Московский Физико-Технический Институт

Отчет по эксперименту

Низкоуровневая оптимизация параллельных алгоритмов

Выполнил: Студент 1 курса ФРКТ Группа Б01-302 Хальфин Бахтияр

Ключевые слова

ПАРАЛЛЕЛИЗМ, ВЕКТОРИЗАЦИЯ, ОПТИМИЗАЦИЯ, SIMD, AVX, AVX2, INTINSIC ФУНКЦИИ, МНОЖЕСТВО МАНДЕЛЬБРОТА, ФРАКТАЛЫ

Цель работы: оптимизировать функцию, обрабатывающую большое количество значений, и сравнить производительность разных реализаций. В качестве оптимизируемой функции используется функция расчета множества Мандельброта.

Оборудование: Персональный компьютер (ПК) с центральным процессором (ЦП), поддерживающим как минимум AVX2 инструкции; монитор; клавиатура и мышь.

Программное обеспечение: Операционая система (OC) Linux; компилятор GCC или Clang; графическая библиотека SDL2 с расширением SDL2_ttf; инструмент для сборки проекта Make; программа визуализирующая множество Мандельброта

Полученные результаты:

- Флаги оптимизации компилятора g++ ускорили *примитивную* реализацию в **3.06** раз, векторную в **8.83** раза, intrinsic в **5.88** раз
- Флаги оптимизации компилятора clang++ ускорили *примитивную* реализацию в **3.14** раз, *векторную* в **24.67** раза, *intrinsic* в **6.48** раз
- В данной задаче компилятор clang++ показал себя лучше он ускорил векторизированную реализацию в **2.79** раз больше g++
- Реализация с *intrinsic* функциями работает быстрее *векторной*, но она имеет существенный недостаток в плохой переносимости.

Введение

Теоретические сведения

Параллельные вычисления - это тип вычислений, в котором множество вычислений или процессов выполняются одновременно.

Векторизация (в параллельных вычислениях) — вид распараллеливания программы, при котором однопоточные приложения, выполняющие одну операцию в каждый момент времени, модифицируются для выполнения нескольких однотипных операций одновременно.

Скалярные операции, обрабатывающие по паре операндов, заменяются на операции над векторами, обрабатывающие несколько элементов вектора в каждый момент времени.

Например, фрагмент программы, который поэлементно перемножает два массива может быть векторизирован следующим образом.

Запись C[i:i+3] означает вектор из 4 элементов — от C[i] до C[i+3] включительно, а под * понимается операция поэлементного умножения векторов. Векторный процессор в данном примере сможет выполнить 4 скалярные операции при помощи одной векторной.

Рис. 1: Неконвейерная реализация

Рис. 2: Конвейерная реализация

SIMD (англ. single instruction, multiple data — одиночный поток команд, множественный поток данных) — принцип компьютерных вычислений, позволяющий обеспечить параллелизм на уровне данных.

Короткие SIMD инструкции (64 или 128 бит) стали появляться в 1990-х годах. В 2010 году компания Intel представила SIMD-расширение AVX в процессорах архитектуры Sandy Bridge.

Intrinsic (англ. внутренний) функции - это функции, реализация которой специально обрабатывается компилятором. Как правило, она может заменять последовательность автоматически генерируемых инструкций для вызова оригинальной функции, подобно inline функции. В отличие от inline функции, компилятор обладает глубокими знаниями о intrinsic функции и поэтому может лучше интегрировать и оптимизировать ее для конкретной ситуации.

Intrinsic функции часто используются для векторизации и параллелизации. Компиляторы для С и C++ преобразуют intinsic непосредственно в SIMD инструкции.

Множество Мандельброта

Рис. 3: Пример визуализации множества Мандельброта

 ${\it Mножесство\ Mandeльбротa}$ — множество точек с на комплексной плоскости, которое задается рекуррентным соотношением $Z_n=Z_n^2+c$, где $Z_0=0$.

Иначе говоря, это множество таких , для которых существует такое действительное R, что неравенство $|z_n| < R$ выполняется при всех натуральных n.

Множество Мандельброта является одним из самых известных фракталов, в том числе за пределами математики, благодаря своим цветным визуализациям

Построение множества

Переформулируем соотношение, описанное выше. Заменим Z_n на x_n и y_n и получим значения координат комплексной плоскости (x,y):

$$x_{n+1} = x_n^2 - y_n^2 + x_0$$

$$y_{n+1} = 2x_n y_n + y_0$$
(1)

Очевидно, что как только модуль Z_n окажется больше 2, все последующие модули последовательности станут стремиться к бесконечности. В случае |c| > 2 это можно доказать с помощью метода математической индукции. При |c| > 2 точка с заведомо не принадлежит множеству Мандельброта, что можно вывести методом математической индукции, используя равенство $Z_0 = 0$.

Виды реализаций вычислений множества Мандельброта

Простой

В данной реализации выражения (1) просто переведены в код на С, каждый пиксель обрабатывается отдельно

```
FOR EACH pixel on the screen (x0, y0)
    x := x0
    y := y0

i := 0
FOR i TO MAX_ITERATION_NUMBER
    IF x*x + y*y > 4 THEN
        BREAK
    END IF

    x = x*x - y*y + x0
    y = 2*x*y + y0
    i++
ENDLOOP

PAINT(x0, y0, i)
```

Векторный

В данной реализации обрабатываются вектора из 8 чисел. Действие над каждым вектором происходит в цикле.

