Zusammenfassung zu Analysis I

Sara Adams

9. August 2004

Diese Zusammenfassung basiert auf der Vorlesung Analysis I gehalten im Wintersemester 2002/03 von Prof. Dr. Thomas Bartsch an der Justus-Liebig Universität Gießen

1

Sara Adams	Zusammentassung zu Analysis I - WS 2002/03	2
Inhaltsverzeichn	is	
1 Die reellen Zahlen $\mathbb R$		3
2 Die komplexen Zahle	en C	4
3 Folgen		5
4 Reihen		7
5 Stetige Funktionen		8
6 Winkelfunktionen		9
7 Folgen und Reihen v	on Funktionen	11
8 Integration		13
9 Differentiation		14
10 Hauptsatz der Differential- und Integlalrechnung		17
11 Lokale Approximation durch Polynome		17
12 Kurven in der Ebene		18

1 Die reellen Zahlen \mathbb{R}

Definitionen

• $x \in \mathbb{R}, n \in \mathbb{N}_0$

$$-\ x^0:=1,\ x^n:=x\cdot x^{n-1}, n\ge 1$$

$$-0! := 1, \ n! := n \cdot (n-1)!, n > 1$$

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} = \prod_{i=1}^{k} \frac{n-j+1}{i}$$

- Betrag $|x| = \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0 \end{cases}$
- Intervalle: $x, y \in \mathbb{R}, x \leq y$
 - $-[x,y] := \{z \in \mathbb{R} : x \le z \le y\}$ geschlossenes Intervall
 - $-[x,y) := \{z \in \mathbb{R} : x \le z < y\}$ halboffenes Intervall
 - $-(x,y] := \{z \in \mathbb{R} : x < z \le y\}$ halboffenes Intervall
 - $-(x,y) := \{z \in \mathbb{R} : x < z < y\}$ offenes Intervall
 - $[x, \infty) := \{ z \in \mathbb{R} : x \le z \}$
 - $-(x, \infty) := \{ z \in \mathbb{R} : x < z \}$
 - $-(-\infty, y] := \{ z \in \mathbb{R} : z < y \}$
 - $-(-\infty, y) := \{z \in \mathbb{R} : z < y\}$
- $A \subset \mathbb{R}$ nach oben beschränkt : $\Leftrightarrow \exists b \in \mathbb{R} : A \subset (-\infty, b] \ (b \text{ obere Schranke})$
- $A \subset \mathbb{R}$ nach unten beschränkt : $\Leftrightarrow \exists c \in \mathbb{R} : A \subset [c, \infty) \ (c \text{ untere Schranke})$

Vollständigkeitseigenschaft von R

- $\emptyset \neq A \subset \mathbb{R}$ nach oben beschränkt $\Rightarrow \exists! \sup A \in \mathbb{R} : a \leq \sup A \ \forall a \in A, [b \in \mathbb{R} \text{ obere}]$ Schranke von $A \Rightarrow b \geq \sup A$ (sup A kleinste obere Schranke von A, **Supremum**)
- $\emptyset \neq A \subset \mathbb{R}$ nach unten beschränkt $\Rightarrow \exists ! \inf A \in \mathbb{R} : a \geq \inf A \ \forall a \in A, [b \in \mathbb{R} \text{ untere Schranke von } A \Rightarrow b \leq \inf A]$ (inf A größte untere Schranke von A, **Infimum**)
- $\sup A \in A \Rightarrow \sup A = \max A$ (Maximum von A)
- $\inf A \in A \Rightarrow \inf A = \min A$ (Minimum von A)

Sätze

- R ist ein angeordneter Körper.
- $\bullet \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- Allgemeine binomische Formel: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$

• $x, y \in \mathbb{R}$

$$-|x| \ge 0, \ x \le |x|, \ |x| = 0 \Leftrightarrow x = 0$$

 $-|x \cdot y| = |x| \cdot |y|, \ |x + y| \le |x| + |y|$

- N ist nach oben unbeschränkt.
- $n \in \mathbb{N}, n \geq 2, a \in \mathbb{R}_0^+ \Rightarrow \exists! b \in \mathbb{R}_0^+ : b^n = a \quad (b = \sqrt[n]{a} \text{ n-te Wurzel von } a)$
- $a \in \mathbb{R} \Rightarrow \forall \varepsilon > 0 \; \exists b \in \mathbb{Q} : \; |a b| < \varepsilon$

