# 7장. 무선 이동 네트워크 (Wireless and Mobile Networks)

### 순천향대학교 컴퓨터공학과 이 상 정

순천향대학교 컴퓨터공학과

1

#### 컴퓨터 네트워크

### 배경

- □ 휴대폰 가입자 수가 유선전화 가입자 수를 넘어섬 (5:1)
- □ 무선 인터넷 사용이 증가하여 유선 인터넷 사용자 수에 접근
  - 스마트폰, 노트북(laptops)
- □ 두 개의 서로 다른 중요한 이슈
  - 무선 (wireless)
    - 무선 링크 상에서의 통신
  - 이동성 (mobility)
    - 네트워크 연결 지점을 변경하는 이동 사용자의 관리

### 7장. 무선 이동 네트워크

#### 7.1 개요

### <u>무선</u>

- 7.2 무선 링크와 무선 네트워크의 특징
  - CDMA
- 7.3 Wi-Fi: 802.11 무선 랜
- 7.4 셀룰러 인터넷 접근
  - 셀룰러 구조
  - 셀룰러 표준(3G, LTE)

#### <u>이동성</u>

- 7.5 이동성 관리: 원칙
  - 주소체계
  - 라우팅
- 7.6 이동 IP
- 7.7 셀룰러 네트워크에서의 이동성 관리
- 7.8 무선과 이동성: 상위 계층 프로토콜에의 영향
- 7.9 요약

순천향대학교 컴퓨터공학과

3

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

### 무선 네트워크 구성 요소 - 무선 호스트



### 무선 네트워크 구성 요소 - 기지국



#### 컴퓨터 네트워크

# 무선 네트워크 구성 요소 - 무선 링크





# (C) 무선 네트워크 표준들의 일부 링크 특징



순천향대학교 컴퓨터공학과

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

# 무선 네트워크 구성 요소 - 인프라스크럭처(기반구조



# 무선 네트워크 구성 요소 - 애드 혹 (ad hoc) 방식



애드 혹 방식

- □ 기지국 없음
- □ 노드는 링크 도달 영역 내 의 다른 노드들과만 전송
- □ 노드들 스스로 네트워크를
  - 노드들 간에 라우팅

순천향대학교 컴퓨터공학과

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

### 무선 네트워크 분류

- □ 단일 홉, 기반구조 존재 (single-hop, infrastructure-based)
  - 호스트는 기지국을 통해 보다 큰 유선 네트워크와 연결
  - 802.11 WiFi, 셀룰러, 802.16 WiMAX
- □ 단일 홉, 기반구조 없음 (single-hop, infrastructure-less)
  - 유선 네트워크와 연결된 기지국 없음
  - 블루투스(bluetooth) 네트워크, 애드 혹 형태의 802.11
- □ 다중 흡, 기반구조 존재 (multi-hop, infrastructure-based)
  - 호스트는 몇 개의 무선 노드의 중계를 거쳐서 기지국에 도달하여 더 큰 유선 네트워크와 연결
  - 무선 센서 네트워크(wireless sensor network), 무선 메시 네트워크(wireless mesh network)
- □ 다중 홉, 기반구조 없음 (multi-hop, infrastructure-less)
  - 기지국 없이 여러 개의 무선 노드들의 중계를 거쳐 서로 통신
  - MANET(mobile ad hoc network). VANET(vehicular ad hoc network)

### 7장. 무선 이동 네트워크

7.1 개요

### 무선

- 7.2 무선 링크와 무선 네트워크의 특징
  - CDMA
- 7.3 Wi-Fi: 802.11 무선 랜
- 7.4 셀룰러 인터넷 접근
  - 셀룰러 구조
  - 셀룰러 표준(3G, LTE)

이동성

- 7.5 이동성 관리: 원칙
  - 주소체계
  - 라우팅
- 7.6 이동 IP
- 7.7 셀룰러 네트워크에서의 이동성 관리
- 7.8 무선과 이동성: 상위 계층 프로토콜에의 영향
- 7.9 요약

