SI Dimensions of Physical Quantities listed by Category

compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy 20022. Stan's Library, ISSN 2421-1230, Vol.I. First release February 28, 2005. Permalink via DOI: 10.3247/SL1Phys06.004

ALPHABETIC LIST | SI Units | Footnotes

PHYSICS and MATH constants

Physics BOOKS | Science LINKS | Stan's HUB

You can also download a PDF version of this document for off-line use. But keep coming back, the list is growing!

- · Basic SI quantities
- · Quantities related only to time
- · Matter distribution and transport
- Thermodynamics
- Electromagnetism
- · Chemistry and physical chemistry
- · Gravitation, astronomy, cosmology
- · Radiation and radioactivity
- Informatics

- Universal dimensionless quantities
- Quantities related only to space
- Mechanics and hydrodynamics
- Thermodynamic properties of matter
- · Electromagnetic properties of matter
- · Chemico-physical properties of elements
- Optics
- · Radiation properties of matter
- · Economy and finance

- Operators
- · Propagation through space and time
- · Mechanical properties of matter
- · Thermal properties of devices
- Electric properties of devices
- · Chemico-physical properties of matter
- · Optical properties of matter
- Notes
- References and Links

Dimension	Alternatives	Root definition and Notes			
Basic SI quantities					
m	m	meter			
kg	kg	kilogram			
s	s	second			
А	A	ampere			
К	K	kelvin			
mol	mol	mole			
cd	cd	candle			
1	rad	radian			
1	sr	steradian			
1		This covers all kinds of enumerations			
	m kg s A K mol	m m kg kg s s s A A K K mol mol cd cd cd			

Probability of an event	1		Real number in a dimensionless interval [0,1]
Ratio of commensurable quantities	1		Q1/Q2, with Q1 and Q2 having the same dimension
Relative variation	1		ΔQ/Q, for any quantity Q
Logarithmic ratio log _b (A/A') in any base b	1		Applicable to any ratio of commensurable quantities
Logarithmic scale differential Relative differential	1		d{In(Q)} = dQ/Q, for any quantity Q
Pseudo-dimensional quantities:		•	•
Phase Phase angle	1	rad	φ typically in exp(i(ωt+φ))
Logarithmic ratio Log(P/P')/10	1	dB	decibel. Uses base-10 logarithm. Applies to power P
Logarithmic ratio Log(X/X')/20	1	dB	decibel. Uses base-10 logarithm. Applies to amplitudes X
Gain or Loss of a device	1	usually in dB	[Output]/[Input], provided they are commensurable quantities
Attenuation Amplification (generic)	1	usually in dB	[Quantity(p)]/[Quantity(p')], with p being some parameter
Logarithmic ratio In(A/A')	1	Np	Neper. Uses natural logarithm
Logarithmic scale probability density	1	1/Np	[Probability]/[Natural-logarithmic ratio]
Operators			
Derivative with respect to time	s ⁻¹		d/dt, ∂/∂t
Derivative with respect to a length	m ⁻¹		d/dr , $\partial/\partial r$, $r = x y z$
Nabla(∇) div grad rot curl	m ⁻¹		Any derivative-like construct with respect to a distance
Laplace operator Laplacian	m ⁻²		$\nabla^2 = \partial^2/\partial \mathbf{x}^2 + \partial^2/\partial \mathbf{y}^2 + \partial^2/\partial \mathbf{z}^2$
D'Alembert operator D'Alembertian	m ⁻²		$(1/c^2)\partial^2/\partial t^2 - \partial^2/\partial x^2 - \partial^2/\partial y^2 - \partial^2/\partial z^2$
Multiple derivatives with respect to time	s ^{-p}		d^p/dt^p , $\partial^p/\partial t^p$; for p = 1,2,3,
Multiple derivatives with respect to a length	m ^{-p}		$d^p/d\mathbf{r}^p$, $\partial^p/\partial\mathbf{r}^p$; for p = 1,2,3,, r = x y z
Quantities related only to time			
Time Duration	s	s	second
Half life	s		of a non-conservative / decaying quantity
Settling time	s	typically dB/s	Used to describe transient phenomena
Relaxation time	S		Used for returns to equilibria
Activity Frequency of events	s ⁻¹		[Counts]/[Time]
Count rate Expectation frequency	s ⁻¹		[Counts]/[Time]
Relative growth rate	s ⁻¹		[Relative variation]/[Time]

