Theoretische Physik II Elektrodynamik

Vorlesung von Prof. Dr. Michael Thoss im Wintersemester 2018

Markus Österle Andréz Gockel

10. Dezember 2018

Inhaltsverzeichnis

0	Ein:	führun		3
	0.1		orlesung	3
	0.2	Einfül	nrung und Überblick	4
		0.2.1	Rückblick	4
		0.2.2	Elektrodynamik	4
	0.3	Aufba	u der Vorlesung	4
1	Elel	ktrosta		5
	1.1	Elektr	ische und Coulombsches Gesetz	5
		1.1.1	Coulombsches Gesetz	5
	1.2	Elektr	isches Feld	6
		1.2.1	Feld eines Systems von Punktladungen	6
		1.2.2	Feld einer kontinuierlichen Ladungsverteilung	7
		1.2.3	Ladungsdichte einer Punktladung	7
		1.2.4	Flächenladungsdichte	9
		1.2.5	Linenladungsdichte	10
	1.3	Feldgl	eichungen und elektrostatische Potential	10
		1.3.1	Elektrostatisches Potential	11
		1.3.2	Feldgleichugn (differentielle Form)	11
		1.3.3	Divergenz (Quellen)	12
		1.3.4	Zusammenfassung:	14
		1.3.5	Integralsätze der Vektoranalysis	15
		1.3.6	Integrale Form der Feldgleichung	17
		1.3.7	Gaußsches Gesetz	17
		1.3.8		18
		1.3.9		18
	1.4	Elektr		19
		1.4.1	Elektrostatische Potentielle Energie	19
	1.5	Verha		21
		1.5.1	=	23
	1.6	Randy	vertprobleme (RWP) der Elektrostatik und	
			gsmethoden	24
		1.6.1		24
		1.6.2	•	25
		1.6.3	Formale Lösungen des elektrostatischen Randwertproblems mit	
				27
		1.6.4	· /	 30
		1.6.5		31
		1.6.6		34
		1.6.7	- ,	35
	1.7		•	41

		1.7.1	Multipolentwicklung der Energie der Ladungsverteilung im äußeren Feld .	43
	1.8	Elektrostatik in Materie-Dielektrika		
		1.8.1	Makroskopische Feldgleichungen der Elektrostatik	45
		1.8.2	Mittelung von Funktionen	45
		1.8.3	Bestimmung von $\langle \boldsymbol{\rho} \rangle$	46
		1.8.4	Makroskopische Feldgleichungen der Elektrostatik (Wiederholung)	48
		1.8.5	Feldgleichungen für lineares, isotropes Dielektrikum	50
		1.8.6	Punktladung in homogenem Dielektrikum (lineare Näherung)	51
		1.8.7	Zusammenhang zwischen atomarer/molekularer Polarisierbarkeit und Sus-	
			zeptibilitäten	51
		1.8.8	Randwertprobleme	52
		1.8.9	Randbedingungen für $oldsymbol{D}, oldsymbol{E}$ an einer Grenzschicht mit Flächenladung	52
		1.8.10	Elektrostatische Energie in Dielektrika	54
2	Mag	gnetost	tatik	55
	2.1	Strom	, Stromdichte und Kontinuitätsgleichung	55
		2.1.1	Strom	55
		2.1.2	Stromdichte:	56
		2.1.3	Kontinuitätsgleichung	57
		2.1.4	Magnetostatik	58
	2.2			
	2.3	Kraft	eines äußeren Magnetfeldes auf einen Stromdurchflossenen Leiter	60
		2.3.1	Kraft zwischen zwei Stromdurchflossenen Leitern	60
	2.4	Feldgle	eichungen der Magnetostatik und Vektorpotential	61
		2.4.1	Vektorpotential	61
		2.4.2	Feldgleichungen der Magnetostatik	63
		2.4.3	Feldgleichungen der Magnetostatik	65
	2.5	Multip	polentwicklung - Magnetisches Moment	66
		2.5.1	Kraft auf eine lokalisierte Stromverteilung in einem äußeren Magnetfeld ${\pmb B}$	67
	2.6	Magne	etostatik in Materie	69
		2.6.1	Makroskopische Feldgleichungen	69
		2.6.2	Makroskopische Feldgleichunge der Magnetostatik	70
		2.6.3	Vektorpotential	70
		2.6.4	Magnetisierung und Suszeptibilität	71

Kapitel 0

Einführung

0.1 Zur Vorlesung

Dozent Michael Thoss

Übungen Donnerstag/Freitag (ILIAS) beginnt 18./19.10.18

Übungsleiter Jakob Bätge

Abgabe der Hausaufgaben bus Dienstag 12:00 - Briefkasten GuMi

Klausur 13.02.19, 10-12 Uhr, Hörsaal Anatomie (Nachklausur: 26.19, 10-12 Uhr)

Ankündigungen ILIAS Pass: theophy2.thoss18

Angaben Vorlesung: 4 SWS, Übung: 2 SWS, ECTS: 7

Vorkenntnisse Mathematik: Analysis für Physiker (Vektor Rechnung), Theoretische Physik I, Experimental Physik II.

Hinweis zu den Übungen

- Keine Anwesenheitspflicht.
- Keine Punktzahl nötig für Klausurzulassung.
- Kann auch wehrend Übungen abgegeben werden.

Lehrbücher:

- W. Nolting, Grundkurs Theoretische Physik 3: Elektrodynamik (Springer)
- D.J. Griffiths, Elektrodynamik: Eine Einführung (Pearson)
- T. Fließbach, Elektrodynamik (Spektrum Akademischer Verlag)
- J.D. Jackson, Klassische Elektrodynamik (Walter de Gruyter) geht dieser Vorlesung hinaus

0.2 Einführung und Überblick

Die vier fundamentalen Wechselwirkungen (WW):

- Starke WW
- Elektromagnetische WW Wird in dieser Vorlesung betrachtet
- Schwache WW
- Gravitation

0.2.1 Rückblick

Theoretische Physik 1:

- Mechanik
- Punktmechanik: Bahnkurven von Körpern
- Bewegungsgleichung: $m\ddot{\pmb{r}} = \pmb{F}$

0.2.2 Elektrodynamik

- Grundlegende Größen
- Felder

•

$${m E}({m r},t)$$
 ${m B}({m r},t)$

elektrisches Feld Magnetfeld

→ Feldtheorie sehr wichtiges Konzept

Wie sind Elektrische Felder definiert?

Experimentelle Definition als Messgröße: Kraft auf Ladung

$$F = q(E(r,t) + v \times B(r,t))$$

Theoretische Definition ist Mathematisch: Feldgleichungen-Maxwellgleichungen

$$\mathbf{\nabla} \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$
 $\mathbf{\nabla} \cdot \mathbf{B} = 0$

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
 $\nabla \times \boldsymbol{B} - \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} = \mu_0 \boldsymbol{j}$

Hierbei steht ρ für die Ladungsdichte und \boldsymbol{j} für die Stromdichte.

0.3 Aufbau der Vorlesung

1./2. Statische Phänomene: $\frac{\partial E}{\partial t} = 0 = \frac{\partial B}{\partial t}$

$$\Rightarrow \nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \qquad \nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \mathbf{E} = 0$$
1. Elektrostatik
 $\nabla \times \mathbf{B} = 0$
2. Magnetostatik

- 3. Zeitabhängige magnetische/elektrische Felder
- 4. Relativistische Formulierung der Elektrodynamik

Kapitel 1

Elektrostatik

Wir beschäftigen uns in diesem Kapitel mit **ruhenden Ladungen** und **zeitunabhängigen Feldern**. Das Grundproblem besteht darin, dass wir eine Ladungsverteilung haben und das Elektrische Feld und dessen Potential bestimmen wollen.

 \rightarrow Feld $\boldsymbol{E}(\boldsymbol{r}),$ el. Potential $\varPhi(\boldsymbol{r})$

• q₂ q₁ • q₃

1.1 Elektrische und Coulombsches Gesetz

Ladung: Beobachtungstatsachen:

- i) Zwei Arten "+", "-"
- ii) Abgeschlossenes System: Ladung erhalten: $q = \sum_i q_i = \text{const.}$
- iii) Ladung ist quantisiert in Einheiten der Elementarladung:

$$q = ne, n \in \mathbb{Z}, e = 1,602 \cdot 10^{-19} \,\mathrm{C}$$

n=-1: für ein Elektron wäre ein Beispiel einer Punktladung

Kontinuierliche Ladungsverteilung Ladungsdichte $\rho(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Volumen}} = \frac{\Delta q}{\Delta V} \text{ Gesamtladung in } V \text{:}$

$$Q = \int_{V} d^3 r \, \rho(\boldsymbol{r})$$

1.1.1 Coulombsches Gesetz

Die Kraft, welche eine am Ort r_2 lokalisierte Punktladung auf eine Punktladung am Ort r_1 ausübt, ist gegeben durch:

$$m{F}_{12} = k rac{q_1 q_2}{|m{r}_1 - m{r}_2|^2} \underbrace{rac{m{r}_1 - m{r}_2}{|m{r}_1 - m{r}_2|}}_{m{e}_{r_{12}}}$$

- 1. $F_{12} \sim q_1 q_2$
- 2. $\mathbf{F}_{12} \sim \frac{1}{|\mathbf{r}_1 \mathbf{r}_2|^2}$

- 3. $\mathbf{F}_{12} \sim q_1 q_2 \, \mathbf{e}_{r_{12}}$
- 4. $\mathbf{F}_{12} = -\mathbf{F}_{21}$

Es gilt das Superpositionsprinzip: Das heißt, durch vektorielle Addition der Kräfte kann die Gesamtkraft ermittelt werden.

$$F_1 = k \sum_{j=2}^{N} \frac{q_1 q_j}{r_{1j}^2} e_{r_{1j}}$$

Zur Konstanten k:

Die Konstante ist abhängig von dem verwendeten Maßsystemen.

- i) Gauß-System (cgs): $k \equiv 1$, dyn = $\frac{\text{g·cm}}{\text{s}^2} = 10^{-5} \,\text{N}$ 1 dyn = $\frac{(1\text{ESE})^2}{\text{cm}^2}$ 1ESE = $\frac{\sqrt{\text{g·cm}^3}}{\text{s}}$
- ii) SI (MKSA-System): Definition von A = Ampère

$$\frac{\Delta F}{\Delta l} = 2 \cdot 10^{-7} \frac{\text{N}}{\text{m}}$$

$$\frac{\Delta F}{1 \text{ m}} + \frac{I}{1 \text{ m}}$$

$$\frac{1}{1 \text{ m}} + \frac{I}{1 \text{ m}}$$
Strom = $\frac{\text{Ladung}}{\text{Zeit}} \Rightarrow 1 \text{A} = \frac{1 \text{C}}{1 \text{s}} \rightarrow e = 1,602 \cdot 10^{-19} \text{ C} \quad c \approx 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$

$$\frac{\Delta F}{\Delta l} = k \frac{2 I^2}{c^2 d} \rightarrow k = 2 \cdot 10^{-7} \frac{\text{N}}{\text{m}} \frac{c^2 1 \text{m}}{2(1 \text{A})^2} = 10^{-7} c^2 \frac{\text{N}}{\text{A}^2}$$

$$k = \frac{1}{4\pi \varepsilon_0}$$

Damit erhalten wir für die Dielektrizitätskonstante des Vakuums:

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$$

1.2 Elektrisches Feld

1.2.1 Feld eines Systems von Punktladungen

N-Ladungen q_1, \ldots, q_N ruhen an den Orten r_1, \ldots, r_N . Nun bringen wir eine Testladung q am Ort r mit ein.

Kraft von q_1 , q_2 auf q

$$\boldsymbol{F} = \frac{1}{4\pi\varepsilon_0} q \sum_{j=1}^{N} q_n \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} = q \boldsymbol{E}(\boldsymbol{r})$$

Somit ist das elektrisches Feld:

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{N} q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}$$

Bemerkung

- i) Testladung klein (formal: $\lim_{q \to 0} \frac{\pmb{F}}{q})$
- ii) math. $\boldsymbol{E}(\boldsymbol{r})$ Vektorpfeil

kartesisch:
$$\boldsymbol{E}(\boldsymbol{r}) = \begin{pmatrix} E_x(\boldsymbol{r}) \\ E_y(\boldsymbol{r}) \\ E_z(\boldsymbol{r}) \end{pmatrix}$$

iii) Wechselwirkungsprozess: 2 Teile

$$q_j \to \boldsymbol{E}(\boldsymbol{r}) \to \boldsymbol{F} = q\boldsymbol{E}(\boldsymbol{r})$$

iv) Superpositionsprinzip gilt

1.2.2 Feld einer kontinuierlichen Ladungsverteilung $\rho(r)$

$$m{E}(m{r}) = rac{1}{4\piarepsilon_0} \int\limits_{V} d^3r' \,
ho(m{r}') rac{m{r} - m{r}_j}{|m{r} - m{r}_j|^3}$$

$$E(\mathbf{r}) = k \sum_{j} \Delta q_{j} \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$

$$= k \sum_{j} \Delta V_{j} \rho(\mathbf{r}_{j}) \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$
mit $\Delta V_{j} \rightarrow 0 \rightarrow k \int_{V} d^{3}r' \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}}$

1.2.3 Ladungsdichte einer Punktladung

Deltafunktion

$$\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$$

Punktladung in $\mathbf{r}_0 \Rightarrow \rho(\mathbf{r}) = 0 \quad \mathbf{r} \neq \mathbf{r}_0$ Ladungsdichte divergiert in \mathbf{r}_0

$$\rho(\mathbf{r}_0) = \infty$$

Modell für Punktladung:

Ladung q in Kugel mit Radius ε um $\mathbf{r}_0, \ \varepsilon \to 0$

$$\rho_2(\mathbf{r}) = \left\{ \begin{array}{cc} \frac{q}{v_k} & |\mathbf{r}| \le \varepsilon \\ 0 & \text{sonst} \end{array} \right\} = \frac{q}{\frac{4}{3}\pi\varepsilon^3} \underbrace{\Theta(\varepsilon - |\mathbf{r}|)}_{\text{Stufenfunktion}}$$

$$ho(m{r}) = \lim_{arepsilon o 0}
ho_{arepsilon}(m{r}) = \left\{ egin{array}{ll} \infty & m{r} = 0 \ 0 & m{r}
eq 0 \end{array}
ight.$$

Divergenz muss so sein, dass

$$\int\limits_{\substack{V \\ \boldsymbol{r}_0 \in V}} d^3r \ \rho(\boldsymbol{r}) = q$$

Definition Delta-Funktion (Diracsche Deltafunktion)

1.

$$\delta(\boldsymbol{r} - \boldsymbol{r}_0) = \left\{ \begin{array}{ll} 0 & \boldsymbol{r} \neq \boldsymbol{r}_0 \\ \infty & \boldsymbol{r} = \boldsymbol{r}_0 \end{array} \right.$$

2.

$$\int_{V} d^{3}r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_{0}) = \left\{ \begin{array}{cc} f(\boldsymbol{r}_{0}) & \boldsymbol{r}_{0} \in V \\ 0 & \boldsymbol{r}_{0} \notin V \end{array} \right.$$

Mathematik

Distribution - Funktional

Funktional: Abb. Funktionen $\mapsto \mathbb{R}, \mathbb{C}$

$$\delta_{\boldsymbol{r}_0}: f \mapsto f(\boldsymbol{r}_0)$$

Physik

$$\int d^3r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_0) = f(\boldsymbol{r})$$

 δ -Fkt. als Grenzwert einer Folge von Funktionen im Integral

$$\int d^3r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \lim_{\varepsilon \to 0} \int d^3 \ f(\boldsymbol{r}g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0))$$

mit

$$egin{aligned} \lim_{arepsilon o 0} g_{arepsilon}(m{r} - m{r}_0) &= \left\{egin{array}{ll} 0 & m{r}
eq m{r}_0 \ \infty & m{r} &= m{r}_0 \end{array}
ight. \ \int_{V} d^3r \ g_{arepsilon}(m{r} - m{r}_0) &= 1 \end{aligned}$$

Beispiel: $g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0)=\frac{\Theta(\varepsilon-|\boldsymbol{r}|)}{\frac{4}{3}\pi\varepsilon^3}$ Mehrere Punktladungen q_j in \boldsymbol{r}_j

$$ho(m{r}) = \sum_j q_j \delta(m{r} - m{r}_j)$$

$$\Rightarrow \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \sum_j q_j \delta(\boldsymbol{r} - \boldsymbol{r}_j) \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \int_V d^3r' \ \delta(\boldsymbol{r} - \boldsymbol{r}_j) \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} \quad \checkmark$$

1.2.4 Flächenladungsdichte

$$\sigma({m r}) = rac{ ext{Ladung}}{ ext{Fläche}} = rac{\Delta q}{\Delta A}$$

erzeugtes elektrisches Feld:

$$E(r) = \frac{1}{4\pi\varepsilon_0} \int_{A} \underbrace{df'}_{\text{Elächenelement}} \sigma(r) \frac{r - r'}{|r - r'|^3}$$

Beispiel: Elektrisches Feld einer homogenen Flächenladung

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \ \sigma \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} \qquad \boldsymbol{r}' = (x', y', 0)$$

Symmetrie: \boldsymbol{E} unabhängig von x,y $\boldsymbol{r}=(0,0,z)$

$$r - r' = (-x', -y', z), |r - r'|^3 = (x'^2 + y'^2 + z^2)^{3/2}$$

$$E_x \sim \sigma \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \frac{(-x')}{(x'^2 + y'^2 + z^2)^{3/2}} = 0 = E_y$$

$$\mathbf{E} = (0, 0, E_z)$$

$$E_{z} = \frac{1}{4\pi\varepsilon_{0}} \sigma_{z} \int_{-\infty}^{+\infty} dx' \underbrace{\int_{-\infty}^{+\infty} dy'} \frac{(x')}{(x'^{2} + y'^{2} + z'^{2})^{3/2}}$$

$$\frac{1}{x'^{2} + z^{2}} \frac{y'}{(x'^{2} + y'^{2} + z^{2})^{3/2}} \Big|_{-\infty}^{+\infty} = \frac{1}{x'^{2} + z^{2}} \frac{\operatorname{sgn}(y')}{\sqrt{1 + \frac{x'^{2} + z^{2}}{y'^{2}}}} \Big|_{-\infty}^{+\infty} = \frac{2}{x'^{2} + z^{2}}$$

$$= \frac{1}{2\pi\varepsilon_{0}} \sigma_{z} \underbrace{\int_{-\infty}^{+\infty} dx'} \frac{1}{x'^{2} + z^{2}}$$

$$\frac{1}{z} \arctan(\frac{x'}{2}) \Big|_{-\infty}^{+\infty} = \frac{1}{z} \operatorname{sgn}(z) \pi$$

$$E_{z} = \frac{\sigma}{2\varepsilon_{0}} \operatorname{sgn}(z)$$

Grenzfläche: $z \to 0$

$$egin{aligned} m{E} & \longrightarrow z > 0 \ -rac{\sigma}{2arepsilon_0} m{e}_z & z > 0 \ -rac{\sigma}{2arepsilon_0} m{e}_z & z < 0 \end{aligned}$$
 $m{E}_{\perp_+} - m{E}_{\perp_-} = rac{\sigma}{arepsilon_0}, \qquad m{E}_{\parallel} = 0$

1.2.5 Linenladungsdichte

$$\lambda(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Länge}} = \frac{\Delta q}{\Delta s}$$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \underbrace{\int_{\gamma} ds' \ \lambda(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}}_{\text{Linienintegral}}$$

Beispiel: Elektrisches Feld einer homogenen Linienladung $\lambda = \text{const.}$

$$E(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\gamma} ds' \, \lambda \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \qquad \gamma : z' \mapsto \mathbf{r}'(z') = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$$

$$x = \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{\mathbf{r} - \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}}{(x^2 + y^2 + (z - z')^2)^{3/2}}$$

$$E_x = \frac{\lambda x}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{1}{(x^2 + y^2 + (z - z')^2)^{3/2}} = \frac{\lambda x}{4\pi\varepsilon_0} \underbrace{\int_{-\infty}^{\infty} d\tilde{z} \, \frac{1}{(x^2 + y^2 + \tilde{z}^2)^{3/2}}}_{\frac{2}{x^2 + y^2}} = \frac{\lambda}{2\pi\varepsilon_0} \frac{x}{x^2 + y^2}$$

$$E_y = \frac{\lambda}{2\pi\varepsilon_0} \frac{x}{x^2 + y^2}$$

$$E_z = \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{z - z'}{(x^2 + y^2 + (z - z')^2)^{3/2}} = 0$$

$$E(\mathbf{r}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{x^2 + y^2} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

$$\rho = \sqrt{x^2 + y^2} = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{\rho} e_{\rho}, \qquad e_{\rho} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \\ 0 \end{pmatrix}$$

1.3 Feldgleichungen und elektrostatische Potential

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\boldsymbol{r'}) \frac{\boldsymbol{r} - \boldsymbol{r'}}{|\boldsymbol{r} - \boldsymbol{r'}|^3}$$

1.3.1 Elektrostatisches Potential

elektrische Feld ist ein Potentialfeld $\boldsymbol{E}(\boldsymbol{r}) = -\nabla \phi(\boldsymbol{r}) = -\left(\boldsymbol{e}_x \frac{\partial \phi}{\partial x} + \boldsymbol{e}_y \frac{\partial \phi}{\partial y} + \boldsymbol{e}_z \frac{\partial \phi}{\partial z}\right)$

$$\frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}} = -\nabla \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$

$$-\frac{\partial}{\partial x} \frac{1}{[(x - x')^{2} + (y - y')^{2} + (z - z')^{2}]^{1/2}} = \frac{-(-\frac{1}{2})}{[(x - x')^{2} + (y - y')^{2} + (z - z')^{2}]^{3/2}} = \frac{(x - x')}{|\mathbf{r} - \mathbf{r}'|^{3}}$$

$$\Rightarrow \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{0}} \int d^{3}\mathbf{r}' \ \rho(\mathbf{r}') \left(-\nabla_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|}\right) = \nabla_{F} \frac{1}{4\pi\varepsilon_{0}} \int d^{3}\mathbf{r}' \ \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

 \rightarrow elektrostatisches Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \, \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + c$$

übliche Konvention: $c = 0 \ (\phi(\mathbf{r}) \ | \mathbf{r}| \stackrel{\rightarrow}{\rightarrow} \infty \ 0)$

Potential einer Punktladung in r_0 :

$$\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$$

$$\phi(\mathbf{r}) = \int_{\mathbb{R}^3} d^3 \mathbf{r}' \, \frac{q\delta(\mathbf{r}' - \mathbf{r}_0)}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

$$\mathbf{E}(\mathbf{r}) = -\nabla \phi = \frac{1}{4\pi\varepsilon_0} q \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0|} = \frac{1}{4\pi\varepsilon_0} q \frac{\mathbf{r} - \mathbf{r}_0}{|\mathbf{r} - \mathbf{r}_0|^3}$$

(Funktional-Analysis Siegfried Großmann Springer) (Landau-Lipschitz Buch geht weit der Vorlesung hinaus)

