Вопросы к экзамену по Теории Графов и Комбинаторным Алгоритмам 3 семестр

Данил Заблоцкий 17 января 2024 г.

Содержание

1	Определение графа. Примеры графов. Степени вершин графа. Лемма о рукопожатиях.	3
2	Маршруты, цепи, циклы. Лемма о выделении простой цепи. Лемма об объединении простых цепей.	5
3	Эйлеровы циклы. Критерий существования эйлерова цикла (теорема Эйлера).	7
4	Гамильтоновы циклы. Достаточные условия существования гамильтонова цикла (теоремы Оре и Дирака).	9
5	Изоморфизм графов. Помеченные и непомеченные графы. Теорема о числе помеченных n -вершинных графов.	10
6	Проблема изоморфизма. Инварианты графа. Примеры.	12
7	Связные и несвязные графы. Лемма об удалении ребра. Оценки числа ребер связного графа.	- 13
8	Плоские и планарные графы. Графы Куратовского. Формула Эйлера для плоских графов.	16
9	Деревья. Первая теорема о деревьях.	17
10	Деревья. Вторая теорема о деревьях.	18
11	Теорема Кэли о числе помеченных n -вершинных деревьев (с леммой).	19
12	Центр дерева. Центральные и бицентральные деревья. Тео- рема Жордана.	20
13	Изоморфизм деревьев. Процедура кортежирования (на примере). Теорема Эдмондса.	21

14 Вершинная и реберная связность графа. Основное неравен	-
ство связности.	22
15 Отделимость и соединимость. Теорема Менгера.	24
16 Реберный вариант теоремы Менгера.	25

1 Определение графа. Примеры графов. Степени вершин графа. Лемма о рукопожатиях.

Определение 1 (Неориентированный граф, вершины и ребра графа). *Неориентированный граф* — пара множеств G = (V, E), где

V – непустое конечное множество,

E – множество, состоящее из неупорядоченных пар элементов из V.

Элементы множества V называются $\epsilon epuunamu$, а элементы E – $pe\delta pamu$ графа.

Примечание. Если $u, v \in V, \{u, v\} \in E$, то будем записывать

$$e = uv (= vu)$$

и говорить, что вершины u и v cмежсны, вершина u и ребро e-uнии-

Определение 2 (Степень вершины). *Степенью вершины v* называется число инцидентных ей ребер.

Обозначение:
$$d(v) (deg(v))$$

Пример. deg(v) = 3

Пример. $\Pi y cmo \ddot{u}$ граф – граф без ребер: O_n .

Пример. Полный граф – граф, любая пара которого смежна: K_n .

Примечание.

$$|E| = C_n^2 = \frac{n(n-1)}{2}$$
 — число ребер.

Пример. Двудольный граф — граф, вершины которого разбиты на 2 непересекающиеся части (доли) так, что любое ребро ведет из одной доли в другую.

Если любая вершина одной доли смежна с любой вершиной другой доли, то такой граф называется *полным двудольным*.

Полный двудольный граф с долями размера p и q обозначают: $K_{p,q},$

$$|E| = p \cdot q$$
.

Пример. 3 везда — полный двудольный граф $K_{1,q}$: одна доля состоит из одной вершины, а из нее веером расходятся лучи.

Пример. Графы многогранников

Лемма 1 (О рукопожатиях). Пусть G = (V, E) — произвольный граф. Сумма степеней всех вершин графа G — четное число, равное удвоенному количеству его ребер:

$$\sum_{v \in V} deg_G(v) = 2|E| \tag{1}$$

Доказательство. Индукция по числу ребер графа G.

- 1. Если |E| = 0, то формула 1 верно.
- 2. Предположим, что формула 1 верна для любого графа, в котором число ребер $\leqslant m$, где $m \geqslant 0$.
- 3. Пусть |E|=m+1. Выберем произвольное ребро e=uv и удалим его из графа G. Получим граф G'=(V,E'), где |E'|=m.

По предположению индукции для графа G' формула 1 верна:

$$\sum_{v \in V} deg_{G'}(v) = 2|E'| = 2m.$$

Вернем ребро e = uv:

$$\sum_{v \in V} deg_G(v) = \sum_{v \in V} deg_{G'}(v) + 2 = 2m + 2 = 2(m+1) = 2|E|.$$

2 Маршруты, цепи, циклы. Лемма о выделении простой цепи. Лемма об объединении простых цепей.

