RIBBONS

1 Definition

Let M (for mirror) be the set of all nonzero integers.

A function $f: \mathbb{M} \to \mathbb{Q}$ is a **ribbon** when

$$0 < f(1) < f(2) < f(3) < \dots < f(-3) < f(-2) < f(-1)$$

and

$$f(-n) - f(n) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Denote the set of all such ribbons by I.

2 An Example

For $n \in \mathbb{N}$, define $I(n) = \frac{n}{n+1}$ and $I(-n) = [I(n)]^{-1}$.

Then $I = \dots \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{3}{2}, \frac{2}{1}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots$ is a ribbon.

Note the repeated commas that mark the absent center, since I is not defined at zero.

Note also that I is (will turn out to be) a multiplicative identity.

3 Order

Define $f \sqsubset g \text{ if } n > 0 \implies g(n) \le f(n) < f(-n) \le g(-n)$.

Then define $f \sim g$ if $\exists h \in \mathbb{I}$ such that $h \sqsubset f$ and $h \sqsubset g$.

In other words, f and g are equivalent if there is some h that "forks" or "pierces" them both.

Also define f < g if there $\exists n > 0$ such that f(-n) < g(n).

This gives us f < g, f > g, or $f \sim g$ for any $f, g \in \mathbb{I}$

4 Addition and Multiplication

Define f + g by (f + g)(z) = f(z) + g(z).

Define fg by (fg)(z) = f(z)g(z).

Then $f \sim f', g \sim g' \implies f + g \sim f' + g'$.

Also $f \sim f', g \sim g' \implies fg \sim f'g'$.

5 A Multiplicative Inverse

For $f \in \mathbb{I}$, define f^* by $f^*(z) = [f(-z)]^{-1}$. Then $f^* \in \mathbb{I}$ and $ff^* \sim I$.

6 Injecting Positive Rationals

We can inject any positive $q \in \mathbb{Q}$ into the ribbons by scaling I.

Define $[q] \in \mathbb{I}$ by $[q](n) = \frac{n}{n+1}q$ and $[q](-n) = [q(n)]^{-1}$.