Методы оптимизации Итоговый диктант, определения

Основано на учебно-методическом пособии "Методы оптимизации. Линейное программирование" Файл создан Заблоцким Данилом

Содержание

1	Задача линейного программирования (ЛП)	4
2	Общая задача ЛП	4
3	Допустимое решение задачи ЛП	4
4	Оптимальное решение задачи ЛП	4
5	Разрешимая задача ЛП	5
6	Неразрешимая задача ЛП	5
7	Каноническая задача ЛП (КЗЛП)	5
8	Симметричная задача ЛП	5
9	Эквивалентность задач ЛП	5
10	Теорема 1 эквивалентности	5
11	Теорема 2 эквивалентности	5
12	Критерий разрешимости задачи ЛП	6
13	Система линейных уравнений с базисом	6
14	Приведенная задача ЛП	6
15	Базисное решение системы линейных уравнений	7
16	Базисное решение КЗЛП	7
17	Прямо допустимая симплекс-таблица	7
18	Проверка на оптимальность в симплекс-метоле	7

19	Проверка на неразрешимость в симплекс-методе	8
20	Выбор ведущего столбца в симплекс-методе	8
21	Выбор ведущей строки в симплекс-методе	8
22	Правило прямоугольника	8
23	Вспомогательная задача ЛП (в методе искусственного базиса)	8
24	Пара двойственных задач ЛП	9
25	Первая теорема двойственности	9
26	Первый критерий оптимальности	9
27	Условия дополняющей нежесткости	9
2 8	Вторая теорема двойственности	10
29	Второй критерий оптимальности (не уверен что он)	10
30	Третья теорема двойственности	10
31	Выпуклое множество	10
32	Выпуклая функция	10
33	Задача выпуклого программирования	11
34	Условие Слейтера	11
35	Теорема о градиенте и производной по направлению	11
36	Возможное направление	11
37	Прогрессивное направление	11
38	Критерий оптимальности задачи выпуклого программирования	12
39	Каноническая задача выпуклого программирования	12
40	Теорема Куна-Таккера о седловой точке	12
41	Теорема Куна-Таккера в дифференциальной форме 1	12
42	Теорема Куна-Таккера в дифференциальной форме 2	13
43	Задача целочисленного линейного программирования	13
44	Правильное отсечение	13

45 Отсечение Гомори	14
46 Квадратичная форма	14
47 Квадратичная функция	14
48 Задача квадратичного программирования	14
49 Критерий оптимальности для задачи квадратичного программирования	- 15
50 Лемма с практики ???	15

1 Задача линейного программирования (ЛП)

Определение. Задачей линейного программирования $(Л\Pi)$ называется задача поиска min/max линейной функции на множестве, описываемом линейными ограничениями.

2 Общая задача ЛП

Определение. Общая задача ЛП имеет вид:

$$f(x) = c_0 + \sum_{j=1}^{n} c_j x_j \to \max \text{ (min)}$$
 (1)

$$\sum_{j=1}^{n} a_{ij} x_j \leqslant b_i, \quad i = \overline{1, k}, \tag{2}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \geqslant b_{i}, \quad i = k + \overline{1, l}, \tag{3}$$

$$\sum_{i=1}^{n} a_{ij} x_{j} \geqslant b_{i}, \quad i = l + \overline{1, m}, \tag{4}$$

$$x_j \geqslant 0, \quad j \in J \subseteq \{1, \dots, n\},$$
 (5)

где $x=(x_1,\ldots,x_n)\in R^n$ – вектор переменных. Функция f(x) называется *целевой*, а условия (2)-(5) – *ограничениями задачи*, причем в одной задаче ЛП не обязаны присутствовать ограничения всех трех типов.

3 Допустимое решение задачи ЛП

Определение. Вектор $x \in \mathbb{R}^n$, удовлетворяющий ограничениям задачи, называется допустимым решением задачи ЛП.

Множество всех допустимых решений будем обозначать через \mathfrak{D} .

4 Оптимальное решение задачи $\Pi\Pi$

Определение. Вектор $x^* \in \mathfrak{D}$ называется *оптимальным решением* задачи ЛП, если $\forall x \in \mathfrak{D}$ $f(x^*) \geqslant f(x)$ в задаче максимизации или $f(x^*) \leqslant f(x)$ в задаче минимизации.

