Лекция 3:

Эксперимент по резонансному рассеянию гамма-квантов.

Эксперимент по резонансному рассеянию у-квантов

Число рассеянных монохроматических γ -квантов слоем dx на глубине x даётся выражением

$$N_0 \cdot \sigma^s \cdot e^{-n\sigma x} \cdot n \cdot dx$$
,

где N_0 —число упавших на всю мишень γ -квантов, σ^s —сечение рассеяния, n — число ядер в 1 см 3 , σ — суммарное сечение всех процессов взаимодействия γ -квантов с веществом (как с ядрами, так и с электронной

оболочкой атомов образца).

Рассчитаем число γ -квантов N, рассеянных всем слоем d:

$$N = N_0 \cdot \sigma^S \cdot n \int_0^d e^{-n\sigma x} dx = N_0 \sigma^S n d \frac{1 - e^{-n\sigma d}}{n\sigma d} = N_0 \sigma^S v \frac{1 - e^{-v\sigma}}{v\sigma},$$

где использовано то, что $\int_0^d e^{-n\sigma x} dx = \frac{1-e^{-n\sigma a}}{n\sigma d}$, и обозначено $\nu = nd$ число атомов (ядер) мишени на единицу площади облучаемой поверхности.

Пусть теперь на образец падает поток не монохроматических фотонов, а фотонов с энергетическим распределением $N_0(E)$ — числом фотонов с энергией E в единичном интервале энергий — и рассматривается рассеяние в районе резонанса E_r с образованием конечного ядра в состоянии E_i , т. е. процесс $0 \to E_r \to E_i$. Тогда энергия рассеянных фотонов $E' = E_r - E_i$ (отдачей ядра пренебрегаем) и для их числа N(E') при условии, что $N_0(E)$ практически не меняется в области резонанса (в силу его очень малой ширины), имеем

$$N(E') = N_0(E_r) \cdot \nu \int_{\text{pesonancy}}^{\text{no}} \sigma_i^s(E) \cdot \frac{1 - e^{-\alpha(E, E')}}{\alpha(E, E')} dE, \tag{1}$$

где $\sigma_i^s(E)$ без учёта доплеровского уширения имеет брейт-вигнеровскую форму; $N_0(E_r)$ — число падающих на мишень фотонов в единичном интервале энергий с энергией, равной энергии резонанса.

В вышеприведённом выражении (1), которое будем называть общей формулой эксперимента по рассеянию, используется величина $\alpha(E,E') = \nu [\sigma_{nucl}(E) + \sigma_{at}(E) + \sigma_{at}(E')],$

в которой учтено, что падающие фотоны взаимодействуют с ядром и электронной оболочкой, а рассеянные — только с электронной оболочкой. Сечения этих процессов обозначены соответственно $\sigma_{nucl}(E)$, $\sigma_{at}(E)$ и $\sigma_{at}(E')$.

 $\sigma_{nucl}(E)$ включает все процессы взаимодействия фотонов с ядром – т. е., как резонансное поглощение их ядром, так и нерезонансное рассеяние их ядром как целым объектом (томсоновское рассеяние). Томсоновским рассеянием по сравнению с резонансным можно пренебречь в силу малости сечения томсоновского рассеяния по сравнению с сечением в резонансе. Сведения о сечениях томсоновского рассеяния для различных ядер приведены в таблице

Ядро	Энергия фотона, кэВ							
	50	145	468	1000	1500			
²⁷ Al	2 барн	0,29	0,029	0,0064	0,0034			
²⁸ Si	2,4	0,34	0,035	0,0076	0,0038			
⁴⁰ Ca	5,9	0,87	0,089	0,02	0,0087			
⁶³ Cu	0,15	2,3	0,24	0,053	0,024			
⁹⁰ Zr	0,36	5,43	0,57	0,125	0,058			
²⁰⁸ Pb	184	35,7	3,85	0,84	0,38			

Сечения томсоновского рассеяния (барны) для фотонов различных энергий (кэВ) в различных ядрах