		•	, , ,
Relative evolution rate Log-scale evolution rate	s ⁻¹		$d\{ln(Q)\}/dt = (dQ/dt)/Q$
Settling rate	s ⁻¹	typically dB/s	[Ratio]/[ΔTime]. Used for transient phenomena
Relaxation rate	s ⁻¹		1/[Relaxation time]
Frequency of waves	s ⁻¹	Hz	hertz
Phase drift rate	s ⁻¹	rad.s ⁻¹	[Phase angle]/[Time]
Angular velocity / speed	s ⁻¹	rad.s ⁻¹	[Plane angle]/[Time]
Frequency drift rate	s ⁻²	Hz.s ⁻¹	[ΔFrequency]/[Time]. Applicable to waves
Angular acceleration / deceleration	s ⁻²	rad.s ⁻²	[ΔAngularVelocity]/[Time]
Quantities related only to space			
Position vector	m		in all Euclidean n-dimensional spaces
Length Distance	m	m	meter
Perimeter Circumference Radius	m		
Thickness	m		usually referred to planar structures
Wavelength	m		[Wave velocity]/[Frequency]
Wavenumber	m ⁻¹		[Number of waves]/[Distance]
K-space vector Reciprocal space position	m ⁻¹		
Curvature radius	m		of a line in plane/space or surface in space
Curvature	m ⁻¹		1/[Curvature radius]
Convergence	m ⁻¹	dioptry	used in optics, but not only
Attenuation / amplification over a distance	m ⁻¹	dB/m	[Attenuation]/[Distance]. Mostly in acoustic and electronics
Extinction coefficient	m ⁻¹	dB/m	[Ratio]/m. Used mostly for radiation
Propagation / transmission loss	m ⁻¹	dB/m	[Ratio]/m. Generic, usable for any quantity
Area Cross section	m^2		[Distance]*[Distance]
Surface element Surface area	m ²		[Distance]*[Distance]. Applicable to 3D bodies
Volume element Volume	m^3		[Area]*[Distance]
Propagation through space and time			
Velocity Speed	m.s ⁻¹		[Distance]/[Time]
Acceleration Deceleration	m.s ⁻²		[ΔVelocity]/[ΔTime]

	=	,	, - 3 ,
Drift speed	m.s ⁻¹		Steady-state speed of an object
Surface / area growth rate	m ² .s ⁻¹		[ΔArea]/[Time]
Volume growth rate	m ³ .s ⁻¹		[ΔVolume]/[Time]. For example, of a crystal
Volume flow	m ³ .s ⁻¹		[Volume]/[Time]. For example, through a device
Matter distribution and transport			
Particle density	m ⁻³		[Count]/[Volume]. Obsolete: number density
Mass	kg	kg	kilogram
Mass production rate	kg.s ⁻¹		[ΔMass]/[Time]
Mass density Specific density	kg.m ⁻³		[Mass]/[Volume]
Mass density gradient Specific density gradient	kg.m ⁻⁴		[Mass density]/[Distance]
Specific volume	m ³ .kg ⁻¹		[Volume]/[Mass]
Concentration ratio by volume	1	Dimensionless	[Partial volume]/[Total volume]
Concentration ratio by mass	1	Dimensionless	[Partial mass]/[Total mass]. Not by weight: obsolete)
Mass flow (total)	kg.s ⁻¹		[ΔMass]/[Time]. For example, through a device
Diffusion coefficient	m ² .s ⁻¹		[Distance ²]/[Time]
Molar distribution and transport quantities:		•	
Particle count, molar	mol ⁻¹		[Count]/[Mol]. For example, the Avogadro constant
Molar production rate	mol.s ⁻¹		[ΔQuantity]/[Time]
Molar mass	kg.mol ⁻¹		[Mass]/[Quantity]
Molar volume	m ³ .mol ⁻¹		[Volume]/[Quantity]
Molar density Density of substance	m ⁻³ .mol		[Quantity]/[Volume]
Molarity Concentration	m ⁻³ .mol		[Quantity]/[Volume]. Same as molar density
Molarity gradient Concentration gradient	m ⁻⁴ .mol		[Molarity]/[Distance]
Molar concentration ratio	1	Dimensionless	[Partial quantity]/[Total quantity]
Molality (intended as concentration)	kg ⁻¹ .mol	mol/kg	[Quantity]/[Mass]. Obsolete
Katalytic activity	mol.s ⁻¹	katal	[ΔQuantity]/[Time]
Mechanics and hydrodynamics			
Force	kg.m.s ⁻²	N	newton. [Mass]*[Acceleration]
Moment of motion	kg.m.s ⁻¹		[Mass]*[Velocity], [Mass flow]*[Distance]

