"华为杯"第十五届中国研究生 数学建模竞赛

题 目 光传送网建模与价值评估

摘要

近年来,光纤通信迅速发展,极大地方便了人们的日常生活,促进了社会的进步,光传送网的规划问题也一直得到各界的关注。本文研究了光传送网的建模与价值评估问题,建立了光链路多跨传输模型、基于最小生成树的规划模型、最优链路容量分配模型、星座图综合改进模型等模型,利用 Matlab 软件仿真,分别求解了光传送链路建模、光传送网络规划和星座图改善三个问题。

针对问题一,我们建立 AWGN 信道模型,划分判决域,推导得到了错误概率和信噪比之间的关系式,得到了两者的关系曲线;在单跨传输模型的基础上,进一步建立了光链路多跨传输模型,得到了传输跨数与发射功率之间的关系图,从而得到了最远传输距离。

针对问题二,我们首先对数据进行预处理,为了确保网络的连通性,我们建立了基于最小生成树的规划模型,得到了两种规划方案;在需要考虑存在中点节点、且节点可有多个连接时,我们建立了含中间节点的多连接网络规划模型,用基于 DFS 的最优链路容量分配模型来分配链路容量,最终分别得到了基于市、省人口的 16 条线路和 33 条线路的规划方案;我们从运营商、政府的角度改进了原始的网络优化目标函数,分别提出了三种方案,并进行联合优化。

针对问题三,在 ML 检测的模型假设下,以 8QAM 为基础扩展出最佳的 12QAM 和 16QAM 星座图形状。通过推导得出矩形 16QAM 在不等概符号分布情况下的错误概率闭合表达式,分析点位置与概率分布的关系。最后在最佳形状 12QAM 和 16QAM 的基础上完成符号概率分布优化,得到最小 SNR 容限。

本文还对所建立的模型进行了评价和推广。

关键字: 光纤通信 信噪比 误码率 最小生成树 深度优先搜索

目录

ı.	 回题重	还	5
	1.1	背景知识	5
	1.2	相关资料和数据	5
	1.3	问题提出	5
		1.3.1 问题一	5
		1.3.2 问题二	5
		1.3.3 问题三	6
2.	模型假	设	7
3.	名词解	释与符号说明	8
	3.1	名词解释	8
	3.2	符号说明	9
4.	问题分	析	10
	4.1	问题一分析	10
	4.2	问题二分析	10
	4.3	问题三分析	11
5.	问题一	的建模与求解	12
	5.1	问题 1-1	12
		5.1.1 AWGN 信道模型	12
		5.1.2 判决域划分	14
		5.1.3 错误概率推导	15
		5.1.4 BER 与 SNR 的关系曲线绘制、SNR 容限点求解	16
	5.2	问题 1-2	19
		5.2.1 单跨传输模型	19
		5.2.2 多跨传输模型	20
		5.2.3 最远传输距离	21
6.	问题二	的建模与求解	26
		数据预处理	
	6.2	问题 2-1	
		6.2.1 基于最小生成树的规划模型	28

		6.2.2 优化问题的建立	28
		6.2.3 16 条连接的建模和求解	29
		6.2.4 33 条连接的建模和求解	32
	6.3	问题 2-2	33
		6.3.1 基于 DFS 的最优链路容量分配模型	34
		6.3.2 含中间节点的多连接网络规划算法	35
		6.3.3 基于市人口的 16 条连接线规划	36
		6.3.4 基于市人口的 33 条连接线规划	37
		6.3.5 基于省人口的 16 条连接线规划	39
		6.3.6 基于省人口的 33 条连接线规划	42
	6.4	问题 2-3	44
		6.4.1 从政府的角度	44
		6.4.2 从运营商的角度	51
		6.4.3 联合优化	56
7.	问题三	的建模与求解	57
	7.1	在等概条件下,改变点的位置、数量	57
		7.1.1 16 点方案	57
		7.1.2 12 点方案	59
	7.2	信息熵一定的情况下改变概率	61
		7.2.1 理论推导	61
		7.2.2 模型建立与求解	62
8.	模型评	价与推广	64
参	考文献		66
	7/1 //L		. =

1. 问题重述

1.1 背景知识

自高锟博士 1966 年提出低损光纤理论起,光纤通信在 50 多年的时间里飞速发展,基于数字光纤通信技术的光传送网逐步构架了全球通信的骨架,为全人类的生活带来了便利。在过去的 30 年里,光纤通信的发展尤为显著 [1]。光纤通信的单通道速率从 1985 年的 2.5Gbit/s 提升到 400Gbit/s,实现了 160 倍的提升。光传送网的链路也由早起的单跨传输发展到如今的支持多跨段传输,可自由切换的透明波分网络和弹性波分网络。

光传送网给人类社会提供了容量大、可靠性高、能耗低的信息传输方式, 其规划与建设一直是各大运营商、设备商和政府需要考虑的问题 [2]。在规划光 传送网时,不同的规划者会从不同的角度制定方案,需要的考虑因素也不尽相 同。一般而言,网络规划者需要在有限资源的限制下,考虑传输距离、传输容 量、网络拓扑、地理位置、经济概况等等因素,通过合理地规划网路,来最大 化符合要求的网络价值。

1.2 相关资料和数据

- 1. 我国城市地理位置统计结果
- 2. 我国城市人口统计结果
- 3. 我国城市经济发展情况概览

1.3 问题提出

1.3.1 问题一

问题一研究了光传送链路建模,信号在信道中传输,不可避免地会遇到噪声的干扰,可能会产生误码问题。信噪比和误码率的关系值得研究。

问题(1-1)纠前误码率与信噪比计算:在假定每个符号等概率出现的情况下,给定调制格式和编码方式,分别计算 QPSK、8QAM 和 16QAM 的 BER 和 SNR,画出两者的关系曲线,并计算在 BER = 0.02 时对应的 SNR 容限点。

问题(1-2)光链路性能计算:在单跨传输距离分别为80km和100km时,设置纠前误码率的门限值为0.02,计算(1-1)中对应传输格式最远的传输距离(每跨距离×跨段数量)。

1.3.2 问题二

问题二研究了光传送网的规划问题,给出了网络的价值的定义,要求在不同限制条件下制定我国城市群的光传送网计划。

问题(2-1)初级网络规划:在不考虑中间节点的情况下,保证网络的连通性,当网络连接数为 16 和 33 时,制定我国城市群的光传送网络规划,给出最优网络价值。

问题(2-2)改进网络规划:在考虑中点节点的情况下,假定两个节点之间可以有多个连接,给出问题(2-1)的解,并给出所有中点节点传输容量的分配。进一步,考虑把研究范围由市扩大为省之后,网络规划是否会改变,并计算相应的网络价值。

问题(2-3)重设目标函数:在综合考虑光传送网络价值的影响因素后,重 新制定光传送网络规划的目标函数。我们分别从运营商的角度和国家的角度进 行分析,

1.3.3 问题三

问题三研究了对星座图的改善问题。要求在保持信息熵不变的情况下,通过改变 16QAM 方案中星座点的位置、数量或每个点的概率,寻找比示例方案具有更低 SNR 容限点的调制方案。

2. 模型假设

- 假设信号传输过程中存在的噪声可以用加性高斯白噪声近似(在不另作说明的情况下);
- 假设研究的光传输链路是整数跨段组成的,即不考虑分数跨段;
- 假设研究的光传输链路中,光信号在跨内传输时信噪比保持不变且每跨叠加的噪声是相互独立的;
- 假设在连接两个城市时可以直线连接,不考虑实际铺设时的地理位置等其他因素。

3. 名词解释与符号说明

3.1 名词解释

光纤信道:通信信道是一种能把调制器产生的波形信号传输到目的接受机输入端的物理介质。信道的种类很多,有用于传送电信号的导线、电缆;用于传输电磁场信号的自由空间;用于传输光信号的光纤等等。光纤提供的信道带宽比同轴电缆信道提升了几个数量级,能够为用户提供语音、数据、传真和视频等多种业务。

调制:调制是把信号形式转化成适合在信道中传输的一个过程。

星座图: 在复平面上表示数字信号,星座图的水平 X 轴与同相载波相关,垂直 Y 轴与正交载波相关。图中的每个点包含以下四种信息。点在 X 轴的投影定义 了同相成分的峰值振幅,点在 Y 轴的投影定义了正交成分的峰值振幅。点到原点的连线 (向量) 长度是该信号元素的峰值振幅 (X 成分和 Y 成分的组合),连线和 X 轴之间的角度是信号元素的相位。星座图可以直观地表示信号与信号之间的关系。

加性高斯白噪声(AWGN): 加性高斯白噪声是数字通信里常用的噪声与干扰模型, 其幅度服从高斯分布, 功率谱为均匀分布。

信噪比 (SNR): 比特能量与噪声单边带功率谱密度的比值。

比特差错率 (BER): 传输比特总数中产生错误的比特数的比例。

匹配滤波器: 匹配滤波器是输出端的信号瞬时功率与噪声平均功率的比值最大的线性滤波器, 其滤波器的传递函数形式是信号频谱的共轭。

格雷码(Gray code):任意两个相邻的编码只有一位二进制数不同的编码方式称为格雷码。

正交相移键控(QPSK): 正交相移键控是一种数字调制方式,利用载波的四种不同相位差来表征输入的数字信息,分为绝对相移和相对相移。

正交幅度调制 (QAM): 正交幅度调制是一种矢量调制,将输入比特映射到星座图上,形成复数调制符号,然后将符号的 I、Q 分量 (对应复平面的实部和虚部)采用幅度调制,分别对应调制在相互正交的两个载波上。

网络价值 (NV): 基于多种因素定义的铺设网络连接带来的价值回报。

3.2 符号说明

———————————— 符号	意义
$arepsilon_{ m avg}$	平均发送信号能量
M	码元
$d_{ m min}$	信号点间的最小距离
A	信号的幅度
A_{tt}	信号衰减系数
Gain	放大器增益
P_o	发射信号功率
$P_{o'}$	接收信号功率
P_b	比特错误概率,即 BER
P_e	符号错误概率
$P_{o'}$	输出功率
P_{nl}	非线性噪声
D	单跨传输链路的长度
w_{ij}	连接城市 i 和城市 j 的网络价值权重
l	光传输链路的数量
r	圆的半径
Ω	信息熵
a	损失补偿参数
NV	网络价值
u_{ij}	链路自身权重
w_{ij}	每个连接的价值
q_{ij}	链路流量
r_{ij}	连接区域的 GDP

4. 问题分析

本文主要研究了光传送网的建模与价值评估,需要解决光传送链路的建模、光传送网的规划以及星座图的改善等问题,从而提升光传送网的整体性能。

4.1 问题一分析

问题一需要解决光传送链路的建模问题。信号在传输过程时,不可避免地会遇到噪声的干扰,可能会产生误码问题。

问题(1-1)纠前误码率与信噪比计算:

本题旨在通过寻找误码率和信噪比之间的关系,我们首先讨论基本的AWGN模型,基于MAP检验准则对判决域进行划分,然后基于符号等概率的假设,推导出最近邻检测器的表达式。接着,我们推导错误概率的表达式,得出 SNR 和 BER 的关系式。最后,借助 Matlab 仿真,我们可以得到 BER 和 SNR变化关系曲线,并计算得到 BER=0.02 时的 SNR 容限点。

问题(1-2)光链路性能计算:

本题要求在满足误码率要求下,不同传输格式下,不同单跨传输距离下的最远传输距离。我们首先建立单跨传输模型,分析得到 SNR 的表达式,然后在单跨传输模型的基础上推广得到多跨传输模型,分析得出任意跨数时的 SNR 表达式。我们进一步分析得到跨段数量随发射功率变化的曲线图,从而确定最大跨段数量,也就得到了最远传输距离。

4.2 问题二分析

问题二研究了光传送网的规划问题,首先需要保证网络的连通性,同时在容量等限制因素下,确定合理的网络连接方案,使得定义的网络价值最大化。鉴于本题需要大量的数据支撑,我们首先查找了待研究城市的地理位置和人口情况,计算了单波容量和连接价值。

问题(2-1)初级网络规划:我们首先不考虑中间节点,在使得网络连通的条件下,建立了基于最小生成树的规划模型,选取 Kruskal 算法求解,合理地用 16 条连接线将城市连接起来,以获得最大的网络价值;然后,在前者的基础上,将连接线增加到 33 条,进一步规划网络连接。

问题(2-2)改进网络规划:在考虑中点节点的情况下,同时两个节点之间可以有多个连接,网络的连接方式更加多样了。我们首先定义了网络链路中城市间流量的概念,建立了基于深度优先搜索(DFS)的最优链路容量分配模型,用以寻找已知图的最大容量分配方案。然后利用建立的含中间节点的多连接网络规划算法,求解满足题设的 16 条连接线和 33 条连接线的网络规划方案。当把

研究范围由市扩大为省之后,我们更新了和人口数相关的连接价值权重,得到了新的 16 条连接线和 33 条连接线的网络规划方案。

问题(2-3)重设目标函数:在综合考虑光传送网络价值的影响因素后,重新制定光传送网络规划的目标函数。从国家的角度,考虑地区发展的均衡性,对于原始优化目标,对于权重较大的城市对,其在规划中,会重复连接多次。这样虽然能获得较大的网络价值,但从地区发展的平衡性来看,对于偏远地区、人口较少的区域(其权重一般较小),是极其不利的。所以,我们需要改善部分区域过度连接的情况。此外,在网络连接方案确定之后,分配链路容量时,权重较大的城市对之间的链路容量过大,分配不均情况可能会比较严重,导致网络资源的浪费,这也是需要避免的。从运营商的角度,考虑利润的最大化,我们考虑连接区域的经济情况。

4.3 问题三分析

问题三研究了星座图的改善问题。针对 16QAM 方案的星座图,我们需要在调制格式的信息熵保持为 3bit 的前提下,通过改变星座点的位置、数量以及每个点的概率(即符号概率),降低 SNR 容限。首先,我们在符号等概条件下,分析了符号平均功率和 SNR 容限点之间的关系,通过改变星座点的位置和数量,得到了四种方案。然后,我们考虑概率可变的情况,借助 4PAM 与 16QAM 之间的联系,分析了符号概率分布和 SNR 容限点之间的关系,建立了优化问题,求解可得四种方案下最优的符号概率分配方案。综合以上步骤,我们得到了四种方案,并验证了其熵和 BER 均满足题设。

