Exercice 1. Étude de fonction.

1. Soit $x \in \mathbb{R}$. Il est clair que -x et $x + \pi$ sont des réels. On calcule d'une part

$$f(-x) = \cos(-3x)\cos(-x)^3 = \cos(3x)\cos(x)^3 = f(x)$$
 car cos est paire.

ce qui montre que f est paire. D'autre part

$$f(x+\pi) = \cos(3x+3\pi)\cos(x+\pi)^3 = (-\cos 3x)(-\cos x)^3$$
$$= (-1)^4\cos 3x(\cos x)^3$$
$$= f(x).$$

ce qui montre que f est π -périodique. On peut donc réduire l'étude à un intervalle de longueur π . Choisissons $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$: par parité, on pourra finalement réduire l'étude à $\left[0,\frac{\pi}{2}\right]$.

2. La fonction f est dérivable comme produit et composée de fonctions toutes dérivables sur \mathbb{R} . Pour x un réel, on a

$$f'(x) = 3(-\sin(3x))\cos^3 x + \cos(3x) \cdot 3(-\sin x)\cos^2 x$$

= $-3\cos^2 x (\sin(3x)\cos x + \cos(3x)\sin x)$
= $-3\cos^2 x \sin(3x + x)$
= $-3\cos^2 x \sin(4x)$

Puisque $\cos^2 x$ est positif, il est vrai que f'(x) est du signe de $-\sin(4x)$.

3. Voici le tableau de variations sur l'intervalle d'étude réduit, puis un graphe sur \mathbb{R} .

x	$0 \qquad \frac{\pi}{4} \qquad \frac{\pi}{2}$
f'(x)	- 0 +
f	$ \begin{array}{c c} 1 & 0 \\ -\frac{1}{4} \end{array} $

Exercice 2. Recherche de points fixes.

- 1. Le quotient $\left|\frac{1+x}{1-x}\right|$ est défini dès que $x \neq 1$. C'est un nombre positif (valeur absolue). Il est *strictement* positif dès que $x \neq -1$. La fonction f est donc définie sur $X_f = \mathbb{R} \setminus \{-1, 1\}$.
- 2. Soit $x \in X_f$. Puisque X_f est "symétrique" par rapport à $0, -x \in X_f$ et

$$f(-x) = \ln\left(\left|\frac{1-x}{1+x}\right|\right) = -\ln\left(\left|\frac{1-x}{1+x}\right|^{-1}\right) = -\ln\left(\left|\frac{1+x}{1-x}\right|\right) = -f(x).$$

- 3. Puisque f est impaire, on va se contenter de l'étudier sur $[0,1[\cup]1,+\infty[$
 - Si $x \in]1, +\infty[, \frac{1+x}{1-x} < 0, d'où$

$$f(x) = \ln\left(\frac{x+1}{x-1}\right) = \ln(1+x) - \ln(x-1).$$

La fonction f est clairement dérivable sur $]1, +\infty[$. Pour x dans cet intervalle,

$$f'(x) = \frac{1}{1+x} - \frac{1}{x-1} = -\frac{2}{x^2-1},$$

• Si $x \in [0, 1[, \frac{1+x}{1-x} > 0, d]$ où

$$f(x) = \ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x).$$

La fonction f est clairement dérivable sur [0,1[. Pour x dans cet intervalle,

$$f'(x) = \frac{1}{1+x} - \frac{(-1)}{1-x} = \frac{1}{1+x} + \frac{1}{1-x} = \frac{2}{1-x^2},$$

Voici donc le tableau de variations de f:

Détails pour la limite nulle en $+\infty$.

On a
$$\frac{x+1}{x-1} = \cancel{x} \cdot \frac{1+\frac{1}{x}}{1-\frac{1}{x}} \xrightarrow[x \to +\infty]{} 1.$$

On obtient une limite nulle par composition avec ln.

4. La fonction f est dérivable en 0. On a f'(0) = 2 et f(0) = 0. La courbe admet une tangente à l'origine d'équation y = x.

