DEVELOPER FOR ELECTROSTATIC CHARGE IMAGE AND IMAGE FORMING METHOD

Publication number: JP2002169324 Publication date: 2002-06-14

Inventor: TADOKORO HAJIME; SHIRASE AKIZO; YAMAZAKI

HIROSHI; YAMADA HIROYUKI; KOBAYASHI

YOSHIAKI

Applicant: KONISHIROKU PHOTO IND

Classification:

- international: G03G9/08; G03G9/087; G03G9/113; G03G15/20;

G03G9/08; G03G9/087; G03G9/113; G03G15/20; (IPC1-7): G03G9/08; G03G9/087; G03G9/113;

G03G15/20

- European:

Application number: JP20000367559 20001201 Priority number(s): JP20000367559 20001201

Report a data error here

Abstract of JP2002169324

PROBLEM TO BE SOLVED: To provide developer for an electrostatic charge image by which a high-quality image free from image soiling is stably formed over a long term, and an image forming method using the developer. SOLUTION: The developer for an electrostatic charge image is constituted of toner which is obtained by salting out/fusing resin particles incorporating a releasing agent, which consists of specified crystalline ester compound, in binding resin and colorant particles, and carrier constituted by forming a coating resin layer of specified silicone resin on core particles consisting of magnetic substance. This image forming method includes a stage where a toner image is fixed by making recording material on which the toner image developed with the developer for an electrostatic charge image is formed pass through space between a heating roller and a pressure roller.

Data supplied from the esp@cenet database - Worldwide

Partial Translation of JP 2002-169324

Publication Date: June 14, 2002

Application No.: 2000-367559

Filing Date: December 1, 2000

Applicant: Konica Corporation

Inventor: Hajime TADOKORO

Inventor: Akizo SHIRASE

Inventor: Hiroshi YAMAZAKI

Inventor: Hiroyuki YAMADA

Inventor: Yoshiaki KOBAYASHI

[0155]

[Example] Hereinafter, examples of the present invention will be described, however, the invention is not limited to these examples. Furthermore, "part" means "part by mass" in the following examples.

[0156] <Core particles manufacturing example 1> 22 mol % of Li₂CO₃ and 78 mol % of Fe₂O₃ were pulverized and mixed by a wet ball mill for 2 hours, and after drying the whole, the mixture was pre-baked by keeping it at 900 °C for 2 hours. The pre-baked material was pulverized again by a ball mill for 3 hours for slurrying. A dispersant and a binder were added to the slurry, the mixture was granulated and dried by a spray dryer to prepare primary particles, then the particles were full-baked at 1200 °C for 3 hours to obtain ferrite core particles having a volume average particle diameter of 71 μ m. The particles are regarded as "core particles 1".

[0157] <Core particles manufacturing example 2> Except that 23 mol % of Li₂CO₃, 7 mol % of Mg(OH)₂, and 70 mol % of Fe₂O₃ were used and the temperature of full-baking was changed to 1,250 °C, ferrite core particles having a volume average particle diameter of 61 µm were obtained in the same manner as core particles manufacturing example 1. The particles are regarded as "core particles 2".

[0158] <Core particles manufacturing example 3> Except that 20 mol % of Li_2CO_3 , 8 mol % of MnO, and 72 mol % of Fe_2O_3 were used, ferrite core particles having a volume average particle diameter of 52 μ m were obtained in the same manner as core particles manufacturing example 1. The particles are regarded as "core particles 3".

[0159] < Carrier manufacturing example 1> 100 Parts of silicone resin containing a building block in which substituents R³ and R⁴ in the general formula (II) were methyl and hydroxyl groups, respectively, and a building block in which both substituents R⁵ and R⁶ in the general formula (III) were methyl groups, with a mass ratio of (II): (III) = 40:60, 10 parts of silane coupling agent represented in the above mentioned formula (1), and 5 parts of oxime type cure agent represented in the above mentioned formula (15) were mixed, and the mixture was dissolved in toluene solvent to prepare a toluene solution having a solid content concentration of 15 mass %. Then, after the core particles 1 were coated with a toluene solution by a spray drying process, so that a resin coating amount to the core particles 1 would

become 0.5 mass %, the coated particles were cured at 230 °C for 3 hours to form a coating resin layer, so that a silicone resin carrier in which surface of the core particles 1 was coated with the silicone resin was obtained. The carrier is regarded as "carrier 1".

[0160] <Carrier manufacturing example 2> Except that the resin coating amount to the core particles 1 in carrier manufacturing example 1 was changed to 0.8 mass %, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example 1. The carrier is regarded as "carrier 2".

[0161] <Carrier manufacturing example 3> Except that when the resin coating layer was formed on the core particles in carrier manufacturing example 1, the resin coating amount to the core particles 1 was changed to 0.6 mass % to form a primary coating resin layer and further the resin coating amount was set to 0.4 mass % to form a desired coating resin layer, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example 1. The carrier is regarded as "carrier 3".

[0162] <Carrier manufacturing example 4> Except that the resin coating amount in carrier manufacturing example 3 was changed to 0.4 mass % to form a primary coating resin layer and further the resin coating amount was set to 0.4 mass % to form a desired coating resin layer, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example

3. The carrier is regarded as "carrier 4".

[0163] <Carrier manufacturing example 5> Except that the addition amount of the silane coupling agent represented in the above mentioned formula (1) in carrier manufacturing example 3 was changed to 20 parts, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example 3. The carrier is regarded as "carrier 5".

[0164] <Carrier manufacturing example 6> Except that the of addition amount of the silane coupling agent represented in the above mentioned formula (1) in carrier manufacturing example 3 was changed to 40 parts, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example 3. The carrier is regarded as "carrier 6".

[0165] <Carrier manufacturing example 7> Except that the silane coupling agent represented in the above mentioned formula (1) in carrier manufacturing example 1 was not added, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example 1. The carrier is regarded as "carrier 7".

[0166] <Carrier manufacturing example 8> Except that in carrier manufacturing example 3, 100 parts of silicone resin containing a building block in which the substituents R^3 and R^4 in the general formula (II) were methyl and hydroxyl groups, respectively, and a building block in which the both substituents R^5 and R^6 in the general formula (III) were methyl groups, with a mass ratio of (II): (III) = 30: 70, 30 parts of silane coupling agent

represented in the above mentioned formula (1), and 8 parts of oxime type cure agent represented in the above mentioned formula (17) were mixed to prepare a toluene solution having a solid content concentration of 15 mass %, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example 3. The carrier is regarded as "carrier 8".

[0167] < Carrier manufacturing example 9> Except that the core particles 2 were used in place of the core particles 1 in carrier manufacturing example 3, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example 3. The carrier is regarded as "carrier 9".

[0168] <Carrier manufacturing example 10> Except that the core particles 3 were used in place of the core particles 1 in carrier manufacturing example 3, a silicone resin coated carrier was obtained in the same manner as carrier manufacturing example 3. The carrier is regarded as "carrier 10".

[0169] <Comparative carrier manufacturing example> A styrene acrylic resin was dissolved in toluene solvent to prepare a toluene solution, the core particles 1 were coated with the toluene solution by spray drying process, so that a resin coating amount to the core particles 1 would become 0.8 mass %, so that a coating resin layer was formed by the styrene acrylic resin to obtain a resin coated carrier. The carrier is regarded as "comparative carrier 1".

[0170] Resistivity of each carrier obtained above was measured according to the above mentioned measurement method with setting an applied voltage of 1,000 V at the time of measurement. The results were shown in Table 1 below. Furthermore, a particle size distribution of each carrier was shown in Table 1 together.

[0171] [Table 1]

•	resistivity	volume	pa	rticle s	ize dist	ribution	lmass	%]
carrier	$[\Omega_{ m cm}]$	average	less	25 to	37 to	44 to	63 to	$75 \mu m$
		particle	than	37	44	63	75	and
		diameter	25 μm	μm	μm	μm	μm	above
		[[µm]	-	,			•	
Carrier1	2×10^{11}	71	0.0	$\overline{1.5}$	3.6	49.7	37.8	7.4
Carrier2	1×10^{12}	71	0.0	1.5	3.6	49.7	37.8	7.4
Carrier3	3×10^{12}	71	0.0	1.5	3.6	49.7	37.8	7.4
Carrier4	2×10^{12}	71	0.0	1.5	3.6	49.7	37.8	7.4
Carrier5	3×10^{12}	71	0.0	1.5	3.6	49.7	37.8	7.4
Carrier6	$4 imes10^{12}$	71	0.0	1.5	3.6	49.7	37.8	7.4
Carrier7	3×10^{12}	$7\overline{1}$	0.0	1.5	3.6	49.7	37.8	7.4
Carrier8	3×10^{12}	71	0.0	1.5	3.6	49.7	37.8	7.4
Carrier9	1×10^{12}	61	0.3	3.5	15.1	67.4	12.3	1.4
Carrier10	2×10^{12}	52	0.9	7.5	27.3	53.6	10.7	0.0
comparative	2×10^{13}	71	0.0	1.5	3.6	49.7	37.8	7.4
carrier 1								

[0172] < Prepare of toner >

[Preparation example HP-1] A surfactant solution (water medium) of 7.08 g of anionic surfactant (sodium dodecylsulfonate: SDS) dissolved in 2,760 g of ion-exchanged water was placed into a 5,000 ml separable flask attached with a stirring apparatus, a temperature sensor, a cooling tube, and a nitrogen introduction apparatus, and the inner temperature was heated up to 80 °C with stirring the whole at a stirring speed of 230 rpm under nitrogen stream. An initiator solution of 0.42 g of polymerization initiator (potassium persulfate: KPS) dissolved in 200 g of ion-exchanged water was added to the surfactant solution, and after setting a temperature at 75 °C, a

monomer mixed solution of 115.1g of styrene, 42.0g of n-butyl acrylate, and 10.9 g of methacrylic acid was added dropwise over one hour, the whole was heated and stirred at 75 °C for 2 hours to prepare a latex (a dispersion liquid of high molar weight resin particles). The latex is regarded as "latex (HP-1)". A peak molar weight of resin particles composing the latex (HP-1) was 518,000.

[0173] [Preparation example HP-2] Except that the reaction temperature in preparation example HP-1 was changed to 85 °C, a latex (a dispersion liquid of high molar weight resin particles) was prepared in the same manner as preparation example HP-1. The latex is regarded as "latex (HP-2)". A peak molar weight of resin particles composing the latex (HP-2) was 421,000.

[0174] [Preparation example HP-3] Except that the addition amount of polymerization initiator (KPS) in preparation example HP-1 was changed to 0.84 g, a latex (a dispersion liquid of high molar weight resin particles) was prepared in the same manner as preparation example HP-1. The latex is regarded as "latex (HP-3)". A peak molar weight of resin particles composing the latex (HP-3) was 316,000.

[0175] [Preparation example HP-4] Except that the addition amount of potassium persulfate (KPS) in preparation example HP-1 was changed to 0.84 g and the reaction temperature in preparation example HP-1 was changed to 90 °C, a latex (a dispersion liquid of high molar weight resin particles) was prepared in the same manner as preparation example HP-1.

The latex is regarded as "latex (HP-4)". A peak molar weight of resin particles composing the latex (HP-4) was 193,000.

[0176] [Preparation example MP-1] In a flask attached with a stirring apparatus, 72.0 g of the compound represented by the above mentioned formula (W19) (hereinafter, referred to as "example compound (19)") was added to a monomer mixed solution of 383.6 g of styrene, 140.0 g of n-butyl acrylate, 36.4 g of methacrylic acid, and 5.6 g of dodecyl mercaptan, and the whole was heated and dissolved at 80 °C to prepare a monomer solution. On the other hand, a surfactant solution (water medium) of 1.6 g of anionic surfactant (SDS) dissolved in 2,000 g of ion exchanged water was placed into a 5,000 ml separable flask attached with a stirring apparatus, a temperature sensor, a cooling tube, and a nitrogen introduction apparatus, and the inner temperature was heated up to 80 °C. Then, the above-mentioned monomer solution (80 °C) was mixed and dispersed in the above-mentioned surfactant solution (80 °C) by a mechanical dispersing apparatus having a circulation pass "CLEARMIX" (manufactured by M-Technique) to prepare a dispersion liquid of emulsification particles (oil droplets) having an uniform dispersed particle diameter. Then, an initiator solution of 19.1 g of polymerization initiator (KPS) dissolved in 240 g of ion-exchanged water, and 750 g of ion-exchanged water were added to the dispersion liquid, the whole was heated and stirred at 80 °C for 3 hours for polymerization to prepare a latex (a dispersion liquid of middle molecular weight resin particles containing example compound (W19)). The latex is regarded as "latex (MP-1)". A peak molar weight of resin particles composing the latex (MP-1) was

103,000.

[0177] [Preparation example MP-2] Except that the amount of dodecyl mercaptan composing the monomer mixed solution in preparation example MP-1 was changed to 8.3 g, a latex (a dispersion liquid of middle molecular weight resin particles containing example compound (W19)) was prepared in the same manner as preparation example MP-1. The latex is regarded as "latex (MP-2)". A peak molar weight of resin particles composing the latex (MP-2) was 81,000.

[0178] [Preparation example MP-3] Except that the addition amount of the example compound (W19) to the monomer mixed solution in preparation example MP-1 was changed to 144.0 g and 5.6 g of n-octyl-3-mercaptopropionic acid ester was used in place of dodecyl mercaptan in preparation example MP-1, a latex (a dispersion liquid of middle molecular weight resin particles containing example compound (W19)) was prepared in the same manner as preparation example MP-1. The latex is regarded as "latex (MP-3)". A peak molar weight of resin particles composing the latex (MP-3) was 103,000.

[0179] [Preparation example MP-4] Except that 72.0 g of the compound represented by the above mentioned formula (W21) (hereinafter, referred to as "example compound (W21)") was added to the monomer mixed solution in place of the example compound (W19) in preparation example MP-1, a latex (a dispersion liquid of middle molecular weight resin particles containing

example compound (W21)) was prepared in the same manner as preparation example MP-1. The latex is regarded as "latex (MP-4)". A peak molar weight of resin particles composing the latex (MP-4) was 102,000.

[0180] [Preparation example MP·5] Except that 72.0 g of the compound represented by the above mentioned formula (W18) (hereinafter, referred to as "example compound (W18)") was added to the monomer mixed solution in place of the example compound (W19) in preparation example MP·1, a latex (a dispersion liquid of middle molecular weight resin particles containing example compound (W18)) was prepared in the same manner as preparation example MP·1. The latex is regarded as "latex (MP·5)". A peak molar weight of resin particles composing the latex (MP·5) was 102,000.

[0181] [Preparation example LP-1] A surfactant solution (water medium) of 60 g of anionic surfactant (SDS) dissolved in 5,000 g of ion-exchanged water was placed into a flask attached with a stirring apparatus, a temperature sensor, a cooling tube, and a nitrogen introduction apparatus, and the inner temperature was heated up to 80 °C with stirring the whole at a stirring speed of 230 rpm under nitrogen stream. An initiator solution of 22.8 g of polymerization initiator (KPS) dissolved in 200 g of ion-exchanged water was added to the surfactant solution, and with keeping the temperature at 80 °C, a monomer mixed solution of 850 g of styrene, 252 g of butyl acrylate, 98 g of methacrylic acid, and 32 g of n-octyl-3-mercaptopropionic acid ester was added dropwise over one hour, and the whole was heated and stirred at 80 °C for 2 hours to prepare a latex (a dispersion liquid of low molar weight resin

particles). The latex is regarded as "latex (LP-1)". A peak molar weight of resin particles composing the latex (LP-1) was 18,000.

[0182] [Manufacturing example 1Bk] 90 g of sodium n-dodecyl sulfate was stirred and dissolved in 1,600 ml of ion-exchanged water. With stirring the solution, 200 g of carbon black "Mogul L" (manufactured by Cabot Corporation) was added gradually to the solution, then the whole was subjected to a dispersion treatment using a stirring apparatus with a high speed roter "CLEARMIX" (manufactured by M-Technique) to prepare a dispersion liquid of colorant particles (hereinafter, referred to as "colorant dispersion liquid (Bk)"). When a particle diameter of the colorant particles in the colorant dispersion liquid (Bk) was measured using an electrophoretic light scattering photometer "ELS-800" (manufactured by Otsuka Electronics Co.,Ltd.), the weight average particle diameter was 101 nm.

[0183] 3,000 g of latex (HP-1) obtained from preparation example HP-1, 2,500 g of latex (MP-1) obtained from preparation example MP-1, 6,000 g of latex (LP-1) obtained from preparation example LP-1, 2,000 g of ion-exchanged water, and 1,800 g of colorant dispersion liquid (Bk) were added to a reaction container attached with a temperature sensor, a cooling tube, a nitrogen introduction apparatus, and a stirring apparatus, and the whole was stirred. After adjusting the inner temperature at 30 °C, 5 N sodium hydroxide aqueous solution was added to adjust pH to 11.0. Then, an aqueous solution of 526 g of magnesium chloride 6-hydrate dissolved in 720 ml of ion-exchanged water was added under stirring at 30 °C over 10

minutes. After leaving the mixture for 3 minutes, the temperature rise was started, and the temperature of the mixture was risen to 90 °C over 6 minutes (rate of temperature rise = 10 °C/min). At the state, a particle diameter of associated particles was measured by "Coulter counter TA-II", and when the volume average particle diameter became 6.5 μm, an aqueous solution of 1,150 g of sodium chloride dissolved in 7,000 ml of ion-exchanged water was added for stopping particle growth, further, as an aging treatment the mixed solution was heated and stirred at 85 °C of the solution temperature for 2 hours to continue fusing. Then, the solution was cooled to 30 °C under a condition of 8 °C/min, hydrochloric acid was added to adjust pH to 2.0, and the stirring was stopped. The formed associated particles were filtered and washed with ion-exchanged water repeatedly, then dried with warm air at 40 °C to obtain colored particles. The colored particles obtained above are regarded as "colored particles 1Bk".

[0184] [Manufacturing examples 2Bk to 11Bk] Except that according to formulations shown in Table 2 below, at least one of a type of latex used (the amounts used were same), aging treatment temperature, and aging treatment period was changed, colored particles containing a releasing agent were obtained in the same manner as manufacturing example 1Bk. The colored particles obtained above are regarded as "colored particles 2Bk" to "colored particles 11Bk".

[0185] [Comparative manufacturing example 1bk] 140 g of example compound (W19) heated and dissolved was ultrasonic-dispersed in a

surfactant solution (85 °C) of 0.5 g of anionic surfactant (SDS) dissolved in 400 g of ion exchanged water. The dispersion liquid is regarded as "releasing agent dispersion liquid". Except that the releasing agent dispersion liquid, 3,000 g of latex (HP·1) obtained from preparation example HP·1, 6,000 g of latex (LP·1) obtained from preparation example LP·1, 2,000 g of ion exchanged water, and 1,800 g of colorant dispersion liquid (Bk) were placed in a reaction container attached with a temperature sensor, a cooling tube, a nitrogen introduction apparatus, and a stirring apparatus and the whole was stirred, and that aging treatment period was changed to 4 hours, colored particles containing a releasing agent were obtained in the same manner as manufacturing example 1Bk. The colored particles obtained above are regarded as "comparative colored particles 1bk".

[0186] [Table 2]

$\operatorname{colored}$		latex	-	aging treat	ment
particles	emulsion	miniemulsion	emulsion	temperature	time
	polymerization	\mathbf{method}	polymerization	_	period
	method		method		•
colored	HP-1	MP-1	LP-1	85°C	2
particles1Bk					hours
colored	HP-1	MP-1	LP-1	85°C	4
particles2Bk					hours
colored	HP-1	MP-1	LP-1	85°C	6
particles3Bk					hours
colored	HP-1	MP-1	LP·1	85°C	8
particles4Bk					hours
colored	HP-1	MP-1	LP-1	95°C	1
particles5Bk					hour
colored	HP-1	MP-1	LP-1	80°C	6
particles6Bk					hours
colored	HP·1	MP-1	LP-1	80°C	10
particles7Bk					hours
colored	HP-2	MP-2	LP-1	$85^{\circ}\mathrm{C}$	4
particles8Bk					hours
colored	HP·3	MP-3	LP·1	$85^{\circ}\mathrm{C}$	4
particles9Bk					hours
colored	HP-4	MP-4	LP-1	$85^{\circ}\mathrm{C}$	4
particles10Bk					hours
colored	HP-1	MP-5	LP-1	$85^{\circ}\mathrm{C}$	4
particles11Bk					hours
comparative	HP-1		LP-1	85°C	4
colored					hours
particles1Bk					

[0187] [Manufacturing example 1Y] 90 g of sodium n-dodecyl sulfate was stirred and dissolved in 1,600 ml of ion-exchanged water. With stirring the solution, 200 g of dye (C.I. Solvent Yellow 93) was added gradually, then the whole was subjected to a dispersion treatment using a stirring apparatus with a high speed roter "CLEARMIX" (manufactured by M-Technique) to prepare a dispersion liquid of colorant particles (hereinafter, referred to as "colorant dispersion liquid (Y)"). When a particle diameter of the colorant particles in the colorant dispersion liquid (Y) was measured using an

electrophoretic light scattering photometer "ELS-800" (manufactured by Otsuka Electronics Co.,Ltd.), the weight average particle diameter was 98 nm.

