计算理论

教材:

[S] 唐常杰等译, Sipser著, 计算理论导引, 机械工业.

参考资料:

[L] Lewis等著, 计算理论基础, 清华大学.

计算理论 第三部分 计算复杂性

第7章 时间复杂性

- 1. 时间复杂性
 - { 0k1k | k≥0 }的时间复杂性分析
- 2. 不同模型的运行时间比较单带与多带确定与非确定
- 3. P类与NP类
- 4. NP完全性及NP完全问题

一. 时间复杂度

- •时间复杂度定义
- { 0^k1^k | k≥0 }的时间复杂度分析

时间复杂性(P153)

- ·判定器M的运行时间或时间复杂度是f:N→N, f(n)是M在所有长为n的输入上运行的最大步数.
- · 若f(n)是M的运行时间,则称

M在时间f(n)内运行或M是f(n)时间图灵机

举例:

时间复杂性


```
\mathbf{q_00000}
$q<sub>1</sub>000
xq_200
$x0q_30
                  q<sub>4</sub>$xxx_
x0xq_{2}
$x0q_4x_{-}
xq_40x_
                  xxx_q_a
$q_4x0x_{\_}
q_4$x0x_
$q_1x0x_
```

时间复杂性(P91)

·判定器M的运行时间或时间复杂度是f:N→N, f(n)是M在所有长为n的输入上运行的最大步数.

大0与小o记法(P154)

对于函数 $f,g:\mathbb{N}\to\mathbb{R}^+$,

记
$$f(n)=O(g(n)$$
,若存在 $c>0$ 使得

$$\overline{\lim}_{n\to\infty}\frac{f(n)}{g(n)}\leq c$$

记f(n)=o(g(n)),若

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

$$f(n) = O(n \log n)$$

图灵机M₁(P155)

```
讨论语言A = { 0^k1^k \mid k \ge 0 }的复杂性:
M<sub>1</sub>="对输入串w:
   1)扫描带,如果在1的右边发现0,则拒绝.
  2)如果0和1都在带上,就重复下一步.
  3) 扫描带,删除一个0和一个1.
   4)如果带上同时没有0和1,就接受."
时间分析: f(1) = 3, f(6) = 42, f(n) \ge 1,
 (1) 2n=O(n), (4) n=O(n),
\{ (2) \ 2n = O(n) + (3) \ 2n = O(n) \} \times (n/2) = O(n^2)
所以M_1的运行时间是O(n^2).
```

000111 *00111 \$00x11 \$\$0xx1 **\$\$\$xxx** accept $12+7\times3+3=36$ 000011 *00011 \$000x1 \$\$00xx \$\$\$0xx reject $12+9\times2+4=34$ 001100 *01100 reject

时间复杂性类(P155)

定义:对于函数t:N→N,

时间复杂性类 TIME(t(n)) 定义为:

TIME(t(n)) = { L | 存在O(t(n))时间TM判定L}

因为 M_1 是时间 $O(n^2)$ 图灵机,

所以 $A = \{0^k1^k: k \ge 0\}$ ∈ TIME(n^2).

是否存在更快的TM判定A呢?

图灵机M₂ (P155)

- M_2 ="对输入串w:
 - 1)扫描带,若1的右边有0,则拒绝.
 - 2)若0,1都在带上,重复以下步骤.
 - 3) 检查带上0,1总数的奇偶性, 若是奇数,就拒绝.
 - 4) 再次扫描带, 第1个0开始,隔1个0删除1个0; 第1个1开始,隔1个1删除1个1.
 - 5)若带上同时没有0和1,则接受. 否则拒绝."

0000011111 *000011111 \$0x0xx1x1x \$xx0xxxx1x \$xxxxxxxx accept 20×3+10=70

000111 *00111 \$0xx1x \$xxxxx accept 12×2+6=30 0001111 *001111 \$0xx1x1 reject

00111111 *0111111 \$0x1x1x1 \$xxxx1xx \$xxxx1xx reject

00011111 *0011111 \$0xx1x1x \$xxxxx1x reject

图灵机M₂(P155)

 M_2 ="对输入串w:

- 1)扫描带,若1的右边有0,则拒绝. O(n)
- 2)若0,1都在带上,重复以下步骤. O(n)
- 3) 检查带上0,1总数的奇偶性, 若是奇数,就拒绝. O(n)
- 4) 再次扫描带, 第1个0开始,隔1个0删除1个0; *O*(n) / 第1个1开始,隔1个1删除1个1.
- 5)若带上同时没有0和1,则接受. *O*(n) O(nlogn) 否则拒绝."

总时间:

$\{0^k1^k|k\geq 0\}\in TIME(n\log n) (P156)$

由 M_2 知道 $A \in TIME(n \log n)$. 有没有更快的TM识别A? 对于单带确定图灵机,由

定理: 时间o(nlogn)的单带图灵机判定的语言是正则语言.

 $TIME(o(nlogn)) \subseteq 正则语言类 \subseteq TIME(n) \subseteq TIME(o(nlogn))$

正则语言类 = TIME(n) = TIME(o(nlogn))

非正则语言 {0^k1^k | k≥0}∉TIME(o(nlogn))

计算理论 第三部分 计算复杂性

第7章 时间复杂性

- 1. 时间复杂性 { 0^k1^k | k≥0 }的时间复杂性分析
- 2. 不同模型的运行时间比较单带与多带确定与非确定
- 3. P类与NP类
- 4. NP完全性及NP完全问题

不同模型的时间复杂度比较

- 单带与多带
- 确定与非确定

单带与多带运行时间比较(P156-7)

{ 0^k1^k | k≥0 } 有*O*(n)时间双带图灵机 M₃="对输入串w:

- 1) 扫描1带,如果在1的右边发现0,则拒绝.
- 2) 将1带的1复制到2带上.
- 3) 每删除一个1带的0就删除一个2带的1.
- 4) 如果两带上同时没有0和1,就接受."

定理:设函数 $t(n) \ge n$,则每个t(n)时间多带TM和某个 $O(t^2(n))$ 时间单带TM等价.

非确定判定器的运行时间(P157)

定义:对非确定型判定器N,其运行时间f(n)是在所有长为n的输入上,所有分支的最大步数.

