Theorem 0.1

 $S \subseteq V$ is affine, $\vec{0} \in S$, then S is affine if and only if S is a vector subspace of V.

Theorem 0.2 $(\widetilde{S} := \{\vec{a} - \vec{b} \mid \vec{a}, \vec{b} \in S\})$

For $\vec{x} \in S$, S is affine if and only if $S - \vec{x}$ is affine. If S is affine, $S - \vec{x} = \widetilde{S}$.

Theorem 0.3

Let $f: X \to Y$ be a function. f is sequentially continuous if and only if f is continuous.

Theorem 0.4 (Bolzano-Weierstrass Theorem for metric spaces)

A metric space (X, d) is compact if and only if (X, d) is sequentially compact.

Theorem 0.5 (Bolzano-Weierstrass Theorem for \mathbb{R}^n space)

For $X \subseteq \mathbb{R}^n$, X is sequentially compact if and only if X is closed and bounded.

Theorem 0.6 (Heine-Borel Theorem)

For $X \subseteq \mathbb{R}^n$ with Euclidean metric, X is compact if and only if X is closed and bounded.

Theorem 0.7 (Chain Rule for Multivariate Differentiation)

Let $f: V \to W$ be a differentiable function, and let $g: im(f) \to Z$ be a differentiable function. For $\vec{a} \in V$, $D(q \circ f)(\vec{a}) = Dq(\vec{b}) \circ Df(\vec{a})$, where $f(\vec{a}) = \vec{b}$.

Theorem 0.8

Let A be an open subset of \mathbb{R}^m , and let $f: A \to \mathbb{R}^n$ $\vec{a} \mapsto (f_1(\vec{a}), f_2(\vec{a}), \dots, f_n(\vec{a}))$ be a function. If $D_k f_j$ exists and is continuous, then $f \in C^1(A, \mathbb{R}^n)$.

Theorem 0.9

Given $f \in C^2(A, \mathbb{R})$, where A is an open subset of \mathbb{R}^2 . Then we can write the following:

$$D_2 D_1 f(a,b) = \lim_{(h,k)\to(0,0)} \frac{f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b)}{hk}$$

Theorem 0.10 (Inverse Function Theorem)

Let A be an open subset of \mathbb{R}^n , let $\vec{a} \in A$, let $f \in C^r(A, \mathbb{R}^n)$ with $r \geq 1$, and given $Df(\vec{a})$ is invertible. There exists an open neighborhood U of \vec{a} such that $f|_U$ is a C^r -diffeomorphism, that is, f maps U bijectively to some open set in \mathbb{R}^n , and $f^{-1}: f(U) \to U$ is of C^r type.

Theorem 0.11

Given E as a open subset of \mathbb{R}^n , $f \in C^1(E, \mathbb{R}^n)$, and $\det(Df(\vec{x})) \neq 0$ for all $\vec{x} \in E$. Then $f(\vec{a}) \in Int(f(E))$ for all $\vec{a} \in E$, f(E) is open in \mathbb{R}^n , and $f: E \to f(E)$ is an open map.

Theorem 0.12 (Implicit Function Theorem)

Let \vec{G} in \mathbb{R}^{k+n} , $\vec{G} = (\vec{x}, \vec{y})$ with $\vec{x} \in \mathbb{R}^k$, $\vec{y} \in \mathbb{R}^n$. Fix \vec{S} in \mathbb{R}^{k+n} , $\vec{S} = (\vec{a}, \vec{b})$ with $\vec{a} \in \mathbb{R}^k$, $\vec{b} \in \mathbb{R}^n$. For $f \in C^r(A, \mathbb{R}^n)$, where A is an open subset of \mathbb{R}^{k+n} . If we have $\vec{S} \in f^{-1}(\vec{0}) := E$, and $\frac{\partial f}{\partial \vec{y}} \vec{S}$ is invertible. Then there exists a neighborhood U of \vec{S} such that $E \cap U = Graph(g)$ for a unique function $g \in C^r(B, \mathbb{R}^n)$, where $\vec{a} \in B$, and B is an open subset of \mathbb{R}^k . In other words, \exists an open neighborhood B of \vec{x} such that $\vec{y} = g(\vec{x})$ and $f(\vec{x}, g(\vec{x})) = \vec{0}$ for all $\vec{x} \in B$, with a unique function $g \in C^r(B, \mathbb{R}^n)$.

