Список литературы:

- <u>Савельев И.В. Курс общей физики в 3-х тт. Т.1</u> Механика. Молекулярная физика.
- <u>Сивухин</u> Д.В. Общий курс физики Т-1 Механика. Уч. пос. для вузов
- Сивухин Д.В. Общий курс физикиТ-2 Термо-динамика и молекулярная физика. Уч. пос. для вузов
- <u>Трофимова Т. И. Курс физики:</u> Учеб. пособие для вузов.
- Чертов А. Г., Воробьёв А. А. Задачник по физике.
- Детлаф А. А., Яворский Б. М. Курс физики.

 «Физика есть сколь приятная, столь и полезная наука, толкующая свойства тел или предметов, нас окружающих.

Физика научает нас обо всем рассуждать здраво и основательно, а через то самое и необходимо нужна для всякого человека»

Эта выдержка из самого старого учебника по физике - «Краткое руководство к физике, для употребления в народных училищах Российской империи», изданное по Высочайшему Повелению Царствующей Императрицы Екатерины Второй 1787год.

Греческий алфавит

Α, α	альфа	I, ı	йота	Ρ, ρ	po
Β, β	бета	Κ, κ	каппа	Σ, σ	сигма
Γ, γ	гамма	Λ, λ	лямбда	Τ, τ	тау
Δ, δ	дельта	Μ, μ	мю	Υ, υ	ипсилон
Ε, ε	эпсилон	N, v	ню	Φ, φ, φ	фи
Ζ, ζ	дзета	Ξ, ξ	кси	Χ, χ	хи
Η, η	эта	O, o	омикрон	Ψ, ψ	пси
Θ, θ	тета	Π, π	пи	Ω, ω	омега

Элементы векторной алгебры

- **Вектор** направленный отрезок, характеризуется численным значением, модулем, и направлением.
- Любой вектор в декартовой системе координат можно задать тремя компонентами - проекциями вектора на оси Ох, Оу, Оz.
- Вектор -
- Длина вектора (или его модуль) число

= ,

Умножение вектора на число:

Произведение вектора на число даёт новый вектор =, компоненты которого определяются как , , . Длина вектора равна длине вектора , умноженной на абсолютное значение числа . Векторы и коллиниарны и имеют одно направление, если

Сложение и вычитание векторов

• Суммой двух векторов и называется вектор

$$=+$$

компоненты которого определяются как сумма компонент слагаемых: .

Сложение и вычитание векторов

• Разностью двух векторов называется вектор

_

компоненты которого определяется как разность компонент вычитаемых : , , .

- ') Правило треугольника:
- 2) Правило параллелограмма $(ucnoльзуя \rightarrow b \ b \ b \ b)$:

Пример сложения векторов

Единичный вектор

- Единичный вектор вектор с длиной, равной единице: =1.
- Единичный вектор в направлении какого-то вектора равен:
- Единичные вектора вдоль положительных направлений осей Ox, Oy, Oz называются **ортами**.

Скалярное произведение двух векторов

• *Скалярное произведение двух векторов - скаляр*, модуль которого равен :

•
$$(\vec{a}, \vec{b}) = a \cdot b \cdot \cos(\widehat{\vec{a}, \vec{b}})$$

•
$$(\vec{a}, \vec{b}) = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$

• =

Свойства скалярного произведения

- Переместительный закон
- Распределительный закон
- Сочетательный закон
- $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2$;
- $\overrightarrow{a} \cdot \overrightarrow{b} = 0 \Leftrightarrow \overrightarrow{a} \perp \overrightarrow{b} \ \left(\overrightarrow{a} \neq 0, \ \overrightarrow{b} \neq 0 \right)$ критерий ортогональности векторов.

 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$;

$$\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c};$$

$$\lambda \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \lambda \overrightarrow{b} = \lambda (\overrightarrow{a} \cdot \overrightarrow{b});$$

Пример применения скалярного произведение векторов в физике.

• Скалярное произведение двух векторов:

Векторное произведение векторов

Векторным произведением векторов \vec{a} и \vec{b} называется вектор, обозначаемый $\vec{c} = \vec{a} \times \vec{b}$ и удовлетворяющий следующим трем условиям:

1)
$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a}, \vec{b})$$

- 2) $\vec{c} \perp \vec{a}$, $\vec{c} \perp \vec{b}$;
- 3) упорядоченная тройка $\vec{a}, \vec{b}, \vec{c}$ правая.

