11B – ASSOCIATION RULE MINING

CS 1656

Introduction to Data Science

Alexandros Labrinidis – http://labrinidis.cs.pitt.edu
University of Pittsburgh

Association Rule Mining

One specific type of data mining

- Usually:
 - Try to predict novel and interesting patterns from supermarket data

Famous examples:

- - http://www.dssresources.com/newsletters/66.php
- How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did [Forbes, Feb 2012]
 - http://bit.ly/targetpregnant

FREQUENT ITEMSETS

Transactions Example

- Market-Basket Model
 - Multiple items (e.g., milk, bread, etc)
 - Multiple baskets (transactions)

Assumption:

 Number of items in basket much smaller than total number of items

TID	Produce
1	MILK, BREAD, EGGS
2	BREAD, SUGAR
3	BREAD, CEREAL
4	MILK, BREAD, SUGAR
5	MILK, CEREAL
6	BREAD, CEREAL
7	MILK, CEREAL
8	MILK, BREAD, CEREAL, EGGS
9	MILK, BREAD, CEREAL

Transactions Example (compressed form)

TID	Produce
1	MILK, BREAD, EGGS
2	BREAD, SUGAR
3	BREAD, CEREAL
4	MILK, BREAD, SUGAR
5	MILK, CEREAL
6	BREAD, CEREAL
7	MILK, CEREAL
8	MILK, BREAD, CEREAL, EGGS
9	MILK, BREAD, CEREAL

TID	Products
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

ITEMS:

Λ	IIIIIK
$\mathbf{B} =$	bread
C =	cereal
$\mathbf{D} =$	sugar

 $\Delta = milk$

$$E = eggs$$

October 22, 2020

Transactions Example (binary form)

TID	Products
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

ITEMS:

A = milk
B = bread
C = cereal
D = sugar
E = eggs

Attributes converted to binary flags

6

TID	A	В	C	D	Ε
1	1	1	0	0	1
2	0	1	0	1	0
3	0	1	1	0	0
4	1	1	0	1	0
5	1	0	1	0	0
6	0	1	1	0	0
7	1	0	1	0	0
8	1	1	1	0	1
9	1	1	1	0	0

Definitions

- Item: attribute=value pair or simply value
 - usually attributes are converted to binary flags for each value, e.g. product="A" is written as "A"
- Itemset L: a subset of possible items
 - Example: L = {A,B,E} (order unimportant)
- Transaction: (TID, itemset)
 - TID is transaction ID

Support and Frequent Itemsets

- Support count of an itemset
 - sup(L) = number of transactions that support (i.e. contain) L
 - Example:
 - $sup({A,B,E}) = 2$

and $\sup (\{B,C\}) = 4$

- Support percentage of an itemset
 - supp(L) = percentage of transactions that support (i.e. contain) L
 - supp(L) = sup(L) / total count
 - total_count is total number of transactions
 - Example:
 - supp $({A,B,E}) = 2/9$

and supp $(\{B,C\}) = 4/9$

- An itemset L is frequent if it has support count at least minsup
 - sup(I) >= minsup

Q1. Understanding Question

Question:

Which of the following doubletons has support count of exactly 5?
 (based on the transaction data from the handout)

Possible Answers:

- AB
- AC
- BC
- DE
- AF

Support counts for doubletons

	F	E	D	С	В
Α	AF: 3	AE: 2	AD: 5	AC: 4	AB: 6
В	BF: 4	BE: 2	BD: 7	BC: 5	
C	CF: 2	CE: 3	CD: 5		
D	DF: 4	DE: 2			
Е	EF: 2				

Q2. Understanding Question

Question:

 What is the combined sum of the support counts of ABC, ABD, and ABE? (based on the transaction data from the handout)

Possible Answers:

- 9
- 11
- 12
- 13
- 15

Support count for size-3 itemsets

ABC: 4

• ABD: 5

• ABE: 2

- Q: Any interesting observations?
- A: Support count of (ABC) is the minimum of support counts of AB (6), BC (5), AC (4)!

SUBSET PROPERTY

SUBSET PROPERTY

Every subset of a frequent set is frequent!

