Stat 333

APPLIED PROBABILITY

University of Waterloo

Course notes by: TC Fraser Instructor: Yi Shen

Table Of Contents

		Page
1	Review	4
	1.1 Indicator	 . 4
	1.2 Moment Generating Function	 . 5
2	Conditional Distribution and Conditional Expectation	8
	2.1 Conditional Distribution	 . 8
	2.2 Conditional Expectation	 . 9
3	Stochastic Process	12
4	DTMC	12
	4.1 Review of Probability	 . 12
	4.2 Discrete-time Markov Chain	 . 13
	4.3 Transition Probability	
	4.4 Stationary Distribution (Invariant Distribution)	
	4.5 Classification of States	
	4.6 Recurrence and Transience	
	4.7 Recurrence and Transience Again	
	4.8 Limiting Distribution	

Disclaimer

These notes are intended to be a reference for my future self (TC Fraser). If you the reader find these notes useful in any capacity, please feel free to use these notes as you wish, free of charge. However, I do not guarantee their complete accuracy and mistakes are likely present. If you notice any errors please email me at tcfraser@tcfraser.com, or contribute directly at https://github.com/tcfraser/course-notes. If you are the professor of this course (Yi Shen) and you've managed to stumble upon these notes and would like to make large changes or additions, email me please.

Latest versions of all my course notes are available at www.tcfraser.com/coursenotes.

TC Fraser Page 3 of 27

1 Review

If $X \perp Y$ then Cov(X, Y) = 0 and,

$$Var(X + Y) = Var(X) + Var(Y)$$

We see that independence implies uncorrelated, but uncorrelation does not imply independence.

Remark 1. We have that,

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y) \tag{1.1}$$

If $X \perp \!\!\! \perp Y$ then we also have that,

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y) \tag{1.2}$$

and that,

$$Var(XY) = Var(X)Var(Y) \tag{1.3}$$

It is important to remember that the first result (eq. (1.1)) and the other two results (eqs. (1.2) and (1.3)) have a very different natures. The first is a consequence of the linearity in the definition of expectation and holds unconditionally. However eqs. (1.2) and (1.3) require that $X \perp Y$. As such it is more appropriate to consider eqs. (1.2) and (1.3) as properties of independence rather than the properties of expectation and variance.

1.1 Indicator

A r.v. 1 is called an **indicator** for an event A if,

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

The most important property of the indicator random variable is that the expectation of $\mathbf{1}_A$ is the same as the probability of the event A,

$$\mathbb{E}(\mathbf{1}_A) = P(A)$$

Proof. Since $\mathbf{1}_A$ is a Bernoulli random variable, the proof is easy. Consider,

$$P(\mathbf{1}_A = 1) = P(\{\omega : \mathbf{1}_A(\omega) = 1\})$$
$$= P(\{\omega : \omega \in A\})$$
$$= P(A)$$

Therefore the expectation of $\mathbf{1}_A$ must be,

$$\mathbb{E}(\mathbf{1}_A) = 1 \cdot P(\mathbf{1}_A = 1) + 0 \cdot P(\mathbf{1}_A = 0) = P(\mathbf{1}_A = 1) = P(A)$$

Example 1. We see $\mathbf{1}_A$ is just a Bernoulli random variable,

$$\mathbf{1}_A \sim \mathsf{Ber}(P(A))$$

Example 2. Let $X \sim \text{Bin}(n, p)$; X is the number of successes in n Bernoulli trials, each with a probability p of success.

$$X = \mathbf{1}_1 + \dots + \mathbf{1}_n \tag{1.4}$$

Where $\{\mathbf{1}_1, \dots, \mathbf{1}_n\}$ are indicators for independent events. $\mathbf{1}_i = 1$ if the *i*-th trial is a success and $\mathbf{1}_i = 0$ if the *i*-th trial is a failure. Hence, I_i are iid (independent and identically distributed) r.v.s. It is known that the expectation of X is given by,

$$\mathbb{E}(X) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

TC Fraser Page 4 of 27

However eq. (1.4) yields the following approach,

$$\mathbb{E}(X) = \mathbb{E}(\mathbf{1}_1 + \dots + \mathbf{1}_n)$$

$$= \mathbb{E}(\mathbf{1}_1) + \dots + \mathbb{E}(\mathbf{1}_n)$$

$$= n\mathbb{E}(\mathbf{1}_1)$$

$$= np$$

Moreover,

$$\begin{aligned} \mathsf{Var}(X) &= \mathsf{Var}(\mathbf{1}_1 + \dots + \mathbf{1}_n) \\ &= \mathsf{Var}(\mathbf{1}_1) + \dots + \mathsf{Var}(\mathbf{1}_n) \quad \text{Independence} \\ &= n \mathsf{Var}(\mathbf{1}_1) \\ &= n p (1-p) \end{aligned}$$

The variance $Var(I_1)$ is given by,

$$\mathsf{Var}(I_1) = \mathbb{E}(I_1^2) - (\mathbb{E}(I_1))^2$$

But notice that $I_1^2 = I_1$ is idempotent. Therefore,

$$Var(I_1) = p - p^2 = p(1 - p)$$

Example 3. Let X be a r.v. taking values in non-negative integers $\{0, 1, 2...\}$. Then we find that the expectation of X is given by,

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} P(X > n)$$

Note that,

$$X = \sum_{n=0}^{\infty} \mathbf{1}_n$$

Where notationally $\mathbf{1}_n \equiv \mathbf{1}_{\{X>n\}}$. The intuition being that if X=3, then X=1+1+1 since $X=\underbrace{\mathbf{1}_0+\mathbf{1}_1+\mathbf{1}_2}_{2}+\underbrace{\mathbf{1}_3}_{2}+\ldots$

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{n=0}^{\infty} \mathbf{1}_{n}\right)$$

$$= \sum_{n=0}^{\infty} \mathbb{E}(\mathbf{1}_{n}) \quad \text{Fubini's Theorem}$$

$$= \sum_{n=0}^{\infty} P(X > n)$$

Example 4. In particular let $X \sim \mathsf{Geo}(p)$ where $\mathbb{E}(X) = \sum_{k=0}^{\infty} k(1-p)^{k-1}p$. More easily we have seen that $P(X > n) = (1-p)^n$. Therefore by the geometric series,

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} P(X > n) = \sum_{n=0}^{\infty} (1 - p)^n = \frac{1}{1 - (1 - p)} = \frac{1}{p}$$

1.2 Moment Generating Function

Definition 1. Let X be a r.v. Then the function,

$$M(t) = \mathbb{E}(e^{tX}) \tag{1.5}$$

is called the **moment generating function (mgf)** if X if the expectation exists for all $t \in (-h, h)$ for some h > 0.

TC Fraser Page 5 of 27

 $Remark\ 2.$ The moment generating function M is not always defined. It is important to check the existence of the expectation.

To compensate this, the latter condition in definition 1 is necessary because the expectation $\mathbb{E}(e^{tX})$ might not always exist for some t. Also notice that M(0) = 1 always.

We will now discuss some important properties of the moment generating function.

Theorem 1. The moment generating function generates moments. For t = 0,

$$M(0) = 1$$

Also,

$$M^{(k)}(0) \equiv \frac{\mathrm{d}^k}{\mathrm{d}t^k} M(t) \mid_{t=0}$$

Has the nice property,

$$M^{(k)}(0) = \mathbb{E}(X^k)$$

Proof. Evidently,

$$M(0) = \mathbb{E}(e^{0 \cdot X}) = \mathbb{E}(1) = 1$$

Moreover,

$$M^{(k)}(0) = \frac{\mathrm{d}^k}{\mathrm{d}t^k} M(t) \mid_{t=0}$$

$$= \frac{\mathrm{d}^k}{\mathrm{d}t^k} \mathbb{E}(e^{tX}) \mid_{t=0}$$

$$= \mathbb{E}\left(\frac{\mathrm{d}^k}{\mathrm{d}t^k} e^{tX} \mid_{t=0}\right) \quad \text{Dominant convergence theorem.}$$

$$= \mathbb{E}\left(X \frac{\mathrm{d}^{k-1}}{\mathrm{d}t^{k-1}} e^{tX} \mid_{t=0}\right)$$

$$= \cdots$$

$$= \mathbb{E}(X^k e^{tX} \mid_{t=0})$$

$$= \mathbb{E}(X^k)$$

As a result Taylor series gives,

$$M(t) = \sum_{k=0}^{\infty} \frac{M^{(k)}(0)}{k!} t^k$$
$$= \sum_{k=0}^{\infty} \frac{\mathbb{E}(X^k)}{k!} t^k$$

Which is a method that can be used to obtain the moment of a mgf.

