ELiC11: Transductores

Clase 2: Autómatas y Transductores Finitos

Carlos Areces carlos.areces@gmail.com

La clase pasada

- Que es LC
- Lenguajes Regulares
 - Expresiones Regulares
 - Autómatas Finitos
 - Construcción de Thompson

La clase de hoy

- Repaso
- Autómatas Finitos
 - Operaciones sobre Autómatas
 - Granularidad
 - Eliminación de ϵ
 - Inversión derecha-izquierda
 - Determinización
 - Minimización
- Transductores Finitos

Repaso

Expresiones regulares

- Notación para expresiones regulares
 - Cadena vacía: ϵ
 - Lenguajes unitarios: a
 - _ Unión: x|y
 - Concatenación: xy
 - Iteración: x*
- Ejemplo (alfabeto = $\{a, ..., z, \neg\}$

$$((be \mid it \mid let) \circ)^* \ni let \circ it \circ be \circ$$

Autómatas de estados finitos

- Un autómata de estados finitos (FSA) es una tupla <Q, Σ , Δ , q_0 > donde
 - Q es un conjunto finito de estados
 - Σ es un conjunto finito de símbolos terminales, (que no incluye el símbolo especial #).
 - $-q_0$ es el estado inicial.
 - Δ es la función de transición.

La función de transición

- Sea Σ* el conjunto de todas las cadenas sobre Σ; la notación Σ[#] representa el conjunto de cadenas de Σ* con un símbolo # opcional al final.
- Δ ∈ Q x Σ[#] x (QU{#}) es un conjunto de transiciones, cada una linqueando un estado fuente (de Q) y un estado destino (de Q U {#}) mediante una cadena (quizás vacía) de Σ[#], y tal que el estado destino es # sii la cadena termina con #
- Estados con transiciones a # se llaman estados finales.

Función de transición

$$q_0 a \vdash q_0$$
 $q_0 \vdash q_1$
 $q_1 bb \vdash q_1$ $q_1 \vdash q_2$
 $q_2 a \vdash q_2$ $q_2 \sharp \vdash \sharp$

Reglas de reescritura

$$q_0 a \vdash q_0 \qquad q_0 \vdash q_1$$

$$q_1 bb \vdash q_1 \qquad q_1 \vdash q_2$$

$$q_2 a \vdash q_2 \qquad q_2 \sharp \vdash \sharp$$

Una derivación:

Reglas de reescritura

$$q_0 a \vdash q_0 \qquad q_0 \vdash q_1$$

$$q_1 bb \vdash q_1 \qquad q_1 \vdash q_2$$

$$q_2 a \vdash q_2 \qquad q_2 \sharp \vdash \sharp$$

$$\begin{aligned} &\mathsf{q}_{\scriptscriptstyle{0}}aaabba\#\vdash\mathsf{q}_{\scriptscriptstyle{0}}aabba\#\vdash\mathsf{q}_{\scriptscriptstyle{0}}abba\#\vdash\\ &\vdash\mathsf{q}_{\scriptscriptstyle{0}}abba\#\vdash\mathsf{q}_{\scriptscriptstyle{1}}bba\#\vdash\mathsf{q}_{\scriptscriptstyle{1}}a\#\\ &\vdash\mathsf{q}_{\scriptscriptstyle{2}}a\#\vdash\mathsf{q}_{\scriptscriptstyle{2}}\#\vdash\#\end{aligned}$$

Def. de aceptación: aceptar $w \sin q_0 w \# \vdash^* \#$

De expresiones regulares a automatas

Construcción de Thompson

Let it be

Fin del repaso

Operaciones sobre autómatas

- Existen diferentes operaciones sobre autómatas que preservan el lenguaje del autómata (o lo modifican de forma controlada)
 - Granularidad
 - Eliminación de ϵ
 - Reversión derecha-izquierda
 - Determinización
 - Minimización

Granularidad

Granularidad del input

Granularidad del input

Reversión

Reversión de izquierda a derecha

Reversión de izquierda a derecha

Minimización

Minimización

Consideramos a los estados como clases de equivalencia de sufijos. Estados que tengan los mismos sufijos pueden unirse.

Minimización

Consideramos a los estados como clases de equivalencia de sufijos. Estados que tengan los mismos sufijos pueden unirse.

Transductores de estados finitos

Relaciones Regulares

 Una relación de cadenas es un conjunto de pares de cadenas.

input : output

- La clase de las relaciones regulares es la clase de relaciones de cadenas más pequeña que incluye
 - La relación vacía: {}.
 - Las relaciones unitarias: $\{\epsilon:\epsilon\}$, $\{\epsilon:a\}$, $\{a:\epsilon\}$, $\{a:b\}$, ...
 - Cerradas bajo
 - Unión
 - Concatenación $\{(xx',yy') \mid (x,y) \in R, (x',y') \in R'\}$
 - Iteración

Transductores Finitos

Transductores Finitos

Función de transición

$$q_0 a \vdash q_0 \qquad q_0 \vdash q_1$$

$$q_1 bb \vdash c q_1 \qquad q_1 \vdash q_2$$

$$q_2 a \vdash q_2 \qquad q_2 \sharp \vdash \sharp$$

Una derivación:

$$\begin{aligned} &\mathsf{q}_{\scriptscriptstyle{0}}aaabba\#\vdash\mathsf{q}_{\scriptscriptstyle{0}}aabba\#\vdash\mathsf{q}_{\scriptscriptstyle{0}}abba\#\vdash\\ &\vdash\mathsf{q}_{\scriptscriptstyle{0}}abba\#\vdash c\mathsf{q}_{\scriptscriptstyle{1}}bba\#\vdash c\mathsf{q}_{\scriptscriptstyle{1}}a\#\\ &\vdash c\mathsf{q}_{\scriptscriptstyle{2}}a\#\vdash c\mathsf{q}_{\scriptscriptstyle{2}}\#\vdash c\# \end{aligned}$$

Def. de aceptación: aceptar s:t sii $q_0s\# \vdash^* t\#$

Operaciones sobre transductores

Operaciones sobre transductores

- Varias de las operaciones sobre autómatas también funcionan sobre transductores (más o menos). Y aparecen algunas nuevas:
 - Granularidad (de entrada y salida)
 - Reversión izquierda-derecha
 - Eliminación de épsilon (*)
 - Pushing
 - Determinización (*)
 - Minimización (*)
 - Inversión
 - Composición

(*) a veces

Granularidad (output)

Granularidad (output)

Un diccionario de deletreo.

Reversión de izquierda a derecha

Reversión de izquierda a derecha

Inversión

Inversión

Pushing

Pushing

Bibliografía

 "Introduction to Finite-State Devices in Natural Language Processing", Emmanuel Roche and Yves Schabes. In E. Roche and Y. Schabes, editors, Finite-State Language Processing, chapter 1, pages 1-66. MIT Press, Cambridge, Massachusetts, 1997.