Rappelons que pour tout $x \in [0, 1[, f'(x) = \frac{2}{1-x^2}]$.

La dérivée de la fonction f est donc croissante sur [0,1[car c'est l'inverse d'une fonction décroissante (vous pouvez calculer la dérivée seconde si vous y tenez).

Ceci démontre la convexité de f sur [0,1[(et sa concavité sur]-1,0] par imparité).

5. Voici le graphe de f, ainsi que la droite d'équation y=x, qui servira à la question suivante.

La tangente en 0, d'équation y=2x est représentée aussi : l'étude de convexité faite à la question précédente donne que la courbe est au-dessus de sa tangente sur [0,1[.

- 6. La courbe et la droite d'équation y = x ont trois points d'intersection : on conjecture trois points fixes.
- 7. La fonction g est dérivable sur $]1, +\infty[$. Pour x dans cet intervalle,

$$g'(x) = f'(x) - 1 = -\frac{2}{x^2 - 1} - 1 < 0,$$

ce qui amène que g est strictement décroissante sur $]1, +\infty[$.

La fonction g change de signe : en s'appuyant sur les limites de f, il est facile de montrer que

$$\lim_{x \to 1+} g(x) = +\infty \quad \text{ et } \quad \lim_{x \to +\infty} g(x) = -\infty.$$

La fonction g est continue sur $]1, +\infty[$ (car dérivable), elle y est strictement décroissante et change de signe.

D'après le TVI strictement monotone, l'équation g(x)=0 (c'est-à-dire f(x)=x) possède une unique solution sur $[1,+\infty[$.

Autre rédaction possible.

La fonction g est continue et strictement décroissante sur $]1, +\infty[$.

Le théorème de la bijection continue assure que g réalise une bijection entre $]1,+\infty[$ et $g(]1,+\infty[)$.

À l'aide des limites de g, on obtient que $g(]1, +\infty[) = \mathbb{R}$

En particulier, 0 possède un unique antécédent par g dans $]1, +\infty[$.

Problème 2. (facultatif, la fin est difficile) Un exercice du concours général 2023.

- 1. v(1) = 0, v(2) = 1, v(3) = 0, v(4) = 2.
- 2. On prouve l'implication $(n \text{ impair} \Longrightarrow v(n) = 0)$ par contraposée. Supposons que $v(n) \neq 0$, c'est-à-dire $v(n) \geq 1$. On a que $n/2^{v(n)}$ est égal à un certain entier naturel q, puis $n = 2 \cdot 2^{v(n)-1}q$. Ceci prouve que n est pair (il est de la forme n = 2k avec k entier).
 - Supposons que n est pair. Alors n/2 est entier et pour tout $k \geq 1$,

$$\frac{n}{2^k} = \frac{n/2}{2^{k-1}}.$$

Ainsi,

$$k \le v(n) \iff \frac{n}{2^k} \in \mathbb{N} \iff \frac{n/2}{2^{k-1}} \in \mathbb{N} \iff k-1 \le v(\frac{n}{2}).$$

On a bien $v(n) = v(\frac{n}{2}) + 1$.

3. Voici les huit premiers termes de la suite $(u_n)_{n\geq 1}$.

			3				7	8
u_k	1	2	1/2	3	2/3	3/2	1/3	4

4. Le nombre u_1 est rationnel et il est clair que si $u_n \in \mathbb{Q}$, alors $u_{n+1} \in \mathbb{Q}$ (puisque v(n) est rationnel et que \mathbb{Q} est stable par somme et inverse). On obtient donc par récurrence que (u_n) est une suite de rationnels.

