ICC204 - Aprendizagem de Máquina e Mineração de Dados

Agrupamento

Prof. Rafael Giusti rgiusti@icomp.ufam.edu.br

Agenda

- Aprendizado n\u00e3o supervisionado
- Grupos e tipos de agrupamento
- Algoritmos de agrupamento
- 0 k-means
- Algoritmos sequenciais
- Agrupamento por densidade DBSCAN
- Agrupamento hierárquico
- Qualidade de agrupamentos

 No aprendizado não supervisionado, o conceito existe, mas os exemplos não são rotulados; o objetivo é encontrar uma estrutura nos dados

- Tarefas de aprendizado não supervisionado incluem
 - Agrupamento
 - Detecção de anomalias
 - Redução de dimensionalidade

 Na detecção de anomalias, os dados seguem um padrão e exemplos que fogem substancialmente do padrão são considerados anômalos

Xiufeng Liu, Per Sieverts Nielsen. Regression-based Online Anomaly Detection for Smart Grid Data. ArXiv (2016)

 Na redução de dimensionalidade, queremos dados com muitas dimensões em um espaço de menor dimensionalidade

Fonte: Jake VanderPlas. Python Data Science Handbook.

 No agrupamento, existe uma estrutura de grupos nos dados que queremos encontrar

Aplicações de agrupamento

- Reconhecimento de padrões em imagens
- Organizar clientes/usuários de um serviço
- Distribuir os dados em classes "naturais", mas desconhecidas
- Ganhar percepção da natureza / estrutura dos dados
- Rotualação dos dados
 - Aplique agrupamento em uma grande quantidade de dados e só então "use supervisão" para rotular dados de um grupo

Agenda

- Aprendizado n\u00e3o supervisionado
- Grupos e tipos de agrupamento
- Algoritmos de agrupamento
- 0 k-means
- Algoritmos sequenciais
- Agrupamento por densidade DBSCAN
- Agrupamento hierárquico
- Qualidade de agrupamentos

Agrupamento rígido ou fuzzy

- No agrupamento rígido, os grupos são conjuntos de exemplos disjuntos
- No agrupamento fuzzy, pode haver sobreposição entre os grupos

Agrupamento particional ou hierárquico

- No agrupamento particional, os grupos formam um particionamento sobre os dados
 - É um tipo de agrupamento rígido
 - O agrupamento fuzzy é semelhante ao particional,
 mas os grupos não formam um particionamento
- No agrupamento **hierárquico**, os grupos formam uma hierarquia de grupos aninhados

Agrupamento particional ou hierárquico

Particionais

Subjetividade do agrupamento

Grupo é um conceito subjetivo

Função de (dis)similaridade

 Essa subjetividade precisa ser "traduzida" em uma função de similaridade ou dissimilaridade

- Em um bom agrupamento, os exemplos devem ser bastante similares a exemplos do seu próprio grupo (alta similaridade intra-grupo)
- Além disso, devem ser pouco similares a exemplos de outros grupos (baixa similaridade inter-grupos)

Agenda

- Aprendizado n\u00e3o supervisionado
- Grupos e tipos de agrupamento
- Algoritmos de agrupamento
- 0 k-means
- Algoritmos sequenciais
- Agrupamento por densidade DBSCAN
- Modelos de misturas
- Agrupamento hierárquico
- Qualidade de agrupamentos

Algoritmos de agrupamento

- O processo de agrupamento segue, em linhas gerais
 - 1. Seleção de características
 - 2. Definição de uma medida de (dis)similaridade
 - 3. Aplicação do algoritmo de agrupamento
 - 4. Verificação dos resultados
 - Se os resultados forem pobres, podemos retornar para o passo 1, 2 ou mesmo 3
 - 5. Interpretação dos resultados

Especificação do problema

- Dado um conjunto de exemplos $X = \{x_1, x_2, ..., x_N\}$, desejamos encontrar uma **estrutura de grupos** sobre X que reflete algum conceito de (dis)similaridade no qual estamos interessados
- Os resultados vão depender
 - Dos atributos / características utilizados para representar os exemplos
 - Do conceito de (dis)similaridade
 - Do algoritmo utilizado

Especificação dos algoritmos

- Algoritmos de agrupamento são, em geral, estocásticos
 - Podem produzir resultados diferentes para um mesmo conjunto de dados sob condições aparentemente iguais
- Tipos de algoritmos de agrupamento
 - Sequenciais
 - Baseados na otimização de funções de custo
 - Hierárquicos
 - Outros: algoritmos genéticos, auto-organizáveis etc.

