13. Потоки в графах. Алгоритм поиска максимального потока

Потоки в графах	1
Понятие потока	
Постановка задачи нахождения максимального потока	2
Упрощенный алгоритм Форда-Фалкерсона	
Описание алгоритма	
Пример 1 нахождения максимального потока	
Пример 2а	
1 1	

Литература:

ОИ01. Алексеев В.Е., Захарова Д.В. Теория графов: Электронное уч.-метод. пособие. — Нижний Новгород: Нижегородск. ун-т, 2012.-57 с. — С. 51-54

ДИ02. Калугин Н.А., Калугин А.Н. Элементы теории графов: учеб. пособие. – Самара: Изд-во Самар, гос. аэрокосм, ун-та, 2013. - 48с.

Потоки в графах

Понятие потока

На этом занятии будем рассматривать ориентированные графы без петель и кратных ребер. Для вершины x множество всех входящих в нее ребер обозначается через $E^+(x)$, а множество выходящих — через $E^-(x)$.

Сетью называется орграф, в котором

- 1) каждому ребру e приписано положительное число c(e), называемое **пропускной способностью** ребра;
- 2) выделены две вершины s и t, называемые соответственно источником и стоком, при этом $E^+(s) = E^-(t) = \emptyset$ то есть из источника ребра только выходят, а в сток только входят.

Вершины сети, отличные от источника и стока, будем называть внутренними.

В данной задаче основным параметром на дугах сети является c_{ij} – **пропускная способность.** Пропускная способность показывает, сколько единиц потока может быть передано по дугам сети.

Пусть задана сеть N с множеством вершин V и множеством ребер E. Пусть \mathbf{f} — функция с вещественными значениями, определенная на множестве E. Для вершины x обозначим

$$f^+(x) = \sum f(e); e \in E^+(x)$$

$$f^-(x) = \sum f(e); e \in E^-(x)$$

Функция f называется потоком в сети N, если она удовлетворяет усло-

виям:

(1) ограниченности: поток по любой дуге сети не превосходит пропускной способности этой дуги: $0 \le f(e) \le c(e)$ для каждой дуги е; (2) сохранения: суммарный поток, заходящий в любую вершину сети (кроме истока и стока), равен суммарному потоку, выходящему из этой вершины: $f^+(x) = f^-(x)$ для каждой внутренней вершины х.

На рисунке 1 показан пример сети и потока в ней. В дроби, приписанной каждому ребру, числитель представляет пропускную способность ребра, а знаменатель — величину потока на этом ребре.

Дуга сети называется насыщенной, если поток по этой дуге равен пропускной способности этой дуги,

T. e.
$$f(e) = c(e)$$
.

Разрезом сети называется множество дуг, удаление которых из сети приводит к тому, что исток и сток оказываются несвязанными.

Пропускной способностью разреза называется число, равное сумме пропускных способностей дуг этого разреза. Разрез называется минимальным, если имеет наименьшую пропускную способность.

Отыскание минимального разреза — одна из основных задач анализа транспортных сетей. В силу конечности графа минимальный разрез может быть найден перебором всех разрезов, но этот путь, конечно, неприемлем для достаточно больших графов.

Постановка задачи нахождения максимального потока

Условие (2) называется условием сохранения потока. Так как каждое ребро является входящим для одной вершины и выходящим для другой, то

$$f^-(s) = f^+(t)$$

Эта величина обозначается через M(f) и называется величиной потока. В примере на рисунке M(f) = 4.

Задача о максимальном потоке состоит в том, чтобы для данной сети найти поток наибольшей величины

13: Потоки в графах. Алгоритм поиска максимального потока

Поток на рисунке 1 не является максимальным — можно, например, добавить по единице на ребрах пути s,a,c,d,t. Получится поток величины 5, показанный на рисунке 2.

Но и он не максимален. Можно увеличить поток на 1 на ребрах (s,c), (c,d), (b,t) и уменьшить на 1 на ребре (b,d). Условие сохранения останется выполненным, а величина потока станет равной 6 (рисунок 3).

Приведенный пример иллюстрирует общий метод, на котором основаны многие алгоритмы решения задачи о максимальном потоке — метод увеличивающих путей.

Упрощенный алгоритм Форда-Фалкерсона

Описание алгоритма

Этот вариант алгоритма отличается тем, что пути от источника к стоку выбираются самостоятельно исполнителем. В строгом варианте эти пути выбираются по определенным правилам.

