Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Направление подготовки «01.04.02 Прикладная математика и информатика»

Отчёт по лабораторной работе №2 по дисциплине «Компьютерные сети»

Выполнила студентка гр. 5040102/20201

Харисова Т.А.

Преподаватель

Баженов А.Н.

Санкт-Петербург 2023

Оглавление

Іостановка задачи	3
еория	3
еализация	3
езультаты	3
нализ результатов	7
Список иллюстраций	
лисок иллюстрации	
исунок 1. Сеть с линейная топологией	3
исунок 2. Сеть с кольцевой топологией	4
исунок 3. Сеть со звездной топологией	5
исунок 4. Сеть с линейной топологией (перестроенная)	5
исунок 5. Сеть с кольцевой топологией (перестроенная)	6
исунок 6. Сеть со звездной топологией (перестроенная)	7
Список таблиц	
аблица 1. Пути в сети с линейной топологией	4
аблица 2. Пути в сети с кольцевой топологией	
аблица 3. Пути в сети со звездной топологией	
аблица 4. Пути в сети с линейной топологией (перестроенной)	
аблица 5. Пути в сети с кольцевой топологией (перестроенной)	
аблица 6. Пути в сети со звездной топологией (перестроенной)	

Постановка задачи

Требуется реализовать протокол маршрутизации Open Shortest Path First (OSPF). Рассмотреть работу протокола для линейной, кольцевой и звездной топологий.

Теория

Протокол OSPF – протокол динамической маршрутизации, в основе работы которого лежит представление множества сетей, маршрутизаторов и каналов в виде ориентированного графа.

Алгоритм работы протокола:

- 1. После включения маршрутизатора протокол ищет непосредственно подключенных соседей и устанавливает с ними связь.
- 2. Строится карта сети: между соседями происходит обмен информацией о подключенных и доступных сетях. Данная карта одинакова на всех маршрутизаторах.
- 3. Запускается алгоритм SPF (Shortest Path First), который рассчитывает оптимальный маршрут к каждой сети. Процесс представляет собой поиск кратчайшего пути в графе, в вершинах которого доступные сети, а ребра пути между ними.

Реализация

Работа выполнена с помощью языка программирования Python в среде разработки Visual Studio Code. Ссылка на исходный код работы: <u>Lab 2(github.com)</u>

Результаты

Рассматривается установление связи в сети с 6 узлами.

Радиус соединения сети с линейной топологией r=3. Кратчайшие пути между парами узлов приведены в таблице.

Рисунок 1. Сеть с линейная топологией

Таблица 1. Пути в сети с линейной топологией

	0	1	2	3	4	5
0		[0, 1]	[0, 1, 2]	[0, 1, 2, 3]	[0, 1, 2, 3, 4]	[0, 1, 2, 3, 4, 5]
1	[1, 0]		[1, 2]	[1, 2, 3]	[1, 2, 3, 4]	[1, 2, 3, 4, 5]
2	[2, 1, 0]	[2, 1]		[2, 3]	[2, 3, 4]	[2, 3, 4, 5]
3	[3, 2, 1, 0]	[3, 2, 1]	[3, 2]		[3, 4]	[3, 4, 5]
4	[4, 3, 2, 1, 0]	[4, 3, 2, 1]	[4, 3, 2]	[4, 3]		[4, 5]
5	[5, 4, 3, 2, 1, 0]	[5, 4, 3, 2, 1]	[5, 4, 3, 2]	[5, 4, 3]	[5, 4]	

Радиус соединения сети с кольцевой топологией r=5.

