The History Representation of Heterogeneous Agent Models

François Le Grand^a, Xavier Ragot^b

^aEMLyon Business School and ETH Zurich ^b SciencesPo and OFCE

OFCE, May 2018

Introduction

- Heterogeneous agent models are becoming the standard tool in macroeconomics (Bewely-Aiyagari-Huggett models: HANK, Kaplan, Moll, Violante 2018; Auclert 2017 among many others)
- Hard to study with aggregate shocks (Krusell and Smith 1998;
 Den Haan 2010; Reiter 2009)
- Hard to think about optimal monetary policy Aiyagari 1995;
 Aiyagari McGrattan 1995; Acikgoz 2013; Nuno and Thomas 2017)
- Very hard to solve for optimal policy and aggregate shocks (Bhandari, Evans, Golosov, and Sargent 2017)

What we do

- Provide a representation (History Representation) to solve optimal policy in heterogeneous agent models with aggregate shocks
- Additionally, improve on current projection methods i. e Reiter 2009 algorithm.
- Embbed reduced history representations Challe and Ragot,
 2016; Challe, Matheron, Ragot, Rubio-Ramirez 2017; Le Grand
 Ragot 2017
 - Apply to two examples
 - Standard KS model (to benchmark), the optimal provision of public goods in the business cycle.

The main idea

- Provide a finite state-space representation using a time-invariant partition in the space of history
 - 1. Explicit partition: truncation of idiosyncratic histories
 - 2. Implicit partition: using the distribution of wealth (as Reiter)
- Can Apply Lagrangian Approach (Marcet and Marimon 2011) to solve for optimal policies with aggregate shocks
- Can use perturbation methods (DYNARE) to solve the model

Literature

Models with Incomplete insurance markets: A new benchmark

("Bewley-Aiyagari-Huggett", "Heterogeneous agents", "liquidity constrained").

- Empirically relevant (Zeldes, 1989; Carroll 2001; Chodorow-Reich and Karabarbounis 2014; Heathcote, Storesletten, Violante 2009; Relative success for wealth Benhabib and Bisin 2016, among many others).
- Now solved with many additional frictions (Krusell, Mukuyama, Sahin 2010; McKay, Reis 2013; Ravn, Sterck 2015; Challe, Matheron, Ragot, Rubio-Ramirez 2015; Heathcote 2005; Kaplan Violante 2014; HANK, Kaplan, Moll, Violante 2015; Den Haan, Pontus, Riegler 2016; Farhi, Werning 2017)
- Hard to solve with aggregate shocks (Krusell and Smith 1998; Reiter 2009; Den Haan and coauthors 2010; Winberry 2017).
- Hard/Impossible to solve for optimal policies with aggregate shocks (Aiyagari, McGrattan 1998; Shin 2006; Davila, Hong, Krusell, Rios-Rul 2012; Acikgoz 2013; Nuno, Moll 2015; Ragot 2015; McKay, Reis 2016; Bhandari, Evans, Golosov, Sargent 2015, 2016; Challe 2017; Bilbiie, Ragot 2017).

Outline of the presentation

- 1. The Economic Problem
- 2. History Representation
- 3. Ramsey
- 4. Numerical example

1 - The Economic Problem

• Unit mass of agents, discount factor β , face uninsurable (time-varying) unemployment risk:

$$M_t = \begin{bmatrix} 1 - f_t & f_t \\ s_t & 1 - s_t \end{bmatrix} \tag{1}$$

ullet $e_t=0,1.$ History denoted as $e^t=\{e_0,\ldots,e_t\}\in\mathcal{E}^{t+1}.$ Solve

$$\max_{\substack{\{c_t^i, a_t^i\}_{t=0}^{\infty} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left(u \left(c_t^i \right) + \chi v(G_t) \right) \\ c_t^i + a_t^i = (1 + r_t) a_{t-1}^i + \left((1 - \tau_t) e_t^i + \mu (1 - e_t^i) \right) w_t} \\ a_t^i \ge -\bar{a}$$

LeGrand, Ragot History Representation 6/33

Production

The production function

$$Y_t = A_t K_{t-1}^{\alpha} L_t^{1-\alpha} - \delta K_{t-1}$$

Competition implies the factor pricing

$$\tilde{w}_{t} = (1 - \alpha) A_{t} \left(\frac{K_{t-1}}{L_{t}}\right)^{\alpha}$$

$$r_{t} = \alpha A_{t} \left(\frac{K_{t-1}}{L_{t}}\right)^{\alpha - 1} - \delta$$

where \tilde{r}_t is the before-tax return of capital.

$$w_t = (1 - \tau_t^L)\tilde{w}_t$$

Government

The budget constraint of the government is

$$\tau_t = \frac{1 - L_t}{L_t} \mu$$

such that
$$L_t \left(1 - \tau_t\right) w_t + \left(1 - L_t\right) \mu w_t = w_t L_t$$

Public good financing

$$G_t = \tau_t^L \tilde{w}_t L_t$$

Markets

• The financial market equilibrium

$$\int a_t^i di = K_t$$

Goods market equilibirum

$$\int c_t^i di + G_t + K_t = Y_t + K_{t-1}$$

Questions

Two simple questions to present the methodology

- 1. Dynamics of the economy after TFP shocks?
- 2. What is the optimal provision of the public good in the business cycle?

