8085!

FIGURE 4.1

The 8085 Microprocessor Pinout and Signals

NOTE: The 8085A is commonly known as the 8085.

SOURCE (Pinout): Intel Corporation, Embedded Microprocessors (Santa Clara, Calif.: Author, 1994), pp. 1-11.

FIGURE 4.7

The 8085A Microprocessor: Functional Block Diagram

NOTE: The 8085A microprocessor is commonly known as the 8085.

SOURCE: Intel Corporation, Embedded Microprocessors (Santa Clara, Calif.: Author, 1994), pp. 1-11.

FIGURE 3.12
Instruction Fetch Operation

FIGURE 4.2
Data Flow from Memory to the MPU

FIGURE 4.5 8085 Schematic to Generate Read/Write 74LS32 Control Signals for Memory and IO/M MEMR I/O RD WR MEMW - IOR 74LS04 IOW A15 A15 Ag Address ALE Bus EN AD7 Latch ADo D_7 Data Bus D_0 8085 IO/M MEMR RD MEMW

IOR

TOW

Control Signals

FIGURE 4.6 8085 Demultiplexed Address and Data Bus with Control Signals

WR

after the latching operation.

FIGURE 4.4 Schematic of Latching Low-Order Address Bus

TABLE 4.1
8085 Machine Cycle Status and Control Signals

		Status	,	
Machine Cycle 1910000 and	g IO/M	S_1	q aid S_0 has	Control Signals
Opcode Fetch	0	in T	1	$\overline{RD} = 0$
Memory Read	0	1	orti e o	$\overline{RD} = 0$
Memory Write	0	0	1	$\overline{WR} = 0$
I/O Read	1	1	0	$\overline{RD} = 0$
I/O Write	1	0	1	$\overline{\mathbf{W}\mathbf{R}} = 0$
Interrupt Acknowledge	moissi n aguen	land od	i liberi l iquit	$\overline{INTA} = 0$
Halt change now makes	and Zabara	ai On said	i [Octiviti	nel SQLD (Serial Ottotal Detail
Hold	.com/Z rodq	X	X	\overline{RD} , $\overline{WR} = Z$ and $\overline{INTA} =$
Reset	Z	X	X	The server of the latered

NOTE: Z = Tri-state (high impedance)

X = Unspecified

cutsed in later characters

FIGURE 4.3
Timing: Transfer of Byte from Memory to MPU

the same of the sa

FIGURE 4.10
8085 Timing for Execution of the Instruction MVI A,32H

Memory Read Cycle

Memory Write Cycle

Interrupts

- Interrupt is a process where an external device can get the attention of the microprocessor.
 - The process starts from the I/O device
 - The process is asynchronous.
- Classification of Interrupts
 - Interrupts can be classified into two types:
 - Maskable Interrupts (Can be delayed or Rejected)
 - Non-Maskable Interrupts (Can not be delayed or Rejected)
- Interrupts can also be classified into:
 - Vectored (the address of the service routine is hard-wired)
 - Non-vectored (the address of the service routine needs to be supplied externally by the device)

The 8085 Interrupts

Interrupt name	Maskable	Vectored
INTR	Yes	No
RST 5.5	Yes	Yes
RST 6.5	Yes	Yes
RST 7.5	Yes	Yes
TRAP	No	Yes

The 8085 Interrupts

- The 8085 has 5 interrupt inputs.
 - The INTR input.
 - The INTR input is the only non-vectored interrupt.
 - INTR is maskable using the EI/DI instruction pair.

- RST 5.5, RST 6.5, RST 7.5 are all automatically vectored.
 - RST 5.5, RST 6.5, and RST 7.5 are all maskable.

•

- TRAP is the only non-maskable interrupt in the 8085
 - TRAP is also automatically vectored

Hardware Interrupts

InterruptsA	Call Location	Remarks/Triggering
TRAP	0024H	NMI-Cannot be disabled; Level- & edge sensitive (Input should go high 0 to 1 and remain 1 till interrupt is recognized) Cannot be recognized again till a similar transition occurs.
RST 7.5	003CH	Maskable; +ve edge triggered, can be triggered by a short pulse; Req stored by an internal D-type FF till microprocessor responds to it or till it is cleared by Reset/SIM instruction
RST 6.5	0034H	Maskable; Level-sensitive, i.e. level should be 1 till microprocessor completes the current instruction. May need to be stored in ext. h/w if CPU cannot respond immediately.
RST 5.5	002CH	

Maskable Interrupts and vector locations

FIGURE 12.5

The 8085 Interrupts and Vector Locations

SOURCE: Intel Corporation. MCS 80/85 Student Study Guide (Santa Clara. Calif.: Author. 1979).

SOFTWARE INTERRUPTS

TABLE 12.1
Restart Instructions

Mnemonics D		Binary Code												Hex		Call Location					
	D_7	D	6	D_5		D_4	I)3	D)2		D_1		D_0	je.	Code		in Hex			
RST 0		1	1		0	# ¹	0	· · · ·	0	1			1		1		C7			0000	
RST 1		1	1		0		0	110	1		Ŋ		1		1		CF			8000	
RST 2		1	1		0		1		0	J			1.		1		D7			0010	
RST 3		1	-1		0		1		1	1			1		1		DF			0018	
RST 4		1	. 1		1		0	(0	1			1		1		E7			0020	
RST 5		1	1		1		0		1	1			1		1		EF			0028	
RST 6		1	. 1		1		1	()	1			1		1		F7			0030	
RST 7		1	1		1		1		1	1			1		1		FF			0038	

INTERRUPTS

FIGURE 12.1
A Circuit to Implement the Instruction RST 5

FIGURE 12.2
8085 Timing of the Interrupt Acknowledge Machine Cycle and Execution of an RST Instruction

How SIM Interprets the Accumulator

How RIM sets the Accumulator's different bits

