

Outline UVirginiaTech

- Problem statement and contributions
- Email dataset
- Feature extraction
- Algorithm design
- Performance analysis
- Future work and conclusions

Problem Overview

- Email is everywhere!
- Difficult to research email because of inherent privacy concerns
- Lack of modern email datasets with accurate job title labels
- What information about an organization is embedded in the organizational email communication?
- Organic vs. official organizational charts

What information about an organization can be extracted from emails?

3/25/2016

Applications

- Overall methods can be applied to any communication system
 - Cell phone, website links, social media, network connections
- This particular type of analysis could benefit:
 - In Dec. 2015, GE completed downsize and merger of subsidiary General Electric Capital Corporation
 - On Jan. 1 2016, Northrop Grumman combined two of its four business sectors, Electronic Systems and Information Systems
 - In late 2016, the merger of two major chemical companies: DuPont and Dow will be finalized before splitting into three new companies

Contributions

- Present a new email dataset based on academic emails of the center
- Job title classification results that outperform previous work
- A method to automatically generate organic hierarchy from analyzing emails
- Paper submitted to IJCAI 2016

Improved email analysis feature set and classification results

3/25/2016

Enron Dataset

- · Benchmark dataset for email analysis
- Released in 2004
- Used for research into spam classification, email categorization, and recipient prediction
- Issues with the dataset
 - 99.99% overlap between emails sent as "CC" and those sent as "BCC"
 - · Some emails addresses, folders, and names are misspelled
 - Inconsistent email address formats make mapping to employees difficult
- Issues with job title labels
 - No labels for 29 employees
 - Clear mislabeling errors for at least 4 employees

3/25/2016

7

Prior Work

- Prior work in hierarchy analysis often uses the text of the emails with natural language processing features, mainly on Enron
- Historically, email analysis without text uses two types of features:
 - Traffic-based: statistical features based on single emails
 - Social-based: features calculated based on email interactions between people
- Success in determining community structures has been found using the two types separately
 - Namata et al. 2006 used traffic-based features to predict Enron job titles
 - Wilson and Banzhaf 2009 found Enron's important groups from strictly social features
- Rowe et al. 2005 used a combination of features to automatically construct the Enron social hierarchy

3/25/2016

Hume Email Data Collection

- Worked with Virginia Tech's Internal Review Board (IRB) to approve data collection procedures and privacy concerns
 - All subject and body text was hashed using MD5 algorithm
 - Data collection process was performed using automated scripts
 - · No identifying information is revealed in analysis
 - All data stored on secure, password-protected Hume Center server
- Hashing example:

Employment Opportunity at Doosan Fuel Cell America

b4dabd5884ecd175283065dc605c2172

3/25/2016

q

Email Parsing Process

- Challenge: Email formats are inconsistent
 - Forwards are expressed as "Fw:" or "Fwd:" or "FW:"
 - · Email address encoded with Unicode
 - Some emails have HTML- needed to identify, then parse
- Process:
 - Write a python script to extract data
 - Test on personal emails to find inconsistent formatting issues
 - Ran script on mail server and saved all email metadata into MySQL database

3/25/2016

Collected Data From Each Email

VirginiaTech

- Destination and source email address
- Email time stamp
- Subject prefix (e.g., Re:, Fwd:)
- Hash of subject after removing prefix
- · Hash of body text
- Length of subject in characters
- Length of body text in characters
- Number of attachments
- Indicator if email was digitally signed
- Indicator if email was encrypted

Hume Center vs. Enron Dataset Comparison VirginiaTech • Hume Center dataset: • Enron dataset: More modern More employees • More distinct email addresses · More distinct emails · Longer time period · Corporate emails · Academic emails **Hume Center Enron** Time 11/2012-11/2015 1/2000-9/2002 **Distinct Email Addresses** 32,118 75,406 **Participants** 37 158 585,096 252,759 **Distinct Emails**

Features

- Features quantify information extracted from the email metadata
- Two categories:
 - Traffic-based 84 features
 - Social-based 30 features
- Total features: 114
- Calculated using bash, MySQL, and python scripts
- Used as input to the machine learning algorithm

3/25/2016

Traffic-Based Features

- Generated directly from the collected metadata
- Example raw features:
 - Unique subjects received
 - Number of signed emails received
 - Number of emails received as carbon copies
 - Average number of emails received per day
 - Number of emails sent after normal business hours
 - Number of emails sent within VT
 - Number of emails sent within Hume
- Also converted raw features as percentages

