

Faculty of Technology & Engineering Bachelor of Technology Programme Computer Engineering (B.Tech. CE)

# ACADEMIC REGULATIONS & SYLLABUS

(Choice Based Credit System)

Academic Year: 2020-2021

© CHARUSAT 2020 Page 1 of 170

# Chandubhai S. Patel Institute of Technology

### Vision

To become a leading institute for creation and dissemination of knowledge in the frontiers of Technology.

### **Mission**

To Prepare world-class technocrats and researchers and facilitate enhanced deployment of technology for betterment of lives.

# U & P U. Patel Department of Computer Engineering

### Vision

To teach (impart) the basic fundamentals of engineering concepts (knowledge), technical/technological skills, research skills and above all the practical ability to apply the knowledge to real situations. Additionally, to install the critical values that will help in preparing the students develop into more effective, productive and focused IT professionals, good citizen and industry ready product to touch their lives tomorrow.

### **Mission**

The U & P U. Patel department of Computer Engineering is committed

- 1. To provide world-class educational activities
- 2. To deploy latest technologies
- 3. To foster research activities in consultation with academia and industry

© CHARUSAT 2020 Page **2** of **170** 

# THE PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

| PEO1 | To prepare the student(s) for successful career as an engineer, a corporate or a   |
|------|------------------------------------------------------------------------------------|
|      | government professional, a scientist, ac academician, a technocrat, an             |
|      | administrator and an entrepreneur.                                                 |
| PEO2 | To make students demonstrate their abilities to adapt to a rapidly changing        |
|      | environment by having learning approach and apply new skills and new               |
|      | technologies to solve the problems.                                                |
| PEO3 | To create an ambience where the students are cared for in every aspect and         |
|      | motivated to become excellent working professionals who will continue to           |
|      | cherish their association with the organization as a whole, staff and colleagues.  |
| PEO4 | To provide continued professional development and lifelong learning throughout     |
|      | their career to inculcate strong teamwork and by installing lacking skills for the |
|      | benefit of the society.                                                            |
| PEO5 | To prepare the students to apply their technical skill(s) to analyse and design    |
|      | appropriate solution(s) with social consciousness and ethical values.              |

# PROGRAM ARTICULATION MATRIX

(-Not Mathing,1-Low,2,3-High)

| Mission Statement                                  | PEO1 | PEO2 | PEO3 | PEO4 | PEO5 |
|----------------------------------------------------|------|------|------|------|------|
| To provide world-class educational activities      | 3    | 3    | 3    | 3    | 3    |
| To deploy latest technologies                      | -    | 2    | 3    | 3    | -    |
| To foster research activities in consultation with | 3    | 2    | 2    | 3    | 3    |
| academia and industry                              |      |      |      |      |      |

© CHARUSAT 2020 Page **3** of **170** 

# PROGRAM OUTCOMES (POs)

At the end of the program, the student will be able to:

| PO1  | Engineering knowledge: Apply knowledge of mathematics, science,                         |
|------|-----------------------------------------------------------------------------------------|
|      | engineering fundamentals, and an engineering specialization to the solution of          |
|      | complex engineering problems.                                                           |
| PO2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze   |
|      | complex engineering problems reaching substantiated conclusions using first             |
|      | principles of mathematics, natural sciences, and engineering sciences.                  |
| PO3  | <b>Design/development of solutions:</b> Design solutions for complex engineering        |
|      | problems and design system components or processes that meet specified needs            |
|      | with appropriate consideration for public health and safety, and the cultural,          |
|      | societal, and environmental considerations.                                             |
| PO4  | Conduct investigations of complex problems: Use research-based knowledge                |
|      | and research methods including design of experiments, analysis and                      |
|      | interpretation of data, and synthesis of the information to provide valid               |
|      | conclusions.                                                                            |
| PO5  | Modern tool usage: Create, select, and apply appropriate techniques, resources,         |
|      | and modern engineering and IT tools including prediction and modeling to                |
|      | complex engineering activities with an understanding of the limitations.                |
| PO6  | The engineer and society: Apply reasoning informed by the contextual                    |
|      | knowledge to assess societal, health, safety, legal and cultural issues and the         |
|      | consequent responsibilities relevant to the professional engineering practice.          |
| PO7  | <b>Environment and sustainability:</b> Understand the impact of the professional        |
|      | engineering solutions in societal and environmental contexts, and demonstrate           |
|      | the knowledge of, and need for sustainable development.                                 |
| PO8  | Ethics: Apply ethical principles and commit to professional ethics and                  |
|      | responsibilities and norms of the engineering practice.                                 |
| PO9  | <b>Individual and team work</b> : Function effectively as an individual, and as a       |
|      | member or leader in diverse teams, and in multidisciplinary settings.                   |
| PO10 | <b>Communication:</b> Communicate effectively on complex engineering activities         |
|      | with the engineering community and with society at large, such as being able to         |
|      | comprehend and write effective reports and design documentation, make                   |
|      | effective presentations, and give and receive clear instructions.                       |
| PO11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding          |
|      | of the engineering and management principles and apply these to one's own               |
|      | work, as a member and leader in a team, to manage projects and in                       |
|      | multidisciplinary environments.                                                         |
| PO12 | <b>Life-long learning:</b> Recognize the need for, and have the preparation and ability |
|      | to engage in independent and life-long learning in the broadest context of              |
|      | technological change.                                                                   |

© CHARUSAT 2020 Page **4** of **170** 

# PROGRAM SPECIFIC OUTCOMES (PSOs)

At the end of the program, the student will be able to:

| PSO1 | Apply good analytical, design and implementation skills required to formulate   |
|------|---------------------------------------------------------------------------------|
|      | and solving computational problems.                                             |
| PSO2 | Excellent adaptability to function in multi-disciplinary work environment, good |
|      | interpersonal skills in appreciation of professional ethics and societal        |
|      | responsibilities.                                                               |

© CHARUSAT 2020 Page **5** of **170** 

# FACULTY OF TECHNOLOGY AND ENGINEERING ACADEMIC REGULATIONS

# **Bachelor of Technology Programmes Choice Based Credit System**

To ensure uniform system of education, duration of undergraduate and post graduate programmes, eligibility criteria for and mode of admission, credit load requirement and its distribution between course and system of examination and other related aspects, following academic rules and regulations are recommended.

### 1. System of Education

Choice based Credit System with Semester pattern of education shall be followed across The Charotar University of Science and Technology (CHARUSAT) both at Undergraduate and Master's levels. Each semester will be at least 90 working day duration. Every enrolled student will be required to take a course works in the chosen subject of specialization and also complete a project/dissertation if any. Apart from the Programme Core courses, provision for choosing University level electives and Programme/Institutional level electives are available under the Choice based credit system.

### 2. Duration of Programme

(i) Undergraduate programme (B. Tech.)

Minimum 8 semesters (4 academic years)
Maximum 16 semesters (8 academic years)

### 3. Eligibility for admissions

As enacted by Govt. of Gujarat from time to time.

### 4. Mode of admissions

As enacted by Govt. of Gujarat from time to time.

### 5. Programme structure and Credits

As per annexure – 1 attached

© CHARUSAT 2020 Page **6** of **170** 

### 6. Attendance

- 6.1 All activities prescribed under these regulations and listed by the course faculty members in their respective course outlines are compulsory for all students pursuing the courses. No exemption will be given to any student from attendance except on account of serious personal illness or accident or family calamity that may genuinely prevent a student from attending a particular session or a few sessions. However, such unexpected absence from classes and other activities will be required to be condoned by the Dean/Principal.
- 6.2 Student attendance in a course should be Minimum 80%.

### 7 Course Evaluation

- 7.1 The performance of every student in each course will be evaluated as follows:
  - 7.1.1 Internal evaluation by the course faculty member(s) based on continuous assessment, for 30% of the marks for the course; and
  - 7.1.2 Final examination by the University through written paper or practical test or oral test or presentation by the student or a combination of any two or more of these, for 70% of the marks for the course.

### 7.2 University Examination

- 7.2.1 The final examination by the University for 70% of the evaluation for the course will be through written paper and 100% for practical test or oral test or presentation by the student or a combination of any two or more of these.
- 7.2.2 In order to earn the credit in a course a student has to obtain grade other than FF.
- 7.3 Performance at Internal & University Examination
  - 7.3.1 Minimum performance with respect to internal marks as well as university examination will be an important consideration for passing a course. Details of minimum percentage of marks to be obtained in the examinations (internal/external) are as follows

| Minimum marks in University | Minimum marks       |  |  |  |  |
|-----------------------------|---------------------|--|--|--|--|
| Exam per subject            | Overall per subject |  |  |  |  |
| 40%                         | 45%                 |  |  |  |  |

- 7.3.2 A student failing to score 45% of the final examination will get a FF grade.
- 7.3.3 If a candidate obtains minimum required marks per subject but fails to obtain minimum required overall marks, he/she has to repeat the university examination till the minimum required overall marks are obtained.

© CHARUSAT 2020 Page **7** of **170** 

### 8 Grading

8.1 The total of the internal evaluation marks and final University examination marks in each course will be converted to a letter grade on a ten-point scale as per the following scheme:

Table: Grading Scheme (UG)

| Range of Marks | ≥80 | ≥73 | ≥66 | ≥60 | ≥55 | ≥50 | ≥45  | <45 |
|----------------|-----|-----|-----|-----|-----|-----|------|-----|
| (%)            |     | <80 | <73 | <66 | <60 | <55 | < 50 |     |
| Letter Grade   | AA  | AB  | BB  | BC  | CC  | CD  | DD   | FF  |
| Grade Point    | 10  | 9   | 8   | 7   | 6   | 5   | 4    | 0   |

- 8.2 The student's performance in any semester will be assessed by the Semester Grade Point Average (SGPA). Similarly, his performance at the end of two or more consecutive semesters will be denoted by the Cumulative Grade Point Average (CGPA). The SGPA and CGPA are calculated as follows:
  - (i) SGPA =  $\sum C_i G_i / \sum C_i$  where  $C_i$  is the number of credits of course i  $G_i$  is the Grade Point for the course i and i=1 to  $n,\ n=$  number of courses in the semester
  - (ii)  $CGPA = \sum C_i G_i / \sum C_i$  where  $C_i$  is the number of credits of course i  $G_i$  is the Grade Point for the course i and i=1 to n, n=n number of courses of all semesters up to which CGPA is computed.
  - (iii) No student will be allowed to move further if CGPA is less than 3 at the end of every academic year.
  - (iv) A student will not be allowed to move to third year if he/she has not cleared all the courses of first year.
  - (v) A student will not be allowed to move to fourth year if he/she has not cleared all the courses of second year.

### 9. Awards of Degree

- 9.1 Every student of the programme who fulfils the following criteria will be eligible for the award of the degree:
  - 9.1.1 He should have earned at least minimum required credits as prescribed in course structure; and
  - 9.1.2 He should have cleared all internal and external evaluation components in every course; and
  - 9.1.3 He should have secured a minimum CGPA of 4.5 at the end of the programme;
  - 9.1.4 In addition to above, the student has to complete the required formalities as per the regulatory bodies, if any.

© CHARUSAT 2020 Page **8** of **170** 

9.2 The student who fails to satisfy minimum requirement of CGPA at the end of program will be allowed to improve the grades so as to secure a minimum CGPA for award of degree. Only latest grade will be considered.

### 10. Award of Class

The class awarded to a student in the programme is decided by the final CGPA as per the following scheme:

Distinction:  $CGPA \ge 7.5$ First class:  $CGPA \ge 6.0$ Second Class:  $CGPA \ge 5.0$ 

### 11. Transcript

The transcript issued to the student at the time of leaving the University will contain a consolidated record of all the courses taken, credits earned, grades obtained, SGPA, CGPA, class obtained, etc.

© CHARUSAT 2020 Page **9** of **170** 

# **Choice Based Credit System**

With the aim of incorporating the various guidelines initiated by the University Grants Commission (UGC) to bring equality, efficiency and excellence in the Higher Education System, Choice Based Credit System (CBCS) has been adopted. CBCS offers wide range of choices to students in all semesters to choose the courses based on their aptitude and career objectives. It accelerates the teaching-learning process and provides flexibility to students to opt for the courses of their choice and / or undergo additional courses to strengthen their Knowledge, Skills and Attitude.

### 1. CBCS – Conceptual Definitions / Key Terms (Terminologies)

### 1.1. Core Courses

### 1.1.1 University Core (UC)

University Core Courses are those courses which all students of the University of a Particular Level (PG/UG) will study irrespective of their Programme/specialisation.

### 1.1.2 Programme Core (PC)

A 'Core Course' is a course which acts as a fundamental or conceptual base for Chosen Specialisation of Engineering. It is mandatory for all students of a particular Programme and will not have any other choice for the same.

### 1.2 Elective Course (EC)

An 'Elective Course' is a course in which options / choices for course will be offered. It can either be for a Functional Course / Area or Streams of Specialization / Concentration which is / are offered or decided or declared by the University/Institute/Department (as the case may be) from time to time.

### 1.2.1 Institute Elective Course (IE)

Institute Courses are those courses which any students of the University/Institute of a Particular Level (PG/UG) will choose as offered or decided by the University/Institute from time-to-time irrespective of their Programme /Specialisation

### 1.2.2 Programme Elective Course (PE):

A 'Programme Elective Course' is a course for the specific programme in which students will opt for specific course(s) from the given set of functional course/ Area or Streams of Specialization options as offered or decided by the department from time-to-time

### 1.2.3 Cluster Elective Course (CE):

An 'Elective Course' is a course which students can choose from the given set of functional course/ Area or Streams of Specialization options (eg.

© CHARUSAT 2020 Page **10** of **170** 

Common Courses to EC/CE/IT/EE) as offered or decided by the Institute from time-to-time.

# 1.3 Non Credit Course (NC) - AUDIT Course

A 'Non Credit Course' is a course where students will receive Participation or Course Completion certificate. This will not be reflected in Student's Grade Sheet. Attendance and Course Assessment is compulsory for Non Credit Courses

© CHARUSAT 2020 Page **11** of **170** 

### CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

### TEACHING & EXAMINATION SCHEME FOR B TECH PROGRAMME IN CE ENGINEERING

### CHOICE BASED CREDIT SYSTEM

|         |                |                                          |               | Teachii   | Examination Scheme |        |          |          |           |          |       |
|---------|----------------|------------------------------------------|---------------|-----------|--------------------|--------|----------|----------|-----------|----------|-------|
| Sem     | Course<br>Code | Course Title                             | Contact Hours |           |                    | Credit | Theory   |          | Practical |          | Total |
|         | Code           |                                          | Theory        | Practical | Total              | Credit | Internal | External | Internal  | External | Total |
|         | MA253          | Discrete Mathematics                     | 4             | 0         | 4                  | 4      | 30       | 70       | 0         | 0        | 100   |
|         | CE251          | Java Programming                         | 3             | 4         | 7                  | 5      | 30       | 70       | 50        | 50       | 200   |
|         | CE252          | Digital Electronics                      | 3             | 2         | 5                  | 4      | 30       | 70       | 25        | 25       | 150   |
|         | CE257          | Data Communication & Networking          | 4             | 2         | 6                  | 5      | 30       | 70       | 25        | 25       | 150   |
| Sem 3   | XXXXX          | University Elective - I                  | 2             |           |                    | 2      | 30       | 70       |           |          | 100   |
|         | CE244          | Software Group Project-I                 | 0             | 4         | 4                  | 2      |          |          | 50        | 50       | 100   |
|         | HS121.02 A     | Creativity Problem Solving & Innovation  | 2             | 0         | 2                  | 2      |          |          |           |          | 100   |
|         |                |                                          |               |           |                    |        |          |          |           |          |       |
|         |                |                                          | 18            | 12        | 30                 | 24     | 120      | 280      | 180       | 220      | 900   |
|         | CE245          | Data Structures & Algorithms             | 3             | 2         | 5                  | 4      | 30       | 70       | 25        | 25       | 150   |
|         | CE246          | Database Management System               | 4             | 4         | 8                  | 6      | 30       | 70       | 50        | 50       | 200   |
|         | CE258          | Microprocessor and Computer Organization | 4             | 2         | 6                  | 5      | 30       | 70       | 25        | 25       | 150   |
| Sem 4   | CE259          | Programming in Python                    | 0             | 2         | 2                  | 1      | 0        | 0        | 25        | 25       | 50    |
| 36111 4 | XXXXX          | University Elective - II                 |               | 2         |                    | 2      |          |          | 30        | 70       | 100   |
|         | CE255          | Software Group Project-II                | 0             | 4         | 4                  | 2      |          |          | 50        | 50       | 100   |
|         | HS111.02 A     | Human Value & Professional Ethics        | 2             | 0         | 2                  | 2      |          |          |           |          | 100   |
|         |                |                                          | 15            | 14        | 29                 | 22     | 90       | 210      | 205       | 245      | 850   |

### Note:

- University Elective (UE):- University Electives are offered in common slots and offered by various departments. Students of any programme can select these electives. Subjects like Research Methodology, Occupational Health & Safety, Engineering Economics, Professional Ethics, and Project Management, Disaster Management, Risk Management etc. can be included.
- Cluster Elective (CT):- Institutional Electives means common electives among a cluster of programmes (eg. CE/IT/EC/EE etc.). If Institutional Electives are not applicable, it will be Programme electives
- Programme Elective (PE):-
- Institute Elective (IE):-

- Provision for Auditing a course will be available
  Audit courses may be offered and decided based on need of the institute/program(s)

| University Elective - I (UE - I)                | University Elective - II (UE - II)              |
|-------------------------------------------------|-------------------------------------------------|
| Introduction to MATLAB Programming              | Prototyping Electronics with Arduino            |
| Art of Programming                              | Web Designing                                   |
| Environmental Sustainability and Climate Change | Basics of Environmental Impact Assessment       |
| Python for Electrical Engineering               | Computer Programming for Electrical Engineering |
| ICT Resources and Multimedia                    | Internet Technology and Web Design              |
| Engineering Drawing                             | Material Science                                |
| Fundamentals of Packaging                       | Cosmetics in daily life                         |
| Basic Laboratory Techniques                     | Life Style Diseases & Management                |
| First Aid & Life Support                        | Occupational Health & Ergonomics                |
| Health Promotion and Fitness                    | Programming the Internet                        |
| Introduction to Web Designing                   | Health Care Management                          |
| Banking and Insurance                           |                                                 |

© CHARUSAT 2020 Page **13** of **170** 

### CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

### TEACHING & EXAMINATION SCHEME FOR B TECH PROGRAMME IN CE ENGINEERING

### CHOICE BASED CREDIT SYSTEM

|       | 0              | Course Course Title                                   |        | Teachir    | Examination Scheme |        |                  |          |          |          |       |
|-------|----------------|-------------------------------------------------------|--------|------------|--------------------|--------|------------------|----------|----------|----------|-------|
| Sem   | Course<br>Code |                                                       |        | Contact Ho | urs                | Credit | Theory Practical |          |          | ctical   | Total |
|       | Code           |                                                       | Theory | Practical  | Total              | Credit | Internal         | External | Internal | External | Total |
|       | CE341          | Microprocessor architectures and assembly programming | 3      | 2          | 5                  | 4      | 30               | 70       | 25       | 25       | 150   |
|       | CE342          | Design & Analysis of Algorithms                       | 3      | 2          | 5                  | 4      | 30               | 70       | 25       | 25       | 150   |
|       | CE343          | Software Engineering                                  | 3      | 2          | 5                  | 4      | 30               | 70       | 25       | 25       | 150   |
| C     | CE344          | Computer Networks                                     | 3      | 2          | 5                  | 4      | 30               | 70       | 25       | 25       | 150   |
| Sem 5 | CEXXX          | Programme Elective-I                                  | 2      | 4          | 6                  | 4      | 30               | 70       | 50       | 50       | 200   |
|       | CE352          | Software Group Project-III                            | 0      | 2          | 2                  | 2      |                  |          | 50       | 50       | 100   |
|       | CE346          | Summer Internship-I                                   |        |            | 0                  | 3      | 0                | 0        | 75       | 75       | 150   |
|       | HS131.02 A     | Communication and Soft skills                         | 0      | 2          | 2                  | 2      | 0                | 0        | 30       | 70       | 100   |
|       |                |                                                       | 14     | 16         | 30                 | 27     | 150              | 350      | 305      | 345      | 1150  |
|       | CE347          | Internals of Operating  System                        | 3      | 2          | 5                  | 4      | 30               | 70       | 25       | 25       | 150   |
|       | CE348          | Information Security                                  | 4      | 2          | 6                  | 5      | 30               | 70       | 25       | 25       | 150   |
|       | CE349          | Theory of Computation                                 | 3      | 0          | 3                  | 3      | 30               | 70       | 0        | 0        | 100   |
|       | CE350          | Data Warehousing & Data Mining                        | 3      | 2          | 5                  | 4      | 30               | 70       | 25       | 25       | 150   |
| Sem 6 | CEXXX          | Programme Elective-II                                 | 3      | 2          | 5                  | 4      | 30               | 70       | 25       | 25       | 150   |
|       | CE353          | Software Group Project-IV                             | 0      | 4          | 0                  | 4      |                  |          | 100      | 100      | 100   |
|       | HS132.02 A     | Contributory Personality Development                  | 0      | 2          | 2                  | 2      | 30               | 70       | 0        | 0        | 100   |
|       |                |                                                       | 16     | 14         | 30                 | 26     | 180              | 420      | 200      | 200      | 1000  |

### Note:

- University Elective (UE):- University Electives are offered in common slots and offered by various departments. Students of any programme can select these electives. Subjects like Research Methodology, Occupational Health & Safety, Engineering Economics, Professional Ethics, and Project Management, Disaster Management, Risk Management etc. can be included.
- Cluster Elective (CT):- Institutional Electives means common electives among a cluster of programmes (eg. CE/IT/EC/EE etc.). If Institutional Electives are not applicable, it will be Programme electives
- Programme Elective (PE):-

- Institute Elective (IE):-
- Provision for Auditing a course will be available
- Audit courses may be offered and decided based on need of the institute/program(s)

| List of Programme Electives |                                           |       |                                   |  |  |  |  |
|-----------------------------|-------------------------------------------|-------|-----------------------------------|--|--|--|--|
| Code                        | Programme Elective - I (PE - I)           | Code  | Programme Elective - II (PE - II) |  |  |  |  |
| CE371                       | Advanced Java programming                 | CE374 | Service Oriented Computing        |  |  |  |  |
| CE372                       | Advanced Programming using .NET Framework | CE375 | Digital Image Processing          |  |  |  |  |
| CE373                       | Mobile Application Developments           | CE376 | Programming in Python             |  |  |  |  |

| List of HSS Electives |                                               |  |  |  |  |  |  |
|-----------------------|-----------------------------------------------|--|--|--|--|--|--|
| Code                  | HSS Elective - III                            |  |  |  |  |  |  |
| HS125.01 A            | Society, Governance and International Studies |  |  |  |  |  |  |
| HS130 A               | Law & Justice                                 |  |  |  |  |  |  |
| HS134 A               | Contributor Personality Development           |  |  |  |  |  |  |
|                       |                                               |  |  |  |  |  |  |

© CHARUSAT 2020 Page **15** of **170** 

### CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

### TEACHING & EXAMINATION SCHEME FOR B TECH PROGRAMME IN CE ENGINEERING

### CHOICE BASED CREDIT SYSTEM

|         |                | ourse Course Title            |        | Teachir       | Examination Scheme |        |          |          |           |          |       |
|---------|----------------|-------------------------------|--------|---------------|--------------------|--------|----------|----------|-----------|----------|-------|
| Sem     | Course<br>Code |                               |        | Contact Hours |                    |        | Theory   |          | Practical |          | Total |
|         | Code           |                               | Theory | Practical     | Total              | Credit | Internal | External | Internal  | External | Total |
|         | CE441          | Big Data Analytics            | 3      | 4             | 7                  | 5      | 30       | 70       | 50        | 50       | 200   |
|         | CE442          | Design of Language Processors | 4      | 2             | 6                  | 5      | 30       | 70       | 25        | 25       | 150   |
|         | CE443          | Cloud Computing               | 3      | 2             | 5                  | 4      | 30       | 70       | 25        | 25       | 150   |
| Sem 7   | CE444          | Internet of Things            | 3      | 2             | 5                  | 4      | 30       | 70       | 25        | 25       | 150   |
| Selli / | CEXXX          | Programme Elective-III        | 4      | 2             | 6                  | 5      | 30       | 70       | 25        | 25       | 150   |
|         | CE448          | Software Group Project-V      | 0      | 2             | 2                  | 1      | 0        | 0        | 25        | 25       | 50    |
|         | CE446          | Summer Internship-II          |        |               | 0                  | 3      | 0        | 0        | 75        | 75       | 150   |
|         |                |                               | 17     | 14            | 31                 | 27     | 150      | 350      | 250       | 250      | 1000  |
|         |                |                               |        |               |                    |        |          |          |           |          |       |
| Sem 8   | CE447          | Software Project Major        | 0      | 36            | 36                 | 20     |          |          | 250       | 350      | 600   |
| Sem 8   |                |                               |        |               |                    |        |          |          |           |          |       |

### Note:

- University Elective (UE):- University Electives are offered in common slots and offered by various departments. Students of any programme can select these electives. Subjects like Research Methodology, Occupational Health & Safety, Engineering Economics, Professional Ethics, and Project Management, Disaster Management, Risk Management etc. can be included.
- Cluster Elective (CT):- Institutional Electives means common electives among a cluster of programmes (eg. CE/IT/EC/EE etc.). If Institutional Electives are not applicable, it will be Programme electives
- Programme Elective (PE):-
- Institute Elective (IE):-
- Provision for Auditing a course will be available
- Audit courses may be offered and decided based on need of the institute/program(s)

| LIST OF ELECTIVE SUBJECTS FOR FOURTH YEAR B TECH PROGRAMME IN COMPUTER ENGINEERING |       |                                           |  |  |  |  |
|------------------------------------------------------------------------------------|-------|-------------------------------------------|--|--|--|--|
|                                                                                    | Code  | Elective - III                            |  |  |  |  |
| IIVES                                                                              | CE471 | Block chain Technology                    |  |  |  |  |
| ELECTIVES                                                                          | CE472 | Wireless Communication & Mobile Computing |  |  |  |  |
|                                                                                    | CE473 | Machine Learning                          |  |  |  |  |

© CHARUSAT 2020 Page **17** of **170** 

B. Tech. (Computer Engineering) Programme

SYLLABI (Semester - 3)

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

© CHARUSAT 2020 Page **18** of **170** 

### MA253: DISCRETE MATHEMATICS AND ALGEBRA

# **Credits and Hours:**

| Teaching<br>Scheme | Theory | Practical | Tutorial | Total | Credit |  |
|--------------------|--------|-----------|----------|-------|--------|--|
| Hours/week         | 4      | 0         | 0        | 4     | 4      |  |
| Marks              | 100    | 0         | -        | 100   | ·      |  |

# A. Objective of the Course:

Discrete Mathematics and Algebra have many applications in Computer Engineering and Information Technology. This course contains many concepts which are applicable to subjects like Theory of Computation, Artificial Intelligence, Data Structure and Algorithms, Compiler Constructions, Algorithm Analysis and Design, Digital Electronics etc.

### **B.** Outline of the course:

| Sr. | Tidle of the sunit    | Minimum number |
|-----|-----------------------|----------------|
| No. | Title of the unit     | of hours       |
| 1.  | Predicate Calculus    | 08             |
| 2.  | Relations and Lattice | 10             |
| 3.  | Graph Theory          | 12             |
| 4.  | Recurrence Relations  | 05             |
| 5.  | Abstract Algebra      | 09             |
| 6.  | Linear Algebra        | 16             |

Total hours (Theory): 60

# C. Detailed Syllabus:

| 1. | Predicate Calculus:                                                                               | 08 Hours | 13% |
|----|---------------------------------------------------------------------------------------------------|----------|-----|
|    | Revision: Propositions, connectives, converse, inverse, contrapositive, tautology, contradiction. |          |     |
|    | Logical equivalence.                                                                              |          |     |
|    | Minimal functionally complete set of connectives.                                                 |          |     |
|    | Principle conjunctive normal forms and Principle disjunctive normal forms.                        |          |     |
|    | Predicate calculus using rules of inferences.                                                     |          |     |
| 2. | Relations and Lattice:                                                                            | 10 Hours | 17% |

© CHARUSAT 2020 Page **19** of **170** 

|    | Revision of properties of relations on sets.  Representations of relations: graphical and matrix                           |           |      |
|----|----------------------------------------------------------------------------------------------------------------------------|-----------|------|
|    | representation.                                                                                                            |           |      |
|    | Equivalence relation, covering of a set, partition of a set.  Partially ordered sets, totally ordered sets, Hasse diagram. |           |      |
|    | Lattices, sub lattices.                                                                                                    |           |      |
|    | Properties of lattices (without proof).                                                                                    |           |      |
|    | Complete lattices, bounded lattices, distributive lattices,                                                                |           |      |
|    | complemented lattices and complemented distributive lattices.                                                              |           |      |
| 3. | Graph Theory:                                                                                                              | 12 Hours  | 20%  |
|    | Basic terminologies, Simple graph, Types of graphs.                                                                        |           |      |
|    | Degree of a vertex, matrix representations of graph.                                                                       |           |      |
|    | Path and connectivity.                                                                                                     |           |      |
|    | Eulerian and Hamiltonian graph.                                                                                            |           |      |
|    | Subgraphs, spanning subgraphs, isomorphic graphs.                                                                          |           |      |
|    | Planar graphs.                                                                                                             |           |      |
|    | Matching in graphs.                                                                                                        |           |      |
|    | Graph coloring.                                                                                                            |           |      |
| 4. | Recurrence Relations:                                                                                                      | 05 Hours  | 08%  |
|    | Solutions of recurrence relation by direct methods.                                                                        | 05 110415 | 0070 |
|    | Generating functions and solutions of recurrence relation.                                                                 |           |      |
| 5. | Abstract Algebra:                                                                                                          | 09 Hours  | 15%  |
|    | Groupoid, semi group, monoid, group.                                                                                       |           |      |
|    | Order of group, order of an element, Lagrange's theorem.                                                                   |           |      |
|    | Subgroup, cyclic subgroup, permutation group.                                                                              |           |      |
| 6. | Linear Algebra:                                                                                                            | 16 Hours  | 27%  |
|    | Vector space: definition and examples. Subspaces.                                                                          |           |      |
|    | Linear combinations, linearly dependence and linearly                                                                      |           |      |
|    | independence.                                                                                                              |           |      |
|    | Basis and dimension of a vector space.                                                                                     |           |      |
|    | Linear transformations. Null space and range of a linear transformation. Rank - nullity theorem. Isomorphisms.             |           |      |
|    |                                                                                                                            |           |      |

### D. Instructional Method and Pedagogy:

- At the starting of the course, the course delivery pattern, prerequisite of the subject must be discussed.
- Lectures may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures/laboratory which carries a 5% component of the overall evaluation.
- Minimum two internal tests/ unit tests must be conducted and average of two will be considered as a part of 15% overall evaluation.
- Assignments based on course content will be given to the students at the end of each unit/topic and will be evaluated at regular interval. It carries a weightage of 5%.
- Two Quizzes (surprise tests)/ oral test / viva will be conducted which carries 5% component of the overall evaluation

© CHARUSAT 2020 Page **20** of **170** 

### **E.** Student Learning Outcomes:

• At the end of the course the students would be able to

| CO1 | Develop logical argument using truth table and rules of inferences in predicate calculus.                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Relation and types of relations define on sets and utilize it to construct Hasse diagram and lattices on sets.                                                                                           |
| CO3 | Graph and types of the graphs and identify the real world phenomena in terms of graph theory.                                                                                                            |
| CO4 | The concept of recurrence, generating functions and their applications in solving recurrence relations.                                                                                                  |
| CO5 | Different algebraic structures like groupoid, semi group, monoid, group, cyclic group and permutation group                                                                                              |
| CO6 | Definition of vector space, concepts of the terms: linear span, linear independence, basis, dimension. Definition and properties of linear transformations, range and kernel of a linear transformation. |

### • Course Articulation Matrix:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | 1   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO2 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO3 | 3   | 2   | 1   | -   | 2   | -   | -   | -   | -   | -    | -    | -    | 3    | 1    |
| CO4 | 3   | -   | -   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO5 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO6 | 2   | 1   | -   | 1   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

### F. Recommended Study Material:

### **\*** Text Books:

- 1. H. Anton and C. Rorres; Elementary Linear Algebra, Application version, Wiley Edition 2010.
- 2. Kenneth H. Rosen and Kamala Krithivasan. Discrete mathematics and its applications. Vol. 6. New York: McGraw-Hill, 1995.
- 3. Tremblay, Jean-Paul, and Rampurkar Manohar. Discrete mathematical structures with applications to computer science. New York: McGraw-Hill, 1975

© CHARUSAT 2020 Page **21** of **170** 

### \* Reference Books:

- 1. Thomas H. Cormen, E. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms (Vol. 6). Cambridge: MIT press, 2001
- 2. Narsingh Deo, Graph theory with applications to engineering and computer science. Courier Dover Publications, 2016.
- 3. B. Kolman and R. C. Busby, Discrete Mathematical Structures for Computer Science, 2nd edition, Prentice-Hall, Englewood Cliffs, New Jersey 1987.
- 4. Swapan Kumar Sarkar, A Text Book of Discrete Mathematics, S. Chand and Co. New Delhi 2008.
- 4. D. S. Malik and Mridul K. Sen. Discrete mathematical structures: theory and applications. Course Technology, 2004.
- 5. D. F. McAllister and D. F. Stanat. Discrete Mathematics in Computer Science. Prentice-Hall, Inc. 1977.

