Scilab Textbook Companion for Vector Mechanics for Engineers: Stastics And Dynamics

by F. P. Beer, E. R. Johnston, D. F. Mazurek, P. J. Cornwell And E. R. Eisenberg¹

Created by
Akshatha Nayak
M.Tech
Electrical Engineering
Bits Pilani
College Teacher
None
Cross-Checked by
Lavitha

June 16, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Vector Mechanics for Engineers: Stastics And Dynamics

Author: F. P. Beer, E. R. Johnston, D. F. Mazurek, P. J. Cornwell And E.

R. Eisenberg

Publisher: McGraw-Hill, NY

Edition: 9

Year: 2007

ISBN: 9780073529400

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Statics of particle	6
3	Rigid bodies equivalent systems of forces	17
4	Equilibrium of rigid bodies	23
5	Distrubuted forces centroids and centers of gravity	32
6	Analysis of structures	40
7	Forces in beams and cable	48
8	Friction	61
9	Distributed forces Moment of Inertia	68
10	Method of virtual work	71

List of Scilab Codes

Exa 2.1	Determine the resultant	6
Exa 2.2	Tension in ropw	7
Exa 2.3	Resultant of forces	8
Exa 2.4	Tension of Tab and Tac	9
Exa 2.5	Force	10
Exa 2.6	Drag force	10
Exa 2.7		11
Exa 2.8	resultant of AB and AC	13
Exa 3.1	Vertical force	17
Exa 3.2	Moment of force	18
Exa 3.3	Moment of force	19
Exa 3.4	magnitude of force and lambda	20
Exa 3.6	Couple M equivalent to two couple	20
Exa 3.7	Distance from the shaft	21
Exa 4.1	Angle and degee	23
Exa 4.2	Angle and degee	24
Exa 4.3	Reaction and direction	25
Exa 4.4	Reaction and direction	25
Exa 4.5	Angle and degee	26
Exa 4.6	Tension and angle	27
Exa 4.7	Reaction	28
Exa 4.8	Reaction and direction	29
Exa 4.9	Tension in vector form	30
Exa 4.10	coordinates	30
Exa 5.1	centroid	32
Exa 5.2	Coordinates of centroid	33
Exa 5.7	Mass of steel	34
Exa 5.9	equivalent concentrated mass	35

Exa 5.10	Reaction and direction	36
Exa 5.11	Coordinates of centroid	37
Exa 5.12	components of centroids	38
Exa 6.1	force	40
Exa 6.2	force	41
Exa 6.3	Calculation of force	42
Exa 6.4	components of force	43
Exa 6.5	components of force	44
Exa 6.6	Force	45
Exa 7.1	free body diagram we	48
Exa 7.2	free body diagram	49
Exa 7.3	free body diagram	51
Exa 7.4	free body diagram	53
Exa 7.5	free body diagram	55
Exa 7.8	free body diagram	57
Exa 7.9	free body diagram	58
Exa 7.10	free body diagram	59
Exa 8.1	value of friction force	61
Exa 8.2	Force P to prevent block	62
Exa 8.3	Minimum distance	63
Exa 8.4	force required	63
Exa 8.5	Couple required to loosen clamp	64
Exa 8.6	force required	65
Exa 8.7	Tension	66
Exa 8.8	Torque	67
Exa 9.4	Area of plate	68
Exa 9.5	Principle moment of inertia	69
Exa 9.7	Principle moment of inertia	70
Exa 10.3	Force exerted by each cylinder	71
Exa 10.4	Angle	71

Chapter 2

Statics of particle

Scilab code Exa 2.1 Determine the resultant

```
1 clc;
2 // Page 22
3 //Getting resultant of two vectors
5 P=40; // N Magnitude of vector P
6 Q=60 // N Magnitude of vector Q
7 // imagine triangle for triangle law of vectors
8 B=180-25; // degree, Angle between vector P and
      vector Q
10 //R- Resultant vector
11 B=B*%pi/180; // conversion into radian
12 / R^2 = P^2 + Q^2 - 2 \cdot P \cdot Q \cdot \cos(B); Cosine Law
13 R = sqrt(P^2+Q^2-2*P*Q*cos(B)); // N
14
15 printf ("Maginitude of Resultant is R = \%.2 f N n", R);
16
17
18 //A- Angle between Resultant and P vector, Unknown
19
20 // \sin(A)/Q = \sin(B)/R sine law
```

```
21
22 A=asin(Q*sin(B)/R);// radian
23
24
25 A=A*180/%pi;//// Conversion into degree
26
27 alpha=A+20;// degree
28 printf("Angle of Resultant vector R with x axis is %.2 f Degrees\n",alpha);
```

Scilab code Exa 2.2 Tension in ropw

```
1 clc;
2 //Page 29
3 R=25; // kN
                 Magnitude of Resultant vector
4 alpha=45; // degree
5 // T1 and T2 are tensions in rope 1 and rope 2
      respectively
  A=30; // degree, Angle between vector T1 and
     resultant
7 B=alpha; // degree, Angle between vector T2 and
     resultant
8 C=180-(A+B); // degree, Angle between vector T1 and
     T2
9
10
11 // conversion of angles into radian
12 A = A * \%pi / 180;
13 B=B*\%pi/180;
14 C=C*%pi/180;
15
16
17 // \sin(A)/T2 = \sin(B)/T1 = \sin(C)/R \dots
      sine law
18
```

```
19 T1 = (R * sin(B)) / sin(C); //kN
20 T2=(R*sin(A))/sin(C);//kN
21
22
23 printf ("Tension in rope 1 is T1=\%.2 f kN and in rope
      2 is T2=%.2 f kN \n" ,T1,T2);
24
25
26 // Minimum value of T2 occcurs when T1 and T2 are
      perpendicular to each other i.e C=90 degree
27 C=90;//degree
28 A=30; // degree
29 B=180-(A+C); // degrees
30 alpha=B; // degrees
31 B=B*%pi/180;// radian
32 \text{ T2=R*sin(B);}//\text{kN}
33 T1=R*cos(B); //kN
34 printf ("Minimum tension in rope 2 is T2=\%.2 f kN \n",
35 printf("corrosponding T1=\%.2 \, f \, kN \, n \, ",T1);
36 \text{ printf} ("alpha=\%.2 f degrees",alpha);
```

Scilab code Exa 2.3 Resultant of forces

```
1 clc;
2 //page 31
3 F1=150; // N
4 F2=80; // N
5 F3=110; //N
6 F4=100 // in N
7
8 F1x=129 // in N
9 F2x=-27.4
10 F3x=0
11 F4x=96.6
```

```
12 F1y = 75
13 \text{ F2y} = 75.2
14 \text{ F3y} = -110
15 \quad \text{F4y} = -25.9
16
17 Rx=F1x+F2x+F3x+F4x; //N Horizontal component of R-
       resultant
18 Ry=F1y+F2y+F3y+F4y; //N Vertical component of R-
       resultant
19
20 / R = Rx i + Ry j
21
22 printf ("R= \%.2 \text{ f i} + \%.2 \text{ f j } \text{ n}", Rx,Ry);
23
24 alpha=atan(Ry/Rx); //Radian, Angle made by resultant
       with +ve x axis
25 alpha=alpha*180/%pi;//Conversion into degrees
26
27 R=sqrt(Rx^2+Ry^2);//N, Magnitude of resultant
28 printf ("alpha= \%.2 \, \text{f} degrees and R= \%.2 \, \text{f} N", alpha, R);
```

Scilab code Exa 2.4 Tension of Tab and Tac

```
1 clc;
2 //page 38
3 W=3500; // lb weight of automobile
4 alpha=2; // degree
5 // TAB and TAC are tensions in cable AB and cable AC respectively
6 A=90+30; // degree , Angle between vector T1 and resultant
7 B=alpha; // degree , Angle between vector T2 and resultant
8 C=180-(A+B); // degree , Angle between vector T1 and T2
```

```
9
10
11 // conversion of angles into radian
12 A = A * \%pi / 180;
13 B=B*\%pi/180;
14 C=C*\%pi/180;
15
16
17 // \sin(A)/TAB = \sin(B)/TAC = \sin(C)/W
      ..... sine law
18
19
20 TAB=(W*sin(A))/sin(C);//N
21 TAC = (W * sin(B)) / sin(C); //N
22
23 printf("Tension in cable AB is TAB=%.2f lb and in
      Cable AC is TAC=\%.2 f lb \n", TAB, TAC);
```

Scilab code Exa 2.5 Force

```
1 clc
2 //page 39
3 mass=30; // kg
4 W=mass*9.81; // N, Weight of package
5 alpha=15; //degree
6 alpha=alpha*%pi/180; // Conversion into radian
7 F=W*sin(alpha); //N
8 printf("F= %.2 f N",F);
```

Scilab code Exa 2.6 Drag force

```
1 clc;
2 //page 39
```

```
3 alpha=atan(7/4); //rad
4 beta=atan(1.5/4); // rad
5 T_AB=200; //N tension in cable AB
6 T_AE=-300; //N, tension in cable AE
  // R= T_AB+T_AC+T_AE+F_D=0
                                       ... Equillibrium
      Condition . . . . . . . . . . . . 1
8
9
10 T_ABx=-T_AB*sin(alpha); // Xcomponent of T_AB
11 T_ABy=T_AB*cos(alpha); //Y component of T_AB
12
  // T_ACx=T_AC*sin(beta); Xcomponent of T_AC
14
  // T_ACy=T_AC*cos(beta); Y component of T_AC
15
  // Sum Fx =0 gives -T_AB*sin(alpha) N + T_AC*sin(
16
      beta) +F_D = 0 \dots 2
  //Sum Fy=0 gives T_AB*cos(alpha) N +T_AC*cos(beta) +
17
     T_AE = 0 \dots 3
18
19 T_AC = (-T_AB*cos(alpha)-T_AE)/cos(beta); //N, From 3
20
21 F_D=T_AB*sin(alpha)-T_AC*sin(beta); //N, From 2
22
23 printf("Value of drag force is F_D=\%.2 f N and
      tension in cable AC is T_AC= \%.2 f N", F_D, T_AC);
```

