

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEMO11010043101

Email: sgs internet operations@sgs.com Page : 1 of 50

FCC REPORT

Application No: SZEMO110100431RF

Applicant: CHIN FAI ELECTRONICS COMPANY
Manufacturer/Factory: CHIN FAI ELECTRONICS COMPANY
Product Name: SILICON BLUETOOTH KEYBOARD

Operation Frequency: 2402MHz to 2480MHz

FCC ID: XJ4KB6116

Standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2009

Date of Receipt: 2010-09-27

Date of Test: 2010-09-27 to 2010-11-11

Date of Issue: 2011-01-28

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEMO10090617701

Page : 2 of 50

2 Contents

			Page
2	CC	ONTENTS	
- 3		EST SUMMARY	
4	GE	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T.	4
	4.3	E.U.T OPERATION MODE	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	TEST FACILITY	
	4.6	TEST LOCATION	
	4.7	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.8	TEST INSTRUMENTS LIST	8
5	TE	EST RESULTS AND MEASUREMENT DATA	10
	5.1	Antenna requirement:	10
	5.2	CONDUCTED EMISSIONS	
	5.3	CONDUCTED PEAK OUTPUT POWER	14
	5.4	20DB OCCUPY BANDWIDTH	17
	5.5	CARRIER FREQUENCIES SEPARATION	20
	5.6	HOPPING CHANNEL NUMBER	
	5.7	DWELL TIME	
	5.8	BAND EDGE	
	5.9	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
	5.10	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	5.11	RADIATED EMISSION	
		11.1 Radiated emission below 1GHz	
		11.2 Transmitter emission above 1GHz	
	5.1	11.3 Band edge (Radiated Emission)	43-50

Report No.: SZEMO10090617701

Page : 3 of 50

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (b)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Fail: The EUT does not comply with the essential requirements in the standard.

Report No.: SZEMO10090617701

Page : 4 of 50

4 General Information

4.1 Client Information

Applicant:	CHIN FAI ELECTRONICS COMPANY
Manufacturer/Factory:	CHIN FAI ELECTRONICS COMPANY
Address of Applicant:	Building 2C-2D, Yingfeng industrial Part, Sanhe economic development Zone, Huiyang District, Huizhou City, Guangdong Province, China
Address of Manufacturer:	Building 2C-2D, Yingfeng industrial Part, Sanhe economic development Zone, Huiyang District, Huizhou City, Guangdong Province, China
Address of Factory:	Building 2C-2D, Yingfeng industrial Part, Sanhe economic development Zone, Huiyang District, Huizhou City, Guangdong Province, China

4.2 General Description of E.U.T.

Product Name:	SILICON BLUETOOTH KEYBOARD
Item No.:	KB-6116, ICD281B.
*	Please refer to section 4 of this report which indicates which item was actually tested and which were electrically identical.
Operation Frequency:	2402MHz~2480MHz
No. of Channel:	79
Channel separation:	1MHz
Modulation type:	GFSK
Antenna Type:	Integral
Antenna gain:	0dBi
PC supply:	PC USB port supply(charge)
Battery:	DC 3.7V (Lithium Rechargeable Battery)

Item No.: KB-6116, ICD281B

Only the Item No. KB-6116 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above items, only the difference being the item no.

This report was an additional report copied from the report SZEMO10090617701, just changing the Item No..Since the electrical circuit design, layout, components used and internal wiring for the Item "KB-6116" in the report SZEMO10090617701 was exactly the same as the Item "KB-6116, ICD281B" in this report, only the item no are different.

Report No.: SZEMO10090617701

Page : 5 of 50

Operation F	requency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected for testing:

Channel	Frequency
lowest channel	2402MHz
middle channel	2441MHz
highest channel	2480MHz

Report No.: SZEMO10090617701

Page : 6 of 50

4.3 E.U.T Operation mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	50 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
PC charge	Keep the PC charging to EUT.
PC charge + Bluetooth	Keep the EUT communicating with other Bluetooth device and PC charging to EUT.
Bluetooth	Keep the EUT communicating with other Bluetooth device.
Idle	Keep the EUT in standby mode.

