Data Preprocessing

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import r2 score, accuracy score, precision score,
recall score, classification report from sklearn.svm import SVR
from sklearn.neural network import MLPRegressor
from sklearn.preprocessing import StandardScaler
# Download from https://www.nseindia.com/reports-indices-
historicalindex-data
nifty = pd.read csv("NIFTY.csv")
nifty
{"summary":"{\n \"name\": \"nifty\",\n \"rows\": 8341,\n
\"fields\": [\n {\n \"column\": \"Index Name\",\n \"properties\": {\n \"dtype\": \"category\",\n
\"num unique values\": 1,\n \"samples\": [\n
                                                   \"NIFTY
\"Date\",\n \"properties\": {\n \"dtype\": \"object\",\n
\"num_unique_values\": 8341,\n \"samples\": [\n
\"num unique values\": 7021,\n \"samples\": [\n
\"num_unique_values\": 7040,\n \"samples\": [\n
\"10242.95\"\n ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n }\n {\n \"column\":
\"Low\",\n \"properties\": {\n \"dtype\": \"string\",\n
\"num unique values\": 7014,\n \"samples\": [\n
\"std\": 5790.477107889755,\n \"min\": 279.02,\n
\"max\": 26216.05,\n \"num_unique_values\": 8088,\n \"samples\": [\n 668.67\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n }\
n }\n ]\n}","type":"dataframe","variable name":"nifty"}
nifty['Date'] = pd.to datetime(nifty['Date'], format='%d %b %Y')
nifty.set index('Date', inplace=True)
```

```
nifty['Open'] = pd.to numeric(nifty['Open'], errors='coerce')
nifty['High'] = pd.to numeric(nifty['High'], errors='coerce')
nifty['Low'] = pd.to numeric(nifty['Low'], errors='coerce')
nifty = nifty.sort index(ascending=True)
nifty.dropna(inplace=True) nifty.head()
{"summary":"{\n \"name\": \"nifty\",\n \"rows\": 7216,\n
\"fields\": [\n {\n \"column\": \"Date\",\n
\"properties\": {\n \"dtype\": \"date\",\n \"min\":
\"1995-11-03 00:00:00\",\n\\\"max\": \"2024-11-04 00:00:00\",\n
\"num_unique_values\": 7216,\n
                         \"samples\": [\n
\"1997-05-20 00:00:00\",\n
\"1997-01-29 00:00:00\",\n
\"dtype\": \"category\",\n \"num_unique_values\": 1,\n
\"samples\": [\n
                          \"NIFTY 50\"\n
                                                   ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n }\ n
},\n {\n \"column\": \"Open\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 5864.198759362866,\n
\"min\": 786.37,\n \"max\": 26248.25,\n
\"num_unique_values\": 7020,\n \"samples\": [\n
5360.05\n ],\n \"semantic_type\": \"\",\n
\"std\": 5884.937044002429,\n \"min\": 805.82,\n
\"max\": 26277.35,\n \"num_unique_values\": 7039,\n \"samples\": [\n 1003.8\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n }\ n
\"dtype\": \"number\",\n \"std\": 5833.34489986645,\n
\"min\": 775.43,\n\\"max\": 26151.4,\n
\"num unique values\": 7013,\n \"samples\": [\n
\"std\": 5860.07750996219,\n \"min\": 788.15,\n \"max\": 26216.05,\n \"num_unique_values\": 7018,\n \"samples\":
[\n 5281.2\n ],\n \"semantic_type\": \"\",\n
n}","type":"dataframe","variable name":"nifty"}
```

Feature Engineering

```
return_periods = [1, 2, 3, 4, 7, 10, 14, 15, 16, 30, 90, 180, 365]
# Create new DataFrame to store returns
returns_df = nifty.copy()
```

