ESTRUCTURAS ALGEBRAICAS. Problemas. 28 de Septiembre.

Ejercicio 19. Hoja 1. Sea G un grupo y $g \in G$ de orden finito. Demostrad que si $j \in \mathbb{Z}$ es coprimo con o(g) entonces $\langle g^j \rangle = \langle g \rangle$.

Solución:

Denotamos $m = o(g^j)$ y r = o(g). En primer lugar, observamos que $g^j \in \langle g \rangle$. Por tanto, m divide a r. Por otro lado, tenemos que $g^{jm} = (g^j)^m = 1$, por lo que, r divide a jm. Pero (j, m) = 1, entonces r divide a m. Como r|m y m|r, concluimos que m = r y $\langle g^j \rangle = \langle g \rangle$.

Ejercicio 1. Hoja 2. Demostrad que un grupo G es abeliano si y solamente si la función $f: G \to G$ dada por $f(g) = g^{-1}$ es un homomorfismo.

Solución:

 (\Rightarrow) Supongamos que G es abeliano. Veamos que $f(g)=g^{-1}$ define un homomorfismo de grupos. Para todo $g,h\in G$, tenemos que

$$f(gh) = (gh)^{-1} = (hg)^{-1} = g^{-1}h^{-1} = f(g)f(h).$$

 (\Leftarrow) Supongamos que f define un homomorfismo. Veamos que G es abeliano. Para todo $g,h\in G,$ tenemos que

$$gh = ((gh)^{-1})^{-1} = (h^{-1}g^{-1})^{-1} = f(h^{-1}g^{-1}) = f(h^{-1})f(g^{-1}) = (h^{-1})^{-1}(g^{-1})^{-1} = hg.$$

Ejercicio 3. Hoja 2. Demostrad que no existe un homomorfismo sobreyectivo $D_6 \to \mathbb{Z}/3\mathbb{Z}$.

Solución:

Supongamos que $f: D_6 \to \mathbb{Z}/3\mathbb{Z}$ es un homomorfismo sobreyectivo, es decir, $\operatorname{Im}(f) = \mathbb{Z}/3\mathbb{Z}$. Aplicando el Primer Teorema de Isomorfía, tenemos que $D_6/\ker(f) \simeq \mathbb{Z}/3\mathbb{Z}$ con $\ker(f)$ un subgrupo normal de D_6 . Observamos que

$$3 = |\mathbb{Z}/3\mathbb{Z}| = |D_6/\ker(f)| = \frac{|D_6|}{|\ker(f)|} = \frac{6}{|\ker(f)|} \implies |\ker(f)| = 2.$$

Por lo que, ker(f) es un subgrupo normal de D_6 , de orden 2. Pero no existen subgrupos normales de orden 2 en D_6 . Por tanto, f no puede ser sobreyectivo.

Otra forma más larga de resolverlo: Recordamos que D_6 está generado por una rotación r y una simetría s, tales que o(r) = 3 y o(s) = 2. Supongamos que $f: D_6 \to \mathbb{Z}/3\mathbb{Z}$ es un homomorfismo. Sabemos que o(f(g)) divide a o(g) para todo $g \in D_6$. Entonces:

$$\mathrm{o}(f(r))|\ 3 \implies \mathrm{o}(f(r)) \in \{1,3\}, \quad \mathrm{o}(f(s))|\ 2 \implies \mathrm{o}(f(s)) \in \{1,2\}.$$

Por otro lado, como f(s) es un elemento de $\mathbb{Z}/3\mathbb{Z}$, su orden debe dividir al orden del grupo, es decir, o(f(s))| 3. Por tanto, la única opción posible es o(f(s)) = 1, es decir, $f(s) = [0]_3$. Veamos las posibles imágenes para r:

• Si o(f(r)) = 1, entonces $f(r) = [0]_3$. En este caso, $Im(f) = \{[0]_3\}$ y f no sería sobreyectivo.

