

Ciencia de Datos para Políticas Públicas

Módulo 2 - Clase 4: Intervalo de confianza / Prueba de hipótesis

Pablo Aguirre Hormann 06/07/2021

¿Qué veremos hoy?

- Visualización de datos
- Manejo de datos
- Transformación de datos
- Inferencia Estadística/Econometría
 - Intervalos de confianza
 - Prueba de hipótesis

Describir vs Inferir

- La estadística descriptiva es una rama que apunta a **resumir información** de la mejor manera.
- Es decir, reducir datos a un par de indicadores y/o visualizaciones tratando de perder la menor cantidad de información.
- La estadística descriptiva **no conlleva incertidumbre** ya que no buscamos extrapolar estas descripciones a otros datos.
- Por otro lado, la estadística inferencial busca **obtener conclusiones/aprendizajes** sobre algún fenómeno usando muestras.
- En otras palabras, usamos información de una muestra para concluir algo sobre una población.
- Dos de las herramientas más importantes en la estadística inferencial son los **intervalos de confianza** y las **pruebas de hipótesis**.

Pie para la próxima clase

```
Call:
lm(formula = ROLL ~ UNEM + HGRAD + INC, data = datavar)
Residuals:
     Min
                10
                    Median
                                   30
                                            Max
-1148.840 -489.712 -1.876 387.400 1425.753
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.153e+03 1.053e+03 -8.691 5.02e-09 ***
UNEM
          4.501e+02 1.182e+02 3.809 0.000807 ***
HGRAD
          4.065e-01 7.602e-02 5.347 1.52e-05 ***
          4.275e+00 4.947e-01 8.642 5.59e-09 ***
INC
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 670.4 on 25 degrees of freedom
Multiple R-squared: 0.9621, Adjusted R-squared: 0.9576
F-statistic: 211.5 on 3 and 25 DF, p-value: < 2.2e-16
```

Teorema del Límite Central (TLC)

(y Ley de los Grandes Números - LGN)

TLC/LGN

Si ciertas condiciones se cumplen, las estimaciones muestrales se distribuirán de forma normal con media igual al parámetro poblacional. La dispersión será inversamente proporcional al tamaño muestral

Población vs Muestra

- **Población**, N: grupo bien definido de sujetos (por ejemplo, población de un país).
- **Muestra**, *n*: Subconjunto de individuos provenientes de una población que se obtienen a través de algún procedimiento de muestreo (ej. muestreo aleatorio simple).

Censo

Asumamos que estos datos corresponden al total del país (N=10.000).

```
censo ← read csv("../datos/muestra censo 2017.csv")
str(censo)
## tibble [10,000 x 4] (S3: spec tbl df/tbl df/tbl/data.frame)
   $ x
        : num [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
                : num [1:10000] 35 37 59 29 76 65 25 16 49 35 ...
   $ edad
          : chr [1:10000] "M" "H" "H" "M" ...
  $ sexo
   $ p originario: chr [1:10000] "no" "no" "no" "no" "...
   - attr(*, "spec")=
     .. cols(
##
     x = col_double(),
##
     .. edad = col double(),
##
     .. sexo = col_character(),
     .. p originario = col character()
##
```

Analicemos la variable edad.

Distribución de edad

Claramente no sigue una distribución normal

Sabemos μ y σ

Debido a que tenemos la información de todas las personas sabemos cual es el promedio y la desviación estándar de la población.

Pero **practicamente nunca sabremos estos parámetros poblacionales**, y lo que tenemos que hacer es sacar conclusiones desde **muestras** (hacer estimaciones).

Si sacamos una muestra desde una población y estimamos un parámetro, por ejemplo la media llamamos a esto una **estimación puntual**. A esta estimación la llamaremos $\hat{\mu}$.

Muestras

Una muestra aleatoria de 100 observaciones (n=100)

Una segunda muestra aleatoria de 100 observaciones (n=100)

```
censo %>% sample_n(100) %>%
  summarise(promedio = mean(edad))

## promedio
## 1 36.15
```

 $\hat{\mu}=36.15$

¿Qué pasa si repetimos esto muchas veces? ¿Cómo se distribuyen todas las estimaciones?

Sacamos **10.000 muestras aleatorias de 100 individuos**, calculamos el promedio de edad para cada muestra, y graficamos la distribución de cada uno de los promedios calculados:

¡La distribución de las estimaciones de cada muestra aproximan una distribución normal con media igual a la media poblacional! Decimos entonces, que nuestra estimación es insesgada.

