Package 'nlRtsa'

January 22, 2016

Type Package

Version 0.1

Title nonlineaR time seRies analysis.

Description Companion to the course Dynamics of Complex Systems given at the Graduate School Be-	
Companion to the course Dynamics of Complex Systems given at the Graduate School De-	_
havioural Science (Research Master Behavioural Science) at the Radboud University Nijm	
Depends R (>= 3.2.2)	
LazyData true	
License GPL-2	
Imports plyr, dplyr, lattice, latticeExtra, grid, gridExtra, ggplot2, pracma, signal, oce, forecast, fractal	
Suggests tsseries, matlab, ifultools, knitr, rmarkdown, roxygen2	
RoxygenNote 5.0.1	
VignetteBuilder knitr	
NeedsCompilation no	
Author Fred Hasselman [aut, cre], Maarten Wijnants [aut]	
R topics documented:	
Topies documented.	
fd.dfa	_
fd.psd	
•	3
fd.sda	. 3
fd.sda	. 3 . 4
fd.sda	3 4 5 5
fd.sda	3 4 5 5 6
fd.sda	3 4 5 5 6 7 8
fd.sda gg.plotHolder gg.theme growth.ac growth.ac.cond in.IT plotRP.crqaOutput	3 4 5 5 6 7 8 9
fd.sda gg.plotHolder gg.theme growth.ac growth.ac.cond in.IT plotRP.crqaOutput sa2fd.dfa	3 4 5 5 5 6 7 7 8 9 9
fd.sda gg.plotHolder gg.theme growth.ac growth.ac.cond in.IT plotRP.crqaOutput sa2fd.dfa sa2fd.psd	3 4 5 5 6 7 7 8 8 9
fd.sda gg.plotHolder gg.theme growth.ac growth.ac.cond in.IT plotRP.crqaOutput sa2fd.dfa sa2fd.psd sa2fd.sda	33 44 55 55 66 66 77 88 99 99 100 111
fd.sda gg.plotHolder gg.theme growth.ac growth.ac.cond in.IT plotRP.crqaOutput sa2fd.dfa sa2fd.psd sa2fd.sda scaleR	3 4 5 5 5 6 6 7 8 8 9 10 11 11
fd.sda gg.plotHolder gg.theme growth.ac growth.ac.cond in.IT plotRP.crqaOutput sa2fd.dfa sa2fd.psd sa2fd.sda	33 44 55 55 56 66 67 77 88 99 99 100 111 122 133

2 fd.dfa

Index 15

fd.dfa

Detrended Fluctuation Analysis (DFA)

Description

fd.dfa

Usage

```
## S3 method for class 'dfa'
fd(y, fs = NULL, dtrend = "poly1", normalize = FALSE,
  sum.order = 1, scale.max = trunc(length(y)/4), scale.min = 4,
  scale.ratio = 2^(1/4), overlap = 0, plot = FALSE)
```

Arguments

y A numeric vector or time series object.

normalize Normalize the series (default).

plot Return the log-log spectrum with linear fit (default).

detrend Subtract linear trend from the series (default).

dmethod Method to use for detrending, see DFA.

Value

Estimate of Hurst exponent (slope of log(bin) vs. log(RMSE)) and an FD estimate based on Hasselman(2013) A list object containing:

- $\bullet\,$ A data matrix PLAW with columns freq.norm, size and bulk.
- Estimate of scaling exponent sap based on a fit over the standard range (fullRange), or on a user defined range fitRange.
- Estimate of the the Fractal Dimension (FD) using conversion formula's reported in Hasselman(2013).
- Information output by various functions.

Author(s)

Fred Hasselman

References

Hasselman, F. (2013). When the blind curve is finite: dimension estimation and model inference based on empirical waveforms. Frontiers in Physiology, 4, 75. http://doi.org/10.3389/fphys. 2013.00075

See Also

Other FD estimators: fd.psd, fd.sda

fd.psd 3

fd.psd Power Spectral Density Slope (PSD).
--

Description

Estimate Alpha, Hurst Exponent and Fractal Dimension through log-log slope.