Social Graph **■** VirginiaTech • Nodes represent people • Edges are directed and represent emails exchanged between people • Two different graphs used • Full graph draws edge between people who exchanged at least one email • 2532 edges, 86 nodes • Partial graph draws edge between people who exchanged at least 10 emails • 1319 edges, 82 nodes 3/25/2016

Social-Based Features

VirginiaTech

- Degree measures
 - · Degree of a node
 - Average neighbor degree
- Cliques
- Clustering Metrics
- Search Engine Algorithms
- Centrality Measures
- All features calculated for both the full and partial graph

3/25/2016

Betweenness Centrality

VirginiaTech

- ullet There exists a shortest path between any node s and any other node t
- Betweenness centrality of a node i is the percentage of all shortest paths in graph G that traverse node i:

$$C_B(i) = \sum_{s,t \in \mathcal{V}} \frac{\sigma(s,t|i)}{\sigma(s,t)}$$

 ${\mathcal V}$ is the set of all nodes in ${\mathcal G}$

 $\sigma(s,t)$ is the number of shortest paths between s and t $\sigma(s,t|i)$ is the number of those paths that pass through i

Closeness Centrality

VirginiaTech

• Normalized inverse of the sum of shortest path distances from node i to all other nodes in the graph:

$$C(i) = \left(\frac{\sum_{j=1}^{n-1} d(i,j)}{n}\right)^{-1}$$

n is the number of nodes in graph ${\mathcal G}$

d(i,j) is the minimum shortest path distance between node i and node j

Random Trees

VirginiaTech

- Used to learn a series of rules for classification
- Learned using a greedy heuristic
 - Starting at the top, split on the best feature
 - Automatic feature selection
- Tree-based classifiers are prone to over-fitting
 - Low bias, high variance

3/25/2016

27

Determining the Best Split

VirginiaTech

- Entropy: Amount of randomness in the class distribution
 - *H*(Class)
- Conditional Entropy: Amount of randomness in the class distribution when the attribute value is known
 - H(Class|Attribute)
- Mutual Information:
 - I(Class; Attribute) = H(Class) H(Class|Attribute)
- Split on maximum mutual information:
 - $X = \arg \max_{x} I(\text{Class}; X) = \arg \max_{x} H(\text{Class})$ $H(\text{Class}|X) = \arg \min_{x} H(\text{Class}|X)$
- Because variables are continuous, use thresholds to form discrete levels
 - $t = \arg\min_{t} H(\text{Class}|t) = \arg\min_{t} H(\text{Class}|X < t)P(X < t) + H(\text{Class}|X \ge t)P(X \ge t)$

3/25/2016 2

Random Forests VirginiaTech Data Random forests are an ensemble method that is robust to overfitting Random Random Random • Learn many deep random trees and take majority vote of prediction outputs • "Bagging", or Bootstrap Aggregating • Random elements introduced in each tree: Only a subset of features used • Only a subset of training data used

ature	Selection		U Virgir
New	Feature	Туре	Mutual Information
	Unique subjects received	Traffic	0.728
\checkmark	Total signed emails received	Traffic	0.728
	Hubs (partial graph)	Social	0.589
	Number of emails received as forwards	Traffic	0.519
	Current flow closeness centrality (partial graph)	Social	0.512
	Pagerank (partial graph)	Social	0.512
	Percentage of emails sent with unique addresses	Traffic	0.51
	Number of emails received as carbon copies	Traffic	0.5
	Pagerank (full graph)	Social	0.492
	Average number of emails received per day	Traffic	0.489
✓	Communicability betweenness centrality (partial graph)	Social	0.486
	Communicability centrality (partial graph)	Social	0.486
3/25/2016			

Classification Results

VirginiaTech

- Training: random 35% of emails
- Cross-validation: random 30% of emails
- Testing: random 35% of emails
- Using Random Forests and tuned parameters
- Potential bias:
 - Training and testing performed on the same people due to small sample size

