Материалы для подготовки к коллоквиуму по дискретной математике Теоремы

ПМИ 2016

Орлов Никита, Рубачев Иван, Ткачев Андрей, Евсеев Борис

11 декабря 2016 г.

1

Принцип математической индукции. Если для утверждения зависящего от положительного натурального п выполняются следущие условия:

- 1. Утверждение истинно при n = 1
- 2. Когда утверждение истинно при n=k, оно истинно и при n=k+1(*)

Тогда утверждение истинно при всех положительных п.

Принцип полной математической индукции. Если для утверждения зависящего от положительного натурального п выполняются следущие условия:

- 1. Утверждение истинно для n = 1
- 2. Если утверждение истинно для всех $n \le k$, оно также истинно и для $n = k + 1 \ (**)$

Тогда утверждение истинно при всех положительных п.

Утверждение. Если уместнуместнаа математическая индукция, то уместна и сильная индукция.

Доказательство. В дальныей ших рассуждениях будем считать, что n - натуральное, большее или равное 1, а также обозначим утверждение зависящее от n за $\varphi(n)$.

Предположим, что для $\varphi(n)$ выполняются условия (1) и (2) для сильной индукции.

Пусть $\psi(k) \Leftrightarrow \varphi(n)$ истинно для всех $n \leqslant k$ ».

Попытаемся доказать, что утверждение $\psi(n)$ истинно для всех положительных натуральных n по индукции. Как следствие, мы получим, что и $\varphi(n)$ верно для всех положительных n, т.е. тот же вывод, который должен дать принцип сильной индукции.

 $\mathit{Baзa}$. В силу нашего предположения $\varphi(1)$ истинно (гипотеза (1) сильной индукции верна), но тогда истинно и $\psi(1)$, по опеределению $\psi(n)$.

Предположение. Пусть верно $\psi(k)$.

Шаг. Мы предположили, что для $\varphi(n)$ выполняются гипотезы сильной индукции, а значит, если « $\varphi(n)$ верно для всех $n \leqslant k$ », то и $\varphi(k+1)$ —. По предположению индукции - $\psi(k) \Rightarrow \varphi(k+1)$

(см. определение $\psi(n)$ и гипотезу (2) сильной индукции). Получаем, что $\psi(k+1)$ - истинно, т.к. $\varphi(n)$ истинно для всех $n\leqslant k+1\Rightarrow \psi(k+1)$.

Согласно принципу мат. индукции $\psi(k)$ - верно для всех положительных k, занчит утверждение « $\varphi(n)$ истинно для всех $n\leqslant k$ » верно при всех k, а значит $\varphi(n)$ - верно для всех n.

Таким образом, из принципа мат. индукции следует принцип полной мат. индукциию.