Theorem 0.13 (First Derivative Test for Higher Dimensions)

Let Ω be an open subset of \mathbb{R}^n , and let $h: \Omega \to \mathbb{R}$ be a function that achieves a local maximum, or minimum, at $\vec{p} \in \Omega$, then $Dh(\vec{p}) = 0$.

${\bf Theorem~0.14~(Lagrange~Multiplier~Theorem)}$

Let U be an open subset of \mathbb{R}^{k+n} , let the constraint function be $f \in C^1(U, \mathbb{R}^n)$ with $E = f^{-1}(\vec{0})$, let the objective function be $h \in C^1(U, \mathbb{R})$, with the property that $h|_E$ has a local maximum, or a local minimum, at $\vec{p} \in E$. Given $rank((Df(\vec{p})) = n$, we have $Dh(\vec{p})$ belongs to the row space of $Df(\vec{p})$, that is, we can write $Dh(\vec{p}) = \lambda_1 Df_1(\vec{p}) + \cdots + \lambda_n Df_n(\vec{p})$ for $\lambda_j \in \mathbb{R}$.

Theorem 0.15 (Spectral Theorem)

Every symmetric square matrix admits an orthonormal basis of eigenvectors. The corresponding eigenvalues are all real.

Theorem 0.16 (Second Derivative Test for Higher Dimensions)

Let Ω be an open subset of \mathbb{R}^n , let $f \in C^2(\Omega, \mathbb{R})$, with $Hf(\vec{x}) \geq 0$ for all $\vec{x} \in \Omega$. If $Df(\vec{x}_0) = \vec{0}$ for some $\vec{x}_0 \in \Omega$, then $f(\vec{x}) \geq f(\vec{x}_0)$ for all $\vec{x} \in \Omega$.

Theorem 0.17 (Local Second Derivative Test)

Let A be an open subset of \mathbb{R}^n , let $f \in C^2(A, \mathbb{R})$, let $\vec{x}_0 \in A$ with $Df(\vec{x}_0) = \vec{0}$. Then we have the followings hold:

- 1. If we have $Hf(\vec{x}_0) > 0$, then $Hf(\vec{x}) > 0$ for all $\vec{x} \in B_{\delta}(\vec{x}_0)$ with some $\delta > 0$, and the function f achieves a local minimum at \vec{x}_0
- 2. If we have $Hf(\vec{x}_0) \ngeq 0$, then the function f has a strict local maximum at the point \vec{x}_0 along some line in A, and hence f does not have a local minimum at the point \vec{x}_0 .
- 3. If we have $Hf(\vec{x}_0) < 0$, then f has strict local maximum at \vec{x}_0
- 4. If we have $Hf(\vec{x}_0) \nleq 0$, then f does not have a local maximum at \vec{x}_0
- 5. If we have $Hf(\vec{x}_0)$ is not definite nor semi-definite, then the function f does not have a local max, nor local min, at the point \vec{x}_0 .

Proposition 0.18

Let (X,\mathcal{T}) be a topological space, the followings are equivalent:

- 1. There exists $f: X \to \{0,1\}$ that is a continuous surjective function.
- 2. There exists nonempty $A \subsetneq X$ that is open and closed in X

Proposition 0.19

Let (X,\mathcal{T}) be a topological space. The function $f: X \to \mathbb{R}^n$ $x \mapsto (f_1(x), f_2(x), \dots, f_n(x))$ is continuous if and only if each function $f_j: X \to \mathbb{R}$ is continuous.

Let f be a C^2 type function defined in a neighborhood of $\vec{x} \in \mathbb{R}^n$. The **Hessian** $Hf(\vec{x})$ of f at \vec{x} is the $n \times n$ matrix whose entry at i-th row, j-th column is given by $D_k D_j f(\vec{x})$.

The directional derivative of f at \vec{a} in the direction of \vec{u} is $f'(\vec{a}; \vec{u}) \coloneqq \lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t}$.

Let V,W be normed vector spaces over the field $\mathbb R$ or the field $\mathbb C$, let $\vec a\in A$, where A is an open subset of V. For function $f:V\to W$, we write $Df(\vec a)=T$ provided that there exists $T\in B(V,W)$ that satisfies $\lim_{\vec h\to \vec 0}\frac{f(\vec a+\vec h)-f(\vec a)-T(\vec h)}{||\vec h||}=\vec 0$. If such T exists, then we write $Df(\vec a)(\vec h)=T(\vec h)$ and f is said to be **differentiable** at $\vec a$.

