PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-030763

(43)Date of publication of application: 06.02.2001

(51)Int.Cl.

B60J 7/057 E05F 15/20 5/00 H02P // G05D 3/12

(21)Application number: 2000-143788

(71)Applicant:

JIDOSHA DENKI KOGYO CO LTD

(22)Date of filing:

16.05.2000

(72)Inventor:

YOSHIOKA NOBUO

FUNAKI HIROYUKI NIKI KENICHI

TANAKA TOKUHIRO

(30)Priority

Priority number: 11137647

Priority date: 18.05.1999

Priority country: JP

(54) SUNROOF CONTROL SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To permit an easy and reliable setting of an initial position by starting a counting means for counting armature shaft rotation signal with reference to an edge of output shaft rotation signal and providing a control unit to stop a motor driving current when a predetermined count is attained.

SOLUTION: This control system 1 has counting means 11, 13 to count armature shaft rotation signal of an armature shaft 71a from armature shaft rotation signal generation means 4, 5 and output shaft rotation signal of an output shaft 73 from an output shaft rotation signal generation means 6. When a command signal is fed from switches 2, 3, a driving current starts to be fed to a motor 71. The system is further provided with a control unit MCU in which the counting means 11, 13 start counting the armature shaft rotation signal with reference to an edge of the output shaft rotation signal from the output shaft rotation signal generation means 6 and stop feeding the driving current to the motor 71 when a predetermined count value is attained.

LEGAL STATUS

[Date of request for examination]

28.04.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-30763 (P2001-30763A)

(43)公開日 平成13年2月6日(2001.2.6)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
B60J 7/057		B60J 7/057	P
E05F 15/20		E05F 15/20	
H 0 2 P 5/00		H02P 5/00	R
// G05D 3/12		G05D 3/12	X
" 6 0 0 D 0,15		-,	
		審査請求 未請求	請求項の数5 OL (全17頁)
(21)出願番号	特顧2000-143788(P2000-143788)	(71)出願人 0001812 自動車	251 電機工業株式会社
(22)出顧日	平成12年5月16日(2000.5.16)	神奈川	具横浜市戸塚区東俣野町1760番地
		(72)発明者 吉 岡	信 夫
(31)優先権主張番号	特願平11-137647	神奈川	具横浜市戸塚区東俣野町1760番地
(32)優先日	平成11年5月18日(1999.5.18)	自動車	電機工業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者 舟 木	弘 幸
		1	県横浜市戸塚区東俣野町1760番地 電機工業株式会社内
		(74)代理人 1000776	610
		弁理士	小塩 豊
			最終頁に続く

(54) 【発明の名称】 サンルーフ制御装置

(57)【要約】

【課題】 複数のギヤからなる減速機構やスイッチ機構を持つ位置検出スイッチを備えておらず、容易で、確実に初期位置の設定ができるサンルーフ制御装置を提供する。

【解決手段】 アーマチュア軸回転信号発生手段4、5 が発生したモータ71のアーマチュア軸71aのアーマチュア軸の転信号及び出力軸回転信号発生手段6が発生したアクチュエータ70の出力軸73の出力軸回転信号をカウントするカウント手段11、13を有し、スイッチ2、3から指令信号があると、モータ71へ駆動電流の供給を開始し、カウント手段11、13が出力軸回転信号発生手段6により発生された回転信号のエッジを基準として、回転信号のカウントを開始し、カウント値が予め定められた値に達するとモータ71への駆動電流の供給を停止するコントロールユニットMCUを備えている。

【特許請求の範囲】

車両のサンルーフを制御するサンルーフ 【請求項1】 制御装置であって、

1

アーマチュア軸を有するモータと、前記モータのアーマ チュア軸の回転により駆動される減速ギヤと、前記減速 ギヤに結合された出力軸を備えたアクチュエータと、 前記モータを駆動する指令信号を発生するスイッチと、 前記モータのアーマチュア軸の回転に応じてアーマチュ ア軸回転信号を発生するアーマチュア軸回転信号発生手 段と、前記アクチュエータの出力軸の回転に応じて出力 軸回転信号を発生する出力軸回転信号発生手段と、前記 アーマチュア軸回転信号発生手段により発生されたアー マチュア軸回転信号及び前記出力軸回転信号発生手段に より発生された出力軸回転信号をカウントするカウント 手段とを有し、前記スイッチと前記モータとに電気的に 接続され、前記スイッチから指令信号が供給されると、 前記モータへ駆動電流の供給を開始し、前記カウント手 段が前記出力軸回転信号発生手段により発生された出力 軸回転信号のエッジを基準として、アーマチュア軸回転 信号のカウントを開始し、カウント値が予め定められた 値に達すると前記モータへの駆動電流の供給を停止する コントロールユニットを備えていることを特徴とするサ ンルーフ制御装置。

【請求項2】 車両のサンルーフを制御するサンルーフ 制御装置であって、

アーマチュア軸を有するモータと、前記モータのアーマ チュア軸の回転により駆動される減速ギヤと、前記減速 ギヤに結合された出力軸を備えたアクチュエータと、 前記モータを駆動する指令信号を発生するスイッチと、 前記モータのアーマチュア軸の回転に応じて第1の回転 信号を発生する第1の回転信号発生手段と、前記モータ のアーマチュア軸の回転に応じて上記第1の回転信号に 対し位相差をもった第2の回転信号を発生する第2の回 転信号発生手段と、前記アクチュエータの出力軸の回転 に応じて出力軸回転信号を発生する出力軸回転信号発生 手段と、前記第1、第2の回転信号発生手段により発生 された第1、第2の回転信号及び前記出力軸回転信号発 生手段により発生された出力軸回転信号をカウントする カウント手段を有し、前記スイッチと前記モータとに電 気的に接続され、前記スイッチから指令信号が供給され ると、前記モータへ駆動電流の供給を開始し、前記カウ ント手段が前記出力軸回転信号発生手段により発生され た出力軸回転信号のエッジを基準として、前記第1、第 2の回転信号発生手段により発生された第1、第2の回 転信号のカウントを開始し、カウント値が予め定められ た値に達すると前記モータへの駆動電流の供給を停止す るコントロールユニットを備えていることを特徴とする サンルーフ制御装置。

【請求項3】 車両のサンルーフを制御するサンルーフ 制御装置であって、

スライド開チルトダウン信号を発生する第1のスイッチ と、

スライド閉チルトアップ信号を発生する第2のスイッチ と、

アーマチュア軸を有するモータと、前記モータのアーマ チュア軸の回転により駆動される減速ギヤと、前記減速 ギヤに結合された出力軸を備え、車両のサンルーフリッ ドをスライド開方向、スライド閉方向、チルトダウン方 向又はチルトアップ方向に駆動するアクチュエータと、 前記モータの前記アーマチュア軸の回転に応じて第1の 回転信号を発生する第1の回転信号発生手段と、前記モ ータのアーマチュア軸の回転に応じて上記第1の回転信 号に対し位相差をもった第2の回転信号を発生する第2 の回転信号発生手段と、前記アクチュエータの出力軸の 回転に応じて出力軸回転信号を発生する出力軸回転信号 発生手段と、前記第1、第2の回転信号発生手段により 発生された第1、第2の回転信号及び前記出力軸回転信 号発生手段により発生された出力軸回転信号をカウント するカウント手段を有し、前記第1、第2のスイッチと 前記モータとに電気的に接続され、前記第1、第2のス イッチからスライド開チルトダウン信号、又はスライド 閉チルトアップ信号が供給されると、前記アクチュエー タの前記モータへ駆動電流の供給を開始し、イニシャル モードにおいて、前記第1のスイッチからチルトダウン 信号が供給され後、前記カウント手段が前記出力軸回転 信号発生手段により発生された出力軸回転信号のエッジ を基準として、第1、第2の回転信号のカウントを開始 し、カウント値が予め定められた値に達すると前記モー タへ駆動電流の供給を停止するコントロールユニットを 備えていることを特徴とするサンルーフ制御装置。