1.3.2 Feldgleichugn (differentielle Form)

Rotation (Wirbel)

$$\operatorname{rot} \mathbf{E} \nabla \times \mathbf{E} = \mathbf{e}_{x} \left(\frac{\partial E_{z}}{\partial y} - \frac{\partial E_{x}}{\partial z} \right) + \mathbf{e}_{y} \left(\frac{\partial E_{x}}{\partial z} - \frac{\partial E_{z}}{\partial x} \right) + \mathbf{e}_{z} \left(\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} \right) \Rightarrow \nabla \times \mathbf{E} = -\nabla \times (\nabla \phi) = 0$$

Mathe: Es sind äquivalent

i
$$\boldsymbol{E} = -\nabla \phi$$

ii $\nabla \times \mathbf{E} = 0$ (auf einfach zusammenhängendem Gebiet)

iii Kurvenintegral $\int_{\gamma} d\mathbf{r} \cdot \mathbf{E}$ ist Wegunabhängig

$$\int_{r_1}^{r_2} d\mathbf{r} \cdot \mathbf{E} = -\int_{r_1}^{r_2} dt \underbrace{\frac{d\mathbf{r}}{dt} \times \nabla \phi(\mathbf{r}(t))}_{\frac{d\phi}{dt}} = \underbrace{(\phi(\mathbf{r}_2) - \phi(\mathbf{r}_1))}_{\text{Potential differenz}}$$

1.3.3 Divergenz (Quellen)

$$\div \mathbf{E} = \nabla \cdot \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \nabla_{\boldsymbol{r}} \cdot \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\boldsymbol{r}') \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$
$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \rho(\boldsymbol{r}') \nabla_{\boldsymbol{r}} \cdot \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

x-Anteil:

$$\frac{\partial}{\partial x} \frac{x - x'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{1 \cdot [\dots]^{3/2} (x - x') (x - x')^{3/2} \cdot 2[\dots]^{1/2}}{[\dots]^3}$$

$$= \frac{[\dots]^{1/2} ((x - x')^2 + (y - y')^2 + (z - z')^2 - 3(x - x')^2)}{[\dots]^{3/2}}$$

$$= \frac{(y - y')^2 + (z - z')^2 - 2(x - x')^2}{[\dots]^{3/2}}$$

$$\frac{\partial}{\partial y} \frac{y - y'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{(x - x')^2 + (z - z')^2 - 2(y - y')^2}{[\dots]^{3/2}}$$

$$\frac{\partial y}{\partial y} \frac{(x-x')^2 + (y-y')^2 + (z-z')^2]^{3/2}}{[(x-x')^2 + (y-y')^2 + (z-z')^2]^{3/2}} = \frac{(x-x')^2 + (y-y')^2 - 2(z-z')^2}{[(x-x')^2 + (y-y')^2 + (z-z')^2]^{3/2}} = \frac{(x-x')^2 + (y-y')^2 - 2(z-z')^2}{[\dots]^{3/2}}$$

$$\nabla \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} = 0 \quad \text{falls} \quad \mathbf{r} \neq \mathbf{r}'$$

 \Rightarrow falls $r \notin V$, d.h. r in Gebiet ohne Ladungsdichte $\rho(r) = 0$

$$\Rightarrow \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = 0$$

 $\boldsymbol{r} \in V$: Grenzwertbetrachtung (Regularisierung des Integranden) statt

$$\frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} = \frac{\boldsymbol{r} - \boldsymbol{r}'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}}$$

betrachten wir:

$$\boldsymbol{f}_a(\boldsymbol{r}-\boldsymbol{r}') = \frac{\boldsymbol{r}-\boldsymbol{r}'}{[(x-x')^2+(y-y')^2+(z-z')^2]^{3/2}} = \frac{\boldsymbol{r}-\boldsymbol{r}'}{[(\boldsymbol{r}-\boldsymbol{r}')^2+a^2]^{3/2}} \quad a \in \mathbb{R}, \ a > 0$$

am Ende Grenzwert $\lim_{a \to 0}$

$$abla \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \lim_{a \to 0} \int_V d^3r' \; \rho(\boldsymbol{r}') \, \nabla_{\boldsymbol{r}} \cdot f_a(\boldsymbol{r} - \boldsymbol{r}')$$

$$\begin{split} \frac{\partial}{\partial x} \frac{x - x'}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{3/2}} &= \frac{[\cdots + a^2]^{3/2} - (x - x')\frac{3}{2} \cdot 2(x - x')[\cdots + a^2]^{3/2}}{[\cdots + a^2]^3} \\ &= \frac{(y - y')^2 + (z - z')^2 + a^2 - 2(x - x')^2}{[\cdots + a^2]^{3/2}} \end{split}$$

$$\nabla_{\boldsymbol{r}} \cdot f_a(\boldsymbol{r} - \boldsymbol{r}') = \frac{3a^2}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{5/2}}$$
$$\lim_{a \to 0} f_a(\boldsymbol{r} - \boldsymbol{r}') = \begin{cases} 0 & \boldsymbol{r} \neq \boldsymbol{r}' \\ \infty & \boldsymbol{r} = \boldsymbol{r}' \end{cases}$$

 \Rightarrow zum Integral $\int_V d^3r'\dots$ trägt (in Limes $a\to 0)$ nur der Bereich ${\bm r}'\approx {\bm r}$ bei

$$K_R(\boldsymbol{r}) = \{ \boldsymbol{r}' \in \mathbb{R}^3 : |\boldsymbol{r} - \boldsymbol{r}'| \le R \}$$

$$\lim_{a \to 0} \int_{V} d^{3}r' \ \rho(\mathbf{r}') \nabla_{\mathbf{r}} \cdot f_{a}(\mathbf{r} - \mathbf{r}')$$

$$= \lim_{a \to 0} \int_{K_{R}(\mathbf{r})} d^{3}r' \ \rho(\mathbf{r}') \frac{3a^{2}}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{5/2}}$$

$$+ \lim_{a \to 0} \int_{V/K_{R}(\mathbf{r})} d^{3}r' \rho(\mathbf{r}') \frac{3a^{2}}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{5/2}}$$

Wähle R klein genug, dass man innerhalb $K_R(\mathbf{r})$ $\rho(\mathbf{r}')$ in Taylorreihe um \mathbf{r} entwickeln kann.

$$\tilde{\boldsymbol{r}} = \boldsymbol{r}' - \boldsymbol{r}, \ d^3r' = d^3\tilde{r}$$

$$\int_{K_R(\boldsymbol{r})} d^3r' \ \rho(\boldsymbol{r}') \frac{3a^2}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{5/2}} = \int_{K_R(0)} d^3\tilde{r} \ \rho(\boldsymbol{r} + \tilde{\boldsymbol{r}}) \frac{3a^2}{[\tilde{\boldsymbol{r}}^2 + a^2]^{5/2}}$$

Taylorentwicklung von $\rho(\mathbf{r} + \tilde{\mathbf{r}})$ zum $\tilde{\mathbf{r}} = 0$

$$\rho(\mathbf{r} + \tilde{\mathbf{r}}) = \rho(\mathbf{r}) + \tilde{\mathbf{r}} \cdot \nabla \rho(\mathbf{r}) + \dots$$

$$= \int_{K_R(0)} d^3 \tilde{r} \left(\rho(\mathbf{r}) + \tilde{\mathbf{r}} \cdot \nabla \rho(\mathbf{r}) + \dots \right) \frac{3a^2}{\left[\tilde{\mathbf{r}}^2 + a^2\right]^{5/2}}$$

1. Integral:

$$\int_{K_{R}(0)} d^{3}\tilde{r} \ \rho(\mathbf{r}) \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{5/2}} = \rho(\mathbf{r}) \underbrace{\int_{0}^{R} d\tilde{r} \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{5/2}}}_{\left[\frac{\tilde{r}^{3}}{(\tilde{r}^{2} + a^{2})^{3/2}}\right]_{0}^{R}} \underbrace{\int_{0}^{\sin \theta d\theta d\varphi}_{\left[\frac{\tilde{r}^{3}}{(\tilde{r}^{2} + a^{2})^{3/2}}\right]_{0}^{R}}_{=4\pi} d\theta d\phi}_{=4\pi\rho(\mathbf{r}) \underbrace{\int_{0}^{R} d\tilde{r} \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{3/2}}}_{=4\pi} \underbrace{\int_{0}^{\sin \theta d\theta d\varphi}_{\left[\frac{\tilde{r}^{3}}{(\tilde{r}^{2} + a^{2})^{3/2}}\right]_{0}^{R}}_{=4\pi\rho(\mathbf{r})} d\theta d\phi}_{=4\pi\rho(\mathbf{r})}$$

2. Integral:

$$\int_{K_R(0)} d^3\tilde{r} \underbrace{\tilde{\boldsymbol{r}} \cdot \nabla_{\boldsymbol{r}} \rho(\boldsymbol{r}) \frac{3a^2}{(\tilde{r}^2 + a^2)^{5/2}}}_{\tilde{r}\boldsymbol{e_{\tilde{r}}}} = \underbrace{\int_0^R d\tilde{r} \, \frac{3a^2\tilde{r}^3}{(\tilde{r}^2 + a^2)^{3/2}}}_{\frac{2}{3}a - 3a^2 \left(\frac{R^2 + \frac{2}{3}a^2}{(R^2 + a^2)^{3/2}}\right)} \underbrace{\int d\Omega \, \boldsymbol{e_{\tilde{r}}} \cdot \nabla \rho(\boldsymbol{r})}_{\text{unabh. von } a} \xrightarrow[a \to 0]{0}$$

gilt auch für alle höheren Terme

$$\lim_{a \to 0} \int_{V} d^{3}r' \rho(\mathbf{r}) \nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{3/2}} = 4\pi \rho(\mathbf{r})$$

$$\Rightarrow \nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{0}} \lim_{a \to 0}^{"} = \frac{1}{\varepsilon_{0}} \rho(\mathbf{r})$$

$$abla oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0}
ho(oldsymbol{r}) \quad oldsymbol{r} \in \mathbb{R}^3$$

1.3.4 Zusammenfassung:

Feldgleichungen der Elektrostatik

Mathe: partielle DGL

$$abla oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0}
ho(oldsymbol{r}) ext{ inhomogene DGL}$$

$$abla ilde{oldsymbol{E}}(oldsymbol{r}) = 0 ext{ homogene DGL}$$

DGL für Potential $\phi\colon \boldsymbol{E} = -\nabla \phi$

$$\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \phi) = -\nabla \cdot \begin{pmatrix} \partial_x \phi \\ \partial_y \phi \\ \partial_z \phi \end{pmatrix}$$
$$= -\underbrace{\left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}\right)}_{-\cdot \Delta \phi}$$

Partielle DGL 2. Ordnung:

Poissongleichung

$$\Delta \Phi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

für Gebiete mit $\rho(\mathbf{r}) = 0$:

$$\Delta \phi(\mathbf{r}) = 0$$
 Laplacegleichung

Darstellung der Deltafunktion:

$$\lim_{a \to 0} \int_{\mathbb{R}^3} d^3 r' \ \rho(\mathbf{r}') \underbrace{\nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}}}_{\frac{3a^2}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{5/2}} =: g_a(\mathbf{r}' - \mathbf{r})} = 4\pi \rho(\mathbf{r})$$

 $\frac{1}{4\pi}g_a$ liefert Grenzwertdarstellung der δ -funktion.

$$\lim_{a\to 0} \int_{\mathbb{R}^3} d^3r' \ \rho(\mathbf{r}') \frac{1}{4\pi} g_a(\mathbf{r}' - \mathbf{r}) = \rho(\mathbf{r})$$

$$\lim_{a\to 0} g_a(\mathbf{r}'-\mathbf{r}) = \begin{cases} 0 & \mathbf{r} \neq \mathbf{r}' \\ \infty & \mathbf{r} = \mathbf{r}' \end{cases}$$

$$\delta(\boldsymbol{r}) = \lim_{a \to 0} \frac{1}{4\pi} \nabla_{\boldsymbol{r}} \cdot \frac{r^2}{(r^2 + a^2)^{3/2}}$$

$$\stackrel{\text{formal}}{=} \frac{1}{4\pi} \nabla \cdot \underbrace{\frac{\boldsymbol{r}}{r^3}}_{= -\nabla_{r}^{\frac{1}{r}}} = -\frac{1}{4\pi} \nabla \cdot \left(\nabla_{r}^{\frac{1}{r}}\right) = \frac{-1}{4\pi} \Delta_{r}^{\frac{1}{r}} \Rightarrow \Delta_{r}^{\frac{1}{r}} = -4\pi \delta(\boldsymbol{r})$$

z.B. Potential einer Punktladung ρ q in r_0 :

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

$$\Delta\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} q \underbrace{\Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}}_{=-4\pi\delta(\mathbf{r} - \mathbf{r}_0)} = -\frac{1}{\varepsilon_0} \underbrace{q\delta(\mathbf{r} - \mathbf{r}_0)}_{=\rho(\mathbf{r})} = \frac{1}{\varepsilon_0} \rho(\mathbf{r})$$

Wiederholung

$$\begin{aligned} \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}) &= \frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) \\ \boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r}) &= 0 \\ \Rightarrow & \boldsymbol{E} &= -\boldsymbol{\nabla} \Phi \\ \Rightarrow & \Delta \Phi(\boldsymbol{r}) &= -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) \end{aligned}$$

1.3.5 Integralsätze der Vektoranalysis

1) Gaußscher Satz:

Sei $\mathbf{A}(\mathbf{r})$ ein Vektorfeld im Volumen $V \subset \mathbb{R}^3$, so gilt:

$$\begin{split} \int_{V} d^{3}r \ \nabla \cdot \boldsymbol{A}(\boldsymbol{r}) &= \int_{\partial V} d\boldsymbol{f} \ \cdot \boldsymbol{A}(\boldsymbol{r}) \\ \partial V \ \mathrm{Rand \ von} \ V \\ d\boldsymbol{f} &= \boldsymbol{n} \ d\boldsymbol{f} \\ \downarrow \\ \mathrm{nach \ außen \ orientierter} \\ \mathrm{Normaleneinheuts vektor} \end{split}$$

Bemerkung:

i) Analogie 1D: Fundamentalsatz der Integralrechnung:

$$\int_{a}^{b} dx \frac{df}{dx} = f(b) - f(a)$$

ii) Geometrische / physikalische Integration: Fluss des Vektorfelde
s \boldsymbol{A} durch ∂V

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{A}$$

Integral über die Quellen von \boldsymbol{A}

$$\int_{V} d^{3}r \nabla \cdot \mathbf{A}$$
$$\mathbf{A} = \text{const.} \rightarrow \nabla \cdot \mathbf{A} = 0$$

Beispiel: Geschwindigkeit einer Flüssigkeit: $\boldsymbol{A}(\boldsymbol{r}) = \boldsymbol{v}(\boldsymbol{r})$

$$v = \text{const.}$$
 $\nabla \cdot v = 0$ $\int_{\partial V} d\mathbf{f} \cdot v = 0$

 \Rightarrow Es gibt keine Quellen von \boldsymbol{v}

$$\nabla \cdot \boldsymbol{r} \neq 0$$
 $\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{v} \neq 0$

iii)

$$\int_{V} d^{3}r \boldsymbol{\nabla} \cdot \boldsymbol{A}(\boldsymbol{r}) = \int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} \left(\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} \right)$$

$$\begin{split} &\int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \underbrace{\int_{0}^{\Delta x} dx \frac{\partial A_{x}}{\partial x}}_{A_{x}(\Delta x, y, z) - A_{x}(0, y, z)} \\ &= \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} A_{x}(\Delta x, y, z) - \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy A_{x}(0, y, z) \\ &= \int_{F_{A}^{+}} d\boldsymbol{f} \cdot \boldsymbol{A} + \int_{F_{A}^{-}} d\boldsymbol{f} \cdot \boldsymbol{A} \\ &F_{x}^{+}: d\boldsymbol{f} = \boldsymbol{e}_{x} dy dz \qquad F_{x}^{-}: d\boldsymbol{f} = -\boldsymbol{e}_{x} dy dz \end{split}$$

ebenso gilt dann für die anderen Koordinaten:

$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \frac{\partial A_{y}}{\partial y} = \int_{F_{y}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{y}^{-}} d\mathbf{f} \cdot \mathbf{A}$$
$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} dz \frac{\partial A_{z}}{\partial z} = \int_{F_{z}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{z}^{-}} d\mathbf{f} \cdot \mathbf{A}$$

$$\Rightarrow \int_V d^3r \nabla \cdot \boldsymbol{A} = \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{A}$$

2) Stokescher Satz

Sei A(r) ein Vektorfeld, F eine Fläche mit Randkurve ∂F , so gilt:

$$\int\limits_{\text{Linienintegral}} d\boldsymbol{r} \boldsymbol{A}(\boldsymbol{r}) = \int\limits_{F} d\boldsymbol{f} \cdot (\nabla \times \boldsymbol{A}(\boldsymbol{r}))$$
 Linienintegral $\rightarrow \partial F$

$$d\mathbf{f} = \mathbf{n}d\mathbf{f}$$

Richtung von $d\mathbf{f}$ und Umlauf sinn von ∂F : rechte Hand Regel. Beispiel:

$$A(r) = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\nabla \times A = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_z}{\partial x} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1+1 \end{pmatrix} = 2e_z$$

$$r(\varphi) = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix} \qquad \varphi \in [0, 2\pi]$$

$$\frac{\partial r}{\partial \varphi} = R \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$$

$$\int_{\partial F} d\mathbf{r} \cdot \mathbf{A}(\mathbf{r}) = \int_0^{2\pi} d\varphi \frac{\partial \mathbf{r}}{\partial \varphi} \cdot \mathbf{A}(\mathbf{r}(\varphi))$$

$$= \int_0^{2\pi} d\varphi R(+\sin^2 \varphi + \cos^2 \varphi) = 2\pi R^2$$

$$\int_{E} d\mathbf{f} \underbrace{(\nabla \times \mathbf{A})}_{\mathbf{r}} = 2\pi R^2$$

Vektorfeld ohne Wirbel z.B. $\mathbf{A} = \text{const.}$

$$\nabla \times \boldsymbol{A} = 0$$

Bemerkung:

1.3.6 Integrale Form der Feldgleichung

1.3.7 Gaußsches Gesetz

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{1}{arepsilon_0}$$

$$\int_V d^3r oldsymbol{
abla} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0} \int_V doldsymbol{f} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0} Q_V$$

$$= \int_V doldsymbol{f} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon} Q_V$$

Berechnung elektrischer Felder für hochsymmetrische Ladungsverteilungen

Beispiel:

Homogen geladene Kugel mit Radius R und Gesamtladung Q. Damit ist die Ladungsdichte innerhalb der Kugel:

$$\rho = \frac{Q}{V} = \frac{Q}{\frac{4}{3}\pi R^3}$$

$$\boldsymbol{E}(\boldsymbol{r}) = E_r(r)\boldsymbol{e}_r$$

$$r = r \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$$

 $\boldsymbol{e}_r = \frac{\boldsymbol{r}}{r}$ Fluss von \boldsymbol{E} durch Oberfläche einer Kugel mit Radius r

$$d\mathbf{f} = \mathbf{e}_r r^2 \sin \theta d\theta d\varphi \Rightarrow d\mathbf{f} \cdot \mathbf{E} = E_r(r) r^2 \sin \theta d\theta d\varphi$$

$$\begin{split} \int_{\partial K_r(0)} d\boldsymbol{f} \ \boldsymbol{E} &= \int_0^T d\theta \ \int_0^{2\pi} d\varphi E_r(r) r^2 \sin\theta \\ &= E_r(r) r^2 4\pi \\ &= \frac{1}{\varepsilon_0} Q_{K_r(0)} = \frac{1}{\varepsilon_0} \int_{K_r(0)} d^3 r \ \rho(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \left\{ \begin{array}{l} Q & r > R \\ Q \frac{r^3}{R^3} & r \leq R \end{array} \right. \\ &\Rightarrow E_r(r) = \frac{Q}{4\pi\varepsilon_0} \left\{ \begin{array}{l} \frac{1}{r^2} & r > R \\ \frac{r}{R^3} & r \leq R \end{array} \right. \end{split}$$

Satz von Stokes 1.3.8

$$\nabla \times \boldsymbol{E} = 0$$

Definition: $\gamma = \partial F$

 \int_{γ} ist dann ein Linienintegral über eine geschlossene Kurve

$$\int_{\gamma} d\boldsymbol{r} \cdot \boldsymbol{E} = \int_{F} d\boldsymbol{f} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) = 0$$

Zusammenfassung: Feldgleichungen der Elektrostatik differentielle Darstellung:

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \quad \nabla \times \boldsymbol{E} = 0 \quad \rightarrow \quad \boldsymbol{E} = -\nabla \Phi \quad \rightarrow \quad \Delta \Phi = -\frac{1}{\varepsilon_0} \rho$$

Integral Darstellung:

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} Q_V \qquad , \qquad \oint_{\gamma} d\boldsymbol{r} \cdot \boldsymbol{E} = 0$$

18

1.4 Elektrostatische Energie

potentielle Energie einer Punktladung im äußeren elektrischen Feld Kraft auf Ladung q:

$$\boldsymbol{F} = q\boldsymbol{E}$$

Die Arbeit bei Verschiebung der Ladung von \boldsymbol{a} nach \boldsymbol{b}

$$W = -\int_{a}^{b} d\mathbf{r} \cdot \mathbf{F} = -q \int_{a}^{b} d\mathbf{r} \cdot \mathbf{E}(\mathbf{r})$$
$$= q \int_{a}^{b} d\mathbf{r} \cdot \nabla \Phi = q \underbrace{(\Phi(\mathbf{b}) - \Phi(\mathbf{a}))}_{\text{Potential differenz}}$$

Die Arbeit um q aus dem unendlichen ∞ nach \boldsymbol{r} zu bringen ist dann:

$$W = q(\Phi(\mathbf{r}) - \Phi(\infty))$$

Zur Referenz: $\Phi(\infty) = 0$

Damit ist die Energie der Ladung q im äußeren Feld:

$$\Rightarrow W = q(\Phi(\mathbf{r}))$$
$$\mathbf{E} = -\nabla \Phi$$

Elektrostatische Potentielle Energie

Energie einer Verteilung von Punktladungen

N Ladungen q: an Orten r_i

Zunächst: $\underbrace{i-1}_{\text{erzeugen am Ort } \boldsymbol{r}_i}$ Ladungen q_j bei \boldsymbol{r}_j

Das Potential

$$\Phi(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{i-1} \frac{q_i}{|\mathbf{r}_j - \mathbf{r}_i|}$$

Arbeit um $i\text{--}\mathrm{te}$ Ladung aus dem unendlichen nach \boldsymbol{r} zu bringen:

$$W_i = q_i \Phi(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{j-1} \frac{q_i q_j}{r_{ij}}$$

