Project Development Phase

Sprint 3

Date	13 November 2022
Team ID	PNT2022TMID43379
Project Name	River Water Quality Monitoring
	and Control System

Python Code:

```
import ibmiotf.application
import ibmiotf.device
import time
import random
import sys
#ibm watson device credentials
organization="rj0qwb"
deviceType="RivWatQuality"
deviceid="RivWatQuality"
authMethod="token"
authToken="UFT PB+dHA3k)0 pA7"
def myCommandCallback(cmd):
   print("Command received: %s" % cmd.data['command'])
    status=cmd.data['command']
    if status =="MotorON":
#generate random values for pH and turbity
def myCommandCallback(cmd):
    print ("command received: %s" %cmd.data['command'])
```

```
deviceOptions={"org": organization, "type": deviceType, "id":
deviceid, "auth-method":authMethod, "auth-token":authToken}
        deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
        sys.exit()
#connect and sending data of pH Values and Turbidity
deviceCli.connect()
while True:
   time.sleep(2)
    Ph=random.randint(0,14)
   Turb=random.randint(0,10)
   data={'Ph':Ph,'Turb':Turb}
   print(data)
   def myOnPublishCallBack():
success=deviceCli.publishEvent("IoTSensor","json",data,qos=0,on publish
=myOnPublishCallBack)
    if not success:
    time.sleep(1)
    deviceCli.commandCallback=myCommandCallback
#disconnect the device from the cloud
deviceCli.connect()
```

2. Executing the Python Code to send values to IBM Watson Platform by MQTT Protocol

```
## 681 Self Debug Option Window Hep

Python 3.7.0 (v3.7.0:lbf9cc5093, Jun 27 2018, 04:06:47) [MSC v.1914 32 bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

RESTART: C:\Users\MANO BHARATHI\OneDrive\Desktop\Desktop\Desktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Lesktop\Les
```

3. Sending obtained Values to Web UI Dashboard and Mobile App

4. Payload Defined to send values to Mobile App

5. JSON Object Obtained using URL

6. Mobile App to Receive data from Node Red

6. Configuring Mobile App Backend to receive data from Node Red

7. Web UI Dashboard

8. Monitoring the Values in Mobile App sent from Node-Red:

17:56 🛳	55.0 ÷ 46* 71% -
River Water Quality Monitoring App	

River Water Quality Monitoring and Control System

pH Value	11
Turbidity	6
Мо	tor Control

ON OFF
Team ID: PNT2022TMID43379