

COMP2120 Computer Organization

Digital Logic Chapter 11

Dr. Ronald H.Y. Chung

THE UNIVERSITY OF HONG KONG

COMPUTER SCIENCE

Boolean Algebra

- Mathematical discipline used to design and analyze the behavior of the digital circuitry in digital computers and other digital systems
- Named after George Boole
 - English mathematician
 - Proposed basic principles of the algebra in 1854
- Claude Shannon suggested Boolean algebra could be used to solve problems in relay-switching circuit design
- * Is a convenient tool:
 - Analysis
 - * It is an economical way of describing the function of digital circuitry
 - Design
 - * Given a desired function, Boolean algebra can be applied to develop a simplified implementation of that function

Boolean Variables and Operations

- Makes use of variables and operations
 - Are logical
 - A variable may take on the value 1 (TRUE) or 0 (FALSE)
 - Basic logical operations are OR, AND, and NOT
- * OR
 - Yields true if either or both of its operands are true

* AND

- Yields true (binary value 1) if and only if both of its operands are true
- In the absence of parentheses the AND operation takes precedence over the OR operation
- When no ambiguity will occur the AND operation is represented by simple concatenation instead of the dot operator

* NOT

Inverts the value of its operand

Boolean Operators

Boolean Operators of Two Input Variables

P	Q	NOT P	P AND Q	P OR Q	P NAND Q	P NOR Q	P XOR Q
		(\overline{P})	(P • Q)	(P+Q)	$(\overline{P \cdot Q})$	$(\overline{P+Q})$	$(P \oplus Q)$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

 Boolean Operators Extended to More than Two Inputs (A, B, ...)

Operation	Expression	Output = 1 if
AND	A • B •	All of the set $\{A, B,\}$ are 1.
OR	A + B +	Any of the set $\{A, B,\}$ are 1.
NAND	<u>A•B•</u>	Any of the set $\{A, B,\}$ are 0.
NOR	A+B+	All of the set $\{A, B,\}$ are 0.
XOR	A ⊕ B ⊕	The set {A, B,} contains an odd number of ones.

Basic Identities of Boolean Algebra

Basic Postulates

$$A \cdot B = B \cdot A$$

$$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$$

$$1 \cdot A = A$$

$$A \bullet \overline{A} = 0$$

$$A + B = B + A$$

$$A + (B \bullet C) = (A + B) \bullet (A + C)$$

$$0 + A = A$$

$$A + \overline{A} = 1$$

Commutative Laws

Distributive Laws

Identity Elements

Inverse Elements

Other Identities

$$0 \cdot A = 0$$

$$A \cdot A = A$$

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C$$

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

$$1 + A = 1$$

$$A + A = A$$

$$A + (B + C) = (A + B) + C$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Null Law

Idempotent Law

Associative Laws

DeMorgan's Theorem

Basic Logic Gates

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A———F	$F = A \bullet B$ or $F = AB$	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	$A \longrightarrow F$	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	A—F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A—————————————————————————————————————	$F = \overline{AB}$	A B F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	$A \longrightarrow F$	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	$A \longrightarrow F$	F = A⊕B	A B F 0 0 0 0 1 1 1 0 1 1 1 0

Some Uses of NAND and NOR Gates

Figure 11.2 Some Uses of NAND Gates

Figure 11.3 Some Uses of NOR Gates

Logic Gates (Optional)

- Logic Gates are implemented using transistors
- * Transistor can be treated as switches, which turns on/off according to the value of V_{in} . If V_{in} is 1, the transistor is ON, otherwise it is OFF
- * V_{out} will be connected to the ground, when the transistor in (a), or both transistors in (b), or either transistor in (c) is are turned on
- * If V_{out} is connected to ground (which is 0), then V_{out} is 0. Otherwise V_{out} is 1

Combinational Circuit

An interconnected set of gates whose output at any time is a function only of the input at that time

The appearance of the input is followed almost immediately by the appearance of the output, with only gate delays

