

BUNDESREPUBLIK DEUTSCHLAND

15.07.04

REC'D 30 AUG 2004
WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 57 714.9

Anmeldetag: 9. Dezember 2003

Anmelder/Inhaber: BASF Aktiengesellschaft, 67056 Ludwigshafen/DE

Bezeichnung: 2-Substituierte Pyrimidine

IPC: C 07D, A 01 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 2. Juli 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Schäfer

Patentansprüche

1. 2-Substituierte Pyrimidine der Formel I

5 in der Index und die Substituenten die folgende Bedeutung haben:

n eine ganze Zahl von 1 bis 5, wobei mindestens ein Substituent L in ortho-Stellung am Phenylring sitzt;

10 L Halogen, Cyano, Cyanato (OCN), C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, Nitro, -C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A, N(A")-C(=O)-N(A')A, S(=O)_m-A, S(=O)_m-O-A oder S(=O)_m-N(A')A,

15 m 0, 1 oder 2;

A, A', A'' unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkenyl, Phenyl, wobei die organischen Reste partiell oder vollständig halogeniert sein können oder durch Nitro, Cyanato, Cyano oder C₁-C₄-Alkoxy substituiert sein können; oder A und A' zusammen mit den Atomen an die sie gebunden sind für einen fünf- bis sechsgliedrigen gesättigten, partiell ungesättigten oder aromatischen Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S, stehen;

25 25 wobei die aliphatischen Gruppen der Restdefinitionen von L ihrerseits partiell oder vollständig halogeniert sein können;

30 R¹, R² unabhängig voneinander C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl oder C₂-C₆-Halogenalkinyl;

R² kann zusätzlich Wasserstoff bedeuten;

R¹ und R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Ring bilden, der durch eine Ether -(—O—), Carbonyl -(C=O)-, Thio -(—S—), Sulfoxyl -(—S[=O]—) oder Sulfenyl -(—SO₂—) oder eine weitere Amino -(-N(R^a)- Gruppe, wobei R^a Wasserstoff oder C₁-C₆-Alkyl bedeutet, unterbrochen sein und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl und Oxy-C₁-C₃-alkylenoxy enthalten kann;

10 R³ Halogen, Cyano, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyloxy oder C₃-C₄-Alkinyloxy, wobei die Alkyl, Alkenyl und Alkinylreste von R³ durch Halogen, Cyano, Nitro, C₁-C₂-Alkoxy oder C₁-C₄-Alkoxy carbonyl substituiert sein können;

15 R⁴ einer der Formeln

entspricht, in denen

X eine direkte Bindung, -(C=O)-, -(C=O)-NH-, -(C=O)-O-, -O-, -NR^c-, -CH₂O-(C=O)-, -C=C-(C=O)-, wobei der jeweils linke Molekülteil an das Stickstoffatom gebunden ist;

R^a Wasserstoff, C₁-C₆-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl oder Benzyl;

R^b Wasserstoff, C₁-C₆-Alkyl, C₂-C₈-Alkenyl oder C₂-C₈-Alkinyl;

R^c Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₈-Alkinyl, Benzyl oder C₁-C₆-Acyl

bedeuten,

wobei die aliphatischen, alicyclischen oder aromatischen Gruppen der Restdefinitionen von R^a, R^b und/oder R^c ihrerseits eine bis vier Gruppen R^w tragen können:

R^w Halogen, Cyano, OR^x, NHR^x, SR^x, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₈-Alkinyl, C₁-C₆-Alkoxy, C₁-C₄-Alkoxy carbonyl, C₁-C₄-Acylamino, [1,3]Dioxolane-C₁-C₄-alkyl, [1,3]Dioxane-C₁-C₄-alkyl, wobei

R^x Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder Benzyl bedeutet.

2. 2-Substituierte Pyrimidine der Formel I nach Anspruch 1, in der die Index und die
5 Substituenten die folgende Bedeutung haben:

n eine ganze Zahl von 1 bis 3, wobei mindestens ein Substituent L in ortho-Stellung am Phenylring sitzt;

10 L Halogen, Cyano, Methyl, Methoxy, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A,

15 A,A' unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Phenyl, wobei die organischen Reste partiell oder vollständig halogeniert sein können oder durch C₁-C₄-Alkoxy substituiert sein können; oder A und A' zusammen mit den Atomen an die sie gebunden sind für einen fünf- bis sechsgliedrigen gesättigten Heterocycius, enthaltend ein oder zwei Heteroatome aus der Gruppe O, N oder S, stehen;

20 wobei die aliphatischen Gruppen der Restdefinitionen von L ihrerseits partiell oder vollständig halogeniert sein können;

25 R¹,R² unabhängig voneinander C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Halogenalkyl, C₂-C₆-Halogenalkenyl oder C₂-C₆-Halogenalkinyl;

30 R² kann zusätzlich Wasserstoff bedeuten;

35 R¹ und R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Ring bilden, der durch eine Ether -(—O—) oder eine weitere Amino-(—N(R^a)- Gruppe, wobei R^a Wasserstoff oder C₁-C₆-Alkyl bedeutet, unterbrochen sein und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl und Oxy-C₁-C₃-alkylenoxy enthalten kann;

R³ Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Haloalkyl;

R⁴ einer der Formeln

4

entspricht, in denen

- 5 X eine direkte Bindung, $-(\text{C}=\text{O})-$, $-(\text{C}=\text{O})-\text{NH}-$, $-(\text{C}=\text{O})-\text{O}-$, $-\text{O}-$, $-\text{NR}^{\text{c}}-$,
wobei der jeweils linke Molekülteil an das Stickstoffatom gebunden ist;

10 R^{a} Wasserstoff, Methyl, Allyl oder Propargyl;

15 R^{b} Wasserstoff, $\text{C}_1\text{-C}_4$ -Alkyl, Allyl oder Propargyl;

R^{c} Wasserstoff, Methyl oder $\text{C}_1\text{-C}_4$ -Acyl
bedeuten,
wobei die aliphatischen Gruppen der Restdefinitionen von R^{a} , R^{b} und/oder
15 R^{c} ihrerseits eine oder zwei Gruppen R^{w} tragen können:

20 R^{w} Halogen, OR^{x} , NHR^{x} , $\text{C}_1\text{-C}_6$ -Alkyl, $\text{C}_1\text{-C}_4$ -Alkoxy carbonyl, $\text{C}_1\text{-C}_4$ -Acylamino,
[1,3]Dioxolane- $\text{C}_1\text{-C}_4$ -alkyl, [1,3]Dioxane- $\text{C}_1\text{-C}_4$ -alkyl, wobei

25 R^{x} Wasserstoff, Methyl, Allyl oder Propargyl bedeutet.

3. 2-Substituierte Pyrimidine nach Anspruch 1, wobei R^{3} Chlor, Cyano, Methyl oder
Methoxy bedeutet.

25 4. 2-Substituierte Pyrimidine nach Anspruch 1, wobei R^{a} Wasserstoff und R^{b} Was-
serstoff oder $\text{C}_1\text{-C}_6$ -Alkyl bedeuten.

30 5. 2-Substituierte Pyrimidine nach einem der Ansprüche 1 bis 6, in der die durch L_n
substituierte Phenylgruppe für die Gruppe B

B

steht, worin $\#$ die Verknüpfungsstelle mit dem Pyrimidin-Gerüst ist und

B

L¹ Fluor, Chlor, CH₃ oder CF₃;

L²,L⁴ unabhängig voneinander Wasserstoff, CH₃ oder Fluor;

L³ Wasserstoff, Fluor, Chlor, Cyano, CH₃, SCH₃, OCH₃, SO₂CH₃, NH-C(=O)CH₃, N(CH₃)₂-C(=O)CH₃ oder COOCH₃ und

5 L⁵ Wasserstoff, Fluor, Chlor oder CH₃ bedeuten.

6. Verfahren zur Herstellung der Verbindungen IA, durch Hydrolyse

10

der Nitrile der Formel IV, wobei die Substituenten R¹, R², R³ und L sowie der Index n die in Anspruch 1 angegebene Bedeutung haben, dadurch gekennzeichnet, dass in Gegenwart einer Base und Wasserstoffperoxid hydrolysiert wird.

15

7. Pestizides Mittel, enthaltend einen festen oder flüssigen Trägerstoff und eine Verbindung der Formel I gemäß Anspruch 1.

