ЛАБОРАТОРНАЯ РАБОТА №7 КОНТРОЛЬ ИСПОЛЬЗОВАНИЯ РЕСУРСОВ ОС LINUX

Цель работы – практическое знакомство с командами, используемыми для контроля использования ресурсов и виртуальной файловой системой /proc

1 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1.1 Команды для контроля системных ресурсов

1.1.1 Вывод информации о процессах, выполняющихся в системе

Для вывода списка всех выполняющихся на компьютере в текущий момент процессах используется команда

ps aux

Значения используемых опций: a - all – процессы всех пользователей; u – ориентированная на пользователей (отображение информации о владельце); x – процессы, не контролируемые ttys.

Полезные ключи - -е – вывод сведений обо всех процессах и о – пользовательский вывод, например

ps -eo pid, ppid, pri, stat, pgid, nice, comm.

В столбце STAT содержится информация о состоянии процесса. Наиболее важные состояния: S-спящий; R –выполняющийся; T- остановленный; Z – зомби.

Буква Z указывает, что процесс завис и его нельзя завершить. Избавиться от подобной программы можно с помощью перезагрузки системы.

Более подробную информацию представляет опция —1 (long format)) Для просмотра дерева процессов используются команды:

> ps axjf pstree

Завершение выполняющегося процесса

Завершение процесса выполняется командой

kill сигнал PID

Сначала процессу посылается сигнал -15. Если это не помогает,

используется крайняя мера -посылается сигнал -9.

Отображение динамически обновляемого списка выполняющихся процессов – команда top

В отличие от ps, команда top представляет динамически обновляемые сведения о процессах и о том, какой объем системных ресурсов использует каждый из них (рис.1).

В первых пяти строках команда top отображает подробную информацию о системе, а затем описывает каждый выполняющийся процесс. Выходные данные сортируются по уровню загрузки ЦП данным процессом.

Для удаления процесса следует ввести символ k. Появится сообщение PID to kill:

Необходимо ввести PID процесса, программа запросит номер сигнала:

kill PID NNNN with signal [15]:

Как правило, данное значение является приемлемым, и через секунду после ввода Enter информация о выбранном процессе исчезнет с экрана.

Сеанс Правка	в Вид	Зак	ладки	Наст	ройка	a (Справн	ка		
🗻 🔽 Консол	ь									
									.86, 0.80, 0.70	
									opped, O zombie	
									wa, 0.0% hi, 0.0% si	
	30K tota									
wap: 42568	30K tota	al,		0Κ ι	used,		42568	OK fr	ee, 168576K cached	
				-	01.15	•			TTUE:	-
PID USER	PR	NI	VIRT	RES			%CPU		TIME+ COMMAND	
6324 root	20		1804	996	764		0.7	0.2	0:01.96 top	
6312 root	39	19	2312		780		4.0	0.2	0:51.69 ksysguardd	
6311 root	20		25640	14M	10M		5.3	2.9	0:57.03 ksysguard 0:00.10 bash	
6306 root 6305 root	20 20	0	27140		1352 9.8M		0.0	0.3	0:00.10 basn 0:05.88 konsole	
6289 root			2312					0.2	1:55.10 ksysguardd	
6288 root	20		25604	14M	10M			2.9	1:37.45 ksysguard	
6276 root	20		24212		8672			2.3	0:00.78 kkbswitch	
6273 root	20		24684		8964		0.0	2.3	0:00.50 kbluetooth	
6270 root	20		26156		9224		0.0	2.4	0:00.56 korgac	
6268 root	20		23332				0.0	1.9	0:01.46 klipper	
6265 root	20		26664		8568			2.5	0:00.68 kmix	
6257 root	20		27604					1.7	0:00.32 knotify	
6251 root	20		21896				0.0	1.5	0:00.70 kaccess	
6227 root	20		24560		7956			2.2	0:00.48 kio uiserver	
6225 root	20		20884					1.0	0:00.04 kio file	
6224 root	20	0	29564	15M	11M		0.0	3.3	.	
6221 root	20	0	25212	11M	8876	S	0.0	2.4	0:03.82 kdesktop	

Рис. 1 – результат выполнение команды top

В первой строке программа сообщает текущее время, время работы системы (1 час 15 мин), количество зарегистрированных (login) пользователей (3 users), общая средняя загрузка системы (load average). Общей средней загрузкой системы называется среднее число процессов, находящихся в состоянии выполнения (R) или в состоянии ожидания (D). Общая средняя загрузка измеряется каждые 1, 5 и 15 минут.