Impulse	kg.m.s ⁻¹		[ΔMoment of motion], [Force]*[ΔTime], [Mass]*[ΔVelocity]
Moment of force Torque	kg.m ² .s ⁻²	N.m	[Force]*[Distance]. Like energy
Couple	kg.m ² .s ⁻²	N.m	2*[Force]*[Distance] for two non-aligned opposing forces
Pressure	kg.m ⁻¹ .s ⁻²	N.m ⁻² , Pa	pascal. [Force]/[Area]
Pressure gradient	kg.m ⁻² .s ⁻²	N.m ⁻³ , Pa/m	[Pressure]/[Distance]
Energy Lagrangian Hamiltonian	kg.m ² .s ⁻²	N.m, J	joule. [Force]*[Distance], [Power]*[Time]
Specific energy	m ² .s ⁻²	J.kg ⁻¹	[Energy]/[Mass]
Energy density	kg.m ⁻¹ .s ⁻²	J.m ⁻³	[Energy]/[Volume]
Power Energy flux	kg.m ² .s ⁻³	J.s ⁻¹ , W	watt. [ΔEnergy]/[ΔTime]
Action	kg.m ² .s ⁻¹	J.s	[Energy]*[Time], [Moment of motion]*[Distance]
Angular moment of inertia	kg.m ²		[Mass]*[Distance ²]
Angular moment of motion	kg.m ² .s ⁻¹	J.s	[Moment of motion]*[Distance]
Circulation	m ² .s ⁻¹	J.s.kg ⁻¹	[Angular moment]/[Mass], [Velocity]*[Loop length]
Spin	1	Dimensionless	of a quantum particle
Stress Tension Compression	kg.m ⁻¹ .s ⁻²	N.m ⁻² , Pa (pascal)	[Force]/[Area] same as pressure
Compressive strength	kg.m ⁻¹ .s ⁻²	N.m ⁻² , Pa	[Force]/[Area]. Like pressure
Strain (mechanical)	1	Dimensionless	[ΔLength]/[Length] Relative deformation
Friction	kg.m.s ⁻²	N	Tangential force between two moving surfaces
Traction	kg.m.s ⁻²	N	Maximum tangential force before slipping
Velocity, superficial	m.s ⁻¹	m/s	In porous media; as if the space was filled only by the fluid
Velocity, advection	m.s ⁻¹	m/s	In porous media; actual progress along pressure gradient
Wave function for N particles (quantum)	m ^{-3N/2}	tentative	$ \psi ^2 d\tau^N$ is a dimensionless probability element.
Mechanical and hydrodynamic properties of	of matter		
Compressibility Modulus of compression	kg ⁻¹ .m.s ²	Pa ⁻¹	[Pressure]/([ΔVolume]/[Volume]). Inverse of bulk modulus
Bulk modulus	kg.m ⁻¹ .s ⁻²	N.m ⁻² , Pa	([ΔVolume]/[Volume])/[Pressure]. Inverse of compressibility
Young modulus	kg.m ⁻¹ .s ⁻²	N.m ⁻² , Pa	[Stress]/[Strain]. Like shear modulus
Shear modulus Modulus of rigidity	kg.m ⁻¹ .s ⁻²	N.m ⁻² , Pa	[Stress]/[Strain]. Same dimension aas Young modulus
Poisson's ratio	1	Dimensionless	[Transversal striction]/[Londitudinal elongation]
Impact Notch resistance	kg.s ⁻²	J.m ⁻²	[Energy]/[Area]
		I	

Hardness Tensile strength	kg.m ⁻¹ .s ⁻²	N.m ⁻² , Pa	[Force]/[Area]. Like pressure
Stiffness (linear)	kg.s ⁻²	N.m ⁻¹	[Force]/[Displacement] of a structure
Stiffness (rotational)	kg.m ² .s ⁻² .rad ⁻¹	N.m.rad ⁻¹	[Moment of force]/[Angle] of a structure
Friction coefficient	1	Dimensionless	[Tangential force]/[Normal force]
Traction coefficient	1	Dimensionless	[Traction]/[Weight]
Self-diffusion coefficient	m ² .s ⁻¹		[Distance ²]/[Time]
Surface tension	kg.s ⁻²	N/m	[Force]/[Length]. Same as surface energy
Surface energy	kg.s ⁻²	J/m ²	[Energy]/[Area]. Same as surface tension
Viscosity, dynamic	kg.m ⁻¹ .s ⁻¹	Pa.s	([Force]/[Area])/[ΔVelocity]
Viscosity, kinematic	m ² .s ⁻¹		[Dynamic viscosity]/[Density]
Reynolds number	1	Dimensionless	[Velocity]*[length]/[Kinematic viscosity]
Critical angle of repose	rad	or degree	Steepest angle of a slope before a slide
Porosity, volume	1	Dimensionless	[Volume of pores]/[Total volume], in porous media
Porosity, superficial	1	Dimensionless	[Void cross section]/[Total cross section], in porous media
Permeability, hydraulic	m^2	1 darcy = 10^{-12} m ²	[Velocity]*[Viscosity]/[Pressure gradient], in porous media
Conductivity, hydraulic	m.s ⁻¹	m/s	Used for porous media
Specific acoustic impedance / resistance / reactance	kg.m ⁻² .s ⁻¹	Pa.s/m , reyl	[ΔPressure]*[Velocity], intensive property
Specific acoustic conductance / susceptance	kg ⁻¹ .m ² .s	reyl ⁻¹	Inverse of specific acoustic impedance
Acoustic impedance / resistance / reactance	kg.m ⁻⁴ .s ⁻¹	Pa.s/m ³ , reyl/m ²	[ΔPressure]/[Volume flow rate], extensive property
Thermodynamics			
Temperature	К	K	kelvin
Temperature gradient Thermal gradient	K.m ⁻¹		[ΔTemperature]/[Distance]
Heat Internal energy Enthalpy	kg.m ² .s ⁻²	J	Same as energy
Specific heat internal energy enthalpy	m ² .s ⁻²	J.kg ⁻¹	[Heat]/[Mass]
Heat capacity	kg.m ² .s ⁻² .K ⁻¹	J.K ⁻¹	[ΔHeat]/[ΔTemperature]
Heat flux	kg.m ² .s ⁻³	J.s, W	[ΔHeat]/[ΔTime]. Same as power
Heat flux density Irradiance	kg.s ⁻³	W.m ⁻²	[Heat flux]/[Area]
Entropy	kg.m ² .s ⁻² .K ⁻¹	J.K ⁻¹	[ΔHeat]/[Temperature]
Specific entropy	m ² .s ⁻² .K ⁻¹	J.K ⁻¹ .kg ⁻¹	[Entropy]/[Mass]

