Lecture Notes on Category Theory

Paul Ossientis

December 31, 2019

Contents

1	Category		
	1.1	Small Category	2
	1.2	Category	4
	1.3	Equality of Categories	6
	1.4	The Category of Sets	7
		The Opposite Category	
2	Functor		
	2.1	Functor	12
	2.2	The Hom Functor	13
3	Natural Transformation		14
4	Adjunction		
	4 1	Definition	15

Category

1.1 Small Category

Before we define a category in full generality, we shall focus our attention on the notion of *small category*. This notion is interesting to us because while it essentially describes the notion of *category* itself, it remains simple enough to be compared with various other algebraic structures. For example, consider the case of a monoid: a monoid is essentially a set M together with a binary relation \circ defined on M which is associative, and an element e of M which acts as an identity element for \circ . In short a monoid is a tuple (M, \circ, e) containing some data, and which satisfy certain properties. The same is true of a *small category*: it is also a tuple containing some data, and which satisfy certain properties:

Definition 1 We call small category any tuple (Ob, Arr, dom, cod, id, \circ) with:

- (1) Ob $is \ a \ set$
- (2) Arr is a set
- (3) $\operatorname{dom}: \operatorname{Arr} \to \operatorname{Ob} \ is \ a \ function$
- (4) $\operatorname{cod}:\operatorname{Arr}\to\operatorname{Ob}\ is\ a\ function$
- (5) $id : Ob \rightarrow Arr is a function$
- (6) $\circ : Arr \times Arr \rightarrow Arr \text{ is a partial function}$
- (7) $g \circ f \text{ is defined } \Leftrightarrow \operatorname{cod}(f) = \operatorname{dom}(g)$
- (8) $\operatorname{cod}(f) = \operatorname{dom}(g) \Rightarrow \operatorname{dom}(g \circ f) = \operatorname{dom}(f)$
- (9) $\operatorname{cod}(f) = \operatorname{dom}(g) \implies \operatorname{cod}(g \circ f) = \operatorname{cod}(g)$
- (10) $\operatorname{cod}(f) = \operatorname{dom}(g) \wedge \operatorname{cod}(g) = \operatorname{dom}(h) \Rightarrow (h \circ g) \circ f = h \circ (g \circ f)$
- (11) $\operatorname{dom}\left(\operatorname{id}(a)\right) = a = \operatorname{cod}\left(\operatorname{id}(a)\right)$
- (12) $\operatorname{dom}(f) = a \implies f \circ \operatorname{id}(a) = f$
- (13) $\operatorname{cod}(f) = a \Rightarrow \operatorname{id}(a) \circ f = f$

where (7) – (13) hold for all $f, g, h \in Arr$ and $a \in Ob$:

So if $\mathcal{C} = (\mathrm{Ob}, \mathrm{Arr}, \mathrm{dom}, \mathrm{cod}, \mathrm{id}, \circ)$ is a small category, we have two sets Ob and Arr together with some structure defined on these sets. This feels very much like a monoid, except that we have two sets instead of one and it all looks more complicated. The set Ob is called the *set of objects* of the small category \mathcal{C} and is denoted Ob \mathcal{C} , while the set Arr is called the *set of arrows* of the small category \mathcal{C} and is denoted Arr \mathcal{C} . An element $x \in \mathrm{Ob}\ \mathcal{C}$ is called an *object* of \mathcal{C} , while an element $f \in \mathrm{Arr}\ \mathcal{C}$ is called an *arrow* of \mathcal{C} .

As part of the structure defined on the small category \mathcal{C} , we have two functions dom: Arr \to Ob and cod: Arr \to Ob. Hence, given an arrow f of the small category \mathcal{C} , we have two objects $\mathrm{dom}(f)$ and $\mathrm{cod}(f)$ of the small category \mathcal{C} . The object $\mathrm{dom}(f)$ is called the domain of f. The object $\mathrm{cod}(f)$ is called the codomain of f. Note that an arrow f of the small category \mathcal{C} is simply an element of the set Arr \mathcal{C} . So it is itself a set but it may not be a function. The words domain and codomain are therefore overloaded as we are using them in relation to a set f which is possibly not a function. Whenever f is an arrow of the small category \mathcal{C} and f are objets, it is common to use the notation f: f and f are a an arrow domain and f are objects, it is important to guard against the possible confusion induced by the notation f: f and f be which does not mean that f is function. It simply means that f is an arrow with domain f and codomain f in the small category f.

