The notes for MagneticMethods_Report.pdf

S2DS: October 2020

Team: EPRI

Week 1 task: Finding micro structures

Prepared by: Vinay Ganapathy

Introduction

Applying high/low frequency magnetic field ---- Material Magnetic properties are probed (BH curve , MBN) (Hardness, dislocation density, microstructures)

Point of interest: (Magnetic Response VS Material properties)

Inspection techniques:

Magnetic Hysteresis (BH curve)
Incremental permeability
Magnetic Barkhausen Noise (MBN)

Hardness, Thickness, Microstructure, dislocation density

- ➤ **Goal**: Assessment of imperfections (through material properties)
- Samples: Pipes and tubes (made of Steel)

There is small confusion when comparing Table -1 MBN frequency data and second paragraph of 'Introduction' in the page 2.

Magnetic response Vs Material properties

Magnetic Hysteresis (BH curve)

Material flux density (B) Vs

Applied Magnetic field (H)

remanence, coercive field (Hc) (derived from **major** BH loop)

Material Hardness, dislocation density

Incremental permeability (derived from **minor** BH loop)

Lattice defects

Other details: Coercive field (Hc)

- Low frequency (<= 1 Hz),</p>
- High Amplitude
- Measurement depth (<= 10mm for Grade 91 steel)</p>
- Long measurement time (tens of sec)

Other details: Incremental permeability

- High frequency ,
- Measurement depth (<= 10mm for Grade 91 steel)
- > small measurement time

Magnetic Barkhausen Noise (MBN)

Dislocations, grain boundaries, impurities and precipitates

Other details: (MBN)

- Low frequency (<= 1 Hz),</p>
- Measurement depth (<= 1mm)</p>
- > sensitive to lattice defects
- Sensitive to surface conditions

Sample Preparation

- Not exposed to mechanical loading, heating, cutting or machining.
- No surface preparation was carried out.
- All pipe samples had areas where surface is subjected to grinding ()
- > Two sets of measurements were performed on each pipe sample

(**set one:** Nine measurements from ground area

set two: Nine measurements from un-ground area)

Table 2. Sample short names and hardness reference

Condition	Pipe short name	Tube short name	Target Hardness (HV 5.0)	Actual Median Hardness
Fully Ferritic	P91_FF	T91_FF	160	147
HAZ + Tempered	P91_HAZ_T	T91_HAZ_T	215	170
Over-Tempered	P91_OT	T91_OT	185	198
Tempered	P91_T	T91_T	(195)	207
Normalized + Tempered	P91_N_T	T91_N_T	215	208
As received	P91_AR	T91_AR	215	220
HAZ	P91_HAZ	T91_HAZ	300	405
Normalized	P91_N	T91_N	425	428

Grounded Pipe samples data

set one: Nine measurements from ground area

Scan positions for 'ground' measurements

Scan positions for 'ground' measurements

Coercive Field data

Table 4. Coercive field (kA/m) for ground areas on pipe samples

					Mea	sureme	nt posi	tion	_	_		
Sample	A1	A2	A3	B1	B2	В3	C1	C2	C3	D1	D2	D3
P91_FF	0.503	0.547	0.553	0.542	0.540	0.549				0.577	0.535	0.537
P91_HAZ_T	0.794	0.762	0.743	0.813	0.784	0.752				0.804	0.801	0.750
P91_OT	0.839	0.860	0.885				0.948	0.918	0.938	0.910	0.889	0.876
P91_T	0.879	0.926	0.938				0.848	0.904	0.935	0.846	0.889	0.921
P91_N_T	0.879	0.885	0.884	0.912	0.934	0.956				0.824	0.940	0.926
P91_AR	1.035	1.111	1.097	1.024	1.031	1.099				1.060	1.080	1.030
P91_HAZ	1.281	1.388	1.258	1.255	1.351	1.260				1.238	1.267	1.294
P91_N	1.717	1.657	1.669	1.791	1.634	1.636				1.707	1.492	1.564

Grounded Pipe samples data (continued)

