(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平4-335997

(43)公開日 平成4年(1992)11月24日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所
F 2 8 F	19/06		7153-3L		
C 2 3 C	4/08		6919-4K		
F 2 2 B	37/04		7715-3L		
	37/10	С	7715-3L		
F 2 3 G	5/46	Α	7815-3K		
				審査請求 未請	求 請求項の数1(全 6 頁) 最終頁に続く
(21)出願番号		特顯平 3-104560		(71)出願人	000005119
					日立造船株式会社
(22)出願日		平成3年(1991)5月10日			大阪府大阪市此花区西九条5丁目3番28号
				(72)発明者	森本 純司
					兵庫県西宮市門戸荘7番17号
				(72)発明者	浜本 隆典
					大阪府大阪市此花区西九条5丁目3番28号
					日立造船株式会社内
				(72)発明者	大塚、隆夫
					大阪府大阪市此花区西九条5丁目3番28号
					日立造船株式会社内
				(74)代理人	弁理士 森本 義弘
					最終頁に続く

(54) 【発明の名称】 都市ごみ焼却炉ボイラーチユーブ

(57)【要約】

【目的】 耐摩耗性(耐エロージョン性)、耐食性(耐高温性)に優れた都市ごみ焼却炉ポイラーチューブを提供する。

【構成】 伝熱管9の外面に、Crが15~55wt% で残りがNiからなる合金皮膜12を爆発溶射法により形成した。

【効果】 爆発溶射法により形成した合金皮膜によって、摩耗速度を遅くできるなど耐摩耗性に優れたものにできて、摩耗減肉量を従来に比べて減少できるとともに、酸化増量を低く押さえて耐食性に優れたものにできる。

9…伝教管 12…合金皮膜

1

【特許請求の範囲】

【請求項1】 伝熱管の外面に、Crが15~55wt %で残りがNiからなる合金皮膜を爆発溶射法により形 成したことを特徴とする都市ごみ焼却炉ポイラーチュー **ブ。**

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、都市ごみ焼却炉におい て、熱交換器や水冷壁などに利用されるポイラーチュー プに関するものである。

[0002]

【従来の技術】都市ごみ焼却炉において、熱交換器や水 冷壁などに利用されるポイラーチューブの受けるダメー ジは、大別すると二種類ある。一つは高温環境部(水冷 壁部) における化学腐食による減肉であり、もう一つは 比較的低温部(熱交換器部)における主としてスートプ ロワによるドレンカット、すなわちエロージョンによる 減肉である。

【0003】この後者のスートプロワは、ごみ焼却時に チューブに付着した燃焼灰を脱落させる目的で使用さ 20 れ、そのとき、スートプロワのドレン蒸気によるチュー プの減肉が大きな問題になっている。

【0004】従来、このようなスートプロワによる減肉 対策の一つの方法として、ステンレス製のチュープを半 割り状に加工し、これらチュープを伝熱管に外嵌したの ち溶接により取り付けるプロテクト方法が採用されてい る。

[0005]

【発明が解決しようとする課題】上配したプロテクト方 果が得られていたが、充分に満足のいくものではなかっ た。

【0006】本発明の目的とするところは、耐摩耗性 (耐エロージョン性)、耐食性(耐高温性)に優れた都 市ごみ焼却炉ポイラーチューブを提供する点にある。

[0007]

【課題を解決するための手段】上記目的を達成すべく本 発明の都市ごみ焼却炉ポイラーチューブは、伝熱管の外 面に、Crが15~55wt%で残りがNiからなる合 金皮膜を爆発溶射法により形成している。

[0008]

【作用】かかる本発明の構成によると、爆発溶射法によ り形成した合金皮膜によって、摩耗速度を遅くして耐摩 耗性に優れたものにし得るとともに、酸化増量を低く押 さえて耐高温性に優れたものにし得る。

10 [0009]

> 【実施例】以下に本発明の一実施例を図に基づいて説明 する。図3において、1は上向きの第一煙道、2は下向 きの第二煙道で、両煙道1、2の上部間の連通部には水 冷壁3が配設されている。そして第二煙道2の下部と排 ガス処理装置 (図示せず) との間の排ガス路4における 始端部には熱交換器 5 が配設され、この熱交換器 5 に下 方から対向して複数のスートプロワ6が配設されてい

【0010】前記熱交換器5は、たとえば図1、図2に 示すように、左側壁7と右側壁8との間を長さ方向とし て前後方向に伝熱管9を多数並列することで形成され、 またスートプロワ6は背面壁10に設けられている。そ して前記伝熱管9群のスートプロワ6からのドレン蒸気 11に対向する部分で外面全周に、Crが15~55w t%(wt%=重量比)で残りのwt%がNiからなる 合金皮膜12を、爆発溶射法により形成(なお図1の実 施例では合金皮膜12を一部に形成しているが、これは 全長に形成してもよい。) している。

【0011】まず、試験的にNi-Cr基合金とCo-法によると、スートプロワによる減肉に対して相応の成 30 Cr基合金の耐摩耗性について調査すべく高精度噴射摩 耗試験を行い、その体積摩耗量から耐摩耗性を評価し た。この試験方法の模式図を図4に示し、試験条件を表 1 に示す。