Recursive formulation

A the steady state

$$V(a,e) = u(c) + v(G) + \mathbb{E}\beta \tilde{V}(a',e')$$

$$c + a' = w(e) + (1+r)a$$

$$c, l \ge 0, a' \ge -\bar{a},$$

Foc

$$u'(c) = \beta(1+r)\mathbb{E}u'(c') + \nu$$

- Density $d\Gamma(a,e)$,
- Policy rules $c = g_c(a, e)$ and $a' = g_a(a, e)$
- Lagrange multipliers $\nu\left(a,e\right)$ where $a\in\mathbb{R}$ and e=0,1.

2 - History Representation

Denote as \mathcal{P} a finite partition of the space of histories. At each date, any agent has one and exactly one history in \mathcal{P} . Examples :

- 1. $\mathcal{P} = (e, u)$ (Ravn and Sterck, 2015)
- 2. $\mathcal{P} = (ee, eu, ue, uu)$ (Challe and Ragot, 2016)
- 3. $\mathcal{P} = (e, eu, euu, euuu, uuuu)$ (Challe, Matheron, Ragot, Rubio-Ramirez 2017)
- 4. Truncation of length N : $h=(e_{-N+1},\ldots,e_0)$: 2^N elements (Le Grand and Ragot, 2017).
- 5. Implicit partition (Reiter, 2009, see below.)

Transitions \mathcal{P}

The transition matrix derived from labor market transitions. For instance

•
$$\Pi_{t,\{e\},\{eu\}} = s_t$$

•
$$\Pi_{t,\{eu\},\{e\}} = \Pi_{t,\{uu\},\{e\}} = f_t$$
,

Values by history

From the solution of the Bewley model

- Distribution of wealth $d\Gamma\left(a,e\right)$, $e\in\left\{ 0,1\right\}$
- ullet Policy rules for saving and consumption $g_{a'}\left(a,e\right)$ and $g_{c}\left(a,e\right)$.

Deduce the conditional distribution of wealth : $d\Gamma^{\mathcal{P}}(a,h)$.

$$S_{h} = \int_{a} d\Gamma^{\mathcal{P}}(a, h)$$

$$c_{h} = \frac{\int_{a} g_{c}(a, h) d\Gamma^{\mathcal{P}}(a, h)}{S_{h}}$$

$$\tilde{a}_{h} = \frac{\int_{a} a d\Gamma^{\mathcal{P}}(a, h)}{S_{h}}$$

$$a'_{h} = \frac{\int_{a} g_{a}(a, h) d\Gamma^{\mathcal{P}}(a, h)}{S_{h}}$$

$$\nu_{h} = \frac{\int_{a} \nu(a, h) d\Gamma^{\mathcal{P}}(a, h)}{S_{h}}$$

LeGrand, Ragot History Representation 14/33

Aggregation by history

• budget constraint $c_h + a'_h = (1+r) \tilde{a}_h + w(h)$

$$\tilde{a}'_{h'} = \sum_{h' \succeq h} \Pi_{h,h'} a'_h \frac{S_h}{S'_{h'}}$$

- Size by history $S'_{h'} = \sum_{h \preceq h'} \prod_{h,h'} S_h$
- Euler equations. Can find ξ_h , $h \in \mathcal{P}$:

$$\xi_h u'(c_h) = \beta(1+r) \left(\sum_{h' \succeq h} \Pi_{h,h'} \xi_{h'} u'(c_{h'}) \right) + \nu_h$$

• Welfare $W = \sum_{h \in \mathcal{D}} S_h \eta_h u(c_h) + \beta W'$ where

$$\eta_h \equiv \frac{\int_{-\bar{a}}^{\infty} u\left(g_c\left(a,h\right)\right) d\Gamma^{\mathcal{P}}\left(a,h\right)}{u\left(c_h\right)} \frac{1}{S_h}$$