Sacamos **10.000 muestras aleatorias de 200 individuos**, calculamos el promedio de edad para cada muestra, y graficamos la distribución de cada uno de los promedios calculados:

Sacamos **10.000 muestras aleatorias de 300 individuos**, calculamos el promedio de edad para cada muestra, y graficamos la distribución de cada uno de los promedios calculados:

Sacamos **10.000 muestras aleatorias de 400 individuos**, calculamos el promedio de edad para cada muestra, y graficamos la distribución de cada uno de los promedios calculados:

Sacamos **10.000 muestras aleatorias de 500 individuos**, calculamos el promedio de edad para cada muestra, y graficamos la distribución de cada uno de los promedios calculados:

Sacamos **10.000 muestras aleatorias de 1000 individuos**, calculamos el promedio de edad para cada muestra, y graficamos la distribución de cada uno de los promedios calculados:

Comparar distribuciones muestrales

```
n = 100
```

```
mean(guardar_mediacenso)
## [1] 35.99654
sd(guardar_mediacenso)
## [1] 2.212659
```

n = 300

```
mean(guardar_mediacenso3)
## [1] 36.02401
sd(guardar_mediacenso3)
## [1] 1.248814
```

n = 500

```
mean(guardar_mediacenso5)
## [1] 36.02631
sd(guardar_mediacenso5)
## [1] 0.9569096
```

```
n = 200
```

```
mean(guardar_mediacenso2)
## [1] 36.02233
sd(guardar_mediacenso2)
## [1] 1.565967
```

$$n = 400$$

```
mean(guardar_mediacenso4)
## [1] 36.03845
sd(guardar_mediacenso4)
## [1] 1.091304
```

$$n = 1000$$

```
mean(guardar_mediacenso6)
## [1] 36.0231
sd(guardar_mediacenso6)
## [1] 0.6589096
```

TLC/LGN

Si ciertas condiciones se cumplen, las estimaciones muestrales se distribuirán de forma normal con media igual al parámetro poblacional. La dispersión será inversamente proporcional al tamaño muestral

$$\hat{\mu} \sim aproximadamente \, \mathcal{N}(\mu, rac{\sigma^2}{n})$$

$$\sqrt{rac{\sigma^2}{n}} = rac{\sigma}{\sqrt{n}} = error\ est$$
ánd ar

A tener en cuenta

En general, si sacamos una **muestra aleatoria** de tamaño n desde una población N, entonces:

- ullet La muestra es **insesgada** y **representativa** de la población. Y a mayor n menor dispersión.
- Los resultados basados en la muestra podrían ser generalizados a la población.
- La estimación puntual, $\hat{\mu}$, es una **"buena suposición"** del parametro poblacional desconocido, μ .
- Entonces, en vez de hacer un censo (costoso en muchos sentidos), podemos hacer **inferencia sobre una población usando muestreo**.

Intervalo de confianza

¿Qué acabamos de hacer?

- Al hacer muestras repetitivas desde una población, obtenemos la **distribución muestral de la media de** edad y podemos ver que se distribuye normalmente.
- Al tomar distintas muestras pudimos ver que las estimaciones puntuales variaban. Esto lo denominamos
 variación muestral y se puede cuantificar usando el error estándar. A mayor n (tamaño muestral), menor error
 estándar (o estimaciones más precisas).
- Ahora bien, en "la vida real" no podremos hacer lo que mostramos ya que generalmente **contaremos con una muestra (que ojalá sea lo más grande posible)**. Además, no sabremos el valor del parámetro real que queremos estimar.
- ¿Cómo podemos considerar los efectos de la variación muestral si -usualmente- tenemos solo una muestra?
- Para esto ocuparemos un **método de remuestreo** conocido como **bootstrapping**. Esto nos permitirá también obtener un rango de valores posibles para nuestro parámetro. Este rango de valores es lo que conocemos como **intervalos de confianza**.

Asumamos que no sabemos μ

¿Cuál es la edad promedio en Chile?

- Para responder esta pregunta podríamos entrevistar a todas las personas del país y preguntarles su edad (censo).
- Claramente esto es algo muy costoso por lo que normalmente lo que haríamos es **tomar una muestra de la población**. Digamos que en este caso solo contamos con una muestra, n, de **300 personas** obtenida desde la población, N, de 10.000.

```
set.seed(1) # para tener los mismos resultados
(muestra_censo ← censo %>%
   sample_n(300) %>%
   mutate(Id = row_number()) %>%
   select(Id, edad))
```

```
Id edad
            89
## 1
        1
            51
## 2
        3 48
           8
        5 38
           17
           18
        7
            23
## 8
## 9
            38
            27
## 10
       10
## 11
       11
## 12
       12
            91
## 13
       13
            86
           28
## 14
       14
## 15
       15
            59
## 16
       16
            48
## 17
       17
           76
## 18
           14
       18
## 19
       19
           3
           29
## 20
       20
## 21
       21
           11
## 22
       22
             3
## 23
       23
            53
```

Explorar la muestra

```
muestra_censo %>%
  ggplot(aes(x = edad)) +
  geom_histogram(color = "white")
```

```
30-
10-
0 25 50 75 100
```

```
## promedio_edad
## 1 38.12667
```

- Si estamos dispuestos a asumir que muestra_censo es una muestra representativa de nuestra población, entonces una "buena suposición" de la edad promedio de Chile sería 38.13.
- $oldsymbol{\hat{\mu}}=38.13$ es nuestra estimación de μ (que en la práctica sería desconocido).
- Antes calculamos los efectos de la variación muestral sacando muchas muestras repetitivamente pero **ahora solo contamos con una muestra**.

