90Prime Software and Hardware Guide

P. N. Daly

Mountain Operations, Steward Observatory¹ 933 N. Cherry Avenue, Tucson AZ 85719, U S A (520) 621-3648, pndaly@arizona.edu

Abstract. This document describes the new software and hardware systems to suppport the upgraded 90Prime imager at the Bok 90-inch telescope.

Contents

1.	Quick Start	3
	1.1. Filter File(s)	3
	1.2. Day Crew Action(s)	
	1.3. Astronomer Action(s)	
	1.4. /nfs/data/primefocus/yyyymmdd	
2.	Hardware	5
3.	Software	7
	3.1. Required Components	ç
	3.2. Optional Components	
	3.3. Building The Software	ç
	3.4. Test	10
		10
	telnet	10
	XEphem	10
	Web Browser	10
	3.5. Debugging	12
A	INDI Installation	13
В	gclib Installation	13

¹Steward Observatory is the research arm of the Department of Astronomy at the University of Arizona (UArizona). Its offices are located on the UArizona campus in Tucson, Arizona (US). Established in 1916, the first telescope and building were formally dedicated on April 23, 1923. It now operates, or is a partner in telescopes at five mountain-top locations in Arizona, one in New Mexico, one in Hawaii, and one in Chile. It has provided instruments for three different space telescopes and numerous terrestrial ones. Steward also has one of the few facilities in the world that can cast and figure the very large primary mirrors used in telescopes built in the early 21st century.

\mathbf{C}	NG	Protocol Commands and Requests	14
	C 1.	Supported Command(s)	14
		bok 90prime <cmd-id> command exit</cmd-id>	14
		bok 90prime <cmd-id> command gfilter init</cmd-id>	14
		bok 90prime <cmd-id> command gfilter name <str></str></cmd-id>	14
		bok 90prime <cmd-id> command gfilter number <int></int></cmd-id>	14
		bok 90prime <cmd-id> command gfocus delta <float></float></cmd-id>	14
		bok 90prime <cmd-id> command ifilter init</cmd-id>	14
		bok 90prime <cmd-id> command ifilter name <str></str></cmd-id>	14
		bok 90prime <cmd-id> command ifilter number <int></int></cmd-id>	14
		bok 90prime <cmd-id> command ifilter load</cmd-id>	14
		bok 90prime <cmd-id> command ifilter unload</cmd-id>	14
		bok 90prime <cmd-id> command ifocus a <float> b <float> c <float> t <float> .</float></float></float></float></cmd-id>	14
		bok 90prime <cmd-id> command ifocusall delta <float> t <float></float></float></cmd-id>	15
		bok 90prime <cmd-id> command lvdt a <float> b <float> c <float> t <float></float></float></float></float></cmd-id>	15
		bok 90prime <cmd-id> command lvdtall <float> t <float></float></float></cmd-id>	15
		bok 90prime <cmd-id> command test</cmd-id>	15
		bok 90prime <cmd-id> command hx</cmd-id>	15
	C2.	Supported Request(s)	15
		bok 90prime <cmd-id> request encoders</cmd-id>	15
		bok 90prime <cmd-id> request gfilter</cmd-id>	15
		bok 90prime <cmd-id> request gfilters</cmd-id>	15
		bok 90prime <cmd-id> request gfocus</cmd-id>	15
		bok 90prime <cmd-id> request ifilter</cmd-id>	15
		bok 90prime <cmd-id> request ifilters</cmd-id>	15
		bok 90prime <cmd-id> request ifocus</cmd-id>	15
Lis	st of]	Figures	
	1	The 90Prime Startup and Shutdown Interface	3
	2	The 90Prime Astronomer (left) and Engineer (right, only partially shown) GUIs.	4
	3	The Day Crew Actions Within The Engineering GUI	5
	4	The 90Prime System Rack	6
	5	The 90Prime Software Architecture	
Lis	st of '	Tables	
	1	bokGalil Configuration Variable(s).	11

