

c) campo de visão real

o tamanho da imagem que vemos através de um telescópio é usualmente chamado campo de visão real ou campo visual, sendo determinado pelo tipo de ocular que estamos usando

$$lpha' = rac{C_{ocu}}{2} \Rightarrow lpha = rac{C_{tel}}{2}$$

$$A = rac{lpha'}{lpha} = rac{C_{ocu}}{C_{tel}}$$

|--|--|

g) razão focal A razão focal é a relação existente entre a distância focal e o diâmetro da objetiva. Quanto menor a razão focal mais luminoso será o telescópio.

ocular com distancia focal grande

aumento pequeno. objeto visualizado com um brilho forte. imagem nítida com ótimo contraste, mas pequena grande campo de visão fácil de focalizar e localizar os objetos. g) razão focal

A razão focal é a relação existente entre a distância focal e o diâmetro da objetiva. Quanto menor a razão focal mais luminoso será o telescópio.

ocular com distancia focal grande

aumento pequeno. Objeto visualizado com um brilho forte. imagem nítida com ótimo contraste, mas pequena. grande campo de visão. fácil de focalizar e localizar os objetos.

ocular com distancia focal média

aumento razoável objeto visualizado com um bom brilho. imagem nítida com bom contraste e relativamente grande. campo de visão médio. a focalização e localização dos objetos torna-se mais difícil.

g) razão focal

A razão focal é a relação existente entre a distância focal e o diâmetro da objetiva. Quanto menor a razão focal mais luminoso será o telescópio.

ocular com distancia focal grande

aumento pequeno. objeto visualizado com um brilho forte. imagem nítida com ótimo contraste, mas pequena. grande campo de visão fácil de focalizar e localizar os objetos.

ocular com distancia focal média

aumento razoável objeto visualizado com um bom brilho. imagem nítida com bom contraste e relativamente grande. campo de visão médio. a focalização e localização dos objetos torna-se mais difícil.

ocular com distancia focal pequena

aumento grande. objeto visualizado com um pouco brilho. imagem com nitidez e contraste já comprometidos. campo de visão pequeno. a localização dos objetos torna-se crítica. para melhorar isso, somente usando um telescópio com uma objetiva de maior diâmetro.

é def	nida cor	no a	razão	entre a se	paração	angular e	física			
			1 1 1							

lepende do	1 razão focc	al do telescó	pio.	$p=rac{\alpha}{s}$	
definida	como a razĉ	io entre α sε	eparação angular e fís	3ica J	
h.1) esca	la de placa	a em CCD's			
$p_{ccd}=$ -	$\frac{\alpha}{N}$	N =	<i>S</i>		

_																																							\dashv
	h	e	SC	al	a	de	pl	La	Ca																														
											ine	ar	d	a i	ma	Qe	≥m	de) u	m	gh	iet	0	ext	en	so;		\Box					1						
						ra										_										,			n		$\frac{\alpha}{\alpha}$		L	-					
_	40	PO			90											P"													p		S			2					
Ź		40-	Fin	نط)OM	^	<u> </u>	ra	78	0 6	h	ra		96	sh/	251	207	ž	O W	AU	lar		fí	eic	20							J						
_		46			9 (JUII.		4		24		,,,		\	36	· P	7 1 (15.	40		ישפי	COI			3.0	, (1)													
	h	.1)	e	SC	al	a	le	D	la	ca	er	n (C	b ':	S		_																						_
																																							_
						<u> </u>																										7	1						-
	20		7 .			$lpha_{oxed}$							7	7			3					_		$\boldsymbol{\gamma}$	_	r_{α}	d] :		α	<u>'</u>		<u> </u>							
	P	'cc	d_{\parallel}										1	V :			7					_		Pcc	d	[raa			$\overline{\lambda}$	7 -		f							
						- 1																										J	 						
																																							-
																																							+
_																																							+
																																							_
_																																							
_																																							
-																																							
-	_																																				1	+	+