Face Recognition

Шахин Зейн 13546/2

- The following presentation contains the results of my work.
- I tried to use different techniques with the baseline model proposed by the Lecturer.
 - Dropout with different values for dropout parameter.
 - L2 regularization with different values for regularization parameter.
 - Batch normalization.
- I tried to keep the structure of the network and not make much changes.
 - Only one experiment, I increased neurons of dense_1 to 128.
- The complete notebooks could be found on my repository
 - https://github.com/zeinsh/experementaldataprocessing/tree/master/FR

Baseline Model

- Network Structure
 - InputLayer 1x150x150
 - Convolution layers
 - Conv2d_1 32filters, size 3x3, stride 1x1
 - Conv2d_1 32filters, size 3x3, stride 1x1
 - Conv2d_1 64filters, size 3x3, stride 1x1
 - Max pooling layer
 - All pooling layers of size 2x2
 - Dense Layers
 - Dense_1 Dense(64)
 - Output layer Dense(83)
- Optimizer: Adam
- Loss function: sparse_categorical_crossentropy
- Quality Metric: Accuracy

Baseline Model

Baseline Model

- Comments on this model
 - There is overfitting, there are two approaches to reduce overfitting
 - Dropout
 - L2 regularization
 - Validation accuracy
 - The best value is 37%

L2 Regularization

- Add L2 regularization to convolution layers
 - Using keras.regularizers.l2(l2_norm)
- Use these values for I2_norm
 - 0 : no regularization (Baseline)
 - -0.001
 - -0.005
 - -0.01

L2 Regularization

- Comments on using L2 Regularization with baseline model
 - Increasing the regularization parameter doesn't improve the model too much, but cause the validation accuracy to go down,
 - Best validation accuracy using L2 regularization

С	Best validation accuracy
0.001	55.37%
0.005	50%
0.01	44.25%
0.1	<1%

Increasing regularization parameter to 0.1 will cause to decrease network weights to very small values, though the model will learn nothing

Use L2 regularization with Batch Normalization

- Add batch normalization along the first axis (dimension related to channels)
- Use the previous values of I2_norm with Batch Normalization
 - 0
 - -0.001
 - -0.005
 - 0.01

L2 regularization 0.001 + Batch Normalization

L2 regularization 0.005 + Batch Normalization

L2 regularization 0.01 + Batch Normalization

L2 regularization 0.1 + Batch Normalization

Overfitting

Increase regularization

L2 regularization + Batch Normalization

- Comments on using this model
 - Using regularization with batch normalization doesn't cause an improvement in reducing overfitting in the model.
 - Using regularization allows to use much bigger regularization parameter.
 - After applying batch normalization, the validation accuracy increases with regularization parameter as described in the table.

С	Best validation accuracy
0.001	56%
0.01	62%
0.1	53.25%
10	
100	

Add dropout to the baseline model

- Use these values for dropout probability
 - 0 (no dropout baseline model)
 - -0.1
 - -0.3
 - -0.5

Dropout 0.1

Dropout 0.3

Dropout 0.5

Dropout

- Comments on using dropout
 - The model with dropout probability 0.3 doesn't overfit training set.
 - Increasing dropout probability to 0.5 lead to a bad model.

С	Best validation accuracy
0.1	59.88%
0.3	61.88%
0.5	44.37%

Dropout + Batch Normalization

 Apply both dropout along with batch normalization and check the results

Dropout 0.1 + Batch Normalization

Dropout 0.3 + Batch Normalization

Dropout 0.5 + Batch Normalization

Dropout + Batch Normalization

 It is not clear why applying dropout with batch normalization caused the model to learn nothing.

1st Fully Connected Layer Dense(128) instead of Dense(64) Dropout 0.3

- Increasing the number of neurons in Dense layer leads to a better model.
 - Validation accuracy increased from 61.88% to 65.75%.

1st Fully Connected Layer Dense(128) instead of Dense(64) Dropout 0.3 + Batch Normalization

- Increasing the number of neurons in Dense layer leads to a better model.
 - The previous model doesn't learn any thing (so bad).
 - The current model's best validation accuracy is 72.75%.
 - It is the best performance achieved on validation set.
 - The model doesn't seem to be the best model because there is overfitting.

Baseline SGD instead of ADAM

- In general, using ADAM cause the model to converge faster.
- This case is not obvious in this task or model.

- Дополнительные задания (для желающих):
 - Какой dropout лучше использовать для сверточных сетей?
 - В чем разница между softmax loss и center loss? Какой лучше?
 - Что такое архитектура Inception?
 - Как понять, чему обучилась сверточная нейронная сеть? (посмотрите Google DeepDream)

Softmax Loss vs Center Loss

- Softmax Loss
 - Separable, the deep features are not discriminative enough. by intra-class variation

$$\mathcal{L}_S = -\sum_{i=1}^m \log \frac{e^{W_{y_i}^T \boldsymbol{x}_i + b_{y_i}}}{\sum_{j=1}^n e^{W_j^T \boldsymbol{x}_i + b_j}}$$

- Center Loss
 - Using Center Loss with softmax leads to a better discriminative model.

$$\mathcal{L}_C = \frac{1}{2} \sum_{i=1}^m \| \boldsymbol{x}_i - \boldsymbol{c}_{y_i} \|_2^2$$

$$\mathcal{L} = \mathcal{L}_S + \lambda \mathcal{L}_C$$

Softmax Loss vs Center Loss

 The affect of using Center Loss is shown in the following figure according to "Wen, Yandong, et al. A Discriminative Feature Learning Approach for Deep Face Recognition"

Inception

- Inception network motivation
 - Szegedy et al. 2014. Going deeper with convolutions
 - You want to apply many types of convolutions or just pooling
 - Convolution, 1x1, 64 filters
 - Convolution, 3x3, 128 filters, same padding
 - Convolution, 5x5, 256 filters, same padding
 - Just apply them all and stack them
 - These filters must have same h,w but different number of channels
 - Using 1by1 convolutions, you can unify the number of channels before concatenation.
 - It is called battle neck layer.
 - There is problem of computational cost

Inception

- Using Inception you can test many architectures at the same time.
- Inception often used with TransferLearning
 - You can use any layer to get high representation of an image (AutoEncoder)
- Inception has many output layers at different depths.

What does Convolution Layer learn?

- The earlier layers learn how to detect simple structures.
- As you go deeper more complex shapes the image can represent
- In style transform, layers in middle are used because they capture style, meanwhile the later layers capture content.

Thank you