

• РЗА СТАНЦИОННОГО ОБОРУДОВАНИЯ

Издание 5 • 2009

СОДЕРЖАНИЕ

РЗА СТАНЦИОННОГО ОБОРУДОВАНИЯ

•	ОБЩАЯ ИНФОРМАЦИЯ	2
•	ПЕРЕЧЕНЬ ЗАЩИТ И АВТОМАТИКИ	3
•	ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	4
•	ТАБЛИЦА СРАВНИТЕЛЬНЫХ ХАРАКТЕРИСТИК ДЛЯ ВЫБОРА ШКАФОВ	5
•	ШКАФ ЗАЩИТ И АВТОМАТИКИ ЭНЕРГООБЪЕКТОВ НЕБОЛЬШОЙ СЛОЖНОСТИ (ГЕНЕРАТОР, ТРАНСФОРМАТОР, ОШИНОВКА, РЕАКТОР И ДР.)	6
•	ШКАФ ЗАЩИТ И АВТОМАТИКИ СЛОЖНЫХ ЭНЕРГООБЪЕКТОВ (ГЕНЕРАТОР, ТРАНСФОРМАТОР, БЛОК СРЕДНЕЙ И БОЛЬШОЙ МОЩНОСТИ И ДР.)	7
•	ШКАФ ЗАЩИТ И АВТОМАТИКИ ЭНЕРГООБЪЕКТОВ СРЕДНЕЙ СЛОЖНОСТИ (ГЕНЕРАТОР, ТРАНСФОРМАТОР, ОШИНОВКА, РЕАКТОР, БЛОК МАЛОЙ МОЩНОСТИ И ДР.)	8
•	КОНСТРУКТИВНОЕ ВЫПОЛНЕНИЕ ГАБАРИТНЫЕ И УСТАНОВОЧНЫЕ РАЗМЕРЫ ШКАФОВ	10
•	ОБЩИЕ ВИДЫ ШКАФОВ	12
•	КОМПЛЕКС ПРОГРАММ EKRASMS-SP	16
•	СХЕМЫ ИНТЕГРАЦИИ В АСУ ТП	18
•	ПОСТАВКИ	20

НАЗНАЧЕНИЕ

Серия микропроцессорных шкафов защит и автоматики типа ШЭ111X предназначена для применения в качестве комплексной системы защит станционного оборудования гидростанций (ГЭС, ГАЭС), тепловых станций (ТЭЦ, ГТУ, ПГУ, ГРЭС, АЭС), генерирующих установок в металлургической и нефтегазовой промышленности, а также для реализации устройств управления и автоматизации.

ПРИМЕНЕНИЕ

Шкафы типов ШЭ1110, ШЭ1110М, ШЭ1111, ШЭ1112, ШЭ1113 используются в качестве комплексной системы защит и автоматики станционного оборудования:

- генераторов мощностью до 160 МВт, работающих на сборные шины;
- трансформаторов;
- автотрансформаторов;
- ошиновок (перекидок) блоков;
- блоков генератор-трансформатор мощностью до 1200 МВт;
- управления выключателями генератора, ТСН и РТСН.

COCTAB

Комплекс защит выполняется в виде двух взаиморезервируемых автономных систем защит, для которых должны предусматриваться индивидуальные измерительные трансформаторы, отдельные цепи по постоянному оперативному току и отдельные цепи воздействия во внешние схемы.

ОСОБЕННОСТИ

Шкафы РЗА выполняются по индивидуальному проекту на основе требований Заказчика, ПУЭ, заводов-изготовителей основного оборудования и с учетом привязки к конкретному объекту. В шкафах предусмотрены:

- возможность работы в широком диапазоне частот (3-80 Гц):
 - для режима тиристорного пуска;
 - для изолированной энергосистемы при выбеге генераторов.
- большое количество дифференциальных защит (до 5);
- возможность построения станционной автоматики;
- наличие специальных защит:
 - защита от замыкания на землю в режиме тиристорного пуска;
 - защита ротора от перегрузки с бесщеточной системой возбуждения (программное вычисление тока ротора по диаграмме Потье);
 - защиты генераторов-двигателей ГАЭС;
 - защиты от замыкания на землю статора для любых вариантов главной схемы (работа генератора на сборные шины, в обычном и укрупненном блоке и др.).

Перечень защит и автоматики

Состав защит и автоматики комплекса определяется Заказчиком в соответствии с требованиями ПУЭ и заводов-изготовителей основного оборудования. Логика взаимодействия функций защит определяется требованиями Заказчика и конфигурируется специальной программой.