Pour $n \in \mathbb{N}^*$, on pose

$$\mathcal{P}_n: \langle u_{2n} > 0, u_{2n+1} > 0, u_{2n} = u_n + 1, u_{2n+1} = \frac{u_n}{u_n + 1} \rangle.$$

- On vérifie à partir de la question précédente que $u_2 > 0$, $u_3 > 0$ et que $u_4 = u_2 + 1$ et $u_5 = \frac{u_2}{u_2 + 1}$. La proposition \mathcal{P}_1 est vraie.
- Soit $n \in \mathbb{N}^*$. Supposons que les assertions \mathcal{P}_k sont vraies pour tout k entre 1 et n.

Montrons \mathcal{P}_{n+1} .

D'après \mathcal{P}_n , on a $u_{2n+1} \neq 0$. Ainsi,

$$u_{2n+2} = 1 + 2v(2n+2) - \frac{1}{u_{2n+1}}$$

$$= 1 + 2(v(n+1) + 1) - \frac{u_n + 1}{u_n} \quad \text{(question 2 et } \mathcal{P}_n)$$

$$= 1 + \left(1 + 2v(n+1) - \frac{1}{u_n}\right)$$

$$= 1 + u_{n+1}$$

Pour écrire la dernière égalité, on a besoin de savoir que $u_n \neq 0$. C'est là qu'on voit la nécessité d'une récurrence dite forte : sous notre hypothèse, tous les termes u_i avec i entre 1 et 2n+1 sont strictement positifs : c'est en particulier le cas pour u_n .

L'hypothèse de récurrence forte nous donne aussi $u_{n+1} > 0$ puis $u_{2n+2} = u_{n+1} + 1 > 0$. Puisque u_{2n+2} est non nul, on a

$$u_{2n+3} = 1 + 2v(2n+3) - \frac{1}{u_{2n+2}}$$

$$= 1 + 2 \cdot 0 - \frac{1}{u_{n+1} + 1}$$

$$= \frac{u_{n+1}}{u_{n+1} + 1}.$$

- D'après le principe de récurrence, pour tout entier n supérieur à 1, \mathcal{P}_n est vraie. Cela implique en particulier que tous les u_n sont strictement positifs à partir du rang 2. Puisque c'est aussi vrai pour u_1 , on a bien achevé de vérifier que les u_n sont tous des rationnels strictement positifs.
- 5. Pour tout entier naturel non nul n, nous posons la proposition

 \mathcal{P}_n : « pour tout couple $(p,q) \in (\mathbb{N}^*)^2$ tel que $p+q \leq n$, le rationnel $\frac{p}{q}$ est un terme de la suite. »

- Initialisation. Il n'existe pas de couple d'entiers strictement positifs tels que $p+q \leq 1$. L'assertion \mathcal{P}_1 est donc formellement vraie... et la récurrence est ainsi initialisée.
- Initialisation (bis). Si cela vous gêne de vous appuyer sur ce cas un peu dégénéré, vous pouvez aussi initialiser au rang 2: il y a un unique couple (p,q) qui convient et c'est (1,1); or, $\frac{1}{1}=u_1$: le rationnel est bien un terme de la suite, et \mathcal{P}_2 est vraie.
- Hérédité. Soit n un entier supérieur à 2. Supposons \mathcal{P}_n . Pour montrer \mathcal{P}_{n+1} , considérons un couple $(p,q) \in (\mathbb{N}^*)^2$ tel que $p+q \leq n+1$.
- Cas p = q. Le rationnel $\frac{p}{q}$ vaut alors 1, qui est un terme de la suite.
- <u>Cas p > q.</u> Alors $\frac{p}{q} = \frac{p \hat{q}}{q} + 1$. Or, (p - q, q) est un couple de $(\mathbb{N}^*)^2$ tel que $p - q + q = p \le n$ (puisque $p + q \le n + 1$ et $q \ge 1$). D'après la proposition \mathcal{P}_n , le rationnel $\frac{p - q}{q}$ est un terme de la suite : il existe un entier $k \in \mathbb{N}^*$ tel que $\frac{p - q}{q} = u_k$. D'après la question précédente, on a alors

$$\frac{p}{q} = \frac{p-q}{q} + 1 = u_k + 1 = u_{2k},$$

ce qui prouve bien que $\frac{p}{q}$ est un terme de la suite.

