ACHTUNG: Eine Verbreitung der Unterlagen außerhalb der Vorlesung bzw. der dazugehörigen Übungen ist nicht gestattet!

Diese Vorlesung basiert auf: Hering et al., "Physik für Ingenieure"

ISSN 0937-7433 ISBN 978-3-642-22568-0 e-ISBN 978-3-642-22569-7 DOI 10.1007/978-3-642-22569-7 Springer Heidelberg Dordrecht London New York

6. Optik

Geometrische Optik

- Reflexion und Spiegel
- Brechung, Prismen und Linsen

Radiometrie und Photometrie

Wellenoptik

- Interferenz und Beugung
- Polarisation des Lichts

Quantenoptik

- Welle-Teilchen Dualismus
- Wärmestrahlung und Laser

Grundgleichung der Optik sind aus Elektrodynamik ableitbar

Insbesondere nötig für Wechselwirkung mit Materie

http://commons.wikimedia.org/wiki/File:Electromagnetic_spectrum_c.sv

Licht als elektromagnetische Strahlung

Empfindlichkeitskurve des menschlichen Auges

Aus: Hering et al., "Physik für Ingenieure"

6.2 Geometrische Optik

6.2.1 Lichtstrahlen

Licht breitet sich in homogenen Medien geradlinig aus

→ durch Strahlen beschrieben!

Im Wellenbild:
Normalen auf Wellenfronten

Pfeilspitzen bedeutungslos!

Abb. 6.3 Strahlen- und Wellenflächen:

- a) Homozentrisches Strahlenbündel und Kugelwellen,
- b) paralleles Strahlenbündel und ebene Wellen

Anwendbar solange Dimensionen der Spiegel, Linsen und Blenden groß gegen λ sind (Beugung vernachlässigbar).

6.2.2 Reflexion

Reflexionsgesetz:

- Einfallender Strahl, reflektierter Strahl und Einfallslot (Flächennormale) liegen in einer Ebene.
- Einfallswinkel und Reflexionswinkel sind gleich

Aus Huygens Fresnel'schem Prinzip ableitbar

Aus: Hering et al., "Physik für Ingenieure"

Bildentstehung beim Spiegel:

Für Beobachter scheinen alle Strahlen von hinter dem Spiegel zu kommen.

- → L' virtuelles Bild von L
- Kann nicht auf einem
 Schirm sichtbar gemacht werden!

Reelles Bild: Wäre auf Schirm darstellbar.

Aus: Hering et al., "Physik für Ingenieure"

Reflexion an gekrümmten Flächen:

Generelle Strategie: lokales Lot normal zur Tangentialfläche

→ Reflexionsgesetz

Spezialfälle:

Parabolspiegel

Achsparallele Strahlen werden in einem Brennpunkt F gesammelt

Sphärischer Hohl- oder Konkavspiegel

- > Nicht alle Strahlen treffen sich in einem Punkt
- Für achsnahe Strahlen (Paraxialstrahlen) näherungsweise gegeben

Brennweite des Hohlspiegels (für Paraxialstrahlen)

Ableitung aus Reflexionsgesetz:

$$f' = r - CF'$$

gleichschenkeliges Dreieck:

$$\cos \varepsilon = \frac{r}{2 \, CF'}$$

$$f' = r \left(1 - \frac{1}{2\cos\varepsilon} \right)$$

Aus: Hering et al., "Physik für Ingenieure"

Für achsnahe Strahlen:

$$\cos \varepsilon \approx 1$$

f' <0, weil links vom Scheitel

Bildentstehung beim Hohlspiegel (für Paraxialstrahlen):

Es gilt (aus Reflexionsgesetz):

a ... Gegenstandsweite

a' ... Bildweite

f' ... Brennweite

Abbildungsmaßstab:

Verhältnis von Bildgröße, y', zu Gegenstandsgröße, y

$$\frac{y'}{y} = -\frac{a'}{a} = \frac{f'}{f' - a}$$

Vorzeichen der verschiedenen Längen beachten (links vom Scheitel <0)!

$$a|>|f'|$$
 umgekehrtes Bild

 $a|\!<\!|f'|\!|$ aufrechtes, vergrößertes Bild

|a| > |f'|

reelle, sonst virtuelle Bilder

Bildkonstruktion:

|| zur optischen Achse einfallender strahl wird durch F', durch F' einfallender Strahl parallel zur optischen Achse reflektiert.

