Data Science Static data analysis

Stéphane Marchand-Maillet

Master en Sciences Informatiques - Semestre d'Automne

Representation spaces

Quantitative space

Corresponds to a matrix providing the association

- * $N \times M$ matrix of variables x_i^k
- ★ Each column contains vector x_i describing p_i via N variables

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 2/31

Representation space

Categorical values

How to represent symbolic values?

- * Measures the **occurrence** of symbole s in p_i
- * Binary matrix
- ★ Eg: Vector Space Model

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 3/31

Representation space

Covariance matrix

Relationships between variables

Matrix $C = XX^T$ is called **contingency table** (for categorical data). It is related to the **covariance matrix** (for centered numerical data)

			VARIABLES						
			x^1	x^2	• • • •	x ^N			
	S	x^1							
<i>C</i> =	ABL E	x^2	٠	÷					
	VARIABLES	:		$\sum_k x_k^i x_k^j$					
	>	x ^N		÷	٠.,				

- * symbolic: c_{ii} = number of elements with **both** symbols i and j
- * numérique : c_{ii} measures the correlation between variables i and j

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 4/31

Representation space

Similarity table / distance matrix

Measures the distance between elements Matrix D is called the **distance matrix**

ELEMENTS

 p_1 p_2 рм рм

- * $M \times M$ matrix, can be very large
- \star if d is a metric, D is p.s.d

Inertia

- * Dataset $\Omega = \{\mathbf{x}_i\}, i = 1..., M, \mathbf{x} \in \mathbb{R}^N$
- * Centre of mass:

$$\mathbf{g} = \frac{1}{M} \sum_{\mathbf{x} \in \Omega} \mathbf{x}$$

* Inertia of Ω w.r.t point **a**:

$$l_{\mathbf{a}} = \sum_{\mathbf{x} \in \Omega} d(\mathbf{x}, \mathbf{a})^2$$

* Let $I = I_g$ be the inertia of Ω w.r.t its center of mass g

Data Science: PCA Stéphane Marchand-Maillet ATI03 - 6/31

Inertia (2)

* Inertia of Ω w.r.t subspace \mathcal{F} :

$$I_{\mathcal{F}} = \sum_{\mathbf{x} \in \Omega} d^2(\mathbf{x}, \mathcal{F})$$

* $Proj_{\mathcal{F}}(\mathbf{x})$ is the orthogonal projection of \mathbf{x} onto \mathcal{F} , then :

$$I_{\mathcal{F}} = \sum_{\mathbf{x} \in \Omega} d^2(\mathbf{x}, \mathsf{Proj}_{\mathcal{F}}(\mathbf{x}))$$

Stéphane Marchand-Maillet

Decomposing inertia (Huygens theorem)

★ W.r.t a point:

$$\forall \mathbf{a} \in \mathbb{R}^N, I_{\mathbf{a}} = I_{\mathbf{g}} + d^2(\mathbf{a}, \mathbf{g})$$

- → g point of minimum inertia
- * W.r.t a subspace \mathcal{F} : given \mathcal{F}_{g} vector subspace parrallel to \mathcal{F} via g, then

$$I_{\mathcal{F}} = I_{\mathcal{F}_{\mathbf{g}}} + d^2(\mathcal{F}, \mathcal{F}_{\mathbf{g}})$$

 $\rightarrow \mathcal{F}_{g}$ subspace of minimum inertia // to \mathcal{F}

Stéphane Marchand-Maillet Data Science: PCA ATI03 - 8/31

Decomposing inertia: Explained inertia

- * Centered population \Rightarrow $\mathbf{g} = \mathbf{0}$, ($\mathbf{0}$ origin)
- * Given \mathcal{F} a vector subspace via \mathcal{O} , then

$$I=I_{\mathcal{F}}+I_{\mathcal{F}^{\perp}}$$
, avec $I_{\mathcal{F}^{\perp}}$ inertia of projected points in \mathcal{F}^{\perp}

- \star $I_{\mathcal{F}}$ is called **explained inertia** (by \mathcal{F})
- \star $I_{\mathcal{F}\perp}$ is called **residual inertia** (of \mathcal{F})

Stéphane Marchand-Maillet Data Science: PCA ATI03 - 9/31

Matrix form

★ Centered data ⇒

$$I = \sum_{\mathbf{x} \in \Omega} \langle \mathbf{x}, \mathbf{x} \rangle \Rightarrow I = \sum_{i}^{M} \sum_{j}^{N} (x_{i}^{j})^{2} \Rightarrow I = \sum_{j}^{N} \sum_{i}^{M} (x_{i}^{j})^{2}$$

- * if X is the matrix variables/elements of size $N \times M$
- * then

$$I = trace(XX^{\mathsf{T}})$$

* matrix XX^T is the inertia matrix, or $N \times$ the covariance matrix

Data Science: PCA Stéphane Marchand-Maillet ATI03 - 10/31

Component analysis

- Multivariate data analysis
 - $\circ \Omega$ includes M points defined by N variables x^i
 - $\circ \mathbf{x} \in \mathbb{R}^N$
- * We wish to understand the spatial (resp. statistical) distribution of Ω for:
 - Data visualisation
 - Extracting the most important information
- * Compression
 - Reconstruction quality
 - Easier handling of the data
- * Partition against the data most important properties (features)

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 11/31

Principal Component Analysis (PCA)

The PCA aims at defining, for a population Ω a vector subspace within which the data is represented compactly by uncorrelated variables. These variable will be the new dimension for representing Ω .

