

Bosso Veronica

Moodle community ▼

UniTO ▼ HelpDesk ▼

I miei corsi▼

Italiano (it) ▼

Home > I miei corsi > Anno Accademico 23/24 > Secondo anno Laurea DM270 > BD-A-23-24 > Teoria > Quiz sull'ottimizzazione logica

Iniziato mercoledì, 26 giugno 2024, 13:49

Stato Completato

Terminato mercoledì, 26 giugno 2024, 13:51

Tempo impiegato 1 min. 34 secondi

Punteggio 2,00/2,00

Valutazione 10,00 su un massimo di 10,00 (100%)

Domanda 1 Risposta corretta Punteggio ottenuto 1,00 su 1,00

▼ Contrassegna domanda

Considerare la relazioni $r(\underline{A},B,C)$ e la relazione $s(\underline{D},E,F)$ in cui r(C) referenzia s(D). r ha cardinalità 100 e s ha cardinalità 200.

Qual è la cardinalità delle seguenti operazioni?

Rispondere considerando:

- se il join coinvolge chiavi delle relazioni,
- il numero di tuple di s che corrispondono a ogni tupla di r,
- il ruolo dei vincoli di integrità referenziale.

Risposta corretta.

La risposta corretta è: $r \bowtie_{A=D} s \rightarrow 100$ (sovrastima), $r \bowtie_{C=D} s \rightarrow 100$ (stima esatta), $r \bowtie_{A=F} s \rightarrow 200$ (sovrastima), $r \bowtie_{B=E} s \rightarrow Tra \ 0 \ e \ 100 \ * \ 200$

Considerare le sequenti relazioni:

- R(A, B, C), con R(C) che referenzia S(D) e con cardinalità 1000
- S(<u>D</u>, E, F), con S(F) che referenzia U(G) e con cardinalità 2000
- U(G, H, I), con cardinalità 500.

Indicare la cardinalità del risultato di ciascuna delle seguenti espressioni assumendo che non ci siano valori nulli nelle relazioni r(R), s(S) e u(U).

Risposta corretta.

Considera che assumiamo non ci possano essere valori nulli e le conseguenze dell'uso delle chiavi primarie e dei vincoli di integrità referenziale.

La risposta corretta è: $\pi_{AB}(r) \rightarrow 1000$, $\pi_{E}(s) \rightarrow Tra \ 1 \ e \ 2000$, $\pi_{BC}(r) \rightarrow Tra \ 1 \ e \ 1000$, $\pi_{G}(u) \rightarrow 500$, $r \bowtie_{A=D} s \rightarrow Tra \ 0 \ e \ 1000$, $r \bowtie_{C=D} s \rightarrow 1000$, $u \bowtie_{I=A} r \rightarrow Tra \ 0 \ e \ 500$, u

Informazione Contrassegna domanda

Dato lo schema R1(AB), R2(CDE), R3(FGH), disegnare l'albero sintattico della seguente query e ottimizzarlo logicamente limitandosi agli aspetti non quantitativi.

 $\pi_{ADH}(\sigma_{B=C \land E=F \land A>20 \land G=10}(R1 \times R3 \times R2)).$

Questa domanda non ha una valutazione automatica. Puoi scrivere la risposta su un foglio e confrontarla in seguito con la risposta giusta.

 π_{ADH} (σ_(A>20) (R1) \bowtie_{GE} (B=C) π_{CDH} (R2 \bowtie_{GE} (E=F) π_{FH} (σ_(G=10) (R3))))

Fine revisione

◀ 4/4 audio con slide, 32 min

Vai a... ♦

7. Calcolo relazionale su tuple con dichiarazioni di range

