

2000円(税込) 2000円(税込)

(4000円) 特許許願 (4000円)

昭和 50 年 9 月 16 日

特許庁公表 国際公報

1. 発明の名前 内燃機関用電気火花点火装置

2. 特許請求の範囲に記載された発明の数 2

3. 発明者

長野県川越市大曾根 2丁目2番地 10  
美林 勝之 (みのり かずゆき)

4. 拒否出願人

大阪府大阪市淀川区三輪町中2丁目1番6号  
新コスモス電機株式会社  
代表者 管理部・監査部

5. 代理人

東京都新宿区西新宿1丁目1番6号  
小林勝之 手机番号(03-672101)  
GPO 本店 小林 勝之

6. 送付書類の目録

|            |    |
|------------|----|
| (1) 明細書    | 1通 |
| (2) 図面     | 1通 |
| (3) 断面図    | 1通 |
| (4) 委任状    | 1通 |
| (5) 出願書類原本 | 1通 |

方式 ①

50 110573

⑩ 日本国特許庁

## 公開特許公報

⑪ 特開昭 52-36237

⑬ 公開日 昭 52. (1977) 3.19

⑫ 特願昭 50-110873

⑭ 出願日 昭 50. (1975) 9. 16

審査請求 有 (全14頁)

庁内整理番号

7003 51

⑫ 日本分類

C1 G30/

⑪ Int.CI<sup>2</sup>

H01T 13/20

H01T 13/32

## 明細書

## 1. 発明の名称

内燃機関用電気火花点火装置

## 2. 特許請求の範囲

- (1) 高圧電源と接地電極をもつ2電極火花栓において、回転高圧電極および接地電極を共にそれぞれの電極支持部分から突出させ、かつ回転高圧電極および接地電極を共に回電極としたことを特徴とする内燃機関用電気火花点火装置。
- (2) 高圧電源、トリガ電極および接地電極をもつ2電極火花栓において、高圧電源、トリガ電極および接地電極をすべてそれぞれの電極支持部分から突出させ、かつ回転高圧電源、トリガ電極および接地電極をすべて回電極としたことを特徴とする内燃機関用電気火花点火装置。

## 3. 発明の詳細な説明

この発明は、電気火花点火栓を改良して電気火花放電による可燃性混合気の点火条件を拡大することを目的とした内燃機関用電気火花点火栓に関するものである。

混合気の混合比を例えば空燃比(空気質量/燃料質量)で表すとき、電気火花放電によって点火する空燃比は、トーチによって点火する空燃比よりも大幅に小さい。つまり、燃料の無い混合気でないと電気火花では点火できないとされた。

一方、トーチでは爆発限界空燃比の混合気を至るまで点火できる。

もっとも、この爆発限界空燃比はそれほど明確なものではなく、実験装置と判定条件に大きく左右される。直径50.8mm(2インチ)の管の端口端から出頭管へと下向きに伝はる火炎が途中で消滅する濃度が爆発性の高い値を与えることが経験的に知られているに過ぎない。ここではこの方法によって決定された実験値を爆発限界空燃比と見なすこととする。

ガソリン、石油ガス等の液化水素系燃料と空気との混合気を燃焼させて熱力をうる内燃機関においては、燃料を完全燃焼させてH<sub>2</sub>OとCO<sub>2</sub>に酸化させると必要な空燃比(化学当量比、これは燃焼率が決定される)以上の濃度を含むような空燃比

Best Available Copy

の混合気を使用すれば不完全燃焼生成物である炭化水素(H<sub>2</sub>O)とCOの発生を抑制できる。また、ロータリエンジンのように燃焼室壁の冷却効率が高い場合か、あるいは理論空燃比よりもさらに高い混合気を使う場合に、燃焼温度が約1200℃以下となるときNO<sub>x</sub>の発生も抑制される。

理論空燃比はガソリン・空気混合気で約14.8、インブラン・空気混合気で15.4である。

オ1図(a), (b)は従来の放電極点火栓の一例を示す要部の断面図および底面図である。

接地電極1は幅2.7mm, 長さ約5mm, 厚さ1.3mmの耐熱性ニッケル合金からなる平板で、高圧電極2は直径1mmの貴金属合金からなる円柱であり、これら接地電極1と高圧電極2は電極間隙1.7mmにて対向している。

オ2図(a)～(c)は他の従来例を示すもので、高圧電極2はオ1図に示したものと同じく直径1mmの貴金属合金からなる円柱であるが、接地電極1はオ1図と同様の平板にオ2図(a), (c)に示すように、厚さ1mm程度、厚さ0.5mm程度のアーバー

特開昭52-36237(2)  
付U字溝1を接地面板1の長さ方向に形成したるものである。

上記のような従来の放電極点火栓を用いた場合のガソリンエンジンには空燃比10～15の燃料過剰の混合気が使われているので、炭化水素、COおよびNO<sub>x</sub>が排気中に含まれている。これを改良するためには放電極付近のみ過剰混合気を形成せしめて点火し、全体としては過剰な混合気を燃焼させるための内燃装置が取り開発されつつある。このような混合気空燃比の空間(場所)的分布を形成する方法の他に、空燃比の時間的分布を改善した内燃装置もある。すなわち、液体燃料を使用するとき完全に燃焼していないので、放電極火栓の実効空燃比が大きく点火し難い。燃焼器を改良して液体燃料の燃焼率を高めれば放電極火栓の実効空燃比を小さくし点火し易くすることができる。このような複雑な内燃装置は、コスト上昇を招くのみならず、最適動作条件の調整が困難であり、また、最適状態の安定性に欠け、燃費性能も低めて困難にならざるを得ない。

この発明は上述の点にかんがみなされたもので、点火栓自体を改良するだけで、点火限界空燃比範囲を拡大し点火限界電極間隙を縮減せんとするものであり、これによって内燃装置の排ガス特性の改善を容易にせんとするものである。以下図面を用いてこの発明を詳細に説明する。

