Ain Shams University
Faculty of Engineering
Electronics and Communication Department
ECE 342: Digital Circuits
3rd Year Communications

Arithmetic and Logical Unit Design Project

NAME	CODE
Moataz Mokhtar Said	1701460
Farid Mohammed Farid	1700985
Ahmed Ayman Ahmed	1700037
Mohamed Ashraf Farouk	1701154
Yumna Ahmed Mohammed	1701692
Youssef Ayman El-Rouby	1701709
Nour Mahmoud Galal	1701587
Abdelrahman Mohamed Anwar	1700757
Mahmoud Mohamed Hanafy	1701360
Salma Tarek El-Alfy	1700620

Contents

ircuit Schematics:	3
CMOS Inverter:	3
NAND Gate:	3
NOR Gate:	4
AND Gate:	4
OR Gate:	5
XOR Gate:	5
XNOR Gate:	6
2-1 Multiplexer:	6
8-1 Multiplexer:	7
1-bit Logical Operator MUX:	7
4-bit Logical Operator MUX:	8
1-bit Adder:	8
4-bit Adder:	9
4-bit Multiplier:	9
Arithmetic unit operations without multiplication:	10
Arithmetic unit:	10
Arithmetic and logical unit:	11
NLU Operations:	12
Pelay and Power Consumption:	17
Delay:	17
At Rising Edges:	17
At Rising Edges:	17
Power Consumption:	18
/HDL Code:	19
/HDI Test Renching:	21

Circuit Schematics:

CMOS Inverter:

Reference sizing relative to CMOS inverter 2:1.

NAND Gate:

NOR Gate:

AND Gate:

OR Gate:

XOR Gate:

XNOR Gate:

2-1 Multiplexer:

8-1 Multiplexer:

1-bit Logical Operator MUX:

Note: We put 2 CMOS inverter after the output of the mux because our output wasn't rail to rail.

4-bit Logical Operator MUX:

1-bit Adder:

4-bit Adder:

4-bit Multiplier:

Arithmetic unit operations without multiplication:

Arithmetic unit:

Arithmetic and logical unit:

ALU Operations:

Arithmetic O	peration
<i>Input A = 9 (00001001)</i>	Input B=5 (00000101)
Output Y (8 bits) =(Y7 Y6	6 Y5 Y4 Y3 Y2 Y1 Y0)
DC-Anal	lysis

0000	
inc a	

Test	Output	Nominal
Digital:Test1:1	VDC("/y0")	23.52u
Digital:Test1:1	VDC("/y1")	1.2
Digital:Test1:1	VDC("/y2")	29.12u
Digital:Test1:1	VDC("/y3")	1.2
Digital:Test1:1	VDC("/y4")	2.906u
Digital:Test1:1	VDC("/y5")	2.309u
Digital:Test1:1	VDC("/y6")	25.56p
Digital:Test1:1	VDC("/y7")	13.16p

0 1 0 1
0
1
0
0
0
0
Decimal
= 10

0001 dec a

Test	Output	Nominal
Digital:Test1:1	VDC("/y0")	18.66u
Digital:Test1:1	VDC("/y1")	11.8u
Digital:Test1:1	VDC("/y2")	18.74u
Digital:Test1:1	VDC("/y3")	1.2
Digital:Test1:1	VDC("/y4")	2.351u
Digital:Test1:1	VDC("/y5")	2.309u
Digital:Test1:1	VDC("/y6")	25.56p
Digital:Test1:1	VDC("/y7")	13.16p

 $0010 \\ a*b$

Test	Output	Nominal
Digital:Test1:1	VDC("/y0")	1.2
Digital:Test1:1	VDC("/y1")	6.618u
Digital:Test1:1	VDC("/y2")	1.2
Digital:Test1:1	VDC("/y3")	1.2
Digital:Test1:1	VDC("/y4")	6.236u
Digital:Test1:1	VDC("/y5")	1.2
Digital:Test1:1	VDC("/y6")	5.646u
Digital:Test1:1	VDC("/y7")	2.905u

