Appendix

1	9. A tip naving
2	a dissipative material for use in wire bonding machines for connecting leads on
3	integrated circuit bonding pads, wherein
4	said dissipative material is a doped semiconductor which is titanium
5	nitride carbide, has a resistance low enough to prevent a discharge of charge to a
6	device being bonded and high enough to avoid current flow large enough to
7	damage said device being bonded,
8	and is formed on a conducting core of
9	[A tip as in claim 8, wherein said conductor is] cobalt bonded
10	tungsten carbide[; and
11	said doped semiconductor is titanium nitride carbide].
1	30. A method of manufacturing a dissipative bonding tip comprising:
2	forming a dissipative material having at least a doped semiconductor that is
3	titanium nitride carbide, as a bonding tip that has a resistance low enough to prevent a
4	discharge of charge to a device being bonded and high enough to avoid current flow large
- 5	enough to damage said device being bonded,
6	wherein said step of forming includes forming said doped semiconductor on a
7	conducting core of
8	[The method of claim 29, wherein said conductor is] cobalt bonded
9	tungsten carbide[, and
10	said doped semiconductor is titanium nitride carbide].

I	33. The method of claim 19 wherein the step of forming comprises:
2	forming a solid structure; and
3	treating the solid structure by ion implantation [implementation], vapor
4	deposition, chemical vapor deposition, physical deposition, electro-plating deposition, or
5	neutron bombardment to produce a surface layer.
1	45. A method of using a bonding tip, comprising:
2	bonding a device using a bonding tip made with a dissipative material that is a
3	doped semiconductor of titanium nitride carbide and has a resistance low enough to
4	prevent a discharge of charge to said device and high enough to avoid current flow large
5	enough to damage said device, wherein
6	said dissipative material is formed on a conducting core of
7	[The method of claim 44, wherein said conducting core is] cobalt
8	bonded tungsten carbide[; and
9	said doped semiconductor is titanium nitride carbide.