Tabela de Transformada Z

SEL0359 - Controle Digital - 2° Semestre de 2025¹ Prof. Marcos R. Fernandes

x(t)	X(s)	X(z)	
u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$	(01)
\overline{t}	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	(02)
$-\frac{1}{t^2}$	$\frac{2}{s^3}$	$\frac{T^{2}(z+1)}{(z-1)^{3}}$ $T^{3}(z^{2}+4z+1)$	(03)
t^3	$\frac{6}{s^4}$	$\frac{T^3(z^2+4z+1)}{(z-1)^4}$	(04)
e^{-at}	$\frac{1}{(s+a)}$	$\frac{z}{z-e^{-aT}}$	(05)
te^{-at}	$\frac{1}{(s+a)^2}$	Tze^{-aT}	(06)
t^2e^{-at}	$\frac{2}{(s+a)^3}$	$\frac{\overline{(z-e^{-aT})^2}}{Tz^2e^{-aT}(z+e^{-aT})}$ $\frac{Tz^2e^{-aT}(z+e^{-aT})}{(z-e^{-aT})^3}$	(07)
$\frac{1 - e^{-at}}{1 - e^{-at}}$	$\frac{a}{s(s+a)}$	$\frac{(z-e^{-aT})^3}{(1-e^{-aT})z}$ $\frac{(1-e^{-aT})z}{(z-1)(z-e^{-aT})}$	(08)
$at - 1 + e^{-at}$	$\frac{a^2}{s^2(s+a)}$	$\frac{(z-1)(z-e^{-aT})}{(z-1)^2(z-e^{-aT})}$ $\frac{(aT-1+e^{-aT})z^2+(1-aTe^{-aT}-e^{-aT})}{(z-1)^2(z-e^{-aT})}$	(09)
$e^{-at} - e^{-bt}$	$\frac{(b-a)}{(s+a)(s+b)}$	$\frac{(z-1)^{2}(z-e^{-aT})}{z(e^{-aT}-e^{-bT})}$ $\frac{z(e^{-aT}-e^{-bT})}{(z-e^{-aT})(z-e^{-bT})}$	(10)
$1 - (1+at)e^{-at}$	$\frac{a^2}{s(s+a)^2}$	$\frac{z}{z-1} - \frac{z}{(z-e^{-aT})} - \frac{aTe^{-aT}z}{(z-e^{-aT})^2}$	(11)
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin(\omega T)}{z^2 - 2z\cos(\omega T) + 1}$	(12)
$\cos\left(\omega t\right)$	$\frac{s}{s^2 + \omega^2}$	$\frac{z(z-\cos(\omega T))}{z^2-2z\cos(\omega T)+1}$	(13)
$e^{-at}\sin\left(\omega t\right)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{ze^{-aT}\sin(\omega T)}{z^2 - 2ze^{-aT}\cos(\omega T) + e^{-2aT}}$	(14)
$e^{-at}\cos\left(\omega t\right)$	$\frac{(s+a)}{(s+a)^2 + \omega^2}$	$\frac{z(z-\cos(\omega T))}{z^2-2ze^{-aT}\cos(\omega T)+e^{-2aT}}$	(15)

¹Última atualização: August 20, 2025