Product and Sum of Two Primes 1

We noticed in [?], that $2,3 \mid n+1$ if and only if $2,3 \mid r$ for any prime greater than 3, this is not true. Let h be an odd prime greater than 3, if $h \mid n+1$, then it is not necessary that $h \mid r$

Proof.

Let h be prime greater than 3, then $h-1=2\frac{h-1}{2}$ where $\frac{h-1}{2}\geq 2$. Let n=pq,

where
$$p$$
 and q are odd primes such that: $p=2h$ and $q=\frac{h-1}{2}h$, then $n=pq=2\frac{h-1}{2}=-1h$, so $n+1=0h$, then $h\mid n+1$ but $rh=p+qh=2-2^{-1}=2^{-1}(4-1)=2^{-1}3\neq 0h$, so $h\nmid r$.

Let h = 7, n = 3639, then $7 \mid n+1$ and r7 = (p+q)7 = 5, so $7 \nmid r$. in fact, if n+1=07, then r7 could have one of the values: 0, 2 or 5. In general, there is a relation between nh and rh. for example: let h = 7, then the following table contains the possible values of r7, for each $n7 \neq 1$.

Table 1: $n7$					
n7	r7				
1	1, 2, 5, 6				
2	1, 3, 4, 6				
3	0, 3, 4				
4	2, 3, 4, 5				
5	0, 1, 6				
6	0, 2, 5				

As shown in table ?? if $n7 \neq 0$, then r7 has either 3 or 4 values. In general, for any odd prime h, if $nh \neq 0$, then rh has $\frac{h-1}{2}$ or $\frac{h+1}{2}$ different values. Let h be prime and $a,b,c,d \in \mathbb{Z}_h^*$ be distinct mod h If ab = cd h, then a+b $\neq c + dh$

Proof.

Let $a,b,c,d \in \mathbb{Z}_h^*$ and distinct with ab = cdh. Suppose a + b = c + dh then a = c + d - bh

$$(c+d-b)b = cdh$$

$$cb+db-b^{2} = cdh$$

$$db-b^{2} = cd-cbh$$

$$(d-b)b = c(d-b)h$$

$$(d-b)b = (d-b)ch$$

Since $d-b \neq 0h$ which means b=ch. However, this contradicts the assumption, So $a + b \neq c + dh$ Let n=pq and r=p+q where p, q, h are distinct odd primes With $n\neq 0 \bmod h$ then: r mod $hhas\frac{h-1}{2}or\frac{h+1}{2}different possible values.$

Proof.

Let $a \in \mathbb{Z}_h$. a is a quadratic residue modulo h if $\exists x \in \mathbb{Z}_h^*$ such that $a = x^2h$. If a isn't a quadratic residue then for any $b \in \mathbb{Z}_h^*$, $\exists c \neq b \in \mathbb{Z}_h^*$ such that bc = ah.

$$b_1c_1 = b_2c_2 = \dots = b_{h-1}c_{h-1} = ah$$

Since the multiplication and addition is commutative, the above becomes:

$$b_1c_1 = b_2c_2 = \dots = b_{\frac{h-1}{2}}c_{\frac{h-1}{2}} = ah$$

So by lemma ??: $b_i + c_i \neq b_j + c_j$ if $i \neq j$ then we have $\frac{h-1}{2}$ different rh.

Now, suppose a is a quadratic residue then $\exists x \in \mathbb{Z}_h^*$, such that $a = x^2h$, and $a = (h - x)^2h$ so we have

$$b_1c_1 = b_2c_2 = \dots = b_{\frac{h-3}{2}}c_{\frac{h-3}{2}} = b_{\frac{h-1}{2}}^2 = b_{\frac{h+1}{2}}^2 = ah$$

So we have $\frac{h+1}{2}$ different rh

The ideas described above hint on the algorithm's dependence on pre-computation, and there are several aspects to consider. How far can we pre-process? and whether it is useful to go to such lengths. To calculate $r \mod h$ for all $n \mod h$, one can find the Cayley tables for multiplication and addition then save the unique values in a manner similar to that of table ??.

1.0.1 Exhaustive Listing

It is also possible to use a more efficient listing algorithm. We search all useful combinations with second terms greater than or equal to the first term then store the possible values as lists with their corresponding $n \mod p$ as keys to those lists as in ??

