Actividad 2 (Análisis de transformaciones)

Empezar tarea

Aclaracion: las variables, matrices o vectores que tengan la terminacian "_a" o "_antropomorfico" y "-p" o "_planar "son varibales que perteneecen al analisis del robot antropomorfico y planar respectivamente. Ademas a lo largo del codigo hay pequenas explicaciones sobre cada parte del codigo

al final del codigo esta el analisis mas detallado.

Aclaracion2: En el pdf no se ven completas mis tabla comparativas, le sugiero que abra el archivo .mlx, por favor.

```
clear all
close all
clc

%* Declaración de variables simbólicas para cada robot

% Robot Planar (sufijo _p)
syms thl_p(t) th2_p(t) th3_p(t) t l1_p l2_p l3_p

% Robot Antropomórfico (sufijo _a)
syms th1_a(t) th2_a(t) th3_a(t) t l1_a l2_a l3_a

%% Configuración de las juntas (0 indica junta rotacional)
RP_planar = [0 0 0];
RP_antropomorfico = [0 0 0];

%% Vectores de coordenadas articulares y sus derivadas

% Estos vectores representan los ángulos de cada junta para cada robot.
Q_planar = [th1_p, th2_p, th3_p];
Q_antropomorfico = [th1_a, th2_a, th3_a];

% Velocidades articulares (derivadas temporales)
Qp_planar = diff(Q_planar, t);
Qp_antropomorfico = diff(Q_antropomorfico, t);

%% Número de grados de libertad (3 GDL para ambos robots)
GDL = size(RP_planar, 2);
```

======== ROBOT PLANAR DE 3 GDL ============

Transformación Local (Planar):

En el robot planar, cada eslabón tiene:

- Rotación pura sobre el eje z, con matriz:

```
[\cos(th) - \sin(th) \ 0]
[\sin(th) \cos(th) \ 0]
```

```
[ 0 0 1]
```

- Traslación a lo largo del eje x (por la longitud del eslabón)

Esto produce la matriz local:

$$A_p(:,:,i) = [\cos(th_i_p) - \sin(th_i_p) \quad 0 \quad l_i_p;$$

 $\sin(th_i_p) \cos(th_i_p) \quad 0 \quad 0;$
 $0 \quad 0 \quad 1 \quad 0;$
 $0 \quad 0 \quad 1 \quad 1$

La traslación ocurre en x, lo que refleja un movimiento en el plano XY.

```
% Definición de las matrices locales para el robot planar:
P_p(:,:,1) = [11_p; 0; 0];
R_p(:,:,1) = [\cos(th1_p) - \sin(th1_p) 0;
              sin(th1_p) cos(th1_p) 0;
                          0
                                     1];
P_p(:,:,2) = [12_p; 0; 0];
R_p(:,:,2) = [\cos(th2_p) - \sin(th2_p) 0;
              sin(th2_p) cos(th2_p) 0;
                          0
                                     11;
P_p(:,:,3) = [13_p; 0; 0];
R p(:,:,3) = [\cos(th3 p) - \sin(th3 p) 0;
              sin(th3_p) cos(th3_p) 0;
                          0
                                     1];
```

Transformación Global (Planar)

Se encadenan las transformaciones locales para obtener T_p(:,:,i)

La matriz global T p(:,:,i) representa la posición y orientación del eslabón i respecto al marco inercial.

