योगः कर्ममु कौशलम् PARUL UNIVERSITY

Parul University

Faculty of Engineering & Technology

Department of Applied Sciences and Humanities

1st Year B.Tech Programme (All Branches)

Mathematics – 1 (303191101)

Assignment -3

Q.1 Short questions.

- 1. Give the definition of 'order' and 'degree'.
- 2. Find order and degree of the given equations.

$$(i)(\frac{dy}{dx})^2 + \frac{d^2y}{dx^2}, \quad (ii)\frac{dy}{dx} + (\frac{d^2y}{dx^2})^3 + 3(\frac{dy}{dx})^3$$

- 3. How many variables have/has in ordinary differential equation. And in partial differential equation.
- 4. Give the examples of ordinary differential equation and partial differential equation.
- 5. What is the sufficient condition for Exact differential equation?
- 6. Integrating factor of non-exact homogeneous differential equation with $Mx + Ny \neq 0$ is _____.
- 7. Let $\{a_n\}$ be a sequence, if for every $\varepsilon > 0$ there exist an integer N such that $n \ge N \Longrightarrow |a_n l| < \varepsilon$ if such a number exist then we write $\lim_{n \to \infty} a_n = \underline{\hspace{1cm}}$.
- 8. A sequence is said to be convergent if the sequence is has _____ limit.
- 9. A sequence is $\{a_n\}$ is said to be _____ if $a_n < a_{n+1}$ for each value of n.
- 10. A sequence $\{a_n\}$ is bounded above and bounded below both the it is _____.
- 11. A series is said to be ______ if while writing the nth partial sum all terms except first and last vanish.
- 12. The series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges if p ___ 1 and diverges if p ___ 1.
- 13. "If $\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$, then $\sum a_n$ and $\sum b_n$ both converges or both diverges."

Above statement is true or false?

- 14. A series in which the terms are alternatively positive and negative is called a/an____.
- 15. $\lim_{n\to\infty} |a_n|^{1/n} = L$ shows the _____ test.

Solve examples.

1. Find solution of non-linear differential equation

(i)
$$x \frac{dy}{dx} + y = x^3 y^6$$
, (ii) $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x^2}$.

2. Solve (i)
$$2xy dx + (1 + x^2) dy = 0$$
 (ii) $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + \cos y + x} = 0$.

3. Find solution of linear differential equation.

(i)
$$(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$$
, (ii) $y' + y \tan x = \sin 2x$

4. Check the exactness and solve:

$$(i)(x^4 + y^4)dx - xy^3dy = 0$$
, $(ii)(2x\log x - xy)dy + 2ydx = 0$.

5. Verify that $y = e^{-x}(a\cos x + b\sin x)$ is a solution of y'' + 2y' + 2y = 0, where a and b are constants.

6. Form the differential equation of $y = (C_1 + C_2 x)e^{2x}$

7. Find the sum of the series $\log 2 + \log \frac{3}{2} + \log \frac{4}{3} + \cdots + \infty$.

8. Test the convergence of the following series using suitable test.

(i)
$$\sum_{n=1}^{\infty} n^{-\pi}$$
, (ii) $\sum_{n=1}^{\infty} \sqrt[4]{(n)^2}$, (iii) $\sum_{n=1}^{\infty} \frac{2^n}{7^n + 8}$,

$$(iv)\sum_{n=1}^{\infty}\frac{1}{4+\sqrt[3]{n}}, \qquad (v)\sum_{n=1}^{\infty}\frac{3^n}{2^{n+3}}, \qquad (vi)\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{-n^2},$$

$$(vii)$$
 $\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}$, $(viii)$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$,

$$(ix) 1 + \frac{2}{3} + \frac{4}{9} + \dots + \infty$$
, $(x) 1 + \frac{2^2}{2^2} + \frac{3^2}{2^2} + \dots + \frac{n^2}{2^2}$