Package 'suq2'

June 16, 2018

13

suq2.plot.image_display			 								 	
$suq 2. utils. check GLD Valid 1 \ . \ .$			 								 	
suq2.utils.checkGLDValidN .			 								 	
suq2.utils.createDataset			 								 	
suq2.utils.distGLDComparison			 								 	
suq2.utils.distGLDComparisonI	KL.		 								 	
suq2.utils.gldComparison			 								 	
suq2.utils.gldComparisonKL .			 								 	

suq2.clustering.gldClusterComparison

Evaluate if the centroid of a cluster is a good representative of the other members of this cluster

Description

Index

This function return a list of D distances from the ks-test that compare the centroid of a cluster wiht n members of this cluster.

Usage

```
\verb|suq2.clustering.gldClusterComparison(cluster\_number, n, centroid)|\\
```

Arguments

cluster_number The cluster ID we are interesting in.

n Number of elements of the cluster to analize.

centroid The lambda values of the centroid of the cluster.

Author(s)

Noel Moreno Lemus

```
Ds <- suq2.clustering.gldClusterComparison(3, 60, c(0, 2, 1.5, 1.3))
```

```
suq2.clustering.gldClustering
```

Clustering of the GLDs in function of its l2, l3 and l4 values

Description

TODO.

Usage

```
suq2.clustering.gldClustering(lambdas, no_clusters, 1234 = TRUE)
```

Arguments

lambdas A matrix of n x m x 4 of all the lambda values.

no_clusters Number of clusters.

Author(s)

Noel Moreno Lemus

Examples

```
suq2.clustering.gldClustering(lambdas, 10, TRUE)
```

```
suq2.fit.gldfitLmoments
```

Compute the lambda values of the GLD using the method of the Lmoments

Description

This function allows you to show image with scale.

Usage

```
suq2.fit.gldfitLmoments(data)
```

Arguments

data

The raw data to fit.

```
suq2.fit.gldfitLmoments(data)
```

```
suq2.fit.gldfitMoments
```

Compute the lambda values of the GLD using the method of Moments

Description

This function allows you to show image with scale.

Usage

```
suq2.fit.gldfitMoments(data)
```

Arguments

data

The raw data to fit.

Examples

```
suq2.fit.gldfitMoments(data)
```

```
suq2.fit.gldFitParallel
```

Fit the GLD to a multidimensional array in parallel.

Description

This function compute the GLD that best fit each distribution on each spatial location.

Usage

```
suq2.fit.gldFitParallel(nodes, dimension, mArray)
```

Arguments

nodes number of nodes to be used in the computation.

dimension the dimensions to be used, NxMxS.

mArray a multidimentional array with dimensions @param dimension

Author(s)

Noel Moreno Lemus

```
mArray <- createDataset(directory, pattern, dimension)
result <- suq2.fit.gldFitParallel(4, dimension = c(60, 60), mArray = mArray)</pre>
```

suq2.plot.gld 5

suq2.plot.gld

Plot the GLD based in its lambda values.

Description

This function read all the csv that are stored in a directory and create an NxMxS array, where N and M are sparial dimensions and S is the number of simulations on each spatial point.

This function read all the csv that are stored in a directory and create an NxMxS array, where N and M are sparial dimensions and S is the number of simulations on each spatial point.

Usage

```
suq2.plot.gld(n = 1000, L = c(0, 2, 4, 4), param = "fmkl")

suq2.plot.gld(n = 1000, L = c(0, 2, 4, 4), param = "fmkl")
```

Arguments

```
n the directory where the .csv files are stored.

L a pattern to read the .csv (e.g. pattern="^[h]").

param (default = "fmkl")

n the directory where the .csv files are stored.

L a pattern to read the .csv (e.g. pattern="^[h]").

param (default = "fmkl")
```

Author(s)

Noel Moreno Lemus

Noel Moreno Lemus

```
suq2.plot.gld(L = c(0, 2, 0.14, 0.14))
suq2.plot.gld(L = c(0, 2, 0.14, 0.14))
```

6 suq2.plot.gldPlot

```
suq2.plot.gldClustersL3L4
```

Plot the clusters in 13-14 space.

Description

TODO.

Usage

```
suq2.plot.gldClustersL3L4(clusters, x)
```

Arguments

clusters

An n x m matrix with the clusters by positions.

Х

Array used to create the clusters in function @method gldClustering.

Author(s)

Noel Moreno Lemus

Examples

```
suq2.plot.gldClustersL3L4(clusters, x)
```

suq2.plot.gldPlot

Plot the GLD based in the Lambda values

Description

This function allows you to show image with scale.

Usage

```
suq2.plot.gldPlot(L, param = "fmkl")
```

Arguments

L

Lambda values of the GLD.

```
L = c(0, 2, 0.25, 1.5)
suq2.plot.gldPlot(L)
```

suq2.plot.gldToPlot 7

suq2.plot.gldToPlot

Return (x, y) values of the GLD based in the Lambda values

Description

This function allows you to return the (x,y) values of the GLD, based in the Lambda values.