NTM的运行时间(P158)

定义:对非确定型判定器N,其运行时间f(n)是在所有长为n的输入上,所有分支的最大步数.

定理: 设t(n)≥n,则每个t(n)时间NTM 都有一个 2^{O(t(n))}时间单带确定TM与之等价.

定理:设t(n)≥n,则NTIME(t(n)) ⊆ TIME (2^{O(t(n))})

计算理论 第三部分 计算复杂性

第7章 时间复杂性

- 1. 时间复杂性
 - { 0^k1^k | k≥0 }的时间复杂性分析
- 2. 不同模型的运行时间比较单带与多带确定与非确定
- 3. P类与NP类
- 4. NP完全性及NP完全问题

三.P与NP

多项式时间(P158)

运行时间相差多项式可以认为是小的相差指数可以认为是大的.

例如:n³与2n,对于n=1000.

有关素性测试: Prime = { p | p是素数 } 如何编码? 一进制,二进制,十进制? 典型的指数时间算法来源于蛮力搜索. 有时通过深入理解问题可以避免蛮搜.

2001年Prime被证明存在多项式时间算法.

P类(P159)

定义:P是单带确定TM在 多项式时间内可判定的问题,即 $P = \bigcup_k TIME(n^k)$

P类的重要性在于:

- 1) 对于所有与单带确定TM等价的模型,P不变.
- 2) P大致对应于在计算机上实际可解的问题. 研究的核心是一个问题是否属于P类.

NP类(P165)

定义:NP是单带非确定TM在 多项式时间内可判定的问题,即 $NP = \cup_k NTIME(n^k)$ $EXP = \cup_k TIME(2^{O(n^k)})$ $P \subseteq NP \subseteq EXP$ $P \subset EXP$

一些P问题(P159)

有些问题初看起来不属于P 求最大公因子: 欧几里德算法, 辗转相除法 模p指数运算 ab mod p 上下文无关语言 有O(n³)判定器 素性测试 等等 以增加空间复杂性来减小时间复杂性

快速验证(P163)

 $HP = \{ \langle G, s, t \rangle | G是包含从s到t的$ 哈密顿路径的有向图}

 $CLIQUE = \{ \langle G, k \rangle | G是有k团的无向图 \}$

目前没有快速算法,但其成员是可以快速验证的.

注意:HP的补可能不是可以快速验证的.

快速验证的特点:

- 1. 只需要对语言中的串能快速验证.
- 2. 验证需要借助额外的信息:证书,身份证.

NP问题(P165)

团:无向图的完全子图(所有节点都有边相连).

CLIQUE = { <**G**,**k**> | **G**是有k团的无向图 }

定理: CLIQUE∈NP.

N="对于输入<G,k>,这里G是一个图:

- 1)非确定地选择G中k个节点的子集c.
- 2)检查G是否包含连接c中节点的所有边.
- 3)若是,则接受;否则,拒绝."

哈密顿路径问题HP ∈ NP(对比P164)

 $HP=\{ \langle G,s,t \rangle \mid G是包含从s到t的$ 哈密顿路径的有向图}

P时间内判定HP的NTM:

N₁="对于输入<G,s,t>:

- 1)非确定地选G的所有节点的排列 $p_1,...p_m$.
- 2)若 $s=p_1,t=p_m$,且对每个i,(p_i,p_{i+1})是G的边,则接受;否则拒绝。"

P与NP(P166)

P=成员资格可以快速判定的语言类.

NP=成员资格可以快速验证的语言类.

显然有 P⊆NP

但是否有 P=NP?

看起来难以想象,但是现在没有证明.

当代数学与 理论计算机 共同的难题.

计算理论 第三部分 计算复杂性

第7章 时间复杂性

- 1. 时间复杂性
 - { 0^k1^k | k≥0 }的时间复杂性分析
- 2. 不同模型的运行时间比较单带与多带确定与非确定
- 3. P类与NP类
- 4. NP完全性及NP完全问题

四.NP完全

- · NP完全性的定义
- ·SAT是NP完全问题
- •一些NP完全问题

NP完全性(P166)

Cook(美)和Levin(苏联)于1970's证明

NP中某些问题的复杂性与整个NP类的复杂性相关联,即:

若这些问题中的任一个找到P时间算法,则P=NP.

这些问题称为NP完全问题.

理论意义:两方面

- 1)研究P与NP关系可以只关注于一个问题的算法.
- 2)可由此说明一个问题目前还没有快速算法.

合取范式(P167-8)

- 布尔变量: 取值为1和0(True, False)的变量.
- 布尔运算: AND(∧),OR (∨),NOT (¬). 布尔公式.
 - 例: $\phi_1 = ((\neg x) \land y) \lor (x \land (\neg z)), \phi_2 = (\neg x) \land x$
- 称 ϕ 可满足,若存在布尔变量的0,1赋值使得 ϕ =1. 例 ϕ_1 , ϕ_2 . ϕ 不可满足 $\Leftrightarrow \neg \phi$ 永真
- ·文字:变量或变量的非,如x或¬x.
- 合取范式(cnf):由、连接的若干子句,如 $((\neg x_1) \lor x_2 \lor (\neg x_3)) \land (x_2 \lor (\neg x_3) \lor x_4 \lor x_5) \land ((\neg x_4) \lor x_5)$
- k-cnf (conjunctive normal form) 每个子句的文字数不大于k: 3cnf, 2cnf

可满足问题SAT(P167-8)

• 可满足性问题:

$$SAT = \{ \langle \phi \rangle \mid \phi$$
是可满足的布尔公式 $\}$ NP完全

•二元可满足性问题:

• 三元可满足性问题:

$$3SAT = \{ \langle \phi \rangle \mid \phi$$
是可满足的 $3cnf \} NP完全$

二元可满足问题2SAT∈P(ex7.23)

