

Vorlesung 12 - Boolesche Algebren, Kommutative Gruppen

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

• Ein Verband (M, \preceq)

• Ein Verband (M, \preceq) heißt Boolesche Algebra

• Ein Verband (M, \preceq) heißt Boolesche Algebra gdw.

• Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist,

• Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel:

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$,

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

Satz. Sei
$$(M, \sqcap, \sqcup, \cdot^*, \bot, \top)$$

Diskrete Strukturen

Wiederholung

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

Satz. Sei $(M, \sqcap, \sqcup, \cdot^*, \bot, \top)$ eine algebraische Struktur

- Ein Verband (M, \prec) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

Diskrete Strukturen | Wiederholung

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und | |

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

– □ und □ assoziativ,

Diskrete Strukturen | Wiederholung

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ,

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind,

Diskrete Strukturen | Wiederholung

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation ⋅*

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ. kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* iedes Element $x \in M$ auf sein Komplement abbildet.

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ. kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$
 und

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$
 und $x \sqcup x^* = \top$.

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$
 und $x \sqcup x^* = \top$.

Dann ist (M, \preceq) ,

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$
 und $x \sqcup x^* = \top$.

Dann ist (M, \prec) , mit $x \prec y$

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$
 und $x \sqcup x^* = \top$.

Dann ist (M, \preceq) , mit $x \preceq y$ gdw.

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$
 und $x \sqcup x^* = \top$.

Dann ist (M, \preceq) , mit $x \preceq y$ gdw. $x = x \sqcap y$,

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$
 und $x \sqcup x^* = \top$.

Dann ist (M, \preceq) , mit $x \preceq y$ gdw. $x = x \sqcap y$, eine Boolesche Algebra.

· Wir wenden uns nun

• Wir wenden uns nun zu dem wichtigsten Ergebnis

• Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren:

• Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra • Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$,

• Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw.

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$

Atome sind also

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \prec x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn des kleinsten Elements \perp

Diskrete Strukturen | Boolsche Algebren - Isomorphiesatz von Stone

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \prec x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn des kleinsten Elements \perp im Hasse-Diagramm.

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn des kleinsten Elements \bot im Hasse-Diagramm, und die minimalen Elemente in $M \setminus \{\bot\}$.

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn des kleinsten Elements \bot im Hasse-Diagramm, und die minimalen Elemente in $M\setminus\{\bot\}$.
- Beispiel.

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn des kleinsten Elements \bot im Hasse-Diagramm, und die minimalen Elemente in $M \setminus \{\bot\}$.
- Beispiel. Die Boolesche Algebra der Wahrheitswerte

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn des kleinsten Elements \bot im Hasse-Diagramm, und die minimalen Elemente in $M \setminus \{\bot\}$.
- Beispiel. Die Boolesche Algebra der Wahrheitswerte hat nur das Atom 1.

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn des kleinsten Elements \bot im Hasse-Diagramm, und die minimalen Elemente in $M \setminus \{\bot\}$.
- Beispiel. Die Boolesche Algebra der Wahrheitswerte hat nur das Atom 1.

• Beispiel.

• Beispiel. Die Potenzmenge von $M = \{1, 2, 3\}$

• Beispiel. Die Potenzmenge von $M=\{1,\,2,\,3\}\,$ hat die Atome $\{1\}$, $\{2\}$ und $\{3\}$.

• Beispiel. Die Potenzmenge von $M=\{1,\,2,\,3\}\,$ hat die Atome $\{1\}$, $\{2\}$ und $\{3\}$.

• Für jedes $m \in M$

- Für jedes $m \in M$ und jedes Atom $a \in M$,

• Für jedes $m \in M$ und jedes Atom $a \in M$, gilt

• Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a, b \in M$

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$,

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

Beweis.

• Wir haben $a \wedge m \leq a$.

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

Beweis.

• Wir haben $a \wedge m \leq a$. Da a Atom ist,

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

Beweis.

• Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind,

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \leq a$

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \leq a$ und

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \leq a$ und $a \wedge b \leq b$. Also $a \wedge b \in \{\bot, a\}$

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \leq a$ und $a \wedge b \leq b$. Also $a \wedge b \in \{\bot, a\}$ und

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \preceq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \leq a$ und $a \wedge b \leq b$. Also $a \wedge b \in \{\bot, a\}$ und $a \wedge b \in \{\bot, b\}$.

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \preceq a$ und $a \wedge b \preceq b$.
- Also $a \wedge b \in \{\bot, a\}$ und $a \wedge b \in \{\bot, b\}$. Wegen $a \neq b$

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \land m \in \{\bot, a\}$
- Für alle Atome $a, b \in M$ mit $a \neq b$, gilt $a \wedge b = \bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \prec m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \leq a$ und $a \wedge b \leq b$.
- Also $a \wedge b \in \{\bot, a\}$ und $a \wedge b \in \{\bot, b\}$. Wegen $a \neq b$ gilt

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \leq a$ und $a \wedge b \leq b$.
- Also $a \wedge b \in \{\bot, a\}$ und $a \wedge b \in \{\bot, b\}$. Wegen $a \neq b$ gilt $a \wedge b = \bot$.

• Für jedes $m \in M \setminus \{\bot\}$

• Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$

• Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- Da M is endlich,

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- Da ${\cal M}$ is endlich, finden wir eine Kette

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- ullet Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- ullet Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- ullet Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \geq x \geq m_{i+1}$

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i > x > m_{i+1}$ sind m_i und m_{i+1} .

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- ullet Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \geq x \geq m_{i+1}$ sind m_i und m_{i+1} .

