Part I

地温估计方法探究

1 基于参数最优化的一维稳态热传导方程

从文献中发现,塔里木盆地地层热物性特征是以范围给出的,见图1。对于热物性特征的取值, 我们通过建立一个优化模型,最小化一维稳态热传导方程的估计值和实际值的绝对值平方和,来取 得每个热物性特征的数值。

岩石热导率	岩石生热率
1.759 ± 0.831	1.724±0.656
1.898±0.624	1.230±0.477
1.587±0.805	1.380 ± 0.662
1.736±0.334	2.064±0.999
2.025 ± 0.389	1.344±0.420
2.135 ± 0.592	1.479±1.051
2.211 ± 0.542	1.282±0.897
2.496±0.671	1.469±1.161
2.457±0.575	1.432 ± 0.723
2.802±0.664	0.687±0.668
3.727 ± 0.813	0.406±0.183
3.366±1.314	0.554±0.624
	1.759 ± 0.831 1.898 ± 0.624 1.587 ± 0.805 1.736 ± 0.334 2.025 ± 0.389 2.135 ± 0.592 2.211 ± 0.542 2.496 ± 0.671 2.457 ± 0.575 2.802 ± 0.664 3.727 ± 0.813

塔里木盆地不同层位热物性参数 (Liu et al., 2015)

图 1: 塔里木盆地地层热物性特征

1.1 符号说明

模型所定义的符号见表 1

符号	说明		
M	所有井的数量		
$L_{i,1},L_{i,2}$	第 i 口井的经度和纬度 $i=1,,M$		
Num_i	第 i 口井的所有测得的静温数据的个数		
$Z_{j,L_{i,1},L_{i,2}}$	第 i 口井的第 j 个深度 $j=1,2,,Num_i$		
$T_{j,L_{i,1},L_{i,2}}$	$Z_{j,L_{i,1},L_{i,2}}$ 对应的静温		
N	总的地层数量		
K_t	第 t 个地层的热导率 $t=1,,N$		
A_t	第 t 个地层的生热率 $t=1,,N$		
$q_{0,L_{i,1},L_{i,2}}$	第 i 口井的地表热流		
K	$\{ K_t, t = 1, 2,, N \}$		
A	$\{A_t, t = 1, 2,, N\}$		
$G(Z_{j,L_{i,1},L_{i,2}};q_{0,L_{i,1},L_{i,2}};A;K)$	一维稳态热传导方程计算 $Z_{j,L_{i,1},L_{i,2}}$ 处温度		
$lpha_t, \hat{lpha}_t$	第 t 个地层热导率下限和上限		
eta_t, \hat{eta}_t	第 t 个地层生热率下限和上限		

表 1: 符号说明

1.2 模型建立

$$\min \sum_{i=1}^{M} \sum_{j=1}^{Num_i} |G(Z_{j,L_{i,1},L_{i,2}}; q_{0,L_{i,1},L_{i,2}}; A; K) - T_{j,L_{i,1},L_{i,2}}|$$
(1)

s.t.
$$\alpha_t \le K_t \le \hat{\alpha}_t$$
 (2)

 $\beta_t \le A_t \le \hat{\beta}_t \tag{3}$

其中,式 (1) 表示最小化一维稳态热传导方程估计值和实际静温的绝对误差和,式 (2) 表示热导率取值范围,式 (3) 表示生热率取值范围。

1.3 模型求解

将数据划分成训练集和测试集,使用遗传算法在训练集上求解优化模型,收敛曲线如下图 2。

图 2: 遗传算法优化迭代图

这个优化模型得到的参数如表 2。模型参数在测试集上绝对误差和是 94.46。

地层	热导率	生热率	地层	热导率	生热率
第四系	2.579	2.238	石炭系	1.719	0.416
新近系	1.74	2.067	泥盆系	3.151	2.455
古近系	2.495	1.548	志留系	3.018	0.803
白垩系	1.059	1.02	奥陶系	2.139	1.006
侏罗系	2.055	2.04	寒武系	3.203	0.39
三叠系	1.939	1.285	震旦系	4.246	0.401
二叠系	2.72	0.76			

