

The carbon cycle in ACCESS-ESM1

Model description and Pre-Industrial Simulation

Rachel Law 26 Aug2015

OCEANS AND ATMOSPHERE www.csiro.au

- Law, R. M., T. Ziehn, R. J. Matear, A. Lenton, M. A. Chamberlain, L. E. Stevens, Y.-P. Wang, J. Srbinovsky, D. Bi, H. Yan, and P. Vohralik, The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1). 1. Model description and preindustrial simulation, submitted to Geoscientific Model Development.
- Revision based on editorial comments before discussions phase
- Proposed ACCESS special issue (open-ended).

ACCESS versions

ACCESS-ESM1

- ACCESS1.4
 - UM7.3 (~GA1.0)
 - MOM4p1
 - CABLE 2.2.3

- CICE4.1
- OASIS-MCT

- ACCESS-ESM1
 - CABLE2.2.3 with | casacnp=.TRUE., icycle=3 (CNP)
 - WOMBAT for ocean carbon
- Pre-industrial simulations
 - DEF default, prescribed leaf area index, standard ocean carbon parameters
 - 1000 years
 - ProgLAI prognostic leaf area index
 - 1000 years
 - Slight warming of climate (TAS 14.59±0.11 compared to 14.22±0.10°C)
 - AltOCN alternate ocean carbon parameters (and numerically stable WOMBAT)
 - 500 years

Physical climate

Root mean square difference from ACCESS1.3 simulation normalized by the ACCESS1.0 to ACCESS1.3 difference.

Land flux equilibration

Land flux and carbon pools - ProgLAI

Land carbon flux distribution and LAI

Interannual variability

	DEF	ProgLAI
GPP	1.17	1.87
Leaf Resp	0.26	0.75
Plant Resp	0.17	0.27
Soil Resp	0.27	0.32
NEE	1.40	1.21

NEE standard deviation (gCm⁻²y⁻¹)

Climate drivers for interannual variability

Correlation between annual land carbon flux to the atmosphere and precipitation surface air temperature

Conclusions

- Simulations are generally realistic
- Improvements to target
 - Land carbon conservation when low rainfall makes sustaining vegetation difficult
 - Land carbon fluxes may be over sensitive to climate (moisture) variability
 - Excessive uptake of alkalinity in surface water → outgassing carbon
 - Underestimated export of particulate organic carbon → too much phosphate
- Carbon cycle impacted by physical model biases
 - Low rainfall biases (e.g. Indian monsoon)
 - Cold tongue bias, surface salinity biases

Thank you

Earth System ModellingRachel Law
Principal Research Scientist

t +61 3 9239 4427

e rachel.law@csiro.au

www.csiro.au