Consists of *n* binary inputs and *m* binary outputs

Can be defined in three ways:

- Truth table
- For each of the 2ⁿ possible combinations of input signals, the binary value of each of the m output signals is listed
- Graphical symbols
 - The interconnected layout of gates is depicted
- Boolean equations
- Each output signal is expressed as a Boolean function of its input signals

Implementation of Boolean Functions

- Any Boolean function can be implemented in electronic form as a network of gates
- Consider the following Boolean function

$$F = \overline{A} B \overline{C} + \overline{A} BC + AB \overline{C}$$

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

COMP2120B 2016-2017

Implementation of Boolean Functions (Cont'd)

Sum of Products (SOP) implementation of

$$F = \overline{A} B \overline{C} + \overline{A} BC + AB \overline{C}$$

Implementation of Boolean Functions (Cont'd)

* We can also say that the output is 1 if none of the input combinations that proceed 0 is true

$$F = \overline{(\overline{A} \ \overline{B} \ \overline{C})} \cdot \overline{(\overline{A} \ \overline{B} \ C)} \cdot \overline{(\overline{A} \ \overline{B} \ \overline{C})} \cdot \overline{(\overline{A} \ \overline{B} \ C)} \cdot \overline{(\overline{A} \ \overline{B} \ C)} \cdot \overline{(\overline{A} \ \overline{B} \ C)} \cdot \overline{(\overline{A} \ \overline{B} \ C)}$$
by DeMorgan's Theorem: $\overline{(\overline{A} \ \overline{B} \ \overline{C})} = A + B + C$

$$F = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Product of Sums (POS) Implementation

Simplified Implementation

- The following implementation (which is much more simpler) is equivalent to the previous two implementations
 - But how to do this simplification?

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

2016-2017

Algebraic Simplification

Recall the laws and identities

$$A \cdot B = B \cdot A$$
 $A + B = B + A$
 $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ $A + (B \cdot C) = (A + B) \cdot (A + C)$
 $1 \cdot A = A$ $0 + A = A$
 $A \cdot \overline{A} = 0$ $A + \overline{A} = 1$

$$0 \cdot A = 0$$

$$A \cdot A = A$$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$1 + A = 1$$

$$A + A = A$$

$$A + (B + C) = (A + B) + C$$

$$\overline{A \cdot B} = \overline{A} \cdot \overline{B}$$

Consider the Boolean Function again

$$F = \overline{A} B \overline{C} + \overline{A} BC + AB \overline{C}$$

$$= \overline{A} B \overline{C} + \overline{A} BC + AB \overline{C} + \overline{A} B \overline{C}$$

$$= B \cdot (\overline{A} \overline{C} + \overline{A} C + A \overline{C} + \overline{A} \overline{C})$$

$$= B \cdot (\overline{A} \cdot (\overline{C} + C) + \overline{C} \cdot (\overline{A} + A))$$

$$= B \cdot (\overline{A} + \overline{C})$$

For more complex expressions, more systematic approach is needed

Karnaugh Map (K-Map)

- Karnaugh map is a convenient way of representing a Boolean function of a small number (up to four) of variables.
- * Each square corresponds to a unique product in the sum-of-products form, with a 1 value corresponding to the variable and a 0 value corresponding to the NOT of that variable

(d) Simplified Labeling of Map

Use of K-Map

- Any two squares that are adjacent differ in only one of the variables
- If two adjacent squares both have an entry of one
 - Then the corresponding product terms differ in only one variable
 - The two terms can be merged by eliminating that variable
- The concept of adjacency can be extended to include wrapping around the edge of the map
- * We can group not just 2 squares but 2ⁿ adjacent squares (i.e., 2, 4, 8, etc.)

COMP2120F 2016-2017

Use of K-Map (Cont'd)

- The rules for simplification:
 - 1. Among the marked squares (squares with a 1), find those that belong to a unique largest block of 1, 2, 4, or 8 and circle those blocks.
 - 2. Select additional blocks of marked squares that are as large as possible and as few in number as possible, but include every marked square at least once.
 - The results may not be unique in some cases.
 - 3. Continue to draw loops around single marked squares, or pairs of adjacent marked squares, or groups of four, eight, and so on in such a way that every marked square belongs to at least one loop; then use as few of these blocks as possible to include all marked squares.

