第3章 统计模式识别中的概率方法

3.1 用概率方法描述分类问题

略

3.2 几个相关的概念

贝叶斯公式: $P(\omega_j|X) = \frac{p(X|\omega_j)P(\omega_j)}{P(X)}$

3.3 最小错误概率判决准则

选择相交的那个

3.4 最小风险判决规则

$$R(lpha_i|X) = \min_{j=1,\cdots,A} \{R(lpha_j|X)\} \Rightarrow X \in \omega_i$$

其中R为损失函数

3.5 贝叶斯统计判决规则的似然比表现形式

定义类别的似然比 $l_{1,2}(X)=rac{p(X|\omega_1)}{p(X|\omega_2)}$,判决阈值为 $\theta_{1,2}=rac{P(\omega_2)}{P(\omega_1)}$,则判定简化为 $l_{1,2}$ 和 $\theta_{1,2}$ 的比较。

最小风险判决规则: $\theta_{1,2}=rac{(L(lpha_1|\omega_2)-L(lpha_2|\omega_2))P(\omega_2)}{(L(lpha_2|\omega_1)-L(lpha_1|\omega_1))P(\omega_1)}$

3.6 拒绝判决

可能产生拒绝判决的前提条件: $P(\omega_i|X)<\left(1-rac{\lambda_R}{\lambda_F}
ight),\; orall x\in [1,n]\Rightarrow X\inlpha_{N+1}$

3.7 贝叶斯分类器的一般结构

取 $g_i(X)=P(\omega_i|X)$,也就是 $g_i(X)=rac{p(X|\omega_i)P(\omega_i)}{\sum\limits_{i=1}^N p(X|\omega_i)P(\omega_i)}$,或在最小风险判决规则下取 $g_i(X)=-R(lpha_i|X)$

3.8 Neyman-Peason判决规则

在保持 ϵ_1 一定的情况下使得 ϵ_2 最小。构造 $J=\epsilon_1+\lambda(\epsilon_2-\alpha)=(1-\lambda\alpha)+\int_{\Omega_1}(\lambda p(x|\omega_2)-p(x|\omega_1))\mathrm{d}x$ 其实就是 $\frac{p(x|\omega_1)}{p(x|\omega_2)}>\lambda\Rightarrow x\in\omega_1$

3.9 最小最大判决规则

太复杂了,餐间刻本

3.10 基于分段线性化的分类器设计

同上

3.11 正态分布下的分类器设计

多元正态分布: $p(X) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)\right\}$

1. $\Sigma_i = \sigma^2 I$ 的情况

超平面:
$$W^T(X-X_0)$$
, 其中 $W=\mu_i-\mu_j$, $X_0=\frac{1}{2}(\mu_i+\mu_j)-\frac{\ln\frac{P(\omega_i)}{P(\omega_j)}}{(\mu_i-\mu_j)^T\sigma^{-1}(\mu_i-\mu_j)}(\mu_i-\mu_j)$

2. $\Sigma_i = \Sigma$ 非对角阵

超平面:
$$W^T(X-X_0)$$
 , 其中 $W=\Sigma^{-1}(\mu_i-\mu_j)$, X_0 一样

 $3. \Sigma_i$ 任意 超二次曲面

3.12 有监督情况下类条件概率密度的参数估计

极大似然估计

也就是最大似然估计,和数理统计学的一样

需要注意的是, $\frac{\partial |\Sigma|}{\partial \Sigma} = |\Sigma|(\Sigma^T)^{-1}$

贝叶斯估计和贝叶斯学习

假定 $\lambda(\hat{\theta}|\theta)$ 为真实参数为 θ 、给出 $\hat{\theta}$ 估计时承担的风险。以下考虑 $\lambda(\hat{\theta}|\theta)=(\hat{\theta}-\theta)^2$,得到如下定理:

• **定理3.1** θ 的贝叶斯估计量 $\hat{\theta}$ 是在给定样本X 条件下 θ 的数学期望。或: $\hat{\theta}=\int_{\Theta}\theta p(\theta|X)\mathrm{d}\theta$

贝叶斯学习: 和贝叶斯分布的前三个步骤类似, 最后从后验概率密度直接得到总体概率密度。

3.13 非监督情况下类条件概率密度的估计

分类未知,最大似然方法适用于待定参数是确定未知量,贝叶斯学习方法适用于待定参数是随机的未知量。

条件概率密度参数估计: P131 公式3.100, 要求 $P(\omega_i)$ 为已知量。

该算法可用于迭代正态分布。

3.14 类条件概率密度的非参数估计

Parzen窗函数

对每个点应用窗函数。

k_n -近邻估计法

扩张直到包含这些样本。

正交级数逼近法

用正交函数系的基函数 $\{\phi_i(X), i=1,2,\cdots,m\}$ 表示 $\hat{p}_n(X)$,其需要做的是确定这些函数的线性加权系数。

若选择归一化正交函数则有 $c_i = rac{1}{n} \sum_{k=1}^n u(X_k) \phi_i(X_k)$