This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

FIG. 1A

GAATTCTCTGGACTGAGGCTCCAGTTCTGGCCTTTGGGG TTCAAGATCACTGGGACCAGGCCGTGATCTCTATGCCCGAGTCTCAACCCTCAACTGTC ACCCCAAGGCACTTGGGACGTCCTGGACAGACCGAGTCCCGGGAAGCCCCAGCACTGCC GCTGCCACACTGCCCTGAGCCCAAATGGGGGAGTGAGAGGCCA TAG CTG TCT GGC **S10 S**5 **S15** Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CTG CCA CTG GTG CTC **S20 S25** Leu Glu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu CTG GAG CTG TTG GTG GGA ATA TAC CCC TCA GGG GTT ATT GGA CTG Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA GAT AGT GTG TGT CCC Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr CAA GGA AAA TAT ATC CAC CCT CAA AAT AAT TCG ATT TGC TGT ACC Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro AAG TGC CAC AAA GGA ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr GGG CAG GAT ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys GCT TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA TGC Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA GTG GAC

FIG. 1B

Arg Asp Thr CGG GAC ACC 576	95 Val Cys GTG TGT 585	Gly Cys Arg GGC TGC AGG 594	100 Lys Asn Gln AAG AAC CAG 603	Tyr Arg TAC CGG	CAT TAT
Trp Ser Glu TGG AGT GAA 621	110 Asn Leu AAC CTT 630	Phe Gln Cys TTC CAG TGC 639	115 Phe Asn Cys TTC AAT TGC 648	Ser Leu AGC CTC	TGC CTC
Asn Gly Thr AAT GGG ACC 666	125 Val His GTG CAC 675	Leu Ser Cys CTC TCC TGC 684	130 Gln Glu Lys CAG GAG AAA 693	Gln Asn CAG AAC	ACC GTG
Cys Thr Cys TGC ACC TGC 711	140 His Ala (CAT GCA (720	Gly Phe Phe GGT TTC TTT 729	145 Leu Arg Glu CTA AGA GAA 738	Asn Glu AAC GAG 74	TGT GTC
Ser Cys Ser TCC TGT AGT 756	155 Asn Cys AAC TGT A	Lys Lys Ser AAG AAA AGC 774	160 Leu Glu Cys CTG GAG TGC 783	Thr Lys ACG AAG 79	TTG TGC
Leu Pro Gln CTA CCC CAG 801	170 Ile Glu A ATT GAG A 810	Asn Val Lys AAT GTT AAG 819	175 Gly Thr Glu GGC ACT GAG 828	Asp Ser GAC TCA 83	GGC ACC
Thr Val Leu ACA GTG CTG 846	185 Leu Pro 1 TTG CCC 0 855	Leu Val Ile CTG GTC ATT 864	190 Phe Phe Gly TTC TTT GGT 873	Leu Cys CTT TGC 88	195 Leu Leu CTT TTA
ACA GTG CTG 846 Ser Leu Leu	Leu Pro 1 TTG CCC 0 855	CTG GTC ATT 864	Phe Phe Gly TTC TTT GGT 873 205 Tyr Arg Tyr	CTT TGC 88 Gln Arg	195 Leu Leu CTT TTA 2 210 Trp Lys TGG AAG
ACA GTG CTG 846 Ser Leu Leu TCC CTC CTC 891 Ser Lys Leu	Leu Pro 1 TTG CCC 6 855 200 Phe Ile 6 TTC ATT 6 900 215 Tyr Ser 1	Gly Leu Met GGT TTA ATG 909	Phe Phe Gly TTC TTT GGT 873 205 Tyr Arg Tyr TAT CGC TAC 918 220 Gly Lys Ser	Gln Arg CAA CGG 92	195 Leu Leu CTT TTA 2 210 Trp Lys TGG AAG 7 225 Glu Lys GAA AAA

FIG. 1C

			ACT		TTC	Thr Pro		255 Leu Gly CTG GGC 1062	
Ser Pro AGT CCC 1071	Val GTG	260 Pro Ser CCC AGT 1080	Ser	Thr Phe ACC TTC 1089	ACC	Ser Ser TCC AGC	Ser	270 Thr Tyr ACC TAT 1107	Thr
Pro Gly CCC GGT 1116	Asp GAC	275 Cys Pro TGT CCC 1125	Asn AAC	Phe Ala TTT GCG 1134	GCT	Pro Arg CCC CGC 1143	AGA	285 Glu Val GAG GTG 1152	Ala GCA
								300 Ala Leu GCC CTC 1197	
Ser Asp TCC GAC 1206	CCC	305 Ile Pro ATC CCC 1215	AAC	Pro Leu CCC CTT 1224	CAG	Lys Trp AAG TGG 1233	Glu GAG	315 Asp Ser GAC AGC 1242	Ala GCC
His Lys I CAC AAG (1251		CAG AGC	CTA		GAT				
Ala Val V GCC GTG (Val	335 Glu Asn GAG AAC 1305	Val GTG	Pro Pro CCC CCG 1314	340 Leu TTG	Arg Trp CGC TGG 1323		<u>GAATTC</u> 1332	