1
0
1
1
0
1
0
0
Decimal
= 45

00	1	1
in	C	b

Test	Output	Nominal
Digital:Test1:1	VDC("/y0")	23.52u
Digital:Test1:1	VDC("/y1")	1.2
Digital:Test1:1	VDC("/y2")	1.199
Digital:Test1:1	VDC("/y3")	650u
Digital:Test1:1	VDC("/y4")	2.905u
Digital:Test1:1	VDC("/y5")	2.309u
Digital:Test1:1	VDC("/y6")	25.56p
Digital:Test1:1	VDC("/y7")	13.16p

dec b

Test	Output	Nominal
Digital:Test1:1	VDC("/y0")	18.61u
Digital:Test1:1	VDC("/y1")	11.87u
Digital:Test1:1	VDC("/y2")	1.2
Digital:Test1:1	VDC("/y3")	18.76u
Digital:Test1:1	VDC("/y4")	2.4u
Digital:Test1:1	VDC("/y5")	2.309u
Digital:Test1:1	VDC("/y6")	25.56p
Digital:Test1:1	VDC("/y7")	13.16p

transfer a

Test	Output	Nominal
Digital:Test1:1	VDC("/y0")	1.2
Digital:Test1:1	VDC("/y1")	8.04u
Digital:Test1:1	VDC("/y2")	338.1u
Digital:Test1:1	VDC("/y3")	1.199
Digital:Test1:1	VDC("/y4")	2.906u
Digital:Test1:1	VDC("/y5")	2.309u
Digital:Test1:1	VDC("/y6")	25.56p
Digital:Test1:1	VDC("/y7")	13.16p

add a, b

Test	Output	Nominal
Digital:Test1:1	VDC("/y0")	23.52u
Digital:Test1:1	VDC("/y1")	1.2
Digital:Test1:1	VDC("/y2")	1.199
Digital:Test1:1	VDC("/y3")	1.199
Digital:Test1:1	VDC("/y4")	2.906u
Digital:Test1:1	VDC("/y5")	2.309u
Digital:Test1:1	VDC("/y6")	25.56p
Digital:Test1:1	VDC("/y7")	13.16p

sub a, b

Test	Output	Nominal
Digital:Test1:1	VDC("/y0")	18.55u
Digital:Test1:1	VDC("/y1")	11.98u
Digital:Test1:1	VDC("/y2")	1.2
Digital:Test1:1	VDC("/y3")	23.34u
Digital:Test1:1	VDC("/y4")	2.471u
Digital:Test1:1	VDC("/y5")	2.309u
Digital:Test1:1	VDC("/y6")	25.56p
Digital:Test1:1	VDC("/y7")	13.16p

Logic Operations Waveform testing Transient Analysis

Delay and Power Consumption:

Delay:

At worst-case (multiplication) between inputs of A = (1111) and B=(1111).

At Rising Edges:

$$t_{plh} = 425.3x10^{-12} s$$

 $t_{plh} = 425.3 ps$

At Rising Edges:

$$t_{phl} = 102.6x10^{-12}s$$

 $t_{phl} = 102.6 ps$

Total propagation delay:

$$t_p = t_{phl} + t_{plh} = 2.639x10^{-12}$$

 $t_p = 2.638 \ ps$

Power Consumption:

Total Current Drain from the supply Vdd =

 $100.3x10^{-6} A = 100.3 \,\mu A$

Average power = total current x voltage of the output

Outputs	Average power
у0	58.9 μwatt
y1	12.4 μwatt
<i>y</i> 2	50.6 μwatt
<i>y</i> 3	58 μwatt
<i>y</i> 4	62.8 μwatt
<i>y</i> 5	79.9 μwatt
у6	53.6 μwatt
у7	73.9 nwatt