Let (X, d) be a metric space, let $x_0 \in X$, and let $A \subseteq X$. x_0 is **interior** to A provided that $\exists \epsilon > 0$ such that $B_{\epsilon}(x_0) \subseteq A$. x_0 is **exterior** to A provided that $\exists \epsilon > 0$ such that $B_{\epsilon}(x_0) \cap A = \emptyset$. x_0 is a **boundary point** of A provided that $\forall \epsilon > 0$, we have $B_{\epsilon}(x_0) \cap A \neq \emptyset \neq B_{\epsilon}(x_0) \cap (X \setminus A)$.

 $f:X\to Y$ is said to be **bi-Lipschitz** provided that $\exists C\in [0,+\infty), \widetilde{C}\in (0,\infty)$ such that $\widetilde{C}\cdot d_X(x_1,x_2)\leq d_Y(f(x_1),f(x_2))\leq Cd_X(x_1,x_2)$ for all $x_1,x_2\in X$.

In general, if $B \in Mat(n, n, \mathbb{R})$ is a symmetric matrix then we say that $B \geq 0$ if $\vec{a}^T B \vec{a} \geq 0$ for all $\vec{a} \in \mathbb{R}^n$. Here B admits a set of maximized real eigenvalues $\{\mu_1, \mu_2, \cdots, \mu_n\}$.

- 1. If $\mu_i \geq 0$ for all $1 \leq j \leq n$, then B is positive semi-definite, with B > 0
- 2. If $\mu_j > 0$ for all $1 \le j \le n$, then B is said to be positive definite, with $B \ge 0$.
- 3. If $\mu_j \leq 0$ for all $1 \leq j \leq n$, then B is said to be negative semi-definite, with $B \leq 0$.
- 4. If $\mu_j < 0$ for all $1 \le j \le n$, then B is said to be negative definite, with B < 0.

Note: For vector space V over \mathbb{R} . $S \subseteq V$ is convex if and only if S is connected.

Note: A function T is affine if and only if $T = \tilde{T} + \vec{b}$ for some linear T and $\vec{b} = T(\vec{0})$.

Note: Let (X, d) be a metric space, let $A \subseteq X$, and let $x_0 \in X$. Int(A) is an open subset of A, and it contains all open subsets of A. Bd $(X \setminus A) = Bd(A)$. Bd(A) is closed.

Note: (X,d) is compact if and only if every sequence in X admits a convergent subsequence.

Note: Let (X, d) be a sequentially compact metric space, $\forall \epsilon > 0$, we can cover X by finitely many ϵ -ball, in other words, X is totally bounded.

Note: A path connected topological space is connected.

Note: Convex subset of \mathbb{R}^n is connected and path-connected.

Note: Let V and W be normed vector spaces over field \mathbb{R} or \mathbb{C} . For $T \in \text{hom}(V, W)$, TFAE:

- (1) T is Lipschitz, (2) T is continuous, (3) T is continuous at $\vec{0} \in V$,
- (4) $\exists M \in [0, \infty)$ such that $||T\vec{v}|| \leq M||\vec{v}|| \ \forall \vec{v} \in V$, in which we say T is bounded.

Note: Intersection of affine sets is affine, intersection of convex sets is convex.

Theorem 0.20

Let $f: V \to W$ be a linear map between normed vector space, TFAE:

- 1. $\exists M \in [0, \infty)$ such that $||T\vec{v}|| \leq M$ with $||\vec{v}|| \leq 1$.
- 2. $\exists M \in [0,\infty)$ such that $||T\vec{v}|| \leq M||\vec{v}||$ for all $\vec{v} \in V$.
- 3. T satisfies $d_W(T(\vec{v}_1), T(\vec{v}_2)) \leq M \cdot d_V(\vec{v}_1, \vec{v}_2)$ for $\vec{v}_1, \vec{v}_2 \in V$ and some $M \in [0, \infty)$.
- 4. T is continuous on V.
- 5. T is continuous at $\vec{0}$.

Theorem 0.21 (Contraction Mapping Theorem)

Let $f: X \to X$ be a contraction on a non-empty complete metric space X. The equation f(x) = x has exactly one solution $x \in X$.

Theorem 0.22

A linear map from a finite dimensional vector space to normed vector space is continuous. If $T: \mathbb{R}^m \to W$ is a linear bijection, then T^{-1} is continuous.

Theorem 0.23

Let $||\cdot||$ and $|\cdot|$ be two norms on a finite dimensional vector space V over the field \mathbb{R} . There exists $C_1, C_2 \in (0, \infty)$ such that $C_1^{-1}||\vec{v}|| \leq |\vec{v}| \leq C_2||\vec{v}||$ for all $\vec{v} \in V$.