Incremental permeability data

Table 6. Incremental permeability values for ground areas on pipe samples

		Measurement position												
Sample	A 1	A2	А3	B1	B2	В3	C1	C2	C3	D1	D2	D3		
P91_FF	151.1	144.7	150.0	154.8	141.2	154.3				150.9	137.8	144.6		
P91_HAZ_T	128.2	131.5	133.6	129.9	134.6	136.1				133.0	139.0	139.0		
P91_OT	132.9	126.3	122.8				129.5	123.4	120.8	127.1	121.8	120.7		
P91_T	115.5	120.8	120.7				120.3	120.8	121.3	121.5	124.1	125.8		
P91_N_T	113.3	116.9	124.8	124.9	116.9	123.6				117.9	120.2	123.6		
P91_AR	117.8	116.4	118.8	113.6	117.8	115.3				119.7	122.1	120.5		
P91_HAZ	100.7	102.8	99.1	99.4	103.7	96.7				110.6	109.5	97.7		
P91_N	82.1	80.3	83.3	78.5	78.3	82.9				83.8	79.5	83.6		

MBN Data

Table 8. Peak MBN (mV) for ground areas on pipe samples

	Measurement position												
Sample	A1	A2	A3	B1	B2	В3	Č1	C2	C3	D1	D2	D3	
P91_FF	0.510	0.616	0.634	0.657	0.585	0.472				0.696	0.618	0.602	
P91_HAZ_T	1.086	0.975	0.957	0.705	0.682	0.690				0.649	0.635	0.660	
P91_OT	0.958	0.803	0.733				0.654	0.702	0.611	0.783	0.766	0.706	
P91_T	0.973	1.040	1.032				0.813	0.904	0.915	0.770	0.891	0.852	
P91_N_T	0.922	1.059	1.100	1.012	1.071	1.060				0.957	1.064	1.027	
P91_AR	0.821	0.740	0.721	0.975	0.719	0.515				0.944	0.643	0.548	
P91_HAZ	0.402	0.369	0.343	0.370	0.314	0.243				0.461	0.452	0.338	
P91_N	0.115	0.115	0.116	0.108	0.109	0.106				0.122	0.091	0.103	

Ungrounded Pipe samples data

set two: Nine measurements from un-ground area

Pipe short name P91_FF P91_HAZ_T

P91_HAZ_T P91_OT

P91 T

P91_N_T

P91_AR

P91_HAZ P91_N 60mm
A B C
10mm
30mm
310mm
110mm

Scan positions for 'unground' measurements

Scan positions for 'unground' measurements

Coercive Field data

Table 5. Coercive field (kA/m) for unground areas on pipe samples

				Measur	ement p	osition			
	A1	A2	А3	B1	B2	В3	C1	C2	C3
P91_FF	0.611	0.648	0.736	0.589	0.616	0.668	0.570	0.604	0.631
P91_HAZ_T	0.918	0.950	0.922	0.907	0.921	0.875	0.889	0.891	0.856
P91_OT	0.937	0.957	0.974	0.942	0.957	0.955	0.944	0.973	0.971
P91_T	0.961	1.003	0.989	0.946	0.968	0.963	0.946	0.964	0.972
P91_N_T	0.990	0.989	1.016	0.957	0.977	0.972	0.959	0.970	0.976
P91_AR	1.066	1.035	1.120	1.092	1.129	1.082	1.059	1.055	1.114
P91_HAZ	1.639	1.678	1.572	1.463	1.522	1.645	1.397	1.457	1.568
P91_N	2.081	2.071	2.114	1.959	1.942	1.960	1.949	1.922	1.891

Ungrounded Pipe samples data (continued)

