

LAPORAN PRAKTIKUM SISTEM DIGITAL FLIP-FLOP DASAR

DISUSUN OLEH:

NAMA : BIMA TRIADMAJA

NIM : L200210137

KELAS : C

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS KOMUNIKASI DAN INFORMATIKA
UNIVERSITAS MUHAMMADIYAH SURAKARTA
TAHUN 2021/2022

Percobaan 1. NOR Latch

1. Buat dan simulasikan NOR latch seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan Latch.

Jawab:

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

	S (Set)	R (Reset)	Ou	tput	Mode
No			Q	Q'	Wiode
1	0	1	0	1	Reset
2	0	0	0	1	Memori
3	1	0	1	0	Set
4	0	0	1	0	Memori
5	1	1	0	0	Togle

Catatan : Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori', 'set', 'reset', atau 'togle'.

- 3. Jawab pertanyaan berikut!
 - a. Apa yang akan terjadi jika kita berikan kondisi S = R = 0?

Jika kondisi S = R = 0, maka tidak akan memengaruhi keadaan nilai output, nilai output akan tetap menyimpan nilai input sebelumnya.

b. Kenapa kondisi S = R = 1 tidak diperbolehkan?

Jawab:

Kondisi S = R = 1 tidak diperbolehkan karena akan menghasilkan output Q dan Q' = 0, sedangkan keadaan Q dan Q' = 0 (sama) itu dilarang dalam latch.

Percobaan 2. NAND Latch

1. Buat dan simulasikan NOR latch seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan Latch.

Jawab:

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

NT.	S (Set)	R (Reset)	Ou	tput	Mode
No	3 (361)	K (Kesei)	Q	Q'	
1	0	1	1	0	Set
2	1	1	1	0	Memori
3	1	0	0	1	Reset
4	1	1	0	1	Memori
5	0	0	1	1	Togle

Catatan : Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori', 'set', 'reset', atau 'togle'

- 3. Jawab pertanyaan berikut!
 - a. Apa yang akan terjadi jika kita berikan kondisi S = R = 1? Jawab :

Jika kondisi S = R = 1, maka tidak akan memengaruhi keadaan nilai output, nilai output akan tetap menyimpan nilai input sebelumnya.

b. Kenapa kondisi S = R = 0 tidak diperbolehkan?Jawab :

Kondisi S = R = 0 tidak diperbolehkan karena akan menghasilkan output Q dan Q' = 1, sedangkan keadaan Q dan Q' = 1 (sama) itu dilarang dalam latch.

4. Berdasarkan analisis rangkaian flip-flop di atas, apa opini/pendapat anda tentang pernyataan "Flip-flop dan latch digunakan sebagai elemen penyimpanan data" : Jawab :

opini/pendapat saya tentang pernyataan "Flip-flop dan latch digunakan sebagai elemen penyimpanan data" yaitu memang rangkaian Flip-flop di atas memiliki sebuah kondisi untuk menyimpan, yaitu ketika S=R=0 pada latch NOR atau S=R=1 dalam latch NAND, namun ternyata rangkaian di atas masih memiliki sebuah kekurangan yaitu ketika ingin menyimpan kondisi togle itu tidak bisa karena dapat merusak logika yang ada di sistem digital.

Percobaan 3. Flip-Flop RS

1. Buat dan simulasikan Flip-Flop RS seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan Flip-Flop RS.

Jawab:

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

NT	C (C-4)	Set) R (Reset)	CLOCK	(Output	Mode
No S (Set	S (Set)			Q	$Q_{(t+1)}$	
1	0	0	0	Q	$Q_{(t+1)}$	ı
2	0	0	1	Q	$Q_{(t+1)}$	ı
3	0	1	0	Q	$Q_{(t+1)}$	-
4	0	1	1	0	1	Reset
5	1	0	0	0	1	Memori
6	1	0	1	1	0	Set
7	1	1	0	1	0	Memori
8	1	1	1	0	0	Togle

Catatan: Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori', 'set', 'reset', atau 'togle'

3. Jawab pertanyaan berikut!

a. Apa yang akan terjadi jika kita beri kondisi S = R = 1 dan clock berubah dari 1 ke 0? Jawab :

Maka akan terjadi error pada simulasi rangkaian tersebut, dengan kode "Logic race condition detected during transient analysis".

b. Bagaimana kondisi diatas dapat terjadi?

