| SPRAWOZDANIE Z LABORATORIUM FIZYKI 3.1 |          |                                      |                         |  |  |  |
|----------------------------------------|----------|--------------------------------------|-------------------------|--|--|--|
| Numer ćwiczenia                        | 57c      | Temat ćwiczenia Badanie efektu Halla |                         |  |  |  |
| Numer grupy                            | 6        | Termin zajęć                         | 03.11.2016; 9:15        |  |  |  |
| 9                                      | skład gr | иру                                  | Prowadzący Oce          |  |  |  |
| Iwo Bujkiewicz, 226203                 |          |                                      | Dring Crangers Zatrub   |  |  |  |
| Bartosz Rodziewicz, 226105             |          |                                      | Dr inż. Grzegorz Zatryb |  |  |  |

### 1. Cel ćwiczenia

- 1. Zmierzenie charakterystyk statycznych hallotronu:
  - $U_H = f(\alpha)$  i  $U_H = f(B_n)$  wersja podstawowa ćwiczenia.
  - $U_H = f(I_S)$  wersja dodatkowa ćwiczenia.
- 2. Wyznaczenie czułości polowej  $\gamma_B = \Delta U_H/\Delta B$  i czułości prądowej  $\gamma_I = \Delta U_H/\Delta I$  hallotronu.
- Wyznaczenie koncentracji n swobodnych nośników ładunku.
- 4. Wyznaczenie maksymalnej czułości kątowej  $\gamma_{\alpha} = \Delta U_{H}/\Delta \alpha$  hallotronu.

### 2. Wstęp teoretyczny

Zjawisko Halla, efekt Halla – zjawisko fizyczne polegające na wystąpieniu różnicy potencjałów w przewodniku, w którym płynie prąd elektryczny, gdy przewodnik znajduje się w poprzecznym do płynącego prądu polu magnetycznym. Ta różnica potencjałów, zwana napięciem Halla, pojawia się między płaszczyznami ograniczającymi przewodnik, prostopadle do płaszczyzny wyznaczanej przez kierunek prądu i wektor indukcji magnetycznej. Jest ona spowodowana działaniem siły Lorentza na ładunki poruszające się w polu magnetycznym.

## 3. Spis przyrządów

- Hallotron umieszczony w polu magnetycznym
- Zasilacz hallotronu
- Multimetr Metex M-3860D
   dokładność w zakresie, w którym był wykorzystany: ±0,3 % rdg + 1 dgt
- Amperomierz LM-1 klasa 0.5

# 4. Przebieg ćwiczenia

- 1. Wersja podstawowa
  - 1.1. Przebieg pomiarów

Zakres amperomierza: 15mA Zakres woltomierza: 400mV  $\alpha_0 = 2^{\circ}$  (odczytane wzrokowo)

Pomiar polegał na dwukrotnym zmierzeniu napięcia dla kątów [0°, 360°) z krokiem 5°. Wyniki pomiarów znajdują się w tabeli 1. W tabeli też policzona już została uśredniona wartość U<sub>H</sub> z tych dwóch pomiarów i od tego momentu będziemy jej używać do wszystkich obliczeń.

#### Przykładowe obliczenia u(U<sub>H</sub>):

Liczymy  $u(U_H)$  zgodnie ze wzorem ze specyfikacji miernika (wzór podany w spisie przyrządów) i mamy z tego następujące przykładowe równania:

$$u(U_H) = \frac{(0.003 * |U_H|) + 0.1}{\sqrt{3}} = \frac{0.003 * 175.4 + 0.1}{\sqrt{3}} = \frac{0.6262}{\sqrt{3}} \approx 0.37[mV]$$

- 1.2. Opracowanie wyników
  - 1.2.1. Wykres charakterystyki kątowej hallotronu to wykres 1. Z niego też odczytujemy  $\alpha_0=2.5^\circ$ .
  - 1.2.2.Wartości składowej normalnej indukcji magnetycznej wraz z niepewnościami dla każdego kąta znajdują się w tabeli 2. Do obliczeń przyjęliśmy  $u(\alpha)=u(\alpha_0)=\frac{2.5^\circ}{\sqrt{3}}=\frac{0.04}{\sqrt{3}}\approx 0.025$  i  $u(B_0)=\frac{0.05}{\sqrt{3}}=0.029$  [T]