Somit ergibt sich die gesamte Arbeit für N Ladungen als:

$$W = \sum_{i=2}^{N} W_i = \frac{1}{4\pi\varepsilon_0} \sum_{i=2}^{N} \sum_{j=1}^{i-1} \frac{q_i q_j}{r_{ij}}$$
$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{q_i q_j}{r_{ij}}$$

$$\Rightarrow W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}}$$

$$W = \frac{1}{2} \sum_{i=1}^{N} q_i \left(\sum_{\substack{j\\j\neq i}} \frac{1}{4\pi\varepsilon_0} \frac{q_i}{r_{ij}} \right)$$

$$= \frac{1}{2} \sum_{i=1}^{N} q_i \Phi_{i}(\mathbf{r}_i)$$

Energie einer kontinuierlichen lokalisierten Ladungsverteilung

$$W = \frac{1}{8\pi\varepsilon_0} \int d^3r \int d^3r' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}$$

$$= \frac{1}{2} \int d^3r \ \rho(\mathbf{r}) \frac{1}{4\pi\varepsilon_0} \underbrace{\int_{\mathbb{R}^3} d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}}_{\Phi(\mathbf{r})}$$

$$E_{\text{ext}}$$

$$W_{\text{ext}} = \int d^3r \ \rho(\mathbf{r}) \Phi_{\text{ext}}(\mathbf{r})$$

Energie W durch E ausdrücken:

$$\begin{split} \boldsymbol{\Delta}\boldsymbol{\Phi} &= -\frac{1}{\varepsilon_0}\boldsymbol{\rho} \quad \Rightarrow \quad \boldsymbol{W} = -\frac{1}{2}\int d^3r \varepsilon_0 \underbrace{\boldsymbol{\Delta}\boldsymbol{\Phi}(\boldsymbol{r})\boldsymbol{\Phi}(\boldsymbol{r})}_{\boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})-(\boldsymbol{\nabla}\boldsymbol{\Phi})^2} \\ &= -\frac{\varepsilon_0}{2}\underbrace{\int_{\mathbb{R}^3} d^3r \boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})}_{R\rightarrow\infty} + \frac{\varepsilon_0}{2}\int d^3r \boldsymbol{E}(\boldsymbol{r}) \\ &= \lim_{R\rightarrow\infty}\int_{K_R(0)} d^3r \boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi}) = \lim_{R\rightarrow\infty}\int_{\partial K_R(0)} d\boldsymbol{f}\cdot\underbrace{(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})}_{R\rightarrow\infty} = 0 \\ &= \frac{\varepsilon_0}{2}\int d^3r \boldsymbol{E}(\boldsymbol{r}) \end{split}$$

Zur Umformung oben wurde benutzt:

$$\Phi \overset{R \to \infty}{\sim} \frac{1}{R} \qquad \nabla \Phi \sim \frac{1}{R^2} \qquad d\mathbf{f} = \mathbf{n} \underbrace{d\mathbf{f}}_{\sim R^2}$$

Damit ergibt sich für die Energie einer Verteilung von Punktladungen

$$\Rightarrow \qquad W = \frac{\varepsilon_0}{2} \int d^3r \; \boldsymbol{E}^2(\boldsymbol{r})$$

nicht für Punkladungen

Energiedichte des elektrostatischen Feldes

$$w(\boldsymbol{r}) = rac{arepsilon_0}{2} \boldsymbol{E}^2(\boldsymbol{r})$$

Beispiel: Plattenkondensator

Fläche F, Ladung $\rightarrow r = \frac{q}{F} \rightarrow \mathbf{E} = \frac{r}{\varepsilon_0} \mathbf{e}_x$

- \to Die Energiedichte ist: $w=\frac{\varepsilon_0}{2}\pmb{E}^2=\frac{\sigma^2}{2\varepsilon_0}$ (nicht für Punktladungen)
- \rightarrow Die Energie beträgt: $W=\int d^3r w({\bm r})=l\cdot F\cdot \frac{\sigma^2}{2\varepsilon_0}$

Potentialdifferenz - Spannung

$$\Phi(\boldsymbol{r}) - \Phi(0) = -\int_0^{\boldsymbol{r}} d\boldsymbol{r}' \cdot \boldsymbol{E}(\boldsymbol{r}') = -\int_0^x dx' \frac{\sigma}{\varepsilon_0} = -\frac{\sigma}{\varepsilon} x$$

Die Spannung zwischen zwei Kondensatorplatten ist dann:

$$U = \Phi(0) - \Phi(l) = \frac{\sigma}{\varepsilon_0} l = \frac{q}{\varepsilon_0 F} l$$

Die Kapazität ist also:

$$C = \frac{q}{U} = \frac{\varepsilon_0 F}{I}$$

Was ist die Energie bei einer Verteilung von Punktladungen und bei einer kontinuierlichen Ladungsverteilung. Bei einer kontinuierlichen Ladungsverteilung haben wir herausgefunden:

$$W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}} \qquad \text{für Punktladungen}$$

Die Energie der Punktladung selbst steckt hier nicht drinnen. Man muss dabei aufpassen, welche Gleichung man für welches Modell benutzt.

$$\boldsymbol{E} = \frac{1}{4\pi\varepsilon_0} q \frac{\boldsymbol{r}}{r^3} \qquad \int d^3r \ \boldsymbol{E}^2 = \int d^3r \ \frac{1}{r^4} = \infty$$

1.5 Verhalten des el. Feldes an Grenzflächen mit Flächenladung

ightarrow Diskontinuitäten von ${m E}$

Beispiel: Wir betrachten eine homogene Flächenladung.

$$\Rightarrow \boldsymbol{E} = \frac{\sigma}{2\varepsilon_0} \mathrm{sgn}(z) \boldsymbol{e}_z$$

$$m{E}_{\perp} = \pm rac{\sigma}{2arepsilon_0} m{e}_z \ m{E}_{\parallel} = 0$$

Das elektrische Feld $\boldsymbol{E}_{\parallel}$ ist gleich der Ableitung des elektrischen Potentials:

Das elektrische Potential ist also stetig.

Normalkomponente E_{\perp}

Gaußscher Satz für V:

$$\begin{split} \int_{V} d^{3}r' \; \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}) &= \int_{\partial V} d\boldsymbol{f}' \; \boldsymbol{E}(\boldsymbol{r}) \\ &= \int_{\mathrm{Mantel}} d\boldsymbol{f}' \; \boldsymbol{E} + \int_{\partial V_{+}} d\boldsymbol{f}' \; \boldsymbol{E}(\boldsymbol{r}) + \int_{\partial V_{-}} d\boldsymbol{f}' \; \boldsymbol{E} \\ &\downarrow^{\Delta z \to 0} \qquad \qquad \downarrow^{\Delta z \to 0} \qquad \qquad \downarrow^{\Delta z \to 0} \\ &\downarrow^{\Delta f'} \; \boldsymbol{n} \cdot \boldsymbol{E}_{+} \qquad - \int_{F} df' \; \boldsymbol{n} \cdot \boldsymbol{E}_{-} \end{split}$$

 \boldsymbol{E}_{\pm} ist das Feld auf beiden Seiten der Grenzfläche

$$\begin{split} \int_{\partial V} d\boldsymbol{f}' \boldsymbol{E} & \stackrel{\Delta z \to 0}{\longrightarrow} \int_{F} d\boldsymbol{f} \boldsymbol{n} \cdot (\boldsymbol{E}_{+} - \boldsymbol{E}_{-}) \stackrel{F \to 0}{\longrightarrow} F \ \boldsymbol{n} \cdot \left(\boldsymbol{E}_{+}(\boldsymbol{r}) - \boldsymbol{E}_{-}(\boldsymbol{r})\right) \\ & \int_{V} d^{2} r' \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}') = \frac{1}{\varepsilon_{0}} \int_{V} d^{3} r' \rho(\boldsymbol{r}) = \frac{1}{\varepsilon_{0}} \int_{F} d\boldsymbol{f}' \sigma(\boldsymbol{r}') \stackrel{F \to 0}{\longrightarrow} \frac{1}{\varepsilon_{0}} F \sigma(\boldsymbol{r}) \\ & \stackrel{\frac{1}{\varepsilon_{0}} \rho(\boldsymbol{r}')}{\Longrightarrow} \boldsymbol{n} \cdot (\boldsymbol{E}_{+}(\boldsymbol{r}) - \boldsymbol{E}_{-}(\boldsymbol{r})) = \frac{1}{\varepsilon_{0}} \sigma(\boldsymbol{r}) \\ & E_{\perp_{\pm}} = \boldsymbol{n} \cdot \boldsymbol{E}_{\pm} \qquad E_{\perp_{+}}(\boldsymbol{r}) - E_{\perp_{-}}(\boldsymbol{r}) = \frac{1}{\varepsilon_{0}} \sigma(\boldsymbol{r}) \end{split}$$

Tangentialkomponente $E \parallel$

Satz von Stokes:

$$0 = \oint_{r} d\mathbf{r} \mathbf{E}(\mathbf{r}') = \int_{0}^{\infty} \cdots + \int_{0}^{\infty} \cdots + \int_{0}^{\infty} d\mathbf{r}' \mathbf{E} + \int_{0}^{\infty} d\mathbf{r}' \mathbf{E}$$

$$= 0 \text{ für } \Delta z \to 0$$

$$= \int_{0}^{\infty} d\mathbf{r}' \mathbf{E} + \int_{0}^{\infty} d\mathbf{r}' \mathbf{E} + \int_{0}^{\infty} d\mathbf{r}' \mathbf{E}$$

$$0 = \oint_{\gamma} d\mathbf{r}' \cdot \mathbf{E} \xrightarrow{\Delta z \to 0} \int_{-\frac{L}{2}}^{-\frac{L}{2}} ds \mathbf{t} \cdot (\mathbf{E}_{+} - \mathbf{E}_{-}) \xrightarrow{L \to 0} L \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$
$$\to \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$

 \rightarrow Die Tangentialkomponente ist stetig

$$E_{\parallel_+} = E_{\parallel_-}$$

Insgesamt ergibt sich damit:

$$oldsymbol{E}_+(oldsymbol{r}) - oldsymbol{E}_-(oldsymbol{r}) = rac{\sigma}{arepsilon_0} oldsymbol{n}$$

Das elektrische Potential Φ ist damit stetig.

$$\underbrace{\Phi(\boldsymbol{r}_b) - \Phi(\boldsymbol{r}_a)}_{\Phi_+(\boldsymbol{r}) - \Phi_-(\boldsymbol{r})} = \int_{\boldsymbol{r}_a}^{\boldsymbol{r}_b} d\boldsymbol{r}' \cdot \boldsymbol{E} \quad \stackrel{\Delta z \to 0}{\longrightarrow} 0$$

1.5.1 Randbedingungen an el. Leitern

Leiter: Material mit freibeweglichen Ladungsträgern (Metall)

Eigenschaften von \boldsymbol{E} im Leiter:

i)
$$E = 0$$

ii)
$$0 = \nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho, \qquad \rho(\boldsymbol{r}) = 0$$

iii) Nettoladung befinden sich an Oberfläche

iv) Potential
$$\Phi(\mathbf{r}_b) - \Phi(\mathbf{r}_a) = 0 \rightarrow \Phi(\mathbf{r}) = \text{const.}$$

Flächenladung
$$\sigma$$

Randbedingungen

$$egin{aligned} m{E}_{+} - m{E}_{-} &= rac{\sigma^{-}}{arepsilon_{0}} m{n} \ m{E}_{-} &= 0 \ \
ightarrow m{E}_{+}(m{r}) &= rac{\sigma(m{r})}{arepsilon_{0}} m{n}(m{r}) \end{aligned}$$

[Folie: Ladung an Oberfläche eines Leiters]

1.6 Randwertprobleme (RWP) der Elektrostatik und Lösungsmethoden

1.6.1 Formulierung des Randwertproblems

Das elektrische Potential: $\Phi(\mathbf{r})$: $\mathbf{E}(\mathbf{r}) = -\nabla \Phi(\mathbf{r})$

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 Poisson-Gleichung

Für eine gegebene lokale Ladungsverteilung ρ gilt:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\to \Phi(\mathbf{r}) \stackrel{|\mathbf{r}| \to 0}{\longrightarrow} 0$$

Typische Problemstellung:

Ladungsverteilung ρ + Werte des Potentials auf Randfläche

Beispiel:

Randwertproblem: Gegeben: $\rho(\boldsymbol{r}')$ im Raumbereich V

 $\Phi(\mathbf{r})$ oder $\mathbf{E}(\mathbf{r})$ auf Randfläche ∂V Gesucht: $\Phi(\mathbf{r})$, $\mathbf{E}(\mathbf{r})$ überall in V

Zwei Fälle:

- i) $\varPhi({\pmb r})$ ist auf der Randfläche gegeben
 - $\rightarrow \mathbf{Dirichlet}\text{-}\mathbf{Randbedingung}$
- ii) $\boldsymbol{E}(\boldsymbol{r})$ ist auf der Randfläche gegeben
 - \rightarrow Neumannsche Randbedingung

Gegeben sei: $n \cdot E$ dies ist gleich der Normalenableitung:

$$oldsymbol{n}\cdotoldsymbol{E}=-oldsymbol{n}oldsymbol{
abla}\Phi=-rac{\partial\Phi}{\partial n}$$

Wir beschränken uns vorwiegend auf den ersten Fall. Zur Lösung dieser Probleme gibt es einige Methoden. Zum Einstieg und zur betrachten wir zunächst die Methode der Spiegelladung.

Methode der Bildladung (Spiegelladung)

Punktladung vor leitender, geerdeter Metallplatte

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r}) = -\frac{q}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}_0)$$

$$\in V \qquad \mathbf{r}_0 = (d, 0, 0) \qquad V = \{\mathbf{r} \in \mathbb{R}^3, x > 0\}$$

Randbedingungen:

$$\Phi(\mathbf{r}) = 0$$
 für $\mathbf{r} \in \partial V$, d.h. $\mathbf{r} = (0, y, z)$

Idee: Ersetze ursprüngliche Problem durch "Fiktives" Problem mit zusätzlichen Ladungen außerhalb von V, welche die Randbedingungen simulieren.

Potential der Punkladungen in r_0 :

$$\Phi_q(m{r}) = rac{1}{4\piarepsilon_0} rac{q}{|m{r} - m{r}_0|}$$

addiere Ladung -q in $\boldsymbol{r}_0'=(-d,0,0)=-\boldsymbol{r}_0$

$$\Phi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{|\boldsymbol{r} - \boldsymbol{r}_0|} - \frac{q}{|\boldsymbol{r} + \boldsymbol{r}_0|} \right)$$

Schauen wir nun nach ob dies die Poisson-GLeichung erfüllt:

$$\Delta \Phi = \frac{q}{4\pi\varepsilon_0} \left(\underbrace{\Delta \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} - \boldsymbol{r}_0)} - \underbrace{-\Delta \frac{1}{|\boldsymbol{r} + \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} + \boldsymbol{r}_0)} \right)$$

$$= -\frac{q}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}_0) + \frac{q}{\varepsilon_0} \underbrace{\delta(\boldsymbol{r} + \boldsymbol{r}_0)}_{=0 \text{ für } \boldsymbol{r} \neq -\boldsymbol{r}_0} \checkmark \forall \boldsymbol{r} \in V$$

Diskussion der Lösung

i) Struktur

$$\Phi(m{r}) = \underbrace{rac{q}{4\piarepsilon_0}rac{1}{|m{r}-m{r}_0|}}_{=: \; \Phi_{ ext{s}}(m{r})} + \underbrace{rac{(-q)}{4\piarepsilon_0}rac{1}{|m{r}+m{r}_0|}}_{=: \; \Phi_{ ext{hom}}(m{r})}$$

 $r \in V$

$$\Delta \Phi_{
m s}(m{r}) = -rac{1}{arepsilon_0}
ho(m{r})$$
 Poisson-Gleichung
$$\Delta \Phi_{
m hom}(m{r}) = 0$$
 Laplace-Gleichung

Mathematisch: Lösung inhomogener DGL

$$\Phi(\mathbf{r}) = \Phi_{\rm s}(\mathbf{r}) + \Phi_{\rm hom}(\mathbf{r})$$

 Φ_{hom} wird so gewählt, dass die Randbedingungen erfüllt werden:

$$r \in \partial V : \quad \Phi_{\text{o}}(r) = \Phi_{\text{s}}(r) + \Phi_{\text{hom}}(r)$$

ii) Elektrisches Feld

$$\boldsymbol{E} = -\boldsymbol{\nabla}\Phi = \frac{q}{4\pi\varepsilon_0} \left(\frac{(x-d,y,z)}{|\boldsymbol{r} - \boldsymbol{r}_0|^3} - \frac{(x+d,y,z)}{|\boldsymbol{r} + \boldsymbol{r}_0|^3} \right)$$

An der Oberfläche
$$x \to 0, x \ge 0$$

 $|\mathbf{r} \pm \mathbf{r}_0|^3 \to (d^2 + y^2 + z^2)$

$$\left. \boldsymbol{E}(\boldsymbol{r}) \right|_{\boldsymbol{r} \in \partial V} = -\frac{qd}{2\pi\varepsilon_0} \frac{1}{(d^2 + y^2 + z^2)^{3/2}} \boldsymbol{e}_x$$

Durch das externe elektrische Feld verschieben sich die Ladungsträger im Metall und es entsteht eine Influenzladung an der Oberfläche.

iii) Influenzladung auf Metalloberfläche

$$oldsymbol{E}_{+}-oldsymbol{E}_{-}=rac{\sigma}{arepsilon_{0}}oldsymbol{n}\qquadoldsymbol{n}=oldsymbol{e}_{x}$$

 $r \in \partial V$:

$$\sigma(\mathbf{r}) = \varepsilon_0 \mathbf{E}_+(\mathbf{r}) = -\frac{qd}{2\pi (d^2 + y^2 + z^2)^{3/2}}$$

gesamte influenzierte Ladung

$$q_i = \int_{\partial V} df \ \sigma(\boldsymbol{r}) = \dots = -q$$

iv) Kraft zwischen Punktladungen und Metallplatte

$$F = q\tilde{E}(r_0) = \frac{-q^2}{4\pi\varepsilon_0(2d)^2}e_x$$

Eindeutigkeit der Lösung des Randwertproblems

Dirichlet-Randwertproblem:

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$
$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r})$$
 $\mathbf{r} \in \partial V$

Annahme: Φ_1 , Φ_2 lösen RWP

d.h.
$$\Delta \Phi_1(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) = \Delta \Phi_2(\boldsymbol{r}) \qquad \boldsymbol{r} \in V$$

$$\Phi_1(\boldsymbol{r}) = \Phi_0(\boldsymbol{r}) = \Phi_2(\boldsymbol{r}) \qquad \boldsymbol{r} \in \partial V$$

Setze:

$$(\mathbf{r}) := \Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r})$$

$$\Delta \Phi(\mathbf{r}) = 0 \quad \mathbf{r} \in V$$

$$\mathbf{r} \in \partial V \quad \Psi(\mathbf{r}) = \Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r}) = 0$$

Greensche Identität:

g, h Funktionen an V:

$$\int_{V} d^{3}r \left[(\boldsymbol{\nabla}(\boldsymbol{r})) \cdot (\boldsymbol{\nabla}h(\boldsymbol{r})) + g(\boldsymbol{r})\Delta h(\boldsymbol{r}) \right]$$

$$= \int_{\partial V} d\boldsymbol{f} \cdot (g(\boldsymbol{r})\boldsymbol{\nabla}h(\boldsymbol{r})$$

$$= \int_{\partial V} d\boldsymbol{f} g(\boldsymbol{r}) \underbrace{\boldsymbol{n} \cdot \boldsymbol{\nabla}h(\boldsymbol{r})}_{=\frac{\partial h}{\partial n}(\boldsymbol{r})}$$

$$h = g = \Psi$$

$$\Rightarrow \int_{V} d^{3}r \ ((\nabla \Psi)^{2} + \Psi(\mathbf{r}) \underbrace{\Delta \Psi(\mathbf{r})}_{=0}) = \int_{\partial V} d\mathbf{f} \ \underbrace{\Psi(\mathbf{r})}_{=0} \frac{\partial \Psi(\mathbf{r})}{\partial n}$$

$$\Rightarrow \int_{V} d^{3}r \ (\nabla \Psi(\mathbf{r}))^{2} = 0 \Rightarrow \nabla \Psi(\mathbf{r}) = 0 \qquad \mathbf{r} \in V$$

$$\Psi(\mathbf{r}) = \text{const.} \qquad \Psi(\mathbf{r}) = 0 \text{ in } V \Rightarrow \Phi_{1}(\mathbf{r}) = \Phi_{2}(\mathbf{r})$$

1.6.3 Formale Lösungen des elektrostatischen Randwertproblems mit Greenschen Funktionen (GF)

GF: generelle Methode um inhomogene DGL zu lösen

$$\Delta \Phi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

Greensche Funktionen der Poisson-Gleichung: $\mathcal{G}(r,r')$ mit

Greensche Funktionen der Poisson-Gleichung

$$\Delta_{m{r}}\mathcal{G}(m{r},m{r}') = -rac{1}{arepsilon_0}\delta(m{r}-m{r}')$$

Diese Gleichung geht vor einer Punktladung mit q=1 aus, ist hier aber zunächst einmal eine Definition.

 \mathcal{G} bekannt

$$ightarrow \Delta_{m{r}} \mathcal{G}(m{r},m{r}') = -rac{1}{arepsilon_0} \delta(m{r}-m{r}') \ egin{pmatrix} \mathcal{G}(m{r},m{r}') & \longrightarrow \ |m{r}|
ightarrow \infty \end{matrix} 0$$

Dirichlet-Randwertproblem

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$ Φ_0 V $\bullet q$

Green'sche Funktionen (GF):

$$\Delta_{\mathbf{r}}\mathcal{G}(\mathbf{r}, \mathbf{r}') = \frac{1}{\varepsilon_0}\delta(\mathbf{r} - \mathbf{r}') \quad \mathbf{r}, \mathbf{r}' \in V$$
$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = 0 \quad \text{für} \quad \mathbf{r} \in \partial V \quad \mathbf{r}' \in V$$

Hiermit haben wir das Grenzwertproblem auf eine Integration zurückgeführt. Dies werden wir nun Beweisen:

Beiweis:

Die 2. Greensche Identität lautet:

$$\int_{V} d^{3}r' \left(g(\mathbf{r}')\Delta_{\mathbf{r}'}h(\mathbf{r}') - h(\mathbf{r}')\Delta_{\mathbf{r}'}g(\mathbf{r}')\right)$$

$$= \int_{\partial V} d\mathbf{f}' \cdot \left(g(\mathbf{r}')\nabla_{\mathbf{r}'}h(\mathbf{r}') - h(\mathbf{r}')\nabla_{\mathbf{r}'}g(\mathbf{r}')\right)$$

$$g(\mathbf{r}') := \Phi(\mathbf{r}') \qquad h(\mathbf{r}') := \mathcal{G}(\mathbf{r}', \mathbf{r})$$

$$\Rightarrow \int_{V} d^{3}r' \left[\Phi(\mathbf{r}')\underbrace{\Delta_{\mathbf{r}'}\mathcal{G}(\mathbf{r}', \mathbf{r})}_{=-\frac{1}{\varepsilon_{0}}\delta(\mathbf{r}'-\mathbf{r})} - \mathcal{G}(\mathbf{r}', \mathbf{r})\underbrace{\Delta_{\mathbf{r}'}\Phi(\mathbf{r}')}_{=-\frac{1}{\varepsilon_{0}}\rho(\mathbf{r}')}\right]$$

$$= \int_{\partial V} d\mathbf{f}' \left[\underbrace{\Phi(\mathbf{r}')}_{=\Phi_{0}(\mathbf{r}')} \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}', \mathbf{r}) - \underbrace{\mathcal{G}(\mathbf{r}', \mathbf{r})}_{=0} \nabla_{\mathbf{r}'}\Phi(\mathbf{r}')\right]$$

$$\Rightarrow = -\frac{1}{\varepsilon_{0}}\Phi(\mathbf{r}) + \frac{1}{\varepsilon_{0}}\int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}')\rho(\mathbf{r})$$

$$= \int_{\partial V} d\mathbf{f}' \Phi_{0}(\mathbf{r}')\nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}')$$

$$= \int_{\partial V} d\mathbf{f}' \Phi_{0}(\mathbf{r}')\frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$

$$\Rightarrow \Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}')\rho(\mathbf{r}') - \varepsilon_{0}\int_{\partial V} d\mathbf{f}' \Phi_{0}(\mathbf{r}')\frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$
Es gilt (HA):
$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = \mathcal{G}(\mathbf{r}', \mathbf{r}) \quad \text{Reziprozit\"{a}t}$$

$$\to \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}') = \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}', \mathbf{r}')$$

$$\Delta_{\mathbf{r}}\mathcal{G}(\mathbf{r}, \mathbf{r}') = \Delta_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}')$$

Potential bei Randwertproblem

$$\Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} df' \Phi_{0}(\mathbf{r}') \frac{\partial}{\partial n'} \mathcal{G}(\mathbf{r}, \mathbf{r}')$$
(1)

Wiederholung

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$
$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r})$$
 $\mathbf{r} \in \partial V$

Green'sche Funktionen:

$$\Delta_{\mathbf{r}} \mathcal{G}(\mathbf{r}, \mathbf{r}') = \frac{1}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}') \quad \mathbf{r}, \mathbf{r}' \in V$$
$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = 0 \quad \text{für} \quad \mathbf{r} \in \partial V \quad \mathbf{r}' \in V$$

Wenn die Green'sche Funktion \mathcal{G} die Bedingungen erfüllt, können wir das Potential so schreiben wie in Gleichung (1).