Определение 3 (Маршрут). Mapupymom, соединяющим вершины u и v ((u,v)-маршрут), называется чередующаяся последовательность вершин и ребер вида

$$(u = v_1, e_1, v_2, \dots, v_k, e_k, v_{k+1} = v)$$

такая, что $e_i = v_i v_{i+1}, i = \overline{1, k}$.

Определение 4 (Замкнутый маршрут). Маршрут называется *замкну- тым*, если первая вершина совпадает с последней, то есть

$$v_1 = v_{k+1}.$$

Определение 5 (Цепь, простая цепь). Маршрут называется *цепью*, если в нем все ребра различны и *простой цепью*, если в нем все вершины различны (за исключением, быть может, первой и последней).

Определение 6 (Цикл, простой цикл). Замкнутая цепь называется $uu\kappa$ -лом, а замкнутая простая цепь — простым $uu\kappa$ лом.

Лемма 2 (О выделении простой цепи). Всякий незамкнутый (u, v)-маршрут содержит простую (u, v)-цепь.

Доказательство.

- 1. Если все вершины (u,v)-маршрута различны, то (u,v) простая цепь.
- 2. Пусть v_i первая из вершин, имеющая в нем повторение, а v_j последнее повторение.

 $(v_1, v_2, \ldots, v_{i-1}, v_i, v_{j+1}, \ldots)$ — заменим на более короткий, исключив цикл. Если в более коротком маршруте еще есть повторяющиеся вершины, то поступаем также.

В конце концов получим незамкнутый (u, v)-маршрут, в котором все вершины различны, то есть простую цепь.

2 МАРШРУТЫ, ЦЕПИ, ЦИКЛЫ. ЛЕММА О ВЫДЕЛЕНИИ 6 ПРОСТОЙ ЦЕПИ. ЛЕММА ОБ ОБЪЕДИНЕНИИ ПРОСТЫХ ЦЕПЕЙ. **Лемма 3** (Об объединении простых цепей). Объединение двух несовпадающих простых (u, v)-цепей содержит простой цикл.

Доказательство. Предположим, что $P = (u_1, \ldots, u_{k+1}), \ Q = (v_1, \ldots, v_{l+1})$ – две несовпадающие простые цепи:

$$u = u_1 = v_1, \quad v = u_{k+1} = v_{l+1},$$

Предположим, что u_{r+1} и v_{r+1} – первые несовпадающие вершины этих цепей, а $u_s=v_t$ – первые совпадающие за v_{r+1} и u_{r+1} . Тогда

$$(u_r,u_s)$$
 – фрагмент P (v_r,v_s) – фрагмент Q – образуют простой цикл.

3 Эйлеровы циклы. Критерий существования эйлерова цикла (теорема Эйлера).

Определение 7 (Эйлеров цикл). Пусть G = (V, E) – произвольный граф (мультиграф). Цикл в графе G называется эйлеровым, если он содержит все ребра графа.

Определение 8 (Эйлеров граф). Граф называется *эйлеровым*, если в нем есть эйлеров цикл.

Теорема 1 (Эйлер, 1736). В связном графе G = (V, E) существует эйлеров цикл \Leftrightarrow все вершины графа G четны (то есть имеют четную степень).

Доказательство.

⇒ (необходимость)

Пусть граф G – эйлеров. Эйлеров цикл, проходя через каждую вершину графа, входит в нее по одному ребру и выходт по другому. Значит каждая вершина должна быть инцидентна четному числу ребер.

 \leftarrow (достаточность)

3 ЭЙЛЕРОВЫ ЦИКЛЫ. КРИТЕРИЙ СУЩЕСТВОВАНИЯ ЭЙЛЕРОВА ЦИКЛА (ТЕОРЕМА ЭЙЛЕРА). Пусть G – связен, все его вершины имеют четную степень.

Рассмотрим следующий алгоритм и докажем, что он обязательно построит эйлеров цикл.

Примечание (Алгоритм построения эйлерова цикла). Рассмотрим произвольную вершину v_0 и построим из нее маршрут C_0 .

Пройденные вершины запоминаем, а ребра удаляем. Действуем так до тех пор, пока не получим граф G_1 , в котором нет ребер инцидентных очередной вершине маршрута C_0 .

Если C_0 содержит все ребра графа G, то он и есть эйлеров цикл и все доказано.

