APUNTES ÁLGEBRA I

Autor
Daniel Zermeño
ESFM
2025

Contents

Introducción		3
1	Propiedades de los números enteros Definición 1.1 (Divisibilidad en \mathbb{Z})	4
2	Complejos	6

Introducción

Los números Naturales son la base de todos los demás y de aquí se construirán más números.

Este conjunto se denota por \mathbb{N} y sus elementos son:

$$\mathbb{N} := \{1, 2, 3, \dots\}$$

Una manera de construir los axiomas de Peano es la siguiente:

- i) $1 \in \mathbb{N}$
- ii) Si $n \in \mathbb{N}$, entonces su sucesor n+1 también pertenece a \mathbb{N}
- iii) Si n+1=m+1, entonces n=m
- iv) $1 \neq n+1$ para todo $n \in \mathbb{N}$
- v) Principio de inducción: Se
a $E\subseteq \mathbb{N}$ tal que
 - \cdot) $1 \in E$.
 - $\cdot \cdot \cdot$) Si $n \in E$, entonces $n + 1 \in E$.

Entonces $\mathbb{N} = E$.

1 Propiedades de los números enteros

Considere el siguiente conjunto denotado por $\mathbb Z$:

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{\mathbb{N}\} = \{-\dots, -3, -2, -1, 0, 1, 2, 3, \dots + \}$$

Definimos las operaciones de suma y producto, denotadas por + y \cdot . El conjunto \mathbb{Z} , junto con estas dos operaciones, satisface las siguientes propiedades:

Sean $a, b, c \in \mathbb{Z}$

i)
$$(a+b) + c = a + (b+c)$$

ii)
$$a + b = b + a$$

iii)
$$\exists 0 \in \mathbb{Z} \text{ tal que } a + 0 = a$$

iv)
$$\exists \bar{a} \in \mathbb{Z} \text{ tal que } a + \bar{a} = 0$$

Note que la de la propiedad iv es -a.

Definición 1.1 (Divisibilidad en \mathbb{Z})

Sean $a, b \in \mathbb{Z}$.

Se dice que a divide a b o que es divisible por a si existe $c \in \mathbb{Z}$ tal que $b = a \cdot c$ Si a divide a b, esto se denota como $a \mid b$ y si a no divide a b se denota como $a \nmid b$. Ejemplos:

- i) 5 | 50 ya que $\exists x$ tal que $5 \cdot 10 = 50$, x = 10
- ii) $5 \nmid 16$ ya que $\nexists x$ tal que $5 \cdot (x) = 16$

Teorema 1.2

Propiedades de la divisibilidad: Sean $a.b.c \in \mathbb{Z}$. Entonces.

i)
$$1 | a y - 1 | a$$

2 Complejos

Un número complejo es una expresión de la forma a+ib, donde a y b son números reales e i es un símbolo Al conjunto de los números complejos se le denota como:

$$\mathbb{C} := \{ a + ib \mid a, b \in \mathbb{R} \}$$

i) Parte real de un número complejo.

En la expresión a+ib, al número real a se le conoce como la parte real del complejo a+ib y se le denota por:

$$\operatorname{Re}(a+ib) = a.$$

ii) Parte imaginaria de un número complejo.

En la expresión a+ib, al número real b se le conoce como parte imaginaria del complejo a+ib y se le denota por:

$$Im(a+ib) = b$$

iii) Forma normal de un número complejo.

La expresión a+ib se conoce como forma normal de un número complejo, otra manera de denotar a los números complejos es como una pareja ordenada de dos números

$$a + ib = (a, b)$$

iv) Plano Complejo:

