Chapter 1		
Section 1		
Section 2		
Chapter 2		
Section 1		
Section 2		
Chapter 3		
Section 1		
Section 2		
Chapter 4		
Section 1		
Section 2		
Chapter 5		

Section 1

Section 2

Chapter 6

Section 1

Section 2

Here is an inline example, \$ \pi(\theta) \$,

an equation,

$$abla f(x) \in \mathbb{R}^n,$$

and a regular \$ symbol.

Define \$f(x)\$:

```
graph TD
   A[ Anyone ] -->|Can help | B( Go to github.com/yuzutech/kroki )
   B --> C{ How to contribute? }
   C --> D[ Reporting bugs ]
   C --> E[ Sharing ideas ]
   C --> F[ Advocating ]
```

pybind11——000C+110Python

1.1 0000

pybind110000C++000000Python0

- 0000000000
- 00000
- 0000000000
- 0000000
- 000
- 00000
- DDDDrangesD
- 0000000
- 000000000
- STL00000
- 00000
- Internal references with correct reference counting []
- 000Python000000000000C++00

1.2 00000

000000000pybind110000000000

- 00Python2.7, 3.5+, PyPy/PyPy3 7.300000000

- pybind1100000000000000000000NumPy0000000000
- 00000000000Python000000000000
- 00Boost.Python000000000000000
- DDDDDC++DDDDPython pickleDunpickleDDD

1.3 000000

- 1. Clang/LLVM 3.300 (Apple Xcode's clang005.0.00000)
- 2. GCC 4.800
- 3. Microsoft Visual Studio 2015 Update 300
- 4. Intel classic C++ compiler 18 or newer (ICC 20.2 tested in CI)
- 5. Cygwin/GCC (previously tested on 2.5.1)
- 6. NVCC (CUDA 11.0 tested in CI)
- 7. NVIDIA PGI (20.9 tested in CI)

1.4 ∏∏

This project was created by Wenzel Jakob. Significant features and/or improvements to the code were contributed by Jonas Adler, Lori A. Burns, Sylvain Corlay, Eric Cousineau, Aaron Gokaslan, Ralf Grosse-Kunstleve, Trent Houliston, Axel Huebl, @hulucc, Yannick Jadoul, Sergey Lyskov Johan Mabille, Tomasz Miąsko, Dean Moldovan, Ben Pritchard, Jason Rhinelander, Boris Schäling, Pim Schellart, Henry Schreiner, Ivan Smirnov, Boris Staletic, and Patrick Stewart.

We thank Google for a generous financial contribution to the continuous integration infrastructure used by this project.

1.5 🗆

See the contributing guide for information on building and contributing to pybind11.

1.6 License

pybind11 is provided under a BSD-style license that can be found in the LICENSE file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license.

0000 000000000000000000000000000000000

0000		

3. ПППП

3.1 000000000

000000Git0000000pybind11000000000000000git00000000000pybind110

```
git submodule add -b stable ../../pybind/pybind11 extern/pybind11 git submodule update --init
```

URL ../../pybind/pybind11 00000000 .git 000GitHub0000

3.2 DPyPIDD

00000pip000PyPI000Pybind110Python000000000CMake000000

```
pip install pybind11
```

```
pip install "pybind11[global]"
```

3.3 □□conda-forge□□

You can use pybind11 with conda packaging via conda-forge:

```
conda install -c conda-forge pybind11
```

3.4 □□**vcpkg**□□

00000Microsoft vcpkg000000000000pybind110

git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
vcpkg install pybind11

3.5 00brew000

brewDDDHomebrew on macOS, or Linuxbrew on LinuxDDpybind11DDDDDDD

brew install pybind11

3.6

Other locations you can find pybind11 are listed here; these are maintained by various packagers and the community.

4. DDDDDFirst steps

00000pybind11000000000000000000pybind1100000000

4.1 000000

Linux/macOS

```
mkdir build
cd build
cmake ..
make check -j 4
```

Windows

UWindows

```
mkdir build
cd build
cmake ..
cmake --build . --config Release --target check
```

4.2 0000000000

```
#include <pybind11/pybind11.h>
namespace py = pybind11;
```

4.3 000000000

```
int add(int i, int j) {
    return i + j;
}
```

```
#include <pybind11/pybind11.h>
int add(int i, int j) {
   return i + j;
}

PYBIND11_MODULE(example, m) {
   m.doc() = "pybind11 example plugin"; // optional module docstring
   m.def("add", &add, "A function which adds two numbers");
}
```

```
c++ -03 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) example.cpp -o example$(python3-config --extension-suffix)
```

```
>>> import example
>>> example.add(1, 2)
3L
>>>
```

4.4 00000

0000000C++000000000000Python000000000000"i"0"j"00

```
m.def("add", &add, "A function which adds two numbers",
    py::arg("i"), py::arg("j"));
```

```
import example
example.add(i=1, j=2) #3L
```

```
>>> help(example)
....

FUNCTIONS
   add(...)
     Signature : (i: int, j: int) -> int

     A function which adds two numbers
```

```
// regular notation
m.def("add1", &add, py::arg("i"), py::arg("j"));
// shorthand
using namespace pybind11::literals;
m.def("add2", &add, "i"_a, "j"_a);
```

4.5

```
int add(int i = 1, int j = 2) {
    return i + j;
}
```

0000000000000000

```
>>> help(example)
....

FUNCTIONS
   add(...)
    Signature : (i: int = 1, j: int = 2) -> int

   A function which adds two numbers
```

```
// regular notation
m.def("add1", &add, py::arg("i") = 1, py::arg("j") = 2);
// shorthand
m.def("add2", &add, "i"_a=1, "j"_a=2);
```

4.6

```
PYBIND11_MODULE(example, m) {
    m.attr("the_answer") = 42;
    py::object world = py::cast("World");
    m.attr("what") = world;
}

Python図図図図図
```pyhton
>>> import example
>>> example.the_answer
42
>>> example.what
'World'
```

4.7 111111111111111111111111111111111111
00000000000000000000000000000000000000

## **5.** חחחחחח

## **5.1** 0000 0000000

000000000000000000C++000000 Pet 000000

```
struct Pet {
 Pet(const std::string &name) : name(name) { }
 void setName(const std::string &name_) { name = name_; }
 const std::string &getName() const { return name; }

 std::string name;
};
```

```
#include <pybind11/pybind11.h>
namespace py = pybind11;

PYBIND11_MODULE(example, m) {
 py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def("setName", &Pet::setName)
 .def("getName", &Pet::getName);
}
```

```
>>> import example
>>> p = example.Pet("Molly")
>>> print(p)
<example.Pet object at 0x10cd98060>
>>> p.getName()
u'Molly'
>>> p.setName("Charly")
>>> p.getName()
u'Charly'
```

## **5.2 000000000**

## 5.3 000000

```
>>> print(p)
<example.Pet object at 0x10cd98060>
```

00000000Python000000

```
>>> print(p)
<example.Pet named 'Molly'>
```

pybind11000000000lambda0000lambda0000 [] 00000000

## **5.4 0000**

```
py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def_readwrite("name", &Pet::name)
 // ... remainder ...
```

```
>>> p = example.Pet("Molly")
>>> p.name
u'Molly'
>>> p.name = "Charly"
>>> p.name
u'Charly'
```

On Pet::name On On On On On One Setter Ogetters On One Setter Ogetters On One Setter Ogetters On One Setter Ogetter Ogetter On One Setter Ogetter Oget

```
class Pet {
public:
 Pet(const std::string &name) : name(name) { }
 void setName(const std::string &name_) { name = name_; }
 const std::string &getName() const { return name; }

private:
 std::string name;
};
```

```
py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def_property("name", &Pet::getName, &Pet::setName)
 // ... remainder ...
```

0000000read00000nullptr0000

## 5.5 0000

000Pyhton000000000000

```
>>> class Pet:
... name = "Molly"
...
>>> p = Pet()
>>> p.name = "Charly" # overwrite existing
>>> p.age = 2 # dynamically add a new attribute
```

```
>>> p = example.Pet()
>>> p.name = "Charly" # OK, attribute defined in C++
>>> p.age = 2 # fail
AttributeError: 'Pet' object has no attribute 'age'
```

```
py::class_<Pet>(m, "Pet", py::dynamic_attr())
 .def(py::init<>())
 .def_readwrite("name", &Pet::name);
```

```
>>> p = example.Pet()
>>> p.name = "Charly" # OK, overwrite value in C++
>>> p.age = 2 # OK, dynamically add a new attribute
>>> p.__dict__ # just like a native Python class
{'age': 2}
```

### **5.6 DDDDDDD**

#### nnananananana

```
struct Pet {
 Pet(const std::string &name) : name(name) { }
 std::string name;
};

struct Dog : Pet {
 Dog(const std::string &name) : Pet(name) { }
 std::string bark() const { return "woof!"; }
};
```

```
py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def_readwrite("name", &Pet::name);

// Method 1: template parameter:
py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);

// Method 2: pass parent class_ object:
py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);
```

```
>>> p = example.Dog("Molly")
>>> p.name
u'Molly'
>>> p.bark()
u'woof!'
```

```
struct PolymorphicPet {
 virtual ~PolymorphicPet() = default;
};

struct PolymorphicDog : PolymorphicPet {
 std::string bark() const { return "woof!"; }
};

// Same binding code
py::class_<PolymorphicPet>(m, "PolymorphicPet");
py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
 .def(py::init<>())
 .def("bark", &PolymorphicDog::bark);

// Again, return a base pointer to a derived instance
m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
```

```
>>> p = example.pet_store2()
>>> type(p)
PolymorphicDog # automatically downcast
>>> p.bark()
u'woof!'
```

### **5.7** 0000

```
struct Pet {
 Pet(const std::string &name, int age) : name(name), age(age) { }

 void set(int age_) { age = age_; }
 void set(const std::string &name_) { name = name_; }

 std::string name;
 int age;
};
```

```
py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &, int>())
 .def("set", static_cast<void (Pet::*)(int)>(&Pet::set), "Set the pet's age")
 .def("set", static_cast<void (Pet::*)(const std::string &)>(&Pet::set), "Set the pet's name");
```

#### 

```
py::class_<Pet>(m, "Pet")
 .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
 .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
```

```
struct Widget {
 int foo(int x, float y);
 int foo(int x, float y) const;
};

py::class_<Widget>(m, "Widget")
 .def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
 .def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));
```

DDDDDDDC++11000000 py::overload\_cast 000000 py::detail::overload\_cast\_impl 0000

```
template <typename... Args>
using overload_cast_ = pybind11::detail::overload_cast_impl<Args...>;

py::class_<Pet>(m, "Pet")
 .def("set", overload_cast_<int>()(&Pet::set), "Set the pet's age")
 .def("set", overload_cast_<const std::string &>()(&Pet::set), "Set the pet's name");
```

## **5.8 0000000**

```
struct Pet {
 enum Kind {
 Dog = 0,
 Cat
 };

struct Attributes {
 float age = 0;
 };

Pet(const std::string &name, Kind type) : name(name), type(type) { }

std::string name;
 Kind type;
 Attributes attr;
};
```

#### 000000000

```
py::class_<Pet> pet(m, "Pet");

pet.def(py::init<const std::string &, Pet::Kind>())
 .def_readwrite("name", &Pet::name)
 .def_readwrite("type", &Pet::type)
 .def_readwrite("attr", &Pet::attr);

py::enum_<Pet::Kind>(pet, "Kind")
 .value("Dog", Pet::Kind::Dog)
 .value("Cat", Pet::Kind::Cat)
 .export_values();

py::class_<Pet::Attributes> attributes(pet, "Attributes")
 .def(py::init<>())
 .def_readwrite("age", &Pet::Attributes::age);
```

0000000 Kind 0 Attributes 0 Pet 00000000000 enum\_ 0 class\_ 0000000 Pet class\_ 000
enum\_::export\_values() 00000000000C++110000000000

```
>>> p = Pet("Lucy", Pet.Cat)
>>> p.type
Kind.Cat
>>> int(p.type)
1L
>>> Pet.Kind.__members__
{'Dog': Kind.Dog, 'Cat': Kind.Cat}
>>> p = Pet("Lucy", Pet.Cat)
>>> pet_type = p.type
>>> pet_type
Pet.Cat
>>> str(pet_type)
'Pet.Cat'
>>> pet_type.name
'Cat'
 py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
```



## **7.** □□

### **7.1** 00000

```
/* Function declaration */
Data *get_data() { return _data; /* (pointer to a static data structure) */ }
...
/* Binding code */
m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python</pre>
```