5. 问题一的建模与求解

问题一研究了光传送链路的建模问题。信号在信道中传输时,不可避免地会遇到噪声的干扰,可能会产生误码问题。我们首先讨论基本的 AWGN 模型,基于 MAP 检验准则对判决域进行划分,然后基于符号等概率的假设,推导出最近邻检测器的表达式。接着,我们推导了错误概率的表达式,得到了 SNR 和 BER 的关系式。最后,我们得到了不同调制格式和编码方式下的 BER 和 SNR 曲线。

5.1 问题 1-1

5.1.1 AWGN 信道模型

根据题意,需要考虑的噪声是独立分布的加性噪声,又根据中心极限定理可知,其近似服从正态分布,由此本文假设我们所研究的是 AWGN 信道模型,如图1所示。

图 1 通过 AWGN 信道的接收信号模型图

AWGN 矢量信道的数字模型为 $r = s_m + n$, 其中所有矢量是 N 维实矢量。 s_m 是发射信号,n 是噪声,其分量 n_j 是独立分布(iid)零均值高斯随机变量,服从 $N(0,N_0/2)$ 分布。噪声矢量的概率密度分布(PDF)为

$$p(n) = \left(\frac{1}{\sqrt{\pi N_0}}\right)^N \cdot e^{-\frac{\sum_{j=1}^{N} n_j^2}{2\sigma^2}} = \left(\frac{1}{\sqrt{\pi N_0}}\right)^N \cdot e^{-\frac{\|n\|^2}{N_0}}$$
(1)

对于接收机来说,接收机需要观察 r 以判决发送端是哪个消息被发送。用 g(r) 表示接收机使用的判决函数, g(r) 是由 R^N 映射到消息集的函数,如果 $g(r) = \hat{m}$,就代表接收机判决发送的消息 \hat{m} 。正确判决的概率就是实际发送消息 为 \hat{m} 的概率。由此,在给定接受 r 条件下的正确判决概率为

$$P\left[\text{correct decision}|\mathbf{r}\right] = P\left[\hat{m} \text{ sent}|\mathbf{r}\right] \tag{2}$$

那么正确判决的概率为

$$P\left[\text{correct decision}\right] = \int P\left[\hat{m} \text{ sent}|\mathbf{r}\right] p\left(r\right) dr \tag{3}$$

设计一个使错误概率最小,即正确概率 p [correctdecision] 最大的检测器,相应的最佳判决(最大后验概率,MAP)规则可以表示为

$$\hat{m} = g_{\text{opt}}(r) = \underset{1 \le m \le M}{\arg \max} P[s_m | r] \tag{4}$$

MAP 接收机可以简化为

$$\hat{m} = \underset{1 \le m \le M}{\arg\max} \frac{P_m p(r|s_m)}{p(r)} \tag{5}$$

注意到 p(r) 独立于 m, 并且对所有 m 都一样, 上式可等价于

$$\hat{m} = \underset{1 \le m \le M}{\arg\max} P_m p\left(r|s_m\right) \tag{6}$$

用判决域 D_m 表示被检测器映射为消息 m 的所有信道输出的集合,对于 MAP 检测器而言,其最佳判决域将带来最小的差错概率,有

$$D_m = \left\{ r \in \mathbb{R}^N : P[m|r] > P[m'|r], 1 \le m' \le M, m' \ne M \right\} \tag{7}$$

我们规定,如果对于某个给定的r,有不止一个消息达到最大后验概率,可以将r任意分配到其中一个相应的判决域。

5.1.2 判决域划分

为了方便计算,确定判决域,我们进一步简化(6)的表达,如下所示

$$\begin{split} \hat{m} &= \underset{1 \leq m \leq M}{\arg \max} \left[P_m p\left(r | s_m\right) \right] = \underset{1 \leq m \leq M}{\arg \max} P_m \left[p_n \left(r - s_m\right) \right] \\ &= \underset{1 \leq m \leq M}{\arg \max} \left[P_m \left(\frac{1}{\sqrt{\pi N_0}}\right) \cdot e^{-\frac{\|r - s_m\|^2}{N_0}} \right] \\ &\stackrel{a}{=} \underset{1 \leq m \leq M}{\arg \max} \left[P_m \cdot e^{-\frac{\|r - s_m\|^2}{N_0}} \right] \\ &\stackrel{b}{=} \underset{1 \leq m \leq M}{\arg \max} \left[\ln P_m - \frac{\|r - s_m\|^2}{N_0} \right] \\ &\stackrel{c}{=} \underset{1 \leq m \leq M}{\arg \max} \left[\frac{N_0}{2} \ln P_m - \frac{1}{2} \|r - s_m\|^2 \right] \\ &= \underset{1 \leq m \leq M}{\arg \max} \left[\frac{N_0}{2} \ln P_m - \frac{1}{2} \left(\|r\|^2 + \|s_m\|^2 - 2r \cdot s_m \right) \right] \\ &\stackrel{d}{=} \underset{1 \leq m \leq M}{\arg \max} \left[\frac{N_0}{2} \ln P_m - \frac{1}{2} \varepsilon_m + r \cdot s_m \right] \\ &\stackrel{e}{=} \underset{1 \leq m \leq M}{\arg \max} [\eta_m + r \cdot s_m] \end{split}$$

其中,(a) 中可以舍去正常数 $1/\sqrt{\pi N_0}$; (b) 中 $\ln(\cdot)$ 是增函数,所以可以进行该转化; (c) 中将正数 $N_0/2$ 提取出来; (d) 中记 $\varepsilon_m = \|s_m\|^2$, 舍去了与 m、 ε_m 无关的 $\|r\|^2$; (e) 中则定义了偏差项 $\eta_m = \frac{N_0}{2} \ln P_m - \frac{1}{2} \varepsilon_m$.

在信号等概率的前提下,即 $P_m = 1/M$. 我们可以进一步简化(8) 的表达,得到

$$\hat{m} = \underset{1 \le m \le M}{\arg \max} \left[\frac{N_0}{2} \ln P_m - \frac{1}{2} \|r - s_m\|^2 \right]$$

$$= \underset{1 \le m \le M}{\arg \max} \left[-\frac{1}{2} \|r - s_m\|^2 \right]$$

$$= \underset{1 \le m \le M}{\arg \min} \|r - s_m\|$$
(9)

针对问题一,我们将采用(9)中的最近邻检测器,其几何解释可以理解为:接收机接收到信号 r 之后,在所有 s_m 中寻找与其欧氏距离最小的信号。这也就意味着,在信号等概率的假设下,MAP 检测器等价于最近邻检测器,判决域 D_m 和 $D_{m'}$ 的边界是与信号 s_m 和 $s_{m'}$ 等距离的点的集合,在几何意义上也即是这两个信号点连线的垂直平分线。

5.1.3 错误概率推导

对于给定的检测方式,其出现差错也就意味着当发送 s_m 时,接受的 r 不在 D_m 。所以判决域为 D_m 的接收机的符号错误概率为

$$P_e = \sum_{m=1}^{M} P_m P[r \notin D_m | s_m \text{ sent}] = \sum_{m=1}^{M} P_m P_{e|m}$$
 (10)

其中, $P_{e|m}$ 表示发送消息 m 时的差错概率,即

$$P_{e|m} = \sum_{m=1}^{M} P_m \sum_{1 \le m' \le M, m' \ne m} \int_{D_{m'}} p(r|s_m) dr$$
 (11)

将(11)带入(10),可得符号错误概率为

$$P_{e} = \sum_{m=1}^{M} P_{m} \sum_{1 \le m' \le M, m' \ne m} \int_{D_{m'}} p(r|s_{m}) dr$$
 (12)

相应的,我们将传输时单个比特的错误概率表示为 P_b。一般而言,求解比特错误概率需要已知不同比特序列是如何映射成信号点的,对于星座图没有展示出确定的对称特性时很难求解。本文中,正交信号则具备了计算比特错误率时需要的对称性信息,所以可以将比特错误概率表示为

$$P_b = P_e/\log_2 M \tag{13}$$

根据文献 [3],可知在偶数点 (即 $M=2^k$, 其中 k 为偶数) 方形星座的特殊情况下,星座图的最小距离可以表示为

$$d_{\min} = \sqrt{\frac{6}{M - 1} \varepsilon_{avg}} \tag{14}$$

将满足此条件的 QAM 星座看作两个在同相和正交方向上的 \sqrt{M} 元 PAM 星座,该 QAM 星座的正确检测概率是构成 PAM 系统正确检测概率的乘积,可得

$$P_{c,M-QAM} = P_{c,\sqrt{M}-PAM}^2 = \left(1 - P_{e,\sqrt{M}-PAM}\right)^2$$
 (15)

相应的,错误概率为

$$P_{e,\sqrt{M}-QAM} = 1 - \left(1 - P_{e,\sqrt{M}-PAM}\right)^2 = 2P_{e,\sqrt{M}-PAM}\left(1 - \frac{1}{2}P_{e,\sqrt{M}-PAM}\right)$$
(16)

又由 [3] 可知 PAM 的错误概率为 $P_{e,\sqrt{M}-PAM}=2\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\frac{d_{\min}}{\sqrt{2N_0}}\right)$, 再代入 (14), 可得

$$P_{e,M-QAM} = 4\left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3}{M-1} \cdot \frac{\varepsilon_{\text{avg}}}{N_0}}\right) \times \left(1 - \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3}{M-1} \cdot \frac{\varepsilon_{\text{avg}}}{N_0}}\right)\right)$$

$$= 4\left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3}{M-1} \cdot SNR}\right) \times \left(1 - \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3}{M-1} \cdot SNR}\right)\right)$$
(17)

5.1.4 BER 与 SNR 的关系曲线绘制、SNR 容限点求解

QPSK

QPSK 可以看做是具有方形星座的 4QAM,代入(17),令 M = 4 可得,

$$P_{e,QPSK} = 2Q\left(\sqrt{SNR}\right) \left[1 - \frac{1}{2}Q\left(\sqrt{SNR}\right)\right]$$
 (18)

基于每个符号等概率出现的假设,进一步可以得到 QPSK 的 BER 的表达式,如下所示

$$BER_{QPSK} = \frac{1}{\log_2 M} \cdot P_{e,QPSK} = Q\left(\sqrt{SNR}\right) \left[1 - \frac{1}{2}Q\left(\sqrt{SNR}\right)\right]$$
(19)

根据(19),利用 Matlab 软件画出 BER 和 SNR 的关系示意图如图 2所示。由图可知,当 $BER_{QPSK}=0.02$ 时,SNR 的容限点为 6.25dB。

图 2 QPSK 中 BER 与 SNR 关系曲线示意图

• 8QAM

需要注意的是,图中给出的8QAM星座图不是规则星座映射,不符合对称性的要求,所以不能直接应用(17)来计算BER。所以基于符号等概率的假设,

我们利用(12)和(13)来计算 BER_{8QAM} ,即

$$BER_{8QAM} = \frac{1}{\log_2 M} \cdot P_e$$

$$= \frac{1}{\log_2 M} \cdot \sum_{m=1}^{M} P_m \sum_{1 \le m' \le M, m' \ne m} \int_{D_{m'}} p(r|s_m) dr$$

$$= \frac{1}{M \cdot \log_2 M} \cdot \sum_{m=1}^{M} \sum_{1 \le m' \le M, m' \ne m} \int_{D_{m'}} p(r|s_m) dr$$

$$= \frac{1}{M \cdot \log_2 M} \cdot \sum_{m=1}^{M} \sum_{1 \le m' \le M, m' \ne m} \int_{D_{m'}} \left(\frac{1}{\sqrt{\pi N_0}}\right)^2 e^{-\frac{\|r - s_m\|^2}{N_0}} dr$$
(20)

在图 3中,我们根据最近邻检测器的几何解释,划分了判决域,其中蓝色虚线以外的部分即为 (20) 中所需的积分区域 $D_{m'}$ 。

图 3 8QAM 判决域划分示意图

从而我们可以利用 Matlab 软件,得出 BER 和 SNR 的关系示意图如图.4所示。由图可知,当 $BER_{16QAM}=0.02$ 时,SNR 的容限点为 10.33dB。

图 4 8QAM 中 BER 与 SNR 关系曲线示意图

• 16QAM

对于具有矩形星座的 16-QAM,代入(17),令 M=16 可得,

$$P_{e,16-QAM} = 3Q\left(\sqrt{\frac{1}{5}SNR}\right)\left[1 - \frac{3}{4}Q\left(\sqrt{\frac{1}{5}SNR}\right)\right]$$
(21)

同样地,基于每个符号等概率出现的假设,我们可以得到 16QAM 的 BER 表达式,如下所示。

$$BER_{16QAM} = \frac{1}{\log_2 M} \cdot P_{e,16-QAM} = \frac{3}{4} Q\left(\sqrt{\frac{1}{5}SNR}\right) \left[1 - \frac{3}{4}Q\left(\sqrt{\frac{1}{5}SNR}\right)\right]$$
(22)

根据(22),利用 Matlab 软件画出 BER 和 SNR 的关系示意图如图.5所示。由图可知,当 $BER_{16QAM}=0.02$ 时,SNR 的容限点为 12.67dB。

图 5 16QAM 中 BER 与 SNR 关系曲线示意图

5.2 问题 1-2

5.2.1 单跨传输模型

光传输链路由多个相同跨段级联而成,为了建立光传输链路的多跨段传输模型,我们首先研究单个跨段中光传输 SNR 与距离的关系。如图6所示,我们建立了单跨段光传输链路的数学模型。其中, P_o 代表输入功率 (入纤功率), $P_{o'}$ 代表输出功率, P_{nl} 为等效非线性噪声功率, P_n 为放大器自发辐射噪声功率,1/A 代表衰减器系数,Gain 代表放大器功率增益。由于放大器需要对衰减的信号进行补偿,从而有 $\frac{1}{A_{tt}}$ · Gain=1,则 $A_{tt}=Gain$ 。

图 6 单个跨段传输模型

由题意,"信号每传输 15km,光功率衰减一半",设传输距离为 D,则用于补偿光功率的放大器增益为 $G = 2^{\frac{D}{15}}$ 。又有 $P_n = 2\pi h f B (NF + 1/G)$,可以计算得到 P_n 。又由题意"非线性等效噪声功率与入纤功率近似呈平方关系,光纤

功率为 1mW 时的非线性噪声约等于单个放大器噪声的 2/3", 不妨设 $P_{nl} = aP_o^2$, 联立,得

$$\begin{cases}
P_{\text{nl}} = aP_o^2 \\
P_{\text{nl}} = \frac{2}{3}P_n \cdot G \\
P_o = 1\text{mW}
\end{cases}$$
(23)

解得 $\mathbf{a} = \frac{2}{3}GP_n$ 。

综上,由图6,可以推得输入输出功率之间的关系式如下

$$P_{o'} = P_o + P_{nl} + G \cdot P_n$$

= $P_o + \frac{2}{3}GP_nP_o^2 + GP_n$ (24)

