

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»				

Отчет по лабораторной работе № 1 по курсу "Анализ алгоритмов"

Тема	Расстояние Левенштейна и Дамерау-Левенштейна
Студе	ент Пронина Л.Ю.
Групп	та <u>ИУ7-54Б</u>
Оцени	ка (баллы)
	одаватель Волкова Л. Л.

содержание

В.	ВЕД	ЕНИЕ	3				
1	Ана	алитическая часть	4				
	1.1	Расстояние Левенштейна	4				
		1.1.1 Нерекурсивный алгоритм нахождения расстояния Ле-					
		венштейна	7				
	1.2	Расстояние Дамерау-Левенштейна	6				
		1.2.1 Рекурсивный алгоритм нахождения расстояния Дамерау-					
		Левенштейна	7				
		1.2.2 Рекурсивный алгоритм нахождения расстояния Дамерау-					
		Левенштейна с кешированием	8				
		1.2.3 Нерекурсивный алгоритм нахождения расстояния Дамерау	7_				
		Левенштейна	8				
	1.3	Вывод	8				
2	Конструкторская часть						
	2.1	Сведения о модулях программы	Ĉ				
	2.2	Разработка алгоритмов	Ĉ				
	2.3	Вывод	14				
3	Tex	нологическая часть	15				
	3.1	Средства реализации	15				
	3.2	Описание используемых типов данных	15				
	3.3	Реализация алгоритмов	15				
	3.4	Классы эквивалентности тестирования	18				
	3.5	Функциональные тесты	19				
	3.6	Вывод	19				
4	Исс	ледовательская часть	20				
	4.1	Технические характеристики	20				
	4.2	Демонстрация работы программы	20				
	4.3	Время выполнения алгоритмов	21				

4.4	Использование памяти	24				
4.5	Вывод	24				
ЗАКЛЮЧЕНИЕ						
СПИС	ОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	27				

ВВЕДЕНИЕ

Редакционное расстояние Левенштейна и Дамерау—Левентшейна представляет собой минимальное количество операций (вставка, удаление и замена символов), требуемое для преобразования одной строки в другую. Эти метрики широко используются в области редактирования текста, биоинформатики, автоматического исправления ошибок и других приложений, где важно оценить разницу между двумя строками.

Целью данной работы является изучение, реализация и исследование алгоритмов нахождения расстояний Левенштейна и Дамерау-Левенштейна. Для достижения поставленной цели необходимо выполнить следующие задачи:

- изучить и реализовать алгоритмы нахождения расстояний Левенштейна и Дамерау-Левенштейна;
- провести тестирование, чтобы измерить время выполнения и использование памяти для каждого алгоритма;
- провести сравнение процессорного времени выполнения алгоритмов и памяти;
- описать и обосновать полученные результаты в отчете о выполненной лабораторной работе.

1 Аналитическая часть

В данном разделе будут разобраны алгоритмы нахождения расстояния Левенштейна и Дамерау-Левенштейна.

1.1 Расстояние Левенштейна

Расстояние Левенштейна — метрика, измеряющая разность между двумя последовательностями символов. Расстояние Левенштейна — это минимальное количество редакторских операций вставки (I, от англ. insert), замены (R, от англ. replace) и удаления (D, от англ. delete), необходимых для преобразования одной строки в другую[1].

Стоимости операций могут зависеть от вида операций:

- 1) w(a,b) цена замены символа a на b;
- 2) $w(\lambda, b)$ цена вставки символа b;
- 3) $w(a, \lambda)$ цена удаления символа a.

Будем считать стоимость каждой вышеизложенной операции равной 1:

- $-w(a,b)=1, a \neq b$, в противном случае замена не происходит;
- $-w(\lambda,b)=1;$
- $-w(a,\lambda)=1.$

Введем понятие совпадения символов — М (от англ. match). Его стоимость будет равна 0, то есть w(a,a)=0.

Введем в рассмотрение функцию D(i,j), значением которой является редакционное расстояние между подстроками $S_1[1...i]$ и $S_2[1...j]$.