```
m.def("get_data", &get_data, py::return_value_policy::reference);
```

0000	nn
00000	00
return_value_policy::take_ownership	00000000000000000000000000000000000000
return_value_policy::copy	00000000Python000000000000000000000000000000000000
return_value_policy::move	00 std::move       000000000000000000000000000000000000
return_value_policy::reference	000000000000000C++0000000000000000 00000000

00000	00
return_value_policy::reference_internal	<pre>000000000000000000000000000000000000</pre>
return_value_policy::automatic	<pre>000000000000000000000000000000000000</pre>
return_value_policy::automatic_reference	00000000000000000000000000000000000000

ппп

## **7.2** 0000000

## □□□keep alive□

 Onurse
 Onurse<

```
py::class_<List>(m, "List").def("append", &List::append, py::keep_alive<1, 2>());
```

```
py::class_<Nurse>(m, "Nurse").def(py::init<Patient &>(), py::keep_alive<1, 2>());
```

```
Note: keep_alive \(\text{Boost.Python} \) \(\text{with_custodian_and_ward} \) \(\text{with_custodian_and_ward_postcall} \) \(\text{D} \)
```

## Call guard

```
m.def("foo", foo, py::call_guard<T>());
```

000000000

```
m.def("foo", [](args...) {
 T scope_guard;
 return foo(args...); // forwarded arguments
});
```

000000T000000 gil\_scoped\_release 0000000000

## **7.3 Python 000 000**

□Python

```
>>> print_dict({"foo": 123, "bar": "hello"})
key=foo, value=123
key=bar, value=hello
```

## **7.4 00**\*args**0**\*\*kwatgs**00**

```
def generic(*args, **kwargs):
 ... # do something with args and kwargs
```

0000000pybind1100000000

```
void generic(py::args args, const py::kwargs& kwargs) {
 /// .. do something with args
 if (kwargs)
 /// .. do something with kwargs
}

/// Binding code
m.def("generic", &generic);
```

```
py::args <code>DDD</code> py::tuple <code>D</code> py::kwargs <code>DDD</code> py::dict <code>D</code>
```

DDDDDD test/test\_kwargs\_and\_defualts.cpp D

### **7.5** 000000

```
py::class_<MyClass*("MyClass").def("myFunction", py::arg("arg") = SomeType(123));</pre>
```

```
FUNCTIONS
| myFunction(...)
| Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
```

## 7.6 Keyword-only □□

Python3000keyword-only00000000000 \* 00000000

```
def f(a, *, b): # a can be positional or via keyword; b must be via keyword
 pass

f(a=1, b=2) # good
f(b=2, a=1) # good
f(1, b=2) # good
f(1, 2) # TypeError: f() takes 1 positional argument but 2 were given
```

pybind11000 py::kw\_only 0000000000

```
m.def("f", [](int a, int b) { /* ... */ },
 py::arg("a"), py::kw_only(), py::arg("b"));
```

000000000 py::args 00000

## 7.7 Positional-only

python3.8000Positional-only00000pybind1100 py::pos only() 000000000

```
m.def("f", [](int a, int b) { /* ... */ },
 py::arg("a"), py::pos_only(), py::arg("b"));
```

000000000000 a 00000000keyword-only0000000

## 7.8 Non-converting

#### 00000000000000000

- DDDDDDDfloatDDDDD std::complex<float> DDDDD
- Calling a function taking an Eigen matrix reference with a numpy array of the wrong type or of an incompatible data layout.

```
m.def("floats_only", [](double f) { return 0.5 * f; }, py::arg("f").noconvert());
m.def("floats_preferred", [](double f) { return 0.5 * f; }, py::arg("f"));
```

00000000000 TypeError 000

```
>>> floats_preferred(4)
2.0
>>> floats_only(4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: floats_only(): incompatible function arguments. The following argument types are supported:
 1. (f: float) -> float
Invoked with: 4
```

000000000 \_a 0000000000000000 py::arg().noconvert() 0

#### 7.9 00/00000

```
py::class_<Dog>(m, "Dog").def(py::init<>());
py::class_<Cat>(m, "Cat").def(py::init<>());
m.def("bark", [](Dog *dog) -> std::string {
 if (dog) return "woof!"; /* Called with a Dog instance */
 else return "(no dog)"; /* Called with None, dog == nullptr */
}, py::arg("dog").none(true));
m.def("meow", [](Cat *cat) -> std::string {
 // Can't be called with None argument
 return "meow";
}, py::arg("cat").none(false));
```

## DDDPythonDD bark(None) DDD "(no dog)" DDD meow(None) DDDDD TypeError D

#### 

Note: Even when <code>.none(true)</code> is specified for an argument, <code>None</code> will be converted to a <code>nullptr only</code> for custom and opaque types. Pointers to built-in types (<code>double \*, int \*, ...)</code> and STL types (<code>std::vector<T> \*, ...;</code> if <code>pybind11/stl.h</code> is included) are copied when converted to C++ (see Overview) and will not allow <code>None</code> as argument. To pass optional argument of these copied types consider using <code>std::optional<T></code>

### 7.10

000000000000000 TypeError 0

## 8. □

## **8.1 Python 000 000**

000000000C++00000000Python000000

```
std::string call_go(Animal *animal) {
 return animal->go(3);
}
```

pybind11000000

```
PYBIND11_MODULE(example, m) {
 py::class_<Animal>(m, "Animal")
 .def("go", &Animal::go);

 py::class_<Dog, Animal>(m, "Dog")
 .def(py::init<>());

 m.def("call_go", &call_go);
}
```

00000Python000000Animal0000000

```
std::string toString() override {
 PYBIND11_OVERRIDE_NAME(
 std::string, // Return type (ret_type)
 Animal, // Parent class (cname)
 "__str__", // Name of method in Python (name)
 toString, // Name of function in C++ (fn)
);
}
```

#### 

```
PYBIND11_MODULE(example, m) {
 py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
 .def(py::init<>())
 .def("go", &Animal::go);

 py::class_<Dog, Animal>(m, "Dog")
 .def(py::init<>());

 m.def("call_go", &call_go);
}
```

pybind11000 class\_ 00000000PyAnimal00000Python000Animal00

```
py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
 .def(py::init<>())
 .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */</pre>
```

```
from example import *
d = Dog()
call_go(d) # u'woof! woof! '
class Cat(Animal):
 def go(self, n_times):
 return "meow! " * n_times

c = Cat()
call_go(c) # u'meow! meow! "
```

```
class Dachshund(Dog):
 def __init__(self, name):
 Dog.__init__(self) # Without this, a TypeError is raised.
 self.name = name

 def bark(self):
 return "yap!"
```

#### Note∏

- because in these cases there is no C++ variable to reference (the value is stored in the referenced Python variable), pybind11 provides one in the PYBIND11\_OVERRIDE macros (when needed) with static storage duration. Note that this means that invoking the overridden method on *any* instance will change the referenced value stored in *all* instances of that type.
- Attempts to modify a non-const reference will not have the desired effect: it will change only the static cache variable, but this change will not propagate to underlying Python instance, and the change will be replaced the next time the override is invoked.

#### 8.2

0000000000000000000000Python000000000000000000000Animal0Dog0000

```
class Animal {
public:
 virtual std::string go(int n_times) = 0;
 virtual std::string name() { return "unknown"; }
};
class Dog : public Animal {
public:
 std::string go(int n_times) override {
 std::string result;
 for (int i=0; i<n_times; ++i)
 result += bark() + " ";
 return result;
 }
 virtual std::string bark() { return "woof!"; }
};</pre>
```

```
class PyAnimal : public Animal {
public:
 using Animal::Animal; // Inherit constructors
 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal, go,
n_times); }
 std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name,); }
};
class PyDog : public Dog {
public:
 using Dog::Dog; // Inherit constructors
 std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go,
n_times); }
 std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name,); }
 std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark,); }
};
```

```
class Husky : public Dog {};
class PyHusky : public Husky {
public:
 using Husky::Husky; // Inherit constructors
 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go, n_times); }
 std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name,); }
 std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark,); }
};
```

```
template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
public:
 using AnimalBase::AnimalBase; // Inherit constructors
 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, AnimalBase,
go, n_times); }
 std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name,); }
};
template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
public:
 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
 // Override PyAnimal's pure virtual go() with a non-pure one:
 std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go,
n_times); }
 std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark,); }
};
```

00000pybind11000000

```
py::class_<Animal, PyAnimal<>> animal(m, "Animal");
py::class_<Dog, Animal, PyDog<>> dog(m, "Dog");
py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
// ... add animal, dog, husky definitions
```

```
class ShihTzu(Dog):
 def bark(self):
 return "yip!"
```

#### 8.3

#### 8.3.1

**See also** See the file tests/test\_virtual\_functions.cpp for complete examples showing both normal and forced trampoline instantiation.

пппппппп

#### 8.4

```
class Example {
private:
 Example(int); // private constructor
public:
 // Factory function:
 static Example create(int a) { return Example(a); }
};

py::class_<Example>(m, "Example")
 .def(py::init(&Example::create));
```

```
class Example {
private:
 Example(int); // private constructor
public:
 static Example create(int a) { return Example(a); }
 Example(double);
 Example(int, int);
 Example(std::string);
};
py::class_<Example>(m, "Example")
 .def(py::init(&Example::create))
 .def(py::init([](std::string arg) {
 return std::unique_ptr<Example>(new Example(arg));
 }))
 .def(py::init([](int a, int b) { return new Example(a, b); }))
 .def(py::init<double>())
```

ппппппп

#### 

```
struct Aggregate {
 int a;
 std::string b;
};

py::class_<Aggregate>(m, "Aggregate")
 .def(py::init<int, const std::string &>());
```

# 8.5

```
/* ... definition ... */
class MyClass {
private:
 ~MyClass() { }
};

/* ... binding code ... */

py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
 .def(py::init<>())
```

# 

Note: pybind11000C++000000 noexcept(false) 0

# 8.7

000A0B0000A0000000B0

```
py::implicitly_convertible<A, B>();
```

Note: A0B000000000pybind11000B0000000

#### 8.8

```
py::class_<Foo>(m, "Foo")
 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
```

#### 8.9

#### 

```
class Vector2 {
public:
 Vector2(float x, float y) : x(x), y(y) { }

 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }

 friend Vector2 operator*(float f, const Vector2 &v) {
 return Vector2(f * v.x, f * v.y);
 }

 std::string toString() const {
 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
 }

private:
 float x, y;
};
```

```
#include <pybind11/operators.h>

PYBIND11_MODULE(example, m) {
 py::class_<Vector2>(m, "Vector2")
 .def(py::init<float, float>())
 .def(py::self + py::self)
 .def(py::self += py::self)
 .def(py::self *= float())
 .def(float() * py::self)
 .def(py::self * float())
 .def(-py::self)
 .def("__repr__", &Vector2::toString);
}
```

```
.def(py::self * float()) 0000000000
```

```
.def("__mul__", [](const Vector2 &a, float b) {
 return a * b;
}, py::is_operator())
```

# 8.10 □□pickle

```
class Pickleable {
public:
 Pickleable(const std::string &value) : m_value(value) { }
 const std::string &value() const { return m_value; }

 void setExtra(int extra) { m_extra = extra; }
 int extra() const { return m_extra; }

private:
 std::string m_value;
 int m_extra = 0;
};
```

```
try:
 import cPickle as pickle # Use cPickle on Python 2.7
except ImportError:
 import pickle

p = Pickleable("test_value")
p.setExtra(15)
data = pickle.dumps(p, 2)
```

Note: Note that only the cPickle module is supported on Python 2.7.

The second argument to <code>dumps</code> is also crucial: it selects the pickle protocol version 2, since the older version 1 is not supported. Newer versions are also fine—for instance, specify <code>-1</code> to always use the latest available version. Beware: failure to follow these instructions will cause important pybind11 memory allocation routines to be skipped during unpickling, which will likely lead to memory corruption and/or segmentation faults.

## 8.11

```
py::class_<Copyable>(m, "Copyable")
 .def("__copy__", [](const Copyable &self) {
 return Copyable(self);
 })
 .def("__deepcopy__", [](const Copyable &self, py::dict) {
 return Copyable(self);
 }, "memo"_a);
```

## 8.12

```
py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
...
```

00Python000000C++0000000C++00Python00

```
py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
```

# 8.13 | Module-local

```
// In the module1.cpp binding code for module1:
py::class_<Pet>(m, "Pet")
 .def(py::init<std::string>())
 .def_readonly("name", &Pet::name);

// In the module2.cpp binding code for module2:
m.def("create_pet", [](std::string name) { return new Pet(name); });

>>> from module1 import Pet
>>> pet = Pet("Kitty")
>>> pet2 = create_pet("Doggy")
>>> pet2.name()
```

'Doggy'

```
// dogs.cpp

// Binding for external library class:
py::class<pets::Pet>(m, "Pet")
 .def("name", &pets::Pet::name);

