

Hardware: The Memory Hierarchy

CS33 Intro to Computer Systems

XXXII-1 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

Many of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook "Computer Systems: A Programmer's Perspective," 2nd Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O'Hallaron in Fall 2010. These slides are indicated "Supplied by CMU" in the notes section of the slides.

Random-Access Memory (RAM)

- Key features
 - RAM is traditionally packaged as a chip
 - basic storage unit is normally a cell (one bit per cell)
 - multiple RAM chips form a memory
- Static RAM (SRAM)
 - each cell stores a bit with a four- or six-transistor circuit
 - retains value indefinitely, as long as it is kept powered
 - relatively insensitive to electrical noise (EMI), radiation, etc.
 - faster and more expensive than DRAM
- Dynamic RAM (DRAM)
 - each cell stores bit with a capacitor; transistor is used for access
 - value must be refreshed every 10-100 ms
 - more sensitive to disturbances (EMI, radiation,...) than SRAM
 - slower and cheaper than SRAM

CS33 Intro to Computer Systems

XXXII-2

SRAM vs DRAM Summary

	Trans. per bit	Access time	Needs refresh?	Needs EDC?	Cost	Applications
SRAM	4 or 6	1X	No	Maybe	100x	Cache memories
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers

- EDC = error detection and correction
 - · to cope with noise, etc.

CS33 Intro to Computer Systems XXXII-3

Disk Capacity

- Capacity: maximum number of bits that can be stored
 - capacity expressed in units of gigabytes (GB), where
 1 GB = 2³⁰ Bytes ≈ 10⁹ Bytes
- Capacity is determined by these technology factors:
 - recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track
 - track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment
 - areal density (bits/in²): product of recording and track density
- Modern disks partition tracks into disjoint subsets called recording zones
 - each track in a zone has the same number of sectors, determined by the circumference of innermost track
 - each zone has a different number of sectors/track

CS33 Intro to Computer Systems

XXXII-7

Computing Disk Capacity

```
Capacity = (# bytes/sector) x (avg. # sectors/track) x
(# tracks/surface) x (# surfaces/platter) x
(# platters/disk)
```

Example:

- 512 bytes/sector
- 600 sectors/track (on average)
- 40,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

```
Capacity = 512 x 600 x 40000 x 2 x 5
= 122,880,000,000
= 113.88 GB
```

CS33 Intro to Computer Systems

8-IIXXX

Supplied by CMU.

Note that $1GB = 2^{30}$ bytes.

Disk Structure: Top View of Single Platter

Surface organized into tracks Tracks divided into sectors

CS33 Intro to Computer Systems

XXXII-11

Disk Access

Head in position above a track

CS33 Intro to Computer Systems

XXXII-12

Disk Access Rotation is counter-clockwise CS33 Intro to Computer Systems XXXII-13

Disk Access – Read About to read blue sector

Disk Access Time

- · Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - time to position heads over cylinder containing target sector
 - typical Tavg seek is 3-9 ms
- Rotational latency (Tavg rotation)
 - time waiting for first bit of target sector to pass under r/w head
 - typical rotation speed R = 7200 RPM
 - Tavg rotation = 1/2 x 1/R x 60 sec/1 min
- Transfer time (Tavg transfer)
 - time to read the bits in the target sector
 - Tavg transfer = 1/R x 1/(avg # sectors/track) x 60 secs/1 min

CS33 Intro to Computer Systems

XXXII-21

Disk Access Time Example

- · Given:
 - rotational rate = 7,200 RPM
 - average seek time = 9 ms
 - avg # sectors/track = 600
- Derived:
 - Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
 - Tavg transfer = 60/7200 RPM x 1/600 sects/track x 1000 ms/sec = 0.014 ms
 - Taccess = 9 ms + 4 ms + 0.014 ms
- · Important points:
 - access time dominated by seek time and rotational latency
 - first bit in a sector is the most expensive, the rest are free
 - SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - » disk is about 40,000 times slower than SRAM
 - » 2,500 times slower than DRAM

