MEMBRANE PROTEIN

Dr. Zhiyi Wei SUSTC

Membrane embedded proteins

Bretcher, Scientific American, 1985

The unique properties of membrane

- Lipid bilayer
- Charged-hydrophobiccharged Sandwich
- Hydrophobic environment for protein folding
 - The same secondary structure elements as those for water-soluble proteins
 - Favor for α-helices and βsheets
 - Stronger hydrogen bonds
 - A single helix can exist stably in a membrane

Membrane protein folding

The cytochrome bc1 complex (PDB 1BGY)

Transmembrane helix

Prediction of transmembrane helix

- Continuous hydrophobic residues
 - 1.5 Å translation per residue in an α-helix
 - ~20 residues

All-β membrane proteins

- Tilted strands
 - Longer than ~8-9 residues for each β-strand
- Antiparallel sheets
- Closed β-barrel
 - Edge strands in open sheets cannot be satisfied in membrane
- Hydrophobic sidechains covering exterior surface while polar/charged sidechains facing interior
 - Harder to predict transmembrane strands based on the sequence
- Largely restricted to bacterial, mitochondrial, and chloroplast outer membranes

The transport protein FhuA (PDB 1BY3)

Different sizes of β -barrels

BIO446 Protein Structure and Function

Oligomerization of β -barrels

OmpF (porins) is a trimer of barrels

α-haemolysin (PDB: 7AHL)

Functional roles of transmembrane proteins

- Receptors
 - GPCR
 - Rhodopsin (http://pdb101.rcsb.org/motm/147)
 - Adrenergic receptor (http://pdb101.rcsb.org/motm/100)
- Channels
 - Potassium channel (http://pdb101.rcsb.org/motm/38)
- Transporters/Pumps
 - ATP synthase (http://pdb101.rcsb.org/motm/72)
- Membrane enzyme
 - Rhomboid protease (http://pdb101.rcsb.org/motm/140)
- Find more in PDB101-"Molecule of the Month"

The significance of membrane protein structure

- 1988: <u>Johann Deisenhofer, Robert Huber, and Hartmut</u>
 <u>Michel</u> (Chemistry) "for the determination of the three-dimensional structure of a photosynthetic reaction centre"
- 1996: Paul D. Boyer, John E. Walker, and Jens C. Skou (Chemistry) "for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)".
- 2003: Peter Agre and Roderick MacKinnon (Chemistry),
 - MacKinnon "for structural and mechanistic studies of ion channels".
- 2006: Roger Kornberg (Chemistry) "for his studies of the molecular basis of eukaryotic transcription".
- 2009: Venkatraman Ramakrishnan, Thomas A. Steitz, and Ada E. Yonath (Chemistry) "for studies of the structure and function of the ribosome".
- 2012: Robert J. Lefkowitz and Brian K. Kobilka (Chemistry)
 "for studies of G-protein-coupled receptors".

G-protein coupled receptors (GPCR)

- A large protein family of receptors
 - Sense molecules outside of cell
 - Activate inside signal pathways
- Seven-transmembrane domain receptors
 - Seven transmembrane helices

Rhodopsin

- Rhodopsin is a unique GPCR for photon perception
 - Bacteriorhodopsin (not a real GPCR) and discovery of seven transmembrane helices

A model proposed for bacteriorhodopsin derived using electron microscopy (*Nature*, 1975)

Bacteriorhodopsin (PDB:1C3W)

β₂ adrenergic receptor

- The most studied GPCR, a famous drug target
- Mediating smooth muscle relaxation

The amino acid sequence of the β_2 adrenergic receptor

 β_2 adrenergic receptor with agonist bound (PDB 2RH1)

β₂ adrenergic receptor in complex with Gs

Kobilka, 2011

The structural basis of G protein coupled receptor signaling

Potassium channel

- Ion channels are the basis for nerve signals propagation
- Potassium channels are designed to allow the flow of potassium ions across the membrane
 - Blocking the flow of other ions, in particular, sodium ions
 - Only one sodium ion to pass for every ten thousand potassium ions

The filter of the channel

The open of the channel

BIO446 Protein Structure and Function

ATP synthase

- ATP molecules in cell are generated by ATP synthase
- ATP synthase is an amazing nano-machine
 - enzyme + molecular motor + ion pump
- ATP synthesis is composed of
 - two rotary motors
 - F0, an electric motor
 - F1, a chemical motor
 - a stator

Rhomboid protease

- A serine protease for membrane proteins
- The active site is buried in the membrane
- To release protein domains from membranes by a cut in their membrane anchor

The cleavage mechanism

Intramembrane proteases

Site-2 protease

Preflagellin peptidase FlaK

Generalized membrane proteins