One of the main ingredients of the structure defining a small category \mathcal{C} is the partial function $\circ: \operatorname{Arr} \times \operatorname{Arr} \to \operatorname{Arr}$, called the *composition operator* in the small category \mathcal{C} . The domain of this partial function is made of all ordered pairs (g, f) of arrows in \mathcal{C} for which $\operatorname{cod}(f) = \operatorname{dom}(g)$. As already indicated in definition (1), we use the infix notation $g \circ f$ rather than $\circ (g, f)$ and the arrow $g \circ f$ is called the *composition* of g and f. Once again, we should remember that the notation $g \circ f$ does not mean that g or f are functions. They are simply arrows in the small category \mathcal{C} . One key property of the composition operator \circ is the associativity postulated by (10) of definition (1). Note that if $f: a \to b$ and $g: b \to c$, then from properties (8) and (9) of definition (1) we obtain $q \circ f: a \to c$. Furthermore, if $h: c \to d$ we have $h \circ q: b \to d$ and the arrows $(h \circ q) \circ f$ and $h \circ (q \circ f)$ are therefore well-defined arrows with domain a and codomain d. This shows that the expression involved in the associativity condition (10) of definition (1) is always meaningful, involving terms which are well-defined provided $g \circ f$ and $h \circ g$ are themselves well-defined, i.e. provided cod(f) = dom(g) and cod(g) = dom(h).

Finally, as part of the structure defining the small category \mathcal{C} , we have a function $\mathrm{id}:\mathrm{Ob}\to\mathrm{Arr}$ called the *identity operator* on the small category \mathcal{C} . Hence, for every object a of \mathcal{C} we have an arrow $\mathrm{id}(a)$ called the *identity at a*. Looking at property (11) of definition (1) we see that $\mathrm{id}(a):a\to a$. In other words, the arrow $\mathrm{id}(a)$ has domain a and codomain a. Furthermore, looking at properties (12) and (13) of definition (1), for every arrow $f:a\to b$, the composition arrows $\mathrm{id}(b)\circ f$ and $f\circ\mathrm{id}(a)$ are well-defined and both equal to f.

1.2 Category

The notion of *small category* defined in definition (1) is similar to that of any other algebraic structure the reader may be familiar with. It can safely be encoded in set theory as a tuple (which is a set) containing data (which are other sets) which satisfies certain properties. In set theory, everything is a set. A small category \mathcal{C} is a set, its collection of objects Ob \mathcal{C} is a set, its arrows Arr \mathcal{C} form a set, the functions dom, cod, id and the composition operator \circ are all sets (functions are typically encoded as sets of ordered pairs).

Category theory falls outside of set theory. While the definition of a category we provide below is formally identical to that of a small category, the object we are defining can no longer be encoded in general as an object of set theory. For example, say we want to speak about the universe of all sets or the universe of all monoids. These universes which are known as classes cannot be represented as sets. They are not objects of set theory. Or say we are working within the formal framework of a proof assistant such as Coq, Agda or Lean. These tools are based on type theory and do not fall within the scope of set theory. When defining a category, we assume some form of meta-theoretic context, some form of logic, some way of reasoning about objects which may not be sets, where some meaning is attached to the words tuple, collection, equality and map. This may sound all very fuzzy, yet we cannot be more formal at this stage.

Definition 2 We call category any tuple (Ob, Arr, dom, cod, id, \circ) such that:

```
(1)
            Ob is a collection with equality
 (2)
            Arr is a collection with equality
 (3)
            dom : Arr \rightarrow Ob \ is \ a \ map
 (4)
            \operatorname{cod}:\operatorname{Arr}\to\operatorname{Ob}\ is\ a\ map
 (5)
            id: Ob \rightarrow Arr is a map
 (6)
            \circ: Arr \times Arr \rightarrow Arr is a partial map
 (7)
            g \circ f is defined \Leftrightarrow cod(f) = dom(g)
            cod(f) = dom(g) \implies dom(g \circ f) = dom(f)
 (8)
            cod(f) = dom(g) \implies cod(g \circ f) = cod(g)
 (9)
(10)
            cod(f) = dom(g) \wedge cod(g) = dom(h) \Rightarrow (h \circ g) \circ f = h \circ (g \circ f)
            dom(id(a)) = a = cod(id(a))
(11)
```

where (7) - (13) hold for all $f, g, h \in Arr$ and $a \in Ob$:

 $dom(f) = a \implies f \circ id(a) = f$

 $cod(f) = a \implies id(a) \circ f = f$

(12)

(13)