Scilab code Exa 2.7 Resultant force on AB and Ac

```
1 //page 50
2 clc;
3 dx=-40;//m
4 dy=80;//m
5 dz=30;//m
6 f=2500;//N, Mafnitude of force F
7 d=sqrt(dx^2+dy^2+dz^2);//m, total distance of vector
```

```
AB
8 //F=f*lambda, lambda - unit vector= AB/d. So we can
      calculate each component by multiplying this unit
       vector
9 Fx=f*dx/d;//N, X component of F
10 Fy=f*dy/d;//N, Y component of F
11 Fz=f*dz/d;//N, Z component of F
12
13 printf ("Component of F along X axis is \%.2 \text{ f N} \text{ n}", Fx)
14 printf ("Component of F along Y axis is \%.2 \text{ f N} \text{ n}", Fy)
15 printf("Component of F along Z axis is %.2f N\n",Fz)
16 printf ("We may write F as n = \%.2 f i + \%.2 f j + \%
      .2 \text{ f } \text{ k} \text{ n}", Fx, Fy, Fz);
17
18 thetax=acos(Fx/f);// radian , angle with +ve x axis
19 thetay=acos(Fy/f);// radian , angle with +ve y axis
20 thetaz=acos(Fz/f); // radian , angle with +ve z axis
21
22 //Conversion of angles into degree
23 thetax=thetax*180/%pi;//degree
24 thetay=thetay*180/%pi; // degree
25 thetaz=thetaz*180/%pi;//degree
26
27 printf("Angle made by F with +ve X axis %.2f degree
      n", thetax);
28
29 printf("Angle made by F with +ve Y axis %.2f degree
      n", thetay);
30 printf ("Angle made by F with +ve Z axis %.2f degree
      n", thetaz);
31 printf("\n\n")
32 F=800 // N , given force
33
34 theta=145 // Degrees , angle with positive X axis
35
```

```
36
37
38 theta=theta*%pi/180;// Conversion into radian
39
40
41
42 Fx=F*sin(theta);//N, Horizontal component
43
44 Fy=F*cos(theta);// N, Vertical Component
45
46
47 printf("\n\n")
48 printf("Horizontal component of F is \%.2 \text{ f N} \text{ N}", Fx);
49
50 printf("Vertial component of F is \%.2 \text{ f N} \text{ N}", Fy);
52 printf("We may write F as n = \%.2 f i + \%.2 f j", Fx
      ,Fy);
53
54 \text{ F=300} // \text{N} , given force
55
56 AB=sqrt(8^2+6^2);// m Length of AB
57
58 \cos_{alpha} = 8/AB;
59
60 sin_alpha=-6/AB;
61
62 Fx=F*cos_alpha;//N, Horizontal component
64 Fy=F*sin_alpha; // N, Vertical Component
```

Scilab code Exa 2.8 resultant of AB and AC

```
1 clc;
2 //page 51
```

```
3 T_AB=4200; //N , Tension in cable AB
4 T_AC=6000; //N, Tension in cable AC
5 // \text{Vector AB} = -(5\text{m}) i + (3\text{m}) j + (4\text{m}) k
6 // Vector Ac= -(5m) i + (3m) j + (5m) k
7 ABx = -5; //m
8 ABy=3; /m
9 ABz=4; /m
10 ACx = -5; //m
11 ACy = 3; /m
12 ACz=-5; //m
13
14 AB = sqrt((-5)^2 + 3^2 + 4^2); //m, Magnitude of vector AB
15 AC=sqrt((-5)^2+3^2+5^2); //m, Magnitude of vector AC
16 //vT\_AB=T\_AB*lambdaAB, lambdaAB - unit vector= vAB/
      AB. So we can calculate each component by
      multiplying this unit vector
17 T_ABx=T_AB*ABx/AB;//N, X component of T_AB
18 T_ABy=T_AB*ABy/AB;//N, Y component of T_AB
19 T_ABz=T_AB*ABz/AB;//N, Z component of T_AB
20
21 printf ("Component of T_AB along X axis is \%.2 \text{ f N} \text{ N}",
      T_ABx);
22 printf ("Component of TAB along Y axis is %.2 f N\n",
      T_ABy);
23 printf ("Component of TAB along Z axis is \%.2 \text{ f N} \text{ N}",
      T_ABz);
24 printf ("We may write T_AB as \n T_AB = \%.2 f i + \%.2 f
       j + \%.2 f k n, T_ABx, T_ABy, T_ABz;
25
26
27 / vT_AC=T_AC*lambdaAC, lambdaAC - unit vector= vAC/
      AC. So we can calculate each component by
      multiplying this unit vector
28 T_ACx=T_AC*ACx/AC;//N, X component of T_AC
29 T_ACy=T_AC*ACy/AC;//N, Y component of T_AC
30 T_ACz=T_AC*ACz/AC;//N, Z component of T_AC
31
32 printf("Component of TAC along X axis is %.2f N\n",
```

```
T_ACx);
33 printf("Component of TAC along Y axis is %.2 f N\n",
34 printf ("Component of TAC along Z axis is \%.2 \text{ f N} \text{ N}",
      T_ACz);
35 printf ("We may write T_AC as \ T_AC = \%.2 f i + \%.2 f
       j~+~\%.2\,f~k\n" , T_ACx , T_ACy , T_ACz) ;
36
37 Rx = T_ABx + T_ACx; //N ,X component of R
38 Ry=T_ABy+T_ACy; //N, Y component of R
39 Rz=T_ABz+T_ACz; //N, Z component of R
40
41 printf("Component of R along X axis is \%.2 \text{ f N} \text{ N}", Rx)
42 printf ("Component of R along Y axis is %.2 f N\n", Ry)
43 printf("Component of R along Z axis is %.2f N\n", Rz)
44 printf ("We may write R as n = \%.2 \text{ f i} + \%.2 \text{ f j} + \%
      .2 \text{ f } \text{ k} \text{ n}", Rx, Ry, Rz);
45
46 R=sqrt(Rx^2+Ry^2+Rz^2); //N, Magnitude of resultant
47
48 thetax=acos(Rx/R); // radian, angle with +ve x axis
49 thetay=acos(Ry/R); // radian , angle with +ve y axis
50 thetaz=acos(Rz/R); // radian , angle with +ve z axis
51
52 //Conversion of angles into degree
53 thetax=thetax*180/%pi; // degree
54 thetay=thetay*180/%pi;//degree
55 thetaz=thetaz*180/%pi; // degree
56
57 printf("Angle made by R with +ve X axis %.2f degree\
      n", thetax);
58
59 printf ("Angle made by R with +ve Y axis %.2f degree
      n", thetay);
60 printf("Angle made by F with +ve Z axis %.2f degree
```

 ${\bf n}$ ", thetaz);

Chapter 3

Rigid bodies equivalent systems of forces

Scilab code Exa 3.1 Vertical force

```
1 clc;
2 // Given data
3 / page 85
4 F=100; // lb , Vertical force applied to end of
  theta=60;// degree, angle made by lever with +ve X
      axis
6 1=24; // , length of lever
8 // a ) Moment about O
9 d=1*cosd(theta); // mm , perpendicular distance from
      o to the line of action
10
11 Mo=F*d; // N.m., Magnitude of moment about O
12 printf ("Magnitude of moment about O of the 500 N is
     %d lb.in and it is in clockwise direction as
      force tends to rotate lever clockwise\n", Mo);
13
14 // b) Horizontal force
```

```
15
16 d=1*sind(theta);//in, perpendicular distance from o
       to the line of action
17
18 F=Mo/d; // N, Horizontal Force at A required to
      produce same Moment about O
  printf("Magnitude of Horizontal Force at A required
      to produce same Moment about O is %f lb \n",F);
20
21 // c) Smallest force
22
23 // F is smaller when d is maximum in expression Mo=F
     *d, so we choose force perpendicular to OA
24 \text{ Mo} = 1200 / / \text{in lb}
25 d=24// in ,perpendicular distance from o to the
      line of action
26 F=Mo/d; // N, Smallest Force at A required to produce
      same Moment about O
27 printf ("Magnitude of smallest Force at A required to
       produce same Moment about O is %f lb \n",F);
28
29 //d) 1200 N vertical force
30 Mo=1200; // lb-in,
31 F = 240 / in lb
32 d=Mo/F; // m, perpendicular distance from o to the
      line of action of force
33 OB=d/cosd(theta);//m, distance of point B from O
34
35 printf ("Verical force of 1200 N must act at %f in
      far from the shaft to create same moment about O\
     n", OB);
```

Scilab code Exa 3.2 Moment of force

```
1 clc;
```

```
2 //Page 86
3 // Given data
4 F=800; // N , Force applied on bracket
5 theta=60; // degree, angle made by lever with +ve X
6 theta=theta*%pi/180;// Conversion of angle into
      radian
7 r_AB = [-0.2, 0.16]; //m vector drawn from B to A
      resolved in rectangular component
8 F = [F * cos(theta), F * sin(theta)] / N, vector F
      resolved in rectangular component
9 k=1; // Unit vector along Z axis
10
11 // M_B=r_AB * F relation 3.7 from section 3.5
12 M_B = det([r_AB; F])*k; // N.m
13 printf ("The moment of force 800 N about B is %.2 f N.
     m \cdot -ve \quad sign \quad shows \quad its \quad acting \quad clockwise \n", M_B);
```

