Practica 8

1) Determinar para cada función t(n) en la siguiente tabla, cual es el mayor tamaño n de una instancia de un problema que puede ser resuelto en cada uno de los tiempos indicados en las columnas de la tabla, suponiendo que el algoritmo para resolverlo utiliza t(n) microsegundos.

t(n)	1	1 min.	1 hora	1 día	1 mes	1 año	1 siglo
	seg.						
log ₂ (2 ¹⁰⁶	2 ^{6 * 10⁷}	2 ^{36 * 108}	2 ^{864 * 10*}	2 ^{25920 * 108}	2 ^{311040 * 108}	2 ^{31104000 *}
n)							10 ⁸
√n	10 ¹²	(6 *	(36 *	(864 *	(25920 *	(311040 *	(31104000
		10 ⁷) ²	10 ⁸) ²	10 ⁸) ²	10 ⁸) ²	10 ⁸) ²	* 10 ⁸) ²
n	10 ⁶	6 * 10 ⁷	36 * 10 ⁸	864 * 10 ⁸	25920 * 108	311040 * 108	31104000
							* 10 ⁸
n ×	6274	280141	1333800	27551000	718710000	7870896061	67699498
log ₂ (6	7	00	00	00	98	46 3641
n)							
n ²	√10 ⁶	√6 *	√36 * 10 ⁸	√864 * 10 ⁸	√25920 *	√311040 *	√3110400
		10 ⁷			10 ⁸	10 ⁸	0 * 10 ⁸
2 ⁿ	ln (10 ⁶) ln (2)	$\frac{\ln{(6*10^7)}}{\ln{(2)}}$	$\frac{\ln{(36*10^8)}}{\ln{(2)}}$	ln (864 * 10 ⁸⁸) ln (2)	ln (25920 * 10 ⁸) ln (2)	ln (311040 * 10 ⁸) ln (2)	ln (31104000 * 10 ⁸) ln (2)
n!	9	11	12	13	15	16	17

2) Si el tiempo de ejecución en el mejor caso de un algoritmo, tm(n), es tal que $tm(n) \in \Omega(f(n))$ y el tiempo de ejecución en el peor caso de un algoritmo, tp(n), es tal que $tp(n) \in O(f(n))$, ¿Se puede afirmar que el tiempo de ejecución del algoritmo es O(f(n))?

Si, se puede afirmar que el tiempo de ejecución del algoritmo es $\Theta(f(n))$, ya que esta acotado inferiormente en el mejor caso por f(n) (tm(n) $\in \Omega(f(n))$) y esta acotado superiormente en el peor caso por f(n) (tp(n) $\in O(f(n))$).

En el mejor caso el tiempo de ejecución va a ser más grande o igual que c1(constante positiva) * f(n) y en el peor caso va a ser menor o igual que c2 (constante positiva) * f(n). Con ello, se cumple la definición de $\Theta(f(n))$ {t:N \rightarrow R+ / \exists c1, c2 \in R+, n0 \in N tq c1 $f(n) \le t(n) \le t(n)$ = n0}