INTEGRATING CLASSIFICATION AND ASSOCIATION RULE MINING

ACM Special Interest Group on Knowledge Discovery and Data Mining (KDD) 1998 Bing Liu, Wynne Hsu, Yiming Ma

OUTLINE

- Introduction
- Generating the Complete Set of CARs
- Building a Classifier
- Empirical Evaluation
- Conclusion
- Appendix

1. Introduction cont'd

- Classification rule mining and association rule mining are two important data mining techniques
- Integrating classification and association rule mining (CBA-Classification Based on Associations)
 - To focus on a special subset of association rules whose right-handside are restricted to the classification class attribute
 - The subset of rules is referred as the *class association rules* (CARs)

Contributions

- New way to build accurate classifier
- Association rule mining techniques is used for classification tasks
- Helping to solve a number of important problems with the existing classification tasks

1. Introduction

Three steps

- Discretizing continuous attributes, if any
- Generating all the class association rules (CARs)
 - Called CBA-RG
- Building a classifier based on the generated CARs
 - Called CBA-CB

Objectives

- Generating the complete set of CARs that satisfy the user-specified minimum support (*minsup*) and minimum confidence (*minconf*) constraints
- Building a classifier from the CARs

- Basic concepts
 - CBA-RG finds all ruleitems that have support above minsup
 - ruleitem is of the form: < condset, y>, where condset is a set of items, $y \in Y$ is a class label
 - condsupCount is the number of cases in D that contain the condset
 - rulesupCount is the number of cases in D that contain the condset and are labeled with class y
 - support is " $\frac{rulesupCount}{|D|} \times 100$ "
 - confidence is " $\frac{rulesupCount}{condsupCount} \times 100\%$ "
 - frequent ruleitems satisfy minsup
 - example

Assume the support count of the condset is 3

The support count of the first ruleitem is 2, and the second ruleitem is 1

The confidence of ruleitems is 66.7%, while the confidence of ruleitems 2 is 33.7%.

$$\Rightarrow$$
 (A, 1), (B, 1) \rightarrow (class, 1)[supt = 20%, confd = 66.7%] (|D| is 10)

CBA-RG algorithm

```
F_1 = \{ \text{large 1-ruleitems} \};
                                                            k-ruleitem: ruleitem whose condset has k item
    CAR_1 = genRules(F_1);
                                                           F_k: the set of frequent k-ruleitem
    prCAR_1 = pruneRules(CAR_1);
                                                            C_k: The set of candidate k-ruleitem
    for (k = 2; F_{k-1} \neq \emptyset; k++) do
         C_k = \text{candidateGen}(F_{k,1});
         for each data case d \in D do
6
                                                             Make F_1
             C_d = \text{ruleSubset}(C_k, d);
                                                             Generate CAR<sub>1</sub> by genRules
             for each candidate c \in C_d do
                                                             Apply prune operation
                                                                   If rule r's pessimistic error rate is
9
                 c.condsupCount++;
                                                                   higher than the threshold,
                 if d.class = c.class then c.rulesum
10
                                                                   the rule r is pruned
11
             end
         end
        F_{*} = \{c \in C_{*} \mid c.\text{rulesupCount} \geq minsup\};
14
         CAR_{k} = genRules(F_{k});
15
        prCAR_k = pruneRules(CAR_k);
    end
     CARs = \bigcup_{k} CAR_{k};
18 prCARs = \bigcup_{k} prCAR_{k};
```

CBA-RG algorithm

```
F_1 = \{ \text{large 1-ruleitems} \};
     CAR_1 = genRules(F_1);
     prCAR_1 = pruneRules(CAR_1);
    for (k = 2; F_{k-1} \neq \emptyset; k++) do
5
         C_k = \text{candidateGen}(F_{k,1});
         for each data case d \in D do
6
             C_d = \text{ruleSubset}(C_k, d);
             for each candidate c \in C_d do
                 c.condsupCount++;
                 if d.class = c.class then c.rulesupCount++
10
11
             end
         end
         F_{*} = \{c \in C_{*} \mid c.\text{rulesupCount} \geq minsup\};
14
         CAR_{*} = genRules(F_{*});
15
         prCAR_k = pruneRules(CAR_k);
16 end
    CARs = \bigcup_{k} CAR_{k};
18 prCARs = \bigcup_{k} prCAR_{k};
```