Bootstrapping

- 1. Consideremos nuestra muestra de n=300 observaciones/personas.
- 2. Imaginemos que ponemos 300 papeles con las edades de nuestra muestra en un gorro.
- Sacaremos una observación, registraremos su valor (ej. edad = 46) y pondremos de vuelta el papel en el gorro
- 4. **Repetiremos el paso 3.** tantas veces como sea nuestro *n*. En este caso 300 veces.
- 5. Terminaremos con una **remuestra** con n=300 creada a partir de nuestra única muestra original, muestra censo

Bootstrapping

- ullet Lo que acabamos de hacer es una **remuestra** desde la muestra original. No estamos yendo a la población, N, a buscar otras n=300 personas.
- ¿Por qué volvemos a "poner en el gorro" cada valor remuestrado? Porque de no hacerlo terminaríamos con exactamente la misma muestra original. Hacer el acto de "devolver" cada papel nos intruduce variación muestral.
- En otras palabras, lo que hacemos es un **muestreo con reemplazo** desde la muestra original de 300 observaciones.

Analizar la remuestra

Si observamos como se distribuye nuestra muestra original, muestra_censo, y la remuestra que acabamos de hacer, censo_muestra_r1, vemos que son similares (no idénticas).

promedio_edad
1 38.22667

Obtenemos también un promedio distinto al calculado originalmente y esta **variación es debido al remuestreo con reemplazo** que hicimos.

¿Qué pasaría si repetimos este ejercicio de remuestreo muchas veces? Ojo, esto si es algo factible "en la vida real".

Muchas remuestras

- 1. Consideremos nuestra muestra de n=300 observaciones/personas.
- 2. Imaginemos que ponemos 300 papeles con las edades de nuestra muestra en un gorro.
- 3. Sacaremos una observación, registraremos su valor (ej. edad = 46) y pondremos de vuelta el papel en el gorro
- 4. Repetiremos el paso $\bf 3$. tantas veces como sea nuestro $\bf n$. En este caso 300 veces.
- 5. Terminaremos con una **remuestra** con n=300 creada a partir de nuestra única muestra original, muestra_censo
- 6. Hacemos lo anterior 1.000 veces.

Muchas remuestras

- 1. Consideremos nuestra muestra de n=300 observaciones/personas.
- 2. Imaginemos que ponemos 300 papeles con las edades de nuestra muestra en un gorro.
- 3. Sacaremos una observación, registraremos su valor (ej. edad = 46) y pondremos de vuelta el papel en el gorro
- 4. Repetiremos el paso $\bf 3$. tantas veces como sea nuestro $\bf n$. En este caso 300 veces.
- 5. Terminaremos con una **remuestra** con n=300 creada a partir de nuestra única muestra original, muestra_censo
- 6. Hacemos lo anterior 1.000 veces.

```
(guardar_remuestras ← read_csv("../datos/remuestras_edad.csv"))
## # A tibble: 300,000 x 2
       edad remuestra
      <dbl>
                <dbl>
         35
   1
         37
         26
        6
         24
                    1
         49
         60
         14
                    1
         24
                    1
   10
         23
                    1
##
     ... with 299,990 more rows
```

Muchas remuestras

```
## # A tibble: 1,000 x 2
      remuestra promedio_edad
##
          <dbl>
##
                         <dbl>
                         38.8
              1
                         38.4
                         37.7
                         39.1
                         36.7
                         36.1
                         37.1
                         37.2
                          37.5
             10
                         39.3
     ... with 990 more rows
```

```
promedio_remuestras %>%
  ggplot(aes(x = promedio_edad)) +
  geom_histogram(bins = 15, color = "white")
```


¿Qué hicimos?

- Usamos bootstrap como una forma de representar la variación muestral vista anteriormente.
- La distribución que vimos recién se denomina **distribución bootstrap** y es una **aproximación de la distribución muestral** de la media.
- La distribución bootstrap probablemente **no tendrá el mismo "centro"** que la distribución muestral. En otras palabras, **bootstrap no nos permite mejorar la "calidad" de nuestra estimación**.
- Pero, la distribución bootstrap si **tendrá una forma y dispersión similar a la distribución muestral**. Entonces, si nos da una **buena estimación del error estándar**.
- Este último punto nos permitirá construir intervalos de confianza.

Entendiendo intervalos de confianza

- Podemos pescar tanto con una caña como con una red. La red probablemente te permite pescar más pescados que la caña.
- Digamos que μ , el parámetro a estimar, es un pescado.
- Una estimación puntual a partir de una muestra, $\hat{\mu}$, para representar μ sería como una caña.
- ¿Cómo sería una red? Tratemos de ver entre que dos valores de edad se encuentra el mayor número de estimaciones. ¿Entre 37 y 41? ¿36.5 y 41.5?
- Esta última idea es lo que llamaremos un intervalo de confianza. El intervalo de confianza nos da un rango de valores posibles.

Distribución bootstrap

¿Qué necesitamos para construir un I.C.?