Расстояние Левенштейна между двумя строками S_1 и S_2 длиной M и

N соответственно рассчитывается по рекуррентной формуле (1.1).

$$D(i,j) = egin{cases} 0, & ext{i} = 0, ext{j} = 0, \ i, & ext{j} = 0, ext{i} > 0, \ j, & ext{i} = 0, ext{j} > 0, \ min\{D(i,j-1)+1, & ext{i} > 0, ext{j} > 0, \ D(i-1,j)+1, & ext{i} > 0, ext{j} > 0, \ D(i-1,j-1)+m(S_1[i],S_2[j]), \ \}. \end{cases}$$

где сравнение символов строк S_1 и S_2 рассчитывается как:

$$m(a,b) = \begin{cases} 0 & \text{если a} = b, \\ 1 & \text{иначе.} \end{cases}$$
 (1.2)

1.1.1 Нерекурсивный алгоритм нахождения расстояния Левенштейна

Рекурсивная реализация алгоритма Левенштейна малоэффективна по времени при больших M и N из-за повторного вычисления одних и тех же промежуточных результатов. Для оптимизации можно использовать итерационную реализацию заполнения матрицы промежуточными значениями D(i,j).

В качестве структуры данных для хранения промежуточных значений можно использовать матрицу, имеющую размеры:

$$(N+1) \times (M+1) \tag{1.3}$$

Значения в ячейке [i,j] равно значению D(S1[1...i],S2[1...j]). Первый элемент матрицы заполнен нулем. Всю таблицу заполнять в соответствии с формулой (1.1).

Однако матричный алгоритм является малоэффективным по памяти по сравнению с рекурсивным при больших M и N, т.к. множество проме-

жуточных значений D(i,j) хранится в памяти после их использования. Для оптимизации по памяти рекурсивного алгоритма нахождения расстояния Левенштейна можно использовать кеш, т.е. пару строк, содержащую значения D(i,j), вычисленные в предыдущей итерации, алгоритма и значения D(i,j), вычисляемые в текущей итерации.

Расстояние Дамерау-Левенштейна

Расстояние Дамерау-Левенштейна — это мера разницы двух строк символов, определяемая как минимальное количество операций вставки, удаления, замены и транспозиции (перестановки двух соседних символов), необходимых для перевода одной строки в другую. Является модификацией расстояния Левенштейна: к трем базовым операциям добавляется операция транспозиции T (от англ. transposition).

Расстояние Дамерау-Левенштейна может быть вычислено по рекуррентной формуле:

$$D(i,j) = \begin{cases} 0, & \text{если } \mathbf{i} = 0 \text{ и } \mathbf{j} = 0, \\ i, & \text{если } \mathbf{j} = 0 \text{ и } \mathbf{i} > 0, \\ j, & \text{если } \mathbf{i} = 0 \text{ и } \mathbf{j} > 0, \\ min\{D(i,j-1)+1, & \text{если } \mathbf{i} > 0 \text{ и } \mathbf{j} > 0, \\ D(i-1,j)+1, & \text{если } S_1[i] = S_2[j-1], \\ D(i-2,j-2)+1, & \text{если } S_1[i-1] = S_2[j], \\ \}, & \\ min\{D(i,j-1)+1, & \text{иначе}, \\ D(i-1,j)+1, & \text{иначе}, \\ D(i-1,j-1)+m(S_1[i],S_2[j]), \\ \}. \end{cases}$$

1.2.1 Рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна

Рекурсивный алгоритм реализует формулу (1.4), функция D составлена таким образом, что верно следующее.

- 1) Для передачи из пустой строки в пустую требуется ноль операций.
- 2) Для перевода из пустой строки в строку a требуется |a| операций.
- 3) Для перевода из строки a в пустую строку требуется |a| операций.
- 4) Для перевода из строки a в строку b требуется выполнить последовательно некоторое количество операций удаления, вставки, замены, транспозиции в некоторой последовательности. Последовательность поведения любых двух операций можно поменять, порядок поведения операций не имеет никакого значения. Если полагать, что a', b' строки a и b без последнего символа соответственно, а a'', b'' строки a и b без двух последних символов, то цена преобразования из строки a в b выражается из элементов, представленных ниже:
 - сумма цены преобразования строки a' в b и цены проведения операции удаления, которая необходима для преобразования a' в a;
 - сумма цены преобразования строки a в b' и цены проведения операции вставки, которая необходима для преобразования b' в b;
 - сумма цены преобразования из a' в b' и операции замены, предполагая, что a и b оканчиваются на разные символы;
 - сумма цены преобразования из a'' в b'' и операции перестановки, предполагая, что длины a'' и b'' больше 1 и последние два символа a'', поменянные местами, совпадут с двумя последними символами b'';
 - цена преобразования из a' в b', предполагая, что a и b оканчиваются на один и тот же символ.

Минимальной стоимостью преобразования будет минимальное значение приведенных вариантов.

1.2.2 Рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна с кешированием

Рекурсивная реализация алгоритма Дамерау-Левенштейна малоэффективна по времени при больших M и N по причине проблемы повторных вычислений значений расстояний между подстроками. Для оптимизации алгоритма нахождения расстояния Левенштейна можно использовать матрицу в целях хранения соответствующих промежуточных значений. В таком случае алгоритм представляет собой рекурсивное заполнение матрицы $A_{|a|,|b|}$ промежуточными значениями D(i,j), такое хранение промежуточных данных можно назвать кешем для рекурсивного алгоритма.

1.2.3 Нерекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна

Рекурсивная реализация алгоритма Левенштейна с кешированием малоэффективна по времени при больших M и N. Для оптимизации можно использовать итерационную реализацию заполнения матрицы промежуточными значениями D(i,j).

В качестве структуры данных для хранения промежуточных значений можно использовать *матрицу*, имеющую размеры:

$$(N+1) \times (M+1),$$
 (1.5)

Значение в ячейке [i,j] равно значению D(S1[1...i],S2[1...j]). Первый элемент заполнен нулем. Всю таблицу заполняем в соответствии с формулой (1.4).

1.3 Вывод

В данном разделе были даны определения расстояний Левенштейна и Дамерау-Левенштейна, а также рассмотрены 4 алгоритма вычисления указанных расстояний.

2 Конструкторская часть

В этом разделе будет представлены схемы алгоритмов вычисления расстояния Левенштейна и Дамерау-Левенштейна.

2.1 Сведения о модулях программы

Программа состоит из двух модулей:

- *main.py* основной файл программы, в котором находится главный код, выполняющийся при запуске программы;
- algorythms.py файл, содержащий код всех алгоритмов.

2.2 Разработка алгоритмов

На рисунках 2.1-2.4 представлены схемы алгоритмов вычисления расстояния Левенштейна и Дамерау-Левенштейна.

Рисунок 2.1 – Схема матричного алгоритма нахождения расстояния Левенштейна

Рисунок 2.2 – Схема матричного алгоритма нахождения расстояния Дамерау-Левенштейна

Рисунок 2.3 – Схема рекурсивного алгоритма нахождения расстояния Дамерау-Левенштейна

Рисунок 2.4 – Схема рекурсивного алгоритма нахождения расстояния Дамерау-Левенштейна с использованием кеша

2.3 Вывод

В данном разделе были представлены схемы алгоритмов, рассматриваемых в лабораторной работе.

3 Технологическая часть

В данном разделе будут рассмотрены средства реализации, а также представлены листинги алгоритмов определения расстояния Левенштейна и Дамерау-Левенштейна.

3.1 Средства реализации

В данной работе для реализации был выбран язык программирования Python[2]. В текущей лабораторной работе требуется замерить процессорное время для выполняемой программы, а также построить графики. Все эти инструменты присутствуют в выбранном языке программирования.

Время работы было замерено с помощью функции $process_time()$ из библиотеки time[3].

3.2 Описание используемых типов данных

При реализации алгоритмов будут использованы следующие структуры данных:

- две строки типа str;
- длина строки целое число типа int;
- ullet в матричных реализациях алгоритмов Левенштейна и Дамерау-Левенштейна дополнительно используется матрица, которая является двумерным списком типа int.

3.3 Реализация алгоритмов

В листингах 3.1-3.4 представлены реализации алгоритмов нахождения расстояния Левенштейна и Дамерау-Левенштейна.

Листинг 3.1 – Алгоритм нахождения расстояния Левенштейна (матричный)

```
def levenshtein matrix(str1, str2):
2
      m = len(str1)
3
      n = len(str2)
      matrix = [[0] * (m + 1) for in range(n + 1)]
      for i in range(n + 1):
5
           matrix[i][0] = i
6
7
      for j in range (m + 1):
           matrix[0][j] = j
8
      for i in range(1, m + 1):
9
          for j in range(1, n + 1):
10
               cost = 0 if str1[i - 1] = str2[j - 1] else 1
11
               matrix[i][j] = min(matrix[i-1][j] + 1,
12
13
               matrix[i][j-1]+1,
               matrix[i - 1][j - 1] + cost)
14
15
      return matrix [m][n]
```