Free energy Free enthalpy	kg.m ² .s ⁻²	J	Helmholtz Gibbs functions, respectively
Specific free energy free enthalpy	$m^2.s^{-2}$	J.kg ⁻¹	[Energy]/[Mass]. Also specific Helmholtz Gibbs functions
Molar thermodynamical quantities:			
Molar heat internal energy enthalpy	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	[Heat]/[Quantity]
Molar energy	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	[Energy]/[Quantity]
Molar entropy	kg.m ² .s ⁻² .K ⁻¹ .mol ⁻¹	J.K ⁻¹ .mol ⁻¹	[Entropy]/[Quantity]
Molar free energy free enthalpy	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	[Energy]/[Quantity]. Molar versions of the above
Thermodynamic and thermal properties	s of matter		
Thermal expansion coefficient	K ⁻¹		([ΔLength]/[Length])/[Temperature]
Heat capacity, specific	m ² .s ⁻² .K ⁻¹	J.K ⁻¹ .kg ⁻¹	[Heat capacity]/[Mass]
Heat capacity, molar	kg.m ² .s ⁻² .K ⁻¹ .mol ⁻¹	J.K ⁻¹ .mol ⁻¹	[Heat capacity]/[Quantity]
Heat of fusion evaporation, specific	m ² .s ⁻²	J.kg ⁻¹	[Energy]/[Mass]
Heat of fusion evaporation, molar	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	[Energy]/[Quantity]
Heat conductivity	kg.m.s ⁻³ .K ⁻¹	W.m ⁻¹ .K ⁻¹	[Heat flux]/([Distance]*[ΔTemperature])
Thermal diffusivity	m ² .s ⁻¹		$([\partial Temp]/[\partial Time])/[\nabla^2 Temp].$
Prandtl number	1	Dimensionless	[Kinematic viscosity]/[Thermal diffusivity]
Joule-Thomson coefficient	kg ⁻¹ .m.s ² .K	K.Pa ⁻¹	[ΔTemperature]/[ΔPressure]
Pi coefficient, molar	kg.m ⁻¹ .s ⁻² .mol ⁻¹	J.m ⁻³	[ΔInternalEnergy]/[ΔVolume]
Chemical potential, molar	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	[ΔInternalEnergy]/[ΔQuantity]
Softening point	К		Temperature at which hardness drops below a level
Annealing point	К		Temperature at which viscosity drops below 10 ¹² Pa.s
Strain point	К		Temperature at which viscosity drops below 10 ^{13.5} Pa.s
Flash point	К		Temperature at which vapour can be kept burning
Fire point	К		Temperature at which ignited vapour keeps burning
Thermal properties of devices			
Thermal resistance	kg ⁻¹ .m ⁻² .s ³ K	K/W	[ΔT]/[Power].
Electromagnetism	•		<u> </u>
Charge, electric	s.A	С	coulomb. [Current]*[Time]

Charge density	m ⁻³ .s.A	C.m ⁻³	[Charge]/[Volume]
Current, electric	Α	A	ampere. [Charge]/[Time]
Current density Current intensity	m ⁻² .A		[Current]/[Area]
Specific charge Charge/mass ratio	kg ⁻¹ .s.A	C.kg ⁻¹	[Charge]/[Mass]
Molar charge	s.A.mol ⁻¹	C.mol ⁻¹	[Charge]/[Quantity]
Quantum charge	1	Dimensionless	[Charge]/[Elementary charge quantum]
Surface density of charge	m ⁻² .s.A	C.m ⁻²	[Charge]/[Area]
Potential, electric	kg.m ² .s ⁻³ .A ⁻¹	W.A ⁻¹ , J.C ⁻¹ , C.F ⁻¹ , V	volt. [Power]/[Current], [Energy]/[Charge]
Electric dipole moment	m.s.A	C.m	[Charge]*[Distance]
Electric quadrupole moment	m ² .s.A	C.m ²	[Electric dipole]*[Distance], [Electric charge]*[Distance ²]
Electric field strength Electric intensity	kg.m.s ⁻³ .A ⁻¹	V.m ⁻¹	[ΔPotential]/[Distance]
Electric field gradient	kg.s ⁻³ .A ⁻¹	V.m ⁻²	[ΔEl.field strength]/[Distance]
Electric flux density Electric induction	m ⁻² .s.A	C.m ⁻²	[Charge]/[Area]
Electric polarization Electric displacement	m ⁻² .s.A	C.m ⁻²	[Charge]/[Area]. Same as electric flux density
Magnetic field strength Magnetic intensity	m ⁻¹ .A		[Current]/[Distance]
Magnetic flux	kg.m ² .s ⁻² .A ⁻¹	V.s, W.s.A ⁻¹ , Wb	weber. [ΔPotential]*[Time], [Power]/[dCurrent/dt]
Magnetic flux density Magnetic induction	kg.s ⁻² .A ⁻¹	Wb.m ⁻² , T	tesla. [Mag.flux]/[Area]
Magnetic vector potential	kg.m.s ⁻² .A ⁻¹	m ⁻¹ .s.V, m.T	[Mag.flux density]*[Distance], [El.field strength]*[Time]
Magnetization	m ⁻¹ .A		[Magnetic moment]/[Volume]. Like magnetic field strength
Magnetic charge (bound)	m ⁻² .A		- ∇.[Magnetization] , -Divergence of magnetization
Poynting vector	kg.s ⁻³	W.m ⁻²	[El.field strength]/[Mag.field strength]. Same as irradiance
Magnetic field gradient	kg.m ⁻¹ .s ⁻² .A ⁻¹	T.m ⁻¹	[ΔMagnetic flux density]/[Distance]
Magnetic dipole moment	m ² .A	J.T ⁻¹	[Current]*[Area]. Same as magnetic moment
Magnetic quadrupole moment	m ³ .A	m.J.T ⁻¹	[Magnetic dipole]*[Distance]
Gyromagnetic ratio	kg ⁻¹ .s.A	Hz.T ⁻¹	[Mag.moment]/[Angular moment of motion]
Magnetogyric ratio	kg.s ⁻¹ .A ⁻¹	T.Hz ⁻¹	[Angular moment of motion]/[Mag.moment]
Relativistic four-current (J ^α)	m ⁻² .A		Like current density and [Charge]*[c]
Relativistic four-potential (A ^α)	kg.m.s ⁻² .A ⁻¹	m ⁻¹ .s.V, m.T	Like magnetic vector potential and [El.potential]/[c]
Relativistic electromagnetic field tensor (F ^{µV})	kg.s ⁻² .A ⁻¹	Т	Like magnetic flux density