```
for period in return periods:
returns df[f"{period}D return"] =
nifty["Close"].pct change(periods=period) * 100
returns df.head()
{"summary":"{\n \"name\": \"returns df\",\n \"rows\": 7216,\n
\"fields\": [\n \"column\\": \"Date\",\n
\"properties\": {\n \"dtype\": \"date\",\n \"min\":
\"1995-11-03 00:00:00\",\n \"max\": \"2024-11-04 00:00:00\",\n
\"num_unique_values\": 7216,\n \"samples\": [\n \"1997-01-29 00:00:00\",\n \"1997-05-20 00:00:00\",\n
\"2015-08-18 00:00:00\"\n ],\n \"semantic_type\": \"\",\
n \"description\": \"\"\n }\n {\n
\"column\": \"Index Name\",\n \"properties\": {\n
\"dtype\": \"category\",\n \"num_unique_values\": 1,\n
\"samples\": [\n \"NIFTY 50\"\n \"semantic_type\": \"\",\n \"description\": \"\"\n
                                                            ],\n
n \in \mathbb{N} \"column\": \"Open\",\n\"properties\": \{\n\
\"dtype\": \"number\",\n \"std\": 5864.198759362866,\n
\"min\": 786.37,\n \"max\": 26248.25,\n
\"num_unique_values\": 7020,\n \"samples\": [\n
\"High\",\n \"properties\": {\n \"dtype\": \"number\",\n
\"std\": 5884.937044002429,\n \"min\": 805.82,\n
\"max\": 26277.35,\n \"num_unique_values\": 7039,\n \"samples\": [\n 1003.8\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\ n
},\n {\n \"column\": \"Low\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 5833.34489986645,\n \"min\": 775.43,\n \"max\": 26151.4,\n
\"num_unique_values\": 7013,\n \"samples\": [\n
\"std\": 5860.07750996219,\n \"min\": 788.15,\n \"max\":
26216.05, \n \"num_unique_values\": 7018, \n \"samples\":
[\n 5281.2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\":
\"1D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.441745590698286,\n \"min\":
\"2D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.0850178969774884,\n \"min\":
19.141193595342067,\n \"max\": 20.30639079436196,\n
```

\"num_unique_values\":	7208 , \n	\"samples\":	[\n -	

```
\"3D_return\",\n\\"properties\": {\n\\"dtype\":
\"number\",\n \"std\": 2.550296171035094,\n \"min\": -
20.121178398095772,\n \"max\": 20.175597267250133,\n
\"num_unique_values\": 7212,\n \"samples\": [\n -
6.783326779394416\n ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n }\n {\n \"column\":
\"4D_return\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 2.9461074446126885,\n \"min\":
\"7D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8914736429948213,\n \"min\":
24.22795722391968,\n \"max\": 21.758091511279787,\n \"num_unique_values\": 7209,\n \"samples\": [\n - 3.77506881635864\n ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n \\n \\n \\"column\\": \\"\10D_return\\",\n \\"properties\\": \\\"number\\",\n \\"std\\": 4.653093012568373,\n \\"min\\":
\"num_unique_values\": 7206,\n \"samples\": [\n 2.2193813395925854\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n \\n \\"column\":
\"11D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.906349585507159,\n \"min\":
\"num_unique_values\": 7201,\n \"samples\": [\n
0.3929775236026112\n ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n }\n {\n \"column\":
\"14D_return\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 5.5675348654226875,\n \"min\":
32.32590419820339,\n\\"max\": 28.496744799618902,\n
\"num_unique_values\": 7202,\n \"samples\": [\n - 1.9495349984469668\n ],\n \"semantic_type\": \"\n,\n \"description\": \"\"\n }\n {\n \"column\":
\"15D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.779657047077776,\n \"min\":
34.594697209390624,\n\\"max\": 27.794403253978906,\n
\"num_unique_values\": 7200,\n \"samples\": [\n 4.456760567999218\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n {\n \"column\":
\"16D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.985041895524804,\n \"min\":
36.10833386065937,\n\\"max\": 29.81262949283847,\n
\"num_unique_values\": 7200,\n \"samples\": [\n
```

