

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

Departamentul Autovehicule și Transporturi

PROIECT DE AN LA DISCIPLINA Proiectarea Roboților

Autor: Student Tudor-Simion POPESCU

Programul de studii: Robotică

Grupa 4LF881

Coordonatori: Prof. univ. dr. ing. Gheorghe MOGAN Cercet. dr. ing. Eugen BUTILA

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

FACULTATEA DE INGINERIE MECANICĂ

PROIECT DE AN LA DISCIPLINA Proiectarea Roboților

Autor: Student Tudor-Simion POPESCU Grupa 4LF881

Coordonatori științifici: Prof. univ. dr. ing. Gheorghe MOGAN Dr. ing. Eugen BUTILA

CUPRINS

Int	roducer	e	6
A.	MEMC	PRIUL TEHNIC (MT)	•••
1.	Temat	ica și schema structural-constructivă	
	1.1.	Tematica și specificații de proiectare	
		Schema structural-constructivă	
2.	Detern	ninarea parametrilor de încărcare a modulului II	
	2.1.	Modelarea în CATIA a sarcinii (model 3D)	•••
	2.2.	Determinarea parametrilor statici și dinamici ai sarcinii	
	2.3.	Determinarea parametrilor de încărcare a modulului II	
3.		ul și proiectarea modulului II	
		Calculul și proiectarea transmisiei mecanice a modulului II	
	3.2.	Calculul și proiectarea lagărului modulului II	•••
		Alegerea servomotorului și traductorului modulului II	
		Proiectarea Elementului de legătură	
		Modelul 3D în CATIA al modulului II și a EL	
		Determinarea parametrilor de încărcare a modulului I	
		Calculul asamblării de legătura a modulului I la EL	
4.		l și proiectarea modulului I	
		Calculul și proiectarea transmisiei mecanice a modulului I	
		Calculul și proiectarea lagărului modulului I	
	4.3.	Alegerea servomotorului și traductorului modulului I	•••
		Modelul 3D în CATIA al modulului II	•••
		Calculul asamblării de legătura a modulului I la fundație	
4.		3D în CATIA al produsului	
5.		ul de ansamblu în CATIA al produsului	
6.		de execuție în CATIA a Elementului de Legătură	
8.	Desen	de execuție în CATIA a carcasei modulului de Rotație	

B. ANEXE (aplicații CATIA)

- Modelul 3D al produsului (în CATIA)
 Desenul de ansamblu al produsului (în CATIA)
 Desenul de execuție a Elementului de Legătură
- 4. Desenul de execuție a carcasei modulului de Rotație

INTRODUCERE

Scopul proiectului de an la disciplina *Proiectarea roboților* este să dezvolte abilitățile practice ale studenților de proiectare și sintetizare a cunoștințelor de mecanică, rezistența materialelor, tehnologia materialelor și reprezentare grafică în decursul anilor I și II, precum și modul în care aceștia pot rezolva în mod independent o lucrare de proiectare, pe baza algoritmilor, metodelor specifice și programelor din domeniu.

...... se vor prezenta (pe această pagină) aspecte generale legate de construcția și proiectarea dispozitivelor de remorcare auto

Autorul,

1. TEMATICA ȘI SCHEMA STRUCTURAL-CONSTRUCTIVĂ

1.1 TEMATICA ȘI SPECIFICAȚII DE PROIECTARE

Aspecte generale

Să se proiecteze structura constructivă a sistemului mecanic bimobil (cu două module independente) al unui produs mecatronic cu schema bloc prezentata în fig. 1, utilizat în scopul deplasării controlate, cu precizie impusă, a unei sarcini utile, într-un mediu de lucru impus. Deplasarea în spațiul de lucru a sarcinii utile se realizează prin combinarea a două mișcări (de translație și de rotație) realizate de cele două module independente.

Fig. 1

Semnificația notațiilor: MI, MII - module independente (de rotație sau de translație); PM1, PM2- puterile mecanice ale motoarelor de acționare; E - efectorul final cu sarcina manipulată; PM - puterea mecanică de antrenare; I1, I2-informații de intrare (de comandă); E1, E2- informații rezultate (feedback); S(P)R - sistemul (procesul) de lucru (de operare).

Produsul de proiectat este specializat pentru a efectua deplasarea controlată precisă a unui efector (prehensor, dispozitiv de prindere) împreună cu o sarcină utilă (piesa, sculă, palpator) în scopul realizării de operații de manipulare, tehnologice sau de inspecție.

