微积分 B(1) 第 7 次习题课题目

说明:带"★"题目不在课堂讨论,作为课后练习.

一、导数的应用

- 1. 设实数a,b满足b>a>e, 试证 $a^b>b^a$.
- 2. 己知函数 $f(x) = \frac{x^3}{(1+x)^2} + 3$.
 - (1) 求函数的单调区间与极值;
- (2) 求函数的上凸和下凸区间及拐点;
- (3) 求函数图形的渐近线.
- 3. 在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 上求一点,使得过此点作椭圆切线与坐标轴构成的三角形的面积最小.
- 4. 在半径为 R 的球内作内接正圆锥, 试求正圆锥的最大体积.
- 5. 设函数 $f(x) = 2nx(1-x)^n$, 求 $M_n = \max_{x \in [0,1]} \{f(x)\}$ 及 $\lim_{n \to \infty} M_n$.
- 6. 设a > 0, $x_1 = \ln a$, $x_{n+1} = x_n + \ln(a x_n)$, 证明数列 $\{x_n\}$ 收敛, 并求极限 $\lim_{n \to \infty} x_n$ 的值.

(提示:证明 $\{x_n\}$ 单调有界)

二、泰勒公式

- 1. 已知函数 $f(x) = x^3 2x^2 + 5x + 1$,写出 f(x) 在 $x_0 = 1$ 处带拉格朗日余项的1阶与2阶泰勒公式.
- 2. 若 $f(x) \in D^2(-\infty, +\infty)$, 证明对任意的 a < c < b, 都存在 $\xi \in (a,b)$, 使得

$$\frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-a)(b-c)} + \frac{f(c)}{(c-a)(c-b)} = \frac{1}{2} f''(\xi) \; .$$

- 3. 设函数 f(x) 在[0,1]上二阶可导,f(0) = f(1),且 $|f''(x)| \le 2$,求证: $|f'(x)| \le 1, x \in [0,1]$.
- 4. 设函数 f(x) 在[a,b] 上二阶可导,且 $f'_+(a) = 0$, $f'_-(b) = 0$. 证明:存在一点 $\xi \in (a,b)$,使 得 $|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b)-f(a)|$.
- 5. ★设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导,且 $|f''(x)| \ge m > 0$,

$$f(a) = 0$$
, $f(b) = 0$. 证明: $\max_{a \le x \le b} |f(x)| \ge \frac{m}{8} (b - a)^2$.

6. 设 $f(x) \in C^2(a,b)$, $x_0 \in (a,b)$, $f''(x_0) \neq 0$. 若 $\theta \in (0,1)$ 满足

$$f(x_0 + h) - f(x_0) = f'(x_0 + \theta h)h$$
,

证明 $\lim_{h\to 0}\theta = \frac{1}{2}$.

- 7. 已知函数 $f(x) = \arctan x$. 设 $x(x \neq 0)$, ξ 满足 $f(x) = x f'(\xi)$, 求 $\lim_{x \to 0} \frac{\xi^2}{x^2}$.
- 8. ★设函数 f(x) 在内具有 n+1 阶导数, $x_0 \in (a,b)$, $f^{(n+1)}(x_0) \neq 0$. 若 $\theta \in (0,1)$ 满足 $f(x_0+h) = \sum_{k=0}^{n-1} \frac{1}{k!} f^{(k)}(x_0) h^k + \frac{1}{n!} f^{(n)}(x_0+\theta h) h^n$,证明 $\lim_{h\to 0} \theta = \frac{1}{n+1}$.
- 9. 设函数 f(x) 在 [0,1] 上存在 2 阶导数,且对任意的 $x \in [0,1]$ 都有 $|f''(x)| \le 1$.若 f(x) 在区间 (0,1) 内取到最大值,证明: $|f'(0)| + |f'(1)| \le 1$.
- 10. ★★设函数 f(x) 在 $(-\infty, +\infty)$ 内存在 2 阶导数, M_1 , M_2 是两个正实数. 若对任意的 $x \in \mathbf{R}$,都有 $|f(x)| \le M_1$, $|f''(x)| \le M_2$, 求证: $|f'(x)| \le \sqrt{2M_1M_2}$.
- 11. ★设函数 f(x) 在 $[0,+\infty)$ 内存在 3 阶导数. 若 $\lim_{x \to +\infty} f(x)$ 存在, $\lim_{x \to +\infty} f'''(x) = 0$,证明: $\lim_{x \to +\infty} f'(x) = 0 , \lim_{x \to +\infty} f''(x) = 0 .$
- 12. ★设函数 f(x) 具有 4 阶导数,且 $\lim_{x\to\infty} xf(x) = 0$, $\lim_{x\to\infty} xf^{(4)}(x) = 0$, 求证: $\lim xf'(x) = 0 \text{, } \lim xf''(x) = 0 \text{, } \lim xf'''(x) = 0 \text{.}$
- 13. ★设函数 f(x) 具有 2 阶连续导数, $f(\xi)=0$, $f'(\xi)\neq 0$. 若 $\{x_n\}$ 以 ξ 为极限且满足

$$\begin{cases} x_0 \\ x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, n = 1, 2, 3, \cdots, \end{cases} \quad \text{\vec{x} i.e. } \lim_{n \to \infty} \frac{x_n - x_{n-1}}{(x_{n-1} - x_{n-2})^2} = -\frac{f''(\xi)}{2f'(\xi)}.$$

14. 求下列极限

(1)
$$\lim_{x\to 0} \frac{e^x \sin x - x - x^2}{\sin^3 x}$$
;

(2)
$$\lim_{x\to 0} \frac{\sin x - \arctan x}{\sin x - \tan x}$$
;

(3)
$$\lim_{x\to+\infty} [(x^3-x^2+\frac{x}{2})e^{\frac{1}{x}}-\sqrt{1+x^6}];$$

(4)
$$\lim_{x\to 0} \frac{\sin(e^x-1)-(e^{\sin x}-1)}{\sin^4(3x)}$$
;

$$(5) \bigstar \lim_{n\to\infty} \frac{1}{e^n} \left(1 + \frac{1}{n}\right)^{n^2}.$$

15. 设函数 f(x) 在区间 (-1,1) 内存在1阶导数,且 f'(0) = 0 , f''(0) 存在,证明:

$$\lim_{x\to 0} \frac{f(x) - f(\ln(1+x))}{x^3} = \frac{1}{2} f''(0) .$$

16. 讨论当 $x \to 0$ 时, $f(x) = \ln(1 + \sin^2 x) + \alpha(\sqrt[3]{2 - \cos x} - 1)$ 是几阶无穷小量.

- 16. 若极限 $\lim_{x\to +\infty} \frac{x^{200}}{x^{\alpha}-x^{\alpha}(1-\frac{1}{x})^{\alpha}}$ 存在,求 α 的取值范围与此极限的值.
- 18. 求函数 $f(x) = x^2 \ln(1+x)$ 在 x = 0 处的 100 阶导数 $f^{(100)}(0)$.