Matemáticas Discretas II

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- Autómatas finitos
- Autómatas finitos deterministas
- Autómatas finitos no deterministas
- Equivalencia entre AFD y AFN

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	$A \rightarrow \gamma$
3	Regulares	Autómata finito	A→aB A→a

- {a}*
- {a}*∪{b}*
- {a}*·{b}*
- {a,bc}*
- {a}·{b,c,ab}
- $\{(ab)^n | n \ge 0\}$
- $\{a^nb^m|n\geq 0, m\geq 0\}$
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}$

Se puede construir un autómata finito para cada uno de estos lenguajes

- {anbn|n≥0}, no es regular
- $\{a^nb^{2n}|n\geq 0\}$, no es regular
- $\{wcw|w\in\{a,b\}^*\}$, no es regular

No se puede construir un autómata finito para ninguno de estos lenguajes

Se puede diseñar un autómata finito para que acepte, por ejemplo, el lenguaje $\{ab\}^*=\{\epsilon,ab,abab,ababab,...\}$

Considere el lenguaje regular L representado por

• $\dot{c}^*(a\cup bc^*)^*$ • $\dot{c}^*(a\cup bc^*)^*$ • $\dot{c}^*(a\cup bc^*)^*$ • $\dot{c}^*(a\cup bc^*)^*$

• $\dot{c}w_2 = cabac^3bc$ pertenece a L? \mathcal{N}_0

Considere el lenguaje regular L representado por c*(a\bc*)*

- $\dot{c}w_1 = abc^5ab$ pertenece a L?
- ¿w₂=cabac³bc pertenece a L?

Se quiere conocer si una cadena w es generada por un lenguaje L, para esto se puede crear un autómata finito

- Caja negra que acepta como entrada los datos de una cinta
- Se tiene un bombillo que representa la salida, cuando la entrada se acepta por el autómata, éste se enciende
- Botón reset
- La operación de la máquina consiste en un conjunto de estado internos

La cabeza del autómata sólo puede leer (no puede escribir) y se mueve siempre a la derecha

Considere un autómata que acepta cadenas en {a,b}* que tienen una sola b y está al final de la cadena

Autómatas finitos

a

Autómatas finitos

a a

a a a

a a	a	b
-----	---	---

α	α	α	b	α	
					ı

a	α	а	b	a	α	
						1

Autómatas finitos

- Los autómatas se pueden representar por medio de un grafo dirigido conocido como diagrama de transición
- Nodos (estados)

Estado inicial

Estado de aceptación

Aristas (transiciones)

Cada avance en el autómata depende de:

(simboloLeido, estadoActual)

Realice el seguimiento del cómputo para la cadena aab

$$(q_0,a) \rightarrow q_0$$

$$(q_0,a) \rightarrow q_0$$

$$(q_0,a) \rightarrow q_0$$

$$(q_0,b) \rightarrow q_1$$

$$(q_0,b) \rightarrow q_1$$

Como se consumen los símbolos en la cinta y q_1 es un estado de aceptación, se dice que el autómata reconoce **aab**

Indique si se acepta la cadena aaa NO

Indique si se acepta la cadena aba

Indique si se acepta la cadena vacía ϵ

• Indique una expresión regular para el autómata

 El autómata acepta el lenguaje dado por a*b

Indique si se aceptan las siguientes cadenas:

La cadenas que inician por b seguidas por cualquier cantidad de a y termina en b o las cadenas que inician por a seguidas por cualqueira cantidad de b y terminadas en a.

Indique si se aceptan las siguientes cadenas:

- 3 •
- ab
- bab
- ba⁴b
- ab3a

Indique si se aceptan las siguientes cadenas:

- 3 •
- ab
- bab
- ba⁴b
- ab3a

ab*a∪ba*b

Indique si se aceptan las siguientes cadenas:

Indique si se aceptan las siguientes cadenas:

- 3 •
- abc
- (abc)²
- aabc
- aba
- abca

Indique un expresión regular que represente el lenguaje aceptado por el autómata

(abc)*

Indique si se aceptan las siguientes cadenas:

- 1 · E 90 ST
- 2 abc -> % S{
- 3 abcac -290 ST
- 4 (ac)10 9. S.
- s @3b2c2 793 No
- 6 (abc)2 90 Sr
- 7 (abc)2(ac)3-90 S

Indique si se aceptan las siguientes cadenas:

- 3 •
- abc
- abcac
- (ac)¹⁰
- $a^2b^2c^2$
- $(abc)^2$
- $(abc)^2(ac)^3$

Indique un expresión regular que represente el lenguaje aceptado por el autómata

(abc∪ac)*

Diseñe un autómata finito que acepte a b

Diseñe un autómata finito que acepte ab

Expresión regular: a b

Lenguaje: {ab, aab, aaab, ...}

Diseñe un autómata finito que acepte a(a b)*c

96 agc 76c/

Diseñe un autómata finito que acepte a(a b)*c

Expresión regular: a(a Ub)*c Lenguaje: {ac, aac, abc, aabc, ...}

Diseñe un autómata finito que acepte (ab)*

Diseñe un autómata finito que acepte (ab)*

Expresión regular:(ab)*

Lenguaje: $\{\varepsilon, ab, abab, ababab,...\}$

Teorema de Kleene

• Un lenguaje es regular si y sólo si es aceptado por un autómata finito

Autómatas finitos

 Los autómatas finitos se dividen en autómatas finitos deterministas (AFD) y en no deterministas (AFN)

Autómatas finitos

 Los autómatas finitos se dividen en autómatas finitos deterministas (AFD) y en no deterministas (AFN)

Dado un estado **q** y un símbolo **x**, se tiene una sola arista de transición

R(9i,Xi)

Dado un estado **q** y un símbolo **x**, se tienen varias transiciones posibles

Autómatas finitos deterministas (AFD)

Un AFD es una colección de cinco elementos:

- Un alfabeto Σ
- Una colección finita de estados Q
- Un estado inicial q_o
- Una colección finita de estados de aceptación T
- Una función $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ que determina el único estado siguiente para el par (q_i, σ) correspondiente al estado actual q_i y la entrada σ

Autómatas finitos deterministas (AFD)

Un AFD es una colección de cinco elementos:

- Un alfabeto Σ
- Una colección finita de estados Q
- Un estado inicial q_o
- Una colección finita de estados de aceptación T
- Una función $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ que determina el único estado siguiente para el par (q_i, σ) correspondiente al estado actual q_i y la entrada σ

δ debe ser una **función** para que exista el determinismo

- Un alfabeto Σ
- Una colección finita de estados Q
- Un estado inicial q₀
- Una colección finita de estados de aceptación T
- Una función $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

- \(\sum_{\text{\color}} \)
- Q
- Estado inicial
- T
- $\delta: Q \times \Sigma \rightarrow Q$

δ	a	Ь
q o	O 71,	92
q_1	92	90
q ₂	92	92

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_0\}$
- $\delta: Q \times \Sigma \rightarrow Q$

δ	α	Ь
q o		
q_1		
q ₂		

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_0\}$
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

δ	a	Ь
q 0	q_1	q_2
q_1	q_2	q 0
q ₂	q ₂	q ₂

Indique los 5 elementos que definen el siguiente autómata:

• Estado inicial %

• $\delta: Q \times \Sigma \rightarrow Q$

δ	a	Ь
q 0	90	9-1
q_1	91	92
q ₂	91	91

Indique los 5 elementos que definen el siguiente autómata:

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_0,q_2\}$
- $\delta: Q \times \Sigma \rightarrow Q$

δ	α	Ь
q o	q 0	q_1
q_1	q_1	q_2
q ₂	q_1	q_1

Muestre el diagrama de transición para el autómata:

- Σ ={a,b}
- $Q = \{q_0, q_1\}$
- Estado inicial qo
- $T=\{q_0\}$
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

δ	α	Ь
q 0	q 0	q_1
q_1	q_1	q_1

Indique el lenguaje aceptado

Muestre el diagrama de transición para el autómata:

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1\}$
- Estado inicial q₀
- $T=\{q_0\}$
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

δ	α	Ь
q 0	q 0	q_1
q_1	q_1	q_1

Muestre el diagrama de transición para el autómata:

- $\Sigma = \{a,b\}$
- Q= $\{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_1\}$
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

δ	α	Ь
q 0	- q ₁	q_2
q_1	q_1	q_2
q ₂	q ₂	q_2

Indique el lenguaje aceptado

Muestre el diagrama de transición para el autómata:

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_1\}$
- $\delta: Q \times \Sigma \rightarrow Q$

δ	α	Ь
q 0	q_1	q ₂
q_1	q_1	q ₂
q ₂	q ₂	q ₂

Muestre el diagrama de transición para el autómata:

- $\Sigma = \{a,b\}$
- Q= $\{q_0,q_1,q_2,q_3\}$
- Estado inicial qo
- $T=\{q_2\}$
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

