Homework 3

1. 8.7(a) For every photo, there are 2 websites to post.

There are 30 photos.

Therefore, the total ways are: 2^{30}

8.9 Assume the black rook is placed first.

For every square of the black rook, the white rook has 64 - 15 squares to place.

There are 64 squares for black rock to place, so the total ways are:

$$(64 - 15) \times 64 = 3136$$

2. 8.16 The first digit has 10 choices of digits.

The second, third and last one have 7 choices.

$$10 \times 7^3 = 3430$$

8.19 The first card has 52 choices.

The second one has $(52/4 - 1) \times 3 = 36$ choices.

The third one has $(52/4 - 2) \times 2 = 22$ choices.

The last one has (52/4 - 3) = 10 choices.

$$52 \times 36 \times 22 \times 10 = 411840$$

- 3. $2655! + 2,2655 + 3, \dots 2655! + 2655, 2655! + 2656$ $2|(2655! + 2), 3|(2655! + 3), \dots 2655|(2655! + 2655), 2|(2655 + 2656)$
- 4. $B = \{\emptyset\}, C = \{\emptyset, \{\emptyset\}\}, D = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ $2^D = \{\emptyset, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}, \{\emptyset, \{\emptyset\}\}\}\}$
- 5. 10.1(g) {{1}, {2}, {3}, {4}, {5}}
 - 10.3(c) $A = \{x \in \mathbb{Z} : x \in \emptyset\}, |A| = 0$
 - 10.3(d) $A = \{x \in \mathbb{Z} : \emptyset \in x\}, |A| = 0$
 - 10.3(e) $A = \{x \in \mathbb{Z} : \emptyset \subseteq \{x\}\}, |A| = \infty$
 - $10.3(f) A = 2^{2^{\{1,2,3\}}}, |A| = 2^{8}$

10.3(g)
$$A = \{x \in 2^{\{1,2,3,4\}} : |x| = 1\}, A = \{\{1\}, \{2\}, \{3\}, \{4\}\}, |A| = 4\}$$

- 6. $10.4(a) \ 2 \in \{1, 2, 3\}$
 - $10.4(b) \ 2 \subseteq \{1, 2, 3\}$
 - $10.4(c) \{2\} \in \{\{1\}, \{2\}, \{3\}\}\$
 - $10.4(d) \emptyset \subseteq \{1, 2, 3\}$
 - $10.4(e) \mathbb{N} \subseteq \mathbb{Z}$
 - $10.4(f) \{2\} \subseteq \mathbb{Z}$
 - $10.4(g) \{2\} \in 2^{\mathbb{Z}}$

- 7. 10.5(a) $A = \{1\}$, $B = \{1, 2\}$, $C = \{1, 2, 3\}$ 10.5(b) $A = \{1\}$, $B = \{\{1\}, 2\}$, $C = \{\{1\}, 2, 3\}$ 10.5(c) $A = \{1\}$, $B = \{\{1\}, 2\}$, $B = \{\{\{1\}, 2\}, 3\}$ 10.5(d) $A = \{1\}$, $B = \{1, 2\}$, $C = \{\{1, 2\}, 3\}$ 10.6(a) $A = \{1\}$ 10.6(b) $A = \{1\}$ 10.6(c) $A = \emptyset$ 10.6(d) No solution, since no set belongs to empty set.
- 8. 10.12 Let $x \in C$, kx = 12, where $k \in \mathbb{Z}$ NTS mx = 36, where $m \in \mathbb{Z}$ $kx = 12 \rightarrow (3k)x = 36$ mx = 36 when m = 3k $x|36 \rightarrow x \in D \rightarrow C \subseteq D$

10.14
$$x = \emptyset$$
, $\emptyset \subseteq \{\emptyset\}$

- 10.15 $(3,4,-5) \in P$, since $3^2+4^2=(-5)^2$ There are no x any y such that $-5=x^2+y^2$ when $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ $(3,4,-5) \in T=F \to P \neq T$
- 9. (a) Assume $a \in A \to a = 6k 5$ a = 6(k - 1) + 1 = 3(2k - 2) + 1 = 3m + 1, when m = 2k - 2 $\to a \in B \to A \subseteq B$ (b) Counterexample: Assume $b = 10 = 3 \times 3 + 1 \to b \in B$ There is no value of k that 6k - 5 = 10 when $k \in \mathbb{Z}$ $\to b \in A = F \to B \subseteq A = F$