## 复旦大学管理学院 2014-2015学年第一学期期末考试试卷

**√** A卷 B卷

课程名称: 概率论与数理统计 课程代码: MANA130001.(01,02,03)

考试形式: 闭卷 开课院系:管理学院

学号: 姓名: 专业:

| 题号 | _ | 11 | $\equiv$ | 四 | 五 | 六 | 七 | 总分 |
|----|---|----|----------|---|---|---|---|----|
| 得分 |   |    |          |   |   |   |   |    |

## 注意事项

- 1. 答卷时间120分钟,试题共10页。答案必须写在第1至第9页上,写在其他纸上无效。
- 2.解题用到的标准正态、 $\chi^2$ 、F、t分布的分位点请在第10页的附表中查。
- 一、填空(每空2分,共20分)
- 1. 一个班上有10位男生、6位女生,他们用抽签的办法选出3位同学参加体 育测试。那么至少抽中一位女生的概率为
- 2. 设随机事件 A、B、C 相互独立,  $P(A) = \frac{1}{4}$ ,  $P(B) = \frac{1}{3}$ ,  $P(C) = \frac{1}{2}$ 。则这 三个事件都不发生的概率为 \_\_\_\_\_\_
- 3. 设 $X_1, ..., X_6$  i.i.d. Poi( $\theta$ ),则  $\sum_{i=1}^6 X_i$  的分布为 \_\_\_\_\_\_\_。
- 4.  $X_1, \dots, X_{25}$  i.i.d., 已知 E(X) = 1,  $EX^2 = 5$ 。 令  $S = \sum_{i=1}^{25} X_i$ 。 由中心极限 定理知, P(S≤15)≈\_\_\_\_\_(用 N(0,1)的分布函数 Φ 表示)。
- 5. 设 $X_1, \dots, X_n$ 是来自 $N(0, \sigma^2)$ 的样本,则 $\sigma^2$ 的矩估计为\_\_\_\_\_\_, 该估计量的偏倚为。
- 6. 设  $X_1, ..., X_n$  i.i.d.  $B(1, \theta)$ ,  $\theta \in (0,1)$  是未知参数。根据中心极限定理构造 的 $\theta$ 的置信水平近似为  $1-\alpha$  的置信区间为 \_\_\_\_\_\_。
- 7.  $X_1,...,X_{25}$  i.i.d.  $N(\mu,1)$  ,  $\mu$  为未知参数。检验  $H_0: \mu \leq 0$  v.s.  $H_1: \mu > 0$  。 根据样本数据算得 $\bar{X} = 0.4$ ,则在显著性水平取0.05时,应 (拒 绝/接受) $\mathbf{H}_0$ ,相应的 $\mathbf{p}$  值\_\_\_\_\_(小于/等于/大于) $\mathbf{0.05}$ 。
- 8. 若假设检验的结论是接受原假设,那么该结论可能(多选):\_\_\_\_\_\_。 1)不犯错误; 2)只犯第 I 类错误; 3)只犯第 II 类错误; 4)同时犯两类错误。

--- A卷共10页第1页----

二、(15 分) 设 A, B 是两个随机事件,且 P(A) =  $\frac{1}{4}$ , P(B| A) =  $\frac{1}{3}$ , P(A| B) =  $\frac{1}{2}$ 。 令

$$X = \begin{cases} 1, & \text{若A发生,} \\ 0, & \text{否则.} \end{cases}$$
  $Y = \begin{cases} 1, & \text{若B发生,} \\ 0, & \text{否则.} \end{cases}$ 

- 求: (1) 随机向量 (X,Y) 的联合分布列;
  - (2) X与 Y的相关系数;
  - (3)  $Z = X^2 + Y^2$  的分布列。

三、(10分) 随机向量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} \frac{8xy}{3}, & 0 \le x \le 1, x \le y \le 2x, \\ 0, & \text{else.} \end{cases}$$

- 求: (1)  $P(Y>1|X>\frac{1}{2})$ 。
  - (2) Z = X2 的密度函数。

 $\mathbf{D}$ 、(15 分) 已知某种电器的寿命  $\mathbf{X}$  的总体分布为指数分布,密度函数为  $\mathbf{p}(\mathbf{x}) = \begin{cases} \lambda e^{-\lambda \mathbf{x}}, & \text{if } \mathbf{x} > 0, \\ 0, & \text{else,} \end{cases}$  其中  $\lambda > 0$  未知。现抽取一个简单随机样本  $\mathbf{X}_1, \dots, \mathbf{X}_n$ ,

欲估计未知参数  $\theta = var(X)$ 。求:

- 1)  $\theta$  的最大似然估计 $\hat{\theta}_{\text{MLE}}$ 。
- 2)  $\hat{\theta}_{\text{MLE}}$ 是否是 $\theta$ 的无偏估计?如果是,请给出证明;如果不是,请根据  $\hat{\theta}_{\text{MLE}}$ 构造一个 $\theta$ 的无偏估计。
- 3)  $\hat{\theta}$  是否是  $\theta$  的相合估计? 为什么?

