Računalniška grafika - Projekcije

1 Pravokotne vzporedne projekcije

So zelo preproste projekcije. Projekcijo na ravnino z=0 določimo z
 matriko:

$$\mathbf{P}_{O,z} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

V tem primeru je kamera točno na osi z, oddaljenost pa ni pomembna, saj se vse stvar v smeri z projicirajo z vzporednimi projektorji. Določiti moramo tudi vidni prostor, ki ga opisuje kvader z mejami min_x , max_x , min_y , max_y , near in far. To so parametri, ki določajo vidni prostor (npr. v OpenGL okolju). Pri omenjeni projekciji se z koordinata "izgubi" oz. preslika v ravnino. Ekvivalentni matriki za ravnini y=0 in x=0 sta:

$$\mathbf{P}_{O,y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{P}_{O,x} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.1 Primer projiciranja na ravnino z = 0

Podano imamo zamaknjeno štiristrano piramido kot jo prikazuje spodnja slika. Naloga je to piramido projicirati s pomočjo matrike $P_{\text{O.z.}}$

Oglišča piramide lahko opišemo s spodnjimi krajevnimi vektorji:

$$\begin{aligned} \mathbf{a} &= \begin{bmatrix} \ 0 & 0 & 0 & 1 \ \end{bmatrix}^T \rightarrow \mathbf{P}_{O,z} \mathbf{a} = \begin{bmatrix} \ 0 & 0 & 0 & 1 \ \end{bmatrix}^T \\ \mathbf{b} &= \begin{bmatrix} \ 1 & 0 & 0 & 1 \ \end{bmatrix}^T \rightarrow \mathbf{P}_{O,z} \mathbf{b} = \begin{bmatrix} \ 1 & 0 & 0 & 1 \ \end{bmatrix}^T \\ \mathbf{c} &= \begin{bmatrix} \ 0 & 1 & 0 & 1 \ \end{bmatrix}^T \rightarrow \mathbf{P}_{O,z} \mathbf{c} = \begin{bmatrix} \ 0 & 1 & 0 & 1 \ \end{bmatrix}^T \\ \mathbf{d} &= \begin{bmatrix} \ 0 & 0 & 1 & 1 \ \end{bmatrix}^T \rightarrow \mathbf{P}_{O,z} \mathbf{d} = \begin{bmatrix} \ 0 & 0 & 0 & 1 \ \end{bmatrix}^T \\ \mathbf{e} &= \begin{bmatrix} \ 1 & 0 & 1 \ \end{bmatrix}^T \rightarrow \mathbf{P}_{O,z} \mathbf{e} = \begin{bmatrix} \ 1 & 0 & 0 & 1 \ \end{bmatrix}^T \end{aligned}$$

Kot rezultat dobimo spodnjo sliko na ravnini z=0.

2 Enotočkovna perspektivna projekcija

Med bolj preproste projekcije sodijo tudi enotočkovne projekcije. To so najbolj pogoste projekcije, ki se uporabljajo v 3D računalniški grafiki (tudi v OpenGL-u). Enotočkovno projekcijo, kjer os z kaže proč od očišča kamere, koordinatni sistem pa ima izhodišče na projicirni ravnini predstavlja matrika:

$$\mathbf{P}_{p} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{d} & 0 \end{bmatrix}$$

kjer je d razdalja med projicirno površino in očiščem kamere.

Vidni volumen v primeru enotočkovne perspektivne projekcije ni več kvader kot pri ortogonalni projekciji, ampak je prirezana štiristrana piramida kot je prikazano na spodnji sliki.

2.1 Primer projiciranja kocke na projicirno ravnino kamere

Na primeru si bomo ogledali postopek, kako iz koordinatnega sistema sveta, oglišča predmeta pretvorimo najprej v koordinatni sistem pogleda, nato pa ga projiciramo na projicirno ravnino s pomočjo enotočkovne perspektivne projekcije. Kot bomo videli je pri tem zelo pomemben vrstni red transformacij, ki jih izvajamo.

