Groups and Geometries Notes

Alexander Richardson

1 Definitions

Inner Product: Euclidean space is endowed with and inner product $\langle \cdot, \cdot \rangle$ with the following properties

- (i) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$.
- (ii) $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.
- (iii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (iv) $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ iff $\mathbf{x} = 0$.

The inner product induces a norm $\|\cdot\|$, which in turn induces a metric d. By

$$||\mathbf{x}||^2 := \langle \mathbf{x}, \mathbf{x} \rangle, \qquad d(\mathbf{x}, \mathbf{y}) := ||\mathbf{x} - \mathbf{y}|| = \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle}$$

if $\mathbf{x} = \sum_{i=1}^{n} x_i e_i$ and $\mathbf{y} = \sum_{i=1}^{n} y_i e_i$, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \mathbf{x}^T \cdot \mathbf{y}$$

Orthogonal Linear Transformation: A linear transformation

$$T: \mathbb{R}^n \to \mathbb{R}^n$$

is orthogonal if

$$\langle T(\mathbf{x}), T(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. For the matrix representation A of T we have

$$\mathbf{x}^T A^T \cdot A \mathbf{y} = (A \mathbf{x})^T \cdot (A \mathbf{y}) = \langle A \mathbf{x}, A \mathbf{y} \rangle = \langle T(\mathbf{x}), T(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \cdot \mathbf{y}$$

Orthogonal Basis: A basis $\{e_1, \ldots, e_n\}$ for \mathbb{R}^n is orthogonal if

$$\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

Isometry: For metric spaces (X, d_X) and (Y, d_Y) a map

$$f: X \to Y$$

is an isometry if

$$d_X(x,y) = d_Y(f(x), f(y)) \quad \forall \ x, y \in X$$

if in addition f is surjective, then f is an **Isometric Isomorphism**.

Isometries are affine maps.

Note: The isometric isometries of a metric space X, denoted I(X) form a group, with

- 1. $e = Id \in I(X)$.
- 2. Since f is surjective, and isometries are always injective we have f^{-1} exists and is also an isometry.
- 3. If $f, g \in I(X)$, then $f \circ g \in I(X)$.

Orthogonal Group: The set of all orthogonal $n \times n$ matrices

$$O(n) := \{ A \in GL(n, \mathbb{R}) : A^T A = I_n \}$$

if $A \in O(n)$, and since $det(A^T) = det(A)$ we have

$$1 = \det(I_n) = \det(A^T A) = \det(A^T)\det(A) = \det(A)^2$$

and thus, $det(A) = \pm 1$

Special Orthogonal Group: $SO(n) \subset O(n)$ is the subset of orthogonal matrices such that

$$A \in SO(n) \implies \det(A) = 1$$

that is

$$SO(n) = O(n) \cap SL(n, \mathbb{R})$$

and [O(n) : SO(n)] = 2. As an example

$$O(2) = \left\{ \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \right\}$$

and

$$SO(2) = \left\{ \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \right\}$$

with

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

being the reflection through the line making an angle of $\frac{\theta}{2}$ with the x-axis.

Upper Triangular: $UT_{+}(n)$ is the set of upper triangular matrices with positive diagonal entries.

Affine Subspace: $A \subset \mathbb{R}^n$ is an affine subspace if

$$\lambda \mathbf{a} + \mu \mathbf{b} \in A$$
, $\forall \mathbf{a}, \mathbf{b} \in A$, $\lambda, \mu \in \mathbb{R}$ such that $\lambda + \mu = 1$

similarly

$$\sum_{i=1}^k \lambda_i \mathbf{a}_i \in A, \quad \forall \ \mathbf{a}_i \in A, \ \lambda_i \in \mathbb{R} \text{ such that } \sum_{i=1}^k \lambda_i = 1$$

If $V \subset \mathbb{R}^n$ is a linear subspace; i.e. $\mathbf{0} \in V$, then for any fixed $\mathbf{x} \in \mathbb{R}^n$

$$V + \mathbf{x} = \{ \mathbf{v} + \mathbf{x} : \mathbf{v} \in V \}$$

is an affine subspace of \mathbb{R}^n . Furthermore, every affine subspace A is of this form.

1. If $\mathbf{a} \in A$, then

$$V = A - \mathbf{a} = \{ \mathbf{b} - \mathbf{a} : \mathbf{b} \in A \}$$

is an affine subspace and $\mathbf{a} - \mathbf{a} = \mathbf{0} \in V$, and so V is a linear subspace of \mathbb{R}^n .

2. Let $\lambda \in \mathbb{R}$ and $\mathbf{x} - \mathbf{a} \in V$, then note that

$$\lambda(\mathbf{x} - \mathbf{a}) + \mathbf{a} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{a}$$
, where $\mathbf{x}, \mathbf{a} \in A$, and $\lambda + (1 - \lambda) = 1$

that is $\lambda(\mathbf{x} - \mathbf{a}) + \mathbf{a} \in A$ and so

$$(\lambda(\mathbf{x} - \mathbf{a}) + \mathbf{a}) - \mathbf{a} = \lambda(\mathbf{x} - \mathbf{a}) \in V$$

3. Now let $\mathbf{x} - \mathbf{a}, \mathbf{y} - \mathbf{a} \in V$, then

$$(\mathbf{x} - \mathbf{a}) + (\mathbf{y} - \mathbf{a}) + \mathbf{a} = \mathbf{x} + \mathbf{y} - \mathbf{a}$$
 where $\mathbf{x}, \mathbf{y}, \mathbf{a} \in A$, and $1 + 1 - 1 = 1$

and so $(\mathbf{x} - \mathbf{a}) + (\mathbf{y} - \mathbf{a}) + \mathbf{a} \in A$ which tells us that

$$(\mathbf{x} - \mathbf{a}) + (\mathbf{y} - \mathbf{a}) \in V$$

and

$$\dim(A) = \dim(A - \mathbf{a}) = \dim(V) \subset \mathbb{R}^n$$

Affine Span: For any subset $X \subset \mathbb{R}^n$ its affine span is defined to be

$$Aff(X) = \left\{ \sum_{i=1}^{k} \lambda_i \mathbf{x}_i : \mathbf{x}_i \in X, \ \sum_{i=1}^{k} \lambda_i = 1 \right\}$$

and Aff(X) is the smallest affine subspace containing X.

Affine Independence: A set $X = \{\mathbf{x}_0, \dots, \mathbf{x}_k\}$ is affinely independent if

$$\sum_{i=0}^{k} \lambda_i \mathbf{x}_i = \mathbf{0}, \text{ and } \sum_{i=0}^{k} \lambda_i = 0 \implies \lambda_0 = \lambda_1 = \dots = \lambda_k = 0$$

 $\{\mathbf{x}_0, \dots, \mathbf{x}_k\}$ is affinely independent iff

$$\{\mathbf{x}_1 - \mathbf{x}_0, \dots, \mathbf{x}_k - \mathbf{x}_0\}$$

is linearly independent.

Affine Basis: If $X = \{\mathbf{x}_0, \dots, \mathbf{x}_k\}$ is affinely independent, then

$$\dim (\operatorname{Aff}(X)) = k$$

and X is a basis for Aff(X). Note that an affine basis for a k-dimensional affine space has k+1 elements.

If $V \subset \mathbb{R}^n$ is a linear subspace with basis $\{\mathbf{e}_1, \dots, \mathbf{e}_k\}$, then an affine basis for V is $\{\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_k\}$.

Hyperplane: An affine subspace $H \subset \mathbb{R}^n$ with $\dim(H) = n - 1$ is a hyperplane. If H is a linear hyperplane for \mathbb{R}^n , then $\exists \mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}$, such that

$$H = \{\mathbf{x}\}^{\perp} = \{n-1 \text{ vectors perpendicular to } \mathbf{x}\}\$$

Affine Map: If $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$ are both affine subspaces, a map

$$f: A \to B$$

is an affine map if

$$f(\lambda \mathbf{a} + \mu \mathbf{b}) = \lambda f(\mathbf{a}) + \mu f(\mathbf{b}), \quad \forall \mathbf{a}, \mathbf{b} \in A, \ \lambda, \mu \in \mathbb{R} \text{ such that } \lambda + \mu = 1$$

an affine map takes straight lines to straight lines. If $\mathbf{a} \in A$, and $\mathbf{b} \in B$ then

$$A - \mathbf{a}, \quad B - \mathbf{b}$$

are linear subspaces, and if

$$L: A - \mathbf{a} \to B - \mathbf{b}$$

is a linear map, then the map

$$f = T_{\mathbf{b}} \circ L \circ T_{-\mathbf{a}} : A \to B$$
, by $f(\mathbf{x}) = L(\mathbf{x} - \mathbf{a}) + \mathbf{b}$

is an affine map.

Reflection: Let $H \subset \mathbb{R}^n$ be a hyperplane, so for any $\mathbf{x} \in \mathbb{R}^n$ we have

$$\mathbf{x} = \mathbf{y} + \mathbf{z}$$
 such that $\mathbf{y} \in H$, $\mathbf{z} \perp (H - \mathbf{y})$

then the reflection through H is the isometry

$$R_H(\mathbf{x}) = \mathbf{y} - \mathbf{z}$$

Direct and Opposite: With the mapping

$$I(\mathbb{R}^n) \to \mathrm{O}(n)$$

 $f \mapsto \widetilde{f} = T_{-f(\mathbf{0})} \circ f$

Since \widetilde{f} fixes $\mathbf{0}$, we know it is orthogonal and so $\det(\widetilde{f}) = \pm 1$. If $\det(\widetilde{f}) = 1$ then f is direct, and if $\det(\widetilde{f}) = -1$ then f is opposite.

Inversion: For a rotatory inversion

$$R_H \circ R(\overrightarrow{l}, \alpha) = R(\overrightarrow{l}, \alpha) \circ R_H$$

if $\alpha = \pi$, and $\mathbf{a} = H \cap \overrightarrow{l}$ then

$$R_H \circ R(\overrightarrow{l}, \pi) = I_{\mathbf{a}}$$

and

$$I_{\mathbf{a}} = R_{H_1} \circ R_{H_2} \circ R_{H_3}$$

where H_1, H_2, H_3 are all mutually perpendicular and $\mathbf{a} = H_1 \cap H_2 \cap H_3$.

If $\mathbf{a} = \mathbf{0}$, then $I_{\mathbf{0}}$ is linear and

$$I_0 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Symmetry Group: If $X \subset \mathbb{R}^n$ contains n+1 affinely independent points its symmetry group $S(X) \leq I(\mathbb{R}^n)$ is defined by

$$S(X) = \{ f \in I(\mathbb{R}^n) : f(X) = X \}$$

Orbit: For a finite group G, and $\mathbf{x} \in \mathbb{R}^n$, the orbit of \mathbf{x} under the action of G is

$$Orb(\mathbf{x}) = \{ g\mathbf{x} : g \in G \}$$

Convex: A subset $X \subset \mathbb{R}^n$ is convex if, for every pair of points $\mathbf{x}, \mathbf{y} \in X$ the line segment joining them is contained in X; i.e.

$$t \cdot \mathbf{x} + (1 - t)\mathbf{y} \subset X \quad \forall \ t \in [0, 1]$$

so X is closed under taking non-negative affine combinations.

Convex Polyhedron: A subset $X \subset \mathbb{R}^n$ defined by a set of linear inequalities

$$\sum_{i=1}^{n} a_i \mathbf{x}_i \ge c$$

a finite union of convex polyhedron is a **Polyhedron**.

Regular: A polyhedron is regular if, all faces, vertices, and edges are identical. With an identical vertex meaning: there are the same number of edges at each vertex and that the angles between them are all congruent.

Platonic Solid: A Regular convex polyhedron in \mathbb{R}^3 .

Lattice: A lattice $L \subseteq \mathbb{R}^n$, is a discrete subgroup of \mathbb{R}^n containing n linearly independent vectors. Where by discrete, we mean no accumulation point; that is, $\forall \mathbf{x} \in L$, $\exists \epsilon > 0$ such that

$$d(\mathbf{x}, \mathbf{y}) \ge \epsilon$$
, $\forall \mathbf{y} \in L \text{ such that } \mathbf{y} \ne \mathbf{x}$

alternatively for a basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ of \mathbb{R}^n we have

$$L = \left\{ \sum_{i=1}^{n} n_i \mathbf{e}_i : n_i \in \mathbb{Z} \right\}$$

Point Group: A crystal group $G \subseteq I(\mathbb{R}^n)$ has the normal subgroup

$$G_T = G \cap T \cong G \cap \mathbb{R}^n \triangleleft G$$

which forms a lattice in \mathbb{R}^n . The point group is the quotient

$$G/G_T \leq \mathrm{O}(n)$$

and is finite.

Unitary Group: The set of $n \times n$ complex matrices

$$U(n) := \{ A \in M(n, \mathbb{C}) : A\overline{A}^T = I_n \}$$

the rows are orthonormal with respect to the hermitian inner product

$$\langle \mathbf{z}, \mathbf{w} \rangle_{\mathbb{C}^n} = \sum_{i=1}^n z_i \overline{w}_i, \text{ on } \mathbb{C}^n$$

therefore, for $A \in U(2)$ we have

$$A = \begin{bmatrix} \alpha & \beta \\ -\lambda \overline{\beta} & \lambda \overline{\alpha} \end{bmatrix} \quad \text{such that } \alpha \overline{\alpha} + \beta \overline{\beta} = 1, \ |\lambda| = 1$$

Special Unitary Group: $SU(n) \subset U(n)$ is the subset of the unitary matrices such that

$$A \in SU(n) \implies \det(A) = 1$$

for $A \in SU(2)$ we have

$$A = \begin{bmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{bmatrix}$$

i.e. $\lambda = 1$, and has inverse

$$A^{-1} = \begin{bmatrix} \overline{\alpha} & -\beta \\ \overline{\beta} & \alpha \end{bmatrix}$$

Homogeneous Coordinates: Representing the points of \mathbb{RP}^1 as ratios of elements of \mathbb{R} , that is for $x,y\in\mathbb{R}$ if $y\neq 0$, then $\frac{x}{y}\in\mathbb{RP}^1$, and if y=0 then $\frac{x}{y}=\{\infty\}\in\mathbb{RP}^1$. And so

$$\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})/\sim \text{ where } \mathbf{x} \sim \mathbf{y} \iff \mathbf{y} = \lambda \mathbf{x}, \text{ for } \lambda \in \mathbb{R} \setminus \{0\}$$

similarly for any vector space V, over any field \mathbb{F} we have

$$\mathbb{P}(V) = (V \setminus \{\mathbf{0}\}) / \sim \text{where} \quad \mathbf{v} \sim \mathbf{w} \iff \mathbf{w} = \lambda \mathbf{v}, \text{ for } \lambda \in \mathbb{F} \setminus \{0\}$$

Space of Linear Transformations: For two vector spaces V and W, over a common field \mathbb{F} , the space of all linear transformations from V to W is denoted

$$\operatorname{Hom}(V, W)$$

Dual: For a vector space V, over a field \mathbb{F} , the dual space V^* is the space of all linear functionals

$$\operatorname{Hom}(V, \mathbb{F})$$

a basis $\{v_1, \ldots, v_n\}$ of V determines a basis $\{f_1, \ldots, f_n\}$ of V^* where the dual basis acts on $\{v_1, \ldots, v_n\}$ by

$$f_i(v_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Projective Group: The quotient of the group of linear isomorphism from a Vector Space, by scalar multiplication

$$PGL(n, \mathbb{F}) = GL(n, \mathbb{F}) / \{\lambda \cdot Id_V\}$$

2 Notes

 $\mathrm{GL}(n,\mathbb{R})\subset\mathrm{M}(n,\mathbb{R})$ is the set of units, elements with multiplicative inverse.

$$\det: \mathrm{M}(n,\mathbb{R}) \to \mathbb{R}$$

is a continuous map. since it is a polynomial in its entries. Then, since $\{0\} \in \mathbb{R}$ is a singleton and hence closed, we have that $\mathbb{R} \setminus \{0\}$ must therefore be open, and hence

$$\det^{-1}\left(\mathbb{R}\setminus\{0\}\right) = \mathrm{GL}(n,\mathbb{R}) \subset \mathrm{M}(n,\mathbb{R}) \cong \mathbb{R}^{n^2}$$

must be open. Since the determinant is multiplicative

$$\det|_{\mathrm{GL}(n,\mathbb{R})}:\mathrm{GL}(n,\mathbb{R})\to\mathbb{R}\setminus\{0\}$$

is a homomorphism with

$$\ker\left(\det|_{\mathrm{GL}(n,\mathbb{R})}\right)=\mathrm{SL}(n,\mathbb{R})=\{A\in\mathrm{GL}(n,\mathbb{R}):\det(A)=1\}$$

which then tells us that

$$\det^{-1}(\{1\}) = \mathrm{SL}(n,\mathbb{R}) \subseteq \mathrm{GL}(n,\mathbb{R})$$

must be closed.

Lemma 1.

- (i) If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear isometry, then T is orthogonal.
- (ii) If $T: \mathbb{R}^n \to \mathbb{R}^n$ is linear and norm-preserving, then T is orthogonal.

Proof. First we note that any linear isometry is norm-preserving since it satisfies

$$\langle T(\mathbf{x} - \mathbf{y}), T(\mathbf{x} - \mathbf{y}) \rangle = \langle T(\mathbf{x}) - T(\mathbf{y}), T(\mathbf{x}) - T(\mathbf{y}) \rangle \qquad \text{linearity}$$

$$= ||T(\mathbf{x}) - T(\mathbf{y})||^2 \qquad \langle \cdot, \cdot \rangle \text{ induces } || \cdot ||$$

$$= d(T(\mathbf{x}), T(\mathbf{y}))^2 \qquad || \cdot || \text{ induces } d$$

$$= d(\mathbf{x}, \mathbf{y})^2 \qquad T \text{ is an isometry}$$

$$= ||\mathbf{x} - \mathbf{y}||^2$$

$$= \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

and so, letting $\mathbf{y} = \mathbf{0} \in \mathbb{R}^n$ then gives

$$||T(\mathbf{x})||^2 = ||\mathbf{x}||^2$$

That is (i) \implies (ii), and so it suffices to prove (ii). Next we note that

$$\langle T(\mathbf{x}) - T(\mathbf{y}), T(\mathbf{x}) - T(\mathbf{y}) \rangle = \langle T(\mathbf{x}), T(\mathbf{x}) - T(\mathbf{y}) \rangle - \langle T(\mathbf{y}), T(\mathbf{x}) - T(\mathbf{y}) \rangle$$

$$= \langle T(\mathbf{x}), T(\mathbf{x}) \rangle - \langle T(\mathbf{x}), T(\mathbf{y}) \rangle - \langle T(\mathbf{y}), T(\mathbf{x}) \rangle + \langle T(\mathbf{y}), T(\mathbf{y}) \rangle$$

$$= \langle T(\mathbf{x}), T(\mathbf{x}) \rangle - 2 \langle T(\mathbf{x}), T(\mathbf{y}) \rangle + \langle T(\mathbf{y}), T(\mathbf{y}) \rangle$$

$$= ||T(\mathbf{x})||^2 - 2 \langle T(\mathbf{x}), T(\mathbf{y}) \rangle + ||T(\mathbf{y})||^2$$

Now, from above we have

$$\langle T(\mathbf{x} - \mathbf{y}), T(\mathbf{x} - \mathbf{y}) \rangle = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

$$\implies ||T(\mathbf{x})||^2 - 2 \langle T(\mathbf{x}), T(\mathbf{y}) \rangle + ||T(\mathbf{y})||^2 = ||\mathbf{x}||^2 - 2 \langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2$$

$$\implies -2 \langle T(\mathbf{x}), T(\mathbf{y}) \rangle = -2 \langle \mathbf{x}, \mathbf{y} \rangle$$

$$\implies \langle T(\mathbf{x}), T(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$

$$T \text{ is norm-preserving}$$

$$\implies \langle T(\mathbf{x}), T(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$

and thus, T is orthogonal.

Theorem 2. The isometries of \mathbb{R}^n are given by

$$I(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{R}^n \text{ such that } f(\mathbf{x}) = A\mathbf{x} + \mathbf{a}, A \in O(n), \mathbf{a} \in \mathbb{R}^n \}$$

Proof. First let

$$f: \mathbb{R}^n \to \mathbb{R}^n$$
, by $f(\mathbf{x}) = A\mathbf{x} + \mathbf{a}$

with $A \in O(n)$ and $\mathbf{a} \in \mathbb{R}^n$, then

$$d(f(\mathbf{x}), f(\mathbf{y})) = ||f(\mathbf{x}) - f(\mathbf{y})||$$

$$= ||A\mathbf{x} + \mathbf{a} - (A\mathbf{y} + \mathbf{a})||$$

$$= ||A(\mathbf{x} - A\mathbf{y})||$$

$$= ||A(\mathbf{x} - \mathbf{y})||$$

$$= \sqrt{\langle A(\mathbf{x} - \mathbf{y}), A(\mathbf{x} - \mathbf{y}) \rangle}$$

$$= \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle} \qquad A \text{ orthogonal}$$

$$= ||\mathbf{x} - \mathbf{y}||$$

$$= d(\mathbf{x}, \mathbf{y})$$

and so $f \in I(\mathbb{R}^n)$.

