

# CoGrammar

Exploratory Data Analysis (EDA)





#### **Data Science Lecture Housekeeping**

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
   (FBV: Mutual Respect.)
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you
  wish to ask any follow-up questions. Moderators are going to be
  answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Open Classes.
   You can submit these questions here: <u>Open Class Questions</u>

#### Data Science Lecture Housekeeping cont.

- For all non-academic questions, please submit a query:
   www.hyperiondev.com/support
- Report a safeguarding incident:
   <u>www.hyperiondev.com/safeguardreporting</u>
- We would love your feedback on lectures: <u>Feedback on Lectures</u>

## Lecture Objectives

- Understand the purpose and importance of EDA in the data science workflow.
- Apply univariate, bivariate, and multivariate analysis techniques to explore and summarize dataset characteristics.
- Utilize Python libraries such as pandas, Matplotlib, Seaborn, and Scikit-learn for data manipulation, visualization, and analysis.

## Lecture Objectives

 Assess feature importance using statistical tests and machine learning techniques to guide further analysis and modeling.

#### Introduction to EDA

- ★ Definition: Exploratory Data Analysis (EDA) is the process of investigating and understanding a dataset through visual and statistical techniques.
- ★ Purpose: EDA helps to uncover patterns, relationships, and anomalies in the data, guiding further analysis and modeling.
- ★ Importance: EDA is a crucial step in the data science workflow, enabling informed decision-making and hypothesis generation.

- ★ Mean: The average value of a variable.
- ★ Median: The middle value when the data is sorted.
- ★ Mode: The most frequent value in the data.



- **★ Range:** The difference between the maximum and minimum values.
- ★ Variance: The average squared deviation from the mean.
- ★ **Standard Deviation:** The square root of the variance, indicating the spread of the data.

**★ Range:** The difference between the maximum and minimum values.



★ Variance: The average squared deviation from the mean.



★ **Standard Deviation:** The square root of the variance, indicating the spread of the data.



#### **Standard Deviation**

['stan-dərd dē-vē-'ā-shən]

A statistic that measures the dispersion of a dataset relative to its mean and is calculated as the square root of the variance.

★ Use data.describe() to calculate descriptive statistics for numerical columns.

|       | age          | fnlwgt       | educational-<br>num | capital-gain | capital-loss |
|-------|--------------|--------------|---------------------|--------------|--------------|
| count | 48842.000000 | 4.884200e+04 | 48842.000000        | 48842.000000 | 48842.000000 |
| mean  | 38.643585    | 1.896641e+05 | 10.078089           | 1079.067626  | 87.502314    |
| std   | 13.710510    | 1.056040e+05 | 2.570973            | 7452.019058  | 403.004552   |
| min   | 17.000000    | 1.228500e+04 | 1.000000            | 0.000000     | 0.000000     |
| 25%   | 28.000000    | 1.175505e+05 | 9.000000            | 0.000000     | 0.000000     |
| 50%   | 37.000000    | 1.781445e+05 | 10.000000           | 0.000000     | 0.000000     |
| 75%   | 48.000000    | 2.376420e+05 | 12.000000           | 0.000000     | 0.000000     |
| max   | 90.000000    | 1.490400e+06 | 16.000000           | 99999.000000 | 4356.000000  |

#### **UA - Visualization Techniques**

- ★ Histogram
  - Visualize the distribution of a single variable.
  - Use data.hist() to create histograms for numerical columns.



#### **UA - Visualization Techniques**

- ★ Box Plots:
  - Summarize the distribution and identify outliers.
  - Use data.boxplot() to create box plots for numerical columns.





#### **UA - Visualization Techniques**

- ★ Density Plots:
  - Estimate the probability density function of a variable.
  - Use data.plot(kind='density') to create density plots for numerical columns.



#### **UA - Outliers and Missing Values**

- ★ Identifying Outliers:
  - Use box plots to visually identify outliers.
  - Calculate the interquartile range (IQR) and define the lower and upper bounds for outliers.

**Co**Grammar



#### **UA - Outliers and Missing Values**

- **★** Treating Outliers:
  - Cap the outlier values based on the lower and upper bounds.

**Co**Grammar



# What is the purpose of Exploratory Data Analysis (EDA)?

- A. To build predictive models
- B. To investigate and understand a dataset through visual and statistical techniques
- C. To clean and preprocess the data
- D. To deploy machine learning models

# Which of the following is NOT a measure of central tendency?



B. Median

C. Mode

D. Range

# Which Python function is used to calculate descriptive statistics for numerical columns?

- A. data.info()
- B. data.describe()
- C. data.head()
- D. data.tail()

# Which plot is used to visualize the distribution of a single variable?

- A. Scatter plot
- B. Box plot
- C. Histogram
- D. Heatmap

# How are outliers typically identified in a box plot?

- A. Points below Q1 1.5 \* IQR or above Q3 + 1.5 \* IQR
- B. Points below Q1 2 \* IQR or above Q3 + 2 \* IQR
- C. Points below Q1 3 \* IQR or above Q3 + 3 \* IQR
- D. Points below Q1 0.5 \* IQR or above Q3 + 0.5 \* IQR



#### **Bivariate Analysis - Scatter Plots**

- ★ Scatter Plots:
  - Visualize the relationship between two continuous variables.
  - Use sns.scatterplot() from the Seaborn library to create scatter plots.





