通信网理论基础

通信与信息工程学院 王文鼐 教授 wangwn@njupt.edu.cn

课程内容

通信网技术

- •一 通信网结构
- ・二 业务与承载
- •三 控制与信令

理论方法及应用

- ・四 图理论
- · 五 路由与寻址
- ・六 最优化理论
- •七 网络规划
- · 八 排队理论
- ・九 网络性能

网络理论新问题

- 十 重叠网络
- 十一 复杂网络
- ·十二 社会网络

第一章 通信网结构

绪论

宏观认识通信网络

第一章 通信网结构

- 1.1 通信网的系统功能
- 1.2 网络体系结构
- 1.3 网络的管理体制
- 1.4 端管云/云管端的协同
- 1.5 通信网统计特性

网络功能概况

诵信系统

- ·以用户透明 的信息表征,
- •承载并传送 通信业务;

运营系统

- ·以成本约束 的组织体制。
- ·规划和调度 网络资源;

纵横互联

- ·以形式化的 封装接口,
- ·部署和开放 业务能力。

专业术语类别

通信传输

- •用户透明
- •信息表征
- ・消息传送
- 业务承载

运营管理

- ・成本收益
- •组织体制
- •网络规划
- 优化调度

系统间互联

- ·协议规范
- ・接口封装
- •业务编排
- •能力开放

用户透明(users-transparency)

1)语义透明(semantic transparency)

- ·要求信息通信,不改变信息内容
- 误码、丢失、误插,采用流量控制及差错控制解决
- · 编码, 采用转义控制解决
- · 信息量,是核心问题

2)时间透明(time transparency)

- · 要求信息通信, 无延误送到, 保障实时性
- · 对通信过程的控制,产生技术性约束
- 纠错和嵌入式技术,是核心问题

通信系统模型

Claude E. Shannon and Warren Weave. The Mathematical Theory of Communication. 1949.

通信系统模型

信息表征

信息表征

数据单元传送(transfer)

术语化

通信系统

- ・用户透明
- ・信息表征
- ・业务传送
- 业务承载

运营系统

- ・成本收益
- •组织体制
- 网络规划
- ·优化调度

系统间互联

- ・协议规范
- ・接口封装
- ・业务编排
- ・能力开放

不计成本的拓扑

本地最小成本组织

长途最小成本组织

固定式路由组织

绿地规划

Prob. 节点位置、节点数、链路设置

增量规划/滚动规划

资源调度一本地

优化调度一本地

优化调度一多路径

优化调度一多路径

术语化

通信系统

- •用户透明
- •信息表征
- ·业务传送
- ·业务承载

运营系统

- · 成本收益
- •组织体制
- 网络规划
- 优化调度

系统间互联

- ·协议规范
- •接口封装
- ·业务编排
- •能力开放

Mobicents

Open Source VoIP Platform written in Java to help create, deploy, manage services and applications integrating voice, video and data across a range of IP and legacy communications networks.

[例]终端群呼叫控制

第一章 通信网结构

- 1.1 通信网的系统功能
- 1.2 网络体系结构
- 1.3 网络的管理体制
- 1.4 端管云/云管端的协同
- 1.5 通信网统计特性

体系结构(Arch-itect-ure)

- ▶ 计算机体系结构
- 。~1959,IBM 7030系统研究组,<u>Lyle R. Johnson</u>, Mohammad Usman Khan and Frederick P. Brooks
- 。在描述计算机的格式、指令类型、硬件参数和速率增强, 统称为"system architecture",替代原有名词 "machine organization"。
- Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and then designing to meet those needs as effectively as possible within economic and technological constraints.