δ	a	Ь
q o	q_1	q ₃
q_1	q_1	q_2
q ₂	q ₃	q_2
q ₃	q ₃	q ₃

Indique el lenguaje aceptado

Muestre el diagrama de transición para el autómata:

- $\Sigma = \{a,b\}$
- Q= $\{q_0,q_1,q_2,q_3\}$
- Estado inicial qo
- $T=\{q_2\}$
- $\delta: Q \times \Sigma \rightarrow Q$

δ	α	Ь
q 0	q_1	q ₃
q_1	q_1	q ₂
q ₂	q ₃	q ₂
q ₃	q ₃	q ₃

Diseñe un AFD sobre Σ ={a,b} que reconozca el lenguaje de todas las palabras que contienen un número par de a's. Se aceptan cadenas que tienen cero a's

- · Muestre el diagrama de transición
- Exprese el autómata formalmente
- Indique la expresión regular

$$\sum_{i=1}^{3} = \{9,6\}$$
 $Q = \{9,6\}$
 $Q = \{9,6\}$
 $Q = \{9,6\}$

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1\}$
- Estado inicial qo
- $T=\{q_0\}$
- $\delta: Q \times \Sigma \rightarrow Q$

δ	α	Ь
q o	q_1	q 0
q_1	q_0	q_1

El autómata acepta: (b*∪(ab*a)*)*

Diseñe un AFD sobre $\Sigma = \{a,b\}$ que reconozca b^*a^+

- · Muestre el diagrama de transición
- Exprese el autómata formalmente

91	9	6]
90	92	90	
92	91	92	
92	9	12	

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_1\}$
- $\delta: Q \times \Sigma \rightarrow Q$

δ	α	Ь
q o	q_1	q 0
q_1	q_1	q_2
q ₂	q ₂	q_2

Diseñe un AFD sobre $\Sigma=\{a,b\}$ que reconozca el lenguaje de todas las palabras que tienen al menos una a

- · Muestre el diagrama de transición
- Indique la expresión regular

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1\}$
- Estado inicial qo
- $T=\{q_1\}$
- $\delta: Q \times \Sigma \rightarrow Q$

δ	α	Ь
q o	q_1	q 0
q_1	q_1	q_1

El autómata acepta: b*a(a∪b)*

Diseñe un AFD sobre Σ ={a,b} que reconozca a+b+

96

- · Muestre el diagrama de transición
- Indique la expresión regular

- $\Sigma = \{a,b\}$
- Q= $\{q_0,q_1,q_2,q_3\}$
- Estado inicial qo
- $T=\{q_2\}$
- $\delta: Q \times \Sigma \rightarrow Q$

δ	ď	Ф
q 0	q_1	q ₃
q_1	q_1	q_2
q ₂	q ₃	q_2
q ₃	q ₃	q ₃

El autómata acepta: a+b+

Diseñe un AFD sobre Σ ={a,b} que reconozca el lenguaje de todas las cadenas que tienen un número par de símbolos (incluida la cadena vacía)

- · Muestre el diagrama de transición
- Exprese el autómata formalmente
- Indique la expresión regular

$$\sum = \{a, b\}$$

$$Q = \{90, 92\}$$

$$T = \{90\}$$

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1\}$
- Estado inicial qo
- $T=\{q_0\}$
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

δ	α	Ь
q o	q_1	q_1
q_1	q_0	\mathbf{q}_0

El autómata acepta: $((a \cup b)(a \cup b))^*$ o lo que es lo mismo, $(aa \cup ab \cup ba \cup bb)^*$

Diseñe un AFD sobre Σ ={a,b} que reconozca el lenguaje de todas las cadenas que tienen un número par de símbolos (sin incluir la cadena vacía)

- Muestre el diagrama de transición
- Exprese el autómata formalmente
- Indique la expresión regular

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_2\}$
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

δ	α	Ь
q o	q_1	q_1
q_1	q_2	q_2
q ₂	q_1	\overline{q}_1

El autómata acepta: $((a \cup b) \cdot (a \cup b))^+$ o lo que es lo mismo, $(aa \cup ab \cup ba \cup bb)^+$

Autómatas finitos no deterministas (AFN)

 Si se permite que desde algún estado se realicen cero, dos o más transiciones mediante el mismo símbolo de entrada, se dice que el autómata finito es no determinista

Autómatas finitos no deterministas (AFN)

 Si se permite que desde algún estado se realicen cero, dos o más transiciones mediante el mismo símbolo de entrada, se dice que el autómata finito es no determinista

Autómatas finitos no deterministas (AFN)

 Los AFN se utilizan porque pueden ser más simples que los AFD

AFD que acepta a*b∪ab*

Autómatas finitos no deterministas (AFN)

 Los AFN se utilizan porque pueden ser más simples que los AFD

AFN que acepta a*b∪ab*

· ¿El autómata finito acepta o rechaza la cadena aabb?