Da M ist endlich,

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- ullet Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \ge x \ge m_{i+1}$ sind m_i und m_{i+1} .

Da M ist endlich, die Kette muss mit \bot terminieren,

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- ullet Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \ge x \ge m_{i+1}$ sind m_i und m_{i+1} .

Da M ist endlich, die Kette muss mit \bot terminieren, und das letzte Element

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- ullet Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \ge x \ge m_{i+1}$ sind m_i und m_{i+1} .

Da M ist endlich, die Kette muss mit \bot terminieren, und das letzte Element anders als \bot

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- ullet Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \ge x \ge m_{i+1}$ sind m_i und m_{i+1} .

Da M ist endlich, die Kette muss mit \bot terminieren, und das letzte Element anders als \bot ist ein Atom

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \ge x \ge m_{i+1}$ sind m_i und m_{i+1} .

Da M ist endlich, die Kette muss mit \bot terminieren, und das letzte Element anders als \bot ist ein Atom mit der gewischten Eigenschaft.

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \ge x \ge m_{i+1}$ sind m_i und m_{i+1} .

Da M ist endlich, die Kette muss mit \bot terminieren, und das letzte Element anders als \bot ist ein Atom mit der gewischten Eigenschaft.

Satz. (Isomorphiesatz von Stone) Sei (M,\leq)

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M.

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind (M, \leq)

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind (M, \leq) und

Der Isomorphismus

Der Isomorphismus $\mbox{ schickt } m \in M$

Der Isomorphismus schickt $m \in M$ auf die Menge $A_m \subset A$

Der Isomorphismus schickt $m \in M$ auf die Menge $A_m \subset A$ von Atomen a

 $a \leq m$.

- ···

Der Isomorphismus schickt $m \in M$ auf die Menge $A_m \subset A$ von Atomen a mit $a \leq m$.

Beweis.

 $a \leq m$.

· Wir müssen zeigen,

Der Isomorphismus schickt $m \in M$ auf die Menge $A_m \subset A$ von Atomen a mit $a \leq m$.

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$

Beweis.

 $a \leq m$.

Bewei

• Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.

Der Isomorphismus schickt $m \in M$ auf die Menge $A_m \subset A$ von Atomen a mit $a \leq m$.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar:

Der Isomorphismus schickt $m \in M$ auf die Menge $A_m \subset A$ von Atomen a mit $a \leq m$.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ightharpoonup Die Ordnungserhaltung ist klar: wenn $m \leq n$,

Der Isomorphismus schickt $m \in M$ auf die Menge $A_m \subset A$ von Atomen a mit $a \leq m$.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - \blacktriangleright Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome,

Der Isomorphismus schickt $m \in M$ auf die Menge $A_m \subset A$ von Atomen a mit $a \leq m$

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen,

$a \leq m$.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n,

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- · Für die Injektivität reicht es zu zeigen,

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m = \sup A_m$.

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m=\sup A_m$. Wir zeigen dies zunächst für $m:=\top$.

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m=\sup A_m$. Wir zeigen dies zunächst für $m:=\top$. Offensichtlich ist A_\top die Menge aller Atome.

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m=\sup A_m$. Wir zeigen dies zunächst für $m:=\top$. Offensichtlich ist A_\top die Menge aller Atome.
- ightharpoonup Sei $s:=\sup A_{ op}$.

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m=\sup A_m$. Wir zeigen dies zunächst für $m:=\top$. Offensichtlich ist A_\top die Menge aller Atome.
- ▶ Sei $s := \sup A_{\top}$. Wenn $s \neq \top$

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m=\sup A_m$. Wir zeigen dies zunächst für $m:=\top$. Offensichtlich ist A_\top die Menge aller Atome.
 - ▶ Sei $s := \sup A_{\top}$. Wenn $s \neq \top$ dann $s^c \neq \bot$.

Beweis.

- Wir müssen zeigen, dass die Abbildung $m \mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - \blacktriangleright Die Ordnungserhaltung ist klar: wenn m < n, dann liegen alle Atome, die unter m liegen, auch unter n. also $A_m \subseteq A_n$.
- Für die Iniektivität reicht es zu zeigen, dass $m = \sup A_m$. Wir zeigen dies zunächst für $m:=\top$. Offensichtlich ist A_{\top} die Menge aller Atome.
- ▶ Sei $s := \sup A_{\top}$. Wenn $s \neq \top$ dann $s^c \neq \bot$, also es existiert ein Atom $a < s^c$.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m=\sup A_m$. Wir zeigen dies zunächst für $m:=\top$. Offensichtlich ist A_\top die Menge aller Atome.
 - ▶ Sei $s:=\sup A_{\top}$. Wenn $s\neq \top$ dann $s^c\neq \bot$, also es existiert ein Atom $a\leq s^c$. Aber dann $a\leq s\wedge s^c$,

sei A die Menge von Atomen von M. Dann sind (M,\leq) und $(\mathcal{P}(A),\subseteq)$ isomorph. Der Isomorphismus schickt $m\in M$ auf die Menge $A_m\subset A$ von Atomen a mit $a\leq m$.

Satz. (Isomorphiesatz von Stone) Sei (M, <) eine endliche Boolesche Algebra und

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m=\sup A_m$. Wir zeigen dies zunächst für $m:=\top$. Offensichtlich ist A_\top die Menge aller Atome.
 - ▶ Sei $s := \sup A_{\top}$. Wenn $s \neq \top$ dann $s^c \neq \bot$, also es existiert ein Atom $a \leq s^c$. Aber dann $a \leq s \wedge s^c$, was ein Widerspruch ist.

