PROPOPSAL TO PGPEC FOR INTRODUCING A NEW PG ELECTIVE SUBJECT 'ROBUST CONTROL'

Course Content	Lecture
	Hour
Overview and Preliminaries: Overview on Robust control, Basics from Matrix Algebra,	3
Norms of signals and systems (L_2, H_2, L_\infinity, H_\infinity)	
Convex Optimization: Convexity, Convex sets, Affine function, Linear matrix inequality	3
(LMI), Projection lemma, S-procedure, Semi-definite programming, Feasibility	
problem, Minimization problem, Generalized eigenvalue problem, Programming in	
MATLAB.	
System properties and stability: Well-posedness, Causality, Passivity, Bounded-	3
realness, Positive-realness, Internal stability, Bounded-Input-Bounded-Output	
stability, Finite-gain stability.	
Robust performance and Linear Fractional Transformation: Robust performance and	4
limitations due to physical constraints, Linear Fractional Transformation (LFT),	
Uncertainties, Riccati equation and inequality.	
Useful Lemmas and Theorems in Robust Control: KYP Lemma, Bounded-real lemma,	3
Positive-real lemma, Small-gain theorem, Passivity theorem.	
H-infinity controller synthesis: Generalized H-infinity controller synthesis problem,	4
Controller design via LMI approach.	
H-infinity Loopshaping Design: Four-block problem, Loopshaping concept, Weight	4
selection, Controller synthesis via LMI.	
Mu Analysis and Synthesis: Robust stability and performance problems, Structured	3
singular value, D-scaling problem, D-K Iteration.	
Gap metric, IQC, Robust adaptive control, Iterative identification and robust controller	4
redesign technique.	
Conclusions and Feedback	1