Interdisciplinares de Ciências Humanas e de Ciências da Natureza Matemática | Física | Química

Instruções para a realização da prova

- Neste caderno, deverão ser respondidas as questões das seguintes provas: Interdisciplinar de Ciências Humanas (1 e 2); Interdisciplinar de Ciências da Natureza (3 e 4);
 Matemática (5 a 10);
 Física (11 a 16);
 Química (17 a 22).
- Atenção: nas questões que exigem cálculo, não basta escrever apenas o resultado finall. É necessário mostrar a resolução ou o raciocínio utilizado para responder às questões.
- A prova deve ser feita a caneta esferográfica preta. Utilize apenas o espaço reservado (pautado) para a resolução das questões.
- A duração total da prova é de cinco horas.

ATENÇÃO

Os rascunhos **não** serão considerados na correção.

UNICAMP VESTIBULA						
CIÊNCIAS EXATAS / 1	recnologicas	ORDEM	INSCRIÇÃO	ESCOLA	SALA	LUGAR
NOME		ASSINATURA DO CANDIDATO				

As fórmulas necessárias para a resolução de algumas questões são fornecidas no próprio enunciado – leia com atenção. Quando necessário, use:

 $g = 10 \text{ m/s}^2$

 $\pi = 3$

1 1 H			C	Class	sifica	ação	Per	iódio	a do	os							18 Pe
Hidrogênio 1,0079	2			Ε	leme	entos	s Qu	ímic	os			13	14	15	16	17	Hélio 4,0026
³ Li	^⁴ Be						-					5 B	⁶ C	['] N	[*] O	° F	Ne
Lítio 6,941(2)	Berílio 9,0122						Boro 10,811(5)	Carbono 12,011	Nitrogênio 14,007	Oxigênio 15,999	Fluor 18,998	Neônio 20,180					
Na Na	Mq											13 A I	¹⁴ Si	15 P	16 S	17 CI	18 Ar
Sódio 22,990	Magnésio 24.305	3	4	5	6	7	8	9	10	11	12	Alumínio 26.982	Silício 28.086	Fósforo 30.974	Enxofre 32,066(6)	Cloro 35.453	Argônio 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kı
Potássio 39,098	Cálcio 40,078(4)	Escândio 44,956	Titânio 47,867	Vanádio 50,942	Crômio 51,996	Manganês 54,938	Ferro 55,845(2)	Cobalto 58,933	Níquel 58,693	Cobre 63,546(3)	Zinco 65,39(2)	Gálio 69,723	Germânio 72,61(2)	Arsênio 74,922	Selênio 78,96(3)	Bromo 79,904	Criptônio 83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Χe
Rubídio 85.468	Estrôncio 87.62	Ítrio 88.906	Zircônio 91,224(2)	Nióbio 92,906	Molibdênio 95.94	Tecnécio 98,906*	Rutênio 101,07(2)	Ródio 102,91	Paládio 106,42	Prata 107,87	Cádmio 112,41	Índio 114,82	Estanho 118,71	Antimônio 121,76	Telúrio 127,60(3)	lodo 126.90	Xenônio 131,29(2)
55	56	57 a 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La-Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
Césio 132,91	Bário 137,33	Lu Lu	Háfnio 178,49(2)	Tåntalo 180,95	Tungstênio 183,84	Rênio 186,21	Ósmio 190,23(3)	Irídio 192,22	Platina 195,08(3)	Ouro 196,97	Mercúrio 200,59(2)	Tálio 204,38	Chumbo 207,2	Bismuto 208,98	Polônio 209,98*	Astato 209.99*	Radônio 222,02*
87	88	89 a 103	104	105,55	106	100,21	108	109	100,00(0)	150,57	200,00(2)	204,30	201,2	200,30	200,00	200,00	222,02
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt									
Frâncio	Rádio	AC-LI	Rutherfórdio 261*	Dúbnio	Seabórgio	Bóhrio	Hássio	Meitnério									
223,02*	226,03*		261"	262*				***				J					
Número →	25	¬ I	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
atômico -	→ Mr	.	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Símbolo ——	Manganês	'	Lantânio	Cério	Praseodími 140 91	Neodímio	Promécio	Samário	Európio	Gadolínio	Térbio	Disprósio	Hólmio	Érbio	Túlio	Itérbio	Lutécio
Nome ———	54,938		138,91 89	140,12 90	91	144,24(3) 92	146,2*9 93	150,36(3) 94	151,96 95	157,25(3) 96	158,93 97	162,50(3) 98	164,93 99	167,26(3) 100	168,93 101	173,04(3) 102	174,97
atômica relativa			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	l I r
é ±1, exceto sis. Os valores			Actínio	Tório	Protactínio	Urânio	Netúnio	Plutônio	Amerício	Cúrio	Berquélio	Califórnio	Einstênio	Férmio	Mendelévio	Nobélio	Laurêncio
mais estável.			227,03*	232,04*	231,04*	238,03*	237,05*	239,05*	241,06*	244,06*	249,08*	252,08*	252,08*	257,10*	258,10*	259,10*	262,11

