# PAN 2014 Author Profiler - podręcznik użytkownika

Jacek Kowalski, Paweł Lipski

13 maja 2014

# 1 Pobieranie kodu

git clone https://github.com/tilius/author-profiler.git Kod był uruchamiany pod wersją 2.7.3 Pythona.

# 2 Instalacja bibliotek obliczeniowych

#### 2.1 LIBLINEAR

Bibliotekę można pobrać z http://www.csie.ntu.edu.tw/ cjlin/liblinear/ (sekcja Download LIBLINEAR).

Po rozpakowaniu wystarczy wydać polecenie make. Powstały plik wykonywalne train oraz predict należy umieścić np. w /usr/local/bin (tak, aby były one dostępne przez PATH) pod następującym nazwami:

- train  $\rightarrow$  linear-train
- $predict \rightarrow linear-predict$

#### 2.2 LIBSVM

Domyślnie aplikacja wykorzystuje LIBLINEAR. Użycie LIBSVM do obliczeń można wymusić poprzez przekazanie opcji --libsvm do polecenia train.py.

Bibliotekę można pobrać z http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (sekcja Download LIBSVM).

Po rozpakowaniu wystarczy wydać polecenie make, a następnie umieścić trzy pliki wykonywalne (svm-train, svm-scale oraz svm-predict) np. w /usr/local/bin (tak, aby były one dostępne przez PATH).

## 3 Instalacja NTLK

Zgodnie z http://www.nltk.org/install.html, zakładając, że w systemie jest dostępny pip, należy uruchomić z shella:

```
sudo pip install -U numpy
sudo pip install -U pyyaml nltk
```

Następnie należy ściągnąć dane NTLK (dokładniej Part Of Speech Tagger). Po wejściu w interaktywną powłokę Pythona należy wpisać:

```
import nltk
nltk.download("maxent_treebank_pos_tagger")
```

#### 4 Uruchamianie

#### 4.1 Trenowanie

```
train.py [-h] -i corpus_dir -o model_dir [--disjoint] [--libsvm]
```

Zakłada się, że corpus\_dir jest katalogiem, w którym znajdują się pliki XML zgodne z formatem przewidzianym dla PAN 2014. Uprzednio utworzone przez train.py pliki w model\_dir zostaną nadpisane.

Niestandardowa opcja --disjoint uruchamia trenowanie w trybie osobnego trenowania i klasyfikacji dla płci oraz wieku. Odpowiedni obiekt klasyfikatora wraz z wszystkimi niezbędnymi rezultatami zostanie w takim przypadku zapisany do folderu model\_dir. Z tego względu nie przekazuje się tej opcji do classify.py. Niestandardowa opcja --libsvm wykorzystuje bibliotekę LIBSVM (zamiast domyślnej LIBLINEAR). Również tutaj nie ma potrzeby przekazywania tej opcji do classify.py - informacja o bibliotece zostanie zaszyta w plikach modelu.

#### 4.2 Klasyfikacja

classify.py [-h] -i corpus\_dir -m model\_dir -o output\_dir [--truth truth\_file]
[--accuracy accuracy\_output\_file]

Zakłada się, że corpus\_dir jest katalogiem, w którym znajdują się pliki XML zgodne z formatem przewidzianym dla PAN 2014. Uprzednio utworzone przez classify.py pliki w output\_dir zostaną nadpisane.

Niestandardowa (i nieobowiązkowa) opcja --truth truth\_file wskazuje plik zawierający faktyczne wyniki klasyfikacji - przyjmujemy format zgodny z tym używany w plikach PAN2013. Taki plik można też wygenerować za pomocą skryptu scripts/make-truth.sh, podając w parametrze katalog - wynik zostanie zapisany do pliku truth.dat w tym katalogu.

Niestandardowa (i nieobowiązkowa) opcja --accuracy accuracy\_output\_file

wskazuje plik, do którego zostanie zapisana linia z informacją o trafności klasyfikacji (używane w skryptach).

# 5 Wyniki

#### 5.1 Środowisko

Wszystkie testy były uruchamiane na Ubuntu 12.04 wirtualizowanym w VMware Player na Windows 7, na procesorze i7 przy włączonym VT-X.

We wszystkich testach użyto metryk CW, CNG, FW oraz POS.

