IN THE SPECIFICATION:

Please amend the specification as follows:

Please delete Table 1 on page 21 of the specification as filed, and replace it with the following Table 1:

TABLE 1
Primer Sequences Used for Mutation Analysis of SCN2A

Frimer Sequences Used for Mutation Analysis of SUN2A						
Exon	Forward Primer	D D.:	- C'	SEQ		
211011	Torward Timer	Reverse Primer	Size	ĪD		
			(bp)	NO:		
5'UTR	ACAGGAAGTTAGGTGTGGTC	GAGAAGCATCACAGAG	206			
1a	TGCTGTATCTCAGTGCTCAG	TCATCATCCTCATCCTTGCG	281	1, 2 3, 4		
<u>1b</u>	GCTAAGAGACCCAAAC	TAGGCAGTGAAGGCAACTTG	201	5, 6		
	GGCACTATTTTACAGGGC	CATAACATTGCCAACCACAG	325	7.8		
3	TGGTGAAGGCATGGTAGT	ATTGAGGAGGTCTCAAGGTG	239	9, 10		
4	ACCAACCTGGAAGTGTCT	ATAGTATAGGCTCCCACCAG	300	11, 12		
2 3 4 5	AGGCCCCTTATATCTCCAAC	TAGCAACAAGGCTTCTGCAC	244	13, 14		
<u>5n</u>	GATGAAAGACCAAGGAAGAC	TGGAGATATAAGGGGCCTAG	200	15, 16		
6a	TTCCAGGACAAGCTCATG	GGAAGAATTATCTGGAGGCCA	249	17, 18		
<u>6b</u>	TTGTTCATGGGCAACCTACG	GTCTAAGTCACTTGATTCAC	271	19, 20		
7	GTGAGCTTTGCCACCTAAAC	TGAGAGTCACCGTGAAGTAG	280	21, 22		
7 8 9	ACCAATTAGCAGACTTGCCG	CTACAGCAATTCTCTTGAG	264	23, 24		
9	CTCAAGAGAATTGCTGTAG	AGGACCGTATGCTTGTTCAC	326	$\frac{25,24}{25,26}$		
10a	TTCCACATACTTTGCGCCCTTC	GCTGTCTTCAGATTCCGA	235	27, 28		
10b	CAGAAAGAACAGTCTGGAG	CTCTGAAAGCATTGTGCCA	256	29, 30		
<u>11a</u>	CCACATGTCCAATGAC	CACGAACAGAGAGTCTCTTC	296	31, 32		
11b	TGATGAGCACAGCACCTTTG	CACCAGTCACAACTCTCTTC	281	33, 34		
12	CTTTGGGCTTTGCTGCTTTC	AAGTAACTGTGACGCAGGAC	222	35, 36		
<u>13a</u>	CCTCCAGCAGATTAACCCAT	CAGGTCAACAAATGGGTCCA	268	37, 38		
<u>13b</u>	ACACCTTGTCAACCTGGTTG	GATGTCAAGATATACATGGCC	258	39, 40		
<u>14</u>	CCCGTGTTTCAAGAGTATTTGCTC	GCTTATGAACACTCCCAG	252	41, 42		
<u>15a</u>	GCAGAGCATTAACACTGTTC	AGCGTGGGAGTTCACAATCA	241	43, 44		
<u>15b</u>	GCATGCAGCTCTTTGGTAAG	CCCTTCAGTTGAACACAC	299	45, 46		
<u>16a</u>	CCTGTTTTTCCTGCTGTGTTTC	GCCACTAGTAGTTCCATTTCCGTC	336	47, 48		
<u>16b</u>	GACAGCTGTATTTCCAACC	AACAGGAAGGAAACACGC	346	49, 50		
<u>17</u>	CTGACCTTTACCAAAGCGGA	GAGGATACTCAAGACCAC	318	51, 52		
<u>18</u>	TGAATCTCCCACCAACAC	GAGTGGATCATGCATCACCT	252	53, 54		
<u>19</u>	CTTAGGCACCTGATAAGAGC	AAAGCAGCAAAGTGCAGC	302	55, 56		
20	CATTGCATAGAGCAAGGC	GGTACAAAGTGTCAGTCTGCTCTC	263	57, 58		
21a	TTTCCTTCTCATCCTGTGCC	CTGGCAGTTTGATTGCTCTC	240	59, 60		
<u>21b</u>	<u>AGCGTGGTCAACAACTACAG</u>	GCCATTCTAACAGGTGGA	217	61,62		
<u>22</u>	GCCCCAAAAGTGAATAC	GCGCCAATTTCCCTCTAACTAGAC	224	63, 64		
23	GGGCCCAGAGATTAAAACATGC	CAGAGCAAGGATGAAG	272	65, 66		
24	<u>GAATGAAATGTGGGAGCC</u>	TTCGGGCTGTGAAACGGTTA	266	67, 68		
25a	TTACCTCAGCTCTCCAATCACTGG	TGGTCATCGGTTTCCACCAT	292	69, 70		
25b	TCATCTGCCTTAACATGGTC	<u>GGGAGTTTGGGATGAATG</u>	311	71, 72		
26a	GTACCTAACTGTCCTGTTCAC	TAAACAACGCAGGAAGGGAC	270	73, 74		
26b	CACGCTGCTCTTTGCTTTGA	GATCTTTGTCAGGGTCACAG	269	75, 76		
26c	<u>GGATGGATTGCTAGCACCTA</u>	TCGCATCGGGATCAAACTTC	281	77, 78		

Serial No. 10/575,181

represented as exon 5n.

26d 26e	AGCCTCTGAGTGAGGATGAC GTGAGAGTGGAGAGATGGAT	TCCATCTGTATTCGAAGGGC TATCATACGAGGGTGGAGAC	277 330	79, 80 81, 82			
<u>26f</u>	<u>AACCGATATGACGCCTTCCA</u>	GGTCTCTGTCTTGTTATAGGC	288	83, 84			
Note: Primer sequences are listed 5' to 3'. Due to the large size of exons 1, 6, 10, 11, 13, 15, 16, 21, 25 and							
26, the exons were split into two or more overlapping amplicons. The neonatally expressed exon 5 is							
represented as a configuration of the configuration							