

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؛
- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؛
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؛
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؛
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه
 ولا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من ثلاثة تمارين ومسألة ، مستقلة فيما بينها ، وتتوزع حسب المجالات كما يلى :

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
11 نقطة	دراسة دالة عددية و حساب التكامل والمتتاليات العددية	المسألة

- بالنسبة للمسألة ، In يرمز لدالة اللوغاريتم النبيري

NS 22

الامتحان الوطنى الموحد للبكلوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العوم والتكنولوجيات بمسلكها

التمرين الأول: (3ن)

B(-4,1,0) و A(2,1,0)، النقطتين A(2,1,0) النعتبر، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر

- . المستوى المار من النقطة $\vec{u} = \vec{i} + \vec{j} \vec{k}$ و $\vec{u} = \vec{i} + \vec{j} \vec{k}$ عليه (P) المستوى المار من النقطة 0.5 (P) هي معادلة ديكارتية للمستوى x+y-z-3=0
 - \overrightarrow{MA} . $\overrightarrow{MB} = 0$ مجموعة النقط M من الفضاء التي تحقق العلاقة (S) لتكن (S) 0.75 بين أن (S) هي الفلكة التي مركزها النقطة $\Omega(-1,1,0)$ و شعاعها S
- (C) أـ احسب مسافة النقطة Ω عن المستوى (P) ثم استنتج أن (P) يقطع (S) وفق دائرة (C)0.5
 - H(0,2,-1) هو النقطة (C) بـ بين أن مركز الدائرة 0.5
 - OHB ثم استنتج مساحة المثلث $\overrightarrow{OH} \wedge \overrightarrow{OB} = \overrightarrow{i} + 4 \overrightarrow{j} + 8 \overrightarrow{k}$ بين أن 0.75 التمرين الثانى : (3 ن)
 - $a=2+\sqrt{2}+i\sqrt{2}$ بحيث $a=2+\sqrt{2}+i\sqrt{2}$ بحيث -I
 - $2\sqrt{2+\sqrt{2}}$ بين أن معيار العدد العقدي a هو (1 0.5
 - $a = 2\left(1 + \cos\frac{\pi}{4}\right) + 2i\sin\frac{\pi}{4}$ تحقق من أن (2 0.25
 - $1+\cos 2\theta=2\cos^2\theta$ أـ بإخطاط $\cos^2\theta$ ، حيث θ عدد حقيقي ، بين أن 0.25
 - $(\sin 2\theta = 2\cos \theta \sin \theta)$ نخکر آن $a = 4\cos^2\frac{\pi}{8} + 4i\cos\frac{\pi}{8}\sin\frac{\pi}{8}$ نخب بین آن 0.5
- $a^4 = \left(2\sqrt{2+\sqrt{2}}\right)^4$ i غين أن $a^4 = \left(2\sqrt{2+\sqrt{2}}\right)^4$ هو شكل مثلثي للعدد $a^4 = \left(2\sqrt{2+\sqrt{2}}\right)^4$ هو شكل مثلثي للعدد $a^4 = \left(2\sqrt{2+\sqrt{2}}\right)^4$ 0.5

 Ω نعتبر، في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر Ω و Ω و Ω اللتين لحقاهما Ω

 $\frac{\pi}{2}$ على التوالي هما ω و α بحيث α على التوالي هما α و α على التوالي هما على التوالي التوالي على التوالي على التوالي على التوالي التوالي على التوالي التوا

- 1) بين أن اللحق b للنقطة B صورة النقطة A بالدوران R هو 2i 0.5
 - |z-2i|=2 مدد مجموعة النقط M ذات اللحق z بحيث (2 0.5

التمرين الثالث: (3ن)

يحتوى صندوق ل على 7 كرات: أربع كرات حمراء و ثلاث كرات خضراء (لا يمكن التمييز بينها باللمس) و يحتوي صندوق U, على 5 كرات: ثلاث كرات حمراء و كرتان خضراوان (لا يمكن التمييز بينها باللمس)

الصندوق 🗓

الصندوق U

- U نعتبر التجربة التالية: نسحب عشوائيا و في آن واحد ثلاث كرات من الصندوق [I] ليكن A الحدث: " الحصول على كرة حمراء واحدة و كرتين خضراوين ". و B الحدث: " الحصول على ثلاث كرات من نفس اللون " .
 - $p(B) = \frac{1}{7}$ و $p(A) = \frac{12}{25}$ بين أن
- $_{
 m U_2}$ نعتبر التجربة التالية : نسحب عشوائيا و في آن واحد كرتين من $_{
 m U_1}$ ثم نسحب عشوائيا كرة واحدة من $_{
 m CI}$ ليكن C الحدث: "الحصول على ثلاث كرات حمراء ".

$$p(C) = \frac{6}{35}$$
 بين أن

الامتحان الوطنى الموحد للبكلوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العوم والتكنولوجيات بمسلكها