• Si o(f(r)) = 3, entonces $f(r) = [1]_3$ o $f(r) = [2]_3$. Pero en ninguno de los casos define un homomorfismo, pues $f(sr) = [1]_3$ o $f(sr) = [2]_3$, es decir o(f(sr)) = 3 que no divide a o(sr) = 2.

El único homomorfismo posible de D_6 en $\mathbb{Z}/3\mathbb{Z}$ es el homomorfismo trivial, que no es sobreyectivo.

Nota sobre construcción de homomorfismos. Dados grupos G_1 y G_2 queremos describir el conjunto de todos los homomorfismos de G_1 en G_2 , es decir, $\text{Hom}(G_1, G_2)$.

Afirmación: Todo homomorfismo f de G_1 en G_2 está determinado por la imagen de los elementos que generan G_1 .

Dem. Si S es un conjunto de generadores de G_1 , entonces todo elemento es un producto de potencias de estos generadores. Es decir, todo elemento $g \in G$ se puede expresar como $s_1^{k_1} \cdot \ldots \cdot s_n^{k_n}$, con $s_1, \ldots, s_n \in S$ y $k_1, \ldots k_n$ enteros. Entonces, para que f cumpla la propiedad de homomorfismo, definimos su imagen como $f(s_1^{k_1} \cdot \ldots \cdot s_n^{k_n}) := f(s_1)^{k_1} \cdot \ldots \cdot f(s_n)^{k_n}$.

Problema: Esto no nos garantiza que f esté bien definido como aplicación. En el grupo G_1 , pueden existir relaciones entre elementos, condiciones del tipo $s_1^{k_1} \cdot \ldots \cdot s_n^{k_n} = e_{G_1}$, con $s_i \in S$. Si enviamos los generadores de G_1 a un elemento cualquiera, f podría no respetar la relación, es decir, $f(s_1)^{k_1} \cdot \ldots \cdot f(s_n)^{k_n} \neq e_{G_2}$ y corremos el riesgo de asignar múltiples valores a un mismo elemento. Por lo que, f no estaría bien definido como aplicación.

Solución: Para construir todos los homomorfismos de G_1 en G_2 , hay que asignar a cada elemento generador de G_1 un elemento de G_2 respetando las relaciones del grupo G_1 .

Construcción de homomorfismos de un grupo cíclico en otro cualquiera. En el caso en que G_1 es cíclico, generado por un elemento g de orden n, la relación que determina el grupo es $g^n = e_{G_1}$.

Afirmación: En esta situación, si fijamos f(g) = h donde $o(h) \mid n$, entonces f es un homomorfismo.

Dem. Todo elemento de G es de la forma g^k , para $k \in \{0, ..., n-1\}$. Por tanto, tenemos que:

$$f(g^k\cdot g^j)=f(g^{k+j})=h^{k+j}=h^k\cdot h^j=f(g^k)\cdot f(g^j).$$

Veamos que está bien definido, que se respeta la relación $g^n = e_{G_1}$ en G_2 , es decir, que $h^n = e_{G_2}$. Como $o(h) \mid n$, tenemos que $n = k \cdot o(h)$ para algún entero k, entonces:

$$h^n = h^{k \cdot o(h)} = (h^{o(h)})^k = e_{G_2}^k = e_{G_2}.$$

Por tanto, si $g^s = g^t$ para ciertos enteros s, t, es decir, si $g^{s-t} = e_{G_1}$, entonces $h^{s-t} = e_{G_2}$ y, en consecuencia, $h^s = h^t$. Concluyendo que la aplicación está bien definida.

Ejercicio 4. Hoja 2. Dados grupos G_1 y G_2 escribimos $\operatorname{Hom}(G_1, G_2)$ para denotar el conjunto de homomorfismos $G_1 \to G_2$. Determinad $\operatorname{Hom}(\mathbb{Z}, \mathsf{D}_6)$ y $\operatorname{Hom}(\mathbb{Z}/4\mathbb{Z}, \mathsf{D}_6)$.