// Binding for local extension class:
py::class<Dog, pets::Pet>(m, "Dog")
 .def(py::init<std::string>());
```

```
py::class<pets::Pet>(m, "Pet")
 .def("get_name", &pets::Pet::name);
py::class<Cat, pets::Pet>(m, "Cat")
 .def(py::init<std::string>());
>>> import cats
>>> import dogs
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: generic_type: type "Pet" is already registered!
py::class<pets::Pet>(m, "Pet", py::module_local())
 .def("name", &pets::Pet::name);
py::class<pets::Pet>(m, "Pet", py::module_local())
 .def("get_name", &pets::Pet::name);
m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
>>> import cats, dogs, frogs # No error because of the added py::module_local()
>>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
>>> (cats.pet_name(mycat), dogs.pet_name(mydog))
 ('Fluffy', 'Rover')
>>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
 ('Rover', 'Fluffy', 'Fluffy')
```

Note: STL bindings (as provided via the optional pybind11/stl\_bind.h header) apply py::module\_local by default when the bound type might conflict with other modules; see Binding STL containers for details.

The localization of the bound types is actually tied to the shared object or binary generated by the compiler/linker. For typical modules created with PYBIND11\_MODULE(), this distinction is not significant. It is possible, however, when Embedding the interpreter to embed multiple modules in the same binary (see Adding embedded modules). In such a case, the localization will apply across all embedded modules within the same binary.

# **8. 14 00protected 000**

00000Python00protected 00000

```
class A {
protected:
 int foo() const { return 42; }
};

py::class_<A>(m, "A")
 .def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
```

```
class A {
protected:
 int foo() const { return 42; }
};

class Publicist : public A { // helper type for exposing protected functions
public:
 using A::foo; // inherited with different access modifier
};

py::class_<A>(m, "A") // bind the primary class
 .def("foo", &Publicist::foo); // expose protected methods via the publicist
```

\_\_\_\_\_Python\_\_\_ protected \_\_\_\_publicist pattern\_\_\_\_\_\_trampoline\_\_\_\_

```
class A {
public:
 virtual ~A() = default;

protected:
 virtual int foo() const { return 42; }
};

class Trampoline : public A {
public:
 int foo() const override { PYBIND11_OVERRIDE(int, A, foo,); }
};

class Publicist : public A {
public:
 using A::foo;
};

py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
 .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!</pre>
```

# **8.15** □□final□

```
class IsFinal final {};
py::class_<IsFinal>(m, "IsFinal", py::is_final());
```

```
class PyFinalChild(IsFinal):
 pass

TypeError: type 'IsFinal' is not an acceptable base type
```

# 8.16

pybind11::polymorphic\_type\_hook template:

```
enum class PetKind { Cat, Dog, Zebra };
struct Pet { // Not polymorphic: has no virtual methods
 const PetKind kind;
 int age = 0;
 protected:
 Pet(PetKind _kind) : kind(_kind) {}
struct Dog : Pet {
 Dog() : Pet(PetKind::Dog) {}
 std::string sound = "woof!";
 std::string bark() const { return sound; }
};
namespace pybind11 {
 template<> struct polymorphic_type_hook<Pet> {
 static const void *get(const Pet *src, const std::type_info*& type) {
 if (src && src->kind == PetKind::Dog) {
 type = &typeid(Dog);
 return static_cast<const Dog*>(src);
 return src;
 };
```

When pybind11 wants to convert a C++ pointer of type Base\* to a Python object, it calls polymorphic\_type\_hook<Base>::get() to determine if a downcast is possible. The get() function should use whatever runtime information is available to determine if its src parameter is in fact an instance of some class Derived that inherits from Base. If it finds such a Derived, it sets type = &typeid(Derived) and returns a pointer to the Derived object that contains src. Otherwise, it just returns src, leaving type at its default value of nullptr. If you set type to a type that pybind11 doesn't know about, no downcasting will occur, and the original src pointer will be used with its static type Base\*.

It is critical that the returned pointer and type argument of get() agree with each other: if type is set to something non-null, the returned pointer must point to the start of an object whose type is type. If the hierarchy being exposed uses only single inheritance, a simple return src; will achieve this just fine, but in the general case, you must cast src to the appropriate derived-class pointer (e.g. using static\_cast<Derived>(src)) before allowing it to be returned as a void\*.

#### 8.17

000000000C++0000000000

```
py::type T_py = py::type::of<T>();
```

# 9. □□

# **9.1 C++**0000Python0000

 DPython
 DDD

 DPython
 DDD

Exception thrown by C++	Translated to Python exception type
std::exception	RuntimeError
std::bad_alloc	MemoryError
std::domain_error	ValueError
std::invalid_argument	ValueError
std::length_error	ValueError
std::out_of_range	IndexError
std::range_error	ValueError
std::overflow_error	OverflowError
<pre>pybind11::stop_iteration</pre>	StopIteration (used to implement custom iterators)
pybind11::index_error	<pre>IndexError (used to indicate out of bounds access ingetitem ,setitem , etc.)</pre>
pybind11::key_error	KeyError (used to indicate out of bounds access ingetitem ,setitem in dict-like objects, etc.)
pybind11::value_error	ValueError (used to indicate wrong value passed in container.remove())
pybind11::type_error	TypeError
pybind11::buffer_error	BufferError
pybind11::import_error	ImportError
pybind11::attribute_error	AttributeError
Any other exception	RuntimeError

# 9.2

```
py::register_exception<CppExp>(module, "PyExp");
```

0000000000000000PyExp0Python000000CppExp0000000PyExp000

```
py::register_local_exception<CppExp>(module, "PyExp");
```

00000000handle0000000000

```
py::register_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
py::register_local_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
```

000PyExp000000PyExp0RuntimeError0

Inside the translator, std::rethrow\_exception should be used within a try block to re-throw the exception. One or more catch clauses to catch the appropriate exceptions should then be used with each clause using PyErr\_SetString to set a Python exception or ex(string) to set the python exception to a custom exception type (see below).

To declare a custom Python exception type, declare a py::exception variable and use this in the associated exception translator (note: it is often useful to make this a static declaration when using it inside a lambda expression without requiring capturing).

The following example demonstrates this for a hypothetical exception classes MyCustomException and OtherException: the first is translated to a custom python exception MyCustomError, while the second is translated to a standard python RuntimeError:

```
static py::exception<MyCustomException> exc(m, "MyCustomError");
py::register_exception_translator([](std::exception_ptr p) {
 try {
 if (p) std::rethrow_exception(p);
 } catch (const MyCustomException &e) {
 exc(e.what());
 } catch (const OtherException &e) {
 PyErr_SetString(PyExc_RuntimeError, e.what());
 }
});
```

Multiple exceptions can be handled by a single translator, as shown in the example above. If the exception is not caught by the current translator, the previously registered one gets a chance.

If none of the registered exception translators is able to handle the exception, it is handled by the default converter as described in the previous section.

# 9.3 Local vs Global Exception Translators

When a global exception translator is registered, it will be applied across all modules in the reverse order of registration. This can create behavior where the order of module import influences how exceptions are translated.

If module1 has the following translator:

```
py::register_exception_translator([](std::exception_ptr p) {
 try {
 if (p) std::rethrow_exception(p);
 } catch (const std::invalid_argument &e) {
 PyErr_SetString("module1 handled this")
 }
}
```

and module2 has the following similar translator:

```
py::register_exception_translator([](std::exception_ptr p) {
 try {
 if (p) std::rethrow_exception(p);
 } catch (const std::invalid_argument &e) {
 PyErr_SetString("module2 handled this")
 }
}
```

then which translator handles the invalid\_argument will be determined by the order that module1 and module2 are imported. Since exception translators are applied in the reverse order of registration, which ever module was imported last will "win" and that translator will be applied.

If there are multiple pybind11 modules that share exception types (either standard built-in or custom) loaded into a single python instance and consistent error handling behavior is needed, then local translators should be used.

Changing the previous example to use register\_local\_exception\_translator would mean that
when invalid\_argument is thrown in the module2 code, the module2 translator will always handle it,
while in module1, the module1 translator will do the same.

# **9.4 C++DPython**

@C++@@Python@@@@@@@@Python@@@Python@@@
pybind11::error\_already\_set @@@@@@C++@@@@@Python@@@error\_already\_set @@@
Python@@@Python@@@C++@@@@

Exception raised in Python	Thrown as C++ exception type	
Any Python Exception	pybind11::error_already_set	

#### 00000

```
try {
 // open("missing.txt", "r")
 auto file = py::module_::import("io").attr("open")("missing.txt", "r");
 auto text = file.attr("read")();
 file.attr("close")();
} catch (py::error_already_set &e) {
 if (e.matches(PyExc_FileNotFoundError)) {
 py::print("missing.txt not found");
 } else if (e.matches(PyExc_PermissionError)) {
 py::print("missing.txt found but not accessible");
 } else {
 throw;
 }
}
```

```
try {
 py::eval("raise ValueError('The Ring')");
} catch (py::value_error &boromir) {
 // Boromir never gets the ring
 assert(false);
} catch (py::error_already_set &frodo) {
 // Frodo gets the ring
 py::print("I will take the ring");
}

try {
 // py::value_error is a request for pybind11 to raise a Python exception
 throw py::value_error("The ball");
} catch (py::error_already_set &cat) {
 // cat won't catch the ball since
 // py::value_error is not a Python exception
 assert(false);
} catch (py::value_error &dog) {
 // dog will catch the ball
 py::print("Run Spot run");
 throw; // Throw it again (pybind11 will raise ValueError)
}
```

# **9.5 DPython C API**

```
PyErr_SetString(PyExc_TypeError, "C API type error demo");
throw py::error_already_set();

// But it would be easier to simply...
throw py::type_error("pybind11 wrapper type error");
```

00000 PyErr\_Clear 000000

#### 9.6 DDDDraise from

```
try:
 print(1 / 0)
except Exception as exc:
 raise RuntimeError("could not divide by zero") from exc
```

```
try {
 py::eval("print(1 / 0"));
} catch (py::error_already_set &e) {
 py::raise_from(e, PyExc_RuntimeError, "could not divide by zero");
 throw py::error_already_set();
}
```

# 9.7 □□unraiseable□□

# **10. 0000**

# 10.1 std::unique\_ptr

```
std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example());
}
m.def("create_example", &create_example);
```

```
void do_something_with_example(std::unique_ptr<Example> ex) { ... }
```

# 10.2 std::shared\_ptr

```
py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
```

```
class Child { };

class Parent {
public:
 Parent() : child(std::make_shared<Child>()) { }
 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
private:
 std::shared_ptr<Child> child;
};

PYBIND11_MODULE(example, m) {
 py::class_<Child, std::shared_ptr<Child>>(m, "Child");

 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
 .def(py::init<>())
 .def("get_child", &Parent::get_child);
}
```

```
from example import Parent
print(Parent().get_child())
```

```
std::shared_ptr<Child> get_child() { return child; }
```

```
class Child : public std::enable_shared_from_this<Child> { };
```

#### 10.3 0000000

```
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);
```

```
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>, true);
```

```
// Always needed for custom holder types
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);

// Only needed if the type's `.get()` goes by another name
namespace pybind11 { namespace detail {
 template <typename T>
 struct holder_helper<SmartPtr<T>> { // <-- specialization
 static const T *get(const SmartPtr<T> &p) { return p.getPointer(); }
 };
}}
```

000000pybind110000 SmartPtr 00 .getPointer() 00 .get() 000

see also: 00 tests/test\_smart\_ptr.cpp 000000000000000000holder0000000

# **11.** ПППП

- 1. 0000000C++0000000000000pybind11000000Python000000
- 2. 0000000Python00000000C++00000000

# 11.1 🗆

### 1. Native type in C++, wrapper in Python

# 2. Wrapper in C++, native type in Python

```
void print_list(py::list my_list) {
 for (auto item : my_list)
 std::cout << item << " ";
}</pre>
```

```
>>> print_list([1, 2, 3])
1 2 3
```

Python@list@@@@C++ py::list @@@@@@@@@@@@@Python@@@@py::list @@
Python@@@@@@@Python@@@@@

## 3. Converting between native C++ and Python types

```
void print_vector(const std::vector<int> &v) {
 for (auto item : v)
 std::cout << item << "\n";
}</pre>
```