Во второй строке вывода программы top сообщается, что в списке процессов находятся 132 процесса, из них 131 спит (состояние готовности или ожидания), 1 выполняется (на виртуальной машине только 1 процессор), 0 процессов зомби и 0 остановленных процессов.

В третьей-пятой строках приводится информация о загрузке процессора CPU в режиме пользователя и системном режиме, использования памяти и файла подкачки.

В таблице отображается различная информация о процессе. Рассмотрим колонки PID (идентификатор процесса), USER (пользователь, запустивший процесс), S (состояние процесса) и COMMAND (команда, которая была введена для запуска процесса).

Колонка S может содержать следующие значения:

- R процесс выполняется или готов к выполнению (состояние готовности)
 - D процесс в "беспробудном сне" ожидает дискового ввода/вывода
 - Т процесс остановлен (stopped) или трассируется отладчиком
 - S процесс в состоянии ожидания (sleeping)
 - Z процесс-зомби
 - N процесс с низким приоритетом, nice, pri<19
 - < процесс с высоким приоритетом, pri>19
 - + процесс в группе фоновых процессов
 - 1 процесс с двумя и более потоками, многопоточный
 - s ведущий процесс сеанса.

Колонка PR содержит приоритет процесса — целое число от 0 до 39. Колонка NI (NICE) (фактор уступчивости процесса) содержит задаваемое значение от -19 (наименее уступчивый) до 20 (самый уступчивый, вытесняется всеми). Значение NICE прибавляется к числу 20 для получения значения приоритета

PR=19+NICE

Для управления командой top используются односимвольные команды:

- h вывод справки о командах;
- r renice изменение приоритета, в режиме администратора (через sudo) можно задавать значения от-19 до 20;
 - q завершение работы с командой и другие (см. информацию справки).

Недостаток команды – вывод только первых N<26 строк информации о процессах.

Для управления процессами с использованием графического интерфейса используется утилита Системный монитор, которая запускается из системного меню Система-Администрирование — Системный монитор (рис.2).

Рис. 2. Системный монитор

На закладке Процессы монитор показывает сведения о запущенных процессах, на закладке система — сведения об использовании ЦП и памяти. Достоинства монитора — использование графического интерфейса, отображение списка всех процессов.

Вывод дерева процессов

Для построения дерева процессов используются команды pstree ps —ejH ps axjt

Получение информации о потоках

Как известно, процесс может иметь параллельно выполняющиеся потоки (threads) или облегченные процессы (LWP, Light Weight Process). Для получения информации о потоках заданного процесса используется опция — L, например ps —fLC swriter.bin выводит список потоков приложения writer Open Office. Процессы, использующие более одного потока — редактор звуковых файлов audacity и soffice.bin, а также демоны (службы в по терминологии Windows). Как указано выше, многопоточные процессы помечено символом 1 в колонке состояния.

1.1.2 Получение списка открытых файлов

Команда lsof (List open files) без параметров выводит полный список открытых файлов. Пользователь-администратор получит несколько тысяч строк текста.

Для получения списка файлов, открытых конкретным пользователем, служит команда

lsof -и имя пользователя

Получение списка пользователей конкретного файла

Необходимо ввести команду lsof с указанием имени файла. Например lsof /bin/bash

Отображение информации об оперативной памяти системы

Текущее состояние системной памяти позволяет получить команда **free**

По умолчанию все значения представлены в килобайтах. Значения в M позволяет получить опция –m.

1.1.3 Отображение информации об использовании дискового пространства

Команда df выводит данные об объеме доступного дискового пространства (в Кбайтах). Опция –h улучшает восприятие результатов.

Команда du дает возможность узнать объем дисковой памяти, занимаемой каталогами и файлами.

1.2 Файловая система /ргос

Ядро Linux предоставляет механизм доступа к своим внутренним структурам и позволяет изменять установки ядра во время работы ОС посредством файловой системы /ргос. Файловая система /ргос является механизмом для ядра и его модулей, позволяющим посылать информацию процессам (отсюда и название /ргос). С помощью этой виртуальной файловой системы можно работать с внутренними структурами ядра, получать полезную информацию о процессах и изменять установки (меняя параметры ядра) на лету. Файловая система /ргос располагается в памяти в отличие от других файловых систем, которые располагаются на диске.

