Vetores

Pedro H A Konzen

19 de agosto de 2020

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados tópicos sobre vetores no espaço euclidiano. Como ferramentas computacionais de apoio, exploramos o Geogebra e códigos Python.

Agradeço a todos e todas que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

Sumário

C	apa			i		
Li	cenç	a		ii		
Pı	refác	io		iii		
Sı	ımár	io		\mathbf{v}		
1	Vetores					
	1.1	Segme	entos orientados	1		
		1.1.1	Segmento	1		
		1.1.2	Segmento orientado	2		
	1.2	Vetor		8		
		1.2.1	Adição de vetores	10		
		1.2.2	Vetor oposto	11		
		1.2.3	Subtração de vetores	12		
		1.2.4	Multiplicação de vetor por um escalar	13		
		1.2.5	Resumo das propriedades das operações com vetores .	15		
2	Bas	es e co	pordenadas	23		
	2.1	Depen	dência linear	23		
		2.1.1	Combinação linear	23		
		2.1.2	Dependência linear	24		
		2.1.3	Observações	24		
	2.2	Bases	e coordenadas	30		
		2.2.1	Operações de vetores com coordenadas	31		
		2.2.2	Dependência linear	34		
	2.3	Mudai	nça de base	35		

SUMÁRIO

	2.4	Bases ortonormais	37			
3	Pro	oduto escalar	39			
	3.1	Produto escalar	39			
		3.1.1 Propriedades do produto escalar				
	3.2	^				
		3.2.1 Desigualdade triangular				
	3.3	Projeção ortogonal				
4	Produto vetorial					
	4.1	Definição	47			
		4.1.1 Interpretação geométrica	47			
		4.1.2 Produto vetorial via coordenadas				
		4.1.3 Exercícios	48			
	4.2	Propriedades do produto vetorial	48			
5	Produto misto					
	5.1	Definição	52			
		5.1.1 Propriedades	53			
R	espos	stas dos Exercícios	55			
R	Referências Bibliográficas					
Ín	indice Remissivo					

Capítulo 1

Vetores

Neste capítulo, introduzimos os conceitos fundamentais relacionados às definições de vetor e operações básicas envolvendo vetores.

1.1 Segmentos orientados

1.1.1 Segmento

► Vídeo disponível!

Sejam dois pontos A e B sobre uma reta r. O conjunto de todos os pontos de r entre A e B é chamado de **segmento** e denotado por AB. A reta r é chamada de reta suporte.

Figura 1.1: Esboço de um segmento AB.

Norma e direção

Associado a um segmento AB, temos sua **norma** a qual é denotada por |AB| e é definida como a distância entre seus pontos extremos A e B. Ou seja, a norma do segmento AB é a medida de seu comprimento ou tamanho.

A direção de um segmento AB é a direção de sua reta suporte, i.e. a direção da reta que fica determinada pelos pontos A e B. Logo, dois segmentos AB e CD têm a mesma direção, quando suas retas suportes são paralelas ou coincidentes (ou seja, elas têm a mesma direção).

Exemplo 1.1.1. Consideremos os segmentos esboçados na Figura 1.2. Os segmentos AB e CD têm as mesmas direções, mas comprimentos diferentes. Já, o segmento EF tem direção diferente dos segmentos AB e CD.

Figura 1.2: Esboço referente ao Exemplo 1.1.1.

Segmento nulo

Se A e B são pontos coincidentes, então chamamos AB de **segmento nulo** e temos |AB| = 0. Observamos que a representação geométrica de um segmento nulo é um ponto, tendo em vista que seus pontos extremos são coincidentes. Como existem infinitas retas de diferentes direções que passam por um único ponto, temos que segmentos nulos não têm direção definida.

1.1.2 Segmento orientado

► Vídeo disponível!

Observamos que um dado segmento AB é igual ao segmento BA. Agora, podemos associar a noção de **sentido** a um segmento, escolhendo um dos pontos

como sua **origem** (ou **ponto de partida**) e o outro como sua **extremidade** (ou **ponto de chegada**). Ao fazermos isso, definimos um **segmento orientado**.

Mais precisamente, um segmento orientado AB é o segmento definido pelos pontos A e B, sendo A o ponto de partida (origem) e B o ponto de chegada (extremidade). Veja a Figura 1.3.

Figura 1.3: Esboço de um segmento orientado AB.

Norma e direção

As noções de norma e de direção para segmentos estendem-se diretamente a segmentos orientados. Dizemos que dois dados segmentos orientados não nulos AB e CD têm a **mesma direção** quando as retas AB e CD são paralelas ou coincidentes. A norma de um segmento orientado AB é a norma do segmento AB, denotada por |AB|. O segmento orientado nulo AA tem norma |AA| = 0 e não tem direção definida.

Exemplo 1.1.2. Consideremos os segmentos orientados esboçados na Figura 1.4. Observemos que os segmentos orientados $AB \in CD$ têm a mesma direção. Já o segmento orientado EF tem direção diferente dos segmentos $AB \in CD$.

Figura 1.4: Esboço referente ao Exemplo 1.1.2.

Comparação do sentido

► Vídeo disponível!

Segmentos orientados AB e CD de mesma direção podem ter o mesmo sentido ou sentidos opostos. No caso de suas retas suportes não serem coincidentes, os segmentos orientados AB e CD têm a mesma direção, quando os segmentos AC e BD não se interceptam. E, caso estas se intercetam, os segmentos orientados AB e CD têm sentidos opostos.

Exemplo 1.1.3. Na Figura 1.5, temos que os segmentos AB e CD têm o mesmo sentido. De fato, observamos que eles têm a mesma direção e que os segmentos AC e BD têm interseção vazia.

Figura 1.5: Segmentos orientados AB e CD de mesmo sentido. Segmentos orientados EF e GH de sentidos opostos.

Na mesma Figura 1.5, vemos que os segmentos orientados EF e GH têm sentidos opostos, pois têm a mesma direção e os segmentos EG e FH se interceptam (no ponto I).

Observação 1.1.1. A propriedade de segmentos orientados terem o mesmo sentido é transitiva. Ou seja, se AB e CD têm o mesmo sentido e CD e EF têm o mesmo sentido, então AB e EF têm o mesmo sentido.

Com base na Observação 1.1.1, analisamos o sentido de dois segmentos orientados e colineares escolhendo um deles e construíndo um segmento orientado de mesmo sentido e não colinear. Então, analisamos o sentido dos segmentos orientados originais com respeito ao introduzido.

Equipolência

► Vídeo disponível!

Um segmento orientado não nulo AB é **equipolente** a um segmento orientado CD, quando AB tem a **mesma norma**, a **mesma direção** e o **mesmo sentido** de CD. Segmentos nulos também são considerados equipolentes entre si. Quando AB é equipolente a CD, escrevemos $AB \sim CD$.

Figura 1.6: Esboço de dois segmentos orientados AB e CD equipolentes.

A relação de equipolência é uma relação de equivalência. De fato, temos:

- relação reflexiva: $AB \sim AB$;
- relação simétrica: $AB \sim CD \Rightarrow CD \sim AB$;
- relação transitiva: $AB \sim CD$ e $CD \sim EF \Rightarrow AB \sim CD$.

Com isso, dado um segmento AB, definimos a **classe de equipolência** de AB como o conjunto de todos os segmentos equipolentes a AB. O segmento AB é um **representante** desta classe.

Exercícios resolvidos

ER 1.1.1. Mostre que dois segmentos orientados AB e CD são equipolentes se, e somente se, os pontos médios de AD e BC são coincidentes.

Solução. Começamos mostrando a implicação. Por hipótese, temos que AB e CD são equipolentes. A tese é clara no caso de AB e CD serem coincidentes. Vejamos, então, o caso em que AB e CD não são coincidentes. Desta forma, ABCD determina um paralelogramo de diagonais AD e BC. Como as diagonais de um paralelogramo se interceptam em seus pontos médios, temos demonstrado a implicação.

Agora, mostramos a recíproca. Por hipótese, temos que os pontos médios de AD e BC são coincidentes. Novamente, se AD e BD são coincidentes a conclusão é direta. Consideremos o caso em que AD e BD não são coincidentes. Daí, segue que AB e CD têm o mesmo tamanho e mesma direção. Seja M o ponto médio de AD e BC e π o plano determinado pelos segmentos AB e CD. Notando que M, B e D estão no mesmo semiplano de π determinado pela reta AC, concluímos que AB e CD são equipolentes.

ER 1.1.2. Mostre que $AB \sim CD$, então $BA \sim DC$.

Solução. AB e BA têm o mesmo tamanho e direção. CD e DC têm o mesmo tamanho e direção. Como $AB \sim CD$, temos que BA e DC têm o mesmo tamanho e direção. Por fim, observa-se que BA e DC têm ambos o mesmo sentido oposto de AB e DC.

Exercícios

- **E 1.1.1.** Faça o esboço de dois segmentos $AB \in CD$ com $|AB| \neq |CD|$ e cujas retas determinadas por eles sejam coincidentes.
- **E 1.1.2.** Faça o esboço de dois segmentos orientados $AB \not\sim CD$ e de mesmo sentido.
- **E 1.1.3.** Faça o esboço de dois segmentos orientados colineares, de tamanhos iguais e sentidos opostos.
- **E 1.1.4.** Diga se é verdadeira ou falsa a seguinte afirmação: é quadrado todo trapézio retângulo ABCD com segmentos orientados AD e BC equipolentes. Justifique sua afirmação.
- **E 1.1.5.** Mostre que $AB \sim CD$, então $AC \sim BD$.
- **E 1.1.6.** Mostre que se $AC \sim CB$, então C é ponto médio do segmento AB.

1.2 Vetor

► Vídeo disponível!

Dado um segmento orientado AB, define-se o vetor \overrightarrow{AB} (lê-se vetor AB), a classe de equipolência de AB. Um segmento orientado da classe é um representante (geométrica) do vetor. A Figura 1.7 mostra duas representações de um dado vetor $\overrightarrow{u} = \overrightarrow{AB}$.

Figura 1.7: Esboço de duas representações de dado vetor \vec{u} .

