测定高温超导材料的转变温度

杨哲元

2023年5月4日

目录	I
----	---

目录

1	实验目的	1
2	超导样品电阻测量	1
3	乱真电势	2
4	用铂电阻温度计测量温度	2
5	原始数据	3
6	总结	4
7	原始数据	5
8	思考题	5

1 实验目的 1

1 实验目的

- 学习超导体的基本概念, 理解理想导体与超导体的区别
- 使用液氮冷却高温超导样品、用铂电阻温度计测量温度,初步了解低温技术
- 四引线法测量高温超导样品的电阻—温度特性,观察零电阻现象
- 了解完全抗磁性

2 超导样品电阻测量

引线电阻

利用五位半数字电压表欧姆档测得电阻为

$$R_{wire} = 0.023\Omega$$

样品和引线电阻之和

四引线法测得电阻和为

$$R_{sum} = 0.474\Omega$$

由此计算得出样品盒总负载电阻

$$R_{SC} = R_{wire} - R_{sum} = 0.451\Omega$$

此时 CH3 工作在**恒流状态**,输出电压为 V=705mV,输出电流为 I=1000mA,超导样品电阻 $R=0.334m\Omega$

用四引线法测微小电阻时,电流引线与电压引线不能交换。如果交换,那么电压表测得的电压为样品电压加上电流引线电阻分压,测量误差变大了

3 乱真电势 2

3 乱真电势

换向前,超导样品电阻 R_{super} 和乱真电势 V_{super} 的关系为:

$$V_{meas1} = R_{super} + V_{super}$$

换向后,超导样品电阻 R_{super} 和乱真电势 V_{super} 的关系为:

$$V_{meas2} = -R_{super} + V_{super}$$

由此可见

$$R_{super} = \frac{1}{2}(V_{meas1} - V_{meas2}), \quad V_{super} = \frac{1}{2}(V_{meas1} + V_{meas2})$$

 $V_3 = -0.329V$, $V_4 = 0.341V$ 所以乱真电势为 $V = \frac{V_3 + V_4}{2} = 6mV$,可见乱真电势数量级远大于样品超导转变后电压的数量级,需要消除其影响。

4 用铂电阻温度计测量温度

限流电阻

计算限流电阻约 59900Ω , 实测也为 59900Ω

估算 77 K 至室温 23°C 范围内电路工作电流与 1mA 的最大偏差: 这一范围内铂电阻的变化范围为: $108.96 \sim 21.18\Omega$, 即工作电流的最大偏差为 $60V/(R+R_t)=1.32\times 10^{-3}mA$, 即铂电阻随温度变化对电流的影响基本上可以忽略不计。

四位半数字电压表显示值

$$23^{\circ}C$$
 时铂电阻为 108.96Ω 则初值为 $\frac{60\cdot 108.96}{108.96+59900}=108.94mV$ 实际测试值为 $V=108.91mV$

5 原始数据 3

CH1 的工作模式为**恒压**, 输出电压为 V=60.003V, 输出电流为 $I\approx 0mA, V=20.00mV$

需要注意的是在调整信号发生器的幅度设置过程中,固定输出电压为 20mV 可能会随着环境温度改变和重新接线而跳变,这时需要重新设置。

5 原始数据

从图上我们可以得出转变温度在 $-166^{\circ}C$, 转变宽度约 $\Delta T = 2^{\circ}C$ 从

图上我们可以得出转变温度在 $-171^{\circ}C$, 转变宽度约 $\Delta T = 2^{\circ}C$

6 总结

从升温和降温的两次测量发现转变温度的差异较大,这主要是由于降 温速度很快,导致数据变化速度快,测量误差比较大;升温速度慢,所以数 据观测更加精确。

从电阻随温度变化的两幅图中可以看出超导体具有零电阻特性,在降至转变温度后电阻迅速降为 0。但是电势图没测量出突变。

7 原始数据 5

7 原始数据

详细的计算数据记录在下面的三张表中。

8 思考题

简单说明超导材料的两个基本性质:零电阻和完全抗磁性(迈斯纳效应)