Важно:

Результатом векторного произведения является вектор.

Векторное произведение векторов

Обозначение: = или =

• Геометрическим смыслом длины векторного произведения вектор \vec{c} является площадь параллелогран построенного на векторах .

- Свойства векторного произведения
- Переместительный закон = -
- Критерий коллинеарности
- Распределительный закон =
- Сочетательный закон

Векторное произведение векторов

• Пусть заданы два вектора:

И

• Выражение для векторного произведения через координаты:

```
)=
```

=

Векторное произведение ортов: , ,

Производная вектора

Производная вектора - это вектор, чьи компоненты равны производным от соответствующих компонент вектора

Например, вектор зависит от времени, тогда:

$$= + + .$$

• Производная скалярного произведения:

+

• Производная векторного произведения:

+

КИНЕМАТИКАдвижения материальной точки

- 1. Основные понятия механики, модели в механике
- 2. Система отсчета, тело отсчета Кинематическое уравнение движения.
- 3. Основные параметры кинематики материальной точки
 - Путь, перемещение
 - Скорость
 - Ускорение.
- 4. Прямая и обратная задача инематики
- 5. Криволинейное движение. Нормальное и тангенциальное ускорение.
- 6. Кинематика вращательногое движения вокруг неподвижной оси

Механика наиболее старый раздел физики начинало относится к III в. до н.э., когда древнегреческий ученый Архимед (287 — 312 до н.э.) сформулировал закон рычага и законы равновесия плавающих тел.

Дальнейшее развитие механики связано с именем итальянского физика и астронома Галилео Галилеем (1564 — 1642) и окончательно сформулированы английским физиком Исааком Ньютоном (1643 — 1727).

Механика Галилея и Ньютона называется классической, т.к. она рассматривает движение макроскопических тел со скоростями, значительно меньшими скорости света в вакууме.

Классические представления в механике существовали до 19 века.

- Классическая (Ньютонова) механика Архимед, Ньютон, Галилей
- 1905 Альберт Эйнштейн специальная теория относительности СТО - релятивистская механика m \cup C
- В 1925-26 годах Гейзенберг и Шредингер заложили основы квантовой механики, рассматривает движение микроскопических тел со скоростями, значительно меньшими скорости света.
- В 1928 Дирак обобщил результаты исследований и создал основу квантовой релятивистской механики (физика высоких энергий), изучающей движение микроскопических тел со скоростями близкими к скорости света.

1.Основные понятие механики, модели механике

Механика - часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение.

Механическое движение - изменение взаимного положения тел или их частей в пространстве со временем.

Предметом классической механики является механическое движение взаимодействующих между собой макротел при скоростях, много меньше скорости света и в условиях, когда переходом механической энергии в другие ее формы можно пренебречь.

Разделы классической механики

Кинематика

Изучает движение тел, не рассматривая причины, которые это движение обусловливают

Динамика

Изучает законы движения тел и причины, которые вызывают или изменяют это движение

Статика

Изучает законы равновесия системы тел.
Если известны законы движения тел, то из них можно установить и законы равновесия.

Кинематика (от греческого слова kinema – движение) – раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил.

Динамика (от греческого dynamis – сила) изучает движения тел в связи с теми причинами, которые обуславливают это движение.

Статика (от греческого statike – равновесие) изучает условия равновесия тел.

Поскольку равновесие – есть частный случай движения, законы статики являются естественным следствием законов динамики и в данном курсе не изучается.

Модели в механике

Материальная точка - тело, размерами, формой и внутренним строением которого в данной задаче можно пренебречь - механика материальной точки

Абсолютно твердое тело - тело, деформацией которого в данной задаче можно пренебречь - механика твердого тела

Сплошная среда – тело, структурой которого в данной задаче можно пренебречь – механика сплошных сред.

Виды движения:

- - поступательное движение движение, при котором любая прямая, связанная с движущимся телом, остается параллельна своему первоначальному положению.
- - вращательное движение движение, при котором все точки тела двигаются по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.
- Любое сложное движение можно рассмотреть как комбинацию поступательного и вращательного движения.
- По виду траектории можно разделить на прямолинейное и криволинейное движение.

2. Система отсчета. Кинематическое уравнение движения.