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
PC (1)	DELL	OPTIPLEX 755
LCD-displaying	DELL	E1909WF
KEYBOARD	DELL	SK-8115
MOUSE	DELL	MOC5110
PC (2)	DELL	OPTIDLEX 330
LCD-displaying	DELL	SP2208WFPT
KEYBOARD	DELL	SK-8115
MOUSE	DELL	MOC5110
Coder	HengTong ELECTRON	HT4000
Printer	Canon	BJC-1000SP

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEMO10090617701

Page : 7 of 50

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively.

Date of Registration: September 29, 2008. Valid until September 28, 2011.

FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, June 27, 2008.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.6 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 No tests were sub-contracted.

4.7 Other Information Requested by the Customer

None.

Report No.: SZEMO10090617701

Page : 8 of 50

4.8 Test Instruments list

RE i	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2010-06-17	2011-06-17
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2010-09-05	2011-09-05
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A
4	Coaxial cable	SGS	N/A	SEL0028	2008-06-18	2011-06-18
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2010-09-09	2011-09-09
6	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2010-09-09	2011-09-09
7	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2010-09-09	2011-09-09
8	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2010-06-02	2011-06-02
9	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2010-09-27	2011-09-27
10	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	SEL0080	2010-06-04	2011-06-04
11	Band filter	Amindeon	82346	SEL0094	2010-06-02	2011-06-02

Con	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	N/A	N/A	
2	LISN	ETS-LINDGREN	3816/2	SEL0021	2010-06-02	2011-06-02	
3	Two-Line V-Network	Rohde & Schwarz	ENV216	SEL0152	2010-09-27	2011-09-27	
4	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2010-06-02	2011-06-02	
5	Coaxial Cable	SGS	N/A	SEL0024	2008-06-18	2011-06-18	

Report No.: SZEMO10090617701

Page : 9 of 50

RF c	RF conducted					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	Spectrum Analyzer	Rohde & Schwarz	FSP 30	SEL0154	2010-09-27	2011-09-27
2	Coaxial cable	SGS	N/A	SEL0028	2008-06-18	2011-06-18

Report No.: SZEMO10090617701

Page : 10 of 50

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best gain of the antenna is 0dBi.

Report No.: SZEMO10090617701

Page : 11 of 50

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10: 2009		
1 , 0	150kHz to 30MHz		
•	Class B		
Limit:	Frequency range (MHz)	Limit (d	
		Quasi-peak	Average
	0.15-0.5	66 to 56* 56	56 to 46*
	0.5-5 5-30	60	46 50
	* Decreases with the logarithm		30
	The E.U.T and simulators are impedance stabilization netwo coupling impedance for the material are also connected to the main 50ohm/50uH coupling impedate to the block diagram of the test. A.C. line are checked for maxifind the maximum emission, the interface cables must be conducted measurement.	rk (L.I.S.N.). It provides easuring equipment. The power through a LIST name with 500hm terminat setup and photograph mum conducted interface relative positions of	s a 50ohm/50uH he peripheral devices N that provides a nation. (Please refer hs). Both sides of erence. In order to equipment and all of
Test setup:		nce Plane	
			i de la companya de
	Test table/Insulation pla Remark: E.U.T. Equipment Under Test		er — AC power
Test Instruments:	AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	J.T Filte BMI Receiver	er — AC power
	AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Refer to section 4.7 for details	J.T EMI Receiver	er — AC power
Test mode:	AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	Network Sooth EBUT at above modes	s, and then found the

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEMO10090617701

Page : 12 of 50

PC charge + Bluetooth Live line:

	Cable	LISN	Read		Limit	Over	
Freq	Loss	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB	dBuV	dBuV	dBuV	dB	
0.28100	0.05	-0.04	46.10	46.11	60.79	-14.68	QP
0.28100	0.05	-0.04	37.60	37.61	50.79	-13.18	Average
0.65778	0.06	-0.05	39.30	39.31	56.00	-16.69	QP
0.65778	0.06	-0.05	28.32	28.33	46.00	-17.67	Average
2.090	0.12	-0.06	38.90	38.96	56.00	-17.04	QP
2.090	0.12	-0.06	28.50	28.56	46.00	-17.44	Average
2.554	0.13	-0.07	22.41	22.47	46.00	-23.53	Average
2.554	0.13	-0.07	34.86	34.92	56.00	-21.08	QP
3.140	0.14	-0.08	37.55	37.61	56.00	-18.39	QP
3.140	0.14	-0.08	25.36	25.42	46.00	-20.58	Average
4.315	0.16	-0.10	24.74	24.80	46.00	-21.20	Average
4.315	0.16	-0.10	38.18	38.25	56.00	-17.75	QP
	MHz 0.28100 0.28100 0.65778 0.65778 2.090 2.090 2.554 2.554 3.140 3.140 4.315	MHz dB 0.28100 0.05 0.28100 0.05 0.65778 0.06 0.65778 0.06 2.090 0.12 2.090 0.12 2.554 0.13 2.554 0.13 3.140 0.14 3.140 0.14 4.315 0.16	Freq Loss Factor MHz dB dB 0.28100 0.05 -0.04 0.28100 0.05 -0.04 0.65778 0.06 -0.05 0.65778 0.06 -0.05 2.090 0.12 -0.06 2.090 0.12 -0.06 2.554 0.13 -0.07 2.554 0.13 -0.07 3.140 0.14 -0.08 4.315 0.16 -0.10	Freq Loss Factor Level MHz dB dB dBuV 0.28100 0.05 -0.04 46.10 0.28100 0.05 -0.04 37.60 0.65778 0.06 -0.05 39.30 0.65778 0.06 -0.05 28.32 2.090 0.12 -0.06 38.90 2.090 0.12 -0.06 28.50 2.554 0.13 -0.07 22.41 2.554 0.13 -0.07 34.86 3.140 0.14 -0.08 37.55 3.140 0.14 -0.08 25.36 4.315 0.16 -0.10 24.74	MHz dB dB dBuV dBuV 0.28100 0.05 -0.04 46.10 46.11 0.28100 0.05 -0.04 37.60 37.61 0.65778 0.06 -0.05 39.30 39.31 0.65778 0.06 -0.05 28.32 28.33 2.090 0.12 -0.06 38.90 38.96 2.090 0.12 -0.06 28.50 28.56 2.554 0.13 -0.07 22.41 22.47 2.554 0.13 -0.07 34.86 34.92 3.140 0.14 -0.08 37.55 37.61 3.140 0.14 -0.08 25.36 25.42 4.315 0.16 -0.10 24.74 24.80	Freq Loss Factor Level Level Line MHz dB dB dBuV dBuV dBuV dBuV 0.28100 0.05 -0.04 46.10 46.11 60.79 0.28100 0.05 -0.04 37.60 37.61 50.79 0.65778 0.06 -0.05 39.30 39.31 56.00 2.090 0.12 -0.06 38.90 38.96 56.00 2.090 0.12 -0.06 28.50 28.56 46.00 2.554 0.13 -0.07 22.41 22.47 46.00 2.554 0.13 -0.07 34.86 34.92 56.00 3.140 0.14 -0.08 37.55 37.61 56.00 3.140 0.14 -0.08 25.36 25.42 46.00 4.315 0.16 -0.10 24.74 24.80 46.00	Freq Loss Factor Level Level Line Limit MHz dB dB dBuV dBuV dBuV dBuV dB 0.28100 0.05 -0.04 46.10 46.11 60.79 -14.68 0.28100 0.05 -0.04 37.60 37.61 50.79 -13.18 0.65778 0.06 -0.05 39.30 39.31 56.00 -16.69 0.65778 0.06 -0.05 28.32 28.33 46.00 -17.67 2.090 0.12 -0.06 38.90 38.96 56.00 -17.04 2.090 0.12 -0.06 28.50 28.56 46.00 -17.44 2.554 0.13 -0.07 22.41 22.47 46.00 -23.53 2.554 0.13 -0.07 34.86 34.92 56.00 -21.08 3.140 0.14 -0.08 25.36 25.42 46.00 -20.58 4.315 0.16 -

