TESTS & DESCRIPTIVE STATISTICS

10.12.2018

PROBLEM SET 2

* Due today!

RECAP

* binomial distribution!

BINOMIAL TEST

- * (As on monday) If we flipped a coin 100
 times and got 63 heads, is it a fair
 coin?
- * Formally: if the coin was fair (q=0.5), what is the probability that we would see a result at least as extreme as 63 in 100 trials?

BINOMIAL TEST

- * How do we compute this probability?
 - * We can simulate, as we did on monday
 - * But, since we know the Binomial distribution we can just compute the probability for each *k* and sum!

BINOMIAL TEST

* (but in actuality we would always use scipy.stats.binom_test)

MEAN

- * as we've already seen when talking about numpy, the **mean** of a collection of numbers is the same as the average
- * i.e. mean(arr) = sum(arr) / len(arr)
- * in numpy you can get the mean two ways:
 - * np.mean(arr)
 - * arr.mean()

MEDIAN

- * the median is the middle-most element in a dataset (the 50th percentile)
- * the median is more robust than the mean (i.e. it is less sensitive to outliers)
- * in numpy you can get the median using:
 - * np.median(arr)

* What if we want to measure how variable the data is around the mean?

* We could do compute how far each data point is from the mean—let's call this the deviation

* What will the mean deviation be?

- * The mean deviation is always zero!
- * So obviously we can't just average deviations to get a sense of how variable the data is
- * One thing we could do is take the mean squared deviation
- * This is the *variance* of the data

* Variance can also be obtained using arr.var() in numpy

- * Another useful number is the mean absolute deviation (or square root of the mean squared deviation)
- * This is the **standard deviation**
- * Standard deviation can be obtained using arr.std() in numpy

END