RASCUNHO

1. As imagens produzidas por artistas europeus, tal como vemos na pintura do holandês Jan Davidsz de Heem, tiveram um papel importante na construção do conceito de *exótico* no imaginário da Europa na época moderna.

(Jan Davidsz de Heem. **Natureza Morta com Papagaios**. The Ringling Museum, fim da década de 1640.)

Naquele contexto, a pintura apresentava itens obtidos quando se exploravam e se colonizavam países em cantos distantes do mundo. A natureza (os elementos que a representam) é, assim, quase um estudo científico e, novamente, uma alusão à abundância obtida graças ao vitorioso comércio holandês.

(Adaptado de Rolf Winkes. Natura Morta. Revista do Museu de Arqueologia e Etnologia, São Paulo, 10: 145-161, 2000. p. 149.)

Os colonizadores exerceram diversas operações que levaram à configuração de um novo universo de relações intersubjetivas de dominação entre a Europa e as demais regiões e populações do mundo, às quais estavam sendo atribuídas, no mesmo processo, novas identidades geoculturais.

(Adaptado e traduzido de Anibal Quijano. Colonialismo, eurocentrismo y América Latina. *In Colonialidad del saber:* eurocentrismos e ciencias sociales. Buenos Aires, CLACSO. 2005, p. 209.)

- a) O exótico é estabelecido a partir de uma relação assimétrica entre universos diferentes. Justifique por que a imagem ao lado apresentaria características "exóticas" e relacione essa adjetivação ao pensamento colonial da época.
- b) Apresente uma semelhança e uma diferença entre a experiência colonial holandesa e a portuguesa.

Resolução (será considerado apenas o que estiver dentro deste espaço).

2. Em 10 de outubro de 1810, Adandozan (1797-1818), rei do Daomé, no atual Benim, enviou uma carta para o Brasil endereçada a Dom João, príncipe regente, acompanhada de uma lista de presentes contendo objetos de prestígio cujo uso era privilégio real. Uma parte dos artefatos descritos na carta integrava o acervo do Museu Nacional, que foi destruído em um grande incêndio no ano de 2018. Entre os objetos que Adandozan usou para presentear Dom João, destacavam-se o trono do rei daomeano (imagem ao lado), cetros, bengalas, bolsa, sandália e abanos.

(Adaptado de SOARES, Mariza de Carvalho. Trocando galanterias: a diplomacia do comércio de escravos, Brasil-Daomé, 1810-1812. *Afro-Ásia*, Salvador, n. 49, p. 229-271.)

Com base no excerto e na imagem:

- cite e explique uma das funções assumidas pelos objetos no âmbito da diplomacia estabelecida entre Brasil e África no começo do século XIX;
- b) descreva o impacto da destruição destes objetos no incêndio do Museu Nacional para o Brasil e para o Benim.

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **3.** Quando colocada em um recipiente, a água sofre evaporação a partir da sua superfície, tendo como resistência física à evaporação a pressão sobre essa superfície. Se a pressão do vapor de água atinge o valor da pressão que age sobre sua superfície, a evaporação tende à formação de bolhas (ebulição). Nessa situação, a temperatura da água permanece constante até a evaporação total.
- a) O cozimento de alimentos é, de uma forma simplificada, uma coleção de processos (reações) químicos. Neste contexto, cite a principal vantagem do uso de uma panela de pressão e explique, do ponto de vista científico, a mudança que seu uso promove em relação a um cozimento em panela comum.
- b) Em uma panela de pressão foi colocado determinado volume de água. Considere os três seguintes processos, realizados separadamente, para ferver a água, até a evaporação completa:
 - 1. Deixar a panela aberta, sem tampa; ligar o fogo e aquecer a água.
 - 2. Fechar a panela apenas apoiando a tampa na sua parte superior; ligar o fogo e aquecer a água.
 - 3. Fechar a panela encaixando a tampa conforme recomendado pelo fabricante; ligar o fogo e aquecer a água.

