

Estructuras de datos y Algoritmos 2011-2012

Felipe Ibañez felipe.anfurrutia@ehu.es

Agenda

- Definición
- Diseño e implementación
- Cómo funciona
- Tipos de recursividad
- Recursión vs Iteración
- Ejemplos / Problemas
- Técnicas de implementación
- Errores típicos en recursividad

Definición

- Cualquier estructura repetitiva (ciclos) puede ser definido de forma iterativa y de forma recursiva.
 - □ Un proceso iterativo es aquél que requiere de la repetición explícita de cierta acción.
 - ☐ Un proceso es recursivo si está definido total o parcialmente en términos de sí mismo.

Ejemplo Matrushka

La Matrushka es una artesanía tradicional rusa. Es una muñeca de madera que contiene otra muñeca más pequeña dentro de sí. Esta muñeca, también contiene otra muñeca dentro. Y así, una dentro de otra.

Ejemplo: Factorial iterativo

- Para calcular 4!, por ejemplo, se puede utilizar un proceso iterativo o uno recursivo.
- De manera iterativa:

$$\Box 4! = 1 * 2 * 3 * 4 = 24$$

Ejemplo: Factorial recursivo

- Para definir 4! de manera recursiva se tiene que definir en términos de factorial, es decir, en la definición (parte derecha de la igualdad) tiene que aparecer el factorial.
- De manera recursiva:

Ejemplo: Factorial recursivo (2)

Sustituyendo 3!

Sustituyendo 2!

Sustituyendo 1!

Sustituyendo 0!

Observaciones

- Se observa que en el cálculo de 4! fue muy importante el hecho de que 0! es igual a 1.
- ¿Qué hubiera pasado si 0! se calculará como se calculó los demás factoriales? Nunca se hubiera terminado el proceso, o sea, tendríamos un proceso infinito.

Observaciones (2)

Entonces, toda definición recursiva debe tener, al menos, una definición base. Esta definición base proporciona la solución de salida de la recursividad.

Observaciones (3)

■ Para calcular 4!, 3!, 2! y 1! Se uso una definición recursiva, por lo que se estuvo entrando en recursión varias veces y cuando se alcanzó la definición base se comenzó a salir de recursión.

Conclusiones:

- Un proceso es recursivo si está definido total o parcialmente en términos de sí mismo.
- Todo proceso recursivo debe tener, al menos: una definición base y una definición recursiva.

Diseño e implementación de algoritmos recursivos

- La solución recursiva a un problema de repetición se obtiene respondiendo dos preguntas:
 - 1. ¿Cómo se resuelve el caso más pequeño del problema?
 - La respuesta a esta pregunta debe ser no-recursiva y plantear una condición de salida, es decir, proporcionar la definición base.
 - En el cálculo de factorial, la pregunta sería: ¿cuál es el número más pequeño para el que se puede obtener factorial?

Para $N = 0 \rightarrow n! = 1$

Diseño e implementación de algoritmos recursivos (2)

- La solución recursiva a un problema de repetición se obtiene respondiendo dos preguntas:
 - 2. ¿Cómo se resuelve un caso general del problema, sabiendo que ya se tiene el caso anterior más pequeño?

Para $N > 0 \rightarrow N * (N-1) !$

Diseño e implementación de algoritmos recursivos (3)

- Solución del diseño:
 - □ Caso base: si N = 0 \rightarrow n! = 1 (definición base)
 □ Caso general: si N > 0 \rightarrow n! = n * (n-1)! (definición recursiva)
- Implementación:

```
/** Dado un entero no negativo n, devuelve el factorial de n */
public int fact (int n) {
    if (n == 0)
        return 1;
    else
        return fact(n - 1) * n;
}
```


¿Cómo funciona la recursividad?

 NOTA: Cuando un procedimiento recursivo se llama recursivamente a si mismo varias veces, para cada llamada se crean copias independientes de las variables y parámetros declaradas en el procedimiento

Resultados de las llamadas recursivas

Tipos de recursividad

■ recursión directa:

□ Cuando un procedimiento incluye una llamada a sí mismo

■ recursión indirecta:

□ Cuando un procedimiento llama a otro procedimiento y éste causa que el procedimiento original sea invocado

¿Por qué escribir programas recursivos?

