Multiple Linear Regression for Robot Calibration

Can Xu ,cx461@nyu.edu

In this lab, we will illustrate the use of multiple linear regression for calibrating robot control. In addition to reviewing the concepts in the <u>multiple linear regression demo (./glucose.ipynb)</u>, you will see how to use multiple linear regression for time series data -- an important concept in dynamical systems such as robotics.

The robot data for the lab is taken generously from the TU Dortmund's <u>Multiple Link Robot Arms</u> <u>Project (http://www.rst.e-technik.tu-</u>

<u>dortmund.de/cms/en/research/robotics/TUDOR engl/index.html</u>). As part of the project, they have created an excellent public dataset: <u>MERIt (http://www.rst.e-technik.tu-</u>

<u>dortmund.de/cms/en/research/robotics/TUDOR engl/index.html#h3MERIt)</u> -- A Multi-Elastic-Link Robot Identification Dataset that can be used for understanding robot dynamics. The data is from a three link robot:

We will focus on predicting the current draw into one of the joints as a function of the robot motion. Such models are essential in predicting the overall robot power consumption. Several other models could also be used.

Load and Visualize the Data

First, import the modules we will need.

In [1]:

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from pandas import DataFrame

%matplotlib inline

The full MERIt dataset can be obtained from the MERIt site (http://www.rst.e-technik.tu-dortmund.de/cms/en/research/robotics/TUDOR engl/index.html#h3MERIt). But, this dataset is large. Included in this repository are two of the ten experiments. Each experiments corresonds to 80 seconds of recorded motion. We will use the following files:

- exp1.csv (./exp1.csv) for training
- exp2.csv (./exp2.csv) for test

Below, I have supplied the column headers in the names array. Use the pd.read_csv command to load the data. Use the index_col option to specify that column 0 (the one with time) is the *index* column. You can review simple linear regression demo (../simp_lin_reg/auto_mpg.ipynb) for examples of using the pd.read_csv command.

In [2]:

```
names =[
    't',
                                           # Time (secs)
    'q1', 'q2', 'q3',
                                           # Joint angle
                                                           (rads)
    'dq1', 'dq2', 'dq3',
                                           # Joint velocity (rads/sec)
    'I1', 'I2', 'I3',
                                           # Motor current (A)
                      'eps31', 'eps32', # Strain gauge measurements ($\mu$m /m )
    'eps21', 'eps22',
    'ddq1', 'ddq2', 'ddq3'
                                          # Joint accelerations (rad/sec^2)
# TODO
df = pd.read_csv('./exp1.csv',
                 header=None, names=names, na values='?')
# df = pd.read csv(...)
len_x = df.shape[0]
```

Print the first six lines of the pandas dataframe and manually check that they match the first rows of the csv file.

In [3]:

df.head(6)

Out[3]:

	t	q1	q2	q3	dq1	dq2	dq3	
0	0.00	-0.000007	2.4958	-1.1345	-7.880000e- 21	-4.940656e- 321	3.910000e- 29	-0
1	0.01	-0.000007	2.4958	-1.1345	-2.260000e- 21	-4.940656e- 321	2.630000e- 31	-0
2	0.02	-0.000007	2.4958	-1.1345	-6.470000e- 22	-4.940656e- 321	1.760000e- 33	-0
3	0.03	-0.000007	2.4958	-1.1345	-1.850000e- 22	-4.940656e- 321	1.180000e- 35	-0
4	0.04	-0.000007	2.4958	-1.1345	-5.310000e- 23	-4.940656e- 321	-5.270900e- 03	-0
5	0.05	-0.000007	2.4958	-1.1345	-1.520000e- 23	-4.940656e- 321	3.252600e- 04	-0
4								•

From the dataframe df, extract the time indices into a vector t and extract I2, the current into the second joint. Place the current in a vector y and plot y vs. t.