- Una distribución bootstrap.
- Un nivel de confianza (90%, 95%, 99%).
 - A mayor nivel de confianza, los intervalos serán más amplios.
 - Normalmente trabajaremos con un nivel de confianza de 95%.
- Construiremos intervalos de confianza a través de dos métodos:
 - método de percentiles.
 - o método del error estándar.

Método de percentiles

40.5

35.8

1 ## 2

Características de promedio_edad en promedio_remuestras.

Si queremos saber **entre que dos valores** están, por ejemplo, **el 95% de las observaciones**, necesitamos saber **bajo qué valor están el 2.5% inferior de los datos** y **sobre qué valor están el 2.5% superior de los datos**.

```
promedio_remuestras %>%
    arrange(-promedio_edad) %>% # Ordenamos los datos
    slice(25, 975) %>% # Tenemos 1.000 valores
    select(2)

## # A tibble: 2 x 1

## promedio_edad

## <dbl>
```

Método de percentiles

```
(metodo_percentiles ← promedio_remuestras %>%
  summarise(percentil_2.5 = quantile(promedio_edad, 0.025), # Calcular percentil 2.5
    percentil_97.5 = quantile(promedio_edad, 0.975))) # Calcular percentil 97.5
```


Método error estándar

```
pnorm(1.96, mean = 0, sd = 1) - pnorm(-1.96, mean = 0, sd = 1)
## [1] 0.9500042
```


$$\hat{\mu} \pm 1.96 imes EE$$

Método error estándar

- infer es un paquete para inferencia estadística.
- Relacionado al tidyverse

```
muestra_censo %>%
    summarise(promedio = mean(edad))

## promedio

## 1 38.12667

## # A tibble: 1 x 1

## stat

## stat

## 4 38.1
```

- El cálculo usando infer es más largo. ¿Para qué entonces?
- Nos presenta "verbos" más ligados a la estadística.
- Será útil cuando veamos prueba de hipótesis.
- Es más flexible para cuando queremos hacer inferencia para más de una variable.

```
muestra_censo %>%
   specify(response = edad)
```

```
## Response: edad (integer)
## # A tibble: 300 x 1
       edad
###
      <int>
##
##
    1
         89
    2
          51
###
###
    3
          48
###
          8
##
          38
         17
         18
###
         23
###
          38
          27
## 10
## # ... with 290 more rows
```

- specify permite identificar la variable (o variables) sobre la cuál haremos los cálculos.
- Noten como en la práctica no cambia nada en el data.frame. En ese sentido es similar a group_by.

```
## Response: edad (integer)
## # A tibble: 300,000 x 2
## # Groups: replicate [1,000]
      replicate edad
          <int> <int>
##
              1
                   59
##
    1
                   37
##
    2
              1
              1
                   68
###
                   23
   5
                   47
                   15
                   21
   7
   8
                   56
                   27
   9
              1
                   21
## 10
## # ... with 299,990 more rows
```

- generate nos permite generar las 1.000 remuestras bootstrap.
- El resultado tiene 300.000 filas debido a que son 1.000 remuestras de tamaño igual a 300.
- Se genera una columna "replicate" correspondiente a cada una de las 1.000 remuestras.

```
## # A tibble: 1,000 x 2
##
     replicate stat
         <int> <dbl>
###
             1 36.7
   1
   2
              2 38.4
##
              3 39.3
   3
              4 39.5
###
   5
              5 39.3
###
               38.7
             7 38.9
             8 38.8
             9 37.3
## 10
            10 39.2
## # ... with 990 more rows
```

- Con calculate transformamos cada una de las 1.000 remuestras de 300 observaciones, en 1.000 medias.
- Noten que el resultado son 1.000 filas con una columna correspondiente a cada "replica" y la otra con el cálculo hecho.

Construir I.C. con infer

Método percentiles

Método error estándar

Interpretar I.C.

- Ya pudimos construir intervalos de confianza a partir de una muestra tomada desde una población. Ahora podemos **evaluar su efectividad**.
- La efectividad de un intervalo de confianza se juzga según si este **contiene o no el verdadero valor del parámetro poblacional**. ¿Capturó la red al pescado?
- En nuestro ejemplo, ¿nuestros intervalos de confianza, [35.8, 40.5] o [35.6, 40.6], capturan el verdadero promedio de edad, $\mu=36.0179$?
- ¡Sí! nuestros intervalos construídos con un 95% de nivel de confianza a partir de una muestra con n=300 incluyen al valor real del parámetro poblacional. ¿Ocurrirá esto para todas las muestras que tomemos?

Interpretar I.C.

- 100 intervalos de confianza a partir de 100 muestras aleatorias distintas y considerando un nivel de confianza de 95%.
- La linea negra corresponde al valor real del parámetro poblacional, μ (edad de la población).
- Las lineas horizontales corresponden a los intervalos de confianza y son de color gris si el intervalo incluye al valor real y rojas si no.
- De los 100 intervalos, 95 incluyen el valor real del parámetro. En otras palabras, un nivel de confianza de 95% significa que de cada 100 intervalos **esperamos** que 95 incluyan μ .

