INDIAN INSTITUTE OF TECHNOLOGY DELHI DEPARTMENT OF MATHEMATICS

SEMESTER II, 2020-21

MTL 122 (REAL AND COMPLEX ANALYSIS)

Major Examination(Open book)

DATE: 15/05/2021(5-00 pm)

Total Marks: 40

Time: 24 hours

DEADLINE: 16/05/2021, 5-00 pm.

MARKS WILL BE AWARDED ONLY FOR THOSE ANSWERS WITH PROPER JUSTIFICATION

Question 1a: Let U be the plane with negative real axis deleted. Let y > 0. Find the limit

$$\lim_{y\to 0} \left[\log(a+iy) - \log(a-iy)\right],\,$$

where a > 0, and also when a < 0.

[2+2=4]

Question 1b: Let f be analytic on a closed disc \overline{D} of radius b > 0, centered at z_0 . Show that

$$\frac{1}{\pi b^2} \int \int_D f(x+iy) dy dx = f(z_0).$$

[6]

Question 2: Show that the function

$$f(z) = \sum_{n=1}^{\infty} \frac{z^2}{n^2 z^2 + 8}$$

is defined and continuous for the real values of z. Determine the region of the complex plane in which this function is analytic. Determine its pole.

[2+3+5=10]

Question 3: Suppose $\mathbb{K}(\mathbb{R}) = \{A \subseteq \mathbb{R} : A \neq \phi \text{ and compact}\}\$ and the mapping $D : \mathbb{K}(\mathbb{R}) \times \mathbb{K}(\mathbb{R}) \to \mathbb{R}$ is defined by

$$D(A, B) = \inf\{\delta > 0 : A \subseteq B_{\delta} \text{ and } B \subseteq A_{\delta}, A, B \in \mathbb{K}(\mathbb{R})\},\$$

where $A_{\delta} = \{x \in \mathbb{R} : d(x, A) < \delta\}$ and $d(x, A) = \inf\{|x - a| : a \in A\}$.

- a) Prove that $(\mathbb{K}(\mathbb{R}), D)$ is a metric space.
- b) Assume that $(\mathbb{K}(\mathbb{R}), D)$ is complete. Let f_1 and f_2 be two contraction maps. Then prove that there exists a unique set $E \in \mathbb{K}(\mathbb{R})$ such that $E = f_1(E) \cup f_2(E)$

[4+6=10]

Question 4: Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial such that

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots a_1 z + a_0,$$

where $n \geq 2$ and $a_i \in \mathbb{C}$, $a_n \neq 0$. Define

$$K(f) = \left\{ z \in \mathbb{C} | \lim_{k \to \infty} |f^k(z)| < \infty \right\}$$

and

$$J(f) = \operatorname{bd}(K(f)),$$

where $f^k = f \circ f \circ f \dots \circ f(k \text{ times}).$

- a) Prove that |f(z)| > 2|z|, whenever |z| > R for some R > 0.
- b) Prove that K(f) and J(f) are compact subsets of $\mathbb C.$
- c) Show that $(J(f))^{\circ} = \phi$.

[3+5+2=10]

—ALL THE BEST—