University of Asia Pacific (UAP)

Department of Computer Science & Engineering amination Year: 2nd year 2nd semester Semester:

Mid Term Examination	Year: 2 nd year 2 nd semester Semester: Fall, 2	020
Course no. CSE 209	Course title: Digital Logic & System Design Credit:	4.0
Full Marks: 60	Time: 1 hour	
are shown in the ma	questions. Answer all of them. All questions are of equal value. Part argins. calculators are allowed.	marks
1. a) Discuss the univers	sality of NOR gate.	05
b) Implement the foll	owing Boolean function with only NOR gate	
y = AC`	$+ A^B + B^C$	05
c) Implement the following	owing function using K-map.	
F	$S(A, B, C, D) = \sum (0, 1, 2, 3, 6, 8, 10, 13, 14, 15)$	10
	OR	
		05
	circuit of IC # 74293(Counter).	05
, ,	p counter using IC # 74293.	03
c) Design MOD 8 synchronous up/down counter using J-K flip-flop and briefly de		10
its operation.		
2. a) Design a BCD ac Briefly describe its of	dder using IC # 7483 (4-bit parallel adder) and NOR gates only.	10
b) Design MOD 10 operation.) Johnson counter using J-K flip-flop and briefly describe its	10
3. a) Consider a counter	r circuit that contains eight JK FFs wired in the arrangement Q ₇ Q ₆	05
$Q_{5}Q_{4}Q_{3}Q_{2}Q_{1}Q_{0} \\$		
(i) Determine the cou	nter's MOD number.	
(ii) Determine the out	tput frequency in KHz when the input clock frequency is 16 MHz.	
(iii) What is the range	e of counting states for this counter?	
, ,	g state (count) of 01100111. What will be the counter's state after	

- b) A photo detector circuit is being used to generate a pulse each time a customer walks into a certain establishment. The pulses are fed to a seven-bit counter. The counter is used to count these pulses as a means for determining how many customers have entered the store. After closing the store, the proprietor checks the counter and finds that it shows a count of 0001101. He knows that this is incorrect because there were many more than thirteen people in his store. Assuming that the counter circuit is working properly.
- (i) What could be the reason for the discrepancy?
- (ii) How can you overcome from the discrepancy?

05

- c) Design a logic circuit that follows the following requirements:
- (i) Output X will equal to (C AND D) when A and B are the different.
- (ii) X will remain HIGH when A and B are same.

10