Modbus RTU Learning based on RS485

倪煜晖

2025年4月12日

目录

1 说明

记录 Modbus RTU 通讯协议学习过程,用于实现 xArm6 机械臂与知行机器人夹爪之间的通信,以备后续查看使用。

2 Modbus RTU 与 RS485 初探

2.1 简介

Modbus 是一种应用协议,RTU 是一种通信模式,而 RS485 是总线串行标准。前二者工作在应用层与链路层,而 RS485 工作在物理层。

2.2 联系与区别

- Modbus RTU:一种主从通信协议。它定义了数据传输的规则,包括数据帧的格式、帧的开始和结束标志、地址域、功能码、数据区和错误检测域等。例如,在一个 Modbus RTU 帧中,地址域用于标识从设备的地址,功能码用于指定主设备希望从设备执行的操作,如读取寄存器、写入寄存器等。
- RS485: 一种电气接口标准,它规定了数据传输的物理层特性,如信号电平、传输速率、传输 距离等。RS-485 支持多点通信,能够在长距离和高噪声环境下可靠地传输数据。

在我们的任务中,RS-485提供了硬件层面的通信通道,Modbus RTU则是在这个通道上运行的协议,规定了数据的传输格式、帧结构等内容,二者相互配合来实现设备之间的通信。

2.3 重点

RS485 使用差分传输模式,使用双绞线 A,B 之间的电位差来实现通信。它的核心是一个主机与多个从机的通讯。这里需要注意的是,这和 I/O 通信完全没有关系,也就是说,我们 I/O 的五根线大概是没用的。由于 RS485 协议对电位敏感,建议在之后断开对这五根线的连接,保证接地唯一。后续,还需要考虑使用万用表对串行接口进行检查,确保有电压与信号。

确认接线之后,我们把注意力更多放在 Modbus RTU 上。

图 1: 一主多从

3 使用机器码实现 Modbus RTU 通信

3.1 参数配置

3.1.1 夹爪要求

- 波特率: 115200
- ID: 默认为 1
- 数据格式: 默认的数据格式为无检验
- 校验模式: 使用 16 进制 CRC 校验码, 低字节在前

这里 highlight 校验模式。

使用手册中给出了示例通信码 01 06 01 02 00 64 28 1D。具体解释会在后面章节注明,也可以直接参照表格(??)。注意到,这里的最后两位是校验码,由前六位决定。我们遇到的报文无效问题由一部分应该是这个原因。

为了生成正确的校验码,我找到了生成网站并且正确生成了校验码。

值得注意的是, xArm 手册中提到自动生成 CRC 校验码, 不知道使用的是否为 16 位, 也不知道采用的是低位在前还是高位在前, 可能成为核心问题。

3.1.2 xArm 要求

- 波特率: 默认 200000
- 12 位 6 字节十六进制编码, 自动生成 CRC 校验码

之前一直无法执行很有可能是位数不对与设备 ID 不对,应当只输入 6 字节,选定正确设备 ID 也就是 1,后续尝试。

表 1: 数据帧格式说明

数据	字节	数据说明	备注
01	1	从机地址	0x01 为设备 ID 号,0x00 为广 播地址(无回应)
06	1	功能码	单个保持寄存器的写入
01 02	2	数据地址	0x0102 为需要执行功能码的数据地址(执行器临时区运动位置)
00 64	2	数据值	0x0064 为 16 进制的 100,即将 执行器运动位置(临时区)的 值设定为 100
28 1D	2	CRC 校验码	16 进制 CRC 校验码,低字节 在前

图 2: 校验码

字段名称	占用字节数	描述	示例
从机地址	1	目标设备的地址,范围为 0-255	0x01
功能码	1	指示操作类型,例如读取或写入	0x03
数据区	可变	根据功能码的不同而变化	读保持寄存器时,数据区包含: 起始地址(2字节)和读取数量(2字节)
校验码	2	CRC 校验,用于检测数据传输完整性	0x44 0x3C

表 2: Modbus RTU 数据帧结构

表 3: Modbus RTU 读取类功能码

功能码	名称	功能描述
0x01	读线圈寄存器	读取一组开关线圈的当前状态(ON/OFF)
0x02	读离散输入寄存器	读取一组开关输入的状态(ON/OFF)
0x03	读保持寄存器	读取一个或多个保持寄存器的当前值
0x04	读输入寄存器	读取一个或多个输入寄存器的当前值
0x07	读输入状态	读取从设备的输入状态
0x08	读诊断信息	读取从设备的诊断信息

- 3.2 通用 Modbus RTU 指令
- 3.3 夹爪执行器特有参数 (TO DO)
- 3.3.1 执行器控制指令
- 3.3.2 执行器运动参数
- 3.3.3 执行器运动状态
 - * 执行器警报状态
- 3.3.4 执行器产品信息
- 3.3.5 系统管理
 - 4 使用 Python 调用 Modbus RTU(TO DO)