O vetor nulo é aquele que tem como representante um segmento orientado nulo. É denotado por $\vec{0}$ e geometricamente representado por um ponto. A norma (ou módulo) de um vetor \vec{u} é denotada(o) por $|\vec{u}|$ e é definido como a norma de qualquer uma de suas representações. Mais precisamente, se o segmento orientado AB é uma representação de \vec{v} , i.e. $\vec{v} = \overrightarrow{AB}$, então

$$|\vec{v}| = |\overrightarrow{AB}| := |AB| \tag{1.1}$$

Observação 1.2.1. $|\vec{v}| = 0$ se, e somente se, $\vec{v} = \vec{0}$.

Seja $\vec{v} = \overrightarrow{AB}$. Lembrando que $|\overrightarrow{AB}| = |AB|$, i.e. a distância entre os pontos A e B, segue que se $\vec{v} = \vec{0}$, então AB é um segmento orientado nulo e,

portanto, $0 = |AB| = |\vec{v}|$. Reciprocamente, se $|\vec{v}| = 0$, então |AB| = 0 e, portanto, AB é um segmento orientado nulo, i.e. A e B são pontos sobrepostos (coincidentes) e $\overrightarrow{AB} = \vec{0}$.

Dois **vetores** são ditos **paralelos** quando qualquer de suas representações têm a mesma direção. De forma análoga, definem-se **vetores coplanares**, **vetores não coplanares**, **vetores ortogonais**, além de conceitos como **ângulo entre dois vetores**, etc.

Exemplo 1.2.1. Vejamos a Figura 1.8. Temos os vetores paralelos \vec{u} e \vec{v} , equanto que os vetores \vec{s} e \vec{t} são ortogonais (ou perpendiculares).

Figura 1.8: Esquerda: esboços de vetores paralelos e de vetores ortogonais. Direita: esboços de vetores coplanares.

Também da Figura 1.8, temos que os vetores \vec{a} , \vec{b} e \vec{c} são coplanares. Embora, na figura \vec{c} está representado fora do plano determinado pelas representações de \vec{a} e \vec{b} , podemos tomar uma outra representação de \vec{c} coplanar a estas representações.

VETOR 1.2. 10

1.2.1Adição de vetores

► Vídeo disponível!

Sejam dados dois vetores \vec{u} e \vec{v} . Sejam, ainda, uma representação \overrightarrow{AB} de \vec{u} e uma representação \overrightarrow{BC} do vetor \overrightarrow{v} . Então, define-se o vetor soma $\overrightarrow{u} + \overrightarrow{v}$ como o vetor representado por \overrightarrow{AC} . Veja a Figura 1.9.

Figura 1.9: Representação geométrica da adição de dois vetores.

Observação 1.2.2. Vejamos as seguintes propriedades:

a) Elemento neutro na adição:

$$\vec{u} + \vec{0} = \vec{u} \tag{1.2}$$

De fato, seja $\vec{u} = \overrightarrow{AB}$. Observamos que podemos representar $\vec{0} = \overrightarrow{BB}$. Logo, temos $\vec{u} + \vec{0} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} = \vec{u}$.

b) Associatividade na adição:

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}).$$
 (1.3)

De fato, sejam $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{BC}$ e $\vec{w} = \overrightarrow{CD}$. Então, segue

$$(\vec{u} + \vec{v}) + \vec{w} = \left(\overrightarrow{AB} + \overrightarrow{BC}\right) + \overrightarrow{CD}$$

$$= \overrightarrow{AC} + \overrightarrow{CD}$$
(1.4)
(1.5)

$$= \overrightarrow{AC} + \overrightarrow{CD} \tag{1.5}$$

$$= \overrightarrow{AD}, \tag{1.6}$$

bem como,

$$\vec{u} + (\vec{v} + \vec{w}) = \overrightarrow{AB} + \left(\overrightarrow{BC} + \overrightarrow{CD}\right)$$

$$= \overrightarrow{AB} + \overrightarrow{BD}$$
(1.7)
(1.8)

$$= \overrightarrow{AB} + \overrightarrow{BD} \tag{1.8}$$

$$= \overrightarrow{AD}. \tag{1.9}$$

c) Comutatividade da adição:

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}. \tag{1.10}$$

Esta propriedade pode ser demonstrada usando a regra do paralelogramo que veremos mais adiante. Veja, também, o Exercício Resolvido 1.2.2.

1.2.2 Vetor oposto

► Vídeo disponível!

Um **vetor** \vec{v} é dito ser **oposto** a um dado vetor \vec{u} , quando quaisquer representações de \vec{u} e \vec{v} são segmentos orientados de mesmo comprimento e mesma direção, mas com sentidos opostos. Neste caso, denota-se por $-\vec{u}$ o vetor oposto a \vec{u} . Veja a Figura 1.10.

Figura 1.10: Representação geométrica de vetores opostos.

Observação 1.2.3. $|\vec{v}| = |-\vec{v}|$.

De fato, seja $\vec{v} = \overrightarrow{AB}$. Então, $|\vec{v}| = |AB| = |BA| = |-\vec{v}|$.

Observação 1.2.4. (Existência do oposto)

$$\vec{u} + (-\vec{u}) = \vec{0}. \tag{1.11}$$

De fato, seja $\vec{u} = \overrightarrow{AB}$. Então, $-\vec{u} = -\overrightarrow{AB} = \overrightarrow{BA}$. Segue que

$$\vec{u} + (-\vec{u}) = \overrightarrow{AB} + \left(-\overrightarrow{AB}\right) \tag{1.12}$$

$$= \overrightarrow{AB} + \overrightarrow{BA} \tag{1.13}$$

$$= \overrightarrow{AA} \tag{1.14}$$

$$= \vec{0}. \tag{1.15}$$

1.2.3 Subtração de vetores

► Vídeo disponível!

Sejam dados dois vetores \vec{u} e \vec{v} . A subtração de \vec{u} com \vec{v} é denotada por $\vec{u} - \vec{v}$ e é definida pela adição de \vec{u} com $-\vec{v}$, i.e. $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$. Veja a Figura 1.11.

Figura 1.11: Representação geométrica da subtração de \vec{u} com \vec{v} , i.e. $\vec{u} - \vec{v}$.

Observação 1.2.5. (Regra do paralelogramo)

► Vídeo disponível!

Sejam vetores não nulos $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AD}$. Seja, ainda, C o vértice oposto ao A no paralelogramo determinado pelos lados formados pelos segmentos AB e AD. Então, temos $\vec{u} + \vec{v} = \overrightarrow{AC}$ e $\vec{u} - \vec{v} = \overrightarrow{DB}$. Veja a Figura 1.12.

Figura 1.12: Regra do paralelogramo para a presentação geométrica da soma e da diferença de vetores.

1.2.4 Multiplicação de vetor por um escalar

► Vídeo disponível!

A multiplicação de um número real $\alpha>0$ (escalar) por um vetor \vec{u} é denotado por $\alpha \vec{u}$ e é definido pelo vetor de mesma direção e mesmo sentido de \vec{u} com norma $\alpha|\vec{u}|$. Quando $\alpha=0$, define-se $\alpha \vec{u}=\vec{0}$, i.e. o vetor nulo (geometricamente, representado por qualquer ponto).

Observação 1.2.6. Notamos que:

- Para $\alpha < 0$, temos $\alpha \vec{u} = -(-\alpha \vec{u})$.
- $|\alpha \vec{u}| = |\alpha| |\vec{u}|$.

Figura 1.13: Representações geométricas de multiplicações de um vetor por diferentes escalares.

Observação 1.2.7. As seguintes propriedades são válidas:

a) Associatividade da multiplicação por escalar:

$$\alpha \left(\beta \vec{u}\right) = (\alpha \beta) \vec{u} \tag{1.16}$$

De fato, em primeiro lugar, observamos que α ($\beta \vec{u}$) e ($\alpha \beta$) \vec{u} têm a mesma direção e o mesmo sentido. Por fim, temos

$$|\alpha \left(\beta \vec{u}\right)| = |\alpha||\beta \vec{u}| \tag{1.17}$$

$$= |\alpha| (|\beta| |\vec{u}|) \tag{1.18}$$

$$= (|\alpha||\beta|) |\vec{u}| \tag{1.19}$$

$$= |\alpha \beta| |\vec{u}| \tag{1.20}$$

$$= |(\alpha \beta)\vec{u}|. \tag{1.21}$$

b) Distributividade:

$$(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{u} \tag{1.22}$$

$$\alpha \left(\vec{u} + \vec{v} \right) = \alpha \vec{u} + \alpha \vec{v} \tag{1.23}$$

1.2.5 Resumo das propriedades das operações com vetores

As operações de adição e multiplicação por escalar de vetores têm propriedades importantes. Para quaisquer vetores $\vec{u},\,\vec{v}$ e \vec{w} e quaisquer escalares α e β temos:

- comutatividade da adição: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$;
- associatividade da adição: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w});$
- elemento neutro da adição: $\vec{u} + \vec{0} = \vec{u}$;
- existência do oposto: $\vec{u} + (-\vec{u}) = \vec{0}$;
- associatividade da multiplicação por escalar: $\alpha(\beta \vec{u}) = (\alpha \beta) \vec{u}$;
- distributividade da multiplicação por escalar:

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v},\tag{1.24}$$

$$(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u}; \tag{1.25}$$

• existência do elemento neutro da multiplicação por escalar: $1\vec{u} = \vec{u}$.

Exercícios resolvidos

ER 1.2.1. Com base na figura abaixo, forneça o vetor \overrightarrow{HC} como resultado de operações básicas envolvendo os vetores \overrightarrow{u} e \overrightarrow{v} .

Solução. Vamos construir dois vetores auxiliares \overrightarrow{HB} e \overrightarrow{HI} a partir de operações envolvendo os vetores \overrightarrow{u} e \overrightarrow{v} . Notamos que $\overrightarrow{HC} = \overrightarrow{HI} + \overrightarrow{HB}$. Começamos buscando formar o vetor \overrightarrow{HI} . Para tanto, observamos que $\overrightarrow{u} = \overrightarrow{NG}$ e, portanto, $\overrightarrow{v} + \overrightarrow{u} = \overrightarrow{JG}$. Com isso, obtemos que

$$\overrightarrow{HI} = -\frac{1}{3}\overrightarrow{JG} \tag{1.26}$$

$$= -\frac{1}{3}(\vec{v} + \vec{u}). \tag{1.27}$$

Agora, vamos formar o vetor \overrightarrow{HB} . Isso pode ser feito da seguinte forma

$$\overrightarrow{HB} = \overrightarrow{WQ} \tag{1.28}$$

$$= \vec{u} + \overrightarrow{PQ} \tag{1.29}$$

$$= \vec{u} + \overrightarrow{HI} \tag{1.30}$$

$$= \vec{u} - \frac{1}{3}(\vec{v} + \vec{u}) \tag{1.31}$$

$$= \frac{2}{3}\vec{u} - \frac{1}{3}\vec{v}.\tag{1.32}$$

Por tudo isso, concluímos que

$$\overrightarrow{HC} = \overrightarrow{HI} + \overrightarrow{HB} \tag{1.33}$$

$$= -\frac{1}{3}(\vec{v} + \vec{u}) \tag{1.34}$$

$$+\frac{2}{3}\vec{u} - \frac{1}{3}\vec{v} \tag{1.35}$$

$$=\frac{1}{3}\vec{u} - \frac{2}{3}\vec{v}.\tag{1.36}$$

 \Diamond

ER 1.2.2. Mostre que $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Solução. Seja ABCD o paralelogramo com $\vec{u} = \overrightarrow{AB} = \overrightarrow{DC}$ e $\vec{v} = \overrightarrow{AD} = \overrightarrow{BC}$. Logo, pela regra do paralelogramo temos

$$\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{BC} \tag{1.37}$$

$$= \overrightarrow{AC} \tag{1.38}$$

$$= \overrightarrow{AD} + \overrightarrow{DC} \tag{1.39}$$

$$= \vec{v} + \vec{u}. \tag{1.40}$$

 \Diamond

Exercícios

E 1.2.1. Com base na figura abaixo, qual(is) dos vetores indicados são iguais ao vetor \overrightarrow{AB} .

E 1.2.2. Sejam $A, B \in C$ pontos dois a dois distintos. Se \vec{b} é um vetor nulo, então \vec{b} é igual a:

- a) $\vec{0}$
- b) \overrightarrow{AB}
- c) \overrightarrow{CC}
- d) \overrightarrow{CA}
- e) \overrightarrow{BB}

E 1.2.3. Com base na figura abaixo, qual(is) dos vetores indicados são paralelos entre si.

E 1.2.4. Com base na figura abaixo, qual(is) dos vetores indicados são ortogonais (perpendiculares) entre si.

E 1.2.5. Com base na figura abaixo, qual(is) dos seguintes são representações do vetor $\overrightarrow{v} + \overrightarrow{u}$?

- a) \overrightarrow{JG}
- b) \overrightarrow{QN}
- c) \overrightarrow{AD}
- d) \overrightarrow{JV}
- e) \overrightarrow{NN}

E 1.2.6. Com base na figura abaixo, qual(is) dos seguintes são representações do vetor $\vec{w} + \vec{v} - \vec{u}$?

- a) $\overrightarrow{0}$
- b) \overrightarrow{SP}
- c) \overrightarrow{FP}
- d) \overrightarrow{v}
- e) \overrightarrow{AD}

E 1.2.7. Com base na figura abaixo, forneça o resultado das seguintes operações:

- a) $\vec{u} \vec{w}$
- b) $\vec{v} \vec{u}$
- c) $\vec{a} + \vec{w}$
- d) $\vec{w} \vec{a} \vec{u}$
- e) $\vec{a} \vec{v}$

 ${\bf E}$ 1.2.8. Com base na figura abaixo, escreva os seguintes vetores como resultado de operações envolvendo \vec{u} ou $\vec{v}.$

- a) \overrightarrow{QK}
- b) \overrightarrow{KI}
- c) \overrightarrow{TO}
- d) \overrightarrow{PE}
- e) \overrightarrow{FT}

E 1.2.9. Seja dado um vetor $\vec{u} \neq 0$. Calcule a norma do vetor $\vec{v} = \vec{u}/|\vec{u}|^1$.

 ${\bf E}$ 1.2.10. Diga se é verdadeira ou falsa cada uma das seguintes afirmações. Justifique sua resposta.

- $1. \ \vec{u} + \vec{u} = 2\vec{u}$
- 2. $\vec{u} = -\vec{u} \Leftrightarrow \vec{u} = \vec{0}$.

 $^{|\}vec{u}||\vec{u}|$ é chamado de vetor \vec{u} normalizado, ou a normalização do vetor \vec{u} .

Capítulo 2

Bases e coordenadas

2.1 Dependência linear

2.1.1 Combinação linear

Dados vetores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ e números reais c_1, c_2, \ldots, c_n , com n inteiro positivo, chamamos de

$$\vec{u} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n \tag{2.1}$$

uma **combinação linear** de $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$. Neste caso, também dizemos que \vec{u} é **gerado** pelos vetores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ ou, equivalentemente, que estes vetores **geram** o vetor \vec{u} .

Exemplo 2.1.1. Sejam dados os vetores \vec{v} , \vec{w} e \vec{z} . Então, temos:

- a) $\vec{u}_1 = \frac{1}{2}\vec{u} + \sqrt{2}\vec{z}$ é uma combinação linear dos vetores \vec{v} e \vec{z} .
- b) $\vec{u_2} = \vec{u} 2\vec{z}$ é uma outra combinação linear dos vetores \vec{v} e \vec{z} .
- c) $\vec{u_3} = 2\vec{u} \vec{w} + \pi \vec{z}$ é uma combinação linear dos vetores \vec{u}, \vec{w} e \vec{z} .
- d) $\vec{u_4} = \frac{3}{2}\vec{z}$ é uma combinação linear do vetor \vec{z} .

Observação 2.1.1. (Interpretação geométrica)

a) Uma combinação linear não nula envolvendo um único vetor \vec{u} é um vetor paralelo a \vec{u} . De fato, seja

$$\vec{v} = c\vec{u}, \quad c \neq 0, \tag{2.2}$$

i.e. \vec{v} é combinação linear não nula de \vec{u} . Então, \vec{v} tem a mesma direção de \vec{u} .

b) Uma combinação linear não nula envolvendo dois vetores \vec{u} e \vec{v} é coplanar a estes vetores. De fato, seja

$$\vec{w} = c_1 \vec{u} + c_2 \vec{v}, \quad c_1 \cdot c_2 \neq 0,$$
 (2.3)

e π o plano determinado pelas representações de $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AC}$. Logo, seguindo a regra do paralelogramo, vemos que \vec{w} tem uma representação no plano determinado pelos segmentos AB e AC.

2.1.2 Dependência linear

Dois ou mais vetores dados são **linearmente dependentes** (l.d.) quando um deles for combinação linear dos demais.

Exemplo 2.1.2. No exemplo anterior (Exemplo 2.1.1), temos:

- a) $\vec{u_1}$ e $\vec{u_2}$ dependem linearmente dos vetores \vec{u} e \vec{z} .
- b) $\vec{u_3}$ depende linearmente dos vetores \vec{u} , \vec{v} e \vec{z} .
- c) Os vetores $\vec{u_4}$ e \vec{z} são linearmente dependentes.

Dois ou mais vetores dados são **linearmente independentes** (l.i.) quando eles não são linearmente dependentes.

2.1.3 Observações

Dois vetores

Dois vetores quaisquer $\vec{u} \neq \vec{0}$ e $\vec{v} \neq \vec{0}$ são l.d. se, e somente se, qualquer uma das seguinte condições é satisfeita:

a) um deles é combinação linear do outro, i.e.

$$\vec{u} = \alpha \vec{v}$$
 ou $\vec{v} = \beta \vec{u}$; (2.4)

- b) \vec{u} e \vec{v} têm a mesma direção;
- c) \vec{u} e \vec{v} são paralelos.

De fato, a afirmação a) é a definição de dependência linear. A b) é consequência imediata da a), bem como a c) é equivalente a b). Por fim, se \vec{u} e \vec{v} são vetores paralelos, então um é multiplo por escalar do outro. Ou seja, c) implica a).

Observação 2.1.2. O vetor nulo $\vec{0}$ é l.d. a qualquer vetor \vec{u} . De fato, temos

$$\vec{0} = 0 \cdot \vec{u},\tag{2.5}$$

i.e. o vetor nulo é combinação linear do vetor \vec{u} .

Observação 2.1.3. Dois vetores não nulos \vec{u} e \vec{v} são l.i. se, e somente se,

$$\alpha \vec{u} + \beta \vec{v} = 0 \Rightarrow \alpha = \beta = 0. \tag{2.6}$$

De fato, se $\alpha \neq 0$, então podemos escrever

$$\vec{u} = -\frac{\beta}{\alpha}\vec{v},\tag{2.7}$$

i.e. o vetor \vec{u} é combinação linear do vetor \vec{v} e, portanto, estes vetores são l.d.. Isto contradiz a hipótese de eles serem l.i.. Analogamente, se $\beta \neq 0$, então podemos escrever

$$\vec{v} = -\frac{\alpha}{\beta}\vec{u} \tag{2.8}$$

e, então, teríamos \vec{u} e \vec{v} l.d..

Três vetores

Três vetores quaisquer \vec{u} , \vec{v} e \vec{w} são l.d. quando um deles pode ser escrito como combinação linear dos outros dois. Sem perda de generalidade, isto significa que existem constantes α e β tais que

$$\vec{u} = \alpha \vec{v} + \beta \vec{w}. \tag{2.9}$$

Afirmamos que se \vec{u} , \vec{v} e \vec{w} são l.d., então \vec{u} , \vec{v} e \vec{w} são coplanares. Do fato de que dois vetores quaisquer são sempre coplanares, temos que \vec{u} , \vec{v} e \vec{w} são coplanares caso qualquer um deles seja o vetor nulo. Suponhamos, agora, que \vec{u} , \vec{v} e \vec{w} são não nulos e seja π o plano determinado pelos vetores \vec{v} e \vec{w} . Se $\alpha = 0$, então $\vec{u} = \beta \vec{w}$ e teríamos uma representação de \vec{u} no plano π . Analogamente, se $\beta = 0$, então $\vec{u} = \alpha \vec{v}$ e teríamos uma representação de

 \vec{u} no plano π . Por fim, observamos que se $\alpha, \beta \neq 0$, então $\alpha \vec{v}$ tem a mesma direção de \vec{v} e $\beta \vec{w}$ tem a mesma direção de \vec{w} . Isto é, $\alpha \vec{v}$ e $\beta \vec{w}$ admitem representações no plano π . Sejam \overrightarrow{AB} e \overrightarrow{BC} representações dos vetores $\alpha \vec{v}$ e $\beta \vec{w}$, respectivamente. Os pontos A, B e C pertencem a π , assim como o segmento AC. Como $\overrightarrow{AC} = \vec{u} = \alpha \vec{v} + \beta \vec{w}$, concluímos que \vec{u} , \vec{v} e \vec{w} são coplanares.

