

Факультет экономики Экономика: исследовательская программа; Лекции Статистическое моделирование и

актуарные расчеты **Магистратура 1 к. 2022-2023**

Эконометрика А. А. Пересецкий, Семинары П. В. Погорелова

Д3-01

Сдать 27.01.2023 до 23:59

на почту islabolitskiy@hse.ru с темой письма «метрика фамилия дз...».

Курс

Например, «метрика петров дз1

Задача 1

Случайная величина X имеет биномиальное распределение B(n,p), где p — случайная величина, равномерно распределенная $p \sim U(0,1)$. Найдите математическое ожидание E(X) и дисперсию V(X).

Задача 2

Пусть вы хотите оценить (МНК) регрессию $y = X\beta + \varepsilon$ (k регрессоров), константа не включена в матрицу регрессоров Х. Однако эконометрический пакет, которым вы располагаете, автоматически добавляет константу к регрессорам.

Обозначим
$$y^* = \begin{bmatrix} y \\ -y \end{bmatrix}$$
, $X^* = \begin{bmatrix} t & X \\ t & -X \end{bmatrix}$, где $t - (n \times 1)$ вектор состоящий из единиц.

- **(a)** Покажите, что регрессия y^* на X^* дает желаемый результат.
- (6) Покажите, что полученные в (а) оценки стандартных ошибок оценок коэффициентов должны быть скорректированы на некоторый множитель и укажите его.

Модель порождающая данные имеет вид $y_t = \beta x_t + \varepsilon_t$, t = 1,...,n. Ошибки одинаково распределены, независимы и их дисперсия равна $V(\varepsilon_t) = \sigma^2$. Пусть e_t — остатки регрессии, оцененной методом МНК. Найдите ковариацию $Cov(e_{t},e_{t-1})$. Равна ли она 0 в предположениях условия задачи?

Случайные величины (X,Y) имеют совместное распределение приведенное в таблице

	X = 1	X = 2	X = 3	X = 4	<i>X</i> = 5	X = 6
Y = 0	0	0	0	1/6	1/6	0
Y=1	1/6	1/6	1/6	0	0	1/6

- (a) Найдите h(X), наилучший прогноз Y при известном X.
- **(b)** Найдите g(X), наилучший линейный прогноз Y при известном X.
- (c) Сравните среднеквадратичные ошибки прогноза $E(Y h(X))^2$ и $E(Y g(X))^2$.

Задача 5

Пусть есть стандартная модель множественной регрессии $y = X\beta + \varepsilon$, k – число коэффициентов, n число наблюдений. Найдите формулу для оценки вектора β , которая получается минимизацией функции

$$L(\beta) = \sum_{i=1}^n (y_i - x_i'\beta)^2 + \lambda \sum_{j=1}^k \beta_j^2$$
 при заданном λ .

Имеется стандартная линейная модель $y_t = \alpha + \beta x_t + \varepsilon_t$. (x_t — не случайные, $\varepsilon_t \sim i.i.d.(0, \sigma^2)$). Пусть

$$\lambda_i>0,\ i=1,...,n\ \ .$$
 Рассмотрим оценку
$$\tilde{\beta}=\frac{\sum \lambda_{_t}(x_{_t}-\overline{x})(y_{_t}-\overline{y})}{\sum \lambda_{_t}(x_{_t}-\overline{x})^2}\ .$$

- (а) Является ли эта оценка несмещенной?
- (b) Что вы можете сказать о точности этой оценки, по сравнению с оценкой наименьших квадратов?