Distintos niveles de confianza

95% nivel de confianza

90% nivel de confianza

Mayores niveles de confianza llevan a intervalos más amplios

Distintos n

$$n = 1000$$

Mayores tamaños muestrales llevan a intervalos más angostos

Resumiendo...

- Como dijimos, "un nivel de confianza de 95% significa que de cada 100 intervalos que pudieramos construir, **esperaríamos** que 95 incluyan μ ."
- No es lo mismo que decir "hay un 95% de probabilidad de que el intervalo de confianza contenga a μ ".

I.C "basado en teoría"

- Hasta este momento nuestros I.C. se construyeron usando el método de percentiles o el de error estándar **haciendo simulaciones**.
- Otro método es simplemente ocupar una fórmula "basada en teoría" del tipo:
 - $I.\,C. = Estimaci\'on\,Puntual \pm (Valor\,Cr\'itico imes Error\,Est\'andar)$
- Esta fórmula es una aproximación, usando solo la información de una muestra, a lo que obtenemos a través de simulaciones.
- Por ende, ya que no realizaremos remuestras en este caso, **necesitamos una fórmula para estimar el error estándar**.

Error estándar basado en teoría

- Para el caso de una media: $\frac{s}{\sqrt{n}}$. Donde s es la desviación estándar de la muestra.
- Para una proporción: $\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$. Donde \hat{p} es la proporción calculada desde la muestra.

Error estándar de formas distintas

Usando la dispersión de las remuestras (bootstrap)

```
promedio_remuestras %>%
  summarise(sd = sd(promedio_edad, na.rm = TRUE)) %>% transmute(error_est = sd)
```

Usando fórmula con la desviación estándar de la población, $\frac{\sigma}{\sqrt{n}}$

```
censo %>%
  summarise(sd = sd(edad, na.rm = TRUE)) %>% transmute(error_est = sd/sqrt(300))
```

Usando fórmula con la desviación estándar de la muestra, $\frac{s}{\sqrt{n}}$

```
muestra_censo %>%
  summarise(sd = sd(edad, na.rm = TRUE)) %>% transmute(error_est = sd/sqrt(300))
```

Comparar

```
## # A tibble: 1 x 3
## bootstrap_ee poblacion_ee formula_ee
## <dbl> <dbl> <dbl> ## 1 1.28 1.28
```

I.C "basado en teoría"

$$I.\,C. = Estimaci\'on\ Puntual \pm (Valor\ Crcetico imes Error\ Estcute{a}ndar) \ I.\,C. = \hat{\mu} \pm (1.96 imes rac{s}{\sqrt{n}})$$

Al igual que en los otros I.C. que construimos, el promedio poblacional de edad, $\mu=36.0179$, también está incluído en este intervalo.

Ejercicio

Ejercicio

• EjercicioIntervaloConfianza.R

Prueba de hipótesis

Un caso real

- Un estudio de 1974 analizó el **efecto que el sexo (masculino/femenino) en las posibilidades de ser ascendido/a** en un trabajo.
- A 48 supervisores de una industria se les pidió que asumieran el rol de un director de RRHH y se les entregó un CV para que decidieran si es que el o la candidato/a debiera ser ascendido/a.
- Los **48 CV eran exactamente iguales con excepción del nombre**. A 24 de las personas se les dieron CVs con solo nombres "típicos de hombres" y al otro grupo de 24 solo con nombres "típicos de mujeres".
- Considerando la asignación aleatoria y la posibilidad de que el CV sea "hombre" o "mujer" solamente, este experimento serviría como una aproximación para aislar el efecto del sexo de una persona en ser o no ascendido/a.

Resultados

- 35 personas fueron seleccionadas para ser ascendidas
- De los 24 CVs con nombres de **hombre**, **21 fueron ascendidos** (87.5%).
- De los 24 CVs con nombres de mujer, 14 fueron ascendidas (58.3%).
- **29.2 puntos % de diferencia** entre hombres y mujeres.

```
ascensos %>%
  group_by(sexo, decision) %>%
  summarise(n = n()) %>%
  ggplot(aes(x = sexo, y = n, fill = decision)) +
  geom_col() +
  labs(x = "Sexo en el CV")
```


- ¿Es esta evidencia concluyente de que en esta industria existe discriminación contra las mujeres a la hora de realizar ascensos laborales?
- ¿Podría ser esta diferencia solo "por casualidad" en un mundo hipotético donde no existe discriminación **o es una** diferencia significativa?

Mundo hipotético

- Imaginemos un mundo donde la discriminación laboral hacia las mujeres no existe. Entonces, **en este mundo el ser mujer u hombre no tiene ninguna influencia** en si alguien es o no ascendido/a.
- En términos de nuestros datos, ascensos, la variable sexo sería irrelevante. Puesto de otra forma, podríamos reordenar nuestros datos para que los **35 ascensos se repartan aleatoriamente entre los 24 masculino y 24 femenino**.