Overlapping Groups

- If any isolated 1s remain after the groupings, then each of these is circled as a group of 1s
- Any group of 1s that is completely overlapped by other groups can be eliminated

Another Example: Decimal Incrementer

- Decimal Incrementer
 - **•** 0->1, 1->2, 2->3, ... 8->9, 9->0

		Inp	ut				Out	put	
Number	A	В	С	D	Number	W	X	Y	Z
0	0	0	0	0	1	0	0	0	1
1	0	0	0	1	2	0	0	1	0
2	0	0	1	0	3	0	0	1	1
3	0	0	1	1	4	0	1	0	0
4	0	1	0	0	5	0	1	0	1
5	0	1	0	1	6	0	1	1	0
6	0	1	1	0	7	0	1	1	1
7	0	1	1	1	8	1	0	0	0
8	1	0	0	0	9	1	0	0	1
9	1	0	0	1	0	0	0	0	0
	- 1	0	1	0		d	d	d	d
	1	0	1	1		d	d	d	d
Don't	1	1	0	0		d	d	d	d
care	1	1	0	1		d	d	d	d
con-	1	1	1	0		d	d	d	d
dition	L 1	1	1	1		d	d	d	d

- * Certain combinations of values of variables never occur, and therefore the corresponding output never occurs.
 - * These are referred to as 'Don't Care' state denoted as 'd', and they can be treated as a 1 or 0, whichever leads to simplest expression

Karnaugh Maps for the Incrementer

Four or more variables?

- For more than four variables, the Karnaugh map method becomes increasingly cumbersome
- * With five variables, two 4 * 4 maps are needed
 - One map stacked on top of another to explore adjacency
- With six variables, four 4 * 4 maps are need in four dimensions
- * That means some other approach is required

Quine-McCluskey Method

- Consider a boolean expression
 - e.g. $F = \overline{A} \overline{B} \overline{C}D + \overline{A} B \overline{C}D + \overline{A}$
 - * Construct a table in which each row corresponds to one of the product terms of the expression. The terms are grouped according to the number of *uncomplemented* variables
 - Then, find all pairs of terms that differ in only one variable

No. of "1"s	Product Term	Index	A	В	C	D	Done
1	$\overline{A} \overline{B} \overline{C}D$	1	0	0	0	1	
2	$\overline{A}B\overline{C}D$	5	0	1	0	1	
2	$\overline{A}BC\overline{D}$	6	0	1	1	0	
2	$AB\overline{C}\overline{D}$	12	1	1	0	0	
3	$\overline{A}BCD$	7	0	1	1	1	
3	$A\overline{B}CD$	11	1	0	1	1	
3	-AB \overline{C} D	13	1	1	0	1	
4	ABCD	15	1	1	1	1	

No. of "1"s	Product Term	Index	Α	В	С	D	Done
1	$\overline{A} \overline{B} \overline{C}D$	1	0	0	0	1	
2	$\overline{A}B\overline{C}D$	5	0	1	0	1	
2	$\overline{A}BC\overline{D}$	6	0	1	1	0	
2	$AB\overline{C}\overline{D}$	12	1	1	0	0	
3	ABCD	7	0	1	1	1	
3	$A\overline{B}CD$	11	1	0	1	1	
3	-AB \overline{C} D	13	1	1	0	1	
4	ABCD	15	1	1	1	1	

Remark: Alternative expression for F $F=m_1+m_5+m_6+m_7+m_{11}+m_{12}+m_{13}+m_{15}$