[0188] 3,000 g of latex (HP-1) obtained from preparation example HP-1, 2,500 g of latex (MP-1) obtained from preparation example MP-1, 6,000 g of latex (LP-1) obtained from preparation example LP-1, 2,000 g of ion-exchanged water, and 1,800 g of colorant dispersion liquid (Y) were placed in a reaction container attached with a temperature sensor, a cooling tube, a nitrogen introduction apparatus, and a stirring apparatus and the whole was stirred. After adjusting the inner temperature at 30 °C, 5 N sodium hydroxide aqueous solution was added to adjust pH to 11.0. Then, an aqueous solution of 526 g of magnesium chloride 6-hydrate dissolved in 720 ml of ion exchanged water was added under stirring at 30 °C over 10 minutes. After leaving the mixture for 3 minutes, the temperature rise was started, and the temperature of the mixture was risen to 90 °C over 6 minutes (rate of temperature rise = 10 °C/min). At the state, a particle diameter of associated particles was measured by "Coulter counter TA·II", and when the volume average particle diameter became 6.5 µm, an aqueous solution of 1,150 g of sodium chloride dissolved in 7,000 ml of ion-exchanged water was added for stopping particle growth, further, as an aging treatment the mixed solution was heated and stirred at 85 °C of the solution temperature for 4 hours to continue fusing. Then, the solution was cooled to 30 °C under a condition of 8 °C/min, hydrochloric acid was added to adjust pH to 2.0, and the stirring was stopped. The formed associated particles

were filtered and washed with ion exchanged water repeatedly, then dried with warm air at 40 °C to obtain colored particles. The colored particles obtained above are regarded as "colored particles 1Y".

[0189] [Comparative manufacturing example 1y] 140 g of example compound (W19) heated and dissolved was ultrasonic-dispersed in a surfactant solution (85 °C) of 0.5 g of anionic surfactant (SDS) dissolved in 400 g of ion-exchanged water. The dispersion liquid is regarded as "releasing agent dispersion liquid". Except that the releasing agent dispersion liquid, 3,000 g of latex (HP-1) obtained from preparation example HP-1, 6,000 g of latex (LP-1) obtained from preparation example LP-1, 2,000 g of ion-exchanged water, and 1,300 g of colorant dispersion liquid (Y) were placed in a reaction container attached with a temperature sensor, a cooling tube, a nitrogen introduction apparatus, and a stirring apparatus and the whole was stirred, colored particles containing a releasing agent were obtained in the same manner as manufacturing example 1Y. The colored particles obtained above are regarded as "comparative colored particles 1y".

[0190] [Manufacturing example 1M] 90 g of sodium n-dodecyl sulfate was stirred and dissolved in 1,600 ml of ion-exchanged water. With stirring the solution, 200 g of dye (C.I. Pigment Red 122) was added gradually, then the whole was subjected to a dispersion treatment using a stirring apparatus with a high speed roter "CLEARMIX" (manufactured by M-Technique) to prepare a dispersion liquid of colorant particles (hereinafter, referred to as "colorant dispersion liquid (M)"). When a particle diameter of the colorant

particles in the colorant dispersion liquid (M) was measured using an electrophoretic light scattering photometer "ELS-800" (manufactured by Otsuka Electronics Co.,Ltd.), the weight average particle diameter was 115 nm.

[0191] 3,000 g of latex (HP-1) obtained from preparation example HP-1, 2,500 g of latex (MP-1) obtained from preparation example MP-1, 6,000 g of latex (LP-1) obtained from preparation example LP-1, 2,000 g of ion-exchanged water, and 1,800 g of colorant dispersion liquid (M) were placed in a reaction container attached with a temperature sensor, a cooling tube, a nitrogen introduction apparatus, and a stirring apparatus and the whole was stirred. After adjusting the inner temperature at 30 °C, 5 N sodium hydroxide aqueous solution was added to adjust pH to 11.0. Then, an aqueous solution of 526 g of magnesium chloride 6-hydrate dissolved in 720 ml of ion-exchanged water was added under stirring at 30 °C over 10 minutes. After leaving the mixture for 3 minutes, the temperature rise was started, and the temperature of the mixture was risen to 90 °C over 6 minutes (rate of temperature rise = 10 °C/min). At the state, a particle diameter of associated particles was measured by "Coulter counter TA-II", and when the volume average particle diameter became 6.5 µm, an aqueous solution of 1,150 g of sodium chloride dissolved in 7,000 ml of ion-exchanged water was added for stopping particle growth, further, as an aging treatment the mixed solution was heated and stirred at 85 °C of the solution temperature for 4 hours to continue fusing. Then, the solution was cooled to 30 °C under a condition of 8 °C/min, hydrochloric acid was added to adjust

pH to 2.0, and the stirring was stopped. The formed associated particles were filtered and washed with ion exchanged water repeatedly, then dried with warm air at 40 °C to obtain colored particles. The colored particles obtained above are regarded as "colored particles 1M".

[0192] [Comparative manufacturing example 1m] 140 g of example compound (W19) heated and dissolved was ultrasonic dispersed in a surfactant solution (85 °C) of 5.0 g of anionic surfactant (SDS) dissolved in 4,000 g of ion exchanged water. The dispersion liquid is regarded as "releasing agent dispersion liquid". Except that the releasing agent dispersion liquid, 3,000 g of latex (HP-1) obtained from preparation example HP-1, 6,000 g of latex (LP-1) obtained from preparation example LP-1, 2,000 g of ion exchanged water, and 1,300 g of colorant dispersion liquid (M) were placed in a reaction container attached with a temperature sensor, a cooling tube, a nitrogen introduction apparatus, and a stirring apparatus and the whole was stirred, colored particles containing a releasing agent were obtained in the same manner as manufacturing example 1M. The colored particles obtained above are regarded as "comparative colored particles 1m".

[0193] [Manufacturing example 1C] 90 g of sodium n-dodecyl sulfate was stirred and dissolved in 1,600 ml of ion-exchanged water. With stirring the solution, 200 g of dye (C.I. Pigment Blue 15:3) was added gradually, then the whole was subjected to a dispersion treatment using a stirring apparatus with a high speed roter "CLEARMIX" (manufactured by M-Technique) to prepare a dispersion liquid of colorant particles (hereinafter, referred to as

"colorant dispersion liquid (C)"). When a particle diameter of the colorant particles in the colorant dispersion liquid (C) was measured using an electrophoretic light scattering photometer "ELS-800" (manufactured by Otsuka Electronics Co.,Ltd.), the weight average particle diameter was 105 nm.

[0194] 3,000 g of latex (HP-1) obtained from preparation example HP-1, 2,500 g of latex (MP-1) obtained from preparation example MP-1, 6,000 g of latex (LP-1) obtained from preparation example LP-1, 2,000 g of ion exchanged water, and 1,300 g of colorant dispersion liquid (M) were placed in a reaction container attached with a temperature sensor, a cooling tube, a nitrogen introduction apparatus, and a stirring apparatus and the whole was stirred. After adjusting the inner temperature at 30 °C, 5 N sodium hydroxide aqueous solution was added to adjust pH to 11.0. Then, an aqueous solution of 526 g of magnesium chloride 6-hydrate dissolved in 720 ml of ion exchanged water was added under stirring at 30 °C over 10 minutes. After leaving the mixture for 3 minutes, the temperature rise was started, and the temperature of the mixture was risen to 90 °C over 6 minutes (rate of temperature rise = 10 °C/min). At the state, a particle diameter of associated particles was measured by "Coulter counter TA-II", and when the volume average particle diameter became 6.5 µm, an aqueous solution of 1,150 g of sodium chloride dissolved in 7,000 ml of ion-exchanged water was added for stopping particle growth, further, as an aging treatment the mixed solution was heated and stirred at 85 °C of the solution temperature for 4 hours to continue fusing. Then, the solution was cooled to

30 °C under a condition of 8 °C/min, hydrochloric acid was added to adjust pH to 2.0, and the stirring was stopped. The formed associated particles were filtered and washed with ion-exchanged water repeatedly, then dried with warm air at 40 °C to obtain colored particles. The colored particles obtained above are regarded as "colored particles 1C".

[0195] [Comparative manufacturing example 1c] 140 g of example compound (W19) heated and dissolved was ultrasonic dispersed in a surfactant solution (85 °C) of 5.0 g of anionic surfactant (SDS) dissolved in 4,000 g of ion-exchanged water. The dispersion liquid is regarded as "releasing agent dispersion liquid". Except that the releasing agent dispersion liquid, 3,000 g of latex (HP-1) obtained from preparation example HP-1, 6,000 g of latex (LP-1) obtained from preparation example LP-1, 2,000 g of ion-exchanged water, and 1,300 g of colorant dispersion liquid (C) were placed in a reaction container attached with a temperature sensor, a cooling tube, a nitrogen introduction apparatus, and a stirring apparatus and the whole was stirred, colored particles containing a releasing agent were obtained in the same manner as manufacturing example 1C. The colored particles obtained above are regarded as "comparative colored particles 1c".

[0196]

[Table 3]

colored		latex		aging treat	ment
particles	emulsion	miniemulsion		temperature	time
	polymerization	${f method}$	polymerization		period
	method		\mathbf{method}		
colored	HP-1	MP-1	LP-1	85°C	4
particles1Y					hours
colored	HP-1	MP-1	LP-1	$-85^{\circ}\mathrm{C}$	4
particles1M		<u> </u>			hours
$\operatorname{colored}$	$\overline{\text{HP-1}}$	MP-1	LP-1	85°C	4
particles1C					hours
comparative	HP-1		LP·1	85°C	4
colored					hours
particles1y					
comparative	HP-1		LP-1	85°C	4
colored					hours
particles1m					
comparative	HP-1		LP-1	85°C	4
colored					hours
particles1c					

[0197] Shape characteristics and particle size distribution characteristics of the colored particles 1Bk to 11Bk, comparative colored particles 1bk, colored particles 1Y, 1M, and 1C, and comparative colored particles 1y, 1m, and 1c obtained above were measured, respectively. The results were shown in Table 4 below.

[0198]

[Table 4]

colored	mean	variation	number	number	ratio	ratio of	M
particles type	value	coefficient		variation	of	toner	(m1
particles type	of		particle	coefficient	shape	particles	+
	shape	factor [%]	diameter			without	m2)
	factor	14001 [70]	[µm]	particle		corner	[%]
	lactor		μπη	diameter	1.6[%]		[,0]
	1			distribution	1.0[/0]	[10]	
				[%]			
colored	1.57	15	6.3	25	85	84	72
particles1Bk	1.57	10	0.5	20	00	04	12
colored	1.54	14	6.4	23	82	86	74
	1.04	14	0.4	20	02	80	'4
particles2Bk colored	1.42	14	6.8	24	79	90	72
	1.44	14	0.0	2 4	19	90	' 4
particles3Bk	1.30	13	7.3	20	65	92	78
colored	1.30	13	1.3	20	ဗ	92	10
particles4Bk	1.01	10	C 0	90	61	41	70
colored	1.61	19	6.2	29	ρ1	41	10
particles5Bk	1 54	10	7.0	0.1	05	0.0	7.4
colored	1.54	13	7.0	21	85	88	74
particles6Bk	101	10			70		J=7 -4
colored	1.34	12	6.8	22	70	91	71
particles7Bk							
colored	1.49	13	6.7	21	75	88	74
particles8Bk							
colored	1.43	14	6.7	21	73	86	80
particles9Bk							
colored	1.39	12	6.8	20	80	89	79
particles10Bk							
colored	1.43	13	6.5	22	75	87	77
particles11Bk							
comparative	1.56	19	6.9	29	68	81	74
colored						İ	
particles1Bk							
colored	1.54	14	6.6	23	82	86	75
particles1Y							
colored	1.53	14	6.4	24	81	86	77
particles1M			5, -				
colored	1.54	13	6.5	23	82	88	74
particles1C							-
comparative	1.68	18	6.8	29	68	86	74
colored							-
particles1y							
comparative	1.63	18	6.3	29	69	88	74
colored	1.00						
particles1m							
comparative	1.69	19	6.9	28	68	86	74
colored	1.00	10	0.0				••
particles1c							
Particlesic						<u> </u>	

[0199] To each of the above mentioned colored particles and comparative colored particles, hydrophobic silica (number average primary particle diameter = 10 nm, degree of hydrophobicity = 63) was added, so that a ratio of the hydrophobic silica would be 1.0 mass %, and furthermore hydrophobic titanium oxide (number average primary particle diameter = 25 nm, degree of hydrophobicity = 60) was added, so that a ratio of the hydrophobic titanium oxide would be 1.2 mass %, respectively, and the whole was mixed by a Henschel Mixer. By the way, the shape and particle diameter of the toner particles were not changed by addition of the hydrophobic silica and the hydrophobic titanium oxide.

[0200] Then, according to the formulation shown in Table 5 below, the colored particles to which hydrophobic silica and hydrophobic titanium oxide were added and the above mentioned carriers 1 to 10 and comparative carrier 1 were mixed, respectively, to prepare developers having a toner concentration of 5 mass %.

[0201]

[Table 5]

developer type	toner type	No. of carrier
developer1Bk	toner1Bk	carrier1
developer2Bk	toner2Bk	carrier1
developer3Bk	toner3Bk	carrier1
developer4Bk	toner4Bk	carrier1
developer5Bk	toner5Bk	carrier1
developer6Bk	toner6Bk	carrier1
developer7Bk	toner7Bk	carrier1
developer8Bk	toner8Bk	carrier1
developer9Bk	toner9Bk	carrier1
developer10Bk	toner10Bk	carrier1
developer11Bk	toner11Bk	carrier1
developer12Bk	toner1Bk	carrier2
developer13Bk	toner1Bk	carrier3
developer14Bk	toner1Bk	carrier4
developer15Bk	toner1Bk	carrier5
developer16Bk	toner1Bk	carrier6
developer17Bk	toner1Bk	carrier7
developer18Bk	toner1Bk	carrier8
developer19Bk	toner1Bk	carrier9
developer20Bk	toner1Bk	carrier10
color developer 1	1Bk/ 1Y/ 1M/ 1C	carrier1
comparative color	1bk/ 1y/ 1m/ 1c	carrier1
developer 1		
comparative color	1Bk/ 1Y/ 1M/ 1C	comparative carrier 1
developer 2		

[0202] <Examples 1 to 20 and comparative examples 1 and 2> As for each developer of the invention 1Bk to 11Bk and comparative developer 1bk obtained above, using a digital copying machine "7075" (manufactured by Konica Corporation) having a toner recycle system in which a collected toner by cleaning was returned to a developing device again by a suitable recycle system and was reused, under a high temperature and high humidity condition of a temperature of 32 °C and a relative humidity of 85 %, an actual print test in which a original copy having a pixel rate of 5 % was printed 200,000 pieces with 5-sheet intermittent printing was performed,

and the first formed image and the 200,000th formed image were evaluated concerning the image darkness and the fog darkness. The results were shown in Table 6. Furthermore, as for each developer, amounts of electrification at the initial stage and after 200,000 prints were measured and the difference was calculated to evaluate a variation of electrification amounts due to the number of prints. The results were shown in below Table 6 together.

[0203] (1) Image darkness and fog darkness

An image darkness was evaluated with absolute density which was obtained by measuring an image darkness of a solid black image area of a fixed image by a Macbeth reflection densitometer "RD-918". A fog darkness was evaluated with relative density to a white background area of a recording material (reflection density: 0.00), in which the relative density was obtained by measuring an image darkness of the white background area of a fixed image by a Macbeth reflection densitometer "RD-918".

[0204] (2) Amount of electrification

A variation range of electrification amounts due to the number of prints was evaluated by measuring electrification amounts at an initial stage and after 200,000 prints. Measurement of the electrification amount was performed by measuring a remaining carrier charge after placing 1 g of developer in a cell with stainless steel mesh and blowing nitrogen gas at a pressure of 0.2 kg/cm² for 6 seconds. In the case of the variation range between an electrification amount at an initial stage and an electrification amount after

200,000 prints is less than 6 μ C/g, it is no problem for practical use, in the case of the variation range of the electrification amounts is 6 to 10 μ C/g, it is expected that it causes an occurrence of toner scattering or fog, and in the case of the variation range of the electrification amounts is more than 10 μ C/g, it is not practical because the toner scattering or the fog or the like occurs.

[0205] Here, a blade system was adopted for photoreceptor cleaning. Furthermore, a heat fixing device using a pressure welding method shown in Figure 4 was used for the fixing device. A specific structure of the fixing device will be described below. A heating roller (an upper roller) was structured by covering surface of a cylindrical cored bar (inner diameter = 40 mm, radial thickness = 1.0 mm, maximum width = 310 mm), in which a heater was embedded in the center part, made of aluminum alloy, with a PFA (tetrafluoroethylene-perfluoroalkylvinylether copolymer) tube (thickness: 120 µm), a pressure roller (a lower roller) was structured by covering surface of a cylindrical cored bar (inner diameter = 40 mm, radial thickness = 2.0 mm) mm) made of iron with spongy silicone rubber (Ascar C hardness: 48°, thickness: 2 mm), and a nip having a width of 5.8 mm was formed by contacting the heating roller and the pressure roller by applying a total load of 150 N. Using the fixing device, a linear velocity for printing was set at 250 mm/sec. Furthermore, a supplying system using a web system impregnated polydiphenylsilicone (having a viscosity at 20 °C of 10Pa*s) was used for a cleaning mechanism of the fixing device. A fixing temperature was controlled by a temperature of heating roller surface (setting

temperature: 175 °C). Furthermore, a coating amount of silicone oil was 0.1 mg/A4.

[0206]

[Table 6]

Example	developer type			fog darkness		variation of
			kness			electrification
		initial		initial	after	amounts due
			200,000		200,000	to the
			prints		prints	number of
						prints [μC/g]
example1	developer1Bk	1.43	1.38	0.001	0.002	3.6
example2	developer2Bk	1.44	1.38	0.001	0.003	3.7
example3	developer3Bk	1.43	1.38	0.001	0.002	3.8
example4	developer4Bk	1.42	1.39	0.001	0.002	4.1
example5	developer5Bk	1.43	1.38	0.001	0.002	4.0
example6	developer6Bk	1.42	1.39	0.001	0.002	4.2
example 7	developer7Bk	1.44	1.39	0.001	0.002	4.1
example8	developer8Bk	$\overline{1.44}$	1.39	0.001	0.003	3.6
example9	developer9Bk	1.42	1.38	0.001	0.002	$\overline{3.7}$
example 10	developer10Bk	1.44	1.39	0.001	0.002	4.1
example 11	developer11Bk	1.42	1.38	0.001	0.002	3.8
example 12	developer12Bk	1.42	1.38	0.001	0.002	4.1
example13	developer13Bk	1.42	1.41	0.001	0.001	3.7
example14	developer14Bk	1.42	1.41	0.001	0.001	3.9
example15	developer15Bk	1.42	1.41	0.001	0.001	4.0
example 16	developer16Bk	1.43	1.42	0.001	0.001	4.1
example 17	developer17Bk	1.42	1.38	0.001	0.002	3.7
example 18	developer18Bk	1.42	1.41	0.001	0.001	3.7
example 19	developer19Bk	1.42	1.41	0.001	0.001	3.8
example20	developer20Bk	$1.\overline{42}$	1.41	0.001	0.001	3.8
comparative	comparative	1.42	1.40	0.001	0.006	9.9
example1	developer 1Bk					
comparative	comparative	1.42	1.15	0.001	0.017	14.3
example2	developer 2Bk					

[0207] <Example 21 and comparative examples 3 and 4> According to the combinations shown in Table 7 below, with the use of each color developer and comparative color developer of the invention, using a color copying machine using a intermediate transfer method, under a room temperature

and high humidity condition of a temperature of 25 °C and a relative humidity of 80 %, an actual print test in which a original copy having a full color pixel rate of 25 % was printed 50,000 pieces with continuous printing was performed, and a color difference between the first formed image and the 50,000th formed image was evaluated. The results were shown in Table 7. The color difference was evaluated by measuring secondary colors (red, blue, and green) in solid image areas of the first formed image and the 50,000th formed image by "Macbeth Color-Eye 7000", respectively, and calculating the color difference using the CMC (2:1) color difference formula. When the color difference calculated by the CMC (2:1) color difference formula is 5 and below, it is considered that color change of the formed image is acceptable.

[0208] Here, the color copying machine has an intermediate transfer unit in which developing devices of Y/M/C/Bk were placed around a multilayered photoreceptor, and after developing each color on the photoreceptors, respectively, each color was transferred on the intermediate transfer unit to form a color toner image on the intermediate transfer unit, and then the image was transferred to a transfer paper as a recording material. A blade cleaning system was adopted for photoreceptor cleaning. Furthermore, a heat fixing device using a pressure welding method shown in Figure 4 was used for the fixing system. A specific structure of the fixing device will be described below. A heating roller (an upper roller) was structured by covering surface of a cylindrical cored bar (inner diameter = 40 mm, radial thickness = 1.0 mm, maximum width = 310 mm), in which a heater was

embedded in the center part, made of aluminum alloy, with a PFA (tetrafluoroethylene-perfluoroalkylvinylether copolymer) tube (thickness: 120 µm), a pressure roller (a lower roller) was structured by covering surface of a cylindrical cored bar (inner diameter = 40 mm, radial thickness = 2.0 mm) made of iron with spongy silicone rubber (Ascar C hardness: 48°, thickness: 2 mm), and a nip having a width of 5.8 mm was formed by contacting the heating roller and the pressure roller by applying a total load of 150 N. Using the fixing device, a linear velocity for printing was set at 250 mm/sec. Furthermore, a supplying system using a web system impregnated polydiphenylsilicone (having a viscosity at 20 °C of 10Pa*s) was used for a cleaning mechanism of the fixing device. A fixing temperature was controlled by a temperature of heating roller surface (setting temperature: 175 °C). Furthermore, a coating amount of silicone oil was 0.6 mg/A4.