### **\*** Web Links:

### Lecture Notes:

- 1. http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf
- 2. http://home.iitk.ac.in/~arlal/book/mth202.pdf
- 3. https://web.stanford.edu/class/cs103x/cs103x-notes.pdf
- 4. https://www.cs.cornell.edu/~rafael/discmath.pdf
- 5. http://www-sop.inria.fr/members/Frederic.Havet/Cours/matching.pdf
- 6. http://www-sop.inria.fr/members/Frederic.Havet/Cours/coloration.pdf Video Lectures:
- 7. http://www.nptelvideos.in/2012/11/discrete-mathematical-structures.html
- 8. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/video-lectures/

© CHARUSAT 2020 Page **22** of **170** 

# **CE251: JAVA PROGRAMMING**

# **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 4         | 0        | 7     | 5      |
| Marks           | 100    | 100       | 0        | 200   |        |

# **Pre-requisite courses:**

• Basic programming skill.

# **Outline of the Course:**

| Sr. | Title of the unit                       | Minimum number |
|-----|-----------------------------------------|----------------|
| No. |                                         | of hours       |
| 1.  | Fundamental of Programming in Java      | 02             |
| 2.  | Class Fundamentals                      | 04             |
| 3.  | Array & String Handling                 | 02             |
| 4.  | Inheritance, Interfaces & Packages      | 06             |
| 5.  | Exceptions Handling                     | 05             |
| 6.  | Multithreaded Programming               | 07             |
| 7.  | File I/O and NIO                        | 07             |
| 8.  | Java Collection Frameworks and Generics | 12             |
|     | Total hours (Theory):                   | 45             |
|     | Total hours (Lab):                      | 60             |
|     | Total hours:                            | 120            |

# **Detailed Syllabus:**

| 1. | Fundamental of Programming in Java                         | 02 Hours | 04% |
|----|------------------------------------------------------------|----------|-----|
|    | History of Java, Basic overview of java, Bytecode, JVM     |          |     |
|    | Buzz-words, Application and applets, Constants, Variables  |          |     |
|    | & Data Types, Comment, Operators, Control Flow             |          |     |
| 2. | Class Fundamentals                                         | 04 Hours | 09% |
|    | General form of class, Creating class Overloading          |          |     |
|    | methods, Constructor, Declaring Object, Returning objects, |          |     |
|    | using objects as parameters, Assigning object reference    |          |     |

© CHARUSAT 2020 Page **23** of **170** 

|    | variables, Introducing Access control , Understanding                                                               |          |     |
|----|---------------------------------------------------------------------------------------------------------------------|----------|-----|
|    | static Introducing final, The finalize ( ) method, The this                                                         |          |     |
|    | keyword ,Garbage collection                                                                                         |          |     |
| 3. | Array & String Handling                                                                                             | 02 Hours | 04% |
|    | Array basics, String Array, String class, StringBuffer and                                                          |          |     |
|    | StringBuilder class, String Tokenizer Class and Object                                                              |          |     |
|    | Class                                                                                                               |          |     |
| 4. | Inheritance, Interfaces & Packages                                                                                  | 06 Hours | 14% |
|    | Inheritance: Using super creating multilevel Hierarchy,                                                             |          |     |
|    | method overriding, Dynamic method dispatch, abstract                                                                |          |     |
|    | classes, Using final with Inheritance, Using Package:                                                               |          |     |
|    | Defining package, Finding package and CLASSPATH,                                                                    |          |     |
|    | Access protection, Importing package, Interface: Defining                                                           |          |     |
|    | Interface, Default Methods, Implementing Interface,                                                                 |          |     |
|    | Variables in Interface                                                                                              |          |     |
| 5. | Exceptions Handling                                                                                                 | 05 Hours | 11% |
|    | Exception types, TryCatchFinally, Throw, Throws,                                                                    |          |     |
|    | creating your own exception subclasses                                                                              |          |     |
| 6. | Multithreaded Programming                                                                                           | 07 Hours | 16% |
|    | Life cycle of thread, thread methods, thread priority, thread                                                       |          |     |
|    | exceptions, Implementing Runnable interface,                                                                        |          |     |
|    | Synchronization and Concurrency                                                                                     |          |     |
| 7. | File NIO                                                                                                            | 07 Hours | 16% |
|    | File and Directories, Byte streams and character streams,                                                           |          |     |
|    | Random Access Files,NIO: Meta Data File Attributes                                                                  |          |     |
|    | Buffers, Channels, Recursive Operation.                                                                             |          |     |
| 8. | Collection Framework and Generics                                                                                   | 12 Hours | 26% |
|    | Collections of objects, Collections: Sets, Sequence, Map,                                                           |          |     |
|    | Understanding Hashing, Use of Array List & Vector,                                                                  |          |     |
| 1  |                                                                                                                     |          |     |
|    | Generics Class, Lamda Expression, Functional Reference,                                                             |          |     |
|    | Generics Class, Lamda Expression, Functional Reference,<br>Method Reference, Optional Classes, Processing data with |          |     |

© CHARUSAT 2020 Page **24** of **170** 

### **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Understand and implement Object Oriented programming concept using basic                                                                                                                                                                                                                                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | syntaxes of control Structures, strings and function for developing skills of logic                                                                                                                                                                                                                                   |
|     | building activity and garbage collection for saving resources.                                                                                                                                                                                                                                                        |
| CO2 | Demonstrate basic problem solving skills: analyzing problems, modeling a problem as a system of objects, creating algorithms, and implementing models and algorithms in an object-oriented computer language (classes, objects, methods with parameters, abstract classes, interfaces, inheritance and polymorphism). |
| CO3 | Use and develop Concurrency theory: progress guarantees, deadlock, livelock, starvation, linearizability.                                                                                                                                                                                                             |
| CO4 | Build and test program using new IO api and exception handling                                                                                                                                                                                                                                                        |
| CO5 | Analyze and apply collection framework and generics to solve different data structure algorithms.                                                                                                                                                                                                                     |
| CO6 | Understand and apply java new features                                                                                                                                                                                                                                                                                |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO2 | 2   | 3   | 3   | 2   | -   | -   | -   | -   | 1   | -    | -    | -    | 2    | -    |
| CO3 | 2   | 3   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO4 | 1   | 2   | 3   | 2   | -   | -   | -   | 1   | 1   | -    | -    | -    | 2    | -    |
| CO5 | 1   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO6 | 1   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    | -    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

# **Recommended Study Material:**

### **Text Books:**

- 1. Java: The Complete Reference, Ninth Edition by Herbert Schildt, Oracle Press.
- 2. Java 8 in Action: Lambdas, Streams, and Functional-style Programming by Alan Mycroft and Mario Fusco, Manning Publication

© CHARUSAT 2020 Page **25** of **170** 

### **A** Reference Books:

- 1. Thinking in Java, Bruce Eckel, Prentice Hall
- 2. Java: A Beginner's Guide (Sixth Edition) by Herbert Schildt, Oracle Press.
- 3. Core Java Volume I--Fundamentals (9th Edition) (Core Series) by Cay S. Horstmann, Prentice Hal

### **Web Materials:**

1. https://docs.oracle.com

© CHARUSAT 2020 Page **26** of **170** 

# **CE252: DIGITAL ELECTRONICS**

# **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | 0        | 5     | 4      |
| Marks           | 100    | 50        | 0        | 150   |        |

# **Pre-requisite courses:**

• Basic Electronics

# **Outline of the Course:**

| Sr. | Title of the unit                       | Minimum number |
|-----|-----------------------------------------|----------------|
| No. |                                         | of hours       |
| 1.  | Number Systems                          | 5              |
| 2.  | Boolean Algebra and Logic Gates         | 5              |
| 3.  | Simplification of Boolean Functions     | 6              |
| 4.  | Combinational Logic                     | 5              |
| 5.  | Combinational Logic With MSI AND LSI    | 5              |
| 6.  | Sequential Logic                        | 10             |
| 7.  | Registers, Counters and the Memory Unit | 5              |
| 8.  | Processor Logic Design                  | 4              |
|     | Total hours (Theory):                   | 45             |
|     | Total hours (Lab):                      | 30             |
|     | Total hours:                            | 75             |

# **Detailed Syllabus:**

| 1. | Number Systems                                             | 05 Hours | 10% |
|----|------------------------------------------------------------|----------|-----|
|    | Digital computer and digital systems, Binary Number,       |          |     |
|    | Number base conversion Octal and Hexadecimal Number,       |          |     |
|    | Complements, Binary Codes, Binary Storage and register,    |          |     |
|    | Binary Logic, Integrated Circuit                           |          |     |
| 2. | Boolean Algebra and Logic Gates                            | 05 Hours | 10% |
|    | Basic Definition, Axiomatic Definition of Boolean Algebra, |          |     |

© CHARUSAT 2020 Page **27** of **170** 

|    | Minterm And Maxterms, Basic Theorem and Properties of         |          |     |
|----|---------------------------------------------------------------|----------|-----|
|    | Boolean Algebra, Logic Operations, Digital Logic Gates, IC    |          |     |
|    | digital Logic Families                                        |          |     |
| 3. | Simplification of Boolean Functions                           | 06 Hours | 12% |
|    | Two-Three Variable K-map, Four- Five Variable K-map,          |          |     |
|    | Product of sum Simplification, NAND or NOR                    |          |     |
|    | implementation, Don't Care condition 3.4 Tabulation method    |          |     |
| 4. | Combinational Logic                                           | 05 Hours | 12% |
|    | Introduction, Design Procedure, Hazards, Adder, subtractor,   |          |     |
|    | Code Conversion, Universal Gate, exclusive OR &               |          |     |
|    | equivalence functions                                         |          |     |
| 5. | Combinational Logic With MSI and LSI                          | 05 Hours | 12% |
|    | Introduction, Binary Parallel Adder, Decimal Adder,           |          |     |
|    | Magnitude Comparator, Decoder, Multiplexer, ROM, PLA,         |          |     |
|    | PAL                                                           |          |     |
| 6. | Sequential Logic                                              | 10 Hours | 22% |
|    | Introduction, RS,JK,D,T Flip-Flops, Triggering of Flip-Flops, |          |     |
|    | Flip-Flop Excitation Tables, Analysis of Clocked Sequential   |          |     |
|    | Circuits, State Reduction and Assignment Design Procedure,    |          |     |
|    | Design of Counters, Design with State Equations               |          |     |
| 7. | Registers, Counters and the Memory unit                       | 05 Hours | 12% |
|    | Introduction, Registers, Shift Registers, Ripple Counters,    |          |     |
|    | Synchronous Counters, Timing Sequences, Memory Unit,          |          |     |
|    | Johnson counter                                               |          |     |
| 8. | Processor Logic Design                                        | 04 Hours | 10% |
|    | Processor Organization, Arithmetic Logic Unit, Design of      |          |     |
|    | ALU, Status Register, Design of Shifter, Processor Unit       |          |     |

# **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Understand, convert and examine the structure of various number systems and |
|-----|-----------------------------------------------------------------------------|
|     | its application in digital design.                                          |
| CO2 | Simplification of Boolean function and its conversion in different forms.   |

© CHARUSAT 2020 Page **28** of **170** 

| CO3 | Understand, analyse and design various combinational circuits.                  |
|-----|---------------------------------------------------------------------------------|
| CO4 | Compare different flip-flop characteristics and design of Flip-Flop with gates. |
|     | With FF Design, understand and analyse various sequential circuits.             |
| CO5 | Explain the basic requirements of ALU design and its variation.                 |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO2 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO3 | 3   | 1   | -   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO4 | 2   | 2   | -   | 1   | 1   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO5 | 2   | =   | =   | -   | 1   | =   | =   | -   | -   | =    | =    | =    | 1    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

# **Recommended Study Material:**

### **Text book:**

- **1.** Digital Logic and Computer Design By M Morris Mano, PHI- Publication 2002.
- **2.** Digital Principles and Applications By Malvino & Leach, Seventh Edition, McGraw-Hill Education.

### **Reference book:**

1. Digital Design M. Morris Mano and Michael D. Ciletti, Pearson Education.

© CHARUSAT 2020 Page **29** of **170** 

# **CE257: DATA COMMUNICATION & NETWORKING**

# **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 4      | 2         | -        | 6     | 5      |
| Marks                  | 100    | 50        | -        | 150   |        |

# **Pre-requisite courses:**

• N/A

# **Outline of the Course:**

| Sr. | Title of the unit               | Minimum number |
|-----|---------------------------------|----------------|
| No. |                                 | of hours       |
| 1.  | Introduction and Basic Concepts | 04             |
| 2.  | Network Model                   | 04             |
| 3.  | Signals                         | 04             |
| 4.  | Digital and Analog Transmission | 09             |
| 5.  | Multiplexing                    | 06             |
| 6.  | Data Transmission               | 02             |
| 7.  | Error Correction and Detection  | 05             |
| 8.  | Data Link Control               | 04             |
| 9.  | Media Access Control            | 06             |
| 10. | Switching                       | 01             |
| 11. | Wired and Wireless LAN          | 09             |
| 12. | Network Routing                 | 06             |
|     | Total hours (Theory):           | 60             |
|     | Total hours (Lab):              | 24             |
|     | Total hours:                    | 84             |

# **Detailed Syllabus:**

| 1. | Introduction and Basic Concepts                       | 04 Hours | 6% |
|----|-------------------------------------------------------|----------|----|
|    | Data Communication, Networks, Network Types, Internet |          |    |
|    | History, Standards and Administration                 |          |    |
| 2. | Network Model                                         | 04Hours  | 6% |

|     | Protocol Layering, TCP/IP Protocol Suites, The OSI Model     |          |     |
|-----|--------------------------------------------------------------|----------|-----|
| 3.  | Signals                                                      | 04 Hours | 6%  |
|     | Data and Signals, Periodic Analog Signal, Digital Signal,    |          |     |
|     | Transmission Impairment, Data Rate limits, Performance       |          |     |
| 4.  | Digital and Analog Transmission                              | 09 Hours | 15% |
|     | Transmission Modes, Digital to Digital Conversion, Analog    |          |     |
|     | to Digital Conversion, Digital to Analog Conversion,         |          |     |
|     | Analog to Analog Conversion                                  |          |     |
| 5.  | Multiplexing                                                 | 06 Hours | 10% |
|     | Frequency division Multiplexing, Wave length division        |          |     |
|     | Multiplexing, Time division Multiplexing, Multiplexing       |          |     |
|     | applications, Spread Spectrum                                |          |     |
| 6.  | Data Transmission                                            | 02 Hours | 3%  |
|     | Guided Media, Unguided Media,                                |          |     |
| 7.  | <b>Error Correction and Detection</b>                        | 05 Hours | 8%  |
|     | Types of Errors, Redundancy, Detection versus correction,    |          |     |
|     | Block Coding, Cycle Coding, Checksum                         |          |     |
| 8.  | Data Link Control                                            | 04 Hours | 6%  |
|     | DLC Services, Data Link Layer Protocol, HDLC, Point-to-      |          |     |
|     | point Protocol                                               |          |     |
| 9.  | Media Access Control                                         | 06 Hours | 10% |
|     | Random Access, Controlled Access, Channelization             |          |     |
| 10. | Switching                                                    | 01 Hours | 1%  |
|     | Circuit Switching, Packet Switching                          |          |     |
| 11. | Wired and Wireless LAN                                       | 09Hours  | 15% |
|     | Ethernet Protocol, Standard Ethernet, Fast Ethernet, Gigabit |          |     |
|     | Ethernet, Wireless characteristics and access control, IEEE  |          |     |
|     | 802.11 project.                                              |          |     |
| 12  | Network Routing                                              | 06 Hours | 10% |
|     | Unicast Routing, Routing Algorithms, Unicast Routing         |          |     |
|     | Protocols: IS,RIP,OSPF                                       |          |     |

© CHARUSAT 2020 Page **31** of **170** 

### **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Understand and identify different physical layer transmission fundamentals such   |
|-----|-----------------------------------------------------------------------------------|
|     | as types of signals, transmission, multiplexing, types of medium and modulation.  |
| CO2 | Evaluate existing layer-2 networking standards and implementations.               |
| CO3 | Evaluate key networking protocols, and their hierarchical relationship in the     |
|     | context of a conceptual model, such as the OSI and TCP/IP framework.              |
| CO4 | Understand existing different medium access protocols and evaluate for adoption   |
|     | for future networking.                                                            |
| CO5 | Understand and differentiate functionality of existing network routing protocols. |
| CO6 | Measure different network parameter such as Throughput & different types of       |
|     | delays.                                                                           |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   | 1   | -   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | -    |
| CO2 | 1   | 2   | 1   | 1   | 2   | -   | -   | -   | -   | -    | -    | 2    | 1    | 1    |
| CO3 | 3   | 2   | 2   | 1   | 2   | -   | -   | -   | -   | 1    | -    | 2    | 1    | 1    |
| CO4 | 2   | 3   | 1   | 1   | 1   | -   | -   | -   | -   | 2    | -    | 2    | -    | -    |
| CO5 | 3   | 2   | 3   | 1   | 3   | -   | -   | -   | 1   | 1    | -    | 3    | 1    | 1    |
| CO6 | 3   | 3   | 3   | 2   | 3   | -   | -   | -   | 2   | 2    | -    | 3    | 3    | 2    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

# **Recommended Study Material:**

### **\*** Text book:

1. Data communication & Networking, BahrouzForouzan, McGraw-Hill

### **Reference book:**

1. Data and Computer Communications, William Stallings, Prentice Hall

2. Computer Network, Andrew S. Tanenbaum, Fourth Edition, Prentice Hall

# **❖** Web material:

- 1. www.wikipedia.org
- 2. http://www.webopedia.com

# **Software:**

- 1. Wireshark
- 2. Cisco Packet Tracer

© CHARUSAT 2020 Page **33** of **170** 

### **CE244: SOFTWARE GROUP PROJECT-I**

### **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 0      | 4         | -        | 4     | 2      |
| Marks                  | 0      | 100       | -        | 100   | _      |

### **Pre-requisite courses:**

• Programming Language, Software Engineering.

### **Outline of the Course:**

- Student at the beginning of a semester may be advised by his/her supervisor (s) for recommended courses.
- Students will work together in a team (at most three) with any programming language.
- Students are required to get approval of project definition from the department.
- After approval of project definition students are required to report their project work on weekly basis to the respective internal guide.
- Project will be evaluated at least once per week in laboratory Hours during the semester and final submission will be taken at the end of the semester as a part of continuous evaluation.
- Project work should include whole SDLC of development of software / hardware system as a solution of particular problem by applying principles of Software Engineering.
- Students have to submit project with following listed documents at the time of final submission.
  - a. Final Project Report
  - b. Project Setup file with Source code
  - c. Project Presentation (PPT)
- A student has to produce some useful outcome by conducting experiments or project work.

Total hours (Theory): 00

Total hours (Lab): 30

© CHARUSAT 2020 Page **34** of **170** 

Total hours: 30

### **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Create enhanced employment by moulding the students with higher technical    |  |  |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|     | skill.                                                                       |  |  |  |  |  |  |  |  |  |  |
| CO2 | Promote creative thinking, to provide hands on actual technology.            |  |  |  |  |  |  |  |  |  |  |
| CO3 | Handle software project and get use to software development processes.       |  |  |  |  |  |  |  |  |  |  |
| CO4 | Correlate knowledge of different subjects and apply theoretical knowledge to |  |  |  |  |  |  |  |  |  |  |
|     | implement project for identified problem.                                    |  |  |  |  |  |  |  |  |  |  |
| CO5 | Write technical report and deliver presentation by applying different        |  |  |  |  |  |  |  |  |  |  |
|     | visualization tools and evaluation metrics.                                  |  |  |  |  |  |  |  |  |  |  |
| CO6 | Improve communication and presentation skill.                                |  |  |  |  |  |  |  |  |  |  |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | -   | 3   | -   | -   | 1   | -   | 1   | -   | 1   | -    | 1    | i    | 1    | -    |
| CO2 | -   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO3 | -   | -   | -   | -   | 2   | -   | -   | -   | 2   | -    | -    | -    | -    | -    |
| CO4 | 3   | -   | -   | -   | 1   | -   | 1   | -   | 1   | -    | -    | i    | 3    | -    |
| CO5 | -   | -   | 1   | -   | 3   | 2   | -   | -   | -   | 3    | -    | -    | -    | 2    |
| CO6 | -   | -   | -   | -   | -   | -   | 3   | 1   | -   | 3    | -    | 2    | -    | 3    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

# **Recommended Study Material:**

### **Reference book:**

1. Books, Magazines ,Journals & online course platforms of related topics

### **\*** Web material:

- 1. www.ieeexplore.ieee.org
- 2. www.sciencedirect.com
- 3. www.elsevier.com

- 4. https://www.udemy.com/
- 5. https://www.udacity.com/
- 6. https://nptel.ac.in/course.html
- 7. https://www.futurelearn.com/

### **Software:**

- 1. ASP.NET
- 2. PYTHON/MATLAB
- 3. PHP
- 4. ANDROID/IOS

© CHARUSAT 2020 Page **36** of **170** 

B. Tech. (Computer Engineering) Programme

SYLLABI (Semester - 4)

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

© CHARUSAT 2020 Page **37** of **170** 

## **CE245: DATA STRUCTURE AND ALGORITHMS**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   | -      |

## **Pre-requisite courses:**

• Programming Language

## **Outline of the Course:**

| Sr. | Title of the unit               | Minimum number |
|-----|---------------------------------|----------------|
| No. |                                 | of hours       |
| 1.  | Introduction to Data Structure. | 04             |
| 2.  | Linear Data Structure           | 12             |
| 3.  | Non Linear Data Structure       | 16             |
| 4.  | Sorting                         | 10             |
| 5.  | Searching                       | 01             |
| 6.  | Dictionaries                    | 02             |
|     | Total hours (Theory):           | 45             |
|     | Total hours (Lab):              | 30             |
|     | Total hours:                    | 75             |

## **Detailed Syllabus:**

| 1. | Introduction                                                | 04 Hours | 08% |
|----|-------------------------------------------------------------|----------|-----|
|    | Introduction to data structure (Types of data structure),   |          |     |
|    | Introduction to algorithms. Algorithm Analysis and Big O    |          |     |
|    | notation, Memory representation of Array: Row Order and     |          |     |
|    | Column Order, Abstract Data Types(ADT)                      |          |     |
| 2. | Linear Data Structure                                       | 12 Hours | 27% |
|    | Stack: Operations: push, pop, peep, change, Applications of |          |     |
|    | Stack: Recursion: Recursive Function Tracing, Principles of |          |     |
|    | recursion, Tail recursion, Removal of Recursion, Tower of   |          |     |

© CHARUSAT 2020 Page **38** of **170** 

| Evaluation: Prefix and Postfix expression, Queue Simple Queue: Insert and Delete operation, Circular Queue: Insert and Delete operation, Concepts of: Priority Queue, Double-ended Queue, Applications of Queue, Linked List: Memory Representation of LL, Singly Linked List, Doubly Linked List ,Circular Linked List ,Applications of Linked List  3. Non Linear Data Structure  16 Hours  36%  Tree: Tree Concepts, Tree Traversal Techniques: Pre-order, Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting  Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  Ol Hours  02%  6. Dictionaries  02 Hours  04% |    | Hanoi, Conversion: Infix to Postfix, Infix to Prefix.        |          |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------|----------|-----|
| Queue: Insert and Delete operation, Concepts of: Priority Queue, Double-ended Queue, Applications of Queue, Linked List: Memory Representation of LL, Singly Linked List, Doubly Linked List ,Circular Linked List ,Applications of Linked List  3. Non Linear Data Structure  Tree: Tree Concepts, Tree Traversal Techniques: Pre-order, Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting  Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  O1 Hours  02%                                                                                                                                                     |    | Evaluation: Prefix and Postfix expression,                   |          |     |
| Queue, Double-ended Queue, Applications of Queue, Linked List: Memory Representation of LL, Singly Linked List, Doubly Linked List ,Circular Linked List ,Applications of Linked List  3. Non Linear Data Structure  16 Hours  36%  Tree: Tree Concepts, Tree Traversal Techniques: Pre-order, Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting  Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  01 Hours 02%                                                                                                                                                                                                 |    | Queue Simple Queue: Insert and Delete operation, Circular    |          |     |
| Linked List: Memory Representation of LL, Singly Linked List, Doubly Linked List ,Circular Linked List ,Applications of Linked List  3. Non Linear Data Structure  16 Hours  36%  Tree: Tree Concepts, Tree Traversal Techniques: Pre-order, Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting Sorting ( concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  01 Hours 02%                                                                                                                                                                                                                                                   |    | Queue: Insert and Delete operation, Concepts of: Priority    |          |     |
| List, Doubly Linked List ,Circular Linked List ,Applications of Linked List  3. Non Linear Data Structure  16 Hours  36%  Tree: Tree Concepts, Tree Traversal Techniques: Pre-order, Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree,  Heaps: priority queues and Binary Heaps,  Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting  Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  01 Hours  02%                                                                                                                                                                                                                                                                                                        |    | Queue, Double-ended Queue, Applications of Queue,            |          |     |
| of Linked List  3. Non Linear Data Structure  16 Hours  36%  Tree: Tree Concepts, Tree Traversal Techniques: Pre-order, Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  01 Hours 02%                                                                                                                                                                                                                                                                                                                                                                         |    | Linked List: Memory Representation of LL, Singly Linked      |          |     |
| 3. Non Linear Data Structure  Tree: Tree Concepts, Tree Traversal Techniques: Pre-order, Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting Sorting ( concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                    |    | List, Doubly Linked List ,Circular Linked List ,Applications |          |     |
| Tree: Tree Concepts, Tree Traversal Techniques: Pre-order, Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                   |    | of Linked List                                               |          |     |
| Post-order and In-order (Recursive and Iterative), Binary Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching O1 Hours O2% Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3. | Non Linear Data Structure                                    | 16 Hours | 36% |
| Search Tree: Iterative and Recursive, Balanced Trees (AVL Trees, Applications of Tree,  Heaps: priority queues and Binary Heaps,  Graph: Graph concepts, Memory Representation of Graph,  BFS and DFS, Applications of Graph  4. Sorting  Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort,  Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  O1 Hours  O2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | Tree: Tree Concepts, Tree Traversal Techniques: Pre-order,   |          |     |
| Trees, Applications of Tree, Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | Post-order and In-order (Recursive and Iterative), Binary    |          |     |
| Heaps: priority queues and Binary Heaps, Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | Search Tree: Iterative and Recursive, Balanced Trees (AVL    |          |     |
| Graph: Graph concepts, Memory Representation of Graph, BFS and DFS, Applications of Graph  4. Sorting Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Trees, Applications of Tree,                                 |          |     |
| BFS and DFS, Applications of Graph  4. Sorting  Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | Heaps: priority queues and Binary Heaps,                     |          |     |
| 4. Sorting Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | Graph: Graph concepts, Memory Representation of Graph,       |          |     |
| Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort, Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | BFS and DFS, Applications of Graph                           |          |     |
| Radix Sort, Insertion Sort, Heap Sort, Quick Sort)  5. Searching  Sequential Search, Binary Search  01 Hours  02%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. | Sorting                                                      | 10 Hours | 23% |
| 5. Searching 01 Hours 02% Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | Sorting (concepts, Selection Sort, Bubble Sort, Merge Sort,  |          |     |
| Sequential Search, Binary Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | Radix Sort, Insertion Sort, Heap Sort, Quick Sort)           |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. | Searching                                                    | 01 Hours | 02% |
| 6. Dictionaries 02 Hours 04%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | Sequential Search, Binary Search                             |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6. | Dictionaries                                                 | 02 Hours | 04% |
| Hashing, Hashing Functions, Collision-Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | Hashing, Hashing Functions, Collision-Resolution             |          |     |
| Techniques, Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | Techniques, Applications                                     |          |     |

## **Course Outcome (COs):**

At the end of the course, the students will be able to:

| CO1 | Understand and Implement Algorithms and core Data Structures such as stack,    |
|-----|--------------------------------------------------------------------------------|
|     | queue, hash table, priority queue, binary search tree and graph in programming |
|     | language.                                                                      |
| CO2 | Analyse data structures in storage, retrieval and computation of ordered or    |
|     | unordered data.                                                                |
| CO3 | Compare alternative implementations of data structures with respect to demand  |

© CHARUSAT 2020 Page **39** of **170** 

|     | and performance.                                                              |
|-----|-------------------------------------------------------------------------------|
| CO4 | Describe and evaluate the properties, operations, applications, strengths and |
|     | weaknesses of different data structures.                                      |
| CO5 | Apply and select the most suitable data structures to solve programming       |
|     | challenges.                                                                   |
| CO6 | Discover advantages and disadvantages of specific algorithms.                 |

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | -   | 2   | -   | -   | -   | -   | -   | -   | =    | =    | -    | 3    | -    |
| CO2 | -   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO3 | -   | 3   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO4 | ı   | 1   | -   | 1   | 2   | =   | -   | -   | -   | =    | ı    | ı    | 2    | -    |
| CO5 | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 2    | 3    | -    |
| CO6 | 2   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

#### **Recommended Study Material:**

#### **\*** Text book:

- 1. An Introduction to Data Structures with Applications, Jean-Paul Tremblay, Paul G. Sorenson, McGraw-Hill.
- 2. Data structure with C, Lipschutz, TMH
- 3. Introduction to Algorithms: Cormen, Leiserson, Rivest and Stein: Prentice Hall of India
- 4. Data Structures and Algorithms: Aho, Hopcroft and Ullmann: Addison Wesley.

#### **\*** Reference book:

1. Classic Data structures, D.Samanta, Prentice-Hall International.0

© CHARUSAT 2020

- 2. Data Structures using C & C++, Ten Baum, Prentice-Hall International.
- 3. Data Structures: A Pseudo-code approach with C, Gilberg & Forouzan, Thomson Learning.
- 4. Fundamentals of Data Structures in C++, Ellis Horowitz, Sartaj Sahni, Dinesh Mehta, W. H. Freeman.
- 5. "A Practical Introduction to Data Structures and Algorithm Analysis" by Clifford A. Shaffer
- 6. Data Structures and Algorithm in Java: Goodrich and Tamassia: John Wiley and Sons.