Zeigen wir jetzt

- Zeigen wir jetzt $\,$ für beliebige m,

Diskrete Strukturen

▶ Seien a_1, \ldots, a_k alle Atome von M.

▶ Seien a_1, \ldots, a_k alle Atome von M. Wir haben

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

 $m = \top \wedge m =$

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m =$

 \blacktriangleright Seien a_1, \ldots, a_k alle Atome von M. Wir haben

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

Diskrete Strukturen | Boolsche Algebren - Isomorphiesatz von Stone

 \blacktriangleright Seien a_1, \ldots, a_k alle Atome von M. Wir haben

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- ▶ Jedes element $a_i \wedge m$ ist entweder \perp (wenn a_i ist nicht unten m).

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i

 \blacktriangleright Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).

Diskrete Strukturen | Boolsche Algebren - Isomorphiesatz von Stone

 \blacktriangleright Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).

Diskrete Strukturen | Boolsche Algebren - Isomorphiesatz von Stone

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ightharpoonup Also $(a_1 \wedge m) \vee \dots (a_k \wedge m)$

- ▶ Seien $a_1, ..., a_k$ alle Atome von M. Wir haben $m = \top \land m = (a_1 \lor ... \lor a_k) \land m = (a_1 \land m) \lor ... (a_k \land m)$.
- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn
- a_i ist unten m).

 Also $(a_1 \wedge m) \vee \dots (a_k \wedge m)$ ist genau gleich

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$
- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ightharpoonup Also $(a_1 \wedge m) \vee \dots (a_k \wedge m)$ ist genau gleich dem Infimum der Atome.

- ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$
- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.
- Für die Suriektivität

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.
- Für die Surjektivität reicht es zu zeigen.

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.
- Für die Surjektivität reicht es zu zeigen, dass.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist,

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist. dann für $m := \sup X$

Diskrete Strukturen | Boolsche Algebren - Isomorphiesatz von Stone

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist. dann für $m := \sup X$ gilt

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist. dann für $m := \sup X$ gilt $A_m = X$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - dann für $m := \sup X$ gilt $A_m = X$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
 - \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist. dann für $m := \sup X$ gilt $A_m = X$.
 - Offensichtlich gilt $X \subseteq A_m$.

 a_i ist unten m).

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

 \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn

- liegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - dann für $m := \sup X$ gilt $A_m = X$.
 - Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an.

dann für $m := \sup X$ gilt $A_m = X$.

 a_i ist unten m).

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

 \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn

- liegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).

dann für $m := \sup X$ gilt $A_m = X$.

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen.
- Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen. • Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - dann für $m := \sup X$ gilt $A_m = X$.
 - Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir haben $m = \sup X = \sup A_m$.

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m liegen
- liegen.
 Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - dann für $m:=\sup X$ gilt $A_m=X$.

 Offensichtlich gilt $X\subseteq A_m$. Nehmen wir an, dass es existiert $a\in A_m\setminus X$. Wir
 - haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \geq a$.

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

dann für $m := \sup X$ gilt $A_m = X$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- Also $(a_1 \wedge m) \vee \dots (a_k \wedge m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen.
 Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist,
 - ▶ Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$.
 - ▶ Es folgt

Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$
- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m liegen.
- Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist, dann für $m:=\sup X$ gilt $A_m=X$.
 - ▶ Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$.
 - ightharpoonup Es folgt a =

▶ Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$ Note the properties of the properties o
- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m liegen.
- Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist, dann für $m:=\sup X$ gilt $A_m=X$.
 - ▶ Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$.
 - ▶ Es folgt $a = \sup X \wedge a$

ightharpoonup Seien a_1,\ldots,a_k alle Atome von M. Wir haben

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

- $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$
- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen. \bullet Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist,
 - ▶ Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir haben $m = \sup X = \sup A_m$. Insbesondere $\sup X > a$.
 - ▶ Es folgt $a = \sup X \wedge a =$

dann für $m := \sup X$ gilt $A_m = X$.

▶ Seien a_1, \ldots, a_k alle Atome von M. Wir haben $m = \top \land m = (a_1 \lor \ldots \lor a_k) \land m = (a_1 \land m) \lor \ldots (a_k \land m)$.

- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen.
 Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - dann für $m:=\sup X$ gilt $A_m=X$.

 Offensichtlich gilt $X\subseteq A_m$. Nehmen wir an, dass es existiert $a\in A_m\setminus X$. Wir haben $m=\sup X=\sup A_m$. Insbesondere $\sup X>a$.
 - ▶ Es folgt $a = \sup X \wedge a = (x_1 \wedge a) \vee (x_2 \wedge a) \vee \ldots \vee (x_l \wedge a)$.
 - $\text{23 lotge } w = \text{5dp 11 } \wedge (w = (w_1 \wedge (w_1 \wedge (w_2 \wedge (w_1 \wedge (w_2 \wedge$

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

- \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen. • Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist,
 - dann für $m := \sup X$ gilt $A_m = X$. Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$.
 - \blacktriangleright Es folgt $a = \sup X \land a = (x_1 \land a) \lor (x_2 \land a) \lor \ldots \lor (x_l \land a)$. Aber $x_i \land a \in \{\bot, x_i\}$.

▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen.

 Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist,
 - dann für $m:=\sup X$ gilt $A_m=X$.
 - ▶ Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$.
 - ► Es folgt $a = \sup X \wedge a = (x_1 \wedge a) \vee (x_2 \wedge a) \vee \ldots \vee (x_l \wedge a)$. Aber $x_i \wedge a \in \{\bot, x_i\}$. Da $a \notin X$,
- **Diskrete Strukturen** | Boolsche Algebren Isomorphiesatz von Stone

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$ \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn

 a_i ist unten m).