2 Die komplexen Zahlen $\mathbb C$

Definitionen

- $i := \sqrt{-1}$
- $\mathbb{C} := \{x + yi : x, y \in \mathbb{R}\}$
- $(x_1 + y_1i) + (x_2 + y_2i) := (x_1 + x_2) + (y_1 + y_2)i$
- $(x_1 + y_1i) \cdot (x_2 + y_2i) := (x_1x_2 y_1y_2) + (x_1y_2 + x_2y_1)i$
- $\Re: \mathbb{C} \to \mathbb{R}, \ x + yi \mapsto x \text{ Realteil}$
- $\Im: \mathbb{C} \to \mathbb{R}, \ x_y i \mapsto y$ Imaginärteil
- $|z| = |x + yi| := \sqrt{x^2 + y^2}$ Betrag
- $\overline{}: \mathbb{C} \to \mathbb{C}, x + yi \mapsto x yi$ komplexe Konjugation

Sätze

- C ist ein Körper, jedoch kein angeordneter Körper.
- $x + yi \neq 0 \Rightarrow (x + yi)^{-1} = \frac{x}{\sqrt{x^2 + y^2}} \frac{y}{\sqrt{x^2 + y^2}}i$
- $w, z \in \mathbb{C}$

$$\begin{split} &-|z|\geq0,\ |z|=0\Leftrightarrow\ z=0\\ &-|w\cdot z|=|w|\cdot|z|,\ |w+z|\leq|w|+|z|\\ &-|w-z|\geq\big||w|-|z|\big|\\ &-\overline{w+z}=\overline{w}+\overline{z},\ \overline{w\cdot z}=\overline{w}\cdot\overline{z} \end{split}$$

 $-\overline{z}=z\Leftrightarrow z\in\mathbb{R}$

3 Folgen

Sara Adams

Definitionen

- $(.n): \mathbb{N} \to \mathbb{C}, n \mapsto a_n$ Folge komplexer Zahlen
- $(a_n)_{n\in\mathbb{N}}$ konvergent : $\Leftrightarrow \exists \ a\in\mathbb{C}: \ \forall \varepsilon>0 \ \exists N\in\mathbb{N}: |a_n-a|<\varepsilon \ \forall n\geq N \ (a_n\stackrel{n\to\infty}{\longrightarrow} a, a \ \text{Grenzwert bzw. Limes } \text{von} \ (a_n)_{n\in\mathbb{N}}, \ a=\lim_{n\to\infty} a_n)$
- $(a_n)_{n\in\mathbb{N}}$ divergent : $\Leftrightarrow (a_n)_{n\in\mathbb{N}}$ nicht konvergent
- $(a_n)_{n\in\mathbb{N}}$ monoton wachsend : $\Leftrightarrow a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$
- $(a_n)_{n \in \mathbb{N}}$ streng monoton wachsend : $\Leftrightarrow a_n < a_{n+1} \quad \forall n \in \mathbb{N}$
- $(a_n)_{n\in\mathbb{N}}$ monoton fallend : $\Leftrightarrow a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$
- $(a_n)_{n\in\mathbb{N}}$ streng monoton fallend : $\Leftrightarrow a_n > a_{n+1} \quad \forall n \in \mathbb{N}$
- $(a_n)_n$ Folge reeller Zahlen

$$-\lim(a_n) = \infty : \Leftrightarrow \forall c \in \mathbb{R} \ \exists N \in \mathbb{N} : \ a_n \ge c \quad \forall n \ge N$$
$$-\lim(a_n) = -\infty : \Leftrightarrow \forall c \in \mathbb{R} \ \exists N \in \mathbb{N} : \ a_n < c \quad \forall n > N$$