- k-ruleitem: ruleitem whose condset has k item
- F_k : the set of frequent k-ruleitem
- C_k . The set of candidate k-ruleitem

- Make C_k from F_{k-1}
- Scan the data base and update various support counts of the candidates in C_k
- Make new F_k
- Generate *CAR*_k using *genRules*
- Apply prune operation

CBA-RG algorithm

```
F_1 = \{ \text{large 1-ruleitems} \};
                                                          k-ruleitem: ruleitem whose condset has k item
    CAR_1 = genRules(F_1);
                                                          F_k: the set of frequent k-ruleitem
    prCAR_1 = pruneRules(CAR_1);
                                                          C_k: The set of candidate k-ruleitem
    for (k = 2; F_{k,1} \neq \emptyset; k++) do
        C_k = \text{candidateGen}(F_{k,1});
         for each data case d \in D do
6
            C_d = \text{ruleSubset}(C_k, d);
            for each candidate c \in C_d do
9
                c.condsupCount++;
10
                if d.class = c.class then c.rulesupCount++
            end
        end
        F_{*} = \{c \in C_{*} \mid c.\text{rulesupCount} \geq minsup\};
       CAR_{k} = genRules(F_{k});
        prCAR_k = pruneRules(CAR_k);
   end
    CARs = \bigcup_{k} CAR_{k};
18 prCARs = \bigcup_{k} prCAR_{k};
```

Example

A (attribute)	B (attribute)	C (attribute class)
е	р	У
е	р	У
е	q	у
g	q	у
g	q	у
g	q	n
g	W	n
g	W	n
е	р	n
f	q	n

F_1	$<(\{(A,e)\},4),((C,y),3)>,<(\{(A,g)\},5),((C,y),2)>$ $<(\{(A,g)\},5),((C,n),3)>,<(\{(B,p)\},3),((C,y),2)>$ $<(\{(B,q)\},5),((C,y),3)>,<(\{(B,q)\},5),((C,n),2)>$ $<(\{(B,w)\},2),((C,n),2)>$
CAR_1	$(A,e) \rightarrow (C,y), (A,g) \rightarrow (C,n), (B,p) \rightarrow (C,y),$ $(B,q) \rightarrow (C,y), (B,w) \rightarrow (C,n)$
preCAR ₁	$(A,e) \rightarrow (C,y), (A,g) \rightarrow (C,n), (B,p) \rightarrow (C,y),$ $(B,q) \rightarrow (C,y), (B,w) \rightarrow (C,n)$

Example

A (attribute)	B (attribute)	C (attribute class)
е	р	у
е	р	у
е	q	у
g	q	у
g	q	у
g	q	n
g	W	n
g	W	n
е	р	n
f	q	n

C ₂	$<\{(A,e),(B,p)\}),(C,y)>,<\{(A,e),(B,q)\}),(C,y)>$ $<\{(A,g),(B,p)\}),(C,y)>,<\{(A,g),(B,q)\}),(C,y)>$ $<\{(A,g),(B,q)\}),(C,n)>,<\{(A,g),(B,w)\}),(C,n)>$
F_2	<({(A,e),(B,p)},3),((C,y),2)> <({(A,g),(B,q)},3),((C,y),2)> <({(A,g),(B,q)},3),((C,y),1)> <({(A,g),(B,w)},2),((C,y),2)>
CAR ₂	$\{(A,e),(B,p)\} \to (C,y), \{(A,g),(B,q)\} \to (C,y)$ $\{(A,g),(B,w)\} \to (C,y)$
preCAR ₂	$\{(A,g),(B,w)\} \longrightarrow (C,y)$