#### **\*** Web material:

- 1. http://www.leda-tutorial.org/en/official/ch02s02s03.html
- 2. http://www.leda-tutorial.org/en/official/ch02s02s03.html
- 3. http://www.softpanorama.org/Algorithms/sorting.shtml

© CHARUSAT 2020 Page **41** of **170** 

# **CE246: Database Management System**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 4      | 4         | -        | 8     | 6      |
| Marks           | 100    | 100       | -        | 200   |        |

## **Pre-requisite courses:**

• Data Structure

## **Outline of the Course:**

| Sr. | Title of the unit                     | Minimum number |
|-----|---------------------------------------|----------------|
| No. |                                       | of hours       |
| 1.  | Introductory concepts of DBMS         | 04             |
| 2.  | Relational Model                      | 06             |
| 3.  | Entity-Relationship model             | 07             |
| 4.  | Formal Relational Query Languages     | 06             |
| 5.  | Relational Database Design            | 09             |
| 6.  | Transaction & Recovery Management     | 07             |
| 7.  | Advanced Transaction Processing       | 06             |
| 8.  | Database Security                     | 06             |
| 9.  | Indexing and Hashing                  | 07             |
| 10. | Query Processing & Query Optimization | 02             |
|     | Total hours (Theory):                 | 60             |
|     | Total hours (Lab):                    | 60             |
|     | Total hours:                          | 120            |

## **Detailed Syllabus:**

| 1. | Introductory concepts of DBMS                          | 04 Hours | 06% |
|----|--------------------------------------------------------|----------|-----|
|    | Introduction and applications of DBMS, Purpose of      |          |     |
|    | database, Data Independence, Database System           |          |     |
|    | architecture- levels, Mappings, Database users and DBA |          |     |
| 2. | Relational Model                                       | 06 Hours | 10% |
|    | Structure of Relational Databases, Database Schema,    |          |     |

|    | Schema Diagram, Domains , Relations, Relational Query         |          |     |
|----|---------------------------------------------------------------|----------|-----|
|    | Languages, Relational Operations                              |          |     |
| 3. | Entity-Relationship model                                     | 07 Hours | 12% |
|    | Basic concepts, Design process, Constraints, Keys, Design     |          |     |
|    | issues, E-R diagrams, Weak Entity Sets, Extended E-R          |          |     |
|    | features- Generalization, Specialization, Aggregation,        |          |     |
|    | Reduction to E-R database schema                              |          |     |
| 4. | Formal Relational Query Languages                             | 06 Hours | 10% |
|    | The relational Algebra, The Tuple Relational Calculus,        |          |     |
|    | The Domain Relational Calculus                                |          |     |
| 5. | Relational Database design                                    | 09 Hours | 15% |
|    | Functional Dependency–definition, Trivial and Non-Trivial     |          |     |
|    | FD, Closure of FD set, Closure of attributes, Irreducible     |          |     |
|    | set of FD, Normalization – 1NF, 2NF,3NF, Decomposition        |          |     |
|    | using FD- Dependency Preservation                             |          |     |
| 6. | Transaction & Recovery Management                             | 07 Hours | 12% |
|    | Transaction concepts, Properties of Transactions,             |          |     |
|    | Serializability of transactions, Testing for Serializability, |          |     |
|    | System recovery, Two- Phase Commit protocol, Recovery         |          |     |
|    | and Atomicity, Log-based recovery, Concurrent                 |          |     |
|    | executions of transactions and related problems, Locking      |          |     |
|    | mechanism, Solution to Concurrency Related Problems,          |          |     |
|    | Deadlock, Two-phase locking protocol, Intent locking          |          |     |
| 7. | Advanced Transaction Processing                               | 06 Hours | 10% |
|    | Transaction-Processing Monitors, Transactional                |          |     |
|    | Workflows, Main-Memory Databases, Real-Time                   |          |     |
|    | Transaction Systems, Long-Duration Transactions               |          |     |
| 8. | Database Security                                             | 06 Hours | 10% |
|    | Views - What are views for?, View retrievals, View            |          |     |
|    | updates, Snapshots (a digression), Materialized view,         |          |     |
|    | Security - Security and Authentication, authorization in      |          |     |
|    | SQL, Data encryption, Missing Information - An overview       |          |     |
|    | of the 3VL approach                                           |          |     |

© CHARUSAT 2020 Page **43** of **170** 

| 9.  | Indexing and Hashing                                      | 07 Hours | 12% |
|-----|-----------------------------------------------------------|----------|-----|
|     | Basic Concepts, Ordered Indices, B+-Tree Index Files, B+- |          |     |
|     | Tree Extensions, Multiple-Key Access, Static Hashing,     |          |     |
|     | Dynamic Hashing, Comparison of Ordered Indexing and       |          |     |
|     | Hashing, Bitmap Indices, Index Definition in SQL          |          |     |
| 10. | Query Processing & Query Optimization                     | 02 Hours | 03% |
|     | Overview, Measures of Query Cost, Selection Operation,    |          |     |
|     | Sorting, Join, Evaluation of Expressions, Transformation  |          |     |
|     | of relational Expressions, Estimating Statistics of       |          |     |
|     | expression results, Query Evaluation plans                |          |     |

## **Course Outcomes (COs):**

At the end of the course, students will be able to

| CO1 | Apply the concepts of engineering i.e collecting data, organize the data in the   |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|     | systematic form, arrange the data in a computational way and applying             |  |  |  |  |  |  |  |
|     | mathematics formation.                                                            |  |  |  |  |  |  |  |
| CO2 | Analyse how data are stored and maintained using data models. Ready to            |  |  |  |  |  |  |  |
|     | assimilate the concept of data abstraction and design queries using SQL. Identify |  |  |  |  |  |  |  |
|     | how data is represented in the relational model and create relations using SQL    |  |  |  |  |  |  |  |
|     | language                                                                          |  |  |  |  |  |  |  |
| CO3 | Identify and evaluate the constructs in the E-R model and issues involved in      |  |  |  |  |  |  |  |
|     | developing an E-R diagram. Convert an E-R diagram into a relational database      |  |  |  |  |  |  |  |
|     | schema. Declare and enforce integrity constraints on database using a state-of-   |  |  |  |  |  |  |  |
|     | art RDBMS.                                                                        |  |  |  |  |  |  |  |
| CO4 | Produce aggregate operators to write SQL queries which are not expressible in     |  |  |  |  |  |  |  |
|     | relational algebra. "More mathematical" notation may apply and also used in       |  |  |  |  |  |  |  |
|     | research and other venues. Combining these concepts allows production of          |  |  |  |  |  |  |  |
|     | sophisticated queries.                                                            |  |  |  |  |  |  |  |
| CO5 | Decompose un-normalized tables into normalized compliant tables. Design and       |  |  |  |  |  |  |  |
|     | implement a normalize database schema for a given problem-domain.                 |  |  |  |  |  |  |  |
| CO6 | Compare transactions and their properties with (ACID) and without ACID.           |  |  |  |  |  |  |  |
|     | Apply locking protocol to ensure isolation. Develop logging technique to ensure   |  |  |  |  |  |  |  |
|     | atomicity and durability                                                          |  |  |  |  |  |  |  |

© CHARUSAT 2020 Page **44** of **170** 

| CO7 | Design a logical view which can be used for analytical tasks. Develop practical |
|-----|---------------------------------------------------------------------------------|
|     | experience of the design and implement scalable, secure databases.              |
| CO8 | Produce strategies to minimise risks of security breaches in a range of network |
|     | environments and data storage systems. Compute retrieval time and concluding    |
|     | with suitable indexing technique                                                |
| CO9 | Compare and evaluate query execution plan.                                      |

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | 2   | 2   | 1   | 2   | 1   | 1   | -   | -    | -    | 1    | 2    | -    |
| CO2 | 3   | 3   | 3   | 2   | 3   | 1   | 2   | -   | -   | -    | -    | 3    | 2    | 1    |
| CO3 | 3   | 3   | 3   | 3   | 2   | 2   | 1   | 3   | 2   | 1    | -    | 2    | 3    | 2    |
| CO4 | 3   | 3   | 1   | 3   | 1   | 1   | -   | 2   | 2   | -    | -    | 2    | 2    | 2    |
| CO5 | 2   | 2   | 3   | 2   | 3   | 1   | 2   | 2   | 1   | -    | -    | 3    | 1    | 1    |
| CO6 | 3   | 3   | 2   | 1   | -   | 2   | -   | -   | 1   | -    | -    | 2    | -    | 1    |
| CO7 | 3   | 3   | 3   | 2   | 3   | 1   | -   | 2   | 2   | 1    | -    | 3    | 2    | 2    |
| CO8 | 2   | 3   | 2   | 2   | 2   | 2   | 2   | 3   | 1   | -    | -    | 3    | 3    | 1    |
| CO9 | 2   | 2   | 3   | 1   | 3   | -   | -   | 1   | 1   | -    | -    | 3    | 3    | 1    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

#### **Recommended Study Material:**

#### **\*** Text book:

- 1. Database System Concepts, Abraham Silberschatz, Henry F. Korth& S. Sudarshan, McGraw Hill.
- 2. An introduction to Database Systems, C J Date, Addition-Wesley

#### **Reference book:**

1. "Fundamentals of Database Systems", R. Elmasri and S.B. Navathe, the Benjamin / Cumming Pub. Co

© CHARUSAT 2020 Page **45** of **170** 

- SQL,PL/SQL the Programming Language of oracle, Ivan Bayross, BPB Publications
- 3. Oracle: The Complete Reference, George Koch, Kevin Loney, TMH /oracle press

#### **❖** Web material:

- 1. http://www.sql.org
- 2. http://www.w3schools.com
- 3. http://www.sqlcourse.com

#### **Software:**

- 1. Oracle 10g
- 2. SQL Lite
- 3. Live SQL
- 4. Firebase
- 5. Squirrel SQL
- 6. Postgre SQL

© CHARUSAT 2020 Page **46** of **170** 

# **CE258: Microprocessor and Computer Organization**

# **Credits and Hours:**

| Teaching<br>Scheme | Theory | Practical | Tutorial | Total | Credit |
|--------------------|--------|-----------|----------|-------|--------|
| Hours/week         | 4      | 2         | 0        | 6     | 5      |
| Marks              | 100    | 50        | 0        | 100   |        |

## **Pre-requisite courses:**

Digital Electronics

## A. Outline of the course:

| Sr. | Title of the unit                      | Minimum number of |
|-----|----------------------------------------|-------------------|
| No. | 2 1110 02 1210 11111                   | hours             |
| 1   | Introduction to digital logic Circuit  | 03                |
| 2   | Register Transfer and Microoperations  | 09                |
| 3   | Basic Computer Organization and Design | 08                |
| 4   | Central Processing Unit                | 05                |
| 5   | Pipeline and Vector Processing         | 05                |
| 6   | Computer Arithmetic                    | 06                |
| 7   | Memory Organization                    | 06                |
| 8   | 8086,80186, 80286 Processor            | 06                |
| 9   | 80386 Processors                       | 10                |
| 10  | Current Era of Microprocessors         | 02                |
|     | Total hours (Theory).                  | 60                |
|     | Practical Hours:                       | 20                |
|     | Total hours:                           | 80                |

•

© CHARUSAT 2020 Page **47** of **170** 

# **B. Detailed Syllabus:**

| 1. | Introduction to digital logic Circuit                             | 03 Hours | 07% |
|----|-------------------------------------------------------------------|----------|-----|
|    | Digital Computers, Logic Gates, Combinational Circuits (Half      |          |     |
|    | adder, Full Adder), Flip-Flops(SR, D, JK, T, Edge-Triggered)      |          |     |
| 2. | Register Transfer and Microoperations                             | 09 Hours | 18% |
|    | Register Transfer Language, Register Transfer, Bus and Memory     |          |     |
|    | Transfers, Arithmetic Microoperation, Logic Microoperations,      |          | 1   |
|    | Shift Microoperation, Arithmetic Logic Shift Unit.                |          |     |
| 3. | Basic Computer Organization and Design                            | 08 Hours | 18% |
|    | Instruction Codes, Computer Registers, Computer Instructions,     |          |     |
|    | Timing and Control, Instruction Cycle, Memory Reference,          |          | 1   |
|    | Instructions, Input-Output and Interrupt, Complete Computer       |          | 1   |
|    | Description, Design of Basic Computer, Design of Accumulator      |          | 1   |
|    | Logic.                                                            |          |     |
| 4. | Central Processing Unit                                           | 05 Hours | 17% |
|    | Introduction, General Register Organization, Stack Organization,  |          |     |
|    | Instruction Formats, Addressing Modes.                            |          | 1   |
| 5. | Pipeline and Vector Processing                                    | 05 Hours | 09% |
|    | Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction |          |     |
|    | Pipeline, RISC Pipeline, Vector Processing, Array Processors.     |          | 1   |
| 6. | Computer Arithmetic                                               | 06 Hours | 18% |
|    | Introduction: Binary, Octal, Decimal, Hexadecimal                 |          |     |
|    | representation, Integer Numbers: Sign-Magnitude,1's               |          | 1   |
|    | complement,2's complement, Addition and Subtraction,              |          |     |
|    | Multiplication Algorithm.                                         |          |     |
| 7. | Memory Organization                                               | 06 Hours | 13% |
|    | Memory Hierarchy, Main Memory, Auxiliary Memory,                  |          |     |
|    | Associative Memory, Cache Memory, Virtual Memory.                 |          | ı   |
| 8. | 8086, 80186, 80286 Processor                                      | 06 Hours | 13% |
|    | Architectural differences of 8086, 80186 and 80286 Processors.    |          |     |
| 9. | 80386 Processors                                                  | 10 Hours | 29% |

© CHARUSAT 2020 Page **48** of **170** 

|     | System Architecture, Registers, Memory management: Segment    |          |    |
|-----|---------------------------------------------------------------|----------|----|
|     | Translation, Page Translation, Combining Segment and Page     |          |    |
|     | Translation.                                                  |          |    |
| 10. | Current Era of Microprocessors                                | 02 Hours | 4% |
|     | Comparison of AMD and Intel Architecture, Features of current |          |    |
|     | era of AMD and Intel processors; Tick-Tock: manufacturing     |          |    |
|     | pattern of Intel.                                             |          |    |

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Recognize elements of digital logic circuit. Moving from design of single bit function |
|-----|----------------------------------------------------------------------------------------|
|     | to multibit function. (Flip flop, Logic Gates, Combinational Circuit). Design circuit  |
|     | for fixed function arithmetic function. Understand the notation of writing register    |
|     | transfer language.                                                                     |
| CO2 | Design and examine the different Arithmetic, Logic and Shift circuit & Design          |
|     | control unit of Arithmetic, Logic and Shift Circuit.                                   |
| CO3 | Conceptualize and evaluate various parallelism employed in microprocessor.             |
| CO4 | Demonstrate and evaluate computer arithmetic operations on integer and real            |
|     | numbers using hardwired algorithm.                                                     |
| CO5 | Understand and differentiate n-way set associative memory.                             |
| CO6 | Understand segment and page translation currently employed in microprocessor.          |
|     | Understand basics of architecture of current era of microprocessors.                   |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | РО | РО | РО | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|------|------|
|     |     |     |     |     |     |     |     |     |     | 10 | 11 | 12 |      |      |
| CO1 | 1   | -   | -   | -   | -   | -   | -   | -   | -   | -  | -  | -  | -    | -    |
| CO2 | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1   | -  | -  | 1  | 2    | -    |
| CO3 | 3   | 3   | 3   | 1   | -   | -   | -   | 1   | 1   | -  | -  | -  | 2    | -    |
| CO4 | 2   | 2   | 3   | -   | -   | -   | -   | 1   | 1   | -  | -  | -  | 2    | -    |
| CO5 | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -  | -  | -  | 2    | -    |
| CO6 | 3   | 3   | 3   | 3   | -   | -   | -   | -   | -   | -  | -  | -  | 3    | -    |

© CHARUSAT 2020 Page **49** of **170** 

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

#### **Recommended Study Material:**

#### **Text book:**

- 1. Computer System Architecture, Morris Mano (3rd Edition) Prentice Hall.
- 2. 80386 Programmer's Reference Manual from MIT.
- 3. Microprocessors and Interfacing: Experiments Manual: Programming and Hardware by Douglas V. Hall.

#### **\*** Reference book:

- 1. William Stalling, Computer Organization & Architecture-Designing for Performance, Pearson Prentice Hall (8th Edition).
- 2. A.S. Tananbum, Structured Computer Organization, Pearson Publisher.
- 3. The Essentials of Computer Organization and Architecture Linda Null, Julia Lobur.
- 4. John P Hayes, Computer Architecture & Organization, McGraw-Hill.
- 5. Computer Architecture: Pipelined and Parallel Processor Design Michael J. Flynn (4th edition).

#### **Web Materials:**

- 1. www.nptel.iitm.ac.in
- 2. https://css.csail.mit.edu/6.858/2014/readings/i386.pdf (80386 Programmer Reference Material)

#### **Simulators:**

1. 8085 &8086 Simulator.

© CHARUSAT 2020 Page **50** of **170** 

## **CE259: PROGRAMMING IN PYTHON**

## **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 0      | 2         | 0        | 2     | 1      |
| Marks                  | 0      | 50        | 0        | 50    | _      |

## **Pre-requisite courses:**

- High level language (C/C++/Java)
- Web Programming

## **Outline of the Course:**

| Sr. | Title of the unit                                        | Minimum number |
|-----|----------------------------------------------------------|----------------|
| No. |                                                          | of hours       |
| 1   | Basics of Python                                         | 02             |
| 2   | Data Structures: Lists, Tuples, Dictionaries and Strings | 04             |
| 3   | Control structures and Function                          | 04             |
| 4   | Modules and Scoping Rules                                | 02             |
| 5   | Exceptions Handling                                      | 04             |
| 6   | Magic Methods, Properties, and Iterators                 | 04             |
| 7   | Object Oriented Programming                              | 06             |
| 8   | Regular Expression and File Handling                     | 04             |
|     | Total hours (Theory):                                    | 0              |
|     | Total hours (Lab):                                       | 30             |
|     | Total hours :                                            | 30             |

## **Detailed Syllabus:**

| 1. | Basics of Python                                                   | 02 Hours | 07 % |
|----|--------------------------------------------------------------------|----------|------|
|    | Using the Python Interpreter, Variables, Identifiers and Keywords, |          |      |
|    | Numbers and Expressions                                            |          |      |
| 2. | Data Structures: List, Tuples, Dictionaries and Strings            | 04 Hours | 13 % |
|    | Common Sequence Operations: Indexing, Slicing, Adding              |          |      |
|    | Sequences, Multiplication, Membership, Length, Minimum, and        |          |      |
|    | Maximum, Using Lists as Stacks, Using Lists as Queues, List        |          |      |
|    | Comprehensions, Nested List Comprehensions, the del statement,     |          |      |

© CHARUSAT 2020 Page **51** of **170** 

|    | Tuples and Sequences, Sets, Dictionaries, Comparing Sequences and      |          |     |
|----|------------------------------------------------------------------------|----------|-----|
|    | Other Types, Basic String Operations                                   |          |     |
| 3. | Control Structures and Functions                                       | 04 Hours | 13% |
|    | Conditional Branching: if Statements, break and continue               |          |     |
|    | Statements, and else Clauses on Loops, pass Statements                 |          |     |
|    | Loops: while Loops, for Loops, Defining Functions, More on             |          |     |
|    | Defining Functions: Default Argument Values, Keyword                   |          |     |
|    | Arguments, Arbitrary Argument Lists, Unpacking Argument Lists,         |          |     |
|    | Lambda Expressions, Documentation Strings, Function Annotations        |          |     |
| 4. | Modules and Scoping Rules                                              | 02 Hours | 07% |
|    | Executing modules as scripts, The Module Search Path, "Compiled"       |          |     |
|    | Python files, Packages: Importing * From a Package, Intra-package      |          |     |
|    | References, Packages in Multiple Directories                           |          |     |
| 5. | Exception Handling                                                     | 04 Hours | 13% |
|    | Syntax Errors, Exceptions, Handling Exceptions, Raising                |          |     |
|    | Exceptions, User-defined Exceptions, Defining Clean-up Actions,        |          |     |
|    | Predefined Clean-up Actions                                            |          |     |
| 6. | Magic Methods, Properties and Iterators                                | 04 Hours | 13% |
|    | Constructors, Item Access: The Basic Sequence and Mapping              |          |     |
|    | Protocol, Properties: The property Function, Static Methods and        |          |     |
|    | Class Methods,getattr,setattr, and Friends, Iterators,                 |          |     |
|    | Generators, Generator Expressions                                      |          |     |
| 7. | Object Oriented Programming                                            | 06 Hours | 20% |
|    | Python Scopes and Namespaces, Class Definition, Class Objects,         |          |     |
|    | Instance Objects, Method Objects, Class and Instance Variables,        |          |     |
|    | Inheritance, Multiple Inheritance, Private Variables, Polymorphism,    |          |     |
|    | Using Properties to Control Attribute Access,                          |          |     |
|    | Creating Complete Fully Integrated Data Types                          |          |     |
| 8. | Regular Expression and File Handling                                   | 04 Hours | 14% |
|    | What is a regular expression?, Regular expressions with special        |          |     |
|    | characters, Regular expressions and raw strings, Extracting matched    |          |     |
|    | text from strings, Substituting text with regular expressions, Writing |          |     |
|    |                                                                        |          |     |

© CHARUSAT 2020 Page **52** of **170** 

| over File Contents, Writing and Parsing XML Files, Random Access |  |
|------------------------------------------------------------------|--|
| Binary Files                                                     |  |

#### **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Interpret the fundamental python syntax, semantics and fluent in the use of    |
|-----|--------------------------------------------------------------------------------|
|     | python control flow statements. Express proficiency in the handling of strings |
|     | and functions.                                                                 |
| CO2 | Determine the methods to create and manipulate python programs by utilizing    |
|     | the data structures like lists, dictionaries, tuples and sets.                 |
| CO3 | Identify the commonly used operations involving file systems and regular       |
|     | expressions.                                                                   |
| CO4 | Articulate the Object-Oriented Programming concepts such as encapsulation,     |
|     | inheritance and polymorphism as used in Python along with magic methods.       |

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 2   | 1   | 1   | 3   | -   | -   | -   | -   | -    | -    | 1    | -    | 1    |
| CO2 | 3   | 3   | 2   | 1   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO3 | 2   | 2   | 1   | 1   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO4 | 3   | 2   | 2   | 2   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | 2    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

#### **\*** Text book:

- Magnus Lie Hetland, "Beginning Python From Novice to Professional", Third Edition, Apress, 2017
- 2. Nigel George, "Mastering Django: Core" Packt Publishing, 2016

© CHARUSAT 2020 Page **53** of **170** 

#### **\*** Reference book:

- David Beazley, Brian K. Jones, "Python Cookbook", 3rd edition, OREILLY,2016
- 2. Brett Slatkin, "Effective Python: 59 Specific Ways to Write Better Python", Novatec, 2016
- 3. Allen Downey, "Think Python: How to Think Like a Computer Scientist", Green Tea Press,2015
- 4. Mark Lutz "Learning Python", 4th Edition, O'REILLY, 2016
- Arun Ravindran, Aidas Bendoraitis, Samuel Dauzon, "Django: Web Development with Python", Packt Publishing, 2016

#### **\*** Web material:

- 1. https://www.python.org/
- 2. http://www.diveintopython3.net/
- 3. https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
- 4. https://www.fullstackpython.com/django.html

#### **Software:**

- 1. Python IDLE
- 2. Anaconda Python
- 3. PyCharm

© CHARUSAT 2020 Page **54** of **170** 

#### CE255: SOFTWARE GROUP PROJECT-II

#### **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 0      | 4         | -        | 4     | 2      |
| Marks                  | 0      | 100       | -        | 100   | _      |

#### **Pre-requisite courses:**

• Programming Language, Software Engineering.

#### **Outline of the Course:**

- Student at the beginning of a semester may be advised by his/her supervisor (s) for recommended courses.
- Students will work together in a team (at most three) with any programming language.
- Students are required to get approval of project definition from the department.
- After approval of project definition students are required to report their project work on weekly basis to the respective internal guide.
- Project will be evaluated at least once per week in laboratory Hours during the semester and final submission will be taken at the end of the semester as a part of continuous evaluation.
- Project work should include whole SDLC of development of software / hardware system as a solution of particular problem by applying principles of Software Engineering.
- Students have to submit project with following listed documents at the time of final submission.
  - d. Final Project Report
  - e. Project Setup file with Source code
  - f. Project Presentation (PPT)
- A student has to produce some useful outcome by conducting experiments or project work.

Total hours (Theory): 00

Total hours (Lab): 30

Total hours: 30

© CHARUSAT 2020 Page **55** of **170** 

#### **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Identify problems present in society by surveying variety of domains and          |
|-----|-----------------------------------------------------------------------------------|
|     | convert in project definition.                                                    |
| CO2 | Explore new ideas and techniques to solve it. Create, select and apply            |
|     | appropriate techniques, resources, modern engineering and IT tools to solve       |
|     | problem.                                                                          |
| CO3 | Correlate knowledge of different subjects and apply theoretical knowledge to      |
|     | implement project for identified problem.                                         |
| CO4 | Apply ethical principles and commit to responsibilities and norms of the project. |
| CO5 | Write technical report and deliver presentation by applying different             |
|     | visualization tools and evaluation metrics.                                       |
| CO6 | Apply engineering and management principles to achieve project goal.              |

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | -   | 3   | -   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO2 | -   | -   | 3   | -   | 1   | -   | -   | 1   | 1   | -    | -    | -    | 1    | -    |
| CO3 | 3   | -   | 1   | -   | 1   | -   | -   | 1   | 1   | -    | -    | -    | 3    | -    |
| CO4 | -   | -   | -   | -   | -   | -   | -   | 3   | 2   | -    | -    | -    | -    | -    |
| CO5 | -   | -   | 1   | -   | 3   | 2   | -   | -   | -   | 3    | -    | -    | -    | -    |
| CO6 | 3   | 2   | 2   | 1   | 2   | 1   | -   | -   | 2   | 3    | -    | 1    | -    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

#### **A** Reference book:

1. Books, Magazines ,Journals & online course platforms of related topics

#### **\*** Web material:

- 1. www.ieeexplore.ieee.org
- 2. www.sciencedirect.com
- 3. www.elsevier.com

- 4. https://www.udemy.com/
- 5. https://www.udacity.com/
- 6. https://nptel.ac.in/course.html
- 7. https://www.futurelearn.com/

#### **Software:**

- 1. ASP.NET
- 2. PYTHON/MATLAB
- 3. PHP
- 4. ANDROID/IOS

© CHARUSAT 2020 Page **57** of **170** 

B. Tech. (Computer Engineering) Programme

SYLLABI (Semester - 5)

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

© CHARUSAT 2020 Page **58** of **170** 

# CE341: MICROPROCESSOR ARCHITECTURES AND ASSEMBLY PROGRAMMING

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   | ·      |

## **Pre-requisite courses:**

- Digital Electronics
- Data Communication

## **Outline of the Course:**

| Sr. | Title of the unit                                      | Minimum number |
|-----|--------------------------------------------------------|----------------|
| No. |                                                        | of hours       |
| 1.  | The Processor: 8086                                    | 06             |
| 2.  | 8086 Instruction set and Assembler Directives          | 06             |
| 3.  | The Art of Assembly Language Programming with 8086     | 06             |
| 4.  | Special Architectural features and related Programming | 06             |
| 5.  | DMA Controllers, Multi-microprocessor systems          | 03             |
| 6.  | 80286 Processor                                        | 07             |
| 7.  | 80386 Processor                                        | 07             |
| 8.  | Current Era of Microprocessors                         | 04             |
|     | Total hours (Theory):                                  | 45             |
|     | Total hours (Lab):                                     | 30             |
|     | Total hours:                                           | 75             |

## **Detailed Syllabus:**

| 1. | THE PROCESSOR: 8086                                     | 05 Hours | 10% |
|----|---------------------------------------------------------|----------|-----|
|    | Register Organisation of 8086, Architecture, Signal     |          |     |
|    | Descriptions, Physical Memory Organisation, General Bus |          |     |
|    | Operation, I/O Addressing Capability, Special Purpose   |          |     |
|    | Activities, Minimum & Maximum Modes 8086 System and     |          |     |
|    | Timings.                                                |          |     |
| 2. | 8086 INSTRUCTION SET AND ASSEMBLER                      | 10 Hours | 20% |
|    | DIRECTIVES                                              |          |     |
|    | Machine Language Instruction Formats, Addressing Modes, |          |     |
|    | Instruction Set, Assembler Directives and Operators     |          |     |

© CHARUSAT 2020 Page **59** of **170** 

| 3. | THE ART OF ASSEMBLY LANGUAGE                                    | 15 Hours | 30% |
|----|-----------------------------------------------------------------|----------|-----|
|    | PROGRAMMING WITH 8086                                           |          |     |
|    | A Few Machine Level Programs, Machine Coding the                |          |     |
|    | Programs, Programming with an Assembler, Assembly               |          |     |
|    | Language Example Programs                                       |          |     |
| 4. | SPECIAL ARCHITECTURAL FEATURES AND                              | 10 Hours | 20% |
|    | RELATED PROGRAMMING                                             |          |     |
|    | Introduction to Stack, Stack Structure, Interrupt and Interrupt |          |     |
|    | Service Routines, Interrupt Cycle of 8086, Non-Maskable         |          |     |
|    | Interrupt, Maskable Interrupt, Interrupt Programming,           |          |     |
|    | MACROS, Timing and Delays.                                      |          |     |
| 5. | DMA CONTROLLER, MULTIMICROPROCESSOR                             | 10 Hours | 20% |
|    | SYSTEMS                                                         |          |     |
|    | DMA Controller, Interconnection Topologies, Software            |          |     |
|    | Aspects of Multi-microprocessor Systems, Tightly Coupled        |          |     |
|    | and Loosely Coupled Systems                                     |          |     |
| 6. | 80286 PROCESSOR                                                 | 07 Hours | 17% |
|    | Salient Features of 80286, Internal Architecture of 80286,      |          |     |
|    | Signal Description of 80286, Real Addressing Mode,              |          |     |
|    | Protected Virtual Address Mode (PVAM)                           |          |     |
| 7. | 80386 PROCESSOR                                                 | 07 Hours | 17% |
|    | Salient Features of 80386DX, Architectural and Signal           |          |     |
|    | Descriptions of 80386, Register Organisation of 80386,          |          |     |
|    | Addressing Modes, Data Types of 80386, Real Address Mode        |          |     |
|    | of 80386, Protected Mode of 80386, Segmentation.                |          |     |
| 8. | CURRENT ERA OF MICROPROCESSORS                                  | 04 Hours | 06% |
|    | Core i3, i5, i7, xen Processor, multi core processors.          |          |     |

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Recognize elements of digital logic circuit. Moving from design of single bit     |
|-----|-----------------------------------------------------------------------------------|
|     | function to multibit function. (Flip flop, Logic Gates, Combinational Circuit).   |
|     | Design circuit for fixed function arithmetic function. Understand the notation of |
|     | writing register transfer language.                                               |
| CO2 | Design and examine the different Arithmetic, Logic and Shift circuit & Design     |
|     | control unit of Arithmetic, Logic and Shift Circuit.                              |
| CO3 | Differentiate and conceptualize instruction and arithmetic level parallelism &    |
|     | Identify and compare different methods for computer I/O mechanisms.               |
| CO4 | Demonstrate and evaluate computer arithmetic operations on integer and real       |

© CHARUSAT 2020 Page **60** of **170** 

|     | numbers using hardwired algorithm.                                          |
|-----|-----------------------------------------------------------------------------|
| CO5 | Categorize memory organization and understand functioning of internal cache |
|     | memory hardware.                                                            |
| CO6 | Understand and differentiate n-way set associative memory.                  |

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO2 | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1   | -    | -    | 1    | 2    | -    |
| CO3 | 3   | 3   | 3   | 1   | -   | -   | -   | 1   | 1   | -    | -    | -    | 2    | -    |
| CO4 | 2   | 2   | 3   | -   | -   | -   | -   | 1   | 1   | -    | -    | -    | 2    | -    |
| CO5 | 2   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO6 | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

#### **Recommended Study Material:**

#### **\*** Text book:

- "Microprocessors and Interfacing Programming and Hardware", Douglas V Hall, McGraw-Hill Education India Pvt. Ltd.
- 2. "Advanced Microprocessor and Peripherals –Architecture, Programming and Interfacing", A.K.Ray & K.M Bhurchandi, Tata Mc Graw Hill, 2006.
- 3. "8086 Programming and Advance Processor Architecture", M. T. Savaliya, Wiley-India.

#### **A** Reference book:

 "Microcomputer systems: The 8086 / 8088 Family architecture, Programming and Design", Yncheng Liu, Glenn A. Gibson, second edition, Prentice Hall of India, 2006

© CHARUSAT 2020 Page **61** of **170** 

- 2. The 8088 and 8086 Microprocessors: Programming, Interfacing and Applications, Walter A.Triebel, Avtar Singh, Prentice-Hall of India Pvt. Ltd.
- 3. "IBM PC Assembly language and programming", Peter Abel, fifth edition, Pearson education / Prentice Hall of India Pvt. Ltd, 2007.