FIG. 2

FIG. 3A

FIG. 3B

FIG. 6A

pAD-CMV1 : 6414 bp

	TCGACATTG	A TTATTGACT	A GTTATTAAT	A GTAATCAAT	T ACGGGGTCA	T TAGTTCATAG	6
	CCCATATAT	G GAGTTCCGC	TTACATAAC:	r tacggtaaa	T GGCCCGCCT	G GCTGACCGCC	12
	CAACGACCC	C CGCCCATTGA	CGTCAATAA	r gacgtatgt	T CCCATAGTA	A CGCCAATAGG	18
	GACTTTCCA:	T TGACGTCAAT	GGGTGGAGT	A TTTACGGTA	A ACTGCCCAC	TGGCAGTACA	24
	TCAAGTGTA:	r catatgccaa	GTACGCCCC	C TATTGACGT	C AATGACGGT	AATGGCCCGC	30
	CTGGCATTA	r GCCCAGTACA	TGACCTTATO	G GGACTTTCC	T ACTTGGCAG	ACATCTACGT	36
	ATTAGTCATO	C GCTATTACCA	TGGTGATGCG	GTTTTGGCA	G TACATCAATO	GGCGTGGATA	42
	GCGGTTTGAC	TCACGGGGAT	TTCCAAGTCT	CCACCCAT	I GACGTCAATO	GGAGTTTGTT	480
	TTGGCACCA	AATCAACGGG	ACTITCCAAA	ATGTCGTAAC	C AACTCCGCCC	CATTGACGCA	540
	AATGGGCGGT	AGGCGTGTAC	GGTGGGAGGT	CTATATAAGO	AGAGCTCTCT	GGCTAACTAG	600
	AGAACCCACT	GCTTAACTGG	CTTATCGAAA	TTAATACGAC	CTCACTATAGG	GAGACCCAAG	. 660
,	CTTCTGCAGG	TCGACATCGA	TGGATCCGGT	ACCTCGAGCG	G CGAATTCTCT	AGAGGATCTT	720
	TGTGAAGGAA	CCTTACTTCT	GTGGTGTGAC	ATAATTGGAC	AAACTACCTA	CAGAGATTTA	780
	AAGCTCTAAG	GTAAATATAA	AATTTTTAAG	TGTATAATGT	GTTAAACTAC	TGATTCTAAT	840
	TGTTTGTGTA	TTTTAGATTC	CAACCTATGG	AACTGATGAA	TGGGAGCAGT	GGTGGAATGC	900
	CTTTAATGAG	GAAAACCTGT	TTTGCTCAGA	AGAAATGCCA	TCTAGTGATG	ATGAGGCTAC	960
	TGCTGACTCT	CAACATTCTA	CTCCTCCAAA	AAAGAAGAGA	AAGGTAGAAG	ACCCCAAGGA	1020
(CTTTCCTTCA	GAATTGCTAA	GTTTTTTGAG	TCATGCTGTG	TTTAGTAATA	GAACTCTTGC	1080
•	TTGCTTTGCT	ATTTACACCA	CAAAGGAAAA	AGCTGCACTG	CTATACAAGA	AAATTATGGA	1140
1	AAAATATTTG	ATGTATAGTG	CCTTGACTAG	AGATCATAAT	CAGCCATACC	ACATTTGTAG	1200
1	AGGTTTTACT	TGCTTTAAAA	AACCTCCCAC	ACCTCCCCT	GAACCTGAAA	CATAAAATGA	1260
1	ATGCAATTGT	TGTTGTTAAC	TTGTTTATTG	CAGCTTATAA	TGGTTACAAA	TAAAGCAATA	1320
(GCATCACAAA	TTTCACAAAT	AAAGCATTTT	TTTCACTGCA	TTCTAGTTGT	GGTTŢGTCCA	1380
7	VACTCATCAA	TGTATCTTAT	CATGTCTGGA	TCAATTCTGA	GAAACTAGCC	TTAAAGACAG	1440

