Primeira avaliação (A1)

Disciplina: Inferência Estatística Professor: Luiz Max de Carvalho

20 de Setembro de 2021

- Por favor, entregue um único arquivo PDF;
- O tempo para realização da prova é de 4 (quatro) horas, mais vinte minutos para upload do documento para o e-class;
- Responda todas as questões sucintamente;
- Marque a resposta final claramente com um quadrado, círculo, ou figura geométrica de sua preferência;
- A prova vale 80 pontos; a pontuação restante é contada como bônus.
- Apenas tente resolver a questão bônus quando tiver resolvido todo o resto.

Dicas

• Se X tem distribuição exponencial com parâmetro $\lambda > 0$, então, para x > 0 as funções de densidade de probabilidade e densidade acumulada são, respectivamente,

$$f_X(x) = \lambda \exp(-\lambda x),$$

 $F_X(x) = 1 - \exp(-\lambda x).$

• Se X tem distribuição Gama com parâmetros $\alpha > 0$ e $\beta > 0$ e f.d.p.,

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp(\beta x),$$

para x>0, então W=1/X tem distribuição Gama-inversa, com f.d.p.

$$f_W(w) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} w^{-(\alpha+1)} \exp(\beta/w),$$

para w > 0. Ademais, $E[W] = \beta/(\alpha-1)$ e $Var(W) = \beta^2/[(\alpha-1)^2(\alpha-2)]$.

- Se $X_i \sim \text{Gama}(\alpha_i, \beta)$, com $\alpha_i > 0$ para todo $i \in \beta > 0$, então $Y = \sum_{i=1}^n X_i$ tem distribuição Gama com parâmetros $\alpha_y = \sum_{i=1}^n \alpha_i \in \beta_y = \beta$.
- Se $X \sim \text{Gama}(\alpha, \beta), Y = cX$ tem distribuição $\text{Gama}(\alpha, \beta/c)$ para c > 0.

1. Circling the square.

Um círculo C_r de raio r é inscrito em uma folha de papel quadrada com lado b. Suponha que desejamos estimar a área A deste círculo. Para tanto, vamos amostrar vetores aleatórios de uma distribuição uniforme definida sobre a folha de papel e, para estimar a área da circunferência, contar a proporção de vetores caindo dentro e fora de C_r e multiplicar esta proporção pela área total da folha de papel.

- a) (2,5 pontos) Mostre que se X e Y são variáveis aleatórias i.i.d. com distribuição Uniforme(0,b), então (X,Y) possui função de densidade de probabilidade constante sobre $(0,b)\times(0,b)$;
- b) (7,5 pontos) Você deixa cair grãos de milho sobre a folha e conta quantos deles cairam dentro do círculo e fora do círculo (porém na folha). Vamos supor que este mecanismo gera observações i.i.d. uniforme sobre $(0,b)^2$. Represente os grãos que caíram sobre a folha através de $(X_1,Y_1),...,(X_n,Y_n)$ e defina $Z_i=\mathbb{I}((X_i,Y_i)\in C_r),\ i=1,...,n$ como uma variável indicadora que recebe valor 1 se o grão está dentro da circunferência. Suponha que depois de medir Z você joga fora X e Y, isto é, guarda o milho no pote de novo para fazer pipoca mais tarde. Construa um modelo estatístico parametrizado pela área, A, da circunferência que reflete este experimento. Encontre uma estatística suficiente mínima para o parâmetro deste modelo.

Dica: desenhe um diagrama e considere as áreas envolvidas (evite <u>avaliar</u> integrais!);

- c) (5 pontos) Considere $\delta_1(\mathbf{Z}) = b^2 \bar{Z}_n$. Este é um estimador não enviesado da área do círculo?
- d) (5 pontos) Calcule o erro quadrático médio $R(A, \delta_1)$ de δ_1 e discuta como ele se comporta em relação à quantidade de interesse. O que acontece com $R(A, \delta_1)$ quando A cresce?

2. The shinning.

Suponha que você é a pessoa responsável pelo controle estatístico de qualidade na fábrica de lâmpadas LuminaEu. Seu chefe, Astolfo, lhe envia uma planilha com os valores X_1, X_2, \ldots, X_n dos tempos de falha de n lâmpadas (em dias). Você lê no manual da empresa que um modelo exponencial i.i.d. com parâmetro θ é apropriado para análise.

- a) (5 pontos) Mostre que o estimador de momentos para θ coincide com o EMV neste caso;
- b) (10 pontos) Discuta se o estimador do item anterior é eficiente para amostras finitas. O que acontece assintoticamente?
- c) (5 pontos) Conhecendo Astolfo, no entanto, você sabe que ele não saberá interpretar quaisquer estimativas diretas da taxa θ , então decide considerar a probabilidade de excedência¹ $\alpha := \Pr(X_1 > c)$ para um certo c > 0. Encontre um estimador de máxima verossimilhança para α ;

3. Cool and normal!

Suponha que você é a pessoa responsável por analisar a concentração de ácido em pedaços de queijo vindos da famosa fábrica de frios francesa J'skeci. Assumindo uma distribuição normal para as concentrações em n medições independentes de n pedaços distintos, você precisa descobrir a média μ e a variância v desta distribuição.

a) (5 pontos) Considere a priori imprópria

$$\xi(\mu, v) \propto 1/v$$
 (1)

Mostre que a posteriori $\xi(\mu, v \mid \boldsymbol{x})$ é própria;

Dica: Procure com atenção o núcleo de distribuições conhecidas.

