7-1 Additional Practice

Trigonometric Functions and Acute Angles

For Items 1 and 2, use $\triangle ABC$.

1. Write the six trigonometric ratios for $\angle A$.

$$\sin A = \frac{5}{13}$$

$$\sin A = \frac{5}{13}$$
 $\cos A = \frac{12}{13}$ $\tan A = \frac{5}{12}$

$$\tan A = \frac{5}{12}$$

$$csc A = \frac{13}{5}$$

$$\sec A = \frac{13}{12}$$

$$\csc A = \frac{13}{5}$$
 $\sec A = \frac{13}{12}$ $\cot A = \frac{12}{5}$

2. Write the six trigonometric ratios for $\angle B$. $\sin B = \frac{12}{13} \qquad \cos B = \frac{5}{13} \qquad \tan B = \frac{12}{5}$

$$\sin B = \frac{12}{13}$$

$$\cos B = \frac{5}{13}$$

$$\csc B = \frac{13}{12}$$

$$\csc B = \frac{13}{12}$$
 $\sec B = \frac{13}{5}$ $\cot B = \frac{5}{12}$

$$\cot B = \underline{\frac{5}{12}}$$

3. What are the trigonometric ratios of θ in a right triangle with the given value tan $A = \frac{9}{40}$?

$$\sin \theta = \frac{9}{41}$$

$$\cos \theta = \frac{40}{41}$$

$$\sin \theta = \frac{9}{41} \qquad \cos \theta = \frac{40}{41} \qquad \tan \theta = \frac{9}{40}$$

$$\csc \theta = \frac{41}{9}$$

$$\sec \theta = \frac{41}{40}$$

$$\csc \theta = \frac{41}{9}$$
 $\sec \theta = \frac{41}{40}$ $\cot \theta = \frac{40}{9}$

4. A kite has a string that is 300 ft long. The flying kite forms a 62° angle with a horizontal line running parallel to the ground. The bottom end of the string is 6 ft off the ground. How high is the kite? Round your answer to the nearest tenth. 270.9 ft

Find each length.

5. the length of the hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with a leg of 12 $12\sqrt{2}$

6. the length of the longer leg of a 30°-60°-90° triangle with a hypotenuse of 14, when $\theta = 60^{\circ} 7\sqrt{3}$

What is the cofunction identity for the given trigonometric ratio?

7.
$$\sin \theta = \frac{\cos(90^\circ - \theta)}{\cos(90^\circ - \theta)}$$

8.
$$\sec \theta = \frac{\csc(90^{\circ} - \theta)}{\cos(90^{\circ} - \theta)}$$

7.
$$\sin \theta = \frac{\cos(90^\circ - \theta)}{\cos(90^\circ - \theta)}$$
 8. $\sec \theta = \frac{\csc(90^\circ - \theta)}{\cos(90^\circ - \theta)}$ 9. $\tan \theta = \frac{\cot(90^\circ - \theta)}{\cos(90^\circ - \theta)}$

10. Given the value of the hypotenuse c for a 30° - 60° - 90° triangle, write the equations to represent sides a and b in terms of c. Assume a is the shorter leg.

$$a=\frac{c}{2}$$
, $b=\frac{c}{2}\sqrt{3}$

11. Given the value of the hypotenuse c for a 45°-45°-90° triangle, write the equations to represent sides a and b in terms of c.

$$a = \frac{c}{\sqrt{2}}, b = \frac{c}{\sqrt{2}}$$