[0012]

【表1】

3

摩耗試験条件(常温テスト)

コンプレッサの空気圧	5.00kg/cm²		
空気圧	3. 38kg/cm*		
空気量	375 l/min		
研掃材吹き付け量	75 l/min		
ノズル直径	5. 2 ma		
吹き付け距離	100 ma		
吹き付け角度	30.		
研授材	Alumina #60		
吹き付け時間	80 sec		

【0013】図4において、噴射口20から噴射される 空気圧力21の軸線22が、30°の吹き付け角度にな るように試料23を傾斜して配置しており、この試料2 3の表面に溶射皮膜24を形成している。

方法で試験を行ったときの各溶射皮膜の体積摩耗量を図 5に示す。この図5は、金属系溶射皮膜であるCo-C r 基合金皮膜とNi-Cr基合金皮膜との摩耗速度の関 係を示し、Co-Cr基合金皮膜よりもNi-Cr基合 金皮膜の方が廖耗速度が遅く、耐摩耗性に優れているこ とが明らかとなった。

【0015】次に、伝熱管9群は600~700℃の高 温雰囲気にさらされるため、耐高温酸化性について調べ た結果を図6に示す。ここで、金属系溶射施工の主とな っているフレーム溶射法と爆発溶射法の比較も合わせて 40

行った。

【0016】その結果、フレーム溶射法比較して爆発溶 射法は、時間の経過に従って酸化増風が低くなり、した がって爆発溶射法は、緻密で高付着力を有する皮膜が作 【0014】そして表1の試験条件において図4の試験 30 成できる爆発溶射皮膜の耐高温性が優れていることが明 らかとなった。また、爆発溶射皮膜においては、50% wtNi-50%wtCr合金溶射皮膜の耐高温性が優 れている結果が得られた。

> 【0017】このため、ごみ焼却炉ポイラーチューブに はNi-Cェ基合金が優れた性能を示すと考えられるた め、図1に示すように、これらNi-Cr基合金を実装 置に適用した実証試験を1年間行った。その結果を表2 に示す。

[0018]

【表2】

5

溶好法	1 優発溶射	2 プラズマ 溶射	3. 煤免溶射	ポイラー 熱交換器用 炭素側側管 (STB35
皮膜の種類 皮膜浮さ (AII)	50%Ni-	50%Ni 50%Cr	80% N 1 — 20% C r	-8)
最大學純量(#8)	90	500	200	2, 000
平均摩託量 (ga)	49	76	5 2	所要年数に相当
、耐久比 	5. 5	1	2. 5	対象平数に相当 するチューブの 肉厚増加が必要

管が年間2mm減肉するのに対して、最も減肉量の少なく なった爆発溶射 50% wtNi-50% wtCrは0. 09㎜と約1/20の減肉量となり、プラズマ溶射皮膜 と比較しても約1/5の減肉量となるなど、NI-Cr 基合金が高性能であることが明らかとなった。

【0020】以上の結果から、耐摩耗皮膜の主成分とな るNi-Crの配合比は、45~85%wtNiおよび 55~15%wtCrの範囲が有効である。これによ り、従来のポイラー熱交換器用の炭素綱鋼管の摩耗減肉 量が2mmに対して、本発明の爆発溶射のNi-Cr合金 30 フ図である。 皮膜を施工した場合の摩耗減肉量は0.1~0.2mmと なり、従来技術よりも10倍の効果を有するに至った。 【0021】上記実施例では熱交換器5に使用したポイ ラーチューブを示したが、これは水冷壁3に使用したボ

[0022]

イラーチュープでも同様である。

【発明の効果】上記構成の本発明によると、爆発溶射法 により形成した合金皮膜によって、摩耗速度を遅くでき るなど耐摩耗性に優れたものにできて、摩耗減肉量を従

【0019】この結果、ポイラー熱交換器用の炭素網網 20 来に比べて減少できるとともに、酸化増量を低く押さえ て耐食性に優れたものにできる。

6

【図面の簡単な説明】

【図1】本発明の一実施例を示し、溶射施工の適用範囲 を示す熱交換器部の概略斜視図である。

【図2】同伝熱管の断面図である。

【図3】同都市ごみ焼却炉の概略断面図である。

【図4】同高精度噴射摩耗試験(ACT-JP)の模式 図である。

【図5】同金属系溶射皮膜と摩耗速度の関係を示すグラ

【図6】同Ni-Cr基合金を溶射したときの酸化実験 結果を示すグラフ図である。

【符号の説明】

- 3 水冷壁
- 5 熱交換器
- 6 スートプロワ
- 伝熱管 9
- 12 合金皮膜

【図2】

【図4】

【図6】

【図5】

フロントページの続き

(51) Int. Cl. 5

識別記号 庁内整理番号 FΙ

技術表示箇所

F 2 8 F 21/08

7153-3L

(72)発明者 小山 正洋

大阪府大阪市此花区西九条5丁目3番28号

日立造船株式会社内

(72)発明者 山田 勝弘

大阪府大阪市此花区西九条5丁目3番28号

日立造船株式会社内

(72)発明者 遠山 一廣

大阪府大阪市此花区西九条5丁目3番28号

日立造船株式会社内