## mPERS FCC Part 22 & 24 Conducted Test Report

FCC ID: ZQR-LC120

80-H1151-1 Rev A

**November 2011** 



QUALCOMM Incorporated 5775 Morehouse Drive San Diego, CA 92121-1714 U.S.A.

mPERS FCC Part 22 & 24 Conducted Test Report 80-H1151-1 Rev A November 2011

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Copyright © 2011 QUALCOMM Incorporated.

All rights reserved.

80-H1151-1 Rev. A

2

# mPERS FCC Part 22 & 24 Conducted Test Report

| FCC Part 22 and 24 Certification |                         |  |  |
|----------------------------------|-------------------------|--|--|
| FCC ID:                          | ZQR-LC120 (Watch)       |  |  |
|                                  | ZRQ-LC130 (Belt Clip)   |  |  |
|                                  | ZRQ-LC140 (Pendant)     |  |  |
| Model:                           | MPERS LC120/LC130/LC140 |  |  |

#### STATEMENT OF CERTIFICATION

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the measurements of the sample's radio frequency interference emissions characteristics as of the dates and at the times of the test under the conditions herein specified.

| Test performed by:  | QUALCOMM Incorporated<br>5775 Morehouse Drive<br>San Diego, CA 92121-1714 |
|---------------------|---------------------------------------------------------------------------|
| Report Prepared by: | QUALCOMM Incorporated 5775 Morehouse Drive San Diego, CA 92121-1714       |

Tests that required an OATS site were performed by Compliance Certification Services.

#### **Table of Contents**

| 1. Introduction and Purpose                                   | 7  |
|---------------------------------------------------------------|----|
| 2. Test Summary                                               | 8  |
| 3. Test Setup Photos                                          | 9  |
| 4. RF Power Output Verification                               | 10 |
| 4.1 Base Station Emulator Settings and Measurement Procedures |    |
| 5. Occupied Bandwidth                                         | 12 |
| 5.1 Test Procedures                                           | 12 |
| 6. Band Edge Compliance                                       | 16 |
| 6.1 Test Procedures 6.2 Test Results 6.3 Plots                | 16 |
| 7. Out of Band Emissions at Antenna Terminals                 | 20 |
| 7.1 Test Procedure                                            | 21 |
| 8. Frequency Stability                                        | 31 |
| 8.1 Test Procedure 8.2 Test Results                           |    |
| 9. CCDF Measurement                                           | 35 |
| 10. Test Equipment and Firmware                               | 37 |

