Mathematical models of action potentials

Part 6: propagation of action potentials

Outline: Part 6

In all the equations we discussed to this point: voltage, m, h, and n were assumed to be spatially-uniform

What do we do if voltages vary with time and location?

Electrical propagation in conceptual terms

Derivation of the relevant reaction-diffusion

This is where we transition from ODEs to PDEs

PDE = Partial Differential Equation

Electrical propagation results from spatial voltage gradients

Imagine a long, one-dimensional axon

(1) Starts at rest, then locally stimulated

(2) Depolarized on left, resting on right

(3) Electrical current will flow both inside and outside

Electrical propagation results from spatial voltage gradients Imagine a long, one-dimensional axon

(4) More tissue will become depolarized

(5) Etc.

This is the basic mechanism by which action potentials propagate
But now voltage depends on both <u>time</u> and <u>location</u>
We need to solve a system of Partial Differential Equations (PDEs)

A propagated action potential

V, m, h, n, now functions of both time and location The relevant equation for voltage is:

$$C_{m} \frac{\partial V}{\partial t} = \frac{a}{2\rho_{i}} \frac{\partial^{2} V}{\partial x^{2}} - I_{ion}$$

a "partial" rather than an "ordinary" differential equation

Pertinent questions:

- 1) Where does this equation come from?
- 2) How do we solve this in practice? (subsequent lectures)

One dimensional electrical propagation

AP propagating down a uniform cable

Analyze the cable as coupled equivalent circuits

Analyze cable as coupled equivalent circuits

 R_i =intracellular resistance V^i =voltage at the jth element of the cable

We assume that R_e =0 so that all extracellular voltages are grounded. Then intracellular potential = transmembrane potential at all elements.

A reasonable assumption for an isolated fiber in a bath.

What equations describe the jth element of the cable?

$$I^{j-1 o j}=(V^{j-1}-V^j)/R_i$$

$$I^{j o j+1}=(V^j-V^{j+1})/R_i$$
 Ohm's law
$$I^{j-1 o j}=I^{j o j+1}+AI^j_m$$
 Kirchoff's current law

where A is the surface area of the jth element

$$I_m^j = C_m \frac{dV^j}{dt} + I_{ion}^j$$
 Membrane currents are normalized per unit area.

$$I^{j-1\to j} = I^{j\to j+1} + AI_m^j$$

Substitute into this:

$$I^{j-1\to j} = (V^{j-1} - V^j) / R_i$$

$$I^{j \to j+1} = (V^j - V^{j+1}) / R_i \qquad I_m^j$$

$$I^{j-1 o j} = (V^{j-1} - V^j)/R_i$$
 $I^{j o j+1} = (V^j - V^{j+1})/R_i$ $I^j_m = C_m \frac{dV^j}{dt} + I^j_{ion}$

This yields:
$$(V^{j-1} - V^{j})/R_{i} = (V^{j} - V^{j+1})/R_{i} + A \left[C_{m} \frac{dV^{j}}{dt} + I_{ion}^{j} \right]$$

Putting the equations together:

$$(V^{j-1} - V^{j})/R_{i} = (V^{j} - V^{j+1})/R_{i} + A \left[C_{m} \frac{dV^{j}}{dt} + I_{ion}^{j} \right]$$

Rearranging yields:

$$C_{m} \frac{dV^{j}}{dt} = \frac{(V^{j-1} - 2V^{j} + V^{j+1})}{AR_{i}} - I_{ion}^{j}$$

How can we relate R_i to cable geometry?

Substituting yields:

$$C_{m} \frac{dV^{j}}{dt} = \frac{a}{2\rho_{i}} \frac{(V^{j-1} - 2V^{j} + V^{j+1})}{\Delta x^{2}} - I_{ion}^{j}$$

As $\Delta x \rightarrow 0$, this becomes:

$$C_{m} \frac{\partial V}{\partial t} = \frac{a}{2\rho_{i}} \frac{\partial^{2}V}{\partial x^{2}} - I_{ion}$$
 Dropped the j superscript. This applies for all j

This is the nonlinear cable equation

Notes on the 1-D cable equation

$$C_{m} \frac{\partial V}{\partial t} = \frac{a}{2\rho_{i}} \frac{\partial^{2} V}{\partial x^{2}} - I_{ion}$$

1) This is a reaction-diffusion equation.

These equations appear in other contexts
For instance, sub-cellular diffusion of Ca²⁺
We will discuss other examples of reaction-diffusion

2) This is a partial differential equation (PDE).

