INTERNATIONAL INSTITUTE FOR ADVANCED TRAINING ON CONTROL & AUTOMATION

A PROJECT ON

MINI CEMENT PLANT

PREPARED BY

MOHAMMED SALMAN AZIM

REGISTRATION NO.

QA143941

INTRODUCTION

The concerned project is based on Mini Cement Plant operation. In this project various operations performed in a cement plant, from loading of gypsum and clinker in respectable hoppers to packing of cement and finally truck loading, are logically designed ladder logic.

In this project the following software and hardware are used.

Software:

Operating System

: Microsoft Windows XP Professional Version 2002

Service Pack 3

PLC programming

: RSLogix 500 English 7.00.00 (CPR7)

SCADA Designing

: RSView 32 7.20.00 (CPR 7)

Simulation

: RSLogix Emulate 500

Communication Software

: RSLinx Classic 2.51.00 (CPR 7)

Communication Protocol

: DH-485; [DH- Data Highway]

Communication Driver (with PLC)

: AB_DF1-1

Communication Driver (without PLC)

: EMU-500

Drawing

: AutoCAD 2008

Documentation

: Microsoft Office 2010

Others

: a) Rockwell Automation USB CIP driver package

b) PDF Creator

c) Adobe Reader 11.0.1

PLC DESCRIPTION

MicroLogix-1200; 1762-L24BWA

Input Power

120/240V ac

Inputs

(10) 24V dc; (4) fast 24V dc

Outputs

(10) relay

Enhancement:

The trim pots (trimming potentiometers) on the controller operated in reverse of the

ladder logic.

MicroLogix 1200 controllers now offer:

- Full ASCII (read/write)
- PTO Controlled Stop
- PWM Ramping
- · RTC and String Messaging
- · Static Data File Protection
- · Comms Reset Pushbutton Bit

Floating Point (F) Data File for use with:

compare instructions (EQU, GEQ, GRT, LEQ, LES, LIM, NEQ); math instructions (ABS, ADD, CLR, DIV, MUL, NEG, SQR, SUB); move instruction (MOV); file instructions (CPW, FLL); and the message (MSG) instruction

Programmable Limit Switch (PLS) File for use with HSC

RTA - Real Time Clock Adjust

GCD - Gray Code

CPW - Copy Word

ABS - Absolute Value

For 1762-L24BWA controllers: The COM of the sensor supply is also connected to chassis ground internally. The 24V dc sensor power source should not be used to power output circuits. It should only be used to power input devices.

16-Point AC/DC Relay O/P Module; 1762-OW16

Voltage Category

AC/DC normally open relay

Operating Voltage Range

5 to 265V ac; 5 to 125V dc

Number of Outputs

16

Bus Current Draw (max.)

120 mA at 5V dc (0.60 W); 140 mA at 24V dc (3.36 W)

Heat Dissipation (max.)

5.6 Watts

Signal Delay (max.) - resistive load

On Delay: 10 ms; Off Delay: 10 ms

Off-State Leakage (max.)
On-State Current (min.)

0 mA 10 mA

Continuous Current per Point (max.)

2.5A 8 A

Continuous Current per Common (max.): Continuous Current per Module (max.):

16 A

MicroLogix-1200 With Expansion I/O Module

SYSTEM DESCRIPTION

At first the gypsum from the gypsum mine filled in a tank, this process is called Gypsum Feed. After feeding the gypsum clinker is also feed in four tanks, this process is called Clinker Feed. When the five tanks are filled with gypsum and clinker (one for gypsum and four for clinker) the mixture of this two feed to the cement mill where cement is produced. This process is called Mill Feed. After producing this cement, the cement is feed for two SILOs, this process is called Mill Discharge. After discharging this cement it stores in Packing MCs for packing, this process is called Packing. After packing the packets are loaded into trucks for supply to market. This process is called Truck Loading.

The PLC panel consisting of the PLC-CPU itself along with its power supply and extension modules, interposing relays, push buttons, LEDs and toggle switches for the necessary control action and annunciation. The PLC panel is conceived to be a part of the main control room component, operated as a remote terminal to the local control station which is essentially panel housing with all the necessary switch gears, control equipment's, relays and pushbutton switches. Options for the auto-manual / remote-local are included in the system as a practical necessity for such applications.

The hopper and SILO control mechanism which consists of the mechanical arrangements of the motorized hatches, and door and level sensing devices (capacitive level sensors).

In the project I have not considered the dust recycling part. One of the important requirements of the program developed for this project to let the belt conveyor for some more time after the hoppers have discharged their load in order to avoid a heap forming from residual discharge from the hoppers.

