SISTEMI DI CONTROLLO IN RETROAZIONE: RISPOSTA FORZATA

- Ipotesi: sistema stabile internamente.
- Problema della risposta forzata:
 - assegnata una configurazione di segnali di ingresso $\{r(t), d_{p_i}(t), d_{p_u}(t), d_h(t)\}$, determinare sotto quali condizioni la risposta forzata y(t) ha un andamento desiderato $y^0(t)$, ovvero

$$y(t) = y^0(t), \quad \forall t$$

Un problema più semplice: risposta di regime.

$$\lim_{t\to\infty} y^o(t) - y(t) = 0$$

SISTEMI DI CONTROLLO IN RETROAZIONE: RISPOSTA DI REGIME

• Esempio (I). Problema di inseguimento.

$$d_{p_i}(t) = 0;$$
 $d_{p_u}(t) = 0;$ $d_h(t) = 0;$ $R(s) = H(s)Y^0(s).$

- Schema a blocchi equivalente

– Condizione di regime:

$$\lim_{t \to \infty} y^{0}(t) - y(t) = 0$$

$$\updownarrow$$

$$\lim_{t\to\infty} \mathcal{L}^{-1}\left\{\frac{1}{1+C(s)P(s)H(s)}Y^0(s)\right\} = 0$$

SISTEMI DI CONTROLLO IN RETROAZIONE: RISPOSTA DI REGIME

• Esempio (II). Problema di reiezione dei disturbi.

$$d_{p_u}(t) = d(t);$$
 $d_{p_i}(t) = 0;$ $d_h(t) = 0;$ $r(t) = 0;$ $y^0(t) = 0.$

Schema a blocchi equivalente

– Condizione di regime:

$$\lim_{t \to \infty} y(t) = 0$$

$$\updownarrow$$

$$\lim_{t\to\infty} \mathcal{L}^{-1}\left\{\frac{1}{1+C(s)P(s)H(s)}D(s)\right\} = 0$$

PROBLEMA DI INSEGUIMENTO E TIPO DI UN SISTEMA

• Segnali di ingresso canonici.

$$Y_k^0(s) = \frac{A}{s^{k+1}}, \qquad k \ge 0$$

 $\bullet\,$ Risultato: l'errore a regime corrispondente all'ingresso canonico $y_k^0(t)$, ovvero

$$e_{\infty,k} = \lim_{t \to \infty} e_k(t) = \lim_{t \to \infty} y_k^0(t) - y_k(t)$$

è limitato se G(s) ha la forma

$$G(s) = \frac{K}{s^h}G'(s)$$
 (con $G'(0) = 1$, $h \ge k$).

In particolare, $e_{\infty,k}$ è nullo se h>k.

• Un sistema in retroazione unitaria si dice di tipo h se G(s) ha h poli nell'origine.

RELAZIONE FRA TIPO E ERRORE A REGIME

• Sistema di tipo 0:

$$G(s) = K_p G'(s) \qquad \begin{cases} e_{\infty,0} = \frac{A}{1+K_p} \\ e_{\infty,k} = \infty \end{cases} \qquad k > 0$$

• Sistema di tipo 1:

$$G(s) = \frac{K_v}{s}G'(s) \qquad \begin{cases} e_{\infty,o} = 0 \\ e_{\infty,1} = \frac{A}{K_v} \\ e_{\infty,k} = \infty \end{cases} \qquad k > 1$$

• Sistema di tipo 2:

$$G(s) = \frac{K_a}{s^2}G'(s) \qquad \begin{cases} e_{\infty,k} = 0 & k \le 1 \\ e_{\infty,2} = \frac{A}{K_a} & k \ge 2 \end{cases}$$
$$e_{\infty,k} = \infty \qquad k \ge 2$$

RELAZIONE FRA TIPO E ERRORE A REGIME

ullet Tabella riepilogativa (errore a regime relativo: $e_{\infty,k}/A$)

Segnale Rif. \ Tipo	0	1	2	• • •	l	• • •
0	$\frac{1}{1+K}$	0	0	• • •	0	• • •
1	∞	$\frac{1}{K}$	0	• • •	0	• • •
2	∞	∞	$\frac{1}{K}$	• • •	0	• • •
• • •	• • •	• • •	• • •	• • •	• • •	• • •
l	∞	∞	∞	• • •	$\frac{1}{K}$	• • •
• • •	• • •	• • •	• • •	• • •	• • •	• • •