为了表述的方便,我们将单跨的输入 SNR 记为 SNR_{in},输出端的 SNR 相应 地记为 SNR_{out},则

$$SNR_{in} = \frac{P_s}{P_o - P_s} \tag{25}$$

$$SNR_{out} = \frac{P_s}{P_{o'} - P_s} = \frac{P_s}{P_o + \frac{2}{3}GP_nP_o^2 + GP_n - P_s}$$
(26)

5.2.2 多跨传输模型

接下来,我们考虑将单跨传输模型推广到多跨传输模型,借助数学归纳法的思想,设跨数集合为 $\{1,2,...,k,...,K\}$,我们从 k=1,k=2,...,开始,尝试推广到 k 为任意正整数的情况,推导 $SNR_{\rm in}^{(k+1)}$ 与 P_s 的关系式。

• k = 1

当 k=1 时,对于第 k=1 跨而言,入纤功率就是信号功率,即 $P_{\rm o}^{(1)}=P_{\rm s}$,则

$$SNR_{in}^{(1)} = +\infty (27)$$

• k = 2

当 k=2 时,对于第 k=2 跨而言,

$$SNR_{in}^{(2)} = \frac{P_s}{\frac{2}{3}GP_nP_s^2 + GP_n} = \frac{1}{\frac{2}{3}GP_nP_s + \frac{GP_n}{P_s}}$$
(28)

根据(28)可知, 当 $P_s = \sqrt{\frac{3}{2}}$ 时, $\mathrm{SNR}_{\mathrm{in}}^{(2)}$ 取得最大值。

依此类推,可分别得到 k=3、 k=4 等情况下的 SNR, 利用 Matlab 软件仿真可得到不同跨数下 SNR 随 $P_o^{(1)}$ (在不引起歧义的前提下记为 P_o)变化示意图,如图 7所示。根据不同跨数下 SNR 随 P_o 变化示意图,我们可以直观根据图形寻找最大值点。

图 7 不同跨数下 SNR 随 P_o 变化示意图

• k 为任意正整数时

假设第k跨已知,则对于第k+1跨有,

$$SNR_{\rm in}^{(k+1)} = \frac{P_s}{P_o^{(k+1)} - P_s} \tag{29}$$

又因为我们已经推导了 k = 1, k = 2 两种特殊情况的关系式,则当 k 为任意正整数的 SNR 表达式都可以通过递归得到。

5.2.3 最远传输距离

基于建立的多跨传输模型,我们分别计算当单跨传输距离为 80km 和 100km 时,以纠前误码率 0.02 为门限下的最远传输距离 (将 BER=0.02 时的 SNR 记为 $SNR_{0.02}$)。首先,我们考虑到初始信噪比 $SNR_{in}^{(1)}$ 与经过 K 跨传输后的信噪比 $SNR_{in}^{(k+1)}$ 的差值,即 $\Delta SNR = SNR_{in}^{(1)} - SNR_{in}^{(k+1)}$ 。通过之前的分析,可知随着级联跨段数的增加,SNR 会随之减小。换言之,为了获取最远传输距离,我们需要确定最小的 ΔSNR ,或最大的 $SNR_{in}^{(k+1)}$ 。

• 单跨传输距离为 80km 时

在单跨传输距离为 80km 的情况下,根据前文建立的多跨传输模型,利用 Matlab 软件仿真得到三种传输格式下的跨段数量随发射功率的变化关系,分别 如图 8、图 9、图 10所示。QPSK 的最远传输距离为 20 跨,即 1600km; 8QAM 的最远传输距离为 8 跨,即 640km; 16QAM 的最远传输距离为 5 跨,即 400km。

图 8 单跨传输距离为 80km 时,QPSK 传输距离示意图

图 9 单跨传输距离为 80km 时, 8QAM 传输距离示意图

图 10 单跨传输距离为 80km 时,16QAM 传输距离示意图

• 单跨传输距离为 100km 时

在单跨传输距离为 100km 的情况下,根据前文建立的多跨传输模型,利用 Matlab 软件仿真得到三种传输格式下的跨段数量随发射功率的变化关系,分别 如图 11、图 12、图 13所示。QPSK 的最远传输距离为 8 跨,即 800km; 8QAM 的最远传输距离为 3 跨,即 300km; 16QAM 的最远传输距离为 2 跨,即 200km。

图 11 单跨传输距离为 100km 时, QPSK 传输距离示意图

图 12 单跨传输距离为 100km 时, 8QAM 传输距离示意图

图 13 单跨传输距离为 100km 时, 16QAM 传输距离示意图

我们对问题 1-2 中的得到的数据结果进行了整理,如图14所示:

	D	80	100
QPSK	传输跨数 传输距离/km 输入功率/mw SNR/dB BER	20 1600 0.94-1.31 6.254-6.321 0.0190-0.0197	8 800 0.95-1.31 6.242-6.303 0.0192-0.0199
8QAM	传输跨数 传输距率/mw SNR/dB BER 传输距率/km 杨入功率/mw SNR/dB BER 传输跨离/km 传输距离/km	8 640 0.84-1.65 10.334-10.587 0.0172-0.0200	3 300 0.73-1.95 10.337-10.862 0.01442-0.0200
16QAM	传输距离/km 输入功率/mw SNR/dB	5 400 1.08-1.34 12.671-12.698 0.0197-0.0190	2 200 1.13-1.29 12.672-12.682 0.0199-0.0200

图 14 问题 1-2 数据结果汇总图

6. 问题二的建模与求解

问题二研究了光传送网的规划问题,希望通过合理地连接城市,使得定义 的网络价值最大化。我们首先不考虑中间节点,只在使得网络连通的条件下, 合理地用 16 条连接线将城市连接起来,以获得最大的网络价值;然后,在前者 的基础上,将连接线增加到33条,进一步规划网络连接。进一步的,我们考虑 中间节点存在的情况,重新解决子问题 2-1。接着,将点的规模由市扩大到省, 求解问题 2-1。最后,考虑到光传送网络价值的定义应该具有的多样性,我们从 新的角度给出了光传送网络规划的目标函数,并给出了问题 2-1 的解(考虑的 是相应的市人口)。

6.1 数据预处理

在求解具体问题之前,我们首先收集了所研究城市的地理位置和人口统计 情况,数据分别来自 Google 地图(http://www.google.cn/maps)和国家统计局官 网 (http://www.stats.gov.cn/tjsj/pcsj/), 整理如下:

距离	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1053.20	1678.66	2794.00	1995.84	1640.47	1956.65	2500.08	2577.74	3143.76	3550.87	3046.83
北京	1053.20	0	1062.83	1891.14	1054.03	625.71	907.26	1450.96	1531.83	2096.57	2554.68	2411.48
上海	1678.66	1062.83	0	1207.74	684.56	821.68	1221.04	1414.04	1656.81	1958.10	2900.34	3267.83
广州	2794.00	1891.14	1207.74	0	833.25	1290.77	1312.18	944.40	1237.34	1071.41	2313.16	3280.83
武汉	1995.84	1054.03	684.56	833.25	0	463.77	657.35	718.73	988.22	1293.12	2231.07	2763.85
郑州	1640.47	625.71	821.68	1290.77	463.77	0	431.74	866.16	1010.53	1510.26	2181.34	2442.17
西安	1956.65	907.26	1221.04	1312.18	657.35	431.74	0	573.81	621.65	1202.02	1750.43	2116.22
重庆	2500.08	1450.96	1414.04	944.40	718.73	866.16	573.81	0	301.49	643.35	1527.63	2337.03
成都	2577.74	1531.83	1656.81	1237.34	988.22	1010.53	621.65	301.49	0	646.08	1249.27	2061.72
昆明	3143.76	2096.57	1958.10	1071.41	1293.12	1510.26	1202.02	643.35	646.08	0	1267.59	2528.20
拉萨	3550.87	2554.68	2900.34	2313.16	2231.07	2181.34	1750.43	1527.63	1249.27	1267.59	0	1616.25
乌鲁木齐	3046.83	2411.48	3267.83	3280.83	2763.85	2442.17	2116.22	2337.03	2061.72	2528.20	1616.25	0

数据来源:Google地图;单位:km

图 15 城市距离统计图

人口	क्	省
哈尔滨	10.93	37.99
北京	37.35	37.35
上海	24.20	24.20
广州	27.03	109.99
武汉	10.91	58.85
郑州	9.57	95.32
西安	9.62	38.13
重庆	30.48	30.48
成都	16.04	82.62
昆明	6.73	47.71
拉萨	0.90	3.31
乌鲁木齐	2.22	23.98
SELECTION OF ME		. * A . = T

数据来源:国家统计局;单位:百万

图 16 城市人口统计图

根据题目给出的三种典型光传输设备参数,我们计算了基于不同城市间传

输距离的单波传输容量,得到的结果如图 17所示。

单波容量	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	200	100	100	100	100	100	100	100	0	0	0
北京	200	0	200	100	200	200	200	100	100	100	100	100
上海	100	200	0	100	200	200	100	100	100	100	100	0
广州	100	100	100	0	200	100	100	200	100	200	100	0
武汉	100	200	200	200	0	400	200	200	200	100	100	100
郑州	100	200	200	100	400	0	400	200	200	100	100	100
西安	100	200	100	100	200	400	0	400	200	100	100	100
重庆	100	100	100	200	200	200	400	0	400	200	100	100
成都	100	100	100	100	200	200	200	400	0	200	100	100
昆明	0	100	100	200	100	100	100	200	200	0	100	100
拉萨	0	100	100	100	100	100	100	100	100	100	0	100
乌鲁木齐	0	100	0	0	100	100	100	100	100	100	100	0
		•				•					<u>.</u>	单位:Gb/s

图 17 基于城市距离的单波容量计算结果图

基于已得到的各城市人口和相互距离,我们根据题中定义的网络价值,即 1) 每条直线连接两个城市/区域的链路当做一个连接,其价值定义为传输的容量 与连接区域人口数的乘积(取两区域人口数的平方);

2) 网络的价值为所有连接价值的加权和,即 $NV = \sum u_{ij}w_{ij}$,其中 u_{ij} 为每条链路的权重, w_{ij} 为每条链路的价值。

我们将城市 i 和城市 j 连接所带来的价值 w_{ij} 计算结果整理如图 18所示:

w	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	323.26	130.10	137.49	87.37	81.81	82.01	146.01	105.94	0.00	0.00	0.00
北京	323.26	0	481.03	254.17	323.04	302.48	303.23	269.92	195.84	126.82	46.45	72.78
上海	130.10	481.03	0	204.59	260.03	243.48	122.04	217.27	157.64	102.08	37.39	0.00
广州	137.49	254.17	204.59	0	274.79	128.65	128.97	459.22	166.59	215.75	39.51	0.00
武汉	87.37	323.04	260.03	274.79	0	327.02	163.92	291.82	211.73	68.55	25.11	39.34
郑州	81.81	302.48	243.48	128.65	327.02	0	306.97	273.25	198.25	64.19	23.51	36.84
西安	82.01	303.23	122.04	128.97	163.92	306.97	0	547.86	198.75	64.35	23.57	36.93
重庆	146.01	269.92	217.27	459.22	291.82	273.25	547.86	0	707.66	229.12	41.96	65.75
成都	105.94	195.84	157.64	166.59	211.73	198.25	198.75	707.66	0	166.24	30.44	47.70
昆明	0.00	126.82	102.08	215.75	68.55	64.19	64.35	229.12	166.24	0	19.71	30.89
拉萨	0.00	46.45	37.39	39.51	25.11	23.51	23.57	41.96	30.44	19.71	0	11.31
乌鲁木齐	0.00	72.78	0.00	0.00	39.34	36.84	36.93	65.75	47.70	30.89	11.31	0

单位:m·Tb/s

图 18 权重计算结果图

6.2 问题 2-1

问题 2-1 可以看做是简单的有限制条件的整数优化问题,对于 16 条连接线的情况,可以先用 Matlab 整数规划工具箱求解,得到规划方案;再将与采用最小生成树模型的结果进行对比,选取较优的方案;对于 33 条连接线的情况,我们在已有的较优的 16 条连接线的基础上,进一步利用规划得到 33 条连接线的连接方案。

6.2.1 基于最小生成树的规划模型

我们将网络规划问题用一个连通无向图 $G = (\mathcal{V}, \mathcal{E})$ 表示, \mathcal{V} 是城市的集合, \mathcal{E} 是城市之间的可能连接,对于每条边 $(i,j) \in \mathcal{E}$,我们为其赋予权重 $-w_{ij}$ 作为连接城市 i 和城市 j 的代价(相应的, w_{ij} 可以理解为连接两城市的所带来的价值)。我们希望找到一个无环子集 $T \subseteq \mathcal{E}$,既能够使得所有的城市连接起来,又使得整体的权重最小,因此 T 必然是一棵树,并称其为图 G 的生成树,将求取该树的问题称为最小生成树问题 [4]。

我们利用 Kruskal 算法来求解最小生成树问题,在每个时刻生长最小生成树的一条边,并在整个策略的实施过程中,更新边集合 A。在每次循环之前,A 是某棵最小生成树的一个子集。在每次循环中,我们需要选择一条边 (i,j),将其加入到集合 A 中,使得 $A \cup (i,j)$ 仍然是某棵最小生成树的子集。我们将这种可以安全地加入集合 A 而不改变 A 的循环不变式称为集合 A 的安全边。需要注意的是,没有回路的无向图是连通的当且仅当它是树,即等价于: |E| = |V| - 1。所以在建立城市的连通图时,我们会生成 |E| = |V| - 1 条路径。在 Kruskal 算法中,集合 A 是一个森林,其结点就是图的结点,每次加入的安全边永远是权重最小的,可见 Kruskal 算法属于贪心算法。

Kruskal 算法的步骤如下;

- 1) 初始化 $S = \emptyset$, i = 0, j = 0;
- 2) 把 G 的边按权重升序排列,即 $w(e_1) \le w(e_2) \le ... \le w(e_{|E|})$;
- 3) 若 $G[S \cup \{e_i\}]$ 含有圈,转到 4;否则转 5
- 4) 令 j = j + 1, 若 $j \le |E|$ 则转 3; 否则停止, G 中不存在支撑树;
- 5) 令 $S = S \cup \{e_i\}$,并置 i = i + 1;
- 6) 若 i = |V| 1,则结束,此时的 G[S] 即为所求;否则转 4.

