The contour plot shows the error of approximating $\exp(x)$ with a Composite Taylor $[T_m(z/2^s)]^{2^s} \setminus$ and Composite Padé polynomial $[R_{k,m}(z/2^s)]^{2^s}$ with the polynomial degree of 2^sm and $2^s(m+k)$ respectively\ over the domain [-70,70].

Note: both Composite Taylor and Pade have the same polynomial degree of 160 but it looks like Pade does suprisingly well for\ a fixed s at 3 in both absolute and relative case. In terms of the maximum errors, both Taylor and Pade have them at the exact same spots\ (Re(z)=70 and Re(z)=-70 for absolute and relative respectively.)