オ3図～オ8図はそれぞれこの発明の2電極点火栓の一実施例を示すもので、オ3図(a)は2電極点火栓全体の断面図、オ3図(b)はオ3図(a)の要部断面図、オ3図(c)は同じく底面図を示し、オ4図(a), (b)～オ8図(a), (b)の各実施例においては、(a)図がオ3図(b)と同様の2電極点火栓の要部断面図を、(b)図がオ3図(c)と同様の底面図をそれぞれ拡大して示したものである。これらの図において、21は突起した接地電極、22は高圧電極、23は耐熱性ニッケル合金などからなる導電性の電極支持部材、24は電気絕縁性高アルミニウム熱伝導性からなる絶縁性の電極支持部材、25は外筒、26は中軸、27は高圧電極端子、28はガスケット、29は前記外筒25に形成されたねじである。

リ、200は2電極点火栓全体を示し、しは電極間隔、h<sub>1</sub>は初期接地電極21の突出高、h<sub>2</sub>は初期高圧電極22の突出高である。

接地電極21は高圧電極22と電極間隙をへだてて対向している。接地電極21および高圧電極22はいずれも耐熱性ニッケル合金などからなる電極支持部材23から突出高h<sub>1</sub>だけ突起させて構成され、打込み、圧入もしくは挿し込んでからかしめる等種々の方法で、前記電極支持部材23に固定する。また、初期突出高h<sub>1</sub>は約0.25mm以上にするといい結果が得られる。接地電極21は電極支持部材23を介して外筒25に接続されており、外筒25は機械的支擋子を負ねる。電極支持部材23はオ4図(b)によく示すように先端の頭を抜くするとさらに長い結果が得られる。また、オ5図(a), (b), オ

6図(a), (b)にそれぞれ示すように接地電極21と電極支持部材23とは同一物で一体に組成してもよい。すなわち、電極支持部材23としてのたとえば直徑1.5 mmの黄銅錫合金もしくは耐熱ニッケル合金からなる棒を6図(a)のように先端を折り曲げて接地電極21としてもよい。さらに、あらかじめ先端をたとえば直徑0.25 mm以上にわたって直徑1 mmの円柱に切削加工した電極支持部材23としてのたとえば直徑2 mmの黄銅錫合金からなる棒を6図(a)のように折り曲げて細くした先端部を接地電極21として用いることもできる。なお6図(a), (b)の実験例では電極支持部材23の棒の大きさを覚えることにより、燃焼の過度も容易に行える。

高圧電極22は、たとえば電気絶縁性高アルミニウム酸化物からなる電極支持部材24の先端より突出高さh<sub>1</sub>だけ突出させて固定され、耐熱ニッケル合金などからなる中端26を介して高圧電極端子27に接続されている。初期突出高さh<sub>1</sub>は0.25 mm以上にすると良好な結果が得られる。

中間部にあり接地電極31から電極間隔L<sub>1</sub>に位置する。トリガ電極33は耐熱耐燃性にすぐれた黄銅錫合金、もしくはニッケル合金などからなる直徑1.7 mm以下、好みには直徑1 mm以下の細電極とする。

トリガ放電の電力は小さく、消滅は少ないからトリガ電極33は先端をとがらすこともできる。トリガ電極33はたとえば直徑2 mmの耐熱性ニッケル合金などからなる電極支持部材38に突出高さh<sub>2</sub>だけ突出させて固定するが、突出高さh<sub>2</sub>は0.25 mm以上になると良い結果が得られる。トリガ電極33は電極支持部材38を介してトリガ電極端子40に接続されている。この3電極点火栓300の使用にあたってはトリガ電極端子40は底面部あるいはコングンサを介して高圧電極端子39あるいは接地電極端子に相当する外筒部に接続するならば、トリガ放電用の特別な導線を用いなくても3電極点火栓用の点火装置で駆動することもできる。

次にこの発明による点火栓の空気・燃料混合気に対する点火特性を説明する。上述したようにこ

特開昭52-36237(3)  
オフ図(a), (b)は接地電極21と高圧電極22とを横向きに對向させた例を示し、また、オフ図(c), (d)は同じく後回さずに對向させた接地電極21と高圧電極22とを耐久性向上のため2端抜けた例を示す。同様にして接地電極21と高圧電極22とは3端以上あってもよいことは言うまでもない。

オフ図(e), (f)はこの發明の3電極点火栓の一実験例を示すもので、21は突起した接地電極、32は高圧電極、33はトリガ電極、34, 35, 38はそれぞれ接地電極、高圧電極、トリガ電極の電極支持部材、37は外筒、39は中筒、39は高圧電極端子、40はトリガ電極端子、41はガスケット、42はねじ、300は3電極点火栓全体を示す。このうち接地電極31と高圧電極32とは王冠形開口L<sub>1</sub>をへだてて對向している。前記接地電極31と高圧電極32はそれぞれの電極支持部材34, 35からL<sub>1</sub>およびL<sub>2</sub>の突出高である0.25 mm以上突起させて固定されている。初期突出高さh<sub>1</sub>は下の説明で述べた2電極点火栓の場合と同様の方法で構成できる。トリガ電極33は接地電極31と高圧電極32との

の発明の特徴は電極部の構造にあるから、主として2電極点火栓に對して詳しく述べる。オフ図における高圧電極22および接地電極21の両方を細電極とし、かつそれぞれの電極支持部材23, 24から突起させると点火装置が改善され、十分に高い混合気に点火できる平実を明確かつ詳細に説明するために、放電界面開口が大きくとれる1気圧混合気についての実験例をオフ10図、オフ11図、およびオフ12図に示す。この実験例では点火限界空燃比を定量的に正確に求めるために、液体燃料を避けインブランガスを使用した。