Theorem 2. Let $X \perp Y$ with mgfs M_x and M_y be respective mgfs. Let M_{X+Y} be the mgf of X+Y. Then,

$$M_{X+Y} = M_X M_Y$$

Proof.

$$M_{X+Y}(t) = \mathbb{E}\left(e^{t(X+Y)}\right)$$

$$= \mathbb{E}\left(e^{tX}e^{tY}\right)$$

$$= \mathbb{E}\left(e^{tX}\right)\mathbb{E}\left(e^{tY}\right) \quad \text{Independence}$$

$$= M_X(t)M_Y(t)$$

TC Fraser Page 6 of 27

Theorem 3. The moment generating function completely determines the distribution of a r.v.

$$M_X(t) = M_Y(t) \quad \forall t \in (-h, h)$$

For some h > 0, then

$$X \stackrel{d}{=} Y$$

Which denotes that the random variables have the same distribution.

How can the moment generating function help?

Example 5. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ where $X \perp \!\!\! \perp \!\!\! \perp Y$. Find the distribution of X + Y. To answer this, first derive the moment generating function of a Poisson distribution.

$$M_X(t) = \mathbb{E}(e^{tX})$$

$$= \sum_{n=0}^{\infty} e^{tn} P(X = n)$$

$$= \sum_{n=0}^{\infty} e^{tn} \frac{\lambda_1^n}{n!} e^{-\lambda_1}$$

$$= e^{-\lambda_1} \sum_{n=0}^{\infty} \frac{(e^t \lambda_1)^n}{n!}$$

$$= e^{-\lambda_1} e^{(e^t \lambda_1)} \quad \text{Taylor series}$$

$$= e^{\lambda_1} (e^{t-1})$$

Likewise, $M_Y(t) = e^{\lambda_2(e^t - 1)}$. Therefore since $X \perp Y$,

$$M_{X+Y}(t) = M_X(t)M_Y(t) = e^{(\lambda_1 + \lambda_2)(e^t - 1)}$$

Therefore by theorem 3, the distribution of X + Y is the same distribution as $Poi(\lambda_1 + \lambda_2)$.

In general, if X_1, X_2, \ldots, X_n are independent and $X_i \sim \mathsf{Poi}(\lambda_i)$, then,

$$\sum_{i=1}^n X_i \sim \mathsf{Poi}\!\left(\sum_{i=1}^n \lambda_i
ight)$$

Definition 2. Moreover, we define the **joint moment generating function (jmgf)** for X, Y random variables to be,

$$M(t_1, t_2) = \mathbb{E}\left(e^{t_1 X + t_2 Y}\right)$$

Provided that the expectation exists for $t_1 \in (-h_1, h_1)$ and $t_2 \in (-h_2, h_2)$ for $h_1, h_2 > 0$.

Evidently, the joint moment generating function can be defined for any number of random variables. More generally, we can define the joint moment generating function with parameters t_1, \ldots, t_n to be,

$$M(t_1, \dots, t_n) = \mathbb{E}\left(\exp\left(\sum_{i=1}^n t_i X_i\right)\right)$$

For r.v.s X_1, \ldots, X_n provided that the expectation exists for $t_i \in (-h_i, h_i)$ for some $h_i > 0$ for $i = 1, \ldots, n$. There are some nice properties of the jmgf. First, it should be possible to obtain the mgf from a particular r.v. X_i from the jmgf which includes X_i .

Notice that,

$$M_X(t) = \mathbb{E}(e^{tX}) = \mathbb{E}(e^{t \cdot X + 0 \cdot Y}) = M_{XY}(t, 0)$$

TC Fraser Page 7 of 27

Another property of the jmgf is,

$$\frac{\partial^{m+n}}{\partial t_1^m \partial t_2^n} M(t_1, t_2) \mid_{0,0} = \mathbb{E}(X^m Y^n)$$

The proof being very similar to the single r.v. case.

Thirdly, we have that if $X \perp \!\!\! \perp Y$, then,

$$M(t_1, t_2) = M_X(t_1)M_Y(t_2) \tag{1.6}$$

Proof.

$$M(t_1, t_2) = \mathbb{E}(e^{t_1 X + t_2 Y})$$

$$= \mathbb{E}(e^{t_1 X} e^{t_2 Y})$$

$$= \mathbb{E}(e^{t_1 X}) \mathbb{E}(e^{t_2 Y}) \quad \text{Independence}$$

$$= M_X(t_1) M_Y(t_2)$$

Remark 3. It is important not to confuse this result with theorem 2. The difference being that theorem 2 is a single argument mgf while eq. (1.6) is a multi-parameter function,

$$M_{X+Y}(t) \neq M_{X,Y}(t_1, t_2)$$

Therefore knowing that $M_{X+Y}(t)$ is separable does not imply that $X \perp Y$. eq. (1.6) is a stronger statement than theorem 2.

2 Conditional Distribution and Conditional Expectation

2.1 Conditional Distribution

We first begin with the discrete case.

Definition 3. Let X and Y ne discrete r.v.s. Then the **conditional distribution** of X given Y is given by,

$$P(X=x\mid Y=y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

We read this as the probability of the event $\{X = x\}$ given that $\{Y = y\}$ holds. We can also write this as a conditional pmf,

$$f_{X|Y=y}(x)$$
 or $f_{X|Y}(x \mid y)$

The conditional probability is a legitimate pmf. First note that as required,

$$f_{X|Y=y}(x) \ge 0 \quad \forall x$$

Also it should be clear that,

$$\sum_{x} f_{X|Y=y}(x) = 1$$

In fact, P(Y = y) acts a normalization constant for the probabilities $\sum_{x} P(X = x, Y = y)$. Note that given Y = y, as X changes, the value of the function $f_{X|Y=y}(x)$ is proportional to the joint probability P(X = x, Y = y).

$$f_{X|Y=y}(x) \propto P(X=x, Y=y) \tag{2.1}$$

Namely the proportionality constant is of course $(P(Y = y))^{-1}$. Although easy to understand, eq. (2.1) can be used to solve problems where the denominator P(Y = y) is difficult to find.

TC Fraser

Example 6. Let $X_1 \sim \text{Poi}(\lambda_1)$ and $X_2 \sim \text{Poi}(\lambda_2)$ such that $X_1 \perp \!\!\! \perp X_2$ and $Y = X_1 + X_2$. Then we can find $P(X_1 = k \mid Y = n) = f_{X\mid Y = y}(k)$ using the following process. Notice that $f_{X\mid Y = y}(k)$ can only be non-zero when $0 \leq k \leq n$ in order for $Y = X_1 + X_2$. In this case for fixed n,

$$P(X_1 = k \mid Y = n) = \frac{P(X_1 = k, Y = n)}{P(Y = n)} \propto P(X_1 = k, Y = n)$$

But since $Y = X_1 + X_2$ it must be that,

$$P(X_{1} = k \mid Y = n) \propto P(X_{1} = k, X_{2} = n - k)$$

$$= e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!}$$

$$\propto \frac{\lambda_{1}^{k}}{k!} \frac{\lambda_{2}^{-k}}{(n-k)!}$$
(2.2)

If we want to find the exact proportionality constant for eq. (2.2), we simply need to normalize $P(X_1 = k \mid Y = n)$ by summing over all values of k in eq. (2.2),

$$P(X_1 = k \mid Y = n) = \frac{\lambda_1^k}{k!} \frac{\lambda_2^{-k}}{(n-k)!} \left\{ \frac{\lambda_1^k}{k!} \frac{\sum_{k=0}^n \lambda_2^{-k}}{(n-k)!} \right\}^{-1}$$

Proceeding using this technique is difficult because of the nasty summation. The easier way is to continue the proportionality analysis. Compare eq. (2.2) with the known result for common distributions. In particular, let's consider $X \sim \text{Bin}(n, p)$,

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1 - p)^{n-k}$$

Removing constants,

$$P(X = k) \propto \left(\frac{p}{1-p}\right)^k (k!(n-k)!)^{-1}$$

Choosing $p/(1-p) = \lambda_1/\lambda_2$, then,

$$P(X_1 = k \mid Y = n) \propto P(X = k)$$

Therefore we can conclude that $P(X_1 = k \mid Y = n)$ follows a binomial distribution with parameters n and p given by,

$$\frac{p}{1-p} = \frac{\lambda_1}{\lambda_2} \implies p = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

Therefore.

$$P(X_1 = k \mid Y = n) = \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(1 - \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)\right)^{n-k}$$

We introduce the following notation. Denoted $X, Y \mid \{Z = k\} \stackrel{\text{iid}}{\sim} \cdots$, this means that X and Y are **conditionally independent** and follows a certain distribution. i.e. the conditional joint cdf/pmf/pdf equals to the product of conditional (marginal) cdfs/pmfs/pdfs.