Przykładowe obliczenia:

$$B_n(\alpha) = B_0 * \sin(\alpha - \alpha_0)$$

$$B_n(0) = 0.500 * \sin(0 - 0.03) = 0.5 * \sin(-0.03) \approx 0.5 * -0.03 = -0.0150$$

$$\frac{\partial}{\partial B_0} (B_0 * \sin(\alpha - \alpha_0)) = \sin(\alpha - \alpha_0)$$

$$\frac{\partial}{\partial \alpha} (B_0 * \sin(\alpha - \alpha_0)) = B_0 * \sin(\alpha - \alpha_0)$$

$$\frac{\partial}{\partial \alpha_0} (B_0 * \sin(\alpha - \alpha_0)) = -B_0 * \sin(\alpha - \alpha_0)$$

$$u_c(B_n) = \sqrt{(\frac{\partial B_n}{\partial B_0} * u(B_0))^2 + (\frac{\partial B_n}{\partial \alpha} * u(\alpha))^2 + (\frac{\partial B_n}{\partial \alpha_0} * u(\alpha_0))^2}$$

$$\begin{split} &u_c(B_n(0))\\ &=\sqrt{(\sin(\alpha-\alpha_0)*u(B_0))^2+(B_0*\sin(\alpha-\alpha_0)*u(\alpha))^2+(-B_0*\sin(\alpha-\alpha_0)*u(\alpha_0))^2}\\ &=\sqrt{(\sin(0-0.04)*0.029)^2+(0.500*\sin(0-0.04)*0.025)^2+(-0.500*\sin(0-0.04)*0.025)^2}\\ &=\sqrt{(-0.00125)^2+(-0.00054)^2+(0.00054)^2}=\sqrt{0.00000159+0.00000030+0.00000030}\\ &=\sqrt{0.00000219}=0.00147962\approx0.0015 \end{split}$$

$$B_n = -0.0150(15)$$

- 1.2.3. Wykres  $U_H = f(B_n)$  to wykres 2.
- 1.2.4.Na wykresie 2 zaznaczona została linia trendu wraz ze współczynnikiem  $\gamma=$

$$\frac{a}{I_s} = \frac{-423.40}{10} = -42.34.$$

$$u(a) = 0.50 \left[ \frac{mV}{T} \right]$$

$$u(I_s) = \frac{0.5}{\sqrt{3}} \approx 0.29 \left[ mA \right]$$

Niepewność y liczymy ze wzoru:

$$u(\gamma) = \sqrt{\left(\frac{\partial \gamma}{\partial a} * u(a)\right)^{2} + \left(\frac{\partial \gamma}{\partial I_{s}} * u(I_{s})\right)^{2}} = \sqrt{\left(\frac{1}{I_{s}} * u(a)\right)^{2} + \left(-\frac{a}{I_{s}^{2}} * u(I_{s})\right)^{2}}$$

$$= \sqrt{\left(\frac{1}{10} * 0.5\right)^{2} + \left(-\frac{-423.40}{100} * 0.29\right)^{2}}$$

$$= \sqrt{0.0025 + 1.5076401796} \approx 1.23$$

$$\gamma = 42.3(1.3) \left[\frac{mV}{mA * T}\right] = 42.3(1.3) \left[\frac{V}{A * T}\right]$$