$$CAR_{S}: (A, e) \to (C, y), (A, g) \to (C, n), (B, p) \to (C, y),$$

 $(B, q) \to (C, y), (B, w) \to (C, n), \{(A, e), (B, p)\} \to (C, y),$
 $\{(A, g), (B, q)\} \to (C, y), \{(A, g), (B, w)\} \to (C, y)$
 $preCAR_{S}: (A, e) \to (C, y), (A, g) \to (C, n), (B, p) \to (C, y),$
 $(B, q) \to (C, y), (B, w) \to (C, n), \{(A, g), (B, w)\} \to (C, y),$

- Basic Concepts
 - CBA-CB selects a small set of rules from the complete CARs as the classifier
 - Classifier for CBA is represented as $\langle r_1, r_2, ..., r_n, default_class \rangle$
 - Two algorithms

- Suitable for small datasets
- M2
 - Suitable for huge datasets

```
where r_i \in R, r_a > r_b if b > a
```

Given two rules r_i and r_j ,

 $r_i > r_j$ (also called r_i precedes r_j or r_i has a higher precedence than r_i) if

- 1. the confidence of r_i is greater than that of r_j , or
- 2. their confidences are the same, but the support of r_i is greater than that of r_i , or
- 3. both the confidences and supports of r_i and r_j are the same, but r_i is generated earlier than r_i

- CBA-CB: M1
 - Three steps
 - Sort the set of generated rules R according to the relation ">"
 - Select rules for the classifier from R following the sorted sequence
 - Discard rules that do not improve the accuracy of the classifier

```
R = \operatorname{sort}(R);
   for each rule r \in R in sequence do
        temp = \emptyset;
        for each case d \in D do
          if d satisfies the conditions of r then
            store d.id in temp and mark r if it correctly
               classifies d:
        if r is marked then
8
           insert r at the end of C:
           delete all the cases with the ids in temp from D;
10
           selecting a default class for the current C;
           compute the total number of errors of C;
12
        end
14 Find the first rule p in C with the lowest total number
         of errors and drop all the rules after p in C;
15 Add the default class associated with p to end of C,
         and return C (our classifier).
```

CBA-CB: M1

algorithm

```
R = \operatorname{sort}(R):
    for each rule r \in R in sequence d
        temp = \emptyset;
        for each case d \in D do
          if d satisfies the conditions of r then
             store d.id in temp and mark r if it correctly
               classifies d:
        if r is marked then
           insert r at the end of C:
9
           delete all the cases with the ids in temp from D;
10
           selecting a default class for the current C;
11
           compute the total number of errors of C;
12
        end
13 end
   Find the first rule p in C with the lowest total number
         of errors and drop all the rules after p in C;
   Add the default class associated with p to end of C,
         and return C (our classifier).
```

 Chose the highest precedence rules for the classifier

CBA-CB: M1

algorithm

```
R = sort(R):
     for each rule r \in R in sequence do
         temp = \emptyset;
        for each case d \in D do
           if d satisfies the conditions of r then
             store d.id in temp and mark r if it correctly
                classifies d:
        if r is marked then
            insert r at the end of C:
            delete all the cases with the ids in temp from D;
10
            selecting a default class for the current C;
11
            compute the total number of errors of C;
12
         end
13__end_
```

- 14 Find the first rule p in C with the lowest total number of errors and drop all the rules after p in C;
- 15 Add the default class associated with p to end of C, and return C (our classifier).