- Продольная токовая дифференциальная защита генератора [IΔG]
- Поперечная токовая дифференциальная защита генератора
 [I∆>]
- Защита от замыканий на землю обмотки статора генератора, работающего в блоке [Un(Uo), Un(F25), Un(100)]
- Защита от замыканий на землю обмотки статора генератора, работающего на сборные шины [ln(Un), ln>, ln(F25)]
- Защита от повышения напряжения генератора [U>]
- Защита от потери возбуждения генератора [Ф<]
- Защита генератора от асинхронного режима с потерей и без потери возбуждения [Фz, Фu]
- УРОВ генератора [УРОВ G]
- Защита генератора от несимметричных перегрузок и коротких замыканий
 [12]
- Защита генератора от симметричных перегрузок
- Защита обмотки ротора генератора от перегрузок $[I_p, \equiv I_p]$
- Защита ротора генератора от замыкания на землю [Re<]
- Защита от изменения частоты генератора [F]
- Защита обратной (активной) мощности [Робр(Ракт)]
- Дифференциальная токовая защита трансформатора (ТБ, ТСН, ВТ) [IΔТБ, IΔТСН, IΔВТ]

- Максимальная токовая защита трансформатора [I>T]
- Максимальная токовая защита [I>]
- Защита от перевозбуждения [U/f]
- Резервная дистанционная защита от междуфазных повреждений [Z<]
- Резервная защита нулевой последовательности от замыканий на землю [lo(Uo)]
- Направленная токовая защита нулевой последовательности [Mo]
- Направленная токовая защита обратной последовательности
 [M2]
- Измерительные органы максимального, минимального тока и напряжения, в том числе и при изменяющейся частоте [ИO(I>),ИO(I<),ИO(U>),ИO(U<), I(F), U(F)]
- Устройство контроля синхронизма [КС]
- Защита от частичного пробоя изоляции высоковольтных вводов трансформатора [КИВ]
- Устройство контроля исправности цепей напряжения переменного тока [КИН]
- Устройство контроля изоляции газовой защиты [КИГЗ]
- Автоматика управления выключателем [AУВ]
- Автоматика пожаротушения

: Основные технические характеристики

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• номинальное напряжение оперативного постоянного тока, В	220; 110
• номинальное напряжение переменного тока, В	100
• номинальный переменный ток, А	1; 2; 5; 10
• номинальная частота, Гц	
• мощность, потребляемая каждым комплектом по цепям	
питания постоянного тока, не более, Вт	60 (100 – в режиме срабатывания)
• мощность потребляемая каждым комплектом по цепям	
переменного тока, не более:	
– в цепях тока, на фазу	5 BA
– в цепях напряжения, на фазу	3 BA
• встроенный аварийный осциллограф:	
– количество осциллограмм	регулируется
– время записи, с	7 (для 20 аналог. и 160 дискр. сигналов)
• регистратор событий, шт, не более	7500
• количество задержек (At), шт, не более	96

ОСНОВНЫЕ И ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ

- программируемый состав защит
- программируемая «матрица» управляющих воздействий
- исключение несанкционированного доступа посредством системы паролей
- местная сигнализация с запоминанием при пропадании питания
- встроенный аварийный осциллограф с настройкой длины и количества осциллограмм
- регистратор событий
- система самодиагностики
- сигнализация о неисправностях
- мониторинг текущих значений токов, напряжений, мощности и частоты
- три независимых интерфейса линии связи
- организация локальной сети и интеграция в АСУ ТП
- передача осциллограмм и событий с меткой времени по цифровым каналам связи

УСЛОВИЯ ЭКСПЛУАТАЦИИ

температура окружающего воздуха, °С относительная влажность воздуха % атмосферное давление, кПа (мм.рт.ст.). внешнее магнитное поле, А/м, не более высота над уровнем моря, м, не более степень загрязнения	. до 80 (без конденсации влаги) . 70 – 106,7 (525-800) . 400 . 2000
 группа условий эксплуатации в части воздействия механических факторов внешней среды окружающая среда 	. невзрывоопасная, не содержащая токопроводящей пыли, агрессивных газов и
• место установки шкафа	паров в концентрациях, разрушающих изоляцию и металл. должно быть защищено от попадания брызг воды, масел, эмульсий, а также от прямого воздействия солнечной радиации
• рабочее положение шкафа в пространстве	1.1