- $(a_{n_k})_k$ Teilfolge von $(a_n)_n : \Leftrightarrow (a_n)_n$ Folge, $n_k < n_{k+1} \quad \forall k \in \mathbb{N}$
- $a \in \mathbb{C} \cup \{-\infty, \infty\}$ Häufungspunkt von $(a_n)_n : \Leftrightarrow \exists (a_{n_k})_k : a_{n_k} \stackrel{k \to \infty}{\longrightarrow} a$
- $M \subset \mathbb{R} \cup \{-\infty, \infty\}$

$$-\sup(M) := \begin{cases} \text{kleinste obere Schr.} & \text{falls M nach oben beschränkt} \\ \infty & \text{falls M nicht nach oben beschr. od. } \infty \in M \\ -\infty & \text{falls M nicht nach oben beschr. od. } \infty \in M \end{cases}$$

$$-\inf(M) := \begin{cases} \text{gr\"{o}Bte untere Schr.} & \text{falls M nach unten beschr\"{a}nkt} \\ -\infty & \text{falls M nicht nach unten beschr. od. } -\infty \in M \\ \infty & \text{falls $M = \{\infty\}$} \end{cases}$$

- $(a_n)_n$ Folge reeller Zahlen, $H \subset \mathbb{R} \cup \{-\infty, \infty\}$ Menge aller Häufungspunkte
 - $-\limsup = \overline{\lim} := \sup(H)$ Limes superior
 - $-\liminf = \underline{\lim} := \inf(H)$ Limes inferior
- $(a_n)_n$ Cauchy-Folge : $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : |a_m a_n| < \varepsilon \quad \forall m, n \geq N$

Sätze

5

- (a_n) Folge in \mathbb{C} , $a, b \in \mathbb{C}$, $a_n \stackrel{n \to \infty}{\longrightarrow} a$, $a_n \to b \Rightarrow a = b$
- $a_n \xrightarrow{n \to \infty} a \Rightarrow |a_n| \xrightarrow{n \to \infty} |a|$
- $|z| > 1 \Rightarrow (|z|^n)_n$ divergent
- $(|z|^n)_n$ divergent $\Rightarrow (z_n)_n$ divergent
- $|z| < 1 \Rightarrow |z^n| = |z|^n \stackrel{n \to \infty}{\longrightarrow} 0$
- $(a_n)_n$ konvergent $\Rightarrow (a_n)_n$ beschränkt
- $(a_n)_n, (b_n)_n$ konvergent
 - $-(a_n + b_n)_n$ konvergent, $\lim(a_n + b_n) = \lim(a_n) + \lim(b_n)$
 - $-(a_n \cdot b_n)_n$ konvergent, $\lim(a_n \cdot b_n) = \lim(a_n) \cdot \lim(b_n)$
 - $-\lim(b_n) \neq 0 \Rightarrow \exists N \in \mathbb{N}: b_n \neq 0 \quad \forall n \geq N, \left(\frac{a_n}{b_n}\right)_{n > N} \text{ konvergent, } \lim\left(\frac{a_n}{b_n}\right) = \frac{\lim(a_n)}{\lim(b_n)}$

•
$$(a_n)_n \stackrel{n \to \infty}{\longrightarrow} a \Leftrightarrow \begin{cases} \Re(a_n) \stackrel{n \to \infty}{\longrightarrow} \Re(a) \\ \Im(a_n) \stackrel{n \to \infty}{\longrightarrow} \Im(a) \end{cases}$$

