Lección 11 Sensor de humedad y temperatura DHT11

Resumen

En este tutorial vamos a aprender cómo usar un Sensor de humedad y temperatura DHT11.

Es lo suficientemente exacta para la mayoría de los proyectos que necesitan hacer un seguimiento de las lecturas de humedad y temperatura.

Otra vez vamos a usar una **librería** diseñada específicamente para estos sensores que harán que nuestro código corto y fácil de escribir.

Componentes necesarios

- (1) x Elegoo Uno R3
- (1) x módulo de humedad y temperatura DHT11
- (3) x F M cables (cables de hembra a macho DuPont)

Sensor de temperatura y humedad

Sensor digital de temperatura y humedad **DHT11** es un Sensor compuesto que contiene la salida de la señal digital calibrado de la temperatura y la humedad.

Aplicaciones: HVAC, deshumidificador, ensayos e inspección de equipos, bienes de consumo, control automático, automóvil, registradores de datos, estaciones meteorológicas, electrodomésticos, regulador de humedad, humedad médicos y otros medición y control.

Parámetros del sensor

Humedad relativa:

• Resolución: 16 bits

• Repetibilidad: ±1% H.R.

• Precisión: 25 ° C ±5% hr

• Intercambiabilidad: intercambiables

• Tiempo de respuesta: 1 / e (63%) de 25° c 6s

• 1m / s de aire 6s

• Histéresis: < ± 0.3% RH

• Estabilidad a largo plazo: $< \pm 0.5\%$ hr / año en

Temperatura:

Resolución:	16 bits
Repetibilidad:	±0.2°C
Rango:	25 ° C ±2° c
Tiempo de respuesta:	1 / e (63%) 10S

Características eléctricas

Fuente de alimentación:	DC 3.5 ~ 5.5V
Corriente:	medición 0.3mA espera 60μA
Periodo de muestreo:	más de 2 segundos

Descripción de pines

VDD	alimentación 3,5~5.5V DC
DATA	bus de datos
NC	pin vacío
GND	tierra

Esquema de conexión

Diagrama de cableado

Como se puede ver que sólo necesitamos 3 conexiones al sensor, ya que uno de lo pin no se utiliza.

Las conexiones son: voltaje, tierra y señal de que puede conectarse a cualquier Pin en nuestro UNO.

Código

```
#include <dht_nonblocking.h>
#define DHT_SENSOR_TYPE DHT_TYPE_11

static const int DHT_SENSOR_PIN = 2;
DHT_nonblocking dht_sensor( DHT_SENSOR_PIN, DHT_SENSOR_TYPE );

/*
   * Initialize the serial port.
   */
   void setup()
{
     Serial.begin( 9600);
}

/*
```

```
* Poll for a measurement, keeping the state machine alive. Returns
 * true if a measurement is available.
*/
static bool medir ( float *temperature, float *humidity )
 static unsigned long measurement_timestamp = millis( );
 /* Measure once every four seconds. */
 if( millis( ) - measurement_timestamp > 3000ul )
   if( dht_sensor.measure( temperature, humidity ) == true )
     measurement_timestamp = millis( );
     return( true );
   }
  }
 return( false );
* Main program loop.
void loop( )
 float temperature;
 float humidity;
 /* Measure temperature and humidity. If the functions returns
     true, then a measurement is available. */
 if( medir( &temperature, &humidity ) == true )
   Serial.print( "T = " );
   Serial.print( temperature, 1 );
   Serial.print( " deg. C, H = " );
   Serial.print( humidity, 1 );
   Serial.println( "%" );
 }
}
```

Salida en el monitor