Usage

```
## S3 method for class 'psd'
fd(y, fs = NULL, normalize = TRUE, dtrend = TRUE,
  plot = FALSE)
```

Arguments

y A numeric vector or time series object.

normalize Normalize the series (default).

plot Return the log-log spectrum with linear fit (default).

detrend Subtract linear trend from the series (default).

Details

Calls function SDF to estimate the scaling exponent of a timeseries based on the periodogram frequency spectrum. After detrending and normalizing the signal (if requested), SDF is called using a Tukey window (raised cosine taper).

A line is fitted on the periodogram in log-log coordinates. Two fit-ranges are used: The 25% lowest frequencies and the Hurvich-Deo estimate (HDEst).

Value

A list object containing:

- A data matrix PLAW with columns freq. norm, size and bulk.
- Estimate of scaling exponent alpha based on a fit over the lowest 25% frequencies (low25), or using the HD estimate HD.
- Estimate of the Fractal Dimension (FD) using conversion formula's reported in Hasselman(2013).
- Information output by various functions.

Author(s)

Fred Hasselman

References

Hasselman, F. (2013). When the blind curve is finite: dimension estimation and model inference based on empirical waveforms. Frontiers in Physiology, 4, 75. http://doi.org/10.3389/fphys. 2013.00075

4 fd.sda

See Also

```
Other FD estimators: fd.dfa, fd.sda
```

Examples

```
fd.psd(rnorm(2048), plot = TRUE)
```

fd.sda

Standardised Dispersion Analysis (SDA).

Description

Standardised Dispersion Analysis (SDA).

Usage

```
## S3 method for class 'sda'
fd(y, fs = NULL, normalize = TRUE, dtrend = FALSE,
    scales = dispersion(y)$scale, fitRange = c(scales[1],
    scales[length(scales) - 2]), plot = FALSE)
```

Arguments

y A numeric vector or time series object.

normalize Normalize the series (default).

plot Return the log-log spectrum with linear fit (default).

Value

A list object containing:

- A data matrix PLAW with columns freq. norm, size and bulk.
- Estimate of scaling exponent sap based on a fit over the standard range (fullRange), or on a user defined range fitRange.
- Estimate of the Fractal Dimension (FD) using conversion formula's reported in Hasselman(2013).
- Information output by various functions.

Author(s)

Fred Hasselman

References

Hasselman, F. (2013). When the blind curve is finite: dimension estimation and model inference based on empirical waveforms. Frontiers in Physiology, 4, 75. http://doi.org/10.3389/fphys. 2013.00075

See Also

Other FD estimators: fd.dfa, fd.psd

gg.plotHolder 5

Examples

```
fd.sda(rnorm(2048))
```

gg.plotHolder

gg.plotHolder

Description

gg.plotHolder

Usage

```
gg.plotHolder(useArial = F, afmPATH = "~/Dropbox")
```

Arguments

useArial Use the Arial font (requires .afm font files in the afmPath)

afmPATH Path to Arial . afm font files.

Value

A blank ggplot2 object that can be used in concordance with grid.arrange.

Examples

```
# Create a plot with marginal distributions.
library(ggplot2)
library(scales)

df <- data.frame(x = rnorm(n = 100), y = rnorm(n = 100), group = factor(sample(x=c(0,1), size = 100, replace = scatterP <- ggplot(df, aes(x = x, y =y, colour = group)) + geom_point() + gg.theme()
xDense <- ggplot(df, aes(x = x, fill = group)) + geom_density(aes(y= ..count..),trim=FALSE, alpha=.5) + gg.th
yDense <- ggplot(df, aes(x = y, fill = group)) + geom_density(aes(y= ..count..),trim=FALSE, alpha=.5) + coord
library(gridExtra)
grid.arrange(xDense, gg.plotHolder(), scatterP, yDense, ncol=2, nrow=2, widths=c(4, 1.4), heights=c(1.4, 4))</pre>
```

gg.theme

gg.theme

Description

gg.theme

Usage

```
gg.theme(type = c("clean", "noax"), useArial = F, afmPATH = "~/Dropbox")
```

6 growth.ac

Arguments

type One of "clean", or "noax"

useArial Use the Arial font (requires .afm font files in the afmPath)

afmPATH Path to Arial . afm font files.