1. Quick Start

To start the system, execute the following if operating on bonsai $(10.30.1.7)^{-1}$:

```
ssh -XY primefocus@10.30.1.7
cd/home/primefocus/bokGalil
source etc/bokGalil.sh $(pwd) gui<sup>2</sup>
```

Allow the interface shown in Figure 1 to appear and press the *start* button. The last element to appear—indicating that startup is complete—is a *ds9* window Then choose an appropriate web interface as shown in Figure 2:

```
http://10.30.1.7:5905 for astronomers, or http://10.30.1.7:5905/indi for engineers.
```


Figure 1: The 90Prime Startup and Shutdown Interface.

To stop the system, press the *stop* button. The system status can be interrogated at any time by pressing the *status* button. Figure 1 shows the system completely stopped on the left-hand side (all red) and the system fully enabled on the right-hand side (all green). If any subsystem crashes, this interface will reflect the status by changing that element from *green* to *red*. Note that the *start*, *stop* and *status* actions are global with no application to specific tasks. If a single task crashes, it is easiest to re-start the whole system (and takes a few seconds at most).

1.1. Filter File(s)

The list(s) of available filters are stored in separate files in \$BOK_GALIL_DOCS:

bok_gfilters.txt This file lists the available guider wheel filters;

¹The commands are exactly the same from banzai (10.30.1.8) but with the different IP address!

²You can also replace the \$(pwd) syntax with the 'backward apostrophe' syntax: 'pwd'. The 'backward apostrophe' is often located at the top-left of the keyboard sharing the '~' key below the ESC key. However, this syntax only works in the /home/primefocus/bokGalil sub-directory. From any location, use the full command syntax: source /home/primefocus/bokGalil/etc/bokGalil.sh /home/primefocus/bokGalil gui.

Figure 2: The 90Prime Astronomer (left) and Engineer (right, only partially shown) GUIs.

bok_ifilters.txt This file lists the available instrument wheel filters and corresponds to the file in /home/primefocus/90prime/galil/filters.txt on BART;

bok_sfilters.txt This file lists the available guider wheel filters and should be synchronized with bok_gfilters.txt above.

These files can be edited as required. After editing, to check that the file(s) are usuable by the system, execute:

```
cd $BOK_GALIL_BIN
./bok_read_filters -f$BOK_GALIL_DOCS/bok_gfilters.txt
./bok_read_filters -f$BOK_GALIL_DOCS/bok_ifilters.txt
./bok_read_filters -f$BOK_GALIL_DOCS/bok_sfilters.txt
```

If these files are changed whilst the system is running, the system *must* be re-started for them to take effect.

1.2. Day Crew Action(s)

When the software is started, the day crew will typically initialize the system via the following action(s) accessed via the engineering interface (http://lo.30.1.7:5905/indi) as shown in Figure 3):

POPULATE This command, once executed, allows the day crew to install various filters using the side button on the dewar;

POPULATE DONE This command completes the populate filter wheel sequence;

INITIALIZE INSTRUMENT FILTER This command reads the instrument filter wheel and must be allowed to complete;

INITIALIZE GUIDER FILTER This (optional) command reads the guider filter wheel and, if invoked, must be allowed to complete.

Figure 3: The Day Crew Actions Within The Engineering GUI.

1.3. Astronomer Action(s)

These commands are optional (but good practice):

START OF NIGHT This command reads the instrument filter wheel and must be allowed to complete;

END OF NIGHT This command unloads any previously loaded instrument filter.

1.4. /nfs/data/primefocus/yyyymmdd

A cronjob runs every day to create a new data directory in /nfs/data/primefocus/yyyymmdd where yyyymmdd is the date at the start of the observing night (i.e. viz., local time). The observer or engineer will have to (manually) enter this directory in AzCam.

