DSP Architecture Design Final Project Presentation — 8 * 8 Output Stationary Systolic Array

Speaker: Sheng-Wei Huang

Outline

- PE (Processing Element)
- Output Stationary Systolic Array
 - Introduction
 - Simulation Waveform
 - Schematic
 - Utilization & Timing Report

PE (Processing Element)

Simulation Waveform

Simulation Result

Column

Column Column

Row 0, PASS! Row 1, PASS! Row 2, PASS! Row 3, PASS! Row 4, PASS! Row 5, PASS! Row 6, PASS! 0, Row 7, PASS! Row 0, PASS! Row 1, PASS! 1, Row 2, PASS! Row 3, PASS! 1, Row 4, PASS! Row 5, PASS! 1, Row 6, PASS! Row 7, PASS! Row 0, PASS! Row 1, PASS! 2, Row 2, PASS! Row 3, PASS! Row 4. PASS! Row 5, PASS! 2, Row 6, PASS! Row 7, PASS! 3, Row 0, PASS! Row 1, PASS! Row 2, PASS! Row 3, PASS! Row 4, PASS! Row 5, PASS!

Row 6, PASS!

Row 7. PASS!

Column 4. Row O. PASS! Column Column Row 2, PASS! Column Row 3. PASS! Column Row 4, PASS! Column Row 5, PASS! Column Row 6, PASS! Row 7, PASS! Column Column Row O, PASS! Row 1, PASS! Column Column Row 2, PASS! Column Row 3, PASS! Column Row 4. PASS! Column Row 5, PASS! Column Row 6, PASS! Column Row 7, PASS! Column Row O. PASS! Column Row 1, PASS! Column Row 2, PASS! Column Row 3, PASS! Column Row 4. PASS! Column Row 5, PASS! Column Row 6, PASS! Column Row 7, PASS! Column Row O, PASS! Column 7. Row 1, PASS! Column 7, Row 2, PASS! Column 7, Row 3, PASS! Column Column 7, Row 5, PASS! 7, Row 6, PASS! Column 7, Row 7, PASS! Column

• Schematic

```
// fifo_data_out
always_ff @ (posedge clk or negedge rst_n) begin
if(!rst_n) begin
fifo_data_out_r <= '0;
end else begin
if(out_data_rd_en) begin
fifo_data_out_r <= fifo_data_out_w[rd_ptr];
end else begin
fifo_data_out_r <= fifo_data_out;
end else begin
fifo_data_out_r <= fifo_data_out;
end
end
and
sat
assign fifo data out = fifo data out r;
```


Systolic Array

FIFO – like output (rd_ptr & 8 column register)

Output Register

Utilization & Timing Report

Resource	Estimation	Available	Utilization %
LUT	6015	63400	9.49
FF	5251	126800	4.14
10	390	300	130.00
BUFG	1	32	3.13

FPGA Board: Xilinx Artix-7 XC7A100T

Clock Rate: 100 MHz

Setup Time Slack: 3.518ns

etup		Hold		Pulse Width			
Worst Negative Slack (WNS):	3.518 ns	Worst Hold Slack (WHS):	0.143 ns	Worst Pulse Width Slack (WPWS):	4.500 ns		
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns		
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0		
Total Number of Endpoints:	5123	Total Number of Endpoints:	5123	Total Number of Endpoints:	5252		

All user specified timing constraints are met.

Name	Slack ^1	Levels	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock
Path 1	3.518	13	15	PE_00/out_data_1_r_reg[3]/C	PE_10/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
4 Path 2	3.518	13	15	PE_01/out_data_1_r_reg[3]/C	PE_11/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
4 Path 3	3.518	13	15	PE_02/out_data_1_r_reg[3]/C	PE_12/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
1 Path 4	3.518	13	15	PE_03/out_data_1_r_reg[3]/C	PE_13/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
1 Path 5	3.518	13	15	PE_04/out_data_1_r_reg[3]/C	PE_14/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
3 Path 6	3.518	13	15	PE_05/out_data_1_r_reg[3]/C	PE_15/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
1 Path 7	3.518	13	15	PE_06/out_data_1_r_reg[3]/C	PE_16/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
1 Path 8	3.518	13	15	PE_07/out_data_1_r_reg[3]/C	PE_17/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
1 Path 9	3.518	13	15	PE_10/out_data_1_r_reg[3]/C	PE_20/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk
4 Path 10	3.518	13	15	PE_11/out_data_1_r_reg[3]/C	PE_21/pe_out_reg_r_reg[31]/D	6.374	3.540	2.834	10.000	clk	clk

Summary			
Name	1. Path 1		
Slack	3.518ns		
Source	PE_00/out_data_l_r_reg[3]/C (rising edge-triggered cell FDCE clocked by clk {rise@0.000ns fall@5.000ns period=10.000ns})		
Destination	PE_10/pe_out_reg_r_reg[31]/D (rising edge-triggered cell FD	CE clocked by clk {rise@0.000ns fall@5.000ns period=10.000ns})	
Path Group	clk	Critical Path:	
Path Type	Setup (Max at Slow Process Corner)	Chilcal Path.	
Requirement	10.000ns (clk rise@10.000ns - clk rise@0.000ns)	From operator to PE	
Data Path Delay	6.374ns (logic 3.540ns (55.538%) route 2.834ns (44.462%))	•	
Logic Levels	13 (CARRY4=9 LUT4=1 LUT5=1 LUT6=2)	output register	
Clock Path Skew	-0.145ns	. •	
Clock Uncertainty	0.035ns	(1 uint8 multiplier + 1	
	8	uint32 adder)	