Date de proiectare

Pentru obținerea unor produse mecatronice modulare care se pot adapta pentru mai multe situatii posibile în practică se dau următoarele date:

- A. Tipurile și succesiunea modulelor:
 - a. Rotatie (T),
 - **b.** Translatie (R).
- **B**. Direcțiile mișcărilor modulelor
 - a. orizontală,
 - **b.** verticală,
 - c. înclinată, la 45° față de direcția verticală.
- C. Sarcina utilă cu efector:
 - **a.** cub cu latura L+ dimensiune L [mm]/material,
 - **b.** cilindru cu înălțimea L și raza R = L/2 + dimensiune L [mm]/material.
- **D.** Direcția axei efectorului (care include prehensorul)
 - a. orizontală,
 - **b.** verticală.
- **E.** Performanțe impuse pentru modulul de rotație:
 - cursa $\varphi[\text{grade}]/\text{viteza}$ maxima $\varpi[\text{grade/s}]/\text{accelerația}$ maximă $\varepsilon[\text{grade/s}^2]$.
- **F.** Performanțe impuse pentru modulul de translație:

cursa l[m]/viteza maximă v [m/s]/accelerația maximă a [m/s²].

G. Precizia:

de poziționare e [mm]/de repetabilitate r [mm].

- **H.** Durata de funcționare D = 10000 [ore]
- I. Caracteristici de mediu:
 - domeniul temperaturilor de lucru T [°C],
 - altitudinea h [m],
 - existența impurităților: praf, nisip, mediu coroziv, umezeală etc.
- **J.** Distanța centrului de masă al sarcinii pînă la axa ultimului modul, d = 250 mm.

Specificații suplimentare de proiectare

- se vor alege și monta traductoare pentru generarea semnalului de feedback;
- funcționare cu zgomot scăzut;
- greutate micșorată;
- limitatoare reglabile la final de curse;
- limitare de moment (motor cu limitare de moment);
- motor cu protecție termică;
- fără jocuri axiale la schimbarea sensului; posibilități de fixare la bază (fundație) a primului modul în plan orizontal și vertical;
- costuri scăzute;
- randamente ridicate.

1.2 SCHEMA STRUCTURAL-CONSTRUCTIVĂ

În fig. 2 și 3 se prezintă schemele structurale generale care se pot obține prin înseriarea unui modul de R cu un modul de T și respectiv modul de T cu un modul de R.

Semnificațiile notațiilor din fig. 1 și 2:

H – orizontal, V – vertical;

 x_I – axa x a modulului I, y_I – axa y a modulului I, x_{II} – axa x a modulului II, y_{II} – axa y a mo

 F_{Ix} , F_{Iy} - forțele după axele x_I respectiv y_I care încarcă modulul I; M_{Ix} , M_{Iy} , M_{Iz} - momentele după axele x_I , y_I respectiv z_I (perpendiculară pe planul sceen-ului) care încarcă modulul I;

 F_{Ex} F_{Ey} - forțele după axele x_{II} respectiv y_{II} care încarcă modulul II; M_{Ex} M_{Ey} M_{Ez} - momentele după axele x_{II} , y_{II} respectiv z_{II} (perpendiculară pe planul sceen-ului) care încarcă modulul II;

 α_{I} , α_{II} , α_{E} – unghiurile raportate la axa vericala (V) ale modulului I, modulului II, respectiv, Efectorului;

M_I M_{II} - motorul modululii I, respectiv II;

d, d/2 - distante

S – centrul de greutate al sarcinii;

E - extremitatea efectorului în zona modulului II;

LT - lagăr de Translație, LR – Lagăr de Rotație;

C_I, C_{II} - centrele de greurtate ale modulului I, respectiv, II;

TM_I, TM_{II} - Transmise Mecanică a modulului I, respectiv, II;

R, T – modul de Rotatie, respectiv, Translatie;

Gs, G_{II} - greutatea sarcinii, respectiv, modulului II;

F_{iS}, F_{iII} – fortele de inertie ale sarcinii, respectiv, modulului II;

M_{iS} M_{iII} – momentele de inerție ale sarcinii, respectiv, modulului II;

EL - Element de Legătură

Tab. 1.1

Unghiul	α _I	α _{II}	α _E
	[0°, 45°, 90°]	[0°, 45°, 90°]	[0°, 45°, 90°]
Valoarea	45°	90°	0°