CONTROL PHILOSOPHY

This Project shows a MINI CEMENT PLANT controlled with the help of ALLEN BRADLEY make PLC via SCADA interface.

There are all in all seven types of operations that govern the whole process.

The steps are as follows:

- 1. Gypsum Feed
- 2. Clinker Feed
- 3. Mill Feed
- 4. Mill Feed Extra
- 5. Mill Discharge Extra
- 6. Packing
- 7. Truck Loading

The Control Philosophy are explained in step by step as follows:

1. Gypsum Feed:

This is the 1st step of the whole process. In this step, the input materials are poured into the DUMP HOPPER. Then those materials are passed through to the CRUSHER. This is done with the help of MOTOR (M1). Then with the help of Conveyor Belt 2 and Bucket Elevator 1, the materials are poured into the GYPSUM HOPPER. In this process the GYPSUM extracted from mine are feed in the GYPSUM TANK through the DUMP HOPPER, CRUSHER (for crushing). The motor used for crushing is M1. Then this crushed gypsum is feed to the tank for conveyor and elevator for this Gypsum Feed is M2, M3 and M5. In this whole process motors M1, M2, M3 and M5 are ON and the others remain OFF. When the tank is completely filled the motors are OFF. This operation takes a duration of 20 seconds to complete.

2. Clinker Feed:

In this step, within 20 seconds the pouring of input material to the DUMP HOPPER and then to the CRUSHER is allowed to continue and this is done with the help of MOTOR (M1). Then with the help of Conveyor Belt 1, the materials are poured into four CLINKER HOPPERS. In this process the clinker extracted from mine are feed in the CLINKER TANKS through DUMP HOPPER, CRUSHER (for crushing). The motor used for crushing is M1. Then this crushed clinker is feed to the tanks (CLH1, CLH2, CLH3 and CLH4) by Conveyor Belts 2 & 1 and Bucket Elevators 2 & 3. Motor used for conveyor and elevator for this Clinker Feed is M2 & M4 and M6 & M7 are ON and the others remain OFF. When the tanks are fully loaded the motors M1, M2, M4, M6 & M7 are OFF.

o szerentett elektrológia karazatatáltála azattatáltála.

7. Truck Loading:

This is the last step of the entire process. This operation takes 10 seconds to complete. In this period, the packed cement is located in the truck. The packaged cement is unloading by the motors M19, M20 and cements are loaded into the truck by two Belt Conveyors (BELT CONVEYOR FOR TRUCK LOADING 1, BELT CONVEYOR FOR TRUCK LOADING 2) with two motors M21 and M22 and these packaged cements are transferred to shops. Motor . M21 and M22 are ON at that time for loading the truck.

Like this way, the whole process will continue in cyclic order until stop button is pressed.

System Fault:

System Fault is the phenomenon that occurs mainly if any of the motors or valves gets faulty as per the ladder logic e.g. if input has given but motor (M1) gets faulty, then there will be a system fault generated within 2 seconds at the beginning and in this way it may continue to further faults as per the logic given.

7

LAD 2 - --- Total Rungs in File = 43

			STERRIGICALINE		
SI.NO	IAG	MATERIAL DESCRIPTION	RANGE, RATING & TYPE	MAKE	SIX.
	PLC	PROGRAMMABLE LOGIC CONTROLLER	MICROLOGIX 1200,1762-L24- BWA,I/P:14 pts. 24V DC,O/P:10pts. RELAY TYPE	ALLEN BRADLEY	√−1
2		PC-PLC COMM. PORT	1761-CBL-PM02,SERIES C	ALLEN BRADLEY	П
ю	EXT. MODULE	EXTERNAL DIGITAL O/P MODULE	1762-OW16,O/P:16 pts. RELAY TYPE	ALLEN BRADLEY	₩.
4	PSU	POWER SUPPLY UNIT	I/P:110V/220V AC,O/P:24 V DC, 5A	MEANWELL	₽
5	C1-C18	TP CONTACTOR	12A,AC3 DUTY,230V AC,1NO+1NC AUX. CONTACT	TELEMECANIQUE	18
9	51	TPN SFU	220 A	HAVELLS	1
7	52-519	ICTP SWITCH	32A	HAVELLS	18
∞	CB1- CB3,CB22	DP MCB	10A, C CURVE	HAVELLS	4
6	CB4-CB21	TPN MCB	16A, C CURVE	HAVELLS	18
10	PF1-PF52	POWER FUSE	32A, HRC,WITH MTG. BASE	GEC	52
11	CF1-CF12	CONTROL FUSE	2A, WITH MTG. BASE	GEC	12
12	R1-R18	CONTROL RELAY	230V AC,2C/O,2NO+2NC AUX. CONTACT,5A	PLA	18
13	11-157	INDICATING LAMP	230V AC,24V DC,(RED,YELLOW,BLUE, GREEN,AMBER)	SIEMENS	57
14	∢	AMMETER	0-500A,76mm^2,ANALOG TYPE,5A	MECO	₩.
15	ASS	AMMETER SELECTOR SWITCH	6A,4 POSITION WITH OFF	KAYCEE	₽
16	>	VOLTMETER	0-500V,76mm^2,ANALOG TYPE,5A	MECO	Н
17	VSS	VOLTMETER SELECTOR SWITCH	6A,4 POSITION WITH OFF	KAYCEE	П
18	ITRF	ISOLATION TRANSFORMER	CTR:1:1,I/P:110VAC/220VAC, 0/P:110VAC,220VAC, 5VA,CENTER TAPPED	GUPTA ENGG.	

