Math 242 Homework Set #7

Due: 10/19/07

Section 11.2

6.
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos\theta - 2\sin(2\theta)}{-\sin\theta + 2\cos(2\theta)}$$
 at $\theta = 0$ it is equal to $\frac{1}{2}$. When $\theta = 0$, our (x,y)

point is (1,1). Therefore the equation for the tangent line at $\theta = 0$ is $y = \frac{1}{2}x + \frac{1}{2}$.

13.
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 - e^{-t}}{1 - e^{t}} = \frac{1 - \frac{1}{e^{t}}}{1 - e^{t}} = \frac{e^{t} - 1}{e^{t}(1 - e^{t})} = -e^{-t}$$

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{dx/dt} = \frac{e^{-t}}{1 - e^t}$$

The function is concave up when $e^{t} < 1 \Rightarrow t < 0$ since $e^{-t} > 0$.

18. Horizontal tangents occur when $\frac{dy}{dt} = 6t^2 + 6t = 0 \Rightarrow t = 0,-1$, which is at the points (0,1) and (13,2). Vertical tangents occur when $\frac{dx}{dt} = 6t^2 + 6t - 12 = 0 \Rightarrow t = -2, 1$, which is at the points (20, -3) and (-7, 6).

25.
$$\frac{dx}{dt} = -\sin(t), \frac{dy}{dt} = -\sin^2(t) + \cos^2(t) = \cos(2t)$$
. $(x, y) = (0, 0) \Rightarrow \cos(t) = 0 \Rightarrow t$ is an odd multiple of $\frac{\pi}{2}$. When $t = \frac{\pi}{2}, \frac{dx}{dt} = -1$ and $\frac{dy}{dt} = -1$, so $\frac{dy}{dx} = 1$. When $t = \frac{3\pi}{2}, \frac{dx}{dt} = 1$ and $\frac{dy}{dt} = -1$, so $\frac{dy}{dx} = -1$. Therefore, $y = x$ and $y = -x$ are both tangent to the curve at $(0,0)$.

26. $x = 1 - 2\cos^2(t) = -\cos(2t)$, $y = (\tan(t))(1 - 2\cos^2(t)) = -\tan(t)\cos(2t)$. We want to look for two values of t (say t_1 and t_2) that give the same point (x,y). The equation for x tells us 1. $\cos^2(t_1) = \cos^2(t_2)$ and the equation for y tells us 2. $\tan(t_1) = \tan(t_2)$ or 3. $\cos^2(t_1) = \cos^2(t_2) = \frac{1}{2}$. We can satisfy 1 and 2 by choosing t_1 arbitrarily and then taking $t_2 = t_1 + \pi$. Therefore the interval is retraced every time t goes an interval of length π . So lets look at the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It $t_2 = -t_1$, then $\cos^2(t_2) = \cos^2(t_1)$, but $\tan(t_2) = -\tan(t_1)$, so we can try to satisfy 3. Taking $t_1 = \frac{\pi}{4}$ and $t_2 = -\frac{\pi}{4}$ gives (0,0) for both values of t. So, $\frac{dx}{dt} = 2\sin(2t)$, $\frac{dy}{dt} = 2\sin(2t)\tan(t) - \cos(2t)\sec^2(t)$. Therefore, $t = \frac{\pi}{4} \Rightarrow \frac{dy}{dx} = \frac{2}{2} = 1$, and $t = -\frac{\pi}{4} \Rightarrow \frac{dy}{dx} = \frac{2}{-2} = -1$. So the two tangent lines at (0,0) are y = x and y = -x.

29. x = -7t, $y = 12t - 5 \Rightarrow y = -\frac{12}{7}x - 5$, so the slope is $-\frac{12}{7}$. Find when our function has that slope. $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{12t}{3t^2 + 4} = -\frac{12}{7} \Rightarrow t = -1, -\frac{4}{3}$. Therefore at these t values, we have (x, y) = (-5, 6) or $\left(\frac{-208}{27}, \frac{32}{3}\right)$.

Section 11.3

2. a.)
$$(3,0) \Rightarrow (3,2\pi), (-3,\pi)$$

b.)
$$(2, -\pi/7) \Rightarrow (2, 13\pi/7), (-2, 6\pi/7)$$

c.)
$$(-1, -\frac{\pi}{2}) \Rightarrow (1, \frac{\pi}{2}), (-1, \frac{3\pi}{2})$$

3. a.)
$$(3, \frac{\pi}{2}) \Rightarrow x = 3\cos(\pi/2) = 0, y = 3\sin(\pi/2) = 3 \Rightarrow (0,3)$$

b.)
$$(2\sqrt{2}, 3\pi/4) \Rightarrow x = 2\sqrt{2}\cos(3\pi/4) = -2, y = 2\sqrt{2}\sin(3\pi/4) = 2 \Rightarrow (-2,2)$$

c.)
$$(-1, \pi/3) \Rightarrow x = -1\cos(\pi/3) = -1/2, y = -1\sin(\pi/3) = -\sqrt{3}/2 \Rightarrow (-\frac{1}{2}, -\frac{\sqrt{3}}{2})$$

