

Joanna Sanchez
Waubonsee Community College

Outline

Introduction

- 1. Why Peptide Based Vaccines?
- 2. Structure of SARS-CoV 2 and Composition of Spike Glycoprotein

Methods and Goals

- 1. Immune Epitope Database and Analysis Resource
- 2. Research goals

Results

- 1. Immunome Browser & Positions in Spike-Glycoprotein
- 2. Five Variants of Interest
- 3. Comparison of Five SARS-CoV 2 Variants

Conclusions

- 1. Looking ahead
- 2. Conclusions
- 3. References

Why Peptide Based Vaccines?

Types of vaccines

Images from here

RNA

DNA

Viral vector

Virus-like particle

Protein sub-unit

Joanna Sanchez, Waubonsee Community College

Why Peptide Based Vaccines?

Types of vaccines

Images from here

mRNA vaccines: Based on messenger RNA taken from the virus

- Can be produced quickly
- Loose efficacy within a few months post immunization
- Maintained in cold chain storage

Images from here

Why Peptide Based Vaccines?

Types of vaccines

DNA

Viral vector

Virus-like particle

Images from here

- Greater stability → prolonged efficacy
- No cold chain storage
- Easily be modified and target emerging strains
- Stops anti-inflammatory reactions → help immunocompromised individuals

Structure of SARS-CoV 2 and Composition of Spike Glycoprotein

- SARS-CoV-2 virus has Spike-Glycoprotein (left)
- Spike-Glycoprotein binding to host cell receptor ACE2 (middle)
- The linear peptide epitope of SARS-CoV-2 structure (right)
- Peptide (encoded as sequence of letters): composed of amino acids
- Receptor binding motif (RBM): most immunogenic region

Methods and Goals

Immune Epitope Database (IEDB) and Analysis Resources

- The IEDB catalogs real experimental data on antibody and T cell epitopes
 - Contains data of humans, non-human primates, and other animal species
 - Other infectious diseases, allergy, autoimmunity and transplantation - ex) SARS-CoV, influenza
- The IEDB also hosts tools
 - Epitope prediction tools
 - Epitope analysis tools

Methods and Goals

Research Goals

Mapping Immunogenic Regions In Sars-Cov-2 To Understand Vaccine Design Using Bioinformatics

Compare immune evasion of **five different variants** of concern by analysing IEDB data

- Identify immunogenic hotspots of epitope recognition in Spike-Glycoprotein
- Identify conserved epitopes in these different variants

Joanna Sanchez, Waubonsee Community College

Methods and Goals

Selection Filters

- The IEDB data can be filtered
- Our study was focused on the following selections
 - Any epitope
 - Epitope source: SARS-CoV2
 - O Host: Human
 - Assay: **B cell**
 - MHC restriction: Any
 - O Disease: Any

Immunome Browser

Positions in Spike-Glycoprotein

Spike-Glycoprotein of SARS-CoV 2 (with selected filter)

- 3D images are normalized such that
 maximum value = 1 and minimum value = 0
- The more immunogenic regions, the more darker blue /

The immunogenicity hotspots were found in the residue range of 400 - 550, corresponds to the receptor binding domain

SARS-CoV 2 Variants of Interest

Alpha (B.1.1.7)

Primitive determination: September 2020

First origin: United Kingdom

Beta (B.1.351)

Primitive determination: October 2020

First origin: South Africa

Gamma (P.1)

Primitive determination: January 2021

First origin: Brazil/ Japan

Delta (B.1.617.2)

Primitive determination: October 2020

First origin: India

Omicron (B.1.1.529)

Primitive determination: November 2021

First origin: South Africa

SARS-CoV 2 Variants of Interest

Alpha (B.1.1.7)

Primitive determination: September 2020

First origin: United Kingdom

Beta (B.1.351)

Primitive determination: October 2020

First origin: South Africa

Gamma (P.1)

Primitive determination: January 2021

First origin: Brazil/ Japan

Delta (B.1.617.2)