Scilab code Exa 3.3 Moment of force

```
1 clc;
2 //page 86
3 // Given data
4 P=30; // lb, Force applied to shift lever
5 alpha=20; // degree, angle made by force P with -ve X axis
6 Q=P*sind(alpha)//in degree
7 8 d=3//in ft
9 M_o=Q*d//N.m, here negative signs are taken as each component creates moment clockwise
10 printf("The moment of force P about B is %.2 f lb-ft . -ve sign \n shows its acting clockwise\n", M_o);
```

Scilab code Exa 3.4 magnitude of force and lambda

```
1 clc:
2 //page 87
3 // Given data
4 // M_A=r_CA * F relation 3.7 from section 3.5
5 f=200; // N , Magnitude of Force directed along CD
6 \text{ r_CA} = [0.3, 0, 0.08]; //m, \text{ vector AC represented in}
      rectangular component
7 //lambda=CD/norm(CD)-m, Unit vector along CD
8 //F=f*lambda;//m, Force
9 CD=[-0.3, 0.24, -0.32];//Vector CD resolved into
      rectangular component
  // norm(CD); m, magnitude of vector CD
10
11
12 lambda=CD/norm(CD);//m, Unit vector along CD
13 F=f*lambda; //m, Force
14 // M_A=r_CA * F relation 3.7 from section 3.5
15 //i=1; j=1; k=1; Unit vectors along X, Y and Z
      direction respectively
16
  // Components of moment M_A along X,Y and Z
      direction respectively
18 M_Ax = det([r_CA(2), r_CA(3); F(2), F(3)]); //N.m
19 M_Ay = -det([r_CA(1), r_CA(3); F(1), F(3)]); //N.m
20 M_Az = det([r_CA(1), r_CA(2); F(1), F(2)]); // N.m
21
22 printf("Answer can be written as M.B = \%.2 f N.m i +
     \%.2 \text{ f N.m j} + \%.2 \text{ f N.m k } \text{ n", M_Ax, M_Ay, M_Az)};
```

Scilab code Exa 3.6 Couple M equivalent to two couple

```
1 clc;
2 //Given data
3 // Moment arms
4 Fx = -30; //in lb
5 Fy=20; // in 1b
6 Fz=20;//in lb
8 //couple Forces
9 x = 18; //iN
10 y=12; //iN
11 z=9; //iN
12
13 Mx=Fx*x; //N.m, Component of Moment along X axis
14 My=Fy*y; //N.m, Component of Moment along Y axis
15 Mz=Fz*z; //N.m, Component of Moment along Z axis
16 //This three moments represent component of single
      couple M
17 printf ("Couple M equivalent to two couple can be
      written as \n M = \%.2 f lb-in i + \%.2 f lb-in j + \%
      .2 f lb-in k \n", Mx, My, Mz);
```

Scilab code Exa 3.7 Distance from the shaft

of application of this equivalenet force

Chapter 4

Equilibrium of rigid bodies

Scilab code Exa 4.1 Angle and degee

```
1 clc;
2 //page 166
3 // Determination of B
4 //At equillibrium +sum(M.A)=0
\frac{5}{\sqrt{B*1.5m-(9.81kN)(2 m)-(23.5 kN)(6 m)}=0}, B assumed
      to be in +ve X direction
6 B=(9.81*2+23.5*6)/1.5//kN
7 printf("B=\%.2 f kN \n +ve sign shows reaction is
      directed as assumed ",B);
8 // Determination of Ax
9 / \text{Sum Fx} = 0
10 / Ax + B = 0
11 Ax=-B; //kN
12 printf ("Ax=\%. 2 f kN\n", Ax);
13 // Determination of Ay
14 / \text{Sum Fy} = 0
15 / Ay - 9.81 kN - 23.5kN = 0
16 Ay = 9.81+23.5; //kN
17 printf ("Ay=\%.2 \text{ f kN} \cdot \text{n}", Ay);
18 A=[Ax,Ay];//kN Adding component
19 A=norm(A); // Magnitude of force A
```

```
20 theta=atan(Ay/Ax); // radians
21 theta=theta*180/%pi; // degrees, conversion into
         degrees
22 printf("Reaction at A is A=%.2 f kN making angle %.2 f
         degrees \n with + ve x axis ",A,theta);
23 // Slight variation in the answer because of roundoff
         error
```

Scilab code Exa 4.2 Angle and degee

```
1 clc;
\frac{2}{\text{Page }} 148
4 //At equillibrium equations are +-> sum Fx=0, +sum(
      M_A) = 0, +sum (M_B) = 0
5 //Sum Fx=0 gives
6 Bx=0; //kN
7 printf("Bx=\%.0 \text{ f kN } \text{ } \text{n}", Bx);
8 //+sum(M_A) = 0 \text{ gives } -(70kN)(0.9m) + By(2.7m) - (27kN)
      (3.3m) - (27kN) (3.9m) = 0, B assumed to be in +ve Y
      direction
9 By = (70*0.9+27*3.3+27*3.9)/2.7/kN
10 printf("By=%.2f kN +ve sign shows reaction is
      directed as assumed n, By;
11
12 / + sum(M.B) = 0 gives -A(2.7m) + (70kN)(1.8m) - (27kN)(0.6)
      (27kN)(1.2m) = 0, A assumed to be in +ve Y
      direction
13 A = (70*1.8-27*0.6-27*1.2)/2.7/kN
14 printf("A=%.2 f kN +ve sign shows reaction is
      directed as assumed n, A);
15 // Answer displayed in KN
```

Scilab code Exa 4.3 Reaction and direction

```
1 clc;
2 //page 168
3 //Take x axis parallel to track and Y axis
      perpendicular to track
4 W = 25; //kN
5 // Resolving weight
6 Wx = W * cos(25 * \%pi/180); //kN
7 Wy = -W * sin(25 * \%pi/180); //kN
8 //At equillibrium equations are \rightarrow sum Fx=0, +sum(
      M_A) = 0, +sum (M_B) = 0
9
10 //+sum(M_A)=0 gives -(10.5kN)(625 mm) -(22.65 kN)(150
      mm) + R2(1250 mm) = 0, R2 assumed to be in +ve Y
      direction
11 R2=(10.5*625+22.65*150)/1250;/kN
12 printf("R2=\%.0 f kN +ve sign shows reaction is
      directed as assumed n, R2);
13
14 / + sum(M_B) = 0 gives (10.5 kN) (625 mm) - (22.65 kN) (150)
     mm)+ R1(1250 mm)=0, R1 assumed to be in +ve Y
      direction
15 R1=(10.5*625-22.65*150)/1250;/kN
16 printf("R1=%.1 f kN +ve sign shows reaction is
      directed as assumed \n",R1);
17
18 / \text{Sum Fx} = 0 \text{ gives}, 22.65 N-T=0
19 T = 22.65; //kN
20 printf("T=%.2 f kN +ve sign shows reaction is
      directed as assumed n, T;
```

Scilab code Exa 4.4 Reaction and direction

```
1 clc;
```

```
2 ///page 168
3 Ax=4.5//in m
4 Ay=6//in m
5 DF=sqrt((Ax^2)+(Ay^2))
6 F=150//in KN
7 Ex=-(Ax/DF)*F
8 printf("Ex=%.2 f kN \n",Ex);
9 Ey=((Ay/DF)*F)+(4*20)
10 printf("Ey=%.2 f kN \n",Ey);
11
12 M_E=-((20*7.2)+(20*5.4)+(20*3.6)+(20*1.8)-((Ay/DF)*F*Ax))
13 printf("M_E=%.0 f kN +ve sign shows reaction is directed as assumed \n",M_E);
```

Scilab code Exa 4.5 Angle and degee

```
1 clc;
\frac{2}{\text{page }} 169
3
4 //At equillibrium +sum(Mo)=0,
5 //s = r * theta;
6 / F = k * s = k * r * t h e t a;
7 \text{ k=45; } / \text{N/mm}
8 r = 75; //mm
9 W = 1800; //N
10 1=200; //mm
11
12
13 // trial and error
14 printf("Probable answers by trial and error method
      are \n");
15 for i=0:0.1:%pi/2 // from 0 to 90 degrees
16
17 difference=(\sin(i)-k*r^2*(i)/(W*1));
```

Scilab code Exa 4.6 Tension and angle

```
1 clc;
2 //page 185
3
4 m=10; //kg mass of joist
5 g=9.81; //m/s^2 gravitational acceleration
6 \text{ W=m*g;}/N
7 AB=4; //m
8 // Three force body
9 BF=AB*\cos (45*\%pi/180);/m
10 AF=BF; //m
11
12 AE=1/2*AF;/m
13 EF=AE; //m
14 CD=AE; //m
15 BD=CD/tan((45+25)*\%pi/180);/m
16 DF=BF-BD; //m
17 CE=DF; //m
18 alpha=atan(CE/AE);//radians
19 alpha=alpha*180/%pi; // degrees
20
21 //From geometry
22
23 G=90-alpha;//degrees
24 B=alpha-(90-(45+25)); // degrees
25 C=180-(G+B); //Degrees
```

```
26
27     //Force triangle
28     //T/sin(G)=R/sin(C)=W/sin(B) .... sine law
29
30     T=W/sin(B*%pi/180)*sin(G*%pi/180); //N
31     R=W/sin(B*%pi/180)*sin(C*%pi/180); //N
32     printf("Tension in cable T= %.1 f N\n Reaction At A
          is \n R= %.1 f N with angle alpha= %.1 f degrees
          with +ve X axis", T, R, alpha);
```