2.2 Conditional Expectation

We have seen that conditional pmf/pdf are legitimate pmf/pdf. Correspondingly, a conditional distribution is nothing else but a probability distribution. It is simply a potentially different distribution from the original unconditional distribution, since it takes more information into account.

As a result, we can define everything which are previously defined for unconditional distributions for conditional distributions. In particular, it is natural to define the conditional expectation as follows.

TC Fraser Page 9 of 27

Definition 4. The **conditional expectation** of g(X) given Y = y is defined as,

$$\mathbb{E}(g(X) \mid Y = y) = \begin{cases} \sum_{n=1}^{\infty} g(x_i) P(X = x_i \mid Y = y) & X \mid Y = y \text{ is discrete} \\ \int_{-\infty}^{+\infty} g(x) f_{X|Y}(x \mid y) \mathrm{d}x & X \mid Y = y \text{ is continuous} \end{cases}$$

The conditional expectation is nothing else but the expectation taken under the conditional distribution. There are of course different way t understand conditional expectations.

- 1. Fix a value y, $\mathbb{E}(g(X) \mid Y = y)$ is a number
- 2. As y changes $\mathbb{E}(g(X) \mid Y = y)$ is a function of y
- 3. Since Y is actually a random variable, we can define $\mathbb{E}(g(X) \mid Y) = h(Y)$ as a random variable itself.

$$\mathbb{E}(g(X) \mid Y)_{(\omega)} = \mathbb{E}(g(X) \mid Y = Y_{(\omega)})$$

This random variable takes value $\mathbb{E}(g(X) \mid Y = y)$ when Y = y.

Theorem 4. Properties of conditional expectation:

1. Linearity (inherited from expectation)

$$\mathbb{E}(aX + b \mid Y = y) = a\mathbb{E}(X \mid Y = y) + b$$

$$\mathbb{E}(X + Z \mid Y = y) = \mathbb{E}(X \mid Y = y) + \mathbb{E}(Z \mid Y = y)$$

2.
$$\mathbb{E}(g(X,Y) \mid Y = y) = \mathbb{E}(g(X,y) \mid Y = y)$$

Proof. (Discrete Case)

$$\mathbb{E}(g(X,Y) \mid Y = y) = \sum_{x_i} \sum_{y_j} g(x_i, y_j) P(X = x_i, Y = y_j \mid Y = y)$$

Where $P(X = x_i, Y = y_j \mid Y = y)$ is self-contradictory if $y_j \neq y$. Therefore,

$$P(X = x_i, Y = y_i \mid Y = y) = \begin{cases} 0 & y_j \neq y \\ P(X = x_i \mid Y = y) & y_j = y \end{cases}$$

Therefore,

$$\mathbb{E}(g(X,Y) \mid Y = y) = \sum_{x_i} g(x_i, y_j) P(X = x_i \mid Y = y)$$
$$= \mathbb{E}(g(X,y) \mid Y = y)$$

Where g(X, y) is simply regarded as a function of X.

Remark 4. In particular if g(X,Y) is separable, we have that,

$$\mathbb{E}(q(X)h(Y) \mid Y = y) = h(y)\mathbb{E}(q(X) \mid Y = y)$$

Which implies that,

$$\mathbb{E}(q(X)h(Y) \mid Y) = h(Y)\mathbb{E}(q(X) \mid Y)$$

Theorem 5. If $X \perp \!\!\! \perp Y$ then,

$$\mathbb{E}(q(X) \mid Y = y) = \mathbb{E}(q(X))$$

Proof. If $X \perp Y$ then the conditional distribution of X given Y = y is the same as the unconditional distribution of X. We can easily prove this for the pmf in the discrete case.

$$P(X = x_i \mid Y = y) = \frac{P(X = x_i, Y = y)}{Y = y} = \frac{P(X = x_i)P(Y = y)}{Y = y} = P(X = x_i)$$

TC Fraser Page 10 of 27

Theorem 6. Law of iterated expectation:

$$\mathbb{E}(\mathbb{E}(X \mid Y)) = \mathbb{E}(X)$$

The law of iterated expectation is easy to digest when one understands that $\mathbb{E}(X \mid Y)$ is r.v. function of Y. *Proof.* (Discrete Case) We know that when $Y = y_i$,

$$\mathbb{E}(X \mid Y = y_j) = \sum_{x_i} x_i P(X = x_i \mid Y = y_j)$$

This happens with probability that $Y = y_i$. Therefore,

$$\mathbb{E}(\mathbb{E}(X \mid Y)) = \sum_{y_j} (\mathbb{E}(X \mid Y = y_j)) P(Y = y_j)$$

$$= \sum_{y_j} \left(\sum_{x_i} x_i P(X = x_i \mid Y = y_j) \right) P(Y = y_j)$$

$$= \sum_{x_i} x_i \sum_{y_j} P(X = x_i \mid Y = y_j) P(Y = y_j)$$

$$= \sum_{x_i} x_i \sum_{y_j} P(X = x_i, Y = y_j)$$

$$= \sum_{x_i} x_i P(X = x_i)$$

$$= \mathbb{E}(X)$$

Example 7. Let's say that Y is the number of claims received by an insurance company and $X \sim \mathsf{Exp}(\lambda)$ is some random parameter. We know that $Y \mid X \sim \mathsf{Poi}(X)$ which denotes that,

$$\forall x: Y \mid X = x \sim \mathsf{Poi}(x)$$

What then is $\mathbb{E}(Y)$? Since $Y \mid X \sim \mathsf{Poi}(X)$ we have that,

$$\mathbb{E}(Y \mid X = x) = x \implies \mathbb{E}(Y \mid X) = X$$

Therefore by theorem 6,

$$\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y \mid X)) = \mathbb{E}(X) = \frac{1}{\lambda}$$

What then is P(Y = n)?

$$P(Y = n) = \int_0^\infty P(Y = n \mid X = x) f_X(x) dx$$

$$= \int_0^\infty \frac{e^{-x} \lambda^n}{n!} \lambda e^{-\lambda x} dx$$

$$= \frac{\lambda}{n!} \int_0^\infty x^n e^{-(\lambda + 1)x} dx$$

$$= \frac{\lambda}{(\lambda + 1)^{n+1} n!} \int_0^\infty ((\lambda + 1)x)^n e^{-(\lambda + 1)x} d(\lambda + 1)x$$

$$= \frac{\lambda}{(\lambda + 1)^{n+1} n!} \Gamma(n + 1)$$

TC Fraser

$$= \frac{\lambda}{(\lambda+1)^{n+1}n!}n!$$

$$= \frac{\lambda}{(\lambda+1)^{n+1}}$$

$$= \left(\frac{1}{1+\lambda}\right)^n \left(1 - \frac{1}{\lambda+1}\right)$$

Therefore $Y + 1 \sim \text{Geo}(\lambda/\lambda + 1)$.

Todo (TC Fraser): Finish this lecture.

