MAGNETIC MEMORY AND SEMICONDUCTOR MEMORY USING IT

Publication number: JP2001332081

Publication date:

2001-11-30

Inventor:

INQUE DAISUKE

Applicant:

CANON KK

Classification:

-international;

G11C11/14; H01L21/331; H01L21/337; H01L21/8246; H01L27/10; H01L27/105; H01L27/22; H01L29/73; H01L29/786; H01L29/808; H01L43/08; G11C11/02; H01L21/02; H01L21/70; H01L27/10; H01L27/105; H01L27/22; H01L29/66; H01L43/08; (IPC1-7): G11C11/14; H01L21/331; H01L21/337; H01L27/10; H01L29/73; H01L29/786; H01L29/808; H01L43/08

- European:

H01L21/8246M; H01L27/22; Y01N4/00

Application number: JP20000145341 20000517 Priority number(s): JP20000145341 20000517

Report a data error here

Abstract of JP2001332081

PROBLEM TO BE SOLVED: To provide a magnetic memory in which a magnetic field can be applied uniformly and perpendicularly for a semiconductor region such as a channel region or the like. SOLUTION: A magnetic body 14 having such shape as covering the semiconductor region 17 is formed so that a magnetic field is applied in the direction being orthogonal to the direction in which first and second electrode regions 16, 15 are formed, for the semiconductor region 17 provided between the first electrode region 16 and the second electrode region 15.

Data supplied from the esp@cenet database - Worldwide

RECEIVED CENTRAL FAX CENTER

JUN 0 8 2007

Partial Translation of JP 2001-332081

Publication Date: November 30, 2001

Application No.: 2000-145341

Filing Date: May 17, 2000

Applicant: CANON KK

Inventor: Daisuke INOUE

[0015]

Further, a gate insulating film 18 is formed over the source region 15, the channel region 17, and the drain region 16; a gate electrode 19 is formed on the gate insulating film 18; an interlayer insulation film 110 is formed thereon; and a write wire 38 for magnetizing the magnetic body 14 is formed over the interlayer insulation film 110 through an insulating film 112. In the source region 15, a data wire 93 for inputting a signal to read out written data and a switch 89 for selecting a magnetic memory element to which the data is read out are formed.

[0016]

While the substrate 11 used here is of what is called an SOI (Silicon on Insulator) structure, a substrate of glass, quartz, or stainless may be used. Moreover, semiconductors using a IV element other than silicon, or compound semiconductors such as GaAS and InSB can be used as the material. Further, the shape of the substrate 11 is not limited to a plate shape.

[0017]

The source region 15, the channel region 17, and the drain region 16

612-455-3801

are element-isolated from the other source regions, channel regions, and drain regions not shown in figure by an isolation layer 13. Further, the magnetic body 14 is formed so as to penetrate the isolation layer 13. [0018]

In addition, practically, a plurality of magnetic memory elements are, for example, arranged in array, two dimensionally, and magnetic memory elements arranged in a same line share the one write wire 38 and the data wire 93, and the magnetic memory elements are formed by wiring so that memory elements arranged in the same line share one power line not shown in figure, a word line, and a ground line.

[0019]

More specifically, in this embodiment, a digital value, for example, any of "0", "1" is written into an arbitral magnetic memory element in the magnetic memory element array, and when in reading out the written information, a reading signal is input from the data wire 93 to switch on the switch 89. Thus information only written in a specific element is read out. [0020]

For the magnetic body 14, ferromagnetic material such as iron, cobalt, nickel, Permalloy, or ferrimagnetic material composed of heavy rare earth element and iron group transition element, magnetic glass containing terbium oxide can be used, but since the ferrimagnetic material is not a good electrical conductor, the use of the other materials is preferable. For example, the use of insulative ferrimagnetic material such as iron garnet and insulative magnetic glass makes it unnecessary to form the interlayer insulation film 110 between the gate electrode 19 and the magnetic body 14.

[0021]

It is widely known that the magnetic body 14 exists as a pair of N pole and S pole in the each front end, and that in U-character shape, for example, an almost uniform ideal magnetic field is obtained. Thus, covering the top and bottom of the channel region 17 with, for example, a U-character shaped magnetic body 14, a magnetic field perpendicular to the channel region 17 is applied.

[0022]

In practice, by passing an electric current through the write wire 38, an electric field is generated around the write wire 38, and this electric field generates a magnetic field by the magnetic body 14. Therefore, passing an electric current through the write wire 38 in the direction from right to left being horizontal to the paper as shown in Figure 1 (a), a right handed magnetic field is generated around the write wire 38 to magnetize the magnetic body 14. In this case, a uniform magnetic field perpendicular to the channel region 17 is generated by this magnetic body 14.

