am Lab Assignment - 1 Correspondence Principle 1. (a) After the failure of Rutherford's model of stom, Rober's concluded that classical laws do not apply on the atomic scale. After that, Boba's modified Rutherford? model of atom by combining dosical a early quantum concepts and gave his smi dosical model of atom in the form of 3 particlotes: is Rober's first postulate was that an electron in an atom sould revolve in autom stable outsits without the emission of evaluant energy. According to this postulate, such atom has watern scientific definite stable states in which it can exist and each possible state has definite i energy. There are called stationary states up an atom. in Buher's second postulate defines these stubb roubles. This postulate states that the electron country auguind the nuleus only in these southets for which the angular momentum is some integral multiple of (L) of the outsiting electeron is quantised. mamendum 111) Bakers third pastulate into incurporated into into into theory the early quantum contapts that had been developed by Planck and Einstein. It states that an electeron might make a teransition from one of its specified non evaluating orbits to another of larver

	energy. When it does no to Material to amitted having
	energy. When it does no, a photon is amitted himing unungy equal to the energy difference between the initial to final states. The frequency of emitted photon is then
	final states. The furgiony of emitted photon is then
	given by [hv = E -Ep
h	* Rulius of not subsit of in Bohads model
U	
	lenterpetal form is perovided by the destrostatic form:
, , , , , , , , , , , , , , , , , , ,	Fez Fe
7	mv2 = 1 9,92
	4260 rz
	Here, q, = e k q2 = + Ze
	$\frac{mv^2}{r} = \frac{Ze^2}{4\chi f_0 r^2} - 1$
	k when $mvr = nh$ — (2)
	27
	$(2)^2 \div (1)$
	$\frac{1}{1}$
	202 × 202
	XXEON 2
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$mr^3 = n^2 h^2 \epsilon_0$

W => | rn = n2 h2 60 = 2 m Ze2 For hydrogen dom, Z=1 7 m = nh h 60 7 me2 * anangy in the nth energy level :-Kinitic lenergy, KE = 1 m vn² In Bolis made, reliaily in 11th audit is Vn - 2e2 12-16-0n $\Rightarrow KE = Im \left(\frac{2^{\frac{1}{4}}}{4}\right)$ $= 7 \quad \text{KE} = \frac{m \, 2^2 \, e^4}{8 \, h^2 \, 6 \, 2 \, n^2}$ Potential energy, PE - 1 9, 9: Yato Va = PE = 1 (-e) (+2e) [:: n = n = h = 60]

Yateo (n = h = 60)

TM = Zet

Yn = h = 60

W Date_/_/_

	Novy	, En = KE + PE
		$= \frac{m 2^{2} e^{4}}{8 h^{2} \left(e^{2} n^{2} \right)} = \frac{m 2^{2} e^{4}}{4 n^{2} h^{2} \left(e^{2} n^{2} \right)}$
		= mm zdey - 2m zzey 8 n2 602 n2 8 n2 h2 62
		$E_{n} = -mZ^{2}e^{4}$ $8h^{2}6_{0}^{2}n^{2}$
	U	ou $E_n = -mZ^2e^{4}$:, $t_1 = h$ $32x^2 6^2t^2n^2$
	(1	Jan Trycheogen autom, 2=1
1		3252 62th2n2
*	· Enu	gy level diagram:
r	0	N -> 00 c' is feel from nucleus
	-0.59 -0.85 -1.51	nes nes
CMANA	- 3.4	n=L
	-13.6	

- If the atom size is 1mm.

rn = 1mm = 0.5 × 107 A°

 $0.5 \times 10^{7} \, \text{A}^{\circ} = 0.529 \, \text{n}^{2} \, \text{A}^{\circ}$

 $\frac{6.5 \times 10^{7} \times 7}{0.529} = n^{2}$

0.9452 ×107 ×2 = n2

9.452 X10' XZ = n2

Year hydrogen atom 2=1

 $n^2 = 9.452 \times 10^6$ $9 n = 3.07 \times 10^3$

Bobe's consessiondence principle states that 6 The predictions of quantum methonics must repreduce the fuedictions of classical physics in the limit of large quantum me numbers.