- 1. 当2cnf中有子句是单文字x,则反复执行(直接)清洗
 - 1.1 由x赋值, 1.2 删去含x的子句, 1.3 删去含¬x的文字 若清洗过程出现相反单文子子句, 则清洗失败并结束
- $(x_1 \lor x_2) \land (x_3 \lor \neg x_2) \land (x_1) \land (\neg x_1 \lor \neg x_2) \land (x_3 \lor x_4) \land (\neg x_3 \lor x_5) \land (\neg x_4 \lor \neg x_5) \land (\neg x_3 \lor x_4)$
- $\rightarrow (x_3 \vee \neg x_2) \wedge (\neg x_2) \wedge (x_3 \vee x_4) \wedge (\neg x_3 \vee x_5) \wedge (\neg x_4 \vee \neg x_5) \wedge (\neg x_3 \vee x_4)$
- $\rightarrow (x_3 \lor x_4) \land (\neg x_3 \lor x_5) \land (\neg x_4 \lor \neg x_5) \land (\neg x_3 \lor x_4)$
- 2. 若无单文字子句,则任选变量赋_{真/假值}各(赋值)清洗一次 若两次都清洗失败,则回答不可满足.
 - $x_3=1 \rightarrow (x_5) \land (\neg x_4 \lor \neg x_5) \land (x_4) \rightarrow (\neg x_4) \land (x_4)$ 失败 $x_3=0 \rightarrow (x_4) \land (\neg x_4 \lor \neg x_5) \rightarrow (\neg x_5) \rightarrow \varnothing$ 成功
- 3. 若成功清洗后有子句剩下,则继续2. 否则,回答可满足.
- 注: 见[S]习题7.23, 作者答案与清洗算法等价. 贪心.

$3SAT \in NP(P173)$

三元可满足性问题:

 $3SAT = \{ \langle \phi \rangle \mid \phi$ 是可满足的 $3cnf \}$

P时间内判定3SAT的NTM:

N="对于输入< $\phi>$, ϕ 是一个3cnf公式,

- 1)非确定地选择各变量的赋值T.
- 2)若在赋值T下 φ=1,则接受;否则拒绝."
- 第2步在公式长度的多项式时间内运行.

3SAT∈P?(补充)

 $3SAT = \{ \langle \phi \rangle \mid \phi$ 是可满足的 $3cnf \}$ 清洗算法对3cnf是否有效? 举例对比: $(x_3 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$ $x_3=1$ 清洗无矛盾; $x_1=0$ 和1都清洗失败, 不可满足. $(x_3 \lor \neg x_3) \land (\neg x_3 \lor x_1 \lor x_2) \land (\neg x_3 \lor x_1 \lor \neg x_2) \land (\neg x_3 \lor \neg x_1 \lor x_2) \land (\neg x_3 \lor \neg x_1 \lor \neg x_2)$ $x_3=1$ 清洗无矛盾; $x_1=0$ 和1都清洗失败, 返 $x_3=0$ 3cnf清洗不能避免搜索,指数时间. 目前还不知道3SAT是否属于P.

归约引理:若A≤_PB且B∈P,则A∈P(P168)

- 定义:多项式时间可计算函数f: Σ *→ Σ *. (例如f(u)=u0) 若3多项式时间图灵机, $\forall w输入$, 停机时带上的串为f(w)
- •定义:称A可多项式时间映射归约到 $B(A \leq_P B)$,

若存在多项式时间可计算函数 $\mathbf{f}:\Sigma^* \to \Sigma^*$,

 $\forall w \in \Sigma^*, w \in A \Leftrightarrow f(w) \in B.$

函数f称为A到B的多项式时间归约.

通俗地说:f将A的实例编码转换为B的实例编码.

利用f和B的判定器 构造A的判定器

C-L定理: SAT∈P⇔P=NP(P167-8)

- 定义:多项式时间可计算函数f: Σ *→ Σ *. (例如f(u)=u0) 若3多项式时间图灵机, $\forall w输入$, 停机时带上的串为f(w)
- 定义:称A可多项式时间映射归约到B (A≤_PB),

若存在多项式时间可计算函数 $f:\Sigma^* \to \Sigma^*$,

 $\forall w \in \Sigma^*, w \in A \Leftrightarrow f(w) \in B.$

函数f称为A到B的多项式时间归约.

通俗地说:f将A的实例编码转换为B的实例编码.

- Cook-Levin定理: 对任意 $A \in NP$ 都有 $A \leq_P SAT$.
- 归约引理: 若 A ≤_PB, 且 B∈P, 则 A∈P.
- 推论: 若 $SAT \in P$, 则 $A \in P$,则NP = P.

归约定理:若A≤_PB且B∈P,则A∈P(P168)

证明: 设 $f:\Sigma^* \to \Sigma^*$ 是A到B的P时间归约,

B有P时间判定器M,则

N="输入w, 计算M(f(w)), 输出M的运行结果" 在多项式时间内判定A.

问题: 若f是na时间归约, M是nb时间判定器, 则N时间?

设|w|=n,则|f(w)|≤n^a,则M(f(w))时间≤n^{ab}.

定理: 3SAT ≤ CLIQUE (P168)

 $3SAT = {<\phi> | \phi 是可满足的3cnf公式 }$ CLIQUE = { <G,k> | G是有k团的无向图 }. 证明:设 $\phi=(a_1\lor b_1\lor c_1)\land...\land(a_k\lor b_k\lor c_k)$,有k个子句. 令 $f(\phi) = \langle G, k \rangle$, G有k组节点,每组3个; 同组节点无边相连,相反标记无边相连.

例: $\mathbf{f}((x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)) = \langle \mathbf{G}, \mathbf{3} \rangle$

$$x_1$$
 x_2

需证:<**♦**>∈3**SAT**

<(G,k)> \in CLIQUE

$\forall \phi, \phi \in 3SAT \Leftrightarrow f(\phi) \in CLIQUE(P169)$

$$<\phi>(<(x_1\lor x_1\lor x_2)\land(\overline{x_1}\lor \overline{x_2}\lor \overline{x_2})\land(\overline{x_1}\lor x_2\lor x_2)>)\in 3SAT$$

- ⇔ 3变量赋值($x_1=0, x_2=1$)使得 $\phi=1$
- ⇒ 3k团(每组挑一个真顶点得到k团,非同组非相反)
- \Leftrightarrow f(ϕ) (<G,3>) \in CLIQUE.

F在|<φ>|的多项式时间内可计算:

设φ的长度3k=O(k),

则G的顶点数3k=O(k),

G的边数是O(k²)

可见 $f(\phi) = \langle G, k \rangle$ 的构造 可在k的多项式时间内完成.