Jawab:

Kondisi diatas dapat terjadi karena lompatan yang besar di dalam input, yaitu terjadi kondisi terlarang sebanyak 2 kali. Ketika S=R=1 dan clock bernilai 1 menghasilkan Q dan Q(t+1)=0, dan jika clock di ubah dari 1 menjadi 0 maka menghasilkan Q dan Q(t+1)=1. Dalam kondisi ini, perubahan tersebut tidak diperbolehkan sehingga terjadi error pada simulasi rangkaian tersebut.

- c. Jelaskan bagaimana Flip-flop RS bekerja! Jawab :
 - Apabila R dan S bernilai rendah (low) artinya output Q tetap dalam keadaan terakhir tanpa batas karena tindakan latch internal.
 - ➤ Input S bernilai high akan menyebabkan Q bernilai 1, kecuali jika output telah berada dalam keadaan high. Dalam hal ini output tidak berubah, bahkan apabila input S kembali ke kondisi rendah.
 - ➤ Input R bernilai high dapat menyebabkan Q bernilai 0, kecuali jika output telah berada dalam keadaan low. Output Q selanjutnya tetap dalam kondisi rendah, walaupun masukan R berubah ke keadaan low.
 - Input R dan S tidak diperbolehkan dalam kondisi yang bernilai high di waktu yang sama.

Percobaan 4. Flip-Flop D

1. Buat dan simulasikan Flip-Flop D seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan flip-flop.

Jawab:

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

NT-	D	CLOCK	(Output	Mode
No	D		Q	$Q_{(t+1)}$	Mode
1	0	0	Q	$Q_{(t+1)}$	-
2	0	1	0	1	Data in
3	1	0	0	1	Memori
4	1	1	1	0	Data in
5	0	0	1	0	Memori
6	0	1	0	1	Data in
7	1	0	0	1	Memori
8	1	1	1	0	Data in

Catatan : Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori' atau 'Data in/masuk'.

3. Jelaskan bagaimana Flip-flop D bekerja!

Jawab:

Flip flop D dapat bekerja dengan memasukkan data dari input D apabila mendapat pulsa dari clock atau proses data masuk ke dalam rangkaian ini terjadi apabila nilai dari clock adalah 1 dan akan menyimpan data apabila nilai dari clock bernilai 0.

4. Apa fungsi NOT gate pada Flip-Flop D dibandingkan dengan Flip- Flop SR! Jawab:

NOT gate pada Flip-Flop D berfungsi agar nilai D (data) tidak sama dengan input pada RS (Reset / Set), hal ini bertujuan agar dapat menghindari kondisi terlarang (togle), sehingga Flip-flop D hanya bisa menghasilkan kondisi (mode) Memori atau Data in/masuk.

Percobaan 5. Flip-Flop JK

1. Buat dan simulasikan JK Flip-Flop seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan flip-flop.

Jawab:

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

	J	K	CLOCK	Output		Mada
				Q	$Q_{(t+1)}$	Mode
1	0	0	0	0	1	Memori
2	0	0	1	0	1	Memori
3	0	1	0	0	1	Memori
4	0	1	1	0	1	Memori
5	1	0	0	1	0	Set
6	1	0	1	1	0	Memori
7	1	1	0	1	0	Reset / Set
8	1	1	1	1	0	Memori

Catatan: Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori', 'set', 'reset', atau 'togle'

3. Jawab pertanyaan berikut ini

a. Apa yang akan terjadi jika J = K = 0, dan clock rise up (change from 0 to 1)? Jawab:

Maka output akan menyimpan nilai keadaan sebelumnya.

b. Apa yang akan terjadi jika J = K = 1, dan clock rise up? Jawab :

Maka keadaan akan berganti-ganti dari Set ke Reset, lalu Reset ke Set saat Clock rise up, setelah itu menyimpan nilai sebelumnya.

4. Jelaskan bagaimana Flip-flop JK bekerja! Jawab :

Apabila J bernilai low (0) dan K bernilai high (1), master direset melalui sisi naik pulsa clock. Ouput Q high pada master akan dilanjutkan ke slave. Oleh karena itu kedatangan sisi turun akan membuat slave ter-reset. Hal ini juga sesuai dengan kinerja dari master. Apabila input J dan K pada master bernilai high, flip-flop akan berubah ketika menemui sisi naik clock dan slave akan berubah pada pulsa sisi turun. Sehingga apapun yang dilakukan oleh master, akan dilakukan juga oleh slave. Apabila master di-reset, maka slave juga akan di-reset, dan juga ketika master di-set maka slave pun juga akan di-set.