순천향대학교 컴퓨터공학과

11

7. 무선 이동 네트워크

컴퓨터 네트워크

### 무선 링크의 특징 - 유선 링크와 차이

- □ 무선 링크는 유선 링크와 크게 다르고 유선 보다 통신이 어려움
- □ 무선 링크의 차이
  - 신호 세기의 감소 (decreased signal strength)
    - 물체를 통과하면서 무선 신호가 약화되고, 송신자와 수신자 사이의 거리가 증가함에 따라 신호 세기가 감소, 경로 손실(path loss)
  - 다른 출발지들로부터의 간섭 (interference from other sources)
    - 동일 주파수 대역의 서로 다른 송신자들 간의 무선 전파들이 서로 간섭
    - 예: 2.4 GHz의 무선 전화와 802.11b 무선 랜의 간섭 주변 전자기 잡음(모터, 전자 렌지 등)과의 간섭
  - 다중경로 전파 (multipath propagation)
    - 무선 신호가 물체와의 반사, 굴절, 산란 등으로 서로 다른 경로를 거쳐서 전파
    - 다중경로 전파는 수신 측에서 신호를 제대로 수신하지 못하게 함

# 다중경로 전파 (multipath propagation)



컴퓨터 네트워크

### 무선 링크의 특징 - SNR

### □ SNR (signal-to-noise ratio)

- 측정된 수신 신호의 세기와 잡음의 상 대적인 비율
- SNR이 클수록 잡음으로부터 신호의 추출이 용이
- □ 3가지 <mark>변조(modulation)</mark> 기법의 SNR 변화에 따름 BER 예
  - BER(bit error rate)은 송신된 비트가 수신 측에서 오류로 검출될 확률
  - 무선 전송에서는 디지털 전송을 못하기 때문에 디지털 데이터(0과 1은)는 아날로그신호로 변환하는 디지털 변조(digital modulation)를 해야 함



----- QAM256 (8 Mbps)

– QAM16 (4 Mbps)

BPSK (1 Mbps)

7. 무선 이동 네트워크

### 디지털 변조

- □ 기본 디지털 변조 방식
  - ASK(Amplitude Shift Keying)
  - FSK(Frequency Shift Keying)
  - PSK(Phase Shift Keying)
- □ BPSK (Binary Phase Shift Keying)
  - 180도 위상이동
  - 단순 PSK
- □ QAM (Quadrature Amplitude Modulation)
  - amplitude and phase modulation 결합
  - 한 심볼에 n 비트 코딩





순천향대학교 컴퓨터공학과

컴퓨터 네트워크

# 무선 링크의 특징 - 물리 계층 특징

- □ 동일한 변조 기법 내에서는 SNR 값이 높을 수록 BER은 낮아 짐
  - 송신자가 출력 세기를 높임 -> SNR 증가 -> BER 감소
  - 출력 세기 높임 -> 더 많은 에너지 소모 -> 더 많은 <mark>배터리 소모</mark>
- □ 동일한 SNR 내에서는 높은 전송률의 변조 기법이 높은 BER 값을 가짐
- □ 이동 중에 물리 계층 변조 기법의 동적인 선택 가능



### 무선 네트워크의 특징

### □ 숨은 터미널 문제 (hidden terminal problem)

- A는 B로 전송을 시작, C는 A를 수신을 못함
- C는 B로의 전송을 원함, 매체가 유휴(idle)임을 감지하고 송신 (CS(carrier sensing) 실패)
- B에서 A,C 수신 충돌, A는 충돌 검출 못하고 계속 전송 (CD(collision detection) 실패)
- A는 C에 대해 숨겨짐, C도 A에 대해 숨겨짐



순천향대학교 컴퓨터공학과

17



컴퓨터 네트워크

### CDMA (1)

### CDMA (Code Division Multiple Access)

- 코드 분할 다중 접속
- 무선 랜 및 셀룰러 등에서 사용되는 공유 매체 접속 프로토콜

### □ CDMA 동작 원리

- 각 사용자에게 유일한 코드를 할당
- 모든 사용자들이 동일 주파수를 공유
- 각 사용자는 데이터를 인코드하기 위한 자신의 칩핑 시퀀스(chipping sequence, 코드)를 가짐
- 인코드된 신호 = (원래 데이터) x (칩핑 시퀀스)
- 수신자는 인코드된 신호와 칩핑 시퀀스를 내적(inner-product)하여 디코딩
- 코드들이 <mark>직교성(orthogonal)</mark>을 가지면 여러 사용자가 최소의 간섭으로 동시에 송수신