Reciprocamente, se \vec{u} , \vec{v} e \vec{w} são coplanares, então \vec{u} , \vec{v} e \vec{w} são l.d.. De fato, se um deles for nulo, por exemplo, $\vec{u} = \vec{0}$, então \vec{u} pode ser escrito como a seguinte combinação linear dos vetores \vec{v} e \vec{w}

$$\vec{u} = 0\vec{v} + 0\vec{w}.\tag{2.10}$$

Neste caso, \vec{u} , \vec{v} e \vec{w} são l.d.. Também, se dois dos vetores forem paralelos, por exemplo, $\vec{u} \parallel \vec{v}$, então temos a combinação linear

$$\vec{u} = \alpha \vec{v} + 0 \vec{w}. \tag{2.11}$$

E, então, \vec{u} , \vec{v} e \vec{w} são l.d.. Agora, suponhamos que \vec{u} , \vec{v} e \vec{w} são não nulos e dois a dois concorrentes. Sejam, então $\overrightarrow{PA} = \vec{u}$, $\overrightarrow{PB} = \vec{v}$ e $\overrightarrow{PC} = \vec{w}$ representações sobre um plano π . Sejam r e s as retas determinadas por PA e PC, respectivamente. Seja, então, D o ponto de interseção da reta s com a reta paralela a r que passa pelo ponto B. Seja, também, E o ponto de interseção da reta r com a reta paralela a s que passa pelo ponto B. Sejam, então, α e β tais que $\alpha \vec{u} = \overrightarrow{PE}$ e $\beta \vec{w} = \overrightarrow{PD}$. Como $\vec{v} = \overrightarrow{PB} = \overrightarrow{PE} + \overrightarrow{PD} = \alpha \vec{u} + \beta \vec{w}$, temos que \vec{v} é combinação linear de \vec{u} e \vec{w} , i.e. \vec{u} , \vec{v} e \vec{w} são l.d..

Observação 2.1.4. Três vetores dados \vec{u} , \vec{v} e \vec{w} são l.i. se, e somente se,

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = 0 \Rightarrow \alpha = \beta = \gamma = 0. \tag{2.12}$$

De fato, sem perda de generalidade, se $\alpha \neq 0$, podemos escrever

$$\vec{u} = -\frac{\beta}{\alpha}\vec{v} - \frac{\gamma}{\alpha}\vec{w},\tag{2.13}$$

e teríamos \vec{u} , \vec{v} e \vec{w} vetores l.d..

Quatro ou mais vetores

Quatro ou mais vetores são sempre l.d.. De fato, sejam dados quatro vetores \vec{a} , \vec{b} , \vec{c} e \vec{d} . Se dois ou três destes forem l.d. entre si, então, por

definição, os quatro são l.d.. Assim sendo, suponhamos que três dos vetores sejam l.i. e provaremos que, então, o outro vetor é combinação linear desses três.

Sem perda de generalidade, suponhamos que \vec{a} , \vec{b} e \vec{c} são l.i.. Logo, eles não são coplanares. Seja, ainda, π o plano determinado pelos vetores \vec{a} , \vec{b} e as representações $\vec{a} = \overrightarrow{PA}$, $\vec{b} = \overrightarrow{PB}$, $\vec{c} = \overrightarrow{PC}$ e $\vec{d} = \overrightarrow{PD}$.

Figura 2.1: Quatro vetores são l.d..

Consideremos a reta r paralela a \overrightarrow{PC} que passa pelo ponto D. Então, seja E o ponto de interseção de r com o plano π . Vejamos a Figura 2.1. Observamos que o vetor \overrightarrow{PE} é coplanar aos vetores \overrightarrow{PA} e \overrightarrow{PB} e, portanto, exitem números reais α e β tal que

$$\overrightarrow{PE} = \alpha \overrightarrow{PA} + \beta \overrightarrow{PB}. \tag{2.14}$$

Além disso, como \overrightarrow{ED} tem a mesma direção e sentido de $\overrightarrow{PC} = \overrightarrow{c}$, temos que

$$\overrightarrow{ED} = \gamma \overrightarrow{PC} \tag{2.15}$$

para algum número real γ . Por fim, observamos que

$$\overrightarrow{PD} = \overrightarrow{PE} + \overrightarrow{ED}$$

$$= \alpha \overrightarrow{PA} + \beta \overrightarrow{PB} + \gamma \overrightarrow{PC}$$

$$= \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}.$$

Exercícios resolvidos

ER 2.1.1. Se \vec{u} e \vec{v} são l.i. e

$$\vec{a} = 2\vec{u} - 3\vec{v},\tag{2.16}$$

$$\vec{b} = \vec{u} + 2\vec{v},\tag{2.17}$$

então \vec{a} e \vec{b} são l.d.?

Solução. Os vetores \vec{a} e \vec{b} são l.i. se, e somente se,

$$\alpha \vec{a} + \beta \vec{b} = \vec{0} \Rightarrow \alpha = \beta = 0. \tag{2.18}$$

Observemos que

$$\alpha \vec{a} + \beta \vec{b} = (2\alpha + \beta)\vec{u} + (-3\alpha + 2\beta)\vec{v} \tag{2.19}$$

$$= \vec{0} \tag{2.20}$$

implica

$$2\alpha + \beta = 0 \tag{2.21}$$

$$-3\alpha + 2\beta = 0 \tag{2.22}$$

Resolvendo este sistema, vemos que $\alpha=\beta=0.$ Logo, concluímos que \vec{a} e \vec{b} são l.i..

 \Diamond

ER 2.1.2. Sejam \vec{u} , \vec{v} e \vec{w} três vetores. Verifique a seguinte afirmação de que se \vec{u} e \vec{v} são l.d., então \vec{u} , \vec{v} e \vec{w} são l.d.. Justifique sua resposta.

Solução. A afirmação é verdadeira. De fato, se \vec{u} e \vec{v} são l.d., então existe um escalar α tal que

$$\vec{u} = \alpha \vec{v}. \tag{2.23}$$

Segue que

$$\vec{u} = \alpha \vec{v} + 0 \vec{w}. \tag{2.24}$$

Isto é, \vec{u} é combinação linear de \vec{v} e \vec{w} . Então, por definição, \vec{u} , \vec{v} e \vec{w} são l.d..

 \Diamond

ER 2.1.3. Sejam $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AC}$. Mostre que A, B e C são colineares se, e somente se, \vec{u} e \vec{v} são l.d..

Solução. Primeiramente, vamos verificar a implicação. Se $A, B \in C$ são colineares, então os segmentos $\overrightarrow{AB} \in AC$ têm a mesma direção. Logo, são l.d. os vetores $\overrightarrow{u} = \overrightarrow{AB} \in \overrightarrow{v} = \overrightarrow{AC}$.

Agora, verificamos a recíproca. Se $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AC}$ são l.d., então os segmentos AB e AC têm a mesma direção. Como eles são concorrentes, segue que A, B e C são colineares.

 \Diamond

Exercícios

E 2.1.1. Sendo $\overrightarrow{AB} + 2\overrightarrow{BC} = \overrightarrow{0}$, mostre que \overrightarrow{PA} , \overrightarrow{PB} e \overrightarrow{PC} são l.d. para qualquer ponto P.

E 2.1.2. Sejam dados três vetores quaisquer \vec{a} , \vec{b} e \vec{c} . Mostre que os vetores $\vec{u} = 2\vec{a} - \vec{b}$, $\vec{v} = -\vec{a} - 2\vec{c}$ e $\vec{w} = \vec{b} + 4\vec{c}$ são l.d..

E 2.1.3. Sejam $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AC}$ e $\vec{w} = \overrightarrow{AD}$. Mostre que A, B, C e D são coplanares se, e somente se, \vec{u} , \vec{v} e \vec{w} são l.d..

E 2.1.4. Se \vec{u} e \vec{v} são l.i. e

$$\vec{a} = 2\vec{u} - \vec{v},\tag{2.25}$$

$$\vec{b} = 2\vec{v} - 4\vec{u},\tag{2.26}$$

então \vec{a} e \vec{b} são l.i.? Justifique sua resposta.

E 2.1.5. Verifique se é verdadeira ou falsa cada uma das seguintes afirmações. Justifique sua resposta.

- a) \vec{u} , \vec{v} , \vec{w} l.d. $\Rightarrow \vec{u}$, \vec{v} l.d..
- b) \vec{u} , $\vec{0}$, \vec{w} são l.d..
- c) \vec{u} , \vec{v} l.i. $\Rightarrow \vec{u}$, \vec{v} e \vec{w} l.i..
- d) \vec{u} , \vec{v} , \vec{w} l.d. $\Rightarrow -\vec{u}$, $2\vec{v}$, $-3\vec{w}$ l.d..

2.2 Bases e coordenadas

Seja V o conjunto de todos os vetores no espaço tridimensional. Conforme discutido na Subseção 2.1.2, se \vec{a} , \vec{b} e \vec{c} são l.i., então qualquer vetor $\vec{u} \in V$ pode ser escrito como uma combinação linear destes vetores, i.e. existem números reais α , β e γ tal que

$$\vec{u} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}. \tag{2.27}$$

A observação acima motiva a seguinte definição: uma base de V é uma sequência de três vetores l.i. de V.