Таблица сравнительных характеристик для выбора шкафов

ТИП ШКАФА назначение	ШЭ1110 Защита генераторов, трансформаторов малой и средней мощности	ШЭ1110М Защита генераторов, трансформа- торов и блоков генератор- трансформатор средней мощ- ности	ШЭ1111(12) Защита мощных блоков генератор- трансформатор	ШЭ1113 Защита генераторов, трансформато- ров средней и большой мощ- ности и блоков генератор- трансформатор малой и сред- ней мощности	ШЭ1111R Регистрация аварийных событий
Характеристики (на комплеккт)					
Количество комплектов в шкафу	2	1	1	2	1
Количество защит, шт., не более*	16	32	48	32	_
Количество входных цепей тока и напряжения, шт, не более	15	25	50	25	-
Количество блоков испытательных (БИ6), шт, не более	6	12	16	8	_
Количество выходных реле, шт, не более	14	30	46	30	48
Количество выходных контактов, шт, не более	24	52	82	46	82
Светодиодная сигнализация, шт, не более	16	80	192	80	128
Приемные цепи, шт, не более	6	23	42	23	92
Количество переключателей, шт, не более	4	12	18	12	18
Количество клемм, шт, не более • слева (входные цепи) • справа (выходные цепи)	100 100	200 200	200 200	100 100	200 200
Габаритные размеры (ширина, глубина), мм	607x660	607×660	807x660	807x660	807x660
Высота шкафа, мм	2100 (2200	по требовани	o)		
Масса шкафа, кг, не более	200	200	250	280	250

 $^{^{*}\,}$ – выбираются из перечня защит. Возможно увеличение до 64.

В КОМПЛЕКТ ПОСТАВКИ ВХОДЯТ:

Встроенный аварийный осциллограф	имеется в стандартной поставке
Регистратор событий	имеется в стандартной поставке
Комплект программ EKRASMS-SP (APM-релейщика, RecViewer и др.)	имеется в стандартной поставке
Интеграция в АСУ ТП: ■ по протоколу ModBus ■ через ОРС-сервер	по заказу по заказу
• Ethernet	по заказу
Аппаратно-программная синхронизация времени	по заказу
Комплект запасных блоков	обязательно включается в первичную поставку, при повторных поставках – по заказу

Шкаф защит и автоматики энергообъектов

- : небольшой сложности (генератор,
- 🚼 трансформатор, ошиновка, реактор и др.)

6

Пример применения шкафа ШЭ1110

СИСТЕМА А:

ЗАЩИТЫ ГЕНЕРАТОРА: $[I\Delta G], [Io], [Uo], [U>], [U<], [Poбp], [Z<], [\Phi<]$

Другие защиты – по желанию Заказчика.

СИСТЕМА В:

ЗАЩИТЫ ГЕНЕРАТОРА: [I Δ G], [I $_0$], [U $_0$], [U $_2$], [U $_3$], [U $_4$], [Poбp], [Z $_4$], [$_4$ C $_4$]

Другие защиты – по желанию Заказчика.

• Вариант защиты генератора небольшой мощности.

Шкаф типа ШЭ1110 включает в себя две системы защит. Комплекс защит размещается в одном шкафу.

Шкаф защит и автоматики сложных энергообъектов (генератор, трансформатор, блок средней и большой мощности и др.)

Пример применения шкафа ШЭ1111 (ШЭ1112)*

СИСТЕМА А

ШЭ1111

ЗАЩИТЫ ГЕНЕРАТОРА: $[I\Delta G]$, [U>], [U<], $[P\circ 6p]$, [Z<], $[\Phi<]$, [F], [KИН], [статора и ротора от з.з. и перегрузок]

ЗАЩИТЫ ТБ: [IΔTБ], [I0], [U0], [Г3], [I>]

ЗАЩИТЫ ТСН: [IΔTCH], [I>], [ГЗ TCH], [ГЗ РПН]

ЗАЩИТЫ ТВ: [I>], [I>>]

Другие защиты – по желанию Заказчика.

СИСТЕМА В

ШЭ1111 (ШЭ1112)*

ЗАЩИТЫ ГЕНЕРАТОРА: $[I\Delta G]$, [U>], [U<], [Po6p], [Z<], $[\Phi<]$, [F], [KИН], [статора и ротора от з.з. и перегрузок]

ЗАЩИТЫ ТБ: [IΔTБ], [I0], [U0], [ГЗ], [I>]

ЗАЩИТЫ ТСН: [IΔTCH], [I>], [ГЗ TCH], [ГЗ РПН]

ЗАЩИТЫ ТВ: [I>], [I>>]

Другие защиты – по желанию Заказчика.