Incremental permeability data

Table 7. Incremental permeability values for unground areas on pipe samples

				Measur	ement p	osition			
	A1	A2	A3	B1	B2	В3	C1	C2	C3
P91_FF	138.3	132.3	127.4	138.0	133.6	128.6	141.2	134.8	131.3
P91_HAZ_T	114.2	119.1	121.4	113.7	117.7	119.2	114.2	119.1	121.8
P91_OT	117.3	115.8	116.5	118.2	112.5	115.5	117.5	114.5	117.1
P91_T	115.7	114.2	113.5	114.5	112.8	112.3	112.7	112.1	111.7
P91_N_T	115.7	113.3	114.1	113.9	111.8	112.4	111.2	111.3	111.5
P91_AR	106.8	108.2	111.6	105.8	107.0	108.6	103.4	106.1	108.1
P91_HAZ	88.2	85.5	84.8	91.3	86.9	85.6	92.9	91.1	86.1
P91_N	76.7	76.9	78.1	77.0	76.2	77.1	75.5	75.1	77.7

MBN Data

Table 9. Peak MBN (mV) for unground areas on pipe samples

				Measur	ement p	osition			
	A1	A2	А3	B1	B2	В3	C1	C2	C3
P91_FF	0.507	0.473	0.528	0.461	0.490	0.572	0.446	0.459	0.533
P91_HAZ_T	0.413	0.432	0.432	0.363	0.402	0.382	0.370	0.367	0.354
P91_OT	0.463	0.384	0.376	0.464	0.446	0.430	0.447	0.404	0.318
P91_T	0.348	0.345	0.334	0.318	0.288	0.305	0.309	0.308	0.295
P91_N_T	0.314	0.300	0.301	0.314	0.305	0.301	0.288	0.290	0.293
P91_AR	0.237	0.366	0.453	0.252	0.332	0.328	0.236	0.267	0.311
P91_HAZ	0.446	0.449	0.427	0.394	0.399	0.395	0.401	0.416	0.388
P91_N	0.430	0.415	0.404	0.426	0.418	0.403	0.417	0.402	0.411

Pipe samples Results

Coercive Field results (Pipe)

- Increase in material hardness (Hv) plotted along x-axis results in increase in magnetic hardness (kA/m) plotted along y-axis. Also, coercive field is high for unground sample.
 - P.S.: Don't confuse 'thickness' with 'hardness'
- > P91FF, P91_HAZ_T, P91_AR, P91_HAZ, P91_N are easily distinguishable
- > P91 OT, P91 T, P91 N T are very close (not easily distinguishable)

Pipe samples Results (continued)

Incremental permeability results (Pipe):

- Increase in material hardness (Hv) plotted along x-axis results in decrease in the permeability of the material plotted along y-axis. Also, the ground sample has higher level of permeability.
 P.S.: Don't confuse 'thickness' with 'hardness'
- Sensitive to surface conditions

Pipe samples Results

MBN peak results (Pipe)

Figure 9. Plots of MBN peak amplitude extracted from MBN profiles measured on pipe sections; a) Measurements from unground area, b) Measurements from ground area

➤ Both the plots are highly scattered. On comparison, the graph of 9a is better than 9b (only if the last two points in 9a is disregarded).

Tube samples data Set - A

Here there is a mistake the Tube names are not consistent in the data. It has to be corrected

Tube short name

Figure 5. Measurement positions for tube samples

Table 10. Coercive field (kA/m) for identified tube samples

					Mea	sureme	nt posi	tion				
Sample	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
P91_FF	0.678	0.681	0.668	0.647	0.633	0.678	0.699	0.718	0.719	0.659	0.626	0.641
P91_HAZ_T	1.080	1.107	1.093	1.096	1.113	1.111	1.093	1.108	1.098	1.092	1.088	1.094
P91_OT	1.459	1.542	1.751	2.070	2.452	2.542	2.337	2.067	1.833	1.678	1.576	1.455
P91_T	1.074	1.100	1.101	1.112	1.112	1.091	1.071	1.131	1.279	1.296	1.155	1.051
P91_N_T	1.079	1.091	1.102	1.139	1.117	1.108	1.106	1.123	1.100	1.118	1.118	1.117
P91_AR	1.244	1.228	1.220	1.223	1.243	1.210	1.186	1.222	1.259	1.273	1.266	1.270
P91_HAZ	4.707	4.763	4.769	4.799	4.836	4.734	4.714	4.722	4.692	4.705	4.714	4.711
P91_N	4.405	4.460	4.476	4.466	4.525	4.559	4.546	4.525	4.493	4.479	4.509	4.499