[附]百度百科的对比解释

- ▶ 计算机体系结构是程序员所看到的计算机的属性, 即概念性结构与功能特性。
- ▶按照计算机系统的多级层次结构,不同级程序员所 看到的计算机具有不同的属性。
- ▶一般来说,低级机器的属性对于高层机器程序员基本是透明的,通常所说的计算机体系结构主要指机器语言级机器的系统结构。
- ▶ 经典的关于"计算机体系结构"的定义是1964年 C.M.Amdahl在介绍IBM360系统时提出的,其具 体描述为"计算机体系结构是程序员所看到的计算 机的属性,即概念性结构与功能特性"。

需求:用户透明

1)语义透明(semantic transparency)

- 来自用户的信息在通信过程中,不被改动
- 误码、丢失、误插,采用流量控制及差错控制解决
- · 编码,采用转义控制解决
- · 信息量,是核心问题

2)时间透明(time transparency)

- 用户信息,不被延迟送达,或实时性
- · 对通信过程的控制,产生技术性约束
- · 前向纠错和嵌入式技术,是核心问题

误码及其对POTS影响

- ▶ 在信号传输中,衰变改变了信号的电压,致使信号 在传输中遭到破坏,产生误码。
- 噪音、交流电或闪电造成的脉冲、传输设备故障及 其他因素都会导致误码(比如传送的信号是1,而 接收到的是0:反之亦然)。
- ▶ 误码率(BER)是衡量数据在规定时间内数据传输精确性的指标。
- 。误码率=传输中的误码/传输的总码数
- 。BER=E-4, => 64kb/s, 每秒6.4个误码
- 。BER=E-7, => 64kb/s, 每16.7分钟1个误码

误码来源

衰减

误码的工程参数

- Severely errored second (SES)
- Severely errored period (SEP)
- Errored second (ES, non-SES)□ Error-free second (EFS)

BER>E-63 3~9个连续SES 有一个或一个以上误码

27,500 km指标

Bit rate Mb/s	64 kb/s to primary rate	1.5 to 5	>5 to 15	>15 to 55	>55 to 160	>160 to 3500
Bits/ block	n.a.	800 to 5000	2000 to 8000	4000 to 20000	6000 to 20000	15000 to 30000
ESR	0.04	0.04	0.05	0.075	0.16	not specified
SESR	0.002	0.002	0.002	0.002	0.002	0.002
BBER	n.a.	2×10 ⁻⁴	2×10 ⁻⁴	2×10 ⁻⁴	2×10 ⁻⁴	104

BBE: Background Block Error, 无SES的误码单元

BBER: BBE/可用时间 ESR: ES/可用时间 J-T发布的14个建议

Recommendation G.R21: Error performance of an international digital connection operating at a bit rate below the primary rate and forming part of an integrated service digital network (ISDN)

digital network (ISDN)

Recommendation G.826: End-to-end-error performan
parameters and objectives for international, constant

arameters and objectives for international, constant bit ate digital paths and connections

Recommendation G.828: Error performance parameters and objectives for international, constant bit rate synchronous digital paths

chorocous digital paths

Recommendation G.829: Error performance events for

SDH multiplex and regenerator sections

Recommendation G.8201: Error performance parame-

within the optical transport network (OTN)
Recommendation 1.356. ATM cell transfer perform
Recommendation M.2360. Performance limit
bringing-into-service and maintenance of internamulti-operator EDM multi-unit conformation.

multi-operator PDH paths and connections Recommendations M.2101: Performance li bringing-into-service and maintenance of inte multi-operator SDH paths and multiplex section

Recommendation M.2110: Bringing-into-service of into national multi-operator paths, sections and transmissio systems

Recommendation M.2120: International multi-operator paths, sections and transmission systems fault detection and localization procedures

Recommendation Y.1540: Internet protocol data co munication service – IP packet transfer and availabil performance parameters (2002) Recommendation Y.1541: Network performance obj

tives for IP-based services (2002) Recommendation Y.1569: Parameters for TCP connec tion performance in the presence of middle boxes (2003) Recommendation Y.1561: Performance and availability

HRX/HRP

网络体系结构模型

- ▶ ITU-T HRX/HRP, 传输误码的分配
- ▶ IBM SNA, 链路的可靠传输
- ▶ E2E论断, 通信子网与资源子网分割
- ▶ ISO OSI-RM, 分层协议结构
- ▶ ITU-T B-ISDN PRM, 三平面立体结构