Bemerkungen:

i) Spezialfälle:

1) V Ladungsfrei
$$(\rho(\mathbf{r}) = 0 \text{ in } V)$$

$$\rightarrow \Phi(\mathbf{r}) = -\varepsilon \int_{\partial V} \mathrm{d}f' \Phi_0(\mathbf{r}) \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$

$$\Rightarrow \Phi(\mathbf{r}) = -\varepsilon \Phi_0 \underbrace{\int_{\partial V} \mathrm{d}f' \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')}_{\int \mathrm{d}f' \mathbf{n} \cdot \nabla_{\mathbf{r}'} \mathcal{G}}$$

$$= -\varepsilon \Phi_0 \int \mathrm{d}\mathbf{f}' \cdot \nabla_{\mathbf{r}'} \mathcal{G}$$

$$\stackrel{\mathrm{S.v.G.}}{=} \int_{V} \mathrm{d}^3 \mathbf{r}' \underbrace{\nabla_{\mathbf{r}'} \cdot (\nabla_{\mathbf{r}'} \mathcal{G})}_{\Delta_{\mathbf{r}'} \cdot \mathcal{G} = -\frac{1}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}')}$$

$$= -\frac{1}{\varepsilon_0}$$

$$\Rightarrow \Phi(\mathbf{r}) = \Phi_0$$

2) $V = \mathbb{R}^3$, lokalisierte Ladungsverteilung ρ

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \qquad \int_{\partial V} \cdots \to 0$$

eine spezielle Lösung für \mathcal{G}

ii) \mathcal{G} ist auch die Lösung einer inhomogenen partiellen DGL

$$\mathcal{G}(m{r},m{r}') = \underbrace{\mathcal{G}_s(m{r},m{r}')}_{\substack{ ext{spezielle} \\ ext{L\"osung der} \\ ext{inhomogenen}}} + \underbrace{F(m{r},m{r}')}_{\substack{ ext{L\"osung} \\ ext{zugeh\"origen} \\ ext{homogenen}}}$$

$$egin{align*} & \Delta_{m{r'}}\mathcal{G}_s(m{r},m{r'}) = -rac{1}{arepsilon_0}\delta(m{r}-m{r'}) \ & \Delta_{m{r'}}F(m{r},m{r'}) = 0 \ & \mathcal{G}_j(m{r},m{r'}) = rac{1}{4\piarepsilon_0}rac{1}{|m{r}-m{r'}|} & ext{Laplace anwenden !} \ & \mathcal{G}(m{r},m{r'}) = rac{1}{4\piarepsilon_0}rac{1}{|m{r}-m{r'}|} & + rac{F(m{r},m{r'})}{ ext{so w\text{ahlen, dass}}} \ & ext{Randbedingungen erf\text{iillt}} \end{split}$$

 $F(\mathbf{r}, \mathbf{r}')$ so wählen, dass die Randbedingungen erfüllt sind: $\mathcal{G}(\mathbf{r}, \mathbf{r}') = 0$ $\mathbf{r} \in \partial V$.

1.6.4 Greensche Funktion des Dirichlet Randwertproblems einer Ebene

$$\Delta_{\boldsymbol{r}'}\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = -\frac{1}{\varepsilon_0}\delta(\boldsymbol{r}-\boldsymbol{r}') \qquad \boldsymbol{r},\boldsymbol{r}' \in V$$

$$\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = 0 \qquad \boldsymbol{r} \in \partial V \text{ (z=0)}, \quad \boldsymbol{r} \in V$$

$$V = \{\boldsymbol{r} \in \mathbb{R}^3 | z < 0\}$$

$$v = \{\boldsymbol{r} \in \mathbb{R}^3 | z < 0\}$$

Analog: Punktladung "q=1" in \boldsymbol{r}' vor leitender Ebene mit Potential 0

$$\Phi(\mathbf{r}) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} - \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|} \right) \qquad \tilde{\mathbf{r}}' = (x', y', -z')$$

$$\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = \frac{1}{q}\Phi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0}\left(\frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} - \frac{1}{|\boldsymbol{r}-\tilde{\boldsymbol{r}}'|}\right)$$

Beweis:

$$\Delta_{r} = \frac{1}{4\pi\varepsilon_{0}} \left(\Delta_{r} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} - \Delta_{r} \frac{1}{|\boldsymbol{r} - \tilde{\boldsymbol{r}}'|} \right) = -\frac{1}{\varepsilon_{0}} \delta(\boldsymbol{r} - \boldsymbol{r}')$$

$$\parallel \qquad \qquad \parallel$$

$$-4\pi\delta(\boldsymbol{r} - \boldsymbol{r}') \qquad -4\pi\delta(\boldsymbol{r} - \tilde{\boldsymbol{r}}') = 0$$

1. Teil: ${m r} \in \partial V$: z=0 , 2. Teil = 0: ${m { ilde r}}' \notin V$.

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (z')^2}} = \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (-z)^2}}$$

$$= \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|}$$

$$G(\mathbf{r}, \mathbf{r}') = 0 \quad \mathbf{r} \in \partial V$$

Bemerkung:

i)
$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} + F(\boldsymbol{r}, \boldsymbol{r}')$$

 $F(\boldsymbol{r}, \boldsymbol{r}') = -\frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \tilde{\boldsymbol{r}}'|}$
 $\Delta_{\boldsymbol{r}} F(\boldsymbol{r}, \boldsymbol{r}') = 0$

ii) Symmetrie der Greenschen Funktion (Reziprozitätsrelation):

$$G(r, r') = G(r', r)$$

 \rightarrow formale Lösung des Randwertproblems für eine beliebige Ladungsverteilung und Randwerte $\Phi_0(\mathbf{r})$ in der Ebene:

$$\Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} df' \Phi(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'}$$

$$\rho \equiv 0 \quad \Rightarrow \quad \Phi(\mathbf{r}) = \varepsilon_{0} \int_{\nabla x^{2} + y^{2} \leq R} dy' dx' \Phi_{0}(x', y', 0) \frac{\partial \mathcal{G}}{\partial n'}$$

$$x \qquad \qquad x \qquad \qquad x \qquad \qquad x \qquad \qquad x$$

1.6.5 Separation der Variablen und Entwicklung nach orthogonalen Funk-

Eine allgemeine Methode zur Lösung partieller DGL.

Zur Vereinfachung: Laplace.Gl $\Delta \Phi = 0 + \text{Randbedingung}$

Verbindung zur Poisson-Gl: $\Delta \varPhi({\bm r}) = -\frac{1}{\varepsilon_0} \rho({\bm r})$

$$\Phi(\mathbf{r}) = \Phi_s(\mathbf{r}) + \Phi_{
m hom} \qquad \Phi(\mathbf{r}) = rac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3r' rac{
ho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \Phi_{
m hom}$$

Motivation: 1-Dim Randwertproblem

Randbedingungen:

$$\begin{split} \varPhi(0) &= c_1 = \varPhi_1 \qquad \varPhi(l_x) = \varPhi_1 + c_2 l_x = \varPhi_2 \\ &\to c_2 = \frac{\varPhi_2 - \varPhi_1}{l_x} \quad \to \quad \varPhi(x) = \varPhi_1 + \frac{\varPhi_2 - \varPhi_1}{l_x} x \\ &\Rightarrow \pmb{E} = - \pmb{\nabla} \varPhi = - \frac{\varPhi_2 - \varPhi_1}{l_x} e_x \end{split}$$

2-Dim Randwertproblem

Wir suchen:
$$\Phi = \Phi(x, y)$$
 mit $\rho = 0$

$$0 = \Delta \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2}$$

Randbedingungen:

i)
$$\Phi(\mathbf{r}) = 0$$

$$y = 0$$

ii)
$$\Phi(\mathbf{r}) = 0$$
 $x = 0$

$$x = 0$$

iii)
$$\Phi(\mathbf{r}) = 0$$
 $x = l_x$

$$x = l$$

iv)
$$\Phi(\mathbf{r}) = \Phi_R(x)$$
 $y = l_y$

$$y = l$$

Separations ansatz: $\varPhi(x,y) = f(x)g(y)$

$$\begin{split} 0 &= \Delta \varPhi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(x)g(y) \\ &= \frac{\partial^2 f}{\partial x^2} g(y) + f(x) \frac{\partial^2 g}{\partial y^2} \\ &= \Delta \varPhi = \frac{\mathrm{d}^2 f}{\mathrm{d} x^2} g(y) + f(x) \frac{\mathrm{d}^2 g}{\mathrm{d} y^2} \end{split}$$

$$0 = \Delta \Phi = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} g(y) + f(x) \frac{\mathrm{d}^2 g}{\mathrm{d}y^2} \qquad \left| \cdot \frac{1}{f g} \right|$$

umformen:

$$\Rightarrow \underbrace{\frac{1}{f(x)} \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}}_{\mathrm{Fkt. \, von}x} = -\underbrace{\frac{1}{g(y)} \frac{\mathrm{d}^2 g}{\mathrm{d}y^2}}_{\mathrm{Fkt. \, von}y} = \mathrm{const.} = -\alpha^2$$

$$\frac{\mathrm{d}^2 f}{\mathrm{d} x^2} = -\alpha^2 f(x) \quad \text{mit } e^{i\alpha x} \qquad \frac{\mathrm{d}^2 g}{\mathrm{d} y^2} = \alpha^2 g(y) \quad \text{mit } e^{\alpha y}$$

$$e^{i\alpha x} \Rightarrow f(x) = a\sin(\alpha x) + b\cos(\alpha x)$$
 $e^{\alpha y} \Rightarrow g(x) = c\sinh(\alpha y) + d\cosh(\alpha y)$

$$\Phi(x,y) = f(x) \cdot g(y)$$

Randbedingungen:

i)
$$0 = \Phi(x,0) = f(x) \cdot d \implies d = 0$$

ii)
$$0 = \Phi(0, y) = b \cdot g(y) \implies b = 0$$

$$\Rightarrow \Phi(x,y) = a\sin(\alpha x)c\sinh(\alpha y) = A\sin(\alpha x)\sinh(\alpha y)$$

iii)
$$0 = \Phi(l_x, y) = A \sin(\alpha l_x) \sinh(\alpha y) \to \sin(\alpha l_x) = 0 \quad \Rightarrow \quad \alpha = \frac{n\pi}{l_x} \qquad n \in \mathbb{Z}(\text{oder } n \in \mathbb{N})$$

$$\to \Phi_n(x, y) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_y}\right)$$

iv)
$$\Phi(x, l_y) = \Phi_R(x)$$

$$\Rightarrow \Phi_R(x) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi l_y}{l_x}\right) \qquad \forall x \in [0, l_y]$$

im allgemeinen ist dies nicht möglich, aber da es sich um eine lineare DGL ($\Delta \Phi = 0$) handelt:

 \rightarrow Linearkombinationen von Lösungen sind auch Lösungen

Ansatz für allgemeine Lösung:

$$\Phi(x,y) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

Der Ansatz erfüllt $\Delta \Phi = 0$ und erfüllt die Randbedingungen i), ii), iii). Um iv) zu erfüllen fordern wir:

$$\Phi_R(x) \stackrel{!}{=} \underbrace{\sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l_x}\right)}_{\text{Entwicklung}} \underbrace{\sinh\left(\frac{n\pi l_y}{l_x}\right)}_{\text{const.}}$$

Der erste Teil des Ausdrucks entspricht der Entwicklung von $\Phi_R(x)$ nach Funktionen sin $\left(\frac{n\pi x}{l_x}\right)$ also einer Fourier-Reihe.

Bestimmung von A_n : Multipliziere mit $\sin\left(\frac{n\pi x}{l_x}\right)$ $m \in \mathbb{N}$ und danach Integration:

$$\int_{0}^{l_{x}} dx \sin\left(\frac{m\pi x}{l_{x}}\right) \varPhi_{R}(x) = \sum_{n=1}^{\infty} A_{n} \sinh\left(\frac{m\pi l_{y}}{l_{x}}\right) \int_{0}^{l_{x}} dx \underbrace{\sin\left(\frac{m\pi x}{l_{x}}\right) \sin\left(\frac{n\pi x}{l_{x}}\right)}_{=\frac{l_{x}}{2}\delta_{nm}}$$

$$= A_{m} \frac{l_{x}}{2} \sinh\left(\frac{n\pi l_{y}}{l_{x}}\right)$$

$$A_{m} = \frac{2}{l_{x} \sinh\left(\frac{n\pi l_{y}}{l_{x}}\right)} \int_{0}^{l_{x}} dx \sin\left(\frac{n\pi x}{l_{x}}\right) \varPhi_{R}(x)$$

in $\Phi(x,y)$ einsetzen

Wiederholung

Zu dem Problem gehört die Skizze aus Abschnitt 1.6.5: 2-Dim Randwertproblem.

Vollständige Orthonormale Funktionensysteme (VONS) 1.6.6

Betrachte Funktionen g(x), h(x) auf $I = [a, b] \subset \mathbb{R}$

$$h,g: I \to \mathbb{R} (\mathbb{C})$$

Skalar
produkt: $(g,h) = \int_a^b \mathrm{d}x \ g^*(x)h(x)$
(g,h) = 0: g und h orthogonal, (g,g) = 1: g normiert

Norm: $||g|| = \sqrt{(g,g)}$

Ein abzählbarer Satz von Funktionen $\{f_n\} = \{f_1, f_2, \dots\}$

Heißt orthonormiert falls: $(f_m, f_n) = \delta_{nm} \rightarrow \underline{\text{Orthonormalsystem}}$

 $\underline{\text{Vollständigkeit: Ein Satz von Funktionen heißt}} \; \underline{\text{Vollständig (VONS})} \; \text{falls} \; \underline{\text{jede}} \; \text{quadratintegrable}^1$

Funktion $g: I \to \mathbb{R}(\mathbb{C})$ in der Form $g(x) = \sum_{n=1}^{\infty} a_n f_n(x)$ dargestellt werden kann. Genauer: $\lim_{n \to \infty} \int_a^b \mathrm{d}x \mid g(x) - \sum_{n=1}^{\infty} a_n f_n(x) \mid = 0$

Genauer:
$$\lim_{n \to \infty} \int_a^b dx \mid g(x) - \sum_{n=1}^{\infty} a_n f_n(x) \mid 0$$

Bestimmung der Koeffizient a_n :

$$g(x) = \sum_{n} a_n f_n(x) \qquad \left| \int dx \ f_m^*(x) \right|$$

$$\int_a^b dx \ f_m^*(x) g(x) = \sum_{n=1}^\infty \underbrace{\int_a^b dx \ f_m^*(x) f_n(x)}_{=\delta_{nm}} = a_m$$

$$g(x) = \sum_{n} a_n f_n(x) = \sum_{n} (f_n, g) f_n(x)$$

$$= \sum_{n} \int_a^b dx' \ f_n^*(x') g(x') f_n(x)$$

$$= \int_a^b dx' \ g(x') \underbrace{\sum_{n=1}^\infty f_n(x) f_n^*(x')}_{=\delta(x-x')}$$

¹Falls $\int dx |g(x)|^2$ existiert

da
$$\int_a^b \mathrm{d}x' g(x') = g(x)$$

Vollständigkeitsrelation

$$\sum_{n=1}^{\infty} f_n(x) f_n^*(x') = \delta(x - x')$$

Beispiele:

1)

$$f_n(x) = \sqrt{\frac{l}{2}} \sin\left(\frac{n\pi x}{l}\right) \qquad I = [0, l]$$

Bedeutung der einzelnen Terme $(f_n, f_m) = \delta_{nm}$

$$g: I \to \mathbb{R} \quad g(0))0 = g(l)$$

$$g(x) = \sum_{n} a_n \sqrt{\frac{l}{2}} \sin\left(\frac{n\pi x}{l}\right)$$

2) Fourierreihe: $\{f_n\}$: n = 0: $\frac{1}{\sqrt{l}}$

$$n \in \mathbb{N}: \qquad \sqrt{\frac{2}{l}} \sin\left(\frac{n\pi x}{l}\right) \quad ; \qquad \sqrt{\frac{2}{l}} \cos\left(\frac{n\pi x}{l}\right) \qquad I = [0, l]$$
$$g(x) = a_0 \frac{1}{\sqrt{l}} + \sum_{n=1}^{\infty} \left[a_n \sqrt{\frac{2}{l}} \sin\left(\frac{2\pi x}{l}\right) + b_n \sqrt{\frac{2}{l}} \cos\left(\frac{n\pi x}{l}\right) \right]$$

Vectoren	Bezeichnung	Funktionen
\overline{r}	Vektor	g(x)
$\{oldsymbol{e}_n\}$	Basis	$\{f_n(x)\}$
$\{oldsymbol{e}_n\} \ (oldsymbol{e}_n \cdot oldsymbol{e}_{n'}) = \delta_{nn'} \ ^3$	Orthonormierung	$(f_n,f_{n'})=\delta(oldsymbol{r}-oldsymbol{r}_0)_{nn'}$
$oldsymbol{r} = \sum_{n=1}^3 a_n oldsymbol{e}_n$	Entwicklung	$g(x) = \sum_{n=1}^{\infty} a_n f_n(x)$
$a_n = (\boldsymbol{e}_n \cdot \boldsymbol{r})$	Entwicklungs- koeffizienten	$a_n = (f_n, g)$
$m{r} := egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}$	Darstellung durch Spaltenvektor	$g(x) := \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \end{pmatrix}$

1.6.7 Laplace-Gleichung in Kugelkoordinaten

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}(r\varPhi) = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\varPhi}{\partial r}\right)$$

Separationsansatz:

$$\Phi(r, \theta, \varphi) = \frac{U(r)}{r} P(\cos \theta) Q(\varphi)$$

1. Term:

$$\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} \left(r' \frac{U(r)}{r'} P(\cos \theta) Q(\varphi) \right) = P(\cos \theta) Q(\varphi) \frac{1}{r} \frac{\mathrm{d}^{2} U}{\mathrm{d} r^{2}}$$

$$\Rightarrow 0 = PQ \frac{1}{r} \frac{\mathrm{d}^{2} U}{\mathrm{d} r^{2}} + UQ \frac{1}{r^{3} \sin \theta} \frac{\mathrm{d}}{\mathrm{d} \theta} \left(\sin \theta \frac{\mathrm{d} P}{\mathrm{d} \theta} \right) + UP \frac{1}{r^{3} \sin^{2} \theta} \frac{\mathrm{d}^{2} Q}{\mathrm{d} \varphi^{2}} \quad \left| \cdot \frac{r^{3} \sin^{2} \theta}{UPQ} \right|$$

$$\Rightarrow \underbrace{-r^{2} \sin^{2} \theta \frac{1}{U} \frac{\mathrm{d}^{2} U}{\mathrm{d} r^{2}} - \sin \theta \frac{1}{P} \frac{\mathrm{d}^{2}}{\mathrm{d} \theta} \left(\sin \theta \frac{\mathrm{d} P}{\mathrm{d} \theta} \right) = \underbrace{\frac{1}{Q} \frac{\mathrm{d}^{2} Q}{\mathrm{d} \varphi^{2}}}_{\text{unabhängig von } \varphi} = \text{const.} := -m^{2}$$

$$\underbrace{-m^{2} \sin^{2} \theta \frac{\mathrm{d}^{2} U}{\mathrm{d} r^{2}} - \sin \theta \frac{1}{P} \frac{\mathrm{d}^{2} U}{\mathrm{d} \theta} \left(\sin \theta \frac{\mathrm{d} P}{\mathrm{d} \theta} \right) = \underbrace{\frac{1}{Q} \frac{\mathrm{d}^{2} Q}{\mathrm{d} \varphi^{2}}}_{\text{unabhängig von } \varphi} = \text{const.} := -m^{2}$$

für Q:

i)

$$\frac{\mathrm{d}^2 Q}{\mathrm{d}\omega^2} + m^2 Q = 0$$

Lösung:

$$\begin{split} Q(\varphi) &= e^{im\varphi} = \cos(m\varphi) + i\sin(m\varphi) \\ Q(\varphi + 2\pi) &= Q(\varphi) \quad e^{im(\varphi + 2\pi)} = e^{im\varphi} \quad \Rightarrow \quad m = \mathbb{Z} \\ \frac{r^2}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} + \frac{1}{P\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}P}{\mathrm{d}\theta}\right) = \frac{m^2}{\sin^2\theta} \\ \underbrace{\frac{r^2}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2}}_{\text{unabh. von }\theta} &= -\underbrace{\frac{1}{P\sin\theta} \frac{\mathrm{d}P}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}P}{\mathrm{d}\theta}\right)}_{\text{unabh. von }V} = \mathrm{const.} := \lambda \end{split}$$

ii)

$$\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \frac{\lambda}{r^2} U(r) = 0$$

 \rightarrow Lösung für $\lambda = l(l+1)$ (Warum das eine Lösung ist, wird in iii) erklärt)

$$U(r) = a_l r^{l+1} + b_l r^{-l}$$

 \rightarrow Spezielle Lösung für m=0:

$$\Phi(r,\theta) = \frac{U(r)}{r} P_l(\cos\theta) = (a_l r^l + b_l r^{-l-1}) P_l(\cos\theta)$$

allg. Lösung: $\Delta \Phi = 0$ für $\frac{\partial \Phi}{\partial \varphi} = 0$

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} (a_l r^l + b_l r^{-l-1}) P_l(\cos \theta)$$
durch Randbedingungen festgelegt

iii)
$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + \left(\lambda - \frac{m^2}{\sin^2 \theta} \right) P(\cos \theta) = 0$$

$$x := \cos \theta \quad P(x) : \text{ DGL für } P(x) \quad \frac{\mathrm{d}}{\mathrm{d}\theta} P(x(\theta)) = \frac{\mathrm{d}P}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin \theta \frac{\mathrm{d}P}{\mathrm{d}x}$$

$$\mathrm{d}x = -\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta}$$

$$\Rightarrow -\frac{\mathrm{d}}{\mathrm{d}x} \left(-\sin^2 \theta \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \left(\lambda - \frac{m^2}{1 - x^2} \right) P(x) = 0$$