Движение тел происходит в пространстве и во времени. *Не существует способов указать положение тела в пустом пространстве.*

Всякое движение *относительно*, поэтому для описания положение тела в пространстве или описания движения тела вводят систему отсчета (CO).

Система от счета — совокупность системы координат и часов, связанных с телом по отношению к которой изучается движение.

В механике используют три системы координат:

- декартова (прямоугольная),
- цилиндрическая
- сферическая.

Движения тела, как и материи, вообще не может быть вне времени и пространства. Материя, пространство и время неразрывно связаны между собой (нет пространства без материи и времени и наоборот).

Пространство трехмерно, поэтому «естественной» системой координат является, декартова или прямоугольная система координат.

В декартовой системе координат, положение точки **А** в данный момент времени по отношению к этой системе характеризуется тремя координатами *x, y, z* или радиус-вектором , проведенным из начала координат в данную точку.

Цилиндрическая система координат

 В цилиндрической системе координат, положение точки М в данный момент времени по отношению к этой системе характеризуется тремя координатами

• Переходы между системами координат:

Сферическая система координат

• В сферической системе координат, положение точки М в данный момент времени по отношению к этой системе характеризуется тремя координатами r, φ, θ.

Закон движения:

Переходы между системами координат:

Основные системы координат в пространстве

Декартова (прямоугольная) система координат Сферическая система координат

Цилиндрическая система координат

Преобразование координат

От цилиндрических к декартовым $x = \rho \cos \varphi$; $y = \rho \sin \varphi$; z = z

От сферических к декартовым $x = r\sin\theta\cos\varphi$; $y = r\sin\theta\sin\varphi$; $z = r\cos\theta$

- •При движении материальной точки её координаты с течением времени изменяются.
- В общем случае её движение определяется скалярными или векторными уравнениями:
- Геометрическое место точек концов радиусавектора называется траекторией точки.

Кинематические уравнения движения

материальной точки

Скалярные уравнения:

Эти уравнения эквивалентны векторному уравнению:

где проекции радиуса-вектора на оси координат, а - единичные векторы (орты), направленные по соответствующим осям, причем:

, , ,

- Эти две формы записи уравнения движения называются параметрическими, так как зависят от параметра t.
- Если из уравнений движения исключить параметр времени, получим уравнение траектории.

Число степеней свободы

- Число независимых координат, полностью определяющих положение точки в пространстве, называется числом степеней свободы і.
- Если материальная точка движется в пространстве, то она имеет три степени свободы i = 3 (координаты x, y, z),
- Если она движется на плоскости две степени свободы, i=2.
- Если вдоль линии одна степень свободы, i=1.

3. Основные параметры кинематики материальной точки

Геометрическое место точек радиуса-вектора $\vec{\Gamma}_{_{1}}$ называется КОНЦОВ траекторией точки.

Длина траектории есть путь Δs .

Если точка движется по прямой в одну сторону, то приращение равно пути

S.

- Пусть за время точка А переместилась из точки 1 в точку 2.
- **Вектор перемещения** есть приращение вектора за время t:

• Модуль вектора перемещения:

$$|\Delta \vec{\mathbf{r}}| = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}.$$

Скорость

Вектор средней скорости определяется как отношение вектора перемещения ко времени t, за которое это перемещение произошло.

$$\frac{\Delta \vec{\mathbf{r}}}{\Delta t} = <\vec{\upsilon}>$$

Вектор совпадает с вектором.

Мгновенная скорость в точке 1:

$$\overset{
ightharpoonup}{\upsilon} = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \frac{\mathrm{d}r}{\mathrm{d}t}.$$

Модуль вектора скорости

$$v \equiv |v| = \frac{\mathrm{dr}}{\mathrm{d}t}.$$

Мгновенная скорость *V*-вектор скорости в данный момент времени равен первой производной от Γ по времени t и направлен по касательной к траектории в данной точке в сторону движения точки A.

При t 0 т.е. на бесконечно малом участке траектории S = r (перемещение совпадает с траекторией) В этом случае мгновенную скорость можно выразить через скалярную величину –

путь:

$$\upsilon = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{\mathrm{d}s}{\mathrm{d}t};$$

или
$$\mathbf{v} = \frac{\mathrm{d}s}{\mathrm{d}t}.$$

Действие обратное дифференцированию –

интегрирование.

