

Class-Attention on Transmembrane Proteins

Adrian Henkel,

Finn Gaida,

Lis Arend,

Sebastian Dötsch,

Shlomo Libo Feigin

Munich, 27.01.2022

Recap: Class-Attention

- Two stages to separate two objectives:
 - Self-attention stage
 - Input representation is calculated
 - CLS token doesn't appear yet
 - Class-attention stage
 - Input representation is fixed
 - Insertion of CLS token
 - → Update only CLS
 - CA identical to standard SA layer

Transmembrane Dataset

Predict the 4-state protein type:

Glob_SP ⇒ globular (non-membrane) proteins with signal peptides

Glob ⇒ globular (non-membrane) proteins without signal peptides

TM_SP ⇒ transmembrane proteins with signal peptides

TM ⇒ transmembrane proteins without signal peptides

Simple MLP on Protein-Mean Embeddings

CNN on Protein-Mean Embeddings

Class-Attention Model variations

Size	Embedding	Attention Heads	SA Blocks	CA Blocks	Acc
CaiT- XS	Mean	1	4	1	0.98
	Reduced	1	4	1	0.97
	Full	1	4	1	0.79
CaiT- S	Reduced	2	12	1	0.99
	Full	2	12	1	0.64
CaiT- M	Full	4	24	2	0.63
CaiT- L	Full	8	24	2	0.63

 $[\]hbox{\cite{thm:ps://wandb.ai/fga/pp2/reports/PP2-Transmembrane-Class-attention-experiments--VmlldzoxNDgyMzMx} \\$

^[2] Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., & Jégou, H. (2021). Going deeper with Image Transformers. CoRR, abs/2103.17239. https://arxiv.org/abs/2103.17239

^[3] Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

CaiT S - Reduced Embeddings

Comparison of Models

Comparison of Models

Discussion: CaiT for TMH Prediction

Advantages	Disadvantages		
More insight into learned rules	 Longer training time 		
 Option to predict directly from 	 More energy consumption 		
sequence	Bigger model		
 More capable to train on huge 	 Easier to overfit 		
amounts of data			

Thanks for your **Attention**

Conclusion

- no cross-validation => not better than almost 1.0 accuracy

Sequence Attention Visualization

Amino Acid Attention Distribution