### **List of Figures**

| Figure 3-1 Conducted Measurement Test Setup     | 9  |
|-------------------------------------------------|----|
| Figure 3-2 Frequency Stability Test Setup       | 9  |
| Figure 4-1 Conducted RF Measurements Test Setup | 10 |
| Figure 5-1 (Ch. 1013, RC3 SO55)                 | 13 |
| Figure 5-2 (Ch. 384, RC3 SO55)                  | 13 |
| Figure 5-3 (Ch. 777, RC3 SO55)                  | 14 |
| Figure 5-4 (Ch. 25, RC3 SO55)                   | 14 |
| Figure 5-5 (Ch. 600, RC3 SO55)                  | 15 |
| Figure 5-6 (Ch. 1175, RC3 SO55)                 | 15 |
| Figure 6-1 (Ch. 1013, RC3 SO55)                 | 17 |
| Figure 6-2 (Ch. 777, RC3 SO55)                  | 17 |
| Figure 6-3 (Ch. 25, RC3 SO55)                   | 18 |
| Figure 6-4 (Ch. 1175, RC3 SO55)                 | 18 |
| Figure 7-1(Ch. 1013, RC3 SO55)                  | 22 |
| Figure 7-2 (Ch. 1013, RC3 SO55)                 | 22 |
| Figure 7-3 (Ch. 1013, RC3 SO55)                 | 23 |
| Figure 7-4 (Ch. 384, RC3 SO55)                  | 23 |
| Figure 7-5 (Ch. 384, RC3 SO55)                  | 24 |
| Figure 7-6 (Ch. 384, RC3 SO55)                  | 24 |
| Figure 7-7 (Ch. 777, RC3 SO55)                  | 25 |
| Figure 7-8 (Ch. 777, RC3 SO55)                  | 25 |
| Figure 7-9 (Ch. 777, RC3 SO55)                  | 26 |
| Figure 7-10 (Ch. 25, RC3 SO55)                  | 26 |
| Figure 7-11 (Ch. 25, RC3 SO55)                  | 27 |
| Figure 7-12 (Ch. 25, RC3 SO55)                  | 27 |
| Figure 7-13 (Ch. 600, RC3 SO55)                 | 28 |
| Figure 7-14 (Ch. 600, RC3 SO55)                 | 28 |
| Figure 7-15 (Ch. 600, RC3 SO55)                 | 29 |
| Figure 7-16 (Ch. 1175, RC3 SO55)                | 29 |
| Figure 7-17 (Ch. 1175, RC3 SO55)                | 30 |
| Figure 7-18 (Ch. 1175, RC3 SO55)                | 30 |
| Figure 8-1 Frequency Stability Test Setup       | 31 |
| Table 8-2 BC1 Frequency Stability               | 33 |
| Figure 8-3 BC1 Frequency Stability Graph        | 33 |

#### **List of Tables**

| Γable 1-1 EUT Information                                  | 7  |
|------------------------------------------------------------|----|
| Table 4-1 Maximum Conducted Output Power                   | 11 |
| Table 5-1 Occupied Bandwidth Test Result Summary           | 12 |
| Гable 6-1 Band Edge Test Result Summary                    | 16 |
| Γable 7-1 Conducted Spurious Emissions Test Result Summary | 21 |
| Гable 8-1 BC0 Frequency Stability                          | 32 |
| Fable 8-2 BC1 Frequency Stability                          | 33 |

## 1. Introduction and Purpose

7

This document presents FCC test data for the CDMA 1x 850/1900 MHz RF module used in three Wireless Personal Emergency Service ("MPERS") products that will have unique FCC identifiers follows:

- Watch: Model LC120 (FCC ID ZQR-LC120)
- Belt Clip: Model LC130 (FCC ID ZQR-LC130)
- Pendant/Lanyard: Model LC140 (FCC ID ZQR-LC140)

Although the three MPERS devices share a common RF module, each model is a unique design with a unique antenna. The RF module is physically customized to these three devices and is not intended for use with any other product. For that reason the conducted measurements from this test report are applicable to all three units.

The test results included in this report are limited to conducted test results.

Radiated testing for each unit was performed at UL Compliance Certification Services in Fremont, CA, and the test results are contained in the MPERS FCC Part 22 & 24 Radiated Test Report.

**Table 1-1 EUT Information** 

| EUT Model                            | MPERS RF Module for LC120, LC130, and LC140                                          |
|--------------------------------------|--------------------------------------------------------------------------------------|
| FCC ID                               | ZQR-LC120, ZQR-LC130, ZQR-LC140                                                      |
| EUT description                      | RF module used in MPERS watch, belt clip, and lanyard                                |
| WWAN Technologies                    | CDMA 2000 1x                                                                         |
| Unlicensed Technologies              | None                                                                                 |
| TX Frequencies                       | CDMA 1x Band Class 0: 824.2 – 848.8 MHz<br>CDMA 1x Band Class 1: 1850.2 – 1909.8 MHz |
| Nominal Factory Transmit Power (dBm) | Band Class 0: 24dBm<br>Band Class 1: 24dBm                                           |
| Duty Cycle(s)                        | CDMA: 100%                                                                           |

