UNIVERSITY NAME (IN BLOCK CAPITALS)

Three body problem in the spherical geometry

by

Jesus David Prada Gonzalez

A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy

in the Faculty Name Department or School Name

February 2016

Declaration of Authorship

I, AUTHOR NAME, declare that this thesis titled, 'THESIS TITLE' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:		
Date:		

UNIVERSITY NAME (IN BLOCK CAPITALS)

Abstract

Faculty Name
Department or School Name

Doctor of Philosophy

by Jesus David Prada Gonzalez

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor...

Contents

Declaration of Authorship	i
Abstract	iii
Acknowledgements	iv
List of Figures	vi
List of Tables	vi
Abbreviations	viii
Physical Constants	ix
Symbols	х
1 Introduction	1
1.1 The three body problem in the plane	
1.1.1 Integrability of the system	
1.2 Another Section	2
A An Appendix	3

List of Figures

List of Tables

Abbreviations

LAH List Abbreviations Here

Physical Constants

Speed of Light $c = 2.997 924 58 \times 10^8 \text{ ms}^{-8} \text{ (exact)}$

a distance m

P power W (Js⁻¹)

 ω angular frequency rads⁻¹

For/Dedicated to/To my...

Chapter 1

Introduction

In this chapter a classic approach of a somehow general case of the three body problem in 2 dimensions is going to be presented. This will give some necessary intuition to develop the analogous problem in the spherical geometry. To begin with, the problem is going to be described in great detail; then its integrability is going to be proven; and finally, a formalism to describe the movement of the particles is going to be presented.

1.1 The three body problem in the plane

The three body problem presented here is that of three particles of electrical charge -e and mass m confined to a plane, under the influence of a strong magnetic field perpendicular to it, and forces whose potentials satisfy translational and rotational symmetries in the plane.

Given this information, the Hamitonian associated with this system has the form:

$$H = \sum_{i=1}^{3} \frac{1}{2m_i} \left\| \vec{p_i} + e\vec{A}(\vec{q_i}) \right\|^2 + V(\vec{q_1}, \vec{q_2}, \vec{q_3}) + \frac{\omega_c^2}{2} \sum_{i=1}^{3} \|\vec{q_i}\|^2$$
 (1.1)

Where $\vec{q_i} = x_i \hat{\imath} + y_i \hat{\jmath}$, $\vec{p_i} = p_{x_i} \hat{\imath} + p_{y_i} \hat{\jmath}$ and $\vec{A}(\vec{q})$ is the magnetic vector potential, which satisfies $\nabla \times \vec{A} = B\hat{k}$.

Besides, the potential $V(\vec{q_1}, \vec{q_2}, \vec{q_3})$ satisfies the symmetries:

$$V(R\vec{q_1} + \vec{a}, R\vec{q_2} + \vec{a}, R\vec{q_3} + \vec{a}) = V(\vec{q_1}, \vec{q_2}, \vec{q_3})$$
(1.2)

For any rotation R and translation \vec{a} in the plane.

1.1.1 Integrability of the system

For the proof of integrability for this system, and for further analysis of the trajectories of the particles, let us perform the well known canonical transformation of the guiding centres.

This transformation is defined by the following two equations:

$$\vec{\pi_i} = \vec{p_i} + e\vec{A}(\vec{q_i}) \tag{1.3}$$

$$\vec{R_i} = \vec{q_i} + \frac{\hat{k} \times \vec{\pi_i}}{eB} \tag{1.4}$$

The equation 1.3 passes from the canonical momenta $\vec{p_i}$ to the linear momenta $\vec{\pi_i}$, which is much more intuitive and understandable; while the equation 1.4 passes the general position $\vec{q_i}$ to the position of the instantaneous guiding centre $\vec{R_i}$.

In a system without the interaction potentials, the electrically charged particles are known to perform circular motion (cyclotron) with radius depending on the initial linear momentum. In this case, the guiding centres would be constant in time as would be the linear momenta. However, with the introduction of an interacting potential, the momenta of each particle may vary, making the guiding centres change too, making it necessary the interpretation of the guiding centres as the centres of the cyclotron that the particles would describe given no interactions, and the instantaneous linear momenta.