6.2.2 优化问题的建立

为了便于表示,我们引入决策变量 $s_{ij} \in \{0,1\}$ 来表示城市之间是否直接相连,其中 $s_{ij} = 1$ 表示相连, $s_{ij} = 0$ 表示不相连。根据题意,以网络价值最大化为优化目标,V 个城市必须连通且连接数 l 已定为限制条件,我们建立了如下的优化问题 P-1。

$$\max_{s_{ij}} \sum_{i=1}^{V} \sum_{j=1}^{V} w_{ij} s_{ij} \tag{30}$$

s.t.
$$G = (V, E) \in G_{\text{connected}}$$
 (30a)

$$\sum_{i=1}^{V} \sum_{j=1}^{V} s_{ij} = l \times 2.$$
 (30b)

其中,限制条件(30a)表示建立的图必须是连通的,限制条件(30b)代表连接数限制。

若不考虑图的连通性限制(利用最小生成树可以保证图的连通性),我们可以简化问题 P-1,得到问题 P-2,如下所示:

$$\max_{s_{ij}} \sum_{i=1}^{V} \sum_{j=1}^{V} w_{ij} s_{ij} \tag{31}$$

$$\text{s.t. } \sum_{i=1}^{V} s_{ij} \ge 1, \forall j, \tag{31a}$$

$$\sum_{j=1}^{V} s_{ij} \ge 1, \forall i, \tag{31b}$$

$$\sum_{i=1}^{V} \sum_{j=1}^{V} s_{ij} = l \times 2.$$
 (31c)

其中,限制条件(31a)和(31b)表示每个城市都至少和一个其他城市相连,满足连通条件。限制条件(31c)则表示连接数为l。

6.2.3 16条连接的建模和求解

首先考虑连接数为 16 的情形。由于该情况下连接数较少,我们考虑先简单的用整数规划的方法求解问题 P-2,由于问题 P-2 只是要求所有点都不是孤立的,不排除可能会出现网络不是连通的情况。我们首先利用 Matlab 软件求解得到如下的结果。

我们发现,该连接方案将拉萨与乌鲁木齐单独连接在了一起,导致最终得 到的图连通的。我们考虑采用以下两种改进方法。

• 改进方法一:减少初始连接数

具体步骤如下:

- 1) 减少初始连接数,设 l = 15,利用 Matlab 整数规划来求解问题 P-2;
- 2) 在 1) 中得到的网络连接的基础上, 计算未连接的城市与其余所有城市连接的权值, 选取权值最大的连入网络。

S	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	1	1	1	0	0	0	0
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	1	0	0	1	0	0	0	0
武汉	0	1	0	1	0	1	0	1	0	0	0	0
郑州	0	1	0	0	1	0	1	1	0	0	0	0
西安	0	1	0	0	0	1	0	1	0	0	0	0
重庆	0	1	0	1	1	1	1	0	1	1	0	0
成都	0	0	0	0	0	0	0	1	0	0	0	0
昆明	0	0	0	0	0	0	0	1	0	0	0	0
拉萨	0	0	0	0	0	0	0	0	0	0	0	1
乌鲁木齐	0	0	0	0	0	0	0	0	0	0	1	0

图 19 16 条连接初步规划结果图

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	1	1	0	0	0	0	0
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	1	0	0	1	0	0	0	0
武汉	0	1	0	1	0	1	0	1	0	0	0	0
郑州	0	1	0	0	1	0	1	1	0	0	0	0
西安	0	1	0	0	0	1	0	1	0	0	0	0
重庆	0	0	0	1	1	1	1	0	1	1	0	0
成都	0	0	0	0	0	0	0	1	0	0	0	0
昆明	0	0	0	0	0	0	0	1	0	0	0	0
拉萨	0	0	0	0	0	0	0	0	0	0	0	1
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	1	0

图 20 16 条连接改进方案一结果图

改进方法一得到的连接方案如图 20所示,相应的网络价值为 5234.87.

• 改进方法二: 基于最小生成树方法的规划模型

具体步骤如下:

- 1) 用最小生成树的 Kruskal 算法先生成 11(12-1=11)条连接路径,保证城市是连通的;
- 2)将已经连接的线路的权重置 0,更新权值,得到权值 w_{ij}^{new1} 避免在规划中出现重复连接的情况;
- 3) 将 $l = 5, w_{ij} = w_{ij}^{new1}$ 代入到问题 P-2, 重新规划;
- 4) 将3) 中的结果加入到1) 生成的连接路径中,得到最终连接图;
- 5) 计算 4) 中的网络总价值。 我们得到的最小生成树如下所示:

图 21 生成最小树结果示意图

经过再次的规划后,得到的最终网络连接方案如图 22所示,其在地图的连接方案如图 23,相应的网络价值为 5270.01.

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	1	1	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	1	0	0	1	0	0	0	0
武汉	0	1	0	1	0	1	0	1	0	0	0	0
郑州	0	1	0	0	1	0	1	1	0	0	0	0
西安	0	1	0	0	0	1	0	1	0	0	0	0
重庆	0	0	0	1	1	1	1	0	1	1	0	0
成都	0	0	0	0	0	0	0	1	0	0	0	0
昆明	0	0	0	0	0	0	0	1	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 22 16 条连接改进方案二结果图

图 23 16 条连接线最终方案结果图(地图)

对比两种方案的网络总价值,方案一的网络价值为 5234.87,方案二为 5270.01,可知方案二的网络总价值更高,其规划结果较优。因此采用方案二作 为最终的 16 条连接线的连接方案。

6.2.4 33 条连接的建模和求解

接下来考虑 33 条连接线的情况,在已得到的 16 条连接线的基础上,增加 17 条连接线,使得网络总价值最大。由于在 16 条线连接方案已经确保了网络的连通性,我们可以直接对问题 P-2 进行优化。

具体步骤如下:

- 1) 将已得到的 16 条连接线的权值置零, 更新权值, 得到权值 w_{ij}^{new2} ;
- 2) 将 $l = 17, w_{ij} = w_{ij}^{new2}$ 代入到问题 P-2,重新规划;
- 3) 将 2) 得到的结果加入到原有的 16 条连接线连接图中,得到最终的 33 条连接线的方案。

S	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	1	0	0	0	1	0	0	0	0
北京	1	0	1	1	1	1	1	1	1	0	1	1
上海	0	1	0	1	1	1	0	1	1	0	0	0
广州	1	1	1	0	1	0	0	1	1	1	0	0
武汉	0	1	1	1	0	1	1	1	1	0	0	0
郑州	0	1	1	0	1	0	1	1	1	0	0	0
西安	0	1	0	0	1	1	0	1	1	0	0	0
重庆	1	1	1	1	1	1	1	0	1	1	0	0
成都	0	1	1	1	1	1	1	1	0	1	0	0
昆明	0	0	0	1	0	0	0	1	1	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 24 33 条连接方案结果图

图 25 33 条连接方案结果图 (地图)

得到的 33 条连接线的连接方案如图 24所示,其在地图的连接情况如图25所示,相应的网络总价值为 8677.69.

6.3 问题 2-2

问题 2-2 在考虑中间节点的条件下重新规划网络,在满足总容量的前提下,可以任意分配每条链路的容量。分别给出 16 条连接和 33 条连接的方案,并计算相应的网络价值。进一步的,将影响网络价值的因素由市人口扩大到省人口,重新规划网络。需要注意的是,我们在本节中,33 条连接的方案仍旧是基于 16 条连接的方案得到的(保持对问题 2-1 题设理解的一致性)。

为了便于表述,我们首先对网络中可能存在的连接情况进行命名。如图 26所示,我们给出了在铺设光纤链路时可能存在的一种连接情况,其中城市 i 和城市 k,城市 k 和城市 j 之间存在实际的光纤链路,称城市 i 和城市 k 直接连接,城市 i 和城市 i 直接连接,城市 i 和城市 i 直接连接,城市 i 和城市 i 直接连接,城市 i 和城市 i 间接连接。我们将这种间接连接的情形称为"虚拟连接"。

图 26 城市连接示意图

6.3.1 基于 DFS 的最优链路容量分配模型

我们建立链路容量的限制下建立最大化网络价值的优化问题 P-3,如下所示。

$$\max NV = \sum u_{ij} h_{ij} q_{ij} \tag{32}$$

$$\text{s.t. } \sum q_{ij}^{K_l} \le C_{mn}, \forall (m,n) \in G \tag{32a}$$

$$q_{ij}^{K_l} \ge 0, \forall K_l \in \{K_1, K_2, ...\}$$
 (32b)

其中 $q_{ij}^{K_l}$ 代表连接城市 i 和城市 j 的某条直接连接的链路的流量,对于每条链路来说,其容量可以被任意分配,但链路的总容量是有限的,限制条件 32a即反应了这一限制。(2-2 中默认 $u_{ij}=1$)

首先,我们采用深度优先搜索(DFS)算法寻找图中所有的节点对 (i,j) 之间的所有可达路径 $V_{ij}^{K_l}$,节点对 (i,j) 之间的流量是通过它们之间的所有可达路径进行传输的。采用有效的数据结构来存放这个所有节点对之间的所有可达路径,并保存它们之间的中间节点。然后找寻出所有经过链路 (m,n) 的所有可达路径 $V_{ij}^{K_l}$ 并保存。以这些可达路径上的流量 $q_{ij}^{K_l}$ 为优化变量,建模成 P-3 的问题,利用线性规划算法进行求解即可得到全局最优解。

6.3.2 含中间节点的多连接网络规划算法

基于上述的最小生成树模型和链路容量分配模型,我们提出了含中间节点的多连接网络规划算法,如算法 1所示。首先,我们执行最小生成树算法,生成 11 条路径,以保证城市的连通性,即建立的图 $G=(\mathcal{V},\mathcal{E})$ 是连通的;接着,我们逐一向 G 中增加连接线,每增加一个连接,都会改变网络容量矩阵,我们会对每个连接生成的新图执行基于 DFS 的最优链路容量分配算法,得到相应的网络价值 NV_{ij}^l 。最终,连接线达到所要求的 L 条,我们将具有最优 NV 值的方案作为最终的网络规划方案。

Algorithm 1 含中间节点的多连接网络规划算法

```
Input: L, C, V.
```

- 1: 初始化: $S_{ij} = 0$, $l_{\text{max}} = L V + 1$.
- 2: 执行最小生成树算法, 生成 V-1 条路径, 保证连通性;
- 3: **for** $l = 1 : l_{max}$ **do**
- 4: **for** \forall $(i, j) \in E$ **do**
- 5: $S_{ij} = S_{ij} + 1;$
- 6: 更新网络容量矩阵 C:
- 7: 执行基于 DFS 的最优链路容量分配算法,得到 NV_{ii}^l ;
- 8: $S_{ij} = S_{ij} 1$,重置 S_{ij} ;
- 9: end for
- 10: 更新 NV_{max}^l , S;
- 11: end for
- 12: 更新 NV_{max};

Output: S, NV_{max} .

6.3.3 基于市人口的 16 条连接线规划

为了表述的方便, 我们对所有的城市进行编号, 如下图所示。

图 27 城市编号示意图

对于以市人口为研究因素,要求用 16 条连接线进行规划的情况,我们将 L=16 代入算法 1,得到基于市人口的 16 条连接线规划方案和相应的传输容量 分配,分别如图 28和图 29所示。

S	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	0	0	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	0	0	0	1	0	0	0	0
武汉	0	1	0	0	0	1	0	0	0	0	0	0
郑州	0	0	0	0	1	0	1	0	0	0	0	0
西安	0	0	0	0	0	1	0	1	0	0	0	0
重庆	0	0	0	1	0	0	1	0	6	1	0	0
成都	0	0	0	0	0	0	0	6	0	0	0	0
昆明	0	0	0	0	0	0	0	1	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 28 基于市人口的 16 条连接线规划方案

			连接线路				流量/Gb/s
1	2						200
1	2	3 5 5 5		_			0
1	2	5	6	7	8	4	
1	2	5	_				0
1	2	5	6	_			0
1	2	5	6	7	0		0
1	2	5	6	7 7	8	0	0
1	2	5 5	6 6		8 8	9	0
1 1	2	5 11	О	7	ŏ	10	0 0
1	2	12					0
1	3	12					200
2	5	6	7	8	4		0
2	5 5 5 5	U	1	0	4		200
2	5	6					0
2	5	6	7				0
2	5	6	7	8			0
2	5	6	7	8	9		0
2	5	6	7	8	10		0
2	11	U	,	J	10		100
2	12						100
2	3	2	5	6	7	4	0
2	3	2	,	,	'		0
2	3	2	5				0
2	3	2	5	6			0
2	3	2	5	6	7		0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3	2 2 2 2 2 2	5 5 5 5	6		8	0
2	3	2	5	6	7 7	8	0
2	3	2	•	-			0
2	3	2					0
4	8	2 7	6	5			0
4	8	7	6				0
4	8	7					0
4	8						200
4	8	9					0
4	8	10					0
4	8	7	6	5	2	11	0
4	8	7	6	5	2	12	0
5	6						400
5	6	7					0
5	6	7 7	8				0
5 5 5 5 2 2	6	7	8	9			0
5	6 5 5	7	8	10			0
2	5	2					0
2	5	2					0
6	7						400
6 6	7	8					0
ь	7	8	9				0
ь	7	8	10				0
6 5 7 7	6	2	11				0
5	6	2	12				0
7	<mark>8</mark> 8	9					400
7	8	9 10					0 0
			2	11			0
6 6	7 7	5 5	2 2	12			0
8	9	э	۷	12			2400
8	10						200
8 7	8	6	5	2	11		0
7	8	6	5	2	12		0
8	9	8	J	-			0
8	9	7	6	5	2	11	0
8	9	7	6	5	2	12	0
8	10	7	6	5 5 5	2	11	0
8	10	7	6	5	2	12	0
2	11	2					0

图 29 基于市人口的 16 条连接线规划方案传输容量分配示意图

6.3.4 基于市人口的 33 条连接线规划

对于以市人口为研究因素,要求用 33 条连接线进行规划的情况,我们将 L=33 代入算法 1,得到基于市人口的 33 条连接线规划方案和相应的传输容量 分配,分别如图 30和图 31所示。

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	0	0	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	0	0	0	1	0	0	0	0
武汉	0	1	0	0	0	1	0	0	0	0	0	0
郑州	0	0	0	0	1	0	1	0	0	0	0	0
西安	0	0	0	0	0	1	0	1	0	0	0	0
重庆	0	0	0	1	0	0	1	0	23	1	0	0
成都	0	0	0	0	0	0	0	23	0	0	0	0
昆明	0	0	0	0	0	0	0	1	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 30 基于市人口的 33 条连接线规划方案