```
\"description\": \"\"\n }\n },\n {\n \"column\":
\"30D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8.23347138693337,\n \"min\": -
\"90D_return\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 15.044416696960594,\n \"min\": 45.7511283043198,\n \"max\": 75.80591881545963,\n
\"num_unique_values\": 7126,\n \"samples\": [\n 11.399607011232437\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"180D_return\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 22.24255197960949,\n \"min\":
52.52809252903287,\n \"max\": 111.78590640129103,\n
\"365D_return\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 31.482684997702904,\n \"min\": 47.042777433354,\n \"max\": 128.2349462895437,\n
\"num_unique_values\": 6851,\n \"samples\": [\n 17.121622560255613\n ],\n \"semantic type\": \"
                                   \"semantic type\": \"\",\n
\"description\": \"\"\n
                                                 }\n 1\
n}","type":"dataframe","variable name":"returns df"}
returns df.dropna().head()
{"summary":"{\n \"name\": \"returns df\",\n \"rows\": 5,\n
\"1997-04-25 00:00:00\",\n\\"num_unique_values\": 5,\n\\"samples\": [\n\\"1997-05-02 00:00:00\",\n\\"1997-
\"column\": \"Index Name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"NIFTY 50\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n
\"dtype\": \"number\",\n \"std\": 7.194928769626548,\n
```

\ "min\ ".	1063 6 \n	\"max\": 1081.1,\n
\ 11111\ •	1003.0, \11	\ max \ . 1001.1, \max

```
\"num unique values\": 5,\n \"samples\": [\n 1068.6\n
],\n \"semantic type\": \"\",\n \"description\": \"\"\n
8.680293773830485,\n \"min\": 1065.4,\n \"max\":

1088.4,\n \"num_unique_values\": 5,\n \"samples\": [\n

1070.7\n ],\n \"semantic_type\": \"\",\n

\"description\": \"\"\n }\n },\n \\"column\":
\"Low\",\n \"properties\": \\n \"dtype\": \"number\",\n
\"std\": 8.291607202466869,\n \"min\": 1052.8,\n
\"max\": 1075.95,\n
\"num_unique_values\": 5,\n
\"samples\": [\n 1061.2\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n }\ n
},\n {\n} \"column\": \"Close\",\n \"properties\": {\ n}
\"dtype\": \"number\",\n \"std\": 8.080887946259319,\n \"min\": 1057.45,\n \"max\": 1079.85,\n
\"min\": 1057.45,\n \"max\": 1079.85,\n \\"num_unique_values\": 5,\n \"samples\": [\n 1065.4\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
}\n },\n {\n \"column\": \"1D_return\",\n
\"properties\": {\n \"dtype\": \"number\",\n \"std\":
1.247801197229764,\n \"min\": -1.004769180904752,\n
\"max\": 2.1183034658849076,\n\\"num unique values\": 5,\n
n },\n {\n \"column\": \"2D return\",\n
\"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0161277732743277,\n \"min\": -1.117449036843099,\n
\"max\": 1.3562981039984878,\n \"num unique values\": 5,\n
n },\n {\n \"column\": \"3D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.848665550687769,\n \"min\": -0.9136056971514206,\n
\"max\": 0.9771834673648616,\n \"num unique values\": 5,\n
n },\n {\n \"column\": \"4D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9592643444798763,\n \"min\": -1.2697819896363316,\n
\"max\": 1.1853448275861878,\n \"num unique values\": 5,\n
n },\n {\n \"column\": \"7D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.402997555598542,\n \"min\": 0.8680883185506749,\n
\"max\": 6.593570894592582,\n \"num_unique values\": 5,\n
```

```
\"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4783109211037806,\n \"min\": 3.7950111617975457,\n
\"max\": 7.635185646648379,\n\ \"num unique values\": 5,\n
\"samples\": [\n 5.657757723012846\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"11D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.747794272165197,\n \"min\": 3.406774725808037,\n
\"max\": 7.92209102835808,\n\\"num unique values\": 5,\n
\"samples\": [\n 3.406774725808037\n ],\n
\"semantic type\": \"\", \n \"description\": \"\"\n }\
n },\n {\n \"column\": \"14D return\",\n
\"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.9244070767620272,\n \"min\": 3.756187518198595,\n
\"max\": 8.976687859521636,\n\"num unique values\": 5,\n
\"samples\": [\n 5.417305694355123\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"15D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.0817851020874163,\n \"min\": 4.630683223667953,\n
\"max\": 10.230376745864046,\n \"num unique values\": 5,\n
\"samples\": [\n 6.3061265216523665\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n
n },\n {\n \"column\": \"16D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.1310818408584744,\n \"min\": 5.512871682298948,\n
\"max\": 10.440979035422915,\n \"num unique values\": 5,\n
\"samples\": [\n 9.818069370715875\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n
n },\n {\n \"column\": \"30D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.4126090912318383,\n \"min\": -5.131958305610995,\n
\"max\": 0.5259728169800582,\n \"num unique values\": 5,\n
\"samples\": [\n] -1.2329656067488592\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n
\"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.8269010166780226,\n \"min\": 3.4889410843609303,\n
\"max\": 8.469418805152662,\n\ \"num unique values\": 5,\n
\"samples\": [\n 5.573997919040785\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n
n },\n {\n \"column\": \"90D_return\",\n
\"properties\": {\n \"dtype\": \"number\",\n \"std\":
2.5262943124305344,\n \"min\": 26.327547278005415,\n
\"max\": 32.64442231075697,\n\\"num unique values\": 5,\n
\"samples\": [\n 32.64442231075697\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n
                                                                 } \
```

