Input-to-state stable analysis on Particle Swarm Optimization

Daqing Yi Kevin D. Seppi Michael A. Goodrich

Department of Computer Science Brigham Young University

Outline Structure

- Introduction
 - Intro to PSO
 - Related work
- Model the particle
 - Model PSO
- Input-to-state stability
 - Defining ISS
 - Conditions and parameter selection
 - Moment analysis
- 4 ISS Analysis
 - Analysis
- 5 Summary and futurework
 - Summary

Introduction

- Introduction
 - Intro to PSO
 - Related work
- - Model PSO
- - Defining ISS
 - Conditions and parameter selection
 - Moment analysis
- - Analysis
- - Summary

Particle Swarm Optimization

The dynamics of a particle

- social influence $X_i^G(k)$
- cognitive influence $X_i^P(k)$
- memory $V_i(k)$

Understand the dynamics

Reasons for analyzing particle dynamics

- inform the setting of parameters
- lead to the proposal of new variants
- allow for the analysis of the behavior

Related work

Introduction

A swarm is in stagnation when the cognitive and social affects are constant, $X_i^P(k) = X_i^P(k+1)$ and $X_i^G(k) = X_i^G(k+1)$

In stagnation, dynamics can be analyzed by

- treating stochastic factors as constants ^{1 2}
- stochastic analysis ^{3 4}
- other systematic analysis ⁵ ⁶

⁶Engelbrecht et al., "A study of particle swarm optimization particle trajectories"

 $^{^1\}mathit{Clerc}$ et al., "The particle swarm - explosion, stability and convergence in a multidimensional complex space"

²Cleghorn et al., "A generalized theoretical deterministic particle swarm model"

 $^{^3}Poli\ et\ al.,$ "Exact analysis of the sampling distribution of particle swarm optimizers during stagnation"

⁴ Jiang et al., "Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm"

 $^{^5}$ Trelea et al., "The particle swarm optimization algorithm: convergence analysis and parameter selection"

Related work

Introduction

In **non-stagnation**, dynamics can be analyzed by

- approximate using a continuous-time model ⁷
- model the problem into a random search ⁸
- running toward a local optima

⁷Fernandez-Martinez et al., "Stochastic stability analysis of the linear continuous and discrete pso models"

⁸ van den Bergh et al., "A convergence proof for the particle swarm optimiser"

⁹Schmitt et al., "Particle swarm optimization almost surely finds local optima"

- Introduction
 - Intro to PSO
 - Related work
- 2 Model the particle
 - Model PSO
- Input-to-state stability
 - Defining ISS
 - Conditions and parameter selection
 - Moment analysis
- 4 ISS Analysis
 - Analysis
- 5 Summary and futurework
 - Summary

Update rule PSO model

Position update of PSO

$$v_{ij}(k+1) = \chi[v_{ij}(k) + \phi^{P} u_{ij}^{P}(k)(x_{ij}^{P}(k) - x_{ij}(k)) + \phi^{G} u_{ij}^{G}(k)(x_{ij}^{G}(k) - x_{ij}(k))],$$

$$x_{ij}(k+1) = x_{ij}(k) + v_{ij}(k+1).$$

Linear form PSO model

Linear model form of the position update of PSO

$$\begin{bmatrix} v(k+1) \\ x(k+1) - x^* \end{bmatrix} = A(k) \begin{bmatrix} v(k) \\ x(k) - x^* \end{bmatrix} + B(k) \begin{bmatrix} x^G(k) - x^* \\ x^P(k) - x^* \end{bmatrix}$$

with

$$A(k) = \begin{bmatrix} \chi & -\chi \phi^G u^G(k) - \chi \phi^P u^P(k) \\ \chi & 1 - \chi \phi^G u^G(k) - \chi \phi^P u^P(k) \end{bmatrix}$$

and

$$B(k) = \begin{bmatrix} \chi \phi^G u^G(k) & \chi \phi^P u^P(k) \\ \chi \phi^G u^G(k) & \chi \phi^P u^P(k) \end{bmatrix}.$$

 x^* is a reference point, which can be

- the global optimal position,
- a local optimal position or
- any position that we are interested in using as a reference.

