Análisis del cifrado ElGamal de un módulo con curvas elípticas propuesto para el GnuPG

Sergi Blanch i Torné y Ramiro Moreno Chiral

Criptografía y Grafos Departamento de Matemáticas Universidad de Lleida

11 de septiembre de 2007

(Versión 2.1)

Outline

Introducción

Cifrado tipo ElGamal

Esquema ECDH+ElGamal

Esquema alternativo ECDH+AES256

Conclusión

▶ Al decir *GnuPG* uno piensa en *software libre*.

- ▶ Al decir *GnuPG* uno piensa en *software libre*.
- ► Software criptográfico de proposito general: cumple con estandares como el rfc2440.

- ▶ Al decir *GnuPG* uno piensa en *software libre*.
- Software criptográfico de proposito general: cumple con estandares como el rfc2440.
- ► Proyecto eccGnuPG:

- ▶ Al decir *GnuPG* uno piensa en *software libre*.
- Software criptográfico de proposito general: cumple con estandares como el rfc2440.
- Proyecto eccGnuPG:
 - ► GnuPG v1.4: Soporta de cifrado y firma con curva elíptica.

- ▶ Al decir *GnuPG* uno piensa en *software libre*.
- ➤ Software criptográfico de proposito general: cumple con estandares como el rfc2440.
- Proyecto eccGnuPG:
 - GnuPG v1.4: Soporta de cifrado y firma con curva elíptica.
 - ► GnuPG v2: Soporta firma y tiene proyectado el cifrado.

- ▶ Al decir *GnuPG* uno piensa en *software libre*.
- Software criptográfico de proposito general: cumple con estandares como el rfc2440.
- Proyecto eccGnuPG:
 - GnuPG v1.4: Soporta de cifrado y firma con curva elíptica.
 - GnuPG v2: Soporta firma y tiene proyectado el cifrado.
 Filosofía modular de *Unix*:
 Cosas pequeñas que hacen muy bien tareas simples y que al unirlas hacen bien tareas complejas.

- ▶ Al decir *GnuPG* uno piensa en *software libre*.
- Software criptográfico de proposito general: cumple con estandares como el rfc2440.
- Proyecto eccGnuPG:
 - GnuPG v1.4: Soporta de cifrado y firma con curva elíptica.
 - GnuPG v2: Soporta firma y tiene proyectado el cifrado. Filosofía modular de *Unix*:
 - Cosas pequeñas que hacen muy bien tareas simples y que al unirlas hacen bien tareas complejas.
 - LibPth + LibGpg-error + LibGcrypt +
 LibAssuan + LibKsba + Gnupg-2.0

- ▶ Al decir *GnuPG* uno piensa en *software libre*.
- Software criptográfico de proposito general: cumple con estandares como el rfc2440.
- Proyecto eccGnuPG:
 - ► GnuPG v1.4: Soporta de cifrado y firma con curva elíptica.
 - GnuPG v2: Soporta firma y tiene proyectado el cifrado.
 Filosofía modular de Unix:
 - Cosas pequeñas que hacen muy bien tareas simples y que al unirlas hacen bien tareas complejas.
 - LibPth + LibGpg-error + LibGcrypt +
 LibAssuan + LibKsba + Gnupg-2.0
- ▶ Y, sobre todo, es un sistema híbrido.

Sistemas híbridos

Sistemas híbridos

Figura: Esquema de funcionamiento de un sistema híbrido de cifrado.

Una curva elíptica definida sobre un cuerpo finito está determinada por una ecuación de Weierstraß

$$E/\mathbb{F}_p: y^2 = x^3 + ax + b$$
, donde $a, b \in \mathbb{F}_p$ y $4a^3 + 27b^2 \neq 0$. (1)

Una curva elíptica definida sobre un cuerpo finito está determinada por una ecuación de Weierstraß

$$E/\mathbb{F}_p: \ y^2 = x^3 + ax + b$$
, donde $a, b \in \mathbb{F}_p \ y \ 4a^3 + 27b^2 \neq 0$. (1)

Grupo de puntos:

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

Una curva elíptica definida sobre un cuerpo finito está determinada por una ecuación de Weierstraß

$$E/\mathbb{F}_p: y^2 = x^3 + ax + b$$
, donde $a, b \in \mathbb{F}_p$ y $4a^3 + 27b^2 \neq 0$. (1)

Grupo de puntos:

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

Si
$$k$$
 es un entero y $P \in E(\mathbb{F}_p)$, escribiremos $P + \cdots + P = k \cdot P$.