20

8. Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Pilze oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der Formel I gemäß Anspruch 1 behandelt.

2-Substituierte Pyrimidine

Beschreibung

5 Die Erfindung betrifft 2-substituierte Pyrimidine der Formel I,

in der der Index und die Substituenten die folgende Bedeutung haben:

- 10 n eine ganze Zahl von 1 bis 5, wobei mindestens ein Substituent L in ortho-Stellung am Phenylring sitzt;
- L Halogen, Cyano, Cyanato (OCN), C₁-C₈-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, Nitro, -C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A, N(A")-C(=O)-N(A')A, S(=O)_m-A, S(=O)_m-O-A oder S(=O)_m-N(A')A,
- 15 m 0, 1 oder 2;
- A,A', A" unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkenyl, Phenyl, wobei die organischen Reste partiell oder vollständig halogeniert sein können oder durch Nitro, Cyanato, Cyano oder C₁-C₄-Alkoxy substituiert sein können; oder A und A' zusammen mit den Atomen an die sie gebunden sind für einen fünf- bis sechsgliedrigen gesättigten, partiell ungesättigten oder aromatischen Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S, stehen;
- 20 25 wobei die aliphatischen Gruppen der Restdefinitionen von L ihrerseits partiell oder vollständig halogeniert sein können;
- 30 R¹,R² unabhängig voneinander C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl oder C₂-C₆-Halogenalkinyl;
- 35 R² kann zusätzlich Wasserstoff bedeuten;

R¹ und R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Ring bilden, der durch eine Ether-(—O—), Carbonyl -(C=O)-, Thio-(—S—), Sulfoxyl-(—S[=O]—) oder Sulfenyl-(—SO₂—) oder eine weitere Amino-(—N(R^a)- Gruppe, wobei R^a Wasserstoff oder C₁-C₆-Alkyl bedeutet, unterbrochen sein und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl und Oxy-C₁-C₃-alkylenoxy enthalten kann;

10 R³ Halogen, Cyano, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyloxy oder C₃-C₄-Alkinyloxy, wobei die Alkyl, Alkenyl und Alkinylreste von R³ durch Halogen, Cyano, Nitro, C₁-C₂-Alkoxy oder C₁-C₄-Aloxycarbonyl substituiert sein können.

15

R⁴ einer der Formeln

entspricht, in denen

20 X eine direkte Bindung, -(C=O)-, -(C=O)-NH-, -(C=O)-O-, -O-, -NR^c-, -CH₂-O-(C=O)-, -C=C-(C=O)-, wobei das jeweils linke Atom des Brückenglieds an das Stickstoffatom gebunden ist;

25 R^a Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder Benzyl;

R^b Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl oder C₂-C₆-Alkinyl;

30 R^c Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Benzyl oder C₁-C₆-Acyl

bedeuten,
wobei die aliphatischen, alicyclischen oder aromatischen Gruppen der Restdefinitionen von R^a, R^b und/oder R^c ihrerseits eine bis vier Gruppen R^w tragen können:

35 R^w Halogen, Cyano, OR^x, NHR^x, SR^x, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, C₁-C₄-Aloxycarbonyl, C₁-C₄-Acylamino, [1,3]Dioxolane-C₁-C₄-alkyl, [1,3]Dioxane-C₁-C₄-alkyl, wobei

R^x Wasserstoff, C₁-C₆-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl oder Benzyl bedeutet.

5

Außerdem betrifft die Erfindung ein Verfahren zur Herstellung dieser Verbindungen, 2-Pyrimidine enthaltende Mittel sowie deren Verwendung zur Bekämpfung pflanzenpathogener Schadpilze.

10

Aus WO-A 01/96314 sind fungizide Pyrimidine, die in 2-Stellung einen Cyanamino-substituenten tragen, bekannt. Weiterhin sind aus WO-A 03/43993 fungizide 2-Pyrimidyl-N-methoxyamidine bekannt.

15

Die Wirkung der o.g. Pyrimidine ist jedoch in vielen Fällen nicht zufriedenstellend. Daher lag als Aufgabe zugrunde, Verbindungen mit verbesserter Wirksamkeit zu finden.

20

Demgemäß wurden die eingangs definierten Pyrimidine der Formel I gefunden. Außerdem wurden Verfahren zu ihrer Herstellung sowie sie enthaltende Mittel zur Bekämpfung von Schadpilzen gefunden.

Die Verbindungen I können auf verschiedenen Wegen erhalten werden.

- 1) Beispielsweise kann von den Sulfonen der Formel II ausgegangen werden, deren Herstellung in WO-A 02/074753 oder DE 10156279.9 detailliert beschrieben ist. Durch Umsetzung der Sulfone II mit Metallcyaniden III (Me^+CN^-) werden die Nitrite IV gewonnen. Unter Metallcyaniden sind in erster Linie Alkali- oder Erdalkalicyanide oder auch kovalente Cyanide wie Zinntetracyanid zu verstehen.

- 30 Der Austausch der Sulfonatgruppe gegen die Nitrilgruppe erfolgt nach literaturbekannten Methoden wie sie beispielsweise in WO-A 03/043993 beschrieben sind.

Die weitere Synthese kann wie in Schema 1 dargestellt erfolgen:

- 35 Schema 1:

4

Die Nitrilverbindung IV kann unter sauren oder vorzugsweise basischen Bedingungen zum Amid IA hydrolysiert werden. Die Hydrolyse erfolgt beispielsweise unter den von Katritzky et al. in Synthesis 1989, S. 949-950 beschriebenen Bedingungen (Wasserstoffperoxid, Base, polares aprotisches Lösungsmittel).

5 In Comprehensive Organic Chemistry, Vol 2, Sutherland, I.O. Pergamon Press, Oxford, 1979, S. 964 sind Hydrolysen von Nitrilen zu Amiden unter sauren Bedingungen beschrieben.

10 Alternativ hierzu kann das Pinneraddukt, das sich durch Anlagerung von in der Regel Salzsäure an das Nitril IV bildet, mit einem Alkohol der Formel R^bOH , wobei R^b die zuvor genannte Bedeutung besitzt, zum Iminoether der Formel IB umgesetzt werden. Die Alkylierung mit $\text{R}^a\text{X-Y}$, wobei R^a und das Brückenglied X die eingangs erwähnte Bedeutung hat und Y für eine Abgangsgruppe wie Halogenid, Sulfat oder Sulfonat steht, liefert Verbindungen des Typs IC.

15 15 Die Alkylierung mit $\text{R}^a\text{-Y}$ kann ausgehend von Verbindung IB oder dem Nitril IV auch mit Meerwein Salzen der Formel $(\text{R}^a)_3\text{OBF}_4$ analog den in Synth. Commun., 1983, 13, S. 753 oder Helv. Chim. Acta, 1986, 69, S. 1224 aufgeführten Vorschriften durchgeführt werden. Man gelangt zu Verbindungen I, wobei X für eine direkte Bindung steht.

20 Eine alternative Synthese der erfindungsgemäßen Verbindungen IA ist in Schema 2 aufgeführt.

Schema 2:

Die in Schema 2 aufgeführte Synthese der Verbindungen IA' und IC geht vom Ester der Formel V, welcher in der WO 03/043993 beschrieben ist, aus. Die Umsetzung von

- 5 V mit Aminen zu den Amiden IA' kann wie in Org.Lett., 2001, Vol 3, S. 1053-56 oder in J.Org.Chem., 2000, Vol 85, S. 8415-20 beschrieben, durchgeführt werden. Die anschließende Umsetzung mit Meerwein Salzen der Formel $(R^b)_3OBF_4$ analog den in Synth. Commun., 1983, 13, S. 753 oder Helv. Chim.Acta, 1986, 69, S. 1224 aufgeführten Vorschriften führt zu den erfindungsgemäßen Verbindungen der Formel IC. Die
- 10 Iminhalogenide der Formel VI, wobei Hal für Halogen und insbesondere Chlor und Brom steht, sind analog Synthesis, 1991, Vol 9, S. 750-752 zugänglich. In einer Appel Reaktion werden beispielsweise mit Tetrabromkohlenstoff und Triphenylphosphin die entsprechenden Bromverbindungen hergestellt. Letztere lässt sich schließlich mit Alkoholen der Formel R^bOH und Basen zu den erfindungsgemäßen Verbindungen IC umsetzen.
- 15

Der Rest R^3 (insbesondere Alkyl) in 6-Position am Pyrimidinring kann durch Umsetzung unter Übergangsmetallkatalyse, wie Ni- oder Pd-Katalyse eingeführt werden. In manchen Fällen kann es ratsam sein die Reihenfolge umzudrehen und den Substituenten R^3 vor dem Substituenten NR^1R^2 einzuführen.

