Analysis - PMA 18 -

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

December 21, 2021

Overview

Funtions of Several Variables
Determinants
Derivatives of Higher Order
Differentiation of Integrals

Definition

▶ If (j_1, \dots, j_n) is an ordered *n*-tuples of integers, define

$$s(j_1, \cdots, j_n) = \prod_{p < q} \operatorname{sgn}(j_q - j_p).$$

Let [A] be the matrix of a linear operator A on \mathbb{R}^n , relative to the standard basis $\{\mathbf{e}_1, \cdots \mathbf{e}_n\}$, with entries a(i,j)in the ith row and jth column. The determinant of [A] is defined to be the number

$$\det[A] = \sum s(j_1, \dots, j_n) a(1, j_1) a(2, j_2) \dots a(n, j_n)$$

where the sum extends over all ordered *n*-tuples of integers (j_1, \dots, j_n) with $1 \le j_r \le n$.

▶ The column vectors \mathbf{x}_i of [A] are

$$\mathbf{x}_j = \sum_{i=1}^n a(i,j)\mathbf{e}_i \quad 1 \le j \le n.$$

If we write

$$\det(\mathbf{x}_1,\cdots,\mathbf{x}_n)=\det[A],$$

det is now a real function on the set of all ordered n-tuples of vectors in \mathbb{R}^n .

Theorem (9.34)

(a) If I is the identity operator on \mathbb{R}^n , then

$$\det[I] = \det(\mathbf{e}_1, \cdots, \mathbf{e}_n) = 1.$$

- (b) det is a linear function of each of the column vectors \mathbf{x}_j , if the others are held fixed.
- (c) If $[A]_1$ is obtained from [A] by interchanging two columns, then $det[A]_1 = -det[A]$.
- (d) If [A] has two equal columns, then det[A] = 0.

Theorem (9.35)

If [A] and [B] are n by n matrices, then

$$\det([B][A]) = \det[B] \det[A].$$

Theorem (9.36)

A linear operator A on \mathbb{R}^n is invertible if and only if $\det[A] \neq 0$.

Remark

Suppose $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ and $\{\mathbf{u}_1, \cdots, \mathbf{u}_n\}$ are bases in \mathbb{R}^n . Every linear operator A on \mathbb{R}^n determines matrices [A] and $[A]_U$, with entries a_{ij} and α_{ij} , given by

$$A\mathbf{e}_j = \sum_i a_{ij}\mathbf{e}_i, \quad A\mathbf{u}_j = \sum_i \alpha_{ij}\mathbf{u}_i.$$

If $\mathbf{u}_i = B\mathbf{e}_i = \sum b_{ij}\mathbf{e}_i$, then $A\mathbf{u}_i$ is equal to

$$\sum_{k} \alpha_{kj} B \mathbf{e}_{k} = \sum_{k} \alpha_{kj} \sum_{i} b_{ik} \mathbf{e}_{i} = \sum_{i} \left(\sum_{k} b_{ik} \alpha_{kj} \right) \mathbf{e}_{i},$$

and also to

$$AB\mathbf{e}_j = A\sum_k b_{kj}\mathbf{e}_k = \sum_i \left(\sum_k a_{ik}b_{kj}\right)\mathbf{e}_i.$$

Thus $\sum b_{ik}\alpha_{kj} = \sum a_{ik}b_{kj}$, or

$$[B][A]_U = [A][B].$$

Since B is invertible, $det[B] \neq 0$. Hence,

$$\det[A]_U = \det[A].$$

The determinant of the matrix of a linear operator does therefore not depend on the basis which is used to construct the matrix.

Jacobians(9.38)

If f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , and if f is differentiable at a point $\mathbf{x} \in E$, the determinant of the linear operator $f'(\mathbf{x})$ is called the Jacobian of f at \mathbf{x} .

$$J_{\mathbf{f}}(\mathbf{x}) = \det \mathbf{f}'(\mathbf{x}).$$

We shall also use the notation

$$\frac{\partial(y_1,\cdots,y_n)}{\partial(x_1,\cdots,x_n)}$$

for
$$J_{\mathbf{f}}(\mathbf{x})$$
 if $(y_1, \dots, y_n) = \mathbf{f}(x_1, \dots, x_n)$.

Derivatives of Higher Order

Definition

▶ Suppose f is a real function defined in an open set $E \subset \mathbb{R}^n$, with partial derivatives $D_1 f, \dots, D_n f$. If the functions $D_i f$ are themselves differentiable, then the second-order partial derivatives of f are defined by

$$D_{ij}f = D_iD_jf.$$

- ▶ If all these functions $D_{ij}f$ are continuous in E, we say that f is of class \mathscr{C}'' in E, or that $f \in \mathscr{C}''(E)$.
- ightharpoonup A mapping f of E into \mathbb{R}^n is said to be of class \mathscr{C}'' if each component of f is of class \mathscr{C}'' .

