Q2. Proof of Measurability Using a Dense Subset

Given: Let $((X, \mathcal{S}, \mathcal{S}, \mathcal{S}, \mathcal{S}))$ be a measure space and let (A) be a dense subset of $(\mathcal{S}, \mathcal{S})$. Show that a function $(f: X \rightarrow \mathcal{S})$ is measurable if and only if $(X \in X \rightarrow \mathcal{S})$ is measurable for each $(a \in A)$.

Step 1: Given and Introduction

Given a function \(f: X \rightarrow \mathbb{R}\).

Need to show $\langle f \rangle$ is measurable if and only if $\langle x \mid X : f(x) \mid g \mid a \rangle \rangle$ is measurable for each $\langle a \mid A \rangle$.

Measurability Definition: A function \(f \) is measurable if for every Borel set \(B \subset \mathbb{R} \), \(f^{-1}(B) \) is in \(\mathcal{S} \).

Step 2: Necessity

Assume \(f\) is measurable.

Show $\ (\ x \in X : f(x) \ge a \)$ is measurable for each $\ (a \in A \)$.

If \(f\) is measurable, then \(\{x \in X : f(x) \geq a \} = f^{-1}([a, \infty)) \) is measurable for every \(a \in \mathbb{R}\).

Step 3: Sufficiency

Assume $(\{x \in X : f(x) \neq a\})$ is measurable for each $(a \in A).$

Need to show \(\ $x \in X : f(x) \neq t$ \) is measurable for each \(t \in \mathbb{R} \).

Since \(\(\(\) \) is dense in \(\mathbb{R}\), for any \(\t \\ \in \mathbb{R} \\), a sequence \(\{a_n\}\) exists such that \(a_n \rightarrow t \).

Step 4: Conclusion for Proof

As \(\{x \in X : f(x) \geq a \}\) is measurable for each \(a \in A \), each \(\\{x \in X : f(x) \geq t \}\) is measurable for any \(\tau \in \mathbd{R}\).

Hence, $\backslash (f)$ is measurable, i.e., $\backslash (f^{-1}(B) \in \mathbb{R})$ in \mathcal{S} \) for any Borel set $\backslash (B \subset \mathbb{R})$.

Final Solution for Q2:

The function $\{f: X \in \mathbb{R}\}$ is measurable if and only if $\{(x \in X \in X : f(x) \neq a \})$ is measurable for each $\{(a \in A \setminus A), where \{(A)\} : a dense subset of <math>\{(x \in A)\}$.

Q3. Example of Non-Lebesgue Measurable Function

Given: Provide an example of a non-Lebesgue measurable function \(f: \mathbb{R} \rightarrow \mathbb{R} \) such that \(\|f| \) is measurable, and \(f^{-1}{\{a}}\) is measurable for each \(a \in \mathbb{R} \).

Step 1: Given and Introduction

Provide an example satisfying the given properties.

Let the Vitali set (V) be a subset of (\mathbf{R}) that is not Lebesgue measurable.

Construct a function $\ (f: \mathbb{R} \rightarrow \mathbb{R} \)$ that is based on $\ (V)$.

Step 2: Defining the Function

Define $\ (f(x) = \c), \ where \ (\c) is the characteristic function of \ \ V \).$

 $\c V(x) = 0\) if \x \cdot V(x)$

Step 3: Checking Measurability of \(|f|\)

Since $(chi_V(x))$ only takes values 0 or 1, (fl(x)) is always 0 or 1, both of which are Borel sets.

Hence, $\setminus (|f|(x) \setminus)$ is measurable.

Step 4: Checking Preimage of Points

For any \(a \in \mathbb{R}\),

 $\label{eq:continuous} If \ (a = 1), \ (f^{-1}(\1)) = \x \in \mathbb{R} : \chi_V(x) = 1) = V \), which is not measurable.$

 $ff (a = 0), (f^{-1}((\{0\})) = \{x \in \mathbb{R} : chi_V(x) = 0\} = \mathbb{R} \ \text{ which is measurable since it is the complement of a non-measurable set.}$

Final Solution for Q3:

The function \(f(x) = \chi_V(x) \), where \(V\) is a Vitali set, is a non-Lebesgue measurable function that satisfies \(|f| \) being measurable and \(|f^{-1}(\{a\}) \) is measurable for each \(|a \in \mathbb{R} \).

•••