- For each rule r, go through D to find those cases covered by r
- Mark r if it correctly classifier a case d
- If r can correctly classify at least one case, it will be a potential rule
- Those cases it covers are then removed from D
- · A default class is selected
- Compute the total number of errors of C

CBA-CB: M1

algorithm

```
R = sort(R):
    for each rule r \in R in sequence do
        temp = \emptyset;
       for each case d \in D do
          if d satisfies the conditions of r then
            store d.id in temp and mark r if it correctly
               classifies d:
       if r is marked then
           insert r at the end of C:
9
           delete all the cases with the ids in temp from D;
10
           selecting a default class for the current C;
11
           compute the total number of errors of C;
12
        end
13 end
14 Find the first rule p in C with the lowest total number
         of errors and drop all the rules after p in C;
15 Add the default class associated with p to end of C,
         and return C (our classifier).
```

- Discard rules that do not improve the accuracy of the classifier
- The undiscarded rules and the default class form classifier

CBA-CB: M1

Example

A (attribute)	B (attribute)	C (attribute class)
е	р	у
е	р	у
е	q	у
g	q	У
g	q	у
g	q	n
g	W	n
g	W	n
е	р	n
f	q	n

No.	Rules	support	confidence
1	$<(A,e)> \rightarrow y$	3/10	3/4
2	$<(A,g)> \rightarrow n$	3/10	3/5
3	$<(B,p)> \rightarrow y$	2/10	2/3
4	$<(B,q)> \rightarrow y$	3/10	3/5
5	$<(B,w)> \rightarrow n$	2/10	2/2
6	$<(A,g),(B,q)> \rightarrow y$	2/10	2/3

CBA-CB: M1

Example

A (attribute)	B (attribute)	C (attribute class)							
е	р	у							
е	р	У							
е	q	у							
g	q	У							
g	q	у							
g	q	n							
g	W	n							
g	W	n							
е	р	n							
f	q	n							

5	>	1	>	3	>	6	>	2.	>	4
		-				U				-

No.	Rules	support	confidence
5	$<(B,w)> \rightarrow n$	2/10	2/2

rule	No. of cases covered by condset	No. of cases correctly classified by the rule	No. of cases wrongly classified by the rule	Default class	No. of error
1	2	2	0	у	{0+3}=3

$$"C = \{ \}" \Rightarrow "C = \{5\}"$$

• CBA-CB: M1

Example

A (attribute)	B (attribute)	C (attribute class)							
е	р	у							
е	р	у							
е	q	У							
g	q	у							
g	q	у							
g	q	n							
g	W	n							
g	W	n							
е	р	n							
f	q	n							

5	>	1	>	3	>	6	>	2.	>	4
		-				U				-

No.	Rules	support	confidence
5	$<(B,w)> \rightarrow n$	2/10	2/2
1	$<(A,e)> \rightarrow y$	3/10	3/4

rule	No. of cases covered by condset	No. of cases correctly classified by the rule	No. of cases wrongly classified by the rule	Defa ult class	No. of error
5	2	2	0	у	{0+3}=3
1	4	3	1	у	0+{1+2}=3

$$"C = \{5\}" \Rightarrow "C = \{5,1\}"$$

CBA-CB: M1

Example

A (attribute)	B (attribute)	C (attribute class)
е	р	У
е	р	У
е	q	У
g	q	у
g	q	у
g	q	n
g	W	n
g	W	n
е	р	n
f	q	n

5 > 1 > 3 > 6 > 2 > 4

No.	Rules	support	confidence
5	$<(B,w)> \rightarrow n$	2/10	2/2
1	$<(A,e)> \rightarrow y$	3/10	3/4
3	$\langle (B,p) \rangle \longrightarrow y$	2/10	2/3

rule	No. of cases covered by condset	No. of cases correctly classified by the rule	No. of cases wrongly classified by the rule	Defa ult class	No. of error
5	2	2	0	у	{0+3}=3
1	4	3	1	у	0+{1+2}=3
3	0	0	0	none	0

$$"C = \{5, 1\}" \Rightarrow "C = \{5, 1\}"$$

CBA-CB: M1

Example

A (attribute)	B (attribute)	C (attribute class)
е	р	У
е	р	У
е	q	У
g	q	у
g	q	у
g	q	n
g	W	n
g	W	n
е	р	n
f	q	n