【請求項4】 車両のサンルーフリッドを制御するサン ルーフ制御装置であって、

スライド開チルトダウン信号を発生する第1のスイッチ

スライド閉チルトアップ信号を発生する第2のスイッチ

アーマチュア軸を有するモータと、前記モータのアーマ チュア軸の回転により駆動される減速ギヤと、前記減速 ギヤに結合された出力軸を備え、車両のサンルーフリッ ドをスライド開方向、スライド閉方向、チルトダウン方 向又はチルトアップ方向に駆動するアクチュエータと、 前記モータのアーマチュア軸の回転に応じて第1の回転 信号を発生する第1の回転信号発生手段と、前記モータ のアーマチュア軸の回転に応じて上記第1の回転信号に 対し位相差をもった第2の回転信号を発生する第2の回 転信号発生手段と、前記アクチュエータの出力軸の回転 に応じて出力軸回転信号を発生する出力軸回転信号発生 手段と、第1、第2の回転信号及び出力軸回転信号をカ ウントするカウント手段と、前記第1、第2の回転信号 50 発生手段により発生された第1、第2の回転信号をカウ

ントし、サンルーフリッドの位置を認識するルーフ位置カウント手段と有し、前記第1、第2のスイッチと前記モータとに電気的に接続され、前記第1、第2のスイッチからスライド開チルトダウン信号、又はスライド閉チルトアップ信号が供給されると、前記モータへ駆動電流の供給を開始し、イニシャルモードにおいて、前記第1のスイッチからチルトダウン信号が供給され後、前記カウント手段が、前記出力軸回転信号発生手段により発生された出力軸回転信号のエッジを基準として、第1、第2の回転信号のカウントを開始し、カウント値が予め定められた値に達すると、前記ルーフ位置カウント手段のカウント値をリセットするコントロールユニットを備えていることを特徴とするサンルーフ制御装置。

3

【請求項5】 車両のサンルーフリッドを制御するサンルーフ制御装置であって、

スライド開チルトダウン信号を発生する第1のスイッチ と、

スライド閉チルトアップ信号を発生する第2のスイッチと、

アーマチュア軸を有するモータと、前記モータのアーマ チュア軸の回転により駆動される減速ギヤと、前記減速 ギヤに結合された出力軸を備え、車両のサンルーフリッ ドをスライド開方向、スライド閉方向、チルトダウン方 向又はチルトアップ方向に駆動するアクチュエータと、 前記モータのアーマチュア軸の回転に応じて第1の回転 信号を発生する第1の回転信号発生手段と、前記モータ のアーマチュア軸の回転に応じて上記第1の回転信号に 対し位相差をもった第2の回転信号を発生する第2の回 転信号発生手段と、前記アクチュエータの出力軸の回転 に応じて出力軸回転信号を発生する出力軸回転信号発生 手段と、前記第1、第2の回転信号発生手段により発生 された第1、第2の回転信号をカウントする第1のカウ ント手段と、前記出力軸回転信号発生手段により発生さ れた出力軸回転信号をカウントする第2のカウント手段 と、前記第1、第2の回転信号発生手段により発生され た第1、第2の回転信号をカウントし、サンルーフリッ ドの位置を認識するルーフ位置カウント手段と有し、前 記第1、第2のスイッチと前記モータとに電気的に接続 され、前記第1、第2のスイッチからスライド開チルト ダウン信号、又はスライド閉チルトアップ信号が供給さ れると、前記モータへ駆動電流の供給を開始し、イニシ ャルモードにおいて、前記第1のスイッチからチルトダ ウン信号が供給され後、前記第2のカウント手段が、前 記出力軸回転信号発生手段により発生された出力軸回転 信号を予め定められた値までカウントすると、前記第1 のカウント手段が、前記出力軸回転信号発生手段により 発生された出力軸回転信号のエッジを基準として、前記 第1、第2の回転信号発生手段により発生された第1、 第2の回転信号のカウントを開始し、カウント値が予め 定められた値に達すると前記モータへ駆動電流の供給を 停止するとともに前記ルーフ位置カウント手段のカウント値をリセットするコントロールユニットを備えていることを特徴とするサンルーフ制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、自動車のサンル ーフリッドを駆動するサンルーフ制御装置に関する。

[0002]

【従来の技術】自動車のサンルーフリッドを駆動するサンルーフ制御装置が、実開昭60-129481号公報に開示されている。

[0003]

【発明が解決しようとする課題】通常サンルーフリッドのストロークは、サンルーフリッドを駆動するアクチュエータの出力軸の数倍から十数倍の回転に相当するため、サンルーフリッドの位置検出スイッチには複数のギヤを備えた減速機構やスイッチ機構が用いられている。

[0004]

【発明の目的】この発明に係わるサンルーフ制御装置は、複数のギヤを有する減速機構やスイッチ機構を持つ位置検出スイッチを備えておらず、容易で、確実に初期位置の設定ができるサンルーフ制御装置を提供することを目的としている。

[0005]

【課題を解決するための手段】上記の目的を達成するため、本発明のサンルーフ制御装置は、モータの前記アーマチュア軸の回転に応じて第1の回転信号を発生する第1の回転信号発生手段と、モータのアーマチュア軸の回転に応じて上記第1の回転信号に対し位相差をもった第2の回転信号を発生する第2の回転信号発生手段と、前記アクチュエータの前記出力軸の回転に応じて出力軸回転信号を発生する出力軸回転信号発生手段とを備える。

[0006]

【発明の実施の形態】本発明の請求項1に記載されたサ ンルーフ制御装置は、モータのアーマチュア軸の回転に 応じてアーマチュア軸回転信号を発生するアーマチュア 軸回転信号発生手段と、アクチュエータの出力軸の回転 に応じて出力軸回転信号を発生する出力軸回転信号発生 手段と、アーマチュア軸回転信号発生手段により発生さ 40 れたアーマチュア軸回転信号及び前記出力軸回転信号発 生手段により発生された出力軸回転信号をカウントする カウント手段とを有し、スイッチと前記モータとに電気 的に接続され、スイッチから指令信号が供給されると、 モータへ駆動電流の供給を開始し、カウント手段が前記 出力軸回転信号発生手段により発生された出力軸回転信 号のエッジを基準として、アーマチュア軸回転信号のカ ウントを開始し、カウント値が予め定められた値に達す ると前記モータへの駆動電流の供給を停止するコントロ ールユニットを備え、上記の目的を達成する。

