# Probability and Statistics for Machine Learning

Mark Asch - IMU/VLP/CSU

2023

### ML = STATISTICAL learning

- All Machine Learning methods are statistical in nature, since we learn general relationships from a sample/data/observations/measurements
- In order to not just learn "cooking recipes", we will use a minimal mathematical formalism that gives us a uniform and coherent representation of statistical learning
- we have:
  - $\Rightarrow$  independent variables x (inputs, features, attributes, explanatory variables)
  - $\Rightarrow$  dependent variables y (outputs, responses, explained variables)
  - $\Rightarrow$  an unknown relationship, f, that links inputs to outputs, and that we want to learn from the available data
    - → for predictions
    - → for inference

#### Populations and Samples

**Definition 1.** A population is the set of all objects (observations) being studied. Their number is denoted by N.

**Definition 2.** A sample is a subset, of size  $n, n \leq N$ , drawn from the population. We examine these observations to draw conclusions and to make inferences about the population.

For Big Data:

- $\times$  N = ALL ??? No.
- $\mathsf{X}$  Correlation  $\Longrightarrow$  Causation ??? No.

## Pre-requisite: the mathematical framework

#### • Suppose we have :

- $\Rightarrow$  a response variable (to explain), Y,
- $\Rightarrow p$  explanatory, variables,  $X = (X_1, X_2, \dots, X_p)$ ,
- $\Rightarrow n \text{ samples of data, giving an } (n \times p) \text{ matrix,}$

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & & & \\ \vdots & & \ddots & & \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

 $\Rightarrow$  a relationship between Y and X of the form

$$Y = f(X) + \epsilon$$

where

 $\rightarrow f$  is an unknown function of  $X_1, X_2, \dots, X_p$ 

- $ightarrow \epsilon$  is a random error term, independent of X, and with zero mean
- $\bullet$  ML is then an ensemble of approaches for estimating f with the objectsives of
  - $\Rightarrow$  Prediction:  $\hat{Y}=\hat{f}(X)$  where  $\hat{f}$  is an estimation for f and  $\hat{Y}$  is the resulting prediction
  - $\Rightarrow$  Inference: to understand how Y varies as a function of X (correlations, importances, linearity, etc.)

## Step 1: Exploratory Data Analysis (EDA)

- ✓ An initial, critical step of the "data science" process
- ✓ There are neither hypotheses, nor models we explore and we try to understand the problem!
- ✓ The tools of EDA are :
  - summary statistics
  - basic plots
  - graphics
- ✓ The methodology :
  - systematic passage over all the data
  - plot all distributions of all the variables ("box plots")
  - plot all the time series
  - try changes of variables (usually logs or powers)
  - look at all the relations two-by-two ("scatterplots")

calculate all the summary statistics: mean, minumum, maximum, quartiles, outliers

#### **SUMMARY Statistics**

- measures of
  - ⇒ central tendancy
  - $\Rightarrow$  dispersion around the centre

#### Measures of Central Tendancy

mean:

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^m x_{ij}, \quad j = 1, \dots, p$$

- > Xj = c(1,2,3,4,5)> Xbarj = mean(Xj)
- median: value for which at most the half of the population is less than, and at least half is greater than,

median
$$(x) = \begin{cases} x_{(n+1)/2}, & \text{if } n \text{ odd} \\ \frac{x_{(n/2)} + x_{(n/2)+1}}{2}, & \text{if } n \text{ even} \end{cases}$$

- > Xmedj = median(Xj)
- mode: the most frequent value (for which the frequency/probability is maximal)

#### Measures of Dispersion

variance and standard deviation:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

- > Xvar = var(Xj)
- > Xstd = sd(Xj)
- covariance between k variables, with n observations each, is a  $k \times k$ matrix with elements

$$q_{jk} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j) (x_{ik} - \bar{x}_k)$$

- $q_{jk} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} \bar{x}_j) (x_{ik} \bar{x}_k)$
- > Xcov = cov(XX) # covariance
- > Xcor = cor(XX) # correlation, entre -1 et 1

ullet quantiles, quantiles and inter-quartile distance: z is the k-th q-quantile, if

$$\Pr\left[X < z\right] \le \frac{k}{q}$$

- $\Rightarrow$  the median is the second quartile,  $Q_2$
- ⇒ la inter-quartile distance

$$IQR = Q_3 - Q_1$$

is a measure of dispersion

⇒ the 100-quantiles are called percentiles

```
> range(Xj) # max - min
```

- > quantile(Xj) # 0, 25, 50, 75 et 100%
- > IQR(Xj)

#### **Summary Statistics**

- the 5-number summary of Tukey is employed systematically for any data analysis
  - 1. minimum
  - 2. first quartile
  - 3. median
  - 4. third quartile
  - 5. maximum
  - > fivenum(Xj)
  - > summary(XX)

#### Plots and Graphics for EDA

#### box-plots:



- > boxplot(Xj)
- histograms:
  - ⇒ approximates the probability density function
  - ⇒ allows to detecti multi-modality...

