Math 5050 – Special Topics: Manifolds– Fall 2025 w/Professor Berchenko-Kogan

Paul Carmody Section 7: Quotients – May 17, 2025

Pg. 77: Exercise 7.11 (Real projective space as a quotient of a sphere).* For $x = (x^1, ..., x^n) \in \mathbb{R}^n$, let $||x|| = \sqrt{\sum_i (x^i)^2}$ be the modulus of x. Prove that the map $f : \mathbb{R}^{n+1} - \{0\} \to S^n$ given by

$$f(x) = \frac{x}{||x||}$$

induces a homeomorphism $\bar{f}: \mathbb{R}P^n \to S^n/\sim$. Where

$$x \sim y \iff x = \pm y, \, x, y \in S^n$$

(Hint: Find an inverse map

$$\bar{g}: S^n/\sim \to \mathbb{R}P^n$$

and show that both \bar{f} and \bar{g} are continuous.)

Given the relation above $x \sim y \iff x = \pm y, x, y \in S^n$. Define

$$\bar{g}([x]) = [x]$$

Note that on the left $[x] \in S^n / \sim$ and $[x] \in \mathbb{R}P^n$. For clarity, 1

$$[a] \in S^n / \sim \implies [a] = \{a, -a\} \text{ where } a \in S^n$$
$$[b] \in \mathbb{R}P^n \implies [b] = \{x \in \mathbb{R}^{n+1} | x = \alpha b, \forall \alpha \in \mathbb{R}\} \text{ where } b \in \mathbb{R}^{n+1}$$

Notice that

$$\bar{f}([b]) = [f(b)] = \left[\frac{b}{||b||}\right] \in S^n / \sim$$

$$\bar{g}\left(\left[\frac{b}{||b||}\right]\right) = [b]$$

$$\therefore \bar{g} \circ \bar{f} = \mathbb{I}$$
and $\bar{g}([a]) = [a] \in \mathbb{R}P^n$

$$\bar{f}(\bar{g}([a])) = \left[\frac{[a]}{||[a]||}\right] = [f(a)] = [a] \in S^n / \sim$$

$$\therefore \bar{f} \circ \bar{g} = \mathbb{I}$$

 \bar{f} is continuous because f is continuous. \bar{g} is continuous because it is a mapping of one identity to another. Therefore, \bar{f} is a homeomorphism.

Problems

7.1. Image of the inverse image of a map

Let $f: X \to Y$ be a map of sets, and let $B \subset Y$. Prove that $f(f^{-1}(B)) = B \cap f(X)$. Therefore, if f is surjective, then $f(f^{-1}(B)) = B$.

 \subseteq : Let $b \in B$ and $a \in X$ such that f(a) = b. Then, $a \in f^{-1}(b)$, thus a is an arbitrary point in $f^{-1}(B)$. We know that $f(a) \in f(X)$ and $f(a) \in B$, therefore $f(a) \in B \cap f(X)$ and $f(f^{-1}(B)) \subseteq B \cap f(X)$.

 \supseteq : Let $b \in B \cap f(X)$. Since $b \in f(X)$, there exists $a \in X$ such that f(a) = b and since $b \in B$ then $b = f(a) \in f(f^{-1}(b)) \subseteq f^{-1}(B)$. Therefore $b \in f(f^{-1}(B))$

 $^{{}^{1}\}mathbb{R}P^{n}\equiv\mathbb{R}^{n+1}/r(x,y)$ where r(x,y) is the relation that is true when x,y,p are colinear.