No. of "1"s	Product Term	Index	A	В	С	D	Done
1	$\overline{A} \overline{B} \overline{C}D$	1	0	0	0	1	$\sqrt{}$
2	$\overline{A}B\overline{C}D$	5	0	1	0	1	$\sqrt{}$
2	$\overline{A}BC\overline{D}$	6	0	1	1	0	
2	$AB\overline{C}\overline{D}$	12	1	1	0	0	
3	ABCD	7	0	1	1	1	h://==
3	$A\overline{B}CD$	11	1	0	1	1	
3	AB $\overline{\mathrm{C}}\mathrm{D}$	13	1	1	0	1	
4	ABCD	15	1	1	1	1	
No. of "1"s	Product Term	Index	A	В	С	D	Done
No. of "1"s	Product Term $\overline{A} \ \overline{B} \ \overline{C} D$	Index	A 0	B 0	C 0	D 1	Done √
1	ĀBĒD	1	0	0	0	1	V
1 2	ĀBĒD ĀBĒD	1 5	0	0	0	1	V
1 2 2	ĀBĒD ĀBĒD ĀBCĒ	1 5 6	0 0 0	0 1 1	0 0 1	1 1 0	V
1 2 2 2	ĀBĒD ĀBĒD ĀBĒD ABĒD	1 5 6 12	0 0 0 1	0 1 1 1	0 0 1 0	1 1 0 0	√ √
1 2 2 2 2	ĀBĒD ĀBĒD ĀBCĒ ABĒĒ ĀBCD	1 5 6 12 7	0 0 0 1	0 1 1 1 1	0 0 1 0	1 1 0 0	√ √

No. of "1"s	Product Term	Index	A	В	C	D	Done
1	$\overline{A} \overline{B} \overline{C}D$	1	0	0	0	1	$\sqrt{}$
2	$\overline{A}B\overline{C}D$	5	0	1	0	1	$\sqrt{}$
2	$\overline{A}BC\overline{D}$	6	0	1	1	0	
2	$AB\overline{C}\overline{D}$	12	1	1	0	0	
3	ĀBCD	7	0	1	1	1	$\sqrt{}$
3	$A\overline{B}CD$	11	1	0	1	1	
3	·AB $\overline{\mathrm{C}}\mathrm{D}$	13	1	1	0	1	
4	ABCD	15	1	1	1	1	
No. of "1"s	Product Term	Index	A	В	С	D	Done
No. of "1"s	Product Term A CD	Index 1,5	A 0	В	C 0	D 1	Done
			-			-	Done
1	ĀĒD	1,5	0	-	0	1	Done
1 2	Ā C D Ā B D	1,5 5,7	0	1	0	1	Done
1 2	Ā C D Ā B D	1,5 5,7	0	1	0	1	Done
1 2	Ā C D Ā B D	1,5 5,7	0	1	0	1	Done
1 2	Ā C D Ā B D	1,5 5,7	0	1	0	1	Done

No. of "1"s	Product Term	Index	A	В	C	D	Done
1	$\overline{A} \overline{B} \overline{C}D$	1	0	0	0	1	$\sqrt{}$
2	$\overline{A}B\overline{C}D$	5	0	1	0	1	$\sqrt{}$
2	$\overline{A}BC\overline{D}$	6	0	1	1	0	$\sqrt{}$
2	$AB\overline{C}\overline{D}$	12	1	1	0	0	
3	ABCD	7	0	1	1	1	$\sqrt{}$
3	$A\overline{B}CD$	11	1	0	1	1	
3	AB $\overline{\mathrm{C}}\mathrm{D}$	13	1	1	0	1	$\sqrt{}$
4	ABCD	15	1	1	1	1	
No. of "1"s	Product Term	Index	Α	В	С	D	Done
No. of "1"s	Product Term ABCD	Index	A 0	B 0	C 0	D 1	Done √
1	ĀBĒD	1	0	0	0	1	$\sqrt{}$
1 2	ĀBĒD ĀBĒD	1 5	0	0	0	1	√ √
1 2 2	ĀBĒD ĀBĒD ĀBCĒ	1 5 6	0 0 0	0 1 1	0 0 1	1 1 0	√ √ √
1 2 2 2	ĀBĒD ĀBĒD ĀBCŪ ABĒŪ	1 5 6 12	0 0 0 1	0 1 1 1	0 0 1 0	1 1 0 0	√ √ √
1 2 2 2 2 3	ĀBĒD ĀBĒD ĀBCĒ ABĒĒ	1 5 6 12 7	0 0 0 1	0 1 1 1 1	0 0 1 0	1 1 0 0	√ √ √

