Quadratic Number Fields

Definition: Squarefree

To say that and integer $d \neq 1$ is *squarefree* means no prime p exists such that $p^2 \mid d$.

Definition: Quadratic Number Field

Let $d \neq 1$ be a squarefree integer. The *quadratic number field* associated to d is given by:

$$\mathbb{Q}(\sqrt{d}) = \{r + s\sqrt{d} \mid r, s \in \mathbb{Q}\}\$$

Note that since d is squarefree it is irrational.

When d > 0 then $\mathbb{Q}(\sqrt{d})$ is said to be real.

When d < 0 then $\mathbb{Q}(\sqrt{d})$ is said to be imaginary.

Note that $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$.

Theorem

 $\mathbb{Q}(\sqrt{d})$ is a field.

Proof

Assume $\alpha, \beta \in \mathbb{Q}(\sqrt{d})$ Let $\alpha = r + s\sqrt{d}$ and $\beta = u + v\sqrt{d}$ for $r, s, u, v \in \mathbb{Q}$

$$\alpha+\beta=(r+s\sqrt{d})+(u+v\sqrt{d})=(r+u)+(s+v)\sqrt{d}\in\mathbb{Q}(\sqrt{d})$$

$$\alpha\beta = (r + s\sqrt{d})(u + v\sqrt{d}) = (ru + svd) + (rv + su)\sqrt{d} \in \mathbb{Q}(\sqrt{d})$$

So, $\mathbb{Q}(\sqrt{d})$ is closed under the operations and is thus a subring of \mathbb{C} , and thus an integral domain.

Now, assume $\alpha \neq 0$

$$\frac{1}{\alpha} = \frac{1}{r + s\sqrt{d}} = \frac{r - s\sqrt{d}}{r^2 - ds^2} = \frac{r}{r^2 - ds^2} - \frac{s}{r^2 - ds^2} \sqrt{d} \in \mathbb{Q}(\sqrt{d})$$

So, $\mathbb{Q}(\sqrt{d})$ is closed under inverses

Therefore $\mathbb{Q}(\sqrt{d})$ is a field.