NPTEL MOOC, JAN-FEB 2015 Week 4, Module 6

DESIGNAND ANALYSIS OF ALGORITHMS

Spanning trees: Prim's algorithm

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Spanning tree

- * Weighted undirected graph, G = (V,E,w)
 - * Assume G is connected
- * Identify a spanning tree with minimum weight
 - * Tree connecting all vertices in V
- * Strategy 1:
 - * Start with minimum cost edge
 - * Keep extending the tree with smallest edge

Prim's algorithm

```
algorithm Prim_V1
```

```
Let e = (i,j) be minimum cost edge in E
```

```
TE = [e]  //List of edges in tree
TV = [i,j]  //List of vertices connected by tree
```

```
for i = 3 to n
  choose edge f = (u,v) of minimum cost
   such that u in TV and v not in TV
  TE.append(f)
  TV.append(v)
```

return(TE)

Correctness

- * Prim's algorithm is a greedy algorithm
 - * Like Dijkstra's single source shortest path
- * A local heuristic is used to decide which edge to add next to the tree
- * Choices made are never reconsidered
- * Why does this sequence of local choices achieve a global optimum?

- * Let V be partitioned into two non-empty sets U and W = V U
- * Let e = (u,w) be minimum cost edge with u in U and w in W
 - * Assume all edges have different weights (relax this condition later)
- * Then every minimum cost spanning tree must include e

- * Let T be a minimum cost spanning tree, e = (u,w) not in T
- * u in U and w in W are connected by a path p in T
 - * p starts in U and ends in W
 - * Let f = (u',w') be the first edge on p such that u' in U and w' in W
 - * Drop f and add e to get a smaller spanning tree

- * Let T be a minimum cost spanning tree, e = (u,w) not in T
- * u in U and w in W are connected by a path p in T
 - * p starts in U and ends in W
 - * Let f = (u',w') be the first edge on p such that u' in U and w' in W
 - * Drop f and add e to get a smaller spanning tree

- * Let T be a minimum cost spanning tree, e = (u,w) not in T
- * u in U and w in W are connected by a path p in T
 - * p starts in U and ends in W
 - * Let f = (u',w') be the first edge on p such that u' in U and w' in W
 - * Drop f and add e to get a smaller spanning tree

- * Proof of the lemma is slightly subtle
- * Not enough to replace any edge from U to W by e = (u,v)
- * Need to identify such an edge on the path from u to v

Correctness of Prim's algorithm

- * Correctness follows directly from minimum separator lemma
- * At each stage, TV and (V-TV) form a non-trivial partition of V
- * The smallest edge connecting TV to (V-TV) must belong to every minimum cost spanning tree
 - * This is the edge that the algorithm picks

Further observations

- * Need not start with smallest edge overall
 - * For any vertex v, smallest edge attached to v must be in the minimum cost spanning tree
 - * Consider the partition {v}, V-{v}
 - * Can start with any such edge

Prim's algorithm revisited

- * Start with TV = {s} for any vertex s
- * For each vertex v outside TV, maintain
 - * Distance_TV(v), smallest edge weight from v to TV
 - * Neighbour_TV(v), nearest neighbour of v in TV
- * At each stage, add to TV ("burn") vertex u with smallest Distance_TV(u)
 - * Update Distance_TV(v), Neighbour_TV(v) for each neighbour of u
- * Very similar to Dijkstra's algorithm!

Prim's algorithm, refined

```
function Prim
 for i = 1 to n
   visited[i] = False; Nbr_TV[i] = -1; Dist_TV[i] = infinity
 TE = [] //List of spanning tree edges
 visited[1] = True
 for each edge (1,j)
    Nbr_TV[j] = 1; Dist_TV[j] = weight(1,j)
 for i = 2 to n
    Choose u such that Visited[u] == False
                          and Dist_TV[u] is minimum
   Visited[u] = True
    TE.append{(u,Nbr_TV[u])}
    for each edge (u,v) with Visited[v] == False
      if Dist_TV[v] > weight(u,v)
        Dist_TV[v] = weight(u,v); Nbr_TV[i] = u
```


Prim's algorithm (18,1)

Prim's algorithm (18,1)

Complexity

- * Similar to Dijkstra's algorithm
- * Outer loop runs n times
 - * In each iteration, we add one vertex to the tree
 - * O(n) scan to find nearest vertex to add
- * Each time we add a vertex v, we have to scan all its neighbours to update distances
 - * O(n) scan of adjacency matrix to find all neighbours
- * Overall O(n²)

Complexity

- * Moving from adjacency matrix to adjacency list
 - * Across n iterations, O(m) to update neighbours
- * Maintain distance information in a heap
 - * Finding minimum and updating is O(log n)
- * Overall $O(n \log n + m \log n) = O((m+n) \log n)$

- * We assumed edge weights are distinct
- * Duplicate edge weights?
 - * Fix an overall ordering {1,2,...,m} of edges
 - * Edge e = ((u,v),i) is smaller than f = ((u',v'),j) if
 - * weight(e) < weight(f)</pre>
 - * weight(e) = weight(f) and i < j</pre>

Multiple spanning trees

- * If edge weights repeat, the minimum cost spanning tree is not unique
 - * "Choose u such that Dist_TV(u) is minimum"
- * Different choices generate different trees
 - * Different ways of ordering edges {1,2,...,m}
- * In general, number of possible minimum cost spanning trees is exponential
 - * Greedy algorithm efficiently picks out one of them