(i) $(Q_k f)_{k+7} \subset \ell^2(H)$ for every $f \in H$, and

(ii) if $\sup_{k\in\mathbb{Z}}\|R(ik,A)\|<\infty$, then $\sum_{k\in\mathbb{Z}}R(ik,A)f_k$ is summable whenever $(f_k)_{k\in\mathbb{Z}}\in\ell^2(H)$.

<u>Proof.</u> (i) We consider the Hilbert space $L^2([0,2\pi],H)$ and obtain

$$0 \le \|T(\cdot)f - \sum_{k=-n}^{n} Q_k f \cdot e^{ik \cdot}\|^2$$

$$= \int_{0}^{2\pi} \|\mathbf{T}(s) f\|^{2} ds - \int_{0}^{2\pi} \sum_{k=-n}^{n} (\mathbf{T}(s) f) e^{iks} Q_{k} f) ds - \int_{0}^{2\pi} \sum_{k=-n}^{n} (e^{iks} Q_{k} f) \mathbf{T}(s) f) ds + \int_{0}^{2\pi} (\sum_{k=-n}^{n} e^{iks} Q_{k} f) \sum_{\ell=n}^{n} e^{i\ell s} Q_{\ell} f) ds$$

= $\int_0^{2\pi} \|\mathbf{T}(s)f\|^2 ds - 2\pi \sum_{k=-n}^n \|\mathbf{Q}_k f\|^2$, (use (7.5)).

It follows that $\sum_{k \in \mathbb{Z}} \|Q_k f\|^2 \le \frac{1}{2\pi} \cdot \int_0^{2\pi} \|T(s) f\|^2 ds < \infty$.

(ii) Fix $\lambda > 0$ sufficiently large and set

$$g_k := (1 + \lambda R(ik, A)) f_k, k \in \mathbb{Z}$$
.

Using the resolvent equation and then (A-I,(3.1)) we obtain $R(ik,A)\,f_k = R(\lambda + ik,A)\,g_k = \left[1 - e^{-2\pi\lambda}T(2\pi)\right]^{-1}\!\!\int_0^{2\pi}\,e^{-\lambda s}e^{-iks}T(s)\,g_k\,ds\;.$ This yields for every finite subset N of Z

Here $c := \|(1 - e^{-2\pi\lambda}T(2\pi))^{-1}\| \cdot (\int_0^{2\pi} \|T(s)\|^2 ds)^{1/2}$ and $M := \sup_{k \in \mathbb{Z}} \|R(ik,A)\|$.

Theorem 7.10. Let A be the generator of a semigroup $(T(t))_{t\geq 0}$ on some Hilbert space H . Then the following form of the spectral mapping theorem is valid

 $\sigma(\mathtt{T(t))}\setminus\{0\} = \{\mathrm{e}^{\lambda \mathsf{t}} : \mathtt{either} \ \mu_{\mathsf{k}} := \lambda + 2\pi\mathrm{i}\mathsf{k}/\mathsf{t} \in \sigma(\mathtt{A}) \ \mathtt{for some} \ \mathsf{k} \in \mathbb{Z}$ or $\left(\|\mathtt{R}(\mu_{\mathsf{k}},\mathtt{A})\|\right)_{\mathsf{k}\in\mathbb{Z}} \ \mathtt{is unbounded}\} \ .$

<u>Proof.</u> If $e^{\lambda t} \notin \sigma(T(t))$ it follows from the spectral inclusion theorem that $\mu_k \notin \sigma(A)$ for every $k \in \mathbb{Z}$ and from A-I,3.1, Formula (3.1), that $\|R(\mu_k,A)\|$ is bounded. For the converse inclusion it suffices to assume $t=2\pi$ and $\lambda=0$ (use the rescaling procedure A-I,3.1). Assuming that $i\mathbb{Z} \subset \rho(A)$ and $\|R(ik,A)\|$ is bounded then $\sum_{k\in\mathbb{Z}} R(ik,A)Q_k f$ is summable by Lemma 7.9°. Since every summable series is Césaro-summable condition (c) of Prop. 7.8 is satisfied and we conclude $1 \in \rho(T(2\pi))$.