Mundo hipotético

- Imaginemos un mundo donde la discriminación laboral hacia las mujeres no existe. Entonces, **en este mundo el ser mujer u hombre no tiene ninguna influencia** en si alguien es o no ascendido/a.
- En términos de nuestros datos, ascensos, la variable sexo sería irrelevante. Puesto de otra forma, podríamos reordenar nuestros datos para que los **35 ascensos se repartan aleatoriamente entre los 24 masculino y 24 femenino**.

Mundo hipotético

1 Con ascenso

2 Sin ascenso

- En este mundo hipotético de no discriminación, **18 de 24 hombres** fueron ascendidos (75%) y **17 de 24 mujeres** también (70.8%).
- La diferencia que en nuestra muestra original era de 29.2 puntos % en este caso es de 4.2 puntos %.

18

6

17

• Ahora, esta asignación aleatoria es solo un ejemplo. Podríamos repetir este proceso algunas veces más y tener una **distribución de diferencias**.

16 aleatorizaciones

Distribución de 16 veces reordenar nuestros datos para que los **35 ascensos se repartan aleatoriamente entre los 24** masculino y **24** femenino.

¿Cómo se vería nuestro cálculo inicial (real) en esta distribución?

16 aleatorizaciones

Distribución de 16 veces reordenar nuestros datos para que los **35 ascensos se repartan aleatoriamente entre los 24** masculino y **24** femenino.

¿Qué significa esto?

- Recordemos que este histograma representa la distribución de la diferencia de ascensos entre hombres y mujeres en un **mundo hipotético de no discriminación**.
- De hecho, **la distribución esta centrada en cero**. Sin embargo, en este mundo hipotético igual pueden haber diferencias en ascensos debido a la **variación muestral**.
- Teniendo todo eso en consideración, ¿qué tan factible es una diferencia de 29.2 puntos porcentuales de más ascensos para hombres que mujeres en un mundo de no discriminación?

¿Qué acabamos de hacer?

- El procedimiento que hicimos se conoce como **prueba de hipótesis usando permutaciones**. En este caso el acto de permutar fue aleatorizar los ascensos entre masculino y femenino.
- Las permutaciones son otra forma de **remuestreo** como el *bootstrap* que ya aplicamos. Mientras que el *bootstrap* fue un remuestreo con reemplazo, la *permutación* es remuestreo sin reemplazo.
- En este caso usamos las permutaciones para simular un mundo de no discriminación y el resultado fue que **la realidad es poco probable bajo ese mundo supuesto**.
- En otras palabras, con la evidencia disponible tenderíamos a **rechazar que este mundo hipotético es factible** y que, por ende, **hay evidencia de que existe discriminación**.
- Nuestra estimación de **29.2 puntos porcentuales de diferencia parece ser claramente mayor a 0**, sugiriendo discriminación en contra de las mujeres. Pero, **¿es esta diferencia significativamente diferente a 0?**
- Las pruebas de hipótesis nos permitirán responder esto.

Una hipótesis es una declaración respecto al valor de un parámetro poblacional desconocido (por ej. μ). Para el caso que vimos recién, este parámetro sería la diferencia entre la proporción de "CV masculinos" con ascenso menos la proporción de "CVs femeninos" con ascenso, p_m-p_f .

Una prueba de hipótesis consiste en una prueba entre dos hipótesis contrarias: (i) una hipótesis nula, H_0 , versus (ii) una hipótesis alternativa, H_A .

- Generalmente la hipótesis nula es una declaración de que no hay efecto o no hay diferencia. Se habla de que la hipótesis nula representa el status quo o una situación de "no interés".
- Por otro lado, **la hipótesis nula sería la declaración que se quiere establecer** y que se probará a través de la evidencia.

 H_0 : los hombres y las mujeres son ascendidos a tasas similares

 H_A : los hombres son ascendidos a tasas más altas que las mujeres

Una hipótesis es una declaración respecto al valor de un parámetro poblacional desconocido (por ej. μ). Para el caso que vimos recién, este parámetro sería la diferencia entre la proporción de "CV masculinos" con ascenso menos la proporción de "CVs femeninos" con ascenso, p_m-p_f .

Una prueba de hipótesis consiste en una prueba entre dos hipótesis contrarias: (i) una hipótesis nula, H_0 , versus (ii) una hipótesis alternativa, H_A .

- Generalmente la hipótesis nula es una declaración de que no hay efecto o no hay diferencia. Se habla de que la hipótesis nula representa el status quo o una situación de "no interés".
- Por otro lado, **la hipótesis nula sería la declaración que se quiere establecer** y que se probará a través de la evidencia.

$$H_0:p_m-p_f=0$$

$$H_A:p_m-p_f>0$$

Un estadístico es una formula para una estimación/cálculo. Antes hablabamos de la estimación de la media muestral como $\hat{\mu}$ (promedio muestral). Para este ejemplo **nuestro estadístico sería la diferencia de proporciones**, $\hat{p}_m - \hat{p}_f$.

El estadístico observado es el valor calculado/observado. En nuestro ejemplo sería 29.2 puntos porcentuales.