FIG. 6B

ACAGCTTTG	T TCTAGTCAG	C CAGGCAAGC	A TATGTAAAT	A AAGTTCCTC	A GGGAACTGAG	1500
GTTAAAAGA	T GTATCCTGG	A CCTGCCAGA	C CTGGCCATT	C ACGTAAACA	AAGATTCCGC	1560
CTCAAGTTC	C GGTTAACAA	C AGGAGGCAA	C GAGATCTCA	A ATCTATTACT	TCTAATCGGG	1620
TAATTAAAA	C CTTTCAACT?	AAACACGGA	C CCACGGATG	T CACCCACTT	TCCTTCCCCG	1680
GCTCCGCCC	T TCTCAGTACT	CCCCACCAT	r AGGCTCGCT	A CTCCACCTCC	ACTTCCGGGC	1740
GCGACACCC	A CGTGCCCTCT	CCCACCGAC	GCTAACCCCG	CCCCTGCCCG	TCTGACCCCG	1800
CCCACCACCT	r GGCCCCGCCC	CGTTGAGGAC	AGAAGAAACC	CCGGGCAGCC	GCAGCCAAGG	1860
CGGACGGGT	A GACGCTGGGG	GCGCTGAGGA	GTCGTCCTCT	ACCTTCTCTG	CTGGCTCGGT	1920
GGGGGACGCG	GTGGATCTCA	GGCTTCCGGA	AGACTGGAAG	AACCGGCTCA	GAACCGCTTG	1980
TCTCCGCGGG	GCTTGGGCGG	CGGAAGAATG	GCCGCTAGAC	GCGGACTTGG	TGCGAGGCAT	2040
CGCAGGATGO	AGAAGAGCAA	GCCCGCCGGG	AGCGCGCGC	TGTACTACCC	CGCGCCTGGA	2100
GCGGCCACGC	CGGACTGGGC	GGGGCCGGCC	TGGTGGAGGC	GGAGTCTGAC	CTCGTGGAGG	2160
CGGGGCCTCT	GATGTTCAAA	TAGGATGCTA	GGCTTGTTGA	GGCGTGGCCT	CCGATTCACA	2220
AGTGGGAAGC	AGCGCCGGGC	GACTGCAATT	TCGCGCCAAA	CTTGGGGGAA	GCACAGCGTA	2280
CAGGCTGCCT	AGGTGATCGC	TGCTGCTGTC	ATGGTTCGAC	CGCTGAACTG	CATCGTCGCC	2340
GTGTCCCAGA	ATATGGGCAT	CGGCAAGAAC	GGAGACCTTC	CCTGGCCAAT	GCTCAGGTAC	2400
TGGCTGGATT	GGGTTAGGGA	AACCGAGGCG	GTTCGCTGAA	TCGGGTCGAG	CACTTGGCGG	2460
AGACGCGCGG	GCCAACTACT	TAGGGACAGT	CATGAGGGGT	AGGCCCGCCG	GCTGCTGCCC	2520
TTGCCCATGC	CCGCGGTGAT	CCCCATGCTG	TGCCAGCCTT	TGCCCAGAGG	CGCTCTAGCT	2580
GGAGCAAAG	TCCGGTCACT	GGGCAGCACC	ACCCCCGGA	CTTGCATGGG	TAGCCGCTGA	2640
GATGGAGCCT	GAGCACACGT	GACAGGGTCC	CTGTTAACGC	AGTGTTTCTC	TAACTTTCAG	2700
GAACGAGTTC	AAGTACTTCC	AAAGAATGAC	CACCACCTCC	TCAGTGGAAG	GTAAACAGAA	2760
CCTGGTGATT	ATGGGCCGGA	AAACCTGGTT	CTCCATTCCT	GAGAAGAATC	GACCTTTAAA	2820
GACAGAATT	AATATAGTTC	TCAGTAGAGA	GCTCAAGGAA	CCACCACAAG	GAGCTCATTT	2880
CTTGCCAAA	AGTCTGGACC	ATGCCTTAAA	ACTTATTGAA	CAACCAGAGT	TAGCAGATAA	2940
AGTGGACATG	GTTTGGATAG	TTGGAGGCAG	TTCCGTTTAC	AAGGAAGCCA	TGAATCAGCC	3000

