(note i lies inside () $\frac{e^{iz}}{z} = 2\pi i \cdot e^{-1} = 2\pi i$ $\frac{(05Z)}{Z^{3}+9Z} = \frac{(05Z)}{Z \cdot (z^{2}+9)} = \frac{(05Z)}{Z \cdot (z^{2}-3;)(z+3;)}$ 4: 140 0 is inside (, ±3; one autside (. -(-i **1**-i $\frac{1}{2^{3}+9z} = \frac{(03z)}{z^{3}+9} = \frac{1}{2} \frac{(z)}{z}$ where f: U -> C (x diff'ble, U = () {3ii-3is < < U and (inside of () < U $(IF = 1) \quad \underline{1} \quad (osz \quad dz = \underline{1} \quad f(z) \quad dz$ $\overline{211}; \quad \overline{23}_{+}q_{z} \quad \overline{211}; \quad \overline{z}$ $= \frac{1}{4(0)} = \frac{\cos(0)}{0^2 + 9} = \frac{1}{9}$ $=1 \qquad \left(\begin{array}{c} \cos z & dz & = z\pi i / \\ z^{3} + 9z & 1 \end{array} \right)$ $f(x) = \frac{1}{2\pi} \left(\begin{array}{c} 2\pi \\ 6(x + re^{it}) \end{array} \right) dt \qquad GMVT.$ $f(z)=z^{\Lambda}, \quad x=0.$ LHS = $f(0) = 0^{\circ} = 0$.

RHS = $\frac{1}{2\pi} (re^{it})^{\circ} df$ = 1 (27 r. eint df = In (sin at df + i (sin at df)

$$= \frac{\Gamma^{\Lambda}}{2\Pi} \left(\left[\frac{1}{\Lambda} \lambda \Lambda \Lambda + \frac{1}{3} \right]^{2\pi} + i \left[\frac{1}{\Lambda} (es \Lambda + \frac{1}{3})^{2\pi} \right] \right)$$

$$= \frac{\Gamma^{\Lambda}}{2\Pi} \left(\left[0 + i \cdot 0 \right] \right) = 0.$$

$$= \frac{\Gamma^{\Lambda}}{2\Pi} \left(0 + i \cdot 0 \right) = 0.$$

$$= \frac{\Gamma^{\Lambda}}{2\Pi} \left(0 + i \cdot 0 \right) = 0.$$

$$= \frac{\Gamma^{\Lambda}}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Gamma^{\Lambda}}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Gamma^{\Lambda}}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda}{2\Pi} \left(1 + i \cdot 0 \right) = 0.$$

$$= \frac{\Lambda$$

c.
$$\frac{3^2u}{4x^2} = 2$$
 $\frac{3^2u}{4y^2} = -2$
 $\frac{3^2u}{4x^2} = -2$

8.		
	-K O R	
	Let C be semicitarlar contant u/ cafer 0 A radius R as sharn;	
	origital ccw.	
	$\int_{C} \frac{1}{z^{2}-7z+5} dz = \int_{R}^{R} \frac{1}{x^{2}-7x+5} dx + \int_{C}^{R} \frac{1}{z^{2}-7z+5} dz$	1.
	where (1 = G-R, R] is the straight part of C & (2 is the curred	port.
		•
	First, observe lin $\frac{1}{z} dz' = 0 :-$	
	K-> or)(5 55-52+2	
	$\left \left(\frac{1}{2^{2} z^{2} + 5} \right) \right \leq \left \log h \left(\left(\frac{1}{2} \right) \cdot \frac{1}{R^{2} + 2R - 5} \right \leq \left \ln g h \left(\frac{1}{2} \right) \cdot \frac{1}{R^{2} + 2R - 5} \right $	
	$= \overline{R}$	<u>y</u>
	R ² -2R-5	
	22-22+5 122 - 12z-51 122 -151 182-2	R-S)
	$= \frac{1}{\rho^2 - 2}$	R-5)
	for 121=R & R suff. large.	1, 2)
	And lin TIR = lin TIR = U	
		= 0.
	numerative d demander	
	by R2	
	-: (_1 dz -10 as R-1 d).	
)(2 ZZZZ+)	

Now Ross of t gives $\int_{-\infty}^{\infty} \frac{1}{x^2 - 2x + 5} dx = \frac{1}{R} \int_{C} \frac{1}{z^2 - 2z + 5} dz.$ Finally, 1 = 1 = A + B $z^{2}-2z+5 = (2-(1-2:))(z-(1-2:)) = A + B$ (Solving ===2=2=5=0 using quadratiz formula to final roots 1=2i) some A, B & C 1= A· (z- (1=2:)) + B· (z-(1+2:)) $0.z + 1 = (A+B) \cdot z - (A \cdot (1-2) + B \cdot (1+2))$ =) A - B = 0 , B = -A $A \cdot (1-2:) + R \cdot (1+2:) = -1$ $A \cdot \lceil (1-2i) - (1+2i) \rceil = -1$ $A \cdot (-4;) = -1$ $A = \frac{1}{4}; = \frac{-1}{4};$ $B = -A = \frac{1}{4};$ $\frac{1}{2^{2}z_{z+5}} dz = \frac{1}{1} \frac{1}{1} \left(\frac{-1}{z-1} + \frac{1}{1} \right) dz$ $= \frac{1}{4} \cdot \left(-2\pi \cdot + 0\right)$ 1-2: inside (1-2i antisde $C = -2\pi/3^2 = \pi/2$ (R suff. (arge) $\int_{-\infty}^{\infty} \frac{1}{x^2 - 2x + 5} dx = T$ f: C-> C cx diffle f(z)=x when |z|=R 9 Let BEC, IBI<R. Let Che cirde, cater U, radius P, avierted con Then f(B) = 1 (f(Z) $dZ = \frac{1}{2\pi i}$ (Z - B)

$$=\frac{\alpha}{2\pi i}\int_{C}\frac{1}{z-\overline{p}}dz=\frac{\alpha}{2\pi i}\cdot 2\pi i=\alpha.$$

B inside C.

i.e. $f(z) = \kappa$ for |z| < R.

More generally, the CIF shows that a complex diffble function is determined inside C by its values on C.

-