Theorem 0.24

Let V be a vector space over a field F, a nonempty finite subset A of V is affinely independent if and only if for all $\vec{a} \in A$, \vec{a} is not an affine combination of vectors in $A \setminus \{\vec{a}\}$.

Theorem 0.25

Let M be an $n \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^n$ $\vec{x} \mapsto M\vec{x}$ be a function. T is isometry if and only if $< M\vec{x}, M\vec{y}> = <\vec{x}, \vec{y} > \text{for } \vec{x}, \vec{y} \in \mathbb{R}^n$, if and only if $M^TM = I$.

Theorem 0.26

Any path connected set is connected.

Any connected open subset of \mathbb{R}^n is path connected.

Any open subset of \mathbb{R}^n is a countable disjoint union of connected open sets.

Theorem 0.27

Let Ω be an open subset of \mathbb{R}^n , let $\psi \in C^2(\Omega, \mathbb{R})$ with the property that $H\psi(\vec{x}) > 0 \ \forall \vec{x} \in \Omega$.

$$epigraph(\psi) = \bigcap_{\vec{x}_0 \in \Omega} \{ (\vec{x}, y) \in \Omega \times \mathbb{R} \mid y \ge \psi(\vec{x}_0) + D\psi(\vec{x}_0)(\vec{x} - \vec{x}_0) \} \text{ is convex}$$

Theorem 0.28

Let Ω be a convex subset of \mathbb{R}^n . $f: \Omega \to \mathbb{R}$ is convex if and only if we have: $f((1-t)\vec{x}_0 + t\vec{x}_1) \leq (1-t)f(\vec{x}_0) + tf(\vec{x}_1), \quad \forall \vec{x}_1, \vec{x}_0 \in \Omega, \ 0 \leq t \leq 1$

Theorem 0.29

Let A be an open subset of \mathbb{R}^{k+n} , and let $f: A \to \mathbb{R}^n$ be a differentiable function. Write f in the form $f(\vec{x}, \vec{y})$ for $\vec{x} \in \mathbb{R}^k$ and $\vec{y} \in \mathbb{R}^n$. If there exists a differentiable function $f: B \to \mathbb{R}^n$ defined on an open set B in \mathbb{R}^k such that $f(\vec{x}, g(\vec{x})) = \vec{0}$ for all $\vec{x} \in B$, then for $\vec{x} \in B$, we have:

$$Dg(\vec{x}) = - \left[\frac{\partial f}{\partial \vec{y}}(\vec{x}, g(\vec{x})) \right]^{-1} \frac{\partial f}{\partial \vec{x}}(\vec{x}, g(\vec{x}))$$

Theorem 0.30

Let A be an open subset of \mathbb{R}^n , let $f: A \to \mathbb{R}^n$, and let $f(\vec{a}) = \vec{b}$. Let g be a function that maps an open neighborhood of \vec{b} into \mathbb{R}^n such that $g(\vec{b}) = \vec{a}$, and $g(f(\vec{x})) = \vec{x}$ for all \vec{x} in a neighborhood of \vec{a} . If f is differentiable at \vec{a} and if g is differentiable at \vec{b} , then we have $Dg(\vec{b}) = [Df(\vec{a})]^{-1}$.

Theorem 0.31

Let A be open in \mathbb{R}^m , let $f: A \to \mathbb{R}$ be differentiable on A. If A contains the line segment with end points \vec{a} and $\vec{a} + \vec{h}$, then there is a point $\vec{c} = \vec{a} + t_0 \vec{h}$ with $0 < t_0 < 1$ on such line segment such that $f(\vec{a} + \vec{h}) - f(\vec{a}) = Df(\vec{c}) \cdot \vec{h}$.

Theorem 0.32

Let A be a convex open subset of V and let $g: A \to W$ be a differentiable function satisfying $||Dg(\vec{a})|| \le M$ for all $\vec{a} \in A$ and some $M \ge 0$. Then $||g(\vec{b}) - g(\vec{a})|| \le M ||\vec{b} - \vec{a}||$.