7.2. Real projective plane

Let H^2 be the closed upper hemisphere in the unit sphere S^2 , and let $i: H^2 \to S^2$ be the inclusion map. In the notation of example 7.13, prove that the induced map $f: H^2/\sim \to S^2/\sim$ is a homeomorphism. (*Hint:* Imitate Propostion 7.3.) Let H^2 be the upper hemisphere and S^2 be the unit sphere

$$H^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1, z \ge 0\}$$

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1\}$$

These two are homeomorphic to each via

$$\varphi: S^2 \mapsto H^2$$
$$\varphi(x, y, z) = (x, y, |z|)$$

and its inverse

$$\psi: H^2 \mapsto S^2$$

$$\psi(x, y, z) = (x, y, z)$$

Define the relations

$$(x, y, z) \sim (-x, -y, -z) \to x^2 + y^2 = z^2, \forall (x, y, z) \in S^2$$

 $(x, y, z) \sim (x, y, z) \to \sqrt{x^2 + y^2} = z, \forall (x, y, z) \in H^2$

Then we induce $f: H^2/\sim \to S^2/\sim$ as

$$f([(x, y, z)]) = [(x, y, z)]$$

7.3. Closedness of the diagonal of a Hausdorff Space

Deduce Theorem 7.7 from Corollary 7.8 (*Hint*: To prove that if S/\sim is Hausdorff, then the graph R of \sim is closed in $S\times S$, use the continuity of the projection map $\pi:S\to S/\sim$. To prove the reverse implication, use the openness of π .)

7.4. Quotient of a sphere with antipodal points indentified

Let S^n be the unit sphere centered at the oringin \mathbb{R}^{n+1} . Define an equivalence relation \sim on S^n by indentifying antipodal points:

$$x \sim y \iff x = \pm y, x, y \in S^n$$

- (a) Show that \sim is an open equivalence relation.
- (b) Apply Theorem 7.7 and Corallary 7.8 to prove that the quotient space S^n/\sim is Hausdorff, without making use of the homeomorphism $\mathbb{R}P^n\cong S^n/\sim$.

7.5. Orbit space of a continuous group action

Suppose a right action of a topological group G on a topological space S is continuous, this simply imeans that the map $S \times G \to S$ describing the action is continuous. Define two points x,y of S to be quivalent if they are in the same orbit; i.e., there is an element $g \in G$ such that y = xg. Let S/G be the quotient space; it is called the orbit space of the action. Prove that the projection map $\pi: S \to S/G$ is an open map. (This problem generalizes Proposition 7.14, in which $G = R^{\times} = \mathbb{R} - \{0\}$ and $S = \mathbb{R}^{n+1} - \{0\}$. Because \mathbb{R}^{\times} is commutative, a left \mathbb{R}^{\times} -action becomes a right \mathbb{R}^{\times} -action if scalar multiplicatin is written on teh right.)

7.6. Quotient of \mathbb{R} by $2\pi\mathbb{Z}$.

Let the additive group $2\mathbb{Z}$ act on \mathbb{R} on the right by $x \cdot 2\pi n = x + 2\pi n$, where n is an integer. Show that eh orbit space $\mathbb{R}/2\pi\mathbb{Z}$ is a smooth manifold.

7.7. The circle as aquotient space

- (a) Let $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha=1}^2$ be the atlas of circles S^1 in Example 5.7, and let $\bar{\phi}_{\alpha}$ be the map ϕ_{α} followed by the projection $\mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z}$. On $U_1 \cap U_2 = A \coprod B$, since ϕ_1 and ϕ_2 differ by an integer multiple of 2π , $\bar{\phi}_1 = p\bar{h}i_2$. Therefore, $\bar{\phi}_1$ and $\bar{\phi}_2$ piece together to give a well-defined map $\bar{\phi}: S^1 \to \mathbb{R}/2\pi\mathbb{Z}$. Prove that $\bar{\phi}$ is C^{∞} .
- (b) The complex exponetial $\mathbb{R} \to S^1, t \mapsto e^{it}$, is constant on each orbit of the action of $2\pi\mathbb{Z}$ on \mathbb{R} . Therefore, there is an induced map $F: \mathbb{R}/2\pi\mathbb{Z} \to S^1, F([t]) = e^{it}$. Prove that F is C^{∞} .
- (c) Prove that $F: \mathbb{R}/2\pi/Z \to S^1$ is a diffeomorphism.

7.8. The Grassmanian G(k, n)

7.9. Compactness of real projective space

Show that the real projective space $\mathbb{R}P^n$ is compact. (Hint: Use Exercise 7.11.)