

Memory Hierarchy

Vikram Padman

Agenda

Introduction

Hierarc

Cache

SDRAM

Activity

Memory Hierarchy

CS6133 - Computer Architecture I

Vikram Padman

Polytechnic Institute of New York University

vikram@poly.edu

Agenda

Memory Hierarch

Vikran Padma

Agenda

Introduction

Hierarchy

Cache

SDRAN

- Introduction
- 4 Hierarchy
- Cache
- SDRAM
- Activity

Simple CPU's Memory

Memory Hierarchy

Vikram Padmar

Agenda

Introduction

SDRAM

ACTIVIT

- Let's consider the memories in Simple CPU
 - How does instruction get into Instruction Memory (IM) ?
 - How does data get in and out of Data Memory (DM)?
 - We said that IM and DM are L1 instruction and data cache in a modern CPU.
 - What is a cache and what is its function?
 - What is the size of the cache?
 - Why can't DDR3 RAM be IM and/or DM?

Memory-Cost

Memory Hierarch

Vikram Padmai

Agenda

Introduction

Hierarchy

Ĭ

Cache

SDRAM

ACLIVI

- CPU Registers Flip Flops
 - 1 CPU clock cycle (100's ps), \$2000-\$5000/GB
- 2 L1 Data/Instruction Cache Static RAM
 - 10's CPU clock cycle (<1ns), \$1000-\$2000/GB
- **1 L2 Cache** Static RAM
 - 25-50 CPU clock cycle (1-5 ns), \$500-\$1000/GB
- 4 L3 Cache Static RAM
 - 100's CPU clock cycle (< 10's ns), <\$500/GB
- **SDRAM** Dynamic RAM
 - \bullet 1,000's CPU clock cycle (50-100 ns), <\$25/GB
- Magnetic / Flash Disk
 - > 10,000's CPU clock cycle (5-20us), <\$1/GB
- Google Disk
 - Million's CPU clock cycle (< 1s), <\$.10/GB

Memory - Goals

Memory Hierarch

Vikram Padman

Agenda

Introduction

. . .

. .

CDDAN

• What are the goals of a memory system?

Large

 Less constrains on programs, more users, solve larger problems .. etc

Past

Run as fast as the CPU

Cheap

User should be able to afford it

4 Low Power

Can't afford a reactor!

• Solution: Memory Hierarchy

 Use slowest/cheapest memory to support the entire address space

 Use progressively smaller but faster memories each containing a subset of memory below it.

Memory Hierarchy

Hierarchy

(a) Memory hierarchy for server

(b) Memory hierarchy for a personal mobile device

Copyright ©2009 Elsevier, \lim_{\longrightarrow} \longrightarrow \bigoplus \longrightarrow \bigoplus \longrightarrow \bigoplus \longrightarrow

Memory Hierarchy Theory

Memory Hierarch

Vikram Padman

Agenua

Hierarchy

Theory

Cacne

SDRAN

- Principle of Locality: A small subset of memory is accessed more frequently than others at any given moment.
 - Spatial Locality: Memory locations near the current position have a high probability for being accessed soon
 - Temporal Locality: Memory locations that were accessed recently have a high probability for being accessed again
- Note that memory hierarchy would have a much higher negative impact on access time if we always access memory in a random order.

Memory Hierarchy Advantages

Hierarch:

Vikram Padmai

Internal and a

Hierarchy

Cachi

SDRAM

- Store everything in hard drive or in some slow secondary storage
- 2 Load all data and instructions required to run a particular program into main memory (DDR3, DDR2 ..etc)
- Oppy recently accessed and nearby memory locations from main memory to smaller, but much faster SRAM cache
- Provide data and instruction from the cache to the processor when it is needed

Memory Hierarchy Terminology

Memory Hierarch

Padman

Agenda

Hierarchy

Theory

Cach

SDRAN

- Cache Line or Block: Smallest unit of memory handled by cache, usually 32, 64 or 128 bytes in length.
- Cache Hit: Memory request by the CPU could be fulfilled by cache
- Hit Rate: Cache hits per unit of time, usually in seconds.
- Cache Miss: Memory request by the CPU could not be fulfilled by cache
- Miss Rate: Cache misses per unit of time, usually in seconds.

