Dimension von Varietäten

Yvan Ngumeteh

Emma Ahrens

2. Mai 2018

- 1 Abstract
- 2 Einleitung
- 3 Hyperebenen
- 4 Schwache Form

Im Folgenden sind A und B kommmutative Ringe mit Eins und $A \subseteq B$.

Definition 1 (Ganze Elemente). Wir nennen $b \in B$ ganz über A, wenn es Elemente $a_1, \ldots, a_n \in A$ gibt mit

$$b^n + a_{n-1}b^{n-1} + \dots + a_1b + a_0 = 0$$

für ein $n \in \mathbb{N}$. Außerdem heißt B ganz über A, wenn jedes Element aus B ganz über A ist.

Lemma 2. Sei $b \in B$. Dann ist äquivalent:

- 1. b ist ganz über A
- 2. Der von b generierte Teilring $A[b] \subseteq B$ ist ein endlich erzeugter A-Modul.
- 3. Es existiert ein Teilring $C \subseteq B$ mit $A[b] \subseteq C$ und C ist ein endlich erzeugter A-Modul.

Beweis. $(1 \Rightarrow 2)$: Es ist $A[b] = \{f(b) \mid f \in A[X]\}$ und da b ganz ist, existiert ein Polynom $0 \neq g \in A[X]$ mit g(b) = 0 und $Grad(g) = n \geq 1$. Da A[X] ein euklidischer Ring ist, können wir jedes $f \in A[X]$ schreiben als f = qg + r mit $q, r \in A[X]$ und Grad(r) < n. Also f(b) = q(b) * g(b) + r(b) = r(b) und f ist eine A-Linearkombination von $1, b, b^2, \ldots, b^{n-1}$, also ist A[b] endlich generiert.

- 5 Normale Form
- 6 Starke Form
- 7 Anwendung