Действия с матрици. Реализация на на елементарните преобразувания на матрица чрез умножения с неособени матрици. Привеждане на неособена матрица към единична чрез елементарни преобразувания само по редове.

Определение 1. Ако $A, B \in M_{m \times n}(F)$ са матрици с равен брой редове и стълбове, то сумата $A + B \in M_{m \times n}(F)$ е матрицата със същите размери и елементи

$$(A+B)_{i,j}:=A_{i,j}+B_{i,j}$$
 sa \textit{scuvku} $1 \leq i \leq m$ u $1 \leq j \leq n$.

Определение 2. За произволна матрица $A \in M_{m \times n}(F)$ и $\alpha \in F$ произведението $\alpha A \in M_{m \times n}(F)$ е матрицата с елементи

$$(\alpha A)_{i,j} := \alpha A_{i,j}$$
 за всички $1 \le i \le m$ и $1 \le j \le n$.

Твърдение 3. Транспонирането на матрици е свързано със събирането на матрици и умножението на матрица с число посредством следните свойства:

(i)
$$(A+B)^t = A^t + B^t \text{ sa } A, B \in M_{m \times n}(F);$$

(ii)
$$(\alpha A)^t = \alpha A^t$$
 so $\alpha \in F$, $A \in M_{m \times n}(F)$.

Доказателство. (i) Вземайки предвид $A+B\in M_{m\times n}(F)$ и $(A+B)^t\in M_{n\times m}(F)$, проверяваме, че за произволни $1\leq i\leq n$ и $1\leq j\leq m$ е изпълнено

$$[(A+B)^t]_{i,j} = (A+B)_{j,i} = A_{j,i} + B_{j,i} = (A^t)_{i,j} + (B^t)_{i,j} = (A^t+B^t)_{i,j}.$$

Това доказва $(A+B)^t = A^t + B^t$.

(ii) За произволни $1 \leq i \leq n$ и $1 \leq j \leq m$ е в сила

$$[(\alpha A)^t]_{i,j} = (\alpha A)_{j,i} = \alpha A_{j,i} = \alpha (A^t)_{i,j} = (\alpha A^t)_{i,j}.$$

Следователно $(\alpha A)^t = \alpha A^t$.

За произволно поле F и произволни естествени числа m и n, множеството $M_{m\times n}(F)$ на матриците с m реда, n стълба и елементи от F е линейно пространство над F относно събирането на матрици и умножението на матрица с $\alpha \in F$. По същество, $M_{m\times n}(F)$ е линейното пространство F^{mn} на наредените mn-торки с елементо от F.

Определение 4. Нека $A \in M_{m \times n}(F)$ и $B \in M_{n \times k}(F)$ са такива матрици, за които броят на стълбовете на A съвпада с броя на редовете на B. Тогава произведението $AB \in M_{m \times k}(F)$ е матрицата с елементи

$$(AB)_{i,j} := A_{i,1}.B_{1,j} + \ldots + A_{i,n}.B_{n,j} = \sum_{s=1}^{n} A_{i,s}B_{s,j}$$

за произволни $1 \le i \le m$ и $1 \le j \le k$.

Например, матриците

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

имат произведение

$$E_{1,1}E_{2,1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 и $E_{2,1}E_{1,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Този пример показва, че произведението на матрици не е комутативно и съществуват ненулеви матрици с нулево произведение.

Твърдение 5. Умножението на матрици има следните свойства:

- (i) асоциативност: (AB)C = A(BC) за произволни матрици $A \in M_{m \times n}(F), B \in M_{n \times k}(F), C \in M_{k \times l}(F);$
 - (ii) $(AB)^t = B^t A^t$ so $A \in M_{m \times n}(F)$, $B \in M_{n \times k}(F)$;
- (iii) ляв дистрибутивен закон за събиране и умножение на матрици (A + B)C = AC + BC за $A, B \in M_{m \times n}(F), C \in M_{n \times k}(F)$;
- (iv) десен дистрибутивен закон за събиране и умножение на матрици A(B+C) = AB + AC) за $A \in M_{m \times n}(F)$, $B, C \in M_{n \times k}(F)$;
 - (v) $\alpha(AB) = (\alpha A)B = A(\alpha B)$ so $\alpha \in F$, $A \in M_{m \times n}(F)$, $B \in M_{n \times k}(F)$.

