

## **Last time: Digital devices**

Chapter 26

- Introduction
- Gate characteristics
- Logic families
- TTL
- CMOS
- Interfacing
- Noise and EMC in digital systems



## **Key points**

- Physical gates are not ideal components
- Logic gates are manufactured in a range of logic families
- The ability of a gate to ignore noise is its 'noise immunity'
- Both MOSFETs and bipolar transistors are used in gates
- All logic gates exhibit a propagation delay
- The most widely used logic families are TTL and CMOS.
- Both TTL and CMOS gates are produced in a range of versions, each optimised for a particular characteristic
- Interface circuitry may be needed to link devices of different families
- Noise and EMC issues must be considered during design



## **Implementing digital systems**

- Introduction
- Array logic
- Microprocessors
- System-on-a-chip devices
- Selecting an implementation method





#### Programmable logic array (PLA)

- has an array of inverters, AND gates and OR gates
- can implement any logic function (given limits on numbers of inputs and outputs)

Example: consider a system with four inputs A, B, C and D and three output X, Y and Z, where

$$X = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD$$

$$Y = \overline{A}\overline{B}CD + ABC\overline{D}$$

$$Z = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD + ABC\overline{D}$$



Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

## logic array symbolic notation



**27.6** 

a PLA with 6 inputs,4 outputs and16 product terms

- where





Neil Storey, *Electronics*: A Systems Approach, 5th Edition © Pearson Education Limited 2013

# Programmable read-only memory (PROM)

- similar structure to a PLA but has only 1 programmable array (NANDS as in the PAL) but fixed OR output array
- the pattern written into the OR array determines the outputs produced for each combination of inputs
- can be used to implement logic functions or to store
   data when storing data the inputs are the address

## Programming tools for array logic

- automated tools are used in almost all cases
- often make use of hardware description languages
- fuse maps are passed to a programmer to configure the device



#### Custom and semi-custom ICs

- Some equipment may contain a custom IC designed by the manufacturer
- Others may have semi-custom or application specific integrated circuits (ASIC)
  - produced by combining a number of standard cells (such as registers, counters, input/output circuitry and memory)
  - much less costly than a complete design from scratch
- PAL Easy to program and very adaptable
- Very difficult to find out what they do if you haven't done the programming!





Video 27E

27.3

### A microcomputer system

**Microprocessors** 

- the CPU takes the form of a microprocessor



## Communication within the microcomputer



#### Registers

- fundamental building blocks within computers
- can be constructed using D flip-flops
- some are used for storage, others for input/output



## Communications between registers

- achieved by enabling the output of one register and the input of another
- as all the registers are connected by the same data bus, only one piece of information can be transmitted at any time



#### Random access memory (RAM)

- this is read-write memory
- write describes the process of storing information
- read describes the process of retrieval
- RAM is **volatile** in nature
- several forms:
  - static RAM uses circuitry similar to a bistable
  - dynamic RAM uses charge on capacitors, needs refreshing
- battery backup can be used to provide non-volatility

#### Read-only memory (ROM)

- this can be read from, but not written to
- is inherently non-volatile (useful for programs, etc)
- many forms available
  - some are programmed by the manufacturer (such as masked programmed devices)
  - others are user programmable (such as EPROM, and EEPROM)
- memory such as EEPROM can be written to (programmed) as well as read, but it is *not* RAM
  - it can only be programmed relatively slowly

## Microcomputer Programming

- Programming can use a number of techniques:
- Machine code programming
  - Coding directly in a machine readable form very inefficient and hardly ever used.
- Assembly code programming
  - Allows direct control of the processors functions while being easier to perform than machine code techniques. Sometimes used where very small or very fast routines are required.
- High-level language programming
  - The most widely used and efficient method. Uses languages such as BASIC, C, C++, C#, Java, Pascal or Python.



## Input/Output

#### Interface

- Make the signals produced by the sensor compatible with those of the computer system.
- Make signals produced at the computer output suitable to drive the actuators directly.
- The operations performed by the interface referred to as signal conditioning.

