

Outline

How Al Technology to Enable Net Zero - Modulus

What's inside CUDA Quantum

SATURATING PERFORMANCE IN TRADITIONAL HPC

Simulations are getting larger & more complex

Traditional simulation methods are:

- Computationally expensive
- Demand ever-increasing resolution
- Plagued by domain discretization techniques
- Not suitable for data-assimilation or inverse problems

SOLVING PDES WITH NEURAL NETWORKS

A Data Driven Neural Network requires training data

A Physics Driven Neural Network solver does NOT require training data

N layers

Unsupervised Physics Driven Approach

PDE and Boundary
Conditions $0 = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$ $0 = u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + \frac{\partial p}{\partial x} - v(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})$ $0 = u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} - v(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $0 = u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} - v(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$

m*N layers (for mth order PDE)

Acting Against Climate Change, and its Challenges

The Role of Carbon Capture and Storage to Achieve Net Zero

- IEA reports the need to store 1200 Mt CO₂/year by 2030
- The current storage = 10 Mt CO₂/year
- No problem related to storage capacity, which is estimated at several thousand Gtones of CO₂
- Challenges remain to prove duration and reliability of storage for which numerical modeling is key
- Time counts: each year gained by modeling CCS faster through Artificial Intelligence, is less CO₂ in the atmosphere!

Capture CO₂ from:

fossil fuel combustion

heavy industry processes

bioenergy combustion

Whatever is the capture technique, => storing the captured CO2 is needed

CLIMATE CHANGE MITIGATION: MODELING CO2 STORAGE

A study of challenging subsurface process

Inject CO₂ into subsurface

- 1. Store CO₂ in a saline formation
- High pressure storage medium
- 3. Multi phase salt water and CO₂ interaction
- High resolution details
- Storage plans for decades to centuries

Highly costly and slow using traditional simulations

NUERAL OPERATORS: DEEP LEARNING ON FUNCTION SPACES

Neural operators learn maps between functions

- Integral operator outputs functions.
- Integral operator is discretization invariant.
- Fourier neural operators (FNO)

FOUR-DIMENSIONAL CCS MODELING WITH AI (FNO)

Four-dimensional large scale 200km spatiotemporal CCS

NESTED FNO AND ACCURATE INFERENCE

Inference in subsurface Earth

Accurate estimation of engineering and scientific quantities

... and Receive Useful, Visual & Statistical Guidance?

From a Highly Interactive Future Climate Information System, at High Resolution, that Serves Society...

FourCastNet: NV's DDWP, first to be trained at ambitious 0.25-deg global resolution

DLWP, Weyn et al. (2020). 2°, 16K pixels, Deep CNN on Cubesphere/(2021) ResNet

Weyn et al. (2019), 2.5° N.H only, 72x36, 2.6k pixels, ConvLSTM

WeatherBench, Rasp et al. (2020). 5.625°, 64x32, 2K pixels, CNN

Deuben & Bauer (2018), 6°, 60x30, 1.8K pixels, MLP

Weather Simulation with FourCastNet

Fully data-driven weather prediction.

Scope Global, Medium Range

Model Type
 Full-Model AI Surrogate

Architecture AFNO (Adaptive Fourier Neural Op.)

Resolution: 25km

• Training Data: ERA5 Reanalysis

Initial Condition GFS / UFS

Inference Time
 0.25 sec (2-week forecast)

• Speedup vs NWP $O(10^4-10^5)$

• Power Savings O(10⁴)

FAR TERM APPLICATIONS

Rigorous proofs of advantage, many "perfect" qubits required

SHOR'S ALGORITHM

- Prime factorization of numbers encryption
- Exponential speed-up

GROVER'S ALGORITHM

- Unstructured search
- Quadratic speed-up

Linear Search

POTENTIAL NEAR-TERM QUANTUM USE-CASES

Applications with near-term potential, but quantum advantage is an open question

Quantum Machine Learning

Gao, et al, Phys. Rev. X 12, 021037 Pennylane.ai

Quantum Chemistry

Protein folding

Greene-Diniz, et al, arXiv:2203.15546, Menten.ai

Combinatorial Optimization

QAOA for resource allocation

Logistics optimization

Image from ibm.com Wikipedia.com

GPU-BASED SUPERCOMPUTING IN THE QUANTUM COMPUTING ECOSYSTEM

Researching the Quantum Computers of Tomorrow with the Supercomputers of Today

- What quantum algorithms are most promising for near-term or long-term quantum advantage?
- What are the requirements (number of qubits and error rates) to realize quantum advantage?
- What quantum processor architectures are best suited to realize valuable quantum applications?

HYBRID CLASSICAL/QUANTUM APPLICATIONS

Impactful QC applications (e.g. simulating quantum materials and systems) will require classical supercomputers with quantum co-processors

- How can we integrate and take advantage of classical HPC to accelerate hybrid classical/quantum workloads?
- How can we allow domain scientists to easily test coprogramming of QPUs with classical HPC systems?
- Can we take advantage of GPU acceleration for circuit synthesis, classical optimization, and error correction decoding?

