Web Caching

COS 316: Principles of Computer System Design Lecture 9

Amit Levy & Ravi Netravali

Downloading a Web Page

User visits https://www.youtube.com

Downloading a Web Page (https://www.youtube.com)

Multiple Problems

- User latency
 - Round-trips to query multiple DNS servers
 - Multiple round-trips with the Web server
 - Delivery of a (possibly large) Web item
- Server overhead
 - Handling many requests from many clients
 - Financial costs to deploy enough servers
- Network bandwidth
 - Traffic on many links in multiple networks
 - Financial costs for the affected networks

Caching to the Rescue: Domain Name System

- What to cache?
 - Mapping of popular names to IP addresses
 - E.g., www.youtube.com → 142.251.41.14
 - Mapping of parts of names to DNS server IPs
 - E.g., .com top-level domain → 192.26.92.30

Caching to the Rescue: Domain Name System

- What to cache?
 - Mapping of popular names to IP addresses
 - E.g., www.youtube.com → 142.251.41.14
 - Mapping of parts of names to DNS server IPs
 - E.g., .com top-level domain → 192.26.92.30

Caching to the Rescue: Domain Name System

- What to cache?
 - Mapping of popular names to IP addresses
 - E.g., www.youtube.com → 142.251.41.14
 - Mapping of parts of names to DNS server IPs
 - E.g., .com top-level domain → 192.26.92.30
- Where to cache?
 - Local DNS server (e.g., for the campus)
 - Client machine (e.g., user's browser)
- How to avoid stale information?
 - Cached entries have a limited "time to live"

Caching to the Rescue: Communication Channel

- End-to-end communication
 - TLS: confidentiality, integrity, and authenticity
 - TCP: ordered, reliable delivery of byte stream
- Establishing the channel is expensive
 - Communication delays, creating data structures, and computing keys
- Exploit temporal locality by reusing the channels

Caching to the Rescue: Web Items

- Cache Web items closer to the client
 - Reduce latency
 - Reduce server overhead
 - Reduce use of network bandwidth

Web Caching: Outline

- Cache replacement
 - Popularity distributions
 - Replacement algorithms
- Cache consistency
 - Dynamic items
 - Cache validation

- Cache placement
 - Client's web browser
 - Client's network
 - Server's network
 - Third party (CDN)
- Content Distribution Network

Cache Replacement

Web Caching Should Work Well!

Web Cache Hit

On cache hit, retrieve the object from the cache!

Web Cache Miss

If I want to store X, what do I get rid of to make space?

Cache Replacement Algorithms

- Which object to evict?
 - Least likely to be used again soon
 - Least expensive to fetch again
- Example algorithms
 - First in first out (FIFO)
 - Least recently used (LRU)
 - Least frequently used (LFU)

(Note: all fully associative today)

Cache Replacement: First-In-First-Out (FIFO)

- Evict objects added to cache longest ago
- Very simple!

- Three-item cache example:
 - Request stream: a, b, a, c, a, d, a, e, a, f, g

• Can we do better?

Least Recently Used (LRU)

- Evict object used longest ago
 - "Objects used more recently are more likely to be accessed again"
 - Exploits temporal locality

Implementation: Update access time for every hit

- Three-item cache example:
 - Request stream: a, b, a, c, a, d, a, e, a, f, g
 - Request stream: h, h, h, i, j, k, h

Least Frequently Used (LFU)

- Evict object with fewest hits
 - "Objects used more often are more likely to be accessed again"
 - If tie, use LRU
- Implementation: Update access count for every hit

- Three-item cache example:
 - Request stream: a, b, a, c, a, d, a, e, a, f, g
 - Request stream: h, h, h, i, j, k, h
 - Request stream: I, I, m, n, o, m

Clairvoyant (Belady): Offline Optimal Caching

- What is the best a caching algorithm could do?
- Offline: uses knowledge of the future
 - (Can't use in practice)
- Evict the object with the furthest next access time
 - Worst object to keep in the cache

- Three-item cache example:
 - Request stream: h, h, h, i, j, k, h
 - Request stream: I, I, m, n, o, m

From <u>"An Analysis of</u> <u>Facebook Photo Caching,"</u> at Symposium on Operating System Principles, 2013.

Edge Cache with Different Sizes

Cache size

Edge Cache with Different Sizes

Edge Cache with Different Sizes

"Infinite" size ratio needs 45x of capacity

Edge Cache with Different Algos

• LRU > LFU > FIFO

Edge Cache with Different Algorithms

S4LRU is a more complex algorithm, uses recency and frequency

Edge Cache with Different Algos

Clairvoyant (Bélády) shows we can do much better!