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEMO10090617701

Page : 13 of 50

Neutral line:

Freq Loss Factor Level Level Line Limit Remark MHz dB dB dB dBuV dBuV dBuV dBuV dB 1 0.22300 0.04 -0.04 31.80 31.80 52.71 -20.90 Average 2 0.22300 0.04 -0.04 42.90 42.90 62.71 -19.80 QP	
1 0.22300 0.04 -0.04 31.80 31.80 52.71 -20.90 Average	
	_
2 0.22300 0.04 -0.04 42.90 42.90 62.71 -19.80 QP	
3 0.31999 0.05 -0.04 40.23 40.24 59.71 -19.47 QP	
4 0.31999 0.05 -0.04 29.54 29.55 49.71 -20.15 Average	
5 0.66832 0.06 -0.04 25.36 25.38 46.00 -20.62 Average	
6 0.66832 0.06 -0.04 38.02 38.04 56.00 -17.96 QP	
7 1.290 0.09 -0.05 40.40 40.44 56.00 -15.56 QP	
8 1.290 0.09 -0.05 29.80 29.84 46.00 -16.16 Average	
9 2.334 0.13 -0.07 36.71 36.77 56.00 -19.23 QP	
10 2.334 0.13 -0.07 24.32 24.38 46.00 -21.62 Average	
11 3.290 0.15 -0.08 38.50 38.56 56.00 -17.44 QP	
12 3.290 0.15 -0.08 27.40 27.46 46.00 -18.54 Average	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEMO10090617701

Page : 14 of 50

5.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table	
	Ground Reference Plane Remark: Offset the High Enguerous adults loss 1.5 dP in the spectrum analyzer.	
Test Instruments:	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Refer to section 4.7 for details	
Test state:	Non-hopping transmitting with all kinds of modulation.	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-3.82	30.00	Pass
Middle	-4.38	30.00	Pass
Highest	-5.18	30.00	Pass

Report No.: SZEMO10090617701

Page : 15 of 50

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Date: 29.SEP.2010 08:14:31

Test mode: GFSK Test channel: Middle

Date: 29.SEP.2010 08:23:48

Report No.: SZEMO10090617701

Page : 16 of 50

Test mode: GFSK Test channel: Highest

Date: 29.SEP.2010 08:28:50

Report No.: SZEMO10090617701

Page : 17 of 50

5.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Non-hopping transmitting with all kind of modulation.	
Test results:	Pass	

Measurement Data

T. alaba a a l	20dB Occupy Bandwidth (kHz)
Test channel	GFSK
Lowest	956
Middle	968
Highest	968

Report No.: SZEMO10090617701

Page : 18 of 50

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Date: 29.SEP.2010 08:15:13

Test mode: GFSK Test channel: Middle

Date: 29.SEP.2010 08:24:43

Report No.: SZEMO10090617701

Page : 19 of 50

Test mode: GFSK Test channel: Highest

Date: 29.SEP.2010 08:29:45

Report No.: SZEMO10090617701

Page : 20 of 50

5.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Test state:	Hopping transmitting with all kind of modulation.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test results:	Pass	

Report No.: SZEMO10090617701

Page : 21 of 50

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1008	>645.3	Pass
Middle	1004	>645.3	Pass
Highest	1000	>645.3	Pass