CS33 Intro to Computer Systems

XXXII-22

SSD Performance Characteristics

Sequential read tput 250 MB/s Sequential write tput 170 MB/s
Random read tput 140 MB/s Random write tput 14 MB/s
Random read access 30 us Random write access 300 us

- · Why are random writes so slow?
 - erasing a block is slow (around 1 ms)
 - modifying a page triggers a copy of all useful pages in the block
 - » find a used block (new block) and erase it
 - » write the page into the new block
 - » copy other pages from old block to the new block

CS33 Intro to Computer Systems

XXXII-28

SSD Tradeoffs vs Rotating Disks

- Advantages
 - no moving parts → faster, less power, more rugged
- Disadvantages
 - have the potential to wear out
 - » mitigated by "wear-leveling logic" in flash translation laver
 - » e.g. Intel X25 guarantees 1 petabyte (10¹⁵ bytes) of random writes before they wear out
 - in 2010, about 100 times more expensive per byte
 - in 2017, about 6 times more expensive per byte
- Applications
 - smart phones, laptops
 - Apple "Fusion" drives

CS33 Intro to Computer Systems

XXXII-29

Reading a File on a Rotating Disk

- · Suppose the data of a file are stored on consecutive disk sectors on one track
 - this is the best possible scenario for reading data quickly
 - » single seek required
 - » single rotational delay
 - » all sectors read in a single scan

CS33 Intro to Computer Systems

XXXII-30 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

Quiz 1

We have two files on the same (rotating) disk. The first file's data resides in consecutive sectors on one track, the second in consecutive sectors on another track. It takes a total of t seconds to read all of the first file then all of the second file.

Now suppose the files are read concurrently, perhaps a sector of the first, then a sector of the second, then the first, then the second, etc. Compared to reading them sequentially, this will take

- a) a lot less time
- b) around the same amount of time
- c) a lot more time

CS33 Intro to Computer Systems

XXXII-31 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

Quiz 2

We have two files on the same solid-state disk. Each file's data resides in consecutive blocks. It takes a total of t seconds to read all of the first file then all of the second file.

Now suppose the files are read concurrently, perhaps a block of the first, then a block of the second, then the first, then the second, etc. Compared to reading them sequentially, this will take

- a) a lot less time
- b) around the same amount of time
- c) a lot more time

CS33 Intro to Computer Systems

XXXII-32 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

	Storage Trends									
Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985		
\$/MB access (ns)	2,900 150	320 35	256 15	100 3	75 2	60 1.5	25 1.3	116 115		
DRAM Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985		
\$/MB access (ns) typical size (MB)	880 200 0.256	100 100 4	30 70 16	1 60 64	0.1 50 2,000	0.06 40 8,000	0.02 20 16,000	44,000 10 62,500		
Disk										
Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985		
\$/GB access (ms) typical size (GB)	100,000 75 .01	8,000 28 .16	300 10 1	10 8 20	5 5 160	.3 3 1,500	0. 03 3 3,000	3,333,333 25 300,000		
CS33 Intro to Cor	nputer Syster	ms	v	XXII–33						

Current (2020) prices for SRAM vary a fair amount. As of 11/22, it can be had for around \$3/MB.

Current DRAM prices are around \$.00075/MB.

Cr		JIOCK	Rate	3	Inflection point in computer history when designers hit the "Power Wall"				
	1985	1990	1995	2000	2003	2005	2015	2015:1985	
CPU	286	386	Pentium	P-III	P-4	Core 2	Core i7		
Clock rate (MHz)	6	20	150	600	3300	2000	3000	500	
Cycle time (ns)	166	50	6	1.6	0.3	0.50	0.33	500	
Cores	1	1	1	1	1	2	4	4	
Effective cycle time (ns)	166	50	6	1.6	0.3	0.25	0.08	2075	

Memory Hierarchies

- Some fundamental and enduring properties of hardware and software:
 - fast storage technologies cost more per byte, have less capacity, and require more power (heat!)
 - the gap between CPU and main memory speed is widening
 - well written programs tend to exhibit good locality
- These fundamental properties complement each other beautifully
- They suggest an approach for organizing memory and storage systems known as a memory hierarchy

CS33 Intro to Computer Systems

XXXII-36

Putting Things Into Perspective ...

