【疾病控制】

吉林市 2010年丙型病毒性肝炎发病率的灰色系统 GM(1.1)模型预测

程志勇,赵贺春 (吉林市疾病预防控制中心, 吉林 吉林 132001)

【摘要】目的 利用灰色系统 GM(1.1)模型对吉林市 2010年丙型病毒性肝炎发病率进行预测,为丙型病 毒性肝炎的防治提供科学依据。方法 利用 1999-2009年吉林市丙型病毒性肝炎发病率统计资料建立灰色系统 GM(1.1)模型, 并对模型进行评价。结果 丙型 病毒性肝炎发 病率预测模型 为 $Y_t = 9.967~02^{\frac{6.267~73(-1-1)}{2}}$ 一 8 351 32 模型检验精度好,外推 2010年发病率为 44 488 4/10万,检验效果满意。结论 利用灰色系统 GM (1.1)模型能够对吉林市 2010年丙型病毒性肝炎做出合理预测。

【关键词】 丙型肝炎; 灰色系统; GM(1, 1)模型; 预测 [中图分类号] R195 R181 [文献标识码] A

〔文章编号〕 1671-4199(2011)02-0158-02

传染病预测是根据传染病的发生、发展规律及 相关因素,用分析判断和数学模型等方法对可能发 生的传染病的发生、发展和流行趋势作出预测,是制 定防控传染病的长远或近期应对策略的前提。本研 究利用灰色系统 GM(1.1)模型对 2010年吉林市丙 型病毒性肝炎 (以下简称丙肝)进行预测,现报告 如下。

1 资料与方法

1.1 资料来源 1999-2009年吉林市法定传染病 疫情监测丙肝发病率数据 (按发病日期统计)统计 资料。

- 1.2 方法和原理
- 1. 2. 1 灰色系统 GM(1, 1)模型的基本思想 将无 规律的原始数据累加生成后,使其变为有规律的生 成数列,然后建立相应的微分方程模型,从而预测事 物未来发展趋势和状态。
- 1. 2. 2 (1, 1)模型的建模过程
- 1. 2. 2. 1 累加生成 设原始数列 X_{i} (⊆ 1, 2 ···, n), 对其进行一次累加生成数列 Y₄ 即:

$$Y_{t} = \sum_{i=1}^{n} X_{s} (= 1, 2, \dots, n)$$
 (1)

1.2.2.2 均值生成 对累加生成数列 Yi作均值生 成.即

$$Z_t = \frac{1}{2} (Y_t + Y_{\leftarrow_1}), (\succeq_2 3, ..., n)$$
 (2)

1. 2. 2. 3 建立 GM(1, 1)模型 Y₁的估计值 Y₂其 一阶线性微分方程为:

$$\frac{\mathrm{d}Y_{t}}{\mathrm{d}t} + \alpha Y_{t} = \mu \tag{3}$$

1. 2. 2. 4 <u>解微分方程</u> 式 (3)中 α和 μ是待定参 数,其中 α为内生灰数。 μ为发展灰数,根据最小二 乘法估计参数,建立数据矩阵 B

$$\mathbf{B} = \begin{bmatrix} -\mathbf{Z}_{2} \\ -\mathbf{Z}_{3} \\ \Lambda & \Lambda \\ -\mathbf{Z} & 1 \end{bmatrix}, 则有 = \begin{bmatrix} \alpha \\ \mu \end{bmatrix} = \frac{\mathbf{B}^{\mathsf{T}}\mathbf{Y}}{(\mathbf{B}^{\mathsf{T}}\mathbf{B})}$$
(4)

通过矩阵运算可求得矩阵 a中待定参数 α、μ 值。

解微分议程式(3)得:

$$Y_{t} = (X_{t} - \frac{\alpha}{\mu}) \quad e^{-\theta(t-1)} + \frac{\mu}{\alpha}$$
 (5)

1. 2. 2. 5 估计值的计算

$$X_t = X_t - Y_{t-1} \quad (X_t$$
为 X_t 估计值) (6)

表 1 拟合精度等级表

 精度等级	P值	C値
	> 0. 95	< 0. 35
合格	> 0.80	< 0. 45
勉强合格	> 0.70	< 0. 50
不合格	≤ 0.70	≥ 0. 65

1. 2. 3 <u>模型的检验</u> 设残差 δ= X₁— X₁₁, § 为原 始数据序列的标准差, § 为残差的标准差。

$$S = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{N} \quad \text{其中 \overline{X}为原数列均值} \ (7)$$

作者简介:程志勇(1972-),男,吉林吉林人,学士,主管医师,研究

计算后验差比值 C= \$/\$ (9)(10)

根据 C值及 P值的大小,综合评价模型的拟合 效果, 常用的拟合精度等级见表 1。

1.3 统计学处理 应用统计软件 Excel 2003 进行 分析。

2 结果

2.1 吉林市 1999-2009年丙肝发病率 数列为 X=(1.675 7, 2.862 7, 4.703 3, 5.352 3, 6.461 4) 10. 670 3, 12. 193 0, 14. 966 3, 20. 171 6, 27. 136 8 35. 938 3), 设其时序分别为 1, 2, 3… 11, 按公式 (1)、(2)进行累加生成和均值生成,得到数列 Y和 乙 见表 2

