Lecture October 21

Some hints (code examples will be uploaded later) concerning moject 2:

- write a simple gradient descent for exercise 1 first.
- implement thereafter
 the Stochastic quadrent
 descent. Plag around
 with different learning
 rates, epochs and
 batches
- Feet free to use
- For exercise 2, try first

 Skleams MLP regressor

 in ander to get a felf

 for what you should

expect.

$$H_{015} = \frac{3}{m} \times \frac{7}{x}$$

$$M = learning \leq \frac{1}{\lambda_{max}} (H)$$

$$ODE = ORD/NARY DIFF = eq.$$

$$PDE = PARTIAL DIFF = eq.$$

$$ODE$$

$$m \frac{d^{2}x}{dt^{2}} + M \frac{dx}{dt} + x(t)$$

$$= f(t)$$

$$dg = -3 y(x)$$

$$mitig(condition)$$

$$y(x_{0}) = y_{0}$$

$$y(x_{0}) = y_{0}$$

$$y(x_{0}) = y_{0}$$

$$= F(x | u(x) | D u(D^{2}x_{0}) - a$$

$$F = \frac{dy}{dx} + yy(x)$$

$$Discretize into a$$

$$Domain D for x and$$

$$y$$

$$x -> x'_{i} = x_{0} + i \Delta x$$

$$x = 0,1,2,... m$$

$$\Delta x = \frac{x_{m} - x_{0}}{m}$$

$$y(x) -> y(x_{i}) = y'_{i}$$

$$Taylor - expand anomal
$$x'_{i} \pm \Delta x$$

$$y(x'_{i} \pm \Delta x) = y'_{i} \pm 1 = y'_{i}$$

$$\pm \Delta x \frac{dy}{dx}|_{x=x'_{i}} + \frac{(\Delta x)^{2}}{2!} \frac{d^{2}y}{dx^{2}|_{x=x'_{i}}}$$

$$+ O(\Delta x^{2})$$$$

Famous Euler methods

$$y_{n+1} = y_n' + 1 \times \frac{dy}{dx} = -x_n'$$
 $\frac{dy}{dx} = -x_n' + 4x (-xy^2)$
 $y_{n+1} = y_n' + 4x (-xy^2)$
 $y_{n+1} = y_n' + 4x (-xy^2)$

in NNS

Intal function $y_{t}(x, P)$ Set of adjustable

para me ters

and min $\sum_{i \in D} [F(x_{i}, y_{t}(x_{i}, P), P(x_{i}, P), P(x_{i}, P)]^{2}$ $y_{t}(x, P) = A(x) + I(x, N(x_{i}, P))$

Satisfies our nemal satisfies network the network sounding conditions,

_ CNN s-

Scand sample;

X has dimension d=10⁶

Simple model with one
hidden lager and n=10⁹

nearons.

out pat lager: one out pat node (True/False)

I parameters;

Imput => modden

Itweights = 104.106

It b-19ses = 104

hidden to output

weights = $10^9 \times 1 = 10^9$ # hiases = 1

parameters; $10^{10} + ro^9 + ro^9 + 1$ 2 10^{10}

- math of convolution =

 $\varphi(x) = \int \underline{A(k)} \cos(2\pi kx) dk$ -2 = 1

= \(\) \(\cos \left(271 kx \right) \) d\(\) \(\)

= 21005 (211 kox) nm (2115x)

Convolution;

$$S(t) = \int x(a) w(t-a) da$$

weight

function

- Polymomial multipheaties

$$p(t) = \alpha_{0} + \alpha_{1} t + \alpha_{2} t^{2}$$

$$S(\theta) = \beta_{0} + \beta_{1} t + \beta_{2} t^{2} + \beta_{3} t^{3}$$

$$E(t) = p(t) S(t) = S_{0} + S_{1} t + S_{2} t^{2} + S_{3} t^{3}$$

$$S_{0} + S_{1} t + S_{2} t^{2} + S_{3} t^{3}$$

$$+ S_{4} t^{9} + S_{5} t^{5}$$

$$S_{0} = \alpha_{0} \beta_{0}$$

$$S_{1} = \alpha_{1} \beta_{0} + \alpha_{0} \beta_{1}$$

$$S_{2} = \alpha_{0} \beta_{2} + \alpha_{1} \beta_{1} + \alpha_{2} \beta_{0}$$

$$S_{3} = \alpha_{1} \beta_{2} + \alpha_{2} \beta_{1} + \alpha_{0} \beta_{3}$$

$$S_{4} = \alpha_{2} \beta_{2} + \alpha_{1} \beta_{3}$$

$$S_{5} = \alpha_{2} \beta_{3}$$

$$\alpha_{1} = 0 \quad \text{except} \quad i = \{0, 1, 2\}$$

$$\beta_{1} = 0 \quad -1 \quad \{0, 1, 2, 3\}$$

$$S_{t} = \sum_{x=-\infty}^{\infty} A_{x} P_{t-x}$$

$$= (\alpha * \beta)_{t}$$

$$= (\alpha *$$