Relativistic displacement four-tensor $(D^{\mu\nu})$	m ⁻¹ .A		Like magnetic intensity
Electromagnetic properties of matter			
Resistivity	kg.m ³ .s ⁻³ .A ⁻²	Ω.m	[Resistance]*[Length])/[Area]
Conductivity	kg ⁻¹ .m ⁻³ .s ³ .A ²	S.m ⁻¹	1/[Resistivity]
Permittivity, electric	kg ⁻¹ .m ⁻³ .s ⁴ .A ²	F.m ⁻¹	[El.flux density]/[El.field strength]
Dielectric constant Relative permittivity	1	Dimensionless	[Permittivity]/[Permittivity of vacuum]
Permeability, magnetic	kg.m.s ⁻² .A ⁻²	N.A ⁻² , H.m ⁻¹	[Mag.flux density]/[Mag.field strength]
Reluctance, magnetic	kg ⁻¹ .m ⁻¹ .s ² .A ²	m.H ⁻¹	1/[Permeability]
Relative permeability, magnetic	1	Dimensionless	[Permeability]/[Permeability of vacuum]
Susceptibility, magnetic	1	Dimensionless	[Relative permeability] - 1
Characteristic impedance	kg.m ² .s ⁻³ .A ⁻²	$V.A^{-1}$, Ω, ohm	√([Mag.Permeability]/[El.Permittivity])
Electric Dielectric strength rigidity	kg.m.s ⁻³ .A ⁻¹	V.m ⁻¹	[ΔPotential]/[Distance]
Verdet constant	kg ⁻¹ .m ⁻¹ .s ² .A ¹	rad.m ⁻¹ .T ⁻¹	([Angle]/[Length])/[Magnetic flux density]
Work function	kg.m ² .s ⁻²	J, eV	[Energy] needed to remove an electron
Thermoelectric power Thermopower	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹	V.K ⁻¹	[ΔPotential]/[ΔTemperature]
Seeback coefficient	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹	V.K ⁻¹	[ΔPotential]/[ΔTemperature]
Thomson coefficient	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹	W.K ⁻¹ .A ⁻¹	[Heat flux]/([ΔTemperature]*[Current])
Peltier coefficient	kg.m ² .s ⁻³ .A ⁻¹	W.A ⁻¹ , V	[Heat flux]/[Current]
Piezzoelectric coefficient	kg.m.s ⁻³ .A ⁻¹	V.m ⁻¹	[El.field strength]/([ΔLength]/[Length])
Electrostriction coefficient	kg ⁻² .m ⁻² .s ⁶ .A ²	m ² .V ⁻²	([ΔVolume]/[Volume])/[El.field strength] ²
g-factor of a particle	1	Dimensionless	[Mag.moment]/([Spin].[Bohr magneton])
Properties of electric/magnetic devices an	nd circuit componen	its	
Bandwidth	s ⁻¹	Hz	[ΔFrequency]
Voltage Electromotive force (emf)	kg.m ² .s ⁻³ .A ⁻¹	V	[ΔPotential]
Current, electric	А	Α	ampere. [Charge]/[Time]
Magnetomotive force (mmf)	А		[Current]*[Number of turns]
Impedance, of a circuit	kg.m ² .s ⁻³ .A ⁻²	Ω	ohm
Admittance, of a circuit	kg ⁻¹ .m ⁻² .s ³ .A ²	S	siemens. 1/[Circuit impedance]
Resistance	kg.m ² .s ⁻³ .A ⁻²	V.A ⁻¹ , Ω (ohm)	[ΔPotential]/[Current]

