Lesson Plan SI Session #15 September 7, 2017

SI Leader: Eason Chang

Course: Math 18 Academic Quarter: Summer Session 2 2017

Instructor: Professor Drimbe

Topics Covered: Final Review

Opener Activity:

5:05pm - 5:10pm

- 4. Let \mathcal{B} and \mathcal{C} be two bases for the vector space \mathbb{R}^2 .
- (a) If $\mathcal{B} = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix} \}$ and $\mathcal{C} = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix} \}$, find the change of coordinates matrix from \mathcal{B} to \mathcal{C} .

Activity 1

5:10pm - 5:30pm

Practice problem 1a:

(b) Prove that the inverse of the change of coordinates matrix from $\mathcal B$ to $\mathcal C$ is the change of coordinates matrix from C to B.

Solutions for Practice Problem 1a:

ta) Q	Pess		T-U-S-
		1	-2]
	$\begin{bmatrix} 1 & -2 \\ 1 & 2 \end{bmatrix}$	2	1
2	0 4	(-2
	0 4	1	3
>	0 2	1	-2
= (0 2	3/2	-127
	0 2	1/2	3/2
	[0]	Y4	3/4
Y	CEB =	1/2	- 1/2

Practice Problem 1b:

- 6. Let $A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$. (You should try this problem after Tuesday, after we cover eigenvalues.)
 - (a) Find the eigenvalues of A and the associate eigenvectors.
- (b) Prove that A is diagonalizable and find P invertible D diagonal such that $A = PDP^{-1}$.

Practice Problem 1b Solutions:

A: 2x2 matrix

a distruct eigenvalues

By theorem, A is thus diagonalizable

For P: set eigenvectors as the

column vectors of matrix P

a use P to compute P

For D a compute: P'AP

to obtain matrix

-> check work by checking to see

if A = PDP-1

Activity 2

5:30pm - 5:45pm

Practice Problem 2a:

Diagonalize the matrix
$$\begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix}$$

Solution to Practice Problem 2a:

To find the eigenvalues, compute

$$\det\begin{bmatrix} 3-\lambda & 0 & 0 \\ -3 & 4-\lambda & 9 \\ 0 & 0 & 3-\lambda \end{bmatrix} = (3-\lambda)(4-\lambda)(3-\lambda).$$

So the eigenvalues are $\lambda = 3$ and $\lambda = 4$.

We can find two linearly independent eigenvectors $\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$ corresponding to the eigenvalue 3, and one

eigenvector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ with eigenvalue 4. The diagonalized form of the matrix is

$$\begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ -3 & 1 & 9 \end{bmatrix}.$$

Note that if you chose different eigenvectors, your matrices will be different. The middle matrix should have entries 3, 3, 4 in some order, and you should multiply out the product to make sure you have the right answer.

Practice Problem 2b:

(c) Let A be a 2×2 matrix such that $A^2 = I_2$. Is it true that $A = I_2$? Justify your answer.

Solution to Practice Problem 2b:

False; if
$$A^2 = I_2$$
, then $A^4 = (A^2)^2 = (I_2)^2 = I_2$.

Practice Problem 2c:

(b) Let A be a $n \times n$ matrix with real entries such that $A^T A = 0$. Prove that A = 0.

Solution to 2c:

An idea: if we put $A = (a_{ij})_{1 \le i,j \le n}$, then $A^t = (b_{ij})$, with $b_{ij} = a_{ji}$, so by definition:

$$AA^{t} = \left(\sum_{k=1}^{n} a_{ik} b_{kj}\right) = \left(\sum_{k=1}^{n} a_{ik} a_{jk}\right)$$

If you now look at the main diagonal's general entry of the above, you get

$$\sum_{k=1}^{n} a_{ik} a_{ik} = \sum_{k=1}^{n} a_{ik}^{2}$$

So if $AA^t = 0$ then the above diagonal's entries are zero, but a sum of squared *real* numbers is zero iff each number is zero, so...

The same result is true with complex matrices if instead we require $AA^* = 0$, $A^* := \overline{A^t}$

Goal: Review the topics covered in the lecture, to better prepare the students. (Students were given less help so they can apply the knowledge)

Closure- Survey/ Feedback

5:45pm-5:50pm

- Wrap-up:
- Please share with the group one thing you gained understanding of through the session today.
- Make a note to yourself/ write down anything you need to review/ do more practice problems on.
- Survey/ Feedback:
 - 1. How fun was the session? (1-10)
 - 2. How useful was the session? (1-10)
 - 3. Would you come back? (yes or no)
 - 4. Optional: Comments (pace of the activity), questions, concerns, suggestions, feedback on the back or wherever

Please recommend SI to your friends/ peers if you found the session useful! Thanks for coming and have a great day:)

PLANNING THE SI SESSION

Session Date of Course:	& Day of Week:		
Course:			
Course Instru	ictor:		
Warm-up/	Content to cover:	Collaborative Learning Technique	Strategy to be used:
Opening: (2-4 min.)			
Please provide document(s)	e a DETAILED BREAKI	DOWN of warm-up activity (OR attach corresponding
Cool-	Content to cover:	Collaborative Learning	Strategy to be used:
down/		Technique	
Closing: (2-4 min.)			
Please provide document(s)	e a DETAILED BREAKI	DOWN of cool-down activity	OR attach corresponding
Workout:	Content to cover:	Collaborative Learning	Strategy(ies) to be
(44-46		Technique(s)	used:
min.)			
down/ Closing: (2-4 min.) Please provide document(s) Workout:	e a DETAILED BREAKI	Technique DOWN of cool-down activity Collaborative Learning	OR attach correspon

Please provide a **DETAILED BREAKDOWN** of workout activity **OR** attach corresponding

Page 47

document(s)