Zugeordnete Legendresche DGL

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left((1 - x^2) \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \left(\lambda - \frac{m^2}{1 - x^2} \right) P(x) = 0$$

Spezialfall: Zylindersymmetrische Probleme: \varPhi unabhängig von φ

$$\rightarrow \mathbf{Legendre\text{-}Polynome}$$

$$\frac{\partial \Phi}{\partial \varphi} = 0, \quad Q(\varphi) = e^{im\varphi} \Rightarrow m = 0 \Rightarrow Q(\varphi) = 1$$
$$\frac{\mathrm{d}}{\mathrm{d}x} \left((1 - x^2) \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \lambda P(x) = 0$$

Legendresche DGL

$$(1-x^2)\frac{d^2P}{dx^2} - 2x\frac{dP}{dx} + \lambda P(x) = 0$$

Potenzreihenansatz: $P(x) = \sum_{k=0}^{\infty} a_k x^k$

- \rightarrow Fließbach
- \rightarrow Legendre Polynome
- \rightarrow relevante Lösung nur für $\lambda = l(l+1)$ $l \in \mathbb{N}_0$

Wiederholung

Laplace-Gleichung in Kugelkoordinaten

$$\Delta \Phi = 0 \qquad \Phi(r, \theta, \varphi)$$

$$\Phi(r, \theta, \varphi) = \frac{U(r)}{r} P(\cos \theta) Q(\varphi)$$

i)
$$\frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2} + m^2 Q = 0 \qquad m \in \mathbb{Z}$$

$$\to Q(\varphi) = e^{im\varphi}$$

ii)
$$\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \frac{\lambda}{r^2} U = 0 \qquad \lambda = l(l+1) \quad l \in \mathbb{N}_0$$

$$U(r) = a_l r^{l+1} + b_l r^{-l}$$

iii)
$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + \left(\lambda - \frac{m^2}{\sin^2 \theta} \right) P(\cos \theta) = 0$$

Zylindersymmetrische Probleme: $\frac{d\Phi}{d\varphi} = 0 \quad \rightarrow \quad m = 0$

- $\rightarrow P_l(\cos \theta)$: Legendre-Polynome
- \rightarrow allgemeine Lösung:

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} \left(a_l r^l + b_l r^{-l-1} \right) P_l(\cos \theta)$$

Beispiel: Leitende Kugel im homogenen Feld

Die Frage ist jetzt was ist das äußere Potential und das äußere E-Feld:

$$\Phi(\mathbf{r})$$
 für $|\mathbf{r}| > R$ $\rightarrow \mathbf{E}(\mathbf{r})$

Lösung des Randwertproblems $\Delta \Phi(\mathbf{r}) = 0$ für $|\mathbf{r}| > R$ mit der **Randbedingungen**:

$$\Phi(\mathbf{r}) = \Phi_0 \text{ für } |\mathbf{r}| = R$$

$$\Phi(\mathbf{r}) \xrightarrow{|\mathbf{r}| \to \infty} -E_0 z + \text{const.} = -E_0 r \cos \theta + \Phi_1$$

Aufgrund der Zylindersymmetrie des Problems ist Φ eine Funktion von θ und r: $\Phi(r,\theta)$

$$\to \Phi(r,\theta) = \sum_{l=0}^{\infty} \left(a_l r^l + b_l r^{-l-1} \right) P_l(\cos \theta)$$

i)
$$r = R$$

$$\Phi(R,\theta) = \sum_{l=0}^{\infty} \left(a_l R^l + b_l R^{-l-1} \right) P_l(\cos \theta)$$

$$\stackrel{!}{=} \Phi_0 \cdot 1 = \Phi_0 P_0(\cos \theta)$$

an Beide Seiten Multiplizieren wir $\int_{-1}^{1} \mathrm{d}(\cos\theta) P_n(\cos\theta)$ für $n=0,1,2,3,\ldots$

$$\sum_{l=0}^{\infty} \left(a_l R^l + \frac{b_l}{R^{l+1}} \right) \underbrace{\int_{-1}^{1} \mathrm{d}(\cos\theta) P_n(\cos\theta) P_l(\cos\theta)}_{\delta_{nl} \frac{2}{2n+1}} = \Phi_0 \underbrace{\int_{-1}^{1} \mathrm{d}(\cos\theta) P_n(\cos\theta) P_l(\cos\theta)}_{\delta_{n0} \frac{2}{2n+1} = 2\delta_{n_0}}$$

$$\Rightarrow \sum_{l=0}^{\infty} \frac{2}{2l+1} \left(a_l R^l + \frac{b_l}{R^{l+1}} \right) \delta_{nl} = 2\Phi_0 \delta_{n0} \qquad n = 0, 1, 2, \dots$$

$$\underline{n=0}: \qquad 2 \left(a_0 R^0 + \frac{b_0}{R} \right) = 2\Phi_0 \qquad \Rightarrow b_0 = R(\Phi_0 - a_0)$$

$$\underline{n\neq 0}: \qquad \frac{2}{2n+1} \left(a_n R^n + \frac{b_n}{R^{n+1}} \right) = 0 \quad \Rightarrow b_n = R^{2n+1} a_n$$

ii) $r \to \infty$

$$\Phi(\mathbf{r}) \to -E_0 r \cos \theta + \Phi_1$$

$$= -E_0 r P_1(\cos \theta) + \Phi_1 P_0(\cos \theta) \stackrel{r \to \infty}{\longleftarrow} \sum_{l=0}^{\infty} \left(a_l r^l + \frac{b_l}{R^{l+1}} \right) P_l(\cos \theta)$$

$$\Rightarrow \sum_{l=0}^{\infty} \left(a_l r^l + \frac{b_l}{R^{l+1}} \right) \delta_{nl} \frac{2}{2n+1} \stackrel{r \to \infty}{\longrightarrow} 2\Phi_1 \delta_{n0} - E_0 r \delta_{n1} \frac{2}{2n+1} = 2\Phi_1 \delta_{n0} - \frac{2}{3} E_0 r \delta_{n1}$$

für n = 0, 1, 2, ...

$$\underline{n=0:} \quad \left(a_0 + \frac{b_0}{r}\right) 2 \xrightarrow{r \to \infty} 2\Phi_1 \qquad \Rightarrow \qquad a_0 = \Phi_1$$

$$\underline{n=1:} \quad \left(a_1 r + \frac{b_1}{r^2}\right) \xrightarrow{\frac{2}{\beta}} \xrightarrow{r \to \infty} -\frac{2}{\beta} E_0 r \qquad \Rightarrow \qquad a_1 = E_0$$

$$\underline{n>1:} \quad \left(a_n r^n + \frac{b_n}{r^{n+1}}\right) \xrightarrow{2} \xrightarrow{r \to \infty} \quad \Rightarrow \qquad a_n = 0$$

$$\Phi(r,\theta) = \left[\Phi_1 + \frac{R(\Phi_0 - \Phi_1)}{r}\right] \underbrace{P_0(\cos\theta)}_{=1} + \left[-E_0r + \frac{E_0R^3}{r^2}\right] \underbrace{P_1(\cos\theta)}_{\cos\theta}$$

Potential einer Kugel im homogenen E-Feld

$$\rightarrow \Phi(r,\theta) = \Phi_1 + (\Phi_0 - \Phi_1)\frac{R}{r} - E_0 r \cos\theta + E_0 \frac{R^3}{r^2} \cos\theta$$

Diskussion der Bedeutung der einzelnen Terme:

- \bullet Φ_1 ist eine Konstante die auf das Potential keine physikalische Auswirkung hat.
- $-E_0r\cos\theta$ ist das Potential des äußeren Feldes.
- $\Phi_0 \Phi_1$ ist das Potential einer möglichen Gesamtladung auf der Kugel.
- $E_0 \frac{R^3}{r^2} \cos \theta$ ist der Beitrag der Ladungsverschiebung auf der Kugel. Also das Potential der Influenzierten Ladungen.

Eine Kugel mit Ladung Q ohne äußeres Feld $(E_0 = 0)$:

Eine ungeladene Kugel: $Q=0 \longrightarrow \Phi_1 = \Phi_0$

$$\rightarrow \boxed{\Phi(r,\theta) = \Phi_0 - E_0 r \cos \theta + E_0 \frac{R^3}{r^2} \cos \theta}$$

Lösung für $m \neq 0$ (Potenzreihenansatz)

 \rightarrow Zugeordnete Legendre-Polynome

$$P_l^m(x)$$
 $x = \cos \theta$

• Allgemeine Struktur:

$$P_l^m \sim (1-x^2)^{|m|/2} \times \text{ Polynom } (l-|m|) \text{ten Grades}$$

Zusammenfassung der Funktionen:

$$P, \theta$$
 in Produkt: $P_l^m(\cos \theta)Q_m(\varphi)$

 \Rightarrow Kugelflächenfunktionen

$$\mathcal{Y}_{lm}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi}$$

$$l = 0, 1, 2, \dots \qquad m = 0, \pm 1, \pm 2, \dots, \pm l \qquad \theta \in [0, \pi] \qquad \varphi \in [0, 2\pi]$$

Allgemeine Lösung der Laplace-Gleichung in Kugelkoordinaten:

$$\Phi(r,\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(a_{lm} r^{l} + \frac{b_{lm}}{r^{l+1}} \right) \mathcal{Y}_{lm}(\theta,\varphi)$$

$$\Delta \Phi = 0$$

1.7 Multipolentwicklung

Beliebige endlich große Ladungsverteilung

$$q = \int \mathrm{d}^3 r'
ho(m{r}')$$
 $m{r} \gg R \quad \Phi(m{r}) pprox rac{1}{4\pi arepsilon_0} rac{q}{r}$

$$\rho(\mathbf{r}) = \begin{cases} \text{beliebig} & r < R \\ 0 & r > R \end{cases}$$

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Für $r>R:\ |{m r}'|<|{m r}|$ o Taylorentwicklung von $\frac{1}{|{m r}-{m r}'|}$ in ${m r}'$ o d.h. in x_1',x_2',x_3'

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{\sqrt{(x_1 - x_1'^2) + (x_2 - x_2'^2) + (x_3 - x_3'^2)}} \qquad \mathbf{r} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Taylorentwicklung:

$$f(\mathbf{r}') = f(x_1', x_2', x_3') = f(0, 0, 0) + \sum_{i=1}^{3} x_i' \frac{\partial f}{\partial x_i}(0) + \frac{1}{2} \sum_{i,j=1}^{3} x_i' x_j' \frac{\partial^2 f}{\partial x_i' \partial x_j'}(0) + \dots$$

Zuerst berechnen wir die einzelnen Terme:

$$f(\mathbf{r}') = \frac{1}{|\mathbf{r} - \mathbf{r}'|} : f(0) = \frac{1}{r} \qquad \frac{\partial f}{\partial x_i'} = \frac{(x_i - x_i')}{|\mathbf{r} - \mathbf{r}'|^3} \Big|_{0} = \frac{x_i}{r^3} \qquad \frac{\partial^2 f}{\partial x_i' x_j'}(0) = \dots = \frac{3x_i x_j - r^2 \delta_{ij}}{r^5}$$

Für $|\boldsymbol{r}| < |\boldsymbol{r}'|$:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r \rho(\mathbf{r}') \left\{ \frac{1}{r} + \sum_{i=1}^3 \frac{x_i' x_i}{r^3} + \frac{1}{2} \sum_{i,j} x_i' x_j' \frac{3x_i x_j - r^2 \delta_{ij}}{r^5} + \dots \right\}$$

Den letzten (mit einem Pfeil markierten) Term schauen wir uns jetzt noch einmal genauer an.

$$\sum_{i,j} x_i' x_j' r^2 \delta_{ij} = r^2 \sum_{i} x_i'^2 = r^2 r'^2 = r'^2 \sum_{i} x_i^2 = \sum_{i,j} r'^2 x_i x_j \delta_{ij}$$

Somit können wir den letzten Term umschreiben als:

$$\sum_{i,j} x_i' x_j' \frac{(3x_i x_j - r^2 \delta_{ij})}{r^5} = \sum_{i,j} x_i x_j \frac{(3x_i' x_j' - r'^3 \delta_{ij})}{r^5}$$

Das Potential unserer Ladungsverteilung im externen E-Feld ergibt sich dann als

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{1}{r} \underbrace{\int d^3r' \rho(\mathbf{r}')}_{q \text{ Gesamtladung (Monopol)}} + \sum_{i=1}^{3} \frac{x_i}{r^3} \underbrace{\int d^3r' x_i' \rho(\mathbf{r}')}_{p_i \text{ Dipolmoment }} + \frac{1}{2} \sum_{i,j} \frac{x_i x_j}{r^5} \underbrace{\int d^3r' \rho(\mathbf{r}') (3x_i' x_j' - r'^2 \delta_{ij})}_{=: Q_{ij} \text{ Quadrupolmoment }} + \dots \right\}$$

$$\Rightarrow \varPhi(m{r}) = rac{1}{4\piarepsilon_0} \left\{ rac{q}{r} + rac{m{r}\cdotm{p}}{r^3} + rac{1}{2}\sum_{i,j}rac{x_ix_j}{r^5}Q_{ij} + \ldots
ight\}$$

Diskussion:

i) Monopol

$$egin{aligned} arPhi_M(m{r}) &= rac{1}{4\piarepsilon_0} rac{q}{r} & \propto rac{1}{r} ext{ dominiert für } q
eq 0 \end{aligned}$$
 $egin{aligned} m{E}_M(m{r}) &= -m{\nabla} \Phi_M = rac{q}{4\piarepsilon_0} rac{m{r}}{r^3} & \propto rac{1}{r^2} \end{aligned}$

ii) **Dipol**

$$\Phi_D(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{r} \cdot \mathbf{p}}{r^3} \qquad \propto \frac{1}{r^2}$$

Das elektrische Feld:

$$\boldsymbol{E}_D = -\boldsymbol{\nabla}\Phi_D$$

$$\nabla_{\boldsymbol{r}} \left(\boldsymbol{p} \cdot \frac{\boldsymbol{r}}{r^{3}} \right) : \frac{\partial}{\partial x} \left(p_{x} \frac{x}{r^{3}} + p_{y} \frac{y}{r^{3}} + p_{z} \frac{z}{r^{3}} \right) = \left(\frac{p}{r^{3}} - 3p_{x} \frac{xx}{r^{5}} - 3p_{y} \frac{yx}{r^{5}} - 3p_{z} \frac{zx}{r^{5}} \right)$$

$$= \frac{p_{x}}{r^{3}} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^{5}} x$$

$$\frac{\partial}{\partial y} (\dots) = \frac{p_{y}}{r^{3}} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^{5}} y$$

$$\frac{\partial}{\partial z} (\dots) = \frac{p_{z}}{r^{3}} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^{5}} z$$

$$\Rightarrow \nabla_{\boldsymbol{r}} \left(\boldsymbol{p} \cdot \frac{\boldsymbol{r}}{r^{5}} \right) = \frac{\boldsymbol{p}}{r^{3}} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^{5}} \boldsymbol{r}$$

$$\boldsymbol{E}_{D} = -\nabla \Phi_{D} = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{3(\boldsymbol{p} \cdot \boldsymbol{r})\boldsymbol{r}}{r^{5}} - \frac{\boldsymbol{p}}{r^{4}} \right] \qquad \propto \frac{1}{r^{3}} \quad \boldsymbol{r} \neq 0$$

Beispiel für die Realisierung eines Dipols:

Punktladungen: $q_0, -q_0$ in r_+, r_-

Gesamtladung: $q = q_0 - q_0 = 0$

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_0}{|\mathbf{r} - \mathbf{r}_+|} - \frac{q_0}{|\mathbf{r} - \mathbf{r}_i|} \right) = \frac{1}{4\pi\varepsilon_0} \left(\frac{\mathbf{r} \cdot \mathbf{p}}{r^3} + \dots \right)$$

$$\rho(\mathbf{r}') = q_0 \delta(\mathbf{r}' - \mathbf{r}_+) - q_0 \delta(\mathbf{r}' - \mathbf{r}_-)$$

$$\mathbf{p} = \int d^3 r' \rho(\mathbf{r}') \mathbf{r}' = q_0 \mathbf{r}_+ - q_0 \mathbf{r}_- = q_0 \mathbf{d}$$

mehrere Punktladungen q_i in r_i

$$ightarrow oldsymbol{p} = \sum_i q_i oldsymbol{r}_i$$

iii) Quadrupolmoment

$$Q_{ij} = \int d^3r' \rho(\mathbf{r}') (3x_i'x_j' - r'^3\delta_{ij})$$

Quadrupoltensor
$$Q = \begin{pmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{pmatrix}$$

Eigenschaften

- i) Spurfrei: $\operatorname{tr}(Q) = \sum_{i} Q_{ij} = 0 \quad \Rightarrow 2$ unabhängige Elemente
- ii) Symmetrisch: $Q_{ij} = Q_{ji} \implies 3$ unabhängige Elemente
- \Rightarrow 5 unabhängige Elemente

Ableitung in Kugelkoordinaten

⇒ Sphärische Multipolmomente

$1.7.1\,$ Multipolentwicklung der Energie der Ladungsverteilung im äußeren Feld

Energie:

$$W = \int d^3r \rho(\mathbf{r}) \Phi(\mathbf{r})$$
 (1.1)

Wir stellen uns vor, das \boldsymbol{E} -Feld wird von sehr weit entfernten Ladungen erzeugt. Wir machen somit also die Annahme, dass sich $\Phi(\boldsymbol{r})$ in dem Gebiet,wo $\rho(\boldsymbol{r})$ sich nur wenig ändert.

 \rightarrow Taylorentwicklung von $\Phi(r)$ um r=0

$$\Phi(\mathbf{r}) = \Phi(0) + \mathbf{r} \cdot \nabla \Phi(0) + \frac{1}{2} \sum_{i,j} x_i x_j \frac{\partial^2 \Phi}{\partial x_i \partial x_j}(0) + \dots$$

$$= \Phi(0) - \mathbf{r} \cdot \mathbf{E}(0) - \underbrace{\frac{1}{2} \sum_{i,j} x_i x_j \frac{\partial E_j}{\partial x_i}(0)}_{= \frac{1}{6} \sum_{i,j} (3x_i x_j - r^2 \delta_{ij}) \frac{\partial E_j}{\partial x_i}(0)$$

Dies gilt, da:

$$\sum_{i,j} r^2 \delta_{ij} \frac{\partial E_j}{\partial x_i}(0) = r^2 \underbrace{\sum_i \frac{\partial E_i}{\partial x_i}(0)}_{\nabla \cdot \boldsymbol{E}(0) = 0}$$

 $oldsymbol{
abla} \cdot oldsymbol{E} = 0$ gilt, da $oldsymbol{E}$ ein äußeres Feld ist. Damit erhalten wir dann für die Energie mit Formel

(1.1):

$$\rightarrow W = \Phi(0) \underbrace{\int \mathrm{d}^{3} r \rho(\mathbf{r})}_{=q} - \mathbf{E}(0) \cdot \underbrace{\int \mathrm{d}^{3} r \mathbf{r} \rho(\mathbf{r})}_{=\mathbf{p}} - \frac{1}{6} \sum_{i,j} \frac{\partial E_{j}}{\partial x_{i}}(0) \underbrace{\int \mathrm{d}^{3} r (3x_{i}x_{j} - r^{2} \delta_{ij}) \rho(\mathbf{r})}_{=Q_{ij}} + \dots$$

$$= q \Phi(0) - \mathbf{p} \cdot \mathbf{E}(0) - \frac{1}{6} \sum_{i,j} Q_{ij} \frac{\partial E_{j}}{\partial x_{i}}(0) + \dots$$

$$= Q_{ij}$$

$$= Q_{$$

Wechselwirkungsenergie zweier Dipole

Betrachte 2 Punktdipole p_1, p_2 in r_1, r_2 p_2 erzeugt am Ort r_1 das äußereFeld

$$\begin{split} \boldsymbol{E}(\boldsymbol{r}_1) &= \frac{1}{4\pi\varepsilon_0} \left[\frac{3(\boldsymbol{p}_2 \cdot \boldsymbol{r}_{12})\boldsymbol{r}_{12}}{r_{12}^5} - \frac{\boldsymbol{p}_2}{r_{12}^3} \right] \\ \rightarrow W &= -\boldsymbol{p}_1 \cdot \boldsymbol{E}(\boldsymbol{r}_1) = \frac{1}{4\pi\varepsilon_0} \left[\frac{\boldsymbol{p}_1 \cdot \boldsymbol{p}_2}{r_{12}^3} - \frac{3(\boldsymbol{p}_2 \cdot \boldsymbol{r}_{12})(\boldsymbol{p}_1 \cdot \boldsymbol{r}_{12})}{r_{15}^5} \right] \qquad \propto \frac{1}{r_{12}^3} \end{split}$$

Je nach Orientierung der Dipole ist diese Wechselwirkung anziehend oder abstoßend. z.B.: $p_1, p_2 \perp r_{12}$

$$\rightarrow W = \frac{1}{4\pi\varepsilon_0} \frac{\boldsymbol{p}_1 \cdot \boldsymbol{p}_2}{r_{12}^3} \begin{cases} > 0 & \uparrow \uparrow \qquad \text{abstoßend} \\ < 0 & \uparrow \downarrow \qquad \text{anziehend} \end{cases}$$

1.8 Elektrostatik in Materie-Dielektrika

Definition: Dielektrika

Nichtleitende Substanzen (Gase, Flüssigkeiten, Festkörper). Die Ladungsträger sind also fest gebunden.

äußere Felder ⇒ Polarisation

Mehanismen

- i) **Verschiebungspolarisation** (Deformationspolarisation) neutrales Atom
- ii) Orientierungspolarisation

Molekül mit permanentem Dipolmoment z.B. Wasser

Phänomenologie: Experimentalphysik

Plattenkondensator:

ohne Medium:

mit Medium:

1.8.1 Makroskopische Feldgleichungen der Elektrostatik

Ausgangspunkt: allgemeine (mikroskopische) Feldgleichungen

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho$$

$$\nabla \times \boldsymbol{E} = 0$$

$$\Rightarrow \begin{array}{c} \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3 r' \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$\Rightarrow \rho$$

Makroskopische Messungen: $\approx 10^{23}$ Teilchen \rightarrow Mittlung über mikroskopische Details.

