SFWR ENG 3DX4 Summary

Instructor: Dr. Lawford Course: SFWR ENG 3DX4

Math objects made using MathType; graphs made using Winplot.

Table of Contents

ntroduction to Systems	1
_aplace	
Fransfer Functions	
Electrical	2
Cramer's Rule	3
OP-Amps	3
Mechanical	3
Translational Systems	3
Rotational Systems	4
Non-/Linear Systems	4
Block Diagrams	4
State Space Equations	5
Fransfer Function -> State Space	5

Note: the following summaries may be useful:

- SFWR ENG 2MX3
- ENGINEER 3N03
- TRON 3TA4

I may review to clarify or correct, but mostly I will omit those things.

Introduction to Systems

Systems can be represented by **block diagrams** to make it easier to marginalize the different parts of the systems.

Laplace

Useful for...

Time begins when your signal begins

$$h(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

Initial conditions:

 \bullet c(0)

Time domain (t): variables are lower case, e.g. f(t)

Frequency domain (s): variables are upper case, e.g. F(s)

Transfer function:

When doing the inverse Laplace, it's useful to break your fractions up so that you can

Strictly Stable: it will eventually get back to the initial position

Marginally Stable:

Unstable: it will progressively get worse

Figure 2.5 from Dorf and Bishop, Modern Control Systems (10th Edition), Prentice-Hall, 2004.

Transfer Functions

Electrical

admittance:

$$Y(s) = \frac{I(s)}{V(s)} = \frac{1}{R} = G$$

$$V_c(s) = I(s) \frac{1}{Cs}$$
$$I(s) = \frac{V(s)}{L_s + R + \frac{1}{Cs}}$$

Cramer's Rule

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots, x_n = \frac{\det(A_n)}{\det(A)}$$

$$V_{C}(s) = H(s) \frac{1}{Cs}$$

OP-Amps

Mechanical

Translational systems:

Rotational Systems:

Newton's Second Law of Motion: $\Sigma f = Ma$

$$Z_{m}(s) = \frac{F(s)}{X(x)}$$
$$f(t) = Ma(t)$$
$$= M \frac{d^{2}x}{dt^{2}}$$

Translational Systems

Spring

Spring is like a capacitor

Force displacement: f(t) = Kx(t)

Viscous Damper

Using viscous fluid to slow something down

Viscous Damper is like a resistor

Force displacement: $f(t) = f_v \frac{dx(t)}{dt}$

Mass

Mass is like a inductor

Force displacement: $f(t) = M \frac{d^2x(t)}{dt^2}$

Rotational Systems

Transducer: anything that converts energy to electrical energy

Transmitter: long distances

Unstable systems have ∞ steady state error

Steady-state error $[e_{\infty}]$:

$$e_{\infty} = \lim_{t \to \infty} e(t)$$

Percent overshoot: if the phase is longer than the

Settling time: how long it takes to get to the steady state within a small bit

<Insert the graph, with the pieces coloured and labelled all preeety>

Non-/Linear Systems

- Op Amps are linear
- If you don't have enough voltage, your motor magnets won't have enough power to switch poles, so they require a minimum voltage

You can't model non-linear systems, until you linearize it. To do this, we find the slope and approximate the equation of the line, using y=mx+b

Proportional-Integral-Derivative (PID):

If your gears are vibrating, your PID is probably too high

Block Diagrams

A way of representing a system

Summing junction: could be an X or +, but usually an X in this course

Cascade: subsystems in series are multiplied

Parallel: parallel subsystems have a summing junction at the end, so you just add everything

together

Feedback: positive feedback is bad

Simplification:

State Space Equations

Yeah, you think you know them from 2MX3, but you don't really know them. Apparently the ABCD variables actually have names.

- System Matrix [A]:
- Input Matrix [B]:
- Output Matrix [C]:
- Feedforward Matrix [D]:

Transfer Function -> State Space

Phase Variable Approach:

The *n* state variables will consist of:

-)
- the derivatives of y