VHDL Code:

```
--Library decleration--
LIBRARY ieee;
USE ieee.STD LOGIC 1164.ALL;
USE ieee.numeric std.all;
USE ieee.std logic unsigned.all;
--ENTITY decleration of MUX--
ENTITY mux 16 1 is
PORT (
ipOMUX: in std logic vector (7 downto 0);
ip1MUX: in std logic vector (7 downto 0);
ip2MUX: in std logic vector (7 downto 0);
ip3MUX: in std logic vector (7 downto 0);
ip4MUX: in std logic vector (7 downto 0);
ip5MUX: in std logic vector (7 downto 0);
ip6MUX: in std logic vector (7 downto 0);
ip7MUX: in std_logic_vector (7 downto 0);
ip8MUX: in std logic vector (7 downto 0);
ip9MUX: in std logic vector (7 downto 0);
ip10MUX: in std logic vector (7 downto 0);
ip11MUX: in std logic vector (7 downto 0);
ip12MUX: in std logic vector (7 downto 0);
ip13MUX: in std logic vector (7 downto 0);
ip14MUX: in std_logic_vector (7 downto 0);
ip15MUX: in std logic vector (7 downto 0);
sel 16 1: in bit vector (3 downto 0);
out mux 16 1: out std logic vector (7 downto 0)
);
end mux 16 1;
--ENTITY decleration of MUX--
--ARCHITECTURE of MUX decleration--
ARCHITECTURE mux op OF mux 16 1 is
BEGIN
ALUselection: process (sel 16 1, ip0MUX, ip1MUX, ip2MUX, ip3MUX, ip4MUX,
ip5MUX,ip6MUX , ip7MUX,
ip8MUX, ip9MUX, ip10MUX , ip11MUX ,ip12MUX,ip13MUX, ip14MUX,ip15MUX)
BEGIN
--selection lines of the MUX--
case sel 16 1 is
when "0000" => out mux 16 1 <= ip0MUX;
when "0001" => out mux 16 1 <= ip1MUX;
when "0010" => out_mux_16_1 <= ip2MUX;</pre>
when "0011" => out mux 16 1 <= ip3MUX;
when "0100" => out mux 16 1 <= ip4MUX;</pre>
when "0101" => out mux 16 1 <= ip5MUX;</pre>
when "0110" => out mux 16 1 <= ip6MUX;</pre>
when "0111" => out mux 16 1 <= ip7MUX;</pre>
when "1000" => out mux 16 1 <= ip8MUX;</pre>
when "1001" => out mux 16 1 <= ip9MUX;</pre>
when "1010" => out mux 16_1 <= ip10MUX;</pre>
when "1011" => out_mux_16_1 <= ip11MUX;</pre>
when "1100" => out_mux_16_1 <= ip12MUX;</pre>
when "1101" => out_mux_16_1 <= ip13MUX;</pre>
when "1110" => out mux 16 1 <= ip14MUX;</pre>
```

```
when "1111" => out mux 16 1 <= ip15MUX;</pre>
end case;
end process ALUselection;
end mux op;
--library decelrations--
LIBRARY ieee;
USE ieee.STD LOGIC 1164.ALL;
USE ieee.numeric std.all;
USE ieee.std logic unsigned.all;
--ENTITY ALU decleration--
ENTITY A L U is
PORT (
a :IN std logic vector (3 downto 0); --input a of 3 bits--
b : IN std logic vector (3 downto 0); --input b of 3 bits--
sel :IN bit vector(3 downto 0); -- selection line-
y :OUT std logic vector (7 downto 0)
);
--ENTITY ALU decleration--
end A L U;
--Architecture decleration of A L U --
architecture operations of A L U is
--Signal deceleration --
signal
inc_a,dec_a,inc_b,dec_b,transfer_a,add_a_b,sub_a_b,compa,compb,and_op,or_op,x
or_op,xnor_op,nand_op,nor_op: std_logic_vector (7 downto 0);
signal multiply_ab: std_logic_vector (7 downto 0);
--Component decelration --
--16:1 Mux implementation--
component mux 16 1 is
port (
ipOMUX: in std_logic_vector (7 downto 0);
ip1MUX: in std_logic_vector (7 downto 0);
ip2MUX: in std logic vector (7 downto 0);
ip3MUX: in std logic vector (7 downto 0);
ip4MUX: in std logic vector (7 downto 0);
ip5MUX: in std logic vector (7 downto 0);
ip6MUX: in std logic vector (7 downto 0);
ip7MUX: in std logic vector (7 downto 0);
ip8MUX: in std_logic_vector (7 downto 0);
ip9MUX: in std logic vector (7 downto 0);
ip10MUX: in std logic vector (7 downto 0);
ip11MUX: in std logic vector (7 downto 0);
ip12MUX: in std logic vector (7 downto 0);
ip13MUX: in std_logic_vector (7 downto 0);
ip14MUX: in std_logic_vector (7 downto 0);
ip15MUX: in std logic vector (7 downto 0);
sel 16 1: in bit vector (3 downto 0);
out mux 16 1: out std logic vector (7 downto 0)
);
end component;
--Architecture BEGIN Operations --
begin
inc a<= ("0000"& a(3 downto 0))+"1"; --incerement a--
dec a<= ("0000"& a(3 downto 0))-"1"; --decrement a--
multiply ab <= std logic vector (to unsigned ((to integer (unsigned ("0000"&
a))*to integer(unsigned("0000"& b))),8));--multiplication--
inc b<= ("0000"& b(3 downto 0))+"1"; --incerement b--
```

```
dec b<= ("0000"& b(3 downto 0))-"1";--decrement b--
transfer a<=("0000"& a(3 downto 0)); -- transfer a--
add a b<=std logic vector(to unsigned((to integer(unsigned("0000"&
a))+to integer(unsigned("0000"& b))),8));--add a and b--
sub a b <= std logic vector (to unsigned ((to integer (unsigned ("0000"& a)) -
to integer (unsigned ("0000"& b))), 8)); -- sub a and b--
compa <= ("0000"& not(a(3 downto 0))); -- complimenet a--</pre>
compb <= ("0000"& not(b(3 downto 0))); --complimenet b--</pre>
and op <= ("0000"&(a(3 downto 0) and b(3 downto 0)));--a and b--
or op <= ("0000"&(a(3 downto 0) or b(3 downto 0)));--a or b--
xor op <= ("0000"&(a(3 downto 0) xor b(3 downto 0)));--a xor b--
xnor op <= ("0000"&(a(3 downto 0) xnor b(3 downto 0))); --a xnor b--</pre>
nand op <= ("0000"&(a(3 downto 0) nand b(3 downto 0))); -- a nand b--
nor op <= ("0000"&(a(3 downto 0) nor b(3 downto 0)));--a nor b--
mux 1: mux 16 1 port map (ipOMUX => inc a ,ip1MUX => dec a,ip2MUX =>
multiply ab,ip3MUX => inc b,ip4MUX => dec b,ip5MUX => transfer a ,ip6MUX =>
add a b, ip7MUX \implies sub a b,
 ip8MUX => compa, ip9MUX => compb, ip10MUX => and op, ip11MUX => or op,
ip12MUX => xor op, ip13MUX => xnor op, ip14MUX => nand op, ip15MUX => nor op,
 sel 16 1=>sel, out mux 16 1 => y);
end operations ;
```

