Statistique : Intervalles de confiance et tests

Joseph Salmon

Septembre 2014

Intervalle de confiance

- ▶ Contexte : on a une estimation $\hat{g}(y_1, \ldots, y_n)$ d'une grandeur $g(\theta)$. On veut un intervalle \hat{I} autour de \hat{g} qui contient g avec une grande probabilité.
- ▶ On construit $\hat{I} = [A, B]$ à partir des observations (y_1, \dots, y_n) : l'intervalle est une variable aléatoire

$$\mathbb{P}(\hat{I} \text{ contient } g) = \mathbb{P}(A \leq g \text{ et } B \geq g) = 95\%$$

Intervalle de confiance de niveau α

Intervalle de confiance

Un intervalle de confiance de niveau α pour la grandeur $g=g(\theta)$ est une fonction de l'échantillon

$$\hat{I}: (y_1, \dots, y_n) \mapsto \hat{I} = [A(y_1, \dots, y_n), B(y_n, \dots, y_n)]$$

telle que, quelle que soit le paramètre $\theta \in \Theta$,

$$\mathbb{P}\left[g(\theta) \in \hat{I}(y_1, \dots, y_n)\right] \geq 1 - \alpha$$
 lorsque $y_i \sim \mathbb{P}_{\theta}$

Rem: des choix classiques sont $\alpha = 5\%, 1\%, 0.1\%$, etc.

Exemple: sondage

Sondage d'une élection à deux candidats : A et B. Le choix du i-ème sondé suit une loi de Bernoulli de paramètre p, $y_i=1$ s'il vote A, 0 sinon. Ainsi,

$$\Theta = [0,1]$$
 et $\theta = p$.

- ▶ but : estimer $g(\theta) = p$.
- \blacktriangleright échantillon de taille n: un estimtateur raisonnable est alors

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{y}_n$$

intervalle de confiance pour p?

Sondage : intervalle de confiance

- ► Chercher un intervalle $\hat{I} = [\hat{p} \delta, \hat{p} + \delta]$ tel que $\mathbb{P}(p \in \hat{I}) \geq 0.95 \Leftrightarrow$ chercher δ tel que $\mathbb{P}[|\hat{p} p| > \delta] \leq 0.05$
- ▶ Ingrédient : inégalité de **Tchebyschev** (quand $\mathbb{E}(X^2) < +\infty$)

$$\forall \delta > 0, \quad \mathbb{P}(|X - \mathbb{E}(X)| > \delta) \le \frac{\operatorname{Var}(X)}{\delta^2}$$

Pour $X=\hat{p}=rac{1}{n}\sum_{i=1}^n Y_i$ on a $\mathbb{E}(\hat{p})=p$ et $\mathrm{Var}(\hat{p})=rac{p(1-p)}{n}$, on a

$$\forall p \in (0,1), \forall \delta > 0, \quad \mathbb{P}(|\hat{p} - p| > \delta) \le \frac{p(1-p)}{n\delta^2} \le \frac{1}{4n\delta^2}$$

Application numérique : pour un intervalle de confiance à 95%, on peut choisir δ tel que $\frac{1}{4n\delta^2}=0.05$, i.e., $\delta=\sqrt{\frac{1}{4\times0.05\times n}}$. Si n=1000 et $\hat{p}=55\%$, on obtient

$$\delta = 0.07 \; ; \quad \hat{I} = [0.48, 0.62]$$

Théorème central limite

- \triangleright y_1, y_2, \ldots , des variables aléatoires *i.i.d.* de carré intégrable.
- \blacktriangleright μ et σ leur espérance et écart-type théoriques.

Théorème central limite (TCL)

La loi de la moyenne empirique renormalisée

$$\sqrt{n} \left(\frac{\bar{y}_n - \mu}{\sigma} \right)$$

converge vers une loi normale centrée réduite $\mathcal{N}(0,1)$

▶ Reformulation : La moyenne empirique se comporte approximativement comme une loi normale $\mathcal{N}(\mu, \sigma^2/n)$

Intervalles de confiance asymptotiques

- Exemple du sondage : $\hat{p} = 0.55$, n = 1000
- \triangleright On suppose que n est suffisamment pour que

$$\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} y_n - p}{\sqrt{p(1-p)}} \sim \mathcal{N}(0,1) \qquad \text{rappel} : p(1-p) = \text{Var}(Y)$$

- On connaît les quantiles de la loi normale (numériquement)
- ▶ D'après le TCL, et l'approximation des quantiles gaussiens

$$\mathbb{P}\left[-1.96 < \sqrt{n} \, \frac{0.55 - p}{\sqrt{p(1-p)}} < 1.96\right] \approx 0.95$$

On résout en p (équations de degré deux) :

$$\mathbb{P}\left[0.52$$

nouvel intervalle de confiance : $\hat{I} = [0.52, 0.58]$: meilleur!

