Image Enhancement Using Deep Learning

Kevin Du

Introduction

Image enhancement - Adjusting images to make them more suitable for display or analysis

Super-resolution - Artificially increasing the level of detail on blurry or low-quality images

Applications

Face Recognition

License Plate OCR

Satellite Mapping

Medical Imaging

Methods

- Traditional
 - Data-independent, no training required
 - Usually based on fast fourier transforms
 - Forensic software, Adobe Photoshop
- Deep learning
 - Data-dependent, needs training
 - Convolutional neural networks
 - Variational autoencoders
 - **■** Generative adversarial networks

Generative Adversarial Networks (GAN)

Learns to create fake images that can fool the Discriminator

Learns to distinguish between real and fake images

Goal is to create super-resolution images that look as real as possible and similar to the original image

Training Notes

- Multiple loss functions to optimize and balance
 - Generator L1 loss
 - How much does the generated image match the original
 - Generator Cross-entropy loss
 - How realistic the generated image looks (can it fool the Discriminator?)
 - Discriminator loss
 - How well the discriminator correctly classifies an image as real or fake
- Training will fail if the Discriminator overpowers Generator
 - o Discriminator provides no useful information for Generator to learn
 - Very common problem with GANs
 - Must optimize hyperparameters or alter the model architecture
- Decent results achieved after several thousand iterations

Dataset

MNIST Digits

Celebrity Faces

Flowers

60k images

200k images

8k images

64x64 pixels
Downsampled to 16x16

Results

Digits

4x4 | 1k iterations | 20k iterations | Truth

Faces

16x16 | 1k iterations | 8k iterations | Truth

Flowers

16x16 | 1k iterations | 5k iterations | Truth

References

- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks https://arxiv.org/abs/1511.06434
- http://www.mathcs.emory.edu/~nagy/courses/fall06/ID_lecture1.pdf
- A hybrid MLP-PNN architecture for fast image superresolution https://www.researchgate.net/publication/1957977_A_hybrid_MLP-PNN_architecture_for_fast_image
 _superresolution
- https://www.mathworks.com/discovery/image-enhancement.html
- https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm
- A PCA-Based Super-Resolution Algorithm For Short Image Sequences https://arxiv.org/ftp/arxiv/papers/1201/1201.3821.pdf
- http://www.ifp.illinois.edu/~jyang29/papers/chap1.pdf
- https://github.com/david-gpu/srez
- https://github.com/reedscot/icml2016