DTM	NTM 2	$Entscheidungsproblem$ $_{3}$
$(Un\mbox{-})Entscheidbarkeit$	$Aufz\"{a}hlbarke it$	$Abz\"{a}hlbarke it$
Überabzählbarkeit	Halte problem 8	Cantor-Funktion
$Cantor ext{-}Diagonal is ierung$	Cantors erstes Diagonalargument	Cantors zweites Diagonalargument
Cantorsche Paarungsfunktion	A ckermann funktion	Topologie
$G\"{o}delsche~unvollst\"{a}ndigkeitss\"{a}tze$	LOOP-Programm: Definition	$LOOP ext{-}Programm: ADD ext{-}Funktion$
LOOP-Programm: SUB-Funktion	LOOP-Programm: MUL-Funktion	$LOOP ext{-}Programm: POT ext{-}Funktion$
LOOP-Programm: DIV-Funktion	$LOOP ext{-}Programm: MAX ext{-}Funktion$	$LOOP ext{-}Programm: MIN ext{-}Funktion$

tbd 3	tbd 2	tbd
tbd	tbd	tbd
tbd	tbd 8	tbd
tbd	tbd	tbd
tbd	tbd	tbd 13
$ADDx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOx_0 = x_0 + 1END$ 18	tbd	tbd
$POTx_{1}x_{2}:$ $x_{0} := x_{1} + 0;$ $LOOPx_{2}DOMULx_{0}x_{1}END$ 21	$MULx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOADDx_0x_1END$ 20	$SUBx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOx_0 = x_0 - 1END$
$MINx_1x_2:$ $x_0 = x_1 + 0;$ $MAXx_1x_2;$ $ADDx_0x_2;$ $SUBx_0x_1$	$MAXx_1x_2:$ $x_0 := x_1 + 0;$ $SUBx_0x_2;$ $ADDx_0x_2$ 23	tbd

LOOP-Programm: MOD-Funktion	$LOOP ext{-}Programm: GGT ext{-}Funktion$	$WHILE ext{-}Programm: Definition$
25	26	27
$Kolmogorov ext{-}Komplexit \"{a}t$ 28		

tbd	$GGTx_1x_2$:	$MODx_1x_2$:	
	$x_4 = x_1 + 0;$	$LOOPx_2DO:$	
	$LOOPx_4DO:$	$LOOPx_1DOx_0 = x_1 + 0END;$	
	$LOOPx_2DO$:	$SUBx_1x_2$	
27	$x_5 = x_2 + 0;$	END	
$MODx_5x_1;$ $x_1 = x_2 + 0$			25
	END;		
	$x_2 = x_5 + 0$	tbd	
	END;		
	$x_0 = x_1$		28
		26	