UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO ENGENHARIA ELÉTRICA

DIONATAS SANTOS BRITO IGOR BATISTA VIEIRA PEDRO HENRIQUE DE OLIVEIRA SOARES

Laboratório # I - Onda Plana

Vitória 2019

SUMÁRIO

INTRODUÇÃO	3
EMBASAMENTO TEÓRICO	4
MEDIÇÕES E RESULTADOS	5
Antena Vertical:	5
Antena Horizontal:	6
CONCLUSÃO	7

INTRODUÇÃO

O experimento descrito a seguir teve por finalidade levantar a curva de radiação de uma antena monopolo utilizando uma antena bipolar e um analisador de espectro. A Figura 1 apresenta o setup experimental desta aula de laboratório.

Figura 1 - Setup Experimental.

O aparato consiste de uma antena monopolo A1 conectada ao oscilador FO de frequência f_c = 1 GHz e uma antena bipolar A2 conectada ao analisador de espectro AnE. Para realizar o experimento, será necessário dividi-lo em duas etapas. Em ambas etapas, será mantida uma distância fixa entre as antenas.

Na primeira etapa, a antena A2 conectada ao analisador de espectro foi posicionada verticalmente. Foi anotado o valor lido pelo analisador, variando o posicionamento em 10º a partir de 0º até 90º.

Figura 2 - Antenas e analisador de espectro

Na segunda etapa, posicionada antena foi horizontalmente. Da mesma forma feita na primeira etapa, foi anotado valor lido pelo variando analisador, 0 posicionamento em 10º a partir de 0º até 90º. A Figura 2 ilustra o aparato físico utilizado no experimento tal como a forma que o teste foi realizado.

EMBASAMENTO TEÓRICO

Conforme a onda proveniente de uma antena se propaga no espaço, os campos elétrico e magnético constituintes transportam energia. Se a propagação de uma onda plana no espaço passa através de uma superfície ΔS (Figura 3), perpendicular a direção de propagação da onda, então existe um fluxo de potência através da superfície.

A unidade de medida para essa potência é W/m² e o sentido no qual a potência flui é dado pelo vetor de Poynting, o qual nos permite determinar a potência instantânea por unidade de área em um ponto da superfície a ser definido em termos dos valores instantâneos para os campos elétrico (E) e magnético (H).

Uma antena no espaço livre, emitindo uma potência P_T (W) igualmente repartida para todas as direções, fará com que a uma distância r, cada m² de área seja atravessado por uma densidade de potência $S_o = \frac{P_T}{4\pi r^2}$.

Figura 3 - Propagação no espaço livre.

Na região de campo distante, $r > \frac{2d^2}{\lambda}$ onde d é a maior dimensão da antena, temos:

$$H_{\phi s} = \frac{jI_o\beta l}{4\pi r} sen\theta e^{-j\beta r}$$
 e $E_{\theta s} = \eta H_{\phi s}$

As amplitudes decaem em função de 1/r. Obtém-se assim uma onda esférica (os pontos de fase constante formam superfícies esféricas) de modo TEM (Modo Transversal Eletromagnético). Ressalta-se que para uma antena monopolo com d =7,5 cm irradiando em f =1 GHz, encontra-se λ =c/f = 30 cm e região de campo distante para r > 3,75 cm.

MEDIÇÕES E RESULTADOS

Antena Vertical:

Após realizar as medições para a antena na vertical, obtivemos os seguintes valores:

			^	
T 1 1 4	Λ .	4. 1	A 1	x Potência
1 20012 1	Antona	VARTICAL -	Analla	v Datancia
Taucia I.	AHIEHA	veilleai -	Δ IIIUUIU	X E 0.1511616

Ângulo	dBm	Potência (μW)
0	-33,7	0,427
10	-36,5	0,224
20	-38,5	0,141
30	-40,2	0,0955
40	-43,3	0,0468
50	-43,7	0,0427
60	-47,2	0,0191
70	-51,2	0,00759
80	-54,7	0,00339
90	-56,7	0,00214

A partir dos valores mapeados, é possível traçar o seguinte perfil de potência para o experimento (Figura 4):

Figura 4 – Antena vertical | Potência x Posição

Antena Horizontal:

Da mesma forma, após o experimento com a antena na posição horizontal foram obtidos os seguintes dados:

Tabela 2 - Antena horizontal - Ângulo x Potência

Ângulo	dBm	Potência (μW)
0	-67,2	0,000191
10	-62,1	0,000617
20	-55,9	0,000257
30	-53	0,00501
40	-51,8	0,00661
50	-50	0,01
60	-58,6	0,00138
70	-55,5	0,00248
80	-53,8	0,00417
90	-53,4	0,00457

Seguindo o mesmo procedimento realizado para a antena vertical, foi mapeado na mesma escala adotada previamente a relação entre a potência e a posição no espaço (Figura 4Figura 5).

Figura 5 - Antena horizontal | Potência x Posição

A partir dos valores medidos, foi calculada a intensidade do campo elétrico em cada ângulo medido (Figura 6).

Figura 6 - Intensidade do campo elétrico para cada ângulo de medição.

CONCLUSÃO

O experimento permite a conclusão, a partir da análise das figuras e tabelas inseridas neste relatório, de que a antena utilizada emite, em maior parte, um sinal em que o campo elétrico polarizado na vertical. Tal fato pode ser comprovado a partir dos valores ínfimos obtidos para a intensidade do sinal quando a antena de recepção se encontrava na horizontal, por outro lado, quando a antena de recepção estava na vertical os valores aumentaram drasticamente.

Ademais, a partir da análise da figura 4, é perceptível que a antena utilizada tende a emitir um sinal mais intenso para ângulos menores de medição, ou seja, a antena utilizada emite, em geral, sinais latitudinais.

Portanto, o experimento foi eficaz em demonstrar na prática os conceitos teóricos aprendidos em sala de aula, além de permitir aos alunos o contato com alguns equipamentos utilizados para realizar tais medições.