Scilab code Exa 4.7 Reaction

```
1 clc;
\frac{2}{\text{page }} 194
3 \text{ m1=80;} //\text{kg mass of man}
4 m2=20; //kg, mass of ladder
5 \text{ m=m1+m2; } / \text{kg}
6 g=9.81; //m/s<sup>2</sup> gravitational acceleration
7 \ W = -m * g; //N, j
8
9 C = -0.6 * W/3; //N
10 Bz=-0.6*C/1.2; //N
11 By = -0.9*W/1.2; //N
12
13 printf(" Reaction At B is B= (\%.0 \text{ f}) N j +(\%.1 \text{ f} \text{ N})k\n
       ",By,Bz);
14 printf(" Reaction At C is C = (\%.2 f) N k n", C);
15 Ay=-W-By; //N
16 Az=-C-Bz; //N
17
18
19 printf(" Reaction At A is A= (\%.0 \text{ f}) N j +(\%.1 \text{ f} \text{ N})k \
       n", Ay, Az);
```

Scilab code Exa 4.8 Reaction and direction

```
1 clc;
   2 W = -1200; //N, j Weight
   3 BD=[-2.4,1.2,-2.4]; //m, Vector BD
   4 EC = [-1.8, 0.9, 0.6]; //m, Vector EC
   5 //T_BD = norm(T_BD)*BD/norm(BD);//m, vector of
                        tension in BD
   6 //T_EC = norm(T_EC) *EC/norm(EC); //m, vector of
                         tension in EC
          // Applying equillibrium conditions we get
   8 // Sum_F=0, and Sum(M_A)=0 and setting co-efficient
                        equal to zero
   9 A = [0.8, 0.771; 1.6, -0.514]; //MAtrix of co-efficient
10 b = [-1440; 0]; // matrix b
11 x=linsolve(A,b);// solution matrix
12 T_BD=x(1); // N, Tension in BD
13 T_EC=x(2); //N, Tension in EC
14 printf ("T_BD= (%.0 f N) and T_EC= (%.0 f N) \n", x(1), x
                         (2));
15
         Ax=2/3*T_BD+6/7*T_EC;//N, x component of reaction at
17 Ay = -(1/3*T_BD+3/7*T_EC+W); //N, Y component of
                        rection at A
        Az=2/3*T_BD-2/7*T_EC;//N, z component of reaction at
19
20 printf ("Reaction at A is A=(\%.0 \text{ f N}) \text{ i } +(\%.0 \text{ f N}) \text{ j } +(\%.0 \text{ f
                         .1 \text{ f N}) \text{ k } \text{ } \text{ n", Ax, Ay, Az);}
21 //Answe in Newton instead of lbs
22 //1 lbs = 4.44N
```

Scilab code Exa 4.9 Tension in vector form

```
1 clc;
2 //page 198
3 //Free body diagram
4 m=30//in kg
5 \text{ g=9.81//in m/s2}
6 \text{ w}=-\text{m}*\text{g}//\text{in} \text{ J}
7 DC=[-480 \ 240 \ -160]/in \ mm
8 X = norm(DC)
9 T = DC/X
10 disp("Tension in the vector form=")
11 disp(T)
12 // Equilibrium equations
13 //From equation 2, setting unit vector=0
14 Ax = 49 / / in N
15 Ay = 73.5 / in N
16 A = [Ax Ay]
17 y = norm(A)
18 disp("Tension in the vector form in N=")
19 disp(y)
```

Scilab code Exa 4.10 coordinates

```
1 clc;
2 //page 197
3 AC=[12 12 0]
4 w=[0;-450;0]
5 x1=AC*w
6 disp(x1)
7 x=[0 0 x1]
8 lambda=[2/3 2/3 -1/3]*[0;0;-x1]
```

Chapter 5

Distributed forces centroids and centers of gravity

Scilab code Exa 5.1 centroid

```
1 clc;
2 //page 228
3 \text{ n=4}; // no of component
4 A=[120*80,120*60/2,%pi*60*60/2,-%pi*40*40]; /mm<sup>2</sup>,
      Areas of Rectangle, triangle, Semicircle, and
      Circle respectively
5 \text{ x=[60,40,60,60]};/\text{mm}, \text{ x components of centroids of}
      Rectangle, triangle, Semicircle, and Circle
      respectively
6 y = [40, -20, 105.46, 80]; //mm, y components of centroids
       of Rectangle, triangle, Semicircle, and Circle
      respectively
8 \text{ sumA=0};
9 sumxA=0;
10 sumyA=0;
11
12 for (i=1:n)
       sumA = sumA + A(i);
```

```
sumxA = sumxA + x(i) * A(i);
14
15
        sumyA = sumyA + y(i) * A(i);
16
17 \text{ end}
18
19 // First Moment of area
20 Qx=sumyA; // About X axis
21 Qy=sumxA; //About Yaxis
22 printf ("First moments of the area are Qx= \%.0 f mm^3
       and Qy=\%.0 \text{ f mm}^3 \text{ } \text{n}", Qx, Qy);
23
24 //Location of centroid
25 X=sumxA/sumA; // X co-ordinate
26 Y=sumyA/sumA; // Y co=ordinate
27 printf ("Co-ordinates of centroid are X= %.1 f mm and
      Y = \%.1 \text{ f mm } \text{ n", X, Y)};
```

Scilab code Exa 5.2 Coordinates of centroid

```
1 clc;
2 //page 229
3 \text{ n=3;} // \text{ no of segment}
4 L=[600,650,250]; //mm, Lengths of segment AB, BC and
       CA respectively
5 x = [300, 300, 0]; //mm, x components of centroids of
      segment AB , BC and CA respectively
6 y=[0,125,125];/mm, y components of centroids of
      segment AB, BC and CA respectively
8 \text{ sumL=0};
9 \text{ sumxL=0};
10 sumyL=0;
11
12 for(i=1:n)
13
       sumL=sumL+L(i);
```

Scilab code Exa 5.7 Mass of steel

```
1 clc;
2 //page 242
3 p=7850; // kg/m^3, density of steel rim
4 n=2; // no of component
5 A = [(20+60+20)*(30+20), -60*30]; //mm^2, Cross section
      Areas of rectangle I and II
6
  y=[375,365];/mm, y components of centroids of
      Rectangles I and II respectively
8
9
10 sumV = 0;
11
12
  for (i=1:n)
       C(i)=2*%pi*y(i);//mm, Distance travelled by C
13
       V(i)=A(i)*C(i);//mm^3, Volume of 1 component
14
       sumV=sumV+V(i); // mm^3, Total volume of rim
15
16
17 end
```

```
18 sumV=sumV*10^(-9);//Conversion into m^3
19 g=9.81;//m/s^2, acceleration due to gravity
20 m=p*sumV;//kg, mass
21 W=m*g;//N, Weight
22 printf("mass of steel is m= %.0 f kg and Wight is W= %.0 f N\n",m,W);
```

Scilab code Exa 5.9 equivalent concentrated mass

```
1 clc;
\frac{2}{\text{page }} 250
3 \text{ n=2}; // no of triangle
4 A = [4.5, 13.5]; //kN, loads
5 x=[2,4]; //mm, distances of centroid from point A
7 sumA=0;
8 \quad \text{sum} x A = 0;
9 for(i=1:n)
        sumA = sumA + A(i);
10
        sumxA = sumxA + x(i) * A(i);
11
12
13 end
14
15
16 //Location of centroid
17 X=sumxA/sumA; // X co-ordinate
18 W=sumA; //kN, Concentrated load
19 printf ("The equivalent concentrated mass is W=\%.0 f
      kN and its line of action is located at a
      distance X=\%.1f m to the right of A \n", W, X);
20
21 // Reactions
22 // \text{Applying sum}(F_x)=0
23 Bx = 0; //N
24 / Applying sum(M_A) = 0
```

```
25 By=W*X/6; //kN, Reaction at B in Y direction
26 // Applying sum(M.B)=0
27 A=W*(6-X)/6; //kN, Reaction at B in Y direction
28
29 printf("The rection at A=%.1 f kN, At Bx=%.1 f kN and By=%.1 f kN \n", A, Bx, By);
```

Scilab code Exa 5.10 Reaction and direction

```
1 clc;
\frac{2}{\text{page }} 251
3 t=0.3; //m thickness of dam
4 g=9.81; // m/s^2, acceleration due to gravity
5 p1=2400; // kg/m^3, density of concrete
6 p2=1000; //kg/m^3, density of water
7 W1=0.5*2.7*6.6*t*p1*g/1000; //kN, Weight of concrete
      component 1
8 W2=1.5*6.6*t*p1*g/1000; //kN, Weight of concrete
     component 2
9 W3=1/3*3*5.4*t*p1*g/1000; //kN, Weight of concrete
     component 3
10 W4=2/3*3*5.4*t*p2*g/1000; //kN, Weight of water
11 P=0.5*2.7*6.6*t*p1*g/1000; //kN, pressure force
      exerted by water
12
13 // Applying sum (F_x)=0
14 H=42.9; //kN, Horizontal reation at A
15
16 / Applying sum(Fy)=0
17 V=W1+W2+W3+W4; //kN, Vertical Reaction at A
18
19 printf("The horizontal reaction is H=\%.1 f kN,
      Vertical rection at A V=\%.1f kN, \n", H, V);
20 / Applying sum(M_A) = 0
21 M=W1*1.8+W2*3.45+W3*5.1+W4*6-P*1.8;/kN.m, Moment at
```

```
A

22

23

24 // We can replace force couple system by single force acting at distance right to A

25 d=M/V;// m Distance of resultant force from A

26

27 printf("The moment about A is M=%.1f kN.m anticlockwise and \n if we replace it by force couple system resultant, s distance from A is d= %0.2 f m \n", M, d);

28 // Difference is because of round off
```

