姓名

바	
账	

课程名称	考试学期		得分		
适用专业	 考 试 形 式	闭卷	考试时间长度 120 分钟		

提示:请同学们在试卷和答题纸上都写上姓名学号,并将答案直接写在答案纸上;请监考老师将试卷与答案纸分开收,一起装入试卷袋。谢谢合作!

一、单选题(每题3分,共30分)

1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度 $\theta(\theta>0)$,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其振动表达式,则该单摆的初相位为 [

- (A) θ
- (B) $\frac{\pi}{4}$
- (C) 0
- (D) $\frac{\pi}{2}$

2. 如图所示,一平面简谐波以波速 u 沿着 x 轴正方向传播,已知 P 点的振动方程为 $y = A\cos(\omega t + \varphi)$,则该平面简谐波的波函数为

(A)
$$y = A\cos\left[\omega(t - \frac{x - L}{u}) + \varphi\right]$$

(B)
$$y = A\cos\left[\omega(t - \frac{x}{u}) + \varphi\right]$$

(C)
$$y = A\cos\omega(t - \frac{x}{u})$$

]

3. 两列波长为 λ 的相干波在点 P 相遇,波源 S_1 的初相是 φ_1 ,到 P 点的距离是 r_1 。波源 S_2 的初相是 φ_2 ,到 P 点的距离是 r_2 ,则 P 点处为干涉极大的条件是

(A) $r_2 - r_1 = k\pi$

- (B) $\varphi_2 \varphi_1 = 2k\pi$
- (C) $\varphi_2 \varphi_1 + 2\pi (r_2 r_1)/\lambda = 2k\pi$
- (D) $\varphi_2 \varphi_1 + 2\pi (r_1 r_2)/\lambda = 2k\pi$

4. 一東光是自然光和线偏振光的混合光,让它垂直通过一偏振片。若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的 5 倍,那么入射光束中自然光与线偏振光的光强比值为 []

- (A) 1/2
- (B) 1/5
- (C) 1/3
- (D) 2/3

5. 在容积为 $V=4\times 10^{-3}$ m³ 的容器中,装有压强为 $P=5\times 10^2$ Pa 的理想气体,则容器中气体分子的平动动能总和为

- (A) 5J
- (B) 3 J
- (C) 9 J
- (D) 2J

6. k,		某理想气体 气体的分子。			p,温度为	T,每个分	分子的质量为	ງ μ, ξ	波耳兹曼常 [常数为]
	(A)	$\frac{pV}{k\mu}$	(B)	$\frac{pT}{\mu V}$	(C) $\frac{p}{k}$	$\frac{\partial V}{\partial T}$	(D) $\frac{p}{k!}$	$\frac{T}{V}$		
7.	(A)	定质量的理 平均碰撞\ 平均自由和	欠数将增	大	R恒定时温度 (B) (D)	平均碰撞			[]
8.	(A)	物体中属= 不辐射可 不能反射	见光的物	体			壬何光线的物 时任何光线的		[]
9.	(A) (B) (C)	效应中,单 入射光的的 入射光的的 入射光的的 入射光的	强度和频 虽度和相 预率和相	率 位 位	: 子数目(光	电流的强	鼠度)依赖于		[]
10.	(A) (B) (C)	微观粒子的 微观粒子的 微观粒子的	的动量不 的位置坐 的动量和	可能确定标不可能存	列说法正确的 确定 不可能同时码 质子等带电料	角定			[]
	-	ヹ 题(共 36					$($ $\pi)$			
1.	(6分	〉) 一质点	作简谐注	运动,其 运	运动方程为 x	= 0.10 co	$s\left(20\pi t + \frac{\pi}{4}\right)$	(SI),	则该质点	点的频
率)	カ v =	=	Hz, 'E	它的动能的	力变化频率 为	ı <i>v</i> ′=	Hz,		2 s 时该原	
		为 v=								
					逢间距为 <i>d</i> , 的距离为		₮幕的距离为 。	D (D	>>> d),)	\ 射光
					直入射到缝;		12 单缝上, 个半波带。	观察其	夫琅禾费	衍射。

4. (4分)如图所示,1、2分别表示两个同方向、同频率的简谐运动曲线,则合振动的振幅为_____,合振动的运动方程为____。

- 5.(2 分)如图所示,折射率为 n_2 、厚度为 d 的透明介质薄膜的上方和下方的透明介质的 折射率分别为 n_1 和 n_3 ,已知 $n_1 < n_2 > n_3$,若用真空中波长为 λ 的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束①与②的光程差是_____。

- 8. (4 分)用总分子数 N、气体分子速率 v 和速率分布函数 f(v) 表示下列各量:
 - (1) 速率大于 v_0 的分子数=______,
 - (2)分子的平均速率=____。
- 9.(3分)已知两种气体分别为氢气和氧气,在相同温度下的分子速率分布曲线如图所示。则 a是_____。

- 10. (2 分)根据玻尔的原子理论,氢原子在第一激发态时其电子的轨道角动量为 L= ______ $h/2\pi$ 。
- 11. (2 分)若 α 粒子(电量为 2e)在磁感强度为 B 的均匀磁场中沿半径为 R 的圆形轨道运动,则该 α 粒子的德布罗意波长为 _____。

三、计算题(共34分)

1. (12 分)如图所示,设一列沿着 x 轴正方向传播的平面简谐波的波函数为 $y = A\cos\left(\omega t - \frac{2\pi x}{\lambda}\right)$,波在 x = L 处发生反射,反射点 F 为固定端。设波在传播和反射过程中振幅不变,两列波叠加后形成驻波。求:(1)反射波的波函数;(2)驻波方程;(3)设 $L = 2\lambda$,求在(0,L)之间波腹和波节的位置。

2. (10 分) 波长 λ =600nm $(1nm = 10^{-9} m)$ 的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为 30° ,且第三级是缺级. 求 :

- (1) 光栅常数(a+b)等于多少?
- (2) 透光缝可能的最小宽度a 等于多少?
- (3) 在选定了上述(a+b)和 a 之后,求在衍射角 $-\pi/2 < \varphi < \pi/2$ 的范围内可能观察到的全部 主极大的级次.

3.(12 分)0.32kg 的氧气作如图所示的循环 ABCDA,已知 $V_2=2V_1$, $T_1=300$ K, $T_2=200$ K,求循环效率。(设氧气分子可看作刚性双原子分子,已知摩尔气体常量 R=8.31 J·mol⁻¹·K⁻¹)

答题纸

题目	_	11	三—1	三—2	≡ —3	总分
得分						
批阅人						

一、单选题(每题3分,共30分)

题号	1	2	3	4	5
答案					
题号	6	7	8	9	10
答案					

二、填空题(共36分)

- 1. (6分) ____、___、___;
- 2. (2分)______; 3. (2分)______;
- 4. (4分) ______; 5. (2分) ______;
- 6. (5分) _______;
- 7. (4分)_____;
- 8. (4分)______;
- 9. (3分)_______; 10. (2分)______; 11. (2分)______

三、计算题(共34分)

1. (本题 12分)

2. (本题 10分)

3. (本题 12分)