

Machine Learning

Session 17 - T

Neural Networks

Degree in Applied Data Science 2024/2025

Perceptron

Perceptron

• First binary classifier based on supervised learning;

Foundation of modern artificial neural networks;

Perceptron (Frank Rosenblatt, 1958)

Representation of the Perceptron

Parameters of the perceptron:

Activation function

■ w_k: weights

■ b: bias

Training → adjusting the weights and bias.

Alternative Representation of the Perceptron

Perceptron Examples

$$z = \begin{cases} 1, & \text{if } w \cdot x > \theta \\ 0, & \text{w} \cdot x < = \theta \end{cases}$$

Perceptron Learning Rule

 Suppose that x is a feature vector, y is the correct class label, and y' is the predicted class label computed using the current weights.

Activation Functions

Outputs the label given an input or a set of inputs

Multilayer Perceptron

Mulilayer Perceptron

AKA Artificial Neural Networks

Artificial Neuron

- Inter-connection of several artificial neurons (also called nodes or units);
- Each "level" in the graph is called a lauer:
 - Input layer;
 - Hidden layer(s);
 - Output layer.
- Each neuron in the hidden layers acts as a classifier / feature detector;
- Fedforward neural network (no cycles):
 - First na simplest type of neural network;
 - Information moves in one direction.

$$h_1 = g_1 \left(w_{11}^1 x_1 + w_{12}^1 x_2 + w_{13}^1 x_3 + b_1^1 \right)$$

$$h_2 = g_1 \left(w_{21}^1 x_1 + w_{22}^1 x_2 + w_{23}^1 x_3 + b_2^1 \right)$$

$$h_3 = g_1 \left(w_{31}^1 x_1 + w_{32}^1 x_2 + w_{33}^1 x_3 + b_3^1 \right)$$

$$h_4 = g_1 \left(w_{41}^1 x_1 + w_{42}^1 x_2 + w_{43}^1 x_3 + b_4^1 \right)$$

$$y_1 = g_2 \left(w_{11}^2 h_1 + w_{12}^2 h_2 + w_{13}^2 h_3 + w_{14}^2 h_4 + b_1^2 \right)$$

$$y_2 = g_2 \left(w_{21}^2 h_1 + w_{22}^2 h_2 + w_{23}^2 h_3 + w_{24}^2 h_4 + b_2^2 \right)$$

- w^kij weight between previous node j and next node i at layer k;
- gk is any activation function applied to each its input vector

$$h_{1} = g_{1} \left(w_{11}^{1} x_{1} + w_{12}^{1} x_{2} + w_{13}^{1} x_{3} + b_{1}^{1} \right)$$

$$h_{2} = g_{1} \left(w_{21}^{1} x_{1} + w_{22}^{1} x_{2} + w_{23}^{1} x_{3} + b_{2}^{1} \right)$$

$$h_{3} = g_{1} \left(w_{31}^{1} x_{1} + w_{32}^{1} x_{2} + w_{33}^{1} x_{3} + b_{3}^{1} \right)$$

$$h_{4} = g_{1} \left(w_{41}^{1} x_{1} + w_{42}^{1} x_{2} + w_{43}^{1} x_{3} + b_{4}^{1} \right)$$

$$h = g_{1} \left(\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1} \right)$$

$$\mathbf{y}_{1} = g_{2} \left(w_{11}^{2} h_{1} + w_{12}^{2} h_{2} + w_{13}^{2} h_{3} + w_{14}^{2} h_{4} + b_{1}^{2} \right)$$

$$\mathbf{y}_{2} = g_{2} \left(w_{21}^{2} h_{1} + w_{22}^{2} h_{2} + w_{23}^{2} h_{3} + w_{24}^{2} h_{4} + b_{2}^{2} \right)$$

$$\mathbf{y} = g_{2} \left(\mathbf{W}_{2} \mathbf{h} + \mathbf{b}_{2} \right)$$

• The matrices W_k and biases b_k are learned from labeled training data.

- It can have 1 hidden layer only (shallow network);
- It can have more than 1 hidden layer (deep network);
- Each layer can have a different size, and hidden and output layers often have different activation functions.

Deep Learning

Not covered in this curricular unit!

Resources

 Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. In Psychological Review (Vol. 65, Issue 6, pp. 386–408). American Psychological Association (APA). https://doi.org/10.1037/h0042519

https://simplilearn.com/tutorials/deep-learning-tutorial/perceptron