Exercises (14)

December 12, 2023

1. Let p and q be positive real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove the following statements.

(a) (5 points) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

Equality holds if and only if $u^p = v^q$.

(b) (5 points) If $f \in R([a, b]), g \in R([a, b]), f \ge 0, g \ge 0$, and

$$\int_a^b f(x)^p dx = 1 = \int_a^b g(x)^q dx,$$

then

$$\int_{a}^{b} f(x)g(x)dx \le 1.$$

(c) (3 points) If f and g are integrable in [a, b], then

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \le \left(\int_{a}^{b} |f(x)|^{p} \right)^{1/p} \left(\int_{a}^{b} |g(x)|^{q} \right)^{1/q}.$$

- 2. Let f be defined on [0,1] as follows: f(0) = 0; if $2^{-n-1} < x \le 2^{-n}$, then $f(x) = 2^{-n}$, for $n = 0, 1, 2, \ldots$
 - (a) (5 points) Prove that $\int_0^1 f(x)dx$ exists.
 - (b) (5 points) Let $F(x) = \int_0^x f(t)dt$. Show that for $0 < x \le 1$ we have

$$F(x) = xA(x) - \frac{1}{3}A(x)^{2},$$

where $A(x) = 2^{-[-\ln x/\ln 2]}$ and where [y] is the greatest integer in y.

3. (7 points) Let f be continuous on a closed interval [a, b] and let

$$M = \sup_{x \in [a,b]} |f(x)|.$$

Prove that

$$\lim_{p \to \infty} \left(\int_a^b |f(x)|^p dx \right)^{1/p} = M.$$