In [4]:

```
# TODO

xstr = 't'
t = np.array(df[xstr])
y = np.array(df['I2'])

# y = ...
# t = ...

plt.plot(t,y,'o')
plt.xlabel(xstr)
plt.ylabel('y')
plt.grid(True)

# plt.plot(...)
```


Use all the samples from the experiment 1 dataset to create the training data:

- ytrain: A vector of all the samples from the I2 column
- Xtrain: A matrix of the data with the columns: ['q2','dq2','eps21', 'eps22', 'eps31', 'eps32','ddq2']

In [5]:

```
# TODO

ytrain = y
Xtrain = df.as_matrix(columns=['q2','dq2','eps21', 'eps22', 'eps31', 'eps32','ddq
2'])
```

Fit a Linear Model

Use the sklearn.linear_model module to create a LinearRegression class regr.

In [6]:

```
from sklearn import linear_model

# Create Linear regression object
# TODO
# regr = ...

regr = linear_model.LinearRegression()
```

Train the model on the training data using the regr.fit(...) method.

In [7]:

Plot the predicted and actual current I2 over time on the same plot. Create a legend for the plot.

In [8]:

```
# TODO
y_tr_pred = regr.predict(Xtrain)

plt.plot(t,y,'o',t,y_tr_pred,'r.-')
plt.xlabel(xstr)
plt.ylabel('y')
plt.grid(True)
```


Measure the normalized RSS given by

```
\frac{RSS}{ns_y^2}.
```

```
In [9]:
```

```
# TODO
# RSS_train = ...
RSS_tr = np.mean((y_tr_pred-ytrain)**2)/(np.std(ytrain)**2)
Rsq_tr = 1-RSS_tr
print("RSS per sample = {0:f}".format(RSS_tr))
print("R^2 = {0:f}".format(Rsq_tr))
RSS per sample = 0.095833
R^2 = 0.904167
```

Measure the Fit on an Indepdent Dataset

Load the data in exp2.csv. Compute the regression predicted values on this data and plot the predicted and actual values over time.

In [10]:

Out[10]:

					1	T		
	t	q1	q2	q3	dq1	dq2	dq3	
0	0.00	-0.000007	1.9024	0.26063	-0.000364	4.940656e- 321	0.012596	-0.0969
1	0.01	0.000013	1.9024	0.26073	0.000739	4.940656e- 321	0.012095	-0.0289
2	0.02	-0.000007	1.9024	0.26086	-0.000580	4.940656e- 321	0.011596	-0.0598
3	0.03	0.000013	1.9024	0.26099	0.001409	4.940656e- 321	0.013933	-0.0799
4	0.04	-0.000007	1.9024	0.26110	-0.001273	4.940656e- 321	0.010793	-0.025
5	0.05	-0.000007	1.9024	0.26124	0.001928	4.940656e-	0.011915	-0.0833

Measure the normalized RSS on the test data. Is it substantially higher than the training data?

In [11]:

```
# TODO
# TODO

xstr = 't'
t1 = np.array(df[xstr])
y1 = np.array(df['I2'])

plt.figure(1)
plt.plot(t1,y1,'o',t,y,'b-')
plt.title('y vs. y1 Over time')
plt.xlabel(xstr)
plt.ylabel('y')
plt.grid(True)

ytrain = y1
Xtrain = df.as_matrix(columns=['q2','dq2','eps21', 'eps22', 'eps31', 'eps32','ddq2'])
```


In [12]:

```
print(regr.coef_);
[ 0.06255018  0.20584896  0.00118784  0.00044457 -0.0031362  0.00603
298
     0.05487097]
```

Measure the Fit on an Indepdent Dataset

Rsq is 0.89 near to 0.90 Both nice fit

In [13]:

```
y_tr_pred = regr.predict(Xtrain)
RSS_tr = np.mean((y_tr_pred-ytrain)**2)/(np.std(ytrain)**2)
Rsq_tr = 1-RSS_tr
print("RSS per sample = {0:f}".format(RSS_tr))
print("R^2 = {0:f}".format(Rsq_tr))
```

```
RSS per sample = 0.126780
R^2 = 0.873220
```

In [14]:

```
plt.figure(2)

plt.plot(t,y1,'o',t,y_tr_pred,'b.-')
plt.title('y1 vs. y_pred ')
plt.xlabel('t')
plt.ylabel('y')
plt.grid(True)
```

