CS252 Graduate Computer Architecture

Lecture 10: Network 3: Clusters, Examples

February 16, 2001
Prof. David A. Patterson
Computer Science 252
Spring 2001

Review: Networking

- Protocols allow hetereogeneous networking
 - Protocols allow operation in the presense of failures
 - Internetworking protocols used as LAN protocols=> large overhead for LAN
- Integrated circuit revolutionizing networks as well as processors
 - Switch is a specialized computer
 - Faster networks and slow overheads violate of Amdahl's Law
- Wireless Networking offers new challenges in bandwidth, mobility, reliability, ...

Cluster

- LAN switches => high network bandwidth and scaling was available from off the shelf components
- 2001 Cluster = collection of independent computers using switched network to provide a common service
- Many mainframe applications run more "loosely coupled" machines than shared memory machines (next chapter/week)
 - databases, file servers, Web servers, simulations, and multiprogramming/batch processing
 - Often need to be highly available, requiring error tolerance and repairability
 - Often need to scale

Cluster Drawbacks

- Cost of administering a cluster of N machines
 ~ administering N independent machines
 vs. cost of administering a shared address space N
 processors multiprocessor
 ~ administering 1 big machine
- Clusters usually connected using I/O bus, whereas multiprocessors usually connected on memory bus
- Cluster of N machines has N independent memories and N copies of OS, but a shared address multiprocessor allows 1 program to use almost all memory
 - DRAM prices has made memory costs so low that this multiprocessor advantage is much less important in 2001

Cluster Advantages

- Error isolation: separate address space limits contamination of error
- Repair: Easier to replace a machine without bringing down the system than in an shared memory multiprocessor
- Scale: easier to expand the system without bringing down the application that runs on top of the cluster
- Cost: Large scale machine has low volume => fewer machines to spread development costs vs. leverage high volume off-the-shelf switches and computers
- Amazon, AOL, Google, Hotmail, Inktomi, WebTV, and Yahoo rely on clusters of PCs to provide services used by millions of people every day

Addressing Cluster Weaknesses

- Network performance: SAN, especially Inifiband, may tie cluster closer to memory
- Maintenance: separate of long term storage and computation
- Computation maintenance:
 - Clones of identical PCs
 - 3 steps: reboot, reinstall OS, recycle
 - At \$1000/PC, cheaper to discard than to figure out what is wrong and repair it?
- Storage maintenance:
 - If separate storage servers or file servers, cluster is no worse?

Clusters and TPC Benchmarks

- "Shared Nothing" database (not memory, not disks) is a match to cluster
- 2/2001: Top 10 TPC performance 6/10 are clusters (4 / top 5)

Putting it all together: Google

- Google: search engine that scales at growth Internet growth rates
- Search engines: 24x7 availability
- Google 12/2000: 70M queries per day, or AVERAGE of 800 queries/sec all day
- Response time goal: < 1/2 sec for search
- Google crawls WWW and puts up new index every 4 weeks
- Stores local copy of text of pages of WWW (snippet as well as cached copy of page)
- 3 collocation sites (2 CA + 1 Virginia)
- 6000 PCs, 12000 disks: almost 1 petabyte!

Hardware Infrastructure

- VME rack 19 in. wide, 6 feet tall, 30 inches deep
- Per side: 40 1 Rack Unit (RU) PCs +1 HP Ethernet switch (4 RU): Each blade can contain 8 100-Mbit/s EN or a single 1-Gbit Ethernet interface
- Front+back => 80 PCs +2 EN switches/rack
- Each rack connects to 2
 128 1-Gbit/s EN switches
- Dec 2000: 40 racks at most recent site

Google PCs

- 2 IDE drives, 256 MB of SDRAM, modest Intel microprocessor, a PC mother-board, 1 power supply and a few fans.
- Each PC runs the Linix operating system
- Buy over time, so upgrade components: populated between March and November 2000
 - microprocessors: 533 MHz Celeron to an 800 MHz Pentium III,
 - disks: capacity between 40 and 80 GB, speed 5400 to 7200 RPM
 - bus speed is either 100 or 133 MH
 - Cost: ~ \$1300 to \$1700 per PC
- PC operates at about 55 Watts
- Rack => 4500 Watts , 60 amps

Reliability

- For 6000 PCs, 12000s, 200 EN switches
- ~ 20 PCs will need to be rebooted/day
- ~ 2 PCs/day hardware failure, or 2%-3% / year
 - 5% due to problems with motherboard, power supply, and connectors
 - 30% DRAM: bits change + errors in transmission (100 MHz)
 - 30% Disks fail
 - 30% Disks go very slow (10%-3% expected BW)
- 200 EN switches, 2-3 fail in 2 years
- 6 Foundry switches: none failed, but 2-3 of 96 blades of switches have failed (16 blades/switch)
- Collocation site reliability:
 - 1 power failure,1 network outage per year per site
 - Bathtub for occupancy

CS 252 Administrivia

- Signup for meetings 12:00 to 2 Wed Feb 21
- Email project questionnaire Monday
- No lecture next Wednesday Feb 21

Google Performance: Serving

- How big is a page returned by Google?
 ~16KB
- Average bandwidth to serve searches
 70,000,000/day x 16,750 B x 8 bits/B
 24 x 60 x 60
 =9,378,880 Mbits/86,400 secs
 = 108 Mbit/s