5 Разрешимая задача ЛП

Определение. Задача (1)-(5) называется *разрешимой*, если она имеет оптимальное решение, иначе — *неразрешимой*.

6 Неразрешимая задача ЛП

Определение. Задача (1)-(5) называется *разрешимой*, если она имеет оптимальное решение, иначе — *неразрешимой*.

7 Каноническая задача ЛП (КЗЛП)

Теорема. Для любой задачи ЛП существует эквивалентная ей *каноническая* задача ЛП.

8 Симметричная задача ЛП

Теорема. Для любой задачи ЛП существует эквивалентная ей *стандартная* (симметричная) задача ЛП.

9 Эквивалентность задач ЛП

Определение. Две задачи ЛП P_1 и P_2 называются *эквивалентными*, если любому допустимому решению задачи P_1 соответствует некоторое допустимое решение задачи P_2 и наоборот; причем оптимальному решению одной задачи соответствует некоторое оптимальное решение другой задачи.

10 Теорема 1 эквивалентности

Теорема. Для любой задачи ЛП существует эквивалентная ей *каноническая* задача ЛП.

11 Теорема 2 эквивалентности

Теорема. Для любой задачи ЛП существует эквивалентная ей cman-dapmnas задача ЛП.

12 Критерий разрешимости задачи ЛП

Теорема. Если задача ЛП разрешима, и ее многогранное множество имеет хотя бы одну вершину, то существует вершина этого множества, в которой целевая функция достигает своего оптимального значения.

13 Система линейных уравнений с базисом

Рассмотрим каноническую задачу ЛП (КЗЛП):

$$f(x) = c_0 + \sum_{j=1}^{n} c_j x_j \to \max$$
(6)

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = \overline{1, m}, \tag{7}$$

$$x_j \geqslant 0, \quad j = \overline{1, n}.$$
 (8)

Определение. Система линейный уравнений (10) называется *систе-мой с базисом*, если в каждом уравнении имеется переменная, которая входит в него с коэффициентом +1 и отсутствует в остальных уравнениях. Такие переменные называются *базисными*, а остальные – *пебазисными*.

14 Приведенная задача ЛП

Рассмотрим каноническую задачу ЛП (КЗЛП):

$$f(x) = c_0 + \sum_{j=1}^{n} c_j x_j \to \max$$
 (9)

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = \overline{1, m}, \tag{10}$$

$$x_j \geqslant 0, \quad j = \overline{1, n}.$$
 (11)

Определение. Каноническая задача ЛП называется npusedenhoù задачей ЛП (ПЗЛП), если:

- 1. Система уравнений (10) есть система с базисом.
- 2. Целевая функция f(x) выражена только через небазисные переменные.

15 Базисное решение системы линейных уравнений

Введем обозначения для вектор-столбцов, составленных из коэффициентов системы (10):

$$A_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \quad A_2 = \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix}, \quad \dots, \quad A_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Определение. Решение $x=(x_1,\ldots,x_n)$ системы линейных уравнений (10) называется базисным, если система вектор-столбцов A_j , соответствующих ненулевым компонентам x_j , линейно независима.

16 Базисное решение КЗЛП

Определение. Неотрицательное базисное решение системы линейных уравнений (10) называется базисным решением канонической задачи $\Pi\Pi$.

17 Прямо допустимая симплекс-таблица

B	1	x_1		x_q		x_{n+m}
f	a_{00}	a_{01}		a_{0q}		$a_{0,n+m}$
x_{n+1}	a_{10}	a_{11}		a_{1q}		$a_{1,n+m}$
x_{n+2}	a_{20}	a_{21}	• • •	a_{2q}	• • •	$a_{2,n+m}$
			• • •		• • •	• • •
x_{n+p}	a_{p0}	a_{p1}	• • •	a_{pq}	• • •	$a_{p,n+m}$
x_{n+m}	a_{m0}	a_{m1}		a_{mq}		$a_{m,n+m}$

Определение. Симплексная таблица называется *прямо допустимой*, если $a_{0j}\geqslant 0,\ j=\overline{1,n+m}.$

18 Проверка на оптимальность в симплекс-методе

Шаг 1. Проверка на оптимальность

Если $a_{0j}\geqslant 0,\ j=\overline{1,n+m},$ то конец – базисное решение x, соответствущее симплексной таблице, оптимально. Иначе переходим к шагу 2

19 Проверка на неразрешимость в симплексметоде

Шаг 2. Проверка на неразрешимость

Если существует столбец с номером $q \in \{1, \ldots, n+m\}$ такой, что $a_{0q} < 0$, и $a_{iq} < 0$, $i = \overline{1,m}$, то конец – задача ЛП неразрешима (f(x)) не ограничена сверху на множестве допустимых решений). Иначе переходим к шагу 3.