O gráfico abaixo (espaço de resposta) contém três curvas de temperatura da água, θ , em função do tempo. Correlacione os processos 1, 2 e 3 acima com as correspondentes curvas A, B ou C no gráfico. Justifique sua resposta. Desconsidere a contribuição da massa da tampa da panela.

Resolução (será considerado	o apenas o q	ue estiver dent	ro deste espaço).
Α			_
BC			
	Curva	Processo	
	Α		
	B C		
Te	mpo		-

T3

- **4.** Estudos mostram que a taxa de desmatamento nos principais biomas brasileiros tem aumentado significativamente desde 2015, causando a fragmentação da paisagem e tornando esses biomas altamente propensos a incêndios. Apesar dos processos químicos envolvidos na combustão da madeira ocorrerem de forma similar nos diferentes biomas, as diferenças na vegetação fazem com que as queimadas tenham características e consequências distintas em cada bioma.
- a) A vegetação na Amazônia é caracterizada majoritariamente por florestas altas e densas, enquanto o Pantanal é coberto por vegetação predominantemente aberta. Supondo que todos os outros fatores sejam similares nos dois biomas, compare a velocidade de propagação das queimadas na Amazônia e no Pantanal. O tempo para queimar uma mesma área será maior em qual desses dois biomas? Justifique sua resposta.
- b) Um dos parâmetros mais importantes para entender o comportamento do fogo é a intensidade da linha de frente do fogo, *I*, que representa a quantidade de calor liberado por unidade de tempo por unidade de comprimento da frente do fogo. A intensidade pode ser modelada fisicamente como o produto do calor de combustão do combustível, *H*, pela quantidade do combustível disponível, *q* (medida em kg/m²), e pela velocidade de propagação do fogo, *r* (medida em m/s):

$$I = H \cdot q \cdot r$$
.

No gráfico abaixo (espaço de resposta), os pontos representam a intensidade de diferentes queimadas registradas no Cerrado em função do produto *q.r*. A reta representa a curva de tendência que melhor ajusta os dados. A partir destas informações, estime o calor de combustão do combustível disponível para queima no Cerrado brasileiro.

Resolução	(será considerac	lo apenas o que	estiver dentro	deste espaço).	
1200					
(<i>W</i> / <i>W</i> / <i>W</i>) 1000 800 (<i>K</i> / <i>W</i> / <i>W</i>) 800 600 600 400 200 200		• /			
go 800	•	' .			
₉ 600		60			
9 dad					
tensi					
0 0,01	0,02 0,03 0,04 0,0	5 0,06 0,07 0,08	0,09		
	$q \cdot r \left(\frac{kg}{r} \right)$	-)			

5. Durante a pandemia de Covid-19, a imprensa tem utilizado a "média móvel" para divulgar a evolução do número de casos notificados da doença.

Para calcular a média móvel do dia d com respeito aos últimos k dias, somamos o número de casos do dia d com o número de casos registrados nos k-1 dias anteriores e dividimos por k.

Na tabela abaixo, indicamos, para uma dada cidade, a quantidade de casos notificados em cada dia de um determinado mês, e também a média móvel de cada dia com respeito <u>aos últimos 4 dias</u>. Alguns dados foram perdidos, e não constam na tabela.

Dia do mês	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Casos notificados	16	18	22	24	24	26	22		32			28	32	30	30	28	28	26	22	20	20
Média móvel				20	22	24	24			28	31	32			30	30	29		26	24	22

Analisando a tabela, calcule

- a) a média móvel do dia 18;
- b) a quantidade de casos notificados nos dias 8, 10 e 11.

Resolução (será cons	iderado apenas	o que estive	r dentro deste	espaço).	

RASCUNHO

T5

6. Uma escola com 960 alunos decidiu renovar seu mobiliário. Para decidir quantas cadeiras de canhotos será necessário comprar, fez-se um levantamento do número de alunos canhotos em cada turma. A tabela abaixo indica, na segunda linha, o número de turmas com o total de canhotos indicado na primeira linha.