Theorem 0.33

Let $f: Q \to \mathbb{R}$ be a bounded function with Q being a box of \mathbb{R}^n . Given $\epsilon > 0$ and some $k \in \mathbb{N}$, the followings are equivalent:

- 1. The function f is Riemann integrable on Q
- 2. There exists a partition P such that $U(f,P) < L(f,P) + \epsilon$

- 3. \exists some subboxes R_1, R_2, \dots, R_j of Q s.t. $\mathfrak{D}_k(f) \subseteq R_1 \cup R_2 \cup \dots \cup R_j$ and $\sum_{i=1}^j V(R_i) < \epsilon$ 4. There exists some subboxes R_p of Q such that $\mathfrak{D}(f) \subseteq \bigcup_{p=1}^{\infty} R_p$, with $\sum_{p=1}^{\infty} V(R_p) < \epsilon$ 5. There exists some subboxes R_p of Q such that $\mathfrak{D}(f) \subseteq \bigcup_{p=1}^{\infty} rInt(R_p)$ with $\sum_{p=1}^{\infty} V(R_p) < \epsilon$

In the context of this theorem, a box R is called a subbox of Q provided that R is a box in \mathbb{R}^n contained in Q, and here R is allowed to have zero volume, or in other words, measure zero.

${\bf Theorem~0.34~(Fubini's~Theorem)}$

Let A be a box in \mathbb{R}^k , B be a box in \mathbb{R}^n , let $Q = A \times B$, and let $f : Q \to \mathbb{R}$ be a bounded function.

$$\underline{\int}_{Q} f \leq \underline{\int}_{\vec{x} \in A} \underline{\int}_{\vec{y} \in B} f(\vec{x}, \vec{y}) \leq \quad \left\{ \frac{\underline{\int}_{\vec{x} \in A} \ \overline{\int}_{\vec{y} B} f(\vec{x}, \vec{y})}{\overline{\int}_{\vec{x} \in A} \ \underline{\int}_{\vec{y} \in B} f(\vec{x}, \vec{y})} \right\} \quad \leq \bar{\int}_{\vec{x} \in A} \bar{\int}_{\vec{y} \in B} f(\vec{x}, \vec{y}) \leq \bar{\int}_{Q} f(\vec{x}, \vec{y}) \leq$$

Corollary 0.34.1

Let A be a box in \mathbb{R}^k , B be a box in \mathbb{R}^n , let $Q = A \times B$, and let $f : Q \to \mathbb{R}$ be a bounded function. If f is integrable on Q, then we have:

$$\underline{\int}_Q f = \underline{\int}_{\vec{x} \in A} \underline{\int}_{\vec{y} \in B} f(\vec{x}, \vec{y}) = \quad \left\{ \frac{\underline{\int}_{\vec{x} \in A} \ \overline{\int}_{\vec{y} B} f(\vec{x}, \vec{y})}{\overline{\int}_{\vec{x} \in A} \ \int_{\vec{y} \in B} f(\vec{x}, \vec{y})} \right\} \quad = \bar{\int}_{\vec{x} \in A} \bar{\int}_{\vec{y} \in B} f(\vec{x}, \vec{y}) = \bar{\int}_Q f(\vec{x}$$

and we can write:

$$\int_Q f = \int_{\vec{x} \in A} \, \int_{\vec{y} \in B} f(\vec{x}, \vec{y}) = \int_{\vec{x} \in A} \, \underline{\int}_{\vec{y} \in B} f(\vec{x}, \vec{y})$$

Theorem 0.35

Let S be a bounded subset of \mathbb{R}^n , let $f: S \to \mathbb{R}$ be a bounded continuous function, let $E = \{\vec{x}_0 \in \mathbb{R}^n \mid (x_0 \in \mathbb{R}^n) \}$ $Bd(S) \mid \lim_{\vec{x} \in S, \ \vec{x} \to \vec{x}_0} f(\vec{x}) \neq 0 \}$. If we have $m^*(E) = 0$, then f is Riemann integrable on S.

Theorem 0.36 (Theorem 15.2 on Munkres)

Let A be an open subset of \mathbb{R}^n , let $E_1 \subseteq E_2 \subseteq \cdots \subseteq A$ be compact rectifiable sets with $\bigcup_j Int(E_j) = \sum_i Int(E_i)$ A, then we have $\operatorname{ext} \int_A f = \lim_{j \to \infty} \int_{E_i} f$ when $\operatorname{ext} \int_A f$ exists for continuous function $f: A \to \mathbb{R}$.

Theorem 0.37 (Theorem 15.6 on Munkres)

Let A be an open subset of \mathbb{R}^n , let $U_1 \subseteq U_2 \subseteq \cdots \subseteq A$ be open subsets of A with $\bigcup_j U_j = A$, then we have $ext \int_A f = \lim_{j \to \infty} ext \int_{U_j} f$ whenever $ext \int_A f$ exists for the continuous function $f: A \to \mathbb{R}$.