#### **Bivariate Analysis - Scatter Plots**

- ★ Interpreting Scatter Plots:
  - Observe the pattern and direction of the relationship between variables.
  - Identify clusters, outliers, or any interesting pattern

#### **BA - Correlation Analysis**

- **★** Correlation Matrix:
  - Calculate the correlation matrix for numerical variables using data.corr().
- ★ Heatmap Visualization:
  - Visualize the correlation matrix using a heatmap with sns.heatmap().

#### CoGrammar



#### **BA - Correlation Analysis**

- ★ Interpreting Correlation:
  - Identify the strength and direction of the linear relationship between variables.
  - Correlation values range from -1 to 1, with 0 indicating no linear relationship.

#### **BA - Contingency Tables**

- ★ Contingency Tables:
  - Create contingency tables to summarize the relationship between two categorical variables.
  - Use pd.crosstab() to create contingency tables.



#### **BA - Chi-square Test**

- ★ Chi-square Test of Independence:
  - Perform the chi-square test to determine if there is a significant association between categorical variables.
  - Use chi2\_contingency() from the SciPy library to calculate the chi-square statistic and p-value.

#### **BA - Chi-square Test**

- ★ Interpreting Chi-square Results:
  - A low p-value (typically < 0.05) suggests a significant association between the variables.

Chi-square statistic: 6537.97 p-value: 0.00000

- ★ Purpose of PCA:
  - Reduce the dimensionality of the dataset while preserving the maximum variance.
  - Transform the original features into a new set of uncorrelated features called principal components.

- ★ Standardization:
  - Standardize the numerical features using StandardScaler from Scikit-learn.

```
X = data.select_dtypes(include=[np.number])
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

- ★ Applying PCA:
  - Use the PCA class from Scikit-learn to perform PCA on the scaled data.

```
pca = PCA()
principal_components = pca.fit_transform(X_scaled)
```

#### ★ Scree Plot:

 Visualize the explained variance ratio of each principal component using a scree plot.





- ★ Interpretation:
  - You want to pick the smallest number of components that give the largest boost in explained variance

- ★ Purpose of K-means Clustering:
  - Partition the data points into K clusters based on their similarity.
  - Identify natural groupings or patterns in the data.

- ★ Applying K-means Clustering:
  - Use the KMeans class from Scikit-learn to perform k-means clustering on the scaled data.

```
kmeans = KMeans(n_clusters=6, random_state=42)
kmeans.fit(X_scaled)
```

- ★ Cluster Assignment:
  - Assign each data point to its corresponding cluster based on the k-means model.

data['Cluster'] = kmeans.labels\_

- ★ Visualizing Clusters:
  - Use a scatter plot to visualize the clusters in the data.





#### **Feature Importance**

- ★ Chi-square Test:
  - Perform the chi-square test for each categorical feature against the target variable.
  - Use pd.crosstab() to create contingency tables and chi2\_contingency() to calculate the chi-square statistic and p-value.

#### **Feature Importance**

- ★ Interpreting Chi-square Results:
  - A low p-value (typically < 0.05) suggests that the categorical feature is significantly associated with the target variable.
  - The chi-square statistic measures the deviation from the expected frequencies under the assumption of independence.

#### Feature Importance

- ★ Random Forest Classifier:
  - Train a Random Forest classifier using the features and target variable.
  - Use RandomForestClassifier from Scikit-learn to train the model.





#### What does a scatter plot visualize?



- A. The distribution of a single variable
- B. The relationship between two continuous variables
- C. The correlation between all numerical variables
- D. The clusters in the data

### What does a correlation value of 0 indicate?



- A. Strong positive linear relationship
- B. Strong negative linear relationship
- C. No linear relationship
- D. Perfect linear relationship

### Which library is used to perform the chi-square test of independence?

- A. pandas
- B. NumPy
- C. Matplotlib
- D. SciPy

### What is the purpose of Principal Component Analysis (PCA)?

- A. To identify outliers in the dataset
- B. To visualize clusters in the data
- C. To reduce the dimensionality of the dataset while preserving maximum variance
- D. To handle missing values in the dataset

# When interpreting PCA results, what should you consider when selecting the number of components?

- A. Choose the components with the lowest explained variance
- B. Select the largest number of components possible
- C. Pick the smallest number of components that give the largest boost in explained variance
- D. Ignore the explained variance and choose components randomly

### CoGrammar

### **Q & A SECTION**

Please use this time to ask any questions relating to the topic, should you have any.

## CoGrammar

Thank you for joining!



