Extending Layerwise Relevance Propagation using Semiring Annotations

Antoine Groudiev L3, ENS Ulm Silviu Maniu – Supervisor SLIDE Team, LIG

September 9, 2024

Plan

Introduction

Problem statement

Layerwise Relevance Propagation Semiring-based provenance annotations

Extending LRF

Semiring generalization of the LRP rule Results over the MNIST dataset

Handling CNNs

Computing relevance for convolutional layers Results for the VGG-16 network

Applications

Image mask computation

Network pruning using LRP ranking

Comparison to image perturbation

Problem statement

Layerwise Relevance Propagation [11]

Layerwise Relevance Propagation

Initialization

Initialization:

$$R_i^{(L)} = \begin{cases} \frac{\mathbf{a}_i^{(L)}}{i} & \text{if } i = y \text{ (the class we want)} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Layerwise Relevance Propagation

Propagation

LRP-0 rule:

$$R_j^{(l)} = \sum_k \frac{a_j^{(l)} w_{j,k}}{\sum_{j'} a_{j'}^{(l)} w_{j',k}} \cdot R_k^{(l+1)}$$
 (LRP-0)

LRP Results visualization

Multilayer Perceptron on MNIST dataset

Figure 1: Reference image and relevance for the class 0

LRP Results visualization

VGG-16 on ImageNet dataset

Figure 2: Reference image

Figure 3: Relevance for the class "castle"

Semiring-based provenance annotations [7, 12]

Definition (Semiring)

A semiring $(\mathbb{K}, \oplus, \otimes, \mathbb{O}, \mathbb{1})$ is such that:

- \otimes distributes over \oplus ,
- $-(\mathbb{K},\oplus,\mathbb{O})$ is a commutative monoid,
- $(\mathbb{K}, \otimes, \mathbb{1})$ is a monoid such that $\mathbb 0$ is absorbing

Example

The following structures are semirings:

- Real semiring: $(\mathbb{R}, +, \times, 0, 1)$
- Boolean semiring: $(\{\bot, \top\}, \lor, \land, \bot, \top)$
- Counting semiring: $(\mathbb{N},+,\times,0,1)$
- Viterbi semiring: $([0,1], \max, \times, 0, 1)$

Plan

Introduction

Problem statement

Layerwise Relevance Propagation
Semiring-based provenance annotations

Extending LRP

Semiring generalization of the LRP rule Results over the MNIST dataset

Handling CNNs

Computing relevance for convolutional layers Results for the VGG-16 network

Applications

Image mask computation

Network pruning using LRP ranking

Comparison to image perturbation

Semiring generalization of the LRP rule

Consider a semiring $(\mathbb{K}, \oplus, \otimes, 0, 1)$

Conversion function:

$$\Theta:\mathbb{R}\longrightarrow\mathbb{K}$$

Initialization:

$$R_i^{(L)} = \begin{cases} 1 & \text{if } i = y \\ 0 & \text{otherwise} \end{cases}$$
 (2)

Propagation rule:

$$R_j^{(l)} = \bigoplus_k \Theta\left(\frac{a_j^{(l)} w_{j,k}}{\sum_{j'} a_{j'}^{(l)} w_{j',k}}\right) \otimes R_k^{(l+1)} \tag{K-LRP}$$

Semiring generalization of the LRP rule

Figure 4: Original network

Figure 5: Annotated network (Boolean)

Boolean Semiring $(\{\bot, \top\}, \lor, \land, \bot, \top)$

$$\Theta = x \longmapsto \begin{cases} \top & \text{if } x \geqslant \theta \\ \bot & \text{otherwise} \end{cases}$$

Counting Semiring $(\mathbb{N}, +, \times, 0, 1)$

$$\Theta = x \longmapsto \begin{cases} 1 & \text{if } x \geqslant \theta \\ 0 & \text{otherwise} \end{cases}$$

Viterbi Semiring $([0,1], \max, \times, 0, 1)$

$$R_{j}^{(l)} = \max_{k} \underbrace{\left(\frac{\left|a_{j}^{(l)}w_{j,k}^{(l)}\right|}{\max_{j'}\left|a_{j'}^{(l)}w_{j',k}^{(l)}\right|}\right)}_{\in [0,1]} \cdot R_{k}^{(l+1)}$$

Plan

Introduction

Problem statement

Layerwise Relevance Propagation

Extending LRF

Semiring generalization of the LRP rule Results over the MNIST dataset

Handling CNNs

Computing relevance for convolutional layers Results for the VGG-16 network

Application

Image mask computation

Network pruning using LRP ranking

Comparison to image perturbation

VGG-16 network

Figure 6: Architecture of the VGG-16 network.

