Find the solution
$$x(t)$$
 to $\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}+2x=0$, with initial conditions: $x(0)=1$, $x'(0)=0$.

0 0 0
$$2e^{-t} + e^{-2t}$$
 $2e^{-t} - e^{-2t}$ $2e^{t} - e^{2t}$

Find the solution
$$x(t)$$
 to $\dfrac{d^2x}{dt^2}+2\dfrac{dx}{dt}+2x=0$, with initial conditions: $x(0)=1$, $x'(0)=0$.

0 0 0
$$\frac{\frac{2}{\sqrt{2}}e^{-t}\cos(t-\frac{\pi}{4})}{\frac{2}{\sqrt{2}}e^{-t}\sin(t)} \qquad \frac{\frac{2}{\sqrt{2}}e^{-t}\sin(t-\frac{\pi}{4})}{\frac{2}{\sqrt{2}}e^{-t}\sin(t-\frac{\pi}{4})}$$

3. Compute the Laplace Transform of

$$y(t) = e^{-\alpha t} \sin(\beta t) 1(t)$$

6. Compute the inverse Laplace Transform of

$$\frac{3s+4}{s^2+3s+2}.$$

0 0 0
$$e^{-2t} + e^{-3t}$$
 $e^{-t} + 2e^{-2t}$ $e^{t} + e^{2t}$ (a) (b) (c)