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 12/31

Recall on intertia

- * Given $\mathbb{R}^N = \Delta_1 \oplus \Delta_2 \oplus \cdots \oplus \Delta_N$ the decomposition of \mathbb{R}^N into 1-D orthogonal subspaces (axes Δ)
- * Given Ω , the total inertia is decomposed as

$$I = I_{\Delta_1} + I_{\Delta_2} + \cdots + I_{\Delta_N}$$

- * The PCA searches all subspaces Δ_i s.t $I_{\Delta_i} \geq I_{\Delta_{i+1}}$
- * The projections onto axes *explaining* the maximum global intertia preserve the maximum of information from the data
- * if Ω is embedded into a *d*-dim subspace $\iff I_{\Delta_i} = 0, \ \forall i > d$

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 13/31

Geometric interpretation

Searching axes with maximum explained inertia

Searching axes supporting maximal variance

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 14/31

Covariance matrix analysis

We search **u** minimising the quadratic error (regression)

*
$$\sum_{i} ||\mathbf{x}_{i} - \langle \mathbf{x}_{i}, \mathbf{u} \rangle \mathbf{u}||^{2} \simeq \sum_{i} \mathbf{u}^{\mathsf{T}} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{u} = \mathit{Trace}(\mathbf{u}^{\mathsf{T}} \Sigma \mathbf{u})$$

 \star We add constraint $\mathbf{u}^\mathsf{T}\mathbf{u} = 1$ (to avoid collapse $||\mathbf{u}|| = 0$)

Minimisation

- * Lagrange 1D, minimization of $J = \mathbf{u}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{u} \lambda (1 \mathbf{u} \mathbf{u}) \Leftrightarrow \frac{\partial J}{\partial u} = 0 \Leftrightarrow \mathbf{\Sigma} \mathbf{u} \lambda \mathbf{u} = 0$
- $\star \Leftrightarrow \Sigma \mathbf{u} = \lambda \mathbf{u} \Leftrightarrow \mathbf{u}$ is an eigenvector of Σ

Stéphane Marchand-Maillet

Covariance matrix factorisation

Spectral decomposition

- * All dimensions are search for simultaneously
- $\star \Leftrightarrow$ factorisation of Σ via eigenvalue decomposition

$$\Sigma = U \Lambda U^{\mathsf{T}}, \quad U, \Lambda \in \mathbb{R}^{N \times N}$$

- * The columns of (rotation matrix) U are the eigenvectors \mathbf{u}_i of Σ .
- * $\Lambda = \text{diag}[\lambda_1, \dots, \lambda_N]$ (scaling) **eigenvalues** of Σ .

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 16/31

Principal components

- * The sorted eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$ are the intertia values $I_{\Delta_1} \geq I_{\Delta_2} \geq \cdots \geq I_{\Delta_N}$
- * The N sorted eigenvectors \mathbf{u}_i define axes Δ_i and are called the **principal components**
- * The new basis for \mathbb{R}^N is now $\{\mathbf{u}_i\}_{i=1,...,N}$

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 17/31

Contribution to total inertia

$$I_{\Delta_i} = \lambda_i, \text{ et } I = \sum_i^N I_{\Delta_i}$$

Definition

- 1. Absolute contribution of Δ_i to $I: c_{abs}(\Delta_i/I) = \lambda_i$
- 2. Relative contribution: $c_{\text{rel}}(\Delta_i/I) = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_N}$
 - \Rightarrow Percentage of inertia explained by Δ_i
- 3. Percentage for the d first axes :

$$c_{\mathsf{rel}}(\Delta_1 \oplus \Delta_2 \dots \oplus \Delta_d) = \frac{\lambda_1 + \lambda_2 \dots + \lambda_d}{\lambda_1 + \lambda_2 \dots + \lambda_M}$$

Stéphane Marchand-Maillet

Decreasing contribution

Digit data (MNIST)

7291 images 16×16 (8 bits) $\Rightarrow \mathbf{x}_i \in \mathbb{R}^{256}, i = 1...7291$

