In [1]: import matplotlib.pyplot as plt

import pandas as pd

import statsmodels.formula.api as smf

import seaborn as sns
import numpy as np

%matplotlib inline

In [2]: scores=pd.read_csv("2013-2017_School_Math_Results_-_All.csv")

In [3]: | scores.head()

Out[3]: _____

	DBN	School Name	Grade	Year	Category	Number Tested	Mean Scale Score	Level1_N	Level1_%	Lev
0	01M015	PS 015 ROBERTO CLEMENTE	3	2013	All Students	27	278	16	59.3	11
1	01M015	PS 015 ROBERTO CLEMENTE	3	2014	All Students	18	286	6	33.3	9
2	01M015	PS 015 ROBERTO CLEMENTE	3	2015	All Students	17	280	10	58.8	4
3	01M015	PS 015 ROBERTO CLEMENTE	3	2016	All Students	21	275	13	61.9	4
4	01M015	PS 015 ROBERTO CLEMENTE	3	2017	All Students	29	302	8	27.6	9

In [4]: scores.describe()

Out[4]:

	Year	Number Tested		
count	23896.000000	23896.000000		
mean	2015.019292	161.178607		
std	1.410274	182.057290		
min	2013.000000	1.000000		
25%	2014.000000	62.000000		
50%	2015.000000	99.000000		
75%	2016.000000	184.000000		
max	2017.000000	2349.000000		

In [5]: scores.describe(include=["0"])

Out[5]:

	DBN	School Name	Grade	Category	Mean Scale Score	Level1_N	Level1_%	Level2_N	Level2
count	23896	23896	23896	23896	23896	23896	23896	23896	23896
unique	1138	1136	7	1	144	458	916	474	671
top	11X083	PS 212	All Grades	All Students	288	14	0.0	20	33.3
freq	35	55	5544	23896	503	434	346	502	401

In [6]: dup_filter = scores.duplicated()
 scores[dup_filter]

Out[6]:

		DBN	School Name	Grade	Year	Category	Number Tested	Mean Scale Score	Level1_N	Level1_%	Level2_N	L
--	--	-----	----------------	-------	------	----------	------------------	------------------------	----------	----------	----------	---

```
In [7]: sns.relplot(x="Mean Scale Score",y="Number Tested",hue="Year",style="Grade",da
    ta=scores)
    plt.title("Mean Scores and Number Tested")
    plt.xlabel("Mean Scores")
    plt.ylabel("Number Tested")
```

Out[7]: Text(34.6663,0.5,'Number Tested')


```
In [8]: sns.catplot(x = "Year", y = "Number Tested", hue="Grade", kind="bar", data = s
    cores)
    plt.title("Year and Number Tested")
    plt.xlabel("Year")
    plt.ylabel("Number Tested")
```

Out[8]: Text(33.1472,0.5,'Number Tested')

