МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №4

по дисциплине «ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ»

Вариант №3431

Выполнил: Студент группы Р3134 Баянов Равиль Динарович Преподаватель: Бострикова Дарья Константиновна

Оглавление

Задание	3
Текст исходной программы	
Подпрограмма	
Описание программы	
Трассировка	
Вывол	

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

590:	+ 0200		59E:	EE0B	6F0:	AC01	1	6FE:	F770
591:	EE18	ı	59F:	AE08	6F1:	F001	1	6FF:	00B9
592:	AE14	Ì	5A0:	0C00	6F2:	F308	Ī		
593:	0C00	Ì	5A1:	D6F0	6F3:	7E0A	ĺ		
594:	D6F0	Ī	5A2:	0800	6F4:	F806	ı		
595:	0800	Ì	5A3:	0740	6F5:	F005	ĺ		
596:	4E13	ĺ	5A4:	6E05	6F6:	0500	Ì		
597:	EE12	Ī	5 A 5:	EE04	6F7:	0500	ı		
598:	AE10	Ì	5A6:	0100	6F8:	6C01	Ī		
599:	0C00	Ì	5A7:	ZZZZ	6F9:	4E05	Ì		
59A:	D6F0	ı	5A8:	YYYY	6FA:	CE01	1		
59B:	0800	Ì	5A9:	XXXX	6FB:	AE02	Ī		
59C:	0700	ı	5AA:	FF45	6FC:	EC01	ĺ		
59D:	4E0C	Ĺ			6FD:	0A00	ĺ		

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии						
590	+0200	CLA	Обнулить аккумулятор АС						
591	EE18	ST IP+24	Записать значение аккумулятора АС в ячейку памяти 5АА.						
592	AE14	LD IP+20	Загрузить в аккумулятор AC значение ячейки 5A7(Z).						
593	0C00	PUSH	Положить значение из аккумулятора AC на стек SP.						
594	D6F0	CALL 6F0	Обращение к подпрограмме.						
595	0800	POP	Вытащить со стека SP значение в аккумулятор AC.						
596	4E13	ADD IP+19	Прибавить значение ячейки памяти 5AA к значению аккумулятора AC.						
597	EE12	ST IP+18	Загрузить значение аккумулятора АС в ячейку памяти 5АА.						
598	AE10	LD IP+16	Загрузить в аккумулятор АС значение ячейки памяти 5А9(X).						
599	0C00	PUSH	Положить значение из аккумулятора АС на стек SP.						
59A	D6F0	CALL 6F0	Обращение к подпрограмме.						
59B	0800	POP	Вытащить со стека SP значение в аккумулятор АС.						
59C	0700	INC	Прибавить 1 к значению аккумулятора АС.						
59D	4E0C	ADD IP+12	Прибавить к значению аккумулятора АС значение ячейки памяти 5AA.						
59E	EE0B	ST IP+11	Загрузить значение аккумулятора АС в ячейку памяти 5АА.						
59F	AE08	LD IP+8	Загрузить в аккумулятор АС значение ячейки памяти 5А8(Y).						
5A0	0C00	PUSH	Положить значение из аккумулятора АС на стек SP.						
5A1	D6F0	CALL 6F0	Обращение к подпрограмме.						
5A2	0800	POP	Вытащить со стека SP значение в аккумулятор АС.						
5A3	0740	DEC	Вычесть 1 из аккумулятора АС.						
5A4	6E05	SUB IP+5	Вычесть из аккумулятора значение ячейки памяти 5АА.						
5A5	EE04	ST IP+4	Загрузить значение аккумулятора АС в ячейку памяти 5АА.						
5A6	0100	HLT	Остановка программы						
5A7	ZZZZ		Z						
5A8	YYYY		Y						
5A9	XXXX		X						
5AA	FF45		R						

