Homographies conservant U

Notations

On note $\,\mathbb{R}\,$ l'ensemble des nombres réels et $\,\mathbb{C}\,$ l'ensemble des nombres complexes.

On introduit les sous-ensembles de $\mathbb C$ suivants :

$$U = \{z \in \mathbb{C}/|z| = 1\} = \{e^{i\theta}/\theta \in \mathbb{R}\}, \ P = \{z \in \mathbb{C}/\operatorname{Im}(z) > 0\} \ \text{ et } D = \{z \in \mathbb{C}/|z| < 1\}.$$

Définition

Soit $a,b,c,d \in \mathbb{C}$ tels que $ad-bc \neq 0$.

On appelle homographie définie par la relation $h(z) = \frac{az+b}{cz+d}$ l'application h à valeurs dans $\mathbb C$ qui à tout

$$z \in \mathbb{C}$$
 tels que $cz + d \neq 0$ associe par $\frac{az + b}{cz + d}$.

Partie I - Exemple

Soit h l'homographie définie par $h(z) = i\frac{1+z}{1-z}$.

- 1.a Montrer que $\forall z \in U$ tel que $z \neq 1$, $h(z) \in \mathbb{R}$.
- 1.b Observer que $\forall z \in D, h(z) \in P$.
- 2.a Déterminer les complexes z tels que h(z) = z.
- 2.b Pour quel(s) $Z \in \mathbb{C}$ l'équation h(z) = Z d'inconnue $z \neq 1$ possède-t-elle une solution ?

Soit g l'homographie définie par $g(z) = \frac{z-i}{z+i}$.

- 3.a Montrer que $\forall z \in \mathbb{R}, g(z) \in U$.
- 3.b Observer que $\forall z \in P, g(z) \in D$.

Partie II - Homographies conservant U

- 1. Soit $\theta \in \mathbb{R}$ et h l'homographie définie par $h(z) = \frac{\mathrm{e}^{i\theta}}{z}$. Montrer que $\forall z \in U, h(z) \in U$.
- 2. Soit $\alpha \in \mathbb{C}$ tel que $\alpha \notin U$, $\theta \in \mathbb{R}$ et h l'homographie définie par $h(z) = e^{i\theta} \frac{z + \alpha}{\overline{\alpha}z + 1}$.
- 2.a Montrer que h est bien une homographie et que h est définie sur U.
- 2.b Montrer que $\forall z \in U, h(z) \in U$.
- 3. Inversement, nous allons démontrer que seules les homographies h précédentes sont telles que $\forall z \in U, h(z) \in U$. Avant cela, nous avons néanmoins besoin de deux résultats techniques :
- 3.a Etablir que $\forall \alpha, \beta \in \mathbb{C}, |\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2 + 2\operatorname{Re}(\overline{\alpha}\beta)$.
- $\text{3.b} \qquad \text{Soit } a,b \in \mathbb{C} \text{ . Etablir}: \left(\forall \theta \in \mathbb{R}, a+2\operatorname{Re}(b\mathrm{e}^{-i\theta})=0\right) \Rightarrow \begin{cases} a=0\\b=0 \end{cases}.$
- 4. Soit $a,b,c,d \in \mathbb{C}$ tels que $ad-bc \neq 0$ et h définie par $h(z) = \frac{az+b}{cz+d}$ une homographie définie sur U telle que $\forall z \in U, h(z) \in U$.

4.a Etablir
$$\forall \theta \in \mathbb{R}, |a|^2 + |b|^2 + 2\operatorname{Re}(\overline{a}be^{-i\theta}) = |c|^2 + |d|^2 + 2\operatorname{Re}(\overline{c}de^{-i\theta})$$
.

4.b En déduire :
$$\begin{cases} |a|^2 + |b|^2 = |c|^2 + |d|^2 \\ \overline{a}b = \overline{c}d \end{cases}$$
.

4.c Si
$$a = 0$$
: montrer que l'homographie h est du type présenté en II.1.