5 > 1 > 3 > 6 > 2 > 4

No.	Rules	support	confidence
5	$<(B,w)> \rightarrow n$	2/10	2/2
1	$<(A,e)> \rightarrow y$	3/10	3/4
3	$\langle (B,p) \rangle \longrightarrow y$	2/10	2/3
6	$<(A,g),(B,q)> \to y$	2/10	2/3

rule	No. of cases covered by condset	No. of cases correctly classified by the rule	No. of cases wrongly classified by the rule	Defa ult class	No. of error
5	2	2	0	у	{0+3}=3
1	4	3	1	у	0+{1+2}=3
6	3	2	1	n	0+1+{1+0}=2

$$"C = \{5,1\}" \Rightarrow "C = \{5,1,6\}"$$

CBA-CB: M1

Example

A (attribute)	B (attribute)	C (attribute class)		
е	р	У		
е	р	У		
е	q	У		
g	q	у		
g	q	у		
g	q	n		
g	W	n		
g	W	n		
е	р	n		
f	q	n		

5 > 1 > 3 > 6 > 2 > 4

No.	Rules	support	confidence
5	$<(B,w)> \rightarrow n$	2/10	2/2
1	$<(A,e)> \rightarrow y$	3/10	3/4
3	$\langle (B,p) \rangle \rightarrow y$	2/10	2/3
6	$<(A,g),(B,q)> \rightarrow y$	2/10	2/3
2	$<(A,g)> \rightarrow n$	3/10	3/5

rule	No. of cases covered by condset	No. of cases correctly classified by the rule	No. of cases wrongly classified by the rule	Defa ult class	No. of error
5	2	2	0	у	{0+3}=3
1	4	3	1	у	0+{1+2}=3
6	3	2	1	n	0+1+{1+0}=2
2	0	0	0	none	0

minsup: 15% • minconf: 15% " $C = \{5, 1, 6\}$ " \Rightarrow " $C = \{5, 1, 6\}$ "

CBA-CB: M1

Example

A (attribute)	B (attribute)	C (attribute class)
е	р	У
е	р	У
е	q	У
g	q	У
g	q	У
g	q	n
g	W	n
g	W	n
е	р	n
f	q	n

5 > 1 > 3 > 6 > 2 > 4

No.	Rules	support	confidence
5	$<(B,w)> \rightarrow n$	2/10	2/2
1	$<(A,e)> \rightarrow y$	3/10	3/4
3	$\langle (B,p) \rangle \longrightarrow y$	2/10	2/3
6	$<(A,g),(B,q)> \rightarrow y$	2/10	2/3
2	$<(A,g)> \rightarrow n$	3/10	3/5
4	$\langle (B,q) \rangle \rightarrow y$	3/10	3/5

rule	No. of cases covered by condset	No. of cases correctly classified by the rule	No. of cases wrongly classified by the rule	Defa ult class	No. of error
5	2	2	0	у	{0+3}=3
1	4	3	1	у	0+{1+2}=3
6	3	2	1	n	0+1+{1+0}=2
4	1	0	1	none	0+1+1+{1+0}

• *minsup*: 15% • *minconf*: 15%

 $"C = \{5, 1, 6\}" \Rightarrow "C = \{5, 1, 6\}"$

4. Empirical Evaluation cont'd

- Comparisons between CBA and C4.5
- Experimental environments
 - 26 datasets were used from UCI ML Repository
 - minconf is set to 50 %
 - minsup is set to 1 %
 - The total number of candidate rules in memory is set to a limit of 80,000
 - Discretization of continuous attributes is done using the Entropy method
 - All the error rates on each dataset are obtained from 10-fold crossvalidations

4. Empirical Evaluation cont'd

Datasets	c4.5rules w/o discr.	c4.5rules discr.	CBA (CARs		CBA (CAF		No. of CARs	Run time (se		me (sec) BA-CB)	No. of Rules	
			w/o pru.	-	w/o pru	pru.	w/o pru. pru.	w/o pru pri		M2	in C	
anneal*	5.2	6.5	1.9	1.9	3.2	3.6	65081	1				1
australian*	15.3	13.5	13.5	13.4	13.2	13.4	46564 4					
auto*	19.9	29.2	21.0	23.1	24.0	27.2	50226	CBA proc	uces mo	re acci	urate cla	assifiers
breast-w	5.0	3.9	3.9	3.9	4.2	4.2		than C4.5				
cleve*	21.8	18.2	18.1	19.1	16.7	16.7	4885			•	40	
crx*	15.1	15.9	14.3	14.3	14.1	14.1	42877	CBA is su	iperior to	C4.5	on 16 oi	the 26
diabetes	25.8	27.6	24.8	25.5	24.7	25.3	3315	datasets				
german*	27.7	29.5	27.2	26.5	25.2	26.5	69277 4	Without o	r with ru	le nruni	ing the	accuracy
glass	31.3	27.5	27.4	27.4	27.4	27.4	4234	of the res		•	•	•
heart	19.2	18.9	19.6	19.6	18.5	18.5	52309	or the res	ullani Cia	assinei	is aimo	Surie
hepatitis*	19.4	22.6	15.1	15.1	15.1	15.1	63134 2	same				
horse*	17.4	16.3	18.2	17.9	18.7	18.7	62745 1					
hypo*	0.8	1.2	1.6	1.6	1.9	1.7	37631	1 10.00	* * * * * * * * * * * * * * * * * * * *	v. 10		I
ionosphere*	10.0	8.0	7.9	7.9	8.2	8.2	55701 10055	3.75 4.0	0.56	0.41	45	
iris	4.7	5.3	7.1	7.1	7.1	7.1	72 23	0.00 0.0		0.00	5	
labor	20.7	21.0	17.0	17.0	17.0	17.0	5565 313	0.17 0.2	0.00	0.00	12	
led7	26.5	26.5	27.8	27.8	27.8	27.8	464 336	0.40 0.4	5 0.11	0.10	71	
lymph*	26.5	21.0	20.3	18.9	20.3	19.6	40401 2965	2.70 2.7	0.07	0.05	36	
pima	24.5	27.5	26.9	27.0	27.4	27.6	2977 125	0.23 0.2	5 0.04	0.02	45	
sick*	1.5	2.1	2.8	2.8	2.7	2.7	71828 627	32.60 33.4		0.40	46	
sonar*	29.8	27.8	24.3	21.7	24.3	21.7	57061 1693	5.34 5.2		0.12	37	
tic-tac-toe	0.6	0.6	0.0	0.0	0.0	0.0	7063 1378	0.62 0.7		0.08	8	
vehicle*	27.4	33.6	31.3	31.2	31.5	31.3	23446 5704	6.33 6.3		0.40	125	
waveform*	21.9	24.6	20.2	20.2	20.4	20.6	9699 3396	13.65 13.5		1.12	386	
wine	7.3	7.9	8.4	8.4	8.4	8.4	38070 1494	2.34 2.6		0.04	10	
Z00*	7.8	7.8	5.4	5.4	5.4	5.4	52198 2049	2.73 2.7	0.61	0.32	7	
Average	16.7	17.1	15.6	15.6	15.7	15.8	35140 2377	6.35 6.4	4 0.39	0.18	69	

