1

LISTING OF THE CLAIMS

1	1. (Original) An engine comprising:
2	a crankshaft;
3	a gearbox output shaft;
4	a gearbox clutch controllably coupling and decoupling the crankshaft to the gearbox
5	output shaft; and
6	a slipper clutch coupling the gearbox output shaft to a slipper clutch output shaft, wherein
7	the slipper clutch is a separate structure from the gearbox clutch, and wherein the slipper clutch
8	provides positive coupling of torque from the gearbox output shaft to the slipper clutch output
9	shaft and at least some amount of slip in response to back-torque from the slipper clutch output
10	shaft.
1	2. (Original) The engine of claim 1 wherein the slipper clutch comprises:
2	a gear engaged with the crankshaft;
3	a sprag coupling the gear to the slipper clutch shaft and providing engagement of the gear
4	to the slipper clutch shaft substantially in only a spragged direction of rotation of the gear;
5	a clutch basket;
6	a stack of drive plates and friction plates disposed within the clutch basket;
7	a spring; and
8	a tensioner which adjustably applies tension from the spring against the stack to
9	determine an amount of back-torque which is transferred from the gear through the slipper clutch
10	to crankshaft in a freewheeling direction of rotation of the sprag.
1	3. (Original) The engine of claim 2 wherein the slipper clutch further comprises:
2	a dynamic adjuster for changing the tension which the tensioner applies.
1	4. (Original) The engine of claim 1 wherein the gearbox clutch provides some amount of
2	slipper function.

Docket: MCZ005 Page 4 Amendment 1

5. (Original) The engine of claim 1 wherein the engine is an internal combustion engine.

1 2 Amendment and Response dated 1/24/2005 Replying to Office Action dated 09/22/2004

1	6. (Original) The engine of claim 1 further comprising a motorcycle powered by the engine.
1	7. (Currently Cancelled)
1	8. (Original) A motor vehicle comprising:
2	a chassis;
3	an internal combustion engine coupled to the chassis, the engine including a crankshaft
4	and an output shaft;
5	a primary clutch coupled to the crankshaft and to the output shaft to controllably couple
6	and decouple torque from the crankshaft through to the output shaft;
7	a driven wheel rotatably coupled to the chassis and coupled to the output shaft;
8	a slipper clutch, separate from the primary clutch, and coupled to the crankshaft and to
9	the output shaft to provide (i) a positive sprag engagement of torque from the crankshaft to the
10	output shaft, and (ii) a slipper engagement limited amount of back-torque from the output shaft
11	to the crankshaft.
1	9. (Original) The motor vehicle of claim 8 wherein the slipper clutch comprises:
2	a clutch shaft;
3	a gear engaged with the crankshaft;
4	a sprag coupling the gear to the clutch shaft and providing engagement of the gear to the
5	clutch shaft substantially in only a spragged direction of rotation of the gear;
6	a clutch basket;
7	a stack of drive plates and friction plates disposed within the clutch basket;
8	a spring; and
9	a tensioner which adjustably applies tension from the spring against the stack to
10	determine an amount of back-torque which is transferred from the gear through the slipper clutch
11	to crankshaft in a freewheeling direction of rotation of the sprag.

10. (Original) The motor vehicle of claim 9 wherein the slipper clutch further comprises:

a dynamic adjuster for changing the tension which the tensioner applies.

1	11. (Original) The motor vehicle of claim 9 wherein:
2	the primary clutch is coupled at a first end of the crankshaft; and
3	the slipper clutch is coupled at a second end of the crankshaft.
1	12. (Original) The motor vehicle of claim 11 wherein:
2	the first end of the crankshaft is toward a front of the motor vehicle; and
3	the second end of the crankshaft is toward a back of the motor vehicle.
1	13. (Original) The motor vehicle of claim 11 wherein:
2	the output shaft is substantially perpendicular to the crankshaft; and
3	the slipper clutch includes a bevel gear coupled to a pinion gear on the output shaft.
1	14. (Original) The motor vehicle of claim 8 wherein the motor vehicle is a motorcycle.
1	15. (Original) The motor vehicle of claim 14 wherein:
2	the crankshaft is oriented parallel with a longitudinal axis of the motorcycle.
1	16. (Currently Amended) A motorcycle comprising:
2	a frame;
3	an engine coupled to the frame and including a crankshaft and a primary drive output
4	a primary clutch coupling the crankshaft to the primary drive output;
5	a final output shaft;
6	a rear wheel coupled to the frame and to the final output shaft;
7	a slipper clutch coupling the primary drive output to the final output shaft to provide
8	positive torque transfer from the primary drive output to the rear wheel, and to control
9	back-torque transfer from the rear wheel to the primary drive output.
1	17. (Original) The motorcycle of claim 16 wherein:
2	the slipper clutch includes a dynamic adjuster for altering the back-torque transfer.

l	18. (Original) The motorcycle of claim 17 further comprising:
2	a controller coupled to the dynamic adjuster, whereby a rider of the motorcycle may
3	control the back-torque transfer while riding the motorcycle.
1	19. (Original) The motorcycle of claim 16 wherein:
2	the slipper clutch is coupled to a swingarm of the frame.
1	20. (Original) The motorcycle of claim 19 wherein:
2	a final output shaft of the slipper clutch is coaxial with a swingarm pivot at which the
3	swingarm is coupled to the frame.
1	21. (Original) The motorcycle of claim 20 wherein:
2	the final output shaft of the slipper clutch comprises a secondary output shaft; and
3	the slipper clutch includes a slipper clutch shaft which is coupled to and not coaxial with
4	the secondary output shaft.
1	22. (Original) The motorcycle of claim 21 wherein:
2	the secondary output shaft rides is coupled to the swingarm by bearings which are coaxial

3

with the swingarm pivot.