- Son mas cercanos a la descripción matemática.
- Generalmente mas fáciles de analizar
- Se adaptan mejor a las estructuras de datos recursivas.
- Los algoritmos recursivos ofrecen soluciones estructuradas, modulares y elegantemente simples.

¿Cuándo usar recursividad?

- □ Para simplificar el código.
- □ Cuando la estructura de datos es recursiva ejemplo : árboles.

¿Cuándo no usar recursividad?

- □ Cuando los métodos usen arrays largos.
- □ Cuando el método cambia de manera impredecible de campos.
- □ Cuando las iteraciones sean la mejor opción.

Recursión vs. iteración

■ Repetición

- □ Iteración: ciclo explícito
- □ Recursión: repetidas invocaciones a método

■ Terminación

- □ Iteración: el ciclo termina o la condición del ciclo falla
- □ Recursión: se reconoce el caso base

Observaciones:

- ☐ En ambos casos podemos tener ciclos infinitos
- □ Considerar que resulta más positivo para cada problema:
 - la elección entre eficiencia (iteración) o una buena ingeniería de software,
 - la recursión resulta normalmente más natural.

Otros ejemplos de recursividad

- Inversión de una cadena de caracteres
- Números triangulares
- Torres de hanoi
- Calcular la serie de fibonacci
- Verificar si una cadena de caracteres es palindromo

Ejemplo: inversión de una cadena

public String invertirCadena(String s)

Ejemplo: palindromo

Un palíndromo es una cadena que se lee (se escribe, en este caso) igual de izquierda a derecha que de derecha a izquierda. Escribir una función que determine cuando una cadena es o no un palíndromo.

Ejemplo: Números Triangulares

- Valores: 1, 3, 6, 10, 15, 21, ... ¿Cuál es el siguiente valor de la serie? El termino n se obtiene sumando n al termino anterior
- Los Pitagorianos (grupo de mátematicos bajo las ordenes de Pitagoras), encontro un mistica relación:

Ejemplo: Torres de Hanoi

- Tenemos tres astas 1, 2 y 3, y un conjunto de cinco aros, todos de distintos tamaños.
- El enigma comienza con todos los aros colocados en el asta 1 de tal forma que ninguno de ellos debe estar sobre uno más pequeño a él; es decir, están apilados, uno sobre el otro, con el más grande siempre abajo, y encima de él, el siguiente en tamaño y así sucesivamente.

Ejemplo: Torres de Hanoi (2)

- El propósito del enigma es lograr apilar los cincos aros, en el mismo orden, pero en el hasta 3.
- Una restricción es que durante el proceso, puedes colocar los aros en cualquier asta, pero debe apegarse a las siguientes reglas:
 - □ Solo se puede mover el aro superior de cualquiera de las astas
 - Un aro más grande nunca puede estar encima de uno más pequeño

Ejemplo: Torres de Hanoi (3)

- ¿Cómo resolvemos el problema?
 - □ Para encontrar cómo se resolvería este problema, debemos ir viendo cómo se resolvería cada caso.

Ejemplo: Torres de Hanoi (4) Resolviendo el problema

- Entonces, por lo que hemos podido ver, el programa podría definirse de la siguiente manera:
 - ☐ Si es un solo disco, lo movemos de 1 origen a 3. destino
 - □ En otro caso, suponiendo que n es la cantidad de aros que hay que mover
 - Movemos los n-1 aros superiores es decir, sin contar el más grande- de 1 a 2 (utilizando a 3 como auxiliar).
 - Movemos el último aro (el más grande) de 1 origen a 3. destino
 - Movemos los aros que quedaron en 2 a 3 (utilizando la 1 como auxiliar).