Theorem 0.38 (Fubini's Theorem for Simple Regions)

Let $S := \{(x,t) \mid x \in C, \ \phi(x) \leq t \leq \psi(x)\}$ be a simple region in \mathbb{R}^n , where C is a compact rectifiable set in \mathbb{R}^{n-1} for $n \geq 2$, $\phi: C \to \mathbb{R}$ and $\psi: C \to \mathbb{R}$ are continuous functions with the property $\phi(x) \leq \psi(x)$ for all $x \in C$, let $f: S \to \mathbb{R}$ be a continuous function. Then f is integrable over S and we have the following holds:

$$\int_{S} f = \int_{x \in C} \int_{t-\phi(x)}^{t=\psi(x)} f(x,t) dt dx$$

Theorem 0.39 (Change of Variable Theorem)

Let A be an open subset of \mathbb{R}^n , let B be an open subset of \mathbb{R}^n , and let g be a diffeomorphism from A to B. For continuous function $f: B \to \mathbb{R}$, f is integrable over B if and only if the function $(f \circ g) \cdot |\det Dg|$ is integrable over A. Moreover, if f is integrable over B, we have

$$ext \int_{B} f = ext \int_{A} (f \circ g) \cdot |\det Dg|$$

That is, for continuous function $f: B \to \mathbb{R}$, we have either $ext \int_B f = ext \int_A (f \circ g) \cdot |\det Dg|$, or neither ext $\int_B f$ nor ext $\int_A (f \circ g) \cdot |\det Dg|$ exists.

Theorem 0.40 (Partition of Unity Theorem)

Let Ω be an open subset of \mathbb{R}^n . If $\Omega = \bigcup_{\alpha \in A} U_\alpha$ for some open subsets U_α of \mathbb{R}^n , then there exist some functions $\phi_1, \phi_2, \dots \in C^{\infty}(\Omega, [0, \infty))$ such that the followings hold:

- 1. Each $supp(\phi_j)$ is compact
- 2. Each $supp(\phi_j)$ is contained in some U_{α}

- 3. Each $\vec{x} \in \Omega$ has an open neighborhood that intersects only finitely many $supp(\phi_j)$
- 4. $\sum_{i=1}^{\infty} \phi_i(\vec{x}) = 1$ for all $\vec{x} \in \Omega$, such sum is called the locally finite sum.

Theorem 0.41 (Theorem 21.2 from Munkres)

For $k \leq n$, let $T : \mathbb{R}^k \to \mathbb{R}^n$ $\vec{x} \mapsto A\vec{x} + \vec{b}$ be an affine injection for some matrix A and $\vec{b} \in \mathbb{R}^n$. One can pick an orthogonal $n \times n$ matrix B such that we have:

$$B \cdot A = \begin{bmatrix} M \\ Z \end{bmatrix}$$

for some $k \times k$ matrix M and zero matrix Z.

Theorem 0.42

For $M \subseteq \mathbb{R}^n$, the followings are equivalent:

- 1. For all $\vec{p} \in M$, there exist a set $U \subseteq \mathbb{R}^k$ open in \mathbb{R}^k , a set $V \subseteq M$ open in M that contains \vec{p} , and a homeomorphism $\alpha \in C^r(U, V)$ with rank $D\alpha(\vec{x}) = k$ for all $\vec{x} \in U$.
- 2. For all $\vec{p} \in M$, there exist a set $A \subseteq \mathbb{R}^k$ open in \mathbb{R}^k , a set $V \subseteq M$ open in M that contains \vec{p} , a function $g \in C^r(A, \mathbb{R}^{n-k})$, and a coordinate permutation $\rho : \mathbb{R}^n \to \mathbb{R}^n$, such that we have $\rho(V) = Graph(g)$.

Theorem 0.43

Let U be an open subset of \mathbb{R}^n , let $F \in C^r(U, \mathbb{R}^{n-k})$, let $M = F^{-1}(\vec{0})$. If $rank(DF(\vec{x})) = n - k$ for all $\vec{x} \in M$. Then M is a k-manifolds without boundary of class C^r .

Theorem 0.44 (Theorem 24.4 on Munkres)

Let M be a k-manifold, ∂M is a C^r k-1 manifold without boundary.

Theorem 0.45

Every k-manifold M can be decomposed uniquely as a disjoint union of open connected k-manifolds, which are called the components of M.

Theorem 0.46

Every connected 1-manifold of class C^r is C^r -diffeomorphic to an interval in \mathbb{R} or to the circle S^1 .

