Germany

Data

Analysis

Number of divergent transitions = 0

Maximum $\hat{R} = 1.005097$

Minimum Bulk ESS = 823.5165

Minimum Tail ESS = 1088.014

 $R_{0, m}$

Contact rate function:

$$cr(t; t^*, \lambda_j, \kappa) = \lambda_j + \frac{1 - \lambda_j}{1 + \exp(\kappa(t - t^*))}$$

Vertical dotted lines represent the first seeding day and the epidemic start date.

Ribbons represent the 80% credible intervals.

where

$$\lambda_{j} \sim \text{Beta}(3,1)$$
 $\kappa \sim \text{NegHalfNormal}(0,1).$

Contact Rate

Vertical dotted lines represent the first seeding day and the epidemic start date. Ribbons represent the 80% credible intervals.

Mobility effect

Vertical dotted lines represent the first seeding day and the epidemic start date. Ribbons represent the 80% credible intervals.

Vertical dotted lines represent the first seeding day and the epidemic start date. Ribbons represent the 80% credible intervals.

$R_{t,m}$ on the last day

Mobility linear model: $\beta_1 \cdot X_{residential} + \beta_2 \cdot X_{transit} + \beta_3 \cdot X_{average}$.

Imputed Cases

