Characterization and predictive role of Human-specific genes in Acute Lymphoblastic Leukemia

Gloria Lugoboni [1]*, Lorenzo Santarelli [1]*, Thomas Sirchi [1]*, Andrea Tonina [1]*, Matteo Gianesello [1], Federica Ress [1], Emma Busarello [1], Valter Cavecchia [3], Luca Tiberi [1], Toma Tebaldi [1], Enrico Blanzieri [2]

[1]Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive n. 9, 38123 Povo, Trento, Italy.

[2] Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy [3] Institute of Materials for Electronics and Magnetism (CNR), via alla Cascata 56/c, 38123, Povo, TN, Italy

* These authors contributed equally

Overview of Acute Lymphoblastic Leukemia (ALL)

B-CELL T-CELL - 80% PEDIATRIC CASES - TWO MAJOR SUBTYPES: T-ALL AND B-ALL - STILL UNKNOWN - SYMPTHOMS: **BONE MARROW FAILURE** INVOLVEMENT OF THE CENTRAL NERVOUS SYSTEM

Main functions associated with human-specific genes

Mechanism of origin of known human-specific genes

Gene amplification

Human-specific gene

Sequence alteration

Structural alteration

Regulatory alteration

Gene loss

region

■ De novo origin

Non-coding gene

Lost in chimpanzee

Human accelerated

We talk of "human-specific" features, or human-specific (HS) genes, to indicate the main differences that can be found at the genetic level between humans and our close relatives, the chimpanzee

Comprehensive Analysis of ALL via HS genes Profiling A Pipeline overview DIFFERENTIAL GENE **IDENTIFICATION OF** EXPRESSION **HUMAN-SPECIFIC GENES** NORMALIZATION AND BATCH CORRECTION Lost in chimpanze DIMENTIONALITY REDUCTION CONSENSUS CLASSIFIER **UNKNOWN SAMPLES ONLY HUMAN** SPECIFIC **GENES** EXTRACTION OF THE MOST IMPORTANT **FEATURES** Origin Dataset Control samples Tumor samples Age Datasets GSE84445 Blood Unknown 20 overview GSE133499 Pediatric Both GSE181157 173 Pediatric Both GSE227832 Both **Pediatric** Cohort_7_8 Unknown Both GSE139073 Bone marrow Adult GSE162562 Blood Unknown GSE115736 Blood 18 Unknown

Conclusions

- Among the retrieved differentially expressed genes, it was possible to identify humanspecific genes stratifing the tumor and the various subtypes (B, T, PreB and PreT).
- Enrichment analysis suggests that the human-specific genes are involved in immune system activity, its regulation and proliferation, all relevant processes associated with cancer.
- Through the differentially expressed human-specific genes we were able to create a consensus classifier capable of associating unknown data to specific tumor subtypes.
- Among human-specific genes with higher importance for our models, we found EBF1, a cancer-related gene connected to the signal transduction in leukemia [3], MYO7B, a known proto-oncogenic driver [4] and RAB6C, a member of the RAS oncogene family [5].

References

- [1] Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017
- [2] Aster JC et al., Essential roles for ankyrin repeat and transactivation domains in induction of T-cell lekemia by notch1. Mol Cell Bio. 2000
- [3] Ramamoorthy S, Kometani K, Herman JS, Bayer M, Boller S, Edwards-Hicks J, Ramachandran H, Li R, Klein-Geltink R, Pearce EL, Grün D, Grosschedl R. EBF1 and Pax5 safeguard leukemic transformation by limiting IL-7 signaling, Myc expression, and folate metabolism. Genes Dev. 2020
- [4] Rashedul Islam, Catherine E. Jenkins, Qi Cao, Jasper Wong, Misha Bilenky, Annaïck Carles, Michelle Moksa, Andrew P. Weng, Martin Hirst, RUNX1 colludes with NOTCH1 to reprogram chromatin in T cell acute lymphoblastic leukemia, iScience, 2023
- [5] Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases. 2018

Unraveling ALL using Human-specific genes B PreB PreT

log2 FC control vs case A total of 2897 genes were identified differentially expressed (DE) between the controls and the tumor samples (in green). Of these, 97 were human-specific (HS) genes, 85 up-regulated and 12 down-regulated.

Stratification of the tumor subtypes using human-specific genes found differentially expressed in tumor samples respect control

Source Term ... p_{adi} (query_1) GO:MF GO:0019864 IgG binding 1.770×10⁻⁵ 3.476×10^{-5} GO:MF GO:0019770 IgG receptor activity GO:0001788 1.098×10^{-3} antibody-dependent cellular cytotoxicity GO:CC GO:0170014 ankyrin-1 complex 1.089×10^{-3} Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell REAC REAC:R-HSA-198933 1.323×10^{-3} 2.190×10^{-3} GO:0002445 type II hypersensitivity 2.190×10^{-3} GO:0001794 type IIa hypersensitivity 4.561×10⁻² TF:M09725 Factor: DREF: motif: CTYYCWCTTCC\ 4.543×10⁻² GO:BP GO:0002376 immune system process

The terms highligted from the enrichment analysis applied on the set of DE HS genes were dealing with two main area:

Immune system activity and regulation of acute inflammatory response

Regulation of proliferation It is also important to note the term 'ankyrin-1 complex', essential for the induction of T-cell

The performance of the three models, created using DE HS genes, was compared using three metrics: balanced accuracy, F-score and Kappa coefficient. Random forest is the model performing better.

MYO7B RGPC3 NCKAP5 LRRC37A Importance

The value of variable importance is defined using a process that combine the initial prediction accuracy, calculated using out-of-bag (OOB) observations, with a process of cross-validation by randomly shuffling observations. A variable is defined as important if a drop in the model accuracy is observed. The overall importance score is obtained by averaging across all trees created by random forest.

Future prospectives/Outlooks

- Ampliate our data and effectuate the analysis on a bigger dataset to gain more statistical significance.
- Further analyses of the differences (and similarities) between the different ALL subtypes should be performed. The same can be said about the characterization of pediatric and adult samples.
- Further analyses regarding the genetic of human specific genes is needed, common SNPs/SNVs in these genes should be analyzed to further understand the impact of such variants in the contest of ALL.