[0209]

[Table 7]

example	developer	color difference
example 21	color developer 1	1
comparative example 3	comparative color developer 1	6
comparative example 4	comparative color developer 2	9

[0210] As described above, according to the developers of the present invention in examples 1 to 20, it was ascertained that a high-quality image free from image soiling could be stably formed over a long term. On the other hand, in the comparative developer 1bk in comparative example 1,

however few deterioration of the image darkness was observed in the 200,000th image, the fog occurred somewhat more frequently, and in the comparative developer 2bk in comparative example 2, the fog occurred frequently as well as the image darkness deteriorated remarkably in the 200,000th image. Especially, in comparative example 1, when around more than 40,000 images had been printed, the contamination of the fixing offset began to occur on a back side of the first print after stopping, and further the contamination occurred due to transferring the toner to a transfer paper in a condition of paper rubbing, so that it is not practical.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2002-169324

(P2002-169324A)

(43)公開日 平成14年6月14日(2002.6.14)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
G 0 3 G	9/08	3 6 5	G 0 3 G	9/08	365	2H005
						2H033
	9/087		1	5/20	102	
	9/113			9/08	384	
	15/20	102		9/10	352	
	,-			-		OL (全 30 頁
(21)出願番号		特顧2000-367559(P2000-367559)	(71)出願人	0000012	70	
				コニカ杉	株式会社	
(22)出顧日		平成12年12月1日(2000.12.1)			所宿区西新宿1]	「目26番2号
			(72)発明者			
						970番地コニカ株式
				会社内		,,,,,,
			(72)発明者		用三	
			(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			970番地コニカ株式
				会社内		
			(74)代理人	_	54	
			(12) (452)		大井 正彦	
) LE L	JOT ILB	
						最終頁に続

(54) 【発明の名称】 静電荷像現像剤および画像形成方法

(57)【要約】

【課題】 画像汚れのない高画質の画像を長期にわたり 安定的に形成することができる静電荷像現像剤およびこ れを用いた画像形成方法を提供すること。

【解決手段】 静電荷像現像剤は、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られた、当該離型剤が特定の結晶性エステル化合物からなるトナーと、磁性体よりなるコア粒子に、特定のシリコーン樹脂により被覆樹脂層が形成されてなるキャリアとからなる。画像形成方法は、上記の静電荷像現像剤により現像されたトナー像が形成された記録材を、加熱ローラーと加圧ローラーとの間を通過させて定着する工程を含む。

【特許請求の範囲】

【請求項1】 少なくとも樹脂、離型剤および着色剤と を含有するトナーと、キャリアとからなる静電荷像現像 剤において、

1

トナーは、結着樹脂中に離型剤を含有する樹脂粒子と着 色剤粒子とを塩析/融着させて得られたものであって、 当該離型剤が下記一般式(I)で示される結晶性エステ * 一般式 (I): R'- (OCO-R2),

*ル化合物からなるものであり、

キャリアは、磁性体よりなるコア粒子に、下記一般式 (II) で示される構成単位および下記一般式 (III) で 示される構成単位を有してなるシリコーン樹脂により被 覆樹脂層が形成されてなるものであることを特徴とする 静電荷像現像剤。

【化1】

[式中、R および R^2 は、各々、置換基を有していてもよい炭素数が $1 \sim 40$ の炭化 水素基を示し、nは1~4の整数である。また、R¹およびR²は、互いに同一であっ ても、異なっていてもよい。〕

【化2】

〔式中、R³~R⁶は、各々、メチル基、エチル基、フェニル基、ピニル基、水酸基よ り選択される置換基を示す。また、 $R^3 \sim R^6$ は、互いに同一であっても、異なってい てもよい。〕

【請求項2】 少なくとも樹脂、離型剤および着色剤と を含有するトナーと、請求項1に記載のキャリアとから なる静電荷像現像剤において、トナーは、結着樹脂中に 30 離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着 させて得られたものであって、当該離型剤が上記一般式 (I) で示される結晶性エステル化合物からなるもので あり、かつ、形状係数の変動係数が16%以下であり、 個数粒度分布における個数変動係数が27%以下である トナー粒子からなるものであることを特徴とする静電荷 像現像剤。

【請求項3】 形状係数が1.2~1.6の範囲にある トナー粒子の割合が65個数%以上であるトナーである ことを特徴とする請求項2に記載の静電荷像現像剤。

角がないトナー粒子の割合が50個数% 【請求項4】 以上であるトナーであることを特徴とする請求項2また は請求項3に記載の静電荷像現像剤。

【請求項5】 トナー粒子の個数平均粒径が3~8μm であるトナーであることを特徴とする請求項2乃至請求 項4のいずれかに記載の静電荷像現像剤。

トナー粒子の粒径をD(μm)とすると 【請求項6】 き、自然対数1nDを横軸とし、この横軸を0.23間 隔で複数の階級に分けて得られる個数基準の粒度分布を

粒子の相対度数(m1)と、前記最頻階級の次に頻度の 高い階級に含まれるトナー粒子の相対度数(m2)との 和(M)が70%以上であるトナーであることを特徴と する請求項2乃至請求項5のいずれかに記載の静電荷像 現像剤。

【請求項7】 少なくとも樹脂、離型剤および着色剤と を含有するトナーと、請求項1に記載のキャリアとから なる静電荷像現像剤において、

トナーは、結着樹脂中に離型剤を含有する樹脂粒子と着 色剤粒子とを塩析/融着させて得られたものであって、 当該離型剤が上記一般式(1)で示される結晶性エステ ル化合物からなるものであり、かつ、角がないトナー粒 40 子の割合が50個数%以上であり、個数粒度分布におけ る個数変動係数が27%以下であるトナー粒子からなる ものであることを特徴とする静電荷像現像剤。

【請求項8】 形状係数が1.2~1.6の範囲にある トナー粒子の割合が65個数%以上であるトナーである ことを特徴とする請求項7に記載の静電荷像現像剤。

【請求項9】 トナー粒子の個数平均粒径が3~8μm であるトナーであることを特徴とする請求項7または請 求項8に記載の静電荷像現像剤。

【請求項10】 トナー粒子の粒径をD(μm)とする 示すヒストグラムにおいて、最頻階級に含まれるトナー 50 とき、自然対数lnDを横軸とし、この横軸を0.23

間隔で複数の階級に分けて得られる個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数 (m1)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数 (m2)との和 (M) が70%以上であるトナーであることを特徴とする請求項7乃至請求項9のいずれかに記載の静電荷像現像剤。

【請求項11】 少なくとも樹脂、離型剤および着色剤とを含有するトナーと、請求項1に記載のキャリアとからなる静電荷像現像剤において、

トナーは、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られたものであって、当該離型剤が上記一般式 (I) で示される結晶性エステル化合物からなるものであり、かつ、形状係数が1.2~1.6の範囲にあるトナー粒子の割合が65個数%以上であり、形状係数の変動係数が16%以下であるトナー粒子からなるものであることを特徴とする静電荷像現像剤。

【請求項12】 角がないトナー粒子の割合が50個数 %以上であるトナーであることを特徴とする請求項11 20 に記載の静電荷像現像剤。

【請求項13】 トナー粒子の個数平均粒径が $3\sim 8~\mu$ mであるトナーであることを特徴とする請求項11または請求項12に記載の静電荷像現像剤。

*【請求項14】 トナー粒子の粒径をD(μ m)とするとき、自然対数1nDを横軸とし、この横軸を0.23 間隔で複数の階級に分けて得られる個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m2)との和(M)が70%以上であるトナーであることを特徴とする請求項11D至請求項13m0%可能

10 【請求項15】 少なくとも樹脂、離型剤および着色剤 とを含有するトナーと、キャリアとからなる静電荷像現 像剤により現像されたトナー像が形成された記録材を、加熱ローラーと加圧ローラーとの間を通過させて定着する工程を含む画像形成方法において、

トナーは、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られたものであって、 当該離型剤が下記一般式(I)で示される結晶性エステル化合物からなるものであり、

キャリアは、磁性体よりなるコア粒子に、下記一般式 (II)で示される構成単位および下記一般式 (III)で 示される構成単位を有してなるシリコーン樹脂により被 覆樹脂層が形成されてなるものであることを特徴とする 画像形成方法。

【化3】

[式中、 R^1 および R^2 は、各々、置換基を有していてもよい炭素数が $1\sim40$ の炭化水素基を示し、nは $1\sim4$ の整数である。また、 R^1 および R^2 は、互いに同一であっても、異なっていてもよい。〕

【化4】

 ${\{}$ 式中、 $R^3\sim R^6$ は、各々、メチル基、エチル基、フェニル基、ピニル基、水酸基より選択される置換基を示す。また、 $R^3\sim R^6$ は、互いに同一であっても、異なっていてもよい。 ${\}}$

【請求項16】 少なくとも樹脂、離型剤および着色剤とを含有するトナーと、請求項15に記載のキャリアとからなる静電荷像現像剤により現像されたトナー像が形成された記録材を、加熱ローラーと加圧ローラーとの間を通過させて定着する工程を含む画像形成方法において、

トナーは、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られたものであって、当該離型剤が上記一般式(I)で示される結晶性エステル化合物からなるものであり、かつ、形状係数の変動係数が16%以下であり、個数粒度分布における個数変動 係数が27%以下であるトナー粒子からなるものである

5

ことを特徴とする画像形成方法。

【請求項17】 形状係数が1.2~1.6の範囲にあるトナー粒子の割合が65個数%以上であるトナーを用いることを特徴とする請求項16に記載の画像形成方法。

【請求項18】 角がないトナー粒子の割合が50個数%以上であるトナーを用いることを特徴とする請求項16または請求項17に記載の画像形成方法。

【請求項19】 トナー粒子の個数平均粒径が3~8μ mであるトナーを用いることを特徴とする請求項16乃 10 至請求項18のいずれかに記載の画像形成方法。

【請求項20】 トナー粒子の粒径をD(μ m)とするとき、自然対数 $\ln D$ を横軸とし、この横軸を0.23間隔で複数の階級に分けて得られる個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数 m1)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数 m2)との和 m0%以上であるトナーを用いることを特徴とする請求項16乃至請求項19のいずれかに記載の画像形成方法。

【請求項21】 少なくとも樹脂、離型剤および着色剤とを含有するトナーと、請求項15に記載のキャリアとからなる静電荷像現像剤により現像されたトナー像が形成された記録材を、加熱ローラーと加圧ローラーとの間を通過させて定着する工程を含む画像形成方法において、

トナーは、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られたものであって、当該離型剤が上記一般式 (I) で示される結晶性エステル化合物からなるものであり、かつ、角がないトナー粒 30子の割合が50個数%以上であり、個数粒度分布における個数変動係数が27%以下であるトナー粒子からなるものであることを特徴とする画像形成方法。

【請求項22】 形状係数が1.2~1.6の範囲にあるトナー粒子の割合が65個数%以上であるトナーを用いることを特徴とする請求項21に記載の画像形成方法。

【請求項23】 トナー粒子の個数平均粒径が $3\sim8\mu$ mであるトナーを用いることを特徴とする請求項21または請求項22に記載の画像形成方法。

【請求項 24】 トナー粒子の粒径を $D(\mu m)$ とするとき、自然対数 1nD を横軸とし、この横軸を 0.23 間隔で複数の階級に分けて得られる個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数 (m1) と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数 (m2) との和 (M) が 70%以上であるトナーを用いることを特徴とする請求項 21 乃至請求項 23 のいずれかに記載の画像形成方法。

【請求項25】 少なくとも樹脂、離型剤および着色剤 50

とを含有するトナーと、請求項15に記載のキャリアとからなる静電荷像現像剤により現像されたトナー像が形成された記録材を、加熱ローラーと加圧ローラーとの間を通過させて定着する工程を含む画像形成方法において、

トナーは、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られたものであって、当該離型剤が上記一般式(I)で示される結晶性エステル化合物からなるものであり、かつ、形状係数が1.2~1.6の範囲にあるトナー粒子の割合が65個数%以上であり、形状係数の変動係数が16%以下であるトナー粒子からなるものであることを特徴とする画像形成方法

【請求項26】 角がないトナー粒子の割合が50個数%以上であるトナーを用いることを特徴とする請求項25に記載の画像形成方法。

【請求項27】 トナー粒子の個数平均粒径が3~8μmであるトナーを用いることを特徴とする請求項25または請求項26に記載の画像形成方法。

20 【請求項28】 トナー粒子の粒径をD(μm)とするとき、自然対数1nDを横軸とし、この横軸を0.23 間隔で複数の階級に分けて得られる個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m2)との和(M)が70%以上であるトナーを用いることを特徴とする請求項25乃至請求項27のいずれかに記載の画像形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば複写機、プリンタ等に用いられる静電荷像現像剤およびこれを用いた画像形成方法に関する。

[0002]

40

【従来の技術】現在、例えば電子写真法等で使用される 静電荷像現像剤として、キャリアとトナーからなる二成 分現像剤が広く利用されている。このような二成分現像 剤を構成するキャリアとしては、好適な摩擦帯電性を発 揮することができると共に、いわゆるスペントトナーの 発生を有効に防止することができることから、例えば、 鉄、マグネタイト、フェライト等の磁性体よりなるコア 粒子に樹脂被覆層が形成された樹脂被覆キャリアが好ま しく用いられている。斯かる樹脂としては、例えばスチ レンアクリル樹脂、フッ素系樹脂、シリコーン樹脂等が 知られている。

【0003】一方、トナーとしては、トナー画像の高画質化を図るために小粒径化の要請があり、従来においては粉砕法によって製造される粉砕トナーが広く利用されていたが、粉砕トナーと比較してトナーを小粒径化するために必要なエネルギーが少なく、しかも、粉砕に伴う

微粉の発生などの問題がないことから、重合法によって 製造される、いわゆる重合トナーが有用なものとされて いる。ここに、重合法トナーとして、例えば懸濁重合ト ナーや会合型トナーが知られており、会合型トナーは形 状の制御が容易である点で好ましい。

【0004】しかしながら、樹脂粒子と着色剤粒子とを 会合させることにより得られる会合粒子(着色粒子)は 不定形で滑面を有する形状であることから、角部分に電 荷が集中しやすく、その結果トナーの帯電性が不均一と なり、結局、長期にわたり安定した画像を形成すること 10 ができない、という問題がある。

【0005】一方、転写紙等の記録材上に形成されたト ナー像を定着する方式として、当該トナー像が形成され た記録材を、加熱ローラーと加圧ローラーの間に通過さ せて定着する熱ロール定着方式が広く利用されている。

【0006】然るに、熱ロール定着方式においては、溶 融状態のトナーが加熱ローラに付着するオフセット現象 により、画像汚れが発生しやすいという欠点がある。そ のため、トナーに離型剤を添加することにより、トナー 自体に離型性を付与して定着性を改良することが広く行 20 われている。離型剤を添加するに際しては、離型剤がト ナー粒子の表面に偏在しにくいものであるため、多量あ るいは細かく分散した状態で添加することが必要であ る。重合法により得られるトナーに離型剤を添加含有さ せる方法としては、樹脂粒子と離型剤粒子とを会合させ る方法が知られている。

【0007】しかしながら、この方法では、樹脂粒子と 離型剤粒子との会合粒子から離型剤が遊離し、この離型 剤がキャリアなどの摩擦帯電部材に融着して、帯電性を 低下させるばかりか、得られる会合粒子内に十分な量の 30 離型剤を導入することができず、また、形成される会合 粒子間において、離型剤の含有量にバラツキが生じ、ト ナー全体として十分な離型性を発揮することができな い、という問題がある。特に、結晶性エステル化合物、 いわゆるエステル系ワックスを離型剤として用いた場合 には、当該エステル系ワックス自体が低分子構造であ り、いわゆるポリオレフィン系ワックスに比して、分子 鎖の絡み合いが少ないため、このような問題が顕著に現 れる。

【0008】また、トナーを利用する画像形成方法にお 40 いては、初期画像の高画質化の要請、並びに繰り返し使 用に伴う画質低下および画像不良発生の防止といった課 題がある。例えば、階調性の低下、細線再現性の低下、 画像濃度変化、濃度ムラ、カブリ等の問題を解決する必 要がある。これら問題の大きな要因として、トナー帯電 量の制御の難しさ、不安定性がある。このトナー帯電量 は摩擦帯電を利用しているため、その制御、安定化はき わめて難しい。これらの問題に対しては、トナーの結着 樹脂、荷電制御剤、外添剤、その他添加剤等による数多 くの提案がなされ、列挙にいとまがない。しかしなが

ら、トナーを使用する各画像形成工程の性能および信頼 性の向上にともない、さらなる高画質化および現像剤の 高耐久性が追求されている。

【0009】さらに近年、電子写真方式は種々の分野で 利用されている。例えばモノクロ複写機のみならず、コ ンピュータの出力端末であるプリンタや、カラー複写 機、カラープリンタ等の分野でも利用されている。これ らの利用が進むにつれ、画像の品質に対する要求はます ます高まっている。特にカラートナーによるトナー像を 複数重ねて画像を形成する多色画像形成方法では、帯電 性等の微小変化による現像性(現像トナー量)の僅かな 変化、ハーフトーンの転写性の変化により、色重ねによ る二次色の色相の変化が大きくなり、従って、帯電性等 の安定性の要求がきわめて厳しい。

[0010]

【発明が解決しようとする課題】本発明は、以上のよう な事情に基づいてなされたものであって、その目的は、 画像汚れのない高画質の画像を長期にわたり安定的に形 成することができる静電荷像現像剤を提供することにあ る。本発明の他の目的は、画像汚れのない高画質の画像 を長期にわたり安定的に形成することができる画像形成 方法を提供することにある。

[0011]

【課題を解決するための手段】本発明の静電荷像現像剤 は、少なくとも樹脂、離型剤および着色剤とを含有する トナーと、キャリアとからなる静電荷像現像剤におい て、トナーは、結着樹脂中に離型剤を含有する樹脂粒子 と着色剤粒子とを塩析/融着させて得られたものであっ て、当該離型剤が下記一般式(I)で示される結晶性エ ステル化合物からなるものであり、キャリアは、磁性体 よりなるコア粒子に、下記一般式(II)で示される構成 単位および下記一般式(III)で示される構成単位を有 してなるシリコーン樹脂により被覆樹脂層が形成されて なるものであることを特徴とする。

[0012]

【化5】

一般式(I): R'ー(OCO-R²)_n

【0013】〔式中、R¹ およびR² は、各々、置換基 を有していてもよい炭素数が1~40の炭化水素基を示 し、nは1~4の整数である。また、R¹ およびR ゜は、互いに同一であっても、異なっていてもよい。〕

[0014]

【化6】

 R^3 一般式 (Ⅱ): (-Si-O-) R^4 R 5 (-Si-O-)一般式(III): (-si-o-)

· **R⁶** 【0015】 〔式中、R³ ~R⁶ は、各々、メチル基、 エチル基、フェニル基、ビニル基、水酸基より選択され る置換基を示す。また、R³~R⁵は、互いに同一であ っても、異なっていてもよい。〕

【0016】本発明の静電荷像現像剤は、少なくとも樹 脂、離型剤および着色剤とを含有するトナーと、上記の キャリアとからなる静電荷像現像剤において、トナー は、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒 子とを塩析/融着させて得られたものであって、当該離 20 型剤が上記一般式(I)で示される結晶性エステル化合 物からなるものであり、かつ、形状係数の変動係数が 1 6%以下であり、個数粒度分布における個数変動係数が 27%以下であるトナー粒子からなるものであることを 特徴とする。

【0017】本発明の静電荷像現像剤は、少なくとも樹 脂、離型剤および着色剤とを含有するトナーと、上記の キャリアとからなる静電荷像現像剤において、トナー は、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒 子とを塩析/融着させて得られたものであって、当該離 30 型剤が上記一般式(I)で示される結晶性エステル化合 物からなるものであり、かつ、角がないトナー粒子の割 合が50個数%以上であり、個数粒度分布における個数 変動係数が27%以下であるトナー粒子からなるもので あることを特徴とする。

【0018】本発明の静電荷像現像剤は、少なくとも樹 脂、離型剤および着色剤とを含有するトナーと、上記の キャリアとからなる静電荷像現像剤において、トナー は、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒 子とを塩析/融着させて得られたものであって、当該離 40 型剤が上記一般式(I)で示される結晶性エステル化合 物からなるものであり、かつ、形状係数が1.2~1. 6の範囲にあるトナー粒子の割合が65個数%以上であ り、形状係数の変動係数が16%以下であるトナー粒子 からなるものであることを特徴とする。

【0019】本発明の画像形成方法は、少なくとも樹 脂、離型剤および着色剤とを含有するトナーと、キャリ アとからなる静電荷像現像剤により現像されたトナー像 が形成された記録材を、加熱ローラーと加圧ローラーと

いて、トナーは、結着樹脂中に離型剤を含有する樹脂粒 子と着色剤粒子とを塩析/融着させて得られたものであ って、当該離型剤が下記一般式(I)で示される結晶性 エステル化合物からなるものであり、キャリアは、磁性 体よりなるコア粒子に、下記一般式(II)で示される構 成単位および下記一般式(111)で示される構成単位を 有してなるシリコーン樹脂により被覆樹脂層が形成され てなるものであることを特徴とする。

[0020]

【化7】 一般式(I): R'-(OCO-R²)。

【0021】〔式中、R¹ およびR² は、各々、置換基 を有していてもよい炭素数が1~40の炭化水素基を示 し、nは1~4の整数である。また、R¹ およびR は、互いに同一であっても、異なっていてもよい。〕

[0022]

【化8】

【0023】 〔式中、R³~R³ は、各々、メチル基、 エチル基、フェニル基、ビニル基、水酸基より選択され る置換基を示す。また、R°~R°は、互いに同一であ っても、異なっていてもよい。〕

【0024】本発明の画像形成方法は、少なくとも樹 脂、離型剤および着色剤とを含有するトナーと、上記の キャリアとからなる静電荷像現像剤により現像されたト ナー像が形成された記録材を、加熱ローラーと加圧ロー ラーとの間を通過させて定着する工程を含む画像形成方 法において、トナーは、結着樹脂中に離型剤を含有する 樹脂粒子と着色剤粒子とを塩析/融着させて得られたも のであって、当該離型剤が上記一般式(I)で示される 結晶性エステル化合物からなるものであり、かつ、形状 係数の変動係数が16%以下であり、個数粒度分布にお ける個数変動係数が27%以下であるトナー粒子からな るものであることを特徴とする。

【0025】本発明の画像形成方法は、少なくとも樹 脂、離型剤および着色剤とを含有するトナーと、上記の キャリアとからなる静電荷像現像剤により現像されたト ナー像が形成された記録材を、加熱ローラーと加圧ロー ラーとの間を通過させて定着する工程を含む画像形成方 の間を通過させて定着する工程を含む画像形成方法にお 50 法において、トナーは、結着樹脂中に離型剤を含有する