#### **Software:**

1. 8086 Simulator & Emulator

© CHARUSAT 2020 Page **62** of **170** 

## **CE342: DESIGN & ANALYSIS OF ALGORITHMS**

## **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 3      | 2         | -        | 5     | 4      |
| Marks                  | 100    | 50        | -        | 150   | _      |

## **Pre-requisite courses:**

- Data Structure and Algorithms
- Programming language

## **Outline of the Course:**

| Sr. | Title of the unit                                    | Minimum number |
|-----|------------------------------------------------------|----------------|
| No. |                                                      | of hours       |
| 1.  | To derive time and space complexity of algorithm.    | 03             |
| 2.  | Analysis of Algorithm                                | 06             |
| 3.  | Greedy Algorithm                                     | 07             |
| 4.  | Divide and Conquer Algorithm                         | 07             |
| 5.  | Dynamic Programming                                  | 08             |
| 6.  | Exploring Graphs                                     | 04             |
| 7.  | Backtracking & Branch & Bound                        | 05             |
| 8.  | String Matching and Introduction to NP- Completeness | 05             |
|     | Total hours (Theory):                                | 45             |
|     | Total hours (Lab):                                   | 30             |
|     | Total hours:                                         | 75             |

## **Detailed Syllabus:**

| 1. | Basics of Algorithms and Mathematics                      | 03 Hours | 05% |
|----|-----------------------------------------------------------|----------|-----|
|    | What is an algorithm?, Performance Analysis, Model for    |          |     |
|    | Analysis- Random Access Machine (RAM), Primitive          |          |     |
|    | Operations, Time Complexity and Space Complexity          |          |     |
| 2. | Analysis of Algorithm                                     | 06 Hours | 14% |
|    | The efficiency of algorithm, average and worst case       |          |     |
|    | analysis, elementary operation, Asymptotic Notation,      |          |     |
|    | Analysing control statement, Analysing Algorithm using    |          |     |
|    | Barometer, Solving recurrence Equation, Sorting Algorithm |          |     |

© CHARUSAT 2020 Page **63** of **170** 

| 3. | Greedy Algorithm                                             | 07 Hours | 16% |
|----|--------------------------------------------------------------|----------|-----|
|    | General Characteristics of greedy algorithms, Problem        |          |     |
|    | solving using Greedy Algorithm Making change problem         |          |     |
|    | Graphs: Minimum Spanning trees (Kruskal's algorithm,         |          |     |
|    | Prim's algorithm, Graphs: Shortest paths; The Knapsack       |          |     |
|    | Problem; Job Scheduling Problem                              |          |     |
| 4. | Divide and Conquer Algorithm                                 | 07 Hours | 16% |
|    | Multiplying large Integers Problem, Binary Search Sorting    |          |     |
|    | (Merge Sort, Quick Sort), Matrix Multiplication, Exponential |          |     |
| 5. | Dynamic Programming                                          | 08 Hours | 18% |
|    | Introduction, The Principle of Optimality, Problem           |          |     |
|    | Solving using Dynamic Programming – Calculating the          |          |     |
|    | Binomial Coefficient, Making Change Problem, Assembly        |          |     |
|    | Line-Scheduling Knapsack Problem, Shortest Path Matrix       |          |     |
|    | Chain Multiplication, Longest Common Subsequence             |          |     |
| 6. | Exploring Graphs & Backtracking                              | 04 Hours | 09% |
|    | An introduction using graphs and games, Traversing Trees -   |          |     |
|    | Preconditioning Depth First Search- Undirected Graph;        |          |     |
|    | Directed Graph, Breath First Search, Applications of BFS &   |          |     |
|    | DFS                                                          |          |     |
| 7. | Backtracking & Branch & Bound                                | 05 Hours | 12% |
|    | Backtracking -The Knapsack Problem; The Eight queens         |          |     |
|    | problem, General Template, Brach and Bound -The              |          |     |
|    | Assignment Problem; The Knapsack Problem, The min-max        |          |     |
|    | principle                                                    |          |     |
| 8. | String Matching and Introduction to NP-Completeness          | 05 Hours | 10% |
|    | The naïve string matching algorithm, The Rabin-Karp          |          |     |
|    | algorithm, The class P and NP Problem, Polynomial            |          |     |
|    | reduction, NP- Completeness Problem, NP-Hard problems        |          |     |

© CHARUSAT 2020 Page **64** of **170** 

#### **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Analyse the asymptotic performance of algorithms.                            |
|-----|------------------------------------------------------------------------------|
| CO2 | Derive time and space complexity of different sorting algorithms and compare |
|     | them to choose application specific efficient algorithm.                     |
| CO3 | Understand and analyse the problem to apply design technique from divide and |
|     | conquer, dynamic programming, backtracking, branch and bound techniques and  |
|     | understand how the choice of algorithm design methods impact the performance |
|     | of programs.                                                                 |
| CO4 | Understand and apply various graph algorithms for finding shorted path and   |
|     | minimum spanning tree.                                                       |
| CO5 | Synthesize efficient algorithms in common engineering design situations.     |
| CO6 | Understand the notations of P, NP, NP-Complete and NP-Hard.                  |

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO2 | 2   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | 2    | -    |
| CO3 | 3   | 3   | 3   | 3   | 2   | -   | -   | -   | -   | -    | -    | 2    | 2    | -    |
| CO4 | 2   | 3   | 3   | 1   | -   | -   | -   | =   | -   | -    | -    | -    | 2    | -    |
| CO5 | 1   | =   | 1   | -   | -   | -   | -   | =   | -   | -    | -    | 2    | 1    | 1    |
| CO6 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | =    | 1    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

#### **\*** Text book:

Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson,
 Ronald Rivest and Clifford Stein, MIT Press

© CHARUSAT 2020 Page **65** of **170** 

#### **Reference book:**

- Fundamental of Algorithms by Gills Brassard, Paul Bratley, Pentice Hall of India.
- 2. Fundamental of Computer Algorithms by Ellis Horowitz, Sartazsahni and sanguthevar Rajasekarm, Computer Sci.P.
- 3. Design & Analysis of Algorithms by P H Dave & H B Dave, Pearson Education.

#### **❖** Web material:

1. http://highered.mcgraw-hill.com/sites/0073523402/

© CHARUSAT 2020 Page **66** of **170** 

## **CE343: SOFTWARE ENGINEERING**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   | _      |

# **Pre-requisite courses:**

• N/A

## **Outline of the Course:**

| Sr. | Title of the unit                                 | Minimum number |
|-----|---------------------------------------------------|----------------|
| No. |                                                   | of hours       |
| 1.  | Introduction to Software and Software Engineering | 04             |
| 2.  | Agile Development                                 | 04             |
| 3.  | Managing Software Project                         | 05             |
| 4.  | Requirement Analysis and Specification            | 04             |
| 5.  | Software Design                                   | 05             |
| 6.  | Software Coding &Testing                          | 06             |
| 7.  | Quality Assurance and Management                  | 05             |
| 8.  | Software Maintenance and Configuration Management | 05             |
| 9.  | Introduction to SaaS                              | 03             |
| 10. | Advanced Topics in Software Engineering           | 04             |
|     | Total hours (Theory):                             | 45             |
|     | Total hours (Lab):                                | 30             |
|     | Total hours:                                      | 75             |

## **Detailed Syllabus:**

| 1. | Introduction to Software and Software Engineering        | 04 Hours | 09% |
|----|----------------------------------------------------------|----------|-----|
|    | The Evolving Role of Software, Software: A Crisis on the |          |     |
|    | Horizon and Software Myths, Software Engineering: A      |          |     |
|    | Layered Technology, Software Process Models, The Linear  |          |     |
|    | Sequential Model, The Prototyping Model, The RAD Model,  |          |     |

© CHARUSAT 2020 Page **67** of **170** 

|    | Evolutionary Process Models, Agile Process Model,           |          |     |
|----|-------------------------------------------------------------|----------|-----|
|    | Component-Based Development, Process, Product and           |          |     |
|    | Process                                                     |          |     |
| 2. | Agile Development                                           | 04 Hours | 09% |
|    | Agility and Agile Process model, Extreme Programming,       |          |     |
|    | Other process models of Agile Development and Tools         |          |     |
| 3. | Managing Software Project                                   | 05 Hours | 11% |
|    | Software Metrics (Process, Product and Project Metrics),    |          |     |
|    | Software Project Estimations, Software Project Planning (MS |          |     |
|    | Project Tool), Project Scheduling & Tracking, Risk Analysis |          |     |
|    | & Management(Risk Identification, Risk Projection, Risk     |          |     |
|    | Refinement ,Risk Mitigation)                                |          |     |
| 4. | Requirement Analysis and Specification                      | 04 Hours | 09% |
|    | Understanding the Requirement, Requirement Modeling,        |          |     |
|    | Requirement Specification (SRS), Requirement Analysis and   |          |     |
|    | Requirement Elicitation, Requirement Engineering            |          |     |
| 5. | Software Design                                             | 10 Hours | 20% |
|    | Design Concepts and Design Principal, Architectural         |          |     |
|    | Design, Component Level Design (Function Oriented           |          |     |
|    | Design, Object Oriented Design) (MS Visio Tool ), User      |          |     |
|    | Interface Design, Web Application Design                    |          |     |
| 6. | Software Coding & Testing                                   | 06 Hours | 13% |
|    | Coding Standard and coding Guidelines, Code Review,         |          |     |
|    | Software Documentation, Testing Strategies, Testing         |          |     |
|    | Techniques and Test Case, Test Suites Design, Testing       |          |     |
|    | Conventional Applications, Testing Object Oriented          |          |     |
|    | Applications, Testing Web and Mobile Applications, Testing  |          |     |
|    | Tools (Win runner, Load runner)                             |          |     |
| 7. | Quality Assurance and Management                            | 05 Hours | 11% |
|    | Quality Concepts and Software Quality Assurance, Software   |          |     |
|    | Reviews (Formal Technical Reviews), Software Reliability,   |          |     |
|    | The Quality Standards: ISO 9000, CMM, Six Sigma for SE,     |          |     |
|    | SQA Plan                                                    |          |     |

© CHARUSAT 2020 Page **68** of **170** 

| 8.  | Software Maintenance and Configuration Management        | 05 Hours | 11% |
|-----|----------------------------------------------------------|----------|-----|
|     | Types of Software Maintenance, Re-Engineering, Reverse   |          |     |
|     | Engineering, Forward Engineering, The SCM Process,       |          |     |
|     | Identification of Objects in the Software Configuration, |          |     |
|     | Version Control and Change Control                       |          |     |
| 9.  | Introduction to SaaS                                     | 03 Hours | 07% |
|     | Product Lifetime : Independent Product Vs. Continues     |          |     |
|     | Improvement, Service Oriented Architecture, Cloud        |          |     |
|     | Computing, SaaS Architecture                             |          |     |
| 10. | <b>Advanced Topics in Software Engineering</b>           | 04 Hours | 09% |
|     | Component-Based Software Engineering, Client/Server      |          |     |
|     | Software Engineering, Web Engineering, Reengineering,    |          |     |
|     | Computer-Aided Software Engineering, Software Process    |          |     |
|     | Improvement, Emerging Trends in software Engineering     |          |     |

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Understand basics about software engineering principles, methods and practices   |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------|--|--|--|--|--|
|     | and to analyze software requirement specification Prepare, SRS (Software         |  |  |  |  |  |
|     | Requirement Specification) document and SPMP (Software Project Management        |  |  |  |  |  |
|     | Plan) document.                                                                  |  |  |  |  |  |
| CO2 | Apply the concept of Functional Oriented and Object Oriented Approach for        |  |  |  |  |  |
|     | Software Design, To explain the software design strategies and to apply software |  |  |  |  |  |
|     | measurement and metrics using Function point, Cyclomatic complexity and          |  |  |  |  |  |
|     | Healstead software science measures.                                             |  |  |  |  |  |
| CO3 | Recognize how to ensure the quality of software product, different quality       |  |  |  |  |  |
|     | standards and software review techniques.                                        |  |  |  |  |  |
| CO4 | Formulate problem by following Software Testing Life Cycle. Apply various        |  |  |  |  |  |
|     | testing techniques and test plan in. Design Manual Test cases for Software       |  |  |  |  |  |
|     | Project. Use automation testing tool students will be able test the software.    |  |  |  |  |  |
| CO5 | Able to understand modern Agile Development and Service Oriented                 |  |  |  |  |  |
|     | Architecture Concept of Industry.                                                |  |  |  |  |  |
| CO6 | Analyze software risk with estimation parameters such as cost, effort,           |  |  |  |  |  |

© CHARUSAT 2020 Page **69** of **170** 

schedule/duration and understand the concepts of software maintenance, reengineering, reverse engineering, software configuration management.

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | -   | 2   | 1   | -   | -   | 3   | -   | -    | -    | -    | 2    | -    |
| CO2 | 2   | 2   | 2   | 1   | 2   | 1   | -   | -   | 2   | -    | 1    | -    | 2    | -    |
| CO3 | 1   | 2   | 3   | 2   | 1   | 1   | 1   | -   | 2   | 1    | 1    | 1    | -    | -    |
| CO4 | 1   | 3   | 2   | -   | 1   | -   | -   | -   | 1   | -    | -    | 1    | 2    | -    |
| CO5 | -   | -   | -   | -   | -   | 1   | -   | 2   | 1   | 1    | 1    | 1    | 1    | 1    |
| CO6 | 1   | 2   | 1   | 1   | -   | -   | 1   | - 1 | 2   | 2    | 1    | 2    | 1    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

#### **Recommended Study Material:**

#### **\*** Text book:

 Roger S. Pressman, Software engineering- A practitioner's Approach, McGraw-Hill International Editions

#### **\*** Reference book:

- 1. Engineering Software as a Service An Agile Software Approach, Armando Fox and David Patterson
- 2. Ian Sommerville, Software engineering, Pearson education Asia
- 3. Pankaj Jalote, An Integrated Approach to Software Engineering by, Springer
- 4. Rajib Mall, Fundamentals of software Engineering, Prentice Hall of India.
- 5. John M Nicolas, Project Management for Business, Engineering and Technology, Elsevier

#### Web material:

- 1. www.en.wikipedia.org/wiki/Software\_engineering
- 2. www.win.tue.nl
- 3. www.rspa.com/spi

4. www.onesmartclick.com/engsineering/software-engineering.html 5. www.sei.cmu.edus 6. <a href="https://www.edx.org/school/uc-berkeleyx">https://www.edx.org/school/uc-berkeleyx</a> Page **71** of **170** 

© CHARUSAT 2020

## **CE344: COMPUTER NETWORKS**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   | -      |

## **Pre-requisite courses:**

• Data Communication and Networking

## **Outline of the Course:**

| Sr. | Title of the unit                 | Minimum number |  |  |
|-----|-----------------------------------|----------------|--|--|
| No. |                                   | of hours       |  |  |
| 1.  | Introduction to Computer Networks | 04             |  |  |
| 2.  | Data Link Layer                   | 08             |  |  |
| 3.  | Medium Access Control Sub Layer   | 10             |  |  |
| 4.  | Network Layer                     | 12             |  |  |
| 5.  | Transport Layer                   | 08             |  |  |
| 6.  | Application Layer                 | 03             |  |  |
|     | Total hours (Theory):             | 45             |  |  |
|     | Total hours (Lab):                | 30             |  |  |
|     | Total hours:                      | 75             |  |  |

## **Detailed Syllabus:**

| 1. | Introduction to Computer Networks                          | 04 Hours | 09% |
|----|------------------------------------------------------------|----------|-----|
|    | Uses of computer network, network hardware, network        |          |     |
|    | software, OSI model, TCP/IP model, Comparison of OSI and   |          |     |
|    | TCP/IP model, Example network                              |          |     |
| 2. | Data Link Layer                                            | 08 Hours | 18% |
|    | Design Issues, framing, error control, flow control, Error |          |     |
|    | detection and correction, Elementary data link protocols,  |          |     |
|    | simplex, stop and wait, sliding window protocol, HDLC      |          |     |
| 3. | Medium Access Control Sub Layer                            | 10 Hours | 22% |
|    | The channel allocation problem, Multiple Access protocols: |          |     |
|    | ALOHA, CSMA, Collision Free Protocols, Limited             |          |     |

© CHARUSAT 2020 Page **72** of **170** 

|    | Contention Protocols, Wavelength Division Multiple Access      |          |     |
|----|----------------------------------------------------------------|----------|-----|
|    | Protocols, Wireless LAN protocols; Ethernet: Traditional       |          |     |
|    | Ethernet, Switched Ethernet, Fast Ethernet, Gigabit Ethernet,  |          |     |
|    | IEEE 802.2: LLC, Data link layer switching                     |          |     |
| 4. | Network Layer                                                  | 12 Hours | 27% |
|    | Implementation of connection oriented and connection less      |          |     |
|    | service, Comparison of virtual circuit and datagram subnets,   |          |     |
|    | Routing algorithms, Shortest path routing, Flooding, Distance  |          |     |
|    | vector routing, Link state routing, Hierarchical routing,      |          |     |
|    | Broadcast routing, Multicast routing, Routing for mobile host, |          |     |
|    | Routing in ad hoc network, Congestion control algorithms       |          |     |
|    | principles, Prevention policies, Congestion control in virtual |          |     |
|    | circuit subnets, Congestion control in datagram subnets, Load  |          |     |
|    | shedding, virtual circuit, Connectionless internetworking,     |          |     |
|    | Tunneling, Internetwork routing and fragmentation, The         |          |     |
|    | network layer in the internet: The IP protocol, IP addresses,  |          |     |
|    | Internet control protocol, OSPF, BGP.                          |          |     |
| 5. | Transport Layer                                                | 08 Hours | 18% |
|    | The transport service: Services provided to the upper layers,  |          |     |
|    | Transport service primitives, Socket elements of transport     |          |     |
|    | protocols addressing, Connection establishment, Connection     |          |     |
|    | release, Flow control, Multiplexing, Crash recovery the        |          |     |
|    | transport protocol: UDP, TCP.                                  |          |     |
| 6. | Application Layer                                              | 03 Hours | 06% |
|    | DNS: The DNS name space, Resource records, Name servers,       |          |     |
|    |                                                                |          |     |
|    | Electronic mail: Architecture and services, World Wide Web:    |          |     |

At the end of the course, the students will be able to

| CO1 | Analyze layered network architecture and passage of data over communication |
|-----|-----------------------------------------------------------------------------|
|     | links                                                                       |
| CO2 | Analyze delay models in Data Networks using Queueing Systems for messaging  |

© CHARUSAT 2020 Page **73** of **170** 

|     | and delay sensitive applications                                               |
|-----|--------------------------------------------------------------------------------|
| CO3 | Design and analyze routing algorithms for Internet and multi-hop autonomous    |
|     | networks                                                                       |
| CO4 | Analyze flow and rate control algorithms between a sender and receiver in wide |
|     | area networks                                                                  |
| CO5 | Apply the network fundamentals to analyze performance.                         |
| CO6 | Use key networking algorithms in simulation.                                   |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | 1   | 3   | 1   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO2 | 3   | 3   | 1   | 3   | 1   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO3 | 3   | 3   | 1   | 3   | 1   | =   | -   | -   | -   | =    | ı    | ı    | 1    | -    |
| CO4 | 3   | 3   | 1   | 3   | 1   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO5 | 3   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO6 | -   | -   | -   | -   | 3   | =   | -   | =   | =   | =    | -    | =    | -    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

### **\*** Text book:

1. Computer Network, Andrew S. Tanenbaum, Prentice Hall PTR

### **\*** Reference book:

- ❖ Introduction to Data Communication and Networking by Behrouz Forouzan, McGraw Hill
- ❖ Data and Computer Communications, William Stallings, Prentice Hall

### **\*** Web material:

- 1. http://www.cisco.com
- 2. http://compnetworking.about.com

© CHARUSAT 2020 Page **74** of **170** 

# **Software:**

- 1. Wireshark
- 2. Cisco packet tracer
- 3. Network Simulator

© CHARUSAT 2020 Page **75** of **170** 

## **CE371: ADVANCED JAVA PROGRAMMING (PE-I)**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 2      | 4         | 0        | 6     | 4      |
| Marks           | 100    | 100       | 0        | 200   | _      |

# **Pre-requisite courses:**

- Object oriented Language Java
- DBMS
- Web Programming

## **Outline of the Course:**

| Sr. | Title of the unit               | Minimum number |
|-----|---------------------------------|----------------|
| No. |                                 | of hours       |
| 1.  | JDBC Programming                | 05             |
| 2.  | Servlet                         | 06             |
| 3.  | Java Server Pages               | 05             |
| 4.  | Java Server Faces 2.0           | 03             |
| 5.  | Hibernate                       | 05             |
| 6.  | JAVA web Frameworks: Spring MVC | 06             |
|     | Total hours (Theory):           | 30             |
|     | Total hours (Lab):              | 60             |
|     | Total hours:                    | 90             |

# **Detailed Syllabus:**

| 1. | JDBC Programming                                                 | 05 Hours | 11 % |
|----|------------------------------------------------------------------|----------|------|
|    | The JDBC Connectivity Model, Database Programming: Connecting    |          |      |
|    | to the Database, Creating a SQL Query, Getting the Results,      |          |      |
|    | Updating Database Data Error Checking, SQLException Class, The   |          |      |
|    | SQLWarning Class, Statement Interface, ResultSet Interface,      |          |      |
|    | Updatable Result Sets, Executing SQL Queries, ResultSetMetaData, |          |      |
|    | Executing SQL Updates, Transaction Management                    |          |      |

© CHARUSAT 2020 Page **76** of **170** 

| 2. | Servlet                                                             | 06 Hours | 13 % |
|----|---------------------------------------------------------------------|----------|------|
|    | Overview of Servlet, Servlet Life Cycle, HTTP Methods, Structure    |          |      |
|    | and Deployment descriptor, ServletContext and ServletConfig         |          |      |
|    | interface, Attributes in Servelt, Request Dispacher interface, The  |          |      |
|    | Filter API: Filter, FilterChain, Filter Config, Cookies and Session |          |      |
|    | Management: Understanding state and session, Understanding          |          |      |
|    | Session Timeout and Session Tracking, URL Rewriting                 |          |      |
| 3. | Java Server Pages                                                   | 05 Hours | 11%  |
|    | JSP Overview: The Problem with Servlets, Life Cycle of JSP Page,    |          |      |
|    | JSP Processing, JSP Application Design with MVC, Setting Up the     |          |      |
|    | JSP Environment, JSP Directives, JSP Action, JSP Implicit Objects,  |          |      |
|    | JSP Form Processing, JSP Session and Cookies Handling, JSP          |          |      |
|    | Session Tracking, JSP Database Access, JSP Standard Tag Libraries,  |          |      |
|    | JSP Custom Tag, JSP Expression Language, JSP Exception              |          |      |
|    | Handling, JSP XML Processing                                        |          |      |
| 4. | Java Server Faces 2.0                                               | 03 Hours | 07%  |
|    | Introduction to JSF, JSF request processing Life cycle, JSF         |          |      |
|    | Expression Language, JSF Standard Component, JSF Facelets Tag,      |          |      |
|    | JSF Convertor Tag, JSF Validation Tag, JSF Event Handling and       |          |      |
|    | Database Access, JSF Libraries: PrimeFaces                          |          |      |
| 5. | Hibernate                                                           | 05 Hours | 11%  |
|    | Overview of Hibernate, Hibernate Architecture, Hibernate Mapping    |          |      |
|    | Types, Hibernate O/R Mapping, Hibernate Annotation, Hibernate       |          |      |
|    | Query Language                                                      |          |      |
| 6. | Java Web Frameworks: Spring MVC                                     | 06 Hours | 13%  |
|    | Overview of Spring, Spring Architecture, bean life cycle, XML       |          |      |
|    | Configuration on Spring, Aspect – oriented Spring Managing          |          |      |
|    | Database, Managing Transaction                                      |          |      |

At the end of the course, the students will be able to

| CO1 | Illustrate database access and details for managing information using the JDBC |
|-----|--------------------------------------------------------------------------------|
|     | API                                                                            |

© CHARUSAT 2020 Page **77** of **170** 

| CO2 | Design to map java classes and object associations to relational database tables |
|-----|----------------------------------------------------------------------------------|
|     | with hibernate framework.                                                        |
| CO3 | Demonstrate web application lifecycle using servlet, and JSP.                    |
| CO4 | Identify the user interface control and build custom tag library using JSF       |
| CO5 | Develop real-world applications using java frameworks and understands about      |
|     | MVC architecture with its application.                                           |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 2   | 2   | 1   | 2   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO2 | 3   | 2   | 3   | 1   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO3 | 2   | 2   | 2   | 2   | 3   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO4 | 1   | 2   | 2   | 1   | 3   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO5 | 2   | 3   | 3   | 2   | 3   | -   | -   | -   | -   | -    | -    | -    | 3    | 1    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

### **Recommended Study Material:**

### **\*** Text book:

- SCWCD, Matthew Scarpino, Hanumant Deshmukh, Jignesh Malavie, Manning publication
- 2. Hibernate 2nd edition, Jeff Linwood and Dave Minter, Beginning Après publication
- 3. Java Persistence with MyBatis 3, K. Siva Prasad Reddy, PACKT publication
- 4. Spring in Action 3rd edition, Craig walls, Manning Publication
- 5. Java Server Faces in Action, Kito D. Mann, Manning Publication

### \* Reference book:

1. JDBC<sup>TM</sup> API Tutorial and Reference, Third Edition, Maydene Fisher, Jon Ellis, Jonathan Bruce, Addison Wesley

© CHARUSAT 2020 Page **78** of **170** 

- 2. Beginning JSP, JSF and Tomcat, Giulio Zambon, Apress
- 3. JSF2.0 CookBook, Anghel Leonard, PACKT publication

### **\*** Web material:

- 1. <a href="http://www.service-architecture.com/application-servers/articles/j2ee\_web\_site\_architecture.html">http://www.service-architecture.com/application-servers/articles/j2ee\_web\_site\_architecture.html</a>
- 2. http://www.oracle.com/technetwork/java/javaee/overview/index.html
- 3. http://www.roseindia.net/struts/hibernate-spring/index.shtml

### **Software:**

- 1. JDK 8+
- 2. NetBeans IDE
- 3. Eclipse
- 4. IntelliJ IDEA

© CHARUSAT 2020 Page **79** of **170** 

## CE372: ADVANCED PROGRAMMING USING .NET FRAMEWORK (PE-I)

# **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 2      | 4         | 0        | 6     | 4      |
| Marks           | 100    | 100       | 00       | 200   | -      |

# **Pre-requisite courses:**

• Basics of Object Oriented Concepts, XML, Database Management System

## **Outline of the Course:**

| Sr. | Title of the unit                   | Minimum number |
|-----|-------------------------------------|----------------|
| No. |                                     | of hours       |
| 1.  | Introduction to .NET Framework      | 03             |
| 2.  | C# Programming                      | 08             |
| 3.  | ADO.NET                             | 06             |
| 4.  | ASP.NET                             | 06             |
| 5.  | Creating and Consuming Web Services | 03             |
| 6.  | Advanced in .NET                    | 04             |
|     | Total hours (Theory):               | 30             |
|     | Total hours (Lab):                  | 60             |
|     | Total hours:                        | 90             |

## **Detailed Syllabus:**

| 1. | Introduction to .NET Framework                              | 03 Hours | 10% |
|----|-------------------------------------------------------------|----------|-----|
|    | .NET framework Architecture, MSIL, CLR, CLS, CTS,           |          |     |
|    | Garbage Collection, Side by Side executing and Versioning,  |          |     |
|    | Application Domain and Assemblies, Namespace and Based      |          |     |
|    | Class Library, The End to DLL Hell - Managed Execution.     |          |     |
| 2. | C# Programming                                              | 08 Hours | 26% |
|    | Basics: Types, Variables, Methods, Operators, Branching,    |          |     |
|    | Expression, Statements, Structs, Array, Enums. OOP: Classes |          |     |
|    | and Object, Inheritance and Polymorphism, Operator          |          |     |
|    | Overloading, Interface, Delegates and Event, Exception      |          |     |
|    | handling, Generics and Collections, Multithreading, String  |          |     |
|    | Manipulation and Reflection API, Windows Application:       |          |     |

© CHARUSAT 2020 Page **80** of **170** 

|    | Menus-Dialogs - ToolTips, Windows Form Control, GDI+,       |          |     |
|----|-------------------------------------------------------------|----------|-----|
|    | Visual Inheritance in C#.                                   |          |     |
| 3. | ADO.NET                                                     | 06 Hours | 20% |
|    | Introduces the basic ADO.NET objects and their roles,       |          |     |
|    | Connection-based programming to perform live record         |          |     |
|    | updates, insert and deletion, Interaction with stored       |          |     |
|    | procedures and parameterized command,ADO.NET                |          |     |
|    | Disconnected Approach: DataSet, DataTable, Data View and    |          |     |
|    | Data Adaptor                                                |          |     |
| 4. | ASP.NET                                                     | 06 Hours | 20% |
|    | Basics: Introduction to ASP.NET, Working with Web and       |          |     |
|    | HTML Controls, Using Rich Server Controls, Login controls,  |          |     |
|    | Overview of ASP.NET Validation Controls, Complex            |          |     |
|    | Validators, Themes and Master Pages, Controls: Standard,    |          |     |
|    | Data, Grid View, Data List, List View, Tree View, Repeater, |          |     |
|    | List-Bound State Management: Preserving State in Web        |          |     |
|    | Applications and Page-Level State, Cookies, Session,        |          |     |
|    | Application, Global. asax file                              |          |     |
| 5. | Creating and Consuming Web Services                         | 03 Hours | 10% |
|    | The Motivation for Web Services, Role of XML for creating   |          |     |
|    | SOAP based Web Service, Understanding SOAP, WSDL and        |          |     |
|    | UDDI,Creating and Consuming RESTful (Representational       |          |     |
|    | State Transfer) web services using WCF                      |          |     |
| 6. | Advanced in .NET                                            | 04 Hours | 14% |
|    | Introduction to Windows Presentation Foundation             |          |     |
|    | (WPF),Introduction to MVC Framework, Comparison             |          |     |
|    | between MVCs,Introduction to Entity Framework               |          |     |
|    | (ORM),Introduction to Microsoft Azure Services              |          |     |

At the end of the course, the students will be able to

| CO1 | Understand code solutions and compile C# projects within the .NET framework. |
|-----|------------------------------------------------------------------------------|
| CO2 | Design and develop professional console and window based .NET application    |
| CO3 | Demonstrate knowledge of object-oriented concepts Design user experience and |

© CHARUSAT 2020 Page **81** of **170** 

|     | functional requirements C#.NET application.                                    |
|-----|--------------------------------------------------------------------------------|
| CO4 | Construct classes, methods, and assessors, and instantiate objects. Understand |
|     | and implement string manipulation, events and exception handling within .NET   |
|     | application environment.                                                       |
| CO5 | Design and Implement Windows & Web Applications using Windows Forms,           |
|     | ,Web Forms ,Control Library, Advanced UI Programming & Data Binding            |
|     | concepts                                                                       |
| CO6 | Design and Implement database connectivity using ADO.NET in window based       |
|     | application.                                                                   |

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   | 1   | 2   | 1   | 2   | -   | -   | -   | 1   | -    | -    | 2    | 1    | -    |
| CO2 | 3   | 2   | 2   | 1   | 2   | -   | -   | -   | 1   | -    | -    | 1    | 2    | -    |
| CO3 | 2   | 2   | 3   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    | 2    | 1    |
| CO4 | 2   | 1   | 3   | 2   | 2   | -   | -   | -   | -   | -    | 1    | -    | 1    | -    |
| CO5 | 1   | 2   | 3   | 3   | 2   | -   | -   | -   | 1   | -    | -    | -    | 2    | 1    |
| CO6 | 1   | 2   | 3   | 2   | 1   | -   | -   | -   | 2   | -    | -    | -    | 2    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

### **Recommended Study Material:**

### **❖** Text Books:

- 1. Professional C# .Net, Christian Nagel, Wrox Publication
- 2. ASP.NET Complete Reference, Matthew Macdonald and Robert Standefer, TMH.
- 3. ASP.NET 4 Unleashed (Hardcover) by Stephen Walther, Kevin Scott Hoffman.

#### Reference Books:

- 1. C# The Basics, Vijay Mukhi, BPB Publications
- 2. ADO.NET in a Nutshell By Bill Hamilton, Matthew MacDonald
- 3. Beginning Entity Framework Core 2.0 Database Access from .NET, Authors: Rouleau, Derek J., Apress
- 4. Pro ASP.NET MVC 5, Authors: Freeman, Adam, Apress

© CHARUSAT 2020 Page **82** of **170** 

# **❖** Web Materials:

- 1. <a href="https://docs.microsoft.com/en-us/dotnet/">https://docs.microsoft.com/en-us/dotnet/</a>
- 2. <a href="https://www.tutorialspoint.com/asp.net/index.htm">https://www.tutorialspoint.com/asp.net/index.htm</a>
- 3. <u>www.c-sharpcorner.com</u>
- 4. www.csharp-station.com/Tutorial.aspx

© CHARUSAT 2020 Page **83** of **170** 

# **CE373: MOBILE APPLICATION DEVELOPMENTS (PE-I)**

## **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 2      | 4         | -        | 6     | 4      |
| Marks                  | 100    | 100       | -        | 200   |        |

# **Pre-requisite courses:**

• Basic Design concept with XML, Database management system.

