Schnorr's signature

- Schnorr signatures are a cryptographic signature scheme widely used in secure distributed systems.
- They provide a means to prove the authenticity and integrity of a message using mathematical principles.

Key Components

Public Key and Private Key

- Schnorr signatures use key pairs:
 - Public Key (P): A point on an elliptic curve.
 - **Private Key (x)**: A randomly selected integer.

Signature Variables

- Several variables and values are involved in the Schnorr signature process:
 - Nonce (k): A random value selected for each signature. It must be kept secret.

- Nonce Point (R): Computed as R = k * G, where G is the generator point on the elliptic curve.
- Message (m): The data to be signed.
- Challenge (e): Calculated as e = H(R . P . m), where H is a secure cryptographic hash function.
- Signature Scalar (s): Computed as s = k + e * x.

Signing Process

- Creating a Schnorr signature involves several steps:
 - Nonce Generation: Select a random nonce k.
 - Nonce Point: Compute the nonce point R = k * G, where G is a fixed generator point on the elliptic curve.
 - Challenge Computation: Calculate the challenge e as e = H(R . P . m).

Verification Process

- To verify a Schnorr signature:
 - The verifier independently computes e using the same inputs.
 - Check if s * G = R + e * P.

Mathematical Details

Scalar Multiplication

- Scalar multiplication involves adding a point to itself multiple times.
- It is a computationally intensive operation in the signature generation.

Hash Function

- A secure cryptographic hash function is used to generate the challenge e.
- It ensures that e is of a fixed size and derived from the public key, nonce point, and message.

Example

Signer's Perspective

Private key: d = 42

Random nonce: k = 17

Elliptic curve parameters: Chosen ECDSA curve

```
    Compute R = k * G.
    Calculate the challenge e = H(R . P . m).
    Calculate s = k + e * x.
    **Signature is (R,s)
```

Verifier's Perspective

```
Receive P, m, and (s, R).
1. Compute the challenge e = H(R . P . m).
2. Check if s * G = R + e * P.
If the equation holds, the signature is valid.
```

Security Considerations

- The security of Schnorr signatures relies on randomness, secure elliptic curve choice, and the use of a secure hash function.
- Proper key management is essential to maintain security.

These detailed notes and illustrations should help you understand the Schnorr signature scheme comprehensively and serve as a reference for your studies and work in secure distributed systems.

Notes and rough

```
![[Pasted image 20231023125447.png]]
```

Intuitions and proofs

1. Why nonce?

The below proof explains why the nonce is needed and how hard it makes to break the signature and find \times with nonce present compared to without nonce.

Whydo we reed nonce?

2. What if 2 signatures have same nonce?

If two signatures use same nonce, that's another problem as one can discover private key from this.

What if 2 Signatures have some nonce?

(Ro,So), Mo Po & (R1,S1), M1, Pi
we can derive
$$\varkappa$$
 how or \varkappa is some
by first
$$S_0 - S_1 = K_0 + H(R_0,P,M_0) & -K_1 - H(R_1,P,M_1) & K_0 = K_1$$

$$S_0 - S_1 = K_0 + H_0 & -K_1 - H_1 & K_1 + K_2 + K_1 - H_1 & K_2 + K_2 + K_2 + K_3 + K_4 + K_4 + K_4 + K_5 + K_5 + K_6 +$$

3. Why Hash (R.P.m)? why not just m?

H(m) has more cryptographic advantage and is efficient. As the output of the hash is fixed length (generally 2^256). But we should make such the hash mapping should have cryptographic hash properties otherwise an attacker can

find a message m1 that hashes to the same hash as m and make it seem like you signed a different message

4. Why not H(m)?

If we use just H(m) we can forge signatures to other messages

what if we just use H(m)

Signature will be

S= K+H(m).x

R= KOG

verification

SOG-KOG+ H(m)0P

) SOG = R+H(m)OP

This egin markes R computable

R = SOG -H(m) of

FORGING Signature

take a new nevrage m, E av Random S & S,

are com calpulate Ri

with = R = S, OG - H(m). P

El Propose (Ri, Si) as sigmature For m,

while verifying

S10G = R, + H (m.) 0P

= (S,OG - H(m, JOP) + H(m, JOP)

or arithmetic

S104 = S104

3 hows that SIRI become a valid signature

We need to make S dependent on R thats why H(R . m) works as one cannot take a random S1 and calculate R1 since s and r are dependent. and R1 is part of hash's preimage and that cant be solved to get R1

5. Why not H(R.m)? why only H(R.P.m)

