Berechenbarkeit

Vorlesung 3: Mächtigkeit Turingmaschine

18. April 2024

Termine — Modul Berechenbarkeit

Übungen	Vorlesung
16.4.	18.4.
Übung 1	Turingmaschine II
B-Woche	
23.4.	25.4.
Übung 1	Loop-Programme
A-Woche	(Übungsblatt 2)
30.4.	2.5.
Übung 2	While-Programme
B-Woche (Mittwoch Feiertag)	
7.5.	9.5.
1	y.s.
Übung 2 A-Woche	(Übungsblatt 3)
A-Moche	(oboligabidii 3)
14.5.	16.5.
Übung 3	Rekursion I
B-Woche (Montag Feiertag)	
21.5.	23.5.
Übung 3	Rekursion II
A-Woche	(Übungsblatt 4)

Übungen	Vorlesung
28.5. Übung 4 B-Woche	30.5. Entscheidbarkeit
4.6. Übung 4 A-Woche	6.6. Unentscheidbarkeit (Übungsblatt 5)
11.6. Übung 5 B-Woche	13.6. Spez. Probleme
18.6. Übung 5 A-Woche	20.6. Klasse P (Übungsblatt 6)
25.6. Übung 6 B-Woche	27.6. NP-Vollständigkeit
2.7. Übung 6 A-Woche	4.7. Komplexitätsklassen

Definition (§2.4 Turingmaschine; engl. *Turing machine*)

Turingmaschine ist Tupel $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$

- endl. Menge Q von Zuständen (engl. states) mit $Q \cap \Gamma = \emptyset$
- endl. Menge Σ von Eingabesymbolen (engl. *input symbols*)
- \bullet endl. Menge Γ von Arbeitssymbolen (engl. work symbols) mit $\Sigma \subseteq \Gamma$
- Übergangsrelation (engl. transition relation)

$$\Delta \subseteq \Big((Q \setminus \{q_+, q_-\}) \times \Gamma \Big) \times \Big(Q \times \Gamma \times \{\triangleleft, \triangleright, \diamond\} \Big)$$

• Leersymbol (engl. blank) $\square \in \Gamma \setminus \Sigma$

 $(\Gamma_{\mathcal{M}} = \Gamma \setminus \{\square\})$

- ullet Startzustand (engl. *initial state*) $q_0 \in Q$
- ullet Akzeptierender Zustand (engl. accepting state) $q_+ \in Q$
- ullet Ablehnender Zustand (engl. rejecting state) $q_- \in Q$

 \triangleleft = gehe nach links; \triangleright = gehe nach rechts; \diamond = keine Bewegung

Notizen

- Transformationssemantik für Berechnung Funktionen & Modularität
- Eingabe übersetzt in Bandinhalt bei Akzeptanz
 - Band vor Kopf leer
 - Ausgabe beginnend unter Kopf bis zum ersten
 - ► Band dahinter leer

Notizen

- Transformationssemantik für Berechnung Funktionen & Modularität
- Eingabe übersetzt in Bandinhalt bei Akzeptanz
 - Band vor Kopf leer
 - Ausgabe beginnend unter Kopf bis zum ersten
 - Band dahinter leer
- Beispiel §2.5 aus VL 2 berechnet

$$\{(ww^R,\varepsilon)\mid w\in\{a,b\}^*\}$$

Notizen

- Transformationssemantik f
 ür Berechnung Funktionen & Modularit
 ät
- Eingabe übersetzt in Bandinhalt bei Akzeptanz
 - ▶ Band vor Kopf leer
 - Ausgabe beginnend unter Kopf bis zum ersten
 - Band dahinter leer
- Beispiel §2.5 aus VL 2 berechnet

$$\{(ww^R,\varepsilon)\mid w\in\{a,b\}^*\}$$

§3.1 Definition (Transformationssemantik; engl. input-output relation)

Sei
$$M=(Q,\Sigma,\Gamma,\Delta,\Box,q_0,q_+,q_-)$$
 TM und $\Gamma_M=\Gamma\setminus\{\Box\}$

$$\mathcal{T}(\mathcal{M}) = \{(w, v) \in \Sigma^* \times \Gamma_{\mathcal{M}}^* \mid \exists x, y \in \{\Box\}^* \colon \varepsilon \ q_0 \ w\Box \ \vdash_{\mathcal{M}}^* \ x \ q_+ \ vy\}$$