 \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.

• Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist,

dann für $m := \sup X$ gilt $A_m = X$. Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir

haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$. \blacktriangleright Es folgt $a = \sup X \land a = (x_1 \land a) \lor (x_2 \land a) \lor \ldots \lor (x_l \land a)$. Aber $x_i \land a \in \{\bot, x_i\}$.

Da $a \notin X$, es folgt $x_i \wedge a = \bot$.

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$ \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn

 a_i ist unten m).

 \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter mliegen.

• Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.

dann für $m := \sup X$ gilt $A_m = X$. Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir

haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$.

 \blacktriangleright Es folgt $a = \sup X \land a = (x_1 \land a) \lor (x_2 \land a) \lor \ldots \lor (x_l \land a)$. Aber $x_i \land a \in \{\bot, x_i\}$. Da $a \notin X$, es folgt $x_i \wedge a = \bot$, und deswegen

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 \blacktriangleright Jedes element $a_i \land m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).

 \blacktriangleright Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m

- liegen. • Für die Suriektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - dann für $m := \sup X$ gilt $A_m = X$. Offensichtlich gilt $X \subseteq A_m$. Nehmen wir an, dass es existiert $a \in A_m \setminus X$. Wir
 - haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$.
 - \blacktriangleright Es folgt $a = \sup X \land a = (x_1 \land a) \lor (x_2 \land a) \lor \ldots \lor (x_l \land a)$. Aber $x_i \land a \in \{\bot, x_i\}$. Da $a \notin X$, es folgt $x_i \wedge a = \bot$, und deswegen $a = \bot$.

▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

- lacktriangle Also $(a_1 \wedge m) \vee \dots (a_k \wedge m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen.

 Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist.
 - dann für $m:=\sup X$ gilt $A_m=X$.

 Offensichtlich gilt $X\subset A_m$. Nehmen wir an, dass es existiert $a\in A_m\setminus X$. Wir
 - haben $m = \sup X = \sup A_m$. Insbesondere $\sup X \ge a$. • Es folgt $a = \sup X \land a = (x_1 \land a) \lor (x_2 \land a) \lor \ldots \lor (x_l \land a)$. Aber $x_i \land a \in \{\bot, x_i\}$.
 - Da $a \notin X$, es folgt $x_i \wedge a = \bot$, und deswegen $a = \bot$. Das ist ein Widerspruch.

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen. \bullet Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist,
 - dann für $m:=\sup X$ gilt $A_m=X$.

 Offensichtlich gilt $X\subseteq A_m$. Nehmen wir an, dass es existiert $a\in A_m\setminus X$. Wir haben $m=\sup X=\sup A_m$. Insbesondere $\sup X>a$.
 - ► Es folgt $a = \sup X \wedge a = (x_1 \wedge a) \vee (x_2 \wedge a) \vee \ldots \vee (x_l \wedge a)$. Aber $x_i \wedge a \in \{\bot, x_i\}$.
 - Da $a \notin X$, es folgt $x_i \wedge a = \bot$, und deswegen $a = \bot$. Das ist ein Widerspruch.

Satz. (Isomorphiesatz von Stone) Sei (M,\leq)

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M.

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind (M, \leq)

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind (M,\leq) und

Gilt dieser Satz f
ür unendliche Boolsche Algebren?

Diskrete Strukturen | Boolsche Algebren - Isomorphiesatz von Stone

- Gilt dieser Satz f
 ür unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge

- Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E :=$$

- Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E:=\big\{X\in\mathcal{P}(M)\mid X \text{ endlich}\big\}$$

- Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E:=\big\{X\in\mathcal{P}(M)\mid X \text{ endlich}\big\} \ \cup$$

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \{ X \in \mathcal{P}(M) \mid X \text{ endlich} \} \cup \{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \}$$

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

ightharpoonup E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$,

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

ightharpoonup E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$, da die Operationen \vee, \wedge , und Komplement

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

▶ E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$, da die Operationen \vee, \wedge , und Komplement die Elemente von E erhalten.

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

- ▶ E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$, da die Operationen \vee, \wedge , und Komplement die Elemente von E erhalten.
- \blacktriangleright Wenn M abzählabr ist,

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

- ▶ E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$, da die Operationen \vee, \wedge , und Komplement die Elemente von E erhalten.
- lacktriangle Wenn M abzählabr ist, dann ist auch E abzählbar.

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

- ▶ E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$, da die Operationen \vee, \wedge , und Komplement die Elemente von E erhalten.
- \blacktriangleright Wenn M abzählabr ist, dann ist auch E abzählbar.
- ▶ Aber $\mathcal{P}(X)$ kann nicht abzählbar sein.

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

- ▶ E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$, da die Operationen \vee, \wedge , und Komplement die Elemente von E erhalten.
- \blacktriangleright Wenn M abzählabr ist, dann ist auch E abzählbar.
- ▶ Aber $\mathcal{P}(X)$ kann nicht abzählbar sein. Es folgt dass

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

- ▶ E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$, da die Operationen \vee, \wedge , und Komplement die Elemente von E erhalten.
- \blacktriangleright Wenn M abzählabr ist, dann ist auch E abzählbar.
- Aber $\mathcal{P}(X)$ kann nicht abzählbar sein. Es folgt dass E kann nicht isomorph zu $\mathcal{P}(X)$ sein.