Algorithm 1 Listing

```
Require: h \leftarrow prime \ge 7

1: for i in [1, p - 1] do

2: for j in [i, p - 1] do

3: permval[ij + 1] \leftarrow (i + j)p

4: end for

5: end for
```

1.0.2 'r' for a Specific ' $n \mod h$ '

Let $x = n \mod h$ and $r = i + i^{-1}x$ where $i \in \mathbb{Z}_h^*$

Proof.

```
ij = x \bmod hj = xi^{-1} \bmod hr = i + j = xi^{-1} \bmod h
```

Notice if $r \mod h$ is a possible value, then $(-r) \mod h$ is also a possible value. Since $-r = -(xi^{-1} + i) = -xi^{-1} - i = x(-i)^{-1} - i$

1.0.3 Using Inverse

```
Algorithm 2 Using n \mod h multiplied by i^{-1}
```

```
Require: h, n
Ensure: h \ge 7
 1: for i in [1, h-1] do
 2:
        if iinni_list then
           continue
 3:
        end if
 4:
        ni \leftarrow n * i^{-1} \bmod h
 5:
        append ni to ni\_list
 6:
 7:
        r \leftarrow (i + ni) \bmod h
        if rinr\_list then
 8:
           continue
 9:
        end if
10:
        append r to r\_list
11:
        if r \neq 0 then
12:
13:
           append (h-r) to r\_list
        end if
14:
15: end for
```

2 Divisibility by 8

Let p and q be distinct odd primes, n=pq, and r=p+q then: $8\mid n+1 if and only if 8\mid r$

Proof. Let p and q be two distinct odd primes, then they have one of the forms:

- 1. 8k + 1
- 2. 8k + 3
- 3. 8k + 5
- 4. 8k + 7

then the possible forms of n:

1.
$$[t](8k+1)(8m+1) = 64km + 8(k+m) + 1$$

= $8k' + 1$

2.
$$[t](8k+1)(8m+3) = 64km + 8(3k+m) + 3$$

= $8k' + 3$

3.
$$[t](8k+1)(8m+5) = 64km + 8(5k+m) + 5$$

= $8k' + 5$

4.
$$[t](8k+1)(8m+7) = 64km + 8(7k+m) + 7$$

= $8k' + 7$

5.
$$[t](8k+3)(8m+3) = 64km + 24(k+m) + 9$$

= $8k' + 1$

6.
$$[t](8k+3)(8m+5) = 64km + 8(5k+3m) + 15$$

= $8k' + 7$

7.
$$[t](8k+3)(8m+7) = 64km + 8(7k+5m) + 21$$

= $8k' + 5$

8.
$$[t](8k+5)(8m+5) = 64km + 40(k+m) + 25$$

= $8k' + 1$

9.
$$[t](8k+5)(8m+7) = 64km + 8(7k+5m) + 35$$

= $8k' + 3$

10.
$$[t](8k+7)(8m+7) = 64km + 56(k+m) + 49$$

= $8k' + 1$

and the possible forms of r will respectively be:

a)
$$[t](8k+1) + (8m+1) = 8(k+m) + 2$$

= $8k' + 2$

b)
$$[t](8k+1) + (8m+3) = 8(k+m) + 4$$

= $8k' + 4$

c)
$$[t](8k+1) + (8m+5) = 8(k+m) + 6$$

= $8k' + 6$

d)
$$[t](8k+1) + (8m+7) = 8(k+m+1)$$

= $8k'$

e)
$$[t](8k+3) + (8m+3) = 8(k+m) + 6$$

= $8k' + 6$

f)
$$[t](8k+3) + (8m+5) = 8(k+m+1)$$

= $8k'$

g)
$$[t](8k+3) + (8m+7) = 8(k+m) + 10$$

= $8k' + 2$

h)
$$[t](8k+5) + (8m+5) = 8(k+m) + 10$$

= $8k' + 2$

i)
$$[t](8k+5) + (8m+7) = 8(k+m) + 12$$

= $8k' + 4$

j)
$$[t](8k+7) + (8m+7) = 8(k+m) + 14$$

= $8k' + 6$

Here n+1 is divisible by 8 for the fourth and sixth forms, and similarly the corresponding forms of r are also divisible by 8. The other forms for n+1 and their corresponding forms for r are not divisible by 8. Therefore, we conclude that $8 \mid n+1$ if and only if $8 \mid r$

We also extend previous results in a similar fashion applicable on semi-primes equal to 3 or 710 as shown in the following tables.