SL.NO	MATERIAL	RANGE, RATING & TYPE	MAKE	QTY.
1	PROGRAMMABLE LOGIC CONTROLLER	MICROLOGIX 1200,1762-L24- BWA,I/P:14 pts. 24V DC,O/P:10pts. RELAY TYPE	ALLEN BRADLEY	1
2	PC-PLC COMM. PORT	1761-CBL-PM02,SERIES C	ALLEN BRADLEY	1
3	EXTERNAL DIGITAL O/P MODULE	1762-OW16,O/P:16 pts. RELAY TYPE	ALLEN BRADLEY	1
4	POWER SUPPLY UNIT	I/P:110V/220V AC,O/P:24 V DC, 5A	MEANWELL	1
5	TP CONTACTOR	12A,AC3 DUTY,230V AC,1NO+1NC AUX. CONTACT	TELEMECANIQUE	18
6	TPN SFU	220 A	HAVELLS	11
7	ICTP SWITCH	32A	HAVELLS	18
8	DP MCB	10A, C CURVE	HAVELLS	4
9	TPN MCB	16A, C CURVE	HAVELLS	18
10	POWER FUSE	32A, HRC,WITH MTG. BASE	GEC	52
11	CONTROL FUSE	2A, WITH MTG. BASE	GEC	12
12	CONTROL RELAY	230V AC,2C/O,2NO+2NC AUX. CONTACT,5A	PLA	18
13	INDICATING LAMP	230V AC,24V DC,(RED,YELLOW,BLUE, GREEN,AMBER)	SIEMENS	57
14	AMMETER	0-500A,76mm^2,ANALOG TYPE,5A	MECO	1
15	AMMETER SELECTOR SWITCH	6A,4 POSITION WITH OFF	KAYCEE	1
16	VOLTMETER	0-500V,76mm^2,ANALOG TYPE,5A	MECO	1
17	VOLTMETER SELECTOR SWITCH	6A,4 POSITION WITH OFF	KAYCEE	1
18	ISOLATION TRANSFORMER	CTR:1:1,I/P:110VAC/220VAC, O/P:110VAC,220VAC, 5VA,CENTER TAPPED	GUPTA ENGG.	1
19	CURRENT TRANSFORMER	CTR:100:1,5VA,CLASS 1	КАРРА	3
20	Cu. BUSBAR	3Ф:22.5mmX8mm ELECTROLYTIC GRADE. N:22.5mmX4mm Cu. BUSBAR	REPUTED	AS REC
21	Cu. WIRES	2.5mm,FRP FLEXIBLE	FINOLEX	AS REC
22	SWITCH SOCKET OUTLET	230V AC,5A/15A,STANDARD	ANCHOR	1 SET
23	EXHAUST FAN	230V AC, VENTILATION TYPE, 20Watt.	PHILIPS	2
24	LOUVER	150mm^2, MESH TYPE	KEYMAN	2
25	CLEAR PERSPEX SHEET	950mmX350mm	SAINT-GOBAIN	1