1.2.5.Niepewność  $\gamma_i$  liczymy dla konkretnego  $B_n=0.492(34)[T]$  i  $U_H=-218.1(4)[mV].$   $I_S=10.00(29)mA$ 

$$U_H = I_S * \gamma_i * B_n = \gg \gamma_i = \frac{U_H}{I_S * B_n}$$

$$\begin{split} \frac{\partial}{\partial U_H} \left( \frac{U_H}{I_S * B_n} \right) &= \frac{1}{I_S * B_n} \\ \frac{\partial}{\partial I_S} \left( \frac{U_H}{I_S * B_n} \right) &= -\frac{U_H}{I_S^2 * B_n} \\ \frac{\partial}{\partial B_n} \left( \frac{U_H}{I_S * B_n} \right) &= -\frac{U_H}{I_S * B_n^2} \\ u_c(\gamma_i) &= \sqrt{(\frac{\partial \gamma}{\partial U_H} * u(U_H))^2 + (\frac{\partial \gamma}{\partial I_S} * u(I_S))^2 + (\frac{\partial \gamma}{\partial B_n} * u(B_n))^2} \end{split}$$

Dalsze obliczenia identyczne jak w pkt. 1.2.2.

$$u_c(\gamma_i) = 3.4$$

$$\gamma_i = -42.3(3.4) \left[ \frac{V}{A * T} \right]$$

1.2.6.Obliczenie koncentracji swobodnych nośników ładunku

$$u(d) = \frac{5\% * 2}{\sqrt{3}} = 0.058$$

$$d = 2.000(58) [\mu m]$$

$$e = 1.602(1) * 10^{-19} [C]$$

$$n = \frac{1}{e\gamma d} = \frac{1}{1.602 * 10^{-19} * 2 * 10^{-6} * |-42.3|} = \frac{10^{25}}{1.602 * 2 * 42.3}$$

$$= \frac{10^{25}}{135.5292} = 7.37848375 * 10^{22}$$

$$u(n) = \sqrt{(\frac{\partial n}{\partial e} * u(e))^2 + (\frac{\partial n}{\partial \gamma} * u(\gamma))^2 + (\frac{\partial n}{\partial d} * u(d))^2}$$

$$= \sqrt{(-\frac{1}{e^2 \gamma d} * u(e))^2 + (-\frac{1}{e\gamma^2 d} * u(\gamma))^2 + (-\frac{1}{e\gamma d^2} * u(d))^2}$$

$$= \frac{1}{e\gamma d} * \sqrt{(\frac{1}{e} * u(e))^2 + (\frac{1}{\gamma} * u(\gamma))^2 + (\frac{1}{d} * u(d))^2}$$

Obliczenia identyczne jak w punkcie 1.2.2

$$u(n) = 3.2 * 10^{21}$$

$$\left[\frac{A * T}{V * C * m}\right] = \left[\frac{A * T}{V * A * s * m}\right] = \left[\frac{T}{V * m * s}\right]$$

$$n = 7.38(32) * 10^{22} \left[\frac{T}{V * m * s}\right]$$

#### 2. Wersja dodatkowa

2.1. Przebieg pomiarów

$$2.1.1.\alpha = 305^{\circ} = 5.323, \alpha_0 = 2.5^{\circ}$$

2.1.2.Wyniki pomiarów  $U_H$  dla różnych  $I_s$  znajdują się w tabeli poniżej:

| I <sub>S</sub> [mA] | U <sub>H</sub> [mV] | u(U <sub>H</sub> ) [mV] |  |
|---------------------|---------------------|-------------------------|--|
| 1                   | 18.5                | 0.1                     |  |
| 2                   | 36.2                | 0.2                     |  |
| 3                   | 54.2                | 0.2                     |  |
| 4                   | 71.4                | 0.2                     |  |
| 5                   | 89.6                | 0.3                     |  |
| 6                   | 106.8               | 0.3                     |  |

| 7  | 124.5 | 0.3 |
|----|-------|-----|
| 8  | 141.7 | 0.4 |
| 9  | 158.8 | 0.4 |
| 10 | 175.3 | 0.4 |
| 11 | 192   | 0.4 |
| 12 | 208.3 | 0.5 |
| 13 | 225.3 | 0.5 |
| 14 | 240.9 | 0.5 |
| 15 | 256.8 | 0.6 |

