CQF - Exam 3

Imports

```
import pandas as pd
import numpy as np

# Visualization
import seaborn as sns
plt.style.use('seaborn')
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, GridSearchCV, TimeSeriesSplit
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix, accuracy_score, ConfusionMatrixDispla
```

A. Maths and Feature Engineering

1. Consider $MSE(\beta)$ wrt to the true value β in context of regression methods,

$$E\left[(\hat{eta}-eta)^2
ight]=Var[\hat{eta}]+\left(E[\hat{eta}]-eta
ight)^2$$

(a) can there exist an estimator with the smaller MSE than minimal least squares?

The answer is: Yes, may exist a biased estimator with smaller MSE. In this case the estimator would increase a little the bias, $\left(E[\hat{eta}]-eta
ight)^2$ with a larger decrease in variance term $Var[\hat{eta}]$

It is important to note that least square has the smallest mean squared error of all linear estimators **unbiased**.

(b) for a prediction, does the MSE measure an irreducible error or model error?

The MSE measures the model error, thus the quality of a predictor and is computed as:

$$MSE = rac{1}{n} \sum_{i=1}^n \left(Y_i - \hat{Y}_i
ight)$$

where \hat{Y}_i is the predicted values by the model.

2. What does entropy say about the partitions in a classification problem?

- (a) high entropy means the partitions are pure
- (b) high entropy means the partitions are not pure

Answer: (b) Not pure

Entropy is a measure of the randomness in the information being processed. The higher the entropy, the harder it is to draw any conclusions from that information. It is a measure of disorder or purity or unpredictability or uncertainty. Low entropy means less uncertain and high entropy means more uncertain.

3. Perform subset selection using any of all of a) filter, b) wrapper and, c) embedded methods

Load dataset

Let's load open, high, low, close prices (dividend adjusted) for PETR4 BZ Equity

```
In [ ]: df = pd.read_csv('data.csv', index_col='date', parse_dates=['date'])
```

Describe dataset

In []: df.describe()

	open	high	low	close
count	1240.000000	1240.000000	1240.000000	1240.000000
mean	13.421986	13.636153	13.196804	13.414884
std	5.237729	5.339208	5.150517	5.252697
min	4.707236	5.179236	4.613687	4.800786
25%	9.945838	10.127989	9.820758	9.973879
50%	11.684253	11.839912	11.536278	11.706667
75%	16.924746	17.212493	16.624367	16.926054
max	28.526247	30.003359	28.440277	29.479727

```
In [ ]: df.head()
```

Out[]:

Out[]:		open	high	low	close
	date				
	2018-05-21	10.296750	10.371707	9.839116	9.882513
	2018-05-22	9.807405	9.997150	9.546507	9.767875
	2018-05-23	9.578131	9.676956	9.198643	9.198643
	2018-05-24	7.925775	8.202485	7.767655	7.937634
	2018-05-25	8.162955	8.408042	7.771608	7.826950

Cleaning & Imputation

Check if data is already cleaned, if so no further manipulation required

```
In [ ]: df.isnull().sum()

Out[ ]: open     0
     high     0
     low     0
     close     0
     dtype: int64
```

Feature Specification

```
In [ ]: #create features
        def create_features(df_orig):
            df = df_orig.copy()
            df['oc'] = df.open - df.close
            df['hl'] = df.high - df.low
            # returns
            for i in [1,5]:
                df[f'rt{i}'] = df.close / df.close.shift(i)
            # momentums
            for i in range(0,10):
                df[f'm{i+1}'] = df.close - df.close.shift(i+1)
            df['ma5'] = df.close.rolling(window=5).mean()
            df['ma10'] = df.close.rolling(window=10).mean()
            df['ewma'] = df.close.ewm(span=len(df.index),adjust=False).mean()
            df.dropna(inplace=True)
            return df
```

Let's define the independent variables to be used in the evaluation

```
In [ ]: df_featured = create_features(df)
    df_featured
```

Out[

]:		open	high	low	close	ос	hl	rt1	rt5	ı
	date									
	2018- 06-05	6.862417	7.036349	6.558035	6.558035	0.304381	0.478314	0.946378	0.981076	-0.3715
	2018- 06-06	6.510599	6.593612	6.273419	6.455257	0.055342	0.320193	0.984328	0.846114	-0.1027
	2018- 06-07	6.324808	6.388056	5.901837	6.229936	0.094872	0.486220	0.965095	0.830348	-0.2253
	2018- 06-08	6.249701	6.399915	5.953226	6.028333	0.221368	0.446690	0.967640	0.943688	-0.2016
	2018- 06-11	6.127158	6.245748	5.980897	6.091581	0.035577	0.264851	1.010492	0.879064	0.0632
	•••									
	2023- 05-15	26.060000	26.150000	25.400000	25.660000	0.400000	0.750000	0.977524	1.046920	-0.5900
	2023- 05-16	26.110000	27.030000	26.080000	26.300000	-0.190000	0.950000	1.024942	1.069540	0.6400
	2023- 05-17	26.600000	26.760000	25.510000	25.660000	0.940000	1.250000	0.975665	1.046066	-0.6400
	2023- 05-18	25.590000	25.850000	25.350000	25.810000	-0.220000	0.500000	1.005846	1.014943	0.1500
	2023- 05-19	26.080000	26.180000	25.640000	25.920000	0.160000	0.540000	1.004262	0.987429	0.1100
	1230 rc	ows × 21 cc	olumns							

Feature Selection

Let's use correlation measure in order to check if we can reduce the number of input variables.