- parallel structure of each dimension
- feedback cascade by the personal-best-update component
- global best as the input

Outline

- Introduction
 - Intro to PSO
 - Related work
- 2 Model the particle
 - Model PSO
- Input-to-state stability
 - Defining ISS
 - Conditions and parameter selection
 - Moment analysis
- 4 ISS Analysis
 - Analysis
- 5 Summary and futurework
 - Summary

Define input-to-state stability Input-to-state stability

K-function $\alpha(\cdot)$

- continuous
- strictly increasing
- $\alpha(0) = 0$

K_{∞} -function $\alpha(\cdot)$

- K-function
- $\alpha(s) \to \infty$ as $s \to \infty$
- used in proof

KL-function $\beta(\cdot, \cdot)$

• $\forall t \geq 0, \ \beta(\cdot, t)$ is a *K*-function:

• $\forall s \geq 0$, $\beta(s, \cdot)$ is decreasing and $\beta(s,t) \rightarrow 0$ as $t \to \infty$.

Define input-to-state stability Input-to-state stability

Input-to-state stability

$$|x(k)| \le \beta(|X(0)|, k) + \gamma(||u||)$$

- $\beta(\cdot,\cdot)$ is *KL*-function
- $\gamma(\cdot)$ is *K*-function

- Since $\beta(|X(0)|, k)$ is a decreasing function, the influence of the initial state X(0) will eventually go to zero.
- If the input u is bounded, $\gamma(||u||)$ will also be bounded.
- Thus |x(k)| is bounded.

Condition of Input-to-state stability Input-to-state stability

Theorem

When $\forall k, |\lambda_{\max}(A(k))| < 1$, the position-update component of PSO is input-to-state stable.

 \bullet A(k) is random matrix

$$\begin{bmatrix} v(k+1) \\ x(k+1) - x^* \end{bmatrix} = A(k) \begin{bmatrix} v(k) \\ x(k) - x^* \end{bmatrix} + B(k) \begin{bmatrix} x^G(k) - x^* \\ x^P(k) - x^* \end{bmatrix}$$

with

$$A(k) = \begin{bmatrix} \chi & -\chi \phi^{\mathsf{G}} u^{\mathsf{G}}(k) - \chi \phi^{\mathsf{P}} u^{\mathsf{P}}(k) \\ \chi & 1 - \chi \phi^{\mathsf{G}} u^{\mathsf{G}}(k) - \chi \phi^{\mathsf{P}} u^{\mathsf{P}}(k) \end{bmatrix}$$

and

$$B(k) = \begin{bmatrix} \chi \phi^G u^G(k) & \chi \phi^P u^P(k) \\ \chi \phi^G u^G(k) & \chi \phi^P u^P(k) \end{bmatrix}.$$

• where $|\lambda_{\max}(A(k))|$ is absolute value of maximum eigenvalue

Parameter space of input-to-state stability Input-to-state stability

Corollary

Let
$$A(k) = \begin{bmatrix} \chi & -\chi\phi \\ \chi & 1-\chi\phi \end{bmatrix}$$
, in which $\phi \in [0,\phi^{sup}]$ and $\phi^{sup} = \phi^P + \phi^G$ and $\chi \in (0,1)$. When $\phi^{sup} \in \left(0,\frac{2(1+\chi)}{\chi}\right)$, the position-update component of PSO is input-to-state stable.