#### 2.2. Opracowanie wyników

2.2.1. Wykres przedstawiający zmierzone zależności wraz z linią trendu:



2.2.2. $B_n = -0.433(31)$  [T]. Obliczenia identyczne jak w poprzednim przypadku. 2.2.3. $\gamma*B_n = a_2 = \gamma = \frac{a_2}{B_n} = \frac{17.064}{-0.433} = -39.41$ 

$$u(a_2) = 0.088$$

$$u(\gamma) = \sqrt{\left(\frac{\partial \gamma}{\partial a} * u(a)\right)^2 + \left(\frac{\partial \gamma}{\partial B_n} * u(B_n)\right)^2}$$

$$= \sqrt{\left(\frac{1}{B_n} * u(a)\right)^2 + \left(-\frac{a}{B_n^2} * u(B_n)\right)^2}$$

$$= \sqrt{\left(\frac{1}{-0.433} * 0.088\right)^2 + \left(-\frac{17.064}{0.187489} * 0.031\right)^2} = 2.83$$

$$\gamma = -39.4(2.9) \left[\frac{V}{A * T}\right]$$

2.2.4. Obliczenia niepewności  $\gamma_i$  identyczne jak w poprzednim przypadku. Wybraliśmy moment  $I_S=7.00(29),\,U_H=106.8(3)$ 

$$\gamma_i = -39(3) \left[ \frac{V}{A*T} \right]$$

2.2.5.

$$n = 7.92(63) * 10^{22}$$

Obliczenia identyczne jak w poprzednim przypadku.

## 5. Wnioski

- Wyznaczona czułość polowa hallotronu obiema metodami daje zbliżone wyniki, mieszczące się wzajemnie w swoich przedziałach niepewności.
- Koncentracja swobodnych nośników ładunku zbliżone wyniki, mieszczące się wzajemnie w swoich przedziałach nieufności.
- Wyniki wyznaczone metodą pierwszą są dokładniejsze.
- Możemy również zauważyć że wyliczenie γ regresją liniową daje mniejszy błąd, niż wyliczenie jej dla jednego pomiaru.
- Na wyniki końcowe wpływ mógł mieć błąd pomiarowy mierników, wahania w sieci elektrycznej, czy błąd ludzki.