Cache Consistency

Some Web Content is Not Cacheable

- Dynamic content
 - E.g., stock prices, scores, web cams
- Content generated by scripts
 - Results depend on the specific parameters
 - E.g., https://www.google.com/search?q=php+script+url
- Personalized content
 - E.g., based on cookie sent by the browser
- Encrypted content
 - Cannot decrypt without the appropriate key

Cache Consistency Challenges

Web cache needs to know

- Whether to cache an item
- How long to cache an item
- Whether to check an item's freshness
- Whether it is okay to return a stale item
- Whether the item has sensitive data

Cache Consistency Challenges

Web cache needs to know

- Whether to cache an item
- How long to cache an item
- Whether to check an item's freshness
- Whether it is okay to return a stale item
- Whether the item has sensitive data

Server knows the content

- Whether the item is dynamic
- How often the item changes
- Whether the item has changed
- Whether stale information is useful
- Whether item contains sensitive data

Scalability challenge: the server cannot remember every client that has cached an item

HTTP Response Header for Cache Control

- Whether to cache
 - no store: no cache should store it
- Who should cache
 - private: only a private cache (e.g., browser)
 - public: any cache, including shared ones
- How long to cache
 - max-age=N: for N seconds
 - must-revalidate: check with the server (don't return stale item)

Cache-Control: public, max-age=86400, must-revalidate

Cache Validation: Client Checks Freshness

Cache Validation: Client Checks Freshness

How do they identify the "version"?

- Timestamp
 - When the item was modified by the server
 - E.g., Last-Modified: Wed, 21 Oct 2015 07:28:00 GMT
- Version number
 - Entity tag provided by the server
 - E.g., ETag: "33a64df551425fcc55e4d42a148795d9f25f89d4"

Cache Placement

Client Machine (e.g., Browser)

<u>Advantages</u>

- Very low latency
- Preserves access bandwidth
- Available when disconnected

Disadvantages

- Low hit rate due to "cold" misses
- Many cache consistency checks
- Incomplete logs at the server

Client Network (Forward Proxy Cache)

<u>Advantages</u>

- Low latency
- Preserves enterprise bandwidth
- Hits for locally popular content

Disadvantages

- Cost to deploy the cache
- Many consistency checks
- Incomplete logs at the server

Server Network (Reverse Proxy Cache)

<u>Advantages</u>

- High hit rate across global users
- Greater cooperation with server
- Complete request logs for server
- Preserves server bandwidth

Disadvantages

- Costs to deploy the cache
- Does not reduce latency much
- Consumes wide-area bandwidth

Content Distribution Network (CDN)

- Outsourced caching infrastructure
 - Caching for clients and servers
 - Dedicated equipment and software
 - Trained staff, best practices, etc.
- Coordination with the server
 - Generating non-cacheable content
 - Providing detailed measurement data
- Smart cache placement
 - Many caches: handle large request load
 - Close to many clients: reduce latency

More than 4200 locations in 135 countries

CDN Challenges

- Where to place edge sites?
 - Close to many clients, with reasonable cost
- Where to replicate a server's content?
 - Many edge sites → duplicated data
 - Few edge sites → larger client latency
- How to direct a client to an edge site?
 - Proximity: for low latency
 - Light load: to reduce congestion
- How to manage each cache?
 - Maximize hit rate?
 - Minimize miss penalty?
 - Fairness across origin servers?

CDN Challenges

- Where to place edge sites?
 - Close to many clients, with reasonable cost
- Where to replicate a server's content?
 - Many edge sites → duplicated data
 - Few edge sites → larger client latency
- How to direct a client to an edge site?
 - Proximity: for low latency
 - Light load: to reduce congestion
- How to manage each cache?
 - Maximize hit rate?
 - Minimize miss penalty?
 - Fairness across origin servers?

From <u>"An Analysis of</u>
<u>Facebook Photo Caching,"</u>
at Symposium on Operating
System Principles, 2013.

CDN Effectiveness

Conclusions

- Downloading a Web page
 - Name resolution, transport connection, secure session, web messages
- Benefits of caching
 - Reduces user latency, server load, and network bandwidth
- Cache replacement
 - Maximize hit rate by trying to predict the future
- Cache consistency
 - Efficient ways to avoid returning unnecessarily stale responses
- Content distribution networks
 - Caching close to clients, while working on behalf of the servers