Hurwitz Automorphism Theorem

Javier López-Contreras

April 2022

1 Summary

The aim of this document is to give a proof of Hurwitz Automorphism Theorem, that states that the number of conformal automorphisms of a compact Riemann Surface M of genus $g \geq 2$ is upper-bounded by

$$|\operatorname{Aut}(M)| \le 84(g-1)$$

The proof is divided in two parts

- 1. Given $H \in \operatorname{Aut}(M)$ a finite subgroup, define the topological and complex structure of M/H and the properties of the ramificated covering given by the quotient map $\pi: M \mapsto M/H$.
- 2. Apply the Riemann-Hurwitz identity to the aforementioned ramified covering to prove the theorem.

Comment 1. The main reference for this work is Farkas-Kra, Riemann Surfaces, Chapters III.7, V.1.

2 Preliminaries

We will need the following theorems.

Theorem 1 (Riemman-Hurwitz Identity). Let R and T be compact Riemann Surfaces of genus g and γ respectively. Let $f: R \mapsto T$ a non constant holomorphism. Let N be the degree of the ramified covering defined by f and

$$B = \sum_{P \in R} b_f(P),$$

where $b_f(P)$ is the branching number of P by f. Then,

$$g - 2 = N(\gamma - 2) + 1 + \frac{B}{2}$$

PROOF. Proven in class.

Theorem 2 (Weiestrass gap theorem). Let M be a compact Riemann Surface of positive genus g and $P \in M$ an arbitrary point. Then, there exist exactly g integers

$$1 \le n_1 < n_2 < \cdots < n_q < 2g$$

such that there does not exist a holomorphic function in M $\{p\}$ with a pole of order n_i at P.

Definition 1 (Weierstrass points). A point is called a Weierstrass point if it doesn't have gaps precisely at $\{1, 2, \dots, g\}$.

Corollary 1. The set of Weierstrass points is discrete. Hence, by M compact, finite.

PROOF. These results are a consequence of Riemann-Roch's theorem. The proof is outside of the scope of this document.

3 Structure of M/H

Definition 2. Let Aut(M) be the set of conformal (holomorphic, bijective and inverse holomorphic) maps $f: M \mapsto M$.

Proposition 1 (Farkas-Kra III.7.7). Let M be an arbitrary R.S, $H \subseteq Aut(M)$ a finite subgroup, $P \in M$ and $H_P = \{h|h(P) = P, h \in H\}$. Then, H_P is cyclic.

Using the same notations,

Definition 3 (Farkas-Kra III.7.8). We can provide M/H with a Riemann Surface structure compatible with $\pi: M \mapsto M/H$.

PROOF. For a given $P \in M$, we know that $H_P = \langle h \rangle$.

If h = 1, $H_P = \{1\}$, then $\pi^{-1}(\pi(P)) = \{P\}$, so the local coordinate of P will also be of $\pi(P)$ and, in such local coordinates, $\pi(z) = z$, so the branching number $b_{\pi}(P) = 0$.

Otherwise, $H_P = \langle h \rangle$ with $h: M \mapsto M$ a non constant conformal automorphism. Let $k = |H_P|$. Choose a neighbourhood U of P such that $(U) \in U$. Then, $h(z) = e^{2\pi i/k}z$ for some local coordinate at U, then (U, z^k) will be a local coordinate of $[P] \in M/H$ and $b_{\pi}(P) = k - 1$.

4 Hurwitz theorem

Comment 2. In this section, we assume M is a compact Riemann Surface of genus $g \ge 2$.

Proposition 2. Let $1 \neq T \in Aut(M)$, the set of fixed points of T is discrete. Hence, as M compact, it is finite.

Given $T: M \to M$ and $P \in M$ such that T(P) = P. If P is a branching point, it is clearly the only fixed point in a small neighbourhood. If P is not a branching point, f(z) = z for some local coordinate M.

Proposition 3. (Farkas-Kra V.1.1) Let $1 \neq T \in Aut(M)$, then T has at most 2g + 2 fixed points.

Proposition 4. (Farkas-Kra V.1.2) Let W(M) the the finite set of Weierstrass points of M and $T \in Aut(M)$. Then T(W(M)) = W(M). Hence, there is a group homomorphism $\lambda : Aut(M) \mapsto Perm(W(M))$.

Proposition 5. If M is not hyperelliptic, λ is injective. If M is hyperelliptic, $\lambda = \langle J \rangle$, the hyperelliptic involution.

Corollary 2. Aut(M) is finite.

PROOF. If M is not hyperelliptic, we have injected Aut(M) into a finite group, so Aut(M) mush be finite.

If M is hyperelliptic, by the isomorphism theorem, $\lambda(\operatorname{Aut}(M)) \simeq \operatorname{Aut}(M)/\langle J \rangle$. Since both $\langle J \rangle$ and $\lambda(\operatorname{Aut}(M)) \subseteq \operatorname{Perm}(W(M))$ are finite, $\operatorname{Aut}(M)$ must be finite.

Theorem 3 (Hurwitz). Let M be a compact Riemann Surface of genus $g \ge 2$, then $\operatorname{Aut}(M) \le 84(g-1)$.

PROOF. We abbreviate $\operatorname{Aut}(M) = G$. We study the ramified covering $\pi: M \mapsto M/G$.

The degree of the ramified covering is N = |G| as if P is not a branching point of π (which exists as branching points are finite), then none of the Q = h(P) are branching points $(\pi(Q) = [P])$ and, as we have seen in Defintion 3, $|G_P| = 1$

$$N = \sum_{Q \in \pi^{-1}([P])} (b_{\pi}(Q) + 1) = \sum_{Q \in G \cdot P} (b_{\pi}(Q) + 1) = |G \cdot P| = |G|/|G_P| = |G|$$

Otherwise $h(P) = g(P) \implies g^{-1}h(P) = P$, which would be contradictory. From Group Theory, we know that $P \in M$, $|G_P| \cdot |G \cdot P| = |G|$ and we have seen that $b_{\pi}(P) = |G_P| - 1 = \frac{N}{|G \cdot P|} - 1$.