- b) (7,5 pontos) Exiba o estimador de Bayes sob perda quadrática para v e o estimador de Bayes sob perda absoluta para μ e discuta se esses estimadores são viesados;
- c) (5 pontos) Encontre uma priori conjugada para (μ, v) ;
- d) (2,5 pontos) Mostre que a priori em (1) pode ser vista como um limite particular (dos hiperparâmetros) da priori conjugada do item anterior.

¹Em inglês, exceedance probability.

4. Get your ducks in a row.

Pato Donald, Huguinho, Zezinho e Luisinho estão estudando Inferência Estatística para trabalhar no hedge fund do Tio Patinhas. O problema em questão é a estimação do parâmetro θ de uma distribuição uniforme em $(\theta/2, 3\theta/2)$ a partir de uma amostra aleatória X_1, X_2, \ldots, X_n . Cada um propôs um estimador diferente para θ e seu trabalho é ajudar o Tio Patinhas a ordenar esses estimadores em ordem de qualidade.

Sejam $M := \max(X_1, X_2, \dots, X_n)$ e $m := \min(X_1, X_2, \dots, X_n)$. Os estimadores escolhidos foram

- 1. $\delta_{\mathrm{D}}(\boldsymbol{X}) = X_1$, para o Pato Donald;
- 2. $\delta_{\rm H}(\boldsymbol{X}) = m$, para Huguinho;
- 3. $\delta_{\mathbf{Z}}(\mathbf{X}) = M$, para Zezinho;
- 4. $\delta_{L}(\boldsymbol{X}) = (M+m)/2$, para Luisinho;

Para lhe ajudar na tarefa de julgar estes estimadores, Tio Patinhas enviou o seguinte conjunto de fatos úteis: para $X_1, X_2, \dots, X_n \sim \text{Uniforme}(a, b)$, temos

$$\begin{split} E[X_1] &= \frac{a+b}{2}, \\ \mathrm{Var}(X_1) &= \frac{(b-a)^2}{12}, \\ E[m] &= a + \frac{1}{n+1}(b-a), \\ E[M] &= b - \frac{1}{n+1}(b-a), \\ \mathrm{Var}(m) &= \mathrm{Var}(M) = \frac{n}{(n+1)^2(n+2)}(b-a)^2, \\ \mathrm{Cov}\left(m,M\right) &= \frac{(b-a)^2}{(n+1)^2(n+2)}, \\ \mathrm{Corr}\left(m,M\right) &= \frac{1}{n}. \end{split}$$

Os patos ainda não sabem Inferência Estatística muito bem, portanto tenha paciência com eles.

- a) (2,5 pontos) Os estimadores de Huguinho e Zezinho são viesados. Mostre aos patinhos como construir versões não-viesadas, $\delta_{\rm UH}(\boldsymbol{X})$ e $\delta_{\rm UZ}(\boldsymbol{X})$;
- b) (2,5 pontos) Discuta se algum dos estimadores do item anterior é inadmissível;
- c) (2,5 pontos) Mostre que T = (m, M) é suficiente conjunta para θ ;
- d) (7,5 pontos) Mostre que $\delta_{L}(\boldsymbol{X}) = E\left[\delta_{D}(\boldsymbol{X}) \mid \boldsymbol{T}\right]$, isto é, que o estimador de Luisinho é o melhoramento de Rao-Blackwell do estimador do Pato Donald;
- e) (5 pontos) Ordene os estimadores $\delta_{\rm D}(\boldsymbol{X})$, $\delta_{\rm UH}(\boldsymbol{X})$, $\delta_{\rm UZ}(\boldsymbol{X})$ e $\delta_{\rm L}(\boldsymbol{X})$ em termos de erro quadrático médio. Quem propôs o melhor estimador?²

 $^{^2 \}mathrm{No}$ caso de Huguinho e Zezinho, com a sua ajuda.

5. Questão bônus: Boss is boss, ain't it, dad?

Considere mais uma vez o problema da questão 4. Desta vez, Tio Patinhas resolveu propor o próprio estimador, e quer mostrar que esse estimador pode ser melhor que qualquer um dos propostos anteriormente. Para isso, propõe utilizar um estimador da forma

$$\delta_{\mathrm{P}}(\boldsymbol{X}) = (1 - \alpha)\delta_{\mathrm{UH}}(\boldsymbol{X}) + \alpha\delta_{\mathrm{UZ}}(\boldsymbol{X}),$$

com $\alpha \in (0,1)$.

a) (10 pontos) Mostre que $\delta_{\rm P}$ é não-viesado e compute seu erro quadrático médio;

Dica: Lembre-se de que para $a, b \in \mathbb{R}$,

$$Var(aX + bY) = a^{2} Var(X) + b^{2} Var(Y) + 2ab Cov(X, Y).$$

b) (10 pontos) Encontre $\alpha_{\rm op}$ que faz com que $\delta_{\rm P}$ tenha variância mínima. O estimador $\delta_{\rm P}^{\rm op}(\boldsymbol{X}) = (1 - \alpha_{\rm op})\delta_{\rm UH}(\boldsymbol{X}) + \alpha_{\rm op}\delta_{\rm UZ}(\boldsymbol{X})$ domina todos aqueles derivados na questão 4? Justifique.