- 6. a.) $(-1, -\sqrt{3}) \Rightarrow r = \sqrt{1+3} = 2$, $\tan(\theta) = \sqrt{3} \Rightarrow \theta = 4\pi/3$ (because we need it to be in the 3rd quadrant).
 - i.) $(2,4\pi/3)$
 - ii.) $(-2, \pi/3)$
- b.) $(-2,3) \Rightarrow r = \sqrt{4+9} = \sqrt{13}$, $\tan(\theta) = -3/2 \Rightarrow \theta = \tan^{-1}(-3/2) + \pi$ (because we need it to be in the 2^{nd} quadrant).
 - i.) $(\sqrt{13},\theta)$

ii.)
$$(-\sqrt{13}, \theta + \pi)$$

7. $1 \le r \le 2$

8. $r \ge 0, \pi/3 \le \theta \le 2\pi/3$

16. $r\cos(\theta) = 1 \Rightarrow x = 1$

22.
$$x^2 + y^2 = 9 \Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{9} = 3 \Rightarrow r = 3$$
 (r = -3 gives the same curve)

31. $r = \sin(\theta) \Rightarrow r^2 = \sin^2(\theta) \Rightarrow x^2 + y^2 = y \Rightarrow x^2 + (y - 1/2)^2 = (1/2)^2$. This is an equation of a circle with radius ½ centered at $(0, \frac{1}{2})$.

33. $r = 2(1 - \sin \theta)$ is a cardioid.

37.
$$r = \sin(2\theta)$$

Section 11.4

5.
$$r = \theta, \ 0 \le \theta \le \pi, \ A = \int_{0}^{\pi} \frac{1}{2} r^{2} d\theta = \int_{0}^{\pi} \frac{1}{2} \theta^{2} d\theta = \frac{1}{2} \frac{\theta^{3}}{3} \Big|_{0}^{\pi} = \frac{\pi^{3}}{6}.$$

10.
$$r = 3(1 + \cos(\theta))$$

$$A = \int_{0}^{2\pi} \frac{1}{2} (3(1+\cos(\theta))^{2} d\theta = \frac{9}{2} \int_{0}^{2\pi} 1 + 2\cos(\theta) + \cos^{2}(\theta) d\theta = \frac{9}{2} \int_{0}^{2\pi} 1 + 2\cos(\theta) + \frac{1}{2} (1+\cos(2\theta)) d\theta$$
$$= \frac{9}{2} (\frac{3}{2}\theta + 2\sin(\theta) + \frac{1}{4}\sin(2\theta)) \Big|_{0}^{2\pi} = \frac{27}{2}\pi$$

30.
$$r = \sin(2\theta), r = \sin(\theta)$$

$$\sin(\theta) = \pm \sin(2\theta) = \pm 2\sin(\theta)\cos(\theta) \Rightarrow \sin(\theta)(1\pm 2\cos(\theta)) = 0 \Rightarrow \theta = \frac{\pi}{3}, \frac{2\pi}{3}$$

$$A = 2 \left[\int_{0}^{\pi/3} \frac{1}{2} \sin^{2}(\theta) d\theta + \int_{\pi/3}^{\pi/2} \frac{1}{2} \sin^{2}(2\theta) d\theta \right] = \int_{0}^{\pi/3} \frac{1}{2} (1 - \cos(2\theta)) d\theta + \int_{\pi/3}^{\pi/2} \frac{1}{2} (1 - \cos(4\theta)) d\theta$$

$$= \frac{1}{2} \left[\theta - \frac{1}{2} \sin(2\theta) \right]_0^{\pi/3} + \frac{1}{2} \left[\theta - \frac{1}{4} \sin(4\theta) \right]_{\pi/3}^{\pi/2} = \frac{4\pi - 3\sqrt{3}}{16}$$

$$35. \quad r = \frac{1}{2} + \cos(\theta)$$

$$A = 2 \left[\int_{0}^{2\pi/3} \frac{1}{2} (\frac{1}{2} + \cos(\theta))^{2} d\theta - \int_{2\pi/3}^{\pi} \frac{1}{2} (\frac{1}{2} + \cos(\theta))^{2} d\theta \right] = \int_{0}^{2\pi/3} \frac{1}{4} + \cos(\theta) + \cos^{2}(\theta) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \cos^{2}(\theta) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \cos^{2}(\theta) d\theta = \int_{0}^{2\pi/3} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(2\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{2} (1 + \cos(\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{4} (1 + \cos(\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{4} (1 + \cos(\theta)) d\theta - \int_{2\pi/3}^{\pi} \frac{1}{4} + \cos(\theta) + \frac{1}{4} (1 + \cos(\theta)) d\theta$$