Листинг 3.2 – Алгоритм нахождения расстояния Дамерау-Левенштейна

```
1 def damerau levenshtein matrix(str1, str2):
      m = len(str1)
3
      n = len(str2)
      matrix = [[0] * (m + 1) for _ in range(n + 1)]
4
5
      for i in range(n + 1):
6
           matrix[i][0] = i
7
      for j in range (m + 1):
8
           matrix[0][i] = i
      for i in range (1, m + 1):
9
           for j in range(1, n + 1):
10
               cost = 0 if str1[i - 1] = str2[j - 1] else 1
11
               matrix[i][j] = min(matrix[i-1][j] + 1,
12
13
               matrix[i][j-1]+1,
               matrix[i - 1][j - 1] + cost)
14
      if i > 1 and j > 1 and str1[i - 1] = str2[j - 2] and str1[i - 1]
15
         2] == str2[j - 1]:
           matrix[i][j] = min(matrix[i][j], matrix[i - 2][j - 2] + 1)
16
17
      return matrix [m] [n]
```

Листинг 3.3 – Рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна

```
def damerau levenshtein recursive(str1, str2):
2
       if len(str1) == 0:
           return len(str2)
3
       if len(str2) = 0:
4
           return len(str1)
5
       flag = 0 if (str1[-1] == str2[-1]) else 1
6
      add = damerau | levenshtein | recursive(str1[:-1], str2) + 1
7
       delete = damerau\_levenshtein\_recursive(str1, str2[:-1]) + 1
8
      change = damerau levenshtein recursive (str1[:-1], str2[:-1]) +
9
          flag
       transposition = damerau levenshtein recursive (str1[:-2],
10
          str2[:-2]) + 1
       if (len(str1) > 1 \text{ and } len(str2) > 1 \text{ and } str1[-1] == str2[-2]
11
          and str1[-2] = str2[-1]:
           minimum = min(add, delete, change, transposition)
12
13
       else:
           minimum = min(add, delete, change)
14
15
       return minimum
```

Листинг 3.4 – Рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна с использованием кеша

```
def damerau levenshtein cache recursive(str1, str2):
2
      cache = \{\}
      def damerau levenshtein recursive(str1, str2):
3
           if (str1, str2) in cache:
4
               return cache[(str1, str2)]
5
6
           if len(str1) = 0:
7
               return len(str2)
           if len(str2) == 0:
8
               return len(str1)
9
           deletion = damerau \ levenshtein \ recursive(str1[:-1], str2) +
10
11
           insertion = damerau levenshtein recursive (str1, str2[:-1])
             + 1
           substitution = damerau levenshtein recursive (str1[:-1],
12
              str2[:-1]) + (str1[-1]! = str2[-1])
           transposition = float('inf')
13
           if len(str1) > 1 and len(str2) > 1 and str1[-1] == str2[-2]
14
              and str1[-2] = str2[-1]:
               transposition =
15
                  damerau levenshtein recursive (str1[:-2], str2[:-2])
           result = min(deletion, insertion, substitution,
16
              transposition)
           cache[(str1, str2)] = result
17
           return result
18
19
       distance = damerau levenshtein recursive(str1, str2)
       return distance
20
```

3.4 Классы эквивалентности тестирования

Для тестирования выделены классы эквивалентности, представленные ниже.

- 1) Две пустые строки.
- 2) Одна из строк пустая.

- 3) Расстояния, которые вычислены алгоритмами Левенштейна и Дамерау-Левенштейна, равны.
- 4) Расстояния, которые вычислены алгоритмами Левенштейна и Дамерау-Левенштейна, не равны.

3.5 Функциональные тесты

В таблице 3.1 приведены тесты для функций, реализующих алгоритмы нахождения расстояния Левенштейна и Дамерау-Левенштейна. Тесты для всех алгоритмов пройдены успешно.

Таблица 3.1 - Функциональные тесты

			Ожидаемый результат	
$N_{\overline{0}}$	Строка 1	Строка 2	Левенштейн Дамерау-Л	
1			0	0
2		слово	5	5
3	слова		5	5
4	КОТ	KOM	1	1
5	парк	прак	2	1
6	машина	сирена	4	4
7	здравствуйте	до свидания	10	10
8	кошка	собака	3	3
9	карта	карат	2	1
10	спать	встать	2	2
11	пока	привет	5	5
12	abcdef	bacfe	4	3

3.6 Вывод

Были представлены алгоритмы нахождения расстояния Левенштейна и Дамерау-Левенштейна, которые были описаны в предыдущем разделе. Также была приведена информация о выбранных средствах для разработки алгоритмов.

