궁궁이(Cnidium officinale)시험관싹증식에 미치는 몇가지 요인들이 영향

송은희, 리성, 박철진

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《…약초생산을 결정적으로 늘여야 합니다.》(《김정일선집》 중보판 제21권 91폐지)

궁궁이는 미나리과에 속하는 여러해살이약용식물로서 뿌리줄기에는 크니디움락톤을 주성분으로 하는 정유가 들어있으며 줄기와 잎에는 쿠마린, 만니톨 등과 같은 약용물질들이들어있는것으로 하여 진정진경약, 보혈강장제, 통경약으로 여러가지 질병들을 치료하는데 리용되고있다.[1, 4]

궁궁이는 우리 나라의 기후조건에서 씨앗을 잘 맺지 못하여 영양번식방법으로 번식시 키고있지만 번식곁수가 낮아 늘어나는 수요를 충족시키지 못하고있다.

우리는 조직배양방법으로 유전적안정성이 높고 병이 없는 궁궁이시험관모를 대량번식 시키기 위하여 궁궁이의 시험관싹유도조건을 확립한데 이어 시험관싹증식에 미치는 몇가 지 요인들의 영향을 검토하였다.

재료와 방법

시험관싹증식을 위한 재료로는 시험관싹유도를 통하여 얻은 무균싹을 리용하였다.

시험관싹증식에 미치는 기초배지의 영향검토에는 MS, B5, N6배지를 리용하였으며 질소, 린, 칼리움의 영향은 MS배지의 총이온농도를 고정하고 NH₄NO₃, KNO₃, KH₂PO₄, KCl, NaH₂PO₄을 리용하여 질소, 린, 칼리움이온조성을 변화시키면서 검토하였다.

시험관싹증식에 미치는 성장조절제의 영향은 6-BA와 NAA를 리용하여 검토하였다. 배양온도는 (25±1)℃, 빛은 1 500~2 000lx, 빛주기는 14h/d로 보장하였다. 배양 30일때의 싹수와 싹길이, 갈변화정도와 증식비를 조사하였다.

결과 및 론의

1) 기초배지의 영향

궁궁이시험관싹유도에는 6-BA를 넣은 MS배지[2]가 적합하였다. 싹유도에는 배지의 영향과 함께 재료의 초기생리적상태도 크게 영향을 미치[3]므로 유도배지가 증식배양에도 적합하겠는가를 검토할 필요가 있다.

이로부터 조직배양에 많이 리용하는 MS, B5, N6배지를 기초배지로 하여 시험관싹증식에 미치는 배지의 영향을 검토하였다.(표 1)

표 1에서 보는바와 같이 배지종류에 따라 갈변화률과 증식비의 차이는 심하였다. 특히 B5배지와 N6배지에서 접종체들의 갈변화률은 45%이상이였으며 싹증식비도 낮았다. 그러나 MS배지에서는 갈변화률이 25%로서 다른 배지들에 비하여 비교적 낮았고 증식비도 높았다. 그러므로 싹증식을 위한 기초배지로 MS배지를 선정하였다.

표 1. 시험한학등학에 비사는 기호배시의 공항					
배지종류	종류 싹길이/cm 싹수/개		갈변화률/%	증식비	
MS	5.0 ± 0.3	2.5 ± 0.2	25±1	1.8±0.2	
B5	4.5 ± 0.3	2.0 ± 0.2	45 ± 3	1.1 ± 0.1	
N6	3.5 ± 0.3	2.0 ± 0.2	65 ± 3	0.7 ± 0.1	

표 1. 시험관싹증식에 미치는 기초배지의 영향

성장조절제 6-BA의 농도 1.0mg/L, 온도 (25±1)℃, 빛 1 500~2 000lx, 빛주기 14h/d, 조사개체수 20개체, *n*=3

2) 질소이온농도비와 린, 칼리움이온농도의 영향

접종체의 갈변화는 배지무기성분과 농도에 크게 관계되므로 MS배지의 조성을 기준으로 하여 질소, 린, 칼리움의 영향을 검토하였다.

질소이온농도비의 영향 일반적으로 조직배양에서 식물이 흡수하는 기본질소이온형태는 NH_4^+ 과 NO_3^- 이므로 총질소농도를 MS배지와 같게 하고 NH_4^+ 과 NO_3^- 의 농도비가 시험관 싹증식에 미치는 영향을 검토하였다.(표 2)

# 2. MDE-1	0 1011 01711	ETOIL OTH	[[1114]]	_, 00
$[\mathrm{NH_4}^+]:[\mathrm{NO_3}^-]$	싹수/개	싹길이/cm	갈변화률/%	증식비
1:1	1.0±0.1	3.0±0.2	50±2	0.5±0.1
1:2(대조)	2.5 ± 0.2	5.0 ± 0.3	25 ± 1	1.8 ± 0.1
1:3	2.5 ± 0.3	5.0 ± 0.3	10 ± 1	2.3 ± 0.2
1:4	1.5+0.1	5.5+0.4	0	1.5+0.1

표 2. 시험관싹증식에 미치는 질소이온농도비([$\mathrm{NH_4}^+$]:[$\mathrm{NO_3}^-$])의 영향

MS배지, 기타 조건은 표 1에서와 같음.