2. Hardware

A graphical representation of the hardware rack, installed in the 2^{nd} floor office is shown in Figure 4. The basic concept is for an ALWAYS ON system that can withstand the usuall Kitt Peak lightning activity so the system is protected by a *Brickwall* surge protector on a 20A circuit. The rack is further protected by an APC 2200VA UPS. The CPU(s) are redundant inasmuch as, if bonsai fails, banzai can take over and vice-versa. It is imperative, therefore, that infrastructure software on these machines is kept synchronized. We use GitHub repositories for the Steward code base and well-documented procedures for obtaining the support software.

bonsai A Lancelot 1983-T 1U server from www.aslab.com. The specification is an Intel Xeon Silver 4210R 2.4GHz (10 cores), 6x8Gb DDR4-2933 Memory (48Gb), 2 x Samsung 970 Evo Plus 2Tb SDD (RAID1), Intel X710-DA2 2-port PCIe x8 2 x SFP+ (10 Gbps), Ubuntu 20.04 LTS (ask for 22.x), 3 years support. The system was later upgraded to Ubuntu 22.04.2 LTS. This machine has a standard *primefocus* account for running the software and a sudoenabled *mtnops* account for privileged actions. bonsai is the primary *data acquisition* system and banzai the secondary.

Figure 4: The 90Prime System Rack.

- banzai A Lancelot 1983-T 1U server from www.aslab.com. The specification is an Intel Xeon Silver 4210R 2.4GHz (10 cores), 6x8Gb DDR4-2933 Memory (48Gb), 2 x Samsung 970 Evo Plus 2Tb SDD (RAID1), Intel X710-DA2 2-port PCIe x8 2 x SFP+ (10 Gbps), Ubuntu 20.04 LTS (ask for 22.x), 3 years support. The system was later upgraded to Ubuntu 22.04.2 LTS. This machine has a standard *primefocus* account for running the software and a sudoenabled *mtnops* account for privileged actions. banzai is the primary *data reduction* system and bonsai the secondary.
- boknas A Synology RS1221RP+ chassis with 8x16Tb Seagate IronWolfPro+ mechanical drives. These are configured as a single 96Tb of SHR-2/RAID6 array NFS-mounted on bonsai and banzai as /nfs/data. The Synology chassis was upgraded with (a total of) 32Gb of RAM and the E10M20-T1 Ethernet / M2 combo card. This card supports the SNV3510-800 (800Gb) SSD cache and the 10Gbps network connection. The management account is *mtnops* with the usual password but with the 'd' capitalized! The management interface can be reached at http://10.30.1.9:5000/#/signin/password.
- bokqnap A QNAP QSW-M1208-C 10Gbps (dedicated and managed) Ethernet switch. The CPUs and NAS are attached via the 10 Gbps network for disk access and via the 1 Gbps network for regular network access. The management account is *admin* with the standard *mtnops* password. The management interface can be reached at http://10.30.0.6/#/login.
- bokups An APC 2200VA SMT2200RM2UC UPS that has enough capacity to support the whole rack. Note that this is attached to the network but has yet to be configured for automatied graceful shutdown after a given time has elapsed on battery power. Note that this may be referred to as *bokrackups* in /etc/hosts.
- **bokkvm** An eKL VGA KVM Switch 8 Port 8x2 which supports Keyboard, Mouse, Audio, USB (although we use it in 'dumb mode'). It has an IR remote control.

3. Software

The software is centered around the *Instrument Neutral Distributed Interface*^{1,2,3} and the *gclib* library provided by Galil⁴. An architecture diagram is shown in Figure 5. The software can built and run on any machine that supports the following:

- Ubuntu 22.04 LTS (or later)
- INDI infrastructure code (www.indilib.org)
- gclib (www.galil.com)
- Python 3.8 (or later)
- gcc 11.3.0 (or later)

Note that this software only supports /dev/shm shared memory under Unix. Other repositories required to support operations are:

dataserver https://github.com/so-mops/dataserver.git

bok-90prime-gui https://github.com/so-90prime/bok-90prime-gui.git

pyINDI git+https://github.com/MMTObservatory/pyINDI.git

Figure 5: The 90Prime Software Architecture.

3.1. Required Components

In Figure 5 the minimum set of components required to run the system are:

- **INDI / pyINDI** is the infrastructure software. The *indiserver* can be installed following the intructions in Appendix A. The pyINDI software from the MMT is installed direct from a GitHub repository as part of the *bok-90prime-gui* installation.
- **libgalil.so** This is the software library delivered by the vendor. It can be installed following the instructions in Appendix B.
- **libbokGalil.so** is the support library written by the author of this document to abstract the communications with the device.
- **bokGalilIndiDriver** is the INDI driver for the Galil.
- **Galil_DMC_22x0_Write_Memory** is an independent program running at 1 Hz that communicates with the hardware and delivers key telemetry to shared memory segment(s)/dev/shm/tcp_shm and /dev/shm/udp_shm.
- Galil_DMC_22x0_NgServer is an NG protocol server typically used by the AzCam software to retrieve data for FITS headers. The supported NG protocol commands and requests are documented in Appendix C.

3.2. Optional Components

- **Galil_DMC_22x0_NgClient** is *not* required for normal operations but may be run to assist in debugging.
- **Galil_DMC_22x0_CLI** is *not* required for normal operations but may be run to assist in testing and debugging.
- Galil_DMC_22x0_TCP_Read is *not* required for normal operations but may be run to assist in debugging.
- **Galil_DMC_22x0_UDP_Read** is *not* required for normal operations but may be run to assist in debugging.

3.3. Building The Software

The software can be installed directly from the GitHub repository. The following instructions assume that the *indiserver* has been built (see Appendix A) and *gclib* installed (see Appendix B).

```
git clone https://github.com/so-90prime/bokGalil.git
cd bokGalil
mkdir lib log
source etc/bokGalil.sh $(pwd) load
cd $BOK_GALIL_HOME
sudo python3 -m pip install -r requirements.txt
make -f ./test_galil.make
```

Note that \$BOK_GALIL_TCL/bokParams.bonsai.txt and \$BOK_GALIL_TCL/bokParams.banzai.txt should already exist but these should be checked for consistency with values reported in Table 1. Make the appropriate system:

```
cd $BOK_GALIL_TCL make bonsai
```

Note that \$BOK_GALIL_SRC/_hosts__.bonsai.h and \$BOK_GALIL_SRC/_hosts__.banzai.h should already exist but these should be checked for consistency with values reported in Table 1. The __hosts__.py file is automatically created. Make the appropriate system:

```
cd $BOK_GALIL_SRC make bonsai
```

Re-build this document (as required):

```
cd $BOK_GALIL_TEX make all
```

3.4. Test

test_galil The easiest way to test the gclib installation is to execute the test code:

```
cd $BOK_GALIL_HOME
./test_galil -h || ./test_galil -b0 || ./test_galil -b1
```

telnet A further test of the connectivity is to use the standard telnet utility:

```
telnet 10.30.3.31
```

then execute the LV; command. Data should appear. Use CTRL-] to escape to the telnet prompt and enter QUIT.

XEphem Connect with XEphem -> View -> Sky View -> Telescope -> INDI panel -> Connect.

Web Browser Connect either to the astronomer interface (http://10.30.1.7:5905) or the engineering interface (http://10.30.1.7:5905/indi) as shown in Figure 2.

Table 1: bokGalil Configuration Variable(s).

Variable	Description	bonsai	banzai
GALIL_ BOK_GALIL_CMD_BOK BOK_GALIL_CMD_LAB BOK_INSTRUMENT BOK_INDI_ADDR BOK_INDI_PORT BOK_NG_ADDR BOK_NG_PORT BOK_TCP_PORT BOK_TCP_PORT BOK_UDP_ADDR BOK_UDP_ADDR BOK_UDP_ADDR BOK_UDP_ADDR BOK_WEB_ADDR BOK_WEB_ADDR BOK_WEB_ADDR BOK_WEB_ADDR BOK_WEB_ADDR	Galil DMC 2280 Hardware Galil DMC 2280 Hardware Galil DMC 2280 Hardware (spare) Instrument IndiServer Address IndiServer Port NG Server Port Galil TCP Command Address Galil TCP Command Address Galil UDP Command Address Galil UDP Command Port DataServer Port DataServer Repository pyINDI Website Address pyINDI Website Port	192.168.0.100 10.30.3.31 192.168.0.100 90Prime 10.30.1.7 7624 10.30.1.7 5750 10.30.3.31 23 10.30.3.31 23 10.30.4.13 6543 /home/primefocus/dataserver 10.30.1.7 5905 /home/primefocus/bok-90prime-gui	192.168.0.100 10.30.3.31 192.168.0.100 90Prime 10.30.1.8 7624 10.30.1.8 5750 10.30.3.31 23 10.30.3.31 5078 10.30.4.13 6543 /home/primefocus/dataserver 10.30.4.13 5905 /home/primefocus/bok-90prime-gui

3.5. Debugging

Log files are written to \$BOK_GALIL_LOG. The Galil_DMC_22x0_CLI interface may also be run: at the command prompt enter '?' for options. Any Galil supported command may be sent to the hardware if the Galil_DMC_22x0_CLI program is invoked with the -o (override) option!

References

- [1] https://en.wikipedia.org/wiki/Instrument_Neutral_Distributed_Interface.
- [2] https://www.indilib.org.
- [3] http://www.clearskyinstitute.com/INDI/INDI.pdf.
- [4] https://www.galil.com/sw/pub/all/doc/gclib/html/ubuntu.html.

A INDI Installation

Execute the following commands (as root):

```
apt update

apt-get install -y git cdbs dkms cmake swig fxload libev-dev libgps-dev libgsl-dev libraw-dev

apt-get install -y libusb-dev zlib1g-dev libftdi-dev libgsl0-dev libjpeg-dev libkrb5-dev

apt-get install -y libnova-dev libtiff-dev libfftw3-dev librtlsdr-dev libcfitsio-dev

apt-get install -y libgphoto2-dev build-essential libusb-1.0-0-dev libdc1394-dev

apt-get install -y libboost-regex-dev libcurl4-gnutls-dev libtheora-dev libxml2-utils
```

Build the software (as root):

```
rm -rf /usr/local/IndiProjects
mkdir -p /usr/local/IndiProjects
cd /usr/local/IndiProjects
git clone https://github.com/indilib/indi.git
mkdir -p /usr/local/IndiProjects/build/indi-core
cd /usr/local/IndiProjects/build/indi-core
cmake -DCMAKE_BUILD_TYPE=Debug /usr/local/IndiProjects/indi
make -j4
make install
```

Optionally, install the Python client (as root):

```
apt-get install -y python3-pip
python3 -m pip install -upgrade pip
python3 -m pip install pyindi-client
```

B gclib Installation

Execute the following commands (as root). First, get and install the key:

```
wget https://www.galil.com/sw/pub/all/crypto/GALIL-GPG-KEY-E29D0E4B.asc mv GALIL-GPG-KEY-E29D0E4B.asc /etc/apt/trusted.gpg.d/
```

Second, update the repository list:

```
curl -O https://www.galil.com/sw/pub/ubuntu/22.04/galil.list mv galil.list /etc/apt/sources.list.d/
```

Finally, install the software:

```
apt update
apt remove gclib gcapsd
apt install gclib gcapsd
```

C NG Protocol Commands and Requests

The software supports the standard NG protocol syntax:

```
<telescope> <instrument> <cmd-id> <COMMAND||REQUEST> <extra-information>
```

If <cmd-id> is set to SIMULATE, no hardware is accessed and dummy response(s) are returned! Commands and requests are case insensitive.

