Курсовая работа по дискретной математике. 3 Вариант

Галкин Алексей Дмитриевич

1 Задание 4

Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.

2 Решение

	v1	v2	v3	v4	v5	v6	v7		λ^0	λ^1	λ^2	λ^3	λ^4	λ^5	λ^6
v1	∞	4	5	3	∞	∞	∞		0	0	0	0	0	0	0
v2	10	∞	2	∞	3	∞	∞		∞	4	4	4	4	4	4
v3	∞	2	∞	3	1	4	7		∞	5	5	5	5	5	5
v4	∞	∞	2	∞	∞	7	∞		∞	3	3	3	3	3	3
v5	∞	∞	1	∞	∞	∞	4		∞	∞	6	6	6	6	6
v6	∞	∞	4	∞	∞	∞	2		∞	∞	9	9	9	9	9
v7	2	∞	3	∞	5	7	∞		∞	∞	12	10	10	10	10

$$1.~\lambda_i^0=\infty$$
 , і где і $=1.~\lambda_1^0=0$ $2.~\lambda_i^{k+1}=min(\lambda_i^k+c_{ji})$

$$\lambda_{2}^{4} = \min_{i \leq j \leq 7} \begin{pmatrix} 0 \\ 4 \\ 5 \\ 3 \\ 6 \\ 9 \\ 10 \end{pmatrix} + \begin{pmatrix} 4 \\ \infty \\ 2 \\ \infty \\ \infty \\ \infty \\ \infty \end{pmatrix}) = 4 \quad \lambda_{3}^{4} = \min_{i \leq j \leq 7} \begin{pmatrix} 0 \\ 4 \\ 5 \\ 3 \\ 6 \\ 9 \\ 10 \end{pmatrix} + \begin{pmatrix} 5 \\ 2 \\ \infty \\ 2 \\ 1 \\ 4 \\ 3 \end{pmatrix}) = 5$$

$$\lambda_{4}^{4} = \min_{i \leq j \leq 7} \begin{pmatrix} 0 \\ 4 \\ 5 \\ 3 \\ 6 \\ 9 \\ 10 \end{pmatrix} + \begin{pmatrix} 3 \\ \infty \\ 3 \\ \infty \\ \infty \\ \infty \\ \infty \\ \infty \end{pmatrix}) = 3 \quad \lambda_{5}^{4} = \min_{i \leq j \leq 7} \begin{pmatrix} 0 \\ 4 \\ 5 \\ 3 \\ 6 \\ 9 \\ 10 \end{pmatrix} + \begin{pmatrix} \infty \\ 3 \\ 1 \\ \infty \\ \infty \\ \infty \\ 5 \end{pmatrix}) = 6$$

$$\lambda_{6}^{4} = \min_{i \leq j \leq 7} \begin{pmatrix} 0 \\ 4 \\ 5 \\ 3 \\ 6 \\ 9 \\ 10 \end{pmatrix} + \begin{pmatrix} \infty \\ 3 \\ 1 \\ \infty \\ \infty \\ 5 \end{pmatrix} = 10$$

$$\lambda_{6}^{4} = \min_{i \leq j \leq 7} \begin{pmatrix} 0 \\ 4 \\ 5 \\ 3 \\ 6 \\ 9 \\ 10 \end{pmatrix} + \begin{pmatrix} \infty \\ \infty \\ 7 \\ \infty \\ 7 \\ \infty \\ 7 \end{pmatrix} = 10$$

Столбцы $\lambda^3 \lambda^4 . \lambda^5 \lambda^6 \lambda^3$. Находим минимальные вершины.

- 1) $v_1 > v_1$ (длина 0)
- 2) $v_1 > v_2$ (длина 4) $v_1 v_2$
- 3) $v_1 > v_3$ (длина 5) $v_1 v_3$
- $4) v_1 > v_4$ (длина $3)v_1 v_4$
- 5) $v_1 > v_5$ (длина 6) $v_1 v_3 v_5$
- 1) $v_1 > v_6$ (длина 9) $v_1 v_3 v_6$
- $1) v_1 > v_6$ (длина $10)v_1 v_3 v_5 v_7$