) = \frac{P(dry \mid sun) P(sun)}{P(dry)} = \frac{0.9 \times 0.8}{0.78} = 0.923$$

$$P(rain|dry) = \frac{P(dry|rain)P(rain)}{P(dry)} = \frac{0.3 \times 0.2}{0.78} = 0.077$$

Inference with Bayes' Rule

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

Example: A robot needs to infer location from (noisy) sensor reading

Cause: Location

Effect: Sensor reading

- Easy to measure P(Sensor | Location)
- We compute P(Location | Sensor)

Inference with Bayes' Rule

Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

Example: M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$

$$P(+s|+m) = 0.8$$

$$P(+s|-m) = 0.01$$
 givens

Someone has a stiff neck. What is the probability that they have meningitis?

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

Independence

Two variables are independent in a joint distribution if:

$$P(X,Y) = P(X)P(Y)$$

$$\forall x, y P(x,y) = P(x)P(y)$$

$$X \perp \!\!\! \perp Y$$

- the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a modeling assumption
 - Independence can be a simplifying assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity}?