No. of "1"s	Product Term	Index	A	В	С	D	Done
1	$\overline{A} \overline{B} \overline{C}D$	1	0	0	0	1	$\sqrt{}$
2	$\overline{A}B\overline{C}D$	5	0	1	0	1	$\sqrt{}$
2	$\overline{A}BC\overline{D}$	6	0	1	1	0	$\sqrt{}$
2	$AB\overline{C}\overline{D}$	12	1	1	0	0	$\sqrt{}$
3	ĀBCD	7	0	1	1	1	$\sqrt{}$
3	$A\overline{B}CD$	11	1	0	1	1	
3	·AB $\overline{\mathrm{C}}\mathrm{D}$	13	1	1	0	1	$\sqrt{}$
4	ABCD	15	1	1	1	1	
No. of "1"s	Product Term	Index	A	В	C	D	Done

No. of "1"s	Product Term	Index	A	В	C	D	Done
1	$\overline{A} \overline{C}D$	1,5	0	-	0	1	
2	$\overline{A}BD$	5,7	0	1	-	1	
2	BCD	5,13	-	1	0	1	
2	$\overline{A}BC$	6,7	0	1	1	-	
2	$AB\overline{C}$	12,13	1	1	0	-	
3	BCD	7,15	-	1	1	1	

No. of "1"s	Product Term	Index	A	В	С	D	Done
1	$\overline{A} \overline{B} \overline{C}D$	1	0	0	0	1	$\sqrt{}$
2	$\overline{A}B\overline{C}D$	5	0	1	0	1	$\sqrt{}$
2	$\overline{A}BC\overline{D}$	6	0	1	1	0	$\sqrt{}$
2	$AB\overline{C}\overline{D}$	12	1	1	0	0	$\sqrt{}$
3	ĀBCD	7	0	1	1	1	$\sqrt{}$
3	$A\overline{B}CD$	11	1	0	1	1	$\sqrt{}$
3	AB $\overline{\mathrm{C}}\mathrm{D}$	13	1	1	0	1	$\sqrt{}$
4	ABCD	15	1	1	1	1	$\sqrt{}$
No. of "1"s	Product Term	Index	A	В	С	D	Done
No. of "1"s	Product Term $\overline{A} \ \overline{B} \ \overline{C} D$	Index 1	A 0	B 0	C 0	D 1	Done √
1	ĀBĒD	1	0	0	0	1	$\sqrt{}$
1 2	ĀBĒD ĀBĒD	1 5	0	0	0	1	√ √
1 2 2	ĀBĒD ĀBĒD ĀBCĒ	1 5 6	0 0 0	0 1 1	0 0 1 0	1 1 0	√ √ √
1 2 2 2	ĀBĒD ĀBĒD ĀBCĒ ABĒĒ	1 5 6 12	0 0 0	0 1 1 1	0 0 1 0	1 1 0	√ √ √
1 2 2 2 2 3	ĀBĒD ĀBĒD ĀBCĒ ABĒĒ	1 5 6 12 7	0 0 0 1	0 1 1 1 1	0 0 1 0	1 1 0 0	√ √ √

ABCD

C	D	Done
0	1	
-	1	
0	1	
1	-	
0	-	
1	1	
1	1	
-	1	
	- 0 1 0 1 1	1 -

- * The new table is organized into groups in the same fashion as the first table, and it is then processed in the same manner as the first.
- In general, the process would proceed through successive tables until a table with no matches was produced

