

Functional Enrichment Analysis

functional genomics center zurich

Falko Noé

Explorative Functional Analysis

functional genomics center zurich

- Challenge
- Functional databases
- Functional enrichment
 - Overrepresentation analysis
 - Gene set enrichment analysis
- Tools

Data Interpretation - Challenge

Differential Gene Expression

- Hundreds/thousands of candidate genes
- Gene-by-gene interpretation difficult
- Linking different experiments
- Filter results (Venn)
- Identify:
 - key molecules (TFs, miRNAs, common effectors, master regulators)
 - Enriched Biological Processes/Pathways
 - Networks (links across candidates)

Filtering list of DEGs

- FDR cutoff $< 0.05 0.1 \rightarrow \text{p-value cutoff} < 0.01$
- Fold change cutoff (e.g., > 2 fold change)
- Rank list (top 10% based on p-value / fold change)
- Clustered genes with similar expression patterns
- Candidate gene list

Filtered/selected gene set

Explorative Functional Analysis

functional genomics center zurich

- Challenge
- Functional databases
- Functional enrichment
 - Overrepresentation analysis
 - Gene set enrichment analysis
- Tools

Which functional databases can be interrogated?

Gene Ontology

http://amigo1.geneontology.org/cgi-bin/amigo/go.cgi

Pathways

functional genomics center zurich

Protein class

These databases are typically constructed based on protein-protein interaction experiments, signaling pathway disruption experiment, literature screening (and combinations of the above)

Gene Ontology (GO) terms

- Three ontology domains:
 - 1. Molecular function (MF): basic activity or task e.g. catalytic activity, calcium ion binding
 - **2.** Biological process (BP): broad objective orgoal e.g. signal transduction, immune response
 - **3.** Cellular component (CC): location or complex *e.g. nucleus, mitochondrion*
- Genes can have multiple annotations:

Cytochrome gene

- Molecular function (MF): oxidoreductase activity
- Biological process (BP): oxidative phosphorylation, induction of cell death
- Cellular component (CC): mitochondrial matrix, mitochondrial inner membrane

GO terms are hierarchical

Functional databases: limitations

- Accurate functional annotation is only available for model organisms
- Functional terms are abundant and highly correlated
 - Multiple testing of interdependent terms (FDR)

Explorative Functional Analysis

- Challenge
- Functional databases
- Functional enrichment
 - Overrepresentation analysis
 - Gene set enrichment analysis
- Tools

Overrepresentation analysis

Case study:

- With a meta analysis Rasche et al. identified 213 genes associated with Type II Diabetes
- For a given KEGG pathway, they counted how many of these 213 genes are members of this pathway
- If this number is more than expected by chance, then this pathway could potentially be relevant to Type II Diabetes
 - Fisher's exact test

BMC Genomics. 2008 Jun 30;9:310. doi: 10.1186/1471-2164-9-310.

Meta-analysis approach identifies candidate genes and associated molecular networks for type-2 diabetes mellitus.

Rasche A¹, Al-Hasani H, Herwig R.

Fisher's exact test

- Statistical test used to determine if there are non-random associations between two categorical variables.
- Fisher devised the test following a comment from a colleague, who claimed to be able to detect whether the tea or the milk was added first to her cup.

Contingency table:	Present in seens (Not present in 15th		
	7. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	Not present in	, ota/
Member of KEGG pathway	107	637	780
Not member of KEGG pathway	452	8673	9125
Total	559	9346	9905

- Free tools
 - WebGestalt, R-packages, Cytoscape
- Commercial tools
 - MetaCore/GeneGo, Ingenuity (IPA)

Observed: 107

Expected:
$$\frac{780 * 559}{9905} = 44$$

Enrichment: **2.43x**, p-val < 0.00001

- Input: Unfiltered genes ordered in a ranked list L, according to their fold change or p-value
- **Goal**: Determine whether members of a gene set S are randomly distributed throughout the list L or tend to occur toward the top (or bottom) of L, as measured by Enrichment score (ES)
- **Enrichment score (ES):** The degree to which a set S is overrepresented at the extremes (top or bottom) of the entire ranked list L
- Random walk down the list L, increasing the running-sum when encounter a gene in S and decreasing it when encounter a gene not in S.
- ES is the max deviation from zero encountered in the random walk (Kolmogorov–Smirnov test)

Gene set enrichment analysis (GSEA): advantages

- Does not require a priori selection (e.g., p-value thresholds, clusters)
 - Not risking to generate too short lists
 - Meta-analyses are not limited by overlapping factors
- Aggregated small effects better captured
 - (would potentially miss with ORA)

Explorative Functional Analysis

functional genomics center zurich

- Challenge
- Functional databases
- Functional enrichment
 - Overrepresentation analysis
 - Gene set enrichment analysis
- Tools

Tools for functional enrichment analysis

- Free tools
 - WebGestalt (http://www.webgestalt.org/)
 - Panther (http://pantherdb.org/)
 - David (https://david.ncifcrf.gov/)
 - R Packages (topGO, GSEABase, clusterProfiler, ...)
 - GSEA (http://software.broadinstitute.org/gsea/index.jsp)
 - Cytoscape
- Commercial tools
 - MetaCore/GeneGO (https://portal.genego.com/)
 - Ingenuity Pathway Analysis (https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/)