Каждый из шкафов типов ШЭ1111, ШЭ1112 включает в себя одну систему защит. Комплекс защит размещается в двух одинаковых шкафах (ШЭ 1111) или в двух разных шкафах (ШЭ1111 и ШЭ1112).

* Шкаф ШЭ1112 имеет некоторые отличия от шкафа ШЭ1111 по составу защит, конструкции и т.д. Как правило, шкафы двух систем выбираются одинаковые.

Шкаф защит и автоматики энергообъектов средней сложности (генератор, трансформатор, ошиновка, реактор, блок малой мощности и др.)

Пример применения шкафа ШЭ1110М

СИСТЕМА А:

ЗАЩИТЫ ГЕНЕРАТОРА: $[I\Delta G]$, [U>], [U<], [Poбp], [Z<], $[\Phi<]$, [F], [KИH], [статора и ротора от з.з. и перегрузок]

ЗАЩИТЫ ТБ: · [ΙΔΤΕ], [Ιο], [Uο], [Γ3], [I>]

ЗАЩИТЫ ТСН: [I Δ TCH], [I>], [ГЗ TCH], [ГЗ РПН]

Другие защиты – по желанию Заказчика.

СИСТЕМА В:

ЗАЩИТЫ ГЕНЕРАТОРА: [I Δ G], [U>], [U<], [Робр], [Z<], [Ф<], [F], [КИН], [статора и ротора от з.з. и перегрузок]

ЗАЩИТЫ ТБ: $[I\Delta T B],\,[I\circ],\,[U\circ],\,[\Gamma 3],\,[I>]$

ЗАЩИТЫ ТСН: [IΔTCH], [I>], [Γ3 TCH], [Γ3 PΠH]

Другие защиты – по желанию Заказчика.

Вариант защиты блока генератортрансформатор средней мощности. Шкаф типа ШЭ1110М включает в себя один комплект. Комплекс состоит из двух шкафов.

Пример применения шкафа ШЭ1113

СИСТЕМА А

ЗАЩИТЫ ГЕНЕРАТОРА: $[I\Delta G]$, [U>], [U<], [Po6p], [Z<], $[\Phi<]$, [F], [KИН], [статора и ротора от з.з. и перегрузок]

ЗАЩИТЫ ТБ: [IΔТБ], [Io], [Uo], [ГЗ], [I>]

Другие защиты – по желанию Заказчика.

СИСТЕМА В

ЗАЩИТЫ ГЕНЕРАТОРА: [IΔG], [U>], [U<], [Робр], [Z<], [Ф<], [F], [КИН], [статора и ротора от з.з. и перегрузок]

ЗАЩИТЫ ТБ: [IΔТБ], [Io], [Uo], [ГЗ], [I>]

Другие защиты – по желанию Заказчика.

Вариант защиты трансформатора собственных нужд.

Шкаф типа ШЭ1113 включает в себя две системы защит. Комплекс защит размещается в одном шкафу.

Шкафы представляют собой металлоконструкцию с размещенными на ней аппаратами. Для осуществления двухстороннего обслуживания шкафы имеют переднюю и заднюю двери. На передней двери шкафов расположены аппараты оперативного управления и сигнальные элементы. Терминалы расположены на плите за передней дверью. Для контроля состояния сигнальных элементов терминалов на передней двери шкафов предусмотрено окно. С задней стороны шкафов расположены ряды зажимов, доступ к которым возможен при открытой задней двери. Габаритные и установочные размеры приведены на рисунке.

Металлоконструкция шкафов должна быть надежно заземлена. Внутри шкафов предусмотрена заземляющая пластина, к которой крепится шлейф

заземления длиной 250-300 мм. Свободный конец шлейфа должен быть присоединен к контуру заземления объекта с помощью винта M6.

Подвод кабелей предусмотрен снизу через отверстия в днище шкафов. Присоединение шкафов к внешним цепям осуществляется на рядах зажимов, которые устанавливаются вертикально и расположены с задней стороны шкафов на левой и правой боковинах и предназначены для присоединения одного или двух медных проводников с суммарным сечением до 6 мм² включительно. Контактные соединения шкафов соответствуют 2 классу по ГОСТ 10434. Ряды зажимов шкафов выполнены с учетом требований «Правил устройства электроустановок», раздел III-4-15.

