Examenul național de bacalaureat 2023 Proba E. c)

Matematică *M_şt-nat*

Varianta 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 3-4i+i(4-i)=4, unde $i^2=-1$
- **5p** | **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 4 2x. Arătați că $(f \circ f)(1) = 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_5(x^2 2x + 6) = \log_5 6$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 3 și cu 7.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,2), B(a,0) și C(0,b). Determinați numerele reale a și b, știind că punctul A este mijlocul segmentului BC.
- **5p 6.** Se consideră triunghiul ABC, cu AB = AC = 10 și BC = 16. Arătați că AD = 6, unde AD este înălțime în triunghiul ABC.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$ și $B(x) = \begin{pmatrix} x+1 & 2x+1 \\ x-1 & 2x-1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(B(2)) = 4$.
- **5p b**) Determinați numărul real a pentru care $B(0) \cdot B(1) = aA$.
- **5p** c) Determinați numărul real x pentru care $A \cdot B(x) = A \cdot (B(0) 3I_2)$.
 - **2.** Se consideră polinomul $f = X^3 + 2X^2 + mX 3$, unde m este număr real.
- **5p** a) Pentru m=0, arătați că f(1)=0.
- **5p b**) Determinați numărul real m pentru care polinomul f este divizibil cu polinomul X + 1.
- **5p** c) Determinați numărul real m pentru care $(1-x_1)(1-x_2)(1-x_3) = x_1x_2x_3$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{3x^2}{x^2 + x 2}$.
- **5p** a) Arătați că $f'(x) = \frac{3x(x-4)}{(x^2+x-2)^2}, x \in (1,+\infty).$
- $\mathbf{5p}$ **b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $f(x) + f(x^2) \ge \frac{17}{3}$, pentru orice $x \in (1,2]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x(x-1)^2$.
- **5p a)** Arătați că $\int_{3}^{7} \frac{f(x)}{(x-1)^2} dx = 20$.
- **5p b**) Arătați că $\int_{2}^{3} \frac{x}{f(x)} dx = \frac{1}{2}$.

5p c) Arătați că
$$\int_{0}^{1} \frac{xf(e^{x})}{e^{x}} dx = \frac{e^{2} - 5}{4}.$$