

Neuroengineering (10 ECTS) class introduction: 2021-2022

Prof. Pietro Cerveri pietro.cerveri@polimi.it

Prof. Alessandra Pedrocchi <u>alessandra.pedrocchi@polimi.it</u>

Neuroengineering part I

Neuroengineering part II

1

What is NeuroEngineering?

Research at the interface between neuroscience and information technology

This includes, but is not limited to, research in neuroscience, cognitive science, computer science, electronic engineering and psychology covering the areas of:

- Knowledge modeling and reasoning
- Machine learning
- Motor control modelling
- Neuro- and biomimetics robotics
- Life-like perception systems
- Neural interfaces
- Neuroprostheses
- Neurons on silicon
- Neuroimage

Neuroengineering

Neuroscience

Engineering

Models and technologies to understand and interface the CNS

- Reasoning, perception and motion planning and control
- Meth's and tech's for neurology/neuro-rehabilitation
- Meth's and tech's for neurobiology

Studying the brain functions using basic sciences (physics, chemistry, mathematics,...)

Why do neurosciences interest a bioengineer?

SNC

• Learns, adapts, generalizes and predicts

MODELLING MOTOR
CONTROL
and
COMPUTATIONAL
NEUROSCIENCE

Beyond connectionism to connectivity and plasticity

What we need in our brain to work?

Figure
Massive ventricular enlargement,
in a patient with normal social
functioning

(A) CT; (B, C) T1-weighted MRI, with gadolinium contrast; (D) T2-weighted MRI. LV=lateral ventricle. III=third ventricle. IV=fourth ventricle. Arrow=Magendie's foramen. The posterior fossa cyst is outlined in (D).

Why do neurosciences interest a bioengineer?

Approaches to neurorobotics design

D'Angelo et al. Funct. Neurol 2013 D'Angelo et al. Front. Cell. Neuroscience, 2016

Brain computational modelling

The goal

Courtesy Egidio D'Angelo

EBCC (EyeBlink Classical Conditioning)

Conditioned Response, anticipating US
Anticipated blink and reduced US sensation

During the Acquisition Phase (13 Trials)

Conditioned Stimulus (CS) = Tone Unconditioned Stimulus (US) = Laser Beam

NAO wants to protect himself from the US

Artist: Unknown Title: Unknown

MPEG-4 File Genre: Unknown

7F3F67B3.mp4 MPEG-4 RAW bitstream AAC, Stereo 121 kbps, 48000 Hz

Orban/Coding Technologies AAC/HE-AACv2 Player Plugin™ MP4/3GP AAC/HE-AACv2 Audio File/Stream Decoder 1.1.51

Neuromotor disorders and pathologies

Dystonia
Multiple sclerosis
Cerebrovascular accidents (stroke, TBI)
Spine Injuries
Parkinson Disease
Muscular distrophy
Cerebellar patients...

Ageing... active ageing/chronicity

United Nations Department of Economic and Social Affairs

Number of people aged 60 or over developed and developing countries, 1950-2050

Goal 1: promote/drive neural plasticity

NEUROPLASTICITY is the key mechanism of neurorehabilitation intervention

Factors influencing neuroplasticity:

- repetitive motor tasks
- active (instead of passive) movements
- timing of sensori-motor stimulus presentation

What does(neuro)engineering mean for clinics?

ReWalk: Structure

4 reasons to use robots in rehab

- Robotic device can be a vehicle to translate intensity into a rehabilitation program
- Robotic devices can be used to explore the effectiveness of the type of assistance
- Robots can be an objective evaluation tool affording insights into motor recovery process.
- Rehabilitation robot can act as a tool to alter experimental conditions

C Duret, A-G Grosmaire, HI Krebs, Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach, Frontiers in Neurology, 2019

Externally modulated proprioception -FES

Functional Electrical Stimulation (FES) is the electrical stimulation of a mixed nerve in order to produce a goal oriented (functional) movement.

- extra information to be coded by the natural proprioceptive feedback
- extra proprioceptive feedback

CARRYOVER ENIGMA!!! 45% gets carryover (Merletti et al., 1979)

Neuroengineering towards clinical translation

Subjectspecific early prediction outcome

Set of subjectspecific therapy

Prediction of therapy effects

Patient rehabilitation pathway

Prediction of plasticity modification

Goal 2: assistive robots to promote independent living

Neuroengineering in biological experiments

Design personalized rehabilitation and promote independent living

Neuroplasticity measures: fMRI

User-centered designed assistive devices

Computational Motor Control: models of plasticity

Development of immersive rehab devices

Quantitative assessment of rehabilitation efficacy

Journal club

	INIOINDAT (LUFSTIACE 2 1112)	IOLODAT (VINTOAL SIIIS)	ITIONSDAT (VINTOAL ZIIIS)	FRIDAT (FRESENCE 3 III3)
13/09/21 W1	Course presentation	Artificial neural networks (ANN)	Perceptron, learning and delta rule	PRACTISE basic NN (group 2)
20/09/21 W2	PRACTISE basic NN (group 1)	Multi-layer ANN and backpropagation	Deep learning paradigm	PRACTISE FFNN (group 2)
27/09/21 W3	PRACTISE FFNN (group 1)	Convolutional neural networks (CNN)	Autoencoder NN	Master thesis presentation
04/10/21 W4	SEMINAR Python/TensorFlow (group 1)	GRADUATION	Encoding/Decoding networks	SEMINAR Python/TensorFlow (group 2)
1. 10/21 W5	Generative Adversarial Net (non duplicated)	Concepts of explainable AI	Computational Neuroscience 1	PRACTISE EBRAINS platform (group2)
18/10, W6	PRACTISE EBRAINS platform (group1)	Computational neuroscience2	Neurorobotics	Comp. neuroscience journal club (group2)
25/10/21 W7	Comp. neuroscience journal club (group 1)	Rehabilitation robotics 1	Rehabilitation Robotics 2	Rehab Robotics journal club (group2)
01/11/21 W8	NO CLASS	Neuroprosteses 1	Neuroprostheses 2	Rehab robotics journal club (group1)
08/11/21 W9	NO CLASS	NO CLASS	in vitro neuroengineering 1 flipped + 2	interdisciplinary seminars (non duplicated)
15/11/21 W10				
22/11/21 W11				
29/11/21 W12				
06/12/21 W13				
13/12/21 W14	Project workshops Project workshops			
20/12/21 W15	Public presentation of finalist projects		_	

- Week assignment of a paper along with questions for guiding the discussion
- group 1 and group 2 in presence discussion with the professor (remote participation is possible but not recommended)