ElGamal en grupos cíclicos cualesquiera ElGamal en el grupo multiplicativo de un cuerpo finito primo Esquema Elíptico ElGamal: ECElGamal

Cifrado ElGamal en $\mathcal{G}=\langle \mathsf{g} angle$

Dado un grupo cíclico cualquiera $\mathcal{G}=\langle g \rangle$, con notación multiplicativa, el cifrado ElGamal consiste en usar el intercambio de claves Diffie—Hellman (DH) como una parte de la cifra.

Dado un grupo cíclico cualquiera $\mathcal{G}=\langle g \rangle$, con notación multiplicativa, el cifrado ElGamal consiste en usar el intercambio de claves Diffie–Hellman (DH) como una parte de la cifra.

1. Se calcula $\alpha = g^r$, donde $1 \le r < |\mathcal{G}|$ es una clave de sesión aleatoria.

Dado un grupo cíclico cualquiera $\mathcal{G}=\langle g \rangle$, con notación multiplicativa, el cifrado ElGamal consiste en usar el intercambio de claves Diffie–Hellman (DH) como una parte de la cifra.

- 1. Se calcula $\alpha = g^r$, donde $1 \le r < |\mathcal{G}|$ es una clave de sesión aleatoria.
- 2. Se convierte el mensaje m en un elemento del grupo, $m \in \mathcal{G}$.

Dado un grupo cíclico cualquiera $\mathcal{G}=\langle g\rangle$, con notación multiplicativa, el cifrado ElGamal consiste en usar el intercambio de claves Diffie–Hellman (DH) como una parte de la cifra.

- 1. Se calcula $\alpha = g^r$, donde $1 \le r < |\mathcal{G}|$ es una clave de sesión aleatoria.
- 2. Se convierte el mensaje m en un elemento del grupo, $m \in \mathcal{G}$.
- 3. En $\mathcal G$ se calcula $\beta=m.(g^a)^r$, siendo $k=g^a$ la clave pública del receptor. La clave común DH es $k_{DH}=g^{ar}=\alpha^a$.

Dado un grupo cíclico cualquiera $\mathcal{G}=\langle g \rangle$, con notación multiplicativa, el cifrado ElGamal consiste en usar el intercambio de claves Diffie–Hellman (DH) como una parte de la cifra.

- 1. Se calcula $\alpha = g^r$, donde $1 \le r < |\mathcal{G}|$ es una clave de sesión aleatoria.
- 2. Se convierte el mensaje m en un elemento del grupo, $m \in \mathcal{G}$.
- 3. En \mathcal{G} se calcula $\beta=m.(g^a)^r$, siendo $k=g^a$ la clave pública del receptor. La clave común DH es $k_{DH}=g^{ar}=\alpha^a$.
- 4. El mensaje cifrado es el par (α, β) .

Dado un grupo cíclico cualquiera $\mathcal{G}=\langle g \rangle$, con notación multiplicativa, el cifrado ElGamal consiste en usar el intercambio de claves Diffie—Hellman (DH) como una parte de la cifra.

- 1. Se calcula $\alpha = g^r$, donde $1 \le r < |\mathcal{G}|$ es una clave de sesión aleatoria.
- 2. Se convierte el mensaje m en un elemento del grupo, $m \in \mathcal{G}$.
- 3. En \mathcal{G} se calcula $\beta=m.(g^a)^r$, siendo $k=g^a$ la clave pública del receptor. La clave común DH es $k_{DH}=g^{ar}=\alpha^a$.
- 4. El mensaje cifrado es el par (α, β) .

El receptor puede recuperar el mensaje ya que $m = \beta(\alpha^a)^{-1}$ y a es su clave privada.

