collabot manual KR 1030

[프로그램 실행]

- 0. 선행 작업 : 카메라 두개 및 opencr 보드의 연결 확인 및 chkusb로 logitech 카메라 포트 확인(후술)
 - 1. roscore : 터미널 열고, roscore 입력 후 엔터.
 - 2. runopt : 터미널 열고, runopt 입력 후 엔터.
 - 3. 모든 모듈이 준비되기 까지 약 5~6초 가량 소요됨.

[runopt 구성]

1. 4분할 터미네이터

OFF → 책장 close

- a. 메인 스크립트(좌상단) : 앱으로 선택된 책을 출력 및 task queue에 저장, task queue의 각 타겟에 대하여 순차적으로 일련의 프로세스 진행과정 출력 책장 open → 대기 → detector 호출 → 응답 대기 → (구) 디버깅용 LED ON,
- b. OpenCR 모듈(좌하단) : 앱으로 책 선택시 "Command Received" 출력 및 데이터 main으로 전달, main에서 모터 open / close 수신 시 명령 수행
- c. Body Tracking 모듈(우상단) : 실시간 Skeleton detection 정보 출력(바디 인덱스 및 신장 추정치)
- d. Detection 모듈(우하단): main에서 호출 시 logitech 카메라의 비디오에서 YOLO 기반 책장 ROI 검출, 해당 ROI 내에서 Optical Flow로 책을 꺼내갔는지 확인. 결과를 main에 반환

2. RVIZ

- a. 실시간 Azure Kinect 카메라의 포인트클라우드 및 스켈레톤 데이터 출력.
- 3. rqt dynamic reconfigure
 - a. Azure Kinect 포인트 클라우드 데이터의 rotation, translation을 수동조작
 - b. rotation, traslation preset 저장 및 불러오기
 - c. Collabot main 탭에서 어른 아이 threshold 조절 가능.

4. OpenCV window (ori img, roi img): Detection 모듈 시각화 용.

카메라 H/W pose setting

Azure Kinect - 은색

- 0. 카메라의 C 포트는 USB로 노트북과 연결. 카메라의 동그란 포트는 전원 어댑터에 연결.
- * 아래부터는 최초 1회만 세팅 해주면 됨.
- 1. 터미널에서 runopt 또는 roslaunch az_body_tracker run.launch 명령어로 body tracker RVIZ 실행.
- 2. 포인트 클라우드 데이터에 가능한 책장이 안나오도록(FOV의 가려짐 유발)
- 3. 카메라 각도를 지평면으로부터 약 45~60도 사이의 각도로 맞춤.
- 4. 3번과 4번을 만족하면서 가장 사람 인식이 잘 되는 각도로 세팅.
- 5. 이후 rviz창과 함께 열리는 rqt dynamic reconfigure 창에서 roll pitch yaw 값을 조절하여 포인트클라우드의 바닥 면이 RVIZ ground plane과 매칭되도록 설정.

7. 좌상단 버튼 눌러서 preset 값 저장:

~/catkin_ws1/src/az_body_tracker/params/preset.yaml

Logitech - 검은색

로지텍 카메라는

- 1. 책장과 수평하면서
- 2. 지평면과 수직하면서
- 3. 책장 모서리보다 조금 앞으로 튀어나오게 하여 책장을 잘 인식하도록
- 4. 실행도중 인식이 잘 안되는 경우 각도의 조절이 필요할 수 있음.

카메라 S/W setting

1. 카메라 두 대를 노트북에 연결

2. 터미널 열고, **chkusb**로 logitech 카메라의 첫번째 포트 번호 확인 (아래의 경우 0 번)

3. ~/yolov5 경로에 있는 detect_book_state.py 스크립트의 최하단 main에서 source 변수 값을 위에서 확인한 포트번호로 변경 후 저장.

```
if __name__ == "__main__":
    rospy.init_node('detect_book_state')
    cv2.namedWindow('ori_img',cv2.WINDOW_NORMAL)
    cv2.namedWindow('roi_img',cv2.WINDOW_NORMAL)
    print("Starting...")
    # Using Camera
    source = 0
```

어른 아이 threshold

터미널에서 runopt 실행 후 프로그램이 완전히 실행 된 후 rqt 창에서 refresh 버튼 클릭.

목록에 Collabot_main을 클릭하면 ac threshold 조절하는 트랙바가 나옴.

트랙바를 움직이거나, 우측의 박스에 원하는 값을 기입후 엔터.