To obtain a numerical solution, must convert to discrete form in both space and time.

$$\left. \frac{\partial V}{\partial t} \right|_{j}^{t} \approx \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} \qquad \left. \frac{\partial^{2} V}{\partial x^{2}} \right|_{j}^{t} \approx \frac{V_{j+1}^{t} - 2V_{j}^{t} + V_{j-1}^{t}}{\Delta x^{2}}$$

Summary

In neurons, voltage is typically not spatially uniform but instead varies as a function of time *and* location.

Partial Differential Equations (PDEs) are used to mathematically describe such spatially non-uniform systems.

The "cable equation" is an example of a reaction-diffusion equation, a type of PDE that is frequently encountered in biology.

Explicit versus Implicit Solutions

$$C_{m} \frac{\partial V}{\partial t} = \frac{a}{2\rho_{i}} \frac{\partial^{2} V}{\partial x^{2}} - I_{ion}$$

Explicit solutions

Solve for each future value of V based on current values of V

$$C_{m} \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} = \frac{a}{2\rho_{i}} \frac{V_{j+1}^{t} - 2V_{j}^{t} + V_{j-1}^{t}}{\Delta x^{2}} - I_{ion}^{t}$$

Implicit solutions

Solve for future values of V based on future values of V

$$C_{m} \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} = \frac{a}{2\rho_{i}} \frac{V_{j+1}^{t+\Delta t} - 2V_{j}^{t+\Delta t} + V_{j-1}^{t+\Delta t}}{\Delta x^{2}} - I_{ion}^{t+\Delta t}$$

Explicit versus Implicit Solutions

Explicit solutions are simple to implement

Rearrange so that future is on LHS, present on RHS

$$V_{j}^{t+\Delta t} = V_{j}^{t} + \Delta t \frac{a}{2\rho_{i}C_{m}} \left[\frac{V_{j+1}^{t} - 2V_{j}^{t} + V_{j-1}^{t}}{\Delta x^{2}} - I_{ion}^{t} \right]$$

plus similar equations for $V_{i+1}^{t+\Delta t}$ $V_{i-q}^{t+\Delta t}$.

$$V_{j+1}^{t+\Delta t}$$
 $V_{j-qtc}^{t+\Delta t}$

This just converts the PDE into large system of ODEs

Advantage: simple

Disadvantage: for stability $\Delta t \sim \Delta x^2$, must be very small

Explicit solutions of PDEs can take a very long time to run.

Explicit versus Implicit Solutions

Implicit solutions are conceptually more difficult

$$C_{m} \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} = \frac{a}{2\rho_{i}} \frac{V_{j+1}^{t+\Delta t} - 2V_{j}^{t+\Delta t} + V_{j-1}^{t+\Delta t}}{\Delta x^{2}} - I_{ion}^{t+\Delta t}$$

Computing $I_{ion}^{t+\Delta t}$ requires knowing m^{t+ Δt}, h^{t+ Δt}, n^{t+ Δt}.

In practice, reaction treated explicitly, diffusion implicitly.

$$C_{m} \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} = \frac{a}{2\rho_{i}} \frac{V_{j+1}^{t+\Delta t} - 2V_{j}^{t+\Delta t} + V_{j-1}^{t+\Delta t}}{\Delta x^{2}} - I_{ion}^{t}$$

Even with this simplification, the equation still has 3 unknowns!

$$-\frac{a}{2\rho_{i}\Delta x^{2}}V_{j+1}^{t+\Delta t} + \left[\frac{a}{\rho_{i}\Delta x^{2}} + \frac{C_{m}}{\Delta t}\right]V_{j}^{t+\Delta t} - \frac{a}{2\rho_{i}\Delta x^{2}}V_{j-1}^{t+\Delta t} = \frac{C_{m}}{\Delta t}V_{j}^{t} - I_{ion}^{t}$$

Must solve for the three unknowns simultaneously.

This requires inverting a matrix.