FIG. 6C

AGGCCATCT	C AGACTCTTTG	TGACAAGGAT	r CATGCAGGA	A TTTGAAAGT	ACACGTTCTT	306
CCCAGAAATT	r gatttggaga	AATATAAACI	TCTCCCAGA	G TACCCAGGGG	TCCTTTCTGA	312
AGTCCAGGAG	GAAAAAGGCA	TCAAGTATA	ATTTGAAGT	C TATGAGAAGA	AAGGCTAACA	318
GAAAGATACI	TGCTGATTGA	CTTCAAGTTC	TACTGCTTT	CTCCTAAAA1	TATGCATTTT	324
TACAAGÁCCA	TGGGACTTGT	GTTGGCTTTA	A GATCCTGTG	C ATCCTGGGC	ACTGTTGTAC	330
TCTAAGCCAC	CCCCAAAGT	CATGCCCCAG	CCCCTGTAT	A ATTCTAAACA	ATTAGAATTA	336
TTTTCATTT	CATTAGTCTA	ACCAGGTTAT	TATAAATAT	A CTTTAAGAAA	CACCATTTGC	342
CATAAAGTTC	TCAATGCCCC	TCCCATGCAG	CCTCAAGTG	G CTCCCCAGCA	GATGCATAGG	348
GTAGTGTGTG	TACAAGAGAC	CCCAAAGACA	TAGAGCCCC	r gagagcatga	GCTGATATGG	354
GGGCTCATAG	AGATAGGAGC	TAGATGAATA	AGTACAAAGG	GCAGAAATGG	GTTTTAACCA	3600
GCAGAGCTAG	AACTCAGACT	TTAAAGAAAA	TTAGATCAAA	GTAGAGACTG	AATTATTCTG	3660
CACATCAGAC	TCTGAGCAGA	GTTCTGTTCA	CTCAGACAGA	AAATGGGTAA	ATTGAGAGCT	3720
GGCTCCATTG	TGCTCCTTAG	AGATGGGAGC	AGGTGGAGGA	TTATATAAGG	TCTGGAACAT	3780
TTAACTTCTC	CGTTTCTCAT	CTTCAGTGAG	ATTCCAAGGG	ATACTACAAT	TCTGTGGAAT	3840
GTGTGTCAGT	TAGGGTGTGG	AAAGTCCCCA	GGCTCCCCAG	CAGGCAGAAG	TATGCAAAGC	3900
ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	3960
AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	4020
ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTT	4080
TTTATTTATG	CAGAGGCCGA	GGCGCCTCTG	AGCTATTCCA	GAAGTAGTGA	GGAGGCTTTT	4140
TTGGAGGCCT	AGGCTTTTGC	AAAAAAGCTA	ATTCAGCCTG	AATGGCGAAT	GGGACGCGCC	4200
CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	GGTGGTTACG	CGCAGCGTGA	CCGCTACACT	4260
TGCCAGCGCC	CTAGCGCCCG	CTCCTTTCGC	TTTCTTCCCT	TCCTTTCTCG	CCACGTTCGC	4320
CGGCTTTCCC	CGTCAAGCTC	TAAATCGGGG	GCTCCCTTTA	GGGTTCCGAT	TTAGTGCTTT	4380
ACGGCACCTC	GACCCCAAAA	ACTTGATTAG	GGTGATGGTT	CACGTAGTGG	GCCATCGCCC	4440
TGATAGACGG	TTTTTCGCCC	TTTGACGTTG	GAGTCCACGT	TCTTTAATAG	TGGACTCTTG	4500
TTCCAAACTG	GAACAACACT	CAACCCTATC	TCGGTCTATT	CTTTTGATTT	ATAAGGGATT	4560

FIG. 6D

TTGCCGATT	T CGGCCTATT	G GTTAAAAAA	T GAGCTGATT	T AACAAAAAT	TAACGCGAAT	462
TTTAACAAA	A TATTAACGT	TACAATTTC	A GGTGGCACT	T TTCGGGGAAJ	A TGTGCGCGGA	468
ACCCCTATT	r GTTTATTTT	CTAAATACA	TCAAATATG	r atccgctcat	GAGACAATAA	474
CCCTGATAA	A TGCTTCAAT	A ATATTGAAA	A AGGAAGAGT	A TGAGTATTC	ACATTTCCGT	480
GTCGCCCTT	A TTCCCTTTT	TGCGGCATT	T TGCCTTCCT	G TTTTTGCTCA	CCCAGAAACG	486
CTGGTGAAA	TAAAAGATGO	TGAAGATCAC	TTGGGTGCAC	GAGTGGGTTA	CATCGAACTG	492
GATCTCAACA	A GCGGTAAGAT	CCTTGAGAG	TTTCGCCCC	AAGAACGTTT	TCCAATGATG	498
AGCACTTTT	A AAGTTCTGCT	ATGTGGCGCG	GTATTATCC	GTATTGACGC	CGGGCAAGAG	504
CAACTCGGTC	C GCCGCATAC <i>i</i>	CTATTCTCAC	AATGACTTGG	TTGAGTACTC	ACCAGTCACA	510
GAAAAGCATO	TTACGGATGG	CATGACAGTA	AGAGAATTAI	GCAGTGCTGC	CATAACCATG	516
AGTGATAACA	CTGCGGCCAA	CTTACTTCTC	ACAACGATCO	GAGGACCGAA	GGAGCTAACC	522
GCTTTTTTGC	: ACAACATGGG	GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG	528
AATGAAGCCA	TACCAAACGA	CGAGCGTGAC	ACCACGATGO	CTGTAGCAAT	GGCAACAACG	534
TTGCGCAAAC	TATTAACTGG	CGAACTACTT	ACTCTAGCTT	CCCGGCAACA	ATTAATAGAC	5400
TGGATGGAGG	CGGATAAAGT	TGCAGGACCA	CTTCTGCGCT	CGGCCCTTCC	GGCTGGCTGG	5460
TTTATTGCTG	ATAAATCTGG	AGCCGGTGAG	CGTGGGTCTC	GCGGTATCAT	TGCAGCACTG	5520
GGGCCAGATG	GTAAGCCCTC	CCGTATCGTA	GTTATCTACA	CGACGGGGAG	TCAGGCAACT	5580
ATGGATGAAC	GAAATAGACA	GATCGCTGAG	ATAGGTGCCT	CACTGATTAA	GCATTGGTAA	5640
CTGTCAGACC	AAGTTTACTC	ATATATACTT	TAGATTGATT	TAAAACTTCA	TTTTAATTT	5700
AAAAGGATCT	AGGTGAAGAT	CCTTTTTGAT	AATCTCATGA	CCAAAATCCC	TTAACGTGAG	5760
TTTTCGTTCC	ACTGAGCGTC	AGACCCCGTA	GAAAAGATCA	AAGGATCTTC	TTGAGATCCT	5820
TTTTTTCTGC	GCGTAATCTG	CTGCTTGCAA	асааааааас	CACCGCTACC	AGCGGTGGTT	5880
TGTTTGCCGG	ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT	CAGCAGAGCG	5940
CAGATACCAA	ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG	GCCACCACTT	CAAGAACTCT	6000
GTAGCACCGC	CTACATACCT	CGCTCTGCTA	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	6060
GATAAGTCGT	GTCTTACCGG	GTTGGACTCA	AGACGATAGT	TACCGGATAA	GGCGCAGCGG	6120