2. DETERMINAREA PARAMETRILOR DE ÎNCĂRCARE A MODULULUI II

2.1 MODELAREA ÎN CATIA A EFECTORULUI CU SARCINA (MODEL 3D)

Figura 1

Figura 2

2.2 DETERMINAREA PARAMETRILOR STATICI ȘI DINAMICI AI SARCINII

Figura 3

 G_S - greutatea sarcinii - se determină din modelul CATIA (la ora de aplicatii)

 F_{iS} , forța de inerție ale sarcinii, $F_{iS} = M_S$ a.

 M_{iS} momerntul de inerție ale sarcinii, $M_{iS} = J_S \epsilon$

unde, M_S și J_S, se determină din modelul CATIA (la ora de aplicatii)

Performantele impuse modulului de translatie:

Lungimea cursei – 0.7m

Viteza maxima – 4 m/s

Acceleratia maxima -3 m/s^2

Tab. 1.2

Forma sarcinii	Paralelipiped, L	Material
Valoarea	170	Otel

 F_{is} , $G_s M_{is} = ?$

 $F_{iS} = M_S * a = 38.616 kg * 3 m/s^2 = 115.848 N$

 $G_s = M_s * g = 38.616 kg * 9.80665 m/s^2 = 378.6936 N$

Forta axiala $F_v = F_{iS} + G_s = 494.5416N$

Distanta de la modulul 2 pana la centrul de greutate al sarcinii este de 70 mm + l/2; d=155 mm. $M_{is}=Fy*d$; $M_{is}=76.654$ N*m

Turatia motorului n = 60*v/p, unde v este viteza maxima de deplasare, iar p este pasul surubului cu bile. Dupa alegerea pasului maxim, 25mm, atingerea vitezei dorite ar necesita o turatie prea mare a motorului, motiv pentru care viteza a fost redusa de la 4 m/s la 1.25 m/s, rezultand in turatia motorului de 3000 rot/min.

Calculul capacitatii dinamice se face dupa formula

$$C_{\text{nec}} = Q \sqrt[p]{\frac{L_h 60 \, n}{10^6}}$$

Unde Q reprezinta forta axiala, p exponentul de durabilitate, L_h durata de functionare in ore, iar n turatia in rotatii pe minut.

Forta a fost calculata F = 494.5416 N.

Exponentul de durabilitate este 3.33.

Durata de functionare ceruta este de 10000 ore.

Astfel, capacitatea dinamica este egala cu 4696.3648 N.

Cunoscute fiind capacitatea dinamica necesara si forta axiala a putut fi ales surubul cu bile:

Datasheet

Ball Screws rolled 4R25-25K2-FSCDIN-770-770-0,023

Nut designation R25-25K2-FSCDIN

Configuration attributes: 4R25-25K2-FSCDIN-770-770-0,023

type of spindle	rolled
nominal diameter in mm	25
lead	25
path deviation in µm	23 μm/ 300 mm
Nut assembly	With axial play 0,04 mm assembled

Nut designation R25-25K2-FSCDIN / Spindle designation R25-25N-770-770-0,023

True designation NES	LUIKE TOOL	my spinale de	31gHation 1123 2314 110 110 0,023
Spindle diameter	ds	24,7	mm
lead	P	25	mm
Nut diameter	D_{g6}	40	mm
External flange diameter	D1	62	mm
Centring diameter	D2	51	mm
Hole diameter	D3	6,6	mm
Hole pattern		1	
Nut length	L	70	mm
Flange width	L1	10	mm
Fit length	L2	16	mm
Lubrication hole distance	L3	5	mm
Lubrication hole	S	M6	mm
Flange width	В	48	mm
Core diameter	dk	22,1	mm
Dynamic load rating	C _{dyn}	7.400	N
Static load rating	Co	19.100	N
Axial play		0,04	mm
Mass		0,48	kg/St.

Figura 4

Puterea necesara $P_e = F_y * v$; $P_e = 618.177$ W, unde v este viteza ceruta in m/s. Puterea la motor $P_m = P_e/\eta$; $P_m = 664.70645$ W, unde randamentul $\eta = 0.93$.

