

Taller 4 (2° Parte): Ecuaciones y más ecuaciones...

iBienvenidas/os al Taller 4!

¿Qué vamos a trabajar en este taller?

- La utilidad que tienen los sistemas de ecuaciones lineales para resolver problemas en los que se encuentran presentes dos incógnitas.
- Las diferentes alternativas de solución que tienen un sistema de ecuaciones.
- Los diferentes procedimientos de solución que existen, tanto analíticos como gráficos.
- Las condiciones que se tienen presentes en una situación problemática para decidir qué método es más pertinente para arribar a una solución.

Para poder resolver una situación problemática en la que se definieron dos ecuaciones y tenemos dos datos que obtener, es importante seguir ciertos pasos. A continuación, les iremos mostrando los pasos mediante diferentes situaciones. iManos a la obra!

1° Paso: identificar en el problema las variables que intervienen, para luego obtener las dos ecuaciones que necesitamos.

Situación problemática Nº1

a) En el siguiente gráfico se representan dos funciones que dan solución a una situación problemática. Escriban la ecuación de cada función lineal e identifiquen las coordenadas del punto donde se intersecan.

- b) Identifiquen los datos y asignen nombre a las variables de cada enunciado. Luego, respondan: ¿A cuál de las siguientes situaciones corresponde como solución la gráfica anterior?
 - i. Diana va a un centro de impresiones e imprime su tarea que tiene diez páginas en blanco y negro y cuatro a color. Paga \$36 por las impresiones. Daniel también imprime su trabajo en el mismo lugar. Paga \$30 por su tarea que tiene cinco páginas en blanco y negro y otras cinco a color. ¿Cuál es el costo por cada impresión en blanco y negro y a color?
- ii. Carolina compra dos chupetines y un chicle y paga \$7, mientras que Carlos compra cinco chupetines y cuatro chicles y paga \$19. ¿Cuál es el costo de cada chupetín y cada chicle?
- iii. La señora Tomasa tarda ocho horas en tejer una bufanda y dos gorros. Al día siguiente teje dos bufandas y un gorro y tarda diez horas. ¿Cuánto tarda en hacer cada prenda?
- iv. El lunes por la mañana Brenda compra tres gelatinas y dos flanes por \$29. En la tarde del mismo día Brenda compra una gelatina y un flan y paga \$12. ¿Cuál es el costo por cada gelatina y cada flan?
- c) Justifiquen su elección

2º Paso: Una vez que se armó el sistema, analizar el método de resolución más conveniente.

En primer lugar, los invitamos a mirar atentamente los siguientes videos que muestran ejemplos de cómo se aplican tres de los métodos más sencillos para resolver sistemas de ecuaciones lineales.

Método de reducción o suma y resta

https://www.youtube.com/watch?v=TR27etegq7g

Método de sustitución

https://www.youtube.com/watch?v=L0QuX9RpEoM

Método de igualación

Seminario Universitario Módulo de Matemática y Física

https://www.youtube.com/watch?v=209uimxpb60

Situación problemática N°2

Observen atentamente los siguientes sistemas, y respondan:

i)
$$\begin{cases} y = x + 3 \\ y = 8 - 6x \end{cases}$$

$$(ii) \begin{cases} x + y = 15 \\ x = 2y \end{cases}$$

i)
$$\begin{cases} y = x + 3 \\ y = 8 - 6x \end{cases}$$
 ii)
$$\begin{cases} x + y = 15 \\ x = 2y \end{cases}$$
 iii)
$$\begin{cases} 3x - 2y = -3 \\ y = 3 + 2x \end{cases}$$

- a) ¿A cuál de los sistemas conviene resolver aplicando el método de igualación y por qué?
- b) ¿A cuál de los sistemas conviene resolver aplicando el método de sustitución y por qué?
- c) ¿A cuál de los sistemas conviene resolver aplicando el método de Reducción a suma y resta y por qué?
- d) Si tuvieran que explicar a un compañero/a qué debe tener en cuenta a la hora de seleccionar el método de resolución, ¿qué le dirían? Escriban su explicación.

En conclusión... debemos conocer varios métodos para optimizar la resolución de un problema.

3° Paso: Resolver el sistema de ecuaciones y dar la respuesta al problema.

Una vez que se resuelve el sistema de ecuaciones, es decir que encontramos el valor de las variables o incógnitas, es muy importante, redactar la respuesta al problema, ya que el modelo matemático que habíamos armado es para uso de quien lo va a resolver, pero debemos dar la respuesta en forma coloquial para responder a quien formuló la pregunta.

Situación problemática Nº3

La base de un rectángulo es 8 cm más larga que la altura, y el perímetro mide 42 cm. Calculen las dimensiones del rectángulo y hallen su área.

- a) Escriban parejas de números que podrían ser las dimensiones de la base y la altura del rectángulo. ¿Cuántos pares podemos encontrar de manera *intuitiva*?
- b) Ahora vamos a buscar una solución más **formal**. Identifiquen las incógnitas y planteen las ecuaciones correspondientes.
- c) Resuelvan analíticamente utilizando uno de los métodos de resolución a su elección. ¿Qué obtuvieron?
- d) ¿Cuál es la solución del problema?

A continuación, les proponemos seguir los siguientes pasos para resolver situaciones problemáticas.

- a) Planteen las ecuaciones correspondientes. Recuerden extraer los datos necesarios, para determinar las incógnitas
- b) Resuelvan analíticamente utilizando uno de los métodos de resolución a su elección. ¿Qué se obtiene?
- c) ¿Cuál es la solución del problema?
- d) Grafiquen el sistema de ecuaciones. Observando la gráfica de cada ecuación, respondan: ¿Cómo son entre sí las rectas que se obtienen?

Situación problemática N°4

Para cercar una parcela rectangular, 25 metros más larga que ancha, se han necesitado 210 metros de alambrada. Calculen las dimensiones de la parcela.

Situación problemática N°5

Colocamos una taza de café y la sacamos cuando alcanza la temperatura de $65^{\circ}C$. La temperatura ambiente es de $21^{\circ}C$ y consideramos que la taza de café disminuye la temperatura de manera uniforme (por cuestiones de practicidad) a $-3,5^{\circ}C$ por minuto.

Supongamos, que ahora estoy con un amigo y él coloca su taza de café en el microondas y la saca cuando está a $80^{\circ}C$. Es decir, tenemos la taza que salió a $65^{\circ}C$ y la de mi amigo que está a $80^{\circ}C$.

- a) Mi amigo pone a enfriar su taza frente a un ventilador con la idea de que comencemos a tomar el café cuando ambas tazas alcancen la temperatura de $45^{\circ}C$. La taza frente al ventilador disminuye la temperatura de manera uniforme (por cuestiones de practicidad) a $-5^{\circ}C$ por minuto. ¿Cuál de las dos llegará antes a esa temperatura? ¿Tendré que esperar a mi amigo o él a mí?
- b) ¿Llegarán ambas tazas a la misma temperatura en el mismo instante? ¿En qué instante? ¿Qué temperatura tendrían las dos tazas?

Situación problemática Nº6

Una montaña de 650 m de altura separa dos pueblos A y B. Desde A se ve la cima C de la montaña con un ángulo de elevación de 54°, y desde B con 36° ¿Cuál es la distancia entre los dos pueblos?