

#### МИНОБРНАУКИ РОССИИ

#### Федеральное государственное бюджетное образовательное учреждение

#### высшего образования

# « МИРЭА Российский технологический университет»

#### РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

## УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задача 9\_1\_1 »

| С тудент группы       | ИКБО-13-21 | Дамарад Д.В.           |
|-----------------------|------------|------------------------|
| Руководитель практики | Ассистент  | Асадова Ю.С.           |
| Работа представлена   | «»2022 г.  |                        |
|                       |            | (подпись студента)     |
| Оценка                |            |                        |
|                       |            | (подпись руководителя) |

Москва 2022

# СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                    |
|---------------------------------------------|
| Постановка задачи                           |
| Метод решения                               |
| Описание алгоритма                          |
| Блок-схема алгоритма                        |
| Код программы                               |
| Тестирование                                |
| ЗАКЛЮЧЕНИЕ                                  |
| СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ) |

# введение

#### Постановка задачи

Перегрузка арифметических операций.

Перезагрузка операции для объекта треугольник. У треугольника есть стороны a, b, c и они принимают только натуральные значения. Определяем операцию сложения и вычитания для треугольников.

- + сложить значения сторон, если допустимо.
- вычесть значения сторон, если допустимо.

Складываются и вычитаются соответствующие стороны треугольников. Т.е. a1 + a2, b1 + b2, c1 + c2. Если после выполнения операции получается недопустимый треугольник, то результатом операции берется первый аргумент.

Написать программу, которая выполняет операции над треугольниками. В основной программе реализовать алгоритм:

- 1. Ввод количества треугольников n.
- 2. В цикле для каждого треугольника вводятся исходные длины сторон. Далее создается объект, в конструктор которого передаются значения длин сторон. Каждый объект треугольника получает свой номер от 1 до п.
- 3. В цикле, последовательно, построчно вводится «номер первого треугольника» «символ арифметической операции + или -» «номер второго треугольника»
- 4. После каждого ввода выполняется операция, результат присваивается первому аргументу (объекту треугольника).
- 5. Цикл завершается по завершению данных.
- 6. Выводится результат последней операции.

### Гарантируется:

- Количество треугольников больше или равно 2;
- Значения исходных длин сторон треугольников задаются корректно.

Реализовать перегрузку арифметических операции «+» и «-» для объектов треугольника посредством самостоятельных не дружественных функций.

#### Описание входных данных

Первая строка содержит значение количества треугольников n: «Натуральное значение» Далее строк содержат n «Натуральное значение»«Натуральное значение» «Натуральное значение» 2 Начиная C n строки: значение»«Знак операции»«Натуральное «Натуральное значение»

### Описание выходных данных

а = «Натуральное значение»; b = «Натуральное значение»; c = «Натуральное значение».

#### Метод решения

Для решения поставленной задачи используются:

- Объекты стандартных потоков ввода и вывода cin и cout соответственно для ввода и вывода на экран.
- Объекты класса Triangle в кол-ве, которое задает пользователь.
- Функции-операторы "+" и "-" для объектов класса Triangle.

## Класс Triangle:

- Свойства/поля:
  - Поля, определяющие стороны треугольника:
    - Наименование a,b,c;
    - Тип беззнаковый бецелочисленный;
    - Модификатор доступа private.
- Методы:
  - Метод Triangle:
    - Функционал параметризированный конструктор.
  - Meтод Side1:
    - Функционал константный метод, возвращающий длину первой стороны треугольника.
  - Метод Side2:
    - Функционал константный метод, возвращающий длину второй стороны треугольника.
  - Метод Side3:
    - Функционал константный метод, возвращающий длину третьей стороны треугольника.

## Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: main

Функционал: Основной алгоритм программы

Параметры: Отсутсвуют

Возвращаемое значение: Целочисленное значение - код возврата

Алгоритм функции представлен в таблице 1.