- 1. Выбирается произвольный путь от источника к стоку, не содержащий насыщенных дуг. Если такого пути нет, то расчет окончен.
- 2. Поток по этому пути принимается равным минимальной из пропускных способностей входящих в него дуг.
- 3. Из пропускных способности дуг, входящих в путь, вычитаем значение потока. Полученный результат назовем остаточной пропускной способностью. Для насыщенной дуги остаточная пропускная способность будет равна нулю.

4. Вернуться к пункту 1 для выбора следующего пути, не содержащего насыщенных дуг.

Пример 1 нахождения максимального потока

Найти максимальный поток и минимальный разрез в транспортной сети, используя алгоритм Форда—Фалкерсона. Источник — вершина 1, сток — вершина 8.

Puc. 4

Шаг 1. Выбираем произвольный путь: 1-3-6-7-8.

Его пропускная способность равна *минимальной* из всех пропускных способностей входящих в него дуг, то есть 6.

Уменьшаем пропускные способности дуг этого потока на 6, насыщенную дугу 3-6 вычеркиваем (рис. 5, а).

Рис. 5. Шаг 1 и 2 алгоритма нахождения максимального потока

Шаг 2. Выбираем произвольный путь: 1-4-5-8.

Его пропускная способность равна минимальной из всех пропускных способностей входящих в него дуг, то есть 24.

Уменьшаем пропускные способности дуг этого потока на 24, насыщенную дугу 4-5 вычеркиваем (рис. 5,б).

Шаг 3. Выбираем произвольный поток, 1-5-8. Его пропускная способность равна минимальной из всех пропускных способностей входящих в него дуг, то есть 57.

Уменьшаем пропускные способности дуг этого потока на 57, насыщенную дугу 1-5 вычеркиваем (рис. 6).

Шаг 4. Выбираем произвольный поток, 1-2-8. Его пропускная способность равна минимальной из всех пропускных способностей входящих в него дуг, то есть 16.

Уменьшаем пропускные способности дуг этого потока на 16, насыщенную дугу 2-8 вычеркиваем.

Шаг 5. Выбираем произвольный поток, 1-2-5-8. Его пропускная способность равна минимальной из всех пропускных способностей входящих в него дуг, то есть 13. Уменьшаем пропускные способности дуг этого потока на 13, насыщенную дугу 5-8 вычеркиваем (рис. 7).

Шаг 6. Выбираем произвольный поток, 1-2-5-7-8. Его пропускная способность равна минимальной из всех пропускных способностей входящих в него дуг, то есть 3. Уменьшаем пропускные способности дуг этого потока на 3, насыщенную дугу 1-2 вычеркиваем.

Шаг 7. Выбираем произвольный поток, 1-4-6-7-8. Его пропускная способность равна минимальной из всех пропускных способностей входящих в

него дуг, то есть 1. Уменьшаем пропускные способности дуг этого потока на 1, насыщенную дугу 6-7 вычеркиваем (рис.8).

Puc. o

Шаг 8. Выбираем произвольный поток, 1-4-6-5-7-8. Его пропускная способность равна минимальной из всех пропускных способностей входящих в него дуг, то есть 8. Уменьшаем пропускные способности дуг этого потока на 8, насыщенную дугу 4-6 вычеркиваем.

Больше путей нет. Суммарный поток 6+24+57+16+13+3+1+8=128

Рис. 8. Итоговые потоки в сети

Пример 2а

Найти максимальный поток для сети, приведенной на рисунке 9, a. Последовательность решения:

Шаг 1: Выбираем произвольный путь: *1-2-4-7*. Поток по этому пути равен минимальной из всех пропускных способностей входящих в него дуг, то есть **8**. Вычитаем 8 из пропускных способностей дуг этого потока. Дуга 4-7 насышенная (рис. $9,\delta$)

Шаг 2. Выбираем произвольный путь: *1-6-7*. Поток по этому пути равен 5. Уменьшаем пропускные способности дуг этого потока на 5. Дуга 1-6 насыщенная (рис. 9,в)

Шаг 3. Выбираем произвольный путь: **1-2-4-6-7**. Поток по этому пути равен **1**. Уменьшаем пропускные способности дуг этого потока на 1. Дуги 1-2, 6-7 насыщенные (рис. 9, Γ).

Шаг 4. Выбираем произвольный путь: *1-3-5-7*. Поток по этому пути равен **3**. Уменьшаем пропускные способности дуг этого потока на 3. Дуга 1-3 насыщенная (рис. 9,д).

После этого все пути от источника к стоку содержат насыщенные дуги, и расчет заканчивается. Суммарный поток по все путям равен: 8+5+1+3=17. Это значение и есть максимальный поток в сети.