## 2. Test Summary

| FCC/IC Rule                       | Description of Test                             | Result   |
|-----------------------------------|-------------------------------------------------|----------|
| §2.1046                           | RF Power Output                                 | Complies |
| §2.1049                           | Occupied Bandwidth                              | Complies |
| §22.359, 24.238, 27.53(g)         | Band Edge Requirement                           | Complies |
| §2.1051, 22.917, 24.238(a), 27.53 | Out of Band Emission at Antenna Terminals       | Complies |
| §2.1055, 22.355, 24.235, 27.54    | Frequency Stability vs. Temperature vs. Voltage | Complies |
| §1.1310, 2.1091                   | RF Exposure                                     | Complies |
| §2.1053, 22.917. 24.238(a), 27.55 | Field Strength of Spurious Radiation            | Complies |

## 3. Test Setup Photos



**Figure 3-1 Conducted Measurement Test Setup** 





### 4. RF Power Output Verification

| FCC:   | § 2.1046 |
|--------|----------|
| Limit: | n/a      |
| DUT SN | 1 & 4    |

#### 4.1 Base Station Emulator Settings and Measurement Procedures

As shown in the figure below, connect the transmitter output of the MPERS to the communication test set (Agilent 8960) and configure it to operate at maximum power in a call. Measure the power at three equally spaced operating frequencies for each band.

Use the build-in power measurement capability in the 8960 box to measure CDMA 1x conducted power output.

The relevant cable loss is measured for the specific frequencies under test and added as a correction factor for all the tests.

All conducted measurements except frequency stability were performed using the following test setup:



Figure 4-1 Conducted RF Measurements Test Setup

#### 4.2 Test Results

**Table 4-1 Maximum Conducted Output Power** 

| Device         | Band | Channel | Cond. Pwr (dBm) |
|----------------|------|---------|-----------------|
| Module #4      | BC0  | 1013    | 24.4            |
| used for Watch |      | 383     | 24.1            |
| and Belt Clip  |      | 777     | 23.7            |
|                | BC1  | 25      | 24.1            |
|                |      | 600     | 24.2            |
|                |      | 1175    | 24.3            |

|           | Cell Channel |            |      | Cell Channel |      |      | CS Chann | el   |
|-----------|--------------|------------|------|--------------|------|------|----------|------|
| Test Case |              |            |      |              |      |      |          |      |
|           | FWD          | REV        |      |              |      |      |          |      |
| #         | RC/TAP       | RC/TAP     | 1013 | 384          | 777  | 25   | 600      | 1175 |
| 1         | RC1          | RC1 (SO2)  | 24.3 | 24.0         | 23.9 | 24.0 | 24.0     | 24.3 |
| 2         | RC1          | RC1 (SO55) | 24.4 | 24.1         | 23.7 | 24.0 | 24.0     | 24.3 |
| 3         | RC2          | RC2 (SO9)  | 24.4 | 24.1         | 23.7 | 23.9 | 24.1     | 24.2 |
| 4         | RC2          | RC2 (SO55) | 24.4 | 24.1         | 23.7 | 23.9 | 24.0     | 24.3 |
| 5         | RC3          | RC3 (SO55) | 24.4 | 24.1         | 23.7 | 24.1 | 24.2     | 24.3 |
| 6         | RC3          | RC3 (SO32) | 24.4 | 24.1         | 23.7 | 23.8 | 23.8     | 24.2 |

## 5. Occupied Bandwidth

| FCC:   | §2.1049 |
|--------|---------|
| Limit: | n/a     |
| DUT SN | 4       |

#### 5.1 Test Procedures

As the figure below indicates, the transmitter output is connected to a calibrated coaxial cable and coupler. The other end of coupler was connected to the spectrum analyzer. Measured the occupied bandwidth (defined as the 99% power bandwidth) with the appropriate personality features integrated in the PSA.

An Agilent 8960 call box was used for all measurements.

#### 5.2 Test Results

The occupied bandwidth was measured at low, mid and high channel in each band.