En el robot planar, T_p resultará en una posición en el plano XY y una orientación que es la suma de las rotaciones.

```
Vector_Zeros = zeros(1, 3);
A_p(:,:,GDL) = simplify([R_p(:,:,GDL) P_p(:,:,GDL); Vector_Zeros 1]);
T_p(:,:,GDL) = simplify([R_p(:,:,GDL) P_p(:,:,GDL); Vector_Zeros 1]);
PO_p(:,:,GDL) = P_p(:,:,GDL); % Posición local
RO_p(:,:,GDL) = R_p(:,:,GDL); % Orientación local

for i = 1:GDL
    A_p(:,:,i) = simplify([R_p(:,:,i) P_p(:,:,i); Vector_Zeros 1]);
    try
        T_p(:,:,i) = T_p(:,:,i-1) * A_p(:,:,i);
```

```
catch
        T_p(:,:,i) = A_p(:,:,i);
    disp(['Matriz de Transformación global T_p', num2str(i), ':'])
    T_p(:,:,i) = simplify(T_p(:,:,i));
    pretty(T_p(:,:,i)) % Visualización de la matriz global planar
    RO_p(:,:,i) = T_p(1:3,1:3,i);
    PO_p(:,:,i) = T_p(1:3,4,i);
end
Matriz de Transformación global T_p1:
/ \cos(thl_p(t)), -\sin(thl_p(t)), 0, ll_p \
 sin(thl_p(t)), cos(thl_p(t)), 0,
                                1,
       0,
                       0,
                                   0
       0,
                       0,
                                0,
                                     1
Matriz de Transformación global T_p2:
/\cos(thl_p(t) + th2_p(t)), -\sin(thl_p(t) + th2_p(t)), 0, ll_p + l2_p \cos(thl_p(t)) \setminus
 \sin(\tanh_p(t) + \tanh_p(t)), \cos(\tanh_p(t) + \tanh_p(t)), 0, 12_p \sin(\tanh_p(t))
             0,
                                       Ο,
                                                     1,
                                                                     0
                                                      0,
                                                                     1
             Ο.
                                       0,
Matriz de Transformación global T_p3:
/ #2, -#1, 0, 11_p + 12_p \cos(th1_p(t)) + 13_p \cos(th1_p(t) + th2_p(t)) \setminus
                12_p \sin(th1_p(t)) + 13_p \sin(th1_p(t) + th2_p(t))
  #1, #2, 0,
   0, 0, 1,
  0, 0, 0,
                                         1
where
   #1 == sin(th1_p(t) + th2_p(t) + th3_p(t))
   #2 == cos(th1_p(t) + th2_p(t) + th3_p(t))
```

Comparacion (Planar):

Las matrices locales del robot planar son simples y reflejan una traslación en x y rotación en z resultando en una cinemática directa muy sencilla en el plano XY.

========= ROBOT ANTROPOMÓRFICO DE 3 GDL ===============

Transformación Local (Antropomórfico)

En el robot antropomórfico, la configuración es distinta:

- En la Articulación 1 se tiene:

 $P_a(:,:,1) = [0; 0; 11_a]$ --> Traslación a lo largo del eje z

 $R_a(:,:,1) = [\cos(th1_a) \ 0 \ \sin(th1_a);$

```
sin(th1_a) 0 -cos(th1_a);
0 1 0 ]
```

- En las Articulaciones 2 y 3 se realiza la traslación en el plano XY, similar a la planar

Comparaciós: La diferencia principal es la primera transformación, que mueve el sistema en z y rota en función de un eje distinto.

```
% Definición de las matrices locales para el robot antropomórfico:
P_a(:,:,1) = [0; 0; 11_a];
R_a(:,:,1) = [\cos(th1_a) \ 0 \ \sin(th1_a);
              sin(th1_a) 0 -cos(th1_a);
                                  0];
                           1
P a(:,:,2) = [12 a*cos(th2 a); 12 a*sin(th2 a); 0];
R_a(:,:,2) = [cos(th2_a) - sin(th2_a) 0;
              sin(th2_a) cos(th2_a) 0;
              0
                           0
                                      1];
P_a(:,:,3) = [13_a*cos(th3_a); 13_a*sin(th3_a); 0];
R_a(:,:,3) = [\cos(th3_a) - \sin(th3_a) \ 0;
              sin(th3_a) cos(th3_a) 0;
                           0
                                      1];
```

Transformación Global (Antropomórfico)

Similar al planar, se encadenan las matrices locales para obtener T_a(:,:,i).