【0007】本発明の請求項2に記載されたサンルーフ

制御装置は、モータのアーマチュア軸の回転に応じて第 1の回転信号を発生する第1の回転信号発生手段と、モ ータのアーマチュア軸の回転に応じて上記第1の回転信 号に対し位相差をもった第2の回転信号を発生する第2 の回転信号発生手段と、前記アクチュエータの出力軸の 回転に応じて出力軸回転信号を発生する出力軸回転信号 発生手段と、第1、第2の回転信号発生手段により発生 された第1、第2の回転信号及び前記出力軸回転信号発 生手段により発生された出力軸回転信号をカウントする カウント手段を有し、スイッチと前記モータとに電気的 10 に接続され、前記スイッチから指令信号が供給される と、モータへ駆動電流の供給を開始し、前記カウント手 段が前記出力軸回転信号発生手段により発生された出力 軸回転信号のエッジを基準として、前記第1、第2の回 転信号発生手段により発生された第1、第2の回転信号 のカウントを開始し、カウント値が予め定められた値に 達すると前記モータへの駆動電流の供給を停止するコン トロールユニットを備えている。

【0008】本発明の請求項3に記載されたサンルーフ 制御装置は、イニシャルモードにおいて、第1のスイッ チからチルトダウン信号が供給され後、カウント手段が 出力軸回転信号発生手段により発生された出力軸回転信 号のエッジを基準として、第1、第2の回転信号のカウ ントを開始し、カウント値が予め定められた値に達する と前記モータへ駆動電流の供給を停止するコントロール ユニットを備えている。

【0009】本発明の請求項4に記載されたサンルーフ 制御装置は、イニシャルモードにおいて、第1のスイッ チからチルトダウン信号が供給され後、カウント手段 が、出力軸回転信号発生手段により発生された出力軸回 転信号のエッジを基準として、第1、第2の回転信号の カウントを開始し、カウント値が予め定められた値に達 すると、ルーフ位置カウント手段のカウント値をリセッ トするコントロールユニットを備えている。

【0010】本発明の請求項5に記載されたサンルーフ 制御装置は、イニシャルモードにおいて、第1のスイッ チからチルトダウン信号が供給され後、第2のカウント 手段が、出力軸回転信号発生手段により発生された出力 軸回転信号を予め定められた値までカウントすると、第 生された出力軸回転信号のエッジを基準として、第1、 第2の回転信号発生手段により発生された第1、第2の 回転信号のカウントを開始し、カウント値が予め定めら れた値に達すると前記モータへ駆動電流の供給を停止す るとともにルーフ位置カウント手段のカウント値をリセ ットするコントロールユニットを備えている。

[0011]

【実施例】図1ないし図13にはこの発明に係わるサン ルーフ制御装置の一実施例が示されている。

【0012】図示されるサンルーフ制御装置1は、主と 50

して、スライド開/チルトダウンスイッチ2、スライド 閉/チルトアップスイッチ3、モータ71を有するアク チュエータ70から構成されており、アクチュエータ7 0に、第1のアーマチュア軸回転信号発生手段4(ホー ルIC)、第2のアーマチュア軸回転信号発生手段5 (ホールIC)、出力軸回転信号発生手段6(ホールI C)、出力回路7、コントロールユニットMCU(micro program control unit) が組込まれている。MCUに は、ルーフ位置プリスケーラ11、オフセット位置カウ ンタ12、出力軸回転カウンタ13、ルーフ位置カウン タ14、モータロック検出回路15、ルーフ位置データ ROM16、駆動回路17、制御回路18が内蔵されて

【0013】スライド開/チルトダウンスイッチ2は、 オン状態においてサンルーフリッド50をスライド開ま たはチルトダウン方向に駆動するための指令信号を発生 する。

【0014】スライド開/チルトダウンスイッチ2によ り発生されたスライド開信号/チルトダウン信号は、制 御回路18、モータロック検出回路15に供給される。 【0015】スライド閉/チルトアップスイッチ3は、 オン状態においてサンルーフリッド50をスライド閉ま たはチルトアップ方向に駆動するための指令信号を発生

【0016】スライド閉/チルトアップスイッチ3によ り発生されたスライド閉信号、チルトアップ信号は、制 御回路18、モータロック検出回路15に供給される。 【0017】ホールIC4は、図6、図7に示されるよ うに、モータ71に備えられたアーマチュア軸71aに 取付けられたマグネット72の周辺部に非接触にして配 置されている。

【0018】ホールIC4は、アーマチュア軸71aが 回転すると、マグネット72から与えられた磁束によ り、パルス状の第1のアクチュエータ回転信号を発生す る。ホール I C 4 が発生した第1のアクチュエータ回転 信号は、ルーフ位置プリスケーラ11に与えられる。 【0019】ホールIC5は、ホールIC4と同様のホ ール I Cであって、図6、図7に示されるように、モー タ71に備えられたアーマチュア軸71aに取付けられ 1のカウント手段が、出力軸回転信号発生手段により発 40 たマグネット72の周辺部に非接触にして配置されてい る。このホールIC5は、アーマチュア軸71aの円周 方向にホールIC4に対してほぼ90度変位して配置さ れている。ホールIC5は、アーマチュア軸71aが回 転すると、マグネット72から与えられた磁束により、 ホールIC4の第1のアクチュエータ回転信号に90度 の位相差を持つパルス状の第2のアクチュエータ回転信 号を発生する。ホールIC5が発生した第2のアクチュ エータ回転信号は、ルーフ位置プリスケーラ11に与え られる。

【0020】ホールIC6は、図7に示されるように、

10

30

アクチュエータ70に備えられた出力軸73に取付けら れたマグネット74の周辺部に非接触にして配置されて いる。アクチュエータ70の出力軸73は、ウオーム7 1 b とホイールギヤ 7 9 を介してアーマチュア軸 7 1 a に結合されているため、出力軸73の回転はアーマチュ ア軸71aの回転に対し滅速される。ホールIC6は、 出力軸73が回転すると、マグネット74から与えられ た磁束により、パルス状の出力軸回転信号を発生する。 ホールIC6が発生した出力軸回転信号は、制御回路 1 8、オフセット位置カウンタ12、出力軸回転カウンタ 13にそれぞれ与えられる。

【0021】モータ71は、モータヨーク76、モータ ヨーク76に収容されたアーマチュア77を有し、アー マチュア77はアーマチュア軸71aを備えており、モ ータヨーク76にねじ止めされたギヤケース78内にア ーマチュア軸71aに形成されたウオーム71bが突出 して配置され、このウオーム71bはギヤケース78内 でホイールギヤ79に噛合されている。ホイールギヤ7 9は、ギヤケース78に回転可能に支持されている出力 軸73を備えている。そして、ギヤケース78上に制御 回路部80が配置されており、この制御回路部80は、 コントロールユニットMCU、ホールIC4、ホールI C5、ホールIC6、出力回路7が収められている。

【0022】アクチュエータ70の出力軸73は、リッ ド駆動機構51を介してサンルーフリッド50に連結さ れる。

【0023】ルーフ位置プリスケーラ11は、ホール I C 4 が発生した第1のアクチュエータ回転信号とホール IC5が発生した第2のアクチュエータ回転信号のエッ ジ信号に基づきアーマチュア軸71aの1/4回転毎に それぞれのカウントを行い、例えばアーマチュア軸71 aが正転をするとカウント値をインクリメント、アーマ チュア軸71aが逆転をするとカウント値をデクリメン トする。ルーフ位置プリスケーラ11でカウントされた カウントデータは、オフセット位置カウンタ12、出力 軸回転カウンタ13、ルーフ位置カウンタ14、モータ ロック検出回路15にそれぞれ与えられる。