1.8.2 Mittelung von Funktionen

Wir haben eine physikalische Größe $A(\mathbf{r})$ und wollen diese Mitteln.

$$\langle A \rangle(\boldsymbol{r}) := \int_{\mathbb{R}^3} \mathrm{d}^3 r' f(\boldsymbol{r} - \boldsymbol{r}') A(\boldsymbol{r}')$$

$$= \int_{\mathbb{R}^3} \mathrm{d}^3 r' f(\boldsymbol{r}') A(\boldsymbol{r} - \boldsymbol{r}')$$

f: legt Bereich fest, über den gemittelt wird

Eigenschaften:

i)
$$\int d^3r' f(\mathbf{r}') = 1$$

ii)
$$f(\mathbf{r}) \geq 0$$

iii) Eine glatte Funktion, die sich auf molekularer Skala (nm) wenig ändert.

mit
$$L, \Delta L \gg a$$

Wir schauen uns nun an wie die Ableitung einer gemittelten Funktion aussieht.

$$\frac{\partial}{\partial x_i} \langle A \rangle(\mathbf{r}) = \frac{\partial}{\partial x_i} \int d^3 r' f(\mathbf{r}') A(\mathbf{r} - \mathbf{r}')$$
$$= \int d^3 r' f(\mathbf{r}') \frac{\partial A}{\partial x_i} (\mathbf{r} - \mathbf{r}')$$
$$= \langle \frac{\partial A}{\partial x_i} \rangle(\mathbf{r})$$

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \quad \Rightarrow \quad \nabla \cdot \langle \boldsymbol{E} \rangle = \frac{1}{\varepsilon_0} \langle \rho \rangle$$

$$\nabla \times \boldsymbol{E} = 0 \quad \Rightarrow \quad \nabla \times \langle \boldsymbol{E} \rangle = 0$$

$$\rightarrow \quad \langle \boldsymbol{E} \rangle = -\nabla \langle \boldsymbol{\Phi} \rangle$$

1.8.3 Bestimmung von $\langle \rho \rangle$

Aufteilung der Materie in Untereinheiten:

Festkörper:

Elementarzellen:

Gas:

Moleküle

 ρ_n : Ladungsdichte des n-ten Moleküls bzgl. des Schwerpunktes r_n . Die gesamte Ladungsdichte ist somit:

$$ho_g(m{r}) = \sum_n
ho_n(m{r} - m{r}_n)$$

 $\rho_q(\mathbf{r})$ sind hierbei alle gebundenen Ladungen.

Zusätzlich gibt es möglicherweise freie Ladungsträger $\rho_f(\mathbf{r})$

 \Rightarrow gesamte Ladungsdichte

$$\rho(\mathbf{r}) = \rho_f(\mathbf{r}) + \rho_g(\mathbf{r})$$

Mittlung von ρ_g über einen makroskopisch kleinen aber mikroskopisch großen Bereich:

$$\langle \rho_g \rangle(\boldsymbol{r}) = \int d^3 r' f(\boldsymbol{r}') \rho_g(\boldsymbol{r} - \boldsymbol{r}')$$

$$= \int d^3 r' f(\boldsymbol{r}) \sum_n \rho_n(\boldsymbol{r} - \boldsymbol{r}' - \boldsymbol{r}_n)$$

$$= \sum_n \int_{\mathbb{R}^3} d^3 r' f(\boldsymbol{r}') \rho_n(\boldsymbol{r} - \boldsymbol{r}' - \boldsymbol{r}_n)$$

Nun Betrachten wir den letzten Term:

$$\int d^3r' f(\mathbf{r}') \rho_n(\underbrace{\mathbf{r} - \mathbf{r}' - \mathbf{r}_n}) = \int d^3r' \underbrace{f(\mathbf{r} - \mathbf{r}_n - \tilde{\mathbf{r}})}_{\text{ändert sich wenig auf mole. Skala}} \underbrace{\rho_n(\tilde{\mathbf{r}})}_{\text{lokalisiert auf molekularer Skala a}} \underbrace{\rho_n(\tilde{\mathbf{r}})}_{\rho_n(\tilde{\mathbf{r}}) \approx 0 \text{für} |\tilde{\mathbf{r}}| \gg a}$$

Taylorentwicklung in \tilde{r} : $f(r - r_n - \tilde{r}) = f(r - r_n) - \tilde{r} \cdot \nabla f(r - r_n) + \dots$

$$= f(\boldsymbol{r} - \boldsymbol{r}_n) \underbrace{\int \mathrm{d}^3 \tilde{r} \rho_n(\tilde{\boldsymbol{r}})}_{=q_n} - \boldsymbol{\nabla} f(\boldsymbol{r} - \boldsymbol{r}_n) \cdot \underbrace{\int \mathrm{d}^3 r' \tilde{r} \tilde{\boldsymbol{r}} \rho_n(\tilde{\boldsymbol{r}})}_{=\boldsymbol{p}_m \text{Dipolmoment}} + \dots$$

Höhere Terme werden vernachlässigen z.B. das Quadrupolmoment.

$$\begin{split} &= f(\boldsymbol{r} - \boldsymbol{r}_n)q_n - \underbrace{\boldsymbol{\nabla} f(\boldsymbol{r} - \boldsymbol{r}_n) \cdot \boldsymbol{p}_m}_{=\boldsymbol{\nabla} \cdot (\boldsymbol{p}_n f(\boldsymbol{r} - \boldsymbol{r}_n))} + \dots \\ &= \int \mathrm{d}^3 r' q_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) f(\boldsymbol{r} - \boldsymbol{r}') - \boldsymbol{\nabla} \cdot \int \mathrm{d}^3 r' \boldsymbol{p}_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) f(\boldsymbol{r} - \boldsymbol{r}') + \dots \\ &= \langle q_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) \rangle(\boldsymbol{r}) - \boldsymbol{\nabla} \cdot \langle \boldsymbol{p}_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) \rangle(\boldsymbol{r}) + \dots \\ &\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \text{Gesamtladung im SP} \qquad \text{Dipolmoment im SP} \end{split}$$

$$\langle \rho_g \rangle = \sum_n \int \dots$$

= $\langle \sum_n q_n \delta(\mathbf{r}' - \mathbf{r}_n) \rangle(\mathbf{r}) - \nabla \cdot \langle \sum_n \mathbf{p}_n \delta(\mathbf{r}' - \mathbf{r}_n) \rangle(\mathbf{r}) + \dots$

Der **erste Term** steht für die mittlere Gesamtladung der gegebenen Ladungen = 0 für:

- i) neutrale Untereinheiten
- ii) makroskopisch neutraler Körper

Der **zweite Term** wird Definiert als das makroskopische Dipolmoment =: $P(r) = \frac{\text{Dipolmoment}}{\text{Volumen}}$

$$P(r) = \sum_{n} p_{n} \int d^{3}r' \delta(r' - r_{n}) f(r - r')$$
(1.2)

$$= \sum_{n} \boldsymbol{p}_{n} f(\boldsymbol{r} - \boldsymbol{r}_{n}) \approx \frac{1}{V} \sum_{m, \boldsymbol{r}_{n} \in V} \boldsymbol{p}_{n}$$
(1.3)

$$f(\mathbf{r} - \mathbf{r}_n) \approx \begin{cases} \frac{1}{V} & |\mathbf{r} - \mathbf{r}_n| \le L \\ 0 & \text{sonst} \end{cases}$$

→ gemittelte (makroskopische) Ladungsdichte:

$$\langle \rho \rangle(\boldsymbol{r}) = \langle \rho_f \rangle(\boldsymbol{r}) + \underbrace{\langle \sum_n q_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) \rangle(\boldsymbol{r})}_{\text{Gesamtladung oft } = 0} - \boldsymbol{\nabla} \cdot \boldsymbol{P} + \dots$$

Gemittelte makroskopische Ladungsverteilung

$$\langle \rho \rangle(\boldsymbol{r}) = \langle \rho_f \rangle(\boldsymbol{r}) - \boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}) + \dots$$

Daraus folgt:

$$\rightarrow \quad \boldsymbol{\nabla} \cdot \langle \boldsymbol{E} \rangle(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \langle \rho \rangle(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \langle \rho_f \rangle(\boldsymbol{r}) - \frac{1}{\varepsilon_0} \boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}) + \dots$$

Dies können wir umformen in etwas, das der Maxwellgleichung ähnelt:

$$\nabla \cdot \underbrace{\left(\varepsilon_0 \langle E \rangle + P + \ldots\right)}_{:=D(r)} = \langle \rho_f \rangle(r)$$

D(r) := dielektrische Verschiebung.

$$ightarrow \mathbf{\nabla} \cdot \mathbf{D}(\mathbf{r}) = \langle \rho_f \rangle(\mathbf{r})$$

1.8.4 Makroskopische Feldgleichungen der Elektrostatik (Wiederholung)

$$abla \cdot D(r) =
ho_f(r)$$

$$abla \times E(r) = 0$$

$$abla = arepsilon_0 E + P + \dots$$

Diese Gleichungen können wir nun mit dem Satz von Gauß und dem Satz von Stokes auch in Integraler Form schreiben:

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{D} = \int \mathrm{d}^3 r \rho_f(\boldsymbol{r}) = q_{f_V}$$

$$\oint_{\partial F} d\boldsymbol{r} \cdot \boldsymbol{\nabla} \times \boldsymbol{E} = 0$$
 Stokes

Wiederholung

Makroskopische Feldgleichungen der Elektrostatik

$$m{
abla} imes m{E}(m{r}) = 0 \qquad \langle E
angle(m{r})$$
 $m{
abla} \cdot m{D}(m{r}) =
ho_f(m{r})$
 $m{D} = arepsilon_0 m{E} + m{P}$

Wir haben hier jetzt zwei Feldgleichungen für zwei Vektorfelder. Dies reicht nicht aus um beide Vektorfelder eindeutig zu bestimmen. Hierfür müssen wir die Wirbel und Quellen beider Felder beschreiben. \boldsymbol{E} und \boldsymbol{D} sind also nicht unabhängig sondern miteinander verknüpft.

Bem: (Schlussfolgerungen aus den Feldgleichungen der Elektrostatik)

i) Es sieht so aus als ob \boldsymbol{D} nur von der freien Ladungsdichte abhängt, dies ist aber nur in manchen fällen so (Plattenkondensator).

Es gilt nur wenn $\nabla \times \boldsymbol{D} = 0$

Gegenbeispiel: homogen polarisierte Kugel:

$$oldsymbol{E} = -rac{1}{arepsilon_0} oldsymbol{P} \qquad ext{in der Kugel}$$

$$\rightarrow$$
 $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \frac{2}{3} \mathbf{P}$

ii)

$$\boldsymbol{E} = \frac{1}{\varepsilon_0} (\boldsymbol{D} - \boldsymbol{P})$$

 \boldsymbol{E} hängt über die Polarisation direkt von dem Medium ab.

$$oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{E} = rac{1}{arepsilon_0} oldsymbol{
abla} \cdot oldsymbol{D} - rac{1}{arepsilon_0} oldsymbol{
abla} \cdot oldsymbol{P}$$

$$= rac{1}{arepsilon_0}
ho_f - rac{1}{arepsilon_0} oldsymbol{
abla} \cdot oldsymbol{P}$$

 \rightarrow Polarisationsladungsdichte $\rho_p = - \boldsymbol{\nabla} \cdot \boldsymbol{P}$

$$\Rightarrow \quad \boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} (\rho_f + \rho_p)$$

iii) Die Polarisation wirkt wie ein inneres Zusatzfeld, das sich mit dem durch ρ_f erzeugten Feld E_0 überlagert. $E=E_0+E_p$

Im Plattenkondensator:

$$oldsymbol{E}_p = -rac{1}{arepsilon_0} oldsymbol{P}$$

$$oldsymbol{E} = oldsymbol{E}_0 - rac{1}{arepsilon_0} oldsymbol{P}$$

iv) Potential

$$\nabla \times \langle \boldsymbol{E} \rangle = 0$$

$$\langle \boldsymbol{E} \rangle = - \boldsymbol{\nabla} \langle \boldsymbol{\Phi} \rangle$$

Einfach aber zu viel Zeitaufwand für die Vorlesung

$$\langle \Phi \rangle = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\langle \rho \rangle (\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|}$$
$$= \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{1}{|\mathbf{r} - \mathbf{r'}|} \left(\rho_f(\mathbf{r'}) - \mathbf{\nabla} \cdot \mathbf{P}(\mathbf{r'} + \dots) \right)$$

v) Zusammenhang zwischen P und E: Suszeptibilität

$$P = P(E)$$
 $P(E = 0) = 0$

Entwicklung von P in Potenzen von E:

$$P_i = \sum_{j=1}^{3} \gamma_{ij} E_j + \sum_{j,k=1}^{3} \beta_{ijk} E_j E_k + \dots$$

 $\gamma_{ij} \& \beta_{ijk}$ sind Materialkonstanten lineare Näherung: allgemeines **anisotropes** Dielektrikum

$$P_i = \sum_j \gamma_{ij} E_j$$

isotropes Dielektrikum:

$$P_i = \gamma E_i$$

$$\mathbf{P} = \chi_e \varepsilon_0 \mathbf{E} \qquad \chi_e \varepsilon_0 = \gamma$$

 χ_e ist die **Dielektrische Suszeptibilität**

 ε_r ist die relative Dielektrizitätskonstante
 $\varepsilon=\varepsilon_r\varepsilon_0$ ist die Dielektrizitätskonstante

$$oldsymbol{D} = arepsilon oldsymbol{E} = arepsilon_0 arepsilon_r oldsymbol{E}$$

Typische Werte für ε_r :

Medium	$arepsilon_r$
Vakuum:	$\varepsilon_r = 1$
H_2 :	1,00025
N_2 :	1,00055
H_2O :	80,1

1.8.5 Feldgleichungen für lineares, isotropes Dielektrikum

$$\nabla \cdot \boldsymbol{D} = \rho_f$$

$$m{
abla} \cdot (\varepsilon m{E}) =
ho_f$$
 $m{
abla} imes m{E} = 0$

homogenes Medium $\varepsilon = \text{const.}$

$$\begin{split} \varepsilon \boldsymbol{\nabla} \cdot \boldsymbol{E} &= \rho_f \\ \rightarrow \boldsymbol{\nabla} \cdot \boldsymbol{E} &= \frac{1}{\varepsilon_0 \rho_f} = \underbrace{\frac{1}{\varepsilon_r}}_{\text{Medium}} \frac{1}{\varepsilon_0} \rho_f \\ \boldsymbol{\nabla} \times \boldsymbol{E} &= 0 \\ \Delta \boldsymbol{\Phi} &= -\boldsymbol{\nabla} \cdot \boldsymbol{E} \\ &= -\frac{1}{\varepsilon} \rho_f \\ \rightarrow \quad \Delta \boldsymbol{\Phi} &= -\frac{1}{\varepsilon_0} \frac{1}{\varepsilon_r} \rho_f \\ \uparrow \end{split}$$

1.8.6 Punktladung in homogenem Dielektrikum (lineare Näherung)

$$\rho_f(\mathbf{r}) = q\delta(\mathbf{r})$$

$$\nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{1}{\varepsilon} q\delta(\mathbf{r})$$

$$\nabla \times \mathbf{E}(\mathbf{r}) = 0$$

Nun können wir das \boldsymbol{E} -Feld im Vakuum bestimmen:

$$\Rightarrow \quad m{E} = m{E}_{
m vak} - rac{1}{arepsilon_0} m{P}$$

Hier erkennt man explizit, dass das Vakuum-Feld von der Polarisation vermindert wird.

$$\boldsymbol{D} = \varepsilon \boldsymbol{E} = \frac{1}{4\pi} q \frac{\boldsymbol{r}}{r^3}$$

In diesem einfachen Fall ist D vollständig durch die freie Ladung q (in der Abbildung Positiv) bestimmt.

${\bf 1.8.7} \quad {\bf Zusammenhang} \ {\bf zwischen} \ {\bf atomarer/molekularer} \ {\bf Polarisierbarkeit} \ {\bf und} \\ {\bf Suszeptibilitäten}$

Verschiebungspolarisation:

$$\boldsymbol{p} = \alpha \boldsymbol{E}_{\mathrm{lokal}}$$

$$P = np = n\alpha E_{\text{lok}}$$

1

n ist die Teilchenzahldichte.

Aus den makroskopischen Gleichungen haben wir erhalten:

$$m{P} = \chi_e arepsilon_0 m{E}_{\ \parallel}$$
 makroskopisches Feld

In einem verdünnten Gas gilt: $E_{\mathrm{lok}} \approx E$

$$\Rightarrow \quad \chi_e \varepsilon_0 \mathbf{E} = n\alpha \mathbf{E} \quad \Rightarrow \qquad \boxed{\chi_e = \frac{n\alpha}{\varepsilon_0}}$$

$$\varepsilon_r = 1 + \frac{n\alpha}{\varepsilon_0}$$

1.8.8 Randwertprobleme

$$\nabla \times E = 0$$
 $\nabla \cdot D = \rho_f$
 $D = \varepsilon_0 E + P$ $P = P(E)$

lineares homogenes Dielektrikum

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon} \rho_f$$
 $\nabla \times \boldsymbol{E} = 0$
$$\Delta \Phi = -\frac{1}{\varepsilon} \rho_f$$

\rightarrow Randwertproblem:

Gegeben: ρ_f, ε Randbedingungen

Gesucht: Φ , \boldsymbol{E}

1.8.9 Randbedingungen für D, E an einer Grenzschicht mit Flächenladung

Erinnerung: mikroskopische Feldgleichungen

$$abla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \quad \rightarrow \quad \boldsymbol{n} \cdot (\boldsymbol{E}_1 - \boldsymbol{E}_2) = \frac{\sigma}{\varepsilon_0}$$

$$abla \times \boldsymbol{E} = 0 \quad \Rightarrow \quad \boldsymbol{t}(\boldsymbol{E}_1 - \boldsymbol{E}_2) = 0$$

für makroskopische Feldgleichungen:

$$\nabla \cdot \boldsymbol{D} = \rho_f \quad \Rightarrow \quad \boldsymbol{n} \cdot (\boldsymbol{D}_1 - \boldsymbol{D}_2) = \sigma_f$$

$$\nabla \times \mathbf{D} = 0 \quad \Rightarrow \quad \mathbf{t} \cdot (\mathbf{E}_1 - \mathbf{E}_2) = 0$$

speziell lineare, homogene Dielektrika ($\varepsilon_1 = \text{const.}, \varepsilon_2 = \text{const.}$):

$$\boldsymbol{D}_i = \varepsilon_i \boldsymbol{E}_i \qquad i = 1, 2$$

$$\boldsymbol{n} \cdot (\varepsilon_1 \boldsymbol{E}_1 - \varepsilon_2 \boldsymbol{E}_2) = \sigma_f$$

Falls $\sigma_f=0$ (es gibt also **keine** Ladung an der Oberfläche);

$$\Rightarrow$$
 $noldsymbol{E}_1=rac{arepsilon_2}{arepsilon_1}oldsymbol{n}oldsymbol{E}_2$

Das heißt, das E-Feld ist unstetig wenn $\varepsilon_1 \neq \varepsilon_2$ (aufgrund der **Polarisationsladung**).

Wiederholung

zu Randbedingunen für D und E an Grenzflächen mit Flächenladung

$$\boldsymbol{n} \cdot (\boldsymbol{D}_1 - \boldsymbol{D}_2) = \sigma_f$$
$$\boldsymbol{t} \cdot (\boldsymbol{E}_1 - \boldsymbol{E}_2) = 0$$

Beispiel: Plattenkondensator mit Dielektrikum

Für den linken Bereich gilt (analog auch rechts):

$$m{n}\cdot(m{D}_M-m{D}_L)=\sigma=rac{q}{F}$$

Für den mittleren Bereich:

$$\frac{\mathrm{d}D_x}{\mathrm{d}x} = \boldsymbol{\nabla} \cdot \boldsymbol{D}_m = 0$$
$$\rightarrow \boldsymbol{D}_M = \sigma \boldsymbol{e}_x$$

$$E_{M} = \frac{1}{\varepsilon} D_{M} = \frac{\sigma}{\varepsilon} e_{x}$$

$$= \frac{1}{\varepsilon_{r}} \frac{\sigma}{\varepsilon_{0}} e_{x} = \frac{1}{\varepsilon_{r}} E_{M_{\text{vak}}} \leq E_{M_{\text{vak}}}$$

$$P = \chi_{e} \varepsilon_{0} E = (\varepsilon_{r} - 1) \varepsilon_{0} E$$

$$= \begin{cases} 0 & L/R \\ \frac{\varepsilon_{r} - 1}{\varepsilon_{r}} \sigma e_{x} & M \end{cases}$$

$$\Rightarrow E_{M} = E_{\text{vak}} - \frac{1}{\varepsilon_{0}} P$$

Spannung und Kapazität

$$\boldsymbol{E} = \boldsymbol{\nabla} \cdot \boldsymbol{\Phi} \qquad \boldsymbol{\Phi}(x) = -\frac{\sigma}{\varepsilon} x$$

$$\boldsymbol{U} = \boldsymbol{\Phi}(0) - \boldsymbol{\Phi}(d) = \frac{\sigma d}{\varepsilon} = \frac{q}{\varepsilon F} d = \frac{1}{\varepsilon_T} \underbrace{\frac{q}{\varepsilon_0 F} d}_{U_{\text{trak}}} \leq U_{\text{vak}}$$

$$C = \frac{q}{U} = \frac{\varepsilon F}{d} = \varepsilon_r \underbrace{\frac{\varepsilon_0 F}{d}}_{C_{obs}} \ge C_{\text{vak}}$$

Dies gilt für den Fall eines Kondensators mit fester Ladung aud den Platten.

anderes Szenario: feste Spannung

$$U = \frac{\sigma}{\varepsilon} d \stackrel{!}{=} U_{\text{vak}} = \frac{\sigma_0}{\varepsilon_0} d$$

$$\to \sigma = \frac{\varepsilon}{\varepsilon_0} \sigma_0 \ge \sigma_0$$

$$q = \frac{\varepsilon}{\varepsilon_0} q_0 \ge q_0$$

Hier muss deshalb Ladung in den Kondensator fließen um das E-Feld konstant zu halten. Dadurch steigt die Kapazität.

$$C = \frac{q}{U} = \frac{\varepsilon F}{d}$$

$$E = \frac{\sigma}{\varepsilon} = \frac{\varepsilon}{\varepsilon_0} \sigma_0 \frac{1}{\varepsilon} = \frac{\sigma_0}{\varepsilon_0} = E_{\text{vak}}$$

$$D = \varepsilon E = \frac{\varepsilon}{\varepsilon_0} \underbrace{\varepsilon_0}_{D_{\text{crit}}} = \varepsilon_r D_{\text{vak}}$$

1.8.10 Elektrostatische Energie in Dielektrika

im Vakuum:

$$W = \frac{\varepsilon_0}{2} \int_V d^3 r \left(\boldsymbol{E}(\boldsymbol{r}) \right)^2$$

(Bei komplexem Feld Betragsquadrat nehmen $|\boldsymbol{E}(\boldsymbol{r})|^2$. Dies ist nur ein technischer Trick, das \boldsymbol{E} -Felder Reell sind)

makroskopisches Feld in Medien:

$$W = \frac{1}{2} \int_{V} d^{3}r \mathbf{D} \cdot \mathbf{E} = \frac{\varepsilon}{2} \int_{V} d^{3}r (\mathbf{E}(\mathbf{r}))^{2}$$

Plattenkondensator: $C = \frac{\varepsilon F}{d}$ U = Ed

Energie:

$$E = \frac{1}{2}CU^2 = \frac{1}{2}\frac{\varepsilon F}{d}E^2d^2 = \frac{1}{2}\underbrace{\varepsilon E}^{D} \cdot E\underbrace{Fd} = \frac{1}{2}D \cdot E \cdot V$$

 \rightarrow Energiedichte:

$$\frac{W}{V} = \frac{1}{2} \boldsymbol{D} \cdot \boldsymbol{E}$$

Kapitel 2

Magnetostatik

Elektrostatik:

ruhende Ladungen \Rightarrow es wirken Zeitunabhängige elektrische Felder $\boldsymbol{E}(\boldsymbol{r})$

Magnetostatik:

magnetische Felder entstehen aus bewegten Ladungen

Kraft auf bewegte Ladung:

$$F = q(E + v \times B)$$

Magnetfelder von Bewegten Ladungen sind zeitlich verändert und daher kompliziert zu beschreiben. Daher verwenden wir hier ersteinmal statische Ströme die konstande Magnetfelder erzeugen.

