EE P 596 Conceptual Assignment 2: Due by 11:59pm Thursday, January 20

Qingchuan Hou

January 15, 2022

- 1. For logistic regression, the gradient is given by $\frac{\partial J}{\partial w_j} = \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ?

 - (A). $w^{(k+1)} = w^{(k)} \alpha \frac{1}{m} \sum_{i=1}^{m} ((w^{(k)})^T x^{(i)} y^{(i)}) x^{(i)}$ (B). $w^{(k+1)} = w^{(k)} \alpha \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} (w^{(k)})^T x^{(i)}) x^{(i)}$ (C). $w^{(k+1)} = w^{(k)} \alpha \frac{1}{m} \sum_{i=1}^{m} (\frac{1}{1 + exp^{-(w^{(k)})^T x^{(i)}}} y^{(i)}) x^{(i)}$ (D). $w^{(k+1)} = w^{(k)} \alpha \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} h_{w^{(k)}}(x^{(i)})) x^{(i)}$

Answer: C

2. Suppose you train a logistic classifier $h_w(x) = g(w_0 + w_1x_1 + w_2x_2)$ where g is sigmoid function, Suppose $w_0 = -6$, $w_1 = 0$, $w_2 = 1$, Which of the following figures represents the decision boundary found by your classifier?

Figure 1: Decision Boundary

- (A). Figure 1(a) is correct decision boundary.
- (B). Figure 1(b) is correct decision boundary.
- (C). Figure 1(c) is correct decision boundary.
- (D). Figure 1(d) is correct decision boundary.

Answer: C

3. We aim to apply logistic regression approach for solving the classification problem illustrated below,where "+" means class y = 1 and "0" means y = 0. The data is linearly separable. We assume the $P(y = 1|X,w) = 1 + \underbrace{\qquad \qquad exp_{w0} + 1_{w1x1} + w_2 x_2}_{\ensuremath{w_{1}} + w_2 x_2}$. The loss function $J(w) = -\sum_{i=1}^{N} log(P(y_i|X_i,w) + \lambda w_j^2)$, with regularization of only one parameter j 1,2 and very large λ . Given the data shown above, state whether the training error **increases** or **nearly stays the same** (zero) for each w_i for very large λ .

Figure 2: Linear separable data for classification

- (A). Only regularize w_1 , the training error will increase for larger *lambda* since the result decision boundary will become almost vertical.
- (B). Only regularize w_2 , the training error will stay the same for larger *lambda* since the result decision boundary will keep staying horizontal.
- (C). Only regularize w_1 , the training error will stay the same for larger *lambda* since the result decision boundary will keep staying horizontal.
- (D). Only regularize w_2 , the training error will stay the same for larger *lambda* since the result decision boundary will keep staying vertical.

Answer: C

- 4. Consider the Problem 3 using Lasso as regularization on w_1 and w_2 , then the loss function becomes $J(w) = -\sum_{i=1}^N log(P(y_i|X_i,w) + \lambda(|w_1| + |w_2|)$ As we increase the parameter λ , which of the following do you expect? Please explain the reasons.
 - (A). First w_1 will become 0, then w_2 .
 - (B). First w_2 will become 0, then w_1 .
 - (C). w_1 and w_2 become zero simultaneously. (D). None of them will become zero.

Answer: A

Explain reasons: The lasso will sparse the function. It will ignore the most un-important contributions by sequence. For P3, the x1 is not important than x2, so the lasso will remove the x1 first by letting the w1 go to 0. If the λ continues increase, the regularization part will make all the w come to 0. Then the w2 go to 0.

- 5. You are training a classification model with logistic regression. Which of the following statements are true?
 - (A). Introducing regularization to the model always results in equal or better performance on the training set.
 - (B). Introducing regularization in the model always results in equal or better performance on examples not in the training set.
 - (C). Add a new feature to the model are very likely to give you equal or better performance on the training set.
 - (D). Add many new features to the model helps prevent overfitting on the training set.

Answer: C

- 6. Which of the following is true to logistic regression?
 - (A). Logistic regression cannot give you the confidence of a prediction.
 - (B). Logistic regression cannot be affected by outliers in the data because the sigmoid function restricted the output between 0 and 1.
 - (C). The feature vector X has linear relationship with the logits defined by $log(\frac{P(y|X)}{1-P(y|X)})$.
 - (D). Using binary cross entropy loss to train logistic regression is better than mean square error because it can give us closed-form solution.

Answer: C

7. You are working on housing price prediction problem given 4 features AreaOfHouse, NumberOfRooms, NumberOfFloors, DistanceToTransitCenter. You try to build a linear regression model with Lasso and Ridge regression separately, you tune your model with regularization parameter λ , ranging from 0 to very large number(almost infinity). You know in prior that the importance of 4 features: AreaOfHouse > NumberOfRooms > DistanceToTransitCenter > NumberOfFloors, and assume these 4 features are independent of each other. Please sketch approximate plot of absolute value of result coefficient(the weight after training) of each feature with respect to $1/\lambda$ (model complexity) in the same figure, one figure for Lasso and the other for Ridge. (Think about what are differences on how these 4 features react to the changes of regularization parameter, and what are differences for lasso and ridge).

