Simulation laboratory 4: Variance reduction

Pavel Ilinov

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

4 March 2025

Goals

Variance reduction:

- Understand two different variance reduction techniques.
- Increase the precision of vehicle queue simulation result.

Implementation:

- Antithetic draws
- 2 Control variates

Control variates

My results

Variance reduction

- What we do: approximate mean by MC simulations using iid draws
- Why it works: LLN
- But ... in general independence is not needed for LLN
- We can reduce spread of average estimates by negative correlations between draws!

Implementation:

- Modify the function simulate:
 - Keywords: scenario, u
 - Return: times, queues
- Conduct statistical analysis of maximum queue length using code developed in the previous lab.

Antithetic draws workflow

- For r = 1, ..., N/2:
 - Independent simulation:
 - Generate array of uniform random numbers u.
 - 2 Run simulate(scenario, u) and obtain max-queue-length qind max-
 - Antithetic simulation:
 - **1** Set u = 1 u.
 - 2 Run simulate(scenario, u) and obtain max-queue-length $q_{\rm max}^{\text{ant}}$
 - 3 Compute $q_{\max}^{(r)} = \frac{q_{\max}^{ind} + q_{\max}^{ant}}{2}$.
- 2 Analyse the statistics of $[q_{\max}^{(1)}, \ldots, q_{\max}^{(\frac{N}{2})}]$

Keep draws

- Draws for events {Generation, Arrival, Departure} are exploited for antithetic run
- The order of events could change between the two runs.
- Normal and Antithetic runs should be executed separately.

2 Control variates

My results

Calculate statistics

Recalculating parameter $c^{(r)}$ for updated sample with new draw

Implementation:

- Modify the function simulate:
 - Keywords: scenario,
 - Return: times, queues, service_time_mean
- Conduct statistical analysis of maximum queue lengths.

Control variates workflow

- **1** For r = 1, ..., N:
 - Run simulate and output the control variate control $(= Y^{(r)})$.
 - **2** Obtain max-queue-length $q_{max} (= X^{(r)})$.
 - Secure the function controlled mean:
 - lacktriangle Calculate variance Var(Y) and covariance Cov(X,Y)
 - **2** Define the constant $c^* = -\text{Cov}(X, Y)/\text{Var}(Y)$

 - **4** Obtain the average and variance of $Z = [Z^{(1)}, ..., Z^{(r)}]$

correlation is, the bigger the variance reduction is.

• Example: $Y = \text{mean of service time at bottleneck. Mean } \mathbb{F}[Y] = u$

• Choose the control variate (Y) as you prefer. The higher the

• Example: $Y = \text{mean of service time at bottleneck. Mean } \mathbb{E}[Y] = \mu \text{ is known!}$

2 Control variates

My results

