Lect 07

Boolean Functions: Canonical Form and Minimization

CS221: Digital Design

Dr. A. Sahu

Dept of Comp. Sc. & Engg.
Indian Institute of Technology Guwahati

Outline

- Boolean Functions
 - -Truth Table Conversion and Vice Versa
- Canonical form of Function
 - -SOP and POS
- Gray Code and Hamming Distances
- K-Maps

Converting among Representations

Q: Convert to equation

а	b	F	Term
0	0	1	a'b'
0	1	1	a'b
1	0	0	
1	1	0	

F = a'b' + a'b

Converting among Representations

Q: Convert to equation

a	b	С	F	Term
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	ab'c
1	1	0	1	abc'
1	1	1	1	abc

F = ab'c + abc' + abc

Converting among Representations

Q: Convert to truth table: F = a'b' + a'b

Inputs				Output
а	b	a'b'	a'b	F
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	0	0	0

Standard Representation

- How to determine two functions are the same?
 - Use algebraic methods
 - But if we failed, does that prove *not* equal? No.
- Solution: Convert to truth tables
 - Only ONE truth table representation of given same functions: Standard representation

Standard Representation: Truth Table

Only ONE truth table representation of given same functions: Standard representation

F=ab+a'				F=	=a'b'+a	a'b+ab
а	b	F		а	b	F
0	0	1		0	0	1
0	1	1		0	1	1
1	0	0		1	0	0
1	1	1		1	1	1
Same						

Represent TT in efficiently/elegantly?

- Truth tables too big for numerous inputs ⊗ ⊗
- Use standard form of equation instead
 - Known as canonical form
 - -English meaning of "Canonical": simplest or standard in mathematics
- Regular algebra: group terms of polynomial by power
 - $-ax^{2} + bx + c$
 - $-(3x^2+4x+2x^2+3+1 \Rightarrow 5x^2+4x+4)$

Boolean Algebra Canonical Form

- Truth tables too big for numerous inputs
- Use standard form of equation instead: Canonical
- Boolean algebra: create sum of minterms
 - Minterm: product term with every function literal appearing exactly once, in true or complemented form
 - Just multiply-out equation until sum of product terms
 - Then expand each term until all terms are minterms

Canonical Form -- Sum of Minterms

Determine if F(a,b)=ab+a' is same function as F(a,b)=a'b'+a'b+ab by to canonical form.

F = ab+a' (already **sum of products**)

F = ab + a'(b+b') (expanding term)

F = ab + a'b + a'b' (it is **canonical form**)

Minterm: product term with every function literal appearing exactly once, in true or complemented form

Canonical form and Standard Form

- Canonical forms
 - -Sum of minterms (SOM)
 - Product of maxterms (POM)
- Standard forms (may use less gates)
 - -Sum of products (SOP)
 - Product of sums (POS)
- SOP form may not be in Canonical Form

F = ab+a' (already **sum of products:SOP**)

F = ab + a'(b+b') (expanding term)

F = ab + a'b + a'b' (it is canonical form:SOM)

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - -Sum of Minterms (SOM)
 - Product of Maxterms (POM)

Minterms in SOP

- Product term is a term where literals are ANDed
 - Example: x'y', xz, xyz, ...
- minterm: A product term in which all variables appear exactly once, in normal or complemented form
 - Example: F(x,y,z) has 8 minterms

x'y'z', x'y'z, x'yz', ...

Minterms

- Function with **n** variables has **2**ⁿ minterms
- A minterm equals 1 at exactly one input combination and is equal to 0 otherwise
 - Example: x'y'z' = 1 only when x=0, y=0, z=0
- Minterm is denoted as m_i where i corresponds the input combination at which this minterm is equal to 1

Example: 2 Variable Minterms

- Two variables (X and Y) produce 2x2=4 combinations
 - XY (both normal)
 - XY' (X normal, Y complemented)
 - X'Y (X complemented, Y normal)
 - X'Y' (both complemented)

Maxterms

- <u>Maxterms</u> are OR terms with every variable in true or complemented form.
 - X+Y (both normal)
 - X+Y' (x normal, y complemented)
 - X'+Y (x complemented, y normal)
 - X'+Y' (both complemented)

Maxterms and Minterms

• Two variable minterms and maxterms.

Index	Minterm	Maxterm	
0	x' y'	x + y	
1	x 'y	x + y'	
2	x y'	x' + y	
3	ху	x' + y'	

 The index above is important for describing which variables in the terms are true and which are complemented.