20 Выбор ведущего столбца в симплекс-методе

Шаг 3. Выбор ведущего стобца q

Столбец с номером $q\in\{1,\dots,n+m\}$ выбирается ведущим, если $a_{0q}<0$. Если таких столбцов несколько, то выбирается любой из них. Переходим к шагу 4.

21 Выбор ведущей строки в симплекс-методе

Шаг 4. Выбор ведущей строки p

Строка с номером $p \in \{1, ..., m\}$ выбирается ведущей, если

$$\frac{a_{p0}}{a_{pq}} = \min_{a_{iq} > 0} \frac{a_{i0}}{a_{iq}}.$$

22 Правило прямоугольника

Определение. Формулу

$$a'_{ij} = \frac{a_{pj}}{a_{pq}}, \ i = \overline{0, n+m}$$

называют правилом треугольника.

23 Вспомогательная задача ЛП (в методе искусственного базиса)

Определение. В общем случае *ВЗЛП* имеет вид:

$$\begin{split} h(x,t) &= -(t_1 + \ldots + t_m) \to \max \\ a_{11}x_1 + \ldots + a_{1n}x_n + t_1 &= b_1, \\ a_{21}x_1 + \ldots + a_{2n}x_n + t_2 &= b_2, \\ \vdots \\ a_{m1}x_1 + \ldots + a_{mn}x_n + t_m &= b_m, \\ x_j &\geqslant 0, \ j = \overline{1,n}; \ t_i \geqslant 0, \ i = \overline{1,m}. \end{split}$$

24 Пара двойственных задач ЛП

Рассмотрим пару задач ЛП следующего вида:

Определение. Задачи (I) и (II) называются *взаимно двойственными*, а ограничения задач, соответствующие друг другу, назваются *сопряженными* (они отмечены стрелками).

Далее через $\mathfrak{D}_{\mathrm{I}}$ и $\mathfrak{D}_{\mathrm{II}}$ обозначим множества допустимых решений задач (I) и (II) соответственно.

25 Первая теорема двойственности

Теорема (Первая теорема двойственности). Если одна из пары двойственных задач (I),(II) разрешима, то разрешима и другая задача, причем оптимальные значения целевых функций совпадают, то есть $f(x^*) = g(y^*)$, где x^*, y^* – оптимальные решения задач (I) и (II) соответственно.

26 Первый критерий оптимальности

Следствие. $x^* \in \mathfrak{D}_I$ является оптимальным $\iff \exists y^* \in D_{II}$:

$$f(x^*) = g(y^*).$$

27 Условия дополняющей нежесткости

Определение. Говорят, что решения $x \in \mathfrak{D}_{\mathrm{I}}$, $y \in \mathfrak{D}_{\mathrm{II}}$ удовлетворяют условиям дополняющей нежесткости (УДН), если при подстановке этих векторов в любую пару сопряженных неравенств хотя бы одно из них обращается в равенство.

Это означает, что если вектора x,y удовлетворяют УДН, то следующие xapaкmepucmuчeckue npoизведения равны нулю:

$$\left(\sum_{j=1}^n a_{ij}x_j - b_i\right)y_i = 0, \quad i = \overline{1,k}, \qquad x_j\left(\sum_{i=1}^m a_{ij}y_i - c_j\right) = 0, \quad j = \overline{1,l}.$$

28 Вторая теорема двойственности

Теорема (Вторая теорема двойственности). Решения $x \in \mathfrak{D}_{\mathrm{I}}, \ y \in \mathfrak{D}_{\mathrm{II}}$ оптимальны в задачах (I),(II) \iff они удовлетворяют УДН.