TCGGGCTGAA	CGGGGGGTTC	GTGCACACAG	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA	6180
CTGAGATACC	TACAGCGTGA	GCATTGAGAA	AGCGCCACGC	TTCCCGAAGG	GAGAAAGGCG	6240
GACAGGTATC	CGGTAAGCGG	CAGGGTCGGA	ACAGGAGAGC	GCACGAGGGA	GCTTCCAGGG	6300
GGAAACGCCT	GGTATCTTTA	TAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA	6360
TTTTTGTGAT	GCTCGTCAGG	GGGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CCCC	

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

FIG. 8A

raTNF-R

GAATTC AATCCT	CTTT GGAG,	TCT	CGA	STT :	TCT(GAAC!	TC TC	GGCT TACC	CATG! TCTG!	A TCC	GGC:	TTAC	TGG	ATAC	GAG CCG		60 20	
GGGCTC	ACGC	TGC	CAAC	ACC (CGGG	CAC	CT G	STCC	GATC	TC	TAC:	TTCA	TTC	CCA	SCG		80	
TTGCCA	ATTG	CTGC	CCT	STC C	CCAC	SCCC	CA AS	rggg	GGAG1	GAC	AGA	GCC	ACTO	CCG	SCC		40	
GGAC																•	• •	
245/1									275	/11								
ATG GG	T CTO	ccc	ATC	GTG	CCI	r GGC	CTC	CTO	G CTC	TCA	CTC	GTG	CTC	CTO	GC:	r CTC	3 CT(: hmc
Met Gl	y Lei	ı Pro	Ile	. Val	. Pro	Gly	, Le	ı Leı	ı Lev	Ser	Lei	ı Val	Lev	Lei	1 Als	1.A	J CA	. Mar
305/21									335	/31								
GGG AT.	A CAC	CCA	TC	GGG	GTO	: ACC	GGZ	A CTO	G GT	CCI	TCI	r CTI	GGT	GAC	CGC	G 20	2 330	2 200
Gly Il	e His	Pro	Ser	Gly	Val	Thi	G1v	Le	ı Val	Pro	Ser	Leu	Glv	Ast	Arc	7 G1	i tu	י אכני
.365/41									395	/51							_	_
GAT AA	T TTG	TGI	ccc	CAG	GGA	AAG	TAT	r GC	CAT	CCA	AAC	AAT	AAT	TCC	: ATC	TGO	ጉ ጥርር	• ACC
Asp Ass	n Lev	Cys	Pro	Gln	Gly	Lys	Ty	: Ala	a His	Pro	Lvs	a Asn	Asr	Ser	716	Cu	יטים פ	. Th-
425/61									455	/71							_	
AAG TG	CAC	: AAA	GGA	ACC	TAC	TTC	GTO	AG	r GAC	TGT	CCA	AGC	CCA	GGG	CAC	GA:	A AC2	GTO
Lys Cy	s His	Lys	Gly	Thr	Tyr	Leu	. Val	. Sei	Asp	Cvs	Pro	Ser	Pro	Gly	, Gli	61	i Thi	. U.1
485/81									515	/91								
TGC GA	G CTC	TCT	CAT	. AAA	GGC	: ACC	TTI	. AC	GCI	TCG	CAG	AAC	CAC	GTO	: AGI	C2(2 TC1	, CIPC
Cys Gl	ı Lev	Ser	His	Lys	Gly	Thr	Phe	Thi	. Ala	Ser	Gln	Asn	His	Val	Arc	. Gl	. Cua	Tou
545/10:	l								575	/111							_	
AGT TG	CAAG	ACA	TGI	CGG	AAA	GAA	ATG	TTC	CAG	GTG	GAG	ATT	тст	CCT	י יייהכר		CCT	CNC
Ser Cys	s Lys	Thr	Cys	Arg	Lys	Glu	Met	Phe	Gln	Val	Glu	Ile	Ser	Pro	Cvs	Tare	. 31-	BAC
003/12.	L .								635	/131								
