In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\hp\Downloads\drug200.csv")
df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]:

df.head()

Out[3]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY

In [4]:

```
df.tail()
```

Out[4]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

In [5]:

df.describe()

Out[5]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199

Data columns (total 6 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Count	υτype		
0	Age	200 non-null	int64		
1	Sex	200 non-null	object		
2	BP	200 non-null	object		
3	Cholesterol	200 non-null	object		
4	Na_to_K	200 non-null	float64		
5	Drug	200 non-null	object		
<pre>dtypes: float64(1), int64(1), object(4)</pre>					

memory usage: 9.5+ KB

```
In [7]:
```

```
df.isnull().sum()
Out[7]:
Age
                0
                0
Sex
ВР
                0
Cholesterol
                0
                0
Na_to_K
                0
Drug
dtype: int64
In [8]:
df['Drug'].value_counts()
Out[8]:
drugY
         91
         54
drugX
drugA
         23
drugC
         16
drugB
         16
Name: Drug, dtype: int64
In [9]:
df['Na_to_K'].value_counts()
Out[9]:
12.006
          2
18.295
          2
25.355
          1
11.939
          1
16.347
          1
24.658
          1
24.276
13.967
          1
19.675
          1
11.349
Name: Na_to_K, Length: 198, dtype: int64
```

In [11]:

```
convert={"Sex":{"M":1,"F":0}}
df=df.replace(convert)
df
```

Out[11]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	0	HIGH	HIGH	25.355	drugY
1	47	1	LOW	HIGH	13.093	drugC
2	47	1	LOW	HIGH	10.114	drugC
3	28	0	NORMAL	HIGH	7.798	drugX
4	61	0	LOW	HIGH	18.043	drugY
195	56	0	LOW	HIGH	11.567	drugC
196	16	1	LOW	HIGH	12.006	drugC
197	52	1	NORMAL	HIGH	9.894	drugX
198	23	1	NORMAL	NORMAL	14.020	drugX
199	40	0	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [13]:

```
x=["Sex","Na_to_K"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["Drug"]
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.03)
```

In [14]:

```
clf=DecisionTreeClassifier(random_state=0)
clf.fit(x_train,y_train)
```

Out[14]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

In [15]:

```
score=clf.score(x_test,y_test)
print(score)
```

0.3333333333333333

In []:			