Details

Will generate a "clean" ggplot theme, or a theme without any axes ("noax").

Some scientific journals explicitly request the Arial font should be used in figures. This can be achieved by using .afm font format (see, e.g. http://www.pure-mac.com/font.html).

Value

A theme for ggplot2.

Examples

```
library(ggplot2)
g <- ggplot(data.frame(x = rnorm(n = 100), y = rnorm(n = 100)), aes(x = x, y = y)) + geom_point()
g + gg.theme()
g + gg.theme("noax")</pre>
```

growth.ac

Autocatlytic Growth: Iterating difference equations (maps)

Description

Autocatlytic Growth: Iterating difference equations (maps)

Usage

```
growth.ac(Y0 = 0.01, r = 1, k = 1, N = 100, type = c("driving", "damping", "logistic", "vanGeert")[1])
```

Arguments

Y0 Initial value.

r Growth rate parameter.k Carrying capacity.

N Length of the time series.

type One of: "driving" (default), "damping", "logistic", "vanGeert1991".

Value

A timeseries object of length N.

Author(s)

Fred Hasselman

growth.ac.cond 7

See Also

Other autocatalytic growth functions: growth.ac.cond

Examples

```
# The logistic map in the chaotic regime
growth.ac(Y0 = 0.01, r = 4, type = "logistic")
```

Description

Conditional Autocatlytic Growth: Iterating difference equations (maps)

Usage

```
growth.ac.cond(Y0 = 0.01, r = 0.1, k = 2, cond = cbind.data.frame(Y = 0.2, par = "r", val = 2), N = 100)
```

Arguments

Y0	Initial value
r	Growth rate parameter
k	Carrying capacity
cond	Conditional rules passed as a data.frame of the form: $cbind.data.frame(Y =, par =, val =)$
N	Length of the time series

Author(s)

Fred Hasselman

See Also

Other autocatalytic growth functions: growth.ac

xyplot(growth.ac.cond(cond=cond))

Examples

```
# Plot with the default settings
xyplot(growth.ac.cond())

# The function such that it can take a set of conditional rules and apply them sequentially during the iterati
# The conditional rules are passed as a `data.frame`
(cond <- cbind.data.frame(Y = c(0.2, 0.6), par = c("r", "r"), val = c(0.5, 0.1)))
xyplot(growth.ac.cond(cond=cond))

# Combine a change of `r` and a change of `k`
(cond <- cbind.data.frame(Y = c(0.2, 1.99), par = c("r", "k"), val = c(0.5, 3)))</pre>
```

8 in.IT

```
# A fantasy growth process (cond <- cbind.data.frame(Y = c(0.1, 1.99, 1.999, 2.5, 2.9), par = c("r", "k", "r", "r", "k"), val = c(0.3, 3, xyplot(growth.ac.cond(cond=cond))
```

in.IT

Initialise It

Description

Load and/or install R packages

Usage

```
in.IT(need = NULL, inT = TRUE)
```

Arguments

need A vector of package names to be loaded. The wrapper functions have a pre-

definded need list and can be used as shortcuts (see details).

inT Logical. If TRUE (default), packages in need wil be installed if they are not

available on the system.

Details

in.IT will check if the Packages in the list argument need are installed on the system and load them. If inT=TRUE (default), it will first install the packages if they are not present and then proceed to load them.

