CMSC 127 Enhanced Entity-Relationship (EER) Modeling

Reginald Neil C. Recario

Institute of Computer Science University of the Philippines Los Baños

Subclasses and Superclasses

Subclasses and Superclasses

- □ Each subgroup
 - □ is a subset of EMPLOYEE entities
 - □ is called a subclass of EMPLOYEE
 - under a superclass named EMPLOYEE
- □ Superclass/subclass relationships:
 - ■EMPLOYEE/SECRETARY
 - ■EMPLOYEE/TECHNICIAN
 - ■EMPLOYEE/SALARIED
 - Also called as IS-A relationships

Subclasses and Superclasses in EER

Subclasses and Superclasses

- An entity that is member of a subclass represents the same real-world entity as some member of the superclass:
 - □ The subclass member is the same entity in a *distinct* specific role.
 - An entity cannot exist in the database merely by being a member of a subclass.
 - A member of the superclass can be optionally included as a member of any number of its subclasses.

Inheritance

- An entity that is a member of a subclass inherits:
 - All attributes of the entity as a member of the superclass
 - All relationships of the entity as a member of the superclass

Specialization

- □ is the process of defining a set of subclasses of a superclass
- □ a top-down design process
- □ is appropriate if:
 - A subclass has specific attributes
 - A subclass participates in a specific relationship type

Defining a subclass

Defining a subclass

Specialization

- Attributes of a subclass are called
 specific or local attributes.
- Several specializations can be made out of the same superclass.

Specialization

Generalization

- Several classes with common features are generalized into a superclass.
- Generalization is the reverse of the specialization process.
- □ A bottom-up design process

- Constraints on which entities can be members of a a subclass
- Condition-defined or Predicate-defined
 - members of each subclass are determined by a condition
 - Display a predicate-defined subclass by writing the predicate condition next to the line attaching the subclass to its superclass.

- □ Attribute-defined
 - If all subclasses in a specialization have membership condition on same attribute of the superclass
 - Attribute is called the defining attribute of the specialization
 - ■Example: JobType is the defining attribute of the specialization {SECRETARY, TECHNICIAN, ENGINEER} of EMPLOYEE

Displaying an attribute-defined specialization in EER diagrams

□ User-defined

- □If no condition determines membership
- Membership in a subclass is determined by the database users by applying an operation to add an entity to the subclass

Displaying a user-defined specialization in EER diagrams

- Constraint on whether or not entities may belong to more than one subclass within a single generalization/specialization
- □ Disjointness Constraint:
 - Disjoint
 - Overlapping

□ Disjoint:

- an entity can be a member of at most one of the subclasses of the specialization
- ■Specified by <u>d</u> in EER diagram

□ Overlapping:

- the same entity may be a member of more than one subclass of the specialization
- ■Specified by o in EER diagram

- Constraint on whether or not entity in superclass must belong to at least one of the subclasses within a single specialization/generalization
- □ Completeness Constraint:
 - Total
 - Partial

□ Total:

- every entity in the superclass must be a member of some subclass in the specialization/generalization
- Shown in EER diagrams by a double line

□ Partial

- allows an entity not to belong to any of the subclasses
- Shown in EER diagrams by a single line
- □ Note: Generalization usually is total because the superclass is derived from the subclasses.

Example of a disjoint partial Specialization

Example of an overlapping total Specialization

Hierarchy and Lattice

- A subclass may itself have further subclasses specified on it
 - forms a hierarchy or a lattice
- □ Hierarchy :
 - every subclass has only one superclass (called single inheritance); this is basically a tree structure
- □ Lattice:
 - a subclass can be subclass of more than one superclass (called multiple inheritance)

Example of a lattice

Lattices & Shared Subclasses

- In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of all its predecessor superclasses
- A subclass with more than one superclass is called a shared subclass (multiple inheritance)
- □ Can have:
 - specialization hierarchies or lattices, or
 - generalization hierarchies or lattices