			法拉4 00				☆是/0 5 /
1	2		连接线路				流量/Gb/s 200
1	2 2	3					0 0
1	2	5 5	6	7	8	4	0
1 1	2	5 5	6				0 0
1	2	5	6	7			0
1	2	5 5	6	7	8		0
1	2	5	6	7	8	9	0 0
1 1	2	5 11	6	7	8	10	0
1	2	12					0
2	2 3 5 5 5 5 5 5						200
2	5	6	7	8	4		0
2	5 5	6					200 0
2	5	6	7				0
2	5	6	7	8			0
2	5 5	6 6	7 7	8 8	9 10		0 0
2	11	O	1	0	10		100
2	12						100
2	3	2	5	6	7	4	0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3	2 2 2	5				0 0
2	3	2	5	6			0
2	3	2	5 5 5	6	7		0
2	3	2	5	6	7	8	0
2	3	2	5	6	7	8	0 0
2	3 3 3 3 3	2 2 2 2 2					0
4	8	7	6	5			0
4	8	7 7	6				0
4 4	8 8	1					0 200
4	8	9					0
4	8	10		_	_		0
4 4	8 8	7 7	6 6	5 5	2	11 12	0 0
5	6	,	U	J	۷	12	400
5 5 5 5 5 2 2 6	6	7					0
5	6	7	8				0
5 5	6 6	7 7	8 8	9 10			0 0
2	5	2	O	10			0
2	5	2					0
6	7	0					400
6 6	7 7	8 8	9				0 0
6	7	8	10				0
5	6	2	11				0
5	6	2	12				0 400
6 5 7 7	<mark>8</mark> 8	9					0
7	8	10					0
6	7	5	2	11			0
6 8	7 9	5	2	12			0 9200
8	10						200
7 7	8	6	5	2	11		0 0
7	8	6	5	2	12		0
8 8	9 9	8 7	6	5	2	11	0 0
8	9	7 7	6	5	2	12	0
8	10	7	6	5	2	11	0
8 2	10 11	7 2	6	5	2	12	0 0
	11						

图 31 基于市人口的 33 条连接线规划方案传输容量分配示意图

6.3.5 基于省人口的 16 条连接线规划

将影响由市扩大到省之后,我们将相应的人口影响因素由市人口改为省人口,再次执行类似算法。对于以省人口为研究因素,要求用 16 条连接线进行规划的情况,我们将 L=16 代入算法 1 ,得到的基于省人口的最小生成树结果如图 32 ,得到的基于省人口的 16 条连接线规划方案和相应的传输容量分配,分别

如图 33和图 34所示。

图 32 基于省人口的最小生成树示意图

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	0	0	0	1	0	0	0	0	0	0
上海	0	0	0	0	0	1	0	0	0	0	0	0
广州	0	0	0	0	1	0	0	0	0	1	1	0
武汉	0	0	0	1	0	6	0	0	0	0	0	0
郑州	0	1	1	0	6	0	1	0	1	0	0	1
西安	0	0	0	0	0	1	0	0	0	0	0	0
重庆	0	0	0	0	0	0	0	0	1	0	0	0
成都	0	0	0	0	0	1	0	1	0	0	0	0
昆明	0	0	0	1	0	0	0	0	0	0	0	0
拉萨	0	0	0	1	0	0	0	0	0	0	0	0
乌鲁木齐	0	0	0	0	0	1	0	0	0	0	0	0

图 33 基于省人口的 16 条连接线规划方案

		连接	线路			流量/Gb/s
1	2					200
1 1	2 2	6 6	3 5	4		0 0
1	2	6	5			0
1	2	6	7			0
1 1	2 2	6 6	7 9	8		0 0
1	2	6	9			0
1	2	6	5	4	10	0
1 1	2 2	6 6	5 12	4	11	0 0
2	6	3	12			0
2	6	5	4			0
2 2	6 6	5				0 200
2	6	7				0
2	6	9	8			0
2	6 6	9 5	4	10		0 0
2	6	5	4	11		0
2	6	12				0
3 3	6 6	5 5	4			0 0
3	6					200
3	6	7	0			0
3	6 6	9 9	8			0 0
3	6	5	4	10		0
3	6	5	4	11		0
3 4	6 5	12				0 200
4	5	6				0
4 4	5 5	6	7	8		0 0
4	5 5	6 6	9 9	0		0
4	10					200
4 4	11 5	6	12			100 0
5	6	U	12			2400
5	6	7	_			0
5 5	6 6	9 9	8			0 0
4	5	4				0
4	5	4				0
5 <mark>6</mark>	6 7	12				0 400
6	9	8				0
6	9	Λ	10			200
5 5	6 6	4 4	10 11			0 0
6	12					100
6 6	7 7	6 6	8			0 0
6	7	5	4	10		0
6	7	5	4	11		0
6 <mark>8</mark>	7 9	6				0 400
8	9	6	5	4	10	0
8	9	6	5	4	11	0
8 6	9 9	6 5	12 4	10		0 0
6	9	5	4	11		0
6	9	6				0
4	10 10	4 4	5	6		0 0
4	11	4	5	6		0

图 34 基于省人口的 16 条连接线规划方案传输容量分配示意图

40

6.3.6 基于省人口的 33 条连接线规划

对于以省人口为研究因素,要求用 33 条连接线进行规划的情况,我们将 L=33 代入算法 1,得到基于省人口的 33 条连接线规划方案和相应的传输容量 分配,分别如图 35和图 36所示。

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	0	0	0	1	0	0	0	0	0	0
上海	0	0	0	0	0	1	0	0	0	0	0	0
广州	0	0	0	0	1	0	0	0	0	1	1	0
武汉	0	0	0	1	0	23	0	0	0	0	0	0
郑州	0	1	1	0	23	0	1	0	1	0	0	1
西安	0	0	0	0	0	1	0	0	0	0	0	0
重庆	0	0	0	0	0	0	0	0	1	0	0	0
成都	0	0	0	0	0	1	0	1	0	0	0	0
昆明	0	0	0	1	0	0	0	0	0	0	0	0
拉萨	0	0	0	1	0	0	0	0	0	0	0	0
乌鲁木齐	0	0	0	0	0	1	0	0	0	0	0	0

图 35 基于省人口的 33 条连接线规划方案

		连接	线路			流量/Gb/s
1	2					200
1 1	2 2	6 6	3 5	4		0 0
1	2	6	5	•		0
1	2	6	7			0
1 1	2 2	6 6	7 9	8		0 0
1	2	6	9			0
1 1	2 2	6 6	5 5	4 4	10 11	0 0
1	2	6	12	4	11	0
2	6	3				0
2	6 6	5 5	4			0 0
2	6					200
2 2	6 6	7 9	8			0 0
2	6	9	0			0
2	6	5	4	10		0
2 2	6 6	5 12	4	11		0 0
3	6	5	4			0
3	6	5				0
<mark>3</mark> 3	<mark>6</mark> 6	7				200 0
3	6	9	8			0
3 3	6 6	9 5	4	10		0 0
3	6	5	4	11		0
3	6	12				0
4 4	<mark>5</mark> 5	6				200 0
4	5	6	7			0
4 4	5 5	6 6	9 9	8		0 0
4	10	О	9			200
4	11	_				100
4 5	5 6	6	12			0 9200
5	6	7				0
5	6	9	8			0
5 4	6 5	9 4				0 0
4	5	4				0
5 <mark>6</mark>	6 7	12				0 400
6	9	8				0
6	9	4	10			200
5 5	6 6	4 4	10 11			0 0
6	12					100
6 6	7 7	6 6	8			0 0
6	7	5	4	10		0
6	7	5	4	11		0
6 8	7 9	6				0 400
8	9	6	5	4	10	0
8	9 9	6 6	5 12	4	11	0
8 6	9	5	12 4	10		0 0
6	9	5	4	11		0
6 4	9 10	6 4				0 0
4	10	4	5	6		0
4	11	4	5	6		0

图 36 基于市人口的 33 条连接线规划方案传输容量分配示意图

42

6.4 问题 2-3

6.4.1 从政府的角度

考虑地区发展的均衡性,然后从 2-2 的规划中,我们发现,单纯以 2-2 中定义的 NV 为优化目标时,对于权重较大的城市对,其在规划中,会重复连接多次。这样虽然能获得较大的网络价值,但从地区发展的平衡性来看,对于偏远地区、人口较少的区域(其权重一般较小),是极其不利的。从而从政府的角度来讲,我们需要改善部分区域过度连接的情况。此外,在网络连接方案确定之后,分配链路容量时,权重较大的城市对之间的链路容量过大,分配不均情况可能会比较严重,导致网络资源的浪费。针对这两个问题,我们考虑采用以下两种方案改进网络优化目标。

• 针对网络规划过度连接

我们用 $S_{\text{max}} = \max\{S_{ij}\}$ 表示网络连接中连接次数最大的两区域的连接数量,当网络出现过度连接的情况时,也即代表 S_{max} 过大。我们考虑用 $f(x) = \frac{1}{1+e^{|x|}}$ 来平衡这一情况,令链路权重为 $u_{ij} = \frac{1}{1+e^{|S_{\text{max}}|}}$ 。

我们得到的新的网络优化目标为

$$\max NV = \sum rac{1}{1 + e^{|S_{\max}|}} \cdot h_{ij} \cdot q_{ij}$$
 of

由此,我们将 2-2 中的优化问题 P-2 改进为

$$\max NV = \sum \frac{1}{1 + e^{|S_{\text{max}}|}} \cdot h_{ij} \cdot q_{ij}$$
 (33)

$$\text{s.t. } \sum q_{ij}^{K_l} \le C_{mn}, \forall (m,n) \in G \tag{33a}$$

$$q_{ij}^{K_l} \ge 0, \forall K_l \in \{K_1, K_2, ...\}$$
 (33b)

对 16 条连接数时进行优化,得到的网络规划方案和链路容量分配方案如下所示。由于篇幅的限制,链路容量方案我们只展示了部分结果,详情可见附件。

S	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	1	1	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	1	0	0	1	0	0	0	0
武汉	0	1	0	1	0	1	0	1	0	0	0	0
郑州	0	1	0	0	1	0	1	1	0	0	0	0
西安	0	1	0	0	0	1	0	1	0	0	0	0
重庆	0	0	0	1	1	1	1	0	1	1	0	0
成都	0	0	0	0	0	0	0	1	0	0	0	0
昆明	0	0	0	0	0	0	0	1	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 37 针对网络过度连接改进的新网络连接方案(16条)

			连接线路				流量/Gb/s
1	2						2.0000E+02
1	2	3					2.4349E-13
1	2	5	4				1.3300E-13
1	2	5	6	7	8	4	6.5818E-14
1	2	5	6	8	4		6.7024E-14
1	2	5	8	4			7.8050E-14
1	2	6	5	4			9.4872E-14
1	2	6	5	8	4		6.6451E-14
1	2	6	7	8	4		7.2383E-14
1 1	2 2	6 6	7 8	8 4	5	4	6.2291E-14 7.1306E-14
1	2	6	8	5	4		6.6600E-14
1	2	7	6	5	4		1.2028E-13
1	2	7	6	5	8	4	7.6232E-14
1	2	7	6	8	4	7	8.0790E-14
1	2	7	6	8	5	4	7.0087E-14
1	2	7	8	4	ŭ		1.1204E-13
1	2	7	8	5	4		8.4301E-14
1	2	7	8	6	5	4	7.6764E-14
1	2	5					1.9164E-13
1	2	6	5				1.1180E-13
1	2	6	7	8	4	5	5.7295E-14
1	2	6	7	8	5		7.0668E-14
1	2	6	8	4	5		5.6000E-14
1	2	6	8	5			7.7657E-14
1	2	7	6	5		_	1.7683E-13
1	2	7	6	8	4	5	6.2291E-14
1	2	7	6	8	5		8.0320E-14
1 1	2	7 7	8 8	4 5	5		7.7222E-14 1.0314E-13
1	2	7	8	6	5		8.8793E-14
1	2	5	4	8	6		5.7286E-14
1	2	5	4	8	7	6	5.6393E-14
1	2	5	6	J	,	· ·	1.3133E-13
1	2	5	8	6			8.5149E-14
1	2	5	8	7	6		7.3327E-14
1	2	6					1.1757E-13
1	2	7	6				2.5437E-13
1	2	7	8	4	5	6	7.0350E-14
1	2	7	8	5	6		9.0736E-14
1	2	7	8	6			9.8206E-14
1	2	5	4	8	6	7	5.2784E-14
1	2	5	4	8	7		6.0977E-14
1	2	5	6	7	-		1.0654E-13
1	2	5	6	8	7		7.1108E-14
1 1	2	5 5	8 8	6 7	7		7.3039E-14
1	2	6	5	4	8	7	8.3478E-14 5.7129E-14
1	2	6	5	8	7	,	6.9925E-14
1	2	6	7	U	'		1.1139E-13
1	2	6	8	7			7.4975E-14
1	2	7	3	,			3.8572E-13
1	2	5	4	8			7.9533E-14
1	2	5	6	7	8		9.1512E-14
1	2	5	6	8			1.0939E-13
1	2	5	8				1.4857E-13
1	2	6	5	4	8		6.9972E-14
1	2	6	5	8			9.7792E-14
1	2	6	7	8			1.0113E-13
1	2	6	8				1.1179E-13
1	2	7	6	5	4	8	8.0623E-14
1	2	7	6	5	8		1.0891E-13
1	2	7	6	8			1.2690E-13
1	2	7	8	0	0		2.6361E-13
1 1	2	5 5	4 6	8 7	9 8	9	5.9896E-14
	۷	J	U	1	0	9	6.8262E-14

图 38 针对网络过度连接改进的链路容量分配 (16条)

对 33 条连接数时进行优化,得到的网络规划方案和链路容量分配方案如下 所示。由于篇幅的限制,链路容量方案我们只展示了部分结果,详情可见附件。

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	1	1	1	1	1	1	0	1	1
上海	0	1	0	1	1	1	0	1	1	0	0	0
广州	0	1	1	0	1	0	0	1	1	1	0	0
武汉	0	1	1	1	0	1	1	1	1	0	0	0
郑州	0	1	1	0	1	0	1	1	1	0	0	0
西安	0	1	0	0	1	1	0	1	1	0	0	0
重庆	0	1	1	1	1	1	1	0	1	1	1	1
成都	0	1	1	1	1	1	1	1	0	1	0	0
昆明	0	0	0	1	0	0	0	1	1	0	0	0
拉萨	0	1	0	0	0	0	0	1	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	1	0	0	0	0

图 39 针对网络过度连接改进的新网络连接方案(33条)

