Challenges

- 1. Improve model performance on sleep stage prediction
 - a. The best results are achieved using more complex feature construction, which requires significant time to load the data and train the model.
 - b. Neural network does not outperform simple model like random forest
 - i. Grid search on hyperparameter did not improve the model.
 - ii. Difficult to design the right architecture for various neural network.
 - c. Find a similarity factor of sleep data of a single patient relative to cluster aggregations. This was key to be able to make a logical prediction of CVD risk prediction.
 - d. Subject clustering required several stages of data processing to eventually return CVD risk predictions.

Group contribution

	Dylan	Blake	Rong	Daniel
	Kapp	Macnair	Cao	Cazzaniga
% contribution	25%	25%	25%	25%

Areas of special focus:

Dylan:

- Determine subject similarity output using scala
- Python helper scripts to work shhs data into a good format for scala
- Video editing

Blake:

- Raw EDF file processing
- Python sleep stage annotations
- Power Spectral Clustering

Rong:

- Neural Network training models
- Random forest training models
- Comparison findings of sleep stage annotation performance

Daniel:

- Python helper scripts for spectral clustering
- Subject cluster assignment
- Research into tensorization approaches