• En un AFN se puede suponer que si existe un recorrido en el diagrama de transición que termine en un estado de aceptación, el autómata lo encuentra

Autómatas finitos no deterministas (AFN)

Un AFN es una colección de cinco elementos:

- Un alfabeto Σ
- Una colección finita de estados Q
- Un estado inicial q_o
- Una colección finita de estados de aceptación T
- Una relación \triangle sobre $(Qx\Sigma) \rightarrow 2Q$ denominada relación de transición. 2Q es el conjunto potencia de Q (subconjuntos de Q)

- Σ ={a,b}
- Q= $\{q_0,q_1,q_2,q_3,q_4\}$
- Estado inicial qo
- $T=\{q_2,q_3,q_4\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	a	Ь
q 0	£92,94}	93
q_1	92	9,2
q ₂	ϕ	\bigcirc
q ₃		, ()
q ₄	0	- 9 y

- $\Sigma = \{a,b\}$
- Q= $\{q_0,q_1,q_2,q_3,q_4\}$
- Estado inicial qo
- $T=\{q_2,q_3,q_4\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	a	Ь
q o	$\{q_1, q_4\}$	{q ₃ }
q_1	{q ₁ }	{q ₂ }
q ₂	Ø	Ø
q ₃	Ø	Ø
q ₄	Ø	{q ₄ }

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- Estado inicial qo
- $T=\{q_2,q_3,q_4\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	α	Ь
q 0	$\{q_1, q_4\}$	{q ₃ }
q_1	{q ₁ }	{q ₂ }
q ₂	Ø	Ø
q ₃	Ø	Ø
q ₄	Ø	{q ₄ }

- $\Sigma = \{a,b\}$
- Q= $\{q_0,q_1,q_2,q_3,q_4\}$
- Estado inicial qo
- $T=\{q_2,q_3,q_4\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	a	Ь
q o	$\{q_1, q_4\}$	{q ₃ }
q_1	{q ₁ }	{q ₂ }
q ₂	Ø	Ø
q ₃	Ø	Ø
q ₄	Ø	{q ₄ }

Represente formalmente el AFN

•
$$\Sigma = \{9, 6\}$$

- Estado inicial = %
- · T 2 90 }

• 🛕 🤜

Δ	a	Ь
q 0	91	Ø
q_1	Ø	£90,92}
q ₂	90	Ф

Indique el lenguaje aceptado

$$q_{1}$$

Represente formalmente el AFN

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_0\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	α	Ь
q 0	{q ₁ }	Ø
q_1	Ø	$\{q_0, q_2\}$
q ₂	{q ₀ }	Ø

AFN que acepta (ab∪aba)*

Diseñe el AFN que se especifica a continuación:

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_2\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	α	Ь
q 0	$\{q_0, q_1\}$	{q ₀ }
q_1	Ø	{q ₂ }
q ₂	Ø	Ø

Indique el lenguaje aceptado

Diseñe el AFN que se especifica a continuación:

•
$$\Sigma = \{a,b\}$$

- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_2\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	α	Ь
q 0	$\{q_0, q_1\}$	{q ₀ }
q_1	Ø	{q ₂ }
q ₂	Ø	Ø

AFN que acepta las cadenas terminadas en ab. (a∪b)*ab

Diseñe el AFN que se especifica a continuación:

- Σ ={a,b}
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- Estado inicial q₀
- $T=\{q_2,q_4\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	a	b
q 0	${q_0, q_3}$	$\{q_0, q_1\}$
q_1	Ø	{q ₂ }
q ₂	{q ₂ }	{q ₂ }
q ₃	{q ₄ }	Ø
q ₄	{q ₄ }	{q ₄ }

Indique el lenguaje aceptado

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- Estado inicial qo
- $T=\{q_2,q_4\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	a	Ь
q o	${q_0, q_3}$	$\{q_0, q_1\}$
q_1	Ø	{q ₂ }
q ₂	{q ₂ }	{q ₂ }
q ₃	{q ₄ }	Ø
94	{q ₄ }	{q ₄ }

