Homework 1

November 2024

Problem 1

If m, n, p and q are integers, then

- (i) (m+n)(p+q) = (mp+np) + (mq+nq)
- (ii) m + (n+p) = (p+m) + n
- (iii) m(np) = p(mn)

Problem 2

Let $x \in \mathbb{Z}$.

- (a) If x has the property that for each integer m, m + x = m, then x = 0.
- (b) If x has the property that for all $m \in \mathbb{Z}$, mx = m, then x = 1.
- (c) If $x \cdot x = x$, then x = 0 or x = 1.

Problem 3

Read the following statements and show that they are *false* by giving a counter-example.

- (a) Let $n, m \in \mathbb{N}$ be two natural numbers, such that n is even and m is odd. Then n+m is even.
- (b) Let $n \in \mathbb{N}$ be an even natural number, then there exists an even natural number $m \in \mathbb{N}$ such that their sum n + m is odd.
- (c) Let $a, b, c \in \mathbb{N}$ be three non-zero natural numbers such that $a^2 + b^2 = c^2$. Then the three numbers must be a = 3, b = 4, and c = 5.

Problem 4

Explain how the following two statements are different and prove that one of them is false.

- For all $n \in \mathbb{Z}$ there exists an integer m such that n + m = 42.
- There exists an integer m such that for all $n \in \mathbb{Z}$, n + m = 42.

Problem 5

Prove the following related statements using induction:

- (a) Let $k \in \mathbb{N}$. Then $k \geq 1$.
- (b) There exists no integer such that 0 < x < 1.
- (c) Let $n \in \mathbb{Z}$. There exists no integer x such that n < x < n + 1.
- (d) For all $k \in \mathbb{N}$, $k^2 + 1 > k$.