HOOPE COLUMN

光学

第四节 光的单缝衍射 光学仪器的分辨率

1. 在夫琅禾费单缝衍射中,对于给定的入射光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹:

解析:如图所示,由费单缝衍射:其中中央明条纹的条件为: $a\sin\theta=0$;对于其他级的衍射条纹为:

$$a\sin\theta = \pm (2k+1)\frac{\lambda}{2}$$
 干涉加强(明纹) $2k+1$ 个半波带

$$a\sin\theta = \pm 2k\frac{\lambda}{2} = \pm k\lambda$$
 干涉相消 (暗纹) $2k$ 个半波带

中央明纹角宽度为: $\theta_1 \approx 2\frac{\lambda}{a}$;其它级的衍射条纹的角宽为: λ / a

所以当把缝的宽度a减小时: 其他级的衍射条纹衍射角增大。

光强随着的增大而减弱。

故选B

2. 孔径相同的电子显微镜和光学显微镜比较, 前者分辨本领大的原因是:

解析:如图所示,对于圆孔衍射:其分辨本领为:

$$R = \frac{1}{\delta\theta} = \frac{D}{1.22\lambda}$$

若对应相同孔径的电镜,则其D相同, 然而电子显微镜的电子波长几更短。 所以电子显微镜的分辨本领更大。故选B

3. 波长为500 nm的单色光垂直照射到宽为0.25 mm的单缝上,单缝后置一凸透镜以观测 衍射条纹。如果幕上中央条纹两旁第二个暗条纹之间的距离为3 mm,则透镜的焦距为:

解析:如图所示,对于单缝衍射暗条纹的条件为: $a\sin\theta=\pm 2k\frac{\lambda}{2}=\pm k\lambda$ 干涉相消(暗纹) $\mathfrak{P}: \sin \theta_2 \approx \theta_2 = \pm \frac{2\lambda}{2}$

则对于第二个暗条纹为: $a\sin\theta_3 = \pm 2\lambda$

又因为:
$$x_2 = f\theta_2 = \frac{2\lambda f}{a}$$
, 即 $2x_2 = 3$ mm

得焦距:
$$f = ax_2/2\lambda = 3a/4\lambda = 375 \text{ mm}$$

4. 一单色光垂直照射一单缝, 若其第三条明纹位置正好和波长为600 nm的单色光入射时的第二级明纹位置一样, 则前一种单色光的波长为:

解析:如图所示,对于单缝衍射明纹衍射条件为: $a\sin\theta=\pm(2k+1)\frac{\lambda}{2}$ 干涉加强(明纹)对于第三条明纹:则 $a\sin\theta_3=\pm\frac{7\lambda_1}{2}$

若换用波长为 $\lambda_2 = 600 \text{ nm}$ 的单色光:则第二级明纹为: $a \sin \theta_2 = \pm \frac{5\lambda_2}{2}$

此时, 因为: $\sin \theta_2 = \sin \theta_3$, 则得: $\lambda_1 = 5\lambda_2/7 = 428.57$ nm

5. 在夫琅禾费单缝衍射实验中, bsinθ = ±1.5λ, 表明在条纹对应衍射角θ的方向上, 单缝处的波振面被分成:_____个半波带, 此时在位于透镜焦平面的屏上将形成 ____纹。如果透镜焦距为f, 则条纹在透镜焦平面上的位置x = ____。

解析:如上图所示,对于单缝衍射明(暗)条纹衍射条件为:

$$a\sin\theta = \pm (2k+1)\frac{\lambda}{2}$$
 干涉加强(明纹)
 $a\sin\theta = \pm 2k\frac{\lambda}{2} = \pm k\lambda$ 干涉相消(暗纹)

则 $b\sin\theta = \pm 1.5\lambda$ 满足明纹条件,被分成的半波带的个数为:3个半波带。

所以在衍射屏上会形成明纹。

由于 $\tan \theta \sim \sin \theta$,得 $x = \pm \sin \theta f = \pm 1.5 \lambda f/b$

平行单色光垂直入射于单缝,观察夫琅禾费衍射。若屏上P点处为第二级暗纹,则 单缝处波面相应地可划分为_____个半波带。若将单缝宽度缩小一半, P点处将是 第____级____纹。

解析: 如图所示, 对于单缝衍射暗条纹衍射条件为:

$$a\sin\theta = \pm 2k\frac{\lambda}{2} = \pm k\lambda$$
 干涉相消 (暗纹)

当形成第二级暗纹: $a\sin\theta_2 = \pm 2\lambda$,相应单缝处会被划分出4个半波带。

若将单缝得宽度缩小一半, 即:
$$a' = a/2$$
。 $a' \sin \theta_k = \frac{a}{2} \sin \theta_k$

因为同样对应
$$P$$
点,即: $\sin \theta_k = \sin \theta_2 = \pm \frac{2\lambda}{a}$

因为同样对应
$$P$$
点,即: $\sin \theta_k = \sin \theta_2 = \pm \frac{2\lambda}{a}$ 得: $a' \sin \theta_k = \pm \frac{a}{2} \times \frac{2\lambda}{a} = \pm \lambda$ 即为: 第一级暗条纹。

$$BC = a \sin \theta$$

 A_1
 A_2
 A_2
 A_2
 A_3
 A_4
 A_2
 A_4
 A_4

7. 月球距地面大约 3.86×10^5 km, 假设月光波长可按 $\lambda = 550$ nm计算, 那么在地球上用直径D=500 cm的天文望远镜恰好能分辨月球表面相距为_____m的两点。