Приводить псвевдокод данной реализации не имеет особого смысла, так как он в точности повторяет предыдущую.

C intrinsic функциями

В данной реализации используются AVX2 инструкции, одновременно обрабатываются 8 пикселей.

```
FOR EACH 8 pixels on the screen (x0, y0)
    x := x0
    y := y0
    i := mm256 \text{ setzero } si256();
    FOR i TO MAX ITERATION NUMBER
        x2
                 := mm256 mul ps(x,
                                        \mathbf{x})
                 := _{mm256}_{mul}_{ps}(y,
        y2
                                        y)
                 := mm256 mul ps(x,
                                        y)
        radius2 := mm256 add ps(x2, y2)
        cmp mask := mm256 cmp ps(radius2, MAX RADIUS 2 256,
                                     CMP LT OQ)
        IF ( mm256 testz ps(cmp mask, cmp mask)) THEN
```

Экспериментальная установка

Характеристики системы, на которой снимались значения:

OS	Linux Mint 21.3 x86_64
Kernel	6.1.0-1036-oem
CPU	AMD Ryzen 7 5700U

Методика измерений

Разрешение	1600x900
Количество вызовов	100
Макс. Число итераций	256
Координаты по Х	0
Координаты по Ү	0
Значение Zoom	1

Таблица 1: Параметры программы

Вычисляется разница тактов перед многократным вызовом функции и после. Количество тактов вычисляется с помощью функции clock() из библиотеки time.h.

Измерения проводятся для версии программы скомпилированной с помощью компиляторов GCC и Clang с различными флагами компиляции

С целью увеличить точность полученных значений, ограничим количество ядер, на которых работает система. Таким образом, влияние остальных процессов на наши измерения будут значительно сокращено. Также это позволяет улучшить кэширование.

В файле /etc/systemd/system.conf установим значение переменной CPUAffinity на 0-2. После перезагрузки системы все процессы будут выполняться на первых трех ядрах. Будем запускать программу через комманду taskset -c 14 ./mandelbrot. Так наша программа будет выполняться на ядре с номером 14.

Измерение на каждой конфигурации будем проводить по два раза. Первый результат будем отбрасывать, он необходим для npospeba $\kappa \ni ma$.

Результаты измерений

В следующих двух таблицах Π^* , B^* , U^* означают простая реализация, векторная реализация и реализация с Intrinsic функциями соответсвенно.

g++	-O0	-O1	-O2	-O3	-Ofast
Π*	8336413	3070945	3117255	3116930	2724064
B*	15741537	4981874	5418236	1914521	1782368
И*	2730567	503628	514620	513366	464273
П* (такты / вызов)	83364,13	30709,45	31172,55	31169,30	27240,64
В* (такты / вызов)	157415,37	49818,74	54182,36	19145,21	17823,68
И* (такты / вызов)	27305,67	5036,28	5146,20	5133,66	4642,73
П* (кадры / с)	12,00	32,56	32,08	32,08	36,71
В* (кадры / с)	6,35	20,07	18,46	52,23	56,11
И* (кадры / c)	36,62	198,56	194,32	194,79	215,39
Π^*/B^*	0,53	0,62	0,58	1,63	1,53
Π^*/Π^*	3,05	6,10	6,06	6,07	5,87
В*/И*	5,76	9,89	10,53	3,73	3,84

Таблица 2: Количество тактов для каждой конфигурации

Clang++	-O0	-O1	-O2	-O3	-Ofast
Π*	8404013	3141622	3053549	3055993	2671065
B*	14989553	5047541	639773	639767	607709
И*	2958196	540116	503991	502373	456579
П* (такты / вызов)	84040,13	31416,22	30535,49	30559,93	26710,65
В* (такты / вызов)	149895,53	50475,41	6397,73	6397,67	6077,09
И* (такты / вызов)	29581,96	5401,16	5039,91	5023,73	4565,79
Π^* (кадры / c)	11,90	31,83	32,75	32,72	37,44
В* (кадры / с)	6,67	19,81	156,31	156,31	164,55
И* (кадры / c)	33,80	185,15	198,42	199,06	219,02
Π^*/B^*	0,56	0,62	4,77	4,78	4,40
П*/И*	2,84	5,82	6,06	6,08	5,85
В*/И*	5,07	9,35	1,27	1,27	1,33

Таблица 3: Количество тактов для каждой конфигурации

В следующей диаграмме названия с индексом один означают компилятор g++, c индексом 2-clang++

Рис. 4: Сравнение скорости программы, скомпилированной через g++ и clang++

Список литературы

- 1. Р. Брайант, Д. О'Халларон "Компьютерные системы. Архитектура и программирование".
- 2. Intrinsic function https://en.wikipedia.org/wiki/Intrinsic_function
- 3. Mandelbrot set https://en.wikipedia.org/wiki/Mandelbrot_set