```
>>> print_vector([1, 2, 3])
1 2 3
```

#### 0000000

Data type	Description	Header file
int8_t, uint8_t	8-bit integers	pybind11/pybind11.h
int16_t, uint16_t	16-bit integers	pybind11/pybind11.h
int32_t, uint32_t	32-bit integers	pybind11/pybind11.h
int64_t, uint64_t	64-bit integers	pybind11/pybind11.h
ssize_t, size_t	Platform- dependent size	pybind11/pybind11.h
float, double	Floating point types	pybind11/pybind11.h
bool	Two-state Boolean type	pybind11/pybind11.h
char	Character literal	pybind11/pybind11.h
char16_t	UTF-16 character literal	pybind11/pybind11.h
char32_t	UTF-32 character literal	pybind11/pybind11.h
wchar_t	Wide character literal	pybind11/pybind11.h
const char *	UTF-8 string literal	pybind11/pybind11.h
const char16_t *	UTF-16 string literal	pybind11/pybind11.h
const char32_t *	UTF-32 string literal	pybind11/pybind11.h
<pre>const wchar_t *</pre>	Wide string literal	pybind11/pybind11.h
std::string	STL dynamic UTF-8 string	pybind11/pybind11.h
std::u16string	STL dynamic UTF-16 string	pybind11/pybind11.h
std::u32string	STL dynamic UTF-32 string	pybind11/pybind11.h
std::wstring	STL dynamic wide string	pybind11/pybind11.h

Data type	Description	Header file
<pre>std::string_view, std::u16string_view, etc.</pre>	STL C++17 string views	pybind11/pybind11.h
std::pair <t1, t2=""></t1,>	Pair of two custom types	pybind11/pybind11.h
std::tuple<>	Arbitrary tuple of types	pybind11/pybind11.h
std::reference_wrapper<>	Reference type wrapper	pybind11/pybind11.h
std::complex <t></t>	Complex numbers	pybind11/complex.h
std::array <t, size=""></t,>	STL static array	pybind11/stl.h
std::vector <t></t>	STL dynamic array	pybind11/stl.h
std::deque <t></t>	STL double-ended queue	pybind11/stl.h
std::valarray <t></t>	STL value array	pybind11/stl.h
std::list <t></t>	STL linked list	pybind11/stl.h
std::map <t1, t2=""></t1,>	STL ordered map	pybind11/stl.h
std::unordered_map <t1, t2=""></t1,>	STL unordered map	pybind11/stl.h
std::set <t></t>	STL ordered set	pybind11/stl.h
std::unordered_set <t></t>	STL unordered set	pybind11/stl.h
std::optional <t></t>	STL optional type (C++17)	pybind11/stl.h
std::experimental::optional <t></t>	STL optional type (exp.)	pybind11/stl.h
std::variant<>	Type-safe union (C++17)	pybind11/stl.h
std::filesystem::path <t></t>	STL path (C++17) 1	pybind11/stl.h
std::function<>	STL polymorphic function	pybind11/functional.h
std::chrono::duration<>	STL time duration	pybind11/chrono.h
std::chrono::time_point<>	STL date/time	pybind11/chrono.h
Eigen::Matrix<>	Eigen: dense matrix	pybind11/eigen.h
Eigen::Map<>	Eigen: mapped memory	pybind11/eigen.h
Eigen::SparseMatrix<>	Eigen: sparse matrix	pybind11/eigen.h

# 11.2 Strings, bytes and Unicode conversions

Note: <code>00000string0000Python3 strings000python2.7000 unicode 00 str 0 str 00 bytes 0</code>

Python2.7000000 from <code>\_\_future\_\_ import unicode\_literals 0000000 str 00 unicode 0</code>

### 11.2.1 | Python strings | C++

000000 std::string 0 char \* 0000000Python0 str 00pybind1100Python00000UTF-80000
Python str 0000UTF-80000000000

```
m.def("utf8_test",
 [](const std::string &s) {
 cout << "utf-8 is icing on the cake.\n";
 cout << s;
 }
);
m.def("utf8_charptr",
 [](const char *s) {
 cout << "My favorite food is\n";
 cout << s;
 }
);</pre>
```

```
>>> utf8_test(""")
utf-8 is icing on the cake.

**

>>> utf8_charptr(""")
My favorite food is
```

00C++000000000000000const00000000

## □C++□□bytes□□

#### **11.2.2 Python C++ D**

```
m.def("std_string_return",
 []() {
 return std::string("This string needs to be UTF-8 encoded");
 }
);
```

```
>>> isinstance(example.std_string_return(), str)
True
```

00UTF-8000ASCII00000ASCII0000Python0000000000000000000UTF-80

0000

```
// This uses the Python C API to convert Latin-1 to Unicode
m.def("str_output",
 []() {
 std::string s = "Send your r\xe9sum\xe9 to Alice in HR"; // Latin-1
 py::str py_s = PyUnicode_DecodeLatin1(s.data(), s.length());
 return py_s;
 }
);
```

```
>>> str_output()
'Send your résumé to Alice in HR'
```

000000000**C++**000

```
m.def("return_bytes",
 []() {
 std::string s("\xba\xd0\xba\xd0"); // Not valid UTF-8
 return py::bytes(s); // Return the data without transcoding
 }
);
```

```
>>> example.return_bytes()
b'\xba\xd0\xba\xd0'
```

DODpybind11000bytes00000000 std::string 0000000000 std::string 0bytes0

```
m.def("asymmetry",
 [](std::string s) { // Accepts str or bytes from Python
 return s; // Looks harmless, but implicitly converts to str
 }
);
```

```
>>> isinstance(example.asymmetry(b"have some bytes"), str)
True
>>> example.asymmetry(b"\xba\xd0\xba\xd0") # invalid utf-8 as bytes
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xba in position 0: invalid start byte
```

#### 11.2.3

UTF-16UUTF-32UUUUUUC++UUUUUUUC++UUUUUUUCC++UUUUUUUUCCHAACUUUCCHAACUUCCHAACUUCCHAACUUCCCHAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUCCCAACUUC

000000000Shift-JIS00000UTF-8/16/3200000Python0

#### 11.2.4 0000

```
m.def("pass_char", [](char c) { return c; });
m.def("pass_wchar", [](wchar_t w) { return w; });

example.pass_char("A")
'A'
```

```
>>> example.pass_char(0x65)
TypeError
>>> example.pass_char(chr(0x65))
'A'
```

000008-bit00000 int8\_t 0 uint8\_t 000000

# 11.2.5 Grapheme clusters

A single grapheme may be represented by two or more Unicode characters. For example 'é' is usually represented as U+00E9 but can also be expressed as the combining character sequence U+0065 U+0301 (that is, the letter 'e' followed by a combining acute accent). The combining character will be lost if the two-character sequence is passed as an argument, even though it renders as a single grapheme.

```
>>> example.pass_wchar("é")
'é'
>>> combining_e_acute = "e" + "\u0301"
>>> combining_e_acute
'é'
>>> combining_e_acute == "é"
False
>>> example.pass_wchar(combining_e_acute)
'e'
```

Normalizing combining characters before passing the character literal to C++ may resolve *some* of these issues:

```
>>> example.pass_wchar(unicodedata.normalize("NFC", combining_e_acute))
'é'
```

In some languages (Thai for example), there are graphemes that cannot be expressed as a single Unicode code point, so there is no way to capture them in a C++ character type.

# 11.2.6 c++17 string\_view

C++17 string views are automatically supported when compiling in C++17 mode. They follow the same rules for encoding and decoding as the corresponding STL string type (for example, a std::u16string\_view argument will be passed UTF-16-encoded data, and a returned std::string\_view will be decoded as UTF-8).

## 11.3 STL [] []

#### 11.3.1

#### 11.3.2 C++17000

```
// `boost::optional` as an example -- can be any `std::optional`-like container
namespace pybind11 { namespace detail {
 template <typename T>
 struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {};
}}
```

The visit\_helper specialization is not required if your name::variant provides a name::visit() function. For any other function name, the specialization must be included to tell pybind11 how to visit the variant.

Warning: When converting a variant type, pybind11 follows the same rules as when determining which function overload to call (Overload resolution order), and so the same caveats hold. In particular, the order in which the variant's alternatives are listed is important, since pybind11 will try conversions in this order. This means that, for example, when converting variant<int, bool>, the bool variant will never be selected, as any Python bool is already an int and is convertible to a C++ int. Changing the order of alternatives (and using variant<bool, int>, in this example) provides a solution.

# **11.3.3** □□opaque□□

```
void append_1(std::vector<int> &v) {
 v.push_back(1);
}
```

#### □Python

```
>>> v = [5, 6]
>>> append_1(v)
>>> print(v)
[5, 6]
```

```
/* ... definition ... */
class MyClass {
 std::vector<int> contents;
};

/* ... binding code ... */

py::class_<MyClass>(m, "MyClass")
 .def(py::init<>())
 .def_readwrite("contents", &MyClass::contents);
```

```
>>> m = MyClass()
>>> m.contents = [5, 6]
>>> print(m.contents)
[5, 6]
>>> m.contents.append(7)
>>> print(m.contents)
[5, 6]
```

```
PYBIND11_MAKE_OPAQUE(std::vector<int>);
```

```
py::class_<std::vector<int>>(m, "IntVector")
 .def(py::init<>())
 .def("clear", &std::vector<int>::clear)
 .def("pop_back", &std::vector<int>::pop_back)
 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
 .def("__iter__", [](std::vector<int> &v) {
 return py::make_iterator(v.begin(), v.end());
 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
 //
```

#### 11.3.4 00STL00

```
// Don't forget this
#include <pybind11/stl_bind.h>

PYBIND11_MAKE_OPAQUE(std::vector<int>);
PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);

// ...

// later in binding code:
py::bind_vector<std::vector<int>>(m, "VectorInt");
py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
```

```
py::bind_vector<std::vector<int>>(m, "VectorInt", py::module_local(false));
```

#### **11.4** ПППП

000000000

```
int func_arg(const std::function<int(int)> &f) {
 return f(10);
}
```

```
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
 return [f](int i) {
 return f(i) + 1;
 };
}
```

@C++@@@@@python@@@@@@
py::cpp\_function @@@@@@@@

```
#include <pybind11/functional.h>

PYBIND11_MODULE(example, m) {
 m.def("func_arg", &func_arg);
 m.def("func_ret", &func_ret);
 m.def("func_cpp", &func_cpp);
}
```

## 

```
$ python
>>> import example
>>> def square(i):
... return i * i
...
>>> example.func_arg(square)
100L
>>> square_plus_1 = example.func_ret(square)
>>> square_plus_1(4)
17L
>>> plus_1 = func_cpp()
>>> plus_1(number=43)
44L
```

# Warning

# 11.5 Chrono

#### 11.5.1 C++110000

#### **11.5.2** ППППП

# C++ Python

```
• std::chrono::system_clock::time_point → datetime.datetime
```

- std::chrono::duration → datetime.timedelta
- std::chrono::[other\_clocks]::time\_point → datetime.timedelta

#### Python C++

```
 datetime.datetime Or datetime.time →
 std::chrono::system_clock::time_point
 datetime.timedelta → std::chrono::duration
 datetime.timedelta → std::chrono::[other_clocks]::time_point
 float → std::chrono::duration
 float → std::chrono::[other_clocks]::time_point
```

# 11.6 Eigen

0000Eigen000000

#### **11.7** 0000000

The following snippets demonstrate how this works for a very simple inty type that that should be convertible from Python types that provide a \_\_int\_\_(self) method.

```
struct inty { long long_value; };

void print(inty s) {
 std::cout << s.long_value << std::endl;
}</pre>
```

The following Python snippet demonstrates the intended usage from the Python side:

```
class A:
 def __int__(self):
 return 123

from example import print
print(A())
```

To register the necessary conversion routines, it is necessary to add an instantiation of the pybind11::detail::type\_caster<T> template. Although this is an implementation detail, adding an instantiation of this type is explicitly allowed.