Pri uporabi enotočkovne projekcije naredimo več korakov, ker ne moremo enostavno zanemariti z osi, kot lahko to naredimo pri ortogonalni projekciji. Tako je potrebno najprej narediti transformacijo iz koordinatnega sistema sveta v koordinatni sistem pogleda (projicirne površine kamere), nato pa moramo izvesti še perspektivno projekcijo.

V enotočkovno perspektivno projekcijo bomo transformirali kocko prikazano na spodnji sliki.

V našem primeru je kamera pozicionirana na koordinatah predstavljenih z vektorjem $\mathbf{k} = \begin{bmatrix} 1 & 1 & 8 & 1 \end{bmatrix}^T$. Projicirna površina kamere pa je od očišča oddaljena za d=4. To prikazuje tudi spodnja skica. Tako moramo najprej izvesti transformacijo iz koordinatnega sistema sveta z izhodiščem v O_s v koordinatni sistem kamere O_k .

2.1.1 Transformacija iz koordinatnega sistema sveta v koordinatni sistem kamere

Omenjena transformacija je predstavljena s spodnjo matriko, ki določa pomike in zrcaljenje med koordinatnim sistemom sveta in koordinatnim sistemom kamere.

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{C}^{-1} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Krajevne vektorje, ki določajo oglišča kocke transformiramo z matriko \mathbf{C}^{-1} kot je prikazano spodaj.

$$\mathbf{a} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^{T} \rightarrow \mathbf{a}' = \mathbf{C}^{-1} * \mathbf{a} = \begin{bmatrix} -1 & -1 & -8 & 1 \end{bmatrix}^{T}$$

$$\mathbf{b} = \begin{bmatrix} 2 & 0 & 0 & 1 \end{bmatrix}^{T} \rightarrow \mathbf{b}' = \mathbf{C}^{-1} * \mathbf{b} = \begin{bmatrix} 1 & -1 & -8 & 1 \end{bmatrix}^{T}$$

$$\mathbf{c} = \begin{bmatrix} 2 & 2 & 0 & 1 \end{bmatrix}^{T} \rightarrow \mathbf{c}' = \mathbf{C}^{-1} * \mathbf{c} = \begin{bmatrix} 1 & 1 & -8 & 1 \end{bmatrix}^{T}$$

$$\mathbf{d} = \begin{bmatrix} 0 & 2 & 0 & 1 \end{bmatrix}^{T} \rightarrow \mathbf{d}' = \mathbf{C}^{-1} * \mathbf{d} = \begin{bmatrix} -1 & 1 & -8 & 1 \end{bmatrix}^{T}$$

$$\mathbf{e} = \begin{bmatrix} 0 & 0 & 2 & 1 \end{bmatrix}^{T} \rightarrow \mathbf{e}' = \mathbf{C}^{-1} * \mathbf{e} = \begin{bmatrix} -1 & -1 & -6 & 1 \end{bmatrix}^{T}$$

$$\mathbf{f} = \begin{bmatrix} 2 & 0 & 2 & 1 \end{bmatrix}^{T} \rightarrow \mathbf{f}' = \mathbf{C}^{-1} * \mathbf{f} = \begin{bmatrix} 1 & -1 & -6 & 1 \end{bmatrix}^{T}$$

$$\mathbf{g} = \begin{bmatrix} 2 & 2 & 2 & 1 \end{bmatrix}^{T} \rightarrow \mathbf{g}' = \mathbf{C}^{-1} * \mathbf{g} = \begin{bmatrix} 1 & 1 & -6 & 1 \end{bmatrix}^{T}$$

$$\mathbf{h} = \begin{bmatrix} 0 & 2 & 2 & 1 \end{bmatrix}^{T} \rightarrow \mathbf{h}' = \mathbf{C}^{-1} * \mathbf{h} = \begin{bmatrix} -1 & 1 & -6 & 1 \end{bmatrix}^{T}$$

2.1.2 Perspektivna transformacija

Po transformiranju koordinatnega sistema je potrebno narediti še projekcijsko transformacijo. Projekcijska transformacija za naš primer je določena s spodnjo matriko.

$$\mathbf{P}_{\mathbf{p}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{d} & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{4} & 0 \end{bmatrix}$$