#### 5.2 Legenda

**Styl** rodzaj danych (fragment korpusu treningowego PAN14), na jakich uruchamiane były testy

 $N_{total}$  całkowity rozmiar danego fragmentu PAN14

 $N_{train}, N_{test}$ rozmiar korpusu treningowego i testowego, wydzielonych z wybranego fragmentu PAN14

 $N_{maj}$  rozmiar klasy większościowej w obrębie korpusu testowego

linear użyto biblioteki LIBLINEAR

svm użyto biblioteki LIBSVM

**joint** trenowanie i klasyfikacja były przeprowadzane dla klas będących kombinacją płci i wieku

**disjoint** trenowanie i klasyfikacja były przeprowadzane oddzielnie dla płci i wieku

### 5.3 Rezultaty dla poszczególnych konfiguracji

| Styl         | $N_{total}$ | $N_{train}, N_{test}$ | $N_{maj}$ | Konfiguracja     | Dokładność        | Czas                 |
|--------------|-------------|-----------------------|-----------|------------------|-------------------|----------------------|
| Blog         | 147         | 75                    | 17        | linear, joint    | 28.00% (21/75)    | 1677 sec             |
|              |             |                       |           | linear, disjoint | 26.67% (20/75)    | 2833 sec             |
|              |             |                       |           | svm, joint       | 16.00% (12/75)    | $1695  \mathrm{sec}$ |
|              |             |                       |           | svm, disjoint    | 16.00% (12/75)    | 2711 sec             |
| Reviews      | 4470        | 200                   | 39        | linear, joint    | 16.00% (32/200)   | 316 sec              |
|              |             |                       |           | linear, disjoint | 12.00% (24/200)   | 544 sec              |
|              |             |                       |           | svm, joint       | 12.50% (25/200)   | 319 sec              |
|              |             |                       |           | svm, disjoint    | 11.50% (23/200)   | 543 sec              |
|              |             | 1000                  | 133       | linear, joint    | 28.30% (283/1000) | 1590 sec             |
|              |             |                       |           | linear, disjoint | 28.90% (289/1000) | $2895  \mathrm{sec}$ |
|              |             |                       |           | svm, joint       | 13.30% (133/1000) | 1683 sec             |
|              |             |                       |           | svm, disjoint    | 13.30% (133/1000) | 2912 sec             |
|              |             | 2000                  | 261       | linear, joint    | 36.60% (732/2000) | $3565  \mathrm{sec}$ |
|              |             |                       |           | linear, disjoint | 34.05% (681/2000) | 6212 sec             |
|              |             |                       |           | svm, joint       | (skipped)         | N/A                  |
|              |             |                       |           | svm, disjoint    | (skipped)         | N/A                  |
| Social media | 7746        | 150                   | 39        | linear, joint    | 58.67% (88/150)   | $1536  \mathrm{sec}$ |
|              |             |                       |           | linear, disjoint | 56.00% (84/150)   | $2622  \mathrm{sec}$ |
|              |             |                       |           | svm, joint       | 26.00% (39/150)   | $3257  \mathrm{sec}$ |
|              |             |                       |           | svm, disjoint    | 25.33% (38/150)   | $5646  \mathrm{sec}$ |
|              |             | 500                   | 108       | linear, joint    | 63.60% (318/500)  | 7489 sec             |
|              |             |                       |           | linear, disjoint | (skipped)         | N/A                  |
|              |             |                       |           | svm, joint       | (skipped)         | N/A                  |
|              |             |                       |           | svm, disjoint    | (skipped)         | N/A                  |
|              |             | 900                   | 261       | linear, joint    | 58.44% (526/900)  | 20321 sec            |
|              |             |                       |           | linear, disjoint | (skipped)         | N/A                  |
|              |             |                       |           | svm, joint       | (skipped)         | N/A                  |
|              |             |                       |           | svm, disjoint    | (skipped)         | N/A                  |

# 6 Wnioski

Użycie LIBLINEAR przynosiło zdecydowanie lepsze rezulataty niż użycie LIB-SVM. Ta druga w niektórych przypadkach zwracała dla wszystkich klasyfikowanych obiektów klasę większościową, a w jeszcze innych jej dokładność była nawet mniejsza niż naiwnej klasyfikacji wg klasy większościowej.

Nie miało większego znaczenia dla dokładności, czy trenowanie i klasyfikacja były przeprowadzane dla klas będących kombinacją płci i wieku, czy oddzielnie dla płci i wieku. W tym drugim przypadku jednak znacznie więcej czasu pochłaniały obliczenia, które przeprowadzać trzeba było dla obu kategorii oddzielnie.

Zdecydowanie największą część czasu zajmowały obliczenia (tagowanie części mowy) wykonywane przez NTLK.

Najlepsze rezultaty udało się osiągnąć dla fragmentu socialmedia — nawet już na stosunkowo niewielkiej części tego fragmentu ( $N_{train}=N_{test}=150$  spośród 300 najmniejszych plików) wynosiła ona blisko 60%. Jednocześnie dalszy wzrost rozmiaru wydzielonych korpusów treningowych i testowych w ogóle nie przyniósł wzrostu dokładności, a nawet spowodował jej spadek — stąd też zaniechaliśmy prób na większej liczbie plików.

Jednocześnie, nawet na znacznie większych korpusach ( $N_{train} = N_{test} = 2000$ ) wydzielonych z fragmentu reviews dokładność nie przekroczyła 40%.

We fragmencie blog dostarczone były pliki dla zaledwie 147 autorów, stąd też ciężko było sprawdzić dokładność dla większej liczby danych testowych i treningowych.

# 7 Wykresy



Rysunek 1: Wykres zależności dokładności od parametrów Coraz $\gamma$