LeGrand, Ragot History Representation 15/33

Aggregation by history

$$\begin{split} c_h^b + a_h^{b\prime} &= (1+r)\,\tilde{a}_h^b + w\,(h) \\ \xi_h^b u'\left(c_h^b\right) &= \beta(1+r)\mathbb{E}_{h'}\left(\xi_{h'}^b u'\left(c_{h'}^b\right)\right) + \nu_h^b \\ \tilde{a}_h^{b\prime} &= \sum_{h' \succeq g} \Pi_{g,h} a_g^{b\prime} \frac{S_g}{S_h'} \\ K &= \sum_{h \in \mathcal{P}} S_h^b a_h^b \\ W &= \sum_{h \in \mathcal{P}} S_h \eta_h^b u'\left(c_h^b\right) + \beta W' \end{split}$$

Key idea

- We approximate the model by a finite number of histories
- We follow histories with relevant adjustment ξ_h and η_h .
- Easy to solve with aggregate shocks (in Dynare)

3 - Ramsey

$$\begin{split} \max_{\left(r_{t}, w_{t}, G_{t}, (a_{t,h}, c_{t,h})_{h \in \mathcal{P}}\right)_{t \geq 0}} \mathbb{E}_{0} \left[\sum_{t=0}^{\infty} \beta^{t} \left(\sum_{h \in \mathcal{P}} S_{t,h} \eta_{t,h} u(c_{t,h}) + v\left(G_{t}\right) \right) \right], \\ G_{t} + K_{t-1} r_{t} + L_{t} w_{t} \leq K_{t-1}^{\alpha} L_{t}^{1-\alpha} - \delta K_{t-1} \\ \text{for all } h \in \mathcal{P}: \\ c_{t,h} + a_{t,h} \leq (1 + r_{t}) \tilde{a}_{t-1,h} + w_{t}\left(h\right) \\ \tilde{a}_{t,h} = \sum_{h' \in \mathcal{P}} \frac{S_{t-1,h'}}{S_{t,h}} \Pi_{t,h',h} a_{t-1,h'}. \\ \xi_{h,t} u'\left(c_{h,t}\right) = \beta \mathbb{E}_{t} \left[(1 + r_{t+1}) \left(\sum_{h' \succeq h} \Pi_{h,h'} \xi_{h',t+1} u'(c_{h',t+1}) \right) \right] + \nu_{t,h} \\ K_{t} = \sum_{h \in \mathcal{P}} S_{t,h} a_{t,h}, \ L_{t} = (1 - s_{t}) L_{t-1} + f_{t}\left(1 - L_{t}\right), \end{split}$$

LeGrand, Ragot History Representation 18/33

A reformulation of the Ramsey

Using Marcet and Marimon techniques

$$\mathcal{L} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\sum_{h \in \mathcal{P}} S_{t,h} \left[\eta_{t,h} u(c_{t,h}) + \xi_{t,h} \left((1+r_t) \Lambda_{t,h} - \lambda_{t,h} \right) u'(c_{t,h}) \right] + v(G_t) \right) + \mu_t \left(F(A_{t-1}, L_t, s_t) - G - r_t K_{t-1} - w_t L_t \right)$$

subject to

$$\begin{aligned} c_{t,h} + a_{t,h} &\leq (1 + r_t) \tilde{a}_{t-1,h} + w_t \left(h \right) \\ \tilde{a}_{t,h} &= \sum_{h' \in \mathcal{P}} \frac{S_{t-1,h'}}{S_{t,h}} \Pi_{t,h',h} a_{t-1,h'}. \\ K_t &= \sum_{h \in \mathcal{P}} S_{t,h} a_{t,h}, \ L_t = (1 - s_t) \, L_{t-1} + f_t \left(1 - L_t \right), \end{aligned}$$

First order conditions

Define the liquidity value

$$\psi_{t,h} \equiv \eta_{t,h} u'(c_{t,h}) + \xi_{t,h} \left((1 + r_t) \Lambda_{t,h} - \lambda_{t,h} \right) u''(c_{t,h})$$

with

$$\Lambda_{t,h} \equiv \sum_{\hat{h} \in \mathcal{P}} \frac{S_{t-1,\hat{h}}}{S_{t,h}} \Pi_{t,\hat{h},h} \lambda_{t-1,\hat{h}}$$

The first order conditions are

$$\begin{split} \mu_t &= v'\left(G_t\right) \\ \mu_t L_{t-1} &= \sum_{h \in \mathcal{P}} S_{t,h} \tilde{w}_{t,h} \psi_{t,h} \\ \psi_{t,h} &= \beta \mathbb{E}_t (1 + r_{t+1}) \sum_{h' \in \mathcal{P}} \Pi_{t,h,h'} \psi_{t+1,h'}, \text{for } h \neq h_{cc} \end{split}$$

Implicit partition

Connection with Reiter algorithm. Consider a partition \mathcal{B}_h in the space of wealth

$$\begin{cases} \cup_{h=1,\dots,H} B_h = [-\bar{a}, a^{max}], \\ B_h \cap B_{h'} = \emptyset & \text{for all } h, h' \in 1, \dots, H. \end{cases}$$

