2 Spans, Sections, Lines

2.1 Linear Combinations and Span

Definition: Recall

Recall definition: Let $\overrightarrow{v_1}, \overrightarrow{v_2}, \cdots, \overrightarrow{v_n} \in \mathbb{F}^n$. A <u>linear combination</u> of $\overrightarrow{v_1}, \cdots, \overrightarrow{v_n}$ is a vector of the form:

$$c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \dots + c_n\overrightarrow{v_n}$$

Problem 1

1. In \mathbb{R}^2 :

$$2\begin{bmatrix}1\\1\end{bmatrix} + (-1)\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}$$

is a linear combination of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

2. In \mathbb{F}^n $\overrightarrow{v} = 1 \cdot \overrightarrow{v}$ $\overrightarrow{v} = 1 \cdot \overrightarrow{v} + 0\overrightarrow{u_1} + 0\overrightarrow{u_2} + \dots + 0\overrightarrow{u_n}$

3. In $\mathbb{F}^n \overrightarrow{0} = 0\overrightarrow{v_1} + \dots + 0\overrightarrow{v_n}$

Problem 2

Let $\overrightarrow{v_1}, \dots, \overrightarrow{v_n} \in \mathbb{F}^n$. The span of $\overrightarrow{v_1}, \dots, \overrightarrow{v_n} \in \mathbb{F}^n$ is the set span $\{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\} = \{c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \dots + c_n\overrightarrow{v_n} : c_1, \dots, c_n \in \mathbb{F}\}$

Warning:

$$span\{\overrightarrow{v_1}, \cdots, \overrightarrow{v_n}\} = c_1\overrightarrow{v_1} + \cdots + c_n\overrightarrow{v_n}$$

The left side is a set, while the right side is a vector.

Problem 4

1. T/F:
$$\mathbb{R}^2 = span\{\overrightarrow{e_1}, \overrightarrow{e_2}\} = span\{\begin{bmatrix} 1\\0 \end{bmatrix}\}, \begin{bmatrix} 1\\0 \end{bmatrix}\}$$

Proof.

$$\begin{aligned} span & \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \\ & = & \left\{ a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix} : a, b \in \mathbb{R} \right\} \\ & = & \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a, b \in \mathbb{R} \right\} \\ & = & \mathbb{R}^2 \end{aligned}$$

2. T/F:
$$\mathbb{R}^2 = span\left\{\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix}\right\}$$
:

Proof.

$$span\left\{\begin{bmatrix}1\\1\end{bmatrix}\right\}, \begin{bmatrix}3,4\end{bmatrix} = \left\{a\begin{bmatrix}1\\1\end{bmatrix} + b\begin{bmatrix}3\\4\end{bmatrix} : a,b \in \mathbb{R}\right\}$$
$$= \left\{\begin{bmatrix}a+3b\\a+4b\end{bmatrix} : a,b \in \mathbb{R}\right\}$$
$$= \mathbb{R}^2 \text{ Note this is not obvious}$$

Claim:
$$\mathbb{R}^2 = span\{\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix}\}$$

Proof. We can easily prove \supseteq . Let's prove \subseteq Let $\overrightarrow{v} \in \mathbb{R}^2$, say $\overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. For \overrightarrow{v} to be in $span\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}\}$ we must be able to find $a,b \in \mathbb{R}$ such

that

$$\iff \overrightarrow{v} = \begin{bmatrix} 1\\1 \end{bmatrix} + b \begin{bmatrix} 3\\4 \end{bmatrix}$$

$$\iff v_1 = a + 3b, v_2 = a + 4b$$

$$\to v_2 - v_1 = b$$

$$a = v_1 - 3b = v_1 - 3(v_2 - v)1$$

$$a = 4_1 - 3v_2$$

$$\therefore \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (2v_1 - 3v_2) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (v_2 - v_1) \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Problem 5

1. T/F:
$$\mathbb{R}^3 = span\left\{\begin{bmatrix} 1\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\0\end{bmatrix}\right\}$$

Answer is false.

$$\mathbb{R}^{3} = span\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$

$$= \left\{ a \begin{bmatrix} 1\\0\\0 \end{bmatrix} + b \begin{bmatrix} 1\\1\\0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

$$= \left\{ \begin{bmatrix} a+b\\b\\0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

 $\neq \mathbb{R}^3$ because it does not contain $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$