Author(s)

Fred Hasselman

See Also

Other initialise packages: un.IT

Examples

```
in.IT(c("reshape2", "plyr", "dplyr"))
```

plotRP.crqaOutput 9

plotRP.crqaOutput

plot.crqaOutput

Description

Creates a recurrence plot from the sparse matrix output generated by crqa.

Usage

```
## S3 method for class 'crqaOutput'
plotRP(crqaOutput)
```

Arguments

crqa0utput

List output from crqa

Value

A recurrence plot.

Author(s)

Fred Hasselman

sa2fd.dfa

Informed Dimension estimate from DFA slope (H)

Description

Conversion formula: Detrended Fluctuation Analysis (DFA) estimate of the Hurst exponent (a self-affinity parameter sa) to an informed estimate of the (fractal) dimension (FD).

Usage

```
## S3 method for class 'dfa'
sa2fd(sa)
```

Arguments

sa

Self-Afinity parameter estimate based on DFA slope (e.g., fd.sda)).

Details

The DFA slope (H) will be converted to a dimension estimate using:

$$D_{DFA} \approx 2 - (\tanh(\log(3) * sa))$$

Value

An informed estimate of the Fractal Dimension, see Hasselman(2013) for details.

10 sa2fd.psd

Author(s)

Fred Hasselman

References

Hasselman, F. (2013). When the blind curve is finite: dimension estimation and model inference based on empirical waveforms. Frontiers in Physiology, 4, 75. http://doi.org/10.3389/fphys. 2013.00075

See Also

Other SA to FD converters: sa2fd.psd, sa2fd.sda

Examples

```
# Informed FD of white noise
sa2fd.dfa(0.5)

# Informed FD of Pink noise
sa2fd.dfa(1)

# Informed FD of blue noise
sa2fd.dfa(0.1)
```

sa2fd.psd

Informed Dimension estimate from Spectral Slope (aplha)

Description

Conversion formula: From periodogram based self-affinity parameter estimate (sa) to an informed estimate of the (fractal) dimension (FD).

Usage

```
## S3 method for class 'psd'
sa2fd(sa)
```

Arguments

sa

Self-Affinity parameter estimate based on PSD slope (e.g., fd.psd)).

Details

The spectral slope will be converted to a dimension estimate using:

$$D_{PSD} \approx \frac{3}{2} + \frac{14}{33} * \tanh\left(Slope * \ln(1 + \sqrt{2})\right)$$

Value

An informed estimate of the Fractal Dimension, see Hasselman(2013) for details.

sa2fd.sda 11

Author(s)

Fred Hasselman

References

Hasselman, F. (2013). When the blind curve is finite: dimension estimation and model inference based on empirical waveforms. Frontiers in Physiology, 4, 75. http://doi.org/10.3389/fphys. 2013.00075

See Also

Other SA to FD converters: sa2fd.dfa, sa2fd.sda

Examples

```
# Informed FD of white noise
sa2fd.psd(0)

# Informed FD of Brownian noise
sa2fd.psd(-2)

# Informed FD of blue noise
sa2fd.psd(2)
```

sa2fd.sda

Informed Dimension estimate from SDA slope.

Description

Conversion formula: Standardised Dispersion Analysis (SDA) estimate of self-affinity parameter (SA) to an informed estimate of the fractal dimension (FD).

Usage

```
## S3 method for class 'sda'
sa2fd(sa)
```

Arguments

sa

Self-afinity parameter estimate based on SDA slope (e.g., fd. sda)).

Details

Note that for some signals different PSD slope values project to a single SDA slope. That is, SDA cannot distinguish between all variaties of power-law scaling in the frequency domain.

Value

An informed estimate of the Fractal Dimension, see Hasselman(2013) for details.