No. of "1"s	Product Term	Index	A	В	С	D	Done
1	$\overline{A} \overline{C}D$	1,5	0	-	0	1	
2	\overline{A} BD	5,7	0	1	-	1	$\sqrt{}$
2	$B\overline{C}D$	5,13	-	1	0	1	
2	$\overline{A}BC$	6,7	0	1	1	-	
2	$AB\overline{C}$	12,13	1	1	0	-	
3	BCD	7,15	-	1	1	1	
3	ACD	11,15	1	-	1	1	
3	ABD	13,15	1	1	-	1	$\sqrt{}$

No. of "1"s	Product Term	Index	A	В	С	D	Done
2	BD	5,7,13,15	-	1	-	1	

- * Once the process just described is completed, we have eliminated many of the possible terms of the expression. Those terms that have not been eliminated are first identified
 - * i.e. $\overline{A} \, \overline{C} \, D$, $\overline{A} \, BC$, $AB \, \overline{C}$, ACD, BD

No. of "1"s	Product Term	Index	A	В	С	D	Done
1	$\overline{A} \overline{C}D$	1,5	0	-	0	1	
2	A BD	5,7	0	1	-	1	$\sqrt{}$
2	$B\overline{C}D$	5,13	-	1	0	1	$\sqrt{}$
2	$\overline{A}BC$	6,7	0	1	1	-	
2	$AB\overline{C}$	12,13	1	1	0	-	
3	BCD	7,15	-	1	1	1	$\sqrt{}$
3	ACD	11,15	1	-	1	1	
3	ABD	13,15	1	1	-	1	$\sqrt{}$

No. of "1"s	Product Term	Index	A	В	С	D	Done
2	BD	5,7,13,15	-	1	-	1	
2	BD	5,13,7,15	-	1	-	1	

Last Stage of Quine-McCluskey Method

- Terms that have not been eliminated are used to construct a matrix
 - An X is placed at each intersection of a row and a column such that the row element is "compatible" with the column element
 - Next, *circle* each X that is *alone* in a column. Then place a *square* around each X in any row in which there is a circled X
 - * If every column now has either a squared or a circled X, then we are done, and those row elements whose Xs have been marked constitute the minimal expression.
 - In cases in which some columns have neither a circle nor a square, keep adding row elements until all columns are covered

So,
$$F = \overline{A} \overline{C}D + \overline{A}BC + AB\overline{C} + ACD$$

	ABCD	ABŪD	ABŪŪ	ABCD	ABCD	A BC D	ĀBŪD	AB CD
BD	Х	Х			X		Х	
ĀCD							X	⊗
ĀBC					X	8		
ABŪ		X	8					
ACD	X			8				

Multiplexer

- The multiplexer connects multiple inputs to a single output
 - * At any time, one of the inputs is selected to be passed to the output
 - Example
 - * 4-to-1 multiplexer. One of these lines is selected to provide the output signal F. To select one of the four possible inputs, a 2-bit selection code is needed

S2	S 1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Example Multiplexer Implementation

S2	S 1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Multiplexer Example Usage

- Multiplexer Input to Program Counter
 - Program counter may come from one of several different sources:
 - A binary counter, if the PC is to be incremented for the next instruction
 - * The instruction register, if a branch instruction using a direct address has just been executed
 - * The output of the ALU, if the branch instruction specifies the address using a displacement mode

Decoder

- * A decoder is a combinational circuit with a number of output lines, only one of which is asserted at any time
 - Which output line is asserted depends on the pattern of input lines
 - * In general, a decoder has n inputs and 2^n outputs
- 2-to-4 decoder

Source: http://www.ustudy.in/node/4715

COMP2120B
2016-2017

Example Use of Decoders

- Suppose we wish to construct a 1K-byte memory using four 256 × 8 bit RAM chips
 - The higher-order 2 bits of the 10-bit address are used to select one of the four RAM chips
 - 2-to-4 decoder is used whose output enables one of the four chips

