Targeted Agents – Future Prospects, Including Combination Strategies, in Ovarian Cancer

Stanley B. Kaye, MD

Royal Marsden Hospital London, United Kingdom

Progress in the Management of Ovarian Cancer: Evolution Over 40 Years

- Standard of care (first line): paclitaxel/carboplatin
 - Median progression-free survival / overall survival is approximately
 12-20 m/3-5 years.
- Q. How can we do better?
- A. Rational molecular targeted therapy

Rational Targets in Ovarian Cancer – Agents Now in the Clinic

Inhibitors of:

- VEGF and other angiogenic factors
- PARP
- P13K/AKT
- MEK

2015 update on:

- Single-agent data
- Combination strategies

Single Agents

Antiangiogenic Agents

- Bevacizumab
- VEGFR /TKIs
 - cediranib
 - pazopanib
 - nintedanib
- Ang1/Ang2
 - trebananib
- Antivascular
 - fosbretabulin

PARP Inhibitors

- Olaparib
- Niraparib
- Rucaparib

What can we conclude from randomised trials so far?

Image not available

Single-Agent Trials – Antiangiogenic Agents First Line (cont)

AGO-OVAR 16: DuBois A, et al. *J Clin Oncol.* 2014;32(30):3374-3382.

- Pazopanib (AGO-OVAR 16, n = 940)
 maintenance only
 - HR 0.77 for PFS benefit
 - significant toxicity at 800 mg bd (<50% patients received 12 months therapy)
 - no overall survival benefit
 - not being pursued in first line

AGO-OVAR 12: DuBois A, et al. *Int J Gynecol Cancer.* 2013;23(8suppl1): Abstract LBA1.

- Nintedanib (AGO-OVAR 12, n = 1366) concurrent and maintenance
 - modest PFS benefit (HR 0.84), best seen in "low-risk" patients
 - further plans for first line studies unclear

Single-Agent Trial – Antiangiogenic Agents

Second Line (platinum sensitive)

- Bevacizumab (OCEANS)
- As concurrent and maintenance, PFS benefit, HR = 0.48
- May be preferred option for patients optimally debulked at initial surgery

Aghajanian C, et al. *J Clin Oncol.* 2012;30(17):2039-2045.

- Cediranib (ICON6)
 - As concurrent and maintenance, similar
 PFS benefit to OCEANS (HR of 0.57) with trend to OS benefit (HR 0.75)
 - Would efficacy be retained in patients previously treated with bevacizumab?

Ledermann JA, et al. *Eur J Cancer.* 2013;49(Suppl 3):
Abstract LBA10.

Open questions:

- Is there a rational patient selection strategy, eg, genomic profile
- What about patients with BRCA mutations?
- What is the impact of prior antiangiogenic treatment?

Single-Agent Trials – Antiangiogenic Agents

Platinum-Resistant Disease

- Assume standard treatment is weekly paclitaxel
- Bevacizumab (AURELIA, n = 115)¹
 median PFS 3.9 m -> 10.4 m
- Trebaninib (TRINOVA-1, n = 919)²
 median PFS 5.4 m -> 7.2 m
- Pazopanib (MITO 11, n = 74)³
 median PFS 3.5 m -> 6.3 m

- Is there any evidence of survival benefit?
- Which would you choose?
- What is the impact of prior antiangiogenic treatment?
- 1. Pujade-Lauraine E, et al. *J Clin Oncol.* 2014;32(13):1302-1308.
- 2. Monk BJ, et al. Lancet Oncol. 2014;15(8):799-808.
- 3. Pignata S, et al. *J Clin Oncol.* 2014;32(5S): Abstract 5503.

Summary of PFS and OS in AURELIA Trial

	PAC	PAC-B	PLD	PLD-B	TOPO	ТОРО-В
PFS (m)	3.9	10.4	3.5	5.4	2.1	5.8
HR	0.46 (0	0.3-0.71)	0.57 (0.	39-0.83)	0.32 (0.	.21-0.49)
OS (m)	13.2	22.4	13.7	14.1	13.3	13.8
HR	0.65 (0	.42-1.02)	0.91 (0.	62-1.36)	1.09 (0.	.72-1.67)

PAC, Paclitaxel PLD, Pegylated liposomal doxorubicin TOPO, Topotecan

 Best results seen with paclitaxel

Poveda AM, et al. *Ann Oncol.* 2012;23(Suppl 9): Abstract LBA26. Witteveen P, et al. Presented at ESGO 2013. Pujade-Lauraine E, et al. *J Clin Oncol.* 2014;32(13):1302-1308.