- 코드공간에서 직교성
  - 3차원 공간에서 두 벡터의 내적(inner product)이 0이면 직교적
  - $(2,5,0) \cdot (0,0,17) = 2 \cdot 0 + 5 \cdot 0 + 0 \cdot 17 = 0$
  - $(3,-2,4) \cdot (-2,3,3) = 3 \cdot -2 + -2 \cdot 3 + 4 \cdot 3 = 0$
- 칩핑 시퀀스 직교성 예
  - 칩핑 시퀀스 A: (1.1.1.-1.1.-1.-1)
  - 칩핑 시퀀스 B: (1,-1,1,1,1,-1,1,1)
  - A · B = (1,1,1,-1,1,-1,-1,-1) · (1,-1,1,1,1,-1,1,1)= 1 · 1 + 1 · -1 + 1 · 1 + -1 · 1 + 1 · 1 + -1 · -1 + -1 · 1 = 1 -1 + 1 -1 + 1 + 1 -1 -1 = 0

순천향대학교 컴퓨터공학과

19

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

# CDMA 인코드/디코드 (Encode/Decode)



### 두 송신자 CDMA 예



컴퓨터 네트워크

### 7장. 무선 이동 네트워크

7.1 개요

#### <u>무선</u>

- 7.2 무선 링크와 무선 네트워크의 특징
  - CDMA
- 7.3 Wi-Fi: 802.11 무선 랜
- 7.4 셀룰러 인터넷 접근
  - 셀룰러 구조
  - 셀룰러 표준(3G, LTE)

### 이동성

- 7.5 이동성 관리: 원칙
  - 주소체계
  - 라우팅
- 7.6 이동 IP
- 7.7 셀룰러 네트워크에서의 이동성 관리
- 7.8 무선과 이동성: 상위 계층 프로토콜에의 영향
- 7.9 요약

#### □ IEEE 802.11 무선 랜

- Wi-Fi 라고도 함
- 802.11b, 802.11a, 802.11g, 802.11n 표준
- CSMA/CA 매체 접속 프로토콜
- 인프라스트럭처 방식과 애드 혹 방식

| 표준            | 주파수 범위         | 데이터 율        |                                              |
|---------------|----------------|--------------|----------------------------------------------|
| 802.11b       | 2.4 GHz        | 최대 11 Mbps   |                                              |
| 802.11a       | 5 GHz          | 최대 54 Mbps   |                                              |
| 802.11g       | 2.4 GHz        | 최대 54 Mbps   |                                              |
| 802.11n       | 2.5 GHz, 5 GHz | 최대 450 Mbps  | MIMO(multiple-input multiple-<br>output) 안테나 |
| 802.11 ac     | 5 GHz          | 최대 1300 Mbps | MIMO 안테나                                     |
| ССОИТЕ ОПИОТЯ |                |              | /, 구인 이중 네트쿼크                                |

#### 컴퓨터 네트워크

# 802.11 랜 구조 (802.11 LAN Architecture)



#### □ 무선 호스트가 기지국과 통신

- 기지국(base station)
  = AP (access point)
- BSS (Basic Service Set)
  - 셀 (cell)이라고도 함
  - 인프라스트럭처 모드
    - 하나 이상의 무선 호스트
    - 하나의 기지국
  - 애드 혹 모드
    - 무선 호스트로만 구성

### 802.11 - 채널과 결합

#### □ 802.11b/g 채널

- 2.4GHz~2.485GHz의 주파수 범위에서 11개의 서로 다른 주파수의 채널로 분할 (85 MHz 대역폭)
- AP 관리자가 채널 선택
- 간섭(interference) 가능성
  - 인접한 AP와 같은 채널 사용



#### □ 호스트는 단 하나의 AP와 결합(associate)되어야 함

- 채널을 스캐닝(scanning)하고, AP의 이름(SSID)과 MAC 주소가 포함된 비콘 프레임(beacon frame)을 청취
- 결합할 AP를 선택
- 인증(authentication)을 수행할 수도 있음 [8장]
- DHCP 수행하여 AP 서브넷의 IP 주소를 획득

순천향대학교 컴퓨터공학과

25

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

# 802.11 - 수동적/능동적 스캐닝 (passive/active scanning)



#### □ 수동적 스캐닝

- 1. AP들로 부터 <mark>비콘 프레임</mark>이 전송
- 2. H1에서 선택된 AP로 결합 요청 메시지 전송
- 3. 선택된 AP에서 H1으로 결합 수락 메시지를 전송



#### □ 능동적 스캐닝

- 1. H1에서 탐사 요청 프레임 (probe request frame)이 브로드캐스트
- 2. AP로 부터 탐사 응답 프레임 (probes response frame)이 도착
- 3. H1에서 선택된 AP로 결합 요청 메시지 전송
- 선택된 AP에서 H1으로 결합 수락 메시지를 전송