 $Momentul \ M_m = 30/\pi * P_m/n_m; \ M_m = 2.1158N*m, \ unde \ n_m \ este \ turatia \ motorului, \ adica \ 3000 \ rot/min.$

Motorul ales:

	Model	ATO80SY-M02430
	Matched Drive Model	ATO-SG-AS151000 (Click it to the product page)
	Square Flange Size	80 mm
	Rated Power	750 W (1 hp)
	Rated Voltage	Single phase or three phase 220V AC
	Rated Current	3.5 A
Basics	Rated Speed	3000 rpm
	Max Speed	3600 rpm
	Rated Torque	2.4 Nm
	Peak Torque	7.2 Nm
	Rotor Inertia	1.96x10 ⁻⁴ KG.m ²
	Weight	3 Kg
	Number of Pole Pairs	4
	Brake Voltage	24V DC
	Incremental Encoder Line	2500/5000 PPR
	Absolute Encoder	17/33 bit, 22/38 bit, 23/39 bit
	Structure	Plastic packaging, self-cooling
	Vibration	Under 2.5G
Technical Parameters	Work System	Continuous
	Installation Method	Flange installation
	Insulation Class	Class B
	Insulation and Voltage Resistance	1500V AC, 1 Min
	Insulation Resistance	500V DC, 10Ω above
	Safety Class	IP54
	Warranty	12 months
	Temperature	0°C ~ +55°C
Environment	Altitude	Under 1000m
	Humidity	<90%RH, (no dewing)

Figura 5

L (Incremental/Absolute encoder): 158mm

Figura 6

Figura 7

Diametrul admisibil al arborelui

$$d = \sqrt[3]{\frac{16\,M_t}{\pi\,\tau_{at}}} \quad \text{da a fost calculat formula:}$$

Unde d este diametrul, Mt este momentul de torsiune, iar τ_{at} este rezistenta admisibila conventionala la torsiune, alseasa la 25 MPa.

Da = 7.554 mm

Capatul de arbore la intrare, capatul are diametrul de 10mm, iar umerii de 15mm si 23 mm.

Figura 8

Motorul este cuplat printr-un cuplaj flexibil de aluminiu la arbore:

Material	2017 Aluminum and 304 Stainless Steel
For Shaft Diameter	10mm × 19mm
Overall Length	1 57/64"
OD	1 47/64"
Maximum Speed	10,000 rpm
Maximum Torque	89 inlbs.
Misalignment Capability	
Parallel	0.009"
Angular	1°
Axial	0.024"
For Shaft Type	Round
For Shaft Misalignment Type	Parallel, Angular, Axial
For Motion Type	Forward/Reverse, Start/Stop
Shaft Coupling Type	Flexible
Construction	One Piece
Shaft Mount Type	Clamp On
Clamping Screw	
Туре	Socket Head Screw
Material	Steel
Number Included	2
RoHS	RoHS 3 (2015/863/EU) Compliant
REACH	REACH (EC 1907/2006) (01/19/2021, 211 SVHC) Complian
DFARS	Specialty Metals COTS-Exempt
Country of Origin	Japan
Schedule B	848360.8000
ECCN	EAR99

Figura 9

Figura 10

Cupla elicoidala este sustinuta de o pereche de rlmenti axial-radiali. Rulmentii au fost alesi din catalogul Ina Schaeffler pentru a rezista solicitarii axiale de 500 N timp de 10000 de ore.

Figura 11

Main Dimensions & Performance Data

d	15 mm	Bore diameter
D	35 mm	Outside diameter
В	11 mm	Width
Cr	8 900 N	Basic dynamic load rating, radial
C _{0r}	4 450 N	Basic static load rating, radial
Cur	305 N	Fatigue load limit, radial
n _G	12 800 1/min	Limiting speed
≈m	0,046 kg	Weight

Mounting dimensions

d _{a min}	19,2 mm	Minimum diameter of shaft shoulder
D _{a max}	30,8 mm	Maximum diameter of housing shoulder
D _{b max}	32,6 mm	Maximaler Durchmesser der Gehäuseschulter
r _{a max}	0,6 mm	Maximum fillet radius of shaft
Fa1 max	0,3 mm	Maximum fillet radius of housing

Temperature range

T _{min}	-20 °C	Operating temperature min.
T _{max}	100 °C	Operating temperature max.