```
namespace pybind11 { namespace detail {
 template <> struct type_caster<inty> {
 public:
 PYBIND11_TYPE_CASTER(inty, _("inty"));
 bool load(handle src, bool) {
 PyObject *source = src.ptr();
 PyObject *tmp = PyNumber_Long(source);
 if (!tmp)
 return false;
 value.long_value = PyLong_AsLong(tmp);
 Py_DECREF(tmp);
 return !(value.long_value == -1 && !PyErr_Occurred());
 static handle cast(inty src, return_value_policy /* policy */, handle /* parent */)
 return PyLong_FromLong(src.long_value);
 };
}} // namespace pybind11::detail
```



Warning: When using custom type casters, it's important to declare them consistently in every compilation unit of the Python extension module. Otherwise, undefined behavior can ensue.

# **12. Python C++**□□

pybind110000C++0000Python00000000000000C++000Python00000Python C API0

# **12.1 Python** □ □

#### **12.1.1** 00000

Warning: Be sure to review the Gotchas before using this heavily in your C++ API.

# **12.1.2 C++00000Python00**

00000000 dict 00000000

```
using namespace pybind11::literals; // to bring in the `_a` literal py::dict d("spam"_a=py::none(), "eggs"_a=42);

tuple000000 py::make_tuple() 0000
```

```
py::tuple tup = py::make_tuple(42, py::none(), "spam");
```

0000000000000Python000

simple namespace

```
using namespace pybind11::literals; // to bring in the `_a` literal
py::object SimpleNamespace = py::module_::import("types").attr("SimpleNamespace");
py::object ns = SimpleNamespace("spam"_a=py::none(), "eggs"_a=42);
```

namespace0000000 py::delattr() 0 py::getattr() 0 py::setattr() 0000Simple namespaces0000

#### 12.1.3

00000000000C++00000Python000000py::cast() 0000

MyClass \*cls = obj.cast<MyClass \*>();

#### 12.1.4 **C++DPython**

```
// Equivalent to "from decimal import Decimal"
py::object Decimal = py::module_::import("decimal").attr("Decimal");

// Try to import scipy
py::object scipy = py::module_::import("scipy");
return scipy.attr("__version__");
```

## **12.1.5 D Python D**

Operator() OOOOPythonOOOOOO

```
// Construct a Python object of class Decimal
py::object pi = Decimal("3.14159");

// Use Python to make our directories
py::object os = py::module_::import("os");
py::object makedirs = os.attr("makedirs");
makedirs("/tmp/path/to/somewhere");
```

One can convert the result obtained from Python to a pure C++ version if a py::class\_ or type conversion is defined.

```
py::function f = <...>;
py::object result_py = f(1234, "hello", some_instance);
MyClass &result = result_py.cast<MyClass>();
```

# **12.1.6 DPython DD**

00 .attr 000000Python000

```
// Calculate eⁿπ in decimal
py::object exp_pi = pi.attr("exp")();
py::print(py::str(exp_pi));
```

In the example above pi.attr("exp") is a bound method: it will always call the method for that same instance of the class. Alternately one can create an unbound method via the Python class (instead of instance) and pass the self object explicitly, followed by other arguments.

```
py::object decimal_exp = Decimal.attr("exp");

// Compute the e^n for n=0..4
for (int n = 0; n < 5; n++) {
 py::print(decimal_exp(Decimal(n));
}</pre>
```

#### **12.1.7** 00000

#### 00000000Python000000

```
def f(number, say, to):
 ... # function code

f(1234, say="hello", to=some_instance) # keyword call in Python
```

#### C++00000000

```
using namespace pybind11::literals; // to bring in the `_a` literal
f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
```

#### 12.1.8 0000

#### 0000 \*args 0 \*\*kwargs 00000000000

```
// * unpacking
py::tuple args = py::make_tuple(1234, "hello", some_instance);
f(*args);

// ** unpacking
py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
f(**kwargs);

// mixed keywords, * and ** unpacking
py::tuple args = py::make_tuple(1234);
py::dict kwargs = py::dict("to"_a=some_instance);
f(*args, "say"_a="hello", **kwargs);
```

Generalized unpacking according to PEP448 is also supported:

```
py::dict kwargs1 = py::dict("number"_a=1234);
py::dict kwargs2 = py::dict("to"_a=some_instance);
f(**kwargs1, "say"_a="hello", **kwargs2);
```

#### 12.1.9

```
#include <pybind11/numpy.h>
using namespace pybind11::literals;

py::module_ os = py::module_::import("os");
py::module_ path = py::module_::import("os.path"); // like 'import os.path as path'
py::module_ np = py::module_::import("numpy"); // like 'import numpy as np'

py::str curdir_abs = path.attr("abspath")(path.attr("curdir"));
py::print(py::str("Current directory: ") + curdir_abs);
py::dict environ = os.attr("environ");
py::print(environ["HOME"]);
py::array_t<float> arr = np.attr("ones")(3, "dtype"_a="float32");
py::print(py::repr(arr + py::int_(1)));
```

#### Note

If a trivial conversion via move constructor is not possible, both implicit and explicit casting (calling obj.cast()) will attempt a "rich" conversion. For instance, py::list env = os.attr("environ"); will succeed and is equivalent to the Python code env = list(os.environ) that produces a list of the dict keys.

#### 12.1.10

#### 12.1.11 Gotchas

#### **Default-Constructed Wrappers**

#### Assigning py::none() to wrappers

## **12.2 NumPy**

#### **12.2.1 0000 buffer protocol**

```
class Matrix {
public:
 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
 m_data = new float[rows*cols];
 }
 float *data() { return m_data; }
 size_t rows() const { return m_rows; }
 size_t cols() const { return m_cols; }
private:
 size_t m_rows, m_cols;
 float *m_data;
};
```

np.array(matrix\_instance, copy = False)

```
struct buffer_info {
 void *ptr;
 py::ssize_t itemsize;
 std::string format;
 py::ssize_t ndim;
 std::vector<py::ssize_t> shape;
 std::vector<py::ssize_t> strides;
};
```

```
typedef Eigen::MatrixXd Matrix;
typedef Matrix::Scalar Scalar;
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
 .def(py::init([](py::buffer b) {
 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
 py::buffer_info info = b.request();
 if (info.format != py::format_descriptor<Scalar>::format())
 throw std::runtime_error("Incompatible format: expected a double array!");
 if (info.ndim != 2)
 throw std::runtime_error("Incompatible buffer dimension!");
 auto strides = Strides(
 info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar),
 info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar));
 auto map = Eigen::Map<Matrix, 0, Strides>(
 static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
 return Matrix(map);
 }));
```

#### 00000Eigen00000 def\_buffer() 0000000000

0000Eigen0000000(0000000)0000Eigen000

#### **12.2.2 Arrays**

```
void f(py::array_t<double> array);
```

```
void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
```

arrays 🛮 🗘 🗘 🗘 🗘 🗘 🗘 🗘 🗘 🗘 🗘

- .dtype() 000000000
- .strides() 0000strides0000
- .view(dtype) DDDDdtypeDDDDDDD
- .index\_at(i, j, ...) 000000000000

00000000000(0000)0

#### 12.2.3

```
struct A {
 int x;
 double y;
};

struct B {
 int z;
 A a;
};

// ...

PYBIND11_MODULE(test, m) {
 // ...

PYBIND11_NUMPY_DTYPE(A, x, y);
 PYBIND11_NUMPY_DTYPE(B, z, a);
 /* now both A and B can be used as template arguments to py::array_t */
}
```

#### **12.2.4 00000**

```
double my_func(int x, float y, double z);
```

```
m.def("vectorized_func", py::vectorize(my_func));
```

```
x = np.array([[1, 3], [5, 7]])
y = np.array([[2, 4], [6, 8]])
z = 3
result = vectorized_func(x, y, z)
```

#### Note

```
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
 py::buffer_info buf1 = input1.request(), buf2 = input2.request();
 if (buf1.ndim != 1 || buf2.ndim != 1)
 throw std::runtime_error("Number of dimensions must be one");
 if (buf1.size != buf2.size)
 throw std::runtime_error("Input shapes must match");
 auto result = py::array_t<double>(buf1.size);
 py::buffer_info buf3 = result.request();
 double *ptr1 = static_cast<double *>(buf1.ptr);
 double *ptr2 = static_cast<double *>(buf2.ptr);
 double *ptr3 = static_cast<double *>(buf3.ptr);
 for (size_t idx = 0; idx < buf1.shape[0]; idx++)</pre>
 ptr3[idx] = ptr1[idx] + ptr2[idx];
 return result;
PYBIND11_MODULE(test, m) {
 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
```

#### 12.2.5

The returned proxy object supports some of the same methods as py::array so that it can be used as a drop-in replacement for some existing, index-checked uses of py::array:

- .ndim() returns the number of dimensions
- .data(1, 2, ...) and r.mutable\_data(1, 2, ...) returns a pointer to the const T or T data, respectively, at the given indices. The latter is only available to proxies obtained via a.mutable\_unchecked().
- .itemsize() returns the size of an item in bytes, i.e. sizeof(T).
- .ndim() returns the number of dimensions.
- .shape(n) returns the size of dimension n
- .size() returns the total number of elements (i.e. the product of the shapes).
- .nbytes() returns the number of bytes used by the referenced elements (i.e. itemsize() times size()).

#### 12.2.6

Python 3 provides a convenient ... ellipsis notation that is often used to slice multidimensional arrays. For instance, the following snippet extracts the middle dimensions of a tensor with the first and last index set to zero. In Python 2, the syntactic sugar ... is not available, but the singleton Ellipsis (of type ellipsis) can still be used directly.

```
a = ... # a NumPy array
b = a[0, ..., 0]
```

The function py::ellipsis() function can be used to perform the same operation on the C++ side:

```
py::array a = /* A NumPy array */;
py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];
```

#### **12.2.7 0000**

Note: memoryview::from\_memory is not available in Python 2.

#### **12.3** ПППП

#### **12.3.1 C++DDPython print**

DDDDDPython print DDD sep, end, file, flush DDDD

#### **12.3.2 Oostream**

#### Warning

The redirection can also be done in Python with the addition of a context manager, using the py::add\_ostream\_redirect() <add\_ostream\_redirect> function:

```
py::add_ostream_redirect(m, "ostream_redirect");
```

The name in Python defaults to ostream\_redirect if no name is passed. This creates the following context manager in Python:

```
with ostream_redirect(stdout=True, stderr=True):
 noisy_function()
```

It defaults to redirecting both streams, though you can use the keyword arguments to disable one of the streams if needed.

#### **12.3.3 00000000Python00**

pybind11 provides the eval, exec and eval\_file functions to evaluate Python expressions and statements. The following example illustrates how they can be used.

```
// At beginning of file
#include <pybind11/eval.h>
...

// Evaluate in scope of main module
py::object scope = py::module_::import("__main__").attr("__dict__");

// Evaluate an isolated expression
int result = py::eval("my_variable + 10", scope).cast<int>();

// Evaluate a sequence of statements
py::exec(
 "print('Hello')\n"
 "print('world!');",
 scope);

// Evaluate the statements in an separate Python file on disk
py::eval_file("script.py", scope);
```

C++11 raw string literals are also supported and quite handy for this purpose. The only requirement is that the first statement must be on a new line following the raw string delimiter R" (, ensuring all lines have common leading indent:

```
py::exec(R"(
 x = get_answer()
 if x == 42:
 print('Hello World!')
 else:
 print('Bye!')
)", scope
);
```

## **13.** 00000

#### 13.1 0000

```
cmake_minimum_required(VERSION 3.4)
project(example)

find_package(pybind11 REQUIRED) # or `add_subdirectory(pybind11)`

add_executable(example main.cpp)
target_link_libraries(example PRIVATE pybind11::embed)
```

#### main.cpp 0000000

```
#include <pybind11/embed.h> // everything needed for embedding
namespace py = pybind11;
int main() {
 py::scoped_interpreter guard{}; // start the interpreter and keep it alive
 py::print("Hello, World!"); // use the Python API
}
```

## **13.2 DPython**

### 00000pybind11 API0000000000012000

```
#include <pybind11/embed.h>
namespace py = pybind11;
using namespace py::literals;

int main() {
 py::scoped_interpreter guard{};

 auto kwargs = py::dict("name"_a="World", "number"_a=42);
 auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
 py::print(message);
}
```

#### 00000000000000

#### 12.3

#### DD module\_::import() DDDDPythonDDD

```
py::module_ sys = py::module_::import("sys");
py::print(sys.attr("path"));
```

```
"""calc.py located in the working directory"""

def add(i, j):
 return i + j
```

```
py::module_ calc = py::module_::import("calc");
py::object result = calc.attr("add")(1, 2);
int n = result.cast<int>();
assert(n == 3);
```

#### **12.4** 000000

```
#include <pybind11/embed.h>
namespace py = pybind11;

PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
 // `m` is a `py::module_` which is used to bind functions and classes
 m.def("add", [](int i, int j) {
 return i + j;
 });
}

int main() {
 py::scoped_interpreter guard{};

 auto fast_calc = py::module_::import("fast_calc");
 auto result = fast_calc.attr("add")(1, 2).cast<int>();
 assert(result == 3);
}
```

Unlike extension modules where only a single binary module can be created, on the embedded side an unlimited number of modules can be added using multiple PYBIND11\_EMBEDDED\_MODULE definitions (as long as they have unique names).

These modules are added to Python's list of builtins, so they can also be imported in pure Python files loaded by the interpreter. Everything interacts naturally:

```
"""py_module.py located in the working directory"""
import cpp_module
a = cpp_module.a
b = a + 1
#include <pybind11/embed.h>
namespace py = pybind11;
PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
 m.attr("a") = 1;
int main() {
 py::scoped_interpreter guard{};
 auto py_module = py::module_::import("py_module");
 auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
 assert(locals["a"].cast<int>() == 1);
 assert(locals["b"].cast<int>() == 2);
 py::exec(R"(
 c = a + b
 message = fmt.format(a, b, c)
)", py::globals(), locals);
 assert(locals["c"].cast<int>() == 3);
 assert(locals["message"].cast<std::string>() == "1 + 2 = 3");
```

#### **12.5** 00000000

#### Warning

Creating two concurrent scoped\_interpreter guards is a fatal error. So is calling initialize\_interpreter for a second time after the interpreter has already been initialized.

Do not use the raw CPython API functions Py\_Initialize and Py\_Finalize as these do not properly handle the lifetime of pybind11's internal data.

## **14.** 🗆 🗆

#### **14.1** 00000000

```
PYBIND11_OVERRIDE(MyReturnType<T1, T2>, Class<T3, T4>, func)
```

### 14.2 0000000GIL0

```
class PyAnimal : public Animal {
public:
 using Animal::Animal;
 std::string go(int n_times) {
 py::gil_scoped_acquire acquire;
 PYBIND11_OVERRIDE_PURE(
 std::string, /* Return type */
 n_times
};
PYBIND11_MODULE(example, m) {
 py::class_<Animal, PyAnimal> animal(m, "Animal");
 animal
 .def(py::init<>())
 .def("go", &Animal::go);
 py::class_<Dog>(m, "Dog", animal)
 .def(py::init<>());
 m.def("call_go", [](Animal *animal) -> std::string {
 py::gil_scoped_release release;
 return call_go(animal);
 });
```

000000 call\_guard 00000 call\_go 0000

```
m.def("call_go", &call_go, py::call_guard<py::gil_scoped_release>());
```

#### 14.3 00000000000

```
py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())
 .def_readwrite("name", &Pet::name);

py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);
```

```
py::object pet = (py::object) py::module_::import("basic").attr("Pet");

py::class_<Dog>(m, "Dog", pet)
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);
```

```
py::module_::import("basic");

py::class_<Dog, Pet>(m, "Dog")
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);
```

```
class PYBIND11_EXPORT Dog : public Animal {
 ...
};
```

```
auto data = reinterpret_cast<MyData *>(py::get_shared_data("mydata"));
if (!data)
 data = static_cast<MyData *>(py::set_shared_data("mydata", new MyData(42)));
```

#### **14.4** ПППП

```
auto cleanup_callback = []() {
 // perform cleanup here -- this function is called with the GIL held
};
m.add_object("_cleanup", py::capsule(cleanup_callback));
```

```
auto cleanup_callback = []() { /* ... */ };
m.attr("BaseClass").attr("_cleanup") = py::capsule(cleanup_callback);
```

## **15.** ПППП

## 15.1 "ImportError: dynamic module does not define init function"

## 15.2 "Symbol not found: \_\_Py\_ZeroStruct \_PyInstanceMethod\_Type"

□□15.1

## 15.3 "SystemError: dynamic module not initialized properly"

0015.1

## **15.4** 00000Python000000

0015.1

#### 15.5000000000

```
void increment(int &i)
{
 i++;
}
void increment_ptr(int *i)
{
 (*i)++;
}
```

```
def increment(i):
 i += 1 # nope..
```

```
int foo(int &i)
{
 i++;
 return 123;
}
```

00000:

```
m.def("foo",
 [](int i) {
 int rv = foo(i);
 return std::make_tuple(rv, i);
 });
```

#### 15.6 00000000?

```
void init_ex1(py::module_ &);
void init_ex2(py::module_ &);
/* ... */
PYBIND11_MODULE(example, m) {
 init_ex1(m);
 init_ex2(m);
 /* ... */
}
```

#### ex1.cpp:

```
void init_ex1(py::module_ &m) {
 m.def("add",
 [](int a, int b) {
 return a + b;
 });
}
```

#### ex2.cpp:

```
void init_ex2(py::module_ &m) {
 m.def("sub",
 [](int a, int b) {
 return a - b;
 });
}
```

python [][]

```
import example
example.add(1, 2) # 3
example.sub(1, 1) # 0
```

- 2. 0000000000000000

## 15.7 "recursive template instantiation exceeded maximum depth of 256"

# 15.8 "SomeClass' declared with greater visibility than the type of its field 'SomeClass::member' [-Wattributes]"

#### **15.9** 000000000000?

```
__ZN8pybind1112cpp_functionC1Iv8Example2JRNSt3__16vectorINS3_12basic_stringIwNS3_
11char_traitsIwEENS3_9allocatorIwEEEENS8_ISA_EEEEEJNS_4nameENS_7siblingENS_9is_
methodEA28_cEEEMT0_FT_DpT1_EDpRKT2_
```

ппппппппппппппп

```
pybind11::cpp_function::cpp_function<void, Example2, std::_1::vector<std::_1::basic_
string<wchar_t, std::_1::char_traits<wchar_t>, std::_1::allocator<wchar_t> >,
std::_1::allocator<std::_1::basic_string<wchar_t, std::_1::char_traits<wchar_t>,
std::_1::allocator<wchar_t> > > &, pybind11::name, pybind11::sibling,
pybind11::is_method, char [28]>(void (Example2::*)(std::_1::vector<std::_1::basic_
string<wchar_t, std::_1::char_traits<wchar_t>, std::_1::allocator<wchar_t> >,
std::_1::allocator<std::_1::basic_string<wchar_t, std::_1::char_traits<wchar_t>,
std::_1::allocator<wchar_t> > > &), pybind11::name const&, pybind11::sibling
const&, pybind11::is_method const&, char const (&) [28])
```

#### 

#### **15.11** 000000000000000Ctrl-C0

## 

pybind11 0000000 CMake 3.12+03.15+ 0 3.18.2+ 000000000 pybind11 000 CMakeLists.txt 0

## 

```
find_package(PythonInterp)
find_package(PythonLibs)
find_package(pybind11)
```

```
find_package(pybind11)
find_package(PythonInterp)
find_package(PythonLibs)
```

#### **15.14** 000000000

0000000 BibTeX 000000000 pybind110

```
@misc{pybind11,
author = {Wenzel Jakob and Jason Rhinelander and Dean Moldovan},
year = {2017},
note = {https://github.com/pybind/pybind11},
title = {pybind11 -- Seamless operability between C++11 and Python} }
```

# **16.**□□

## **16.1 c/c++**000000

сПППП

char ca; unsigned char uca;

• c++000000

vector stl

# pybind11000

## 1.0000

### **1.1** 00000

```
set(PYTHON_TARGET_VER 3.6)
find_package(PythonInterp ${PYTHON_TARGET_VER} EXACT)
find_package(PythonLibs ${PYTHON_TARGET_VER} EXACT REQUIRED)
include_directories(pybind11_include_path)
include_directories(${PYTHON_INCLUDE_DIRS})
```

#### 1.2 0000

```
#include <pybind11/pybind11.h>

int add(int i, int j) {
 return i + j;
}

PYBIND11_MODULE(example, m) {
 m.doc() = "pybind11 example plugin"; // optional module docstring
 m.def("add", &add, "A function which adds two numbers");
}
```

#### **1.2.1** 00000

```
// regular notation
m.def("add1", &add, py::arg("i"), py::arg("j"));
// shorthand
using namespace pybind11::literals;
m.def("add2", &add, "i"_a, "j"_a);
```

#### Python 0 0 0 0 0

```
import example
example.add(i=1, j=2) #3L
```

#### 1.2.2

```
m.def("add", &add, "A function which adds two numbers",
 py::arg("i") = 1, py::arg("j") = 2);
```

```
// regular notation
m.def("add1", &add, py::arg("i") = 1, py::arg("j") = 2);
// shorthand
m.def("add2", &add, "i"_a=1, "j"_a=2);
```

#### 1.2.3

```
m.def("add", static_cast<int(*)(int, int)>(&add), "A function which adds two int numbers");
m.def("add", static_cast<double(*)(double, double)>(&add), "A function which adds two
double numbers");
```

#### 

```
m.def("add", py::overload_cast<int, int>(&add), "A function which adds two int numbers");
m.def("add", py::overload_cast<double, double>(&add), "A function which adds two double
numbers");
```

#### 1.3 0000

```
PYBIND11_MODULE(example, m) {
 m.attr("the_answer") = 42;
 py::object world = py::cast("World");
 m.attr("what") = world;
}

Python図図図図図
```pyhton
>>> import example
>>> example.the_answer
42
>>> example.what
'World'
```

1.4 חחחחחחח

00000000C++000000 Pet 00000

```
struct Pet {
    Pet(const std::string &name) : name(name) { }
    void setName(const std::string &name_) { name = name_; }
    const std::string &getName() const { return name; }

    std::string name;
};
```



```
>>> import example
>>> p = example.Pet("Molly")
>>> print(p)
<example.Pet named 'Molly'>
>>> p.getName()
u'Molly'
>>> p.setName("Charly")
>>> p.getName()
u'Charly'
```

1.4.1 0000

```
py::class_<Pet>(m, "Pet")
   .def(py::init<const std::string &>())
   .def_readwrite("name", &Pet::name)
   // ... remainder ...
```



```
>>> p = example.Pet("Molly")
>>> p.name
u'Molly'
>>> p.name = "Charly"
>>> p.name
u'Charly'
```

```
class Pet {
public:
    Pet(const std::string &name) : name(name) { }
    void setName(const std::string &name_) { name = name_; }
    const std::string &getName() const { return name; }
private:
    std::string name;
};
```

```
py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def_property("name", &Pet::getName, &Pet::setName)
    // ... remainder ...
```

0000000read00000nullptr0000

1.4.2

000Pyhton000000000000

```
>>> class Pet:
... name = "Molly"
...
>>> p = Pet()
>>> p.name = "Charly" # overwrite existing
>>> p.age = 2 # dynamically add a new attribute
```

```
>>> p = example.Pet()
>>> p.name = "Charly" # OK, attribute defined in C++
>>> p.age = 2 # fail
AttributeError: 'Pet' object has no attribute 'age'
```

00C++0000000000000 py::class_000000 py::dynamic_attr 000

```
py::class_<Pet>(m, "Pet", py::dynamic_attr())
    .def(py::init<>())
    .def_readwrite("name", &Pet::name);
```

```
>>> p = example.Pet()
>>> p.name = "Charly" # OK, overwrite value in C++
>>> p.age = 2 # OK, dynamically add a new attribute
>>> p.__dict__ # just like a native Python class
{'age': 2}
```

1.4.3


```
struct Pet {
    Pet(const std::string &name, int age) : name(name), age(age) { }

    void set(int age_) { age = age_; }
    void set(const std::string &name_) { name = name_; }

    std::string name;
    int age;
};

// method 1

py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &, int>())
    .def("set", static_cast<void (Pet::*)(int)>(&Pet::set), "Set the pet's age")
    .def("set", static_cast<void (Pet::*)(const std::string &)>(&Pet::set), "Set the pet's name");

// method 2

py::class_<Pet>(m, "Pet")
    .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
    .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
    .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
```

1.5 000000

00**C**00000000000000000

```
enum Flags {
    Read = 4,
    Write = 2,
    Execute = 1
};

py::enum_<Flags>(m, "Flags", py::arithmetic())
    .value("Read", Flags::Read)
    .value("Write", Flags::Write)
    .value("Execute", Flags::Execute)
    .export_values();
```



```
def generic(*args, **kwargs):
    ... # do something with args and kwargs
```

0000000pybind110000000

```
void generic(py::args args, const py::kwargs& kwargs) {
    /// .. do something with args
    if (kwargs)
        /// .. do something with kwargs
}

/// Binding code
m.def("generic", &generic);
```

```
py::args [] py::tuple [] py::kwargs [] py::dict []
```

2. ПППППП

2.1

```
/* Function declaration */
Data *get_data() { return _data; /* (pointer to a static data structure) */ }
...
/* Binding code */
m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python</pre>
```

```
m.def("get_data", &get_data, py::return_value_policy::reference);
```

00000	00
return_value_policy::take_ownership	00000000000000000000000000000000000000
return_value_policy::copy	00000000Python000000000000000000000000000000000000
return_value_policy::move	00 std::move 000000000000000000000000000000000000
return_value_policy::reference	000000000000000C++0000000000000000 00000000
return_value_policy::reference_internal	00000000000000000000000000000000000000
return_value_policy::automatic	00000000000000000000000000000000000000
return_value_policy::automatic_reference	00000000000000000000000000000000000000