Debido a la primera transformación, la posición y orientación global serán diferentes.

```
A_a(:,:,GDL) = simplify([R_a(:,:,GDL) P_a(:,:,GDL); Vector_Zeros 1]);
T_a(:,:,GDL) = simplify([R_a(:,:,GDL) P_a(:,:,GDL); Vector_Zeros 1]);
PO_a(:,:,GDL) = P_a(:,:,GDL);
RO_a(:,:,GDL) = R_a(:,:,GDL);
for i = 1:GDL
    A_a(:,:,i) = simplify([R_a(:,:,i) P_a(:,:,i); Vector_Zeros 1]);
    try
       T_a(:,:,i) = T_a(:,:,i-1) * A_a(:,:,i);
    catch
       T_a(:,:,i) = A_a(:,:,i);
    end
    disp(['Matriz de Transformación global T_a', num2str(i), ':'])
    T_a(:,:,i) = simplify(T_a(:,:,i));
    pretty(T_a(:,:,i)) % Visualización de la matriz global antropomórfica
    RO_a(:,:,i) = T_a(1:3,1:3,i);
    PO_a(:,:,i) = T_a(1:3,4,i);
```

```
Matriz de Transformación global T_al:
 / \cos(thl_a(t)), 0, \sin(thl_a(t)), 0 \setminus
              sin(thl_a(t)), 0, -cos(thl_a(t)),
                                                            0,
                                                                                                                                 1,
                                                                                                                                                                                                              0,
                                                                                                                                                                                                                                                                                   11_a
                                                                                                                                  0,
Matriz de Transformación global T_a2:
 / \; \cos(th1_a(t)) \; \cos(th2_a(t)) \; , \; -\cos(th1_a(t)) \; \sin(th2_a(t)) \; , \; \; \sin(th1_a(t)) \; , \; \; 12_a \; \cos(th1_a(t)) \; \cos(th2_a(t)) \; ; \; \cos(th2_a(t)) \; , \; \cos(th2_a(t)) \; , \; \; \cos(th2_a(t)) 
             \cos(\th 2_a(t)) \ \sin(\th 1_a(t)), \ -\sin(\th 1_a(t)) \ \sin(\th 2_a(t)), \ -\cos(\th 1_a(t)), \ 12_a \ \cos(\th 2_a(t)) \ \sin(\th 1_a(t)) \ \sin(
                                                                   sin(th2_a(t)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11_a + 12_a \sin(th2_a(t))
                                                                                                                                                                                                                                                                                                           cos(th2_a(t)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0,
                                                                                                                   0,
                                                                                                                                                                                                                                                                                                                                                         0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1
Matriz de Transformación global T_a3:
 /\cos(th1_a(t))\cos(\#2), -\cos(th1_a(t))\sin(\#2), \sin(th1_a(t)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              cos(th1_a(t)) #1
             sin(th1_a(t)) cos(#2), -sin(th1_a(t)) sin(#2), -cos(th1_a(t)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              sin(th1_a(t)) #1
                                                                   sin(#2),
                                                                                                                                                                                                                                                                                                                                                                                                                                             0, 11_a + 12_a \sin(th2_a(t)) + 13_a \sin(\#2)
                                                                                                                                                                                                                                                            cos(#2).
                                                                                           0,
                                                                                                                                                                                                                                                                                   0,
                                                                                                                                                                                                                                                                                                                                                                                                                                              0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1
where
                       #1 == 12_a \cos(th2_a(t)) + 13_a \cos(#2)
                       #2 == th2_a(t) + th3_a(t)
```

Comparacion (Antropomórfico):

La transformación local en la Articulación 1 involucra una traslación en z y una rotación que depende de th1_a,generando un marco que difiere del modelo planar. Las articulaciones 2 y 3 son similares al caso planar, pero la configuración global se ve afectada por la primera transformación.