Computing relevance for convolutional layers

$$R_j^{(l)} = \bigoplus_{k}^{\text{Convolution over layer } l + 1} \underbrace{\Theta\left(\frac{a_j^{(l)}w_{j,k}}{\sum_{j'}a_{j'}^{(l)}w_{j',k}}\right)}_{\text{Convolution over layer } l} \otimes R_k^{(l+1)} \tag{\mathbb{K}-LRP}$$

Results for VGG-16: Boolean semiring

Results for VGG-16: Counting semiring

Layer 0 (Conv2d)

Plan

Introductio

Problem statement

Layerwise Relevance Propagation

Semiring-based provenance annotations

Extending LRI

Semiring generalization of the LRP rule Results over the MNIST dataset

Handling CNNs

Computing relevance for convolutional layers Results for the VGG-16 network

Applications

Image mask computation

Network pruning using LRP ranking

Comparison to image perturbation

Class-wise mask - Boolean semiring

Network pruning using LRP ranking

Figure 7: Relevance mean over the training dataset (Input layer)

Comparison to image perturbation [5]

Figure 8: Accuracies per attack zone

Figure 9: Accuracy drop for multiple pixels attacks strategies.

Conclusion

- We extended the Layerwise Relevance Propagation method to semirings
- We applied this method to the MNIST dataset and the VGG-16 network
- We showed that the method can be used for image mask computation and network pruning
- We compared our method to image perturbation attacks

- [1] Sebastian Bach et al. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation". In: *PLOS ONE* (2015), pp. 1–46. URL: https://doi.org/10.1371/journal.pone.0130140.
- [2] Nick Cammarata et al. "Thread: Circuits". In: Distill (2020). https://distill.pub/2020/circuits. DOI: 10.23915/distill.00024.
- [3] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. "A Survey on Deep Neural Network Pruning-Taxonomy, Comparison, Analysis, and Recommendations". In: (2023). URL: https://arxiv.org/abs/2308.06767.
- [4] Marina Danilevsky et al. "A survey of the state of explainable AI for natural language processing". In: arXiv preprint (2020). URL: https://arxiv.org/abs/2010.00711.
- [5] Ruth C Fong and Andrea Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation". In: *Proceedings of the IEEE international conference on computer vision*. 2017, pp. 3429–3437. URL: https://arxiv.org/abs/1704.03296.
- [6] Robert Geirhos et al. "Shortcut learning in deep neural networks". In: *Nature Machine Intelligence* 2 (2020), pp. 665–673. URL: https://arxiv.org/abs/2004.07780.

- [7] Todd J Green, Grigoris Karvounarakis, and Val Tannen. "Provenance semirings". In: *Proceedings* of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 2007, pp. 31–40.
- [8] Yann LeCun. The MNIST database of handwritten digits. 1998. URL: http://yann.lecun.com/exdb/mnist/.
- [9] Aravindh Mahendran and Andrea Vedaldi. "Understanding deep image representations by inverting them". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 5188–5196. URL: https://arxiv.org/abs/1412.0035.
- [10] Pavlo Molchanov et al. "Pruning Convolutional Neural Networks for Resource Efficient Inference". In: (2017). URL: https://arxiv.org/abs/1611.06440.
- [11] Grégoire Montavon et al. "Layer-Wise Relevance Propagation: An Overview". In: Explainable Al: Interpreting, Explaining and Visualizing Deep Learning. Springer International Publishing, 2019, pp. 193–209. URL: https://doi.org/10.1007/978-3-030-28954-6_10.
- [12] Yann Ramusat, Silviu Maniu, and Pierre Senellart. "Provenance-Based Algorithms for Rich Queries over Graph Databases". In: EDBT 2021 24th International Conference on Extending Database Technology. 2021. URL: https://inria.hal.science/hal-03140067.

- [13] Wojciech Samek et al. "Evaluating the visualization of what a deep neural network has learned". In: IEEE transactions on neural networks and learning systems 28.11 (2016), pp. 2660–2673. URL: https://arxiv.org/abs/1509.06321.
- [14] Ramprasaath R Selvaraju et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization". In: *Proceedings of the IEEE international conference on computer vision*. 2017, pp. 618–626. URL: https://arxiv.org/pdf/1610.02391.
- [15] Pierre Senellart. "Provenance and probabilities in relational databases". In: ACM SIGMOD Record 46.4 (2018), pp. 5-15. URL: https://inria.hal.science/hal-01672566.
- [16] Pierre Senellart et al. "ProvSQL: Provenance and probability management in postgresql". In: Proceedings of the VLDB Endowment (PVLDB) (2018). URL: https://inria.hal.science/hal-01851538.
- [17] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2015. URL: https://arxiv.org/abs/1409.1556.
- [18] Matthew D Zeiler and Rob Fergus. "Visualizing and understanding convolutional networks". In: Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer. 2014, pp. 818—833. URL: https://arxiv.org/abs/1311.2901.