Informations und Kommunkationstherorie -Aufgabensammlung Lösungen

3. Übertragungskanal

3.2. Kanalkapazität bei diskreter Quelle

Aufgabe 1

Es handelt sich um einen binären Kanal (also Z = 2), bei dem die Wahrscheinlichkeit, dass das Zeichen sich ändert (0 -> 1 oder 1 -> 0) gleich p_s ist.

GESICHERTE ÜBERTRAGUNG

a)

$$\begin{split} p_s &= 0.02, N = 64, f_Q = 100 \frac{QZ}{s} \\ H(Y|X) &= 2 \cdot \frac{1}{2} \cdot (0.02 \cdot \log_2 \frac{1}{0.02} + 0.98 \cdot \log_2 \frac{1}{0.98}) \\ &= 0.141 \frac{bit}{KZ} \\ H_T &= H(Y) - H(Y|X) = 1 \frac{bit}{KZ} - 0.141 \frac{bit}{KZ} = 0.859 \frac{bit}{KZ} \\ l &= \lceil \log_2 N \rceil = \lceil \log_2 64 \rceil = 6 \frac{KZ}{QZ} \\ H_K &= \log_2 2 = 1 \frac{bit}{KZ} \\ v_s &= f_q \cdot l \cdot \frac{H_K}{H_T} = 100 \frac{QZ}{s} \cdot 6 \frac{KZ}{QZ} \cdot \frac{1 \frac{bit}{KZ}}{0.859 \frac{bit}{KZ}} \\ &= 698 \frac{KZ}{s} \end{split}$$

b)

$$I_T = v_s \cdot H_T = 698 \frac{KZ}{s} \cdot 0.859 \frac{bit}{KZ} = 600 \frac{bit}{s}$$

c)

Kapazit "atsauslastung: A

$$A = rac{I_T}{C} \cdot 100\% = rac{v_s \cdot H_T}{2B \cdot H_T} \cdot 100\% = rac{v_s}{2B} \cdot 100\%$$
 $A = rac{698.5}{2 \cdot 2 \cdot 10^3} \cdot 100\% = 17.5\%$

a)

$$v_s = f_Q \cdot l = 100 rac{QZ}{s} \cdot 6 rac{KZ}{QZ} = 600 rac{KZ}{s}$$

b)

$$I_T = v_s \cdot H_T = 600 rac{KZ}{s} \cdot 0.859 rac{bit}{KZ} = 515, 4 rac{bit}{s}$$

c)

$$A = rac{v_s}{2B} \cdot 100\% = rac{600}{2 \cdot 2 \cdot 10^3} \cdot 100\% = 15\%$$

Aufgabe 2

a)

$$f_Q=rac{1}{t_{\scriptscriptstyle ar{u}}}=rac{1}{10}=0.1rac{Bild}{s}$$

b)

$$f_Q \leq rac{C}{l \cdot H_K} \leq rac{50 \cdot 10^3}{6 \cdot 10^5 \cdot 1} < 0.083$$

$$t_{ii} = rac{1}{f_{Q}} = rac{1}{0.083} = 12rac{s}{Bild}$$

c)

Zur Berechnung der mittleren Codewortlänge siehe Abbildung.

KZ	Verteilung	Länge	Länge * Verteilung
1	0,5	1	0,5
2	0,25	2	0,5
3	0,125	3	0,375
4	0,0625	4	0,25
5	0,03125	5	0,15625
6	0,015625	6	0,09375
7	0,0078125	7	0,0546875
8	0,00390625	8	0,03125
9	0,001953125	9	0,017578125
10	0,0009765625	10	0,009765625
11	0,00048828125	11	0,00537109375
12	0,000244140625	12	0,0029296875
13	0,0001220703125	13	0,0015869140625
14	6,103515625E-05	14	0,0008544921875
15	3,0517578125E-05	15	0,000457763671875
16	1,52587890625E-05	16	0,000244140625
17	7,62939453125E-06	17	0,000129699707031
18	3,814697265625E-06	18	6,866455078125E-05
19	1,9073486328125E-06	19	3,62396240234375E-05
20	9,5367431640625E-07	20	1,9073486328125E-05
21	4,76837158203125E-07	21	1,00135803222656E-05
22	2,38418579101562E-07	22	5,24520874023438E-06
23	1,19209289550781E-07	23	2,74181365966797E-06
24	5,96046447753906E-08	24	1,43051147460938E-06
25	2,98023223876953E-08	25	7,45058059692383E-07
26	1,49011611938477E-08	26	3,87430191040039E-07
27	7,45058059692383E-09	27	2,01165676116943E-07
28	3,72529029846191E-09	28	1,04308128356934E-07
29	1,86264514923096E-09	29	5,40167093276978E-08
30	9,31322574615479E-10	30	2,79396772384644E-08
31	4,65661287307739E-10	31	1,44354999065399E-08
32	4,65661287307739E-10	31	1,44354999065399E-08
		I_m =	1,9999999906868

$$l_m=2$$

$$egin{aligned} f_Q &\leq rac{C}{l_m \cdot H_K} &\leq rac{50 \cdot 10^3}{2 \cdot 10^5 \cdot 1} \ &\leq 0.25 \end{aligned}$$

$$t_{\scriptscriptstyle ar{u}} = rac{1}{f_Q} = rac{1}{0.25} = 4rac{s}{Bild}$$

Aufgabe 3

 $gegeben: p_s = 0.02, v_{\ddot{u}} = 2400 \frac{bit}{s}, H_Q = 8 \frac{bit}{QZ}, \text{QZ gleichverteilt}, H_K = 1$

 $gesucht: f_{Q,ges} \ \mathrm{und} \ f_{Q,unges}$

$$egin{aligned} I_K &= v_{ii} = v_s \cdot H_K \ & o I_K = v_s = 2400 rac{bit}{s} \ &I_{KQ} = f_Q \cdot l \cdot H_K \ & o ext{wegen } H_Q = l \cdot H_K ext{ und } I_Q = f_Q \cdot H_Q \ & o I_{KQ} = f_Q \cdot H_Q \ & o f_Q = rac{I_{KQ}}{H_Q} = rac{2400}{8} \ &f_{Q,unges} = 300 rac{QZ}{s} \ & o \Delta l_{unges} = 0 \end{aligned}$$

GESICHERT:

$$H_T=0,86$$
 (Berechnung wie in Aufgabe 1 mit $p_s=0.02$ und $p(x_0)=p(x_1)=0,5$

$$l \geq \lceil \frac{H_Q}{H_K} \rceil \geq 8$$

 $\rightarrow l = 8$ Annahme der Gleichheit, weil maximale Frequenz gesucht ist