

GRM Semestre 2013-1

Basado en material de Serway-Jewett, Physics, Chapters 3, 6,10; Volume 1. Bauer-Westfall, Fisica para ingeniería y ciencias, caps. 1, 5 y 10, Volumen 1 Tipler-Mosca, Física para la ciencia y la tecnología, Volumen 1 Ohanian-Markert, Fisica para Ingeniería y Ciencias, cap. 3 Volumen 1

### Vectores y Escalares

Una cantidad escalar se encuentra completamente especificada por un valor numérico con unidades apropiadas y no posee dirección.

Una cantidad vectorial está descrita por completo por un valor numérico unidades apropiadas y una dirección. 2

### **VECTOR**

 Los vectores son descripciones matemáticas de cantidades que tienen tanto magnitud como dirección.

 Los vectores tienen un punto inicial (cola) y un punto final (punta o cabeza)

### Notación Vectorial

Con una flecha encima o con negritas:

A A

- Se emplean letras itálicas o entre un par de líneas paralelas cuando se refiere a la magnitud del vector: A o |A|
- La magnitud de un vector, también conocida como tamaño o longitud, posee unidades físicas; y es siempre una cantidad positiva.

### Ejemplo de un Vector

- Una partícula viaja de A a B a lo largo de una trayectoria mostrada por la línea punteada
  - La distancia que se viaja es un escalar
  - El desplazamiento es la línea sólida desde A a B
  - El desplazamiento es independiente de la trayectoria que se tome entre los dos puntos.
  - El desplazamiento es un vector.



### Igualdad de dos vectores

- Dos vectores son iguales si poseen la misma magnitud y la misma dirección.
- A = B si A = B y apuntan a lo largo de líneas paralelas
- Todos los vectores mostrados a continuación son iguales



### Suma de vectores

- En la suma dos vectores debe tomarse en cuenta sus direcciones.
- Las unidades de los vectores deben ser las mismas.

#### Se emplean dos métodos de suma:

- Métodos gráficos
  - Se requieren dibujos a escala
- Métodos algebraicos o por componentes
  - Más convenientes cuando se manejan varios vectores y en 3-D

## Suma grafica de vectores

- Seleccionar una escala.
- Dibujar el primer vector con la longitud adecuada, en la dirección especificada con respecto a sistema de coordenadas.
- Dibujar el siguiente vector, (también con la longitud apropiada, en la dirección especificada con respecto al sistema de coordenadas), cuyo origen sea la punta del primer vector.

### Suma grafica de vectores, continuación

- Continúe dibujando los vectores a sumar del modo "punta (antecesor) –cola (sucesor)
- El vector resultante se dibuja a partir del origen del primer vector (cola) a final del último vector (punta)



 Medir la longitud de R y su ángulo (regla y transportador)

### Suma grafica de vectores, fin.

- Para varios
   vectores se repite
   el proceso hasta
   incluir todos los
   vectores.
- El vector resultante se dibuja desde el origen del primer vector al final del último vector.



### Reglas para Suma de vectores

- La suma es independiente del orden de adición de vectores
  - Ley conmutativa de la adición
  - $\circ$  A + B = B + A



### Reglas para Suma de vectores .

Cuando se suman 3 o más vectores, la suma es independiente del modo en el cual se agrupan los vectores:
 Propiedad Asociativa de la Suma (A + B) + C = A + (B + C)



- Recuerde: en la suma de vectores, todos los vectores deben tener las mismas unidades y ser del mismo tipo:
  - No se pueden medir, por ej. desplazamientos con fuerzas.

### Negativo de un Vector

- Se define el negativo de un vector como aquel que sumado con el vector original, da como resultante cero.
  - Se representa como –A
  - $\bullet$  **A** + (-**A**) = 0
- El negativo de un vector posee la misma magnitud que el vector original, pero apunta en dirección opuesta.

