시계열 분류에 따른 부품의 주문량 예측 모델 구축

팀 아벱퍼

(이재헌, 송요셉, 조성혜, 최찬영)

데이터 및 과제

- 서비스 부품의 수요 예측 및 공급량 관리 모델 구축
 - 과제 1: LG 사의 서비스 부품 **미래수요를 정확하게 예측**하여 서비스 지연에 따른 고객 만족도 향상
 - 과제 2: 재고 부족/ 과잉으로 인한 **비용을 고려**하여 부품의 **공급량을 관리**하여 최적의 비용 시스템 구축
- 훈련 데이터
 - 3362개 부품의 일간/주간 수요 데이터 (기간: 2018.07.27 2023.08.04)
 - 3362개 부품의 운송 및 재고 유지 비용 데이터
- 제출 데이터
 - 선정된 10개 부품에 대한 과제 1, 과제 2 예측 값 (기간: 2023.07.31 ~ 2023.10.29)
- 모델 성능 평가 방법

task1: relative MSE compared to zero

•
$$rMSE_i = \frac{\sum_{t=1}^{T} (d_{i,t} - p_{i,t})^2}{\sum_{t=1}^{T} d_{i,t}^2}$$

• Score1 = $\sum_{i \in Parts}^{T} rMSE_i / |Parts|$

task2: relative cost compared to zero shipping

•
$$rCost_i = \frac{\sum_{t=1}^{T} cost_{i,t}}{c_{air} \sum_{t=1}^{T} d_{i,t}}$$

• Score2 = $\sum_{i \in Parts}^{T} rCost_i / |Parts|$

시차에 따른 자기상관성을 기준으로 정상(Stationary)/비정상 시계열 분류

정상 시계열: 모든 시차에 대해 자기 상관성을 보이지 않음

정상성/비정상성에 따라 모델을 선정함

정상(Stationary) 시계열에는 ARMA 모델을 적용함

• Training Set: 2018 ~ 2022년의 주문량

Validation Set : 2023년의 주문량

비정상 시계열에는 각 시계열의 추세를 반영한 회귀 모델을 적용함

Training Set : 2018 ~ 2022년의 주문량

Validation Set : 2023년의 주문량

● 사인파 회귀

4개의 예측 모델 적용, Validation 결과가 가장 좋은 모델을 사용함

부품	데이터 특징	Linear	Polynomial	ARMA	Sine Fit	최종 모델
#4011	정상	0.2934	0.2460	0.4290	0.3481	다항 회귀 (2차)
#1045	비정상 (감소 추세)	0.1388	0.6343	0.3533	None	선형 회귀
#141	비정상 (증가 추세)	0.3801	0.3742	0.3972	None	다항 회귀 (2차)
#145	정상	0.2931	0.4832	0.2899	None	ARIMA (p=6, d=0, q=2)
#1464	정상	10	0.9583	0.9583	None	다항 회귀 (3차)
#3569	정상	0.375	0.5529	0.5385	None	선형 회귀
#4290	정상	0.2760	0.2436	0.3680	None	다항 회귀 (2차)
#493	비정상 (주기성)	0.2789	0.2050	0.0879	0.0653	Sine Fitting
#523	정상	0.5026	0.4870	0.4627	0.4152	ARIMA (p=2, d=0, q=1)
#779	정상	0.4803	0.2163	0.2360	None	다항 회귀 (2차)

과제 2: 접근 방법

Relative Total Cost 최소화 전략 - 비용의 상대적 비율과 재고 비축

모든 제품에 대해서 carrying, shipping, airplane cost의 비율은 다음과 같음.

Туре	Carrying	Shipping	Airplane
Relative Cost	1	14.58	65.64

비행기 배송 비용 ↑ ⇒ 재고가 부족하지 않도록 미리 넉넉하게 주문해야 함.

Shipping x 4 ≈ Airplane ⇒ 너무 많이 주문하면 주문 비용과 보관 비용이 커짐.

그러므로, **재고를 비축하되 적당하게 해야된다**. ⇒ 얼만큼이 적당한가?

재고를 얼마나 비축할 것인가?