 $ds = \upsilon dt$ — площадь бесконечно узкого прямоугольника, скорость в интервале времени dt постоянная. . Чтобы вычислить весь путь S за время t, надо сложить площади всех прямоугольников.

$$S=\int_{0}^{t}v\mathrm{d}t.$$

Геометрический смысл этого интеграла в том, что площадь под кривой есть путь тела за время t.

Принцип независимости движения (действия сил)

Если материальная точка участвует в нескольких движениях, то ее результирующее перемещение dr равно векторной сумме перемещений, обусловленных каждым из этих движений в отдельности:

$$dr = dr_1 + dr_2 + ... + dr_i + dr_n = \sum_{i=1}^{n} dr_i$$

$$\vec{v} = \frac{\mathrm{dr}}{\mathrm{d}t}$$

$$\upsilon = \upsilon_{1} + \upsilon_{2} + \ldots + \upsilon_{i} + \upsilon_{n}$$

$$v=\sum_{i=1}^n v_i$$
.

Таким образом, *скорость тоже* подчиняется принципу независимости движения.

Аналогично формулируется принцип независимости действия сил.

В физике существует общий принцип, который называется:

принцип суперпозиции - результирующий эффект сложного процесса взаимодействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга.

Принцип суперпозиции играет большую роль во многих разделах физики и техники.

Проекция вектора скорости на оси координат

В векторной форме уравнения записываются легко и кратко. Но для практических вычислений нужно знать проекции вектора на оси координат выбранной системы отсчета.

Положение точки *А* задается радиус-вектором Г. Спроецируем вектор Г на оси – *x*, *y*, *z*.

Понятно, что x, y, z зависят от времени t, т.е. x(t), y(t), z(t). Зная зависимость этих координат от времени (закон движения точки) можно найти в каждый момент времени скорость точки.

Проекции скорости на оси координат

Проекции скорости на координатные оси равны первым производным от координат x, y, z по времени:

$$v_x = \frac{dx}{dt}$$

$$v_y = \frac{dy}{dt}$$

$$v_z = \frac{dz}{dt}$$

Вектор скорости:

$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k} = \frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j} + \frac{dz}{dt} \vec{k},$$

Модуль вектора скорости:

$$\boldsymbol{\upsilon} = \sqrt{\boldsymbol{\upsilon}^2_x + \boldsymbol{\upsilon}^2_y + \boldsymbol{\upsilon}^2_z}$$

Ускорение.

В произвольном случае движения скорость не остается постоянной. Быстрота изменения скорости по величине и направлению характеризуется ускорением:

$$\vec{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k} = \frac{d \upsilon_x}{dt} \vec{i} + \frac{d \upsilon_y}{dt} \vec{j} + \frac{d \upsilon_z}{dt} \vec{k},$$

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k} = \frac{d^2 x}{dt^2} \vec{i} + \frac{d^2 y}{dt^2} \vec{j} + \frac{d^2 z}{dt^2} \vec{k},$$

Ускорение величина векторная.

Модуль ускорения:

4. Прямая и обратная задача кинематики

Прямая задача кинематики заключается в нахождении скорости и ускорения по перемещению тела r(t).

По определению:
$$v(t) = \frac{dr}{dt}$$

$$v(t) = \frac{\mathrm{d}r}{\mathrm{d}t} \qquad a(t) = \frac{\mathrm{d}v(t)}{\mathrm{d}t}$$

Обратная задача кинематики заключается в том, что по известному значению ускорения a(t) найти скорость точки и восстановить траекторию движения r(t).

При равномерном движении

$$S = \int_{0}^{t} v dt = vt$$

При движении с постоянным ускорением:

$$\upsilon = \upsilon_0 \pm at \qquad S = \upsilon_0 t \pm \frac{at^2}{2}.$$

Прямая и обратная задачи кинематики

• Из определения ускорения : = = проинтегрируем это выражение:

5. Криволинейное движение. Тангенциальное и нормальное ускорение

При криволинейном движении, когда вектора скорости и ускорения не совпадают по направлению, так скорость направлена по касательной к траектории, а ускорение под углом — в сторону вогнутости траектории. Удобно выбрать естественную систему отсчета, которую жестко связывают с телом. Одна ось — направлена по касательной к траектории в направлении движения, как скорость, другая ось п — перпендикулярна первой оси, направлена к центру кривизны траектории.