========= CÁLCULO DEL JACOBIANO Y VELOCIDADES ===============

El cálculo del Jacobiano se realiza de forma similar para ambos robots,% pero el resultado refleja las diferencias en sus transformaciones locales y globales.

```
% Robot Planar
% Jacobiano lineal (diferencial) para el robot planar:
Jv11_p = functionalDerivative(PO_p(1,1,GDL), th1_p);
Jv12_p = functionalDerivative(PO_p(1,1,GDL), th2_p);
Jv13_p = functionalDerivative(PO_p(1,1,GDL), th3_p);
Jv21_p = functionalDerivative(PO_p(2,1,GDL), th1_p);
Jv22_p = functionalDerivative(PO_p(2,1,GDL), th2_p);
Jv23_p = functionalDerivative(PO_p(2,1,GDL), th3_p);
Jv31_p = functionalDerivative(PO_p(3,1,GDL), th1_p);
Jv32_p = functionalDerivative(PO_p(3,1,GDL), th2_p);
Jv33_p = functionalDerivative(PO_p(3,1,GDL), th3_p);
```

```
Jacobiano lineal obtenido de forma diferencial (Planar):
pretty(jv_d_p)
/ - 12_p \sin(th1_p(t)) - 13_p \sin(th1_p(t) + th2_p(t)), -13_p \sin(th1_p(t) + th2_p(t)), 0 \setminus
  12_p \cos(th1_p(t)) + 13_p \cos(th1_p(t) + th2_p(t)), \quad 13_p \cos(th1_p(t) + th2_p(t)), \quad 0
                          0,
                                                                  0,
Jv_a_p(:,GDL) = PO_p(:,:,GDL);
Jw_a_p(:,GDL) = PO_p(:,:,GDL);
for k = 1:GDL
    if RP planar(k)==0
        try
           Jv_a_p(:,k) = cross(RO_p(:,3,k-1), PO_p(:,:,GDL) - PO_p(:,:,k-1));
           Jw_a_p(:,k) = RO_p(:,3,k-1);
        catch
           Jv_a_p(:,k) = cross([0,0,1], PO_p(:,:,GDL));
           Jw_a_p(:,k) = [0,0,1];
        end
    else
           Jv_a_p(:,k) = RO_p(:,3,k-1);
        catch
           Jv_a_p(:,k) = [0,0,1];
        end
```

Jacobiano analítico obtenido (Planar) - Lineal:

disp('Jacobiano analítico obtenido (Planar) - Lineal:')

 $Jw_a_p(:,k) = [0,0,0];$

Jv_a_p = simplify(Jv_a_p);
Jw_a_p = simplify(Jw_a_p);

```
pretty(Jv_a_p)
```

```
/ #2, #2, -13_p sin(th1_p(t) + th2_p(t)) \
| 11_p + 12_p cos(th1_p(t)) + #1, 12_p cos(th1_p(t)) + #1, #1 |
| 0, 0, 0 /
```

where

end

end

```
#1 == 13_p \cos(th1_p(t) + th2_p(t))
  #2 == -12_p \sin(th1_p(t)) - 13_p \sin(th1_p(t) + th2_p(t))
disp('Jacobiano analítico obtenido (Planar) - Angular:')
Jacobiano analítico obtenido (Planar) - Angular:
pretty(Jw_a_p)
/ 0, 0, 0 \
 0, 0, 0
\ 1, 1, 1 /
% Velocidades del efector final para el robot planar:
V_p = simplify(Jv_a_p * Qp_planar.');
disp('Velocidad lineal obtenida (Planar):')
Velocidad lineal obtenida (Planar):
pretty(V_p)
                               - #2 -- th1_p(t) - #2 -- th2_p(t) - 13_p #3 -- th3_p(t)
 (11_p + 12_p \cos(th1_p(t)) + 13_p #1) -- th1_p(t) + (12_p \cos(th1_p(t)) + 13_p #1) -- th2_p(t) + 13_p #1
                                                         0
where
  #1 == cos(th1_p(t) + th2_p(t))
  #2 == 12_p \sin(th1_p(t)) + 13_p #3
  #3 == sin(th1_p(t) + th2_p(t))
W_p = simplify(Jw_a_p * Qp_planar.');
disp('Velocidad angular obtenida (Planar):')
Velocidad angular obtenida (Planar):
pretty(W_p)
                    0
                    0
 -- th1_p(t) + -- th2_p(t) + -- th3_p(t)
```