Seja $B=(\vec{a},\vec{b},\vec{c})$ uma dada base de V. Então, dado qualquer $\vec{v}\in V$, existe um único terno de números reais $\alpha,\,\beta$ e γ tais que

$$\vec{v} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}. \tag{2.28}$$

De fato, a existência de alpha, β e γ segue imediatamente do fato de que \vec{a} , \vec{b} e \vec{c} são l.i. e, portanto, \vec{v} pode ser escrito como uma combinação linear destes vetores. Agora, para verificar a unicidade de alpha, β e γ , tomamos α' , β' e γ' tais que

$$\vec{v} = \alpha' \vec{a} + \beta' \vec{b} + \gamma' \vec{c}. \tag{2.29}$$

Subtraindo (2.29) de (2.28), obtemos

$$\vec{0} = (\alpha - \alpha')\vec{a} + (\beta - \beta')\vec{b} + (\gamma - \gamma')\vec{c}. \tag{2.30}$$

Como \vec{a} , \vec{b} e \vec{c} são l.i., segue que¹

$$\alpha - \alpha' = 0, \ \beta - \beta' = 0, \ \gamma - \gamma' = 0,$$
 (2.31)

i.e. $\alpha = \alpha'$, $\beta = \beta'$ e $\gamma = \gamma'$.

 $^{^{1}}$ Lembre-se da Observação 2.1.4.

Figura 2.2: Representação de um vetor $\vec{u} = (u_1, u_2, u_3)_B$ em uma dada base $B = (\vec{a}, \vec{b}, \vec{c})$.

Com isso, fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$, cada vetor \vec{u} é representado de forma única como combinação linear dos vetores da base, digamos

$$\vec{u} = u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}, \tag{2.32}$$

onde u_1 , u_2 e u_3 são números reais fixos, chamados de **coordenadas** do \vec{u} na base B. Ainda, usamos a notação

$$\vec{u} = (u_1, u_2, u_3)_B, \tag{2.33}$$

para expressar o vetor \vec{u} nas suas coordenadas na base B. Vejamos a Figura 2.2.

Exemplo 2.2.1. Fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$, o vetor \vec{u} de coordenadas $\vec{u} = (-2, \sqrt{2}, -3)$ é o vetor $\vec{u} = -2\vec{a} + \sqrt{2}\vec{b} - 3\vec{c}$.

2.2.1 Operações de vetores com coordenadas

Na Seção 1.2, definimos as operações de adição, subtração e multiplicação por escalar do ponto de vista geométrico. Aqui, veremos como estas operação são definidas a partir das coordenadas de vetores.

Sejam $B = (\vec{a}, \vec{b}, \vec{c})$ uma base de V e os vetores $\vec{u} = (u_1, u_2, u_3)_B$ e $\vec{v} = (v_1, v_2, v_3)_B$. Isto é, temos

$$\vec{u} = u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}, \tag{2.34}$$

$$\vec{v} = v_1 \vec{a} + v_2 \vec{b} + v_3 \vec{c}. \tag{2.35}$$

Então, a **adição** de \vec{u} com \vec{v} é a soma

$$\vec{u} + \vec{v} = \underbrace{u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}}_{\vec{i}} + \underbrace{v_1 \vec{a} + v_2 \vec{b} + v_3 \vec{c}}_{\vec{i}}$$
(2.36)

$$= (u_1 + v_1)\vec{a} + (u_2 + v_2)\vec{b} + (u_3 + v_3)\vec{c}, \tag{2.37}$$

ou seja

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)_B. \tag{2.38}$$

Exemplo 2.2.2. Fixada uma base qualquer B e dados os vetores $\vec{u} = (2, -1, -3)_B$ e $\vec{v} = (-1, 4, -5)_B$, temos

$$\vec{u} + \vec{v} = (2 + (-1), -1 + 4, -3 + (-5))_B = (1, 3, -8)_B.$$
 (2.39)

Podemos usar o SymPy para manipularmos vetores em coordenadas. Para computarmos a soma neste exemplo, podemos usar os seguintes comandos²:

De forma, análoga, o **vetor oposto** ao vetor \vec{u} é

$$-\vec{u} = -(\underbrace{u_1\vec{a} + u_2\vec{b} + u_3\vec{c}}_{\vec{u}}) \tag{2.40}$$

$$= (-u_1)\vec{a} + (-u_2)\vec{b} + (-u_3)\vec{c}, \tag{2.41}$$

ou seja,

$$-\vec{u} = (-u_1, -u_2, -u_3)_B. \tag{2.42}$$

Exemplo 2.2.3. Fixada uma base qualquer B e dado o vetor $\vec{v} = (2, -1, -3)_B$, temos

$$-\vec{v} = (-2, 1, 3)_B. \tag{2.43}$$

Usando o Sympy, podemos computar o oposto do vetor \vec{v} com os seguintes comandos:³:

²Veja a Observação ??.

³Veja a Observação ?? no ínicio deste capítulo.

Lembrando que **subtração** de \vec{u} com \vec{v} é $\vec{u} - \vec{v} := \vec{u} + (-\vec{v})$, segue

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3)_B. \tag{2.44}$$

Exemplo 2.2.4. Fixada uma base qualquer B e dados os vetores $\vec{u} = (2, -1, -3)_B$ e $\vec{v} = (-1, 4, -5)_B$, temos

$$\vec{u} - \vec{v} = (2 - (-1), -1 - 4, -3 - (-5))_B = (3, -5, 2)_B.$$
 (2.45)

Usando o Sympy, podemos computar $\vec{u} - \vec{v}$ com os seguintes comandos:⁴:

Com o mesmo raciocínio, fazemos a **multiplicação de** um dado **número** α pelo **vetor** \vec{u} . Vejamos, por definição,

$$\alpha \vec{u} = \alpha (\underbrace{u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}}) \tag{2.46}$$

$$= (\alpha u_1)\vec{a} + (\alpha u_2)\vec{b} + (\alpha u_3)\vec{c}, \qquad (2.47)$$

ou seja,

$$\alpha \vec{u} = (\alpha u_1, \alpha u_2, \alpha u_3). \tag{2.48}$$

Exemplo 2.2.5. Fixada uma base qualquer B e dado o vetor $\vec{v} = (2, -1, -3)_B$, temos

$$\frac{1}{3}\vec{v} = \left(-\frac{2}{3}, \frac{1}{3}, 1\right)_B. \tag{2.49}$$

Usando o Sympy, podemos computar o oposto do vetor $\frac{1}{3}\vec{v}$ com os seguintes comandos:⁵:

⁴Veja a Observação ?? no ínicio deste capítulo.

⁵Veja a Observação ?? no ínicio deste capítulo.

2.2.2 Dependência linear

Dois vetores

Na Subseção 2.1.3, discutimos que dois vetores \vec{u} , \vec{v} são l.d. se, e somente se, um for múltiplo do outro, i.e. existe um número real α tal que

$$\vec{u} = \alpha \vec{v},\tag{2.50}$$

sem perda de generalidade⁶.

Fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$, temos $\vec{u} = (u_1, u_2, u_3)_B$ e $\vec{v} = (v_1, v_2, v_3)_B$. Com isso, a equação (2.50) pode ser reescrita como

$$(u_1, u_2, u_3)_B = \alpha(v_1, v_2, v_3)_B = (\alpha v_1, \alpha v_2, \alpha v_3)_B, \tag{2.51}$$

donde

$$u_1 = \alpha v_1, \ u_2 = \alpha v_2, \ u_3 = \alpha v_3.$$
 (2.52)

Ou seja, dois vetores são linearmente dependentes se, e somente se, as coordenadas de um deles forem, respectivamente, múltiplas (de mesmo fator) das coordenadas do outro.

Exemplo 2.2.6. Vejamos os seguintes casos:

a)
$$\vec{u} = (2, -1, -3)$$
 e $\vec{v} = \left(1, -\frac{1}{2}, -\frac{3}{2}\right)$ são l.d., pois
$$2 = 2 \cdot \frac{1}{2}, -1 = 2 \cdot \left(-\frac{1}{2}\right), -3 = 2 \cdot \left(-\frac{3}{2}\right). \tag{2.53}$$

b)
$$\vec{u} = (2, -1, -3)$$
 e $\vec{v} = \left(2, -\frac{1}{2}, -\frac{3}{2}\right)$ são l.i., pois $u_1 = 1 \cdot v_1$, enquanto $u_2 = 2v_2$.

Três vetores

Na Subseção 2.1.3, discutimos que três vetores $\vec{u}, \, \vec{v}$ e \vec{w} são l.i. se, e somente se,

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0} \Rightarrow \alpha = \beta = \gamma. \tag{2.54}$$

Seja, então, $B=(\vec{a},\vec{b},\vec{c})$ uma base de V. Então, temos que a equação

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0} \tag{2.55}$$

⁶Formalmente, pode ocorrer $\vec{v} = \beta \vec{u}$.

é equivalente a

$$\alpha(u_1, u_2, u_3)_B + \beta(v_1, v_2, v_3)_B + \gamma(w_1, w_2, w_3)_B = (0, 0, 0)_B.$$
 (2.56)

Esta por sua vez, nos leva ao seguinte sistema linear

$$\begin{cases} u_1 \alpha + v_1 \beta + w_1 \gamma = 0 \\ u_2 \alpha + v_2 \beta + w_2 \gamma = 0 \\ u_3 \alpha + v_3 \beta + w_3 \gamma = 0 \end{cases}$$
 (2.57)

Lembremos que um tal sistema tem solução única (trivial) se, e somente se, o determinante de sua matriz dos coeficientes é nulo, i.e.

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} \neq 0.$$
 (2.58)

Exemplo 2.2.7. Fixada uma base B de V, sejam os vetores $\vec{u} = (2,1,-3)_B$, $\vec{v} = (1,-1,2)_B$ e $\vec{w} = (-2,1,1)_B$. Como

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & -2 \\ 1 & -1 & 1 \\ -3 & 2 & 1 \end{vmatrix}$$
 (2.59)

$$= -2 - 4 - 3 + 6 - 4 - 1 = -8 \neq 0. \tag{2.60}$$

Exercícios

Em construção ...