表 2 1999-2009年吉林市丙肝发病率(1/10万) 的 GM(1.1)模型建模数据表

		, , , , , , ,		
———— 年度	时序	发病率 X _t	Y_t	Z_{t}
1999	1	1. 675 7	1. 675 7	
2000	2	2. 862 7	4. 538 4	3 107 1
2001	3	4. 703 3	9. 241 7	6 890 1
2002	4	5. 352 3	14. 594 0	11. 917 9
2003	5	6. 461 4	21. 055 4	17. 824 7
2004	6	10. 670 3	31. 725 7	26. 390 6
2005	7	12. 193 0	43. 918 7	37. 822 2
2006	8	14. 966 3	58. 885 0	51. 401 9
2007	9	20. 171 6	79. 056 6	68. 970 8
2008	10	27. 136 8	106. 193 4	92. 625 0
2009	11	35. 938 3	142. 131 7	124. 162 6

根据公式(4)计算 $\alpha = -0.26773$, $\mu =$ 2. 235 90 根据公式 (5)则预测模型公式为

$$Y_t = (\ 1.\ 675\ 7\ -\frac{2.\ 235\ 90}{-0.\ 267\ 73})^{-\frac{0.\ 267\ 73(\ \vdash 1)}{-0.}} +$$

 $(\frac{2.23590}{-0.26773})$

即为: $Y_t = 9.967 \ 02^{\frac{4}{6} \ 26773(t-1)} - 8.35132 \ (11)$

2.2 模型检验 将 ≒1,2…11代入公式(11)所得 各时序 Yf值, 然后按公式 (6)还原得各时序模型拟 合值 X 并计算残差如表 3

根据公式 (7) - (10) 计算 §=10.901 4 §= 0.787 5.后验差值比 C=0.722 小概率误差 P=1对照表 1, 精度为好, 可进行外推预测。

2.3 模型外推预测 将 ≒12代入模型 Y_t=9.967 $02^{\frac{6}{2}26773(\frac{1}{1})}$ -8. 351 32 对 2010年丙肝预测, $\frac{1}{1}$ = 181. 071 5, **由** $Y_{12} = Y_{12} - Y_{11} = 181.071 5 -$ 142.131 7=44.488 4.2010年吉林市丙肝预测值为

表 3 1999-2009年吉林市丙肝发病率 (1/10万) 的 GM(1.1)模型残差表

年份	时序	发病率(X _t)	预测值 $X_{\scriptscriptstyle t}$	残差 &
1999	1	1. 675 7	1. 615 7	0
2000	2	2.862 7	3. 059 4	-0.1967
2001	3	4. 703 3	3. 998 6	0. 704 7
2002	4	5. 352 3	5. 225 9	0. 126 4
2003	5	6.4614	6. 830 0	-0.3686
2004	6	10 670 3	8. 926 5	1. 743 8
2005	7	12 193 0	11. 666 6	0. 526 4
2006	8	14 966 3	15. 247 7	-0.2814
2007	9	20 171 6	19. 928 0	0. 243 6
2008	10	27. 136 8	26. 045 0	1. 091 8
2009	11	35 938 3	34. 039 7	1. 898 6

3 讨论

灰色系统理论诞生于 1982年由我国学者邓聚 龙教授创立、是一种研究少数据、贫信息不确定性问 题的新方法。灰色系统理论以"部分信息已知,部 分信息未知"的"小样本"、"贫信息"不确定性系统 为研究对象,主要通过对"部分"已知信息的生成、 开发,提取有价值的信息,实现对系统运行行为、演 化规律的正确描述和有效监控。

传染病的发病率受诸多因素的影响,人们对其 发病因素的了解常常是不完全的, 其中有的已为人 们所认识,有的还需要进一步研究探索。正是由于 传染病发病或明或暗的灰色性,构成了一个灰色系 统^[1]。灰色预测是基于微分方程的预测,GM(1, 1) 模型是最基本的模型。它以独特的数学方法把难以 描述的理论作为灰色理论来处理, 弱化随机因素的 干扰, 从杂乱无章的现象中揭示事物的发展规律, 对 样本容量和概率分布没有严格要求,模型简单,预测 效果好,适合于对流行因素较稳定的疾病进行短期 预测 $^{[2]}$: 应用 $^{[2]}$: 应用 $^{[2]}$: 应用 $^{[3]}$. 便于在基层疾病预防控制机构推广。

笔者利用 1999-2009年 11年吉林市丙肝发病 数据,建立灰色系统 (3M(1.1)模型,通过模型检验, 效果评价为好,并通过模型外推,对 2010年丙肝发 病趋势进行预测, 为吉林市丙肝防治规划调整及防 治效果评价提供数据参考。

4 参考文献

- [1] 易静,杜昌廷,王润华,等.应用灰色预测模型 (M(1,1))对结 核病发病率进行预测〔〕. 重庆医科大学学报, 2007, 32(3); 275-278.
- [2] 邢慧娴、杨维中、王汉章、等、传染病预测〔〕〕 预防医学情报 杂志, 2004 20(6); 639-641.
- [3] 陈青山, 王声滂, 迟桂波, 等. 应用 EXCEL完成性病 GM模型 的预测和评价[]. 疾病控制杂志, 2003, 7(5): 451-453.

(收稿日期 2010-12-09

44. 488. 4/10 \overline{\overline{7}}{0.000} China Academic Journal Electronic Publishing House. All rights reserved.