Scilab code Exa 5.11 Coordinates of centroid

```
1 clc;
2 //page 263
3 n=3; // no of component
4 r=60; //mm, radius
5 l=100; //mm length of cylinder
6 V = [0.5*4/3*\%pi*(r)^3, \%pi*r*r*1, -\%pi/3*r*r*1]; //mm^3,
       Volumes of Hemisphere, cylinder and cone
      respectively
7 x=[-3/8*r,1/2,3/4*1];/mm, x components of centroids
       of Hemisphere, cylinder and cone respectively
8
9 sumV=0;
10 sumxV=0;
11
12 for(i=1:n)
       sumV = sumV + V(i);
13
       sumxV = sumxV + x(i) * V(i);
14
15
16 \text{ end}
17
```

Scilab code Exa 5.12 components of centroids

```
1 clc;
2 clear all
3 //page 264
4 1=4.5; // in in
5 b=2; //in
6 h=.5; //in
7 a_I=1*b*h
8 a_{II} = ((1/4) * \%pi * b^2 * h)
9 a_{III}=-\%pi*(h^2)*h
10 a_{IV} = -\%pi*(h^2)*h
11 V=[a_I a_II a_III a_IV]
12 // \operatorname{disp}(V)
13
14 x=[.25,1.3488,.25,.25];//in, x components of
      centroids of part I, II, III and IV respectively
15 y = [-1, -0.8488, -1, -1]; //in, y components of centroids
       of part I, II , III and IV respectively
z = [2.25, 0.25, 3.5, 1.5]; //in, z components of
      centroids of part I, II, III and IV respectively
17
18
19
  for (i=1:4)
20
       temp=0
21
        sum_xV=0
22
       sum_xV=V(i)*x(i)
```

```
y(i) = [sum_xV]
23
24 end
25 \text{ x=sum}(y)
26 printf("The sum of x*V=\%f in 4 \n",x)
27
28 for (i=1:4)
29
       temp=0
30
        sum_zV=0
        sum_zV=V(i)*z(i)
31
32
      y(i) = [sum_zV]
33 end
34 z = sum(y)
35 printf("The sum of z*V=\%f in 4 \n",z)
36
37 for(i=1:4)
38
       temp=0
39
        sum_yV=0
40
       sum_yV=V(i)*y(i)
      y(i) = [sum_yV]
41
      disp(y(i))
42
43 \, \text{end}
44 s = sum(y)
45 printf("The sum of y*V=\%f in 4 \n",s)
```

Chapter 6

Analysis of structures

Scilab code Exa 6.1 force

```
1 clc;
2 //page 294
3 //Entire truss
4 // Applying sum(M_C)=0
5 E=(10*12+5*6)/3;//kN
7 //Applying sum Fx=0
8 \quad Cx = 0
9
10 // Applying sumFy=0
12 Cy = 10 + 5 - E; //kN
13
14 //At joint A
15 //By proportion 10kN/4=F_AB/3=F_AD/5
16 F_AB=10/4*3; //kN, force in member AB
17 F_DA=10/4*5; //kN, force in member AD
18
19 //At joint D
20 F_DB=F_DA; //kN, force in member DB
21 F_DE=2*3/5*F_DA;//kN, force in member DE
```

```
22
23 //At joint B
\frac{24}{\text{applying sumFy}} = 0
25 F_BE=5/4*(-5-4/5*F_DB);//kN, force in member BE
26 // Applying sumFx=0
27
28 F_BC=F_AB+3/5*F_DB-3/5*F_BE; /kN, force in member BC
29
30 //At joint E
\frac{1}{\sqrt{\text{Applying sumFx}}} = 0
32 F_EC = -5/3*(F_DE - 3/5*F_BE); //kN, Force in member EC
33
34 printf("The forces in member of truss are \n F_AB= \%
      .1 f kN T \  n F_AD= %.1 f kN C, \  n F_DB= %.1 f kN T,
     f kN \n F_EC= %.2 f kN ", F_AB, F_DA, F_DB, F_DE, F_BE,
     F_BC,F_EC);
35 //Variation in answe because of round off
```

Scilab code Exa 6.2 force

```
1 clc;
2 //page 306
3 //Entire truss
4 v1=140; //kn, verical force 1
5 v2=140; //kN, Vertical force 2
6 h=80; //kN , Horizontal force
7 //Applying sum(M.B)=0
8 J=(v1*4+v2*12+h*5)/16; //kN
9
10 //Applying sum Fx=0
11 Bx=-h; //kN, negative sign shows it is along negative x axis
12
13 //Applying sumFy=0
```

```
14
15 By=v1+v2-J;//kN
16
17 //Force in member EF
18 //Applying sumFy=0
19 F_EF=By-v2;//kN, Force in member EF
20 printf("Force in member EF is %.0f kN \n Negative sign shows member is in compression \n",F_EF);
21
22 //Force in member GI
23 F_GI=(-J*4-Bx*5)/5;//kN Force in member GI
24 printf("Force in member GI is %.0f kN \n Negative sign shows member is in compression \n",F_GI);
25 //Answer difference is because of rounding off variables
```

Scilab code Exa 6.3 Calculation of force

```
1 clc;
2 //page 307
3 //Entire truss
4 vB=1; //kN, verical force at B
5 vD=1; //kN, verical force at D
6 vF=1; //kN, verical force at F
7 vH=1;//kN, verical force at H
8 vJ=1; //kN, verical force at J
9 vC=5; //kN, verical force at C
10 vE=5; //kN, verical force at E
11 vG=5; //kN, verical force at G
12 h=8; //m, height
13 v=5; //m, horizontal distance between successive node
14
15 A=12.50; //kN, reaction at A
16 L=7.50; //kN, reaction at L
17
```

```
18 alpha=atan(h/3/v);// rad, angle made by inclined
      members with X axis
  //alpha=alpha/%pi*180;// Conversion of angle into
      degrees
20
21
22
23 //Force in member GI
24 / Applying sum(M.H) = 0
25 F_GI = (L*2*v-vJ*v)/(2*v*tan(alpha)); //kN Force in
      member GI
26 printf("Force in member GI is %.2 f kN \n ",F_GI);
27
28 //Force in member FH
29 // Applying sum (M.G)=0
30 F_FH=(L*3*v-vH*v-vJ*2*v)/(-h*cos(alpha));//kN, Force
       in member FH
31 printf("Force in member FH is %.2 f kN \n Negative
      sign shows member is in compression n, F_FH;
32
33
34 //Force in member GH
35 be=atan(v/(2*v*tan(alpha))); //rad, as tan(be)=GI/HI
36 / \text{Applying sum}(M_L) = 0
37 \text{ F_GH} = (-vH*v-vJ*2*v)/(3*v*\cos(be)); //kN, Force in
      member FH
38 printf ("Force in member GH is %.3 f kN \n Negative
      sign shows member is in compression \n", F_GH);
```

Scilab code Exa 6.4 components of force

```
1 clc;
2 //page 319
3 //Entire truss
4 //Applying sum(Fy)=0
```

```
5 Ay=480; //N, Y component of reaction at A
6 / \text{Applying sum}(M_A) = 0
7 B=480*100/160; //N, reaction at B
8 / Applying sum(Fx)=0
9 Ax=-300; //N, X component of reaction at A
10
11 alpha=atan(80/150);//radian
12
13 //Free body member BCD
14
15 / Applying sum(M_C) = 0
16 F_DE = (-480*100-B*60)/(sin(alpha)*250); //N, Force in
       link DE
17 printf("Force in link DE is F_DE=\%.0 f N\n Negative
      sign shows force is compressive n, F_DE;
18 / Applying sum(Fx) = 0
19 Cx=F_DE*cos(alpha)-B;//N, X component of force
      exerted at C
20 / Applying sum(Fy)=0
21 Cy=F_DE*sin(alpha)+Ay;//N, Y component of force
      exerted at C
22 printf ("Components of force exerted at C is Cx=\%.0f
     N and Cy=\%.0 f N \n", Cx, Cy);
```

Scilab code Exa 6.5 components of force

```
1 clc;
2 //page 320
3 P=18;//kN, Force applied at D
4 AF=3.6;//m, Length AF
5 EF=2;//m, Length EF
6 ED=2;//m, Length ED
7 DC=2;//m, Length DC
8 //Entire frame
9 //Applying sum(M_F)=0
```

```
10 Ay=-P*(EF+ED)/AF; //kN, Y component of reaction at A
11
12 / Applying sum(Fx)=0
13 Ax=-P; //kN, X component of reaction at A
14 / Applying sum(Fy)=0
15 F = -Ay; //kN, reaction at B
16
17
18 printf("Components of force exerted at A is Ax=%.0f
      kN and Ay=\%.0 \text{ f kN } \text{ n", Ax, Ay)};
19 printf("Force exerted at F is F=\%.0 f kN \n",F);
20 //Free body member BE
21 / Applying sum(Fx) = 0
22 //B=E, and as it is 2 force member
23 By = 0;
24 \text{ Ey=0};
25
26 //Member ABC
27 / Applying sum(Fy)=0
28 Cy=-Ay; //kN, Y component of force exerted at C
29 / \text{Applying sum}(M_C) = 0
30 B=(Ay*AF-Ax*(DC+ED+EF))/(ED+DC);/kN, Force in link
31 printf("Force exerted at B is B=\%.0 \text{ f kN } \setminus \text{n}",B);
32 / Applying sum(Fx) = 0
33 Cx=-Ax-B; //kN, X component of force exerted at C
34
35 printf("Components of force exerted at C is Cx=\%.0f
      kN and Cy=\%.0 \text{ f kN } \text{ n", Cx, Cy)};
36
37 printf ("Negative signs shows forces are in negative
      direction \n")
```