Theorem 7. Decomposition of Variance (EVE's law): Let X, Y be random variables. Then,

$$Var(Y) = \mathbb{E}(Var(Y \mid X)) + Var(\mathbb{E}(Y \mid X))$$

3 Stochastic Process

To begin, the entomology of *stochastic* is that it comes an Asian word which means to *aim* (at). As an example, in archery, aiming at a target is related to the idea of guessing where the target will be. In short, stochastic should be taken as a synonym for *random*. A *process* is something that changes over time. In conclusion, a **stochastic** process is a system that random changes over time.

As a simple system consider the system in question to be a number. There are two distinct ways to understand the definition of a stochastic process.

Therefore the two interpretations of a stochastic process are as follows:

- 1. A sequence of random variables
- 2. A random function

Attempts to formulate the second interpretation have faced many difficulties. As such, we define a stochastic process as:

4 DTMC

4.1 Review of Probability

A random variable (r.v.) X is a real valued function of the outcomes of a random experiment.

$$X:\Omega\to R$$

Where $\Omega = \{\omega_1, \omega_2, \ldots\}$ is the **sample space** corresponding to all possible outcomes ω_i . The outcomes can in principle be any objects (numbers, strings, etc.). We say that X maps each outcome ω to a real number $\omega \mapsto X(\omega) \in \mathbb{R}$.

TC Fraser Page 12 of 27

A stochastic process is a family of random variables $\{X_t\}_{t\in T}$, defined on a common sample space Ω . T is referred to as the index set for the stochastic process which is often understood as time. The index set T can take a discrete spectrum,

$$T = \{0, 1, 2, \ldots\}$$
 $\{X_n \mid n = 0, 1, 2, \ldots\}$

Alternatively, T can take on a continuous spectrum,

$$T = \{t \mid t \ge 0\} = [0, \infty)$$

The state space S is the collection of all possible values of X_t 's. It is important to understand the distinction of between sample space and state space. Additionally, the state space can either have discrete or continuous spectrum.

A question remains, Why do we need the family of random variables to be defined on a common sample space? The answer being that we would like to be able to discuss the joint behaviour of X_t 's. If X_1 has domain Ω_1 and X_2 has domain Ω_2 (where $\Omega_1 \neq \Omega_2$), then one can not talk about common ideas of correlations and associations between X_1 and X_2 . As such we assert that all members of a stochastic process share the same sample space domain Ω .

4.2 Discrete-time Markov Chain

A discrete-time stochastic process $\{X_n \mid n \in 0, 1, 2, ...\}$ is said to be a Discrete-time Markov Chain (DTMC) if the following conditions hold:

1. The state space is at most $countable^1$ (i.e. finite or countable).

$$S = \{0, 1, \dots, k\}$$
 or $S = \{0, 1, 2, \dots\}$

2. Markov Property: For any $n = 0, 1, 2, \ldots$

$$P(X_{n+1} = x_{n+1} \mid X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = P(X_{n+1} = x_{n+1} \mid X_n = x_n)$$

We use capital letters X to denote the random variable and lower case letters x to denote a specific realization or valuation of X. The motivation of the Markov property is that future events $X_{n+1} = x_{n+1}$ are independent of past histories $\{X_i = x_i \mid i = 0, 1, \dots, n-1\}$ given the immediate past state $X_n = x_n$. The intuition being that the future and the past are probabilistically independent.

Given the present, the future and the past are independent.

4.3 Transition Probability

The transition probability from a state $i \in S$ at time n to state $j \in S$ (at time n+1) is given by,

$$P_{n,i,j} \equiv P(X_{n+1} = j \mid X_n = i) \qquad n = 0, 1, 2, \dots$$
 (4.1)

In full generality, the transition probability could depend on time n but in this course we will restrict ourselves to transition probabilities that do not depend on time n ($P_{n,i,j} = P_{i,j}$). We say that the markov chain is (time-)homogeneous if this property holds. From now on, this will be our default setting.

The matrix of all transition probabilities $P = \{P_{i,j} \mid i, j \in S\}$ is called the **one-step transition (probability) matrix** for $\{X_n \mid n \in T\}$.

$$P = \begin{pmatrix} P_{00} & P_{01} & \cdots & P_{0j} & \cdots \\ P_{10} & P_{11} & \cdots & P_{1j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \cdots \\ P_{i0} & P_{i1} & \cdots & P_{ij} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

TC Fraser Page 13 of 27

¹Countable meaning there is a one-to-one mapping from the state space to the natural numbers.

The one-step transition matrix P has the following properties:

1. The entries of P are non-negative:

$$P_{i,j} \ge 0 \tag{4.2}$$

2. The rows of P sum to unity:

$$\forall i: \sum_{j \in S} P_{ij} = 1 \tag{4.3}$$

The n-step transition probability is defined via the homogeneous property,

$$\forall i, j \in S : P_{ij}^{(n)} \equiv P(X_{n+m} = j \mid X_n = i) = P(X_n = j \mid X_m = i)$$

Analogously, the **n-step transition matrix** is the matrix,

$$P^{(n)} = \left\{ P_{ij}^{(n)} \mid i, j \in S \right\}$$

Theorem 8. There is a simple relation between the n-step transition matrix $P^{(n)}$ and the one step transition matrix P.

$$P^{(n)} = P^{(n-1)} \cdot P = \underbrace{P \cdot P \cdot \dots \cdot P}_{n} = P^{n}$$

Proof. Proof by induction:

$$P^{(1)} = P$$
 By definition.

We also have $P^{(0)} = P^0 = 1$ is the identity matrix. We now assume $P^{(n)} = P^n$. Then $\forall i, j \in S$,

$$\begin{split} P_{ij}^{(n+1)} &= P(X_{n+1} = j \mid X_0 = i) \\ &= \sum_{k \in S} P(X_{n+1} = j, X_n = k \mid X_0 = i) \quad \text{Total probability} \\ &= \sum_{k \in S} \frac{P(X_{n+1} = j, X_n = k, X_0 = i)}{P(X_0 = i)} \\ &= \sum_{k \in S} \frac{P(X_{n+1} = j, X_n = k, X_0 = i)}{P(X_n = k, X_0 = i)} \frac{P(X_n = k, X_0 = i)}{P(X_0 = i)} \\ &= \sum_{k \in S} P(X_{n+1} = j \mid X_n = k, X_0 = i) \cdot P(X_n = k \mid X_0 = i) \quad \text{Conditional total probability} \\ &= \sum_{k \in S} P(X_{n+1} = j \mid X_n = k) \cdot P(X_n = k \mid X_0 = i) \quad \text{Use Markov Property} \\ &= \sum_{k \in S} P_{kj} \cdot P_{ik}^{(n)} \quad \text{Matrix terms} \\ &= \left(P \cdot P^{(n)}\right)_{ij} \quad \text{Matrix product} \\ &= \left(P^{n+1}\right)_{ij} \quad \text{Inductive Hypothesis} \end{split}$$

There we have proved that $P^{(n+1)} = P^{n+1}$ and so we have a completed the proof that $P^{(n)} = P^n$.

This result is very fundamental. We now have a relationship between the n-step transition matrix and the 1-step transition matrix (namely $P^{(n)} = P^n$). It is important to not to be confused by notation $(P^{(n)} = P^n)$ is not a tautology). $P^{(n)}$ is a single matrix with entries populated by n-step transition probabilities while P^n is a single matrix multiplied by itself n-1 times.

TC Fraser Page 14 of 27

Corollary 9. As a corollary, we have obtained that,

$$P^{(n)} = P^{(m)} \cdot P^{(n-m)} \quad \forall 0 \le m \le n$$

Or equivalently the Chapman-Kolmogorov (C-K) Equation,

$$P_{ij}^{(n)} = \sum_{k \in S} P_{ik}^{(m)} P_{kj}^{(n-m)} \quad \forall i, j \in S, \forall 0 \le m \le n$$
(4.4)

It is very common to use the entry-wise form of the C-K equation (eq. (4.4)) instead of the more compact but less expressive matrix form $(P^{(n)} = P^{(m)} \cdot P^{(n-m)})$. Pictorially the C-K gives reveals the following picture that holds for all Markov chains,

So far, we have only been discussing transition probabilities. We will now divert our attention to actual distributions for a stochastic process.