オフ10図は点火限界空燃比領域の電極間隔値を示す。横軸は電極間隔L<sub>1</sub>、左側縦軸はインブラン空燃比、右側縦軸はガソリン放電空燃比を表わす。図図じはこの発明によるオフ3図(e)～(c)に示した2電極点火栓200 K、高出力型のイグニッシュ・コイル(一次定格12 V, 4.1 A、蓄積エネルギー72 mJ)セセミトランジスタ開閉器で作動させて発生した35 KVの尖端電圧を印加した場合の点火限界空燃比曲線であり、曲線より下の領域が点

火可燃であることを示す。この場合、2電極点火栓200の接地電極21および高圧電極22には共に直径1mmの白金円柱を用い、それぞれの電極支持部材23、24からの突起高は  $h_1 = h_2 = 1\text{ mm}$ とした。接地電極21の電極支持部材23には厚さ1.3mm、幅2.7mm、長さ約5mmの耐熱ニッケル合金を用いた。また、回線Vは接地電極21および高圧電極22と共に直径2.55mmの耐熱ニッケルを用い、それぞれの電極支持部材23、24からの突起高は  $h_1 = h_2 = 3\text{ mm}$ とした点火栓に上記と同一条件の放電点火電圧を印加した場合である。また、回路Wはカ1回(a)、(b)に示した従来の回路点火栓に上記と同一条件の放電点火電圧を印加した場合である。なお、上記実験例の2電極点火栓200では高圧電極22には突起高  $h_2 = 1\text{ mm}$ で、底径1mmの白金圓柱を用いてはいるが、カ1回(a)、(b)に示した従来の接地電極11には厚さ1.3mm、幅2.7mm、長さ約5mmの耐熱ニッケル合金をそのまま用い、回路を突出させていない。回路Wはカ2回(c)に示したような接地電極板の長さ方向にU字

形1'を形成した従来の回路点火栓に上記と同一条件の放電点火電圧を印加した場合の特性を示す。水平底盤X<sub>1</sub>は最高空燃比レベル、水平底盤X<sub>2</sub>は爆発限界空燃比レベル、水平底盤X<sub>3</sub>はインプタン空燃比=20(ガソリン空燃比=17.8)のレベルを示す。垂直底盤Y<sub>1</sub>は曲線Uと水平底盤X<sub>1</sub>との交点を通る垂線、垂直底盤Y<sub>2</sub>は曲線Uと水平底盤X<sub>2</sub>との交点を通る垂線を示す。高圧電極22、接地電極21の両方を陽電極とし、かつそれらの電極支持部材23、24から突起高  $h_1 = h_2$  突起させると、点火限界空燃比以上の点火可燃領域および点火下限界空燃領域が大幅に拡大されることが曲線Uから一目瞭然である。

カ11図はカ3図(a)~(c)に示したこの発明の2電極点火栓200の接地電極21に用いた底径1mmの白金円柱の電極支持部材23からの突起高  $h_1$  をバフノータとしたときの1気圧のインプタン-空気混合気についての点火限界空燃比領域の実験結果を示す。電極支持部材23は厚さ1.3mm、幅2.7mm、長さ約5mmの棒状であってオ

回(b)およびカ3図(c)に示すような位置に円柱電極が突出している。高圧電極22には同じく底径1mmの白金円柱を用い、突起高  $h_2$  は1mm一定とした。カ11図において、曲線Aは接地電極21の突起高  $h_1$  が  $h_1 = 0\text{ mm}$ 、曲線Bは同じく  $h_1 = 0.7\text{ mm}$ 、曲線Cは同じく  $h_1 = 0.14\text{ mm}$ 、曲線Dは同じく  $h_1 = 0.25\text{ mm}$ 、曲線Eは同じく  $h_1 = 0.5\text{ mm}$ 、曲線Fは同じく  $h_1 = 2.0\text{ mm}$ の場合の点火限界空燃比-電極間隙曲線をそれぞれあらわす。接地電極羽の突起高  $h_1$  を拡大させるとときに点火可燃領域が拡大することが明らかである。

オ12図はカ11図に示した実験結果を電極間隙をバフノータとし、接地電極21の突起高  $h_1$  を横軸にとってグラフ化し直したものである。この図で、曲線Mは電極間隙が  $L = 0.85\text{ mm}$ 、曲線Nは同じく  $L = 0.8\text{ mm}$ 、曲線Oは同じく  $L = 1.0\text{ mm}$ 、曲線Pは同じく  $L = 1.25\text{ mm}$ 、曲線Qは同じく  $L = 1.5\text{ mm}$ 、曲線Rは同じく  $L = 2.0\text{ mm}$ の場合の点火限界空燃比-接地電極突起高曲線をそれぞれ表わす。いずれの電極間隙においても接地電極21の

突起高  $h_1$  が約0.25mmでは、突起高  $h_1$  の増大と共に点火限界空燃比が急速に増大するが、突起高  $h_1$  が約0.25mm以上では突起高  $h_1$  の増大とともに点火限界空燃比の増大はきかめてゆるやかであることがわかる。

上述したような点火限界空燃比の電極間隙、電極大きさ、および電極支持部材からの電極突起高の作用機構を以下に説明する。

放電により混合気が電気火花のごく周辺で局所的に燃焼して火だねができるが、放電終了時間に伴うてしまう。放電終了後は火だね自身がもつ熱力学的量すなわち、エンタルピー、密度および圧力の消費によって以後の燃焼が決定される。火だねを中心とする燃焼が止まるためには、火だねは周辺の混合気に自己の熱力学的量を与えなければならぬ。このとき、火だねの熱力学的量は消費される。混合気に与えられた熱力学的量が混合気の燃焼限界以下であるとき、火だねは立消えし燃焼限界以上であるとき混合気は燃焼し、燃焼混合気ははじめに与えられた熱力学的量より大きい