Schema 3:

In Formel $(R^3)_{y-w}X_w-M^Y$ steht M für ein Metallion der Wertigkeit Y , wie beispielsweise B , Zn , Mg , Cu oder Sn , X steht für Chlor, Brom, Iod oder Hydroxy, R^3 bedeutet bevorzugt C_1-C_4 -Alkyl und w steht für eine Zahl von 0 bis 3. Diese Reaktion kann beispielsweise

- 5 analog folgender Methoden durchgeführt werden: J. Chem. Soc. Perkin Trans. 1, 1187 (1994), ebenda 1, 2345 (1996); WO-A 99/41255; Aust. J. Chem., Bd. 43, 733 (1990); J. Org. Chem., Bd. 43, 358 (1978); J. Chem. Soc. Chem. Commun. 866 (1979); Tetrahedron Lett., Bd. 34, 8267 (1993); ebenda, Bd. 33, 413 (1992).

- 10 Der Substituent R^a in Formel IA' kann auch wie in Schema 4 gezeigt eingeführt werden.

- 15 Hierbei werden die Verbindungen der Formel **IA** mit Hilfe starker Basen zunächst ins Anion übergeführt und anschließend mit entsprechenden Säurechloriden zu **IA'** umgesetzt (s. J. Chem. Soc., Perkin Trans I, 1995, S. 3043). Man gelangt so zu Verbindungen, in denen X für ein $C=O$ -Brückenglied steht. Als Basen für die Herstellung des Anions eignen sich beispielsweise Natriumamid und Natriumhydrid.

- 20 Die obengenannten Angaben beziehen sich insbesondere auf die Herstellung von Verbindungen, in denen R^3 eine Alkylgruppe darstellt. Sofern R^3 eine Cyangruppe oder einen Alkoxysubstuenten bedeutet, kann der Rest R^3 durch Umsetzung mit Alkalimetallcyaniden bzw. Alkalimetallalkoholaten eingeführt werden.

Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

5 **Halogen:** Fluor, Chlor, Brom und Jod;

Alkyl sowie die Alkylteile von beispielsweise Alkoxy, Alkylamino, Alkoxyacarbonyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 6 oder 8 Kohlenstoffatomen, z.B. C₁-C₈-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-

- 10 Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

- 15 **Halogenalkyl:** geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C₁-C₂-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlor-difluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl oder 1,1,1-Trifluorprop-2-yl;

- 20 **Alkenyl:** ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4 oder 6 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butene, 1-Methyl-2-butene, 2-Methyl-2-butene, 3-Methyl-2-butene, 1-Methyl-3-butene, 2-Methyl-3-butene, 3-Methyl-3-butene, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butene, 1,1-Dimethyl-3-butene, 1,2-Dimethyl-1-butene, 1,2-

Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-

5 Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1propenyl und 1-Ethyl-2-methyl-2-propenyl;

Alkadienyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 4, oder 6 Kohlenstoffatomen und zwei Doppelbindungen in beliebiger Position;

10 **Halogenalkenyl:** ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 6 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position (wie vorstehend genannt), wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können;

15 **Alkinyl:** geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 6 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C₂-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

30 **Cycloalkyl:** mono- oder bicyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6 Kohlenstoffringgliedern, z.B. C₃-C₆-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl;

fünf- bis sechsgliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S:

35 - **5- oder 6-gliedriges Heterocyclyl,** enthaltend ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Iothiazolidinyl, 4-

40

- Iothiazolidinyl, 5-Iothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl,
2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-
Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-
Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-
Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-
Triazolidin-2-yl, 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,4-Dihydrofuran-2-yl, 2,4-
Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,4-Dihydrothien-2-
yl, 2,4-Dihydrothien-3-yl, 2-Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl, 3-Pyrrolin-
3-yl, 2-Isoxazolin-3-yl, 3-Isoxazolin-3-yl, 4-Isoxazolin-3-yl, 2-Isoxazolin-4-yl, 3-
Isoxazolin-4-yl, 4-Isoxazolin-4-yl, 2-Isoxazolin-5-yl, 3-Isoxazolin-5-yl, 4-
Isoxazolin-5-yl, 2-Iothiazolin-3-yl, 3-Iothiazolin-3-yl, 4-Iothiazolin-3-yl, 2-
Isothiazolin-4-yl, 3-Iothiazolin-4-yl, 4-Iothiazolin-4-yl, 2-Iothiazolin-5-yl, 3-
Isothiazolin-5-yl, 4-Iothiazolin-5-yl, 2,3-Dihdropyrazol-1-yl, 2,3-Dihdropyrazol-
2-yl, 2,3-Dihdropyrazol-3-yl, 2,3-Dihdropyrazol-4-yl, 2,3-Dihdropyrazol-5-yl,
3,4-Dihdropyrazol-1-yl, 3,4-Dihdropyrazol-3-yl, 3,4-Dihdropyrazol-4-yl, 3,4-
Dihdropyrazol-5-yl, 4,5-Dihdropyrazol-1-yl, 4,5-Dihdropyrazol-3-yl, 4,5-
Dihdropyrazol-4-yl, 4,5-Dihdropyrazol-5-yl, 2,3-Dihdrooxazol-2-yl, 2,3-
Dihdrooxazol-3-yl, 2,3-Dihdrooxazol-4-yl, 2,3-Dihdrooxazol-5-yl, 3,4-
Dihdrooxazol-2-yl, 3,4-Dihdrooxazol-3-yl, 3,4-Dihdrooxazol-4-yl, 3,4-
Dihdrooxazol-5-yl, 3,4-Dihdrooxazol-2-yl, 3,4-Dihdrooxazol-3-yl, 3,4-
Dihdrooxazol-4-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl,
2-Tetrahydropyran-yl, 4-Tetrahydropyran-yl, 2-Tetrahydrothienyl, 3-
Hexahydropyridazinyl, 4-Hexahydropyridazinyl, 2-Hexahydroimidinyl, 4-
Hexahydroimidinyl, 5-Hexahydroimidinyl, 2-Piperazinyl, 1,3,5-Hexahydro-
triazin-2-yl und 1,2,4-Hexahydrotriazin-3-yl;
- **5-gliedriges Heteroaryl**, enthaltend ein bis vier Stickstoffatome oder ein bis drei
Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgrup-
pen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis
drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder ent-
halten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-
Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Iothiazolyl, 4-Iothiazolyl, 5-Iothiazolyl,
3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-
Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-
yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-
3-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl und 1,3,4-Triazol-2-yl;
- **6-gliedriges Heteroaryl**, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome:
6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein
bis vier Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-

10

Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl;

- 5 - Ringsystem, das gegebenenfalls von R¹ und R² bzw. von A und A' zusammen mit dem Stickstoff, an den sie gebunden sind, aufgespannt wird: Pyrrolidin, Morpholin, Piperidin oder Tetrahydropyrazol.

In dem Umfang der vorliegenden Erfindung sind die (R)- und (S)-Isomere und die Racemate von Verbindungen der Formel I eingeschlossen, die chirale Zentren aufweisen.

- 10 Im folgenden werden die Ausführungsformen der Erfindung genauer beschrieben.

- 15 Im Hinblick auf die bestimmungsgemäße Verwendung der Pyrimidine der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:

Verbindungen I werden bevorzugt, in denen R¹ für C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder C₃-C₆-Cycloalkyl und R² für Wasserstoff stehen.

- 20 Insbesondere werden Verbindungen I bevorzugt, in denen R¹ für in α-Stellung verzweigtes C₁-C₆-Alkyl, C₂-C₆-Alkenyl oder C₁-C₆-Halogenalkyl steht.

Daneben werden Verbindungen I bevorzugt, in denen R¹ für C₁-C₄-Halogenalkyl und R² für Wasserstoff stehen.

- 25 Außerdem werden Verbindungen I bevorzugt, in denen R¹ und R² zusammen mit dem Stickstoff, an das sie gebunden sind, einen fünf- oder sechsgliedrigen Ring bilden, der durch ein Sauerstoffatom unterbrochen sein kann und einen oder zwei C₁-C₆-Alkylsubstituenten tragen kann.

