Theory of Linear Spin Wave Emission from a Bloch Domain Wall

N.J. Whitehead¹, T.G. Philbin¹, S.A.R. Horsley¹, A.N. Kuchko², V.V. Kruglyak¹

¹Department of Physics & Astronomy, University of Exeter, Stocker Road, Exeter, UK, EX4 4QL ²Donetsk National University, 24 Universitetskaya Street, Donetsk, 83001, Ukraine

Abstract. An analytical theory of exchange spin wave emission from a Bloch domain wall in a thin film is presented. We model a ferromagnet with antiparallel domains aligned along the (in-plane) easy-axis, where the hard axis points out of the film plane. When excited by a continuous, harmonic external magnetic field oriented orthogonal to the domain wall, plane spin waves are emitted above a threshold frequency. Crucially, the spin waves are emitted as a result of a linear excitation, not due to domain wall motion.

Introduction

Exchange spin waves (SWs) have great potential as information carriers on the nanoscale, due to their short wavelengths and isotropic, quadratic dispersion [1,2].

The wavelengths of SWs generated via electrical antennas or point contacts are **limited** by the **size** of the device [2].

Recent work [3-6] has demonstrated that domain walls can generate SWs, although the mechanism is unclear.

Fig.1: The studied system. The dotted line indicates the domain wall centre, and blue arrows represent the static magnetisation configuration.

We use **analytical theory** to explain this phenomena for exchange SWs.

We model an infinitely wide thin film, with a pinned Bloch domain wall separating two antiparallel domains, shown in Fig.1. Note the film lies in the **y-z** plane.

Background Theory

Excitation of the sample via an in-plane, time-varying magnetic field h(t) induces **precession** of the magnetisation M, described by the Landau-Lifshitz equation without damping:

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma [\mathbf{M} \times \mathbf{H}_{eff}]$$

The effective field \mathbf{H}_{eff} is the functional derivative of the free energy density W:

$$W = \frac{\alpha}{2} \left(\frac{\partial \mathbf{M}}{\partial y} \right)^2 - \frac{\beta_{\parallel}}{2} (\mathbf{M} \cdot \hat{\mathbf{z}})^2 + \frac{\beta_{\perp}}{2} (\mathbf{M} \cdot \hat{\mathbf{x}})^2 - \mathbf{h} \cdot \mathbf{M}$$
Exchange
In-Plane Anisotropy
In-Plane Anisotropy
Excitation

Minimising W in spherical coord's leads to the domain wall profile (Fig.2) - a function of y and the domain wall width λ_B :

We rotate the frame of reference, as shown in Fig.3, to follow the static magnetisation M_0 .

We then linearise the Landau-Lifshitz equation and solve for $\tilde{\mathbf{m}}_{\beta}'$, the excitation of magnetisation due to the domain wall.

Fig.2: Static magnetisation M_0 with $\lambda_B \approx$ 6nm. NB: The length of M_0 is arbitrarily sized for clarity.

Fig.3: Rotated (primed) frame. The z' axis always follows M_0 , and y = y'.

Results & Discussion

- **SWs emitted** for frequency: $\omega > \gamma M_0 \sqrt{\beta_{\parallel}(\beta_{\parallel} + \beta_{\perp})}$ (Fig.4a, 4b).
- Amplitude and wavelength (Fig.4c) determined by h(t).

- SWs are **elliptical** (Fig.4d) with ellipticity reducing at large **k**.
- Magnetisation vectors clearly show **SW emission** (Fig.5).
- Emission due to a linear theory, not a non-linear excitation of domain wall. Full details in ref. [7].

References

[1] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43 264001 (2010). [2] A. V. Chumak, V. I. Vasyuchka, A. A. Serga and B. Hillebrands, *Nat. Phys.* **11** 453-461 (2015).

[3] V. Sluka et al., INTERMAG IEEE Abstract DE-03 (2015).

[4] B. Mozooni and J. McCord, Appl. Phys. Lett. 107 042402 (2015).

[5] B. Van de Wiele, S. J. Hämäläinen, P. Baláž, F. Montoncello and S. van Dijken, Sci. Rep. 6 21330 (2016). [6] X. S. Wang and X. R. Wang, Phys. Rev. B 90, 184415 (2014).

[7] N. J. Whitehead, S. A. R. Horsley, T. G. Philbin, A. N. Kuchko, V. V. Kruglyak, Phys. Rev. B. (in press) (2017)

This research has received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement No. 644348 (MagIC).