Схема эксперимента. Основная формула

В прямом пучке из-за большого фона работать нельзя. Поэтому детектор рассеянных фотонов обычно помещают под углом $\theta \geq 90^{\circ}$. Пусть детектор вырезает телесный угол $\Delta\Omega$ и имеет эффективность регистрации фотонов с энергией E', равную $\varepsilon(E')$. Тогда число $\overline{N}(E')$ зарегестрированных им рассеянных фотонов с энергией E' с учётом доплеровского уширения будет определяться выражением, которое мы назовём основной формулой эксперимента по рассеянию:

$$\overline{N}(E') = N_0(E_r) \cdot \varepsilon(E') \cdot \nu \cdot \frac{W(\theta)}{4\pi} \cdot \Delta\Omega \int_{\text{pesonancy}}^{\Pi O} \sigma_i^{DS}(E) \cdot \frac{1 - e^{-\alpha(E, E')}}{\alpha(E, E')} dE$$
 (2)

 $\sigma_i^{DS}(E)$ — сечение рассеяния с учётом доплеровского уширения, а $\alpha(E,E') = \nu \left[\sigma_{nucl}^D(E) + \sigma_{at}(E)\right] + \nu' \sigma_{at}(E').$

Здесь учтено, что толщина мишени в направлении движения γ' -квантов может отличаться от толщины мишени в направлении прямого пучка (соответственно отрезки СВ и АВ). Для «симметричной» мишени (СВ = АВ) $\nu = \nu'$ и $\alpha(E,E') = \nu \left[\sigma_{nucl}^D(E) + \sigma_{at}(E) + \sigma_{at}(E') \right]$.

Толщина мишени

Для тонкой мишени $\alpha(E,E') = \nu \left[\sigma_{nucl}^D(E) + \sigma_{at}(E) + \sigma_{at}(E') \right] \ll 1$ (напомним, что $\nu = nd$) и в формулах эксперимента по рассеянию (1) и (2) под интегралом справедлива замена

$$\frac{1-e^{-\alpha(E,E')}}{\alpha(E,E')} \approx 1.$$

Следовательно получаем

$$\int_{\text{резонансу}}^{\text{по}} \sigma_i^{DS}(E) \cdot \frac{1 - e^{-\alpha(E,E')}}{\alpha(E,E')} dE \approx \int_{\text{резонансу}}^{\text{по}} \sigma_i^{DS}(E) dE =$$

$$= \int_{\text{резонансу}}^{\text{по}} \sigma_i^{S}(E) dE = 2(\pi \lambda)^2 g \frac{\Gamma_0 \cdot \Gamma_i}{\Gamma}.$$

Здесь учтено, что площадь под у-линией не зависит от того, есть доплеровское уширение или нет.

Рассмотрим вопрос о том, что можно считать тонкой мишенью при отсутствии и наличии эффекта Доплера. Учтём, что $\sigma_{at}(E)$ слабо зависит от E и обычно в районе максимума резонанса E_r можно записать

$$\sigma_{nucl}(E_r) \gg \sigma_{at}(E_r)$$
 и $\sigma_{nucl}(E_r) \gg \sigma_{at}(E')$.

При этом условие тонкой мишени $\alpha(E,E') \ll 1$ сводится к условию $\sigma_{nucl}(E_r) \cdot \nu \ll 1$ или (так как $\nu = nd$) толщина тонкой мишени определяется условием

$$d \ll \frac{1}{n \cdot \sigma_{nucl}(E_r)}$$

Поскольку обычно $\sigma_{nucl}(E_r)$ велико (сотни барн), то в отсутствии доплеровского уширения тонкие мишени оказываются «слишком тонкими», чтобы обеспечить достаточно высокую скорость счёта рассеянных фотонов.

За счёт доплеровского уширения сечение резонансного рассеяния в максимуме резонанса «просаживается», по крайней мере, в десятки раз, что позволяет считать тонкими (при наличии эффекта Доплера) во столько же раз более толстые мишени и существенно увеличить скорость набора экспериментальной информации.