熱力学的量を新たに発生させるので、火だねは成長する。火だねが単位体積だけ膨大成長するとき、新しい混合気の燃焼によって発生する熱力学的量は、単位体積中の燃料の量、すなわち、燃焼密度に依存する。燃焼密度は空燃比が小なら、また、空燃比が大なるほど大きい。従って、火だね内の熱力学的量の散逸が一定のときは空燃比が小さく、空燃比が大なるときは火薬筒の持続条件は有利となる。また、火だね内の熱力学的量の散逸を小さくすれば、薬火薬筒の持続条件に適する空燃比は大きく、空燃比は小さくすることができる。さらば言ひならば、火だね内の熱力学的量の散逸過程の中、可燃性混合気以外への散逸を小さくすることが決定的に重要である。

いま、電気間隔の伸長、電極大きさの減少、および電極支持部材からの電極突出高の増大に伴って点火限界空燃比が増大することを説明するのであるから、火だね内の応力的量の放電距離の電極間隔、電極大きさ、電極突出高依存について説明すればよい。

境界層の厚さとは次式で与えられる。

$$\delta \sim \sqrt{\frac{p\pi}{u_0}} \quad \dots \dots \dots \dots \dots \dots \dots \dots \quad (11)$$

ここでは慣れにそった固体壁の長さであって、その平均値はここでは円柱電極の断面の半径と同程度と考えることができる。火だね温度を約600度とすると火だねの運動粘性率を $0.26 \text{ cm}^2/\text{s}$ とみなせる。ブタン-空気の火災温度は $u_0 \sim 20 \text{ cm}/\text{s}$ とみなせるから境界層の厚さは、

$$g \approx 0.11 \sqrt{c} \quad \text{for } c \gg 1 \quad (2)$$

で与えられる。

い文副電流半径  $r_1 = 0.05 \text{ cm}$  について

$$\delta_1 \sim 0.025 \text{ cm} = 0.25 \text{ mm}$$

大電極半径  $r_1 = 0.128$  cmについて

$$\delta_1 \sim 0.039 \text{ nm} \approx 0.39 \text{ nm}$$

が傳うれる。

これら境界面内の火災の運動エネルギーおよび運動量は内部摩擦損失として失われ、いまもし直歩回数を  $L_{\text{step}}$  であるならば火だねの成長は問題となる。この場合は波長の空燃比が小さく

特開昭52-36237(5)  
混合気体の燃焼は必ず気体の運動を伴う。すな  
わち燃焼の過程は單に化学的な現象あるいは單なる  
発熱現象ではなく、流体力学的および熱力学的  
現象でもある。換言すれば、火だね気体における  
成分分子の輸送(拡散)とエネルギーの輸送(熱  
伝導)の性質運動量の輸送(粘性摩擦)を組合せ  
なければならない。特に電弧火炎火においては火だねに接する電極および電極支持器材の  
固体壁を通しての直接的な損失よりも固体壁  
との粘性摩擦による気体の流体力学的燃焼損失を  
重視しなければならない。すなわち、火だね内の  
気体は火だね外の気体にくらべてその温度のみならず  
圧力も十分に大きい。この圧力差にもとづく  
気体の運動が生じる。この気体は運動粘性率を  
もつた粘性流体であるから固体壁に隣接した境界  
層の厚さとの高い層内では固体壁に平行方向の氣  
体の移動速度は急速に減少して固体壁ではゼロと  
なる境界層が存在する。この境界層の外では、固  
体のない運動に対応したボアンシャル層によろ速度  
 $u_*$ の気体の流れ(衝撃主流)が実現される。

火だねの熱力学的量の密度が高くとも火だねは立消えざるを得ないので、2.8が消炎距離を与えることになる。すなわち、消炎距離は $\sqrt{10.8}$ 倍において点火限界空気比一電極間距離が空気比に依存しない領域つまり回路がほど受限となる電極間隔に等しい。

方10回における血脳Vは  $r_s = 0.05 \text{ cm}$  の回電極を高圧電極22としてえられた測定値であって、消炎距離の実測値は  $0.5 \text{ mm}$  である。これは方(3)式を用いれば  $2.8 \text{ kV}$  でよい。方10回における回電極Vは  $r_s = 0.128 \text{ cm}$  の大電極によりえられたものであって、消炎距離の実測値は  $0.8 \text{ mm}$  である。これは方(4)式を用いれば  $2.8 \text{ kV}$  でよい。

第10図Bにおける曲線Wは、 $r_1 = 0.05 \text{ cm}$  の固定電極を高圧電極2とし長さ5mmの板状の電極を固定電極1としたときの(a)、(b)に示すタイプでの測定値である。板状電極に対して(a)式の $r$ を長さの $1/2$ として $r_1 = 0.25 \text{ cm}$ とおくとき、 $\delta_2 = 0.055 \text{ cm}$  が得られる。拘束距離として $\delta_1 + \delta_2 = 0.08 \text{ cm} = 0.8 \text{ mm}$  が算出され、実測値と一致する。

る。このことは板状の接地電極1は点火にとつて初めて有効であって、中心電極のみを回転部としてもその効果は大幅に低減せしめられることを示している。この点、**第10図**中の曲線W1は曲線Wの点火後の板状の接地電極1にU字溝1'を設けることによって、板状の接地電極1による火だねの立ち消え効果がある程度緩和できることを示している。これは直角型接地電極を凹させた分だけ火だねから電極空が遠ざかり、電極間にによる火だねの飛行的効率が減少するためとされている。電極間隔を拡大しないで、火だねの飛行空間をU字溝1'によって拡大したものであるから、火だね成長の有效空間長L<sub>eff</sub>（**第10図**参照）が大きくなり、曲線Wは左方に移動したものと考えられる。しかしながら、接地電極1に設けたU字溝1'は火だね空間を半対称化し、慣性力子的に好ましくない凹凸を形成する。このため火だねが成長する過程で乱流を引き起こす。乱流の熱伝導度、粘性および伝熱係数は異常にくらべて前者に大きいから、火だねの熱力学的量の電極面損失は著しく増大す