Ejemplo: Torres de Hanoi (5) Implementación

```
public void TorresHanoi(int n, int origen, int destino, int auxiliar) {
   if (n > 0) {
      TorresHanoi(n-1, origen, auxiliar, destino);
      System.out.println("Mover disco " + n + " desde " + origen + " a " + destino);
      TorresHanoi(n-1, auxiliar, destino, origen);
   }
}

public static void main(String[] args){
   TorresHanoi(5, 1, 3, 2);
}
```


Ejemplo: Serie de Fibonacci

- Valores: 0, 1, 1, 2, 3, 5, 8, ... ¿Cuál es el siguiente valor de la serie? El termino n se obtiene sumando los dos terminos anteriores. La fórmula recursiva es: fib(n) = fib(n-1) + fib(n-2)
- Diseño:
 - \square Caso base: fib(0) = 0 y fib(1) = 1
 - \square Caso recursivo: fib(i) = fib(i-1) + fib(i-2)
- Implementación:

```
public static int fib(int n) {
  if ( n<=1)
    return n;
  else
    return fib(n-1) + fib(n-2);
}</pre>
```


Ejemplo: Serie de Fibonacci (2)

■ Traza del calculo recursivo

La ejecución de Fibonacci(4) gráficamente, no formalmente, la podemos ver de la siguiente manera:

Ejemplo: Serie de Fibonacci (3)

n	fibonacci	
4	3+2=5 ◆	 Resultado
3	2 + 1 = 3	
2	1+1=2	
1	1	
0	1	
1	1	
2	1 + 1 = 2	
1	1	
0	1	
	4 3	4 3+2=5 ◀ 3 2+1=3 2 1+1=2 1 1 0 1 1 1

```
public static int fib(int n) {
    if ( n<=1)
        return n;
    else
        return fib(n-1) + fib(n-2);
}</pre>
```


Trampas sutiles: Código ineficiente

```
public static int fib(int n) {
                                         public static int fib (int n) {
                                            int f1 = 1, f2 = 1, nuevo;
   if ( n<=1)
         return n;
                                            while (n > 2) {
   else
                                                 nuevo = f1 + f2;
         return fib(n-1) + fib(n-2);
                                                 f1 = f2;
}
                                                 f2 = nuevo;
                                                 n--;
                                            }
                                            return f2;
                                        }
      fib(100) toma 50 años
      en dar el resultado
```


Iteracción vs. Recursión: Serie fibonacci

Técnicas de implementación

- Divide y Venceras
- Programación dinámica (dynamic programming)
- Vuelta atrás (Backtracking)

Técnicas: Divide y Venceras ¿En qué consiste ?

■ Dividir

□ Descomponer el problema a resolver en un nº de subproblemas mas pequeños hasta llegar al caso base

■ Vencer

- □ Resolver sucesiva e independientemente todos los subproblemas
- □ **Combinar las soluciones** obtenidas de esta forma, para obtener la solución al problema original.

Técnicas: Divide y Venceras ¿Cuándo debe utilizarse?

- Decimos que un algoritmo recursivo utiliza esta técnica cuando:
 - □ Contiene al menos dos llamadas recursivas (es lo que se denomina recursión en cascada)
 - □ Ambas llamadas son **disjuntas** (sin superposiciones) para no hacer cálculos redundantes.

Ejemplos

- Algoritmos de ordenación: mergesort y quicksort
- Algoritmo de búsqueda binaria:

Problema

Obtención de la secuencia de suma máxima

Dada una sucesión de enteros (posiblemente negativos) $A_{i}A_{2}$ A_{N} encontrar (e identificar la secuencia correspondiente a) el valor máximo de $\sum_{k=i}^{j}A_{k}$. Consideramos que la secuencia contigua de suma máxima es la vacía, de suma cero, si todos los enteros son negativos.

Diseño iterativo

- Realizar una búsqueda exahustiva:
 - Calculamos la suma de cada posible subsecuencia y elegimos la máxima
 - □ Tendremos $O(N^2)$ subsecuencias, por lo tanto, el tiempo de ejecución será $O(N^2)$
 - □ (ver MaxSumTest.java)
- Cómo podemos mejorar?