Now, given arbitrary $f \in I(\mathbb{R}^n)$ let us choose

$$f(\mathbf{0}) = \mathbf{a}$$

and so for $T_{-\mathbf{a}} \circ f$ we have

$$(T_{-\mathbf{a}} \circ f)(\mathbf{0}) = T_{-\mathbf{a}}(\mathbf{a}) = \mathbf{a} - \mathbf{a} = \mathbf{0}$$

and note that

$$d((T_{-\mathbf{a}} \circ f)(\mathbf{x}), (T_{-\mathbf{a}} \circ f)(\mathbf{y})) = ||f(\mathbf{x}) - \mathbf{a} - (f(\mathbf{y}) - \mathbf{a})||$$

$$= ||f(\mathbf{x}) - f(\mathbf{y})||$$

$$= d(f(\mathbf{x}), f(\mathbf{y}))$$

$$= d(\mathbf{x}, \mathbf{y})$$

and so $T_{-\mathbf{a}} \circ f \in I(\mathbb{R}^n)$. Let

$$g = T_{-\mathbf{a}} \circ f \implies f = T_{\mathbf{a}} \circ g$$

then $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$d(g(\mathbf{x}), g(\mathbf{y}))^2 = d(\mathbf{x}, \mathbf{y})^2$$

$$\implies ||g(\mathbf{x}) - g(\mathbf{y})||^2 = ||\mathbf{x} - \mathbf{y}||^2$$

and setting $\mathbf{y} = \mathbf{0} \in \mathbb{R}^n$ gives

$$||g(\mathbf{x})||^2 = ||\mathbf{x}||^2 \quad \forall \ \mathbf{x} \in \mathbb{R}^n$$

now

$$\begin{aligned} ||g(\mathbf{x}) - g(\mathbf{y})||^2 &= ||\mathbf{x} - \mathbf{y}||^2 \\ &\implies \langle g(\mathbf{x}) - g(\mathbf{y}), g(\mathbf{x}) - g(\mathbf{y}) \rangle = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \\ &\implies \langle g(\mathbf{x}), g(\mathbf{x}) \rangle + \langle g(\mathbf{y}), g(\mathbf{y}) \rangle - 2 \langle g(\mathbf{x}), g(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - 2 \langle \mathbf{x}, \mathbf{y} \rangle \\ &\implies ||g(\mathbf{x})||^2 + ||g(\mathbf{y})||^2 - 2 \langle g(\mathbf{x}), g(\mathbf{y}) \rangle = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2 \langle \mathbf{x}, \mathbf{y} \rangle \\ &\implies \langle g(\mathbf{x}), g(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle \end{aligned}$$

and so if g is linear, then g is orthogonal. Now to see that g is linear we note that

$$||g(\mathbf{x} + \mathbf{y}) - g(\mathbf{x}) - g(\mathbf{y})||^{2}$$

$$= \langle g(\mathbf{x} + \mathbf{y}) - g(\mathbf{x}) - g(\mathbf{y}), g(\mathbf{x} + \mathbf{y}) - g(\mathbf{x}) - g(\mathbf{y}) \rangle$$

$$= \langle g(\mathbf{x} + \mathbf{y}), g(\mathbf{x} + \mathbf{y}) \rangle + \langle g(\mathbf{x}), g(\mathbf{x}) \rangle + \langle g(\mathbf{y}), g(\mathbf{y}) \rangle$$

$$- 2 \langle g(\mathbf{x} + \mathbf{y}), g(\mathbf{x}) \rangle - 2 \langle g(\mathbf{x} + \mathbf{y}), g(\mathbf{y}) \rangle + 2 \langle g(\mathbf{x}), g(\mathbf{y}) \rangle$$

$$= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - 2 \langle \mathbf{x} + \mathbf{y}, \mathbf{x} \rangle - 2 \langle \mathbf{x} + \mathbf{y}, \mathbf{y} \rangle + 2 \langle \mathbf{x}, \mathbf{y} \rangle$$

$$= ||\mathbf{x} + \mathbf{y} - \mathbf{x} - \mathbf{y}||^{2}$$

$$= \mathbf{0}$$

and therefore we must have

$$g(\mathbf{x} + \mathbf{y}) = g(\mathbf{x}) + g(\mathbf{y}) \quad \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

and similarly for any $c \in \mathbb{R}$ we have

$$||g(c\mathbf{x}) - cg(\mathbf{x})||^2 = \langle g(c\mathbf{x}) - cg(\mathbf{x}), g(c\mathbf{x}) - cg(\mathbf{x}) \rangle$$

$$= \langle g(c\mathbf{x}), g(c\mathbf{x}) \rangle + c^2 \langle g(\mathbf{x}), g(\mathbf{x}) \rangle - 2c \langle g(c\mathbf{x}), g(\mathbf{x}) \rangle$$

$$= \langle c\mathbf{x}, c\mathbf{x} \rangle + c^2 \langle \mathbf{x}, \mathbf{x} \rangle - 2c \langle c\mathbf{x}, \mathbf{x} \rangle$$

$$= \mathbf{0}$$

and hence

$$g(c\mathbf{x}) = cg(\mathbf{x})$$

and thus we see that g is a linear transformation, which tells us that $g \in M(n, \mathbb{R})$, and since

$$\langle g(\mathbf{x}), g(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$

we see further, that g is orthogonal, and hence $g \in O(n)$. So let $g = A \in O(n)$ where we then get

$$f(\mathbf{x}) = (T_{\mathbf{a}} \circ g)(\mathbf{x}) = A\mathbf{x} + \mathbf{a}, \text{ with } A \in O(n), \ \mathbf{a} \in \mathbb{R}^n$$

Corollary 3.

$$T: \mathbb{R}^n \to I(\mathbb{R}^n)$$
$$\mathbf{a} \mapsto T_\mathbf{a}$$

realizes \mathbb{R}^n as a subgroup of $I(\mathbb{R}^n)$, which is also a normal subgroup. and so

$$I(\mathbb{R}^n)/\mathbb{R}^n \cong \mathrm{O}(n)$$

Proof. Let $g \in I(\mathbb{R}^n)$ we wish to show

$$g^{-1} \circ T_{\mathbf{a}} \circ g \in T \cong \mathbb{R}^n$$

by Theorem 2, we know that

$$g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$$
, with $A \in O(n)$, $\mathbf{b} \in \mathbb{R}^n$

and

$$T_{\mathbf{a}}(q(\mathbf{x})) = A\mathbf{x} + \mathbf{b} + \mathbf{a}$$

now,

$$\mathbf{y} = g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$$

$$\implies \mathbf{y} - \mathbf{b} = A\mathbf{x}$$

$$\implies \mathbf{x} = A^{-1}\mathbf{y} - A^{-1}\mathbf{b}$$

$$\implies g^{-1}(\mathbf{y}) = A^{-1}\mathbf{y} - A^{-1}\mathbf{b}$$

then

$$(g^{-1} \circ T_{\mathbf{a}} \circ g)(\mathbf{x}) = A^{-1}(A\mathbf{x} + \mathbf{b} + \mathbf{a}) - A^{-1}\mathbf{b}$$
$$= \mathbf{x} + A^{-1}\mathbf{b} + A^{-1}\mathbf{a} - A^{-1}\mathbf{b}$$
$$= \mathbf{x} + A^{-1}\mathbf{a}$$
$$\implies g^{-1} \circ T_{\mathbf{a}} \circ g = T_{A^{-1}\mathbf{a}} \in T \cong \mathbb{R}^{n}$$

and so $T \cong \mathbb{R}^n$ is a normal subgroup; that is, $\mathbb{R}^n \triangleleft I(\mathbb{R}^n)$.

Next, to see that the quotient is O(n) define

$$\phi: I(\mathbb{R}^n) \to O(n)$$
, by $\phi(f(\mathbf{x})) = \phi(A\mathbf{x} + \mathbf{a}) = A$

then for $f(\mathbf{x}) = A\mathbf{x} + \mathbf{a}$, $g(\mathbf{x}) = B\mathbf{x} + \mathbf{b} \in I(\mathbb{R}^n)$ we have

$$f(g(\mathbf{x})) = A(B\mathbf{x} + \mathbf{b}) + \mathbf{a} = AB\mathbf{x} + A\mathbf{b} + \mathbf{a}$$

which implies

$$\phi(f \circ q) = AB = \phi(f)\phi(q)$$

and so ϕ is a homomorphism, with

$$\ker(\phi) = \{ f(\mathbf{x}) = A\mathbf{x} + \mathbf{a} : A = I_n \} = \{ T_{\mathbf{a}} : \mathbf{a} \in \mathbb{R}^n \} \cong \mathbb{R}^n$$

and so, by the Fundamental Homomorphism Theorem we have

$$I(\mathbb{R}^n)/\ker(\phi) = I(\mathbb{R}^n)/\mathbb{R}^n \cong O(n)$$

For the relationship between O(n) and $GL(n,\mathbb{R})$, we note that $A \in GL(n,\mathbb{R})$ has independent columns, while $B \in O(n)$ has orthonormal columns. Where we know that the Gram-Schmidt process transforms a set of independent vectors into a set of orthonormal vectors, and so should define a mapping

$$\mathrm{GL}(n,\mathbb{R}) \to \mathrm{O}(n)$$

 $A \mapsto B$

Proposition 4. $\mathrm{UT}_+(n)$ is a subgroup of $\mathrm{GL}(n,\mathbb{R})$, or $\mathrm{UT}_+(n) \leq \mathrm{GL}(n,\mathbb{R})$.

Proof. If $A \in \mathrm{UT}_+(n)$, then

$$\det(A) = a_{11} \cdot a_{22} \cdots a_{nn} > 0$$

and so $\mathrm{UT}_+(n) \subset \mathrm{GL}(n,\mathbb{R})$. Now

$$A \in \mathrm{UT}_+(n) \iff a_{ij} = \begin{cases} 0, & i > j \\ > 0, & i = j \end{cases}$$

and so for $A, B \in \mathrm{UT}_+(n)$ we have

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

now if i > j then we have

Case 1: i > k in which case $a_{ik} = 0$.

Case 2: $k \ge i > j$ in which case $b_{kj} = 0$

and if i = j then

$$(AB)_{ii} = a_{ii}b_{ii} > 0$$

and so $AB \in UT(n)$, and so we have closure. For the identity element

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \implies I_n \in \mathrm{UT}_+(n)$$

Now for $A \in \mathrm{UT}_+(n)$ we have $\det(A) \neq 0$, and so A^{-1} exists. Where

$$I_n = AA^{-1} = 1_{ii} \implies a_{ii}^{-1} > 0 \ \forall \ i$$

and

$$\sum_{k=1}^{n} a_{ik} b_{kj} = 0 \qquad \text{if } i \neq k \neq j$$

and so fixing i = 2 and j = 1 we get

$$a_{21}^{-1}a_{11} + a_{22}^{-1}a_{21} + \dots + a_{2n}^{-1}a_{n1} = a_{21}^{-1}a_{11} + 0 \dots + 0 = 0$$

yet

$$a_{11} \neq 0 \implies a_{21}^{-1} = 0$$

which then gives

$$a_{21}^{-1} = a_{31}^{-1} = \dots = a_{n1}^{-1} = 0$$

For the 2^{nd} column we get

$$a_{31}^{-1}a_{12} + a_{32}^{-1}a_{22} + 0 \dots + 0 = 0$$

yet

$$a_{22} \neq 0 \implies a_{32}^{-1} = 0$$

which then gives

$$a_{32}^{-1} = a_{42}^{-1} = \dots = a_{n2}^{-1} = 0$$

so assume the result holds for j = l, then for the $(l+1)^{th}$ column we have

$$a_{(l+2)1}^{-1}a_{1(l+1)} + a_{(l+2)2}^{-1}a_{2(l+1)} + \dots + a_{(l+2)(l+1)}^{-1}a_{(l+1)(l+1)} + 0 \dots + 0 = 0$$

and by hypothesis we have

$$a_{(l+2)1}^{-1} = \dots = a_{(l+2)l}^{-1} = 0$$

and so we have

$$a_{(l+2)(l+1)}^{-1}a_{(l+1)(l+1)} = 0$$

yet

$$a_{(l+1)(l+1)} \neq 0 \implies a_{(l+2)(l+1)}^{-1} = 0$$

and so by induction we get that $A^{-1} \in \mathrm{UT}_+(n)$.

So $\mathrm{UT}_+(n)$ is a subset, closed under the binary operation of $\mathrm{GL}(n,\mathbb{R})$ which contains the identity element, and all of its inverses, and thus, we can conclude that $\mathrm{UT}_+(n) \leq \mathrm{GL}(n,\mathbb{R})$.

Theorem 5. For a given $A \in GL(n, \mathbb{R})$, there are unique matrices $B \in O(n)$, and $C \in UT_{+}(n)$ such that

$$A = BC$$

Proof. Let $A \in GL(n,\mathbb{R})$ be given and let $\mathbf{a}_1,\ldots,\mathbf{a}_n$ be the columns of A, so that

$$A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$$

since each column is independent, using the Gram-Schmidt process we can construct vectors $\mathbf{f}_1, \ldots, \mathbf{f}_n$ from $\mathbf{a}_1, \ldots, \mathbf{a}_n$ such that the \mathbf{f}_i 's are orthogonal, by

$$egin{aligned} \mathbf{f}_1 &= \mathbf{a}_1 \ &\mathbf{f}_k &= \mathbf{a}_k - \sum_{i=1}^{k-1} rac{\langle \mathbf{a}_k, \mathbf{f}_i
angle}{\langle \mathbf{f}_i, \mathbf{f}_i
angle} \mathbf{f}_i \end{aligned}$$

or

$$\mathbf{a}_1 = 1 \cdot \mathbf{f}_1$$
 $\mathbf{a}_k = 1 \cdot \mathbf{f}_k + \sum_{i=1}^{k-1} t_{ki}^1 \mathbf{f}_i$

where we have designated the constant $\frac{\langle \mathbf{a}_k, \mathbf{f}_i \rangle}{\langle \mathbf{f}_i, \mathbf{f}_i \rangle} = t_{ki}^1$ and since the vectors depend only on the previous ones, we get an upper triangular matrix with the t_{ij}^1 entries. That is, if F is the matrix with the \mathbf{f}_i 's as columns then

$$A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1n} \\ f_{21} & f_{22} & \dots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \dots & f_{nn} \end{bmatrix} \begin{bmatrix} 1 & t_{12}^1 & \dots & t_{1n}^1 \\ 0 & 1 & \dots & t_{2n}^1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = FT_1 \quad \text{with } T_1 \in \mathrm{UT}_+(n)$$

which then gives

$$F = AT_1^{-1}$$

Next we normalize by setting

$$\mathbf{b}_i = rac{\mathbf{f}_1}{||\mathbf{f}_i||}$$

then if B is the matrix with the \mathbf{b}_i 's as columns we have

$$B = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1n} \\ f_{21} & f_{22} & \dots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \dots & f_{nn} \end{bmatrix} \begin{bmatrix} \frac{1}{||\mathbf{f}_1||} & t_{12}^2 & \dots & t_{1n}^2 \\ 0 & \frac{1}{||\mathbf{f}_2||} & \dots & t_{2n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{||\mathbf{f}_n||} \end{bmatrix} = FT_2 \quad \text{with } T_2 \in \mathrm{UT}_+(n)$$

then since $UT_+(n)$ is a subgroup of $GL(n,\mathbb{R})$ we know that the product of elements in $UT_+(n)$ is also in $UT_+(n)$ so letting

$$C = (T_1^{-1}T_2)^{-1} \in \mathrm{UT}_+(n)$$

then we have

$$B = FT_2 = (AT_1^{-1})T_2 \implies A = B(T_1^{-1}T_2)^{-1} = BC$$

where $B \in O(n)$ and $C \in UT_{+}(n)$.

For uniqueness, suppose that A has two such decomposition's, say

$$A = B_1 C_1 = B_2 C_2 \implies B_2^{-1} B_1 = C_1 C_2^{-1} \in O(n) \cap UT_+(n)$$

so let $D=B_2^{-1}B_1$, and so we also have $D=C_1C_2^{-1}$ where $D\in \mathrm{O}(n)\cap \mathrm{UT}_+(n)$. Now since $D\in \mathrm{O}(n)$ we have in particular that $D^{-1}\in \mathrm{O}(n)$ and that

$$D^{-1} = D^T$$

and since $UT_+(n)$ is a subgroup and $D \in UT_+(n)$ we have that $D^{-1} = D^T \in UT_+(n)$. Now if D is upper triangular, then D^T must be lower triangular, and since $D^T \in UT_+(n)$ we must have that D is diagonal. Then as

$$DD^{-1} = DD^T = D^2 = I_n$$

each diagonal entry $d_{ii} = \pm 1$. Yet, since $D \in \mathrm{UT}_+(n)$ its diagonal entries must be positive, and so

$$D = I_n$$

which then tells us that

$$B_1 = B_2, \quad \text{and} \quad C_1 = C_2$$

and thus, the decomposition is unique.

Corollary 6. $GL(n, \mathbb{R})$ is homeomorphic to $O(n) \times UT_{+}(n)$.

Proof. we construct the homeomorphism with the following sequence of maps

$$\mathrm{GL}(n,\mathbb{R}) \to \mathrm{O}(n) \times \mathrm{UT}_+(n) \to \mathrm{GL}(n,\mathbb{R})$$

 $A \mapsto (B,C) \mapsto BC$

With continuity being given by the factoring, and then the product of polynomials (in the entries of the matrices).

Next we note that $UT_+(n)$ has $\frac{n(n-1)}{2}$ off-diagonal components which are nonzero, and n diagonal components which are strictly non-negative. And so

$$\mathrm{UT}_+(n) \cong \mathbb{R}^{n(n-1)/2} \times \mathbb{R}^n_{>0}$$

yet we also have the homeomorphism

$$\log: \mathbb{R}_{>0} \to \mathbb{R}$$

with inverse

$$\exp: \mathbb{R} \to \mathbb{R}_{>0}$$

which gives

$$\mathrm{UT}_+(n) \cong \mathbb{R}^{n(n-1)/2} \times \mathbb{R}^n_{>0} \cong \mathbb{R}^{n(n-1)/2} \times \mathbb{R}^n \cong \mathbb{R}^{n(n+1)/2}$$

and therefore $GL(n,\mathbb{R})$ is homeomorphic to $O(n) \times \mathbb{R}^{n(n+1)/2}$.

Lemma 7. If $A \subset \mathbb{R}^n$ is an affine subspace and $\mathbf{a}, \mathbf{b} \in A$, then

$$A - \mathbf{a} = A - \mathbf{b}$$

Proof. First, let $\mathbf{x} - \mathbf{a} \in A - \mathbf{a}$, then we note that

$$\mathbf{x} - \mathbf{a} + \mathbf{b}$$
, where $\mathbf{x}, \mathbf{a}, \mathbf{b} \in A$, and $1 - 1 + 1 = 1$

and so $\mathbf{x} - \mathbf{a} + \mathbf{b} \in A$ which then gives

$$(\mathbf{x} - \mathbf{a} + \mathbf{b}) - \mathbf{b} = \mathbf{x} - \mathbf{a} \in A - \mathbf{b}$$

and so

$$A - \mathbf{a} \subseteq A - \mathbf{b}$$

Next, let $\mathbf{y} - \mathbf{b} \in A - \mathbf{b}$, then we note that

$$\mathbf{y} - \mathbf{b} + \mathbf{a}$$
, where $\mathbf{y}, \mathbf{b}, \mathbf{a} \in A$, and $1 - 1 + 1 = 1$

and so $\mathbf{y} - \mathbf{b} + \mathbf{a} \in A$ which then gives

$$(\mathbf{y} - \mathbf{b} + \mathbf{a}) - \mathbf{a} = \mathbf{y} - \mathbf{b} \in A - \mathbf{a}$$

and so

$$A - \mathbf{b} \subseteq A - \mathbf{a}$$

which gives

$$A - \mathbf{a} = A - \mathbf{b}$$

Lemma 8. If $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ with $\mathbf{a} \neq \mathbf{b}$, then

$$B = \{ \mathbf{x} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{a}) = d(\mathbf{x}, \mathbf{b}) \}$$

is a hyperplane in \mathbb{R}^n .