ППГ

- 1. 000000000000000000000pybind110000000000000000000000000000000pybind11000000

2.2

□□□keep alive□

 Onurse
 Onurse<

```
py::class_<List>(m, "List").def("append", &List::append, py::keep_alive<1, 2>());
```

```
py::class_<Nurse>(m, "Nurse").def(py::init<Patient &>(), py::keep_alive<1, 2>());
```

```
Note: keep_alive \( \text{Boost.Python} \( \text{D} \) with_custodian_and_ward \( \text{D} \) with_custodian_and_ward_postcall \( \text{D} \) \( \text{D} \)
```

Call guard

```
m.def("foo", foo, py::call_guard<T>());
```

```
m.def("foo", [](args...) {
   T scope_guard;
   return foo(args...); // forwarded arguments
});
```

000000T0000000 gil_scoped_release 00000000000

2.3 Keyword-only□□

Python3000keyword-only0000000000 * 00000000

```
def f(a, *, b): # a can be positional or via keyword; b must be via keyword
   pass

f(a=1, b=2) # good
f(b=2, a=1) # good
f(1, b=2) # good
f(1, 2) # TypeError: f() takes 1 positional argument but 2 were given
```

pybind11000 py::kw_only 0000000000

```
m.def("f", [](int a, int b) { /* ... */ },
    py::arg("a"), py::kw_only(), py::arg("b"));
```

000000000 py::args 00000

2.4 Positional-only

python3.8000Positional-only00000pybind1100 py::pos_only() 00000000

0000000000000000 a 0000000000000keyword-only0000000

2.5 Non-converting□□

- 0000000float000000 std::complex<float> 00000
- Calling a function taking an Eigen matrix reference with a numpy array of the wrong type or of an incompatible data layout.

```
m.def("floats_only", [](double f) { return 0.5 * f; }, py::arg("f").noconvert());
m.def("floats_preferred", [](double f) { return 0.5 * f; }, py::arg("f"));
```

0000000000 TypeError 000

```
>>> floats_preferred(4)
2.0
>>> floats_only(4)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: floats_only(): incompatible function arguments. The following argument types are supported:
        1. (f: float) -> float
Invoked with: 4
```

000000000 _a 00000000000 py::arg().noconvert() 0

3. 00000

3.1 00000

0000000000000000

```
struct Pet {
    Pet(const std::string &name) : name(name) { }
    std::string name;
};

struct Dog : Pet {
    Dog(const std::string &name) : Pet(name) { }
    std::string bark() const { return "woof!"; }
};
```

```
py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def_readwrite("name", &Pet::name);

// Method 1: template parameter:
py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
    .def(py::init<const std::string &>())
    .def("bark", &Dog::bark);

// Method 2: pass parent class_ object:
py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
    .def(py::init<const std::string &>())
    .def("bark", &Dog::bark);
```

```
>>> p = example.Dog("Molly")
>>> p.name
u'Molly'
>>> p.bark()
u'woof!'
```

```
>>> p = example.pet_store()
>>> type(p) # `Dog` instance behind `Pet` pointer
Pet # no pointer downcasting for regular non-polymorphic types
>>> p.bark()
AttributeError: 'Pet' object has no attribute 'bark'
```

```
struct PolymorphicPet {
    virtual ~PolymorphicPet() = default;
};

struct PolymorphicDog : PolymorphicPet {
    std::string bark() const { return "woof!"; }
};

// Same binding code

py::class_<PolymorphicPet>(m, "PolymorphicPet");

py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
    .def(py::init<>())
    .def("bark", &PolymorphicDog::bark);

// Again, return a base pointer to a derived instance

m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
```

```
>>> p = example.pet_store2()
>>> type(p)
PolymorphicDog # automatically downcast
>>> p.bark()
u'woof!'
```

3.2 Python□□**C++**□

```
class Animal {
public:
    virtual ~Animal() { }
    virtual std::string go(int n_times) = 0;
};
class Dog : public Animal {
public:
    std::string go(int n_times) override {
        std::string result;
        for (int i=0; i<n_times; ++i)</pre>
            result += "woof! ";
        return result;
};
std::string call_go(Animal *animal) {
    return animal->go(3);
PYBIND11_MODULE(example, m) {
    py::class_<Animal>(m, "Animal")
        .def("go", &Animal::go);
    py::class_<Dog, Animal>(m, "Dog")
        .def(py::init<>());
    m.def("call_go", &call_go);
```

<code>____Python____Animal_____*No constructor defined!"</code>

00000000000000Animal0000000

```
std::string toString() override {
   PYBIND11_OVERRIDE_NAME(
        std::string, // Return type (ret_type)
        Animal, // Parent class (cname)
        "__str__", // Name of method in Python (name)
        toString, // Name of function in C++ (fn)
   );
}
```



```
PYBIND11_MODULE(example, m) {
    py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
        .def(py::init<>())
        .def("go", &Animal::go);

    py::class_<Dog, Animal>(m, "Dog")
        .def(py::init<>());

    m.def("call_go", &call_go);
}
```

pybind11000 class_ 00000000PyAnimal00000Python000Animal00

```
py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
    .def(py::init<>())
    .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */</pre>
```

```
from example import *
d = Dog()
call_go(d)  # u'woof! woof! '
class Cat(Animal):
    def go(self, n_times):
        return "meow! " * n_times

c = Cat()
call_go(c)  # u'meow! meow! meow! '
```

```
class Dachshund(Dog):
    def __init__(self, name):
        Dog.__init__(self) # Without this, a TypeError is raised.
        self.name = name

    def bark(self):
        return "yap!"
```

3.3 ПППППП

0000000000000000000000Python0000000000000000000000Animal0Dog0000

```
class Animal {
public:
    virtual std::string go(int n_times) = 0;
    virtual std::string name() { return "unknown"; }
};
class Dog : public Animal {
public:
    std::string go(int n_times) override {
        std::string result;
        for (int i=0; i<n_times; ++i)
            result += bark() + " ";
        return result;
    }
    virtual std::string bark() { return "woof!"; }
};</pre>
```

```
class PyAnimal : public Animal {
public:
    using Animal::Animal; // Inherit constructors
    std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal, go,
n_times); }
    std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name, ); }
};
class PyDog : public Dog {
public:
    using Dog::Dog; // Inherit constructors
    std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go,
n_times); }
    std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name, ); }
    std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark, ); }
};
```

```
class Husky : public Dog {};
class PyHusky : public Husky {
public:
    using Husky::Husky; // Inherit constructors
    std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go,
n_times); }
    std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name, ); }
    std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark, ); }
};
```

```
template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
public:
    using AnimalBase::AnimalBase; // Inherit constructors
    std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, AnimalBase,
go, n_times); }
    std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name, ); }
};
template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
public:
    using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
    // Override PyAnimal's pure virtual go() with a non-pure one:
    std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go,
n_times); }
    std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark, ); }
};
```

00000pybind11000000

```
py::class_<Animal, PyAnimal<>>> animal(m, "Animal");
py::class_<Dog, Animal, PyDog<>>> dog(m, "Dog");
py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
// ... add animal, dog, husky definitions
```

```
class ShihTzu(Dog):
   def bark(self):
    return "yip!"
```

3.4 0000000

```
/* ... definition ... */
class MyClass {
private:
    ~MyClass() { }
};

/* ... binding code ... */

py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
    .def(py::init<>())
```

3.5

000000A0B00000A000000B0

00000B0000A0000000000000000000Python000000000

```
py::implicitly_convertible<A, B>();
```

3.6


```
class Vector2 {
public:
    Vector2(float x, float y) : x(x), y(y) { }

    Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
    Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
    Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
    Vector2& operator*=(float v) { x *= v; y *= v; return *this; }

    friend Vector2 operator*(float f, const Vector2 &v) {
        return Vector2(f * v.x, f * v.y);
    }

    std::string toString() const {
        return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
    }

private:
    float x, y;
};
```

0000000000

```
#include <pybind11/operators.h>

PYBIND11_MODULE(example, m) {
    py::class_<Vector2>(m, "Vector2")
        .def(py::init<float, float>())
        .def(py::self + py::self)
        .def(py::self *= float())
        .def(float() * py::self)
        .def(float() * py::self)
        .def(py::self * float())
        .def(-py::self)
        .def("__repr__", &Vector2::toString);
}
```

.def(py::self * float()) 0000000000

```
.def("__mul__", [](const Vector2 &a, float b) {
    return a * b;
}, py::is_operator())
```

3.7 00000

```
py::class_<Copyable>(m, "Copyable")
   .def("__copy__", [](const Copyable &self) {
      return Copyable(self);
   })
   .def("__deepcopy__", [](const Copyable &self, py::dict) {
      return Copyable(self);
   }, "memo"_a);
```

3.8 0000

```
py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
...
```

00Python0000000C++0000000C++00Python00

```
py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
```

3.9 Oprotected Oprotected

00000Python00protected 00000

```
class A {
protected:
    int foo() const { return 42; }
};

py::class_<A>(m, "A")
    .def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
```

```
class A {
protected:
    int foo() const { return 42; }
};

class Publicist : public A { // helper type for exposing protected functions
public:
    using A::foo; // inherited with different access modifier
};

py::class_<A>(m, "A") // bind the primary class
    .def("foo", &Publicist::foo); // expose protected methods via the publicist
```

```
class A {
public:
    virtual ~A() = default;

protected:
    virtual int foo() const { return 42; }
};

class Trampoline : public A {
public:
    int foo() const override { PYBIND11_OVERRIDE(int, A, foo, ); }
};

class Publicist : public A {
public:
    using A::foo;
};

py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
    .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!</pre>
```

3.10 □ □ final □

C++110000000 findal 0000000000000 py::is_final 00000000000Python000000C++0
000000final0

```
class IsFinal final {};
py::class_<IsFinal>(m, "IsFinal", py::is_final());

DPythonDDDDDDDDDDDDD

class PyFinalChild(IsFinal):
    pass

TypeError: type 'IsFinal' is not an acceptable base type
```

4. 0000

4.1 C++0000**Python**0000

 ПРуthon
 Пруbind
 11000
 C++0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Exception thrown by C++	Translated to Python exception type
std::exception	RuntimeError
std::bad_alloc	MemoryError
std::domain_error	ValueError
std::invalid_argument	ValueError
std::length_error	ValueError
std::out_of_range	IndexError
std::range_error	ValueError
std::overflow_error	OverflowError
<pre>pybind11::stop_iteration</pre>	StopIteration (used to implement custom iterators)
pybind11::index_error	<pre>IndexError (used to indicate out of bounds access ingetitem ,setitem , etc.)</pre>
pybind11::key_error	KeyError (used to indicate out of bounds access ingetitem ,setitem in dict-like objects, etc.)
pybind11::value_error	ValueError (used to indicate wrong value passed in container.remove())
pybind11::type_error	TypeError
pybind11::buffer_error	BufferError
pybind11::import_error	ImportError

Exception thrown by C++	Translated to Python exception type
pybind11::attribute_error	AttributeError
Any other exception	RuntimeError

4.2 00000000

```
py::register_exception<CppExp>(module, "PyExp");
```

00000000000000000000

```
py::register_local_exception<CppExp>(module, "PyExp");
```

00000000handle000000000

```
py::register_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
py::register_local_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
```

000PyExp000000PyExp0RuntimeError0

9.3 C++DPython

Exception raised in Python	Thrown as C++ exception type
Any Python Exception	<pre>pybind11::error_already_set</pre>

```
try {
    // open("missing.txt", "r")
    auto file = py::module_::import("io").attr("open")("missing.txt", "r");
    auto text = file.attr("read")();
    file.attr("close")();
} catch (py::error_already_set &e) {
    if (e.matches(PyExc_FileNotFoundError)) {
        py::print("missing.txt not found");
    } else if (e.matches(PyExc_PermissionError)) {
        py::print("missing.txt found but not accessible");
    } else {
        throw;
    }
}
```

```
try {
    py::eval("raise ValueError('The Ring')");
} catch (py::value_error &boromir) {
    // Boromir never gets the ring
    assert(false);
} catch (py::error_already_set &frodo) {
    // Frodo gets the ring
    py::print("I will take the ring");
}

try {
    // py::value_error is a request for pybind11 to raise a Python exception
    throw py::value_error("The ball");
} catch (py::error_already_set &cat) {
    // cat won't catch the ball since
    // py::value_error is not a Python exception
    assert(false);
} catch (py::value_error &dog) {
    // dog will catch the ball
    py::print("Run Spot run");
    throw; // Throw it again (pybind11 will raise ValueError)
}
```

9.4 DDPython C APIDDD

```
PyErr_SetString(PyExc_TypeError, "C API type error demo");
throw py::error_already_set();

// But it would be easier to simply...
throw py::type_error("pybind11 wrapper type error");
```

00000 PyErr_Clear 000000

00Python00000000000000Python/pybind110000000

9.5 □□unraiseable□□

5. 0000

6. python C++□□

7. $\Box\Box$

7.1 00000000

```
PYBIND11_OVERRIDE(MyReturnType<T1, T2>, Class<T3, T4>, func)
```

7.2 0000000**GIL**0

```
class PyAnimal : public Animal {
public:
   using Animal::Animal;
   std::string go(int n_times) {
        py::gil_scoped_acquire acquire;
        PYBIND11_OVERRIDE_PURE(
            std::string, /* Return type */
            n_times
        );
};
PYBIND11_MODULE(example, m) {
    py::class_<Animal, PyAnimal> animal(m, "Animal");
   animal
        .def(py::init<>())
        .def("go", &Animal::go);
   py::class_<Dog>(m, "Dog", animal)
        .def(py::init<>());
   m.def("call_go", [](Animal *animal) -> std::string {
        py::gil_scoped_release release;
        return call_go(animal);
   });
```

000000 call_guard 00000 call_go 0000

```
m.def("call_go", &call_go, py::call_guard<py::gil_scoped_release>());
```

□□□**Mermaid**□□□

nanananananananan:

- 000000000 Mermaid 000;
- 000000000 Mermaid 000;
- 00 Gitbook 0000000000.