Antiangiogenic Inhibitors in 2015

Issues: what if the patient has a *BRCA* mutation?

- She should receive maintenance PARP inhibitor at some point, either before or after antiangiogenic, depending on regulatory environment
- Will a combination be more appropriate? (eg, olaparib/cediranib)

Impact of Prior Antiangiogenic on Repeat Antiangiogenic Therapy

- Published / presented data very limited
 - Total around 100 cases previously treated with bevacizumab (or other antiangiogenic)
 - Includes:
 - TRINOVA I up to 72, (where addition of trebaninib to weekly taxol still carried some (not significant) PFS benefit in patients previously treated with bevacizumab).
 - AURELIA 26 (numbers too small to draw conclusion)
 - PHASE II trials of TKIs, inhibiting VEGFR, FGFR, etc,

eg, brivanib where n = 25 for prior antiangiogenic – response rate 23% in this subgroup.

Therefore, more data needed!

 Is it appropriate to give bevacizumab more than once? – in my view, not until clinical data support this

Rational Targets in Ovarian Cancer - Agents Now in the Clinic

Inhibitors of:

- VEGF and other angiogenic factors
- PARP
- P13K/AKT
- MEK

2015 update on:

- Single-agent data
- Combination strategies

Single-Agent Trials PARP Inhibitors

Based on "tumour synthetic lethality" targeting cells with homologous recombination deficiency (HRD) – is this a new treatment for *BRCA*-mutation associated ovarian cancer?

Preclinical

Early Clinical Trials (Phase I, incl. IB)

Randomised Clinical Trials (Phase II and III)

PARP: poly(ADP) ribose polymerase

Exquisite preclinical efficacy of PARPi

Phase I trial confirms excellent tolerance and expansion in 50 *BRCA* patients showed 46% response.

Randomised trial (maintenance therapy) showed marked PFS benefit

Farmer H, et al. *Nature.* 2005;434(7035):917-921.

Fong PC, et al. *N Engl J Med*. 2009; 361(2):123-134. Fong PC, et al. *J Clin Oncol*. 2010; 28(15):2512-2519.

Ledermann JA, et al. *N Engl J Med.* 2012;366(15):1382-1392.

Randomised Maintenance Study 19: Design

Platinumsensitive
relapsed
patients with
high-grade
serous
ovarian
cancer in
remission
(CR/PR)
N = 265

Olaparib
Oral 400mg bid
N = 136

Placebo
Oral bid
N = 129

Treat until progression PFS Primary Endpoint

Initially *BRCA*m status known for only 36% of patients; subsequent analysis increased this to 96%

Study 19 (ITT): Met PFS Primary Endpoint

BRCAm Status Summary

g*BRCAm* Patients Derive Greater PFS Benefit: 7.1 Months Median PFS Improvement

Overall Survival in Patients With BRCA Mutation

- 14/62 (22.6%) placebo patients switched to a PARP inhibitor
- OS in *BRCA WT* patients: HR = 0.98; 95% CI, 0.62–1.55; *P* = .946
 - Median OS: olaparib, 24.5 months; placebo, 26.2 months

Ledermann JA, et al. J Clin Oncol. 2013;31(Suppl): Abstract 5505.

Randomized Trial of Olaparib As Maintenance Therapy in Platinum-Sensitive Sporadic Ovarian Cancer

Trial positive for primary endpoint (PFS). But overall survival impact less clear.

Does this reflect crossover (23%), or is there an impact of olaparib on subsequent response to chemo, and will this depend on *BRCA* mutation status?

What do we know about olaparib (and platinum) resistance?

Chemosensitivity Post Olaparib in BRCA-Mutated Ovarian Cancer

In 78 evaluable olaparib-treated patients, response to subsequent chemotherapy seen in 36% (24/67) by RECIST and in 45% (35/78) by CA125 and/or RECIST

- For platinum-based treatment:
 - RECIST response in 19/48 (40%)
 - RECIST and/or CA-125 response in 26/53 (50%)
 - Median PFS: 22 weeks
 - Median OS: 45 weeks

- ORR/OS significantly associated with interval since last (pre-olaparib) platinum
- Molecular analysis of tumor resected post-olaparib: No evidence of secondary mutations in 6 cases

PARP Inhibitors – What Are the Next Steps?