4 Исследовательская часть

В данном разделе будут приведены примеры работы программы, а также проведен сравнительный анализ алгоритмов при различных ситуациях на основе полученных данных.

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялось тестирование представлены далее:

- операционная система: Ubuntu 22.04.3 [4] Linux [5] x86 64;
- память: 16 Гб;
- процессор: Intel® Core™ i5-1135G7 @ 2.40Гц.

При тестировании ноутбук не был включен в сеть электропитания. Во время тестирования ноутбук был нагружен только встроенными приложениями окружения, а также системой тестирования.

4.2 Демонстрация работы программы

На рисунках 4.1, 4.2 представлен результат работы программы.

```
Меню

1. Расстояние Левенштейна (матрица)
2. Расстояние Дамерау-Левенштейна (матрица)
3. Расстояние Дамерау-Левенштейна (рекурсивно)
4. Расстояние Дамерау-Левенштейна (рекурсивно с кешем)
5. Замерить времени
0. Выход

Выбор: 1

Введите 1-ую строку: привет
Введите 2-ую строку: рпвиет
Матрица для расстояния Левенштейна:

0 0 р п в и е т
0 0 1 2 3 4 5 6
п 1 1 1 2 3 4 5
р 2 1 2 2 3 4 5
и 3 2 2 3 2 3 4
в 4 3 3 2 3 3 4
т 6 5 5 4 4 4 3

Результат: 3
```

Рисунок 4.1 – Пример работы программы

```
1. Расстояние Левенштейна (матрица)
     2. Расстояние Дамерау-Левенштейна (матрица)
     3. Расстояние Дамерау-Левенштейна (рекурсивно)
     4. Расстояние Дамерау-Левенштейна (рекурсивно с кешем)
     5. Замерить времени
     0. Выход
         Выбор:
                    2
Введите 1-ую строку:
                        привет
Введите 2-ую строку:
                        рпвиет
Матрица для расстояния Дамерау-Левенштейна:
        2
              4
                 5
                    6
     1
        1
              3
                 4
                    5
        1
              3
                 4
        2 2
      2
              2
                 3
     3
В
                    4
е
     4
     5
Результат: 2
```

Рисунок 4.2 – Пример работы программы

4.3 Время выполнения алгоритмов

Как было сказано выше, используется функция замера процессорного времени process_time() из библиотеки time на Python. Функция возвращает пользовательское процессорное время типа float.

Функция используется дважды: перед началом выполнения алгоритма и после завершения, затем из конечного времени вычитается начальное, что-бы получить результат.

Замеры проводились по 100 раз на различных входных данных для длины слова от 1 до 10 в случае рекурсивного алгоритма Дамерау-Левенштейна и от 1 до 100 для остальных алгоритмов.

Результаты замеров приведены в таблице 4.1 (время в мс). Время для рекурсивной реализации алгоритма Дамерау-Левентшейна измерялось только для длины строки не более 10, так как он работает относительно сильно дольше остальных.

Также на рисунках 4.3, 4.4 приведены графические результаты замеров.

Таблица 4.1 – Результаты замеров времени

Длина	Л.(матр.)	ДЛ.(матр.)	ДЛ.(рек.)	ДЛ.(рек. с кешэм)
1	0.0068	0.0057	0.0012	0.0064
2	0.0092	0.0090	0.0048	0.0148
3	0.0099	0.0120	0.0237	0.0227
4	0.0127	0.0126	0.1229	0.0270
5	0.0133	0.0147	0.6894	0.0321
6	0.0152	0.0182	3.9311	0.0439
7	0.0181	0.0201	22.0361	0.0579
8	0.0204	0.0257	126.6794	0.0754
9	0.0256	0.0317	793.4876	0.0957
10	0.0308	0.0393	4651.9602	0.1208
20	0.1632	0.1921	-	0.7842
30	0.4343	0.4678	-	1.6324
40	0.7198	0.7923	-	2.8983
50	0.9457	1.1793	-	4.5392
60	1.3146	1.7213	-	6.7496
70	1.8647	2.3428	-	9.0544
80	2.3966	3.0905	-	12.2664
90	3.0661	3.8628	-	15.6859
100	3.8084	4.7583	-	19.6995

Рисунок 4.3 – Сравнение времени выполнения алгоритмов Левенштейна с использованием матрицы и Дамерау-Левенштейна с использованием матрицы, рекурсивный без кеша и с ним

Рисунок 4.4 — Сравнение времени выполнения алгоритмов Левенштейна с использованием матрицы и Дамерау-Левенштейна с использованием матрицы и рекурсивный с использованием кеша

4.4 Использование памяти

Алгоритмы поиска расстояний Левенштейна и Дамерау-Левенштейна, с точки зрения использования памяти, не отличаются друг от друга. Поэтому достаточно рассмотреть различия между рекурсивной и матричной реализациями этих алгоритмов.