Magnetostatik:

$$\begin{array}{c} \text{station\"{a}re} \\ \text{Str\"{o}me} \end{array} \Rightarrow \begin{array}{c} \text{zeitunabh\"{a}ngige} \\ \text{Magnetfelder} \\ \boldsymbol{B(r)} \end{array}$$

Zunächst müssen wir erst einige Dinge Definieren:

2.1 Strom, Stromdichte und Kontinuitätsgleichung

2.1.1 Strom

metallischer Leiter:

$$I = \frac{\text{Ladung}}{\text{Zeit}} = \frac{\Delta q}{\Delta t}$$
 $[I] = 1 \text{ A} = \text{C s}^{-1}$

Beispiel: Stationärer Strom

Ladungsträger mit:

v: Geschwindigkeit (const.)

n: homogene Dichte

q: Ladung

Leiter mit: F: Querschnittsfläche

in Δt : $n \cdot F \cdot v \cdot \Delta t$ Ladung durch F

Ladung: $\Delta q = qnFv\Delta t$

Strom: $I = \frac{\Delta q}{\Delta t} = q \cdot n \cdot v \cdot F$

2.1.2 Stromdichte:

$$j = \frac{\text{Strom}}{\text{Fläche}} = \frac{I}{F}$$

Beispiel: $j = q \cdot n \cdot v$

Die Stromdichte soll eine vektorielle Größe sein um die Richtung des Stromes mit einzubeziehen.

$$oldsymbol{j}(oldsymbol{r},t)$$

$$I = \int_F \mathrm{d} oldsymbol{f} \cdot oldsymbol{j}(oldsymbol{r},t)$$

Zusammenhang: $\boldsymbol{j}, \rho, \boldsymbol{r}$:

Beispiel:
$$j = \underbrace{q \cdot n}_{\rho} \cdot v$$

$$\boldsymbol{j}(\boldsymbol{r},t) = \rho(\boldsymbol{r},t)\boldsymbol{v}(\boldsymbol{r},t)$$

Stromdichte von Punktladungen

Punktladungen q_i mit Ortsvektoren \boldsymbol{r}_i und Geschwindigkeiten $\boldsymbol{v}_i = \dot{\boldsymbol{r}}_i(t)$

$$ho(m{r},t) = \sum_i q_i \delta(m{r} - m{r}_i(t))$$

$$oldsymbol{j}(oldsymbol{r},t) = \sum_i q_i oldsymbol{r}_i \delta(oldsymbol{r} - oldsymbol{r}_i(t))$$

Linienströme

Ströme durch dünne Drähte

$$s \mapsto \boldsymbol{r}(s) \qquad \frac{d\boldsymbol{r}}{ds} = \frac{\boldsymbol{j}}{|\boldsymbol{j}|}$$

beliebige Funktion h(r). Es gilt außerdem:

$$\mathrm{d} \boldsymbol{f} = \frac{\boldsymbol{j}}{|\boldsymbol{j}|} \mathrm{d} f \qquad \mathrm{d} \boldsymbol{f} = \mathrm{d} \boldsymbol{f} \cdot \frac{\boldsymbol{j}}{|\boldsymbol{j}|}$$

$$\int d^{3}r \boldsymbol{j}(\boldsymbol{r},t) \boldsymbol{j}(\boldsymbol{r})$$

$$= \int ds d\boldsymbol{f} \boldsymbol{j}(\boldsymbol{r},t) h(\boldsymbol{r})$$

$$= \int ds d\boldsymbol{f} \frac{\boldsymbol{j}}{|\boldsymbol{j}|} \boldsymbol{j} h$$

$$= \int_{\boldsymbol{x}} ds \frac{\boldsymbol{j}}{|\boldsymbol{j}|} h(\boldsymbol{r}) \underbrace{\int d\boldsymbol{f} \cdot \boldsymbol{j}(\boldsymbol{r},t)}_{=I(\boldsymbol{r},t)}$$

$$= \underbrace{\int_{\gamma} d\boldsymbol{r} h(\boldsymbol{r}) I(\boldsymbol{r},t) = I_{\text{falls}} I_{\text{=const.}} \int_{\gamma} d\boldsymbol{r} h(\boldsymbol{r})}_{I=\text{const.}}$$

effektiv gilt also:

$$,, \mathbf{j} \mathrm{d}^3 r = I \mathrm{d} \mathbf{r}$$

2.1.3 Kontinuitätsgleichung

Ladungs dichte: $\rho({\bm r},t)$ Ladung in $V \colon \int_V \mathrm{d}^3 r \rho({\bm r},t)$

Strom von Ladungen aus V (durch ∂V):

$$\int_{\partial V} \mathrm{d} m{f} \cdot m{j}(m{r},t)$$

in abgeschlossenen Systemen gilt: Die Ladung ist konstant:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}^{3}r \rho(\mathbf{r}, t) = -\int_{\partial V} \mathrm{d}\mathbf{f} \cdot \mathbf{j}(\mathbf{r}, t)$$

$$\Rightarrow 0 = \underbrace{\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}^{3}r \rho(\mathbf{r}, t)}_{=\int_{V} \mathrm{d}^{3}r \frac{\partial \rho}{\partial t}} + \underbrace{\int_{\partial V} \mathrm{d}\mathbf{f} \cdot \mathbf{j}(\mathbf{r}, t)}_{=\int_{V} \mathrm{d}^{3}r \nabla \cdot \mathbf{j}}$$

$$\Rightarrow \int_{V} \mathrm{d}^{3}r \left(\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j}\right) = 0$$

für beliebige V

Kontinuitätsgleichung

$$\frac{\partial \rho(\boldsymbol{r},t)}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r},t) = 0$$

2.1.4 Magnetostatik

Stationärer (zeitunabhängigen) Fall

$$\rho = \rho(\mathbf{F}), \quad \mathbf{j} = \mathbf{j}(\mathbf{r})$$

$$\frac{\partial}{\partial t}\rho = 0 \quad \Rightarrow \quad \nabla \cdot \mathbf{j}(\mathbf{r}) = 0$$

Stationäre Ströme

Konsequenz: Durch jeden Querschnitt eines Leiters fließt der selbe Strom.

$$0 = \int_{V} d^{3}r \, \nabla \cdot \boldsymbol{j} = \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{j} = \int_{F_{1}} d\boldsymbol{f} \cdot \boldsymbol{j} + \int_{F_{2}} d\boldsymbol{f} \cdot \boldsymbol{j} = -I_{i} + I_{2}$$
$$\Rightarrow I_{1} = I_{2}$$

2.2 Gesetz von Biot-Savart

stationärer Strom in Leiter \rightarrow Magnetfeld

Das Magnetfeld d \boldsymbol{B} am Ort \boldsymbol{r} verursacht durch Strom I im Linienelement d \boldsymbol{l} in \boldsymbol{r}' .

$$\mathrm{d}\boldsymbol{B}(\boldsymbol{r}) = k' I \mathrm{d}\boldsymbol{l} \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$|\mathrm{d} m{B}| \propto I, \ |\mathrm{d} m{l}|, \ rac{1}{|m{r} - m{r}'|^2}$$

Richtung von: $d m{B} \propto d m{l} imes (m{r}, m{r}')$

Die Konstante k' im SI-Einheiten-System ist:

$$k' = \frac{\mu_0}{4\pi}$$

 μ_0 ist die magnetische Feldkonstante, die Permeabilität des Vakuums

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{V s}}{\text{A m}}$$

Sie ist definiert über:

$$\varepsilon_0 \mu_0 = \frac{1}{c^2}$$
 c : Lichtgeschw. in Vakuum

Einheit:

$$[\boldsymbol{B}] = rac{\mathrm{V} \mathrm{s}}{\mathrm{m}^2} = 1 \mathrm{Tesla}$$

Biot-Savart-Gesetz

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} I \int_{\gamma} \mathrm{d}\boldsymbol{l}' \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

Diese Formel gibt das Magnetfeld für einen Stromdurchflossenen dünnen Leiter an.

Für eine ausgedehnte Stromdichte j(r) gilt:

$$d^3r \boldsymbol{j}(\boldsymbol{r}) = Id\boldsymbol{l} \quad \boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int d^3r \boldsymbol{j}(\boldsymbol{r}') \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

Ähnlich in der Elektrostatik:

$$E(r) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \rho(r) \frac{r - r'}{|r - r'|^3}$$

Hier ist $\rho(\mathbf{r})$ aber ein Skalarfeld. $\mathbf{j}(\mathbf{r})$ ist ein Vektorfeld! Deshalb ist die Berechnung von Magnetfeldern komplizierter.

Beispiel: Magnetfeld eines langen Drahtes:

$$\boldsymbol{j}(\boldsymbol{r}) = I\delta(x)\delta(y)\boldsymbol{e}_z$$

Setzen wir dies nun ins Biot-Savart-Gesetz ein erhalten wir das \boldsymbol{B} -Feld dieses Leiters:

Nebenrechnung:

$$\boldsymbol{B}(\boldsymbol{r})$$
 hängt nicht von z ab $\rightarrow \boldsymbol{r} = (x, y, 0) \rightarrow \boldsymbol{r} - \boldsymbol{r}' = (x, y, -z')$

$$e_z \times (r - r') = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\begin{split} &= \frac{\mu_0 I}{4\pi} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} \int_{-\infty}^{\infty} \mathrm{d}z' \frac{1}{[x^2 + y^2 + z'^2]^{3/2}} \\ &= \frac{\mu_0 I}{4\pi} \frac{2}{x^2 + y^2} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} \\ &\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{2\pi} \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} \end{split}$$

In Zylinderkoordinaten:

$$r = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ z \end{pmatrix} \qquad \rho^2 = x^2 + y^2$$

$$e_{\varphi} = \frac{\frac{\partial r}{\partial \varphi}}{\left|\frac{\partial r}{\partial \varphi}\right|} = \frac{1}{\rho} \begin{pmatrix} -\rho \sin \varphi \\ \rho \cos \varphi \\ 0 \end{pmatrix} = \frac{1}{\sqrt{x^2 + y^2}} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\Rightarrow B = \frac{\mu_0}{2\pi} I \frac{1}{\rho} e_{\varphi}$$

2.3 Kraft eines äußeren Magnetfeldes auf einen Stromdurchflossenen Leiter

$$\mathrm{d} m{F} = I \mathrm{d} m{l} imes m{B}(m{r})$$

$$|\mathrm{d} m{F}| \propto I, \ |\mathrm{d} m{l}|, \ |m{B}|$$
 Richtung von: $\mathrm{d} m{F} \propto \mathrm{d} m{l} imes m{B}(m{r})$

Damit ist die Kraft auf eine beliebige Leiterschleife:

$$\boldsymbol{F} = I \int_{\gamma} \mathrm{d}\boldsymbol{l} \times \boldsymbol{B}(\boldsymbol{r})$$

Für eine ausgedehnte Stromverteilung gilt dann:

$$m{F} = \int \mathrm{d}^3 r m{j}(m{r}) imes m{B}(m{r})$$

2.3.1 Kraft zwischen zwei Stromdurchflossenen Leitern

 I_2 erzeugt am Ort \boldsymbol{r}_1 das Magnetfeld:

$$\boldsymbol{B}(\boldsymbol{r}_1) = \frac{\mu_0}{4\pi} I_2 \int_{\gamma} d\boldsymbol{l}_2 \times \frac{\boldsymbol{r}_1 - \boldsymbol{r}_2}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|^3}$$

 \rightarrow Kraft auf Linienelement d l_1 in r_1 :

$$d\mathbf{F}_{12} = I_1 d\mathbf{l}_1 \times \mathbf{B}(\mathbf{r}_1)$$

$$= \frac{\mu_0}{4\pi} I_1 I_2 d\mathbf{l}_1 \times \int_{\gamma_2} \times \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3}$$

Die Kraft auf Leiterschleife 1 ist dann:

$$oldsymbol{F}_{12} = rac{\mu_0}{4\pi} I_1 I_2 \int_{\gamma_1} \int_{\gamma_2} \mathrm{d}oldsymbol{l}_1 imes \left(\mathrm{d}oldsymbol{l}_2 imes rac{oldsymbol{r}_1 - oldsymbol{r}_2}{|oldsymbol{r}_1 - oldsymbol{r}_2|^3}
ight)$$

Beispiel: Kraft zwischen zwei parallelen Drähten

$$d\mathbf{F}_{12} = \frac{\mu_0}{4\pi} I_1 I_2 d\mathbf{l}_1 \times \int_{\gamma} d\mathbf{l}_2 \times \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3}$$

$$e_z dl_1$$

Aus der Skizze gilt:

Aus der Skizze gift:
$$\mathrm{d}\boldsymbol{l}_2 = \mathrm{d}z_2\boldsymbol{e}_z \qquad \boldsymbol{r}_1 = (0,0,0) \qquad \boldsymbol{r}_2 = (a,0,z_2)$$

Nebenrechnung:

$$d\mathbf{l}_2 \times (\mathbf{r}_1 - \mathbf{r}_2) = dz_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} -a \\ 0 \\ -z_2 \end{pmatrix} = dz_2 \begin{pmatrix} 0 \\ -a \\ 0 \end{pmatrix}$$

$$\rightarrow d\mathbf{F}_{12} = \frac{\mu_0}{4\pi} I_1 I_2 dl_1 \underbrace{e_z \times \begin{pmatrix} 0 \\ -a \\ 0 \end{pmatrix}}_{=a\mathbf{e}_x} \underbrace{\int_{-\infty}^{\infty} dz_2 \frac{1}{\left(a^2 + z_2^2\right)^{3/2}}}_{=\frac{2}{-2}} \qquad \qquad \uparrow \rightarrow \leftarrow \uparrow \qquad \downarrow \rightarrow$$
Richtung:

Kraft pro Länge:

$$\frac{\mathrm{d}\boldsymbol{F}_{12}}{\mathrm{d}l_1} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{a} \boldsymbol{e}_x$$

Feldgleichungen der Magnetostatik und Vektorpotential 2.4

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int d^3r' \boldsymbol{j}(\boldsymbol{r}) \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

2.4.1 Vektorpotential

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \, \boldsymbol{j}(\boldsymbol{r'}) \times \underbrace{\frac{\boldsymbol{r} - \boldsymbol{r'}}{|\boldsymbol{r} - \boldsymbol{r'}|^3}}_{-\nabla_{\boldsymbol{r}} \times \left(\boldsymbol{j}(\boldsymbol{r'}) \frac{1}{|\boldsymbol{r} - \boldsymbol{r'}|}\right)}$$

Mit einer Identität des ersten Übungsblattes:

$$\nabla \times (f\mathbf{G}) = f\nabla \times \mathbf{G} - \mathbf{G} \times \nabla f$$

(Die Rotation von G fällt weg, da j nur von r' abhängt.)

$$\Rightarrow \quad \boldsymbol{B}(\boldsymbol{r}) = \boldsymbol{\nabla}_{\boldsymbol{r}} \times \frac{\mu_0}{4\pi} \int \mathrm{d}^3 r' \frac{\boldsymbol{j}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} = \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}) \\ \downarrow \quad \qquad \downarrow \quad \qquad \downarrow \\ \text{Vektorpotential}$$

$$\boldsymbol{B}(\boldsymbol{r}) = \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}) \quad \leftarrow \boldsymbol{A} \text{ nicht eindeutig festgelegt}$$

$$\boldsymbol{A}' = \boldsymbol{A} + \boldsymbol{G} \quad \text{mit} \quad \boldsymbol{\nabla} \times \boldsymbol{G} = 0 \quad \rightarrow \quad \boldsymbol{G}(\boldsymbol{r}) = \boldsymbol{\nabla} \boldsymbol{\Lambda}(\boldsymbol{r})$$

$$\rightarrow \quad \boldsymbol{\nabla} \times \boldsymbol{A}' = \boldsymbol{\nabla} \times \boldsymbol{A} + \boldsymbol{\nabla} \times \boldsymbol{G} = \boldsymbol{B}$$

$$\Rightarrow \quad \boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int \mathrm{d}^3 r' \frac{\boldsymbol{j}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} + \boldsymbol{\nabla} \boldsymbol{\Lambda}(\boldsymbol{r}) \quad \Rightarrow \quad \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}) = \boldsymbol{B}(\boldsymbol{r})$$

Transformation: Eichtransformation

$$m{A}(m{r})
ightarrow m{A}' = m{A} + m{
abla} \Lambda$$

Magnetostatik: übliche Wahl: $\Lambda \equiv 0 \ \text{s}$

$$\Rightarrow \quad \boldsymbol{A} = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\boldsymbol{j}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

 $\Rightarrow \nabla \cdot \mathbf{A} = 0$

Eine andere Eichung ist die Coulomb-Eichung:

$$\nabla \cdot \mathbf{A} = \frac{\mu_0}{4\pi} \int d^3 r' \underbrace{\nabla_{\mathbf{r}} \cdot \left(\mathbf{j}(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \right)}_{= \mathbf{j}(\mathbf{r}') \cdot \underbrace{\nabla_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|}}_{-\nabla_{\mathbf{r}'} \frac{1}{|\mathbf{r} - \mathbf{r}'|}}$$

$$= -\nabla_{\mathbf{r}'} \cdot \left(\mathbf{j}(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) + \underbrace{\left(\nabla_{\mathbf{r}'} \cdot \mathbf{j}(\mathbf{r}') \right)}_{= \mathbf{r}'} \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$

$$= -\frac{\mu_0}{4\pi} \int_{\mathbb{R}^3} d^3 r' \nabla_{\mathbf{r}'} \cdot \left(\frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right)$$

$$= -\frac{\mu_0}{4\pi} \lim_{R \to \infty} \int_{K_R(0)} d^3 r' \nabla_{\mathbf{r}'} \cdot \left(\frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right)$$

$$= \frac{\mu_0}{4\pi} \lim_{R \to \infty} \int_{\partial K_R(0)} d\mathbf{f}' \cdot \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} = 0$$

Beispiel: homogenes Magnetfeld

$$\boldsymbol{B} = \boldsymbol{B}_0 \qquad \boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$$

$$\boldsymbol{A} = \frac{1}{2}\boldsymbol{B} \times \boldsymbol{r}$$

Mit der Identität:

$$\nabla \times (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{a}(\nabla \cdot \boldsymbol{b}) - \boldsymbol{b}(\nabla \cdot \boldsymbol{a}) + (\boldsymbol{b} \cdot \nabla)\boldsymbol{a} - (\boldsymbol{a} \cdot \nabla)\boldsymbol{b}$$

$$\rightarrow \nabla \times \boldsymbol{A} = \frac{1}{2}\nabla \times (\boldsymbol{B} \times \boldsymbol{r}) = \frac{1}{2}\boldsymbol{B}\underbrace{\nabla \cdot \boldsymbol{r}}_{=3} - \frac{1}{2}\underbrace{(\boldsymbol{B} \cdot \nabla)\boldsymbol{r}}_{=N} = \boldsymbol{B}$$

Mit der Identität:

$$\nabla \cdot (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{b} \cdot (\nabla \times \boldsymbol{a}) - \boldsymbol{a} \cdot (\nabla \times \boldsymbol{b})$$

$$\Rightarrow \nabla \cdot \boldsymbol{A} = \frac{1}{2} \nabla \cdot (\boldsymbol{B} \times \boldsymbol{r}) = -\boldsymbol{B} \cdot \underbrace{(\nabla \times \boldsymbol{r})}_{=0} = 0$$

andere mögliche Wahl:

$$oldsymbol{A}' = rac{1}{2}oldsymbol{B} imesoldsymbol{r} + oldsymbol{
abla}rac{r^2}{2} = oldsymbol{A} + oldsymbol{r}$$
 $oldsymbol{
abla} imesoldsymbol{A}' = oldsymbol{
abla} imesoldsymbol{A} + oldsymbol{
abla} imesoldsymbol{r} = oldsymbol{B}$

$$\mathbf{
abla} imes \mathbf{A}' = \underbrace{\mathbf{
abla} imes \mathbf{A}}_{=\mathbf{B}} + \underbrace{\mathbf{
abla} imes \mathbf{r}}_{=0} = \mathbf{B}$$

$$m{B}(m{r}) = rac{\mu_0}{4\pi} \int \mathrm{d}^3 r' m{j}(m{r}') imes rac{m{r} - m{r}'}{|m{r} - m{r}'|^3} = m{
abla} imes m{A}(m{r})$$

2.4.2 Feldgleichungen der Magnetostatik

Divergenz (Quellen)

$$\nabla \cdot \boldsymbol{B}(\boldsymbol{r}) = \nabla \cdot (\nabla \times \boldsymbol{A}(\boldsymbol{r})) = 0$$

$$\Rightarrow \quad \nabla \cdot \boldsymbol{B}(\boldsymbol{r}) = 0$$

In der Elektrostatik gilt:

$$oldsymbol{
abla} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0}
ho(oldsymbol{r})$$

Es gibt also keine "magnetischen Ladungen" wie beim elektrischen Feld. integrale Formulierung:

$$0 = \int_{V} d^{3}r \nabla \boldsymbol{B} = \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{B}$$

Rotation (Wirbel)

$$egin{aligned} m{B} &= m{
abla} imes m{A} \ &m{A}(m{r}) = rac{\mu_0}{4\pi} \int \mathrm{d}^3 r' rac{m{r} - m{r'}}{|m{r} - m{r'}|} + m{
abla} \Lambda \ &\Rightarrow m{
abla} imes m{B} &= m{
abla} imes (m{
abla} imes m{A} \ &= m{
abla} (m{
abla} imes m{A}) - \Delta m{A} \ \end{aligned}$$

$$\nabla \cdot \mathbf{A} = \underbrace{\nabla \cdot \left(\frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}\right)}_{=0} + \nabla \cdot (\nabla \Lambda) = \Delta \Lambda$$

$$\Delta \mathbf{A} = \frac{\mu_0}{4\pi} \int d^3 r' \mathbf{j}(\mathbf{r}) \underbrace{\Delta \frac{\Lambda}{|\mathbf{r} - \mathbf{r}'|}}_{=-4\pi\delta(\mathbf{r} - \mathbf{r}')} + \Delta \nabla \Lambda = -\mu_0 \mathbf{j}(\mathbf{r}) + \Delta(\nabla \Lambda)$$

mit:
$$\Delta \mathbf{A} = \begin{pmatrix} \Delta A_x \\ \Delta A_y \\ \Delta A_z \end{pmatrix}$$

$$\Rightarrow \nabla \times \boldsymbol{B} = \nabla (\Delta \Lambda) + \mu_0 \boldsymbol{j} - \Delta (\nabla \Lambda) = \mu_0 \boldsymbol{j}$$