В противном случае, в силу связности графа G в цикле C_0 найдется вершина v_1 , инцидентная некоторому ребру графа G_1 . Начинаем стоить из нее (v_1) цикл C_1 в графе G_1 .

Если все циклы C_0 и C_1 содержат все ребра графа G_1 , то алгоритм завершает работу.

В противном случае, в одном из циклов C_0, C_1 найдется вершина v_2 , инцидентная какому-то ребру графа G_2 . Строим из нее цикл C_2 в графе G_2 и так далее.

В конце концов, получим, что после построения цикла C_k , оставшийся граф G_{k+1} пуст \Rightarrow в построенных циклах все ребра G. Тогда контруируем в графе G эйлеров цикл из ребер построенных циклов.

4 Гамильтоновы циклы. Достаточные условия существования гамильтонова цикла (теоремы Оре и Дирака).

Определение 9 (Гамильтонов цикл, граф). Пусть G = (V, E) — обыкновенный граф, |V| = n. Простой цикл в графе G называется гамильтоновым, если он проходит по всем вершинам графа.

Граф называется $\it гамильтоновым, если он содержит гамильтонов цикл.$

Определение 10 (Гамильтонова цепь). Простая цепь в графе G называется *гамильтоновой*, если она проходит по всем вершинам графа.

Теорема 2 (Оре, 1960). Пусть $n \ge 3$. Если в n-вершинном графе G для любой пары несмежных вершин u,v выполнено условие

$$deg(u) + deg(v) \ge n$$
,

то граф – гамильтонов.

Доказательство. От противного. Предположим, что граф G удовлетворяет условию теоремы, но G – негамильтонов.

Соединив любые две несмежные вершины графа ребром, мы вновь получим граф, удовлетворяющий условию теоремы. Поскольку полный граф гамильтонов, то существует мауксимальный негамильтонов граф G^* , удовлетворяющий условию теоремы.

Это значит, что соединив две несмежные вершины графа G^* ребром, мы получим гамильтонов цикл. Поэтому любые две вершины графа G^* соединены гамильтоновой цепью.

Выберем в G^* пару несмежных вершин v_1, v_n и пусть $(v_1, v_2, \dots, v_{n-1}, v_n)$ – гамильтонова цепь в G^* .

Если в графе G^* вершины v_1 и v_i – смежные, то вершины v_{i-1} и v_n не могут быть смежными, иначе в G^* существовал бы гамильтонов цикл

$$(v_1, v_i, v_n, v_{i-1}, v_1),$$

Отсюда следует, что

$$deg(v_n) \leq n - 1 - deg(v_1).$$

Следовательно, $deg(v_1) + deg(v_n) \le n - 1$ — противоречие с условием.

Теорема 3 (Дирак, 1953). Пусть $n \ge 3$. Если в n-вершинном графе G для любой вершины выполнено условие

$$deg(v) \geqslant \frac{n}{2},$$

то граф – гамильтонов.

Доказательство. Теорема Дирака следует из теоремы Оре.

5 Изоморфизм графов. Помеченные и непомеченные графы. Теорема о числе помеченных *n*-вершинных графов.

Определение 11 (Изоморфные графы). Графы $G = (V_G, E_G)$, $H = (V_H, E_H)$ называются *изоморфными*, если между множествами из вершин существует взаимнооднозначное соответствие

$$\phi: V_G \to V_H$$
,

сохраняющее смежность, то есть $\forall u, v \in V_G$

$$uv \in E_G \Leftrightarrow \phi(u)\phi(v) \in E_H$$
.

Обозначение: $G \cong H$

5 ИЗОМОРФИЗМ ГРАФОВ. ПОМЕЧЕННЫЕ И НЕПОМЕЧЕННЫЕ10 ГРАФЫ. ТЕОРЕМА О ЧИСЛЕ ПОМЕЧЕННЫХ n-ВЕРШИННЫХ ГРАФОВ.

Определение 12 (Помеченный граф). Граф называется *помеченным*, если его вершины отличаются одна от другой какими-то метками.

3 разных помеченных графа

2 одинаковых помеченных графа

Теорема 4 (О числе помеченных n-вершинных графах). Число p_n различных помеченных n-вершинных графов с фиксированным множеством вершин равно

 $2^{\frac{n(n-1)}{2}}$.