Proof. First note that

$$d\left(\frac{\mathbf{a} + \mathbf{b}}{2}, \mathbf{a}\right) = \left|\left|\frac{\mathbf{a} + \mathbf{b}}{2} - \mathbf{a}\right|\right| = \left|\left|\frac{\mathbf{b} - \mathbf{a}}{2}\right|\right| = \left|\left|\frac{\mathbf{a} - \mathbf{b}}{2}\right|\right| = d\left(\frac{\mathbf{a} + \mathbf{b}}{2}, \mathbf{b}\right)$$

and so $\frac{\mathbf{a}+\mathbf{b}}{2} \in B$, so we must show that

$$H = B - \frac{\mathbf{a} + \mathbf{b}}{2}$$

is an (n-1)-dimensional linear subspace. Now, for $\mathbf{c}=\frac{\mathbf{a}-\mathbf{b}}{2}$ and any $\mathbf{y}\in H$ we have

$$d(\mathbf{y}, \mathbf{c}) = d\left(\mathbf{x} - \frac{\mathbf{a} + \mathbf{b}}{2}, \frac{\mathbf{a} - \mathbf{b}}{2}\right) = \left|\left|\mathbf{x} - \frac{\mathbf{a} + \mathbf{b}}{2} - \frac{\mathbf{a} - \mathbf{b}}{2}\right|\right| = ||\mathbf{x} - \mathbf{a}|| = d(\mathbf{x}, \mathbf{a})$$

and similarly

$$d(\mathbf{y}, -\mathbf{c}) = d(\mathbf{x}, \mathbf{b})$$

and so

$$H = \{ \mathbf{y} \in \mathbb{R}^n : d(\mathbf{y}, \mathbf{c}) = d(\mathbf{y}, -\mathbf{c}) \}$$

so if $\{\mathbf{c}, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is an orthogonal basis for \mathbb{R}^n , then $\{\mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for H.

If $H \subset \mathbb{R}^n$ is any hyperplane, then $\forall \mathbf{x} \in \mathbb{R}^n$ we have

$$\mathbf{x} = \mathbf{y} + \mathbf{z}$$
, with $\mathbf{y} \in H$, $\mathbf{z} \in H^{\perp}$

to see this, let $\mathbf{a} \in H$, then

$$H - \mathbf{a} = \{\mathbf{h} - \mathbf{a} : \mathbf{h} \in H\}$$

is a linear hyperplane and so

$$H - \mathbf{a} = {\{\mathbf{b}\}}^{\perp}$$
, for some $\mathbf{b} \in \mathbb{R}^n$

and so, for any $\mathbf{x} \in \mathbb{R}^n$ we have

$$\mathbf{x} - \mathbf{a} = \lambda \mathbf{b} + \mathbf{c}$$
, where $\mathbf{c} \in H - \mathbf{a}$

so let $\mathbf{y} = \mathbf{c} + \mathbf{a}$ and $\mathbf{z} = \lambda \mathbf{b}$, then we have

$$\mathbf{x} = \lambda \mathbf{b} + \mathbf{c} + \mathbf{a} = \mathbf{z} + \mathbf{y}$$
, with $\mathbf{y} \in H$, $\mathbf{z} \in H^{\perp}$

For uniqueness, suppose that

$$y_1 + z_1 = x = y_2 + z_2$$
 with $y_1, y_2 \in H$, $z_1, z_2 \in H^{\perp}$

which then implies that

$$\mathbf{z}_2 - \mathbf{z}_1 = \mathbf{y}_1 - \mathbf{y}_2$$

and that

$$H - \mathbf{y}_1 = H - \mathbf{y}_2$$

and so

$$\mathbf{z}_2, \mathbf{z}_1 \in \perp (H - \mathbf{y}_2) \implies \mathbf{z}_2 - \mathbf{z}_1 \in \perp (H - \mathbf{y}_2)$$

and $\mathbf{y}_1 - \mathbf{y}_2 \in (H - \mathbf{y}_2)$, which then implies

$$\langle \mathbf{z}_2 - \mathbf{z}_1, \mathbf{y}_1 - \mathbf{y}_2 \rangle = \mathbf{0} \implies \mathbf{z}_2 - \mathbf{z}_1 = \mathbf{y}_1 - \mathbf{y}_2 = \mathbf{0}$$

and so we must have $\mathbf{z}_2 = \mathbf{z}_1$ and $\mathbf{y}_1 = \mathbf{y}_2$

Lemma 9. If $f: A \to B$ is an affine map, then the map

$$L_f: A - \mathbf{a} \to B - f(\mathbf{a}), \text{ by } L_f(\mathbf{x}) = f(\mathbf{x} + \mathbf{a}) - f(\mathbf{a})$$

is a linear map. And f is determined by L_f as

$$f(\mathbf{x}) = L_f(\mathbf{x} - \mathbf{a}) + \mathbf{b}$$

Proof. First, let $(\mathbf{x} + \mathbf{a}), (\mathbf{y} + \mathbf{a}), \mathbf{a} \in A$, then

$$x + y + a = (x + a) + (y + a) - a$$
, where $1 + 1 - 1 = 1$

and so $\mathbf{x} + \mathbf{y} + \mathbf{a} \in A$, then

$$L_f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x} + \mathbf{y} + \mathbf{a}) - f(\mathbf{a})$$

$$= f((\mathbf{x} + \mathbf{a}) + (\mathbf{y} + \mathbf{a}) - \mathbf{a}) - f(\mathbf{a})$$

$$= f(\mathbf{x} + \mathbf{a}) + f(\mathbf{y} + \mathbf{a}) - f(\mathbf{a}) \qquad f \text{ is affine}$$

$$= f(\mathbf{x} + \mathbf{a}) - f(\mathbf{a}) + f(\mathbf{y} + \mathbf{a}) - f(\mathbf{a})$$

$$= L_f(\mathbf{x}) + L_f(\mathbf{y})$$

and

$$\lambda \mathbf{x} + \mathbf{a} = \lambda(\mathbf{x} + \mathbf{a}) + (1 - \lambda)\mathbf{a}$$
, where $\lambda + (1 - \lambda) = 1$

and so $\lambda \mathbf{x} + \mathbf{a} \in A$, and

$$L_f(\lambda \mathbf{x}) = f(\lambda \mathbf{x} + \mathbf{a}) - f(\mathbf{a})$$

$$= f(\lambda(\mathbf{x} + \mathbf{a}) + (1 - \lambda)\mathbf{a}) - f(\mathbf{a})$$

$$= \lambda f(\mathbf{x} + \mathbf{a}) + (1 - \lambda)f(\mathbf{a}) - f(\mathbf{a})$$

$$= \lambda f(\mathbf{x} + \mathbf{a}) - \lambda f(\mathbf{a})$$

$$= \lambda \left(f(\mathbf{x} + \mathbf{a}) - f(\mathbf{a}) \right)$$

$$= \lambda L_f(\mathbf{x})$$

and so L_f is linear.

Moreover, letting $f(\mathbf{a}) = \mathbf{b}$ we get

$$L_f(\mathbf{x} - \mathbf{a}) = f(\mathbf{x} - \mathbf{a} + \mathbf{a}) - f(\mathbf{a})$$
$$= f(\mathbf{x}) - \mathbf{b}$$
$$\implies f(\mathbf{x}) = L_f(\mathbf{x} - \mathbf{a}) + \mathbf{b}$$

Corollary 10. If $f: \mathbb{R}^n \to \mathbb{R}^n$ is an affine map, then $\exists \mathbf{a} \in \mathbb{R}^n$ such that

$$L: \mathbb{R}^n \to \mathbb{R}^n$$
, by $L(\mathbf{x}) = f(\mathbf{x}) - \mathbf{a}$

is linear, and so

$$f(\mathbf{x}) = L(\mathbf{x}) + \mathbf{a}$$

Theorem 11. An isometry

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

is uniquely determined by the images $f(\mathbf{a}_0), \dots, f(\mathbf{a}_n)$ of a set $\{\mathbf{a}_0, \dots, \mathbf{a}_n\}$ of n+1 affinely independent points.

Proof. Let $\{\mathbf{a}_0,\ldots,\mathbf{a}_n\}$ be affinely independent and let $f,g\in I(\mathbb{R}^n)$ be such that

$$f(\mathbf{a}_i) = g(\mathbf{a}_i) \quad \forall \ 0 < i < n$$

Then since the compositions of isometries is an isometry we have $g^{-1} \circ f$ is an isometry such that

$$g^{-1}(f(\mathbf{a}_i)) = \mathbf{a}_i \quad \forall \ 0 \le i \le n$$

Defining the translation $T_{-\mathbf{a}_0}$ we have

$$T_{-\mathbf{a}_0}(\{\mathbf{a}_0,\ldots,\mathbf{a}_n\})=\{\mathbf{a}_0-\mathbf{a}_0,\ldots,\mathbf{a}_n-\mathbf{a}_0\}=\{\mathbf{0},\mathbf{a}_1-\mathbf{a}_0\ldots,\mathbf{a}_n-\mathbf{a}_0\}:=\{\mathbf{0},\mathbf{b}_1,\ldots,\mathbf{b}_n\}$$

then the set $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ forms a basis for \mathbb{R}^n . Next, we define the map

$$h = T_{-\mathbf{a}_0} \circ g^{-1} \circ f \circ T_{-\mathbf{a}_0}^{-1}$$

where

$$\begin{split} h(\mathbf{b}_i) &= T_{-\mathbf{a}_0} \circ g^{-1} \circ f \circ T_{\mathbf{a}_0}(\mathbf{a}_i - \mathbf{a}_0) \\ &= T_{-\mathbf{a}_0} \circ g^{-1} \circ f(\mathbf{a}_i) \\ &= T_{-\mathbf{a}_0}(\mathbf{a}_i) \\ &= \mathbf{a}_i - \mathbf{a}_0 \\ &= \mathbf{b}_i \end{split} \qquad \forall \ 1 \leq i \leq n \end{split}$$

and

$$h(\mathbf{0}) = T_{-\mathbf{a}_0} \circ g^{-1} \circ f(\mathbf{a}_0) = T_{-\mathbf{a}_0}(\mathbf{a}_0) = \mathbf{0}$$

so if $\mathbf{y} = h(\mathbf{x})$, since h is the composition of isometries, and hence an isometry, we have

$$d(h(\mathbf{x}), h(\mathbf{0})) = d(\mathbf{y}, \mathbf{0}) = d(\mathbf{x}, \mathbf{0})$$

and

$$d(\mathbf{x}, \mathbf{b}_i) = d(h(\mathbf{x}), h(\mathbf{b}_i)) = d(\mathbf{y}, \mathbf{b}_i) \quad \forall \ 1 \le i \le n$$

yet

$$d(\mathbf{y}, \mathbf{0}) = d(\mathbf{x}, \mathbf{0})$$

$$\implies ||\mathbf{y} - \mathbf{0}|| = ||\mathbf{x} - \mathbf{0}||$$

$$\implies ||\mathbf{y}|| = ||\mathbf{x}||$$

$$\implies \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

$$\implies \langle \mathbf{y}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle$$

and similarly

$$d(\mathbf{y}, \mathbf{b}_{i}) = d(\mathbf{x}, \mathbf{b}_{i})$$

$$\Rightarrow ||\mathbf{y} - \mathbf{b}_{i}|| = ||\mathbf{x} - \mathbf{b}_{i}||$$

$$\Rightarrow \sqrt{\langle \mathbf{y} - \mathbf{b}_{i}, \mathbf{y} - \mathbf{b}_{i} \rangle} = \sqrt{\langle \mathbf{x} - \mathbf{b}_{i}, \mathbf{x} - \mathbf{b}_{i} \rangle}$$

$$\Rightarrow \langle \mathbf{y} - \mathbf{b}_{i}, \mathbf{y} - \mathbf{b}_{i} \rangle = \langle \mathbf{x} - \mathbf{b}_{i}, \mathbf{x} - \mathbf{b}_{i} \rangle$$

$$\Rightarrow \langle \mathbf{y}, \mathbf{y} \rangle - 2 \langle \mathbf{y}, \mathbf{b}_{i} \rangle + \langle \mathbf{b}_{i}, \mathbf{b}_{i} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - 2 \langle \mathbf{x}, \mathbf{b}_{i} \rangle + \langle \mathbf{b}_{i}, \mathbf{b}_{i} \rangle$$

$$\Rightarrow \langle \mathbf{x}, \mathbf{x} \rangle - 2 \langle h(\mathbf{x}), \mathbf{b}_{i} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - 2 \langle \mathbf{x}, \mathbf{b}_{i} \rangle$$

$$\Rightarrow \langle h(\mathbf{x}), \mathbf{b}_{i} \rangle = \langle \mathbf{x}, \mathbf{b}_{i} \rangle$$

$$\forall 1 \le i \le n$$

and since $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis, we then have

$$\langle h(\mathbf{x}), \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle \quad \forall \ \mathbf{z} \in \mathbb{R}^n$$

which then implies that $h(\mathbf{x}) = \mathbf{x}$ and so h = Id; that is

$$Id = T_{-\mathbf{a}_0} \circ g^{-1} \circ f \circ T_{-\mathbf{a}_0}^{-1} \implies Id = g^{-1} \circ f \implies g = f$$

and so f is uniquely determined by its image of n+1 affinely independent points.

This also demonstrates that a point $\mathbf{x} \in \mathbb{R}^n$ is uniquely determined by its distance from n+1 affinely independent points.

Theorem 12. If $\{\mathbf{a}_0, \dots, \mathbf{a}_n\}$ and $\{\mathbf{b}_0, \dots, \mathbf{b}_n\}$ are two sets of n+1 affinely independent points in \mathbb{R}^n with

$$d(\mathbf{a}_i, \mathbf{a}_j) = d(\mathbf{b}_i, \mathbf{b}_j) \quad \forall \ 0 \le i, j \le n$$

then $\exists f \in I(\mathbb{R}^n)$ such that

$$f(\mathbf{a}_i) = \mathbf{b}_i \quad \forall \ 0 \le i \le n$$

Proof. Using a translation if necessary let us assume that $\mathbf{a}_0 = \mathbf{0} = \mathbf{b}_0$, which then implies that

$$d(\mathbf{a}_i, \mathbf{a}_0) = d(\mathbf{a}_i, \mathbf{0}) = ||\mathbf{a}_i - \mathbf{0}|| = ||\mathbf{a}_i|| = ||\mathbf{b}_i|| = ||\mathbf{b}_i - \mathbf{0}|| = d(\mathbf{b}_i, \mathbf{0}) = d(\mathbf{b}_i, \mathbf{b}_0)$$

Then both $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ and $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ are bases for \mathbb{R}^n and by assumption we have

$$d(\mathbf{a}_{i}, \mathbf{a}_{j}) = d(\mathbf{b}_{i}, \mathbf{b}_{j})$$

$$\Rightarrow ||\mathbf{a}_{1} - \mathbf{a}_{j}|| = ||\mathbf{b}_{i} - \mathbf{b}_{j}||$$

$$\Rightarrow \sqrt{\langle \mathbf{a}_{i} - \mathbf{a}_{j}, \mathbf{a}_{i} - \mathbf{a}_{j} \rangle} = \sqrt{\langle \mathbf{b}_{i} - \mathbf{b}_{j}, \mathbf{b}_{i} - \mathbf{b}_{j} \rangle}$$

$$\Rightarrow \langle \mathbf{a}_{i} - \mathbf{a}_{j}, \mathbf{a}_{i} - \mathbf{a}_{j} \rangle = \langle \mathbf{b}_{i} - \mathbf{b}_{j}, \mathbf{b}_{i} - \mathbf{b}_{j} \rangle$$

$$\Rightarrow \langle \mathbf{a}_{i}, \mathbf{a}_{i} \rangle - 2 \langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle + \langle \mathbf{a}_{j}, \mathbf{a}_{j} \rangle = \langle \mathbf{b}_{i}, \mathbf{b}_{i} \rangle - 2 \langle \mathbf{b}_{i}, \mathbf{b}_{j} \rangle + \langle \mathbf{b}_{j}, \mathbf{b}_{j} \rangle$$

$$\Rightarrow ||\mathbf{a}_{i}|| - 2 \langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle + ||\mathbf{a}_{j}|| = ||\mathbf{b}_{i}|| - 2 \langle \mathbf{b}_{i}, \mathbf{b}_{j} \rangle + ||\mathbf{b}_{j}||$$

$$\Rightarrow \langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle = \langle \mathbf{b}_{i}, \mathbf{b}_{j} \rangle$$

$$\forall 1 \leq i \leq n$$

so let g be the unique linear transformation such that

$$g(\mathbf{a}_i) = \mathbf{b}_i \quad \forall \ 1 \le i \le n$$

next, let

$$\mathbf{x} - \mathbf{y} = \sum_{i=1}^{n} \lambda_i \mathbf{a}_i$$
 since $\{\mathbf{a}_i\}_{i=1}^n$ a basis for \mathbb{R}^n

then by the linearity of g we have

$$g(\mathbf{x}) - g(\mathbf{y}) = g(\mathbf{x} - \mathbf{y}) = g\left(\sum_{i=1}^{n} \lambda_i \mathbf{a}_i\right) = \sum_{i=1}^{n} \lambda_i g(\mathbf{a}_i) = \sum_{i=1}^{n} \lambda_i \mathbf{b}_i$$

which gives

$$d(g(\mathbf{x}), g(\mathbf{y}))^{2} = ||g(\mathbf{x}) - g(\mathbf{y})||^{2}$$

$$= ||g(\mathbf{x} - \mathbf{y})||^{2}$$

$$= \left\| \sum_{i=1}^{n} \lambda_{i} \mathbf{b}_{i} \right\|^{2}$$

$$= \sum_{i=1}^{n} \lambda_{i} \sum_{j=1}^{n} \lambda_{j} \langle \mathbf{b}_{i}, \mathbf{b}_{j} \rangle$$

$$= \sum_{i=1}^{n} \lambda_{i} \sum_{j=1}^{n} \lambda_{j} \langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle$$

$$= \left\| \sum_{i=1}^{n} \lambda_{i} \mathbf{a}_{i} \right\|^{2}$$

$$= ||\mathbf{x} - \mathbf{y}||^{2}$$

$$= d(\mathbf{x}, \mathbf{y})^{2}$$

and so g is a linear isometry. And our f will be

$$f = T_{\mathbf{b}_0} \circ g \circ T_{-\mathbf{a}_0}$$

which is affine. \Box

Theorem 13. let $A \subseteq \mathbb{R}^n$ be an affine subspace of dimension n-r. If $f \in I(\mathbb{R}^n)$, such that $f|_A = Id$, then f is a product of at most r reflections.

Proof. Proof by induction on r. Base case: r=1, then $\dim(A)=n-1$ and A is a hyperplane. If $f=Id_{\mathbb{R}^n}$ we are done. If $f\neq Id_{\mathbb{R}^n}$, then pick $\mathbf{x}\not\in A$ such that $f(\mathbf{x})\neq \mathbf{x}$, and note that since A is a hyperplane we have

$$\mathbf{x} = \mathbf{a} + \mathbf{b}, \quad \mathbf{a} \in A, \ \mathbf{b} \perp (A - \mathbf{a})$$

then, since A is a hyperplane, and f and isometry, it can be defined by

$$A = {\mathbf{a} \in A : d(f(\mathbf{x}), \mathbf{a}) = d(\mathbf{x}, \mathbf{a})}, \quad \text{since } f(\mathbf{a}) = \mathbf{a}$$

and so $f(\mathbf{x}) = \mathbf{a} - \mathbf{b}$, that is

$$R_A = f$$

where R_A fixes $\{\mathbf{a}_0, \dots, \mathbf{a}_{n-1}, \mathbf{x}\}$, or (n-1)+1 affinely independent points. And so f is the composition of 1 reflection.

Now suppose the result holds for r = k > 1, then we must check for r = k + 1 where $\dim(A) = n - (k + 1)$, and $f|_A = Id_A$. If $f = Id_{\mathbb{R}^n}$ we are done. If $f \neq Id_{\mathbb{R}^n}$, then pick $\mathbf{x} \notin A$ such that $f(\mathbf{x}) \neq \mathbf{x}$, and consider the hyperplane defined by

$$H = \{ \mathbf{v} \in \mathbb{R}^n : d(f(\mathbf{x}), \mathbf{v}) = d(\mathbf{x}, \mathbf{v}) \}$$

since $f|_A = Id_A$ this implies

$$d(f(\mathbf{a}), \mathbf{y}) = d(\mathbf{a}, \mathbf{y}) \implies A \subset H$$

so let $f' = R_H \circ f$, then

$$f'(\mathbf{x}) = R_H \circ f(\mathbf{x}) = \mathbf{x}$$

then we have that f' fixes $\{\mathbf{a}_0, \dots, \mathbf{a}_{n-(k+1)}, \mathbf{x}\}$, or n-(k+1)+1=n-k affinely independent points, so that f' is the identity map on an affine subspace of dimension n-k, and so, by hypothesis we have that $f' = R_1 \circ \cdots \circ R_k$ is a composition of at most k reflections giving

$$f = R_H \circ f' = R_H \circ R_1 \circ \cdots \circ R_k$$

is the composition of at most k+1 reflections.