ElGamal en grupos cíclicos cualesquiera ElGamal en el grupo multiplicativo de un cuerpo finito primo Esquema Elíptico ElGamal: ECElGamal

ElGamal en el grupo \mathbb{F}_p^*

ElGamal en el grupo \mathbb{F}_p^*

Algoritmo (Cifrado ElGamal)

INPUT: Clave pública $pkey_U$ y mensaje a cifrar $m \in \mathbb{F}_p^*$. **OUTPUT**: Cifrado formado por un par de enteros, $(\alpha, \beta) \in \mathbb{F}_p^* \times \mathbb{F}_p^*$.

- 1: Generar una clave de sesión $r \in_{\mathcal{R}} [1, (pkey_U.p) 1];$
- 2: $\alpha = (pkey_U.g)^r \mod p$;
- 3: $k_{DH} = (pkey_U.k)^r \mod p$; $/* k = g^a \mod p$; $k_{DH} = g^{ar} \mod p */$
- 4: $\beta = mk_{DH} \mod p$;
- 5: Return (α, β) ;

ElGamal en grupos cíclicos cualesquiera ElGamal en el grupo multiplicativo de un cuerpo finito primo Esquema Elíptico ElGamal: ECEIGamal

ElGamal en el grupo \mathbb{F}_p^* : comentarios

ElGamal en el grupo \mathbb{F}_p^* : comentarios

▶ Pasar los mensajes al grupo es fácil: basta convertirlos en enteros en el rango [1..p-1].

ElGamal en el grupo \mathbb{F}_p^* : comentarios

- ▶ Pasar los mensajes al grupo es fácil: basta convertirlos en enteros en el rango [1..p-1].
- ► Las operaciones en el grupo son productos y potencias mod *p*, pocos pero *p* grande.

ElGamal en el grupo \mathbb{F}_p^* : comentarios

- ▶ Pasar los mensajes al grupo es fácil: basta convertirlos en enteros en el rango [1..p-1].
- Las operaciones en el grupo son productos y potencias mod p, pocos pero p grande.
- ► La seguridad es *aproximadamente* la de un RSA cuyo módulo tenga el mismo número de bits que *p*.

ElGamal en grupos cíclicos cualesquiera ElGamal en el grupo multiplicativo de un cuerpo finito primo Esquema Elíptico ElGamal: ECElGamal

Esquema Elíptico ElGamal: ECElGamal

Esquema Elíptico ElGamal: ECElGamal

Algoritmo (Cifrado ECElGamal)

INPUT: Clave pública $pkey_U$ y texto en claro numérico m. **OUTPUT**: Cifrado formado por un par de puntos, (A, B).

- 1: Generar una clave de sesión $r \in_{\mathcal{R}} [1, (pkey_U.n) 1];$
- 2: $A = r \cdot (pkey_U.G)$;
- 3: $K_{DH} = r \cdot (pkey_U.K)$; $/* K = a \cdot G$; $K_{DH} = (ra) \cdot G */$
- 4: Convertir el mensaje en punto de la curva elíptica $m \rightarrow M$;
- 5: B = M + A;
- 6: Return (A, B);

Esquema Elíptico ElGamal: ECElGamal

Algoritmo (Cifrado ECElGamal)

INPUT: Clave pública $pkey_U$ y texto en claro numérico m.

OUTPUT: Cifrado formado por un par de puntos, (A, B).

- 1: Generar una clave de sesión $r \in_{\mathcal{R}} [1, (pkey_U.n) 1];$
- 2: $A = r \cdot (pkey_U.G)$;
- 3: $K_{DH} = r \cdot (pkey_U.K)$; $/* K = a \cdot G$; $K_{DH} = (ra) \cdot G */$
- 4: Convertir el mensaje en punto de la curva elíptica $m \rightarrow M$;
- 5: B = M + A;
- 6: Return (A, B);

Se recupera m calculando $M=B+a\cdot (-A)$ y, finalmente, se pasa $M\to m$.

ElGamal en grupos cíclicos cualesquiera ElGamal en el grupo multiplicativo de un cuerpo finito primo Esquema Elíptico ElGamal: ECElGamal

ECEIGamal: comentarios

ECElGamal: comentarios

▶ El criptosistema se plantea en $\langle (pkey_U.G) \rangle$, subgrupo cíclico de $E(\mathbb{F}_p)$ generado por el punto G.