Доказательство. В помеченном n-вершинном графе G можно перенумеровать все пары вершин (таких пар всего $C_n^2 = \frac{n(n-1)}{2}$) и поставить графу G взаимнооднозначное соответствие его характеристический вектор длины $k = \frac{n(n-1)}{2}, i$ -ая компонента которого равна

 e_i = $\left\{ \begin{array}{l} 1, \text{ если пара вершин с номером } i \text{ смежна} \\ 0, \text{ в противном случае} \end{array} \right.$

Тогда p_n равно числу булевых векторов длины $k = \frac{n(n-1)}{2}$, то есть

$$p_n = 2^k = 2^{\frac{n(n-1)}{2}}.$$

6 Проблема изоморфизма. Инварианты графа. Примеры.

Определение 13 (Инвариант графа). Инвариант графа G=(V,E) – это число, набор чисел, функция или свойство связанные с графом и принимающие одно и то же значение на любом графе, изоморфном G, то есть

$$G \cong H \Rightarrow i(G) = i(G)$$
.

Инвариант i называется nолным, если

$$i(G) = i(H) \Rightarrow G \cong H$$
.

Обозначение: i(G)

Пример.

1. n(G) – число вершин.

2. m(G) – число ребер.

3. $\delta(G)$ – min степень.

4. $\Delta(G)$ – max степень.

5. $\phi(G)$ – плотность графа G – наибольшее число попарно смежных вершин.

6. $\varepsilon(G)$ – неплотность – наибольшее число попарно несмежных вершин

7. ds(G) — вектор степеней (или степенная последовательность) — последовательность степеней всех вершин, выписанная в порядке неубывания.

8. $\chi(G)$ – хроматическое число – наименьшее число χ , для которого го граф имеет правильную χ -раскраску множества вершин (правильная раскраска – раскраска, при которой смежные вершины имеют разный цвет).

$$n(Q_4) = 4$$
 $\phi(Q_4) = 3$
 $m(Q_4) = 5$ $\varepsilon(Q_4) = 2$
 $\delta(Q_4) = 2$ $ds(Q_4) = (2, 2, 3, 3)$
 $\Delta(Q_4) = 3$ $\chi(Q_4) = 3$

7 Связные и несвязные графы. Лемма об удалении ребра. Оценки числа ребер связного графа.

Определение 14 (Соединимые вершины, связный граф). Две вершины u, v графа G называются coeduнимыми, если в $G \exists (u, v)$ -маршрут.

Граф называется ceязным, если в нем любые две вершины соединимы.

Замечание. Тривиальный граф считается связным.

Определение 15 (Циклическое, ациклическое ребро). Ребро e называется $uu\kappa$ лическим, если оно принадлежит некоторому циклу, и $auu\kappa$ лическим – в противном случае.

Лемма 4 (Об удалении ребра). Пусть G = (V, E) – связный граф, $e \in E$.

- 1. Если e циклическое ребро, то граф G e связен.
- 2. Если e ациклическое, то граф G e имеет ровно две компоненты связности.

Доказательство.

1. Пусть e = (u, v) – циклическое, входит в цикл C, который можно рассмотреть как объединение ребра e и (u, v)-цепи P.

Чтобы доказать, что G – e – связен, нужно доказать, что любые

7 СВЯЗНЫЕ И НЕСВЯЗНЫЕ ГРАФЫ. ЛЕММА ОБ УДАЛЕНИИ 13 РЕБРА. ОЦЕНКИ ЧИСЛА РЕБЕР СВЯЗНОГО ГРАФА.

его две вершины соединимы.

Рассмотрим две произвольные вершины, назовем их s и t. Так как по условию G – связный, то \exists (s,t)-маршрут.

Если этот (s,t)-маршрут проходит по ребру e, то заменим в нем ребро e на (u,v)-цепь P, получили новый (s,t)-маршрут, не проходящий по $e\Rightarrow G-e$ – связен.

2. Пусть e = uv ацикличен, очевидно, что G - e — несвязный.

Чтобы доказать, что в G-e ровно 2 компоненты связности, нужно доказать, что любая вершина ω содержится в одной компоненте c в u или v.

По условию G — связен, значит в нем \exists простая (u,ω) -цепь и простая (v,ω) -цепь. Заметим, что ребро e может входить в одну, и только в одну, из этих цепей, иначе e было бы циклическим.

Предположим, что ребро e входит в (u, ω) -цепь. Тогда вершины v и ω находятся в одной компоненте связности.

