Introduction to Artificial Intelligence Project 4 – Learning

Jianmin Li & Minlie Huang

Spring 2020

Supervised and Unsupervised Learning

Training with MNIST

Pre-requirements

- At least 400MB disk space and 800MB memory
- Python package that you should be familiar with
 - numpy
 - sklearn
- Python packages that should be installed:
 - numpy
 - skimage
 - sklearn
 - Anaconda is recommended

Basic Tasks

- K-Means (4 points)
 - Implement KMeansCluster.fit in featureExtractor.py
 - python featureExtractor –f kmeans –s 10
- KNN (3 points)
 - Implement KNNClassifier.classify method in classifiers.py
 - python dataClassifier.py –c knn –n 5
- Softmax Regression (4 points)
 - Implement PerceptronClassifier.train in classifiers.py
 - python dataClassifier.py –c perceptron
- sklearn MUST NOT BE USED in the above two tasks, OR you will not pass the autograder.

Basic Tasks

- Training SVM with sklearn (2 points)
 - Implement SVMClassifier.train, SVMClassifier.classify using package sklearn, in classifiers.py
 - You should be familiar with some sklearn API
- Obtaining better classification results (2 points)
 - Implement BetterClassifier.train, BetterClassifier.classify in classifiers.py
 - You may make use of sklearn package
 - Try to obtain good accuracy as much as you can.

Submission

- A 1-3 pages report (either Chinese or English)
 - You MUST answer Question 1 in YOUR REPORT
 - You will not get full report credits if cannot answer the above questions correctly
 - Some analysis on different algorithms/feature extractor techniques is useful for better grading
- Zip the files as the following structure
 - student_id.zip (e.g. 20090112xx.zip)
 - student_id.pdf
 - classifiers.py
 - featureExtractor.py

Grading

- Due
 - 2019/5/17 23:59:59
- Correctness of algorithms (80%)
- Report (20%)
 - You MUST answer Question 1 in the report