Diseñe un AFN sobre Σ ={a,b} que reconozca el lenguaje de todas las cadenas que terminan en b dado por la expresión regular (a\tob)*b

- · Muestre el diagrama de transición
- · Exprese el autómata formalmente

$$\sum = \{9,6\}$$
 $\bigcirc = \{90,91\}$
 $\uparrow = \{91\}$

9,	9	8
90	00	£90,92
91	90	91
l		

- $\Sigma = \{a,b\}$
- $Q = \{q_0, q_1\}$
- Estado inicial qo
- $T=\{q_1\}$
- $\Delta: Q \times \Sigma \rightarrow 2^Q$

Δ	α	Ь	
q 0	{q ₀ }	$\{q_0, q_1\}$	
q_1	Ø	Ø	

AFN que acepta $(a \cup b)*b$

Diseñe un AFN sobre Σ ={a,b} que reconozca el lenguaje de todas las cadenas que tienen al menos dos a's consecutivas dado por la expresión regular (a \cup b)*aa(a \cup b)*

· Muestre el diagrama de transición

- Σ ={a,b}
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_2\}$
- $\delta: Q \times \Sigma \rightarrow Q$

Δ	α	Ь
q o	$\{q_0,q_1\}$	{q ₀ }
q_1	{q ₂ }	{q ₀ }
q ₂	{q ₂ }	{q ₂ }

Equivalencia entre AFD y AFN

Considere el AFN que reconoce el lenguaje de las palabras sobre Σ ={a,b} que terminan en b

AFN que reconoce el lenguaje de las palabras sobre Σ ={a,b} que terminan en b

Equivalencia entre AFD y AFN

Todo AFN M' tiene un AFD M tal que L(M')=L(M)

Método para convertir un AFN en un AFD

AFN que acepta $a \cup (ab)^+$

$$\Delta(q_0,a)=\{q_1,q_2\}$$

 $\Delta(q_0,b)=\varnothing$

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = ?$
 $\Delta(\{q_1,q_2\},b) = ?$

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$

$$\Delta(q_0,a)=\{q_1,q_2\}$$

 $\Delta(q_0,b)=\emptyset$
 $\Delta(\{q_1,q_2\},a)=\emptyset$
 $\Delta(\{q_1,q_2\},b)=\{q_3\}$
 $\Delta(\{q_3\},a)=?$
 $\Delta(\{q_3\},b)=?$

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$
 $\Delta(\{q_3\},a) = \{q_2\}$
 $\Delta(\{q_3\},b) = \emptyset$

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$
 $\Delta(\{q_3\},a) = \{q_2\}$
 $\Delta(\{q_3\},b) = \emptyset$

$$\Delta(\{q_2\},a)=?$$

 $\Delta(\{q_2\},b)=?$

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$
 $\Delta(\{q_3\},a) = \{q_2\}$
 $\Delta(\{q_3\},b) = \emptyset$

$$\Delta(\{q_2\}, \alpha) = \emptyset$$

 $\Delta(\{q_2\}, b) = \{q_3\}$

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$
 $\Delta(\{q_3\},a) = \{q_2\}$
 $\Delta(\{q_3\},b) = \emptyset$
 $\Delta(\{q_2\},a) = \emptyset$
 $\Delta(\{q_2\},b) = \{q_3\}$

$$\Delta(q_0,a) = \{q_1,q_2\}$$
 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$
 $\Delta(\{q_3\},a) = \{q_2\}$
 $\Delta(\{q_3\},b) = \emptyset$
 $\Delta(\{q_2\},a) = \emptyset$
 $\Delta(\{q_2\},b) = \{q_3\}$

Método para convertir un AFN en un AFD

$$\Delta(q_0,a) = \{q_1,q_2\}$$
 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$
 $\Delta(\{q_3\},a) = \emptyset$
 $\Delta(\{q_2\},a) = \emptyset$
 $\Delta(\{q_2\},b) = \{q_3\}$

 Cualquier conjunto que contenga un estado de aceptación se marca como de aceptación

Método para convertir un AFN en un AFD

$$\Delta(q_0,a) = \{q_1,q_2\}$$
 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$
 $\Delta(\{q_3\},a) = \emptyset$
 $\Delta(\{q_3\},b) = \emptyset$
 $\Delta(\{q_2\},a) = \emptyset$
 $\Delta(\{q_2\},b) = \{q_3\}$