Tube samples data Set A (continued)

Incremental permeability data

Table 11. Incremental permeability for identified tube samples

				,		,						
					Mea	sureme	ent posi	tion				
Sample	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
P91_FF	104.3	102.8	102.8	103.9	104.4	102.5	99.0	96.4	98.1	102.4	105.2	104.3
P91_HAZ_T	70.7	71.3	70.7	70.6	70.8	70.2	69.4	68.4	68.9	68.2	67.6	68.3
P91_OT	64.8	63.1	60.3	56.8	53.7	52.9	54.9	57.7	60.6	62.7	63.2	64.4
P91_T	66.9	67.3	66.8	68.0	69.0	68.1	67.6	67.6	66.3	65.7	65.5	66.0
P91_N_T	68.1	67.0	66.9	66.4	65.9	66.7	67.4	67.8	67.4	68.6	67.5	67.0
P91_AR	62.6	62.5	62.6	61.9	61.7	61.7	61.8	61.8	61.4	61.6	62.1	62.7
P91_HAZ	34.1	33.7	33.2	32.9	33.0	33.0	33.6	33.9	34.3	34.3	34.2	34.1
P91_N	33.8	33.5	33.5	33.2	32.8	33.0	33.0	33.1	33.5	33.7	33.6	33.3

Table 12. Peak MBN (mV) for identified tube samples

					Mea	sureme	nt posi	tion				
Sample	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
P91_FF	1.287	1.297	1.114	1.238	1.296	1.107	0.649	0.445	0.619	0.724	0.665	0.798
P91_HAZ_T	0.528	0.522	0.603	0.375	0.743	1.051	0.857	0.467	0.410	0.367	0.342	0.457
P91_OT	0.562	0.473	0.378	0.326	0.297	0.259	0.277	0.394	1.135	1.284	1.327	1.260
P91_T	0.564	0.426	0.460	0.677	1.104	0.632	0.493	0.541	0.464	0.467	0.738	0.814
P91_N_T	0.627	0.819	0.822	0.602	0.998	1.216	1.068	1.124	1.212	1.072	0.520	0.476
P91_AR	0.562	0.594	0.594	0.482	0.554	0.532	0.718	0.721	0.472	0.623	0.613	0.638
P91_HAZ	0.318	0.307	0.311	0.346	0.352	0.356	0.349	0.289	0.291	0.361	0.330	0.303
P91_N	0.720	0.674	0.676	0.691	0.597	0.496	0.527	0.499	0.541	0.586	0.569	0.612

Tube samples data Set - B

Coercive Field data

Table 13. Coercive field (kA/m) for unidentified tube samples

	_		-	_								
					Mea	sureme	nt posi	tion				
Sample	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
B1	1.092	1.093	1.113	1.106	1.092	1.076	1.085	1.121	1.114	1.100	1.107	1.100
B2	1.077	1.105	1.110	1.116	1.113	1.111	1.109	1.131	1.129	1.093	1.079	1.090
B3	1.074	1.087	1.062	1.058	1.062	1.099	1.100	1.079	1.080	1.102	1.086	1.064
B4	4.494	4.480	4.472	4.516	4.512	4.520	4.548	4.534	4.531	4.548	4.492	4.446
B5	1.424	1.433	1.458	1.453	1.454	1.413	1.411	1.425	1.437	1.412	1.442	1.421
B6	4.652	4.649	4.625	4.635	4.669	4.675	4.658	4.758	4.820	4.802	4.761	4.699
B7	0.651	0.621	0.653	0.734	0.762	0.782	0.707	0.620	0.607	0.647	0.663	0.671
B8	1.622	1.803	2.107	2.416	2.630	2.586	2.398	2.184	1.973	1.784	1.642	1.593