- Anticipate registration of olaparib as maintenance therapy in germline BRCAm patients in 2015. Is there also a role in recurrent advanced disease?
- Define activity in sporadic ovarian cancer and other cancers, eg, prostate
- Develop robust predictive biomarker
- Assess PARP inhibitors other than olaparib (rucaparib, niraparib, BMN-673)
- Test novel combinations (with P13K or angiogenesis inhibitors, etc)
- Monitor long-term toxicity
- Understand mechanisms of PARPi resistance probably multifactorial

Is There a Role for PARP Inhibitors in Recurrent *BRCA*m Ovarian Cancer?

Primary objective: compare efficacy of 2 dose levels of olaparib (300 mg and 400 mg bd) with liposomal doxorubicin

Patients:

Those with advanced *BRCA1*-or *BRCA2*- Raimutated ovarian cancer who had progressive or recurrent disease <12 months after previous platinum-based chemotherapy

Randomized 1:1:1 Olaparib
200 mg bid in 28day cycles

Olaparib
400 mg bid in 28day cycles

Liposomal DOX
50 mg/m² iv every
4 weeks

- Efficacy of olaparib (400 mg bd) was as predicted, with response (RECIST/CA125) in 59% and median PFS of 8.8 m
- PLD was more effective than anticipated (response 39%; median PFS 7.1 m); thus no significant difference in primary end-point
- HR 0.88 P = .66
- Overall, both treatments well tolerated (<10% discontinuation)
- Further studies certainly warranted, including pts previously treated with PLD, eg Study 42, showing 31% response in 193 pts with platinumresistant BRCAm ovarian cancer – Kaufman et al, JCO 2014

Sample size: Total 90 (30 per arm)

Kaye SB, et al. *J Clin Oncol.* 2012;30(4):372-379.

Olaparib for Recurrent *BRCA*m Ovarian Cancer Recent Developments

- Ongoing pooled analysis of 300 patients who received olaparib in 6 studies involving BRCAm recurrent disease (273 with measurable disease)
- All but one study nonrandomised
- Data on subgroup of 137 patients who received ≥3 lines of chemo presented to FDA for accelerated approval
 - response rate 34%; response duration 7.9 m
 - ---> Accelerated Approval Granted

Status of Olaparib – January 2015

Europe – approved as maintenance treatment for platinum-sensitive relapsed *BRCA*m ovarian cancer – patients in remission following platinum-based therapy

USA – approved as monotherapy for patients who have received ≥3 lines of chemotherapy

- Not approved as maintenance therapy
- Approval also for companion diagnostic (Myriad Genetics BRCA analysis CDx)

PARP Inhibitors – What Are the Next Steps?

The Cancer Genome Atlas, Molecular profiling of serous ovarian cancer, D. Levine 2011

Not Homologous Recombination (HR) Deficient **HR Deficient**

What is the role of PARPi in sporadic ovarian cancer?

Patient Selection for Treatment with **PARP Inhibitors**

Germline/somatic BRCA 1/2 mutation is "a standard of care"

Predictive biomarker for sporadic ovarian ca pts, possibilities include:

- functional test for loss of HR (RAD 51 foci-formation)^{1,2}
- molecular signature (gene array) ³
- immunohistochemistry for BRCA 1 protein⁴

- **Circumstantially:** repeated response to platinumbased chemotherapy
 - prolonged survival (>5 yrs)
 - high-grade serous histology

^{1.} Mukhopadhyay A, et al. Clin Cancer Res. 2010;16(8):2344-2351; 2. Graeser M, et al. Clin Cancer Res. 2010;16(24):6159-6168; 3. Konstantinopoulos PA, et al. J Clin Oncol. 2010;28(22):3555-3561; 4. Garg K, et al. Am J Surg Pathol. 2013;37(1):138-146.

Homologous Recombination Deficiency Assay

Myriad Genetics, presented at NCI/EORTC/AACR meeting 2014

DNA-based assay aimed at detecting HRD independent of cause, incorporating 3 algorithms:

- Loss of heterozygosity (LOH)
- Telomeric allelic imbalance (TAI)
- Large-scale state transitions (LST)

HRD score is sum of LOH + TAI + LST scores

- 106 high-grade ovarian samples evaluated for HRD score and correlation with in vitro/in vivo PARPi (niraparib) sensitivity.
- Initial results support further exploration of HRD score.