3/25/2016

Classification Results VirginiaTech **Output Class** • Overall very accurate: 95.7% • Confusion between graduate students and researchers **0** 0.00% **0** 0.00% 0.00% 0.00% These errors are understandable **0** 0.00% **0** 0.00% GradStudent 3.33% 0.00% • Some doctoral students have been **Farget Class 0** 0.00% working at the center for 3-5 years **7** 100.00% **0** 0.00% **0** 0.00% • Some research faculty are also **0 0** 0.00% **0** 0.00% Outreach 0.00% graduate students 0.00% **0 0** 0.00% **0** 0.00% 0.00% 0.00% **0** 0.00% 3/25/2016

Behavior Over Time

VirginiaTech

Considered employees with at least 10 months of emails

- Procedure:
 - Data split into 1-month segments
 - · First month used as training
 - Months 2-10 used as test data
- Confirms assumption that email behavior is constant in time

3/25/2016

25

Leave-One-Out Cross-Validation

- Concerned about bias from training and testing on same people
- Procedure
 - Train on all but one sample
 - · Test on that sample
 - Repeat for all samples
- Removed Outreach for this test because only contains two samples

3/25/2016

LOOCV Classification Results VirginiaTech **Output Class** Lower accuracy than previous result • 67.2% overall • Due to low sample size • Different roles in each group 25.00% Graduate students very accurate **27** 90.00% **0** 0.00% **0** 0.00% GradStudent 10.00% • 90.0% **Farget Class** • In each category, there are more true 1 14.29% positives than false positives from any other label **0** 0.00% **0** 0.00% 60.00% • Namata et al. 2006 performed same analysis on Enron with 62.09% accuracy 52.94% 0.00% • Improvement of 5.11% 3/25/2016

Future Work and Deep Learning Applications

VirginiaTech

- Apply to larger datasets and/or different types of data
 - Cleaned Enron corpus
 - Hillary Clinton Email Dataset
 - Twitter dataset
- Investigate process of releasing the fully anonymized dataset
- Potential Deep Learning Application
 - More sophisticated algorithms could be used
 - But need much more semi-supervised data
 - Deep Belief Networks
 - Unsupervised training
 - Supervised back propagation

3/25/2016 4

Conclusions

- Created a brand new email dataset from raw emails
 - With accurate job title labels
 - Approximately the size of Enron, but with fewer people
 - Privacy precautions
- This dataset is meant to be representative of data any company could collect without violating the privacy of their employees
- Highly accurate classification results based on historical data
 - · Showed that email behavior is constant with time
- Small dataset lead to low LOOCV accuracy
 - Improved on previous Enron result
- An organic organization chart was produced that represented the email relationships of the center

Thank You

- Committee: Dr. McGwier, Dr. Beex, Dr. Buehrer, Dr. Huang
- Dr. Ernst and Dr. Headley
- Faculty, staff, and graduate students of the Hume Center

3/25/2016


```
HTML Example
                                                                                                                                              VirginiaTech
                                              </head>
<head>
<hody dir=3D"ltr" style=3D"font-size:12pt;color:#000000;background-color:#F=
FFFFFF;font-family:Calibri,Arial,Helvetica,Sans-serif;">
                                              >
                                              <div>
<br>

<div id=3D"Signature">
                                              Department of Electrical and Computer Engineering (Mail Code 0111) <br/>
                                              Virginia Tech<br/>
340 Whittemore Hall<br/>
Blacksburg, VA 24061<br/>
br>
                                              USA<br>
                                              Email: pendleton@vt.edu<br>
Phone: (540) 231-8219<br>
Fax: (540) 231-3362<br>
                                              </div>
</font></div>
                                              </div>
                                              </div>
                                              <pr>
          3/25/2016
```

All Features VirginiaTech unique_sub_sent_perc_encrypted total_received_encrypted total_rec_encrypted_perc unique_addresses_received_encrypted unique_sub_jects_received_encrypted unique_sub_rec_perc_encrypted total_sent unique_addresses_sent unique_add_sent_perc unique_sub_sent_perc total_received unique_addresses_received unique_addresses_received unique_sub_sent_perc total_emails total_sent_signed total_sent_signed_perc unique_sub_rec_perc_encrypted inter_hume_sent inter_hume_received inter_vt_sent inter_vt_received sent_to total.sent.signed total.sent.signed_perc unique.addresses.sent.signed unique.add.sent_perc.signed unique.sub.jects.sent.signed unique.sub.sent.perc.signed total.rec.signed_perc unique.addresses_received.signed unique.sub.jects_received.signed unique.sub.jects_received.signed unique.sub_rec_perc.signed total.sent_encrypted $sent_{to_perc}$ sent_cc sent_cc_perc rec_to rec_to_perc rec_cc rec_cc_perc avg_recipients_sent avg_recipients_rec avg_body_chars_sent avg_body_chars_rec var_body_chars_rec var_body_chars_rec unique.sub_tec_perc_signed total_sent_encrypted_perc unique_addresses_sent_encrypted unique_add_sent_perc_encrypted unique_subjects_sent_encrypted after_hours_sent after_hours_sent_perc after_hours_rec after_hours_rec_perc 3/25/2016 48

