OR 3: Lecture 6 - Nash equilibria in mixed strategies

Recap

In the previous lecture

- The definition of Nash equilibria;
- Identifying Nash equilibria in pure strategies;
- Solving the duopoly game;

This brings us to a very import part of the course. We will now consider equilibria in mixed strategies.

Recall of expected utility calculation

In the matching pennies game discussed previously:

$$\begin{pmatrix} (1,-1) & (-1,1) \\ (-1,1) & (1,-1) \end{pmatrix}$$

A strategy profile of $\sigma_1 = (.2, .8)$ and $\sigma_2 = (.6, .4)$ implies that player 1 plays heads with probability .2 and player 2 plays heads with probability .6.

We can extend the utility function which maps from the set of pure strategies to \mathbb{R} using *expected payoffs*. For a two player game we have:

$$u_i(\sigma_1, \sigma_2) = \sum_{r \in S_1, s \in S_2} \sigma_1(r)\sigma_2(s)u_i(r, s)$$

Obtaining equilibria

Let us investigate the best response functions for the matching pennies game.

If we assume that player 2 plays a mixed strategy $\sigma_2 = (y, 1 - y)$ we have:

$$u_1(r_1, \sigma_2) = 2y - 1$$

and

$$u_1(r_2, \sigma_2) = 1 - 2y$$

Thus we have:

Figure 1:

- 1. If y < 1/2 then r_2 is a best response for player 1.
- 2. If y > 1/2 then r_1 is a best response for player 1.
- 3. If y = 1/2 then player 1 is in different.

If we assume that player 1 plays a mixed strategy $\sigma_1 = (x, 1-x)$ we have:

$$u_2(\sigma_1, s_1) = 1 - 2x$$

and

$$u_2(\sigma_1, s_2) = 2x - 1$$

Figure 2:

Thus we have:

- 1. If x < 1/2 then s_1 is a best response for player 2.
- 2. If x > 1/2 then s_2 is a best response for player 2.
- 3. If x = 1/2 then player 2 is indifferent.

Figure 3:

Let us plot both best responses on a single plot, indicating the best responses in each quadrant. The arrows show the deviation indicated by the best responses.

If either player plays a mixed strategy other than (1/2, 1/2) then the other player has an incentive to modify their strategy. Thus the Nash equilibria is:

This notion of "indifference" is important and we will now prove an important theorem that will prove useful when calculating Nash Equilibria.

Equality of payoffs theorem

Definition

In an n player normal form game the **support** of a strategy $\sigma \in \Delta S_i$ is defined as:

$$\mathcal{S}(\sigma) = \{ s \in S_i \mid \sigma(s) > 0 \}$$

I.e. the support of a strategy is the set of pure strategies that are played with non zero probability.

For example, if the strategy set is $\{A, B, C\}$ and $\sigma = (1/3, 2/3, 0)$ then $S(\sigma) = \{A, B\}$.

Theorem

In an n player normal form game if the strategy profile (σ_i, s_{-i}) is a Nash equilibria then:

$$u_i(\sigma_i, s_{-i}) = u_i(s, s_{-i})$$
 for all $s \in \mathcal{S}(\sigma_i)$ for all $1 \le i \le n$

Proof

If $|S(\sigma_i)| = 1$ then the proof is trivial.

We assume that $|S(\sigma_i)| > 1$. Let us assume that the theorem is not true so that there exists $\bar{s} \in S(\sigma)$ such that

$$u_i(\sigma_i, s_{-i}) \neq u_i(\bar{s}, s_{-i})$$

In particular as $u_i(\sigma_i, s_{-i}) = \sum_{s \in S(\sigma_i)} \sigma_i(s) u_i(s, s_{-i})$ we can assume without loss of generality that

$$u_i(\sigma_i, s_{-i}) < u_i(\bar{s}, s_{-i})$$

which implies that (σ_i, s_{-i}) is not a Nash equilibrium.