	COST/UNIT COST	25,000.00 25,000.00	1,200.00 1,200.00	15,000.00 15,000.00	2,500.00 2,500.00	650.00 11,700.00	2,500.00 2,500.00		250.00 1,000.00	650.00 11,700.00	200.00 10,400.00	25.00 300.00	150.00 2,700.00	100.00 5,700.00	650.00 650.00	150.00 150.00	650.00 650.00	150.00 150.00	1,250.00 1,250.00	0000
	ë	П	П	П	τ-1	18	-	18	4	18	52	12	18	57	₽	П	₽	П	ᆏ	'n
	MAKE	ALLEN BRADLEY	ALLEN BRADLEY	ALLEN BRADLEY	MEANWELL	TELEMECANIQUE	HAVELLS	HAVELLS	HAVELLS	HAVELLS	GEC	GEC	PLA	SIEMENS	MECO	KAYCEE	MECO	KAYCEE	GUPTA ENGG.	\ C C V
COST ARALYSIS	RANCE, RATING & TYPE	MICROLOGIX 1200,1762-L24- BWA,I/P:14 pts. 24V DC,0/P:10pts. RELAY TYPE	1761-CBL-PM02,SERIES C	1762-OW16,O/P:16 pts. RELAY TYPE	I/P:110V/220V AC,O/P:24 V DC, 5A	12A,AC3 DUTY,230V AC,1NO+1NC AUX. CONTACT	220 A	32A	10A, C CURVE	16A, C CURVE	32A, HRC,WITH MTG. BASE	2A, WITH MTG. BASE	230V AC,2C/O,2NO+2NC AUX. CONTACT,5A	230V AC,24V DC,(RED,YELLOW,BLUE, GREEN,AMBER)	0-500A,76mm^2,ANALOG TYPE,5A	6A,4 POSITION WITH OFF	0-500V,76mm^2,ANALOG TYPE,5A	6A,4 POSITION WITH OFF	CTR:1:1,1/P:110VAC/220VAC, O/P:110VAC,220VAC, 5VA,CENTER TAPPED	7 00 4 10 4 7 11 7 100 7 11 10
	MATERIAL	OGIC	PC-PLC COMM. PORT	EXTERNAL DIGITAL O/P	POWER SUPPLY UNIT	TP CONTACTOR	TPN SEU	ICTP SWITCH	DP MCB	TPN MCB	POWER FUSE	CONTROL FUSE	CONTROL RELAY	INDICATING LAMP	AMMETER	AMMETER SELECTOR SWITCH	VOLTMETER	VOLTMETER SELECTOR SWITCH	ISOLATION TRANSFORMER	
	S. Z.		2	ı m	4	Ŋ	9	2	0	5 6	10	11	12	13	14	15	16	17	18	

SHEET METAL CALCULATION

Dimensions of the Control Panel Body:

Height = 2.5m, Width = 1m, Depth = 0.5m.

Dimensions of the Mounting Plate:

Height = 2.4m, Width = 0.95m.

Dimensions of the Channel Base:

Height = 0.1m, Width = 0.1m, Depth = 0.06m

Material of Construction: CRCA Sheet, TISCO.

Sheet metal required for the outside body of the control panel

$$= 2 [2.5 \times 1 + 1 \times 0.5 + 0.5 \times 2.5] \text{ m}^2$$

=
$$2 [2.5 + 0.5 + 1.25] \text{ m}^2 = 8.5 \text{ m}^2$$

Sheet metal required for the mounting plate

$$= (2.4 \times 0.95) \text{ m}^2 = 2.28 \text{ m}^2$$

Sheet metal required for the channel base

Length of the channel base required = 2(1m + 0.5m) = 3m

Breadth of the channel base is = 0.2m

Thus, area of the sheet metal required = $3m \times 0.2m = 0.6m^2$

Thus, the total weight of sheet metal used

$$= (8.5 \times 16 + 2.28 \times 20 + 0.6 \times 48) \text{ kg} = 210.4 \text{ kg}$$

[Since weight of the sheet metal for:

- Body of the Control Panel (2mm thickness) = 16 kg/m²
- Mounting Plate (2.5mm thickness) = 20 kg/m²
- Channel Base (6mm thickness) = 48 kg/m²]

Price of sheet metal = Rs.120/kg

Cost of sheet metal required

Total Cost required

= Rs. 35000/- (Including Fabrication & Transportation charge)

CONCLUSION

Completing this project I have got a clear picture about Automated processes for Mini Cement Plant.

An overview of this project is in my knowledge now; Functions of various components and different steps involved in producing cement are very clear to me. I have learned several topics with this project; for example selection of particular PLC module, I/O requirements, external I/O module etc. In PLC programming part use of NO or NC contacts, pulse generation, use of timers, counters, timer or counter reset become very clear than before. Not only that I am now conceptually strong than earlier with the idea of associated control components selection based on the needs of the application (contactors, relays, cables, fuses, circuit breakers etc.), evaluation the project costing including Bill of Material(B.O.M) by collecting the market prices of the selected items used in the total process etc. I have cultured AutoCAD 2008 to design general arrangement of panel, schematic wiring diagram. This very software was totally unknown to me. But at present I am little bit familiar with AutoCAD. I got this superb opportunity with this project.

My greetings to the IIATCA authorities who structured the Qualified Automation Professional course plan with this project. It gave me great pleasure to introduce with Mini Cement Plant Automation process.