Z omenjeno transformacijo nato transformiramo vektorje iz koordinatnega sistema kamere (dobljene v prejšnjem koraku). Tako dobimo vektorje katerih homogeni del se razlikuje od 1, kar pomeni, da jih moramo nujno pretvoriti nazaj v takšno obliko, v kateri bo homogeni del enak 1 (celoten vektor je potrebno deliti z vrednostjo homogenega dela).

$$\mathbf{a}_{p} = \mathbf{P}_{p} * \mathbf{a}' = \begin{bmatrix} -1 & -1 & -8 & 2 \end{bmatrix}^{T} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & -4 & 1 \end{bmatrix}^{T}$$

$$\mathbf{b}_{p} = \mathbf{P}_{p} * \mathbf{b}' = \begin{bmatrix} 1 & -1 & -8 & 2 \end{bmatrix}^{T} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -4 & 1 \end{bmatrix}^{T}$$

$$\mathbf{c}_{p} = \mathbf{P}_{p} * \mathbf{c}' = \begin{bmatrix} 1 & 1 & -8 & 2 \end{bmatrix}^{T} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -4 & 1 \end{bmatrix}^{T}$$

$$\mathbf{d}_{p} = \mathbf{P}_{p} * \mathbf{d}' = \begin{bmatrix} -1 & 1 & -8 & 2 \end{bmatrix}^{T} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & -4 & 1 \end{bmatrix}^{T}$$

$$\mathbf{e}_{p} = \mathbf{P}_{p} * \mathbf{e}' = \begin{bmatrix} -1 & -1 & -6 & \frac{3}{2} \end{bmatrix}^{T} = \begin{bmatrix} -\frac{2}{3} & -\frac{2}{3} & -4 & 1 \end{bmatrix}^{T}$$

$$\mathbf{f}_{p} = \mathbf{P}_{p} * \mathbf{f}' = \begin{bmatrix} 1 & -1 & -6 & \frac{3}{2} \end{bmatrix}^{T} = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & -4 & 1 \end{bmatrix}^{T}$$

$$\mathbf{g}_{p} = \mathbf{P}_{p} * \mathbf{g}' = \begin{bmatrix} 1 & 1 & -6 & \frac{3}{2} \end{bmatrix}^{T} = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & -4 & 1 \end{bmatrix}^{T}$$

$$\mathbf{h}_{p} = \mathbf{P}_{p} * \mathbf{h}' = \begin{bmatrix} -1 & 1 & -6 & \frac{3}{2} \end{bmatrix}^{T} = \begin{bmatrix} -\frac{2}{3} & \frac{2}{3} & -4 & 1 \end{bmatrix}^{T}$$

Po izvedeni perspektivni transformaciji in "popravljanju" vektorjev nazaj v pravilno homogeno obliko, dobimo vektorje, ki so v resnici krajevni vektorji oglišč na projicirni površini. Od tod pri vseh vektorjih za naš primer dobimo koordinato z=-4, kar je ravno z koordinata projicirne ravnine v koordinatnem sistemu kamere. Novi vektorji definirajo oglišča kot jih prikazuje spodnja skica.

2.2 Kako potekajo transformacije

Vrstni red transformacij ki poteka pri izrisu na ekran je sledeč:

- 1. pedmet modeliramo v lastnem koordinatnem sistemu (**p**)
- 2. iz koordinatnega sistema objeta se prestavimo v koordinatni sistem sveta (\mathbf{M})
- 3. iz koordinatnega sistema sveta se prestavimo v koordinatni sistem kamere (\mathbf{C}^{-1})
- 4. v naslednjem koraku je potrebno izvesti perspektivno projekcijo
- 5. sledi normalizacija koordinatnega sistema na koordinate med (-1, -1) in (1, 1), ki ta sistem opisujejo (\mathbf{P})
- 6. normaliziran koordinatni sistem je potrebno pretvoriti v koordinatni sistem naprave (npr. za Full HD v vrednosti med (0,0) in (1920,1080)), ki sliko prikazuje (**D**)

Končno veriženje transformacij v tem primeru je: $\mathbf{p} = \mathbf{DPC}^{-1}\mathbf{Mp}$