An introduction to GAM(M)s

Stefano Coretta

12/07/2018

Time travel...

$$y=3+2x$$

where x = (2, 4, 5, 8, 10, 23, 36)

- ightharpoonup In science, we have x and y...
- ▶ for example, vowel duration and VOT

- ▶ The formula: $y = \beta_0 + \beta_1 x$
 - \triangleright β_0 is the **intercept**
 - \triangleright β_1 is the **slope**
- ► We know x and y
 - we need to estimate β_0 , $\beta_1 = \hat{\beta}_0, \hat{\beta}_1$
- We can add more predictors

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

code in R

lm(y ~ x, data)

How to account for non-linearity in a linear model?

- ► Use higher-degree polynomials
 - quadratic: $y = \beta_0 + \beta_1 x + \beta_2 x^2$
 - cubic: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$
 - *n*th: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_n x^n$

$$y = f(x) + \epsilon$$

ightharpoonup f(x) = some function of x

Basis functions

- polynomials are a type of basis functions
 - ▶ linear regression is the simplest polynomial (degree 1)
- splines are another type
 - there are several kinds of splines
 - each with their own basis functions

Generalised additive models

- ► LMs have parametric terms
 - like βx
- ► GAMs add smooth terms (or smooths)
 - ightharpoonup $\mathfrak{s}()=f(x)$