Número total de alunos canhotos	0	1	2	3	4	5
Número de turmas	1	2	5	12	8	2

- a) Qual a probabilidade de que uma turma escolhida ao acaso tenha pelo menos 3 alunos canhotos?
- b) Qual a probabilidade de que um aluno escolhido ao acaso na escola seja canhoto?

Resolução (será considerado apenas o que estiver dentro deste espaço).

7. Considere um número real $t \in [0,2\pi)$ e defina a matriz

$$H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} \cos^2(t) & \cos(t)\sin(t) \\ \cos(t)\sin(t) & \sin^2(t) \end{pmatrix}.$$

- a) Mostre que a matriz H é invertível.
- b) Determine valores de t tais que $H \cdot {3 \choose 2} = {2 \choose 3}$.

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **8.** Sejam a, b números reais positivos. Considere a sequência de polígonos $P_1, P_2, \cdots, P_n, \cdots$ construídos da seguinte forma:
 - P_1 é um retângulo de lados a e b, como mostra a figura 1;
 - P_2 é obtido de P_1 , retirando dele um retângulo de lados medindo a/2 e b/2, como mostra a figura 2;
 - P_3 é obtido de P_1 , retirando dele 3 retângulos de lados medindo a/3 e b/3, como mostra a figura 3;
 - P_4 é obtido de P_1 , retirando dele 6 retângulos de lados medindo a/4 e b/4, como mostra a figura 4;
 - E assim, sucessivamente, P_n é obtido de P_1 , como mostra a figura 5.

- a) Determine o perímetro e o número de lados de P_{2021} .
- b) Seja A_n a área do polígono P_n , e seja A a área do triângulo retângulo de catetos com medidas a e b. Encontre a razão $R_n = \frac{A_n}{A}$, para n arbitrário.

Resolução (será considerado apenas o que estiver dentro deste espaço).	

8T

9. Em 2019, diversas praias brasileiras foram atingidas por manchas de óleo. Pesquisadores concentraram esforços na tentativa de localizar o ponto provável da emissão do óleo. Na figura abaixo, a origem do plano cartesiano está localizada no Distrito Federal e cada unidade equivale a 1.000 km.

- a) Numa primeira investigação sobre a origem do óleo, um navio fez uma sondagem numa área poligonal de $63.000.000 \text{ km}^2$, com vértices A, B, C, D e E, conforme indica a figura acima. Calcule o valor da ordenada h do ponto E = (19, h).
- b) Após a investigação dos resíduos encontrados nas praias indicadas pelos pontos F e G, descobriu-se que a fonte provável do óleo encontrava-se no Oceano Atlântico, a uma distância de 12.000 km do ponto F e 18.000 km do ponto G. Encontre as coordenadas (x,y) da provável fonte do óleo.

Resolução (será considerado apenas o que estiver dentro deste espaço).
, , , , , , , , , , , , , , , , , , , ,

RASCUNHO

T9

10. Seja $f(x) = x^3 - 2x + 1$ uma função polinomial real. A reta tangente ao gráfico de y = f(x) no ponto (a, f(a)) é definida pela equação y = mx + f(a) - ma, onde $m = 3a^2 - 2$.

a)	Encontre os pontos do	gráfico de $y =$	f(x) cuja reta	tangente é paralela	à reta definida	por $x - y = 0$.
----	-----------------------	------------------	----------------	---------------------	-----------------	-------------------

b)	Sabendo que $a > 0$ e que o coeficiente angular da reta tangente ao gráfico de $y = f(x)$ no ponto $(a, f(a))$ é
	10, determine os pontos de interseção da reta tangente com o gráfico de $y = f(x)$.

esolução (será considerado apenas o que estiver dentro deste espaço).						