- $(a_n)_n, (b_n)_n$ konvergent, $a_n \leq b_n \quad \forall n \in \mathbb{N} \Rightarrow \lim(a_n) \leq \lim(b_n)$
- $(a_n)_n$ monoton und beschränkt $\Rightarrow (a_n)_n$ konvergent
- $\bullet \ a_n \stackrel{n \to \infty}{\longrightarrow} a \Rightarrow \ a_{n_k} \stackrel{k \to \infty}{\longrightarrow} a$
- Jede Folge reeller Zahlen besitzt eine monotone Teilfolge.
- Bolzano-Weierstraß: Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.
- \bullet Jede beschränkte Folge komplexer Zahlen besitzt eine konvergente Teilfolge bzw. hat einen Häufungspunkt in $\mathbb C.$
- $(a_n)_n$ Folge reeller Zahlen $\Rightarrow (a_n)_n$ besitzt einen Häufungspunkt in $\mathbb{R} \cup \{-\infty, \infty\}$
- $(a_n)_n$ reelle Folge, $S := \limsup(a_n), s := \liminf(a_n), a \in \mathbb{R}$ Dann sind äquivalent:
 - 1. a ist Häufungspunkt von $(a_n)_n$
 - 2. $\forall \varepsilon > 0 \; \exists I \subset \mathbb{N}, |I| = \infty : |a_n a| < \varepsilon \quad \forall n \in I$
 - 3. $\forall \varepsilon > 0, N \in \mathbb{N} \exists m \in \mathbb{N}, m > N : |a_m a| < \varepsilon$
- $(a_n)_n$ reelle Folge: $a_n \xrightarrow{n \to \infty} a \iff \limsup(a_n) = \liminf(a_n) = a$
- $(a_n)_n$ Cauchyfolge $\Leftrightarrow (a_n)_n$ konvergent

4 Reihen

Sara Adams

Definitionen

- $(A_n)_{n\geq n_0}$ Reihe : $\Leftrightarrow (a_k)_k$ Folge, $A_n = \sum_{k=n_0}^n a_k$ $(\sum_{k=n_0}^\infty a_k := (A_n)_{n\geq n_0})$
- $(A_n)_{n \ge n_0}$ konvergent: $\sum_{k=n_0}^{\infty} a_k := \lim(A_n)$
- $\sum_{n \in \mathbb{N}} a_n$ absolut konvergent : $\Leftrightarrow \sum_{n \in \mathbb{N}} |a_n|$ konvergent
- exp : $\mathbb{C} \to \mathbb{C}, z \mapsto \sum_{n=0}^{\infty} \frac{z^n}{n!}$ Exponentialfunktion
- $e := \exp(1) \in \mathbb{R}$ Eulersche Zahl

Sätze

- $\sum_{k=n}^{\infty} a_k$ konvergent $\Rightarrow a_n \stackrel{n\to\infty}{\longrightarrow} 0$
- Geometrische Reihe: $|z| < 1 \Rightarrow \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$
- $|z| > 1 \Rightarrow \sum_{n=0}^{\infty} z^n$ divergent
- $\sum_{n\geq n_0} a_n$, $\sum_{n\geq n_0} b_n$ konvergent, $\lambda \in \mathbb{R} \Rightarrow \sum_{n\geq n_0} (a_n \pm b_n)$, $\sum_{n\geq n_0} \lambda a_n$ konvergent, $\sum_{n\geq n_0} (a_n \pm b_n) = \sum_{n\geq n_0} a_n \pm \sum_{n\geq n_0} b_n$, $\sum_{n\geq n_0} \lambda a_n = \lambda \sum_{n\geq n_0} a_n$
- Cauchy'sches Konvergenzkriterium $\sum_{n\geq n_0} a_n$ konvergent $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N}$: $\left|\sum_{k=m}^{n} a_k\right| < \varepsilon \quad \forall m, n \ge N$
- Majorantenkriterium (1. Version) $b_n \ge a_n \ge 0 \quad \forall n \ge n_0 : \sum_{n \ge n_0} b_n$ konvergent $\Rightarrow \sum_{n \ge n_0} a_n$ konvergent $(\sum b_n$ Majorante von $\sum a_n)$
- Quotientenkriterium (1. Version) $a_n > 0 \ \forall n \geq n_0, \ \exists 0 < \alpha < 1 : \frac{a_{n+1}}{a_n} \leq \alpha \ \forall n \in n$ $\mathbb{N}\backslash I, |I| < \infty \Rightarrow \sum_{n \geq n_0} \text{konvergent}$
- Leibnitzkriterium $a_n \ge a_{n+1} \ge 0 \ \forall n \in \mathbb{N} : \sum_{n \in \mathbb{N}} (-1)^n a_n \text{ konvergent } \Leftrightarrow \ a_n \stackrel{n \to \infty}{\longrightarrow} 0$
- $\sum a_n$ absolut konvergent $\Rightarrow \sum a_n$ konvergent, $|\sum a_n| \leq \sum |a_n|$
- $\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$ absolut konvergent
- Majorantenkriterium (2. Version) $|a_n| \leq b_n$, $\sum_{n \in \mathbb{N}} b_n < \infty \Rightarrow \sum_{n \in \mathbb{N}} a_n$ absolut
- Quotientenkriterium (2. Version) $a_n \neq 0 \ \forall n \geq n_0, \frac{|a_{n+1}|}{|a_n|} < \alpha < 1 \ \forall n \geq n_0 \Rightarrow$ $\sum_{n\in\mathbb{N}} a_n$ absolut konvergent
- Umordnungsgesetz $A:=\sum_{n\in\mathbb{N}}a_n$ absolut konvergent \Rightarrow jede Umordnung der Reihe konvergiert gegen A
- $\sum_{n\in\mathbb{N}_0} a_n, \sum_{n\in\mathbb{N}_0} b_n$ absolut konvergent, $\sigma:\mathbb{N}_0\to\mathbb{N}_0\times\mathbb{N}_0, n\mapsto \left(\sigma_1(n),\sigma_2(n)\right)$ Bijektion $\Rightarrow \sum_{n \in \mathbb{N}_0} (a_{\sigma_1(n)} \cdot b_{\sigma_2(n)}) = (\sum_{n \in \mathbb{N}_0} a_{\sigma_1(n)}) \cdot (\sum_{n \in \mathbb{N}_0} b_{\sigma_2(n)})$ absolut konvergent
- Funktionalgleichung von exp $\exp(z_1 + z_2) = \exp(z_1) \cdot \exp(z_2) \quad \forall z_1, z_2 \in \mathbb{C}$

