EECS 203 Discussion 6

Modular Arithmetic, Functions

Admin Notes:

- Homework/Groupwork 6 will be due Mar. 14th
 - Don't forget to match pages!
 - Please note as soon as you press submit you've successfully submitted by the deadline. You can still match pages with no rush without adding to your submission time.

Modular Arithmetic

Modular Arithmetic Definitions

- Division Definition
 - \circ a \equiv b (mod n) iff n | (a b)
- Remainder Definition
 - \circ a \equiv b (mod n) iff rem(a,n) = rem(b,n)
- Integer Definition *Useful when working with different mods!
 - \circ a \equiv b (mod n) iff there exists integer k such that a = b + nk

Modular Addition, Subtraction, and Multiplication

- Addition
 - Given a ≡ b (mod n) and c ≡ d (mod n), then
 a + c ≡ b + d (mod n)
- Subtraction
 - Given a ≡ b (mod n) and c ≡ d (mod n), then
 a c ≡ b d (mod n)
- Multiplication
 - Given a ≡ b (mod n) and c ≡ d (mod n), then
 ac ≡ bd (mod n)

1. The Mod Operator

Evaluate these quantities:

- a) $-17 \mod 2$
- b) 144 mod 7
- c) $-101 \mod 13$
- d) 199 mod 19

1. The Mod Operator

Evaluate these quantities:

- a) $-17 \mod 2$
- b) 144 mod 7
- c) $-101 \mod 13$
- d) 199 mod 19

Solution: Express a in $(a \mod m)$ as a = mk + r where k is an integer (the quotient when a is divided by m), and r is a positive integer (the remainder when a is divided by m). r is the output of the mod operator.

a) Since $-17 = 2 \cdot (-9) + 1$, the remainder is 1. Hence $-17 \mod 2 = 1$

Note that we do not write $-17 = 2 \cdot (-8) - 1$ with $-17 \mod 2 = -1$ since we want a positive remainder.

- b) Since $144 = 7 \cdot 20 + 4$, the remainder is 4. $144 \mod 7 = 4$
- c) Since $-101 = 13 \cdot (-8) + 3$, the remainder is 3. $-101 \mod 13 = 3$
- d) Since $199 = 19 \cdot 10 + 9$, the remainder is 9. $199 \mod 19 = 9$

2. Working in Mod

Find the integer a such that

(a)
$$a \equiv -15 \pmod{27}$$
 and $-26 \le a \le 0$

(b)
$$a \equiv 24 \pmod{31}$$
 and $-15 \le a \le 15$

(c)
$$a \equiv 99 \pmod{41}$$
 and $100 \le a \le 140$

2. Working in Mod

Find the integer a such that

- (a) $a \equiv -15 \pmod{27}$ and $-26 \le a \le 0$
- (b) $a \equiv 24 \pmod{31}$ and $-15 \le a \le 15$
- (c) $a \equiv 99 \pmod{41}$ and $100 \le a \le 140$

Solution: $(km) \equiv 0 \pmod{m}$. Hence $a + km \equiv a \pmod{m}$. Thus to get the solution in the right range, either add or subtract km, where k is an integer.

- 1. -15, since it is already within the required range.
- 2. $24 \equiv 24 31 \equiv -7 \pmod{31}$
- 3. $99 \equiv 99 + 41 \equiv 140 \pmod{41}$

3. Arithmetic within a Mod

Suppose that a and b are integers, $a \equiv 11 \pmod{19}$, and $b \equiv 3 \pmod{19}$. Find the integer c with $0 \le c \le 18$ such that

- a) $c \equiv 13a \pmod{19}$.
- b) $c \equiv a b \pmod{19}$.
- c) $c \equiv 2a^2 + 3b^2 \pmod{19}$.
- d) $c \equiv a^3 + 4b^3 \pmod{19}$.

3. Arithmetic within a Mod

Suppose that a and b are integers, $a \equiv 11 \pmod{19}$, and $b \equiv 3 \pmod{19}$. Find the integer c with $0 \le c \le 18$ such that

- a) $c \equiv 13a \pmod{19}$.
- b) $c \equiv a b \pmod{19}$.
- c) $c \equiv 2a^2 + 3b^2 \pmod{19}$.
- d) $c \equiv a^3 + 4b^3 \pmod{19}$.

Solution:

- a) $13 \cdot 11 = 143 \equiv 10 \pmod{19}$
- b) $11 3 \equiv 8 \pmod{19}$
- c) $2 \cdot 11^2 + 3 \cdot 3^2 = 269 \equiv 3 \pmod{19}$
- d) $11^3 + 4 \cdot 3^3 = 1439 \equiv 14 \pmod{19}$

4. Arithmetic in Different Mods *

Suppose that $x \equiv 2 \pmod{8}$ and $y \equiv 5 \pmod{12}$. For each of the following, compute the value or explain why it can't be computed.

Hint: Recall that if $a \equiv b \pmod{m}$ then there exists an integer k such that a = b + mk.

