

Testes de Hipóteses para a Média e a Proporção

Prof. Fermín Alfredo Tang Montané

Testes de Hipóteses

Casos Possíveis

- Testes quanto a média de uma População
 - Caso I: População normal com σ conhecido
 - Caso 2: Testes de amostras grandes
 - Caso 3: População com distribuição normal amostras pequenas
- Testes com relação a uma Proporção da População
 - Caso I: Testes de amostras grandes
 - Caso 2: Testes de amostras pequenas

Caso 1: População normal com σ conhecido

• Embora a suposição de que o valor de σ é conhecido seja raramente encontrada na prática, esse caso fornece um bom ponto de partida por causa da facilidade com que os procedimentos gerais e suas propriedades podem ser desenvolvidos.

Caso 1: População normal com σ conhecido

- Procedimento de teste para os três casos possíveis da hipótese alternativa e a respectiva região de rejeição:
- Hipótese nula: H_0 : $\mu = \mu_0$
- Valor da estatística de teste: $z = \frac{x \mu_0}{\sigma / \sqrt{n}}$
- Hipótese alternativa: Região de rejeição para o teste nível α :

$$H_a$$
: $\mu > \mu_0$

$$H_a$$
: $\mu < \mu_0$

$$H_a$$
: $\mu \neq \mu_0$

$$z \ge z_{\alpha}$$
 (teste de cauda superior)

$$z \le -z_{\alpha}$$
 (teste de cauda inferior)

tanto
$$z \ge z_{\alpha/2}$$
 ou $z \le -z_{\alpha/2}$ (teste bicaudal)

Caso 1: População normal com σ conhecido

curva z (distribuição de probabilidade da estatística de teste Z quando H_0 é verdadeira)

Figura 8.2 Regiões de rejeição para os testes z: (a) teste de cauda superior; (b) teste de cauda inferior; (c) teste bicaudal

Testes da média de uma População Passos para o teste de um parâmetro

- Sequência de passos para o teste de hipóteses de um parâmetro.
- 1. Identifique o parâmetro de interesse e descreva-o no contexto do problema.
- 2. Determine o valor nulo e a hipótese nula.
- 3. Especifique a hipótese alternativa apropriada.
- 4. Determine a estatística de teste (substituindo o valor nulo e os valores conhecidos de quaisquer outros parâmetros, mas não os parâmetros com base na amostra).
- 5. Especifique a região de rejeição para o nível de significância selecionado α .
- 6. Calcule o valor da estatística de teste, substituindo quaisquer quantidades necessárias da amostra.
- 7. Decida se H_0 deve ser rejeitada e enuncie a conclusão no contexto do problema.

Testes da média de uma População Exemplo 1 - População normal com σ conhecido

• Um fabricante de sistemas anti-incêndio por aspersão, usados para proteção contra incêndio em edifícios de escritórios, alega que a temperatura média real de ativação do sistema é 130° . Uma amostra de n=9 sistemas, quando testados, produz uma temperatura média amostral de ativação de $131,08^\circ$ F. Se a distribuição dos tempos de ativação fosse normal com desvio padrão de $1,5^\circ$ F, os dados contradiriam a alegação do fabricante com nível de significância $\alpha=0,01$?

I. Parâmetro de interesse: $\mu = \text{temperatura média real de ativação.}$

2. Hipótese nula: H_0 : $\mu = 130$ (valor nulo $\mu_0 = 130$).

3. Hipótese alternativa: H_a : $\mu \neq 130$ (desvio do valor alegado em qualquer direção é preocupante).

4. Valor da estatística de teste:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{\bar{x} - 130}{1.5 / \sqrt{9}}$$

Exemplo 1 - População normal com σ conhecido

- 5. Região de rejeição: A forma de H_a implica o uso de um teste bicaudal com região de rejeição tanto $z \ge z_{\alpha/2} = z_{0,005}$ ou $z \le -z_{\alpha/2} = -z_{0,005}$. Com base na tabela normal, $z_{0,005} = 2,58$. Rejeitamos H_0 se $z \ge 2,58$ ou $z \le -2,58$.
- 6. Calcule a estatística de teste: $z = \frac{131,08-130}{1,5/\sqrt{9}} = \frac{1,08}{0,5} = 2,16$
 - A média amostral observada estaria um pouco mais de 2 desvios padrão acima do esperado, se H_0 fosse verdadeira.
- 7. O valor calculado $z=2,16\,$ não cai na região de rejeição $z\geq 2,58\,$ ou $z\leq -2,58\,$, com isso, H_0 não pode ser rejeitada com nível de significância 0,01. Os dados não dão forte apoio à alegação de que a média real difere do valor projetado de 130.