□□□Mermaid□□□

ппп

ПΠ

```
graph TD
   A[Christmas] -->|Get money| B(Go shopping)
   B --> C{Let me think}
   C -->|One| D[Laptop]
   C -->|Two| E[iPhone]
   C -->|Three| F[fa:fa-car Car]
```


- DDDD: https://github.com/mermaid-js/mermaid
- DDDD: https://mermaidjs.github.io/mermaid-live-editor/
- DDDD: https://mermaid-js.github.io/mermaid/#/flowchart

Mermaid

ппп

- + TB
- + BT
- + LR
- + RL

Syntax error in graph


```
graph LR
                                    Start --> Stop
      Start
                                                                                                                Stop
             • RL
            □□□□: from Right to Left
 graph RL
                                    Start --> Stop
     Stop
                                                                                                              Start
+ [🛛 🖺
                                                                    - [[XXXX]]
                                                                    - [(XX)]
                                                                   - [/\\\\\\]
                                                                    - [/XX\]
                                                                    - [\\\\]
                                     + (☒☒☒)
                                                                    - ((XX))
                                                                    - ([⊠⊠⊠])
                                                                    + {₪₪}
                                                                  - {{⊠⊠}}}
                                                                   - {[\and\angle]}
- {(\angle \angle \a
```


Syntax error in graph

0000000,000000000000000000000000000000
00: 000000,000000.
00000,00000000,00000000 id 00,0000000000
id 000000000000000000000000000000000000
graph TD id
id
00000,000000,0000000 id 0000 <node shape=""> 00,000000000000000000.</node>
id 00000000,000000000 <node shape=""> 0000,00 id 000000000.</node>
• 00
0000: [node description] ,[] 000000000000, node description 00000000.
avanh ID

id1[This is the text in the box]

```
This is the text in the box
  \square\square\square\square: (node description) , () \square\square\square\square\square\square\square\square\square\square\square\square\square\square\square, node description \square\square\square\square\square\square\square\square.
graph LR
     id1(This is the text in the box)
 This is the text in the box
  • 000
 0000: ([node description]) , () 00000 [] 00000000000000000000000, node
  description 0000000.
graph LR
     id1([This is the text in the box])
 This is the text in the box
  • 🗆
 0000: [(node description)], [] 00000 () 0000000000, node description 0000000.
graph LR
     id1[(Database)]
```

```
Database
 • 🗆
 0000: ((node description)) , () 00000 () 0000000000, node description 0000000.
graph LR
   id1((This is the text in the circle))
This is the text in the circle
 • 00000
 0000: >node description] ,0000000 > ,0000000 ] 00000000, node description 0000000
 □.
graph LR
   id1>This is the text in the box]
  This is the text in the box
 • 🗆
```

```
graph LR
    id1{This is the text in the box}
  This is the text in the box
 • 000
 \verb| 0000: { \{node \ description\}\} \ , \{\} \ 000000 \ \{\} \ 000000000, node \ description \ 00000000.}
graph LR
    id1\{\{This is the text in the box\}\}
 Gitbook 0000000 {} 000000,000000000,0000000 \ 0000.
 • 00000
 0000: [/node description/] , [] 00000 // 00000000000, node description 0000000.
```

```
graph TD
   id1[/This is the text in the box/]
 This is the text in the box
 • 00000
 DDD: [\node description\] , [] DDDDD \\ DDDDDDDDDDDDDDDD, node description DDDDDDDD.
graph TD
   id1[\This is the text in the box\]
 This is the text in the box
 • 🗆
 DDDD: [/node description\] , [] DDDDD /\ DDDDDDDDDDDDDDD, node description DDDDDDDD.
graph TD
   A[/Christmas\]
 Christmas
 • 00000
```

```
graph TD
      B[\Go shopping/]
   Go shopping
+ 🖾 🗆 🗸
 + 🛛 🗸 🗸 🗸 🗸 🗎
 + 🛛 🖾 🗸 🗸 🖂 🖂
     — XX
          + --🛛 🖽 🖽
         + |\\\\\\
     - XX
        + -.0000
        + | 🛮 🗷 🖂 🗎
 + 🛛
 + 🛛 🕅 🕅
      + --\\\\\\-->
         + --> | 🛛 🖾 🖂 |
      + --\\\\\\\
          + ---|\\\\\\
      - \square\square\square\square\square\square\square\square\square\square
          + -.\\\\\-.->
          + -.->| 🛛 🖾 🗖
      + -.0000-.-
          + -.-| 🗆 🗆 🗆
      - MMMMMMMM(2)
         + ==> | 🛛 🖂 🖂 🗎

    NANDENDE (2)

          + ===|\bigsim\bigsim\bigsim\bigsim
```


Syntax error in graph

mermaid version 9.2.2

• 0000000

0000: --> ,00 -- 0000, > 00000.

ПГ

graph LR A-->B

ПΠ

• 00000

0000: --- ,00 -- 0000, - 00000.

ПГ

graph LR A --- B

ПГ

• 00000000

0000: --connection line description--> ,00000 -- 00000000,000 --> 00000000.

```
graph LR
   A-- text -->B
    text B
 0000: |connection line description| ,00 || 00000000.
graph LR
   A-->|text|B
         В
    text
 • 00000000
0000: --connection line description ,00000 -- 00000000,000 --- 000000000.
graph LR
   A-- This is the text ---B
    This is the text
graph LR
   A---|This is the text|B
```

```
This is the text B
 0000: -.connection line description.-> ,00000 -. 00000000,000 .-> 00000000.
graph LR
  A-. text .-> B
     text
           В
 • 000000
graph LR
  A ==> B
        В
 0000: ==connection line description ,000 == 00000000,000 ==> 000000.
graph LR
  A == text ==> B
```


• 0000000 □□□□□□□□, A-->B & C □□□ A-->B □ A-->C □□. graph LR a --> b & c--> d b d а С • 0000000 0000000000, A & B --> C & D 000 A-->C , A-->D, B-->C 0 B-->D 000000. graph TB A & B--> C & D В С • 00000000 graph LR id1["This is the (text) in the box"] This is the (text) in the box

```
• 00000000
00 Html 0000
 graph LR
     A["A double quote:#quot;"] -->B["A dec char:#9829;"]
 A double quote:"
                       A dec char:♥
  • 000000
 subgraph title
     graph definition
 end
 graph TB
     c1-->a2
     subgraph one
     a1-->a2
     end
     subgraph two
     b1-->b2
     end
     subgraph three
     c1-->c2
     end
     three
                                              one
                          two
                                b2
       c1
                      b1
                                               a1
      c2
```

graph LR %% this is a comment A -- text --> B{node} A -- text --> B -- text2 --> C

Demormaid-flow-chart-summary-simplemindmap.png

00	00	00
00	graph	graph 000000
00	subgraph	subgraph 0000000
	top	TB 0 BT ,0000000000000000000000000000000
	bottom	BT 0 TB,00000000000000
	left	LR 0 RL,00000000000000000000000000000000
	right	RL 0 LR,00000000000000

• 0000

mdbook-demo

000	00	00	00
	00	0000	00
()	0000	0000	00
{}	00	0000	00
<>	00	0000	000
	00	00000	00
	00	00000	00
	0000	00000	00
=:	0000	00000	000
>	000	00000	00
	000	00000	00
	00000000	0000000	00
	0000000000	0000000	00
	0000000000	0000000	00
	0000000000000	0000000	00
=:	0000000000000	0000000	000

• 0000

000	00	00	00
[[]]	000	0000	000
[()]	000	0000	00
[0]	000	0000	000
(())	00	0000	00
([])	000	0000	00
({})	00	0000	000
XXXX	000	0000	00
{[]}	0000	0000	000
{ ()}	00	0000	000
>	00000	00000	00
	00000	00000	00
>	00000	00000	000
-,->	00000	00000	00
>	00000	00000	00
	00000	00000	00
	00000	00000	00
==>	0000000	00000	00
	000000	00000	00

mdbook-demo

000	00	00	
=:>	0000000	00000	000
=:=>	0000000	00000	000
=:=	0000000	00000	000
:=	0000000	00000	000
XXX	00000000	0000000	
connection line description>	00000000000000	0000000	
connection line description>	00000000000000	0000000	
connection line description	00000000000000	0000000	
connection line description	00000000000000	0000000	
==connection line description==>	00000000000000000	0000000	
=:connection line description=:=>	00000000000000000	0000000	000
==connection line description===	00000000000000000	0000000	
=:connection line description=:=	00000000000000000	0000000	000

DDDD: https://mermaid-js.github.io/mermaid/#/flowchart?id=styling-and-classes

- DDDD Interaction: https://mermaid-js.github.io/mermaid/#/flowchart?id=interaction
- DDDD Styling and classes: https://mermaid-js.github.io/mermaid/#/flowchart?id=interaction
- DDDD Basic support for fontawesome: https://mermaid-js.github.io/mermaid/#/flowchart? id=basic-support-for-fontawesome
- DDDD https://mermaid-js.github.io/mermaid/#/flowchart?id=graph-declarations-with-spaces-between-vertices-and-link-and-without-semicolon

Reference

The following admonishments are implemented by the mdbook-admonish plugin and are automatically themed to match Catppuccin.

Directives

All supported directives are listed below.

note

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

abstract, summary, tldr

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

info, todo

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

tip, hint, important

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

success, check, done

Success

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

question, help, faq

Question

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

warning, caution, attention

Warning

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

failure, fail, missing

X Failure

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

danger, error

Danger

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

bug

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

example

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

quote, cite

77 Quote

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency.

Bienvenue sur notre site de développement 3D

Bienvenue sur notre site dédié au développement 3D. lci, vous trouverez des ressources, des tutoriels et des informations utiles pour vous lancer dans le monde passionnant de la 3D.

1 Info

A beautifully styled message.

i≡ Un example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

Une note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

▲ Un warning

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

Collapsing note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

♦ Le javascript c'est yolo préférez Typescript

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

6 Referencing and dereferencing

The opposite of *referencing* by using & is *dereferencing*, which is accomplished with the dereference operator, *.

Bug

This syntax won't work in Python 3:

print "Hello, world!"

À propos de nous

Nous sommes une équipe passionnée par la 3D et nous avons pour mission de partager nos connaissances avec la communauté. Vous trouverez ici des articles, des exemples de code et des démonstrations pour vous aider à démarrer votre voyage dans le développement 3D.

Pour commencer

Si vous êtes nouveau dans le domaine de la 3D, ne vous inquiétez pas ! Notre page "Getting Started" vous guidera à travers les étapes essentielles pour démarrer rapidement.

Restons en contact

N'hésitez pas à nous suivre sur les réseaux sociaux pour rester à jour avec nos dernières publications et annonces. Si vous avez des questions ou des commentaires, n'hésitez pas à nous contacter!

Mizux

Chapter 1	
Section 1	
Section 2	
Chapter 2	
Section 1	
Section 2	
Chapter 3	
Section 1	
Section 2	
Chapter 4	
Section 1	
Section 2	
Chapter 5	

Section 1

Section 2

Chapter 6

Section 1

Section 2

Here is an inline example, \$ \pi(\theta) \$,

an equation,

$$abla f(x) \in \mathbb{R}^n,$$

and a regular \$ symbol.

Define \$f(x)\$:

$$f(x)=x^2 \ x \in ackslash {f R}$$

```
graph TD
   A[ Anyone ] -->|Can help | B( Go to github.com/yuzutech/kroki )
   B --> C{ How to contribute? }
   C --> D[ Reporting bugs ]
   C --> E[ Sharing ideas ]
   C --> F[ Advocating ]
```