Tests d'hypothèses pour le "Pile ou face"

- ▶ On veut tester une hypothèse sur le paramètre θ .
- ▶ On l'appelle hypothèse nulle \mathcal{H}_0 Exemple: 'la pièce est non biaisée" : $\mathcal{H}_0 = \{p = 0.5\}$. Exemple: 'la pièce est peu biaisée', $\mathcal{H}_0 = \{0.45 \le p \le 0.55\}$
- L'hypothèse alternative \mathcal{H}_1 est (souvent) le contraire de \mathcal{H}_0 . Exemple: $\mathcal{H}_1 = \{p \neq 0.5\}$ Exemple: $\mathcal{H}_1 = \{p \notin [0.45, 0.55]\}$
- « Faire un test » : déterminer si les données permettent de rejeter l'hypothèse \mathcal{H}_0 . On cherche une region R pour laquelle si $(y_1,\ldots,y_n)\in R$ on rejette l'hypothèse \mathcal{H}_0 . R est la région de **rejet**.

Rejet ou acceptation?

Présomption d'innocence en faveur de \mathcal{H}_0

Même si \mathcal{H}_0 n'est pas rejetée par le test, on ne peut en général pas conclure que \mathcal{H}_0 est vraie!

Rejeter \mathcal{H}_1 est souvent impossible car \mathcal{H}_1 est trop générale. e.g., $\{p \in [0,0.5[\cup]0.5,1]\}$ ne peut pas être rejetée!

- ▶ \mathcal{H}_0 s'écrit sous la forme $\{\theta \in \Theta_0\}$, avec $\Theta_0 \subset \Theta$
- ▶ \mathcal{H}_1 s'écrit sous la forme $\{\theta \in \Theta_1\}$, avec $\Theta_0 \subset \Theta$

Rem: $\{\theta \in \Theta_0\}$ et $\{\theta \in \Theta_1\}$ sont disjoints.

Risques de première et de seconde espèce

	\mathcal{H}_0	\mathcal{H}_1
Non rejet de \mathcal{H}_0	Juste	Faux (acceptation à tort)
Rejet de \mathcal{H}_0	Faux (Rejet à tort)	Juste

Risque de première espèce : probabilité de rejeter à tort

$$\alpha = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}((y_1, \dots, y_n) \in R)$$

► Risque de seconde espèce

$$\beta = \sup_{\theta \in \Theta_1} \mathbb{P}_{\theta} ((y_1, \dots, y_n) \notin R)$$

Niveau/Puissance

Niveau du test

 $1 - \alpha = \text{probabilit\'e d'} \cdot \text{accepter } \cdot \text{a raison (si } \mathcal{H}_0 \text{ est valide)}$

Puissance du test

 $1 - \beta = \text{probabilit\'e de rejeter } \mathcal{H}_0$ à raison (si \mathcal{H}_1 est valide)

En général, lorsqu'on parle de « test à 95% » on parle d'un test de niveau $1-\alpha \geq 95\%$.

Statistique de test et région de rejet

Objectif classique : construire un test de niveau $1-\alpha$

- ▶ On cherche une fonction des données $T_n(y_1, ..., y_n)$ dont on connaît la loi si \mathcal{H}_0 est vraie : T_n est appelée *statistique de test*.
- ▶ On définit une région de rejet ou région critique de niveau α , une région R telle que, sous \mathcal{H}_0 ,

$$\mathbb{P}(T_n(y_1,\ldots,y_n)\in R)\leq \alpha$$

▶ Régle de rejet de \mathcal{H}_0 : on rejette si $T_n(y_1,\ldots,y_n)\in R$

Exemple gaussien : nullité de la moyenne

- Modèle : $\Theta = \mathbb{R}$, $\mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$.
- ▶ Hypothèse nulle : \mathcal{H}_0 : $\{\theta = 0\}$
- ► Sous \mathcal{H}_0 , $T_n(y_1,\ldots,y_n)=\frac{1}{\sqrt{n}}\sum_i y_i \sim \mathcal{N}(0,1)$
- ▶ Région critique pour T_n ? Quantiles gaussiens : sous H_0 ,

$$\mathbb{P}(T_n \in [-1.96, 1.96]) = 0.95$$

On prend R = [-1.96, 1.96].

Exemple numerique : si $T_n=1.5$, on ne rejette **PAS** \mathcal{H}_0 au niveau 95%

Références I