Theorem 0.47

Let A be an open connected subset of \mathbb{R}^n , let $f \in C^1(A, \mathbb{R})$. df(x) = 0 for $x \in A$ if and only if f is a constant function.

Theorem 0.48 (Fundamental Theorem of Calculus I(a) for 1-forms)

Let ω be a 1-form on A, where A is a connected open subset of \mathbb{R}^m . The followings are equivalent:

- 1. $\omega = df$ for some $f \in C^1(A, \mathbb{R})$, in which case ω is said to be exact on A.
- 2. For $\alpha \in C^1_{pw}([a,b],A)$ with $\alpha(a) = \alpha(b)$, we have $\int_{Y_{\alpha}} \omega = 0$.
- 3. For $\alpha_j \in C^1_{pw}([a_j, b_j], A)$ with $\alpha_1(a_1) = \alpha_2(a_2)$ and $\alpha_1(b_1) = \alpha_2(b_2)$, we have $\int_{Y_{\alpha_1}} \omega = \int_{Y_{\alpha_2}} \omega$, in which case ω is said to be path independent.

Theorem 0.49 (Fundamental Theorem of Calculus I(b) for 1-forms)

Let ω be a closed 1-form on $A \subseteq \mathbb{R}^m$. If A is a convex open subset of \mathbb{R}^m , then ω is exact on A.

Theorem 0.50 (Fundamental Theorem of Calculus II for one-forms)

For C^1 type function $\alpha:[a,b]=I\to A$ where A is an open subset of \mathbb{R}^n , with C^1 function $f:A\to\mathbb{R}$, we can write the following:

$$\int_{Y_{\alpha}} df = \int_{I} \alpha^* df = \int_{I} d(f \circ \alpha) = \int_{I} (f \circ \alpha)' = (f \circ \alpha)(b) - (f \circ \alpha)(a) = f(\alpha(b)) - f(\alpha(a)) := \Delta_{Y_{\alpha}} f(a)$$

Lemma 0.50.1

Let ω be a closed 1-form of C^1 type, and let α be a C^2 type function. Then $\alpha^*\omega$ is closed.

Lemma 0.50.2 (Green's Theorem for Two-dimensional Boxes)

Let ω be a 1-form defined on an open set $A \subseteq \mathbb{R}^2$ which contains a box R of \mathbb{R}^2 , then we have:

$$\int_{\substack{Bd(R) \\ counter-clockwise \ orientation}} \omega = \int_{R} (D_1 \omega_2 - D_2 \omega_1)$$

where ω_1, ω_2 are component functions of ω . The counter-clockwise orientation of Bd(R) refers to a path which maps an interval in \mathbb{R} to Bd(R) that goes in counter-clockwise direction on Bd(R).

5

Note: Consider a bounded function defined on a box Q.

- 1. If $f^{-1}(0)$ is dense in Q, then all $L(f,P) \leq 0$, all $U(f,P) \geq 0$, which implies $\int_{Q} f \leq 0 \leq \bar{\int}_{Q} f$.
- 2. If $f^{-1}(0)$ is dense in Q and f is integrable, then $\int_Q f = 0$.
- 3. If $f \ge 0$, $f(\vec{a}) > 0$, f is continuous at \vec{a} , then $\underline{\int}_Q f > 0$.
- 4. If $f \ge 0$, $f(\vec{a}) > 0$, and $\int_Q f = 0$, then f is discontinuous.
- 5. If $f \geq 0$ and f is integrable on Q, with $\int_Q f = 0$, then $Q \setminus f^{-1}(0)$ has measure zero.

A bounded set $S \subseteq \mathbb{R}^n$ is said to be rectifiable provided that any one of the following holds:

- 1. The function $\mathbb{I}: S \to \mathbb{R}$ $\vec{x} \mapsto 1$ is Riemann integrable on S
- 2. The indicator function \mathbb{I}_S is integrable on some box $Q \subseteq \mathbb{R}^n$ that contains S.
- 3. $m^*(Bd(S)) = 0$
- 4. $m^{*,J}(Bd(S)) = 0$

Lebesgue outer measure: $m^*(E) := \inf \left\{ \sum_{j=1}^{\infty} V(Q_j) \mid E \subseteq \bigcup_{j=1}^{\infty} Q_j$, where Q_j are boxes in $\mathbb{R}^n \right\}$ Jordan outer measure: $m^{*,J}(E) := \inf \left\{ \sum_{j=1}^k V(Q_j) \mid E \subseteq \bigcup_{j=1}^k Q_j$, where Q_j are boxes in $\mathbb{R}^n \right\}$ The Q_j can be replaced by $Int(Q_j)$. The two measures are equal when E is compact.