Beispiel: vor einem Hohlspiegel (f' = -5 cm) steht im Abstand von a = -2.5 cm ein y = 1 cm Gegenstand; wo und wie groß ist das Bild?

Egbert Zojer

der Brennweite beim Hohlspiegel (zu Beispiel 6.2-2)

Bildentstehung beim Konvexspiegel (für Paraxialstrahlen):

Unterschied zum Konkavspiegel:

- Gegenstand und Brennpunkt auf verschiedenen Seiten des Spiegels
- → f' > 0 (sonst gleiche Gleichungen)

Aus: Hering et al., "Physik für Ingenieure"

Bild immer: aufrecht, verkleinert und virtuell

Andwendung z.B. Autorückspiegel (Vergrößerung des Gesichtsfeldes)

Gleiche Abbildungsgleichungen wie für Hohlspiegel!

6.2.3 Brechung des Lichts

- > Richtung des Strahls wird an der Grenzfläche geändert (Brechung)
- Ein Teil des Strahls wird reflektiert.
- Lot, einfallender Strahl, reflektierter Strahl und gebrochener Strahl liegen in einer Ebene.
- Optisch dünneres → optisch dichteres Medium: **Brechung zum Lot**
- Optisch dichteres → optisch dünneres Medium: **Brechung vom Lot**

Abb. aus: Hering et al., "Physik für Ingenieure"

Snellius'sches Brechungsgesetz

$$\frac{\sin \varepsilon}{\sin \varepsilon'} = \frac{c}{c'} = \frac{n'}{n}$$

n, n' ...

Brechungsindices

c₀ ... Vakuum-Lichtgeschwir

Lichtgeschwindigkeit

$$n = \frac{c_0}{c}$$

Abb. aus: Hering et al., "Physik für Ingenieure"

Erklärbar über Huygens-Fresnel'sches Prinzip!

n nimmt typischerweise mit steigender Wellenlänge, λ , ab (normale Dispersion) \rightarrow spektrale Zerlegung des Lichts

Lichtstrahl durchschreitet Schichtstruktur verschiedener Stoffe:

$$n_1 \sin \varepsilon_1 = n_2 \sin \varepsilon_2 = n_3 \sin \varepsilon_3 = \dots$$

Invariante der **Brechung**

Grenzwinkel der Totalreflexion:

ε im optisch dünneren Medium wird 90°

$$\sin \varepsilon_g' = \frac{n}{n'}$$
 dünneres Medium Luft (n ~ 1):

$$\sin \varepsilon_g' = \frac{1}{n'}$$

Für $\varepsilon' > \varepsilon'_{\alpha}$: Licht kann das optisch dichtere Medium nicht mehr verlassen. Es wird totalreflektiert.

Brechung an einem Prisma:

Ablenkwinkel δ aus Brechungsgesetz und geometrische Überlegungen.

Normale Dispersion: kurzwelliges Licht stärker gebrochen → Prismenmonochromator

Abb. 6.20 Strahlenverlauf in einem Prisma

n'

z.B. Borkronglas: n=1,51 $\rightarrow \epsilon_q$ =41,5°

6.2.4 Abbildung durch Linsen

Sphärische Linse: Glas, das von zwei kugelförmigen

Flächen begrenzt wird

→ 2 x Brechung

Beschreibung: Invarianten der Brechung! Abb. aus: Hering et al., "Physik für Ingenieure"

Abb. 6.30 Abbildung eines Punktes auf der optischen Achse durch eine Sammellinse

Dünne Linsen:

Linsendicke, d, ist vernachlässigbar klein!