Incremental permeability data

Table 14. Incremental permeability for unidentified tube samples

		Measurement position											
Sample	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	
B1	69.4	69.6	69.6	69.7	69.2	68.8	68.2	67.6	67.1	66.8	67.2	67.5	
B2	68.0	67.8	67.3	66.4	65.5	65.2	65.2	65.7	66.0	66.5	67.1	67.0	
B3	69.4	69.5	69.3	69.3	68.9	68.4	68.4	68.1	67.9	67.5	67.3	67.7	
B4	33.5	33.4	33.6	33.4	33.2	32.8	32.6	32.4	32.4	32.5	32.7	33.0	
B5	64.3	64.3	64.0	63.6	63.9	64.9	65.8	66.6	66.9	66.5	65.7	65.0	
B6	34.9	34.9	35.2	34.9	34.6	34.2	33.6	33.1	32.8	32.8	33.3	33.9	
B7	104.7	104.5	100.6	92.7	90.2	91.4	98.2	104.7	106.7	104.8	103.8	103.3	
B8	62.3	59.7	56.2	53.2	51.8	52.3	54.1	56.6	59.0	60.9	62.2	62.4	

Tube samples data Set - B

MBN Data

Table 15. Peak MBN (mV) for unidentified tube samples

	Measurement position											
Sample	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
B1	0.717	0.490	0.320	0.370	0.697	0.712	0.435	0.351	0.461	0.485	0.459	0.543
B2	0.509	0.648	0.646	0.484	0.510	0.644	0.681	0.495	0.438	0.635	0.820	0.626
B3	0.623	0.433	0.579	0.574	0.462	0.408	0.660	0.977	0.718	0.430	0.493	0.782
B4	0.473	0.542	0.544	0.481	0.441	0.451	0.460	0.481	0.573	0.589	0.563	0.520
B5	0.561	0.558	0.514	0.480	0.484	0.532	0.550	0.544	0.623	0.581	0.515	0.503
В6	0.301	0.304	0.279	0.278	0.301	0.332	0.375	0.334	0.294	0.317	0.282	0.277
B7	0.652	0.702	0.672	0.602	0.643	0.640	0.546	0.550	0.613	0.553	0.577	0.573
B8	0.392	0.357	0.297	0.247	0.223	0.236	0.280	0.464	0.959	0.678	0.402	0.404

> Set B is unidentified tube dataset

Identified tube (Set A) samples Results

Table 3. Average coercive field and incremental permeability values from identified (set A) and unidentified (set B) tube samples. Columns for 'B' samples represent best guess for sample identification. Grey columns too close to identify with confidence

	Samples							
	T91_FF	T91_HAZ_T	T91_OT	T91_T	T91_N_T	T91_AR	T91_HAZ	T91_N
Coercive Field (kA/m)	0.671	1.098	1.810	1.131	1.110	1.237	4.739	4.495
Incremental Permeability	102.18	69.58	59.60	67.05	67.21	62.04	33.68	33.33
	B7	B1	B8	B3	B2	B 5	B6	B4
Coercive Field (kA/m)	0.676	1.099	2.062	1.079	1.1052	1.432	4.700	4.508
Incremental Permeability	100.48	68.40	57.55	66.47	68.47	65.12	34.01	32.97

Coercive Field results (Tube)

Figure 10. a) Plot of coercive field extracted from major loops measured on tube set A, b) Polar plot of coercive field from T91_OT, b) Polar plot of coercive field from T91_N

- Maximum Coercive field for tube is much greater than pipe samples.
- The skewed polar plot is due to uneven will thickness or uneven heat treatment

Identified tube (Set A) samples Results

Incremental permeability results (Tube):

Figure 11. Plot of incremental permeability extracted from minor loops measured on tube set A, b) Polar plot of incremental permeability from T91_OT, b) Polar plot of incremental permeability from T91_N

- Coercive field and incremental permeability are inversely related.
- The reduced skewedness in polar plot is due to lower measurement depth.

Source data

Table – 11 (Fig. 11 a, b) (For Set-A)

Identified tube samples Results

MBN peak results (Tube):

Figure 12. Plot of MBN peak amplitude measured on tube set A

- Greater scatter for soft samples.
- No correlation to hardness can be drawn.