Meanwhile, when the direction of the current passing through the write wire 38 is inverted, the magnetic body 14 is magnetized in the inverse direction, accordingly, as described later, the direction of the detected current becomes reversed against the case in which the current is passed through in the direction from right to left being horizontal to the paper of Figure 1 (a). Since the magnetizing direction of the magnetic body 14 is inverted by the direction of current passed through the write wire 38, the digital information "1", "0"can be written in depending on the difference of the magnetizing

direction. In addition, the information written by the magnetizing is retained in the power-off condition, which enabling to use it as a nonvolatile memory.

[0024]

Moreover, as shown in Figure 1 (b), the drain region 16 is isolated into two by the isolation layer 13 and the like. For example, when a magnetic field is generated by the magnetic body 14 by passing a current through the write wire 38 in the direction from right to left being horizontal to the paper of Figure 1(a), in the channel region 17, a great number of the channels move toward a drain region D1 by Lorentz force, thereby generating the current difference between the drain regions D1 and D2. Here, utilizing this nature, the current difference is detected by the drain current I_{D1} , I_{D2} .

(19)日本**钢特**許庁(Jで)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-332081 (P2001-332081A)

最終頁に続く

(43)公開日 平成13年11月30月(2001.11.30)

(51) Int.CL'		識別和导	F 1	FI				5-73-1*(参考)		
	-	451	C1	C11C 11/14 H01L 27/10 43/08 29/72 29/78			Λ	5F003 5F083 5F102 5F110		
HOIL			H0				461			
							613B			
			京 未耐求	旅館	項の数7	OL	(全 7 頁)	最終頁に続く		
(21) 出顧番月	}	特第2000—145341(P2000—145341)	(71)	出思人	. 000001	1007				
(22) 出顧日		平成12年5月17日(2000.5.17)		キヤノン株式会社 東京都大田区下丸子3 「目30番2号						
	•		(72)	発明者						
				東京都大田区下丸子3 「目30番2号 キャ ノン株式会社内						
	•	•	(74)	人壓升			0,			
		•			弁理士	山下	接乎			
					•					
			1							
•							•			
			1							

(54) 【発明の名称】 磁気メモリ及びそれを用いた半導体配位接続

(57)【要約】

【課題】 チャネル領域などの半導体領域に対して、一 様に、垂直に磁界をかけられるような磁気メモリを提供 する。

【解決手段】 第1の電極領域16と第2の電極領域15との間に備えた半導体領域17に対して、該第1,第2の電極領域16,15が形成されている方向の直角方向に磁界が印加されるように、該半導体領域17を覆うような形状の磁性体部14を形成する。

!(2) 001-332081 (P2001-332081A)

【特許請求の範囲】

【請求項1】 第1の電極領域と第2の電極領域との間 に備えた半導体領域又は抵抗体に対して、該第1,第2 の電極領域が形成されている方向の直角方向に磁界が印 加されるように、該半導体領域を覆うような形状の磁性 体部を形成してなることを特徴とする磁気メモリ。

【請求項2】 前記磁界が印加される向きを変えることにより2値データを記憶することを特徴とする請求項1 に記載の磁気メモリ。

【請求項3】 前記第1の電極領域は、少なくとも2つ の領域に分離されており、

前配磁界が印加される向きに応じて前記2つの領域間へ 流れる電流量が異なることを利用して配憶しているデータを読み出すことを特徴とする前求項1又は2に記載の 磁気メモリ。

【請求項4】 前記磁性体部の形状は、U字状又はコの字状であることを特徴とする請求項1から3のいずれか1項に記載の磁気メモリ。

【請求項5】 前記第1,第2の電極領域及び前記半導・ 休領域は、電界効果トランジスク又はバイボーラトラン ジスタの一部を構成することを特徴とする請求項1から 4のいずれか1項に記載の磁気メモリ。

【請求項6】 前記磁性体部に電界が印加されるように することで、前記磁界を発生させることを特徴とする請 求項1から5のいずれか1項に配載の磁気メモリ。

【請求項7】 半導体基体上に、絶縁膜を介して、請求 項1から6のいずれか1項に記載の磁気メモリを形成す ることを特徴とする半導体記憶装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気メモリ (Magn etic Random Access Memory) 及びこれを備えた半導体 記憶装置に関する。

[0002]

【従来の技術】従来、磁性体薄膜を用いた磁気メモリは、電源が断たれても情報を失わない不揮発性であるという特徴と共に、繰り返し書き換え回数が無限回できることや、放射線が入射しても記録内容が消失する危険性がない等という点で、半導体メモリに比して有利なメモリとして注目されている。