**特開昭52-36237(6)** るので点火限界空燃比は減少する。才10图の電極間隔Lの大きな領域（ $L > 0.7 \text{ mm}$ ）で、この発明の点火後の点火限界空燃比曲線W1とU字溝1付接地電極をもつ従来の点火後の点火限界空燃比曲線Wが下方へ寄るのはこのためである。

しかしながら、板状の接地電極1を突起電極としたこの発明の接地電極21を用いるとき、火だねの成長抑制効果は大幅に弱められる。この突起電極の面積効果は上述した通りであって、突起電極が細い粗火だねの成長抑制効果は低減せしめられる。しかし、突起電極を設けたことによって火だね空間の幾何学的形状に障害が存在することによるマイナスのアセスも発生する。すなわち電極間隔Lの突起電極間空間で発生した火だねの気体の流れが突起電極間の狭い空間から突起電極外の広い空間に立がるととき、火だね気体の運動の速さに増加する圧力差が生じ火だねの过大の流れを防げる作用が発生する。この作用は境界層の中の気体に対しても作用を及ぼす。その結果、突起電極の電極支持部材表面に形成される境界層に因し、

**第11図**の $a_1$ の実効値は大幅に減少するので、電極支持部材表面につくられる境界層の厚さ $\delta_1$ は突起電極表面に形成される境界層（例えば $\delta_1$ ）にくらべてかなり大きい。そのため突起電極の突起高 $b_1$ に關し、

$$h_1 + \delta_1 \geq b_1 \quad \dots \quad (5)$$

では電極を突出させたことによる伴流の影響が少なくとも粘性摩擦損失に関しては無視でき突起電極半径の効果のうが及んで、**第12図**に示すように点火限界空燃比は突起高に關してはどのよき関係する。すなわち、

$$h_1 + \delta_1 < b_1 \quad \dots \quad (6)$$

の条件の突起高においては、突起電極間の空間内で成長した火だねが支持部材空間に立がるととき伴流に抵抗する早い境界層のために挿入せしめられる効果が存在するので**第12図**に示すように点火限界空燃比は突起高 $b_1$ に依存する。

**第12図**に示す突起高は、

$$b_1 + \delta_1 = b_1 \quad \dots \quad (7)$$

の境界条件における接地電極21の突起高は $b_1 =$

0.25 mm であることを示しており、その結果、**第13図**を参照して $b_1 = 0.5 \text{ mm}$  が得られる。この $b_1$ の値は**第3図**(b)および**第3図**(c)に示すように幅2.7 mm、長さ約5 mm の板状の電極支持部材23に図示の位置に幅1 mm の円柱状突起電極を付し接地電極21としたときに得られるものである。

電極支持部材23の幅が更に小さいかあるいは突起電極が電極支持部材23の先端に付されているときは $b_1 < 0.5 \text{ mm}$ となる。**第4図**(a), (b)および**第5図**(a), (b)はこれに相当する。いずれにせよ突起高 $b_1$ が0.25 mm 以上であれば突起電極を設けたことによるデメリット要因は完全に排除されノリット要因のみが残ることが明らかである。また、前述するように過吸肉の内燃後期においては境界層の厚さは上記の気压降圧率換算値におけるよりも小さいので、突起高 $b_1$ は約0.1 mm 以上であればよい。ただし加工精度や使用中ににおける変形を考慮すれば約0.25 mm 以上であることが望しい。

以上は電極間隔Lが近く消炎距離に近い条件下

の火だねについて主として説明してきたがし > 20 のどきには、

$$L_{eff} = L - 2\delta \quad \dots \dots \dots \quad (8)$$

大きなほどの距離のないボテンシャル流の領域（神合主流）が生じる。いま方(4)式の条件は成立しているものとしている。壁にかこまれた空間での流れが定常流であるときはボアズイユの式に従いそのときは壁から十分離れた場所においても神合主流は生じない。しかし火だねの成長に伴う気体の流れは定常流ではないので神合主流が生じる。この神合主流が火だねの成長に対する有効空間長である。方(4)式はこの有効空間長  $L_{eff}$  の拡大は電極間隙を大きくすることと境界層の厚さを小さくすることによって達成されることを示している。電極間隙を大きくすることは放電界空隙面上の制約があり、境界層の厚さを小さくするために電極半径  $r_e$  を小さくすることは電極材料の制約上の制約があった。しかし現今いずれの制約も放るものではなくなっている。トランジスタイグライタにより放電界空隙は拡大され、實験

特開昭52-36237(7)  
混合気からなら電極により耐熱性は改善されていく。併せて両者の方法で有効空間長  $L_{eff}$  を拡大することができる。この有効空間長  $L_{eff}$  が拡大されると電気火花放電でつくられる初期火だねの熱力学的量の割合による損失割合が減少するので点火限界空隙比は増大する。すなわち点火限界空隙比は有効空間長  $L_{eff}$  と対応關係をもつ。有効空間長  $L_{eff}$  は方(4)式で与えられるので  $0.25 \text{ mm}$  以上の実験では、ともに電極の半径を小さくして境界層の厚さを減少させることは同一の点火限界空隙比を与える上で電極間隙の減少と等価である。すなわち、方(10)において大電極に因する点火限界空隙比曲線 V はこれを直角座標とすると  $\delta_e = 2(\delta_i - \delta_j) = 2(0.39 - 0.25) = 0.28 \text{ mm}$  だけ左方に移動して点火限界空隙比曲線 U に相当なることとなる。このように電極半径  $r_e$  の効果は電極間隙に導入されるので以下の説明では電極間隙の効果のみについて詳述する。

