1	$\sum_{n=1}^{\infty} 1$
	a) $n=1 \sqrt[4]{n^3}$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)}{n^2 - 3}$$

- A) a-HT và b-PK
- B) a-HT và b-HT
- C) a-PK và b-PK
- D) a-PK và b-HT

a)
$$\sum_{n=1}^{\infty} \cos\left(\frac{5}{n}\right)$$
 b)
$$\sum_{n=1}^{\infty} \frac{n^2 + 5}{(n+2)!}$$

$$\sum_{n=1}^{\infty} \frac{n^2 + 5}{(n+2)!}$$

- A.)a-HT và b-PK
- B.) a-HT và b-HT
- C.) a-PK và b-PK
- D.) a-PK và b-HT

3

Tìm tổng riêng thứ n và tổng của chuỗi số

$$2 + \frac{2}{7} + \frac{2}{49} + \dots + \frac{2}{7^{n-1}} + \dots$$

A)
$$\frac{2\left(1-\frac{1}{7n}\right)}{1-\frac{1}{7}}$$
; $\frac{7}{4}$ B) $\frac{2\left(1-\frac{1}{7n}\right)}{1-\frac{1}{7}}$; $\frac{7}{3}$

B)
$$\frac{2\left(1-\frac{1}{7^n}\right)}{1-\frac{1}{7}}$$
; $\frac{7}{3}$

C)
$$\frac{2\left(1-\frac{1}{7^{n-1}}\right)}{1-\frac{1}{7}}$$
; $\frac{7}{3}$ D) $\frac{2\left(1-\frac{1}{7^{n-1}}\right)}{1-\frac{1}{7}}$; $\frac{7}{4}$

D)
$$\frac{2\left(1-\frac{1}{7n-1}\right)}{1-\frac{1}{7}}$$
; $\frac{7}{4}$

Tìm tổng riêng thứ n và tổng của chuỗi số

 $5 - \frac{5}{7} + \frac{5}{49} - \frac{5}{343} + \dots + (-1)^{n-1} + \frac{5}{7n-1} + \dots$

A)
$$\frac{5\left(1-\frac{1}{(-7)^n}\right)}{1+\frac{1}{7}}$$
; $\frac{35}{6}$

C)
$$\frac{5\left(1-\frac{1}{(-7)^n}\right)}{\frac{1}{1}+\frac{1}{2}}$$
; $\frac{35}{8}$

B)
$$\frac{5\left(1-\frac{1}{(-7)^{n-1}}\right)}{1+\frac{1}{7}}$$
; $\frac{35}{6}$

D)
$$\frac{5\left(1 - \frac{1}{(-7)^{n-1}}\right)}{1 + \frac{1}{7}}$$
; $\frac{35}{8}$

	Tính	_		
5	0.616161	-		
	A) $\frac{610}{99}$	B) $\frac{61}{99}$	C) $\frac{610}{999}$	D) $\frac{61}{999}$
6	Xét sự hội tụ và tính t	ổng nếu có		
	$\sum_{n=1}^{\infty} \frac{7}{(4n-1)(4n+3)}$ A) HT; $\frac{7}{18}$	B) HT ; $\frac{7}{12}$	C) HT ; $\frac{7}{6}$	D) PK
7	Tìm miền HT của			
	$\sum_{n=0}^{\infty} (x-6)^n$	B) 6 < x < 7	C) 5 < x < 7	D) -6 < x < 6
8	a) $\sum_{n=1}^{\infty} \frac{7 + 10 \cos n}{n^4}$ A a-HT và b-B a-HT và b-C a-PK và b-D a-PK và b-	PK HT PK		
9	a) $\sum_{n=1}^{\infty} \left(\frac{\ln n}{3n-4}\right)^n$ A a-HT và b-B a-HT và b-C a-PK và b-D a-PK và b	PK HT PK		
10	Bán kính HT của			
	$\sum_{n=0}^{\infty} \frac{(x-2)^n}{2n+1}$ A) 2	B) ∞, for all x	C) 1	D) 0
11	Miền HT của $\sum_{n=1}^{\infty} \frac{(x-3)^n}{\ln(n+1)}$			
	A) $2 < x < 4$	B) $-\infty < x < \infty$	C) $2 \le x < 4$	D) x < 4

