	sepal_length	sepal_width	petal_length	petal_width	outcome	1
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	

```
df.shape
```

(150, 5)

df ['outcome'].unique()

array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

df.dtypes

```
sepal_length float64
sepal_width float64
petal_length float64
petal_width float64
outcome object
dtype: object
```

df.tail()

	sepal_length	sepal_width	petal_length	petal_width	outcome	1
145	6.7	3.0	5.2	2.3	Iris-virginica	
146	6.3	2.5	5.0	1.9	Iris-virginica	
147	6.5	3.0	5.2	2.0	Iris-virginica	
148	6.2	3.4	5.4	2.3	Iris-virginica	
149	5.9	3.0	5.1	1.8	Iris-virginica	

```
import matplotlib.pyplot as plt
import seaborn as sns
def get_heatmap(df):
#this function gives heatmap of all nan values
  plt.figure(figsize=(6,4))
  sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis')
  plt.tight_layout()
  return plt.show()
get_heatmap(df)
```



```
#data preprocessing
from sklearn import preprocessing
#label encoding
LE= preprocessing.LabelEncoder()

df.outcome= LE.fit_transform(df.outcome)

df.head()
```

sepal_length sepal_width petal_length petal_width outcome

#data preprocessing
from sklearn import preprocessing
#label encoding
LE= preprocessing.LabelEncoder()

df.petal_width = LE.fit_transform(df.petal_width)

df.head()

	sepal_length	sepal_width	petal_length	petal_width	outcome
0	5.1	3.5	1.4	1	0
1	4.9	3.0	1.4	1	0
2	4.7	3.2	1.3	1	0
3	4.6	3.1	1.5	1	0
4	5.0	3.6	1.4	1	0

df.columns

#data preprocessing
from sklearn import preprocessing
#label encoding
LE= preprocessing.LabelEncoder()

df['sepal_length']= LE.fit_transform(df['sepal_length'])
df['sepal_length'].unique()
df.head()

	sepal_length	sepal_width	petal_length	petal_width	outcome
0	8	3.5	1.4	1	0
1	6	3.0	1.4	1	0
2	4	3.2	1.3	1	0
3	3	3.1	1.5	1	0
4	7	3.6	1.4	1	0

#data preprocessing
from sklearn import preprocessing
#label encoding
LE= preprocessing.LabelEncoder()

	sepal_length	sepal_width	petal_length	petal_width	outcome
0	8	3.5	4	1	0
1	6	3.0	4	1	0
2	4	3.2	3	1	0
3	3	3.1	5	1	0
4	7	3.6	4	1	0

#data preprocessing
from sklearn import preprocessing
#label encoding
LE= preprocessing.LabelEncoder()

df['sepal_width']= LE.fit_transform(df['sepal_width'])
df['sepal_width'].unique()
df.head()

	sepal_length	sepal_width	petal_length	petal_width	outcome
0	8	14	4	1	0
1	6	9	4	1	0
2	4	11	3	1	0
3	3	10	5	1	0
4	7	15	4	1	0

Importing StandardScaler from scikit-learn
from sklearn.preprocessing import StandardScaler
sst = StandardScaler()

Standardizing the data apart from the Class column
data_scaled=df.iloc[:,:-1].values

data_scaled=sst.fit_transform(data_scaled)
data_scaled=pd.DataFrame(data_scaled)

data_scaled.head()

	0	1	2	3	1
0	-0.906512	1.040637	-1.223108	-1.250977	

1 -1.151958 -0.125996 -1.223108 -1.250977

data_scaled.columns=['sepal_length','sepal_width','petal_length','petal_width']
data_scaled.head()

	sepal_length	sepal_width	petal_length	petal_width	1
0	-0.906512	1.040637	-1.223108	-1.250977	
1	-1.151958	-0.125996	-1.223108	-1.250977	
2	-1.397404	0.340657	-1.309243	-1.250977	
3	-1.520126	0.107330	-1.136974	-1.250977	
4	-1.029235	1.273963	-1.223108	-1.250977	

