Week 9 Cribshert NOTES: 18,19,20

useful trick: say you want to compare some voltage V with a fixed voltage, e.g. IV. Then, attack V to V and fixed to V.

why is it clipped at von and vss? op-amp uses those as power.

Negative feedback:

if error \uparrow , then output \uparrow , then feedback \uparrow , then error \downarrow $U_{-} = \frac{SA}{1+SA} \cup_{+} \qquad \sum_{A\to\infty} U_{-} = U_{+}$

GOLDEN AULES

- 1. It = I- = 0
- 2. During negative feedback, V+=V_ (see limit above)

DESIGN

- 1. Specification, ensure all goals are clearly stated
- 2. Strategy: draw a block diagram
- 3. Implementation: pattern match / Change into circuits
- 4. Verification: make sure circuits don't interfere up others

* COMMON PHEPALL: LOADING ((SM WS 9 #5)

Say I want R_L to have $\frac{R_2}{R_1 + R_2} V_S$ voits across. However, antaching this voltage diviter won't work! Need a unity gain buffer.