

Comparison of Local and Transregional Atmospheric Particles Over the Urmia Lake in Northwest Iran, Using a Polarization Lidar Recordings

Salar ALIZADEH¹,Ruhollah MORADHASELI², Hossein PANAHIFAR¹, and Hamid R. KHALESIFARD¹

¹Physics Department, Institute for Advanced Studies in Basic Sciences, Zanjan 4513766731, Iran

²Physics Department, Faculty of Science, Zanjan Brach, Islamic Azad University, Zanjan, Iran

[03].[Atmospheric Aerosol and Clouds Properties]

[27-Jun], [14:15]

[Monday_03_P04]

The Urmia Lake

- Urmia Lake, a hyper saline lake in Northwest Iran.
- The lake experiences a severe drying scenario.
- The region is under the influence of dust outbreaks raising from neighboring sources.
- Dust, salt, salt-dust, and anthropogenic aerosols are the main atmospheric particulate matter in the region.

The Polarization Lidar

We installed a polarization lidar at the southwest coast of the lake to monitor atmospheric particles.

Transmitter	O switched from an and doubled	Pulse duration: 10 ns		
	Q-switched frequency doubled Nd-YAG Laser	Energy/Pulse: 100 mJ @ 532 nm, Rep. Rate: 1 – 20 Hz		
	Beam Expander	5X, Newtonian		
Receiver, cross polarized @ 532 nm	Cassegrain Telescope	8"		
	Detectors	PMT, Hamamatsu H9305-03		
Digitizer	300 MHz Digital Oscilloscope	Tektronix, TDS 3034B		
	Digital interface	NI-GPIB		
	Computer	Pentium (R) 4 CPU, 3.2 GHz		
Range / Resolution	Zenith	15 km / 10 – 30 m, 10 s		
	Horizontal	2 – 5 km / 10 – 30 m, 10 s		

Case Studies, Local / Transported Particles

Local particles:

19-20 August 2020, a dense particle plume at the vicinity of the lake (salt and salt-dust particles)

Parallel channel time-height series

Transregional & local particles:

20 – 23 July 2020, a dust layer (~2km AGL), is transported from the Mesopotamia and Northeast Syria to the lake region. A dust plume is also in vicinity of the lake.

Parallel channel time-height series

Overview on all observed cases

An overview of all recorded events by the Lidar from 13 July 2020 to 8 March 2022

Source		Particle type	PDR averaged	Layer height (m)	Events Frequency	
					(days)	(%)
Local (summer)		Salt-dust	0.18 ±0.04	1900 ±600	18	28
Local (winter)		Anthropogenic	0.11 ±0.01	500 ±250	5	7
		Salt-dust	0.17 ±0.02	800 ±350	16	25
Distant	Mesopotamia	dust	0.23 ±0.05	2500 ±850	20	31
	Africa	dust	0.24 ±0.04	4200 ±1800	5	7
	Arabian Peninsula	dust	0.23 ±0.03	900 ±200	1	2
Total					65	100

Conclusions:

- For the first time, we are reporting a comparison of atmospheric particles in the vicinity of the Urmia Lake in Northwest Iran using their particle depolarization ratio (PDR) retrieved from the recordings of a polarization lidar.
- During a 21- month measurement campaign, we recorded 65 days where different types of particles (salt, salt-dust, dust, anthropogenic) were contaminated the atmosphere.
- Salt and salt-dust particles are the most dominant pollutants in this region (52% of all events).
- But distant dust sources also are impacting the region very frequently.
- The Mesopotamian region is the most influential distant source (31% of all events) but we even detected dust layers that had originated from North Africa and the Arabian Peninsula.
- We didn't find any case where the raised particles from the lake bed got transported to altitudes above 3 km AGL.
- Most probably the Urmia Lake as a source of salt and salt-dust particles can't influence regions outside its catchment area.