DATA.STAT.840 Statistical Methods for Text Data Analysis

Exercises for Lecture 5: N-grams

Daniel Kusnetsoff

Exercise 5.1: Bigram probabilities.

a)

Are the following probabilities possible in an bigram model? $p(w_1='\operatorname{rock}')=0.01$, $p(w_2='\operatorname{band}')=0.003$, $p(w_2='\operatorname{band}'|w_1='\operatorname{rock}')=0.4$. Prove why/why not. Derive an inequality between $p(w_1)$, $p(w_2)$ and $p(w_2|w_1)$ for what probabilities are possible. Hint: consider the Bayes rule.

Let's consider the possibilities of $p(w_1 \mid w_2)$

The Bayes rule would be written here:

$$p(w_1 = "rock" | w_2 = "band") = \frac{p(w_2 = "band" | w_1 = "rock") * p(w_1 = "rock")}{p(w_2 = "band")}$$
$$= \frac{0.4*0.01}{0.003} = 1,333...$$

This is not possible, as the probability of $p(w_1 \mid w_2)$ should be between 0 and 1.

b)

Consider the sentence "The whole of science is nothing more than a refinement of everyday thinking." (Albert Einstein, *Physics and Reality*, 1936). Compute the probability of the sentence in a bigram model using the following unigram probabilities:

```
p('\text{the}')=0.03, p('\text{whole}')=0.0001, p('\text{of}')=0.01, p('\text{science}')=0.0003, p('\text{is}')=0.02, p('\text{nothing}')=0.0002, p('\text{more}')=0.001, p('\text{than}')=0.0009, p('\text{refinement}')=2\cdot10_{-6}, p('\text{everyday}')=6\cdot10_{-6}, p('\text{thinking}')=3\cdot10_{-5}.
```

You need to choose some corresponding bigram probabilities so that they satisfy the condition you derived in (a).

The product we want to calculate is:

```
p(the) *p(whole|the) * p(of|whole) * p(science|of) * p(is|science) * (nothing|is) * p(more|nothing) * p(than|more) * p(refinement|than) * p(of|refinement) * p(everyday|of) * p(thinking|everyday)
```

We can calculate the conditional probabilities:

The first part we do not have is

$$p(\text{whole}\,|\,\text{the}) = \frac{p(the\,|\,whole)*p(whole)}{p(the)} = p(\text{the}\,|\,\text{whole})*\frac{1}{300}\,, \qquad (0,0001/0,03)$$

This means we will get the equation p(whole | the) = p(the | whole)* $\frac{1}{300'}$ which must be ≤ 1

Using this result we can factorize the first product of the main product equation below:

p(the)*p(whole|the)*p(of|whole)*p(science|of)*p(is|science)*(nothing|is)*p(more|nothing)*p(than|more)*p(refinement|than)*p(of|refinement)*p(everyday|of)*p(thinking|everyday)

As we wish to resolve the sentence we wish to alter the equation to a form that shows the original sentence:

p(the)*p(the | whole)*p(whole | of)*p(of | science)*p(science | is)*(is | nothing)* p(nothing | more)* p(more | than)*p(than | refinement) *p(refinement | of)* p(of | everyday)* p(everyday | thinking)

And factorize:

p(the)*p(the | whole)*(1/300) * p(whole | of) *(100)*p(of | science) *(3/100)*p(science | is) *(200/3) *(is | nothing) *(1/100) * p(nothing | more) * 5 * p(more | than) *(9/10) *p(than | refinement) *(1/450) *p(refinement | of) *(5000)* p(of | everyday) *(3/5000) * p(everyday | thinking) * 5

choose some corresponding bigram probabilities so that they satisfy the condition in a.:

0.03*(1/2)*(1/300)*(1/101)*100*(1/4)*(3/100)*(2/200)*(200/3)*(99/100)*(1/100)*(1/6)*5*(8/10)*(9/10)*(4/5)*(1/450)*(1/5001)*5000*(99/100)*(3/5000)*(1/6)*5=

1.2936E-15

Exercise 5.2: Theoretical n-gram properties.

(a) Suppose you need to generate a document of length M words. Show that if the n in an ngram model is at least as large as M, the n-gram model can represent all statistical dependencies that might exist in the language needed to generate the document. So that, for

example, a 5-gram model can represent all dependencies needed to generate sentences of 5 words.