순천향대학교 컴퓨터공학과

26

### 802.11 - MAC 프로토콜

### CSMA/CA (carrier sense multiple access/collision avoidance)

- 이더넷과 같이 랜덤 접속 프로토콜 사용
- CSMA: 전송 전에 채널을 감지(sense)
- CA: 충돌 회피
  - 충돌 감지(collision detection)하지 않음
  - 약한 수신 신호로 인해 전송 시 충돌 감지 어려움
  - 숨은 터미널 문제, 신호 감소(fading) 등으로 모든 충돌 감지 어려움
  - 따라서 충돌 감지하지 않고 회피 (avoid collisions)



A's signal strength

순천향대학교 컴퓨터공학과

27

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

### 802.11 - CSMA

#### 802.11 송신 측

- 1. 채널이 사용되지 않음을 감지하면
  - DIFS(Distributed Inter-Frame Space)라는
    짧은 시간 동안 기다린 후 전체 프레임 전송
- 2. 채널이 사용 중이면
  - 임의의 백오프 시간을 선택하고, 채널이 사용되지 않는 동안만 감소하고 만료되면 프레임 전체를 전송
- 3. ACK를 수신하지 못하면 백오프 인터벌을 증가시킨 후 단계 2를 반복

#### 802.11 수신 측

- □ 프레임을 수신하면
  - SIFS (Short Inter-Frame Space)라는 짧은
    시간 동안 기다린 후 ACK 프레임을 전송



### 충돌 회피 (Collision Avoidance)

#### □ 아이디어

- 숨은 터미널이 존재해도 충돌을 회피할 수 있도록 채널을 예약
- 짧은 예약 패킷을 도입하여 긴 데이터 프레임의 충돌을 예방

#### □ 동작

- 1. 송신자는 CSMA를 사용하여 작은 RTS(Request to Send) 패킷을 AP에 전송
  - RTS 역시 충돌 가능성이 있지만 짧음
- 2. AP는 RTS에 응답하여 CTS(Clear to Send) 패킷을 브로드캐스트
- 3. 모든 노드들이 CTS를 수신
  - 송신 측은 데이터 프레임을 전송
  - 다른 노드들은 전송을 지연

순천향대학교 컴퓨터공학과

29

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

### RTS와 CTS를 사용하는 충돌 회피



# 802.11 프레임 - 주소 (1)



#### 컴퓨터 네트워크

# 802.11 프레임 - 주소 (2)



순천향대학교 컴퓨터공학과

7. 무선 이동 네트워크

### 802.11 프레임 - 주요 필드



컴퓨터 네트워크

# 802.11 - 동일한 서브넷에서의 이동성 (Mobility)

□ H1이 이동하더라도 같은 IP 서브넷에 남아 있으면 IP 주소 는 동일

### □ 스위치

- H1을 어느 AP와 결합 할 것인가?
- 자가 학습(self learning) (6장)
  - 스위치는 H1으로부터의 프레 임을 관찰하여 H1에 도달할 수 있는 스위치 포트를 기억



# 802.11 - 진전된 특징 (1) (Advanced Capabilities)

#### □ 전송율 적응 (rate adaptation)

- 모바일 사용자가 이동함에 따라 SNR이 변함
- 기지국, 모바일 사용자는 동적으로 전송률을 변경
  - 물리계층 변조 기법 변경
    - QAM256 (8 Mbps)QAM16 (4 Mbps)BPSK (1 Mbps)operating point

- 1. 노드가 기지국에서 멀어지면 SNR이 작아지고, BER은 커짐
- BER이 너무 커지면 더 낮은 BER을 갖도록 낮은 전송률로 스위치



7. 무선 이동 네트워크

순천향대학교 컴퓨터공학과

35

#### 컴퓨터 네트워크

### 802.11 - 진전된 특징 (2)

### □ 전력 제어 (power management)

- 노드는 명시적으로 휴면 상태(sleep state)와 동작 상태(wake state)
  를 번갈아 가며 변경
- □ 노드에서 AP로 전송
  - 노드는 AP에게 자신이 다음 비콘 신호 때까지 수면 모드로 진입할 것 임을 알림
    - 802.11 프레임의 전력 제어 비트를 1로 세팅
    - AP는 일반적으로 100ms마다 비콘 신호를 전송
  - 노드는 다음 비콘 신호 직전에 깨어남 (250us 소요)

