Augmented Reality & Video Service Emerging Technologies

SIFT SURF FAST BRIEF ORB BRISK

Prof. Jong-Moon Chung

SIFT SURF FAST BRIEF ORB BRISK

BRISK

- ❖ BRISK: Binary Robust Invariant Scalable Keypoints
 - Low computational feature detector scheme
 - Known to provide a better performance than SURF with comparable accuracy

Candidate IPD (Interest Point Detection)

- IPD uses an AGAST (Adaptive and Generic corner detection based on the Accelerated Segment Test) corner detector
- AGAST is an extension to FAST
- AGAST uses circular-symmetric pattern region shape with 60 point-pairs
- AGAST uses point-pair line segments arranged in 4 concentric rings

BRISK

Scale-Space Keypoint Detection

- Scale space using Octaves and Intra-Octaves is created
- Each octave is half-sampled from the previous octave
- Intra-octave is down-sampled to be placed in between octaves

Scale-Space Keypoint Detection

- Non-maximal suppression is conducted on each octave and intra-octave
- Sub-pixel maximum is computed across the patch
- Continuous maximum is computed across scales

BRISK

Sample Point Gaussian smoothing

- Gaussian smoothing is applied to the patch area around each sampling point
 - Red circles represent the size of the standard deviation of the Gaussian filter

Pair Generation

- Point-pairs of pixels are separated into two groups
 - Long segment pairs → Used in coarse resolution
 - Short segment pairs → Used in fine resolution
- Short & Long segment pair separation is used in scale invariance

Gradient Computation

- Gradient is computed on the long segment pairs first to determine the feature orientation
- Gradient is computed on the short segment pairs to find the amount of rotation in reference to the orientation

BRISK

Descriptor Generation

Binary descriptor is made from the rotated short segment pairs

SIFT SURF FAST BRIEF ORB BRISK References

References

- J.-M. Chung, Y.-S. Park, J.-H. Park, and H. Cho, "Adaptive Cloud Offloading of Augmented Reality Applications on Smart Devices for Minimum Energy Consumption," KSII Trans. Internet Inf. Syst., vol. 9, no. 8, pp. 3090-3102, Aug. 2015.
- T. Lindeberg, "A Survey of Recent Advances in Visual Feature Detection," Neurocomputing, vol. 149, pp. 736-751, 2015.
- Y. Li, S. Wang, Q. Tian, and X. Ding "Scale-Space Theory: A Basic Tool for Analysing Structures at Different Scales," *Journal of Applied Statistics*, vol. 21, no. 2, pp. 224-270, 1994.
- D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.
- H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, June 2008.
- E. Rosten and T. Drummond, "Machine Learning for High-speed Corner Detection," in *Proc. of the 9th European Conf. on Computer Vision (ECCV '06)*, Graz, Austria, May 2006, pp. 430-443.
- M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "BRIEF: Binary Robust Independent Elementary Features," in *Proc. European Conf. on Computer Vision (ECCV 2010)*, Heraklion, Greece, Sep. 2010, pp. 778-792.
- E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An Efficient Alternative to SIFT or SURF," in *Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV)*, Barcelona, Spain, Nov. 2011, pp. 2564-2571.
- S. Leutenegger, M. Chli, and R. Siegwart, "BRISK: Binary Robust Invariant Scalable Keypoints," in *Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV)*, Barcelona, Spain, Nov. 2011, pp. 2548-2555.
- E. Mair, G. Hager, D. Burschka, M. Suppa, and G. Hirzinger, "Adaptive and Generic Corner Detection Based on the Accelerated Segment Test," in *Proc. European Conference on Computer Vision (ECCV 2010)*, Heraklion, Greece, Sep. 2010, pp. 183-196.
- Yong-Suk Park, "Computation Resource Allocation Through Smart Device Ad-hoc Cloud Establishment in Mobile Environments." Ph.D. Dissertation, Yonsei University, 2018.