Файловая система /ргос контролируется ядром. Из-за того, что она предоставляет информацию, контролируемую ядром, она располагается в памяти, контролируемой также ядром. Команда "ls -l" покажет, что большинство файлов в этой системе имеют нулевую длину, но посмотрев любой файл, Вы получите достаточно информации. Как это может быть? Все просто - файловая система /ргос как любая другая файловая система регистрируется на уровне VFS (Virtual File System layer). Поэтому при запросе файлов/каталогов, файловая система /ргос создает эти файлы/каталоги на основании информации, содержащейся в ядре.

В действительности многие программы собирают информацию из файлов в /ргос, форматируют её своим собственным способом, а результат затем выводят на экран. Существует несколько программ, которые поступают именно так при выводе информации о процессах (top, ps и т. п.), /ргос - это также хороший источник информации об аппаратном обеспечении, и по аналогии с программами, показывающими процессы, некоторые другие программы являются просто интерфейсами к информации, находящейся в /ргос.

Также существует специальный подкаталог /proc/sys. Он позволяет отображать параметры ядра и изменять их в режиме реального времени.

1.2.1 Информация о процессах

Каждый из каталогов содержит одинаковые пункты, краткое описание некоторых из них:

1. cmdline: этот (псевдо-) файл содержит полную командную строку, использованную для вызова процесса. Он не отформатирован: между

программой и ее аргументами нет пробелов, а в конце строки нет разделителя строки. Чтобы просмотреть его, вы можете использовать: **perl** -**ple** 's,\00, ,**g**' cmdline.

- 2. cwd: эта символическая ссылка указывает на текущий рабочий каталог процесса (следует из имени).
- 3. environ: этот файл содержит все переменные окружения, определенные для этого процесса, в виде ПЕРЕМЕННАЯ=значение. Как и в cmdline вывод вообще не отформатирован: нет разделителей строк для отделения различных переменных, и в конце нет разделителя строки. Единственным решением для его просмотра будет: perl -pl -e 's,\00,\n,g' environ.
- 4. exe: эта символическая ссылка указывает на исполняемый файл, соответствующий запущенному процессу.
- 5. fd: этот подкаталог содержит список файловых дескрипторов, открытых в данный момент процессом.
- 6. maps: когда вы выводите содержимое этого именованного канала (при помощи команды **cat**, например), вы можете увидеть части адресного пространства процесса, которые в текущий момент распределены для файла. Вот эти поля (слева направо): адресное пространство, связанное с этим распределением; разрешения, связанные с этим распределеним; смещение от начала файла, где начинается распределение; старший и младший номера (в шестнадцатиричном виде) устройства, на котором находится распределенный файл; номер inode файла; и, наконец, имя самого файла.
- 7. root: эта символическая ссылка указывает на корневой каталог, используемый процессом. Обычно это будет /.
- 8. status: этот файл содержит разнообразную информацию о процессе: имя исполняемого файла, его текущее состояние, его PID и PPID, его реальные и эффективные UID и GID, его использование памяти и другие данные.

Если вывести список содержимого каталога fd для процесса 127, получим примерно следующее:

1-wx 1 root	root	64	Dec	16
22:04 1 -> pipe:[128]				
1-wx 1 root	root	64	Dec	16
22:04 2 -> pipe:[129]				
1-wx 1 root	root	64	Dec	16
22:04 21 -> pipe:[130]				
lrwx 1 root	root	64	Dec	16
22:04 3 -> /dev/apm_bios				
lr-x 1 root	root	64	Dec	16
22:04 7 -> pipe:[130]				
lrwx 1 root	root	64	Dec	16
22:04 9 -> /dev/console				

На самом деле это список файловых дескрипторов, открытых процессом. Каждый открытый дескриптор представлен в виде символической ссылки, где имя - это номер дескриптора, который указывает на файл, открытый этим дескриптором.

1.3 Информация об аппаратном обеспечении

Кроме каталогов, связанных с различными процессами, в /ргос также содержится значительный объём информации об аппаратном обеспечении ПК.

Список файлов каталога /proc, полученный с помощью команды $ls - d [a-z]^*$ выглядит следующим образом:

acpi	fb	kmsg	slabinfo
asound	filesystems	loadavg	stat
buddyinfo	fs	locks	swaps
bus	ide	mdstat	sys
cmdline	interrupts	meminfo	sysrq-trigger
cpuinfo	iomem	misc	sysvipc
crypto	ioports	modules	tty
devices	irq	mounts	uptime
diskstats	kallsyms	net	version
dma	kcore	partitions	vmstat
driver	keys	schedstat	zonein
execdomains	key-users	self	

Например, каталог /pгос/interrupts содержит список прерываний, используемых в данный момент системой, а также периферийные устройства, которые их используют.

