Семинар 3

Рекурсивные алгоритмы и расчет их сложности с помощью основного метода

1. MergeSort (A)

Сортировка слиянием массива А из п чисел

MergeSort (A[1..n])

Вход: массив A[1..n]

Выход: отсортированный массив из тех же чисел

IF n>1

THEN

RETURN Merge (MergeSort (A[1.. $\left\lceil \frac{n}{2} \right\rceil$)), MergeSort (A $\left\lceil \frac{n}{2} \right\rceil$ +1..])

ELSE // базовый случай

RETURN A

T(n) - общее время работы алгоритма а n-элементном массиве A. 2 рекурсивных вызова на каждом уровне. Общее число операций подмассивов рекурсивных вызовов на каждом уровне (не включая рекурсивные вызовы) – O(n). Имеем $T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + O(n)$

2. Умножение чисел $x \cdot y$

$$x \times y = (10^{n/2} \times a + b) \times (10^{n/2} \times c + d) =$$

= 10ⁿ \times (a \times c) + 10^{n/2} \times (a \times d + b \times c) + b \times d.

Все умножения происходят либо между парами n/2 - значных чисел, либо связаны с возведением в степень

Умножение двух n-значных чисел сводится к умножению 4-х пар n/2-значных чисел плюс O(n) дополнительная работа (для добавления соответствующих нулей и школьного сложения)

Имеем
$$T(n) \leq 4 \cdot T\left(\frac{n}{2}\right) + O(n)$$

RECINTMULT (x, y)

Вход: два n-значных положительных целых числа, x и y.

Выход: произведение $x \times y$.

Допущение: п является степенью числа 2.

if n = 1 then // базовый случай вычислить $x \times y$ за один шаг и выдать результат **else** // рекурсивный случай a, b := первая и вторая половины x c, d := первая и вторая половины y рекурсивно вычислить $ac := a \times c, ad := a \times d,$ $bc := b \times c$ и $bd := b \times d$ вычислить $10^n \times ac + 10^{n/2} \times (ad + bc) + bd,$

используя арифметическое сложение, и выдать результат.

3. Умножение Карацубы

$$x \times y = (10^{n/2} \times a + b) \times (10^{n/2} \times c + d) = = 10^n \times (a \times c) + 10^{n/2} \times (a \times d + b \times c) + b \times d.$$

Считаем как раньше ac и bd. Но ad + bc считаем иначе:

$$ad + bc = (a + b)(c + d) - ac - bd$$
. (Всего 3 умножения, а не 4).

Имеем
$$T(n) \leq 3 \cdot T\left(\frac{n}{2}\right) + O(n)$$

4. Умножение квадратных матриц

```
а) Простое умножение матриц Вход: целочисленные матрицы X, Y \pi op. n Выход: Z = X \times Y FOR i:=1 TO n DO FOR j:=1 TO n DO Z[i,j]:=0 FOR k:=1 TO n DO Z[i,j]:=Z[i,j]+Z[i,j]+Z[i,k]-Z[i,j]
```

б) Подход «Разделяй и властвуй» Вход: целочисленные матрицы $X, Y \operatorname{пор.} n$

Выход:
$$Z = X \times Y$$

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \qquad Y = \begin{pmatrix} E & F \\ G & H \end{pmatrix}$$

$$X \times Y = \begin{pmatrix} A \times E + B \times G & A \times F + B \times H \\ C \times E + D \times G & C \times F + D \times H \end{pmatrix}$$

$$T(n) \le 8 \cdot T\left(\frac{n}{2}\right) + O(n^2)$$

8 умножений. $a = 8, b = 2, d = 2 (a > b^d) \Rightarrow$

(случай 3)
$$O(n^{\log_b a}) = O(n^{\log_2 8}) = O(n^3)$$

в)Алгоритм Штрассена

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \qquad Y = \begin{pmatrix} E & F \\ G & H \end{pmatrix} \qquad X \times Y = \begin{pmatrix} A \times E + B \times G & A \times F + B \times H \\ C \times E + D \times G & C \times F + D \times H \end{pmatrix}$$

$$\mathbf{P}_{1} = \mathbf{A} \times (\mathbf{F} - \mathbf{H})$$

$$\mathbf{P}_{2} = (\mathbf{A} + \mathbf{B}) \times \mathbf{H}$$

$$\mathbf{P}_{3} = (\mathbf{C} + \mathbf{D}) \times \mathbf{E}$$

$$\mathbf{X} \times \mathbf{Y} = \begin{pmatrix} \mathbf{A} \times \mathbf{E} + B \times G & A \times F + B \times H \\ C \times E + D \times G & C \times F + D \times H \end{pmatrix}$$