ГАБАРИТНЫЕ И УСТАНОВОЧНЫЕ РАЗМЕРЫ ШКАФОВ

По заказу высота цоколя может быть увеличена до 200 мм. В скобках указаны размеры при использовании металлоконструкции фирмы Rittal.

Блочная конструкция цифрового терминала, встроенного в шкаф, позволяет адаптировать систему к главной электрической схеме станций в зависимости от объема защищаемого оборудования и различных режимов его работы

ВАРИАНТ КАССЕТЫ ТЕРМИНАЛА С БЛОКОМ ПРОЦЕССОРА, ВСТРОЕННОГО В ШКАФ

ШЭ1110

ШЭ1110М

ШЭ1111 (ШЭ1112)

ШЭ1113

Комплекс программ EKRASMS-SP

КОМПЛЕКС ПРОГРАММ АВТОМАТИЗАЦИИ РАБОЧЕГО МЕСТА РЕЛЕЙНОГО И ОПЕРАТИВНОГО ПЕРСОНАЛА EKRASMS-SP

Создание автоматизированных рабочих мест (APM) возможно на базе комплекса программ EKRASMS-SP и оборудования построения локальных сетей передачи данных.

Аппаратные средства организации APM представляют собой различные преобразователи сигналов для передачи информации по требуемым физическим линиям связи.

Комплекс программ состоит из следующих компонентов:

- программа сервер связи;
- программа АРМ релейщика;
- программа OPC-сервер (UniOPC);
- программа анализа аварийных процессов (RecViewer);
- программа создания свободной логики клиента (ограниченная поставка);
- программа конфигуратора.

Комплекс программ работает по технологии «клиентсервер». Данная технология позволяет создавать гибкую архитектуру организации передачи данных. Применение комплекса программ EKRASMS-SP позволяет:

- упростить процесс эксплуатации микропроцессорных устройств РЗА станционного оборудования производства НПП «ЭКРА»;
- уменьшить затраты времени и средств на стадии наладки и профилактического контроля защит;
- производить дистанционный мониторинг текущих величин, контролировать и оперативно изменять уставки и параметры устройств, ускорить анализ аварийных процессов.

Возможности комплекса программ EKRASMS-SP:

- создание АРМ персонала службы РЗА и оперативного персонала электростанции;
- интеграция с АСУ ТП верхнего уровня, осуществляемая двумя способами:
 - по протоколу ОРС;
- по протоколу Modbus/PTU на агрегатном уровне;
- автоматическое создание и ведение архива зарегистрированных терминалами событий;
- программно-аппаратная синхронизация времени терминалов.

Комплекс программ EKRASMS-SP функционирует под управлением операционной системы Windows XP/Vista.

ПРОГРАММА АРМ РЕЛЕЙЩИКА

Комплекс программ APM релейщика предназначен для взаимодействия по последовательному каналу связи с терминалами защит генераторов (далее - терминалы) для обеспечения доступа к внутренней информации терминалов с любого компьютера локальной сети предприятия.

Возможности программы АРМ релейщика:

- мониторинг и отображение в виде текущих величин токов и напряжений аналоговых входов терминала и расчетных величин защит;
- просмотр и сохранение событий, зафиксированных встроенным регистратором событий терминала;
- проверка наличия записанных осциллограмм в терминале, их считывание и удаление;
- просмотр и сохранение матрицы отключения;
- просмотр, изменение и сохранение параметров в файл уставок (без подключения к терминалу);
- просмотр, изменение и запись уставок непосредственно в терминал;
- синхронизация времени всех объединенных в сеть терминалов;
- эмуляция для проверки логической части шкафа и сигналов для АСУ;
- просмотр и изменение логики действия защит с помощью специальной программы редактирования LogicEditor.

Обмен информацией между приложениями осуществляется с помощью протокола TCP/IP. Программные средства организации APM позволяют создать необходимое количество APM релейщика.

ΠΡΟΓΡΑΜΜΑ RECVIEWER

Программа RecViewer предназначена для анализа аварийных ситуаций в отложенном времени на основе цифровых записей сигналов – осциллограмм.

