Ex: can use busing maps to show $\pi_1(QQ)$ non. abelian - ax6 f6 xa.

G. Munkres 60.5 (on 146)

Q: Let p; $(E, e_0) \rightarrow (B, b_0)$ covering map. How are $\pi_1(E)$ and $\pi_1(B)$ related? (Always assume E and B are path-connected).

Thm: | Pr: 17 (E, eo) -> 17 (B, 60) is an injective homomorphism.

Pf: if h is a loop at eo and Pa([h]) = id, then I path-hometryy H: IxI -> B for pot to the constant loop at bo. Its lift H: I = I - E stating at eo is then a path-homotopy from To to the contact loop, so [Ti] = id.

Hence, the evering PIE-1B gives a subgrap $H = Im(P_K) \subset \pi_1(B,b_0)$, with $\pi_1(E,e_0) \stackrel{iso}{\longrightarrow} H$ It turns out that:

- (1) The subgroup $H \subset \Pi_1(B,b_0)$ determines the overing p. (Munkres §79)
- (2) Assuming B is path connected and "sufficiently nice" ("semi-leatly singly connected"), For each subgroup H of TI, (B, bo) I wring p. E-B st. PuttilE1) = H. (§82, won't do)

Equade	me of Greins spaces;			
Def:	$p; E \rightarrow B$, $p'; E' \rightarrow B$ Greing $h; E \rightarrow E'$ sh. $p = p' \circ h$	gs. p and p' $E \xrightarrow{h} E'$ $P \xrightarrow{g} B'$	are <u>equivalent</u> if . Say h is an	I honeonorphism equivalence of curingo

(NB: $Vb \in B$, h give a bijection $p'(b) \cong p''(b)$ between the sheets of p and p'. By continuity, over a connected evally careed subset $U \subset B$ this looks like $p'(U) \cong U \times A \xrightarrow{id \times 6} U \times A' \cong p''(U)$. $6: A \to A'$ Lijection between sets of sheets).

· god: if two overings have same corrupting subgrape of TI_(B) then they are equivalent. For this we need a general lithing lemma.

Def: | A spec x is beally path-connected if $\forall x \in X, \forall U \ni x, \exists V \subset U$ path connected neighborhood of x.

4 From now on, assume p:E-B covering, E and B path-comected and locally path comected.

lifting lemma for loops:

Thou, $\|A\log f$ in (B,b_0) lifts to a loop in (E,e_0) iff $[F] \in P_*(\pi,(E,e_0)) \subset \pi_*(B,b_0)$ Pf_1 if the lift \widetilde{f} of f at e_0 is a loop in E, then $[f] = [p_0\widetilde{f}] = P_*([\widetilde{f}]) \in p[\pi_*(E))$.

if $[f] = P_*([\widetilde{g}])$ for some loop \widetilde{g} in (E,e_0) then $p_0\widetilde{g}$ is path-homotopiz to f. Lifting this path-homotopy to E, we get a path-homotopy in E between \widetilde{g} and the lift \widetilde{f} of f. Since \widetilde{g} is a loop, so is \widetilde{f} .

general little lenna:

Thus, with $f(y_0) = e_0$ iff $f_{\chi}(\pi_1(Y,y_0)) \subset P_{\chi}(\pi_1(\xi,e_0))$. If it exists, the lift is unique $f_{\chi}(\pi_1(Y,y_0)) = P_{\chi}(\pi_1(\xi,e_0))$.

If $f_{\chi}(\pi_1(Y,y_0)) = P_{\chi}(\pi_1(\xi,e_0))$.

If $f_{\chi}(\pi_1(Y,y_0)) = P_{\chi}(\pi_1(\xi,e_0))$.

If $f_{\chi}(\pi_1(Y,y_0)) = P_{\chi}(\pi_1(\xi,e_0))$.

· Conversely, assume the continon holds, and let $y_i \in Y_i$. Choose a path of from y_0 to y_1 in Y. lift fox; $I \to B$ to a path in E starting at e_0 .

Define $F(y_i) = W_i$ end point of this path.

(this is the only possibility for F(y,) if a continuous lift of exists, stace the unique lift of fox will then be Fox.)

Need to check if is well-defined and continuous!

. Well-defined? Let B be a different path in y from yo to y,

Then $\alpha * \overline{\beta}$ is a loop in $(9, 9_0)$ $f_{\sigma}(\alpha * \overline{\beta}) \text{ loop in } (B, b_0), \text{ reprocessing}$ $f_{\star}([\alpha * \overline{\beta}]) \in \text{In } f_{\star} \subset P_{\star}(\pi_{1}(E, e_{0}))$

so it lifts to a loop in E (by previous theorem).

So: $f \circ x$ lifts to a path from e_0 to $\widetilde{f}(y_i)$ as defined above, and $f \circ \beta$ lifts to a path from $\widetilde{f}(y_i)$ back to e_0 , hence $f \circ \beta$ lifts to a path from e_0 to $\widetilde{f}(y_i)$. Thus $\widetilde{f}(y_i)$ is integrable of the choice of path $y_0 \rightarrow y_i$.

• Continuity of \tilde{f} : enough to check on a neighborhood of y_1 .

Let $V\subset B$ be an every Greed obd. of $f(y_1)$, and using lead path-connectedness of y_2 .

Can find $U\subset f^{-1}(V)$ path connected neighborhood of y_1 in Y.

Let $W\subset \bar{p}^{-1}(V)\subset E$ be the slice containing $\tilde{f}(y_1)$; $p_1W=\pi$; $W \xrightarrow{\sim} V$ hornes.