Таблица 1. Алгоритм функции main

| N₂ | Предикат   | Действия                                                                       | № перехода | Комментарий |
|----|------------|--------------------------------------------------------------------------------|------------|-------------|
| 1  |            | Объявление целочисленной переменной п                                          | 2          |             |
| 2  |            | Считывание с клавиатуры значения переменной п                                  | 3          |             |
| 3  |            | Создание объекта arr класса<br>vector для хранения объектов<br>класса Triangle | 4          |             |
| 4  |            | Объявление целочисленной переменной с инициализацией i=0                       | 5          |             |
| 5  | і меньше п | Объявление целочисленных беззнаковых переменных a,b,c                          | 6          |             |
|    |            |                                                                                | 10         |             |
| 6  |            | Считывание с клавиатуры<br>значений переменных a,b,c                           | 7          |             |

| 7  |                                                   | Создание объекта trg класса<br>Triangle путем выхова<br>параметризированного<br>конструктора с аргументами<br>a,b,c | 8  |
|----|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----|
| 8  |                                                   | Вызов метода push_back объекта arr с параметром trg                                                                 | 9  |
| 9  |                                                   | Увеличение і на 1                                                                                                   | 5  |
| 10 |                                                   | Объявление целочисленных переменных n1,n2 и символьной переменной орег                                              | 11 |
| 11 | Значения<br>n1,oper,n2<br>считаны с<br>клавиатуры | Считывание с клавиатуры<br>значений переменных<br>n1,oper,n2                                                        | 12 |
|    |                                                   |                                                                                                                     | 13 |
| 12 | Значение oper<br>равно '+'                        | Присвоение значения n1+n2<br>переменной n1                                                                          | 11 |
| 12 |                                                   | Присвоение значения n1-n2 переменной n1                                                                             | 11 |
| 13 |                                                   | Вывод на экран "a = ", ";" , "b = ", ";" , "c = ", соответсвующие значения полей объекта trg                        | Ø  |

Конструктор класса: Triangle

Модификатор доступа: public

Функционал: Параметризированный конструктор

Параметры: Целочисленные параметры А,В,С

Алгоритм конструктора представлен в таблице 2.

Таблица 2. Алгоритм конструктора класса Triangle

| N₂ | Предикат | Действия                   | № перехода | Комментарий |
|----|----------|----------------------------|------------|-------------|
| 1  |          | Присвоение значений А,В,С  | Ø          |             |
|    |          | соответсвующим полям a,b,c |            |             |

| объекта класса Triangle |  |  |
|-------------------------|--|--|
|-------------------------|--|--|

Класс объекта: Triangle

Модификатор доступа: public

Метод: Side1

Функционал: Константный метод, возвращающий длину первой стороны

Параметры: Отсутсвуют

Возвращаемое значение: Целочисленный тип данных - длина первой стороны треугольника

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода Side1 класса Triangle

| 1 | Nο | Предикат | Действия                                           | № перехода | Комментарий |
|---|----|----------|----------------------------------------------------|------------|-------------|
| 1 | -  |          | Возврат значения поля а объекта<br>класса Triangle | Ø          |             |

Класс объекта: Triangle

Модификатор доступа: public

Метод: Side2

Функционал: Константный метод, возвращающий длину второй стороны

Параметры: Отсутсвуют

Возвращаемое значение: Целочисленный тип данных - длина второй стороны треугольника

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода Side2 класса Triangle

| N₂ | Предикат | Действия                                           | № перехода | Комментарий |
|----|----------|----------------------------------------------------|------------|-------------|
| 1  |          | Возврат значения поля b объекта<br>класса Triangle | Ø          |             |

Класс объекта: Triangle

Модификатор доступа: public

Метод: Side3

Функционал: Константный метод, возвращающий длину третьей стороны

Параметры: Отсутсвуют

Возвращаемое значение: Целочисленный тип данных - длина третьей стороны треугольника

Алгоритм метода представлен в таблице 5.

Таблица 5. Алгоритм метода Side3 класса Triangle

| N | Īο | Предикат | Действия                                           | № перехода | Комментарий |
|---|----|----------|----------------------------------------------------|------------|-------------|
| 1 |    |          | Возврат значения поля с объекта<br>класса Triangle | Ø          |             |

Функция: operator+

Функционал: Суммирование длин сторон треугольника

Параметры: Ссылки на объекты trg1, trg2 класса Triangle

Возвращаемое значение: Объект класса Triangle

Алгоритм функции представлен в таблице 6.

Таблица 6. Алгоритм функции operator+

| N₂ | Предикат                                           | Действия                                                                                                                               | № перехода | Комментарий |
|----|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| 1  |                                                    | Объявление<br>целочисленных<br>переменных A,B,C с<br>инициализацией<br>значениями сумм<br>соответсвующих полей<br>объъектов trg1, trg2 | 2          |             |
| 2  | Треугольник со<br>сторонами<br>А,В,С<br>существует | Возврат функцией<br>значений А,В,С для<br>созданного объекта класса<br>Triangle                                                        | Ø          |             |
|    |                                                    | Возврат функцией объекта<br>trg1                                                                                                       | Ø          |             |

Функция: operator-

Функционал: Разность длин сторон треугольника

Параметры: Ссылки на объекты trg1, trg2 класса Triangle

Возвращаемое значение: Объект класса Triangle

Алгоритм функции представлен в таблице 7.