Введем *единичный вектор* Т ,связанный с точкой 1 и направленный по касательной к траектории движения точки 1 (вектора т и в точке 1 совпадают). Тогда можно записать:

= , где - модуль скорости

Криволинейное движение. Тангенциальное и нормальное ускорение

- **нормальное** ускорение (центростремительное)

$$\vec{a}_{\tau} = \frac{\mathrm{d} \upsilon}{\mathrm{d} t} \vec{\tau}$$

Тангенциальное ускорение

$$|a_{\tau}| = \frac{\mathrm{d}\upsilon}{\mathrm{d}t}$$

или по модулю

 a_{τ} - показывает изменение вектора скорости по величине:

- если $\frac{\mathrm{d} v}{\mathrm{d} t} > 0$, \mathbf{Q}_{τ} направлено в ту же сторону, что и вектор $\mathbf{\mathcal{U}}$, т.е. ускоренное движение;
- если $\frac{\mathrm{d} v}{\mathrm{d} t}$ < 0 , то $m{a}_{_{ au}}$ направлено в противоположную сторону от $m{v}$, т.е. замедленное движение;

- при,
$$\frac{\mathrm{d} \upsilon}{\mathrm{d} t}$$
 =0 a_{T} =0 -движение с υ =const с постоянной по модулю скоростью.

$$\vec{a}_{n} = \upsilon \frac{d\vec{\tau}}{dt}.$$

Нормальное ускорение

или по модулю

Быстрота изменения направления касательной $(d\vec{\tau}/dt)$ к траектории определяется скоростью движения точки по окружности и степенью искривленности траекторий. Направлено к центру кривизны.

Ускорение при произвольном движении

При произвольном движении материальной точки величина **r** будет равна радиусу некоторой моментальной (т.е. соответствующей данному моменту времени) окружности

В любой точке траектории движение материальной точки можно рассматривать как

При приближается к точке A, длина дуги AB с некоторым радиусом R будет приближаться к хорде AB. Из подобия треугольников AOB и ADE Если

Скорость изменения направления касательной можно выразить как произведение скорости изменения угла на единичный вектор $^{\Omega}$, показывающий направление изменения угла.

Т.о. — единичный вектор, направленный перпендикулярно касательной в данной точке, т.е. по радиусу кривизны к центру кривизны.

Приращение единичного вект $(\overline{\phi})$ а - = $\frac{d\tau}{dt} = \frac{d\varphi}{dt}\vec{n}$

Из треугольника ОАВ , тогда = - *нормальное ускорение* или центростремительное т.к. направлено оно к центру кривизны, перпендикулярно .

Суммарный вектор ускорения при движении точки

вдоль плоской кривой равен:

$$\overrightarrow{a} = \overrightarrow{a}_{\tau} + \overrightarrow{a}_{n} = \frac{d\upsilon}{dt} \overrightarrow{\tau} + \frac{\upsilon^{2}}{r} \overrightarrow{n}$$

Модуль полного ускорения равен:

$$a = \sqrt{a_{\tau}^2 + a_n^2}$$

Классификация движения в зависимости от и

- равномерное прямолинейное движение;
- прямолинейное равнопеременное движение
- прямолинейное с переменным ускорением
 - , если R=const равномерное движение по окружности

Движение тел в поле силы тяжести Земли

- Ось Х
- Начальные условия:
- Уравнение движения:
- равномерное движение вдоль оси X

- Ось Ү
- Начальные условия:
- Уравнение движения:

Уравнение траектории:

максимальная дальность полёта

Координата максимальной высоты подъёма ₅₄

$$y = h_{0y} + v_{0y}t + \frac{g_y t^2}{2}$$
 $y = h_{0y} + v_0 t \sin \alpha + \frac{g_y t^2}{2}$

$$y = h_{0y} + v_0 t \sin \alpha + \frac{g_y t}{2}$$

$$h_{0y} = 0$$
; $v_{0y} = 0$; $g_y = g$; $y = h$

$$h_{ov} = 0$$
; $y = h$; $g_v = g$; $\alpha = 0 = \sin \alpha = 0$

 $h_{0y} = 0$; $v_{0y} = 0$; $g_y = g$; y = h $h_{0y} = 0$; y = h; $g_y = g$; $\alpha = 0 \Rightarrow \sin \alpha = 0$ $h = \frac{gt^2}{2} \quad t = \sqrt{\frac{2h}{g}}$ время падения в обоих случаях зависит от высоты

Кинематика твердого тела

Различают пять видов движения твердого тела:

- поступательное;
- вращательное вокруг неподвижной оси;
- плоское;
- вокруг неподвижной точки;
- свободное.