Note: According to section 5.4,

Mode	20dB bandwidth (kHz)	Limit (kHz)
Wode	(worse case)	(Carrier Frequencies Separation)
GFSK	968	645.3

Report No.: SZEMO10090617701

Page : 22 of 50

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Date: 29.SEP.2010 08:19:21

Test mode: GFSK Test channel: Middle

Date: 29.SEP.2010 08:27:01

Report No.: SZEMO10090617701

Page : 23 of 50

Test mode: GFSK Test channel: Highest

Date: 29.SEP.2010 08:41:06

Report No.: SZEMO10090617701

Page : 24 of 50

5.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (b)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Requirement:	≥75 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Hopping transmitting with all kind of modulation.	
Test results:	Pass	

Measurement Data

Mode	Hopping channel	Requirement
GFSK	79	≥75

Report No.: SZEMO10090617701

Page : 25 of 50

Test plot as follows

Test mode: GFSK

Date: 29.SEP.2010 08:51:21

Report No.: SZEMO10090617701

Page : 26 of 50

5.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Limit:	≤ 0.4 Second	
Test setup:	Spectrum Analyzer	
	Non-Conducted Table	
	Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Hopping transmitting with all kind of modulation.	
Test results:	Pass	

Measurement Data

mododiomont Bata			
Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.1376	≤0.4
	DH3	0.2816	≤0.4
	DH5	0.3221	≤0.4

Report No.: SZEMO10090617701

Page : 27 of 50

Test plot as follows

Test mode: GFSK Test Packet: DH1

Date: 29.SEP.2010 12:23:59

Test mode: GFSK Test Packet: DH3

Date: 29.SEP.2010 12:25:27

Report No.: SZEMO10090617701

Page : 28 of 50

Test mode: GFSK Test Packet: DH5

Date: 29.SEP.2010 12:26:31

Report No.: SZEMO10090617701

Page : 29 of 50

5.8 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:		
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:	
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Hopping transmitting with all kinds of modulation.	
Test results:	Pass	

Report No.: SZEMO10090617701

Page : 30 of 50

Test plot as follows:

Date: 29.SEP.2010 08:16:53

Date: 29.SEP.2010 08:20:39

Report No.: SZEMO10090617701

Page : 31 of 50

Date: 29.SEP.2010 08:32:56

Date: 29.SEP.2010 08:39:08

Report No.: SZEMO10090617701

Page : 32 of 50

5.9 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Test Instruments:	Refer to section 4.7 for details	
Test results:	Pass	

Report No.: SZEMO10090617701

Page : 33 of 50

Date: 29.SEP.2010 08:17:51

Date: 29.SEP.2010 08:18:11

Report No.: SZEMO10090617701

Page : 34 of 50

Date: 29.SEP.2010 08:22:14

Date: 29.SEP.2010 08:22:41

Report No.: SZEMO10090617701

Page : 35 of 50

Date: 29.SEP.2010 08:35:27

Date: 29.SEP.2010 08:35:58

Report No.: SZEMO10090617701

Page : 36 of 50

5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEMO10090617701

Page : 37 of 50

5.11 Radiated Emission

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.10: 2	009						
Test Frequency Range:	30MHz to 25GHz							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver setup:								
·	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above rariz	Peak	1MHz	10Hz	Average Value			
Limit:								
	Freque	ncy	Limit (dBuV/	m @3m)	Remark			
	30MHz-8	8MHz	40.0)	Quasi-peak Value			
	88MHz-21	6MHz	43.5	5	Quasi-peak Value			
	216MHz-9	60MHz	46.0)	Quasi-peak Value			
	960MHz-	1GHz	54.0)	Quasi-peak Value			
	Above 1	GHz	54.0		Average Value			
			74.0		Peak Value			
	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
Test Instruments:	Refer to section	Only the wors	case is sno	wii iii tiie re	eport.			
root motiuments.	1 10101 10 30011011	ioi detalla						