2.3 Mudança de base

Sejam $B = (\vec{u}, \vec{v}, \vec{z})$ e $C = (\vec{r}, \vec{s}, \vec{t})$ bases do espaço V. Conhecendo as coordenadas de um vetor na base C, queremos determinar suas coordenadas na base B. Mais especificamente, seja

$$\vec{z} = (z_1, z_2, z_3)_C = z_1 \vec{r} + z_2 \vec{s} + z_3 \vec{t}.$$
 (2.61)

Agora, tendo $\vec{r} = (r_1, r_2, r_3)_B$, $\vec{s} = (s_1, s_2, s_3)_B$ e $\vec{t} = (t_1, t_2, t_3)_B$, então

$$(z_1, z_2, z_3)_C = z_1(r_1, r_2, r_3)_B + z_2(s_1, s_2, s_3)_B + z_3(t_1, t_2, t_3)_B$$
(2.62)

$$= \underbrace{(r_1 z_1 + s_1 z_2 + t_1 z_3)}_{z_1'} \vec{u}$$
 (2.63)

$$+\underbrace{(r_2z_1+s_2z_2+t_2z_3)}_{z_2'}\vec{v}$$
 (2.64)

$$+\underbrace{(r_3z_1+s_3z_2+t_3z_3)}_{z_3'}\vec{w}$$
 (2.65)

o que é equivalente a

$$\begin{bmatrix} z_1' \\ z_2' \\ z_3' \end{bmatrix} = \underbrace{\begin{bmatrix} r_1 & s_1 & t_1 \\ r_2 & s_2 & t_2 \\ r_3 & s_3 & t_3 \end{bmatrix}}_{MGR} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}, \tag{2.66}$$

onde $\vec{z} = (z'_1, z'_2, z'_3)_B$.

A matriz M_{CB} é chamada de matriz de mudança de base de C para B. Como os vetores \vec{r} , \vec{s} e \vec{t} são l.i., temos que a matriz de mudança de base M_{BC} tem determinante não nulo e, portanto é invertível. Além disso, observamos que

$$M_{BC} = (M_{CB})^{-1}. (2.67)$$

Exemplo 2.3.1. Sejam dadas as bases $B = (\vec{a}, \vec{b}, \vec{c})$ e $C = (\vec{u}, \vec{v}, \vec{w})$, com $\vec{u} = (1,2,0)_B$, $\vec{v} = (2,0,-1)_B$ e $\vec{w} = (-1,-3,1)_B$. Seja, ainda, o vetor $\vec{z} = (1,-2,1)_B$. Vamos encontrar as coordenadas de \vec{z} na base C.

Há duas formas de proceder. A primeira consiste em resolver, de forma direta, a seguinte equação

$$\vec{z} = (-1, -3, 1)_B = (x, y, z)_C.$$
 (2.68)

Esta é equivalente a

$$-\vec{a} - 3\vec{b} + \vec{c} = x\vec{u} + y\vec{v} + z\vec{w} \tag{2.69}$$

$$= x(\vec{a} + 2\vec{b}) + y(2\vec{a} - \vec{c}) + z(-\vec{a} - 3\vec{b} + \vec{c})$$
 (2.70)

$$= (x + 2y - z)\vec{a} + (2x - 3z)\vec{b} + (-y + z)\vec{c}.$$
 (2.71)

Isto nos leva ao seguinte sistema linear

$$\begin{cases} x + 2y - z = -1 \\ 2x - 3z = -3 \\ -y + z = 1 \end{cases}$$
 (2.72)

Resolvendo este sistema, obtemos x = 6/5, y = 4/5 e z = 9/5, i.e.

$$\vec{z} = \left(\frac{6}{5}, \frac{4}{5}, \frac{9}{5}\right)_C. \tag{2.73}$$

Outra maneira de se obter as coordenadas de \vec{z} na base C é usando a matriz de mudança de base. A matriz de mudança da base C para a base B é

$$M = \begin{bmatrix} 1 & 2 - 1 \\ 2 & 0 & -3 \\ 0 & -1 & 1 \end{bmatrix}. \tag{2.74}$$

Então, a matriz de mudança da base B para a base C é $M_{BC} = M^{-1}$. Logo, $(x,y,z)_C = M_{BC}(-1,-3,1)_B$.

Exercícios

Em construção ...

2.4 Bases ortonormais

Uma base $B = (\vec{a}, \vec{b}, \vec{c})$ é dita ser ortonormal se, e somente se,

- \vec{a} , \vec{b} e \vec{c} são dois a dois ortogonais;
- $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1.$

Observação 2.4.1. (Teorema de Pitágoras) Se $\vec{u} \perp \vec{v}$, então $|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2$.

Proposição 2.4.1. Seja $B = (\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal $e \ \vec{u} = (u_1, u_2, u_3)_B$. $Ent\tilde{a}o, \ |\vec{u}| = \sqrt{u_1^2 + u_2^2 + u_3^2}$.

Demonstração. Temos $|\vec{u}|^2 = |u_1\vec{i} + u_2\vec{j} + u_3\vec{k}|^2$. Seja π um plano determinado por dadas representações de \vec{i} e \vec{j} . Como \vec{i} , \vec{j} e \vec{k} são ortogonais, temos que \vec{k} é ortogonal ao plano π . Além disso, o vetor $u_1\vec{i} + u_2\vec{j}$ também admite uma representação em π , logo $u_1\vec{i} + u_2\vec{j}$ é ortogonal a \vec{k} . Do Teorema de Pitágoras (Observação 2.4.1), temos

$$|\vec{u}|^2 = |u_1\vec{i} + u_2\vec{j}|^2 + |u_3\vec{k}|^2. \tag{2.75}$$

Analogamente, como $\vec{i} \perp \vec{j}$, do Teorema de Pitágoras segue

$$|\vec{u}|^2 = |u_1\vec{i}|^2 + |u_2\vec{j}|^2 + |u_3\vec{k}|^2 \tag{2.76}$$

$$= |u_1|^2 |\vec{i}| + |u_2|^2 |\vec{j}| + |u_3| |\vec{k}|^2$$
 (2.77)

$$= u_1^2 + u_2^2 + u_3^2. (2.78)$$

Extraindo a raiz quadrada de ambos os lados da última equação, obtemos o resultado desejado.

Exemplo 2.4.1. Se $\vec{u} = (-1, 2, -\sqrt{2})_B$ e B é uma base ortonormal, então

$$|\vec{u}| = \sqrt{(-1)^2 + 2^2 + (-\sqrt{2})^2} = \sqrt{7}.$$
 (2.79)

Exercícios

E 2.4.1. Seja $B=(\vec{a},\vec{b},\vec{c})$ uma base ortogonal, i.e. \vec{a},\vec{b} e \vec{c} são l.i. e dois a dois ortogonais. Mostre que $C=(\vec{a}/|\vec{a}|,\vec{b}/|\vec{b}|,\vec{c}/|\vec{c}|)$ é uma base ortonormal.

Em construção ...

Capítulo 3

Produto escalar

3.1 Produto escalar

Ao longo desta seção, assumiremos $B = (\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal no espaço. O **produto escalar** dos vetores $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$ é o número real

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3. \tag{3.1}$$

Exemplo 3.1.1. Se $\vec{u} = (2, -1, 3)$ e $\vec{v} = (-3, -4, 2)$, então

$$\vec{u} \cdot \vec{v} = 2 \cdot (-3) + (-1) \cdot (-4) + 3 \cdot 2 = 4. \tag{3.2}$$

3.1.1 Propriedades do produto escalar

Quaisquer que sejam \vec{u} , \vec{v} , \vec{w} e qualquer número real α , temos:

• Comutatividade: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.

Dem.:

$$\vec{u} \cdot \vec{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) \tag{3.3}$$

$$= u_1 v_1 + u_2 v_2 + u_3 v_3 \tag{3.4}$$

$$= v_1 u_1 + v_2 u_2 + v_3 u_3 \tag{3.5}$$

$$= \vec{v} \cdot \vec{u}. \tag{3.6}$$

• Distributividade com multiplicação por escalar:

$$(\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v}) = \alpha (\vec{u} \cdot \vec{v}). \tag{3.7}$$

Dem.:

$$(\alpha \vec{u}) \cdot \vec{v} = (\alpha u_1, \alpha u_2, \alpha u_3) \cdot (v_1, v_2, v_3) \tag{3.8}$$

$$= (\alpha u_1)v_1 + (\alpha u_2)v_2 + (\alpha u_3)v_3 \tag{3.9}$$

$$= \alpha(u_1v_1) + \alpha(u_2v_2) + \alpha(u_3v_3) \tag{3.10}$$

$$= \alpha(u_1v_1 + u_2v_2 + u_3v_3) = \alpha(\vec{u} \cdot \vec{v})$$
 (3.11)

$$= u_1(\alpha v_1) + u_2(\alpha v_2) + u_3(\alpha v_3) \tag{3.12}$$

$$= (u_1, u_2, u_3) \cdot (\alpha v_1, \alpha v_2, \alpha v_3) \tag{3.13}$$

$$= \vec{u} \cdot (\alpha \vec{v}). \tag{3.14}$$

• Distributividade com a adição: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$. Dem.:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = (u_1, u_2, u_3) \cdot ((v_1, v_2, v_3) + (w_1, w_2, w_3)) \tag{3.15}$$

$$= (u_1, u_2, u_3) \cdot [(v_1 + w_1, v_2 + w_2, v_3 + w_3)] \tag{3.16}$$

$$= u_1(v_1 + w_1) + u_2(v_2 + w_2) + u_2(v_2 + w_2)$$
 (3.17)

$$= u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + u_3v_3 + u_3w_3$$
 (3.18)

$$= u_1v_1 + u_2v_2 + u_3v_3 + u_1w_1 + u_2w_2 + u_3w_3$$
 (3.19)

$$= \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}. \tag{3.20}$$

• Sinal: $\vec{u} \cdot \vec{u} \ge 0$ e $\vec{u} \cdot \vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0}$.

Dem.:

$$\vec{u} \cdot \vec{u} = u_1^2 + u_2^2 + u_3^2 \ge 0. \tag{3.21}$$

Além disso, observamos que a soma de números não negativos é nula se, e somente se, os números forem zeros.

• Norma: $|u|^2 = \vec{u}\vec{u}$.