	Khai triển chuỗi Mac Laurin của	
12	_1_	
	$\frac{1}{4+x}$	
	A) $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{4^{n+1}}$	B) $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{4^n}$
	C) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{4^n}$	D) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{4^{n+1}}$
13	Khai triển Taylor tại x =8	
	$f(x) = e^{4x},$	
	A) $\sum_{n=0}^{\infty} \frac{e^{32} 4^{n+1} (x-8)^n}{n!}$	B) $\sum_{n=0}^{\infty} \frac{e^{32} 4^n (x-8)^n}{(n+1)!}$
	C) $\sum_{n=0}^{\infty} \frac{e^{32} 4^{n+1} (x-8)^n}{(n+1)!}$ Khai triển Mac Laurin	D) $\sum_{n=0}^{\infty} \frac{e^{32} 4^n (x-8)^n}{n!}$
14		
	$f(x) = \ln(1 + x^3)$	1 . 1 . 1 . 1
	A) $\frac{1}{3}x^3 - \frac{1}{6}x^6 + \frac{1}{9}x^9 - \frac{1}{12}x^{12} + \dots$	3) $x^3 + \frac{1}{2}x^6 - \frac{1}{6}x^9 + \frac{1}{24}x^{12} + \dots$
	2 0 24	$(x^3 - \frac{1}{2}x^6 + \frac{1}{3}x^9 - \frac{1}{4}x^{12} + \dots)$
15	Bốn số hạng đầu của khai triển Maclaurrin	
	$(1-5x)^{1/2}$ 5 25 2 125 2	5 25 a 125 a
	A) $1 - \frac{5}{2}x - \frac{25}{8}x^2 - \frac{125}{32}x^3$	B) $1 + \frac{5}{2}x + \frac{25}{8}x^2 - \frac{125}{32}x^3$
	C) $1 - \frac{5}{2}x - \frac{25}{8}x^2 - \frac{125}{16}x^3$	D) $1 - \frac{5}{2}x + \frac{25}{8}x^2 - \frac{125}{16}x^3$
16	Miền Ht của $\sum_{n=1}^{+\infty} \frac{x^n}{x^{2n} + 1}$	
	A) \mathbb{R} B) $\mathbb{R} \setminus \{\pm 1\}$ C) $(-1;1)$	
17	Chuỗi Fourier của hàm $f(x)$ tuần hoàn chu kì 2π 1	
	a) $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)$	
	b) $a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)$	
	c) $\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n cos(nx) + \sum_{n=0}^{\infty} b_n sin(nx)$	
	d) $a_0 + \sum_{n=0}^{\infty} a_n cos(nx) + \sum_{n=0}^{\infty} b_n sin(nx)$	

18	$f(x)=egin{cases} -\pi \ x & -\pi < x \leq 0 \ \pi \ & 0 < x \leq \pi \end{cases}$ tuần hoàn chu kì 2π .
	Hệ số của sin 5x trong khai triển chuỗi Fourier của f(x) là
	1. $\frac{4}{5}$ 3. $\frac{4}{3}$
	2. $\frac{5}{4}$ 4. $\frac{3}{4}$
19	Nghiệm tổng quát của $(e^x + 1)y dy = (y+1)e^x dx$
	(a) $e^{y} = c(e^{x} + 1)(y + 1)$ (b) $e^{y} = c(e^{x} + y + 1)$ (c) $y = (e^{x} + 1)(y + 1)$ (d) \mathbf{d} áp án khác
20	Nghiệm tổng quất của $\frac{dy}{dx} = 1 - x + y - xy$
	(a) $e^{1+y} = x - \frac{x^2}{2} + c$ (b) $\ln 1+y = x - \frac{x^2}{2} + c$
	(c) $e^y = x - \frac{x^2}{2} + c$ (d) đáp án khác
21	Nghiệm TQ của $\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$
	(a) $x^2 - y^2 = cx$ (b) $x^2 + y^2 = cy$
	(c) $x^2 + y^2 = cx$ (d) đáp án khác
22	Nghiệm TQ của $\frac{dy}{dx} + \frac{y}{x} = \sin x$
	(a) $x(y+\cos x)=\sin x+c$ (b) $x(y-\cos x)=\sin x+c$
	(c) $x(y+\cos x)=\cos x+c$ (d) đáp án khác
23	Nghiệm TQ của $x \frac{dy}{dx} = y + x \tan \frac{y}{x}$
	(a) $\sin \frac{x}{y} = x + c$ (b) $\sin \frac{y}{x} = cx$ (c) $\sin \frac{x}{y} = cy$ (d) $\sin \frac{y}{x} = cy$