So let $\mathcal{C} = (Ob, Arr, dom, cod, id, \circ)$ be a category: then \mathcal{C} is a tuple but it is no longer a tuple in a set-theoretic sense. We assume given some logical framework where the notion of tuple is clear, even if not formally defined. Furthermore, We are no longer imposing that Ob should be a set, but are instead using the phrase collection with equality, whatever this may mean in our given logical context. So we shall still make use of the notation Ob $\mathcal C$ but this will now refer to the collection of all objects of the category C. In fact, if a is an object of the category \mathcal{C} , we shall abuse notations somewhat by writing ' $a \in \text{Ob } \mathcal{C}$ ' or even simply $a \in \mathcal{C}$ to express the fact that a is an object of \mathcal{C} , being understood that this use of the set membership symbol '\in ' does not mean anything is a set. Since we are stepping out of set theory, the objects of the category \mathcal{C} may not be sets themselves. They are simply members of the collection Ob \mathcal{C} . However, properties (7) - (13) of definition (2) are all referring to equalities between objects such that cod(f) = dom(q). So it must be the case that the notion of equality be meaningful on the collection Ob \mathcal{C} . This explains our use of the phrase collection with equality: given $a, b \in \mathcal{C}$, the statement a = b while not a set-theoretic equality is nonetheless assumed to be defined.

Similarly, the *collection* of arrows of the category \mathcal{C} shall still be denoted Arr \mathcal{C} , but is no longer required to be a set. If f is an arrow of the category \mathcal{C} then f itself may not be a set and we may still write ' $f \in \text{Arr } \mathcal{C}$ ' simply to indicate that f is a member of the collection Arr \mathcal{C} . Properties (10), (12) and (13) of definition (2) are all referring to equalities between arrows so the collection Arr \mathcal{C} must have some notion of equality defined on it.

Since Ob and Arr are no longer sets in general, the maps dom: Arr \rightarrow Ob, cod: Arr \rightarrow Ob, id: Ob \rightarrow Arr and the partial map \circ : Arr \times Arr cannot possibly be functions in the set-theoretic sense. So there must be some meaning to the word map (from one collection to another) in whatever logical framework we are working in. The collection Arr \times Arr is not a set, and is simply the collection of all 2-dimensional tuples made from Arr. Our using the word map rather than function in definition (2) is simply an attempt at reminding ourselves of the fact these are not set-theoretic functions, eventhough the words map and function are perfectly interchangeable in standard (set-theoretic) mathematics.

Given $f \in \operatorname{Arr} \mathcal{C}$, we shall still call the object $\operatorname{dom}(f)$ the domain of f and the object $\operatorname{cod}(f)$ the $\operatorname{codomain}$ of f. Given $a,b \in \mathcal{C}$, we shall still use the notation $f: a \to b$ as a notational shortcut for $\operatorname{dom}(f) = a$ and $\operatorname{cod}(f) = b$. The partial map \circ is still the $\operatorname{composition}$ operator and the arrow $g \circ f$ shall still be called the $\operatorname{composition}$ of g and f, provided it is defined. The map $\operatorname{id}: \operatorname{Ob} \to \operatorname{Arr}$ is still the $\operatorname{identity}$ operator on the category \mathcal{C} , and for all $a \in \mathcal{C}$, the arrow $\operatorname{id}(a): a \to a$ is known as the $\operatorname{identity}$ at a. For all arrows $f: a \to b$, it is still the case that the arrows $\operatorname{id}(b) \circ f$ and $f \circ \operatorname{id}(a)$ are well-defined and both equal to f. Just as in the case of a small category, whenever $f: a \to b$, $g: b \to c$ and $h: c \to d$, all the terms involved in the associativity condition $(h \circ g) \circ f = h \circ (g \circ f)$ of definition (2) are well defined.

1.3 Equality of Categories

Whichever logical framework we are working from, we saw that when defining a category $\mathcal{C}=(\operatorname{Ob},\operatorname{Arr},\operatorname{dom},\operatorname{cod},\operatorname{id},\circ)$, some notion of equality had to be defined on the collections Ob and Arr. Now if $\mathcal{C}'=(\operatorname{Ob}',\operatorname{Arr}',\operatorname{dom}',\operatorname{cod}',\operatorname{id}',\circ')$ is another category, the question may arise as to whether $\mathcal{C}=\mathcal{C}'$. Or indeed, we may simply be asking whether the collections Ob and Ob' are the same, or whether dom = dom' etc. It is very difficult for us to carry out any sort of formal reasoning on things without equality. So having equality defined on Ob and Arr is neccessary for definition (2) to even make sense, but it is not enough for us to formally prove anything about categories. Hence we shall assume:

Axiom 1 A notion of equality exists for collections.