火だね成長の有効空間長  $L_{eff}$  がゼロ以上で電極間隙が大きくなるに従って固体燃焼率の割合は

次第に低下し火だねは成長し易くなり点火限界空隙比は次第に増大する。しかし火だねの熱力学的量の損失は固体燃焼以外に火だねの成長プロセス自身にも含まれている。すなわち、電極間隙の小さな領域では、主に粘性抵抗のため電極間に近づくほど火だねの膨脹速度は小さくなり、火だねは球形に近くなる。球形火だね内の熱力学的量の火だね成長に伴う余熱燃焼相への散逸は火だね半径  $r_e$  の 2 等に逆比例して増大する。電極間隙をさらに増大させるならば火だねは円柱形となり、円柱形火だねの熱力学的量の余熱燃焼相への火だね成長における散逸は円柱の半径に逆比例する。すなわち、火だねの半径の増大に伴う熱力学的量の散逸は球形火だねより少なくてすむ。そのため点火限界空隙比は次第に上昇する。火だねが円柱形に達したときは両端の電極間の割合は減少し、火限界空隙比一電極間隙曲線は単調傾向を示すようになる。方(10)に示す曲線はいずれも電極間隙の増大に伴って火だね形状が扁平(曲線の豐度領域)から球形を経て円柱状(曲線の水平領域)

への移行および電極間隙の相対的低下に対応して増大する点火限界空隙比をあらわしている。

これまでの 3 気圧の静圧燃焼混合気についての実験結果をもとにして述べてきたが、通常内燃機関は圧縮混合気を用いる。

圧縮比が増すに従って点火限界空隙比が上昇し、点火限界電極間隙が減少する作用は次のように説明される。

(1) 静熱圧縮された混合気の全体の熱力学的量の増大のため、火だね内から未燃焼気相へ供給されるべき火だねの成長に必要な熱力学的量が増加される。

(2) 静熱圧縮された混合気の全体の熱力学的量の増大のため、火だねの内と外の熱力学的量の差が減少するので、火だね内の熱力学的量の散逸が減少する。

(3) 混合気が圧縮されたとき、火だねの成長、すなわち、球形または円柱形の火だねの半径の増大による火だね内の熱力学的量の変化が、上記(1)および(2)の過程のために認められるのに對し、混合気

が圧縮されているとさは混合率の拡大によって新たに発生する熱力学的内燃は大きくなる。

これは圧縮されているとさは、混合気の体積膨脹率が大きいためであって、混合気が濃い、すなわち空燃比が小さいことを意味である。

(iv) 内燃機関の点火遅延の初期を除いて先行する点火燃焼のため点火電極の温度は  $400^{\circ}$  ~  $800^{\circ}$  C の範囲に上昇しているので電極間にによる直線的な熱損失は少なくてすむ。

(v) 断熱仕組された混合気が突起風速またはその直角支材部材の表面に形成する境界層の厚さよりは高熱になるほど減少する（ボアソンの断熱方程式を式(i)式に用いればかは絶対温度で逆比例する）。運転時の内燃機関における火だね気筒内側するよりは前述した  $\lambda$  気圧非圧縮時のもの約  $1/2$  ~  $1/3$  程度になる。

以上を要約するならば、点火栓電極の形状に關係なく混合気が圧縮されると、火だねの成長に伴う熱力学的熱の損失が減り和得が増し同時に火だね成長の有効電極間隔が増すことになる。従って、

#### 特開昭52-36237(8)

点火限界空燃比一電極間隔曲線は運転時の内燃機関においては  $\lambda$  気圧非圧縮時の約 10 倍に示す曲線よりも左および上方に移動する。

しかしながら実際の内燃機関を運転条件下で設定された点火限界空燃比一電極間隔曲線上の条件で使用することはできない。この曲線よりも十分下石炭の安全標準を利用しなければならない。オ 10 図における曲線 W は従来例の点火栓を  $\lambda$  気圧非圧縮混合気用いて得られた点火限界空燃比一電極間隔曲線であって、消炎距離は  $0.83$  mm となっている。しかるにこの点火栓は実際の内燃機関の仕様に応じて  $0.5$  ~  $0.8$  mm で使用することができる。である。従ってオ 10 図に示す  $\lambda$  気圧非圧縮混合気について得られた点火限界空燃比一電極間隔曲線は実際の内燃機関では十分な安定点火領域内にあるので、この曲線を動作点曲線とみなすことは合理的である。

オ 10 図において曲線 I と直線 X<sub>1</sub> ( 燃料空燃比レベル ) との交点に対応する電極間隔  $l_{\text{sh}} = 0.62$  mm である。また、曲線 I と直線 X<sub>2</sub> ( イン

摘要  
ブラン空燃比 = 20、ガソリン空燃比 = 17.8 のレベルを示す)との交叉に対応する電極間隔  $l_{\text{sh}}$  = 1.59 mm である。すなわち、高圧電極 22 号および接地電極 21 を共に電極支持部材 23、24 から 0.25 mm 以上突出せしめると同時に直径 1 mm の単電極とした点火栓は、その電極間隔  $l_{\text{sh}} = 0.62$  mm のときを給空燃比の混合気を用いた内燃機関を有効に点火運転することができ、 $l_{\text{sh}} = 1.59$  mm のとき空燃比 = 20 のイソブラン混合気または空燃比 = 17.8 のガソリン混合気を用いた内燃機関を有効に点火運転することができる。

而戻の高出力型イグニッショコイルセバ版のセミトランジスタ開閉器で作動させ発生した 35 KV の高圧電圧パルスによる  $\lambda$  気圧非圧縮混合気中の放電限界間隔は 2 mm であるから上記のような高熱混合気内燃機関の瓦斯火花点火による運転は容易である。いすゞ自動車株式会社製のいすゞ 117 ターベ X T 型のガソリンエンジン ( 型式 G 1508K、水冷 4 ナイクル、頭上弁車カム輸式、圧縮比 6.7、總排氣量 = 1517 CC、1973 年式、走行距離約 3

万 Km ) に付する実験において化油器アイドルスクリュー調整のみで空燃比を十分大きくすることによってアイドリング時 0.0 排出濃度が 0.1 %、H<sub>2</sub>O 排出濃度 250 ppm の状態を実現することができた。この条件下での通常走行における運転性能および燃費性能には何の不都合も生じていない。