24	PT nào dưới đây là pt VPTP
	A. $(x^2 + 1) dx - xy dy = 0$
	B. $x dy + (3x - 2y) dx = 0$
	C. $2xy dx + (2 + x^2) dy = 0$
	D. $x^2y dy - y dx = 0$
25	Nghiệm TQ của $(x+2y^3)\frac{dy}{dx} = y$
	(a) $\frac{x}{y} + y^2 = c$ (b) $\frac{y}{x} + x^2 = c$
	(c) $\frac{x}{y} - y^2 = c$ (d) $\frac{y}{x} - x^2 = c$
26	Nghiệm TQ của $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{\sqrt{1+x^2}}$
	(a) $y = \frac{1+x^2}{x} + \frac{c}{x}$ (b) $y = \frac{\sqrt{1+x^2}}{x} + \frac{c}{x}$
	(c) $y = \frac{x}{\sqrt{1+x^2}} + cx$ (d) đáp án khác
27	Tìm số thực m để $y=x^m$ là nghiệm của
	$x^2y'' - 5xy' + 8y = 0?$
	(a) $m = 2, 3$ (c) $m = 3, 4$
	(b) $m = 2, 4$ (d) $m = -2, -4$
28	Laplace transform of the function $f(t) = (t+2)^2$ is:
	(a) $\left(\frac{1}{s^2} + \frac{2}{s}\right)^2$ (c) $\frac{2}{s^3} + \frac{4}{s^2} + \frac{4}{s}$
	(b) $\frac{2}{s^3} + \frac{4}{s}$ (d) $\frac{2}{(s+2)^3}$

29	The Laplace transform of the function $f(t) = t \sin(t)$ is:
	(a) $\frac{2s}{(s^2+1)^2}$ (c) $\frac{1}{s^2} + \frac{1}{s^2+1}$
	(b) $\frac{1}{s^2(s^2+1)}$ (d) $-\frac{2s}{(s^2+1)^2}$
30	The inverse Laplace transform of the function
	$F(s) = \frac{e^{-2s}s}{s^2 + 4}$
	(a) $\frac{1}{2}\sin(2t-4)\mathcal{U}(t-2)$ (c) $\cos(2t-4)\mathcal{U}(t-2)$
	(b) $\cos(2t-2)\mathcal{U}(t-2)$ (d) $\mathcal{U}(t-2)\cos(2t)$
31	Nghiệm TQ của $2y'' - 7y' + 3y = 0$.
	A. $y(t) = c_1 e^{-\frac{1}{2}t} + c_2 e^{3t}$ D. $y(t) = c_1 e^{\frac{1}{2}t} + c_2$
	B. $y(t) = c_1 e^{-\frac{1}{2}t} + c_2 e^{-3t}$ E. $y(t) = c_1 + c_2 e^{-3t}$
	C. $y(t) = c_1 e^{\frac{1}{2}t} + c_2 e^{3t}$ F. Đáp án khác
32	Tìm nghiệm riêng $y'' + 2y' + y = 0$, $y(0) = 5$, $y'(0) = -3$.
	A. $5e^{-t} - 2te^{-t}$ D. $5e^{-t} - 3te^{-t}$
	B. $5e^{-t} + 2te^{-t}$ E. $5e^{-t} - 2e^t$
	C. $5e^{-t} + 3e^t$ F. Dáp án khác
	Tìm nghiệm TQ $3y'' + y' - 2y = 2\cos t$
	A. $c_1 e^{\frac{2}{3}t} + c_2 e^{-t} - \frac{5}{13} \cos t + \frac{1}{13} \sin t$
	B. $c_1 e^{\frac{2}{3}t} + c_2 e^{-t} - \frac{5}{13} \cosh t + \frac{1}{13} \sinh t$
	C. $c_1 e^{\frac{2}{3}t} + c_2 e^t + \frac{5}{26} e^{it} + \frac{1}{26} e^{-it}$
	D. $c_1 e^{\frac{2}{3}t} + c_2 e^t + \frac{5}{13} \cos t + \frac{1}{13} \sin t$
	E. $c_1 e^3 + c_2 e^t - \frac{5}{13} \cos t + \frac{1}{13} \sin t$
	F. dáp án khác
33	z · uup uii kiiuc