It is implicit in the statement of axiom (1) that the notion of equality between *collections* should be reflexive, symmetric and transitive. Furthermore:

Axiom 2 Two collections with identical members are equal.

In particular, if $C = (Ob, Arr, dom, cod, id, \circ)$ is a category and we have another partial map $\circ' : Arr \times Arr \to Arr$ such that $g \circ' f$ is defined if and only if $g \circ f$ is defined, then axiom (2) allows us to argue that the domain of \circ' is the same collection as the domain of \circ .

Axiom 3 Let A be a collection and B be a collection with equality. Then two maps $F, G: A \to B$ are equal if and only if F(x) = G(x) for all x in A.

In particular, if $\mathcal{C} = (\operatorname{Ob}, \operatorname{Arr}, \operatorname{dom}, \operatorname{cod}, \operatorname{id}, \circ)$ is a category and $\operatorname{dom}' : \operatorname{Arr} \to \operatorname{Ob}$ is another map such that $\operatorname{dom}'(x) = \operatorname{dom}(x)$ for every object $x \in \mathcal{C}$, then $\operatorname{dom}' = \operatorname{dom}$. Or if $\circ' : \operatorname{Arr} \times \operatorname{Arr} \to \operatorname{Arr}$ is another partial map with the same domain as that of \circ and such that $g \circ' f = g \circ f$ when defined, then $\circ' = \circ$.

Axiom 4 Two tuples with identical entries are equal.

So if $C = (Ob, Arr, dom, cod, id, \circ)$ and $C' = (Ob', Arr', dom', cod', id', \circ')$ are two catgeories such that Ob = Ob', Arr = Arr', dom = dom', cod = cod', id = id' and o = o' then we have the equality C = C'.

1.4 The Category of Sets

Definition 3 We call **Set** the category **Set** = $(Ob, Arr, dom, cod, id, \circ)$ where

- (1) $Ob = \{ x \mid x \text{ is a set } \}$
- (2) Arr = $\{(a, b, f) \mid f \text{ is a function } f : a \rightarrow b \}$
- (3) dom(a, b, f) = a
- (4) $\operatorname{cod}(a, b, f) = b$
- (5) id(a) = (a, a, i(a))
- (6) $(b, c, g) \circ (a, b, f) = (a, c, g \circ f)$

where (3) – (6) hold for all sets a,b,c and functions $f:a \to b, g:b \to c$, $i(a):a \to a$ denotes the usual identity function on a, and $g \circ f$ denotes the usual function composition defined by $(g \circ f)(x) = g(f(x))$, for all $x \in a$.

The collection of objects of the category **Set** is defined to be the class of all sets. We are using the set comprehension notation $\{x \mid x \text{ is a set }\}$ to denote this class, but this is an abuse of notation as Ob is not a set but a proper class. One could think of a class as a precicate P(x) of first order logic with one free variable. From this point of view Ob becomes the predicate Ob(x) = T, i.e. the predicate which returns true for all x. Every set satisfies the predicate Ob, so every set is a member of the class Ob. The class Ob is not a set because the set-theoretic statement $\exists y, \forall z, z \in y \Leftrightarrow Ob(z)$ can be proven false. In other words, there exists no set y whose elements z are exactly the sets which satisfy the predicate Ob. There exists no set which contains all sets.

The collection of arrows of the category **Set** is defined to be the class of triples (a, b, f) where a, b are sets and f is a function $f: a \to b$. This last notation is a common set-theoretic shortcut to express that fact that f is a function with domain a and range **which is a subset of** b. A function is any set f whose elements are ordered pairs (x, y) and which is functional, i.e. for which the following implication holds for all sets x, y, y':

$$(x,y) \in f \land (x,y') \in f \Rightarrow y = y'$$

The domain of a function f is the set of all sets x for which there exists a set y with $(x,y) \in f$. The range of a function f is the set of all sets y for which there exists a set x with $(x,y) \in f$. If x belongs to the domain of a function f, the notation f(x) commonly refers to the unique set y with $f(x,y) \in f$.

