Расположение корней квадратного трехчлена на числовой оси

Пусть квадратный трехчлен $f(x) = ax^2 + bx + c$ имеет корни x_1 и x_2 , $x_0 = -\frac{b}{2a}$ — абсцисса вершины параболы $y = ax^2 + bx + c$, M и K — заданные числа.

at a

$$X_0 = \frac{x_1 + x_2}{2} = -\frac{L}{2\alpha}$$

Справедливы следующие утверждения, связанные с расположением точек x_1 и x_2 на числовой оси.

1°. Для того чтобы оба корня квадратного трехчлена были меньше M ($x_1 < M$, $x_2 < M$), необходимо и достаточно выполнение условий

$$\begin{cases}
D = b^2 - 4ac \geqslant 0, \\
x_0 = -\frac{b}{2a} < M, \\
\underline{af(M)} > 0,
\end{cases}$$
(14)

где $f(M) = aM^2 + bM + c$ — значение трехилена при x = M (рис. 7 и 8).

B частности, $x_1 < 0$, $x_2 < 0$ (M = 0) тогда и только тогда, когда выполняются условия

$$\begin{cases}
b^2 - 4ac \geqslant 0, \\
ab > 0, \\
ac > 0.
\end{cases}$$
(15)

 2° . Для того чтобы оба корня квадратного трехчлена были больше M ($x_1 > M$, $x_2 > M$), необходимо и достаточно выполнение условий

 $\begin{cases} b^2 - 4ac \ge 0 \\ -\frac{b}{} > M. \end{cases}$

(16)

S.I.D

 $\int_{a}^{2a} af(M) > 0$

B частности, $x_1>0$, $x_2>0$ тогда и только тогда, когда выполняются условия

$$\begin{cases}
b^2 - 4ac \geqslant 0, \\
ab < 0, \\
ac > 0.
\end{cases}$$
(17)

 3° . Для того чтобы число M было расположено между корнями квадратного трехчлена $(x_1 < M < x_2)$, необходимо и достаточно выполнение условия

$$af(M) < 0 (18)$$

(puc. 11 u 12).

4°. Для того чтобы оба корня квадратного трехчлена лежали в интервале (K; M), т. е. $K < x_1 < M$, $K < x_2 < M$, необходимо и достаточно выполнение условий

Entire yellowith
$$\begin{cases} b^2 - 4ac \geqslant 0, \\ K < -\frac{b}{2a} < M, \\ af(M) > 0, \\ af(K) > 0 \end{cases} \iff 2 + (M) \cdot f(K) > 0$$
 : \Rightarrow

Peweltur:
$$\begin{cases} D>0 & a=2-1 \\ ab<0 \\ c=2+3 \end{cases}$$

$$D=(-2x)^2+4(1-2)(t+3)$$

$$\begin{cases} 4x^2+4(2-2x-2^2)>0 & 4x^2-8x+12>0 \\ -2x(x-1)<0 & = 1 \end{cases}$$

$$(x-1)(x+3)>0 & = 1 \end{cases}$$

$$\begin{cases} 2-1 > 0 \\ 2-1 > 0 \end{cases}$$

$$\begin{cases} 2-1 > 0 \\ 2-1 > 0 \end{cases}$$

$$\begin{cases} 2-1 >$$

Пример Найти все значения r, при которых квадратный трехчлен

$$f(x) = rx^2 - (r+1)x + 2$$

имеет действительные корни x_1 и x_2 такие, что $-1 < x_1 < 1$, $-1 < x_2 < 1$.

Пример При каких значениях параметра a сумма квадратов корней уравнения

$$x^2 + 2ax + 2a^2 + 4a + 3 = 0$$

является наибольшей? Чему равна эта сумма?