- (a) $3y \mod 6$
- (b) $(x-y) \mod 4$
- (c) $xy \mod 24$

4. Arithmetic in Different Mods *

Suppose that $x \equiv 2 \pmod{8}$ and $y \equiv 5 \pmod{12}$. For each of the following, compute the value or explain why it can't be computed.

Hint: Recall that if $a \equiv b \pmod{m}$ then there exists an integer k such that a = b + mk.

- (a) $3y \mod 6$
- (b) $(x-y) \mod 4$
- (c) $xy \mod 24$

Solution:

- (a) Since 12 is a multiple of 6, $y \equiv 5 \pmod{12}$ can be rewritten as, y = 12k + 5 = 6(2k) + 5, for some integer k. So $y \equiv 5 \pmod{6}$ and $3y \equiv 15 \equiv 3 \pmod{6}$. Alternatively, y = 5 + 12k for some integer k, and thus that 3y = 15 + 36k = 15 + 6(6k). Therefore $3y \equiv 15 \equiv 3 \pmod{6}$.
- (b) Since 8 and 12 are both multiples of 4, we know $x \equiv 2 \pmod{4}$ and $y \equiv 5 \equiv 1 \pmod{4}$. Thus, $x y \equiv 2 1 \equiv 1 \pmod{4}$. Alternatively, x = 2 + 8n for some integer n and y = 5 + 12m for some integer m, and thus that x y = -3 + 8n 12m = -3 + 4(2n 3m). Therefore $x y \equiv -3 \equiv 1 \pmod{4}$.
- (c) $xy \pmod{24}$ can't be computed. Note that since x = 2 + 8n for some integer n and y = 5 + 12m for some integer m, xy = (2 + 8n)(5 + 12m) = 10 + 40n + 24m + 96mn. Since 40n cannot be written as a multiple of 24, we cannot write xy in mod 24.

5. Fast Modular Exponentiation \star

Find $a \equiv 5^{20} \pmod{27}$ such that $0 \le a \le 26$. In other words, find $5^{20} \pmod{27}$.

5. Fast Modular Exponentiation \star

Find $a \equiv 5^{20} \pmod{27}$ such that $0 \le a \le 26$. In other words, find $5^{20} \pmod{27}$.

Solution:

$$5^{20} \equiv (5^2)^{10} \equiv ((5^2)^2)^5 \equiv (25^5)^2 \equiv ((-2)^5)^2 \equiv (-32)^2 \equiv (-5)^2 \equiv 25 \pmod{27}$$

6. Extra Practice with Fast Modular Exponentiation

Find each of the following.

- a) $9^1 \mod 7$
- b) $9^2 \mod 7$
- c) $9^9 \mod 7$
- d) $9^{90} \mod 7$

6. Extra Practice with Fast Modular Exponentiation

Find each of the following.

- a) $9^1 \mod 7$
- b) $9^2 \mod 7$
- c) $9^9 \mod 7$
- d) $9^{90} \mod 7$

Solution:

- a) $9 \equiv 2 \pmod{7}$
- b) $9^2 \equiv 2^2 \equiv 4 \pmod{7}$
- c) $9^9 \equiv 2^9 \equiv 2 \cdot 2^8 \equiv 2 \cdot ((2^2)^2)^2 \equiv 2 \cdot (4^2)^2 \equiv 2 \cdot 16^2 \equiv 2 \cdot 2^2 \equiv 2 \cdot 4 \equiv 1 \pmod{7}$
- d) $9^{90} \equiv (9^9)^{10} \equiv 1^{10} \equiv 1 \pmod{7}$

Functions

Onto and One-to-One Functions

- Function f: A → B: associates each element of set A to <u>exactly one</u> element in set B
 - Domain: A
 - Codomain: B
 - Range of f: the set of elements in the codomain which are mapped to by an element in the domain, <u>subset of codomain B</u>
- Onto Function f: A → B: all elements in B are mapped to by f
- One-to-One Function f: A → B: no two elements of A map to the same output in B

Injective (1-1) and Surjective (Onto) Proofs

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

More on Functions

• **Function Inverse** f^{-1} : Let f be a **bijection** from set A to set B. The inverse function of f is the function with domain B and codomain A that assigns every element $b \in B$ to the unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} .

$$f^{-1}(b) = a$$
 if and only if $f(a) = b$.

Function Composition f ∘ g: Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all a ∈ A by f ∘ g, is defined by

$$(f\circ g)(a)=f\left(g(a)\right)$$

Adding and Multiplying Functions:

$$\circ$$
 $(f_1 + f_2)(x) = f_1(x) + f_2(x)$

$$\circ$$
 $(f_1f_2)(x) = f_1(x) f_2(x)$

7. One-to-One and Onto

Give an explicit formula for a function from the set of integers to the set of positive integers $f: \mathbb{Z} \to \mathbb{Z}^+$ that is:

- a) one-to-one, but not onto
- b) onto, but not one-to-one
- c) one-to-one and onto
- d) neither one-to-one nor onto

7. One-to-One and Onto

Give an explicit formula for a function from the set of integers to the set of positive integers $f: \mathbb{Z} \to \mathbb{Z}^+$ that is:

- a) one-to-one, but not onto
- b) onto, but not one-to-one
- c) one-to-one and onto
- d) neither one-to-one nor onto

Solution: There are many valid answers, but here are some examples. As a reminder, if x is negative, then -x will be a positive number.

