Aprendizagem de Máquina

Otimização de Hiperparâmetros

Telmo de Menezes e Silva Filho tmfilho@gmail.com/telmo@de.ufpb.br www.de.ufpb.br

Sumário

Introdução

Abordagens

Para Terminar

Introdução

- Um hiperparâmetro é um parâmetro que controla o processo de aprendizagem
 - Note a diferença para os parâmetros que são aprendidos pelo ajuste do modelo, como pesos de redes neurais e coeficientes da regressão
- Como vimos ao longo do curso, cada algoritmo pode precisar de diferentes valores de hiperparâmetros que influenciam a capacidade de ajustar o modelo aos dados
- Assim, a otimização (tuning) de hiperparâmetros é um processo que busca encontrar a tupla de valores de hiperparâmetros que produzem o melhor modelo para um dado problema e uma dada métrica de avaliação
 - Costuma ser feita por meio de validação-cruzada

Esquema de Tuning

Grid Search

- A abordagem mais tradicional de tuning de hiperparâmetros é o grid search
- Trata-se de uma busca exaustiva através de todas as tuplas possíveis de hiperparâmetros dados valores aceitáveis para cada hiperparâmetro, fornecidos pelo usuário
- É necessário especificar uma métrica de performance
- Para parâmetros contínuos, é necessário definir limites e discretizar seus valores

Grid Search

- Por exemplo, para um classificador SVM com kernel RBF (Gaussiano) precisamos otimizar pelo menos dois hiperparâmetros: o parâmetro de regularização C e a largura do kernel γ
- Ambos são contínuos, então definimos um conjunto finito de valores razoáveis para nossa busca:

$$C \in \{10, 100, 1000\}$$

 $\gamma \in \{0.1, 0.2, 0.5, 1.0\}$

Grid Search

- O grid search vai então treinar um SVM com cada par (C, γ) possível e avaliá-lo no conjunto de validação
- Ao final do processo de validação-cruzada, a melhor configuração (C, γ) é retornada
- O processo todo é altamente paralelizável

Random Search

- O random search evita a busca exaustiva por meio de uma seleção aleatória de combinações
- Isso pode ser aplicado aos conjuntos de valores discretizados do grid search, mas também pode ser aplicado a valores contínuos
 - É possível especificar a distribuição de probabilidade dos valores de cada hiperparâmetro
- o random search pode dar resultados melhores do que o grid search, principalmente quando dentre uma grande quantidade de hiperparâmetros, apenas alguns realmente influenciam o desempenho do algoritmo
 - E também por poder buscar valores fora da discretização necessária para o grid

Algoritmos Evolutivos e Inteligência de Enxames

- A otimização populacional navega o espaço de hiperparâmetros usa algoritmos populacionais para navegar o espaço de hiperparâmetros de um algoritmo:
 - 1. Gere aleatoriamente uma população inicial de tuplas de hiperparâmetros
 - Tome como fitness a métrica de desempenho escolhida, avaliada em uma validação-cruzada
 - 3. Aplique o algoritmo populacional escolhido até um critério de parada
- Essa abordagem tem sido muito usada para encontrar arquiteturas ideais de redes neurais profundas

Para Terminar

- As diversas bibliotecas de AM costumam ter implementações de tuning de hiperparâmetros usando Grid Search ou Random Search
- Para garantir reprodutibilidade de resultados, é importante setar o random seed em todas as validações-cruzadas do processo
 - Isso facilita a paralelização do código
 - Com o random seed garantindo que os mesmos dados são usados, cada algoritmo pode ser tunado em um processo diferente do R ou do Python e depois os resultados podem ser avaliados
 - As bibliotecas frequentemente tem a opção de usar múltiplos processos (workers) e controlam isso automaticamente

Sugestão de Atividade

► Trabalhe no projeto :D

Aprendizagem de Máquina

Otimização de Hiperparâmetros

Telmo de Menezes e Silva Filho tmfilho@gmail.com/telmo@de.ufpb.br www.de.ufpb.br