표 2에서 보는바와 같이 농도비가 1:1일 때의 갈변화률은 50%로서 대조보다 높았으며 이로 인하여 증식비도 매우 낮았다. 또한 농도비가 1:4일 때 갈변화현상은 없지만 증식비는 1.5로서 대조보다 낮았다. 그러나 농도비가 1:3일 때의 갈변화률은 10%로서 대조보다 낮았고 증식비는 2.3으로서 대조보다 높았다.

 NH_4^+ 과 NO_3^- 의 농도비가 높을 때 접종체의 갈변화가 심하고 증식비가 낮은것은 높은 농도의 NH_4^+ 이 부정적인 영향을 주는것과 관련된다고 볼수 있으며 궁궁이는 생리적으로 암모니아래질소보다도 질산래질소를 더 요구한다는것을 알수 있다. 이로부터 시험관싹 증식에 적합한 NH_4^+ 과 NO_3^- 의 농도비를 1:3으로 정하였다.

린의 영향 $\mathrm{NH_4}^+$ 과 $\mathrm{NO_3}^-$ 의 농도비를 1:3으로 하고 시험관싹증식에 미치는 $\mathrm{H_2PO_4}^-$ 농도의 영향을 검토하였다.(표 3)

		-	•	
H ₂ PO ₄ - 농도 /(mmol·L ⁻¹)	싹수/개	싹길이/cm	갈변화률/%	증식비
0.63	1.0±0.1	2.3±0.1	10±1	0.9±0.1
1.25(대조)	2.5 ± 0.2	5.0 ± 0.4	10±1	2.3 ± 0.1
2.50	3.2 ± 0.2	4.3 ± 0.3	0	3.2 ± 0.2
3.75	3.0 ± 0.2	4.2 ± 0.2	0	3.0 ± 0.2
· · · · · · · · · · · · · · · · · · ·		·		

표 3. 시험관싹증식에 미치는 $\mathrm{H_2PO_4}^-$ 농도의 영향

MS배지, [NH₄⁺]: [NO₃⁻]=1:3, 기타 조건은 표 1에서와 같음.

표 3에서 보는바와 같이 H₂PO₄ 농도에 따라 증식비와 갈변화률에서의 차이가 심하였다. H₂PO₄ 농도를 대조의 절반(0.63mmol/L)으로 낮춘 경우 증식비는 0.9로서 대조보다 낮고 갈변화률은 차이가 없었다. 그러나 농도를 대조의 2배(2.5mmol/L)로 한 경우 증식비는 3.2

로서 대조의 1.4배정도로 높았고 갈변화현상은 없었다. 농도가 2.5mmol/L이상인 시험구들에서의 증식비는 큰 차이가 없었다.

대조보다 농도가 낮은 시험구에서 증식비가 낮은것은 린부족으로 싹의 증식에 필요한 핵산, 단백질 등의 합성량이 적기때문이라고 볼수 있다. 이로부터 궁궁이시험관싹증식에 적합한 H_2PO_4 농도를 2.5mmol/L로 정하였다.

칼리움의 영향 칼리움은 세포의 팽압을 유지할뿐아니라 단백질과 당질의 합성과 축적에 참가하며 빛합성이나 숨쉬기를 활발하게 하고 린흡수속도에 영향을 미치므로 궁궁이의 시험관싹증식에 미치는 K^+ 농도의 영향을 검토하였다.(표 4)

싹수/개	싹길이/cm	갈변화률/%
2.0±0.1	2.5±0.2	2.0±0.1
3.2 ± 0.2	4.3±0.3	3.2 ± 0.2
3.4 ± 0.3	4.2±0.3	3.2 ± 0.2
2.1±0.1	2.0±0.2	1.8±0.1
	2.0±0.1 3.2±0.2 3.4±0.3	2.0±0.1 2.5±0.2 3.2±0.2 4.3±0.3 3.4±0.3 4.2±0.3

표 4. 시험관싹증식에 미치는 K^+ 농도의 영향

MS배지, [NH₄⁺]:[NO₃⁻]=1:3, [H₂PO₄⁻]=2.5mmol/L, 기타 조건은 표 1에서와 같음.

