18K41A0551

Lette us consider a sample dataset have one input (x;a) and one output (y;1) and number of samples 4. Develop a simple lineal regreen, model using BGD.

0	-	
Sample (1)	7:	y,9
	0.2	3.4
3	0.4	3.8
2	0.6	4.2
3	0.8	4,6
4		1

at DO manuel calculations for two iterations with first two samples.

are write the python code to build simple linear reggrenin model using BGD Ophmizes (consider all 4 shorples).

Step1: [7,4], m=1, c=-1, n=0.1, epoches=2

Step 2 : '1to =)

=-1.34

$$dE = \frac{1}{2} \left[(3.4 - 0.2 + 1) + (3.8 - 0.4 + 1)^{2} \right]$$

$$= -4.3$$

$$= -4.3$$

$$= -1.34$$

$$= 0.134$$

$$\Delta C = -9 \frac{dE}{dC}$$

$$= -0.1 \times 4.3$$

$$= 0.43$$

$$Slop 6: m + = \Delta m$$

$$= 1 + 0.134$$

$$= 1.134$$

$$C + = \Delta C$$

$$= -1.134$$

$$C + = \Delta C$$

$$= -1.134$$

$$Slop 6: lift=1$$

$$|h| = 2$$

$$Slop 7: lift(ih) > cpoch(3)$$

$$Slop 8$$

$$= lse$$

$$90 to . Stop 3$$

Shep 3 1
$$\frac{d1}{dn}$$
 = $\frac{1}{2}$ [(3.4 - (1.174) (0.2) 1 0.57) (0.2) 1 (0.57) (0.4) 1 (0.57) (0.4) 1 (0.57) (0.4) 1 (0.57) (0.4) 1 (0.57) 1 (2.8 - (1.134) (0.2) 1 0.57) 1 (2.8 - (1.134) (0.4) 1 0.57)]

= -1.157

 $\frac{dE}{dL} = -\frac{1}{2}$ [(2.4 - (1.54) (0.2) 1 0.57) 1 (2.8 - (1.134) (0.4) 1 0.57)]

= -2.829

Shep 9: $\Delta m = -0.1 \times -1.157 = 0.1157$
 $\Delta C = -0.1 \times 3.829 = 0.3829$
 $\Delta C = -0.177$

Step 6: $\Delta C = -0.177$

Step 8: $\Delta C = -0.1871$