Jacobiano lineal obtenido de forma diferencial (Antropomórfico):

```
% Jacobiano analítico para el robot antropomórfico:
Jv_a_a(:,GDL) = PO_a(:,:,GDL);
Jw_a_a(:,GDL) = PO_a(:,:,GDL);
for k = 1:GDL
    if RP_antropomorfico(k) == 0
       try
          Jv_a_a(:,k) = cross(RO_a(:,3,k-1), PO_a(:,:,GDL) - PO_a(:,:,k-1));
          Jw_a_a(:,k) = RO_a(:,3,k-1);
       catch
          Jv_a_a(:,k) = cross([0,0,1], PO_a(:,:,GDL));
          Jw_a_a(:,k) = [0,0,1];
       end
    else
          Jv_a_a(:,k) = RO_a(:,3,k-1);
       catch
          Jv_a_a(:,k) = [0,0,1];
       Jw_a_a(:,k) = [0,0,0];
```

```
end
end
Jv_a_a = simplify(Jv_a_a);
Jw_a_a = simplify(Jw_a_a);
disp('Jacobiano analítico obtenido (Antropomórfico) - Lineal:')
```

Jacobiano analítico obtenido (Antropomórfico) - Lineal:

Jacobiano analítico obtenido (Antropomórfico) - Angular:

```
pretty(Jw_a_a)
```

```
% Velocidades del efector final para el robot antropomórfico:
V_a = simplify(Jv_a_a * Qp_antropomorfico.');
disp('Velocidad lineal obtenida (Antropomórfico):')
```

Velocidad lineal obtenida (Antropomórfico):

```
pretty(V_a)
```

where

```
#1 == 12_a \cos(th2_a(t)) + 13_a \cos(#3)
```

```
#2 == 12_a sin(th2_a(t)) + 13_a sin(#3)
#3 == th2_a(t) + th3_a(t)
```

```
W_a = simplify(Jw_a_a * Qp_antropomorfico.');
disp('Velocidad angular obtenida (Antropomórfico):')
```

Velocidad angular obtenida (Antropomórfico):

pretty(W_a)

Análisis Comparativo General entre el Robot Planar y el Robot Antropomórfico

- 1. Transformación Local:
- Robot Planar: Cada transformación local se define mediante una rotación pura sobre el eje z y una traslación a lo largo del eje x. Esto se refleja en la matriz:

Este modelo es muy directo y simple, porque el desplazamiento ocurre únicamente en x y la rotación se realiza sobre z.

• Robot Antropomórfico:La primera articulación se modela con una traslación a lo largo del eje z y una rotación que involucra una componente en el eje y , mientras que las articulaciones 2 y 3 tienen traslaciones en el plano XY. Esto significa que la matriz local de la primera articulación es:

lo que introduce una complejidad adicional en el encadenamiento global de las matrices de transformaciones.

2. Transformación Global:

- **Robot Planar**:La transformación global se obtiene multiplicando secuencialmente las matrices locales. El resultado final define la posición y orientación del efector final en el plano XY de manera directa y sencilla, ya que la traslación se acumula en x y la orientación es la suma de las rotaciones en z.
- Robot Antropomórfico: Debido a la complejidad en la primera transformación (traslación en z y rotación con componente en y), el encadenamiento global produce una posición y orientación que difieren notablemente de las del robot planar. Esto afecta la forma en que se posiciona el efector final en el espacio y, por ende, su zona de trabajo.