解析: 如图所示, 对于圆孔衍射: 其分辨本领为:

$$R = \frac{1}{\delta\theta} = \frac{D}{1.22\lambda}$$

其中月球表面两个物体相距为:

$$h \sim L\delta\theta = 1.22\lambda L/D = 51.8 \text{ m}$$

8. 设天空中两颗星对于一望远镜的张角为4.84×10⁻⁶ rad,它们都发出波长为550 nm的光,为了分辨出这两颗星,望远镜物镜的口径至少要等于: ____ cm。

解析:如上图所示,同样对于圆孔衍射:其张角 $\delta\theta$ = 4.84 ×10-6 rad,其分辨本领为:

$$\delta\theta = \frac{1.22\lambda}{D}$$

则
$$D = 1.22\lambda / \delta\theta = 13.86$$
 cm

- Nanoya and Na
 - 9. 迎面开来的汽车,其两车灯相距l为1m,汽车离人的距离为:____m时,两灯恰好能为人眼所分辨。(假设人眼瞳孔直径d为3mm,光在空气中的有效波长为 $\lambda = 500$ nm,1nm = 10^9 m)

解析:如图所示,对于圆孔衍射:由Rayleigh判据知: $\delta\theta = \frac{1.22\lambda}{D}$ 若要恰好能分辨则:

$$\delta\theta = \frac{1.22\lambda}{D} = \frac{l}{L}$$

则: $L = lD/1.22\lambda \sim 4918$ m

所以汽车离人的距离为 4918 m的时候,恰好能分辨。

10. 一单缝的宽度为b,以波长为 λ 的单色光垂直照射,设透镜的焦距为f,屏在透镜的焦平面处。求: (1)中央衍射明条纹的宽度 Δx_0 。(2)第二级明条纹和第二级暗条纹分别距离中央明纹中心的距离。

解析:如图所示,因为中央明纹的宽度就是两个一级暗条纹之间的距离:

对于单缝衍射暗条纹衍射条件为:

$$b\sin\theta = \pm 2k\frac{\lambda}{2} = \pm k\lambda$$
 干涉相消 (暗纹)

所以,对于一级暗纹为: $b\sin\theta_1 \sim b\theta_1 = \pm \lambda$,则中央条纹的线宽为:

$$\Delta x_0 = 2f \theta_1 = 2f\lambda/b$$
.

明条纹衍射条件为: $b\sin\theta = \pm (2k+1)\frac{\lambda}{2}$ 干涉加强 (明纹)

则对于第二级明纹: $b\sin\theta_2 \sim b\theta_2 = \pm 5\lambda/2$, 所以离中心处的距离为:

$$\Delta x_2 = f \theta_2 = 5f\lambda/2b$$
;

对于第二级暗条纹: $b\sin\theta_2 \sim b\theta_2 = \pm 2\lambda$, 所以离中心处的距离为:

$$\Delta x_2 = f \theta_2 = 2f\lambda/b$$

圖 11. 已知单缝宽度为 $b=1.0\times10^{-4}\,\mathrm{m}$,透镜焦距 $f=0.5\,\mathrm{m}$,用 $\lambda_1=500\,\mathrm{nm}$ 和 $\lambda_2=750\,\mathrm{nm}$ 的 单色平行光分别垂直照射, 求这两种光第一级明纹离屏中心的距离, 以及这两条 明纹之间的距离。

解析:如图所示,对于单缝衍射明条纹衍射条件为:

$$b\sin\theta = \pm (2k+1)\frac{\lambda}{2}$$
 干涉加强(明纹)

则: $b\sin\theta_1 \sim b\theta_1 = \pm 3\lambda/2$,所以第一级明纹距离屏中心的距离为:

$$\Delta x_1 = f \theta_1 = 3f\lambda/2b$$
;

得:两种光到中心得距离分别为: $\Delta x_1(\lambda_1) = 3.75 \text{ mm}$, $\Delta x_1(\lambda_2) = 5.625 \text{ mm}$ 。

两条明纹之间的距离为: $\Delta x = \Delta x_1(\lambda_2) - \Delta x_1(\lambda_1) = 1.875 \text{ mm}$

12. 思考题:为什么在生活中声波的衍射比光波的衍射更加显著?

解析: 由费单缝衍射: 对于单缝衍射的条件为:

$$a\sin\theta = \pm (2k+1)\frac{\lambda}{2}$$
 干涉加强 (明纹) $2k+1$ 个半波带

$$a\sin\theta = \pm 2k\frac{\lambda}{2} = \pm k\lambda$$
 干涉相消 (暗纹) $2k$ 个半波带

单缝衍射时,一级暗纹衍射角满足: $\sin\theta = \lambda/a$,a越接近 λ , θ 越大,衍射越明显。对于声波: 波长=波速/频率,波速一般是340米/秒,人耳听到的声音的频率是20 Hz—20 kHz,所以得出人耳听到的声音的波长: 0.017--17米,在日常生活中这种波长量级的单缝非常多,比较常见,因此衍射比较明显。

对于光波:人眼能分辨的光波在390 nm到780 nm之间,这种波长的光波,在遇到 微米级别的缝时才能发生明显的衍射。

所以生活中的声波衍射更加显著。