Agenda

- Aprendizado n\u00e3o supervisionado
- Grupos e tipos de agrupamento
- Algoritmos de agrupamento
- O k-means
- Algoritmos sequenciais
- Agrupamento por densidade DBSCAN
- Modelos de misturas
- Agrupamento hierárquico
- Qualidade de agrupamentos

k-means

- Algoritmo de agrupamento particional
 - Rígido
 - Dado um conjunto de exemplos $X = (x_1, x_2, ..., x_N)$, o agrupamento rígido é um **particionamento** C sobre X
 - Isto é, $C = \{C_1, C_2, ..., C_M\}$ em que cada C_i é um grupo e
 - $C_i \neq \emptyset$
 - $C_i \cap C_j = \emptyset$ para $i \neq j$
 - $\bigcup C_i = X$

k-means

- O *k-means* particiona os exemplos em *k* grupos disjuntos, determinados por um **centroide**
 - Os centroides não necessariamente são exemplos do conjunto de treinamento
 - Mais que isso, o centroide pode possuir valores que não caracterizam uma instância válida
 - Dado um exemplo x e os centroides c_1 , c_2 , ..., c_k , o exemplo x pertencerá ao grupo C_i tal que
 - $i = argmin d(x, c_j)$

Células de Voronoi

• Os centroides dividem o espaço em células de Voronoi

k-means

```
Algoritmo kMeans(\mathbf{X}, k)
   selecione arbitrariamente k centroides c_1, c_2, ..., c_k
   C ← particionamento vazio de k grupos
   repita
       para cada x em X
          identifique o centroide mais próximo c<sub>i</sub> de x
          atribua x ao grupo C<sub>i</sub> no particionamento C
       para i de 1 até k
          atualize o centroide c, para a média dos pontos em C,
   até convergir
   retorne C
```

Agenda

- Aprendizado n\u00e3o supervisionado
- Grupos e tipos de agrupamento
- Algoritmos de agrupamento
- O k-means
- Algoritmos sequenciais
- Agrupamento por densidade DBSCAN
- Agrupamento hierárquico
- Qualidade de agrupamentos

- BSAS é um modelo geral para algoritmos de agrupamento sequencial
 - Basic Sequential Algorithmic Scheme
- Trata-se de um algoritmo que processa os exemplos sequencialmente, verificando se ele pode ser incluído no mesmo grupo de algum exemplo anteriormente processado

 O BSAS utiliza como princípio a distância de um exemplo para um grupo

- Hiperparâmetros

- Θ: distância máxima entre um exemplo e um grupo
- q: o número máximo de grupos

- Princípio

• Para cada exemplo x_i , calcule a menor distância entre x_i e algum grupo C_k , se $d(x_i, C_k) > \Theta$, crie um novo grupo; senão, inclua x_i em C_k

• Algoritmo BSAS(X, d, Θ , q)

$$m \leftarrow 1, C1 \leftarrow \{x_1\}$$

para i de 2 até |X|

 $C_k \leftarrow \text{grupo que minimiza a } d(x_i, C_i) \text{ para } 1 <= j <= m$

se $d(x_i, C_k) > \Theta$ e m < q, então

$$m \leftarrow m + 1$$

$$Cm \leftarrow \{xi\}$$

senão

$$C_k \leftarrow C_k \cup \{x_i\}$$

se necessário, atualize representantes

BSAS: exemplo

 Vamos definir como distância entre um exemplo e um grupo

$$d(x_i, C_j) = \frac{1}{2} \min_{x_j \in C_j} d_{\text{Euc}}(x_i, x_j)$$

BSAS: exemplo

- Os hiperparâmetros influenciam muito o resultado do algoritmo
 - A ordem em que os exemplos são apresentados
 - 0 limiar ⊕
 - O número máximo de grupos q
- ullet Para definir o limiar ullet ideal, dependemos de validação
- Para definir o número máximo de grupos q, podemos fazer vários testes e escolher o mais frequente

BSAS: escolha do número de grupos

• Algoritmo Estimar Grupos (X, Θ_{set} , d, q_{max})

para cada Θ em Θ_{set} , faça

Execute BSAS(X, d, Θ , q_{max}) várias vezes, apresentando os exemplos X em uma ordem diferente a cada passo

Estime q_{Θ} como o número de grupos mais frequente do BSAS para o limiar Θ

Acrescente q_{Θ} a um conjunto q_{set}

retorne q_{set}

Agenda

- Aprendizado n\u00e3o supervisionado
- Grupos e tipos de agrupamento
- Algoritmos de agrupamento
- O k-means
- Algoritmos sequenciais
- Agrupamento por densidade DBSCAN
- Agrupamento hierárquico
- Qualidade de agrupamentos

