$N.^{\Omega}$ mec.:

Classificação (espaço reservado ao professor):

$E \setminus C$	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Duração: 0h15

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2021/22

1.º miniteste: turma TP4-1; versão A

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será a seguinte: 10 pontos se a tua escolha de opção estiver correta; 0 pontos se não escolheres nenhuma opção ou se escolheres mais do que uma; -5 pontos se a tua escolha de opção estiver errada. Designando por S a soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores que terás neste miniteste será dada pela expressão $\lceil \frac{2}{3} \max\{S,0\} \rceil$ (em resumo, será a nota no quadro no espaço acima reservado ao professor que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- 1. Escolhe a função u(x) que mais diretamente (isto é, com menos contas ou com contas mais simples) permite primitivar quase imediatamente a função $\sqrt[6]{1-2x^3} x^2$:

A.
$$x^2$$
.

B.
$$\sqrt[6]{1-2x^3}$$
.

C.
$$1 - 2x^3$$
.

2. Se na primitivação quase imediata de $\sqrt{1+4\sin(x)}\cos(x)$ escolhermos para u(x) a função $1+4\sin(x)$, a igualdade correta é

A.
$$\int \sqrt{1+4\sin(x)}\cos(x)\,dx = \frac{1}{4}\int \sqrt{u}\cos x\,du.$$

B.
$$\int \sqrt{1+4\sin(x)} \cos(x) dx = \frac{1}{4} \int \sqrt{u} du$$
.

C.
$$\int \sqrt{1+4\sin(x)} \cos(x) dx = \int \sqrt{u(1-u^2)} du$$
.

3. Se numa primitivação quase imediata usarmos $u(x) = \ln x$ e daí resultar $\frac{1}{2} \int u^2 du$, em intervalos a expressão geral das primitivas da função dada é

A.
$$\frac{1}{6}u^2 + C$$
.

B.
$$\frac{1}{6}(\ln x)^3 + C$$
.

C.
$$\frac{1}{3}(\ln x)^3 + C$$
.

 $N.^{\Omega}$ mec.:

Classificação (espaço reservado ao professor):

$E \setminus C$	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2021/22

1.º miniteste: turma TP4-1; versão B

1---- ------

Duração: 0h15

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será a seguinte: 10 pontos se a tua escolha de opção estiver correta; 0 pontos se não escolheres nenhuma opção ou se escolheres mais do que uma; -5 pontos se a tua escolha de opção estiver errada. Designando por S a soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores que terás neste miniteste será dada pela expressão [3/2] max{S,0}] (em resumo, será a nota no quadro no espaço acima reservado ao professor que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- 1. Escolhe a função u(x) que mais diretamente (isto é, com menos contas ou com contas mais simples) permite primitivar quase imediatamente a função $\frac{x}{1+x^4}$:
 - **A.** x^2 .
 - **B.** $1 + x^4$.
 - **C.** *x*.
- 2. Se na primitivação quase imediata de $\frac{\cos(x)\sin(x)}{\cos(2x)}$ escolhermos para u(x) a função $\cos(2x)$, a igualdade correta é

A.
$$\int \frac{\cos(x)\sin(x)}{\cos(2x)} dx = \frac{1}{4} \int \frac{\cos x}{u} du.$$

B.
$$\int \frac{\cos(x)\sin(x)}{\cos(2x)} dx = -\frac{1}{4} \int \frac{1}{u} du.$$

C.
$$\int \frac{\cos(x)\sin(x)}{\cos(2x)} dx = -\frac{1}{2} \int \frac{1}{u} du.$$

- 3. Se numa primitivação quase imediata usarmos $u(x)=\cos(x)$ e daí resultar $\frac{1}{2}\int u\,du$, em intervalos a expressão geral das primitivas da função dada é
 - **A.** $\frac{1}{2}u^2 + C$.
 - **B.** $\frac{1}{4}(\cos(x))^2 + C$.
 - C. $\frac{1}{2}(\cos(x))^2 + C$.

