Problem 28.

Theorem: For all integers a, b, and c, if $a \mid bc$ then $a \mid b$ or $a \mid c$.

Proof. Let
$$a, b, c \in \mathbb{Z} \ni a \mid bc$$

Since $a \mid bc, \exists d \in \mathbb{Z} \ni ad = bc$

Problem 29.

Theorem: For all integers a and b, if $a \mid b$ then $a^2 \mid b^2$.

Proof. Let $a, b \in \mathbb{Z} \ni a$ divides b By definition of divisibility,

$$\exists\; k\in\mathbb{Z}\ni b=ak$$

$$b^2 = (ak)^2$$
 by substitution
= $(ak)(ak)$ by algebra
= $a(kak)$ by associative property

Let $t = (kak), t \in \mathbb{Z}$ since $a, k \in \mathbb{Z}$

The sum and products of integers is an integer.

Therefore, $a^2 \mid b^2$ by definition of divisibility since $b^2 = at$ where $t \in \mathbb{Z}$ by substitution