Теорема 5 (Оценки числа ребер связного графа). Если G — связный (n,m)-граф, то

$$n-1\leqslant m\leqslant \frac{n(n-1)}{2}.$$

Доказательство. Доказательство требует только нижняя оценка.

Пусть G = (V, E) – связный.

Доказывать будем индукцией по числу |E| ребер. Если |E|=m=0, то G — тривиальный граф, то есть |V|=n=1 \Rightarrow m=n-1=0. Предположим, что для графа, где |E|< m, неравенство верно. Пусть $|E|=m\geqslant 1$.

1. Если в G есть циклы, то рассмотрим какое-нибудь циклическое ребро e и удалим его из G. Тогда по лемме об удалении ребра, G – e связен, а количество ребер m – 1.

По предположению индукции, $m-1 \ge n-1 \Rightarrow m \ge n > n-1$.

2. Пусть в G нет циклов, рассмотрим произвольное ребро e, оно ациклическое, удалим его, тогда в G – e ровно две компоненты связности.

Обозначим их G_1 и G_2 .

Пусть $G_1 - (n_1, m_1)$ -граф, а $G_2 - (n_2, m_2)$ -граф. Тогда

$$m_1 \geqslant n_1 - 1$$

$$m_2 \geqslant n_2 - 1$$

(по предположению индукции, так как $m_1 < m, m_2 < m$)

Следовательно,

$$m-1=m_1+m_2\geqslant n_1-1+n_2-1=n_1+n_2-2=n-2,$$

то есть $m-1 \geqslant n-2 \Rightarrow m \geqslant n-1$.

8 Плоские и планарные графы. Графы Куратовского. Формула Эйлера для плоских графов.

Определение 16 (Плоский, планарный граф). Плоский граф – это такой граф, вершины которого являются точками плоскости, а ребра – непрерывными плоскими линиями без самопересечений, соединяющими вершины так, что никакие два ребра не имеют общих точек вне вершин.

 ${\it \Pi}$ ланарный ${\it гра} \phi$ – это граф, изоморфный некоторому плоскому графу.

Замечание. Несложно доказать, что графы $K_{3,3}$ и K_5 – непланарны.

Определение 17 (Гомеоморфные графы). Два графа называются гомеоморфными, если их можно получить из одного и того же графа с помощью разбиения ребер, то есть замены некоторых ребер простыми цепями.

Теорема 6 (Понтрягин-Куратовский). Граф планарен \Leftrightarrow он не содержит подграфов, гомеоморфных $K_{3,3}$ или K_5 .

Определение 18 (Грань). *Гранью* плоского графа называется максимальное множество точек плоскости, каждая пара из которых может быть соединена непрерывной плоскоской линией, не пересекающей ребер графа.

Теорема 7 (Формула Эйлера). Для всякого связного плоского графа верна формула

$$n - m + l = 2, (2)$$

где n – число вершин, m – число ребер, l – число граней графа.

Доказательство. Рассмотрим две операции перехода от связного плоского графа G к его связному плоскому подграфу, не изменяющие величины n-m+l.

- 1. Удаление ребра, принадлежащего сразу двум граням (одно из которых может быть внешней), при этом m и l уменьшаются на 1.
- 2. Удаление висячей вершины вместе с инцидентным ребром. При этом n и m уменьшаются на 1.

Очевидно, что любой связный плоский граф, выполняя эти две операции, можно превратить в тривиальный граф, не меняя величины n-m+l, а для тривиального графа:

$$n-m+l=2.$$

Значит формула 2 верна для любого связного плоского графа.

9 Деревья. Первая теорема о деревьях.

Определение 19 (Ациклический граф, дерево). Граф называется $auu\kappa$ лическим, если в нем нет цикла. Связный ациклический граф называется depeaom.

Теорема 8 (Первая теорема о деревьях). Для (n,m)-графа G следующие утверждения эквивалентны:

- 1. G дерево, то есть связный ациклический граф.
- 2. G связен и m = n 1.
- 3. G ациклический и m = n 1.

Доказательство.

 $1. \Rightarrow 2.$ Пусть граф G = (V, E) связен и ациклический.

Очевидно, что G – плоский граф, имеющий одну (внешнюю) грань. По формуле Эйлера:

$$n - m + 1 = 2 \Rightarrow m = n - 1$$
.

 $2. \Rightarrow 3.$ Пусть G связен и m = n - 1.