Report No.: SZEMO10090617701

Page : 38 of 50

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEMO10090617701

Page : 39 of 50

5.11.1 Radiated emission below 1GHz

Horizontal:

	Freq		intenna Factor	Preamp Factor	Read Level		Limit Line	Over Limit	Remark
	HHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	226.910	1.56	11.56	27.02	35.20	21.30	46.00	-24.70	Peak
2	261.830	1.73	12.55	26.87	36.00	23.42	46.00	-22.58	Peak
3	311.300	1.94	14.33	26.81	40.92	30.37	46.00	-15.63	Peak
4	334.580	2.01	15.04	26.98	38.20	28.28	46.00	-17.72	Peak
5	710.940	2.94	21.60	27.24	36.51	33.81	46.00	-12.19	Peak
6 @	749.740	3.06	21.70	27.11	43.22	40.87	46.00	-5.13	Peak

Report No.: SZEMO10090617701

Page : 40 of 50

Vertical:

		Cable	intenna	Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	78.500	1.05	7.59	28.00	35.16	15.80	40.00	-24.20	Peak
2	122.150	1.26	7.85	27.67	36.20	17.64	43.50	-25.86	Peak
3	167.740	1.35	9.52	27.33	37.05	20.59	43.50	-22.91	Peak
4	238.550	1.62	11.93	26.96	32.87	19.46	46.00	-26.54	Peak
5	299.660	1.90	13.85	26.72	35.32	24.35	46.00	-21.65	Peak
6	796.300	3.19	22.08	26.95	39.09	37.41	46.00	-8.59	Peak

Report No.: SZEMO10090617701

Page : 41 of 50

5.11.2 Transmitter emission above 1GHz

Test channe	el: Low	est/	Remark	C :	Peak			
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
1594	5.10	28.68	38.90	36.99	31.87	74.00	-42.13	Vertical
4804	9.36	34.04	41.53	40.49	42.36	74.00	-31.64	Vertical
7206	13.38	36.33	40.98	39.40	48.13	74.00	-25.87	Vertical
9608	13.39	36.99	37.56	35.44	48.26	74.00	-25.74	Vertical
11208	15.08	38.26	37.97	34.99	50.36	74.00	-23.64	Vertical
1594	5.10	28.68	38.90	39.74	34.62	74.00	-39.38	Horizontal
4804	9.36	34.04	41.53	39.01	40.88	74.00	-33.12	Horizontal
7206	13.38	36.33	40.98	39.75	48.48	74.00	-25.52	Horizontal
9608	13.39	36.99	37.56	36.18	49.00	74.00	-25.00	Horizontal
11615	16.01	38.32	38.56	36.30	52.07	74.00	-21.93	Horizontal

Test channe	el: Mid	dle	Remark	C :	Peak			
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
1117.500	3.97	27.51	39.31	37.32	29.49	74.00	-44.51	Vertical
4882.000	10.57	34.02	40.33	36.48	40.74	74.00	-33.26	Vertical
7323.000	12.91	36.10	40.40	38.20	46.81	74.00	-27.19	Vertical
9764.000	13.89	37.10	37.94	34.06	47.11	74.00	-26.89	Vertical
12400.000	17.55	39.04	39.48	35.25	52.36	74.00	-21.64	Vertical
1587.500	5.08	28.64	38.94	39.41	34.19	74.00	-39.81	Horizontal
4882.000	10.57	34.02	40.33	38.31	42.57	74.00	-31.43	Horizontal
7323.000	12.91	36.10	40.40	38.92	47.53	74.00	-26.47	Horizontal
9764.000	13.89	37.10	37.94	34.16	47.21	74.00	-26.79	Horizontal
12205.000	17.95	38.93	39.30	34.76	52.34	74.00	-21.66	Horizontal