 \mathcal{A} оказателство. (i) За произволни $1 \leq i \leq m$ и $1 \leq j \leq l$ е изпълнено

$$[(AB)C]_{i,j} = \sum_{p=1}^{k} (AB)_{i,p} C_{p,j} = \sum_{p=1}^{k} \left(\sum_{q=1}^{n} A_{i,q} B_{q,p} \right) C_{p,j} = \sum_{p=1}^{k} \sum_{q=1}^{n} A_{i,q} B_{q,p} C_{p,j}$$

съгласно дистрибутивния закон за събиране и умножение в F и определението на операцията умножение на матрици. Чрез размяна на реда на сумиране и повторно прилагане на дистрибутивността на събирането и умножението в F получаваме

$$[(AB)C]_{i,j} = \sum_{q=1}^{n} \sum_{p=1}^{k} A_{i,q} B_{q,p} C_{p,j} = \sum_{q=1}^{n} A_{i,q} \left(\sum_{p=1}^{k} B_{q,p} C_{p,j} \right) =$$
$$= \sum_{q=1}^{n} A_{i,q} (BC)_{q,j} = [A(BC)]_{i,j}$$

и доказваме, че (AB)C = A(BC).

(ii) За произволни $1 \le i \le k$ и $1 \le j \le m$ е изпълнено

$$[(AB)^t]_{i,j} = (AB)_{j,i} = \sum_{s=1}^n A_{j,s} B_{s,i} = \sum_{s=1}^n (A^t)_{s,j} (B^t)_{i,s} = \sum_{s=1}^n (B^t)_{i,s} (A^t)_{s,j} = (B^t A^t)_{i,j},$$

съгласно комутативността на умножението в F и правилото за умножение на матрици. Това доказва $(AB)^t = B^t A^t$.

(iii) За произволни $1 \le i \le m$ и $1 \le j \le k$ е в сила

$$[(A+B)C]_{i,j} = \sum_{s=1}^{n} (A+B)_{i,s}C_{s,j} = \sum_{s=1}^{n} (A_{i,s} + B_{i,s})C_{s,j} = \sum_{s=1}^{n} A_{i,s}C_{s,j} + B_{i,s}C_{s,j} =$$

$$= \sum_{s=1}^{n} A_{i,s}C_{s,j} + \sum_{s=1}^{n} B_{i,s}C_{s,j} = (AC)_{i,j} + (BC)_{i,j} = (AC+BC)_{i,j},$$

съгласно дистрибутивните закони за събиране и умножение в F и правилата за събиране и умножение на матрици. Следователно (A+B)C = AC + BC.

(iv) Използвайки левия дистрибутивен закон за събиране и умножение на матрици и свойствата на транспонирането на матрици забелязваме, че

$$[A(B+C)]^t = (B+C)^t A^t = (B^t + C^t) A^t =$$

= $B^t A^t + C^t A^t = (AB)^t + (AC)^t = (AB + AC)^t.$

Транспонирането на изведеното равенство дава A(B+C) = AB + AC.

(v) За произволни $1 \le i \le m$ и $1 \le j \le k$ е изпълнено

$$[\alpha(AB)]_{i,j} = \alpha(AB)_{i,j} = \alpha\left(\sum_{s=1}^{n} A_{i,s} B_{s,j}\right) = \sum_{s=1}^{n} (\alpha A_{i,s}) B_{s,j} =$$

$$= \sum_{s=1}^{n} A_{i,s} (\alpha B_{s,j}) = \sum_{s=1}^{n} (\alpha A)_{i,s} B_{s,j} = \sum_{s=1}^{n} A_{i,s} (\alpha B)_{s,j} = [(\alpha A)B]_{i,j} = [A(\alpha B)]_{i,j},$$

съгласно комутативността и асоциативността на умножението в F, дистрибутивните закони за събиране и умножение в F и правилата за умножение на матрици и умножение на матрица с число.

За поле F и произволно естествено число n матрицата

$$E_n = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \in M_{n \times n}(F)$$

се нарича единична. Елементите на E_n са

$$(E_n)_{i,j} = \delta_{i,j} = \begin{cases} 0 & \text{ sa } i \neq j, \\ 1 & \text{ sa } i = j. \end{cases}$$

Произволна матрица $A \in M_{m \times n}(F)$ изпълнява равенствата $AE_n = A$ и $E_m A = A$. По-точно,

$$(AE_n)_{i,j} = \sum_{k=1}^n A_{i,k}(E_n)_{k,j} = A_{i,j}$$
 за произволни $1 \le i \le m, \ 1 \le j \le n.$

Определение 6. Квадратна матрица $A \in M_{n \times n}(F)$ се нарича неособена, ако има ненулева детерминанта $\det(A) \neq 0$.

