

May 22, 2024 Version 4

HTTM: Transposon mutagenesis V.4

PLOS One

Peer-reviewed method

DOI

dx.doi.org/10.17504/protocols.io.36wgq72n3vk5/v4

Antoine Champie¹, Amélie De Grandmaison¹, Sebastien Rodrigue¹

¹Université de Sherbrooke

Spotlight series

Antoine Champie

Université de Sherbrooke

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.36wgq72n3vk5/v4

External link: https://doi.org/10.1371/journal.pone.0283990

Protocol Citation: Antoine Champie, Amélie De Grandmaison, Sebastien Rodrigue 2024. HTTM: Transposon mutagenesis. protocols.io https://dx.doi.org/10.17504/protocols.io.36wgq72n3vk5/v4 Version created by https://dx.doi.org/10.17504/protocols.io.36wgq72n3vk5/v4 Version created by Antoine Champie

Manuscript citation:

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's

working

Created: October 03, 2023

Last Modified: May 22, 2024

Protocol Integer ID: 100188

Keywords: HDTM, TnSeq, HTTM

Abstract

Part of the HTTM protocol dedicated to the transposon mutagenesis of targets cells.

The <u>last step</u> in this version contains a supplemental video with extra context and tips, as part of the protocols.io Spotlight series, featuring conversations with protocol authors.

Attachments

444KB

Image Attribution

Make with BioRender.com

Before start

Per plate refers to the number of 96 well plates of target cells that need to be processed.

Day 1

3m

- 1 (1-A) Make a LB (Diaminopimelic acid [Dap], Ampicillin [Amp], Spectinomycin [Spec]) pre-culture (L2 mL per plate minimum) of the donor strain eAC494 and incubate with agitation at 37 °C overnight.
- 2 (1-B) Prepare the 96 deep-well plates for conjugation :
- 2.1 Preheat the deep-well plates at 60 °C in a sterile incubator for 00:10:00

■ Prepare 🚨 50 mL of LB-Agar for each plate and keep it above 🖁 70 °C

- 2.2 Using a multichannel pipette transfer Δ 300 μL of molten LB-Agar in each well of the deepwell plates, paying attention not to create bubbles by keeping the tips on the side of the wells and not dispensing all the liquid.
- 2.3 Let dry in a biological hood for 3 days or until well dried but not cracked. (Optional : can be placed on a heating mat set at 30 °C to shorten the drying time to 2 days).

Λ

10m

Day 2

- 3 (2-A) Prepare a 500 mL LB (Dap, Amp, Spec) culture of the donor strain per plate by making a 1/250 dilution of the pre-culture and incubate overnight at 37 °C with 180 rpm.

Day 3

20m

- 5 (3-A) Pellet the donor strain by centrifugation 6000 x g, 00:10:00 and discard the liquid.
- 6 (3-B) Resuspend the pellet in \bot 10 mL LB per plate.
- 7 (3-C) Dispense Δ 100-150 μL (total volume) donor culture into each recipient well.
- 8 (3-D) Pellet the cells by centrifugation $3270 \times g$, 00:10:00 and remove the supernatant with the Aspir-8 + 50 μ L guide.
- 8.1 If not using the Aspir-8 + 50 μ L guide, remove all supernatant and add 50 μ L of LB to each well.
- 9 (3-E) Resuspend by agitating on a shaker (5 900 rpm, 00:10:00 and do a quick spin to recover all the cells at the bottom of the plate.
- 10 (3-F) Take $\[\] 50\text{-}100 \ \mu\text{L} \ (total \ volume) \]$ from the resupended cells and deposit them on the dried agar at the bottom of the prepared deep-well plate. Let dry $\[\] 01:00:00 \]$ at $\[\] 30\ ^{\circ}\text{C} \]$ in a biological hood and cover with a gas permeable plate seal.
- 11 (3-G) Incubate the deep-well plates 02:00:00 at 37 °C for conjugation.
- 12 (3-H) Add \triangle 400 μ L of selection media to each well and resuspend by agitating on a shaker at \bigcirc 900 rpm, 00:10:00 and do a quick spin to recover all the cells at the bottom of the plate.
- (3-I) Transfert Δ 400 μL (total volume) of the resuspended cells to a new deep-well filled with Δ 1500 μL of selection media (with antibiotics to select for newly obtained mutants). Cover with a gas permeable plate seal and incubate at 37 °C with 5 180 rpm

10m

1h

14 (3-J)/(3-K) (Optional) Using 🚨 20 µL of the conjugation mix make serial dilutions and spot on selective plates to estimate the number of mutants obtained per well.

Selection markers:

- Donor strain: Dap, Amp, Spec - Recipient : Target-dependant

- Transposon mutants : Target-dependant + Spec

Days 4 to 7

- 15 Make a passage from the previous plate to a new deep-well plate filled with selective medium. The volume of the passage (optimized to pass 3 millions mutants in E.coli) varies from day to day:
 - ∆ 200 µL of day 4 (4-A)
 - \perp 100 µL on day 5 (5-A), 6 (6-A) and 7 (7-A)
- 16 (7-B) (Optional) In order to have a backup in case of an issue during DNA extraction, make a 10m glycerol stock: pellet cells of the culture after passage 3270 x g and remove supernatant, add 4 75 µL of 50 % glycerol solution and resuspend by agitating (5 900 rpm O0:10:00 Store it at \$\mathbb{8} -80 °C

Day 8

10m

10m

17 (8-A)/(8-B) Pellet cells by centrifugation 3270 x g, 00:10:00 and remove the supernatant. Aspir-8 can be used to accelerate this step. Cells are ready for DNA extraction and can be stored at 4 -80 °C until ready to process.

Spotlight video

18

https://www.youtube.com/embed/KvjKKpLHSKE?si=eQurl-NSIvCrzQ_Z