§3.2 Theorem (Vereinigung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$

2 Turingmaschinen. Dann existiert TM M mit

$$L(M) = L(M_1) \cup L(M_2)$$
 und $T(M) = T(M_1) \cup T(M_2)$

§3.2 Theorem (Vereinigung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$ 2 Turingmaschinen. Dann existiert TM M mit

$$L(M) = L(M_1) \cup L(M_2)$$
 und $T(M) = T(M_1) \cup T(M_2)$

- Nutze neuen Startzustand r₀
- Neue Übergänge ohne Bandänderung zu alten Startzuständen q₀ und p₀

§3.2 Theorem (Vereinigung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$ 2 Turingmaschinen. Dann existiert TM M mit

$$L(M) = L(M_1) \cup L(M_2)$$
 und $T(M) = T(M_1) \cup T(M_2)$

- Nutze neuen Startzustand r_0
- Neue Übergänge ohne Bandänderung zu alten Startzuständen q₀ und p₀
- M₁ und M₂ laufen normal, wobei alle Übergänge in p₊ oder p₋ gehen stattdessen in q₊ bzw. q₋

§3.2 Theorem (Vereinigung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$ TM. Es existiert TM M mit $L(M) = L(M_1) \cup L(M_2)$ und $T(M) = T(M_1) \cup T(M_2)$

§3.2 Theorem (Vereinigung)

Seien $\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $\mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$ TM. Es existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

Beweis.

$$M = (Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \Box, r_0, q_+, q_-))$$

$$R = \{(r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup \{(r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup \{(p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla\} \cup \{(p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla\}$$

§3.2 Theorem (Vereinigung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$ TM. Es existiert TM M mit $L(M) = L(M_1) \cup L(M_2)$ und $T(M) = T(M_1) \cup T(M_2)$

Beweis.

$$\begin{split} \mathcal{M} &= \left(Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \square, r_0, q_+, q_- \right) \\ R &= \left\{ (r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \cup \\ &\left\{ (r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \cup \\ &\left\{ (p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla \right\} \cup \\ &\left\{ (p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla \right\} \end{split}$$

§3.2 Theorem (Vereinigung)

Seien $\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $\mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$ TM. Es existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

Beweis.

$$M = (Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \square, r_0, q_+, q_-))$$

$$R = \{(r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$$

$$\{(r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$$

$$\{(p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla\} \cup$$

$$\{(p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla\}$$

§3.2 Theorem (Vereinigung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$ TM. Es existiert TM M mit $L(M) = L(M_1) \cup L(M_2)$ und $T(M) = T(M_1) \cup T(M_2)$

Beweis.

$$M = (Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \Box, r_0, q_+, q_-))$$

$$R = \{(r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$$

$$\{(r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$$

$$\{(p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla\} \cup$$

$$\{(p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla\}$$

§3.2 Theorem (Vereinigung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$ TM. Es existiert TM M mit $L(M) = L(M_1) \cup L(M_2)$ und $T(M) = T(M_1) \cup T(M_2)$

Beweis.

OBdA sei $Q \cap P = \emptyset$ und $r_0 \notin Q \cup P$. Konstruiere TM

Dann $L(M) = L(M_1) \cup L(M_2)$ und $T(M) = T(M_1) \cup T(M_2)$

$$\mathcal{M} = \left(Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \Box, r_0, q_+, q_-\right)$$

$$R = \left\{(r_0, \gamma) \to (q_0, \gamma, \diamond) \mid \gamma \in \Gamma\right\} \cup \left\{(r_0, \gamma) \to (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\right\} \cup \left\{(p, \gamma) \to (q_+, \gamma', d) \mid (p, \gamma) \to (p_+, \gamma', d) \in \nabla\right\} \cup \left\{(p, \gamma) \to (q_-, \gamma', d) \mid (p, \gamma) \to (p_-, \gamma', d) \in \nabla\right\}$$

15

$$\Gamma_{\mathcal{M}} = \Gamma \setminus \{\Box\}$$

§3.3 Definition (normierte TM; engl. standardized TM)

