Algebra I

Alejandro Ceccheto

March 23, 2024

Theorem 1 (Proposiciones Lógicas) Si un número es par entonces es múltiplo de 3

$$x par \Rightarrow x mult. de 3$$

p, q, r = Proposiciones.

•
$$1, 0 \rightarrow \text{prop.}$$

•
$$1 \text{ y } 0 \rightarrow \text{p} \wedge \text{q}$$

•
$$1 \text{ o } 0 \rightarrow \text{p} \vee \text{q}$$

• o 1 o 0
$$\rightarrow$$
 p \veebar q

• si 1 entonces
$$0 \to p \Longrightarrow q$$

- equivalencia
$$\rightarrow$$
 p \Longleftrightarrow q

• Negación
$$\rightarrow$$
 >p, \vec{p} , \sim p, -p

 $\text{Negación} = \frac{P \quad | \quad \sim P}{\text{V} \quad | \quad \text{F}}$ $\text{F} \quad \text{V}$

$$\label{eq:conjunction} \text{Conjunción} = \begin{array}{c|cccc} P & Q & P & \wedge Q \\ \hline V & V & & V \\ V & F & F \\ F & V & F \\ F & F & F \\ \end{array}$$

$$\label{eq:decomposition} \text{Disyunción} = \begin{array}{c|cc} P & Q & P \lor Q \\ \hline V & V & V \\ F & V & V \\ V & F & V \\ F & F & F \\ \end{array}$$

 $\begin{array}{c|cccc} P & Q & P \Rightarrow Q \\ \hline V & V & V \\ \hline Condicional = & V & F & F \\ F & V & V \\ F & F & F \end{array}$

Entonces, con estas lógicas algebraicas podemos deducir 3 cosas, si son Tautología, que significa que siempre va a ser verdadero, Contradicción, que significa que son siempre falsas, o Contingencia \rightarrow a veces V, otras F.

				q
P Q	$\mid r \mid$	$P \lor Q$	$P \lor Q \Rightarrow r$	
VV	V	V	V	- ~
VV	F	V	F	
VF	V	F	V	p —— ~p —
VF	F	F	V	
F V	V	F	V	
F V	F	F	V	
F F	V	F	V	
F F	F	F	V	

1. $\sim (p \lor q)$

P Q	$P \vee Q$	$\sim (p \lor q)$
VV	V	F
F V	V	F
VF	V	F
F F	F	V

2. $P \Rightarrow (q \land \sim q)$

P Q	$\sim Q$	$(Q \wedge \sim P)$	$P \Rightarrow (Q \land \sim Q)$
VV	F	F	F
V F	V	F	F
F V	F	F	V
F F	V	F	V

3. $p \Rightarrow (q \lor \sim q)$

P Q	$ \sim Q$	$(Q \lor \sim Q)$	$P \Rightarrow (Q \vee \sim Q)$
VV	F	V	V
V F	V	V	V
F V	F	V	V
F F	V	V	V

Para mas referencias y ejemplos visitar¹.

¹Uno de los libros que mas se asemeja a la forma de explicar de la profe. https://archive.org/details/AlgebraIArmandoRojo/page/n13/mode/2up