So by the PMI we conclude the result holds for all r.

Corollary 14. If $f \in I(\mathbb{R}^n)$ such that $f(\mathbf{0}) = \mathbf{0}$, then f is orthogonal.

Proof. Since $f \in I(\mathbb{R}^n)$ has the form $f = T_{\mathbf{a}} \circ A$ for $A \in O(n)$ and $\mathbf{a} \in \mathbb{R}^n$, then

$$f(\mathbf{0}) = \mathbf{0} \implies A\mathbf{0} + \mathbf{a} = \mathbf{0} \implies \mathbf{a} = \mathbf{0}$$

and so f = A is an orthogonal linear transformation.

A metric can be defined on $I(\mathbb{R}^n)$, by choosing a set $\{\mathbf{x}_0, \dots, \mathbf{x}_n\} \in \mathbb{R}^n$ of n+1 independent points and defining

$$d(f,g) = \max_{0 \le i \le n} d(f(\mathbf{x}_i), g(\mathbf{x}_i))$$

this metric is also left-invariant; i.e. $\forall f, g, h \in I(\mathbb{R}^n)$

$$d(hf, hg) = d(f, g)$$

if $\{\mathbf{a}_0, \dots, \mathbf{a}_n\}$ and $\{\mathbf{b}_0, \dots, \mathbf{b}_n\}$ are two sets n+1 affinely independent points in \mathbb{R}^n , then first writing the \mathbf{a}_i 's in terms of the \mathbf{b}_i 's we get

$$\mathbf{a}_i = \sum_{j=1}^n \lambda_{ij} \mathbf{b}_j, \text{ with } \sum_{j=1}^n \lambda_{ij} = 1$$

Given $\epsilon > 0$ choose M such that

$$|\lambda_{ij}| \leq M \quad \forall i, j$$

and choose $\delta = \frac{\epsilon}{(n+1)M}$. Then

$$d_{\mathbf{b}}(f,g) < \delta \implies ||f(\mathbf{b}_i) - g(\mathbf{b}_i)|| < \delta \quad \forall \ i$$

now as both f, g are affine maps we have

$$f(\mathbf{a}_i) - g(\mathbf{a}_i) = f\left(\sum_{j=1}^n \lambda_{ij} \mathbf{b}_j\right) - g\left(\sum_{j=1}^n \lambda_{ij} \mathbf{b}_j\right)$$
$$= \sum_{j=1}^n \lambda_{ij} f(\mathbf{b}_j) - \sum_{j=1}^n \lambda_{ij} g(\mathbf{b}_j)$$
$$= \sum_{j=1}^n \lambda_{ij} \left(f(\mathbf{b}_j) - g(\mathbf{b}_j)\right)$$

and so

$$||f(\mathbf{a}_i) - g(\mathbf{a}_i)|| = \left| \left| \sum_{j=1}^n \lambda_{ij} (f(\mathbf{b}_j) - g(\mathbf{b}_j)) \right| \right|$$

$$\leq \sum_{j=1}^n |\lambda_{ij}| \cdot ||f(\mathbf{b}_i) - g(\mathbf{b}_i)||$$

$$\leq (n+1)M\delta$$

$$= (n+1)M \frac{\epsilon}{(n+1)M}$$

$$= \epsilon$$

and thus $\forall \ \epsilon > 0, \ \exists \ \delta > 0$ such that

$$d_{\mathbf{b}}(f,g) < \delta \implies d_{\mathbf{a}}(f,g) < \epsilon$$

and so both of the metrics induce the same topology on $I(\mathbb{R}^n)$.

Theorem 15. $I(\mathbb{R}^n)$ is homeomorphic to $O(n) \times \mathbb{R}^n$.

Proof. Given $f \in I(\mathbb{R}^n)$ define

$$\widetilde{f}: \mathbb{R}^n \to \mathbb{R}^n$$
, by $\widetilde{f}(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{0})$

so that $\widetilde{f} = T_{-f(\mathbf{0})} \circ f$ and

$$\widetilde{f}(\mathbf{0}) = T_{-f(\mathbf{0})} \circ f(\mathbf{0}) = f(\mathbf{0}) - f(\mathbf{0}) = \mathbf{0}$$

that is $\widetilde{f} \in I(\mathbb{R}^n)$ as the composition of isometries and fixes $\mathbf{0}$, and hence \widetilde{f} is orthogonal by Corollary 14. Then we have the mapping

$$I(\mathbb{R}^n) \to \mathrm{O}(n) \times \mathbb{R}^n$$

 $f \mapsto (\widetilde{f}, f(\mathbf{0}))$

and its inverse

$$O(n) \times \mathbb{R}^n \to I(\mathbb{R}^n)$$

 $(A, \mathbf{a}) \mapsto f = T_{\mathbf{a}} \circ A$

Lemma 16. The mapping

$$I(\mathbb{R}^n) \to \{\pm 1\}$$

 $f \mapsto \det(\widetilde{f})$

is a group homomorphism.

Proof. Since the determinant is multiplicative we will show that $f \mapsto \widetilde{f} = T_{-f(\mathbf{0})} \circ f$ is a homomorphism. so, for any $f, g \in I(\mathbb{R}^n)$ we have

$$(\widetilde{f} \circ \widetilde{g})(\mathbf{x}) = T_{-f(\mathbf{0})} \circ f \circ T_{-g(\mathbf{0})} \circ g(\mathbf{x})$$

$$= T_{-f(\mathbf{0})} \circ f(g(\mathbf{x}) - g(\mathbf{0}))$$

$$= T_{-f(\mathbf{0})} \circ f(g(\mathbf{x})) - T_{-f(\mathbf{0})} \circ f(g(\mathbf{0})) \qquad f \text{ is linear}$$

$$= f(g(\mathbf{x})) - f(\mathbf{0}) - f(g(\mathbf{0})) + f(\mathbf{0})$$

$$= f(g(\mathbf{x})) - f(g(\mathbf{0}))$$

$$= T_{-f(g(\mathbf{0}))} \circ (f \circ g)(\mathbf{x})$$

$$= \widetilde{f} \circ g(\mathbf{x})$$

and so the mapping is a homomorphism.

Isometries of \mathbb{R}^2

1. Translations: Direct, group of translations is a normal subgroup of $I(\mathbb{R}^2)$ isomorphic to \mathbb{R}^2

$$T_{\mathbf{a}} = R_l \circ R_m$$
, where $l||m, d(l, m) = \frac{||\mathbf{a}||}{2}$

the elements $T_{\mathbf{a}}$ have infinite order.

2. Rotations: Direct, denoted $R(\mathbf{a}, \alpha)$ for a rotation through the angle α at the point \mathbf{a} .

$$f \circ R(\mathbf{a}, \alpha) \circ f^{-1} = R(f(\mathbf{a}), \alpha)$$
 if f is a direct isometry $g \circ R(\mathbf{a}, \alpha) \circ g^{-1} = R(g(\mathbf{a}), -\alpha)$ if g is an opposite isometry

For fixed **a** the set of rotations $R(\mathbf{a}, \alpha)$ about **a** forms a subgroup $SO(2)|_{\mathbf{a}} \leq I(\mathbb{R}^2)$ where

$$SO(2)|_{\mathbf{a}} \cong SO(2) = SO(2)|_{\mathbf{0}}$$

 $R(\mathbf{a},\alpha) = R_l \circ R_m$, where l,m are concurrent and the angle between them is $\frac{\alpha}{2}$

$$|R(\mathbf{a},\alpha)| = \begin{cases} \infty, & \frac{2\pi}{\alpha} \in \mathbb{I} \\ n, & \frac{2\pi}{\alpha} \in \mathbb{Q} \text{ where } \frac{2\pi}{\alpha} = \frac{n}{m} \implies \alpha = \frac{2\pi m}{n} \end{cases}$$

3. Reflections: Opposite, for any pair of lines $l, m \in \mathbb{R}^n$, $\exists f \in I(\mathbb{R}^n)$ such that

$$f(l) = m$$

and

$$f \circ R_l \circ f^{-1} = R_{f(l)} \quad \forall f \in I(\mathbb{R}^2)$$

4. Glide: Opposite,

$$G(l, \mathbf{a}) = R_l \circ T_{\mathbf{a}} = T_{\mathbf{a}} \circ R_l$$
, where $\mathbf{a} || l$

and so

$$G(l, \mathbf{a})^2 = R_l \circ T_\mathbf{a} \circ R_l \circ T_\mathbf{a} = T_\mathbf{a} \circ R_l \circ R_l \circ T_\mathbf{a} = T_\mathbf{a} \circ T_\mathbf{a} = T_{2\mathbf{a}}$$
$$|G(l, \mathbf{a})| = \infty.$$

Lemma 17. $T_{\mathbf{a}} \circ R_l$ is a glide if $l \not\perp \mathbf{a}$, and a reflection if $l \perp \mathbf{a}$.

Proof. Choose a point \mathbf{p} on l and let

$$\mathbf{q} = \mathbf{p} + \frac{\mathbf{a}}{2}$$

and let \mathbf{r} be the point on l perpendicular to $\mathbf{p} + \mathbf{a}$. Let m be the line parallel to l passing through $\mathbf{p} + \frac{\mathbf{a}}{2} = \mathbf{q}$. Now since any isometry of \mathbb{R}^2 is uniquely determined by its image of 3 independent points by Theorem 11, namely $\mathbf{p}, \mathbf{q}, \mathbf{r}$, so we wish to show that

$$T_{\mathbf{a}} \circ R_l = R_m \circ T_{\mathbf{r} - \mathbf{p}}$$

since $\mathbf{r} - \mathbf{p}||l$ and so by definition is a glide.

first we recognise that we can break \mathbf{a} into is components parallel to l and perpendicular to l, so that

$$\mathbf{a} = \mathbf{c} + \mathbf{d}$$
, where $\mathbf{c}||l$, $\mathbf{d} \perp l$

And recall that \mathbf{r} is the point on l perpendicular to $\mathbf{p} + \mathbf{a}$, so it is the translation of the component of \mathbf{a} parallel to the line l; i.e. $\mathbf{r} = \mathbf{p} + \mathbf{c}$,

1: Since $\mathbf{p} \in l$ it is a fixed point,

$$(T_{\mathbf{a}} \circ R_l)(\mathbf{p}) = T_{\mathbf{a}}(\mathbf{p}) = \mathbf{p} + \mathbf{a}$$

and since m||l| and at a distance of $\frac{\mathbf{d}}{2}$ above $\mathbf{r} = \mathbf{p} + \mathbf{c}$ we get

$$(R_m \circ T_{\mathbf{r}-\mathbf{p}})(\mathbf{p}) = R_m(\mathbf{p} + \mathbf{r} - \mathbf{p})$$

$$= R_m(\mathbf{r})$$

$$= R_m(\mathbf{p} + \mathbf{c})$$

$$= \mathbf{p} + \mathbf{c} + 2\frac{\mathbf{d}}{2}$$

$$= \mathbf{p} + \mathbf{c} + \mathbf{d}$$

$$= \mathbf{p} + \mathbf{a}$$

2: Now we check \mathbf{q} , where we get

$$(T_{\mathbf{a}} \circ R_l)(\mathbf{q}) = (T_{\mathbf{a}} \circ R_l) \left(\mathbf{p} + \frac{\mathbf{c} + \mathbf{d}}{2}\right)$$

$$= T_{\mathbf{a}} \left(\mathbf{p} + \frac{\mathbf{c}}{2} - \frac{\mathbf{d}}{2}\right)$$

$$= \mathbf{p} + \frac{\mathbf{c}}{2} - \frac{\mathbf{d}}{2} + \mathbf{a}$$

$$= \mathbf{p} + \frac{\mathbf{c}}{2} - \frac{\mathbf{d}}{2} + \mathbf{c} + \mathbf{d}$$

$$= \mathbf{p} + \frac{3}{2}\mathbf{c} + \frac{1}{2}\mathbf{d}$$

And recall that m||l and so $\mathbf{q} + \mathbf{c} \in m$ and so is a fixed point.

$$(R_m \circ T_{\mathbf{r}-\mathbf{p}})(\mathbf{q}) = R_m(\mathbf{q} + (\mathbf{p} + \mathbf{c}) - \mathbf{p})$$

$$= R_m(\mathbf{q} + \mathbf{c})$$

$$= \mathbf{q} + \mathbf{c}$$

$$= \mathbf{p} + \frac{\mathbf{c} + \mathbf{d}}{2} + \mathbf{c}$$

$$= \mathbf{p} + \frac{3}{2}\mathbf{c} + \frac{1}{2}\mathbf{d}$$

3: $\mathbf{r} = \mathbf{p} + \mathbf{c} \in l$ and so is a fixed point, giving

$$(T_{\mathbf{a}} \circ R_l)(\mathbf{r}) = T_{\mathbf{a}}(\mathbf{r}) = \mathbf{r} + \mathbf{a}$$

and

$$(R_m \circ T_{\mathbf{r}-\mathbf{p}})(\mathbf{r}) = R_m (2\mathbf{r} - \mathbf{p})$$

$$= R_m (2\mathbf{p} + 2\mathbf{c} - \mathbf{p})$$

$$= \mathbf{p} + 2\mathbf{c} + 2\frac{\mathbf{d}}{2}$$

$$= (\mathbf{p} + \mathbf{c}) + (\mathbf{c} + \mathbf{d})$$

$$= \mathbf{r} + \mathbf{a}$$

and so if $l \not\perp \mathbf{a}$ then $T_{\mathbf{a}} \circ R_l$ is a glide.

Theorem 18. Any isometry $f \in I(\mathbb{R}^2)$ is the identity, a translation, a rotation, a reflection or a glide.

Proof. First suppose that f has a fixed point, translating the fixed point to the origin if necessary we have by Corollary 14, that $f \in O(2)$ and so f is of the form

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

in which case f is a rotation by an angle of α . Or

$$\begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}$$

in which case f is a reflection through the line

$$y = \tan\left(\frac{\alpha}{2}\right)x$$

Next, suppose that f has no fixed point, so let $\mathbf{a} \in \mathbb{R}^2$ be such that

$$f(\mathbf{a}) = \mathbf{b}$$

and consider the hyperplane defined by

$$H = \{ \mathbf{x} \in \mathbb{R}^2 : d(\mathbf{a}, \mathbf{x}) = d(\mathbf{b}, \mathbf{x}) \}$$

then

$$R_H \circ f(\mathbf{a}) = R_H(\mathbf{b}) = \mathbf{a}$$

and so **a** is a fixed point of $R_H \circ f$, where, from above, we know that $R_H \circ f$ is either a reflection across a line through **a**, or a rotation about **a**.

Case 1: If $R_H \circ f$ is a reflection across a line say m, then

$$f = R_H \circ R_m$$

where H||m, otherwise, if $H \not||m$, then they meet at a point say \mathbf{c} , which could be a fixed point for $R_H \circ R_m$ and hence f, contradicting the assumption that f has no fixed point. Then, since the reflections must be parallel we know that

$$f = T_{2d(H,m)}$$

and so is a translation.

Case 2: If $R_H \circ f$ is a rotation, then

$$R_H \circ f = R(\mathbf{a}, \alpha)$$

where $R(\mathbf{a}, \alpha) = R_m \circ R_n$ with m, n concurrent with angle $\frac{\alpha}{2}$ between them, and we may choose m such that $\mathbf{a} \in m$ and m||H, then

$$f = R_H \circ R_m \circ R_n = T_{2d(H,m)} \circ R_n$$

then from Lemma 17, f is either a reflection, or a glide. Yet, since f has no fixed point, it must be a glide.

so we get the following summarization of the isometries of \mathbb{R}^2 .

$I(\mathbb{R}^2)$	Fixed point	No fixed point
Direct	Rotation	Translation
Opposite	Reflection	Glide

Isometries of \mathbb{R}^3

- (i) **Direct**:
 - 1: Translation.
 - 2: Rotation: Let \vec{l} be a directed line in \mathbb{R}^3 , then $R(\vec{l}, \alpha)$ is the rotation about \vec{l} , through an angle of α .
 - 3: Screw: The composition of a translation and a rotation. let $\mathbf{a}||\overrightarrow{l}|$, then

$$T_{\mathbf{a}} \circ R(\overrightarrow{l}, \alpha) = R(\overrightarrow{l}, \alpha) \circ T_{\mathbf{a}}$$

is a screw.

(ii) Opposite:

- 4: Reflection: If H is a plane in \mathbb{R}^3 , then R_H is a reflection through H.
- 5: Glides: If H is a plane in \mathbb{R}^3 , and $\mathbf{a} \in \mathbb{R}^3$ such that $\mathbf{a}||H$, then

$$T_{\mathbf{a}} \circ R_H = R_H \circ T_{\mathbf{a}}$$

is a glide.

6: Rotatory Reflection: If H is a plane in \mathbb{R}^3 , and \vec{l} a line such that $\vec{l} \perp H$, then

$$R_H \circ R(\overrightarrow{l}, \alpha) = R(\overrightarrow{l}, \alpha) \circ R_H$$

is a rotatory reflection.

7: Rotatory Inversion: Is the composition of $R(\vec{l}, \alpha)$, a rotation about a line \vec{l} , and an inversion $I_{\mathbf{a}}$ where $\mathbf{a} \in \vec{l}$; that is

$$R(\overrightarrow{l}, \alpha) \circ I_{\mathbf{a}}$$

is a rotatory inversion.

Lemma 19. For any **a** and \vec{l} , if $\vec{a} \not\perp \vec{l}$, then

$$T_{\mathbf{a}} \circ R(\overrightarrow{l}, \alpha)$$

is a screw.

Proof. Decomposing a into

$$\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2$$
, where $\mathbf{a}_1 || \overrightarrow{l}, \mathbf{a}_2 \perp \overrightarrow{l}$

we get

$$T_{\mathbf{a}} \circ R(\overrightarrow{l}, \alpha) = T_{\mathbf{a}_1} \circ T_{\mathbf{a}_2} \circ R(\overrightarrow{l}, \alpha)$$

where

$$T_{\mathbf{a}_2} \circ R(\overrightarrow{l}, \alpha) = R(\overrightarrow{m}, \beta), \text{ with } \overrightarrow{m} || \overrightarrow{l}$$

and hence

$$T_{\mathbf{a}_1} \circ T_{\mathbf{a}_2} \circ R(\overrightarrow{l}, \alpha) = T_{\mathbf{a}_1} \circ R(\overrightarrow{m}, \beta)$$

is the composition of a translation and a rotation where $\mathbf{a}_1 || \vec{m}$ and hence is a screw. Unless $\mathbf{a}_1 = \mathbf{0}$.

Lemma 20. Let $H \subset \mathbb{R}^3$ be any plane and $\mathbf{a} \in \mathbb{R}^3$ any vector. Then $R_H \circ T_{\mathbf{a}}$ is a glide if $\mathbf{a} \not\perp H$, and a reflection if $\mathbf{a} \perp H$.

Proof. Decomposing a into

$$\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2$$
, where $\mathbf{a}_1 \perp H$, $\mathbf{a}_2 || H$

we get

$$R_H \circ T_{\mathbf{a}} = R_H \circ T_{\mathbf{a}_1} \circ T_{\mathbf{a}_2}$$

where

$$R_H \circ T_{\mathbf{a}_1} = R_{H'}$$
 with $H' || H$

and hence

$$R_H \circ T_{\mathbf{a}_1} \circ T_{\mathbf{a}_2} = R_{H'} \circ T_{\mathbf{a}_2}$$

is the composition of a reflection and a translation where $\mathbf{a}_2||H'$, and therefore is a glide, unless $\mathbf{a}_2 = \mathbf{0}$, in which case it is a reflection.

Proposition 21. Every rotatory inversion can be written as a rotatory reflection and every rotatory reflection can be written as a rotatory inversion.