Corollary 0.50.3

Let S be a bounded subset of \mathbb{R}^n , let $f: S \to \mathbb{R}$ be a bounded continuous function. If $m^*(Bd(S)) = 0$, then f is Riemann integrable on S.

Definition 0.50.3.0.1

For $f \in C(A, \mathbb{R})$ where A is an open subset of \mathbb{R}^n , $ext \int_A f$ exists provided that at least one of $ext \int_A f_+$ and $ext \int_A f_-$ is finite. Take supremum of integrating f on compact rectifiable set when f is non-negative.

 $avg_Af:=rac{\int_A f}{V(A)}$ and for a special case where $f:\mathbb{R}^n o\mathbb{R}^n$ $\vec{x}\mapsto\vec{x},\,avg_Af$ is the centroid of A.

Definition 0.50.3.0.2

Let Q be a box in \mathbb{R}^k , and let T be an affine injection from \mathbb{R}^k to \mathbb{R}^n of the form $\vec{x} \mapsto A\vec{x} + \vec{b}$ for some matrix A and vector $\vec{b} \in \mathbb{R}^n$. We define $V_k(T(Q)) = \sqrt{\det(A^T A)} \cdot V(Q)$.

Definition 0.50.3.0.3

Let $k, n, r \in \mathbb{N}$ with $k \leq n$, let $\alpha \in C^r(U, \mathbb{R}^n)$, where U is an open subset of \mathbb{R}^k . The set $Y \coloneqq \alpha(U)$, equipped with the map α , constitute a parametrized k-manifold of class C^r , denoted as Y_{α} .

$$V_k(Y_\alpha) := ext \int_U \mathcal{V}(D\alpha) \qquad \qquad \int_{Y_\alpha} f \, dV := ext \int_U (f \circ \alpha) \mathcal{V}(D\alpha)$$

Definition 0.50.3.0.4

Given $r, k, n \in \mathbb{N}$, a set $M \subseteq \mathbb{R}^n$ is called a k-manifold without boundary of class C^r provided that for all $\vec{p} \in M$, there exist a set $V \subseteq M$ that contains \vec{p} , a set $U \subseteq \mathbb{R}^k$, with V being open in M and U being open in \mathbb{R}^k , and a homeomorphism $\alpha \in C^r(U, V)$, with $rank(D\alpha(\vec{x})) = k$ for all $\vec{x} \in U$. The map α is called a coordinate patch on M about \vec{p} .

Definition 0.50.3.0.5

Given $r, k, n \in \mathbb{N}$, a set $M \subseteq \mathbb{R}^n$ is called a k-manifold of class C^r provided that, for all $\vec{p} \in M$, there exist a subset U of \mathbb{R}^k open in either \mathbb{R}^k or \mathbb{H}^k , a subset V of M open in M, and a homeomorphism $\alpha \in C^r(U,V)$ with $\operatorname{rank}(D\alpha(\vec{x})) = k$ for all $\vec{x} \in U$. If such α exists for $\vec{p} \in M$, then α is called the coordinate patch on M about \vec{p} , and M is also called a C^r manifold which might have boundary.

Definition 0.50.3.0.6

Let M be a k-manifold. For $\vec{p} \in M$, \vec{p} is called a boundary point of M provided that there exists a coordinate patch $\alpha: U \to V$ on M about \vec{p} such that U is open in \mathbb{H}^k , V is open in M, and $\vec{p} = \alpha((x_1, x_2, \dots, x_{k-1}, 0))$. The set of boundary points of M is called the manifold boundary of M. denoted as ∂M . For $\vec{q} \in M \setminus \partial M$, \vec{q} is called an interior point of M.

Definition 0.50.3.0.7

Let A be an open subset of \mathbb{R}^n , B be an open subset of \mathbb{R}^m , let $\alpha \in C^1(B, A)$, and let ω be an 1-form defined on A. $\alpha^*\omega := (\omega \circ \alpha) \cdot D\alpha$ is called the pullback of ω by α .

$$\int_{Y_{\alpha}} df = \int_{I} \alpha^* df = \int_{I} d(f \circ \alpha) = \int_{I} (f \circ \alpha)' = (f \circ \alpha)(b) - (f \circ \alpha)(a) = f(\alpha(b)) - f(\alpha(a)) := \Delta_{Y_{\alpha}} f(a)$$

If we have $\omega \in C^1$ and is exact, then $D_k\omega_j = D_j\omega_k$, in which case ω is said to be closed on A.