樹脂粒子と着色剤粒子とを塩析/融着させて得られたものであって、当該離型剤が上記一般式(I)で示される結晶性エステル化合物からなるものであり、かつ、角がないトナー粒子の割合が50個数%以上であり、個数粒度分布における個数変動係数が27%以下であるトナー粒子からなるものであることを特徴とする。

11

【0026】本発明の画像形成方法は、少なくとも樹脂、離型剤および着色剤とを含有するトナーと、上記のキャリアとからなる静電荷像現像剤により現像されたトナー像が形成された記録材を、加熱ローラーと加圧ロー 10ラーとの間を通過させて定着する工程を含む画像形成方法において、トナーは、結着樹脂中に離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られたものであって、当該離型剤が上記一般式(1)で示される結晶性エステル化合物からなるものであり、かつ、形状係数が1.2~1.6の範囲にあるトナー粒子の割合が65個数%以上であり、形状係数の変動係数が16%以下であるトナー粒子からなるものであることを特徴とする。

[0027]

【作用】本発明の現像剤によれば、離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られる会合型トナーと、特定のシリコーン樹脂被覆キャリアとにより構成されることにより、離型剤がキャリアに移行して付着することが抑制され、安定した帯電性が得られる結果、画像汚れのない高画質の画像が形成される。

【0028】シリコーン樹脂被覆キャリアによれば、樹脂被覆層を構成するシリコーン樹脂の表面エネルギーが小さいため、導電性キャリアに比べてキャリアの劣化を有効に抑制し、帯電性を安定化させることができることが知られているが、通常の会合型トナーとシリコーン樹脂被覆キャリアとを単に組み合わせただけでは、十分に高い画質の画像を得ることができないが、本発明によれば、結着樹脂中に離型剤を含有させた樹脂粒子を着色剤粒子とともに水系媒体中で塩析/融着させて得られる特定の会合型トナーを用い、これをシリコーン樹脂被覆キャリアと組み合わせることにより、上記目的を達成することができる。

【0029】すなわち、この特定の会合型トナーによれば、離型剤が微細なドメイン構造でトナー粒子(会合粒 40子)中に存在しているので、離型剤(エステル系ワックス)自体の付着性が低下すると共に、キャリアの被覆樹脂が特定のシリコーン樹脂であるので、離型剤がキャリアに付着することを抑制することができ、帯電性をより安定化させることができる。また、トナー粒子間における離型剤の分散状態(分散領域・分散量)および表面状態のバラツキを少なくすることができるので、十分な離型性が担保され、画像汚れのない高画質の画像を得ることができる。

【0030】また、形状係数の変動係数が16%以下で 50

あり、個数粒度分布における個数変動係数が27%以下であるトナー粒子から構成されるトナーを使用することにより、トナーの帯電性を安定化させることができ、高画質な画像を長期にわたって形成することができる。

12

【0031】また、角がないトナー粒子の割合を50個数%以上とし、個数粒度分布における個数変動係数を27%以下に制御されたトナー粒子から構成されるトナーを使用することによっても、トナーの帯電性を安定化させることができ、高画質な画像を長期にわたって形成することができる。

【0032】さらに、形状係数が $1.2\sim1.6$ の範囲にあるトナー粒子の割合が65個数%以上であり、形状係数の変動係数が16%以下であるトナー [C]を使用することによっても、トナーの帯電性を安定化させることができ、高画質な画像を長期にわたって形成することができる。

【0033】カラートナーによるトナー像を複数重ねて 画像を形成する多色画像形成方法においても、各色のトナー粒子間で安定した帯電性が得られるので、転写特性 20 が安定し、色重ねによる二次色の色相の変化が少なくなり、従って、高品位のカラー画像を形成することができる。

[0034]

【発明の実施の形態】以下、本発明について詳細に説明する。本発明の現像剤は、少なくとも樹脂と離型剤と着色剤とを含有するトナーとキャリアからなる二成分現像剤である。キャリアは、磁性体よりなるコア粒子にシリコーン樹脂よりなる被覆樹脂層が形成されて構成されている。

【0035】キャリアのコア粒子を構成する磁性体としては、例えば下記一般式(IV)で示されるフェライトなどが挙げられる。

[0036]

【化9】

一般式(IV): (M,O,)。(Fe₂O₃)。

【0037】 〔式中、Mは、Ca、Li、Mgより選択 される軽金属を示し、xおよびyは、それぞれ2あるいは1であり、a+b=1である。〕

【0038】上記一般式(IV)において、xおよびyはモル数であり、磁気特性の観点からx<yの関係を満足することが好ましい。xのモル数は、15.0~40.0モル%であり、好ましくは20.0~30.0モル%である。この範囲を満足することにより、キャリアに対して所定の磁気特性を確実に付与することができ、しかも感光体に対して適度な研磨効果が発揮され、画質の高い画像を確実に形成することができる。

【0039】コア粒子には、必要に応じて、例えばMnなどの重金属を添加することができる。この場合には、当該重金属の割合は10.0モル%未満であることが好ましい。この割合が10.0モル%以上になると、その

他の金属が含有されていることによる影響を受けやすくなり、例えばキャリアの磁気特性を低下させることがある。

【0040】一方、被覆樹脂層を構成するシリコーン樹脂は、上記一般式(III)で示される構成単位および上記一般式(III)で示される構成単位を有してなるものであり、強靱な膜構造が形成されることから、架橋構造を有するものが好ましい。

【0041】式中、R³~R⁵は、各々、メチル基、エチル基、フェニル基、ビニル基、水酸基より選択される 10 置換基を示している。また、R³~R⁵は、互いに同一であっても、異なっていてもよい。特に、R³とR⁴の組み合わせでは、水酸基とメチル基の組み合わせと、メチル基とメチル基の組み合わせが接着性の観点から好ましい。この構成の樹脂は、後述する硬化剤を使用することによって架橋被膜を形成することができる点で好ましい。さらに、アルキル変性したもの、フェノール変性したもの、ウレタン変性したものなどの変性タイプのものを使用することもできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(II)で示されることをできる。また、一般式(III)で示されることをできる。また、一般式(III)で示されることをできる。また、一般式(III)で示されることをできる。また、一般式(III)で示されることをできる。また、一般式(III)で示されることをできる。また、一般式(III)で示されることをできる。また、一般式(III)で示されることをできる。

* 率は (II) : (III) = 1:99~70:30が好ましく、より好ましくは (II) : (III) = 5:95~50:50である。

【0042】被覆樹脂層を構成するシリコーン樹脂には、帯電量などを調整することができることから、シランカップリング剤が添加されていることが好ましい。ここに、シランカップリング剤の添加量としては、シリコーン樹脂100質量部に対して5~50質量部である。 をが好ましく、より好ましくは7~45質量部である。 添加量が50質量部を超える場合には、形成される被覆 樹脂層に十分な硬度が得られないため、所期の耐久性が 得られず、画質の高い画像を長期にわたって形成することが困難となる。一方、添加量が5質量部未満である場合には、トナー粒子に対する十分な帯電性付与能力が得られないことがある。シランカップリング剤としては、 末端にアミノ基あるいはアミンを有するアルコキシシランであることが好ましく、下記式(1)~(14)に示す構造のものを例示することができる。

[0043]

る構成単位と一般式 (III) で示される構成単位との比 *20 【化10】

- (1) NH₂CH₂CH₂CH₂Si (OCH₃) ₃
- (2) NH2CH2CH2CH2Si (OCH2CH3) 3

ÇH3

- (3) NH₂CH₂CH₂CH₂S i (OCH₃) ₂
- (4) CH3CONHCH2CH2CH2Si (OCH3) 3
- (5) NH₂CH₂CH₂NHCH₂CH₂CH₂Si (OCH₃)₃
- (6) NH2CH2CH2NHCH2CH2NHCH2CH2CH2Si (OCH3) 3
- (7) $(CH_3CH_2)_2NCH_2CH_2CH_2Si_(OCH_2CH_3)_3$
- (8) $(CH_3CH_2)_2NCH_2CH_2CH_2Si_3(OCH_3)_3$
- (9) (CH₃CH₂CH₂) 2NCH₂CH₂CH₂S i (OCH₃) 3
- (10) (CH₃CH₂CH₂CH₂) ₂NCH₂CH₂CH₂S i (OCH₃) ₃
- (11) C₆H₅NHCH₂CH₂CH₂S i (OCH₃)₃
- (12) CH3CH2NHCH2CH2CH2Si (OCH2CH3) 3
- (13) CH₃CH₂CH₂CH₂NHCH₂CH₂CH₂Si (OCH₃) ₃
 CH₃

(14) NH₂CH₂CH₂NHCH₂CH₂CH₂Si (OCH₃)₂

【0044】上記シランカップリング剤の中でも、式(1)、(2)、(3)、(5)、(6)における構造のような末端にアミンを有するアルコキシシランを好適なものとしてあげることができる。その理由は、末端に40存在するアミンの活性水素の影響により、樹脂中に取り込まれやすくなり、帯電性を安定化させることができるためと推定される。さらに、末端にアミンを有するものを使用することで、架橋点を増大することができ、より緻密な架橋構造を形成することができる。

【0045】また、上記のシリコーン樹脂を架橋構造化するために硬化剤を使用することが好ましい。硬化剤としては、下記一般式(V)で示されるオキシムタイプの硬化剤が好適に用いられる。

[0046]

【化11】

【0047】〔式中、R¹ は、メチル基、エチル基、プロピル基、フェニル基及びそれらの誘導体よりなるグループから選択された置換基を示し、R¹ およびR² は、各々、メチル基、エチル基、プロピル基およびそれらの誘導体よりなるグループから選択された置換基を示す。また、R¹ およびR² は、互いに同一であっても、異なっていてもよい。〕

50 【0048】オキシムタイプの硬化剤の具体例として

は、下記式 (15) ~ (19) に示す化合物を例示する * 【0049】 ことができる。 * 【化12】

(15)
$$CH_3 - Si - (-O - N = C)_3$$

 $CH_2 CH_3$

(16)
$$CH_3CH_2-Si-(-O-N=C)_3$$

 CH_2CH_3

(17)
$$CH_3 - Si - (-O-N=C)_3$$

 CH_3

(18)
$$C_6H_5-S_1-(-O-N=C)_3$$

 CH_3

(19)
$$CH_3CH_2CH_2-Si-(-O-N=C)_3$$

 CH_3

【0050】ここに、硬化剤の添加量は、樹脂100質量部に対して0.1~10質量部であることが好ましく、より好ましくは0.5~8質量部である。硬化剤の添加量が、この範囲であることにより、緻密な架橋構造を形成することができ、耐久性に優れた被覆樹脂層を確実に形成することができる。また、添加量が10質量部を超える場合には、かえって反応残渣が残ったりするために十分な架橋度を得ることが困難となり、被覆樹脂層の緻密さが低減する結果、耐久性が低下する。

【0051】シリコーン樹脂の被覆量は、コア粒子に対して0.01~10質量%であることが好ましく、より好ましくは0.1~5質量%である。シリコーン樹脂被覆量が0.01質量%未満の場合、コア粒子の表面に均一な被覆樹脂層を形成することが困難となり、所望の帯電性が得られないことがある。一方、10質量%を越える場合は、被覆樹脂層の厚みが過大となるため、キャリア粒子同士の造粒が生じやすく、キャリア粒子間におい40て均一な帯電性を得ることが困難となる。

【0052】コア粒子に被覆樹脂層を形成する手段としては、特に限定されるものではないが、例えば、シリコーン樹脂並びに必要に応じて用いられるシランカップリング剤および硬化剤をそれぞれ適量配合したものを適宜の溶剤に溶解させ、これを噴霧乾燥、浸漬あるいはパンコーティングなどの方法によりコア粒子に塗布し、ついて乾燥することにより溶剤を除去し、さらに加熱することにより、コア粒子に架橋シリコーン樹脂よりなる被覆物脂層が形成された樹脂被覆キャリアを得ることができがいましくは $25\sim80\,\mu\,\mathrm{m}$ 、さらに好ましくは $35\sim70\,\mu\,\mathrm{m}$ である。体積平均粒径が $10\,\mu\,\mathrm{m}$ よりな $5\sim90\,\mu\,\mathrm{m}$ 、さらに好ましくは $25\sim80\,\mu\,\mathrm{m}$ 、さらに好ましくは $35\sim70\,\mu\,\mathrm{m}$ である。体積平均粒径が $10\,\mu\,\mathrm{m}$ よりな $5\sim90\,\mu\,\mathrm{m}$ となる。一方、体積平均粒径が $10\,\mu\,\mathrm{m}$ よりも大きい場合には、現像スリーブ上に形成される磁気ブラシが粗になり、画質の高い画像を形成することが困難となる。こことにより、コア粒子に架橋シリコーン樹脂よりなる被覆は、ますり下の体積平均粒径は、走査型電子顕微鏡によります。

る。

【0053】このような方法により被覆樹脂層を形成す る場合においては、より均一な被覆樹脂層とするため に、上記のような被覆操作を2回以上繰り返して行うこ とにより、所定の被覆量の被覆樹脂層を形成することが 好ましい。ここに、1回目の被覆工程における樹脂被覆 量は、全体の樹脂被覆量の40~95質量%であること が好ましく、さらに好ましくは45~90質量%であ る。また、2回目以降の最終の被覆工程における樹脂被 覆量は、全体の樹脂被覆量の5質量%以上であることが 好ましく、さらに好ましくは10~60質量%である。 樹脂被覆量が過少である場合には、形成されるべき被覆 樹脂層を均一なものとすることが困難であり、被覆樹脂 層の表面にムラを発生し、結果として抵抗の低い部分が 形成されてしまい、使用に伴い被覆樹脂層の剥離や抵抗 低下によるキャリア付着などの問題が生じやすくなる。 【0054】以上のようにして得られるキャリアの粒径 は、体積平均粒径で10~100μmであることが好ま しく、より好ましくは25~80μm、さらに好ましく は35~70μmである。体積平均粒径が10μmより も小さい場合には、キャリア粒子が感光体に付着しやす くなり、画質の高い画像を形成することが困難となる。 一方、体積平均粒径が100μmよりも大きい場合に は、現像スリーブ上に形成される磁気ブラシが粗にな り、画質の高い画像を形成することが困難となる。ここ に、キャリアの体積平均粒径は、走査型電子顕微鏡によ

の写真に基づいて当該キャリア粒子の最大長軸径を測定し、この測定を500個のキャリア粒子について行い、 それらの平均値を算出することにより得られたものである。

17

【0055】キャリア粒子の粒度分布については、25 μ m未満のキャリア粒子が15質量%以下、25μm以 上37μm未満のキャリア粒子が1~35質量%、37 μm以上44μm未満のキャリア粒子が3~70質量 %、44 µ m以上63 µ m未満のキャリア粒子が2~7 0 質量%、6 3 μ m以上 7 5 μ m未満のキャリア粒子が 10 45質量%以下、75μm以上のキャリア粒子が20質 量%以下であることが好ましい。粒度分布が上記範囲を 満足することにより、キャリア粒子間における帯電性お よび磁気特性のバラツキを少なくすることができ、画質 の高い画像を長期にわたって安定的に形成することがで きる。この粒度分布は、開口部が25μm、37μm、 44μm、63μm、75μmの標準篩を使用し、開口 部の大きい順に篩を重ね、その最上部に100.0gの キャリアを入れる。ついで振動機により、水平旋回数= 285回/分、振動回数=150回/分の条件で15分 間篩い、各篩の残量及び最下層より流出した質量を測定 することにより得られたものである。

【0056】キャリアの抵抗は、 $10^6\Omega$ cm以上であることが好ましく、さらに好ましくは $10^6\Omega$ cm \sim $10^$

し、流れる電流(i)を測定し抵抗を下記式を用いて求めた。なお、電流値としては電圧を印加してから30秒後の値を使用した。さらに、測定環境条件は常温常湿環境(20 $^{\circ}$ /50 $^{\circ}$ RH)である。

[0057]

【数1】

キャリアの抵抗 $[\Omega cm] = V/(i \times h)$

【0058】本発明の現像剤を構成するトナーは、結着 樹脂と着色剤と離型剤とを含有するトナーであって、結 着樹脂中に離型剤を含有する樹脂粒子と、着色剤粒子と を塩析/融着させて得られる会合型のトナー粒子により 構成される。

【0059】トナーを構成する離型剤は、上記一般式 (1) で示される結晶性エステル化合物 (以下、「特定 のエステル化合物」という。) からなるものであり、例えばアルコールとカルボン酸との脱水縮合反応により好適に合成することができる。

【0060】特定のエステル化合物を示す一般式(I)において、 R^1 および R^2 は、各々、置換基を有していてもよい炭化水素基を示す。炭化水素基 R^1 の炭素数は $1\sim40$ とされ、好ましくは $1\sim20$ 、更に好ましくは $2\sim5$ とされる。炭化水素基 R^2 の炭素数は $1\sim40$ とされ、好ましくは $16\sim30$ 、更に好ましくは $18\sim26$ とされる。また、炭化水素基 R^1 および炭化水素基 R^2 は、各々、同一であっても、異なっていてもよい。また、一般式(I)において、R1 に R2 に R3 に R4 に R4 に R5 に R5 に R5 に R5 に R6 に R7 に R8 に R9
【0061】特定のエステル化合物の具体例としては、 下記式(W1)~(W22)に示す化合物を例示することができる。

[0062]

【化13】

```
(11) 特開2002-169324
20
```

(W1)
$$CH_3 - (CH_2)_{12} - COO - (CH_2)_{17} - CH_3$$

(W2) $CH_3 - (CH_2)_{18} - COO - (CH_2)_{21} - CH_3$
(W3) $CH_3 - (CH_2)_{20} - COO - (CH_2)_{21} - CH_3$
(W4) $CH_3 - (CH_2)_{14} - COO - (CH_2)_{19} - CH_3$
(W5) $CH_3 - (CH_2)_{20} - COO - (CH_2)_{6} - O - CO - (CH_2)_{20} - CH_3$

$$\begin{array}{c} \text{CH}_{3} \\ \text{(W6) CH}_{3}\text{--} \text{(CH}_{2}\text{)} \ {}_{20}\text{--}\text{COO}\text{--} \text{(CH}_{2}\text{)} \ {}_{2}\text{--}\text{CH}\text{--}\text{CH}_{2}\text{--}\text{O}\text{--}\text{CO}\text{--} \text{(CH}_{2}\text{)} \ {}_{20}\text{--}\text{CH}_{3} \\ \\ \text{CH}_{3} \\ \text{(W7) CH}_{3}\text{--} \text{(CH}_{2}\text{)} \ {}_{22}\text{--}\text{COO}\text{--} \text{(CH}_{2}\text{)} \ {}_{2}\text{--}\text{CH}\text{--}\text{CH}_{2}\text{--}\text{O}\text{--}\text{CO}\text{--} \text{(CH}_{2}\text{)} \ {}_{2}\text{--}\text{CH}_{3} \\ \end{array}$$

ĊH₃

30

40

(W9)
$$CH_3$$
- (CH_2) $_{26}$ -COO- CH_2 -C- CH_2 -O-CO- (CH_2) $_{26}$ - CH_3 $_{CH_3}$

CH2-O-CO- (CH2) 22-CH3

【化15】

【0065】離型剤の含有割合としては、通常 $1\sim30$ 質量%とされ、好ましくは $2\sim20$ 質量%、さらに好ましくは $3\sim15$ 質量%とされる。

【0066】本発明において「離型剤を含有する樹脂粒子」は、結着樹脂を得るための単量体中に離型剤を溶解させ、得られる単量体溶液を水系媒体中に分散させ、この系を重合処理することにより、ラテックス粒子として得ることができる。

【0067】離型剤を含有する樹脂粒子を得るための好ましい重合法としては、臨界ミセル濃度以下の濃度の界面活性剤を溶解してなる水系媒体中に、離型剤を単量体中に溶解してなる単量体溶液を、機械的エネルギーを利用して油滴(10~1000nm)を形成して分散液を調製し、得られた分散液に水溶性重合開始剤を添加して、ラジカル重合させる方法(以下、この明細書において「ミニエマルジョン法」という。)を挙げることができる。なお、水溶性重合開始剤を添加することに代えて、または、当該水溶性重合開始剤を添加するととも

に、油溶性の重合開始剤を前記単量体溶液中に添加して もよい。

【0068】ここに、機械的エネルギーによる油滴分散を行うための分散機としては、特に限定されるものではなく、高速回転するローターを備えた攪拌装置「クレアミックス(CLEARMIX)」(エム・テクニック(株)製)、超音波分散機、機械式ホモジナイザー、マントンゴーリンおよび圧力式ホモジナイザーなどを挙げることができる。また、分散粒子径としては、10~1000mとされ、好ましくは30~300nmとされる。

【0069】トナーを構成する結着樹脂は、GPCにより測定される分子量分布で150,000~1,000,000の領域にピークまたはショルダーを有する高分子量成分と、1,000~20,000の領域にピークまたはショルダーを有する低分子量成分とを含有する樹脂であることが好ましい。さらに、50,000~15040,000の領域にピークまたはショルダーを有する

中間分子量成分を含有することが好ましい。このよう に、高分子量成分と低分子量成分とを併用することによ り、耐オフセット性の向上と定着性(記録材に対する接 着性)を両立することができる。

【0070】ここに、GPCによる樹脂の分子量の測定 方法としては、測定試料 0.5~5.0 mg (具体的に は1mg) に対してTHFを1cc加え、マグネチック スターラーなどを用いて室温にて攪拌を行って十分に溶 解させる。次いで、ポアサイズ $0.45\sim0.50\mu m$ のメンブランフィルターで処理した後にGPCへ注入す 10 る。GPCの測定条件としては、40℃にてカラムを安 定化させ、THFを毎分1ccの流速で流し、1mg/ c c の濃度の試料を約100μl注入して測定する。カ ラムは、市販のポリスチレンジェルカラムを組み合わせ て使用することが好ましい。例えば、昭和電工社製のS hodex GPC KF-801, 802, 803, 804,805,806,807の組合せや、東ソー社 製のTSKgelG1000H、G2000H, G30 00H, G4000H, G5000H, G6000H, G7000H, TSK guard columnの組 20 合せなどを挙げることができる。また、検出器として は、屈折率検出器(IR検出器)またはUV検出器を用 いるとよい。試料の分子量測定では、試料の有する分子 量分布を単分散のポリスチレン標準粒子を用いて作成し た検量線を用いて算出する。検量線作成用のポリスチレ ンとしては10点程度用いるとよい。