Agrupamento por densidade

- O **DBSCAN** é um dos algoritmos de agrupamento mais utilizados na literatura
 - Density-based spatial clustering of applications with noise
- Trata-se de um algoritmo de agrupamento baseado na otimização de uma função de custo
 - Utiliza o conceito de vizinhos mais próximos para estimar regiões densas

Agrupamento por densidade

DBSCAN

- O DBSCAN classifica os exemplos como *core points*, pontos de fronteira ou *outliers*
 - Um exemplo é considerado um core point se está em uma região de raio ε que possui pelo menos minPoints pontos (incluindo ele mesmo)
 - Um exemplo é um ponto de fronteira se não é um core point, mas tem distância inferior a ε de algum core point
 - Os demais exemplos são *outliers* (ruído, *noise*)

ALGORITHM 1: Pseudocode of Original Sequential DBSCAN Algorithm **Input:** *DB*: Database **Input:** ε : Radius **Input:** *minPts*: Density threshold **Input:** *dist*: Distance function **Data:** *label*: Point labels, initially *undefined* 1 **foreach** point p **in** database DB **do** // Iterate over every point **if** $label(p) \neq undefined$ **then continue** // Skip processed points Neighbors $N \leftarrow \text{RangeQuery}(DB, dist, p, \varepsilon)$ // Find initial neighbors 3 if |N| < minPts then // Non-core points are noise $label(p) \leftarrow Noise$ continue $c \leftarrow \text{next cluster label}$ // Start a new cluster $label(p) \leftarrow c$ Seed set $S \leftarrow N \setminus \{p\}$ // Expand neighborhood foreach q in S do 10 **if** label(q) = Noise **then** $label(q) \leftarrow c$ 11 **if** $label(q) \neq undefined$ **then continue** 12 Neighbors $N \leftarrow \text{RangeQuery}(DB, dist, q, \varepsilon)$ 13 $label(q) \leftarrow c$ 14 if |N| < minPts then continue // Core-point check 15

E.SCHUBERT, J.SANDER, M.ESTER, H-P. KRIEGEL e X.XU. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. (2017)

 $S \leftarrow S \cup N$

16

DBSCAN

DBSCAN

Agenda

- Aprendizado n\u00e3o supervisionado
- Grupos e tipos de agrupamento
- Algoritmos de agrupamento
- 0 k-means
- Algoritmos sequenciais
- Agrupamento hierárquico
- Qualidade de agrupamentos

Agrupamento hierárquico

- Distinguem-se dos agrupamentos particionais por definirem um hierarquia entre os grupos
 - Define uma relação de ordem parcial entre os grupos
 - Alguns grupos estão contidos em outros
 - Alguns pares de grupos estão contidos em um grupo comum
 - Agrupamentos hierárquicos são, tipicamente,
 representados por meio de dendogramas

Dendograma vs. particionamento

Particionais

- O agrupamento hierárquico requer uma função de distância entre grupos
 - Essa distância é representada como a altura da junção dos grupos no dendrograma

- Distância máxima ou complete-linking
 - A distância entre dois grupos é a distância entre os exemplos mais distantes

$$d_{\max}(C_i, C_j) = \max\{d(x, y) : x \in C_i, b \in C_j\}$$

- Distância mínima ou single-linking
 - A distância entre dois grupos é a distância entre os exemplos mais próximos

$$d_{\min}(C_i, C_j) = \min\{d(x, y) : x \in C_i, b \in C_j\}$$

- Distância entre centroides
 - A distância entre dois grupos é a distância entre os centroides dos grupos

$$d_{\text{cent}}(C_i, C_j) = d(c_i, c_j)$$

Tipos de algoritmos

Algoritmos aglomerativos

- Cada exemplo começa em um grupo C₀
- A cada iteração, dois grupos C_i e C_j são fundidos e ficam aninhados no grupo C_k

Algoritmos divisivos

- Todos os exemplos começam em um único grupo $C_{\scriptscriptstyle N}$
- A cada iteração, um grupo C_k é dividido para formar os grupos aninhados C_i e C_j

- Algoritmos gulosos podem ser obtidos por uma abordagem gulosa
- AGNES (Agglomerative Nesting)
 - Em cada passo do algoritmo, selecione o conjunto de grupos mais próximos
 - O número de grupos é $\mathcal{O}(N^2)$