Критерий выбора тонкой мишени при наличии доплеровского уширения выглядит следующим образом

$$d \ll \frac{1}{n \cdot \sigma_{nucl}^{D}(E_r)}$$

Перейдём к количественным оценкам. Не будем пренебрегать сечением атомного взаимодействия σ_{at} . Для удобства рассмотрим чистую ЯРФ, т. е. случай, когда $E' = E_r$. Тогда для симметричной мишени (CB = AB)

$$d \ll \frac{1}{n[\sigma_{nucl}^{D}(E_r) + 2\sigma_{at}(E_r)]}.$$
 (3)

Ещё раз отметим, что $\sigma_{nucl}^D(E_r) \equiv \sigma^D(E_r)$ — максимальная величина доплеровски уширенного сечения ядерного резонансного рассеяния, т.е. при $\Delta \gg \Gamma$ (Δ - доплеровская ширина).

Будем считать тонкой такую мишень, для которой правая часть (3) в 10 раз больше левой. Обозначая такую толщину d_{10} , можем написать

$$d_{10} \cdot n \left[\sigma_{nucl}^{D}(E_r) + 2\sigma_{at}(E_r) \right] \approx \frac{1}{10} = 0.1$$
.

Учтём что

$$n = \frac{\rho N_A}{A} = \frac{\rho}{M_N \cdot A} ,$$

где ρ — плотность мишени (г/см³), N_A — число Авогадро (6,02·10²³ моль¹), A — массовое число атомов мишени, M_N — масса нуклона в граммах (1,67·10²²⁴ г). Тогда имеем

$$d_{10}(\text{cM}) = \frac{0.1}{\left[\sigma_{nucl}^D(E_r) + 2\sigma_{at}(E_r)\right]} \cdot \frac{M_N \cdot A}{\rho} ,$$

где эффективные сечения выражаются в см².

Если сечения выражать в барнах (10^{-24} cm^2) , то окончательно можно записать

$$d_{10}(\text{cm}) = 0.167 \frac{A}{\rho \left[\sigma_{nucl}^{D}(E_r) + 2\sigma_{at}(E_r)\right]}$$

Рассмотрим в качестве примера известные уровни четырёх изотопов – ¹¹B, ²⁷Al, ⁴⁸Ti и ²⁰⁸Pb. Все данные приведены в таблице:

Характеристики некоторых уровней ядер $^{11}_{5}$ B, $^{27}_{13}$ Al, $^{48}_{22}$ Ti, $^{208}_{82}$ Pb, исследованные в ЯРФ, их сечения, ширины и тонкие мишени

Ядро	E_r (МэВ)	Г(эВ)	∆(эВ)	$\sigma_{nucl}(\mathbf{f})$	σ_{nucl}^{D} (б)	σ_{at} (б)	d_{10} (см)
11 ₅ B	2,125	0,136	4,98	270	6,5	3,1	1,0
	4,445	0,61	10,4	185	9,8	2,1	0,84
	5,021	1,85	11,8	97	13,5	1,8	0,64
²⁷ ₁₃ Al	2,981	0,11	4,46	183	4,0	1,6	0,3
	3,957	0,165	5,9	104	2,6	1,4	0,4
	4,410	0,243	6,6	125	4,1	1,3	0,3
48 22 Ti	3,700	0,032	4,1	534	3,7	2,7	0,28
	3,739	0,089	4,2	523	9,9	2,7	0,14
	4,310	0,12	4,8	394	8,8	2,7	0,15
	5,640	0,71	6,3	230	23	2,4	0,07
	4,842	6,9	2,6	≈310		14,5	0,0097
²⁰⁸ ₈₂ Pb	5,293	7,0	2,9	≈260		14,7	0,011
	5,512	21,4	3,0	≈240		14,8	0,012

Из этой таблицы следует, что для 11 B, 27 Al и 48 Ti величина доплеровского уширения $\Delta \gg \Gamma$ и доплеровски уширенное сечение сильно «просаживается», что позволяет использовать довольно толстые мишени (миллиметры), в которых эффектом поглощения можно пренебречь.