#### □ 비콘 신호

- AP에 버퍼링된 프레임을 수신해야 하는 노드들의 목록 포함
- 목록에 해당하지 않으면 노드는 다시 수면 상태로 진입
  - 전송 프레임이 없는 노드의 99%는 수면 상태 유지 (100ms vs. 250us)

# 802.15 - WPAN (Wireless Personal Area Network)

- □ 10m 반경 이내 저전력 통신
- □ 2.4 GHz 무선 대역
  - ISM (Industrial, Scientific, Medical) 비허가 무선대역
- □ 용도
  - 케이블 대체(마우스,키보드,헤드폰)
  - 애드 혹: 인프라스트럭처 없음
- □ 태스크 그룹
  - 802.15.1
    - 블루투스(Bluetooth), 1 Mbps 전송률
  - 802.15.2: Wi-Fi 등과 공존
  - 802.15.3: WPAN-HR (High Rate), 55 Mbps 전송률
  - 802.15.4: WPAN-LR (Low Rate)
    - Zigbee, 6LoWPAN, 250 Kbps 전송률

순천향대학교 컴퓨터공학과

37

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

### 802.15.1: 블루투스

### □ 마스터/슬레이브 (master/slave)

- 슬레이브가 마스터에게 전송 허용
  을 요청
- 마스터가 요청을 승락



- Master device
- S Slave device
- P Parked device (inactive)

7. 무선 이동 네트워크

### 7장. 무선 이동 네트워크

7.1 개요

#### 무선

- 7.2 무선 링크와 무선 네트워크의 특징
  - CDMA
- 7.3 Wi-Fi: 802.11 무선 랜
- 7.4 셀룰러 인터넷 접근
  - 셀룰러 구조
  - 셀룰러 표준(3G, LTE)

이동성

- 7.5 이동성 관리: 원칙
  - 주소체계
  - 라우팅
- 7.6 이동 IP
- 7.7 셀룰러 네트워크에서의 이동성 관리
- 7.8 무선과 이동성: 상위 계층 프로토콜에의 영향
- 7.9 요약

순천향대학교 컴퓨터공학과

39

7. 무선 이동 네트워크

컴퓨터 네트워크

# 셀룰러 네트워크 구조의 요소



### 무선 인터페이스 접근 기술

□ 두 가지 무선 스펙트럼 공유 방법 중 하나 사용

### □ FDMA/TDMA 결합

- 채널을 여러 개 주파수 대역으로 나눔, FDMA
- 각 채널을 시간 슬롯으로 분할, TDMA

#### CDMA

- 코드 분할 다중 접속
  - 각 사용자는 고유의 칩핑 순서
- 주파수나 시간이 분할되지 않음



순천향대학교 컴퓨터공학과

41

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

# 2G (음성) 네트워크 구조



# 3G (음성+데이터) 네트워크 구조 (1)



순천향대학교 컴퓨터공학과

43

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

# 3G (음성+데이터) 네트워크 구조 (2)



44

순천향대학교 컴퓨터공학과

7. 무선 이동 네트워크

#### □ 4G LTE (Long-Term Evolution) 표준

- EPC (Evolved Packet Core)
  - 회선교환 방식의 <u>셀룰러 음성 네트워크와 패킷교환 방식의 셀룰러 데이</u> 터 네트워크를 통합
  - 음성과 데이터 모두 IP 데이터그램을 통해 전달되는 all-IP 네트워크
- LTE 무선 액세스 네트워크
  - 다운스트림 채널에 OFDM(orthogonal frequency division multiplexing)
    적용
    - FDM과 TDM 혼합
    - 0.5msec 시간슬롯에 하나 이상의 주파수 채널 할당
  - MIMO(multiple-input multiple-output) 안테나 사용
  - LTE 20MHz 무선대역 사용 시 최대 100Mbps 다운로드 전송률, 50Mbps 업로드 전송률

순천향대학교 컴퓨터공학과

45

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

### 4G LTE 네트워크 구조



### 3G와 4G LTE 네트워크 구조 비교



컴퓨터 네트워크

### 7장. 무선 이동 네트워크

7.1 개요

### <u>무선</u>

- 7.2 무선 링크와 무선 네트워크의 특징
  - CDMA
- 7.3 Wi-Fi: 802.11 무선 랜
- 7.4 셀룰러 인터넷 접근
  - 셀룰러 구조
  - 셀룰러 표준(3G, LTE)