4.d Si
$$a \neq 0$$
: établir que $(|a|^2 - |c|^2)(|a|^2 - |d|^2) = 0$.

- 4.e Observer que le cas |a| = |c| est impossible de part la condition $ad bc \neq 0$.
- 4.f Observer que le cas |a| = |d| conduit à une homographie h du type présenté en II.2.

Correction

Partie I

1.a Soit $z \in U \setminus \{1\}$. On peut écrire $z = e^{i\theta}$ et alors avec $\theta \in]0, 2\pi[$.

$$h(z) = i \frac{1 + e^{i\theta}}{1 - e^{i\theta}} = i \frac{2\cos(\theta/2)e^{i\theta/2}}{-2i\sin(\theta/2)e^{i\theta/2}} = -\cot\theta/2 \in \mathbb{R}.$$

1.b Soit
$$z \in D$$
. $h(z) = i \frac{(1+z)(1-\overline{z})}{|1-z|^2} = -\frac{2\operatorname{Im}(z)}{|1-z|^2} + i \frac{1-|z|^2}{|1-z|^2} \in P \operatorname{car} |z| < 1$.

2.a
$$h(z) = z \Leftrightarrow z^2 + (i-1)z + i = 0$$
. $\Delta = (i-1)^2 - 4i = -6i = (\sqrt{3}(1-i))^2$.

Les solutions sont $(1-i)\frac{1\pm\sqrt{3}}{2}$.

2.b Soit
$$z \in \mathbb{C} \setminus \{1\}$$
. $h(z) = Z \Leftrightarrow (1+z) = iZ(z-1) \Leftrightarrow z = \frac{-1-iZ}{1-iZ} = \frac{Z-i}{Z+i}$

3.a Soit
$$z \in \mathbb{R}$$
. $|g(z)| = \frac{|z-i|}{|z+i|} = \sqrt{\frac{z^2+1}{z^2+1}} = 1$ donc $z \in U$.

2.b Soit
$$z \in P$$
. $|g(z)| = \frac{|z-i|}{|z+i|}$ or $|z-i|^2 = \text{Re}(z)^2 + (\text{Im}(z)-1)^2$ et $|z+i|^2 = \text{Re}(z)^2 + (\text{Im}(z)+1)^2$ donc $|z-i| < |z+i|$ car $\text{Im}(z) > 0$ et par suite $g(z) \in D$.

Partie II

1.
$$\forall z \in U$$
, on a $|h(z)| = \left| \frac{e^{i\theta}}{z} \right| = 1$ donc $h(z) \in U$.

2.a La condition $ad-bc\neq 0$ impose $\mathrm{e}^{i\theta}\times 1-\alpha\mathrm{e}^{i\theta}\overline{\alpha}\neq 0$ i.e. $|\alpha|\neq 1$ d'où $\alpha\not\in U$. De plus $\forall z\in U$, $z\neq -1/\overline{\alpha}$ donc h est définie sur U.

2.b
$$h(z) = e^{i\theta} \frac{z+\alpha}{\overline{\alpha}z+1}$$
. On a $|h(z)| = \left|\frac{z+\alpha}{\overline{\alpha}z+1}\right| \times \frac{|\overline{z}|}{|\overline{z}|} = \frac{|z+\alpha||\overline{z}|}{|\overline{\alpha}+\overline{z}|} = 1$.

3.a
$$|\alpha + \beta|^2 = (\alpha + \beta)\overline{(\alpha + \beta)} = \alpha \overline{\alpha} + \alpha \overline{\beta} + \overline{\alpha}\beta + \beta \overline{\beta} = |\alpha|^2 + |\beta|^2 + 2\operatorname{Re}(\overline{\alpha}\beta) \operatorname{car} \alpha \overline{\beta} = \overline{\alpha}\overline{\beta}$$
.

3.b Supposons
$$\forall \theta \in \mathbb{R}, a + 2\operatorname{Re}(be^{-i\theta}) = 0$$

Soit $\alpha \in \mathbb{R}$ tel que $b = |b|e^{i\alpha}$ ($\alpha = \arg(b)$ [2π] si $b \neq 0$, α quelconque sinon).

Pour
$$\theta = \alpha$$
: $a + 2 \operatorname{Re}(be^{-i\theta}) = a + 2 \operatorname{Re}(|b|) = a + 2|b| = 0$.

Pour
$$\theta = \alpha + \pi$$
: $a + 2\operatorname{Re}(be^{-i\theta}) = a + 2\operatorname{Re}(-|b|) = a - 2|b| = 0$.

Le système
$$\begin{cases} a+2|b|=0\\ a-2|b|=0 \end{cases} \text{ implique } a=0 \text{ et } |b|=0 \text{ i.e. } b=0 \,.$$

4.a
$$h(e^{i\theta}) = \frac{ae^{i\theta} + b}{ce^{i\theta} + d} \cdot |h(e^{i\theta})| = 1 \text{ implique } |ae^{i\theta} + b|^2 = |ce^{i\theta} + d|^2 \text{ d'où}$$

$$\forall \theta \in \mathbb{R}, |a|^2 + |b|^2 + 2\operatorname{Re}(\overline{a}be^{-i\theta}) = |c|^2 + |d|^2 + 2\operatorname{Re}(\overline{c}de^{-i\theta}).$$

4.b
$$\forall \theta \in \mathbb{R}$$
, on a $(|a|^2 + |b|^2 - |c|^2 - |d|^2) + 2\operatorname{Re}((\overline{a}b - \overline{c}d)e^{-i\theta}) = 0$ d'où
$$\begin{cases} |a|^2 + |b|^2 - |c|^2 - |d|^2 = 0 \\ \overline{a}b - \overline{c}d = 0 \end{cases}$$
 puis
$$\begin{cases} |a|^2 + |b|^2 = |c|^2 + |d|^2 \quad (1) \\ \overline{a}b = \overline{c}d \quad (2) \end{cases}$$
.

4.c Supposons a = 0. (2) donne $\overline{c}d = 0$, or $ad - bc \neq 0$ donc $c \neq 0$ et par suite d = 0.

(1) donne alors
$$|b| = |c|$$
 ce qui permet d'écrire $b = e^{i\theta}c$ et alors $h(z) = \frac{az+b}{cz+d} = \frac{e^{i\theta}}{z}$.

- 4.d Supposons $a \neq 0$. (2) donne $b = \frac{\overline{c}d}{\overline{a}}$ et $|a|^2 \times (1)$ donne alors $|a|^4 + |c|^2 |d|^2 |a|^2 |c|^2 |a|^2 |d|^2 = 0$ d'où $(|c|^2 |a|^2)(|d|^2 |a|^2) = 0$.
- 4.e Supposons |a|=|c|. On peut alors écrire $a=c\mathrm{e}^{\mathrm{i}\theta}$ et $b=d\mathrm{e}^{-\mathrm{i}\theta}$ mais alors ad-bc=0 qui est exclu.
- 4.f Supposons |a| = |d|. On peut alors écrire $a = de^{i\theta}$ et $b = \frac{\overline{c} de^{i\theta}}{\overline{d}}$ et alors

$$h(z) = \frac{az+b}{cz+d} = e^{i\theta} \frac{z + \frac{\overline{c}}{\overline{d}}}{\frac{c}{d}z+1} = e^{i\theta} \frac{z+\alpha}{\alpha z+1} \text{ avec } \alpha = \frac{\overline{c}}{\overline{d}} \in \mathbb{C}.$$

Enfin la condition $ad-bc\neq 0$ donne $d^2\mathrm{e}^{\mathrm{i}\theta}-\frac{c\overline{c}d}{\overline{d}}\mathrm{e}^{\mathrm{i}\theta}\neq 0$ donc $|c|\neq |d|$ puis $\alpha\not\in U$. Finalement h est du type annoncé.