Now, as already pointed out the notation $f: a \to b$ only requires that the range of f should be a subset of b. There is no requirement that the range of f should be equal to b. So if $f: a \to b$ and $b \subseteq c$ then $f: a \to c$. This explains why the collection of arrows Arr is defined as a class of triples (a, b, f) rather than a class of functions f. Knowing the function f does not tell you which codomain it should have. Any set b which is a superset of its range is a possible codomain. So we keep the set b together with the function f in the triple (a, b, f) so as to remember which codomain is intended for this particular arrow of the

category **Set**. Incidentally, we also keep the range a of the function f in the triple (a, b, f) but this is not necessary, as the knowledge of f does allow us to recover its domain a. However, the triple (a, b, f) is convenient, allowing us to treat *domain* and *codomain* uniformly. Once again, it should be remembered that the collection of arrows Arr is not a set but a proper class, corresponding to the predicate Arr(x) defined as follows:

$$Arr(x) = \exists a \, \exists b \, \exists f, \ x = (a, b, f) \land f : a \rightarrow b$$

The maps dom: Arr \rightarrow Ob and cod: Arr \rightarrow Ob for the category **Set** are defined respectively by dom(a, b, f) = a and cod(a, b, f) = b. This looks simple enough, but for those who worry about foundational issues, we should just note that these are also proper classes which can be encoded as predicates. For example:

$$\operatorname{dom}(x) = \exists u \,\exists v \,, \ x = (u, v) \ \land \ \operatorname{Arr}(u) \ \land \ (\ \exists a \,\exists b \,\exists f \,, \ u = (a, b, f) \ \land \ v = a \)$$

In other words, any set x satisfies the predicate dom(x) if and only if it is an ordered pair (u, v) where u satisfies the predicate Arr(u) and for which there exist sets a, b, f with u = (a, b, f) and v = a. In short, (u, v) satisfies the predicate dom if and only if u is an arrow u = (a, b, f) and v = a.

We defined the identity operator id by $\mathrm{id}(a)=(a,a,i(a))$ and the composition operator \circ by $(b,c,g)\circ(a,b,f)=(a,c,g\circ f)$ where $g\circ f$ is the usual function composition and $i(a):a\to a$ is the usual identity function. As before, these defined maps are not functional sets of ordered pairs but rather proper classes which we could also encode as precicates of first order logic. One important point to note is the fact that (6) of definition (3) only defines the composition arrow $(b,c,g)\circ(a,b,f)$ where $f:a\to b$ and $g:b\to c$. In other words, the composition $(d,c,g)\circ(a,b,f)$ with $f:a\to b$ and $g:d\to c$ is only defined when b=d. Furthermore, the usual function composition $g\circ f$ is a function $g\circ f:a\to c$ which from (2) of definition (3) means that the composed arrow $(b,c,g)\circ(a,b,f)=(a,c,g\circ f)$ is indeed a member of the collection Arr, and the partial map \circ thus defined is indeed a partial map \circ : Arr \times Arr.

Proposition 1 The category **Set** of definition (3) is a category.

Proof

Now that we have defined the data (Ob, Arr, dom, cod, id, \circ) of the category **Set**, it is time to check this data actually forms a category. We need to check that conditions (7) - (13) of definition (2) are satisfied.

(7): suppose f^* and g^* are two members of the collection Arr. We need to check that $g^* \circ f^*$ is defined if and only if $\operatorname{cod}(f^*) = \operatorname{dom}(g^*)$. Using (2) of definition (3), f^* can be written $f^* = (a, b, f)$ for some function $f : a \to b$ and g^* can be written $g^* = (d, c, g)$ for some function $g : d \to c$. However, from (6) of definition (3), the arrrow $(d, c, g) \circ (a, b, f)$ is only defined in the case when b = d. Furthermore, from (4) of definition (3) we have $\operatorname{cod}(f^*) = b$ and from (3) of definition (3) we have $\operatorname{dom}(g^*) = d$. We conclude that $g^* \circ f^*$ is defined if and only if $\operatorname{cod}(f^*) = \operatorname{dom}(g^*)$ as required.

- (8): Let $f^*, g^* \in \text{Arr}$ such that $\text{cod}(f^*) = \text{dom}(g^*)$. We need to show that $\text{dom}(g^* \circ f^*) = \text{dom}(f^*)$. As before, f^* and g^* can be written as $f^* = (a, b, f)$ and $g^* = (b, c, g)$ where $f : a \to b$ and $g : b \to c$. We have $g^* \circ f^* = (a, c, g \circ f)$. Using (3) of definition (3) we obtain $\text{dom}(g^* \circ f^*) = a = \text{dom}(f^*)$.
- (9): Let $f^*, g^* \in \text{Arr}$ such that $\operatorname{cod}(f^*) = \operatorname{dom}(g^*)$. We need to show that $\operatorname{cod}(g^* \circ f^*) = \operatorname{cod}(g^*)$. As before, we have $g^* \circ f^* = (a, c, g \circ f)$ and $g^* = (b, c, g)$. Using (4) of definition (3) we obtain $\operatorname{cod}(g^* \circ f^*) = c = \operatorname{cod}(g^*)$.
- (10): Let $f^*, g^*, h^* \in \text{Arr}$ with $\text{cod}(f^*) = \text{dom}(g^*)$ and $\text{cod}(g^*) = \text{dom}(h^*)$. We need to show the equality: $(h^* \circ g^*) \circ f^* = h^* \circ (g^* \circ f^*)$. However, f^*, g^*, h^* can be decomposed as $f^* = (a, b, f), g^* = (b, c, g)$ and $h^* = (c, d, h)$ with $f: a \to b, g: b \to c$, and $h: c \to d$. We have:

$$(h^* \circ g^*) \circ f^* = ((c,d,h) \circ (b,c,g)) \circ (a,b,f)$$

$$(6) \text{ of Def } (3) \to = (b,d,h \circ g) \circ (a,b,f)$$

$$(6) \text{ of Def } (3) \to = (a,d,(h \circ g) \circ f)$$
assoc of usual composition $\to = (a,d,h \circ (g \circ f))$

$$(6) \text{ of Def } (3) \to = (c,d,h) \circ (a,c,g \circ f)$$

$$(6) \text{ of Def } (3) \to = (c,d,h) \circ ((b,c,g) \circ (a,b,f))$$

$$= h^* \circ (g^* \circ f^*)$$

- (11): Let a be a set. We need to show that dom(id(a)) = a = cod(id(a)). This follows immediately from id(a) = (a, a, i(a)) which is (5) of definition (3).
- (12): Let $f^* = (a, b, f)$ be an arrow with $dom(f^*) = a$. We need to show that $f^* \circ id(a) = f^*$, which follows from:

$$f^* \circ \mathrm{id}(a) = (a,b,f) \circ \mathrm{id}(a)$$

$$(5) \text{ of Def } (3) \to = (a,b,f) \circ (a,a,i(a))$$

$$(6) \text{ of Def } (3) \to = (a,b,f \circ i(a))$$
usual right-identity $\to = (a,b,f)$

$$= f^*$$

(13): Let $f^* = (b, a, f)$ be an arrow with $cod(f^*) = a$. We need to show that $id(a) \circ f^* = f^*$, which follows from:

$$\operatorname{id}(a) \circ f^* = \operatorname{id}(a) \circ (b, a, f)$$

$$(5) \text{ of Def } (3) \to = (a, a, i(a)) \circ (b, a, f)$$

$$(6) \text{ of Def } (3) \to = (b, a, i(a) \circ f)$$

$$\operatorname{usual left-identity} \to = (b, a, f)$$

$$= f^*$$

This completes our proof of properties (7) - (13). \diamond

Notational convention: We shall denote an arrow (a, b, f) of the category **Set** simply by 'f'. So on top of its usual meaning, ' $f : a \to b$ ' may also express the fact that f is an arrow of the category **Set** with domain a and codomain b.

1.5 The Opposite Category

Definition 4 Let $C = (Ob, Arr, dom, cod, id, \circ)$ be a category. We call opposite category of C, the category denoted C^{op} and defined by:

$$C^{op} = (Ob, Arr, cod, dom, id, \circ')$$

where the composition operator \circ' is defined by $f \circ' g = g \circ f$, for all $f, g \in Arr$.

So if $\mathcal{C}=(\mathrm{Ob},\mathrm{Arr},\mathrm{dom},\mathrm{cod},\mathrm{id},\circ)$ is a category, the opposite category \mathcal{C}^{op} is almost identical, except for the composition operator \circ' which is a flipped version of \circ , and for dom and cod which have been swapped with each other. The collection of objects of \mathcal{C}^{op} is the same as that of \mathcal{C} , giving us the equality $\mathrm{Ob}\ \mathcal{C}^{op}=\mathrm{Ob}\ \mathcal{C}$. Likewise, the collection of arrows of \mathcal{C}^{op} is the same as that of \mathcal{C} , giving us this other equality $\mathrm{Arr}\ \mathcal{C}^{op}=\mathrm{Arr}\ \mathcal{C}$. If we denote $\mathrm{dom}':\mathrm{Arr}\to\mathrm{Ob}$ and $\mathrm{cod}':\mathrm{Arr}\to\mathrm{Ob}$ the domain and codomain maps on \mathcal{C}^{op} , then $\mathrm{dom}'=\mathrm{cod}$ and $\mathrm{cod}'=\mathrm{dom}$. The identity operator id: $\mathrm{Ob}\to\mathrm{Arr}$ is the same for both \mathcal{C} and \mathcal{C}^{op} , and the composition arrow $f\circ' g$ in \mathcal{C}^{op} is defined whenever the composition arrow $g\circ f$ in \mathcal{C} is defined, and we have $f\circ' g=g\circ f$.