VHDL Test Benching:

```
--Testbench For A L U--
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
use ieee.std logic unsigned.all;
entity tb ALU is
end tb AlU;
architecture behaviour of tb ALU is
component A L U
port( a :in std logic vector(3 downto 0);
b :in std logic vector(3 downto 0);
sel :in bit vector(3 downto 0);
y :OUT std logic vector (7 downto 0)
);
end component;
signal a test : std logic vector(3 downto 0) ;
signal b test : std logic vector(3 downto 0) ;
signal sel test : bit vector(3 downto 0) ;
signal y_test : std_logic_vector(7 downto 0); --output--
constant t : time := 50 ns;
test: A L U port map (a => a test, b => b test, sel => sel test, y =>
y test);
TESTING: PROCESS
begin
a_test <= "1110";</pre>
b test <= "0011";
sel test <= "0000"; --Increment a--
wait for t;
```

```
sel test <= "0001"; --Decrement a--
wait for t;
sel test <= "0010"; -- Multiplycation --
wait for t;
sel_test <= "0011"; --Increment b--</pre>
wait for t;
sel test <= "0100"; -- Decrement b--
wait for t;
sel test <= "0101"; -- Transfer a--
wait for t;
sel_test <= "0110";--ADD--
wait for t;
sel test <= "0111"; -- Subtract--
wait for t;
sel test <= "1000"; --Complement a--
wait for t;
sel test <= "1001"; --Complement b--
wait for t;
sel test <= "1010"; -- And Gate--
wait for t;
sel test <= "1011"; -- OR Gate--
wait for t;
sel test <= "1100"; --XOR Gate--
wait for t;
sel test <= "1101"; --XNOR Gate--
wait for t;
sel test <= "1110"; -- Nand Gate--
wait for t;
sel test <= "11111";--Nor Gate--
wait for t;
wait ; --wait forever--
end process ;
end behaviour;
```