Derivatives of Higher Order

Theorem (9.40)

Suppose f is defined in an open set $E \subset \mathbb{R}^2$, and D_1f and $D_{21}f$ exists at every point of E. Suppose $Q \subset E$ is a closed rectangle with sides parallel to the coordinate axes, having (a,b) and (a+h,b+k) as opposite vertices $(h \neq 0, k \neq 0)$. Put

$$\Delta(f,Q) = f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b).$$

Then there is a point (x, y) in the interior of Q such that

$$\Delta(f,Q) = hk(D_{21}f)(x,y).$$

Derivatives of Higher Order

Theorem (9.41)

Suppose f is defined in an open set $E \subset \mathbb{R}^2$, suppose that $D_1 f$, $D_{21} f$, and $D_2 f$ exists at every point of E, and $D_{21} f$ is continuous at some point $(a,b) \in E$.

Then $D_{12}f$ exists at (a,b) and $(D_{12}f)(a,b) = (D_{21}f)(a,b)$.

Corollary

 $D_{21}f = D_{12}f$ if $f \in \mathscr{C}''(E)$.

Differentiation of Integrals

Theorem (9.42)

Suppose

- (a) $\varphi(x,t)$ is defined for $a \le x \le b$, $c \le t \le d$;
- (b) α is an increasing function on [a,b];
- (c) $\varphi^t \in \mathcal{R}(\alpha)$ for every $t \in [c, d]$;
- (d) c < s < d, and to every $\epsilon > 0$ corresponds a $\delta > 0$ such that

$$|(D_2\varphi)(x,t) - (D_2\varphi)(x,s)| < \epsilon$$

for all $x \in [a, b]$ and for all $t \in (s - \delta, s + \delta)$.

Define

$$f(t) = \int_{a}^{b} \varphi(x, t) d\alpha(x) \quad c \le t \le d.$$

Then $(F_2\varphi)^s \in \mathscr{R}(\alpha)$, f'(s) exists, and

$$f'(s) = \int_a^b (D_2 \varphi)(x, s) \ d\alpha(x).$$

Differentiation of Integrals

Example

Define

$$f(t) = \int_{-\infty}^{\infty} e^{-x^2} \cos(xt) \ dx$$

and

$$g(t) = -\int_{-\infty}^{\infty} xe^{-x^2} \sin(xt) dx,$$

for $-\infty < t < \infty$.

Then f is differentiable and f'(t) = g(t).

Ex 9.26

Show that the existence (and even the continuity) of $D_{12}f$ does not imply the existence of D_1f .

Ex 9.27

Put f(0,0) = 0, and

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

if $(x, y) \neq (0, 0)$. Prove that

- (a) f, $D_1 f$, $D_2 f$ are continuous in \mathbb{R}^2 .
- (b) $D_{12}f$ and $D_{21}f$ exist at every point of \mathbb{R}^2 , and are continuous except at (0,0).
- (c) $(D_{12}f)(0,0) = 1$, and $(D_{21}f)(0,0) = -1$.

Ex 9.28

For $t \geq 0$, put

$$\varphi(x,t) = \begin{cases} x & 0 \le x \le \sqrt{t} \\ -x + 2\sqrt{t} & \sqrt{t} \le x \le 2\sqrt{t} \\ 0 & \text{otherwise,} \end{cases}$$

and put $\varphi(x,t) = -\varphi(x,|t|)$ if t < 0. Show that φ is continuous on \mathbb{R}^2 , and

$$(D_2\varphi)(x,0) = 0$$

for all x. Define

$$f(t) = \int_{-1}^{1} \varphi(x, t) \ dx.$$

Show that f(t) = t if $|t| < \frac{1}{4}$. Hence

$$f'(0) \neq \int_{-1}^{1} (D_2 \varphi)(x, 0) dx.$$

Ex 9.30, Taylor Series

Let $f \in \mathscr{C}^{(m)}(E)$, where E is an open subset of \mathbb{R}^n . Fix $\mathbf{a} \in E$, and suppose $\mathbf{x} \in \mathbb{R}^n$ is so closed to $\mathbf{0}$ that the points

$$\mathbf{p}(t) = \mathbf{a} + t\mathbf{x}$$

lie in E whenever $0 \le t \le 1$. Define

$$h(t) = f(\mathbf{p}(t))$$

for all $t \in \mathbb{R}$ for which $\mathbf{p}(t) \in E$.

Ex 9.30, Taylor Series

(a) For $1 \le k \le m$, show that

$$h^{(k)}(t) = \sum (D_{i_1 \cdots i_k} f)(\mathbf{p}(t)) x_{i_1} \cdots x_{i_k}.$$

The sum extend over all ordered k-tuples (i_1, \dots, i_k) in which each i_j is one of the integers $1, \dots, n$.

Ex 9.30, Taylor Series

(b) By the Taylor's theorem,

$$h(1) = \sum_{k=0}^{m-1} \frac{h^{(k)}(0)}{k!} + \frac{h^{(m)}(t)}{m!}$$

for some $t \in (0,1)$. Use this to prove Taylor's theorem in n variables by showing that the formula

$$f(\mathbf{a} + \mathbf{x}) = \sum_{k=0}^{m-1} \frac{1}{k!} \sum (D_{i_1 \cdots i_k} f)(\mathbf{a}) x_{i_1} \cdots x_{i_k} + r(\mathbf{x})$$

where

$$\lim_{\mathbf{x}\to\mathbf{0}} \frac{r(\mathbf{x})}{|\mathbf{x}|^{m-1}} = 0.$$

The End