CSC 463H1 Winter 2021

Worth: 15%

1. [20 marks]

Let $EXP = \bigcup_k TIME(2^{n^k})$ and $NEXP = \bigcup_k NTIME(2^{n^k})$ be the classes of languages decidable by respectively deterministic and nondeterministic Turing machines with running time $\mathcal{O}(2^{n^k})$ for some constant k.

Both $\mathcal{P} \stackrel{?}{=} \mathcal{NP}$ and $EXP \stackrel{?}{=} NEXP$ are open questions. However, it is known that if $\mathcal{P} = \mathcal{NP}$, then EXP = NEXP. Prove this fact!

Hint: For a language $A \in NTIME(2^{n^k})$, consider the "padded" language

$$A' = \{x \#^{2^{|x|^k}} \mid x \in A\},\$$

where $x^{2^{|x|^k}}$ is the string formed by x followed by $2^{|x|^k}$ many #'s.

2. [20 marks]

The (m, n, k)-game is a game that generalizes the familiar game of Tic-Tac-Toe. There are two players — Player X and Player O. Player O player O player O player O player O player O on an O grid O player to get O markers consecutively in a row — horizontally, vertically, or diagonally — wins.

Let GT be the following language:

 $GT = \{\langle G, k \rangle \mid \text{Player } X \text{ has a winning strategy on the } (m, n, k) \text{-game } G \}.$

Show that *GT* is in *PSPACE*.

3. [40 marks]

The purpose of this problem is to show that 2-SAT is NL-complete.

Given a 2-CNF formula φ , we associate a directed graph $G_{\varphi} = (V, E)$, where V is the set of all literals ℓ such that either ℓ or $\neg \ell$ occurs in φ , and for every clause $(\ell_1 \lor \ell_2)$ in φ we put the directed edges $(\neg \ell_1, \ell_2)$ and $(\neg \ell_2, \ell_1)$ in E.

(The idea is that if a truth assignment τ satisfies the clause $(\ell_1 \vee \ell_2)$, then if τ makes ℓ_1 False, then ℓ_2 must be True; and if τ makes ℓ_2 False, then ℓ_1 must be True.)

- (a) [10 marks] Suppose that ℓ_1 and ℓ_2 are two literals such that there is a directed path from ℓ_1 to ℓ_2 in G_{φ} . Then show that there is a directed path from $\neg \ell_2$ to $\neg \ell_1$ in G_{φ} . Also, show that every truth assignment to φ which satisfies φ and ℓ_1 also satisfies ℓ_2 .
- (b) [10 marks] Use part (a) to prove that φ is unsatisfiable iff G_{φ} has a directed cycle which includes both x and $\neg x$ for some variable x.
- (c) [20 marks] Use the previous observations to show that 2-SAT is NL-complete. You may use the fact that PATH is NL-complete.