55. Кислород занимает объем $V_1=1$ м³ и находится под давлением $p_1=200$ кПа. Газ нагрели сначала при постоянном давлении до объема $V_2=3$ м³, а затем при постоянном объеме до давления $p_2=500$ кПа. Построить график процесса и найти: 1) изменение ΔU внутренней энергии газа; 2) совершенную им работу A; 3) количество теплоты Q, переданное газу.

Решение задачи:

Решение. Построим график процесса (рис. 11.1). На графике точками I, Z, S обозначены состояния газа, характеризуемые параметрами (p_1 , V_1 , T_1), (p_1 , V_2 , T_2), (p_2 , V_2 , T_3).

1. Изменение внутренней энергии газа при переходе его из состояния 1 в состояние 3 выражается формулой

$$\Delta U = c_V m \Delta T$$
,

где c_V — удельная теплоемкость газа при постоянном объеме; m — масса газа; ΔT — разность температур, соответствующих конечному

3 и начальному 1 состояниям, т. е. $\Delta T = T_3 - T_1$. Так как $c_V = \frac{i}{2} \frac{R}{M}$; где M — молярная масса газа, то

$$\Delta U = \frac{i}{2} \frac{m}{M} R \left(T_3 - T_1 \right). \tag{1}$$

Температуры T_1 и T_3 выразим из уравнения Менделеева — Клапейрона $\left(pV = \frac{m}{M} \, RT \right)$:

$$T_1 = \frac{Mp_1V_1}{mR}$$
; $T_3 = \frac{Mp_2V_2}{mR}$.

С учетом этого равенство (1) перепишем в виде

$$\Delta U = (i/2) (p_2 V_2 - p_1 V_1).$$

Подставим сюда значения величин (учтем, что для кислорода, как двухатомного газа, i=5) и произведем вычисления:

$$\Delta U$$
=3,25 МДж.

2. Полная работа, совершаемая газом, равна $A = A_1 + A_2$, где

 A_1 — работа на участке 1-2; A_2 — работа на участке 2-3.

На участке 1-2 давление постоянно (p=const). Работа в этом случае выражается формулой $A_1 = p_1 \Delta V = p_1 (V_2 - V_1)$. На участке 2-3 объем газа не изменяется и, следовательно, работа газа на этом участке равна нулю (A_2 =0). Таким образом,

$$A = A_1 = p_1 (V_2 - V_1).$$

Подставив в эту формулу значения физических величин, произведем вычисления:

$$A = 0.4$$
 МДж

3. Согласно первому началу термодинамики, количество теплоты Q, переданное газу, равно сумме работы А, совершенной газом, и изменению ΔU внутренней энергии:

$$Q = A + \Delta U$$
, или $Q = 3,65$ МДж.