Primitive determination: October 2020

First origin: India

Omicron (B.1.1.529)

Primitive determination: November 2021

First origin: South Africa

Comparison of Five SARS-CoV 2 Variants

Among, all five variants omicron has the most immunogenic regions (35) \rightarrow highly transmissible

Epitope Assay Counts vs Response Frequency

With respect to smaller counts, more frequently responded

With respect to larger counts,

 Data from IDEB was analyzed to study correlation between epitope assay counts and response frequency

We see two trends:

- Smaller counts with respect to response more frequently responded
- Larger count with respect to response less frequently responded
- Many mutations in Omicron follows the larger count trend within respect to higher response frequency

Conclusions

Looking Ahead

All positions in the Spike-Glycoprotein, where omicron has shared mutations with other variants

Position	142	144	417	478	484	501	655	681
Alpha		0				0		0
Beta					0	0		
Gamma			0		0	0	0	
Delta	0		0	0	O			o
Omicron	0	0	0	0	0	0	0	0

Emerging potential hotspots for future vaccines

- We hypothesize positions with a high degree of overlap (green) as emerging potential hotspots for immune evasion and target for new peptide-based vaccines
- We can use the visualization software like iCn3D to localize the mutations on the 3D structure of the Spike-Glycoprotein
- Using prediction tools in IEDB, we can predict the binding of antibodies that can neutralize the immune evasion of the variants
- This prediction can be utilized in the biopharma industry for future iterations of vaccine development

Conclusions

Summary

- Five different SARS-CoV 2 variants were compared using IEDB
- Omicron has the most immunogenic regions
- Conserved mutation between Omicron and other variants was observed
- Emerging potential hotspots for immune evasion and target for new peptide-based vaccines was identified

Thank you!

Conclusions

References

- [1] Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2018 Oct 24. doi: 10.1093/nar/gky1006. PMID: 30357391; PMCID: PMC6324067
- [2] Motozono, C., Toyoda, M., Zahradnik, J. et al. (2021). SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host & Microbe, 29(7), 1124-1136.e11. https://doi.org/10.1016/j.chom.2021.06.006
- [3] Taka, E., Yilmaz, S. Z., Golcuk, M. et al. (2021). Critical Interactions Between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor. The Journal of Physical Chemistry B 2021 125 (21), 5537-5548 DOI: 10.1021/acs.jpcb.1c02048
- [4] Lan, J., Ge, J., Yu, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020). https://doi.org/10.1038/s41586-020-2180-5
- [5] "Tools to Study SARS-CoV-2-Host Interactions", accessed Apr 6. 2023, https://www.caymanchem.com/news/tools-to-study-sars-cov-2-host-interactions

Backup

Joanna Sanchez Waubonsee Community College

Peptide Based Vaccines

- Based on sequence of amino acid; synthetic
- Easily be modified and target emerging strains
- Greater stability; only focused on relevant parts of the protein
- No cold chain storage

- Based on messenger RNA taken from the virus.
- Loose efficacy within a few months post immunization
- Reproduce quickly

Materials and Methods

Materials and Methods

START YOUR SEARCH HERE							
Epitope (?) Any Linear peptide Exact M > Ex: SIINFEKL Discontinuous Non-peptidic	Assay ③ T Cell B Cell MHC Ligand Ex: neutralization Find Outcome: Positive Negative						
Organism SARS-CoV2 (ID:2697) Find Antigen Ex: core, capsid, myos Find	MHC Restriction ③ Any Class I Class II Non-classical Ex: HLA-A*02:01 Find						
Host ③ Any Human Mouse Non-human primate Ex: dog, camel Find	Disease ? Any Infectious Allergic Autoimmune Ex: asthma						

Overview of The Immune Epitope Database

Mutations in B.1.1.7 (Alpha)

Mutations in B.1.351 (Beta)

Mutations in P.1 (Gamma)

Mutations in B.1.617.2 (Delta)

Mutations in B.1.1.529 (Omicron)

Position in Reference Antigen (Spike glycoprotein)