少なくともロータリエンジンでは空燃比が重論比に近ければ特別に補助混合気を用いなくとも燃焼条件は大幅に改善される。

一方、内燃機関の通常の点火栓を用いるときは点火栓の電極間隔  $l_{\text{sh}} = 0.8$  mm 以下であることが固しい。電極間隔  $l_{\text{sh}} = 0.8$  mm のとき、上述の点火栓動作高単曲線が無給空燃比直線 X<sub>1</sub> と交叉するより点火栓の電極直径は 1.7 mm となることが、実験および計算から求められた。もちろんこの電極は電極支持部材 23、24 からそれぞれ 0.25 mm 以上突出したものについてである。すなわち、高圧電極 22 号および接地電極 21 が共に、1.7 mm 以下の直径であると同時にその電極支持部材 23、24 から 0.25 mm 以上突出している点火栓を用いるならば、

通常の点火電極を用いて量論空燃比以上の貴重混合気で内燃機関を運転せしめることができる。又てこの発明において點火極とは直径が 1.7 mm 以下のものとし、大電極とは直径が 1.7 mm より大きなものとする限界を設定することができる。

点火限界空燃比を大ならしめるためには、点火火栓の高圧電極および接地電極を共に実焰せしめると同時に細電極とすることが有効である。一方、さらに電極間隙を狭くすることも有効である。点火バルスの実現性を一定のまゝで、放電限界間隙を大ならしめるために 3 電極点火栓を用いることができる。すなわち、同一の点火バルスを用いるとき 3 電極点火栓の放電限界空燃比は 2 電極点火栓の放電限界空燃比の 1.75 倍に拡大される。このような 3 電極点火栓の火だね成長のための有効空間長を大ならしめるべく、高圧電極 32、トリガ電極 33 および接地電極 31 をすべて細電極とし、かつこれらすべての電極をそれぞれの電極支持部材 34、35、36 から突出させた形 (a)、(b) に示すようなら 3 電極点火栓 300 を用いるならば、2

特開昭52-36237 (9)  
電極点火栓 200 について上述したのと同様に消費距離の減少、点火限界空燃比の増大が認められた。

従来、貴重混合気に点火するために実行されている努力の一つは放電エネルギーを増大させることがある。しかし、放電エネルギーを増大させてもそのエネルギーから生ずる火だねの熱力学的量の大部分を電極間損失として消費せしめている点火栓構造を改善せの限り大きな効果は認めない。それのみか放電エネルギーを限界以上に大ならしめるとき、火だね気體の液体前進は乱流となり。その熱伝導度、粘性、および比熱容は著しく増大し火だねの熱力学的量の電極間損失は格段に増大するので、ゆって点火元件は低減せしめられる。さらに、放電エネルギーの増大は電極面の電極を加热して点火栓寿命を短くする。

また、従来の可燃性混合気の電気火花点火に関する既往的考察では火だねの液体力学的アプローチが殆んどなされていない。例えば、点火限界電極間隔は放電エネルギーと直線的な関

係無関係および燃焼活性物質の電極間への伝導吸着過程等によって決まるという現象の域を出ていない。この発明は火だねの成長過程を單なるエネルギー放出に固定せず、火だね気体の熱力学的量すなわちエンタルピー（熱エネルギーと仕事の和）および圧力、密度の空間分布式もとすべく液体力学的振舞を理論的実験的に考察することによって点火元件（点火限界電極間隔および点火限界空燃比）を大幅に拡大する点火栓構造を見出したものである。

また、従来の細電極点火栓は貴重性の効果のみを考慮（高圧電極）のみを細電極とするにとどまっている。この発明は火だねおよびその成長には電気内燃性がなく、熱力学および液体力学的過程が支配的な影響を及ぼすことに着目し、すべての電極を細電極としさらにそれを電極支持部材から突出せしめることにより結果の特性改善を実現したものである。

この発明による点火栓の取扱いの内燃機関への適用はさわめて簡単であり、いわゆるレシプロ室。

ロータリ室、あるいは気化器給気式、燃料噴射式等の各種のものに適用できる。

特に燃焼室が扁平でかつ移動するロータリエンジンでは混合気の渦流の分布ができる。相対的に浅い領域の混合気が從来の電気火花で点火されるためには、相対的に深い領域の混合気の燃焼率の絶対値は極めて高くなるのでロータリエンジンの燃焼室の全體の平均の空燃比は非常に小さいものとなり、H<sub>2</sub>O および CO の排出が大で燃料消費率が高くなる。このようなロータリエンジンあるいは様々な方法で人为的に混合気の渦流を生ぜしめる成層燃焼エンジンにおいて、一つの燃焼室に 2 個以上の点火栓を設ける必要のある場合にもこの発明の点火栓を使用することが容易であり、深い混合気領域の点火燃焼を如実よく実現することができる。H<sub>2</sub>O および CO の排出減少と燃料消費率の低減をはかることができる。

ガソリン等液体燃料を使用する内燃機関の温度が低い始動時には、燃料の蒸発率が低く、また蒸発温度が低く点火しにくい場合があるが、この

特開昭52-36237(10)

発明による点火栓は点火部界空燃比が大きいので、始動点火も容易となる。

以上詳細に説明したようだ、この発明は対向するすべての電極を廻転軸にして、かつそれぞれの電極支持部材から突起せしめた2電極もしくは3電極点火栓を内燃機関に用い、さらに量論混合比よりも弱い混合気を形成させる燃料供給装置を具備するだけでH<sub>2</sub>O<sub>2</sub>、COおよびNO<sub>x</sub>の排出量の少ないわゆる低公害エンジンを実現できる。従って内燃機関の構造および作動が簡単であるから、排ガス特性と運動性能および燃費性能とを調和させる技術およびそのような条件を満足する内燃機関の量論技術および品質質保証の確立が容易である。また、使用過程中のエンジンの低公害化も容易である。

