C-Mod Analysis Documentation - v1

Marco A. Miller

July 2024

${f 1}$ data_access.py

This file contains many functions that have been stripped from Mark Chilenski's profiletools and eqtools packages primarily. They will be re-built in the future using the xarray framework.

Calls to data_access.py are made in the following files:

- cmod_tools.py
- power_balance.py
- single_shot.py

Instantiation of data_access objects in each file

cmod_tools.py

- e = data_access.CModEFITTree(int(shot), tree='EFIT20', length_unit='m')
- e = data_access.CModEFITTree(int(shot), tree='analysis', length_unit='m')
- p_Te = data_access.Te(int(shot), include=['ETS'], abscissa='sqrtpsinorm', t_min = tmin, t_max=tmax, efit_tree=e)
- p_ne = data_access.Te(int(shot), include=['ETS'], abscissa='sqrtpsinorm', t_min = tmin, t_max=tmax, efit_tree=e)
- p_Te = data_access.Te(int(shot), include=['CTS'], abscissa='sqrtpsinorm', t_min = tmin, t_max=tmax, efit_tree=e)
- p_ne = data_access.Te(int(shot), include=['CTS'], abscissa='sqrtpsinorm', t_min = tmin, t_max=tmax, efit_tree=e)
- data_access.BivariatePlasmaProfile(X_dim=1, X_units=[''], y_units='kPa', X_labels= ['\$sqrtpsinorm\$'], y_label=r'\$p_e\$')

power_balance.py

- e = data_access.CModEFITTree(int(shot), tree='EFIT20', length_unit='m')
- e = data_access.CModEFITTree(int(shot), tree='analysis', length_unit='m')

single_shot.py

- e = data_access.CModEFITTree(int(shot), tree='EFIT20', length_unit='m')
- e = data_access.CModEFITTree(int(shot), tree='analysis', length_unit='m')

Classes/functions needed: CModEFITTree(), ne(), Te(), BivariatePlasmaProfile()

Calls to sub-functions needed for instantiation

CModEFITTree():

Contains:

- __init__()
- getFluxVol()

Calls:

- EFITTree() [class]
- EFITTree().__init__() [function]
 - Calls outlined below
- self.getFluxVol() [function]
 - self._getLengthConversionFactor() [function] (belongs to Equilibrium())

EFITTree():

Contains:

- __init__()
- getTimeBase()
- getFluxGrid()
- getFluxAxis()
- getVolLCFS()
- getQProfile()
- getRmidPsi()

Calls:

- Equilibrium() [class]
- self.getTimeBase() [function]
- self.getFluxGrid() [function]
- self.getFluxAxis() [function]
- self.getVolLCFS() [function]
- self.getQProfile() [function]
- self.getRmidPsi() [function]

Equilibrium():

Contains:

• __init__()

ne(): Calls: • CModEFITTree() [class] • neETS() [function] - BivariatePlasmaProfile() [class] - CModEFITTree() [class] - self.add_data() [function] (belongs to Profile()) - self.remove_points() [function] (belongs to Profile()) - self.convert_abscissa() [function] (belongs to BivariatePlasmaProfile()) • neCTS() [function] - BivariatePlasmaProfile() [class] - CModEFITTree() [class] - self.add_data() [function] (belongs to Profile()) - self.remove_points() [function] (belongs to Profile()) - self.convert_abscissa() [function] (belongs to BivariatePlasmaProfile()) • BivariatePlasmaProfile.add_profile() [function] Te(): Calls: • CModEFITTree() [class] • TeETS() [function] - BivariatePlasmaProfile() [class] - CModEFITTree() [class] - self.add_data() [function] (belongs to Profile()) - self.remove_points() [function] (belongs to Profile()) - self.convert_abscissa() [function] (belongs to BivariatePlasmaProfile()) • TeCTS() [function] - BivariatePlasmaProfile() [class] - CModEFITTree() [class] - self.add_data() [function] (belongs to Profile()) - self.remove_points() [function] (belongs to Profile()) - self.convert_abscissa() [function] (belongs to BivariatePlasmaProfile()) • BivariatePlasmaProfile.add_profile() [function]

BivariatePlasmaProfile():

Contains:

• remake_efit_tree()

- convert_abscissa()
- add_profile()
- drop_axis()

Calls:

- Profile() [class]
- Profile().__init__() [class]

Profile():

Contains:

- __init__()
- add_data()
- add_profile()
- remove_points()
- drop_axis()
- plot_data()

