Data center architecture

Abstract view of physical machines and interconnecting network

 ℓ physical machines (PMs)

Client: I have a computational task to perform.

To finish in time, I need to run this task on 7 virtual machines!

VM1 VM2 VM3 VM4 VM5 VM6 VM7

Network-efficient machine placement

Inefficient placement: total communication cost = 6 (internal communication is free)

Network-efficient machine placement

More efficient placement: total communication cost = 1 (internal communication is free)

Sometimes static placement is inherently inefficient

Virtual machine (VM) migration

Fixed cost α for migrating a VM to another physical machine. (migration is supported by major virtualization providers, inc. Xen, Hyper-V, VMware)

Balanced Re-partition Problem

Objective: compute the migration schedule that minimizes the total cost of communication and migration

Problem: the communication pattern is unknown!

Communication requests appear on the fly.

Online algorithms and competitive analysis

- ► Input revealed piece by piece
- Irrevocable decisions
- Comparison to offline optimal algorithm

The competitive ratio: $ALG < c \cdot OPT$

Offline Balanced Re-partition Problem

Objective: compute the migration schedule that minimizes the total cost of communication and migration

Online Balanced Re-partition Problem

Objective: compute the migration schedule that minimizes the total cost of communication and migration