Поступательное движение *и вращательное* движение вокруг оси – основные виды движения твердого тела.

Остальные виды движения твердого тела можно свести к одному их этих основных видов или к их совокупности. R''

Поступательное движение — это такое движение твердого тела, при котором любая прямая, связанная с телом, остается параллельной своему начальному положению и при этом, все точки твердого тела совершают равные перемещения.

Скорости и ускорения всех точек твердого тела в данный момент времени t одинаковы. Это позволяет свести изучение поступательного движения твердого тела к изучению движения отдельной точки, т.е. к задаче кинематики материальной точки, подробно рассмотренной в прошлом разделе.

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой OO', называемой осью вращения. Из определения вращательного движения ясно, что понятие вращательного движения для материальной точки неприемлемо.

6. Кинематика вращательного движения

Движение твердого тела, при котором две его точки О и О' остаются неподвижными, называется вращательным движением вокруг неподвижной оси, а неподвижную прямую ОО' называют осью вращения. Пусть абсолютно твердое тело вращается вокруг неподвижной оси ОО'. $d\vec{\omega}$

За малый промежуток времени повернулось на угол . Удобно использовать полярную систему координат. По аналогии с поступательным движением введём кинематические параметры:

- 1. Положение точки характеризует:
- Радиус вектор -
- Угол поворота (,
- или длина дуги
- Радиан это угол, который опирается на дугу окружности длиной R.

Уравнение движения

• Полярная система

• Декартова

```
r = const
```

Уравнение траектории:

По аналогии с поступательным движением:

- угол поворота -за время dt угловой путь. Удобно ввести вектор элементарного поворота тела, численно равный и направленный вдоль оси вращения ОО' так, чтобы глядя вдоль вектора мы видели вращение по часовой стрелке (направление вектора и направление вращения связаны
- правилом буравчика.

Пусть за малый промежуток времени тело повернулось на угол, по аналогии с поступательным движением, быстрота поворота характеризуется угловой скоростью:

• Вращение с постоянной угловой скоростью называется равномерным.

- называется круговой или циклической частотой вращения.

При равномерном движении по окружности можно ввести понятие - период T – время одного оборота ,

= c

• *Частота обращения (частота)* – число оборотов в единицу времени:

Если вращение неравномерное, то — угловая скорость.

Угловой скоростью

называется вектор ω численно равный первой производной от угла поворота по времени и направленный вдоль оси вращения в направлении dφ (dφ и ω

всегда направлены в одну сторону).

$$\omega = \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

$$\omega = \frac{\mathrm{d} \varphi}{\mathrm{d} t}$$
.

Связь линейной и угловой скорости

Пусть — линейная скорость точки М. За промежуток времени dt точка М проходит путь $\mathrm{d}r = \upsilon \mathrm{d}t$. В то же время $\mathrm{d}r = R \mathrm{d} \varphi$ (- центральный угол). Тогда,

$$\upsilon = \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{R\mathrm{d}\varphi}{\mathrm{d}t} = \omega R$$

$$\upsilon = \omega R$$

Связь линейной и угловой скорости

$$\upsilon = \omega R$$

$$\vec{v} = [\vec{\omega}, \vec{R}]$$

Вектор ортогонален к векторам и направлен в ту же сторону, что и векторное произведение

$$[\vec{\omega}, \vec{R}]$$

Введем вектор углового ускорения

для характеристики

неравномерного

вращения тела:

$$\vec{\epsilon} = \frac{d\omega}{dt}$$

Вектор ε_{\downarrow} направлен в ту же сторону, что и ω при ускоренном вращении $\left(\frac{\mathrm{d}\omega}{\mathrm{d}\omega}>0\right)$

а $\mathbf{E}_{\underline{\ }}$ направлен в противоположную сторону при замедленном вращении $\mathbf{d}\omega$

Нормальное и тангенциальное ускорения

при криволинейном движении

Разложим вектор Δv на две составляющие.