- **11.** A Organização Meteorológica Mundial anunciou recentemente o novo recorde de raio mais extenso em distância percorrida (mais de setecentos quilômetros), registrado em outubro de 2018 no sul do Brasil.
- a) O atraso observado entre o som (trovão) e a luz (relâmpago) produzidos por um raio se deve à diferença entre a velocidade do som e a da luz no ar. Como a velocidade da luz é muito maior que a velocidade do som, v_{som} = 340 m/s, pode-se considerar o relâmpago como instantâneo. Se um trovão (de curta duração) é ouvido 5,0 s após o relâmpago, qual é a distância entre o raio e o observador?
- b) Considere agora certo raio que ocorre entre duas nuvens separadas por uma distância L = 9.0 km. A diferença de potencial entre as nuvens é $V = 6.0 \times 10^7$ V e a corrente durante a descarga é $i = 8.0 \times 10^5$ A. A resistência elétrica do canal ionizado da atmosfera, que conduz a corrente do raio, é **diretamente proporcional** à resistividade elétrica ρ do canal e ao seu comprimento L, e **inversamente proporcional** à sua área de secção reta A. Sendo A = 3.0 cm², qual é a resistividade elétrica ρ desse canal ionizado?

Resolução (será considerado apenas o que estiver dentro deste espaço).

12.

- a) O rio Amazonas tem a maior vazão Z dentre todos os rios do planeta: $Z \approx 2,1 \times 10^5$ m³/s. Encontre a velocidade da água em um trecho do rio Amazonas que tem uma largura L=10 km e uma profundidade p=50 m. Observe que o volume de água que atravessa a secção reta do rio num determinado ponto durante um intervalo de tempo Δt é dado por $L \times p \times \Delta x$, sendo Δx a distância que a água percorre durante Δt .
- b) Cada turbina da Usina Hidrelétrica de Tucuruí, no rio Tocantins, recebe um volume de água $V \approx 900 \text{ m}^3 \text{ em}$ um intervalo de tempo $\Delta t = 1,0 \text{ s}$. Considerando uma queda d'água do reservatório até a turbina de altura h = 70 m, que potência é transferida à turbina proveniente da energia potencial gravitacional da água no reservatório?

Densidade da água: $\rho_{\text{água}} = 1000 \text{ kg/m}^3$.

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **13.** Recentemente, um foguete da empresa americana SpaceX foi lançado na Flórida (EUA), levando dois astronautas à Estação Espacial Internacional (ISS). Este foi o primeiro lançamento tripulado dos EUA em nove anos.
- a) A eficiência dos motores de foguetes é representada pelo impulso específico I_{SP} , que é medido em segundos. A intensidade da força obtida pelo motor do foguete é dada por $F_M = I_{SP}g\frac{\Delta m}{\Delta t}$, em que $\frac{\Delta m}{\Delta t}$ é a massa de combustível expelida por unidade de tempo e g é a aceleração da gravidade. Considere um foguete de massa total $M_F = 6.0 \times 10^5$ kg durante o início do seu lançamento da superfície da Terra. Sabendo que o foguete atinge a iminência do seu movimento vertical quando $\frac{\Delta m}{\Delta t} = 2.0 \times 10^3$ kg/s, calcule o I_{SP} desse foguete. Despreze a variação da massa total do foguete durante o início do lançamento.
- b) Usando um princípio físico similar ao do lançamento de um foguete, um menino deseja mover-se sobre um skate lançando uma bola que ele segura nas mãos. O conjunto menino+skate+bola encontra-se inicialmente em repouso sobre uma superfície plana e horizontal. O menino lança a bola de massa $m_b = 0.4$ kg com uma velocidade de módulo $v_b = 5$ m/s na direção horizontal e frontal do skate. Sabendo que a massa do conjunto menino+skate (excluindo a bola) é $m_s = 50$ kg, calcule o módulo da velocidade de recuo do conjunto menino+skate imediatamente após o lançamento da bola. Despreze qualquer força resultante externa agindo no conjunto menino+skate+bola.

Resolução (será cons	iderado apen	as o que est	iver dentro d	este espaço).	