Für dünne, von Luft umgebene Linsen gilt:

Linsenmacherformel:

$$\frac{1}{a'} - \frac{1}{a} = \frac{1}{f'}$$

a ... Gegenstandsweite
a' ... Bildweite
f' ... (bildseitige) Brennweite
D' ... Brechkraft (in dpt=m⁻¹)

Größen links (rechts) vom Linsenmittelpunkt <0 (>0)!

$$\frac{1}{f'} = D' = (n_L - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

Abb. 6.32 Abbildung eines Gegenstandes mit Hilfe von Brennpunktsstrahlen und Mittelpunktsstrahl

$$f = -f'!$$

Abb. aus: Hering et al., "Physik für Ingenieure"

Linsenform						
Bezeichnung	bi- konvex	plan- konvex	konkav- konvex	bi- konkav	plan- konkav	konvex- konkav
Radien	$r_1 > 0$ $r_2 < 0$	$\begin{array}{c} r_1 = \infty \\ r_2 < 0 \end{array}$	$r_1 < r_2 < 0$	$r_1 < 0 \\ r_2 > 0$	$r_1 = \infty \\ r_2 > 0$	$r_2 < r_1 < 0$
Brennweite im optisch dünneren Medium	f'>0	f'>0	f'>0	f' < 0	f' < 0	f' < 0

Abb. aus: Hering et al., "Physik für Ingenieure"

Abbildungsmaßstab:

$$\beta' = \frac{y'}{y} = \frac{a'}{a}$$

Beispiel: Gegenstand a = -50 cm vor Sammellinse (f' = 20 cm); Wie groß

sind a' und β ?

Beispiel: Gegenstand a = -60 cm vor Zerstreuungslinse (f' = -30 cm); Wie

groß sind a' und β ?

Abb. aus: Hering et al., "Physik für Ingenieure"

Linsensysteme:

In Analogie zu dicken Linsen!

$$\frac{1}{f'} = \frac{1}{f_{1}^{'}} + \frac{1}{f_{2}^{'}} - \frac{e}{f_{1}^{'}f_{2}^{'}}$$

Brennweiten von Hauptebenen weg gemessen!

(= Ebenen, von denen Strahlen außerhalb der Linse zu kommen scheinen)

Abb. 6.39 Lage der Hauptebenen bei einem System aus zwei Sammellinsen (zu Beispiel 6.2-11)

Abb. aus: Hering et al., "Physik für Ingenieure"

6.3 Radiometrie und Photometrie

Radiometrie: Messung der Strahlungsleistung mit "unbestechlichem" Messinstrument. (strahlungsphysikalische Größen – Index e)

Photometrie: "Bewertung" der Strahlung mit dem Auge. (lichttechnische Größen – Index v)

6.3.2 Strahlungsphysikalische Größen (Beispiele)

Strahlungsleistung Φ_e [W]:

Strahlungsenergie, dQ_e, pro Zeit, dt

$$\Phi_e = \frac{dQ_e}{dt}$$

Strahlstärke, I_e [W/sr]:

Strahlungsleistung pro Raumwinkel

Definition des Raumwinkels: $\Omega = -$

Lambert'scher Strahler: Körper mit

$$I_e(\varepsilon_1) = I_e(0)\cos\varepsilon_1$$

z.B.: diffus reflektierende

Abb. 6.63 Strahlenkegel, der vom Sender auf den Empfänger fällt

Abb. 6.64 Strahlstärke I_e in Abhängigkeit vom Abstrahlwinkel ε_1 im Polardiagramm a) beim Lambert'schen Strahler, b) bei einer Leuchtdiode

Strahldichte L_e [W/(sr m²⁾]:

I_e pro Emitterfläche senkrecht auf Beobachtungsrichtung

Bestrahlungsstärke E_e [W/m²]:

Strahlungsleistung pro Empfängerfläche

Spektrale Größen:

Charakterisierung der Wellenlängenabhängigkeit der

Strahlung (Strahlungsphysikalische Größe X_e pro Wellenlängeneinheit)

$$X_{e,\lambda}(\lambda) = \frac{dX_e}{d\lambda}$$

$$X_{e} = \int_{\lambda_{1}}^{\lambda_{2}} X_{e,\lambda}(\lambda) d\lambda$$

Beispiel: Spektrum einer blauen LED

Strahlung des schwarzen Körpers

(absorbiert alle auftreffende Strahlung → gibt alle Strahlung ab)

