Generating Safe Paths in Dynamic Environments By Actively Predicting the Motion of Obstacles

CS4099: Major Software Project

Author:
Alexander Wallar

Supervisor:
Dr. Michael Weir

I declare that the material submitted for assessment is my own work except where credit is explicitly given to others by citation or acknowledgement. This work was performed during the current academic year except where otherwise stated.

The main text of this project report is NNN words long, including project specification and plan.

In submitting this project report to the University of St Andrews, I give permission for it to be made available for use in accordance with the regulations of the University Library. I also give permission for the title and abstract to be published and for copies of the report to be made and supplied at cost to any bona fide library or research worker, and to be made available on the World Wide Web. I retain the copyright in this work.

Contents

1	Design	3
2	Discussion	5

Chapter 1

Design

$$\zeta_a(t) = \begin{cases} \zeta_a(t - \delta t) + \zeta_a'(t) \cdot \delta t + \rho & \text{if } t > 0 \\ \zeta_a^{(0)} & \text{if } t = 0 \end{cases}$$
(1.1)

Where $\rho \sim \mathcal{U}(-\epsilon, \epsilon)$ and $\epsilon > 0$.

$$P_a^{(t_0,t_m)}(x,y) = \int_{t_0}^{t_m} \mathcal{N}(\zeta_a(t), \alpha \cdot (t-t_0)^2 + \beta, x, y) \cdot (t_m - t)^{\gamma} dt$$
 (1.2)

Where $\mathcal{N}(\mu, \sigma^2, x, y)$ is the evaluation of a 3D normal distribution centered at (μ_x, μ_y) with a variance of σ^2 at (x, y).

$$P_A^{(t_0,t_m)}(x,y) = \frac{\sum_{a \in A} P_a^{(t_0,t_m)}(x,y)}{|A|}$$
(1.3)

$$C_A^{(t_0,t_m)}(i,j) = \int_0^1 \exp\left(P_A^{(t_0,t_m)}(x(\lambda),y(\lambda))\right) \cdot ||i-j|| d\lambda$$
 (1.4)

Where $x(\lambda) = (j_x - i_x) \cdot \lambda + i_x$ and $y(\lambda) = (j_y - i_y) \cdot \lambda + i_y$ are the parametric equations of the line from i to j.

Algorithm 1 ROADMAP(n, d, O)

Input:

- n: Maximum number of possible samples
- d: Maximum distance between neighbouring nodes
- O: Set of obstacles

Output:

An unweighted graph of points describing the connectivity of the environment

```
1: for i=1 to n do

2: q \leftarrow \text{RANDOMPOINT}(W)

3: if \bigwedge_{o \in O} \neg o.inside(q) then

4: V \leftarrow V \cup \{q\}

5: for all q_i \in V do

6: for all q_j \in V do

7: if q_i \neq q_j \wedge ||q_i - q_j|| \leq d then

8: E \leftarrow E \cup \{(q_i, q_j)\}

9: return (V, E)
```

Chapter 2

Discussion