Set!

- Unlike ML, Racket really has assignment statements
 - But used only-when-really-appropriate!

```
(set! x e)
```

- For the x in the current environment, subsequent lookups of x get the result of evaluating expression e
 - Any code using this x will be affected
 - Like x = e in Java, C, Python, etc.
- Once you have side-effects, sequences are useful:

```
(begin e1 e2 ... en)
```

Example

Example uses **set!** at top-level; mutating local variables is similar

```
(define b 3)
(define f (lambda (x) (* 1 (+ x b))))
(define c (+ b 4)); 7
(set! b 5)
(define z (f 4)); 9
(define w c); 7
```

Not much new here:

- Environment for closure determined when function is defined,
 but body is evaluated when function is called
- Once an expression produces a value, it is irrelevant how the value was produced

Top-level

- Mutating top-level definitions is particularly problematic
 - What if any code could do set! on anything?
 - How could we defend against this?
- A general principle: If something you need not to change might change, make a local copy of it. Example:

```
(define b 3)
(define f
  (let ([b b])
        (lambda (x) (* 1 (+ x b)))))
```

Could use a different name for local copy but do not need to

But wait...

- Simple elegant language design:
 - Primitives like + and * are just predefined variables bound to functions
 - But maybe that means they are mutable
 - Example continued:

 Even that won't work if f uses other functions that use things that might get mutated – all functions would need to copy everything mutable they used

No such madness

In Racket, you do not have to program like this

- Each file is a module
- If a module does not use set! on a top-level variable, then
 Racket makes it constant and forbids set! outside the module
- Primitives like +, *, and cons are in a module that does not mutate them

Showed you this for the *concept* of copying to defend against mutation

- Easier defense: Do not allow mutation
- Mutable top-level bindings a highly dubious idea

The truth about cons

cons just makes a pair

- Often called a cons cell
- By convention and standard library, lists are nested pairs that eventually end with null

```
(define pr (cons 1 (cons #t "hi"))); '(1 #t . "hi")
(define lst (cons 1 (cons #t (cons "hi" null))))
(define hi (cdr (cdr pr)))
(define hi-again (car (cdr (cdr lst))))
(define hi-another (caddr lst))
(define no (list? pr))
(define yes (pair? pr))
(define of-course (and (list? lst) (pair? lst)))
```

Passing an *improper list* to functions like **length** is a run-time error

The truth about cons

So why allow improper lists?

- Pairs are useful
- Without static types, why distinguish (e1,e2) and e1::e2

Style:

- Use proper lists for collections of unknown size
- But feel free to use cons to build a pair
 - Though structs (like records) may be better

Built-in primitives:

- list? returns true for proper lists, including the empty list
- pair? returns true for things made by cons
 - All improper and proper lists except the empty list

cons cells are immutable

What if you wanted to mutate the *contents* of a cons cell?

- In Racket you cannot (major change from Scheme)
- This is good
 - List-aliasing irrelevant
 - Implementation can make list? fast since listness is determined when cons cell is created

Set! does not change list contents

This does *not* mutate the contents of a cons cell:

```
(define x (cons 14 null))
(define y x)
(set! x (cons 42 null))
(define fourteen (car y))
```

- Like Java's x = new Cons(42, null), not x.car = 42

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them soon), Racket provides them too:

- mcons
- mcar
- mcdr
- mpair?
- set-mcar!
- set-mcdr!