La distribución nula es la distribución del estadístico asumiendo que la hipótesis nula, H_0 , es cierta. No decimos que H_0 sea necesariamente cierto sino que asumimos esto para ver que tan factible es nuestro estadístico observado bajo este supuesto.

El valor p o p-value es la probabilidad de observar un estadístico tan o más "extremo" que el que tenemos, asumiendo que la hipótesis nula, H_0 , es cierta.

- Podríamos decir que es una cuantificación de "sorpresa" de los resultados. En nuestro ejemplo, ¿qué tan
 "sorprendidos" estamos de que la diferencia en ascensos fuera 29.2 puntos % dada la distribución nula?
- Puesto de otra forma, ¿que proporción de los datos son más "extremos" que este resultado?

En este caso, **la respuesta es 0**. Por ende lo que observamos es **muy sorprendente** bajo la hipótesis nula, H_0 . Tan raro es lo que vemos que lo más sensato sería **rechazar la hipótesis nula** de que no existe diferencia.

El nivel de significancia es un punto de corte que establecemos para el p-value. Normalmente se le denomina α .

- ullet Rechazaremos la hipótesis nula, H_0 , si es que p-value < lpha
- ullet En caso contrario, p-value>lpha, decimos que "no rechazamos H_0 " o "fallamos en rechazarla".
- Valores comúnmente usados para α son 0.1 (10%), **0.05 (5%)**, y 0.01 (1%).


```
## Response: decision (factor)
## Explanatory: sexo (factor)
## # A tibble: 48 x 2
      decision
                  Sexo
      <fct>
                  <fct>
   1 Con ascenso masculino
    2 Con ascenso masculino
## 3 Con ascenso masculino
## 4 Con ascenso masculino
## 5 Con ascenso masculino
## 6 Con ascenso masculino
## 7 Con ascenso masculino
## 8 Con ascenso masculino
   9 Con ascenso masculino
## 10 Con ascenso masculino
## # ... with 38 more rows
```

- A diferencia del ejemplo anterior con infer, ahora queremos ver el efecto de una variable explicatoria, sexo, en una variable respuesta, decision.
- También le indicamos a la función que en este caso nos queremos enfocar en los casos "Con ascenso".

```
## Response: decision (factor)
## Explanatory: sexo (factor)
## Null Hypothesis: independence
## # A tibble: 48 x 2
      decision
                  sexo
      <fct>
                  <fct>
    1 Con ascenso masculino
   2 Con ascenso masculino
## 3 Con ascenso masculino
## 4 Con ascenso masculino
## 5 Con ascenso masculino
   6 Con ascenso masculino
## 7 Con ascenso masculino
## 8 Con ascenso masculino
   9 Con ascenso masculino
## 10 Con ascenso masculino
## # ... with 38 more rows
```

- Este es un nuevo paso que no vimos para los intervalos de confianza.
- null tiene dos opciones: point o independence. El primero es para cuando trabajamos con "una muestra" y el segundo cuando tenemos dos.
- En este caso nuestras "dos muestras" son los CVs con nombres masculinos y los CVs con nombres femeninos.

```
## Response: decision (factor)
## Explanatory: sexo (factor)
## Null Hypothesis: independence
## # A tibble: 48,000 x 3
## # Groups: replicate [1,000]
     decision
                  sexo
                            replicate
      <fct>
                 <fct>
                                <int>
## 1 Con ascenso masculino
                                   1
## 2 Con ascenso masculino
## 3 Sin ascenso masculino
                                   1
## 4 Sin ascenso masculino
                                   1
## 5 Con ascenso masculino
                                   1
## 6 Con ascenso masculino
## 7 Con ascenso masculino
                                   1
## 8 Con ascenso masculino
## 9 Con ascenso masculino
                                    1
## 10 Sin ascenso masculino
                                    1
## # ... with 47,990 more rows
```

- Acá generamos la aleatorización asumiendo que la hipótesis nula es cierta. Antes hicimos 16 veces esto, ahora 1.000.
- A diferencia de los intervalos de confianza, donde usamos "bootstrap", ahora usamos type = "permute".

```
## # A tibble: 1,000 x 2
      replicate
                  stat
                 <dbl>
         <int>
             1 0.125
             2 0.125
             3 -0.0417
             4 - 0.208
             5 0.125
             6 - 0.208
            7 -0.0417
             8 0.292
             9 0.125
            10 0.0417
## # ... with 990 more rows
```

- Teniendo las 1.000 replicas, ahora podemos calcular el estadístico.
- ullet En este caso sería la diferencia de proporción con ascensos para CVs "masculinos" y "femeninos", $\hat{p}_m \hat{p}_f$

```
## # A tibble: 1,000 x 2
     replicate
                  stat
         <int>
                 <dbl>
             1 0.125
             2 0.125
             3 -0.0417
             4 -0.208
             5 0.125
             6 -0.208
            7 -0.0417
             8 0.292
             9 0.125
            10 0.0417
## # ... with 990 more rows
```

ullet Crearemos un objeto distribucion_nula para guardar los 1.000 resultados de $\hat{p}_m - \hat{p}_f$.