IBM Systems Network Architecture

- > 1974, [REF]wikipedia.org
- → Network Control Program (NCP)
- Packet switching
- Multiple accessing
- > Synchronous Data Link Control (SDLC)
 - error detection and correction
- framing
- → Virtual Telecommunications Access Method (VTAM)
 - telnet

Flag	Address	Control	Information	FCS	Flag
8 bits	8 or more bits	8 or 16 bits	Variable length, 0 or more bits	16 or 32 bits	8 bits

01111110

Prob. 处理信息字段的01111110

01111110

第一章 通信网结构

- 1.1 通信网的系统功能
- 1.2 网络体系结构
- 1.3 网络的管理体制
- 1.4 端管云/云管端的协同
- 1.5 通信网统计特性

汇接体制的形成

固定的POTS汇接体制

汇接体制弊端

第一章 通信网结构

- 1.1 通信网的系统功能
- 1.2 网络体系结构
- 1.3 网络的管理体制
- 1.4 端管云/云管端的协同
- 1.5 通信网统计特性

HW:终端故事

- ▶ 1990s之前,宣称不进入终端领域
- ▶ 公司一普通员工,对UT的财报做了利润分析,发现小灵通业务占到了UT利润的130%,其中小灵通手机业务占到了利润的100%,小灵通系统业务占30%;除此之外的其他业务全都在投入期,一共亏掉了30%。
- ▶ HW决定打击UT的利润,结果非常成功。
- ▶ 2006-2007,受沃达丰就3G数据卡的询问,OEM了一款给 沃达丰用,并同 步开发自己的产品。当时欧洲数据卡的单 价大约是1000欧元,公司测算成本估计不超过50欧元。
- ▶ 2007年,第一代iPhone发布,战略部刘南杰博士提出的电信网络"端管云"战略也逐渐被接受。

http://bbs.tianya.cn/post-numtechnoloy-150959-1.shtml

ZTE: Cloud-Terminal Integrated Architecture

N: 端局的用户数

N,: 用户总数

M: 端局数 M: 端局总数

ZTE Technologies » 2012 » No.1 » articles

第一章 通信网结构

- 1.1 通信网的系统功能
- 1.2 网络体系结构
- 1.3 网络的管理体制
- 1.4 端管云/云管端的协同
- 1.5 通信网统计特性

电话呼叫的跳数分布

H(0)=1, $p(0)=(N-1)/N_{\rm t}$ C2汇接局内

H(1) = 3, $p(1) = (1-p(0)) \times M/M_t$ C1汇接局间

H(2)=4, $p(2)=(1-p(1)) imes J/J_{\mathrm{t}}$ J_{t} C2局数 J_{s} : C2局数数

随机呼叫的平均跳数

<H> = H(0)p(0) + H(1)p(1) + H(2)p(2)

Internet跳数:UCLA-to-

Fei A, Pei G, Liu R, et al. Measurements on delay and hop-count of the internet[C]//IEEE GLOBECOM'98-Internet Mini-Conference. 1998.

社会网络的跳数

Mislove A, Marcon M, Gummadi K P, et al. Measurement and analysis of online social networks[C]//Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, ACM, 2007: 29-42.

Prob. 网络结构的优劣依据

思考题及作业

1.	.1	举例说明影响网络传输语义透明性的技术因素及解决方案。
1.	.2	分析"出错重传"对时间透明性的影响。
1	2	建 建建物和利力增量和利益日标五处本

- 1.3 试述绿地规划与增量规划的目标及约束
- 1.4 一万台交换机通过24号AWG双绞线互连成网状网,计算连接电缆切面的几何尺寸。
- 1.5 多路径路由对现行TCP协议的传输性能会产生何种不利影响?
- 1.6 假设误码出现满足泊公分布,计算BER=E-4时EO信道的ESR和SESR
- 1.7 SDLC/HDLC的帧标识(Flag)为b01111110,装帧时如何保证语义透明?
- 1.8 相邻交换局的服务区边界上,实施直连或直达电路,其运营成本有哪些?
- 1.9 电话呼叫占用电路资源的技术因素有哪些?