- **14.** A estudante gaúcha Juliana Estradioto, uma das vencedoras da 5ª edição do Prêmio Donna, ganhou reconhecimento internacional e convite para acompanhar a cerimônia do prêmio Nobel (2020) pelo seu trabalho, em que transformou casca de macadâmia em plástico biodegradável. Os materiais plásticos tradicionais são bastante utilizados por sua leveza, plasticidade e maleabilidade, mas trazem um impacto significativo ao meio ambiente pela sua lenta decomposição na natureza.
- a) Os materiais podem sofrer deformações em resposta a vários agentes, como, por exemplo, os mecânicos e os térmicos. Considere uma barra plástica de comprimento $L_0 = 50$ cm no momento em que sua temperatura é igual a $T_0 = 20$ °C. Calcule o novo comprimento da barra quando ela for aquecida a uma temperatura T = 50 °C. O coeficiente de dilatação térmica da barra é $\alpha = 7.0 \times 10^{-5}$ °C⁻¹.
- b) No regime de deformações elásticas, os materiais se deformam de forma análoga a uma mola, recuperando sua forma original quando o agente externo é removido. Considere uma barra de material plástico que é esticada elasticamente, sofrendo uma deformação Δx = 0,2 cm em relação ao seu comprimento de equilíbrio. Calcule a energia potencial elástica acumulada na barra, considerando-a como uma mola de constante elástica k = 8,0 × 10³ N/m que sofra a mesma deformação a partir da sua posição relaxada.

olução (será cons	iderado apen	as o que es	tiver dentro	deste espaç	0).	

- **15.** Espelhos inteligentes simulam espelhos convencionais e visam a ampliar sua função de produção de imagens dos objetos. Acoplados a computadores, esses equipamentos apresentam telas com muitas funcionalidades, tais como um modo de realidade ampliada, em que o usuário consegue alterar o tamanho, a orientação e a iluminação da sua própria imagem.
- a) Considere uma pessoa a uma distância $d_p = 50 \, \mathrm{cm}$ de um espelho plano convencional que segura um pequeno objeto no nível dos seus olhos a uma distância $d_o = 10 \, \mathrm{cm}$ do espelho. Faça um desenho esquemático que mostre a posição dos olhos da pessoa, do espelho, do objeto e da sua imagem, e determine a distância entre os olhos da pessoa e a posição da imagem do objeto produzida pelo espelho.
- b) Nas antigas telas de tubos de raios catódicos, as imagens são formadas por elétrons acelerados e defletidos que atingem uma tela composta por um material que emite luz. Uma partícula de carga q, na presença de um campo elétrico uniforme \vec{E}_0 de módulo constante, adquire uma aceleração \vec{a}_0 de módulo constante na mesma direção de \vec{E}_0 , cujo sentido depende do sinal de q. Calcule o módulo de \vec{a}_0 adquirido por uma partícula com carga $q = 3.2 \times 10^{-19}$ C e massa $m = 2.0 \times 10^{-26}$ kg quando $E_0 = 4000$ N/C.

Resolução (será considerado apenas o que estiver dentro deste espaço).

16. O Aconcágua é uma montanha na Cordilheira dos Andes com aproximadamente 7000 m de altitude, a mais alta fora da Ásia.

- a) O gráfico abaixo mostra curvas padronizadas da pressão e da temperatura do ar atmosférico em função da altitude. O ar comporta-se como um gás ideal e pode-se usar R=8 J/mol.K para a constante universal dos gases perfeitos. Calcule o volume molar do ar no pico do Aconcágua, que é dado pela razão (V/n), ou seja, pelo volume de ar, V, dividido pelo correspondente número de moles, n.
- b) A radiação solar que atinge a superfície da Terra é, em parte, absorvida pelas moléculas e partículas da atmosfera, sendo que a fração transmitida que chega ao nível do mar é menor do que aquela que atinge as altitudes elevadas. A figura abaixo mostra a curva de transmitância em função do comprimento de onda da radiação eletromagnética solar, para um ponto ao nível do mar, nas regiões do visível e do infravermelho. Nessa curva, podem-se ver duas largas janelas de **alta transmitância** no infravermelho. Sabendo que a energia de um fóton é dada por *E = hf*, sendo *h = 4 × 10⁻¹⁵* eV.s a constante de Planck e *f* a frequência da onda eletromagnética, encontre a menor energia dos fótons transmitidos por essas janelas no infravermelho.

Velocidade da luz: $c = 3.0 \times 10^8$ m/s.

17. A hemoglobina é uma proteína composta por quatro cadeias polipeptídicas. Cada cadeia está associada a um grupo heme que contém ferro, capaz de se ligar reversivelmente ao oxigênio, permitindo assim sua função primária, que é a do transporte de oxigênio dos pulmões aos tecidos periféricos.

