Classifying Fashion Images with Machine Learning

Shadi Farzankia	107209
Shruti Pashine	106369
Hemant	106007
Dharampal Singh	106316

https://github.com/AadrianLeo/Fashion-Style-Classifier

Main Goal

Classify Fashion related dataset into 5 Categories:

- StreetWear
- Formal
- Vintage
- Sporty
- Casual

Motivation

 Understanding fashion styles helps power recommendation engines, trend analysis, and personalized styling.

Dataset Details

- Used Reddit PRAW API to Obtain Fashion-Related Subreddits
- Used hashtags such as #streetwear, #fashion, and #femalefashionadvice
- Relevant images were filtered and labeled into 5 style categories using Label Studio
- Removed **non-fashion content**, such as:
 - Tweet screenshots
 - Memes or text-only posts
 - Filtered out images with multiple people to maintain style consistency

Distribution of the Data

Category	Percentage
Streetwear	31.9%
Casual	25.0%
Formal	20.7%
Vintage	13.8%
Sporty	8.6%

Models Used

- 1. Naive Baseline
- 2. K-Nearest Neighbors (KNN)
- 3. Neural Network (EfficientNet-B0)

1. Naive BaseLine

- predicts the most common class
- minimum expected performance
- For checking if our models learn anything at all

Naive Baseline Accuracy: precision		0.3162393162393162 recall f1-score		support
casual formal sporty streetwear vintage	0.00 0.00 0.00 0.32 0.00	0.00 0.00 0.00 1.00 0.00	0.00 0.00 0.00 0.48 0.00	30 24 10 37 16
accuracy macro avg weighted avg	0.06 0.10	0.20 0.32	0.32 0.10 0.15	117 117 117

2. K-Nearest Neighbours

- a non-parametric algorithm
- classifies a sample based on the majority label of its closest training examples in the feature space
- pipeline:
 - Feature Extraction Extracted deep image features using a pretrained MobileNetV2 model (without the classification head)
 - **MobileNetV2:** Pretrained on ImageNet
 - Dimensionality Reduction Applied PCA to reduce the feature space and improve computational efficiency
 - Keep enough principal components to explain 95% of the variance in the data
 - Feature Standardization Used StandardScaler to normalize features for distance-based comparison.
 - **Hyperparameter Tuning -** Tuned k and distance metrics using **GridSearchCV** with **5-fold cross-validation**.
 - Train/Validation Split: Stratified split to maintain class balance.

Results for KNN:

- **Overall Accuracy**: 41% indicates moderate performance
- Best Classified:
 - \circ **Formal** \rightarrow F1-score: 0.55
 - \circ **Streetwear** \rightarrow F1-score: 0.56
- Worst Classified:
 - \circ **Sporty** \rightarrow F1-score: 0.00
- Macro Avg. F1-score: 0.29
 - Reflects poor performance on minority classes

	Accuracy: 0.41025641025641024				
Classification Report:					
		precision	recall	f1-score	support
	1	0.25	0.43	0.47	20
	casual	0.25	0.13	0.17	30
	formal	0.43	0.75	0.55	24
	sporty	0.00	0.00	0.00	10
	streetwear	0.50	0.65	0.56	37
	vintage	0.20	0.12	0.15	16
	accuracy			0.41	117
	macro avg	0.28	0.33	0.29	117
	weighted avg	0.34	0.41	0.36	117

Convolutional Neural Network (CNN)

- Model: EfficientNet-B0 (pretrained on ImageNet, fine-tuned on fashion dataset)
- Pipeline:
 - Data Preprocessing: Resized images, applied augmentation (flip, rotation, color jitter), normalized pixel values.
 - **Train/Validation Split**: Stratified split to maintain class balance.
 - **Model Architecture**: **EfficientNet-B0** with custom classification head.
 - Training: Cross-entropy loss, Adam optimizer, trained for 20 epochs.
 - **Evaluation**: Classification report (accuracy, precision, recall, F1-score).

CNN Results (EfficientNet-Bo):

- Overall Accuracy: 45%
- Best Classified:
 - \circ Formal \rightarrow F1-score: 0.64
 - \circ Streetwear \rightarrow F1-score: 0.5
- Worst Classified:
 - \circ Sporty \rightarrow F1-score: 0.27
- Macro Avg. F1-score: 0.42

	precision	recall	f1-score	support
casual formal sporty streetwear vintage	0.42 0.62 0.25 0.51 0.28	0.37 0.67 0.30 0.49 0.31	0.39 0.64 0.27 0.50 0.29	30 24 10 37 16
accuracy macro avg weighted avg	0.42 0.46	0.43 0.45	0.45 0.42 0.45	117 117 117

Results Comparison:

Metric	Naive Baseline	KNN	EfficientNet- B0
Accuracy	31.9%	41%	%45
Macro F1- Score	~0.20	0.29	0.42
Best Classified	Streetwear	Streetwear/F ormal	Formal/Stree twear
Worst Classified	All but most common	Sporty	Sporty (still low)

Streamlit App: Predicting Fashion Styles from Images

Future Work:

- Expert guidance for more accurate and consistent image labeling.
- **Apply stronger data augmentation** techniques to help balance underrepresented classes.
- Use oversampling or generate synthetic images (e.g., with GANs) to improve performance on minority categories.
- **Expand the dataset** with more diverse and balanced fashion images to enhance model generalization.
- **Tune hyperparameters** like learning rate, batch size, and number of epochs to optimize each model's performance.
- Add explainability tools such as Grad-CAM to better understand and visualize how the model makes decisions.