【0003】図8は、特別平5-226635号公報などに記載されている磁気メモリの断面図及び平面図である。この磁気メモリは、磁性体を用いてホール効果を利用したMOS型磁気メモリであり、ガラス、石英、シリコンウエハ又はステンレスなどの基板111上に磁性体薄膜112を形成し、その上にさらに絶縁膜113aを形成し、その上にさらにソース領域114a、チャネル領域114b及びドレイン領域114cからなる半導体薄膜を形成している。すなわち、図8に示す磁気メモリは、チャネル領域114bの下側に磁性体薄膜112を

形成していた。

【0004】さらに、ソース領域114a、チャネル領域114b及びドレイン領域114cのぞれぞれに上部に、絶縁膜113bを形成し、その上にゲート電極116、ソース電極115a及びドレイン電極115bを形成し、さらに絶縁膜113bを介して図示しない書き込み線を形成している。また、ソース電極115aからドレイン電極115b方向に対して、垂直にホール電圧検出用電模117を配置していた。

【0005】このような磁気メモリは、書き込み線にいずれかの方向から電流を流すことにより、チャネル領域114bに異なる方向から磁界を生じさせて、「ロ」、「1」のディジタル2値データを書き込む。そして、書き込んだデータを読み出すときには、ホール電圧検出用電極117によりホール電圧を検出し、その電圧がLOW若しくはHigh信号であることを認識して、データが「0」、「1」のいずれであるかを判別していた。

【0006】図9は、特開平10-56219号公報などに記載されている磁気メモリの断面図である。この磁気メモリは、磁性体薄膜112を層間絶縁膜120のうちチャネル領域114bの上側に形成していた。なお、図9において、図8と同様の部分には同一符号を付している。図9に示す磁気メモリにおいても、図8の場合と同様に、書き込み線にいずれかの方向から電流を流することによりデータを書き込み、その後、たとえばホール電圧検出用電極により、ホール電圧を検出し、その電圧がLOW若しくはHigh信号であることを認識して、データが「0」、「1」のいずれであるかを判別していた。

[0007]

【発明が解決しようとする課題】しかし、従来の技術は、フリンジ磁界による磁力線を図8,図9に矢印で各々図示しているように、チャネル領域に対して、一様に、垂直に磁界をかけることができず、そのため、書き込んだデータを読み出そうとしても、データが「0」;「1」のいずれであるかを判別することが困難な場合があった。

【0008】そこで、本発明は、チャネル領域などの半 導体領域に対して、一様に、垂直に磁界をかけられるよ うな磁気メモリ及びそれを備えた半導体記憶装置を提供 することを課題とする。

[0009]

【課題を解決するための手段】上記課題を解決するために、本発明の磁気メモリは、第1の電極領域と第2の電極領域との間に備えた半導体領域又は抵抗体に対して、該第1,第2の電極領域が形成されている方向の直角方向に磁界が印加されるように、該半導体領域を覆うような形状の磁性体部を形成してなることを特徴とする。 【0010】具体的には、前記磁界が印加される向きを

【0010】具体的には、前記磁界が印加される向きを 変えることにより2値データを記憶する。そして、デー タを読み出すには、前記第1の電極領域を、少なくとも 2つの領域に分離して、前記磁界が印加される向きに応 じて前記2つの領域間へ流れる電流量が異なることを利 用する。

612-455-3801

【0011】また、前記磁性体部の形状は、たとえばU字状又はコの字状のように、半導体領域を覆うような形状であればよい。さらに、たとえば前記第1,第2の電極領域及び前記半導体領域は、電界効果トランジスタ又はバイボーラトランジスタの一部を構成するものである。なお、前記磁性体部に電界が印加されるようにすることで、前記磁界を発生させる。

【0012】 また、本発明の半導体記憶装置は、半導体 基体上に、絶縁膜を介して、上記磁気メモリを形成する ことを特徴とする。

[0013]

【発明の実施の形態】(実施形態1)図1(a)は、本 発明の実施形態1の磁気メモリ素子を備える不揮発性半 等体記憶装置の斜視図である。図1(b)は図1(a) の断面図である。ここでは、たとえばMOS型電界効果 トランジスタ(MOSFET)を利用して、磁気メモリ であるところのMRAM(Magnetic Random Access Me mory)を形成しており、また、チャネル領域17の上下 を覆うようにた とえばU字状又はコの字状の磁性体部1 4を形成している。なお、MOSFET以外にも、たと えばJFET(Junction Field Effect Transistor)又 はラテラルBJT(Bipolar Junction Transistor)を 用いて磁気メモリを構成してもよい。

