Basic Concepts Recap:

Nucleophiles and Electrophiles

- •nucleophiles are neutral or anionic species that donate high energy electrons from a filled orbital (HOMO) to an electrophile
- electrophiles are neutral or cationic species with low energy vacant or antibonding orbitals (LUMO) that can accept electrons

Curved Arrows

- •organic chemists use curved arrows to show reaction mechanisms and demonstrate resonance structures
- curved arrows indicate the flow of electrons

Organic Acids and Bases

- •Strong acids have weak conjugate bases; strong bases have weak conjugate acids
- When intuiting the "acidity" of a proton, consider the stability of the conjugate base
- Important factors: delocalization of charge (resonance stabilization), hybridization of carbon, inductive effects of electronegative atoms

Organometallic Reagents: Carbon Nucleophiles

Organometallic reagents: a carbon is bound to a more electropositive metal, resulting in a polar covalent bond with substantial negative charge on carbon. When M = Mg or Li, these reagents behave as "carbanions"

MO considerations:

How to Make Organometallic Reagents

Grignard reagents (organomagnesium reagents):

François Auguste Victor Grignard

• shared the Nobel Prize in chemistry with Paul Sabatier in 1912

"for the discovery of the so-called Grignard reagent, which in recent years has greatly advanced the progress of organic chemistry"

http://nobelprize.org/nobel_prizes/chemistry/laureates/1912/grignard-bio.html

How to Make Organometallic Reagents

Organolithiums:

Organometallic Reagents are Strong Bases

Organometallic reagents will deprotonate acidic protons

$$Li-CH_3 + H_2O \longrightarrow$$

$$n$$
-Bu-Li + H_3 C N CH_3 CH_3 CH_3

Remember: a base can deprotonate acids with pK_a values that are lower than its conjugate acid.

Organometallic Reagents are Strong Bases

In terms of pK₂ and equilibrium constants:

$$n$$
-Bu-Li + H_3 C H_3 CH_3 H_3 H_3 CH_3 H_3 H_3 CH_3 H_3 H_3

remember: a base can deprotonate acids with pK_a values that are lower than it's conjugate acid.

Organometallic Reagents Add to Carbonyls

Remember, carbonyls are electrophilic at carbon:

A general mechanism for organometallic addition to carbonyl:

Organometallic Reagents Add to Carbonyls

Organometallic reagents are nucleophilic at carbon

- addition of organometallic reagents to carbonyls form C-C bonds
- "work-up" step typically involves addition of aqueous acid

General reactions:

<mark>aldehyde</mark>	+	organometallic		2° alcohol
ketone	+	organometallic		3° alcohol

Thinking Backwards: Retrosynthesis

We now know how to make C-C bonds. We can design syntheses of carbinols.

• it can be helpful to think backwards (retrosynthetically)

Addition of Organometallics to Esters:

Esters undergo double-addition of organometallic reagents

H₃C O O THF

1) MeMgBr (2 equiv),
THF

1)
$$H_3C$$
 OH

CH₃

Why Are Ketones More Electrophilic than Esters?

Can use **resonance structures** to rationalize reactivity trend:

$$H_3C$$
 CH_3 $Vs.$ H_3C OCH_3

Trend in carbonyl electrophilicity:

$$H_{3}C + H_{3}C + G_{3} + G_{4}C + G_{5}C + G_$$

Divergent Reactivity in Carbonyl Addition Reactions

All carbonyl addition reactions can roughly be divided into two categories:

the fate of carbonyl additions depends on both:

- the nature of the carbonyl electrophile
- the nature of the nucleophile

Divergent Reactivity in Carbonyl Addition Reactions

Let's consider Type I additions first:

Divergent Reactivity in Carbonyl Addition Reactions

Now let's consider Type II additions:

