Draft: Z-Property implies confluence for an abstract rewrite system (ARS)

* 20/04/2018

1 ARS definition

We begin our demonstration by defining an abstract rewrite system (A, \rightarrow) , where A is a set of objects and \rightarrow is a binary relation (also called "reduction" or "rewriting") over A, i.e., $\rightarrow \subseteq A \times A$.

If $(a,b) \in \to$ and $a,b \in A$, we write $a \to b$ and call it "a reduces (or is rewritten) to b".

2 Reducible object and \rightarrow -normal form

An object $a \in A$ is called "reducible" if $\exists b \in A, b \neq a$ and $a \to b$. If there's no such b, a is called "irreducible" and is in \to -normal form.

3 Z-Property

A map $_\circ$: A \to A has the Z-Property for \to on A if \forall a, b \in A, a \to b implies b \twoheadrightarrow a $^\circ$ \twoheadrightarrow b $^\circ$. \twoheadrightarrow can be read as "reduces in zero or more steps to".

If \rightarrow admits $_^{\circ}$, then \rightarrow has the Z-Property.

4 Confluence

To be written.

5 Z-Property implies Confluence

<u>Theorem</u>: If \rightarrow has the Z-Property, then \rightarrow is confluent.

<u>Proof:</u> suppose $_^{\circ}$ has the Z-Property for \rightarrow .

- 1. If a is in \rightarrow -normal form, we define $a^{\bullet}:=a.$ Otherwise, $a^{\bullet}:=a^{\circ}$
- 2. The proof follows by showing that _•: A \to A also satisfies the Z-Property for \to .

By hypothesis, if $a \to b$, then $b \twoheadrightarrow a^\circ \twoheadrightarrow b^\circ$ and by (1), we have $a^\bullet = a^\circ$, which gives $b \twoheadrightarrow a^\bullet$. If b is in \to -normal form, then by (1) we have $b^\bullet = b$ so that $b^\bullet = b = a^\circ = a^\bullet$, which gives $a^\bullet \twoheadrightarrow b^\bullet$.

- 3.
- 4.
- 5.