#### > hist(Xj)



 scatter-plots: in the multi-variable case, allows to display all the correlations, 2-by-2

#### > plot(XX)

#### Climatic predictors



• q-q plots: graphic of quantiles to verify the hypothese

of normality (Gaussian)

> qqnorm(Xj); qqline(Xj)



#### Significance and Covariates

- the 2 fundamental notions for UNDERSTANDING any statistical model
  - ⇒ significance (bad!) and confidence intervals (better)
  - ⇒ covariates need to be chosen judiciously (can produce false significance)

### Significance Tests

**Example.** Compare a new and an old treatment against hypertension.

- suppose the data seem to indicate that the new treatment is better
- can we exclude a sampling «accident», where the new treatment was given almost exclusively to subjects in good health???
- the significance test would state that this result is very unlikely (small value of p) under the null hypothesis (= no effect)
- Conclusion (dangerous!): the two treatments have a significant diffference at level  $\alpha$  (> p).

#### Significance Tests: conclusion

- significance tests should be avoided (official recommendation of the ASA in 2016)
  - ⇒ at worst, they are misleading
  - ⇒ at best, they are uninformative
- producing a confidence interval (point estimate +/error margin) is much better
  - ⇒ usually, at a 95% level
  - ⇒ "in 95% of all possible samples, the empirical estimate will lie within the error margin of the true value of the population"
  - ⇒ however, we will not repeat the sampling numerous times—this is ususally impossible... hence the interest of Bayesian approaches... (TBC)

#### **Explanatory Variables**

ullet we study the relationship between a variable Y and a variable X

**Example.** Evaluation in 4 hospitals of survival rates after a heart attack

- let the response Y=1 if the patient survives, Y=0 if not.
- let  $X=1,\ldots,4$  be the identifier of the hospital
- ullet measuring the relationship between Y and X implies here to compare the 4 hospitals in terms of the survival rate...
  - $\Rightarrow$  but 1 of the 4 hospitals serves a zone with a large proportion of old patients
  - ⇒ so a direct comparison would be unfair, and inexact...

- we need to introduce a new explanatory variable , Z= age and measure the relationship between Y and X keeping Z constant (or by age intervals)
- ullet a correlation can pass from positive to negative (change of sign) once the covariate Z is taken into account
  - ⇒ Simpson's paradox..
  - ⇒ related to causality! (TBC)

#### **Cross Validation**

- an ensemble of techniques for testing the predictive power of a statistical learning model
- indispensable step for validating the robustness of a model
  - ⇒ avoids the "good luck" effect
- also possible to propose confidence intervals
  - ⇒ using the "bootstrap"

## ML Frameworks: Supervised and Unsupervised





## ML Frameworks: Regression and Classification

Variables can be characterized as:

- ✓ quantitative, taking on numerical values
- $\checkmark$  qualitative (or categorical), that take values in one of K different classes (or categories).

The problems are then of type:

- ✓ regression when we have quantitative variables,
- classification for qualitative variables.



#### Model purpose - Regression

- ► The model f shall map  $x \mapsto y$  and approximate an unknown function  $\hat{f} : \mathbb{X} \to \mathbb{Y}$
- $ightharpoonup y_i \in \mathbb{Y} \subset \mathbb{R}^{n_y}$
- ► Examples: data-driven modeling, energy forecasting, ...



#### Model purpose - Classification

- ► The model f shall map  $x \mapsto y$  and approximate an unknown function  $\hat{f} : \mathbb{X} \to \mathbb{Y}$
- ▶  $y_i \in \mathbb{Y} \subseteq \mathbb{N}^{n_y}$
- ► Examples: spam filter, fraud detection, fault detection, ...
- ullet the only difference is the space in which  $y_i$  takes its

#### values:

- $\Rightarrow$  continuous space,  $\mathbb{R}^n$ , for regression
- $\Rightarrow$  discrete space,  $\mathbb{N}^n$ , for classification

### Recall: Which model for which task?

| Class        | Model             | Task       |
|--------------|-------------------|------------|
| Supervised   | linear regression | R          |
|              | CART (trees)      | R&C        |
|              | SVM               | R&C        |
|              | NN                | R&C        |
|              | k-NN              | С          |
|              | Naive Bayes       | С          |
| Unsupervised | $\emph{k}$ -means | Clustering |
|              | dendrogram        | Clustering |
|              | PCA               | pattern    |

R = regression, C = classification