Dem.: Como fixamos uma base ortonormal B, a Proposição 2.4.1 nos garante que

$$|u|^2 = u_1^2 + u_2^2 + u_3^2 = \vec{u} \cdot \vec{u}. \tag{3.22}$$

Exemplo 3.1.2. Sejam $\vec{u} = (-1,2,1), \ \vec{v} = (2,-1,3) \ e \ \vec{w} = (1,0,-1).$ Vejamos os seguintes casos:

• Comutatividade:

$$\vec{u} \cdot \vec{v} = -1 \cdot 2 + 2 \cdot (-1) + 1 \cdot 3 = -1, \tag{3.23}$$

$$\vec{v} \cdot \vec{u} = 2 \cdot (-1) + (-1) \cdot 2 + 3 \cdot 1 = -1. \tag{3.24}$$

• Distributividade com a multiplicação por escalar:

$$(2\vec{u}) \cdot \vec{v} = (-2,4,2) \cdot (2,-1,3) = -4 - 4 + 6 = -2, \tag{3.25}$$

$$2(\vec{u}\vec{v}) = 2(-2 - 2 + 3) = -2, (3.26)$$

$$\vec{u} \cdot (2\vec{v}) = (-1,2,1) \cdot (4,-2,6) = -2.$$
 (3.27)

• Distributividade com a adição:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = (-1,2,1) \cdot (3,-1,2) = -3 - 2 + 2 = -3,$$
 (3.28)

$$\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} = (-2 - 2 + 3) + (-1 + 0 - 1) = -3. \tag{3.29}$$

• Sinal:

$$\vec{w}\vec{w} = 1 + 0 + 1 = 2 \ge 0. \tag{3.30}$$

• Norma:

$$|u|^2 = (-1)^2 + 2^2 + 1^2 = 6, (3.31)$$

$$\vec{u} \cdot \vec{u} = (-1) \cdot (-1) + 2 \cdot 2 + 1 \cdot 1 = 6. \tag{3.32}$$

Exercícios

Em construção ...

3.2 Ângulo entre dois vetores

O ângulo formado entre dois vetores \vec{u} e \vec{v} não nulos, é definido como o menor ângulo determinado entre quaisquer representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OB}$.

Proposição 3.2.1. Dados \vec{u} e \vec{v} , temos

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha, \tag{3.33}$$

onde α é o ângulo entre os vetores \vec{u} e \vec{v} .

Demonstração. Tomamos as representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OB}$. Observamos que $\vec{u} - \vec{v} = \overrightarrow{BA}$. Então, aplicando a lei dos cossenos no triângulo $\triangle OAB$, obtemos

$$|\overrightarrow{BA}|^2 = |\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 - 2|\overrightarrow{OA}||\overrightarrow{OB}|\cos\alpha, \qquad (3.34)$$

ou, equivalentemente,

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha \tag{3.35}$$

$$(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha \tag{3.36}$$

$$\vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha$$
 (3.37)

$$|\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v} = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha$$
 (3.38)

donde

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha. \tag{3.39}$$

Exemplo 3.2.1. Vamos determinar ângulo entre os vetores $\vec{u} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$ e $\vec{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$. Da Proposição 3.2.1, temos

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{|u| \cdot |v|} \tag{3.40}$$

$$=\frac{\frac{\sqrt{3}}{2}}{1\cdot 1} = \frac{\sqrt{3}}{2}.\tag{3.41}$$

Portanto, temos $\alpha = \pi/6$.

Observação 3.2.1. O ângulo entre dois vetores \vec{u} e \vec{v} é:

- agudo se, e somente se, $\vec{u} \cdot \vec{v} > 0$;
- obtuso se, e somente se, $\vec{u} \cdot \vec{v} < 0$.

Se $\vec{u}, \vec{v} \neq \vec{0}$, então:

• $\vec{u} \perp \vec{v}$ se, e somente se, $\vec{u} \cdot \vec{v} = 0$.

3.2.1 Desigualdade triangular

Dados dois vetores \vec{u} e \vec{v} temos

$$|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|,\tag{3.42}$$

esta é conhecida como a **desigualdade triangular**. Para demonstrá-la, começamos observando que

$$|\vec{u} + \vec{v}|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) \tag{3.43}$$

$$= \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} \tag{3.44}$$

$$= |\vec{u}|^2 + |\vec{v}|^2 + 2\vec{u} \cdot \vec{v}. \tag{3.45}$$

Agora, vamos estimar $\vec{u} \cdot \vec{v}$. Pela Proposição 3.2.1, temos

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\alpha,\tag{3.46}$$

onde α é o ângulo entre \vec{u} e \vec{v} . Mas, então:

$$\vec{u} \cdot \vec{v} \le |\vec{u}||\vec{v}||\cos\alpha|. \tag{3.47}$$

Daí, como $|\cos \alpha| \le 1$, temos

$$\vec{u} \cdot \vec{v} \le |\vec{u}||\vec{v}|,\tag{3.48}$$

a qual é chamada de desigualdade de Cauchy-Schwarz¹.

Exercícios

 ${\bf E}$ 3.2.1. Verifique que $(\ref{eq:100})$ é equivalente a $(\ref{eq:3.1})$ no caso de bases ortonormais.

Em construção ...

¹Augustin-Louis Cauchy, 1798-1857, matemático francês. Fonte: Wikipeida. Hermann Schwarz, 1843-1921, matemático alemão. Fonte: Wikipedia.

3.3 Projeção ortogonal

Sejam dados os vetores $\vec{u} = \overrightarrow{OA}$, $\vec{v} = \overrightarrow{OB} \neq \vec{0}$. Seja, ainda, P a interseção da reta perpendicular a OB que passa pelo ponto A. Observemos a Figura 3.1. Com isso, definimos a **projeção ortogonal de** \vec{u} **na direção de** \vec{v} por \overrightarrow{OP} . Denotamos

 $\overrightarrow{OP} = \operatorname{proj}_{\vec{v}} \vec{u}. \tag{3.49}$

Figura 3.1: Ilustração da definição da projeção ortogonal.

Da definição, temos que

$$\operatorname{proj}_{\vec{v}} \vec{u} = \alpha \vec{v} \tag{3.50}$$

para algum número real α . Além disso, temos

$$\operatorname{proj}_{\vec{v}} \vec{u} = \vec{u} + \overrightarrow{AP}. \tag{3.51}$$

Portanto

$$\alpha \vec{v} = \vec{u} + \overrightarrow{AP}. \tag{3.52}$$

Tomando o produto escalar com \vec{v} em ambos os lados desta equação, obtemos

$$\alpha \vec{v} \cdot \vec{v} = \vec{u} \cdot \vec{v},\tag{3.53}$$

pois $\overrightarrow{AP} \cdot \vec{v} = 0$, uma vez que $\overrightarrow{AP} \perp \vec{v}$. Daí, lembrando que $\vec{v} \cdot \vec{v} = |v|^2$, temos

$$\alpha = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \tag{3.54}$$

e concluímos que

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v}. \tag{3.55}$$

Exemplo 3.3.1. Sejam $\vec{u} = (-1,1,-1)$ e $\vec{v} = (2,1,-2)$. Usando a equação (3.55), obtemos

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{(-1,1,-1) \cdot (2,1,-2)}{|(2,1,-2)|^2} (2,1,-2)$$
(3.56)

$$= \frac{-2+1+2}{4+1+4}(2,1,-2) \tag{3.57}$$

$$= \left(\frac{2}{9}, \frac{1}{9}, \frac{-2}{9}\right). \tag{3.58}$$

Em construção ...

Exercícios

Em construção ...

Capítulo 4

Produto vetorial

De agora em diante, vamos trabalhar com um base ortonormal $B=(\vec{i},\vec{j},\vec{k})$ dita com orientação positiva, i.e. os vetores $\vec{i}=\overrightarrow{OI},\ \vec{j}=\overrightarrow{OJ}$ e $\vec{k}=\overrightarrow{OK}$ estão dispostos em sentido anti-horário, veja Figura 4.2.

Figura 4.1: Base ortonormal positiva.

4.1 Definição

Dados vetores \vec{u} e \vec{v} , definimos o produto vetorial de \vec{u} com \vec{v} , denotado por $\vec{u} \wedge \vec{v}$, como o vetor:

- se \vec{u} e \vec{v} são l.d., então $\vec{u} \wedge \vec{v} = \vec{0}$.
- se \vec{u} e \vec{v} são l.i., então
 - $|\vec{u} \wedge \vec{v}| = |\vec{u}||\vec{v}| \operatorname{sen} \alpha$, onde α é o ângulo entre \vec{u} e \vec{v} ,
 - $-\vec{u} \wedge \vec{v}$ é ortogonal a \vec{u} e \vec{v} , e
 - $\vec{u},$ \vec{v} e $\vec{u} \wedge \vec{v}$ formam uma base positiva.

4.1.1 Interpretação geométrica

Sejam dados \vec{u} e \vec{v} l.i.. Estes vetores determinam um paralelogramo, veja Figura ??. Seja, então, h a altura deste paralelogramo tendo \vec{u} como sua base. Logo, a área do paralelogramo é o produto do comprimento da base com sua altura, neste caso

$$|\vec{u}|h = |\vec{u}||\vec{v}| \operatorname{sen} \alpha. \tag{4.1}$$

Ou seja, o produto vetorial $\vec{u} \wedge \vec{v}$ tem norma igual à área do paralelogramo determinado por \vec{u} e \vec{v} .

Figura 4.2: Base ortonormal positiva.

4.1.2Produto vetorial via coordenadas

Dados $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$ em uma base ortonormal positiva, então

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k}. \tag{4.2}$$

Observação 4.1.1. Uma regra mnemônica, é

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}. \tag{4.3}$$

Exemplo 4.1.1. Dados os vetores $\vec{u} = (1, -2, 1)$ e $\vec{v} = (0, 2, -1)$, temos

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \\ 0 & 2 & -1 \end{vmatrix}$$
(4.4)

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \\ 0 & 2 & -1 \end{vmatrix} \tag{4.5}$$

$$=0\vec{i}+\vec{j}+2\vec{k}\tag{4.6}$$

$$= (0,1,2). (4.7)$$

Exercícios 4.1.3

Em construção ...

Propriedades do produto vetorial 4.2

Nesta seção, discutiremos sobre algumas propriedades do produto vetorial. Para tanto, sejam dados os vetores $\vec{u} = (u_1, u_2, u_3), \vec{v} = (v_1, v_2, v_3), \vec{w} =$ (w_1, w_2, w_3) e o número real γ .