24	
34	$t^{2}y'' - t(t+2)y' + (t+2)y = 0, t > 0.$
	Biết 1 nghiệm riêng $y_1(t)=t$. Theo CT Liouville thì y_2 =?
	A. $y_2(t) = t^2$ D. $y_2(t) = t^2 e^t$
	B. $y_2(t) = e^t$ E. $y_2(t) = \ln t$
	${}^{\perp}_{}$ B. $y_2(t)=e^t$ E. $y_2(t)=\ln t$ C. $y_2(t)=te^t$ F. dáp án khác
35	Laplace transform of t ² sin(2t).
	a) $\frac{12s^2-16}{\left(s^2+4\right)^4}$ c) $\frac{12s^2-16}{\left(s^2+4\right)^6}$
	b) $\frac{3s^2-4}{(s^2+4)^3}$ d) $\frac{12s^2-16}{(s^2+4)^3}$
	$(s^2+4)^3$ $(s^2+4)^3$
36	laplace transform of $y(t)=e^{t}$.t.Sin(t)Cos(t).
	a) $\frac{4(s-1)}{((s-1)^2+4)^2}$ c) $\frac{4(s+1)}{(s-1)^2+4}$
	a) $\frac{4(s-1)}{[(s-1)^2+4]^2}$ c) $\frac{4(s+1)}{[(s+1)^2+4]^2}$ b) $\frac{2(s+1)}{[(s+1)^2+4]^2}$ d) $\frac{2(s-1)}{[(s-1)^2+4]^2}$
	$((s+1)^2+4)^2$
37	Cho phương trình $ty' + y - t^2 = 0$, $y(1) = 1$.
	y(2) = ?
	A. $\frac{5}{4}$, C. $\frac{5}{3}$, E. đáp án khác
	B. $-\frac{5}{3}$, D. $-22 + 15e^{-1}$.
38	$\mathscr{L}ig[e^{-t}ig(\sin 2t + t^2ig)ig] =$
	(a) $\frac{2}{(s+1)^2+4} + \frac{2}{(s+1)^3}$ (c) $\frac{4}{(s+1)^2+4} + \frac{2}{(s+1)^3}$
	(b) $\frac{2}{s^2+4} + \frac{2!}{s^3}$ (d) $\frac{2}{\left(s^2+1\right)^2+4} + \frac{2!}{\left(s^2+1\right)^3}$

$$\mathscr{L}^{-1} \left[\frac{3s^2 + 4}{s(s^2 + 4)} \right] =$$

- (a) $1-2\cos\,2t$ (c) 0
- (b) $1 + 2\cos 2t$
- (d) $2\cos 2t t$

40

Find the Laplace transform of

$$f(t) = \begin{cases} 0 & \text{when } t < \pi, \\ t - \pi & \text{when } \pi \le t < 2\pi, \\ 0 & \text{when } t \ge 2\pi. \end{cases}$$

A.
$$e^{-\pi s} \frac{1}{s^2} - e^{-2\pi s} \frac{1}{s^2} - \pi e^{-2\pi s} \frac{1}{s}$$
 C. $e^{\pi s} \frac{1}{s^2} - e^{2\pi s} \frac{1}{s^2} - \pi e^{2\pi s} \frac{1}{s^2}$
B. $e^{-\pi s} \frac{1}{s^2} - e^{-2\pi s} \frac{1}{s^2}$ D. $\frac{1}{s} \left(e^{-\pi s} - e^{-2\pi s} \right)$

C.
$$e^{\pi s} \frac{1}{s^2} - e^{2\pi s} \frac{1}{s^2} - \pi e^{2\pi s} \frac{1}{s^2}$$

B.
$$e^{-\pi s} \frac{1}{s^2} - e^{-2\pi s} \frac{1}{s^2}$$

D.
$$\frac{1}{s} \left(e^{-\pi s} - e^{-2\pi s} \right)$$

E. None of the above.