1) Przedstawienie wykorzystanego oprogramowania.

Kod programu został napisany w języku programowania C na mikrokontroler STM32F411VET6. Do obsłużenia peryferiów mikrokontrolera został wykorzystany program STM32CubeMX, natomiast dalsza edycja kodu została wykonana w środowisku programistycznym System Workbench for STM32. Podczas testowania urządzenia wykorzystany został program Realterm służący do komunikacji pomiędzy komputerem a mikrokontrolerem. Aby moduł GPS wysyłał odpowiednie informacje należało go najpierw poprawnie skonfigurować za pomocą aplikacji desktopowej u-center.

2) Ustawienia mikrokontrolera

Zegar:

- -prędkość zegara taktującego: 100 MHz + wykorzystanie kwarcu zewnętrznego,
- -przerwanie od timera ustawione na co 10 sekund.

Transmisja danych:

- -USART1 komunikacja modułu GPS z uC,
- -USART2 komunikacja modułu GSM z uC.
- -USART6 komunikacja mikrokontrolera z komputerem (do testów),
- -SPI1 komunikacja modułu karty SD z uC.

Elementy dodatkowe:

-FATFS Mode and Configuration, "User-defined" – załączenie biblioteki FatFs.

3) Schemat działania programu

4) Wykorzystane biblioteki

Dodatkowo w projekcie zostały wykorzystane biblioteki::

- SPI_Card (plik "SPI_Card" w projekcie)
 -pliki konfiguracyjne do obsługi karty microSD za pomocą transmisji SPI,
- EEPROM (plik "EEPROM" w projekcie)
 -emulator pamięci flash, biblioteka wykorzystana w przyszłości do dalszego

rozwoju projektu, dokładne wyjaśnienie zastosowania biblioteki w pliku "Weryfikacja i wnioski".

5) Biblioteki własne

- GSM (plik "GSM" w projekcie)
 - -obsługa odbierania i otrzymywania wiadomości SMS,
 - -sprawdzanie numeru użytkownika (zabezpieczenie przed ingerencją osób trzecich,
- Zone (plik "Zone" w projekcie)
 - -analiza danych z modułu GPS, odczytanie współrzędnych geograficznych urządzenia i sprawdzenie czy urządzenie nie wyleciało poza ograniczoną strefę,
 - -utworzenie linku do *google.com/maps* z aktualna pozycją rejestratora.