

IRLML6344TRPbF

HEXFET® Power MOSFET

V _{DS}	30	V
V _{GS Max}	± 12	٧
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	29	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = 2.5V)	37	$\mathbf{m}\Omega$

Application(s)

• Load/ System Switch

Features and Benefits

Low R_{DSon} (<29m Ω)	
Industry-standard SOT-23 Package	
RoHS compliant containing no lead, no bromide and no halogen	results in
MSL1, Consumer Qualification	

Benefits

Lower Conduction Losses
Multi-vendor compatibility
Environmentally friendly
Increased Reliability

Base Part Number	Standard Pack Ord		Orderable Part Number			
base Part Number	Package Type	Form Quantity		Form Quantit		Orderable Part Number
IRLML6344TRPbF	Micro3™(SOT-23)	Tape and Reel	3000	IRLML6344TRPbF		

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{DS}	Drain-Source Voltage	30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	4.0	Α
I _{DM}	Pulsed Drain Current	25	
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	W
P _D @T _A = 70°C Maximum Power Dissipation		0.8	VV
Linear Derating Factor		0.01	W/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
$T_{J,}T_{STG}$	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) ®		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Electric Characteristics @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		22	29	mΩ	$V_{GS} = 4.5V, I_{D} = 5.0A$ ②
R _{DS(on)}	Static Diam-to-Source On-nesistance		27	37	11122	$V_{GS} = 2.5V, I_{D} = 4.0A$ ②
$V_{GS(th)}$	Gate Threshold Voltage	0.5	0.8	1.1	٧	$V_{DS} = V_{GS}$, $I_D = 10\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 24V, V_{GS} = 0V$
	Diam-to-Source Leakage Current			150	μA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	пA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -12V
R_G	Internal Gate Resistance		1.7		Ω	
gfs	Forward Transconductance	19			S	$V_{DS} = 10V, I_{D} = 5.0A$
Q_g	Total Gate Charge		6.8			I _D = 5.0A
Q_{gs}	Gate-to-Source Charge		0.3		nC	V _{DS} =15V
Q_{gd}	Gate-to-Drain ("Miller") Charge		2.4			V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		4.2			V _{DD} =15V②
t _r	Rise Time		5.6			I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		22		ns	$R_G = 6.8\Omega$
t _f	Fall Time		9.1			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		650			$V_{GS} = 0V$
C _{oss}	Output Capacitance		65		рF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		46		Ī	f = 1.0MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			1.3		MOSFET symbol
	(Body Diode)			1.3	Α	showing the
I _{SM}	Pulsed Source Current			25		integral reverse
	(Body Diode) ①			23		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	٧	$T_J = 25$ °C, $I_S = 5.0$ A, $V_{GS} = 0$ V ②
t _{rr}	Reverse Recovery Time		10	15	ns	$T_J = 25$ °C, $V_R = 15$ V, $I_F = 1.3$ A
Q _{rr}	Reverse Recovery Charge		3.8	5.7	nC	di/dt = 100A/μs ②

Notes ① through ④ are on page 10

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

80 Vgs = 2.5V Vgs = 4.5V Vgs = 4.

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3™(SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIMETERS		INCH	HES	
STIVIBOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
Е	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

- 1 DIMENSIONING & TOLERANCING PER ANSI V14 5M-1994
- 1. DIMENSIONING & TOLEPANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MILIMETERS (MOCKES)
 3. CONTROLLING DIMENSION: MILLIMETER

 \$\frac{A}{2}\text{DATIME PLANE HIS LOCATED AT THE MICL D PARTITING LINE.

 \$\frac{A}{2}\text{DATIME AND B TO BE DETERMINED AT DATUM PLANE H.

 \$\frac{A}{2}\text{DATIME AND D AND E 1 ARE MEASURED AT DATUM PLANE H.

 \$\frac{A}{2}\text{DMENSIONS D AND E 1 ARE MEASURED AT DATUM PLANE H. DIMENSIONS DOES

 NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD PLASH, MOLD PROTRUSIONS.
- OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO -236 AB.

Micro3™(SOT-23) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

- A= IRLML2402 S = IRLML6244B = IRLML2803T = IRI MI 6246 C = IRLML6302 U = IRLML6344 D = IRLML5103 V= IRLML6346 E = IRLML6402 F = IRLML6401 W = IRFML8244X = IRLML2244G = IRLML2502 Y = IRLML2246 H = IRLML5203 Z = IRFML9244I = IRLML0030 J = IRLML2030 K = IRLML0100 L = IRLML0060
- R = IRLML9303 Note: A line above the work week (as shown here) indicates Lead - Free.

M = IRLML0040 N = IRLML2060 P = IRLML9301

DATE CODE MARKING INSTRUCTIONS

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YE.	AR	Υ	WORK WEEK	W
2011	2001	1	01	Α
2012	2002	2	02	В
2013	2003	3	03	С
2014	2004	4	04	D
2015	2005	5		
2016	2006	6		
2017	2007	7		
2018	2008	8	1	
2019	2009	9	7	7
2020	2010	0	24	Х
			25	Υ
			26	Z

WW = (27-52) IF PRECEDED BY A LETTER

YE	AR	Υ	WORK WEEK	W
2011	2001	Α	27	Α
2012	2002	В	28	В
2013	2003	С	29	С
2014	2004	D	30	D
2015	2005	Е		
2016	2006	F		
2017	2007	G		
2018	2008	Н		
2019	2009	J	7	,
2020	2010	K	50	X
			51	Υ
			52	7

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3[™](SOT-23) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

0 15 11 1	Consumer ^{††}			
Qualification level	(per JEDEC JESD47F ^{†††} guidelines)			
Majatura Carajtivitu Laval	Mioro OTM/COT 00)	MSL1		
Moisture Sensitivity Level	Micro3™(SOT-23)	(per IPC/JEDEC J-STD-020D ^{†††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- 3 Surface mounted on 1 in square Cu board
- 4 Refer to application note #AN-994.

Revision History

Date	Comment
	Formatted the data sheet using the IR Corporate template.
	Updated part marking on page 8.
	• Corrected Typical Output curve Fig.2 on page 3 (used to be exact same as Fig.1)

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.