All *commands*, return one of the following responses:

On success bok 90prime <cmd-id> OK

On failure bok 90prime <cmd-id> ERROR <reason>

All *requests*, return one of the following responses:

On success bok 90prime <cmd-id> OK <returned-data-values>

On failure bok 90prime <cmd-id> ERROR <reason>

C1. Supported Command(s)

bok 90prime <cmd-id> command exit — client informs server it's shutting down.

bok 90prime <cmd-id> command gfilter init — client commands server to initialize guider filter wheel.

bok 90prime <cmd-id> command gfilter name <str> — client commands server to change guider filter to given name.

bok 90prime <cmd-id> command gfilter number <int> — client commands server to change guider filter to given number.

bok 90prime <cmd-id> command gfocus delta <float> — client commands server to change guider focus to given value.

bok 90prime <cmd-id> command ifilter init — client commands server to initialize instrument filter wheel.

bok 90prime <cmd-id> command ifilter name <str> — client commands server to change instrument filter to given name.

bok 90prime <cmd-id>command ifilter number <int>— client commands server to change instrument filter to given number.

bok 90prime <cmd-id> command ifilter load — client commands server to insert current filter into beam.

bok 90prime <cmd-id> command ifilter unload — client commands server to remove current filter from beam.

bok 90prime <cmd-id> command ifocus a <float> b <float> c <float> t <float> — client commands server to change instrument focus in all 3 axes by separate amounts within tolerance.

bok 90prime <cmd-id> command ifocusall delta <float> t <float> — client commands server to change instrument focus in all 3 axes by the same amount within tolerance

bok 90prime <cmd-id> command lvdt a <float> b <float> c <float> t <float> — client commands server to change instrument LVDTs in all 3 axes by separate amounts within tolerance.

bok 90prime <cmd-id> command lvdtall <float> t <float> — client commands server to change instrument LVDTs in all 3 axes by the same amount within tolerance.

bok 90prime <cmd-id> command test — client commands server to test communication path.

bok 90prime <cmd-id> command hx — client commands server to halt execution in the galil controller.

C2. Supported Request(s)

bok 90prime <cmd-id> request encoders — client requests encoder values. An example response might be 'BOK 90PRIME <CMD-ID> OK A=-0.355 B=1.443 C=0.345'.

bok 90prime <cmd-id> request gfilter — client requests server to report current guider filter. An example response might be 'BOK 90PRIME <CMD-ID> OK GFILTN=4:RED ROTATING=FALSE'.

bok 90prime <cmd-id> request gfilters — client requests server to report guider filters. An example response might be 'BOK 90PRIME <CMD-ID> OK 1=1:GREEN 2=2:OPEN 3=3:NEUTRAL 4=4:RED 5=5:OPEN 6=6:BLUE'.

bok 90prime <cmd-id> request gfocus — client requests server to report guider focus. An example response might be 'BOK 90PRIME <CMD-ID> OK GFOCUS=-0.355'.

bok 90prime <cmd-id> request ifilter — client requests server to report current instrument filter. An example response might be 'BOK 90PRIME <CMD-ID> OK FILTVAL=18:BOB INBEAM=TRUE ROTATING=FALSE TRANSLATING=FALSE ERRFILT=0 FILTTSC=3'.

bok 90prime <cmd-id> request ifilters — client requests server to report instrument filters. An example response might be 'BOK 90PRIME <CMD-ID> OK 0=18:BOB 1=2:G 2=3:R 3=4:I 4=5:Z 5=6:U'.

bok 90prime <cmd-id> request ifocus — client requests server to report instrument focus. An example response might be 'BOK 90PRIME <CMD-ID> OK A=-0.355 B=1.443 C=0.345'.