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 19/31

Explained Inertia

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 20/31

Projection onto principal components

The new space (basis) implies new coordinates for the data

$$y_i^j = \langle \mathbf{u}_j, \mathbf{x}_i \rangle$$

 \Rightarrow the *j*the component of new coordinate \mathbf{y}_i of a data point *i* is obtained by projecting \mathbf{x}_i onto the *j*th principal component \mathbf{u}_i

$$\mathbf{y}_i = U^\mathsf{T} \mathbf{x}_i$$

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 21/31

Data approximation

If we retain the $d \leq N$ first components (eg $c_{\text{rel}}(\oplus_{i=1\cdots d}\Delta_i/I) \geq 90\%$). In this case, the data is approximated in the new space of reduced dimension (subspace $\oplus_{i=1\cdots d}\Delta_i$)

$$\tilde{\mathbf{y}}_i^2 = U_d^\mathsf{T} \mathbf{x}_i, \quad \tilde{\mathbf{y}} \in \mathbb{R}^d$$

- $\Rightarrow U_d \in \mathbb{R}^{N \times d}$ matrix for the dth first components
 - ★ If d = 2 or $3 \rightarrow$ visualisation
 - \star If $d \ll N \rightarrow$ compression
 - ★ Expressivness of the d first components

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 22/31

Data visualisation

$$\tilde{\mathbf{y}}_i^2 = [\mathbf{u}_1^\mathsf{T} \mathbf{x}_i, \mathbf{u}_2^\mathsf{T} \mathbf{x}_i]$$

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 23/31

Reconstruction

$$\tilde{\mathbf{x}}_i = \sum_{i=1}^d y_i^j \mathbf{u}_j = {}^t \tilde{\mathbf{y}}_i^d U_d$$

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 24/31

Representation quality

- * Given 2 points projected onto Δ_k
 - Far from each other on $\Delta_k \Rightarrow$, far in original space
 - Close from each other on Δ_k , no conclusion...
- * We measure the representation of \mathbf{x}_i on Δ_k by

$$Q_{\Delta_k}(\mathbf{x}_i) = \cos^2(\mathbf{x}_i, \mathbf{u}_k) = \frac{\langle \mathbf{x}_i, \mathbf{u}_k \rangle^2}{\|\mathbf{x}_i\|^2}$$

* On subspace $E = \Delta_k \oplus \Delta_q \oplus \cdots \oplus \Delta_p$ by

$$Q_E(\mathbf{x}_i) = \cos^2(\mathbf{x}_i, \mathbf{u}_k) + \cos^2(\mathbf{x}_i, \mathbf{u}_q) + \dots + \cos^2(\mathbf{x}_i, \mathbf{u}_p)$$

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 25/31

Example

Projection on main hyperplane $(\Delta_1 \oplus \Delta_2)$

Data label	0	1	2	3	4	5	6	7	8	9
Quality	0.7	1.5	0.4	0.2	0.7	0.2	0.5	0.9	0.4	0.8

Stéphane Marchand-Maillet

Contribution of an element to defining axes

* Absolute contribution of point i to Δ_k

$$c_{\mathsf{abs}}(\mathbf{x}_i, \Delta_k) = \frac{1}{N} < \mathbf{x}_i, \mathbf{u}_k >^2$$

⇒ The more the projection, the more the point contributes to making the axis exist

* Contribution of a point to the inertia on Δ_k

$$c_{\mathsf{rel}}(\mathbf{x}_i, \Delta_k) = \frac{\mathsf{ca}(\mathbf{x}_i, \Delta_k)}{I_{\Delta_k}} = \frac{\langle \mathbf{x}_i, \mathbf{u}_k \rangle^2}{\lambda_k}$$

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 27/31

PCA on scaled data

- ★ Heterogeneous initial variables → validity of linear combination?
- * Example : Evaluation of American cities

- * Scales: depend on categories $100 \rightarrow > 10000$
- * Necessity to scale data (by their variances)

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 28/31

Data scaling

- * We define metric $\langle .,. \rangle_V$, with $V = diag(\sigma_1^2, ..., \sigma_N^2)$
- * The scaled covariance matrix Σ_V is the **correlation matrix** R of initial data
- * Spectral decomposition of R (instead of Σ)

Data Science: PCA Stéphane Marchand-Maillet ATI03 - 29/31

Optimality of PCA

Gaussian distribution

- * PCA decomposes the covariance matrix along its eigenvalues/vectors
- * Optimal basis to represent $\mathcal{N}(\mu, \Sigma)$

PCA is optimal to represent data whose distribution is close to Normal

Stéphane Marchand-Maillet Data Science: PCA ATI03 – 30/31

Limitations

- 1. PCA considers the correlation between variables \rightarrow linear relationships
 - ⇒ no non-linear relationship modeled
- 2. PCA optimises a quadratic loss
 - ⇒ sensitive to extreme values (outliers)
- 3. PCA is optmal for Gaussian distributed data
 - ⇒ not useful on clustered data