				连接	総路					流量/Gb/s
	2									2.0000E+02
1	2	3								0.0000E+02
	2	4	3							0.0000E+00
1	2			•						
1		4	5	3						0.0000E+00
1	2	4	5	6	3	•	•			0.0000E+00
1	2	4	5	6	7	8	3	_		0.0000E+00
1	2	4	5	6	7	8	9	3	_	0.0000E+00
1	2	4	5	6	7	8	10	9	3	0.0000E+00
1	2	4	5	6	7	9	3			0.0000E+00
1	2	4	5	6	7	9	8	3		0.0000E+00
1	2	4	5	6	7	9	10	8	3	0.0000E+00
1	2	4	5	6	8	3				0.0000E+00
1	2	4	5	6	8	7	9	3		0.0000E+00
1	2	4	5	6	8	9	3			0.0000E+00
1	2	4	5	6	8	10	9	3		0.0000E+00
1	2	4	5	6	9	3				0.0000E+00
1	2	4	5	6	9	7	8	3		0.0000E+00
1	2	4	5	6	9	8	3			0.0000E+00
1	2	4	5	6	9	10	8	3		0.0000E+00
1	2	4	5	7	6	3				0.0000E+00
1	2	4	5	7	6	8	3			0.0000E+00
1	2	4	5	7	6	8	9	3		0.0000E+00
ī	2	4	5	7	6	8	10	9	3	0.0000E+00
1	2	4	5	ż	6	9	3	٠	•	0.0000E+00
ī	2	4	5	7	6	9	8	3		0.0000E+00
i	2	4	5	7	6	9	10	8	3	0.0000E+00
1	2	4	5	7	8	3	10	۰	•	0.0000E+00
1	2	4	5	7	8	6	3			0.0000E+00
							9	•		
1	2	4	5	7	8	6		3		0.0000E+00
1	2	4	5	7	8	9	3	_		0.0000E+00
1	2	4	5	7	8	9	6	3		0.0000E+00
1	2	4	5	7	8	10	9	3	_	0.0000E+00
1	2	4	5	7	8	10	9	6	3	0.0000E+00
1	2	4	5	7	9	3				0.0000E+00
1	2	4	5	7	9	6	3			0.0000E+00
1	2	4	5	7	9	6	8	3		0.0000E+00
1	2	4	5	7	9	8	3			0.0000E+00
1	2	4	5	7	9	8	6	3		0.0000E+00
1	2	4	5	7	9	10	8	3		0.0000E+00
1	2	4	5	7	9	10	8	6	3	0.0000E+00
1	2	4	5	8	3					0.0000E+00
1	2	4	5	8	6	3				0.0000E+00
1	2	4	5	8	6	7	9	3		0.0000E+00
1	2	4	5	8	6	9	3			0.0000E+00
1	2	4	5	8	7	6	3			0.0000E+00
1	2	4	5	8	7	6	9	3		0.0000E+00
ī	2	4	5	8	7	9	3	•		0.0000E+00
ī	2	4	5	8	ż	9	6	3		0.0000E+00
ī	2	4	5	8	9	3	•	•		0.0000E+00
i	2	4	5	8	9	6	3			0.0000E+00
1	2	4	5	8	9	7	6	3		0.0000E+00
1	2	4	5	8	10	9	3	3		0.0000E+00
	2							3		
1		4	5	8	10	9	6		•	0.0000E+00
1	2	4	5	8	10	9	7	6	3	0.0000E+00
1	2	4	5	9	3	_				0.0000E+00
1	2	4	5	9	6	3	_	_		0.0000E+00
1	2	4	5	9	6	7	8	3		0.0000E+00
1	2	4	5	9	6	8	3			0.0000E+00
1	2	4	5	9	7	6	3			0.0000E+00
1	2	4	5	9	7	6	8	3		0.0000E+00
1	2	4	5	9	7	8	3			0.0000E+00
1	2	4	5	9	7	8	6	3		0.0000E+00
1	2	4	5	9	8	3				0.0000E+00
1	2	4	5	9	8	6	3			0.0000E+00
1	2	4	5	9	8	7	6	3		0.0000E+00
1	2	4	5	9	10	8	3	-		0.0000E+00

图 40 针对网络过度连接改进的链路容量分配(33条)

• 针对链路容量分配不均

我们注意到,当网络连接确定后,分配链路容量时,由于算法本身的贪婪特性的影响,会出现某两点存在多条连接时,绝大多数链路容量分配给某一条

或少数几条权重较大的链路。这符合网络价值最大化的需求,但和地区平衡发展的目标相悖。

用 CP 代表城市 i 和城市 j 之间的第 K_l 条路径的链路容量总和,e 表示经过的总边数,借助函数 $f(x) = \tanh(x)$,更新链路权重为 $u_{ij} = \alpha + \tanh\left(\frac{CP - e \cdot q_{ij}^{K_l}}{CP}\right)$ 。其中,参数 a 用于对单链接的情况的调和。譬如说,当某一个区域只与一个区域相连时,该链路的所有可用容量都被赋予该流量,从实际情形来看是合理的,但在 $\tanh(\cdot)$ 中得到的结果为零。为了补偿这一情况下的损失,我们增加了参数 a。

我们得到的新的网络优化目标为 $\max NV = \sum \left(\alpha + \tanh\left(\frac{CP - e \cdot q_{ij}^{K_l}}{CP}\right)\right) \cdot h_{ij} \cdot q_{ij} \circ$ 由此,我们将 2-2 中的优化问题 P-2 改进为

$$\max NV = \sum \left(\alpha + \tanh \left(\frac{CP - e \cdot q_{ij}^{K_l}}{CP} \right) \right) \cdot h_{ij} \cdot q_{ij}$$
 (34)

$$s.t. \sum q_{ij}^{K_l} \le C_{mn}, \forall (m, n) \in G$$
(34a)

$$q_{ij}^{K_l} \ge 0, \forall K_l \in \{K_1, K_2, \dots\}$$
(34b)

对 16 条连接数时进行优化,得到的网络规划方案和链路容量分配方案如下所示:由于篇幅的限制,链路容量方案我们只展示了部分结果,详情可见附件。

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	0	0	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	0	0	0	1	0	0	0	0
武汉	0	1	0	0	0	1	0	0	0	0	0	0
郑州	0	0	0	0	1	0	1	0	0	0	0	0
西安	0	0	0	0	0	1	0	1	0	0	0	0
重庆	0	0	0	1	0	0	1	0	6	1	0	0
成都	0	0	0	0	0	0	0	6	0	0	0	0
昆明	0	0	0	0	0	0	0	1	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 41 针对链路容量分配不均的新网络连接方案(16条)

			连接线路	ζ.			汝是/0 □/-
1	2		连接线路	<u> </u>			流量/Gb/s
1	2 2	3					1.7355E+02 2.6454E+01
1	2	5 5	6	7	8	4	4.4692E-07
1	2	5	O	1	O	4	1.6193E-06
1	2	5	6				1.0954E-06
1	2	5	6	7			7.8165E-07
1	2	5	6	7	8		6.8677E-07
1	2	5	6	7	8	9	4.3696E-07
1	2	5	6	7	8	10	4.6988E-07
1	2	11					4.2229E-06
1	2	12					6.7249E-06
2	3		_				1.7355E+02
2 2	5	6	7	8	4		1.0307E-06
2	5 5	6					1.6797E+02 3.2032E+01
2	5 5	6	7				2.7386E-06
2	5	6	7	8			7.4318E-06
2 2	5	6	7	8	9		8.1829E-07
2	5	6	7	8	10		7.6960E-07
2	11						8.0262E+01
2	12						8.0262E+01
2	3	2	5	6	7	4	5.1930E-07
2	3	2					2.0443E-06
2	3	2	5				1.2425E-06
2 2 2	3	2	5	6	_		8.5430E-07
2	3	2	5	6	7	0	8.9844E-07
2	3 3	2 2	5 5	6 6	7 7	8 8	4.7797E-07 4.8344E-07
2	3	2	5	O	1	0	2.9741E-06
2	3	2					5.1022E-06
4	8	7	6	5			1.0358E-06
4	8	7	6				1.2864E-06
4	8	7					2.4571E-06
4	8						1.7263E+02
4	8	9					2.3065E+01
4	8	10	_	_	_		4.3072E+00
4	8	7	6	5	2	11	3.8266E-07
4	8	7	6	5	2	12	4.0584E-07
5	6 6	7					3.6797E+02 1.4460E-04
5 5	6	7	8				5.4352E-06
5	6	7	8	9			9.8404E-07
5	6		8	10			1.1686E-06
2	5	7 2					1.3785E-06
5 5 5 5 2 2 6	5	2					1.5689E-06
	7						3.6495E+02
6	7	8					3.5047E+01
6	7	8	9				1.2298E-06
6	7	8	10				1.5753E-06
5	6	2	11				1.0090E-06
5 5 7	6	2	12				1.0991E-06
7 7	8 8	9					3.6495E+02 2.2558E-06
7	8	9 10					3.7648E-06
6	7	5	2	11			7.3607E-07
6	7	5	2	12			7.8303E-07
8	9			-			2.3565E+03
8	10						1.7528E+02
7	8	6	5	2	11		5.3266E-07
7	8	6	5	47 2	12		5.8218E-07
8	9	8	-		_		2.0411E+01
8	9	7	6	5	2	11	4.0070E-07
8 8	9 10	7 7	6 6	5 5	2 2	12 11	4.1931E-07 4.6823E-07
U	ΤÜ	ı	U	J	۷	ΤŢ	4.00Z3L-07

对 33 条连接数时进行优化,得到的网络规划方案和链路容量分配方案如下所示:由于篇幅的限制,链路容量方案我们只展示了部分结果,详情可见附件。

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	0	0	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	0	0	0	1	0	0	0	0
武汉	0	1	0	0	0	1	0	0	0	0	0	0
郑州	0	0	0	0	1	0	1	0	0	0	0	0
西安	0	0	0	0	0	1	0	1	0	0	0	0
重庆	0	0	0	1	0	0	1	0	23	1	0	0
成都	0	0	0	0	0	0	0	23	0	0	0	0
昆明	0	0	0	0	0	0	0	1	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 43 针对链路容量分配不均的新网络连接方案(33条)

