Exam 1 Solutions

Zheming Gao

October 3, 2017

Problem 1

- (a) False. Counterexample:
 - $S_1 = \{x = (x_1, x_2) \in \mathbb{R}^2 | x_2 = 0, x_1 \geqslant 0\}$ and $S_2 = \{x = (x_1, x_2) \in \mathbb{R}^2 | x_1 = 0, x_2 \geqslant 0\}$. Both S_1 and S_2 are convex but $S_1 \cup S_2$ is not convex.
- (b) True. int(S) is open and the interior of an open set is itself.
- (c) False. Counterexample: Let $P = \mathbb{R}^2_+$, i.e. the first quadrant. It is a unbounded polyhedron, but it is not affine.
- (d) False. We have shown in homework that P is a convex set. So if it has two points, then any convex combination of them will be in P.
- (e) True. The objective function $c^T x$ is countinuous on P, which is a nonempty closed convex set. So P is a nonempty compact set and $c^T x$ will reach its maximum and minimum. This is supported by Weierstrass theorem.
- (f) True. We may reform P as a subset on \mathbb{R}^2 . So the LP problem will have one equality constraint on \mathbb{R}^2 with nonnegativeness. Hence, it has at most two positive BFS.
- (g) True. If x is an optimal solution, it must be a BFS, so its nonbasic variables must be zeros. Since it has n-m nonbasic variables, it has at least n-m zero entries. Thus, it has at most m positive components.
- (h) False. A BS has n-m nonbasic variables so it has at least n-m zeros components.

Problem 2

(a) The problem can be reformed as the following,

Minimize
$$-x_1 - x_2$$

Subject to $x_1 - x_2 \le 3$
 $x_1 - x_2 \ge -1$
 $x_1, x_2 \ge 0$.

We plot the figure.

Figure 1: Problem 2

From the figure we see that the problem is unbounded. This is to say that the objective value will goes to $-\infty$.

(b) There are 5 BS, 3 BFS(with '*').

$$[-1, 0, 4, 0]^{T}$$

$$[3, 0, 0, 4]^{T} *$$

$$[0, 1, 4, 0]^{T} *$$

$$[0, -3, 0, 4]^{T}$$

$$[0, 0, 3, 1]^{T} *$$

(c) Start from BFS $x = [0, 1, 4, 0]^T$. The basic matrix is $B = \begin{bmatrix} A2 & A_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$ and so $B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$. Hence the fundamental matrix

$$M = \begin{bmatrix} -1 & 1 & 1 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad M^{-1} = \begin{bmatrix} 0 & -1 & 1 & -1 \\ 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Compute reduced cost

$$r_1 = c^T \mathbf{d}^1 = [-1, 0, -1, 0] \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} = -2 < 0, \quad r_2 = c^T \mathbf{d}^4 = [-1, 0, -1, 0] \begin{bmatrix} -1\\-1\\0\\1 \end{bmatrix} = 1 > 0.$$

2

Hence we take \mathbf{d}^1 . However, since $\mathbf{d}^1 > 0$ and [B|N]d = 0 (this is easy to check). This is to say that \mathbf{d}^1 is a extremal direction. Thus, $\forall \alpha > 0$ and $x + \alpha \mathbf{d}^1$ is feasible and $c^T(x + \alpha \mathbf{d}^1) \to -\infty$, as $\alpha \to +\infty$. Hence, the LP problem is unbounded.

Problem 3