Возможности программы RecViewer:

- просмотр графиков аналоговых и дискретных сигналов в различных масштабах по времени и величине, копирование, перенос и удаление графиков сигналов в осциллограммах, выполнение простейших математических операций над сигналами;
- измерение различных составляющих сигналов:
 мгновенное и действующее значение; значение первой,
 второй и третьей гармоники; средневыпрямленное
 значение; постоянная составляющая;
- измерение интервалов времени с точностью до 1 мс;
- расчет и построение диаграмм и графиков изменения величин гармонических составляющих;
- расчет и построение векторных диаграмм сигналов;
- синхронизация диаграмм различных источников для одновременной обработки;
- расчет и построение графиков симметричных составляющих сигналов;
- расчет и отображение годографа сопротивлений;
- печать осциллограмм, таблицы значений сигналов, таблицы значений векторов, гармонических составляющих, симметричных составляющих и годографа сопротивлений.

СХЕМА ИНТЕГРАЦИИ В АСУ ТП НА АГРЕГАТНОМ УРОВНЕ

СХЕМА ИНТЕГРАЦИИ В АСУ ТП НА ВЕРХНЕМ УРОВНЕ

Комплексные защиты станционного оборудования находятся в эксплуатации на 107 электростанциях (25 гидроэлектростанций, 80 теплоэлектростанций и 2 атомные станции), в том числе на 20 электростанциях ближнего и дальнего зарубежья. Кроме того, шкафы защит

установлены для обучения в 3 учебных заведениях. Всего за период с 1998 года по октябрь 2009 года поставлено 570 шкафов микропроцессорных устройств РЗА станционного оборудования. Суммарная мощность защищаемых генераторов порядка 32 ГВт, трансформаторов – 34 ГВА

ПОСТАВКИ МИКРОПРОЦЕССОРНЫХ ШКАФОВ ЗАЩИТ ГЕНЕРАТОРОВ И АВТОМАТИКИ ЭНЕРГООБЪЕКТА ПРОИЗВОДСТВА НПП «ЭКРА»

Год	Количество шкафов по типам, шт.							
поставки	ШЭ1110	ШЭ1110М	ШЭ1111	ШЭ1111R	ШЭ1112	ШЭ1113	ИТОГО	
1998	_	_	1	_	_	_	1	
1999	_	_	_	_	_	3	3	
2000	2	_	4	_	_	3	9	
2001	_	_	4	_	_	2	6	
2002	1	_	5	_	1	6	13	
2003	3	2	17	_	2	2	26	
2004	4	5	36	_	3	17	65	
2005	4	2	35	_	5	15	61	
2006	2	13	38	_	_	14	67	
2007	2	9	48	1	2	14	76	
2008	11	22	48	1	_	37	119	
за 10 месяцев 2009	_	37	47	_	_	28	124	
ИТОГО	30	90	283	2	13	141	570	

ВАЖНЫЕ ПОСТАВКИ

Объект поставки	Мощность генераторов, МВт	Количество защищенных генераторов (блоков)	Примечание
АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ			
Кольская	220	4	
Ростовская	1000	1	
ГИДРОЭЛЕКТРОСТАНЦИИ			
Наглу, ГЭС (Афганистан)	25	4	
Воткинская ГЭС	100	9	
Жигулевская ГЭС	115	20	
Волжская ГЭС, г. Волжский	120	10	
Сангтудинская ГЭС (Таджикистан)	167,5	4	
Зейская ГЭС	225	3	
Усть-Илимская ГЭС	240	8	
Бурейская ГЭС	340	6	
Красноярская ГЭС	500	7	
Саяно-Шушенская ГЭС	640	8	
ГРЭС			
Ивановские ПГУ (Ивановская ГРЭС)	110	7	
Невинномысская ГРЭС	110	2	
Костромская ГРЭС	350	2	
Экибастузская ГРЭС-1 (Казахстан)	500	5	
ТЕПЛОЭЛЕКТРОСТАНЦИИ			
Сочинская ТЭС	12	2	
Калининградская ТЭЦ-1	160	3	ПГУ
Северо-Западная ТЭЦ	160	1	ПГУ
Ленэнерго, ТЭЦ-5 (Правобережная)	200	1	
Сиддирганч, ТЭС (Бангладеш)	200	1	
Хабаровская ТЭЦ-2	220	1	
Челябинская ТЭЦ-2	220	1	
«Юсифия», ТЭС (Ирак)	220	3	
Уонг Би, ТЭС (Вьетнам)	320	1	
АКСУ, ТЭС (Ермаковская), (Казахстан)	325	3	

000 НПП «ЭКРА» 428003, РФ, г. Чебоксары, пр. И. Яковлева, 3 тел. / факс: (8352) 22 01 10 (многоканальный) 22 01 30 (автосекретарь) 39 99 29, 55 03 68 57 00 35, 57 00 76

e-mail: ekra@ekra.ru http://www.ekra.ru