Лабораторная работа №4

Селезнев Василий Александрович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	10

Список таблиц

Список иллюстраций

3.1	Код программы											8
3.2	График для первого случая											8
3.3	График для второго случая											9
3.4	График для третьего случая											9

1 Цель работы

Познакомиться с моделью гармонических колебаний осциллятора, используя язык программирования Modelica.

2 Задание

- 1. Построить решение уравнения гармонического осциллятора без затухания(2)
- 2. Записать уравнение свободных колебаний гармонического осциллятора с затуханием, построить его решение. Построить фазовый портрет гармонических колебаний с затуханием.
- 3. Записать уравнение колебаний гармонического осциллятора, если на систему действует внешняя сила, построить его решение. Построить фазовый портрет колебаний с действием внешней силы.

3 Выполнение лабораторной работы

Рассмотрим модель осциллятора

1. Первый случай (без затухания и без действия внешней силы)

$$\ddot{x} + 12x = f(t)$$

где

$$w=\sqrt{12.0}$$

$$\gamma = 0.0$$

$$f(t) = 0.0$$

2. Второй случай (с затуханием и без действия внешней силы)

$$\ddot{x} + 11\dot{x} + 2x = 0$$

где

$$w = \sqrt{2.0}$$

$$\gamma = 11.0$$

$$f(t) = 0.0$$

3. Третий случай(с затуханием и под действием внешней силы)

$$\ddot{x} + 2\dot{x} + 2x = 2\cos(2t)$$

где

$$w = \sqrt{2.0}$$

$$\gamma = 2.0$$

$$f(t) = 2.0cos(2t)$$

Ниже представлен скриншот кода программы для трех случаев, написанный на языке программирования Modelica. (рис 1. @fig:001)

Рис. 3.1: Код программы

Представлен график для первого случая. (рис 2. @fig:001)

Рис. 3.2: График для первого случая

Ниже представлен график для второго случая. (рис 3. @fig:001)

Рис. 3.3: График для второго случая

Также представлен график для третьего случая. (рис 4. @fig:001)

Рис. 3.4: График для третьего случая

4 Выводы

Я научился строить модель гармонического осцилятора на языке программирования Modelica.