1.2 Another Section

Phasellus nisi quam, volutpat non ullamcorper eget, congue fringilla leo. Cras et erat et nibh placerat commodo id ornare est. Nulla facilisi. Aenean pulvinar scelerisque eros

eget interdum. Nunc pulvinar magna ut felis varius in hendrerit dolor accumsan. Nunc pellentesque magna quis magna bibendum non laoreet erat tincidunt. Nulla facilisi.

Duis eget massa sem, gravida interdum ipsum. Nulla nunc nisl, hendrerit sit amet commodo vel, varius id tellus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc ac dolor est. Suspendisse ultrices tincidunt metus eget accumsan. Nullam facilisis, justo vitae convallis sollicitudin, eros augue malesuada metus, nec sagittis diam nibh ut sapien. Duis blandit lectus vitae lorem aliquam nec euismod nisi volutpat. Vestibulum ornare dictum tortor, at faucibus justo tempor non. Nulla facilisi. Cras non massa nunc, eget euismod purus. Nunc metus ipsum, euismod a consectetur vel, hendrerit nec nunc.

Appendix A

An Appendix

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at pulvinar nisi. Phasellus hendrerit, diam placerat interdum iaculis, mauris justo cursus risus, in viverra purus eros at ligula. Ut metus justo, consequat a tristique posuere, laoreet nec nibh. Etiam et scelerisque mauris. Phasellus vel massa magna. Ut non neque id tortor pharetra bibendum vitae sit amet nisi. Duis nec quam quam, sed euismod justo. Pellentesque eu tellus vitae ante tempus malesuada. Nunc accumsan, quam in congue consequat, lectus lectus dapibus erat, id aliquet urna neque at massa. Nulla facilisi. Morbi ullamcorper eleifend posuere. Donec libero leo, faucibus nec bibendum at, mattis et urna. Proin consectetur, nunc ut imperdiet lobortis, magna neque tincidunt lectus, id iaculis nisi justo id nibh. Pellentesque vel sem in erat vulputate faucibus molestie ut lorem.

Quisque tristique urna in lorem laoreet at laoreet quam congue. Donec dolor turpis, blandit non imperdiet aliquet, blandit et felis. In lorem nisi, pretium sit amet vestibulum sed, tempus et sem. Proin non ante turpis. Nulla imperdiet fringilla convallis. Vivamus vel bibendum nisl. Pellentesque justo lectus, molestie vel luctus sed, lobortis in libero. Nulla facilisi. Aliquam erat volutpat. Suspendisse vitae nunc nunc. Sed aliquet est suscipit sapien rhoncus non adipiscing nibh consequat. Aliquam metus urna, faucibus eu vulputate non, luctus eu justo.

Donec urna leo, vulputate vitae porta eu, vehicula blandit libero. Phasellus eget massa et leo condimentum mollis. Nullam molestie, justo at pellentesque vulputate, sapien velit ornare diam, nec gravida lacus augue non diam. Integer mattis lacus id libero ultrices sit amet mollis neque molestie. Integer ut leo eget mi volutpat congue. Vivamus sodales, turpis id venenatis placerat, tellus purus adipiscing magna, eu aliquam nibh dolor id nibh. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed cursus convallis quam nec vehicula. Sed vulputate neque eget odio fringilla ac sodales urna feugiat.

Phasellus nisi quam, volutpat non ullamcorper eget, congue fringilla leo. Cras et erat et nibh placerat commodo id ornare est. Nulla facilisi. Aenean pulvinar scelerisque eros eget interdum. Nunc pulvinar magna ut felis varius in hendrerit dolor accumsan. Nunc pellentesque magna quis magna bibendum non laoreet erat tincidunt. Nulla facilisi.

Duis eget massa sem, gravida interdum ipsum. Nulla nunc nisl, hendrerit sit amet commodo vel, varius id tellus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc ac dolor est. Suspendisse ultrices tincidunt metus eget accumsan. Nullam facilisis, justo vitae convallis sollicitudin, eros augue malesuada metus, nec sagittis diam nibh ut sapien. Duis blandit lectus vitae lorem aliquam nec euismod nisi volutpat. Vestibulum ornare dictum tortor, at faucibus justo tempor non. Nulla facilisi. Cras non massa nunc, eget euismod purus. Nunc metus ipsum, euismod a consectetur vel, hendrerit nec nunc.