- Why is it so?
- **Example**: Suppose {A,B} is a frequent itemset. Since each occurrence of A, B includes both A and B, then both {A} and {B} must also be frequent.
- Similar argument for larger itemsets
- Almost all association rule algorithms are based on this subset property

Q3. Understanding Question

Question:

If minsup =4 can ABF be frequent itemset?
 (based on the transaction data from the handout)

Possible Answers:

- Yes
- No

ASSOCIATION RULES

Association Rules

- Association rule R: Itemset1 => Itemset2
 - Itemset1, Itemset2 are disjoint and
 - Itemset2 is non-empty
 - Simplified definition: Itemset2 has only one item
- Meaning:
 - if transaction includes *Itemset1* then it also has *Itemset2*
- Examples
 - A,B => E
 - A => B,C

From Frequent Itemsets to Association Rules

• Q: Given frequent set {A,B,E}, what are possible association rules?

- A, B => E
- A, E => B
- B, E => A
- A => B, E
- B => A, E
- E => A, B
- ___ => A,B,E (empty rule), or true => A,B,E
 - We will ignore empty rules from this point on

Definition of **Support** for Association Rules

- Association Rule R: I => J
 - Example: {A, B} => {C}
- Support count for R:

$$sup(R) = sup(I => J) = sup(I U J)$$

• Example:

$$\sup(\{A,B\}=>\{C\}) = \sup(\{A,B\} \cup \{C\} = \sup(\{A,B,C\}) = 2$$

Support percentage for R:

$$supp(R) = supp(I => J) = supp(I U J)$$

• Meaning:

fraction of transactions that involve both left-hand side (LHS) and right-hand side (RHS) itemsets

Definition of **Confidence** for Association Rules

- Association Rule R: I => J
 - Example: {A, B} => {C}
- Confidence for R:

conf (R) = conf (
$$I=>J$$
) = sup (IUJ) / sup(I)

• Example:

```
conf (\{A,B\}=>\{C\}) = sup (\{A,B,C\}) / sup (\{A,B\})
= 2 / 4 = 50%
```

 Meaning: probability that RHS will appear given that LHS appears

Associate Rules Example

 Q: Given frequent set {A,B,E}, what association rules have at least minsup = 2 and minconf = 50% ?

```
A, B => E : conf=2/4 = 50\%
```

A,
$$E => B$$
 : conf=2/2 = 100%

B, E => A :
$$conf=2/2 = 100\%$$

$$E => A, B : conf=2/2 = 100\%$$

Do not qualify:

```
A =>B, E: conf=2/6 =33% < 50%
```

$$B => A, E : conf=2/7 = 28\% < 50\%$$

TID	List of items
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

Q4. Understanding Question

Question:

What is the confidence of association rule A B => C?
 (based on the transaction data from the handout)

Possible Answers:

- 4
- 4/6
- 5
- 6/4
- 6

A-PRIORI ALGORITHM

24

How to generate association rules?

Find Strong Association Rules

- An association rule has parameters minsup and minconf:
 - sup(R) >= minsup and conf (R) >= minconf
- Problem Statement:
 - Find all association rules with given minsup and minconf
- First, find all frequent itemsets
 - Start by finding one-item sets (easy)
 - Q: How?
 - A: Simply count the frequencies of all items

Finding itemsets: next level

Apriori Algorithm (Agrawal & Srikant, 1993)

- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
 - If {A, B} is a frequent item set, then {A} and {B} have to be frequent item sets as well! (subset property)
 - In general: if X is frequent k-item set, then all (k-1)-item subsets of X are also frequent
 - \Rightarrow Compute *k*-item set by merging (*k*-1)-item sets

An example

Given: five frequent three-item sets

```
(ABC), (ABD), (ACD), (ACE), (BCD)
```

- Lexicographic order improves efficiency
- Candidate four-item sets:

```
(A B C D) Q: OK?
```

A: Yes, because all 3-item subsets are frequent

(A C D E) Q: OK?

A: No, because (C D E) is not frequent Also: (A D E) is not frequent

Implementation Issues

- How to store support counts?
 - First step: convert strings to integers (using hash function)
 - Naïve method:
 - a[i,j] stores count for pair {i,j} (assume i<j)
 - Triangular Matrix Method:
 - a[k] stores count for pair {i,j} (assume i<j)
 - k = (i 1) (n i/2) + j i
 - Stores data as: {1,2}, {1,3}, ..., {1,n}, {2,3}, {2,4}, ..., {2,n}, ..., {n-1,n}
 - Triples Method:
 - Store triple [i,j,c] where c is count for pair {i,j} and i<j
 - Use hash table with i,j as key

[Source: http://www.mmds.org]

Beyond Binary Data

- Hierarchies
 - drink → milk → low-fat milk → Stop&Shop low-fat milk
 ...
 - find associations on any level
- Sequences over time

•