**Table 5-1 Occupied Bandwidth Test Result Summary** 

| Mode     | Frequency<br>(MHz) | Channel 99% Occupied Bandwidth (MHz) |        | Plot number |
|----------|--------------------|--------------------------------------|--------|-------------|
|          | 824.7 1013         |                                      | 1.2767 | Figure 5-1  |
|          | 836.52             | 384 (mid)                            | 1.2787 | Figure 5-2  |
|          | 848.31             | 777 (high)                           | 1.2811 | Figure 5-3  |
| RC3 SO55 | 1851.25            | 25 (low)                             | 1.2749 | Figure 5-4  |
|          | 1880               | 600 (mid)                            | 1.2668 | Figure 5-5  |
|          | 1908.75            | 1175 (high)                          | 1.2824 | Figure 5-6  |

#### 5.3 Plots

Figure 5-1 (Ch. 1013, RC3 SO55)



Figure 5-2 (Ch. 384, RC3 SO55)





Figure 5-3 (Ch. 777, RC3 SO55)







Figure 5-5 (Ch. 600, RC3 SO55)





### 6. Band Edge Compliance

| FCC:   | §22.359, 24.238, 27.53(g) |
|--------|---------------------------|
| Limit: | -13dBm                    |
| DUT SN | 4                         |

#### 6.1 Test Procedures

As shown in Figure below, connected the RF output to 8960 or 8820B, configured the MPERS to operate at maximum power. The block edge emissions are measured at the required operating frequencies in each band on the spectrum analyzer.

For each block edge measurement:

- Set the spectrum analyzer span to include the block edge frequency (824, 848, 1850, 1910 MHz)
- Set a marker to point the corresponding block edge frequency in each test case
- Set display line at -13dBm
- Set resolution bandwidth to at least 1% of emission BW
- For CDMA measurement, set video averaging to 10 samples

The 1% emission BW for CDMA technology is 12.5 kHz:

The 8960 call box was used all measurements.

#### 6.2 Test Results

The test was conducted at band edges in each band.

**Table 6-1 Band Edge Test Result Summary** 

| Mode     | Frequency (MHz) | Channel Tested | Corresponding Plot number | Test Result |
|----------|-----------------|----------------|---------------------------|-------------|
|          | 824             | 1013 (low)     | Figure 6-1                | Complies    |
|          | 849             | 777 (high)     | Figure 6-2                | Complies    |
| RC3 SO55 | 1850            | 25 (low)       | Figure 6-3                | Complies    |
|          | 1910            | 1175 (high)    | Figure 6-4                | Complies    |

#### 6.3 Plots





Figure 6-2 (Ch. 777, RC3 SO55)



Figure 6-3 (Ch. 25, RC3 SO55)



Figure 6-4 (Ch. 1175, RC3 SO55)



## 7. Out of Band Emissions at Antenna Terminals

| FCC:   | §22.901(d), 22.917, 24.238 (a), 27.53 |
|--------|---------------------------------------|
| Limit: | -13dBm                                |
| DUT SN | 4                                     |

#### 7.1 Test Procedure

As shown in the figure below, the RF output to the spectrum analyzer is connected through a calibrated coaxial cable. Scan the out-of-band emission up to 10<sup>th</sup> harmonics. Set RBW and VBW as 100 kHz for the measurement below 1GHz, and 1MHz for testing above 1GHz. Recorded multiple sweeps in maximum hold mode using a peak detector to ensure that the worst case emission was caught.

The 8960 call box was used for all measurements.

Figure 4-1shows the test setup. All plots include an offset factor that takes into account cable losses.

#### 7.2 Test Results

The test was conducted at low, mid and high channel in each band.