 $\begin{array}{l} \mathsf{TM} \ \mathcal{M} = \big(Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-\big) \ \mathsf{normiert} \ (\mathsf{engl.} \ \mathit{standardized}), \ \mathsf{falls} \\ \mathcal{U} \in \{\square\}^* \ \mathsf{und} \ \mathcal{V} \in \Gamma_{\mathcal{M}}^* \{\square\}^* \ \mathsf{für} \ \mathsf{alle} \ \mathcal{W} \in \Sigma^*, \ \mathcal{U}, \mathcal{V} \in \Gamma^* \ \mathsf{mit} \ \varepsilon \ q_0 \ \mathcal{W} \square \ \vdash_{\mathcal{M}}^* \ \mathcal{U} \ q_+ \ \mathcal{V} \\ \end{array}$

$$\Gamma_{M} = \Gamma \setminus \{\Box\}$$

§3.3 Definition (normierte TM; engl. standardized TM)

```
 \mathsf{TM} \ \mathcal{M} = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \ \mathsf{normiert} \ (\mathsf{engl.} \ \mathit{standardized}), \ \mathsf{falls} \ \mathsf{u} \in \{\square\}^* \ \mathsf{und} \ \mathsf{v} \in \Gamma^*_{\mathcal{M}} \{\square\}^* \ \mathsf{für} \ \mathsf{alle} \ \mathsf{w} \in \Sigma^*, \ \mathsf{u}, \mathsf{v} \in \Gamma^* \ \mathsf{mit} \ \varepsilon \ q_0 \ \mathsf{w} \square \ \vdash_{\mathcal{M}}^* \ \mathsf{u} \ q_+ \ \mathsf{v} \ \mathsf{v} \in \Gamma^*_{\mathcal{M}} \ \mathsf{v} \ \mathsf{v} = \Gamma^*_{\mathcal{M}} \ \mathsf{v} = \Gamma^*_{\mathcal{M}} \ \mathsf{v} \ \mathsf{v} = \Gamma^
```

Notizen

- Normierte TM kann nur akzeptieren, falls Band links des Kopfes aus {□}* und Band unter und rechts des Kopfes aus Γ^{*}_M{□}*
- Wir konstruieren meist normierte TM
- Vereinigung normierter TM gemäß Theorem §3.2 ist normiert

§3.4 Definition (Verkettung; engl. composition)

Verkettung (oder Komposition; engl. composition) R_1 ; R_2 zweier Relationen $R_1 \subseteq A \times B$ und $R_2 \subseteq B \times C$ ist

$$R_1 : R_2 = \{(a, c) \in A \times C \mid \exists b \in B \colon (a, b) \in R_1, (b, c) \in R_2\}$$

§3.4 Definition (Verkettung; engl. composition)

Verkettung (oder Komposition; engl. composition) R_1 ; R_2 zweier Relationen $R_1 \subseteq A \times B$ und $R_2 \subseteq B \times C$ ist

$$R_1$$
; $R_2 = \{(a,c) \in A \times C \mid \exists b \in B \colon (a,b) \in R_1, (b,c) \in R_2\}$

Notizen

- Reihenschaltung (Hintereinanderschaltung)
- Erhalten für verdoppeln = $\{(n, 2n) \mid n \in \mathbb{N}\} \subseteq \mathbb{N} \times \mathbb{N}$

verdoppeln; verdoppeln =
$$\{(n, 4n) \mid n \in \mathbb{N}\}$$

$$\Gamma_{M_1} = \Gamma \setminus \{\Box\}$$

§3.5 Theorem (Verkettung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_{M_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ zwei TM mit M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

$$\Gamma_{M_1} = \Gamma \setminus \{\Box\}$$

§3.5 Theorem (Verkettung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_{M_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ zwei TM mit M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

$$\Gamma_{M_1} = \Gamma \setminus \{\Box\}$$

§3.5 Theorem (Verkettung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_{M_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ zwei TM mit M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

- Starte M₁
- Starte M₂ bei Akzeptanz von M₁ (Normierung erzeugt Ausgangssituation)

$$\Gamma_{M_1} = \Gamma \setminus \{\Box\}$$

§3.5 Theorem (Verkettung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_{M_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ zwei TM mit M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

- Starte M₁
- Starte M₂ bei Akzeptanz von M₁ (Normierung erzeugt Ausgangssituation)

§3.5 Theorem (Verkettung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_M, \Psi, \nabla, \square, p_0, p_+, p_-)$ zwei TM mit M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

§3.5 Theorem (Verkettung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_M, \Psi, \nabla, \square, p_0, p_+, p_-)$ zwei TM mit M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

Beweis.