Нека

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_m \end{pmatrix} \in M_{m \times n}(F)$$

е матрица с вектор-редове $a_1, a_2, \ldots, a_m \in M_{1 \times n}(F)$.

Матрицата $M_{i,j}(p)$ с единици по диагонала и $p \in F$ в реда с номер i и стълба с номер j има детерминанта 1 и е неособена. Произведението $M_{i,j}(p)A$ има i-ти ред $a_i + pa_j$ и всички останали редове на $M_{i,j}(p)A$ са същите както в A. Следователно $M_{i,j}(p)A$ се

получава от A чрез прилагане на елементарното преобразувание $R_{i,j}(p)$ - умножение на j-ти ред с p и прибавяне към i-ти ред.

Матрицата

$$M_i(q) = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & q & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

с нули извън главния диагонал, $q \in F \setminus \{0\}$ в i-та диагонална позиция и единици в останалите диагонални позиции има $\det M_i(q) = q \neq 0$ и е неособена. Произведението $M_i(q)A$ има i-ти ред qa_i и същите останали редове като A. С други думи, $M_i(q)A$ се получава от A чрез умножение на i-ти ред с $q \neq 0$.

Матрицата $M_{i,j}$, $1 \le i < j \le n$ с единици в i-ти ред и j-ти стълб, j-ти ред и i-ти стълб и в диагоналните позиции с номера, различни от i и j има детерминанта $\det M_{i,j} = -1 \ne 0$ и е неособена. Произведението $M_{i,j}A$ има i-ти ред a_j и j-ти ред a_i . Следователно лявото умножение с $M_{i,j}$ реализира размяната на i-ти и j-ти ред на A.

С това доказахме първата част на следното

Твърдение 7. (i) Елементарните преобразувания по редове към произволна матрица $A \in M_{m \times n}(F)$ се реализират чрез леви умножения с неособени матрици.

(ii) Елементарните преобразувания по стълбове към произволна матрица $A \in M_{m \times n}(F)$ се реализират чрез десни умножения с неособени матрици.

Твърдение 8. (i) Всяка неособена матрица $A \in M_{n \times n}(F)$ се привежда към единичната E_n с елементарни преобразувания само по редове.

(ii) Всяка неособена матрица $A \in M_{n \times n}(F)$ се привежда към единичната E_n с елементарни преобразувания само по стълбове.

Доказателство. (i) От $\det A \neq 0$ следва съществуването на ненулев елемент $a_{i1} \neq 0$ на първия стълб на . С разместване на редове постигаме $a_{11} \neq 0$. След умножение на първия ред с $\frac{1}{a_{11}}$ постигаме $a_{11}=1$. За всяко $2\leq i\leq n$, умножаваме първия ред с $-a_{i1}$ и прибавяме към i-тия ред, за да получим

$$A_1 = \left(\begin{array}{cc} 1 & * \\ \mathbb{O}_{(n-1)\times 1} & A' \end{array}\right).$$

Елементарните преобразувания по редове към A се реализират с леви умножения с неособени матрици и привеждат към неособена матрица A_1 по теоремата за умножение на детерминанти. Развивайки $0 \neq \det A_1$ по пъвия стълб получаваме, че $\det A' = \det A_1 \neq 0$. В частност, първият стълб на A' има ненулев елемент. Продължаваме по същия начин с A' без да разваляме нулите в първия стълб и привеждаме към

$$A_2 = \begin{pmatrix} 1 & a_{12} & \dots & a_{1,n-1} & a_{1,n} \\ 0 & 1 & \dots & a_{2,n-1} & a_{2,n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & a_{n-1,n} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Умножаваме последния ред с $-a_{in}$ и прибавяме към i-ти ред за всяко $1 \le i \le n-1$, за да получим нули в последния стълб над последния ред. Продължаваме по същия начин със стълбовете с номера $n-1, n-2, \ldots, 2$ и получаваме единичната матрица E_n .

(ii) Транспонираме матрицата A и привеждаме A^t към E_n с елементарни преобразувания само по редове. Тези преобразувания отговарят на елементарни преобразувания по стълбове към A, които свеждат A към E_n .