F17T1A1

Es sei f eine ganze Funktion mit der Eigenschaft, dass für alle $z \in \mathbb{C}$ mit $|z| \geq 3$ gilt, dass $|f'(z)| \leq 1 + e^{-|z|}$.

Zeigen Sie, dass es $a, b \in \mathbb{C}$ gibt, so dass f(z) = az + b für alle $z \in \mathbb{C}$

Lösung:

Gegeben sei ein f, das die Bedingungen der Angabe erfüllt, dann ist auch f' ganz. Aufgrund der Voraussetzung wissen wir für alle $z \in \mathbb{C}$ mit $|z| \geq 3$:

$$|f'(z)| \le 1 + e^{-|z|} \le 2,\tag{1}$$

wobei wir verwenden, dass $e^{-|z|} \leq 1$ wegen $-|z| \leq 0$ gilt. Die abgeschlossene Kreisscheibe $K := \{z \in \mathbb{C} | |z| \leq 3\}$ ist kompakt, denn sie ist abgeschlossen und beschränkt, und sie ist nichtleer wegen $0 \in K$. Da |f'| stetig ist, nimmt die Einschränkung von |f'| auf dem Kompaktum K ein Maximum an, sagen wir an einer Stelle $w \in K$. Wir zeigen nun, dass f' konstant ist. Hierzu unterscheiden wir zwei Fälle:

- 1. Fall: |w| < 3. Dann ist w ein innerer Punkt von K, also w eine lokale Maximumstelle von |f'|. Nach dem Maximumsprinzip für holomorphe Funktionen ist dann f' konstant, da $\mathbb C$ zusammenhängend und f' holomorph ist.
- 2. Fall: |w| = 3. Dann folgt $|f'(w)| \le 2$ wegen Aussage (1), also auch $|f'(z)| \le 2$ für alle $z \in K$, da w eine Maximumstelle der Einschränkung $|f'||_K$ ist. Hier gilt also sogar $|f'(z)| \le 2$ für alle $z \in \mathbb{C}$. Die ganze Funktion f' ist also beschränkt. Aus dem Satz von Liouville folgt, dass sie auch in diesem Fall konstant ist.

Es sei $a \in \mathbb{C}$ der (einzige) Wert von f', und $b := f(0) \in \mathbb{C}$. Dann besitzt die ganze Funktion $g : \mathbb{C} \to \mathbb{C}$, g(z) = az + b - f(z) die konstante Ableitung g'(z) = a - f'(z) = 0, und den Wert g(0) = b - f(0) = 0. Die Funktion g ist also konstant 0, da der Definitionsbereich \mathbb{C} zusammenhängend ist. Das bedeutet: f(z) = az + b für alle $z \in \mathbb{C}$, wie zu zeigen war.