## 6. Załączniki

- Tabela 1
- Tabela 2
- Wykres 1
- Wykres 2



Wykres 1

Wykres 2

Tabela 1

| α [°] | α [rad] | U1 [mV] | U2 [mV] | UH [mV] | u(UH) [mV] | uz(UH) [mV] | 1      |                                     |
|-------|---------|---------|---------|---------|------------|-------------|--------|-------------------------------------|
| 0     | 0.00    | 4.7     | 4.7     | 4.7     | 0.066      | 0.1         | 1      |                                     |
| 5     | 0.09    | -12.0   | -11.9   | -12.0   | 0.079      | 0.1         |        | Legenda                             |
| 10    | 0.17    | -31.4   | -31.3   | -31.4   | 0.12       | 0.2         | α      | kąt na hallotronie                  |
| 15    | 0.26    | -48.7   | -48.9   | -48.8   | 0.15       | 0.2         | U1     | pierwszy pomiar napięcia            |
| 20    | 0.35    | -67.4   | -67.8   | -67.6   | 0.18       | 0.2         | U2     | drugi pomiar napięcia               |
| 25    | 0.44    | -85.9   | -85.3   | -85.6   | 0.21       | 0.3         | UH     | wartość uśredniona                  |
| 30    | 0.52    | -102.8  | -103.4  | -103.1  | 0.24       | 0.3         | u(UH)  | niepewność zaokr. do 2msc           |
| 35    | 0.61    | -118.8  | -117.7  | -118.3  | 0.27       | 0.3         | uz(UH) | niepewność zaokr. do rozdzielczości |
| 40    | 0.70    | -134.8  | -133.7  | -134.3  | 0.30       | 0.3         |        | •                                   |
| 45    | 0.79    | -149.1  | -148.2  | -148.7  | 0.32       | 0.4         | 1      |                                     |
| 50    | 0.87    | -162.6  | -162.0  | -162.3  | 0.34       | 0.4         | 1      |                                     |
| 55    | 0.96    | -174.7  | -176.1  | -175.4  | 0.37       | 0.4         | 1      |                                     |
| 60    | 1.05    | -185.8  | -187.6  | -186.7  | 0.39       | 0.4         | 1      |                                     |
| 65    | 1.13    | -195.0  | -196.6  | -195.8  | 0.40       | 0.4         | 1      |                                     |
| 70    | 1.22    | -203.6  | -201.6  | -202.6  | 0.41       | 0.5         | 1      |                                     |
| 75    | 1.31    | -210.1  | -210.0  | -210.1  | 0.43       | 0.5         | 1      |                                     |
| 80    | 1.40    | -215.1  | -213.4  | -214.3  | 0.43       | 0.5         | 1      |                                     |
| 85    | 1.48    | -218.8  | -219.5  | -219.2  | 0.44       | 0.5         | 1      |                                     |
| 90    | 1.57    | -221.2  | -221.9  | -221.6  | 0.45       | 0.5         | 1      |                                     |
| 95    | 1.66    | -221.9  | -222.4  | -222.2  | 0.45       | 0.5         | 1      |                                     |
| 100   | 1.75    | -221.3  | -221.3  | -221.3  | 0.45       | 0.5         | 1      |                                     |
| 105   | 1.83    | -218.8  | -217.4  | -218.1  | 0.44       | 0.5         | 1      |                                     |
| 110   | 1.92    | -215.4  | -214.3  | -214.9  | 0.43       | 0.5         | 1      |                                     |
| 115   | 2.01    | -210.8  | -211.1  | -211.0  | 0.43       | 0.5         | 1      |                                     |
| 120   | 2.09    | -204.4  | -204.2  | -204.3  | 0.42       | 0.5         | 1      |                                     |
| 125   | 2.18    | -195.8  | -197.1  | -196.5  | 0.40       | 0.4         | 1      |                                     |
| 130   | 2.27    | -186.9  | -186.9  | -186.9  | 0.39       | 0.4         | 1      |                                     |
| 135   | 2.36    | -176.0  | -174.5  | -175.3  | 0.37       | 0.4         | 1      |                                     |
| 140   | 2.44    | -164.1  | -163.8  | -164.0  | 0.35       | 0.4         | 1      |                                     |
| 145   | 2.53    | -149.8  | -149.8  | -149.8  | 0.32       | 0.4         | 1      |                                     |
| 150   | 2.62    | -134.8  | -135.9  | -135.4  | 0.30       | 0.3         |        |                                     |
| 155   | 2.71    | -119.8  | -119.6  | -119.7  | 0.27       | 0.3         |        |                                     |
| 160   | 2.79    | -104.5  | -104.9  | -104.7  | 0.24       | 0.3         |        |                                     |
| 165   | 2.88    | -87.8   | -87.3   | -87.6   | 0.21       | 0.3         |        |                                     |
| 170   | 2.97    | -68.7   | -68.1   | -68.4   | 0.18       | 0.2         |        |                                     |
| 175   | 3.05    | -51.9   | -52.0   | -52.0   | 0.15       | 0.2         |        |                                     |
| 180   | 3.14    | -32.4   | -32.4   | -32.4   | 0.12       | 0.2         |        |                                     |
| 185   | 3.23    | -13.8   | -13.7   | -13.8   | 0.082      | 0.1         |        |                                     |
| 190   | 3.32    | 4.7     | 4.7     | 4.7     | 0.066      | 0.1         |        |                                     |
| 195   | 3.40    | 23.7    | 23.6    | 23.7    | 0.099      | 0.1         | [      |                                     |
| 200   | 3.49    | 39.8    | 39.8    | 39.8    | 0.13       | 0.2         |        |                                     |
| 205   | 3.58    | 58.3    | 58.0    | 58.2    | 0.16       | 0.2         |        |                                     |
| 210   | 3.67    | 75.0    | 75.6    | 75.3    | 0.19       | 0.2         |        |                                     |
| 215   | 3.75    | 91.1    | 90.3    | 90.7    | 0.22       | 0.3         |        |                                     |
| 220   | 3.84    | 109.4   | 109.5   | 109.5   | 0.25       | 0.3         |        |                                     |
| 225   | 3.93    | 123.2   | 122.7   | 123.0   | 0.28       | 0.3         | ]      |                                     |
| 230   | 4.01    | 137.3   | 137.3   | 137.3   | 0.30       | 0.3         |        |                                     |
| 235   | 4.10    | 149.1   | 149.5   | 149.3   | 0.32       | 0.4         |        |                                     |
| 240   | 4.19    | 161.0   | 161.3   | 161.2   | 0.34       | 0.4         |        |                                     |
| 245   | 4.28    | 170.6   | 172.2   | 171.4   | 0.36       | 0.4         |        |                                     |
| 250   | 4.36    | 179.3   | 178.5   | 178.9   | 0.37       | 0.4         |        |                                     |