1 2 3 1.73 1 2 3 2.64* 1 2 5 6 7 8 4 4.46* 1 2 5 6 7 8 1.61* 1 2 5 6 7 8 6.86* 1 2 5 6 7 8 9 4.36* 1 2 5 6 7 8 9 4.36* 1 2 5 6 7 8 9 4.36* 1 2 5 6 7 8 9 4.36* 1 2 11 4.22* 6.72* 6.72* 1.73* 4.22* 6.72* 1.73* 2.23* 2.73* 1.67* 3.20* 2.73* 2.73* 2.73* 2.74* 2.74* 3.20* 2.74* 3.20* 2.74* 3.20* 2.74* 3.20* 3.20* 3.20* 3.20* 3.20* 3.20* 3.20* 3.20* 3.20* 3.20* 3.20* 3.20*	#/Gb/s 55E+02 54E+01 92E-07 93E-06 54E-06 65E-07 77E-07 96E-07 88E-07 29E-06 49E-06 97E+02 32E+01 86E-06 17E-06 29E-07
1 2 3 4 4.46 1 2 5 6 7 8 4 4.46 1 2 5 6 7 1.09 7.81 1.09 1 2 5 6 7 8 9 4.36 6.86 1 2 5 6 7 8 9 4.36 6.86 1 2 5 6 7 8 9 4.36 4.22 6.72 1.73 4.22 6.72 1.73 4.22 6.72 1.73 4.22 6.72 1.73 4.22 6.72 1.73 4.22 6.72 1.73 4.22 6.72 1.73 1.67 3.20 2.73 1.67 3.20 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.74 3.20 2.73 4.23 3.20 2.73 3.20 2.73 3.20 2.73 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	54E+01 92E-07 93E-06 54E-06 65E-07 77E-07 96E-07 88E-07 29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07 59E-07
1 2 5 6 7 8 4 4.469 1 2 5 6 7 8 1.099 1 2 5 6 7 8 6.86 1 2 5 6 7 8 9 4.369 1 2 5 6 7 8 10 4.699 1 2 11 1 4.222 6.722 1.738 10 4.699 4.222 6.722 1.738 1.030 1.679	92E-07 93E-06 54E-06 65E-07 77E-07 96E-07 88E-07 29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07 59E-07
1 2 5 6 1.619 1 2 5 6 7 7.810 1 2 5 6 7 8 6.86 1 2 5 6 7 8 9 4.369 1 2 5 6 7 8 10 4.699 1 2 11 4.222 6.722 6.722 6.722 6.722 1.733 1.030 1.679	93E-06 54E-06 65E-07 77E-07 96E-07 88E-07 29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07 59E-07
1 2 5 6 7 1.09 7.81 1 2 5 6 7 8 6.86 1 2 5 6 7 8 9 4.36 1 2 5 6 7 8 10 4.69 1 2 11 4.22 6.72 6.72 6.72 6.72 6.72 1.73 1.73 1.67 1	54E-06 65E-07 77E-07 96E-07 88E-07 29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07
1 2 5 6 7 8 6.86 1 2 5 6 7 8 9 4.36 1 2 5 6 7 8 9 4.36 1 2 5 6 7 8 10 4.69 1 2 11 4.22 6.72 6.72 6.72 6.72 6.72 1.73 1.03 6.72 6.72 1.73 1.03 1.67 3.20 1.67 3.20 1.67 3.20 2.73 2.73 2.73 2.5 6 7 8 9 8.18 3.20 2.73 2.73 2.5 6 7 8 9 8.18 8.18 3.20	65E-07 77E-07 96E-07 88E-07 29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07 59E-07
1 2 5 6 7 8 9 4.369 1 2 5 6 7 8 10 4.699 1 2 11 4.227 4.227 4.227 6.724<	77E-07 96E-07 88E-07 29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07 59E-07
1 2 5 6 7 8 9 4.369 1 2 5 6 7 8 10 4.698 1 2 11 4.221 6.724 6.724 2 3 3 1.030 1.679 1.030 1.679 <td< td=""><td>96E-07 88E-07 29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07</td></td<>	96E-07 88E-07 29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07
1 2 5 6 7 8 10 4.698 1 2 11 4.222 6.724 1 2 12 6.724 2 3 2 1.735 2 5 6 7 8 4 2 5 6 7 8 4 1.030 1.679 3.203 2.738 2.738 2.738 2 5 6 7 8 9 8.183 2 5 6 7 8 9 8.183 2 5 6 7 8 10 7.699 2 11 8.026	29E-06 49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07 59E-07
1 2 12 2 3 2 5 6 7 8 4 1.030 2 5 6 7 8 4 1.030 1.679 3.203 2.730 2.730 2.730 2 5 6 7 8 9 8.183 2 5 6 7 8 9 8.183 2 5 6 7 8 10 7.693 2 11 8.026 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3	49E-06 55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07 59E-07
2 3 1.738 2 5 6 7 8 4 1.030 2 5 6 7 8 4 1.679 2 5 6 7 2.730 2.730 2 5 6 7 8 9 8.180 2 5 6 7 8 9 8.180 2 5 6 7 8 10 7.690 2 11 8.026 2 3 2 5 6 7 4 5.192 2 3 2 5 6 7 4 5.192 2 3 2 5 6 7 4 5.192 2 3 2 5 6 7 4 5.192 2 3 2 5 6 7 4 5.192 2 3 2 5 6 7 4 5.192 2 3 2 5 6 <td>55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07</td>	55E+02 07E-06 97E+02 32E+01 86E-06 17E-06 29E-07
2 5 6 7 8 4 1.030 2 5 6 3.203 2 5 6 7 2.738 2 5 6 7 8 9 2.738 2 5 6 7 8 9 8.183 2 5 6 7 8 10 7.699 2 11 8.026 2 12 8.026 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 7 4 5.193 </td <td>07E-06 97E+02 32E+01 86E-06 17E-06 29E-07</td>	07E-06 97E+02 32E+01 86E-06 17E-06 29E-07
2 5 2 5 6 2 5 6 7 2 5 6 7 8 2 5 6 7 8 9 8.182 2 5 6 7 8 9 8.182 2 5 6 7 8 10 7.692 2 11 8.026 2 12 8.026 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2	97E+02 32E+01 86E-06 17E-06 29E-07 59E-07
2 5 6 7 3.203 2 5 6 7 8 7.43 2 5 6 7 8 9 8.18 2 5 6 7 8 10 7.69 2 11 8.026 2 12 8.026 2 3 2 5 6 7 4 5.19 2 3 2 5 6 7 4 5.19 2 3 2 5 6 7 4 5.19 2 3 2 5 6 7 4 5.19 2 3 2 5 6 7 4 5.19 2 3 2 5 6 7 4 5.19 2 3 2 5 6 7 4 5.19 2 3 2 5 6 7 4 5.19 2 3 2 5 6 7	32E+01 86E-06 17E-06 29E-07 59E-07
2 5 6 7 8 2.738 2 5 6 7 8 9 8.183 2 5 6 7 8 10 7.693 2 11 8.026 2 12 8.026 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 6	86E-06 17E-06 29E-07 59E-07
2 5 6 7 8 9 8.183 2 5 6 7 8 9 8.183 2 5 6 7 8 10 7.695 2 11 8.026 2 12 8.026 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 5.193 2 3 2 5 6 7 4 1.243	17E-06 29E-07 59E-07
2 5 6 7 8 10 7.698 2 11 8.026 2 12 8.026 2 3 2 5 6 7 4 5.192 2 3 2 2 2.044 2 3 2 5 1.242	29E-07 59E-07
2 5 6 7 8 10 7.698 2 11 8.026 2 12 8.026 2 3 2 5 6 7 4 5.192 2 3 2 2 2.044 2 3 2 5 1.242	59E-07
2 11 8.026 2 12 8.026 2 3 2 5 6 7 4 5.197 2 3 2 5 1.247	
2 12 2 3 2 5 6 7 4 5.19 2 3 2 5 2 3 2 5	JLLTUI
2 3 2 5 6 7 4 5.193 2 3 2 5 2.044 2 3 2 5	62E+01
2 3 2 2.04 <i>4</i> 2 3 2 5 1.24 <i>2</i>	29E-07
2 3 2 5 1.24	43E-06
	25E-06
	30E-07
	44E-07
2 3 2 5 6 7 8 4.77	98E-07
	44E-07
	41E-06 22E-06
	22E-06 58E-06
	64E-06
	71E-06
	63E+02
	01E+01
4 8 10 7.04	42E-02
	66E-07
	84E-07
5 6 3.679	97E+02
5 6 7 1.44	65E-04
5 6 7 8 5.43	52E-06
5 6 7 8 9 5 6 7 8 10 1.168	05E-07 86E-06
5 6 7 8 10 1.168 2 5 2 1.378	85E-06
2 5 2 1.568	89E-06
	95E+02
	47E+01
	99E-06
	53E-06
5 6 2 11 1.009	90E-06
	91E-06
7 8 3.649	95E+02
	59E-06
	48E-06
	07E-07
	03E-07
	31E+03 28E+02
	28E+02 66E-07
7 8 6 5 2 12 582°	18E-07
40	48E+01
2.10	71E-07
8 9 7 6 5 2 12 4.193	31E-07
8 10 7 6 5 2 11 4.682	

6.4.2 从运营商的角度

和政府不同,运营商一般会以利润最大化为目标,在偏远、经济不发达地区建立光纤网络和经济发达,且地理位置相对集中的区域相比,经济收益难免会有所下降。从这一角度来看,区域的 GDP 对于运营商来说,是比人口更有意义的衡量因素,因为经济越发达的地区,使用光纤网络的比例越高,场合也越多。我们用 r_i 表示区域 i 的 GDP,类似于题设中连接区域人口数的定义,我们规定连接区域 GDP 为两区域 GDP 乘积的 0.5 次方。用 r_{ij} 表示区域 i 和区域 j 的连接区域 GDP,则 $r_{ij} = \sqrt{r_i \cdot r_j}$ 。

我们得到的新的网络优化目标为 $\max NV = \sum u_{ij} \cdot h_{ij} \cdot r_{ij}$ 由此,我们将问题 2-2 中的优化问题 P-3 改进为

$$\max NV = \sum u_{ij} \cdot h_{ij} \cdot r_{ij} \tag{35}$$

$$\text{s.t.} \sum q_{ij}^{K_l} \le C_{mn}, \forall (m,n) \in G \tag{35a}$$

$$q_{ij}^{K_l} \ge 0, \forall K_l \in \{K_1, K_2, ...\}$$
 (35b)

我们查阅了所研究区域的 GDP 情况,整理如下(数据来自于国家统计局):

	GDP
哈尔滨	6101.61
京津	43554.52
上海	28178.65
广深	39040.04
武汉	11912.61
郑州	8025.31
西安	6257.18
重庆	17740.59
成都	12170.23
昆明	4300.08
拉萨	389.46
乌鲁木齐	2458.98
	单位:亿元

图 45 城市 GDP 统计结果

对 16 条连接数时进行优化,得到的网络规划方案和链路容量分配方案如下所示:由于篇幅的限制,链路容量方案我们只展示了部分结果,详情可见附件。

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	6	0	1	0	0	0	0	0	1	1
上海	0	6	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	1	0	0	1	0	1	0	0
武汉	0	1	0	1	0	1	0	0	0	0	0	0
郑州	0	0	0	0	1	0	0	0	0	0	0	0
西安	0	0	0	0	0	0	0	1	0	0	0	0
重庆	0	0	0	1	0	0	1	0	1	0	0	0
成都	0	0	0	0	0	0	0	1	0	0	0	0
昆明	0	0	0	1	0	0	0	0	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 46 针对经济效益的新网络连接方案(16条)

		\ 4 1+	- AD D&			·
			· 线路 ———————————————————————————————————			流量/Gb/s
1	2	2				2.0000E+02
1 1	2 2	3 5	4			1.2876E-09 1.5759E-09
1	2	5	4			3.3551E-09
1	2	5	6			2.2838E-09
1	2	5	4	8	7	9.1272E-10
1	2	5	4	8		1.1313E-09
1	2	5	4	8	9	8.9296E-10
1	2	5	4	10		9.1981E-10
1	2	11				2.4436E-09
1 2	2 3	12				2.0547E-09 1.2000E+03
2	5	4				5.9271E-08
2	5					2.0000E+02
2	5	6				7.4886E-09
2	5	4	8	7		1.3528E-09
2	5	4	8	•		2.1202E-09
2	5	4	8	9		1.4331E-09
2 2	5 11	4	10			1.6024E-09 1.0000E+02
2	12					1.0000E+02 1.0000E+02
2	3	2	4			1.4353E-09
2	3	2				1.9451E-09
2	3	2	5			1.3216E-09
2	3	2	4	8	7	6.4429E-10
2	3	2	4	8	0	8.3758E-10
2 2	3 3	2 2	4 4	8	9	6.6722E-10
2	3	2	4	10		6.7175E-10 1.2845E-09
2	3	2				1.2479E-09
4	5	_				2.0000E+02
4	5	6				3.4752E-09
4	8	7				5.4053E-09
4	8	•				2.0000E+02
4	8	9				6.1613E-09
4 4	10 5	2	11			2.0000E+02 1.4909E-09
4	5	2	12			1.4909E-09 1.4723E-09
5	6	_				4.0000E+02
4	5	4	7			1.1416E-09
4	5	4				1.8774E-09
4	5	4	8			1.1224E-09
4	5	4				1.7628E-09
2 2	5 5	2 2				3.6092E-09 3.2239E-09
5	6	4	8	7		8.6802E-10
5	6	4	8	,		1.2294E-09
5	6	4	8	9		8.4428E-10
5	6	4	10			1.2711E-09
5	6	2	11			2.5198E-09
5	6	2	12			2.1873E-09
7	8	0				4.0000E+02
7 7	8 8	9 4	52 10			3.0178E-09 1.6196E-09
7 7	8	4	5	2	11	1.0196E-09 1.1576E-09
7	8	4	5	2	12	9.3134E-10
-						

对 33 条连接数时进行优化,得到的网络规划方案和链路容量分配方案如下 所示:由于篇幅的限制,链路容量方案我们只展示了部分结果,详情可见附件。

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	0	1	0	0	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	0	0	0	1	0	0	1	0	1	0	0
武汉	0	1	0	1	0	23	0	0	0	0	0	0
郑州	0	0	0	0	23	0	0	0	0	0	0	0
西安	0	0	0	0	0	0	0	1	0	0	0	0
重庆	0	0	0	1	0	0	1	0	1	0	0	0
成都	0	0	0	0	0	0	0	1	0	0	0	0
昆明	0	0	0	1	0	0	0	0	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 48 针对经济效益的新网络连接方案(33条)

		连接	线路			流量/Gb/s
1	2					2.0000E+02
1	2	3				0.0000E+00
1	2	5	4			0.0000E+00
1	2	5	•			0.0000E+00
1	2	5	6			0.0000E+00
1	2	5	4	8	7	0.0000E+00
1	2	5	4	8		0.0000E+00
1	2	5	4	8	9	0.0000E+00
1	2	5	4	10		0.0000E+00
1	2	11				0.0000E+00
1	2	12				0.0000E+00
2	3					2.0000E+02
2	5	4				0.0000E+00
2	5					2.0000E+02
2	5	6				0.0000E+00
2	5	4	8	7		0.0000E+00
2	5	4	8	0		0.0000E+00
2	5	4	8	9		0.0000E+00
2 2	5 11	4	10			0.0000E+00 1.0000E+02
2	12					1.0000E+02 1.0000E+02
2	3	2	4			0.0000E+00
2	3	2	4			0.0000E+00
2	3	2	5			0.0000E+00
2	3	2	4	8	7	0.0000E+00
2	3	2	4	8	•	0.0000E+00
2	3	2	4	8	9	0.0000E+00
2	3	2	4	10		0.0000E+00
2	3	2				0.0000E+00
2	3	2				0.0000E+00
4	5					2.0000E+02
4	5	6				0.0000E+00
4	8	7				0.0000E+00
4	8	•				2.0000E+02
4	8	9				0.0000E+00
4 4	10	2	11			2.0000E+02
4	5 5	2 2	11 12			0.0000E+00 0.0000E+00
5	6	۷	12			9.2000E+03
4	5	4	7			0.0000E+00
4	5	4	'			0.0000E+00
4	5	4	8			0.0000E+00
4	5	4	Ü			0.0000E+00
2	5	2				0.0000E+00
2	5	2				0.0000E+00
5	6	4	8	7		0.0000E+00
5 5	6	4	8			0.0000E+00
5	6	4	8	9		0.0000E+00
5	6	4	10			0.0000E+00
5	6	2	11			0.0000E+00
5	6	2	12			0.0000E+00
7	8	_				4.0000E+02
7	8	9	54 10			0.0000E+00
7	8	4	10	0	11	0.0000E+00
7 7	8 8	4 4	5 5	2 2	11 12	0.0000E+00 0.0000E+00
ı	U	4	J	_	12	0.0000LT00

6.4.3 联合优化

我们从运营商和国家的角度综合考虑,得到如下的网络优化目标,如下所示: $\max NV = \sum \frac{1}{1+e^{|S_{\max}|}} \cdot \left(\alpha + \tanh\left(\frac{CP - e \cdot q_{ij}^{K_l}}{CP}\right)\right) \cdot h_{ij} \cdot r_{ij}.$

S	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	1	1	1	1	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	1	0	0	1	0	0	1	0	1	0	0
武汉	0	1	0	1	0	1	0	0	0	0	0	0
郑州	0	1	0	0	1	0	0	0	1	0	0	0
西安	0	1	0	0	0	0	0	1	0	1	0	0
重庆	0	0	0	1	0	0	1	0	1	0	0	0
成都	0	0	0	0	0	1	0	1	0	0	0	0
昆明	0	0	0	1	0	0	1	0	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 50 联合的新网络连接方案

s	哈尔滨	北京	上海	广州	武汉	郑州	西安	重庆	成都	昆明	拉萨	乌鲁木齐
哈尔滨	0	1	0	0	0	0	0	0	0	0	0	0
北京	1	0	1	1	1	1	1	0	0	0	1	1
上海	0	1	0	0	0	0	0	0	0	0	0	0
广州	0	1	0	0	1	0	0	1	0	1	0	0
武汉	0	1	0	1	0	1	0	0	0	0	0	0
郑州	0	1	0	0	1	0	0	0	1	0	0	0
西安	0	1	0	0	0	0	0	1	0	1	0	0
重庆	0	0	0	1	0	0	1	0	1	0	0	0
成都	0	0	0	0	0	1	0	1	0	0	0	0
昆明	0	0	0	1	0	0	1	0	0	0	0	0
拉萨	0	1	0	0	0	0	0	0	0	0	0	0
乌鲁木齐	0	1	0	0	0	0	0	0	0	0	0	0