For $y \in U$, $\exists p \land h$ g in U from y_1 by, and $\pi^{-1}\circ f \circ g$ is a lift of $f \circ g$ to $W \subset E$ starting at $\widetilde{f}(y_1)$. And so the lift of $f \circ (\alpha + g)$ to E starting at e_0 is the composition of $f \circ \alpha$ (from e_0 to $\widetilde{f}(y_1)$) and $\pi^{-1}\circ f \circ g$ from $\widetilde{f}(y_1) = \pi^{-1}(f(y_1))$ to $\pi^{-1}(f(y_1))$. Hence $\widetilde{f}(y) = \pi^{-1}(f(y_1))$.

So $\widetilde{f}_{|U} = \pi^{-1} \circ f_{|U}$ is continuous, and here \widetilde{f} is continuous. \square

* Now we can tell when two overings are equivalent, as long as all maps preserve ban points!

Thm: let $p: E \rightarrow B$, $p': E \rightarrow B$ bring maps with $p(e_0) = p'(e'_0) = b_0$.

There is an equivalence $h: E \xrightarrow{\sim} E'$ stock $h(e_0) = e'_0$ if and only if the subgroups $H = p_{\alpha}(\pi_i(E, e_0))$ and $H' = p'_{\alpha}(\pi_i(E', e'_0))$ are equal (the same subgroup of $\pi_i(B, b_0)$).

Moreover, if h exists it is unique.

 $\frac{\gamma_f}{|E|} \Rightarrow \text{ if } h: E \to E' \text{ is an equivalence with } h(e_0) = e'_0, \text{ then } h_*(n_i(E,e_0)) = \pi_i(E',e'_0).$ The conclusion then follows from po ha = P.

= assume H= H'. Then by the lithing lemma, I unique base point processing litts $E \xrightarrow{h} B$ $E' \xrightarrow{h'} B$ So $P' \circ h = P$ and $P \circ h' = P'$. Now, pohoh = poh = p, so hoh; E. = E is a litting E = B

But so is ide. By uniqueness of littice. But so is ide. By uniqueness of lithing, we get high = ide. Similarly hoh' = id_. So h is a homeomorphism of. p'oh = p, here an

equialence of overings. $b^{k}: S_{l} \to S_{l}$ (Pk) + π1(5', b) - π1(5', b) mult by k ⇒ H= k2CZ then are all the subgrays of Z, so every amedial overing of S' is equivaled to exactly one of these! $P_0: \mathbb{R} \to S^1$ $z \mapsto (c_0 \times s_0 \times s_0) \qquad (P_0)_* (\pi_1(\mathbb{R})) = \{0\}$

* What if we consider equivalences hiE -> E' that don't may eo to éo? Then the corresponding subgroups of TI, (B, to) are conjugate.

· I held, if we change the base point in a (path-converted) covering space P: E-1B... if eo, e, ∈ p'(bo), and ≈ is a pall from eo to e, recall

$$\pi_{1}(E,e_{0}) \xrightarrow{\sim} \pi_{1}(E,e_{1})$$
[h] $\longmapsto [x'+h+x]$

Then & = pox is a loop in (B, bo), so wherever $[poh] = p_{\epsilon}(Lh]) \in H_{\alpha} = p_{\epsilon}(\pi_{\epsilon}(\xi, e_{\delta}))$

So: [x] Ho [x] C H1, and similarly in the wex dischon [x] H, [x] C Ho, hence =

· Conversely, if Ho, H, are conjugate subgroups of $\pi_1(B,b_0)$, ie. $\exists [a] st. H_1 = [a]^{-1} H_0[a]$ and Ho = Po (TI (E, eo)), then let x = lift of x to a path in E starting at eo, and let $e_1 = \tilde{\alpha}(1)$, then $H_1 = P_4(\pi_1(E, e_1))$.

=> Theorem: | p:E -> B, p'; E'-> B covering maps, p(e0) = p'(e'0) = bo. Then p and p' are equivalent as the subgroups $H = P_{\alpha}(\pi_{1}(E,e_{0}))$, $H' = P_{\alpha}(\pi_{1}(E',e_{0}))$ of A(B, b) are conjugate.

Del: If PiE B weing and Eo is sirrly connected, say Eo is a universal cheing of B.

Note: this correpords to the trivial subgroup Profit; (E) = {1} C TI(B); might up to equ' by the above.

Ex: p: R- S'
pxp: R2- S'xs'= horus

· Thm: | P; E → B universal covering, p'; E' → B any path-connected overing them

∃ covering map q; E → E' st. p' · q = P; and qo is university of E'.

90 is combined by lifting: $907 \stackrel{E'}{\downarrow}p'$ ($\exists since p_0(\pi_i(E)) = \{1\} \subset p'_+(\pi_i(E'))$. $E_0 \xrightarrow{P_0} B$ Lean show it's a evering map as well.

So, in fact, if B has a universal overing, all other coverings can then be obtained as quotients!

· Some space have no univeral cring!

 \underline{Ex} ; "Havairan earings" = $\bigcup_{n \ge 1} C_n$ circles of radius $\frac{1}{n}$ casted at $(\frac{1}{n}, 0)$ of C_2 of inside \mathbb{R}^2

Any covering space must evenly our a neighborhood of the origin, which prevents it from being simply connected. (for a suffly large, loop arend Ca lists to a loop).

. If me avoids such pathological examples - assuming B is (seni) locally simply smatted, can build unincover as space of pairs (b, 8) where \b \in B \ \8 = homotopy class of pall bo = b

This has a preferred topology for which any simply ann'd ubd UDB is everly covered: if b'EU, adding a path bash' inside U or its invesse gives a preferred bijection { http: clases of paths 60-06} (http://clases & paths 6-06) independent of choice of path 6-06 inside U since U simply corrected).