- It is an implicit partition in the space of histories.
- ullet From the steady-state solution we can deduce $\Pi_{h,h'}$

Time-varying idiosyncratic risk

$$F_{t,h,h} = \phi_h S_{t,h} M_t (0,0) \quad \text{if } h = 1, \dots, H$$

$$F_{t,h,h-1} = (1 - \phi_h) S_{t,h} M_t (0,0) \quad \text{if } h = 2, \dots, H$$

$$F_{t,h,h+H} = \phi_h S_{t,h} M_t (0,1) \quad \text{if } h = 1, \dots, H$$

$$F_{t,h,h-1+H} = (1 - \phi_h) S_{t,h} M_t (0,1) \quad \text{if } h = 1, \dots, H$$

$$F_{t,h,h} = \phi_h S_{t,h} M_t (1,1) \quad \text{if } h = H+1, \dots, 2H$$

$$F_{t,h,h+1} = (1 - \phi_h) S_{t,h} M_t (1,1) \quad \text{if } h = H+1, \dots, 2H-1$$

$$F_{t,h,h-H} = \phi_h S_{t,h} M_t (1,0) \quad \text{if } h = H+1, \dots, 2H$$

$$F_{t,h,h+1-H} = (1 - \phi_h) S_{t,h} M_t (1,0) \quad \text{if } h = H+1, \dots, 2H-1$$

LeGrand, Ragot History Representation 22/33

Discussion

Advantage compared to Reiter's algorithm

- 1. Small number of agents. Using the quantities $(\xi_h)_{h=1,\dots,H}$ and $(\eta_h)_{h=1,\dots,H}$
- 2. Computation of optimal policies. : new range of problems
- 3. Time-varying idiosyncratic risk. : easy to compute

4 - Numerical example

From Den Haan 2010

Table 1 : Parameter values

Parameter	Description	Value				
β	Discount Factor	0.96				
α	Capital share	0.36				
δ	Depreciation rate	0.1				
μ	UI replacement rate	0.1				
π_{01}	U to E probability	0.5				
π_{10}	E to U probability	0.038				
$ ho_A$	TFP persistence	0.0859				
σ_A	Sd. TFP innov.	0.014				
χ	Pref. pub good	0				

Partition

2H	6	22	34	64	200
$sd(\xi)(\%)$	5.72	2.43	1.54	0.95	0.79
$sd(\Gamma)$ (%)	8.48	3.93	2.89	1.73	0.68
Gini	15	19	19	19	19

Benchamrk : 34 agents (17 employed and 17 unemployed) $[8.10^{-4},5,10,15,20,25,30,35,40,45,50,60,70,80,90,95];$

The initial number is the fraction of credit constrained agents.

Lorenz curve

Gini index is 0.19 in both case.

Dynamics

Table 2: Business Cycle Statistics and Comparison

		- ,				
Variable	Sd (relative to $Sd(Y)$)			Correlation with Y		
	Model	KS	Reiter	Model	KS	Reiter
output (%, base)	1.32	1.32	1.32	1	1	1
Consumption	0.49	0.49	0.50	0.91	0.91	0.92
Investment	2.64	2.67	2.64	0.98	0.98	0.98
Real wage	1	1	1	1	1	1
Real interest rate	0.15	0.15	0.15	0.90	0.90	0.90

IRF

Undistinguishable from Reiter/Winberry.

Provision of a public good in the business cycle

Now $\chi=0.082$ and log case, we find

- $\tau_L = 10\%$
- G/GDP = 4%

Steady State

Table: Steady-state convergence						
H	358	394	976			
G	0.088	0.091	0.091			
$ au^L$	0.0965	0.100	0.100			
$Sd(\xi)$	0.015	0.014	0.014			
$sd(\eta)$	0.003	0.003	0.003			

Dynamics

Table : Business Cycle Statistics of Ramsey allocation

Variable	Sd (re	Sd (relative to $Sd(Y)$)			relation w	ith Y
H	CM	4	22	CM	4	22
output (%, base)	1.32	1.33	1.33	1	1	1
Consumption	0.50	0.50	0.50	0.91	0.92	0.92
Investment	2.67	2.74	2.79	0.98	0.97	0.97
Public spend. G	0.05	0.05	0.05	0.91	-0.18	-0.12
Real wage	1.05	1.12	1.12	1	1	1
Int. rate (bef. tax)	0.15	0.15	0.15	0.90	0.89	0.89
Labor tax	0.05	0.12	0.12	-0.94	-0.91	-0.91

31/33

IRF after a TFP shock

Conclusion

- We construct a History-Representation of heterogeneous-agent models
- Increase the efficiency of the algorithm to solve models with aggregate shocks and perturbation methods
- Solve for optimal policies : fiscal, monetary...
- Bayesian Estimation techniques