OBdA. sei $Q \cap P = \emptyset$. Wir konstruieren TM

$$\mathcal{M} = (Q \cup P, \Sigma, \Psi, \Delta \cup \nabla \cup R, \square, q_0, p_+, p_-)$$

$$R = \{(q_+, \gamma) \to (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\}$$

§3.5 Theorem (Verkettung)

Seien $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_M, \Psi, \nabla, \square, p_0, p_+, p_-)$ zwei TM mit M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

Beweis.

OBdA. sei $Q \cap P = \emptyset$. Wir konstruieren TM

$$\mathcal{M} = (Q \cup P, \Sigma, \Psi, \Delta \cup \nabla \cup R, \square, q_0, p_+, p_-)$$

$$R = \{(q_+, \gamma) \to (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\}$$

Dann
$$T(M) = T(M_1)$$
; $T(M_2)$

§3.6 Definition (Iteration)

lteration R^* (reflexive, transitive Hülle; engl. iteration) der Relation $R \subseteq A \times A$

$$R^* = \bigcup R^n$$
 mit $R^0 = \mathrm{id}_A$ und $R^{n+1} = R^n$; R

§3.6 Definition (Iteration)

lteration R^* (reflexive, transitive Hülle; engl. iteration) der Relation $R \subseteq A \times A$

$$R^* = \bigcup_{n \in \mathbb{Z}} R^n$$
 mit $R^0 = \mathrm{id}_A$ und $R^{n+1} = R^n$; $R^n = \mathrm{id}_A$

Notizen

- Beliebig häufige Wiederholung der Relation
- Erhalten für verdoppeln = $\{(n, 2n) \mid n \in \mathbb{N}\} \subseteq \mathbb{N} \times \mathbb{N}$

$$\mathsf{verdoppeln}^* = \{ (n, 2^m \cdot n) \mid m, n \in \mathbb{N} \}$$

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \Box, q_0, q_+, q_-)$ normierte TM.

Dann existiert normierte TM N mit $T(N) = T(M)^*$

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \square, q_0, q_+, q_-)$ normierte TM. Dann existiert normierte TM N mit $T(N) = T(M)^*$

- Nutze neuen Startzustand p₀
 und neuen Akzeptanzzustand p₊
- ② Übergang von p_0 zu p_+ (Abbruch)

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \Box, q_0, q_+, q_-)$ normierte TM.

Dann existiert normierte TM N mit $T(N) = T(M)^*$

- Nutze neuen Startzustand p₀
 und neuen Akzeptanzzustand p₊
- ② Übergang von p_0 zu p_+ (Abbruch)
- **3** Übergang von p_0 zu q_0 (Iteration)
- M läuft normal; bei Erreichen von q_+ zurück in Startzustand p_0

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \Box, q_0, q_+, q_-)$ normierte TM.

Dann existiert TM N mit $T(N) = T(M)^*$

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \square, q_0, q_+, q_-)$ normierte TM.

Dann existiert TM N mit $T(N) = T(M)^*$

Beweis.

Seien $p_0 \notin Q$ und $p_+ \notin Q$ mit $p_0 \neq p_+$. Wir konstruieren TM

$$egin{aligned} N &= ig(Q \cup \{p_0, p_+\}, \Gamma_{M}, \Gamma, \Delta \cup R, \Box, p_0, p_+, q_-ig) \ R &= ig\{ig(p_0, \gamma)
ightarrow ig(p_+, \gamma, \diamond) \mid \gamma \in \Gammaig\} \cup \ ig\{ig(p_0, \gamma)
ightarrow ig(p_0, \gamma, \diamond) \mid \gamma \in \Gammaig\} \cup \ ig\{ig(q_+, \gamma)
ightarrow ig(p_0, \gamma, \diamond) \mid \gamma \in \Gammaig\} \end{aligned}$$

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \square, q_0, q_+, q_-)$ normierte TM.

Dann existiert TM N mit $T(N) = T(M)^*$

Beweis.