All Features

VirginiaTech

after_hours_sent_hume
after_hours_rec_hume
after_hours_rec_hume_perc
after_hours_rec_hume_perc
avg_sent_per_day
avg_rec_per_day
avg_rec_per_day
avg_emails_per_day
attached_sent
attached_rec
avg_attachments_sent
avg_attachments_rec
sent_re
sent_re_perc
sent_fw_perc
rec_re
rec_re
rec_rec_fw_perc
rec_fw_perc
rec_fw_perc
avg_subject_chars_sent
avg_subject_chars_sent
avg_subject_chars_rec
var_subject_chars_rec
fg_between_centrality
pg_avg_neighbor_degree
fg_avg_neighbor_degree
pg_clustering

fg_clustering
pg_closeness_centrality
pg_closeness_centrality
pg_degree_centrality
pg_degree_centrality
pg_current_flow_closeness_centrality
pg_current_flow_betweenness_centrality
pg_current_flow_betweenness_centrality
pg_communicability_centrality
pg_communicability_centrality
pg_communicability_betweenness_centrality
pg_communicability_betweenness_centrality
pg_load_centrality
pg_square_clustering
pg_square_clustering
pg_square_clustering
pg_eccentricity
pg_pagerank
pg_hubs
pg_authorities
pg_avg_shortest_paths
pg_avg_shortest_paths
pg_num_cliques
pg_num_cliques

3/25/2016 49

Neighborhood Degree

- ullet The neighborhood of node i is comprised of all nodes that are connected to i via edges.
- The average neighbor degree is therefore

$$k_{avg,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j$$

- |N(i)| is the number of neighbors of node i
- k_j is the degree of node j

3/25/2016 50

Triangle Clustering

ullet Compares the number of triangles node i is a part of to the maximum number of possible triangles.

$$C_{3,i} = \frac{2}{k_i(k_i - 1)} \sum_{m,n} (\widetilde{w}_{i,m} \widetilde{w}_{m,n} \widetilde{w}_{n,i})^{\frac{1}{3}}$$

- If node i has degree k_i , there can be at most $\frac{k_i(k_i-1)}{2}$ triangles involving i
- Normalize edge weights compared to maximum: $\widetilde{w}_{i,m} = \frac{w_{i,m}}{\max(w_{i,m})}$, then take geometric mean

3/25/2016

Degree Centrality

VirginiaTech

ullet Degree centrality of a node i is the percentage of nodes within the graph that are connected to node i

$$C_{d,i} = \frac{k_i}{n-1}$$

3/25/2016 55

Communicability Centrality

■ VirginiaTech

- Also known as subgraph centrality
- ullet Consider all closed walks in graph ${\mathcal G}$ of length k
- ullet Of those walks, those that begin on node i are denoted as $\mu_k(i)$

• The communicability centrality of node
$$i$$
 is:
$$SC(i) = \sum_{k=1}^{\infty} \frac{\mu_k(i)}{k!}$$

Some	Wo	rst Performing Features		U VirginiaTech
•	New	Feature	Туре	Mutual Information
	✓	Total Received Encrypted	Traffic	0
	✓	Unique Addresses Sent Signed	Traffic	0
		Inter-Hume Received	Traffic	0
		Unique Addresses Received	Traffic	0
	\checkmark	Total Sent Encrypted	Traffic	0
		Number of Cliques (full graph)	Social	0
	✓	Inter-VT Sent	Traffic	0
		Betweenness Centrality (partial graph)	Social	0
		Clustering (partial graph)	Social	0
		Average Neighbor Degree (full graph)	Social	0
		Average Subject Characters Received	Traffic	0
3/25/20	/25/2016		54	