Петля гистерезиса (динамический метод)

Цель работы

Изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование

Автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

Экспериментальная установка

Рис. 1: Схема установки для исследования намагничивания образцов

Теоретическая часть

Действующее значение переменного тока в обмотке N_0 измеряется амперметром A (мультивольтметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подаётся на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряжённости H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm H}$ на вход интегрирующей RC-цепочки подаётся

напряжение $U_{\rm U}(U_{\rm BX})$, пропорциональное производной \dot{B} , а с выхода снимается напряжение $U_{\rm C}(U_{\rm BMX})$, пропорциональное величине B, и подаётся на вход Y осциллографа.

Замкнутая кривая, аозникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых — каким значениям B и H соответствуют эти напряжения (или токи).

Исследуемый сигнал подаётся на вход X; длина 2x горизонтальной черты, наблюдаемой на экране, характеризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_X в вольтах на деление шкалы экрана, то удвоенная амплитуда напряжения определяется произведением

$$2U_{X,0}=2x\cdot K_X.$$

Напряжение, подаваемое на ось Y, измеряется аналогично.

Калибровку осей осциллографа (K_X и K_Y) можно использовать для построения кривой гистерезиса в координатах B и H, зная величину сопротивления R_0 с которого снимается сигнал, можно определить чувствительность канала по току $K_{XI} = K_X/R_0$ [A/дел]; затем, используя формулу, определить цену деления шкалы в A/м. Таким же образом определяется цена деления оси Y:

$$m_x = \frac{2R_0\sqrt{2}I_{\Theta\Phi}}{2x} \frac{\mathrm{B}}{\mathrm{дел}}.$$

$$m_y = rac{2\sqrt{2}KU_{\Theta\Phi}}{2y} \; rac{B}{{
m дел}}.1$$

Обработка результатов экспериментов

Рассчитаем значения m_X и m_Y и сравним с величинами K_X и K_Y , использованных при калибровке:

$$I_{\Theta\Phi}=1.74\ A; 2x=9.6\ {
m дел} \Rightarrow m_x=1.025\ rac{{
m B}}{{
m дел}}, K_X=1\ B$$

$$U_{\Theta\Phi}=128.9~{
m mB}; 2y=7.5~{
m дел} \Rightarrow m_y=48.6~{
m \frac{mB}{дел}}, K_Y=50~{
m mB}$$

Рассчитаем постоянную времени $\tau = RC$, рассчитанную по формуле $\tau = U_{\rm BX}/(\Omega U_{\rm BMX})$, с рассчётом через параметры $R_{\rm H}$ и $C_{\rm H}$, указанные на установке:

$$U_{\rm BX} = 7.2 \; B; U_{\rm BMX} = 0.057 \; B \Rightarrow \tau = 0.402c$$

 $R_{\rm M} = 20 \cdot 10^3 \; {\rm Om}; C_{\rm M} = 20 \cdot 10^{-6} \Rightarrow \tau = 0.4c$
 $R = 20 \cdot 10^3 \; {\rm Om} \gg \frac{1}{\Omega C} = 159 \; c$

С достаточной точностью выполняется условие $R\gg 1/(\Omega C)$. Для каждого образца рассчитаем цену деления ЭО: для оси X — в A/m на одно деление, для оси Y — в Tc на одно деление. Рассчитаем коэрцитивную силу H_c и индукцию насыщения B_S для каждого образца, оценим максимальное значение дифференциальной магнитной проницаемости $\mu_{\text{диф}}$ по начальным кривым намагничивания:

Пермаллой (Fe - Ni)

$$N_0 = 20$$
 в.; $N_{\rm M} = 300$ в.; $S = 0.76$ см²; $2\pi R = 13.3$ см

I, A	х, дел	у, дел
0.129	4.1	2.7
0.111	3	1.7
0.96	2.5	1.3
0.85	2.2	1.0
0.67	1.6	0.6

Рис. 2: Максимальная петля гистерезиса для пермаллоя

Рис. 3: Петля гистерезис1а меньшего размера для пермаллоя

$$K_X=0.1~B;~K_Y=50~{
m mB};~I_{
m 9\Phi}=0.129A$$
 $2x(c)=8~{
m дел};~2y(s)=5.2~{
m дел}$ $H=rac{IN_0}{2\pi R}=7.5~rac{A}{{
m m}};~H_c=0.23~rac{A}{{
m m}}$ $B=rac{R_{
m H}C_{
m H}U_{
m BHX}}{SN_{
m H}}=0.877~{
m Tr};~B_s=1.4~{
m Tr}$

Кремнистое железо (Fe - Si)

$$N_0 = 25$$
 в.; $N_{\mathrm{M}} = 250$ в.; $S = 2.00~\mathrm{cm}^2;~2\pi R = 11.0~\mathrm{cm}$

I, A	х, дел	у, дел
1.384	4.2	3.4
0.986	2.8	2.7
0.799	2.3	2.4
0.561	1.6	2.0
0.345	1.0	1.4

Рис. 4: Максимальная петля гистерезиса для кремниестого железа

Рис. 5: Петля гистерезиса меньшего размера для кремниестого железа

$$K_X=1~B;~K_Y=50~{
m mB};~I_{
m 9\Phi}=0.298A$$
 $2x(c)=8.3~{
m дел};~2y(s)=6.7~{
m дел}$ $H=rac{IN_0}{2\pi R}=113.64~rac{A}{{
m m}};~H_c=4.5~rac{A}{{
m m}}$ $B=rac{R_{
m H}C_{
m H}U_{
m BHX}}{SN_{
m H}}=0.4~{
m Tr};~B_s=1.1~{
m Tr}$

Феррит

$$N_0 = 42$$
 в.; $N_{\mathrm{H}} = 400$ в.; $S = 3.00~\mathrm{cm}^2;~2\pi R = 25.0~\mathrm{cm}$

I, A	х, дел	у, дел
0.297	-4.1	-2.5
0.248	-3.5	-2.3
0.219	-3.0	-2.1
0.191	-2.7	-2.0
0.166	-2.3	-1.7
0.068	-1.0	-0.8

Рис. 6: Петля гистерезиса для феррита

$$K_X = 1 \ B; \ K_Y = 50 \ \text{MB}; \ I_{\Theta\Phi} = 0.298 A$$

$$2x(c)=8.3$$
 дел; $2y(s)=6.7$ дел $H=rac{IN_0}{2\pi R}=113.64~rac{A}{_{
m M}};~H_c=4.5~rac{A}{_{
m M}}$ $B=rac{R_{
m H}C_{
m H}U_{
m BMX}}{SN_{
m H}}=0.4~{
m Tл};~B_s=1.1~{
m Tл}$

Вывод

Петля гистерезиса является качественной характеристикой намагничивания ферромагнетика, показывая такие эффекты, как домены, скачки Баркгаузена (которые можно было бы увидеть при значительно большем масштабе, но в любом случае), в том числе площадь петли пропорциональна энергии, теряемой в единице объёма вещества за время цикла.