

Semester S1 – Fundamentals of coherent optics

Fiber amplifiers, tutorial #3

I Two-level laser system

- 1. Considering both stimulated transitions and spontaneous relaxation, establish the rate equations for a two-level laser system.
- 2. Show that, at steady state, population inversion cannot be achieved.
- 3. Saturation of the population difference
 - a. Show that, at steady state, $\Delta N/N$ saturates when the signal intensity increases. Define W_{sat} , the value of the stimulated transition probability at which the population difference is driven down to exactly half its initial value.
 - b. Draw $\Delta N(W_{12})$ for a medium doped with atoms with $\tau = 1$ ms in concentration $N = 10^{25} \text{ m}^{-3}$.

II Three-level laser system

- 1. Establish the rate equations for a three-level laser system.
- 2. Show that, at steady state, population inversion occurs for a pumping rate W₁₃ higher than a threshold value W_{pt} to be determined.
- 3. Establish a relation for $\Delta N(W_{13})$ for a medium doped with atoms with $\tau=1$ ms in concentration N = 10^{25} m⁻³. Plot on the same figure $\Delta N(W_{1j})$ for the two-level system (j = 2) and the three-level system (j = 3).

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

III Four-level laser system

- 1. Establish the rate equations for a four-level laser system.
- 2. Show that, at steady state, population inversion occurs as soon as pumping is supplied.
- 3. Establish a relation for $\Delta N(W_{14})$ for a medium doped with atoms with $\tau=1$ ms in concentration $N=10^{25}$ m⁻³. Plot on the same figure $\Delta N(W_{1j})$ for the two-level system (j=2), the three-level system (j=3) and the four-level system (j=4).