Planck'sches Strahlungsgesetz:

(spektrale Strahldichte des schwarzen Körpers als Funktion der Temperatur, T))

$$L_{e,\lambda}(\lambda,T) = \frac{c_1}{\lambda^5} \frac{1}{e^{c_2/(\lambda T)} - 1}$$

mit: $c_1 = 2hc^2$; $c_2 = hc/k$

$$h = 6,626 \cdot 10^{-34} \, Js$$

Planck'sches Wirkungsquantum

Wien'sches Verschiebungsgesetz: 🖢

$$\lambda_{\max} T = const.$$

6.3.3 Lichttechnische Größen

Berücksichtigung der Helligkeitsempfindlichkeit des Standardbeobachters

$$X_{v,\lambda}(\lambda) = K_m X_{e,\lambda}(\lambda) V(\lambda)$$

$$X_{v} = K_{m} \int_{380nm}^{780nm} X_{e,\lambda}(\lambda) V(\lambda) d\lambda$$

$K_m = 683 \text{ Im/W}$

X_{e,λ} ... strahlungsphysikalische Größe ("pro Wellenlänge")
X ... lichttechnische Größe (pro

X_{v,λ} ... lichttechnische Größe ("pro Wellenlänge")

"separate Konversion" für jede Wellenlänge!

Abb. 6.71 Hellempfindlichkeitsgrad des Standard-Beobachters. $V(\lambda)$: Tagessehen, fotopische Anpassung $V'(\lambda)$: Nachtsehen, skotopische Anpassung

Frage: Rote (λ = 660 nm) und grüne (λ =560 nm) LED mit gleicher Strahlungsleistung - welche erscheint heller?

Tabelle 6.5 Fotometrische Größen

Strahlungsphysikalische G Benennung		Maßeinheit	lichttechnische Größen Benennung	Zeichen	n Maßeinheit
Strahlungsenergie	$Q_{\rm e}$	W s	Lichtmenge	$Q_{ m v}$	lm s
Strahlungsleistung	$\Phi_{ m e}$	W	Lichtstrom	$\Phi_{ m V}$	lm
spezifische Ausstrahlung	$M_{ m e}$	W/m ²	spezifische		
			Lichtausstrahlung	$M_{ m v}$	lm/m ²
Strahlstärke	$I_{ m e}$	W/sr	Lichtstärke	$I_{ m v}$	cd = lm/sr
Strahldichte	L_{e}	W/(m ² sr)	Leuchtdichte	$L_{\rm v}$	cd/m ²
Bestrahlungsstärke	E_{e}	W/m^2	Beleuchtungsstärke	$E_{ m v}$	$lx = lm/m^2$
Bestrahlung	H_{e}	W s/m ²	Belichtung	$H_{ m v}$	lx s

Tabelle aus: Hering et al., "Physik für Ingenieure"

Lichttechnische SI-Basiseinheit: 1 cd (1 Candela) Abgeleitete Einheiten: Lumen (Im), Lux (Ix)

6.4 Wellenoptik

6.4.1 Interferenz und Beugung

Konstruktive Interferenz:

Destruktive Interferenz:

$$\Delta = m \lambda
\varphi = m 2\pi$$

$$\Delta = (2m+1)\frac{\lambda}{2}$$

$$\varphi = (2m+1)\pi$$

 Δ ... Gangunterschied ϕ ... Phasenverschiebung

Solche Intereferenzeffekte für Licht oft schwer zu beobachten!

Kohärenz

Wellen kohärent, wenn die gegenseitige Phasenbeziehung während der Beobachtung konstant bleibt.

Licht von verschiedenen Quellen: Praktisch immer inkohärent → Interferenzeffekte praktisch nicht beobachtbar

Spontane Emission:

Licht eines heißen Körpers von unabhängigen Atomen → Wellenzüge endlicher Länge.

sehr geringe Kohärenzlänge (größter Gangunterschied, bei dem gerade noch Interferenz beobachtet werden kann)

zeitliche Kohärenz

Räumliche Kohärenz: Bei ausgedehnten Lichtquellen relevant.

