TOWARD CONDITIONAL DISTRIBUTION CALIBRATION IN SURVIVAL PREDICTION

Shi-ang Qi¹, Yakun Yu¹, Russell Greiner^{1,2}

¹University of Alberta, ²Alberta Machine Intelligence Institute

{shiang, yakun2, rgreiner}@ualberta.ca

OBJECTIVES

Boost a survival model's marginal and conditional calibration performance while maintaining the same discrimination ability.

Survival Analysis

A subject (described x_i) is **right-censored** iff it has not experienced an event at the observed time. Each subject is: $[\boldsymbol{x}_i, \text{ observed time } t_i, \text{ indicator } \delta_i],$ which is based on event time e_i and censor time c_i .

$$t_i \triangleq \min\{e_i, c_i\}$$
 and $\delta_i \triangleq \mathbf{1}[e_i \leq c_i]$

Assumptions: (i) **exchangeable** and (ii) **condi**tional independent censoring, $e_i \perp c_i \mid \boldsymbol{x}_i$

Individual Survival Distribution (ISD) is a probability curve for all future times for a patient:

$$S(t \mid \boldsymbol{x}_i) = \Pr(e_i > t \mid \boldsymbol{x}_i).$$

THEORETICAL RESULTS

Methods	CSD[2]	CSD-iPOT
Marginal calibration guar. [†]	X	√
Conditional calibration guar.	X	\checkmark
Monotonic	X	\checkmark
Harrell discrimination guar.		X
Antolini discrimination guar.	X	\checkmark
Space complexity [‡]	$O(NR \mathcal{P})$	O(NR)

All the calibration guarantees are asymptotic guarantees. ‡ N: #instances in the conformal set; R: sampling parameter; $|\mathcal{P}|$: #predefined percentile.

Calibration in Survival Analysis

Conditional calibration: $\{\hat{S}(e_i \mid \boldsymbol{x}_i)\}_i$, should follow $\mathcal{U}[0,1]$, for arbitrary group based on \boldsymbol{x}_i , e.g., age / sex / race. We propose Cal_{ws} – evaluate cal. on the worst calibrated sub-region in the feature space.

CSD-iPOT (conformalized survival distribution using individual probability at observed time):

- Split data, learn \mathcal{M} from $\mathcal{D}_{\text{train}}$ and predict ISDs for \mathcal{D}_{con} : $\{\hat{S}_{\mathcal{M}}(t \mid \boldsymbol{x}_i)\}_{i \in \mathcal{I}^{\text{con}}}$ (curves)
- Calculate individual probability at observed time (iPOT) as the conformity score (stars)

- Apply the following adjustment for a testing subject with index n+1,
 - $\forall \rho \in \mathcal{P}, \quad \tilde{S}_{\mathcal{M}}^{-1}(\rho \mid \boldsymbol{x}_{n+1}) = \hat{S}_{\mathcal{M}}^{-1} \text{ (Percentile}(\rho; \Gamma_{\mathcal{M}}) \mid \boldsymbol{x}_{n+1})$

 $\gamma_{i,\mathcal{M}} := \hat{S}_{\mathcal{M}}(e_i \mid \boldsymbol{x}_i), \quad \Gamma_{\mathcal{M}} = \{\gamma_{i,\mathcal{M}}\}_{i \in \mathcal{I}^{\mathrm{con}}}$

• Identify the empirical percentiles of the conformity score (lines)

 $S_{\mathcal{M}}(c_i \mid oldsymbol{x}_i)$

- 2 Determines the corresponding times on the predicted ISDs that match these empirical percentiles (circles)
- 3 Vertically shift the empirical percentiles to the appropriate height (arrows)
- Transform the inverse ISD into an ISD: $\tilde{S}_{\mathcal{M}}(t \mid \boldsymbol{x}_{n+1}) = \inf\{\rho : \tilde{S}_{\mathcal{M}}^{-1}(\rho \mid \boldsymbol{x}_{n+1}) \leq t\}$

For a censored subject, we **cannot** directly calculate conformity score $\gamma_{i,\mathcal{M}} = \hat{S}_{\mathcal{M}}(e_i \mid \boldsymbol{x}_i)$.

Intuition: given the prior knowledge $\hat{S}_{\mathcal{M}}(e_i \mid \boldsymbol{x}_i) \sim \mathcal{U}_{[0,1]}$, we update the knowledge by $\hat{S}_{\mathcal{M}}(c_i \mid \boldsymbol{x}_i) > \hat{S}_{\mathcal{M}}(e_i \mid \boldsymbol{x}_i)$ and assumption (ii).

To maintain a balanced censoring rate, we repeat the iPOT value, Rtimes, for each uncensored subject.

EMPIRICAL RESULTS

Comparisons using 15 real datasets and 7 baselines.

		C-index	Calmargin	Cal _{ws} ‡	IBS	MAE-PO
	Win	$7(0)^{\dagger}$	95(50)	64(29)	63(14)	54(8)
cf. Baseline	Lose	22(0)	9(1)	5(1)	23(0)	17(0)
	Tie	75	0	0	18	33
cf. CSD [2]	Win	11(1)	68(37)	51(26)	$\overline{53(15)}$	39(8)
	Lose	26(0)	36(20)	18(7)	35(11)	39(4)
	Tie	67	0	0	16	26

Number of wins (Number of significant wins with p < 0.05).

Other findings from ablation studies:

- CSD-iPOT requires less space and running time.
- \bullet A larger sampling parameter R can lead to better marginal and conditional calibration.
- Different values of ρ have minimal impacts.

REFERENCES

- [1] Haider et al. Effective ways to build and evaluate individual survival distributions. JMLR 2020
- [2] Qi et al. Conformalized Survival Distributions: A Generic Post-Process to Increase Calibration. ICML 2024

[‡] We only evaluate Cal_{ws} on datasets with $n \geq 1000$..