Address	Chip
0000-00FF	0
0100-01FF	1
0200-02FF	2
0300-03FF	3

Demultiplexer

- The demultiplexer performs the inverse function of a multiplexer
- It can be constructed by a decoder, with an additional input line
 - * n inputs are decoded to produce a single one of 2^n outputs. All of the 2^n output lines are ANDed with a data input line
 - * The *n* inputs act as an address to select a particular out- put line, and the value on the data input line (0 or 1) is routed to that output line

Read-Only Memory (ROM)

- Memory that is implemented with combinational circuits
 - * Combinational circuits are often referred to as "memoryless" circuits because their output depends only on their current input and no history of prior inputs is retained
- Memory unit that performs only the read operation
 - Binary information stored in a ROM is permanent and is created during the fabrication process
 - * A given input to the ROM (address lines) always produces the same output (data lines)
 - Because the outputs are a function only of the present inputs, ROM is a combinational circuit
- A ROM can be implemented with a decoder and a set of OR gates.

ROM Example

- ♦ 64 Bit ROM Example
 - ❖ 16 words of 4 bits each
 - Implemented using a 4-to-16 decoder and four OR gates
- Different desired results can be obtained by employing different interconnections between the decoder outputs and the OR gates

36

Input					Output			
X_1	X_2	X_3	X_4		$\overline{Z_1}$	Z_2	Z_3	Z_4
0	0	0	0		0	0	0	0
0	0	0	1		0	0	0	1
0	0	1	0		0	0	1	1
0	0	1	1		0	0	1	0
0	1	0	0		0	1	1	0
0	1	0	1		0	1	1	1
0	1	1	0		0	1	0	1
0	1	1	1		0	1	0	0
1	0	0	0		1	1	0	0
1	0	0	1		1	1	0	1
1	0	1	0		1	1	1	1
1	0	1	1		1	1	1	0
1	1	0	0		1	0	1	0
1	1	0	1		1	0	1	1
1	1	1	0		1	0	0	1
1	1	1	1		1	0	0	0

Adders

- How to add two binary numbers?
 - Single Binary Digit Addition

Case	(1)	(2)	(3)	(4)	(5)	(6	(7)	(8)
C_{in}					1	1	1	1
A	0	0	1	1	0	0	1	1
В	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
Sum	0	1	1	1 0	1	1 0	1 0	1 1

(a) Single-Bit Addition

0 0 0 0 0 1 1 0 1 0 1 0	ry .	Carry	Sum	В	A
		0	0	0	0
1 0 1 0		0	1	1	0
		0	1	0	1
1 1 0 1		1	0	1	1

Multiple-Digit Addition

Case		(5)	(8)	(7)	(6)	(4)
C_{in}		1_	1_	1_	1_	
A		•	1	1	0	\ 1
В	+		1	0	1	1
Sum		1	Cout 1	Cout 0	Cout 0	C _{out} 0

(b) Addition with Carry Input

C _{in}	A	В	Sum	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Implementation of An Adder with Carry Input

- Boolean function for Sum and Carry (C_{out})
 - Sum= $\overline{A} \overline{B} C + \overline{A} B \overline{C} + ABC + A \overline{B} \overline{C}$ Carry = AB + AC + BC

C _{in}	A	В	Sum	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Multiple-Bit Adder

- Implement through the cascade of multiple single-bit adders
 - 4-bit adder example

- Carry has to ripple through all the previous stages, causing delay
 - Carry look ahead might be employed to reduce such kind of delay

$$\begin{split} &C_0 {=} A_0 B_0 \\ &C_1 {=} A_1 B_1 {+} A_1 C_0 {+} B_1 C_0 \\ &C_2 {=} A_2 B_2 {+} A_2 A_1 B_1 {+} A_2 A_1 A_0 B_0 {+} A_2 B_1 A_0 B_0 {+} B_2 A_1 B_1 {+} B_2 A_1 A_0 B_0 {+} B_2 B_1 A_0 B_0 \end{split}$$

Multiple-Bit Adder (Cont'd)

- For long numbers, carry look ahead can become excessively complicated
 - So, fully carry lookahead is typically done only 4 to 8 bits at a time
- * 32-bit adder can be constructed out of four 8-bit adders

Sequential Circuit

Flip-Flops

- Simplest form of sequential circuit
- There are a variety of flip-flops, all of which share two properties:
 - 1. The flip-flop is a bistable device. It exists in one of two states and, in the absence of input, remains in that state. Thus, the flip-flop can function as a 1-bit memory.
 - 2. The flip-flop has two outputs, which are always the complements of each other.

