Практика 2

При подключенном пакете amsmath командами \atop и \choose пользоваться нельзя.

Задание: набрать все приведенные примеры.

Писать \tilde{i} некрасиво; лучше писать так: \tilde{i} .

Писать \$\tilde i\$ некрасиво; лучше писать так: \$\tilde\imath\$.

Правильно $\hat{\hat{Z}}$, а не $\hat{\hat{Z}}$.

Правильно $\hat Z}$, а не $\hat Z$.

В формуле tgx буква x слишком близка к знаку тангенса. А вот в формуле $\sin x$ пробелы правильные.

В формуле \$\mathrm{tg} x\$ буква \$x\$ слишком близка к знаку тангенса. А вот в формуле \$\sin x\$ пробелы правильные.

Множество особенностей многообразия X обозначается $X_{\rm sing}$.

Множество особенностей многообразия X обозначается X_{sing} .

Раньше вместо Γ_{ij}^k писали $\begin{Bmatrix} ij \\ k \end{Bmatrix}$.

Paньше вместо~\$\Gamma^k_{ij}\$
писали~\$\left\{ij\atop k\right\}\$.

Задание: набрать текст и формулы

Скобки переменного размера

$$M(f) = \left(\int_{a}^{b} f(x) \, dx \right) / (b - a)$$

$$\int_{a}^{b} \frac{1}{2} (1+x)^{-3/2} dx = -\frac{1}{\sqrt{1+x}} \Big|_{a}^{b}$$

Обратите внимание, что следующие две формулы отличаются

$$||x+1| - |x-1||$$

$$||x+1|-|x-1||$$

Обратите внимание, что следующие две формулы отличаются

$$\left(\sum_{k=1}^{n} x^k\right)^2 \left(\sum_{k=1}^{n} x^k\right)^2$$

Множество $\{x \mid x \not\ni x\}$ существовать не может. В этом состоит В этом состоит парадокс Рассела.

$$\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} \, dx \, dy = \pi$$

$$\overline{a_n a_{n-1} \dots a_1 a_0} = 10^n a_n + \dots + a_0.$$

$$\widehat{f * g} = \widehat{f} \cdot \widehat{g}$$
 Pассмотрим вектор \overrightarrow{AB} .

Одно над другим (простейшие случаи)

$$\frac{2}{3}$$
 и $\frac{2}{3}$ $2^{\frac{3}{5}}$ и $2^{\frac{3}{5}}$

$$\binom{12}{7} = 792$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\frac{\sum\limits_{i=1}^{n}|x_i||y_i|}{\left(\sum\limits_{j=1}^{n}|x_j|^{\frac{1}{1-\sigma}}\right)^{1-\sigma}\left(\sum\limits_{j=1}^{n}|y_j|^{\frac{1}{\sigma}}\right)^{\sigma}} \le 1$$

$$\operatorname{sp} A \subseteq \bigcup_{i=1}^{n} S(a_{ii}, r_i), \quad r_i = \min\{p_i, q_i\}.$$

$$||x||_{\frac{1}{2}} = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}.$$

$$e^{tA} = I + \sum_{k=1}^{\infty} \frac{t^k A^k}{k!},$$

$$\lim_{0 < t \to 0} \frac{\ln ||e^{tA}||}{t} = \lim_{0 < t \to 0} \frac{\ln ||I + tA||}{t} \qquad ||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}.$$