Machine Learning for Exploration Geophysics

Th4: Classification Algorithms

10. - 12. March 2020

Hamburg

Outline

- Logistic Regression
- K-Nearest Neighbors (K-NN)
- Support Vector Machine (SVM)
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification
- XGBoost Classification

Classification

- Microseismic & Seismology: event/noise?
- Seismic Imaging: Diffraction body (yes/no; if yes what type?)
- Seismic Facies Classification: sand/shale/cemented sand?

 $y = \{0, 1\}$ 0: "Negative Class" (e.g., noise)

1: "Positive Class" (e.g., event)

Classification

natural tectonic earthquake

Threshold classifier output $y_m(x)$ at 3:

- If $y_w(x) \ge 3$ predict "y=1"
- If $y_w(x) < 3$ predict "y=0"

Magnitude

Classification

Regression:

$$y \in R$$

$$y_w(x) \in R$$

Classification:

$$y \in [0, 1]$$

$$0 \le y_w(x) \le 1$$

Logistic Regression

We want:

$$0 \le y_w(x) \le 1$$

$$y_w(x) = b + w_1 x + w_2 x_2 + \cdots$$

Sigmoid function Logistic function

Logistic Regression

We want:

$$0 \le y_w(x) \le 1$$

$$y_w(x) = \sigma[b + w_1x + w_2x_2 + \cdots]$$

Sigmoid function Logistic function

Predict "y=1" if
$$y_w(x) \ge 0.5$$

Predict "y=0" if
$$y_w(x) < 0.5$$

Linear & Non-linear Decision Boundaries

$$y_w(x) = \sigma(b + w_1x_1 + w_2x_2)$$

$$y_w(x) = \sigma \begin{pmatrix} b + w_1 x_1 + w_2 x_2 + \\ w_3 x_1^2 + w_4 x_1 x_2 + w_5 x_2^2 \end{pmatrix}$$

Training data: $\{(x^{(i)}, y^{(i)} \in \{0,1\}), i = 1, ... N\}$

$$m{x}^{(i)} = egin{bmatrix} 1 \ x_1 \ ... \ x_m \end{bmatrix}, \ m{w} = egin{bmatrix} b \ w_1 \ ... \ w_m \end{bmatrix}$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

How to find parameters w?

Linear regression loss function

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y_w(x^{(i)}) - y^{(i)})^2$$

$$w = \operatorname{argmin} J(w)$$

Logistic regression cost function

Logistic regression cost function

$$J(\mathbf{w}) = -\frac{1}{N} \sum_{i=1}^{N} \left[y^{(i)} \ln y_w(x^{(i)}) + (1 - y^{(i)}) \ln (1 - y_w(x^{(i)})) \right]$$

$$w = \operatorname{argmin} J(w)$$

Logistic regression with Regularization

$$J(\mathbf{w}) = -\frac{1}{N} \sum_{i=1}^{N} \left[y^{(i)} \ln y_w(x^{(i)}) + (1 - y^{(i)}) \ln \left(1 - y_w(x^{(i)}) \right) \right] + \frac{\lambda}{2} \sum_{i=1}^{M} w_i^2$$

Multiclass classification

Seismic Facies Classification: sand/shale/cemented sand

Event detection: Reflection, Edge diffraction, Point diffraction, Noise

Number of bedrooms: 1, 2, 3...

Multiclass classification

*X*₁

Outline

- Logistic Regression
- K-Nearest Neighbors (K-NN)
- Support Vector Machine (SVM)
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification
- XGBoost Classification

KNN Classification approach

 An object is classified by a majority votes for its neighbor classes

 The object is assigned to the most common class among its K nearest neighbors

How to choose K?

• If K is too small the algorithm is sensitive to noise points

 Larger K works well. But too large K may include majority points from other classes

• Rule of thumb is $K < \sqrt{n}$, n is number of examples

Strengths and weakness of KNN

- Strengths of KNN
 - Very simple and intuitive
 - Can be applied to the data from any distribution
 - Good classification if the number of samples is large enough
- Weakness of KNN
 - Takes more time to classify a new example
 - need to calculate and compare the distance from new example to all other examples
 - Choosing k may be tricky
 - Need a large number of samples for accuracy

Outline

- Logistic Regression
- K-Nearest Neighbors (K-NN)
- Support Vector Machine (SVM)
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification
- XGBoost Classification

