

FOR EDUCATIONAL USE

2) 1-1 1 S(S+a)2 Soly Let \$1(s)- 1 6 \$2(s)- 1 $[-1][\Phi(s)] = [-1][\frac{1}{(s+a)^2}] = \bar{e}^{at}[-1][\frac{1}{s^2}] = \bar{e}^{at}[-\bar{e}^{at}] = \bar{e}^{at}[-\bar{e}^{at}]$ $= e^{-\alpha t} + = f_1(t)$ $\frac{1^{-1} \left[\phi_2(s) \right]}{1^{-1} \left[\frac{1}{s} \right]} = 1 = f_2(t)$: By Convolution theorem 1-1 1 1 = Steau I du · 1- [s(s+a)2] = | tu = au du [u(eau)-(1)(eau) t $= \frac{+e^{at} - e^{at} - 0 + 1}{a^2}$ $= -\frac{+e^{at} - e^{at}}{a} + \frac{1}{a^2}$ Str Let, \$1(s)= 1 & \$2(s)=1 = [] (+ (s)] = [] = 1 sinat = fi(t) Prof. Nancy Sinollin

FOR EDUCATIONAL USE

Sundaram

FOR EDUCATIONAL USE

$$\frac{1^{-1} \left[\frac{s^2}{(s^2 + o^2)^2} \right]}{s^2 \left[\frac{t}{(s^2 + o^2)^2} \right]} = \int_{-\frac{t}{2}}^{\frac{t}{t}} \left[\cos(\alpha u + at - au) + (\cos(\alpha u - at + au)) \right] du$$

$$= \frac{1}{2} \int_{-\frac{t}{2}}^{\frac{t}{t}} \left[\cos(\alpha t) + \cos(\alpha u - at + au) \right] du$$

$$= \frac{1}{2} \int_{-\frac{t}{2}}^{\frac{t}{t}} \left[\cos(\alpha t) + \cos(\alpha u - at + au) \right] du$$

$$= \frac{1}{2} \int_{-\frac{t}{2}}^{\frac{t}{t}} \left[\cos(\alpha t) + \sin(\alpha u - at) \right] du$$

$$= \frac{1}{2} \left[\frac{t}{t} (\cos(\alpha t) + \sin(\alpha t) - 0 - \sin(\alpha t)}{2a} \right] - \frac{t}{2a} \left[\frac{t}{t} (\cos(\alpha t) + \sin(\alpha t) + \sin(\alpha t)}{2a} \right] - \frac{t}{t} \left[\frac{t}{t} (\cos(\alpha t) + a\sin(\alpha t) + \sin(\alpha t)}{2a} \right]$$

$$= \frac{1}{2} \left[\frac{t}{t} (\cos(\alpha t) + a\sin(\alpha t) + \sin(\alpha t)}{2a} \right] - \frac{t}{t} \left[\frac{t}{t} (\cos(\alpha t) + a\sin(\alpha t) + \cos(\alpha t) + \cos(\alpha t)}{2a} \right]$$

$$= \frac{1}{2} \left[\frac{t}{t} (\cos(\alpha t) + a\sin(\alpha t) + \sin(\alpha t) + \cos(\alpha t$$

Prof. Nancy Sinollin

	.: By Convolution Theorem
	[-1[0,1020210] = [+f1(u) f2(+-4) du
	[4,18)4218]
	it i a 7 ct i singu maget-u) du
	$1^{+1} \left[\frac{1}{(s^2+a^2)} \frac{s}{(s^2+a^2)} \right] = \int_{a}^{t} \frac{1}{sinau} \cos a(t-u) du$
	1 Ctology costat and du
	-1 st sinau cos (at-au) du
	- 1 (+1 [sin(au+a+-au)+sin(au-(at-au))]du
	=1 st[sinat+sin(au-at+au)]du
	= 1 st[sinat + sin(2au-at)] du
	200 (3100)
	1 [usingt - cos(2ay-at)]t
	$= 1 \left[u \sin at - \cos(2au - at) \right]^{\frac{1}{2}}$
	$-1 \left[1 + sinat - cosat - o + cos(-at) \right]$
	- 1 t sinat - cosat - 0 + cos (-at)
	29 + sinal - cosat + cosat
	29 29 29
- 0	- 1 tsinat
	20
Ŧ>	1-1 52
+/	$((s^2+a^2)(s^2+b^2)$
Seth	10+ 01(s)- S 60(s)= S
	S^2+a^2 S^2+b^2
	[(4,13)]= [(5)]= cosat = f1(+)
	1-1(40(3)] = 1-1(3) - cosbt = f2(+)
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Prof. Nancy Sinollin
Sundaram	FOR EDUCATIONAL USE

	: By Convolution theorem
	: By Convolution theorem [-1[p,(s). p2(s)] = ft f1(u) f2(t-u) du
	1-1 s s = = s2+b2 = of cosau cosb(+-u)du
	$[s^2+a^2 s^2+b^2]$
	$\begin{bmatrix} 1^{+} \begin{bmatrix} s^2 \\ (s^2+a^2)(s^2+b^2) \end{bmatrix} = \int_{a}^{b} (osau cos(bt-bu) du$
+	= 1 (tros (au+bt-bu) + (os (au-(bt-bu))) du
	20) [
	= 1 [t [cos((a-b)u+bt] + cos(au-bt+bu]]du
	0
	-1 stcos[a-b)u+bt]+cos[ca+bu-bt]]du
	$-\frac{1\left[\sin(a-b)u+bt\right]}{2} + \sin(a+b)u-bt\right]^{t}$ $-\frac{1\left[\sin(a-b)u+bt\right]}{2} + \sin(a+b)u-bt\right]^{t}$
٠	- 2 (a-b) (a+b) Jo
	= 1 sin(a-b)++bt)+ sin(a+b)+-bi)-sinbt-sin(bt)
	- 1 sin(at-bt/bt), sin(a+bt/bt) - sinbt + sinbt a-b a-b
	- 1 sinat + sinat - sinbt + sinbt
	2[0.5 0.45 51.5]
	1
8	Ex 1 1 Solve using convolution theorem.
	Fx. L-1 1] solve using Convolution
9)	(s2+q2)(s2+b2) solve using Convolution
	[(514)/376)]
	Prof. Nancy Sinollin
	21 22 02 20 30 30 W 10 00 M2 12 30 SA

FOR EDUCATIONAL USE