어른아이 판정정보 디버깅은 logger level을 아래와 같이 설정. Levels의 기본값은 Info.

runopt 실행 구성

4분할 터미널

터미널 열고 tconfig 입력 후 엔터 >>> 통합 터미널에서 각 터미널에서 실행할 명령어가 정의되어 있음.

```
≡ config

          ×
[global config]
        suppress multiple term dialog = True
       [keybindings]
       [layouts]
         [[default]]
           [[[child1]]]
             parent = window0
             profile = collabot
             type = Terminal
           [[[window0]]]
             parent = ""
 11
             type = Window
 12
 13
         [[collabot]]
           [[[child0]]]...
           [[[child1]]]--
 25 >
           [[[child2]]]...
           [[[child5]]] --
           [[[terminal3]]] --
           [[[terminal4]]] ---
           [[[terminal6]]] --
           [[[terminal7]]]--
         [[collabot opt]]
          [[[child0]]]--
 76 >
           [[[child1]]] ---
           [[[child2]]]--
           [[[child5]]] ---
           [[[terminal3]]] --
           [[[terminal4]]] --
113 >
           [[[terminal6]]] --
121 >
           [[[terminal7]]] ---
129 >
       [plugins]
137
       [profiles]
        [[default]]
139
           cursor color = "#aaaaaa"
141
         [[collabot set]]
           cursor color = "#aaaaaaa"
142
           exit action = hold
143
           foreground color = "#ffffff"
```

layout 탭에는 collabot 과 collabot opt 레이아웃이 저장되어있음.

collabot 레이아웃: 구버전 책장 인식 모듈 - SSIM

collbot_opt 레이아웃 : 현재 버전 책장 인식 모듈 - yolov5 and optical flow

```
[[[child0]]]
[[[child1]]]
[[[child5]]]
[[[terminal3]]]
  command = source /home/kist/collabot_t.bash; roslaunch collabot_do run_optical_flow.launch;bash
 parent = child2
profile = collabot_set
title = Main
  type = Terminal
 uuid = 8f77acc1-55c8-41b2-98b4-e467fcbc5d88
[[[terminal4]]]
  command = source /home/kist/collabot_t.bash; sleep 1s; rosrun rosserial_python serial_node.py _port:=/dev/ttyACM0;bash
 parent = child2
profile = collabot_set
  title = OpenCR
  uuid = 5862c8a7-63d4-4cc9-915e-12196c1b9cca
[[[terminal6]]]
  command = source /home/kist/collabot_t.bash; sleep 1s; roslaunch az_body_tracker run.launch;bash
  parent = child5
 profile = collabot_set
title = Body_tracker
 type = Terminal
  uuid = ca47c9a4-3e5b-46bc-b54f-5f399e0e3b19
[[[terminal7]]]
  command = source /home/kist/collabot t.bash;conda activate collabot;cd ~/yolov5;python detect book state.py;bash
  parent = child5
  profile = collabot_set
  title = Drawer_detector
  type = Terminal
  uuid = 6ddf5566-cced-42af-b475-3558c81ab173
```

레이아웃마다 4개의 하위 터미널 구성이 있으며, 해당 터미널 하위에 실행 command를 지정 가능.

tconfig에서 수정사항이 생겼을 경우, 저장 후 모든 터미네이터 종료 후 실행 해야 함.

분할 터미널 소스파일

runopt 실행 시 생성되는 터미널은 ~/.bashrc를 소스하지 않고, ~/collabot_t.bash를 소스함.

/collabot_t.bash에는 아래와 같이 ROS 소스, ROS 마스터, 터틀봇, conda 에 관한 내용으로 구성.

~/.bashrc에서 ROS 마스터 , 터틀봇, conda 관련 수정사항은 collabot_t 배쉬에도 반영해야 함.

```
collabot_t.bash
 Open ▼
          Æ
### source ROS ###
source /opt/ros/melodic/setup.bash
source ~/catkin_ws1/devel/setup.bash
### turtlebot ###
export TURTLEBOT3_MODEL=waffle_pi
export OPENCR_MODEL=burger
export OPENCR_PORT=/dev/ttyACM0
### ROS MASTER SET ###
export ROS_PACKAGE_PATH=~/catkin_ws1/src:/opt/ros/melodic/share
#export ROS_MASTER_URI=http://192.168.0.100:11311
#export ROS_HOSTNAME=192.168.0.100
export ROS_MASTER_URI=http://172.16.0.75:11311
export ROS_HOSTNAME=172.16.0.75
### conda setup ###
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
 _conda_setup="$('/home/kist/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
    eval "$__conda_setup"
else
    if [ -f "/home/kist/anaconda3/etc/profile.d/conda.sh" ]; then
        . "/home/kist/anaconda3/etc/profile.d/conda.sh"
        export PATH="/home/kist/anaconda3/bin:$PATH"
fi
unset conda setup
# <<< conda initialize <<<
```

책장 인식 모듈

책장 인식에 yolov5, 책 이탈 여부 판정에 optical flow 적용됨.

모듈 경로: ~/yolov5

메인 스크립트 : ~/yolov5/detect_book_state.py

>> 해당 스크립트에서 책장 인식시간, 책 이탈 판정 시간 수정 가능.