data_scaled['Class']= df.outcome

data_scaled = data_scaled[data_scaled["Class"].notna()]

data_scaled

	sepal_length	sepal_width	petal_length	petal_width	Class	1
0	-0.906512	1.040637	-1.223108	-1.250977	0	
1	-1.151958	-0.125996	-1.223108	-1.250977	0	
2	-1.397404	0.340657	-1.309243	-1.250977	0	
3	-1.520126	0.107330	-1.136974	-1.250977	0	
4	-1.029235	1.273963	-1.223108	-1.250977	0	
145	1.057052	-0.125996	0.844117	1.568421	2	
146	0.566161	-1.292630	0.671848	0.941888	2	
147	0.811607	-0.125996	0.844117	1.098521	2	
148	0.443438	0.807310	1.016386	1.568421	2	
149	0.075270	-0.125996	0.757983	0.785255	2	

150 rows × 5 columns

#Loading the data

X = data_scaled.iloc[:,0:4]

Y = data_scaled.iloc[:,4:5]

#Splitting the dataset
#Splitting the dataset into Train & Test Dataset
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.1,random_state=3)

X_train

	sepal_length	sepal_width	petal_length	petal_width
40	-1.029235	1.040637	-1.309243	-1.094344
72	0.566161	-1.292630	0.585714	0.315355
135	2.161558	-0.125996	1.619326	1.568421
113	-0.170176	-1.292630	0.671848	1.098521
42	-1.765572	0.340657	-1.309243	-1.250977
107	1.793389	-0.359323	1.705461	0.785255
21	-0.906512	1.507290	-1.136974	-0.937711
0	-0.906512	1.040637	-1.223108	-1.250977
131	2.284280	1.740617	1.791595	1.098521
106	-1.151958	-1.292630	0.241176	0.628621

135 rows × 4 columns

y_train

	Class
40	0
72	1
135	2
113	2
42	0
107	2
21	0
0	0
131	2
106	2

135 rows × 1 columns

```
from sklearn.linear_model import LogisticRegression
clf=LogisticRegression()
clf.fit(X_train,y_train)
```

/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversi
 y = column_or_1d(y, warn=True)
LogisticRegression()

→

y_pred=clf.predict(X_test)

y_pred

array([0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 1, 0, 1, 1, 2])

y_test

	Class	10+
47	0	
3	0	
31	0	
25	0	
15	0	
118	2	
89	1	
6	0	
103	2	
65	1	
88	1	
38	0	
92	1	
53	1	
140	2	

y_train_pred=clf.predict(X_train)

y_train_pred

```
array([0, 1, 2, 2, 0, 2, 2, 2, 1, 0, 2, 2, 1, 1, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 1, 0, 2, 0, 2, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 0, 0, 2, 2, 1, 2, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 2, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 2, 1, 2, 1, 2, 1, 0, 2, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 2, 2, 0, 0, 2, 2])
```

y_actual=np.array(y_train)
y_actual.flatten()

```
array([0, 1, 2, 2, 0, 2, 2, 2, 1, 0, 2, 2, 1, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 2, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 0, 2, 0, 2, 1, 0, 0, 2, 1, 1, 0, 0, 2, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 0, 2, 2, 1, 1, 1, 1, 0, 0, 2, 2, 1, 2, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 1, 2, 1, 2, 1, 0, 2, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 2, 2, 0, 0, 2, 2])
```

#Evaluating the Model
#Train set results
data = {'y_pred': y_train_pred, 'y_actual': y_actual.flatten()}

data=pd.DataFrame(data)
data

	y_pred	y_actual	1
0	0	0	
1	1	1	
2	2	2	
3	2	2	
4	0	0	
	•••		
130	2	2	
131	0	0	
132	0	0	
133	2	2	
134	2	2	