Proposition 2 Let C be a category. Then C^{op} of definition (4) is a category.

Proof

We need to check that the data $\mathcal{C}^{op} = (\mathrm{Ob}, \mathrm{Arr}, \mathrm{cod}, \mathrm{dom}, \mathrm{id}, \circ')$ of definition (4) forms a category, having assumed that the underlying data for \mathcal{C} does. We have indeed two collections Ob and Arr with maps between them $\mathrm{cod} : \mathrm{Arr} \to \mathrm{Ob}$, $\mathrm{dom} : \mathrm{Arr} \to \mathrm{Ob}$, $\mathrm{id} : \mathrm{Ob} \to \mathrm{Arr}$ and partial map $\circ' : \mathrm{Arr} \times \mathrm{Arr} \to \mathrm{Arr}$. So it remains to show that conditions (7) - (13) of definition (2) are satisfied. For the purpose of this proof, we shall denote $\mathrm{dom}' = \mathrm{cod}$ and $\mathrm{cod}' = \mathrm{dom}$.

- (7): We need to check that $f \circ' g$ is defined if and only if $\operatorname{cod}'(g) = \operatorname{dom}'(f)$ which is $\operatorname{dom}(g) = \operatorname{cod}(f)$. However by definition, we have set $f \circ' g$ to be defined whenever $g \circ f$ is itself defined, and since \mathcal{C} is a category, this is in turn equivalent to $\operatorname{cod}(f) = \operatorname{dom}(g)$. Hence, we are done.
- (8): We need to check that $\operatorname{dom}'(f \circ' g) = \operatorname{dom}'(g)$ which can be written as $\operatorname{cod}(g \circ f) = \operatorname{cod}(g)$ and which is true since \mathcal{C} is a category.
- (9): We need to check that $cod'(f \circ' g) = cod'(f)$ which can be written as $dom(g \circ f) = dom(f)$ and which is true since \mathcal{C} is a category.
- (10): Given arrows h, g, f with $\operatorname{cod}'(h) = \operatorname{dom}'(g)$ and $\operatorname{cod}'(g) = \operatorname{dom}'(f)$, we need to check that $(f \circ' g) \circ' h = f \circ' (g \circ' h)$. However, our assumption can be written as $\operatorname{dom}(h) = \operatorname{cod}(g)$ and $\operatorname{dom}(g) = \operatorname{cod}(f)$ and having assumed that $\mathcal C$ is a category, by property (10) of definition (2) we have:

$$(f \circ' g) \circ' h = h \circ (f \circ' g)$$

$$= h \circ (g \circ f)$$

$$C \text{ is a category} \rightarrow = (h \circ g) \circ f$$

$$= f \circ' (h \circ g)$$

$$= f \circ' (g \circ' h)$$

- (11): We need to check that $\operatorname{dom}'(\operatorname{id}(a)) = a = \operatorname{cod}'(\operatorname{id}(a))$ for all $a \in \mathcal{C}$, which follows from $\operatorname{dom}' = \operatorname{cod}$, $\operatorname{cod}' = \operatorname{dom}$ and the fact that \mathcal{C} is a category.
- (12): We need to check that $f \circ' \operatorname{id}(a) = f$ whenever $\operatorname{dom}'(f) = a$, that is $\operatorname{id}(a) \circ f = f$ whenever $\operatorname{cod}(f) = a$, which follows from \mathcal{C} being a category.
- (13): We need to check that $id(a) \circ' f = f$ whenever cod'(f) = a, that is $f \circ id(a) = f$ whenever dom(f) = a, which follows from \mathcal{C} being a category. \diamond

Proposition 3 Let C be a category. Then the opposite category of C^{op} is C, i.e.

$$(\mathcal{C}^{op})^{op} = \mathcal{C}$$

Proof

Let $C = (Ob, Arr, dom, cod, id, \circ)$ be a category. From definition (4), we have $C^{op} = (Ob, Arr, cod, dom, id, \circ')$ and consequently:

$$(\mathcal{C}^{op})^{op} = (\mathrm{Ob}, \mathrm{Arr}, \mathrm{dom}, \mathrm{cod}, \mathrm{id}, \circ'')$$