【0014】図1に示すように、本実施形態では、たとえば悲板11上に、BOX (BurledOxide)と称される酸化シリコン組縁膜12を形成し、その上にさらに不純物拡散領域であるソース領域15、チャネル領域17及び不純物拡散領域であるドレイン領域16を形成している。

【0015】さらに、ソース領域15、チャネル領域17及びドレイン領域16のぞれぞれに上部に、ゲート絶縁膜18を形成し、それを介してゲート電極19を形成し、その上に同間絶縁膜110を形成し、さらに絶縁膜112を介して破性体部14を磁化させるための書き込み線38を形成している。また、ソース領域15には、書き込んでいるデータを読み出す信号を入力するデータタが読み出される磁気メモリ索子が選択されるスイッチ89とを形成している。

【0016】このように、ここでは、いわゆるSOI (Silicon on Insulator) 構造の基板11を用いているが、ガラス、石英又はステンレスなどの基板を用いてもよい。また、シリコン以外の他のIV族系半導体やGaAs、InSbなどの化合物半導体を材料に用いることもできる。さらに、基板11の形状は板状に限定されるものでない。

【0017】また、ソース領域15、チャネル領域17

及びドレイン領域16は、他の図示しないソース領域、 チャネル領域及びドレイン領域と、分離圏13により素 子分離されている。さらに、磁性体部14は、分離图1 3を貫くように形成している。

【0018】なお、実際には、複数の磁気メモリ素子をたとえば2次元にアレイ状に配列し、同列に配置している磁気メモリ素子が一本の書き込み線38及びデータ線93を共有しており、また同行に配置している磁気メモリ素子が一本の図示しない電源線、ワード線及びグランド線を共有するように配線することにより、磁気メモリを形成している。

【0019】すなわち、本実施形態では、磁気メモリ零子アレイ中の任意の磁気メモリ索子に、たとえば「0」、「1」のいずれかのディジタル値を書き込み、書き込んだ情報を読み出すときには、データ線93から読み出し信号を入力して、スイッチ89をオンすることにより、特定の案子に書き込まれている情報だけを読み出している。

【0020】また、磁性体部14には、鉄、コバルト、ニッケル、バーマロイなどの強磁性体、又は重希土類元素と鉄族遷移元素からなるフェリ磁性体や、酸化テルビウムを含んだ磁性ガラスを用いることができるが、フェリ磁性体は電気的に良導体ではないため、他の材料を用いた方が好ましい。また、たとえば鉄ガーネットのような絶縁性フェリ磁性体や絶縁性磁性ガラスを用いると、ゲート電極19と磁性体部14との間に層間絶縁膜110を形成する必要がなくなる。

【0021】ここで、磁性体部14は、各々の先端がN極とS極の対で存在し、且つたとえばU字内ではほぼ理想的に一様な磁界が得られることが広く一般に知られている。したがって、チャネル領域17をたとえばU字状の磁性体部14で上下を覆うようにすることで、チャネル領域17に対して垂直に磁界が印加される。

【0022】実際には、書き込み線38に電流を流すことによって、書き込み線38の間りに電界が発生し、この電界により磁性体部14による磁界が発生する。そのため、たとえば書き込み線38に図1(a)に示すように紙面に対して水平に右から左の向きに電流を流すことで、書き込み線38の回りに右回りの磁力線が発生し、磁性体部14が磁化される。この場合、磁性体部14により、チャネル領域17に垂直に一様な磁界が発生することになる。

【0023】一方、書き込み線38に流す電流の向きを 反転させると、磁性体部14は反対方向に磁化され、そ のため、後述するように、図1(a)の紙面に対して水 平に右から左の向きに電流を流した場合と、検出される 電流の向きも逆になる。書き込み線38に流す電流の向 きで磁性体部14が磁化される向きが反転するため磁化 方向の相遠によってディジタルの記憶情報「1」,

「〇」を書き込んでおくことができる。なお、磁化によ

(4) 001-332081 (P2001-332081A)

って書き込まれた情報は、電源を切った状態でも保持さ れ、いわゆる不揮発性メモリとして利用できる。

612-455-3801

【0024】また、図1(b)に示すように、ドレイン 領域16は、たとえば分離回13によって2つに分離し ている。そして、たとえば書き込み線38に図1(a) の紙面に対して水平に右から左の向きに電流を流すこと により磁性体部14で磁界を発生させると、チャネル領 域17では、ローレンツ力によって、ドレイン領域D1 方向ヘチャネルが多く移動し、そのため、ドレイン領域 D1, D2に流れる電流に差が生じる。ここででは、こ のような性質を利用して、ドレイン電流Ipi、Ipiとの で電流差を検知している。