Solución:

 $(H_1 = \text{Hom}(\mathbb{Z}, \mathsf{D}_6))$ El grupo $(\mathbb{Z}, +)$ es cíclico y generado por el elemento 1, puesto que todo número entero puede escribirse como una potencia aditiva de 1, es decir, para todo $k \in \mathbb{Z}$ tenemos que $k = k \cdot 1$. Además, el grupo \mathbb{Z} no tiene ninguna relación adicional entre sus elementos.

Por la nota anterior, sabemos que todo homomorfismo $f: \mathbb{Z} \to D_6$ está determinado por f(1). Como no tenemos relaciones adicionales, f(1) puede ser cualquier elemento de D_6 . Por tanto, el conjunto de homomorfismos H_1 tiene 6 elementos:

$$H_1 = \operatorname{Hom}(\mathbb{Z}, D_6) = \{ f : \mathbb{Z} \to D_6, \quad f(1) = g \quad \text{para cualquier } g \in D_6 \}.$$

 $(H_2 = \text{Hom}(\mathbb{Z}/4\mathbb{Z}, \mathsf{D}_6))$ El grupo $\mathbb{Z}/4\mathbb{Z}$ es cíclico, generado por el elemento $[1]_4$, puesto que toda clase de equivalencia puede escribirse como una potencia aditiva de $[1]_4$, es decir, para todo $[k]_4 \in \mathbb{Z}/4\mathbb{Z}$ tenemos que $[k]_4 = k \cdot [1]_4$. La relación que determina el grupo es $4 \cdot [1]_4 = 0$.

Por la nota anterior, sabemos que todo homomorfismo $f: \mathbb{Z}/4\mathbb{Z} \to D_6$ está determinado por $f([1]_4)$ y debe cumplirse que $o(f([1]_4))$ divida a $o([1]_4) = 4$. Además, $o(f([1]_4))$ debe dividir a $|D_6| = 6$. Por tanto, $o(f([1]_4)) \in \{1, 2\}$. Los elementos de orden 1 o 2 en D_6 son $1, r, sr, sr^2$. Por tanto, el conjunto de homomorfismos H_2 tiene 4 elementos:

$$H_2 = \text{Hom}(\mathbb{Z}/4\mathbb{Z}, D_6) = \{ f : \mathbb{Z}/4\mathbb{Z} \to D_6, \quad f([1]_4) \in \{1, r, sr, sr^2\} \}.$$

Ejercicio 5. Hoja 2. Sean G_1 y G_2 dos grupos finitos con $(|G_1|, |G_2|) = 1$. Calcula $Hom(G_1, G_2)$.

Solución:

Supongamos que $f: G_1 \to G_2$ es un homomorfismo de grupos. El Primer Teorema de Isomorfía nos dice que $G_1/\ker(f) \simeq \operatorname{Im}(f)$. Por tanto, tenemos que

$$\operatorname{Im}(f) \leq G_2 \implies |\operatorname{Im}(f)| \mid |G_2|, \quad |\operatorname{Im}(f)| = \frac{|G_1|}{|\ker(f)|} \implies |\ker(f)| = \frac{|G_1|}{|\operatorname{Im}(f)|} \implies |\operatorname{Im}(f)| \mid |G_1|.$$

Es decir, |Im(f)| es un divisor común de $|G_1|$ y $|G_2|$. Pero $(|G_1|, |G_2|) = 1$. Por lo que, |Im(f)| = 1. El único homomorfismo posible de G_1 en G_2 es el homomorfismo trivial.

Ejercicio 7. Hoja 2. Encontrad dos grupos finitos G y H no triviales y un homomorfismo $f: G \to H$ con la propiedad que o(f(g)) < o(g) para todo $1 \neq g \in G$.

Solución:

Tomamos $G = \mathbb{Z}/4\mathbb{Z}$, $H = \mathbb{Z}/2\mathbb{Z}$ y el homomorfismo $f: \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ tal que $f([1]_4) = [1]_2$. Observamos que

$$2 = \mathrm{o}([1]_2) = f([1]_4) < \mathrm{o}([1]_4) = 4, \quad 1 = \mathrm{o}([0]_2) = f([2]_4) < \mathrm{o}([2]_4) = 2, \quad 2 = \mathrm{o}([1]_2) = f([3]_4) < \mathrm{o}([3]_4) = 4.$$

Ejercicio 8. Hoja 2. ¿Cuántos homomorfismos sobreyectivos se pueden definir entre los siguientes grupos aditivos?