零电阻特性,超导体的电阻率在温度低于某一临界温度时迅速降至零、 不存在可观测的直流电阻的特性。

完全抗磁性: 即超导体处于超导态时其内部磁感应强度为零 $\vec{B}=0$,与其先处于外磁场中再降温至超导态还是先进入超导态再施加外磁场的过程无关。

阅读讲义、查阅文献,了解超导材料发展的历史和现状。举一个超导材料可以应用的例子

磁浮列车:超导材料可以制造高速磁浮列车中所需的强电磁场,使列车悬浮在轨道上,减少摩擦力和空气阻力,提高列车速度。

画出四极法(四端法)测电阻的示意图,四极法比两极法测电阻有什么优点?

相较于两极法,四极法测小电阻时更加精确。

- 4. 初级线圈和次级线圈平行排列,互感为 M0,如右图所示。设初级线圈中通有电流 $i=i_0cos\omega t$
- (1) 次级线圈两端的感应电动势的有效值 U_{AB0} 为 $-M_0 i_0 \omega / \sqrt{2}$ 频率越高, U_{AB} 越大
- (2) 如果两线圈之间插有一块样品。如下图所示如果样品是顺磁性的,则次级线圈两端的感应电动势的有效值 U_{AB} 比 U_{AB0} 大还是小?

大

如果样品是抗磁性的,则次级线圈两端的感应电动势的有效值 U_{AB} 比 U_{AB0} 大还是小?

小

表 1: 降温数据

			長 1: 降温	L 数据			
温度 (°C)	21	20	19	18	17	16	15
$V_{pt}(mV)$	108.18	107.79	107.42	107.02	106.63	106.24	105.85
V_3/mV	-0.328	-0.326	-0.324	-0.323	-0.321	-0.319	-0.318
V_4/mV	0.34	0.338	0.336	0.335	0.333	0.331	0.33
$v_{ar{\otimes}ar{\omega}}/mV$	19.97	19.96	19.99	19.96	19.94	19.94	19.97
温度 (°C)	-28	-90	-109	-110	-111	-112	-113
$V_{pt}(mV)$	89.06	64.45	56.69	56.3	55.91	55.5	55.09
V_3/mV	-0.257	-0.186	-0.165	-0.165	-0.164	-0.162	-0.162
V_4/mV	0.269	0.198	0.177	0.177	0.176	0.174	0.174
$v_{ar{\otimes}ar{\omega}}/mV$	29.73	38.9	43.3	43.55	43.77	44.06	44.31
温度 (°C)	-114	-115	-116	-117	-118	-119	-120
$V_{pt}(mV)$	54.69	54.28	53.71	53.48	53.08	52.65	52.25
V_3/mV	-0.16	-0.159	-0.158	-0.157	-0.156	-0.155	-0.154
V_4/mV	0.172	0.171	0.17	0.169	0.168	0.167	0.166
$v_{ m \&c}/mV$	44.62	44.85	45.23	45.37	45.66	45.95	46.28
温度 (°C)	-121	-122	-128	-157	-158	-159	-160
$V_{pt}(mV)$	51.85	51.37	49.27	37.24	36.8	36.41	36.03
V_3/mV	-0.153	-0.152	-0.147	-0.119	-0.118	-0.117	-0.116
V_4/mV	0.165	0.164	0.159	0.131	0.13	0.129	0.128
$v_{ar{\otimes}ar{\omega}}/mV$	46.51	46.84	48.66	59.21	59.69	60.18	60.54
温度 (°C)	-161	-162	-163	-164	-165	-165.8	-166
$V_{pt}(mV)$	35.53	35.16	34.74	34.37	33.99	33.61	33.56
V_3/mV	-0.114	-0.114	-0.112	-0.111	-0.109	-0.085	-0.076
V_4/mV	0.126	0.126	0.124	0.123	0.121	0.097	0.088
$v_{ar{\otimes}ar{\omega}}/mV$	61.1	61.54	62	62.46	62.93	63.47	63.54
温度 (°C)	-166.34	-166.61	-167	-168	-171	-172	-174
$V_{pt}(mV)$	33.39	33.28	32.71	32.29	31.31	31.07	30.29
V_3/mV	-0.038	-0.016	-0.001	-0.001	-0.001	-0.001	-0.001
V_4/mV	0.05	0.028	0.013	0.013	0.013	0.013	0.013
$v_{ar{\otimes}ar{\omega}}/mV$	63.67	63.8	64.44	65.08	66.28	66.91	67.88