- 30 Insbesondere bevorzugt sind Gruppen NR¹R² wie – insbesondere in α-Stellung – methylierte Pyrrolidine oder Piperidine. Weiterhin ist 4-Methylpiperidin bevorzugt.

- 35 Insbesondere werden Pyrimidine I bevorzugt, wobei die Substituenten L¹ bis L⁵ die folgende Bedeutung haben:

L Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, -C(=O)-O-A, -C(=O)-N(A')A,

- 40 A, A', A" unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl.

Außerdem werden Pyrimidine I bevorzugt, wobei die durch L_n substituierte Phenylgruppe für die Gruppe B

- 5 steht, worin # die Verknüpfungsstelle mit dem Pyrimidin-Gerüst ist und

- L¹ Fluor, Chlor, CH₃ oder CF₃;
- L²,L⁴ unabhängig voneinander Wasserstoff, CH₃ oder Fluor;
- 10 L³ Wasserstoff, Fluor, Chlor, Brom, Cyano, CH₃, SCH₃, OCH₃, SO₂CH₃, CO-NH₂, CO-NHCH₃, CO-NHC₂H₅, CO-N(CH₃)₂, NH-C(=O)CH₃, N(CH₃)-C(=O)CH₃ oder COOCH₃ und
- L⁵ Wasserstoff, Fluor, Chlor oder CH₃ bedeuten.

- Besonders bevorzugt werden auch Verbindungen I, in denen R³ C₁-C₄-Alkyl bedeutet,
15 das durch Halogen substituiert sein kann.

Außerdem werden Verbindungen I besonders bevorzugt, in denen R³ für Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy steht.

- 20 Insbesondere werden Verbindungen I bevorzugt, in denen R³ Methyl, Cyano, Methoxy oder insbesondere Chlor bedeutet.

Geeignet im Hinblick auf ihre fungizide Wirkung sind Pyrimidine der Formel I, in der R⁴ für

- 25 steht.

Weiterhin sind Pyrimidine der Formel I bevorzugt, in der R⁴ für

steht.

- 30 Insbesondere sind Pyrimidine der Formel I bevorzugt, in der R⁴ für

steht.

Schließlich kann R⁴ bevorzugt die folgenden Bedeutungen haben, die auch als

- 5 prodrug-Restedefinitionen aufgefasst werden können (s. Medicinal Research Reviews 2003, 23, 763 – 793, oder J. of Pharmaceutical Sciences 1997, 86, 765-767):

Der Index n in den Alkenylenresten der obigen Formeln steht für eine ganze Zahl 1 bis 3.

- 10 Insbesondere bevorzugt sind die Restedefinitionen R⁴:

Das Brückenglied X steht bevorzugt für eine direkte Bindung und für -(C=O)-.

Der Substituent R^a steht vorzugsweise für Wasserstoff, Methyl, Benzyl, Trifluormethyl,

- 15 Allyl, Propargyl oder Methoxymethyl und besonders bevorzugt für Wasserstoff.

Der Substituent R^b bedeutet bevorzugt Wasserstoff, C₁-C₆-Alkyl oder C₂-C₆-Alkenyl und insbesondere bevorzugt: Methyl, Allyl oder Propargyl.

- 20 Der Substituent R^c bedeutet bevorzugt Wasserstoff oder Methyl.

Insbesondere sind im Hinblick auf ihre Verwendung die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten Gruppen stellen außerdem für sich betrachtet, unabhängig von der

- 5 Kombination, in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.

Tabelle 1

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-6-chlor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 2

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 3

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Dichlor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 4

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-6-methyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 5

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4,6-Trifluor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 6

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-fluor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 7

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methoxycarbonyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 8

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-CN, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 9

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Dichlor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 10

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Difluor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 11

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-chlor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 12

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-fluor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 13

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Dimethyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 14

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-chlor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 15

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 16

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Dimethyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 17

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4,6-Trimethyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
5 entspricht

Tabelle 18

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-cyano, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
10 entspricht

Tabelle 19

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-methyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
15 entspricht

Tabelle 20

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-methoxycarbonyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer
20 Zeile der Tabelle A entspricht

Tabelle 21

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
25 entspricht

Tabelle 22

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methoxycarbonyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer
30 Zeile der Tabelle A entspricht

Tabelle 23

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-brom, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
35 entspricht

Tabelle 24

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-cyan, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-
40 spricht

Tabelle 25

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-3-methyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

5 entspricht

Tabelle 26

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-cyan, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

10 entspricht

Tabelle 27

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-brom, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

15 entspricht

Tabelle 28

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-methoxycarbonyl, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer

20 Zeile der Tabelle A entspricht

Tabelle 29

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-brom, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

25 spricht

Tabelle 30

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n Pentafluor, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 31

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methoxy, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der

35 Tabelle A entspricht

Tabelle 32

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methoxy, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der

40 Tabelle A entspricht

Tabelle 33

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-methoxy, R³ Methyl bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle A entspricht

Tabelle 34

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-6-chlor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10 Tabelle A entspricht

Tabelle 35

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15 Tabelle A entspricht

Tabelle 36

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Dichlor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20 Tabelle A entspricht

Tabelle 37

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-6-methyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25 Tabelle A entspricht

Tabelle 38

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4,6-Trifluor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 39

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-fluor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35 Tabelle A entspricht

Tabelle 40

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methoxycarbonyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40 Tabelle A entspricht

Tabelle 41

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-CN, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 42

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Dichlor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 43

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Difluor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 44

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-chlor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 45

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-fluor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 46

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Dimethyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 47

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-chlor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 48

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 49

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Dimethyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

5 spricht

Tabelle 50

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4,6-Trimethyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

10 entspricht

Tabelle 51

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-cyano, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabel-

15 le A entspricht

Tabelle 52

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-methyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Ta-

20 belle A entspricht

Tabelle 53

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-methoxycarbonyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile

25 der Tabelle A entspricht

Tabelle 54

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

30 entspricht

Tabelle 55

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methoxycarbonyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile

35 der Tabelle A entspricht

Tabelle 56

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-brom, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

40 entspricht

Tabelle 57

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-cyan, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

5 spricht

Tabelle 58

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-3-methyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

10 entspricht

Tabelle 59

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-cyan, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

15 entspricht

Tabelle 60

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-brom, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

20 entspricht

Tabelle 61

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-methoxycarbonyl, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile

25 der Tabelle A entspricht

Tabelle 62

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-brom, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

30 spricht

Tabelle 63

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n Pentafluor, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

35 spricht

Tabelle 64

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methoxy, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Ta-

40 belle A entspricht

Tabelle 65

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methoxy, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 66

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-methoxy, R³ Chlor bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 67

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-6-chlor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 68

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 69

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Dichlor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 70

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-6-methyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 71

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4,6-Trifluor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 72

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-fluor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 73

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methoxycarbonyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 74

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-CN, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

10

entspricht

Tabelle 75

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Dichlor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

15

entspricht

Tabelle 76

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Difluor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

20

entspricht

Tabelle 77

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-chlor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

25

entspricht

Tabelle 78

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-fluor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

30

entspricht

Tabelle 79

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Dimethyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

35

entspricht

Tabelle 80

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-chlor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

40

entspricht

Tabelle 81

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
5 entspricht

Tabelle 82

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Dimethyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
10 entspricht

Tabelle 83

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4,6-Trimethyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
15 entspricht

Tabelle 84

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-cyano, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der
20 Tabelle A entspricht

Tabelle 85

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-methyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der
25 Tabelle A entspricht

Tabelle 86

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-methoxycarbonyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht
30

Tabelle 87

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A
35 entspricht

Tabelle 88

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methoxycarbonyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer
40 Zeile der Tabelle A entspricht

Tabelle 89

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-brom, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

5 entspricht

Tabelle 90

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-cyan, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

10 entspricht

Tabelle 91

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-3-methyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

15 entspricht

Tabelle 92

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-cyan, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

20 entspricht

Tabelle 93

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-brom, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

25 entspricht

Tabelle 94

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-methoxycarbonyl, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 95

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-brom, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

35 entspricht

Tabelle 96

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n Pentafluor, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

40 entspricht

Tabelle 97

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methoxy, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der