		•	
Conductance	kg ⁻¹ .m ⁻² .s ³ .A ²	A.V ⁻¹ , S (siemens)	1/[Resistance]
Capacitance	kg ⁻¹ .m ⁻² .s ⁴ .A ²	C.V ⁻¹ , F	farad. [Charge]/[ΔPotential]
Reactance, capacitive	kg.m ² .s ⁻³ .A ⁻²	Ω (ohm)	1/(i[Angular frequency].[Capacitance])
Susceptance, capacitive	$kg^{-1}.m^{-2}.s^3.A^2$	S (siemens)	1/[Reactance]
Inductance Mutual inductance	kg.m ² .s ⁻² .A ⁻²	V.s.A ⁻¹ , Wb.A ⁻¹ , H	henry. [ΔPotential]/[dCurrent/dt] or [Magnetic flux]/[Current]
Impedance, inductive	kg.m ² .s ⁻³ .A ⁻²	Ω (ohm)	i[Angular frequency].[Inductance]
Admittance, inductive	$kg^{-1}.m^{-2}.s^3.A^2$	S (siemens)	1/[Inductive impedance]
Number of turns	1		Applicable to coils, transformers, etc
Current noise, variance n _J ²	s.A ²	A ² /Hz	[Current] ² /[Bandwidth]
Voltage noise, variance n _V ²	$kg^2.m^4.s^{-5}.A^{-2}$	V ² /Hz	[Voltage] ² /[Bandwidth]
Chemistry, physical chemistry, atomic and	molecular physics		
Concentration Molar density Molarity	m ⁻³ .mol		[Quantity]/[Volume]. Same as Density of substance
Molality	kg ⁻¹ .mol	mol/kg	[Quantity]/[Mass]
Katalytic activity Molar production rate	mol.s ⁻¹	katal	[Quantity]/[Time]
Molar mass	kg.mol ⁻¹		[Mass]/[Quantity]
Molar charge	s.A.mol ⁻¹	C.mol ⁻¹	[Charge]/[Quantity]
Molecular ionic quantum charge	1	Dimensionless	[Charge of a molecule or ion]/[Elementary charge quantum]
Ionic strength Ionic force	m ⁻³ .mol		Sum([Conc.]*[Ionic quantum charge] ²)
Ion mobility	kg ⁻¹ .m ⁻¹ .s ² .A	m ² .s ⁻¹ .V ⁻¹	[Velocity]/[Electric field strength] .
Drift speed	m.s ⁻¹		Steady-state speed of ions in electric field .
Fugacity	kg.m ⁻¹ .s ⁻²	Pa	Effective pressure in real gases
Osmotic pressure	kg.m ⁻¹ .s ⁻²	Pa	
Thermodynamic force	kg.m.s ⁻² .mol ⁻¹	N/mol	[ΔChemical potential]/[Distance]
Chemico-physical properties of elements			
Atomic number	1	Dimensionless	Number of protons in an atomic nucleus
Atomic weight Relative atomic mass	au	atomic units	Average over a typical isotopic composition
Mass number of an isotope	1	Dimensionless	Number of protons+neutrons in the isotope nuclide
Electronegativity, Pauling χ	1	Dimensionless	Relative tendency of an atom to attract electrons; χ(H)=2.20.

Electron affinity (always molar)	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	Energy released when binding an electron
Chemico-physical properties of matte	r		
lonization energy, molar	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	Energy to ionize a molecule/atom
Volume, molar	m ³ .mol ⁻¹		[Volume]/[Quantity]
Heat of fusion evaporation, molar	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	[Energy]/[Quantity]
Chemical potential, molar	kg.m ² .s ⁻² .mol ⁻¹	J.mol ⁻¹	[ΔInternalEnergy]/[ΔQuantity]
Solubility, molar	m ⁻³ .mol		[Quantity]/[Volume]
Reduction Redox potential	kg.m ² .s ⁻³ .A ⁻¹	V (volt)	
Conductivity, molar	kg ⁻¹ .s ³ .A ² .mol ⁻¹	S.m ² .mol ⁻¹	[El.conductivity]/[Concentration]
Relaxivity, molar	s ⁻¹ .mol ⁻¹		[Relaxation rate]/[Concentration]
Ebullioscopic constant	kg.mol ⁻¹ .K	K/(mol/kg)	[ΔTemperature]/[Molality]
Cryoscopic constant	kg.mol ⁻¹ .K	K/(mol/kg)	[ΔTemperature]/[Molality]
Compression factor of a real gas	1	Dimensionless	pV/(nRT). For ideal gas equals 1; temperature dependent
van der Waals constant: a	kg.m ⁵ .s ⁻² .mol ⁻²	Pa.m ⁶	a in (p+a/V ²)(V-b)=RT, where V is molar volume
van der Waals constant: b	m ³ .mol ⁻¹		b in (p+a/V ²)(V-b)=RT, where V is molar volume
Virial coefficient: second	m ³ .mol ⁻¹		B in pV/(nRT)=1+B(n/V)+C(n/V) ² +D(n/V) ³ +
Virial coefficient: third	m ⁶ .mol ⁻²		C in pV/(nRT)=1+B(n/V)+C(n/V) 2 +D(n/V) 3 +
Virial coefficient: fourth	m ⁹ .mol ⁻³		C in pV/(nRT)=1+B(n/V)+C(n/V) 2 +D(n/V) 3 +
Gravitation, Astronomy, Cosmology			
Gravitational field intensity Gravity	m.s ⁻²		[Force]/[Mass], Same as acceleration
Gravitational field potential	m ² .s ⁻²		[Energy]/[Mass]
Gravitational constant G	kg ⁻¹ .m ³ .s ⁻²		[Force]*[Distance] ² /[Mass] ² . Appears in Newton's equation
Mean motion	s ⁻¹		Of a body on a Kepler orbit; sqrt(G(M ₁ +M ₂)/r ³)
Mean anomaly	1	Dimensionless	Of a body on a Kepler orbit; t.sqrt(G(M ₁ +M ₂)/r ³)
Star magnitude (astronomy)	1	Dimensionless	m-m'= -10 ^{0.4} (S/S'). S,S' are luminous fluxes of two stars
Cosmological constant Λ	m ⁻²		Appears in Einstein's equation
Cosmological expansion rate	s ⁻¹	km/s/Mpc	[Velocity]/[Distance]. Mpc stands for Megaparsec
Optics			
<u> </u>			

