Number of Solutions of a Linear System

For a system of linear equations, precisely one of the statements below is true.

- (1) The system has exactly one solution.
- (2) The system has infinitely many solutions.
- (3) The system has no solution

Proof

Represent the system by the matrix operation Ax = b. If the system has exactly one solution or no solution, then there is nothing to prove. So, assume that the system has at least two distinct solutions x_1 and x_2 . If you show that this assumption implies that the system has infinitely man solutions, then the proof is complete. When x_1 and x_2 are solutions, you have $Ax_1 = Ax_2 = b$ and $A(x_1 - x_2) = 0$. This implies that the (nonzero) column matrix $x_h = x_1 - x_2$ is a solution of the homogeneous system of linear equations Ax = 0. So, for any scalar c,

$$A(x_1 + cx_h) = Ax_1 + A(cx_h) = b + c(Ax_h) = b + c0 = b$$

Then $x_1 + cx_h$ is a solution of Ax = b for any scalar at c. There are infineitely many possible values of c and each va; we produce a different solution, so the system has infinitely many solutions.