Table 2: n = 310Tens odd $3 \mid n+1 \qquad 3 \nmid n+1$ $r = 60k + 54 \qquad r = 60k + 14$ $r = 60k + 6 \qquad r = 60k + 26$ r = 60k + 46

Tens even					
8 1	n+1	$8 \nmid n + 1$			
3 n + 1	$3 \nmid n+1$	3 n + 1	$3 \nmid n+1$		
r = 120k + 24	r = 120k + 64	r = 120k + 84	r = 120k + 4		
r = 120k + 96	r = 120k + 104	r = 120k + 36	r = 120k + 44		
	r = 120k + 16		r = 120k + 76		
	r = 120k + 56		r = 120k + 116		

Table 3: $n = 710$				
Tens odd				
3 n + 1	$3 \nmid n+1$			
r = 60k + 18	r = 60k + 38			
r = 60k + 42	r = 60k + 58			
	r = 60k + 2			
	r = 60k + 22			

Tens even					
8 1	n+1	$8 \nmid n+1$			
3 n + 1	$3 \nmid n+1$	3 n + 1	$3 \nmid n+1$		
r = 120k + 48	r = 120k + 8	r = 120k + 108	r = 120k + 68		
r = 120k + 72 $r = 120k + 88$		r = 120k + 12	r = 120k + 28		
	r = 120k + 32		r = 120k + 92		
	r = 120k + 112		r = 120k + 52		

3 Formulas and Prime Fields

For any formula r(k)=ak+b in [?], and a prime $h\geq 7$. $r(k)=r(m)\mod hif and only if <math>k=m\mod h$

Proof.

Let r(k) = ak + bh, with h a prime, and $a = 2^{\alpha_1}3^{\alpha_2}5^{\alpha_3}$, then:

$$r(k) = r(m)h$$

$$\iff ak + b = am + bh$$

$$\iff ak = amh$$

$$\iff k = mh$$

From proposition ?? we have:

1. $r(k) \mod h$, $r(k+1) \mod h$, ..., $r(k+h-1) \mod h$ are distinct, so $Z_h = \{r(k) \mod h, ..., r(k+h-1)\}$ then $\frac{h-1}{2}$ or $\frac{h+1}{2}$ of r(k), r(k+1), ..., r(k+h-1) cannot be equal to p+q. In the previous example n=3639 and $n \mod 7=6$, the possible values of $r \mod 7$ are 0,2, and 5 as shown in table ??. So, if $r(k) \mod 7=3$, then $r(k) \neq p+q$

2. If $r(k) \mod h \neq \text{ one of the possible values of } r \mod h$, then $r(k+\gamma h) \neq \text{ one of the possible values of } r \mod h$. If $r(k) \mod 7 = 3$, then by proposition ??, $r(k+7\gamma) \mod 7 = 3$. So, $r(k+7\gamma) \neq p+q$.

The method suggested in [?] is to compute the starting points for a number of predefined formulas $r_i(k)$ using $\lceil 2\sqrt{n} \rceil$, the formulas are chosen depending on certain characteristics of 'n'. After which, the condition

$$r_i(k) = p + q \iff \sqrt{r^2 - 4n} is a positive integer$$
 (1)

, is checked while iteratively incrementing k.

For example, given n=234948664218045611 (computed from p=925106617 and q=253969283) we choose the table 6 from [?]. Compute the starting points for each of the three formulas $r_1(k_{1,0}), r_2(k_{1,0}), r_3(k_{3,0})$ using $2\sqrt{n}\approx 969430068$. Check the condition $r_i(k)=p+q\iff \sqrt{r^2-4n}$ is a positive integer iteratively while incrementing k.

The value for k that satisfy the condition is $k_{3,1747048} = 9825632$ $r_3(9825632) = 1179075900$.

Number of tries = $3 \times 1747048 = 5241144$

Using the results from proposition ??, one can approximately halve the number of expensive condition checks in the previous method. Computing modulo h operations h times then only checking the condition for the values in a permissible congruence class modulo h. The decrease in the number of condition checks depend on whether 'n' is a quadratic residue modulo h which is discussed in depth later in ??.