Tube samples Results (Set A and B)

Coercive Field results (Tube)

- Fig:13 a) and 13 b) are largely comparable with only exception T91_OT and B8
- T91_OT and B8 are same tubes but different heat treatment

There is an error in '5th line of Pg No: 9 (just above Figure 13). The source data should be (Table 10 and Table 13). It is given as (Table 10 and Table 14)

Tube samples Results (Set A and B)

Incremental permeability results (Tube):

Source data

- ➤ Table 11 (Fig. 14b, 19b) (For identified tube)
- ➤ Table 14 (Fig. 14a, 19a) (For unidentified tube)

> Fig:14 a) and 14 b) having a good match

Tube samples Results (Set A and B)

MBN peak results (Tube):

Figure 15. Plots of MBN peak amplitude extracted from MBN profiles measured on tubes; a) Unidentified 'B' tubes as labelled in Table 3, b) Identified 'A' tubes

- Dependent on surface effects
- > Set- A has large areas of grinding
- ➤ Set B is untouched

Source data

➤ Table – 12(Fig. 15b)(For identified tubes)

Source data

➤ Table – 15 (Fig. 15a) (For unidentified tubes)

Mapping of Set – A and Set –B

Identification is not certain for the columns in grey

Figure 20. Polar plots of coercive field for identified tube samples

	Samples							
	T91_FF	T91_HAZ_T	T91_OT	T91_T	T91_N_T	T91_AR	T91_HAZ	T91_N
Coercive Field (kA/m)	0.671	1.098	1.810	1.131	1.110	1.237	4.739	4.495
Incremental Permeability	102.18	69.58	59.60	67.05	67.21	62.04	33.68	33.33
	B7	B1	B8	B3	B2	B5	B6	B4
Coercive Field (kA/m)	0.676	1.099	2.062	1.079	1.1052	1.432	4.700	4.508
Incremental Permeability	100.48	68.40	57.55	66.47	68.47	65.12	34.01	32.97

Figure 21. Polar plots of coercive field for unidentified tube samples

Mapping of Set – A and Set –B

Identification is not certain for the columns in grey

Figure 22. Polar plots of permeability for identified tube samples

	Samples							
	T91_FF	T91_HAZ_T	T91_OT	T91_T	T91_N_T	T91_AR	T91_HAZ	T91_N
Coercive Field (kA/m)	0.671	1.098	1.810	1.131	1.110	1.237	4.739	4.495
Incremental Permeability	102.18	69.58	59.60	67.05	67.21	62.04	33.68	33.33
	B7	B1	B8	B3	B2	B5	B6	B4
Coercive Field (kA/m)	0.676	1.099	2.062	1.079	1.1052	1.432	4.700	4.508
Incremental Permeability	100.48	68.40	57.55	66.47	68.47	65.12	34.01	32.97

Figure 23. Polar plots of permeability for unidentified tube samples

Suggesstions

- 1. Since we have a lot of tables, I believe that it would be nice to have a folder that contains the csv data files of all the 15 tables individually stored in a folder
- 2. The folder can be named as "MagneticMethods_Report"
- 3. An individual csv file is created for each table. Since we have 14 tables that contain data "MagneticMethods_Report" folder should contain 14 csv data files each named uniquely.
- 4. The program should source the read_csv from this location. In this way, in future if there is any change in any one table or any individual entity we can individually change that one file and the rest of the calculation remains the same. If not, we have to read from different sources

Suggesstions for csv file name

Table - 2 : mm_sample_hardness.csv	Table - 9 : mm_ugpipe_mbn.csv
Table - 3 : mm_tube_match.csv	Table - 10 : mm_idtube_cf.csv
Table - 4 : mm_gpipe_cf.csv	Table - 11 : mm_idtube_ip.csv
Table - 5 : mm_ugpipe_cf.csv	Table - 12 : mm_idtube_mbn.csv
Table - 6 : mm_gpipe_ip.csv	Table - 13 : mm_uidtube_cf.csv
Table - 7 : mm_ugpipe_ip.csv	Table - 14 : mm_uidtube_ip.csv
Table – 8 : mm_gpipe_mbn.csv	Table – 15 :mm_uidtube_mbn.csv

Do let me know if there are any correction required in this document