29 Второй критерий оптимальности (не уверен что он)

Следствие. Вектор $x\geqslant \overline{0}$ является решением ЗКП \iff \exists m-мерные $y\geqslant \overline{0},\ u\geqslant \overline{0}$ и n-мерный $v\geqslant \overline{0}$:

1.
$$2\sum_{i=1}^{n} c_{ij}x_j + \sum_{i=1}^{n} a_{ij}y_i - v_j = -p_j, \ i = \overline{1, n}.$$

2.
$$\sum_{j=1}^{n} a_{ij}x_j + u_i = b_i, \ i = \overline{1, m}.$$

3.
$$x_i v_i = 0, j = \overline{1, n}$$
.

4.
$$y_i u_i = 0, i = \overline{1, m}$$
.

30 Третья теорема двойственности

content

31 Выпуклое множество

Определение (Выпуклое множество). Множество $D \subseteq \mathbb{R}^n$ называется выпуклым, если вместе с любыми двумя его точками в множестве содержится отрезок, их соединящий:

$$\forall x^1, x^2 \in D, \ \forall \lambda \in (0,1) \quad x^{\lambda} = (1-\lambda)x^1 + \lambda x^2 \in D.$$

32 Выпуклая функция

Определение (Выпуклая функция). Функция $f:D\to\mathbb{R}$ называется выпуклой, если

$$\forall x^1, x^2 \in D, \ \forall \lambda \in (0,1) \quad f((1-\lambda)x^1 + \lambda x^2) \leqslant (1-\lambda)f(x^1) + \lambda f(x^2),$$

где D – выпуклое множество.

33 Задача выпуклого программирования

Задача (Выпуклого программирования).

$$\left\{ \begin{array}{l} f(x) \to \min \\ \phi_i(x) \leqslant 0, \ i = \overline{1, m} \\ x \in G \end{array} \right.$$

Здесь f, ϕ_i – выпуклые на множестве $G, G \subseteq \mathbb{R}^n$ – выпуклое замкнутое множество.

34 Условие Слейтера

Примечание (Условие \exists -я внутренней точки множества D). $\exists \widetilde{x} \in G: \ \phi_i(\widetilde{x}) < 0 \ \forall i = \overline{1,m},$

 $D = \left\{ x \in G \mid \phi_i(x) \leqslant 0, \ i = \overline{1,m} \right\}$ – множество допустимых решений ЗВП.

35 Теорема о градиенте и производной по направлению

Теорема. Если функция f(x) дифференцируема в x_0 , то

$$f'_z(x_0) = (\nabla f(x_0), z).$$

36 Возможное направление

Определение (Возможное направление). Направление z называется возможным (допустимым) направлением в точке $x^0 \in D$, если $\forall i \in I_0$:

$$\left(\nabla \phi_i(x^0), z\right) < 0,$$

 $I_0 = \{i \mid \phi_i(x^0) = 0\}$ – множество активных ограничений.

37 Прогрессивное направление

Определение (Прогрессивное направление). Направление z называется npozpeccuвным в точке $x^0 \in D$, если

$$\left\{ \begin{array}{ll} \left(\nabla \phi_i(x^0),z\right) & <0 \\ \left(f(x^0),z\right) & <0 \end{array} \right., \quad i\in I_0.$$

38 Критерий оптимальности задачи выпуклого программирования

Теорема. $x^* \in D$ — оптимальное решение задачи ВП \iff в точке x^* не существует прогрессивного направления.

39 Каноническая задача выпуклого программирования

Определение (Каноническая задача ВП). Задача ВП называется *канонической*, если её целевая функция линейна:

$$f = (c, x) \to \min$$
.

40 Теорема Куна-Таккера о седловой точке

Теорема. $x^* \in G$ — оптимальное решение задачи ВП $\iff \exists y^* \geqslant 0: (x^*,y^*)$ является седловой точкой, соответствующей функции Лагран-жа.

41 Теорема Куна-Таккера в дифференциальной форме 1

Теорема. $x^* \geqslant 0$ является решением ЗВП $(I) \iff \exists y^* \geqslant 0$:

- 1. $\nabla_x(x^*,y^*)\geqslant \overline{0}$, то есть $\left.\frac{\partial L(x,y^*)}{\partial x_j}\right|_{x=x^*}\geqslant 0,\ j=\overline{1,n}.$
- 2. $(x^*, \nabla_x L(x^*, y^*)) = 0$, то есть $x_j^* \cdot \frac{\partial L(x, y^*)}{\partial x_j}\Big|_{x=x^*} = 0$, $j = \overline{1, n}$.
- 3. $\nabla_y L(x^*, y^*) \leqslant \overline{0}$, то есть $\phi_i(x^*) \leqslant 0$, $i = \overline{1, m}$.
- 4. $(y^*, \nabla_y L(x^*, y^*)) = 0$, то есть $y_i^* \phi(x^*) = 0$, $i = \overline{1, m}$.