Author(s)

Fred Hasselman

12 scaleR

References

Hasselman, F. (2013). When the blind curve is finite: dimension estimation and model inference based on empirical waveforms. Frontiers in Physiology, 4, 75. http://doi.org/10.3389/fphys. 2013.00075

See Also

Other SA to FD converters: sa2fd.dfa, sa2fd.psd

Examples

```
# Informed FD of white noise
sa2fd.sda(-0.5)
# Informed FD of Brownian noise
sa2fd.sda(-1)
# Informed FD of blue noise
sa2fd.sda(-0.9)
```

scaleR

ScaleR

Description

Rescale a vector to a user defined range defined by user.

Usage

```
scaleR(x, mn = min(x, na.rm = T), mx = max(x, na.rm = T), lo = 0, hi = 1)
```

Arguments

Х		Input vector or data frame.
m	า	Minimum value of original, defaults to $min(x, na.rm = TRUE)$.
m	×	Maximum value of original, defaults to $max(x, na.rm = TRUE)$.
1	0	Maximum value to rescale to, defaults to 1.
h	i	Minimum value to rescale to, defaults to 0.

Details

Three uses:

- 1. scaleR(x) Scale x to data range: min(x.out)==0; max(x.out)==1
- 2. scaleR(x,mn,mx) Scale x to arg. range: min(x.out)==mn==0; max(x.out)==mx==1
- 3. scaleR(x,mn,mx,lo,hi) Scale x to arg. range: min(x.out)==mn==lo; max(x.out)==mx==hi

Value

A data frame with rescaled variables in columns (colum names: 'inputvariablename.resc').

try.CATCH 13

Examples

```
# Works on numeric objects
somenumbers <- cbind(c(-5,100,sqrt(2)),c(exp(1),0,-pi))
scaleR(somenumbers)
scaleR(somenumbers,mn=-100)

# Values < mn will return < lo (default=0)
# Values > mx will return > hi (default=1)
scaleR(somenumbers,mn=-1,mx=99)
scaleR(somenumbers,lo=-1,hi=1)
scaleR(somenumbers,mn=-10,mx=101,lo=-1,hi=4)
```

try.CATCH

tryCatch both warnings (with value) and errors

Description

try.CATCH

Usage

```
try.CATCH(expr)
```

Arguments

expr

an R expression to evaluate

Details

In longer simulations, aka computer experiments, you may want to 1) catch all errors and warnings (and continue) 2) store the error or warning messages

Here's a solution (see R-help mailing list, Dec 9, 2010):

Catch *and* save both errors and warnings, and in the case of a warning, also keep the computed result.

Value

a list with 'value' and 'warning', where value' may be an error caught.

Author(s)

Martin Maechler; Copyright (C) 2010-2012 The R Core Team

14 un.IT

un.IT

Un-initialise It

Description

Unload and/or uninstall R packages.

Usage

```
un.IT(loose, unT = FALSE)
```

Arguments

loose A vector of package names to be unloaded.

unT Logical. If TRUE, packages in loose wil be un-installed if they are available on

the system.

Details

un. ITwill check if the Packages in the list argument loose are installed on the system and unload them. If unT=TRUE it will first unload the packages if they are loaded, and then proceed to uninstall them.

Author(s)

Fred Hasselman

See Also

Other initialise packages: in.IT

Examples

```
## Not run: un.IT(loose = c("reshape2", "plyr", "dplyr"), unT = FALSE)
```

Index

```
crqa, 9
DFA, 2
fd.dfa, 2, 4
fd.psd, 2, 3, 4, 10
fd.sda, 2, 4, 4, 9, 11
gg.plotHolder,5
gg.theme, 5
growth.ac, 6, 7
growth.ac.cond, 7, 7
HDEst, 3
in.IT, 8, 14
\verb|plotRP.crqaOutput|, 9
sa2fd.dfa, 9, 11, 12
sa2fd.psd, 10, 10, 12
sa2fd.sda, 10, 11, 11
scaleR, 12
SDF, 3
taper, 3
try.CATCH, 13
un.IT, 8, 14
```