**Table 7-1 Conducted Spurious Emissions Test Result Summary** 

| Mode                 | Frequency (MHz) | Channel Tested | Corresponding Plot number | Test Result |
|----------------------|-----------------|----------------|---------------------------|-------------|
|                      | 0 ~ 1 GHz       | 1013           | Figure 7-1                | Complies    |
|                      | 1-10 GHz        | 1013           | Figure 7-2                | Complies    |
|                      | 10-20 GHz       | 1013           | Figure 7-3                | Complies    |
|                      | 0 ~ 1 GHz       | 384            | Figure 7-4                | Complies    |
| RC3 SO55<br>850 MHz  | 1-10 GHz        | 384            | Figure 7-5                | Complies    |
|                      | 10-20 GHz       | 384            | Figure 7-6                | Complies    |
|                      | 0 ~ 1 GHz       | 777            | Figure 7-7                | Complies    |
|                      | 1-10 GHz        | 777            | Figure 7-8                | Complies    |
|                      | 10-20 GHz       | 777            | Figure 7-9                | Complies    |
|                      | 0 ~ 1 GHz       | 25             | Figure 7-10               | Complies    |
|                      | 1-10 GHz        | 25             | Figure 7-11               | Complies    |
|                      | 10-20 GHz       | 25             | Figure 7-12               | Complies    |
|                      | 0 ~ 1 GHz       | 600            | Figure 7-13               | Complies    |
| RC3 SO55<br>1900 MHz | 1-10 GHz        | 600            | Figure 7-14               | Complies    |
|                      | 10-20 GHz       | 600            | Figure 7-15               | Complies    |
|                      | 0 ~ 1 GHz       | 1175           | Figure 7-16               | Complies    |
|                      | 1-10 GHz        | 1175           | Figure 7-17               | Complies    |
|                      | 10-20 GHz       | 1175           | Figure 7-18               | Complies    |

80-H1151-1 Rev. A

21

#### 7.3 Plots





Figure 7-2 (Ch. 1013, RC3 SO55)





Figure 7-3 (Ch. 1013, RC3 SO55)







Figure 7-5 (Ch. 384, RC3 SO55)







Figure 7-7 (Ch. 777, RC3 SO55)







Figure 7-9 (Ch. 777, RC3 SO55)







Figure 7-11 (Ch. 25, RC3 SO55)







Figure 7-13 (Ch. 600, RC3 SO55)







Figure 7-15 (Ch. 600, RC3 SO55)







Figure 7-17 (Ch. 1175, RC3 SO55)





## 8. Frequency Stability

| FCC:   | §2.1055, 22.355, 24.235, 27.54 |
|--------|--------------------------------|
| Limit: | ±2.5ppm                        |
| DUT SN | 4                              |

#### 8.1 Test Procedure

As the test setup indicates, placed the MPERS device inside the temperature chamber. Measured the transmitting frequency error at 20 degrees C with DC voltage varying from 3.0 volts to 3.6 volts, and then set the temperature to -30 degrees C and allow it to stabilize. After 1 hour soak time, take the measurement on transmitting frequency error at -30 degrees in the same manner. As an incremental of 10 degrees C, repeat the same process until +60 degrees C is completed.

An 8960 call box was used for all testing.



Figure 8-1 Frequency Stability Test Setup

32

#### 8.2 Test Results

The test was conducted at mid channel in each band.

| <b>Operation Mode:</b> | RC3 SO55          | Channel: | 384                     |
|------------------------|-------------------|----------|-------------------------|
| Tx Frequency:          | 836.52MHz         | Voltage: | $3.3v (3.0v \sim 3.6v)$ |
| Limit:                 | ±2.5ppm (±2091Hz) |          |                         |