かように点火のメカニズムを追究した結果にもとづくこの発明の点火栓を内燃機関へ適用するならば、現今急進な解決が要求されている排ガスの問題を低成本で解決することができ、その技術的・社会的意義はきわめて大きいものである。

## 4. 図面の簡単な説明

第1図(a)、(b)は従来の細電極点火栓の一例を示す要部のみの断面図および底面図。第2図(a)～(c)は他の実験例を示すもので、第2図(a)、(c)は同じく要部のみを示すそれぞれの断面図、第2図(b)は第2図(a)の底面図、第3図(a)～(c)はこの発明の2電極点火栓の一実験例を示すもので、第3図(a)はその断面図、第3図(b)は第3図(a)の要部断面図、第3図(c)は同じく底面図。第4図(a)、(b)～第8図(a)、(b)はこの発明の他の実験例を示すもので、各(a)図は要部の断面図、各(b)図は各(a)図の底面図、第9図(a)、(b)はこの発明の3電極点火栓の一実験例を示すもので、第9図(a)はその断面図、第10図、第11図はこの発明の点火栓と従来例との対比を示す点火部界空燃比領域の電極間隔依存性をそれぞれ示す特性図、第12図はこの発明の点火栓による点火部界空燃比の電極支持部材からの電極実験高依存性を示す特性図である。

図中、21は接地電極、22は高圧電極、23、24は電極支持部材、25は外筒、26は中栓、27は高圧電極端子、28はガスケット、29はねじ、300は2電極点火栓、31は接地電極、32は高圧電極、33はトライガ電極、300は3電極点火栓である。

代理人 小林 肇

第1図



(a)



(b)

第2図



(a)

(c)



特開昭52-36237(1)



第10図



特許 昭52-36237(12)

第 11 図



第 12 図

4. 既成以外の発明名

兵庫県尼崎市東園町 6 丁目 116 番地の 4

古田製造



## 手続補正書(日文)

昭和 51 年 12 月 15 日

特許庁長官殿

1. 事件の表示 特願昭 50-110873号

2. 発明の名称 自動車内燃機関用電気火花点火栓

3. 補正をする者:

事件との関係 特許山田人

大阪府大阪市淀川区三津屋中 2 丁目 5 番 4 号

新コスモス環境株式会社

代表者 五原 重一郎

4. 代理人 甲 101

東京都千代田区神田神保町 1 丁目 35 号 水下第 2 ビル 4 階  
初田・小林特許事務所 電話 (291-7711)(7171) 弁護士 小林 審 高橋次郎  
高橋次郎

例の実現を容易にせんとするものである。すなわち、この発明の点火栓を用い、アイドリング、エンジンブレーキ、定速、加速および減速を含む運転セードにおいて、混合気の充満時間率が P<sub>2</sub> と P<sub>1</sub> を満たす混合気介在を形成させる混合気供給装置を具備せしめることによつて、HC、CO および NO<sub>x</sub> の排出量の少ない、いわゆる希薄混合気燃焼の自動車用低公害内燃機関を容易に実現することができる。」

(5) 既に第 24 頁 1-9 行～第 26 頁 2 行の「火だね成長の………をあらわしている。」の箇所を下記のように補正する。

「火だね成長の行動範囲は、 $\alpha_{\text{max}}$  がゼロ以上で追加回数が大きくなるに従つて、火花放電時に形成される初期火炎後の体積が増大する。その結果、火炎管内での潜伏時間あたりの燃焼熱熱率が増大して火炎管からの潜伏時間あたりの放熱熱率を凌駕し得くなるため初期火炎後、つまり火だねは成長し得くなる。すなわち、より希薄な燃料濃度でも点火が実現可能となる。従つて第 1.0 図を示

特開昭 52-36237(13)

## 5. 補正の対象

明細書(2)

発明の名称の欄、明細書の各表記欄の範囲の欄、

発明の詳細な説明の欄および図面

## 6. 補正の内容

(1) 明細書の第 1 頁 3 行の発明の名称を「自動車内燃機関用電気火花点火栓」と補正する。

(2) 同じく特許請求の範囲を別紙のように補正する。

(3) 同じく第 1 頁 17 ~ 20 行の「この発明は、………するものである。」の箇所を下記のように補正する。

「この発明は、自動車用内燃機関の電気火花点火栓に関するものであり、電気火花点火栓を改良して電気火花放電による可燃性混合気の点火条件を拡大することによつてガス特性の優れた自動車用低公害内燃機関を容易に実現することを目的とするものである。」

(4) 同じく第 5 頁 4 ~ 5 行の「のであり、………である。」の箇所を下記のように補正する。

「のであり、これによつて自動車用低公害内燃機

すように電極間隔の増大に伴つて、点火順序空燃比は次第に増大する。」

(6) 同じく第 26 頁 17 ~ 20 行の「(iii) 混合気が………に対し、混合気」の箇所を「(ii) 混合気」と訂正する。

(7) 同じく第 35 頁 7 ~ 8 行の「より高い………の潜伏期の」の箇所を下記のように補正する。「より高い潜伏期を形成させる混合気供給装置を具備することによつて HC、CO および NO<sub>x</sub> の排出量の」

(8) 第 1.0 図を別紙のように補正する。

貞上

特許 昭52-36237(14)

## 2 特許請求の範囲

(1) 高圧電極と接地電極をもつ2重触点火栓において、前記高圧電極および接地電極と共にそれぞれの遮蔽支持部材から突起させ、かつ前記高圧電極および接地電極を丸に細胞状としたことを特徴とする自動車内燃機関用瓦斯火花点火栓。

(2) 高圧電極、トリガ電極および接地電極をもつ3重触点火栓において、高圧電極、トリガ電極および接地電極をすべてそれぞれの遮蔽支持部材から突起させ、かつ前記高圧電極、トリガ電極および接地電極をすべて細胞状としたことを特徴とする自動車内燃機関用瓦斯火花点火栓。

第 11 図