(b) Consider a simplified version of the maximum a posteriori estimation of n-gram probabilities described on the lecture. Suppose all pseudocounts in the Dirichlet priors use

the same shared value, $\alpha_{v \mid [w_1, ..., w_{n-1}]} = \alpha_{shared}$ for all vocabulary terms v and all contexts $[w_1, ..., w_{n-1}]$ where α_{shared} is the shared value. This results in estimates that are simple smoothed proportional counts. This kind of smoothing is called **Laplace smoothing** when

α

shared=1 and **Lidstone smoothing** otherwise.

- Show that in this setting, the maximum a posteriori estimate (as shown on the course slides) for a n-gram probability can be written as a weighted average of two terms: (1) the maximum likelihood estimate of the probability and (2) a uniform distribution over the vocabulary.
- Show that the mixing weight in the weighted average depends on the number of occurrences of a n-gram context compared to $V \alpha_{shared}$ where V is the vocabulary size.
- \circ For an individual n-gram context, how should $\alpha_{\textit{shared}}$ be chosen so that the weight of the data is greater than the weight of the prior? Report your proofs.

a)

The dependency of words in M-sized document can be modelled using joint distribution.:

$$p(W_1, W_2, \dots, W_m)$$

N is a n-gram with the assumption of size: N > M. This means that N models the dependencies of the first M-words in the distribution. This can be done using lower-degree n-grams and by the corresponding probability distribution:

$$p(w_1)*p(w_2|w_1)*p(w_3|w_2,w_1) ... p(w_M|w_{M-1},w_{M-2}, ... w_1)$$

As we can know the pattern is following the probability chain rule we can agree that it equals the previously presented joint distribution of probabilities.

⇒ Hence, the n-grams with size N can represent all dependencies necessary to create the wanted document.

b.

Suppose all pseudocounts in the Dirichlet priors use the same shared value,

$$\alpha_v \mid [w_1, ..., w_{n-1}] = \alpha_{shared}$$

Weighted Average:

$$\begin{aligned} &\theta_{v}^{MAP} = \frac{n_{v \mid [w_{1}, \dots, w_{n-1}] + \alpha_{v} \mid [w_{1}, \dots, w_{n-1}]}}{n_{\mid [w_{1}, \dots, w_{n-1}] + \sum \alpha_{i} \mid [w_{1}, \dots, w_{n-1}]}} \\ &= \frac{n_{v +} \alpha_{shared}}{n + \alpha_{shared}} \\ &= \frac{n}{n + \alpha_{shared}} * \frac{n_{v}}{n} + \frac{\sum \alpha_{shared}}{n + \sum \alpha_{shared}} * \frac{\alpha_{shared}}{\sum \alpha_{shared}} \\ &= \frac{n}{n + \alpha_{shared}} * \frac{n_{v}}{n} + \left(1 - \frac{n}{n + \sum \alpha_{shared}}\right) * \frac{\alpha_{shared}}{\sum \alpha_{shared}} \end{aligned}$$

$$\frac{n_i}{n} = likelihood$$

$$\frac{\alpha_{shared}}{\sum \alpha_{shared}} = distribution (prior)$$

Mixing Weights:

V=vocabulary size

$$\Rightarrow \sum \alpha_{shared} = \alpha_{shared} * V$$

Hence, we can write the mixing weight in the weighted average as:

$$\frac{n}{n + \alpha_{shared}} = \frac{n}{n + \alpha_{shared * V}}$$

How should α shared be chosen so that the weight of the data is greater than the weight of the prior?

$$\Rightarrow \alpha_{shared} = ?$$

$$\frac{n}{n + \alpha_{shared} * V} > 1 - \frac{n}{n + \alpha_{shared} * V}$$

$$=> \frac{n}{n + \alpha_{shared} * V} > 1/2$$

$$=> n > (1/2) * (n + \alpha_{shared} * V)$$

$$=> \frac{1}{2} > \frac{1}{2} V * \alpha_{shared}$$

$$=> n/V > \alpha_{shared}$$

How do we get the data weight to be greater than the prior weight?

 \Rightarrow We must $\alpha_{\textit{shared}}$ so that it is a smaller value than (n/V).