- a) A **Figura 1** apresenta a curva de dissociação para duas hemoglobinas humanas: em adultos (linha tracejada) e fetais (linha sólida). Considerando elementos de equilíbrio químico e esse gráfico, indique qual hemoglobina tem maior afinidade com o oxigênio: a do **adulto** ou a **fetal**? Justifique sua resposta.
- b) O efeito Bohr, representado na **Figura 2**, ocorre quando células com metabolismo aumentado liberam maiores quantidades de CO₂ no sangue. Entre as curvas do gráfico (linhas **sólida** ou **tracejada**), identifique aquela que representa o **resultado final** do efeito Bohr. Explique, do ponto de vista químico, como você chegou a esta conclusão.

Resolução (será considerado apenas o que estiver dentro deste espaço).	

18. O gás natural (GN) é uma fonte de energia eficiente e limpa, considerando-se uma queima completa desse gás na sua forma purificada. No entanto, o metano, na origem, vem misturado com muitas outras substâncias que precisam ser retiradas no processo de purificação, pois, na queima, teriam baixa ou nenhuma eficiência energética, ou então gerariam produtos com características indesejáveis. A tabela abaixo mostra a composição aproximada (V/V %) de algumas fontes de gás natural, o que pode ilustrar as afirmações anteriores.

Componente	Eficiência Energética	Fontes				
Componente	Relativa (MJ/m³)	Laeq	Uch	Uthmaniyah		
CH₄	37	69	27,3	55,5		
C ₂ H ₆	65	3	0,7	18		
C ₃ H ₈	92	0,9	0,3	9,8		
C ₄ H ₁₀	120	0,5	0,3	4,5		
C ₅₊	147	0,5	-	1,6		
N ₂	0	1,5	25,2	0,2		
H ₂ S	22	15,3	-	1,5		
CO ₂	0	9,3	46,2	8,9		

Considere a queima de gases naturais (GN) na composição em que se apresentam nas fontes, em condições idênticas de temperatura e pressão e considerando tais gases como ideais.

- a) Do ponto de vista **energético**, qual seria a melhor e a pior fonte, por volume de gás queimado? Justifique sua resposta.
- b) Do ponto de vista **ambiental**, qual seria a melhor e a pior fonte, por volume de gás queimado? Justifique sua resposta.

MELHOR FONTE: PIOR FONTE:	
<u> </u>	
Justificativa:	
(b) AMBIENTAL	
MELHOR FONTE: PIOR FONTE:	
Justificativa:	

19. Pesquisadores da Universidade de Nevada estudaram a utilização de pó de café e farinha de penas de galinha, fontes baratas de matéria prima, abundantes e ambientalmente amigáveis, na produção de biodiesel. Num dos estudos, os cientistas coletaram o pó de café e separaram o óleo nele contido. No processo de extração do óleo, o pó passou por um processo de secagem por 12 horas. Em seguida, foi aquecido por 1 hora com um solvente orgânico em ebulição e então filtrado para remover o sólido. O solvente foi separado do óleo por destilação. Em seguida, os cientistas usaram um processo barato de transesterificação para converter 100% do óleo em biodiesel.

(Adaptado de A. King, Journal of Chemical Education 87, 2010, p. 243-244.)

- a) Considerando o estudo e os dados que constam nos gráficos acima, qual seria o material disponível em maior quantidade no mundo para a produção de biodiesel: **pó de café** ou **farinha de penas**? Justifique.
- b) Considerando o texto apresentado, aponte e comente, nos espaços indicados, um **aspecto positivo** e um **aspecto negativo** da proposta dos autores da pesquisa.

Resolução (será considerado apenas o que estiver dentro deste espaço).		
(b) Aspecto Positivo:		
Apparts Nagativa		
Aspecto Negativo:		

20. Métricas simples, como o **Fator-E** e a **Eficiência Mássica Reacional** (**EMR**), são úteis para avaliar o impacto ambiental e econômico de um dado processo químico.

Fator-E = massa de resíduos / massa de produto

EMR = massa de produto / massa de reagentes

Uma indústria pretende produzir um dos sais imidazólicos (sal 1 ou sal 2) sintetizados em seu laboratório de desenvolvimento. Ambos os sais teriam a mesma finalidade e serviriam para os mesmos propósitos. Considere os dados para a reação de produção dos sais citados empregando-se dois haletos de alquila distintos, conforme a equação abaixo.

