## RLC串联谐振电路的研究

### 实验仪器与设备

(1) 函数信号发生器



(2) 双踪示波器。



(3) 交流毫伏表



(4) 谐振电路实验线路板。



# 1. 测定谐振频率 $f_0$ 。







输入输出 波形同相。



操作要点:慢慢调节信号发生器的频率,使输入输出两波形相位差为0

### 2.测量谐振时电阻电压值

| C (µF) | $R$ (k $\Omega$ ) | fo (kHz) | (U <sub>R0</sub> (V) | U <sub>L0</sub> (V) | U <sub>C0</sub> (V) | 计算 <i>Q</i> |
|--------|-------------------|----------|----------------------|---------------------|---------------------|-------------|
| 0.1    | 0.2               | 2.791    | 0.844                |                     |                     |             |
|        | 1                 |          |                      |                     |                     |             |

#### 操作要点:

- 1)撤掉示波器,改 用交流毫伏表测量 电压。
- 2)调节信号发生器的幅值,使其输出端电压为1V(毫伏表的测量值)。



### 3.测量谐振时电感电压值

| C (µF) | $R$ (k $\Omega$ ) | f <sub>0</sub> (kHz) | U <sub>R0</sub> (V) | (U <sub>L0</sub> (V) | U <sub>C0</sub> (V) | 计算 <i>Q</i> |
|--------|-------------------|----------------------|---------------------|----------------------|---------------------|-------------|
| 0.1    | 0.2               | 2.791                | 0.844               | 2.338                |                     |             |
|        | 1                 |                      |                     |                      |                     |             |

#### 操作要点:

- 1) 撤掉交流毫伏表测量信号源的通道。
  - 2) 用毫伏表单独测量电感电压。

注意:测量时毫伏表正极性端接L与 C连接点。



### 4.测量谐振时电容电压值

| C (µF) | $R$ (k $\Omega$ ) | f <sub>0</sub> (kHz) | U <sub>R0</sub> (V) | U <sub>L0</sub> (V) | (U <sub>C0</sub> (V)) | 计算 Q  |  |
|--------|-------------------|----------------------|---------------------|---------------------|-----------------------|-------|--|
| 0.1    | 0.2               | 0.2 2.791            |                     | 2.338               | 2.335                 | 2.335 |  |
|        | 1                 |                      |                     |                     |                       |       |  |

$$Q = \frac{U_{\text{C0}}}{U_{\text{S}}}$$

$$= \frac{2.335}{1} = 2.335$$

#### 操作要点:

- 1) 撤掉交流毫伏表测量信号源的通道。
  - 2) 用毫伏表单独测量电容电压。

注意:测量时毫伏表正极性端接L与 C连接点。



### 5. 测量RLC电路的幅频特性

| $f/f_0$            | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 8.0 | 0.9 |  |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|--|
| f (kHz)            |     | 87  |     |     |     |     | 2)  | 67. |  |
| U <sub>R</sub> (V) |     |     |     |     |     |     |     |     |  |
| $f/f_0$            | 1.2 | 1.4 | 1.7 | 2.1 | 2.7 | 4   | 6   | 10  |  |
| f (kHz)            |     |     |     |     |     |     |     |     |  |
| U <sub>R</sub> (V) |     |     |     |     |     |     |     |     |  |

注意:实验过程中,维持信号源输出端电压为1V。

| f / f <sub>0</sub>                      | 0.1   | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
|-----------------------------------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|---|
| f(kHz)                                  | 0.279 |     |     |     |     |     |     |     |     |   |
| $U_{\mathrm{R}}\left(\mathbf{V}\right)$ | 0.037 |     |     |     |     |     |     |     |     |   |

#### 操作步骤:

- 1) 按表格要 求调节信号发 生器的频率。
- 2)调节信号发生器的幅值,使输出端电压为 1V(毫伏表的测量值)。



$$f_0 = 2.791 \text{ kHz}, f_1 = 2.252 \text{ kHz}, f_{\underline{h}} = 3.453 \text{ kHz}, Q = ______$$

#### 操作要点:

f<sub>0</sub> (kHz) U<sub>R0</sub> (V)
2.791 0.844

1) 先计算上限频率及下限频率所对应的电阻电压:

$$U_R = \frac{U_{R0}}{\sqrt{2}} \approx 0.707 \times 0.844 = 0.596 \text{V}$$

- 2)交替调节信号发生 器输出的频率及幅值, 反复耐心多调几次。
- 3) 交流毫伏表显示:

信号源电压为1伏,电阻电压为 $0.707U_{R0}$ ,此时信号源频率即 $f_i$ 或 $f_h$ 。



$$f_0 = 2.791 \text{ kHz}, f_1 = 2.252 \text{ kHz}, f_h = 3.453 \text{ kHz}, Q = 2.329$$
°

通频带:  $BW = f_h - f_l = 2.453 - 2.252 = 1.201 \, \text{kHz}$ 

品质因数:

$$Q = \frac{f_0}{BW} = \frac{2.791}{1.201} = 2.329$$
 根据实验测量值,

$$Q = \frac{U_{\text{C0}}}{U_{\text{S}}} = \frac{2.335}{1} = 2.335$$
 Q值。

根据实验测量值, 用两种方法计算 Q值。