| 255 | 4.45 | 186.3 | 185.0 | 185.7 | 0.38 | 0.4 |
|-----|------|-------|-------|-------|------|-----|
| 260 | 4.54 | 191.7 | 192.1 | 191.9 | 0.40 | 0.4 |
| 265 | 4.63 | 195.8 | 196.3 | 196.1 | 0.40 | 0.4 |
| 270 | 4.71 | 198.1 | 196.6 | 197.4 | 0.40 | 0.4 |
| 275 | 4.80 | 199.0 | 198.1 | 198.6 | 0.41 | 0.5 |
| 280 | 4.89 | 198.4 | 198.7 | 198.6 | 0.41 | 0.5 |
| 285 | 4.97 | 196.2 | 197.2 | 196.7 | 0.40 | 0.4 |
| 290 | 5.06 | 192.5 | 192.6 | 192.6 | 0.40 | 0.4 |
| 295 | 5.15 | 187.1 | 188.6 | 187.9 | 0.39 | 0.4 |
| 300 | 5.24 | 180.0 | 181.4 | 180.7 | 0.38 | 0.4 |
| 305 | 5.32 | 172.1 | 173.1 | 172.6 | 0.36 | 0.4 |
| 310 | 5.41 | 162.4 | 161.1 | 161.8 | 0.34 | 0.4 |
| 315 | 5.50 | 151.4 | 151.6 | 151.5 | 0.33 | 0.4 |
| 320 | 5.59 | 139.0 | 139.4 | 139.2 | 0.30 | 0.3 |
| 325 | 5.67 | 125.8 | 126.6 | 126.2 | 0.28 | 0.3 |
| 330 | 5.76 | 111.9 | 113.0 | 112.5 | 0.26 | 0.3 |
| 335 | 5.85 | 95.0  | 95.6  | 95.3  | 0.23 | 0.3 |
| 340 | 5.93 | 76.6  | 75.9  | 76.3  | 0.19 | 0.2 |
| 345 | 6.02 | 61.2  | 61.0  | 61.1  | 0.17 | 0.2 |
| 350 | 6.11 | 44.6  | 44.7  | 44.7  | 0.14 | 0.2 |
| 355 | 6.20 | 25.7  | 25.9  | 25.8  | 0.11 | 0.2 |

