Example.

Demeaned data matrix:

Recall:

- The 1st principal axis of A is a vector \mathbf{u}_1 such that $||\mathbf{u}_1|| = 1$ and $Var(A\mathbf{u}_1)$ is the largest possible.
- The vector $Y_1 = A\mathbf{u}_1$ is called the 1st principal component of A.

Note:

$$Y_{i} = Au_{i} = \begin{bmatrix} S_{i} \\ S_{z} \\ \vdots \\ S_{M} \end{bmatrix} \cdot u_{i} = \begin{bmatrix} S_{i}u_{i} \\ S_{z}u_{i} \\ \vdots \\ S_{M}u_{i} \end{bmatrix} = \begin{bmatrix} S_{i}u_{i} \\ S_{z}u_{i} \\ \vdots \\ S_{M}u_{i} \end{bmatrix} = \begin{bmatrix} S_{i}u_{i} \\ S_{z}u_{i} \\ \vdots \\ S_{M}u_{i} \end{bmatrix} = \begin{bmatrix} S_{i}u_{i} \\ S_{i}u_{i} \\ \vdots \\ S_{M}u_{i} \end{bmatrix} = \begin{bmatrix} S_{i}u_{i} \\ S_{i}u_{i} \\ \vdots \\ S_{M}u_{i} \end{bmatrix} = \begin{bmatrix} S_{i}u_{i} \\ S_{i}u_{i} \\ \vdots \\ S_{M}u_{i} \end{bmatrix}$$

Note: proju, $S_{i}^{T} = (S_{i}u_{i})u_{i}$

Il proju, $S_{i}^{T} = (S_{i}u_{i})u_{i}$

Var $(Y_i) = \frac{1}{N} \sum_{i} (S_i^* \cdot u_i)^2 = \frac{1}{N} \sum_{i} |proj_{u_i} S_i^*|^2$ Upshot: u_i is a unit vector such that the number $\sum_{i} |proj_{u_i} S_i^*|^2$ is the largest possible.

Note: $|S_i^T|^2 = |proj_{u_i}S_i^T|^2 + |S_i^T - proj_{u_i}S_i^T|^2$ since $proj_{u_i}S_i^T$ is orthogonal

to $S_i^T - proj_{u_i}S_i^T$

 $\frac{S_{0}}{S_{i}}$ $\frac{S_{i}}{S_{i}}$ $\frac{S_{i}}{S_{i}}$ $\frac{S_{i}}{S_{i}}$ $\frac{S_{i}}{S_{i}}$ $\frac{S_{i}}{S_{i}}$ $\frac{S_{i}}{S_{i}}$ $\frac{S_{i}}{S_{i}}$ $\frac{S_{i}}{S_{i}}$

Ne obtain: Var $(Y_i) = \sum_{i=1}^{n} |proj_{u_i} S_i^{n_i}|$ is the largest possible when $\sum_{i=1}^{n} |S_i^{n_i} - proj_{u_i} S_i^{n_i}|$ is the smallest possible.

Proposition

Let A an $N \times M$ demeaned data matrix

$$A = \begin{bmatrix} S_1 \\ S_1 \\ \vdots \\ S_N \end{bmatrix}$$

ullet The 1st principal axis of A is the vector $\mathbf{u}_1 \in \mathbb{R}^M$ such that $||\mathbf{u}_1|| = 1$ and the number

$$\sum_{i=1}^{N} ||S_i^T - \mathsf{proj}_{\mathbf{u}_1} S_i^T||^2$$

is the smallest possible.

 \bullet The 1st principal component of A is the vector

$$Y_1 = \left[\begin{array}{c} c_1 \\ \vdots \\ c_N \end{array} \right]$$

such that $\operatorname{proj}_{\mathbf{u}_1} S_i = c_i \mathbf{u}_1$ for $i = 1, \dots, N$.