- a) The function f(x) with f(x) = 3x + 1 when $x \ge 0$ and f(x) = -3x + 2 when x < 0.
- b) f(x) = |x| + 1
- c) f(x) = -2x when x < 0 and f(x) = 2x + 1 when $x \ge 0$ d) $f(x) = x^2 + 1$

8. Bijections

Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} . Briefly discuss why or why not. If it is bijective, state the inverse function.

- (a) f(x) = 2x + 1
- (b) $f(x) = x^2 + 1$
- (c) $f(x) = x^3$
- (d) $f(x) = (x^2 + 1)/(x^2 + 2)$
- (e) $f(x) = x^2 + x^3$

Solution:

- (a) Yes, $f^{-1}(x) = \frac{x-1}{2}$
- (b) No. 0 in the codomain isn't mapped to, and all numbers greater than 1 are mapped to twice, so it is neither one-to-one nor onto.
- (c) Yes, $f^{-1}(x) = x^{1/3}$
- (d) No. Numbers between $\frac{1}{2}$ and 1 in the codomain are mapped to twice, and any number outside of that range besides $\frac{1}{2}$ isn't mapped to at all, so it is neither one-to-one nor onto.
- (e) No. It is onto, but not one-to-one. For example, 0 in the codomain is mapped to twice, by 0 and -1.

9. One-to-One and Onto Proofs

Prove or disprove the following.

- a) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = \frac{1}{x^2+1}$ is onto
- b) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = |3x+1|$ is one-to-one
- c) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = ax + b$ where $a \neq 0$, is a bijection.

Solution:

a) f is not onto. To disprove the original statement, we can provide a counterexample. There is no value that will make $\frac{1}{x^2+1}=2$.

$$\frac{1}{x^2+1} = 2$$

$$2x^2 + 2 = 1$$

It is easy to see that $2x^2 + 2$ will never be less than 2, and therefore never equal to 1. There are many other possible counterexamples as well; any value that is not in the range of (0, 1] will not get mapped to.

b) f is not one-to-one. To disprove the original statement, we can give a counterexample to show two values from the domain that are not equal map to the same value in the codomain. One possible counterexample is that x = 1 and $x = -\frac{5}{3}$ map to the same value.

$$x = 1$$
 $f(1) = |3(1) + 1|$
 $f(1) = |4|$
 $f(1) = 4$

$$x = -5/3$$

$$f(-5/3) = |3(-5/3) + 1|$$

$$f(-5/3) = |-5 + 1|$$

$$f(-5/3) = |-4|$$

$$f(-5/3) = 4$$

Therefore, f(x) is not one-to-one.

c) f is a bijection. To prove this, we have to prove that it's both one-to-one and onto.

One-to-one:

Suppose that f(x) = f(y). Then, ax + b = ay + bax = ay

Because we know that $a \neq 0$,

$$x = y$$

Thus, $f(x) = f(y) \rightarrow x = y$.

This proves that the function is one-to-one.

Onto:

Consider an arbitrary $c \in \mathbb{R}$ (the codomain)

Let $x = \frac{c-b}{a}$.

Note that this value is a real number since $a \neq 0$. Then,

$$f(x) = ax + b$$

$$= a\frac{c - b}{a} + b$$

$$= c - b + b$$

$$= c$$

Thus, for any $c \in \mathbb{R}$, there is a value in the domain that maps to it through f, and so f must be onto. $(\forall y \in \mathbb{R} \exists x \in \mathbb{R} \text{ ST } f(x) = y)$

Thus, since the function is onto and one-to-one, its a bijection.

10. Function Composition

Consider the following two functions:

- $f: \mathbb{Z} \to \mathbb{Q}, \ f(x) = \frac{x+1}{3}$
- $g: \mathbb{Z}^+ \to \mathbb{Z}^+, \ g(x) = \frac{x(x+1)}{2}$

For each function, find it if it exists. If it does not, explain why.

- a) $f \circ g$
- b) $g \circ f$
- c) f^{-1}
- d) g^{-1}

Solution:

- a) $f \circ g : \mathbb{Z} \to \mathbb{Q}$ $(f \circ g)(x) = \frac{1}{3}(\frac{x(x+1)}{2} + 1) = \frac{x(x+1)+2}{6} = \frac{x^2+x+2}{6}$
- b) $g \circ f$ does not exist, because the codomain of $f(\mathbb{Q})$ is not the same set as the domain of $g(\mathbb{Z})$.
- c) f^{-1} does not exist, because f is not onto (consider $\frac{1}{2}$ in the codomain, which isn't mapped to).
- d) g^{-1} does not exist, because g is not onto (consider 2 in the codomain, which isn't mapped to).