Предположим противное, то есть в графе G есть цикл.

Рассмотрим произвольное ребро e этого цикла и удалим его из графа G.

По лемме об удалении ребра, граф G-e тоже связен, а число ребер в нем: n-2, но по теореме 5, число ребер в связном графе $\geqslant n-1$ — противоречие.

Значит в графе G циклов нет $\Rightarrow G$ – ациклический.

 $\boxed{3. \Rightarrow 1.}$ Пусть G ациклический и число ребер m = n - 1.

Докажем, что G – связен. Обозначим k – число компонент связности.

Пусть i-ая компонента является (n_i, m_i) -графом, $i = \overline{1, k}$. Каждая компонента является деревом и по ранее доказанномму $m_i = n_i - 1$, тогда

$$n-1 = m = \sum_{i=1}^{k} m_i = \sum_{i=1}^{k} (n_i - 1) = \sum_{i=1}^{k} n_i - k = n - k \Rightarrow \boxed{k=1},$$

то есть в графе G одна компонента связности $\Rightarrow G$ – связен.

10 Деревья. Вторая теорема о деревьях.

Теорема 9 (Вторая теорема о деревьях). Для (n,m)-графа G следующие утверждения эквивалентны:

- 1. G дерево, то есть связный ациклический граф.
- 4. G ациклический и если любую пару его несмежных вершин соединить ребром, то полученный граф будет содержать ровно один цикл.
- 5. Любые две вершины графа G соединены единственной простой цепью

Доказательство.

 $|1. \Rightarrow 4.|$ Пусть G дерево, то есть связный ациклический граф.

В связном графе G любые две несмежные вершины u и v соединены простой (u,v)-цепью.

Если соединены u и v ребром e, то образуется цикл. А два цикла образоваться не могут в силу свойства циклов.

 $4. \Rightarrow 5.$ Пусть G ациклический и если любую пару его несмежных вершин соединить ребром, то полученный граф будет содержать ровно один цикл.

Любые две несмежные вершины u и v графа G соединимы, иначе

при добавлении ребра не получился бы цикл.

Любые две смежные вершины тоже соединимы. В силу леммы о выделении простой цепи любые две вершины графа G соединены цепью, а две цепи быть не может, иначе в графе G был бы цикл, а он ациклический.

5. ⇒ 1. Поскольку любые две вершины графа G соединены одной простой цепью, то граф связен.

Если бы в графе G был цикл, то любые две вершины этого цикла были бы соединены двумя цепями, а это невозможно $\Rightarrow G$ – ациклический.

11 Теорема Кэли о числе помеченных *n*-вершинных деревьев (с леммой).

Лемма 5. При $n \ge 2$ существует взаимнооднозначное соответствие между множеством всех помеченных n-вершинных деревьев с метками $1, 2, \ldots, n$ и множеством всех слов длины n-2 в алфавите $\{1, 2, \ldots, n\}$.

Доказательство.

1. Докажем, что каждому дереву T с множеством вершин $V = \{1,2,\ldots,n\}$ можно однозначно поставить в соответствие слово длины n-2 в алфавите $\{1,2,\ldots,n\}$ (код Прюфера (чей блин)).

Если n=2, то сопоставим дереву T слово длины 0 («пустое» слово).

Пусть теперь $n \geqslant 3$. Согласно лемме о литьях дерева (искать в конспекте) в дереве T есть листья.

Обозначим через v_1 первый лист дерева T (то есть висячую вершину с наименьшим номером), а через e_1 = v_1u_1 — соответствующее ребро дерева T.

Удалив из T вершину v_1 вместе с ребром e_1 получим новое дерево T_1 . В нем снова найдем лист с наименьшим номером v_2 и ребро $e_2 = v_2 u_2$. Эта редукция повторяется, пока после удаления $e_{n-2} = v_{n-2} u_{n-2}$ не останется единственное ребро $e_{n-1} = v_{n-1} u_{n-1}$.

Тогда слово $\Omega = u_1 u_2 \dots u_{n-2}$ однозначно определяется деревом T (код Прюфера).

2. Покажем, что при $n \ge 2$ каждое слово вида $\Omega = u_1u_2\dots u_{n-2}$, где $u_i \in V = \{1,2,\dots,n\}$ однозначно определяет некоторое дерево на множестве вершин V. В V есть номер, отсутствующий в Ω .