Caso 2: Testes de amostras grandes

- Quando o tamanho da amostra é grande, os testes de z para o caso I são facilmente modificados para produzir procedimentos de teste válidos, sem precisar que a distribuição da população seja normal ou que σ seja conhecido.
- Um n grande implica que o desvio padrão da amostra s estará próximo de σ para a maioria das amostras, de modo que a variável padronizada:

$$z = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

- possui distribuição aproximadamente normal padronizada.
- A estatística de teste para amostras grandes é definida pela substituição do valor nulo μ_0 :

$$z = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Caso 2: Testes de amostras grandes

A estatística de teste para amostras grandes é definida como:

$$z = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

- que tem distribuição aproximadamente normal padronizada quando ${\cal H}_0$ for verdadeira.
- O uso das mesmas regiões de rejeição dadas o caso I, resulta em procedimentos de teste para os quais o nível de significância é aproximadamente (e não exatamente) α .
- A regra prática n=40 novamente será usada para caracterizar o tamanho grande da amostra.

Exemplo 2 - Testes de amostras grandes

• Um cone de penetração dinâmico (DCP) é usado para medir a resistência do material à penetração (mm/fluxo), à medida que um cone é levado ao pavimento ou à base. Suponha que, para uma aplicação específica, é necessário que o valor médio real do DCP de certo tipo de pavimento seja menor que 30. O pavimento não será usado a menos que haja evidência conclusiva de que a especificação foi satisfeita. Vamos determinar e testar as hipóteses apropriadas usando os seguintes dados:

```
14,1 14,5 15,5 16,0 16,0 16,7 16,9 17,1 17,5 17,8 17,8 18,1 18,2 18,3 18,3 19,0 19,2 19,4 20,0 20,0 20,8 20,8 21,0 21,5 23,5 27,5 27,5 28,0 28,3 30,0 30,0 31,6 31,7 31,7 32,5 33,5 33,9 35,0 35,0 35,0 36,7 40,0 40,0 41,3 41,7 47,5 50,0 51,0 51,8 54,4 55,0 57,0
```

Exemplo 2 - Testes de amostras grandes

• A partir do enunciado observa-se que:

o Parâmetro : μ = valor médio real do DCP de um pavimento.

O Hipótese nula: H_0 : $\mu = 30$ (valor nulo $\mu_0 = 30$).

• Hipótese alternativa: H_a : $\mu < 30$

- A partir dos dados observa-se que:
 - O tamanho da amostra é n = 52;
 - A média amostral é: $\bar{x} = 28,7615$;
 - o O desvio padrão amostral é: s = 12,2647

Exemplo 2 - Testes de amostras grandes

- I. Parâmetro de interesse: μ = valor médio real do DCP.
- 2. Hipótese nula: H_0 : $\mu = 30$ (valor nulo $\mu_0 = 30$).
- 3. Hipótese alternativa: H_a : μ < 30 (pavimento não será usado a menos que a hipótese nula seja rejeita).
- 4. Estatística de teste:

$$z = \frac{\bar{x} - 30}{s / \sqrt{n}}$$

- 5. Região de rejeição: Usando um teste com nível de significância $\alpha=0.05$ temos que H_o será rejeitada se z $\leq -z_{\alpha} \Rightarrow$ z $\leq -z_{0.05} = -1.645$ (Teste de cauda inferior).
- 6. Calcule a estatística de teste: $z = \frac{28,7615 30}{12,2647/\sqrt{52}} = \frac{-1,2385}{1,7} = -0,7285$
- 7. Como o valor calculado $z=-0.73 \le -1.645$ não cai na região de rejeição, H_0 não pode ser rejeitada com nível de significância 0,05. Não temos evidências para concluir que $\mu < 30$. O uso do pavimento não é justificado.

Testes de Hipóteses

Exemplo 2

Tabela A.3 Área sob a Curva Normal Padronizada

						_				
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
-1,8	0,0359	0,0352	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0722	0,0708	0,0694	0,0681
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776

Caso 3: População com distribuição normal amostra pequena

- Quando n é pequeno, o Teorema do Limite Central (TLC) não pode mais ser usado para justificar um teste de amostra grande.
- Assumiremos que a distribuição da população é pelo menos aproximadamente normal e descreveremos procedimentos de teste cuja validade apóia-se nessa suposição.
- Se $X_1, X_2, ..., X_n$ for a amostra aleatória de uma distribuição normal, a variável padronizada:

$$T = \frac{\bar{x} - \mu}{S / \sqrt{n}}$$

• Possui distribuição t com n-1 graus de liberdade (gl).

