1 Graphs and the Contraction Algorithm

1.1 Graphs and Minimum Cuts

1.1.1 Graphs

Graph: represent pairwise relations between sets of bojects.

Two ingredients:

- \bullet vertices aka nodes (N)
- \bullet edges (E) = pairs of vertices
 - undirected [unordered pair]
 - directed/arcs [ordered pair]

1.1.2 Cuts and Graphs

Definition: a cut of a graph (V, E) is a partition of V into two non-empty sets A and B.

Definition: the crossing edges of a cut (A, B) are those with:

- one endpoint in each of (A, B) [undirected]
- tail in A, head in B [directed]

A graph with n vertices has 2^n cuts. One binary degree of freedom. Strictly speaking a cut can't have a non-empty set A or B, so the number is $2^n - 2$.

1.1.3 The Minimum Cut Problem

<u>Input</u>: an undirected graph G = (V, E) [parallel edges allowed - video on representation of input] Goal: Compute a cut with fewest number of crossing edges (a min-cut).

1.1.4 Applications

Identify weaknesses in a network/bottlenecks.

Community detection in social network.

Image segmentation

- input: graph of pixels
- use edge weights [(u, v)] has large weight \iff "expect" u, v to come from some object] hope: repeated min-cuts identifies the primary objects in picture.

1.2 Graph Representation

Consider an undirected graph that has n vertices, no parallel edges, and is connected (i.e. "in one piece"). The minimum and maximum number of edges that the graph could have respectively is:

$$\begin{array}{rcl} minimum & = & n-1 \\ maximum & = & \frac{n(n-1)}{2} = \binom{n}{2} \end{array}$$

1

1.2.1 Sparse vs. Dense Graphs

Let

n = number of verticesm = number of edges

In most (but not all) applications m is $\Omega(n)$ and $O(n^2)$.

In a sparse graph, m is O(n) or close to it

In a dense graph, m is closer to $O(n^2)$

1.2.2 The Adjacency Matrix

Represent G by a $n \times n$, 0-1 matrix A, where $A_{ij} = 1 \iff G$ has an i-j edge.

Variants:

- A_{ij} = number of i-j edges (if parallel edges)
- A_{ij} = weight of i-j edge (if any)

•
$$A_{ij} = \begin{cases} +1 & \text{if } i \to j \\ -1 & \text{if } i \leftarrow j \end{cases}$$

An adjacency matrix requires $\Theta(n^2)$ space as a function of the number n of vertices and the number m of edges.

1.2.3 Adjacency List

Ingredients:

- array (or list) of vertices $[\Theta(n)]$ space
- array (or list) of edges $[\Theta(m)]$ space
- each edge points of its endpoints $[\Theta(m)]$ space
- each vertex points to edges incident on it $[\Theta(m)]$ space

The three $\Theta(m)$ categories have 1-to-1 correspondence between m, n. All together $\Theta(m+n)$ or $\Theta(\max\{m, n\})$.

An adjacency list representation requires $\Theta(m+n)$ space as a function of the number n of vertices and the number m of edges.

Which is better? Depends on graph density, operatations needed.

1.3 Random Contraction Algorithm

```
[David Karger, early 90s]
```

```
While there are more than 2 vertices:

pick a remaining edge (u, v) uniformly at random
merge (or "contract") u and v into a single vertex
remove self-loops
return cut represented by final 2 vertices
```

1.3.1 Example

[2:45]

[6:40]

Algorithm sometimes identifies a min-cut and sometimes doesn't, depending on choice of vertex.

What is the probability of success?

1.4 Analysis of Contraction Algorithm

1.4.1 The Setup

Question: What is the probability of success?

Fix a graph G = (V, E) with n vertices, m edges.

Fix any (if multiple) minimum-cut (A, B).

Let k =number of edges crossing (A, B). Call these edges F.

1.4.2 What Could Go Wrong?

Suppose one of the edges in F gets chosen for contraction at some point \Rightarrow algorithm will not output (A, B). Suppose only edges inside A or inside B get contracted \Rightarrow algorithm will output (A, B).

Thus: Pr [output is (A, B)] = Pr [never contracts an edge of F]

Let S_i =event that an edge of F contracted in iteration i. Goal: compute $Pr[\neg S_1 \cap \neg S_2 \cap \neg S_3 \cap \cdots \cap \neg S_{n-2}]$.

The probability that an edge crossing the minimum cut (A, B) is chosen in the first iteration (as a function of the number of vertices n, the number of edges m, and the number k of crossing edges is $\frac{k}{m}$, because $Pr[S_1] = \frac{\# \text{ of crossing edges}}{\# \text{ of edges}} = \frac{k}{m}$.

1.4.3 The First Iteration

Key observation: degree of each vertex is at least k.