do the know that time period of an electron in an outit is given thy :-

T= 12r

Warnel

V = Vn & Radius is given by $r_n = \frac{n^2h^2}{60}$ & relating is given by \[\forman = \frac{e^2}{} Put rn k vn in eq. 1 V= e2 x xme2 22 n2 n2 60 $\frac{v_{cln}}{32n^3} = \frac{me^4}{6v^2h^3n^3}$ This is the enfoursion for Mossical frequency evaluated by electron. W Drec_/_/_

co The energy of nth ordeit is given My: En = - me4

322 602 h2 m2 & energy of (n-1)th outsite is given by:-En-1 = - me 4 1 (n-1)2 Now, DE = En - En-1 $32\pi^{2}6^{2}h^{2}n^{2} + \left(\frac{-me^{4}}{32\pi^{2}6^{2}h^{2}(n-1)^{2}}\right).$ =) $hv = -me^{4}$ [$-\frac{1}{32260^{2}h^{2}}$ [$m^{2} n^{2}$ [$(n-1)^{2}$] $\frac{3 \ln 2}{3 \ln 2} - \frac{9}{60 \ln 2} \left[\frac{(n-1)^2 - n^2}{n^2 (n-1)^2} \right]$ $\frac{32\pi^{2}6^{2}h^{2}}{23\pi^{2}6^{2}h^{2}}\left[\frac{2n-1}{n^{2}(n-1)^{2}}\right]$ $= \frac{me^4}{2x^3 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ => Van = mey [2n-1] (423 602 th3 [n2(n-1)2]

This is its	e expension	by electron.	untum	frequency of
		ery loerge i.	The state of the s	
5)	20 = me	6,2 h3 n	м	
Ð	Van =	32 7 3 Go 2 M 2		
di didus	the enper	sion fu	Massical	frequency.

```
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 品
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ♡
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      જ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                File Edit Selection View Go Run Terminal Help
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A1.py
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C > Users > Sarthak > Desktop > Important Stuff > QM Lab > A1 > 🝨 A1.py > ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E=[]
?
                                                                                                                                   def freq(p):
                                                                                                                                                                                                       h_bar=1.054*10**(-34)
                                                                                                                                                                                                                                e_0=8.85*10**(-12)
                                                                                                                                                                                                                                                         e=-1.6*10**(-19)
                                                                                                                                                                                                                                                                                m=9.1*10**(-31)
                                                                                                                                                                                                                                                                                                                              plt.show()
                                                                                                                                                                                                                                                                                                                                                  plt.grid()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      for i in range(len(E)):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for 1 in range(1,21):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               import matplotlib.pyplot as plt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              umport numpy as np
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     import pandas as pd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ×
                                                            fcln= ((m * e**4)/(32* (np.pi)**3 * (e_0)**2 * (h_bar)**3))/ (10**p)**3
fqn= ((m * e**4)/(64* (np.pi)**3 * (e_0)**2 * (h_bar)**3)) * ((2*(10**p) - 1)/(((10**p)**2)*((10**p)-1)**2))
                                                                                                                                                                                                                                                                                                                                                                        plt.legend()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  n.append(i)
                                       return fcln, fqn
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E.append(E_n)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E_n= (-13.6/(1**2))
                                                                                                                                                                                                                                                                                                                                                                                                plt.title('Energy Level Diagram')
                                                                                                                                                                                                                                                                                                                                                                                                                        plt.ylabel('Energy')
                                                                                                                                                                                                                                                                                                                                                                                                                                              plt.axhline(y=E[i], xmin=0.1, xmax=0.8, color='g', linewidth=3, label='n= '+ str(n[i]))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               A1-py - Visual Studio Code
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ▽~ □ ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ×
```

⊗0 A 0

Ln 1, Col 1 Spaces: 4 UTF-8 CRUF Python

3.9.7 ('base': conda)

हिर D

PS C:\Users\Sarthak> python -u "c:\Users\Sarthak\Desktop\Important Stuff\QM Lab\A1\A1.py"

0.000005	2.072590e-01	2.072600e-01	100000000000	10
0.000015	6.554104e+00	6.554203e+00	16666666666	9
0.000047	2.872598e+82	2.072688e+02	100000000	80
0.000150	6.554104e+03	6.555088e+03	19899999	7
0.000474	2.072598e+05	2.073573e+05	1000000	6
0.001500	6.554104e+06	6.563949e+86	100000	vi
0.004741	2.072590e+08	2.082463e+08	19969	4
0.014975	6.554104e+09	6.653743e+09	1000	w
0.047180	2.072598e+11	2.175217e+11	100	2
0.147368	6.554104e+12	7.686913e+12	10	P
0.444646	2.072590e+14	3.732018e+14	144	0
ERROR	CLASSICAL FREQUENCY	QUANTUM FREQUENCY	n	