As we can see, some of the features are high correlated with others and to address multicollinearity among features we will drop some of the them.

```
In [ ]: to_drop = ['m5','m6', 'm7', 'm8', 'm9', 'ma10', 'ewma']
    df_featured.drop(to_drop, axis=1, inplace=True)
```

Let's check correlation measure once more

<pre>In []: df_featured.describe()</pre>

Out[]:		open	high	low	close	ос	hl	rt1
	count	1230.000000	1230.000000	1230.000000	1230.000000	1230.000000	1230.000000	1230.000000
	mean	13.464187	13.678231	13.241037	13.459112	0.005075	0.437194	1.001521
	std	5.236895	5.339447	5.146613	5.249874	0.311505	0.299531	0.029511
	min	4.707236	5.179236	4.613687	4.800786	-2.039822	0.087497	0.703022
	25%	9.996309	10.172188	9.859260	10.012680	-0.140572	0.232959	0.987353
	50%	11.708163	11.885520	11.554111	11.720969	0.004252	0.344439	1.001107
	75%	16.963984	17.235802	16.674380	16.957445	0.157335	0.544250	1.015944
	max	28.526247	30.003359	28.440277	29.479727	1.953853	2.149238	1.222222
	max	28.526247	30.003359	28.440277	29.479727	1.953853	2.149238	1.222222

Target or Label Definition

Now, we will define dependent variable, and for that we will impose a threshold considering positive returns only the ones above 0.25%, thus:

$$y_t = egin{cases} 1, & ext{if } p_{t+1} > 1.0025 * p_t \ 0, & ext{if } p_{t+1} ext{ otherwise} \end{cases}$$

Generate array X, with the feature set

```
X = df_featured[['oc', 'hl', 'rt1', 'm1', 'ma5']].values
```

Split Data

```
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_
```

Feature scaling

```
In [ ]: sc = StandardScaler()
        X_train = sc.fit_transform(X_train)
        X test = sc.transform(X test)
```

After performing feature scaling, all values will be normalized and looks like this

```
In [ ]: pd.DataFrame(data=X_train)
Out[]:
                                      2
                                               3
                                                         4
              0.180279 -0.770954 -0.226072 -0.198210 -0.455644
          1 -0.298236 -1.059884 0.038846
                                         0.030330 -0.449564
             1.616267 1.821762 -0.790036 -1.275920
                                                  1.418526
          3 -0.793814 1.135772 0.653336
                                         0.870673
                                                   0.798816
              0.382914 -0.700072 -0.082861 -0.089247
                                                  0.310346
        917
              1.434156
                      0.225632 -1.393774 -1.393878 -0.134913
        918
              0.049893
        919
              3.064085 2.281022 -1.380663 -2.550681
                                                   1.967923
        920
              0.088771 -0.814578 0.022280
                                         0.010189 -0.720325
        921 -0.047862 -0.713169 -0.206837 -0.168145 -0.751004
```

922 rows × 5 columns

```
In [ ]: model = SVC(kernel = 'rbf', random_state=0)
        model.fit(X_train, y_train)
Out[ ]:
                 SVC
        SVC(random_state=0)
In [ ]: y pred = model.predict(X test)
In [ ]: pd.DataFrame(data=y_pred)
```

```
Out[]: 0
0 0
1 0
2 0
3 1
4 0
... ...
303 0
304 1
305 0
306 1
307 0
```

308 rows × 1 columns

In []: accuracy_score(y_test, y_pred)

Out[]: 0.461038961038961

In []: # Classification Report
print(classification_report(y_test, y_pred))

support	f1-score	recall	precision	
135	0.42	0.45	0.40	0
173	0.49	0.47	0.52	1
308	0.46			accuracy
308	0.46	0.46	0.46	macro avg
308	0.46	0.46	0.47	weighted avg

Hyper-parameter Tuning

GridSearch

First we check the parameters available in the model

In []: model.get_params()

As we are using Gaussian radial basis function (RBF), let's now search the best C and gamma parameter to be used in the model

Tunned model

Now, let's train the model using the best parameter searched

```
disp.ax_.set_title('Confusion matrix')
plt.show()
```


In []: accuracy_score(y_test, y_pred)

Out[]: 0.5097402597402597

In []: # Classification Report
 print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.38	0.19	0.26	135
1	0.55	0.76	0.63	173
accuracy			0.51	308
macro avg	0.46	0.47	0.45	308
weighted avg	0.47	0.51	0.47	308

Observations

- 1. After hyperparametrization, model accuracy improved around 10.4%
- 2. Model improved predictor for the uptrend when compared to the downtrend