135 rows × 2 columns

df1=data_scaled

	sepal_length	sepal_width	petal_length	petal_width	Class	1	
0	-0.906512	1.040637	-1.223108	-1.250977	0		
1	-1.151958	-0.125996	-1.223108	-1.250977	0		
2	-1.397404	0.340657	-1.309243	-1.250977	0		
3	-1.520126	0.107330	-1.136974	-1.250977	0		
4	-1.029235	1.273963	-1.223108	-1.250977	0		
	•••	•••					
145	1.057052	-0.125996	0.844117	1.568421	2		
146	0.566161	-1.292630	0.671848	0.941888	2		
147	0.811607	-0.125996	0.844117	1.098521	2		
148	0.443438	0.807310	1.016386	1.568421	2		
149	0.075270	-0.125996	0.757983	0.785255	2		
150 rows x 5 columns							

150 rows × 5 columns

```
import math
# Initializing all the weights as 0
W0_new = 0
W1_new = 0
W2_new = 0
W3_new = 0
W4\_new = 0
W5_new = 0
# Alpha - learning rate
a = 0.03
import numpy as np
# MSE
MSE = np.array([])
#sigmoid function
def sigmoid(output):
    z = 1/(1+math.exp(-output))
    return z
for epoch in range(5):
    p_preds = np.array([])
    p_pred_exps = np.array([])
    error = np.array([])
    error_x1 = np.array([])
    error_x2 = np.array([])
    error_x3 = np.array([])
    error_x4 = np.array([])
    error_x5 = np.array([])
```

```
p class = np.array([])
# Assigning all the weights their new values after an epoch:
W0 = W0_new
W1 = W1_new
W2 = W2_new
W3 = W3_new
W4 = W4 \text{ new}
# Iterating through the Df and calculating all parameters:
for row in df1.itertuples():
    #The predicted value:
    p_pred = W0 + W1*row[1] + W2*row[2] + W3*row[3] + W4*row[4]
    p_preds = np.append(p_preds, p_pred)
    # Predicted value after applying the sigmoid function
    p_pred_exp = sigmoid(p_pred)
    p_pred_exps = np.append(p_pred_exps, p_pred_exp)
    # Bifurcating the predicted class as per its probability to be the default class
    if p_pred_exp > 0.5:
        p_class = np.append(p_class,1.0)
    else:
        p_class = np.append(p_class,0.0)
# The error in prediction
error = p_pred_exps - df1.Class
# Pre-calculating the error*x values for all the weights:
error_x1 = error*df1['sepal_length']
error x2 = error*df1['sepal width']
error_x3 = error*df1['petal_length']
error_x4 = error*df1['petal_width']
# Calculating MSE
MSE_val = (error).mean()
MSE = np.append(MSE,MSE_val)
# Updating the weights
W0_{new} = W0 - a*np.sum(error)
W1_{new} = W1 - a*np.sum(error_x1)
W2_{new} = W2 - a*np.sum(error_x2)
W3_{new} = W3 - a*np.sum(error_x3)
W4_new = W4 - a*np.sum(error_x4)
```

```
# Adding the predicted class as a separate column to check for performance:
df1['pred class']=p class
# Check if any class has been mis classified
df.dtypes
     sepal_length
                     int64
     sepal_width
                     int64
     petal_length
                     int64
    petal_width
                   int64
    outcome
                     int64
    dtype: object
df.columns
     Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
            'outcome'],
           dtype='object')
# True Positives: - Model Correctly predicts the positive class
print('TP: ',df1.Class[(df1.Class==1) & (df1.pred_class==1)].count())
# False Positives: - positive outcomes that the model predicted incorrectly
print('FP: ',df1.Class[(df1.Class==0) & (df1.pred_class==1)].count())
#True Negatives: - Model Correctly predicts the Negative class
print('TN: ',df1.Class[(df1.Class==0) & (df1.pred_class==0)].count())
#False Negatives: - negative outcomes that the model predicted incorrectly
print('FN: ',df1.Class[(df1.Class==1) & (df1.pred_class==0)].count())
     TP: 46
     FP: 0
    TN: 50
     FN: 4
import matplotlib.pyplot as plt
plt.plot(MSE,label='MSE',color='red')
# Add labels and title
plt.title("VISUALIZING MSE Vs EPOCHS")
plt.xlabel("EPOCHS -->")
plt.ylabel("MSE -->")
plt.legend()
plt.show()
```


X