Week 6, Lecture 13 on 9 October 2021 - CS1.301.M21 Algorithm Analysis and Design

Euclid's Algorithm for GCD

The Problem

Find the Greatest Common Divisor of two integers a and b

The Answer

The school method of doing this is prime factorization but this is not in P

Instead we use the following algorithm (given that a > b):

```
1 Euclid(a,b):
2   if b == 0: return a
3   return Euclid(b, a mod b)
```

This works since b is always greater than $a \mod b$

The crux of this solution is that $gcd(x, y) = gcd(y, x \mod y)$:

Given a divisor d of x and y, it divides x - y since we can rewrite it as $k_1d - k_2d$.

Now suppose we take $k_1d-c \times k_2d$ for any integer c. This is also true since k_2 could be any constant. So we can also say that $\gcd(a,b)=\gcd(b,a\mod b)$ where k_2 becomes the largest value that divides a.

Analysis

we could do an analysis by saying that the worst case is two consecutive Fibonacci series numbers and analyzing that case.

It suffices to show that $a \mod b < a/2$ since if b < a/2 then we can fit at least 2 bs in a and otherwise only one b fits in a.

So we can say that in each recursion we have a halving of a hence the algorithm will complete in $O(\log a)$.

Extended Euclid Algorithm

The Problem

If d is a divisor of a and b, and d=ax+by then d is necessarily the GCD of the two numbers.

 $gcd(a, b) \ge d$ since d is a divisor and therefore less than or equal to the GCD.

The GCD of a and b also divides d = ax + by since it is a divisor and so $gcd(a, b) \le d$ so therefore we know that d = gcd(a, b).

The problem now is to compute the above shown x and y.

The Answer

Consider the following run of the Euclid Algorithm:

$$\underline{25} = 2 \cdot \underline{11} + 3$$

$$\underline{11} = 3 \cdot \underline{3} + 2$$

$$\underline{3} = 1 \cdot \underline{2} + 1$$

$$\underline{2} = 2 \cdot \underline{1} + 0$$

 $25=2\cdot 11+3$ so it follows $25+2\cdot 11=3$ and we can say this about each of the remainders obtained in Euclid's Algorithm.

```
1 ExtendedEuclid(a,b):
2    if b == 0: return (1,0,a)
3     (x,y,d) = ExtendedEuclid(b,a mod b)
4    return (y, x - floor(a/b) y, d)
```

Proof:

Now writing $(a \mod b)$ as $(a - \lfloor a/b \rfloor b)$ we get,

$$\gcd(b, a \mod b) = bx' + (a \mod b)y' = bx' + (a - |a/b|b)y' = ay' + b(x' - |a/b|y')$$

Modular Division

x is the multiplicative inverse of $a \mod n$ if $ax \equiv 1 \pmod N$.

Modular division theorem

For any $a \mod N$, a has a multiplicative inverse modulo N if and only if it is relatively prime to N. When this inverse exists, it can be found in time $O(n^3)$ (where as usual n denotes the number of bits of N) by running the extended Euclid algorithm.