

Big Data Analytics – Methoden und Anwendungen
Prof. Dr. Mathias Klier

Lara Frost Chiara Schwenke

Institut für Business Analytics

02.06.2025

Einführung in die Gruppenprojekte

Organisatorische Kurzbeschreibung & Ablauf der Gruppenprojekte

Mo 02.06.

- Ausgabe der Aufgabenstellung und der Datensätze
- Start der Anmeldung für das Gruppenprojekt (Gruppenbildung ab 12:00 Uhr)
 - → siehe Gruppenvergabetool auf Moodle
 - → die maximale Gruppengröße beträgt vier Personen

Mo 09.06.

Um 23:59 Uhr Anmeldeschluss für die Anmeldung zum Gruppenprojekt, ab dann sind die Gruppen fix und können nicht mehr geändert/getauscht werden!

Do 17.07.

- Ende der Bearbeitungszeit
- Abgabe des .ipynb Files sowie der Präsentationsfolien per E-Mail an: lara.frost@uni-ulm.de bis **e.o.d.**

Mo 21.07.

- Präsentation der Gruppenprojekte
- Nennung der Gewinner und Bekanntgabe der erreichten Bonuspunkte ©

Inhaltliche Kurzbeschreibung der Gruppenprojekte

Ausgangssituation

In digitalen Plattformen mit umfangreichen Produkt-, Inhalts- oder Angebotsportfolios fällt es Nutzer:innen zunehmend schwer, relevante Optionen zu finden. Die Folgen:

- sinkende Interaktion der Nutzer:innen.
- geringere Kundenzufriedenheit.
- abnehmende Kundenbindung.

Herausforderungen

- Teils sehr geringe Nutzeraktivität.
- Oft werden nur Bestseller gefunden, keine persönlichen Empfehlungen.

Zielsetzung

- Entwicklung eines Recommender Systems in Python mit Fokus auf Nutzerzufriedenheit, Bewertungsvorhersage und systematischer Evaluierung.
- Hierzu können bspw. die Bausteine der Methoden des Collaborative Filterings sowie des Content-Based Filterings angepasst und kombiniert werden, um die Empfehlungsqualität zu verbessern.
- Vorbereitung einer überzeugenden Präsentation für die jeweiligen Vorstände.

Aufgabenstellung für die Gruppenprojekte

- Entwickeln Sie auf Basis Ihrer Kenntnisse zu Collaborative und Content-Based Filtering das bestmögliche Recommender System in Python. Entwickeln und optimieren Sie Ihr Recommender System, indem Sie bisher vorgestellte Methoden ergänzen, kombinieren, weiterentwickeln, anpassen, konfigurieren, ...
- Ihre Herausforderung:
 - Das bestmögliche Recommender System = höchste Empfehlungsgüte (gemessen am mittleren absoluten Fehler in Sternen, MAE) unter allen Gruppen Ihres Datensatzes.
 - Eine überzeugende Präsentation, in der Sie Ihre Idee und Ihre Ergebnisse vorstellen und den Vorstand von Ihrem Recommender System und Ihrer Arbeit überzeugen!
 - → Ihrer Kreativität sind hier keine Grenzen gesetzt!
- Abgabe bis spätestens 17.07. an <u>lara.frost@uni-ulm.de</u>: .ipynb file & Präsentation in MS PowerPoint (5 10 Folien) mit der Sie Ihren Ansatz Methode(n), Begründung, Ergebnisse / Empfehlungsgüte in der Veranstaltung in max. 8 10 Minuten präsentieren können.

Szenario 1 – FlixNet

- Mit dem Ziel, die Nutzerzufriedenheit auf einer Streaming-Plattform zu verbessern, stellt FlixNet Ihnen Nutzungs- und Bewertungsdaten zu seinem Film- und Serienkatalog bereit.
- Der Datensatz enthält Informationen zu Filmen, die mindestens 5 Bewertungen erhalten haben. Zudem sind die Bewertungen aktiver Nutzer:innen enthalten, die 19 oder mehr Filme bewertet haben.