$$\begin{split} \Delta \vec{v} &= \vec{v}_2 - \vec{v}_1; \\ \Delta \vec{v} &= \Delta \vec{v}_\tau + \Delta \vec{v}_n. \end{split}$$

$$a = \frac{dv}{dt} = \frac{d(\omega R)}{dt} = \frac{d\omega}{dt}R + \omega\frac{dR}{dt} =$$

$$= \varepsilon R + \omega v = \varepsilon R + \omega \omega R = \varepsilon R + \omega^2 R = \varepsilon R + \frac{v^2}{a_e} + \frac{v^2}{R}$$

Выразим нормальное и тангенциальное ускорения точки *М* через угловую скорость и угловое ускорение:

$$a_{\tau} = \frac{\mathrm{d}\upsilon}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(\omega R) = R\frac{\mathrm{d}\omega}{\mathrm{d}t} = R\varepsilon;$$

$$a_{\tau} = R\varepsilon;$$

$$a_n = \frac{v^2}{R} = \omega^2 R.$$

$$a_n = \frac{4\pi^2 R}{T^2} = 4\pi^2 v^2 R$$

Формулы простейших случаев вращения тела вокруг неподвижной оси:

- равномерное вращение $\varepsilon = 0$; $\omega = const$;

$$\varphi = \varphi_0 \pm \omega t$$
;

- равнопеременное вращение ε =const;

$$\omega = \omega_0 \pm \varepsilon t$$

$$\varphi = \omega_0 t \pm \frac{\varepsilon t^2}{2}$$

Обратите внимание.

Все кинематические параметры, характеризующие вращательное движение (угловое ускорение, угловая скорость и угол поворота) направлены вдоль оси z

вращения.

Связь между линейными и угловыми величинами при вращательном движении:

$$s = R\varphi$$

$$\upsilon = R\omega$$

$$a = a_{\tau} + a_n$$

$$a = \sqrt{a_{\tau}^2 + a_n^2}$$

$$a_n = v^2/R = \omega^2 R$$

$$a_{\tau} = R \cdot \varepsilon.$$

 $a_n = \frac{4\pi^2 R}{T^2} = 4\pi^2 v^2 R$

Поступательное движение

Вращательное движение

$$v = \frac{\mathrm{d}S}{\mathrm{d}t}$$

$$a = \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$v = v_0 \pm at$$

$$S = v_0 t \pm \frac{at^2}{2}$$

$$S = \int_{0}^{t} v dt$$

$$\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

$$\varepsilon = \frac{\mathrm{d}\omega}{\mathrm{d}t}$$

$$\omega = \omega_0 \pm \varepsilon t$$

$$\varphi = \omega_0 t \pm \frac{\varepsilon t^2}{2}$$

$$\varphi = \int_{0}^{t} \omega dt$$

Примеры различных видов движения

Равномерное прямолинейное движение за любые равные промежутки времени совершает равные перемещения.
— материальная точка

Скорость
$$\vec{\upsilon} = \frac{\Delta r}{\Delta t}$$

Вектор скорости совпадает по направлению с вектором перемещения и в каждой точке траектории направлен вдоль траектории

$$x = x_0 + v_x t$$

Кинематическое уравнение равномерного движения материальной точки вдоль оси х

Вычисление пройденного пути

$$\int_{0}^{V} \int_{S} \int_{t}^{T} t = U \Delta t$$

 $S = \int_{t_1}^{t_2} v dt$

Равнопеременное прямолинейное движение a = const

- СКОРОСТЬ материальной точки за равные промежутки времени изменяется на равные величины, т.е. движение с постоянным по модулю и направлению ускорением.

Равноускоренное прямолинейное движение – Движение, при котором направление вектора ускорения совпадает с направлением вектора скорости точки. Модуль скорости с течением времени возрастает.

Равнозамедленное прямолинейное движение – Движение, при котором направление вектора ускорения противоположно направлению вектора скорости точки. Модуль скорости с течением времени уменьшается.

Скорость	$\upsilon = \upsilon_0 \pm at$
Проекция вектора скорости на ось <i>Ох</i>	$v_x = v_{0x} \pm a_x t$
Графики	$\begin{bmatrix} v_x & a_x > 0 & a_x \\ v_{0x} & a_x > 0 & a_x \\ 0 & t & 0 \end{bmatrix} \xrightarrow{a_x < 0} t$
Пройденный путь	$s = v_0 t + \frac{at^2}{2}$
Вектор перемещения	$\Delta r = v_0 \Delta t + \frac{a(\Delta t)^2}{2}$