Seien $p_0 \notin Q$ und $p_+ \notin Q$ mit $p_0 \neq p_+$. Wir konstruieren TM

$$egin{aligned} \mathcal{N} &= ig(Q \cup \{p_0, p_+\}, \Gamma_{\mathcal{M}}, \Gamma, \Delta \cup \mathcal{R}, \square, p_0, p_+, q_-ig) \ \mathcal{R} &= ig\{(p_0, \gamma)
ightarrow (p_+, \gamma, \diamond) \mid \gamma \in \Gammaig\} \cup \ ig\{(p_0, \gamma)
ightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gammaig\} \cup \ ig\{(q_+, \gamma)
ightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gammaig\} \end{aligned}$$

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \Box, q_0, q_+, q_-)$ normierte TM.

Dann existiert TM N mit $T(N) = T(M)^*$

Beweis.

Seien $p_0 \notin Q$ und $p_+ \notin Q$ mit $p_0 \neq p_+$. Wir konstruieren TM

$$egin{aligned} & \mathcal{N} = \left(\mathcal{Q} \cup \{ p_0, p_+ \}, \Gamma_{\mathcal{M}}, \Gamma, \Delta \cup \mathcal{R}, \square, p_0, p_+, q_-
ight) \ & \mathcal{R} = \left\{ (p_0, \gamma)
ightarrow (p_+, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \cup \ & \left\{ (p_0, \gamma)
ightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \cup \ & \left\{ (q_+, \gamma)
ightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \end{aligned}$$

Dann
$$T(N) = T(M)^*$$

Operationen

Vereinigung

Verkettung

Iteration

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\cdots \square a b * * a a \square \square \square \cdots$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b, \triangleright) \qquad (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\cdots \ \square \ a \ * \ * \ * \ a \ a \ \square \ \square \ \square \ \cdots$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\cdots$$
 \square $*$ $*$ $*$ $*$ a a b a \square \cdots

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \qquad (q_0, b) \to (q_0, b, \triangleright) \qquad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \qquad (q_1, b) \to (q_b, *, \triangleright) \qquad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \qquad (q_a, \square) \to (q_*, a, \triangleleft) \qquad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \qquad (q_*, b) \to (q_*, b, \triangleleft) \qquad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \qquad (q_2, b) \to (q_+, b, \diamond) \qquad (q_2, *) \to (q_2, \square, \triangleright)$$

Notizen

- Viele Operationen nötig für Navigation
- Oft viele Läufe zwischen Ein- & Ausgabe nötig

Notizen

- Viele Operationen nötig für Navigation
- Oft viele Läufe zwischen Ein- & Ausgabe nötig
- Erhöhter Komfort durch mehrere Bänder (und intuitiver)

§3.9 Definition (*k*-Band-Turingmaschine; engl. *k-tape Turing machine*)

- **k-Band-Turingmaschine** ist Tupel $\mathcal{M} = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$
 - endl. Menge Q von Zuständen mit $Q \cap \Gamma = \emptyset$
 - endl. Menge ∑ von Eingabesymbolen
 - ullet endl. Menge Γ von Arbeitssymbolen mit $\Sigma \subseteq \Gamma$
 - Übergangsrelation $\Delta \subseteq \left((Q \setminus \{q_+, q_-\}) \times \Gamma^k \right) \times \left(Q \times (\Gamma \times \{\triangleleft, \triangleright, \diamond\})^k \right)$
 - Leersymbol $\square \in \Gamma \setminus \Sigma$ $(\Gamma_M = \Gamma \setminus \{\square\})$
 - Startzustand $q_0 \in Q$
 - ullet Akzeptierender Zustand $q_+ \in Q$
 - ullet Ablehnender Zustand $q_- \in Q$

 \triangleleft = gehe nach links; \triangleright = gehe nach rechts; \diamondsuit = keine Bewegung

<u>Notizen</u>

- k Arbeitsbänder
- k unabhängige Lese- & Schreibköpfe

(gleiches Arbeitsalphabet) (unabhängig beweglich)

<u>Notizen</u>

k Arbeitsbänder

- (gleiches Arbeitsalphabet) (unabhängig beweglich)
- k unabhängige Lese- & Schreibköpfe
- - Aktueller globaler Zustand
 - ▶ Inhalt aktuellen Zellen auf allen k Bändern
 - Globaler Zielzustand
 - ► Neuer Inhalt aller k Zellen
 - ▶ *k* Bewegungsrichtungen für *k* Köpfe