NP完全性(P169,175)

- ·定义:语言B称为NP完全的(NPC),若它满足:
 - 1) B∈NP; 2) \forall A∈NP, 都有A≤_PB.
- 定理1: $A \leq_P B + B \in P \Rightarrow A \in P$.
- 定理2: 若B是NPC, 且B∈P, 则P=NP.

证明: $\forall A \in \mathbb{NP}, A \leq_P B + B \in P \Rightarrow A \in P$

• 定理3: 若B是NPC, B≤_PC,且C∈NP, 则C是NPC.

证明: $\forall A \in \mathbb{NP}$, $(A \leq_P B) + (B \leq_P C) \Rightarrow A \leq_P C$

• 3SAT是NPC + 3SAT≤_P CLIQUE ⇒ CLIQUE是NPC

Cook-Levin定理的证明步骤(补充)

- ·定义:语言B称为NP完全的(NPC),若它满足:
 - 1) $B \in NP$;
 - 2) \forall A∈NP, 都有A≤_PB.
- · Cook-Levin定理: SAT是NP完全问题.

证明步骤:

- 1. SAT∈NP(己证)
- 2. $\forall A \in NP, A \leq_P SAT$

∀A∈NP, 都有 A ≤_P SAT (P170)

- · 思想: 将字符串对应到布尔公式 利用接受的形式定义.
- 过程: 任取A∈NP, 设N是A的n^k时间NTM. ∀w(|w|=n), N接受w
 - ⇔N对w有长度小于nk的接受格局序列
 - ⇔能填好N在w上的画面(一个nk×nk表格)
 - $\Leftrightarrow \phi = f(w)$ 可满足($|<\phi>|=O(n^{2k})$)
- ·结论: SAT是NP完全的

N接受w⇔能填好N在w上的表(P170)

能填好表: 第一行是起始格局 上一行能产生(或等于)下一行 表中有接受状态

回忆图灵机(TM)形式化定义(P88)

TM是一个7元组(Q, Σ , Γ , δ , q_0 , q_a , q_r)

- 1) Q是状态集.
- 2) Σ是输入字母表,不包括空白符 」.
- 3) Γ 是带字母表,其中 $\sqcup \in \Gamma$, $\Sigma \subset \Gamma$.
- 4) δ : Q×Γ→Q×Γ×{L,R}是转移函数.
- 5) q_0 ∈Q是起始状态. 6) q_a ∈Q是接受状态.
- 7) $q_r \in Q$ 是拒绝状态, $q_a \neq q_r$.

回忆图灵机格局的定义(P88-9)

- 描述图灵机运行的每一步需要如下信息: 控制器的状态;存储带上字符串;读写头的位置。
- 定义: 对于图灵机M=(Q, Σ , Γ , δ , q_0 , q_a , q_r), $\psi_q \in Q$, $u,v \in \Gamma^*$, 则格局 uqv 表示
 - 1) 当前控制器状态为q;
 - 2) 存储带上字符串为uv(其余为空格);
 - 3) 读写头指向v的第一个符号.
- 起始格局,接受格局,拒绝格局.

格局演化举例(补充)

省略拒绝状态

4	香3	环
S	0	1
S	U	1

#	S
#	\$
#	S

•		_		_	_	''
#	\$	$\mathbf{q}_{\mathbf{a}}$	0	_	_	#
#	S	1	0	_	_	#
#	\$	$\mathbf{q}_{\mathbf{a}}$	0	_	_	#
#	\$	$\mathbf{q}_{\mathbf{a}}$	0	_	_	#
#	\$	$\mathbf{q_a}$	0	_	_	#

N接受w⇔能填好N在w上的表(补充)

构造布尔公式ø=f(w)(补充)

- 能填好画面 ⇔ **þ**=**f**(**w**)可满足
- $f(w) = \langle \phi \rangle$, $\phi = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}$.
- •对于任意赋值:
 - 1. ϕ_{cell} =1 ⇔ 每格有且只有一个符号;
 - 2. \$\phi_{start} = 1 \$\iff \$\phi\$ 第一行是起始格局;
 - **3.** ♦_{accept} =**1**⇔ 表格中有接受状态;
 - 4. ϕ_{move} =1 ⇔每行由上一行格局产生.
- $\forall w, w \in A \Leftrightarrow \langle \phi \rangle \in SAT \ \mathbb{P} \ A \leq_m SAT$
- · 若|<φ>|是|w|的多项式,则有A≤_pSAT

构造ϕ_{cell} (P170)

 ϕ 的变量: $x_{i,j,s}$, $i,j=1,...,n^k$, $s \in \mathbb{Q} \cup \Gamma \cup \{\#\}$ //全体符号 $x_{i,j,s}$: 第i行第j列是否填了符号s

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \{ [\bigvee_{s} x_{i,j,s}] \land [\bigwedge_{s \ne t} (\overline{x_{i,j,s}} \land x_{i,j,t})] \}$$

$$\bigvee_{s} x_{i,j,s} = 1 \Leftrightarrow (i,j)$$
格中至少有一个符号

$$\Lambda(\overline{x_{i,j,s} \wedge x_{i,j,t}}) = 1 \Leftrightarrow (i,j)$$
格中至多有一个符号

$$\text{ for } (x_{i,j,1} \vee x_{i,j,2} \vee x_{i,j,3}) \wedge (\overline{x_{i,j,1}} \wedge \overline{x_{i,j,2}}) \wedge (\overline{x_{i,j,1}} \vee \overline{x_{i,j,3}}) \wedge (\overline{x_{i,j,2}} \vee \overline{x_{i,j,3}})$$

- 长O(n^{2k})
- $\phi_{cell} = 1 \Leftrightarrow 每格有且只有一个符号;$

构造 ø_{start} (P171)

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge \cdots \wedge x_{1,n^k,\#}$$

- $\bigstar O(n^k)$
- $\phi_{\text{start}} = 1 \Leftrightarrow$ 第一行是起始格局;

构造 $\phi_{accept}(P171)$

$$\phi_{\text{accept}} = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{\text{accept}}}$$

- $\bigstar O(n^{2k})$
- ♦_{accept} = 1 ⇔ 表格中有接受状态

 $\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{move} \wedge \phi_{accept}$. ϕ_{move} 确定表的每行是上一行的合法结果. 只需判断每个2×3窗口是否"合法".