Описание некоторых из файлов /ргос:

cpuinfo: этот файл содержит, как видно из его имени, информацию о процессорах машины. Пример содержимого файла:

cat /proc/cpuinfo

```
processor
vendor id
              : GenuineIntel
cpu family
             : 6
model
model name : Pentium III (Coppermine)
stepping
              : 6
              : 1000.119
cpu MHz
            : 256 KB
cache size
fdiv bug
              : no
hlt bug
              : no
sep bug
               : no
f00f bug
              : no
coma bug : no
fpu
              : yes
fpu_exception : yes
cpuid level : 2
               : yes
qw
flags
               : fpu vme de pse tsc msr pae mce cx8
apic sep mtrr pge mca
cmov pat pse36 mmx fxsr xmm
          : 2015.85
bogomips
processor
vendor_id
             : GenuineIntel
cpu family
              : 6
model
              : 8
            : Pentium III (Coppermine)
model name
              : 6
stepping
cpu MHz
              : 1000.119
cache size : 256 KB
fdiv bug
              : no
hlt bug
              : no
sep bug
              : no
f00f bug
              : no
coma_bug
              : no
fpu
              : yes
fpu_exception : yes
cpuid level : 2
qw
               : yes
```

flags : fpu vme de pse tsc msr pae mce cx8

apic sep mtrr pge mca

cmov pat pse36 mmx fxsr xmm
bogomips : 2015.29

modules: этот файл содержит список модулей, используемых ядром в настоящий момент, вместе со счетчиком использования каждого из модулей. Эта информация используется командой lsmod, которая отображает её в более удобной для чтения форме,

meminfo: этот файл содержит информацию о загрузке памяти на момент вывода его содержимого. Команда free выведет ту же самую информацию, но уже в более удобном для чтения формате.

bus: этот подкаталог содержит информацию обо всех периферийных устройствах, найденных на различных шинах вашего компьютера. Информация обычно не удобна для чтения, и большая её часть переформатируется внешними утилитами.

асрі: некоторые файлы и каталоги, представленные в этом каталоге, особенно интересны для ноутбуков, которые позволяют вам выбирать различные варианты энергосбережения.

1.4 Отображение и изменение параметров ядра

Назначение подкаталога /proc/sys - сообщать о различных параметрах ядра, и позволить изменять некоторые из них в интерактивном режиме, В противоположность всем другим файлам каталога /proc, некоторые файлы из этого каталога могут быть открыты для записи, но только для root'a.

Содержимое этих каталогов зависит от системы, а большинство файлов будет полезно только для очень специализированных приложений.

2 МЕТОДИКА ВЫПОЛНЕНИЯ

- 1. Вывести список всех процессов системы.
- 2. Вывести дерево процессов.
- 3. С помощью команды top получить список 5 процессов, потребляющих наибольшее количество процессорного времени.
- 4. Найти 2 процесса, имеющих более ДВУХ потоков. Использовать состояние процесса

- 5. Используя команду top, изменить приоритеты 2 процессов.
- 6. Получить список открытых файлов пользователя аа
- 7. Получить текущее состояние системной памяти
- 8. Получить справку об использовании дискового пространства.
- 9. Вывести информацию о каком-либо процессе, используя содержимое каталога /proc
- 10.Вывести информацию о процессоре ПК, используя содержимое каталога /ргос
- 11.Вывести список модулей, используемых в настоящий момент ядром ОС.

3 ОТЧЕТ О РАБОТЕ

Готовится в письменном виде один на бригаду. Содержание отчета:

1. Результаты выполнения заданий 1- 11 (снимки экранов) и использованные команды ОС Linux.

4 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Команды вывода списка процессов.
- 2. Команда получения списка потоков
- 3. Команда для завершения приложений.
- 4. Состояния процесса Linux.
- 5. Получение информации о потоках процесса.
- 6. Примеры многопоточных процессов.
- 7. Необходимость использования потоков.
- 8. Процессы зомби: как они появляются, как их найти и что с ними делать?
- 9. Содержимое вывода команды top.
- 10.Как получить информацию о процессах системы, используя файловую систему /proc?
- 11. Команды для получения информации об открытых файлах
- 12.Получение информации о состоянии системной памяти.
- 13. Получение информации об использовании дискового пространства.
- 14. Назначение файловой системы /proc