Proof. First, let

$$R(\overrightarrow{l}, \alpha) \circ I_{\mathbf{a}}$$

be a rotary inversion. Then write

$$R(\overrightarrow{l}, \alpha) = R_{H_1} \circ R_{H_2}, \text{ where } \overrightarrow{l} = H_1 \cap H_2$$

and the angle between H_1 and H_2 is $\frac{\alpha}{2}$. Since $R(\vec{l}, \alpha) \circ I_{\mathbf{a}}$ is a rotary inversion, $\mathbf{a} \in \vec{l}$, and we may decompose $I_{\mathbf{a}}$ as

$$I_{\mathbf{a}} = R_{H_2} \circ R_{H_3} \circ R_{H_4}$$

where H_2, H_3, H_4 are mutually perpendicular, and $\mathbf{a} = H_2 \cap H_3 \cap H_4$. Then

$$R(\vec{l}, \alpha) \circ I_{\mathbf{a}} = R_{H_1} \circ R_{H_2} \circ R_{H_2} \circ R_{H_3} \circ R_{H_4} = R_{H_1} \circ R_{H_3} \circ R_{H_4}$$

Now, since H_1, H_2 were not perpendicular, we will also have $H_1 \not\perp H_3$, and so $\vec{m} = H_1 \cap H_3$ where $\vec{m} \perp H_4$ since $H_1, H_3 \perp H_4$ and so

$$R_{H_1} \circ R_{H_3} \circ R_{H_4} = R(\overrightarrow{m}, \beta) \circ R_{H_4}$$

is the composition of a rotation about \vec{m} , and a reflections through a plane perpendicular to \vec{m} , and thus, is a rotatory reflection.

Next, let

$$R_H \circ R(\overrightarrow{l}, \alpha)$$

be a rotatory reflection. Then write

$$R(\overrightarrow{l}, \alpha) = R_{H_1} \circ R_{H_2}$$
, where $\overrightarrow{l} = H_1 \cap H_2$

and the angle between H_1 and H_2 is $\frac{\alpha}{2}$, and $\vec{l} \perp H$ implies $H_1, H_2 \perp H$. Then they all intersect at a point, say $\mathbf{a} = H \cap H_1 \cap H_2$, then we have

$$R_{H} \circ R(\overrightarrow{l}, \alpha) = R_{H} \circ R_{H_{1}} \circ R_{H_{2}}$$

$$= R_{H} \circ R_{H_{1}} \circ (Id) \circ R_{H_{2}}$$

$$= R_{H} \circ R_{H_{1}} \circ R_{H_{3}} \circ R_{H_{3}} \circ R_{H_{2}}$$

and we may choose H_3 to be perpendicular to both H, H_1 at **a** and so

$$R_H \circ R_{H_1} \circ R_{H_3} = I_{\mathbf{a}}$$

and since $H_1 \not\perp H_2$ we will have $H_3 \not\perp H_2$, since we have chosen $H_3 \perp H_1$. Yet, since we have chosen $H_3 \perp H_1$ such that $H_3 \ni \mathbf{a}$, and $\vec{l} \perp H$ to begin with, we will have $\vec{l} = H_3 \cap H_2$, and clearly \mathbf{a} still belongs to \vec{l} . And so $R_{H_3} \circ R_{H_2} = R(\vec{l}, \beta)$, and so we have

$$R_H \circ R_{H_1} \circ R_{H_3} \circ R_{H_3} \circ R_{H_2} = I_{\mathbf{a}} \circ R(\overrightarrow{l}, \beta)$$

which is a rotation about a line \vec{l} , and an inversion about a point $\mathbf{a} \in \vec{l}$, and thus is a rotatory inversion.

Lemma 22. Let $H \subset \mathbb{R}^3$ be a plane, and if $\vec{l} \in \mathbb{R}^3$ is a line such that $\vec{l} \not\subset H$, but $\vec{l} \cap H \neq \emptyset$, then $R_H \circ R(\vec{l}, \alpha)$ is a rotatory reflection.

Note: from Lemma 20, if $\vec{l}|H$, then it is a glide.

Proof. First decomposing

$$R(\overrightarrow{l}, \alpha) = R_{H_1} \circ R_{H_2}$$
, where $\overrightarrow{l} = H_1 \cap H_2$

and $\mathbf{a} = H \cap H_1 \cap H_2$, where we may choose $H_1 \perp H$. Then, there is a plane $H_3 \ni \mathbf{a}$, perpendicular to both H, H_1 , such that all three are mutually perpendicular, and so

$$R_{H} \circ R(\overrightarrow{l}, \alpha) = R_{H} \circ R_{H_{1}} \circ R_{H_{2}}$$

$$= R_{H} \circ R_{H_{1}} \circ (Id) \circ R_{H_{2}}$$

$$= R_{H} \circ R_{H_{1}} \circ R_{H_{3}} \circ R_{H_{3}} \circ R_{H_{2}}$$

$$= I_{\mathbf{a}} \circ R_{H_{3}} \circ R_{H_{2}}$$

and since $H_1 \not\perp H_2$ we have $H_3 \not\perp H_2$, since H_3 was chosen to be perpendicular to H_1 , and so $\overrightarrow{m} = H_3 \cap H_2$, (not necessarily \overrightarrow{l} , since \overrightarrow{l} may not have been perpendicular H) and thus we get

$$I_{\mathbf{a}} \circ R_{H_3} \circ R_{H_2} = I_{\mathbf{a}} \circ R(\overrightarrow{m}, \beta)$$

which is a rotation about a line \vec{m} , and an inversion about a point $\mathbf{a} \in \vec{m}$, and thus is a rotatory inversion, and from Proposition 21 must also be a rotatory reflection.

Theorem 23. Any isometry $f \in I(\mathbb{R}^3)$ is the identity, a translation, a rotation, a screw, a reflection, a glide, or a rotatory inversion/reflection.

Proof. Since we know that any isometry $f \in I(\mathbb{R}^3)$ is the composition of at most 4 reflections, we may simply check the cases.

Case 1: 0 Reflections: Then f = Id.

Case 2: 1 Reflection: Then $f = R_H$, and is a reflection.

Case 3: 2 Reflections: Then

$$f = R_{H_1} \circ R_{H_2}$$

Sub-case 1: $H_1||H_2$, then

$$f = R_{H_1} \circ R_{H_2} = T_{2d(H_1, H_2)}$$

and is a translation.

Sub-case 2: $H_1 \not\parallel H_2$, then they meet in a line $\overrightarrow{l} = H_1 \cap H_2$, and have angle α between them. Then

$$f = R_{H_1} \circ R_{H_2} = R(\overrightarrow{l}, 2\alpha)$$

and is a rotation about \vec{l} through an angle of 2α .

Case 4: 3 Reflections: Then

$$f = R_{H_1} \circ R_{H_2} \circ R_{H_3}$$

where from Case 2 we get

$$R_{H_1} \circ R_{H_2} \circ R_{H_3} = \begin{cases} R_{H_1} \circ T_{2d(H_2, H_3)} \\ R_{H_1} \circ R(\overrightarrow{l}, 2\alpha) \end{cases}$$

Sub-case 1: $f = R_{H_1} \circ T_{2d(H_2,H_3)}$, then Lemma 20, tells us that f is a glide, unless $2d(H_2,H_3) \perp H_1$, in which case it is a reflection.

Sub-case 2: $f = R_{H_1} \circ R(\vec{l}, 2\alpha)$, then by Lemma 22, f must be a rotatory reflection, unless $\vec{l} | | H_1$, in which case it is a glide.

Case 5: 4 Reflections: Then

$$f = R_{H_1} \circ R_{H_2} \circ R_{H_3} \circ R_{H_4}$$

where

$$\det(f) = \det(R_{H_1})\det(R_{H_2})\det(R_{H_3})\det(R_{H_4}) = (-1)(-1)(-1)(-1) = 1$$

and so f is direct.

Sub-case 1: f has a fixed point. Then $f|_A = Id$ for an affine subspace of dimension 3 - k with $1 \le k \le 3$, and so by Theorem 13, f is the product of at most 3 reflections. Yet, since f is direct, it cannot be the product of 1 or 3 reflections, and hence must be the product of either 0 reflections, and so f = Id; or 2 reflections where Case 2 tells us f is a translation or a rotation. Yet, since f has a fixed point it cannot be a translation, and so must be a rotation.

Sub-case 2: f has no fixed points, then

$$T_{-f(\mathbf{x})} \circ f$$

will have at least one fixed point, and so from Sub-case 1

$$T_{-f(\mathbf{x})} \circ f = \begin{cases} Id & \Longrightarrow f = T_{f(\mathbf{x})} \\ \text{Translation} & \Longrightarrow f = T_{f(\mathbf{x})} \circ T_{\mathbf{a}} \\ \text{Rotation} & \Longrightarrow f = T_{f(\mathbf{x})} \circ R(\overrightarrow{l}, \alpha) \end{cases}$$

in the first 2 instances we have a translation and in the last, from Lemma 19, we have that f is a screw, unless $f(\mathbf{x}) \perp \overrightarrow{l}$, in which case it is a rotation.

Corollary 24. If $f \in I(\mathbb{R}^3)$ is direct, and has a fixed point, then f has a fixed line.

For any regular n-gon, P_n centered for convenience at the origin in \mathbb{R}^2 , we have

$$S(P_n) = D_n$$

and and $f \in S(P_n)$ has the property that

$$f(\mathbf{0}) = \mathbf{0} \implies S(P_n) \subset O(2)$$

and

$$S(P_n) = \left\langle R\left(0, \frac{2\pi}{n}\right), R_l \middle| R\left(0, \frac{2\pi}{n}\right)^n, R_l^2, R_l R\left(0, \frac{2\pi}{n}\right) R_l = R\left(0, \frac{2\pi}{n}\right)^{-1} \right\rangle$$

where l is a line through $\mathbf{0}$, and one of the vertices of P_n . With

$$R\left(0, \frac{2\pi}{n}\right) = \text{direct}$$

 $R_l = \text{opposite}$

and

$$\left\langle R\left(0, \frac{2\pi}{n}\right)\right\rangle = S(P_n) \cap SO(2)$$
 and $\frac{|S(P_n)|}{\left|\left\langle R\left(0, \frac{2\pi}{n}\right)\right\rangle\right|} = 2$

and so $S(P_n) = \left\{ \left\langle R\left(0, \frac{2\pi}{n}\right) \right\rangle, R_l \left\langle R\left(0, \frac{2\pi}{n}\right) \right\rangle \right\}$, where $R_l \left\langle R\left(0, \frac{2\pi}{n}\right) \right\rangle$ is the coset consisting of reflections through $\mathbf{0}$ and a vertex of P_n , or the midpoint of an edge of P_n .

Lemma 25. If $G < I(\mathbb{R}^n)$ is a finite subgroup, then there exists a fixed point $\mathbf{a} \in \mathbb{R}^n$ such that $g\mathbf{a} = \mathbf{a}, \ \forall \ g \in G$.

Proof. The key observation here being that isometries respect the center of mass of a finite set of points. We will first use induction, on the number of points in a given set $X \subset \mathbb{R}^n$, to demonstrate that this is the case. Let C(X) be the center of mass, or centroid of X, so that

$$C(\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$$

Base case: If $X = \{\mathbf{x}_1, \mathbf{x}_2\}$ then

$$C(\{\mathbf{x}_1, \mathbf{x}_2\}) = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}$$

which is the midpoint of the line segment $[x_1, x_2]$. Which is the unique point such that

$$d(\mathbf{x}_1, C(X)) = d(\mathbf{x}_2, C(X)) = \frac{1}{2}d(\mathbf{x}_1, \mathbf{x}_2)$$

if $f \in I(\mathbb{R}^n)$, then

$$d\big(f(\mathbf{x}_1),f(C(X))\big) = d\big(f(\mathbf{x}_2),f(C(X))\big) = \frac{1}{2}d\big(f(\mathbf{x}_1),f(\mathbf{x}_2)\big)$$

and so f(C(X)) is the midpoint of the line segment $[f(\mathbf{x}_1), f(\mathbf{x}_2)]$, that is

$$f(C(X)) = C(f(X))$$

So assume the result holds for $X = \{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}\}$, and we must check the case when $X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$. First, let

$$\mathbf{y} = C(\{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}\})$$

then $C(\{\mathbf{x}_1,\ldots,\mathbf{x}_n\})$ is the unique point on the line segment $[\mathbf{y},\mathbf{x}_n]$ such that

$$d(\mathbf{y}, C(X)) = \frac{1}{n-1} \sum_{i=1}^{n-1} \mathbf{x}_i - \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$
$$= \frac{1}{n(n-1)} \sum_{i=1}^{n-1} \mathbf{x}_i - \frac{\mathbf{x}_n}{n}$$
$$= \frac{1}{n} \left(\frac{1}{n-1} \sum_{i=1}^{n-1} \mathbf{x}_i - \mathbf{x}_n \right)$$
$$= \frac{1}{n} d(\mathbf{y}, \mathbf{x}_n)$$

and

$$d(C(X), \mathbf{x}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i - \mathbf{x}_n$$

$$= \frac{1}{n} \sum_{i=1}^{n-1} \mathbf{x}_i - \frac{n-1}{n} \mathbf{x}_n$$

$$= \frac{n-1}{n} \left(\frac{1}{n-1} \sum_{i=1}^{n-1} \mathbf{x}_i - \mathbf{x}_n \right)$$

$$= \frac{n-1}{n} d(\mathbf{y}, \mathbf{x}_n)$$

and so for any $f \in I(\mathbb{R}^n)$ we then have

$$d(f(\mathbf{y}), f(C(X))) = \frac{1}{n} d(f(\mathbf{y}), f(\mathbf{x}_n)), \quad d(f(C(X)), f(\mathbf{x}_n)) = \frac{n-1}{n} d(f(\mathbf{y}), f(\mathbf{x}_n))$$

and by hypothesis we have

$$f(C({\mathbf{x}_1, \dots, \mathbf{x}_{n-1}})) = C({f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n-1})})$$

and so we then get

$$f(C(X)) = C(f(X))$$

and so by the principal of mathematical induction we have that the result holds $\forall n$.

Next, we observe that $G < I(\mathbb{R}^n)$ is finite iff $Orb(\mathbf{x})$ is finite for every $\mathbf{x} \in \mathbb{R}^n$. So let $\mathbf{x} \in \mathbb{R}^n$ be given, and note that, for any $h \in G$

$$h(\operatorname{Orb}(\mathbf{x})) = \{h(g\mathbf{x}) : g \in G\} = \{(hg)\mathbf{x} : hg \in G\} = \operatorname{Orb}(\mathbf{x})$$

that is h merely permutes the points of the orbit. Then from above, since h is also an isometry, we then have

$$h(C(\operatorname{Orb}(\mathbf{x})) = C(h(\operatorname{Orb}(\mathbf{x}))) = C(\operatorname{Orb}(\mathbf{x}))$$

and since $h \in G$ was arbitrary we see that the centroid is fixed by every element of G, so set

$$\mathbf{a} = C(\operatorname{Orb}(\mathbf{x}))$$

Theorem 26. Every finite subgroup of $I(\mathbb{R}^2)$ is either cyclic or dihedral.

Proof. Let $G < I(\mathbb{R}^2)$ be a subgroup of finite order, say |G| = n. Let $\mathbf{a} \in \mathbb{R}^2$ be given, its orbit under the action of G is

$$Orb(\mathbf{a}) = \{ g\mathbf{a} : g \in G \}$$

and is a finite subset of \mathbb{R}^2 , its centroid is given by

$$C(\operatorname{Orb}(\mathbf{a})) = \frac{1}{n} \sum_{g \in G} g\mathbf{a}$$

from Lemma 25, we know for any $f \in I(\mathbb{R}^2)$ we have $f(C(\text{Orb}(\mathbf{a})) = C(f(\text{Orb}(\mathbf{a})))$, and that $C(\text{Orb}(\mathbf{a}))$ is a fixed point of G. And therefore

$$G < \mathcal{O}(2)|_{C(\mathrm{Orb}(\mathbf{a}))}$$

that is, G is a subgroup of the orthogonal transformations centered at $C(\text{Orb}(\mathbf{a}))$.

Consider first, the direct subgroup of G

$$G_d = G \cap SO(2)|_{C(Orb(\mathbf{a}))} = \{R(C(Orb(\mathbf{a})), \alpha) : \alpha \in [0, \pi)\}$$

and let

$$\alpha_0 = \min\{\alpha : \alpha > 0, \ q = R(C(\text{Orb}(\mathbf{a})), \alpha) \in G_d\}$$

if $\alpha_0 \neq \frac{2\pi}{m}$ for some $m \in \mathbb{N}$, then $\exists \ k$ such that

$$k\alpha_0 \in (2\pi, 2\pi + \alpha_0)$$

and consequently

$$R(C(\operatorname{Orb}(\mathbf{a})), \alpha_0)^k = R(C(\operatorname{Orb}(\mathbf{a})), k\alpha_0) = R(C(\operatorname{Orb}(\mathbf{a})), k\alpha_0 - 2\pi) \in G_d$$

but then

$$0 < k\alpha_0 - 2\pi < \alpha_0 \implies \Leftarrow$$

contradicting the minimality of α_0 . And therefore $\alpha_0 = \frac{2\pi}{m}$. Furthermore, $\forall g \in G_d$ we have $g = R\left(C(\operatorname{Orb}(\mathbf{a})), k\frac{2\pi}{m}\right)$, for some $0 \le k < n$. To see this, fix

$$\beta \in \{R(C(\mathrm{Orb}(\mathbf{a})), \alpha) : \alpha \in [0, \pi)\}$$

and observe, that if $\beta = k\alpha_0 + \beta'$ for some $0 \le \beta' < \alpha_0$, then $\beta' = \beta - k\alpha_0$ and

$$R(C(\operatorname{Orb}(\mathbf{a})), \beta') = R(C(\operatorname{Orb}(\mathbf{a})), \beta) \circ R(C(\operatorname{Orb}(\mathbf{a})), \alpha_0)^{-k} \in G_d$$

as both $\beta, k\alpha_0 \in \{R(C(\text{Orb}(\mathbf{a})), \alpha) : \alpha \in [0, \pi)\}$ and hence $\beta' \in \{R(C(\text{Orb}(\mathbf{a})), \alpha) : \alpha \in [0, \pi)\}$ and by the minimality of α_0 we must therefore have $\beta' = 0$, and so $\beta = k\alpha_0$. Therefore we get

$$G_d = \langle R\left(C(\text{Orb}(\mathbf{a})), \frac{2\pi}{m}\right) \rangle$$

and is cyclic. If $G=G_d$ then m=n and $|G|=|G_d|=n$, and we are done. If not, then if $h,h'\in G$ are opposite, we note that $h'h^{-1}\in G$ is direct, that is $h'h^{-1}\in G_d$. So let $k=h'h^{-1}$ then

$$h' = kh \in h'G_d = h' \left\langle R\left(C(\text{Orb}(\mathbf{a})), \frac{2\pi}{m}\right)\right\rangle$$

and so

$$G = G_d \cup h'G_d = \left\langle R\left(C(\operatorname{Orb}(\mathbf{a})), \frac{2\pi}{m}\right) \right\rangle \cup h'\left\langle R\left(C(\operatorname{Orb}(\mathbf{a})), \frac{2\pi}{m}\right) \right\rangle$$

and so G_d is a subgroup of index 2 and $m = \frac{n}{2}$. And since h' has the fixed point $C(\text{Orb}(\mathbf{a}))$, it cannot be a translation or glide, and as h' is opposite, we therefore must have that it is a reflection in a line l containing $C(\text{Orb}(\mathbf{a}))$.

Thus G is generated by R_l and $R\left(C(\text{Orb}(\mathbf{a})), \frac{2\pi}{m}\right)$. And we then observe that if $R\left(C(\text{Orb}(\mathbf{a})), k\frac{2\pi}{m}\right) \in G_d$ is any rotation we have

$$\left(R_l \circ R\left(C(\operatorname{Orb}(\mathbf{a})), k\frac{2\pi}{m}\right)\right)^2 = R_l \circ R\left(C(\operatorname{Orb}(\mathbf{a})), k\frac{2\pi}{m}\right) \circ R_l \circ R\left(C(\operatorname{Orb}(\mathbf{a})), k\frac{2\pi}{m}\right)
= R_l \circ R\left(C(\operatorname{Orb}(\mathbf{a})), k\frac{2\pi}{m}\right) \circ R\left(C(\operatorname{Orb}(\mathbf{a})), -k\frac{2\pi}{m}\right) \circ R_l
= R_l \circ R_l
= e$$

yet this implies that

$$R_l \circ R\left(C(\operatorname{Orb}(\mathbf{a})), k\frac{2\pi}{m}\right) \circ R_l = R\left(C(\operatorname{Orb}(\mathbf{a})), k\frac{2\pi}{m}\right)^{-1}$$

and so we have

$$G = \left\langle R_l, R\left(C(\operatorname{Orb}(\mathbf{a})), \frac{2\pi}{m}\right) \middle| R_l^2, R\left(C(\operatorname{Orb}(\mathbf{a})), \frac{2\pi}{m}\right)^{\frac{n}{2}}, R_l R\left(C(\operatorname{Orb}(\mathbf{a})), \frac{2\pi}{m}\right) R_l = R\left(C(\operatorname{Orb}(\mathbf{a})), \frac{2\pi}{m}\right)^{-1} \right\rangle$$

$$\cong D_{\frac{n}{2}}$$

and thus we see, that if $G < I(\mathbb{R}^2)$ is a subgroup of finite order, then G is cyclic or dihedral. \square

A polyhedron in \mathbb{R}^3 is bounded by planes $P_1 \dots, P_k$, with a 2-dimensional subset contained in one of the P_i being a face, an edge being the intersection of 2 faces or $P_i \cap P_j$, and a vertex the intersection of 2 edges.