Cache Memory How Does Cache Work?

Hierarchy

Direct Mapped

SDRAM

Activity

Let's consider a **direct mapped** cache

- Every address in main memory is mapped to a specific cache line or block
- In direct mapped cache, an item in main memory could only go to one location in cache
- In this example, cache location = (Mem. Add.) mod 4

Cache Memory How Does Cache Work?

- Valid bit indicates cache line's validity (1 = Valid, 0 = Not valid) Valid bit is set to 0 initially
- Tag Holds the high order bits of the memory address that is being cached.
 In this example, tag would hold 3 high order memory address bits
- Dirty bit is asserted when cache line is written (Used only in cache write back mode)

Cache Memory Direct Mapped Cache Example

Memory Hierarchy

Vikram Padmai

Agenda

Introduction

Hierarchy

Diseast Mass

Associative

SDRAM

Activity

Mem. Add.						
00000	01F	<u>CPU</u>				
00001	020		Binary Add		Hit / Miss	
00010	021	1			Miss	
00011	022	2			Miss	
00100	023	3	00000		Hit	
00101	024	4			Miss	
00110	025	5	11010		Miss	
00111	026					
01000	027					
01001	028		<u>Cache</u>			
01010	029					
01011	02A		Line	Tag	Valid	Dirty
01100	02B	00	01F	000	Y	N
01101	02C	01	020	000	Y	N
01110	02D	10	039	110	Y	N
01111	02E	11	02A	010	Y	Ν
10000	02F					
10001	030					
10010	031					
10011	032					
10100	033					
10101	034					
10110	035					
10111	036					
11000	037					
11001	038					
11010	039					
11011	03A					
11100	03B					
11101	03C					
11110	03D					

11111

Cache Memory Direct Mapped - Address Subdivision

Memory Hierarchy

Vikram Padman

Agenda

Introduction

Hierarchy

Direct Mapp

Associative

SDRAM

Block Size vs Cache Size

Memory Hierarchy

Vikram Padmai

Agenda

Introduction

Hierarchy

Cache
Direct Mapped

Activity

Copyright ©2009 Elsevier, Inc

- Miss rate depends on cache size and block size
 - Larger block size does reduce miss rate only when the cache size is much larger than the block
 - Large block ⇒ fewer blocks ⇒ more competition ⇒ higher miss rate

Handling Cache Miss

Memory Hierarchy

Padmar

. .6-----

Introductio

Hierarchy

Direct Mapped
Associative

SDRAM

- CPU proceeds normally on a cache hit
- On a cache miss the CPU:
 - Stalls the pipeline
 - Fetches block from lower (slower) level memory, next in the hierarchy, to cache
 - L1 Instruction miss: Restart instruction fetch
 - L1 Data miss: Complete data access

Data Writes

Memory Hierarch

i auman

Hierarchy

Cache
Direct Mapped

Caches SDRAM

- Write-Through: Write to cache and to main memory directly
 - Writes are slow, but memory and cache would be consistent
- Write-Back: Only write to cache and update memory when evicted
 - Writes are fast, but memory and cache contents would be inconsistent
 - Cache and memory inconsistency could be an issue in multi processor system

Cache Performance

Memory Hierarchy

Vikram Padmai

Agenda

Introduction

Hierarchy

Direct Mapped
Associative

SDRAN

- ullet CPU_{tot} should includes time spent on cache hit and miss time
- $\bullet \ MEM_{stalls} = MEM_{acc}/Program*Miss_{rate}*Miss_{penalty}$
- $\Rightarrow Instructions/Program * Misses/Instruction * \\ Miss_{penalty}$
- For Example:
 - L1 I-Cache miss rate = 2%, L1 D-Cache miss rate = 4%
 - $Miss_{penalty} = 100$ Cycles
 - $CPI_{base} = 2$
 - Load & store are 36% of instructions
 - Cache Misses = I-Cache: .02*100 = 2, D-Cache: .36*.04*100 = 1.44
 - $CPI_{actual} = 2 + 2 + 1.44 5.44 \Rightarrow 2.72$ slower than CPI_{base}