GO Enrichment - Example from FGCZ Reports

GO-Term	P-Value	Ratio	
immune response	2.77e-14	50/289	289 Genes in the Gene Universe a annotated with 'Immune Respons
T-helper 17 cell differentiati	5.45e-05	3/3	50 Genes in Candidates List are
positive regulation of natural	4.24e-06	7/16	belonging to 'Immune Response'
regulation of immune response.	7.26e-07	16/81	
inflammatory response	3.11e-09	39/252	
cellular defense response	6.71e-07	13/49	
G-protein coupled receptor sig	7.12e-07	28/161	
cytokine-mediated signaling pa	2.39e-06	23/196	
.chemokine-mediated signaling p	1.66e-05	8/22	
negative regulation of viral g	3.33e-06	8/30	
positive regulation of natural	2.58e-05	4/5	
response to virus	5.88e-05	13/96	
defense response to virus	4.86e-08	20/120	
cytolysis	8.07e-05	5/13	
positive regulation of cell ad	9.08e-05	8/29	

GO Enrichment - Example with WebGestalt

http://webgestalt.org

Up regulated genes

Down regulated genes

Pathway Enrichment - Example with Metacore

- https://portal.genego.com, commercial (FGCZ has a license)
- Upload a file with list of selected genes
- One click enrichment analysis (eg. pathway enrichment analysis)

Maps	0	2	4	6	8	-log(pValue)	pValue +	FDR	Ratio
Cell adhesion_Endothelial cell contacts by junctional mechanisms		:	:	:			4.742e-10	3.841e-7	13/26
Cell adhesion_Chemokines and adhesion		:	:	:			2.305e-9	6.466e-7	24/100
Development_Regulation of epithelial-to-mesenchymal transition (EMT)		-:					2.395e-9	6.466e-7	19/64
$\underline{\text{Main pathways of Schwann cells transformation in neurofibromatosis type 1}}$		-:	-:				1.307e-7	1.825e-5	19/80
Muscle contraction_Regulation of eNOS activity in endothelial cells		-:	-:				1.333e-7	1.825e-5	17/65
Development_Oligodendrocyte differentiation from adult stem cells		-:	-:				1.352e-7	1.825e-5	15/51
Development_Regulation of endothelial progenitor cell differentiation from adult stem cells		-:	-:				2.332e-7	2.699e-5	16/60
Cytoskeleton remodeling Cytoskeleton remodeling		-:	-:				3.887e-7	3.936e-5	21/102
Cell adhesion_Endothelial cell contacts by non-junctional mechanisms		-:-	-:				4.404e-7	3.964e-5	10/24
Role of red blood cell adhesion to endothelium in vaso-occlusion in Sickle cell disease			:				7.603e-7	5.174e-5	12/37

• By clicking on the pathway name, one can get a full picture of the genes involved in that pathway, with genes from the uploaded list specifically marked (example on the next slide: Development regulation of EMT)

Pathway Enrichment - Example with Metacore

Summary

- Besides p value and/or fold change thresholds, clustering and venn diagram analysis can be used to filter DEGs
- GO terms are highly correlated, distributed across > 1,000 categories
- Functional analysis is only reliable for organisms with good annotation
 - GSEA of the full set of genes is more robust and versatile than functional overrepresentation analysis in selected/filtered set of genes
- Input for overrepresentation analysis
 - Filtered gene list based on p-value and/or fold change threshold
- Input for gene set enrichment analysis
 - Unfiltered gene list ranked based on p-value /or fold change

Additional Slides

Filtering list of DEGs: Venn diagram

- Idea
 - consider gene lists as sets and calculate intersection $(A \cap B)$, union $(A \cup B)$ and complement $(A \setminus B, B \setminus A)$
- Typical cases
 - Compare gene list to
 - data with similar context
 - public data
 - data from a different platform

functional genomics

Jaccard index

- Jaccard index is a measure of the similarity between sets
- Given set A and set B, the Jaccard index is given by:

$$\frac{|A\cap B|}{|A\cup B|}$$

• Takes the values of 1 when sets are identical, and 0 when there is no overlap

FGCZ - Interactive Shiny Apps

http://fgcz-shiny.uzh.ch

ShinyApp	Description
Explore RNA-seq counts	Perform clustering and MDS plots; identify effect sizes and potential outliers
Explore RNA-seq differential expression	Filter and visualize your differential expression result; inspect individual genes; identify functional categories associated with gene lists
<u>pcaExplorer</u>	Visualization of RNA-seq data based on Pricipal Component analysis using pcaExplorer package
<u>Heatmap</u>	create an interactive gene expression heatmap based on a differential expression result generated by SUSHI
2-way-Venn	compare two sets of differential expression results to create a VennDiagram
<u>3-way-Venn</u>	compare three sets of differential expression results to create a VennDiagram
Correlation	interactive scatterplot for two sets of differential expression results

functional genomics center zurich

Which functional categories are really enriched for my set of genes?

Note hierarchy to avoid redundancy

functional genomics center zurich

f. g. c. z. 10 0

Promoter Analysis

• Idea

- Identification and quantification of TFBS in promoter region of candidate genes
- Compare results with background model (typically 200-500 housekeeping or randomly selected genes)
- Compute ranking of TFs based on TFBS enrichment

Typical case

 Identify master regulatory transcription factors (potential marker discovery...)

Software tool

free tools (eg. Clover)
GeneXplain (uses TRANSFAC®-,
TRANSPATH®-DB from BIOBASE)

Analog type of analysis

Compute a ranking of microRNAs (based upon target gene expression; e.g. R-package 'MiRAGE')

2. Key Molecule Identification