1.	What is the	variance	of tho	following	datacat2
Ι.	what is the	vanance	UI IIIE	TOHOWING	ualasti:

1 / 1 punto

$$D = \{1, 2, 3, 2\}$$

Please use decimal numbers in your answer.

0.5

Well done!

2. What is the standard deviation of the dataset $D = \{1, 2, 3, 2\}$ which we already used in the previous question? You should provide a decimal number as your answer.

1/1 punto

0.7

✓ Correcto

Indeed: You just needed to take the square-root of the variance.

3. What would be the new variance if we added 1 to each element in the dataset $D = \{1, 2, 3, 2\}$ from Question 1? Please use decimal numbers in your answer.

1 / 1 punto

0.5

Yes: adding a constant to the dataset does not change its variance.

1 / 1 punto

- **4.** What would be the new variance if we multiplied each sample in a dataset D by 2.
 - The variance of the new dataset will be two times the variance of D.
 - The variance of the new dataset will be four times the variance of D.
 - The variance of the new dataset will not change.
 - ✓ Correcto
 Well done!
- **5.** Assuming we have mean \bar{x}_{n-1} and variance σ_{n-1}^2 for some dataset D_{n-1} with n-1 samples. What would be the variance σ_n^2 if we add a new element x_* to the dataset (assuming you have computed the new sample mean \bar{x}_n)?

1/1 punto

- $\bigcirc \sigma_n^2 = \frac{n-2}{n-1}\sigma_{n-1}^2 + \frac{1}{n}(x_* \bar{x}_{n-1})(x_* \bar{x}_n)$
- $\bigcirc \sigma_n^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n} (x_* \bar{x}_{n-1})^2$
- $\bigcirc \sigma_n^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n-1} (x_* \bar{x}_{n-1}) (x_* \bar{x}_n)$
 - Correcto
 Great job!