- Ausgangssituation
 - ► Eingabe auf erstem Band; andere Zellen & Bänder enthalten □
 - ► TM in Startzustand q₀
 - ► Kopf erstes Band auf erstem Symbol der Eingabe

- Ausgangssituation
 - ► Eingabe auf erstem Band; andere Zellen & Bänder enthalten □
 - ► TM in Startzustand q₀
 - Kopf erstes Band auf erstem Symbol der Eingabe
- ② Übergänge gemäß △

- Ausgangssituation
 - ► Eingabe auf erstem Band; andere Zellen & Bänder enthalten □
 - ► TM in Startzustand an
 - ► Kopf erstes Band auf erstem Symbol der Eingabe
- ② Übergänge gemäß △
- Haltebedingung
 - lacktriangle Aktueller Zustand final; akzeptierend q_+ oder ablehnend q_-
 - lacktriangle Kein passender Übergang ightarrow TM hält <u>nicht</u> ordnungsgemäß

- Ausgangssituation
 - ► Eingabe auf erstem Band; andere Zellen & Bänder enthalten □
 - ► TM in Startzustand an
 - ► Kopf erstes Band auf erstem Symbol der Eingabe
- ② Übergänge gemäß △
- Haltebedingung
 - Aktueller Zustand final; akzeptierend q₊ oder ablehnend q₋
 - lacktriangle Kein passender Übergang ightarrow TM hält <u>nicht</u> ordnungsgemäß

Akzeptanz Eingabe

Existenz Übergänge von Ausgangssituation in akzeptierenden Zustand

- Ausgangssituation
 - ► Eingabe auf erstem Band; andere Zellen & Bänder enthalten □
 - ► TM in Startzustand an
 - ► Kopf erstes Band auf erstem Symbol der Eingabe
- Übergänge gemäß △
- Haltebedingung
 - lacktriangle Aktueller Zustand final; akzeptierend q_+ oder ablehnend q_-
 - lacktriangle Kein passender Übergang ightarrow TM hält <u>nicht</u> ordnungsgemäß

Akzeptanz Eingabe

Existenz Übergänge von Ausgangssituation in akzeptierenden Zustand

Ausgabe: auf $\underline{\text{letztem}}$ Band (Band k) (normiert mind. auf letztem Band)

$$\begin{aligned} & \text{2-Band-TM } \mathcal{M} = \left(\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ & \left(q_0, \langle a, \square \rangle \right) \rightarrow \left(q_0, \langle (\square, \triangleright), (a, \triangleleft) \rangle \right) \quad \left(q_0, \langle b, \square \rangle \right) \rightarrow \left(q_0, \langle (\square, \triangleright), (b, \triangleleft) \rangle \right) \\ & \left(q_0, \langle \square, \square \rangle \right) \rightarrow \left(q_+, \langle (\square, \diamond), (\square, \triangleright) \rangle \right) \end{aligned}$$

$$\begin{aligned} \text{2-Band-TM } & \mathcal{M} = \big(\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ & \big(q_0, \langle a, \square \rangle \big) \to \big(q_0, \langle (\square, \triangleright), (a, \triangleleft) \rangle \big) \quad \big(q_0, \langle b, \square \rangle \big) \to \big(q_0, \langle (\square, \triangleright), (b, \triangleleft) \rangle \big) \\ & \big(q_0, \langle \square, \square \rangle \big) \to \big(q_+, \langle (\square, \diamond), (\square, \triangleright) \rangle \big) \end{aligned}$$

$$\begin{aligned} & \text{2-Band-TM } \mathcal{M} = \left(\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ & \left(q_0, \langle a, \square \rangle \right) \rightarrow \left(q_0, \langle \left(\square, \triangleright \right), \left(a, \triangleleft \right) \right\rangle \right) \quad \left(q_0, \langle b, \square \rangle \right) \rightarrow \left(q_0, \langle \left(\square, \triangleright \right), \left(b, \triangleleft \right) \right\rangle \right) \\ & \left(q_0, \langle \square, \square \rangle \right) \rightarrow \left(q_+, \langle \left(\square, \diamond \right), \left(\square, \triangleright \right) \right\rangle \right) \end{aligned}$$

$$\begin{aligned} & \text{2-Band-TM } \textit{M} = \big(\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ & (q_0, \langle a, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (a, \triangleleft) \rangle) \quad (q_0, \langle b, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (b, \triangleleft) \rangle) \\ & (q_0, \langle \square, \square \rangle) \rightarrow (q_+, \langle (\square, \diamond), (\square, \triangleright) \rangle) \end{aligned}$$

$$\begin{aligned} & \text{2-Band-TM } \textit{M} = \big(\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ & (q_0, \langle a, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (a, \triangleleft) \rangle) \quad (q_0, \langle b, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (b, \triangleleft) \rangle) \\ & (q_0, \langle \square, \square \rangle) \rightarrow (q_+, \langle (\square, \diamond), (\square, \triangleright) \rangle) \end{aligned}$$