- (a) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/30\mathbb{Z}$,
- (b) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/15\mathbb{Z}$, y
- (c) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/8\mathbb{Z}$.

Solución:

- (a) Sea $f: \mathbb{Z}/30\mathbb{Z} \to \mathbb{Z}/30\mathbb{Z}$ un homomorfismo. Observamos que:
- Como $\mathbb{Z}/30\mathbb{Z}$ es un conjunto finito, si f es una aplicación sobreyectiva, necesariamente f es biyectiva. Por lo que, f será un automorfismo de $\mathbb{Z}/30\mathbb{Z}$.
- Como Z/30Z es cíclico, todo homomorfismo está determinado por la imagen del generador [1]₃₀:

$$f([k]_{30}) = k \cdot f([1]_{30})$$
, para todo $k \in \mathbb{Z}$.

• Se tiene que $\operatorname{Im}(f) = \langle f([1]_{30}) \rangle$. Entonces:

$$o(f([1]_{30})) = |Im(f)| = 30.$$

Por lo que, $f([1]_{30})$ debe ser un generador de $\mathbb{Z}/30\mathbb{Z}$.

• Sabemos que el conjunto de generadores de $\mathbb{Z}/30\mathbb{Z}$ es el conjunto de las unidades, $(\mathbb{Z}/30\mathbb{Z})^{\times}$.

Por lo que, tenemos que

$$|\operatorname{Aut}(\mathbb{Z}/30\mathbb{Z})| = |(\mathbb{Z}/30\mathbb{Z})^{\times}| = \varphi(30) = \varphi(2)\varphi(3)\varphi(5) = (2-1)(3-1)(5-1) = 8.$$

Por tanto, existen exactamente 8 homomorfismos sobreyectivos de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/30\mathbb{Z}$.

- (b) Sea $f: \mathbb{Z}/30\mathbb{Z} \to \mathbb{Z}/15\mathbb{Z}$ un homomorfismo. Observamos que:
- Como $\mathbb{Z}/30\mathbb{Z}$ es cíclico, f está completamente determinado por la imagen del generador [1]₃₀:

$$f([k]_{30}) = k \cdot f([1]_{30})$$
, para todo $k \in \mathbb{Z}$.

- Para que f esté bien definido es necesario que $o(f([1]_{30}))$ divida a $o([1]_{30}) = 30$.
- Tenemos que im $(f) = \langle f([1]_{30}) \rangle$. Por lo que, si f es sobreyectivo, se tiene que

$$\operatorname{im}(f) = \langle f([1]_{30}) \rangle = \mathbb{Z}/15\mathbb{Z}$$

y en consecuencia, $o(f([1]_{30})) = 15$, es decir, $f([1]_{30})$ es un generador de $\mathbb{Z}/15\mathbb{Z}$.

Sabemos que los generadores de $\mathbb{Z}/15\mathbb{Z}$ son exactamente las unidades de $\mathbb{Z}/15\mathbb{Z}$. Por lo que, tenemos $\varphi(15) = \varphi(3)\varphi(5) = (3-1)(5-1) = 8$ generadores de $\mathbb{Z}/15\mathbb{Z}$. Por tanto, existen exactamente 8 homomorfismos sobreyectivos de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/15\mathbb{Z}$.

(c) Supongamos que $f: \mathbb{Z}/30\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}$ es un homomorfismo sobreyectivo. Entonces, por el Primer Teorema de Isomorfía, tenemos que $(\mathbb{Z}/30\mathbb{Z})/\ker(f) \cong \mathbb{Z}/8\mathbb{Z}$. Lo que implica que

$$|\ker(f)| = \frac{|\mathbb{Z}/30\mathbb{Z}|}{|\mathbb{Z}/8\mathbb{Z}|} = \frac{30}{8}.$$

Pero $\frac{30}{8}$ no es un número entero, por lo que, no puede existir ningún homomorfismo sobreyectivo de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/8\mathbb{Z}$.