표 4에서 보는바와 같이 K^+ 농도가 10, 60mmol/L일 때 싹의 증식비는 대조보다 낮았다. 또한 K^+ 농도가 40.0mmol/L일 때 증식비는 3.2로서 대조와 차이가 없었다. 이로부터 시험관싹증식에 필요한 K^+ 농도를 MS배지농도와 같게 정하였다.

3) 6-BA와 NAA의 영향

접종체의 갈변화는 성장조절제의 종류와 농도에도 크게 관계되는데 일반적으로 미나리과식물의 시험관싹증식에는 6-BA와 NAA가 비교적 적합하며 적용농도는 식물에 따라 다르다.[5] 이로부터 우리는 싹증식에 미치는 6-BA와 NAA의 영향을 검토하였다.(표 5)

TO STATE OF THE PROPERTY OF TH							
6-BA 등도 /(mg·L ⁻¹)	NAA농도 /(mg·L ⁻¹)	싹수/개	싹길이/cm	갈변화정도	증식비		
	0	1.8±0.1	3.5±0.2	_	1.8±0.1		
	0.05	2.0 ± 0.1	3.7 ± 0.2	_	2.0 ± 0.1		
0.5	0.1	2.2 ± 0.1	4.0 ± 0.2	_	2.2 ± 0.1		
	0.25	2.8±0.1	4.0±0.2	_	2.8±0.1		
	0	3.2 ± 0.2	4.3±0.3	_	3.2 ± 0.2		
	0.1	3.6 ± 0.2	4.5 ± 0.3	_	3.6 ± 0.2		
1.0	0.2	3.6 ± 0.2	4.0 ± 0.2	_	3.4 ± 0.2		
	0.5	3.6±0.2	4.0±0.2	+	3.1±0.2		
	0	4.3±0.2	3.5 ± 0.2	++	3.0 ± 0.2		
	0.2	4.3 ± 0.2	3.3 ± 0.2	++	2.5 ± 0.1		
2.0	0.4	4.2±0.2	3.0 ± 0.2	++	2.5±0.1		
	1.0	4.2±0.2	2.5±0.2	+++	2.0±0.1		

표 5. 시험관싹증식에 미치는 6-BA와 NAA의 영향

모든 조건은 표 4에서와 같음.

표 5에서 보는바와 같이 6-BA를 2.0mg/L로 하고 거기에 NAA를 각이한 농도로 조합하여 넣었을 때에는 갈변화가 심하여 증식비가 낮아졌다. 6-BA를 0.5mg/L로 하고 거기에 NAA를 각이한 농도로 조합하여 넣었을 때에는 갈변화현상이 나타나지 않았지만 증식비가 1.8~2.8로서 낮았다. 그러나 6-BA를 1.0mg/L로 하고 거기에 NAA를 0.1mg/L의 농도로 조합하여 넣었을 때에는 증식비가 3.6으로서 가장 높았다. 이로부터 시험관싹증식에 적합한 성장조절제농도를 6-BA 1.0mg/L와 NAA 0.1mg/L로 하였다.

맺 는 말

궁궁이시험관싹의 증식에 적합한 배지는 NH_4^+ 과 NO_3^- 의 농도비를 1:3, $H_2PO_4^-$ 의 농도를 2.5mmol/L로 한 MS변형배지이다.

시험관싹증식에 적합한 성장조절제의 농도는 6-BA 1.0mg/L, NAA 0.1mg/L이며 이 조건에서 배양했을 때 싹증식비는 3.6이였다.

참 고 문 헌

- [1] 김일성종합대학학보 생명과학, 66, 2, 38, 주체109(2020).
- [2] 임록재; 조선식물지 5, 과학기술출판사, 185~186, 주체87(1998).
- [3] E. F. George et al.; Plant Propagation by Tissue Culture, Springer, 355~402, 2008.
- [4] J. Akaki et al.; Journal of Ethnopharmacology, 220, 1, 2018.
- [5] 弓献龙; 植物生物技术, 北京科学出版社, 249~320, 2004.

주체109(2020)년 10월 5일 원고접수

Influence of Some Factors on in vitro Shoot Propagation of Cnidium officinale

Song Un Hui, Ri Song and Pak Chol Jin

The suitable medium for *in vitro* shoot propagation of *Cnidium officinale* is a modified MS medium, where concentration ratio of ammoniacal nitrogen to nitrate nitrogen is 1 to 3 and concentration of $H_2PO_4^-$ is 2.5mmol/L.

And then the proper growth regulator is 6-BA and NAA, and their concentration is 1.0mg/L and 0.1mg/L, respectively.

At that time, the breeding coefficient is about 3.6.

Keywords: Cnidium officinale, tissue culture, in vitro shoot propagation