Tabela 2

| α [°] | α [rad] | Bn      | uc(Bn) |
|-------|---------|---------|--------|
| 0     | 0.00    | -0.0218 | 0.0015 |
| 5     | 0.09    | 0.0218  | 0.0015 |
| 10    | 0.17    | 0.0653  | 0.0045 |
| 15    | 0.26    | 0.1082  | 0.0074 |
| 20    | 0.35    | 0.150   | 0.011  |
| 25    | 0.44    | 0.191   | 0.013  |
| 30    | 0.52    | 0.231   | 0.016  |
| 35    | 0.61    | 0.269   | 0.019  |
| 40    | 0.70    | 0.304   | 0.021  |
| 45    | 0.79    | 0.338   | 0.023  |
| 50    | 0.87    | 0.369   | 0.026  |
| 55    | 0.96    | 0.397   | 0.027  |
| 60    | 1.05    | 0.422   | 0.029  |
| 65    | 1.13    | 0.444   | 0.031  |
| 70    | 1.22    | 0.462   | 0.032  |
| 75    | 1.31    | 0.477   | 0.033  |
| 80    | 1.40    | 0.488   | 0.034  |
| 85    | 1.48    | 0.496   | 0.034  |
| 90    | 1.57    | 0.500   | 0.034  |
| 95    | 1.66    | 0.500   | 0.034  |
| 100   | 1.75    | 0.496   | 0.034  |
| 105   | 1.83    | 0.488   | 0.034  |
| 110   | 1.92    | 0.477   | 0.033  |
| 115   | 2.01    | 0.462   | 0.032  |
| 120   | 2.09    | 0.444   | 0.031  |
| 125   | 2.18    | 0.422   | 0.029  |
| 130   | 2.27    | 0.397   | 0.027  |
| 135   | 2.36    | 0.369   | 0.026  |
| 140   | 2.44    | 0.338   | 0.023  |
| 145   | 2.53    | 0.304   | 0.021  |
| 150   | 2.62    | 0.269   | 0.019  |
| 155   | 2.71    | 0.231   | 0.016  |
| 160   | 2.79    | 0.191   | 0.013  |
| 165   | 2.88    | 0.150   | 0.011  |
| 170   | 2.97    | 0.1082  | 0.0074 |
| 175   | 3.05    | 0.0653  | 0.0045 |
| 180   | 3.14    | 0.0218  | 0.0015 |
| 185   | 3.23    | -0.0218 | 0.0015 |
| 190   | 3.32    | -0.0653 | 0.0045 |
| 195   | 3.40    | -0.1082 | 0.0074 |
| 200   | 3.49    | -0.150  | 0.011  |
| 205   | 3.58    | -0.191  | 0.013  |
| 210   | 3.67    | -0.231  | 0.016  |
| 215   | 3.75    | -0.269  | 0.019  |
| 220   | 3.84    | -0.304  | 0.021  |

| B0 [T]      | 0.500 |
|-------------|-------|
| u(B0)       | 0.029 |
| α0 [°]      | 2.5   |
| α0 [rad]    | 0.04  |
| u(α) [rad]  | 0.025 |
| u(α0) [rad] | 0.025 |

| 225 | 3.93 | -0.338  | 0.023  |
|-----|------|---------|--------|
| 230 | 4.01 | -0.369  | 0.026  |
| 235 | 4.10 | -0.397  | 0.027  |
| 240 | 4.19 | -0.422  | 0.029  |
| 245 | 4.28 | -0.444  | 0.031  |
| 250 | 4.36 | -0.462  | 0.032  |
| 255 | 4.45 | -0.477  | 0.033  |
| 260 | 4.54 | -0.488  | 0.034  |
| 265 | 4.63 | -0.496  | 0.034  |
| 270 | 4.71 | -0.500  | 0.034  |
| 275 | 4.80 | -0.500  | 0.034  |
| 280 | 4.89 | -0.496  | 0.034  |
| 285 | 4.97 | -0.488  | 0.034  |
| 290 | 5.06 | -0.477  | 0.033  |
| 295 | 5.15 | -0.462  | 0.032  |
| 300 | 5.24 | -0.444  | 0.031  |
| 305 | 5.32 | -0.422  | 0.029  |
| 310 | 5.41 | -0.397  | 0.027  |
| 315 | 5.50 | -0.369  | 0.026  |
| 320 | 5.59 | -0.338  | 0.023  |
| 325 | 5.67 | -0.304  | 0.021  |
| 330 | 5.76 | -0.269  | 0.019  |
| 335 | 5.85 | -0.231  | 0.016  |
| 340 | 5.93 | -0.191  | 0.013  |
| 345 | 6.02 | -0.150  | 0.011  |
| 350 | 6.11 | -0.1082 | 0.0074 |
| 355 | 6.20 | -0.0653 | 0.0045 |
|     |      |         |        |