Riemann Sum

Sunday, 11 May 2025

2:43 am

Georg Friedrich Bernhard Riemann was a German Mathematician who made profound contributions to analysis, number theory, and differential geometry.

Area under the linear line

Use: Triangle Formula

Use: Rectangle Formula

FIGURE 1

If $f(x) \ge 0$, the Riemann sum $\sum f(x_i^*) \Delta x$ is the sum of areas of rectangles.

Approximate area by the closest object...

2 Definition of a Definite Integral If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \ldots, x_n^*$ be any **sample points** in these subintervals, so x_i^* lies in the ith subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f **from** a **to** b is

$$\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \ \Delta x$$

2 Definition of a Definite Integral If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \ldots, x_n^*$ be any **sample points** in these subintervals, so x_i^* lies in the ith subinterval $[x_{l-1}, x_l]$. Then the **definite integral of** f **from** a **to** b is

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{l=1}^n f(x_l^*) \Delta x$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is **integrable** on [a, b].

FIGURE 4 $\int_{a}^{b} f(x) dx$ is the net area.

FIGURE 3 $\sum f(x_i^*) \Delta x$ is an approximation to the net area.

EXAMPLE 1 Use rectangles to estimate the area under the parabola $y = x^2$ from 0 to 1 (the parabolic region *S* illustrated in Figure 3).

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot 1^2 = \frac{15}{32} = 0.46875$$

$$L_4 = \frac{1}{4} \cdot 0^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 = \frac{7}{32} = 0.21875$$

0.21875 < A < 0.46875

EXAMPLE 3 Let *A* be the area of the region that lies under the graph of $f(x) = e^{-x}$ between x = 0 and x = 2.

(b) Estimate the area by taking the sample points to be midpoints and using four subintervals and then ten subintervals.

(b) With n=4 the subintervals of equal width $\Delta x=0.5$ are [0,0.5], [0.5,1], [1,1.5], and [1.5,2]. The midpoints of these subintervals are $x_1^*=0.25$, $x_2^*=0.75$, $x_3^*=1.25$, and $x_4^*=1.75$, and the sum of the areas of the four approximating rectangles (see Figure 15) is

$$M_4 = \sum_{t=1}^4 f(x_t^*) \, \Delta x$$

$$= f(0.25) \, \Delta x + f(0.75) \, \Delta x + f(1.25) \, \Delta x + f(1.75) \, \Delta x$$

$$= e^{-0.25}(0.5) + e^{-0.75}(0.5) + e^{-1.25}(0.5) + e^{-1.75}(0.5)$$

$$= \frac{1}{2} (e^{-0.25} + e^{-0.75} + e^{-1.25} + e^{-1.75}) \approx 0.8557$$

So an estimate for the area is

$$A \approx 0.8557$$

EXAMPLE 5 Use the Midpoint Rule with n = 5 to approximate $\int_{1}^{2} \frac{1}{x} dx$.

SOLUTION The endpoints of the five subintervals are 1, 1.2, 1.4, 1.6, 1.8, and 2.0, so the midpoints are 1.1, 1.3, 1.5, 1.7, and 1.9. The width of the subintervals is $\Delta x = (2-1)/5 = \frac{1}{5}$, so the Midpoint Rule gives

$$\int_{1}^{2} \frac{1}{x} dx \approx \Delta x \left[f(1.1) + f(1.3) + f(1.5) + f(1.7) + f(1.9) \right]$$
$$= \frac{1}{5} \left(\frac{1}{1.1} + \frac{1}{1.3} + \frac{1}{1.5} + \frac{1}{1.7} + \frac{1}{1.9} \right)$$
$$\approx 0.691908$$