## **Outline of the Course:**

| Sr. | Title of the unit                                    | Minimum number |
|-----|------------------------------------------------------|----------------|
| No. |                                                      | of hours       |
| 1.  | Getting an Overview of Android                       | 2              |
| 2.  | Working with the User Interface Using Views and View | 6              |
|     | Groups                                               |                |
| 3.  | Intents and Fragments in Android                     | 4              |
| 4.  | Database Connectivity                                | 3              |
| 5.  | Introduction to Xcode and InterfaceBuilder for iOS   | 3              |
| 6   | Model Development with Swift                         | 6              |
| 7   | Intro to Scrollable Views, Tabs and Pages            | 3              |
| 8   | Displaying and Persisting Data                       | 3              |
|     | Total hours (Theory):                                | 30             |
|     | Total hours (Lab):                                   | 60             |
|     | Total hours:                                         | 90             |

# **Detailed Syllabus:**

| 1. | Getting an Overview of Android                             | 02 Hours | 08% |
|----|------------------------------------------------------------|----------|-----|
|    | Android OS Architecture, Introducing Development           |          |     |
|    | Framework, Dalvik Virtual Machine – DVM, Android Virtual   |          |     |
|    | Device and SDK Manager, Developing and Executing the       |          |     |
|    | First Android Application, Android Activities- Creating an |          |     |
|    | Activity, Managing the Lifecycle of an Activity,           |          |     |
| 2. | Working with the User Interface Using Views and            | 06 Hours | 18% |

© CHARUSAT 2020 Page **84** of **170** 

|    | ViewGroups                                                   |          |     |
|----|--------------------------------------------------------------|----------|-----|
|    | Working with Views- Text, EditText, Button, Radio Button,    |          |     |
|    | CheckBox, ImageButton, ToggleButton, RatingBar, Working      |          |     |
|    | with View Groups- LinearLayout, RelativeLayout,              |          |     |
|    | ConstraintLayout, ScrollView, Table, Frame, Table with       |          |     |
|    | ActionBar, Binding Data with the AdapterView Class-          |          |     |
|    | ListView, Spinner, GallaryView, Creating Menus & Dialogs     |          |     |
| 3. | Intents and Fragments in Android                             | 04 Hours | 14% |
|    | Intent Objects, Intent Filters, Linking the Activities Using |          |     |
|    | Intent, Obtaining Results from Intent, Passing Data Using an |          |     |
|    | Intent Object, Fragments- Fragment Implementation, Finding   |          |     |
|    | Fragments, Adding, Removing, and Replacing Fragments         |          |     |
| 4. | <b>Database Connectivity</b>                                 | 03 Hours | 09% |
|    | SQLite Database, SQLite Data Types, Cursors and Content      |          |     |
|    | Values, SQLite Open Helper, Adding, Updating and Deleting    |          |     |
|    | Content, XML & JSON Based Web Services.                      |          |     |
| 5. | Introduction to Xcode and InterfaceBuilder for iOS           | 03 Hours | 09% |
|    | Xcode Intro: Demo of a basic iOS App, StoryBoards, Source    |          |     |
|    | files, & wiring them together, The View hierarchy and view   |          |     |
|    | attributes                                                   |          |     |
| 6  | Model Development with Swift                                 | 06 Hours | 18% |
|    | Swift language essentials: Arrays, Dictionaries, functions,  |          |     |
|    | Optionals, Control Flow, Structs Enums and Classes,          |          |     |
|    | Playgrounds, Elements of The Swift Foundation classes,       |          |     |
|    | CocoaTouch Foundation Framework, Simple connections to       |          |     |
|    | the User Interface                                           |          |     |
| 7  | Intro to Scrollable Views, Tabs and Pages                    | 03 Hours | 14% |
|    | Frames and Bounds, ScrollViews, TableViews,                  |          |     |
|    | CollectionViews and their controllers, Tabbed Views and      |          |     |
|    | their controllers, PageController                            |          |     |
| 8  | Displaying and Persisting Data                               | 03 Hours | 10% |
|    | Using the Table View, Application Preferences, Database      |          |     |
|    | Storage Using SQLite                                         |          |     |

© CHARUSAT 2020 Page **85** of **170** 

At the end of the course, the students will be able to

| CO1 | Understand various technologies and business trends impacting mobile           |
|-----|--------------------------------------------------------------------------------|
|     | applications                                                                   |
| CO2 | Apply a deep knowledge of mobile device, features, architecture and android    |
|     | functionality.                                                                 |
| CO3 | Analyse and implement frameworks, database and design patterns in Mobile       |
|     | Applications                                                                   |
| CO4 | Create a small but realistic working mobile application using features such as |
|     | data persistence and data communications                                       |
| CO5 | Create a mobile application using the Swift programming language.              |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1 | 2   | 1   | 2   | -   | 1   | -   | -   | -   | -   | -    | -    | 2    | 1    | -    |
| CO2 | 3   | 1   | 3   | 2   | 2   |     |     |     |     |      |      | 2    | 2    | 1    |
| CO2 | 3   | 1   | 3   | 2   | 2   | -   | -   | -   | -   | -    | -    | 2    | 2    | 1    |
| CO3 | 2   | 3   | 3   | 1   | 2   | -   | -   | -   | 1   | 1    | -    | 2    | 1    | -    |
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO4 | 3   | 2   | 2   | 3   | 2   | -   | -   | -   | 2   | 2    | -    | 3    | 2    | 1    |
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO5 | 2   | 1   | 2   | 1   | 3   | -   | -   | -   | 1   | -    | -    | 2    | 2    | -    |
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

### **Text book:**

- Android Developer Tools Essentials by Mike Wolfson O'Reilly Media Publications
- 2. Christian Keur and Aaron Hillegass, iOS Programming: The Big Nerd Ranch Guide, 5th edition, 2015

### **Reference book:**

 Learn Java for Android Development, 2nd Edition - Jeff Friesen - Apress Publications

© CHARUSAT 2020 Page **86** of **170** 

- Suzanne Ginsburg, Designing the iPhone User Experience: A User-Centered Approach to Sketching and Prototyping iPhone Apps, Addison-Wesley Professional, 2010
- 3. Bill Phillips, Chris Stewart, Brian Hardy, and Kristin Marsicano, Android Programming: The Big Nerd Ranch Guide, Big Nerd Ranch LLC, 2nd edition, 2015.

#### **♦** Web material:

- http://www.youtube.com/watch?v=SUOWNXGRc6g&list=PL2F07DBCDCC 01493A
- 2. Study Tutorial: https://developer.android.com/sdk/index.html
- 3. https://www.xamarin.com/forms
- 4. https://docs.microsoft.com/en-us/xamarin/
- 5. https://developer.apple.com/xcode/

### **Software:**

- 1. Android Studio
- 2. Flutter
- 3. Xcode

© CHARUSAT 2020 Page **87** of **170** 

### **CE352: SOFTWARE GROUP PROJECT-III**

#### **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 0      | 2         | -        | 2     | 2      |
| Marks           | 0      | 100       | -        | 100   | _      |

### **Pre-requisite courses:**

• Programming Language, Software Engineering.

### **Outline of the Course:**

- Student at the beginning of a semester may be advised by his/her supervisor (s) for recommended courses.
- Students will work together in a team (at most three) with any programming language.
- Students are required to get approval of project definition from the department.
- After approval of project definition students are required to report their project work on weekly basis to the respective internal guide.
- Project will be evaluated at least once per week in laboratory Hours during the semester and final submission will be taken at the end of the semester as a part of continuous evaluation.
- Project work should include whole SDLC of development of software / hardware system as a solution of particular problem by applying principles of Software Engineering.
- Students have to submit project with following listed documents at the time of final submission.
  - g. Project Synopsis
  - h. Software Requirement Specification
  - i. SPMP
  - j. Final Project Report
  - k. Project Setup file with Source code
  - 1. Project Presentation (PPT)

© CHARUSAT 2020 Page **88** of **170** 

 A student has to produce some useful outcome by conducting experiments or project work.

Total hours (Theory): 00

Total hours (Lab): 60

Total hours: 60

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | An ability to function effectively in teams to accomplish a common goal.       |
|-----|--------------------------------------------------------------------------------|
| CO2 | An ability to apply knowledge of computing and engineering to evaluate project |
|     | requirements.                                                                  |
| CO3 | An ability to design, implement and evaluate a computer-based system, process, |
|     | component, or program to meet desired needs.                                   |
| CO4 | An ability to analyze the local and global impact of computing on individuals, |
|     | organizations, and society.                                                    |
| CO5 | Write technical report and deliver presentation by applying different          |
|     | visualization tools and evaluation metrics.                                    |
| CO6 | An ability to communicate effectively with end user.                           |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | -   | -   | -   | -   | -   | -   | -   | -   | 3   | 2    | -    | 1    | 2    | =    |
| CO2 | 3   | -   | 1   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO3 | -   | 2   | 3   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO4 | -   | -   | -   | -   | -   | 3   | 2   | -   | -   | 1    | -    | -    | 2    | -    |
| CO5 | -   | -   | -   | -   | -   | -   | 1   | -   | -   | 2    | -    | 3    | -    | 2    |
| CO6 | -   | -   | -   | -   | -   | -   | 3   | 1   | -   | -    | -    | 2    | -    | 3    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

### **Reference book:**

1. Books, Magazines ,Journals & online course platforms of related topics

### **\*** Web material:

- 1. www.sciencedirect.com
- 2. www.elsevier.com
- 3. https://www.udemy.com/
- 4. https://www.udacity.com/
- 5. https://nptel.ac.in/course.html
- 6. <a href="https://www.futurelearn.com/">https://www.futurelearn.com/</a>

### **Software:**

- 1. ASP.NET
- 2. PYTHON/MATLAB
- 3. PHP
- 4. ANDROID/IOS

© CHARUSAT 2020 Page **90** of **170** 

## HS 131.02 A: COMMUNICATION AND SOFT SKILLS

### **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             |        | 02/01     |          | 30/15 | 02     |
| Marks                  |        | 100       |          | 100   |        |

### **Pre-requisite courses:**

• Communicative English

## **Objectives of the Course:**

- To hone and sharpen Communication Skills of students
- To prepare globally and multi-culturally competent communicators and professionally compatible cadre of future professionals
- To equip and empower students to qualify and successfully clear all the phases of selection procedure for on and off campus interviews

### **Outline of the Course:**

| Sr.<br>No. | Title of the unit                                    | Minimum number of hours |
|------------|------------------------------------------------------|-------------------------|
| 110.       |                                                      |                         |
| 1.         | An Introduction to Communication                     | 06                      |
| 2.         | Cross-cultural Communication and Globalization       | 03                      |
| 3.         | Communication for Career Building                    | 10                      |
| 4.         | Group Dynamics and Soft Skills                       | 05                      |
| 5.         | Effective Presentation Strategies                    | 04                      |
| 6.         | Contemporary Issues in Communication and Soft Skills | 02                      |
|            | Total hours (Theory):                                |                         |
|            | Total hours (Practical):                             | 30                      |
|            | Total hours:                                         | 30                      |

### **Detailed Syllabus:**

| 1. | An Introduction to Communication                           | 06 Hours | 20% |
|----|------------------------------------------------------------|----------|-----|
|    | Basics of Communication: Origin, Concept, Process, Levels, |          |     |
|    | Principles and Barriers; Applications of Communication;    |          |     |
|    | Rhetoric in Professional Communication; Importance of      |          |     |
|    | Ethos, Logos, and Pathos in Communication                  |          |     |
| 2. | Cross-cultural Communication and Globalization             | 03 Hours | 10% |

© CHARUSAT 2020 Page **91** of **170** 

| 6. | Designing Appealing Presentation; Audience Analysis and Supporting Material; Presentation Mechanics and Presentation Process; Managing Yourself during Q and A Session; Fundamentals of Persuasion  Contemporary Issues in Communication and Soft Skills | 02 Hours | 06% |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|    | Supporting Material; Presentation Mechanics and Presentation Process; Managing Yourself during Q and A                                                                                                                                                   |          |     |
|    | Supporting Material; Presentation Mechanics and                                                                                                                                                                                                          |          |     |
|    | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                  |          |     |
|    | Designing Appearing Freschation, Audience Aliarysis and                                                                                                                                                                                                  |          |     |
|    | Designing Appealing Presentation: Audience Applysis and                                                                                                                                                                                                  |          | 1   |
| 5. | <b>Effective Presentation Strategies</b>                                                                                                                                                                                                                 | 04 Hours | 14% |
|    | Various Intelligences; Developing an Open Mindset                                                                                                                                                                                                        |          |     |
|    | Groups; Conflict Management; Aptitude and Attitude;                                                                                                                                                                                                      |          |     |
|    | and their Structures; Roles and Functions of Members in                                                                                                                                                                                                  |          |     |
|    | An Introduction to Group Dynamics and Soft Skills;Groups                                                                                                                                                                                                 |          |     |
| 4. | Group Dynamics and Soft Skills                                                                                                                                                                                                                           | 05 Hours | 17% |
|    | Writing Statement of Purpose                                                                                                                                                                                                                             |          |     |
|    | Rationale of Personal Interview; Types of Personal Interview;                                                                                                                                                                                            |          |     |
|    | and Aspects assessed in Group Discussion; Concept and                                                                                                                                                                                                    |          |     |
|    | Resume; Concept and Rationale of Group Discussion Skills                                                                                                                                                                                                 |          |     |
|    | Cover Letters and Resume; E-mail and Report; Types of                                                                                                                                                                                                    |          |     |
| 3. | Communication for Career Building                                                                                                                                                                                                                        | 10 Hours | 33% |
|    | Persuasive Communication                                                                                                                                                                                                                                 |          |     |
|    | Communication and Tactics / techniques to resolve them;                                                                                                                                                                                                  |          |     |
|    | with People of Different Cultures; Conflicts in Cross-cultural                                                                                                                                                                                           |          |     |
|    | Communication; Social and People Skills; Communicating                                                                                                                                                                                                   |          |     |
|    | Basic Concepts: Culture, Globalization and Cross-cultural                                                                                                                                                                                                |          |     |

At the end of the course, the students will be able to

| CO1 | Gain thorough understanding and proficiency in various Professional              |
|-----|----------------------------------------------------------------------------------|
|     | Communication Skills.                                                            |
| CO2 | Develop awareness and competence in cross-cultural communication in their        |
|     | personal, academic and professional environments.                                |
| CO3 | Develop business writing and presentation skills to succeed in career.           |
| CO4 | Develop soft skills to stand out and take their career to the next level.        |
| CO5 | Develop various intelligences and open Mindset to function in multi-disciplinary |
|     | and cross-cultural work environment.                                             |
| CO6 | Practice new trends in communication in multiple perspectives at personal,       |
|     | professional, and social level.                                                  |

# **Course Articulation Matrix:**

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |

© CHARUSAT 2020 Page **92** of **170** 

| CO1 | - | - | - | - | - | 2 | 2 | 2 | - | 2 | - | - | - | 2 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO2 | - | - | 2 | - | - | 3 | - | - | 3 | - | - | - | - | 3 |
| CO3 | - | - | ı | ı | ı | ı | ı | ı | ı | 3 | ı | ı | ı | - |
| CO4 | - | - | ı | 1 | ı | ı | 2 | 1 | 3 | 2 | ı | T | ı | 2 |
| CO5 | - | - | - | - | - | 2 | 2 | - | 1 | - | 2 | ı | 1 | 2 |
| CO6 | = | - | ı | ı | ı | ı | ı | ı | ı | 3 | ı | 2 | ı | - |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

### **Recommended Study Material:**

#### **\*** Text book:

- 1. Koneru, A. Professional Communication, Tata McGrow Hill Education Private Limited
- 2. Disanza, J.R. &Legge, N. Business and Professional Communication, Pearson Education
- 3. Raman, M & Singh, P. Business Communication, Oxford University Press

#### Reference book:

- 1. Disanza, J.R. &Legge, N. Business and Professional Communication, Pearson Education
- 2. Anandamurugan, A. Placement Interviews Skills for Success, Tata McGrow Hill Education Private Limited

#### **❖** Web material:

- 1. <a href="https://www.coursera.org/learn/careerdevelopment">https://www.coursera.org/learn/careerdevelopment</a>
- 2. <a href="https://www.futurelearn.com/courses/writing-applications">https://www.futurelearn.com/courses/writing-applications</a>
- 3. <a href="https://www.futurelearn.com/courses/workplace-englis">https://www.futurelearn.com/courses/workplace-englis</a>

© CHARUSAT 2020 Page **93** of **170** 

### **CE346: SUMMER INTERNSHIP-I**

#### **Credits and Hours:**

| <b>Teaching Scheme</b> | Project | Practical | Tutorial | Total | Credit |
|------------------------|---------|-----------|----------|-------|--------|
| Hours                  | 90      | -         | -        | 90    | 3      |
| Marks                  | 150     | -         | -        | 150   |        |

### **Objectives of the Course:**

- To get familiar with modern tools and technologies use in company/industry/organization
- To get involved in design, development and testing practices followed in the company/industry/organization
- To enhance their soft-skills, presentation skills, interpersonal skills, documentation skills and office etiquettes required to sustain in company/industry/organization environment
- To participate in teamwork and preferably as part of a multi-disciplinary team
- To make them aware about company/industry/organization best practices, processes and regulations.
- To make them more productive, consistent and punctual.

#### **Outline of the Course:**

### 1. Instructional Method and Pedagogy

- Summer internship shall be at least 90 hours during the summer vacation only.
- Department/Institute will help students to find an appropriate company/industry/organization for the summer internship.
- The student must fill up and get approved a Summer Internship Acceptance form by the company and provide it to the Coordinator of the department within the specified deadline.
- Students shall commence the internship after the approval of the department Coordinator. Summer internships in research centers is also allowed.
- During the entire period of internship, the student shall obey the rules and regulations of the company/industry/organization and those of the University.
- Due to inevitable reasons, if the student will not able to attend the internship for few days with the permission of the supervisor, the department

© CHARUSAT 2020 Page **94** of **170** 

Coordinator should be informed via e-mail and these days should be compensated later.

- The student shall submit two documents to the Coordinator for the evaluation of the summer internship:
  - Summer Internship Report
  - Summer Internship Assessment Form
- Upon the completion of summer internship, a hard copy of "Summer Internship Report" must be submitted through the presentation to the Coordinator by the first day of the new term.
- The report must outline the experience and observations gained through practical internship, in accordance with the required content and the format described in this guideline. Each report will be evaluated by a faculty member of the department on a satisfactory/unsatisfactory basis at the beginning of the semester.
- If the evaluation of the report is unsatisfactory, it shall be returned to the student for revision and/or rewriting. If the revised report is still unsatisfactory the student shall be requested to repeat the summer internship.

### 2. | Format of Summer Internship Report

The report shall comply with the summer internship program principles. Main headings are to be centered and written in capital boldface letters. Sub-titles shall be written in small letters and boldface. The typeface shall be Times New Roman font with 12pt. All the margins shall be 2.5cm. The report shall be submitted in printed form and filed. An electronic copy of the report shall be recorded in a CD and enclosed in the report. Each report shall be bound in a simple wire vinyl file and contain the following sections:

- Cover Page
- Page of Approval and Grading
- Abstract page: An abstract gives the essence of the report (usually less than
  one page). Abstract is written after the report is completed. It must contain the
  purpose and scope of internship, the actual work done in the plant, and
  conclusions arrived at.

© CHARUSAT 2020 Page **95** of **170** 

- TABLE OF CONTENTS (with the corresponding page numbers)
- LIST OF FIGURES AND TABLES (with the corresponding page numbers)
- DESCRIPTION OF THE COMPANY/INDUSTRY/ORGANISATION: Summarize the work type, administrative structure, number of employees (how many engineers, under which division, etc.), etc. Provide information regarding
  - Location and spread of the company
  - Number of employees, engineers, technicians, administrators in the company
  - Divisions of the company
  - Your group and division
  - Administrative tree (if available)
  - Main functions of the company
  - Customer profile and market share
- INTRODUCTION: In this section, give the purpose of the summer internship, reasons for choosing the location and company, and general information regarding the nature of work you carried out.
- PROBLEM STATEMENT: What is the problem you are solving, and what are the reasons and causes of this problem.
- SOLUTION: In this section, describe what you did and what you observed during the summer internship. It is very important that majority of what you write should be based on what you did and observed that truly belongs to the company/industry/organization.
- CONCLUSIONS: In the last section, summarize the summer internship
  activities. Present your observations, contributions and intellectual benefits. If
  this is your second summer internship, compare the first and second summer
  internships and your preferences.
- REFERENCES: List any source you have used in the document including books, articles and web sites in a consistent format.
- APPENDICES: If you have supplementary material (not appropriate for the main body of the report), you can place them here. These could be schematics, algorithms, drawings, etc. If the document is a datasheet and it can be easily

© CHARUSAT 2020 Page **96** of **170** 

| and waste tons of paper.                   |  |
|--------------------------------------------|--|
|                                            |  |
| Total hours (Project): 90  Total hours: 90 |  |

At the end of the course, the students will be able to

| CO1 | Ability to integrate existing and new technical knowledge for industrial       |
|-----|--------------------------------------------------------------------------------|
|     | application.                                                                   |
| CO2 | Executing work with team and teammates from other disciplines                  |
| CO3 | Get practices and experience related to professional and ethical issues in the |
|     | work environment                                                               |
| CO4 | Experience of demonstrating the impact of the internship on their learning and |
|     | professional development.                                                      |
| CO5 | Understanding of lifelong learning processes through critical reflection of    |
|     | internship experiences.                                                        |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 1   | -   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO2 | -   | -   | -   | -   | -   | -   | -   | -   | 3   | 2    | 1    | -    | -    | 2    |
| CO3 | -   | -   | -   | -   | -   | -   | 1   | 3   | -   | 1    | -    | -    | -    | 1    |
| CO4 | -   | -   | -   | -   | -   |     | 3   | 1   | -   | -    | -    | -    | 1    | -    |
| CO5 | -   |     | -   | -   | -   | 1   | -   | -   | -   | -    | -    | 3    | -    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

# **Recommended Study Material:**

## **\*** Reference book:

1. Books, Magazines & Journals of related topics

### **\*** Web material:

- 1. www.ieeexplore.ieee.org
- 2. www.sciencedirect.com
- 3. www.elsevier.com
- 4. <a href="http://spie.org/x576.xml">http://spie.org/x576.xml</a>

### **❖** Software

- 1. ASP.NET
- 2. PYTHON/MATLAB
- 3. PHP
- 4. ANDROID/IOS
- 5. FLUTTER
- 6. NODE/REACT NATIVE

© CHARUSAT 2020 Page **98** of **170** 

B. Tech. (Computer Engineering) Programme

SYLLABI (Semester - 6)

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

© CHARUSAT 2020 Page **99** of **170** 

# **CE347: INTERNALS OF OPERATING SYSTEM**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   |        |

# **Pre-requisite courses:**

• Operating System

## **Outline of the Course:**

| Sr. | Title of the unit                          | Minimum number |
|-----|--------------------------------------------|----------------|
| No. |                                            | of hours       |
| 1.  | Introduction to the Kernel                 | 03             |
| 2.  | Kernel Memory Allocation                   | 06             |
| 3.  | Internal Representation of Files           | 10             |
| 4.  | The Structure of Processes                 | 06             |
| 5.  | Process Control                            | 06             |
| 6.  | Memory Management Policies                 | 04             |
| 7.  | Interprocess Communication                 | 03             |
| 8.  | Distributed File Systems                   | 02             |
| 9.  | Introduction to System Administration      | 03             |
| 10. | Case Study: RTOS, Network Operating System | 02             |
|     | Total hours (Theory):                      | 45             |
|     | Total hours (Lab):                         | 30             |
|     | Total hours:                               | 75             |

# **Detailed Syllabus:**

| 1. | Introduction to the Kernel                               | 03 Hours | 06% |
|----|----------------------------------------------------------|----------|-----|
|    | Architecture of the Linux/Unix Operating System,         |          |     |
|    | Introduction to system concepts, kernel data structures, |          |     |
|    | system administration                                    |          |     |
| 2. | Kernel Memory Allocation                                 | 06 Hours | 11% |
|    | Introduction, Functional Requirements, Resource Map      |          |     |

|     | Allocator, The McKusick-Karels Allocator, The buddy          |          |     |
|-----|--------------------------------------------------------------|----------|-----|
|     | system, The SVR4 lazy buddy algorithm                        |          |     |
| 3.  | Internal Representation of Files                             | 10 Hours | 18% |
|     | Buffer headers, Structure of the Buffer Pool, Scenarios for  |          |     |
|     | Retrieval of a Buffer, Reading and Writing Disk Blocks,      |          |     |
|     | Inodes, Structure Of A Regular File, Directories, Conversion |          |     |
|     | Of A Path Name To An Inode, Super Block, Node                |          |     |
|     | Assignment To A New File, Allocation Of Disk Blocks,         |          |     |
|     | Other File Types                                             |          |     |
| 4.  | The Structure of Processes                                   | 06 Hours | 15% |
|     | Process States and Transactions, Layout of System Memory,    |          |     |
|     | The Context of a Process, Saving the Context of a Process,   |          |     |
|     | Manipulation of the Process Address Space, Sleep             |          |     |
| 5.  | Process Control                                              | 06 Hours | 16% |
|     | Process Creation, Signals, Process Termination, Awaiting     |          |     |
|     | Process Termination, Invoking other Programs, The User ID    |          |     |
|     | of a Process, Changing the Size of a Process, The SHELL,     |          |     |
|     | System Boot and INIT process                                 |          |     |
| 6.  | Memory Management Policies                                   | 04 Hours | 08% |
|     | Swapping, Demand Paging, A Hybrid system with Swapping       |          |     |
|     | and Demand Paging                                            |          |     |
| 7.  | Interprocess Communication                                   | 03 Hours | 06% |
|     | Process Tracing, System V IPC, Network Communications,       |          |     |
|     | Sockets                                                      |          |     |
| 8.  | Distributed File Systems                                     | 02 Hours | 05% |
|     | General Characteristics Of Distributed File System, Network  |          |     |
|     | File System, Remote File System                              |          |     |
| 9.  | Introduction to System Administration                        | 03 Hours | 10% |
|     | Basics of System Administration                              |          |     |
| 10. | Case Study: RTOS, Network Operating System                   | 02 Hours | 05% |

At the end of the course, the students will be able to

© CHARUSAT 2020 Page **101** of **170** 

| CO1 | Describe an overview of Kernel architecture and outlining basic concepts of file   |
|-----|------------------------------------------------------------------------------------|
|     | subsystem and process, Discover various functionalities of Kernel and apply        |
|     | basic understanding of kernel in subsequent modules.                               |
| CO2 | Compare and Contrast Various Kernel memory allocators based on evaluation          |
|     | criteria and Discuss memory management policies and test the performance on        |
|     | various paging algorithms.                                                         |
| CO3 | Examine internal structure of file and develop lower level file system algorithms. |
| CO4 | Interpret and formulate context of a process theoretically and programmatically,   |
|     | examine how one process traces and controls the execution of other process and     |
|     | implement system calls that control the process context.                           |
| CO5 | Review the traditional methods by which process communicate with processes         |
|     | on other machines over a network and to Summarize the characteristics of           |
|     | Distributed File system to conclude strength and weakness of network file          |
|     | systems.                                                                           |
| CO6 | Describe basics of system administration in operating system and Apply             |
|     | various operating system concepts to understand case study of RTOS and             |
|     | Network Operating system.                                                          |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | -   | -   | -   | -   | 1   | -   | -   | 1   | -   | -    | -    | 1    | -    | -    |
| CO2 | 2   | 1   | -   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO3 | 2   | -   | 2   | 2   | 3   | -   | -   | -   | -   | -    | ı    | =    | 2    | -    |
| CO4 | 3   | -   | 3   | -   | 3   | -   | -   | -   | -   | -    | ı    | -    | 3    | -    |
| CO5 | 1   | 1   | -   | 1   | 2   | -   | -   | -   | -   | -    | ı    | 1    | =    | -    |
| CO6 | -   | -   | -   | 1   | 2   | 1   | -   | -   | _   | -    | -    | 2    | 1    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

© CHARUSAT 2020 Page **102** of **170** 

### **Recommended Study Material:**

### **Text book:**

- J.Maurice Bach, "The Design of the Unix Operating System", Third Edition, Pearson Education, 2015
- 2. Uresh Vahalia, "Unix Internals: The New Frontiers", Pearson Education, 2008
- 3. Michael Beck, Mirko Dziadzka, Claus Schroter, Dirk Verworner "Linux Kernel Programming" 3rd Edition, Pearson Education

### **Reference book:**

- 1. Robert Love, "Linux Kernel Development", 3<sup>rd</sup> Edition, Addison Wesley
- 2. David Reilly and Michael Reilly "Java Network Programming and Distributed Computing", Addison-Wesley

#### **\*** Web material:

1. Video lectures and Lecture Notes on "Operating Systems" by Prof. P.K. Biswas sir, IITKGP

### **Software:**

1. Virtual box 6.0

© CHARUSAT 2020 Page **103** of **170** 

# **CE348: INFORMATION SECURITY**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 4      | 2         | -        | 6     | 5      |
| Marks           | 100    | 50        | -        | 150   |        |

# **Pre-requisite courses:**

• N/A

# **Outline of the Course:**

| Sr. | Title of the unit                                 | Minimum number |
|-----|---------------------------------------------------|----------------|
| No. |                                                   | of hours       |
| 1.  | Introduction                                      | 02             |
| 2.  | Traditional Symmetric-Key Ciphers                 | 05             |
| 3.  | Introduction to Modern Symmetric-Key Ciphers      | 04             |
| 4.  | Data Encryption Standard (DES)                    | 04             |
| 5.  | Advanced Encryption Standard (AES)                | 04             |
| 6.  | Encipherment Using Modern Symmetric-Key Ciphers   | 04             |
| 7.  | Asymmetric-Key Cryptography                       | 05             |
| 8.  | Message Integrity and Message Authentication      | 04             |
| 9.  | Cryptographic Hash Functions                      | 04             |
| 10. | Digital Signature                                 | 04             |
| 11. | Entity Authentication                             | 04             |
| 12. | Key Management                                    | 04             |
| 13. | Security at the Application Layer: PGP and S/MIME | 04             |
| 14. | Security at the Transport Layer: SSL and TLS      | 04             |
| 15. | Security at the Network Layer: IPSec              | 04             |
|     | Total hours (Theory):                             | 60             |
|     | Total hours (Lab):                                | 30             |
|     | Total hours:                                      | 90             |

© CHARUSAT 2020 Page **104** of **170** 

# **Detailed Syllabus:**

| 1.  | Introduction                                                    | 02 Hours | 06% |
|-----|-----------------------------------------------------------------|----------|-----|
|     | Security Goals, Attacks, Services and Mechanism and             |          |     |
|     | Techniques.                                                     |          |     |
| 2.  | Traditional Symmetric-Key Ciphers                               | 05 Hours | 10% |
|     | Introduction, Substitution Cipher, Transposition Cipher, Stream |          |     |
|     | and Block Cipher                                                |          |     |
| 3.  | Introduction to Modern Symmetric-Key Ciphers                    | 04 Hours | 06% |
|     | Modern Block Cipher, Modern Stream Cipher                       |          |     |
| 4.  | Data Encryption Standard (DES)                                  | 04 Hours | 05% |
|     | Introduction, DES structure and Analysis, Multiple DES          |          |     |
| 5.  | Advanced Encryption Standard (AES)                              | 04 Hours | 05% |
|     | Introduction, AES structure and Analysis                        |          |     |
| 6.  | <b>Encipherment Using Modern Symmetric-Key Ciphers</b>          | 04 Hours | 06% |
|     | Use of Modern Block Ciphers, Use of Modern Stream Ciphers       |          |     |
| 7.  | Asymmetric-Key Cryptography                                     | 05 Hours | 10% |
|     | Introduction, RSA Cryptosystem, RABIN Cryptosystem,             |          |     |
|     | ELGAMAL Cryptosystem                                            |          |     |
| 8.  | Message Integrity and Message Authentication                    | 04 Hours | 08% |
|     | Message Integrity, Message Authentication                       |          |     |
| 9.  | Cryptographic Hash Functions                                    | 04 Hours | 08% |
|     | Introduction, SHA-512,MD5                                       |          |     |
| 10. | Digital Signature                                               | 04 Hours | 06% |
|     | Services,RSA Digital Signature Scheme,ELGamal Digital           |          |     |
|     | Signature Scheme                                                |          |     |
| 11. | Entity Authentication                                           | 04 Hours | 04% |
|     | Passwords, Challenge –Response, Zero – Knowledge                |          |     |
| 12. | Key Management                                                  | 04 Hours | 08% |
|     | Symmetric-Key Distribution, KERBEROS                            |          |     |
| 13. | Security at the Application Layer: PGP and S/MIME               | 04 Hours | 06% |
|     | E-Mail, PGP,S/MIME                                              |          |     |
| 14. | Security at the Transport Layer: SSL and TLS                    | 04 Hours | 06% |

© CHARUSAT 2020 Page **105** of **170** 

|     | SSL Architecture, TLS cipher suite   |          |     |
|-----|--------------------------------------|----------|-----|
| 15. | Security at the Network Layer: IPSec | 04 Hours | 06% |
|     | Introduction to IPSec                |          |     |

At the end of the course, the students will be able to

| CO1 | Define various security goal and understand the security policies such as the CIA triad of Confidentiality, Integrity and Availability.                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Classify various forms of security attacks, where they arise, and appropriate tools or mechanism to quantify them.                                            |
| CO3 | Illustrate a basic understanding of cryptography, how it has evolved, and evaluate symmetric key encryption techniques used today.                            |
| CO4 | Distinguish modern symmetric encryption standard, key distribution scenario and analyse effectiveness in todays' environment.                                 |
| CO5 | Evaluate Asymmetric key encryption techniques, key distribution scenario and calculate public and private components of asymmetric key encryption techniques. |
| CO6 | Develop message integrity and message authentication of message digest.                                                                                       |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 2   | -   | -   | 3   | 1   | -   | 2   | 1   | -    | -    | -    | -    | -    |
| CO2 | 2   | 3   | 3   | 2   | 3   | 1   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO3 | 2   | 2   | 3   | 2   | 3   | 2   | -   | -   | 2   | 1    | -    | -    | 2    | -    |
| CO4 | 2   | 2   | 3   | 2   | 3   | -   | 2   | -   | 2   | 1    | -    | -    | 3    | 1    |
| CO5 | 3   | 2   | 3   | 2   | 1   | -   | 2   | 1   | 1   | -    | -    | -    | 3    | 1    |
| CO6 | 2   | 2   | 3   | 1   | -   | -   | 2   | 2   | 1   | -    | 2    | -    | 2    | 2    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

#### **\*** Text book:

**1.** Cryptography and Network Security, Behrouz A. Forouzan, McGraw-Hill Companies.

#### **\*** Reference book:

- 1. Cryptography And Network Principles And Practice, William Stallings, Prentice Hall, Pearson Education Asia.
- 2. Cryptography & Network Security, Atul Kahate, The McGraw-Hill Companies.
- 3. The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations by Gene Kim, Jez Humble, Patrick Debois, and John Willis

### **❖** Web material:

- 1. <a href="http://people.csail.mit.edu/rivest/crypto-security.html">http://people.csail.mit.edu/rivest/crypto-security.html</a>.
- 2. <a href="http://www.cryptix.org/">http://www.cryptix.org/</a>
- 3. <a href="http://www.cryptocd.org/">http://www.cryptocd.org/</a>
- 4. <a href="http://www.cryptopp.com/">http://www.cryptopp.com/</a>
- 5. http://www.freetechbooks.com/information-security-f52.html