Caso 3: População com distribuição normal amostra pequena

- Procedimento de Teste t neste caso com n pequeno:
- Hipótese nula: H_0 : $\mu = \mu_0$
- Valor da estatística de teste: $t = \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}$

• Hipótese alternativa: Região de rejeição para o teste nível α :

 H_a : $\mu > \mu_0$ $t \ge t_{\alpha,n-1}$ (teste de cauda superior)

 H_a : $\mu < \mu_0$ $t \le -t_{\alpha,n-1}$ (teste de cauda inferior)

 H_a : $\mu \neq \mu_0$ tanto $t \geq t_{\alpha/2,n-1}$ out $\leq -t_{\alpha/2,n-1}$ (teste bicaudal)

- A estatística de teste aqui é realmente a mesma que no caso da amostra grande, mas é denominada T, para enfatizar que sua distribuição nula é uma distribuição t com n-1 gl em vez da distribuição normal padronizada (z).
- A região de rejeição para o teste t difere da do teste de z somente no que diz respeito ao valor t crítico de $t_{\alpha,n-1}$ substituir o valor z crítico de z_{α} .

Exemplo 3 - Testes de amostras pequenas população normal

- Um local de trabalho seguro e bem-projetado pode contribuir muito para aumentar a produtividade. É especialmente importante que os funcionários não sejam solicitados a realizar tarefas como levantamento de peso que excedam suas capacidades.
- Os dados sobre o peso máximo aceitável de levantamento (MAWL, em kg) para uma frequência de quatro levantamentos/min. foram estudados.
- As pessoas foram selecionadas aleatoriamente de uma população de homens saudáveis entre 18-30 anos. Assumindo que MAWL é normalmente distribuído, os dados a seguir sugerem que o valor médio de MAWL da população excede 25?

25,8 36,6 26,3 21,8 27,2

17

Exemplo 3 - Testes de amostras pequenas população normal

- Como a amostra é pequena e normal fazemos o Teste t com $\alpha = 0.05$.
- I. Parâmetro de interesse: μ = valor médio de MAWL da população.
- 2. Hipótese nula: H_0 : $\mu = 25$ (valor nulo $\mu_0 = 25$).
- 3. Hipótese alternativa: H_a : $\mu > 25$
- 4. Estatística de teste: $t = \frac{\bar{x}-25}{s/\sqrt{5}}$
- 5. Região de rejeição: H_o será rejeitada se $t \ge t_{\alpha,n-1} = t_{0,05;\,4} = 2,132$ (Teste de cauda superior).
- 6. Calcule a estatística de teste:

Calcula-se
$$\sum x_i = 137,7 \text{ e } \sum x_i^2 = 3911,97$$

 $\bar{x} = 27,54$ $s^2 = \sum x_i^2 - n\bar{x}^2/n - 1 = 29,92$ $s = 5,47$
 $t = \frac{27,54 - 25}{5,47/\sqrt{5}} = \frac{2,54}{2,45} = 1,036$

Exemplo 3 - Testes de amostras pequenas população normal

7. Como o valor calculado $z=1,04 \ge 2,132$ não cai na região de rejeição, H_0 não pode ser rejeitada com nível de significância 0,05. Ainda é possível que μ seja (no máximo) 25.

Tabela A.5 Valores Críticos para as Distribuições t

α											
v	0,10	0,05	0,025	0,01	0,005	0,001	0,0005				
1	3,078	6,314	12,706	31,821	63,657	318,31	636,62				
2	1,886	2,920	4,303	6,965	9,925	22,326	31,598				
3	1,638	2,353	3,182	4,541	5,841	10,213	12,924				
4	1,533	2,132	2,776	3,747	4,604	7,173	8,610				
5	1,476	2,015	2,571	3,365	4,032	5,893	6,869				
6	1,440	1,943	2,447	3,143	3,707	5,208	5,959				
7	1,415	1,895	2,365	2,998	3,499	4,785	5,408				
8	1,397	1,860	2,306	2,896	3,355	4,501	5,041				
9	1,383	1,833	2,262	2,821	3,250	4,297	4,781				

Testes da Proporção de uma População Definição

- Seja *p* a proporção de indivíduos ou objetos em uma população que possui uma propriedade especificada. Onde, o fato de possuir a propriedade é considerado um sucesso.
- Os testes relacionados a p serão feitos com base em uma amostra aleatória de tamanho n da população.
- Quando o n é grande, tanto X e o estimador $\hat{p} = \frac{X}{n}$ têm distribuição aproximadamente normal.
- Já, quando o n é pequeno em relação ao tamanho da população, X, o número de sucessos na amostra possui aprox. uma distribuição binomial.