- $-\exp(0)=1$, $\exp(z)\neq 0 \ \forall z\in\mathbb{C}$ $-\exp(-z) = \frac{1}{\exp(z)} \, \forall z \in \mathbb{C}$ $-x \in \mathbb{R} \Rightarrow \exp(x) \in \mathbb{R}^+$
- $-x < y \Rightarrow \exp(x) < \exp(y), x, y \in \mathbb{R}$
- $e = \sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} (1 + \frac{1}{n})^n$

5 Stetige Funktionen

Definitionen

- $f: D \to \mathbb{C}$ stetig an der Stelle $z \in D : \Leftrightarrow \forall (z_n)_{n \in \mathbb{N}} \subset D : [z_n \xrightarrow{n \to \infty} z \Rightarrow f(z_n) \xrightarrow{n \to \infty} z$
- $f: D \to \mathbb{C}$ stetig : $\Leftrightarrow f$ stetig in $z \quad \forall z \in D$
- $\ln := (\exp_{\mathbb{R}})^{-1} : (0, \infty) \to \mathbb{R}, x \mapsto \ln(x)$ logaritmus naturalis
- $a \in (0, \infty)$: $\mathbb{C} \to \mathbb{C}, z \mapsto a^z := \exp(z \cdot \ln a)$ Exponential function zur Basis a
- $A \subset B \subset \mathbb{C}$
 - -A offen in $B:\Leftrightarrow \forall a\in A\exists \varepsilon>0: U_{\varepsilon}(a)\cap B=\{z\in B: |z-a|<\varepsilon\}\subset A$
 - A abgeschlossen in $B :\Leftrightarrow B \setminus A$ offen in B
 - -A kompakt : \Leftrightarrow jede Folge in A hat einen Häufungspunkt in A
- $r > 0, a \in \mathbb{C}$:
 - $-U_r(a) := \{z \in \mathbb{C} : |z-a| < r\}$ offene r-Umgebung um a
 - $-B_r(a) := \overline{U_r(a)} = \{z \in \mathbb{C} : |z-a| \le r\}$ abgeschlossener Ball vom Radius r um a
- $f: D \to \mathbb{C}$ gleichmässig stetig $\Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 : \; |\forall a, z \in D : \; |a-z| < \delta \Rightarrow$ $|f(a) - f(z)| < \varepsilon$