【0025】ゲート長しとゲート幅WがそれぞれL/W =5/5µmのときの電流値をそれぞれ In1、In2とす ると、[(I_{b1}-I_{b2})/(I_{D1}+I_{b2})]と、磁界B との間には、線形性が保たれた一定の関係となり、たと えば、図2に示すようになる。 また、 たとえば、 B=1 の場合には、ドレイン電流 Int = 90 mA, Int = 10 OmAとなり、この場合、【(I_{b1}-I_{p2})/(I_{b1}+ In2) = δ (ドレイン電流非平衡)]とすると、δ=1 2%となる。

【0026】なお、このドレイン領域16を2分割する 構造をとることでホール電圧検出用の電極を新たに設け なくてもよい。また、ドレイン領域16は、接合分離に よって、2つに分離してもよい。

【0027】図3は、L/W比に伴うドレイン領域D1 とドレイン領域D2どの距離dの依存性を示す図であ る。ここでは、L/W=25/5μm, L/W=5/5 ルmの場合で、さらに、d/W=0.1.d/W=0. 2及びd/W=0.8としたときのドレイン領域D1と ドレイン領域D2との距離dの依存性を示している。

【0028】図3に示すように、ゲート幅Wを一定にし たときには、ゲート長しが長いほどもの値が大きくな り、このことから本実施形態ではL>Wとしている。ま たd/W比が小さいほどδの値が大きくなっていること から、さらに本実施形態ではたとえばd/W=0.1と している。

・【0029】図4は、図1の磁気メモリ索子に書き込ん だデータを読み出す部分の符価回路図である。なお、図 1には、図4に示す部分の図示は省略している。図4に は、ドレイン領域D1、D2からそれぞれのドレイン電 流 [1], [1]を流すための電流源71と、各ドレイン電 流の電流差を測定するためのカレントミラー回路とを備 えたセンスアンプラ2とを図示している。

で、センスアンプ72から出力される出力信号は2ΔI にセンスアンプのGainを乗じたものとなる。そし て、この出力信号は、スイッチ89(図1)がオンされ たときに、スイッチ89を介して外部の図示しない処理 部へ読み出される。

【0031】なお、本実施形態では、図1(b)を用い て説明したように、ローレンツ力により生じるドレイン 領域D1, D2に流れる電流差に基づいて、配信してい るデータが「0」、「1」のいずれであるかを判別する 場合を例に説明したが、たとえばホール電圧検出用電極 117によりホール電圧を検出し、その電圧がLOW若 しくはHigh信号であることを認識して、データが 「〇」, 「1」のいずれであるかを判別してもよい。 【0032】(実施形態2)本実施形態では、MOSF ETに代えて、接合型電界効果トランジスタ(JFE T)を用いた磁気メモリ索子を備える不揮発性半導体記 **偉装置について説明する。JFETを用いて実施形態1** と同様に磁気メモリを備えた半導体記憶装置を形成する と、半導体領域ではキャリアの発生率が高くなり、磁性 感度がキャリアの発生率と磁界の強さとの積に比例す る.

【0033】そのため、たとえば磁界B=1 Tとしたと きに、ドレイン電流 I pl = 160 mA, I p2 = 200 m Aとなり、この場合。 8-18%となるため、実施形態 1の場合に比して、同条件で約50%の感度の向上す る。換置すると、JPETを用いる場合には、MOSF ETを用いた場合の磁界の強さよりも小さな磁界の強さ で、同等の磁性感度が得られることになる。

【0034】(実施形態3)本実施形態では、MOSF BTに代えて、ラテラルバイボーラトランジスタ(BJ T)を用いた磁気メモリ業子を備える不無発性半導体記 **憶装置について説明する。BJTを用いて実施形態1と** 同様に磁気メモリを形成すると、拡散電流が支配的にな る点、電流駆動能力が高い点、電流制御範囲が広い点に おいて優れた特性を示すことから、実施形態1の場合に 比して、大きい磁界をかけられるようになる。

【0035】 (実施形態4) 図5は、本発明の実施形態 4に係る磁気メモリ索子を備える不揮発性半導体記憶装 **武の断面図である。本実態形態では、ゲート電極19** (図1)を設けずに抵抗体86を用いて磁気メモリ索子 を形成している。また、ここでは磁性体部14は鉄ガー ネットのような絶縁性フェリ磁性体を用いている。半導 体シリコン膜はn-型を示す抵抗体86であり、導電性 を有する高抵抗物質であればよく n+不拡物拡散領域