Nhóm 10 Báo cáo Bài tập: Set Cover và Travelling Salesman Problem

Hồ Ngọc Luật 23520900 Nguyễn Trần Quang Minh 23520943

Ngày 21 tháng 11 năm 2024

Bài toán Set Cover

Mô tả bài toán

Cho một tập $U = \{u_1, u_2, \dots, u_n\}$ là tập hợp các phần tử cần được bao phủ, và một tập hợp các tập con $S = \{S_1, S_2, \dots, S_m\}$ với $S_i \subseteq U$ $(i = 1, 2, \dots, m)$. Mục tiêu là chọn một số ít các tập con từ S sao cho:

- $\bigcup_{S_i \in S'} S_i = U$, với $S' \subseteq S$.
- Tối thiểu hóa |S'|.

Các bước thiết kế thuật toán gần đúng

- 1. Xác định các phần tử chưa được bao phủ trong U.
- 2. Với mỗi bước, chọn tập con S_i trong S sao cho S_i bao phủ nhiều phần tử chưa được bao phủ nhất.
- 3. Loại bỏ các phần tử đã được bao phủ khỏi U và cập nhật tập S.
- 4. Lặp lại cho đến khi tất cả phần tử trong U đều được bao phủ.

Phương pháp gần đúng

Phương pháp 1: Thuật toán Greedy

- Bước 1: Khởi tạo tập S' rỗng.
- Bước 2: Tại mỗi bước, chọn tập $S_i \in S$ sao cho $|S_i \cap U|$ lớn nhất.
- Bước 3: Loại bỏ S_i khỏi S và cập nhật U.
- Bước 4: Kết thúc khi $U = \emptyset$.

Phương pháp 2: Thuật toán làm tròn (Rounding)

- Dùng quy hoạch tuyến tính để biểu diễn bài toán Set Cover.
- Tìm lời giải tối ưu phân số của bài toán bằng cách sử dụng phương pháp simplex.
- Làm tròn giá trị phân số thành 0 hoặc 1 để xác định tập con S'.

Bài toán Travelling Salesman Problem (TSP)

Mô tả bài toán

Cho đồ thị G = (V, E):

- $V = \{v_1, v_2, \dots, v_n\}$ là tập hợp các đỉnh (thành phố).
- E là tập hợp các cạnh, mỗi cạnh (v_i, v_j) có trọng số $c(v_i, v_j)$.

Mục tiêu: Tìm chu trình Hamiltonian sao cho tổng trọng số của các cạnh trong chu trình là nhỏ nhất.

Các bước thiết kế thuật toán gần đúng

- 1. Khởi tạo một cây khung tối thiểu (Minimum Spanning Tree, MST) của đồ thị.
- 2. Sử dụng MST để tạo ra một chu trình xấp xỉ.
- 3. Cải thiện chu trình bằng cách kiểm tra và giảm thiểu tổng chi phí.

Phương pháp gần đúng

Phương pháp 1: Thuật toán MST-based

- Tạo cây khung tối thiểu của đồ thị bằng thuật toán Prim hoặc Kruskal.
- Duyệt chu trình Euler từ cây khung tối thiểu.
- Loại bỏ các đỉnh trùng lặp để tạo chu trình Hamiltonian.

Phương pháp 2: Thuật toán Nearest Neighbor

- Chọn một đỉnh làm điểm bắt đầu.
- Tại mỗi bước, chọn đỉnh gần nhất chưa được thăm.
- Lặp lại cho đến khi tất cả các đỉnh được thăm.
- Quay lại đỉnh ban đầu để hoàn thành chu trình.

Kết luận

Cả hai bài toán Set Cover và TSP đều là các bài toán NP-khó, do đó việc sử dụng các thuật toán gần đúng là hợp lý để tìm các lời giải xấp xỉ với chi phí tính toán thấp.