При рекурсивной реализации алгоритма максимальная глубина стека вызовов равна сумме длин входящих строк. Таким образом, максимальный расход памяти можно вычислить с помощью формулы (4.1).

$$(sizeof(S_1) + sizeof(S_2)) \cdot (2 \cdot sizeof(string) + 2 \cdot sizeof(int) + sizeof(bool)),$$

$$(4.1)$$

где sizeof — оператор вычисления размера, S_1 , S_2 — строки, int — целочисленный тип, string — строковый тип, bool - логический тип.

Использование памяти при итеративной реализации теоретически вычисляется по формуле (4.2).

$$(size of(S_1)+1) \cdot (size of(S_2)+1) \cdot size of(int) + 5 \cdot size of(int) + 2 \cdot size of(string))$$

$$(4.2)$$

4.5 Вывод

В данном разделе было представлено сравнение количества затраченного времени и памяти алгоритмов поиска расстояний Левенштейна и Дамерау-Левенштейна. Наименее затратным по времени оказался итеративный алгоритм нахождения расстояния Левенштейна, а наиболее затратным — рекурсивный алгоритм Дамерау-Левенштейна.

Исходя из замеров по памяти, итеративные алгоритмы проигрывают рекурсивным, потому что максимальный размер памяти в них растет, как произведение длин строк, а в рекурсивных — как сумма длин строк.

Так как во время печати очень часто возникают ошибки связанные с транспозицией букв, алгоритм поиска расстояния Дамерау-Левенштейна является наиболее предпочтительным, не смотря на то, что он проигрывает по времени и памяти алгоритму Левенштейна.

Также при проведении эксперимента было выявлено, что на длине строк в 4 символа рекурсивная реализация алгоритма Дамерау-Левенштейна уже в 10 раз медленнее матричной реализации. При увеличении длины строк в геометрической прогрессии растет и время работы рекурсивной реализации. Следовательно, стоит использовать матричную реализацию для строк длиной более 4 символов.

ЗАКЛЮЧЕНИЕ

В рамках данной лабораторной работы были изучены, реализованы и протестированы алгоритмы нахождения расстояния Левенштейна и Дамерау-Левенштейна. Также был проведён сравнительный анализ алгоритмов по затраченному процессорному времени и памяти и подготовлен отчет о лабораторной работе.

Экспериментально было определено, что наименее затратным по времени оказался итеративный алгоритм нахождения расстояния Левенштейна, а наиболее затратным — рекурсивный алгоритм Дамерау-Левенштейна. Исходя из замеров по памяти, итеративные алгоритмы проигрывают рекурсивным, потому что максимальный размер памяти в них растет, как произведение длин строк, а в рекурсивных — как сумма длин строк. Также при проведении эксперимента было выявлено, что на длине строк в 4 символа рекурсивная реализация алгоритма Дамерау-Левенштейна уже в 10 раз медленнее матричной реализации. При увеличении длины строк в геометрической прогрессии растет и время работы рекурсивной реализации. Следовательно, стоит использовать матричную реализацию для строк длиной более 4 символов.

Цель, которая была поставлена в начале лабораторной работы, была достигнута.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- [1] Вычисление редакционного расстояния [Электронный ресурс]. Режим доступа: https://habr.com/ru/articles/117063/ (дата обращения: 19.09.2023).
- [2] Python [Электронный ресурс]. Режим доступа: https://www.python.org (дата обращения: 19.09.2023).
- [3] time Time access and conversions [Электронный ресурс]. Режим доступа: https://docs.python.org/3/library/time.html#functions (дата обращения: 19.09.2023).
- [4] Ubuntu 22.04.3 LTS (Jammy Jellyfish) [Электронный ресурс]. Режим доступа: https://releases.ubuntu.com/22.04/ (дата обращения: 19.09.2023).
- [5] Linux [Электронный ресурс]. Режим доступа: https://www.linux.org/ (дата обращения: 19.09.2023).