3-(a) for natural angular forquency wo. $Lq^0 + \frac{q}{c} = \varepsilon_0 \cdot \sin(\omega_0 t)$ when $\varepsilon_0 = 0$ So Lq"+2=0 dets multiply both sides with C. Lc q"+q=0. Let's assume give etc. Lc q"+q=(Lck'+1)ek'=0 since etc. Lck4=0 thus k=1/12 is making give)= etc. (i)= etic it = cos(this is m (to t) thus q(t) = A. sm (to t) + B. cos(to t) where A.B are constants. Thus we can see that wo = 1/12. 3-(b) When & +0, w+ w. Lq"+ & = E. · Sincot) We shand out at 8-ca) that qut) = Asin(\$\frac{1}{42}\$) + Box(\$\frac{1}{42}\$t). Now for \$q^*_{1}\$_{L}\$ + \$\frac{1}{7}_{2}\$ = \$\frac{1}{4}\$_{5}\$ = \$\frac{1}{4}\$_{5}\$_{5}\$ = \$\frac{1}{4}\$_{5}\$_{5}\$ = \$ Then $q_p^p \cdot L + \frac{q_p}{C} = L\omega^2(-D \sin\omega t - E \cos\omega t) + \frac{1}{C}(D \sin\omega t + E \cos\omega t)$ = sinut(-lw2)+&)+coswt(-lw2+&)coswt = & sinut. Since w = wo, E=0. Making & sinut= D(-lw++) sinut. $\varepsilon_{o} = D\left(-L\omega^{2} + \frac{1}{C}\right) \Rightarrow D = \frac{\varepsilon_{o}}{-L\omega^{2} + \frac{1}{C}} = -\frac{\varepsilon_{o}}{L} \frac{1}{\omega^{2} - \frac{1}{LC}} = -\frac{\varepsilon_{o}}{L} \cdot \frac{1}{\omega^{2} \omega^{2}}$ thus $q_{pob} = -\frac{E_L}{L} \cdot \frac{1}{\omega^2 \omega_L^2}$ simut therefore $q(t) = q_p(t) + q_p(t) = -\frac{E_L}{L} \cdot \frac{1}{\omega^2 \omega_L^2}$ simut + Asmut + B cos $\omega_0 t$ Q(t) = - & cosut + Aus cosust - Bus sinust \Rightarrow Q(0) = B, Q(0) = $\frac{g_0 \cdot \omega}{L} \cdot \frac{1}{\omega_0^2 \cdot \omega^2} + A\omega_0$ $\Rightarrow A = \frac{1}{\omega_0} \left(Q^{\dagger}(x) - \frac{\xi_0 \omega}{L} \cdot \frac{1}{(\omega_0^{-1} \omega^2)} \right)$ $\therefore q(t) = -\frac{\xi_0}{L} \cdot \frac{1}{\omega^2 \omega^2} \cdot \text{SINW}t + \frac{1}{\omega_0} \left(q'(0) - \frac{\xi_0 \omega}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \text{SINW}t + q(0) \cdot \cos(\omega t)$ 3-(c) &+0. w=w. 9 w = 9 w = 0 We solved from above that $q_n(t) = A coswitt + B sincust (A,B are constants)$ When $Lq^{11} + \frac{q}{L} = \epsilon_0$ since $q_0(t) = Etcoscot + Ftsin wet (Figure constants)$ q'p(t) = E(coswot -wotsinuot) + F(sinuot + wotcoswot) quet) = E(-2200 sinust-100 tcosust) + F(2000 cosust-100 tsinust) So Lq"+ 2 = smwt (-2EwoL - Fw2Lt + 2. Ft) + coswot($2F\omega_{1}L - E\omega^{2}L + \frac{1}{C}Et$) $= \varepsilon_{0} \cdot \text{showt}$ $\Rightarrow \begin{pmatrix} 2F\omega_{1}L + Et(\frac{1}{C}-\omega^{2}L) = 0 \\ -2E\omega_{1}L + Ft(\frac{1}{C}-\omega^{2}L) = \varepsilon_{0} \end{pmatrix} \quad \text{as} \quad \frac{1}{C} - \omega^{2}L = \frac{1}{C} = 0 \quad \text{thus} \quad 2F\omega_{1}L = 0 \quad \text{and} \quad -2E\omega_{2}L = 0 \quad \therefore F = 0, E = -2E\omega_{1}L = 0$ Home, que) = Acoscost + B sinust - 200 . tcos wot. q(0) = A = 0 $q(t) = -Au_0 \sin \omega_0 t + Buscosiust - \frac{\epsilon_0}{2u_0 L}$ (assust-usetsinust). $q(0) = Bu_0 - \frac{\epsilon_0}{2u_0 L} = 0 \Rightarrow B = \frac{\epsilon_0}{2u_0 L}$ $\therefore q(t) = \frac{\varepsilon_0}{266^2} Simu_0 t - \frac{\varepsilon_0}{2666} \cdot t \cdot coswot$ the charges does not decay and the amplitude increases

3 - (d))																							
Now I	L·q"+	Rq'	+ 훈 =	٤																				
let's	first (assume	e the p	particula	ur sduti	ion .																		
q jeto =	. A,	then	L-q"+	+R·q'+	두다= 돌	<u>}</u> =ε.	⇒ A=	C.E.	hence o]pct) =	c. & .													
Now (let's	get th	he han	uasueou	is solutio	m. L·q	<u>"+ Rq'</u>	+ 눈 ٩=	o. Assu	ume quet)= 6 _{kF}	, then	ekt (L	k* + RK +	[) = 0	٠								
													colution	into th	inge carses									
I) R^>	설 ,	then	k= -R:	37. 〒165条	as R2-4	늘 > 0 .	qct) = A	· 6 ===	+ e	· 6	<u>-78+</u> ≯L +	د٠٤٠												
2) K_=	설 .	then	k= =	<u>R</u> +	ws quet)= c·e_	\$±+ D	+∙e-\$t	t mali	ang ge	t)= C1	e ^{-£t} +	D.t.e	£±+	C·E0									
3) R2<	, <mark>원</mark> ,	then	k=- <u>R</u>	77 ∓ (독류	but o	ns R <u>*</u> 4	<u>}</u> <0 ⇒	k= -R	카	<u>·i</u> (i=	ر ا	ohich ma	pez dan	= e=	(E · a	s(<u>丰</u> -	2 +)+	F·sin(-	원-원 t)+ce	•.			
						lly when																		
								Д. Н	lence is	R ^x ≥	솯 is	satis.	fied the	cunen	t will n	ot oscillo	ite. Thi	s is true	os I c	current) =	能 .			