五、(20分)研究表明,声音反射对人识别英语辅音有干扰。研究者针对某个很大的特定群体,在以英语为母语的人中(A组)、以及在以英语为第二语言的人中(B组)各随机抽了10人进行测试,各人的辅音识别能力测试值记录如下:

| 组别  |    | 辅音识别能力测试值 |    |    |    |    |    |    |    | $\sum\nolimits_{i=1}^{n} x_{i}$ | $\sum\nolimits_{i=1}^{n}x_{i}^{2}$ |       |
|-----|----|-----------|----|----|----|----|----|----|----|---------------------------------|------------------------------------|-------|
| A 组 | 93 | 85        | 89 | 81 | 88 | 88 | 89 | 85 | 85 | 87                              | 870                                | 75784 |
| в组  | 76 | 84        | 78 | 73 | 78 | 76 | 70 | 82 | 79 | 77                              | 773                                | 59899 |

假定该特定群体中 A、B 两组人的辅音识别能力均服从正态分布。

- (1) 请用恰当的假设检验方法说明: A、B两组人的辅音识别能力的总体方差 是否存在显著差别。显著性水平取 0.10。(请写出必要的假定、原假设与 备择假设、检验规则、检验结论及其解释。)
- (2) 假定两组的总体方差相同,请用恰当的方法给出两组总体均值之差的置信水平为95%的置信区间。并判断两组总体均值的差异是否显著。

**六、(10分)** 以往的调查表明,某地区成年男子身高 **X(**单位:英寸**)**的总体分布为 **N(68,1)**。最近从该地区的成年男子中随机抽取了 500 人,测得他们的身高情况如下:

| 身高区间 (单位: 英寸) | 人数  |
|---------------|-----|
| <=67          | 102 |
| (67,68]       | 157 |
| (68, 69]      | 168 |
| >69           | 73  |
| 合计            | 500 |

请根据样本数据、用 $\chi^2$ 检验法判断:最近X的总体分布是否依然是N(68,1)? 显著性水平取0.05。(请写出原假设与备择假设、检验规则(包括检验统计量、临界值等);检验的计算过程及结果;对检验结论的简单解释。)

七、 $(10 \, \text{分})$  Brownlee (1960) 研究发现,某些路段上汽车的制动距离的平方根 y 与速度 x 呈线性相关关系。他做了 6 次试验,数据如下:

| X    | y     |
|------|-------|
| 20.5 | 3.92  |
| 20.5 | 3.65  |
| 30.5 | 5.82  |
| 40.5 | 8.55  |
| 48.8 | 10.63 |
| 57.8 | 11.94 |

用最小二乘法拟合 y 关于 x 的一元线性回归模型:  $y_i = \beta_0 + \beta_i x_i + \varepsilon_i$ , i = 1, ..., n, 计算得到下列统计量的值:

| $\overline{\mathbf{x}}$ | $\overline{\mathbf{y}}$ | $\sum\nolimits_{i=1}^{6} (x_i - \overline{x})^2$ | $\sum\nolimits_{i=1}^{24} (y_i - \overline{y})^2$ | $\sum\nolimits_{i=1}^{24}(y_i-\overline{y})(x_i-\overline{x})$ |
|-------------------------|-------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|
| 36.433                  | 7.418                   | 1168.953                                         | 61.034                                            | 266.198                                                        |

求:

- 1)  $\beta_0$ ,  $\beta_1$  的最小二乘估计;
- 2) 请用F检验法检验回归方程的显著性。(注意:写出必要的假定、原假设与备择假设、方差分析表、显著性水平为0.05 时的检验规则、检验结论。)

--- A卷共 10页第9页----



附表 1. 标准正态分布分布函数表

| 2 | - T. 1/1/1 | ETE (C) / | 114 /2 114 | <u> </u> |        |       |       |       |       |
|---|------------|-----------|------------|----------|--------|-------|-------|-------|-------|
|   | x          | 0.5       | 1          | 1.5      | 2      | 1.282 | 1.645 | 1.96  | 2.328 |
|   | $\Phi(x)$  | 0.6915    | 0.8413     | 0.9332   | 0.9772 | 0.90  | 0.95  | 0.975 | 0.99  |

