1.BASIC KNOWLEDGE

1.1. Terms

Acute angle: between 0 and 90°. $0^{\circ} < a < 90^{\circ}$.

Right angle: $a = 90^{\circ}$

Obtuse angle: between 90 and 180° . $90^{\circ} < a < 180^{\circ}$.

Straight angle: $a = 180^{\circ}$

Vertical angles have equal measures. a = b.

Complementary angles

If sum of the measures of two acute angles is 90° , the angles are said to be **complementary.** $a + b = 90^{\circ}$.

Supplementary angles

If sum of the measures of two angles is 180° , the angles are said to be **supplementary.** $a + b = 180^{\circ}$.

Isosceles triangle

An isosceles triangle is a triangle with at least two congruent sides.

$$AB = BC$$
. $\angle A = \angle C$

Isosceles Triangle

Equilateral triangle

An equilateral triangle is a triangle having three congruent sides.

$$AB = BC = CA$$
. $\angle A = \angle B = \angle C = 60^{\circ}$.

Equilateral Triangle

1.2. Relationship of Angles Formed by Parallel Lines

Alternate interior angles $\angle 4 = \angle 5$.

Alternate exterior angles $\angle 1 = \angle 8$.

Interior angles on the same sides of transversal $\angle 4 + \angle 6 = 180$.

Corresponding angles $\angle 2 = \angle 6$.

1.3. Angle – Measure – Sum Principles

Theorem 1. The sum of the measures of the angles of a triangle equals the measure of a straight angle, or 180° . $\angle A + \angle B + \angle C = 180^{\circ}$

Proof:

We draw the line m parallel to BC, the base of the triangle.

So
$$\angle C = \angle x$$
, $\angle B = \angle y$.

Since
$$\angle A + \angle x + \angle y = 180^{\circ}$$
, $\angle A + \angle B + \angle C = 180^{\circ}$.

Theorem 2. The measure of each exterior angle of a triangle equals the sum of the measures of its two remote nonadjacent interior angles.

$$z = a + b$$
$$x = b + c$$

$$y = c + a$$

Proof:

$$b + y = 180^{\circ} \tag{1}$$

$$a+b+c=180^{\circ} \tag{2}$$

$$(1) - (2)$$
: $+ y - (c + a) = 0 \implies y = c + a$

Similarly we can prove x = b + c and z = a + b.

Theorem 3. The sum of the measures of the exterior angles of a triangle equals 360° .

$$x + y + z = 360^{\circ}$$

Proof:

$$x = b + c \tag{1}$$

$$y = a + c \tag{2}$$

$$z = a + b \tag{3}$$

$$a + b + c = 180^{\circ} \tag{4}$$

$$(1) + (2) + (3): a + b + c + x + y + z = 540^{\circ}$$
 (5)

Substituting (4) into (5): $x + y + z = 360^{\circ}$.

$$\angle D = \angle A + \angle B + \angle C$$
.

Proof:

Extend AD to meet BC at E.

By Theorem 2,
$$\angle D = \alpha + \angle C$$
 (1)

By Theorem 2,
$$\alpha = \angle A + \angle B$$
 (2)

Substituting (2) into (1): $\angle D = \angle A + \angle B + \angle C$.

2. EXAMPLES

★Example 1. If $\angle A = 22^{\circ}$ and $\angle AFG = \angle AGF$, Then $\angle B + \angle D = 22^{\circ}$

- (A) 54°
- (B) 66°
- (C) 79°
- (D) 88°
- (E) 100°

 \Rightarrow **Example 2.** The degree measure of angle *A* is

- (A) 20°
- (B) 30° (C) 35° (D) 40°
- (E) 45° .

 \Rightarrow Example 3. The degree measure of angles A + B is

- (A) 50°
- (B) 60°
- (C) 70°
- (D) 75°
- (E) 85°

Example 4. The sum of the measures of angles A, B, C, D, and E in the accompanying figure is:

- A. less than 180°
- B. 180°
- C. greater than 180° but less than 360°

- D. 360°
- E . cannot be determined

Example 5. 19. Two angles of an isosceles triangle measure 70° and x° . What is the sum of the all possible values of x?

