CS2020 Data Structures and Algorithms

Welcome!

Why Learn Binary Search Trees?

- For "ordered" applications:
 - Use Java built-in libraries!
 - Or, use a real database!
 - BerkeleyDB, MySQL, etc.
 - Faster and more efficient than my code...

- For "dictionary" applications:
 - Hash tables are faster.

Why Learn Binary Search Trees?

- 1. You have to understand the underlying data structure to use it efficiently.
 - When to use SkipList vs. B-tree vs. Hash table?
 - Which operations are expensive/slow?
- 2. Many problems require modifying the underlying data structures.
 - If you are limited to existing operations, it may be hard to efficiently solve your problem.
 - Sometimes: all new data structure...
 - More often: augment existing data structures.

Augmenting data structures

Basic methodology:

1. Choose underlying data structure

```
(tree, hash table, linked list, stack, etc.)
```

- 2. Determine additional info needed.
- 3. Verify that the additional info can be maintained as the data structure is modified.

```
(subject to insert/delete/etc.)
```

4. Develop new operations using the new info.

Today

Two examples of augmenting BSTs

- 1. Order Statistics
 - Rank
 - Select

- 2. Orthogonal Range Searching
 - Geometric search problem
 - 1-dimension / 2-dimension

Augmented Search Trees

Dynamic Order Statistics

Implement a binary search tree that supports:

- insert(int key)
- search(int key)

and also:

select(int k)

Option 1: store rank in every node

(Nota bene: k=rank, not height.)

Option 1: store rank in every node

Problem: insert(5) requires updating all the ranks!

Option 2: store size of sub-tree in every node

Nota bene: w=weight, not height.

Option 2: store size of sub-tree in every node

The weight of a node is the size of the tree rooted at that node.

Define weight:

```
w(leaf) = 1
w(v) = w(v.left) + w(v.right) + 1
```

Option 2: store size of sub-tree in every node


```
select(v, k)
    r = v.left.weight + 1;
    if (k==r) then
         return v;
    else if (k < r) then
         return select(v.left, k);
    else if (k > r) then
         return select(v.right, k-r);
```

Rank(v): computes the rank of a node v

```
rank(v)
    r = v.left.weight + 1;
    while (v != root) do
          if v is right child then
                r += y.parent.left.weight + 1
          y = y.parent
    return r;
```

Example: rank(32)

rank = 1

Example: rank(32)

rank = 1

Example: rank(32)

rank = 1 + 2

Example: rank(32)

rank = 1 + 2 = 3

Augmented Trees

Maintain weight during insertions:

Just like maintaining height...

Augmented Trees

Maintain weight during rotations:

Augmenting data structures

Basic methodology:

1. Choose underlying data structure

```
(tree, hash table, linked list, stack, etc.)
```

- 2. Determine additional info needed.
- 3. Verify that the additional info can be maintained as the data structure is modified.

```
(subject to insert/delete/etc.)
```

4. Develop new operations using the new info.

Orthogonal Range Searching

Input: *n* points in a 2d plane

Orthogonal Range Searching

Input: *n* points in a 2d plane

Query: Box

- Contains at least one point?
- How many?

Orthogonal Range Searching

Input: *n* points in a 2d plane

Query: Box

- Contains at least one point?
- How many?

Practical Example

Are there any good restaurants within one block of me?

One Dimension

One Dimension

Range Queries

- Important in databases
- Data locality...
- "Find me everyone between ages 22 and 27."

One Dimension

Strategy:

- 1. Use a binary search tree.
- 2. Store all points in the <u>leaves</u> of the tree.

(Internal nodes store only copies.)

