SS 2010

Diskrete Wahrscheinlichkeitstheorie

Dr. Werner Meixner

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2010SS/dwt/uebung/

22. Juli 2010

ZÜ XII Transienz und Rekurrenz bei Markov-Ketten

1. Wiederholung

Beispiel TA 1, Blatt 12:

Gegeben sei eine Markov-Kette mit Zustandsmenge $S = \{0, 1, 2, 3, 4, 5\}$ und Übergangsmatrix

$$M = \begin{pmatrix} 0,5 & 0,5 & 0 & 0 & 0 & 0 \\ 0,3 & 0,7 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0,1 & 0 & 0,9 & 0 \\ 0,25 & 0,25 & 0 & 0 & 0,25 & 0,25 \\ 0 & 0 & 0,7 & 0 & 0,3 & 0 \\ 0 & 0,2 & 0 & 0,2 & 0,2 & 0,4 \end{pmatrix} \,.$$

Die Matrix kann auch durch Übergangsdiagramm definiert werden.

Zentrale Begriffe:

Ankunftswahrscheinlichkeit bzw. Rückkehrwahrscheinlichkeit

$$f_{i,j}$$
 bzw. f_i .

Die folgenden Eigenschaften einer Markov-Kette hängen ausschließlich von der Struktur des Übergangsdiagramms ab.

Man beachte, dass in das Übergangsdiagramm nur Pfeile mit positiven Übergangswahrscheinlichkeiten eingetragen werden dürfen.

Eigenschaften:

$$f_i = 0,$$
 $0 < f_i < 1,$ $f_i = 1,$
 $f_{i,j} = 0,$ $0 < f_{i,j} < 1,$ $f_{i,j} = 1.$

$$f_{i,j} = 0$$
 bzw. $f_i = 0$:

Es gibt keinen Pfad vom Knoten i nach Knoten jbzw. von i zurück auf sich selbst.

$$f_{i,j} = 1$$
 bzw. $f_i = 1$:

Jeder bei i beginnende Pfad kann zu einem Pfad bis zu j bzw. zu i zurück verlängert werden.

$$0 < f_{i,j} < 1$$
 bzw. $0 < f_i < 1$:

Die vorausgegangenen Eigenschaften treffen nicht zu.

Eigenschaften für Zustände $i \in S$:

- i ist transient, falls $f_i < 1$.
- i ist rekurrent, falls $f_i = 1$.
- i ist absorbierend, falls $f_{i,j} = 0$ für alle $j \neq i$ gilt.

Bemerkung: Auch die Eigenschaften "irreduzibel", "periodisch" und "aperiodisch" hängen ausschließlich von der Struktur des Ubergangsdiagramms ab.

Folglich gilt Gleiches auch für die Eigenschaft "ergodisch".

Berechnung der Ankunfts- und Rückkehrwahrscheinlichkeiten:

Bei gegebener zeithomogener diskreter Markov-Kette (Übergangsmatrix) können alle $f_{i,j}$ und f_i durch folgendes Verfahren gefunden werden:

- 1. Man bestimme, für welche i,j die Gleichungen $f_{i,j}=0$, $f_{i,j}=1$ bzw. $f_i=0$, $f_i=1$ gelten.
- 2. Man löse für die verbleibenden Wahrscheinlichkeiten die Gleichungen

$$\begin{array}{lcl} f_{i,j} & = & p_{i,j} + \sum_{k \neq j} p_{i,k} f_{k,j} & \text{falls } i \neq j \; , \\ \\ f_i & = & p_{i,i} + \sum_{k \neq i} p_{i,k} f_{k,i} \; . \end{array}$$

Bemerkung: Wir können die Gleichungen "zeilenweise" lösen.

2. Blatt 12, HA 2

Beweisen oder widerlegen Sie die folgenden Aussagen. Begründen Sie Ihre Antworten.

• Ein transienter Zustand einer Markov-Kette wird mit Wahrscheinlichkeit 1 verlassen.

Antwort: Die Aussage ist wahr.

Begründung:

Für einen Zustand i gibt es die disjunkten Ereignisse "Zustand i wird nie verlassen" und "Zustand i wird irgendwann verlassen".

Eines der beiden Ereignisse muss eintreten. Die Summe der Wahrscheinlichkeiten beider Ereignisse ist also 1.

Die Wahrscheinlichkeit, dass der Zustand i nie verlassen wird, ist 0, falls $p_{i,i} \neq 1$.