Algoritmo AgrupamentoAglomerativo(X)

d ← matriz de distâncias dos exemplos X

$$C \leftarrow \{C_i\}_{i=1..|X|}$$
 tal que $C_i = \{x_i\}$

enquanto |C| > 1

Selecione e mescle os dois grupos mais próximos de C

Atualize d, se necessário

	p1	p2	р3	p4	р5	р6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
рЗ	p1 0.00 0.24 0.22 0.37	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.340.23	0.25	0.11	0.22	0.39	0.00

Nested Cluster Diagram

Algoritmos divisivos

- Algoritmos de agrupamento divisivo não podem adotar uma solução gulosa
 - O número de formas de dividir um grupo que contém N sub-grupos é $\mathcal{O}(2^{\mathbb{N}})$
- DIANA (Divisive Analysis)
 - Em cada iteração, seleciona o grupo mais heterogêneo
 - Aplica heurística para dividir esse grupo
 - Exemplo: k-*means* com k=2 grupos

AGNES vs. DIANA

- Alguns autores defendem que algoritmos divisivos podem produz agrupamentos mais eficazes
 - Algoritmos aglomerativos são gulosos
 - Fazem decisões locais
 - Um aninhamento não é desfeito
 - Algoritmos divisivos têm informação global

Particionamento de agrupamentos hierárquicos

• Um agrupamento hierárquico pode ser convertido em um agrupamento particional

Particionamento de agrupamentos hierárquicos

- Podemos fazer esse corte através do tempo de vida
 - O tempo de vida de um grupo é a sua distância para o grupo que o "absorveu"
 - A diferença de altura do ponto em que o grupo é criado até o ponto em que ele é "absorvido"
 - Podemos escolher um ponto de corte que aumente o tempo de vida dos grupos

Agenda

- Aprendizado n\u00e3o supervisionado
- Grupos e tipos de agrupamento
- Algoritmos de agrupamento
- 0 k-means
- Algoritmos sequenciais
- Agrupamento hierárquico
- Qualidade de agrupamentos

Imposição de estrutura

- Assim como o aprendizado supervisionado, também existe viés no agrupamento
- O agrupamento impõe uma estrutura sobre os dados
- Essa estrutura pode não existir
 - O k-means supõe que os grupos estão distribuídos em torno de centroids
 - O DBSCAN supõe que os grupos são regiões de alta densidade separados por regiões de baixa densidade
 - etc.

Imposição de estrutura

- Alguns algoritmos supõem um número de grupos
- Esse número de grupos pode não condizer com a verdadeira estrutura dos dados
 - Uma possível abordagem é repetir o mesmo algoritmo, variando o número esperado de grupos

Avaliação de agrupamentos

- Como os dados não possuem rótulos, precisamos de métricas alternativas para avaliar os grupos
 - Supomos que a propriedade desejada do agrupamento é máxima similaridade intra-grupo e mínima similaridade inter-grupo
 - Utilizamos índices, tais como silhueta

Silhueta

- Dado um agrupamento particional $C = \{C_1, C_2, ..., C_k\}$
- Para cada exemplo x_i ∈ C_i, calcule a distância intra -grupo média a(x_i) e a distância mínima inter-grupo
 b(x_i)

$$a(x_i) = \frac{1}{|C_i| - 1} \sum_{x_i \in C_i} d(x_i, x_j)$$

Silhueta

- Dado um agrupamento particional $C = \{C_1, C_2, ..., C_k\}$
- Para cada exemplo x_i ∈ C_i, calcule a distância intra--grupo média a(x_i) e a distância mínima inter-grupo b(x_i)

$$a(x_i) = \frac{1}{|C_i| - 1} \sum_{x_j \in C_i} d(x_i, x_j)$$

$$b(x_i) = \min_{j \neq i} \left(\frac{1}{|C_j|} \sum_{x_j \in C_j} d(x_i, x_j) \right)$$

Silhueta

- Para cada ponto, sua silhueta será a diferença entre as distâncias intra e inter-grupo, em razão da maior delas
 - Se $|C_i| > 1$, então

$$s(x_i) = \frac{b(x_i) - a(x_i)}{\max\{a(x_i), b(x_i)\}}$$

- Se $|C_i| = 1$, então $s(x_i) = 0$
- A média e a mediana da silhueta dos grupos nos dá informações sobre o quão bem divididos os exemplos estão com respeito aos outros grupos

https://en.wikipedia.org/wiki/ Silhouette_(clustering)#/media/ File:Silhouette-plot-orange.png