1. 예측할 13주의 주문량의 확률 분포를 구한다.

e.g. Test 141 order :
$$X$$
, $x \sim p(x)$

2. 이 확률 분포를 기반으로 13주의 주문량 샘플을 10,000개 생성한다. (i.i.d)

137
$$\|$$
 $(x_{1,1}, x_{1,2}, ..., x_{1,13}), ..., (x_{10000,1}, x_{10000,2}, ..., x_{10000,13})$ 10,000 7 $\|$

재고를 얼마나 비축할 것인가? - 최적의 *k, m* 찾기

3. Task 1 예측 결과의 첫 주에 k 개를 더하고, 마지막 두 주에서 m 개씩 빼준다.

$$k = 4, m = 2$$

(4, 5, 7, ..., 4, 3) \rightarrow (8, 5, 7, ..., 2, 1)

4. k, m을 바꿔가며 랜덤 샘플과의 Relative Total Cost를 구한 후 평균 R.T.C가

정상성을 보이는 부품들은 푸아송 분포를 따른다고 가정

- 아래 6개의 부품은 특별한 추세나 주기성을 띄지 않고, 정상성을 보임
 : #4290, #779, #3569, #4011, #523, #1464 (총 6개)
- 수요가 완전히 무작위(random)로 발생한다고 가정
 ⇒ 수요 발생 간격이 푸아송 분포를 따름

一 푸아송 분포

주별 주문량의 도수 분포 (frequency distribution)

랜덤 샘플(step 1)을 위한 확률 분포 결정

예측할 13주의 주문량의 확률 분포 정하기

1. 주문량이 많은 부품(4개): 2023년도 주문량(최근 30주)의 주문량 분포 사용
 ex) (200, 200, 100, 50) → p(200) = 0.5, p(100) = 0.25, p(50) = 0.25

2. 주문량이 적은 부품(6개): 2023년도의 주문량 평균을 따르는 푸아송 분포 사용ex) (2, 1, 0) → 푸아송 분포 with λ=1

Grid Search로 최적의 k, m 값을 구함

<i>부품</i>	데이터 분포	Best K	Best M
#4011	푸아송 분포 (λ=1.61)	3	3
#1045	Empirical	57	0
#141	Empirical	4937	1571
#145	Empirical	127	32 /
#1464	푸아송 분포 (λ=0.46)	×	×
#3569	푸아송 분포 (λ=2.97)	4	1
#4290	푸아송 분포 (λ=2.44)	6	2
#493	Empirical	166	18
#523	3 푸아송 분포 (λ=1.80)		1
#779	푸아송 분포 (λ=4.13)	5	1

추가적인 고려사항

✓ #145: 분산에 비해 K가 너무 크다.

▼ ⇒ 재고유지비를 줄이기 위해,
첫 주에 K를 모두 더하는 대신 1~3 주에 K를 나눠서 더해주었다.

- ✓ #1464: 추출된 표본 값이 모두 0인 경우 자주 존재,Relative Total Cost를 계산할 수 없었다.
 - ⇒ 분산을 고려해 **첫 세 주에 (3, 2, 1)을 예측**하였다.

결론 및 한계

- 과제 1에서는, 정상/비정상 시계열을 분류하여 각 분류에 따라 모델을 선정하였음.
 - 주문량이 많고, 주기나 추세가 명확한 부품은 안정적인 예측 결과를 보임. (ex. #493, #1045)
 - (한계점) 회귀 모델의 경우 추세를 설명하기에는 적합할 수 있으나, underfitting이 발생했을 우려가 있기 때문에 ARMA 모델과의 조합(ensemble)을 통해 모델 복잡도를 높여 이를 해결할 수 있을 것임.

- 과제 2에서는, 정상/비정상 시계열 분류에 따라 각각 Empirical / Poisson 분포를 적용하여 최적의 주문량
 조정 값 (k, m)을 찾아내었음.
 - (한계점) Empirical / Poisson 분포 모두 적은 기간의 시계열(2023년 시계열)에서 얻었기 때문에 예측 기간에 발생할
 부품 수요를 모두 예측하는 데 한계가 있음.

Thank you:)

선정되지 않은 부품의 시계열을 활용하고자 Cross-Correlation 값이 높은 시계열을 조합하여 서비스 부품 수요를 예측하였지만, overfitting이 발생하여 예측 성능이 크게 떨어짐

특수한 사례들

✔ (#1045) 선형 모델에 감소 추세가 잘 반영됨

√ (#493) Sine Fitting 모델에 주기성이 잘 반영됨

✓ (#523) Sine Fitting 모델이 훈련셋에 overfit 됨

⇒ Sine Fitting Model의 Validation Score가 더 좋음에도 ARMA를 사용

2023년도 주문량이 푸아송 분포를 따르는가?

왜 첫 주와 마지막 두 주 값만 조정했을까?

- 재고 유지비를 감안하더라도 비행기 운송비가 매우 크기 때문에, 첫 주에 peak가 떠서 재고가 부족한 상황을 방지하고자 첫 주에 k를 모두 배치하였다.
- 재고 유지비를 줄이기 위해 마지막 두 주에서 모두 m씩 예측값을 빼주었다.

실험적으로 1~3주에 나눠 배치하는 방식 등 다양한 방식을 비교해 보았으나,
 유의미한 차이가 보이지 않았다.