#### **Software:**

- 1. Nmap
- 2. Wireshark

© CHARUSAT 2020 Page **107** of **170** 

## **CE349: THEORY OF COMPUTATION**

# **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |  |
|-----------------|--------|-----------|----------|-------|--------|--|
| Hours/week      | 3      | 0         | -        | 3     | 3      |  |
| Marks           | 100    | 0         | -        | 100   |        |  |

# **Pre-requisite courses:**

• Mathematics, Data Structures and Algorithms, Design and Analysis of Algorithm (Computational Complexity)

## **Outline of the Course:**

| Sr. | Title of the unit                                       | Minimum number |  |  |
|-----|---------------------------------------------------------|----------------|--|--|
| No. |                                                         | of hours       |  |  |
| 1   | Introduction                                            | 03             |  |  |
| 2   | Mathematical Terms and Theory                           | 05             |  |  |
| 3   | Regular Grammar & Languages, Regular Expression, Finite | 14             |  |  |
|     | Automata                                                |                |  |  |
| 4   | Context Free Grammar & Languages, Push down Automata    | 13             |  |  |
| 5   | Turing Machine, Recursively Enumerable Languages        | 08             |  |  |
| 6   | Decidable & Undecidable Problems                        | 02             |  |  |
|     | Total hours (Theory):                                   | 45             |  |  |
|     | Total hours (Lab):                                      | 00             |  |  |
|     | Total hours:                                            | 45             |  |  |

# **Detailed Syllabus:**

| 1. | Introduction                                        | 03 Hours | 06 % |
|----|-----------------------------------------------------|----------|------|
|    | Alphabet, String, Language, Formal Grammar, Chomsky |          |      |
|    | Hierarchy, Introduction to Automata                 |          |      |
| 2. | Mathematical Terms and Theory                       | 05 Hours | 10 % |
|    | Mathematical Inductions, Recursive Definitions      |          |      |
| 3. | Regular Grammar & Languages, Regular Expression,    | 14 Hours | 32 % |
|    | Finite Automata                                     |          |      |

© CHARUSAT 2020 Page **108** of **170** 

|    | Regular Language, Regular Expressions, Applications,    |          |      |
|----|---------------------------------------------------------|----------|------|
|    | Chomsky Hierarchy, Finite Automata, Nondeterministic    |          |      |
|    | Finite Automata, Kleen's Theorem, Automata with Output  |          |      |
|    | (Moore Machine, Mealy Machine), Properties of Regular   |          |      |
|    | Languages (Pumping Lemma, Closure Property, Decision    |          |      |
|    | Algorithm)                                              |          |      |
| 4. | Context Free Grammar & Languages, Push down             | 13 Hours | 30 % |
|    | Automata                                                |          |      |
|    | The Chomsky, Notion of Grammars and Languages           |          |      |
|    | Generated by Grammars, CFG, CFL, Regular Language and   |          |      |
|    | Regular Grammar, Derivation Tree and Ambiguity, BNF,    |          |      |
|    | CNF, GNF, CFL properties (Pumping Lemma, Closure        |          |      |
|    | Property, Decision Algorithm), Intersections and        |          |      |
|    | Complements of CFL, Non-CFL, Definition, DPDA, NPDA,    |          |      |
|    | Equivalence of CFG and PDA                              |          |      |
| 5. | Turing Machine, Recursively Enumerable Languages        | 10 Hours | 20%  |
|    | Definition, Model of Computation, Combining TM,         |          |      |
|    | Variations of TM, Non Deterministic TM, Universal TM,   |          |      |
|    | Recursively Enumerable and Recursive, Enumerable        |          |      |
|    | Languages, Context sensitive languages                  |          |      |
| 6. | Decidable & Undecidable Problems                        | 02 Hours | 04 % |
|    | Tractable and Intractable Problems, Complexity Classes, |          |      |
|    | Tractable and Possibly Intractable Problems, P and NP   |          |      |
| 1  |                                                         |          |      |

# **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Apply basic concepts of theory of computation in the computer field in order to |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------|--|--|--|--|--|--|
|     | solve computational problems.                                                   |  |  |  |  |  |  |
| CO2 | Construct algorithms for different problems and argue formally about            |  |  |  |  |  |  |
|     | correctness on different restricted machine models of computation.              |  |  |  |  |  |  |
| CO3 | Analyze and design finite automata, pushdown automata and Turing machine for    |  |  |  |  |  |  |
|     | formal languages.                                                               |  |  |  |  |  |  |

© CHARUSAT 2020 Page **109** of **170** 

| CO4 | Apply rigorously formal mathematical methods to prove properties of languages, |
|-----|--------------------------------------------------------------------------------|
|     | grammars and automata.                                                         |
| CO5 | Identify limitations of some computational models and possible solutions.      |
| CO6 | Design context free grammars for formal languages.                             |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO2 | -   | -   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO3 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO4 | 2   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO5 | 2   | 1   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO6 | 2   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

### **Recommended Study Material:**

### Text book:

1. Introduction to Languages and Theory of Computation, John C. Martin, TMH

### **\*** Reference book:

- An introduction to automata theory and formal languages, Adesh K. Pandey,
   K. Kataria & Sons
- 2. Introduction to computer theory, Deniel I. Cohen, John Wiley & Sons Inc
- 3. Computation: Finite and Infinite, Marvin L. Minsky, Prentice-Hall
- 4. "An introduction to Formal Languages and Automata", Peter Linz, 6th edition, Jones & Bartlett Learning
- 5. "Introduction to the Theory of Computation", Michael Sipser, 3rd edition, Cengage Learning.

© CHARUSAT 2020 Page **110** of **170** 

### **\*** Web material:

- 1. https://www.youtube.com/playlist?list=PLEbnTDJUr\_IdM\_\_\_FmDFBJBz0zC sOFxfK
- 2. http://nptel.ac.in/courses/106103070/
- 3. http://nptel.ac.in/courses/106104028/
- 4. http://nptel.ac.in/courses/106106049/
- 5. https://www.youtube.com/watch?v=4GLC-s0PQLY

© CHARUSAT 2020 Page **111** of **170** 

## **CE350: DATAWAREHOUSING & DATA MINING**

### **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   | _      |

## **Pre-requisite courses:**

• A course in database systems is recommended, as is a basic course on algorithms and data structures.

## **Outline of the Course:**

| Sr. | Title of the unit                             | Minimum number |
|-----|-----------------------------------------------|----------------|
| No. |                                               | of hours       |
| 1.  | Introduction to Data Warehousing              | 06             |
| 2.  | Concepts and techniques in Data Warehousing   | 06             |
| 3.  | Introduction to data mining (DM)              | 06             |
| 4.  | Data Pre-processing                           | 08             |
| 5.  | Concept Description & Association Rule Mining | 08             |
| 6.  | Classification and Prediction                 | 07             |
| 7.  | Advance topics                                | 04             |
|     | Total hours (Theory):                         | 45             |
|     | Total hours (Lab):                            | 30             |
|     | Total hours:                                  | 75             |

## **Detailed Syllabus:**

| 1. | Overview and concepts Data Warehousing                      | 06 Hours | 14% |
|----|-------------------------------------------------------------|----------|-----|
|    | What is data warehousing - The building Blocks, Defining    |          |     |
|    | Features – Data warehouses and data marts, Overview of the  |          |     |
|    | components, Metadata in the data warehouse, Need for data   |          |     |
|    | warehousing, Basic elements of data warehousing, Trends in  |          |     |
|    | data warehousing.                                           |          |     |
| 2. | OLAP in Data Warehouse                                      | 06 Hours | 14% |
|    | OLAP (Online analytical processing) definitions, Difference |          |     |

© CHARUSAT 2020

|    | between OLAP and OLTP, Dimensional analysis - What are                                                        |          |     |
|----|---------------------------------------------------------------------------------------------------------------|----------|-----|
|    | cubes?, Drill-down and roll-up - slice and dice or rotation,                                                  |          |     |
|    | OLAP models, ROLAP versus MOLAP, defining schemas:                                                            |          |     |
|    | Stars, snowflakes and fact constellations                                                                     |          |     |
| 3. | Introduction to data mining (DM)                                                                              | 06 Hours | 14% |
|    | DM Functionalities, Classification of DM Systems, Issues in                                                   |          |     |
|    | DM – KDD Process                                                                                              |          |     |
| 4. | Data Pre-processing                                                                                           | 08 Hours | 18% |
|    | Why to pre-process data?, Data cleaning: Missing Values,                                                      |          |     |
|    | Noisy Data, Data Integration and transformation, Data                                                         |          |     |
|    | Reduction: Data cube aggregation, Dimensionality reduction,                                                   |          |     |
|    | Data Compression, Numerosity Reduction, Data Mining                                                           |          |     |
|    | Primitives, Languages and System Architectures: Task                                                          |          |     |
|    | relevant data, Kind of Knowledge to be mined, Discretization                                                  |          |     |
|    | and Concept Hierarchy.                                                                                        |          |     |
| 5. | <b>Concept Description and Association Rule Mining</b>                                                        | 08 Hours | 18% |
|    | What is concept description? Data Generalization and                                                          |          |     |
|    | summarization-based characterization, Attribute relevance                                                     |          |     |
|    | class comparisons Association Rule Mining, Market basket                                                      |          |     |
|    | analysis- basic concepts, Finding frequent item sets: Apriori                                                 |          |     |
|    | algorithm - generating rules                                                                                  |          |     |
| 6. | Classification and Prediction                                                                                 | 07 Hours | 16% |
|    | What is classification and prediction?, Issues Classification                                                 |          |     |
|    | using Decision trees, Linear and nonlinear regression,                                                        |          |     |
|    | Introduction of tools such as DBMiner /WEKA DM Tools                                                          |          |     |
| 7. | Advance topics                                                                                                | 04 Hours | 06% |
|    | Introduction of clustering, Spatial mining, Web mining, Text                                                  |          |     |
|    | mining, Big Data: Introduction to Big Data and Hadoop,                                                        |          |     |
|    | What is Big Data and what are the challenges to process Big                                                   |          |     |
| 1  |                                                                                                               |          | Ī   |
|    | Data, What technologies supports Big Data, Hadoop                                                             |          |     |
|    | Data, What technologies supports Big Data, Hadoop introduction and its history, Hadoop vs RDBMS, Introduction |          |     |
|    |                                                                                                               |          |     |

© CHARUSAT 2020 Page **113** of **170** 

### **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Interpret the contribution of data warehousing and data mining to the decision-                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | support level of organizations.                                                                                                                                                                             |
| CO2 | Apply pre-processing statistical methods for any given raw data.                                                                                                                                            |
| CO3 | Design and Evaluate different dimensional modelling used for OLAP.                                                                                                                                          |
| CO4 | Categorize and differentiate between situations for applying different datamining techniques: frequent pattern mining, association, correlation, classification, prediction, cluster, and outlier analysis. |
| CO5 | Evaluate the performance of different data-mining models/algorithms with respect to their accuracy.                                                                                                         |
| CO6 | Conceptualise a data mining solution to a practical problem.                                                                                                                                                |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1 | 2   | 1   | -   | -   | 1   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO2 | 2   | 1   | 2   | -   | 2   | -   | -   | -   | -   | -    | -    | 1    | 1    | -    |
| CO3 | -   | 2   | 3   | -   | 3   | -   | 1   | -   | -   | -    | -    | 2    | 1    | 2    |
| CO4 | 2   | 2   | 1   | 2   | 3   | 1   | 2   | -   | -   | -    | -    | 2    | 2    | -    |
| CO5 | 1   | 2   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 1    | 1    | -    |
| CO6 | -   | 2   | 2   | 2   | 2   | -   | 1   | -   | -   | -    | =    | 2    | 1    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

- **❖** Text Books:
  - 1. "Data Mining Concepts and Techniques", J. Han, M. Kamber, Morgan Kaufmann
  - 2. "Data Warehousing Fundamentals", Paulraj Ponnian, John Willey.

### **A** Reference Books:

- 1. "Data mining: Concepts, models, methods and algorithms, M. Kantardzic, John Wiley &Sons Inc.
- 2. "Data Mining: Introductory and Advanced Topics", M. Dunham, Pearson Education.
- 3. "Data Mining", Pieter Adriaans, Dolf Zantinge, Pearson Education Asia

### **Web Materials:**

- 1. http://www.dataminingblog.com
- 2. http://www.kdnuggest.com

© CHARUSAT 2020 Page **115** of **170** 

### **CE353: SOFTWARE GROUP PROJECT -IV**

### **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 0      | 4         | -        | 4     | 4      |
| Marks           | 0      | 200       | -        | 200   | -      |

### **Pre-requisite courses:**

• Programming Knowledge

### **Outline of the Course:**

- Student at the beginning of a semester may be advised by his/her supervisor (s) for recommended courses.
- Students will work together in a team (at most three) with any programming language.
- Students are required to get approval of project definition from the department.
- After approval of project definition students are required to report their project work on a weekly basis to the respective internal guide.
- Project will be evaluated at least once per week in laboratory Hours during the semester and final submission will be taken at the end of the semester as a part of continuous evaluation.
- Project work should include whole SDLC of development of software / hardware system as a solution of particular problem by applying principles of Software Engineering.
- Students have to submit project with following listed documents at the time of final submission.
  - a. Project Synopsis
  - b. Software Requirement Specification
  - c. SPMP
  - d. Final Project Report
  - e. Project Setup file with Source code
  - f. Project Presentation (PPT)

© CHARUSAT 2020 Page **116** of **170** 

• A student has to produce some useful outcome by conducting experiments or project work.

Total hours (Theory): 00

Total hours (Lab): 60

Total hours: 60

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Prepare team formation strategies and stages leading to the development of high performing, self-managing teams.       |
|-----|------------------------------------------------------------------------------------------------------------------------|
| CO2 | Identify and define the computing requirements of a problem to propose its appropriate solution.                       |
| CO3 | Correlate knowledge of different subjects and apply theoretical knowledge to implement project for identified problem. |
| CO4 | Apply engineering and management principles to achieve project goal.                                                   |
| CO5 | Write technical report and deliver presentation by applying different visualization tools and evaluation metrics.      |
| CO6 | An ability to communicate effectively with a range of audiences.                                                       |
| CO7 | Recognition of the need for and an ability to engage in continuing professional development.                           |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | -   | 2   | -   | -   | -   | -   | -   | -   | 3   | -    | -    | 1    | -    | 2    |
| CO2 | -   | 3   | 1   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO3 | 3   | -   | 2   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO4 | 3   | -   | -   | 2   | -   | -   | 1   | -   | -   | -    | -    | -    | 3    | -    |
| CO5 | -   | -   | -   | -   | 2   | -   | -   | -   | -   | 1    | 3    | -    | -    | 2    |
| CO6 | -   | -   | -   | -   | -   | 2   | -   | -   | -   | 3    | -    | 1    | -    | 2    |
| CO7 | -   | -   | -   | -   | -   | 1   | -   | 2   | -   | -    | -    | 3    | -    | 1    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

### **Reference book:**

1. Books, Magazines & Journals of related topics

## **❖** Web material:

- 1. www.ieeexplore.ieee.org
- 2. www.sciencedirect.com
- 3. www.elsevier.com
- 4. http://spie.org/x576.xml

### **Software:**

- 1. ASP.NET
- 2. PYTHON/MATLAB
- 3. PHP
- 4. ANDROID/IOS

© CHARUSAT 2020 Page **118** of **170** 

# **CE374: Service Oriented Computing (PE-II)**

### **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 3      | 2         | -        | 5     | 4      |
| Marks                  | 100    | 50        | -        | 150   | -      |

## **Pre-requisite courses:**

• N/A

### **Outline of the Course:**

| Sr. | Title of the unit                                                               | Minimum number |
|-----|---------------------------------------------------------------------------------|----------------|
| No. |                                                                                 | of hours       |
| 16. | Overview of SOA                                                                 | 03             |
| 17. | SOA — Architecture Fundamentals                                                 | 06             |
| 18. | Web Services and Contemporary SOA (Part I: Activity Management and Composition) | 06             |
| 19. | Web Services and Contemporary SOA (Part II:                                     | 08             |
| 20. | Building SOA (Planning and Analysis)                                            | 06             |
| 21. | Building SOA (Technology and Design)                                            | 10             |
| 22. | Fundamental WS-* Extensions                                                     | 06             |

Total hours (Theory): 45

Total hours (Lab): 30

Total hours: 75

## **Detailed Syllabus:**

| 1. | Overview of SOA                                            | 03 Hours | 07% |
|----|------------------------------------------------------------|----------|-----|
|    | The Promise of SOA, The Challenges of SOA: Reuse,          |          |     |
|    | Efficiency in Development, Integration of Applications and |          |     |
|    | Data, Agility, Flexibility, and Alignment.Meeting the      |          |     |
|    | Challenge Reference Architecture Common Semantics          |          |     |
|    | Governance Business Process Modelling Design-Time          |          |     |

|    | Service Discovery Model-Based Development                     |          |     |
|----|---------------------------------------------------------------|----------|-----|
| 2. | SOA — Architecture Fundamentals                               | 06 Hours | 13% |
|    | Architectural Styles, Architectural Principles and Practices, |          |     |
|    | SOA and Other Architectures, Enterprise Architecture,         |          |     |
|    | Software Architecture, EA, 4+1, and Services, What Is a       |          |     |
|    | Service?, Service Characteristics: Service, Granularity,      |          |     |
|    | Service Dimensions, Loose Coupling Is King: Location          |          |     |
|    | Transparency, Interface and Implementation, Data,             |          |     |
|    | Versioning, Interoperability and Platform Independence,       |          |     |
|    | Usage, Assumptions, and Knowledge, Common Service             |          |     |
|    | Patterns, Service Types and Purpose, SOA Reference            |          |     |
|    | Architecture.                                                 |          |     |
| 3. | Web Services and Contemporary SOA (Part I: Activity           | 06 Hours | 13% |
|    | Management and Composition)                                   |          |     |
|    | Message exchange patterns, Service activity, Coordination,    |          |     |
|    | Atomic transactions, Business activities, Orchestration       |          |     |
| 4. | Web Services and Contemporary SOA (Part II:Advanced           | 08 Hours | 18% |
|    | Messaging, Metadata, and Security                             |          |     |
|    | Addressing, Reliable messaging, Correlation, Policies,        |          |     |
|    | Metadata exchange, Security, Notification and eventing        |          |     |
| 5. | <b>Building SOA (Planning and Analysis)</b>                   | 06 Hours | 13% |
|    | SOA Delivery Strategies: SOA delivery lifecycle phases, The   |          |     |
|    | top-down strategy, The bottom-up strategy, Service            |          |     |
|    | Modeling: Service modeling guidelines, Classifying            |          |     |
|    | service model logic.                                          |          |     |
| 6. | Building SOA (Technology and Design)                          | 10 Hours | 23% |
|    | WSDL-related XML Schema language basics, WSDL                 |          |     |
|    | language basics, SOAP language basics, Composition            |          |     |
|    | Guidelines: Steps to composing SOA, Considerations for        |          |     |
|    | choosing service layers, Considerationsfor positioning core   |          |     |
|    | SOA standardsService Design: Service design overview,         |          |     |

© CHARUSAT 2020 Page **120** of **170** 

|            | Entity-centricbusiness service design (a step-by-step       |           |       |
|------------|-------------------------------------------------------------|-----------|-------|
|            | process), Application service design, Task-centric business |           |       |
|            | servicedesign Business Process Design: WS-BPEL language     |           |       |
|            | basics, WS-Coordination overview.                           |           |       |
| 7.         | Fundamental WS-* Extensions                                 | 06 Hours  | 13%   |
| <b>' •</b> | I direction vib Extensions                                  | oo mours  | 13 /0 |
|            | WS-Addressing, WS-ReliableMessaging, WS-Policy, WS-         | 00 110013 | 13 /0 |
|            |                                                             | Voltours  | 13 /0 |

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Define various promise and challengesof service oriented architecture.                                                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Classify various forms of architectures, integration and interoperability of architecture principles.                         |
| CO3 | Illustrate a basic understanding of activity management, how it has evolved, and evaluate composition and message exchanging. |
| CO4 | Classifying delivery life cycle phase and analyseservice model logic.                                                         |
| CO5 | Evaluate web services using SOAP, WSDLand create application service design.                                                  |
| CO6 | Explore platforms such as J2EE and .Net for reliable messaging, security and policies for efficient service discovery.        |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 2   | -   | -   | 3   | 1   | -   | 2   | 1   | -    | -    | -    | -    | -    |
| CO2 | 2   | 3   | 3   | 2   | 3   | 1   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO3 | 2   | 2   | 3   | 2   | 3   | 2   | -   | -   | 2   | 1    | ı    | ı    | 2    | -    |
| CO4 | 2   | 2   | 3   | 2   | 3   | ı   | 2   | ı   | 2   | 1    | ı    | ı    | 3    | 1    |
| CO5 | 3   | 2   | 3   | 2   | 1   | -   | 2   | 1   | 1   | -    | -    | -    | 3    | 1    |
| CO6 | 2   | 2   | 3   | 1   | -   | -   | 2   | 2   | 1   | -    | 2    | -    | 2    | 2    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) If there is no correlation, put "-"

### **Recommended Study Material:**

### **❖** Text book:

- Mike Rosen, Boris Lublinsky, Kevin T. Smith, Marc J. Balcer "Applied SOA:Service-Oriented Architectureand Design Strategies" WileyPublishing, Inc, 2008
- Thomas Erl, "Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall Publication, 2008

### \* Reference book:

- Norbert Bieberstein, Sanjay Bose, Marc Fiammante, Keith Jones, Rawn Shah, "Service-Oriented Architecture Compass: Business Value, Planning, and Enterprise Roadmap", IBM Press Publication, 2005.
- 2. Thomas Erl, "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services", Prentice Hall Publication, 2004.
- SanjivaWeerawarana, Francisco Curbera, Frank Leymann, Tony Storey, DonaldF.Ferguson, "Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS- Addressing, WS-BPEL, WS-Reliable Messaging, and More", Prentice HallPublication, 2005.
- 4. Eric Newcomer, Greg Lomow, "Understanding SOA with Web Services", Addison Wesley Publication, 2004.
- 5. ERL, T.; Service-oriented architecture: a field guide to integrating XML and Web services, Prentice Hall PTR, 2004, ISBN- 0131428985.

### **Web material:**

- 1. https://www.ibm.com/developerworks/library/ws-top10/
- 2. http://www.oracle.com/technetwork/articles/javase/soa-142870.html
- 3. https://docs.oracle.com/javaee/6/tutorial/doc/gijti.html.

© CHARUSAT 2020 Page **122** of **170** 

## **CE375: DIGITAL IMAGE PROCESSING (PE-II)**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   |        |

# **Pre-requisite courses:**

• Computer Graphics

## **Outline of the Course:**

| Sr. | Title of the unit                             | Minimum number |
|-----|-----------------------------------------------|----------------|
| No. |                                               | of hours       |
| 1.  | Digital Image Fundamentals                    | 04             |
| 2.  | Spatial Domain Image Enhancement Techniques   | 06             |
| 3.  | Frequency Domain Image Enhancement Techniques | 05             |
| 4.  | Image Restoration                             | 04             |
| 5.  | Colour Image Processing                       | 02             |
| 6.  | Image Compression                             | 03             |
| 7.  | Image Segmentation                            | 06             |
| 8.  | Morphological Image Processing                | 06             |
| 9.  | Representation & Description                  | 03             |
| 10. | Applications of Image Processing              | 06             |
|     | Total hours (Theory):                         | 45             |
|     | Total hours (Lab):                            | 30             |
|     | Total hours:                                  | 75             |

# **Detailed Syllabus:**

| 1. | Digital Image Fundamentals                                     | 04 Hours | 10% |
|----|----------------------------------------------------------------|----------|-----|
|    | Image Basics, Elements of visual perception, Human Eye         |          |     |
|    | Structure, Why digital images, The digital camera, Data types  |          |     |
|    | and 2d representation of digital images, Application fields of |          |     |
|    | Image Processing, Image Acquisition Techniques, Single         |          |     |
|    | Sensor, Strip, Array Sensor, Image sampling and quantization,  |          |     |
|    | Discrete sampling model Quantization, Noise processes,         |          |     |
|    | Spatial & Grey level resolution, Image attributes, Image       |          |     |

© CHARUSAT 2020 Page **123** of **170** 

|    | Types, Basic relationship between pixels Neighbourhood          |          |     |
|----|-----------------------------------------------------------------|----------|-----|
|    | Adjacency and Distance measures                                 |          |     |
| 2. | Spatial Domain Image Enhancement Techniques                     | 06 Hours | 13% |
|    | Intensity based transforms- power law, log ,image negative,     |          |     |
|    | Histogram based transforms- Histogram processing,               |          |     |
|    | Equalization, Local Enhancement, Specification, Image           |          |     |
|    | Averaging, Subtraction, AND-OR-NOT Operations between           |          |     |
|    | images, Smoothing Filters- Linear Filters, Order Statistic      |          |     |
|    | Filters, Sharpening Filters-Laplacian Filter, Unsharp masking   |          |     |
|    | , high boost filtering                                          |          |     |
| 3. | Frequency Domain Image Enhancement Techniques                   | 05 Hours | 10% |
|    | Introduction to signal-frequency concept, Discrete Fourier      |          |     |
|    | Transform and Inverse Transform, properties of Fourier          |          |     |
|    | Transform ,1D Fourier Transform, 2D Fourier Transform,          |          |     |
|    | Frequency Filtering Concepts, Smoothing Filters(Low pass        |          |     |
|    | Filters)- Ideal low-pass, Butterworth low-pass, Gaussian low-   |          |     |
|    | pass filters, Sharpening Filters(High-Pass filters)- Ideal,     |          |     |
|    | Butterworth, Gaussian, Laplacian Filter in Frequency domain,    |          |     |
|    | Unsharp masking , high boost filtering ,Homomorphic             |          |     |
|    | Filtering , Convolution & Correlation Theorem , Fast Fourier    |          |     |
|    | Transform                                                       |          |     |
| 4. | Image Restoration                                               | 04 Hours | 10% |
|    | Image Degradation-Restoration Model, Noise Models, Noise        |          |     |
|    | probability density functions, Noise estimation parameters,     |          |     |
|    | Spatial Domain Restoration- Mean filters – Arithmetic mean,     |          |     |
|    | Geometric mean, Harmonic mean Order Statistics Filters-         |          |     |
|    | Median filter, Max & min filter, Midpoint filter, Alpha         |          |     |
|    | trimmed filter, Adaptive filters, Adaptive local noise filter,  |          |     |
|    | Adaptive median filter, Frequency Domain Restoration            |          |     |
|    | Techniques- Band reject filter, Band-pass filter, Notch filter, |          |     |
|    | Optimum Notch filter, Estimation of Degradation function-By     |          |     |
|    | experiment, By Modeling, Inverse Filtering, Wiener Filtering,   |          |     |
|    | Constrained Least Square Filtering, Geometric Mean filter       |          |     |

© CHARUSAT 2020 Page **124** of **170** 

| 5. | Colour Image Processing                                        | 02 Hours | 03% |
|----|----------------------------------------------------------------|----------|-----|
|    | Colour fundamentals , Colour Models, HIS, YIQ, RGB,            |          |     |
|    | CMYK, CIE Lab, XYZ, Intensity Slicing, Grey level to Colour    |          |     |
|    | Transform, Tone & Colour Correction, Histogram Processing,     |          |     |
|    | Smoothing, Sharpening, Segmentation                            |          |     |
| 6. | Image Compression                                              | 03 Hours | 10% |
|    | Fundamental to Data Compression, Information Theory, Rate      |          |     |
|    | Distortion Theory, Redundancy- Coding, Inter-pixel, psycho-    |          |     |
|    | visual redundancy, Fidelity, Image Compression Models,         |          |     |
|    | Lossless Compression theorem- Huffman, Arithmetic Coding,      |          |     |
|    | LZW, Bit-Plane Coding, Run Length Encoding, Contour            |          |     |
|    | Coding, Lossless predictive Coding , Lossy predictive Coding-  |          |     |
|    | Transform Coding, DCT, KLT, Wavelet, JPEG Compression,         |          |     |
|    | JPEG2000                                                       |          |     |
| 7. | Image Segmentation                                             | 06 Hours | 13% |
|    | Detection of Discontinuities, Point Detection, Line Detection, |          |     |
|    | Edge Detection, Edge Linking and Boundary Detection, Local     |          |     |
|    | Processing, Global Processing via the Hough Transform,         |          |     |
|    | Global Processing via Graph Theoretic Techniques,              |          |     |
|    | Thresholding, Foundation, The Role of Illumination, Basic      |          |     |
|    | Global Thresholding, Basic Adaptive Thresholding, Optimal      |          |     |
|    | Global and Adaptive Thresholding, Use of Boundary              |          |     |
|    | Characteristics for Histogram Improvement and Local            |          |     |
|    | Thresholding, Thresholds Based on Several Variables Region,    |          |     |
|    | Based Segmentation, Basic Formulation, Region Growing,         |          |     |
|    | Region Splitting and Merging, Segmentation by                  |          |     |
|    | Morphological Watersheds, Basic Concepts, Dam                  |          |     |
|    | Construction, Watershed Segmentation Algorithm, The Use of     |          |     |
|    | Markers                                                        |          |     |
| 8. | Morphological Image Processing                                 | 06 Hours | 13% |
|    | Preliminaries:                                                 |          |     |
|    | Some Basic Concepts from Set Theory, Logic Operations          |          |     |
|    | Involving Binary Images, Dilation and Erosion, Opening and     |          |     |

© CHARUSAT 2020 Page **125** of **170** 

|     | Closing, The Hit-or-Miss Transformation, Some Basic           |          |     |
|-----|---------------------------------------------------------------|----------|-----|
|     | Morphological Algorithms:                                     |          |     |
|     | Boundary Extraction-, Region Filling, Extraction of Connected |          |     |
|     | Components, Convex Hull, Thinning, Thickening, Skeletons,     |          |     |
|     | Pruning                                                       |          |     |
| 9.  | Representation & Description                                  | 03 Hours | 07% |
|     | Chain Code, Polygonal Approximation, Signatures, Boundary     |          |     |
|     | segments, Skeletons, Shape numbers, Fourier Descriptors,      |          |     |
|     | Statistical moments, Regional Descriptors: Topological,       |          |     |
|     | Texture, Moments of 2D functions, Using Principle             |          |     |
|     | Components                                                    |          |     |
| 10. | Applications of Image Processing                              | 06 Hours | 14% |
|     | Case Study on the following applications:                     |          |     |
|     | Digital Water Marking, Biometric authentication (face,        |          |     |
|     | fingerprint, signature recognition), Vehicle number plate     |          |     |
|     | detection and recognition, Content Based Image Retrieval,     |          |     |
|     | Text Compression. Image Mining, Image Fusion.                 |          |     |

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Examine, explain and analyse different types of images, general terminology and |
|-----|---------------------------------------------------------------------------------|
|     | fundamental concepts of digital image processing.                               |
| CO2 | Interpret, compare and evaluate the techniques for image enhancement,           |
|     | restoration, segmentation, morphological operation, representation and          |
|     | description.                                                                    |
| CO3 | Interpret different colour models and apply different image processing          |
|     | algorithms on colour images.                                                    |
| CO4 | Categorize and analyse various compression techniques.                          |
| CO5 | Understand real time problems of image processing filed and apply image         |
|     | processing knowledge to solve those problem.                                    |

© CHARUSAT 2020 Page **126** of **170** 

### **Course Articulation Matrix:**

|     | PO01 | PO02 | PO03 | PO04 | PO05 | PO06 | PO07 | PO08 | PO09 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| CO1 | 1    | 2    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| CO2 | 3    | -    | 2    | 2    | 2    | -    | -    | -    | -    | -    | -    | -    | -    | 1    |
| CO3 | 3    | -    | 2    | 2    | 2    | -    | -    | -    | -    | -    | -    | -    | -    | 1    |
| CO4 | 3    | -    | 2    | 2    | 2    | -    | -    | -    | -    | -    | -    | 1    |      | 1    |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3    | 2    | -    | -    | -    | 1    | 1    | 2    | 1    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

### **Recommended Study Material:**

### **❖** Text book:

- 1. "Digital Image Processing", Rafael C Gonzalez, Richard E Woods, 2nd Edition, Pearson Education 2003.
- 2. "Digital Image Processing", W. Pratt, Wiley Publication, Fourth Edition, 2013.

### **Reference book:**

- 1. "Fundamentals of Digital Image Processing", A.K. Jain, PHI, New Delhi (1995).
- 2. "Digital Image Processing Using MATLAB", Gonzalez/Woods/Eddins, 2nd edition
- 3. "Digital Image Processing and Computer Vision". Milan Sonka, Thomson publication, Second Edition.
- "Digital Image Processing", S.Jayaraman, S Esakkirajan and T Veerakumar, McGraw Hill Education (India) Private Limited, New Delhi, 2009
- 5. "Digital Image Processing", S.Sridhar, Oxford University Press, New Delhi, 2011.