Sal	Fator-E (kg/kg)	EMR (kg/kg)
1, X = CI	1,0	0,5
2 , X = Br	0,5	0,6

REAGENTES	1-metil- imidazol	1-cloro- hexano (X = Cl)	1-bromo- hexano (X = Br)		
Efeitos Toxicológicos / Ambientais					
Toxicidade para humanos		•			
Toxicidade para organismos aquáticos	•		0		
Persistência no ambiente	•	•	•		
Bioacumulação	*	0	0		

Avaliação qualitativa relativa entre todas as substâncias:					
*	Baixo		Médio	•	Alto
•	Baixo a Médio	0	Médio a Alto		

- a) Considerando as métricas **Fator-E** e **EMR**, indique qual desses sais (1 ou 2) você recomendaria para a produção. Justifique considerando valores e definições.
- b) Considerando os efeitos tóxico-ambientais apresentados no quadro, indique qual desses sais (1 ou 2) você recomendaria para a produção. Explique.

Resolução (será considerado apenas o que estiver dentro deste espaço).				

21. A Farmacocinética estuda a absorção de um fármaco, sua distribuição nos líquidos corporais e tecidos, sua metabolização e eliminação. Saber o que acontece com um fármaco no interior de um organismo vivo é crucial para garantir sua biodisponibilidade e, consequentemente, sua eficácia e segurança, considerando possíveis efeitos tóxicos. Para que um fármaco seja eficaz, ou seja, exerça a ação desejada, sua concentração no sangue deve estar dentro da "janela terapêutica". Assim, conhecendo-se o perfil de absorção e de metabolização de um fármaco, essa faixa de concentração pode ser assegurada levando-se em consideração a concentração da dose aplicada, bem como a frequência de administração do fármaco, indicada pelas setas na figura abaixo. A figura apresenta as curvas de concentração-tempo de certo fármaco no sangue.

- a) Considerando o enunciado, complete a tabela no espaço de resposta, associando as curvas do gráfico com os tipos de metabolismos: **normal**, **lento** e **acelerado**. Justifique.
- b) Considerando o perfil apresentado pelo fármaco, como os parâmetros poderiam ser alterados para garantir segurança e eficácia na administração do fármaco em duas situações: (S1) indivíduo com metabolismo lento e (S2) indivíduo com metabolismo acelerado. Explique.

Resolução (será considerado apenas o que estiver dentro deste espaço).				
	Curva 1	Curva 2	Curva 3	
Metabolismo				
		1		
(b) S1 - Lento:				
S2 - Acelerado:				

22. Um dos grandes desafios para a consolidação de uso do hidrogênio como combustível é seu armazenamento seguro e em grande quantidade. O hidrogênio pode ser armazenado puro, como gás ou líquido. Atualmente, parece mais adequado armazenar o hidrogênio na forma de hidretos metálicos ou adsorvido em materiais porosos nanoestruturados. Para que o armazenamento seja considerado eficiente, o material deve apresentar capacidade de armazenamento máxima em pressão constante e boa reversibilidade; ou seja, o armazenamento (adsorção) e a liberação (dessorção) devem ocorrer em condições similares. Essas características do armazenamento podem ser observadas em um gráfico denominado "isoterma de adsorção", que é uma curva de composição de hidrogênio no material (C, kg de H₂/kg de material) em função da pressão.

- a) A figura ao lado mostra a isoterma de três materiais que poderiam ser empregados para armazenar H₂. Qual curva (**A**, **B** ou **C**) representa o melhor material para se armazenar o hidrogênio? Justifique sua escolha.
- b) Um carro com motor a combustão interna consome 24 kg de gasolina (d = 700 kg m³) ou 8 kg de hidrogênio para percorrer uma distância de 400 km, adsorvido em um material intermetálico do tipo Mg_2Ni . Considerando que a massa e o volume de um carro médio são aproximadamente de 6 m³ e 1.000 kg, respectivamente, uma possível **desvantagem** desta tecnologia alternativa estaria relacionada à **massa** ou ao **volume** relativamente ocupado pelo Mg_2Ni ? Justifique.

Dados do Mg₂Ni: capacidade de armazenamento de $H_2 = 3.6$ kg de H_2 por 100 kg de Mg_2Ni ; densidade = 3.400 kg m⁻³.

Resolução (será considerado apenas o que estiver dentro deste espaço).		
	—	
	—	
	—	
	—	
	—	
	—	