Single-Agent Activity for PARP Inhibitors in Ovarian Cancer

Drug	BRCA Mutation Positive			BRCA Wildtype and Unknown		
	n	% Resp	Resp duration	n	% Resp	Resp duration
Olaparib ^{1,2,3}	> 100 (most plat resist)	30%-60%	7-10 m	46	24%	7 m
Rucaparib ⁴	23 (all plat sens)	61%	>6 m	38	24%	>6 m
Niraparib⁵	20 (9 plat sens)	45%	11 m	20	15%	5 m
BMN 673 ⁶	28 (22 plat sens)	68%	>6 m			

^{6.} Ramanathan R, et al. Eur J Cancer. 2013;49(Suppl 3): Abstract LBA29.

* Preliminary genomic data for rucaparib	BRCA-like signature (LOH)	No BRCA-like signature	
n	25	13	
resp %	32%	8%	

^{1.} Fong PC, et al. J Clin Oncol. 2010; 28(15):2512-2519.

^{2.} Kaye SB, et al. J Clin Oncol. 2012;30(4):372-379.

^{3.} Gelmon KA, et al. Lancet Oncol. 2011;12(9):852-861.

^{4.} Swisher E, et al. . Eur J Cancer. 2014;50(suppl 6): Abstract 215.

^{5.} Sandhu SK, et al. *Lancet Oncol.* 2013;14(9):882-892.

Rational Targets in Ovarian Cancer - Agents Now in the Clinic

Inhibitors of:

- VEGF and other angiogenic factors
- PARP
- P13K/AKT
- MEK

2015 update on:

- Single-agent data
- Combination strategies

Single-Agent Trials – Other Agents

P13Kinase/AKT inhibitors

- Mutations in 25%-30% clear cell/endometrial
- Responses seen in phase I, eg, AZD 5363

MEK Inhibitors

- RAS mutations in up to 50% low-grade serous
- Single-agent efficacy seen with selumetinib
- Randomised studies underway with more potent MEK inhibitors

Combination Strategies

- Antiangiogenic / antiangiogenic
 - vertical / horizontal
- Antiangiogenic / PARP inhibitor
 - cediranib / olaparib
- PARP inhibitor / P13K inhibitor
- P13K / MEK inhibitor
- PI3K / chemotherapy
- Not PARPi/chemotherapy!

Combination of 2 Antiangiogenic Agents

a) vertical

ie, bevacizumab plus VEGFR-TKI, eg, sorafenib

- Increased toxicity leads to dose modifications of both drugs, albeit with potential increased efficacy
- (47% RR in 19 patients)

Lee JM, et al. Br J Cancer. 2010;102(3):495-499.

b) horizontal

ie, vascular disrupting agent (VDA) plus VEGF inhibitor

- Fosbretabulin (CA4 pro-drug) plus bevacizumab. Potential synergy since VDA leads to blood-flow reduction and release of VEGFR
- Randomised trial recently reported

Monk BJ, et al. Presented at: 15th Biennial Meeting of the International Gynecologic Cancer Society; November 8-11, 2014: Melbourne, Australia.

Moreno Garcia V, et al. Clin Cancer Res. 2012;18(14):3750-3761.

Bevacizumab/Fosbretabulin vs Bevacizumab

Response	Median PFS	Toxicity – G3 hypertension
28.2%	4.8m	19.6%
35.7%	7.3m	32.7%
	HR 0.68 <i>P</i> = .049	

Conclusion: combination "warrants further evaluation in ovarian cancer"

Monk BJ, et al. Presented at: 15th Biennial Meeting of the International Gynecologic Cancer Society; November 8-11, 2014: Melbourne, Australia.

Antiangiogenic/PARP Inhibitors

- Complementary targets/mechanisms of action
- Potential enhancement of sensitivity to PARPi by increasing HRD through changes in oxygenation caused by antiangiogenic agent
- Bevacizumab/olaparib phase I trials confirmed feasibility
- Cediranib/olaparib randomised trial presented at ASCO 2014

Olaparib/Cediranib in Ovarian Cancer

Platinum-sensitive relapsed patients n =90 (BRCA mut 47 BRCA wildtype 23 BRCA unknown 20

Olaparib
400 mg bd
N = 46
(BRCAm 24)

Olaparib
200 mg bd+
cediranib 30
mg od
n = 44
(*BRCA*m
23)

Main toxicity: h/t, diarrhoea, fatigue, leading to dose reduction n 34/44 (77%) and 4 pts discontinued treatment on olaparib/cediranib.