Logistic regression cost function

$$J(w) = -\frac{1}{N} \sum_{i=1}^{N} \left[y^{(i)} \ln y_w(x^{(i)}) + (1 - y^{(i)}) \ln (1 - y_w(x^{(i)})) \right]$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

$$y = 1$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

$$y = 1$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

$$y = 0$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

Logistic regression cost function

$$J(w) = -\frac{1}{N} \sum_{i=1}^{N} \left[y^{(i)} \ln y_w(x^{(i)}) + (1 - y^{(i)}) \ln (1 - y_w(x^{(i)})) \right]$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

$$y = 1$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

$$y = 0$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

$$y = 0$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

$$y = 0$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

$$y = 0$$

$$y_w(x) = \frac{1}{1 + e^{-w^T x}}$$

SVM cost function

$$J(w) = \frac{1}{N} \sum_{i=1}^{N} \left[y^{(i)} cost_1(w^T x) + (1 - y^{(i)}) cost_0(w^T x) \right]$$

$$y = 1$$

$$y = 1$$

$$y = 0$$

SVM cost function

$$J(w) = \frac{1}{N} \sum_{i=1}^{N} \left[y^{(i)} cost_1(w^T x) + (1 - y^{(i)}) cost_0(w^T x) \right] + \frac{\lambda}{2} \sum_{i=1}^{M} w_i^2$$

$$y = 1$$

$$y = 1$$

$$y = 1$$

$$y = 0$$

$$y = 1$$

$$y = 0$$

$$y = 1$$

$$y = 0$$

$$y$$

SVM cost function

$$J(w) = C \sum_{i=1}^{N} \left[y^{(i)} cost_1(w^T x) + (1 - y^{(i)}) cost_0(w^T x) \right] + \frac{1}{2} \sum_{i=1}^{M} w_i^2$$

If y = 1, we want $w^T x > 1$ (not just>0)

If y = 0, we want $\mathbf{w}^T \mathbf{x} \le -1$ (not just<0)

SVM Decision Boundary

Non-linear Decision Boundaries

$$y_w(x) = \sigma \begin{pmatrix} b + w_1 x_1 + w_2 x_2 + \\ w_3 x_1^2 + w_4 x_1 x_2 + w_5 x_2^2 + \\ \dots \end{pmatrix}$$

Kernel

$$f_i(x) = \exp\left(-\frac{|x - x^{(i)}|^2}{2\sigma^2}\right)$$

Is there a better choice of the features?

SVM hyperparameters

- Parameter C:
- Kernel
 - No kernel ("linear kernel")
 - Gaussian kernel
 - Need to choose sigma

• Important: feature scaling in case of Gaussian kernel!

Multiclass classification

*X*₁

Logistic regression vs SVM

Number of training examples

Create more features

Logistic Regression

SVM without
the kernel

SVM with Gaussian kernel

Number of features

Outline

- Logistic Regression
- K-Nearest Neighbors (K-NN)
- Support Vector Machine (SVM)
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification
- XGBoost Classification

Probability of event

BOX 1

What is the probability of picking a red/blue truffle?

$$P(red) =$$

Probability of event

BOX 2

What is the probability of picking a red/blue truffle?

$$P(red) =$$

Probability of event

BOX 3

What is the probability of picking a red/blue truffle?

P(red) =

P(blue) =

BOX 1 BOX 2

BOX 3

I have picked a red truffle. What is the probability that I picked the truffle from box 1, 2 and 3?

$$P(H_1|red) =$$

$$P(H_2|red) =$$

$$P(H_3|red) =$$

Bayes Theorem

Likelihood

How probable is the evidence given that our hypothesis is true

Prior

How probable was our hypothesis before observing the evidence?

$$P(H_i|e) = \frac{P(e|H_i)P(H_i)}{P(e)}$$

Posterior

How probable is our hypothesis given the observed evidence? (Not directly computable)

Marginal

How probable is the new evidence under all possible hypotheses:

$$P(e) = \sum P(e|H_i)P(H_i)$$

Bayes Theorem

Likelihood

probability for the data to be actually observed if model m is the true model

Prior

Prior probability of model

$$p(m|d) \propto p(d|m)P(m)$$

Posterior

Pobability of model

Marginal

How probable is the new evidence under all possible hypotheses:

$$P(e) = \sum P(e|H_i)P(H_i)$$