【0071】以下、樹脂粒子の構成材料および調製方法 (重合方法) について説明する。樹脂粒子を得るために 使用する重合性単量体としては、ラジカル重合性単量体 を必須の構成成分とし、必要に応じて架橋剤を使用する ことができる。また、以下の酸性基を有するラジカル重 合性単量体または塩基性基を有するラジカル重合性単量 体を少なくとも1種類含有させることが好ましい。

【0072】(1) ラジカル重合性単量体:ラジカル重 合性単量体としては、特に限定されるものではなく、従 来公知のラジカル重合性単量体を用いることができる。 また、要求される特性を満たすように、1種または2種 以上のものを組み合わせて用いることができる。具体的 には、芳香族系ビニル単量体、(メタ)アクリル酸エス テル系単量体、ビニルエステル系単量体、ビニルエーテ 40 ル系単量体、モノオレフィン系単量体、ジオレフィン系 単量体、ハロゲン化オレフィン系単量体等を用いること ができる。

【0073】芳香族系ビニル単量体としては、例えば、 スチレン、oーメチルスチレン、mーメチルスチレン、 p-メチルスチレン、p-メトキシスチレン、p-フェ ニルスチレン、p-クロロスチレン、p-エチルスチレ ン、p-n-ブチルスチレン、p-tert-ブチルス チレン、p-n-ヘキシルスチレン、p-n-オクチル スチレン、p-n-ノニルスチレン、p-n-デシルス 50 チレン、p-n-ドデシルスチレン、2, 4-ジメチル スチレン、3,4-ジクロロスチレン等のスチレン系単 量体およびその誘導体が挙げられる。

【0074】 (メタ) アクリル酸エステル系単量体とし ては、アクリル酸メチル、アクリル酸エチル、アクリル 酸ブチル、アクリル酸-2-エチルヘキシル、アクリル 酸シクロヘキシル、アクリル酸フェニル、メタクリル酸 メチル、メタクリル酸エチル、メタクリル酸ブチル、メ タクリル酸ヘキシル、メタクリル酸ー2-エチルヘキシ ル、β - ヒドロキシアクリル酸エチル、γ - アミノアク リル酸プロピル、メタクリル酸ステアリル、メタクリル 酸ジメチルアミノエチル、メタクリル酸ジエチルアミノ エチル等が挙げられる。

【0075】ビニルエステル系単量体としては、酢酸ビ ニル、プロピオン酸ビニル、ベンゾエ酸ビニル等が挙げ

【0076】ビニルエーテル系単量体としては、ビニル メチルエーテル、ビニルエチルエーテル、ビニルイソブ チルエーテル、ビニルフェニルエーテル等が挙げられ る。モノオレフィン系単量体としては、エチレン、プロ ピレン、イソブチレン、1-ブテン、1-ペンテン、4 ーメチルー1ーペンテン等が挙げられる。

【0077】ジオレフィン系単量体としては、ブタジエ ン、イソプレン、クロロプレン等が挙げられる。

【0078】ハロゲン化オレフィン系単量体としては、 塩化ビニル、塩化ビニリデン、臭化ビニル等が挙げられ

【0079】(2)架橋剤:架橋剤としては、トナーの 特性を改良するためにラジカル重合性架橋剤を添加して も良い。ラジカル重合性架橋剤としては、ジビニルベン ゼン、ジビニルナフタレン、ジビニルエーテル、ジエチ レングリコールメタクリレート、エチレングリコールジ メタクリレート、ポリエチレングリコールジメタクリレ ート、フタル酸ジアリル等の不飽和結合を2個以上有す るものが挙げられる。

【0080】(3)酸性基または塩基性基を有するラジ カル重合性単量体:酸性基を有するラジカル重合性単量 体または塩基性基を有するラジカル重合性単量体として は、例えば、カルボキシル基含有単量体、スルホン酸基 含有単量体、第1級アミン、第2級アミン、第3級アミ ン、第4級アンモニウム塩等のアミン系の化合物を用い ることができる。酸性基を有するラジカル重合性単量体 としては、カルボン酸基含有単量体として、アクリル 酸、メタクリル酸、フマール酸、マレイン酸、イタコン 酸、ケイ皮酸、マレイン酸モノブチルエステル、マレイ ン酸モノオクチルエステル等が挙げられる。スルホン酸 基含有単量体としては、スチレンスルホン酸、アリルス ルホコハク酸、アリルスルホコハク酸オクチル等が挙げ られる。これらは、ナトリウムやカリウム等のアルカリ 金属塩あるいはカルシウムなどのアルカリ土類金属塩の

構造であってもよい。

【0081】塩基性基を有するラジカル重合性単量体と しては、アミン系の化合物が挙げられ、ジメチルアミノ エチルアクリレート、ジメチルアミノエチルメタクリレ ート、ジエチルアミノエチルアクリレート、ジエチルア ミノエチルメタクリレート、および上記4化合物の4級 アンモニウム塩、3-ジメチルアミノフェニルアクリレ ート、2-ヒドロキシー3-メタクリルオキシプロピル トリメチルアンモニウム塩、アクリルアミド、Nーブチ ルアクリルアミド、N, N-ジブチルアクリルアミド、 ピペリジルアクリルアミド、メタクリルアミド、Nーブ チルメタクリルアミド、N-オクタデシルアクリルアミ ド;ビニルピリジン、ビニルピロリドン;ビニルNーメ チルピリジニウムクロリド、ビニルNーエチルピリジニ ウムクロリド、N, N-ジアリルメチルアンモニウムク ロリド、N, N-ジアリルエチルアンモニウムクロリド 等を挙げることができる。

【0082】本発明に用いられるラジカル重合性単量体としては、酸性基を有するラジカル重合性単量体または塩基性基を有するラジカル重合性単量体が単量体全体の200.1~15質量%使用することが好ましく、ラジカル重合性架橋剤はその特性にもよるが、全ラジカル重合性単量体に対して0.1~10質量%の範囲で使用することが好ましい。

【0083】樹脂粒子の分子量を調整することを目的として、一般的に用いられる連鎖移動剤を用いることが可能である。連鎖移動剤としては、特に限定されるものではなく例えばオクチルメルカプタン、ドデシルメルカプタン、tertードデシルメルカプタン等のメルカプタン、nーオクチルー3ーメルカプトプロピオン酸エステ 30ル、ターピノーレン、四臭化炭素およびαーメチルスチレンダイマー等が使用される。

【0084】本発明に用いられるラジカル重合開始剤は 水溶性であれば適宜使用が可能である。例えば過硫酸塩 (過硫酸カリウム、過硫酸アンモニウム等)、アゾ系化 合物(4,4¹ーアゾビス4ーシアノ吉草酸及びその 塩、2, 2^{\prime} -アゾビス (2-アミジノプロパン) 塩 等)、パーオキシド化合物等が挙げられる。更に上記ラ ジカル性重合開始剤は、必要に応じて還元剤と組み合わ せレドックス系開始剤とする事が可能である。レドック ス系開始剤を用いる事で、重合活性が上昇し重合温度の 低下が図れ、更に重合時間の短縮が期待できる。重合温 度は、重合開始剤の最低ラジカル生成温度以上であれば どの温度を選択しても良いが例えば50℃から90℃の 範囲が用いられる。但し、常温開始の重合開始剤、例え ば過酸化水素ー環元剤(アスコルビン酸等)の組み合わ せを用いる事で、室温またはそれ以上の温度で重合する 事も可能である。

【0085】前述のラジカル重合性単量体を使用して重合を行うためには、界面活性剤を使用して水系媒体中に50

油滴分散を行う必要がある。この際に使用することので きる界面活性剤としては特に限定されるものでは無い が、下記のイオン性界面活性剤を好適なものの例として 挙げることができる。イオン性界面活性剤としては、ス ルホン酸塩(ドデシルベンゼンスルホン酸ナトリウム、 アリールアルキルポリエーテルスルホン酸ナトリウム、 3, 3-ジスルホンジフェニル尿素-4, 4-ジアゾー ビスーアミノー8ーナフトールー6ースルホン酸ナトリ ウム、オルトーカルボキシベンゼンーアゾージメチルア ニリン、2,2,5,5ーテトラメチルートリフェニル メタンー4, 4ージアゾービスーβーナフトールー6ー スルホン酸ナトリウム等)、硫酸エステル塩(ドデシル 硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタ デシル硫酸ナトリウム、オクチル硫酸ナトリウム等)、 脂肪酸塩(オレイン酸ナトリウム、ラウリン酸ナトリウ ム、カプリン酸ナトリウム、カプリル酸ナトリウム、カ プロン酸ナトリウム、ステアリン酸カリウム、オレイン 酸カルシウム等)が挙げられる。また、ノニオン性界面 活性剤も使用することができる。具体的には、ポリエチ レンオキサイド、ポリプロピレンオキサイド、ポリプロ ピレンオキサイドとポリエチレンオキサイドの組み合わ せ、ポリエチレングリコールと高級脂肪酸とのエステ ル、アルキルフェノールポリエチレンオキサイド、高級 脂肪酸とポリエチレングリコールのエステル、高級脂肪 酸とポリプロピレンオキサイドのエステル、ソルビタン エステル等を挙げることができる。

【0086】トナーを構成する着色剤としては、カーボ ンブラック、磁性体、染料、顔料等を任意に使用するこ とができ、カーボンブラックとしてはチャンネルブラッ ク、ファーネスブラック、アセチレンブラック、サーマ ルブラック、ランプブラック等が使用される。磁性体と しては鉄、ニッケル、コバルト等の強磁性金属、これら の金属を含む合金、フェライト、マグネタイト等の強磁 性金属の化合物、強磁性金属を含まないが熱処理する事 により強磁性を示す合金、例えばマンガンー銅ーアルミ ニウム、マンガンー銅ー錫等のホイスラー合金と呼ばれ る種類の合金、二酸化クロム等を用いることができる。 【0087】染料としてはC. I. ソルベントレッド 1、同49、同52、同58、同63、同111、同1 22、C. I. ソルベントイエロー19、同44、同7 7、同79、同81、同82、同 93、同98、同1 03、同104、同112、同162、C. I. ソルベ ントブルー25、同36、同60、同70、同93、同 95等を用いる事ができ、またこれらの混合物も用いる ことができる。顔料としてはC. I. ピグメントレッド 5、同48:1、同53:1、同57:1、同122、 同139、同144、同149、同166、同177、 同178、同222、C. I. ピグメントオレンジ3 1、同43、C. I. ピグメントイエロー14、同1 7、同93、同94、同138、同155、同156、

同180、同185、C. I. ピグメントグリーン7、 C. I. ピグメントブルー15:3、同60等を用いる 事ができ、これらの混合物も用いることができる。数平 均一次粒子径は種類により多様であるが、概ね10~2 00nm程度が好ましい。

【0088】着色剤は表面改質して使用することもでき る。その表面改質剤としては、従来公知のものを使用す ることができ、具体的にはシランカップリング剤、チタ ンカップリング剤、アルミニウムカップリング剤等が好 ましく用いることができる。

【0089】トナーには、流動性、帯電性の改良および クリーニング性の向上などの目的で、いわゆる外添剤を 添加して使用することができる。これら外添剤としては 特に限定されるものでは無く、種々の無機微粒子、有機 微粒子及び滑剤を使用することができる。この無機微粒 子としては、シリカ、チタニア、アルミナ等の無機酸化 物粒子の使用が好ましく、さらに、これら無機微粒子は シランカップリング剤やチタンカップリング剤等によっ て疎水化処理されていることが好ましい。疎水化処理の 程度としては特に限定されるものではないが、メタノー 20 ルウェッタビリティーとして40~95のものが好まし い。メタノールウェッタビリティーとは、メタノールに 対する濡れ性を評価するものである。この方法は、内容 量250mlのビーカー中に入れた蒸留水50mlに、 測定対象の無機微粒子を 0.2 g 秤量し添加する。メタ ノールを先端が液体中に浸せきされているビュレットか ら、ゆっくり攪拌した状態で無機微粒子の全体が濡れる までゆっくり滴下する。この無機微粒子を完全に濡らす ために必要なメタノールの量をa(ml)とした場合 に、下記式により疎水化度が算出される。

[0090]

【数2】疎水化度= [a / (a+50)] ×100

【0091】また、有機微粒子としては数平均一次粒子 径が10~2000nm程度の球形の有機微粒子を使用 することができる。このものとしては、スチレンやメチ ルメタクリレートなどの単独重合体やこれらの共重合体 を使用することができる。滑剤には、例えばステアリン 酸の亜鉛、アルミニウム、銅、マグネシウム、カルシウ ム等の塩、オレイン酸の亜鉛、マンガン、鉄、銅、マグ ネシウム等の塩、パルミチン酸の亜鉛、銅、マグネシウ 40 ム、カルシウム等の塩、リノール酸の亜鉛、カルシウム 等の塩、リシノール酸の亜鉛、カルシウムなどの塩等の 高級脂肪酸の金属塩が挙げられる。

【0092】これらの外添剤の添加量としては、トナー 中に0.1~5.0質量%、好ましくは0.5~4.0 質量%である。また、外添剤としては種々のものを組み 合わせて使用してもよい。

【0093】本発明のトナーを製造する方法の一例とし ては、(1)離型剤を単量体中に溶解して単量体溶液を 調製する溶解工程、(2)得られる単量体溶液を水系媒 50 体中に分散する分散工程、(3)得られる単量体溶液の 水系分散系を重合処理することにより、離型剤を含有す る樹脂粒子の分散液(ラテックス)を調製する重合工 程、(4)得られる樹脂粒子と、前記着色剤粒子とを水 系媒体中で塩析/融着させて会合粒子(トナー粒子)を 得る塩析/融着工程、(5)得られる会合粒子を水系媒 体中より濾別し、当該会合粒子から界面活性剤などを洗 浄除去する濾過・洗浄工程、(6)洗浄処理された会合

粒子の乾燥工程から構成され、(7)乾燥処理された会 合粒子に外添剤を添加する外添剤添加工程が含まれてい

28

【0094】(1)溶解工程;離型剤を単量体中に溶解 する方法としては特に限定されるものではない。単量体 への離型剤の溶解量としては、最終的に得られるトナー における離型剤の含有割合が1~30質量%、好ましく は2~20質量%、更に好ましくは3~15質量%とな る量とされる。なお、この単量体溶液中に、油溶性重合 開始剤および他の油溶性の成分を添加することもでき

【0095】(2)分散工程;単量体溶液を水系媒体中 に分散させる方法としては、特に限定されるものではな いが、機械的エネルギーにより分散させる方法が好まし く、特に、臨界ミセル濃度以下の濃度の界面活性剤を溶 解してなる水系媒体中に、機械的エネルギーを利用して 単量体溶液を油滴分散させること(ミニエマルジョン法 における必須の態様)が好ましい。ここに、機械的エネ ルギーによる油滴分散を行うための分散機としては、特 に限定されるものではないが、例えば「クレアミック ス」、超音波分散機、機械式ホモジナイザー、マントン ゴーリンおよび圧力式ホモジナイザーなどを挙げること ができる。また、分散粒子径としては、10~1000 nmとされ、好ましくは30~300nmとされる。

【0096】(3)重合工程;重合工程においては、基 本的には従来公知の重合法(乳化重合法、懸濁重合法、 シード重合法などの造粒重合法)を採用することができ る。好ましい重合法の一例としては、ミニエマルジョン 法、すなわち、臨界ミセル濃度以下の濃度の界面活性剤 を溶解してなる水系媒体中に、機械的エネルギーを利用 して単量体溶液を油滴分散させて得られる分散液に水溶 性重合開始剤を添加して、ラジカル重合させる方法を挙 げることができる。

【0097】(4)塩析/融着工程;塩析/融着工程に おいては、上記の重合工程により得られる樹脂粒子の分 散液に着色剤粒子の分散液を添加し、前記樹脂粒子と、 前記着色剤粒子とを水系媒体中で塩析/融着させる。ま た、当該塩析/融着工程においては、樹脂粒子および着 色剤粒子とともに、荷電制御剤などの内添剤粒子なども 融着させることもできる。

【0098】さらに、当該塩析/融着工程においては、 離型剤を含有する樹脂粒子とともに、これらを含有しな

い樹脂粒子を融着させることもできる。ここに、好適な 態様として、離型剤を含有する中間分子量の樹脂粒子 (MP)と、低分子量の樹脂粒子(LP)と、高分子量 の樹脂粒子(HP)と、着色剤粒子とを塩析/融着させ る方法を挙げることができる。

【0099】離型剤を中間分子量の樹脂粒子(MP)のみに含有させることにより、当該中間分子量の樹脂粒子(MP)による優れた耐オフセット性/定着性が発現されるとともに、高分子量の樹脂粒子(HP)により付与される耐オフセット性および巻き付き防止性、低分子量 10の樹脂粒子(LP)により付与される好適な定着性が損なわれることがない。

【0100】塩析/融着工程における「水系媒体」とは、主成分(50質量%以上)が水からなるものをいう。ここに、水以外の成分としては、水に溶解する有機溶媒を挙げることができ、例えばメタノール、エタノール、イソプロパノール、ブタノール、アセトン、メチルエチルケトン、テトラヒドロフランなどが挙げられる。これらのうち、樹脂を溶解しない有機溶媒であるメタノール、エタノール、イソプロパノール、ブタノールのよ 20うなアルコール系有機溶媒が特に好ましい。

【0101】塩析/融着工程に使用される着色剤粒子は、着色剤を水系媒体中に分散することにより調製することができる。着色剤の分散処理は、水中で界面活性剤濃度を臨界ミセル濃度(CMC)以上にした状態で行われる。着色剤の分散処理に使用する分散機は特に限定されないが、好ましくは、「クレアミックス」、超音波分散機、機械的ホモジナイザー、マントンゴーリンや圧力式ホモジナイザー等の加圧分散機、サンドグラインダー、ゲッツマンミルやダイヤモンドファインミル等の媒30体型分散機が挙げられる。また、使用される界面活性剤としては、前述の界面活性剤と同様のものを挙げることができる。

【0102】なお、着色剤(粒子)は表面改質されていてもよい。着色剤の表面改質法は、溶媒中に着色剤を分散させ、その分散液中に表面改質剤を添加し、この系を昇温することにより反応させる。反応終了後、着色剤を濾別し、同一の溶媒で洗浄ろ過を繰り返した後、乾燥することにより、表面改質剤で処理された着色剤(顔料)が得られる。

【0103】塩析/融着法は、樹脂粒子と着色剤粒子とが存在している水中に、アルカリ金属塩および/またはアルカリ土類金属塩等からなる塩析剤を臨界凝集濃度以上の凝集剤として添加し、次いで、前記樹脂粒子のガラス転移点以上に加熱することで塩析を進行させると同時に融着を行う工程である。この工程では、水に無限溶解する有機溶媒を添加してもよい。

【0104】ここで、塩析剤であるアルカリ金属塩及びアルカリ土類金属塩は、アルカリ金属として、リチウム、カリウム、ナトリウム等が挙げられ、アルカリ土類 50

金属として、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられ、好ましくはカリウム、ナトリウム、マグネシウム、カルシウム、バリウムが挙げられる。また塩を構成するものとしては、塩素塩、臭素塩、沃素塩、炭酸塩、硫酸塩等が挙げられる。

【0105】さらに、前記水に無限溶解する有機溶媒としては、メタノール、エタノール、1ープロパノール、2ープロパノール、エチレングリコール、グリセリン、アセトン等があげられるが、炭素数が3以下のメタノール、エタノール、1ープロパノール、2ープロパノールのアルコールが好ましく、特に、2ープロパノールが好ましい。

【0106】塩析/融着工程においては、塩析剤を添加した後に放置する時間(加熱を開始するまでの時間)をできるだけ短くすることが好ましい。すなわち、塩析剤を添加した後、樹脂粒子および着色剤粒子の分散液の加熱をできるだけ速やかに開始し、樹脂粒子のガラス転移温度以上とすることが好ましい。この理由としては明確ではないが、塩析した後の放置時間によって、粒子の凝集状態が変動し、粒径分布が不安定になったり、融着させたトナーの表面性が変動したりする問題が発生する。加熱を開始するまでの時間(放置時間)は、通常30分以内とされ、好ましくは10分以内である。塩析剤を添加する温度は特に限定されないが、樹脂粒子のガラス転移温度以下であることが好ましい。

【0107】また、塩析/融着工程においては、加熱により速やかに昇温させる必要があり、昇温速度としては、1℃/分以上とすることが好ましい。昇温速度の上限は、特に限定されないが、急速な塩析/融着の進行による粗大粒子の発生を抑制する観点から15℃/分以下とすることが好ましい。さらに、樹脂粒子および着色剤粒子の分散液が前記ガラス転移温度以上の温度に到達した後、当該分散液の温度を一定時間保持することに到着を継続させることが肝要である。これにより、トナー粒子の成長(樹脂粒子および着色剤粒子のより、トナー粒子の成長(樹脂粒子および着色剤粒子のより、トナー粒子の成長(樹脂粒子および着色剤粒子の凝集)と、融着(粒子間の界面消失)とを効果的に進行させることができ、最終的に得られるトナーの耐久性を向上することができる。また、会合粒子の成長を停止させた後に、加熱による融着を継続させてもよい。

【0108】(5)濾過・洗浄工程;この濾過・洗浄工程では、上記の工程で得られたトナー粒子の分散液から当該トナー粒子を濾別する濾過処理と、濾別されたトナー粒子(ケーキ状の集合物)から界面活性剤や塩析剤などの付着物を除去する洗浄処理とが施される。ここに、濾過処理方法としては、遠心分離法、ヌッチェ等を使用して行う減圧濾過法、フィルタープレス等を使用して行う濾過法など特に限定されるものではない。

