Unit II

Supplementary Notes

4.2 Exponential Functions

 $f(x) = a^x$ $(a > 0, a \ne 1)$

- domain: $(-\infty, \infty)$
- range: $(0,\infty)$
- y-intercept: 1
- horiz. asymp.: y = 0 (x-axis)
- $\begin{array}{ll} \text{decreasing} & \text{if } 0 < a < 1 \\ \text{increasing} & \text{if } a > 1 \end{array}$

	0 <a<1< th=""></a<1<>		
1			
0			
	-)	

Laws of Exponents

$a^s \cdot a^t = a^{s+t}$	
$(a \cdot b)^s = a^s \cdot b^s$	
$1^{s} - 1$	

$$(a^s)^t = a^{s \cdot t}$$

$$a^{-s} = \left(\frac{1}{a}\right)^s = \frac{1}{a^s}$$

$$a^0 = 1$$

Reflection and Translation $(h, k > 0)$, to obtain the graph of		
a^{-x-h}	translate the graph of a^x	rightward h units
	then reflect the graph of a^{x-h}	about the $y - axis$
a^{-x+h}	translate the graph of a^x	leftward h units
	then reflect the graph of a^{x+h}	about the $y - axis$
$-a^x + k$	reflect the graph of a^x	about the x -axis
	then translate the graph of $-a^x$	upward k units
$-a^x-k$	reflect the graph of a^x	about the x -axis
	then translate the graph of $-a^x$	downward k units

4.3 Logarithmic Functions

 $f(x) = \log_a x \quad (a > 0, a \neq 1)$

- domain: $(0, \infty)$
- range: $(-\infty, \infty)$
- x-intercept: 1
- vert. asymp.: x = 0 (y-axis)
- $\begin{cases} \text{ decreasing} & \text{if } 0 < a < 1\\ \text{increasing} & \text{if } a > 1 \end{cases}$

Special Logarithms		
$\log x - \log_{10} x$	$\ln r$	

 $\log x = \log_{10} x \mid \ln x = \log_e x$

4.4 Properties of Logarithms $(a, b, m, n > 0, a, b \neq 1, \text{ real number } p)$

- $\log_a 1 = 0$ $\log_a (mn) = \log_a m + \log_a n$ $\log_a n^p = p \log_a n$

- $\log_a a = 1$ $\log_a \left(\frac{m}{n}\right) = \log_a m \log_a n$ $\log_a n = \frac{\log_b n}{\log_b a}$

4.5 Log. and Exponential Equations $(a > 0, a \neq 1, \text{ real numbers } s, t > 0)$

- $x = \log_a y$ $\Leftrightarrow y = a^x$
- $\bullet \ a^s = a^t$

• $\log_a s = \log_a t$

 $\Leftrightarrow s = t$

 $\Leftrightarrow s = t$

4.6 Compound Interest

- Periodic: $A = P(1 + \frac{r}{n})^{nt}$
- A: future amount (\$)
- Continuous: $A = Pe^{rt}$
- P: initial amount a.k.a. principal (\$)
- r: annual interest rate (%) • Effective interest rate:
 - n: periods per year $r_e = (1 + \frac{r}{n})^n - 1$
 - t: time (years)

4.7 Exponential Growth and Decay

Exponential law a.k.a Law of uninhibited growth (k > 0) or decay (k < 0):

• $A(t) = A_0 e^{kt}$ where $A_0 = A(0)$ $(k \neq 0)$

9.2 The Parabola

- V: (h, k) d(V, F) = d(V, D) = a

Equation	Opens	F	D
$(x-h)^2 = 4a(y-k)$	up	(h, k+a)	y = k - a
$(x-h)^2 = -4a(y-k)$	down	(h, k-a)	y = k + a
$(y-k)^2 = 4a(x-h)$	right	(h+a,k)	x = h - a
$(y-k)^2 = -4a(x-h)$	left	(h-a,k)	x = h + a

9.3 The Ellipse

- center: (h, k)
- d(center, V) = a
- $c^2 = a^2 b^2$
- d(center, F) = c

Equation	M. Ax.	V	F
$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	horiz.	$(h \pm a, k)$	$h \pm c, k)$
$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$	vert.	$(h, k \pm a)$	$(h, k \pm c)$

9.4 The Hyperbola

- center: (h, k)
- d(center, V) = a
- $c^2 = a^2 + b^2$
- d(center, F) = c

Equation	Tr. Ax.	V	F
$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	horiz.	$h \pm a, k)$	$(h \pm c, k)$
$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	vert.	$(h, k \pm a)$	$(h, k \pm c)$

• asymptotes: set Equation = 0, solve for y

Exercises

1. Select the equation for the following graph.

A.
$$y = a^{-(1+x)}, 1 < a$$

B.
$$y = -(1 + a^x)$$
, $0 < a < 1$
C. $y = -(1 + a^x)$, $1 < a$

C.
$$y = -(1 + a^x), 1 < a$$

D.
$$y = a^{-(1+x)}, 0 < a < 1$$

2. Select ALL the correct equations for the given graph.

A.
$$y = -\log_a(x), a > 1$$

B.
$$y = -\log_a(x), 0 < a < 1$$

C. None of these

D.
$$y = \log_a(-x), 0 < a < 1$$

E.
$$y = -\log_a(-x), a > 1$$

- 3. Find the domain of $\ln(-3x-1)$.
- 4. Select ALL of the correct formulas if x > 0, y > 0, $x \ne 1$, $x \ne 1$.

A.
$$\log_3 3^{-5}$$
 is not defined

B.
$$\log_7 10 = \frac{10}{7}$$

C.
$$\log_{\frac{1}{4}} \frac{1}{4} = 4$$

D.
$$\log xy = \log x + \log y$$

E.
$$\log_x 1 = 1$$

F.
$$\frac{\log x}{\log y} = \log \frac{x}{y}$$

G.
$$\log_y y = 1$$

$$H. \log_x 1 = 0$$

I.
$$\log(x - y) = \log x - \log y$$

J.
$$\log xy = \log x \log y$$

K.
$$\log_y x = \frac{\log x}{\log y}$$

L.
$$\log_5 \frac{1}{5} = -1$$

- 5. If $\log_4 2 = a$ and $\log_4 7 = b$, then $\log_4 \frac{49}{8} =$
- 6. Find all x such that $4^{(2x)} = 3$.

- 7. Expand $\ln\left(\frac{(x-4)^{-2}y^3}{\sqrt{z}}\right)$.
- 8. Find all x such that $\log_9(x^2 4) \log_3(x 2) = 1$.
- 9. If an investment pays 6\% compounded daily, how much should you deposit now to have \$500 in three years?
- 10. What interest rate, compounded continuously, will triple an investment in 5 years?
- 11. Find the effective rate of interest for 15% compunded semiannually.
- 12. The population of a country is known to follow the exponential law. If the initial population is P_0 and after two years the population tripled, what will the population be in 5 years?
- 13. Find the equation of the parabola with focus at $(2, \frac{5}{2})$ and directrtix $y = \frac{7}{2}$.
- 14. Find the equation of the ellipse with center at $(-1, \pi)$, focus at $(7,\pi)$, and vertex at $(-11,\pi)$.
- 15. Find the asymptotes of the hyperbola given by $\frac{y^2}{16} \frac{x^2}{36} = 1$.
- 16. Select the best description for the graph of $12x^2 = y$.
 - A. parabola with focus (0, 12)
 - B. parabola with focus $(0, \frac{1}{3})$
 - C. parabola with focus $(0, \frac{4}{48})$
 - D. parabola with focus (3,0)
 - E. None of these