M

S

Response (%)	Med PFS
22 (48%) Including 2 CR	9 m (<i>BRCA</i> mut 16.5 m <i>BRCA</i> other 5.7 m)
35 (80%) Including 5 CR	17.7m (<i>BRCA</i> mut 19.4 m <i>BRCA</i> other 16.5 m)

	P value for PFS difference		
BRCAmut	.16 (ns)		
BRCA other	.0008		

Olaparib /Cediranib in Ovarian Cancer

Conclusions / concerns

- An open-label study with no placebo may lead to bias
- Nevertheless, most likely a significantly superior efficacy is seen for combination compared to olaparib alone, particularly in *BRCA* "other group"
- At dose of 30 mg od, cediranib toxicity was considerable
- Further studies of this combination are warranted both as maintenance therapy and for recurrent disease

PARP Inhibitor Plus PI3K Inhibitor

Ibrahim YH, et al. Cancer Discov. 2012; 2(11):1036-1047.

- With PI3K/AKT inhibitors
 - Preclinical data in TNBC cells demonstrate that P13K inhibition suppresses BRCA 1/2 expression and enhances sensitivity to PARP inhibition, partly through activation of ERK and transcription factor ETS1
- Phase I trials now underway, including olaparib plus

 AZD5363
 - Initial data encouraging with no overlapping toxicity

MEK Inhibitor Plus P13K Inhibitor

Serous ovarian cancer comprises:

	Precursor	Mutation	Chromosomal Instability	Response to Chemo	5-Year Survival, %
Low- Grade	Serous borderline	KRAS, BRAF, HRAS	Low	Usually poor	50-60
High- Grade	STIC	TP53	High	Good but recurs	40-50

In low-grade serous cancer:

- Responses (PR18%) noted with single-agent MEK inhibitor (selumetinib), but will this be sufficient? (Farley J, et al. Lancet Oncol. 2013;14(2):134-140.)
- Note experience with RAF inhibitors in melanoma
- Preclinical data suggest resistance to RAS/RAF/MEK inhibition can be circumvented by P13K/AKT blockade.
- Toxicity challenges: diarrhoea / skin rash /fatigue
- Randomised studies may be necessary with appropriate dose modifications.

Looking Ahead.....

New targets leading to developments in:

Immunotherapy (checkpoint inhibitors)

Antibody-drug targeting

Looking Ahead – Early Results in Platinum-Resistant Ovarian Cancer

PDL-1¹

- 48/70 +ve for PDL1 expression (Hamanishi J, et al. Proc Natl Acad Sci U S A. 2007;27(9):3360-3365.)
- 20 patients with platinum-resistant disease treated with nivolumab (anti PDL1 antibody)
 - 1/10 PR at 1 mg/kg
 - 2/8 CR at 3 mg/kg, including 1 PR lasting 1 year and 1 patient with clear-cell carcinoma

NaPi2b²

- Highly expressed in ovarian cancer
- Controls transport of inorganic phosphate
- Drug antibody conjugate comprising anti-NaPi2b with MMAE iv q3 weekly
- 7/17 PR (41%) in IHC-positive patients with platinum-resistant disease

Folate receptor³

- Highly expressed in ovarian cancer
- IMGN853 is a drug-antibody conjugate comprising anti-FRα with DM4 iv q 2 weekly
- 10/24 PR (42%) in platinum-resistant patients receiving >3.3 mg/kg
- 1. Hamanishi J, et al. *J Clin Oncol.* 2014;32(5S): Abstract 5511.
- 2. Burris HA, et al. *J Clin Oncol.* 2014;32(5S): Abstract 2504.
- 3. Moore KN, et al. J Clin Oncol. 2014;32(5S): Abstract 5571.

Targeted Therapy in Ovarian Cancer

Summary:

- Real optimism surrounding new treatments for first time in 20 years
- Antiangiogenesis and PARP inhibition are most promising, with positive randomized trial data
- Other targeted approaches, particularly involving novel combinations, are being actively pursued
- Patient selection, using robust predictive biomarkers, will be key to success

2015

Progress and Controversies in Gynecologic Oncology Conference