Face homeomorphic to a closed 2-ball: \overline{B} edge homeomorphic to a closed interval: $[\mathbf{a}, \mathbf{b}]$ vertex homeomorphic to a point: \mathbf{x}

Platonic Solids:

1. Tetrahedron:

i: |V| = 4 each with 3 edges and angle $\frac{\pi}{3}$

ii: |E| = 6

iii: |F| = 4 each an equilateral triangle

2. Cube:

i: |V| = 8 each with 3 edges and angle $\frac{\pi}{2}$

ii: |E| = 12

iii: |F| = 6 each a square

3. Octahedron:

i: |V| = 6 each with 4 edges and angle $\frac{\pi}{3}$

ii: |E| = 12

iii: |F| = 8 each an equilateral triangle

4. Dodecahedron:

i: |V| = 20 each with 3 edges and angle $\frac{3\pi}{5}$

ii: |E| = 30

iii: |F| = 12 each a regular pentagon

5. Icosahedron:

i: |V| = 12 each with 5 edges and angle $\frac{\pi}{3}$

ii: |E| = 30

iii: |F| = 20 each an equilateral triangle

Theorem 27. There are precisely 5 Platonic Solids.

Proof. Since we already have 5, it suffices to show that there are no more. So suppose that r faces meet at each vertex, with each face a regular n-gon. Then both $r, n \geq 3$, and the sum of the angles α at each each vertex is $\sum \alpha < 2\pi$. Since it is a regular n-gon each angle is identical and given by

$$\alpha = \frac{(n-2)\pi}{n}$$

and so we have

$$r \cdot \frac{(n-2)\pi}{n} < 2\pi$$

$$\implies r(n-2) < 2n$$

$$\implies r(n-2) - 2n < 0$$

$$\implies r(n-2) - 2n + 4 < 4$$

$$\implies r(n-2) - 2(n-2) < 4$$

$$\implies (r-2)(n-2) < 4$$

and the only integer solutions to this equation with $r, n \geq 3$ require at least one of r or n to be 3, and so we have the solutions

$$(r,n) = (3,3), (3,4), (3,5), (4,3), (5,3)$$

and these are the only solutions, and thus, there are precisely 5 platonic solids.

If $X \subset \mathbb{R}^3$ is a platonic solid, with centroid $C(X) = \mathbf{0}$, then its symmetry group is given by

$$S(X) = \{ f \in O(3) : f(X) = X \}$$

and its direct symmetry group, or rotation symmetry group, is given by

$$S_d(X) = \{ f \in SO(3) : f(X) = X \}$$

where $S_d(X) \triangleleft S(X)$ and has index 2. All platonic solids, except the regular tetrahedron have central symmetry, or central inversion

$$\eta: \mathbb{R}^3 \to \mathbb{R}^3$$
, by $\eta(\mathbf{x}) = -\mathbf{x}$

and η commutes with every linear transformation of \mathbb{R}^3 .

Proposition 28.

$$O(3) \cong SO(3) \times \{\pm 1\}$$

Proof. This is realized by the mapping

$$\xi: \mathcal{O}(3) \to \mathcal{SO}(3) \times \{\pm 1\}, \text{ by } \xi(A) = \begin{cases} (A,1), & \det(A) = 1\\ (\eta(A), -1), & \det(A) = -1 \end{cases}$$

with explicit inverse given by

$$\xi^{-1}: SO(3) \times \{\pm 1\} \to O(3), \text{ by } \begin{cases} \xi^{-1}(A,1) = A \\ \xi^{-1}(A,-1) = \eta(A) \end{cases}$$

now if $A, B \in O(3)$ are such that det(A) = 1 and det(B) = -1 we have

$$\xi(AB) = (\det(AB) \cdot AB, \det(AB))$$

$$= (\det(A)\det(B) \cdot AB, \det(A)\det(B))$$

$$= (\det(A)A \cdot \det(B)B, \det(A)\det(B))$$

$$= (\det(A)A, \det(A)) \cdot (\det(B)B, \det(B))$$

$$= (A, 1) \cdot (\eta(B), -1)$$

$$= \xi(A) \cdot \xi(B)$$

with all other cases being similar, and so ξ is a bijective homomorphism, and thus an isomorphism between O(3) and SO(3) × $\{\pm 1\}$

So if $X \subseteq \mathbb{R}^3$ is a centrally symmetric solid we then have

$$S(X) \cong S_d(X) \times \{\pm 1\}$$

Proposition 29. Let T be the regular tetrahedron, then

$$S(T) \cong S_4$$
 and $S_d(T) \cong A_4$

Proof. Let $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ be the set of vertices of T. For $i \neq j \in \{1, 2, 3, 4\}$ let

$$H_{i,j} = \text{Hyperplane} \perp \frac{\mathbf{x}_i + \mathbf{x}_j}{2}$$

that is, the hyperplane perpendicular to the bisector of the segment $[\mathbf{x}_i, \mathbf{x}_j]$. Then $H_{i,j}$ will contain the other two vertices, and hence these will be fixed points of the reflection $R_{H_{i,j}}$, and so

$$R_{H_{i,j}} = (i,j)$$

is equivalent to the transposition of the two vertices $\mathbf{x}_i, \mathbf{x}_j$. By taking products of all such reflections we may generate every permutation in S_4 as an element of S(T). And since an element $f \in I(\mathbb{R}^3)$ is determined by its action on 4 affinely independent points, we have that the action on the vertices determines the isometry, and thus

$$S(T) \cong S_4$$

furthermore, direct isometries correspond to even permutations of vertices, and thus

$$S_d(T) \cong A_4$$

Proposition 30. Let C be the cube then

$$S_d(C) \cong A_4$$

Proof. First, WLOG we may suppose that C is centered at $\mathbf{0}$, that is $C(C) = \mathbf{0}$. Fix a face of the cube and label its vertices $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$. For each $i \in \{1, 2, 3, 4\}$ let l_i be the line passing through $\mathbf{0}$ and joining \mathbf{x}_i to $-\mathbf{x}_i$, or l_i is the line such that $-\mathbf{x}_i, \mathbf{x}_i, \mathbf{0} \in l_i$.

Next, if $i \neq j$ then

Case 1: \mathbf{x}_i and \mathbf{x}_j are adjacent. In this case let

$$\mathbf{y} = \frac{\mathbf{x}_i + \mathbf{x}_j}{2}$$

that is **y** is the midpoint of the edge defined by $[\mathbf{x}_i, \mathbf{x}_i]$.

Case 2: \mathbf{x}_i and \mathbf{x}_j are not adjacent. In this case \mathbf{x}_i and $-\mathbf{x}_j$ are adjacent, so let

$$\mathbf{y} = \frac{\mathbf{x}_i - \mathbf{x}_j}{2}$$

then **y** is the midpoint of the edge defined by $[\mathbf{x}_i, -\mathbf{x}_j]$.

then we let $l_{i,j}$ be the line such that

$$-\mathbf{y}, \mathbf{y}, \mathbf{0} \in l_{i,j}$$

then we note that if $k \neq i, j$ then

$$l_k \perp l_{i,i}$$

and therefore l_k is a fixed line of the rotation $R(\vec{l}_{i,j},\pi)$, and so

$$R(\overrightarrow{l}_{i,j},\pi) = (i,j)$$

acts as the transposition of vertices \mathbf{x}_i and \mathbf{x}_j . Thus, every permutation of the diagonals can be realized by a rotation in S(C); that is every permutation of $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ can be realized by a rotation, and since rotation are direct we have

$$S_d(C) \cong S_4$$

we note that these can be the only direct isometries of S(C), since **0** is a fixed point, and the other direct isometries of \mathbb{R}^3 , namely translations and screws, have no fixed points.

Lemma 31. If $A \in SO(n)$ and n is odd, then 1 is an eigenvalue of A.

Proof. First we observe that $det(A) = det(A^T) = 1$ and so

$$\det(A - I_n) = \det(A - I_n) \cdot \det(A^T)$$

$$= \det(AA^T - A^T)$$

$$= \det(I_n - A^T)$$

$$= \det(I_n - A)^T$$

$$= \det(I_n - A)$$

$$= (-1)^n \det(A - I_n)$$

$$= -\det(A - I_n)$$

n is odd

and therefore $det(A - I_n) = 0$, and thus, 1 is an eigenvalue of A.

Corollary 32. If $A \in SO(3)$, then there is an orthogonal matrix B such that

$$B^{-1}AB = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Proof. From Lemma 31, we have 1 is an eigenvalue of A, so let \mathbf{v}_3 be the eigenvector corresponding to the eigenvalue 1. We may assume it is a unit vector and can find orthonormal vectors $\mathbf{v}_1, \mathbf{v}_2$ that are a basis for \mathbf{v}_3^{\perp} , and forming a matrix $B = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$ which is by construction an orthogonal matrix, and by switching \mathbf{v}_1 and \mathbf{v}_2 if necessary we may assume that $B \in SO(3)$, then

$$AB = [A\mathbf{v}_1 \ A\mathbf{v}_2 \ A\mathbf{v}_3] = [A\mathbf{v}_1 \ A\mathbf{v}_2 \ \mathbf{v}_3] \in SO(3)$$

where $A\mathbf{v}_1, A\mathbf{v}_2 \in \mathbf{v}_3^{\perp}$ and so we can write

$$A\mathbf{v}_1 = a_1\mathbf{v}_1 + a_2\mathbf{v}_2$$
$$A\mathbf{v}_1 = b_1\mathbf{v}_1 + b_2\mathbf{v}_2$$

which then gives

$$B^{-1}AB = \begin{bmatrix} a_1 & a_2 & 0 \\ b_1 & b_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in SO(3)$$

since the determinant of the product is the product of the determinants, and so the upper 2×2 matrix $\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$ must belong to SO(2) which we know to be the plane rotations, an so A must be a rotation.

This Corollary simply states that every rotation in \mathbb{R}^3 has an axis.

Theorem 33. Let G < SO(3) be a finite subgroup, then G is either cyclic, dihedral or the direct symmetry group of a Platonic solid. That is G is isomorphic to one of the following

$$C_n, D_n, A_4, S_4, A_5$$

Proof. First, we note that the group SO(3) preserves distances and $\mathbf{0}$, and so acts on \mathbb{S}^2 , WLOG we will assume $\mathbf{0}$ to be our centroid, since by Lemma 25 our finite group will have some fixed point. So let $S \subset \mathbb{S}^2$ be the set of points $\mathbf{x} \in \mathbb{S}^2$ such that $l_{\mathbf{x}}$, the line containing \mathbf{x} , $\mathbf{0}$, is an axis of rotation for some $g \in G$. Thus,

$$S = \bigcup_{R(\overrightarrow{l_{\mathbf{x}}},\alpha) \in G} l_{\mathbf{x}} \cap \mathbb{S}^2 = \left\{ \mathbf{x} \in \mathbb{S}^2 : R(\overrightarrow{l_{\mathbf{x}}},\alpha)\mathbf{x} = \mathbf{x}, \text{ for } R(\overrightarrow{l_{\mathbf{x}}},\alpha) \in G \text{ such that } R(\overrightarrow{l_{\mathbf{x}}},\alpha) \neq e \right\}$$

Since G is finite, $|S| < \infty$, and for every $\mathbf{x} \in S$ we also have

$$\left|\left\langle R(\overrightarrow{l_{\mathbf{x}}},\alpha)\right\rangle\right|<\infty$$

in fact, there exists $n_{\mathbf{x}} \in \mathbb{N}$ such that every rotation $R(\vec{l_{\mathbf{x}}}, \alpha) \in G$ with $l_{\mathbf{x}}$ as its axis of rotation is of the form

$$R\left(\overrightarrow{l_{\mathbf{x}}}, k\frac{2\pi}{n_{\mathbf{x}}}\right)$$
, with $0 \le k < n_{\mathbf{x}}$

then defining the equivalence relation on S as follows

$$\mathbf{y} \sim \mathbf{x} \iff \exists \ g \in G \text{ such that } g\mathbf{y} = \mathbf{x}$$

now choose $\mathbf{z} \in \mathbb{S}^2$ such that $\mathbf{z} \notin S$, then

$$Orb(\mathbf{z}) = \{ g\mathbf{z} : g \in G \}$$

will be a set $\{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ of n distinct points, where n = |G|, otherwise, if

$$g\mathbf{z} = h\mathbf{z} \implies h^{-1}g\mathbf{z} = \mathbf{z} \implies \mathbf{z} \in S$$

thus for each $\mathbf{z}_i \in \mathrm{Orb}(\mathbf{z})$, \exists unique $g \in G$ such that $g\mathbf{z} = \mathbf{z}_i$. Define the mapping

$$\sigma: \mathrm{Orb}(\mathbf{z}) \to \{\mathbf{y} \in \mathbb{S}^2 : \mathbf{y} \sim \mathbf{x}\}, \text{ by } \sigma(\mathbf{z}_i) = \sigma(g\mathbf{z}) = g\mathbf{x}$$

then we have

$$\sigma(\mathbf{z}_i) = g\mathbf{x} \implies g^{-1}\sigma(\mathbf{z}_i) = \mathbf{x} \implies \sigma(\mathbf{z}_i) \sim \mathbf{x} \quad \forall i$$

now, if $g\mathbf{x} = \mathbf{y} \implies \mathbf{x} = g^{-1}\mathbf{y}$ then we have

$$\sigma(\mathbf{z}_i) = \mathbf{y} \iff \sigma(g^{-1}\mathbf{z}_i) = \mathbf{x}$$

which then implies that $g^{-1}\mathbf{z}_i = R\left(\overrightarrow{l_{\mathbf{x}}}, k \frac{2\pi}{n_{\mathbf{x}}}\right)$ for some $0 \le k < n_{\mathbf{x}}$.

Therefore $Orb(\mathbf{z}) = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ and for each $\mathbf{y} \in S$ there are $\{\mathbf{z}_1, \dots, \mathbf{z}_{n_{\mathbf{x}}}\} \subset \{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ such that

$$\sigma: \{\mathbf{z}_1, \dots, \mathbf{z}_{n_{\mathbf{x}}}\} \to \mathbf{y}$$

and therefore the number of points y equivalent to x must be $\frac{n}{n_x}$.

Now $G \setminus \{e\}$ contains n-1 nontrivial rotations $R(\vec{l_x}, \alpha)$ where each l_x contains the points $-\mathbf{x}, \mathbf{x} \in S$, and for each l_x there are $n_x - 1$ non-zero rotations about l_x . Thus, we have that the total number of non-trivial rotations must be

$$n-1=\frac{1}{2}\sum_{\mathbf{x}\in S}(n_{\mathbf{x}}-1), \quad l_{\mathbf{x}}=l_{-\mathbf{x}} \text{ and so each } n_{\mathbf{x}}-1 \text{ is counted twice}$$

Now, as S is finite let $\{\mathbf{x}_1, \dots, \mathbf{x}_k\} = S/\sim$, then

$$2(n-1) = \sum_{i=1}^{k} \left| \{ \mathbf{y} \in S : \mathbf{y} \sim \mathbf{x}_i \} \right| \cdot (n_{\mathbf{x}_i} - 1) = \sum_{i=1}^{k} \frac{n}{n_{\mathbf{x}_i}} (n_{\mathbf{x}_i} - 1)$$

that is

$$2\left(1 - \frac{1}{n}\right) = \sum_{i=1}^{k} \left(1 - \frac{1}{n_{\mathbf{x}_i}}\right)$$

and we note that $2(1-\frac{1}{n})<2$ for all n, while $1-\frac{1}{p}\geq\frac{1}{2}$ for $p\geq2$ and so

$$\left(1 - \frac{1}{n_{\mathbf{x}_1}}\right) + \left(1 - \frac{1}{n_{\mathbf{x}_2}}\right) + \left(1 - \frac{1}{n_{\mathbf{x}_3}}\right) + \left(1 - \frac{1}{n_{\mathbf{x}_4}}\right) \ge 2 \implies k \le 3$$

If n = 1 then $G = \{e\}$, so we may assume $n \ge 2$, and thus

$$2\left(1 - \frac{1}{n}\right) \ge 1 \implies k \ge 2$$

Case 1: k = 2, then

$$2 - \frac{2}{n} = \left(1 - \frac{1}{n_{\mathbf{x}_1}}\right) + \left(1 - \frac{1}{n_{\mathbf{x}_2}}\right) = 2 - \frac{1}{n_{\mathbf{x}_1}} - \frac{1}{n_{\mathbf{x}_2}}$$

which implies

$$\frac{n}{n_{\mathbf{x}_1}} + \frac{n}{n_{\mathbf{x}_2}} = 2$$

yet since $\frac{n}{n_{\mathbf{x}}} \in \mathbb{N}, \ \forall \ \mathbf{x} \in S$ we must have $n_{\mathbf{x}_1} = n_{\mathbf{x}_2} = n$, and thus

$$S = {\mathbf{x}_1, \mathbf{x}_2} = {\mathbf{x}, -\mathbf{x}}$$

since any line through $\mathbf{x} \in \mathbb{S}^2$ must also go through $-\mathbf{x} \in \mathbb{S}^2$, and so

$$G = C_n = \left\langle R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{n}\right) \right\rangle$$

Case 2: k = 3, then

$$2 - \frac{2}{n} = \left(1 - \frac{1}{n_{\mathbf{x}_1}}\right) + \left(1 - \frac{1}{n_{\mathbf{x}_2}}\right) + \left(1 - \frac{1}{n_{\mathbf{x}_2}}\right) = 3 - \frac{1}{n_{\mathbf{x}_1}} - \frac{1}{n_{\mathbf{x}_2}} - \frac{1}{n_{\mathbf{x}_2}}$$

which implies

$$\frac{1}{n_{\mathbf{x}_1}} + \frac{1}{n_{\mathbf{x}_2}} + \frac{1}{n_{\mathbf{x}_3}} = 1 + \frac{2}{n} > 1$$

Now if $n_{\mathbf{x}_i} \geq 3, \forall i$, then

$$\frac{1}{n_{\mathbf{x}_1}} + \frac{1}{n_{\mathbf{x}_2}} + \frac{1}{n_{\mathbf{x}_3}} \le 3$$

so WLOG let us assume that $n_{\mathbf{x}_3} = 2$, then

$$\frac{1}{n_{\mathbf{x}_1}} + \frac{1}{n_{\mathbf{x}_2}} + \frac{1}{n_{\mathbf{x}_3}} = 1 + \frac{2}{n} \longrightarrow \frac{1}{n_{\mathbf{x}_1}} + \frac{1}{n_{\mathbf{x}_2}} = \frac{1}{2} + \frac{2}{n}$$

then

$$\begin{split} 2n_{\mathbf{x}_1}n_{\mathbf{x}_2}\left(\frac{1}{n_{\mathbf{x}_1}} + \frac{1}{n_{\mathbf{x}_2}}\right) &= 2n_{\mathbf{x}_1} + 2n_{\mathbf{x}_2} \\ &= 2n_{\mathbf{x}_1}n_{\mathbf{x}_2}\left(\frac{1}{2} + \frac{2}{n}\right) \\ &= n_{\mathbf{x}_1}n_{\mathbf{x}_2} + 4\frac{n_{\mathbf{x}_1}n_{\mathbf{x}_2}}{n} \end{split}$$

and so

$$4 - 4\frac{n_{\mathbf{x}_1}n_{\mathbf{x}_2}}{n} = 4 + n_{\mathbf{x}_1}n_{\mathbf{x}_2} - 2n_{\mathbf{x}_1} - 2n_{\mathbf{x}_2}$$
$$= n_{\mathbf{x}_1}(n_{\mathbf{x}_2} - 2) - 2(n_{\mathbf{x}_2} - 2)$$
$$= (n_{\mathbf{x}_1} - 2)(n_{\mathbf{x}_2} - 2)$$

and if $n_{\mathbf{x}_2} = 2$, then

$$4 - 8\frac{n_{\mathbf{x}_1}}{n} = 0 \implies n_{\mathbf{x}_1} = \frac{n}{2}$$

if
$$n_{\mathbf{x}_1}, n_{\mathbf{x}_2} \geq 4$$
, then

$$(n_{\mathbf{x}_1} - 2)(n_{\mathbf{x}_2} - 2) \ge 4$$

While LHS < 4.

so if $n_{\mathbf{x}_2} = 3$ then

$$4 - 12 \frac{n_{\mathbf{x}_1}}{n} = n_{\mathbf{x}_1} - 2$$

$$\implies 4n - 12n_{\mathbf{x}_1} = nn_{\mathbf{x}_1} - 2n$$

$$\implies n(6 - n_{\mathbf{x}_1}) = 12n_{\mathbf{x}_1}$$

$$\implies n = \frac{12n_{\mathbf{x}_1}}{6 - n_{\mathbf{x}_1}}$$

and so $3 \le n_{\mathbf{x}_1} \le 5$, where we exclude the case $n_{\mathbf{x}_1} = 2$, since from above this would mean $n_{\mathbf{x}_2} = \frac{n}{2}$, which would include the case n = 6. Thus, we have

$n_{\mathbf{x}_3}$	$n_{\mathbf{x}_2}$	$n_{\mathbf{x}_1}$	n
2	2	n/2	arbitrary even
2	3	3	12
2	3	4	24
2	3	5	60

Next we partition S into its equivalence classes

$$S = S_1 \sqcup S_2 \sqcup S_3$$

and note that for every rotation $R(\overrightarrow{l}_{\mathbf{x}}, \alpha) \in G$ we have

$$R(\overrightarrow{l}_{\mathbf{x}}, \alpha)(S_i) = S_i$$

and also we have

$$G = R\left(\overrightarrow{l_{\mathbf{x}_1}}, k_1 \frac{2\pi}{n_{\mathbf{x}_1}}\right) \sqcup R\left(\overrightarrow{l_{\mathbf{x}_2}}, k_2 \frac{2\pi}{n_{\mathbf{x}_2}}\right) \sqcup R\left(\overrightarrow{l_{\mathbf{x}_3}}, k_3 \frac{2\pi}{n_{\mathbf{x}_3}}\right)$$

with $\mathbf{x}_1 \in S_1$, $\mathbf{x}_2 \in S_2$, $\mathbf{x}_3 \in S_3$, and also we have $|S_i| = \frac{n}{n_{\mathbf{x}_i}}$.