Diseño recursivo

- Ejemplo: A={4, -3, 5, -2, -1, 2, 6, -2}
- Dividiremos el problema en dos partes iguales
- Entonces la secuencia máxima puede aparecer en una de estas tres formas:
 - □ Caso 1: está totalmente incluida en la 1ª mitad
 - □ Caso 2: está totalmente incluida en la 2ª mitad
 - □ Caso 3: comienza en la primera mitad, pero termina en la segunda
- Tiempo de ejecución: O(N . log N)

Técnica: programación dinámica

- Resuelve los subproblemas generados por un planteamiento resursivo, de forma no recursiva
- Guardando los valores computados en una tabla

Problema

Cambio de monedas

Para una divisa con monedas C_1 , C_2 ,..., C_N (unidades), ¿cuál es el mínimo número de monedas que se necesitan para devolver K unidades?

Diseño iterativo

- Ejemplo: divisas= 1, 5,10, 25 y obtener: 63
- Utilizando un algoritmo devorador: toman decisiones locales en cada paso.
 - □ En cada paso "coje todo lo que puedas"
 - □ Resultado: 2 de 25, 1 de 10 y 3 de 1 = 6
- Es una forma simple de hacer las cosas, pero no siempre funciona correctamente.
 - □¿y si también existe la moneda de 21?

Diseño recursivo

- Condición al problema: debe haber moneda de 1
- Estrategia simple para reunir K unidades:
 - ☐ Si con una moneda ya podemos devolver el cambio solicitado, ésta (1) es la cantidad mínima de monedas
 - □ En caso contrario, para cada posible valor i podemos calcular de forma independiente el número mínimo de monedas que se necesitan para reunir i y K –i unidades, y elegimos el i que minimice la suma de ambos

Diseño recursivo (2)

- Ejemplo: K=63,
- Ejemplos de los subproblemas:
 - □ 1+62 \rightarrow 1+4 = 5 monedas,
 - \Box 2+61 \rightarrow 2+4 = 6 monedas,
 - □ ...,
 - \square 21+42 \rightarrow 1+2 = 3 monedas,
 - □ $31+32 \rightarrow 2+3 = 5$ monedas
- Problema: el calculo de algunos subproblemas se vuelve a repetir, calculándolo recursivamente. Igual que en el caso de Fibonacci
- Tiempo de ejecución: O(2^N)

Diseño recursivo (3)

- Estrategia alternativa:
 - □ Reducir recursivamente el tamaño del problema especificando una primera moneda
- Ejemplo: K = 63 y M=1, 5, 10, 21, 25
 - □ 1 de 1 + num. monedas para 62, calc. recur.
 - □ 1 de 5 + num. monedas para 58, calc. recur.
 - □ 1 de 10 + num. monedas para 53, calc. recur.
 - □ 1 de 21 + num. monedas para 42, calc. recur.
 - □ 1 de 25 + num. monedas para 38, calc. recur.
- Mejora: se realizan 5 llamadas recur. y no K
- Problema: se siguen repitiendo subproblemas.

Diseño recursivo: prog. dinámica

- El truco: ir guardando los resultados de los subproblemas en una tabla
- Funciona?: la solución a un problema grande depende solamente de las soluciones de problemas más pequeños
- Ejemplo: ir calculando las soluciones óptimas para 1 unidad, 2, 3, y así sucesivamente hasta K, probando con las N monedas
- Tiempo de ejecución: O(N.K)
- (ver MakeChange.java)

Técnica: Vuelta atrás

- Los algoritmos de vuelta atrás usan la recursión para probar sistemáticamente todas las posibilidades
- Se almacena el resultado que se obtendrá después de probar el caso y entre todas las probadas, se selecciona la mejor o las que se pueden realizar

Errores típicos en recursividad

- Olvidarnos del caso base
- 2. No asegurarse que la llamada recursiva nos lleva hacía un caso base
- Solapamiento en las llamadas recursivas → tiempo de ejecución exponencial
- Asumir que el tiempo de ejecución es lineal.
 Los algoritmos recursivos se analizan utilizando
 formulas recursivas.
- Utilizar la recursión, en vez de un simple bucle es un mal estilo