Hoch kohärente Lichtquelle: Laser (stimulierte Emission)

Medium mit Brechungsindex n

Abb. aus: Hering et al., "Physik für Ingenieure"

Interferenz an dünnen Schichten:

Interferenzen gleicher Neigung: AL

Optischer Gangunterschied zwischen Teilstrahlen 1' und 2':

n ... Brechungsindex

Zusätzlich: Phasensprung um π (Gangunterschied $\lambda/2$) für Reflexion am optisch dichteren Medium (= Teilstrahl 1' bei Reflexion bei A)

$$\Delta = 2d\sqrt{n^2 - \sin^2 \varepsilon} - \frac{\lambda}{2} = \begin{cases} m\lambda ...hell \\ \left(m + \frac{1}{2}\right)\lambda ...dunkel \end{cases}$$

Interferenzbedingung nur für bestimmte Einfallswinkel ε erfüllt!

Durchgelassenes Licht (kein Phasensprung!):

$$\Delta = 2d\sqrt{n^2 - \sin^2 \varepsilon} = \begin{cases} m\lambda ...hell \\ \left(m + \frac{1}{2}\right)\lambda ...dunkel \end{cases}$$

komplementär zu Interferenz des reflektierten Lichts (Energieerhaltung!)

Farben dünner Schichten (z.B. Intereferenzfarben von Seifenblasen): ε und d verändern sich.

Reflexvermindernde Schichten:

für n_G>n₁>n₀:

Phasensprünge für beide Reflexionen!

Minimale Reflexion (= maximale Transmission) für senkrechten Einfall:

$$\Delta = 2n_1 d = \frac{\lambda}{2} \implies d = \frac{\lambda}{4n_1} \qquad \text{,,} \lambda/4 \text{ Schicht"}$$

Dielektrische Spiegel: Reflexionsgrade > 99,9 % (für bestimmtes λ)

Vielschichtsystem mit:

$$n_1 d_1 = n_2 d_2 = \frac{\lambda}{4}$$

Reflexion weil nur jeder zweite Teilstrahl einen Phasensprung erfährt

Beugung am Spalt:

Parallelstrahlbündel tritt durch Spalt mit $d\sim\lambda \rightarrow$ keine einfache Begrenzung sondern Beugung

Minima für:

$$\Delta = \frac{b}{2}\sin\alpha = m\frac{\lambda}{2}$$

$$\sin \alpha_m = \pm m \frac{\lambda}{b}$$

dazwischen Maxima

Beugung an kreisförmiger Blende (Lochblende) mit Durchmesser d:

Erster dunkler Ring unter:

$$\sin \alpha_I = 1,22 \frac{\lambda}{d}$$

Auflösungsvermögen optischer Instrumente:

Zwei Objektpunkte unter dem Winkel δ können aufgelöst werden, wenn gilt:

 $\delta \ge 1,22\frac{\lambda}{d}$

Auflösungsvermögen steigt mit:

- zunehmendem Objektivdurchmesser, d
- abnehmender Wellenlänge, λ

Beugung am Gitter - Vielstrahlinterferenz

Grundsätzlich:

Kombination der Interferenz am Einzelspalt mit Interferenz von Licht benachbarter Spalte

- ~1000 Striche / mm; Breite von ~50 mm →
- ~50000 interferierende Teilstrahlen

Interferenzeffekte aufgrund benachbarter Spalte dominant!

Konstruktive Interferenz für:

$$\sin \alpha_m = \pm m \frac{\lambda}{g}$$

n ... Beugungsordnung; g ... Abstand zwischen den Gitterlinien

Je mehr Spalte, p, zur Interferenz beitragen, umso schärfer werden die Maxima!

Abb. aus: Hering et al., "Physik für Ingenieure"

gsin α

 $g\sin\beta$

Abb. 6.94 Beugungsfunktion eines Gitters mit p = 40 Spalten

Abstand der Beugungsmaxima steigt!

$$\sin \alpha_m - \sin \beta = \pm m \frac{\lambda}{g}$$

Egbert Zojer

Physik ET / Physik TE

Spektralapparate

Zentrales Element: Monochromator, der eine spektrale Zerlegung des Lichts durchführt.