```
1.4646072254527112,\n\\"min\": 2.008431166375657,\n
\"max\": 5.3689489708447224,\n\\"num unique values\": 5,\n
\"samples\": [\n 2.1662623104880208\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n
\"max\": 12.163849454919351,\n\\"num unique values\": 5,\n
\"samples\": [\n 7.733689277191291\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\
n }\n ]\n}","type":"dataframe"}
# Create target variable (return after 1 month in future)
returns df["Target 30D return"] = nifty["Close"].pct change(periods=-
15) * 100
returns df.tail(30)
{"type": "dataframe"}
# Drop NaN values
data clean = returns df.dropna()
data clean.head()
{"type": "dataframe", "variable name": "data clean"}
# Define features and target
X = data clean[[f"{period}D return" for period in return periods]]
y = data clean["Target 30D return"]
X.head()
{"summary":"{\n \"name\": \"X\",\n \"rows\": 6836,\n \"fields\": [\
n {\n \"column\": \"Date\",\n \"properties\": {\n
\"dtype\": \"date\",\n \"min\": \"1997-04-25 00:00:00\",\n
\"max\": \"2024-10-14 00:00:00\",\n \"num_unique_values\": 6836,\n \"samples\": [\n \"2010-04-16 00:00:00\",\n \"2012-02-24 00:00:00\",\n \"1999-01-28 00:00:00\"\
n ],\n \"semantic type\": \"\",\n
\"description\": \"\"\n }\n {\n \"column\":
\"1D_return\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 1.4275621613449585,\n \"min\":
12.980464127060365,\n \"max\": 17.74406601936458,\n
\"num unique values\": 6828,\n \"samples\": [\n
\"2D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.0597168161804493,\n \"min\":
\"num unique values\": 6831,\n \"samples\": [\n
```

```
20.121178398095772,\n \"max\": 20.175597267250133,\n
\"num_unique_values\": 6835,\n \"samples\": [\n
\"number\",\n \"std\": 2.900479828045757,\n \"min\": -
21.969767226189386,\n\\"max\": 20.586720545123207,\n
\"num_unique_values\": 6835,\n
                                      \"samples\": [\n
],\n \"semantic type\": \"\",\n
\"7D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8154227117114132,\n \"min\":
24.22795722391968,\n \"max\": 20.134473639790706,\n
\"num unique values\": 6836,\n
                           \"samples\": [\n
\"10D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.556902797389828,\n \"min\":
\"num_unique_values\": 6836,\n \"samples\": [\n
0.257186946333654,\n 0.31317265143606665,\n -
0.9694644616102477\n ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n }\n {\n \"column\":
\"11D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.804229183151426,\n \"min\":
\"num_unique_values\": 6832,\n \"samples\": [\n
\"14D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.45724535623917,\n \"min\": -
\"num unique values\": 6836,\n \"samples\": [\n
\"15D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.66921937678019,\n \"min\": -
34.594697209390624,\n\\"max\": 27.43768637821413,\n
```

\"num_unique_values\":	6835,\n	\"samples\":	[\n