42 Теорема Куна-Таккера в дифференциальной форме 2

Теорема. Точка $x^* \in \mathbb{R}^n$ является оптимальной точкой задачи $(II) \iff \exists y^* \geqslant 0$:

1.
$$\nabla_y L(x^*, y^*) = \overline{0}$$
, то есть $\frac{\partial L(x, y^*)}{\partial x_j}\Big|_{x=x^*} \geqslant 0, \ j = \overline{1, n}$.

2.
$$\nabla_y L(x^*, y^*) \leqslant 0$$
, то есть $\frac{\partial L(x^*, y)}{\partial y_i}\Big|_{y=y^*} = \phi_i(x^*) \leqslant 0$.

3.
$$(\nabla_y L(x^*, y^*), y^*) = 0$$
, то есть $\phi_i(x^*)y_i^* = 0$, $i = \overline{1, m}$.

43 Задача целочисленного линейного программирования

$$f(x) = \sum_{j=1}^{n} c_j x_j \to \max$$

$$\sum_{j=1}^{n} a_{ij} x_j \qquad \leqslant \quad b_i, \quad i = \overline{1, m} \quad (2)$$

$$x_j \qquad \geqslant \quad 0, \quad j = \overline{1, n} \quad (3)$$

$$x_j \qquad \in \quad \mathbb{Z}, \quad j = \overline{1, n} \quad (4)$$

44 Правильное отсечение

Определение (Правильное отсечение). Пусть \overline{x} – оптимальное решение текущей задачи ЛП.

Тогда отсечение $\sum_{j=1}^{n} \gamma_j x_j \leqslant \gamma_0$ называется nравильным, если:

1. \bar{x} не удовлетворяет отсечению, то есть

$$\sum_{j=1}^{n} \gamma_j \overline{x}_j > \gamma_0.$$

2. Любая целочисленная точка из области D удовлетворяет отсечению, то есть

$$\forall z \in \mathbb{Z}^n, \ z \in D \quad \sum_{j=1}^n \gamma_j z_j \leqslant \gamma_0.$$

45 Отсечение Гомори

Определение (Отсечение Гомори).

$$\sum_{j \in N_b} \{a_{pj}\} x_j \geqslant \{a_{p0}\},\,$$

 N_b – множество небазисных переменных.

46 Квадратичная форма

Определение. $Kea\partial pamuчной формой от <math>n$ переменных называется функция вида

$$g(x) = (Cx, x) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j,$$

где C – симметричная матрица, $c_{ij} = c_{ji}, i \neq j$.

47 Квадратичная функция

Определение. Функция вида

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j + \sum_{j=1}^{n} p_j x_j + p_0 = (Cx, x) + (p, x) + p_0$$

называется $\kappa вадратичной функцией от <math>n$ переменной.

48 Задача квадратичного программирования

Определение. Задача вида

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j} x_{i} x_{j} + \sum_{j=1}^{n} p_{j} x_{j} + p_{0} \to \min$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \ i = \overline{1, m}$$

$$x_{j} \geq 0, \ j = \overline{1, n}$$

называется задачей квадратичного программирования.

49 Критерий оптимальности для задачи квадратичного программирования

Теорема. Вектор $x^*\geqslant 0$ является оптимальным решением задачи КП \iff \exists неотрицательные векторы $y^*,u^*\in\mathbb{R}^m,\ v\in\mathbb{R}^n$ выполняющие следующие условия:

1.
$$2Cx^* + A^Ty^* - v^* = -p$$
.

2.
$$Ax^* + u^* = b$$
.

3.
$$(x^*, v^*) = 0$$
 или $x_j v_j^* = 0, \ j = \overline{1, n}$.

4.
$$(y^*, u^*) = 0$$
 или $y_i^* u_i^* = 0, i = \overline{1, m}$.

50 Лемма с практики ???

Замечание. Если \exists оптимальное решение $3K\Pi$, то оно является одинм из допустимых базисных решений системы (1)-(2).