Appendix A

Mathematical Definition of The S-Converge LawTM

J. Chiu

2025-10-31

Overview

This appendix defines the mathematical structure of SyncentropyTM(S) and its governing axiom, The S-Converge LawTM, first introduced in *Synchronization as the Hidden Substrate of Intelligence: From GPU Architecture to Coherent Systems* (Chiu, 2025).

It defines SyncentropyTM[cite: 53, 169, 211-212] as a quantitative measure of coordination disorder in distributed intelligent systems, and shows that its temporal derivative naturally obeys a monotonic convergence behavior.

1 Definition of S (Syncentropy)

$$S = \frac{1}{N} \sum_{i=1}^{N} (\dot{\theta}_i - \overline{\dot{\theta}})^2 \tag{1}$$

where:

- $\dot{\theta}_i$: instantaneous phase velocity of node i;
- $\dot{\theta} = \frac{1}{N} \sum_{i=1}^{N} \dot{\theta}_i$: mean phase velocity of the system;
- N: number of interacting units (nodes).

Thus, SyncentropyTM(S) [cite: 53, 169, 211-212] represents the phase-velocity variance across all interacting units — the quantitative expression of how "out of sync" a system is. In the limit $S \to 0$, all components share the same phase velocity and the system achieves coherence .

2 The S-Converge Law^{TM}

$$\frac{dS}{dt} \le 0 \tag{2}$$

Interpretation: Any adaptive system with feedback and self-adjustment mechanisms will spontaneously converge toward lower SyncentropyTM[cite: 53, 169, 211-212]. This expresses a universal Law of Stability — the same tendency observed in synchronized oscillators, coherent neural networks [cite: 56], and efficient GPU clusters [cite: 20-21].

3 Relation to Thermodynamics and Information Theory

While classical entropy (H) measures disorder in static states, SyncentropyTM(S) [cite: 53, 169, 211-212] measures temporal disorder — the fluctuation of rates. It is therefore a dynamic entropy, rooted in time-derivative variance rather than state probability:

$$S \approx \operatorname{Var}\left(\frac{d\phi}{dt}\right) \tag{3}$$

Minimizing SyncentropyTM[cite: 53, 169, 211-212] thus implies aligning dynamical trajectories, not merely static configurations.

4 Engineering Interpretation

- Distributed Computation (GPU clusters): SyncentropyTM[cite: 53, 169, 211-212] quantifies temporal coordination latency. Lower $S \Rightarrow$ fewer synchronization stalls, higher throughput. [cite: 78-79]
- Neural Networks: SyncentropyTM[cite: 53, 169, 211-212] corresponds to gradient-update dispersion. Lower $S \Rightarrow$ smoother optimization dynamics, emergent coherence. [cite: 80-81]
- Biological Systems: SyncentropyTM[cite: 53, 169, 211-212] parallels neural synchrony variance; coherence implies energy efficiency and stability. [cite: 82-83]

5 Implications

- 1. SyncentropyTM(S) [cite: 53, 169, 211-212] acts as a universal coordination "health metric" for intelligent systems. [cite: 85]
- 2. Optimizing $\frac{dS}{dt}$ is equivalent to optimizing adaptation stability. [cite: 86]
- 3. Systems that preserve low Syncentropy $^{\text{TM}}$ [cite: 53, 169, 211-212] exhibit self-organization, scalability, and resilience. [cite: 87]
- 4. This law bridges thermodynamics, information theory, and AI engineering providing a measurable substrate of synchrony intelligence. [cite: 88-89]

Reference

Chiu, J. (2025). *Synchronization as the Hidden Substrate of Intelligence: From GPU Architecture to Coherent Systems*. Zenodo. https://doi.org/10.5281/zenodo.17453967 [cite: 81-82]

 \bigcirc 2025 J. Chiu. All rights reserved. S, Syncentropy $^{\rm TM}$, and S-Converge Law $^{\rm TM}$ are marks of J. Chiu.