Lesson 4 Entropy

4-3: Algorithmic Entropy: Kolmogorov Complexity

Jan Reimann

Math 574, Topics in Logic Penn State, Spring 2014

Information Content of Strings

In the previous lectures, we defined an information measure *I* for random variables/probability distributions.

Then we defined entropy as expected information.

Q: Can we define the information content of an *individual string* $\sigma \in 2^{<\mathbb{N}}$?

Information Content of Strings

We could try: Put a uniform probability distribution λ on $\{0,1\}^n$, and $\chi(\leq) = 2^{-h}$ define

$$I(\sigma) = -\log \lambda(\sigma).$$

Problem: all strings have the same probability, hence the same information content.

But we would expect the string

000000000...0000

to have low information content, while the

outcome of a coin toss

has high information content.

Information Content of Strings

Q: Can we find a probability distribution on strings such that

simple strings have high probability,

log P

complex strings have low probability?

We will see later that this indeed possible.

Kolmogorov Complexity

Idea: low information content = high compressibility

Kolmogorov complexity makes this idea rigorous.

Let M be a Turing machine, $\sigma \in 2^{<\mathbb{N}}$.

$${\it C_M}(\sigma)=\min\{|p|\colon M(p)=\sigma\},$$
 where we let $\min\emptyset=\infty.$

Mo gender

M-complexity = length of shortest *M*-description (code)

Problem: arbitrariness in the choice of M. Different machines can assign the same string drastically different complexities.

Solution: Use universal Turing machines.

Kolmogorov Complexity

We define a pairing function for strings as $\langle \sigma, \tau \rangle = 0^{|\sigma|} 1 \sigma \tau$.

We also identify natural numbers with their binary representation.

Note:
$$|m| = \log(m)$$
.

Recall a universal Turing machine *U* emulates all other TM's:

$$U(\langle e, \sigma \rangle) = M_e(\sigma).$$

Fix any universal TM U and define $C(\sigma) = C_U(\sigma)$.

Kolmogorov Complexity

CM

THM: [Invariance Theorem]

For any TM M there exists a constant c_M such that

$$\forall \sigma \ C(\sigma) \leqslant C_M(\sigma) + c_M.$$

$$M = M_e$$

▶ Proof: If p is a shortest M-program for σ , and e is the Gödel number of M, then $\langle e, p \rangle$ is a U-program for σ , and hence

$$C(\sigma) \leq |\langle e, p \rangle| = |0^{|e|} |ep| = 2 \log(e) + |p| + 1 = C_M(\sigma) + 2 \log(e) + 1.$$

$$|e| + |e| + \log(e) + |p|$$

Notation: $C(\sigma) \leq^+ f(\sigma)$ *means: There exists c s.t.*

eans: There exists c s.t.
$$= M(p)$$

$$\forall \sigma \ C(\sigma) \leqslant f(\sigma) + c$$

$$\leq f(\sigma) + f(\sigma) + f(\sigma)$$

_

Basic Properties of Kolmogorov Complexity

1. $C(\sigma) \leqslant^+ |\sigma|$

Consider the copy machine M(p)=p. We have $C_M(\sigma)\leqslant |\sigma|$ and hence by the invariance theorem $C(\sigma)\leqslant^+|\sigma|$.

2. For any n, there exists a string σ of length n with $C(\sigma) \geqslant |\sigma| = n$.

A simple counting argument: There are 2^n strings of length n, but only $1 + 2^1 + 2^2 + \cdots + 2^{n-1} = 2^n - 1$ programs of length < n.

3. If $h: 2^{<\mathbb{N}} \to 2^{<\mathbb{N}}$ is computable then $C(h(\sigma)) \leq^+ C(\sigma)$.

$$C(h(\sigma)) \leqslant^+ C_M(h(\sigma)) \leqslant C(\sigma).$$

M(P) = P(Q)

Subadditivity

How robust is *C* as an information measure?

▶ Do we have
$$C(\underline{\sigma}, \underline{\tau}) \leq^+ C(\sigma) + C(\tau)$$
?
$$C(C_{1}\underline{\tau}) = C(C_{2}\underline{\tau})$$

Failure of Subadditivity

THM: [Martin-Löf]

Suppose k is fixed. For any sufficiently long τ there exists $\sigma \sqsubset \tau$ such that $C(\sigma) < |\sigma| - k$.

Proof:

Order all finite strings length-lexicographically, i.e.

$$\langle \rangle < 0 < 1 < 00 < 01 < 10 < 11 < 000 < 001 < \dots$$

and let $n(\sigma)$ be the position of σ in this ordering.

- ▶ Suppose $\vartheta \sqsubseteq \tau$. Let $n = n(\vartheta)$, and let ρ be the next n bits of τ .
- ▶ Put $\alpha = \vartheta \cap \rho$. Then $\overline{C(\alpha)} \leqslant |\rho| + c$ for some constant c.
- ▶ If we choose $|\vartheta| > k + c$, then

$$C(\alpha) \leq |\rho| + c = (|\alpha| - |\vartheta|) + c < |\alpha| - k.$$

Failure of Subadditivity

COR: For any d there exists $\tau = \vartheta \cap \sigma$ such that

$$C(\tau) = C(\vartheta \cap \sigma) > C(\vartheta) + C(\sigma) + d.$$

$$C(\vartheta \cap \sigma) > C(\vartheta) + C(\sigma) + d.$$

Proof:

- ▶ Pick c such that $C(\alpha) \leq |\alpha| + c$ for all α .
- ▶ Choose a sufficiently long string τ with $C(\tau) \ge |\tau|$ and $C(\vartheta) < |\vartheta| (c + d)$ for some $\vartheta \sqsubset \tau$ (by THM).
- ▶ Let σ be such that $\tau = \vartheta \cap \sigma$.
- ► Then

$$C(\vartheta) + C(\sigma) < |\vartheta| - (c+d) + |\sigma| + c = |\tau| - d \leqslant C(\tau) - d.$$

Failure of Subadditivity

What went wrong?

We exploited that fact that a string not only provides information through its bits, but also through its length.

This fact is not captured by *C*.

Question: Can we alter the definition of complexity to take this into account?