$$\mathbf{P}_{3} = (\mathbf{C} + \mathbf{D}) \times \mathbf{E}$$

$$\mathbf{P}_{4} = \mathbf{D} \times (\mathbf{G} - \mathbf{E})$$

$$\mathbf{P}_{5} = (\mathbf{A} + \mathbf{D}) \times (\mathbf{E} + \mathbf{H})$$

$$\mathbf{X} \times \mathbf{Y} = \left[\frac{\mathbf{C} \times \mathbf{E} + \mathbf{D} \times \mathbf{G} \mid \mathbf{C} \times \mathbf{F} + \mathbf{D} \times \mathbf{H}}{\mathbf{C} \times \mathbf{E} + \mathbf{D} \times \mathbf{G} \mid \mathbf{C} \times \mathbf{F} + \mathbf{D} \times \mathbf{H}} \right]$$

$$= \left(\frac{\mathbf{P}_{5} + \mathbf{P}_{4} - \mathbf{P}_{2} + \mathbf{P}_{6} \mid \mathbf{P}_{1} + \mathbf{P}_{2}}{\mathbf{P}_{3} + \mathbf{P}_{4} \mid \mathbf{P}_{1} + \mathbf{P}_{5} - \mathbf{P}_{3} - \mathbf{P}_{7}} \right)$$

$$\mathbf{P}_6 = (\mathbf{B} - \mathbf{D}) \times (\mathbf{G} + \mathbf{H})$$

$$\mathbf{P}_7 = (\mathbf{A} - \mathbf{C}) \times (\mathbf{E} + \mathbf{F}).$$

$$P_5 + P_4 - P_2 + P_6 = (\mathbf{A} + \mathbf{D}) \times (\mathbf{E} + \mathbf{H}) + \mathbf{D} \times (\mathbf{G} - \mathbf{E}) - (\mathbf{A} + \mathbf{B}) \times \mathbf{H} + (\mathbf{B} - \mathbf{D}) \times (\mathbf{G} + \mathbf{H}) =$$

$$= \mathbf{A} \times \mathbf{E} + \mathbf{A} \times \mathbf{H} + \mathbf{D} \times \mathbf{E} + \mathbf{D} \times \mathbf{H} + \mathbf{D} \times \mathbf{G} -$$

$$- \mathbf{D} \times \mathbf{E} - \mathbf{A} \times \mathbf{H} - \mathbf{B} \times \mathbf{H} + \mathbf{B} \times \mathbf{G} +$$

$$+ \mathbf{B} \times \mathbf{H} - \mathbf{D} \times \mathbf{G} - \mathbf{D} \times \mathbf{H} =$$

$$= \mathbf{A} \times \mathbf{E} + \mathbf{B} \times \mathbf{G}.$$

Пример:
$$X = \begin{pmatrix} 1 & 3 \\ 7 & 5 \end{pmatrix}$$
 $Y = \begin{pmatrix} 6 & 8 \\ 4 & 2 \end{pmatrix}$ Вычислить P_i ...
$$X \times Y = \begin{pmatrix} 18 & 14 \\ 62 & 66 \end{pmatrix}$$
 $T(n) \leq 7 \cdot T\left(\frac{n}{2}\right) + O(n^2)$

Стандартное рекуррентное соотношение

$$T(n) \le a \cdot T\left(\frac{n}{b}\right) + O(n^d) \tag{1}$$

Параметры:

- а количество рекурсивных вызовов
- b коэффициент сжатия размера входных данных
- d экспонента во времени работы «шага объединения» Для **RecintMult** $a=4>b=2^1=b^d\implies$ <u>Теорема</u>(основной метод):

Если T(n) определяется стандартным рекуррентным соотношением (1) с параметрами a>1, b>1, $d\geq0$, то

$$T(n) = egin{cases} O(n^d \log n), \text{если } a = b^d \ (\text{случай 1}) \ O(n^d), & \text{если } a < b^d \ (\text{случай 2}) \ O(n^{\log_b a}) & \text{если } a > b^d \ (\text{случай 3}) \end{cases}$$

Примеры

Для **MergeSort**
$$a=2=b=2^1=b^d \implies O(n^1\log_2 n)$$
 (случай 1)

$$O$$
 Для $oldsymbol{\mathsf{RecIntMult}}\,a=4>b=2^1=b^d\implies Oig(n^{\log_2 4}ig)=O(n^2)$ (случай 3)

Для **Карацубы**
$$a=3>b=2^1=b^d\implies O(n^{\log_2 3})$$
 (случай 3)

Для **RecMatMult**
$$a=8>b=2^2=b^d\implies O\left(n^{\log_2 8}\right)=O(n^3)$$
 (случай 3)

Для **Strassen**
$$a=7>b=2^2=b^d\implies O(n^{\log_2 7})=O(n^{2,8})$$
 (случай 3)

Бинарный поиск в отсортированном массиве (Bynary_Search)

Задача 1

Каковы соответствующие значения a, b и d для алгоритма двоичного поиска?