Testes da Proporção de uma População

Caso 1: Para amostras grandes

- Procedimento de Teste para uma proporção com n grande
- Hipótese nula: H_0 : $p = p_0$
- Valor da estatística de teste: $z = \frac{\hat{p} p_0}{\sqrt{p_0 q_0/n}}$, onde $q_0 = 1 p_0$

• Hipótese alternativa: Região de rejeição para o teste nível α :

$$H_a\colon p>p_0$$
 $z\geq z_{\alpha}$ (teste de cauda superior) $H_a\colon p< p_0$ $z\leq -z_{\alpha}$ (teste de cauda inferior) $H_a\colon p\neq p_0$ tanto $z\geq z_{\alpha/2}$ ou $z\leq -z_{\alpha/2}$ (teste bicaudal)

• Esse procedimento é válido desde que $np_0 \ge 10$ e $nq_0 \ge 10$

Testes da Proporção de uma População Exemplo 4 – Teste para amostras grandes

- Uma pesquisa recente sugere que a obesidade é um problema crescente nos Estados Unidos entre todos os grupos de idade. Foi observado que 1276 pessoas, em uma amostra de 4115 adultos, foram consideradas obesas de acordo com o seu índice de massa corporal ser superior a 30.
- Uma pesquisa de 1998, com base na avaliação das próprias pessoas, revelou que 20% dos americanos adultos se consideravam obesos. Os dados mais recentes sugerem que a proporção real de adultos obesos é mais de 1,5 vez a porcentagem da pesquisa de auto-avaliação?
- Vamos fazer um teste de hipóteses, usando um nível de significância de 0,10.

• A proporção real de adultos obesos é $p = 0.2 \times 1.5 = 0.3$

Testes da Proporção de uma População

Exemplo 4 – Teste para amostras grandes

- Uma vez que $np_0=4115(0,3)\geq 10$ e $nq_0=4115(0,7)\geq 10$, o teste z de amostra grande certamente pode ser usado.
- I. Parâmetro de interesse: p = proporção dos adultos americanos obesos.
- 2. Hipótese nula: H_0 : p = 0.3 (valor nulo $p_0 = 0.3$).
- 3. Hipótese alternativa: H_a : p > 0.3
- 4. Estatística de teste: $z = \frac{\hat{p}-0.3}{\sqrt{(0.3)(0.7)/4115}}$
- 5. Região de rejeição: H_o será rejeitada se z $\geq z_{\alpha} = t_{0,1} = 1,28$ (Teste de cauda superior).
- 6. Calcule a estatística de teste:

Calcula-se
$$\hat{p} = {}^{1276}/{}_{4115} = 0.31$$

$$z = \frac{{}^{0.31-0.3}}{\sqrt{(0.3)(0.7)/4115}} = \frac{{}^{0.01}}{{}^{0.007143}} = 1.3999$$

7. Como o valor calculado $z=1,40 \ge 1,28$ cai na região de rejeição, H_0 pode ser rejeitada. Usando um nível de significância de 0,10, parece que mais de 30% dos adultos americanos são obesos.

Testes da Proporção de uma População Exemplo 4 - Teste para amostras grandes

 $\Phi(z) = P(Z \le z)$ Função de densidade normal padronizada $\text{\'Area sombreada} = \Phi(z)$

Tabela A.3	Área sob	a Curva	Normal	Padronizada	(cont.)
------------	----------	---------	--------	-------------	---------

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9278	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936