Comparativa de matrices de transformacian globlas en planar y antropomorfico, para las 3 articulaciones:

	Articulacion 1	Articulacion 2
Planar	Matriz de Transformación global T_p1: / cos(th1_p(t)), -sin(th1_p(t)), 0, l1_p \ sin(th1_p(t)), cos(th1_p(t)), 0, 0 0, 0, 1, 0 0, 0, 1 /	Matriz de Transformación global T_p2: / cos(th1_p(t) + th2_p(t)), -sin(th1_p(t) + sin(th1_p(t) + th2_p(t)), cos(th1_p(t) + 0,
Antropomorfico	Matriz de Transformación global T_a1: / cos(th1_a(t)), 0, sin(th1_a(t)), 0 \ sin(th1_a(t)), 0, -cos(th1_a(t)), 0 0, 1, 0, l1_a 0, 0, 0, 1 /	Matriz de Transformación global T_a2: / cos(th1_a(t)) cos(th2_a(t)), -cos(th cos(th2_a(t)) sin(th1_a(t)), -sin(th sin(th2_a(t)), 0,

3. Jacobiano y Velocidades:

- Robot Planar:La simplicidad de las transformaciones locales se refleja en un Jacobiano con estructura sencilla, donde el eje de rotación es constante [0 0 1]. Esto implica que el cálculo de las velocidades (lineal y angular) es directo, y las velocidades finales se obtienen mediante una multiplicación matricial que integra la suma de las rotaciones en z.
- Robot Antropomórfico: El Jacobiano, tanto en su forma diferencial como analítica, incorpora la complejidad de la primera transformación. Como resultado, el Jacobiano y las velocidades obtenidas muestran una mayor complejidad, lo que se traduce en una respuesta cinemática más adaptable, pero también más difícil de interpretar de manera intuitiva.

Comparativa de matrices Jacobianas en planar y antropomorfico:

Comparativa de velocidades lineales y angulares en planar y antropomorficos:

	Volocidad lineal
	velocidad iiileal

```
Planar
                                                     - #2 -- th1_p(t) - #2 -- th2_p(t) - l3_p #3 -- th3_p(t
                     (l1_p + l2_p cos(th1_p(t)) + l3_p #1) -- th1_p(t) + (l2_p cos(th1_p(t)) + l3_p #1) --
                                                                                 0
                    where
                      #1 == cos(th1_p(t) + th2_p(t))
                      #2 == l2_p sin(th1_p(t)) + l3_p #3
                      #3 == sin(th1_p(t) + th2_p(t))
Antropomorfico
                     - sin(th1_a(t)) #1 -- th1_a(t) - cos(th1_a(t)) #2 -- th2_a(t) - l3_a cos(th1_a(t)) si
                      cos(th1_a(t)) #1 -- th1_a(t) - sin(th1_a(t)) #2 -- th2_a(t) - l3_a sin(th1_a(t)) sin
                                                     #1 -- th2_a(t) + l3_a cos(#3) -- th3_a(t)
                   where
                      #1 == 12_a \cos(th2_a(t)) + 13_a \cos(#3)
                      \#2 == 12_a \sin(th2_a(t)) + 13_a \sin(\#3)
                      #3 == th2 a(t) + th3 a(t)
```

4. Conclusión General:

- El **robot planar** presenta una cinemática sencilla y directa, ideal para aplicaciones en las que el movimiento se limita al plano XY. La definición de sus transformaciones y el cálculo de su Jacobiano permiten una implementación y análisis más rápidos y fáciles.
- El **robot antropomórfico**, por otro lado, al incluir una transformación inicial con traslación en z y una rotación más compleja, ofrece una mayor destreza y capacidad de maniobra en el espacio. Sin embargo, esto conlleva un encadenamiento global y un cálculo del Jacobiano que reflejan dicha complejidad.