Método para convertir un AFN en un AFD

$$\Delta(q_0,a)=\{q_1,q_2\}$$
 $\Delta(q_0,b)=\emptyset$
 $\Delta(\{q_1,q_2\},a)=\emptyset$
 $\Delta(\{q_1,q_2\},b)=\{q_3\}$
 $\Delta(\{q_3\},a)=\emptyset$
 $\Delta(\{q_2\},a)=\emptyset$
 $\Delta(\{q_2\},b)=\{q_3\}$

 ${f \cdot}$ El nodo con etiqueta ${f \varnothing}$ tiene transiciones que llegan a ese mismo nodo

Método para convertir un AFN en un AFD

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \emptyset$
 $\Delta(\{q_1,q_2\},b) = \{q_3\}$
 $\Delta(\{q_3\},a) = \{q_2\}$
 $\Delta(\{q_3\},b) = \emptyset$
 $\Delta(\{q_2\},a) = \emptyset$
 $\Delta(\{q_2\},b) = \{q_3\}$

AFD que acepta $a \cup (ab)^+$

Convierta el siguiente AFN a un AFD

AFN que acepta ab*∪a+

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \{q_2\}$
 $\Delta(\{q_1,q_2\},b) = \{q_1\}$
 $\Delta(\{q_2\},a) = \{q_2\}$
 $\Delta(\{q_2\},b) = \emptyset$
 $\Delta(\{q_1\},a) = \emptyset$
 $\Delta(\{q_1\},b) = \{q_1\}$

$$\Delta(q_0,a) = \{q_1,q_2\}$$

 $\Delta(q_0,b) = \emptyset$
 $\Delta(\{q_1,q_2\},a) = \{q_2\}$
 $\Delta(\{q_1,q_2\},b) = \{q_1\}$
 $\Delta(\{q_2\},a) = \{q_2\}$
 $\Delta(\{q_2\},b) = \emptyset$
 $\Delta(\{q_1\},a) = \emptyset$
 $\Delta(\{q_1\},b) = \{q_1\}$

AFD que acepta ab*∪a+

Convierta el siguiente AFN a un AFD

$$\Delta(q_0,a) = \{q_0,q_1\}$$

 $\Delta(q_0,b) = \{q_1\}$
 $\Delta(\{q_0,q_1\},a) = \{q_0,q_1\}$
 $\Delta(\{q_0,q_1\},b) = \{q_0,q_1\}$
 $\Delta(\{q_1\},a) = \emptyset$
 $\Delta(\{q_1\},b) = \{q_0,q_1\}$

$$\Delta(q_0,a)=\{q_0,q_1\}$$

 $\Delta(q_0,b)=\{q_1\}$
 $\Delta(\{q_0,q_1\},a)=\{q_0,q_1\}$
 $\Delta(\{q_0,q_1\},b)=\{q_0,q_1\}$
 $\Delta(\{q_1\},a)=\emptyset$
 $\Delta(\{q_1\},b)=\{q_0,q_1\}$

Convierta el siguiente AFN a un AFD

$$\triangle(q_0,a)=\{q_3\}$$

 $\triangle(q_0,b)=\{q_1\}$
 $\triangle(\{q_3\},a)=\emptyset$
 $\triangle(\{q_3\},b)=\emptyset$
 $\triangle(\{q_1\},a)=\{q_1,q_2\}$
 $\triangle(\{q_1\},b)=\{q_4\}$
 $\triangle(\{q_1,q_2\},a)=\{q_1,q_2\}$
 $\triangle(\{q_1,q_2\},b)=\{q_4\}$
 $\triangle(\{q_4\},a)=\{q_3\}$
 $\triangle(\{q_4\},b)=\{q_4\}$

$$\Delta(q_0,a)=\{q_3\}$$

 $\Delta(q_0,b)=\{q_1\}$
 $\Delta(\{q_3\},a)=\emptyset$
 $\Delta(\{q_3\},b)=\emptyset$
 $\Delta(\{q_1\},a)=\{q_1,q_2\}$
 $\Delta(\{q_1\},b)=\{q_4\}$
 $\Delta(\{q_1,q_2\},a)=\{q_1,q_2\}$
 $\Delta(\{q_1,q_2\},b)=\{q_4\}$
 $\Delta(\{q_4\},a)=\{q_3\}$
 $\Delta(\{q_4\},b)=\{q_4\}$

Analice por qué no es posible diseñar un autómata finito que acepte $\mathbf{a}^n\mathbf{b}^n,\mathbf{n}\geq \mathbf{1}$