合法窗口(P171)

设
$$\delta(q_1,a)=\{(q_1,b,R), \delta(q_1,b)=\{(q_2,c,L),(q_2,a,R)\},$$

合法 窗口

a	$\mathbf{q_1}$	b
$\mathbf{q_2}$	a	c

a	$\mathbf{q_1}$	b
a	a	$\mathbf{q_2}$

d	a	$\mathbf{q_1}$
d	a	b

非法窗口

$$\begin{array}{|c|c|c|c|c|}\hline a & q_1 & b \\\hline q_1 & a & a \\\hline \end{array}$$

$$\begin{array}{|c|c|c|c|}\hline a & q_1 & b \\ \hline q_1 & a & q_1 \\ \hline \end{array}$$

$$\phi_{\text{move}} = \bigwedge_{1 \leq i, j \leq n^k} \left\{ \bigvee_{\substack{a_1, a_2, \dots, a_6 \\ \text{\mathbb{Z}-} \text{\mathbb{Z}-$} \text{$\mathbb{$$

合法窗口有常数个(P171)

设
$$\delta(q_1,a)=\{(q_1,b,R), \delta(q_1,b)=\{(q_2,c,L),(q_2,a,R)\},$$

a	\mathbf{q}_1	b
a	a	$\mathbf{q_2}$

d	a	$\mathbf{q_1}$
d	a	b

$$\phi_{\text{move}} = \bigwedge_{1 \leq i, j \leq n^k} \{ \bigvee_{\substack{a_1, a_2, \dots, a_6 \\ \text{是合法窗口}}} [x_{i, j-1, a_1} \wedge \dots \wedge x_{i+1, j+1, a_6}] \}_{\mathbf{O}(\mathbf{n}^{2\mathbf{k}})}$$

N的一个转移函数规则对应常数个合法窗口与N的转移函数无关的合法窗口有常数个

2×2窗口不能正确判断(补充)

设 $(q_2,c,L) \in \delta(q_1,b)$, $(q_3,f,L) \in \delta(q_1,e)$, a是任意符号

合法 窗口

a	$\mathbf{q_1}$	b
\mathbf{q}_2	a	c

a	$\mathbf{q_1}$	e
$\mathbf{q_3}$	a	f

非法窗口

a	$\mathbf{q_1}$	b
$\mathbf{q_3}$	a	c

A≤_PSAT, SAT是NPC(P172)

$$\begin{split} \phi_{\text{accept}} &= \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{\text{accept}}} \\ \phi_{\text{cell}} &= \bigwedge_{1 \leq i,j \leq n^k} \{ [\bigvee_{s} x_{i,j,s}] \wedge [\bigwedge_{s \neq t} (\overline{x_{i,j,s}} \vee \overline{x_{i,j,t}})] \} \\ \phi_{\text{start}} &= x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge \cdots \wedge x_{1,n^k,\#} \\ \phi_{\text{move}} &= \bigwedge_{1 \leq i,j \leq n^k} \{ \bigvee_{\substack{a_1,a_2,\cdots,a_6 \\ \text{是合法窗口}}} [x_{i,j-1,a_1} \wedge \cdots \wedge x_{i+1,j+1,a_6}] \} \end{split}$$

- (1) $f(\mathbf{w}) = \langle \phi \rangle = \langle \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept} \rangle$
- (2) $w \in A \Leftrightarrow \langle \phi \rangle \in SAT$,
- (3) $\diamondsuit |\mathbf{w}| = \mathbf{n}, \ \mathbb{M} \ |\langle \phi \rangle| = \mathbf{O}(\mathbf{n}^{2\mathbf{k}})$

推论:3SAT是NP完全的(P173)

只需将前面的ф改造为3cnf公式.

$$\phi = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}.$$

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge \cdots \wedge x_{1,n^k,\#}$$

$$\phi_{\text{accept}} = \bigvee_{1 \le i, j \le n^k} x_{i,j,q_{\text{accept}}}$$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \{ [\bigvee_{s} x_{i,j,s}] \land [\bigwedge_{s \ne t} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})] \}$$

降子句长度: 给定赋值T $a_1 \lor a_2 \lor ... \lor a_k = 1 \Leftrightarrow$

 \exists z赋值, 在T下 $(a_1 \lor a_2 \lor ... \lor a_{k-2} \lor z) \land (\neg z \lor a_{k-1} \lor a_k) = 1$

1个k-文字子句 变为 k-2个3-文字子句

 $|\phi_{accept}|: n^{2k} \rightarrow 3n^{2k}. |\phi_{cell}|: (|S|+|S|^2)n^{2k} \rightarrow (3|S|+|S|^2)n^{2k}.$

\$\psi_move\text{big}(P173)

其它NP完全问题(补充)

HP是NPC(3SAT≤_PHP)(P175)

 $HP=\{ \langle G,s,t \rangle \mid G是有向图, 有从s到t的哈密顿路径 \}$

任取3cnf公式 $\phi = (a_1 \lor b_1 \lor d_1) \land ... \land (a_k \lor b_k \lor d_k),$

不妨设有k个子句 $c_1,...,c_k,n$ 个变量 $x_1,...,x_n$

构造 $f(\phi) = \langle G, s, t \rangle$ 使得 ϕ 可满足 \Leftrightarrow G有从s到t的HP

一般由3cnf公式构造图有

变量构件, 子句构件, 联接构件

如右图3SAT到CLIQUE归约中

有子句构件和联接构件

变量构件和子句构件(P175)

 $\overline{\mathcal{C}}$ $\overline{$

图G的总体结构

 $\begin{array}{ccc} \circ & c_1 \\ \circ & c_2 \\ \vdots \\ \circ & c_k \end{array}$

对应n个变量 $x_1,...,x_n$,k个子句 $c_1,...,c_k$,起点s,终点t

这个图有哪些哈密顿路径?