Gittermonochromator:

(Beugung und Interferenz)
Winkelstellung des Gitters bestimmt,
Licht welcher Wellenlänge den
Monochromator passieren kann.

Bevorzugung einer bestimmten Beugungsordnung:

Gittermonochromator, schematisch

Abb. aus: Hering et al., "Physik für Ingenieure"

Prismenmonochromator:

Ablenkwinkel = $\delta(n)$ Dispersion: $n = n(\lambda)$

Abb. 6.100 Schema eines Prismenspektrometers

Röntgenbeugung am Kristallgitter:

Netzebenenabstände im Kristallgitter ~ Å (10⁻¹⁰ m) →

elektormagnetische Strahlung entsprechend kurzer Wellenlänge!

Abb. 6.105 Reflexion von Röntgenstrahlen an einer Netzebenenschar

Abb. aus: Hering et al., "Physik für Ingenieure"

Bragg'sche Bedingung: (konstruktive Interferenz)

 $2d\sin\Theta = m\lambda$

6.4.2 Polarisation des Lichts

Licht ist eine Transversale elektromagnetische Welle

Natürliches Licht typischerweise: kurze Wellenzüge mit zufälliger Polarisation (i.e., alle Schwingungsrichtungen kommen vor)

Physik ET / Physik TE

Polarisator:

- Erzeugt linear polarisiertes Licht
- E-Vektor schwingt in von Polarisator vorgegebener Ebene

Analysator:

Analysiert Polarisationszustand

$$I = I_0 \cos^2 \varphi$$

I ... Intensität nach den optischen Elementen

I₀ ... Intensität vor den optischen Elementen

 ϕ ... Winkel zwischen Polarisationsrichtungen

von Polarisator und Analysator

Linear polarisiertes Licht

Senkrecht zueinander polarisierte Wellen interferieren nicht!

Abb. 6.112

Elliptisch polarisiertes Licht:

Gangunterschied ≠ λ/4 oder unterschiedliche Amplituden

Abb. aus: Hering et al., "Physik für Ingenieure"

Erzeugung von polarisiertem Licht:

Reflexion und Brechung

An dielektrischer Oberfläche reflektiertes Licht ist teilweise polarisiert (präferentiell senkrecht auf Einfallsebene)

Polarisation vollständig, wenn reflektierter und transmittierter Strahl senkrecht aufeinander.

$$\sin \varepsilon_p = n \sin(90^\circ - \varepsilon_p) = n \cos \varepsilon_p$$

Brewster'sches Gesetz:

$$\tan \varepsilon_p = n$$

Erklärung: angeregte Elektronen haben Abstrahlcharakteristik wie lineare Antenne

Doppelbrechung

z.B. isländischer Kalkspat (CaCO₃)

Anisotrope Lichtausbreitung (i.e. richtungs- und polarisationsabhängiges c im Material)

Ordentlicher (o) und außerordentlicher (e) Strahl:

- unterschiedliche Polarisation
- unterschiedliche Ausbreitungsrichtung

Abb. 6.118 Wellenflächen in einachsigen Kristallen. a) negativer Kristall (z. B. Kalkspat) b) positiver Kristall (z. B. Quarz)

Optische Achse: Richtung in die c für o- und e-Strahl gleich ist

Abb. 6.117 Strahlenverlauf im Hauptschnitt eines

Erklärung: Ausbreitungsrichtungen

optischen Achse auf einen Kalkspat fallen – o-Strahl durch Totalreflexion abgelenkt

Egbert Zojer – Physik ET / Physik TE

Abb. aus: Hering et al., "Physik für Ingenieure"

λ/4 Plättchen zur Erzeugung zirkular polarisierten Lichts

Keine Doppelbrechung!