0.25

0.25

0.5

0.5

$$f(x) = \frac{1}{x(1-\ln x)}$$
 : بحيث بيت الدالة العددية والمتغير الحقيقي بيت العددية والمتغير والمتغير العددية والمتغير والمتغير العددية والمتغير والمتغير العددية والمتغير و

و ليكن
$$(C_f)$$
 المنحنى الممثل للدالة f في معلم متعامد ممنظم و المنحنى الممثل للدالة f في معلم متعامد ممنظم

$$(f \ \text{Multiple})$$
 بين أن $[0,e] \cup [e,+\infty]$ بين أن $[0,e] \cup [e,+\infty]$ بين أن $[0,e] \cup [e,+\infty]$ بين أن

النتيجتين المتوصل إليهما .
$$\lim_{\substack{x \to e \ x \to e}} f(x)$$
 و أول هندسيا النتيجتين المتوصل إليهما . 0.75

$$(C_f)$$
 يقبل مقاربا بجوار (x) يقبل مقاربا بجوار (x) يتم تحديده . (x) بيتم تحديده .

$$(x(1-\ln x)=x-x\ln x)$$
 ج- بین أن $(x(1-\ln x)=x-x\ln x)=\sum_{\substack{x\to 0\\x>0}}^{x\to +\infty} f(x)=\sum_{\substack{x\to 0\\x>0}}^{x\to +\infty} f(x)=0.5$

$$D_f$$
 نکل $f'(x) = \frac{\ln x}{x^2 (1 - \ln x)^2}$ نکل و ناب بین أن (3 0.75

$$] e, +\infty [$$
 و $[1,e[$ على كل من المجالين $[0,1]$ و تزايدية على كل من المجالين $[1,e[$ و المجالين $[0,+\infty[$

$$\mathrm{D_f}$$
 على على $\mathrm{D_f}$

$$g(x) = 1 - x^2 (1 - \ln x)$$
: يلي ياي و الدالة العدية المعرفة على المجال $g(x) = 1 - x^2 (1 - \ln x)$ يتكن و الدالة العدية المعرفة على المجال

و ليكن
$$(C_g)$$
 المنحنى الممثل للدالة g في معلم متعامد ممنظم (انظر الشكل)

$$x \in \]0,+\infty[$$
 , $g(x)=0$: if (E) if

 $2.2 < \alpha < 2.3$ بين أن المعادلة (E) تقبل حلا α بحيث

$$D_f$$
 کی x کی $f(x) - x = \frac{g(x)}{x(1 - \ln x)}$ کی اً۔ تحقق من اُن x

ب- بين أن المستقيم
$$(\Delta)$$
الذي معادلته $y=x$ يقطع المنحنى

$$lpha$$
 في النقطتين اللتين أفصولاهما و $\left(\mathrm{C_{f}}
ight)$

$$[1,\alpha]$$
 من $f(x)-x\leq 0$ و بين أن $f(x)-x\leq 0$ على المجال g على المجال و ين أن $f(x)$

$$\left(\mathrm{C_{f}}\right)$$
 المستقيم $\left(\Delta\right)$ و المنحنى ($\mathrm{O},\overline{\mathrm{i}},\overline{\mathrm{j}}$) المستقيم (Δ) انشئ ، في نفس المعلم ($\mathrm{O},\overline{\mathrm{i}},\overline{\mathrm{j}}$) المستقيم

(
$$D_r$$
 نكل x من $\frac{1}{x(1-\ln x)} = \frac{\frac{1}{x}}{1-\ln x}$: لاحظ أن $\frac{1}{x(1-\ln x)}$ لكل $\frac{1}{x(1-\ln x)}$ لكل $\frac{1}{x(1-\ln x)}$ لكل $\frac{1}{x(1-\ln x)}$ (4)

ب- احسب ، ب
$${\rm cm}^2$$
 ، مساحة حيز المستوى المحصور بين المنحنى ${\rm (C_f)}$ و المستقيم ${\rm m}^2$ و المستقيمين ${\rm x}=\sqrt{\rm e}$ و ${\rm x}=1$ اللذين معادلتاهما ${\rm m}$

$$u_{n+1}=f\left(u_{n}
ight)$$
 و $u_{0}=2$ المعرفة بما يلي : $u_{0}=1$ لكل $u_{0}=1$ المعرفة بما يلي : (III

IN بين بالترجع أن
$$1 \le u_n \le \alpha$$
 لكل $1 \le u_n \le \alpha$ الكل $1 \le u_n \le \alpha$

(
$$u_n$$
) يين أن المتتالية u_n) تناقصية (u_n) تناقصية (u_n) عبين أن المتتالية (u_n

. استنتج أن المتتالية
$$(u_n)$$
 متقاربة و حدد نهايتها . 0.75