Google Performance: Crawling

- How big is a text of a WWW page? ~4000B
- 1 Billion pages searched
- Assume 7 days to crawl
- Average bandwidth to crawl

1,000,000,000/pages x 4000 B x 8 bits/B

 $24 \times 60 \times 60 \times 7$ =32,000,000 Mbits/604,800 secs = 59 Mbit/s

Google Performance: Replicating Index

- How big is Google index? ~5 TB
- Assume 7 days to replicate to 2 sites, implies BW to send + BW to receive
- Average bandwidth to replicate new index

```
2 \times 2 \times 5,000,000 \text{ MB} \times 8 \text{ bits/B}

24 \times 60 \times 60 \times 7

=160,000,000 Mbits/604,800 secs

= 260 Mbit/s
```

Colocation Sites

- Allow scalable space, power, cooling and network bandwidth plus provide physical security
- charge about \$500 to \$750 per Mbit/sec/month
 - if your continuous use measures 1- 2 Gbits/second
- to \$1500 to \$2000 per Mbit/sec/month
 - if your continuous use measures 1-10 Mbits/second
- Rack space: costs \$800 -\$1200/month, and drops by 20% if > 75 to 100 racks (1 20 amp circuit)
 - Each additional 20 amp circuit per rack costs another \$200 to \$400 per month
- PG&E: 12 megawatts of power, 100,000 sq. ft./building, 10 sq. ft./rack => 1000 watts/rack

Google Performance: Total

- Serving pages: 108 Mbit/sec/month
- Crawling: 59 Mbit/sec/week, 15 Mbit/s/month
- Replicating: 260 Mbit/sec/week, 65 Mb/s/month
- Total: roughly 200 Mbit/sec/month
- Google's Collocation sites have OC48 (2488 Mbit/sec) link to Internet
- Bandwidth cost per month?
 ~\$150,000 to \$200,000
- 1/2 BW grows at 20%/month

Google Costs

- Collocation costs: 40 racks @ \$1000 per month + \$500 per month for extra circuits
- = ~\$60,000 per site, * 3 sites
- ~\$180,000 for space
- Machine costs:
- Rack = \$2k + 80 * \$1500/pc + 2 * \$1500/EN
 = ~\$125k
- 40 racks + 2 Foundry switches @\$100,000
 = ~\$5M
- 3 sites = \$15M
- Cost today is \$10,000 to \$15,000 per TB

Comparing Storage Costs: 1/2001

- Google site, including 3200 processors and 0.8 TB of DRAM, 500 TB (40 racks) \$10k - \$15k/ TB
- Compaq Cluster with 192 processors,
 0.2 TB of DRAM, 45 TB of SCSI Disks
 (17+ racks) \$115k/TB (TPC-C)
- HP 9000 Superdome: 48 processors,
 0.25 TB DRAM, 19 TB of SCSI disk =
 (23+ racks) \$360k/TB (TPC-C)

Putting It All Together: Cell Phones

- 1999 280M handsets sold; 2001 500M
- Radio steps/components:
 Receive/transmit
 - Antenna
 - Amplifier
 - Mixer
 - Filter
 - Demodulator
 - Decoder

Putting It All Together: Cell Phones

- about 10 chips in 2000, which should shrink, but likely separate MPU and DSP
- Emphasis on energy efficiency

Cell phone steps (protocol)

- Find a cell
 - Scans full BW to find stronger signal every 7 secs
- 1. Local switching office registers call
 - records phone number, cell phone serial number, assigns channel
 - sends special tone to phone, which cell acks if correct
 - Cell times out after 5 sec if doesn't get supervisory tone
- Communicate at 9600 b/s digitally (modem)
 - Old style: message repeated 5 times
 - AMPS had 2 power levels depending on distance (0.6W and 3W)

Frequency Division Multiple Access (FDMA)

 FDMA separates the spectrum into distinct voice channels by splitting it into uniform chunks of bandwidth

!st generation analog

824.04MHz

Time Division Multiple Access (TDMA)

- a narrow band that is 30 kHz wide and 6.7 ms long is split time-wise into 3 time slots.
- Each conversation gets the radio for 1/3 of time.
- Possible because voice data converted to digital information is compressed so
- Therefore, TDMA has 3 times capacity of analog
- GSM implements TDMA in a somewhat different and incompatible way from US (IS-136); also encrypts the call

Code Division Multiple Access (CDMA)

- CDMA, after digitizing data, spreads it out over the entire bandwidth it has available.
- Multiple calls are overlaid over each other on the channel, with each assigned a unique sequence code.
- CDMA is a form of spread spectrum; All the users transmit in the same wideband chunk of spectrum.
- Each user's signal is spread over the entire bandwidth by a unique spreading code. same unique code is used to recover the signal.
- GPS for time stamp
- . Between 8 and 10 separate 2/16/01 calls space as 1 analog call

From "How Stuff Works" on cell phones: www.howstuffworks.com

Cell Phone Towers CS252/Patterson 2/16/01

From "How Stuff Works" on cell phones: www.howstuffworks.com

Lec 10.26

If time permits

- Discuss Hennessy paper. "The future of systems research." Computer, vol.32, (no.8), IEEE Comput. Soc, Aug. 1999
- Microprocessor Performance via ILP Analogy?
- What is key metric if services via servers is killer app?
- What is new focus for PostPC Era?
- How does he define availability vs. textbook definition?

Amdahl's Law Paper

- What was Amdahl's Observation?
- · What is Amdahl's Law?