Let $\alpha_n = (\alpha_{n,0}, \alpha_{n,1}, ...)$ be the **probability distribution vector** for X_n at time n.

$$\alpha_{n,k} = P(X_n = k) \quad \forall k \in S$$

Note that $\alpha_{n,k} \geq 0$ and $\sum_{k \in S} \alpha_{n,k} = 1$ and $n = 0, 1, 2, \dots$ We also define the initial distribution α_0 ,

$$\alpha_0 = (P(X_0 = 0), P(X_0 = 1), \ldots)$$

Theorem 10. The transition probability matrix reveals the following relationship between the distribution α_n at time n and the distribution α_0 at time 0,

$$\alpha_n = \alpha_0 \cdot P^n \tag{4.5}$$

Proof. The proof eq. (4.5) is quite trivial:

$$\forall j \in S \quad \alpha_{n,j} = P(X_n = j)$$

$$= \sum_{i \in S} P(X_n = j \mid X_0 = i) \cdot P(X_0 = i)$$

$$= \sum_{i \in S} \alpha_{0,i} \cdot P_{ij}^n$$

$$= \alpha_{0,0} \cdot P_{0j}^n + \alpha_{0,1} \cdot P_{1j}^n + \dots$$

$$= (\alpha_0 \cdot P^n)_i$$

TC Fraser Page 15 of 27

More generally, for any n = 1, 2, ... the finite dimensional distribution can be obtained from the following process iterative process,

$$P(X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0) =$$

$$P(X_0 = x_0) \cdot$$

$$P(X_1 = x_1 \mid X_0 = x_0) \cdot$$

$$P(X_2 = x_2 \mid X_1 = x_1, X_0 = x_0) \cdots$$

$$P(X_n = x_n \mid X_{n-1} = x_{n-1}, \dots, X_0 = x_0)$$

But by the Markov condition, it must be that,

$$P(X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0) =$$

$$P(X_0 = x_0) \cdot$$

$$P(X_1 = x_1 \mid X_0 = x_0) \cdot$$

$$P(X_2 = x_2 \mid X_1 = x_1) \cdots$$

$$P(X_n = x_n \mid X_{n-1} = x_{n-1})$$

First recognize the first term on the RHS $(P(X_0 = x_0) = \alpha_{0,x_0})$, and also the remaining terms are transition probabilities as per eq. (4.1). Therefore it must be that,

$$P(X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = \alpha_{0,x_0} P_{x_0 x_1} P_{x_1 x_2} \dots P_{x_{n-1} x_n}$$

Even more generally, for $0 \le t_1 < t_2 < \cdots < t_n$,

$$P(X_{t_n} = x_{t_n}, X_{t_{n-1}} = x_{t_{n-1}}, \dots, X_{t_1} = x_{t_1}) = P(X_{t_1} = x_{t_1}) (P^{t_2 - t_1})_{x_{t_1} x_{t_2}} (P^{t_3 - t_2})_{x_{t_2} x_{t_3}} \cdots (P^{t_n - t_{n-1}})_{x_{t_{n-1}} x_{t_n}}$$

Since
$$P(X_{t_1} = x_{t_1}) = \alpha_{t_1 x_{t_1}} = \sum_{k \in S} \alpha_{0,k} P_{k,x_{t_1}}^{t_1}$$
,

$$\alpha_{t_1} = \alpha_0 \cdot P^{t_1} \tag{4.6}$$

Remark 5. Equation (4.5) carries a very important interpretation. The probabilistic properties of a Discrete-Time Markov Chain (DTMC) are fully characterized by two things:

- 1. The initial distribution α_0
- 2. Transition matrix P

Knowing both the initial distribution and transition matrix fully determines the distribution α_n for all times n.

4.4 Stationary Distribution (Invariant Distribution)

In this section, we are interested in determining which distributions α_0 remain unchanged for all time $n \in T$.

Definition 5. A probability distribution $\pi = (\pi_0, \pi_1, \cdots)$ is called a **stationary (invariant) distribution** of the DTMC $\{X_n\}_{n=0,1,\cdots}$ with transition matrix P if the following conditions hold,

1. The transition matrix does not change π :

$$\pi = \pi \cdot P \tag{4.7}$$

2. The vector π is a valid probability distribution,

$$\sum_{i \in S} \pi_i = 1 \qquad \pi_i \ge 0 \tag{4.8}$$

TC Fraser Page 16 of 27

Notice that if we posit that π is a probability distribution, then the second condition is already satisfied. Nonetheless, in practice we are able to find candidate π 's using the the first condition and then we need to check these candidates against the second condition. In general, if $\sum_{i \in S} \pi_i$ is bounded (i.e. $\sum_{i \in S} \pi_i < \infty$) then it is possible to normalize the candidate π in order to satisfy eq. (4.8).

Why are such π 's called stationary/invariant distributions? Notice that eq. (4.7) completely answers this question. Assume that the MC starts with initial distribution $\alpha_0 = \pi$ for X_0 . In this case, the distribution of X_1 is determined by P,

$$\alpha_1 = \alpha_0 \cdot P$$

But since α_0 is π and π satisfies eq. (4.7),

$$\alpha_1 = \pi \cdot P = \pi$$

The distribution for X_1 is the same as the distribution for X_0 . This process continues,

$$\alpha_2 = \alpha_1 \cdot P = \pi \cdot P = \pi$$

$$\alpha_n = \alpha_0 \cdot P^n = \pi \cdot P^n = \pi \cdot P^{n-1} = \dots = \pi$$

Thus if the Markov chain starts with a stationary/invariant distribution then its marginal distribution will never change; hence why we refer π as stationary. Also not that this does not indicate that the value of X_i does not change over time (it almost certainly will), but its distribution does.

Example 8. Consider an electron with two states: ground (0) and excited (1). Let X_n be the state at time n. At each step, with probability α the MC chains state if it is in the ground state. With probability β the MC will transition to the ground state if it is in the excited state. Then $\{X_n\}_{n=0,1,\ldots}$ is a DTMC and its transition matrix is,

$$P = \begin{pmatrix} 0 & (0) & (1) \\ (1) & 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

Now let us solve for the stationary distribution π .

$$\pi = \pi \cdot P$$
 $\pi = (\pi_0, \pi_1)$ $\pi_0 + \pi_1 = 1$

Therefore,

$$\pi_0 = (1 - \alpha)\pi_0 + \beta\pi_1 \tag{4.9}$$

$$\pi_1 = \alpha \pi_0 + (1 - \beta)\pi_1 \tag{4.10}$$

However note that these two equations are not linearly independent. This is evident because summing eq. (4.9) with eq. (4.10) results in the trivial statement of $\pi_0 + \pi_1 = \pi_0 + \pi_1$. Nonetheless rearranging eq. (4.9) gives,

$$\alpha \pi_0 = \beta \pi_1 \implies \frac{\pi_0}{\pi_1} = \frac{\beta}{\alpha}$$

This is where we need $\pi_0 + \pi_1 = 1$.

$$\pi_0 = \frac{\beta}{\alpha + \beta}$$
 $\pi_1 = \frac{\alpha}{\alpha + \beta}$

Where $\alpha + \beta$ is considered the normalizing constant.

An important remark: sometimes the candidate distribution is not normalizable. In particular, there are configurations where eq. (4.7) is satisfiable but eq. (4.8) is not. In the above example, there exists a unique stationary distribution,

$$\pi = \left(\frac{\alpha}{\alpha + \beta}, \frac{\beta}{\alpha + \beta}\right)$$

If $\alpha_0 = \pi$ then we know immediately that,

$$P(X_n = 0) = \frac{\beta}{\alpha + \beta}$$
 $P(X_n = 1) = \frac{\alpha}{\alpha + \beta}$ $\forall n = 1, 2, ...$

TC Fraser Page 17 of 27

Remark 6. By the above procedure of solving for stationary distribution is typical.

- 1. Use eq. (4.7) to get proportions between different components of π .
- 2. Use eq. (4.8) to normalize π and get exact values.

Remark 7. Note that if $\beta = 2\alpha$ then π is always (2/3, 1/3) regardless the actual value of α .

4.5 Classification of States

Let $\{X_n\}_{n=0,1,...}$ be a DTMC with state space S. State j is **accessible** from state i (denoted $i \to j$) if there exists n=0,1,... such that $P_{ij}^{(n)}>0$. Intuitively, one can transition from state i to state j in finite steps n with positive probability. If i is also accessible from j, then we say i and j communicate, denoted as $i \leftrightarrow j$.

$$i \leftrightarrow j \iff \exists m, n \ge 0, P_{ij}^{(m)} > 0, P_{ji}^{(n)} > 0$$

The relation " \leftrightarrow " either holds or does not hold for every state $i \in S$.

Theorem 11. The binary communication relation " \leftrightarrow " is in fact a equivalence relation:

- Reflexivity $i \leftrightarrow i$
- $\bullet \;\; \textit{Symmetry} \; i \leftrightarrow j \; \Longrightarrow \; j \leftrightarrow i$
- Transitivity $i \leftrightarrow j, j \leftrightarrow k \implies i \leftrightarrow k$

Proof. First, reflexivity is easy to prove by definition. Let n=0 and recognize that $P_{ii}^{(0)}$ has a certain probability by definition,

$$P_{ii}^{(0)} = 1 \implies i \leftrightarrow i$$

Second, symmetry follows by definition,

$$P_{ij}^{(m)} > 0, P_{ii}^{(n)} > 0 \Leftrightarrow P_{ii}^{(n)} > 0, P_{ij}^{(m)} > 0$$

Third, transitivity can be proven by letting m and n be the unknown quantifiers:

$$\exists m \ P_{ij}^{(m)} > 0, \exists n \ P_{jk}^{(n)} > 0$$

Then by the CK equation eq. (4.4),

$$P_{ik}^{(m+n)} = \sum_{l \in S} P_{il}^{(m)} P_{lk}^{(n)}$$

Let l = j be a single, fixed entry in the summation.

$$P_{ik}^{(m+n)} \ge P_{ij}^{(m)} P_{jk}^{(n)} > 0$$

Therefore we have that k is accessible from i $(i \to j)$. Analogously we have that $i \to j$ therefore $i \leftrightarrow k$.

The communication equivalence relations then divides the state space S into different equivalence classes. That is, the states in one class comm with each other; the states in different classes do not comm. The equivalent classes form a partition of the state space S.

The family $\{S_1, S_2, \dots S_n\}$ is a **partition** of S if,

- 1. $S_i \subset S \mid \forall i \in 1, 2, \dots, n$
- 2. $S_i \cap S_i \neq \emptyset$ for all $i \neq j$
- 3. $\bigcup_{i} S_{i} = S$

TC Fraser Page 18 of 27

We can find the equivalent classes by drawing a graph where the states in S are the nodes of the graph and a directed edge is placed going from i to j if j is accessible from i in one-step: $P_{ij} > 0$. Then identifying the equivalent classes corresponds to identifying the loops of this graph within one step.

Example 9. As an example, consider the transition matrix P as follows.

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.2 & 0.8 & 0 & 0 & 0 \\ 1 & 0.6 & 0.4 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 \\ 3 & 0 & 0 & 0.7 & 0.3 \\ 4 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

The associated one-step accessibility graph is then,

Where the loops of $S = \{0, 1, 2, 3, 4\}$ form the following partition,

$$S_1 = \{0, 1\}$$
 $S_2 = \{2\}$ $S_3 = \{3, 4\}$

Example 10. As another example, consider the transition matrix P.

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0.5 & 0.5 & 0 & 0 \\ 1 & 0.5 & 0.5 & 0 & 0 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The associated one-step accessibility graph is then,

While the loops of $S = \{0, 1, 2, 3\}$ form the following partition,

$$S_1 = \{0, 1\}$$
 $S_2 = \{2\}$ $S_3 = \{3\}$

Example 11. As another example, consider the transition matrix P.

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 \\ 0.5 & 0 & 0 & 0.5 \\ 3 & 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

TC Fraser Page 19 of 27

The associated one-step accessibility graph is then,

This contrasts with the previous example because P_{01} , P_{12} , $P_{20} > 0$ implies that 0, 1, 2 are in the same class and P_{23} , $P_{32} > 0$ implies that 2, 3 are in the same class. By transitivity 0, 1, 2, 3 are all in the same class.

$$S_1 = \{0, 1, 2, 3\}$$

These equivalent classes are useful for Markov chains because it allows one to separate the behaviour of the equivalence classes and study them individually. A MC which has only one equivalent class is called **irreducible**.

Example 12.

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 \\ 2 & 0 & 0.5 & 0 & 0.5 \\ 3 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Clearly if we start at state 0, we can only go back to 0 in $2, 4, 6, \ldots$ (i.e. an even number of) steps.

Furthermore, let us define the **period** of state i as,

$$d(i) = \gcd\{n \in \mathbb{Z}^+ \mid P_{ii}^n > 0\}$$

Additionally, if $P_{ii}^n = 0$ holds for all n > 0, we say that $d(i) = \infty$. If the period of i happens to be d(i) = 1 then the state i is said to be **aperiodic**. Alternatively, locus of steps that we can go back by are *co-prime*. A MC is called aperiodic if all its states S are aperiodic.

Note that $P_{ii} < 0$ then the greatest common divisor must be one. This implies that $d_i = 1$. In this case, the state is immediately aperiodic.

The period of a state is useful do to the following theorem,

Theorem 12. The period of a state is a class property. If $i \leftrightarrow j$, then d(i) = d(j).

Proof. If i = j we are already done. If $i \neq j$, since $i \leftrightarrow j$, then $\exists n, m$ such that,

$$P_{ij}^n > 0 \quad P_{ji}^m > 0$$

Then for any l such that $P_{jj}^l > 0$,

$$P_{ii}^{n+m+l} \ge P_{ij}^n P_{jj}^l P_{ji}^m \tag{4.11}$$

Because $P_{ij}^n P_{jj}^l P_{ji}^m$ happens to be a specific way for P_{ii}^{n+m+l} to occur. Since $i \leftrightarrow j$ and l was chosen carefully,

$$P_{ii}^{n+m+l} > 0$$

TC Fraser Page 20 of 27

Moreover, we also have that,

$$P_{ii}^{n+m} \ge P_{ij}^n P_{ji}^m \tag{4.12}$$

Since d(i) divides both n+m and n+m+l by eqs. (4.12) and (4.11), then d(i) also divides l. This holds for all l such that $P_{ii}^l > 0$. This implies that d(i) is a common divisor of $\{l \mid P_{jj}^l > 0\}$ and thus d(i) divides,

$$d(j) = \gcd\{l \mid P_{ij}^l > 0\}$$

By symmetry d(j) divides d(i). Therefore d(i) = d(j).

Remark 8. It is important to note that $d(i) = k \neq P_{ii}^{(k)} > 0$. As a counterexample consider the following one step accessibility graph,

Evidently,

$$P_{00}^{(2)} > 0 \quad P_{00}^{(3)} > 0$$

So we have d(0) = 1 because $d(0) = \gcd\{2, 3, \ldots\}$. However this doesn't imply that $P_{00}^{(1)} > 0$ because we do have that $P_{00}^{(1)} = 0$

Remark 9. If the MC is irreducible (having only one class) then all the states have the same period. In this case we ascribe the entire MC the period d(i) for some representative $i \in S$.

Remark 10. If the period of i is $d_i = 1$ then there exists some N such that $P_{ii}^{(n)} > 0$ for any $n \geq N$. Intuitively, if state i is aperiodic then after a long time, the probability of going back to i is always positive.

Recurrence and Transience

In order to define transience and recurrence, let T_i be the waiting time of a MC to visit/revisit state i for the first time since time 0.

$$T_i = \min\{n > 0 : X_n = i\}$$

Of course we have that $\{n > 0 : X_n = i\}$ is a random collection of numbers and also $\min\{n > 0 : X_n = i\}$ is a random number. Therefore T_i is a random variable. Notice that if $T_i = \infty$ if the MC never returns to state i.

Definition 6. A state i is called **transient** if,

$$P(T_i < \infty \mid X_0 = i) < 1$$

Or equivalently,

$$P(T_i = \infty \mid X_0 = i) > 0$$

We say that the MC never goes back to state i with positive probability.

