- (B) The first Step ionizes nearly 100%, the second step is much less than 100%.
- (15) HC1(aq) + KOH(aq) -> KC1(aq) + H2O(c)

 14t + C/t + 18t + OH(aq) -> K(aq) + CV(aq) + H2O(e)

 H(aq) + OH(aq) -> H2O(e)
- (16) H3 PO4 (ag) +3NQOH(QQ) -> NQ3 PO4 (ag) +3H2O(R) 3H+(QQ) +3OH(QQ) ->3H2O(R)
- (17) (A) Zn(s) +2HC(a) + Hzg/ Zn(12(a))
 (18) 2A1(s) +3Hz SOy(aq) -> A1z (SOy)3(aq) +3Hz (a)
- (18) Ca(s) + 2HCI(aa) -> Ca(12(aa) + Hz(g)) Ca(s) + 2H+(aa) -> Ca+2(aa) + Hz(g)
- (19) HUR (a) HCI + H2O > H30+ + CI
 B A B A B

 Conjugate

 bose acid

 pair
- (1) (A) The stronger the oxcid, the weaker the conjugate base.
 - (B) The stronger the base, the weaker the conjugate acid.

21) Don't Do	
A compound that behaves	as both an acid and a base.
(B) 118 10-1	The First Step indies notify 1086
B H20+ DC1 → H30+	+ Cl water as an tase
(H) O+ NH3 - OH-	+ NHy+ woter as an acid
(23) MHL (A) (B)	O Conjugate Pairs
Acid CH3COOH 420	HNO2 (2) OU SOUL !
base 420 HCO3 3	502
7,2 11 = 3	120 4 H307
	B HCO3 + H2CO3
	1420 + OA
	(C) 4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(E) HNO3 + NO3
	504-2+ 4504-
(24) (A) HNO3 (B) H25 (D) H5- (D) NO3-	
A strong acid makes a weak conjugate because it	
will not agin a proton S.	trong acids almost ionize 100%, they
will not retorm the origi	nal.
\sim	
(26) @ HCI + NOOH -> NOCI +HZ	D. M. H+10H-> HO
(b) HNO3+ KOH→ KNO3+ H20 1 H++OH-→ H20	
(C) CA(OH) THNO 274 OLG CO)	
(C) Ca(oH)2 +2HNO3 > 2H2O + Ca(N63)2, H+OH-> H2O	
O Mg(0H)2 +2HC1 → MgCh+	2H20, H+OH- 7H,0
(27) H3PO4 (age + Mg(OH2) -> Mg3(PQ4)2 -> H2O	
H++0H-> H20	
(26) DON'T DO	
29 A Rb(OH) + HCIOY - RbCloy + A	120, H++OH > H20 CD
(B) Ba(OH)2 + H2504 + Ba504 + 7H2	yeer

30) $Z_{100,omL}$ $Z_{100,omL}$ $Z_{100,omL}$ $Z_{100,omL}$ Z_{100L} Z_{10