The S-R Latch Implemented with NOR Gates

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	_

S-R Latch

Current	Current	Next State
Inputs	State	Q_{n+1}
SR	Q_n	7111
00	0	0
00	1	1
01	0	0
01	1	0
10	0	1
10	1	1
11	0	_
11	1	_

COMP2120B 2016-2017

Clocked S-R Latch

- * Events in the digital computer are synchronized to a clock pulse, so that changes occur only when a clock pulse occurs
- Clocked S–R flip-flop
 - The R and S inputs are passed to the NOR gates only during the clock pulse

COMP2120H 2016-2017

Clocked D Flip-Flop

- Avoid the problematic condition R=1, S=1
 - Just allow a single input, by using an inverter to ensure R and S are always opposite valued
- The D flip-flop is sometimes referred to as the data flip-flop
 - In effect, storage for one bit of data, it remembers and produces the last input
 - It is also referred to as the delay flip-flop, because it delays a 0 or 1 applied to its input for a single clock pulse.

J-K Flip-Flop

- * Like S-R Flip-Flop, it has two inputs, but J-K Flip-Flop is valid for all possible inputs
 - In particular, when both inputs are 1, it toggles its output when the next clock arrives

Flip-Flop Summary

Name	Graphical Symbol	Truth Table
S-R	S Q	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
J-K	J Q	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
D	— D Q — >Ck — Q	$\begin{array}{c c} D & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Parallel Register

- * A parallel register consists of a set of 1-bit memories that can be read or written simultaneously
 - It is used to store data
- Example 8-bit register
 - A 'load' signal controls writing into the register from signal lines, D11 through D18
 - These lines might be the output of multiplexers, so that data from a variety of sources can be loaded into the register

Shift Register

- * A *shift register* accepts and/or transfers information serially
- * Shift registers can be used to interface to serial I/O devices. In addition, they can be used within the ALU to perform logical shift and rotate functions.
- Example 5-bit shift register

Counter Register

- A register whose value is easily incremented by 1 modulo the capacity of the register
- * After the maximum value is achieved the next increment sets the counter value to 0
- An example of a counter in the CPU is the program counter
- Can be designated as:
 - Asynchronous
 - * Relatively slow because the output of one flip-flop triggers a change in the status of the next flip-flop
 - Synchronous
 - All of the flip-flops change state at the same time
 - Because it is faster it is the kind used in CPUs

Asynchronous Counter Register

Timing Delay in Asynchronous Counter

Pulse diagram showing (exaggerated) propagation delays

Source: http://www.allaboutcircuits.com/textbook/digital/chpt-11/asynchronous-counters/

Design of Synchronous Counter

	BA			
	00	01	11	10
C NC = BA C	d	d	d	d
1			1	

Programmable Logic Array

FPGA

- An FPGA consists of an array of uncommitted circuit elements, called logic blocks, and interconnect resources. An illustration of a typical FPGA architecture is shown in figure on the right. The key components of an FPGA are
 - Logic block: The configurable logic blocks are where the computation of the user's circuit takes place.
 - I/O block: The I/O blocks connect I/O pins to the circuitry on the chip.
 - Interconnect: These are signal paths available for establishing connections among I/O blocks and logic blocks.

Chapter 11 - Summary

- Boolean Algebra
- Gates
- Combinational Circuits
 - Implementation of Boolean Functions
 - Multiplexers
 - Decoders
 - Read-Only-Memory
 - Adders

- Sequential Circuits
 - Flip-Flops
 - Registers
 - Counters
- Programmable Logic Devices
 - Programmable Logic Array
 - Field-Programmable Gate Array