3.1 Example (with h = 7)

Given n = 234948664218045611

Rather than evaluating $r_1(k)$, $r_2(k)$, $r_3(k)$ starting with the above values for $k_{1,0}$, $k_{2,0}$, $k_{3,0}$ respectively then continuing to increment the k's until $\sqrt{r^2 - 4n}$ is equal to an integer, we use proposition ?? with h = 7, then compute nh = 1 and evaluate the first h values of $(k_{1,i}, k_{2,i}, k_{3,i})$. After which, we check if they map to the possible values modulo h as shown in table ??, if not we discard the value.

Table 4: First 7 iterations of the example

i	$r_1(k)$	$r_2(k)$	$r_3(k)$
0	$969430212 \mod h = 2$	$969430188 \mod h = 6$	$969430140 \mod h = 0$
1	$969430812 \bmod h = 0$	$969430788 \mod h = 4$	$969430260 \mod h = 1$
2	$969431412 \mod h = 5$	$969431388 \mod h = 2$	$969430380 \mod h = 2$
3	$969432012 \mod h = 3$	$969431988 \bmod h = 0$	$969430500 \mod h = 3$
4	$969432612 \mod h = 1$	$969432588 \mod h = 5$	$969430620 \mod h = 4$
5	$969433212 \mod h = 6$	$969433188 \mod h = 3$	$969430740 \mod h = 5$
6	$969433812 \mod h = 4$	$969433788 \mod h = 1$	$969430860 \mod h = 6$

Discard all values $r(k + \gamma h)$ corresponding to the first h values crossed as shown in the above table. Traverse the remaining space until a value of r(k) that satisfies the condition is reached. The value for k where a solution exists is $k_{3,1747048} = 9825632$.

• Number of tries = $\left[\frac{4}{7}5241144\right]$

3.2 Choosing a prime h

Given two primes h_1 and h_2 , where $h_1 \nmid n$ and $h_2 \nmid n$. Choosing the prime that has rh with $\frac{h-1}{2}$ values is generally better than choosing a prime with $\frac{h+1}{2}$ values. For any two primes such that $h_2 > h_1$ and both have $\frac{h-1}{2}$ congruence classes, it is better to use h_1 . However, if both primes h_1 and h_2 had $\frac{h+1}{2}$ values for rh we choose h_2 .

4 Multiple Prime Fields

Let h_1 , h_2 be odd distinct primes, $\mathbb{Z}_{h_2} = \{0, ..., h_2 - 1\}$ and $K = \{r(k + \gamma h_1) \mod h_2 \mid \gamma \in \mathbb{Z}_{h_2}\}$ then $K = \mathbb{Z}_{h_2}$

Proof.

Suppose $r(k + \gamma_1 h_1) \mod h_2 = r(k + \gamma_2 h_1) \mod h_2$

$$(a(k+\gamma_1h_1)+b) \bmod h_2 = (a(k+\gamma_2h_1)+b) \bmod h_2$$

$$a(k+\gamma_1h_1) \bmod h_2 = a(k+\gamma_2h_1) \bmod h_2$$

$$k+\gamma_1h_1 \bmod h_2 = k+\gamma_2h_1 \bmod h_2$$

$$\gamma_1h_1 \bmod h_2 = \gamma_2h_1 \bmod h_2$$

$$\gamma_1 \bmod h_2 = \gamma_2 \bmod h_2 contradiction.$$

By proposition ??:

$$r(k) \bmod h_1 = r(k + \gamma h_1) \bmod h_1$$

So, if r(k) mod h_1 is one of the possible values, then $r(k+\gamma h_1)$ is also one of the possible values, but $\frac{h_2-1}{2}$ or $\frac{h_2+1}{2}$ of $r(k), r(k+h_1), ..., r(k+(h_2-1)h_1)$ are not of the possible values modulo h_2 then the number of tries decreases by $\frac{h_2-1}{2h_2}$ or $\frac{h_2+1}{2h_2}$ of the number of tries.