Рисунок 2. Сеть с кольцевой топологией

Таблица 2. Пути в сети с кольцевой топологией

	0	1	2	3	4	5
0		[0, 1]	[0, 1, 2]	[0, 1, 2, 3]	[0, 5, 4]	[0, 5]
1	[1, 0]		[1, 2]	[1, 2, 3]	[1, 0, 5, 4]	[1, 0, 5]
2	[2, 1, 0]	[2, 1]		[2, 3]	[2, 3, 4]	[2, 1, 0, 5]
3	[3, 2, 1, 0]	[3, 2, 1]	[3, 2]		[3, 4]	[3, 4, 5]
4	[4, 5, 0]	[4, 3, 2, 1]	[4, 3, 2]	[4, 3]		[4, 5]
5	[5, 0]	[5, 0, 1]	[5, 0, 1, 2]	[5, 4, 3]	[5, 4]	

Радиус соединения сети со звездной топологией r = 5.

Рисунок 3. Сеть со звездной топологией

Таблица 3. Пути в сети со звездной топологией

	0	1	2	3	4	5
0		[0, 5, 1]	[0, 5, 2]	[0, 5, 3]	[0, 5, 4]	[0, 5]
1	[1, 5, 0]		[1, 5, 2]	[1, 5, 3]	[1, 5, 4]	[1, 5]
2	[2, 5, 0]	[2, 5, 1]		[2, 5, 3]	[2, 5, 4]	[2, 5]
3	[3, 5, 0]	[3, 5, 1]	[3, 5, 2]		[3, 5, 4]	[3, 5]
4	[4, 5, 0]	[4, 5, 1]	[4, 5, 2]	[4, 5, 3]		[4, 5]
5	[5, 0]	[5, 1]	[5, 2]	[5, 3]	[5, 4]	

Изменим положение узлов, сдвинув по обеим осям на произвольную величину из диапазона [-0.5, 0.5]. Радиус соединения для каждой топологии остается прежним.

Рисунок 4. Сеть с линейной топологией (перестроенная)

Таблица 4. Пути в сети с линейной топологией (перестроенной)

	0	1	2	3	4	5
0		[0, 1]	[-]	[-]	[-]	[-]
1	[1, 0]		[-]	[-]	[-]	[-]
2	[-]	[-]		[2, 3]	[2, 3, 4]	[-]
3	[-]	[-]	[3, 2]		[3, 4]	[-]
4	[-]	[-]	[4, 3, 2]	[4, 3]		[-]
5	[-]	[-]	[-]	[-]	[-]	

Рисунок 5. Сеть с кольцевой топологией (перестроенная)

Таблица 5. Пути в сети с кольцевой топологией (перестроенной)

	0	1	2	3	4	5
0		[-]	[-]	[-]	[-]	[5,0]
1	[-]		[-]	[-]	[-]	[-]
2	[-]	[-]	[-]	[3,2]	[4, 3, 2]	[-]
3	[-]	[-]	[2,3]		[4,3]	[-]
4	[-]	[-]	[2,3,4]	[3,4]		[-]
5	[0,5]	[-]	[-]	[-]	[-]	

Рисунок 6. Сеть со звездной топологией (перестроенная)

Таблица 6. Пути в сети со звездной топологией (перестроенной)

	0	1	2	3	4	5
0		[-]	[2,5,0]	[-]	[4,5,0]	[5,0]
1	[-]		[-]	[-]	[-]	[-]
2	[0,5,2]	[-]		[-]	[4,5,2]	[5,2]
3	[-]	[-]	[-]		[-]	[-]
4	[0,5,4]	[-]	[2,5,4]	[-]		[5,4]
5	[0,5]	[-]	[2,5]	[-]	[4,5]	

Анализ результатов

В сети с линейной топологией соединение между крайними узлами устанавливается через все остальные промежуточные узлы. Если при произвольном сдвиге узлов произошел разрыв связи с промежуточными узлами, то между значительным количеством пар узлов может пропасть соединение. В сети с кольцевой топологией потеря связи между двумя соседними узлами превращает исходную топологию в линейную, и дальнейший разрыв связей влечет за собой проблемы линейной топологии. В сети со звездной топологией установление соединения происходит через центральный узел: при потере связи с центральным узлом сеть становится неработоспособна. Потеря связи с другими узлами влияет на достижимость только этих узлов.