## Signal conditioning

- Signal conditioning includes:
  - Amplification (Chapter 14)
  - Filtering to remove noise (Chapter 8)
  - Isolation (Optical isolator Chapter 26.8.3)
  - Analogue-to-digital and/or digital-to-analogue conversion (Chapter 28)

#### Input/output

- The nature of the input/output section varies tremendously with the application.
- Input/output may use parallel or serial techniques.
- Parallel I/O often uses input/output registers which appear as simple memory locations to the processor
- Serial I/O can use a range of techniques including both synchronous and asynchronous methods.

#### **Serial I/O**

#### Asynchronous serial communications

- Sender and receiver have (accurate) independent clocks
- Clocks at the same frequency
- The structure of an asynchronous word



27.21

#### **Serial I/O**

- Synchronous serial communications
  - Synchronization field sent to receiver
    - A bit pattern or specific synchronization word
  - Receiver clock derived from sync-word/words

## For complete definition of data structure, if you need it, see: TN\_116\_USB Data Structure.pdf on It's learning.

#### Serial communications standards

 One of the most important standards is the Universal Serial Bus or USB





- USB data is sent in packets Least Significant Bit (LSB) first.
- There are 4 main USB packet types: Token, Data, Handshake and Start of Frame.
- Each packet is constructed from different field types, namely SYNC, PID, Address, Data, Endpoint, CRC and EOP.
- The packets are then bundled into frames to create a USB message.

## Programmed controlled input/output

polling of I/O devices





## Interrupts

- the interrupt mechanism



27.25

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

## - multiple interrupt handling with a stack



## I/O techniques

- Program controlled
  - Simplest to implement and test
- Interrupt-driven
  - Fast response and less processor time than polling
  - Hard to test as it is asynchronous
- Direct memory access.
  - Device accesses memory directly
  - Little impact on processor time, but
  - Extra interface hardware and expensive
  - used for large transfers (disk drives etc.)

#### Single-chip microcomputer

- a single device providing the processor, memory and input/output sections of a microcomputer within a single integrated circuit
- many types available, ranging from very simple to very complex devices
- of particular interest are the PIC family of devices
  - uses a dual-bus Harvard architecture
  - use a RISC instruction set
  - extends from 6 pin devices with a few hundred bytes of memory to devices with more than 80 pins and 128 kbytes of memory



## System-on-a-chip (SOC) devices

27.4

- Single-chip microcomputers contain all the elements of a computer within a single device, but will invariably need a range of additional components in order to produce a complete system
- SOC devices incorporate additional elements such as
  - Memory
  - Analogue interfaces
  - Communications interfaces
  - Timing elements
  - Power components



## Selecting an implementation method

- 27.6
- The implementation method will depend on the complexity of the required functionality
  - applications requiring just a handful of gates might use
     CMOS or TTL devices
  - slightly more complex applications will often make use of array logic
  - complex digital applications will probably use either complex programmable devices (such as CPLDs or FPGAs) or a microprocessor (or a SOC or PLC)

#### Something to consider for simple dedicated machines

- Raspberry Pi or Arduino
- Credit card computer with video/TV, keyboard, USB and ethernet interface.
- Developed for education/hobby (cheap)



- While developed for fun an learning, a surprisingly sophisticated computer with a suite of interfaces available for control and sampling.
- http://www.raspberrypi.org/
- https://www.arduino.cc/





## **Further Study**

- The Further Study section at the end of Chapter 27 considers the operation of a microcomputerbased controller in an automatic washing machine.
- Your task is to decide how the device should control the speed of the motor.
- Decide which of the input/output techniques discussed earlier is most appropriate for this task and watch the video to assess your ideas.



## **Key points**

- Available complexity doubles every couple of years
- Array logic integrates large numbers of gates within a single package that is then configured for a particular application
- Complex digital systems can also be implemented using a microcomputer
- A programmable logic controller is a self-contained microcomputer that is optimised for industrial control
- The implementation method used will depend on the complexity of the required system

## **Typical "measurement"**





#### Where are we?

Have covered

Circuit components

Noise reduction

Filtering

How these can interact with sensor output

**Amplification** 

Counting or Digitizing (next)

Capturing digital word registers/latches

Interface with bus