Table 5: $n13$			
n13	r13		
1	0, 1, 2, 4, 9, 11, 12		
2	2, 3, 5, 8, 10, 11		
3	0, 3, 4, 5, 8, 9, 10		
4	0, 2, 4, 5, 8, 9, 11		
5	2, 4, 6, 7, 9, 11		
6	1, 5, 6, 7, 8, 12		
7	1, 4, 5, 8, 9, 12		
8	3, 4, 6, 7, 9, 10		
9	0, 1, 3, 6, 7, 10, 12		
10	0, 1, 2, 6, 7, 11, 12		
11	1, 2, 3, 10, 11, 12		
12	0, 3, 5, 6, 7, 8, 10		

4.1 Example (with $h_1 = 7$, $h_2 = 13$)

n=234948664218045611

 $nh_1 = 1$

 $nh_2 = 2$

Table 6: First 13 iterations of the example

	Table 6. Prise 15 recrations of the example								
	$r_1(k) = 600k_1 + 12$			$r_2(k) = 600k_2 + 588$			$r_3(k) = 120k_3 + 60$		
i	$r_1(k)$	$mod h_1$	$mod h_2$	$r_2(k)$	$mod h_1$	$mod h_2$	$r_2(k)$	$mod h_1$	$mod h_2$
0	969430212	2	10	969430212	6	12	969430212	θ	3
1	969430812	θ	12	969430788	4	1	969430260	1	6
2	969431412	5	1	969431388	2	3	969430380	2	9
3	969432012	3	3	969431988	θ	5	969430500	3	12
4	969432612	1	5	969432588	5	7	969430620	4	2
5	969433212	6	7	969433188	3	9	969430740	5	5
6	969433812	4	9	969433788	1	11	969430860	6	8
7	969434412	2	11	969434388	6	θ	969430980	θ	11
8	969435012	0	0	969434988	4	2	969431100	1	1
9	969435612	5	2	969435588	2	4	969431220	2	4
10	969436212	3	4	969436188	0	6	969431340	3	7
11	969436812	1	6	969436788	5	8	969431340	4	10
12	969437412	6	8	969437388	3	10	969431340	5	0

Number of tries = $\lceil \frac{4 \times 6}{7 \times 13} 5241144 \rceil$

Let $h_1, h_2, ...h_d$ be distinct odd primes, and $x = \prod_{i=1}^{d-1} h_i$ then $\mathbb{Z}_{h_d} = \{0, ..., h_d - 1\}$ and let $K = \{r(k + \gamma x) \bmod h_d \mid \gamma \in \mathbb{Z}_{h_d}\}$ then $K = \mathbb{Z}_{h_d}$

Proof.

$$r(k + \gamma_1 x) = r(k + \gamma_2 x) \bmod h$$

$$a(k + \gamma_1 x) + b = a(k + \gamma_2 x) + b \pmod h$$

$$a(k + \gamma_1 x) = a(k + \gamma_2 x) \bmod h$$

$$k + \gamma_1 x = k + \gamma_2 x \pmod h$$

$$\gamma_1 x = \gamma_2 x h$$

$$\gamma_1 = \gamma_2 h$$

4.2 Complexity Analysis

For $b = \log_2(p - q)$ in the worst case $b \approx \log_2(n) - 1$

The factoring algorithm is split into two main parts a setup and search.

4.2.1 Complexity of The Setup Part

Given $h_1, ..., h_i$ primes ≥ 7 and their corrosponding possible $r \mod h_i$ values. There are on average $\approx \frac{h_i}{2} \ r_{j,i}$ values for any $x_i = n \mod h_i$. The complexity of a single 'mod' operation is roughly of the form $O(b \log_2(h_i))$. For each h_i the mod operation is computed h_i times. In total there are $\sum_i h_i$ mod operations in the setup phase. So, the complexity of the setup part is:

$$O(\sum_i h_i b \log_2 h_i)$$

Assumming i = b

$$O(\sum_{i=1}^{b} h_i b \log_2 h_b)$$

4.2.2 Complexity of The Search Part

Initially the search part without the setup part made a condition check for each iteration and assumming each condition check necessitates a square root computation. $O[(2b)^2]$ condition checks in the search part are made c(p-q) times.

$$O[2^b(2b)^2]$$

After adding the setup phase the nubmer of square root computations becomes $\approx \frac{c(p-q)}{2}$

$$O(\frac{2^b}{2^i}(2b)^2)$$

assuming i = b is used $O((2b)^2)$ The total expression:

$$O(\sum_{i} h_{i}b \log_{2} h_{i}) + O(\frac{2^{b}}{2^{i}}(2b)^{2}))$$
 for $i = b$
$$O(\sum_{i=0}^{b} b \log_{2} h_{b} + ((2b)^{2}))$$

$$O((b \log_{2}(h_{b})^{2} + 4b^{2}))$$

$$O(b^{2}(4 + \log_{2}(h_{b})^{2}))$$

5 Hello this is section

testj jthe rest of the document l testj