PHY254 Problem Set 2, 2017

Due Wed, October 11, 2017 by 5:00 p.m to: Deepak Box 1, Roya Box 2, Matt Box 4. DropBoxes are located at the base of the tower building. Two problems will be graded.

1. A damped oscillation: Taylor 5.25

Consider a damped oscillator with $\beta < \omega_o$. The motion described by:

$$x(t) = Ae^{-\beta t}\cos(\omega_1 t - \delta) \tag{1}$$

is not periodic. "Period" τ_1 is approximated as the time between succesive maxima of x(t).

- a) Show that $\tau_1 = \frac{2\pi}{\omega_1}$.
- b) Show that an equivalent definition is that τ_1 is twice the time between succesive zeros of x(t).
- c) If $\beta = \frac{\omega_o}{2}$, by what factor does the amplitude shrink in one period?

2. Tension in a pendulum string

Consider a simple pendulum, undergoing small oscillations.

Is the time average of the tension in the string of the pendulum larger or smaller than mg? By how much?

3. Effective spring constant

- a) Two springs with spring constants k_1 and k_2 are connected in parallel. What is the effective spring constant k_{eff} ? k_{eff} is the spring constant of one spring that does the same job as the two springs connected in parallel.
- b) The same springs are connected now in series. What is the effective spring constant?
- 4. A projectile attached to a spring: A projectile of mass m is fired from the origin at speed v_0 and angle θ . It is attached to the origin by a spring with spring constant k and relaxed length zero.
 - a) Find x(t) and y(t).
 - b) Show that for small $\omega = \sqrt{k/m}$, the trajectory reduces to normal projectile motion. Setup a condition for ω that accounts for the statement "small ω ".

Show that for large ω , the trajectory reduces to simple harmonic motion along a line (meaning $y/x \approx \text{constant}$). Setup a condition that accounts for the statement "large ω ".

c) What value should ω take so that the projectile *hits* the ground when it moves straight downward?

5. A disappearing act

The springs from Figure 1 are at equilibrium length. The mass oscillates along the line of the springs with amplitude d. At a moment in time (let this be t = 0), when the mass is at position $x = \frac{d}{2}$ and is moving to the right, the right spring is removed.

- a) What is the resulting x(t)?
- b) What is the amplitude of the new oscillation?

Figure 1: One mass, two springs