Da i transient ist, gilt $p_{i,i} \neq 1$. Daraus folgt, dass i mit Wahrscheinlichkeit 0 nie verlassen wird, mithin wird i mit Wahrscheinlichkeit 1 irgendwann verlassen.

$$\left(\begin{array}{cc} 0,5 & 0,5 \\ 0,1 & 0,9 \end{array}\right)$$

die Übergangsmatrix einer Markov-Kette M mit entsprechenden Zuständen 1 und 2.

M sei im Zustand 1.

Dann ist die Wahrscheinlichkeit gleich 1, dass irgendwann ein Zustandsübergang in den Zustand 2 erfolgt.

Antwort: Die Aussage ist wahr.

Begründung:

Die Behauptung besagt $f_{1,2}=1$, d. h., dass die Ankunftswahrscheinlichkeit in Zustand 2 bei Start im Zustand 1 gleich 1 ist.

Die Gleichung $f_{1,2}=1$ folgt bereits aus der Struktur des Übergangsdiagramms.

Zusätzlich berechnen wir $f_{1,2}$ aus einem Gleichungssystem wie folgt.

$$f_{1,2} = p_{1,2} + \sum_{k \neq 2} p_{1,k} \cdot f_{k,2} = 0.5 + 0.5 \cdot f_{1,2}$$
.

Es folgt $f_{1,2} = 1$.

3. Blatt 12, HA 3

Beweisen oder widerlegen Sie die folgenden Aussagen. Begründen Sie Ihre Anworten.

• Es gibt eine endliche (zeithomogene) Markov-Kette, die keinen absorbierenden Zustand besitzt.

Antwort: Die Aussage ist wahr.

Begründung:

Beispiel: irreduzible Markov-Ketten.

Wenn eine Markov-Kette irreduzibel ist, dann besitzt sie keine absorbierenden Zustände.

2 Es gibt eine endliche (zeithomogene) Markov-Kette, die nur transiente Zustände besitzt.

Antwort: Die Aussage ist falsch.

Begründung:

Wenn alle Zustände mit positiver Wahrscheinlichkeit verlassen werden könnten, ohne zurückzukehren, dann müssten alle Zustände nacheinander mit positiver Wahrscheinlichkeit gleichzeitig verlassen werden können, ohne zurückzukehren. Das aber ist ein Widerspruch.

Alternativ:

Wenn es zu jedem Zustand i einen Pfad gibt, der nicht mehr durch Verlängerung auf i zurückgeführt werden kann, dann erhält man induktiv einen Widerspruch.

4. Blatt 12, HA 4

Seien $(X_t)_{t\in\mathbb{N}_0}$ die Zufallsvariablen einer zeithomogenen Markov-Kette M über den Zuständen $Q=\{1,2,3\}$ mit Übergangsmatrix

$$P = (p_{i,j}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0, 25 & 0, 75 \\ 0 & 0, 75 & 0, 25 \end{pmatrix}.$$

Lösung:

Gesucht ist die Menge aller Vektoren $\pi^T=(c_1,c_2,c_3)$ mit $c_i\geq 0$, so dass gilt

$$c_1 + c_2 + c_3 = 1$$
 und $\pi^T = \pi^T \cdot P$.

Daraus erhalten wir, dass π stationär ist genau dann, wenn gilt

$$0 \le c_1 \le 1$$
 und $c_2 = \frac{1 - c_1}{2}$ und $c_3 = \frac{1 - c_1}{2}$.

In Vektordarstellung:

$$\pi = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, \quad 0 \le t \le 1.$$

Bemerkung: P ist reduzibel und deshalb nicht ergodisch. Entsprechend gibt es keine Eindeutigkeit der stationären Verteilungen.

 $oldsymbol{0}$ Geben Sie die Menge aller transienten Zustände von M an.

Lösung:

Aus dem Übergangsgraphen der Markov-Kette liest man ab, dass alle Zustände rekurrent sind, die Menge der transienten Zustände also leer ist.

3 Geben Sie die Übergangsmatrix einer zeithomogenen Markov-Kette B mit drei Zuständen s_1, s_2, s_3 an, so dass s_1 transient ist, s_2 absorbierend ist und s_3 rekurrent ist.

Lösung:

Da absorbierende Zustände auch rekurrent sind, genügt es, 2 absorbierende und 1 transienten Zustand zu konstruieren. Beispiel:

$$P = (p_{i,j}) = \begin{pmatrix} 0,75 & 0,25 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