Найдем наименьший номер $v_1 \in V$, который не входит в Ω . Этот номер определяет ребро $e_1 = v_1 u_1$.

Вычеркнем v_1 из V и u_1 из Ω . Найдем наименьший номер $v_2 \in V$ и положим ребро $e_2 = v_2 u_2$ и так далее.

После определения ребра $e_{n-2}=v_{n-2}u_{n-2}$ в множестве $V\smallsetminus\{v_1,v_2,\ldots,v_{n-2}\}$ останется всего два числа. Они определяют последнее ребро $e_{n-1}=v_{n-1}v_n$.

Осталось доказать, что граф T=(V,E) является деревом, где $E=\{e_1,e_2,\ldots,e_{n-1}\}.$

Действительно, одно ребро e_{n-1} образует дерево. Пусть ребра $e_{n-1},e_{n-2},\ldots,e_{i+1}$ образуют дерево $T',\ i=\overline{1,n-2}.$

Тогда ребра $e_{n-1}, e_{n-2}, \dots, e_{i+1}, e_i$, где $e_i = v_i u_i$, тоже образуют дерево, так как u_i является вершиной дерева T', а v_i – нет.

Теорема 10 (А. Кэли, 1889). Число различных помеченных деревьев с n вершинами равно

$$t_n = n^{n-2}.$$

Доказательство. При n=1 формула, очевидно, верна.

При $n \ge 2$ в силу леммы 5 число помеченных n-вершинных деревьев равно числу слов длины n-2, в которых каждая «буква» может принимать любую из n значений $1, 2, \ldots, n$, а таких слов всего n^{n-2} . \square

12 Центр дерева. Центральные и бицентральные деревья. Теорема Жордана.

Примечание. $d(u,v) - \partial nu + a$ самой короткой простой (u,v)-цепи (длина — число ребер).

Определение 20 (Эксцентриситет). Эксцентриситет вершины v – расстояние до самой удаленной от v вершины графа:

$$\varepsilon(v) = \max_{u \in V} d(v, u).$$

Определение 21 (Радиус). *Радиус* связного графа – это наименьший из эксцентриситетов его вершин:

$$\tau(G) = \min_{v \in V} \varepsilon(v).$$

Определение 22 (Центральная вершина). Вершина называется *центральной*, если ее эксцентриситет равен радиусу графа.

Определение 23 (Центр графа). Множество центральных вершин графа называется его *центром*.

Пример. Центр графа:

Определение 24 (Центральное, бицентральное дерево). Дерево, центр которого состоит из одной вершины, называется *центральным*, а дерево, центр которого состоит из двух смежных вершин – *бицентральным*.

Теорема 11 (Жордан). Центр любого дерева состоит из одной или двух смежных вершин.

Доказательство. Утверждение очевидно для деревьев K_1 и K_2 .

Пусть T = (V, E) – некоторое дерево и $|V| = n \geqslant 3$. Удалим из дерева T все листья. Заметим, что при этом эксцентриситет каждой вершины оставшегося дерева T' уменьшился ровно на 1.

Это означает, что центры деревьев T и T' совпадают. Продолжая процесс удаления листьев, мы получим либо дерево K_1 , либо дерево K_2 .

13 Изоморфизм деревьев. Процедура кортежирования (на примере). Теорема Эдмондса.

Примечание (Процедура кортежирования дерева).

Вход: n-вершинное дерево T = (V, E).

Выход: Список натуральных чисел, представляющий кортеж T.

Теорема 12 (Эдмондс). Для изоморфизма деревьев необходимо и достаточно, чтобы совпадали их центральные кортежи.

Доказательство.

 \Rightarrow $T \cong T'$, тогда при любом изоморфизме ϕ множество V_1 листьев дерева T взаимнооднозначно отображается на множество V_1' дерева T'. Соответствуют другу другу множества V_2 и V_2' вершин второго уровня деревьев и так далее.

Поэтому соответствующие друг другу вершины имеют одинаковый уровень и получают одинаковые кортижи. В частности совпадают центральные вершины.

 \Leftarrow Пусть кортежи T и T' одинаковые (c(T) = c(T')). По кортежу дерева T однозначно восстанавливается само дерево T, а по кортежу дерева T' – однозначно восстанавливается такое же дерево $T' \Rightarrow T \cong T'$.

14 Вершинная и реберная связность графа. Основное неравенство связности.