Testes da Proporção de uma População Teste para amostras pequenas

- Os procedimentos de teste, quando o tamanho da amostra n é pequeno, baseiam-se diretamente na distribuição binomial.
- Procedimento de Teste para uma proporção com n pequena
- Hipótese nula: H_0 : $p = p_0$
- Valor da estatística de teste: X observado na amostra
- Hipótese alternativa: Região de rejeição para o teste nível α :

$$H_a: p > p_0$$
 $x \ge c \text{ se } B(c; n; p) \ge 1 - \alpha \text{ (cauda superior)}$

$$H_a$$
: $p < p_0$ $x \le c$ se $B(c; n; p) \le \alpha$ (cauda inferior)

• Esse procedimento é válido desde que $np_0 < 10$ e $nq_0 < 10$

Testes da Proporção de uma População Exemplo 5 – Teste para amostras pequenas

- Um fabricante de materiais plásticos desenvolveu um novo tipo de lixeira e propõe vendê-las com uma garantia incondicional de 6 anos. Para ver se isso é economicamente viável, 20 latas-modelo são submetidas a um teste de vida útil acelerado para simular 6 anos de uso.
- A garantia proposta será modificada somente se os dados da amostra sugerirem fortemente que menos de 90% das lixeiras sobreviveriam ao período de 6 anos. Seja p a proporção de lixeiras que sobrevivem ao teste acelerado.

Testes da Proporção de uma População

Exemplo 5 – Teste para amostras pequenas

- As hipóteses relevantes são H_0 : p = 0.9 versus H_a : p < 0.9.
- Uma decisão será tomada com base na estatística de teste X, o número das que sobrevivem entre as 20 lixeiras.
- Se o nível de significância desejado for $\alpha = 0.05$,
- O valor de corte c deve satisfazer $B(c; 20; 0.9) \le 0.05$
- Com base na distribuição binomial cumulativa:

$$B(15; 20; 0,9) = 0,043,$$

 $B(16; 20; 0,9) = 0,133.$

- A região de rejeição apropriada é, portanto, $x \le 15$
- Se o teste acelerado resultasse em $x=14,\ H_0$ seria rejeitada em favor de H_a , precisando de uma modificação da garantia proposta.

Testes da Proporção de uma População Exemplo 5 – Proporção para amostras pequenas

Tabela A.1 Probabilidades Binomiais Acumuladas (cont.)

 $B(x; n, p) = \sum_{y=0}^{x} b(y; n, p)$

d. n = 20

		p												†		
		0,01	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95	0,99
	0	0,818	0,358	0,122	0,012	0,003	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	1	0,983	0,736	0,392	0,069	0,024	0,008	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	2	0,999	0,925	0,677	0,206	0,091	0,035	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	3	1,000	0,984	0,867	0,411	0,225	0,107	0,016	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	4	1,000	0,997	0,957	0,630	0,415	0,238	0,051	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	5	1,000	1,000	0,989	0,804	0,617	0,416	0,126	0,021	0,002	0,000	0,000	0,000	0,000	0,000	0,000
	6	1,000	1,000	0,998	0,913	0,786	0,608	0,250	0,058	0,006	0,000	0,000	0,000	0,000	0,000	0,000
	7	1,000	1,000	1,000	0,968	0,898	0,772	0,416	0,132	0,021	0,001	0,000	0,000	0,000	0,000	0,000
	8	1,000	1,000	1,000	0,990	0,959	0,887	0,596	0,252	0,057	0,005	0,001	0,000	0,000	0,000	0,000
	9	1,000	1,000	1,000	0,997	0,986	0,952	0,755	0,412	0,128	0,017	0,004	0,001	0,000	0,000	0,000
	10	1,000	1,000	1,000	0,999	0,996	0,983	0,872	0,588	0,245	0,048	0,014	0,003	0,000	0,000	0,000
	11	1,000	1,000	1,000	1,000	0,999	0,995	0,943	0,748	0,404	0,113	0,041	0,010	0,000	0,000	0,000
	12	1,000	1,000	1,000	1,000	1,000	0,999	0,979	0,868	0,584	0,228	0,102	0,032	0,000	0,000	0,000
	13	1,000	1,000	1,000	1,000	1,000	1,000	0,994	0,942	0,750	0,392	0,214	0,087	0,002	0,000	0,000
	14	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,979	0,874	0,584	0,383	0,196	0,011	0,000	0,000
4	15	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,994	0.949	0.762	0,585	0.370	0.043	0,003	0,000
1	16	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,984	0,893	0,775	0,589	0,133	0,016	0,000
	17	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,965	0,909	0,794	0,323	0,075	0,001
	18	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,992	0,976	0,931	0,608	0,264	0,017
	19	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,997	0,988	0,878	0,642	0,182