ATG GAG	C ACC	GTG	TGT	GGC	TGC	AAG	AAG	AAC	CAA	TTC	CAG	CGC	TAC	СТС	AGT	GAC	: ACG	Слт
Met Asr	Thr	Val	Cys	Gly	Cys	Lvs	Lvs	Asn	Gln	Phe	Gln	Ara	Tvr	Leu	Sar	Glu	The	CVI
065/141	L								695	/151								
TTC CAC	TGT	GTG	GAC	TGC	AGC	CCC	TGC	TTC	AAT	GGC	ACC	GTG	ACA	ATC	CCC	TCT	336	CAC
Phe Glr	Cys	Val	Asp	Cys	Ser	Pro	Cys	Phe	Asn	Glv	Thr	Val	Thr	Ile	Pro	CAS	Tve	GAG
152/101	•								755	/171							_	
AAA CAG	AAC	ACC	GTG	TGT	AAC	TGC	CAC	GCA	GGA	TTC	TTT	CTA	AGC	GGA	AAT	GAG	TGC	ACC
Lys Gln	Asn	Thr	Val	Cys	Asn	Cys	His	Ala	Gly	Phe	Phe	Leu	Ser	Glv	Asn	Glu	Cvs	The
785/181	,								815	/191							_	
CCT TGC	AGC	CAC	TGC	AAG	AAA	AAT	CAG	GAA	TGT	ATG	AAG	CTG	TGC	CTA	CCT	CCA	GTT	GCA
Pro Cys	Ser	His	Суз	Lys	Lys	Asn	Gln	Glu	Суз	Met	Lys	Leu	Суз	Leu	Pro	Pro	Val	Ala
843/201									875	/211								
AAT GTC	ACA	AAC	CCC	CAG	GAC	TCA	GGT	ACT	GCC	GTG	CTG	TTG	CCT	CTG	GTT	ATC	TTC	CTA
Asn val	Thr	Asn	Pro	Gln	Asp	Ser	Gly	Thr	Ala	Val	Leu	Leu	Pro	Leu	Val	Ile	Phe	Leu
905/221			•						935	/231					_			
GGT CTT	TGC	CTT	TTA	TTC	TTT	ATC	TGC	ATC	AGT	CTA	CTG	TGC	CGA	TAT	CCC	CAG	TGG	AGG
GIA ren	Cys	Leu	Leu	Phe	Phe	Ile	Cys	Ile	Ser	Leu	Leu	Суз	Arg	Tyr	Pro	Gln	Trp	Arg
703/241									995/	251								
CCC AGG	GTC	TAC	TCC	ATC	ATT	TGT	AGG	GAT	TCA	GCT	CCT	GTC	AAA	GAG	GTG	GAG	GGT	GAA
Pro Arg	vaı	Tyr	Ser	Ile	Ile	Cys	Arg	Asp	Ser	Ala	Pro	Val	Lys	Glu	Val	Glu	Gly	Glu
1025/26									1055	/271	•						-	
GGA ATT	GTT	ACT	AAG	CCC	CTA	ACT	CCA	GCC	TCT	ATC	CCA	GCC	TTC	AGC	CCC	AAC	CCC	GGC
GIA ITE	Val	Thr	Lys	Pro	Leu	Thr	Pro	Ala	Ser	Ile	Pro	Ala	Phe	Ser	Pro	Asn	Pro	Gly
1003/28	L								1115	/291								-
TTC AAC	CCC	ACT	CTG	GGC	TTC	AGC	ACC	ACC	CCA	CGC	TTC	AGT	CAT	CCT	GTC	TCC	AGT	ACC
rne Asn	Pro	Thr	Leu	Gly	Phe	Ser	Thr	Thr	Pro	Arg	Phe	Ser	His	Pro	Val	Ser	Ser	Thr
1145/30.	L								1175	/311								
CCC ATC	AGC	CCC	GTC	TTC	GGT	CCT	AGT	AAC	TGG	CAC	AAC	TTC	GTG	CCA	CCT	GTA	AGA	GAG
LLO ITE	Ser	Pro	Val	Phe	Gly	Pro	Ser	Asn	Trp	His	Asn	Phe	Val	Pro	Pro	Val	Ara	Glu
1205/32	L								1235	/331							_	
GTG GTC	CCA	ACC	CAG	GGT	GCT	GAC	CCT	CTC	CTC	TAC	GGA	TCC	CTC	AAC	CCT	GTG	CCA	ATC
Val Val	Pro	Thr	Gln	Gly	Ala	Asp	Pro	Leu	Leu	Tyr	Glv.	Ser	Leu	Asn	Pro	Val	Dro	Tla

