Jet Energy Resolution for the Dijet Balance Method

Rebecca Pickles, Darren Price

June 7, 2016

Status

- Used the Dijet Balance Method to find the Jet Energy Resolution for Powheg+Pythia8, Sherpa and Pure Pythia8 MCs.
- Found an issue with the truth resolution being larger than reco for Sherpa, Pure Pythia8 and some bins of Powheg+Pythia8.
 - Restricted the fit of the asymmetry to ± 0.5 .
 - Started checks of ΔR matching of truth and reco jets to be <0.4.
- Calculated MC detector resolution from:

$$\frac{P_T^{reco} - P_T^{truth}}{P_T^{reco}}$$

in bins of (P_T^{reco}, η) for ΔR matched jets for each MC.

Sherpa Truth: Before any restrictions

Sherpa Truth: After restriction to fit

Sherpa Reco: Before any restrictions

Sherpa Reco: After restriction to fit

Sherpa unsubtracted $\sigma(P_T)/P_T$ vs η_{det} with restrictions

A much smaller number of eta bins of truth are higher than Reco after the fit restriction.

Sherpa unsubtracted $\sigma(P_T)/P_T$ vs P_T with restrictions

Sherpa $\sigma(P_T)/P_T$

 There seems to be an issue with the line connecting points here (Working on it).

To-Do:

- Continue to fix bug with DeltaR matching to check if this is the problem.
 - Find reason behind truth being larger than reco if matching doesn't fix the problem.
- Fix bugs in code causing lack of connecting points.
- Start looking at the bisector method.