Таблица 7. Алгоритм функции operator-

| N₂ | Предикат       | Действия             | № перехода | Комментарий |
|----|----------------|----------------------|------------|-------------|
|    |                | Объявление           |            |             |
|    |                | целочисленных        |            |             |
|    |                | переменных А,В,С с   |            |             |
| 1  |                | инициализацией       | 2          |             |
|    |                | значениями разностей |            |             |
|    |                | соответсвующих полей |            |             |
|    |                | обьъектов trg1, trg2 |            |             |
| 2  | Треугольник со | Возврат функцией     | Ø          |             |

| существует и | значений А,В,С для<br>созданного объекта<br>класса Triangle |   |  |
|--------------|-------------------------------------------------------------|---|--|
|              | Возврат функцией<br>объекта trg1                            | Ø |  |

#### Блок-схема алгоритма



Рис. 1. Блок-схема алгоритма.



Рис. 2. Блок-схема алгоритма.



Рис. 3. Блок-схема алгоритма.



Рис. 4. Блок-схема алгоритма.



Рис. 5. Блок-схема алгоритма.

#### Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

## Файл main.cpp

```
#include <iostream>
#include <vector>
#include "triangle.h"
using namespace std;
int main()
{
        int n;
        cin>>n;
        vector<Triangle> arr;
        for (int i=0;i<n;i++){
                unsigned int a,b,c;
                 cin>>a>>b>>c;
                 Triangle trg(a,b,c);
                arr.push_back(trg);
        int n1, n2;
        char oper;
        while (cin>>n1>>oper>>n2){
                 if (oper=='+'){
                         arr[n1-1]=arr[n1-1]+arr[n2-1];
                 }
                 else{
                         arr[n1-1]=arr[n1-1]-arr[n2-1];
                 }
        cout << "a = "< arr[n1-1].Side1() << "; b = "< arr[n1-1].Side2() << "; c = "
"<<arr[n1-1].Side3()<<".";
        return 0;
}
```

# Файл triangle.cpp

```
double Triangle::S(){
        double p=(a+b+c)/2.0;
        return sqrt(p*(p-a)*(p-b)*(p-c));
int Triangle::Side1() const{
        return a;
int Triangle::Side2() const{
        return b;
int Triangle::Side3() const{
        return c;
Triangle operator+(const Triangle &trg1, const Triangle &trg2){
        int A=trg1.Side1()+trg2.Side1();
        int B=trg1.Side2()+trg2.Side2();
        int C=trg1.Side3()+trg2.Side3();
        if (A+B>C && A+C>B && B+C>A){
                return Triangle(A,B,C);
        else{
                return trg1;
        }
Triangle operator-(const Triangle &trg1, const Triangle &trg2){
        int A=trg1.Side1()-trg2.Side1();
        int B=trg1.Side2()-trg2.Side2();
        int C=trg1.Side3()-trg2.Side3();
        if (A+B>C && A+C>B && B+C>A && A>O && B>O && C>O){
                return Triangle(A,B,C);
        else{
                return trg1;
        }
}
```

# Файл triangle.h

```
#ifndef TRIANGLE_H
#define TRIANGLE_H
class Triangle{
private:
    int a,b,c;
public:
    Triangle(int A,int B,int C);
    int P();
    double S();
    int Side1() const;
    int Side2() const;
    int Side3() const;
};
```

Triangle operator+(const Triangle &trg1, const Triangle &trg2); Triangle operator-(const Triangle &trg1, const Triangle &trg2); #endif

# Тестирование

Результат тестирования программы представлен в следующей таблице.

| Входные данные | Ожидаемые выходные<br>данные | Фактические выходные<br>данные |
|----------------|------------------------------|--------------------------------|
| 23454561-2     | a = 3; b = 4; c = 5.         | a = 3; b = 4; c = 5.           |
| 23454561+2     | a = 7; b = 9; c = 11.        | a = 7; b = 9; c = 11.          |

## **ЗАКЛЮЧЕНИЕ**

# СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe\_posobie\_dlya\_laboratorny h\_rabot\_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye\_k\_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).