钻石构件中的水平节点

n: 变量个数, k:子句个数 水平行除两端的两个节点外有3k+1个节点 每个子句对应一对节点(共2k个) 用分隔节点隔开(k+1个)

变量与子句构件的连接

当子句 c_j 含有文字 x_i 时添加的边左-右式路径可以通过

当子句 c_j 含有文字 $-x_i$ 时添加的边右-左式路径可以通过

可满足赋值对应正规路径

φ可满足⇒G有如下从s到t哈密顿路径

- 从上至下
- 赋值1的变量左-右式通过钻石
- 赋值0的变量右-左式通过钻石
- $\bullet c_i$ 选一真文字经过一次
- 称这种路径为正规路径

可满足赋值对应正规路径

φ可满足⇒G有如下从s到t哈密顿路径

- 从上至下 赋值1的变量左-右式通过钻石 赋值0的变量右-左式通过钻石
- $\bullet c_i$ 选一真文字经过一次 \bullet 称这种路径为正规路径

$$x_1=0, x_2=0,$$

$$x_1$$

$$x_1$$

$$x_1$$

$$x_2$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_4$$

$$x_5$$

$$x_4$$

$$x_5$$

$$x_6$$

$$x_7$$

$$x_8$$

$$x_8$$

可满足赋值对应正规路径

φ可满足⇒G有如下从s到t哈密顿路径

- 从上至下 赋值1的变量左-右式通过钻石 赋值0的变量右-左式通过钻石
- $\bullet c_i$ 选一真文字经过一次 \bullet 称这种路径为正规路径

$$x_1=1, x_2=0,$$
 x_1
 x_1
 $x_2=0$
 x_1
 $x_2=0$
 x_2

正规路径对应可满足赋值

- 由左-右或右-左式穿过钻石可确定变量赋值,
- c_j 被穿过说明在对应变量赋值下 c_j =1,则公式 ϕ 可满足 右边正规路径对应 x_1 =0, x_2 =0.

正规路径对应可满足赋值

- 由左-右或右-左式穿过钻石可确定变量赋值,
- c_j 被穿过说明在对应变量赋值下 c_j =1,则公式 ϕ 可满足 右边正规路径对应 x_1 =1, x_2 =0.

无向图哈密顿路径问题是NPC

 $HP = \{ \langle G, s, t \rangle \mid G$ 是有从s到t哈密顿路径的有向图 } UHP = $\{ \langle G, s, t \rangle \mid G$ 是有从s到t哈密顿路径的无向图 } 证明: $HP \leq_P UHP$, 映射归约如下 $\langle G, s, t \rangle \rightarrow \langle G', s_{out}, t_{in} \rangle$ s对应 s_{out} , t对应 t_{in} . 其它每个节点v对应 v_{in} , v_{mid} , v_{out} ,

HP≤_PUHP

映射归约 $\langle G,a,a \rangle \rightarrow \langle G',a_{out},a_{in} \rangle$ 举例 \mathbf{b}_{mid} $\mathbf{b}_{\mathbf{out}}$ b_{in} b b aout a a \mathbf{b}_{mid} $\mathbf{b}_{\mathbf{in}}$ $\mathbf{b}_{\mathrm{out}}$ b b aout

a

a

UHC是NP完全的(补充)

UHC = {<G>| G是有哈密顿回路的无向图 }

(1) UHC∈NP

构造多项式时间内判定UHC的非确定图灵机:

N="对于输入<G>, G是无向图,

- 1)非确定地选择G所有节点的一个排列 $v_1, v_2, ..., v_n$.
- 2)若(v₁,v₂,...,v_n,v₁)是G的路径,则接受;否则拒绝."
- (2) UHP≤_PUHC

由(1),(2)和UHP是NP完全的,得UHC是NP完全的

UHP≤_P**UHC**

UHP = $\{\langle G, s, t \rangle | G$ 是有从s到t哈密顿路径的无向图 $\}$ UHC = $\{\langle G \rangle | G$ 是有哈密顿回路的无向图 $\}$ 证明: 映射归约如下 $\langle G, s, t \rangle \rightarrow \langle G' \rangle$

 $\langle G,s,t \rangle \rightarrow \langle G' \rangle$ 增加一个节点两条边,多项式时间 G有从s到t的哈密顿路径 \Leftrightarrow G'有哈密顿回路

TSP是NP完全的(补充)

- TSP={<G,s,w,b> | 无向图G有 从s出发回到s, 权和≤b的哈密顿回路 } //将TSP修改成决定性问题
- (1) TSP∈NP. 构造多项式时间内判定TSP的NTM:
- N="对于输入<G,s,w,b>, G是无向图,s是节点,w是权, b≥0,
 - 1)非确定地选择G所有节点的排列 $s,v_2,...,v_n$.
 - 2)若(s,v2,...,vn,s)是G的路径, 且路径权和≤b, 则接受;
 - 3)否则拒绝."
- (2) UHC \leq_P TSP
- 由(1),(2)和UHC是NP完全的,得TSP是NP完全的

$UHC \leq_p TSP$

UHC = { <G> | G是有哈密顿回路(HC)的无向图 }

TSP = { <G,s,w,b> | G有s出发费用≤b的哈密顿回路 }

- 设G=(V,E), s∈V={v₁,...,v_n}//n个节点
- \Leftrightarrow G'=(V,V×V), f(<G>) = <G',s,w,n>,
- 定义权w: $w[v_i,v_j] = \begin{cases} 0 & \text{若}i = j \\ 1 & \text{若}(v_i,v_j) \in E \\ 2 & \text{其它} \end{cases}$
- f(<G>)增加边数≤n², 多项式时间可计算
- · G有HC ⇒ G'有s出发费用≤n的HC
- · G'有s出发费用≤n的HC
 - ⇒ 该回路上的边都在G中 ⇒ G有HC

0-1背包(knapsack)问题是NPC

[S]中称为子集和问题.

$$KS = \{ \langle A, t \rangle | t$$
等于 A 中一些数的和 }

- **KS**∈**NP**
- $3SAT \leq_{P} KS$

设 ϕ 是3cnf公式,构造 f($<\phi>$) = <A,t>

设 ϕ 有n个变量 $x_1,...,x_n$, k个子句 $c_1,...,c_k$,

构造数集 $A = \{y_1, ..., y_n, z_1, ..., z_n, g_1, ..., g_k, h_1, ..., h_k\}$ 和数t

- 所有数十进制表示,根据 ϕ 构造每个数的高n位和低k位
- A中数每位是0或1; t的低k位都是3, 高n位都是1.

