Logic control and boolean algebra

Kjartan Halvorsen

April 24, 2020

A logic control loop

Cheese pressing example

ATEX {From FESTO Didactic}

Cheese pressing example - Variables

Activating solenoid S1 extends the cylinder, activating solenoid S2 retracts the cylinder.

State variable

$$x_k = \begin{cases} 0 & \text{Cylinder retracted} \\ 1 & \text{Cylinder extended} \end{cases}$$

Control signal

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix},$$

with

Command signal

$$u_c = egin{cases} 0 & ext{Button unpushed} \ 1 & ext{Button pushed} \end{cases}.$$

Cheese pressing example - Plant dynamics and control law

Activating solenoid S1 extends the cylinder, activating solenoid S2 retracts the cylinder.

Plant dynamics

		state	
$u_{1,k}$	$u_{2,k}$	x_k	x_{k+1}
0	0	0	0
0	1	0	0
1	0	0	1
(1)	(1)	0	undefined
0	0	1	1
0	1	1	0
1	0	1	1
(1)	(1)	1	undefined

Control law_____

X	U_C	u_1	u_2
0	0	0	0
0	1	1	0
1	0	0	1
1	1	0	1

Boolean algebra

$$X,\,Y\in\{0,1\}$$

AND

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1
,	X	Y
×		×

Closed circuit $\Leftrightarrow 1$ Open circuit $\Leftrightarrow 0$ OR

X	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Boolean algebra, contd

$$X, Y, Z \in \{0, 1\}$$

	Property	Dual
Properties of 0 and 1	X + 0 = X	$X \cdot 0 = 0$
	X+1=1	$X \cdot 1 = X$
Idempotent	X + X = X	$X \cdot X = X$
Complementarity	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$
Involution	$\overline{\overline{X}} = X$	
Commutative	X + Y = Y + X	$X \cdot Y = Y \cdot X$
Associative	(X + Y) + Z = X + (Y + Z)	(XY)Z = Z(YZ)
Distributive	$X \cdot (Y + Z) = XY + XZ$	X + YZ = (X + Y)(X + Z)

Boolean algebra, contd

$$X, Y, Z \in \{0,1\}$$

	Theorem	Dual
	X + XY = X(1+Y) = X	X(X+Y)=X
Logic adjacency	$XY + X\overline{Y} = X(Y + \overline{Y}) = X$	$(X+Y)(X+\overline{Y})=X$
De Morgan's	$\overline{X+Y} = \overline{XY}$	$\overline{XY} = \overline{X} + \overline{Y}$

An electrical circuit with memory

Latching circuit

Truth table

X	Y	R_k	R_{k+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

An electrical circuit with memory

Latching circuit

Truth table

X	Y	R_k	R_{k+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Cheese pressing example - Plant dynamics and control law revisited

Activating solenoid S1 extends the cylinder, activating solenoid S2 retracts the cylinder.

Plant dynamics

		state	
		State	
$u_{1,k}$	$u_{2,k}$	X_k	x_{k+1}
0	0	0	0
0	1	0	0
1	0	0	1
(1)	(1)	0	undefined
0	0	1	1
0	1	1	0
1	0	1	1
(1)	(1)	1	undefined

$\begin{aligned} x_{k+1} &= u_{1,k} \overline{u_{2,k}} x_k + \overline{u_{1,k}} \overline{u_{2,k}} x_k + u_{1,k} \overline{u_{2,k}} x_k \\ &= \overline{u_{1,k}} \overline{u_{2,k}} x_k + u_{1,k} \overline{u_{2,k}} \end{aligned}$

Control law

X	Иc	u_1	u_2
0	0	0	0
0	1	1	0
1	0	0	1
1	1	0	1

$$u_1 = \overline{x}u_c$$

$$u_2 = x\overline{u_c} + xu_c = x$$

Cheese pressing example - Control law

Solenoid S1

$$u_1 = \overline{x}u_c$$

MEX

Solenoid S2

$$u_2 = x$$

FALEX

Cheese pressing example - Implementation of the control law

Cheese pressing example - Implementation of the control law, solution

PATEX

Implementing the sequence A+B+B-A-

Control signal

$$u = \begin{bmatrix} u_A + & u_A - & u_B + & u_B - \end{bmatrix}^T$$

with

$$u_A + = \begin{cases} 0 & \text{Solenoid extending A is not activated} \\ 1 & \text{Solenoid extending A is activated} \end{cases}$$

$$u_{A} - = \begin{cases} 0 & \text{Solenoid retracting A is not activated} \\ 1 & \text{Solenoid retracting A is activated} \end{cases}$$

Similar for B.

Implementing the sequence A+B+B-A-, state variables

State variables (naive)

$$x = \begin{bmatrix} x_A & x_B \end{bmatrix}^T$$

with

$$x_{\{A,B\}} = \begin{cases} 0 & \text{Cylinder } \{A,B\} \text{ retracted} \\ 1 & \text{Cylinder } \{A,B\} \text{ extended} \end{cases}$$

Control law (problematic)

Ignoring input signal u_c . Movement should be cyclic

XA	ΧB	u_A+	u_A-	u_B+	u _B -
0	0				
0	1				
1	0				
1	1				

Control law (problematic)

Ignoring input signal u_c . Movement should be cyclic

XA	ХB	u_A+	u_A-	u _B +	u _B -
0	0	1	0	0	0
(0)	(1)	0	0	0	1
1	0	0	1 or 0	1 or 0	0
1	1	0	0	0	1

Implementing the sequence A+B+B-A-, state variables

State variables (better)

$$x = \begin{bmatrix} x_A & x_B & x_P \end{bmatrix}^T,$$

with

$$x_{\{A,B\}} = \begin{cases} 0 & \text{Cylinder } \{A,B\} \text{ retracted} \\ 1 & \text{Cylinder } \{A,B\} \text{ extended} \end{cases}$$

$$x_P = \begin{cases} 0 & \text{Cheese not yet pressed} \\ 1 & \text{Cheese pressed} \end{cases}$$

State transitions

State transitions

Control law (better)

x_A	ХB	ΧP	u_A+	u_A-	u_B+	u _B -
0	0	0				
1	0	0				
1	0	1				
1	1	1				

State transitions

Control law (better)

XA	ХB	ΧP	u_A+	u_A-	u_B+	u _B -
0	0	0	1	0	0	0
1	0	0	0	0	1	0
1	0	1	0	1	0	0
1	1	1	0	0	0	1

Control law (better)

$x_{\mathcal{A}}$	х _В	ΧP	u_A+	u_A-	u_B+	u _B -
0	0	0	1	0	0	0
1	0	0	0	0	1	0
1	0	1	0	1	0	0
1	1	1	0	0	0	1

State transitions

$$u_A + = \overline{x_A}$$

$$u_A - = x_A \overline{x_B} x_P$$

$$u_B + = x_A \overline{x_B} \overline{x_P}$$

$$u_B - = x_B$$

Implementing the sequence A+B+B-A-, latching circuit for x_P

For the report

- ► Truth table for the control law
- ► Control law as boolean expression
- ► Circuit diagram for the controller
- Screen shot and short video showing working solution in FluidSim
- ► Short video showing working solution in hardware