Moreover,

Definition 7. A state i is recurrent if,

$$P(T_i < \infty \mid X_0 = i) = 1$$

Or equivalently,

$$P(T_i = \infty \mid X_0 = i) = 0$$

We say that the MC always goes back to i.

TC Fraser Page 21 of 27 Remark 11. If we have that $P(T < \infty) = 1$ then it does not imply that $\mathbb{E}(T) < \infty$. As a counter example, let $s_p = 2^p$ for $p = 1, \dots, \infty$,

$$P(T = s_p) = \frac{1}{s_p}$$

Where the expectation of T is unbounded,

$$\mathbb{E}(T) = \sum_{p=1}^{\infty} s_p \frac{1}{s_p} = \sum_{p=1}^{\infty} 1 = \infty$$

To make the distinction,

Definition 8. A recurrent state *i* is said to be **positive recurrent** if,

$$\mathbb{E}(T_i \mid X_0 = i) < \infty$$

A recurrent state i is said to be **null recurrent** if,

$$\mathbb{E}(T_i \mid X_0 = i) = \infty$$

Example 13. Consider the following example with transition matrix,

And MC graphically expressed as,

Given that $X_0 = 0$ there are only two possibilities for transitions,

$$P\left(\underbrace{X_1 = 0 \mid X_0 = 0}_{T_0 = 1}\right) = P\left(\underbrace{X_1 = 1 \mid X_0 = 0}_{T_0 = \infty}\right) = \frac{1}{2}$$

The second term is recognized as $T_0 = \infty$ because after transitioning to state 1, it is impossible to return to state 0. This tells us that,

$$P(T_0 < \infty \mid X_0 = 0) = \frac{1}{2} < 1$$

Therefore state 0 is said to be transient. Analogously we have that state 1 is also transient. Given $X_0 = 2$,

$$P\left(\underbrace{X_1=2\mid X_0=2}_{T_2=1}\right)=1$$
 we have that,

$$P(T_2 < \infty \mid X_0 = 2) - 1$$

Which tells is that state 2 is recurrent.

In general, the distribution of T_i is very hard to derive. In particular it will be hard to know whether T_i takes value ∞ and with what probability. This suggests that we will need handier criteria for recurrence/transience.

To facilitate this define $f_{ii} = P(T_i < \infty \mid X_0 = i)$ and,

$$f_{ij} = P(T_i < \infty \mid X_0 = i)$$

TC Fraser Page 22 of 27

We also defined V_i to be the number of times that the MC visits state i,

$$V_i = \sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = i\}}$$

First consider the case that i is transient. If i is transient, then it must be that $f_{ii} < 1$. This can be seen from the definition of T_i . The PMF is,

$$P(V_i = k \mid X_0 = i) = f_{ii}^k (1 - f_{ii})$$

This can be derived by considering that if the MC is to visit state i exactly k times but not more than k times.

$$P(V_i = k \mid X_0 = i) = [P(T_i < \infty \mid X_0 = i)]^k [P(T_i = \infty \mid X_0 = i)]$$

This PMF tells us that $V_i + 1$ follows a geometric distribution with parameter $1 - f_{ii}$,

$$V_i + 1 \sim \mathsf{Geo}(1 - f_{ii})$$

In particular, $P(V_i < \infty \mid X_0 = i) = 1$. Therefore if i is transient, it is visited only finitely many times with probability 1. Afterwards, the MC will leave state i forever sooner or later.

Second consider the case that i is recurrent. If state i is recurrent, then $f_{ii} = 1$ by definition. The we have that,

$$P(V_i = k \mid X_0 = i) = 0 \quad \forall k = 0, 1, \dots$$

Since V_i can not take on any finite values, it must be that

$$P(V_i = \infty \mid X_0 = i) = 1$$

If the MC starts from recurrent state i is will visit that state infinitely many times. Before identifying our more versatile criteria, we generalize some of these notions.

4.7 Recurrence and Transience Again

For $n \in \mathbb{Z}^+$ define,

$$f_{ij}^{(n)} = P(X_n = j, X_{n-1} \neq j, \dots, X_1 \neq j \mid X_0 = i) \quad \forall i, j \in S$$

Intuitively, $f_{ij}^{(n)}$ is the probability that X visits state j at time n for the first time since $X_0 = i$. A looming question: What is the relation between $f_{ij}^{(n)}$ and $P_{ij}^{(n)}$? First notice that,

$$P_{ij}^{(n)} \ge f_{ij}^{(n)}$$

These reads: the probability that X visits j at time n is more larger that the probability that X visits j at time n provided it did not visit j prior. A more detailed equality is the following,

$$P_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} P_{jj}^{(n-k)}$$
(4.13)

Expanded out gives,

$$P_{ij}^{(n)} = f_{ij}^{(n)} + \sum_{k=1}^{n-1} f_{ij}^{(k)} P_{jj}^{(n-k)}$$

Proof.

$$\begin{split} P_{ij}^{(n)} &= P(X_n = j \mid X_0 = i) \\ &= \sum_{k=1}^n P(X_n = j, X \text{ first visits } j \text{ at time } k \mid X_0 = i) \end{split}$$

TC Fraser Page 23 of 27

$$= \sum_{k=1}^{n} P(X_n = j, | X \text{ first visits } j \text{ at time } k, X_0 = i) \cdot P(X \text{ first visits } j \text{ at time } k | X_0 = i)$$

$$= \sum_{k=1}^{n} P(X_n = j, | X_k = j, X_{k-1} \neq j, \dots, X_1 \neq j, X_0 = i) \cdot P(X_k = j, X_{k-1} \neq j, \dots, X_1 \neq j | X_0 = i)$$

$$= \sum_{k=1}^{n} P(X_n = j, | X_k = j, X_{k-1} \neq j, \dots, X_1 \neq j, X_0 = i) \cdot f_{ij}^{(k)}$$

$$= \sum_{k=1}^{n} P(X_n = j, | X_k = j) \cdot f_{ij}^{(k)}$$
 Markov Condition
$$= \sum_{k=1}^{n} P_{jj}^{(n-k)} \cdot f_{ij}^{(k)}$$

In fact eq. (4.13) defines a recurrence relation to compute $f_{ij}^{(n)}$ from $f_{ij}^{(k)}$ where k < n,

$$f_{ij}^{(n)} = P_{ij}^{(n)} - \sum_{k=1}^{n-1} f_{ij}^{(k)} P_{jj}^{(n+k)}$$

We now define f_{ij} without the superscript to be,

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}$$

The probability that X will ever reach state $j \in S$ provided it started at i ($f_{ij} \leq 1$). Whether or not f_{ij} is certain or not defines the following two properties.

A state i is called **transient** if $f_{ii} < 1$; and **recurrent** if $f_{ii} = 1$. Intuitively, f_{ii} is the probability the MC returns to state i given it started in state i. If i is transient, then there is a non-negative probability that the MC does not return to i and if $f_{ii} = 1$ then the MC always returns to state i.

Another way to characterize recurrence and transience: Define V_i to be the total number of times the MC (re)visits i after time 0. In more mathematical terms,

$$V_i = \sum_{n=1}^{\infty} \mathbf{1}_{[X_n = i]}$$

Where $\mathbf{1}_{[X_n=i]}$ is the indicator defined by,

$$\mathbf{1}_{[X_n=i]} = \begin{cases} 1 & X_n = i \\ 0 & X_n \neq i \end{cases}$$

If $f_{ii} < 1$ we have that the probability of visiting state i k times is given by,

$$P(V_i = k \mid X_0 = i) = \underbrace{f_{ii} \cdot f_{ii} \cdots f_{ii}}_{k} \underbrace{(1 - f_{ii})}_{\text{never return}}$$

Where $(1 - f_{ii})$ is necessary because it guarantees that we never return to state i more that k times. Given $X_0 = i$, V_i follows a geometric distribution with parameter $(1 - f_{ii})$. Thus,

$$\mathbb{E}(V_i \mid X_0 = i) = \frac{f_{ii}}{1 - f_{ii}} < \infty$$

TC Fraser

Therefore if i is transient, there a finite number revisits are expected. In contrast if $f_{ii} = 1$ we have that,

$$\mathbb{E}(V_i \mid X_0 = i) = \lim_{f_{ii} \to 1} \frac{f_{ii}}{1 - f_{ii}} \to \infty$$

