6. Many different 0-1 polytopes ⁴

a)

La cota $f(d) < 2^{2^d}$ es trivial pues es el número total de subconjuntos de vértices. Para la otra desigualdad, usaré el conjunto S de la pista que evidentemente tiene $2^{2^{d-1}-2}$ elementos.

Primero, voy a mostrar que en cualquier polítopo $P \in S$ el único facet con 2^{d-1} vértices es $F = [0, 1]^{d-1} \times \{1\}$. Evidentemente esta es una cara, y esta asociada al vector (0,0,...,0,1). Llamemos G al polítopo formado por los vértices de P contenidos en $[0,1]^{d-1} \times \{1\}$. Después probaré que dados $2^{n-1} + 1$ vértices del n-hipercubo, el polítopo formado por ellos tiene dimensión n, pero lo usaré por ahora. Si tomamos un facet de P, que comparta más de 2^{d-2} vértices con F, el facet debe ser F, dado que la dimensión de su intersección con F debe ser d-1. De igual modo, si comparte más de 2^{d-2} vértices con G, tiene que ser G, pero este facet tiene a lo más $2^{d-1}-2$ vértices por construcción. Entonces los únicos facets distintos de F con 2^{d-1} vértices deberían compartir la mitad de sus puntos con F y la otra con G. Pero las caras d-2 dimensionales de F satisfacen la ecuación $x_i = 1$ o $x_i = 0$ para algún $1 \le i \le d$. Pero alguno de los puntos $(0, 0, ..., 0, 0) \in P$ o $(1, 1, ..., 1, 0) \in P$ también satisface esta ecuación, y por tanto existirá un facet d-1 dimensional que una la cara de F con un punto de G, y el facet satisface esta ecuación. Entonces los únicos facet que comparten una cara d-2 dimensional con F son subconjuntos de hiperplanos $x_i = k$ que los denotaré por $F_{i,k}$. Pero estos facets tienen exactamente 2^{d-1} puntos en el d-hipercubo y al menos uno de ellos no está en P, pues $(0,1,1,...,1,0) \notin P$ y $(1,0,0,...,0,0) \notin P$. Entonces $F_{i,k}$ no tiene tantos vértices como F, así como ningún otro facet.

⁴Este problema lo pensé conjuntamente con Fabián Prada y Federico Castillo

Ahora voy a probar que para cada $P \in S$ la clase de equivalencia de P bajo la relación de ser combinatóricamente equivalentes, tiene a lo más tantos representantes como simetrías del cubo de \mathbb{R}^{d-1} . Consideremos $P, P' \in S$ equivalentes bajo una transformación T. En el poset de P y P' sólo existe un facet con 2^{d-1} vértices que es el facet superior F, y como T conserva incidencia, debemos tener T(F) = F. Como F es un d-1-hipercubo, tendremos entonces que T restringido a F es una de las simetrías del cubo dado que T preserva incidencia. Probaré que T queda determinado por su restricción en F.

Consideraremos los facet $F_{i,k}$ nuevamente. Como había dicho antes, estos son los únicos facets adyacentes a F, en el sentido de compartir caras d-2 dimensionales. Por tanto, la imagen de un $F_{i,k}$ debe ser un $F_{j,l}$. Pero cada punto $g=(g_1,g_2,...,g_{d-1},0)\in G$ se puede ver como $g=\bigcap_{i=1}^{d-1}F_{i,g_i}\cap G$, pues cada $F_{i,k}$ me indica cuál es la i-ésima coordenada. Si T(F) está fijo, $T(F_{i,k})$ también estará fijo, pues estos facet están determinados por la cara que comparta con T(F). Como los $T(F_{i,k})$ están fijos, cada punto T(g) estará fijo pues se debe preservar incidencia y por tanto intersecciones. Entonces T queda determinado por su restricción a F.

Como el número de simetrías del n-hipercubo es $2^n n!$, el número de de objetos combinatóricamente distintos debe ser al menos $\frac{|S|}{2^{d-1}(d-1)!} = \frac{1}{(d-1)!} 2^{2^{d-1}-d+1}$ y bastaría ver que es mayor que $2^{2^{d-2}}$ que es equivalente a $2^{2^{d-2}+1} > (d-1)!$. Lamentablemente esta ecuación sólo es válida si $d \ge 6$, pero los casos pequeños pueden verificarse fácilmente a mano. Para d=6 se cumple, y si hacemos inducción quedará probar que $2^{2^{d-2}-1} > d$, lo cual es evidentemente cierto.

Para concluir la prueba, probaré que dados $2^{n-1}+1$ vértices del n-hipercubo, el polítopo formado por ellos tiene dimensión n. Suponga sin pérdida de generalidad que uno de estos vértices es el origen, añádales un 1 a todos en la primera coordenada, y miremos independencia lineal. El primer vector es (1,0,0,..) así que podemos ignorar este vector y la primera coordenada del resto y quedarnos con los otros 2^{n-1} vectores. Basta probar entonces que entre 2^{n-1} vectores binarios no nulos hay n independientes. Pero si los vemos como elementos de \mathbb{Z}_2^n sabemos que todo espacio n-1 dimensional tiene 2^{n-1} elementos incluido el origen, así que tienen que tener mayor dimensión.