Satz. (Isomorphiesatz von Stone) Sei (M, \leq)

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra und sei A

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M.

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind (M,\leq)

Satz. (Isomorphiesatz von Stone) Sei (M,\leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind (M,\leq) und

· Dieser Satz vermittelt uns

• Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis

• Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.

- Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.
- Er motiviert auch

- Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.
- Er motiviert auch die grundlegenden Definitionen

- Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.
- Er motiviert auch die grundlegenden Definitionen der Wahrscheinlichkeitstheorie:

- Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.
- Er motiviert auch die grundlegenden Definitionen der Wahrscheinlichkeitstheorie: In der Wahrscheinlichkeitstheorie

- Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.
- Er motiviert auch die grundlegenden Definitionen der Wahrscheinlichkeitstheorie: In der Wahrscheinlichkeitstheorie beginnen wir mit einer Menge X

- Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.
- Er motiviert auch die grundlegenden Definitionen der Wahrscheinlichkeitstheorie: In der Wahrscheinlichkeitstheorie beginnen wir mit einer Menge X von atomaren Ereignissen

- Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.
- Er motiviert auch die grundlegenden Definitionen der Wahrscheinlichkeitstheorie: In der Wahrscheinlichkeitstheorie beginnen wir mit einer Menge X von atomaren Ereignissen und jedes der Ereignisse x hat eine Wahrscheinlichkeit p_x .

• Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z},+)$.

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - ▶ Wir haben

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - ▶ Wir haben ein spezielles Element 0

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z},+)$.
 - \blacktriangleright Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z},+)$.
 - lacktriangle Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - ightharpoonup Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für jedes $x \in \mathbb{Z}$

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - lacktriangle Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für jedes $x \in \mathbb{Z}$ können wir

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - \blacktriangleright Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden,

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - \blacktriangleright Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z},+)$.
 - lacktriangle Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x"),

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z},+)$.
 - lacktriangle Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - ▶ Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x"),
 - ightharpoonup Für alle x, y

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z},+)$.
 - lacktriangle Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - ▶ Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x"),
 - Für alle x, y haben wir x + y = y + x.

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z},+)$.
 - lacktriangle Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - ▶ Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x"),
- Für alle x, y haben wir x + y = y + x.
- Eine algebraische Struktur (M,\oplus,\cdot^*,e) des Typs (0,1,1,1) ist eine kommutative oder auch Abelsche Gruppe

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z},+)$.
 - lacktriangle Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - ▶ Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x"),
- Für alle x, y haben wir x + y = y + x.
- Eine algebraische Struktur (M, \oplus, \cdot^*, e) des Typs (0, 1, 1, 1) ist eine kommutative oder auch Abelsche Gruppe gdw. für alle $x, y, z \in M$ gilt:

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - \blacktriangleright Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x").
 - Für alle x, y haben wir x + y = y + x.
- Eine algebraische Struktur (M, \oplus, \cdot^*, e) des Typs (0, 1, 1, 1) ist eine kommutative oder auch Abelsche Gruppe gdw. für alle $x, y, z \in M$ gilt:
 - $\rightarrow x \oplus (y \oplus z) = (x \oplus y) \oplus z$.

(Assoziativität)

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - \blacktriangleright Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für jedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x").
 - Für alle x, y haben wir x + y = y + x.
- Eine algebraische Struktur (M, \oplus, \cdot^*, e) des Typs (0, 1, 1, 1) ist eine kommutative oder auch Abelsche Gruppe gdw. für alle $x, y, z \in M$ gilt:
- (Assoziativität)
 - $\rightarrow x \oplus (y \oplus z) = (x \oplus y) \oplus z$.

 - $\rightarrow x \oplus y = y \oplus x$.

(Kommutativität)

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$.
 - \blacktriangleright Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für iedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x").
 - Für alle x, y haben wir x + y = y + x.
- Eine algebraische Struktur (M, \oplus, \cdot^*, e) des Typs (0, 1, 1, 1) ist eine kommutative oder
- auch Abelsche Gruppe gdw. für alle $x, y, z \in M$ gilt:
 - $\rightarrow x \oplus (y \oplus z) = (x \oplus y) \oplus z$. (Assoziativität)
 - (Kommutativität) $\rightarrow x \oplus y = y \oplus x$.
 - (neutrales Element) $ightharpoonup e \oplus x = x$.

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$. \blacktriangleright Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für iedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x").
 - Für alle x, y haben wir x + y = y + x.
- Eine algebraische Struktur (M, \oplus, \cdot^*, e) des Typs (0, 1, 1, 1) ist eine kommutative oder auch Abelsche Gruppe gdw. für alle $x, y, z \in M$ gilt:

auch Abelsche Gruppe gdw. für alle
$$x,y,z\in M$$
 gilt:

- $\rightarrow x \oplus (y \oplus z) = (x \oplus y) \oplus z$. (Assoziativität)
- (Kommutativität) $\rightarrow x \oplus y = y \oplus x$.

- (neutrales Element) $ightharpoonup e \oplus x = x$.

(inverse Elemente) $x \oplus x^* = e$

Diskrete Strukturen | Kommutative Gruppen

13 / 19

Beispiele von kommutativen Gruppen.

Beispiele von kommutativen Gruppen.

• (Z.