Usage

```
suq2.plot.gldToPlot(L, param = "fmkl")
```

Arguments

L

Lambda values of the GLD.

Examples

```
L = c(0, 2, 0.25, 1.5)
suq2.plot.gldToPlot(L)
```

```
suq2.plot.image_display
```

Color image dislay with scale

Description

This function allows you to show image with scale.

Usage

```
suq2.plot.image_display(data)
```

Arguments

date

The image matrix you like to display.

```
suq2.plot.image_display()
```

suq2.utils.checkGLDValid1

Check if one GLD is valid

Description

This function check if one GLD is valid.

Usage

```
suq2.utils.checkGLDValid1(lambdas)
```

Arguments

lambdas

lambda values of a single GLD function.

Examples

```
suq2.utils.checkGLDValid1(lambdas)
```

suq2.utils.checkGLDValidN

Check if many GLDs are valid

Description

This function check if many GLDs are valid.

Usage

```
suq2.utils.checkGLDValidN(lambdas)
```

Arguments

lambdas

lambda values of multiple GLD functions.

```
suq2.utils.checkGLDValidN(lambdas)
```

suq2.utils.createDataset 9

```
suq2.utils.createDataset
```

Create a multidimentional array with simulations form a set of .csv.

Description

This function read all the csv that are stored in a directory and create an NxMxS array, where N and M are sparial dimensions and S is the number of simulations on each spatial point.

Usage

```
suq2.utils.createDataset(directory, pattern, dimension)
```

Arguments

directory the directory where the .csv files are stored.

pattern a pattern to read the .csv (e.g. pattern="^[h]").

dimension the dimensions to be used, NxMxS.

Noel Moreno Lemus

Examples

Author(s)

```
directory = "~/PhD/thesis_phd/python_codes/datasets/20"
pattern="^[h]"
dimension = c(60, 60, 500)
mArray <- suq2.utils.createDataset(directory, pattern, dimension)</pre>
```

```
suq2.utils.distGLDComparison
```

Function to be used as a distance function in clustering algoritms

Description

This function return the distances between all the centroids and the elements of the dataset, using a KS-test as a measure of the distance.

Usage

```
suq2.utils.distGLDComparison(x, centers)
```

Arguments

x dataset.

centers the centroids to be analized.

Author(s)

Noel Moreno Lemus

Examples

TODO

suq2.utils.distGLDComparisonKL

Function to be used as a distance function in clustering algoritms

Description

This function return the distances between all the centroids and the elements of the dataset, using KL-divergence as a measure of the distance.

Usage

```
suq2.utils.distGLDComparisonKL(x, centers)
```

Arguments

x dataset.

centers the centroids to be analized.

Author(s)

Noel Moreno Lemus

Examples

TODO

```
suq2.utils.gldComparison
```

Compare if two GLDs belongs to the same distribution

Description

This function return D distance from the ks-test that compare if both GLDs belongs to the same distribution.

Usage

```
suq2.utils.gldComparison(L1, L2, param = "fmkl", no.test = 1000,
  len = floor(0.9 * no.test), alpha = 0.05)
```

Arguments

- L1 Lambda values of the first GLD.
- Lambda values of the second GLD.

Author(s)

Noel Moreno Lemus

Examples

```
L1 = c(0, 2, 0.25, 1.5)

L2 = c(0, 2, 0.3, 1.75)

D <- suq2.utils.gldComparison(L1, L2)
```

```
suq2.utils.gldComparisonKL
```

Compare if two GLDs belongs to the same distribution based in its KL.dist

Description

This function return the KL.dist of two GLDs.

Usage

```
suq2.utils.gldComparisonKL(L1, L2, param = "fmk1", no.test = 1000,
len = floor(0.9 * no.test), alpha = 0.05)
```

Arguments

Lambda values of the first GLD.
Lambda values of the second GLD.

Author(s)

Noel Moreno Lemus

```
L1 = c(0, 2, 0.25, 1.5)

L2 = c(0, 2, 0.3, 1.75)

D \leftarrow suq2.utils.gldComparisonKL(L1, L2)
```

Index

```
*Topic image
    suq2.plot.image\_display, 7
*Topic lambdas
    suq2.utils.checkGLDValid1,8
    suq2.utils.checkGLDValidN, 8
*Topic lmoments
    suq2.fit.gldfitLmoments, 3
    suq2.fit.gldfitMoments, 4
    suq2.plot.gldPlot, 6
\verb"suq2.clustering.gldClusterComparison",
suq2.clustering.gldClustering, 3
suq2.fit.gldfitLmoments, 3
suq2.fit.gldfitMoments, 4
suq2.fit.gldFitParallel,4
suq2.plot.gld, 5
suq2.plot.gldClustersL3L4,6
suq2.plot.gldPlot, 6
suq2.plot.gldToPlot, 7
suq2.plot.image_display, 7
suq2.utils.checkGLDValid1, 8
suq2.utils.checkGLDValidN, 8
sug2.utils.createDataset, 9
suq2.utils.distGLDComparison, 9
suq2.utils.distGLDComparisonKL, 10
suq2.utils.gldComparison, 11
suq2.utils.gldComparisonKL, 11
```