【0024】オフセット位置カウンタ12は、ホールⅠ C6が発生した出力軸回転信号の立上がりエッジが発生 した時から、ホールIC4、5が発生した第1、第2の アクチュエータ回転信号をカウントするためのカウンタ である。このオフセット位置カウンタ12のカウントデ ータは制御回路 18に与えられる。オフセット位置カウ ンタ12は、フローチャート内で[OFFSET CT] と記載さ れている。

【0025】ルーフ位置カウンタ14は、サンルーフリ ッド50の位置を記憶するカウンタであり、ルーフ位置 プリスケーラ11でカウントされたカウントデータが与 えられ、サンルーフリッド50の動作方向により、カウ ント値をインクリメント、又はデクリメントする。そし 50 正回転するため、サンルーフリッド50はスライド開側

て、ルーフ位置カウンタ14のカウントデータは制御回 路18に与えられる。ルーフ位置カウンタ14は、フロ ーチャート内で[GPC]と記載されている。

【0026】モータロック検出回路15は、ルーフ位置 プリスケーラ11から与えられたカウントデータと、ス ライド開/チルトダウンスイッチ2、又はスライド閉/ チルトアップスイッチ3より与えられたスライド開信 号、チルトダウン信号、スライド開信号、チルトアップ 信号との入力状況によりモータ71のアーマチュア軸7 1 aがロックしたことを検出する。

【0027】ルーフ位置データROM16は、ルーフ位 置カウンタ14のカウント値と比較される全閉位置デー タCLOSE 、全開位置データOPEN、チルトアップ位置デー タTILTUP、及びオフセット位置カウンタ12のカウント 値と比較されるデータna 及び出力軸回転カウンタのカ ウント値と比較されるデータNaを記憶する。

【0028】駆動回路17は、制御回路18よりその出 力信号を受けて、モータ71の正転、逆転の駆動信号を 出力回路7へ供給する。

【0029】制御回路18は、システム全体の動作をコ 20 ントロールする。この制御回路18は、ルーフ位置カウ ンタ14より与えられたルーフ位置データを参照し、サ ンルーフリッド50の全開位置OPEN、全閉位置CLOSE、 チルトアップ位置TILTUPの間でモータ71の停止、正 転、逆転を制御する。

【0030】出力回路7は、リレー又はトランジスタを 含んでおり、駆動回路17から与えられた駆動信号によ り、モータ71に対する正回転用の電流、逆回転用の電 流を供給し、又は電流の供給を停止する。

【0031】アクチュエータ70は、リッド駆動機構5 1に組付けられる以前に、アクチュエータ70の単体状 態で、その出力軸73の停止位置が初期設定される。ま ず、スライド開/チルトダウンスイッチ2がオン状態に されることによりモータ71のアーマチュア軸71aが 正回転する。アーマチュア軸71aの正回転によってホ ールIC6より発生した出力軸回転信号の立上がりエッ ジによってオフセット位置カウンタ12がリセットさ れ、そこからオフセット位置カウンタ12がホールIC 4、5が発生した第1、第2のアクチュエータ回転信号 40 を所定のna個だけカウントしたときに、モータ71の 回転が停止される。この停止位置はサンルーフリッド5 0の全閉位置に対応して予め定められる。そして出力軸 73の停止位置の初期設定が終了する。アクチュエータ 70の単体状態で、その出力軸73の停止位置の初期設 定が終了してから、アクチュエータ70の出力軸73が リッド駆動機構51に組付けられる。

【0032】サンルーフリッド50がチルトダウンして いる状態で、スライド開/チルトダウンスイッチ2がオ ン切換えされると、アクチュエータ70の出力軸73が に駆動される。

【0033】サンルーフリッド50が開いている状態で、スライド閉/チルトアップスイッチ3がオン切換えされると、アクチュエータ70の出力軸73が逆回転するため、サンルーフリッド50は閉側に駆動される。

9

【0034】サンルーフリッド50がチルトダウンしていて、全閉位置にある状態で、スライド閉/チルトアップスイッチ3がオン切換えされると、アクチュエータ70の出力軸73が逆回転するため、サンルーフリッド50はチルトアップされる。

【0035】サンルーフリッド50がチルトアップしている状態で、スライド開/チルトダウンスイッチ2がオン切換えされると、アクチュエータ70の出力軸73が正回転するため、サンルーフリッド50はチルトダウンされる。

【0036】このようなサンルーフ制御装置1は、図8 および図9に示される通常動作用のメインルーチン、図10および図11に示されるイニシャルモードのサブルーチンを実行することにより、サンルーフリッド50の動きを制御する。

【0037】通常動作用のメインルーチンは、スライド 開/チルトダウンスイッチ2、又はスライド閉/チルト アップスイッチ3よりの入力信号に基づきアクチュエー タ70をコントロールし、サンルーフリッド50が全開 位置、全閉位置、チルトアップ位置に到達すると、サン ルーフリッド50の移動は自動的に停止される。 すなわ ち、ルーフ位置カウンタ14のカウント値が、ルーフ位 置データROM に記憶された全開位置OPEN、全閉位置CLOS E、チルトアップ位置TILTUPデータと一致したときに、 アクチュエータ70の出力軸73の回転が停止される。 【0038】 イニシャルモードのサブルーチンは、アク チュエータ70の単体状態での出力軸73の初期位置設 定に用いられるとともに、例えばサンルーフリッド50 が手動により移動され、その結果サンルーフリッド50 に対し、ルーフ位置カウンタ14のカウント値にエラー が発生した場合に、ルーフ位置カウンタ14の再設定の ために用いられる。

【0039】以下にアクチュエータ70の単体状態でのイニシャル動作、すなわち出力軸73の初期位置の設定の詳細がフローチャートにより説明される。

【0040】図2中の時刻t1でスライド開/チルトダウンスイッチ2がオン状態にセットされると、メインルーチンのステップ100において"イニシャル動作中である"と判別され、ステップ101において"イニシャル動作サブルーチンへ移行する"が実行され、サブルーチンのステップ200へ移行する。

【0041】図10に示されるステップ200において、全閉位置認識フラグ[CLSCHK FC]の状態が判別され、フラグはセットされていないので、ステップ201に移行する。ステップ201において"スライド閉/チ

ルトアップスイッチ3はオン切換えされていない"と判別され、ステップ202において、"スライド開/チルトダウンスイッチ2はオン切換えされている"と判別され、ステップ203に移行する。

【0042】図2中の時刻t1では、ホールIC6の出力軸回転信号が偶然ハイレベル(H)に既になっているため、ステップ202から移行したステップ203において"ホールIC6の出力軸回転信号がハイレベル

(H)になっている"と判別され、ステップ211に移 10 行する。ステップ211において、レベルチェックフラ グ[IC3L FG] のセット状態が判別され、"セットされて いない"と判別されるので、ステップ213に移行し、 ステップ213において"レベルチェックフラグ[IC3L FG] をリセット"が実行されてステップ214に移行す る。レベルチェックフラグ[IC3L FG] は、ホールIC6 の出力軸回転信号がローレベル(L)になるとセットさ れる。