Bedingung für zirkular polarisiertes Licht bei Bestrahlung mit 45° zur optischen Achse linear polarisierten Lichts:

$$d(n_o - n_e) = (2k+1)\frac{\lambda}{4}$$

Abb. 6.121 Senkrechter Lichteinfall auf einen Kalkspat, der parallel zur optischen Achse geschnitten ist

Achse

Dichroismus:

Material mit unterschiedlichen Absorptionskoeffizienten für unterschiedliche Polarisation

- z.B. doppelbrechende Materialien mit unterschiedlichen λ abhängigen Absorptionskoeffizienten für o- und e-Strahl
- Folien mit orientierten stark anisotropen Molekülen

Polarisationsgrad typischerweise < 99 %

Physik ET / Physik TE Egbert Zojer

Flüssigkristallanzeige:

Flüssigkristalldrehzelle zwischen gekreuzten Polarisatoren

Flüsigkristallmoleküle durch anisotrope Oberflächen ausgerichtet (verdrillte nematische Phase)

Ausrichtung durch mittels angelegter Spannung erzeugtem elektrischen Feld zerstört

- Material doppelbrechend (|| zur Molekülachse polarisierte Komponente des Lichts langsamer)
- Richtige Dimensionierung: Drehung der Polarisationsebene um 90°

sehr geringe Leistungsaufnahme (~ 5 µW/cm²)

Optische Aktivität:

Fähigkeit eines Materials die Polarisationsebene linear polarisierten Lichtes zu drehen.

z.B. in Quarz in bestimmten Geometrien – schraubenförmige Anordnung der Atome

Modellvorstellung: Einfallendes linear polarisiertes Licht in links und rechts zirkular polarisierte Komponenten aufgespalten, die sich unterschiedlich schnell ausbreiten.

Drehwinkel proportional zu Kristalldicke: $\alpha = [\alpha]d$

Optische Aktivität auch in Lösungen chiraler Moleküle (z.B. verschiedene Zucker → konzentrationsabhängig (Konzentrationsmessung)

6.5 Quantenoptik 6.5.1 Lichtquanten

Photoelektrischer Effekt:

- E_{kin} der Photoelektronen abhängig von Frequenz des eingestrahlten Lichts, nicht von der Intensität!
- Es gibt eine Grenzfrequenz f_{ar} unterhalb der Licht keine Photoelektronen erzeugt
- Erhöhung der Lichtintensität: Strom der emittierten Photoelektronen nimmt zu.

Inkompatibel mit Erwartungen aufgrund der Wellennatur des Lichts!

Lichtquantenhypothese (von Einstein)

Energie wird in diskreten Paketen (Lichtquanten oder Photonen) transportiert.

$$E_{ph} = hf = \frac{hc}{\lambda}$$
 praktischer zusammenhang: $E[eV] = \frac{1239}{\lambda[nm]}$

$$E[eV] = \frac{1239}{\lambda [nm]}$$

Erklärung des Photoelektrischen Effekts:

$$E_{kin} = hf - W_A$$

E_P ... Energie des Photons; h ... Plancksches Wirkungsquantum f ... Lichtfrequenz; λ ... Lichtwellenlänge; c ... Lichtgeschwindigkeit

W_A ... Austrittsarbeit des Metalls, die überwunden werden muss, um das Elektron vom Metall zu "lösen"

Beispiel: Lichtelektrischer Effekt in Na: für $\lambda > 451$ nm detektiert man keine Photonen mehr. Wie groß ist W_{Δ} für Na?

Impuls eines Photons

Photonen haben keine Ruhemasse, aber dynamische Masse:

$$E_{ph} = hf = mc^2 \implies m_{ph} = \frac{hf}{c^2}$$

$$p_{ph} = mc \qquad \Longrightarrow \qquad \left| p_{ph} = \frac{hf}{c} = \frac{h}{\lambda} \right|$$

6.5.2 Welle-Teilchen Dualismus des Lichts

Licht zeigt bei verschiedenen Effekten (Beugung, Interferenz) Wellencharakter, bei anderen (lichtelektrischer Effekt, Stoßprozesse) Teilchencharakter.

Vereinheitlichende Theorie: Quantenelektrodynamik

Beispiel: Beugung am Doppelspalt

- Am Detektor werden an diskreten Punkten einzelne (ungeteilte) Photonen beobachtet
 - Wahrscheinlichkeitsfunktion für Auftreffen folgt Erwartung aus der Wellenoptik!

6.5.3 Wechselwirkung von Photonen mit Materie

Vereinfachtes Bild: Es gibt zwei energetisch unterschiedliche Zustände = Grundzustand und angeregter Zustand; z.B.: Elektron mit zwei möglichen diskreten Zuständen.