Case 1: $n_{\mathbf{x}_1} = n/2$ and $n_{\mathbf{x}_2} = 2 = n_{\mathbf{x}_3}$, then

$$|S_1| = \frac{n}{\frac{n}{2}} = 2$$

and so has only 2 points, while

$$\left| R\left(\overrightarrow{l_{\mathbf{x}_1}}, k_1 \frac{2\pi}{n_{\mathbf{x}_1}} \right) \right| = \frac{n}{2}$$

around each of the corresponding axes. And

$$|S_2| = \frac{n}{2} = |S_3| \text{ with } \left| R\left(\overrightarrow{l_{\mathbf{x}_2}}, k_2 \frac{2\pi}{n_{\mathbf{x}_2}}\right) \right| = 2 = \left| R\left(\overrightarrow{l_{\mathbf{x}_3}}, k_3 \frac{2\pi}{n_{\mathbf{x}_3}}\right) \right|$$

fix $\mathbf{x} \in S_1$ and we note that as long as n > 4, $n_{\mathbf{x}_1} \neq n_{\mathbf{x}_2}$, $n_{\mathbf{x}_3}$. Further since $n_{\mathbf{x}} = n_{-\mathbf{x}}$ we have

$$S_1 = \{\mathbf{x}, -\mathbf{x}\}$$

since all rotations in G preserve S_1 , and all rotation in $R\left(\overrightarrow{l_{\mathbf{x}_2}}, k_2 \frac{2\pi}{n_{\mathbf{x}_2}}\right)$ and $R\left(\overrightarrow{l_{\mathbf{x}_3}}, k_3 \frac{2\pi}{n_{\mathbf{x}_3}}\right)$ have order 2, and preserve $\{\mathbf{x}, -\mathbf{x}\}$, the points in S_2 and S_3 must lie on the plane through $\mathbf{0}$ perpendicular to $l_{\mathbf{x}}$, or on the equator of \mathbb{S}^2 , if we orient \mathbf{x} to be the north and $-\mathbf{x}$ to be the south poles.

Since this holds for any even n, let $\mathbf{y} \in S_2$ be given and since any rotation in G preserves S_2 , in particular any rotation in $R\left(\overrightarrow{l_{\mathbf{x}}}, k_1 \frac{2\pi}{n_{\mathbf{x}}}\right)$ will preserve S_2 , and thus

$$S_2 = \left\{ R\left(\overrightarrow{l_{\mathbf{x}}}, k_1 \frac{2\pi}{n_{\mathbf{x}}}\right)(\mathbf{y}) : 0 \le k_1 < n/2 \right\}$$

further, for any $\mathbf{z} \in S_3$ by similar reasoning we have

$$S_3 = \left\{ R\left(\overrightarrow{l_{\mathbf{x}}}, k_1 \frac{2\pi}{n_{\mathbf{x}}}\right)(\mathbf{z}) : 0 \le k_1 < n/2 \right\}$$

and since $R\left(\overrightarrow{l_{\mathbf{y}}},\pi\right)$ preserves S_3 we have $R\left(\overrightarrow{l_{\mathbf{y}}},\pi\right)(\mathbf{z}) \in S_3$. Furthermore,

$$R\left(\overrightarrow{l_{\mathbf{y}}},\pi\right)^{2}=e=R\left(\overrightarrow{l_{\mathbf{z}}},\pi\right)^{2}$$

so one of S_2, S_3 say S_2 may be considered the vertices, and l_z must then be a line through the midpoint of 2 vertices. And therefore we see that

$$G = D_{\frac{n}{2}}$$

Case 2: $n_{\mathbf{x}_1} = 3$, $n_{\mathbf{x}_2} = 3$, $n_{\mathbf{x}_3} = 2$ and n = 12. Then

$$|S_1| = \frac{12}{3} = 4 = |S_2|$$
 with $\left| R\left(\overrightarrow{l_{\mathbf{x}_2}}, k_2 \frac{2\pi}{n_{\mathbf{x}_2}}\right) \right| = 3 = \left| R\left(\overrightarrow{l_{\mathbf{x}_1}}, k_1 \frac{2\pi}{n_{\mathbf{x}_1}}\right) \right|$

and

$$|S_3| = \frac{12}{2} = 6$$
 with $\left| R\left(\overrightarrow{l_{\mathbf{x}_3}}, k_3 \frac{2\pi}{n_{\mathbf{x}_3}}\right) \right| = 2$

fix $\mathbf{x} \in S_1$, and since $|S_1| = 4$, $\exists \mathbf{x}' \in S_1$ such that $\mathbf{x}' \neq \mathbf{x}, -\mathbf{x}$, that is $\mathbf{x}' \notin l_{\mathbf{x}}$, and since rotations fix the elements in S_1 we also have that $R\left(\vec{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}'), R\left(\vec{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)^2(\mathbf{x}') \in S_1$ and thus

$$S_1 = \left\{ \mathbf{x}, \mathbf{x}', R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}'), R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{4\pi}{3}\right)(\mathbf{x}') \right\}$$

next we note that

$$R\left(\overrightarrow{l_{\mathbf{x}'}}, \frac{2\pi}{3}\right) \left(R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}')\right) \in S_1$$

as it is preserved under rotation and that is, and that and that

$$R\left(\overrightarrow{l_{\mathbf{x}'}}, \frac{2\pi}{3}\right) \left(R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}')\right) \neq \mathbf{x}', R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}'), R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{4\pi}{3}\right)(\mathbf{x}')$$

and so we must have

$$R\left(\overrightarrow{l_{\mathbf{x}'}}, \frac{2\pi}{3}\right) \left(R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}')\right) = \mathbf{x}$$

and so $\mathbf{x}, \mathbf{x}', R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}')$ form the vertices of an equilateral triangle. Using similar reasoning for each set of 3 points in S_1 , we see that each set of 3 points forms an equilateral triangle, and so S_1 forms the vertices of a regular tetrahedron.

Next, let $\mathbf{y} \in S_3$, and since rotations in G fix S_1 we must have

$$R\left(\overrightarrow{l_{\mathbf{y}}},\pi\right)(\mathbf{x}) \in \left\{\mathbf{x}', R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}'), R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{4\pi}{3}\right)(\mathbf{x}')\right\}$$

and so $l_{\mathbf{y}}$ must contain the midpoint of the segment $\left[\mathbf{x}, R\left(\overrightarrow{l_{\mathbf{y}}}, \pi\right)(\mathbf{x})\right]$; i.e.

$$\frac{\mathbf{x} + R\left(\overrightarrow{l_{\mathbf{y}}}, \pi\right)(\mathbf{x})}{2} := \mathbf{w} \in l_{\mathbf{y}}$$

that is $l_{\mathbf{y}}$ must pass through the midpoint of one of the edges defined by the vertices in S_1 . Thus, S_3 is comprised of the points on \mathbb{S}^2 , obtained by taking the radial projection of the midpoints of the edges defined by S_1 . Hence

$$S_3 = \left\{ \frac{\mathbf{w}_i}{||\mathbf{w}_i||} \right\}_{i=1}^6$$

now since S_1 does not contain any antipodal pairs, it must be the case that

$$S_{2} = \left\{ -\mathbf{x}, -\mathbf{x}', -R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{2\pi}{3}\right)(\mathbf{x}'), -R\left(\overrightarrow{l_{\mathbf{x}}}, \frac{4\pi}{3}\right)(\mathbf{x}') \right\}$$

and therefore

$$G = A_4 = S_d(T)$$

is the group of direct isometries of the regular tetrahedron.

Case 3: $n_{\mathbf{x}_1} = 4$, $n_{\mathbf{x}_2} = 3$, $n_{\mathbf{x}_3} = 2$ and n = 24. Then

$$\begin{aligned} |S_1| &= \frac{24}{4} = 6 & \left| R\left(\overrightarrow{l_{\mathbf{x}_1}}, k_1 \frac{2\pi}{n_{\mathbf{x}_1}}\right) \right| = 4 \\ |S_2| &= \frac{24}{3} = 8 & \left| R\left(\overrightarrow{l_{\mathbf{x}_2}}, k_2 \frac{2\pi}{n_{\mathbf{x}_2}}\right) \right| = 3 \\ |S_3| &= \frac{24}{2} = 12 & \left| R\left(\overrightarrow{l_{\mathbf{x}_3}}, k_3 \frac{2\pi}{n_{\mathbf{x}_3}}\right) \right| = 2 \end{aligned}$$

choose $\mathbf{x}, \mathbf{y} \in S_1$ such that $\mathbf{y} \notin l_{\mathbf{x}}$, then $R(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y}), R^2(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y}), R^3(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y}) \in S_1$, none of which are equal to either \mathbf{x} , or $-\mathbf{x}$, and since $n_{\mathbf{x}} = 4 = n_{-\mathbf{x}}$ and so $-\mathbf{x} \in S_1$, and so

$$S_{1} = \left\{\mathbf{x}, -\mathbf{x}, \mathbf{y}, R\left(\overrightarrow{l}_{\mathbf{x}}, \frac{\pi}{2}\right)(\mathbf{y}), R\left(\overrightarrow{l}_{\mathbf{x}}, \pi\right)(\mathbf{y}), R\left(\overrightarrow{l}_{\mathbf{x}}, \frac{3\pi}{2}\right)(\mathbf{y})\right\}$$

and next we not that $R^k(\overrightarrow{l}_{\mathbf{y}})(\mathbf{x}) \in S_1$ for $1 \leq k \leq 4$, as S_1 is fixed under rotations, we may identify S_1 with the vertices of an octahedron.

Now, given $\mathbf{z} \in S_3$, since S_1 is fixed under rations we have

$$R(\overrightarrow{l}_{\mathbf{z}},\pi)(\mathbf{x}) \in \left\{ -\mathbf{x},\mathbf{y},R(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y}),R^2(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y}),R^3(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y}) \right\}$$

and so $l_{\mathbf{z}}$ is a line which passes through the midpoint of one of the edges defined by the vertices of S_1 , and so is comprised of the points of \mathbb{S}^2 determined by the radial projection of the midpoints of the edges defined by S_1 , giving

$$S_3 = \left\{ \frac{\mathbf{w}_i}{||\mathbf{w}_i||} \right\}_{i=1}^{12}$$

Next, labeling the vertices of S_1

$$\left\{\mathbf{x}, -\mathbf{x}, \mathbf{y}, R(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y}), R^2(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y}), R^3(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y})\right\} \mapsto \{1, 6, 2, 3, 4, 5\}$$

then

$$R\left(\overrightarrow{R(\overrightarrow{l}_{\mathbf{x}})(\mathbf{y})}, \frac{\pi}{2}\right) \mapsto (1, 2, 6, 4)$$

 $R\left(\overrightarrow{l_{\mathbf{y}}}, \frac{\pi}{2}\right) \mapsto (1, 5, 6, 3)$

where

$$(1,5,6,3)(1,2,6,4) = (1,2,3)(4,5,6)$$

and so has order 3, and hence belongs to S_2 . Further, the axis of rotation is precisely a the center of a face determined by the vertices of S_1 . And so S_2 is comprised of the points of S_1 determined by the radial projection of the centers of faces defined by S_1 , giving 8 such points, and therefore

$$G = S_4 = S_d(O)$$

Case 4: $n_{\mathbf{x}_1} = 5$, $n_{\mathbf{x}_2} = 3$, $n_{\mathbf{x}_3} = 2$ and n = 60. Then

$$|S_1| = \frac{60}{5} = 12$$

$$|S_2| = \frac{60}{3} = 20$$

$$|S_3| = \frac{60}{2} = 30$$

$$|R\left(\overrightarrow{l_{\mathbf{x}_1}}, k_1 \frac{2\pi}{n_{\mathbf{x}_1}}\right)| = 5$$

$$|R\left(\overrightarrow{l_{\mathbf{x}_2}}, k_2 \frac{2\pi}{n_{\mathbf{x}_2}}\right)| = 3$$

$$|R\left(\overrightarrow{l_{\mathbf{x}_3}}, k_3 \frac{2\pi}{n_{\mathbf{x}_3}}\right)| = 2$$

Fix $\mathbf{x} \in S_1$ and since $|S_1| = 12$, $\exists \mathbf{z}, \mathbf{z} \in \S_1$ such that \mathbf{yz} and $\mathbf{z}, \mathbf{yx}, -\mathbf{x}$

Given a discrete subgroup $L \subset \mathbb{R}^n$ we obtain a basis for L as follows. Select $\mathbf{e}_1 \in L$ such that

$$||\mathbf{e}_1|| = \min_{\mathbf{e} \in L} ||\mathbf{e}||, \text{ and } \mathbf{e}_1 \neq \mathbf{0}$$

45

then choose $\mathbf{e}_2 \in L$, such that

$$||\mathbf{e}_2|| = \min_{\substack{\mathbf{e}_2 \notin \operatorname{span}\{\mathbf{e}_1\}\\\mathbf{e} \in L}} d(\mathbf{e}, \operatorname{span}\{\mathbf{e}_1\})$$

then for instance if n=2 we have that

$$L = \mathbf{e}_1 \mathbb{Z} \oplus \mathbf{e}_2 \mathbb{Z}$$

otherwise, considering the diamon shaped region determined by the segments $[\mathbf{e}_2, \mathbf{e}_1], [\mathbf{e}_2, -\mathbf{e}_1], [-\mathbf{e}_2, \mathbf{e}_1], [-\mathbf{e}_2, -\mathbf{e}_1] := D$, then if $\mathbf{x} \in L$ such that $\mathbf{x} \notin \mathbf{e}_1 \mathbb{Z} \oplus \mathbf{e}_2 \mathbb{Z}$, then there is a translation of \mathbf{x} so that $\mathbf{x} \in D$, then if $\mathbf{x} \neq \{\pm \mathbf{e}_1, \pm \mathbf{e}_2\}$ then

$$||\mathbf{x}|| < ||\mathbf{e}_2||$$

further, if $\mathbf{x} \notin l_{\mathbf{e}_1}$, where $l_{\mathbf{e}_1}$ is the line containing $\mathbf{0}, \mathbf{e}_1$, then we also have

$$||\mathbf{x}|| < ||\mathbf{e}_1|| \quad \Rightarrow \Leftarrow$$

contradicting our choice for e_1 .

continuing inductively, once \mathbf{e}_k has been defined select $\mathbf{e}_{k+1} \in L$ such that

$$||\mathbf{e}_{k+1}|| = \min_{\substack{\mathbf{e}_{k+1} \notin \operatorname{span}\{\mathbf{e}_1, \dots, \mathbf{e}_k\}\\ \mathbf{e} \in L}} d(\mathbf{e}, \operatorname{span}\{\mathbf{e}_1, \dots, \mathbf{e}_k\})$$

we obtain

$$L = \mathbf{e}_1 \mathbb{Z} \oplus \mathbf{e}_2 \mathbb{Z} \oplus \cdots \oplus \mathbf{e}_n \mathbb{Z} = \left\{ \sum_{i=1}^n n_i \mathbf{e}_i : n_i \in \mathbb{Z} \right\}$$

Theorem 34 (Crystallographic Restriction). If $L \subset \mathbb{R}^n$ with $n \in \{2, 3\}$, and $R(\mathbf{a}, \alpha) \in S(L)$, then

$$|R(\mathbf{a},\alpha)| \in \{2,3,4,6\}$$

Proof. Let

$$L = \mathbf{e}_1 \mathbb{Z} \oplus \mathbf{e}_2 \mathbb{Z} \oplus \cdots \oplus \mathbf{e}_n \mathbb{Z}$$

then for $f \in S(L) \subseteq I(\mathbb{R}^n)$ we have

$$f(\mathbf{x}) = A\mathbf{x} + \mathbf{a}$$
, with $\mathbf{a} \in L$, $A \in O(n)$

and so for the basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ of L then

$$f(\mathbf{0}) = \mathbf{a} \in L \implies \mathbf{a} = \sum_{i=1}^{n} n_i \mathbf{e}_i$$

$$A \in \mathcal{O}(n)$$
 is such that $A\mathbf{e}_i = \sum_{k=1}^n a_{ik} e_{ki} = \begin{bmatrix} n_1 \\ \vdots \\ n_n \end{bmatrix}$

and so we have

$$f(\mathbf{e}_i) = A\mathbf{e}_i + \mathbf{a} \implies f(\mathbf{e}_i) - \mathbf{a} = \sum_{i=1}^n b_{ij}e_j$$

where $B = (B_{ij}) \in M(n, \mathbb{Z})$ and so $Tr(A) = Tr(B) \in \mathbb{Z}$ since the trace is preserved under conjugation.

n=2

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

or $A = R_l$ is which case $|A| = |R_l| = 2$. And so $Tr(A) = 2\cos\alpha \in \mathbb{Z}$ and thus we must have

$$\cos \alpha = 0, \pm 1, \pm \frac{1}{2}$$

which implies that

$$\alpha \in \{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, 2\pi\}$$

hence

$$|R(\mathbf{a}, \alpha)| \in \{2, 3, 4, 6\}$$

n=3

similarly under conjugation we get

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$

and $Tr(A) = 2\cos\alpha + 1$, where the same argument above shows that

$$|R(\mathbf{a}, \alpha)| \in \{2, 3, 4, 6\}$$

recalling that $T \triangleleft I(\mathbb{R}^n)$ where T is the group of translations we get that $I(\mathbb{R}^n)$ is the semi-direct product of T and O(n)

$$I(\mathbb{R}^n) = \mathcal{O}(n) \ltimes T \cong \mathcal{O}(n) \ltimes \mathbb{R}^n$$

with elements

$$(A, \mathbf{x}) \in I(\mathbb{R}^n), \text{ for } A \in O(n), \mathbf{x} \in \mathbb{R}^n$$

with group operations

$$(A, \mathbf{x})(B, \mathbf{y}) = (AB, \mathbf{x} + A\mathbf{y})$$
$$(A, \mathbf{x})^{-1} = (A^{-1}, -A^{-1}\mathbf{x})$$

where the action on \mathbb{R}^n is given by

$$(A, \mathbf{x})(\mathbf{v}) = \mathbf{x} + A\mathbf{v}$$

Lemma 35. With $G_T = G \cap T$ being the translation group of G, and

$$G/G_T \leq \mathrm{O}(n)$$

then G/G_T acts on G_T

Proof. let $f \in G_T$, then

$$f(\mathbf{x}) = \mathbf{x} + \mathbf{a}$$

then for $g \in G$ we have

$$g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$$

and so

$$g^{-1}fg(\mathbf{x}) = A(A^{-1}\mathbf{x} - A^{-1}\mathbf{b} + \mathbf{a}) - \mathbf{b}$$
$$= \mathbf{x} + A\mathbf{a} \in G_T$$

and so G/G_T acts on G_T by orthogonal transformation. If $G/G_T \leq O(3)$ is a subgroup with each element $g \in G/G_T$ having order $|g| \in \{2, 3, 4, 6\}$, if $G/G_T \subseteq SO(3)$, then by Theorem 33 we have G/G_T is one of the following

$$1, \overbrace{\mathbb{Z}/2\mathbb{Z}}^{C_2}, \overbrace{\mathbb{Z}/3\mathbb{Z}}^{C_3}, \overbrace{\mathbb{Z}/4\mathbb{Z}}^{C_4}, \overbrace{\mathbb{Z}/6\mathbb{Z}}^{C_6}, D_2, D_4, D_6, \overbrace{S_d(T)}^{A_4}, \overbrace{S_d(O)}^{S_d(T)}$$