### <u>이동성</u>

- 7.5 이동성 관리: 원칙
  - 주소체계
  - 라우팅
- 7.6 이동 IP
- 7.7 셀룰러 네트워크에서의 이동성 관리
- 7.8 무선과 이동성: 상위 계층 프로토콜에의 영향
- 7.9 요약

# 이동성 (Mobility)이란?

#### □ 네트워크 관점에서 본 다양한 이동성(mobility)의 정도



49

컴퓨터 네트워크

순천향대학교 컴퓨터공학과

# 이동성 - 용어 (1)

7. 무선 이동 네트워크



### 이동성 - 용어 (2)



컴퓨터 네트워크

### 이사 간 친구 찾기 예

□ 자주 이사 가서 주소가 빈번히 바뀌는 여자 친구를 찾기



### 이동성 관리 - 접근 방법 (1)

#### □ 라우터들이 관리

- 라우터가 라우팅 테이블 교환 등을 통해 이동 노드의 영구적인 주소를 광고
- 라우팅 테이블에는 이동 노드의 위치가 저장
- 종단 시스템 변경 없음

#### □ 종단 시스템이 관리

- 간접 라우팅 (indirect routing)
  - 상대방이 홈 에이전트를 거쳐서 이동 노드와 통신
- 직접 라우팅 (direct routing)
  - 상대방이 이동 노드의 방문 주소를 획득하여 직접 이동 노드와 통신

순천향대학교 컴퓨터공학과

53

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

# 이동성 관리 - 접근 방법 (2)

#### □ 라우터들이 관리

- 라우터가 라우팅 테이를 광고
- 라우팅 테이블에는

• 종단 시스템 변경 없

수백만개 통해 이동 노드의 영구적인 주소 이상의 이동노드들로 -- ---

가 저장

#### □ 종단 시스템이 관리

- 간접 라우팅 (indirect routing)
  - 상대방이 홈 에이전트를 거쳐서 이동 노드와 통신

54

- 직접 라우팅 (direct routing)
  - 상대방이 이동 노드의 방문 주소를 획득하여 직접 이동 노드와 통신

순천향대학교 컴퓨터공학과

7. 무선 이동 네트워크

# 이동성 관리 - 등록 (Registration)



#### □ 등록 결과

- 방문 에이전트는 이동 노드의 존재를 알게됨
- 홈 에이전트는 이동 노드의 위치를 알게됨

순천향대학교 컴퓨터공학과

55

7. 무선 이동 네트워크

컴퓨터 네트워크

# 이동성 관리 - 간접 라우팅 (1)



### 이동성 관리 - 간접 라우팅 (2)

- □ 이동 노드는 2개의 주소를 이용
  - 영구적인 주소
    - 상대방이 사용
    - 이동 노드의 위치가 상대방에게 투명
  - COA (care-of-address)
    - 이동 노드로 데이터그램을 전달하기 위해 홈 에이전트가 사용
- □ 방문 에이전트의 기능은 이동 노드 자체에서 수행할 수도 있음
- □ 삼각 라우팅 (triangle routing)
  - 상대방과 이동 노드가 같은 네트워크 영역 내에 있으면 비효율적



순천향대학교 컴퓨터공학과

57

7. 무선 이동 네트워크

컴퓨터 네트워크

# 이동성 관리 - 간접 라우팅, 네트워크들 간에 이동

- □ 이동 노드가 다른 네트워크 영역으로 이동
  - 새 방문 에이전트 등록
  - 새 방문 에이전트가 홈 에이전트를 등록
  - 홈 에이전트는 이동 노드의 COA를 갱신
  - 패킷들은 새 COA를 사용하여 이동 노드로 계속 전달
- □ 이동성, 방문 네트워크 변경이 투명(transparent) => 지속적인 연결이 유지!