Reason: each vertex v defines a cut $(\{u\}, V - \{u\})$.

Since $\sum_{v} degree(v) = 2m \ge kn$, we have $m \ge \frac{kn}{2}$.

Since $Pr[S_1] = \frac{k}{n}$, $Pr[S_1] \leq \frac{2}{n}$.

1.4.4 The Second Iteration

Recall: $Pr[\neg S_1 \cap \neg S_2] = Pr[\neg S_2 | \neg S_1] \cdot Pr[\neg S_1]$ probability we don't screw up in first and second iteration.

 $Pr[\neg S_2|\neg S_1] = 1 - \frac{k}{\# \text{ of remaining edges}}$ probability we not screw up in second iteration given that we didn't do it already.

 $Pr[\neg S_1] \ge (1 - \frac{2}{n})$ probability we not screw up in first iteration.

How many remaining edges are there? Rewrite that denominator in terms of remaining vertices (n-1).

Note: all nodes in contracted graph define cutes in G (with at least k crossing edges) \Rightarrow all degrees in contracted graph are at least k.

So: the number of remaining edges $\geq \frac{1}{2}k(n-1)$

So
$$Pr[\neg S_2 | \neg S_1] \ge 1 - \frac{2}{n-1}$$

1.4.5 All Iterations

$$\begin{array}{rcl} & Pr[\neg S_1 \cap \neg S_2 \cap \neg S_3 \cap \cdots \cap \neg S_{n-2}] &= \\ Pr[\neg S_1]Pr[\neg S_2 | \neg S_1]Pr[\neg S_3 | \neg S_1 \cap \neg S_2] \cdot \cdots \cdot Pr[\neg S_{n-2} | \neg S_1 \cap \cdots \cap \neg S_{n-1}] &\geq \\ & (1-\frac{2}{n})(1-\frac{2}{n-1})(1-\frac{2}{n-2}) \cdot \cdots (1-\frac{1}{n-(n-4)})(1-\frac{1}{n-(n-3)} &= \\ & \frac{n \not -2}{n} \frac{n \not -4}{n-1} \frac{n \not -4}{n \not -2} \cdot \cdots \frac{2}{\not A} \frac{1}{\not B} &= \\ & \frac{2}{n(n-1)} &\geq & \frac{1}{n^2} \end{array}$$

Problem: low success probability (but: non-trivial lower bound).

1.4.6 Repeated Trials

Solution: run the basic algorithm a large number N times, remember the smallest cut found.

Question: how many trials needed?

Let T_i =event that the cut (A, B) is found on the i^{th} try \Rightarrow by definition, different T_i 's are independent. So.:

$$Pr [\text{all N trials fail}] = Pr[\neg T_1 \cap \neg T_2 \cap \cdots \cap \neg T_N]$$

$$(independent) = \prod_{i=1}^{N} Pr[\neg T_i]$$

$$\leq (1 - \frac{1}{n^2})^N$$

Calculus fact: \forall reall numbers x, $1 + x \leq e^x$ [2:40].

So: if we take

$$N = n^2, Pr[\text{all fail}] \le \left(e^{-\frac{1}{n^2}}\right)^{n^2} = \frac{1}{e}$$

If we take

$$\mathbf{N} = \mathbf{n^2} \ln \mathbf{n}, \ \mathbf{Pr} [ext{all fail}] \leq \left(rac{1}{\mathbf{e}}
ight)^{\ln \mathbf{n}} = rac{1}{\mathbf{n}}$$

Running time: Polynomial in n and m but slow - $\Omega(n^2m)$

But: can get big speedups (to roughly $O(n^2)$) with more ideas. Outside of the scope of this course.

1.5 Counting Minimum Cuts

Note: a graph can have multiple min-cuts.

e.g. a tree with n vertices has (n-1) min-cuts

Question: what's the larges number of min-cuts that a graph with n vertices can have?

Answer: $\binom{n}{2} = \frac{n(n-1)}{2}$

1.5.1 The Lower Bound

Consider the n-cycle, n = 8 [2:00]

Note: each pair of the n edges defines a distinct minimum cut (with two crossing edges) \Rightarrow has $\geq \binom{n}{2}$ min cuts.

1.5.2 The Upper Bound

Let $(A_1, B_1), (A_2, B_2), \dots, (A_t, B_t)$ be the min-cuts of a graph with n vertices. By the Contraction Algorithm analysis (without repeated trials):

$$Pr[output = (A_i, B_i)] \ge \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}} \quad \forall_{i=1,2,...,t}$$

t= the number of different min-cuts

Note: S_i 's are disjoint events (i.e. only one can happen) \Rightarrow their probabilities sum to at most 1

Thus:
$$\frac{t}{\binom{n}{2}} \le 1 \Rightarrow t \le \binom{n}{2}$$