**Table 8-1 BC0 Frequency Stability** 

| Temperature (°C) | Dev  | iation of Carrie | r (Hz) | Specification (Hz) |             |
|------------------|------|------------------|--------|--------------------|-------------|
| Temperature ( C) | 3.1V | 3.7V             | 4.3V   | Lower limit        | Upper limit |
| -30              | 6.9  | 6.4              | 6.5    | 2091               | -2091       |
| -20              | -7.3 | -7.5             | -6.4   | 2091               | -2091       |
| -10              | -7.1 | -7.4             | -6.8   | 2091               | -2091       |
| 0                | 7    | 7.3              | -8.7   | 2091               | -2091       |
| 10               | -4.7 | 7.8              | 9.3    | 2091               | -2091       |
| 20               | 9.2  | -7.1             | -6.8   | 2091               | -2091       |
| 24               | 3.1  | 1.9              | 3.2    | 2091               | -2091       |
| 30               | 9.5  | 10.6             | -4.4   | 2091               | -2091       |
| 40               | -9.8 | 11.1             | -5.9   | 2091               | -2091       |
| 50               | 11.8 | 10.2             | 10.0   | 2091               | -2091       |
| 60               | 11.3 | -10.1            | 8.8    | 2091               | -2091       |

Figure 8-2 BC0 Frequency Stability Graph



| <b>Operation Mode:</b> | RC3 SO55          | Channel: | 600                     |
|------------------------|-------------------|----------|-------------------------|
| Tx Frequency:          | 1880MHz           | Voltage: | $3.3v (3.0v \sim 3.6v)$ |
| Limit:                 | ±2.5ppm (±4700Hz) |          |                         |

**Table 8-2 BC1 Frequency Stability** 

| Temperature (oC) | Dev     | Deviation of Carrier (Hz) |         |             | ation (Hz)  |
|------------------|---------|---------------------------|---------|-------------|-------------|
| remperature (00) | 3.1 VDC | 3.7 VDC                   | 4.3 VDC | Lower limit | Upper limit |
| -30              | 4.6     | 4.2                       | 4.9     | -4700       | 4700        |
| -20              | -7.8    | -6.5                      | 3.1     | -4700       | 4700        |
| -10              | 7.5     | 7.1                       | 6.3     | -4700       | 4700        |
| 0                | 5.8     | 6.4                       | 5.3     | -4700       | 4700        |
| 10               | 7.0     | 4.9                       | -4.6    | -4700       | 4700        |
| 20               | -12.6   | -5.2                      | -3.9    | -4700       | 4700        |
| 24               | -1.8    | -1.2                      | -1.5    | -4700       | 4700        |
| 30               | 4.9     | 5.6                       | 2.6     | -4700       | 4700        |
| 40               | -2.8    | -2.5                      | -2.6    | -4700       | 4700        |
| 50               | -21.0   | 5.2                       | 4.1     | -4700       | 4700        |
| 60               | -6.1    | -4.5                      | -5.0    | -4700       | 4700        |

Figure 8-3 BC1 Frequency Stability Graph



80-H1151-1 Rev. A
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

### 9. CCDF Measurement

The following CCDF measurements were performed in order to determine the peak-to-average ratio of the transmitter signal. The CCDF measurements were performed at midband (channel 384 for band class 0 and channel 600 for band class 1) and the measurements were performed at maximum transmit power.

#### BC0 Channel 384



#### BC1 Channel 600



## 10. Test Equipment and Firmware

The following test equipment was used.

| Model                 | Manufacturer | Description                | S/N     | Cal Date   | Cal Due Date |
|-----------------------|--------------|----------------------------|---------|------------|--------------|
| 8960 Series 10 E5515C | Agilent      | Wireless Communication Set | K119302 | 9/14/2010  | 09/14/2011   |
| E4440A PSA Series     | Agilent      | Spectrum Analyzer          | K159342 | 10/08/2010 | 10/08/2011   |
| Model 105             | Test Equity  | Temperature Chamber        | K162535 | 09/17/2010 | 09/17/2011   |

The firmware built in the 8960 and 8820B are as follows, and have been validated to support the testing for all technologies implemented in GOBI2000.

| Call Box | Technology | Firmware Rev |
|----------|------------|--------------|
|          | EVDO       | A.07.21      |
| 8960     | 1x         | B.12.21      |
|          | UMTS       | A.09.21      |