Let ith bit uned ith toit -> try your own. check Bit Count Bit Negative numbers. Ranges 9mpertance of Constraints uned or continuous Bits in 10 9f time allows.			
check Bit Count Bit Negative numbers, Ranges Impertance of Constraints Unset or continuous Bits in 10	Today's Content		
check Bit Count Bit Negative numbers, Ranges Sompertance of Constraints Unset or continuous Bits in N			
Check Bit Count Bit Negative numbers, Ronges Impertance of Constraints Unset or continuous Bils in N			
Count Bit Negative numbers, Ronges 9mpertance of Constraints Unset or continuous Bils in 10	uniet 1th tot -> log your own.		
Negative numbers. Ronges 9-mpertance of Constraints Unset or continuous Bils in 10			
Panges 9 mpour tance of Constraints Unset or continuous Bils in 10			
9 mprestance of Constraints unset or continuous Bils in 10	Negative numbers,		
9 mprestance of Constraints unset or continuous Bils in 10	Ranges		
Unset or continuous Bils in 10			
J.			
9f Hime allews,			
9f Hime allews,	$oldsymbol{1}$		
	9f time allows.		

hiven N, i, check if ith bit in Ques) N is set on unset. 1 0 1 0 1 -> True, N = 21 : 122 Bruke force: - Convent to Binary, Stone it and then check. 16 (A 2 1) = = 0 oth bil 30 else N=82 0000 160 £16000 € PKCN ((0>>4) l1 = =0) = 4th wit was else it was set. bool check Bit Lint N, inti) & 7.csoul. Sif (N)>1) 21) = =0) 8

Tetur false

3 else {

welcen True 3

when,
$$(N2 \times 1 \times 1) = 0$$
 (The bit was 0)
$$(1 \times 1) = (1 \times 1)$$

Count Set_	<u>bib</u> ;-	
	1010 : 2	
N= gq,	1 1 0 1 1 : 4	
Approach!:-	Convert to	Binaey and con
Approach 2:	32 my	Lo-81]
int	C = 0'.	T. C304
		3.0304
	if Ccheck Bit	
	C+1	
3		
ل	when c'	
	,	
Appreachs!		
	٥	=0.
N.	= 4 <u>5</u>	
	5 4 3 2 1 0	
	مرا جره در وه در این در ای	
	30707170	C++
	0707071	Cita
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 21 C+1
	000000000000000000000000000000000000000	20
	0 0 0 0 0 0	C=4 Any.

```
int countset Bils (int N) f
              int c=0;
1.C> (log ")
               while w>0) &
                if (N21 = =1) }
                C+1
                N = N>1 >0W;
               weturn C',
      How - we mois are stoned.
   *
         8 bit nubery.
       1 0000
       1000010
 -10 >
        7 6 5 4 3 2 1 0
       0 0 0 0 0 0
       1 0 0 0 0 0 1
         0 0
            0
               0
          0
 -14 :
       ١
         I mare Problem:
            00000
                      0
```

```
3'1 complement :-
        -a = 3's complement of a.
            = i's complement of a + 1.
                   0 = 1
-10: 2's complement of 10
    = 1's complemel of 10 +1
    ~ (0 0001010) +1
    11110101
   - 27 + 26 + 25 + 24 + 22 + 21 =>
       -128+ 64+ 32 +16 +4+2
     10 - 0 0 0 0 10 10
     -4 : 1 1 1 1 0 0
     00000110
     0 0 0 0 0 0 0
     110111011
     06111111
```

Convert Binary to decinal!
4 trit wa
-23 22 21 20
1011 -> -5
1010 -> -6
0011->-
8 ~ ← ∞ ∘ 0)
(

2 0	bit mubous.
- 9m-1	22 2°
2	
Mor neg:-	100000>-277
Max the :-	0 (1 \ 1 \ - ~ \ ! \ 3 m-1-1
	9 m-2 91 90
	9n-2 91 3°
g, p ->	9° + 8' + 82 + 9 m-2
	(=1, x=2,
	Terms: n-1
	J / 9 m-1 - 1] m-1
	$(2^{m-1}-1)$ $(2^{m-1}-1)$ $(2^{m-1}-1)$ $(2^{m-1}-1)$
	2-1
Ronge e	y on bit no' → [-2m-1 to 2m-1-1]
	Δ 16.
	By les mils
by le/chow	8 [-121 to 123]
int	4 32 [-23/ to 23/_]
	close approse > [-2*10° to 2*10°]
10.00	8 64 [-213 10 213-1]
/ ang	0 UI L-X 10 X

$$2^{10} = 1024 \approx 10^{3} = 10^{3} = 10^{9} \Rightarrow 2^{3} = 2*10^{9}$$

$$2^{10} \approx 10^{3} \Rightarrow (2^{30})^{2} = (10^{9})^{2} \Rightarrow 2^{3} \approx 2*10^{18}$$

$$2^{10} \approx 10^{3} \Rightarrow (2^{30})^{2} = (10^{9})^{2} \Rightarrow 2^{3} \approx 2*10^{18}$$

3 by mos:

-32 3' 3'

-39 3' 3'

0 0 0
$$\rightarrow$$
 0

0 1 \rightarrow 1

0 1 1 \rightarrow 3

1 0 0 \rightarrow -4

1 0 1 \rightarrow -3

1 1 1 \rightarrow -1

Importence of Constraints! 1) hiven an averay cale sum git. long sum (int accets) & long sem 20; for (1=0; 14m; 1+x) { Sum: Sum + austi3 veturn Jun 3 constrainty 1. 1 <= N<=105 14= auci3 <= 106 1 = Sum <= 1011 > Salarypes & Error V.V. Important

```
hiven 2 norseus alb,
dues)
              section their fred.
            fred Unt a, int to) &
               int c - a + b
               Using C = a+b
               long c= wong (a+b)
              uling c = (long) a + b;
    1 < = a , b <= 106
    Take caue!
      when we multiply into int
                            long * long.
       Unsigned variables :- MIB weightage will
(<del>R</del>)
     C) C+1 (C#.
     unsigned int st; (0, 232-1)
         L> that or variable count store of
                            neg no.
      In your there is no such thing as
                              unsigned.
```

clues) hiven x, y set or continuous this
323, 323
n=5, y=3, 1111000
<u>9 ho't mo'</u>
111 -> 3
1000 > 8 (1<<3)-1
y h't no →
1111 > 15
10000 -> 16 (1<< 4) -1
11111 -> (1<<5)-1
$1 \cdot C \Rightarrow ((1 < < n) - 1) < < q)$
$7.C \Rightarrow ((1 \times (m)-1) \times (g)$
0 (1)

