INTERROGATION ÉCRITE N°1

Nom:	Prénom :	Classe:

EXERCICE N°1 Compléter

(10 points)

- $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 3, 2x 5 \end{cases}$ est une fonction
- 2) $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -4,3 \end{cases}$ est une fonction 3) $h: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2,5 \end{cases}$ est une fonction
- 4) Soit $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto mx + p \end{cases}$, avec m et p des réels, une fonction affine, Alors sa

représentation graphique C_f est

- *m* est
- **6)** *p* est
- 7) Si $A(x_A; y_A = f(x_A))$ et $B(x_B; y_B = f(x_B))$ sont deux points distincts de C_f

alors: m =

INTERROGATION ÉCRITE N°1

Nom:	Prénom :	Classe:
1 1011 .	i chom.	Ciusse.

EXERCICE N°1 Compléter

(10 points)

- 1) $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 3, 2x 5 \end{cases}$ est une fonction
- 2) $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -4,3 \end{cases}$ est une fonction
- 3) $h: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2.5 x \end{cases}$ est une fonction
- 4) Soit $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto mx + p \end{cases}$, avec m et p des réels, une fonction affine, Alors sa

représentation graphique C_f est

- 5) m est
- **6) p** est
- 7) Si $A(x_A; y_A = f(x_A))$ et $B(x_B; y_B = f(x_B))$ sont deux points distincts de C_f

alors:
$$m =$$