 $N.^{\Omega}$ mec.:

Classificação (espaço reservado ao professor):

$E \setminus C$	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Duração: 0h15

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2021/22

1.º miniteste: turma TP4-1; versão C

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será a seguinte: 10 pontos se a tua escolha de opção estiver correta; 0 pontos se não escolheres nenhuma opção ou se escolheres mais do que uma; -5 pontos se a tua escolha de opção estiver errada. Designando por S a soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores que terás neste miniteste será dada pela expressão $\lceil \frac{2}{3} \max\{S,0\} \rceil$ (em resumo, será a nota no quadro no espaço acima reservado ao professor que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- 1. Escolhe a função u(x) que mais diretamente (isto é, com menos contas ou com contas mais simples) permite primitivar quase imediatamente a função $\frac{1}{1+4x^2}$:

A.
$$\frac{1}{1+4x^2}$$
.

B.
$$1 + 4x^2$$
.

C. 2x.

2. Se na primitivação quase imediata de $e^{\sin(x)}\cos(x)$ escolhermos para u(x) a função $\sin(x)$, a igualdade correta é

A.
$$\int e^{\sin(x)} \cos(x) dx = \int e^u \cos x du.$$

B.
$$\int e^{\sin(x)} \cos(x) dx = \int e^u du.$$

C.
$$\int e^{\sin(x)}\cos(x)\,dx = \int e^u u\,du.$$

3. Se numa primitivação quase imediata usarmos $u(x)=\cos(x)$ e daí resultar $\frac{1}{2}\int\frac{1}{u}\,du$, em intervalos a expressão geral das primitivas da função dada é

A.
$$\frac{1}{2} \ln |\cos(x)| + C$$
.

B.
$$\frac{1}{4} \ln |u| + C$$
.

C.
$$\frac{1}{4} \ln |\cos(x)| + C$$
.

 $N.^{\Omega}$ mec.:

Classificação (espaço reservado ao professor):

$E \setminus C$	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Duração: 0h15

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2021/22

1.º miniteste: turma TP4-1; versão D

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será a seguinte: 10 pontos se a tua escolha de opção estiver correta; 0 pontos se não escolheres nenhuma opção ou se escolheres mais do que uma; -5 pontos se a tua escolha de opção estiver errada. Designando por S a soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores que terás neste miniteste será dada pela expressão $\lceil \frac{2}{3} \max\{S,0\} \rceil$ (em resumo, será a nota no quadro no espaço acima reservado ao professor que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- 1. Escolhe a função u(x) que mais diretamente (isto é, com menos contas ou com contas mais simples) permite primitivar quase imediatamente a função $\frac{e^{\sqrt{x}}}{\sqrt{x}}$:
 - **A.** \sqrt{x} .
 - **B.** $e^{\sqrt{x}}$.
 - C. $\frac{e^{\sqrt{x}}}{\sqrt{x}}$.
- 2. Se na primitivação quase imediata de $\frac{\sqrt{1+\ln(x)}}{x}$ escolhermos para u(x) a função $1+\ln(x)$, a igualdade correta é

A.
$$\int \frac{\sqrt{1 + \ln(x)}}{x} dx = \frac{1}{2} \int \frac{\sqrt{u}}{u} du.$$

B.
$$\int \frac{\sqrt{1 + \ln(x)}}{x} dx = \int \frac{\sqrt{u}}{x} du.$$

C.
$$\int \frac{\sqrt{1 + \ln(x)}}{x} dx = \int \sqrt{u} du.$$

- 3. Se numa primitivação quase imediata usarmos $u(x)=e^x$ e daí resultar $\frac{1}{2}\int u\,du$, em intervalos a expressão geral das primitivas da função dada é
 - **A.** $\frac{1}{4}e^{2x} + C$.
 - **B.** $\frac{1}{2}u^2 + C$.
 - C. $\frac{1}{2}e^{2x} + C$.