Для 208 Pb ширина $\Gamma > \Delta$ и «доплеровские» сечения практически не отличаются от «недоплеровских». При этом тонкие мишени имеют толщины порядка 0,1 мм и их использовать нецелесообразно из-за малого выхода.

В этом случае предпочитают использовать толстые (порядка миллиметра и более) мишени и учитывать эффект поглощения численным интегрированием (см. *основную формулу эксперимента по рассеянию* (2)).

Калибровка установки

Рассмотрим основную формулу эксперимента по рассеянию

$$\overline{N}(E') = N_0(E_r) \cdot \varepsilon(E') \cdot \nu \cdot \frac{w(\theta)}{4\pi} \cdot \Delta\Omega \int_{\text{pesohahcy}}^{\text{do}} \sigma_i^{\textit{DS}}(E) \cdot \frac{1 - e^{-\alpha(E,E')}}{\alpha(E,E')} dE$$

Ограничимся случаем чистой ЯРФ, когда $\Gamma_i = \Gamma_0$ и мишень тонкая – критерий

$$d \ll \frac{1}{n \cdot \sigma_{nucl}^D(E_r)}$$

Тогда входящий в основную формулу интеграл

$$I(i) = \int_{\text{pesohahcy}}^{\text{no}} \sigma_i^{Ds}(E) \cdot \frac{1 - e^{-\alpha(E, E')}}{\alpha(E, E')} dE$$

принимает вид
$$I(0) = \int_{\text{pesonancy}}^{\text{по}} \sigma_0^{Ds}(E) dE = 2(\pi \tilde{\chi})^2 g \frac{\Gamma_0^2}{\Gamma}$$

и основная формула сводится к соотношению

$$\overline{N}(E_r) = N_0(E_r) \cdot \varepsilon(E_r) \cdot \nu \cdot \frac{W(\theta)}{4\pi} \cdot \Delta\Omega \cdot I(0)$$
 (4)

Здесь учтено, что $E' = E_r - E_0 = E_r$ ($E_0 = 0$ и отдачей ядра пренебрегаем).

Для того чтобы использовать последнее соотношение (4) с целью определения $\frac{\Gamma_0^2}{\Gamma}$, нужно знать все пять множителей в правой части перед интегралом I(0).

Все эти множители определяются условиями эксперимента, кроме $W(\theta)$. Последний полностью определяется мультипольностью фотона (в дальнейшем ограничимся чётно-чётными ядрами, для которых спин-чётность основного состояния ядра $J^{\pi}=0^+$ и в чистой ЯРФ участвует фотон одного типа и мультипольности).

Из оставшихся 4-х множителей $(N_0, \varepsilon, \nu, \Delta\Omega)$ известны ν (число ядер мишени), и несколько хуже $\varepsilon(E_r)$ – эффективность регистрации детектором попавшего в него фотона с энергией E_r и $\Delta\Omega$ – телесный угол, вырезаемый детектором.

Наименее известным является число фотонов в пучке $N_0(E_r)$.

Целесообразно сразу определить произведение трёх множителей -

$$N_0(E_r)$$
, $\varepsilon(E_r)$ и $\Delta\Omega$, т. е. функцию $S(E) = N_0(E) \cdot \varepsilon(E) \cdot \Delta\Omega$ при разных E .

Для этого выбирают ядерные уровни, расположенные при разных E, для которых хорошо известны ширины (Γ_0 , Γ и Γ_i), т. е. интегралы I(0), I(i) и, измеряя для этих уровней $\overline{N}(E_r)$, получают S(E). Так как эта функция гладкая, то знание её в «опорных» точках позволяет интерполяцией найти её и во всех промежуточных энергиях, при которых требуется её знание.

Подобная процедура нахождения S(E) по опорным уровням носит название *калибровки установки*.

В качестве калибровочных γ -переходов часто используются переходы в ядрах 11 В ($E_r=2,125;4,445$ и 5,021 МэВ), 27 Аl ($E_r=2,981;3,957$ и 4,410 МэВ) и 208 Рb ($E_r=4,842;5,293$ и 5,512 МэВ) и ряд других.

Вид калибровочной кривой для установки НИИЯФ МГУ приведен на рисунке