Implicit Solution of HH Equations

$$\begin{bmatrix} \ddots & \ddots & \ddots & \\ \frac{-a}{2\rho_{i}\Delta x^{2}} & (\frac{a}{\rho_{i}\Delta x^{2}} + \frac{C_{m}}{\Delta t}) & \frac{-a}{2\rho_{i}\Delta x^{2}} & \\ & \frac{-a}{2\rho_{i}\Delta x^{2}} & (\frac{a}{\rho_{i}\Delta x^{2}} + \frac{C_{m}}{\Delta t}) & \frac{-a}{2\rho_{i}\Delta x^{2}} & \\ & \frac{-a}{2\rho_{i}\Delta x^{2}} & (\frac{a}{\rho_{i}\Delta x^{2}} + \frac{C_{m}}{\Delta t}) & \frac{-a}{2\rho_{i}\Delta x^{2}} \end{bmatrix} \cdot \begin{bmatrix} \vdots \\ V_{j-1}^{t + \Delta t} \\ V_{j-1}^{t + \Delta t} \\ V_{j+1}^{t + \Delta t} \\ \vdots \end{bmatrix} = \frac{C_{m}}{\Delta t} \begin{bmatrix} \vdots \\ V_{j-1}^{t} \\ V_{j+1}^{t} \\ \vdots \end{bmatrix} - \begin{bmatrix} \vdots \\ I_{ion j-1}^{t} \\ I_{ion j+1}^{t} \\ \vdots \end{bmatrix}$$

This is a matrix equation Ax = b

$$x = A^{-1}b$$

Thus, implicit solutions involve inverting a matrix at each time step

Supplementary Slides

Consider example of HCO₃ in proximal tubule

How do we describe diffusion of HCO₃⁻ from apex to base?

Represent cell as a series of discrete segments

 $[HCO_3]_i$ = concentration in sub-cube i D_{HCO3} = intracellular diffusion constant Δx = distance between adjacent sub-cubes

What are the equations that describe diffusion from apex to base?

First consider diffusion within three sub-cubes

$$J_{i-1\to i} = D_{HCO_3} \frac{([HCO_3]_{i-1} - [HCO_3]_i)}{\Delta x}$$

$$J_{i \to i+1} = D_{HCO_3} \frac{([HCO_3]_i - [HCO_3]_{i+1})}{\Delta x}$$

Fick's first law of diffusion

How to relate to changes in [HCO₃-]_i?

Intuitively, d[HCO₃]_i/dt depends on inflow vs. outflow, $J_{i-1 \rightarrow i} - J_{i \rightarrow i+1}$ Need to consider units to express this precisely

Δx: cm

 $[HCO_3]: mM;$

equivalent to µmol/cm³

D_{HCO3}: cm²/s

$$J_{i-1 \to i} = D_{HCO_3} \frac{([HCO_3]_{i-1} - [HCO_3]_i)}{\Delta x}$$

 $J_{i\rightarrow i+1}$: μ mol/(cm² s)

Therefore we must convert from µmol/(cm² s) to µmol/(cm³ s)

Need to convert from µmol/(cm² s) to µmol/(cm³ s)

Multiply by inter-cube surface area A, then divide by volume (V_i)

$$\frac{d[HCO_3]_i}{dt} = \frac{A(J_{i-1\to i} - J_{i\to i+1})}{V_i}$$

But
$$V_i = A\Delta x$$

So
$$\frac{d[HCO_3]_i}{dt} = \frac{(J_{i-1\to i} - J_{i\to i+1})}{\Delta x}$$

Thus:

$$\frac{d[HCO_{3}]_{i}}{dt} = D_{HCO_{3}} \frac{\left[\frac{([HCO_{3}]_{i-1} - [HCO_{3}]_{i})}{\Delta x} - \frac{([HCO_{3}]_{i} - [HCO_{3}]_{i+1})}{\Delta x}\right]}{\Delta x}$$

What is the limit as $\Delta x \rightarrow 0$?

$$\lim_{\Delta x \to 0} \frac{([HCO_3]_{i-1} - [HCO_3]_i)}{\Delta x} = \frac{d[HCO_3]}{dx}$$

$$\lim_{\Delta x \to 0} \frac{\left[\frac{([HCO_3]_{i-1} - [HCO_3]_i)}{\Delta x} - \frac{([HCO_3]_i - [HCO_3]_{i+1})}{\Delta x}\right]}{\Delta x} = \frac{d^2[HCO_3]}{dx^2}$$

So, in the limit of small Δx , our equation becomes

$$\frac{\partial [HCO_3]_i}{\partial t} = D_{HCO_3} \frac{\partial^2 [HCO_3]}{\partial x^2}$$

This is a one-dimensional diffusion equation

What if some first order intracellular process is also consuming HCO₃?

Then,

$$\frac{d[HCO_3]_i}{dt} = \frac{J_{i-1\to i}}{\Delta x} - \frac{J_{i\to i+1}}{\Delta x} - k[HCO_3]_i$$

In the continuum limit:

$$\frac{\partial [HCO_3]_i}{\partial t} = D_{HCO_3} \frac{\partial^2 [HCO_3]}{\partial x^2} - k[HCO_3]$$

This is a reaction-diffusion equation. Where have we seen this before?