5 Tabelle A entspricht

Tabelle 98

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methoxy, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der

10 Tabelle A entspricht

Tabelle 99

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-methoxy, R³ Methoxy bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der

15 Tabelle A entspricht

Tabelle 100

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-6-chlor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

20 spricht

Tabelle 101

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

25 spricht

Tabelle 102

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Dichlor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

30 spricht

Tabelle 103

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-6-methyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

35 entspricht

Tabelle 104

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4,6-Trifluor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

40 spricht

Tabelle 105

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-fluor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

5 entspricht

Tabelle 106

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methoxycarbonyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer

10 Zeile der Tabelle A entspricht

Tabelle 107

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-CN, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

15 spricht

Tabelle 108

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Dichlor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

20 spricht

Tabelle 109

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Difluor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

25 spricht

Tabelle 110

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-chlor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 111

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-fluor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 112

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4-Dimethyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 113

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-chlor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

5 entspricht

Tabelle 114

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-methyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

10 entspricht

Tabelle 115

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Dimethyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

15 spricht

Tabelle 116

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,4,6-Trimethyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

20 entspricht

Tabelle 117

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-cyano, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Ta-

25 belle A entspricht

Tabelle 118

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-methyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Ta-
30 belle A entspricht

Tabelle 119

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2,6-Difluor-4-methoxycarbonyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer

35 Zeile der Tabelle A entspricht

Tabelle 120

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

40 entspricht

Tabelle 121

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-methoxycarbonyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer

5 Zeile der Tabelle A entspricht

Tabelle 122

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-brom, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

10 entspricht

Tabelle 123

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Chlor-4-cyan, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

15 spricht

Tabelle 124

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-3-methyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

20 entspricht

Tabelle 125

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-cyan, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A

25 entspricht

Tabelle 126

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-brom, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 127

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Methyl-4-methoxycarbonyl, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer

35 Zeile der Tabelle A entspricht

Tabelle 128

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n 2-Fluor-4-brom, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-

40 spricht

Tabelle 129

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_nPentafluor, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 spricht

Tabelle 130

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n2-Chlor-4-methoxy, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der

10 Tabelle A entspricht

Tabelle 131

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n2-Fluor-4-methoxy, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der

15 Tabelle A entspricht

Tabelle 132

Verbindungen der Formel Ia, Ib, Ic, Id, Ie, If, Ig, Ih und II, in denen L_n2-Methyl-4-methoxy, R³ Cyano bedeuten und R¹, R² für eine Verbindung jeweils einer Zeile der

20 Tabelle A entspricht

Tabelle A

No.	R ¹	R ²
A-1	CH ₂ CH ₃	H
A-2	CH ₂ CH ₃	CH ₃
A-3	CH ₂ CH ₃	CH ₂ CH ₃
A-4	CH ₂ CH ₂ CH ₃	H
A-5	CH ₂ CH ₂ CH ₃	CH ₃
A-6	CH ₂ CH ₂ CH ₃	CH ₂ CH ₃
A-7	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
A-8	CH ₂ CH ₂ F	H
A-9	CH ₂ CH ₂ F	CH ₃
A-10	CH ₂ CH ₂ F	CH ₂ CH ₃
A-11	CH ₂ CF ₃	H
A-12	CH ₂ CF ₃	CH ₃
A-13	CH ₂ CF ₃	CH ₂ CH ₃
A-14	CH ₂ CF ₃	CH ₂ CH ₂ CH ₃
A-15	CH ₂ CCl ₃	H

No.	R ¹	R ²
A-16	CH ₂ CCl ₃	CH ₃
A-17	CH ₂ CCl ₃	CH ₂ CH ₃
A-18	CH ₂ CCl ₃	CH ₂ CH ₂ CH ₃
A-19	CH(CH ₃) ₂	H
A-20	CH(CH ₃) ₂	CH ₃
A-21	CH(CH ₃) ₂	CH ₂ CH ₃
A-22	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃
A-23	CH ₂ C(CH ₃) ₃	H
A-24	CH ₂ C(CH ₃) ₃	CH ₃
A-25	CH ₂ C(CH ₃) ₃	CH ₂ CH ₃
A-26	CH ₂ CH(CH ₃) ₂	H
A-27	CH ₂ CH(CH ₃) ₂	CH ₃
A-28	CH ₂ CH(CH ₃) ₂	CH ₂ CH ₃
A-29	(±) CH(CH ₂ CH ₃)CH ₃	H
A-30	(±) CH(CH ₂ CH ₃)CH ₃	CH ₃
A-31	(±) CH(CH ₂ CH ₃)CH ₃	CH ₂ CH ₃
A-32	(R) CH(CH ₂ CH ₃)CH ₃	H
A-33	(R) CH(CH ₂ CH ₃)CH ₃	CH ₃
A-34	(R) CH(CH ₂ CH ₃)CH ₃	CH ₂ CH ₃
A-35	(S) CH(CH ₂ CH ₃)CH ₃	H
A-36	(S) CH(CH ₂ CH ₃)CH ₃	CH ₃
A-37	(S) CH(CH ₂ CH ₃)CH ₃	CH ₂ CH ₃
A-38	(±) CH(CH ₃)-CH(CH ₃) ₂	H
A-39	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-40	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-41	(R) CH(CH ₃)-CH(CH ₃) ₂	H
A-42	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-43	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-44	(S) CH(CH ₃)-CH(CH ₃) ₂	H
A-45	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-46	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-47	(±) CH(CH ₃)-C(CH ₃) ₃	H
A-48	(±) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-49	(±) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-50	(R) CH(CH ₃)-C(CH ₃) ₃	H
A-51	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-52	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃

No.	R ¹	R ²
A-53	(S) CH(CH ₃)-C(CH ₃) ₃	H
A-54	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-55	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-56	(±) CH(CH ₃)-CF ₃	H
A-57	(±) CH(CH ₃)-CF ₃	CH ₃
A-58	(±) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-59	(R) CH(CH ₃)-CF ₃	H
A-60	(R) CH(CH ₃)-CF ₃	CH ₃
A-61	(R) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-62	(S) CH(CH ₃)-CF ₃	H
A-63	(S) CH(CH ₃)-CF ₃	CH ₃
A-64	(S) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-65	(±) CH(CH ₃)-CCl ₃	H
A-66	(±) CH(CH ₃)-CCl ₃	CH ₃
A-67	(±) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-68	(R) CH(CH ₃)-CCl ₃	H
A-69	(R) CH(CH ₃)-CCl ₃	CH ₃
A-70	(R) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-71	(S) CH(CH ₃)-CCl ₃	H
A-72	(S) CH(CH ₃)-CCl ₃	CH ₃
A-73	(S) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-74	CH ₂ C(CH ₃)=CH ₂	H
A-75	CH ₂ C(CH ₃)=CH ₂	CH ₃
A-76	CH ₂ C(CH ₃)=CH ₂	CH ₂ CH ₃
A-77	Cyclopentyl	H
A-78	Cyclopentyl	CH ₃
A-79	Cyclopentyl	CH ₂ CH ₃
A-80	Cyclohexyl	H
A-81	Cyclohexyl	CH ₃
A-82	Cyclohexyl	CH ₂ CH ₃
A-83	-(CH ₂) ₄ -	
A-84	(±) -(CH ₂) ₂ -CH(CH ₃)-CH ₂ -	
A-85	(R) -(CH ₂) ₂ -CH(CH ₃)-CH ₂ -	
A-86	(S) -(CH ₂) ₂ -CH(CH ₃)-CH ₂ -	
A-87	-(CH ₂) ₂ -CH(OCH ₃)-CH ₂ -	
A-88	-(CH ₂) ₂ -CH(CH ₂ CH ₃)-CH ₂ -	
A-89	-(CH ₂) ₂ -CH[CH(CH ₃) ₂]-CH ₂ -	

No.	R ¹	R ²
A-90	(±) -(CH ₂) ₃ -CH(CH ₃)-	
A-91	(±) -CH(CH ₃)-(CH ₂) ₂ -CH(CH ₃)-	
A-92	-CH ₂ -CH=CH-CH ₂ -	
A-93	-(CH ₂) ₅ -	
A-94	(±) -(CH ₂) ₄ -CH(CH ₃)-	
A-95	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	
A-96	(±) -(CH ₂) ₃ -CH(CH ₃)-CH ₂ -	
A-97	(R) -(CH ₂) ₃ -CH(CH ₃)-CH ₂ -	
A-98	(S) -(CH ₂) ₃ -CH(CH ₃)-CH ₂ -	
A-99	-(CH ₂) ₂ -C(O[CH ₂] ₂ O)-(CH ₂) ₂ -	
A-100	(CH ₂) ₂ CH ₂	
A-101	-(CH ₂) ₂ -C(O[CH ₂] ₃ O)-(CH ₂) ₂ -	
A-102	-(CH ₂) ₂ -CH=CH-CH ₂ -	

Weiterhin sind im Hinblick auf ihre Verwendung die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten Gruppen stellen außerdem für sich betrachtet, unabhängig von der Kombination, in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.