Minterms: three variables 0 0 0 x'y'z' m₀ 1 0 0 0 0 0 0 0 0 0 1 x'y'z m_1 0 1 0 0 0 0 0 0 0 1 0 x'yz' 0 0 1 0 0 0 0 0 m_2 0 1 1 x'yz 0 0 0 1 0 0 0 0 m_3 1 0 0 xy'z' m_4 0 0 0 0 1 0 0 0 m_5 1 0 1 xy'z 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 xyz' m_6 1 1 1 0 0 0 0 0 0 0 1 xyz m_7 m. indicated the ith minterm i indicates the binary combination Variable complemented if 0 mis equal to 1 for ONLY THAT combination Variable uncomplemented if 1

Maxterms in POS

- Sum term: A term where literals are ORed.
 - Example: x'+y', x+z, x+y+z, ...
- <u>Maxterm</u>: a sum term in which all variables appear exactly once, in normal or complemented form
 - Example: F(x,y,z) has 8 maxterms
 (x+y+z), (x+y+z'), (x+y'+z), ...

Maxterms

- Function with n variables has 2ⁿ maxterms
- A maxterm equals 0 at exactly one input combination and is equal to 1 otherwize
 - Example: (x+y+z) = 0 only when x=0, y=0, z=0
- A maxterm is denoted as M_i where i corresponds the input combination at which this maxterm is equal to 0

Maxterms: three variable 0 0 0 X+Y+Z M_0 0 1 1 1 1 1 1 1 0 0 1 X+Y+Z' M₁ 1 0 1 1 1 1 1 1 0 1 0 X+Y'+Z M_2 1 1 0 1 1 1 1 1 0 1 1 X+Y'+Z' M₂ 1 1 0 1 1 1 1 1 0 0 X'+Y+Z M 1 1 1 1 0 1 1 1 1 0 1 X'+Y+Z' M_5 1 1 1 1 1 0 1 1 1 1 0 X'+Y'+Z 1 1 1 1 M_6 1 1 1 0 1 X'+Y'+Z' 1 1 1 M. indicated the ith maxterm i indicates the binary combination M_i is equal to 0 Variable complemented if 1 for ONLY THAT combination Variable not complemented if 0

Expressing Functions with Maxterms Boolean function: Expressed algebraically from a give truth table By forming logical product (AND) of ALL the maxterms that produce 0 in the function Example: 0 0 M₀ 1 0 Consider the function defined by the 0 0 1 M₁ 0 1 truth table M₂ 1 0 0 0 $F(X,Y,Z) = \Pi M(1,3,4,6)$ 0 1 1 M₃ 0 1 1 0 0 0 Applying DeMorgan 1 M₅ 1 0 0 1 $F' = m_1 + m_3 + m_4 + m_6 = \sum m(1,3,4,6)$ $F = F'' = [m_1 + m_3 + m_4 + m_6]'$ $= m_1'.m_3'.m_4'.m_6'$ Note the indices in this list are those that $= M_1.M_3.M_4.M_6$ are missing from the previous list in $= \Pi M(1,3,4,6)$ $\Sigma m(0,2,5,7)$

<u>Sum of Minterms vs Product of</u> <u>Maxterms</u>

- A function can be expressed algebraically as:
 - The sum of minterms
 - The product of maxterms
- Given the truth table, writing F as
 - ∑m_i for all minterms that produce 1 in the table, or
 - ΠM_i for all maxterms that produce 0 in the table
- Minterms and Maxterms are complement of each other.

Example: minterm & maxterm

- Write E = Y' + X'Z' in the form of $\sum m_i$ and $\prod M_i$?
- Method1 First construct the Truth Table as shown
- $E = \sum m(0,1,2,4,5)$, and
- $E = \prod M(3,6,7)$

X	Υ	Z	m	M	E
0	0	0	m_0	M_0	1
0	0	1	m_1	M_1	1
0	1	0	m ₂	M ₂	1
0	1	1	m ₃	M_3	0
1	0	0	m ₄	M ₄	1
1	0	1	m ₅	M ₅	1
1	1	0	m ₆	M ₆	0
1	1	1	m ₇	M ₇	0

Example (Cont.)

Solution: Method2 a

- E = Y' + X'Z'
 - = Y'(X+X')(Z+Z') + Z'(Y+Y')=(XY'+X'Y')(Z+Z')+X'YZ'+
 - X'Z'Y' = Y'Z+X'Y'Z+XY'Z'+X'Y'Z'+
 - X'YZ'+X'Z'Y' $= m_5 + m_1 + m_4 + m_0 + m_2 + m_0$
 - $= m_0 + m_1 + m_2 + m_4 + m_5$
 - $=\sum m(0,1,2,4,5)$

To find the form ΠMi, consider the remaining indices

 $E = \Pi M(3,6,7)$

Solution: Method2 b

- E = Y' + X'Z'
- E' = Y(X+Z)
- = YX + YZ
- = YX(Z+Z') + YZ(X+X')
- = XYZ+XYZ'+X'YZ
- (X'+Y'+Z')(X'+Y'+Z)(X+Y'+Z')
 - $= M_7 . M_6 . M_3$
 - $=\Pi M(3,6,7)$
- To find the form Sm_i, consider the remaining indices
 - $E = \sum m(0,1,2,4,5)$

Canonical Forms

• The sum of minterms and the product of maxterms forms are known as the canonical forms of a function.