TO DO

5 可能的替代方案——I/O 控制 (TO DO)

TO DO

表 4: Modbus RTU 写入类功能码

功能码	名称	功能描述
0x05	写单个线圈寄存器	设置一个单独的线圈状态(ON/OFF)
0x06	写单个保持寄存器	写入单个保持寄存器的值
0x0F	写多个线圈寄存器	批量更新多个线圈的状态
0x10	写多个保持寄存器	写入多个保持寄存器的值
0x11	写输入寄存器	写入单个输入寄存器的值

设置执行器多段

地址	内容	设定范围	出厂值	生效方式	说明
					0: 执行器下位
0x0100	执行器使能	0-1	1	立即生效	1: 执行器上位
					执行器上电默
					设置执行器位
0x0102	执行器运动位置 high(临时区)	-2147483647 2147483647	0	立即生效	执行器最小位
					执行器最终位
0x0103	执行器运动位置 low(临时区)				
0x0104	 执行器运动速度(临时区)	0-100	100	立即生效	设置执行器运
					执行器运动速
0x0105	执行器运动力矩(临时区)	0-100	100	立即生效	设置执行器运
					执行器运动力
0x0106	执行器运动加速度 (临时区)	0-100	100	立即生效	设置执行器运 执行器运动加
					设置执行器运
0x0107	执行器运动减速度 (临时区)	1-100	100	立即生效	
					0: 不触发运动
0x0108	临时区触发	0-1	0	立即生效	1: 触发运动,
	He A - Target He D		_), HH //)/	0: 立即更新数
0x010F	指令更新模式	0-1	0	立即生效	1: 忽略更新数
					0: 序列运动
0x0110	多段位置运行方式	0-2	0	立即生效	1: 循环运动
					2: 选段运动
0x0111	位置指令起始段序号	1-16	1	立即生效	多段位置指令
0x0112	位置指令终点段序号	1-16	0	立即生效	多段位置终点
0x0113	 暂停再启动之后剩余段数处理方式	0-1	0	立即生效	0: 运行剩余的
		V 1		211 27%	1: 再次从起始
0x0114	 多段位置循环次数	-1-32767	0	立即生效	多段位置循环
					-1: 无限循环
0x0116	多段点位选择	1-16	1	立即生效	1-16: 选段 1-
0x0117	多段点位触发	0-1	0	立即生效	0: 无动作
					1: 触发多段点
0x0118	多段点位暂停	0-1	0	立即生效	0: 无动作
					1: 暂停多段点 设置执行器多
0x0119	 执行器运动位置 P1high	-2147483647 2147483647	0	立即生效	以且外17 命多 执行器最小位
0.0113	1人口 研究の区直 I Imgn	-2141403041 2141403041			执行器最终位
0x011A	执行器运动位置 P1low				NATA HEAVE IT
					设置执行器多
0x011B	执行器运动速度 P1	0-100	0	立即生效	
	II /= III >= -1), pp. 2. 2.	设置执行器多
0x011C	执行器运动力矩 P1	0-100	0	立即生效	执行器运动力
0 0115	LL /- III \ L L- \+ rix - p.	0.100		스 pn // - 사	设置执行器多
0x011D	执行器运动加速度 P1	0-100	0	立即生效	执行器运动加
	<u> </u>		1		

0.100

表 6: 执行器运动参数 (FLASH)

地址	内容	设定范围		出厂值	生效方式	说明
0x0301	执行器最小位置 high	-2147483647	2147483647	0	立即生效	设置执行器最小位置
0x0302	执行器最小位置 low					
0x0303	执行器最大位置 high	-2147483647	2147483647	0	立即生效	设置执行器最大位置
0x0304	执行器最大位置 low					
0x0305	执行器最大速度	1-10000		2000	立即生效	设置执行器最大速度
0x0306	执行器最大电流	1-2000		400	立即生效	设置执行器最大电流
0x0307	执行器最大加速度	1-10000		1000	立即生效	设置闭合最大速度
0x0308	执行器最大减速度	1-10000		1000	立即生效	设置闭合最大力矩
0x0309	找零最大路程 high	-2147483647	2147483647	10000	立即生效	设置找零最大路程
0x030A	找零最大路程 low					
0x030B	找零最大速度	0-10000		2000	立即生效	设置找零最大速度
0x030C	找零最大电流	0-2000		380	立即生效	设置找零最大电流
0x030D	找零加速度	1-10000		2000	立即生效	设置找零加速度
0x030E	找零减速度	0-10000		2000	立即生效	设置找零减速度
0x0310	是否上电回零	0-1		0	立即生效	0: 上电无动作 1: 上电自动回零
0x0311	执行器执行方向	0-1		1	立即生效	0: 顺时针回零,逆时针夹紧 1: 逆时针回零,顺时针夹紧
0x0313	运动模式	0-1		0	立即生效	0: 绝对式 1: 增量式
0x0314	堵转处理模式	0-1		1	立即生效	0: LH1, 力矩到达后继续运 1: LH2, 力矩到达后停止 2: LH3, 力矩到达后保持当