#### Resta de Vectores

- Es un caso especial de la adición.
- Si se quiere restar
   A B, se puede emplear A+(-B)
- Y continuar con el procedimiento usual de adición de vectores



### -Multiplicación y División de un Vector por un Escalar

- La resultante es un vector. Su magnitud se multiplica o divide por un escalar.
- Si el escalar es positivo, la dirección del vector resultante es la misma que la del vector original: (m) x (A) = mA; (5) x (A) = 5A
- Si el escalar es negativo, la dirección del vector resultante es la opuesta que la del vector original: -1/3 (A) = -1/3A

### Sistemas de coordenadas

 Se emplean para describir la posición de un Punto en el espacio

- Un sistema de coordenadas consta de
  - Un punto fijo de referencia denominado origen
  - Ejes específicos con nombre y escala
  - Directrices sobre la forma de como ubicar un punto relativo al origen y los ejes.

### Sistema de Coordenadas Cartesianas

- Llamado también sistema de coordenadas rectangulares
- Los ejes x- and yse intersectan en el origen
- Los puntos se etiquetan como (x,y)



### Sistema de Coordenadas Polares

- Se muestra el origen y un eje de referencia
- Un punto a una distancia r desde el origen en la dirección del ángulo θ, medido desde la linea de referencia
- Los puntos son identificados como  $(r, \theta)$



# Cambio de coordenadas Polares lineales a coordenadas Cartesianas

En base a la formación de un triángulo rectángulo a partir de r y θ,

#### entonces:

- $x = r \cos \theta$
- $y = r \sin \theta$

$$\sin \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x}$$



(b)

© 2004 Thomson/Brooks Cole

# Cambio de coordenadas cartesianas a polares

• r es la hipotenusa y  $\theta$  es el ángulo

$$\tan \theta = \frac{y}{x}$$
$$r = \sqrt{x^2 + y^2}$$

 θ debe ser medido desde el eje positivo x para que las ecuaciones anteriores sean válidas.



### Ejemplo

Las coordenadas cartesianas de un punto xy sobre el plano son (x,y) = (-3.50, -2.50) m. Encuentre las coordenadas polares para este punto.

#### Solución:



$$r = \sqrt{x^2 + y^2} = \sqrt{(-3.50 \text{ m})^2 + (-2.50 \text{ m})^2} = 4.30 \text{ m}$$

$$\tan \theta = \frac{y}{x} = \frac{-2.50 \text{ m}}{-3.50 \text{ m}} = 0.714$$

$$\theta = 216^{\circ}$$

- Componente significa "parte".
- Las componentes rectangulares son proyecciones a lo largo de los ejes x, y.
- Los vectores componentes son los vectores que sumados (vectorialmente) dan la resultante.



- A<sub>x</sub> y A<sub>y</sub> son los vectores componentes de A
- A<sub>x</sub> y A<sub>y</sub> son escalares, y se les conoce como componentes rectangulares de A

 La componente rectangular x de un vector es su proyección a lo largo del eje x.

$$A_x = A \cos \theta$$



La componente rectangular y de un vector: su proyección a lo largo del eje y.

$$A_{v} = A \sin \theta$$

Las ecuaciones previas son válidas sólo si θ
 se mide con respecto al eje x positivo.

 Las componentes son los catetos del triángulo rectángulo cuya hipotenusa es A

$$A = \sqrt{A_x^2 + A_y^2}$$

$$\theta = \tan^{-1} \frac{A_y}{A_x}$$

- Las componentes rectangulares pueden ser positivas o negativas y tendran las mismas unidades que el vector original.
- Los signos de las componentes dependerán del ángulo θ

| y |                  |                  |
|---|------------------|------------------|
|   | $A_{x}$ negative | $A_{x}$ positive |
|   | $A_y$ positive   | $A_y$ positive   |
|   | $A_x$ negative   | $A_x$ positive   |
|   | $A_{y}$ negative | $A_{y}$ negative |

© 2004 Thomson/Brooks Cole

# Representación de un vector en 3 dimensiones



Los componentes  $A_x$ ,  $A_y$  y  $A_z$  están representados por los lados de una caja rectangular, construida trazando perpendiculares de la punta del vector  $a_z$  los planos x - y, x - z y y - z.