Scilab code Exa 6.6 Force

```
1 clc;
2 P=3; //kN, Horizontal Force applied at A
3 AB=1; //m, perpendicular distance between A and B
4 BD=1; //m, perpendicular distance between D and B
5 CD=1; //m, perpendicular distance between C and D
6 FC=1; //m, perpendicular distance between C and F
7 EF=2.4; //m, perpendicular distance between E and F
8 //Entire frame
9 //Applying sum (M_E)=0
10 Fy=P*(AB+BD+CD+FC)/EF; //kN, Y component of reaction
     at F
11
12
13 / Applying sum(Fy)=0
14 Ey=-Fy; //kN, Y component of reaction at E
15
16 //Free body member ACE
17 //Applying sum(Fy)=0, and sum(M.E)=0 we get 2
      equation
18 A = [-AB/sqrt(AB^2+EF^2), CD/sqrt(CD^2+EF^2); -EF/sqrt(
     AB^2+EF^2)*(AB+BD+CD+FC),-EF/sqrt(CD^2+EF^2)];//
     Matrix of coefficients
19 B=[Ey; -P*(AB+BD+CD+FC)]; // Matrix B
20 X=linsolve(A,B);//kN Solution matrix
21 F_AB=X(1); //kN, Forec inmember AB
22 F_CD=X(2); //kN, Forec inmember CD
23 Ex=-P-EF/sqrt(AB^2+EF^2)*F_AB-EF/sqrt(CD^2+EF^2)*
     F_CD; //kN, X component of force exerted at E
24 //Free body : Entire frame
25 / Applying sum(F_X) = 0
26 Fx=-P-Ex; //kN, X component of force exetered at F
27 printf ("Components of force exerted at F is Fx=\%.1 f
     kN and Fy=\%.0 f kN \n", Fx, Fy);
28 printf("Force in member AB is F_AB=\%.1 f kN \n", F_AB)
29 printf("Force in member CD is F_CD=%.1 f kN \n", F_CD)
30 printf ("Components of force exerted at E is Ex=\%.1f
```

```
kN and Ey=%.1f kN \n",Ex,Ey);   
31   
32   
printf("Negative signs shows forces are in negative direction
  \n")
```

Chapter 7

Forces in beams and cable

Scilab code Exa 7.1 free body diagram we

```
1 clc;
2 //Page 335
3 P=2400; //N, Vertical Force applied at D
4 AB=2.7; //m, perpendicular distance between A and B
5 BE=2.7; //m, perpendicular distance between E and B
6 BK=1.5; //m, perpendicular distance between B and K
7 AJ=1.2; //m, perpendicular distance between A and J
8 EF=4.8; //m, perpendicular distance between E and F
9 BD=3.6; //m, perpendicular distance between D and B
10 //For entire truss
11 //By free body diagram we get the force at A, B, c
12 A = 1800; //N
13 B=1200; //N
14 C = 3600; //N
15 alpha=atan(EF/(AB+BE));//rad
16 //a. Internal forces at j
17 / Applying sum(M_J)=0
18 M=A*AJ; //N.m, Couple on member ACF at J
19 / Applying sum(Fx)=0
20 F=A*cos(alpha);//N, Axial force at J
21 / Applying sum(Fy)=0
```

Scilab code Exa 7.2 free body diagram

```
1 clc;
\frac{2}{\text{page }} 344
3 //Drawing of shear and bending moment diagram
4 printf("Given problem is for drawing diagram, this
      diagram is drawn by step by step manner.\n");
5 F_A=-20; //kN, force applied at A
6 F_C=-40; //kN, force applied at C
7 AB=2.5; //m, perpendicular distance between A and B
8 BC=3; //m, perpendicular distance between C and B
9 CD=2; //m, perpendicular distance between C and D
10 //By free body of entire beam
11 / By sum(m_D) = 0
12 R_B = -(CD*F_C+(AB+BC+CD)*F_A)/(BC+CD); //kN, Reaction
     atB
13 / By sum(m_A) = 0
14 R_D=-(BC*F_C-(AB)*F_A)/(BC+CD); //kN, Reaction at B
15 //For section 1
```

```
16 / Applying sum(Fy)=0
17 V1 = F_A; //kN
18 / Applying sum(M1)=0
19 M1=V1*0; //kN.m
20
21 //For section 2
22 / Applying sum(Fy) = 0
23 V2=F_A;/kN
24 / Applying sum(M1)=0
25 M2=F_A*AB; //kN.m
26
27 //For section 3
28 / Applying sum(Fy)=0
29 V3 = R_B + F_A; //kN
30 / \text{Applying sum}(M1) = 0
31 M3=F_A*AB; //kN.m
32
33 //For section 4
34 / Applying sum(Fy)=0
35 V4 = R_B + F_A; //kN
36 / \text{Applying sum}(M1) = 0
37 M4=F_A*(AB+BC)+R_B*BC //kN.m
38
39 //For section 5
40 / Applying sum(Fy)=0
41 V5=R_B+F_A+F_C; //kN
42 / Applying sum(M1)=0
43 M5=F_A*(AB+BC)+R_B*BC//kN.m
44
45 //For section 6
46 //Applying sum(Fy)=0
47 V6=R_B+F_A+F_C; //kN
48 // Applying sum (M1)=0
49 M6 = V6 * 0 / kN.m
50 X = [0, 2.5, 2.5, 5.5, 5.5, 7.5]
51
V = [V1, V2, V3, V4, V5, V6]; //Shear matrix
53 M=[M1, M2, M3, M4, M5, M6]; // Bending moment matrix
```

```
54 xtitle('Shear and bending moment diagram', 'X axis'
    , 'Y axis');
55 plot(X,V);//Shear diagram
56 plot(X,M,'r');//Bending moment diagram
```

Scilab code Exa 7.3 free body diagram

```
1 clc;
2 //Drawing of shear and bending moment diagram
3 // Values taken in N and m instead of lb and in
4 printf("Given problem is for drawing diagram, this
      diagram is drawn by step by step manner.\n ");
5 F_AC=40; //lb/in, distributed load applied at A to C
6 F_E=400; //lb, force applied at E
7 AC=12; //in, perpendicular distance between A and B
8 CD=6; //in, perpendicular distance between C and D
9 DE=04; //in, perpendicular distance between E and D
10 EB=10; //in, perpendicular distance between E and B
11 AB=32; //in, length of beam AB
12 F=F_AC*AC; //N, Force due to districuted load at AC/2
13 //By free body of entire beam
14 / By sum(m_A) = 0
15 By=(F*(AC/2)+F_E*(AC+CD+DE))/AB;//N,Y componet of
      Reaction at B
16 / By sum(m_B) = 0
17 //disp(By)
18 A = (F*(AB-AC/2)+F_E*EB)/AB; //N, Reaction at A
19 //by sum(Fx)=0
20 // \operatorname{disp}(A)
21 Bx=0;//N, xcomponent of rection at B
22
23
24
25
26
```

```
27 // Diagrams
28
29 //For section A to C
30
31 / Applying sum(Fy)=0
32
33 i = 0;
34
35 \text{ for } x=0:2:12
36
37
        i=i+1;
38
39
        X(i)=x;
40
41 V(i) = A - F * x; //N
42
43 // Applying sum (M1)=0
45 M(i) = A * x - F/2 * x^2; //N.m
46
47 end
48
49
50
51 //For section Cto D
52
53 / Applying sum(Fy)=0
54
55 for x=12:2:18
56
        i=i+1;
57
        X(i)=x;
58
59
60 V(i) = A - F; //N
61
62 //Applying sum(M1)=0
64 M(i) = A * x - F * (x - 0.15); //N.m
```

```
65
66 \text{ end}
67
68 //For section D to B
69
70
71
72 \text{ for } x=18:2:32
73
74
75
76 i = i + 1;
77
78
        X(i)=x;
79
        //Applying sum(Fy)=0
80
81
82
        V(i) = A - F - F_E; //N
83
84 // Applying sum (M1)=0
85
86 M(i) = A * x - F * (x - 0.15) + F_E * DE - F_E * (x - 0.045); //N.m
87
88 end
89
90
91 xtitle('Shear and bending moment diagram', 'X axis'
       , 'Y axis');
92 plot(X,V,'r');//Shear diagram
93
94 plot(X,M,'-');//Bending moment diagram
```