(ℤ, +,

• $(\mathbb{Z}, +, (-\cdot),$

• $(\mathbb{Z}, +, (-\cdot), 0)$,

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - ► Auch

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$,

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - ▶ Auch $(\mathbb{Q}, +, (-\cdot), 0)$, $(\mathbb{R}, +, (-\cdot), 0)$,

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $\big(\mathbb{Q},+,(-\cdot),0\big)$, $\big(\mathbb{R},+,(-\cdot),0\big)$,
- $(\mathbb{Q} \setminus \{0\},$

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - ▶ Auch $(\mathbb{Q}, +, (-\cdot), 0)$, $(\mathbb{R}, +, (-\cdot), 0)$,
- $(\mathbb{Q} \setminus \{0\}, \cdot,$

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - $\blacktriangleright \ \, \mathsf{Auch} \ \, \big(\mathbb{Q},+,(-\cdot),0\big) \text{, } \big(\mathbb{R},+,(-\cdot),0\big) \text{,}$
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},$

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - ▶ Auch $(\mathbb{Q}, +, (-\cdot), 0)$, $(\mathbb{R}, +, (-\cdot), 0)$,
- $(\mathbb{Q} \setminus \{0\}, \cdot, \cdot^{-1}, 1)$

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - ▶ Auch $(\mathbb{Q}, +, (-\cdot), 0)$, $(\mathbb{R}, +, (-\cdot), 0)$,
- $(\mathbb{Q} \setminus \{0\}, \cdot, \cdot^{-1}, 1)$
 - ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - ▶ Auch $(\mathbb{Q}, +, (-\cdot), 0)$, $(\mathbb{R}, +, (-\cdot), 0)$,
- $(\mathbb{Q} \setminus \{0\}, \cdot, \cdot^{-1}, 1)$
- ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- (N,

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - $\blacktriangleright \ \, \mathsf{Auch} \ \, \big(\mathbb{Q},+,(-\cdot),0\big) \text{, } \, \big(\mathbb{R},+,(-\cdot),0\big) \text{,}$
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},1)$
- ightharpoonup Auch $\left(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1\right)$
- (N, +,

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - ▶ Auch $(\mathbb{Q}, +, (-\cdot), 0)$, $(\mathbb{R}, +, (-\cdot), 0)$,
- $(\mathbb{Q} \setminus \{0\}, \cdot, \cdot^{-1}, 1)$
 - ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- $(\mathbb{N}, +, (-\cdot),$

Diskrete Strukturen | Kommutative Gruppen

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - ▶ Auch $(\mathbb{Q}, +, (-\cdot), 0)$, $(\mathbb{R}, +, (-\cdot), 0)$,
- $(\mathbb{Q} \setminus \{0\}, \cdot, \cdot^{-1}, 1)$
 - ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- $(\mathbb{N}, +, (-\cdot), 0)$ ist keine kommutative Gruppe,

Diskrete Strukturen | Kommutative Gruppen

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$, $(\mathbb{R},+,(-\cdot),0)$,
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},1)$
 - \blacktriangleright Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- $(\mathbb{N}, +, (-\cdot), 0)$ ist keine kommutative Gruppe, denn es gibt kein $n \in \mathbb{N}$, so dass 1 + n = 0).

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$, $(\mathbb{R},+,(-\cdot),0)$,
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},1)$
 - ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- $(\mathbb{N}, +, (-\cdot), 0)$ ist keine kommutative Gruppe, denn es gibt kein $n \in \mathbb{N}$, so dass 1 + n = 0).
 - \blacktriangleright (\mathbb{Q} ,

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$, $(\mathbb{R},+,(-\cdot),0)$,
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},1)$
 - ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- $(\mathbb{N}, +, (-\cdot), 0)$ ist keine kommutative Gruppe, denn es gibt kein $n \in \mathbb{N}$, so dass 1 + n = 0).
 - \blacktriangleright ($\mathbb{Q}, \cdot,$

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$, $(\mathbb{R},+,(-\cdot),0)$,
- $(\mathbb{Q} \setminus \{0\}, \cdot, \cdot^{-1}, 1)$
 - ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- $(\mathbb{N}, +, (-\cdot), 0)$ ist keine kommutative Gruppe, denn es gibt kein $n \in \mathbb{N}$, so dass 1 + n = 0.
 - $\blacktriangleright (\mathbb{Q}, \cdot, \cdot^{-1},$

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$, $(\mathbb{R},+,(-\cdot),0)$,
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},1)$
 - ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- $(\mathbb{N}, +, (-\cdot), 0)$ ist keine kommutative Gruppe, denn es gibt kein $n \in \mathbb{N}$, so dass 1 + n = 0).
 - \blacktriangleright $(\mathbb{Q},\cdot,\cdot^{-1},1)$ ist auch keine kommutative Gruppe,

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$, $(\mathbb{R},+,(-\cdot),0)$,
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},1)$
 - ightharpoonup Auch $(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1)$
- $(\mathbb{N}, +, (-\cdot), 0)$ ist keine kommutative Gruppe, denn es gibt kein $n \in \mathbb{N}$, so dass 1 + n = 0).
 - $lackbox{}(\mathbb{Q},\cdot,\cdot^{-1},1)$ ist auch keine kommutative Gruppe, denn es gibt kein $q\in\mathbb{Q}$,

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$, $(\mathbb{R},+,(-\cdot),0)$,
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},1)$
 - ightharpoonup Auch $\left(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1\right)$
- $(\mathbb{N},+,(-\cdot),0)$ ist keine kommutative Gruppe, denn es gibt kein $n\in\mathbb{N}$, so dass 1+n=0).
 - $lackbox{}(\mathbb{Q},\cdot,\cdot^{-1},1)$ ist auch keine kommutative Gruppe, denn es gibt kein $q\in\mathbb{Q}$, so dass $0\cdot q=1$).

