M365C: Real Analysis I

Homework # 04

Handout: 02/08/2018, Thursday Due: 02/15/2018, Thursday

Submission. Please make your homework neat and stapled. Note that no late homework will be accepted without compelling reasons.

1 To be Graded

Problem 1. Let (X, ρ) be a metric space, and $f: [0, \infty) \to [0, \infty)$ be an increasing concave function such that f(r) = 0 if and only if r = 0. Prove that $f \circ \rho$ is also a metric on X. Hint: f being concave means that $\forall p, q \in [0, \infty)$ we have $f(tp + (1 - t)q) \ge tf(p) + (1 - t)f(q)$ $\forall t \in [0, 1]$. We can show here that f is subadditive in the following way: (i) take q = 0, we can see that $f(tp) \ge tf(p)$; (ii) $f(p) + f(q) = f(\frac{p}{p+q}(p+q)) + f(\frac{q}{p+q}(p+q)) \ge \frac{p}{p+q}f(p+q) + \frac{q}{p+q}f(p+q) = f(p+q)$.

Problem 2. Let $X = \mathbb{R}^2$. Define $\rho_1(x, y) \equiv |x_1 - y_1| + |x_2 - y_2|$, $\rho_2(x, y) \equiv \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2}$ and $\rho_{max}(x, y) \equiv \max\{|x_1 - y_1|, |x_2 - y_2|\}$. Prove that ρ_1 , ρ_2 and ρ_{max} are uniformly equivalent.

Problem 3. Let $a, b \in \mathbb{R}$ be two real numbers. Prove the following statements.

- (i) The set X = (a, b), with the metric $\rho(x, y) = |x y|$, is open;
- (ii) The set X = [a, b], with the metric $\rho(x, y) = |x y|$, is closed;
- (iii) The set X = (a, b], with the metric $\rho(x, y) = |x y|$, is neither open nor closed.

Problem 4. Let X be any non-empty set. We define $\rho: X \times X \to [0, \infty)$ as:

$$\rho(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

Then it can be shown that ρ is a metric on X. Therefore, (X, ρ) is a metric space. Such a metric space is often called a *discrete metric space*. Let (X, ρ) be a discrete metric space. Prove the following statements.

- (i) An open ball in X is either a set with only one element (that is, a singleton) or all of X.
- (ii) All subsets of X are both open and closed.

Problem 5. Let (X, ρ) be a metric space and $S \subseteq X$ a subset. Denote by \overline{S} the set of points of closure of S. Prove that \overline{S} is a closed set.

2 Reading Assignments

- \bullet Review Lecture Notes # 6 and # 7;
- Review Sections 2.2 and 3.1 of the textbook;