ECEIGamal: comentarios

- ▶ El criptosistema se plantea en $\langle (pkey_U.G) \rangle$, subgrupo cíclico de $E(\mathbb{F}_p)$ generado por el punto G.
- ► La suma de puntos consiste en varios productos mod p.

ECEIGamal: comentarios

- ▶ El criptosistema se plantea en $\langle (pkey_U.G) \rangle$, subgrupo cíclico de $E(\mathbb{F}_p)$ generado por el punto G.
- La suma de puntos consiste en varios productos mod p.
- ▶ La seguridad equivalente a un RSA con módulo de 1024 bits se consigue en curvas elípticas sobre un cuerpo finito para valores de p de \sim 160 bits.

ECEIGamal: comentarios

- ▶ El criptosistema se plantea en $\langle (pkey_U.G) \rangle$, subgrupo cíclico de $E(\mathbb{F}_p)$ generado por el punto G.
- La suma de puntos consiste en varios productos mod p.
- ▶ La seguridad equivalente a un RSA con módulo de 1024 bits se consigue en curvas elípticas sobre un cuerpo finito para valores de p de \sim 160 bits.

Pero los pasos de mensaje a punto de $E(\mathbb{F}_p)$, $m \to M$ y su inverso, son problemáticos en su implementación.

Algoritmo (Cifrado ECDH+ElGamal)

INPUT: Clave pública $pkey_U$ y texto en claro numérico m. **OUTPUT**: Punto resultante A, cifra β .

- 1: Generar una clave de sesión $r \in_{\mathcal{R}} [1, (pkey_U.p) 1];$
- 2: $A = r \cdot (pkey_U.G)$;
- 3: $K_{DH} = r \cdot (pkey_U.K)$; /* $K = a \cdot G$; $K_{DH} = (ra) \cdot G$ */
- 4: $\beta = mx(K_{DH}) \mod p$; /* $x(K_{DH})$ es la abscisa de K_{DH} */
- 5: Return (A, β)

Algoritmo (Cifrado ECDH+ElGamal)

INPUT: Clave pública $pkey_U$ y texto en claro numérico m. **OUTPUT**: Punto resultante A, cifra β .

- 1: Generar una clave de sesión $r \in_{\mathcal{R}} [1, (pkey_U, p) 1];$
- 2: $A = r \cdot (pkey_U.G)$;
- 3: $K_{DH} = r \cdot (pkey_U.K)$; $/* K = a \cdot G$; $K_{DH} = (ra) \cdot G */$
- 4: $\beta = mx(K_{DH}) \mod p$; /* $x(K_{DH})$ es la abscisa de K_{DH} */
- 5: Return (A, β)

¡Recuperaremos $m \mod p$ y no m! En un sistema híbrido como el GnuPG, se puede perder la clave del cifrado simétrico.

$\overline{\mathsf{Esquema}}\ \overline{\mathsf{ECDH}} + \mathsf{ElGamal}$

Algoritmo (Cifrado ECDH+ElGamal)

INPUT: Clave pública $pkey_U$ y texto en claro numérico m.

OUTPUT: Punto resultante A, cifra β .

- 1: Generar una clave de sesión $r \in_{\mathcal{R}} [1, (pkey_U.p) 1];$
- 2: $A = r \cdot (pkey_U.G)$;
- 3: $K_{DH} = r \cdot (pkey_U.K)$; $/* K = a \cdot G$; $K_{DH} = (ra) \cdot G */$
- 4: $\beta = mx(K_{DH})$ MXX/p;
 - $/* x(K_{DH})$ es la abscisa de $K_{DH} */$
- 5: Return (A, β)

Algoritmo (Cifrado ECDH+ElGamal)

INPUT: Clave pública $pkey_U$ y texto en claro numérico m.

OUTPUT: Punto resultante A, cifra β .

- 1: Generar una clave de sesión $r \in_{\mathcal{R}} [1, (pkey_U.p) 1];$
- 2: $A = r \cdot (pkey_U.G)$;
- 3: $K_{DH} = r \cdot (pkey_U.K)$; $/* K = a \cdot G$; $K_{DH} = (ra) \cdot G */$
- 4: $\beta = mx(K_{DH})$ MXXX; /* $x(K_{DH})$ es la abscisa
 - $/* x(K_{DH})$ es la abscisa de $K_{DH} */$
- 5: Return (A, β)

Pero ahora $mx(K_{DH})$ puede ser un número demasiado pequeño, susceptible de un ataque por factorización.