- 10 Tabelle 133
Verbindungen der Formel Ij oder Ik in denen NR^1R^2 4-Methylpiperidin und R^3 Methyl bedeuten und $-\text{X}-\text{R}^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

15 Tabelle 134
Verbindungen der Formel Ij oder Ik in denen $\text{R}^1\text{CH}(\text{CH}_3)_2$, R^2 Wasserstoff und R^3 Methyl bedeuten und $-\text{X}-\text{R}^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 135

Verbindungen der Formel Ij oder Ik in denen R¹ CH₂CF₃, R² Wasserstoff und R³ Methyl bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

5 Tabelle 136

Verbindungen der Formel Ij oder Ik in denen R¹ (R,S) CH(CH₃)CH₂CH₃, R² Wasserstoff und R³ Methyl bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

10 Tabelle 137

Verbindungen der Formel Ij oder Ik in denen R¹ (R) CH(CH₃)CH₂CH₃, R² Wasserstoff und R³ Methyl bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

15 Tabelle 138

Verbindungen der Formel Ij oder Ik in denen R¹ (S) CH(CH₃)CH₂CH₃, R² Wasserstoff und R³ Methyl bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

20 Tabelle 139

Verbindungen der Formel Ij oder Ik in denen R¹ (R,S) CH(CH₃)CF₃, R² Wasserstoff und R³ Methyl bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

25 Tabelle 140

Verbindungen der Formel Ij oder Ik in denen R¹ (R) CH(CH₃)CF₃, R² Wasserstoff und R³ Methyl bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

30 Tabelle 141

Verbindungen der Formel Ij oder Ik in denen R¹ (S) CH(CH₃)CF₃, R² Wasserstoff und R³ Methyl bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

35 Tabelle 142

Verbindungen der Formel Ij oder Ik in denen NR¹R² 4-Methylpiperidin und R³ Chlor bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 143

35

Verbindungen der Formel Ij oder Ik in denen $R^1\text{CH}(\text{CH}_3)_2$, R^2 Wasserstoff und R^3 Chlor bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 144

- 5 Verbindungen der Formel Ij oder Ik in denen $R^1\text{CH}_2\text{CF}_3$, R^2 Wasserstoff und R^3 Chlor bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 145

- 10 Verbindungen der Formel Ij oder Ik in denen $R^1(R,S)\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$, R^2 Wasserstoff und R^3 Chlor bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 146

- 15 Verbindungen der Formel Ij oder Ik in denen $R^1(R)\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$, R^2 Wasserstoff und R^3 Chlor bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 147

- 20 Verbindungen der Formel Ij oder Ik in denen $R^1(S)\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$, R^2 Wasserstoff und R^3 Chlor bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 148

- 25 Verbindungen der Formel Ij oder Ik in denen $R^1(R,S)\text{CH}(\text{CH}_3)\text{CF}_3$, R^2 Wasserstoff und R^3 Chlor bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 149

- 30 Verbindungen der Formel Ij oder Ik in denen $R^1(R)\text{CH}(\text{CH}_3)\text{CF}_3$, R^2 Wasserstoff und R^3 Chlor bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 150

- 35 Verbindungen der Formel Ij oder Ik in denen $R^1(S)\text{CH}(\text{CH}_3)\text{CF}_3$, R^2 Wasserstoff und R^3 Chlor bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 151

- 40 Verbindungen der Formel Ij oder Ik in denen NR^1R^2 4-Methylpiperidin und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 152

Verbindungen der Formel Ij oder Ik in denen $R^1\text{CH}(\text{CH}_3)_2$, R^2 Wasserstoff und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

5 spricht

Tabelle 153

Verbindungen der Formel Ij oder Ik in denen $R^1\text{CH}_2\text{CF}_3$, R^2 Wasserstoff und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

10

Tabelle 154

Verbindungen der Formel Ij oder Ik in denen $R^1(R,S)\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$, R^2 Wasserstoff und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

15

Tabelle 155

Verbindungen der Formel Ij oder Ik in denen $R^1(R)\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$, R^2 Wasserstoff und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

20

Tabelle 156

Verbindungen der Formel Ij oder Ik in denen $R^1(S)\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$, R^2 Wasserstoff und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

25

Tabelle 157

Verbindungen der Formel Ij oder Ik in denen $R^1(R,S)\text{CH}(\text{CH}_3)\text{CF}_3$, R^2 Wasserstoff und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

30

Tabelle 158

Verbindungen der Formel Ij oder Ik in denen $R^1(R)\text{CH}(\text{CH}_3)\text{CF}_3$, R^2 Wasserstoff und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

35

Tabelle 159

Verbindungen der Formel Ij oder Ik in denen $R^1(S)\text{CH}(\text{CH}_3)\text{CF}_3$, R^2 Wasserstoff und R^3 Methoxy bedeuten und $-X-R^a$ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

40

Tabelle 160

Verbindungen der Formel Ij oder Ik in denen NR¹R² 4-Methylpiperidin und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

5 Tabelle 161

Verbindungen der Formel Ij oder Ik in denen R¹ CH(CH₃)₂, R² Wasserstoff und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 162

10 Verbindungen der Formel Ij oder Ik in denen R¹ CH₂CF₃, R² Wasserstoff und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 163

15 Verbindungen der Formel Ij oder Ik in denen R¹ (R,S) CH(CH₃)CH₂CH₃, R² Wasserstoff und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 164

20 Verbindungen der Formel Ij oder Ik in denen R¹ (R) CH(CH₃)CH₂CH₃, R² Wasserstoff und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 165

25 Verbindungen der Formel Ij oder Ik in denen R¹ (S) CH(CH₃)CH₂CH₃, R² Wasserstoff und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 166

30 Verbindungen der Formel Ij oder Ik in denen R¹ (R,S) CH(CH₃)CF₃, R² Wasserstoff und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 167

35 Verbindungen der Formel Ij oder Ik in denen R¹ (R) CH(CH₃)CF₃, R² Wasserstoff und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 168

Verbindungen der Formel Ij oder Ik in denen R¹(S) CH(CH₃)CF₃, R² Wasserstoff und R³ Cyano bedeuten und -X-R^a für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

5

Tabelle B

Nr.	X	R ^a
B-1	-(C=O)-	H
B-2		CH ₃
B-3		CH ₂ CH ₃
B-4		CH ₂ CH ₂ CH ₃
B-5		CH ₂ CH(CH ₃) ₂
B-6		CH ₂ C(CH ₃) ₃
B-7	-O-	H
B-8		CH ₃
B-9		CH ₂ CH ₃
B-10		CH ₂ CH ₂ CH ₃
B-11		CH ₂ CH(CH ₃) ₂
B-12		CH ₂ C(CH ₃) ₃
B-13	-(C=O)-O-	H
B-14		CH ₃
B-15		CH ₂ CH ₃
B-16		CH ₂ CH ₂ CH ₃
B-17		CH ₂ CH(CH ₃) ₂
B-18		CH ₂ C(CH ₃) ₃
B-19	-NH-	H
B-20		CH ₃
B-21		CH ₂ CH ₃
B-22		CH ₂ CH ₂ CH ₃
B-23		CH ₂ CH(CH ₃) ₂
B-24		CH ₂ C(CH ₃) ₃
B-25	-(C=O)-NH-	H
B-26		CH ₃
B-27		CH ₂ CH ₃
B-28		CH ₂ CH ₂ CH ₃
B-29		CH ₂ CH(CH ₃) ₂
B-30		CH ₂ C(CH ₃) ₃
B-31	direkte Bindung	H