Cache Performance

Memory Hierarchy

Padman

Agenda

Introductio

Hierarchy

Direct Mapped

SDRAM

Activity

• Hit time is also important for performance

- Average memory access time (AMAT)
 - $AMAT = HitTime + Miss_{rate} * Miss_{penalty}$
- Example
 - \bullet CPU with 1ns clock, hit time =1 cycle, miss penalty =20 cycles, I-cache miss rate =5%
 - AMAT = 1 + .05 * 20 = 2ns

Associative Caches

Memory Hierarchy

Vikram Padmai

/ tgcilda

Introduction

Hierarchy

Cache
Direct Mapped
Associative

SDRAN

- Fully associative cache
 - Allow any memory block to any cache line
 - All cache line entries has to be searched on access
- n-way set associative
 - Each set contains n entries
 - Block number determines which set
 - (Block Num) MOD (Number of Sets)
 - All cache line entries within a given set should be searched on access

Associative Caches

Block

Fully associative: block 12 can go anywhere

0 1 2 3 4 5 6 7

Block

Direct mapped: block 12 can go only into block 4 (12 MOD 8)

Set associative: block 12 can go anywhere in set 0 (12 MOD 4)

no. Cache

0 1 2 3 4 5 6 7 no.

01234567 Block Set Set Set Set

2

0

Block frame address

Block 11222222222233 9012345678901 no. Memory

Associative Caches

Memory Hierarchy

Vikram Padmai

Agenda

Introduction

Hierarchy

Cache
Direct Mapped
Associative
Caches

SDRAM

Activity

Copyright © 2009 Elsevier, Inc

Replacement Policy

Memory Hierarchy

Vikram Padman

3 1 1

Introductio

Hierarchy

Cache
Direct Mapped
Associative

SDRAM

- Direct Mapper: Don't have much choice
- Set Associative:
 - LRU Least-Recently Used
 - Choose the cache line that is not used for the longest time.
 - Random
 - Randomly select a cache line for eviction.
 - Does provide comparable performance as LRU for high associative cache

SDRAM - Very Simple Memory(SRAM)

Memory Hierarchy

Vikran Padma

Agenda

Introduction

Hierard

Cache

SDRAM

SDRAM - 4GB SRAM

Memory Hierarchy

Vikran Padma

Agenda

Introduction

. . . .

Caaba

CDDAN

DRAM -Simple

Memory Hierarchy

Vikram Padman

Agenda

Introductio

Hierarch

Cache

SDRAM

SDRAM - 1Gb DDR3 SDRAM Component

Memory Hierarchy

Vikram Padma

Agenda

Introduction

.....

Cache

SDRAM

SDRAM - Read Timing

Memory Hierarchy

Vikram Padman

Agenda

Introduction

Caciic

SDRAM

Week-12: Activity 1

Memory Hierarch

Vikram Padma

Introduction

Hierarchy Cache

SDRAM

Activity

Read Appendix B in your text book and answer the following questions:

- What is the difference between "n-way set associative" and "fully associative cache"? Describe the advantages and disadvantages.
- ② How is virtual memory managed?
- Mow does out-of-order execution effect cache memories performance?
- Is it possible to calculate optimal cache and page size for a given CPU architecture?
- Would it help application developers who develop high performance applications if they understand memory architecture? if yes, how?

Week-12: Activity 2

Memory Hierarch

Vikram Padman

Agenda

Introductio

THETATC

Cache

SDRAN

Activity

DDR4 SDRAM: Research about the upcoming DDR4 memory standard and answer the following questions:

- Could DDR4 memory eliminate the need for cache memory?
- What is the difference between DDR3 and DDR4 memory?

Week-12: Activity 3

Memory Hierarch

Vikrar Padma

Agenda Introduction Hierarchy

CDDAN

Activity

Consider Direct mapped and 2-way set associative cache architectures with 4K cache size, 16 byte blocks and 16 memory address bits.

- What is the tag size and index size for each architecture?
- Which architecture, in principle, would have a high hit rate? Provide detailed proof with access patterns to support your answer.
- Assuming LRU replacement policy, show a high miss rate in 2-way set associative cache compared to direct mapped cache. Provide detailed proof with access patterns to support your answer.