Scilab code Exa 7.4 free body diagram

```
1 clc;
```

```
2 //Drawing of shear and bending moment diagram
3 printf("Given problem is for drawing diagram, this
      diagram is drawn by step by step manner.\n ");
4 F_B=500; //N, force applied at B
5 F_C=500; //N, force applied at C.
6 F_DE=2400; //N/m, distributed load applied at D to E
7 AB=0.4; //m, perpendicular distance between A and B
8 BC=0.4; //m, perpendicular distance between C and B
9 CD=0.4; //m, perpendicular distance between C and D
10 DE=0.3; //m, perpendicular distance between E and D
11 F_E=F_DE*DE; //N, force exerted at DE/2 from E
12
13 //By free body of entire beam
14 / By sum(m_D) = 0
15 A = (CD * F_C + (BC + CD) * F_B - F_E * DE/2) / (AB + BC + CD); //N,
      Reaction at A
16 / By sum(Fy) = 0
17 Dy=F_C+F_B+F_E-A; //N, Y component of Reaction at D
18 / By sum(Fx) = 0
19 Dx=0; //N, Y component of Reaction at D
20 //For section 1
21 / Applying sum(Fy)=0
22 V1=A; //N, shear force from A to B
23
24 //For section 2
25 / Applying sum(Fy)=0
26 V2=A-F_B; //N, shear force from B to C
27
\frac{28}{\text{For section }}3
\frac{29}{Applying} sum(Fy)=0
30 V3=A-F_B-F_C; //N, shear force from C to D
31
32 //For section 4
33 / Applying sum(Fy)=0
34 \text{ V4=A-F\_B-F\_C+Dy;}//N, shear force At D
35
36 //For section 5
37 / Applying sum(Fy)=0
```

```
38 V5=0; //N, shear force at A
39 // Area under bending curve is change in bending
      moment of that 2 points
40 MA = 0; //N.m
41 MB=MA+V1*AB; //N.m
42 MC = MB + V2 * BC; //N.m
43 MD = MC + V3 * CD; //N.m
44 ME=MD+1/2*V4*AB; //N.m
45
46
X = [0, 0.4, 0.4, 0.8, 0.8, 1.2, 1.2, 1.5];
48 V = [V1, V1, V2, V2, V3, V3, V4, V5]; //Shear matrix,
49
50 plot(X,V);//Shear diagram
X = [0, AB, AB + BC, AB + BC + CD, AB + BC + CD + DE];
52 M=[MA, MB, MC, MD, ME]; // Bending moment matrix
53 plot(X, M, 'r'); // Bending moment diagram
```

Scilab code Exa 7.5 free body diagram

```
clc;
//Drawing of shear and bending moment diagram
printf("Given problem is for drawing diagram, this
    diagram is drawn by step by step manner.\n");

w=20;//kN/m, distributed load applied at D to E
AB=6;//m, perpendicular distance between A and B
BC=3;//m, perpendicular distance between C and B

F_B=w*AB;//kN, force exerted at AB/2 from A

//By free body of entire beam
//By sum(m_C)=0
RA=(F_B*(AB/2+BC))/(AB+BC);//kN, Reaction at A
```

```
15 / By sum(m_A) = 0
16 RC=(F_B*(AB/2)/(AB+BC)); //kN, Reaction at C
17
18 //For section 1
19 / Applying sum(Fy)=0
20 VA=RA; //N, shear force just to right to A
21
22 //For section 2
23 / Applying sum(Fy)=0
24 VB=VA-F_B; //kN, shear force just left to B
25
\frac{26}{\sqrt{\text{For section } 3}}
27 / Applying sum(Fy) = 0
28 VC=VB; //kN, shear force from B to C
29
30
31 //Bending moment at each end is zero
32 // Maximum bending moment is at D where V=0
33 VD = 0; //kN
34
35 x=-(VD-VA)/w; //m, location of maximum bending moment
36 printf("Maximum bending moment is at D x=\%.0 \,\mathrm{f} m
      from A \setminus n, x);
37 MA = 0; //kN .m
38 MD=MA+1/2*VA*x; //kN.m, maximum bending moment is at
39 MB = MD + 1/2 * VB * (AB - x); //N.m
40 MC=MB+VB*BC; //N.m
41
42 printf ("Maximum bending moment is at MD= \%.0 fkN. m
      from A \setminus n, MD);
43 X = [0, x, AB, AB + BC]; //m,
V = [VA, VD, VB, VC]; //kN, Shear matrix,
45
46 plot(X, V); // Shear diagram
47 X = [0, x, AB, AB + BC]; //m
48 M=[MA, MD, MB, MC]; //kN.m, Bending moment matrix
49 plot(X,M,'r');//Bending moment diagram
```

Scilab code Exa 7.8 free body diagram

```
1 clc;
2 F_B=30; //kN, Vertical Force applied at B
3 F_C=60; //kN, Vertical Force applied at C
4 F_D=20; //kN, Vertical Force applied at D
5 AB=6; //m, perpendicular distance between A and B
6 BC=3; //m, perpendicular distance between C and B
7 CD=4.5; /m, perpendicular distance between c and D
8 DE=4.5; //m, perpendicular distance between D and E
  AE=6; //m, vertical perpendicular distance between A
      and E
10 AC=1.5; //m, vertical perpendicular distance between
     A and C
11 //For entire cable
12 / \text{Sum}(M.E) = 0, AB*Ax-Ay*(AB+BC+CD+DE)+F_B*(BC+CD+DE)+
      F_C * (CD+DE)+F_D * (DE)=0
13
14 //Free body ABC
15 / \text{Sum}(M_c) = 0 \text{ gives } -\text{Ax*AC-Ay*}(AB+BC) + F_B*BC = 0
16 //we get 2 equations in Ax and Ay
17 A = [AB, -(AB+BC+CD+DE); -AC, -(AB+BC)]; // Matrix of
      coeficients
18 B = [-(F_B*(BC+CD+DE)+F_C*(CD+DE)+F_D*(DE)); -F_B*BC];
19 X=linsolve(A,-B);//kN, Solution matrix
20 Ax=X(1); //kN, X component of reaction at A
21 Ay=X(2); //kN, Y component of reaction at A
22
23
24 //a. Elevation of points B and D
25 //Free body AB
26 / \text{sum}(M_B) = 0
27 yB = -Ay * AB / Ax; //m, below A
28 printf ("Elevation of point B is \%.2 \, \mathrm{f} m below A\n",yB
```

```
);
29 //free body ABCD
30 //sum(M_D)=0
31 yD=(Ay*(AB+BC+CD)-F_B*(BC+CD)-F_C*CD)/Ax;//m, above
A
32 printf("Elevation of point D is %.2f m above A\n",yD
);
33
34 //Maximum slope and maximum tension
35 theta=atan((AE-yD)/DE);//rad
36 Tmax=-Ax/cos(theta);//kN, maximum tension
37 theta=theta/%pi*180;//degree
38
39 printf("Maximum slope is theta= %.1f degree and maximum tension in the cable is Tmax= %.1f kN \n", theta,Tmax);
```

Scilab code Exa 7.9 free body diagram

```
1 clc;
2 yB=0.5; //m, sag of the cable
3 m=0.75; //kg/m, mass per unit length
4 g=9.81; //m/s^2, acceleration due to gravity
5 AB=40; //m, distance AB
6 //a. Load P
7 w=m*g; //N/m , Load per unit length
8 xB=AB/2; //m, distance CB
9 W=w*xB; //N, applied at halfway of CB
10
11 //Summing moments about B
12 / \text{sum}(M_B) = 0
13 To=W*xB/2/yB; //N
14 //from force triangle
15 TB = sqrt(To^2 + W^2); //N, =P, as tension on each side
      is same
```

Scilab code Exa 7.10 free body diagram

```
1 clc;
2 AB=150; //m, distance AB
3 \text{ s=30;} //\text{m, sag of cable}
4 w=45; //N/m Uniform weigth per unit length of cable
5
  //Equation of cable, by 7.16
  //Coordinates of B
8
9 xB=AB/2; //m
10 C=[99,105,98.4,90]; //trial values
11
12 \text{ for } i=1:4
13
        if ((30/C(i)+1)-\cosh(xB/C(i)))<0.0001 then c=C(i)
           );
14
       break;
15 end
16 \text{ end}
17 yB=s+c;/m
18
19 //Maximum and minimum values of tension
```

Chapter 8

Friction

Scilab code Exa 8.1 value of friction force

```
1 clc;
2 //page 396
4 h=100; //lb, horizontal force
5 W=300; //lb, weight of block
7 us=0.2; // Coefficient of static friction
8 uk=0.20;//Co=efficient of kinetic friction
9
10 //Applying sumFx = 0, we get
11 F=h-3/5*W; //lb, Force along plane
12 F = -F
13
14 //Applying sumFy=0, we get
15 N=4/5*W//lb, Normal force to the plane
16
17
18 printf("Force F required to maintain the
      equillibrium is thus \%.0 f lb, up and to right\n",
     F);
19
```

Scilab code Exa 8.2 Force P to prevent block

```
1 clc;
2 clear all
3 //page 397
4 F=800; //N Firce in verical direction
5 us=0.35; // Coefficient of static friction
6 uk=0.25; //Co=efficient of kinetic friction
7 theta=25;//degree, angle of inclination
8 theta=theta*%pi/180;//rad, Conversion into radian
9 // Force P start block moving up
10 // At static equillibrium Tan(Theta_s)=us
11 theta_s=atan(us);//rad
12 P=F*tan(theta+theta_s); //N, Force P to start block
     moving up
13 printf ("Force P to start block moving up is %.0 f N\n
     ",P);
14
15
16 // Force P to keep block moving up
17 // At kinetic equillibrium Tan(Theta_k)=uk
18 theta_k=atan(uk); //rad
19 P=F*tan(theta+theta_k); //N, Force P to keep block
```

```
moving up
printf("Force P to keep block moving up is %.0 f N\n",P);

21
22
23 // Force P to prevent block from sliding down
24
25 theta_s=atan(us);//rad
26 P=F*tan(theta-theta_s);//N,Force P to prevent block from sliding down
27 printf("Force P to prevent block from sliding down is %.0 f N\n",P);
```