Run-time error to use mcar on a cons cell or car on an mcons cell

New feature

```
(struct foo (bar baz quux) #:transparent)
```

Defines a new kind of thing and introduces several new functions:

- (foo e1 e2 e3) returns "a foo" with bar, baz, quux fields holding results of evaluating e1, e2, and e3
- (foo? e) evaluates e and returns #t if and only if the result is something that was made with the foo function
- (foo-bar e) evaluates e. If result was made with the foo function, return the contents of the bar field, else an error
- (foo-baz e) evaluates e. If result was made with the foo function, return the contents of the baz field, else an error
- (foo-quux e) evaluates e. If result was made with the foo function, return the contents of the quux field, else an error

An idiom

```
(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)
```

For "datatypes" like exp, create one struct for each "kind of exp"

- structs are like ML constructors!
- But provide constructor, tester, and extractor functions
 - Instead of patterns
 - E.g., const, const?, const-int
- Dynamic typing means "these are the kinds of exp" is "in comments" rather than a type system
- Dynamic typing means "types" of fields are also "in comments"

All we need

These structs are all we need to:

Build trees representing expressions, e.g.,

Build our eval-exp function (see code):

Attributes

- #:transparent is an optional attribute on struct definitions
 - For us, prints struct values in the REPL rather than hiding them, which is convenient for debugging homework
- #:mutable is another optional attribute on struct definitions
 - Provides more functions, for example:

```
(struct card (suit rank) #:transparent #:mutable)
; also defines set-card-suit!, set-card-rank!
```

- Can decide if each struct supports mutation, with usual advantages and disadvantages
 - As expected, we will avoid this attribute
- mcons is just a predefined mutable struct

The key difference

```
(struct add (e1 e2) #:transparent)
```

- The result of calling (add x y) is not a list
 - And there is no list for which add? returns #t
- struct makes a new kind of thing: extending Racket with a new kind of data
- So calling car, cdr, or mult-e1 on "an add" is a run-time error

Struct is special

Often we end up learning that some convenient feature could be coded up with other features

Not so with struct definitions:

- A function cannot introduce multiple bindings
- Neither functions nor macros can create a new kind of data
 - Result of constructor function returns #f for every other tester function: number?, pair?, other structs' tester functions, etc.

Rest of implementation

Interpreter or compiler

So "rest of implementation" takes the abstract syntax tree (AST) and "runs the program" to produce a result

Fundamentally, two approaches to implement a PL B:

- Write an interpreter in another language A
 - Better names: evaluator, executor
 - Take a program in B and produce an answer (in B)
- Write a compiler in another language A to a third language C
 - Better name: translator
 - Translation must preserve meaning (equivalence)

We call A the metalanguage

Crucial to keep A and B straight

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options

But in modern practice have both and multiple layers

A plausible example:

- Java compiler to bytecode intermediate language
- Have an interpreter for bytecode (itself in binary), but compile frequent functions to binary at run-time
- The chip is itself an interpreter for binary
 - Well, except these days the x86 has a translator in hardware to more primitive micro-operations it then executes

Racket uses a similar mix

Sermon

Interpreter versus compiler versus combinations is about a particular language **implementation**, not the language **definition**

So there is no such thing as a "compiled language" or an "interpreted language"

Programs cannot "see" how the implementation works

Unfortunately, you often hear such phrases

- "C is faster because it's compiled and LISP is interpreted"
- This is nonsense; politely correct people
- (Admittedly, languages with "eval" must "ship with some implementation of the language" in each program)

Interpreter or translater

Skipping parsing

- If implementing PL B in PL A, we can skip parsing
 - Have B programmers write ASTs directly in PL A
 - Not so bad with ML constructors or Racket structs
 - Embeds B programs as trees in A


```
; define B's abstract syntax
(struct call ...)
(struct function ...)
(struct var ...)
...
```

Already did an example!

- Let the metalanguage *A* = Racket
- Let the language-implemented *B* = "*Arithmetic Language*"
- Arithmetic programs written with calls to Racket constructors
- The interpreter is eval-exp

What we know

- Define (abstract) syntax of language B with Racket structs
 - B called MUPL in homework
- Write B programs directly in Racket via constructors
- Implement interpreter for B as a (recursive) Racket function

Now, a subtle-but-important distinction:

- Interpreter can assume input is a "legal AST for B"
 - Okay to give wrong answer or inscrutable error otherwise
- Interpreter must check that recursive results are the right kind of value
 - Give a good error message otherwise