Dimensions

r _{min}	0,6 mm	Minimum chamfer dimension
r _{1 min}	0,3 mm	Minimum chamfer dimension
D ₁	27,6 mm	Shoulder diameter on outer ring wide side face
D ₂	29,2 mm	Caliber diameter on outer ring wide side face
D ₃	32,1 mm	Caliber diameter on outer ring small side face
d ₁	22,8 mm	Shoulder diameter on inner ring wide side face
d ₂	19,7 mm	Caliber diameter on inner ring wide side face
a	16 mm	Distance between the apexes of the pressure cones
α	40 °	Contact angle

Figura 12

Rulmentii sunt fixati cu o piulita de fixare rulmenti:

Material	Carbon Steel
Thread	
Size	M15
Pitch	1 mm
Туре	Metric
Spacing	Extra Fine
OD	25mm
Width	8.5 mm
Insert Maximum Temperature	160° F
For Spanner Wrench Style	Hook
Nut Type	Locknut
Face Style	Chamfered
Locking Type	Nylon Insert
Specifications Met	ISO 2982-2
RoHS	RoHS 3 (2015/863/EU) Compliant
REACH	REACH (EC 1907/2006) (06/25/2020, 209 SVHC) Compliant
DFARS	Specialty Metals COTS-Exempt
Country of Origin	United States
USMCA Qualifying	No
Schedule B	848790.0080
ECCN	EAR99

Figura 13

Figura 14

Pentru a impiedica scurgerea uleiului carcasa este etansata cu mansete de rotatie:

Figura 15

Subansamblul de intrare al modulului de translatie arata astfel:

Figura 16

Pentru preluarea fortelor perpendiculare si a momentelor surubul este sprijinit de doua ghidaje liniare. Fiecare bloc are doua bucse, asigurand astfel ca nu se va bloca din cauza momentului ridicat.

Dimension	Value
В	41.4 mm
В	41.15 mm
B3	31.75 mm
B7	28.45 mm
B9	44.45 mm
B9	44.45 mm
F Bolt	ф3.505 mm
FØ	4.064 mm
G Bolt	ф3.505 mm
GØ	4.064 mm
н	269.75 mm
н	14.275 mm
Н3	25.4 mm
H5	4.825 mm
Н8	12.7 mm
Н9	23.875 mm
J	36.575 mm
13	57.15 mm
L	865 mm
L2	69.85 mm
L3	14.224 mm

Specification	Value
Diameter	10 mm (0.380 in)
Length	864.997 mm (34.055 in)
Environment	Standard
Shaft Material	Steel
Support Material	Aluminum
Block Material	Aluminum 6061, Delrin, Nitrile
Block PartNumber	TWN6-XS
Shaft PartNumber	3/8 L CTL
Support PartNumber	ASB6-XS

Performance	Value
Dynamic Load	712 N (160 lbf)
Max Temperature	85 °C (185 °F)

Pentru legarea ghidajelor de surub a fost proiectata o piesa de legatura, subansamblul aratand astfel (Figura 18).

Figura 18

La capatul surubului a fost montat un traductor rotativ incremental pentru determinarea cu precizie a miscarii cuplei.

General

Feedback Type	Incremental
Technology	Optical
Mounting Configuration	Hubshaft mount with 2-hole spring tether

Mechanical

Encoder Size (Flange)	<2.0"
Hollow Bore Size	6mm-5/8"
Housing Material	Aluminum
Max. Operating Speed	5,000 RPM

Electrical

Resolution	100-2540 PPR
Supply Voltage	5VDC, 12VDC, 15VDC
Interfaces	DLD 7272

Environmental

Protection Class (IP)	IP54
Approvals / Certifications	CE, ROHS
Operating Temperature Range	0°C to 70°C
Storage Temperature	-25°C to +70°C
Enviroment	Non-Hazardous

Pentru asigurarea preciziei de 0.05 mm la un pas de 25mm, rezolutia traductorului trebuie sa fie de 25/0.05 = 500 de pulsuri pe minut. Diametrul a fotst ales de 8mm. Fixarea prin componenta elastica asigura alinierea cu arborele fara a necesita un cuplaj flexibil. (Figura 19)

Figura 19

Subansamblul traductorului arata astfel (Figura 20).

Figura 20

Inauntrul carcasei este siun rulment, fixat axial in carcasa si printr-un inel de retinere, tot de carcasa.

Ansamblul final al modulului (Figura 21) de translatie arata astfel si cantareste 48 kg, incluzand sarcina de 38 kg.

Figura 21