- а) 1, 2, 0 [случай 1].
- б) 1, 2, 1 [случай 2].
- в) 2, 2, 0 [случай 3].
- г) 2, 2, 1 [случай 1].

Выполняем единственное сравнение между средним элементом и искомым (O(1), т.е. d=0). a=1, т. к. после рек. вызова обрабатывается только 1 половина массива, длина подзадачи равна $\frac{n}{2}$.

Задача 2

. Допустим, что время работы T(n) алгоритма ограничено стандартным рекуррентным соотношением, где $T(n) \le 7 \times T\left(\frac{n}{3}\right) + O(n^2)$. Какая из приведенных ниже границ является наименьшей правильной верхней границей асимптотического времени работы алгоритма?

- a) $O(n \log n)$.
- б) O(n²).
- B) $O(n^2 \log n)$.
- Γ) $O(n^{2,81})$.

Задача 3 Допустим, что время работы T(n) алгоритма ограничено стандартным рекуррентным соотношением, где $T(n) \le 9 \times T\left(\frac{n}{3}\right) + O(n^2)$. Какая из приведенных ниже границ является наименьшей правильной верхней границей асимптотического времени работы алгоритма?

- a) $O(n \log n)$.
- б) O(n²).
- B) $O(n^2 \log n)$.
- Γ) $O(n^{3,17})$.

Задача 4

Допустим, что время работы T(n) алгоритма ограничено стандартным рекуррентным соотношением, где $T(n) \le 5 \times T\left(\frac{n}{3}\right) + O(n)$. Какая из приведенных ниже границ является наименьшей правильной верхней границей асимптотического времени работы алгоритма?

- a) $O(n^{\log_5 3})$.
- δ) $O(n \log n)$.
- B) $O(n^{\log_3 5})$.
- Γ) $O(n^{5/3})$.
- \mathcal{A}) $O(n^2)$.
- e) $O(n^{2,59})$.

Задача 5

$$T(n) \le 2 \cdot T(\lfloor \sqrt{n} \rfloor) + O(\log n)$$

Основной метод неприменим. Замена: $n=2^m \Rightarrow \log n=m$

$$T(2^m) \le 2T\left(2^{\frac{m}{2}}\right) + O(m)$$
 (как в MergeSort)

Задача 6

Показать, что решением $T(n) \le T(n-1) + n$ является $O(n^2)$.

Принять T(n) = 1.

$$T(n-1) + n \le T(n-2) + n - 1 + n \le$$

$$T(n-3) + n - 2 + n - 1 + n \le \dots \le T(1) + 2 + \dots + n = O(n^2)$$

Нахождение ближайшей пары точек

Задача: Ближайшая пара

Вход: $n \ge 2$ точек $P_1(x_1, y_1), ..., P_n(x_n, y_n)$ на плоскости

Выход: пара точек P_i , P_i с наименьшим евклидовым расстоянием $d(P_i, P_i)$

- I. Метод грубой силы: $O(n^2)$. Полный перебор всех пар точек.
- II. Подход «Разделяй и властвуй»
- 1. Сортируем точки согласно их х-координате. Получаем массив P_x .
- 2. Сортируем точки согласно их у-координате. Получаем массив P_{y} .
- 3. Разбиваем множество точек на 2 подмножества равного размера вертикальной прямой $l=x_{
 m cp}$
- 4. Решаем задачу рекурсивно на левой и правой частях. Получаем минимальные расстояния σ_R и σ_L .
- 5. Находим σ_{LR} среди пар точек, одна из которых лежит слева от прямой l, другая справа (разделенные точки).
- 6. Выбираем $\sigma_{min} = \min(\sigma_L, \sigma_R, \sigma_{LR})$. Базовый случай : $n \leq 3$ непосредственное вычисление расстояния

$$\min_{1 \le i, j \le 3, i \ne j} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} = \sigma$$

Почему время $O(n \log n)$?

Шаги 1, 2. Две сортировки $O(n\log n)$ предварительно.

Шаг 3. O(n)

Шаг 4. Рекурсия

Шаг 5. O(n) , т.к.

$$\sigma = \min(\sigma_L, \sigma_R)$$

 $\sigma=\min(\sigma_L,\sigma_R)$ S_y -множество точек, заключенных в полосе 2σ Среди этих точек следует искать разделенные точки, расстояние между которыми $< \sigma$. S_y упорядочено за линейное время с помощью фильтрации множества $P_{\mathbf{v}}$, т.е. за O(n)

Для каждой точки $p \in S_{\mathcal{Y}}$ не более 7 точек лежат в прямоугольнике $\sigma \times 2\sigma$ Время вычисления Время вычисления расстояний $\leq 7n$

Шаг 6. O(1) .

T.o.
$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n \log n)$$