【0043】ステップ214において、エッジチェックフラグ[EDGE FG] のセット状態が判別され、セットされていないのでステップ207に移行する。エッジチェックフラグ[EDGE FG] は、ホールIC6の出力軸回転信号がローレベル(L)からハイレベル(H)になった時にセットされ、出力軸回転信号の立上がりエッジを確認するために用いられる。このとき、ホールIC6の出力軸回転信号は、電源投入直後、既にハイレベル(H)になっている場合もあるから、出力軸回転信号がローレベル(L)になったことを一度確認され、その後出力軸回転信号の立上がりエッジにより出力軸73よりエッジチェックフラグ[EDGE FG] はセットされる。ステップ207において"スライド開/チルトダウン方向にモータ71を駆動する"が実行されて、ステップ200に戻る。

【0044】図2中の時刻t2で、モータ71のアーマチュア軸71aが正回転されるため、ホールIC4、5が第1、第2のアクチュエータ回転信号を発生する。また出力軸73が正回転されるため、ホールIC6が出力軸回転信号を発生し、第1、第2のアクチュエータ回転信号がルーフ位置プリスケーラ11にそれぞれ供給され、出力軸回転信号が制御回路18、オフセット位置カウンタ12、出力軸回転カウンタ13にそれぞれ供給される。そして、ステップ200、ステップ201、ステップ202、ステップ203、ステップ211、ステップ212、ステップ213、ステップ214、ステップ217、ステップ2112、ステップ213、ステップ214、ステップ217が繰り返し実行されてモータ71のアーマチュア軸71aが引き続き正回転を続ける。

【0045】モータ71のアーマチュア軸71 aが正回転を続けることによって、図2中の時刻 t 3でホール I C6が発生した出力軸回転信号がローレベル(L)になる。すると、ステップ203において"ホール I C6が発生した出力軸回転信号がハイレベル(H)ではない"と判別されるのでステップ204に移行する。ステップ

204において "オフセット位置カウンタ12をクリアする" が実行されて、ステップ205において "エッジチェックフラグ[EDGE FG] をリセット"が実行され、ステップ206において "レベルチェックフラグ[IC3L FG] をセット"が実行されて、ステップ207に移行する。ホールIC6が発生した出力軸回転信号がローレベル (L) である間、ステップ200、ステップ201、ステップ202、ステップ203、ステップ201、ステップ205、ステップ206、ステップ207が繰り返し実行されるため、モータ71のアーマチュア軸71 aが引き続き正回転される。

【0046】図2中の時刻t4で、ホールIC6が発生した出力軸回転信号がハイレベル(H)になる。すると、ステップ203において"ホールIC6が発生した出力軸回転信号がハイレベル(H)である"と判別され、再びステップ211に移行する。ステップ211において"レベルチェックフラグ[IC3L FG] はセットされている"と判別されるので、ステップ212において"エッジチェックフラグ[EDGE FG]をセットする"が実行されて、ステップ213において"レベルチェックフラグ[IC3L FG]をリセットする"が実行されて、ステップ214に移行する。ステップ214において"エッジチェックフラグ[EDGE FG] はセットされている"と判別されるのでステップ215に移行する。

【0047】ステップ215では、オフセット位置カウンタ12がna個のパルスをカウントしたか否かが判別されるため、オフセット位置カウンタ12がna個のパルスをカウントするまでの間は、モータ71のアーマチュア軸71aが引き続き正回転される。

【0048】図2中の時刻t5でオフセット位置カウンタ12がna個のパルスをカウントし終わると、ステップ215からステップ210に移行し"モータ出力停止"が実行されるため、モータ71に対する電流の供給がカットされて、アーマチュア軸71aは回転を停止する。

【0049】上述したように、モータ71が車両に取付けられる以前に、スライド開/チルトダウンスイッチ2がオン切換えされることによってアーマチュア軸71 a、出力軸73が回転され、時刻t4以後にオフセット位置カウンタ12がna個のパルスをカウントし終わって、アーマチュア軸71a、出力軸73が停止されたときの出力軸73の位置が、出力軸73の初期位置となる。なお、ルーフ位置カウンタ14のカウント値は、オフセット位置カウンタ12がna個のパルスをカウントしたときに、サンルーフリッド50の全閉位置のカウント値に設定される。

【0050】アクチュエータ70の単体状態で出力軸73の初期位置の設定が終了すると、出力軸73がリッド 駆動機構51に結合されてアクチュエータ70が車体に 取付けられる。このとき、サンルーフリッド50は全閉50 位置に設置されている。それゆえ、サンルーフリッド50の全閉位置とルーフ位置カウンタ14のカウント値は正しく対応する。

【0051】以下に、サンルーフリッド50の通常動作が説明される。通常動作中、スイッチ2、3がオフ状態の場合、ステップ100において"イニシャル動作中ではない"と判別され、ステップ108に移行し、ステップ108において"ルーフ位置ずれチェックサブルーチン"が実行されてステップ109に移行する。ステップ108の詳細は省略される。

【0052】ステップ109において"スライド閉/チルトアップスイッチ3はオン切換えされていない"と判別されると、ステップ110に移行し、ステップ110において"スライド開/チルトダウンスイッチ2はオン切換えされていない"と判別されると、ステップ117において"スイッチオフフラグ[SWOFF FG]をセットする"が実行されて、ステップ115において"モータ出力停止"が実行される。そしてステップ102において"第1、第2のアクチュエータ回転信号のエッジが入力"が判別され、ステップ100に戻る。

【0053】サンルーフリッド50が全閉位置にある状 態で、スライド開/チルトダウンスイッチ2がオン切換 えされると、ステップ100において"イニシャル動作 中ではない"と判別され、ステップ108が実行されて ステップ109に移行する。ステップ109において "スライド閉/チルトアップスイッチ3はオン切換えさ れていない"と判別され、ステップ110において"ス ライド開/チルトダウンスイッチ2はオン切換えされて いる"と判別され、ステップ111において"全開位置 ではない"と判別され、ステップ112に移行する。サ ンルーフリッド50が全開位置に到達したか否かは、ル ーフ位置カウンタ14のカウンタ値によって認識され る。ステップ112において"全閉位置である"と判別 され、ステップ116において "スイッチオフフラグ[S WOFF FG]はセットされている"と判別され、ステップ1 14において "スライド開/チルトダウン方向にモータ 71を作動"が実行されてステップ102に移行する。 【0054】モータ71のアーマチュア軸71aが正回 転されるため、サンルーフリッド50が開き、ホールI C4、5が第1、第2のアクチュエータ回転信号を発生 するとともに、出力軸73が正回転されるため、ホール IC6が出力軸回転信号を発生し、第1、第2のアクチ ュエータ回転信号がルーフ位置プリスケーラ11にそれ ぞれ供給され、出力軸回転信号が制御回路18、オフセ ット位置カウンタ12、出力軸回転カウンタ13にそれ ぞれ供給される。

【0055】ステップ102において"第1、第2の回転信号のエッジが入力されていない"と判別されると、ステップ100に戻ってステップ108、ステップ10 9、ステップ110、ステップ111、ステップ11