Nr.	X	R ^a
B-32		CH ₃
B-33		CH ₂ CH ₃
B-34		CH ₂ CH ₂ CH ₃
B-35		CH ₂ CH(CH ₃) ₂
B-36		CH ₂ C(CH ₃) ₃
B-37		CH ₂ OH
B-38		CH ₂ CH ₂ OH
B-39		CH ₂ CH ₂ CH ₂ OH
B-40		CH ₂ CH ₂ CH ₂ CH ₂ OH
B-41		CH ₂ OCH ₃
B-42		CH ₂ CH ₂ OCH ₃
B-43		CH ₂ CH ₂ CH ₂ OCH ₃
B-44		CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃
B-45		CH ₂ OCH ₂ CH ₃
B-46		CH ₂ CH ₂ OCH ₂ CH ₃
B-47		CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
B-48		CH ₂ NH ₂
B-49		CH ₂ CH ₂ NH ₂
B-50		CH ₂ CH ₂ CH ₂ NH ₂
B-51		CH ₂ NHCH ₃
B-52		CH ₂ CH ₂ NHCH ₃
B-53		CH ₂ CH ₂ CH ₂ NHCH ₃
B-54		CH ₂ NHCH ₂ CH ₃
B-55		CH ₂ CH ₂ NHCH ₂ CH ₃
B-56		CH ₂ CH ₂ CH ₂ NHCH ₂ CH ₃
B-57		CH ₂ N(CH ₃) ₂
B-58		CH ₂ SH
B-59		CH ₂ CH ₂ SH
B-60		CH ₂ CH ₂ CH ₂ SH
B-61		CH ₂ SCH ₃
B-62		CH ₂ CH ₂ SCH ₃
B-63		CH ₂ CH ₂ CH ₂ SCH ₃
B-64		CH ₂ SCH ₂ CH ₃
B-65		CH ₂ CH ₂ SCH ₂ CH ₃
B-66		CH ₂ CH ₂ CH ₂ SCH ₂ CH ₃
B-67		CH(OCH ₃) ₂
B-68		CH ₂ CH(OCH ₃) ₂
B-69		CH ₂ CH ₂ CH(OCH ₃) ₂

Nr.	X	R ^a
B-70		
B-71		
B-72		
B-73		
B-74		
B-75		
B-76		CH=CH ₂
B-77		CH=CH ₂ CH ₃
B-78		CH ₂ CH=CH ₂
B-79		CH ₂ CH ₂ CH=CH ₂
B-80		CH ₂ C≡CH
B-81		CH ₂ CH ₂ C≡CH

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und Basidiomyceten. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- 15 Alternaria-Arten an Gemüse und Obst,
- Bipolaris- und Drechslera-Arten an Getreide, Reis und Rasen,
- Blumeria graminis (echter Mehltau) an Getreide,

Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
Erysiphe cichoracearum und *Sphaerotheca fuliginea* an Kürbisgewächsen,
Fusarium- und *Verticillium*-Arten an verschiedenen Pflanzen,
Mycosphaerella-Arten an Getreide, Bananen und Erdnüssen,

- 5 *Phytophthora infestans* an Kartoffeln und Tomaten,
 Plasmopara viticola an Reben,
 Podosphaera leucotricha an Äpfeln,
 Pseudocercosporella herpotrichoides an Weizen und Gerste,
 Pseudoperonospora-Arten an Hopfen und Gurken,
10 *Puccinia*-Arten an Getreide,
 Pyricularia oryzae an Reis,
 Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
 Septoria tritici und *Stagonospora nodorum* an Weizen,
 Uncinula necator an Reben,
15 *Ustilago*-Arten an Getreide und Zuckerrohr, sowie
 Venturia-Arten (Schorf) an Äpfeln und Birnen.

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Paeciliomyces variotii* im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich,
20 Fasern bzw. Gewebe) und im Vorratsschutz.

Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch
25 nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

30 Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 0,1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm Saatgut benötigt.

35 Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Kubikmeter behandelten Materials.

Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

5

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstreichen des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

15

Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butyrolacton), Pyrrolidone (NMP, NOP), Acetate (Glykol-diacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,

20

- Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

30

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutynaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethoxyoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

35

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfractionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Me-

43

thanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerde, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein,

Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

15

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

20

Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser

A) Wasserlösliche Konzentrate (SL)

25 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.

30

B) Dispergierbare Konzentrate (DC)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Cyclohexanon unter Zusatz eines Dispergiemittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.

35

C) Emulgierbare Konzentrate (EC)

15 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

40

D) Emulsionen (EW, EO)

40 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylo unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung

5 wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

E) Suspensionen (SC, OD)

10 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.

F) Wasserdispergierbare und wasserlösliche Granulate (WG, SG)

15 50 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion,

20 Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

G) Wasserdispergierbare und wasserlösliche Pulver (WP, SP)

25 75 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

2. Produkte für die Direktapplikation

H) Stäube (DP)

35 5 Gew. Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubemittel.

I) Granulate (GR, FG, GG, MG)

0.5 Gew.-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

5

J) ULV- Lösungen (UL)

10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einem organischen Lösungsmittel z.B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikati-

10

on.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

15

20 Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber 25 auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und even- tuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Ver- dünnung mit Wasser geeignet sind.

30

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

35 Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-%

Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können

zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zu-

5 zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

10

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

15

- Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
- Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph
- Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyrodinyl,
- Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin

20

- oder Streptomycin,
- Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Hexaconazol, Imazalil, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Tebuconazol, Triadimefon, Triadimenol, Triflumizol, Triticonazol,

25

- Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
- Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,

30

- Heterocyclische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuanimol, Probenazol, Proquinazid, Pyrifenoxy, Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,
- Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches Kupfersulfat,

35

- Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
- Schwefel

40

- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Dazomet, Dicloromezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil,

Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid

- Strobilurine wie Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl,
- 5 Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin,
- Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolyfluanid
- Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

Synthesebeispiele

10

Beispiel 1: Herstellung von 4-Chloro-6-((S)-2,2,2-trifluoro-1-methyl-ethylamino)-5-(2,4,6-trifluoro-phenyl)-pyrimidin-2-carbonsäureamid [I-5]

Es wurden 5,0 g 4-Chloro-6-((S)-2,2,2-trifluoro-1-methyl-ethylamino)-5-(2,4,6-trifluoro-phenyl)-pyrimidin-2-carbonitril (s. WO 03/04993, Seiten 28 und 29) in 5 ml DMSO vorgelegt, dazu wurden 344 mg K₂CO₃, gegeben und auf 10°C abgekühlt. Anschließend wurde 1,4 ml 30%iges H₂O₂ hinzugegeben. Es wurde 5 min. im Eisbad und danach noch 30 min bei Raumtemperatur nachgerührt. Das Reaktionsgemisch wurde in 150 ml Wasser eingetragen. Dabei fiel das Amid aus. Das Amid wurde abfiltriert, gewaschen und im Hochvakuum getrocknet. Es wurden 4,7 g der beige gefärbten Titelverbindung vom Fp. 157-162°C erhalten.

Beispiel 2: Herstellung von 4-Chloro-6-((S)-2,2,2-trifluoro-1-methyl-ethylamino)-5-(2,4,6-trifluoro-phenyl)-pyrimidin-2-carbonsäure [I-11]

25

Es wurden 1,5 g 4-Chloro-6-((S)-2,2,2-trifluoro-1-methyl-ethylamino)-5-(2,4,6-trifluoro-phenyl)-pyrimidin-2-carbonitril (s. WO 03/04993, Seiten 28 und 29) in 5 ml konz. H₂SO₄ gelöst und 20 min bei 110°C gerührt. Das Reaktionsgemisch wurde in 100 ml Eiswasser eingetragen und dabei fiel die Säure aus. Die Säure wurde abfiltriert, mit Wasser

gewaschen und im Hochvakuum getrocknet. Man erhielt 1,5 g der gelben Titelverbindung.

¹H-NMR (CDCl₃, ppm): 1.4 (d, CH₃), 4.85 (d, NH), 5.60-5.80 (m, CH), 6.90-7.00 (m, CH), 10.5 (s (breit), OH).

