Geometric Algorithms – The Convex Hull Problem in 2 & 3 Dimensions

Rehman, M. Usaid Ali, Syed Anus Ozair, Faraz

Habib University

August 21, 2021

Outline

The Paradigm of Computational Geometry

- A sub-field of algorithm theory involving design and analysis of algorithms with geometric input and output.
- Mostly focuses on the discrete aspect of geometric problem solving.
- Primarily deals with straight or flat objects or simple curves.
- Computational geometry aims to provide basic geometric tools from which application areas can build algorithms.
- It also aims to provides theoretical analytical tools to analyze the performance of these algorithms.

History & Famous Problems

A Brief History & Timeline

Ancient Greeks and the Ancient Egyptians.

Geometry has been central to mathematics since the time of the

- Euclid's Elements had a profound influence on the study of geometry.
- Introduction of coordinates permitted an increase in computational power.
- The term "Computational Geometry" was coined first by Marvin Minsky in his book "Perceptrons" in 1969.
- Multiple application areas have been the incubation bed for this discipline.
- These problems include Euclidean traveling salesman, minimum spanning tree, linear programming etc.

August 21, 2021

Geometric Algorithms: Convex Hull

Introduction to Computational Geometry

History & Famous Problems

Famous Problems in Computational Geometry

- Convex Hulls
- 2 Intersections
- 3 Voronoi Diagrams and Delaunay Triangulations
- Triangulation and Partitioning
- Optimization and Liner Programming
- 6 Geometric Search Problems
 - Nearest-neighbor searching
 - Point location

Basics of Euclidean Geometry

- The main objects considered in computational geometry are sets of points in Euclidean space.
- Sets of points are finite, or at least *finitely specifiable*.
- By E^d , we denote the *d*-dimensional Euclidean space.
- A *d*-tuple $(x_1, ..., x_d)$ denotes a point of E^d where $x_i \in \mathbb{R}$.
- A polygon in E^2 is defined by a finite set of line segments where each extreme point is shared by exactly two segments called *edges*.
- A *polyhedron* in E^3 is defined by a finite set of plane polygons such that every edge of a polygon is shared by only one other polygon.

6 / 1

What is a Convex Hull?

- A convex set is a subset of Euclidean space where given any two points in the set, the set contains the whole line segment joining them.
- A convex hull of a shape is the smallest convex set containing the shape.
- The convex hull can also be defined as the intersection of all convex sets of a given subset of Euclidean space.

Figure: A convex set

Formal Definitions

Definition (Convex Set)

Given k distinct points p_1, p_2, \ldots, p_k in E^d , the set of points

$$p = \alpha_1 p_1 + \alpha_2 p_2 + \dots + \alpha_k p_k \quad (\alpha_j \in \mathbb{R}, \alpha_j \ge 0, \alpha_1 + \alpha_2 + \dots \alpha_k = 1)$$

is the *convex set* generation by p_1, p_2, \ldots, p_k , and p is a *convex combination* of p_1, p_2, \ldots, p_k .

Definition

Given an arbitrary subset of L of points in E^d , the convex hull conv(L) of L is the smallest convex set containing L.

Mixing Things

Imagine you have the following mixtures of substances:

subst.	fract. A	fract. B
<i>s</i> ₁	10%	35%
<i>s</i> ₂	20%	5%
<i>s</i> ₃	40%	55%
- 53	40 / 0	3370

• Using these substances can we create two other substances s q_1 and q_2 ?

q_1	25%	28%
q_2	15%	15%

Mixing Things

Let's plot these values:

■ We can observe that a substance $q \in \mathbb{R}^2$ can be created using substances in $S \subset \mathbb{R}^2$ if and only if $q \in CH(S)$.

What is the Convex Hull Problem?

■ The convex hull problem is formally defined as:

Given a set S of N points in E^d , construct its convex hull CH(S).

Another version of the convex hull problem is:

Given a set S of N points in E^d , identify those that are vertices of conv(S).

■ Both versions of the problem have the same asymptotic hardness since one problem can be transformed to the other.