Calls:

ullet Channel [class]

BivariatePlasmaProfile.add_profile():

Calls:

- other.convert_absissa() [function] (belongs to BivariatePlasmaProfile())
- Profile.add_profile() [function]

BivariatePlasmaProfile.convert_abscissa():

Calls:

- self.efit_tree.rz2rho() [function] (belongs to Equilibrium())
 - self.rz2psinorm() [function] (belongs to Equilibrium())
- self.efit_tree.rho2rho() [function] (belongs to Equilibrium())
 - self.rmid2rho() [function] (belongs to Equilibrium())
 - self.psinorm2rho() [function] (belongs to Equilibrium())

Equilibrium.rz2psinorm():

Calls:

- self.rz2psi() [function] (belongs to Equilibrium())
- getFluxLCFS() [function] (belongs to EFITTree())
- getFluxAxis() [function] (belongs to EFITTree())

```
Equilibrium.rmid2rho():
   Calls:
      • self.rmid2psinorm() [function] (belongs to Equilibrium())
Equilibrium.psinorm2rho():
   Calls:
      • self.psinorm2rmid() [function] (belongs to Equilibrium())
Equilibrium.rz2psi():
   Calls:
      • self._processRZt() [function]
           - self._getLengthConversionFactor() [function]
           - self._checkRZ() [function]
               * getRGrid() [function] (belongs to EFITTree())
               * getZGrid() [function] (belongs to EFITTree())
           - getTimeBase() [function] (belongs to EFITTree())
           - _getNearestIdx() [function]
      • self._getFluxBiSpline() [function]
           - getRGrid() [function]
           - getZGrid() [function]
           - getFluxGrid() [function]
      • self.getCurrentSign() [function] (belongs to EFITTree())
           - self.getIpMeas() [function] (belongs to EFITTree())
Equilibrium.rmid2psinorm():
   Calls:
      • self._psinorm2Quan() [function]
           - self._processRZt() [function]
      • self._getRmidToPsiNormSpline() [function]
           - getRGrid() [function]
           - rz2psinorm() [function]
           - getMagZ() [function] (belongs to EFITTree())
           - getTimeBase() [function]
           - UnivariateInterpolator() [class]
           - BivariateInterpolator() [class]
Equilibrium.psinorm2rmid():
```

squiiibiium.psinoimzimi

Calls:

- self._getLengthConversionFactor() [function]
- self._psinorm2Quan() [function]
- self._getRmidSpline [function]
 - getMagR() [function] (belongs to EFITTree())
 - * _getLengthConversionFactor() [function]
 - getRGrid() [function]
 - rz2psinorm() [function]
 - getMagZ() [function]
 - getTimeBase() [function]
 - UnivariateInterpolator() [class]
 - BivariateInterpolator() $[\mathit{class}]$

UnivariateInterpolator():

Contains:

• __init__()

BivariateInterpolator():

Contains:

• __init__()

Channel():

Contains:

• __init__()

Other calls to object functions in each file

cmod_tools.py

- e.rho2rho()
- p_[ne/Te].add_profile()
- p_[ne/Te].drop_axis()
- p_[ne/Te].remove_points()
- p_[ne/Te].remake_efit_tree()
- p_[ne/Te].add_data()
- p_[ne/Te].plot_data()

BivariatePlasmaProfile.drop_axis():

Calls:

• Profile.drop_axis() [function]

```
BivariatePlasmaProfile.remake_efit_tree():
      Calls:
          • CModEFITTree() [class]
   Profile.plot_data(): no calls
power_balance.py
   • e.rho2rho()
   • e.rz2BT()
   • e.rz2BZ()
   rz2BT():
      Calls:
         • self._getLengthConversionFactor() [function]
         • self.rz2F() [function] (belongs to Equilibrium())
              - self._RZ2Quan() [function] (belongs to Equilibrium())
              - self._getFSpline() [function] (belongs to Equilibrium())
         • self.getBtVac() [function] (belongs to EFITTree())
         • self.getMagR() [function]
   rz2BZ():
      Calls:
         • self._processRZt() [function]
         • self._getFluxBiSpline() [function]
         • self.getCurrentSign() [function]
   _RZ2Quan():
      Calls:
         • self.rz2psinorm() [function]
         • self._psinorm2Quan() [function]
   _getFSpline():
      Calls:
         • self.getF() [function]
         • UnivariateInterpolator() [class]
single_shot.py
   • e.rho2rho()
```