5

Beispiel 3: Herstellung von 4-Chloro-6-((S)-2,2,2-trifluoro-1-methyl-ethylamino)-5-(2,4,6-trifluoro-phenyl)-pyrimidin-2-carbonsäure-N-tert.butylamid [I-10]

10

- a) Zu 5 ml 40 °C warmen Thionylchlorid wurden 1,5 g der Säure (Beispiel 2) gegeben. Die Reaktionsmischung wurde gerührt bis die Gasentwicklung beendet war. Der Ansatz wurde mit Toluol versetzt und das Lösungsmittel sowie überschüssiges Thionylchlorid komplett abdestilliert. Es wurden 1,6 g eines dunkelgrünen Öls erhalten.

15

- b) Es wurden 38 mg tert-Butylamin und 58 mg Triethylamin in 7 ml THF bei 0°C vorgelegt, dazu wurde 200 mg des zuvor hergestellten Säurechlorid, gelöst in 2 ml THF gegeben. Das Reaktionsgemisch wurde 12 Std. bei Raumtemperatur nachgerührt. Das Reaktionsgemisch wurde einrotiert, in Methyltert.butylether aufgenommen und mit Wasser gewaschen. Die organische Phase wurde abgetrennt, über MgSO₄ getrocknet und eingeeignet. Das Rohprodukt wurde mittels präparativer HPLC gereinigt. Es wurden 21 mg der gelben Titelverbindung mit einem Fp. von 49-54°C erhalten.

20

25

Beispiel 4: Herstellung von 4-Chloro-6-((S)-2,2,2-trifluoro-1-methyl-éthylamino)-5-(2,4,6-trifluoro-phenyl)-pyrimidin-2-carbonsäure-N-acetylimid [I-12]

30

Es wurden 150 mg Amid (Beispiel 1) in 10 ml THF zusammen mit 20 mg Natriumhydrid unter Eisbadkühlung zur Reaktion gebracht und 30 min. nachgerührt. Dazu wurden 35 mg Essigsäurechlorid gelöst in 1 ml THF langsam zugegeben. Es wurde 30 min. bei Raumtemperatur nachgerührt. Anschließend wurde das Reaktionsgemisch mit Eiswas-

ser versetzt und mit Dichlormethan extrahiert. Die verreinigten organischen Phasen wurden über Mg₂SO₄ getrocknet und einrotiert. Es wurden 65 mg der rotbraunen Titelverbindung mit Fp. von 58 bis 65°C erhalten.

- 5 Die in den vorstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in der anschließenden Tabelle I mit physikalischen Daten aufgeführt.

10 Tabelle I

Nr.	R ^a X	R ¹	R ²	L _n	Fp. [°C]	¹ H-NMR [CDCl ₃ , ppm]
I-1	H	(R,S)-CH(CH ₃)CH(CH ₃) ₂	H	2,4,6-Trifluor		0.80-0.90 (m, 2CH ₃), 1.15 (d, CH5), 1.75-1.85 (m, CH), 4.25-4.30 (m, CH), 4.60 (s, NH), 6.75 (s, NH), 6.80-6.90 (m, 2CH), 7.70 (s, NH)
I-2	H	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -		2,4,6-Trifluor	116-128	
I-3	H	-CH(CH ₃) ₂	H	2-Chlor-6-fluor	208-210	
I-4	NH ₂	-CH(CH ₃) ₂	H	2-Chlor-6-fluor	103-108	
I-5	H	(S)-CH(CH ₃)CF ₃	H	2,4,6-	157-	

				Trifluor	162	
I-6	NH ₂	(S) -CH(CH ₃)CF ₃	H	2,4,6-Trifluor	59-65	
I-7	H	-CH ₂ C=CH ₂	CH ₂ C=CH ₂	2,4,6-Trifluor	134-141	
I-8	CH ₃	-CH ₂ C=CH ₂	CH ₂ C=CH ₂	2,4,6-Trifluor	52-58	
I-9	-N(CH ₃) ₂	(S) -CH(CH ₃)CF ₃	H	2,4,6-Trifluor	39-45	
I-10	-C(CH ₃) ₃	(S) -CH(CH ₃)CF ₃	H	2,4,6-Trifluor	49-54	
I-11	-OH	(S) -CH(CH ₃)CF ₃	H	2,4,6-Trifluor		1.4(d, CH ₃), 4.85 (d, NH), 5.60-5.80 (m, CH), 6.90-7.00 (m, CH), 10.5 (s(breit), OH)
I-12	(C=O)CH ₃	(S) -CH(CH ₃)CF ₃	H	2,4,6-Trifluor	58-65	

Beispiele für die Wirkung gegen Schadpilze

Die fungizide Wirkung der Verbindungen der Formel I ließ sich durch die folgenden

5 Versuche zeigen:

Die Wirkstoffe wurden getrennt als Stammlösung formuliert mit 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf Basis ethoxylierter Alkylphenole) zugesetzt. Die

10 Stammlösungen der Wirkstoffe wurden entsprechend der angegebenen Konzentration mit Wasser verdünnt.

Anwendungsbeispiele

15 1. Wirkung gegen die Krautfäule an Tomaten verursacht durch *Phytophthora infestans* bei protektiver Behandlung

Blätter von Topfpflanzen der Sorte "goldene Prinzessin" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe

51

besprüht. Am folgenden Tag wurden die Blätter mit einer wässrigen Sporangienaufschwemmung von *Phytophthora infestans* infiziert. Anschließend wurden die Pflanzen in einer wasserdampf-gesättigten Kammer bei Temperaturen zwischen 18 und 20°C aufgestellt. Nach 6 Tagen hatte sich die Krautfäule auf den unbehandelten,

- 5 jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.

Nr.	R ⁴	Dokument	Befall bei 250 ppm a.i. (%Blattfläche)
I-5	-(C=O)NH ₂	erfindungsgemäß	0
V1	-(C=NOCH ₃)NH ₂	WO 03/043993	80
	unbehandelt		80

2. Dauerwirksamkeit gegen die Dürrfleckenkrankheit der Tomate verursacht durch
10 *Alternaria solani* bei protektiver Behandlung

Blätter von Topfpflanzen der Sorte "Goldene Prinzessin" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Um die Dauerwirkung zu testen wurden erst sieben Tage später die Blätter mit einer wässrigen Sporenaufschwemmung von *Alternaria solani* in 2 % Biomalzlösung mit einer Dichte von 0.17×10^6 Sporen/ml infiziert. Anschließend wurden die Pflanzen in einer wasserdampf-gesättigten Kammer bei Temperaturen zwischen 20 und 22°C aufgestellt. Nach weiteren 5 Tagen hatte sich die Krankheit auf den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.

Nr.	R ⁴	Dokument	Befall bei 16 ppm a.i. (%Blattfläche)
I-5	(C=O)NH ₂	erfindungsgemäß	30
V1	(C=NOCH ₃)NH ₂	WO 03/043993	67
	unbehandelt		90

3. Wirksamkeit gegen den Grauschimmel an Paprikablättern verursacht durch *Botrytis cinerea* bei protektiver Anwendung
- 5 Paprikasämlinge der Sorte "Neusiedler Ideal Elite" wurden, nachdem sich 2 - 3 Blätter gut entwickelt hatten, mit einer wässrigen Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am nächsten Tag wurden die behandelten Pflanzen mit einer Sporensuspension von *Botrytis cinerea*, die 1.7×10^6 Sporen/ml in einer 2 %igen wässrigen Biomalzlösung enthielt, inkuliert. Anschließend 10 wurden die Versuchspflanzen in eine Klimakammer mit 22 bis 24°C, Dunkelheit und hoher Luftfeuchtigkeit gestellt. Nach 5 Tagen konnte das Ausmaß des Pilzbefalls auf den Blättern visuell in % ermittelt werden.

Nr.	R ⁴	Dokument	Befall bei 16 ppm a.i. (%Blattfläche)
I-2	-(C=O)NH ₂	erfindungsgemäß	15
V2	-(C=NOCH ₃)NH ₂	Beispiel I-186 aus WO 03/043993	90
		unbehandelt	100

2-Substituierte Pyrimidine

Zusammenfassung

- 5 Die Erfindung betrifft 2-Substituierte Pyrimidine der Formel I

in der der Index n und die Substituenten R¹ bis R³ sowie L wie in der Beschreibung definiert sind und

10 R⁴ einer der Formeln

entspricht, in denen R^a, X und R^b wie in der Beschreibung definiert sind;

- 15 sowie Verfahren zu deren Herstellung, diese enthaltende pestizide Mittel und deren Verwendung als Pestizide.