表 2: 升温数据

			12	71111113/	- 1/H		
温度 (°C)	-181	-180	-179	-178	-177	-176	-175
$V_{pt}(mV)$	27.32	27.79	28.21	28.55	29.12	29.47	29.84
V_3/mV	0.002	0.002	0.002	0.002	0.003	0.003	0.003
$v_{ m \&c}/mV$	72.71	72.08	71.55	71	70.51	69.82	65.36
温度 (°C)	-174	-173	-172	-171	-170	-169	-168
$V_{pt}(mV)$	30.24	30.76	31.05	31.49	31.89	32.3	32.7
V_3/mV	0.003	0.003	0.095	0.109	0.11	0.111	0.113
$v_{ m \&c}/mV$	63.76	67.95	67.93	67.44	66.91	66.43	65.91
温度 (°C)	-160	-159	-158	-157	-156	-155	-154
$V_{pt}(mV)$	35.99	36.41	36.82	37.22	37.64	38.04	38.44
V_3/mV	0.122	0.123	0.124	0.125	0.126	0.128	0.128
$v_{ m \&c}/mV$	61.84	61.48	61.22	60.98	60.59	60.42	59.76
温度 (°C)	-153	-152	-151	-143	-139		
$V_{pt}(mV)$	38.85	39.26	39.67	42.93	44.3		
V_3/mV	0.13	0.13	0.132	0.142	0.146		
$v_{ m \&c}/mV$	59.4	58.99	58.56	54.77	53.49		

表 3: 不同温度下样品电阻上分压

温度 t/°C	21	20	19	18	17	16	15
样品电阻分压 V/mV	0.334	0.332	0.33	0.329	0.327	0.325	0.324
温度 t/°C	-28	-90	-109	-110	-111	-112	-113
样品电阻分压 V/mV	0.263	0.192	0.171	0.171	0.17	0.168	0.168
温度 t/°C	-114	-115	-116	-117	-118	-119	-120
样品电阻分压 V/mV	0.166	0.165	0.164	0.163	0.162	0.161	0.16
温度 t/°C	-121	-122	-128	-157	-158	-159	-160
样品电阻分压 V/mV	0.159	0.158	0.153	0.125	0.124	0.123	0.122
温度 t/°C	-161	-162	-163	-164	-165	-165.8	-166
样品电阻分压 V/mV	0.12	0.12	0.118	0.117	0.115	0.091	0.082
温度 t/°C	-166.34	-166.61	-167	-168	-171	-172	-174
样品电阻分压 V/mV	0.044	0.022	0.007	0.007	0.007	0.007	0.007

