- 1. Determinar el ancho de banda requerido para transmitir una señal FM con $f_m = 10kHz$ y una desviación mxima $\Delta f = 20kHz$.
- 2. (Beasly, S3-24) Un transmisor de FM entrega, a una antena de 75- Ω , una señal de $v(t) = 1000\cos(10^9t + 4\sin(10^4t))$. Calcular las frecuencias de la portadora y moduladora, potencia, indice de modulación, desviación, y ancho de banda. (159 MHz, 1.59kHz, 6.67kW, 4, 6.37kHz, ≈ 16 kHz).
- 3. (Tomasí, 6-7.) Para un modulador de FM con indice de modulación m=2, señal moduladora $v_m(t)=V_m\sin(2\pi 2000t)$ y portadora no modulada $v_c(t)=8\sin(2\pi 800kt)$, determine
 - (a) La cantidad de conjunto de bandas laterales significativas.
 - (b) Sus amplitudes.
 - (c) Trace el espectro de frecuencias, indicando las amplitudes relativas de las frecuencias laterales.
 - (d) El ancho de banda.
 - (e) El ancho de banda si la amplitud de la señal moduladora aumenta en un factor de 2.5.
- 4. (Tomasí, 6-24) Para un modulador de FM con indice de modulación m=5, señal moduladora $v_m(t)=2\sin(2\pi 5kt)$ y frecuencia de portadora no modulada $f_c=400KHz$, determine:
 - (a) La cantidad de conjuntos de bandas laterales significativas.
 - (b) Las amplitudes de bandas laterales.
 - (c) Trace el espectro de frecuencias de salida.
- 5. Determine el peor caso de la relación señal a ruido para un receptor FM con una frecuencia máxima de desviación de 10kHz y una frecuencia máxima de la moduladora de 3kHz. Sabiendo que el S/N en la entrada es 3:1.

C. Guarnizo