Convex Hull for Finite Set of Points

The convex hull for a finite set of points in the plane produces a convex polygon.

Figure: A point set and its convex hull.

In 3 dimensions however, the convex hull is not a convex polygon, but instead a convex polyhedron – generalizes to a polytope in higher dimensions.

Geometric Algorithms: Convex Hull
Convex Hull Algorithms & Complexity
Lower Bound & Output-Sensitivity

Lower Bound on Computational Complexity

Overview and Approach

- The convex hull problem outputs a polygon a cyclic enumeration of the boundary vertices.
- We can say that we have to produce a sorting of the vertices. which has a lower bound of $\Omega(n \log n)$.
- To find lower bound of convex hull problem, we will reduce the sorting problem to the convex hull problem in O(n) time, which implies:

Theorem

Any algorithm for the convex hull problem requires $\Omega(n \log n)$ time in the worst case.

Lower Bound on Computational Complexity

Reduction of Sorting to Convex Hull

- Let $X = \{x_1, ..., x_n\}$ be the *n* values we wish to sort.
- We can "lift" each of these points onto a parabola $y = x^2$, by mapping x_i to the point $p_i = (x_i, x_i^2)$.
- *P* is the resulting set of points all of which lie on the convex hull.
- The sorted order of points along the lower hull is the same as the sorted order *X*.

Output-Sensitive Algorithms

- Some convex hull algorithms depend both on n input points, and h output points.
- Such algorithms are called *output-sensitive* algorithms.
- They may be asymptotically more efficient than $\Theta(n \log n)$ algorithms when h = o(n).
- The lower bound for these algorithms is $\Omega(n \log h)$ in the planar case.
- Kirkpatrick and Seidel devised an algorithm that achieved this in 1986.
- In 1996, a much simpler algorithm was devised by Chan called Chan's algorithm.

The General Position Assumption

- Before we look at algorithms, let's look at an important assumption.
- We assume that the points are in *general position*.
- This means that degenerate configurations do not arise in input.
- Point sets in general position maintain general position if perturbed infinitesimally.
- Merely a convenience to avoid dealing with a lot of special cases during algorithm design.

- Geometric Algorithms: Convex Hull
 Convex Hull Algorithms & Complexity
 - └─Algorithms

Convex Hull Algorithms

- There are multiple algorithms that employ different techniques to compute the convex hull of a point set.
- Following are some of these algorithms with their time complexity:

Algorithm	Time Complexity
Jarvis March	O(nh)
Graham Scan	$O(n \log n)$
Quickhull	$O(n \log n)$
Chan's Algorithm	$O(n \log h)$

Table: Some algorithms and their complexities.

Geometric Algorithms: Convex Hull

Convex Hull Algorithms & Complexity

Algorithms

Jarvis March

Algorithm Description & Visualization

- Jarvis march a.k.a the gift wrapping algorithm, was published in 1973 by R. A. Jarvis.
- The algorithm begins with $i \leftarrow 0$, and a point p_0 known to be on the convex hull.
- Then it selects the point p_{i+1} such that all points are to the right of the line segment $p_i p_{i+1}$.
- This can be done in O(n) time by comparing polar angles.
- Let $i \leftarrow i + 1$, and repeat until algorithm $p_h \leftarrow p_0$ again.
- This would yield the convex hull in *h* steps.
- Here is a link to an animation for Jarvis march.

Geometric Algorithms: Convex Hull Convex Hull Algorithms & Complexity □ Algorithms

Jarvis March

Performance & Time Complexity

- Jarvis march is among the least efficient algorithms for convex hull.
- The algorithm loops h times and within each iteration, it loops *n* times.
- Therefore, the time complexity is O(nh).

Figure: The Jarvis march procedure.

Geometric Algorithms: Convex Hull

Convex Hull Algorithms & Complexity

Algorithms

Graham Scan

Algorithm Description & Visualization

- Based on the incremental construction technique.
- In this approach, items are added one at a time, and the structure is updated with each insertion.
- First, select the lowest point in the point set called point *P*.
- Sort all points cyclically w.r.t point *P* and the *x*-axis.