Informationen zum Datensatz

User: 800

Items: 788

★★☆ Skala: 0 – 5 Sterne

Szenario 2 – SephoBay

- Angetrieben vom Wunsch, die Kundenbindung im Onlinehandel zu steigern, stellt Ihnen SephoBay anonymisierte Bewertungsdaten zu seinen Produkten zur Verfügung.
- Enthalten sind Informationen zu Drogerie-Produkten aus diversen Kategorien, die von mindestens 5 Käufer:innen bewertet wurden sowie die Bewertungen von Nutzer:innen, die 17 oder mehr Produkte bewertet haben.

Informationen zum Datensatz

User: 798

Items: 622

★★☆ Skala: 0 – 5 Sterne

Szenario 3 – Bibliona

- Inspiriert durch die geplante Einführung einer personalisierten Empfehlungsfunktion stellt Ihnen Bibliona einen Datensatz mit Leserbewertungen zur Verfügung.
- Der Datensatz umfasst Informationen zu Büchern, die mindestens 9 Mal bewertet wurden, sowie anonymisierte Bewertungen der Nutzer:innen, die mindestens 5 Bücher bewertet haben.

Informationen zum Datensatz

User: 798

Items: 781

★★☆ Skala: 0 – 10 Sterne

Datensätze und Testdaten

- Zu jedem Szenario sind in Moodle die Bewertungen der betrachteten Nutzer:innen und Unternehmen in den Dateien Bewertungsmatrix.csv und Ratings.csv hinterlegt, sowie in Itemprofile.csv die Itemprofile aller im jeweiligen Szenario betrachteten Unternehmen.
- Diese Dateien haben dieselbe Struktur wie die gleichnamigen Tabellen aus Übung 3 und 4.
- Zudem ist zu jedem Szenario ein Testdatensatz.csv hinterlegt. Hierin sind jeweils ca. 10% aller Bewertungen enthalten, die aus dem Datensatz entfernt wurden.
- Durch die Vorhersage der Testdaten k\u00f6nnen Sie die G\u00fcte ihres Ansatzes messen!
- Weitere ca. 10% aller Bewertungen wurden von uns entfernt und dienen als weiterer Testdatensatz für die Evaluation.

Evaluation: Messung der Güte durch die Vorhersage von Testdaten (I)

 Als Ihre "Auftraggeber" evaluieren wir die Empfehlungsgüte Ihres Recommender Systems anhand streng unter Verschluss gehaltener Evaluationsdaten.

Evaluation: Messung der Güte durch die Vorhersage von Testdaten (II)

Problem

- Vorhersage muss für jeden einzelnen Testdateneintrag (in Sternen) bestimmt werden
- Manuell sehr aufwändig, da die Eingabeparameter der des Recommender Systems (z.B. User und Item) immer neu gesetzt werden müssen

Lösung

 Erzeuge eine Schleife, die automatisiert das Recommender System für alle Testdaten aufruft, die Eingabeparameter entsprechend ändert und die Ergebnisse sammelt.

Ihr Recommender System

- Collaborative Filtering
- Content-Based Filtering
- Kombinationen
- Erweiterungen
- Eigener Ansatz

• ...

Präsentation für den Vorstand

- Bereiten Sie eine Präsentation in MS PowerPoint vor, die ca. 5 -10 Folien umfasst und die Sie am 17.07. in 8-10 Minuten präsentieren können.
 - Veranschaulichen und visualisieren Sie Ihre Idee, sodass diese leicht verständlich ist.
 - Bereiten Sie Ihre Ergebnisse auf, die Sie mit Ihrem Recommender System auf dem Testdatensatz erzielt haben.

Jetzt sind Sie an der Reihe ©

- Entwickeln Sie ein Recommender System, das die Zielgröße mittlerer absoluter Fehler (MAE) für die Testdaten minimiert. Hierfür muss ihr Recommender System eine möglichst exakte Vorhersage in "Sternen" bieten.*
- Seien Sie kreativ, kombinieren Sie bestehende Ansätze, erweitern Sie sie und entdecken Sie neue Funktionen in Python.
- Überzeugen Sie mit Ihrer Präsentation.
- Nutzen Sie bei Fragen das Moodle-Nachrichtenforum.

Viel Erfolg!

^{*}Hinweis: Content-Based Filtering kann also nicht direkt angewendet werden.