© CHARUSAT 2020 Page **127** of **170** 

## **\*** Web material:

1. http://www.imageprocessingplace.com/

## **Software:**

- 1. MATLAB
- 2. OpenCV

© CHARUSAT 2020 Page **128** of **170** 

# **CE376: PROGRAMMING IN PYTHON(PE-II)**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   | _      |

## **Pre-requisite courses:**

- High level language (C/C++/Java)
- Web Programming

## **Outline of the Course:**

| Sr. | Title of the unit                                        | Minimum number |
|-----|----------------------------------------------------------|----------------|
| No. |                                                          | of hours       |
| 1.  | Basics of Python                                         | 01             |
| 2.  | Data Structures: Lists, Tuples, Dictionaries and Strings | 03             |
| 3.  | Control structures and Function                          | 03             |
| 4.  | Modules and Scoping Rules                                | 04             |
| 5.  | Exceptions Handling                                      | 04             |
| 6.  | Magic Methods, Properties, and Iterators                 | 05             |
| 7.  | Object Oriented Programming                              | 06             |
| 8.  | Regular Expression and File Handling                     | 04             |
| 9.  | Django web Framework                                     | 05             |
| 10. | Working with Django Templates                            | 05             |
| 11. | Working with Django Form                                 | 05             |
|     | Total hours (Theory):                                    | 45             |
|     | Total hours (Lab):                                       | 30             |
|     | Total hours:                                             | 75             |

# **Detailed Syllabus:**

| 1. | Basics of Python                                                   | 01 Hours | 02 % |
|----|--------------------------------------------------------------------|----------|------|
|    | Using the Python Interpreter, Variables, Identifiers and Keywords, |          |      |
|    | Numbers and Expressions                                            |          |      |

| 2. | Data Structures: List, Tuples, Dictionaries and Strings             | 03 Hours | 07 % |
|----|---------------------------------------------------------------------|----------|------|
|    | Common Sequence Operations: Indexing, Slicing, Adding               |          |      |
|    | Sequences, Multiplication, Membership, Length, Minimum, and         |          |      |
|    | Maximum, Using Lists as Stacks, Using Lists as Queues, List         |          |      |
|    | Comprehensions, Nested List Comprehensions, The del statement,      |          |      |
|    | Tuples and Sequences, Sets, Dictionaries, Comparing Sequences and   |          |      |
|    | Other Types, Basic String Operations                                |          |      |
| 3. | Control Structures and Functions                                    | 03 Hours | 07%  |
|    | Conditional Branching: if Statements, break and continue            |          |      |
|    | Statements, and else Clauses on Loops, pass Statements              |          |      |
|    | Loops: while Loops, for Loops, Defining Functions, More on          |          |      |
|    | Defining Functions: Default Argument Values, Keyword                |          |      |
|    | Arguments, Arbitrary Argument Lists, Unpacking Argument Lists,      |          |      |
|    | Lambda Expressions, Documentation Strings, Function Annotations     |          |      |
| 4. | Modules and Scoping Rules                                           | 04 Hours | 09%  |
|    | Executing modules as scripts, The Module Search Path, "Compiled"    |          |      |
|    | Python files, Packages: Importing * From a Package, Intra-package   |          |      |
|    | References, Packages in Multiple Directories                        |          |      |
| 5. | Exception Handling                                                  | 04 Hours | 09%  |
|    | Syntax Errors, Exceptions, Handling Exceptions, Raising             |          |      |
|    | Exceptions, User-defined Exceptions, Defining Clean-up Actions,     |          |      |
|    | Predefined Clean-up Actions                                         |          |      |
| 6. | Magic Methods, Properties and Iterators                             | 05 Hours | 11%  |
|    | Constructors, Item Access: The Basic Sequence and Mapping           |          |      |
|    | Protocol, Properties: The property Function, Static Methods and     |          |      |
|    | Class Methods,getattr,setattr, and Friends, Iterators,              |          |      |
|    | Generators, Generator Expressions                                   |          |      |
| 7. | Object Oriented Programming                                         | 06 Hours | 13%  |
|    | Python Scopes and Namespaces, Class Definition, Class Objects,      |          |      |
|    | Instance Objects, Method Objects, Class and Instance Variables,     |          |      |
|    | Inheritance, Multiple Inheritance, Private Variables, Polymorphism, |          |      |
|    | Using Properties to Control Attribute Access,                       |          |      |
|    | Creating Complete Fully Integrated Data Types                       |          |      |

© CHARUSAT 2020 Page **130** of **170** 

| 8. | Regular Expression and File Handling                                   | 04 Hours | 09% |
|----|------------------------------------------------------------------------|----------|-----|
|    | What is a regular expression?, Regular expressions with special        |          |     |
|    | characters, Regular expressions and raw strings, Extracting matched    |          |     |
|    | text from strings, Substituting text with regular expressions, Writing |          |     |
|    | and Reading Binary Data, Writing and Parsing Text Files, Iterating     |          |     |
|    | over File Contents, Writing and Parsing XML Files, Random Access       |          |     |
|    | Binary Files                                                           |          |     |
| 9. | Introduction to Django Web Framework                                   | 05 Hours | 11% |
|    | MVC Architecture, Object, Relational Mapping architecture,             |          |     |
|    | Django settings: Routing in Django, Views and URL confs                |          |     |
| 10 | Working with Django Templates                                          | 05 Hours | 11% |
|    | Injecting the data from the view to the template, Creating dynamic     |          |     |
|    | templates, Integrating variables in templates, Filters, Creating DRY   |          |     |
|    | URLs, Extending the templates, Using static files in templates.        |          |     |
| 11 | Working with Django Model and Form                                     | 05 Hours | 11% |
|    | Model: Databases and Django, Migrations with South, Creating           |          |     |
|    | simple models, The relationship between the models, Extending          |          |     |
|    | models, The admin module, Model's Data with Query sets, Forms:         |          |     |
|    | Adding a developer with/without using Django forms, The form           |          |     |
|    | based on a model, Advanced usage of Django forms                       |          |     |

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Interpret the fundamental python syntax, semantics and fluent in the use of    |
|-----|--------------------------------------------------------------------------------|
|     | python control flow statements. Express proficiency in the handling of strings |
|     | and functions.                                                                 |
| CO2 | Determine the methods to create and manipulate python programs by utilizing    |
|     | the data structures like lists, dictionaries, tuples and sets.                 |
| CO3 | Identify the commonly used operations involving file systems and regular       |
|     | expressions.                                                                   |
| CO4 | Articulate the Object-Oriented Programming concepts such as encapsulation,     |
|     | inheritance and polymorphism as used in Python along with magic methods.       |
| CO5 | Develop real-world applications using frameworks and understands about         |

© CHARUSAT 2020 Page **131** of **170** 

database with its application and forms.

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1 | 3   | 2   | 1   | 1   | 3   | -   | -   | -   | -   | -    | -    | 1    | -    | 1    |
| CO2 | 3   | 3   | 2   | 1   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO3 | 2   | 2   | 1   | 1   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO4 | 3   | 2   | 2   | 2   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | 2    |
| CO5 | 2   | 3   | 3   | 2   | 3   | -   | -   | -   | -   | -    | -    | 1    | -    | 1    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

### **\*** Text book:

- Magnus Lie Hetland, "Beginning Python From Novice to Professional", Third Edition, Apress, 2017
- 2. Nigel George, "Mastering Django: Core" Packt Publishing, 2016

### **\*** Reference book:

- David Beazley, Brian K. Jones, "Python Cookbook", 3rd edition, OREILLY,2016
- Brett Slatkin, "Effective Python: 59 Specific Ways to Write Better Python", Novatec, 2016
- 3. Allen Downey, "Think Python: How to Think Like a Computer Scientist", Green Tea Press, 2015
- 4. Mark Lutz "Learning Python", 4th Edition, O'REILLY, 2016
- Arun Ravindran, Aidas Bendoraitis, Samuel Dauzon, "Django: Web Development with Python", Packt Publishing, 2016

© CHARUSAT 2020 Page **132** of **170** 

### **\*** Web material:

- 1. https://www.python.org/
- 2. http://www.diveintopython3.net/
- 3. https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
- 4. https://www.fullstackpython.com/django.html
- 5. https://codelabs.developers.google.com/

### **Software:**

- 1. Python IDLE
- 2. Anaconda Python
- 3. PyCharm

© CHARUSAT 2020 Page **133** of **170** 

B. Tech. (Computer Engineering) Programme

SYLLABI (Semester - 7)

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

© CHARUSAT 2020 Page **134** of **170** 

### **CE441: BIG DATA ANALYTICS**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 4         | 0        | 7     | 5      |
| Marks           | 100    | 100       | 0        | 200   |        |

## **Pre-requisite courses:**

- Linux Operating System
- Database Management System

## **Outline of the Course:**

| Sr. | Title of the unit                                     | Minimum number |
|-----|-------------------------------------------------------|----------------|
| No. |                                                       | of hours       |
| 1.  | Big Data and Analytics                                | 02             |
| 2.  | Data Collection, Sampling and Preprocessing           | 06             |
| 3.  | Predictive Analytics, Descriptive Analytics, Survival | 08             |
|     | Analysis                                              |                |
| 4.  | Introduction to Hadoop and Hadoop Architecture        | 08             |
| 5.  | HDFS, HIVE and HIVEQL, HBASE                          | 08             |
| 6.  | Apache Spark and MongoDB                              | 08             |
| 7.  | Big Data Applications and Visualization               | 05             |
|     | Total hours (Theory):                                 | 45             |
|     | Total hours (Lab):                                    | 30             |
|     | Total hours:                                          | 75             |

## **Detailed Syllabus:**

| 1. | Big Data and Analytics                                                | 02 Hours | 4%  |
|----|-----------------------------------------------------------------------|----------|-----|
|    | Introduction to Big Data, Big Data Characteristics, Types of Big      |          |     |
|    | Data, Traditional Versus Big Data Approach, Technologies Available    |          |     |
|    | for Big Data, Infrastructure for Big Data, Use of Data Analytics, Big |          |     |
|    | Data Challenges.                                                      |          |     |
| 2. | Data Collection, Sampling and Preprocessing                           | 06 Hours | 13% |

© CHARUSAT 2020 Page **135** of **170** 

|    | Types of Data Sources Sampling, Types of Data Elements ,Visual       |          |     |
|----|----------------------------------------------------------------------|----------|-----|
|    | Data Exploration and Exploratory Statistical Analysis, Missing       |          |     |
|    | Values, Outlier Detection and Treatment, Standardizing Data,         |          |     |
|    | Categorization, Weights of Evidence Coding, Variable Selection,      |          |     |
|    | Segmentation                                                         |          |     |
| 3. | Predictive Analytics, Descriptive Analytics & Survival Analysis      | 08 Hours | 18% |
|    | Predictive Analytics: Target Definition, Linear Regression, Logistic |          |     |
|    | Regression, Decision Trees, Neural Networks, Support Vector          |          |     |
|    | Machines, Ensemble Methods, Multiclass Classification Techniques,    |          |     |
|    | Evaluating Predictive Models                                         |          |     |
|    | Descriptive Analytics: Association Rules, Sequence Rules,            |          |     |
|    | Segmentation                                                         |          |     |
|    | Survival Analysis: Survival Analysis Measurements, Kaplan Meier      |          |     |
|    | Analysis, Parametric Survival Analysis, Proportional Hazards         |          |     |
|    | Regression, Extensions of Survival Analysis Models, Evaluating       |          |     |
|    | Survival Analysis Models                                             |          |     |
| 4. | Introduction to Hadoop and Hadoop Architecture                       | 08 Hours | 18% |
|    | Big Data - Apache Hadoop & Hadoop EcoSystem, Moving                  |          |     |
|    | Data in and out of Hadoop – Understanding inputs and outputs of      |          |     |
|    | MapReduce -, Data Serialization                                      |          |     |
| 5. | HDFS, HIVE AND HIVEQL, HBASE                                         | 08 Hours | 18% |
|    | HDFS-Overview, Installation and Shell, Java API; Hive Architecture   |          |     |
|    | and Installation, Comparison with Traditional Database, HiveQL       |          |     |
|    | Querying Data, Sorting And Aggregating, Map Reduce Scripts, Joins    |          |     |
|    | & Sub queries, HBase concepts, Advanced Usage, Schema Design,        |          |     |
|    | Advance Indexing, PIG, Zookeeper, how it helps in monitoring a       |          |     |
|    | cluster, HBase uses Zookeeper and how to Build Applications with     |          |     |
|    | Zookeeper                                                            |          |     |
| 6. | Apache Spark, MongoDB and Neo4j                                      | 08 Hours | 18% |
|    | Introduction to Data Analysis with Spark, Downloading Spark and      |          |     |
|    | Getting Started, Programming with RDD, Spark SQL, Spark              |          |     |
|    | Streaming.                                                           |          |     |
|    | Introduction to MongoDB key features, Core Server tools, MongoDB     |          |     |
|    | 1                                                                    | l        |     |

© CHARUSAT 2020 Page **136** of **170** 

|    | through the JavaScript's Shell, Creating and Querying through    |          |     |  |  |  |
|----|------------------------------------------------------------------|----------|-----|--|--|--|
|    | Indexes, Document-Oriented, principles of schema design,         |          |     |  |  |  |
|    | Constructing queries on Databases, collections and Documents ,   |          |     |  |  |  |
|    | MongoDB Query Language                                           |          |     |  |  |  |
| 7. | Graph Analytics and Data Visualization                           | 05 Hours | 11% |  |  |  |
|    | Apache Spark GraphX: Property Graph, Graph Operator, SubGraph,   |          |     |  |  |  |
|    | Triplet, Neo4j: Modeling data with Neo4j, Cypher Query Language: |          |     |  |  |  |
|    | General clauses, Read and Write clauses.                         |          |     |  |  |  |
|    | Big Data Visualization with D3.js, Kibana and Grafana            |          |     |  |  |  |

## **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Understand the key issues in big data management and its associated               |
|-----|-----------------------------------------------------------------------------------|
|     | applications in intelligent business and scientific computing                     |
| CO2 | Acquire fundamental enabling techniques and scalable algorithms like Hadoop,      |
|     | Map Reduce and NO SQL in big data analytics.                                      |
| CO3 | Interpret business models and scientific computing paradigms and apply            |
|     | software tools for big data analytics.                                            |
| CO4 | Achieve adequate perspectives of big data analytics in various applications like  |
|     | recommender systems and social media applications.                                |
| CO5 | Evaluate and apply appropriate principles, techniques and theories to large-scale |
|     | data science problems using various databases with analytics and visualizations.  |

### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   | 2   | 1   | -   | i   | -   | -   | -   | -   | -    | -    | -    | 1    | 1    |
| CO2 | 1   | 2   | 3   | 1   | 3   | -   | -   | -   | =   | -    | -    | -    | 2    | -    |
| CO3 | -   | 1   | 3   | 3   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO4 | 1   | 3   | 3   | 3   | 1   | -   | -   | -   | -   | -    | -    | -    | 1    | 1    |
| CO5 | 1   | 2   | 1   | 2   | 3   | -   | 1   | -   | -   | -    | -    | -    | 2    | 1    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

### **Recommended Study Material:**

### **\*** Text book:

 Bart Baesens , Analytics in a Big Data World: The Essential Guide to Data Science and its Applications, ,Wiley, 2014

### **Reference book:**

- 1. Xyz Dirk Deroos et al., Hadoop for Dummies, Dreamtech Press, 2014.
- 2. Chuck Lam, Hadoop in Action, December, 2010.
- 3. Leskovec, Rajaraman, Ullman, Mining of Massive Datasets, Cambridge University Press.
- 4. I.H. Witten and E. Frank, Data Mining: Practical Machine learning tools and techniques.

### **❖** Web material:

- 1. <a href="https://cognitiveclass.ai/">https://cognitiveclass.ai/</a>
- 2. <a href="https://codelabs.developers.google.com/">https://codelabs.developers.google.com/</a>

### **❖** Software & Platform:

- 1. R & SPSS
- 2. Hadoop, HBase, Hive, Pig, Spark
- 3. Casandra, Neo4j, NoSQL

© CHARUSAT 2020 Page **138** of **170** 

## **CE442: DESIGN OF LANGUAGE PROCESSOR**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 4      | 2         | -        | 6     | 5      |
| Marks           | 100    | 50        | -        | 150   |        |

## **Pre-requisite courses:**

- Digital Electronics
- Operating System
- Theory of Computation

## **Outline of the Course:**

| Sr. | Title of the unit                                      | Minimum number |
|-----|--------------------------------------------------------|----------------|
| No. |                                                        | of hours       |
| 1.  | Overview of Language Processors & Translators          | 10             |
| 2.  | Introduction To Compilers                              | 20             |
| 3.  | Symbol-Table Management                                | 05             |
| 4.  | Static & Dynamic Memory Allocation & Memory management | 06             |
| 5.  | Semantic Analysis & Intermediate Code Generation       | 05             |
| 6.  | Code Optimization                                      | 07             |
| 7.  | Code Generation                                        | 07             |
|     | Total hours (Theory):                                  | 60             |
|     | Total hours (Lab):                                     | 30             |
|     | Total hours:                                           | 90             |

## **Detailed Syllabus:**

| 1. | Overview of Language Processors & Translators              | 12 Hours | 20% |
|----|------------------------------------------------------------|----------|-----|
|    | Language processing activities, fundamental of language    |          |     |
|    | processing, Operating System, Interpreter vs compiler      |          |     |
|    | Pre-processor & Macro Processors – Subroutine, Macro       |          |     |
|    | definition and call, Macro expression, nested macro call,  |          |     |
|    | Advanced macro facilities, design of macro pre-processor   |          |     |
|    | Loaders - Compile & go, Absolute, Bootstrap, Relocating,   |          |     |
|    | Linking loader                                             |          |     |
|    | Linkers - Relocation of Linking Concept, Design of Linker, |          |     |

© CHARUSAT 2020 Page **139** of **170** 

|    | Linker for MS DOS, Linking for overlays, Linkage editor        |          |     |
|----|----------------------------------------------------------------|----------|-----|
|    | Assemblers - Elements of Assembly Language Programming,        |          |     |
|    | Assembly Scheme, Single pass Assembler, Two pass               |          |     |
|    | assembler, Data structure of Assemblers                        |          |     |
| 2. | Introduction To Compilers                                      | 20 Hours | 35% |
|    | Pass and Phases of Compiler, grouping of phases, Compiler      |          |     |
|    | Contraction tools                                              |          |     |
|    | Lexical analyser - Roles of lexical analyser, input buffering, |          |     |
|    | tokens, Regular Expression, finite Automata                    |          |     |
|    | Syntax analyser - Context free grammar, Ambiguous grammar,     |          |     |
|    | Top-down parsing, Bottom-up parsing, LEX, YACC                 |          |     |
| 3. | Symbol-Table Management                                        | 02 Hours | 05% |
|    | Data structures to implement symbol table, Symbol Attributes,  |          |     |
|    | Symbol-Table entries, Local Symbol Table management,           |          |     |
|    | Global Symbol Table Structure, Storage bindings and            |          |     |
|    | Symbolic Registers                                             |          |     |
| 4. | Static & Dynamic Memory Allocation & Memory                    | 06 Hours | 09% |
|    | management                                                     |          |     |
|    | Data descriptors - Static and Dynamic storage allocation -     |          |     |
|    | Storage allocation and access in block structured programming  |          |     |
|    | languages - Array allocation and access- Compilation of        |          |     |
|    | expressions – Handling operator priorities – Intermediate code |          |     |
|    | forms for expressions – code generator., Register Usage, The   |          |     |
|    | run-time stack, Parameter passing disciplines, Code sharing    |          |     |
|    | and Position-Independent code                                  |          |     |
| 5. | Semantic Analysis & Intermediate Code Generation               | 06 Hours | 09% |
|    | Intermediate Languages, Declarations, Assignment               |          |     |
|    | Statements, Boolean Expressions, Case Statements, Back         |          |     |
|    | patching, Procedure Calls                                      |          |     |
| 6. | Code Optimization                                              | 07 Hours | 11% |
|    | The Principal Sources of Optimization, Optimization of Basic   |          |     |
|    | Blocks, Loops in Flow Graphs, Introduction to Global Data-     |          |     |
|    | Flow Analysis, Iterative Solution of Data-Flow Equations,      |          |     |
|    |                                                                |          |     |

© CHARUSAT 2020 Page **140** of **170** 

|    | Code-Improving Transformations, Dealing with Aliases, Data-   |          |     |
|----|---------------------------------------------------------------|----------|-----|
|    | Flow Analysis of Structured Flow Graphs, Efficient Data-Flow  |          |     |
|    | Algorithms, A Tool for Data-Flow Analysis, Estimation of      |          |     |
|    | Types, Symbolic Debugging of Optimized Code                   |          |     |
| 7. | Code Generation                                               | 07 Hours | 11% |
|    | Issues in the Design of a Code Generator, The Target Machine, |          |     |
|    | Run-Time Storage Management, Basic Blocks and Flow            |          |     |
|    | Graphs, Next-Use Information, A Simple Code Generator,        |          |     |
|    | Register Allocation and Assignment, The DAG Representation    |          |     |
|    | of Basic Blocks, Peephole Optimization, Generating Code       |          |     |
|    | from DAGs, Dynamic Programming Code-Generation                |          |     |
|    | Algorithm, Code-Generator Generators                          |          |     |

# **Course Outcome (COs):**

At the end of the course, the students will be able to

| CO1 | Understand design and processing of different language processor, loaders and |
|-----|-------------------------------------------------------------------------------|
|     | linkers                                                                       |
| CO2 | Design top-down and bottom-up parsers                                         |
| CO3 | Identify different memory management schemes of language processors           |
| CO4 | Develop semantic analysis scheme to generate intermediate code                |
| CO5 | Apply different code optimization techniques                                  |
| CO6 | Develop algorithms to generate code for a target machine                      |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | -   | -   | -   | -   | -   | -   | -   | -   | -    | ı    | -    | -    | -    |
| CO2 | 1   | -   | -   | 3   | ı   | ı   | -   | -   | -   | -    | ı    | ı    | -    | -    |
| CO3 | 2   | -   | -   | -   | -   | -   | -   | -   | -   | -    | 1    | -    | -    | -    |
| CO4 | 2   | 2   | 2   | 1   | 2   | -   | -   | -   | -   | -    | ı    | -    | -    | -    |
| CO5 | 2   | -   | -   | -   | -   | -   | -   | -   | -   | -    |      | -    | -    | -    |
| CO6 | 2   | -   | -   | 1   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |

© CHARUSAT 2020 Page **141** of **170** 

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

### **Recommended Study Material:**

### **Text book:**

- 1. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, "Compilers Principles, Techniques and-Tools", Pearson Education Asia.
- 2. M. Dhamdhere, "System Programming and Operating Systems", Tata McGraw-Hill.
- 3. Steven S. Muchnick. Advanced Compiler Design and Implementation

### Reference book:

- 1. Allen I. Holub "Compiler Design in C", Prentice Hall of India.
- 2. C. N. Fischer and R. J. LeBlanc, "Crafting a compiler with C", Benjamin Cummings.
- 3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, Tata McGraw-Hill
- 4. HenkAlblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI.
- Kenneth C. Louden, "Compiler Construction: Principles and Practice", Thompson Learning.
- 6. Compiler Construction by Kenneth. C. Louden, Vikas Pub

### **Web material:**

- 1. http://compilers.iecc.com/crenshaw
- 2. http://www.compilerconnection.com
- 3. http://dinosaur.compilertools.net
- 4. http://pltplp.net/lex-yacc

#### **Software:**

- 1. LEX
- 2. YACC

© CHARUSAT 2020 Page **142** of **170** 

# **CE443: Cloud Computing**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 3      | 2         | -        | 5     | 4      |
| Marks           | 100    | 50        | -        | 150   | _      |

# **Pre-requisite courses:**

- Operating System
- Networking

## **Outline of the Course:**

| Sr. | Title of the unit                                      | Minimum number |
|-----|--------------------------------------------------------|----------------|
| No. |                                                        | of hours       |
| 1.  | Cluster Computing, Grid Computing Systems and Resource | 08             |
|     | Management at Glance                                   |                |
| 2.  | Fundamental of Virtualization                          | 06             |
| 3.  | Fundamental Concepts and Models                        | 06             |
| 4.  | Cloud-Enabling Technology                              | 05             |
| 5.  | Fundamental Cloud Architectures                        | 07             |
| 6.  | Advanced Cloud Architectures                           | 08             |
| 7.  | Implementation of Cloud                                | 05             |
|     | Total hours (Theory):                                  | 45             |
|     | Total hours (Lab):                                     | 30             |
|     | Total hours:                                           | 75             |

# **Detailed Syllabus:**

| 1. | Cluster Computing, Grid Computing Systems and               | 08 Hours | 18% |
|----|-------------------------------------------------------------|----------|-----|
|    | Resource Management at Glance                               |          |     |
|    | Introduction, Eras of Computing, Scalable Parallel Computer |          |     |
|    | Architectures, Towards Low Cost Parallel Computing and      |          |     |
|    | Motivations , A Cluster Computer and its Architecture,      |          |     |
|    | Clusters Classification, Commodity Components for Clusters, |          |     |
|    | Grid Architecture and Service Modelling, Grid Projects and  |          |     |
|    | Grid Systems Built, Grid Resource Management and            |          |     |
|    | Brokering, Software and Middleware for Grid Computing,      |          |     |

© CHARUSAT 2020 Page **143** of **170** 

|    | Grid Application Trends                                     |          |     |
|----|-------------------------------------------------------------|----------|-----|
| 2. | Fundamental of Virtualization                               | 06 Hours | 12% |
|    | Type of Virtualization, Virtualization Technologies,        |          |     |
|    | Virtualizes your Environment, Managing Virtualization       |          |     |
|    | Environment, Storage Virtualization, Dockers                |          |     |
| 3. | <b>Fundamental Concepts and Models</b>                      | 06 Hours | 15% |
|    | Roles and Boundaries, Cloud Characteristics, Cloud Delivery |          |     |
|    | Models, Cloud Deployment Models                             |          |     |
| 4. | Cloud-Enabling Technology                                   | 05 Hours | 14% |
|    | Broadband Networks and Internet Architecture, Data centre   |          |     |
|    | Technology, Virtualization Technology, Web Technology,      |          |     |
|    | Multitenant Technology, Service Technology                  |          |     |
| 5. | Fundamental Cloud Architectures                             | 07 Hours | 16% |
|    | Workload Distribution Architecture, Resource Pooling        |          |     |
|    | Architecture ,Dynamic Scalability Architecture, Elastic     |          |     |
|    | Resource Capacity Architecture, Service Load Balancing      |          |     |
|    | Architecture, Cloud Bursting Architecture, Elastic Disk     |          |     |
|    | Provisioning Architecture, Redundant Storage Architecture   |          |     |
| 6. | Advanced Cloud Architectures                                | 08 Hours | 17% |
|    | Hypervisor Clustering Architecture ,Load Balanced Virtual   |          |     |
|    | Server Instances Architecture, Non-Disruptive Service       |          |     |
|    | Relocation Architecture, Zero Downtime Architecture ,Cloud  |          |     |
|    | Balancing Architecture ,Resource Reservation Architecture,  |          |     |
|    | Dynamic Failure Detection and Recovery Architecture         |          |     |
| 7. | Implementation of Cloud                                     | 05 Hours | 08% |
|    | Study of Cloud computing Systems like Amazon EC2 and S3,    |          |     |
|    | Google App Engine, and Microsoft Azure, Build               |          |     |
|    | Private/Hybrid Cloud using open source tools, Deployment of |          |     |
|    | Web Services from Inside and Outside a Cloud Architecture.  |          |     |
|    | MapReduce and its extensions to Cloud Computing, HDFS,      |          |     |
|    | and GFS                                                     |          |     |

© CHARUSAT 2020 Page **144** of **170** 

At the end of the course, the students will be able to

| CO1 | Assess and examine advantages and disadvantages of virtualization technology. |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO2 | Compose services in a distributed computing environment to achieve            |  |  |  |  |  |  |  |  |
|     | tasks relevant to a knowledge-based business or public service                |  |  |  |  |  |  |  |  |
| CO3 | Evaluate a set of business requirements to determine suitability for a cloud  |  |  |  |  |  |  |  |  |
|     | computing delivery model.                                                     |  |  |  |  |  |  |  |  |
| CO4 | Explore the various cloud computing architectures and paradigms.              |  |  |  |  |  |  |  |  |
| CO5 | Deployment of cloud and identify security implications in cloud computing.    |  |  |  |  |  |  |  |  |

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 2   | 2   | 2   | 2   | 1   | 0   | 1   | -   | -    | -    | 1    | 2    | -    |
| CO2 | 3   | 2   | 3   | 1   | 3   | 2   | 1   | -   | -   | =    | 1    | 1    | 2    | 1    |
| CO3 | 3   | 2   | 2   | 3   | 3   | 1   | 2   | -   | 1   | 1    | -    | -    | 2    | 1    |
| CO4 | 3   | 1   | 1   | 2   | 2   | -   | -   | 2   | 1   | -    | -    | -    | 1    | 2    |
| CO5 | 3   | 1   | 3   | 1   | 3   | 2   | 1   | 1   | -   | 1    | -    | 1    | 1    | 1    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

## **❖** Text Books:

- Thomas Erl, Zaigham Mahmood, and Ricardo Puttini, "Cloud Computing Concepts, Technology & Architecture", Prentice Hall
- 2. Kai Hwang, Geoffrey C.," Distributed and Cloud Computing", Morgan Kaufmann is an imprint of Elsevier
- 3. Navin Sabharwal, Ravi Shankar "Apache CloudStack Cloud Computing" PACKT Publishing

© CHARUSAT 2020 Page **145** of **170** 

## **Reference Books:**

- Ravi Shankar, Navin Sabharwa "Cloud Computing First Steps: Cloud Computing for Beginners" Create Space Independent Publishing Platform
- 2. Rajkumar Buyya, James Broberg, Andrzej Goscinski "Cloud Computing: Principles and Paradigms" Wiley
- 3. Judith Hurwitz, Robin Bloor "Cloud Computing For Dummies", for Dummies

## **\*** Web material:

- 1. http://www.console.cloud.google.com
- 2. http://www.qwicklabscom
- 3. http://codelabs.developers.google.com
- 4. <a href="http://www.docker.com">http://www.docker.com</a>

## **❖** Software/Platform:

- 1. NetBeans
- 2. Eclipse
- 3. .NET
- 4. GCP
- 5. Amazone
- 6. Microsoft

© CHARUSAT 2020 Page **146** of **170** 

## **CE444: INTERNET OF THINGS**

## **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 3      | 2         | 0        | 5     | 4      |
| Marks                  | 100    | 50        | 0        | 150   |        |

## **Pre-requisite courses:**

- Networking
- Embedded System

## **Outline of the Course:**

| Sr. | Title of the unit                                  | Minimum number |
|-----|----------------------------------------------------|----------------|
| No. |                                                    | of hours       |
| 1.  | Introduction and evolution of IoT                  | 04             |
| 2.  | Organisation and primary components of IoT systems | 08             |
| 3.  | A reference IoT architecture                       | 10             |
| 4.  | Design issues for the IoT edge                     | 12             |
| 5.  | Security, trust, and privacy issues in IoT         | 08             |
| 6.  | IoT case studies                                   | 03             |
|     | Total hours (Theory):                              | 45             |
|     | Total hours (Lab):                                 | 30             |
|     | Total hours :                                      | 75             |

## **Detailed Syllabus:**

| 1. | Introduction and evolution of IoT                                | 04 Hours | 09 % |
|----|------------------------------------------------------------------|----------|------|
|    | Introduction, Internet of Things Definition Evolution            |          |      |
| 2. | Organisation and primary components of IoT systems               | 08 Hours | 18 % |
|    | Structure of IoT systems, IoT backend modules, IoT gateways, The |          |      |
|    | IoT edge                                                         |          |      |
| 3. | A reference IoT architecture                                     | 10 Hours | 22%  |
|    | Design principles and design requirements for the reference      |          |      |
|    | architecture, Real-world constraints                             |          |      |

| 4. | Design issues for the IoT edge                                     | 12 Hours | 27% |
|----|--------------------------------------------------------------------|----------|-----|
|    | Sensors and actuators for IoT systems, Interoperability and        |          |     |
|    | reliability issues Communication protocols and protocol stacks for |          |     |
|    | the edge devices, Hardware security for edge devices               |          |     |
| 5. | Security, trust, and privacy issues in IoT                         | 08 Hours | 18% |
|    | Identity management of IoT edge devices                            |          |     |
| 6. | IoT case studies                                                   | 03 Hours | 7%  |
|    | Smart grid, Home automation, Industrial IoT                        |          |     |

At the end of the course, the students will be able to

| CO1 | Interpret the vision of IoT from current business needs.                                                            |
|-----|---------------------------------------------------------------------------------------------------------------------|
| CO2 | Compare and contrast the use of devices, gateways and data management in IoT.                                       |
| CO3 | Demonstrate a critical understanding of key technologies in sensing, data transmission and data processing for IoT. |
|     | transmission and data processing for for:                                                                           |
| CO4 | Examine of the technologies and the standards relating to the Internet of Things                                    |
|     | and analyze basic protocols in sensor network                                                                       |
| CO5 | Evaluation of privacy management, challenges in designing and securing an IoT                                       |
|     | system.                                                                                                             |
| CO6 | Illustrate the application of IoT in industrial automation and identify real world                                  |
|     | design Constraints.                                                                                                 |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO2 | 3   | 2   | 3   | 2   | 1   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO3 | 1   | 2   | 3   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO4 | 2   | 1   | 2   | 1   | 2   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO5 | -   | 1   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | -    | 2    | -    |
| CO6 | 2   | 1   | 3   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | -    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

#### **\*** Text book:

- 1. Internet of Things: principles and paradigms, Buyya, Rajkumar and Amir Vahid Dasterdji (eds.), Morgan Kaufmann, 2016.
- 2. From Machine-to-Machine to the Internet of Things: introduction to a new age of intelligence, Holler, Jan et al, Academic Press, 2014.