```
\"number\",\n \"std\": 5.873366643395172,\n \"min\":
\"num unique values\": 6836,\n \"samples\": [\n
1.1027434104357248,\n 3.697690853181057,\n
\"30D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8.17229352700231,\n \"min\": -
\"num unique values\": 6836,\n \"samples\": [\n
\"60D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 11.832884626381052,\n \"min\":
\"num unique values\": 6836,\n \"samples\": [\n
\"number\",\n \"std\": 14.964777334305989,\n \"min\":
45.7511283043198,\n \"max\": 75.80591881545963,\n
\"num unique values\": 6836,\n \"samples\": [\n
2.7450214759859426,\n 5.786879176977178,\n 4.944511592132739\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n {\n \"column\":
                     ],\n \"semantic type\": \"\",\n
\"180D_return\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 22.377074769687997,\n \"min\":
52.52809252903287,\n\\"max\": 111.78590640129103,\n
\"num unique values\": 6836,\n \"samples\": [\n
17.75525273545009,\n -1.85735848374472,\n 12.70450598665569\n ],\n \"semantic type\"
                     ],\n \"semantic_type\": \"\",\n
\"number\",\n \"std\": 31.51134083806962,\n \"min\": 47.042777433354,\n \"max\": 128.2349462895437,\n
\"num_unique_values\": 6836,\n \"samples\": [\n
50.76059243131752,\n -3.183929670016139,\n -
24.981345481679305\n ],\n \"semantic_type\": \"\",\n \\"description\": \"\"\n }\n }\n ]\
n}","type":"dataframe","variable name":"X"} y.head()
```

```
Date

1997-04-25 -1.770080
1997-04-28 -1.384593
1997-04-29 -1.482726
1997-04-30 -4.112032

1997-05-02 -3.414917

Name: Target_30D_return, dtype: float64
```

Train-Test Split

```
# Split last 1 year as test data
split_date = X.index.max() - pd.DateOffset(years=1)
X_train = X[X.index < split_date]
X_test = X[X.index >= split_date]
y_train = y[y.index < split_date]
y_test = y[y.index >= split_date]
model = SVR(kernel='rbf')
model.fit(X_train, y_train)

# Predict
y_pred = model.predict(X_test)
```

Convert it to a Binary Classification Dataset

```
# Convert to binary classification (Positive: 1, Negative: 0)
y test binary = (y test > 0).astype(int) y pred binary =
(y pred > 0).astype(int) y test binary
Date
2023-10-16 0
2023-10-17
2023-10-18
2023-10-19
2023-10-20
             0
2024-10-08 0
2024-10-09
            0
2024-10-10
             0
2024-10-11
2024-10-14
             0
Name: Target_30D_return, Length: 248, dtype: int64
# Create DataFrame for actual and predicted values
y results df = pd.DataFrame({
   "Actual": y_test,
   "Predicted": y pred,
```

```
"Actual Class": y test binary,
   "Predicted Class": y pred binary
}, index=y test.index)
y results df.tail(25)
{"summary":"{\n \"name\": \"y results df\",\n \"rows\": 25,\n
\"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\":
\"2024-09-09 00:00:00\",\n\\"num_unique_values\": 25,\n\\"samples\": [\n\\"2024-
09-19 00:00:00\",\n \"2024-10-01 00:00:00\",\n \"2024-09-09 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n {\n}
\"samples\": [\n
\"Predicted\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3164604716004378,\n \"min\":
0.4021402670969816,\n\\"max\": 0.6379131087343479,\n\\"num_unique_values\": 25,\n\\\"sampl
                                             \"samples\": [\n
\"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n
            1\n ],\n \"semantic_type\":
n}","type":"dataframe"}
```

Evaluation Metric

```
accuracy = accuracy_score(y_test_binary, y_pred_binary)
print(f"Accuracy: {accuracy:.2f}")
Accuracy: 0.73
# Compute average actual return grouped by predicted class
average_actual_by_class = y_results_df.groupby("Predicted_Class")
["Actual"].mean()
```

```
print("Average Actual Return by Predicted Class:")
print(average actual by class)
Average Actual Return by Predicted Class:
Predicted Class
     -2.144021
1
     1.741150
Name: Actual, dtype: float64
(1.741150/3)*52
30.1799333333333334
# Select last 30 days for plotting
last 30 days = y test.index[-350:]
y test last 30 = y_test.loc[last_30_days]
y pred last 30 = pd.Series(y pred,
index=y test.index).loc[last 30 days]
# Plot Index vs Target for both Actual and Prediction (Last 30 Days)
plt.figure(figsize=(10,6))
plt.plot(y test last 30.index, y test last 30, label="Actual",
marker='o')
plt.plot(y pred last 30.index, y pred last 30, label="Predicted",
marker='x') plt.xlabel("Index")
plt.ylabel("Target 30D Return")
plt.title("Actual vs Predicted 30D Return (Last 30 Days)")
plt.legend() plt.show()
```

