1 Nonlinear Equations & Bisection Method (Section 3.1)

Let's consider the problem of finding zeros.

(Example.) Suppose we have the functions $\sin(x)$ and e^x , and suppose we want to find the values of x such that $\sin(x) - e^x$. Let

$$f(x) = \sin(x) - e^x$$

so that we can solve for $\sin(x) - e^x = 0$. We want to seek the "zero" (i.e., the root) of f(x).

1.1 Bisection Method

The bisection method makes the assumption that $f: \mathbb{R} \to \mathbb{R}$ is <u>continuous</u> on an interval [a, b]. We want to consider the interval [a, b] so that

$$f(a) \cdot f(b) < 0.$$

This implies that either f(x) or f(b), but not both, are negative (i.e., $\operatorname{sgn}(f(a)) \neq \operatorname{sgn}(f(b))$).

Then, we can solve for

$$c = \frac{b+a}{2} = \frac{a + (b-a)}{2}.$$

c is the midpoint of a and b. Then, we let check

- If $f(a) \cdot f(c) < 0$, then we let $b \leftarrow c$ and start with the new interval [a, b].
- Otherwise, $f(b) \cdot f(c) < 0$ and so we let $a \leftarrow c$ and start with the new interval [a, b].

We keep repeating this until the interval becomes sufficiently small.

1.2 Algorithm Idea and Stopping Conditions

Let

 \bullet *M* be the maximum iterations,

- δ be the interval tolerance $(|b-a| < \delta)$, and
- ϵ be the zero tolerance $(|f(c)| < \epsilon)$.

The algorithm takes in five inputs: $(M, \delta, \epsilon, a, b)$, where a and b (such that $a \leq b$) represents the interval endpoints (i.e., [a, b]).

Algorithm 1 Bisection Method

```
1: function Bisection(M, \delta, \epsilon, a, b)
         u \leftarrow f(a)
         v \leftarrow f(b)
3:
         e = b - a
 4:
         if sgn(u) = sgn(v) then
 5:
 6:
              Error
 7:
         end if
         for k \leftarrow 1 to M do
 8:
              e \leftarrow e/2
9:
10:
              c \leftarrow a + e
              w \leftarrow f(c)
11:
              if |e| < \delta or |w| < \epsilon then
12:
                  Break
13:
              end if
14:
              if sgn(u) = sgn(w) then
15:
16:
                  a \leftarrow c
17:
                  u \leftarrow w
              \mathbf{else}
18:
                  b \leftarrow c
19:
20:
                  v \leftarrow w
              end if
21:
         end for
22:
         return c
24: end function
```

1.3 Tolerances

We introduces the tolerances, δ and ϵ , for robustness.

• We might have $|f(c)| < \epsilon$ but $|b - a| > \delta$.

Notice how the graph is flat near the zero. This corresponds to a multiple root, which means the bisection method could have difficulty determining this zero to a high precision.

• We also have $|b-a| < \delta$ and $|f(c)| > \epsilon$.

The curve here, which is in the interval [a, b], is not continuous.

Remark: From the first point, if we have a function with a double root, then approximation may become less precise or outright impossible. For example, consider $f(x) = (x-1)^2$, which has a double root of x = 1. Because $\forall x \in \mathbb{R}, f(x) \geq 0$, the bisection method cannot be used here.

1.4 Error Analysis

Let $I_i = [a_i, b_i]$ be an interval. Then, we essentially have a sequence of intervals, $I_0, I_1, I_2, I_3, \ldots$, where $a_0 \le a_1 \le a_2 \le \ldots \le b_0$ and $b_0 \ge b_1 \ge b_2 \ge \ldots \ge a_0$.

For $m \ge 0$, We know that $b_{m+1} - a_{m+1} = \frac{1}{2}(b_m - a_m)$, so applying it repeatedly gives us

$$b_m - a_m = \frac{1}{2}(b_{m-1} - a_{m-1})$$
$$= \left(\frac{1}{2}\right)^m (b_0 - a_0).$$

The sequence, b_m and a_m , are monotonic and convergent. Because we're constantly dividing the interval by 2, we know that

$$\lim_{m \to \infty} (b_m - a_m) = \lim_{m \to \infty} \left(\frac{1}{2}\right)^m (b_0 - a_0) = 0.$$

We also know that, as a and b are the left and right endpoints of this interval, both a and b will converge to the root of the equation, r, i.e.,

$$\lim_{m \to \infty} a_m = \lim_{m \to \infty} b_m = r.$$

Then,

$$\lim_{m \to \infty} f(a_m) f(b_m) \le 0.$$

This yields

$$f(r)f(r) \le 0 \implies f(r) = 0.$$

Therefore,

In this sense, if at a certain stage in the process we have the interval I_n and the process is now stopped, the root is certain to lie in this interval. However, the best estimate of the root at this stage is not a_n or b_n , but the midpoint of the interval, c_n . In this sense, the error is then bounded by

$$|r - c_m| \le \frac{1}{2}|b_m - a_m|.$$

This gives us the following theorem.

Theorem 1.1: Bisection Method

If $I_i = [a_i, b_i]$ is an interval and I_0, I_1, \ldots, I_n denote the intervals in the bisection method, then the limits $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ exist, are equal, and represent a zero of f. If $r = \lim_{n \to \infty} c_n$ and $c_n = \frac{1}{2}(a_n + b_n)$, then

$$|r - c_n| \le \frac{1}{2}|b_n - a_n| = 2^{-(n+1)}|b_0 - a_0|.$$

(Exercise.) Suppose $[a_0, b_0] = [50, 63]$. How many steps needs to be done using the bisection method to compute a root with relative accuracy of 10^{-12} ?

We want to seek $|r - c_m|/|r| \le 10^{-12}$. This means that

$$|r - c_m|/50 \le 10^{-12}$$
.

(Note that we asked for the <u>relative</u> error.) The sufficient condition is

$$|r - c_m|/50 \le \left(\frac{1}{2}\right)^{m+1} (b_0 - a_0)/50 \le 10^{-12}.$$

From the theorem, we have

$$2^{-(n+1)}(13/50) \le 10^{-12}$$
.

From there, we can solve for n.