In order to show that $(\mathcal{C}^{op})^{op} = \mathcal{C}$, by virtue of axiom (4) we simply need to show that the partial maps $\circ, \circ'' : \operatorname{Arr} \times \operatorname{Arr} \to \operatorname{Arr}$ are equal. Given two arrows f and g, the composition arrow $g \circ'' f$ is defined if and only if $f \circ' g$ is defined, which is itself equivalent to $g \circ f$ being defined. By virtue of axiom (2), both \circ and \circ'' are therefore defined on the same collection of arrow tuples (g, f). Furthemore, whenever $g \circ f$ is defined, we have $g \circ'' f = f \circ' g = g \circ f$. Using axiom (3) we conclude that $\circ'' = \circ$ as requested. \diamond

Functor

2.1 Functor

Definition 5 We call functor from categories C to D any tuple (F_0, F_1) with:

- (1) $F_0: \mathrm{Ob}\ \mathcal{C} \to \mathrm{Ob}\ \mathcal{D}$ is a map
- (2) $F_1: \operatorname{Arr} \mathcal{C} \to \operatorname{Arr} \mathcal{D} \text{ is a map}$
- (3) $F_1(f): F_0(a) \to F_0(b)$
- (4) $F_1(id(a)) = id(F_0(a))$
- $(5) F_1(g \circ f) = F_1(g) \circ F_1(f)$

where (3) – (5) hold for all $a, b, c \in C$, $f : a \to b$ and $g : b \to c$.

Notational convention: We shall use $F: \mathcal{C} \to \mathcal{D}$ as a notational shortcut for the statement that F is a functor from the category \mathcal{C} to the category \mathcal{D} . If $F = (F_0, F_1)$ we shall also commonly denote F_0 and F_1 simply by F'.

So if F is a functor $F: \mathcal{C} \to \mathcal{D}$ we effectively have a map $F: \text{Ob } \mathcal{C} \to \text{Ob } \mathcal{D}$ acting on objects, and a map $F: \text{Arr } \mathcal{C} \to \text{Arr } \mathcal{D}$ acting on arrows. These two maps satisfy the consistency condition (3) of definition (5) i.e. that if f is an arrow $f: a \to b$ in \mathcal{C} , then F(f) must be an arrow $F(f): F(a) \to F(b)$ in \mathcal{D} . Furthermore, the functor F must preserve the identity operators on \mathcal{C} and \mathcal{D} which is condition (4) of definition (5): for all objects $a \in \mathcal{C}$, we must have $F(\operatorname{id}(a)) = \operatorname{id}(F(a))$. Note that since $\operatorname{id}(a): a \to a$, by consistency we have $F(\operatorname{id}(a)): F(a) \to F(a)$, and since $\operatorname{id}(F(a)): F(a) \to F(a)$ the equality makes sense. Another way to express the preservation of identity operators by F is simply $F \circ \operatorname{id} = \operatorname{id} \circ F$ or $F_1 \circ \operatorname{id} = \operatorname{id} \circ F_0$ to be more explicit. However, we should remember that the notation ' \circ ' in these equality does not refer to the composition operator \circ of either \mathcal{C} or \mathcal{D} , nor does it in general refer to the usual function composition since id, F_0 and F_1 are maps between collections and not functions between sets. Now going back to our functor F, it must also preserve the composition operators on \mathcal{C} and \mathcal{D} , which is condition (5) of definition (5):

For all objects $a,b,c\in\mathcal{C}$ and arrows $f:a\to b$ and $g:b\to c$, we must have $F(g\circ f)=F(g)\circ F(f)$. Note that given these assumptions, the composition arrow $g\circ f$ is well-defined, and by consistency we have $F(f):F(a)\to F(b)$ and $F(g):F(b)\to F(c)$, so $F(g)\circ F(f)$ is also well-defined. Furthermore, since $g\circ f:a\to c$ by consistency we have $F(g\circ f):F(a)\to F(c)$ and since $F(g)\circ F(f):F(a)\to F(c)$, the equality $F(g\circ f)=F(g)\circ F(f)$ makes sense.

2.2 The Hom Functor

Natural Transformation

Adjunction

4.1 Definition

Definition 6 We call adjunction an ordered pair (F,G) where F is a functor $F: \mathcal{C} \to \mathcal{D}$ and G is a functor $G: \mathcal{D} \to \mathcal{C}$ while \mathcal{C} and \mathcal{D} are two locally-small categories for which there exists a natural isomorphism:

$$\alpha : \mathcal{D} \circ (F \times I_{\mathcal{D}}) \Rightarrow \mathcal{C} \circ (I_{\mathcal{C}^{op}} \times G)$$

in the functor category $[\mathcal{C}^{op} \times \mathcal{D}, \mathbf{Set}]$, where F also denotes $F : \mathcal{C}^{op} \to \mathcal{D}^{op}$.