Esquema alternativo ECDH+AES256

Esquema alternativo ECDH+AES256

Algoritmo (Cifrado ECDH+AES)

INPUT: Clave pública $pkey_U$ y texto en claro numérico m.

OUTPUT: Punto resultante A, cifra β .

```
1: Generar una clave de sesión r \in_{\mathcal{R}} [1, (pkey_U.n) - 1];
```

2:
$$A = r \cdot (pkey_U.G)$$
;

3:
$$K_{DH} = r \cdot (pkey_U.K);$$

 $/* K = a \cdot G; K_{DH} = (ra) \cdot G */$

4:
$$\beta = \text{aes}256(m, \{\text{sha}256(x(K_{DH}))\});$$

/* $x(K_{DH})$ es la abscisa de K_{DH} */

5: Return (A, β)

▶ ¿Qué significa $\beta = \text{aes}256(m, \{\text{sha}256(x(K_{DH}))\})?$

- ▶ ¿Qué significa $\beta = \text{aes256}(m, \{\text{sha256}(x(K_{DH}))\})?$
 - ▶ Queremos cifrar m con la clave $x(K_{DH})$ con un aes256.

- ▶ ¿Qué significa $\beta = \text{aes256}(m, \{\text{sha256}(x(K_{DH}))\})?$
 - Queremos cifrar m con la clave $x(K_{DH})$ con un aes256.
 - ▶ La clave $x(K_{DH})$ ha de ser de tamaño máximo y recuperable por el receptor: $sha256(x(K_{DH}))$.

- ▶ ¿Qué significa $\beta = \text{aes256}(m, \{\text{sha256}(x(K_{DH}))\})?$
 - Queremos cifrar m con la clave $x(K_{DH})$ con un aes256.
 - La clave $x(K_{DH})$ ha de ser de tamaño máximo y recuperable por el receptor: $sha256(x(K_{DH}))$.
- ► Podríamos resumirlo como una operación:

$$\beta = m \otimes (x(K_{DH})) \tag{2}$$

- ▶ ¿Qué significa $\beta = \text{aes256}(m, \{\text{sha256}(x(K_{DH}))\})?$
 - Queremos cifrar m con la clave $x(K_{DH})$ con un aes256.
 - La clave $x(K_{DH})$ ha de ser de tamaño máximo y recuperable por el receptor: $sha256(x(K_{DH}))$.
- Podríamos resumirlo como una operación:

$$\beta = m \otimes (x(K_{DH})) \tag{2}$$

 \blacktriangleright La resistencia del valor β queda garantizada por la del aes256.

Introducción Cifrado tipo ElGamal Esquema ECDH+ElGamal Esquema alternativo ECDH+AES256 Conclusión

► Las debilidades aparecen según los contextos: el ECDH+ElGamal mod p, es un algoritmo teórico admitido y difundido, pero no se puede usar en el contexto híbrido del GnuPG, en general, cuando m > p.

- ▶ Las debilidades aparecen según los contextos: el ECDH+ElGamal mod p, es un algoritmo teórico admitido y difundido, pero no se puede usar en el contexto híbrido del GnuPG, en general, cuando m > p.
- ▶ Potencia del *Open Source*: Mikael Mylnikov.

- ▶ Las debilidades aparecen según los contextos: el ECDH+ElGamal mod p, es un algoritmo teórico admitido y difundido, pero no se puede usar en el contexto híbrido del GnuPG, en general, cuando m > p.
- ▶ Potencia del *Open Source*: Mikael Mylnikov.
- ► GnuPG v1.4 ya soporta el esquema ECDH + AES256 de forma experimental.

- ▶ Las debilidades aparecen según los contextos: el ECDH+ElGamal mod p, es un algoritmo teórico admitido y difundido, pero no se puede usar en el contexto híbrido del GnuPG, en general, cuando m > p.
- ▶ Potencia del *Open Source*: Mikael Mylnikov.
- ▶ GnuPG v1.4 ya soporta el esquema ECDH + AES256 de forma experimental.
- ► GnuPG v2 va a implementar, nativamente desde la librería *LibGcrypt*, este esquema.