Real Numbers

Nithin

Maveric Systems

January 6, 2025

Integers

- The set of integers is denoted by \mathbb{Z} .
- Integers include:

$$\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots$$

- Formally, $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$
- Common properties:
 - Z is infinite and unbounded in both the negative and positive directions.
 - Closed under addition, subtraction, and multiplication:

$$\forall a, b \in \mathbb{Z}, \quad a \pm b \in \mathbb{Z}, \quad a \cdot b \in \mathbb{Z}.$$

• The quotient of any two integers is not necessarily an integer. So we need to extend arithmetic to **rational numbers**

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Rational Numbers

- The set of rational numbers is denoted by Q.
- Definition:

$$\mathbb{Q} = \left\{ \frac{p}{q} \,\middle|\, p \in \mathbb{Z}, \; q \in \mathbb{Z}, \; q \neq 0 \right\}.$$

- Every integer is also a rational number (e.g., $5 = \frac{5}{1}$).
- Examples:

$$\frac{1}{2}$$
, $-\frac{3}{4}$, 0, 7, $\frac{11}{5}$,...

- Properties:
 - Closed under addition, subtraction, multiplication, and division (except division by zero).
 - Densely packed on the number line: between any two rationals, there is another rational.

Interesting Facts

- Why division by zero is prohibited?
 - Division is inverse of multiplication in the sense

$$\frac{m}{n} \cdot n = m$$

- if n = 0 and m = 1, we get $\frac{1}{0} \cdot 0 = 1$ which is nonsensical as any number multiplied by zero is zero
- Rational numbers suffice for all actual physical measurements like weight, height and length
- But Geometry, Algebra and Calculus force us to consider real numbers

A Real Number Line

$$-3 \quad -\frac{5}{2} \quad -2 \quad -\frac{115}{76} \quad -1 \quad -\frac{1}{2} \quad 0 \quad \frac{1}{3} \quad \frac{2}{3} \quad 1 \qquad \frac{12}{7} \quad 2 \quad \frac{257}{101} \quad 3$$

Some rational numbers on the real line.

• if n is a positive integer then $\frac{1}{n}$ is to the right of 0 by the length obtained by dividing the segment from 1to0 in to n segments of equal length

Is every Real Number a Rational?

• $c^2 = a^2 + b^2$. If a = 1, b = 1 then $c^2 = 2$. Then what rational number is c