Wir schreiben am meistens

Wir schreiben am meistens $(\mathbb{Q},+)$,

Wir schreiben am meistens $(\mathbb{Q},+)$, $(\mathbb{R},+)$, etc.

Wir schreiben am meistens $(\mathbb{Q},+)$, $(\mathbb{R},+)$, etc. da die inverse Operation

• D.H. wir können

• D.H. wir können die kommutative Gruppen

• D.H. wir können die kommutative Gruppen auch wie folgt definieren.

• D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M, +) ist eine kommutative Gruppe, gdw.

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.

ightharpoonup für alle $x, y, z \in M$

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.

▶ für alle $x, y, z \in M$ gilt

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.

▶ für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \textbf{für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$
 - \blacktriangleright für alle $x, y \in M$

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \textbf{für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$
 - ▶ für alle $x, y \in M$ gilt

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \textbf{für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$
 - ▶ für alle $x, y \in M$ gilt x + y = y + x

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \text{für alle } x,y,z \in M \ \ \text{gilt } (x+y)+z=x+(y+z)$
 - ▶ für alle $x, y \in M$ gilt x + y = y + x
 - ightharpoonup es gibt $0 \in M$,

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \text{für alle } x,y,z \in M \ \ \text{gilt } (x+y)+z=x+(y+z)$
 - ▶ für alle $x, y \in M$ gilt x + y = y + x
 - ightharpoonup es gibt $0 \in M$, so dass

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \textbf{ für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$
 - ▶ für alle $x, y \in M$ gilt x + y = y + x
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \textbf{ für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$
 - ▶ für alle $x, y \in M$ gilt x + y = y + x
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \textbf{ für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$
 - ▶ für alle $x, y \in M$ gilt x + y = y + x
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - Figure 1. Find the function of the function of the function $x,y,z\in M$ gilt (x+y)+z=x+(y+z)
 - ▶ für alle $x, y \in M$ gilt x + y = y + x
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ightharpoonup für alle $x \in M$

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\blacktriangleright \ \ \text{für alle} \ x,y,z \in M \ \ \text{gilt} \ (x+y)+z=x+(y+z)$
 - ightharpoonup für alle $x, y \in M$ gilt x + y = y + x
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - \blacktriangleright für alle $x \in M$ gibt es y

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \text{für alle } x,y,z \in M \ \ \text{gilt } (x+y)+z=x+(y+z)$
 - Figure $x, y \in M$ gilt x + y = y + x
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ▶ für alle $x \in M$ gibt es y so dass x + y = 0.

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - \blacktriangleright für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
 - $\qquad \qquad \textbf{für alle } x,y \in M \ \ \textbf{gilt } x+y=y+x$
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ▶ für alle $x \in M$ gibt es y so dass x + y = 0.
- Kein Problem mit der Wohldefiniertheit im vierten Punkt:

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\blacktriangleright \ \text{ für alle } x,y,z \in M \ \text{ gilt } (x+y)+z=x+(y+z)$
 - $\qquad \qquad \textbf{ für alle } x,y \in M \ \ \textbf{gilt } x+y=y+x$
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ▶ für alle $x \in M$ gibt es y so dass x + y = 0.
- Kein Problem mit der Wohldefiniertheit im vierten Punkt: Die ersten drei implizieren,

Diskrete Strukturen | Kommutative Gruppen

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\blacktriangleright \ \, \mathsf{für} \, \, \mathsf{alle} \, \, x,y,z \in M \ \, \mathsf{gilt} \, (x+y) + z = x + (y+z)$
 - $\qquad \qquad \textbf{ für alle } x,y \in M \ \ \textbf{gilt } x+y=y+x \\$
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ▶ für alle $x \in M$ gibt es y so dass x + y = 0.
- Kein Problem mit der Wohldefiniertheit im vierten Punkt: Die ersten drei implizieren, dass 0 eindeutig ist:

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - ightharpoonup für alle $x,y,z\in M$ gilt (x+y)+z=x+(y+z)
 - $\qquad \qquad \textbf{für alle } x,y \in M \ \ \textbf{gilt } x+y=y+x$
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ▶ für alle $x \in M$ gibt es y so dass x + y = 0.
- Kein Problem mit der Wohldefiniertheit im vierten Punkt: Die ersten drei implizieren, dass 0 eindeutig ist: 0 = 0 + 0' = 0'.

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.
 - $\qquad \qquad \textbf{ für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$

 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ▶ für alle $x \in M$ gibt es y so dass x + y = 0.

▶ für alle $x, y \in M$ gilt x + y = y + x

- Kein Problem mit der Wohldefiniertheit im vierten Punkt: Die ersten drei implizieren, dass 0 eindeutig ist: 0=0+0'=0'.
- Die inverse ist auch eindeutig:

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.

• Kein Problem mit der Wohldefiniertheit im vierten Punkt: Die ersten drei implizieren,

- $\qquad \qquad \textbf{für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$
 - $\qquad \qquad \text{für alle } x,y \in M \ \ \text{gilt } x+y=y+x$
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ▶ für alle $x \in M$ gibt es y so dass x + y = 0.
- Die inverse ist auch eindeutig: Wenn 0 = x + y = x + z dann z = 0 + z = (y + x) + z = y + (x + z) = y.

Lemma. Sei (M, +) eine kommutative Gruppe

Lemma. Sei (M, +) eine kommutative Gruppe und $x, y \in M$.

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$,

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z := (-x) + y.