Standard Forms

- Sum of Products (SOP) and Product of Sums (POS) are also standard forms
 - AB+CD = (A+C)(B+C)(A+D)(B+D)
- The sum of min-terms is a special case of the SOP form, where all product terms are min-
- The product of max-terms is a special case of the POS form, where all sum terms are maxterms

SOP and POS Conversion

SOP → POS

- F = AB + CD
- = (AB+C)(AB+D)
- = (A+C)(B+C)(AB+D)
- = (A+C)(B+C)(A+D)(B+D)

Hint 1: Use id15: X+YZ=(X+Y)(X+Z) Hint 2: Factor

POS → SOP

- F = (A'+B)(A'+C)(C+D)
- = (A'+BC)(C+D)
- = A'C+A'D+BCC+BCD
- = A'C+A'D+BC+BCD
- = A'C+A'D+BC

Implementation of SOP

XZ+Y'Z+X'YZF(X,Y,Z) =

- Any SOP expression can be implemented using 2levels of gates
- The 1st level consists of AND gates, and the 2nd level consists of a single OR gate
- · Also called 2-level Circuit

Implementation of POS

F(X,Y,Z) =(X+Z)(Y'+Z)(X'+Y+Z)

- · Any POS expression can be implemented using 2levels of gates
- The 1st level consists of OR gates, and the 2nd level consists of a single AND gate
- Also called 2-level Circuit

Implementation of SOP

- Consider F = AB + C(D+E)
 - This expression is NOT in the sum-of-products form
 - Use the identities/algebraic manipulation to convert to a standard form (sum of products), as in F = AB + CD + CE
- · Logic Diagrams:

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - -Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - -Sum of Minterms (SOM)/Sum of Product (SOP)
 - -Product of Maxterms/Sum (POM)/POS

Simplification: Theorem method

```
= \sum m(0,1,2,4,5)
= m_0 + m_1 + m_2 + m_4 + m_5
= m_5 + m_1 + m_4 + m_0 + m_2 + m_0
= XY'Z+X'Y'Z+XY'Z'+X'Y'Z'+X'YZ'+X'YZ'
= (XY'+X'Y')(Z+Z') + X'YZ' + X'Z'Y'
= Y'(X+X')(Z+Z') + X'Z'(Y+Y')
                            Both are in SOP
Simplified one: Require less
Gates and faster
                            format : 2 level
```

Simplification of Boolean Functions

- An implementation of a Boolean Function requires the use of logic gates.
- A smaller number of gates, with each gate (other then Inverter) having less number of inputs, may reduce the cost of the implementation.
- There are 2 methods for simplification of Boolean functions.

Simplification of Boolean Functions: Two Methods

- Algebraic method by using Identities & Theorem
- Graphical method by using Karnaugh Map
 - The K-map method is easy and straightforward.
 - A K-map for a function of n variables consists of 2ⁿ
 - —in every row and column, two adjacent cells should differ in the value of only one of the logic variables.

Maurice Karnaugh, Bell Lab, 1954.

Karnaugh Map Method

- A graphical method of simplifying logic equations or truth tables.
- Also called a K map
- Theoretically can be used for any number of input variables, but practically limited to 5 or 6 variables.

Karnaugh Map Advantages

- Minimization can be done more systematically
- Much simpler to find minimum solutions
- Easier to see what is happening (graphical)
- Almost always used instead of boolean minimization.

Gray Codes

• Gray code is a binary value encoding in which adjacent values only differ by one bit

2-bit Gray Code
00
01
11
10

Karnaugh Map Method

- The truth table values are placed in the K map.
- Adjacent K map square differ in only one variable both horizontally and vertically.
- The pattern from top to bottom and left to right must be in the form
- A SOP expression can be obtained by ORing all squares that contain a 1.

A'B', A'B, AB, AB' 00, 01, 11, 01

Filling of Karnaugh Map

Why not: A'B', A'B, AB', AB 00, 01, 10, 11

Only two adjacent can be grouped Group Reduce a variable: AB'+AB=A(B'+B)=A

A'B', A'B, AB, AB' 00 01, 11 01 All 4 Adjacent can be grouped

