ENR-325/325L Principles of Digital Electronics and Laboratory

Xiang Li

Fall 2025

K-map is for Boolean logics, not engineering

Figure 2.75 Circuit with a glitch

Y = AB + BC

Why glitch? Because in real-lift every flip takes time:

K-map is for Boolean logics, not engineering

Figure 2.75 Circuit with a glitch

Hamming codes can be done in the EE way

Before that, we need to acquire some basic skillsets.

Pre-step: Data forms

Step 1: Data manipulation

Step 2: Information storage

Step 3: Interface

Step 1: data manipulation, continued

Self-looped gates -> latches

Once on, always on!

Always off, meh.

Step 1: data manipulation, continued

Make the AND-OR latch a bit useful: it stores(writes/clears) 1 bit, kind a.

An abstraction of AND-OR latch

Step 2: Detour to information storage

This is a Gated latch, it stores(writes/clears) 1 bit slightly better.

An abstraction of gated latch.

Step 2: Information storage, all done!

Scaling up to 8, we got an 8 bit storage (register).

So how about Hamming decoder (15,11)?

XOR gate can do so much more: addition

XOR gate is almost what we need:

Inputs		Outputs	
Α	В	Cout	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Step 1: back to data manipulation

Half adder

Inputs		Outputs	
Α	В	Cout	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Boolean operations: 3rd gen:

I	npu	ıts	Outputs	
Α	В	\mathbf{c}_{in}	cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

More abstraction: full adder circuits

Let's realize subtraction:

```
Step 1: create "negative number"
```

Step 2: add negative number

0101

```
1's compliment
        1010
-5
         1011
-3
         1100
-2
         1101
         11110
                           Just invert every 1 and 0, and it almost works.
-0
         1111
         0000
         0001
         0010
         0011
         0100
```


Let's realize subtraction:

Step 1: create "negative number"

Step 2: add negative number

	1's compliment		2's compliment	
-5	1010	+1	<mark>1</mark> 011	
-5 -4 -3	1011	+1	1 <mark>100</mark>	
-3	1100	+1	1 <mark>101</mark>	
-2	1101	+1	1 <mark>110</mark>	
-1	1110	+1	1 <mark>111</mark>	
-0	1111	+1	<mark>4</mark> 0000	
0	0000		000	
1	0001		0001	
2	0010		0010	
2	0011		0 <mark>011</mark>	
4	0100		0 <mark>100</mark>	
5	0101		0 <mark>101</mark>	
			Sign bits	

- It works.
- Instead of subtraction, we do addition.

A bit more about 2's compliment: Computing hardware defines data type

Three-bit integers

Bits +	Unsigned value +	Signed value (Two's complement) *
000	0	0
001	1	1
010	2	2
011	3	3
100	4	-4
101	5	-3
110	6	-2
111	7	-1

https://en.wikipedia.org/wiki/Two%27s complement

XOR gate truth table

Inp	out	Output
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

4-bit adder and subtractor

0

Step 3: Interface

• "Most of time, digital device failed at the interface." ---- one of my CSEE professor back in the old days.

Next week all the engineering stuff we are going to talk about is about interface:

- Between function and time
- Between logic function and hardware
- Even between hardware connections...

Step 3: The great interface theory