表 2: 优化参数数值

2 基于 K 近邻和地温梯度的地温估计算法

假设地理位置相近的井位的地下静温相似,则寻找与目标井位相近的 K 个相近的井位,获取某个深度点处的静温,将这 K 个静温梯度取平均值作为目标井位的静温。

2.1 模型建立

定义两个井位的距离为欧式距离,距离表达式为式 (4)。利用式 (4) 计算目标井位到训练井位的距离,取前 K 个距离最近的。

$$dist = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} \tag{4}$$

对于第 k 口井, 其中 k=1,...,K,其第 i 个深度 D_i^k 和第 i+1 个深度 D_i^k 的静温分别是 T_i^k 和 T_{i+1}^k ,定义这两个深度之间的静温梯度为式 (5)。

$$grad_i^k = \frac{T_{i+1}^k - T_i^k}{D_{i+1}^k - D_i^k} \tag{5}$$

对于目标井的第 m 个深度 \hat{D}_m ,满足 $D_i^k < \hat{D}_m < D_{i+1}^k$,那么第 k 口井对它所作的地温估计是式 (6)。

$$T_m^k = grad_i^k \times \left(\hat{D}_m - D_i^k\right) \tag{6}$$

最后, 由 K 个地温估计平均得到对目标井位的第 m 个深度最终的估计 T_m , 表达式为式 (7)。

$$T_m = \frac{\sum_{k=1}^K T_m^k}{K} \tag{7}$$

假设目标井的第m个深度的静温的真实值是 \hat{T}_m ,目标井一共由M个已知深度,那么算法对目标井的地温估计的绝对误差是式(8)。

$$Error = \sum_{m} \left| T_m - \hat{T}_m \right| \tag{8}$$

2.2 参数 K 的选择

将数据划分成训练集和测试集,根据不同的 K 的选择计算测试集上的绝对误差和,绝对误差和曲线如下图 3。

图 3: 不同 K 对应绝对误差和

2.3 估计地温和真实地温比较

从图3看出,当 K 取 1 的时候绝对误差和最下,此时绝对误差和是 39.57,小于参数优化的一维热稳态传导方程,效果更好。在 K=1 的取值下,估计地温和真实地温的比较结果是图 4。

图 4: 估计地温和真实地温比较

3 基于 K 近邻和最小二乘法的地温估计算法

从地温数据的画图来看,地温数据接近线性函数,那么使用线性函数式(9)来拟合地温数据。

$$T_m = \alpha D_m + \beta \tag{9}$$

3.1 模型建立

选择 K 个井位的方法如方法 2, 使用欧式距离计算距离并且选择最近的 K 个井位。

对于第 k 个井位,k=1,...,K,它的第 i 个深度 D_i^k 所对应的静温是 T_i^k ,则可以使用误差平方和最小来优化模型参数 α 和 β 。

min
$$\sum_{k=1}^{K} \sum_{j=1}^{Num^{k}} \left[(\alpha D_{i}^{k} + \beta) - T_{i}^{k} \right]^{2}$$
 (10)

其中 Num^k 是第 k 个井的所有已知地层的个数。将式 (10) 对 α 和 β 分别求导并令为 0, 则得到关于 α 和 β 的线性方程组。

$$\begin{cases} \alpha A + \beta B = C \\ \alpha B + \beta D = E \end{cases}$$
 (11)

其中

$$\begin{cases}
A = \sum_{k=1}^{K} \sum_{j=1}^{Num^{k}} (D_{i}^{k})^{2} \\
B = \sum_{k=1}^{K} \sum_{j=1}^{Num^{k}} D_{i}^{k} \\
C = \sum_{k=1}^{K} \sum_{j=1}^{Num^{k}} D_{i}^{k} T_{i}^{k} \\
D = \sum_{k=1}^{K} \sum_{j=1}^{Num^{k}} 1 \\
E = \sum_{k=1}^{K} \sum_{j=1}^{Num^{k}} T_{i}^{k}
\end{cases} \tag{12}$$

则系数的解是式 13

$$\begin{cases}
\alpha = \frac{\begin{vmatrix} C & B \\ E & D \end{vmatrix}}{\begin{vmatrix} A & B \\ B & D \end{vmatrix}} \\
\beta = \frac{\begin{vmatrix} A & C \\ B & E \end{vmatrix}}{\begin{vmatrix} A & B \\ B & D \end{vmatrix}}
\end{cases} (13)$$

3.2 参数 K 的选择

将数据集划分成训练集和测试集,根据不同 K 的选择计算测试集上的绝对误差和,曲线如下 图 5。

图 5: 不同 K 对应绝对误差和

3.3 估计地温和真实地温比较

从上图5 看出,当 K=1 时取得最好结果,最小的绝对误差和是 46.14,此时的估计地温如下图 6

图 6: 不同 K 对应绝对误差和