MODELOS DE PREVISÕES COM VAR

A previsão é análoga aos processo univariados.

A complexidade dos modelos multivariados é muito maior, por isso, certos cuidados devem ser tomados e algumas matrizes utilizadas podem ser difícieis de visualizar.

Quando se conhece o processo gerador de dados, a previsão h passos à frente é dada por (Bueno pag. 213)

$$E\left(X_{t+h} \mid I_{t}\right) \equiv X_{t+h|t} = \Phi_{1}X_{t+h-1|t} + \Phi_{2}X_{t+h-2|t} + \cdots + \Phi_{p}X_{t+h-p|t},$$

Transformando X_t em um modelo de médias móveis infinito, pelo fato de X_t , ser estacionário, obtém-se:

$$X_{t+h} = \left(I - \sum_{j=1}^{p} \Phi_j L^j\right)^{-1} e_{t+h} = e_{t+h} + \Psi_1 e_{t+h-1} + \Psi_p e_{t+h-2} + \cdots$$

Consequentemente a previsão será dada por:

$$X_{t+h|t} = \sum_{j=h}^{\infty} \Psi_j e_{t+h-j}.$$

Assim temos a Função Impulso Resposta, que também pode ser escrita da seguinte forma estrutural:

Transformando X_t em um modelo de médias móveis infinito, novamente:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \overline{y}_1 \\ \overline{y}_2 \end{bmatrix} + \sum_{i=0}^{\infty} B^i \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}_{t-i}$$

Sendo:

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}_{t-i} = \frac{1}{1-\delta_1\delta_2} \begin{bmatrix} 1 & -\delta_1 \\ -\delta_2 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

Combinando as duas equações:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \overline{y}_1 \\ \overline{y}_2 \end{bmatrix} + \frac{1}{1 - \delta_1 \delta_2} \sum_{i=0}^{\infty} B^i \begin{bmatrix} 1 & -\delta_1 \\ -\delta_2 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}_{t-i}$$

Função Impulso Resposta será:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \overline{y}_1 \\ \overline{y}_2 \end{bmatrix} + \sum_{i=0}^{\infty} \begin{bmatrix} \emptyset_{1,1}(i) & \emptyset_{1,2}(i) \\ \emptyset_{2,1}(i) & \emptyset_{2,2}(i) \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}_{t-i}$$

Cada $\emptyset_{1,1}(i)$ é um função impulso resposta, que consiste uma maneira prática de visualizar o comportamento de choques entre variáveis do modelo.

Em modelos estacionários esperamos que as respostas a esses choques, que são os impulsos, convirjam para zero em poucos lags.

O valor de $\emptyset_{1,1}(0)$ i = lag que nesse caso é zero, representa a resposta instantânea e é chamado de multiplicador de choque.

O gráfico de $\emptyset_{i,j}(t)$ é formado por uma sequência de valores de tempo (lag=t=1,2,...n) assumindo $\varepsilon_t = 1$.

Dessa maneira a interpretação se inicia assumindo um choque de uma unidade na variável j, com a respectiva resposta na variável i dada pelo comportamento gráfico.

No R essa função é implementada pelo comando irf ()

irf (x, n.ahead=10, cumulative = FALSE)

X: objeto com o VAR já estimado;

n.ahead: define para quantos passos será calculada a resposta ao impulso

Cumulative: permite calcular o efeito cumulativo do choque


```
suppressMessages(require(forecast))
suppressMessages(require(dplyr))
suppressMessages(require(vars))
suppressMessages(require(urca))
suppressMessages(require(pwt8))
data("pwt8.0")
View(pwt8.0)
br1 <- subset(pwt8.0, country=="Brazil",</pre>
             select = c("rgdpna","emp","xr","ctfp","hc"))
#Transformando em Variação
br <- data.frame()</pre>
    for (i in 1:62) {
      for (i in 1:5) {
        br[i,j] <- br1[i+1,j]/br1[i,j]
br <- br[1:61.]
colnames(br) <- c("PIB","Emprego","Cambio", "PTF","KHumano")</pre>
BR <- br[45:61,1:5]
```

•	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF ‡	KHumano [‡]
45	1.0422359	1.0134818	1.3806069	1.0943210	1.018128
46	1.0215053	0.9763511	1.0952779	1.1580114	1.020528
47	1.0337525	1.0063349	1.0725218	0.9252626	1.020528
48	1.0003535	1.0110555	1.0765544	0.8882415	1.020528
49	1.0025407	1.0140536	1.5630390	0.9066425	1.020527
50	1.0430620	1.0574127	1.0085396	0.9381537	1.020528
51	1.0131312	1.0071050	1.2843566	0.9627153	1.013767
52	1.0265809	1.0373310	1.2429025	0.9598251	1.013767
53	1.0114662	1.0143850	1.0537988	0.9552369	1.013767
54	1.0571229	1.0531012	0.9504933	0.9811777	1.013767
55	1.0315967	1.0282393	0.8322361	0.9889952	1.013767
56	1.0395704	1.0209492	0.8935818	1.0103331	1.007783
57	1.0609141	1.0121827	0.8950648	1.0245924	1.007783
58	1.0516250	1.0324375	0.9418139	1.0182609	1.007783
59	0.9966869	1.0063951	1.0903395	0.9933127	1.007783
60	1.0753361	1.0325215	0.8798649	0.9975997	1.007783
61	1.0273288	1.0197677	0.9508887	0.9871948	1.000000


```
#Transformando em Variação
22
    br <- data.frame()</pre>
24
25 -
        for (i in 1:62) {
         for (j in 1:5) {
26 -
             br[i,j] <- br1[i+1,j]/br1[i,j]
27
28
29
   br <- br[1:61,]
    colnames(br) <- c("PIB","Emprego","Cambio", "PTF","KHumano")</pre>
    BR \leftarrow br [45:61,1:5]
33
```

