

Improving query performance in PostGIS using a distributed environment

Lukas Schilcher, Florian Steinwidder, Daniel Roncelli

19. Jänner 2023

Table of Contents

- 1. Introduction
- 2. Setting up PostGIS on Kubernetes
- 3. Performance Comparison
- 4. Conclusion

What is Kubernetes?

 container orchestration platform that automates processes involved in managing containerized applications

- clusters together groups of hosts running kubernetes linux containers
- enables cloud-based development and makes it easier to transform and optimize existing applications

overcoming single instance database challenges

- scalability: huge influx of concurrent requests / huge amounts of data
- high availability: software failure & hardware failure
- backup and restore: no downtime

deploying on GKE - the hard way

- configure kubernetes cluster ('kubectl' CLI tool / GCP interface)
- 2. build a custom PostGIS docker image
- 3. upload image to Artifact Registry/Github/Bitbucket
- 4. deploy image to the Cluster
- 5. configure autoscaling and load balancer service
- 6. expose application to the internet

deploying on GKE - the easy way

- configure kubernetes cluster ('kubectl' CLI tool / GCP interface)
- deploy PostgreSQL app from marketplace via GCP interface
- 3. ssh into kubernetes pod and install PostGIS binaries
- 4. create PostGIS extension via sql-query

challenges when running PostGIS on kubernetes

- harder to troubleshoot and pinpoint problems due to distributed environment
- plethora of tools needed to develop and deploy distributed clusters
- additional costs relative to single instanced db

benchmarking

- PostgreSQL: EXPLAIN ANALYZE command
- for presentation: manual execution
- for report: python script

single instance vs. kubernetes cluster specs

single instance, Cloud SQL

- DB-Version: PostgreSQL 14.4
- CPU: 2 vCPUs
- memory: 8 GB

GKE cluster

- DB-Version: PostgreSQL 15.1
- number of nodes: 3 (no autoscaling)
- per node:
 - CPU: 2 vCPUs
 - nemory: 4 GB

results of performance tests - Union

explain analyze create table merged_census_blocks as
select ST_AsText(ST_Union(geom)) as geom from nyc_census_blocks;

	Planning Time	Execution Time
Single Instance	0.071 ms	11808.699 ms
Kubernetes Cluster	0.058 ms	4936.106 ms

results of performance tests - Convex Hull

```
explain analyze select ST_ConvexHull(ST_Union(st.geom))
    from nyc_streets as st
    join nyc_neighborhoods as nb
    on ST_Contains(nb.geom, st.geom)
group by nb.boroname
having nb.boroname = 'Brooklyn';
```

	Planning Time	Execution Time
Single Instance	0.322 ms	591.110 ms
Kubernetes Cluster	0.410 ms	84.950 ms

discussion

Q&A