- · Reading from:
 - ... the L1 cache is like grabbing a piece of paper from your desk (3 seconds)
 - ... the L2 cache is picking up a book from a nearby shelf (14 seconds)
 - ... main system memory is taking a 4-minute walk down the hall to talk to a friend
 - ... a hard drive is like leaving the building to roam the earth for one year and three months

CS33 Intro to Computer Systems

XXXII-38 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

This analogy is from http://duartes.org/gustavo/blog/post/what-your-computer-doeswhile-you-wait (definitely worth reading!).

Disks Are Important

- Cheap
 - cost/byte much less than SSDs
- · (fairly) Reliable
 - data written to a disk is likely to be there next year
- Sometimes fast
 - data in consecutive sectors on a track can be read quickly
- Sometimes slow
 - data in randomly scattered sectors takes a long time to read

CS33 Intro to Computer Systems

XXXII-39 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

Abstraction to the Rescue

- · Programs don't deal with sectors, tracks, and cylinders
- · Programs deal with files
 - maze.c rather than an ordered collection of sectors
 - OS provides the implementation

CS33 Intro to Computer Systems

XXXII-40 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

Implementation Problems

- Speed
 - use the hierarchy
 - » copy files into RAM, copy back when done
 - optimize layout
 - » put sectors of a file in consecutive locations
 - use parallelism
 - » spread file over multiple disks
 - » read multiple sectors at once

CS33 Intro to Computer Systems

XXXII-41 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

Implementation Problems

- Reliability
 - computer crashes
 - » what you thought was safely written to the file never made it to the disk — it's still in RAM, which is lost
 - » worse yet, some parts made it back to disk, some didn't
 - · you don't know which is which
 - · on-disk data structures might be totally trashed
 - disk crashes
 - » you had backed it up ... yesterday
 - you screw up
 - » you accidentally delete the entire directory containing your malloc solution

CS33 Intro to Computer Systems

XXXII-42 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

Implementation Problems

- · Reliability solutions
 - computer crashes
 - » transaction-oriented file systems
 - » on-disk data structures always in well defined states
 - disk crashes
 - » files stored redundantly on multiple disks
 - you screw up
 - » file system automatically keeps "snapshots" of previous versions of files

CS33 Intro to Computer Systems

XXXII-43 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

You'll Soon Finish CS 33 ...

- You might
 - celebrate

- take another systems course
 - » 32
 - » 138
 - » 166
 - » 167

- become a 33 TA

CS33 Intro to Computer Systems

XXXII-44 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

Systems Courses Next Semester

- CS 32 (Intro to Software Engineering)
 - you've mastered low-level systems programming
 - now do things at a higher level
 - learn software-engineering techniques using Java, XML,
- CS 138 (Distributed Systems)
 - you now know how things work on one computer
 - what if you've got lots of computers?
 - some may have crashed, others may have been taken over by your worst (and smartest) enemy
- CS 166 (Computer Systems Security)
 - liked buffer?
 - you'll really like 166
- CS 167/169 (Operating Systems)
 - still mystified about what the OS does?
 - write your own!

CS33 Intro to Computer Systems

XXXII-45 Copyright © 2020 Thomas W. Doeppner. All rights reserved.

The End

Well, not quite ... Database is due on 12/10 No office hours Wednesday through Sunday A few of us will be monitoring Piazza Office hours resume next week Happy coding and happy thanksgiving!

CS33 Intro to Computer Systems

XXXII-46 Copyright © 2020 Thomas W. Doeppner. All rights reserved.