Teoria współbierznośći – lab 6

Uladzislau Tumilovich

Zadanie 1.

Poniższa sieć została zbudowana i zasymulowana w PIPE.

Następnie została dokonana analiza niezmienników przejść.

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Analysis time: 0.0s

Z analizy niezmienników można wewnoskować, że:

- 1. Nie wiemy czy sieć jest ograniczona oraz żywa
- 2. Sieć nie jest odwracalna, bo nie istnieje wektor T będący niezminnikiem przejść

Następnie został wygenerowany graf osiągalnośći.

Z grafu osiągalnośći można wewnoskować, że sieć:

- 1. Jest żywa, bo dla każdego oznakowania isiągalnego ze znakowania początkowego, wychodząc z tego oznakowania można wykonać każde przejście w sieci
 - 2. Nie jest ograniczona, bo w P3 może być dowolna liczba znaczników

Zadanie 2.

Zostałą zbudowana sieć w PIPE.

Zostałą dokonana analiza niezmienników

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	P3	P4	P5	P6	P7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Analysis time: 0.001s

Z analizy niezmienników można wewnoskować, że sieć:

- 1. Jest odwracalna, bo istnieje wektor T, który jest niezminnikiem przejść
- 2. Jest zachowawcza, bo liczba znaczników jest stała (5) dla każdego oznakowania
 - 3. Jest żywa, bo wszystkie przejścia mogą być wykonane
 - 4. ma bufor rozmiaru 3, bo M(P6) + M(P7) = 3

Zadanie 3.

Została zbudowana sieć w PIPE.

Zostałą dokonana analiza niezmienników

Petri net invariant analysis results

T-Invariants

1 1 1 1

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	Р3	P4
1	1	0	0	0
0	0	1	1	0

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) = 1$$

 $M(P2) + M(P3) = 1$

Analysis time: 0.001s

Z analizy niezmienników można wewnoskować, że sieć:

- 1. Jest odwracalna, bo istnieje wektor T, który jest niezminnikiem przejść
- 2. Nie jest zachowawcza, bo liczba znaczników nie jest stała dla każdego oznakowania
 - 3. Jest żywa, bo wszystkie przejścia mogą być wykonane
- 4. nie ma buforu okreslonego rozmiaru, bo w P2 może pojawić się dowolna nieujemna liczba znaczników

Zadanie 4.

Zostałą zbudowana sieć w PIPE.

Zostałą dokonana analiza niezmienników

Petri net invariant analysis results

T-Invariants

T0	T1	T2	ТЗ	T4	T5
1	1	1	0	0	0
0	0	0	1	1	1

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	Р1	P2	Р3	P4	P5	P6
1	1	1	0	0	0	0
0	0	0	1	1	1	0
0	1	0	0	1	0	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P1) + M(P4) + M(P6) = 1$

Analysis time: 0.0s

Z analizy niezmienników można wewnoskować, że sieć:

- 1. Jest odwracalna, bo istnieje wektor T, który jest niezminnikiem przejść
- 2. Jest zachowawcza, bo liczba znaczników jest stała dla każdego oznakowania
- 3. Jest żywa, bo wszystkie przejścia mogą być wykonane

Równanie 1 oraz Równanie 2 pokazują istnienie jednego wągku w każdym procesie P1 oraz P2.

Równanie 3 pokazuje działanie mutex'a (ochrony sekcji krytycznej).

Zadanie 5.

Zostałą zbudowana sieć w PIPE.

Został wygenerowany graf osiągaoności.

Z grafu osiągalnośći można wewnoskować, że sieć:

- 1. Wchodzi w stan deadlock'a po dwóch tranzycjach
- 2. Wykonana tranzycje T0, T2

Została uruchomiana analiza State Space Analysis, która podtwierdza powyższe wnioski.

Petri net state space analysis results

Bounded true
Safe true
Deadlock true

Shortest path to deadlock: T0 T2