【0109】(6)乾燥工程;この工程は、洗浄処理されたトナー粒子を乾燥処理する工程である。この工程で使用される乾燥機としては、スプレードライヤー、真空

凍結乾燥機、減圧乾燥機などを挙げることができ、静置棚乾燥機、移動式棚乾燥機、流動層乾燥機、回転式乾燥機、攪拌式乾燥機などを使用することが好ましい。乾燥処理されたトナー粒子の水分は、5質量%以下であることが好ましく、更に好ましくは2質量%以下とされる。

【0110】なお、乾燥処理されたトナー粒子同士が、弱い粒子間引力で凝集している場合には、当該凝集体を解砕処理してもよい。ここに、解砕処理装置としては、ジェットミル、ヘンシェルミキサー、コーヒーミル、フードプロセッサー等の機械式の解砕装置を使用すること 10 ができる。

【0111】(7)外添剤の添加工程;この工程は、乾燥処理されたトナー粒子に外添剤を添加する工程である。外添剤を添加するために使用される装置としては、タービュラーミキサー、ヘンシエルミキサー、ナウターミキサー、V型混合機などの種々の公知の混合装置を挙げることができる。

【0112】本発明に使用されるトナーは、着色剤、離型剤以外にトナー用材料として種々の機能を付与することのできる材料を加えてもよい。具体的には荷電制御剤等が挙げられる。これらの成分は前述の塩析/融着段階で樹脂粒子と着色剤粒子と同時に添加し、トナー中に包含する方法、樹脂粒子自体に添加する方法等種々の方法で添加することができる。荷電制御剤も同様に種々の公知のもので、かつ水中に分散することができるものを使用することができる。具体的には、ニグロシン系染料、ナフテン酸または高級脂肪酸の金属塩、アルコキシル化アミン、第4級アンモニウム塩化合物、アゾ系金属錯体、サリチル酸金属塩あるいはその金属錯体等が挙げられる。

【0113】以上のように、本発明に使用されるトナー は、離型剤を含有する樹脂粒子と、着色剤粒子とを水系 媒体中で塩析/融着させて得られる会合型のトナーであ り、離型剤を含有する樹脂粒子と着色剤粒子とを塩析/ 融着させることにより、離型剤を微細なドメイン構造で トナー粒子(会合粒子)中に存在させることができると ともに、トナー粒子間における離型剤の分散状態(分散 領域・分散量)および表面状態のバラツキを少なくする ことができるので、離型剤がキャリアに移行することが 抑制され、安定した帯電性が得られる。また、本発明に 40 使用されるトナーは、その製造時から表面に凹凸がある 形状を有しており、さらに、樹脂粒子と着色剤粒子とを 水系媒体中で融着して得られる会合型のトナーであるた めに、トナー粒子間における形状および表面性の差がき わめて小さく、結果として表面性が均一となりやすい。 このためにトナー間での定着性に差異を生じにくく、定 着性も良好に保つことができる。

【0114】本発明において使用されるトナーは、形状係数の変動係数が16%以下であり、個数粒度分布における個数変動係数が27%以下であるトナー粒子、角が50

ないトナー粒子の割合が 50 個数%以上であり、個数粒度分布における個数変動係数が 27 %以下であるトナー粒子、あるいは形状係数が $1.2 \sim 1.6$ の範囲にあるトナー粒子の割合が 65 個数%以上であり、形状係数の変動係数が 16 %以下であるトナー粒子から構成される。

【0115】トナーの形状係数は、下記式により示されるものであり、トナー粒子の丸さの度合いを示す。

[0116]

【数3】

形状係数={(最大径/2)² ×π}/投影面積

【0117】ここに、最大径とは、トナー粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる粒子の幅をいう。また、投影面積とは、トナー粒子の平面上への投影像の面積をいう。本発明では、この形状係数は、走査型電子顕微鏡により200倍にトナー粒子を拡大した写真を撮影し、ついでこの写真に基づいて「SCANNING IMAGE ANALYZER」(日本電子社製)を使用して写真画像の解析を行うことにより測定した。この際、100個のトナー粒子を使用して本発明の形状係数を上記算出式にて測定したものである。

【0118】本発明において使用されるトナーにおいては、この形状係数が1.2~1.6の範囲にあるトナー粒子の割合を65個数%以上であることが好ましく、より好ましくは70個数%以上である。この形状係数が1.2~1.6の範囲にあるトナー粒子の割合が65個数%以上であることにより、転写されたトナー層におけるトナー粒子の充填密度が高くなって定着性が向上し、オフセットが発生しにくくなる。また、トナー粒子が破砕しにくくなってキャリア等の帯電付与部材の汚染が減少し、トナーの帯電性が安定しやすくなる。

【0119】この形状係数を制御する方法は特に限定されるものではない。例えば、トナー粒子を熱気流中に噴霧する方法、トナー粒子を気相中において衝撃力による機械的エネルギーを繰り返して付与する方法、トナーを溶解しない溶媒中に添加し旋回流を付与する方法等により、形状係数を1.2~1.6にしたトナー粒子を調製し、これを通常のトナー中へ本発明の範囲内になる重合法トナーを調製する段階で全体の形状を制御し、形状係数を1.2~1.6に調整したトナー粒子を同様に通常のトナーへ添加して調整する方法がある。上記方法の中では重合法トナーが製造方法として簡便である点と、粉砕トナーに比較して表面の均一性に優れる点等で好まし、

【0120】トナーの形状係数の変動係数は下記式から 算出される。

[0121]

【数4】

形状係数の変動係数= (S₁ / K) × 100 (%) 【0122】 [式中、S₁ は100個のトナー粒子の形 状係数の標準偏差を示し、Kは形状係数の平均値を示 す。]

【0123】本発明に使用されるトナーにおいては、この形状係数の変動係数は16%以下であることが好ましく、より好ましくは14%以下である。形状係数の変動係数が16%以下であることにより、転写されたトナー層(粉体層)の空隙が減少して定着性が向上し、オフセットが発生しにくくなる。また、帯電量分布をよりシャ10ープなものとすることができ、画質が向上する。

【0124】このトナーの形状係数および形状係数の変 動係数を、極めてロットのバラツキなく均一に制御する ためには、離型剤を含有する樹脂粒子(重合体粒子)を 融着、形状制御させる工程において、形成されつつある トナー粒子(着色粒子)の特性をモニタリングしながら 適正な工程終了時期を決める方法が好ましい。モニタリ ングするとは、インラインに測定装置を組み込みその測 定結果に基づいて、工程条件の制御をするという意味で ある。すなわち、形状などの測定をインラインに組み込 20 んで、樹脂粒子を着色剤粒子と水系媒体中で塩析/融着 させる際の融着工程で逐次サンプリングを実施しながら 形状や粒径を測定し、所望の形状になった時点で反応を 停止する。モニタリング方法としては、特に限定される ものではないが、フロー式粒子像分析装置FPIA-2 000 (東亜医用電子社製)を使用することができる。 本装置は試料液を通過させつつリアルタイムで画像処理 を行うことで形状をモニタリングできるため好適であ る。すなわち、反応場よりポンプなどを使用し、常時モ ニターし、形状などを測定することを行い、所望の形状 30 などになった時点で反応を停止するものである。

【0125】本発明に使用されるトナーの個数粒度分布 および個数変動係数はコールターカウンターTAーある いはコールターマルチサイザー(コールター社製)で測定されるものである。本発明においてはコールターマルチサイザーを用い、粒度分布を出力するインターフェース(日科機製)、パーソナルコンピューターを接続して使用した。前記コールターマルチサイザーにおいて使用するアパーチャーとしては 100μ mのものを用いて、 2μ m以上のトナーの体積、個数を測定して粒度分布および平均粒径を算出した。個数粒度分布とは、粒子径に対するトナー粒子の相対度数を表すものであり、個数平均粒径とは、個数粒度分布におけるメジアン径を表すものである。トナーの「個数粒度分布における個数変動係数」は下記式から算出される。

[0126]

【数5】

個数変動係数= [S2 / Da] × 100 (%)

【0127】 [式中、S₂ は個数粒度分布における標準 偏差を示し、D₆ は個数平均粒径 (μm)を示す。] 【0128】本発明に使用されるトナーの個数変動係数は27%以下であることが好ましく、より好ましくは25%以下である。個数変動係数が27%以下であることにより、転写されたトナー層(粉体層)の空隙が減少して定着性が向上し、オフセットが発生しにくくなる。また、帯電量分布がよりシャープなものとなり、転写効率が高くなって画質が向上する。

34

【0129】トナーにおける個数変動係数を制御する方法は特に限定されるものではない。例えば、トナー粒子を風力により分級する方法も使用できるが、個数変動係数をより小さくするためには液中での分級が効果的である。この液中で分級する方法としては、遠心分離機を用い、回転数を制御してトナー粒子径の違いにより生じる沈降速度差に応じてトナー粒子を分別回収し調製する方法がある。

【0130】本発明に使用されるトナーを構成するトナー粒子中、角がないトナー粒子の割合は50個数%以上であることが好ましく、より好ましくは70個数%以上である。角がないトナー粒子の割合が50個数%以上であることにより、転写されたトナー層(粉体層)の空隙が減少して定着性が向上し、オフセットが発生しにくくなる。また、摩耗、破断しやすいトナー粒子および電荷の集中する部分を有するトナー粒子が減少することとなり、帯電量分布がよりシャープなものとなって、帯電性も安定し、良好な画質を長期にわたって形成できる。

【0131】ここに、「角がないトナー粒子」とは、電 荷の集中するような突部またはストレスにより摩耗しや すいような突部を実質的に有しないトナー粒子を言い、 具体的には以下のトナー粒子を角がないトナー粒子とい う。すなわち、図1(a)に示すように、トナー粒子T の長径をLとするときに、半径(L/10)の円Cで、 トナー粒子Tの周囲線に対し1点で内側に接しつつ内側 をころがした場合に、当該円Cがトナー粒子Tの外側に 実質的にはみださない場合を「角がないトナー粒子」と いう。「実質的にはみ出さない場合」とは、はみ出す円 が存在する突起が1箇所以下である場合をいう。また、 「トナー粒子の長径」とは、当該トナー粒子の平面上へ の投影像を2本の平行線ではさんだとき、その平行線の 間隔が最大となる粒子の幅をいう。なお、図1(b)お よび(c)は、それぞれ角のあるトナー粒子の投影像を 示している。

【0132】角がないトナー粒子の割合の測定は次のようにして行った。先ず、走査型電子顕微鏡によりトナー粒子を拡大した写真を撮影し、さらに拡大して15,00倍の写真像を得る。次いでこの写真像について前記の角の有無を測定する。この測定を100個のトナー粒子について行った。

【0133】角がないトナーを得る方法は特に限定されるものではない。例えば、形状係数を制御する方法として前述したように、トナー粒子を熱気流中に噴霧する方

法、またはトナー粒子を気相中において衝撃力による機械的エネルギーを繰り返して付与する方法、あるいはトナーを溶解しない溶媒中に添加し、旋回流を付与することによって得ることができる。また、樹脂粒子を塩析イ融着させる場合の融着停止段階では融着粒子表面には多くの凹凸があり、表面は平滑でないが、形状制御工程での温度、攪拌翼の回転数および攪拌時間等の条件を適当なものとすることによって、角がないトナーが得られる。これらの条件は、樹脂粒子の物性により変わるものであるが、例えば、樹脂粒子のガラス転移点温度以上で、より高回転数とすることにより、表面は滑らかとなり、角がないトナーが形成できる。

【0134】本発明において使用されるトナーの粒径は、個数平均粒径で $3\sim 8~\mu$ mのものが好ましい。この粒径は、重合法によりトナー粒子を形成させる場合には、後に詳述するトナーの製造方法において、凝集剤の濃度や有機溶媒の添加量、または融着時間、さらには重合体自体の組成によって制御することができる。個数平均粒径が $3\sim 8~\mu$ mであることにより、定着工程において、飛翔して加熱部材に付着しオフセットを発生させる付着力の大きいトナー微粒子が少なくなり、また、転写効率が高くなってハーフトーンの画質が向上し、細線やドット等の画質が向上する。

【0135】トナー粒子の粒径を $D(\mu m)$ とするとき、自然対数 $\ln D$ を横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数 (m1) と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数 (m2) との和

(M) が70%以上であることが好ましい。

【0136】相対度数(m1)と相対度数(m2)との 和(M)が70%以上であることにより、トナー粒子の 粒度分布の分散が狭くなるので、当該トナーを画像形成 工程に用いることにより選択現像の発生を確実に抑制す ることができる。本発明において、前記の個数基準の粒 度分布を示すヒストグラムは、自然対数 1 n D (D:個 々のトナー粒子の粒径)を0.23間隔で複数の階級 $(0 \sim 0. 23 : 0. 23 \sim 0. 46 : 0. 46 \sim 0.$ $69:0.69\sim0.92:0.92\sim1.15:1.$ $15 \sim 1$. 38:1. $38 \sim 1$. 61:1. $61 \sim 1$. $84:1.84\sim2.07:2.07\sim2.30:2.$ 30~2.53:2.53~2.76・・・) に分けた 個数基準の粒度分布を示すヒストグラムであり、このヒ ストグラムは、下記の条件に従って、コールターマルチ サイザーにより測定されたサンプルの粒径データを、I /Oユニットを介してコンピュータに転送し、当該コン ピュータにおいて、粒度分布分析プログラムにより作成 されたものである。

【0137】 [測定条件]

(1) $P \mathcal{N} - \mathcal{F} + - : 100 \mu m$

(2) サンプル調製法:電解液 [ISOTON R-1 1 (コールターサイエンティフィックジャパン社製)] $50\sim100\,\mathrm{m}\,\mathrm{l}$ に界面活性剤 (中性洗剤) を適量加えて攪拌し、これに測定試料 $10\sim20\,\mathrm{m}\,\mathrm{g}$ を加える。この系を超音波分散機にて 1 分間分散処理することにより調製する。

【0138】図2は、樹脂粒子を塩析/融着させる重合法トナーを製造する際に好適に使用される反応装置(攪拌装置)の一構成例を示す説明図であり、1は熱交換用のジャケット、2は攪拌槽、3は回転軸、7は上部材料投入口、8は下部材料投入口、46および56は攪拌翼である。この反応装置(攪拌装置)は、攪拌槽2内には乱流を形成させるような邪魔板等の障害物を設けていないことに特徴がある。攪拌翼の構成については、上段の攪拌翼が、下段の攪拌翼に対して回転方向に先行した交差角αを持って配設された、多段の構成とすることが好ましい。

【0139】この攪拌翼の形状については、乱流を形成させないものであれば特に限定されないが、図3(a)~(d)に示すように、方形板状のもの等、連続した面により形成されるものが好ましい。図3(a)に示す攪拌翼5aは中孔部のないもの、同図(b)に示す攪拌翼5bは中央に大きな中孔部6bがあるもの、同図(c)に示す攪拌翼5cは横長の中孔部6c(スリット)があるもの、同図(d)に示す攪拌翼5dは縦長の中孔部6d(スリット)があるものである。また、曲面を有していてもよい。さらに、三段構成の攪拌翼を設けることもでき、この場合において、上段の攪拌翼に形成される中孔部と、下段の攪拌翼に形成される中孔部と、下段の攪拌翼に形成される中孔部と、下段の攪拌翼に形成される中孔部と、同一のものであってもよい。

【0140】このような反応装置によれば、融着工程および形状制御工程での温度、回転数、時間を制御することにより、所期の形状係数および均一な形状分布を有するトナーを形成することができる。この理由は、層流を形成させた場で融着させると、凝集および融着が進行している粒子(会合あるいは凝集粒子)に強いストレスが加わらず、かつ流れが加速された層流においては攪拌槽内の温度分布が均一である結果、融着粒子の形状分布が均一になるからであると推定される。さらに、その後の形状制御工程での加熱、攪拌により融着粒子は徐々に球形化し、トナー粒子の形状を任意に制御できる。

【0141】本発明の現像剤は、トナー像が形成された 記録材を、定着装置を構成する加熱ローラーと加圧ロー ラーとの間に通過させて定着する工程を含む画像形成方 法(本発明の画像形成方法)に好適に使用される。本発 明に使用される好適な定着方法としては、いわゆる接触 加熱方式をあげることができる。特に、接触加熱方式と して、熱圧定着方式、さらには熱ロール定着方式および 固定配置された加熱体を内包した回動する加圧部材によ 50 り定着する圧接加熱定着方式をあげることができる。 【0142】図4は、本発明において使用する定着装置の一例を示す断面図である。この定着装置は、加熱ローラー10と、これに当接する加圧ローラー20とを備えている。図4において、Tは記録材(画像支持体ともいい、代表的なものとして転写紙が挙げられる。)上に形

【0143】加熱ローラー10は、芯金11の表面にフッ素樹脂または弾性体からなる被覆層12が形成されてなり、線状ヒーターよりなる加熱部材13を内包している。

成されたトナー画像である。

【0144】芯金11は、金属あるいはそれらの合金から構成され、その内径は10~70mmとされる。芯金11を構成する材料としては特に限定されるものではないが、例えば鉄、アルミニウム、銅等の金属あるいはこれらの合金を挙げることができる。芯金11の肉厚は0.1~2mmとされ、省エネルギーの要請(薄肉化)と、強度(構成材料に依存)とのバランスを考慮して決定される。例えば、0.57mmの鉄よりなる芯金と同等の強度を、アルミニウムよりなる芯金で保持するためには、その肉厚を0.8mmとする必要がある。

【0145】被覆層12を構成するフッ素樹脂としては、PTFE(ポリテトラフルオロエチレン)およびPFA(テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体)などを例示することができる。フッ素樹脂からなる被覆層12の厚みは $10\sim50$ 0 μ mとされ、好ましくは $20\sim200$ μ mとされる。フッ素樹脂からなる被覆層12の厚みが10 μ m未満であると、被覆層としての機能を十分に発揮することができず、定着装置としての耐久性を確保することができない。一方、500 μ mを超える被覆層の表面には紙粉によるキズがつきやすく、当該キズ部にトナーなどが付着し、これに起因する画像汚れを発生する問題がある。

【0146】また、被覆層12を構成する弾性体としては、LTV、RTV、HTVなどの耐熱性の良好なシリコーンゴムおよびシリコーンスポンジゴムなどを用いることが好ましい。弾性体からなる被覆層12の厚みは0.1~30mmとされ、好ましくは0.1~20mmとされる。また、被覆層12を構成する弾性体のアスカーC硬度は、80°未満とされ、好ましくは60°未満とされる。被覆層12の厚みが0.1mm未満である場とされる。被覆層12の厚みが0.1mm未満である場合、および被覆層12を構成する弾性体のアスカーC硬度が80°を超える場合には、定着のニップを大きくすることができず、例えば平滑化された界面のトナー層による色再現性の向上効果等のソフト定着の効果を発揮することが困難となる。

【0147】加熱部材13としては、例えばハロゲンヒーターを好適に使用することができる。加熱部材13の数は、特に限定されるものではなく、複数の加熱部材を内包させて、通過する転写紙のサイズ(幅)に応じて配熱領域を変更できるような構成とすることもでき、例え 50

ば加熱ローラーの表面における中央領域を加熱するための中央領域加熱用ハロゲンヒーターと、加熱ローラーの表面における端部領域を加熱するための端部領域加熱用ハロゲンヒーターとが配設された構成とすることができる。このような構成の加熱ローラーにおいては、例えば幅狭の転写紙を通過させる場合には、中央領域加熱用ハロゲンヒーターにのみ通電させればよく、幅広の転写紙を通過させる場合には、更に端部領域加熱用ハロゲンヒーターにも通電させればよい。

10 【0148】加圧ローラー20は、弾性体からなる被覆層22が芯金21の表面に形成されてなる。被覆層22を構成する弾性体としては特に限定されるものではなく、ウレタンゴム、シリコーンゴムなどの各種軟質ゴムおよびスポンジゴムを挙げることができ、加熱ローラ11の被覆層12を構成するものとして例示したシリコーンゴムおよびシリコーンスポンジゴムを用いることが好ましい。

【0149】被覆層22の厚みは0.1~30mmとされ、好ましくは0.1~20mmとされる。また、被覆層22を構成する弾性体のアスカーC硬度は、70°未満とされ、好ましくは60°未満とされる。被覆層22の厚みが0.1mm未満である場合、および被覆層22を構成する弾性体のアスカーC硬度が70°を超える場合には、定着のニップを大きくすることができず、例えば平滑化された界面のトナー層による色再現性の向上効果等のソフト定着の効果を発揮することができない。

【0150】芯金21を構成する材料としては特に限定されるものではないが、アルミニウム、鉄、銅などの金属またはそれらの合金をあげることができる。

【0151】加熱ローラー10と加圧ローラー20との当接荷重(総荷重)としては、通常40~350Nとされ、好ましくは50~300N、さらに好ましくは50~250Nとされる。この当接荷重は、加熱ローラー10の強度(芯金11の肉厚)を考慮して規定され、例えば0.3mmの鉄よりなる芯金を有する加熱ローラーにあっては、250N以下とすることが好ましい。

【0152】また、耐オフセット性および定着性の観点から、ニップ幅としては $4\sim10\,\mathrm{mm}$ であることが好ましく、当該ニップの面圧は $0.6\times10^5\,\mathrm{Pa}\sim1.5\,\mathrm{×}10^5\,\mathrm{Pa}$ であることが好ましい。

【0153】図4に示した定着装置による定着条件の一例を示せば、定着温度(加熱ローラー10の表面温度)が $150\sim210$ Cとされ、定着線速が $80\sim640$ m m/s e c とされる。

【0154】本発明において使用する定着装置には、必要に応じてクリーニング機構を付与してもよい。この場合には、シリコーンオイルを定着部の上ローラー(加熱ローラー)に供給する方式として、シリコーンオイルを含浸したパッド、ローラー、ウェッブ等で供給し、クリーニングする方法が使用できる。シリコーンオイルとし