### 이동성 관리 - 직접 라우팅 (1)



컴퓨터 네트워크

# 이동성 관리 - 직접 라우팅 (2)

- □ 삼각 라우팅 문제 해결
- □ 이동 및 네트워크 변경이 상대방에게 불투명 (non-transparent)
  - 세션이 시작 시 단 한차례만 홈 에이전트에게 COA 문의
  - 이동 노드가 방문 네트워크를 변경하면?
    - 홈 에이전트가 COA 갱신해도 소용 없음



# 이동성 관리: 직접 라우팅, 네트워크들 간에 이동

#### □ 앵커 방문 에이전트(anchor foreign agent)

- 이동 노드가 처음 있었던 방문 네트워크의 방문 에이전트
- 데이터는 처음에 항상 앵커 방문 에이전트로 라우팅
- □ 이동 노드가 네트워크 간 이동 시
  - 새 방문 에이전트가 데이터를 이전 방문 에이전트에 전달
  - 또 다시 이동 시 연속적으로 적용 (chaining)



컴퓨터 네트워크

### 7장. 무선 이동 네트워크

7.1 개요

#### <u>무선</u>

- 7.2 무선 링크와 무선 네트워크의 특징
  - CDMA
- 7.3 Wi-Fi: 802.11 무선 랜
- 7.4 셀룰러 인터넷 접근
  - 셀룰러 구조
  - 셀룰러 표준(3G, LTE)

#### 이동성

- 7.5 이동성 관리: 원칙
  - 주소체계
  - 라우팅
- 7.6 이동 IP
- 7.7 셀룰러 네트워크에서의 이동성 관리
- 7.8 무선과 이동성: 상위 계층 프로토콜에의 영향
- 7.9 요약

# 이동 IP (Mobile IP)

- □ RFC 3344
- □ 앞 절에서 소개된 주요 내용 포함
  - 홈 에이전트, 방문 에이전트, 방문 에이전트 등록, COA
  - 캡슐화(패킷 내 패킷)
- □ 3 가지 구성 요소
  - 데이터그램의 간접 라우팅
  - 에이전트 발견 (agent discovery)
  - 홈 에이전트로의 등록

순천향대학교 컴퓨터공학과

63

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

# 이동 IP - 간접 라우팅



# 에이전트 발견 (Agent Discovery)

### □ 에이전트 광고 (agent discovery)

- 방문/홈 에이전트가 서비스를 광고
- ICMP 메시지 브로드캐스트 (타입=9)



#### 컴퓨터 네트워크

# 이동 IP - 등록 예



### 셀룰러 네트워크의 구성 요소 - 복습



순천향대학교 컴퓨터공학과

67

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

### 셀룰러 네트워크에서의 이동성 관리

#### □ 홈 네트워크

- 사용자가 가입한 이통사의 셀룰러 네트워크 (예, SKT, KT, LGT)
- HLR (home location register)
  - 가입자의 <mark>영구적인 셀룰러 번호와 개인정보(</mark>서비스 가입, 선호도, 요금납부), 가입자의 현재 위치 등이 포함된 데이터베이스

#### □ 방문 네트워크

- 이동 노드가 현재 위치한 네트워크
- VLR (visitor location register)
  - 현재 네트워크에 있는 이동 사용자의 엔트리를 갖는 데이터베이스
  - 홈 네트워크일 수도 있음

### GSM - 이동 노드로 간접 라우팅



#### 컴퓨터 네트워크

## GSM - 공통 MSC 내 핸드오프 (1)



BSS: Basic Service Set

#### □ 핸드오프 목표

- 끊김 없이 새 기지국을 통해 콜 라우팅
- □ 핸드오프 발생 이유
  - 새 BSS의 더 강한 신호 (연결 지속, 적은 밧데리 소모)
  - 부하 균형: 현재 BSS의 채널 해제
  - GSM은 핸드오프 수행 정책(policy,왜 핸드오프를 하는지)을 명시하지 않고, 어떻게 하는지(메커니즘)을 명시
- □ 핸드 오프는 이전 BSS에 의해 개시

### GSM - 공통 MSC 내 핸드오프 (2)



- 1. 이전 BSS는 방문 MSC에게 <mark>핸드오프가 임박</mark>했다 는 것과 핸드오프될 BSS를 알려줌
- 2. MSC는 자원을 할당하고 새 BSS로 경로를 설정
- 3. 새 BSS는 이동 노드가 사용할 <mark>무선 채널을 할당</mark> 하고 활성화
- 4. 새 BSS는 MSC와 이전 BSS에게 <mark>준비가 되었음</mark> 을 알림
- 5. 이전 BSS는 이동 노드에게 핸드오프를 통지하고 , 이동 노드는 새 BSS로 핸드오프
- 6. 이동 노드와 새 BSS는 새 채널을 활성화하는 메 시지 교환
- 7. 이동 노드는 새 BSS에게 핸드오프 완료 메시지를 보내고, 이 메시지는 방문 MSC에 전달. MSC는 진행 중인 콜을 새 BSS의 이동 노드로 재 라우팅
- 8. 이전 BSS의 경로에서 할당된 자원들을 해제