$y_1,\ldots,y_n,z_1,\ldots,z_n,g_1,\ldots,g_k,h_1,\ldots,h_k,t$ 的构造

- 所有数十进制表示,根据 ϕ 构造每个数的高n位和低k位
- A中数每位是0或1; t的低k位都是3, 高n位都是1.
- 构造见下表. 总位数≤(n+k+1)².

	x_1	x_2	•••	x_n	c_1	c_2	•••	c_k
y_1		[1	i =	j		[1	芸で、中	占 有x.
•••	yx		<i>i</i> = <i>els</i>	<i>J</i>	yc_{ij}	$=\begin{cases} 1 \\ 0 \end{cases}$		Þ有x _i se
$\frac{y_n}{7}$								
z_1	- 34	_	i =	j	70 -	$\int 1$	若c _j 中不 els	有 $\neg x_i$
$z_{ m n}$	ZX	$_{ij}=\left\{ 0\right\}$	i = els	e	$zc_{ij} =$	0	els	e
g_1		0				$\sqrt{1}$	i = 1	j
g_k		U			gc_{ij}	= 0	i = j else	?
h_1		0			1	$\int 1$	i = 1	j
		U			hc_{ij}	$=$ \int_{0}^{∞}	i =] else	•
h_k								
t	1	1	•••	1	3	3	•••	3

• yx区: 单位阵

● zx区: 单位阵

● gc区: 单位阵

● hc区: 单位阵

• yz行 c_i 列 \leq 3个1

归约举例1

 $f(\langle (x_1 \lor \neg x_2) \land (\neg x_2) \gt) = \langle \{1010,100,1000,111,10,1,10,1\},1133 \gt$

	$x_1 x_2 \dots x_n$	$c_1 c_2 \dots c_k$
y_1	$\begin{bmatrix} 1 & i = j \end{bmatrix}$	〔1
•••	$yx_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$	$yc_{ij} = \begin{cases} 1 & \textit{若}c_{j} 中有x_{i} \\ 0 & \textit{else} \end{cases}$
y_n	(0 else	(0 else
z_1	$\begin{bmatrix} 1 & i = i \end{bmatrix}$	$zc_{ij} = \begin{cases} 1 & 若c_j 中有¬x_i \\ 0 & else \end{cases}$
•••	$zx_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$	$zc_{ij} = \begin{cases} 1 & \exists c_j + b \exists (x_i) \\ 0 & else \end{cases}$
$z_{\rm n}$	^y (0 else	(0 eise
g_1		$gc_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$
•••	0	$gc_{ij} = \begin{cases} 0 & \rho s\rho \end{cases}$
$ g_k $		³ (0 else
h_1		$hc_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$
•••	0	$hc_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$
h_k		(U else
t	1 1 1	3 3 3

	10	10		
	x_1	x_2	<i>c</i> ₁	<i>c</i> ₂
y_1	1 一 单 位 0	0 + K#:	1	0
y_2	0	1	0	0
z_1	1 分分	0	0	0
z_2	単位 0) 第 1	1	1
g_1	0	0	1 单位	0
g_2	0	0	0	1
h_1	0	0	1 一 单 位 0	0 * K#
<i>h</i> ₂	0	0	0	1
t	1	1	3	3

 y_1 行 c_1 列是1,因为 c_1 含 x_1 ; y_1 行 c_2 列是0,因为 c_2 不含 x_1 ; y_2 行 c_1 列是0,因为 c_1 不含 x_2 ; y_2 行 c_2 列是0,因为 c_2 不含 x_2 ; z_1 行 c_1 列是0,因为 c_1 不含 x_1 ; z_1 行 c_2 列是0,因为 c_2 不含 x_1 ; z_2 行 c_1 列是1,因为 c_1 含 x_2 ; z_2 行 c_2 列是1,因为 c_2 含 x_2 .

归约举例2

 $f(\langle (x_1 \lor \neg x_2) \gt) = \langle \{101,10,100,11,1,1\},113 \gt$

	$x_1 x_2 \dots$	x_n	c_1	···	c_k
y_1	$\lceil 1 \mid i \rceil$			ſ1 Ż	c.由有x.
•••	$yx_{ii} = \begin{cases} 1 & 1 \\ 0 & 1 \end{cases}$	= j else	$yc_{ij} = \langle$	1 1	fc _j 中有x _i else
y_n	(0 6	else	,	(U	else
z_1	$\begin{bmatrix} 1 & i \end{bmatrix}$	= j	[1		_j 中有¬x _i else
•••	$zx_{ij} = \begin{cases} 1 & 0 \\ 0 & a \end{cases}$	= j else	$ zc_{ij}=\{$	•	alsa
$z_{\rm n}$	^η (0 e	else	U		eise
g_1				$\begin{cases} 1 & i \\ 0 & i \end{cases}$	$\ddot{i} = \dot{j}$
•••	0		$gc_{ij} = c$	ĺ n	alsa
g_k					eise
h_1	0		1	$\int 1 i$	i = j else
•••	0		$hc_{ij} = c$	1	alaa
h_k				(U	eise
t	1 1	1	3 3	•••	3

	x_1	x_2	c_1
y_1	1	0	1
y_2	0	1	0
z_1	1	0	0
z_2	0	1	1
g_1	0	0	1
h_1	0	0	1
t	1	1	3

ϕ 可满足⇔ $f(<\phi>)∈KS(knapsack)$

 $f(\langle (x_1 \lor \neg x_2) \land (\neg x_2) \gt) = \langle \{1010,100,1000,111,10,1,10,1\},1133 \gt$

	x_1	x_2	c_1	c_2
y_1	1	0	1	0
y_2	0	1	0	0
z_1	1	0	0	0
z_2	0	1	1	1
g_1	0	0	1	0
g_2	0	0	0	1
h_1	0	0	1	0
h_2	0	0	0	1
t	1	1	3	3

