MATH405: Linear Algebra

Michael Li

(:	<u>_</u>	n	tο	n	$\mathbf{t}\mathbf{s}$	1
v	v	11	UC	.11	.U.	1

1	Vec	etor Space	:
	1.1	Definitions	,

1 Vector Space

Goals of this course is to discuss

- Vector spaces
- Linear transformations between vector spaces
- Other operations on vector spaces

1.1 Definitions

Definition - Field: A set of numbers containing 0,1 that can be added, subtracted, multiplied, and divided (except cannot divide by 0) that satisfy the following **Field Axioms**

- 1. $a, b \in K \implies a + b, ab \in K$
- 2. $+, \times$ are commutative so a + b = b + a and ab = ba
- 3. +, \times are associative so (a+b)+c=a+(b+c) and a(bc)=(ab)c
- 4. Distributive Law: a(b+c) = ab + ac
- 5. Additive Identity: a + 0 = 0 + a = a
- 6. Multiplicative Identity: $a \cdot 1 = 1 \cdot a = a$
- 7. Additive Inverse: $\forall a \in K, \exists b \text{ such that } a+b=0, \text{ namely } b=-a \text{ which is unique}$
- 8. Multiplicative Inverse: $\forall a \in K, \exists b \text{ such that } ab = 1, \text{ name } b = 1/a \text{ which is unique}$
- Example: R, Q are fields. Z is not a field since there is no multiplicative inverse of 2

Example: $C = \{a + bi \mid a, b \in R\}$, where $i = \sqrt{-1}$ is a field under

- +: (a+bi) + (c+di) = (a+c) + (b+d)i
- \times : (a+bi)(c+di) = (ac-bd) + (ad+bc)i

Example: $F_2 = \{0, 1\}$ is a field under

• +: where

$$0 + 0 = 0$$

$$0+1=1+0=1$$

$$1 + 1 = 0$$

• \times : where

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

Example: For a prime p, let $F_p = \{0, \dots, p-1\}$. Then F_p is a field under

- $+: a+b \pmod{p}$
- $\times : ab \pmod{p}$

Definition - Vector Space: For an arbitrary field K, a K-vector space is a set V with a distinguished element O such that any 2 elements in V can be added and scalar multiplied by $c \in K$

- $u, v \in V \implies u + v \in V$
- $c \in K, u \in V \implies cu \in V$

Satisfying the following properties

- 1. Commutative Addition: u + v = v + u
- 2. Associative Addition: (u+v)+w=u+(v+w)
- 3. Additive Identity: u + O = u

- 4. Additive Inverse: $\forall u \in V, \exists v \in V$ such that u + v = O, namely v = -u which is unique
- 5. Distributive Laws: $\forall a, b \in K, a(u+v) = au + av$ and (a+b)u = au + bu
- 6. Commutative Scalar Multiplication: (ab)u = a(bu)
- 7. Multiplicative Identity: $1 \cdot u = u$

Example: R^3 is an R-vector space defined by the operations

$$R^3 = \{(x, y, z) \mid x, y, z \in R\}$$

- +: add componentwise so (a,b,c)+(d,e,f)=(a+d,b+e,c+f)
- Scalar \times : for $r \in R$, r(a, b, c) = (ra, rb, rc)
- Additive Identity is O = (0, 0, 0)

Example: For any field K, K^2 is a K-vector space defined by the oppartions

$$K^2 = \{(x, y) \mid x, y \in K\}$$

- +: add componentwise so (a,b)+(c,d)=(a+c,b+d)
- Scalar \times : for $k \in K$, k(a,b) = (ka,kb)
- Additive Identity is O = (0,0)

Example: R is an R-vector space since clearly the properties hold

Example R is a Q-vector space since clearly the properties hold

• Notably, for $q \in Q$ and $r \in R$, we have $qr \in R$. Thus scalar multiplication is closed

Example: For any field K, the set $\{O\}$ is a K-vector space

Example: Let X be any non-empty set and let $\mathcal{F}(X)$ be the set of all functions $f: X \to R$. Then \mathcal{F} is an R-vector space under the operations

- +: for $f, g \in \mathcal{F}(X)$, define f + g := (f + g)(x)
- Scalar \times : let $r \in R$, then define rf := r(f(x))
- Additive Identity is O = f(x) = 0, the function that takes any x to 0