4. Empirical Evaluation

Datasets	c4.5rules w/o discr.	c4.5rules discr.	CBA (CARs -		CBA (CAR		No. CAl		Run time (sec) (CBA-RG)		Run time (sec) (CBA-CB)		No. of Rules
	w/o pru. pru. w/o pru pru.		w/o pru	pru.	w/o pru	pru.	M1	M2	in C				
anneal*	5.2	6.5	1.9	1.9	3.2	3.6	65081	611	14.33	14.36	0.08	0.06	34
australian*	15.3	13.5	13.5	13.4	13.2	13.4	46564	4064	5.00	5.05	0.20	0.22	148
auto*	19.9	29.2	21.0	23.1	24.0	27.2	50236	3969	3.30	3.55	0.12	0.06	54
breast-w	5.0	3.9	3.9	3.9	4.2	4.2	2831	399	0.30	0.33	0.02	0.03	49
cleve*	21.8	18.2	18.1	19.1	16.7	16.7	48854	1634	4.00	4.30	0.04	0.06	78
crx*	15.1	15.9	14.3	14.3	14.1	14.1	42877	4717	4.90	5.06	0.43	0.30	142
diabetes	25.8	27.6	24.8	25.5	24.7	25.3	3315	162	0.25	0.28	0.03	0.01	57
german*	27.7	29.5	27.2	26.5	25.2	26.5	69277	4561	5.60	6.00	1.04	0.28	172
glass	31.3	27.5	27.4	27.4	27.4	27.4	4234	291	0.20	0.22	0.02	0.00	27
heart	19.2	18.9	19.6	19.6	18.5	18.5	52309	624	4.70	4.60	0.04	0.03	52
hepatitis*	19.4	22.6	15.1	15.1	15.1	15.1	63134	2275	2.80	2.79	0.09	0.05	23
horse*	17.4	16.3	18.2	17.9	18.7	18.7	62745	7846	3.2	3.33	0.35	0.19	97
hypo*	0.8	1.2	1.6	1.6	1.9	1.7	37631	493	45.60	45.30	1.02	0.40	35
ionosphere*	10.0	8.0	7.9	7.9	8.2	8.2	55701	10055	3.75	4.00	0.56	0.41	45
iris	4.7	5.3	7.1	7.1	7.1	7.1	72	23	0.00	0.00	0.00	0.00	5
labor	20.7	21.0	17.0	17.0	17.0	17.0	5565	313	0.17	0.20	0.00	0.00	12
1ed7	26.5	26.5	27.8	27.8	27.8	27.8	464	336	0.40	0.45	0.11	0.10	71
lymph*	26.5	21.0	20.3	18.9	20.3	19.6	40401	2965	2.70	2.70	0.07	0.05	36
pima	24.5	27.5	26.9	27.0	27.4	27.6	2977	125	0.23	0.25	0.04	0.02	45
sick*	1.5	2.1	2.8	2.8	2.7	2.7	71828	627	32.60	33.40	0.62	0.40	46
sonar*	29.8	27.8	24.3	21.7	24.3	21.7	57061	1693	5.34	5.22	0.30	0.12	37
tic-tac-toe	0.6	0.6	0.0	0.0	0.0	0.0	7063	1378	0.62	0.71	0.12	0.08	8
vehicle*	27.4	33.6	31.3	31.2	31.5	31.3	23446	5704	6.33	6.33	1.40	0.40	125
waveform*	21.9	24.6	20.2	20.2	20.4	20.6	9699	3396	13.65	13.55	2.72	1.12	386
wine	7.3	7.9	8.4	8.4	8.4	8.4	38070	1494	2.34	2.65	0.11	0.04	10
z00*	7.8	7.8	5.4	5.4	5.4	5.4	52198	2049	2.73	2.70	0.61	0.32	7
Average	16.7	17.1	15.6	15.6	15.7	15.8	35140	2377	6.35	6.44	0.39	0.18	69

5. Conclusion

- Propose a framework to integrate classification and association rule mining
- Framework has two steps
 - To generate all class association rules (CARs)
 - To build an accurate classifier
- Future work
 - To focus on building more accurate classifiers by using more sophisticated techniques and to mine CARs without prediscretization