Report No.: SZEMO10090617701

Page : 42 of 50

Test channe	el: Hig	hest	Remark	C :	Peak			
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
1634.500	5.10	29.06	39.21	37.05	32.00	74.00	-42.00	Vertical
4960.000	10.43	34.01	41.03	37.79	41.20	74.00	-32.80	Vertical
7440.000	12.72	35.91	40.01	37.58	46.20	74.00	-27.80	Vertical
9920.000	14.24	37.23	37.78	33.67	47.36	74.00	-26.64	Vertical
12400.000	17.55	39.04	39.48	35.08	52.19	74.00	-21.81	Vertical
1634.500	5.10	29.06	39.21	41.63	36.58	74.00	-37.42	Horizontal
4960.000	10.43	34.01	41.03	37.30	40.71	74.00	-33.29	Horizontal
7440.000	12.72	35.91	40.01	37.98	46.60	74.00	-27.40	Horizontal
9920.000	14.24	37.23	37.78	33.92	47.61	74.00	-26.39	Horizontal
12400.000	17.55	39.04	39.48	35.08	52.19	74.00	-21.81	Horizontal

Remark:

- 1) The disturbance above 13GHz was very low (>20dB below the limit), and the above harmonics were the highest points could be found when testing, so only the above harmonics have been displayed.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEMO10090617701

Page : 43 of 50

5.11.3 Band edge (Radiated Emission)

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Peak
------------	--------------	---------------	--------	---------	------

Vertical:

	Freq			Preamp Factor			Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2390.000	6.28	32.24	39.03	45.69	45.18	74.00	-28.82	Peak
2	2400.000	6.34	32.25	38.87	72.98	72.70	74.00	-1.30	Peak
3 @	2402.070	6.34	32.25	38.87	93.54	93.26	74.00	19.26	Peak

Report No.: SZEMO10090617701

Page : 44 of 50

Horizontal:

		Cablei	lntenna	Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB	
1	2390.000	6.28	32.24	39.03	46.16	45.65	74.00	-28.35	Peak
2	2400.000	6.34	32.25	38.87	70.53	70.25	74.00	-3.75	Peak
3 X	2402.070	6.34	32.25	38.87	91.47	91.19	74.00	17.19	Peak

Report No.: SZEMO10090617701

Page : 45 of 50

Test mode: Transmitting Test channel: Lowest Remark: Average

Vertical:

	Freq			Preamp Factor			Limit Line	Over Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 X 3 @	2390.000 2400.000 2402.070	6.34	32.25	38.87	60.23	59.94	54.00	5.94	Average Average Average

Report No.: SZEMO10090617701

79.51 54.00 25.51 Average

Page : 46 of 50

Horizontal:

3 @

2402.070

6.34 32.25 38.87

79.79

Report No.: SZEMO10090617701

Page : 47 of 50

Test mode: Transmitting Test channel: Highest Remark: Peak
--

Vertical:

	Freq			Preamp Factor			Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 @ 2	2480.155 2483.500			39.72 39.53					

Report No.: SZEMO10090617701

Page : 48 of 50

Horizontal:

		Cable	lntenna	Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-								
	MHz	dB	dB/m		-dP.vV	dBuV/m	4P+17/	dB	
	nnz	иь	ub/m	шь	ивич	ubuv/m	ubuv/m	иь	
1 X	2480.155	6.45	32.29	39.72	90.75	89.77	74.00	15.77	Peak
2	2483.500	6.22	32.29	39.53	52.06	51.04	74.00	-22.96	Peak
_									

Report No.: SZEMO10090617701

Page : 49 of 50

Test mode: Transmitting Test channel: Highest Remark: Average

Vertical:

		Cableàntenna		Preamp Read		Lim		: Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	HHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 0	2480.050	6.45	32.29	39.72	81.46	80.47	54.00	26.47	Average
2	2483.500								Average
_									

Report No.: SZEMO10090617701

Page : 50 of 50

Horizontal:

		Cableàntenna		Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 0	2480.071	6.45	32.29	39.72	77.81	76.82	54.00	22.82	Average
2	2483.500	6.22	32.29	39.53	41.24	40.23	54.00	-13.77	Average