UNIVERSITY OF WATERLOO FINAL EXAMINATION WINTER TERM 2003

Surname: .	
First Name: .	
Id.#:	

Course Number	MATH 239			
Course Title	Introduction to Combinatorics			
Instructor	01 Professor Menezes 8:30 \square 02 Professor Irving 10:30 \square 03 Professor Goulden 1:30 \square			
Date of Exam	April 7, 2003			
Time Period	2-5 p.m.			
Number of Exam Pages (including this cover sheet)	14 pages			
Exam Type	Closed Book			

ADDITIONAL INSTRUCTIONS:

- 1. Write your name and Id.# in the blanks above. Put a check mark in the box next to your instructor's name and lecture time.
- 2. There are 14 pages to this exam including the cover page. Please be sure you have all 14 pages.
- 3. Answer each of the problems in the space provided; use the back of the previous page for additional space.
- 4. You may only use a non-programmable calculator. Show the reasoning used in any calculation.

Problem	Value	Mark Awarded	Problem	Value	Mark Awarded
1	11		6	14	
2	10		7	10	
3	9		8	13	
4	11		9	12	
5	10		TOTAL	100	

- [2] 1(a) Give an example of a composition of 31 into 7 parts, where each part is congruent to 1 modulo 3.
- [6] (b) Determine the number of compositions of 31 into 7 parts, where each part is congruent to 1 modulo 3.
- [3] (c) Determine the number of compositions of 29 into 7 parts, where each part is congruent to 1 modulo 3.

[7] 2(a) Let a_n , $n \ge 0$, be the number of $\{0,1\}$ -strings of length n in which neither 00011 nor 00111 occur as substrings. Prove that

$$\sum_{i \ge 0} a_i x^i = \frac{1}{1 - 2x + 2x^5 - x^6}.$$

[3] (b) From part (a), deduce a linear recurrence equation for a_n , with initial conditions to uniquely determine $\{a_n\}_{n\geq 0}$.

[9] 3. Solve the recurrence equation $c_n = c_{n-1} + 5 c_{n-2} + 3 c_{n-3}$, with initial conditions $c_0 = 1$, $c_1 = -6$, $c_2 = -5$.

[5] 4(a) Let n_i be the number of vertices of degree i in a tree with at least 2 vertices. Prove that

$$n_1 = 2 + n_3 + 2 n_4 + 3 n_5 + \dots$$

(b) What is the smallest number M of vertices of degree 1 in a tree with 3 vertices of degree 3 and 2 vertices of degree 5 (and any number of vertices of degree i, for $i \neq 3, 5$)? Justify your answer by proving that every such tree has at least M vertices of degree 1, and by drawing such a tree with exactly M vertices of degree 1.

- [7] 5(a) Construct a breadth-first search tree for the graph H below, using the vertex labelled 1 as the root vertex. When considering the vertices adjacent to the vertex being examined, add them to the tree in increasing order of label. Give a list of the vertices in the order that they join the tree.
- [3] (b) Use the breadth-first search tree from (a) to determine whether H is bipartite or not. If H is bipartite, find a bipartition; if H is not bipartite, find an odd cycle.

[6] 6(a) For each of the graphs below, determine if it is planar or not.

- [5] (b) Prove that a connected planar embedding with all faces of degree 3, and all vertices of degree either 4 or 5, must have at least s=8 faces.
- [3] (c) Draw a connected planar embedding with all faces of degree 3, and all vertices of degree either 4 or 5, with exactly s = 8 faces.

- [2] 7(a) State König's Theorem for bipartite graphs.
 [8] (b) Determine a maximum matching and a minimum matching and a minimum matching.
 - (b) Determine a maximum matching and a minimum cover in the graph G below, by applying the maximum matching algorithm, beginning with the matching indicated by the thick edges in G. You may find the extra drawings of G helpful in any iterations of the matching algorithm that are required.

7(b) (Continued)

- 8(a) For each of the following statements, if the statement is true in general, give a proof, or, if the statement is not always true, give a counterexample.
- [4] (i) Every connected graph with p vertices and p edges, for $p \ge 2$, contains exactly one cycle.
- [4] (ii) For a graph of girth 5, the size of the minimum cover is never more than 5 larger than the size of the maximum matching.

[5]	(b) Find a 3-c Why or why not?	colouring of the grap	h G below.	Can it be coloure	ed using fewer colours?

- 9. Let A_n , $n \ge 1$, be the graph whose vertices are the $\{0,1\}$ -strings of length n, and two strings a and b are adjacent if the number of 1's in a plus the number of 1's in b is equal to n. (HINT: It may be useful to consider the two cases n even and n odd separately in parts (c) and (d) below.)
- [3] (a) Draw the graphs A_1 , A_2 , A_3 .

[3]

- (b) Determine all values of $n \geq 1$ for which A_n is connected.
- [3] (c) Determine all values of $n \ge 1$ for which A_n is bipartite.
- [3] (d) Determine all values of $n \ge 1$ for which A_n is planar.