- 取赋值 $x_1=0, x_2=0, (可满足)$ 对应选 $z_1, z_2,$ 添 $g_1, g_2, h_1, h_2,$ 得和t
- 取赋值x₁=1, x₂=0, (可满足)
 对应选 y₁, z₂,
 添 g₂, h₁, h₂, 得和t
- 取赋值 $x_1=0, x_2=1, (不可满足)$ 对应选 $z_1, y_2,$ 得不到 t
- 取赋值 $x_1=1, x_2=1, (不可满足)$ 对应选 $y_1, y_2, 得不到 t$

φ可满足⇒ f(<φ>)∈KS

f (
$$<\phi>$$
) = $$,
 $A = \{ y_1,...,y_n,z_1,...,z_n, g_1,...,g_k,h_1,...,h_k \}$

	x_1	x_2	•••	X_n	c_1	c_2	•••	c_k
y_1		[1	i =	j		ſ1		j有x.
•••	yx_i		i = els	J	yc_{ij}	$=\begin{cases}1\\0\end{cases}$	若c _j 中 el	111
y_n		<u> </u>	els	e		U	<u>e</u> 1	se
z_1		[1	i =	j		$\int 1$	若 c_i 中不	$\exists \neg x_i$
•••	ZX_{ij}		i = els	J	$zc_{ij} =$	10	若c _j 中不 els	0
$z_{\rm n}$	J	<u> </u>	els	<u>e</u>		<u>"</u>		
\boldsymbol{g}_1						[1	i =	j
•••		0			gc_{ij}	= {	i = j else	
g_k						U	eise	,
h_1						$\int 1$	i = 1	j
•••		0			hc _{ij}	$= \{$	i = j else	
h_k						U	eise	
t	1	1	•••	1	3	3	•••	3

若 $\phi 有满足赋值(< \phi > ∈ 3SAT)$ 则 对每个 x_i ,

 $若x_i=0$,则选数 z_i .

第 x_i 列的和是1.

对每个 c_i ,

已选数 c_i 列和 $\geq 1, \leq 3$

若=1,则选 g_i, h_i ;

若=2,则选 g_i ;

若=3,则不用选

已选数第 c_i 列的和是3

即可选出子集和=t

即 $f(\langle \phi \rangle) \in KS$

φ可满足← f(<φ>)∈KS

f (
$$<\phi>$$
) = $$,
 $A = \{y_1,...,y_n,z_1,...,z_n, g_1,...,g_k,h_1,...,h_k\}$

	x_1 x_2 \dots x_n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
y_1		
•••	$yx_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$	$yc_{ij} = \begin{cases} 1 & \textit{若}c_j \text{中有}x_i \\ 0 & \textit{else} \end{cases}$
y_n	³ (0 else	(U else
z_1	$\begin{bmatrix} 1 & i = j \end{bmatrix}$	$ zc_{ij} = \begin{cases} 1 & \exists c_{j} \text{中有} \neg x_{i} \\ 0 & else \end{cases} $
	$zx_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$	$zc_{ij} = \begin{cases} 1 & \text{if } c_{j} + c_{i} \\ 0 & \text{else} \end{cases}$
$z_{\rm n}$	(0 else	_
g_1	•	$gc_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$
•••	0	$gc_{ij} = \begin{cases} 0 & alsa \end{cases}$
g_k		
h_1	•	$hc_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$
•••	U	$hc_{ij} = \begin{cases} 1 & i = j \\ 0 & else \end{cases}$
h_k		(v cise
t	1 1 1	3 3 3

若f(<**♦**>)∈**KS** 即存在子集和 = t 则 子集中对每个i, y_i, z_i只有1个 若有 y_i ,则令 $x_i=1$; 若有 z_i ,则令 $x_i=0$. 子集中对每个i. 第 c_i 列的和是3 $gh行c_i$ 列和 ≤2 yz行 c_i 列和≥1,≤3 子句 c_i 在当前赋值下=1 即ф有满足赋值

计算理论第7章作业

7.22 令HALF-CLIQUE = { <G> | G是无向图, 包含结点数至少为m/2的完全子图, m是G的结点数}。证明HALF-CLIQUE是NP完全的。

说明: 书上的答案只是要点,考试时需要给出完整的答案。

证明:

(1) HALF-CLIQUE∈NP

构造如下非确定图灵机

N="对于输入<G>, G是无向图,有m个顶点

- (a) 非确定地产生一个m/2个顶点的子集
- (b) 若这个子集中的任意两个顶点之间都有边相连,则接受;否则,拒绝"。因为N的语言是HALF-CLIQUE,且N是在多项式时间运行,所以HALF-CLIQUE∈NP。

计算理论第7章作业

(2) 证明CLIQUE可以多项式时间映射归约到HALF-CLIQUE.

对任意<G,k>,其中G是一个无向图,k是一个正整数。构造函数f(<G,k>)=G'。

设G有m个顶点。按如下方式构造G':

若k=m/2,则G=G';

若k>m/2,则在G中增加2k-m个新顶点,这些新顶点都是孤立点,得到G';

若k<m/2,则增加m-2k个新顶点,这些新顶点之间两两都有边相连,新顶点与G的所有顶点之间也都相连。

首先,f可在多项式时间内计算完成。

其次证明f是CLIQUE到HALF-CLIQUE的映射归约,即证明G有k团⇔G'(设有m'个顶点)有m'/2个顶点的团:

若G有k团,当k=m/2时,G'=G, m'=m,则G'也有k=m'/2团; 当k>m/2时,m'=2k, G'中也有k=m'/2团; 当k<m/2时,m'=2m-2k, G中的k团加上新添的m-2k个顶点形成m-k=m'/2团。

若G'有m'/2团, 当k=m/2时, G'=G, m'=m,则G也有k=m'/2团; 当k>m/2时, m'=2k,G中也有k=m'/2团; 当k<m/2时, m'=2m-2k, G'中的m-k团至多有m-2k个新添顶点,去掉新添顶点至少还有k个顶点,所以G中有k团。

由(1)和(2),HALF-CLIQUE是NP完全问题。

计算理论总结

计算模型

- 有限自动机 非确定有限自动机 正则表达式 正则语言 泵引理
- 图灵机 图灵可判定语言 图灵可识别语言可计算理论
- 停机问题非图灵可判定,
- 停机问题的补不是图灵可识别 计算复杂性
- P, NP, EXP, NP完全