Shortest Path First Algorithm

충남대학교 컴퓨터공학과 이영석

최단거리 문제

- 문제
 - single source to all destination
 - single source to single destination
 - all source to all destination
 - 링크 가중치: 양, 음
- 알고리즘

 - Dijkstra: 링크의 가중치가 양의 값
 Bellman-ford: 링크의 가중치가 음의 값에도 됨
 - Floyd-warshall: all source to all desti nation
 - A*: speed
- Sing source to all destination
 - Shortest-path tree
 - O(E + V log V)

Dijsktra's Algorithm

```
Initialization:
  N' = \{u\}
  for all nodes v
     if v adjacent to u
       then D(v) = c(u,v)
    else D(v) = \infty
  Loop
    find w not in N' such that D(w) is a minimum
   add w to N'
    update D(v) for all v adjacent to w and not in N':
   D(v) = \min(D(v), D(w) + c(w,v))
   /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

		D(v)	D(w)	D(x)	D(y)	D(z)
Step) N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		5,u) 11,W	∞
2	uwx	6,w			11,W	14,X
3	uwxv				10,V	14,x
4	uwxvy					(12,y)
5	uwxvyz					

Notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)


```
function Dijkstra(Graph, source):
                                                        // Initialization
       dist[source] ← 0
2
       create vertex priority queue Q
       for each vertex v in Graph:
            if v \neq source
                dist[v] \leftarrow INFINITY
                                                       // Unknown distance from source to v
9
                prev[v] \leftarrow UNDEFINED
                                                        // Predecessor of v
10
11
            Q.add with priority(v, dist[v])
12
13
14
       while Q is not empty:
                                                      // The main loop
15
            u \leftarrow Q.\text{extract min()}
                                                   // Remove and return best vertex
16
            for each neighbor v of u:
                                                       // only v that are still in Q
17
                alt \leftarrow dist[u] + length(u, v)
18
                if alt < dist[v]</pre>
19
                     dist[v] \leftarrow alt
20
                     prev[v] \leftarrow u
21
                     Q.decrease priority(v, alt)
22
23
       return dist, prev
```

경로 찾기 (source -> target (u))

Bellman-Ford Algorithm

- 음의 가중치 링크순서

```
for v in V:
   v.distance = infinity
   v.p = None
source.distance = 0
for i from 1 to |V| - 1:
   for (u, v) in E:
  relax(u, v)
```

```
O(|V| \cdot |E|)
```

```
relax(u, v):
    if v.distance > u.distance + weight(u, v):
       v.distance = u.distance + weight(u, v)
       v.p = u
```

Bellman-Ford Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y) \}$$

where min is taken over all neighbors v of x

Bellman-Ford example

Clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

Node that achieves minimum is next hop in shortest path → forwarding table

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

node x table

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

= $\min\{2+1, 7+0\} = 3$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$

node x table

Bellman-Ford 다른 예

● 링크 처리 순서: (B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)
○ (A,B), (A, C), (B, C)

● 링크 처리 순서: (B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)
○ (B, E), (B, D), (E, D)

Floyd-Warshall Algorithm

 $\Theta(|V|^3)$

```
1 let dist be a |V| \times |V| array of minimum distances initialized to \infty (infinity)
2 for each edge (u, v)
3    dist[u][v] \leftarrow w(u, v) // 변 (u, v) 의 가중치
4 for each vertex v
5    dist[v][v] \leftarrow 0
6 for k from 1 to |V|
7    for i from 1 to |V|
8         for j from 1 to |V|
9         if dist[i][j] > dist[i][k] + dist[k][j]
10         dist[i][j] \leftarrow dist[i][k] + dist[k][j]
11    end if
```


	k = 4:
	$\begin{array}{c} (3) \rightarrow (4) \rightarrow (2) \\ (3) \rightarrow (4) \rightarrow (2) \rightarrow (1) \end{array}$
1	$1 \xrightarrow{-2} 3 \xrightarrow{2} 4 \xrightarrow{-1} 2$
)	

k = 0		j				
		1	2	3	4	
	1	0	∞	-2	∞	
i	2	4	0	3	∞	
	3	∞	∞	0	2	
	4	∞	-1	∞	0	

k = 1		j				
		1	2	3	4	
	1	0	∞	-2	∞	
i	2	4	0 (2	00	
ı	3	∞	∞	0	2	
	4	∞	-1	∞	0	

k = 2		j				
		1	2	3	4	
	1	0	00	-2	00	
	2	4	0	2	00	
i	3	00	00	0	2	
	4(3	-1 (1	0	

k = 3		j				
		1	2	3	4	
	1	0	∞	-2	0	
i	2	4	0	2	4	
ı	3	∞	∞	0	2	
	4	3	-1	1	0	

k = 4		j				
		1	2	3	4	
	1	0	(-1)-2	0	
i	2	4	0	2	4	
ı	3	5	1	0	2	
	4	3	-1	1	0	

최단경로 응용

- 라우터 SW
 - o Dijkstra -> OSPF https://en.wikipedia.org/wiki/Open Shortest Path First
 - Bellman-Ford -> RIP https://en.wikipedia.org/wiki/Routing_Information_Protocol