Albedo, of a surface	1	Dimensionless	[Reflected elmag power]/[Incident elmag power]
Convergence	m ⁻¹	dioptry	dioptry
Luminosity Luminous intensity	cd	cd	candle or lumen/sr
Luminous flux Luminous power	cd.sr	lm	lumen. [Luminosity]*[Solid angle]
Luminance	cd.m ⁻²		[Luminosity]/[Area]
Luminous energy	cd.sr.s	lm.s	[Luminous flux]*[Time]. Also known as talbot
Illuminance	cd.sr.m ⁻²	lm.m ⁻² , lx	lux. [Luminous flux]/[Area]
Luminous emittance	cd.sr.m ⁻²	lm.m ⁻² , lx	lux. Same as illuminance, but for sources
Luminous efficacy	cd.sr.kg ⁻¹ .m ⁻¹ .s ³	lm/W	[Luminous flux]/[Power]
Luminous efficiency Luminous coefficient	1	Dimensionless	[Luminous efficacy]/[683 lm/W]
Irradiance	kg.s ⁻³	W.m ⁻²	[Power]/[Area]. For all kinds of energy deposition
Radiance	kg.s ⁻³ .sr ⁻¹	W.m ⁻² .sr ⁻¹	([Power]/[Area])/[Solid angle]
Optical properties of matter			
Extinction coefficient	m ⁻¹		
Refractive index	1	Dimensionless	Light speeds ratio (in medium)/(in vacuum)
Specific refractivity	m ³ .kg ⁻¹		[(r ² -1)/(r ² +2)]/[Specific density], where r is refractive index
Molar refractivity	m ³ .mol ⁻¹		$[(r^2-1)/(r^2+2)]/[Concentration]$
Dispersivity quotient	m ⁻¹		[ΔRefractive index]/[ΔWavelength]
Dispersive power	1	Dimensionless	Ratio of differences of refractive indices
Constringence Abbé number V-number	1	Dimensionless	$V_D = (n_D-1)/(n_F-n_C)$
Radiation and radioactivity			
Radioactivity Activity	s ⁻¹	Bq	bequerel. [Counts]/[Time]
Irradiance	kg.s ⁻³	W.m ⁻²	[Power]/[Area]. For all kinds of energy deposition
Absorbed dose	m ² .s ⁻²	J.kg ⁻¹ , Gy	gray. [Energy]/[Mass]
Absorbed dose rate	m ² .s ⁻³	Gy.s ⁻¹	[Absorbed dose]/[Time]
Absorbed dose equivalent	m ² .s ⁻²	J.kg ⁻¹ , Sv	sievert. [const].[Energy]/[Mass]
Exposure	kg ⁻¹ .s.A	C.kg ⁻¹	[Charge]/[Mass]. For ionising radiations
Radiation properties of matter	•	-	
- P - P - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			

Half life	s		Of a radioisotope			
Radiation power	m ² .s ⁻³	W/kg	[Power]/[Mass]. Heat generated by a radioisotope			
Radiation power, molar	kg.m ² .s ⁻³ .mol ⁻¹	W/mol	[Power]/[Quantity]. Heat generated by a radioisotope			
Informatics						
Information	bit ⁻¹	bit	bit; the elementary information quantum			
Baud rate Information flux	bit.s ⁻¹	Baud	baud. [Information]/[Time]			
Economy and finance						
Transactions count	1	Dimensionless	All kinds of counts			
Interest	1	%	[ΔWealth]/[Wealth]. Usually expressed as percentage			
Wealth Asset	cur	currency	Currencies like \$, EUR, Yuan, are different units			
Debt Liability	cur	currency	Usually intended as negative wealth			
Value Price	cur	currency	Prefixes: Kthousands, Mmillions, Bbillions			
Transaction value Sale Purchase	cur	currency	Often used: mean and total values			
Time period	s	year,quarter,month	Abbrevs: mrq most recent quarter, ttm trailing twelve months			
Fiscal year Calendar year	s	year	Abbrevs: Ify last fiscal year, yoy year over year			
Transactions rate Activity	s ⁻¹	1/year	[Transactions]/[Time period]			
Transactions volume Sales flow	cur.s ⁻¹		[Value]/[Time period]. For example \$/day or Eur/year			
Velocity / circulation of money	s ⁻¹	1/year	[Transactions]/[Time period]			
Interest rate	s ⁻¹	%/year	[Interest]/[Time period]			
Return on asset / equity	s ⁻¹	%/year	([ΔValue]/[Value])/[Time period]			
Cash flow Flow (generic)	cur.s ⁻¹	currency/year	[Value]/[ΔTime]. Mathematically, time derivative			
Earnings Income rate	cur.s ⁻¹	currency/year	[Value]/[Time period]			
GDP Gross domestic product	cur.s ⁻¹	currency/year	[Earnings]. Usually refered to nations/states/admin.regions			
Debt/GDP ratio	s	year	[Debt]/[Earnings]. Independent of currency / population size			
P/E Price/Earnings ratio	s	year	[Value]/[Earnings]. Used to assess an asset/company			
Bond duration	s	year	In general, the duration of a fixed cash flow			

Notes

Purpose

Physical (or rather metrological) dimensions are often bewildering, even though the international SI system of units has simplified things a lot, compared to early 20th century and before. The main purpose of this page is to provide a **fast**, **handy reference** to the dimension you might need at the spur of a moment. Another, less evident, purpose is to **stimulate curiosity** and the desire to study Metrology and Dimensional Analysis.