Подпрограмма

Адрес	Код команды	Мнемоника	Комментарии
6F0	AC01	LD &1	Загрузить 1 значение из стека SP в аккумулятор АС.
6F1	F001	BEQ IP+1	Переход на ячейку 6F3, если Z=0.
6F2	F308	BPL IP+8	Переход на ячейку 6FB, если N=0.
6F3	7E0A	CMP IP+10	Установка флагов состояния. Сравнение значения аккумулятора АС с значением ячейки памяти 6FE.
6F4	F806	BLT IP+6	Переход на ячейку 6FB, если N != V.
6F5	F005	BEQ IP+5	Переход на ячейку 6FB, если Z=0.
6F6	0500	ASL	Значение аккумулятора AC сдвигается влево. AC \rightarrow AC15, $0 \rightarrow$ AC0. (Умножение аккумулятора на 2).
6F7	0500	ASL	Значение аккумулятора AC сдвигается влево. AC \rightarrow AC15, $0\rightarrow$ AC0. (Умножение аккумулятора на 2).
6F8	6C01	SUB &1	Вычесть из аккумулятора АС значение стека 1 SP.
6F9	4E05	ADD IP+5	Прибавить к аккумулятору АС значение ячейки памяти 6FF.
6FA	CE01	JUMP IP+1	Безусловный переход на ячейку памяти 6FC.
6FB	AE02	LD IP+2	Загрузить в аккумулятор АС значение ячейки памяти 6FE.
6FC	EC01	ST &1	Загрузить значение аккумулятора АС в стек 1 SP.
6FD	0A00	RET	Возврат из подпрограммы.
6FE	F770		A
6FF	00B9		В

Описание программы

Программа подсчитывает значение функции от трёх переменных.

$$R = F(Y) - 1 - (F(Z) + F(X) + 1)$$

$$R = F(Y) - F(Z) - F(X) - 2$$

$$F(x) = \begin{bmatrix} x > 0 : A \\ x \le 0 : \begin{bmatrix} x \le A : A \\ x > A : 4x - x + B \end{bmatrix}$$

График реализуемый подпрограммой:

Расположение в памяти БЭВМ программы, исходных данных и результатов:

[590-5А6] – Основная программа;

[6F0-6FD] - Подпрограмма;

Х: 5А9 – Исходное число;

Ү: 5А8 – Исходное число;

Z: 5A7 – Исходное число;

R: 5AA – Результат и промежуточное значение;

А: 6FE – Заданная константа функции;

В: 6FF – Заданная константа функции.

Область представления:

$$A = (F770)_{16} = (-2192)_{10}$$

$$B = (00B9)_{16} = (185)_{10}$$

 $X,\,Y,\,Z,\,R,\,A,\,B$ — целые 16-ти разрядные знаковые числа.

Область допустимых значений

ОДЗ для результата: $-2^{15} + 2 \le R \le 2^{15} + 1$

При значении аргумента х равным значению в промежутках $(0;+\infty)$ и $(-\infty;-2192)$ функция возвращает константу A(-2192), поэтому переполнение не возникнет. При других значениях аргумента х функция возвращает значение выражения 3x + 185.

6

$$\begin{cases} -\frac{2^{15}}{3} \le F(X) \le \frac{2^{15}-1}{3} \\ -\frac{2^{15}}{3} \le F(Y) \le \frac{2^{15}-1}{3} \\ -\frac{2^{15}}{3} \le F(Z) \le \frac{2^{15}-1}{3} \end{cases}$$

$$\begin{cases} -\frac{2^{15}}{3} \le 3X + 185 \le \frac{2^{15} - 1}{3} \\ -\frac{2^{15}}{3} \le 3Y + 185 \le \frac{2^{15} - 1}{3} \\ -\frac{2^{15}}{3} \le 3Z + 185 \le \frac{2^{15} - 1}{3} \end{cases}$$

$$\begin{cases}
-3703 \le X \le 3580 \\
-3703 \le Y \le 3580 \\
-3703 \le Z \le 3580
\end{cases}$$

Учитывая, что основная программа рассчитывает выражение:

R=F(Y)-F(Z)-F(X)-2, то максимально мы можем получить $(3Y_{max}+185)-(3Z_{min}+185)-(3Z_{min}+185)-(3Z_{min}+185)-2<2^{15}+1$

А минимальное $(3Y_{min}+185)-(3Z_{max}+185)-(3_{max}+185)-2>=-2^{15}$

Во всех случаях переполнение невозможно.

Трассировка

Выполненная Команда				Содерх	кание ак	Ячейка, содержимое которой изменилось после выполнения команды						
Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн

Вывод

Я изучил способы связи между программными модулями, команды обращения к подпрограмме CALL и RET, научился работать со стеком и исследовал порядок функционирования БЭВМ при выполнении комплекса взаимосвязанных программа.