#### **\*** Reference book:

- Building Internet of Things with the Arduino, Doukas, Charalampos, Create Space Independent Publishing Platform, 2012.
- 2. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013.

#### **❖** Web material:

- http://web.mit.edu/professional/digitalprograms/courses/IoT/phone/index.html
- 2. <a href="https://swayam.gov.in/nd1\_noc19\_cs65/preview">https://swayam.gov.in/nd1\_noc19\_cs65/preview</a>
- 3. <a href="https://www.edureka.co/blog/iot-tutorial/">https://www.edureka.co/blog/iot-tutorial/</a>
- 4. <a href="http://www.steves-internet-guide.com/internet-of-things/">http://www.steves-internet-guide.com/internet-of-things/</a>

#### **Software:**

- 1. Contiki OS
- 2. Node-Red
- 3. Arduino

© CHARUSAT 2020 Page **149** of **170** 

## CE471: BLOCKCHAIN TECHNOLOGY (ELECTIVE-III)

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 4      | 2         | -        | 6     | 5      |
| Marks           | 100    | 50        | -        | 150   |        |

## **Pre-requisite courses:**

• Basic Information Security

## **Outline of the Course:**

| Sr. | Title of the unit                                    | Minimum number |
|-----|------------------------------------------------------|----------------|
| No. |                                                      | of hours       |
| 1.  | Fundamentals Behind Blockchain                       | 07             |
| 2.  | Blockchain Overview                                  | 06             |
| 3.  | Block-Chain Consensus Mechanisms                     | 12             |
| 4.  | Introduction to BitCoin                              | 12             |
| 5.  | Solidity Essential                                   | 08             |
| 6.  | Decentralized Application                            | 10             |
| 7.  | Blockchain Research issues, challenges and use cases | 05             |
|     | Total hours (Theory):                                | 60             |
|     | Total hours (Lab):                                   | 30             |
|     | Total hours:                                         | 90             |

## **Detailed Syllabus:**

| 1. | Fundamentals Behind Blockchain                            | 07 Hours | 11% |
|----|-----------------------------------------------------------|----------|-----|
|    | Symmetric key cryptography, Public key cryptography,      |          |     |
|    | Digital Signature, Cryptographically Secured Hash         |          |     |
|    | Functions, Cryptographically Secured Chain of Blocks,     |          |     |
|    | Merkle Trees.                                             |          |     |
| 2. | Blockchain Overview                                       | 06 Hours | 10% |
|    | Evaluation of Blockchain Technology, Distributed Systems, |          |     |
|    | The History of Blockchain and Bitcoin, Types of Block-    |          |     |

© CHARUSAT 2020

| Chain                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Block-Chain Consensus Mechanisms                              | 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Practical Byzantine fault tolerance algorithm, Proof of Work, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Proof of Stake, Proof of Authority, Proof of Elapsed time     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Introduction to BitCoin                                       | 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Digital keys and addresses, Transactions, Mining, The         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bitcoin network, Wallets, Bitcoin payments                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Solidity Essential                                            | 08 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Using the Remix IDE, Data Types and Functions, Creating       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Inline Assembly Functions, Mappings, Modifiers, Structs,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and More, Generating ERC-20 Tokens, Extending Token           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Security (ERC-223), Deploying the ERC-20 Token Contract.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Decentralized Application                                     | 10 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DAPP using Ehtereum, DAPP using Hyperledger.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Blockchain Research issues, challenges and use cases          | 05 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KYC case study, Land Registry, Supply chain.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               | Block-Chain Consensus Mechanisms  Practical Byzantine fault tolerance algorithm, Proof of Work, Proof of Stake, Proof of Authority, Proof of Elapsed time  Introduction to BitCoin  Digital keys and addresses, Transactions, Mining, The Bitcoin network, Wallets, Bitcoin payments  Solidity Essential  Using the Remix IDE, Data Types and Functions, Creating Inline Assembly Functions, Mappings, Modifiers, Structs, and More, Generating ERC-20 Tokens, Extending Token Security (ERC-223),Deploying the ERC-20 Token Contract.  Decentralized Application  DAPP using Ehtereum, DAPP using Hyperledger.  Blockchain Research issues, challenges and use cases | Block-Chain Consensus Mechanisms  Practical Byzantine fault tolerance algorithm, Proof of Work, Proof of Stake, Proof of Authority, Proof of Elapsed time  Introduction to BitCoin  Digital keys and addresses, Transactions, Mining, The Bitcoin network, Wallets, Bitcoin payments  Solidity Essential  Using the Remix IDE, Data Types and Functions, Creating Inline Assembly Functions, Mappings, Modifiers, Structs, and More, Generating ERC-20 Tokens, Extending Token Security (ERC-223), Deploying the ERC-20 Token Contract.  Decentralized Application  DAPP using Ehtereum, DAPP using Hyperledger.  Blockchain Research issues, challenges and use cases  05 Hours |

At the end of the course, the students will be able to

| CO1 | Understand the Basic Cryptography behind the Blockchain Technology and           |
|-----|----------------------------------------------------------------------------------|
|     | Bitcoin.                                                                         |
| CO2 | Define the structure of a Blockchain and classify why and when it is better than |
|     | a simple distributed database.                                                   |
| CO3 | Analyse the consensus mechanisms in a Blockchain Technology and critically       |
|     | assess its applicability in Blockchain based application.                        |
| CO4 | Analyse to what extent smart and self-executing contracts can benefit            |
|     | automation, governance and transparent environment.                              |
| CO5 | Design decentralized distributed application and measure the performance of      |
|     | Blockchain against centralized system.                                           |
| CO6 | Attain awareness of the new challenges that exist in monetizing businesses       |
|     | around                                                                           |
|     | Blockchain.                                                                      |

© CHARUSAT 2020 Page **151** of **170** 

#### **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   | 2   | -   | -   | 1   | -   | -   | 2   | 1   | =    | -    | -    | 2    | -    |
| CO2 | -   | 2   | -   | -   | -   | 2   | 1   | 1   | 1   | -    | 2    | -    | 1    | 2    |
| CO3 | 1   | 3   | 2   | 1   | -   | 2   | -   | -   | 2   | -    | 1    | 2    | 3    | -    |
| CO4 | 1   | 1   | 2   | 2   | 3   | 2   | 2   | 2   | 2   | -    | 3    | 2    | 3    | 1    |
| CO5 | 1   | 3   | 3   | 2   | 3   | 2   | 2   | 2   | 3   | 2    | 3    | 2    | 3    | 2    |
| CO6 | 1   | 3   | 1   | 3   | -   | 2   | 2   | -   | 3   | 1    | 3    | 2    | 3    | 2    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

#### **\*** Text book:

- 1. Imran Bashir, Mastering Blockchain, Packt Second Edition, 2018.
- 2. Andreas M. Antonopoulos, Mastering Bitcoin, O'Reilly, Second Edition

#### **\*** Reference book:

- 1. Samanyu, Blockchain Developer's Guide, Packt, 2018.
- 2. Mark Watney, Blockchain for Beginners: The Complete Step by Step Guide to Understanding Blockchain Technology, July, 2017.
- 3. Don Tapscott, Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World, Hardcover, May 2016.
- 4. Xun (Brian) Wu, Hyperledger Cookbook, Packt.
- 5. Mayukh Mukhopadhyay, Ethereum Smart Contract Development, Packt, 2018.

#### **❖** Web material:

1. https://medium.com/topic/blockchain

#### **Software:**

- 1. Ethereum
- 2. Hyperledger Fabric 1.4
- 3. Truffle
- 4. Solidity

© CHARUSAT 2020 Page **152** of **170** 

## CE472: WIRELESS COMMUNICATION & MOBILE COMPUTING (ELECTIVE- III)

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 4      | 2         | 0        | 6     | 5      |
| Marks           | 100    | 50        | 0        | 150   |        |

## **Pre-requisite courses:**

• Basic Knowledge of Computer Networks

## **Outline of the Course:**

| Sr. | Title of the unit                   | Minimum number |
|-----|-------------------------------------|----------------|
| No. |                                     | of hours       |
| 1.  | Wireless Communication Fundamentals | 03             |
| 2.  | Telecommunication Systems           | 13             |
| 3.  | Wireless LAN                        | 18             |
| 4.  | Mobile Network Layer                | 13             |
| 5.  | Transport and Application Layer     | 10             |
| 6.  | Data Dissemination and Management   | 03             |
|     |                                     |                |
|     | Total hours (Theory):               | 60             |
|     | Total hours (Lab):                  | 30             |
|     | Total hours:                        | 90             |

## **Detailed Syllabus:**

| 1. | Wireless Communication Fundamentals                                                                                                                                                                                | 03 Hours | 5%  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|    | Introduction, Wireless transmission – Frequencies for radio transmission – Signals – Signal Propagation ,Multiplexing – Modulations – Spread spectrum,MAC – SDMA – FDMA – TDMA – CDMA – Cellular Wireless Networks |          |     |
| 2. | Telecommunication Systems                                                                                                                                                                                          | 13 Hours | 25% |
|    | GSM: Mobile services, System architecture, Radio interface, Protocols, Localization And Calling, Handover, Security, New data services; DECT: System architecture, Protocol architecture; TETRA, UMTS and IMT-2000 |          |     |
| 3. | Wireless LAN                                                                                                                                                                                                       | 18 Hours | 30% |
|    | Wireless LAN – IEEE 802.11 - Architecture – services – MAC – Physical layer,IEEE 802.11a - 802.11b – 802.11n                                                                                                       |          |     |

© CHARUSAT 2020 Page **153** of **170** 

|    | standards,Bluetooth,Hyperlan, Wi-Fi, WiMax - Overview                                                                                                   |          |     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| 4. | Mobile Network Layer                                                                                                                                    | 13 Hours | 20% |
|    | Mobile IP, Dynamic Host Configuration Protocol, Routing<br>Protocols – DSDV – DSR – Alternative Metrics                                                 |          |     |
| 5. | Transport and Application Layer                                                                                                                         | 10 Hours | 15% |
|    | Traditional TCP,Classical TCP improvements – WAP, WAP 2.0                                                                                               |          |     |
| 6. | Data Dissemination and Management                                                                                                                       | 03 Hours | 05% |
|    | Challenges, Data dissemination, Mobile data replication, Mobile data caching, Mobile cache maintenance, mobile web caching, caching in ad hoc networks. |          |     |

At the end of the course, the students will be able to

| CO1 | Classify the fundamental concepts of Wireless Networks and its access           |
|-----|---------------------------------------------------------------------------------|
|     | techniques.                                                                     |
| CO2 | Understand and identify the GSM, GPRS and Bluetooth software model for          |
|     | mobile computing.                                                               |
| CO3 | The ability to develop applications that are mobile-device specific and         |
|     | demonstrate current practice in mobile computing contexts.                      |
| CO4 | Understanding of the characteristics and limitations of mobile hardware devices |
|     | including their user-interface modalities.                                      |
| CO5 | Able to promote the awareness of the life-long learning, business ethics,       |
|     | professional ethics and current marketing scenarios in wireless network.        |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | 1    |
| CO2 | 1   | 1   | 2   | 2   | 1   | -   | -   | -   | -   | -    | -    | -    | -    | 1    |
| CO3 | 2   | 3   | 2   | 1   | 2   | -   | -   | -   | -   | -    | -    | -    | -    | 2    |
| CO4 | 2   | 2   | 1   | 1   | 1   | -   | -   | -   | -   | -    | -    | -    | 2    | 2    |
| CO5 | 1   | 2   | 2   | 1   | 1   | =   | -   | -   | -   | =    | =    | 2    | 1    | 2    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

© CHARUSAT 2020

If there is no correlation, put "-"

## **Recommended Study Material:**

#### **❖** Text Books:

1. "Mobile Computing: Technology, Applications and Service Creation" by Asoke K Talukder and Roopa R Yavagal, TMH,ISBM: 0-07-058807-4

#### **❖** Reference Materials:

- 1. Jochen Schiller, "Mobile Communications", PHI/Pearson Education, Second Edition, 2003.
- 2. William Stallings, "Wireless Communications and Networks", PHI/Pearson Education, 2002.
- 3. Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireless Networks", PHI/Pearson Education, 2003.
- 4. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, New York, 2003.
- Hazysztof Wesolowshi, "Mobile Communication Systems", John Wiley and Sons Ltd, 2002
- 6. Research papers from IEEE, Springer etc.

## **Web Materials:**

- 1. www.ietf.org For drafts
- 2. <u>www.ieee.org</u> For standards and technical research papers

#### **Software:**

- 1. OMNET++
- 2. SUMO
- 3. MATLAB
- 4. NS3

## **CE473 MACHINE LEARNING (ELECTIVE- III)**

## **Credits and Hours:**

| Teaching Scheme | Theory | Practical | Tutorial | Total | Credit |
|-----------------|--------|-----------|----------|-------|--------|
| Hours/week      | 4      | 2         | -        | 6     | 5      |
| Marks           | 100    | 50        | -        | 150   |        |

## **Pre-requisite courses:**

• Probability, linear algebra, calculus and programming language

## **Outline of the Course:**

| Sr. | Title of the unit                                        | Minimum number |
|-----|----------------------------------------------------------|----------------|
| No. |                                                          | of hours       |
| 1.  | Fundamental concepts and Statistical Learning Techniques | 10             |
| 2.  | Neural Networks                                          | 08             |
| 3.  | Bayesian Learning                                        | 06             |
| 4.  | Supervised and Unsupervised Learning                     | 15             |
| 5.  | Reinforcement learning                                   | 04             |
| 6.  | Kernel Methods                                           | 05             |
| 7.  | Deep Neural Networks                                     | 12             |
|     | Total hours (Theory):                                    | 60             |
|     | Total hours (Lab):                                       | 30             |
|     | Total hours:                                             | 90             |

## **Detailed Syllabus:**

| 1. | Fundamental concepts and Statistical Learning Techniques      | 10 hours | 17% |
|----|---------------------------------------------------------------|----------|-----|
|    | Introduction to Data science, Theory and practices in machine |          |     |
|    | learning, Designing a Learning System, Issues in Machine      |          |     |
|    | Learning, Applications of ML, Global Developments of ML,      |          |     |
|    | Key challenges to adoption of ML in India.                    |          |     |
|    | Statistical Learning Techniques:                              |          |     |
|    | Descriptive statistics, Simple Linear Regression, ANOVA,      |          |     |
|    | Logistic Regression, Multi Linear regression, Correlation,    |          |     |
|    | Moving Average, Random Number Generation, Histogram           |          |     |

© CHARUSAT 2020 Page **156** of **170** 

|    | Smoothing, Sampling, Regularization, Rank Percentile.         |          |     |
|----|---------------------------------------------------------------|----------|-----|
| 2. | Neural Networks                                               | 08 Hours | 14% |
|    | Neurons and biological motivation. Linear threshold units.    |          |     |
|    | Perceptrons: representational limitation and gradient descent |          |     |
|    | training, Perceptron learning rule, Hebbian learning rule,    |          |     |
|    | Delta Learning rule, Multilayer networks and                  |          |     |
|    | Backpropagation Learning Algorithm, Feed Forward,             |          |     |
|    | Activation Functioning, Types of Neural Network               |          |     |
|    | Architecture.                                                 |          |     |
| 3. | Bayesian Learning                                             | 06 hours | 10% |
|    | Bayes Theorem, Bayes Theorem and Concept Learning,            |          |     |
|    | Maximum Likelihood and Least Squared Error Hypothesis,        |          |     |
|    | Maximum likelihood hypothesis for Predicting probabilities,   |          |     |
|    | Minimum Description Length Principle, Bayes Optimal           |          |     |
|    | Classifier, Gibbs Algorithm, Naïve Bayes Classifier,          |          |     |
|    | Bayesian Belief Network, EM Algorithm.                        |          |     |
| 4. | Supervised and Unsupervised Learning                          | 15 hours | 25% |
|    | Supervised Learning:                                          |          |     |
|    | Classification, Decision Tree, Naïve Bias, Support Vector     |          |     |
|    | Machine, Neural Network, K- Nearest Neighbour.                |          |     |
|    | Unsupervised Learning:                                        |          |     |
|    | Clustering, Nonparametric Methods, K-means, Hierarchical      |          |     |
|    | clustering, Density based clustering                          |          |     |
| 5. | Reinforcement learning                                        | 04 hours | 06% |
|    | Q Learning, Non deterministic rewards and Actions.            |          |     |
| 6. | Kernel Methods                                                | 05 hours | 8%  |
|    | Support Vector Machine, Sparse kernel machines, Bias-         |          |     |
|    | Variance trade-off. Regularization and model/feature          |          |     |
|    | selection, Sampling Methods.                                  |          |     |
| 7. | Deep Neural Networks                                          | 12 hours | 20% |
|    | Introduction to Deep Learning, Deep Neural Network,           |          |     |
|    | Restricted Boltzmann machine, Convolution Neural Network,     |          |     |
|    | AutoEncoders, Deep Belief Network, Recurrent Neural           |          |     |

© CHARUSAT 2020 Page **157** of **170** 

| Network, Tra | sfer learning. |  |
|--------------|----------------|--|
|              |                |  |

At the end of the course, the students will be able to

| CO1 | Apply basic concepts of Machine Learning and Understanding of standard          |
|-----|---------------------------------------------------------------------------------|
|     | learning algorithms.                                                            |
| CO2 | Analyse mathematical modelling of various Machine Learning algorithms.          |
| CO3 | Understanding challenges of machine learning like data characteristics, model   |
|     | selection, and model complexity.                                                |
| CO4 | Identify strengths and weaknesses of machine learning techniques suitable for a |
|     | given problem domain and data set.                                              |
| CO5 | Design and implement of various machine learning algorithms in a range of real- |
|     | world applications.                                                             |
| CO6 | Evaluate and interpret the results of learning algorithms.                      |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO2 |     | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |
| CO3 | 3   | -   | -   | -   | -   | -   | 3   | -   | -   | -    | -    | -    | ı    | -    |
| CO4 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | II   | ı    | 2    | -    |
| CO5 | 3   | -   | 2   | 2   | 2   | =   | -   | -   | -   | -    | 2    | ı    | 3    | -    |
| CO6 | 2   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

## **\*** Text book:

- Xyz Machine Learning, Tom Mitchell, McGraw Hill, 1997. ISBN 0070428077
- 2. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 2004

#### **Reference book:**

- Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 2. Richard O. Duda, Peter E. Hart & David G. Stork, "Pattern Classification. Second Edition", Wiley & Sons, 2001.
- 3. Trevor Hastie, Robert Tibshirani and Jerome Friedman, "The elements of statistical learning", Springer, 2001.
- 4. Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An introduction", MIT Press, 1998.

## **\*** Web material:

- https://www.youtube.com/watch?v=foHSmB48rY&list=PLKvX2d3IUq586Ic9gIhZi6ubpWV-OJfl4
- 2. <a href="https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2\_u4xOEky0">https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2\_u4xOEky0</a>
- 3. <a href="https://www.youtube.com/watch?v=UzxYlbK2c7E">https://www.youtube.com/watch?v=UzxYlbK2c7E</a>
- 4. <a href="https://www.youtube.com/playlist?list=PLAwxTw4SYaPkQXg8TkVdIvYv4H">https://www.youtube.com/playlist?list=PLAwxTw4SYaPkQXg8TkVdIvYv4H</a> fLG7SiH

#### **❖** Software:

- 1. Scikit Learn
- 2. PyTorch
- 3. TensorFlow
- 4. Colab
- 5. Keras

© CHARUSAT 2020 Page **159** of **170** 

## **CE448: SOFTWARE GROUP PROJECT-V**

#### **Credits and Hours:**

| <b>Teaching Scheme</b> | Theory | Practical | Tutorial | Total | Credit |
|------------------------|--------|-----------|----------|-------|--------|
| Hours/week             | 0      | 2         | 0        | 2     | 1      |
| Marks                  | 0      | 50        | 0        | 50    |        |

#### **Pre-requisite courses:**

Programming Knowledge

#### **Outline of the Course:**

- Student at the beginning of a semester may be advised by his/her supervisor (s) for recommended courses.
- Students will work together in a team (at most three) with any programming language.
- Students are required to get approval of project definition from the department.
- After approval of project definition students are required to report their project work on weekly basis to the respective internal guide.
- Project will be evaluated at least once per week in laboratory Hours during the semester and final submission will be taken at the end of the semester as a part of continuous evaluation.
- Project work should include whole SDLC of development of software / hardware system as a solution of particular problem by applying principles of Software Engineering.
- Students have to submit project with following listed documents at the time of final submission.
  - m. Project Synopsis
  - n. Software Requirement Specification
  - o. SPMP
  - p. Final Project Report
  - q. Project Setup file with Source code
  - r. Project Presentation (PPT)

• A student has to produce some useful outcome by conducting experiments or project work.

Total hours (Theory): 00

Total hours (Lab): 60

Total hours: 60

## **Course Outcome (COs):**

At the end of the course, the students will be able to:

| CO1 | Identify and define the computing requirements of a problem to propose its                                          |
|-----|---------------------------------------------------------------------------------------------------------------------|
|     | appropriate solution.                                                                                               |
| CO2 | Correlate knowledge of different subjects and apply it to implement solution of                                     |
|     | the problem.                                                                                                        |
| CO3 | Apply engineering and management principles to achieve project goal.                                                |
| CO4 | Prepare technical report and deliver presentation by applying different visualization tools and evaluation metrics. |
| CO5 | Able to communicate effectively with a range of audiences.                                                          |
| CO6 | Recognition of the need for and an ability to engage in continuing professional                                     |
|     | development.                                                                                                        |
| CO7 | Able to work and coordinate with different kind of people in the team                                               |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | -   | 3   | -   | 2   | -   | -   | -   | -   | 2   | -    | =    | -    | 3    | -    |
| CO2 | 3   | -   | 1   | 1   | 3   | 1   | 1   | -   | -   | -    | -    | 2    | 1    | 1    |
| CO3 | -   | -   | 3   | -   | 3   | 1   | 1   | -   | 2   | -    | 3    | 2    | 3    | -    |
| CO4 | -   | -   | -   | -   | 3   | -   | 2   | -   | 2   | 3    | -    | -    | -    | -    |
| CO5 | -   | -   | -   | -   | -   | -   | -   | -   | -   | 3    | -    | -    | -    | -    |
| CO6 | -   | -   | -   | -   | -   | -   | 3   | -   | -   | -    | -    | 2    | -    | 2    |
| CO7 | -   | -   | -   | -   | -   | -   | -   | 2   | 3   | 3    | -    | 2    | -    | 2    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

## **\*** Reference book:

1. Books, Magazines & Journals of related topics

## **\*** Web material:

- 1. www.ieeexplore.ieee.org
- 2. www.sciencedirect.com
- 3. www.elsevier.com
- 4. http://spie.org/x576.xml

## **Software:**

- 1. ASP.NET
- 2. PYTHON/MATLAB
- 3. PHP
- 4. ANDROID/IOS

© CHARUSAT 2020 Page **162** of **170** 

## **CE446: SUMMER INTERNSHIP-II**

#### **Credits and Hours:**

| <b>Teaching Scheme</b> | Project | Practical | Tutorial | Total | Credit |
|------------------------|---------|-----------|----------|-------|--------|
| Hours                  | 90      | -         | -        | 90    | 3      |
| Marks                  | 150     | -         | -        | 150   |        |

## **Objectives of the Course:**

- To get familiar with modern tools and technologies use in company/industry/organization
- To get involved in design, development and testing practices followed in the company/industry/organization
- To enhance their soft-skills, presentation skills, interpersonal skills, documentation skills and office etiquettes required to sustain in company/industry/organization environment
- To participate in teamwork and preferably as part of a multi-disciplinary team
- To make them aware about company/industry/organization best practices, processes and regulations.
- To make them more productive, consistent and punctual.

**Instructional Method and Pedagogy** 

#### **Outline of the Course:**

# Summer internship shall be at least 90 hours during the summer vacation only.

- Department/Institute will help students to find an appropriate company/industry/organization for the summer internship.
- The student must fill up and get approved a Summer Internship Acceptance form by the company and provide it to the Coordinator of the department within the specified deadline.
- Students shall commence the internship after the approval of the department Coordinator. Summer internships in research centers is also allowed.
- During the entire period of internship, the student shall obey the rules and regulations of the company/industry/organization and those of the University.
- Due to inevitable reasons, if the student will not able to attend the internship

© CHARUSAT 2020 Page **163** of **170** 

for few days with the permission of the supervisor, the department Coordinator should be informed via e-mail and these days should be compensated later.

- The student shall submit two documents to the Coordinator for the evaluation of the summer internship:
  - Summer Internship Report
  - Summer Internship Assessment Form
- Upon the completion of summer internship, a hard copy of "Summer Internship Report" must be submitted through the presentation to the Coordinator by the first day of the new term.
- The report must outline the experience and observations gained through practical internship, in accordance with the required content and the format described in this guideline. Each report will be evaluated by a faculty member of the department on a satisfactory/unsatisfactory basis at the beginning of the semester.
- If the evaluation of the report is unsatisfactory, it shall be returned to the student for revision and/or rewriting. If the revised report is still unsatisfactory the student shall be requested to repeat the summer internship.

## 2. Format of Summer Internship Report

The report shall comply with the summer internship program principles. Main headings are to be centered and written in capital boldface letters. Sub-titles shall be written in small letters and boldface. The typeface shall be Times New Roman font with 12pt. All the margins shall be 2.5cm. The report shall be submitted in printed form and filed. An electronic copy of the report shall be recorded in a CD and enclosed in the report. Each report shall be bound in a simple wire vinyl file and contain the following sections:

- Cover Page
- Page of Approval and Grading
- Abstract page: An abstract gives the essence of the report (usually less than one page). Abstract is written after the report is completed. It must contain the purpose and scope of internship, the actual work done in the plant, and

© CHARUSAT 2020 Page **164** of **170** 

conclusions arrived at.

- TABLE OF CONTENTS (with the corresponding page numbers)
- LIST OF FIGURES AND TABLES (with the corresponding page numbers)
- DESCRIPTION OF THE COMPANY/INDUSTRY/ORGANISATION: Summarize the work type, administrative structure, number of employees (how many engineers, under which division, etc.), etc. Provide information regarding
  - Location and spread of the company
  - Number of employees, engineers, technicians, administrators in the company
  - Divisions of the company
  - Your group and division
  - Administrative tree (if available)
  - Main functions of the company
  - Customer profile and market share
- INTRODUCTION: In this section, give the purpose of the summer internship, reasons for choosing the location and company, and general information regarding the nature of work you carried out.
- PROBLEM STATEMENT: What is the problem you are solving, and what are the reasons and causes of this problem.
- SOLUTION: In this section, describe what you did and what you observed during the summer internship. It is very important that majority of what you write should be based on what you did and observed that truly belongs to the company/industry/organization.
- CONCLUSIONS: In the last section, summarize the summer internship
  activities. Present your observations, contributions and intellectual benefits. If
  this is your second summer internship, compare the first and second summer
  internships and your preferences.
- REFERENCES: List any source you have used in the document including books, articles and web sites in a consistent format.
- APPENDICES: If you have supplementary material (not appropriate for the main body of the report), you can place them here. These could be schematics,

© CHARUSAT 2020 Page **165** of **170** 

| algorithms, drawings, etc. If the document is a datasheer accessed from the internet, then you can refer to it internet link and document number. In this manner you and waste tons of paper. | with the appropriate |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Total hours (Project):  Total hours:                                                                                                                                                          |                      |

At the end of the course, the students will be able to

| CO1 | Ability to integrate existing and new technical knowledge for industrial       |
|-----|--------------------------------------------------------------------------------|
|     | application.                                                                   |
| CO2 | Executing work with team and teammates from other disciplines                  |
| CO3 | Get practices and experience related to professional and ethical issues in the |
|     | work environment                                                               |
| CO4 | Experience of demonstrating the impact of the internship on their learning and |
|     | professional development.                                                      |
| CO5 | Understanding of lifelong learning processes through critical reflection of    |
|     | internship experiences.                                                        |

## **Course Articulation Matrix:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 1   | -   | -   | 1   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO2 | -   | -   | -   | -   | -   | -   | -   | -   | 3   | 2    | 1    | -    | -    | 2    |
| CO3 | -   | -   | -   | -   | -   | -   | 1   | 3   | -   | 1    | -    | -    | -    | 1    |
| CO4 | -   | -   | -   | -   | -   |     | 3   | 1   | -   | -    | -    | -    | 1    | -    |
| CO5 | -   |     | -   | -   | -   | 1   | -   | -   | -   | -    | -    | 3    | -    | -    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## **Recommended Study Material:**

## **\*** Reference book:

1. Books, Magazines & Journals of related topics

## **\*** Web material:

- 1. www.ieeexplore.ieee.org
- 2. www.sciencedirect.com
- 3. www.elsevier.com
- 4. http://spie.org/x576.xml

## **❖** Software

- 1. ASP.NET
- 2. PYTHON/MATLAB
- 3. PHP
- 4. ANDROID/IOS
- 5. FLUTTER
- 6. NODE/REACT NATIVE

© CHARUSAT 2020 Page **167** of **170** 

B. Tech. (Computer Engineering) Programme

SYLLABI (Semester - 8)

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

© CHARUSAT 2020 Page **168** of **170** 

## **CE447: SOFTWARE PROJECT MAJOR**

#### **Credits and Hours:**

| Teaching Scheme | Theory | Practical    | Total | Credit |
|-----------------|--------|--------------|-------|--------|
| Hours/week      | 0      | 36           | 36    | 20     |
| Marks           | 0      | 600(250+350) | 600   |        |

## **Pre-requisite courses:**

 Software Engineering and other relevant courses, Development tools and languages, soft skill.

#### **Outline of the Course:**

- Students work with industry/organization4-to-6 months for development or research project.
- The definitions are verified and guidance are given to take the project at next level and can help industry, society or environment.
- The external guide (at industry/Organization) and internal guide (Institute faculty) continuously monitor the students' work and project file is maintained per group to document all the measurable work.
- Project work should include whole SDLC/Agile of development of software / hardware system as solution of particular problem by applying principles of Software Engineering.
- Project is evaluated twice during the semester by internal faculty of the university as a part of continuous evaluation.
- Final evaluation at the end of the semester is done by Industry experts or faculties from reputed university.
- Students have to submit SRS, SPMP, Design documents, Code and Test Cases in form of Project report.
- The feedback of the students' by external guide and Evaluator are taken during the semester to improve the teaching learning and evaluation process.

© CHARUSAT 2020 Page **169** of **170** 

At the end of the course, the students will be able to

| CO1 | Identify and justify/analyse the requirements of the projects with enhancement of the required tools and technology by individual and team. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Solve challenging projects for commercial, societal and environment benefit.                                                                |
| CO3 | Apply the engineering knowledge to full fill the requirements of the projects pertaining to any discipline.                                 |
| CO4 | Explain the importance of planning, documentation, punctuality and work ethics.                                                             |
| CO5 | Document the work which is carried out in proper format with industry standards.                                                            |
| CO6 | Showcase the soft skill.                                                                                                                    |

#### **Course Articulation Matrix:**

|     | PO01 | PO02 | PO03 | PO04 | PO05 | PO06 | PO07 | PO08 | PO09 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| CO1 | 3    | 3    | -    | 2    | 3    | -    | 1    | -    | 3    | 1    | 1    | 1    | 3    | 1    |
| CO2 | 2    | -    | 3    | -    | -    | 3    | 2    | -    | -    | -    | -    | -    | 2    | 2    |
| CO3 | 3    | 2    | 1    | 1    | 1    | -    | -    | -    | 1    | -    | 2    | 1    | 3    | 1    |
| CO4 | 3    | 1    | 2    | -    | -    | -    | -    | 3    | -    | -    | 1    | 2    | 2    | 3    |
| CO5 | 3    | -    | 2    | 2    | -    | -    | -    | -    | -    | 2    | -    | 3    | 1    | 1    |
| CO6 | 1    | =    | 1    | 1    | =    | =    | =    | 3    | 1    | 3    | 1    | 1    | 1    | 3    |

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

## Recommended Study Material (Suggested by Internal or External guide):

- Reading Materials, web materials, Project reports with full citations.
- Books, magazines & Journals of related topics.
- Various software tools and programming languages compiler related to topic.

## **Web Materials:**

- 1. www.ieeexplore.ieee.org
- 2. www.sciencedirect.com
- 3. www.elsevier.com