¿Cuál era el estadístico observado?

Podemos hacer este cálculo usando infer

29.2 puntos porcentuales más de ascensos para hombres que para mujeres.

```
distribucion_nula %>%
  visualise(bins = 10)
```


ullet Visualicemos la distribución nula creada a partir de los 1.000 estadísticos calculados, $\hat{p}_m - \hat{p}_f$.

- ullet Visualicemos la distribución nula creada a partir de los 1.000 estadísticos calculados, $\hat{p}_m \hat{p}_f$.
- Y agreguemos el estadístico observado que guardamos como dif_observada (línea roja).
- ullet El argumento direction = "right" es debido a que $H_A:p_m-p_f>0$
- El área sombreada a la derecha de la línea roja corresponde al **p-value**.
- Pareciera que, **asumiendo como cierta la hipótesis nula, ver el resultado de 29.2 es poco probable**. ¿Qué tan poco?

```
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.019
```

- La probabilidad de observar una diferencia en ascensos al menos tan grande como 29.2 puntos porcentuales, dado que la distribución nula sea cierta, es 0.019=1.9%.
- Ya que este **p-value** es menor al nivel de significancia planteado inicialmente, lpha=0.05, **rechazamos la hipótesis** nula, $H_0:p_m-p_f=0$.
- ullet En otras palabras, hay evidencia para hacernos cambiar de opinión sobre el status quo, H_0 , y pensar que si hay discriminación.
- ullet Noten que la conclusión depende del nivel de lpha definido.

Prueba de hipótesis vs I.C.

Una ventaja del paquete infer es que podemos pasar rápidamente de hacer una prueba de hipótesis a construir un intervalo de confianza.

Prueba de hipótesis vs I.C.

Calculemos el intervalo de confianza (95%)

```
distribucion_bootstrap %>%
  visualise() +
  shade_confidence_interval(endpoints = ic_percentil)
```


- Noten que en este intervalo de confianza un valor que NO cae dentro es 0.
- Prácticamente toda la distribución está sobre 0, sugiriendo que la diferencia de ascensos es en favor de los hombres.

Prueba de hipótesis basada en teoría

- Al igual como construimos I.C. a partir de formulas, podemos hacer lo mismo con las pruebas de hipótesis.
- Nuevamente, estos métodos se desarrollaron hace mucho tiempo y se convirtieron en norma ante la imposibilidad de poder hacer miles de cálculos de forma simple y eficiente.
- A través de las formulas derivadas hace tiempo se logra aproximar lo que hoy podemos hacer a través de simulaciones.

Recordemos: Z-score

$$Z=rac{X-\mu}{\sigma}$$

- El **Z-score** es una estandarización de una variable aleatoria, X, en términos de la media poblacional, μ , y su desviación estándar, σ .
- ullet Esto resulta en que cada valor de X estandarizado ahora representa a cuantas desviaciones estándar de la media se encuentra ese valor.
- Al estandarizar podemos comparar variables.
- Un valor estandarizado que ocuparemos normalmente en inferencia será el estadístico-t:

$$rac{\hat{\mu}-\mu}{rac{s}{\sqrt{n}}}\sim t_{n-1}$$

Distribución t

$$PDF=rac{\Gamma(rac{n}{2})}{\sqrt{(n-1)\pi}\Gamma(rac{n-1}{2})}(1+rac{x^2}{n-1})^{-rac{n}{2}}$$

¿Cómo usar esto en hipótesis?

Ejemplo: Promedio de edad

$$H_0=35;~H_A
eq35$$

```
muestra_censo %>% summarise(promedio_muestra = mean(edad), s = sd(edad))  
## promedio_muestra s  
## 1 38.12667 22.1389  
t = \frac{\hat{\mu} - \mu}{\frac{s}{\sqrt{n}}} = \frac{38.127 - 35}{\frac{22.1389}{\sqrt{300}}} = 2.446
```



```
pt(2.446, df = 299, lower.tail = FALSE)*2
```

[1] 0.01502134

pvalue < lpha = 0.015 < 0.05, se rechaza H_0

Ejercicio

Ejercicio

• EjercicioPruebaHipotesis.R

Próxima clase

• Regresiones

Próxima clase

```
Call:
lm(formula = ROLL ~ UNEM + HGRAD + INC, data = datavar)
Residuals:
                10 Median
     Min
                                   30
                                           Max
-1148.840 -489.712 -1.876 387.400 1425.753
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.153e+03 1.053e+03 -8.691 5.02e-09 ***
UNEM
          4.501e+02 1.182e+02 3.809 0.000807 ***
HGRAD
          4.065e-01 7.602e-02 5.347 1.52e-05 ***
          4.275e+00 4.947e-01 8.642 5.59e-09 ***
INC
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 670.4 on 25 degrees of freedom
Multiple R-squared: 0.9621, Adjusted R-squared: 0.9576
F-statistic: 211.5 on 3 and 25 DF, p-value: < 2.2e-16
```