TWO LEADING QUANTUM CIRCUIT SIMULATION APPROACHES

"Gate-based emulation of a quantum computer"

- Maintain full 2ⁿ qubit vector state in memory
- Update all states every timestep, probabilistically sample n of the states for measurement

Memory capacity & time grow exponentially w/ # of qubits - practical limit around 50 qubits on a supercomputer

Can model either ideal or noisy qubits

Tensor networks

"Only simulate the states you need"

- Uses tensor network contractions to dramatically reduce memory for simulating circuits
- Can simulate 100s or 1000s of qubits for many practical quantum circuits

GPUs are a great fit for either approach

POWERFUL SIMULATIONS WITH cuQuantum

Researching & Developing the Computers of Tomorrow Requires Powerful Simulations Today

cuQuantum OVERVIEW

Platform for quantum computing research

- Accelerate Quantum Circuit Simulators on GPUs
- Simulate ideal or noisy qubits
- Enable algorithms research with scale and performance not possible on quantum hardware, or on simulators today

cuQuantum General Access available now

- Integrated into leading quantum computing frameworks Cirq, Qiskit, and Pennylane
- C and Python APIs
- Available today at developer.nvidia.com/cuquantum

Quantum Computing Application Quantum Computing Frameworks

Quantum Circuit Simulators

cuQuantum

cuStateVec

cuTensorNet

GPU Accelerated Computing

QPU

Motivation behind CUDA Quantum

Integrate quantum computers seamlessly with the modern scientific computing ecosystem

- HPC centers and many other groups worldwide are focused on the integration of quantum computers with classical computers/supercomputers
- We expect quantum computers will accelerate some of today's most important computational problems and HPC workloads
 - Quantum chemistry, Materials simulation, Al
- We also expect CPUs and GPUs to be able to enhance the performance of QPUs
 - Classical preprocessing (circuit optimization) and postprocessing (error correction)
 - Optimal control and QPU calibration
- Want to enable researchers to seamlessly integrate CPUs, GPUs, and QPUs
 - · Develop new hybrid applications and accelerate existing ones
 - Leverage classical GPU computing for control, calibration, error mitigation, and error correction

Quantum Programming Today

Great for early experimentation.

Where we need to get...

Quantum Programming with NVIDIA

Hybrid quantum-classical applications at scale.

Figure adapted from:

Quantum Computers for High-Performance Computing. Humble, McCaskey, Lyakh, Gowrishankar, Frisch, Monz. IEEE Micro Sept 2021. 10.1109/MM.2021.3099140

Introducing CUDA Quantum

Platform for unified quantum-classical accelerated computing

IQM

- Programming model extending C++ and Python with quantum kernels
- Open programming model, open-source compiler
 - https://github.com/NVIDIA/cuda-quantum
- QPU Agnostic Partnering broadly including superconducting, trapped ion, neutral atom, photonic, and NV center QPUs
- Interoperable with the modern scientific computing ecosystem
- Seamless transition from simulation to physical QPU

```
auto ansatz = [](std::vector<double> thetas) __qpu__ {
   cudaq::qreg<3> q;
   x(q[0]);
   ry(thetas[0], q[1]);
   ry(thetas[1], q[2]);
   x<cudaq::ctrl>(q[2], q[0]);
   x<cudaq::ctrl>(q[0], q[1]);
   ry(-thetas[0], q[1]);
   x<cudaq::ctrl>(q[0], q[1]);
   x<cudaq::ctrl>(q[0], q[0]);
};

cudaq::spin_op H = ...;
double energy = cudaq::observe(ansatz, H, {M_PI, M_PI_2});
```


cuStateVec - SINGLE GPU PERFORMANCE

PRELIMINARY PERFORMANCE OF cirq/qsim + cuStateVec ON THE A100

VQE benchmarks have all orbitals and results were measured for the energy function evaluation

cuTensorNet

A LIBRARY TO ACCELERATE TENSOR NETWORK BASED QUANTUM CIRCUIT SIMULATION

- For many practical quantum circuits, tensor networks enable scaling of simulation to 100s or 1000s of qubits
- cuTensorNet provides APIs to:
 - 1. Convert a circuit written in Cirq or Qiskit to a tensor network
 - 2. Calculate an optimal path for the contraction
 - Hyper-optimization is used to find contraction path with lowest total cost (eg, FLOPS or time estimate)
 - Slicing is introduced to create parallelism or reduce maximum intermediate tensor sizes
 - 3. Calculate an execution plan and execute the TN contraction
 - Leverages cuTENSOR heuristics

https://developer.nvidia.com/blog/scaling-quantum-circuit-simulation-with-cutensornet/

DGX cuQuantum Appliance

MULTI-GPU CONTAINER WITH cirq/qsim + cuQuantum

- Full Quantum Simulation Stack with a cirq/qsim frontend
- World class performance on key quantum algorithms
- Available Now on NGC

Multi-GPU Speedup of Cirq with cuQuantum on DGX A100

JOIN NVIDIA DEVELOPER PROGRAM TODAY

Supporting the Community That's Changing the World

GET NVIDIA
OPTIMIZED
CONTAINERS,
MODELS AND
MORE.
https://developer.nvi
dia.com/downloads

EXPLORE NVIDIA
INCEPTION AND
APPLY TODAY.
https://www.nvidi
a.com/enus/startups