ては耐熱性の高いものが使用され、ポリジメチルシリコーン、ポリフェニルメチルシリコーン、ポリジフェニルシリコーン等が使用される。粘度の低いものは使用時に流出量が大きくなることから、20 における粘度が $1\sim100$ Pa・s のものが好適に使用される。

[0155]

【実施例】以下、本発明の実施例を説明するが、本発明 はこれらの実施例に限定されるものではない。なお、以 下において「部」とは「質量部」を意味する。

【0156】<コア粒子の製造例1>Li2CO322モ 10ル%と、Fe2O378モル%とを湿式ボールミルにて2時間粉砕、混合し乾燥させた後、900℃にて2時間保持することにより仮焼成した。これを、再度、ボールミルにて3時間粉砕しスラリー化した。分散剤およびバインダーを添加し、スプレードライヤーにより造粒、乾燥することにより一次粒子を調製し、さらに1200℃にて3時間本焼成を行い、体積平均粒径が71 μ mのフェライトコア粒子を得た。これを「コア粒子1」とする。【0157】<コア粒子の製造例2>Li2CO3を23モル%、Mg(OH)2を7モル%、Fe2O3を70モ 20ル%とし、本焼成の温度を1250℃としたことの他はコア粒子製造例1と同様にして、体積平均粒径が61 μ mのフェライトコア粒子を得た。これを「コア粒子2」とする。

【0158】 <コア粒子の製造例3>L i_2 CO $_3$ を20 モル%、MnOを8モル%、 Fe_2 O $_3$ を72モル%としたことの他はコア粒子製造例1と同様にして、体積平均粒径が 52μ mのフェライトコア粒子を得た。これを「コア粒子3」とする。

【0159】<キャリアの製造例1>一般式(II)にお 30 ける置換基R³ およびR⁴ がそれぞれメチル基と水酸基である構成単位と、一般式(III)における置換基R⁵ およびR⁶ がいずれもメチル基である構成単位とを(II):(III)=40:60の質量比で含有するシリコーン樹脂100部と、上記式(1)で表されるシランカップリング剤10部と、上記式(15)で表されるオキシムタイプの硬化剤5部とを混合し、これをトルエン溶剤中に溶解させて固形分濃度が15質量%のトルエン溶剤中に溶解させて固形分濃度が15質量%のトルエン溶液を調製した。次いで、噴霧乾燥法により、コア粒子1に対する樹脂被覆量が0.5質量%となるようトルエン溶液を満した後、230℃にて3時間焼き付け(キュア)を行うことにより被覆樹脂層を形成し、コア粒子1の表面にシリコーン樹脂が被覆されてなるシリコーン樹脂キャリアを得た。これを「キャリア1」とする。

【0160】<キャリアの製造例2>キャリア製造例1において、コア粒子1に対する樹脂被覆量を0.8質量%としたことの他は、キャリア製造例1と同様にしてシリコーン樹脂被覆キャリアを得た。これを「キャリア2」とする。

【0161】 < キャリアの製造例3 > キャリア製造例1 50

において、コア粒子に樹脂被覆層を形成するに際して、コア粒子1に対する樹脂被覆量を0.6質量%として1次被覆樹脂層を形成した後、さらに樹脂被覆量を0.4質量%として所期の被覆樹脂層を形成したことの他はキャリア製造例1と同様にしてシリコーン樹脂被覆キャリアを得た。これを「キャリア3」とする。

【0162】<キャリアの製造例4>キャリア製造例3において、樹脂被覆量を0.4質量%として1次被覆樹脂層を形成した後、さらに樹脂被覆量を0.4質量%として所期の被覆樹脂層を形成したことの他はキャリア製造例3とは同様にしてシリコーン樹脂被覆キャリアを得た。これを「キャリア4」とする。

【0163】<キャリアの製造例5>キャリア製造例3において、上記式(1)で表されるシランカップリング剤の添加量を20部としたことの他はキャリア製造例3と同様にして、シリコーン樹脂被覆キャリアを得た。これを「キャリア5」とする。

【0164】<キャリアの製造例6>キャリア製造例3において、上記式(1)で表されるシランカップリング剤の添加量を40部としたことの他はキャリア製造例3と同様にしてシリコーン樹脂被覆キャリアを得た。これを「キャリア6」とする。

【0165】<キャリアの製造例7>キャリア製造例1において、上記式(1)で表されるシランカップリング剤を添加しなかったことの他はキャリア製造例1と同様にしてシリコーン樹脂被覆キャリアを得た。これを「キャリア7」とする。

【0166】<キャリアの製造例8>キャリア製造例3において、一般式(II)における置換基R³ およびR⁴がそれぞれがメチル基と水酸基である構成単位と、一般式(III)における置換基R⁵およびR⁶ががいずれもメチル基である構成単位とを(II):(III)=30:70の質量比で含有するシリコーン樹脂100部と、上記式(1)で表されるシランカップリング剤30部と、上記式(17)で表されるオキシムタイプの硬化剤8部とを混合し、固形分濃度が15質量%のトルエン溶液を調製したことの他はキャリア製造例3と同様にしてシリコーン樹脂被覆キャリアを得た。これを「キャリア8」とする。

【0167】<キャリアの製造例9>キャリア製造例3において、コア粒子1の代わりにコア粒子2を用いたことの他はキャリア製造例3と同様にしてシリコーン樹脂被覆キャリアを得た。これを「キャリア9」とする。

【0168】<キャリアの製造例10>キャリア製造例3において、コア粒子1の代わりにコア粒子3を用いたことの他はキャリア製造例3と同様にしてシリコーン樹脂被覆キャリアを得た。これを「キャリア10」とする。

【0169】 <比較用キャリアの製造例>スチレンアクリル樹脂をトルエン溶剤中に溶解させてトルエン溶液を

調製し、噴霧乾燥法により、コア粒子1に対する樹脂被

41

覆量が0.8質量%となるようコア粒子1に塗布するこ とにより、スチレンアクリル樹脂による被覆樹脂層を形 成し、樹脂被覆キャリアを得た。これを「比較用キャリ ア11とする。

【0170】以上のようにして得られた各々のキャリア*

*について、上記の測定方法において、測定時の印加電圧 を1000Vに設定して固有抵抗を測定した。結果を下 記表1に示す。また、各々のキャリアの粒度分布を表1 に併せて示す。

[0171]

	+	-	1
1 3	❖		

キャリア	固有抵抗	体積	粒度分布 [質量%]					
	[Ocm]	平均粒径 [µm]	25μm 未満	25~ 37 μm	37~ 44 μ m	44~ 63 μm	63~ 75 μm	75 μ m 以上
キャリア1	2 × 1 0 11	7 1	0.0	1. 5	3, 6	49, 7	37, 8	7, 4
キャリア2	1 × 1 0 12	7 1	0.0	1, 5	3, 6	49.7	37.8	7. 4
キャリア3	3×1012	7 1	0, 0	1.5	3, 6	49. 7	37, 8	7. 4
キャリア4	2×1012	7 1	0, 0	1, 5	3, 6	49.7	37. 8	7, 4
キャリア5	3×1012	7 1	0.0	1, 5	3. 6	49. 7	37. 8	7. 4
キャリア6	4×1012	7 1	0.0	1. 5	3, 6	49. 7	37, 8	7. 4
キャリア7	3 × 1 0 12	7 1	0.0	1, 5	3, 6	49. 7	37, 8	7.4
キャリア8	3×1011	7 1	0.0	1.5	3. 6	49. 7	37. 8	7.4
キャリア9	1 × 1 0 12	6 1	0, 3	3, 5	15, 1	67.4	12, 3	1, 4
キャリア10	2×1012	5 2	0. 9	7. 5	27, 3	53, 6	10, 7	0. 0
比較用 キャリア1	2×1011	7 1	0, 0	1, 5	3, 6	49. 7	37. 8	7. 4

【0172】<トナーの製造>

[調製例HP-1] 攪拌装置、温度センサー、冷却管、 窒素導入装置を取り付けた5000mlのセパラブルフ ラスコに、アニオン系界面活性剤(ドデシルスルフォン 酸ナトリウム: SDS) 7.08gをイオン交換水27 60gに溶解させた界面活性剤溶液(水系媒体)を仕込 30 み、窒素気流下230rpmの攪拌速度で攪拌しなが ら、内温を80℃に昇温させた。この界面活性剤溶液 に、重合開始剤(過硫酸カリウム: KPS) 0. 42g をイオン交換水200gに溶解させた開始剤溶液を添加 し、温度を75℃とした後、スチレン115.1g、n ーブチルアクリレート42.0g、メタクリル酸10. 9gからなる単量体混合液を1時間かけて滴下し、この 系を75℃で2時間にわたり加熱・攪拌することによ り、ラテックス(高分子量の樹脂粒子の分散液)を調製 した。これを「ラテックス(HP-1)」とする。この 40 ラテックス(HP-1)を構成する樹脂粒子のピーク分 子量は518,000であった。

【0173】 [調製例HP-2] 調製例HP-1におい て、反応温度を85℃に変更したこと以外は調製例HP -1と同様にしてラテックス(高分子量の樹脂粒子の分 散液)を調製した。これを「ラテックス(HP-2)」 とする。このラテックス(HP-2)を構成する樹脂粒 子のピーク分子量は421,000であった。

【0174】 [調製例HP-3] 調製例HP-1におい て、重合開始剤(KPS)の添加量を0.84gに変更 50 製)により、前記界面活性剤溶液(80℃)中に、前記

したこと以外は調製例HP-1と同様にしてラテックス (高分子量の樹脂粒子の分散液) を調製した。これを 「ラテックス(HP-3)」とする。このラテックス (HP-3)を構成する樹脂粒子のピーク分子量は31 6,000であった。

【0175】〔調製例HPー4〕調製例HPー1におい て、過硫酸カリウム(KPS)の添加量を0.84gに 変更し、反応温度を90℃に変更したこと以外は調製例 HP-1と同様にしてラテックス(高分子量の樹脂粒子 の分散液)を調製した。これを「ラテックス(HPー 4)」とする。このラテックス(HP-4)を構成する 樹脂粒子のピーク分子量は193,000であった。

【0176】〔調製例MP-1〕攪拌装置を取り付けた フラスコにて、上記式(W19)で表される化合物(以 下、「例示化合物(19)」という。) 72.0gを、 スチレン383.6g、nーブチルアクリレート14 0.0g、メタクリル酸36.4g、ドデシルメルカプ タン5.6gからなる単量体混合液に添加し、80℃に 加温し溶解させて単量体溶液を調製した。一方、攪拌装 置、温度センサー、冷却管、窒素導入装置を取り付けた 5000mlのセパラブルフラスコに、アニオン系界面 活性剤(SDS)1.6gをイオン交換水2000gに 溶解させた界面活性剤溶液(水系媒体)を仕込み、内温 を80℃に昇温させた。次いで、循環経路を有する機械 式分散機「クレアミックス」(エム・テクニック(株)

単量体溶液(80°C)を混合分散させ、均一な分散粒子径を有する乳化粒子(油滴)の分散液を調製した。次いで、この分散液に、重合開始剤(KPS)19.1gをイオン交換水240gに溶解させた開始剤溶液と、イオン交換水750gとを添加し、この系を80°Cにて3時間にわたり加熱・攪拌することにより重合を行い、ラテックス(例示化合物(W19)を含有する中間分子量の樹脂粒子の分散液)を調製した。これを「ラテックス(MP-1)を構成する樹脂粒子のピーク分子量は103,000であ 10った。

【0177】 [調製例MP-2] 調製例MP-1において、単量体混合液を構成するドデシルメルカプタンの量を 8. 3 gに変更したこと以外は調製例MP-1と同様にして、ラテックス(例示化合物(W19)を含有する中間分子量の樹脂粒子の分散液)を調製した。これを「ラテックス(MP-2)」とする。このラテックス(MP-2)を構成する樹脂粒子のピーク分子量は 8 1, 000であった。

【0178】 [調製例MP-3] 調製例MP-1におい 20 て、単量体混合液への例示化合物(W19)の添加量を 144.0gに変更し、ドデシルメルカプタンの代わりにn-オクチル-3-メルカプロプロピオン酸エステルを5.6g使用したこと以外は調製例MP-1と同様にして、ラテックス(例示化合物(W19)を含有する中間分子量の樹脂粒子の分散液)を調製した。これを「ラテックス(MP-3)」とする。このラテックス(MP-3)を構成する樹脂粒子のピーク分子量は103,000であった。

【0179】 [調製例MP-4] 調製例MP-1におい 30 て、例示化合物(W19)に代えて、上記式(W21)で表される化合物(以下、「例示化合物(W21)」という。)72.0g を単量体混合液へ添加したこと以外は調製例MP-1 と同様にして、ラテックス(例示化合物(W21)を含有する中間分子量の樹脂粒子の分散液)を調製した。これを「ラテックス(MP-4)」とする。このラテックス(MP-4)を構成する樹脂粒子のピーク分子量は102, 000であった。

【0180】 [調製例MP-5] 調製例MP-1において、例示化合物(W19)に代えて、上記式(W18)で表される化合物(以下、「例示化合物(W18)」という。)72.0gを単量体混合液へ添加したこと以外は調製例MP-1と同様にして、ラテックス(例示化合物(W18)を含有する中間分子量の樹脂粒子の分散液)を調製した。これを「ラテックス(MP-5)」とする。このラテックス(MP-5)を構成する樹脂粒子のピーク分子量は102,000であった。

【0181】 [調製例LP-1] 攪拌装置、温度センサー、冷却管、窒素導入装置を取り付けたフラスコに、アニオン系界面活性剤 (SDS) 60gをイオン交換水5 50

000gに溶解させた界面活性剤溶液(水系媒体)を仕込み、窒素気流下230rpmの攪拌速度で攪拌しながら、内温を80℃に昇温させた。この界面活性剤溶液に、重合開始剤(KPS)22.8gをイオン交換水200gに溶解させた開始剤溶液を添加し、温度を80℃に保った状態で、スチレン850g、ブチルアクリレート252g、メタクリル酸98g、n-オクチル-3-メルカプトプロピオン酸エステル32gからなる単量体混合液を1時間かけて滴下し、この系を80℃で2時間にわたり加熱・攪拌することにより、ラテックス(低分子量の樹脂粒子の分散液)を調製した。これを「ラテックス(LP-1)とする。このラテックス(LP-1)を構成する樹脂粒子のピーク分子量は18,000であった。

【0182】〔製造例1Bk〕 nードデシル硫酸ナトリウム90gをイオン交換水1600mlに攪拌溶解した。この溶液を攪拌しながら、カーボンブラック「モーガルL」(キャボット社製)200gを徐々に添加し、次いで、高速回転するローターを備えた攪拌装置「クレアミックス」(エム・テクニック(株)製)を用いて分散処理することにより、着色剤粒子の分散液(以下、「着色剤分散液(Bk)」という。)を調製した。この着色剤分散液(Bk)における着色剤粒子の粒子径を、電気泳動光散乱光度計「ELS-800」(大塚電子社製)を用いて測定したところ、重量平均粒子径で101nmであった。

【0183】調製例HP-1で得られたラテックス(H P-1) 3000gと、調製例MP-1で得られたラテ ックス (MP-1) 2500gと、調製例LP-1で得 られたラテックス(LP-1)6000gと、イオン交 換水2000gと、着色剤分散液(Bk)1800gと を、温度センサー、冷却管、窒素導入装置、攪拌装置を 取り付けた反応容器に入れ攪拌した。内温を30℃に調 整した後、この溶液に5Nの水酸化ナトリウム水溶液を 加えて p H を 1 1. 0 に調整した。次いで、塩化マグネ シウム6水和物526gをイオン交換水720mlに溶 解した水溶液を、攪拌下、30℃にて10分間かけて添 加した。3分間放置した後に昇温を開始し、この系を6 分間かけて90℃まで昇温した(昇温速度=10℃/ 分)。その状態で、「コールターカウンターTA-II」 にて会合粒子の粒径を測定し、体積平均粒径が 6.5μ mになった時点で、塩化ナトリウム1150gをイオン 交換水7000mlに溶解した水溶液を添加して粒子成 長を停止させ、さらに、熟成処理として液温度85℃に て2時間にわたり加熱攪拌することにより融着を継続さ せた。その後、8℃/分の条件で30℃まで冷却し、塩 酸を添加して p H を 2. 0 に調整し、攪拌を停止した。 生成した会合粒子を濾過し、イオン交換水で繰り返し洗 浄し、その後、40℃の温風で乾燥して着色粒子を得 た。このようにして得られた着色粒子を「着色粒子1B

k」とする。

【0184】 〔製造例2Bk~11Bk〕下記表2に示す処方に従って、使用したラテックスの種類(使用量は同じ)、熟成処理温度、熟成処理時間の少なくとも1つを変更したこと以外は製造例1Bkと同様にして離型剤を含有する着色粒子を得た。このようにして得られた着色粒子を「着色粒子2Bk」~「着色粒子11Bk」とする。

【0185】 [比較製造例1bk] アニオン系界面活性 剤 (SDS) 0.5g をイオン交換水400g に溶解さ 10 せた界面活性剤溶液 (85°C) 中に、加熱溶解させた例 示化合物 (W19) 140g を超音波分散させた。この*

*分散液を「離型剤分散液」とする。この離型剤分散液と、調製例HP-1で得られたラテックス(HP-1)3000gと、調製例LP-1で得られたラテックス(LP-1)6000gと、イオン交換水2000gと、着色剤分散液(Bk)1800gとを、温度センサー、冷却管、窒素導入装置、攪拌装置を取り付けた反応容器に入れ攪拌し、熟成処理時間を4時間に変更したこと以外は製造例1Bkと同様にして離型剤を含有する着色粒子を得た。このようにして得られた着色粒子を「比較用着色粒子1bk」とする。

[0186]

【表 2 】

着色粒子	ラテックス			熟成如	理
	乳化重合法	ミニエマル ジョン法	乳化 重合法	温度	時間
着色粒子18k	HP-1	MP-1	LP-1	85℃	2時間
着色粒子2Bk	HP-1	MP-1	LP-1	8 5℃	4時間
着色粒子3Bk	HP-1	MP-1	LP-1	8 5℃	6時間
着色粒子4Bk	HP~1	MP-1	LP-1	85℃	8時間
着色粒子5Bk	HP-1	MP-1	LP-1	95℃	1時間
着色粒子6 B k	HP-1	MP-1	LP-1	80℃	6時間
着色粒子78k	HP-1	MP-1	LP-1	80℃	10時間
着色粒子8Bk	HP-2	MP-2	LP-1	85℃	4時間
着色粒子98k	HP-3	MP-3	LP-1	85°C	4時間
着色粒子10B k	HP-4	MP-4	LP-1	85°C	4時間
着色粒子11Bk	HP-1	MP ~ 5	LP-1	8 5°C	4時間
比較用 着色粒子1bk	HP-1		LP-1	85℃	4時間

ム90gをイオン交換水1600mlに攪拌溶解した。 この溶液を攪拌しながら、染料(C. I. ソルベントイ エロー93)200gを徐々に添加し、次いで、高速回 転するローターを備えた攪拌装置「クレアミックス」 (エム・テクニック (株) 製) を用いて分散処理するこ とにより、着色剤粒子の分散液(以下、「着色剤分散液 (Y)」という。)を調製した。この着色剤分散液 (Y) における着色剤粒子の粒子径を、電気泳動光散乱 40 光度計「ELS-800」(大塚電子社製)を用いて測 定したところ、重量平均粒子径で98mmであった。 【0188】調製例HP-1で得られたラテックス(H P-1) 3000gと、調製例MP-1で得られたラテ ックス(MP-1) 2 5 0 0 g と、調製例 LP-1 で得 られたラテックス(LP-1)6000gと、イオン交 換水2000gと、着色剤分散液(Y) 1800gと を、温度センサー、冷却管、窒素導入装置、攪拌装置を 取り付けた反応容器に入れ攪拌した。内温を30℃に調 整した後、この溶液に5Nの水酸化ナトリウム水溶液を 50

【0187】〔製造例1Y〕nードデシル硫酸ナトリウ

加えて p Hを 1 1. 0 に調整した。次いで、塩化マグネ シウム 6 水和物 5 2 6 g をイオン交換水 7 2 0 m 1 に溶 解した水溶液を、攪拌下、30℃にて10分間かけて添 加した。3分間放置した後に昇温を開始し、この系を6 分間かけて90℃まで昇温した(昇温速度=10℃/ 分)。その状態で、「コールターカウンターTA-II」 にて会合粒子の粒径を測定し、体積平均粒径が 6.5μ mになった時点で、塩化ナトリウム1150gをイオン 交換水7000mlに溶解した水溶液を添加して粒子成 長を停止させ、さらに、熟成処理として液温度85℃に て4時間にわたり加熱攪拌することにより融着を継続さ せた。その後、8℃/分の条件で30℃まで冷却し、塩 酸を添加して p H を 2. 0 に調整し、攪拌を停止した。 生成した会合粒子を濾過し、イオン交換水で繰り返し洗 浄し、その後、40℃の温風で乾燥して着色粒子を得 た。このようにして得られた着色粒子を「着色粒子1 Y」とする。

【0189】 [比較製造例1y] アニオン系界面活性剤 (SDS) 0.5gをイオン交換水400gに溶解させ

た界面活性剤溶液(85℃)中に、加熱溶解させた例示化合物(W19)140gを超音波分散させた。この分散液を「離型剤分散液」とする。この離型剤分散液と、調製例HP-1で得られたラテックス(HP-1)300gと、調製例LP-1で得られたラテックス(LP-1)6000gと、イオン交換水2000gと、着色剤分散液(Y)1300gとを、温度センサー、冷却管、窒素導入装置、攪拌装置を取り付けた反応容器に入れ攪拌したこと以外は製造例1Yと同様にして離型剤を含有する着色粒子を得た。このようにして得られた着色10粒子を「比較用着色粒子1y」とする。