40

2、ステップ113、ステップ114、ステップ102 が繰り返し実行される。ステップ102において "第 1、第2のアクチュエータ回転信号のエッジが入力され ている"と判別されると、ステップ103に移行する。 ステップ103において "駆動信号はスライド閉/チルトアップ方向ではない"と判別され、ステップ104において "ルーフ位置カウンタ14をインクリメントする"が実行され、ステップ105において "オフセット位置カウンタ12をインクリメントする"が実行されて、ステップ106において "出力軸回転カウンタ13をインクリメントする"が実行されて、ステップ100に戻る。なお、カウンタ12、13、14は入力された信号のエッジ信号によってインクリメントされる。

13

【0056】モータ71のアーマチュア軸71aが正回転を続けることによって、ステップ100、ステップ108、ステップ110、ステップ1111、ステップ112、ステップ113、ステップ114、ステップ102、ステップ103、ステップ104、ステップ105、ステップ106が繰り返されるため、、ルーフ位置カウンタ14、オフセット位置カウンタ12、出力軸回転カウンタ13が順次インクリメントされていく。

【0057】サンルーフリッド50が開く方向に駆動されている途中で、スライド開/チルトダウンスイッチ2がオフされると、ステップ110からステップ117に移行するため、ステップ117において"スイッチオフフラグ[SWOFF FG]をセットする"が実行されて、ステップ115において"モータ出力停止"が実行されてステップ102に移行する。モータ71のアーマチュア軸71aは回転を停止され、サンルーフリッド50が全閉位30置と全開位置とのあいだで停止する。

【0058】サンルーフリッド50が全閉位置と全開位置とのあいだにある際に、スライド開/チルトダウンスイッチ2が再度オン切換えされると、ステップ100、ステップ108、ステップ109、ステップ110が実行される。そしてステップ111、ステップ112が実行され、ステップ113において"スイッチオフフラグ[SWOFF FG]をリセットする"が実行される。ステップ114において"スライド開/チルトダウン方向にモータ71を作動させる"が実行されてステップ102に移行する。

【0059】モータ71のアーマチュア軸71aが正回転されるため、サンルーフリッド50が開き、再び、第1、第2のアクチュエータ回転信号がルーフ位置プリスケーラ11にそれぞれ供給され、出力軸回転信号が制御回路18、オフセット位置カウンタ12、出力軸回転カウンタ13にそれぞれ供給される。

【0060】ステップ102において"ホールIC4、5よりの第1、第2のアクチュエータ回転信号のエッジが入力されている"と判別されると、ステップ103に

移行する。そして再びステップ103、ステップ10 4、ステップ105、ステップ106が実行されて、ス テップ100に戻る。

【0061】モータ71のアーマチュア軸71aが正回転を続けることによって、ステップ100、ステップ108、ステップ119、ステップ1111、ステップ112、ステップ113、ステップ114、ステップ102、ステップ103、ステップ104、ステップ105、ステップ106が繰り返されるため、、ルーフ位置カウンタ14、オフセット位置カウンタ12、出力軸回転カウンタ13が順次インクリメントされていく。

【0062】サンルーフリッド50は、やがて全開位置に到達する。サンルーフリッド50が全開位置に到達したことは、ルーフ位置カウンタ14のカウンタ値によって認識される。サンルーフリッド50が全開位置に到達したため、ステップ111からステップ115に移行し、ステップ115において"モータ出力停止"が実行されるため、モータ71に対する電流の供給がカットされてアーマチュア軸71が回転を停止し、サンルーフリッド50が全開位置で停止する。そして、スライド開/チルトダウンスイッチ2がオフされることにより、ステップ117において"スイッチオフフラグ[SWOFF FG]をセットする"が実行される。

【0063】サンルーフリッド50が全開位置にある際に、スライド閉/チルトアップスイッチ3がオンされると、ステップ109において"スライド閉/チルトアップスイッチ3がオンされている"と判別され、ステップ118において"チルトアップ位置ではない"と判別され、ステップ119に移行する。ステップ119において"全閉位置ではない"と判別されるのでステップ120に移行し、ステップ120において"スイッチオフフラグ[SWOFF FG]をリセットする"が実行されて、ステップ121において"スライド閉/チルトアップ方向にモータを作動"が実行されて、ステップ102に移行する。

【0064】モータ71のアーマチュア軸71aが逆回転されるため、サンルーフリッド50が閉り、ホールIC4、5が第1、第2のアクチュエータ回転信号を発生するとともに、出力軸73が逆回転されるため、ホールIC6が出力軸回転信号を発生し、第1、第2のアクチュエータ回転信号がルーフ位置プリスケーラ11にそれぞれ供給され、出力軸回転信号が制御回路18、オフセット位置カウンタ12、出力軸回転カウンタ13にそれぞれ供給される。

【0065】ステップ102において "第1、第20アクチュエータ回転信号のエッジが入力されていない" と判別されるとステップ100に戻り、ステップ102において "第1、第20アクチュエータ回転信号のエッジ

が入力されている"と判別されるとステップ103に移 行する。ステップ103において"駆動信号はスライド 閉/チルトアップ方向である"と判別されると、ステッ プ107に移行し、ステップ107において"ルーフ位 置カウンタ14をデクリメントする"が実行されてステ ップ100に戻る。

15

【0066】サンルーフリッド50は、やがて、全閉位 置に到達する。すると、ステップ119において"全閉 位置である"と判別されるのでステップ122に移行 し、ステップ122において"スイッチオフフラグ[SWO 10 FF FG]はセットされていない"のでステップ115に移 行し、ステップ115において"モータ出力停止"が実 行されてステップ102に移行し、ステップ102から ステップ100に戻る。モータ71のアーマチュア軸7 1 a は回転を停止され、サンルーフリッド50が全閉位 置で停止する。そして、スライド閉/チルトアップスイ ッチ3がオフされることにより、ステップ110から移 行したステップ117において "スイッチオフフラグ[S WOFF FG]をセットする"が実行される。

【0067】サンルーフリッド50が全閉位置に停止し ている際に、スライド閉/チルトアップスイッチ3がオ ンされると、ステップ109において "スライド閉/チ ルトアップスイッチ3がオンされている"と判別される のでステップ118に移行し、ステップ118において "チルトアップ位置ではない"と判別され、ステップ1 19に移行する。ステップ119において"全閉位置で ある"と判別され、ステップ122において"スイッチ オフフラグ[SWOFF FG]はセットされている"と判別さ れ、ステップ121に移行し、ステップ121において "スライド閉/チルトアップ方向にモータを作動"が実 30 行されてステップ102に移行する。

【0068】モータ71のアーマチュア軸71aが逆回 転されるため、全閉位置にあるサンルーフリッド50が チルトアップされ、第1、第2のアクチュエータ回転信 号がルーフ位置プリスケーラ11にそれぞれ供給され、 出力軸回転信号が制御回路18、オフセット位置カウン タ12、出力軸回転カウンタ13にそれぞれ供給され る。