Kürzbar, da partielle Ableitungen vertauschbar sind.

$$oldsymbol{
abla} imes oldsymbol{B} = \mu_0 oldsymbol{j}$$

integrale Formulierung:

$$\int_{\partial F} d\mathbf{r} \cdot \mathbf{B}(\mathbf{r}) = \int_{F} d\mathbf{f} \cdot (\mathbf{\nabla} \times \mathbf{B}) = \mu_0 \underbrace{\int_{F} d\mathbf{f} \cdot \mathbf{j}(\mathbf{r})}_{I_F} = \mu_0 I_F$$

Amperèsches Durchflutungsgesetz

$$\Rightarrow \oint_{\partial F} d\mathbf{r} \cdot \mathbf{B}(\mathbf{r}) = \mu_0 I_F$$

Magnetfeld eines stromdurchflossenen Leiters mit homogener Stromdichte

Aufgrund der Symmetrie verwenden wir Zylinderkoordinaten:

$$m{r} = egin{pmatrix}
ho\cosarphi \\
ho\sinarphi \\ z \end{pmatrix}$$

Die Stromdichte ist dann:

$$egin{aligned} oldsymbol{j} &= oldsymbol{e}_z \left\{ egin{array}{ll} rac{I}{\pi R^2} &
ho \leq R \\ 0 & \mathrm{sonst.} \end{array}
ight. \ &= oldsymbol{e}_z rac{I}{\pi R^2} heta(R-
ho) \end{aligned}$$

Symmetrie:

$$m{B}(m{r}) = B_{arphi}(
ho)m{e}_{arphi} \qquad m{e}_{arphi} = egin{pmatrix} -\sinarphi \\ \cosarphi \\ 0 \end{pmatrix}$$

F ist ein Kreis mit Radius ρ (kleiner oder größer als R) Hierauf wenden wir das Ampèresche Durchflutungsgesetz an: Unter Verwendung von:

$$d\mathbf{f}' = \mathbf{e}_z df = \mathbf{e}_z = \rho' d\rho' d\varphi'$$

$$\mu_{0} \int_{F} d\mathbf{f}' \cdot \mathbf{j}(\mathbf{r}') = \int_{\partial F} d\mathbf{r}' \cdot \mathbf{B}(\mathbf{r}')$$

$$= \mu_{0} \int_{0}^{\rho} d\rho' \int_{0}^{2\pi} d\varpi' \rho' \frac{I}{\pi R^{2}} \theta(R - \rho)$$

$$= \mu_{0} \frac{I}{\pi R^{2}} 2\pi \underbrace{\int_{0}^{\rho} d\rho' \rho' \theta(R - \rho)}_{\mathbf{g}}$$

$$= \begin{cases} \int_{0}^{R} \cdots = \frac{1}{2} R^{2} & \rho > R \\ \int_{0}^{\rho} \cdots = \frac{1}{2} \rho^{2} & \rho \leq R \end{cases}$$

$$\Rightarrow \mu_{0} \int_{F} d\mathbf{f}' \cdot \mathbf{j}(\mathbf{r}') = \mu_{0} \begin{cases} I & \rho > R \\ \frac{\rho^{2}}{R^{2}} I & \rho \leq R \end{cases}$$

$$\int_{\partial F} d\mathbf{r}' \mathbf{B}(\mathbf{r}') = \int_{0}^{2\pi} d\varphi \frac{d\mathbf{r}'}{d\varphi} \cdot \mathbf{B} = \int_{0}^{2\pi} d\varphi \rho B_{\varphi}(\rho) = 2\pi \rho B_{\varphi}(\rho)$$

mit:

$$m{r}(
ho) = egin{pmatrix}
ho\cosarphi \
ho\sinarphi \ 0 \end{pmatrix} \qquad rac{\mathrm{d}r'}{\mathrm{d}arphi} = egin{pmatrix} -
ho\sinarphi \
ho\cosarphi \ 0 \end{pmatrix} =
hom{e}_arphi$$

Damit erhalten wir:

$$\mu_0 \int_F \mathrm{d} \boldsymbol{f}' \cdot \boldsymbol{j}(\boldsymbol{r}') = 2\pi \rho B_{\varphi}(\rho)$$

Daraus folgt:

$$\Rightarrow \mu_0 I_F = \rho B_{\varphi}(\rho) 2\pi$$

Dies können wir umstellen in:

$$\Rightarrow B_{\varphi}(\rho) = \frac{\mu_0}{2\pi} \frac{I_F}{\rho}$$

$$\Rightarrow \mathbf{B}(\mathbf{r}) = \frac{\mu_0}{2\pi} I \mathbf{e}_{\varphi} \begin{cases} \frac{1}{\rho} & \rho > R \\ \frac{\rho}{R^2} & \rho \le R \end{cases}$$

Differentialgleichung für das Vektorpotential

$$egin{aligned} m{B} &= m{
abla} imes m{A} & m{
abla} imes m{B} &= \mu_0 m{j} \ &\mu_0 m{j} &= m{
abla} imes m{B} &= m{
abla} imes (m{
abla} imes m{A}) \ &= m{
abla} (m{
abla} \cdot m{A}) - \Delta m{A} \end{aligned}$$

falls $\nabla \cdot \mathbf{A} = 0$ (Coulomb-Gleichung)

$$\Rightarrow \qquad \Delta m{A} = \mu_0 m{j}$$

Wichtig: Die Komponenten sind nicht unabhängig voneinander aufgrund unserer Annahme $\nabla \cdot \mathbf{A} = 0$ analog: $\Delta \varphi = -\frac{1}{\varepsilon_0} \rho$

2.4.3 Feldgleichungen der Magnetostatik

$$m{
abla} \cdot m{B} = 0$$

$$\int_{\partial V} \mathrm{d} m{f} \cdot m{B} = 0$$

$$m{
abla} \times m{B} = \mu_0 m{j} \quad (\mathrm{Amp\`ere})$$

$$\int_{\partial F} \mathrm{d} m{r} \cdot m{B} = \mu_0 I_F$$

Und für das Vektorpotential:

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} \qquad \Rightarrow \Delta \boldsymbol{A} = -\mu_0 \boldsymbol{j}$$

2.5 Multipolentwicklung - Magnetisches Moment

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \mathrm{d}^3 r' \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

 $\min \; \boldsymbol{\nabla} \cdot \boldsymbol{A} = 0$

Wir betrachten eine lokalisierte Ladungsverteilung:

$$\boldsymbol{j}(\boldsymbol{r}) = \left\{ egin{array}{ll} \mathrm{beliebig} & r < R \\ 0 & r > R \end{array} \right.$$

Für r > R > r' machen wir eine Taylorentwicklung:

$$\frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} = \frac{1}{r} + \frac{\boldsymbol{r}}{r^3} \cdot \boldsymbol{r}' + \dots$$

$$\Rightarrow \boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \left\{ \frac{1}{r} \int d^3 r' \boldsymbol{j}(\boldsymbol{r}') + \frac{1}{r^3} \int d^3 r' (\boldsymbol{r} \cdot \boldsymbol{r}') \boldsymbol{j}(\boldsymbol{r}') + \dots \right\}$$

Es gilt: in der Magnetostatik $\nabla \cdot \mathbf{j} = 0$

i) Das Integral über die Stromdichte verschwindet:

$$\int d^3r' \boldsymbol{j}(\boldsymbol{r}') = 0$$
ii)
$$\int d^3r' (\boldsymbol{r} \cdot \boldsymbol{r}') \boldsymbol{j}(\boldsymbol{r}) = -\boldsymbol{r} \times \underbrace{\frac{1}{2} \int d^3r' (\boldsymbol{r}' \times \boldsymbol{j}(\boldsymbol{r}'))}_{\substack{:=\boldsymbol{m} \\ \text{magnetisches} \\ \text{Dindmoment}}}$$

Die Entwicklung des Vektorpotentials wird dann zu:

$$\Rightarrow$$
 $A(r) = \frac{\mu_0}{4\pi} \underbrace{\frac{m \times r}{r^3}}_{\propto \frac{1}{r^2}}$

Für das Magnetfeld gilt:

$$\Rightarrow \quad \pmb{B} = \pmb{
abla} imes \pmb{A} = rac{\mu_0}{4\pi} \pmb{
abla} imes \left(\pmb{m} imes rac{\pmb{r}}{r^3}
ight)$$

Mit der Identität: $\nabla \times (f\mathbf{F}) = f \nabla \times \mathbf{G} - \mathbf{G} \times \nabla f$

$$\begin{split} \boldsymbol{\nabla} \times \left(\frac{1}{r^3} (\boldsymbol{m} \times \boldsymbol{r}) \right) &= \frac{1}{r^3} \underbrace{\boldsymbol{\nabla} \times (\boldsymbol{m} \times \boldsymbol{r})}_{=2\boldsymbol{m}} - (\boldsymbol{m} \times \boldsymbol{r}) \times \underbrace{\boldsymbol{\nabla} \frac{1}{r^3}}_{=-\frac{3r}{r^5}} \\ &= \frac{1}{r^3} 2\boldsymbol{m} + \frac{3}{r^5} \underbrace{(\boldsymbol{m} \times \boldsymbol{r}) \times \boldsymbol{r}}_{(\boldsymbol{m} \cdot \boldsymbol{r})\boldsymbol{r} - (\boldsymbol{r} \cdot \boldsymbol{r})\boldsymbol{m}} \\ &= \frac{3\boldsymbol{r}(\boldsymbol{m}\boldsymbol{r})}{r^5} - \frac{\boldsymbol{m}}{r^3} \end{split}$$

Beim B-Feld erhalten wir für den ersten nicht verschwindenden Term den Dipolterm:

Multipolentwicklung des Magnetfeldes (1. Term)

$$\Rightarrow \quad \boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \left[\frac{3\boldsymbol{r}(\boldsymbol{m} \cdot \boldsymbol{r})}{r^5} - \frac{\boldsymbol{m}}{r^3} \right] \qquad r > R$$

Der große Unterschied zum \boldsymbol{E} -Feld ist, dass der führende Term ein Dipol ist. Das \boldsymbol{B} -Feld hat also keinen Monopol.

Beispiel: Magnetisches Dipolmoment einer Drahtschleife

$$ho = \sqrt{x^2 + y^2}$$
 $egin{aligned} oldsymbol{e}_{arphi} &= \left(egin{aligned} -\sinarphi \\ \cosarphi \\ 0 \end{aligned}
ight) \ oldsymbol{j} &= I\delta(
ho - R)\delta(z)oldsymbol{e}_{arphi} \ oldsymbol{m} &= rac{1}{2}\int \mathrm{d}^3roldsymbol{r} imesoldsymbol{j}(oldsymbol{r}) \end{aligned}$

Nebenrechnung:

$$r \times e_{\varphi} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ z \end{pmatrix} \times \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$
$$= \begin{pmatrix} -z \cos \varphi \\ -z \sin \varphi \\ \rho \end{pmatrix}$$
$$= \rho \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - z \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix}$$
$$= \rho e_{z} - z e_{\varphi}$$

$$\Rightarrow \mathbf{m} = \frac{1}{2} I \int_{0}^{\infty} \rho d\rho \int_{0}^{2\pi} d\varphi \int_{-\infty}^{\infty} dz \delta(\rho - R) \delta(z) (\rho \mathbf{e}_{z} - z \mathbf{e}_{\varphi})$$

$$= \frac{I}{2} R^{2} 2\pi \mathbf{e}_{z}$$

$$\Rightarrow \mathbf{m} = \underbrace{\pi R^{2}}_{F} I \mathbf{e}_{z}$$

Das Magnetische Moment einer Spule:

$$m = NI \cdot Fe_z$$

[Folie: Vergleich idealer Dipol und Leiterschleife]

[Folie: Vergleich E-Feld einer elektrischer Dipol und Magnetfeld um Leiterschleife]

2.5.1 Kraft auf eine lokalisierte Stromverteilung in einem äußeren Magnetfeld ${\cal B}$

j(r) = 0 |r| > 0 Taylorentwicklung von B(r) um r = 0:

$$\boldsymbol{B}(\boldsymbol{r}) = \boldsymbol{B}(0) + (\boldsymbol{r} \cdot \boldsymbol{\nabla}) \boldsymbol{B}(\boldsymbol{r}) \bigg|_{\boldsymbol{r}=0} + \dots$$

$$F = \int d^3r \left(\boldsymbol{j}(\boldsymbol{r}) \times \boldsymbol{B}(\boldsymbol{r}) \right)$$

$$F = \underbrace{\int d^3r \left(\boldsymbol{j}(\boldsymbol{r}) \times \boldsymbol{B}(0) \right)}_{=0} + \int d^3r \left[\boldsymbol{j}(\boldsymbol{r}) \times (\boldsymbol{r} \cdot \boldsymbol{\nabla}) \boldsymbol{B}(0) \right] + \dots$$

$$= \underbrace{\left(\int d^3r \boldsymbol{j}(\boldsymbol{r}) \right) \times \boldsymbol{B}(0)}_{=0}$$

Der verschwindende Teil ist ein homogenes B-Feld (B = const.), und übt daher keine Kraft auf Stromverteilung aus.

Die Komponenten des Kraftvektors sind:

$$oldsymbol{F}_i = \int \mathrm{d}^3 r \left[oldsymbol{j} imes (oldsymbol{r} \cdot oldsymbol{
abla}) oldsymbol{B}
ight]_i$$

Nun nutzen wie die folgende Identität:

$$(\boldsymbol{a} \times \boldsymbol{b})_i = \sum_{k,l} \varepsilon_{ikl} \ a_k b_l$$

 ε_{ikl} ist das Levi-Civita Symbol.

Damit ergibt sich:

$$(\mathbf{j} \times (\mathbf{r} \cdot \nabla)\mathbf{B})_i = \sum_{k,l} \varepsilon_{ikl} \ j_k \underbrace{[(\mathbf{r} \cdot \nabla)\mathbf{B}]_l}_{(\mathbf{r} \cdot \nabla)B_l = (\nabla B_l) \cdot \mathbf{r}}$$
$$= \sum_{k,l} \varepsilon_{ikl} \ j_k (\nabla B_l \cdot \mathbf{r})$$

$$\rightarrow F_{i} = \sum_{k,l} \varepsilon_{ikl} \underbrace{\int d^{3}r \left[(\boldsymbol{\nabla}B_{l}) \cdot \boldsymbol{r} \right] j_{k}}_{ = \int d^{3}r \left[(\boldsymbol{\nabla}B_{l}) \cdot \boldsymbol{r} \right] \boldsymbol{j}_{k} \overset{\text{Identität}}{=} -\frac{1}{2} \left[\boldsymbol{\nabla}B_{l} \times \int d^{3}r \boldsymbol{r} \times \boldsymbol{j} \right]$$

Hier die benutzte Identität (aus den Hausaufgaben):

$$\frac{1}{2}\boldsymbol{a} \times \int d^3r(\boldsymbol{r} \times \boldsymbol{j}(\boldsymbol{r})) = -\int d^3r(\boldsymbol{a} \cdot \boldsymbol{r}) \boldsymbol{j}(\boldsymbol{r}) \qquad (\boldsymbol{\nabla} \cdot \boldsymbol{j} = 0)$$

Damit ergibt sich für die Kraft:

$$F_{i} = -\frac{1}{2} \sum_{k,l} \varepsilon_{ikl} \left[\nabla B_{l} \times \int d^{3}r \mathbf{j} \times \mathbf{j}(\mathbf{r}) \right]_{k}$$

$$= -\sum_{k,l} \varepsilon_{ikl} \underbrace{(\nabla B_{l} \times \mathbf{m})}_{-[\mathbf{m} \times \nabla B_{l}]_{k} = -(\mathbf{m} \times \nabla)_{k} B_{l}}$$

$$= \sum_{k,l} \varepsilon_{ikl} (\mathbf{m} \times \nabla)_{k} B_{l}$$

$$= [(\mathbf{m} \times \nabla) \times \mathbf{B}]_{i}$$

$$F_{i} = [(\mathbf{m} \times \nabla) \times \mathbf{B}]_{i}$$

Wir können nun mit der Identität umschreiben:

$$(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c} = \boldsymbol{b}(\boldsymbol{c} \cdot \boldsymbol{a}) - \boldsymbol{a}(\boldsymbol{b} \cdot \boldsymbol{c})$$

$$F = (m \times \nabla) \times B(0)$$

$$= \nabla(m \cdot B) - m(\underbrace{\nabla \cdot B}_{=0})$$

$$\Rightarrow$$
 $F = \nabla(m \cdot B(0))$

Also: $m \perp B \Rightarrow F = 0$ \rightarrow potentielle Energie:

$$W = -\boldsymbol{m} \cdot \boldsymbol{B}(0)$$

Drehmoment:

$$N = m \times B(0)$$

$$oldsymbol{N} = \int \mathrm{d}^3 r oldsymbol{r} imes (oldsymbol{j} imes oldsymbol{B})$$

2.6 Magnetostatik in Materie

mikroskopische Feldgleichungen:

$$\nabla \cdot \boldsymbol{B} = 0$$
 $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j}$

2.6.1 Makroskopische Feldgleichungen

Definition Mittlung:

$$\langle \boldsymbol{B} \rangle(\boldsymbol{r}) = \int \mathrm{d}^3 r' f(\boldsymbol{r}') \boldsymbol{B}(\boldsymbol{r} - \boldsymbol{r}')$$

Es muss weiterhin gelten:

$$\nabla \cdot \langle \boldsymbol{B} \rangle (\boldsymbol{r}) = 0$$
 $\nabla \times \langle \boldsymbol{B} \rangle (\boldsymbol{r}) = \mu_0 \langle \boldsymbol{j} \rangle (\boldsymbol{r})$

Aus Zeitgründen werden wir hier nichts weiter genau herleiten wie in der Elektrostatik, sondern im wesentlichen die Ergebnisse Besprechen.

Aufteilung der Stromdichte:

$$\boldsymbol{j} = \boldsymbol{j}_a + \boldsymbol{j}_f$$

 $\langle j_g \rangle$ Mittlung:

$$egin{aligned}
ightarrow & \langle oldsymbol{j}_g
angle & = oldsymbol{
abla} imes \langle \sum_n oldsymbol{m} \delta(oldsymbol{r}' - oldsymbol{r}_n)
angle(oldsymbol{r}) + \dots \ & = rac{oldsymbol{=} oldsymbol{M}(oldsymbol{r})}{oldsymbol{=} oldsymbol{M}(oldsymbol{r})} = oldsymbol{
abla} imes M(oldsymbol{r}) \end{aligned}$$

Mit $\boldsymbol{m}_n = \frac{1}{2} \int \mathrm{d}^3 r' \boldsymbol{r}' \times \boldsymbol{j}_n(\boldsymbol{r}')$

Und M(r): makroskopische Magnetisierung

$$[\boldsymbol{M}] = \frac{\mathbf{A}}{\mathbf{m}^2} \mathbf{m} = \frac{\mathbf{A}}{\mathbf{m}} = \frac{\text{magnetisches Dipolmoment}}{\text{Volumen}}$$

$$\Rightarrow \nabla \times \langle \boldsymbol{B} \rangle(\boldsymbol{r}) = \mu_0 \langle \boldsymbol{j} \rangle(\boldsymbol{r}) + \mu_0 \nabla \times \boldsymbol{M}(\boldsymbol{r}) + \dots$$

$$\Rightarrow \nabla \times \underbrace{\left(\frac{1}{\mu_0} \langle \boldsymbol{B} \rangle(\boldsymbol{r}) - \boldsymbol{M}(\boldsymbol{r}) - \dots\right)}_{:=\boldsymbol{H}(\boldsymbol{r})} = \langle \boldsymbol{j}_f \rangle(\boldsymbol{r})$$

$$[\boldsymbol{H}] = \frac{A}{m}$$

2.6.2 Makroskopische Feldgleichunge der Magnetostatik

$$m{
abla} \cdot m{B} = 0$$
 $m{
abla} imes m{H} = m{j}_f$ $m{H} = m{\frac{1}{\mu_0}} m{B} - m{M} - \dots$

Integrale Form:

$$\oint_F d\boldsymbol{f} \cdot \boldsymbol{B} = 0$$

$$\int_{\partial F} d\boldsymbol{r} \cdot \boldsymbol{H} = \int_F d\boldsymbol{f} \cdot \boldsymbol{j}_f = I_F$$

Magnetisierung \rightarrow Zusatzfeld \boldsymbol{B}_{M}

$$\boldsymbol{B} = \boldsymbol{B}_0 + \boldsymbol{B}_M$$

2.6.3 Vektorpotential

$$B = \nabla \times A \quad \Rightarrow \quad \langle B \rangle = \nabla \times \langle A \rangle$$

$$A(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \qquad (\Lambda = 0 \quad \nabla \cdot \mathbf{A} = 0)$$

$$\Rightarrow \quad \langle \mathbf{A} \rangle (\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\langle \mathbf{j} \rangle (\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$= \frac{\mu_0}{4\pi} \int d^3 r' \frac{\langle \mathbf{j} \rangle (\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \underbrace{\frac{\mu_0}{4\pi} \int d^3 r' \underbrace{\nabla_{\mathbf{r}'} \times \mathbf{M}(\mathbf{r}')}_{|\mathbf{r} - \mathbf{r}'|}}_{=\mathbf{m}}$$

$$= \frac{\mu_0}{4\pi} \int d^3 r' \mathbf{M}(\mathbf{r}') \times \frac{(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}$$

Erklärung der letzten Umformung:

$$\int d^{3}r' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \nabla_{\mathbf{r}'} \times \mathbf{M}(\mathbf{r}') = \int d^{3}r' \nabla_{\mathbf{r}'} \times \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \mathbf{M}\right) - \underbrace{\left(\nabla_{\mathbf{r}'} \frac{1}{|\mathbf{r} - \mathbf{r}'|}\right)}_{=\frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}} \times \mathbf{M}$$

$$= \underbrace{\int d^{3}r' \nabla_{\mathbf{r}'} \times \left(\frac{\mathbf{M}}{|\mathbf{r} - \mathbf{r}'|}\right)}_{=\frac{\mathbf{K}}{|\mathbf{r} - \mathbf{r}'|}} + \int d^{3}r' \mathbf{M}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

$$= \lim_{R \to \infty} \int_{K_{R}(0)} d^{3}r' \nabla_{\mathbf{r}'} \times \left(\frac{\mathbf{M}}{|\mathbf{r} - \mathbf{r}'|}\right)$$

2.6.4 Magnetisierung und Suszeptibilität

$$M = M(H)$$

lineare Näherung, isotrope Medien:

$$M = \chi_m H$$

 χ_m : magnetische Suszeptibilität

$$\rightarrow \quad \boldsymbol{B} = \mu_0(\boldsymbol{H} + \boldsymbol{M}) = \mu_0(\boldsymbol{H} + \chi_m \boldsymbol{H})$$

$$= \underbrace{(1 + \chi_m)}_{=\mu_T} \mu_0 \boldsymbol{H}$$

$$= \mu \boldsymbol{H}$$

 μ_r : relative Permeabilität $\mu = \mu_0 \mu_r$: Permeabilität