Ejercicio 9. Hoja 2. Cuando sea posible, definid un homomorfismo entre los siguientes grupos:

- (a) de S_3 en $\mathbb{Z}/12\mathbb{Z}$, inyectivo;
- (b) de S_3 en $\mathbb{Z}/3\mathbb{Z}$, sobreyectivo;
- (c) de S_3 en $\mathbb{Z}/6\mathbb{Z}$, no constante.

Solución:

(a) Supongamos que $f: S_3 \to \mathbb{Z}/12\mathbb{Z}$ es un homomorfismo inyectivo. Entonces tendríamos que $\ker(f) = \{\text{id}\}$. Por el Primer Teorema de Isomorfía, tendríamos que

$$S_3 = S_3/\{id\} = S_3/\ker(f) \cong \operatorname{im}(f) \subseteq \mathbb{Z}/12\mathbb{Z}.$$

Como im(f) es un subgrupo de un grupo abeliano, entonces también es abeliano. Pero sabemos que S_3 no es abeliano. Por tanto, como los isomorfismos preservan la propiedad de ser abeliano, no puede existir un homomorfismo inyectivo de S_3 en $\mathbb{Z}/12\mathbb{Z}$.

(b) Supongamos que $f: S_3 \to \mathbb{Z}/3\mathbb{Z}$ es un homomorfismo sobreyectivo. Entonces, por el Primer Teorema de Isomorfía, tendríamos que $S_3/\ker(f) \cong \mathbb{Z}/3\mathbb{Z}$ y $\ker(f)$ sería un subgrupo normal de S_3 , con orden

$$|\ker(f)| = \frac{|S_3|}{|\mathbb{Z}/3\mathbb{Z}|} = \frac{6}{3} = 2.$$

Sin embargo, ningún subgrupo de S_3 de orden 2 es normal en S_3 . Por tanto, no existen homomorfismos sobreyectivos de S_3 en $\mathbb{Z}/3\mathbb{Z}$.

- (c) Supongamos que $f: S_3 \to \mathbb{Z}/6\mathbb{Z}$ es un homomorfismo. Por el Primer Teorema de Isomorfia, tendríamos que $S_3/\ker(f) \cong \operatorname{im}(f) \subseteq \mathbb{Z}/6\mathbb{Z}$ y $\ker(f)$ sería un subgrupo normal de S_3 . Sabemos que los únicos subgrupos normales de S_3 son $\{\operatorname{id}\}, \langle \tau \rangle$ y S_3 , donde $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Analizamos cada caso:
 - Si $\ker(f) = \{id\}$, entonces S_3 sería isomorfo a $\operatorname{im}(f)$. Puesto que $|S_3| = 6$, tendríamos que S_3 es isomorfo a $\mathbb{Z}/6\mathbb{Z}$. Pero esto no es posible, puesto que $\mathbb{Z}/6\mathbb{Z}$ es un grupo abeliano, pero S_3 no lo es.
 - Si $\ker(f) = S_3$, entonces tendríamos que $\operatorname{im}(f) = \{[0]_6\}$. Por lo que, el homomorfismo f sería el trivial, que es constante.
 - Si ker $(f) = \langle \tau \rangle$, entonces tendríamos que $S_3/\langle \tau \rangle \cong \langle [3]_6 \rangle \leq \mathbb{Z}/6\mathbb{Z}$. En este caso, el homomorfismo sería no constante y definido como

$$f(\sigma) = [0]_6$$
 si $\sigma \in \langle \tau \rangle$, $f(\sigma) = [3]_6$ si $\sigma \notin \langle \tau \rangle$.

Se puede comprobar que f respeta las relaciones de S_3 y, por tanto, es un homomorfismo bien definido.