58.ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ. ПРОИЗВОДНАЯ СЛОЖНОЙ И ОБРАТНОЙ ФУНКЦИИ. ТАБЛИЦА ПРОИЗВОДНЫХ ОСНОВНЫХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ. ЛОГАРИФМИЧЕСКАЯ ПРОИЗВОДНАЯ

1) Производная константы равна нулю, т.е.

C'=0, где C=const

2)Производная суммы(разности) равна сумме(разности) производных, т.е.

$$(u\pm v)'=u'\pm v'$$

3) Производная произведения находится по правилу:

$$(u*v)'=u'*v+u*v'$$

4) (C*u)'=c*u', где C=const
$$\left(\frac{u}{C}\right)'=\frac{1}{C}$$
*u'

$$5)\left(\frac{u}{v}\right)' = \frac{u'*v + u*v'}{v^2} \quad (v(x) \neq 0)$$

6) Если ф-ция $\varphi(t)$ имеет производную в точке t, а ф-ция f(u) имеет производную в точке u= $\varphi(t)$, то сложная ф-ция y=f($\varphi(t)$) имеет производную в точке t, причём

$$y'=f'(u)*u'; (u^{v})'=u^{v}*Inu*v'+v*u^{v-1}*u'$$

(правило дифференцирования сложной функции)

7) Теорема(о производной обратной функции)

Пусть ф-ция y=f(x) имеет производную в точке $x_{0,}$ причём f'(x_{0}) \neq 0. Если существует обратная ф-ция x= $\varphi(y)$, то она имеет производную в точке y_{0} =f(x_{0}) и

$$\varphi'(y_0) = \frac{1}{f'(x_0)}$$

Правила дифференцирования

Пусть u(x) и v(x) – дифференцируемые функции, $c \in R$.

$$(c \cdot u)' = c \cdot u'$$

$$(u + v)' = u' + v'$$

$$(u - v)' = u' - v'$$

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \quad (v \neq 0)$$

$$(u^{\mathcal{V}})' = u^{\mathcal{V}} \cdot \ln u \cdot v' + v \cdot u^{\mathcal{V}-1} \cdot u'$$

Таблица производных основных элементарных функций	
c'=0	$(\cos u)' = -\sin u \cdot u'$
x'=1	$(\sin u)' = \cos u \cdot u'$
$(u^n)' = n \cdot u^{n-1} \cdot u'$ $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$ $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$ $(e^u)' = e^u \cdot u'$	$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} \cdot u'$ $(\operatorname{ctg} u)' = -\frac{1}{\sin^2 u} \cdot u'$ $(\operatorname{arcsin} u)' = \frac{1}{\sqrt{1 - u^2}} \cdot u'$
$(a^{u})' = a^{u} \cdot \ln a \cdot u'$ $(\ln u)' = \frac{1}{u} \cdot u'$ $(\log_{a} u)' = \frac{1}{u \cdot \ln a} \cdot u'$	$(\operatorname{arccos} u)' = -\frac{1}{\sqrt{1 - u^2}} \cdot u'$ $(\operatorname{arctg} u)' = \frac{1}{1 + u^2} \cdot u'$ $(\operatorname{arcctg} u)' = -\frac{1}{1 + u^2} \cdot u'$