### **Vectores Unitarios**

 Un vector unitario es un vector adimensional de magnitud exactamente igual a 1.

 Se utiliza para especificar una dirección y carece de significado físico.



#### **Vectores Unitarios**

Para representar estos vectores se utiliza:

$$\hat{i},\hat{j},\hat{k}$$

 Los cuales forman un conjunto de vectores mutuamente perpendiculares.

### Notación vectores unitarios

- $\mathbf{A}_{\mathbf{x}}$  es lo mismo que  $A_{\mathbf{x}}$  î y  $\mathbf{A}_{\mathbf{y}}$  es lo mismo que  $A_{\mathbf{y}}$  j etc.
- El vector completo puede expresarse entonces como

$$\mathbf{A} = A_{x}\hat{\mathbf{i}} + A_{y}\hat{\mathbf{j}} + A_{z}\hat{\mathbf{k}}$$



# Suma de vectores utilizando vectores unitarios

- Emplear  $\mathbf{R} = \mathbf{A} + \mathbf{B}$
- Donde

$$\mathbf{R} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}) + (B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}})$$

$$\mathbf{R} = (A_x + B_x) \hat{\mathbf{i}} + (A_y + B_y) \hat{\mathbf{j}}$$

$$\mathbf{R} = R_x + R_y$$

Por lo que  $R_x = A_x + B_x$  y  $R_y = A_y + B_y$ 

$$R = \sqrt{R_x^2 + R_y^2} \quad \theta = \tan^{-1} \frac{R_y}{R}$$

# Representación gráfica de la suma de vectores por componentes rectangulares.



# Adición de vectores empleando vectores unitarios - 3 dimensiones

Emplear R = A + B

$$\mathbf{R} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}) + (B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}})$$

$$\mathbf{R} = (A_x + B_x) \hat{\mathbf{i}} + (A_y + B_y) \hat{\mathbf{j}} + (A_z + B_z) \hat{\mathbf{k}}$$

$$\mathbf{R} = R_x + R_y + R_z$$

$$R_x = A_x + B_x + C_x, R_y = A_y + B_y + C_y y$$

$$R_z = A_z + B_z + C_z$$

$$R = \sqrt{R_x^2 + R_y^2 + R_z^2}$$
  $\theta_x = \tan^{-1} \frac{R_x}{R}$  y así para cada eje.<sub>32</sub>

### Ejemplo resuelto

- Una excursionista comienza un viaje al caminar primero 25.0 km hacia el sureste desde su vehículo. Se detiene y levanta su tienda para pasar la noche. En el segundo día, camina 40.0 km en una dirección 60.0° al noreste, punto en el cual descubre una torre de guardabosque.
- a) Determine las componentes del desplazamiento de la excursionista para cada día.
- b) Determine las componentes del desplazamiento resultante de la excursionista **R** para el viaje.
- Encuentre una expresión para **R** en términos de vectores unitarios.

### Continúa...

Las componentes rectangulares del primer desplazamiento **A** son:



$$A_x = A\cos(-45.0^\circ) = (25.0 \text{ km})(0.707) = 17.7 \text{ km}$$

$$A_v = A\sin(-45.0^\circ) = (25.0 \text{ km})(-0.707) = -17.7 \text{ km}$$

Y para el segundo desplazamiento **B** son:

$$B_r = B\cos 60.0^\circ = (40.0 \text{ km})(0.500) = 20.0 \text{ km}$$

$$B_v = B \sin 60.0^\circ = (40.0 \text{ km})(0.866) = 34.6 \text{ km}$$

### Continúa...



#### Para el desplazamiento resultante

$$R = A + B$$

las componentes son:

$$R_X = A_X + B_X = 17.7 \text{ km} + 20.0 \text{ km} = 37.7 \text{ km}$$

$$R_y = A_y + B_y = -17.7 \text{ km} + 34.6 \text{ km} = 16.9 \text{ km}$$

Y en forma de vectores unitarios, el desplazamiento total queda:

$$\mathbf{R} = (37.7 \,\hat{\mathbf{i}} + 16.9 \,\hat{\mathbf{j}}) \,\text{km}$$