Predicting 'high job satisfaction'

EDA, establishing a baseline, and modelling roadmap

Sprint 2 - Nivedita Prasad

Introduction

What's the problem area?

- Job matching continues to be a critical issue in today's labour market (and something many of us can relate to, more personally!).
- We talk a lot about the skills we need to be the right fit for a job, our work-life balance, and levels of financial wellbeing we aspire to.
- But it continues to be challenge to get the 'right fit', as we know from stark unemployment figures*

Refining our focus since Sprint 1

- Further EDA highlighted overall job satisfaction as our key target variable of interest.
- Job satisfaction can serve as a proxy for self-reported job fit, with datasets explored offering deeper insight into what might predict high job satisfaction
- These findings can guide jobseekers in evaluating potential roles and inform policymakers aiming to improve labor market outcomes.

^{*} Illustrated by these stark <u>labour market figures</u> relating to youth unemployment, and long-term unemployment - e.g., over a year of youth unemployment can lead to a wage reduction of around 30% for men and 15-20% for women. And data on elements of job satisfaction, showing lower satisfaction with <u>'opportunities for promotion'</u>

Refining our problem statement and purpose

Bottom Line: A well-constructed ML classification model for predicting 'high job satisfaction' has the potential to help **jobseekers** to make informed career decisions and provides **policymakers** with actionable insights to enhance labour market policies, driving better job fit and satisfaction across the workforce.

The National Survey of College Graduates (U.S)

What is it?

- Recurring survey (every 2-3 years), conducted by the National Science Foundation
- Each dataset is a snapshot of the U.S.
 college graduate population, at a specific point in time
- Given the richness of the data this focuses our scope on college graduates
- Raw data is usually provided as SAS data files; so main task was in importing and renaming variables

How did we load, clean and process it?

For Sprint 2 - I merged survey data from **2015**, **2017**, **2019** and **2021**:

- Read in the data, inspecting yearly user guides to ensure correct mapping of variables (e.g., degree code of '089' could mean engineering)
- Cleaned and checked missing
- Inspected distribution, and aggregated categories for interpretability

Ready for EDA: 295,323 rows and 31 columns

Highlights from EDA (1)

Distribution of job satisfaction ratings

- Exploration of a previously unexplored variable - usually unavailable in other datasets
- Observed similar distributions across components of satisfaction
- Most respondents where either 'somewhat' or 'very satisfied' overall
- Used insights to refine my target variable as binary:
- 1: 'Highly satisfied'
- 0: 'Not satisfied'

Highlights from EDA (2)

Popular degrees over time

- The top 10 degree fields remain stable over the 4 survey years.
- We can notice that as we move towards 2021, popularity in electronic and mechanical engineering increases.
- Some degrees, such as nursing reduce in popularity with 3.1% of respondents doing a nursing degree in 2015, compared to 2.6% of respondents in 2021. T
- Interesting to note, given the likely impact of the pandemic on the popularity of some degrees.

Post-Covid

Highlights from EDA (3)

Geographical patterns

- We see higher mean salaries over in the Pacific and New England (darker colours indicate higher salaries)
- This seems sensible, given the type of occupations we know our respondents hold in tech, and the higher salaries in these larger cities or tech hubs.
- Given that we see salary varies by the respondent's location...
- We might hypothesise that so would the likelihood of an individual being highly satisfied in their job.

(Note: due to data availability, mean salaries are calculated for higher-level regions, rather than by-state)

Download as HTML

Constructing a baseline model: Logit

Train/test split	Dummy encoding	Collinearity and multicollinearity	Backwards selection &	Evaluation
	chedding	checks	Statsmodel	
Keeping in mind issues of overfitting and data leakage	As part of pre-processing, inspecting categorical	Generating correlation coefficients - dropping highly correlated	Inspecting features with highest p-values, and conducting	Observed a marginal improvement in train accuracy following
Stratifying to preserve	variables and using pd.get_dummies()	features, if they illustrated lower	iterations of logistic regression, using	backwards selection
proportion of our binary target var -		variance	statsmodel.	However, clear signs of overfitting when fitting
which has a high class imbalance (90%		Exploring VIF to determine further	Starting with a 'baseline', and	to unseen data
positive)		features to drop.	conducting 4 more iterations.	
Scaling features and				
seeing distributions				
before and after				

Excerpt: Insights from baseline modelling

Evaluation framework

Class Imbalance Consideration

- Over 90% of respondents belong to the "High Job Satisfaction" (class 1) category. This imbalance impacts the model's ability to generalise well to both classes, so accuracy alone may not reflect true performance.

Going beyond accuracy score

- ROC curve and AUC score
- Confusion matrix
- Classification report

In addition to the above, we also care about interpretability -

- Our end users may be individuals in or seeking employment... Or policymakers seeking to understand inequities in the labour market when it comes to job satisfaction.

Evaluation: Applying to Baseline Logit Model

- Over 90% train accuracy; only 60% test accuracy
 The model is good at identifying those with high job satisfaction (48,045 True Positives). It also correctly identifies those without high satisfaction in 8198 True Negative cases.

However:

- The model misses a significant portion of individuals who are actually highly satisfied. Precision will be high since the model has a low number of False Positives compared to
- True Positives.
- Recall will likely be lower due to the high number of False Negatives—it misses many people who actually have high job satisfaction.

Next steps: Modelling Roadmap

05: Comprehensive model evaluation and write-up

Preview: Principal Component Analysis