FIG. 8B

1265/341 1295/351	
CCC GCC CCT GTT CGG AAA TGG GAA GAC GTC GTC GCG GCC CAG CCA CAA CGG C	TT GAC ACT
Pro Ala Pro Val Arg Lys Trp Glu Asp Val Val Ala Ala Gln Pro Gln Arg Le	u Asp Thr
1325/361 1355/371	
GCA GAC CCT GCG ATG CTG TAT GCT GTG GTG GAT GGC GTG CCT CCG ACA CGC TG	
Ala Asp Pro Ala Met Leu Tyr Ala Val Val Asp Gly Val Pro Pro Thr Arg Tr	p Lys Glu
1385/381 1415/391	-
TTC ATG CGG CTC CTG GGG CTG AGC GAG CAC GAG ATC GAG CGG CTG GAG CTG CA	
Phe Met Arg Leu Gly Leu Ser Glu His Glu Ile Glu Arg Leu Glu Leu Gl	n Asn Gly
1445/401 1475/411	
CGT TGC CTC CGC GAG GCT CAT TAC AGC ATG CTG GAA GCC TGG CGC CGC AC	
Arg Cys Leu Arg Glu Ala His Tyr Ser Met Leu Glu Ala Trp Arg Arg Th	r Pro Arg
1505/421 1535/431 1535/431 1535/431 1535/431	
CAC GAG GCC ACG CTG GAC GTA GTG GGC CGC GTG CTT TGC GAC ATG AAC CTG CG	
His Glu Ala Thr Leu Asp Val Val Gly Arg Val Leu Cys Asp Met Asn Leu Ar 1565/441 1595/451	d gra cas
CTG GAG AAC ATC CGC GAG ACT CTA GAA AGC CCT GCC CAC TCG TCC ACG ACC CA	ר כדר כרב
Leu Glu Asn Ile Arg Glu Thr Leu Glu Ser Pro Ala His Ser Ser Thr Thr Hi	
1625/461	2 Ten L'O
CGA TAA	
Arg Stop	
	80
GCCCTGCTTC CCTGTGAACC TCCTCTTTGG TCCTCTAGGG GGCAGGCTCG ATCTGGCAGG 17	40
CTCGATCTGG CAGCCACTTC CTTGGTGCTA CCGACTTGGT GTACATAGCT TTTCCCAGCT 18	00
GCCGAGGACA GCCTGTGCCA GCCACTTGTG CATGGCAGGG AAGTGTGCCA TCTGCTCCCA 18	60
GACAGCTGAG GGTGCCAAAA GCCAGGAGAG GTGATTGTGG AGAAAAAGCA CAATCTATCT 19	20
GATACCCACT TGGGATGCAA GGACCCAAAC AAAGCTTCTC AGGGCCTCCT CAGTTGATTT 19	80
CTGGGCCCTT TTCACAGTAG ATAAAACAGT CTTTGTATTG ATTATATCAC ACTAATGGAT 20	40
GAACGGTTGA ACTCCCTAAG GTAGGGGCAA GCACAGAACA GTGGGGTCTC CAGCTGGAGC 21	00
CCCCGACTCT TGTAAATACA CTAAAAATCT AAAAGTGAAA AAAAAAAAAA	60
AAAAAAGGAA TTC	

FIG. 9A

huTNF-R

GAATTCTCTG GACTGAGGCT CCAGTTCTGG CCTTTGGGGT TCAAGATCAC TGGGACCAGG 60
CCGTGATCTC TATGCCCGAG TCTCAACCCT CAACTGTCAC CCCAAGGCAC TTGGGACGTC 120
CTGGACAGAC CGAGTCCCGG GAAGCCCCAG CACTGCCGCT GCCACACTGC CCTGAGCCCA 180
AATGGGGGAG TGAGAGGCCA TAGCTGTCTG GC

243/11
ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CCA CTG GTG CTC CTG GAG CTG TTG GTG
Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu Glu Leu Leu Val
273/21

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu Glu Leu Leu Val 303/31 GGA ATA TAC CCC TCA GGG GTT ATT GGA CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg 333/41 363/51 GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT CAA AAT AAT TCG ATT TGC TGT ACC Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr 393/61 423/71 AAG TGC CAC AAA GGA ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT ACG GAC Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 453/81 483/91 TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT TCA GAA AAC CAC CTC AGA CAC TGC CTC Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu 513/101 543/111 AGC TGC TCC AAA TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA GTG GAC Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp 603/131 CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu 633/141 663/151 TTC CAG TGC TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC TCC TGC CAG GAG Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 693/161 723/171 AAA CAG AAC ACC GTG TGC ACC TGC CAT GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu Asn Glu Cys Val 753/181 783/191 TCC TGT AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC CTA CCC CAG ATT GAG Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr Lys Leu Cys Leu Pro Gln Ile Glu 813/201 843/211 AAT GTT AAG GGC ACT GAG GAC TCA GGC ACC ACA GTG CTG TTG CCC CTG GTC ATT TTC TTT Asn Val Lys Gly Thr Glu Asp Ser Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe 873/221 903/231 GGT CTT TGC CTT TTA TCC CTC CTC TTC ATT GGT TTA ATG TAT CGC TAC CAA CGG TGG AAG Gly Leu Cys Leu Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys 933/241 963/251 TCC AAG CTC TAC TCC ATT GTT TGT GGG AAA TCG ACA CCT GAA AAA GAG GGG GAG CTT GAA Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu 1023/271 GGA ACT ACT AAG CCC CTG GCC CCA AAC CCA AGC TTC AGT CCC ACT CCA GGC TTC ACC Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser Phe Ser Pro Thr Pro Gly Phe Thr 1053/281 1083/291 CCC ACC CTG GGC TTC AGT CCC GTG CCC AGT TCC ACC TTC ACC TCC AGC TCC ACC TAT ACC Pro Thr Leu Gly Phe Ser Pro Val Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr 1113/301 1143/311 CCC GGT GAC TGT CCC AAC TTT GCG GCT CCC CGC AGA GAG GTG GCA CCA CCC TAT CAG GGG Pro Gly Asp Cys Pro Asn Phe Ala Ala Pro Arg Arg Glu Val Ala Pro Pro Tyr Gln Gly