【0069】ステップ102において"ホールIC4、 5よりの第1、第2のアクチュエータ回転信号のエッジ が入力されていない"と判別されると、ステップ100 に戻り、ステップ102において"ホールIC4、5よ りの第1、第2のアクチュエータ回転信号のエッジが入 力されている"と判別されると、ステップ103に移行 する。ステップ103において"駆動信号はスライド閉 /チルトアップ方向である"と判別されるので、ステッ プ107において"ルーフ位置カウンタ14をデクリメ ントする"が実行されてステップ100に戻る。

【0070】チルトアップ駆動されているサンルーフリ ッド50は、やがて、チルトアップ位置に到達する。サ 50 れると、サンルーフリッド50とルーフ位置カウンタ1

ンルーフリッド50がチルトアップ位置に到達したこと はルーフ位置カウンタ14のカウンタ値によって認識さ れる。ステップ118において"チルトアップ位置であ る"と判別されるのでステップ115に移行し、ステッ プ115において"モータ出力停止"が実行されて、ス テップ102からステップ100に戻る。モータ71の アーマチュア軸71aは回転を停止され、サンルーフリ ッド50がチルトアップ位置で停止する。

【0071】そして、スライド閉/チルトアップスイッ チ3がオフ切換えされることにより、ステップ110か ら移行したステップ117において "スイッチオフフラ グ[SWOFF FG]をセットする"が実行される。

【0072】サンルーフリッド50がチルトアップ位置 にある際に、スライド開/チルトダウンスイッチ2がオ ン切換えされると、ステップ109から移行したステッ プ110において"スライド開/チルトダウンスイッチ 2がオン切換えされている"と判別され、ステップ11 1において"全開位置ではない"と判別され、ステップ 112に移行する。ステップ112において"全閉位置 ではない"と判別されるのでステップ113に移行し、 ステップ113において "スイッチオフフラグ[SWOFF F G]をリセットする"が実行されて、ステップ114にお いて"スライド開/チルトダウン方向にモータ作動"が 実行されてステップ102に移行する。

【0073】モータ71のアーマチュア軸71aが正回 転されるため、第1、第2のアクチュエータ回転信号が ルーフ位置プリスケーラ11にそれぞれ供給され、出力 軸回転信号が制御回路18、オフセット位置カウンタ1 2、出力軸回転カウンタ13にそれぞれ供給される。

【0074】ステップ102において"ホールIC4、 5よりの第1、第2のアクチュエータ回転信号のエッジ が入力されている"と判別されるとステップ103に移 行する。次いでステップ103、ステップ104、ステ ップ105、ステップ106が実行されてステップ10 0に戻る。

【0075】チルトダウン駆動されているサンルーフリ ッド50は、やがて、全閉位置に到達する。すると、ス テップ111において"全開位置ではない"と判別さ れ、ステップ112において"全閉位置である"と判別 され、ステップ116において "スイッチオフフラグ[S WOFF FG]はセットされていない"と判別され、ステップ 115において"モータ出力停止"が実行されてステッ プ102に移行し、ステップ102からステップ100 に戻る。モータ71のアーマチュア軸71aは回転を停 止され、サンルーフリッド50が全閉位置で停止する。 【0076】次にルーフ位置カウンタ14の再設定の方 法が説明される。ルーフ位置カウンタ14の再設定はイ

【0077】サンルーフリッド50が手動により移動さ

ニシャルモードにより行なわれる。

10

4のカウンタ値とが相対的にずれてしまい、ルーフ位置カウンタ14にエラーが発生する。イニシャルモードサブルーチンにおいて図3の時刻t6で、スライド閉/チルトアップスイッチ3がオンされる。ステップ201において"スライド閉/チルトアップスイッチ3はオン"と判別されることにより、ステップ216に移行する。ステップ216において"モータロックしていない"と判別され、ステップ219に移行する。

17

【0078】ステップ219において"出力軸回転カウンタ13をクリアする"が実行されて、ステップ220において"オフセット位置カウンタ12をクリアする"が実行されてステップ221に移行する。

【0079】ステップ221において "スライド閉/チルトアップ方向にモータ71を作動" が実行されてステップ200に戻る。時刻 t 7でモータ71のアーマチュア軸71 a が逆回転を始めるため、チルトアップする。サンルーフリッド 50がチルトアップ駆動されている間、ステップ200、ステップ210、ステップ210、ステップ210、ステップ210、ステップ210、ステップ210、ステップ210、ステップ210、ステップ210、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100、ステップ2100 が繰り返し実行される。

【0080】チルトアップ駆動されているサンルーフリ ッド50は、やがて時刻t8でチルトアップ位置に到達 する。サンルーフリッド50とルーフ位置カウンタ14 のカウンタ値とが相対的にずれているため、モータ71 への電流の供給が停止されず、やがてモータ71の出力 軸73は時刻t9で回転が拘束されてロックされる。す ると、ステップ216において"モータロックしてい る"と判別されるのでステップ217に移行し、ステッ プ217において"全閉位置認識フラグ[CLSCHKFG]を セットする"が実行されてステップ218に移行し、ス テップ218において"スイッチオフフラグ[SWOFF FG] をリセットする"が実行されて、ステップ219、ステ ップ220、ステップ221が実行され、ステップ20 0に戻る。そして、ステップ200において"全閉位置 認識フラグ[CLSCHK FG] はセットされている"と判別さ れるので、ステップ222に移行し、ステップ222に おいての判別で"スライド開/チルトダウンスイッチ2 はオフ"と判別されるので、ステップ228に移行す

【0081】ステップ228において依然として"スライド閉/チルトアップスイッチ3はオン"と判別されるので、ステップ231に移行する。ステップ231において"スイッチオフフラグ[SWOFF FG]はセットされていない"と判別され、ステップ230に移行する。スイッチオフフラグ[SWOFF FG]は、スライド閉/チルトアップスイッチ3およびスライド開/チルトダウンスイッチ2の両方のスイッチがオフときにセットされ、スイッチの入力がなくなったことを認識するのに用いられる。ステップ230において時刻t9で"モータ出力停止"が実行されるため、モータ71はロックされ、電流の供給が

カットされて回転を停止する。そしてサンルーフリッド 50はチルトアップ位置でメカニカルロックして停止さ れる。

【0082】次いで、時刻 t10で、スライド閉/チルトアップスイッチ 3がオフされる。ステップ 200 において "全閉位置認識フラグ[CLSCHK FG] はセットされている"と判別され、ステップ 222 に移行し、ステップ 222 において "スライド開/チルトダウンスイッチ 23 はオフ切換えされている"と判別されるのでステップ 23 28 に移行する。

【0083】ステップ228において"スライド閉/チルトアップスイッチ3はオフされている"のでステップ229に移行し、ステップ229において"スイッチオフフラグ[SWOFF FG]をセット"してステップ230に移行する。ステップ230において"モータ出力停止"が実行されるため、サンルーフリッド50は引き続きチルトアップ位置で停止状態を保持される。

【0084】この後、再度スライド閉/チルトアップスイッチ3がオン切換えされたときには、ステップ200、ステップ222、ステップ228、ステップ231へ進み、ステップ231で "スイッチオフフラグ[SWOFFFG]はセットされている"と判別されるので、ステップ232に移行し、全閉位置認識フラグ[CLSCHKFG]をリセットしてステップ200へ戻り、ルーフ位置カウンタの再設定は中断される。

