Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №6 по дисциплине «Математическая статистика»

Выполнил студент:

Кондратьев Д. А. группа: 3630102/70301

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1.	. Постановка задачи					
2.	Теория	2				
	2.1. Простая линейная регрессия	2				
	2.1.1. Модель простой линейной регрессии	2				
	2.2. Метод наименьших квадратов	2				
	2.2.1. Расчётные формулы для МНК-оценок	3				
	2.3. Метод наименьших модулей	4				
3.	Реализация	4				
4.	Результаты	4				
	4.1. Оценки коэффициентов линейной регрессии	4				
5.	. Обсуждение					
6.	Литература	6				
7.	Приложение	6				
\mathbf{C}	писок иллюстраций					
	1 Линейная регрессия	5				
\mathbf{C}	писок таблиц					
	1 Оценки коэффициентов линейной регрессии	4				

1. Постановка задачи

Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + e_i$, используя 20 точек на отрезке [-1.8;2] с равномерным шагом равным 0.2. Ошибку e_i считать нормально распределённой с параметрами (0,1). В качестве эталонной зависимости взять $y_i = 2 + 2x_i + e_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей.

Проделать то же самое для выборки, у которой в значения y_1 и y_{20} вносятся возмущения 10 и -10.

2. Теория

2.1. Простая линейная регрессия

2.1.1. Модель простой линейной регрессии

Регрессионную модель описания данных называют *простой линейной* регрессией, если

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, ..., n, \tag{1}$$

где x_1, \ldots, x_n — заданные числа (значения фактора);

 $y_1, ..., y_n$ — наблюдаемые значения отклика;

 $\varepsilon_1, \dots, \varepsilon_n$ — независимые, нормально распределённые $N(0, \sigma)$ с нулевым математическим ожиданием и одинаковой (неизвестной) дисперсией случайные величины (ненаблюдаемые);

 β_0, β_1 — неизвестные параметры, подлежащие оцениванию.

В модели (1) отклик y зависит зависит от одного фактора x, и весь разброс экспериментальных точек объясняется только погрешностями наблюдений (результатов измерений) отклика y. Погрешности результатов измерений x в этой модели полагают существенно меньшими погрешностей результатов измерений y, так что ими можно пренебречь [1, c. 507].

2.2. Метод наименьших квадратов

При оценивании параметров регрессионной модели используют различные методы. Один из наиболее распрстранённых подходов заключается в следующем: вводится мера (критерий) рассогласования отклика и регрессионной функции, и оценки параметров регрессии определяются так, чтобы сделать это рассогласование наименьшим. Достаточно простые расчётные формулы для оценок получают при выборе критерия в

виде суммы квадратов отклонений значений отклика от значений регрессионной функции (сумма квадратов остатков):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (2)

Задача минимизации квадратичного критерия (2) носит название задачи метода наименьших квадратов (МНК), а оценки $\hat{\beta}_0$, $\hat{\beta}_1$ параметров β_0 , β_1 , реализующие минимум критерия (2), называют МНК-оценками [1, с. 508].

2.2.1. Расчётные формулы для МНК-оценок

МНК-оценки параметров $\hat{\beta}_0$ и $\hat{\beta}_1$ находятся из условия обращения функции $Q(\beta_0, \beta_1)$ в минимум.

Для нахождения МНК-оценок $\hat{\beta_0}$ и $\hat{\beta_1}$ выпишем необходимые условия экстремума:

$$\begin{cases} \frac{\partial Q}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0, \\ \frac{\partial Q}{\partial \beta_1} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0 \end{cases}$$
(3)

Далее для упрощения записи сумм будем опускать индекс суммирования. Из системы (3) получим

$$\begin{cases} n\hat{\beta}_0 + \hat{\beta}_1 \sum x_i = \sum y_i \\ \hat{\beta}_0 \sum x_i + \hat{\beta}_1 \sum x_i^2 = \sum x_i y_i \end{cases}$$
 (4)

Разделим оба уравнения на n и используя известные статистические обозначения для выборочных первых и вторых начальных моментов

$$\overline{x} = \frac{1}{n} \sum x_i, \ \overline{y} = \frac{1}{n} \sum y_i, \ \overline{x^2} = \frac{1}{n} \sum x_i^2, \ \overline{xy} = \frac{1}{n} \sum x_i y_i,$$

получим

$$\begin{cases} \hat{\beta}_0 + \hat{\beta}_1 \overline{x} = \overline{y} \\ \hat{\beta}_0 \overline{x} + \hat{\beta}_1 \overline{x^2} = \overline{xy} \end{cases}$$
 (5)

откуда МНК-оценку $\hat{\beta}_1$ наклона прямой регрессии находим по формуле Крамера

$$\hat{\beta}_1 = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2} \tag{6}$$

а МНК-оценку $\hat{\beta}_0$ определяем непосредственно из первого уравнения системы (5):

$$\hat{\beta}_0 = \overline{y} - \overline{x}\hat{\beta}_1 \tag{7}$$

2.3. Метод наименьших модулей

Критерий наименьших модулей — заключается в минимизации следующей функции:

$$M(a,b) = \sum_{i=1}^{n} |y_i - ax_i - b| \to \min$$
(8)

3. Реализация

Лабораторная работа выполнена на программном языке Python~3.8 в среде разработки Jupyter~Notebook~6.0.3. В работе использовались следующие пакеты языка Python:

- numpy для генерации выборки и работы с массивами;
- matplotlib.pyplot и seaborn для построения графиков;
- scipy.optimize для решения задач оптимизации;

Ссылка на исходный код лабораторной работы приведена в приложении.

4. Результаты

4.1. Оценки коэффициентов линейной регрессии

Выборка без возмущений

		e 1
Критерий	a	b
MHK	1.502	1.878
MHM	1.709	1.563

Выборка с возмущениями

Критерий	a	b
MHK	0.394	1.895
MHM	1.457	1.564

Таблица 1. Оценки коэффициентов линейной регрессии

Рис. 1. Линейная регрессия

Введем следующую метрику:

$$\rho = \sum (y_i^* - y_i)^2$$

где y_i — значение эталонной функции в точке x_i , y_i^* — значение функции в точке x_i , полученное путем оценки.

Теперь посчитаем данные метрики для МНК и МНМ:

- выборка без возмущений: $\rho_{\text{MHK}} = 7.18, \; \rho_{\text{MHM}} = 7.33;$
- выборка с возмущениями: $\rho_{\text{MHK}} = 70.06, \ \rho_{\text{MHM}} = 11.94.$

5. Обсуждение

Исходя из полученных результатов можно сделать следующие выводы:

- Критерий наименьших квадратов точнее оценивает коэффициенты линейной регрессии на выборке без возмущений, так как $\rho_{\rm MHK} < \rho_{\rm MHM}$.
- Критерий наименьших модулей точнее оценивает коэффициенты линейной регрессии на выборке с возмущениями, так как $\rho_{\rm MHM} < \rho_{\rm MHK}$.

• Критерий наименьших модулей устойчив к редким выбросам по сравнению с критерием наименьших квадратов. Но при этом обладает большей вычислительной сложностью из-за необходимости решения задачи минимизации.

6. Литература

- 1) Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001.-592 с., илл.
- 2) Least squares. URL: https://en.wikipedia.org/wiki/Least_squares
- 3) Least absolute deviations. URL: https://en.wikipedia.org/wiki/Least_absolute_deviations

7. Приложение

- 1) Код лабораторной. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Lab_6/Lab_6.ipynb
- 2) Код отчёта. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Lab_6/Lab_report_6.tex