Simulation der k-Band-TM $(Q, \Sigma, \Gamma, \Delta, \Box, q_0, q_+, q_-)$ durch TM

- Kodiere k Bänder durch 1 Band $\Gamma' = \Gamma \cup (\Gamma \cup \overline{\Gamma})^k$ (Tupelsymbole)

Kodierung Position k Köpfe

(Überstrich)

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand *q k*-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand *q k*-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$z = (q, lese, \langle \star, \star \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand *q k*-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, \mathsf{lese}, \langle a, \star \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, \mathsf{lese}, \langle a, \star \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand a k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, \mathsf{lese}, \langle a, \star \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand a k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, \mathsf{lese}, \langle a, \star \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand *q k*-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, \mathsf{lese}, \langle a, \star \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand *q k*-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, \mathsf{lese}, \langle a, \star \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, \mathsf{zur\"uck}, \langle a, a \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, \mathsf{zur\"uck}, \langle a, a \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, \mathsf{zur\"uck}, \langle a, a \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, \mathsf{zur\"uck}, \langle a, a \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, \mathsf{zur\"uck}, \langle a, a \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, \mathsf{zur\"uck}, \langle a, a \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand *q k*-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, \mathsf{zur\"uck}, \langle a, a \rangle)$$

- Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$z' = (q, w\ddot{a}hle, \langle a, a \rangle)$$

Simulation Ableitungsschritt k-Band-TM durch TM

- **0** ...
- 2 ...
- Nichtdeterministische Auswahl passender Übergang

$$((q, \mathsf{w\"ahle}, \langle s_1, \dots, s_k \rangle), \vec{a}) o ((q', \mathsf{schreibe}, \vec{r}), \vec{a}, \diamond) \in \Delta$$

für alle Übergänge $(q,\langle s_1,\ldots,s_k\rangle) o (q',ec r)$ der k-Band-TM

- **1** ...
- 2 ...
- **③** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **③** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \mathsf{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$
 $z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$

- **1** ...
- 2 ..
- **③** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **③** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \mathsf{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$
 $z'' = (q', \text{lese}, \langle \star, \star \rangle)$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **③** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \mathsf{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- 4 Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \mathsf{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$
 $z'' = (q', \text{lese}, \langle \star, \star \rangle)$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \mathsf{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- 4 Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \mathsf{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$
 $z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \mathsf{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$
 $z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \mathsf{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- **1** ...
- 2 ..
- **3** ...
- Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

§3.11 Theorem

Für jede (normierte) k-Band-TM M existiert (norm.) TM N mit T(N) = T(M)

Beweisskizze.

- M_{start}: Einrichten Ausgangssituation
- M_{simul}: Simulation Ableitungsschritte
- (wie gerade illustriert) Mausagbe: Ausgabe letztes Band (Löschen Bänder, Reduktion Tupel)

(Erweitern Eingabe auf Tupel)

Standard-Operationen

• Band auf anderes Band kopieren

Standard-Operationen

- Band auf anderes Band kopieren
- TM M auf Band i laufen lassen

(M(i) ist diese k-Band-TM)

Standard-Operationen

- Band auf anderes Band kopieren
- TM M auf Band i laufen lassen

(M(i) ist diese k-Band-TM)

Konsequenzen

• Verwende Bänder wie Variablen

Standard-Operationen

- Band auf anderes Band kopieren
- TM M auf Band i laufen lassen

(M(i) ist diese k-Band-TM)

Konsequenzen

- Verwende Bänder wie Variablen
- Verwende k-Band-TM statt TM

(äquivalente TM existiert)

Zusammenfassung

- Operationen auf Turingmaschinen
- *k*-Band-Turingmaschinen

Erste Übungsserie bereits im Moodle