Counting Point Mutations

Orr Shomroni

22 Oktober, 2021

Problem

Given two strings s and t of equal length, the **Hamming distance** between s and t, denoted $d_H(s,t)$, is the number of corresponding symbols that differ in s and t. See Figure 2.

Given: Two DNA strings s and t of equal length (not exceeding 1 kbp).

Return: The Hamming distance $d_H(s,t)$.

Sample Dataset

GAGCCTACTAACGGGAT CATCGTAATGACGGCCT

Sample Output

```
def wrap(string):
    s=''
    for i in range(0,len(string),80):
        s+=string[i:i+80]
        s+='\n'
    return s

f=open("/home/orr/Dropbox/rosalind/bioinformatics_stronghold/rosalind_hamm.txt",'r')
s=f.readlines()
dH=0
for i in range(0,(len(s[0])-1),1):
    if s[0][i]!=s[1][i]:
        dH+=1

string="The Hamming distance between string s "+s[0].replace("\n","")+" and string t "+s[1].replace("\n","")
print(wrap(string))
```

The Hamming distance between string s ACTGCTTAAATGACATTCACTACCCAGCATCATTTTTCTCGG
CCGCAAATACGATGGGCTCTCTGGAAGGCAATTGCGTAGTGGTTGACCCGGTCGCATTACACTCCGAGTGAACGAATACC
CCTAGTCTACCACCTTTGAATGGTGTATGATCAGTCAAAAGTAGTGGGATTGTTACCGTTAGCTTATCTTTCGAGCTCCA
CCTAATAACCACATGCTAGGCTATGTCAGACCCGGAGACGGGCCCTTAATTTTTACGTGAATCGACGACTCGGCATCTGT
CCTAATAAGAAAAGAAAGCGGTCAGTTTAAGGTTTTATAGCTATACGCACGTTCTTGGACTCCTTTTATCCATGCGAATCG
CTACGAGCACTTTGCACGCTCGTGGACTAATTTTCCTGTTCCTGGAAGAATAGCACCCCTTACTTCATGAGTAGCTGCAG
TTCGTGTCGGATATGGCGCACTCGTGGTCTGTAAGTACTCCTGGGGGTGTCGATAGCACCAGAGCAAGAACAACC
CGATCGTGGGTGACTTATGTAAAGACCCTGAGCCGGAAACAAGGTCTGATCGTACTAATGGCGCTAAGATAGCACCAAAAA
TTTACGCCGAGGCAAAAGAGGATTCAGAGTGCCCTGATCTTGTGCGCCCCTCTCAATGTATGCAGGCTATAGTCCTAATGTG
AAATATAAGCCGTGGCGCATTGGGTGAGCGATCATAGGATAGCTCCCGTATATCATGAAATATCATTAATCACTTGACCT

CGCTACCGGCTGCGGTTCAGCAGGGCCGACTGTTTCGCATTGCTGTGCTAAATCAAACGACTTTGGCCTGGGTAAACTGG ## ACCCCCCGTAACCTGGTTGGTACTGACGCTCGACAGTTTGCTAGTCTGCCTCACTAAGCCCGTTACGTTCCACGCGCTCG ## CCTCGCATCCGGAGCGGGAATTAGATACCGTCCCAAGCACGACTACGTGCTGCGCATA and string t ACGGGTAG ## AATTACCCTCGAAGAGTCGCCGGACGGTTCTCCCTGGCCTAATTGATGCTAGCGGTGCAGGCCATTCGCGTTGGTAGTCA ## CTCTCTCACGTCCGGTTCGGAGCTGACGGATATCTATAAACTGCGTGATTGGCTTGTTCAATGATCCAGGAAAAGGACTG ## TAATTGTCGCTTTGTGCTCCTCAATCCTGCGGAACGACAAACCAAGAATCTATGTATTTTCCCGCCCAGCGCCATCCCCT ## AATTCACTATCAACAGAGAGGATTCAGCGTTTATCCTGGTACTATAAGAAACCGGCCAATTAATGGGTTCATGACCATAC ## GTTTGTGGTGCTCTCGTGGTACCCATGCCACTCGCTACGAGGACTGAGAACTCTCGTCCGATGACGGTGCTATTCCCGGT ## TAAAGAGGGGACTTTCTTGTTTACGACCTCACGGGCGTTTCCGGTCTGGATAGCTGCTGTTATGCATTCGATCCACTAT ## GTACTAAAAACTCTTACTCGAGACGACAACTACCGAATGGGTGAAATCTTCCGGATGGTCTCTTATCCGGAAACCCTTGC ## CATAGCAAAACATGGAGGGCATACTCATCACCTGGTTTATAAGCCCTCGCGTTTTGCGTGGACGTACAGTCGGTTGTGGC ## CTTTTAATACAAACTATCCCCAATCACACGACCGTGCTTGGGGCCCAGGTCCATCGCTCTCGTCTTAATGACTTCAAATA ## GGTAACTAGAACGCCTACCGGCTCGGCAAACTGTACCCCTAGTCAGCAGGACCTTAGCCGCACTATACCTTGTGGGGGGC ## TCCCTCACAAGGCCTGTAAAGATCGACACCGCCATCCAGGAGACAGAGCTGGTTTCCGATACAATCCCAAGAGGGACAAT ## TACCTTCCCATA is 464