1203/331

GCT GAC CCC ATC CTT GCG ACA GCC CTC GCC TCC GAC CCC ATC CCC AAC CCC CTT CAG AAG Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn Pro Leu Gln Lys

FIG. 9B

1233/343										3/35								
TGG GAG	GAC	AGC	GCC	CAC	AAG	CCA	CAG	AGC	CTA	GAC	ACT	GAT	GAC	CCC	GCG	ACG	CTG	TAC
Trp Glu	Asp	Ser	Ala	His	Lys	Pro	Gln	Ser	Leu	Asp	Thr	Asp	Asp	Pro	Ala	Thr	Leu	Tvr
1293/361	L '									3/371		• -	-					- 4 -
GCC GTG	GTG	GAG	AAC	GTG	ccc	CCG	TTG	CGC	TGG	AAG	GAA	TTC	GTG	CGG	CGC	CTA	GGG	CTG
Ala Val	Val	Glu	Asn	Val	Pro	Pro	Leu	Arg	Trp	Lys	Glu	Phe	Val	Arg	Arg	Leu	Glv	Leu
1353/381	L								1383	3/391	L			_	_		_	
AGC GAC	CAC	GAG	ATC	GAT	CGG	CTG	GAG	CTG	CAG	AAC	GGG	CGC	TGC	CTG	CGC	GAG	GCG	CAA
Ser Asp	His	Glu	Ile	Asp	Arg.	Leu	Glu	Leu	Gln	Asn	Gly	Arg	Суз	Leu	Arg	Glu	Ala	Gln
1413/401	Ļ								1443	3/411	L		_		_			
TAÇ AGC	ATG	CTG	GCG	ACC	TGG	AGG	CGG-	CGC	ACG	CCG	CGG	CGC	GAG	GCC	ACG	CTG	GAG	CTG
Tyr Ser	Met	Leu	Ala	Thr	Trp	Arg	Arg	Arg	Thr	Pro	Arg	Arg	Glu	Ala	Thr	Leu	Glu	Leu
1473/421	L								1503	3/431	_							
CTG GGA	CGC	GTG	CTC	CGC	GAC	ATG	GAC	CTG	CTG	GGC	TGC	CTG	GAG	GAC	ATC	GAG	GAG	GCG
Leu Gly	Arg	Val	Leu	Arg	Asp	Met	Asp	Leu	Leu	Gly	Cys	Leu	Glu	Asp	Ile	Glu	Glu	Ala
1533/441										3/451								
CTT TGC	GGC	CCC	GCC	GCC	CTC	CCG	CCC	GCG	CCC	AGT	CTT	CTC	AGA	TGA				1580
Leu Cys	Gly	Pro	Ala	Ala	Leu	Pro	Pro	Ala	Pro	Ser	Leu	Leu	Arg	Stop)			
					,												•	
GGCTGCGC											20							
GATCGCCT	TC C	AACC	CCAC	T TI	TTTC	TGGA	AAG	GAGG	GGT	CCTG	CAGG	GG (CAAGO	AGGA	\G	1680)	
CTAGCAGC	CG C	CTAC	TTGG	T GC	TAAC	CCCI	CGA	TGTA	CAT	AGCI	TTTC	TC A	GCTG	CCTC	i C	1740		
GCGCCGCC	GA C	AGTC	AGCG	C TG	TGCG	CGCG	GAG	AGAC	GTG	CGCC	GTGG	GC 1	CAAG	AGCC	T	1800		
GAGTGGGT	GG T	TTGC	GAGG	A TG	AGGG	ACGC	TAT	GCCI	CAT	GCCC	GTTT	TG C	GTGI	CCTC	A	1860)	
CCAGCAAG	GC T	GCTC	GGGG	G CC	CCTG	GTTC	GTC	CCTG	AGC	CTTT	TTCA	CAC	TGCA	TAAG	C	1920		
AGTTTTTT	TT G	CTTTT	TGTT	T TG	TTTT	GTTT	TGT	TTTT	AAA	TCAA	TCAT	GT I	'ACAC	TAAT	'A	1980		
GAAACTTG	CO O	CTCC	TGTG		TCTG	CCTG	GAC	AAGC	ACA	TAGC	AAGC	TG A	ACTG	TCCT	'A	2040		
AGGCAGGG	GC G	MGCA	CGGA	A CA	ATGG	GGCC	TTC	AGCT	GGA	GCTG	TGGA	CT I	TTGT	ACAT		2100		
CACTAAAA	IT C	IGAA	GTTA	A AA	AAAA	AAAA	AAA	AGGA	ATT	С						2141		