Scilab code Exa 8.3 Minimum distance

Scilab code Exa 8.4 force required

```
1 clc;
2 //page 411
3 F=400;//lb, force exerte
4 us=0.35;// Coefficient of static friction
5 phi=atand(us);//rad, angle of friction
```

```
6 // disp (phi)
7 theta=8; //degree, angle of inclination
8 theta=theta*%pi/180;//rad, Conversion into radian
10 //Using sine rule
11 //force p to raise block
12 //free body , block B
13 R1=F*sind(109.3)/(sind(43.4))
14 //free body wedge A
15 P=R1*sind(46.6)/(sind(70.7))
16 printf (" force required to raise block is P=\%.0 f lb\
     n",P);
17
18 //force to lower block
19 //free body , block B
20 R1=F*sind(70.7)/(sind(98.0))
21 //free body wedge A
P=R1*sind(30.6)/(sind(70.7))
23 printf (" force required to lower block is P=\%.0 \text{ f lb}\
     n",P);
```

Scilab code Exa 8.5 Couple required to loosen clamp

```
1 clc;
2 clear all
3 //page 412
4 pitch=2; //mm, pitch of screw
5 d=10; //mm, mean diameter of thread
6 r=d/2; //mm, radius
7 us=0.30; // Coefficient of static friction
8 M=40; //kN.m , Maximum couple
9
10 //Force exerted by clamp
11 L=2*pitch; //mm, as screw is double threaded
12 theta=atan(L/(2*%pi*r)); //rad, angle of inclination
```

```
phi=atan(us); //rad, angle of friction
Q=M/r*1000; //N, Force applied to block representing
screw

Q=Q/1000//kN, Conversion into kN
W=Q/tan(theta+phi); //kN, Magnitude of force exerted
on the piece of wood

printf("Magnitude of force exerted on the piece of
wood is W= %.2 f kN \n", W);
// Couple required to loosen clamp
Q=W*tan(phi-theta); //kN, Force required to loosen
clamp
Couple=Q*r; //N.m, Couple required to loosen clamp
printf("Couple required to loosen clamp is %.2 f N.m
\n", Couple);
```

Scilab code Exa 8.6 force required

```
1 clc;
2 clear all
3 //Page 423
4 \text{ r=1}//\text{in in}
5 us=0.20; // Coefficient of static friction between
      shaft and pully
7 // Vertical Force required to raise load
8 rf=r*us; //in, Perpendicular distance from the center
       Of pully to line of action
9 //summing moment about B
10 P=(2.20*500)/1.8//lb, downward Force required to
      raise load
11 printf ("Force required to raise load is %f lb in
      downward direction \n", P);
12
13
  //Vertcal Force required to hold load
14
```

```
15 //summing moment about C
16 P = (1.80*500)/1.8//lb, downward Force required to
      hold load
17 printf ("Force required to hold load is %.0f lb in
      downward direction n, P);
18
19 // Horizontal force P to start raising the load
20 \quad OE=rf; //mm,
21 OD = sqrt((d1/2)^2 + (d1/2)^2); / mm, pythagorus theorm
22 theta=asin(OE/OD); //rad,
23
24 // from force triangle
25 P=500*cotd(40.9);//lb, Horizontal force P to start
      raising the load
26 printf("Horizontal force P required to start raising
       the load is \%.0 f lb n, P);
```

Scilab code Exa 8.7 Tension

```
1 clc;
2 //page 431
3 T1=150;//N, Force on free end of hawser
4 T2=7500;//N, Force on other end of hawser
5
6
7 //a, coefficient of friction
8 bta=2*2*%pi;//rad, angle of contact, 2 turns
9 //By equation 8.13
10 us=log(T2/T1)/bta;// Co-efficient of static friction
11 printf("Coefficient of static friction between hawser and ballard is us= %0.3 f \n", us);
12
13 //Number of wraps when tension in hawser=75 kN
14
15 bta=3*2*%pi//in rad
```

```
16 //One turn = 2* pi angle, bta corresponds to
17 ten=T1*exp(bta*us)
18 printf("Tension is %f N \n ",ten);
```

Scilab code Exa 8.8 Torque

```
1 clc;
\frac{2}{\text{page }} 432
3 // Given
4 T2=600; //lb, Tension from side 2
5 us=0.25; // Coefficient of static friction between
      pulley and belt
6 bta=(2*%pi)/3;//Co=efficient of kinetic friction
      between pulley and belt
7 \text{ r1=8}//\text{in in}
8 //Pulley B
9
10 T1=T2/(\exp(us*bta))//N, Tension from side 1
11 //\operatorname{disp}(T1)
12
13 // Pulley A
14 //Aumming moment about A
15 MA = (T2*r1) - (T1*r1); //lb - ft, Couple MA applied to
      pulley which is equal and opposite to torque
16
17 printf("The largest torque which can be exerted by
      belt on pulley A is MA= \%0.0 \, f \, lb - in \, n", MA);
```

Chapter 9

Distributed forces Moment of Inertia

Scilab code Exa 9.4 Area of plate

```
1 clc;
2 //page 465
3 //Area of plate
4
6 A=9*.75; //in^2
7 y=1/2*13.84+1/2*.75; //in, y co-ordinate of centroid
      of the plate
8 // All values for flange are from table from book
9 sumA=A+8.85; //in^2 Total area
10 sumyA=y*A+0; //in^3
11 Y = sumyA / sumA; //in
12 // \operatorname{disp}(Y)
13 //Moment of inertia
14 //For wide flanfe
15 Ix1=291+8.85*Y^2; //in^4
16 //for plate
17 Ix2=1/12*9*(3/4)^3+6.75*(7.295-3.156)^2; //in^4
18 //For composite area
```

```
19 Ix=Ix1+Ix2;//in^4
20
21 printf("Moment of inertia Ix= %.2e in^4 \n",Ix);
22
23 //Radius of gyration
24 kx=sqrt(Ix/sumA);//mm
25 printf("Radius of gyration is kx= %.1f in\n",kx);
```

Scilab code Exa 9.5 Principle moment of inertia

```
1 clc;
2 //page 466
3 // Given
4 r=90; //mm, radius of half circle
5 b=240; //mm, width
6 h=120; /mm, h eight
8 //Moment of inertia of rectangle
9 Ixr=1/3*b*h^3; //mm^4
10
11 //Moment of inertia of half circle
12 a=4*r/(3*\%pi); //mm
13
14 b=h-a; //mm, Distance b from centroid c to X axis
15
16 I_AA=1/8*%pi*r^4; //mm^4, Moment of inertia of half
      circle with respect to AA'
17
  A=1/2*%pi*r^2; //mm^2, Area of half circle
18
19 Ix1=I_AA-A*a^2; //mm^4, Parallel axis theorem
20
21 Ixc=Ix1+A*b^2; //mm^4, Parallel axis theorem
22
23 //Moment of inertia of given area
24 Ix=Ixr-Ixc; //mm^4
```

Scilab code Exa 9.7 Principle moment of inertia

```
1 clc;
2 //page 479
3 Ix=10.38; //in^4, Moment of inertia about x axis
4 Iy=6.97; //in^4, Moment of inertia about y axis
6 Ixy = -3.28 + 0 - 3.28
7 disp(Ixy)//in in^4
8
9 // Principal axes
10 tan_2_theta_m = -(2*Ixy)/(Ix-Iy)
11 two_theta_m=atand(tan_2_theta_m)
12 theta_m=two_theta_m/2
13 printf ("Orientation of principle axes of section
      about O is Theta_m = \%.1 f degree \n", theta_m);
14
15 // Principle moment of inertia, eqn 9.27
16 Imax = (Ix + Iy) / 2 + sqrt(((Ix - Iy) / 2)^2 + Ixy^2); / mm^4
17 Imin = (Ix+Iy)/2 - sqrt(((Ix-Iy)/2)^2 + Ixy^2); / mm^4
18
19 printf ("Principle moment of inertia of section about
      O are \n Imax= \%.2e in ^4 \n Imin= \%.0e in ^4\n",
      Imax, Imin);
20 //answer difference is due to roundoff
```

Chapter 10

Method of virtual work

Scilab code Exa 10.3 Force exerted by each cylinder

```
1 clc;
2 m=1000; //kg, mass of krate
3 theta=60; //degree
4 theta=theta*%pi/180; //radians, conversion into rad
5 a=0.70; //m
6 L=3.20; //m
7 g=9.81; //m/s^2
8 //From theory we get
9 W=m*g; //N, Weight
10 W=W/1000; //kN, conversion into kN
11 S=sqrt(a^2+L^2-2*a*L*cos(theta)); //m
12 F_DH=W*S/L/tan(theta); //kN
13
14 printf("Force exerted by each cylinder is F_DH=%.2f kN", F_DH);
```

Scilab code Exa 10.4 Angle

```
1 clc;
2 \text{ m=10;} //\text{kg}, \text{ mass of rim}
3 \text{ r=300;} //\text{mm}, \text{ radius of disk}
4 a=0.08; //m
5 \ b=0.3; //m
6 \text{ k=4;} //\text{kN/m}
7 g=9.81; //m/s^2 gravity
8 //From theory we get
10 //\sin(\theta ta) = k*a^2/m/g/b*theta
11 dif=1;
12 for theta=0:0.001:1
         dif = sin(theta) - k*a^2/m/g/b*theta;
13
         if dif<=0.001 then printf("theta= \%.3\,\mathrm{f} rad or \%
14
             .1\,\mathrm{f} degrees\n", theta, theta/%pi*180);
15
         end
16 \, \text{end}
```