【0085】サンルーフリッド50がチルトアップ位置でメカニカルロックして停止した後、時刻 t11でスライド開/チルトダウンスイッチ2がオンされたときには、サブルーチンのステップ200において"全閉位置認識フラグ[CLSCHK FG] はセットされている"と判別されるので、ステップ222において"スライド開/チルトダウンスイッチ24 と判別されるので、ステップ222 に移行する。ステップ223 に移行する。ステップ223 に移行する。ステップ223 では、前述したステップ203 と可様にしてホール 103 の 3 と同様にしてホール 103 の 3 と同様にして 103 の 3 と

【0086】ホールIC6の出力軸回転信号がローレベル(L)になっていると、ステップ223からステップ224に移行し、ステップ224において"オフセット 位置カウンタ12をリセットする"が実行されて、ステップ225において"スライド開/チルトダウン方向にモータを作動させる"が実行されてステップ222に戻る。ホールIC6の出力軸回転信号がハイーレベル

(H)になっていると、ステップ226又はステップ227からステップ225に移行する。

【0087】時刻t12でモータ71のアーマチュア軸71aが正回転されるため、ホールIC4、5が第1、第2のアクチュエータ回転信号を発生するとともに、出力軸73が正回転されるため、ホールIC6が出力軸回転信号を発生し、第1、第2のアクチュエータ回転信号

がルーフ位置プリスケーラ11にそれぞれ取り込まれ、 出力軸回転信号が制御回路18、オフセット位置カウン タ12、出力軸回転カウンタ13にそれぞれ取り込ま れ、サンルーフリッド50はチルトダウンされる。

19

【0088】モータ71のアーマチュア軸71aが正回転することによってサンルーフリッド50がチルトダウンされ、時刻t13でホールIC6の出力軸回転信号がハイレベル(H)になると、ステップ223からステップ226に移行する。ステップ226において出力軸回転カウンタ13がNa個のパルスをカウントしたか否がが判別され、"出力軸回転カウンタ13は、まだNa個のパルスをカウントしていない"ので、ステップ225に移行し、引き続き、モータ71はアーマチュア軸71aの正回転を続行する。

【0089】さらに、モータ71のアーマチュア軸71 a の正回転が継続されることによってサンルーフリッド 50がチルトダウンされ、ホールIC6の出力軸回転信 号がハイレベル(H)になると、ステップ223からス テップ226に移行する。ステップ226で"出力軸回 転カウンタ13が時刻t14でNa個のパルスをカウン トしている"と判別されるとステップ227に移行す る。ステップ227では、オフセット位置カウンタ12 がna個のパルスをカウントしたか否かが判別される。 オフセット位置カウンタ12がna個のパルスをカウン トするまでの間はステップ227からステップ225に 移行する。時刻 t 1 4 から時刻 t 1 5 の間で、オフセッ ト位置カウンタ12がna個のパルスをカウントすると ステップ227からステップ233に移行する。オフセ ット位置カウンタ12がna個のパルスのカウントを終 了したときにサンルーフリッド50が全閉位置に到達す るように予め設計されている。次いでステップ233に おいて "スイッチオフフラグ[SWOFF FG]をリセットす る"が実行され、ステップ234において"ルーフ位置 カウンタ14に全閉位置CLOSEをセットする"が実行さ れ、ステップ235において"全閉位置認識フラグ[CLS CHK FG] をリセットする"が実行されてステップ236 に移行し、ステップ236において"イニシャル動作終 了"がセットされる。

【0090】以上のルーチンによって、ルーフ位置カウンタ14とサンルーフリッド50との再設定が行われる。イニシャルモードサブルーチンが終了すると、メインルーチンのステップ100に戻る。

[0091]

【発明の効果】以上説明したように、本発明のサンルーフ制御装置は、モータのアーマチュア軸の回転に応じてアーマチュア軸回転信号を発生するアーマチュア軸回転信号発生手段と、アクチュエータの出力軸の回転に応じて出力軸回転信号を発生する出力軸回転信号発生手段と、アーマチュア軸回転信号発生手段により発生されたアーマチュア軸回転信号及び前記出力軸回転信号発生手50

段により発生された出力軸回転信号をカウントするカウント手段とを有し、スイッチと前記モータとに電気的に接続され、スイッチから指令信号が供給されると、モータへ駆動電流の供給を開始し、カウント手段が前記出力軸回転信号発生手段により発生された出力軸回転信号のエッジを基準として、アーマチュア軸回転信号のカウントを開始し、カウント値が予め定められた値に達すると前記モータへの駆動電流の供給を停止するコントロールコニットを備えているので、複数のギヤを有する減速機構やスイッチ機構を持つ位置検出スイッチを備えておらず、容易で、確実に初期位置の設定ができる。

【図面の簡単な説明】

【図1】この発明に係わるサンルーフ制御装置の一実施例のプロック構成図である。

【図2】図1に示したサンルーフ制御装置の制御動作を 説明するタイムチャートである。

【図3】図1に示したサンルーフ制御装置の制御動作を 説明するタイムチャートである。

【図4】図1に示したサンルーフ制御装置に用いられる モータの外観斜視図である。

【図5】図3に示したモータにおいての各部品の組付け 関係を説明する外観斜視図である。

【図6】図3に示したモータにおいてのアーマチュア軸と第1、第2のアーマチュア軸回転信号発生手段との組付け関係を説明する外観斜視図である。

【図7】図3に示したモータにおいての出力軸と出力軸 回転信号発生手段と組付け関係を説明する外観斜視図で ある。

【図8】図1に示したサンルーフ制御装置の制御動作に 用いられるメインルーチンのフローチャートである。

【図9】図1に示したサンルーフ制御装置の制御動作に 用いられるメインルーチンのフローチャートである。

【図10】図1に示したサンルーフ制御装置の制御動作 に用いられるサブルーチンのフローチャートである。

【図11】図1に示したサンルーフ制御装置の制御動作 に用いられるサブルーチンのフローチャートである。

【符号の説明】

40

1 サンルーフ制御装置

2 (スイッチ) (第1のスイッチ) スライド開/チルトダウンスイッチ

3 (スイッチ) (第2のスイッチ) スライド閉/チルトアップスイッチ

4 (第1の回転信号発生手段)第1のアーマチュア軸回転信号発生手段、ホールIC

5 (第2の回転信号発生手段)第2のアーマチュア軸回転信号発生手段、ホール I C

6 出力軸回転信号発生手段、ホール I C

11 (カウント手段) (第1のカウント手段) ルーフ 位置プリスケーラ

12 (カウント手段) (第2のカウント手段) オフセ

ット位置カウンタ

13 (カウント手段) (第2のカウント手段) 出力軸 回転カウンタ

- 14 (ルーフ位置カウント手段) ルーフ位置カウンタ
- 15 モータロック検出回路
- 50 サンルーフリッド
- 70 アクチュエータ

*71 モータ

71a アーマチュア軸

71b (減速ギヤ) ウオーム

73 出力軸

79 (滅速ギヤ) ホイールギヤ

MCU コントロールユニット

【図1】

[図9]

【図10】

【図11】

フロントページの続き

(72)発明者 仁 木 健 一 神奈川県横浜市戸塚区東俣野町1760番地 自動車電機工業株式会社内 (72)発明者 田 中 徳 浩 神奈川県横浜市戸塚区東俣野町1760番地 自動車電機工業株式会社内