— Cas p > q. Toujours dans l'optique d'utiliser la question précédente, peut-on écrire $\frac{p}{q} = \frac{r}{r+1}$? Résoudre l'équation donne $r = \frac{p}{q-p}$. Or, (p,q-p) est un couple d'entiers naturels non nuls tels que $p+q-p=q \leq n$ (puisque $p+q \leq n+1$ et $p \geq 1$). D'après la proposition \mathcal{P}_n , le rationnel $\frac{p}{q-p}$ est un terme de la suite : il existe un entier $k \in \mathbb{N}^*$ tel que $\frac{p}{q-p} = u_k$. D'après la question précédente, on a alors

$$\frac{p}{q} = \frac{\frac{p}{q-p}}{\frac{p}{q-p}+1} = \frac{u_k}{u_k+1} = u_{2k+1},$$

ce qui prouve bien que $\frac{p}{q}$ est un terme de la suite.

- D'après le principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout entier n supérieur à 2, ce qui donne que tout rationnel strictement positif est un terme de la suite u.
- 6. Pour $n \in \mathbb{N}^*$, notons

 \mathcal{P}_n : « les termes u_1, u_2, \ldots, u_n sont deux à deux distincts. »

- La proposition \mathcal{P}_1 est trivialement vraie.
- Soit n un entier naturel non nul. Supposons \mathcal{P}_n . Pour montrer \mathcal{P}_{n+1} , puisque u_1, \ldots, u_n sont deux à deux distincts d'après \mathcal{P}_n , il suffit de prouver que $u_{n+1} \notin \{u_1, \ldots, u_n\}$.

Raisonnons par l'absurde et supposons que $u_{n+1} = u_k$ où k est un certain entier entre 1 et n.

Il découle de la question 4 que tous les termes de la suite ayant un indice pair sont strictement supérieure à 1, et que tous ceux d'indice impair, à l'exception de u_1 , sont strictement inférieurs à 1. On propose donc la discussion suivante.

- (a) Premier cas: n+1 est pair. Alors u_{n+1} (et u_k) sont strictement supérieurs à 1. Ainsi, n+1 et k sont pairs. Puisque $u_{n+1}=u_k$, soit $u_{\frac{n+1}{2}}+1=u_{\frac{k}{2}}+1$, on a $u_{\frac{n+1}{2}}=u_{\frac{k}{2}}$, ce qui contredit \mathcal{P}_n (puisque n+1/2 et k/2 sont inférieurs à n).
- (b) Second cas: n+1 est impair. Alors u_{n+1} (et u_k) sont strictement inférieurs à 1. Ainsi, n+1 et k sont impairs. Puisque $u_{n+1} = u_k$, soit $\frac{u_{\frac{n}{2}}}{u_{\frac{n}{2}}+1} = \frac{u_{\frac{k}{2}}}{u_{\frac{k}{2}}+1}$, on a (faire le produit en croix...) $u_{\frac{n}{2}} = u_{\frac{k}{2}}$, ce qui contredit \mathcal{P}_n (puisque $\frac{n}{2}$ et $\frac{k}{2}$ sont inférieurs à n).
- 7. On définit f sur \mathbb{N} en posant

$$f(0) = 0$$
; et $\forall n \in \mathbb{N}^*$ $f(2n) = u_n$ et $f(2n-1) = -u_n$.

L'application f va de \mathbb{N} vers \mathbb{Q} d'après la question 4.

Tout rationnel strictement positif possède un unique antécédent (pair) par f: l'existence découle de la question 5 et l'unicité de la question 6.

Par symétrie, tout rationnel strictement négatif a un unique antécédent (impair) par f. Quant à 0, il a 0 pour unique antécédent par f.

La fonction f est donc une bijection de \mathbb{N} vers \mathbb{Q} .