Abb. aus: Hering et al., "Physik für Ingenieure"

$$\boxed{E_{ph} = hf = E_2 - E_1}$$

Absorption:

Photon verschwindet und regt Elektron von E₁ zu E₂ an.

Emission:

Nach mittlerer Lebensdauer t fällt Elektron von E_2 zu E_1 und ein Photon wird emittiert.

Stimulierte (induzierte) Emission:

Photon stimuliert Übergang von E_2 zu $E_1 \rightarrow 2$ Photonen.

6.5.4 Laser

Light Amplification by Stimulated Emission of Radiation

Stimulierte Emission: Licht gleicher Frequenz, gleicher Polarisation und gleicher Phasenlage (kohärent)

Problem: in 2-Level System im thermodynamischen Gleichgewicht wird immer die Absorption überwiegen!

Besetzungsinversion

Besetzungsinversion:

ausreichende Anregung:

- Festkörperlaser optisches Pumpen (starke Lampen)
- Gaslaser Stöße in Gasentladungsröhre

3- oder 4-level System

Abb. aus: Hering et al., "Physik für Ingenieure"

Photon wird durch spontane Emission emittiert → erzeugt durch stimulierte Emissionen kohärente Photonen, solange Besetzungsinversion aufrechterhalten → Photonenlawine → einbringen in optischen Resonator

Auskoppelspiegel teildurchlässig

Im Resonator bildet sich eine stehende Welle aus!

Erzeugtes Licht: hoch monochromatisch, polarisiert, zeitlich und räumlich hoch kohärent

Anwendungen:

optische Messtechnik, Materialbearbeitung, Nachrichtentechnik (Glasfaserkommunikation, Datenspeicherung), Medizin und Biologie

Lasertypen: Gepulste Laser ↔ Dauerstrichlaser

Gaslaser: gepumpte Gasentladung

Festkörperlaser: Kristalle oder Gläser, die mit Farbzentren dotiert werden; mit Lampen oder Diodenlaser gepumpt

Halbleiterlaser: p-n Übergang unter hohen Stromdichten; häufig Heterostrukturen aus verschiedenen Halbleitermaterialien um Besetzungsinversion zu erleichtern.

Flüssigkeitslaser: Organische Farbstoffe, die optisch (Blitzlampen oder Laser) gepumpt werden – typischerweise durchstimmbar

6.5.5 Materiewellen

Elektromagnetische Wellen → **Teilchencharakter**

Warum nicht: Teilchen → Wellencharakter

De Broglie Beziehung:

$$\lambda = \frac{h}{p}$$

λ ... Wellenlänge des Teilchens

h ... Plancksches Wirkungsquantum

p ... Impuls des Teilchens

z.B.: Elektronenbeugung am Kristallgitter

Mittlerweile alle Beugungsphänomene auch mit Elektronen beobachtet und z.B. auch C60 an Gittern gebeugt!

Alle Teilchen tragen auch Wellencharakter in sich (je größer m, umso kleiner λ)!

Heisenberg'sche Unschärferelation:

Wellenbild - Beugung am Spalt: je schmäler Spalt umso breiter Beugungsfigur!

Elektronenstrahl durch Spalt:

Auftreffwahrscheinlichkeit entspricht "klassischer" Beugungsfigur!

- \rightarrow Durchtritt durch Spalt bewirkt horizontale Impulskomponente Δp_x
- $\rightarrow \Delta p_x$ steigt mit abnehmender Spaltbreite

örtliche Einschränkung $\Delta x \rightarrow$ Unbestimmtheit des Impulses Δp_x

$$\frac{\Delta p_x}{p} = \sin \alpha = \frac{\lambda}{\Delta x} = \frac{h}{p\Delta x}$$

allgemein gilt (Impuls-Orts Unschärfe):

$$\left| \Delta p_{x} \Delta x \ge h \right|$$

Je genauer der Ort eines Teilchens festgelegt wird, umso unbestimmter wird sein Impuls!

Analoge Beziehung z.B. auch für Energie und Zeit!