**附表 2.** *え* 分布表

注:第一列(df)表示  $\chi^2$ 分布的自由度,第一行(p)表示概率值。"df"行与"p"列交叉格中的 数据 c 的含义为  $P(\chi^2(df) \le c) = p$ 。

|    | 3/4 3 2 2 4 ± |        |        |        |        |        |  |  |  |  |  |
|----|---------------|--------|--------|--------|--------|--------|--|--|--|--|--|
|    | p             |        |        |        |        |        |  |  |  |  |  |
| df | 0.025         | 0.050  | 0.100  | 0.900  | 0.950  | 0.975  |  |  |  |  |  |
| 1  | 0.001         | 0.004  | 0.016  | 2.706  | 3.841  | 5.024  |  |  |  |  |  |
| 2  | 0.051         | 0.103  | 0.211  | 4.605  | 5.991  | 7.378  |  |  |  |  |  |
| 3  | 0.216         | 0.352  | 0.584  | 6.251  | 7.815  | 9.348  |  |  |  |  |  |
| 4  | 0.484         | 0.711  | 1.064  | 7.779  | 9.488  | 11.143 |  |  |  |  |  |
| 5  | 0.831         | 1.145  | 1.610  | 9.236  | 11.070 | 12.833 |  |  |  |  |  |
| 6  | 1.237         | 1.635  | 2.204  | 10.645 | 12.592 | 14.449 |  |  |  |  |  |
| 58 | 38.844        | 41.492 | 44.696 | 72.160 | 76.778 | 80.936 |  |  |  |  |  |
| 59 | 39.662        | 42.339 | 45.577 | 73.279 | 77.931 | 82.117 |  |  |  |  |  |

## **附表 3.** F 分布表

注: 第一列(n)、第二列(m) 分别表示 F 分布 的分子、分母自由度,第一行(p)表示概率值。 "n、m"行与"p"列交叉格中的数据 c 的 含义为  $P(F(n,m) \le c) = p$ 。

## **附表 4.** t 分布表

注: 第一列 (df) 表示 t 分布的自由度, 第一行(p)表示概率值。"df"行与"p" 列交叉格中的数据 c 的含义为  $P(t(df) \le c) = p$ 

|    |    |       | p      |        |    |       | p     |       |  |  |  |
|----|----|-------|--------|--------|----|-------|-------|-------|--|--|--|
| n  | m  | 0.900 | 0.950  | 0.975  | df | 0.900 | 0.950 | 0.975 |  |  |  |
| 1  | 3  | 5.538 | 10.128 | 17.443 | 9  | 1.383 | 1.833 | 2.262 |  |  |  |
| 1  | 4  | 4.545 | 7.709  | 12.218 | 10 | 1.372 | 1.812 | 2.228 |  |  |  |
| 1  | 5  | 4.060 | 6.608  | 10.007 | 11 | 1.363 | 1.796 | 2.201 |  |  |  |
| 1  | 6  | 3.776 | 5.987  | 8.813  | 12 | 1.356 | 1.782 | 2.179 |  |  |  |
| 2  | 3  | 5.462 | 9.552  | 16.044 | 13 | 1.350 | 1.771 | 2.160 |  |  |  |
| 2  | 4  | 4.325 | 6.944  | 10.649 | 14 | 1.345 | 1.761 | 2.145 |  |  |  |
| 2  | 5  | 3.780 | 5.786  | 8.434  | 15 | 1.341 | 1.753 | 2.131 |  |  |  |
| 2  | 6  | 3.463 | 5.143  | 7.260  | 16 | 1.337 | 1.746 | 2.120 |  |  |  |
| 8  | 8  | 2.589 | 3.438  | 4.433  | 17 | 1.333 | 1.740 | 2.110 |  |  |  |
| 9  | 9  | 2.440 | 3.179  | 4.026  | 18 | 1.330 | 1.734 | 2.101 |  |  |  |
| 10 | 10 | 2.323 | 2.978  | 3.717  | 19 | 1.328 | 1.729 | 2.093 |  |  |  |
| 11 | 11 | 2.227 | 2.818  | 3.474  | 20 | 1.325 | 1.725 | 2.086 |  |  |  |
| 15 | 15 | 1.972 | 2.403  | 2.862  | 21 | 1.323 | 1.721 | 2.080 |  |  |  |
| 16 | 16 | 1.928 | 2.333  | 2.761  | 22 | 1.321 | 1.717 | 2.074 |  |  |  |
| 17 | 17 | 1.889 | 2.272  | 2.673  | 23 | 1.319 | 1.714 | 2.069 |  |  |  |
| 18 | 18 | 1.854 | 2.217  | 2.596  | 24 | 1.318 | 1.711 | 2.064 |  |  |  |
|    |    |       |        |        |    |       |       |       |  |  |  |