- represent A(k) using ϕ
- ullet parameter space χ and ϕ^{sup}

Boundary of the movement Input-to-state stability

Corollary

Given a bound on the input $|[x^G(k) - x^*, x^P(k) - x^*]^T|$ in the position-update component, we have the bound on the particle position from Equation (1).

$$\forall k, |x(k) - x^*| \le \max\left(|x(0) - x^*|, \gamma\left(|\left[x^G(k) - x^*, x^P(k) - x^*\right]^T|\right)\right).$$

The boundary is determined by

- $|x(0) x^*|$ the distance from the initial position x(0) to the reference point x^*
- $\gamma\left(\left|\left[x^{\mathsf{G}}(k)-x^{*},\ x^{\mathsf{P}}(k)-x^{*}\right]^{T}\right|\right)$ scaled norm of a vector that consists of the distance from the global best position $x^{\mathsf{G}}(k)$ to the reference point x^{*} and the distance from the personal best position $x^{\mathsf{P}}(k)$ to the reference point x^{*}

Boundary of the movement Input-to-state stability

A bound on a particle's position by a reference point x^* . The ratio of two radii indicates γ .

Mean - first order moment

Linear model for the mean of the position update component

$$\begin{bmatrix} E(x(k+1)) - \hat{x} \\ E(x(k)) - \hat{x} \end{bmatrix} = A_m \begin{bmatrix} E(x(k)) - \hat{x} \\ E(x(k-1)) - \hat{x} \end{bmatrix} + B_m \begin{bmatrix} E(x^P(k)) - \hat{x} \\ E(x^G(k)) - \hat{x} \end{bmatrix}$$

Theorem

The mean of the position update component is input-to-state stable, if $|\lambda_{\max}(A_m)| < 1$.

Higher order moments

- - Intro to PSO
 - Related work
- - Model PSO
- - Defining ISS
 - Conditions and parameter selection
 - Moment analysis
- 4 ISS Analysis
 - Analysis
- - Summary

With ISS of position-update component

constant $X^P \neq \text{constant } X^G \text{ (Stagnation)}$

- Convergence of the mean^a
- Never stop at one position
- Move in a bound by ISS
- Simulated using PSO position-update

 $^{^{\}it a}$ Poli et al., "Exact analysis of the sampling distribution of particle swarm optimizers during stagnation"

With ISS of position-update component

- Converge to a bound
- Simulated using PSO position-update, bounded global-best and personal-best

With ISS of position-update component

Stagnation ISS analysis

Prior Research

There exists a distribution.^a

Mean of the particle position

$$\hat{x} = \frac{\phi^P x^P + \phi^G x^G}{\phi^P + \phi^G}$$

With ISS of position-update component

There also exists a boundary.

Boundary of the particle position

$$\exists T, \forall k > T, |x(k) - \hat{x}| \leq \gamma_d |[x^P - \hat{x}, x^G - \hat{x}]^T|$$

 $[^]aPoli\ et\ al.,$ "Exact analysis of the sampling distribution of particle swarm optimizers during stagnation"

Before stagnation ISS analysis

when only the $x^{G}(k)$ is constant

- When personal-best-update component is ISS
- Because of the feedback cascade model
- Small gain theorem applies
- Then the distance to the reference point converges to zero

Before stagnation ISS analysis

when only the $x^{P}(k)$ is constant

- Personal-best-update component disabled
- The boundary of the position depends on the bound of x^G(k)

Before stagnation ISS analysis

when both the $x^{G}(k)$ and $x^{P}(k)$ are not constant

The boundary of the position

- depends on the bound of $x^G(k)$
- depends on the bound of $x^P(k)$

Outline

- - Intro to PSO
 - Related work
- - Model PSO
- - Defining ISS
 - Conditions and parameter selection
 - Moment analysis
- - Analysis
- Summary and futurework
 - Summary

Summary and futurework

Summary

- Feedback cascade model
 - Input-update component
 - Position-update component
 - Personal-best-update component
 - Global-best-update component
- Input-to-state stability analysis

Futurework

- Including fitness landscape
- Extend from particle behavior to swarm behavior

Thank you