Principio de Mínima Acción Angular

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2014) Buenos Aires, Argentina atorassa@gmail.com

Resumen

Este trabajo presenta el principio de mínima acción angular.

Principio de Mínima Acción Angular

Si consideramos una partícula A de masa m_a entonces el principio de mínima acción angular, está dado por:

$$\delta \int_{t_1}^{t_2} \frac{1}{2} m_a (\mathbf{r} \times \mathbf{v}_a)^2 dt + \int_{t_1}^{t_2} (\mathbf{r} \times \mathbf{F}_a) \cdot \delta(\mathbf{r} \times \mathbf{r}_a) dt = 0$$

donde \mathbf{r} es un vector posición que es constante en magnitud y dirección, \mathbf{v}_a es la velocidad de la partícula A, \mathbf{F}_a es la fuerza resultante que actúa sobre la partícula A y \mathbf{r}_a es la posición de la partícula A.

Si
$$-\delta V_a = (\mathbf{r} \times \mathbf{F}_a) \cdot \delta(\mathbf{r} \times \mathbf{r}_a)$$
 y como $T_a = 1/2 m_a (\mathbf{r} \times \mathbf{v}_a)^2$, entonces:

$$\delta \int_{t_1}^{t_2} (T_a - V_a) \, dt = 0$$

Y como $L_a = T_a - V_a$, entonces se obtiene:

$$\delta \int_{t_1}^{t_2} L_a \, dt = 0$$