If G/G_T is not entirely contained in SO(3), then $(G/G_T)_d \triangleleft G/G_T$ has index 2, and

$$G/G_T = (G/G_T)_d \cap g(G/G_T)_d$$
 for any $g \in G \setminus (G/G_T)_d$

if

$$\eta = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix} \in G/G_T$$

then

$$G/G_T = (G/G_T)_d \times \{1, \eta\}$$

Theorem 36. The space SO(3) is homeomorphic to the quotient space $\overline{B}_{\pi}^{3}(\mathbf{0})/\sim$ where \sim is the equivalence relation given by

$$\mathbf{x} \sim \mathbf{y} \iff \begin{cases} \mathbf{x} = \mathbf{y} \\ \mathbf{x} = -\mathbf{y}, \text{ and } ||\mathbf{x}|| = \pi \end{cases}$$

Proof. Form Corollary 32, each $A \in SO(3)$ is determined by its angel and axis of rotation. So define

$$f: \overline{B}_{\pi}^{3}(\mathbf{0}) \to SO(3), \text{ by } f(\mathbf{x}) = R(\overrightarrow{\mathbf{0}}\mathbf{x}, ||\mathbf{x}||)$$

where $f(\mathbf{0}) = Id$, and so f is well-defined. Since each $A \in SO(3)$ is determined by an angle and axis of rotation f is surjective. And injective since for \mathbf{x} such that $||\mathbf{x}|| \neq \pi$ we have

$$f(\mathbf{x}) = f(\mathbf{y})$$

$$\implies R(\overrightarrow{\mathbf{0}}\mathbf{x}, ||\mathbf{x}||) = R(\overrightarrow{\mathbf{0}}\mathbf{y}, ||\mathbf{y}||)$$

$$\implies \overrightarrow{\mathbf{0}}\mathbf{x} = \overrightarrow{\mathbf{0}}\mathbf{y}$$

$$\implies ||\mathbf{x}|| = ||\mathbf{y}||$$

$$\implies \mathbf{x} = \mathbf{y}$$

Now if $||\mathbf{x}|| = \pi$ we have

$$f(\mathbf{x}) = R(\overrightarrow{\mathbf{0x}}, \pi) = R(\overrightarrow{-\mathbf{0x}}, \pi) = f(-\mathbf{x})$$

and so

$$f: \overline{B}_{\pi}^3(\mathbf{0})/\sim \to \mathrm{SO}(3)$$

is a continuous bijection, and as each space is compact, this is a homeomorphism. To see that SO(3) is compact first note that the mapping

$$\phi: \mathcal{M}(n,\mathbb{R}) \to \mathcal{M}(n,\mathbb{R}), \text{ by } \phi(A) = A^T A$$

is continuous as the multiplication of matrices. Where $\{I_n\} \in M(n, \mathbb{R})$ is closed as a singleton, and the continuity of ϕ tells us that $\phi^{-1}(I_n) = O(n)$ must also be closed. Then for each $\mathbf{x} \in \mathbb{R}$, and for any $Q \in O(n)$ we have

$$||Q\mathbf{x}|| = \sqrt{\langle Q\mathbf{x}, Q\mathbf{x}\rangle} = \sqrt{\langle \mathbf{x}, \mathbf{x}\rangle} = ||\mathbf{x}|| \implies O(n) \subseteq B_1^n(\mathbf{x})$$

and so O(n) is bounded, where by Heine-Borel, since O(n) is closed and bounded in \mathbb{R}^n it is compact. Then we simply note that under the continuous determinant mapping

$$\det: \mathcal{O}(n) \to \mathbb{R}$$

that the closed singleton $\{1\} \in \mathbb{R}$ has preimage $\det^{-1}(\{1\}) = SO(n)$, and so $SO(n) \subset O(n)$ is closed, and therefore is a closed subset of a compact space, and is thus compact.

The Quaternions \mathbb{H} are a four dimensional vector space over \mathbb{R} with basis $\{1, i, j, k\}$, with the following multiplication rules

$$i^{2} = j^{2} = k^{2} = -1$$

$$ij = -ji = k$$

$$jk = -kj = i$$

$$ki = -ik = j$$

for $x + iy + jz + ku \in \mathbb{H}$ we can also consider the subset of M(2, \mathbb{C}) given by

$$\begin{bmatrix} x+yi & z+ui \\ -z+ui & x-yi \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{bmatrix} \subset \mathrm{M}(2,\mathbb{C})$$

we also have the norm $(\mathbb{H}, ||\cdot||)$ given by

$$||\mathbf{q}||^2 = \mathbf{q} \cdot \overline{\mathbf{q}} = (x + iy + jz + ku) \cdot (x - iy - jz - ku) = x^2 + y^2 + z^2 + u^2$$

when $\mathbf{q} \neq \mathbf{0}$, then $\mathbf{q} \cdot \frac{\overline{\mathbf{q}}}{\|\mathbf{q}\|^2} = 1$ which implies that \mathbf{q} is invertible with inverse

$$\mathbf{q}^{-1} = \frac{\overline{\mathbf{q}}}{||\mathbf{q}||^2}$$

and so \mathbb{H} is a division ring, or skew field. When regarded as an element of $M(2,\mathbb{C})$ with $\mathbf{q} = A$ we have

$$||\mathbf{q}||^2 = \det(A)$$

where we then see

$$||\mathbf{q}\mathbf{p}||^2 = \det(AB) = \det(A)\det(B) = ||\mathbf{q}||^2 \cdot ||\mathbf{p}||^2$$

Proposition 37. \mathbb{S}^3 acts orthogonally on $\operatorname{Im}(\mathbb{H}) \cong \mathbb{R}^3$ by conjugation.

Proof. Let $\mathbf{q} \in \text{Im}(\mathbb{H})$, then its representation in $M(2,\mathbb{C})$ is

$$\begin{bmatrix} yi & ui \\ ui & -yi \end{bmatrix}$$

and so Tr(A) = 0, and since traces are preserved by conjugation; i.e.

$$\operatorname{Tr}(BAB^{-1}) = \operatorname{Tr}(A)$$

so if $\mathbf{p} \in \mathbb{S}^3$ and $\mathbf{q} \in \text{Im}(\mathbb{H})$ then $\mathbf{p}\mathbf{q}\mathbf{p}^{-1} \in \text{Im}(\mathbb{H})$, so for each $\mathbf{p} \in \mathbb{S}^3$ we may define the map

$$\phi_{\mathbf{p}}: \mathbb{R}^3 \to \mathbb{R}^3$$
, by $\phi_{\mathbf{p}}(\mathbf{q}) = \mathbf{p}\mathbf{q}\mathbf{p}^{-1}$

then $\phi_{\mathbf{p}}$ is linear, as

$$\phi_{\mathbf{p}}(\mathbf{q}_1 + \mathbf{q}_2) = (\mathbf{q}_1 + \mathbf{q}_2)\mathbf{p}^{-1} = \mathbf{p}\mathbf{q}_1\mathbf{p}^{-1} + \mathbf{p}\mathbf{q}_2\mathbf{p}^{-1}$$

and since

$$||\mathbf{p}\mathbf{q}\mathbf{p}^{-1}|| = ||\mathbf{p}|| \cdot ||\mathbf{q}|| \cdot ||\mathbf{p}^{-1}|| = ||\mathbf{q}||, \quad \mathbf{p}, \mathbf{p}^{-1} \in \mathbb{S}^3$$

and therefore $\phi_{\mathbf{p}} \in \mathcal{O}(3)$. Also

$$\phi_{\mathbf{p}}(\mathbf{q}_1\cdot\mathbf{q}_2)=\mathbf{p}(\mathbf{q}_1\cdot\mathbf{q_2})\mathbf{p}^{-1}=(\mathbf{p}\mathbf{q}_1\mathbf{p}^{-1})(\mathbf{p}\mathbf{q}_2\mathbf{p}^{-1})=\phi_{\mathbf{p}}(\mathbf{q}_1)\phi_{\mathbf{p}}(\mathbf{q}_2)$$

and so $\phi_{\mathbf{p}}$ is a homomorphism.

Theorem 38. Conjugation of \mathbb{H} induces an isomorphism

$$\phi: \mathbb{S}^3/\{\pm 1\} \to \mathrm{SO}(3)$$

Proof. From Proposition 37 we know that

$$\phi: \mathbb{S}^3 \to \mathrm{O}(3)$$

is a homomorphism. Then, as \mathbb{S}^3 is connected, ϕ is continuous, and the continuous image of a connected set is connected, we have $\phi(\mathbb{S}^3) \subseteq O(3)$ is connected. Now,

$$O(3) = SO(3) \sqcup O(3) \setminus SO(3)$$

and since $I_3 \in SO(3)$ we have $\phi(\mathbb{S}^3) \subseteq SO(3)$. Furthermore,

$$\ker(\phi) = \{\mathbf{p} \in \mathbb{S}^3 : \mathbf{p}\mathbf{q}\mathbf{p}^{-1} = \mathbf{q} \ \forall \ \mathbf{q} \in \mathbb{R}^3\} = \{p = x + iy + jz + ku \in \mathbb{S}^3 : p = x\} = \{\pm 1\}$$
 since $||x|| = 1$.

Next consider $\mathbf{q} \in \mathbb{S}^3$ such that $\mathbf{q} = \lambda + \mathbf{a}\mu$ with $\mathbf{a} \in \mathbb{R}^3$ such that $||\mathbf{a}|| = 1$, and $\mu, \lambda \in \mathbb{R}$ such that $\lambda^2 + \mu^2 = 1$. Then

$$\mathbf{q}\overline{\mathbf{q}} = 1 \implies (\lambda + \mathbf{a}\mu)(\lambda - \mathbf{a}\mu) = \lambda^2 - \mu\lambda\mathbf{a} + \mu\lambda\mathbf{a} - (\mu\mathbf{a})^2 = \lambda^2 - (\mu\mathbf{a})^2 = 1$$

and so

$$\mathbf{q}^{-1} = \frac{\mathbf{q}}{|\mathbf{q}|^2}$$

$$\mathbf{q}\mathbf{a}\mathbf{q}^{-1} = (\lambda + \mathbf{a}\mu)\mathbf{a} (\lambda - \mathbf{a}\mu)$$

$$= (\lambda \mathbf{a} + \mu \mathbf{a}^2)(\lambda - \mu \mathbf{a})$$

$$= \lambda^2 \mathbf{a} + \mu \lambda \mathbf{a}^2 - \lambda \mu \mathbf{a}^2 - \mu^2 \mathbf{a}^3$$

$$= \lambda^2 \mathbf{a} - \mu^2 \mathbf{a}^3$$

$$= (\lambda^2 - \mu^2 \mathbf{a}^2)\mathbf{a}$$

$$= \mathbf{a}$$

so **a** is a fixed point, that is $\phi_{\mathbf{q}}(\mathbf{a}) = \mathbf{q}\mathbf{a}\mathbf{q}^{-1} = R(\mathbf{a}, \alpha)$

To consider the points of \mathbb{RP}^1 , fix a line $l_0 \subset \mathbb{R}^2$, such that $\mathbf{0} \notin l_0$, this being the affine subspace of \mathbb{RP}^1 , then for each line $l \in \mathbb{RP}^1$ we have $l \cap l_0$ at a unique point, except the line $l_\infty \in \mathbb{RP}^1$, which is the line in \mathbb{RP}^1 such that $l_\infty ||l_0|$ which we associate to $\{\infty\}$ then we obtain the following bijection

$$\mathbb{RP}^1 \to l_0$$

$$l \mapsto \begin{cases} l \cap l_0, & l \not\parallel l_0 \\ \infty, & l \mid\parallel l_0 \end{cases}$$

similarly let $P \subset \mathbb{R}^3$ be any plane in \mathbb{R}^3 , such that $\mathbf{0} \notin P$, then every element $l \in \mathbb{RP}^2$ such that $l \not \mid P$ intersects P in exactly one point. Yet, the set of $l \in \mathbb{RP}^2$ which are parallel to P, is the set

of lines in \mathbb{R}^2 through **0** parallel to P, but this is precisely \mathbb{RP}^1 , and so we have

$$\mathbb{RP}^2 = \mathbb{R}^2 \cup \mathbb{RP}^1 = \mathbb{R}^2 \cup \mathbb{R}^1 \cup \{\infty\}$$
$$[x_1 : x_2 : x_3] \mapsto \left(\frac{x_1}{x_3}, \frac{x_2}{x_3}\right) \cup \left(\frac{x_1}{x_2}\right) \cup \{\infty\}$$

For the lines in \mathbb{RP}^2 consider $P \subset \mathbb{R}^3$ to be any plane in \mathbb{R}^3 , such that $\mathbf{0} \notin P$, and let $l \in P$ be a line in P, and let Q_l be the plane in \mathbb{R}^3 which contains both l and $\mathbf{0}$, therefore, Q_l is the union of all lines in \mathbb{R}^3 passing through $\mathbf{0}$ and a point of l. Thus, lines in \mathbb{RP}^2 correspond to planes in \mathbb{R}^3 .

Proposition 39. Any pair of distinct lines in \mathbb{RP}^2 meet at a point.

Proof. First, we note that a line $l \in \mathbb{RP}^2$ is given by the equation

$$a_1x_1 + a_2x_2 + a_3x_3 = 0$$

then if the point $[\mathbf{x}] \in \mathbb{RP}^2$ satisfies this equation, then so does $[\lambda \mathbf{x}] \in \mathbb{RP}^2$. Then we note that two lines $l_1, l_2 \in \mathbb{RP}^2$

$$a_1x_1 + a_2x_2 + a_3x_3 = 0$$
$$b_1x_1 + b_2x_2 + b_3x_3 = 0$$

are distinct if

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

has rank 2. Now $[\mathbf{x}] \in \mathbb{RP}^2$ belongs to the intersection $[\mathbf{x}] \in l_1 \cap l_2$ if

$$A[\mathbf{x}] = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}$$

has a solution, yet by the Rank-Nullity Theorem, since rank(A) = 2 we have

$$3 = \operatorname{rank}(A) + \dim(\ker(A)) \implies \dim(\ker(A)) = 1$$

and so has a 1-dimensional solution $(\lambda x_1, \lambda x_2, \lambda x_3) \sim [x_1 : x_2 : x_3] \in \mathbb{RP}^2$.

Recall that $\mathbb R$ is homeomorphic to an open interval via the map

$$\mathbb{R} \to \mathbb{B}$$
$$x \mapsto \frac{1}{1+|x|}$$

and as $\mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$ we have \mathbb{RP}^1 is homeomorphic to an open interval with a point at infinity, or \mathbb{RP}^1 is homeomorphic to a closed interval with the endpoints identified. That is, \mathbb{RP}^1 is homeomorphic to \mathbb{S}^1 . We can see this with stereographic projection mapping

$$\mathbb{S}^1 \to \mathbb{R} \cup \{\infty\} = \mathbb{RP}^1 \text{ where } (0,1) \mapsto \infty$$

we may also consider the projective space, corresponding to a vector space, over any field \mathbb{F} is

$$\mathbb{P}(V) = (V \setminus \{0\}) / \sim \text{ where } \mathbf{v} \sim \mathbf{w} \iff \mathbf{w} = \lambda \mathbf{v}, \text{ for } \lambda \in \mathbb{F} \setminus \{\mathbf{0}\}$$

For a vector space V, and its dual V^* , we have that the projective spaces $\mathbb{P}(V)$ and $\mathbb{P}(V^*)$ are also dual. For instance $[f] \in \mathbb{P}(V^*)$ determines a codimension 1 subspace of V. So if $v_1 \in V$ is an a basis element and $f_1 \in V^*$ is its corresponding dual basis element then

$$\ker(f_1) = \{v_2, \dots, v_n\}$$

is an (n-1)-dimensional subspace of V. And so the point $[f] \in \mathbb{P}(V^*)$ determines a codimension 1 projective subspace $\mathbb{P}(\ker(f)) \subset \mathbb{P}(V)$.

Theorem 40. If $\Delta A_1 A_2 A_3$ and $\Delta B_1 B_2 B_3$ are two triangles in \mathbb{RP}^2 , such that the three lines $l_{A_1B_1}, l_{A_2B_2}, l_{A_3B_3} \in \mathbb{RP}^2$ are concurrent, as a point say $[\mathbf{S}] \in \mathbb{RP}^2$, then the points

$$\begin{aligned} [\mathbf{p}_{12}] &= l_{A_1 A_2} \cap l_{B_1 B_2} \\ [\mathbf{p}_{23}] &= l_{A_2 A_3} \cap l_{B_2 B_3} \\ [\mathbf{p}_{13}] &= l_{A_1 A_3} \cap l_{B_1 B_3} \end{aligned}$$

are collinear.

Proof. First considering $\mathbb{RP}^2 \subset \mathbb{RP}^3$, and let $P_A \subset \mathbb{R}^3$ be a plane containing the points $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3$ such that

$$\mathbf{A}_1 \mapsto [\mathbf{A}_1]$$
 $\mathbf{A}_2 \mapsto [\mathbf{A}_2]$
 $\mathbf{A}_3 \mapsto [\mathbf{A}_3]$

giving the triangle $\Delta A_1 A_2 A_3 \in \mathbb{RP}^2$, and similarly for $P_B \subseteq \mathbb{R}^3$. These planes will be nonparallel as their projections meet outside of ∞ . So let $l = P_A \cap P_B$, and if each line $l_{A_1B_1}, l_{A_2B_2}, l_{A_3B_3} \in \mathbb{R}^3$ meets at **S**, then we will have $\mathbf{p}_{12}, \mathbf{p}_{23}, \mathbf{p}_{13} \in l$

and so $[\mathbf{p}_{12}], [\mathbf{p}_{23}], [\mathbf{p}_{23}] \in l \subset \mathbb{RP}^2$

Now if $A_1, A_2, A_3, B_1, B_2, B_3$ belong to the same plane $P \subset \mathbb{R}^3$, then we choose a point $O \notin P$, such that the plane containing O, A_2, B_2 is perpendicular to P.

then we can choose a point $\mathbf{A}_2' \in \overrightarrow{\mathbf{OA}_2}$, and find a corresponding point \mathbf{B}_2' , such that

$$\mathbf{B}_2' \in \overrightarrow{\mathbf{OB}_2} \cap \overrightarrow{\mathbf{SA}_2'}$$

then we have the triangles $\Delta \mathbf{A}_1 \mathbf{A}_2' \mathbf{A}_3 \subset P_{A'} \subseteq \mathbb{R}^3$, and $\Delta \mathbf{B}_1 \mathbf{B}_2' \mathbf{B}_3 \subset P_{B'} \subset \mathbb{R}^3$, with the lines $l_{A_1B_1}, l_{A_2'B_2'}, l_{A_3B_3} \in \mathbb{R}^3$ meeting at **S** where from above, we know that $\mathbf{p}_{12}', \mathbf{p}_{23}', \mathbf{p}_{13} \in l = P_{A'} \cap P_{B'}$. Then taking the limit as $\mathbf{A}_2' \to \mathbf{A}_2$ we get $P_{A'}, P_{B'} \to P$ and $l \to L \in P$ where $\mathbf{p}_{12}, \mathbf{p}_{23}, \mathbf{p}_{13} \in L \subset P$. Thus, $[\mathbf{p}_{12}], [\mathbf{p}_{23}], [\mathbf{p}_{23}] \in L \subset \mathbb{RP}^2$.

If

$$T:V \to V$$

is a linear isomorphism, it induces an isomorphism

$$\mathbb{P}(V) \to \mathbb{P}(V)$$
$$[\mathbf{v}] \mapsto [T(\mathbf{v})]$$