图 51 联合的链路容量分配

7. 问题三的建模与求解

问题三研究了星座图的改善问题。在第一问的基础上,我们已知在纠前BER不变时,降低 SNR 容限点可以提高系统容忍噪声的能力,从而延长链路的总长度。由此可见,研究如何降低 SNR 容限点对于性能的优化也很有价值。针对 16QAM 方案的星座图,我们在调制格式的信息熵保持为 3bit 的前提下,尝试改变星座点的位置、数量以及每个点的概率(即符号概率),以求降低 SNR容限。

7.1 在等概条件下,改变点的位置、数量

在等概的假设下,我们可以采用(9)中的最近邻检测器,此时的噪声容限为 $\frac{d_{\min}}{2}$ 。在 d_{\min} 一定,BER 保持不变时,星座点扩散距离大于噪声容限的概率也保持不变,也即噪声功率一定 [5]。又因为 $SNR(dB)=10\log 10 \, (P_s/P_n)$,当噪声功率一定时,降低 SNR 容限可以通过降低 ε_{avg} 来实现。

7.1.1 16 点方案

在点数为 16 的情况下,保持最小距离不变,通过调整点的位置,使得最终点的与原点的距离在满足最小距离 dmin 的约束下达到最小,即符号功率最小。分别采用两种方案逐步建立新的星座图。

• 方案一

Step1 如图 52所示,首先画出内接正方形边长为 d_{min} 的圆,其半径为 $r_1 = \frac{\sqrt{2}}{2} d_{min}$,正方形的四个顶点对应四个星座点。

图 52 方案一(16点) Step1 示意图

Step2 如图 53所示,以 Step1 中的 A 点为圆心, d_{min} 为半径画圆。同理可得到到四个圆,圆两两相交,得到点 B,点 A,B,D 构成了边长为 d_{min} 的等边三角形。依次方法可得到四个点。

图 53 方案一(16点) Step2 示意图

Step3 如图 54所示,以 Step2 中得到的 B 点, d_{min} 为半径画圆。同理可得到到四个圆,圆圆两两相交。需要注意的是,我们不能将星座点设为交点,因为此时新产生的两点之间的距离小于 d_{min} 。我们分别沿着圆 B 和圆 F 的边,对称地将点 C 和 D 外移,当点 C 和 D 的距离为 d_{min} 时,停止移动,此时的点 C 和 D 设为新的星座点的位置。同理共可以得到 8 个点。

图 54 方案一(16点) Step3 示意图

经过以上步骤,我们得到了方案一最终结果示意图,如图 55所示,其中 $r_1 = \frac{\sqrt{2}}{2} d_{\min}$, $r_2 = \frac{1+\sqrt{3}}{2} d_{\min}$, $r_3 = \frac{\sqrt{5+\sqrt{3}+\sqrt{15}}}{2} d_{\min}$ 。代表点的坐标分别为

$$A\left(\tfrac{1}{2}d_{\min},\tfrac{1}{2}d_{\min}\right), B\left(\tfrac{1+\sqrt{3}}{2}d_{\min},0\right) \not \text{TI} \ C\left(\tfrac{2+\sqrt{3}+\sqrt{5}}{2}d_{\min},\tfrac{\sqrt{3}+\sqrt{5}}{2}d_{\min}\right) \circ$$

图 55 方案一(16点)最终结果示意图

• 方案二

类似于方案一中逐步寻找星座点的方式,我们还可以得到如图 56所示的矩形 16QAM 星座图。其中 $r_1 = \frac{\sqrt{2}}{2} d_{\min}$, $r_2 = \frac{\sqrt{10}}{2} d_{\min}$, $r_3 = \frac{\sqrt{18}}{2} d_{\min}$ 。 各点的坐标为 $A\left(\frac{1}{2} d_{\min}, \frac{1}{2} d_{\min}\right)$, $B\left(\frac{3}{2} d_{\min}, \frac{1}{2} d_{\min}\right)$, $C\left(\frac{3}{2} d_{\min}, \frac{3}{2} d_{\min}\right)$ 。 需要说明的是,该图从形式上来看和问题一中的 16QAM 相同,但考虑到在接下来的问题中我们会进一步改变符号概率,所以我们保留了这一方案。

图 56 方案二(16点)最终结果示意图

7.1.2 12 点方案

• 方案三

将 16 点改为 12 点,寻找较好的星座图。其方法与上文用到的基本类似,但在 Step3 中,我们只需要确定四个点即可,即在方案一的 Step3 中,将产生的 8 个点改为 4 个点,如图 57所示。

图 57 方案三(12 点 Step3 示意图)

我们得到的最终方案三的结果如图 58所示,其中 $r_1 = \frac{\sqrt{2}}{2} d_{\min}$, $\mathbf{r}_2 = \frac{1+\sqrt{3}}{2} d_{\min}$ 和 $\mathbf{r}_3 = \left(4+\sqrt{3}\right) d_{\min}$,几个代表点的坐标分别为 $A\left(\frac{1}{2} d_{\min}, \frac{1}{2} d_{\min}\right)$, $B\left(\frac{1+\sqrt{3}}{2} d_{\min}, 0\right)$,和 $C\left(\frac{1+\sqrt{3}}{2} d_{\min}, d_{\min}\right)$ 。

图 58 方案三(12点)最终结果示意图

• 方案四

我们还可以生成如图 59所示的十字形星座图,其中 $r_1 = \frac{\sqrt{2}}{2} d_{\min}$, $\mathbf{r}_2 = \frac{\sqrt{10}}{2} d_{\min}$,代表点坐标分别为 $A\left(\frac{1}{2} d_{\min}, \frac{1}{2} d_{\min}\right)$, $B\left(\frac{3}{2} d_{\min}, \frac{1}{2} d_{\min}\right)$ 。

图 59 方案四(12点)最终结果示意图

7.2 信息熵一定的情况下改变概率

前文已经研究了在等概率情况下的方案,接下来我们考虑每个符号概率可变的情况,以每个符号的概率为优化变量,在保证信息熵为 3bit 不变的限制下,尽可能降低 SNR 容限。

7.2.1 理论推导

由于直接以最小化 SNR 容限为优化目标比较困难,我们尝试对优化目标进行转化。

我们首先考虑矩形 16QAM, 符号概率不相等情况下的 BER。

• 不等概 4PAM 的 BER

由于矩形 16QAM 可以看做是由两个正交的 4PAM 构成,我们首先推导不等概情况下基于 ML 检测器的 4PAM 的 BER。设 4PAM 的各点概率分别为 P_1 , P_2 , P_3 和 P_4 ,其中 2,3 为内点,1,4 为外点。则 $\varepsilon_{\text{avg}} = \frac{(9P_1 + P_2 + P_3 + 9P_4)d_{\min}^2}{4}$,所以 $d_{\min} = \sqrt{\frac{4\varepsilon_{\text{avg}}}{9P_1 + P_2 + P_3 + 9P_4}}$ 。根据 ML 检测器原理,我们可以得到

$$P_{e} = (1 + P_{2} + P_{3}) Q \left(\sqrt{2SNR} \cdot \sqrt{\frac{1}{9P_{1} + P_{2} + P_{3} + 9P_{4}}} \right)$$

$$= (1 + P_{2} + P_{3}) Q \left(\sqrt{SNR} \cdot \sqrt{\frac{2}{1 + 8(P_{1} + P_{4})}} \right)$$
(36)

由式(36)可以发现,当 $P_2 + P_3$ 不变时,降低 $P_1 + P_4$,BER 也随之降低。当 P_1 , P_4 不变时,降低 $P_2 + P_3$,BER 也随之降低。

• 不等概 16QAM 的 BER

进一步,考虑两组正交 4PAM 的情况。记 4PAM 的符号概率为 $P^I=[P_1^I,P_2^I,P_3^I,P_4^I]$,另一组 4PAM 的符号概率为 $P^Q=\left[P_1^Q,P_2^Q,P_3^Q,P_4^Q\right]$ 。相应的

16QAM 的符号概率为 $P = \left(P^I\right)^T P^Q$ 。同样地,采用 ML 检测器,16QAM 的错误概率为

$$P_{e,16-QAM} = 1 - \left(1 - P_e^I\right) \left(1 - P_e^Q\right) \tag{37}$$

其中, P_e^I 和 P_e^Q 可由式 (36)得到。

同样地,我们可以分析得到,通过减小 ε_{avg} 可以得到较低的 SNR 容限点。

7.2.2 模型建立与求解

基于上述推导,由于最小化 SNR 容限的模型不能保证为算法收敛,松弛为以下形式,其中由于 f_p 为罚函数,以中和单纯最小化所带来的内点概率分布过大的问题。进一步得到如下的优化问题,记为问题 P-5。

$$\min_{P_k} \varepsilon_{avg} + f_p(\sum_{\text{interiorpoint}} P_k) \tag{38}$$

s.t.
$$\Omega = -\sum_{1}^{N} P_k \log_2{(P_k)} = 3bit$$
 (38a)

$$\sum_{1}^{N} P_k = 1 \tag{38b}$$

$$P_k > 0. (38c)$$

其中, $\sum_{\text{interiorpoint}} P_k$ 表示内点概率和,限制条件(38a)代表调制格式的信息熵需要保持为 3bit,限制条件(38b)和(38c)则代表概率本身的限制。

问题 P-3 可以用 Matlab 软件求解,我们将得到的四种方案的优化结果整理如下,见图 60。其中,内圈、中圈、外圈分别代表我们在前文提到的以 r_1,r_2,r_3 为半径圆上的点。我们验证了所采用方案信息熵均在 3 比特左右,信息熵误差不超过 0.01%。

		符号棒	既率	
方案	1	2	3	4
内圏	0.2001 0.2001 0.2001 0.2001	3.2632E-06 3.4294E-06 3.4294E-06 3.2632E-06	0.1927 0.1927 0.1927 0.1927	0.1932 0.1932 0.1932 0.1932
	0.0291	0.1219 0.1281	0.0342	0.0284 0.0284
中圏	0.0291	0.1281 0.1219	0.0342	0.0284 0.0284
다. 년	0.0291	0.1219 0.1281	0.0342	0.0284 0.0284
	0.0291	0.1281 0.1219	0.0342	0.0284 0.0284
	0.0104 0.0104	3.2631E-06	0.0232	
外圈	0.0104 0.0104	3.4294E-06	0.0232	
Ai 国	0.0104 0.0104	3.4294E-06	0.0232	
	0.0104 0.0104	3.2631E-06	0.0232	

图 60 概率可变时的优化结果示意图

8. 模型评价与推广

本文主要研究了光传送网的建模与价值评估,需要解决光传送链路的建模、光传送网的规划以及星座图的改善等问题,从而提升光传送网的整体性能。

问题一需要解决光传送链路的建模问题。信号在传输过程时,不可避免地会遇到噪声的干扰,可能会产生误码问题。

问题(1-1)有关纠前误码率与信噪比计算,我们首先讨论基本的 AWGN 模型,基于 MAP 检验准则对判决域进行划分,然后基于符号等概率的假设,推导出最近邻检测器的表达式。接着,我们推导错误概率的表达式,得出 SNR 和 BER 的关系式。最后,借助 Matlab 仿真,我们可以得到 BER 和 SNR 变化关系曲线,并计算得到 BER=0.02 时的 SNR 容限点。

问题(1-2)有关光链路性能计算,本题要求在满足误码率要求下,不同传输格式下,不同单跨传输距离下的最远传输距离。我们首先建立单跨传输模型,分析得到 SNR 的表达式,然后在单跨传输模型的基础上推广得到多跨传输模型,分析得出任意跨数时的 SNR 表达式。我们进一步分析得到跨段数量随发射功率变化的曲线图,从而确定最大跨段数量,也就得到了最远传输距离。

问题二研究了光传送网的规划问题,首先需要保证网络的连通性,同时在容量等限制因素下,确定合理的网络连接方案,使得定义的网络价值最大化。鉴于本题需要大量的数据支撑,我们首先查找了待研究城市的地理位置和人口情况,计算了单波容量和连接价值。

问题(2-1)有关初级网络规划,我们首先不考虑中间节点,在使得网络连通的条件下,建立了基于最小生成树的规划模型,选取 Kruskal 算法求解,合理地用 16 条连接线将城市连接起来,以获得最大的网络价值;然后,在前者的基础上,将连接线增加到 33 条,进一步规划网络连接。

问题(2-2)有关改进网络规划,在考虑中点节点的情况下,同时两个节点之间可以有多个连接,网络的连接方式更加多样了。我们首先定义了网络链路中城市间流量的概念,建立了基于深度优先搜索(DFS)的最优链路容量分配模型,用以寻找已知图的最大容量分配方案。然后利用建立的含中间节点的多连接网络规划算法,求解满足题设的 16 条连接线和 33 条连接线的网络规划方案。当把研究范围由市扩大为省之后,我们更新了和人口数相关的连接价值权重,得到了新的 16 条连接线和 33 条连接线的网络规划方案。

问题(2-3)则是重设目标函数,在综合考虑光传送网络价值的影响因素 后,重新制定光传送网络规划的目标函数。我们分别从运营商和国家的角度考 虑问题,最后进行了综合优化。

问题三研究了星座图的改善问题,针对 16QAM 方案的星座图,我们需要

在调制格式的信息熵保持为 3bit 的前提下,通过改变星座点的位置、数量以及每个点的概率(即符号概率),降低 SNR 容限。首先,我们在符号等概条件下,分析了符号平均功率和 SNR 容限点之间的关系,通过改变星座点的位置和数量,得到了四种方案。然后,我们考虑概率可变的情况,借助 4PAM 与 16QAM 之间的联系,分析了符号概率分布和 SNR 容限点之间的关系,建立了优化问题,求解可得四种方案下最优的符号概率分配方案。综合以上步骤,我们得到了四种方案,并验证了其熵和 BER 均满足题设。

参考文献

- [1] 崔秀国, 刘翔, 操时宜, 周敏. 光纤通信系统技术的发展、挑战与机遇 [J]. 电信 科学,2016,32(05):34-43.
- [2] 潘日旺. 光纤通信技术与光纤传输系统研究 [J]. 信息通信, 2017(2):258-259.
- [3] John G.Proakis, Masoud Salehi. Digital Communications[M]. 北京: 电子工业出版社, 2011. 114-137
- [4] Tomas H.Cormen, Charles E.Leiserson. 算法导论 [M]. 北京: 机械工业出版社, 2017. 362-366
- [5] 樊昌信, 曹丽娜. 通信原理 [M]. 北京: 国防工业出版社, 2012. 228-231
- [6] Banerjee N, Chakraborty S, Raman V, et al. Space Efficient Linear Time Algorithms for BFS, DFS and Applications[J]. Theory of Computing Systems, 2018(3):1-27.

A 附件