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z:=(-x)+y. Dann

x + z

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

x + z =

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) =$$

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z:=(-x)+y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit,

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x + z = x + z'

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'),

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität

Lemma. Sei (M, +) eine kommutative Gruppe und $x, y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$. so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

Lemma. Sei (M, +) eine kommutative Gruppe und $x, y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

Lemma. Sei (M, +) eine kommutative Gruppe und $x, y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

• Im Beweiss

Lemma. Sei (M, +) eine kommutative Gruppe und $x, y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

• Im Beweiss haben wir auch die folgende Eigenschaft gesehen:

Lemma. Sei (M, +) eine kommutative Gruppe und $x, y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

• Im Beweiss haben wir auch die folgende Eigenschaft gesehen: in jeder kommutativen Gruppe

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

 Im Beweiss haben wir auch die folgende Eigenschaft gesehen: in jeder kommutativen Gruppe wenn wir Elemente $m, x, y \in M$

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$. so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

• Im Beweiss haben wir auch die folgende Eigenschaft gesehen: in jeder kommutativen Gruppe wenn wir Elemente $m, x, y \in M$ mit m+x=m+y haben,

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y\in M$. Dann existiert genau ein $z\in M$, so dass x+z=y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

• Im Beweiss haben wir auch die folgende Eigenschaft gesehen: in jeder kommutativen Gruppe wenn wir Elemente $m, x, y \in M$ mit m + x = m + y haben, dann gilt x = y.

Lemma. Sei (M,+) eine kommutative Gruppe und $x,y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z = z'.

 Im Beweiss haben wir auch die folgende Eigenschaft gesehen: in jeder kommutativen Gruppe wenn wir Elemente $m, x, y \in M$ mit m + x = m + y haben, dann gilt x = y.

Wir werden häufig die Notation x-y für x+(-y) benutzen.

Lemma. Sei (M, +) eine kommutative Gruppe und $x, y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

- Im Beweiss haben wir auch die folgende Eigenschaft gesehen: in jeder kommutativen Gruppe wenn wir Elemente $m, x, y \in M$ mit m+x=m+y haben, dann gilt x=y. Wir werden häufig die Notation x-y für x+(-y) benutzen.
- Üblicherweise wird die Kardinalität einer Gruppe als Ordnung der Gruppe bezeichnet.

Wenn wir zwei Gruppen

Wenn wir zwei Gruppen $(A, +_A)$

Wenn wir zwei Gruppen $(A, +_A)$ und

Wenn wir zwei Gruppen $(A, +_A)$ und $(B, +_B)$

Wenn wir zwei Gruppen $(A, +_A)$ und $(B, +_B)$ haben,

Wenn wir zwei Gruppen $(A, +_A)$ und $(B, +_B)$ haben, können wir auch

Wenn wir zwei Gruppen $(A, +_A)$ und $(B, +_B)$ haben, können wir auch das karthesische Produkt

Wenn wir zwei Gruppen $(A, +_A)$ und $(B, +_B)$ haben, können wir auch das karthesische Produkt $A \times B$

Wenn wir zwei Gruppen $(A, +_A)$ und $(B, +_B)$ haben, können wir auch das karthesische Produkt $A \times B$ als eine Gruppe betrachten.

• Beispiele:

• Beispiele: $(\mathbb{R}^2, +)$,

• Beispiele: $(\mathbb{R}^2,+)$, $(\mathbb{R}^n,+)$,

• Beispiele: $(\mathbb{R}^2,+)$, $(\mathbb{R}^n,+)$, $(\mathbb{R} \ times\mathbb{Z},+)$

• Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n

• Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$.

• Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n".

• Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche okmmutative Gruppe

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche okmmutative Gruppe ist isomorph

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche okmmutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche okmmutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche okmmutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
 - ▶ Dies ist ein sehr wichtiger Satz, der normalerweise in einem Kurs über lineare Algebra bewiesen wird.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche okmmutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
 - ▶ Dies ist ein sehr wichtiger Satz, der normalerweise in einem Kurs über lineare Algebra bewiesen wird. Wir werden ihn in diesem Kurs nicht beweisen.

• Ein Isomorphismus

• Ein Isomorphismus von Gruppen

• Ein Isomorphismus von Gruppen (M,+)

• Ein Isomorphismus von Gruppen (M,+) und

• Ein Isomorphismus von Gruppen (M,+) und (N,+)

• Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion

• Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$,

• Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)$

• Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=$

• Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$

• Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a, b \in M$ gilt.

• Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt,

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a, b \in M$ gilt.
 - ▶ Daraus folgt, dass

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ightharpoonup Daraus folgt, dass $\varphi(0_M)=0_N$,

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein:

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus:

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+)

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+)

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi\colon M\to N$, so dass $\varphi(a+b)=\varphi(a)+\varphi(b)$ für alle $a,b\in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$,

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a,b \in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a,b \in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a,b \in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a,b \in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ un

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a,b \in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ un d $\varphi(-x)=-\varphi(x)$ für alle $x\in M$.

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a,b \in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ un d $\varphi(-x)=-\varphi(x)$ für alle $x\in M$.
- Die Eigenschaften $\varphi(0_M)=0_N$ und $\varphi(-x)=-\varphi(x)$ müssen wir nicht verlangen,

Diskrete Strukturen | Kommutative Gruppen

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a,b \in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ un d $\varphi(-x)=-\varphi(x)$ für alle $x\in M$.
- Die Eigenschaften $\varphi(0_M)=0_N$ und $\varphi(-x)=-\varphi(x)$ müssen wir nicht verlangen, sie folgen automatisch aus $\varphi(a+b)=\varphi(a)+\varphi(b)$.

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de