3. Each internal node *v* stores the MAX of any leaf in the left sub-tree.

25)

Note: BST Property

Example: query(10, 50)

Example: query(10, 50)

Example: query(8, 20)

Example: query(8, 20)

Algorithm:

- Find "split" node.
- Do left traversal.
- Do right traversal.

```
FindSplit(low, high)
   v = root;
   done = false;
  while !done {
         if (high <= v.key) then v=v.left;
         else if (low > v.key) then v=v.right;
         else (done = true);
  return v;
```

Algorithm:

- v = FindSplit(low, high);
- LeftTraversal(v, low, high);
- RightTraversal(v, low, high);

```
LeftTraversal(v, low, high)
  if (v.key \ge low) {
         all-leaf-traversal(v.right);
         LeftTraversal(v.left, low, high);
  else {
         LeftTraversal(v.right, low, high);
```

```
RightTraversal(v, low, high)
  if (v.key \le high) {
         all-leaf-traverasl(v.left);
         RightTraversal(v.right, low, high);
  else {
         RightTraversal(v.left, low, high);
```

Query time:

- Finding split node: O(log n)
- Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.
- Right Traversal:

At every step, we either:

- 1. Output all left sub-tree and recurse right.
- 2. Recurse left.

– Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.

– Counting:

- 1. Recurse at most O(log n) times.
- 2. How expensive is "output all sub-tree"?

– Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.

– Counting:

- 1. Recurse at most O(log n) times.
- 2. "Output all sub-tree" costs O(k).

Query time complexity:

$$O(k + \log n)$$

where *k* is the number of points output.

Preprocessing (buildtree) time complexity:

$$O(n \log n)$$

Total space complexity:

What if you just want to know *how many* points are in the range?

What if you just want to know *how many* points are in the range?

- Augment the tree!
- Keep a count of the number of nodes in each subtree.
- Instead of walking entire sub-tree, just remember count.

What about dynamic updates?

– Need to verify rotations!

Two Dimensional Range Tree

Step 1:

Create a range-tree on the x-coords.

Ex: search for all points between dashed lines.

Two Dimensional Range Tree

Problem: can't enumerate entire sub-trees, since there may be too many nodes that don't satisfy the y-restriction.


```
LeftTraversal(v, low, high)
  if (v.key \ge low) {
         all-leaf-traversal(v.right);
         LeftTraversal(v.left, low, high);
  else {
         LeftTraversal(v.right, low, high);
```

Two Dimensional Range Tree

Solution: Augment!

- Each node in the x-tree has a set of points in its subtree.
- Store a y-tree at each x-node containing all the points in the sub-tree.


```
LeftTraversal(v, low, high)
  if (v.key \ge low) {
         ytree.search(low, high);
         LeftTraversal(v.left, low, high);
  else {
         LeftTraversal(v.right, low, high);
```

Example:

Query time: $O(log^2n + k)$

- O(log n) to find split node.
- O(log n) recurse steps
- O(log n) y-tree-searches of cost O(log n)
- O(k) enumerating output

Building the tree: O(n log n)

- Tricky...
- − Left as a puzzle... ©

Space complexity: O(n log n)

- Each point appears in at most one y-tree per level.
- There are at O(log n) levels.
- The rest of the x-tree takes O(n) space.

Dynamic Trees

What about inserting/deleting nodes?

- Hard!
- How do you do rotations?
- Every rotation you may have to entirely rebuild the ytrees for the rotated nodes.
- Cost of rotate: O(n)!

d-dimensional

What if you want high-dimensional range queries?

- Query cost: $O(log^d n + k)$
- buildTree cost: O(n log^{d-1}n)
- Space: $O(n \log^{d-1} n)$

Idea:

- Store d–1 dimensional range-tree in each node of a 1D range-tree. (
- Construct the d–1-dimeionsal range-tree recursively.

Real World (aside)

kd-Trees

- Alternate levels in the tree:
 - vertical
 - horizontal
 - vertical
 - horizontal
- Each level divides the points in the plane in half.

Real World (aside)

kd-Trees

- Alternate levels in the tree
- Each level divides the points in the plane in half.
- Query cost: $O(\sqrt{n})$ worst-case
 - Sometimes works better in practice for many queries.
 - Easier to update dynamically.
 - Good for other types of queries: e.g., nearest-neighbor