Da definição do produto vetorial, temos $\vec{u} \perp (\vec{u} \wedge \vec{v})$ e $\vec{v} \perp (\vec{u} \wedge \vec{v})$, logo

$$\vec{u} \cdot (\vec{u} \wedge \vec{v}) = 0 \quad \text{e} \quad \vec{v} \cdot (\vec{u} \wedge \vec{v}) = 0.$$
 (4.8)

Em relação à multiplicação por escalar, temos

$$\gamma(\vec{u} \wedge \vec{v}) = (\gamma \vec{u}) \wedge \vec{v} = \vec{u} \wedge (\gamma \vec{v}). \tag{4.9}$$

De fato,

$$(\gamma \vec{u} \wedge \vec{v}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \gamma u_1 & \gamma u_2 & \gamma u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ \gamma v_1 & \gamma v_2 & \gamma v_3 \end{vmatrix} = \vec{u} \wedge (\gamma \vec{v})$$

$$= \gamma \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \gamma (\vec{u} \wedge \vec{v}).$$

$$(4.11)$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ \gamma v_1 & \gamma v_2 & \gamma v_3 \end{vmatrix} = \vec{u} \wedge (\gamma \vec{v})$$

$$(4.11)$$

$$= \gamma \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \gamma(\vec{u} \wedge \vec{v}). \tag{4.12}$$

(4.13)

Também, vale a propriedade distributiva com a operação de soma, i.e.

$$\vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}. \tag{4.14}$$

De fato, temos

$$\vec{u} \wedge (\vec{v} + \vec{w}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 + w_1 & v_2 + w_2 & u_3 + w_3 \end{vmatrix}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$(4.15)$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
(4.16)

$$= \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}. \tag{4.17}$$

Observamos que o produto vetorial não é comutativo, entretanto

$$\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}. \tag{4.18}$$

De fato, temos

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (4.19)

$$= - \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \end{vmatrix}$$
 (4.20)

$$= -\vec{v} \wedge \vec{u}. \tag{4.21}$$

Também, o produto vetorial não é associativo sendo $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$, em geral, diferente de $\vec{u} \wedge (\vec{v} \wedge \vec{w})$. Com efeito, temos

$$(\vec{i} \wedge \vec{i}) \wedge \vec{j} = \vec{0}, \tag{4.22}$$

$$\vec{i} \wedge (\vec{i} \wedge \vec{j}) = \vec{i} \wedge \vec{k} = -\vec{j}. \tag{4.23}$$

Por outro lado, suponhamos que \vec{u} , \vec{v} e \vec{w} são l.i. e seja π um plano determinado por \vec{u} e \vec{v} . Então, $\vec{u} \wedge \vec{v}$ é ortogonal a π . Como $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$ é ortogonal a $\vec{u} \wedge \vec{v}$ e a \vec{w} , temos que $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$ também pertence a π . Logo, \vec{u} , \vec{v} e $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$ são l.d. e existem α e β tais que

$$(\vec{u} \wedge \vec{v}) \wedge \vec{w} = \alpha \vec{u} + \beta \vec{v}. \tag{4.24}$$

Vamos determinar α e β . Para tanto, consideremos uma base ortonormal $B = (\vec{i}, \vec{j}, \vec{k})$ tal que $\vec{i} \parallel \vec{u}$ e $\vec{j} \in \pi$. Nesta base, temos

$$\vec{u} = (u_1, 0, 0) \tag{4.25}$$

$$\vec{v} = (v_1, v_2, 0) \tag{4.26}$$

$$\vec{w} = (w_1, w_2, w_3). \tag{4.27}$$

Também, temos

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & 0 & 0 \\ v_1 & v_2 & 0 \end{vmatrix}$$
 (4.28)

$$= (0,0,u_1v_2) (4.29)$$

e

$$(\vec{u} \wedge \vec{v}) \wedge \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & u_1 v_2 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
(4.30)

$$= (-u_1v_2w_2, u_1v_2w_1, 0). (4.31)$$

Daí, temos

$$\alpha(u_1,0,0) + \beta(v_1,v_2,0) = (-u_1v_2w_2, u_1v_2w_1, 0), \tag{4.32}$$

donde

$$-u_1 v_2 w_2 = \alpha u_1 + \beta v_1, \tag{4.33}$$

$$u_1 w_1 v_2 = \beta v_2. (4.34)$$

Resolvendo, obtemos

$$\alpha = -v_1 w_1 - v_2 w_2 = -\vec{v} \cdot \vec{w} \tag{4.35}$$

$$\beta = \vec{u}\vec{w}.\tag{4.36}$$

Portanto, temos

$$(\vec{u} \wedge \vec{v}) \wedge \vec{w} = -(\vec{v} \cdot \vec{w})\vec{u} + (\vec{u} \cdot \vec{w})\vec{v}. \tag{4.37}$$

Usando a identidade acima, obtemos

$$\vec{u} \wedge (\vec{v} \wedge \vec{w}) = -(\vec{v} \wedge \vec{w}) \wedge \vec{u} \tag{4.38}$$

$$= (\vec{w} \cdot \vec{u})\vec{v} - (\vec{v} \cdot \vec{u})\vec{w} \tag{4.39}$$

$$= (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w}. \tag{4.40}$$

Exercícios

Em construção ...

Capítulo 5

Produto misto

Ao longo deste capítulo, assumiremos trabalhar com uma base ortonormal positiva $B=(\vec{i},\vec{j},\vec{k}).$

5.1 Definição

O **produto misto** de três vetores \vec{u} , \vec{v} e \vec{w} , nesta ordem, é definido por

$$[\vec{u}, \vec{v}, \vec{w}] := \vec{u} \wedge \vec{v} \cdot \vec{w}. \tag{5.1}$$

Em coordenadas, temos

$$[\vec{u}, \vec{v}, \vec{w}] := \vec{u} \wedge \vec{v} \cdot \vec{w} \tag{5.2}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \cdot \vec{w}$$
 (5.3)

$$= \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{j}$$
 (5.4)

$$+\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k} \cdot (w_1, w_2, w_3) \tag{5.5}$$

$$= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} w_1 - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} w_2 + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} w_3$$
 (5.6)

$$= \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$(5.7)$$

$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
 (5.8)

Exemplo 5.1.1. Dados os vetores $\vec{u} = (1, -1, 0), \vec{v} = (1, 0, 2)$ e $\vec{w} = (1, -1, 1),$ temos

$$[\vec{u}, \vec{v}, \vec{w}] = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
 (5.9)

$$= \begin{vmatrix} 1 & -1 & 0 \\ 1 & 0 & 2 \\ 1 & -1 & 1 \end{vmatrix} = 1. \tag{5.10}$$

5.1.1 Propriedades

Valem as seguintes propriedades:

a)
$$[\vec{u}, \vec{v}, \vec{w}] = -[\vec{v}, \vec{u}, \vec{w}]$$

b)
$$[\vec{u}, \vec{v}, \vec{w}] = -[\vec{u}, \vec{w}, \vec{v}]$$

c)
$$[\vec{u}, \vec{v}, \vec{w}] = [\vec{w}, \vec{u}, \vec{v}] = [\vec{v}, \vec{w}, \vec{u}]$$

d)
$$[\vec{u}, \vec{v}, \vec{w}] = \vec{u} \wedge \vec{v} \cdot \vec{w} = \vec{u} \cdot \vec{v} \wedge \vec{w}$$

e)
$$[\alpha \vec{u}, \vec{v}, \vec{w}] = [\vec{u}, \alpha \vec{v}, \vec{w}] = [\vec{u}, \vec{v}, \alpha \vec{w}] = \alpha [\vec{u}, \vec{v}, \vec{w}]$$

f)
$$[\vec{u} + \vec{u}', \vec{v}, \vec{w}] = [\vec{u}, \vec{v}, \vec{w}] + [\vec{u}', \vec{v}, \vec{w}]$$

Em construção ...

Exercícios

Em construção ...

Resposta dos Exercícios

- E 1.1.4. Verdadeira.
- E 1.1.5. Dica: ABCD determina um paralelogramo.
- **E** 1.2.1. \vec{w}, \vec{c}
- **E 1.2.2.** a), c), e)
- **E 1.2.3.** $\vec{a} \parallel \vec{d} \parallel \vec{e}; \vec{c} \parallel \vec{v} \parallel \vec{w}$
- **E** 1.2.4. $\vec{e} \perp \vec{n}$
- **E** 1.2.5. a), b)
- **E 1.2.6.** b), d)
- **E 1.2.7.** a) $\vec{0}$; b) \overrightarrow{MQ} ; c) \overrightarrow{DZ} ; d) \overrightarrow{CD} ; e) \overrightarrow{DT}
- **E 1.2.8.** a) $\frac{1}{2}\vec{v}$; b) $-\frac{2}{3}\vec{u}$; c) $\frac{1}{2}\vec{v} + \frac{1}{2}\vec{u}$; d) $\vec{v} + \frac{1}{3}\vec{u}$; e) $-\frac{4}{3}\vec{u} \frac{3}{2}\vec{v}$
- **E** 1.2.9. $|\vec{v}| = 1$.
- E 1.2.10. a) verdadeira; b) verdadeira.
- **E 2.1.1.** Dica: os vetores \overrightarrow{AB} e \overrightarrow{BC} são l.d..
- E 2.1.2. Dica: Escreva um dos vetores como combinação linear dos outros.
- E 2.1.3. Três vetores são l.d. se, e somente se, eles são coplanares.

E 2.1.4. Não.

E 2.1.5. a) falsa; b) verdadeira; c) falsa; d) verdadeira.

Referências Bibliográficas

- [1] I. Camargo and P. Boulos. Geometria Analítica: um tratamento vetorial. Pearson, 3. edition, 2005.
- [2] D.A. de Mello and R.G. Watanabe. Vetores e uma iniciação à geometria analítica. Livraria da Física, 2. edition, 2011.

Índice Remissivo

```
ângulo
   entre vetores, 9
base, 30
coordenadas, 31
direção, 2
extremidade, 3
norma, 2
origem, 3
segmento, 1
segmento nulo, 2
segmento orientado, 3
   equipolente, 5
vetor
    oposto, 11
vetores
    coplanares, 9
   não coplanares, 9
   ortogonais, 9
   paralelos, 9
```