(A) 95° (B) 125° (C) 140° (D) 165° (E) 180°

Example 6. In triangle *CAT*, we have ∠*ACT* = ∠*ATC* and ∠*CAT* = 40°. If *TR* bisects $\angle ATC$, then $\angle CRT =$

 $(A) 20^{\circ}$

 $(B) 60^{\circ}$

(C) 75°

(D) 90°

(E) 120°.

Example 7. If the complements of angle A and B are complementary, then the supplements of angles A and B:

A. are congruent

B. are supplementary

C. are complementary

D. differ by 90°

E. add up to 270°

Example 8. The measure of an angle for which the measure of the supplement is four times the measure of the complement is:

A. 20°

B. 45°

C. 60°

D. 75°

E. none of these

Example 9. In the figure, $\angle 1 = 7x + 10$. $\angle 5 = 3x$ and l // m. The measure of $\angle 2$ equals:

A. 17

B. 51

C. 87 D. 129

E. 139

$$\angle 2 = 3x = 3 \times 17^{\circ} = 51^{\circ}$$
.

Example 10. x, y, and z are the measures of the angles shown. $l_1//l_2$. The measure of x is:

A.
$$180^{\circ} - y$$
 B. $180^{\circ} - z$ C. $180^{\circ} - z + y$

D.
$$180^{\circ} + z - y$$
 E. $z + y - 180^{\circ}$

Example 11. If lines l_1 and l_2 are parallel, then find the value of y.

A. 84 B. 96 C. $90\frac{6}{7}$ D. $89\frac{1}{7}$ E. none of these

Example 12. In the figure l//n, $\angle 1 = 100^{\circ}$, and $\angle 2 = 120^{\circ}$.

Find $\angle 3$.

 $A.0^{\circ} B.100^{\circ}$

C. 120°

D. 140°

E. 150°

Example 13. In the diagram, $\angle MBA$, $\angle NAC$, and $\angle OCB$ are exterior angles of triangle ABC. Lines TB and CQ intersect at point Q. Ray BT and ray CQ bisect

 $\angle MBA$ and $\angle OCB$ respectively. Then the measure

of $\angle BQC$ is:

A. equal to the measure of $\angle CAN$.

B. equal to the measure of $\frac{\angle CAN}{2}$.

C. equal to the measure of $\frac{\angle CAN}{3}$.

D. equal to the measure of $\frac{\angle CAN}{4}$.

E. none of these.

Example 14. ∠1 +∠2= 180° . ∠3 = ∠4. Find ∠5.

A. 140°

B. 145°

C. 150°

D. 160°

E. 165°

Example 15. Given that $\triangle ABC$ is a triangle such that AB = AC and $\angle A = 50^{\circ}$.

Then $\angle B$ is:

A. 50°

B. 55°

C. 60° D. 65°

E. 70°

Example 16. x, y, and z are the measures of the angles shown in the figure. The sum of y and z in terms of x is:

A.2x B. $90^{\circ} + x$ C. $180^{\circ} - x$ D. $180^{\circ} - 2x$ E. $90^{\circ} - x$

Example 17. In $\triangle ABC$, $\overline{AC} = \overline{CD}$ and $\angle CAB - \angle ABC = 40^{\circ}$. Then $\angle BAD$ equals:

- A.15°
- B. 20°
- C. 30°
- D. 35°
- E.40°

 \gtrsim **Example 18.** The measure of angle ABC is 40°. AD bisects angle BAC, and DC bisects angle BCA. The measure of angle ADC is

- A. 90° B. 105° C. 110° D. 125.5°
- E. 130°

Example 19. In the given figure XR bisects $\angle YXS$, YR bisects $\angle XYS$, and $\angle S =$ a. Express the measure of $\angle R$ in terms of a.

- A. $90 + \frac{a}{2}$ B. $\frac{180 a}{3}$ C. $\frac{2a + 90}{3}$
- D. $180 + \frac{a}{2}$ E. $\frac{a-90}{3}$

Example 21. In triangle ABC, \overline{AD} and \overline{BE} bisects angles A and B, respectively, and intersect in point P. The measure of angle ACB is 70° .

The measure of angle APE is:

A. 50°

B. 55°

C. 60°

D. 67°

E. cannot be determined.

Example 22. If the measures of the angles of a triangle are in the ratio 4:5:6, what is the measure of the smallest acute angle?