순천향대학교 컴퓨터공학과

71

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

## GSM(TDMA) - MSC 간의 핸드오프 (1)



(a) before handoff

### □ 앵커 MSC (anchor MSC)

- 콜이 처음 시작할 때 이동 노드 가 방문한 MSC
- 앵커 MSC를 콜 진행 동안 변경 되지 않고 유지
- □ 이동 노드가 새 MSC 영역으로 이동할 때 새 MSC가 MSC 체인의 끝에 추가
- □ MSC 체인을 최소화하는 선택 적인 경로 최소화 단계 수행

순천향대학교 컴퓨터공학과

7. 무선 이동 네트워크

### GSM - MSC 간의 핸드오프 (2)



(b) after handoff

#### □ 앵커 MSC (anchor MSC)

- 콜이 처음 시작할 때 이동 노드 가 방문한 MSC
- 앵커 MSC를 콜 진행 동안 변경 되지 않고 유지
- □ 이동 노드가 새 MSC 영역으로 이동할 때 새 MSC가 MSC 체인의 끝에 추가
- □ MSC 체인을 최소화하는 선택 적인 경로 최소화 단계 수행

순천향대학교 컴퓨터공학과 73

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

# 이동 IP와 GSM 이동성 비교

| GSM 요소                                                                 | GSM 요소 설명                                                                                                         | 이동 IP 요소 |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------|
| 홈 시스템                                                                  | 이동 사용자의 고정 전화번호가 속한 네트워크                                                                                          | 홈 네트워크   |
| 게이트웨이 이동 교환<br>센터 혹은 홈 MSC,<br>HLR                                     | 홈 MSC: 이동 사용자의 경로 가능 주소를 얻기<br>위한 접촉점<br>HLR: 고정 전화번호, 프로파일 정보, 이동<br>사용자의 현재 위치, 등록 정보 등을 포함하는 홈<br>시스템 내 데이터베이스 | 홈 에이전트   |
| 방문 시스템                                                                 | 이동 사용자가 현재 위치한 네트워크<br>(홈 시스템 제외)                                                                                 | 방문 네트워크  |
| 방문 MSC, VLR                                                            | 방문 MSC: MSC와 연계된 셀 내에 이동 노드로<br>들어오거나 나가는 콜을 설정<br>VLR: 각 방문 이동 사용자의 등록 정보 등을<br>포함하는 방문 시스템 내의 임시 데이터베이스         | 방문 에이전트  |
| MSRN(Mobile Station<br>Roaming Number) 혹은<br>이동 번호 (roaming<br>number) | 이동 사용자 혹은 상대방에게 보이지 않으며 홈<br>MSC와 방문 MSC 간의 전화 콜 세그먼트용 경로<br>가능 주소                                                | COA      |

### 무선과 이동성 - 상위 계층 프로토콜에의 영향

### □ 논리적으로는 무선의 영향이 최소화……

- 최선의 노력(best effort) 모델은 변경되지 않고 유지
- TCP/UDP가 무선, 이동 환경에서도 적용

#### □ 그러나 실제는 성능 면에서 유선과 무선은 차이가 뚜렷

- 비트 오류(폐기된 패킷, 링크 계층 재전송으로 인한 지연), 핸드 오프 에 기인한 패킷 손실/지연
- TCP는 손실을 혼잡으로 간주하여 불필요하게 혼잡 윈도우 크기를 줄임
- 실시간 트래픽의 지연 장애
- 무선 링크의 제한된 대역폭

순천향대학교 컴퓨터공학과

75

7. 무선 이동 네트워크

#### 컴퓨터 네트워크

## 요약 (Summary)

#### 무선

- □ 무선 링크:
  - 전송률, 거리
  - 채널 장애
  - CDMA
- □ IEEE 802.11 ("wi-fi")
  - CSMA/CA는 무선 채널 특성을 반영
- □ 셀룰러 네트워크
  - 구조
  - 표준 (e.g., GSM, CDMA-2000, UMTS)

#### 이동성

- □ 원칙: 주소체계, 이동 사용자 로의 라우팅
  - 홈, 방문 네트워크
  - 직접, 간접 라우팅
  - COA (care-of-address)
- □ 사례 학습
  - 이동 IP
  - GSM의 이동성
- □ 상위 계층 프로토콜에의 영향