【0190】 〔製造例1M] nードデシル硫酸ナトリウ ム90gをイオン交換水1600mlに攪拌溶解した。 この溶液を攪拌しながら、顔料(C. I. ピグメントレ ッド122)200gを徐々に添加し、次いで、高速回 転するローターを備えた攪拌装置「クレアミックス」 (エム・テクニック (株) 製) を用いて分散処理するこ とにより、着色剤粒子の分散液(以下、「着色剤分散液 (M)」という。)を調製した。この着色剤分散液 (M) における着色剤粒子の粒子径を、電気泳動光散乱 20 光度計「ELS-800」(大塚電子社製)を用いて測 定したところ、重量平均粒子径で115 nmであった。 【0191】調製例HP-1で得られたラテックス(H P-1) 3000gと、調製例MP-1で得られたラテ ックス (MP-1) 2500gと、調製例LP-1で得 られたラテックス(LP-1)6000gと、イオン交 換水2000gと、着色剤分散液(M) 1800gと を、温度センサー、冷却管、窒素導入装置、攪拌装置を 取り付けた反応容器に入れ攪拌した。内温を30℃に調 整した後、この溶液に5 Nの水酸化ナトリウム水溶液を 加えてpHを11. 0に調整した。次いで、塩化マグネ シウム6水和物526gをイオン交換水720m1に溶 解した水溶液を、攪拌下、30℃にて10分間かけて添 加した。3分間放置した後に昇温を開始し、この系を6 分間かけて90℃まで昇温した(昇温速度=10℃/ 分)。その状態で、「コールターカウンターTA-II」 にて会合粒子の粒径を測定し、体積平均粒径が 6.5μ mになった時点で、塩化ナトリウム1150gをイオン 交換水7000mlに溶解した水溶液を添加して粒子成 長を停止させ、さらに、熟成処理として液温度85℃に て4時間にわたり加熱攪拌することにより融着を継続さ せた。その後、8℃/分の条件で30℃まで冷却し、塩 酸を添加してpHを2.0に調整し、攪拌を停止した。 生成した会合粒子を濾過し、イオン交換水で繰り返し洗 浄し、その後、40℃の温風で乾燥して着色粒子を得 た。このようにして得られた着色粒子を「着色粒子1

【0192】 [比較製造例1m] アニオン系界面活性剤 (SDS) 5.0gをイオン交換水4000gに溶解さ せた界面活性剤溶液(85℃)中に、加熱溶解させた例 50

M」とする。

示化合物(W19)140gを超音波分散させた。この分散液を「離型剤分散液」とする。この離型剤分散液と、調製例HP-1で得られたラテックス(HP-1)3000gと、調製例LP-1で得られたラテックス(LP-1)6000gと、イオン交換水2000gと、着色剤分散液(M)1300gとを、温度センサー、冷却管、窒素導入装置、攪拌装置を取り付けた反応容器に入れ攪拌したこと以外は製造例1Mと同様にして離型剤を含有する着色粒子を得た。このようにして得られた着色粒子を「比較用着色粒子1m」とする。

【0193】 〔製造例1C〕 nードデシル硫酸ナトリウム90gをイオン交換水1600mlに攪拌溶解した。この溶液を攪拌しながら、顔料(C. I. ピグメントブルー15:3)200gを徐々に添加し、次いで、高速回転するローターを備えた攪拌装置「クレアミックス」(エム・テクニック(株)製)を用いて分散処理することにより、着色剤粒子の分散液(以下、「着色剤分散液(C)」という。)を調製した。この着色剤分散液(C)における着色剤粒子の粒子径を、電気泳動光散乱光度計「ELS-800」(大塚電子社製)を用いて測定したところ、重量平均粒子径で105nmであった。

【0194】調製例HP-1で得られたラテックス(H P-1) 3000gと、調製例MP-1で得られたラテ ックス (MP-1) 2500gと、調製例LP-1で得 られたラテックス (LP-1) 6000gと、イオン交 換水2000gと、着色剤分散液(M) 1300gと を、温度センサー、冷却管、窒素導入装置、攪拌装置を 取り付けた反応容器に入れ攪拌した。内温を30℃に調 整した後、この溶液に5 Nの水酸化ナトリウム水溶液を 加えてpHを11.0に調整した。次いで、塩化マグネ シウム6水和物526gをイオン交換水720m l に溶 解した水溶液を、攪拌下、30℃にて10分間かけて添 加した。3分間放置した後に昇温を開始し、この系を6 分間かけて90℃まで昇温した(昇温速度=10℃/ 分)。その状態で、「コールターカウンターTA-II」 にて会合粒子の粒径を測定し、体積平均粒径が 6.5μ mになった時点で、塩化ナトリウム1150gをイオン 交換水7000mlに溶解した水溶液を添加して粒子成 長を停止させ、さらに、熟成処理として液温度85℃に て4時間にわたり加熱攪拌することにより融着を継続さ せた。その後、8°C/分の条件で30°Cまで冷却し、塩 酸を添加して p H を 2.0 に調整し、攪拌を停止した。 生成した会合粒子を濾過し、イオン交換水で繰り返し洗 浄し、その後、40℃の温風で乾燥して着色粒子を得 た。このようにして得られた着色粒子を「着色粒子1

【0195】 [比較製造例1c] アニオン系界面活性剤(SDS) 5.0gをイオン交換水4000gに溶解させた界面活性剤溶液(85℃)中に、加熱溶解させた例示化合物(W19)140gを超音波分散させた。この

C」とする。

分散液を「離型剤分散液」とする。この離型剤分散液 と、調製例HP-1で得られたラテックス(HP-1) 3000gと、調製例LP-1で得られたラテックス (LP-1) 6000gと、イオン交換水2000g と、着色剤分散液(C) 1300gとを、温度センサ

* 容器に入れ攪拌したこと以外は製造例1 C と同様にして 離型剤を含有する着色粒子を得た。このようにして得ら れた着色粒子を「比較用着色粒子1 c」とする。

50

[0196]

【表3】

一、冷却管、窒素導入装置、攪拌装置を取り付けた反応*

着色粒子		ラテックス	熟成如	成処理	
	乳化 重合法	ミニエマル ジョン法	乳化 重合法	祖度	時間
着色粒子1 Y	HP-1	MP-1	LP-1	8 5℃	4時間
着色粒子1M	HP-1	MP-1	LP-1	85℃	4時間
着色粒子1 C	HP-1	MP-1	L P-1	85℃	4時間
比較用 着色粒子1 y	HP-1		LP-1	85℃	4時間
比較用 着色粒子1 m	HP-1		LP-1	85℃	4時間
比較用 着色粒子1 c	HP-1		LP-1	85℃	4時間

【0197】以上のようにして得られた着色粒子1Bk 20※形状特性および粒度分布特性を測定した。結果を下記表 ~11日k、比較用着色粒子1bk、着色粒子1Y、着 色粒子1 M、着色粒子1 C、比較用着色粒子1 y、比較 用着色粒子1m、比較用着色粒子1cの各々について、※

4に示す。

[0198]

【表4】

着色粒子番号	形状係数 の平均値	形状係数の 変動係数 [%]	個数 平均粒径 〔µm〕	個数粒径 分布の個数 変動係数 [%]	形状係数 1.2 ~1.6 の割合 〔%〕	角がない トナー粒子 の割合 【%】	M (m1+m2) (%)
着色粒子1Bk	1. 57	1 5	6.3	2 5	8 5	8 4	7 2
着色粒子2Bk	1. 54	14	6.4	2 3	8 2	8 6	74
着色粒子3Bk	1. 42	14	6. 8	2 4	79	9 0	72
着色粒子4Bk	1.30	1 3	7. 3	2 0	6 5	9 2	78
着色粒子 5 B k	1.61	19	6. 2	2 9	6 1	4 1	70
着色粒子 6 B k	1.54	13	7. 0	2 1	8 5	8 8	7 4
着色粒子78k	1.34	1 2	6.8	2 2	70	9 1	71
着色粒子8Bk	1.49	13	6. 7	2 1	7 5	8 8	74
着色粒子9Bk	1. 43	14	6. 7	2 1	7 3	8 6	80
着色粒子10Bk	1.39	1 2	6.8	20	80	8 9	79
着色粒子11Bk	1. 43	1 3	6. 5	2 2	7 5	8 7	7 7
比較用着色粒子1Bk	1.56	1 9	6. 9	29	68	8 1	74
着色粒子1 Y	1. 54	1 4	6.6	2 3	8 2	8 6	7 5
着色粒子1M	1. 53	14	6.4	2 4	8 1	8 6	77
着色粒子1C	1.54	1 3	6. 5	2 3	8 2	8 8	74
比較用着色粒子1 y	1.68	18	6.8	29	68	8 6	74
比較用着色粒子 1 m	1.63	18	6. 3	29	6 9	8 8	74
比較用着色粒子1 c	1.69	19	6. 9	2 8	68	8 6	74

【0199】上記の着色粒子および比較用着色粒子の各 々に、疎水性シリカ(数平均一次粒子径=10nm、疎 水化度=63)を1.0質量%となる割合で添加すると ともに、疎水性酸化チタン(数平均一次粒子径=25 n m、疎水化度=60)を1.2質量%となる割合でそれ 50

ぞれ添加し、ヘンシェルミキサーにより混合した。な お、これらのトナー粒子について、疎水性シリカおよび 疎水性酸化チタンの添加によっては、その形状および粒 径は変化しない。

【0200】次いで、下記表5に示す処方に従って、疎

水性シリカおよび疎水性酸化チタンが添加された着色粒 子の各々と、上記キャリア1~10および比較用キャリ

* した。 [0201] 【表 5】

ア1とを混合し、トナー濃度が5質量%の現像剤を調製*

51

現像剤番号	トナー番号	キャリア番号
現像剤1Bk	トナー1Bk	キャリア1
現像剤2Bk	トナー2Bk	キャリア1
現像剤 3 B k	トナー3Bk	キャリア1
現像剤4Bk	トナー4Bk	キャリア1
現像剤 5 B k	トナー5Bk	キャリア1
現像剤 6 B k	トナー6Bk	キャリア1
現像剤7Bk	トナー7Bk	キャリア1
現像剤8Bk	トナー8Bk	キャリア1
現像剤9Bk	トナー9Bk	キャリア1
現像剤10Bk	トナー10Bk	キャリア1
現像剤11Bk	トナー11Bk	キャリア1
現像稍12Bk	トナー18k	キャリア 2
現像剤13Bk	トナー1 B k	キャリア3
現像利14Bk	トナー18k	キャリア4
現像剤15Bk	トナー1 B k	キャリア5
現像剤16Bk	トナー1 B k	キャリア6
現像剤17Bk	トナー1 B k	キャリア7
現像剤18Bk	トナー1Bk	キャリア8
現像剤19Bk	トナー1Bk	キャリア9
現像剤20Bk	トナー1Bk	キャリア10
カラー現像剤1	1Bk/1Y/1M/1C	キャリア1
比較用 カラー現像剤 1	1 b k / 1 y / 1 m / 1 c	キャリア1
比較用 カラー現像剤2	1Bk/1Y/1M/1C	比較用キャリア1

【0202】<実施例1~20および比較例1~2>以 上のようにして得られた本発明の現像剤1Bk~11B k および比較用現像剤1bkの各々について、クリーニ ングにより回収したトナーを、適宜のリサイクルシステ ムにより再び現像器に戻して再使用するトナーリサイク ル方式を有するデジタル複写機「7075」(コニカ (株) 製)を用い、温度32℃、相対湿度85%の高温 高湿環境下において、画素率が5%の原稿を5枚間欠印 字にて20万枚印字する実写テストを行い、1枚目に形 40 成された画像と20万枚目に形成された画像とについ て、画像濃度およびカブリ濃度の評価を行った。結果を 表6に示す。また、各々の現像剤について、初期の帯電 量と20万枚印字後の帯電量を測定してその差を求め、 帯電量の印字枚数による変動を評価した。結果を併せて 下記表6に示す。

【0203】(1)画像濃度およびカブリ濃度 画像濃度は、マクベス反射濃度計「RD-918」によ り定着画像のベタ黒部分について画像濃度を測定し、絶

「RD-918」により定着画像の白地部分について画 像濃度を測定し、記録材の白地部分(反射濃度0.0 0) に対する相対濃度で評価した。

【0204】(2)帯電量

初期の帯電量と20万枚印字後の帯電量とを測定し、印 字枚数による帯電量の変動幅について評価を行った。帯 電量の測定は、現像剤1gをステンレススチール製のメ シュを張ったセルに入れ、窒素ガス圧0.2kg/cm で6秒間ブローし、残ったキャリアの電荷を測定する ことにより行った。初期の帯電量と20万枚印字後の帯 電量との変動幅が、6 µ C/g 未満の場合には実用上問 題はなく、帯電量の変動幅が6~10μ C/gの場合に は、トナー飛散やカブリを発生させる原因になることが 予想され、帯電量の変動幅が10μC/gを超える場合 には、トナー飛散やカブリ等が発生し、実用的ではなく なる。

【0205】ここに、感光体のクリーニングはブレード 方式を採用した。また、定着装置としては、図4に示し 対濃度で評価した。カブリ濃度は、マクベス反射濃度計 50 たような圧接方式の加熱定着装置を用いた。定着装置の

具体的構成は、下記のとおりである。中央部にヒーターを内蔵するアルミニウム合金からなる円筒状(内径=40mm、肉厚=1.0mm、全幅=310mm)の芯金の表面を、PFA(テトラフロオロエチレンーパーフルオロアルキルビニルエーテル共重合体)のチューブ(厚み:120 μ m)で被覆することにより加熱ローラー(上ローラー)を構成し、鉄からなる円筒状(内径=40mm、肉厚=2.0mm)の芯金の表面を、スポンジ状シリコーンゴム(アスカーC硬度48°、厚み2mm)で被覆することにより加圧ローラー(下ローラー)を構成し、当該加熱ローラーと当該加圧ローラーとを1*

* 50Nの総荷重により当接させて5.8mm幅のニップを形成させた。この定着装置を使用して、印字の線速を250mm/secに設定した。なお、定着装置のクリーニング機構として、ポリジフェニルシリコーン(20 Cの粘度が10 Pa·sのもの)を含浸したウェッブ方式の供給方式を使用した。定着温度は加熱ローラーの表面温度で制御した(設定温度175 C)。なお、シリコーンオイルの塗布量は0.1 mg/A4とした。

【0206】 【表6】

実施		現像剤番号	画像濃度 カプリ濃度		印字枚数による		
			初期	20万枚後	初 期	20万枚後	帯電量の変動 [μC/g]
実施	例1	現像剤18k	1.43	1, 38	0.001	0.002	3. 6
実施	例2	現像剤2Bk	1.44	1, 3B	0.001	0, 003	3. 7
実施	例3	現像剤3Bk	1.43	1, 38	0, 001	0, 002	3. 8
実施	例4	現像剤4Bk	1.42	1, 39	0.001	0, 002	4. 1
実施	例 5	現像和 5 B k	1, 43	1.3B	0. 001	0, 002	4. 0
実施	何6	現 像 和 6 B k	1.42	1, 39	0, 001	0.002	4. 2
実施	例 7	現像剤7Bk	1, 44	1, 39	0. 001	0, 002	4. 1
実施	例8	現像剤8Bk	1.44	1. 39	0.001	0.003	3.6
実施	例9	現像剤 9 B k	1, 42	1. 38	0, 001	0. 002	3. 7
実施	9 110	現像剤10B k	1, 44	1. 39	0, 001	0,002	4. 1
実施	例11	現像利11B k	1. 42	1, 38	0, 001	0, 002	3.8
実施	例12	現像剤12B k	1. 42	1. 38	0, 001	0, 002	4. 1
実施	例13	現像剤13B k	1, 42	1, 41	0,001	0.001	3. 7
実施	6 114	現 像剤14B k	1.42	1, 41	0,001	0.001	3. 9
実施	61 15	現像剤15Bk	1, 42	1, 41	0,001	0.001	4. 0
実施	例16	現像剤16B k	1. 43	1, 42	0, 001	0.001	4. 1
実施	例17	現像剤17B k	1. 42	1, 38	0, 001	0, 002	3. 7
実施	例18	現像剤18B k	1. 42	1, 41	0, 001	0, 001	3. 7
実施	例19	現像剤19B k	1, 42	1.41	0.001	0.001	3.8
実施	例20	現像剂20Bk	1, 42	1.41	0.001	0.001	3. 8
比較	例 1	比較用 現像剤1bk	1. 42	1. 40	0,001	0. 006	9. 9
比較	例 2	比較用 現像剤 2 b k	1.42	1, 15	0, 001	0. 017	14. 3

【0207】<実施例21および比較例3~4>下記表 407に示す組合せに従って、本発明のカラー現像剤および比較用カラー現像剤の各々を使用し、中間転写方式のカラー複写機を用い、温度25℃、相対湿度80%の常温高湿環境下において、フルカラー画素率が25%の原稿を連続印字にて5万枚印字する実写テストを行い、1枚目に形成された画像とについて、色差の評価を行った。結果を表7に示す。色差の評価は、1枚目の形成画像および5万枚目の形成画像各々における二次色(レッド、ブルー、グリーン)のソリッド画像部の色を「Macbeth Color-E 50

ye7000」により測定し、CMC(2:1)色差式を用いて色差を算出した。CMC(2:1)色差式で求められた色差が5以下であれば、形成された画像の色味の変化が許容できる程度といえる。

【0208】ここに、カラー複写機は、Y/M/C/Bkの現像器を積層型感光体の周囲に配置し、各色をそれぞれ感光体上に現像した後に中間転写体上に各色ずつ転写し、中間転写体上にカラートナー像を形成した後に記録材である転写紙に転写する中間転写体を有するものである。感光体のクリーニングは、ブレードクリーニング方式を採用した。また、定着方式としては図4に示した

ような圧接方式の加熱定着装置を用いた。具体的構成は 下記の如くである。中央部にヒーターを内蔵するアルミ ニウム合金からなる円筒状(内径=40mm、肉厚= 1. 0 mm、全幅=310mm) の芯金の表面を、PF A (テトラフロオロエチレンーパーフルオロアルキルビ ニルエーテル共重合体)のチューブ(厚み:120μ m)で被覆することにより加熱ローラー(上ローラー) を構成し、鉄からなる円筒状(内径=40mm、肉厚= 2. 0 mm) の芯金の表面を、スポンジ状シリコーンゴ ム (アスカーC硬度48°、厚み2mm) で被覆するこ 10 とにより加圧ローラー(下ローラー)を構成し、当該加 熱ローラーと当該加圧ローラーとを150Nの総荷重に より当接させて5.8mm幅のニップを形成させた。こ の定着装置を使用して、印字の線速を250mm/se cに設定した。なお、定着装置のクリーニング機構とし て、ポリジフェニルシリコーン (20℃の粘度が10P a・sのもの)を含浸したウェッブ方式の供給方式を使 用した。定着温度は加熱ローラーの表面温度で制御した (設定温度175℃)。なお、シリコーンオイルの塗布 量は0.6mg/A4とした。

[0209]

【表7】

1		
実施例	現像剤	色差
実施例21	カラー現像剤1	1
比較例3	比較用カラー現像剤1	6
比較例4	比較用カラー現像剤2	9

【0210】以上のように、実施例1~実施例20における本発明の現像剤によれば、画像汚れのない高画質の 30 画像を長期にわたり安定的に形成することができることが確認された。これに対して、比較例1における比較用現像剤1bkでは、20万枚目の画像に画像濃度の低下はあまり見られないが、カブリがやや多く発生しており、比較例2における比較用現像剤2bkでは、20万枚目の画像の画像濃度が著しく低下する共に、カブリが多く発生している。特に、比較例1においては、4万枚を超えたあたりで、休止後の1枚目の裏面に定着オフセットの汚れが発生するようになり、さらに、紙が擦られた状態でトナーが転写紙に写る汚れが発生し、実用的で 40

はない。

【0211】また、実施例21における本発明のカラー現像剤によれば、色差の少ない高品位のカラー画像を長期にわたり安定的に形成することができることが確認された。これに対して、比較例3および比較例4における比較用カラー現像剤では、色差が大きく、形成されたカラー画像は色再現性に劣るものであった。特に、比較例3においては、1万枚を超えたあたりで、休止後の1枚目の裏面に定着オフセットの汚れが発生するようになり、さらに、紙が擦られた状態でトナーが転写紙に写る汚れが発生し、実用的ではない。

[0212]

【発明の効果】本発明の現像剤によれば、画像汚れのない高画質の画像を長期にわたり安定的に形成することができる。本発明の画像形成方法によれば、画像汚れのない高画質の画像を長期にわたり安定的に形成することができる。

【図面の簡単な説明】

【図1】(a)は、角のないトナー粒子の投影像を示す 説明図であり、(b)および(c)は、それぞれ角のあるトナー粒子の投影像を示す説明図である。

【図2】層流を形成させる場合に使用される反応装置の 一構成例を示す説明図である。

【図3】撹拌翼の形状の具体例を示す説明図である。

【図4】定着装置の一構成例を示す説明用断面図である。

【符号の説明】

1 熱交換用のジャケット 2 攪拌槽

3 回転軸

30 7 上部材料投入口 8 下部材料

投入口

46、56 攪拌翼

5 a 、 5 b 、 5 c 、 5 d 攪拌翼

6b、6c、6d 中孔部 (スリット)

α 交差角

10 加熱ローラー 11 芯金

12 被覆層 13 加熱部材

20 加圧ローラー 21 芯金

2 2 被覆層 T トナー画像

(a) 角がないトナー粒子
(b) 角があるトナー粒子
(c) 角があるトナー粒子
(c) 角があるトナー粒子
(c) 角があるトナー粒子
(c) 角があるトナー粒子
(c) 角があるトナー粒子

フロントページの続き

(72) 発明者 山崎 弘

東京都八王子市石川町2970番地コニカ株式 会社内

(72) 発明者 山田 裕之

東京都八王子市石川町2970番地コニカ株式 会社内

(72)発明者 小林 義彰

東京都八王子市石川町2970番地コニカ株式 会社内

Fターム(参考) 2H005 AA06 AA15 AB06 BA06 CA12

CA14 CA30 EA05 EA10

2H033 AA01 AA09 AA39 BA08 BA24

BA58 BB01 BB17 BB28