Novel promoters and coding first exons in *DLG2* linked to developmental disorders and intellectual disability

Claudio Reggiani

Université Libre de Bruxelles, Bruxelles, Belgium Interuniversity Institute of Bioinformatics in Brussels, Bruxelles, Belgium

> Online Journal Club September 22, 2017

Reggiani et al. Genome Medicine (2017) 9:67 DOI 10.1186/s13073-017-0452-y

Genome Medicine

RESEARCH

Open Access

Novel promoters and coding first exons in *DLG2* linked to developmental disorders and intellectual disability

Claudio Reggiani ^{1,2}, Sandra Coppens^{3,4}, Tayeb Sekhara^{4,24}, Ivan Dimov⁵, Bruno Pichon⁶, Nicolas Lufin^{1,6}, Marie-Claude Addor⁷, Elga Fabia Belligni⁸, Maria Cristina Digilio⁹, Flavio Faletra¹⁰, Giovanni Battista Ferrero⁸, Marion Gerard¹¹, Bertrand Isidor¹², Shelagh Joss^{1,3}, Florence Niel-Bütschi⁷, Maria Dolores Perrone^{10,25}, Florence Petit¹⁴, Alessandra Renieri^{15,16}, Serge Romana^{17,18}, Alexandra Topa¹⁹, Joris Robert Vermeesch²⁰, Tom Lenaerts^{1,2,21}, Georges Casimir²⁷, Marc Abramowicz^{1,6}, Gianluca Bontempi^{1,2}, Catheline Vilain^{1,6,23}, Nicolas Deconinck⁴ and Guillaume Smits^{1,6,23*}

Computer Biology science Reggiani et al. Genome Medicine (2017) 9:67 DOI 10.1186/s13073-017-0452-y Genome Medicine Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability Claudio Reggiani 1,2, Sandra Coppens^{3,4}, Tayeb Sekhara^{4,24}, Ivan Dimov⁵, Bruno Pichon⁶, Nicolas Lufin^{1,6}, Marie-Claude Addor⁷, Elga Fabia Belligni⁸, Maria Cristina Digilio⁹, Flavio Faletra¹⁰, Giovanni Battista Ferrero⁸, Marion Gerard¹¹, Bertrand Isidor¹², Shelagh Joss¹³, Florence Niel-Bütschi⁷, Maria Dolores Perrone^{10,25}, Florence Petit¹⁴, Alessandra Renieri^{15,16}, Serge Romana^{17,18}, Alexandra Topa¹⁹, Joris Robert Vermeesch²⁰, Tom Lenaerts^{1,2,21}, Georges Casimir²², Marc Abramowicz^{1,6}, Gianluca Bontempi^{1,2}, Catheline Vilain^{1,6,23}, Nicolas Deconinck4 and Guillaume Smits1,6,23* **Clinics**

Background (biology)

Closed chromatin

Background (clinics)

Reference

DLG2 gene

DLG2 gene

Location: 11q14.1 (2.1Mb)

Role

- complex learning
- cognitive flexibility
- attention

How the investigation began

- 29 patients in the DLG2 7-9 region from DECIPHER, ULB, Literature

- 29 patients in the DLG2 7-9 region from DECIPHER, ULB, Literature
 - 24 with NDD phenotypes

- 29 patients in the DLG2 7-9 region from DECIPHER, ULB, Literature
 - 24 with NDD phenotypes
 - 17/24 affect exons 7, 8 and/or 9

- 29 patients in the DLG2 7-9 region from DECIPHER, ULB, Literature
 - 24 with NDD phenotypes
 - 17/24 affect exons 7, 8 and/or 9
 - 7/24 (~30%) are purely intronic deletions

- 29 patients in the DLG2 7-9 region from DECIPHER, ULB, Literature
 - 24 with NDD phenotypes
 - 17/24 affect exons 7, 8 and/or 9
 - 7/24 (~30%) are purely intronic deletions
 - 3/24 (12.5%) are purely intronic deletions and no other CNVs

- 29 patients in the DLG2 7-9 region from DECIPHER, ULB, Literature
 - 24 with NDD phenotypes
 - 17/24 affect exons 7, 8 and/or 9
 - 7/24 (~30%) are purely intronic deletions
 - 3/24 (12.5%) are purely intronic deletions and no other CNVs

Integrative analysis of multi-omics data

Integrative analysis of multi-omics data

Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability

Integrative analysis of multi-omics data

Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability

Transcription, RNA

Transcription Factor Binding Sites

Transcription, RNA

Transcription Factor Binding Sites

Identification of TSS (CAGE)

Transcription, RNA

Transcription Factor Binding Sites

Identification of TSS (CAGE)

Integrative analysis of multi-omics data (part II)

Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability

Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability

Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability

Old *DLG2* gene model

Known DLG2 exons and promoters

New DLG2 gene model

Known and novel *DLG2* exons and promoters

- DECIPHER (cases) vs DGV (control)
 - on exons 7,8,9: enrichment of cases pv. 6x10⁻⁰⁴
 - on HPs: enrichment of cases, pv. 8x10⁻⁰⁷

- DECIPHER (cases) vs DGV (control)
 - on exons 7,8,9: enrichment of cases pv. 6x10-04
 - on HPs: enrichment of cases, pv. 8x10⁻⁰⁷
- GDD/ID cases vs GDD/ID control
 - on exons 7,8,9: enrichment of cases pv. **0.38**
 - on HPs: enrichment of cases, pv. 4x10-04

- DECIPHER (cases) vs DGV (control)
 - on exons 7,8,9: enrichment of cases pv. 6x10-04
 - on HPs: enrichment of cases, pv. 8x10⁻⁰⁷
- GDD/ID cases vs GDD/ID control
 - on exons 7,8,9: enrichment of cases pv. **0.38**
 - on HPs: enrichment of cases, pv. 4x10⁻⁰⁴
- WG analysis (DECIPHER + DGV + GDD/ID)
 - 11 novel promoters detected in introns
 - HPin7 and HPin8 resulted statistical significant

Clinical considerations

Male / Female ratio = 3.7 (11 to 3, 10 unknown)

DLG2 HP deletion as NDD risk factor

Conclusions

hg19 / hg38 DLG2 gene model

6 7 8 9 10 11 12

New DLG2 gene model

CFEin7 8

hg19 / hg38 DLG2 gene model
6 7 8 9 10 11 12

New DLG2 gene model

CFEin8

9

10 11

12

Acknowledgements