Recalling our construction of the random variable V_i we can alternatively write $\mathbb{E}(V_i \mid X_0 = i)$ as,

$$\mathbb{E}(V_i \mid X_0 = i) = \mathbb{E}\left(\sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = i\}} \mid X_0 = i\right)$$

$$= \sum_{n=1}^{\infty} \mathbb{E}(\mathbb{1}_{\{X_n = i\}} \mid X_0 = i)$$

$$= \sum_{n=1}^{\infty} P(X_n = i \mid X_0 = i)$$

$$= \sum_{n=1}^{\infty} P_{ii}^{(n)}$$

$$= \sum_{n=1}^{\infty} P_{ii}^{n}$$

Therefore we have equivalent criteria for recurrent and transience for a state i.

recurrent	transient
$P(T_i < \infty \mid X_0 = i) = 1$	$P(T_i < \infty \mid X_0 = i) < 1$
$P(V_i = \infty \mid X_0 = i) = 1$	$P(V_i < \infty \mid X_0 = i) = 1$
$\mathbb{E}(V_i \mid X_0 = i) = \infty$	$\mathbb{E}(V_i \mid X_0 = i) < \infty$
$\sum_{n=1}^{\infty} P_{ii}^n = \infty$	$\sum_{n=1}^{\infty} P_{ii}^n < \infty$

The final criteria being the easiest to use.

A final criteria we can consider is,

$$\mathbb{E}(V_i \mid X_0 = i) = \sum_{k=1}^{\infty} P(V_i \ge k \mid X_0 = i)$$
(4.14)

The proof of eq. (4.14) is left as an exercise to the reader. Clearly if $f_{ii} = 1$,

$$P(V_i \ge k \mid X_0 = i) = f_{ii}^{\ k} = 1 \quad \forall k$$
 (4.15)

Therefore,

$$\mathbb{E}(V_i \mid X_0 = i) = \sum_{k=1}^{\infty} 1 = \infty$$

Theorem 13. Therefore i is recurrent if and only if $P(V_i \ge k \mid X_0 = i) = \infty$ and i is transient if and only if only if $P(V_i \ge k \mid X_0 = i) < \infty$.

Remark 12. We actually also have that i is recurrent if and only if $V_i = \infty$. This can be seen from eq. (4.15). Since $P(V_i \ge k \mid X_0 = i)$ is strictly positive for all k, then $V_i = \infty$. Analogously, we have that i is transient if and only if $V_i < \infty$.

Yet another way to characterize recurrence and transience is much more tractable. First,

Theorem 14. The expectation of the indicator is given by $\mathbb{E}(\mathbf{1}_A) = P(A)$ for any event A.

Therefore,

$$\mathbb{E}(V_i \mid X_0 = i) = \mathbb{E}\left(\sum_{n=1}^{\infty} \mathbf{1}_{[X_n = i]} \mid X_0 = i\right)$$

TC Fraser Page 25 of 27

$$= \sum_{n=1}^{\infty} \mathbb{E} \left(\mathbf{1}_{[X_n = i]} \mid X_0 = i \right) \quad \text{Fubini's Theorem}$$

$$= \sum_{n=1}^{\infty} P(X_n = i \mid X_0 = i)$$

$$= \sum_{n=1}^{\infty} P_{ii}^{(n)}$$

Thus i is recurrent if and only if $\sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$ and i is transient if and only if $\sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty$.

Theorem 15. Recurrence/transience are class properties. If $i \leftrightarrow j$ and i is recurrent (transient), then j is recurrent (transient).

Proof. Since $i \leftrightarrow j$, there must be times $\exists m, n \geq 0$ that permit i to access j and j to access i,

$$P_{ij}^{(m)} > 0$$
 $P_{ij}^{(n)} > 0$

Suppose that i is recurrent, then $\sum_{l=1}^{\infty} P_{ii}^{(l)} = \infty$. We now what to show that $\sum_{s=1}^{\infty} P_{jj}^{(s)}$ is infinite as well. Since $m, n \ge 0$ we can drop positive terms to get,

$$\sum_{s=1}^{\infty} P_{jj}^{(s)} \ge \sum_{s=n+m+1}^{\infty} P_{jj}^{(s)}$$

Now exchange the variables of summation by letting l = s - n - m,

$$\sum_{s=1}^{\infty} P_{jj}^{(s)} \ge \sum_{l=1}^{\infty} P_{jj}^{(n+l+m)}$$

Then by the C-K equation (eq. (4.4)) a example path from j to j is to transition $j \to i \to j$ in steps m, l, n respectively,

$$\sum_{l=1}^{\infty} P_{jj}^{(n+l+m)} \ge \sum_{l=1}^{\infty} P_{ji}^{(n)} P_{ii}^{(l)} P_{ij}^{(m)} = P_{ji}^{(n)} P_{ij}^{(m)} \left\{ \sum_{l=1}^{\infty} P_{ii}^{(l)} \right\}$$

But since i is recurrent, $\sum_{l=1}^{\infty} P_{ii}^{(l)} = \infty$. Also, $P_{ji}^{(n)} P_{ij}^{(m)} > 0$ by the choice of m, n. Therefore $\sum_{l=1}^{\infty} P_{jj}^{(n+l+m)} = \infty$ and thus $\sum_{s=1}^{\infty} P_{jj}^{(s)} = \infty$. Therefore j is also recurrent.

Corollary 16. If $i \leftrightarrow j$ and i is transient, then j is transient.

As a result, if we know that if a MC is irreducible (admitting only one class), then either all states are transient or they are all recurrent. In such cases we can say that the MC itself is recurrent/transient.

Theorem 17. If an irreducible MC has a finite state space, then it is recurrent.

To see why this is true, if all states are transient then each state $i \in S$ has a time k that is the *last* visit time for all states, this is impossible because $P_{ij} \neq 0$ for at least some choice $i, j \in S$.

Remark 13. We can actually show that the MC must be positive recurrent if the state space is finite and the MC is irreducible.

Theorem 18. If i is recurrent, and i does not communicate with j, then $P_{ij} = 0$.

Proof. Proof by contradiction. Assume that $P_{ij} > 0$. Since i and j do not communicate, then either j is not accessible from i or vice versa. But if $P_{ij} > 0$ then j is accessible from i. It must be that i is not accessible from j. Recall that f_{ii} is the probability that the MC ever revisits the state i given the starting state was i. Therefore $1 - f_{ii}$ is the probability that the MC never revisits state i.

$$f_{ii} \le 1 - P_{ij} < 1$$

TC Fraser Page 26 of 27

This inequality holds because if $X_1 = j$ then the MC never revisits i (i is not accessible from j). But there are other ways it never revisits i. Therefore,

$$P(X_1 = j \mid X_0 = i) = P_{ij} \le P(MC \text{ never revisits } i \mid X_0 = i)$$

But if $f_{ii} < 1$, then i is not recurrent; it is transient. Therefore the assumption that $P_{ij} > 0$ is wrong; $P_{ij} = 0$.

4.8 Limiting Distribution

In this section we are interested in the **limiting transition probability** and the **limiting distribution** of a MC.

$$\lim_{n \to \infty} P_{ij}^{(n)} \qquad \lim_{n \to \infty} PX_n = j$$

To keep things simple, we assume that the process $\{X_n\}_{n=0,1,2,...}$ is irreducible.

Theorem 19. Basic Limit Theorem: Let $\{X_n\}_{n=0,1,...}$ be an irreducible, aperiodic and positive recurrent DTMC, then a stationary distribution $\pi = \{\pi_0, \pi_1, ...\}$ exists. Moreover we have,

$$\lim_{n \to \infty} P_{ij}^{(n)} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \mathbb{1}_{\{X_k - j\}}}{n} = \frac{1}{\mathbb{E}(T_i \mid X_0 = j)} = \pi_j \qquad \forall i, j \in S$$

Where $T_j = \min\{n > 0, X_n = j\}$. In words, the limiting distribution is equal to the long-run fraction of time spent in j is equal to the stationary distribution. Note that this does not depend on the starting state i.

TC Fraser Page 27 of 27