Formats and editorial comments

- Bold magenta symbols in the Alternatives column indicate commonly used quantities, mostly defined by the SI system.
- Square brackets convert the quantity they enclose into its dimension.
- Abbreviations El. and Mag. stand for Electric and Magnetic, respectively.
- [Quantity] stands for [Quantity of substance] and its dimension is mol.
- Names of units are always written with small first letter, even when derived from names of persons (for example 1 newton).

Many links, other than those appearing below,

will be soon scattered through the text, accompanying the particular quantities. This feature will be intensified.

Feedback:

If you think a link, or a quantity, are missing, please, let me know. Such suggestions are most appreciated.

Disclaimer:

Since errors do happen, and also because not all metrological conventions are agreed upon and shared by everybody, the Editor of this page declines any responsibility for any damages that might result from its content, directly or indirectly. In other words, if you crash a spacecraft because some of your engineers used *meters* and others used *feet*, do not pretend that I should pay for it:-)

References

1. Beaman Jr. Joseph J., Longoria Raul G.,

Modeling of Physical Systems,

Wiley 2016. ISBN 978-1119945048. Hardcover >>.

2. Zohuri Bahman,

Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists,

Springer 2015. ISBN 978-3319134758. Hardcover >>.

3. Isakov Edmund,

International System of Units (SI):

How the world measures almost everything, and the people who made it possible, Industrial Press 2014. ISBN 978-0831102319. Paperback >>. Also available as Multimedia CD.

4. Bridgman Percy W.,

Dimensional Analysis.

Reprint of the 1922 clasic. The Classics.us 2013. ISBN 978-1230226214. Paperback >>. Kindle >>.

5. Crease Robert P..

World in the Balance: The Historic Quest for an Absolute System of Measurement,

W.W.Norton & Company 2012. ISBN 978-0393343540. Paperback >>. Kindle >>.

6. Gibbings J.C.,

Dimensional Analysis.

Springer 2011. ISBN 978-1849963169. Paperback >>. Kindle >>.

7. Klein Herbert A.,

The Science of Measurement: A Historical Survey.

Dover Publications 2011. ISBN 978-0486258393. Paperback >>. Kindle >>.

8. Gupta S.V.,

Units of Measurement: Past, Present and Future. International System of Units,

Springer 2009. ISBN 978-3642007378. Hardcover >>. Kindle >>.

Link Directories:

PHYSICS | CHEMISTRY
Magnetic Resonance
MATH | COMPUTING
ELECTRONICS
PATENTS+IP
SCIENCE

Support this site! SHOP from here:

Privacy

COMPUTERS:

Deals Bestsellers Accessories Calculators

This page is **SPONSORED** by:

Random offers:

9. Palmer Andrew C.,

Dimensional Analysis and Intelligent Experimentation,

World Scientific Publishing 2008. ISBN 978-9812708199. Paperback >>.

10. Charalambos D. Aliprantis, Border Kim,

Infinite Dimensional Analysis: A Hitchhiker's Guide,

3rd Edition, Springer 2007. ISBN 978-3540326960. Paperback >>.

11. Strothman J, Editor,

ISA Handbook of Measurement Equations and Tables,

2nd Edition, ISA (Instrumentation, Systems, and Automation) 2006.

ISBN 978-1556179464. Paperback >>. 2015 Kindle >>.

12. Szirtes Thomas,

Applied Dimensional Analysis and Modeling,

2nd Edition, Butterworth-Heinemann 2006. ISBN 978-0123706201. Paperback >>. Kindle >>.

13. Jerrard H.G.,

Dictionary of Scientific Units Including Dimensionless Numbers and Scales,

Springer 1992. ISBN 978-0412467202. Paperback >>.

14. Sena L.A.,

Units of physical quantities and their dimensions,

Mir Publishers 1973. Hardcover >>.

15. For more, see References on Systems of Units of Measurements

Links

Dimensional analysis on Wikipedia.

BIPM. The home page of the SI System of Units.

NIST Units of Measurements page.

NIST Units Bibliography to official on-line publications about the SI system.

Unit Converters list.

SI Units. A related resource on this website.

Constants of physics and mathematics. A related resource on this website.

Math Constants. A related resource on this website.

SI Dimensions of Physical Quantities. A related resource on this website (sorted alphabetically).

Dimensions of Physical Quantities by Category. Link to this resource. You can also cite its **DOI link:** 10.3247/SL1Phys06.004.

•••

F BOOKS Lists:	Popular Science	F Mathematics	F Physics	F Chemistry		
Patents+IP	F Electronics DSP Tinkering	F Computing	Spintronics	F Materials		
WWW issues	F Instruments / Measurements	Quantum Computing	F NMR ESR MRI	F Spectroscopy		
Hint: the F symbols above, where present, are links to free online texts (books, courses, theses,)						

CONNECT.

ENJOY.

All from Earth's biggest selection.

Privacy

TOP | ALPHABETIC LIST | SI Units | Footnotes

PHYSICS and MATH constants

Physics BOOKS | Science LINKS | Stan's HUB

Copyright ©2005 Stanislav Sýkora. Stan's Library ISSN 2421-1230, DOI: 10.3247/SL1Phys06.004

Designed by Stan Sýkora (last update 03/05/2018 07:07:08)