V _{@®} (mV)	V _{3,μ±} (mV)	t (min)	温度 (°C)	E、降温实验: 1、降温数据	D、用电磁/	C4, C	C2, 1	C、用铂 CI、	B、用电	A2 A3	A、超
(1.45) 13.81 13.81 13.81 13.84 (13.84) 13.84 (13.84) 13.81 13.81 13.81 13.81 13.81 13.81 13.81	0.344 0.340 0.338 0.335 0.335 0.333 0.333 0.333 0.334 0.310 0.326 0.324 0.324 0.327 0.338 0.336 0.338	9 dol 00 lot 00	108.45 208.18 107.79 131.44 107.02 (06.63) 106.44 105.85 105.77 104.68 104.70 103.91 103.72	: (注意,Vad ₄₄₀ 有正负号,样品发生超导转变后,继续每隔1分钟测一次,共5组左右,建议先查表温度对应电势值)	$oldsymbol{D}$ 、用电磁感应法测超导样品对感应电压的影响: $f=70011$ 2、正弦信号, $V_{pp}=\sqrt{12}\overline{D}$ $oldsymbol{V}$ $oldsymbol{V}$ $=\frac{20.00}{5}$ mV	C4、CH1工作模式: 恒压或恒流: (近氏.) 输出电压 Van = 60.00} V , 输出电流 Ian =OmA	$C2$ 、计算四位半数字电压表的显示初值 $V_{cab}= rac{(-8.5)^4}{2} ext{mV};$ $C3$ 、实际四位半电压表数值 $V_{cab}= rac{(-8.5)^4}{2} ext{mV};$	用铂电阻温度计测量温度: C1、限流电阻 R _{min} = <u>5</u> 5 5 ονΩ (取铂电阻阻值近似为 100Ω);	B、用电流换向法消除乱真电势的影响: V _{Moral} (3 档)=- <u>6.3 Å</u> mV. V _{Moral} (4 档)= <u>6.3 Å</u> mV.	A2、超导館内样品与引线电阻之和: R <u>6-4-7</u> 0 の A3、样品館总负载电阻 R <u>19-5</u> 2年 Ω, 0, 45 L A4、 CH3 工作模式:恒压或恒流:小 <u>67分</u> 、輸出电压 V= <u>145</u> mV、输出电流 I= <u>loco</u> mA、超导样品电阻 R= <u>19-3年</u> Ω	班級 <u>申17</u> 姓名 <u>· 拘項元.</u> 学号 <u></u>

Ves (mV)	V3.44 (mV)	Vm (mV)	温度	Ves (mV)	V3.11.2	P 80	温度		7.5			1					
			(%)	(mV)	V3.## (mV)	(mV)	(°C)	V _{BE} (mV)	V3.02 (mV)	V _m (mV)	温度 (°C)	2、升温		Vac (mV)	Vina (mV)		1 Va
64.18	11:0	3 4 35	-164				本	72.71.	0.002		181	a数据(从	10	mV) C	V _{4,ma} (mV) 6	t (min)	V (mV)
63.48	811.0	34.76	-/63					1. 72.08		27.79		升温起录	.15 50	77 70	981.0 152.9		2506/6
48.29	0.120	35.16	-/62					08/71.55	0,00%.	19 28-21	971-178	到超导样品电	10/ (t) 101.	198 0.177	6.25/ 0.186 0.165 0.143	0	Luux 76.68
62.52	0.121	35.58	191-	67.93	0.01	31.05	ナー72	71.00	2000	28.55	-178	升温数据(从升温起录到超导样品电阻大于 100 毫欧、按间隔约 1°C取转变温度前后各 15 个点的数据填入下表)	15 th 199.8th	30.0	0.14	11.	129 27 11.76 2 71 7 -s
18.19	0,102	35.98	-160	67.54	88010	31.40	*-172 - JG1	70.51. 69.82	6,003	29.12.	-177	色欧,接间隔	13.54 CH. 44.		100,0 0 tool	32-11	6 7 71
84:19	0,123	14:95	-189		0,109	31-81			0.003	29.47	-176	约1°C取转3	80.89	0.013	100,0	٦٠.٢	
61.22	421.0	36.82	-128	66.95 66.43	0.111	31.81 32.30	\$ -100 -169.		0.003	29.84	-175.	 医温度前后名	1 82.49	0.013	0,00	51.51	
81.22 60.98	0.125	37.22	-157	16.59	611.0	32.70	-188	63.76 6295	500,0	30.24	471-	15 个点的数	88.17 16.99	0.013	0.001 0.001	31.01 30.29	
60.59	0,126	37.64	-156	65.42	0.114	33.11	34:-167 -166	67.683	40000	30.76	-173	划据填入下表	8	8			-
634	0.14	4293	-143	64.96	0.115	33 53	-166	67.44	260.0	31.49	111-	0					
53	0,126 0,147 0,146	5.40	1241-	6450	UIII	33.94	465	16.99	101.0	31.90	-170						