表 7: 执行器运动状态

地址	内容	设定范围		出厂值	生效方式	说明
0x0401	保存所有参数	0-1		0	上电有效	所有参数在修改后,默认断时
0x0402	指令回零	0-1		0	立即生效	所有参数恢复出厂设置
0x0403	报警复位	0-1		0	立即生效	0: 不动作
070403	114日久世	0-1		U		1:报警复位
0x0404	行程映射最小值 high	-2147483647	2147483647	0	立即生效	执行器行程最大值
0x0405	行程映射最小值 low					
0x0406	行程映射最大值 high	-2147483647	2147483647	1000	立即生效	执行器行程最小值
0x0407	行程映射最大值 low					
0x0409	位置误差最大值	0-100		10	立即生效	位置误差判断标准。位置到过
0x040D	原点偏移 high	-2147483647	2147483647	0	立即生效	若原点设置过大, 需更改行和
0x040E	原点偏移 low					
0x040F	原点偏移时间	0-65535		0	立即生效	原点偏移的时间

表 8: 执行器警报状态

	表 8: 执行器警报状态									
地址	内容	设定范围	出厂值	生效方式	说明					
0×0601	力矩到达	0-1	0	立即生效 (只读)	0: 力矩未到达					
333001		-	ŭ		1: 力矩到达(
0x0602	位置到达	0-1	0	立即生效 (只读)	0: 位置未到达					
					1: 位置到达(
0x0603	速度到达	0-1	0	立即生效 (只读)	0: 速度未到达					
				, , , , , , , , , , , , , , , , , , , ,	1: 速度到达最					
0x0604	执行器准备完成	0-1	0	立即生效 (只读)	0: 执行器运动					
				,	1: 执行器运动					
0x0606	当前循环次数	0-65535	0	立即生效 (只读)	多段运动当前征					
0x0607	当前运行段数	1-16	0	立即生效 (只读)	多段运动当前边					
0x0609	实时反馈位置信息 high	-2147483647 2147483647	0	立即生效 (只读)	读取执行器实现					
					执行器位置 =					
0x060A	实时反馈位置信息 low									
0x060B	实时反馈转速信息	0-10000	0	立即生效 (只读)	读取执行器实现					
0x060C	实时反馈电流信息	0-2000	0	立即生效 (只读)	读取执行器实现					
0x060D	实时反馈位置比例信息 high	-2147483647 2147483647	0	立即生效 (只读)	读取执行器实现					
		211, 100011	ŭ		执行器位置 =					
0x060E	实时反馈位置比例信息 low									
0x060F	实时反馈转速比例信息	0-32767	0	立即生效 (只读)	读取执行器实现					
0x0610	实时反馈电流比例信息	0-32767	0	立即生效 (只读)	读取执行器实践					
					0x01: 过温警打					
					0x02: 堵转警持					
0x0612	警报信息	0-65535	0	立即生效 (只读)	0x04: 超速警打					
5110012					0x08: 初始化t					
					0x10: 超限检测					
					0x20: 夹取掉剂					
0x0614	参数修改标志	0-1	0	立即生效 (只读)	0: 无相关参数					
0.0014	少从沙以小心		U		1: 可掉电保存					

表 9: 执行器产品信息

地址	内容	设定范围	出厂值	生效方式	说明
0x0801	软件版本	厂商设置 ASCII 码	3 * 2 个字符		
0x0802					
0x0803					
0x0804	产品号	厂商设置 ASCII 码	10 * 2 个字符		
0x0805					
0x0806					
0x0807					
0x0808					
0x0809					
0x080A					
0x080B					
0x080C					
0x080D					
0x0810	产品 ID	厂商设置 16 进制数字	8 * 2 个字符		
0x0811					
0x0812					
0x0813					
0x0814					
0x0815					
0x0816					
0x0817					
0x0820	硬件版本号	厂商设置 16 进制数字	5*2个字符		
0x0821					
0x0822					
0x0823					
0x0824					

表 10: 系统管理

地址	内容	设定范围	出厂值	生效方式	说明
0x2001	重启	0-1	0	厂商设置 ASCII 码 3 * 2 个字符	
0x2003	校准	0-1	0	立即生效	
0x2005	恢复出厂设置	0-1	0	上电生效	