PSO wind farm layout optimization

Guido Zuidhof Luc Nies

The problem

- 2nd Edition of the Wind Farm Layout Optimazation Competition
- Find a good wind farm layout
- Minimize the cost of energy
- Tested on 5 unknown scenarios

The API

- Written in C++, Java, Python and MATLAB
- Online layout evaluator
- Now with leaderboard!

WindFLO server

PSO

The scenarios

- Obstacles
- Wind direction
- Wind power
- Size

The evaluator: Wind wake effect

- Wind turbine slows down wind
- 24 different directions are considered

The evaluator: Calculating wind wake

- Many different wind directions
- Computationally very expensive

Our approach: Particle Swarm Optimalization

- Each wind turbine is a particle
- Pulled towards personal best
- Pulled towards global best
- Separation: turbines repel each other
- Remove turbines with low fitness
- Add turbines at random

Progress

- Fully implemented method
- Remove/add strategy
- Finetuning of parameters
 - Social coefficient
 - Individual coefficient

Demo

Performance so far

- Iteratively improving algorithm on half the scenarios
- Fourth on the leaderboard

Is PSO worth pursuing for wind farm layout optimization?

Wind F	arm Layout Competition	Leaderboard	Information l	uc Nies & Guido Zuidho	of L	.ogout
Place	User name	Evaluation count	Scores	Points	Total	ID
1	Carlos Segura - CIMAT Team	7512	[0.00132, 0.001786, 0.002796, 0.000831, 0.00157	7] [10, 10, 10, 10, 10]	50	80
2	Brian Goldman	7213	[0.001372, 0.001805, 0.00283, 0.000844, 0.00159	[6, 6, 6, 4, 6]	28	31
3	Ahmed Kheiri	1257	[0.001388, 0.00188, 0.002979, 0.000863, 0.00165	[4, 4, 4, 3, 4]	19	222
4	Luc Nies & Guido Zuidhof	3530	[0.001474, 0.001883, 0.003092, 0.000896, 0.0016	86] [0, 3, 2, 2, 3]	10	121
5	Carlos Segura - CIMAT Team	1204	[inf, inf, inf, 0.000831, inf]	[0, 0, 0, 6, 0]	6	183
6	Python GA	10000	[0.001561, 0.001931, 0.003052, 0.000911, 0.0017	24] [0, 2, 3, 0, 0]	5	4
7	Java GA	10000	[0.001466, 0.001931, 0.003119, 0.000897, 0.0017	05] [0, 1, 1, 1, 2]	5	10
8	Ahmed Kheiri	181	[0.001389, inf, inf, inf, inf]	[3, 0, 0, 0, 0]	3	228
9	Ahmed Kheiri	134	[0.001397, inf, inf, inf]	[2, 0, 0, 0, 0]	2	230
10	Krzysztof Michalak	2080	[0.001493, 0.001962, 0.003271, 0.000909, 0.0017	[0, 0, 0, 0, 1]	1	34
11	Ahmed Kheiri	232	[0.001417, inf, inf, inf]	[1, 0, 0, 0, 0]	1	231
12	C++ GA	300	[0.001591, 0.001969, 0.003272, 0.000916, 0.0017	[0, 0, 0, 0, 0]	0	11