19-Previsao e Função Impulso em VA × BR ×									
$\Leftrightarrow \Rightarrow$									
*	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF [‡]	KHumano [‡]				
1	1.0489710	1.0266462	1.0045249	0.9608383	1.0069859				
2	1.0950908	1.0268261	1.0000000	1.0576892	1.0069860				
3	1.0508191	1.0270094	1.0795796	0.9785900	1.0069860				
4	1.0820352	1.0271960	1.5299026	1.0820572	1.0069859				
5	1.0645515	1.0273860	1.3636363	1.0013568	1.0069859				
6	1.0363008	1.0275796	1.1533334	0.9951280	1.0079469				
7	1.1004056	1.0277763	1.0578034	1.0507208	1.0079469				
8	1.0638197	1.0279767	1.2622951	1.0367908	1.0079469				
9	1.0771102	1.0281805	1.5800867	0.9721293	1.0079469				
10	1.0776185	1.0283876	1.8630137	1.0115239	1.0079469				
11	1.1407323	1.0231487	1.4411764	1.1029970	1.0087088				
12	1.0517305	1.0236216	1.4387756	1.0063758	1.0087089				
13	1.0644619	1.0241057	1.4822695	1.0226775	1.0087088				
14	1.0416311	1.0246004	2.1770336	0.9856143	1.0087089				
15	1.0696989	1.0251060	1.5164834	1.0028955	1.0087088				
16	1.0396388	1.0256225	1.1695652	0.9871906	1.0116851				
17	1.0573383	1.0261497	1.1995044	1.0470258	1.0116851				
18	1.1119982	1.0266876	1.2706612	1.0447176	1.0116851				
19	1.0641514	1.0272363	1.2032520	0.9637215	1.0116852				
20	1.1092334	1.0277953	1.1280676	1.0688871	1.0116851				
21	1.1134000	1.0485250	1.1511012	1.0557489	0.9935697				
22	1.1194000	1.0460604	1.1222518	1.0395163	0.9935697				

```
#Separando as variáveis
                         #Cria o vetor para variável PIB
36
37
    PIb \leftarrow ts(br\PIB, start = 1950, frequency = 1)
    Emprego <- ts(br$Emprego, start = 1950, frequency = 1)</pre>
38
    Cambio <- ts(br$Câmbio, start = 1950, frequency = 1)
    PTF \leftarrow ts(br\$PTF, start = 1950, frequency = 1)
    KHumano \leftarrow ts(br\$KHumano, start = 1950, frequency = 1)
41
42
43
    Brasil <- cbind(BR$PIB,BR$Emprego,BR$Cambio,BR$PTF,BR$KHumano)</pre>
44
    Anos <- seq(from=1994, to=2011, by=1) #Cria um vetor para o tempo em anos de 1994 até 2011
45
    BRA \leftarrow ts(Brasil, start = 1994, frequency = 1)
    plot(BRA, main="Variação do PIB, Emprego, Cambio, PTF, Capital
46
         col=c("Blue","Black","Red","Green","Purple"), plot.type="
47
    grid(lty = "dotted",col = "lightgray")
```


52 correlacao <- cor(BR) 53 View(correlacao)

•	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF [‡]	KHumano [‡]
PIB	1.0000000	0.4916812	-0.5281227	0.3135041	-0.3032975
Emprego	0.4916812	1.0000000	-0.2830392	-0.3876761	-0.1507691
Cambio	-0.5281227	-0.2830392	1.0000000	-0.1239067	0.5143638
PTF	0.3135041	-0.3876761	-0.1239067	1.0000000	-0.1519149
KHumano	-0.3032975	-0.1507691	0.5143638	-0.1519149	1.0000000


```
#Estimando um Var
63
64 modelobra = vars::VAR(y = BR, p = 1, type = "const")
65 summary(modelobra)
66
```


Exercício: escrever o resultado do VAR na forma matricial:


```
#Função Impulso
68
69
    impulso <- irf(modelobra, n.ahead = 10)</pre>
70
    plot(impulso)
71
72
73
    #Modelo de Previsão
74
75
    previsao2 <- predict(modelobra,10)</pre>
76
    fanchart(previsao2)
77
```


Orthogonal Impulse Response from Emprego

Orthogonal Impulse Response from Cambio

Orthogonal Impulse Response from PTF

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from KHumano

Fanchart for variable PIB

Fanchart for variable PTF

Fanchart for variable Emprego

Fanchart for variable KHumano

Fanchart for variable Cambio

