

A PREEMINENT Research

UNIVERSITY

An Immersed Boundary - Lattice Boltzmann Method for Fluid-Structure Interaction Modeling

Zongze Li Supervisor: Dr. Mao, Wenbin

UNIVERSITY OF SOUTH FLORIDA

Introduction

- □ Fluid-structure interaction (FSI) is common and understand the mechanism can unlock the innovation of bionic field.
- □ Lattice Boltzmann method (LBM) has gained the popularity on its simple implementation and inherently parallel running feature.
- Immersed boundary method (IBM):
 - ☐ Internal fluid effect (from the fluid enclosed by the geometry) becomes a major error source contaminating the accuracy of the solid body simulation, especially at high Reynolds number (Re > 50).
 - □ Some algorithms to eliminate this error have existed in the field, e.g., Feng's and Lagrangian points approximation algorithms.
- Objective: Build up a FSI solver to simulate biological fluid mechanics, such as sea butterfly swimming.

Lattice Boltzmann Method (LBM)

Lattice Boltzmann equations:

$$f_i^*(\vec{x}, t) = f_i(\vec{x}, t) + \Omega_i(\vec{x}, t) f_i(\vec{x} + \vec{c_i}, t + 1) = f_i^*(\vec{x}, t)$$

In LBM:

Relaxation time:
$$\tau = \frac{v}{c_s^2} + \frac{\Delta t}{2}$$
 Density: $\rho = \sum_i f_i$

Pressure: $p = \rho c_s^2$

Velocity: $\rho \vec{u} = \sum_i f_i \vec{c_i}$

BGK collision operator:

$$\begin{split} \Omega_i(\vec{x},t) &= -\frac{f_i(\vec{x},t) - f_i^{eq}(\vec{x},t)}{\tau} \\ f_i^{eq}(\vec{x},t) &= \omega_i \rho \left[1 + \frac{\vec{u}^{eq} \cdot \vec{c_i}}{c_s^2} + \frac{(\vec{u}^{eq} \cdot \vec{c_i})^2}{2c_s^4} - \frac{\vec{u}^{eq} \cdot \vec{u}^{eq}}{2c_s^2} \right] \end{split}$$

For external force $\vec{F}(\vec{x})$, we use Shan/Chen^[2] force correction term:

$$\vec{u}(\vec{x}) = \frac{1}{\rho} \sum_{i} f_{i} \vec{c}_{i} + \frac{\vec{F}(\vec{x})}{2\rho} \Delta t$$
$$\vec{u}^{eq}(\vec{x}) = \frac{1}{\rho} \sum_{i} f_{i} \vec{c}_{i} + \frac{\tau}{\Delta t} \frac{\vec{F}(\vec{x})}{\rho} \Delta t$$

Immersed Boundary Method (IBM)

1. Velocity interpolation at Lagrangian vertex \vec{X} :

$$\vec{u}(\vec{X}) = \sum_{\vec{x}} \Delta x^3 \vec{u}(\vec{x}) \delta(\vec{X}, \vec{x})$$

2. Force calculation at Lagrangian vertex \vec{X} :

$$\vec{F}(\vec{X}) = 2\rho(\vec{X}) \frac{\vec{u}_b(\vec{X}) - \vec{u}(\vec{X})}{\Lambda t}$$

3. Force spreading to Eulerian fluid nodes in the kernel core:

$$\vec{F}(\vec{x}) = \sum_{\vec{x}} \vec{F}(\vec{X}) \delta(\vec{X}, \vec{x})$$

Delta function
$$(\vec{r} = \vec{X} - \vec{x})$$
:
$$\delta(\vec{X}, \vec{x}) = \begin{cases} \frac{1}{8} \left(3 - 2\|\vec{r}\| + \sqrt{1 + 4\|\vec{r}\| - 4\|\vec{r}\|^2} \right) & 0 \le \|\vec{r}\| \le \Delta x \\ \frac{1}{8} \left(5 - 2\|\vec{r}\| - \sqrt{-7 + 12\|\vec{r}\| - 4\|\vec{r}\|^2} \right) & \Delta x < \|\vec{r}\| < 2\Delta x \\ 0 & \|\vec{r}\| \ge 2\Delta x \end{cases}$$

Rigid Body Motion

Governing Equations:

Translational velocity: $M \frac{d\vec{v}}{dt} = \vec{F}$

Angular velocity: $I_B \frac{d\vec{\Omega}_B}{dt} + \vec{\Omega}_B \times (I_B \vec{\Omega}_B) = S^T \vec{T}$

M: mass of solid body

 I_B : inertia matrix of solid body

Subscript *B*: the property about the local frame

Eulerian (global) frame

Force on solid:
$$\vec{F} = \sum_{\vec{X}} \vec{F}(\vec{X})$$

Torque on solid: $\vec{T} = \sum_{\vec{X}} (\vec{X} - \overrightarrow{COM}) \times \vec{F}(\vec{X})$

Rotation matrix *S*:

$$\mathbf{S} = \begin{bmatrix} q_0^2 - q_2^2 - q_3^2 + q_1^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & q_0^2 - q_3^2 - q_1^2 + q_2^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

Where

Quaternion unit vector (orientation of the geometry):

$$\vec{Q} = (q_0, q_1, q_2, q_3)$$

Internal Fluid Effect Elimination

Force around the shell:

$$\vec{F} = \vec{F}_{in} + \vec{F}_{out}$$

$$\vec{T} = \vec{T}_{in} + \vec{T}_{out}$$

Feng's approximation^[3]:

Governing equations of rigid body motion:

$$\vec{U}_{B}^{t+\Delta t} = \left(1 + \frac{\rho_{F}}{\rho_{S}}\right) \vec{U}_{B}^{t} - \frac{\rho_{F}}{\rho_{S}} \vec{U}_{B}^{t-\Delta t} + m_{S}^{-1} \mathbf{S}^{T} \vec{F} \Delta t$$

$$\vec{\Omega}_{B}^{t+\Delta t} = \left(1 + \frac{\rho_{F}}{\rho_{S}}\right) \vec{\Omega}_{B}^{t} - \frac{\rho_{F}}{\rho_{S}} \vec{\Omega}_{B}^{t-\Delta t} + \mathbf{I}_{S}^{-1} [\mathbf{S}^{T} \vec{T} + \vec{\Omega}_{B}^{t-\Delta t} \times (\mathbf{I}_{F} \vec{B} \vec{\Omega}_{B}^{t-\Delta t})$$

$$- \vec{\Omega}_{B}^{t} \times (\mathbf{I}_{S} \vec{B} \vec{\Omega}_{B}^{t})] \Delta t$$

Lagrangian Points Approximation (LPA)^[4]:

$$\vec{P}_{in}(t) = \sum_{\vec{X}_{in}} \vec{u}(\vec{X}_{in}, t) \Delta V_{in}$$

$$\vec{L}_{in}(t) = \sum_{\vec{X}_{in}} (\vec{X}_{in} - \overline{COM}) \times \vec{u}(\vec{X}_{in}, t) \Delta V_{in}$$

$$\vec{F}_{in} = -\frac{\vec{P}_{in}(t) - \vec{P}_{in}(t - \Delta t)}{\Delta t}$$

$$\vec{T}_{in} = -\frac{\vec{L}_{in}(t) - \vec{L}_{in}(t - \Delta t)}{\Delta t}$$

Multi-Step IBM

Mitigate instability when coupling fluid and solid solvers.

Validation: Oblate spheroid in linear shear flow^[5]

Simulation Setup

Domain size: 200*80*40 LB unit

Center of mass (\overrightarrow{COM}) position: (100, 40, 20)

Neutrally buoyant spheroid: $\frac{\rho_S}{\rho_F} = 1$

Spheroid size:

$$a = 8$$
 $b = 16$ $c = 16$

Empirical solution

Period (*T*):
$$\gamma T = 200(81 - Re)^{-0.5}$$

$$Re = \frac{4\rho b^2 \gamma}{\mu}$$

$$\gamma = \frac{2u_W}{H}$$

Results: Oblate spheroid in linear shear flow

Period vs. Re for two internal fluid effect elimination algorithms

Error for each algorithm

Re	LPA	Feng
50	1.66%	4.77%
60	0.49%	6.24%
70	1.66%	13.85%
75	17.05%	Inf

Stability of shell solid simulation

Thickness	i_{solid}	Stable?
0.1	4	No
0.1	8	No
0.1	10	Yes
0.1	16	Yes

$$Error = \frac{|numerical - empirical|}{empirical}$$

Velocity Magnitude

Validation: Sediment of a sphere^[6]

Simulation Setup

Domain size (depth*width*height): 100*100*160 mm

Diameter of sphere (*D*): 15 mm

Density of sphere (ρ_S) : 1120 $\frac{kg}{m^3}$

Sphere center initial position: (50 mm, 50 mm, 127.5 mm)

Gravity $g = 9.8 \frac{m}{s^2}$

Test cases

Re	$\rho_{\rm f}({ m kg/m^3})$	μ (×10 ⁻³ Ns/m ²)
1.5	970	373
4.1	965	212
11.6	962	113
32.2	960	58

$$Re = \frac{\rho_f u_{\infty} D}{\mu}$$
 u_{∞} : final velocity

Results: Sediment of a sphere

Trajectory and velocity under different Re with different internal fluid effect eliminations

Conclusion:

- Multi-step IBM can help to stabilize the FSI simulations using the thin shell geometry.
- Demonstrate internal fluid effect under higher Reynolds number (Re > 50).
- LPA maintains a good estimation of internal hydrodynamics for high Reynolds number ($Re \le 70$).
- Feng's algorithm provides competitive accuracy when Reynolds number is small (Re < 50).

Future work:

- May further analyze and find a better way to eliminate the internal effect for larger Reynolds number.
- Apply our FSI solver to simulate sea butterfly swimming.

Reference:

- [1] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation[J]. Journal of fluid mechanics, 1994, 271: 285-309.
- [2] Shan, X. and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components. Physical review E, 1993. 47(3): p. 1815.
- [3] Feng Z G, Michaelides E E. Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows[J]. Computers & Fluids, 2009, 38(2): 370-381.
- [4] Suzuki K, Inamuro T. Effect of internal mass in the simulation of a moving body by the immersed boundary method[J]. Computers & Fluids, 2011, 49(1): 173-187.
- [5] Aidun CK, Lu Y, & Ding EJ (1998) Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech 373:287-311.
- [6] ten Cate A, Nieuwstad CH, Derksen JJ, van den Akker HEA. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys Fluids 2002;14:4012–25.

Thank you!