Appendix cont'd

- CBA-CB: M2 (cont'd)
 - Instead of making one pass over the remaining data for each rule (M1),
 - To find the best rule in R to cover each case
 - There are three steps (cont'd)
 - Stage 1

```
1 Q = \emptyset; U = \emptyset; A = \emptyset;

2 for each case d \in D do

3 cRule = \max CoverRule(C_o, d);

4 wRule = \max CoverRule(C_w, d);

5 U = U \cup \{cRule\};

6 cRule.classCasesCovered[d.class]++;

1 if cRule \succ wRule then

8 Q = Q \cup \{cRule\};

10 else A = A \cup \leq d.id, d.class, cRule, wRule \geq d.id
```

Appendix cont'd

- CBA-CB: M2 (cont'd)
 - There are three steps (cont'd)
 - Stage 2

```
for each entry \leq dID, y, cRule, wRule \geq \in A do
      if wRule is marked then
         cRule.classCasesCovered[y]--;
        wRule.classCasesCovered[y]++;
      else wSet = allCoverRules(U, dID.case, cRule);
6
            for each rule w \in wSet do
              w.replace = w.replace \cup {< cRule, dID, y>};
8
              w.classCasesCovered[y]++;
            end
10
            Q = Q \cup wSet
11
      end
12 end
```

Appendix cont'd

- CBA-CB: M2 (cont'd)
 - There are three steps
 - Stage 3

```
classDistr = compClassDistri(D);
    ruleErrors = 0:
    Q = sort(Q);
    for each rule r in Q in sequence do
      if r.classCasesCovered[r.class] \neq 0 then
6
           for each entry \langle rul, dID, y \rangle in r.replace do
               if the dID case has been covered by a
                   previous r then
8
                  r.classCasesCovered[v]--;
9
                else rul.classCasesCovered[v]--;
           ruleErrors = ruleErrors + errorsOfRule(r);
10
11
           classDistr = update(r, classDistr);
12
           defaultClass = selectDefault(classDistr);
13
           defaultErrors = defErr(defaultClass, classDistr);
14
           totalErrors = ruleErrors + defaultErrors:
15
           Insert \leq r, default-class, totalErrors\geq at end of C
16
      end
17 end
   Find the first rule p in C with the lowest totalErrors,
        and then discard all the rules after p from C;
19 Add the default class associated with p to end of C;
20 Return C without totalErrors and default-class;
```

Appendix

- CBA-CB: M2 (cont'd)
 - Example

A	В	С
e	р	У
e	р	У
e	q	У
g	q	У
g	q	У
g	q	n
g	W	n
g	W	n
e	р	n
f	q	n

CARs after pruning:

(1)
$$A = e \rightarrow y$$
 sup=3/10 conf=3/4
(2) $A = g \rightarrow n$ sup=3/10 conf=3/5
(3) $B = p \rightarrow y$ sup=2/10 conf=2/3
(4) $B = q \rightarrow y$ sup=3/10 conf=3/5
(5) $B = w \rightarrow n$ sup=2/10 conf=2/2
(6) $A = g$, $B = q \rightarrow y$ sup=2/10 conf=2/3

$\overline{}$		_						
A	В	C	covRules	cRule	wRule	U	Q	A
e	p	y	1, 3	1	null	1	1	
e	p	y	1, 3	1	null	1	1	
e	q	y	1, 3	1	null	1	1	
g	q	y	2, 4, 6	6	2	1,6	1,6	
g	q	y	2, 4, 6	6	2	1,6	1,6	
g	q	n	2, 4, 6	2	6	1,6,2	1,6	(6,n,2,6)
g	w	n	2, 5	5	null	1,6,2,5	1,6,5	(6,n,2,6)
g	w	n	2, 5	5	null	1,6,2,5	1,6,5	(6,n,2,6)
e	p	n	1, 3	null	1	1,6,2,5	1,6,5	(6,n,2,6),(9,n,null,1)
f	q	n	4	null	4	1,6,2,5	1.6.5	(6,n,2,6),(9,n,null,1)(10,n,null,4)