A simple computation — and a dimensional tweak to the tale from physics

Problem:

Problem:

Problem:

$$J = \int_0^1 f(x) dx$$

Problem:

$$J = \int_0^1 f(x) dx$$

Problem:

Given a function $f(\cdot)$ of one or more variables on the unit interval (unit square, unit cube, ...), bounded in absolute value by 1, numerically evaluate its integral J.

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

Simpson's rule

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1$$

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1$$

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1 \approx \sum_{x_1 \in \{0, 0.5, 1\}} \cdots \sum_{x_D \in \{0, 0.5, 1\}} a_{x_1, \dots, x_D} f(x_1, \dots, x_D)$$

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1 \approx \sum_{x_1 \in \{0, 0.5, 1\}} \cdots \sum_{x_D \in \{0, 0.5, 1\}} a_{x_1, \dots, x_D} f(x_1, \dots, x_D)$$

dimension

computations

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1 \approx \sum_{x_1 \in \{0, 0.5, 1\}} \cdots \sum_{x_D \in \{0, 0.5, 1\}} a_{x_1, \dots, x_D} f(x_1, \dots, x_D)$$

dimension	# computations
1	3

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1 \approx \sum_{x_1 \in \{0, 0.5, 1\}} \cdots \sum_{x_D \in \{0, 0.5, 1\}} a_{x_1, \dots, x_D} f(x_1, \dots, x_D)$$

dimension	# computations
1	3
2	9

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1 \approx \sum_{x_1 \in \{0, 0.5, 1\}} \cdots \sum_{x_D \in \{0, 0.5, 1\}} a_{x_1, \dots, x_D} f(x_1, \dots, x_D)$$

dimension	# computations
1	3
2	9
3	27

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1 \approx \sum_{x_1 \in \{0, 0.5, 1\}} \cdots \sum_{x_D \in \{0, 0.5, 1\}} a_{x_1, \dots, x_D} f(x_1, \dots, x_D)$$

dimension	# computations
1	3
2	9
3	27
D	3 ^D

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1 \approx \sum_{x_1 \in \{0, 0.5, 1\}} \cdots \sum_{x_D \in \{0, 0.5, 1\}} a_{x_1, \dots, x_D} f(x_1, \dots, x_D)$$

dimension	# computations
1	3
2	9
3	27
:	
D	3 ^D
200	$3^{200} \approx 10^{95}$

$$J = \int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f(\frac{1}{2}) + f(1) \right]$$

$$J = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_D) dx_D \cdots dx_1 \approx \sum_{x_1 \in \{0, 0.5, 1\}} \cdots \sum_{x_D \in \{0, 0.5, 1\}} a_{x_1, \dots, x_D} f(x_1, \dots, x_D)$$

dimension	# computations
1	3
2	9
3	27
•	•
D	3 ^D
200	$3^{200} \approx 10^{95}$

This is impossible! Even approximately.