Определение 25 (Вершинная связность (связность)). Вершинной связностью (связностью) обыкновенного нетривиального графа G называется наименьшее число вершин, в результате удаления которых получается несвязный или тривиальный граф:

$$\mathcal{X}(G)$$
.

Примечание. Для тривиального графа по определению полагаем

$$\mathcal{X}(O_1) = 0.$$

Пример. Для C_5, K_5 и C_3

Определение 26 (Реберная связность). *Реберной связностью* нетривиального графа называется наименьшее число ребер, в результате удаления которых получается несвязный граф:

$$\lambda(G)$$
.

Пример. $\lambda(O_1) = 0$,

Теорема 13 (Основное неравенство связности). Для любого графа G

$$\mathcal{X}(G) \leqslant \lambda(G)$$
.

Доказательство. Если граф несвязный или тривиальный, то

$$\mathcal{X}(G) = 0 = \lambda(G).$$

Пусть G = (V, E) связный и нетривиальный $\Rightarrow \lambda(G) = \lambda > 0$. Выберем в графе G λ ребер, в результате удаления которых получается несвязный граф, обозначим:

$$L \subset E$$
,

 $|L| = \lambda > 0, \ G - L$ — несвязный.

Из определения реберной связности и лемме об удалении ребра следует, что граф G-L имеет ровно две компоненты связности, причем концы каждого ребра из L принадлежат разным компонентам.

Обозначим через V_1 – множество вершин первой компоненты связности, V_2 – множество вершин второй компоненты связности,

$$|V_1| \leq |V_2|$$
.

Для каждого ребра из L выберем одну инцидентную ему вершину следующим образом:

- 1. Если $|V_1|$ = 1, то все выбранные вершины лежат в V_2 .
- 2. Если $|V_1| > 1$, то вершины выбраны так, чтобы среди оставшихся были вершины и из V_1 , и из V_2 .

Множество выбранных таким образом вершин обозначим U.

$$|U| \leq |L| = \lambda$$
.

1.

2

(выделены ребра L, обведены вершины U)

Удалим из G все вершины множества U, при этом будут удалены все ребра множества L и может еще какие-то ребра. Следовательно, оставшийся граф G – U будет несвязен или тривиален. Значит:

$$\mathcal{X}(G) \leqslant |U| \leqslant \lambda = \lambda(G).$$

15 Отделимость и соединимость. Теорема Менгера.

Определение 27 (Разделение вершин). Пусть G=(V,E) — связный граф, s и t — две несмежные вершины. Говорят, что множество вершин $\Omega \subset V$ разделяет s и t, если эти вершины принадлежат разным компонентам связности графа G — Ω .

Определение 28 (k-отделимые вершины). Несмежные вершины s и t называются k-отделимыми, если k равно наименьшему числу вершин, разделяющих s и t.

Определение 29 (Вершинно-независимые цепи). Две простые цепи, соединяющие s и t, называются вершинно-независимыми, если они не имеют общих вершин, отличных от s и t.

Определение 30 (l-соединимые вершины). Вершины s и t называются l-соединимыми, если l равно наибольшему числу вершинно-независимых цепей.

Теорема 14 (Менгер). В связном графе любые две несмежные вершины k-отделимы \Leftrightarrow они k-соединимы.

16 Реберный вариант теоремы Менгера.

Определение 31 (Разделение вершин). Пусть G = (V, E) — связный граф, s и t — две его произвольные вершины. Говорят, что множество ребер $R \subset E$ разделяет s и t, если эти вершины принадлежат разным компонентам связности графа G - R.

Определение 32 (k-реберно-отделимые вершины). Вершины s и t называются k-реберно-отделимыми, если k равно наименьшему числу ребер, разделяющих s и t.

Определение 33 (Вершинно-независимые цепи). Две простые цепи, соединяющие s и t, называются вершинно-независимыми, если они не имеют общих вершин, отличных от s и t.

Определение 34 (Реберно-независимые цепи). Две простые цепи, соединяющие s и t, называются pedepho-nesaeucumымu, если они не имеют общих ребер.

Определение 35 (l-реберно-соединимые вершины). Вершины s и t называются l-реберно-соединимыми, если наибольшее число реберно-независимых (s,t)-цепей равно l.

Теорема 15 (Реберный аналог теоремы Менгера). В связном графе любые две вершины k-реберно-отделимы \Leftrightarrow они k-реберно-соединимы.