Sätze

- $f, g: D \to C$, f, g stetig in $z_0 \in D$:
 - $-f \pm g: D \rightarrow \mathbb{C}, z \mapsto f(z) \pm g(z)$ stetig in z_0
 - $-f \cdot q: D \to \mathbb{C}, z \mapsto f(z) \cdot q(z)$ stetig in z_0
 - $-g(z_0) \neq 0 \Rightarrow \frac{f}{g}: \{z \in D: g(z) \neq 0\} \rightarrow \mathbb{C}, z \mapsto \frac{f(z)}{g(z)} \text{ stetig in } z_0$
- $f: D_f \to \mathbb{C}, g: D_g \to \mathbb{C}, f(D_f) \subseteq D_g, f \text{ stetig in } z_0, g \text{ stetig in } f(z_0)$ $\Rightarrow g \circ f: D_f \to \mathbb{C}, z \mapsto g(f(z))$ stetig in z_0
- $exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ stetig
- Zwischenwertsatz: $f:[a,b]\to\mathbb{R}$ stetig $\Rightarrow \forall y\in [f(a),f(b)]\cup [f(b),f(a)]\ \exists x\in [a,b]$: f(x) = y

- $n \in 2\mathbb{Z} + 1, a_0, ..., a_n \in \mathbb{R}, a_n \neq 0, f : \mathbb{R} \to \mathbb{R}, x \mapsto \sum_{k=0}^n a_k x^k$ surjektiv
- $D \subset \mathbb{R}$ Intervall, $f:D \to \mathbb{R}$ stetig: f injektiv $\Leftrightarrow f$ streng monoton
- Satz von der Umkehrfunktion: $\emptyset \neq D \subset \mathbb{R}$ Intervall, $f: D \to \mathbb{R}$ stetig, injektiv $\Rightarrow f(D)$ Intervall, f streng monoton, f besitzt stetige, streng monotone Umkehrfunktion $f^{-1}: f(D) \to D \subset \mathbb{R}$
- Einige Eigenschaften vom Logarithmus

$$-\exp(\ln x) = \ln(\exp x) = x \quad \forall x > 0$$

$$-\ln(1) = 0, \ln(e) = 1$$

$$-0 < x < y \Rightarrow \ln(x) < \ln(y)$$

- ln stetig
- $-\ln(x \cdot y) = \ln(x) + \ln(y)$ (Funktionalgleichung von ln)
- $a^z = e^{z \cdot \ln a}$, $a^{w+z} = a^w \cdot a^z \quad \forall w, z \in \mathbb{C}, \ a \in (0, \infty)$
- $\mathbb{R} \to (0,\infty), x \mapsto a^x$ bijektiv, Umkehrfunktion $\log_a:(0,\infty) \to \mathbb{R}$ Logaritmus zur Basis a
- $A \subset B \subset \mathbb{C}$:
 - A abgeschlossen in $B \Leftrightarrow [(a_n)_n \subset A, a_n \xrightarrow{n \to \infty} a \Rightarrow a \in A]$
 - -A kompakt $\Leftrightarrow A$ beschränkt und abgeschlossen in \mathbb{C}
- $D \subset \mathbb{C}, \ f:D \to \mathbb{C}:$ f stetig
 - \Leftrightarrow $[A \subset \mathbb{C} \text{ offen } \Rightarrow f(A)^{-1} \text{ abgeschlossen in } D]$
 - \Leftrightarrow $[A \subset \mathbb{C} \text{ abgeschlossen} \Rightarrow f(A)^{-1} \text{ abgeschlossen in } D]$
- $\emptyset \neq D$ kompakt, $f: D \to \mathbb{C}$ stetig $\Rightarrow f(D)$ kompakt, $\exists z_0, z_1 \in D: f(z_0) = \inf f(D), f(z_1) = \sup f(D)$
- $D \subset \mathbb{C}, f: D \to \mathbb{C}: f \text{ stetig} \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0: \ [z \in D, |z-a| < \delta \Rightarrow |f(z)-f(a)| < \varepsilon]$
- $f: D \to \mathbb{C}$ gleichmässig stetig $\Rightarrow f$ stetig
- $D \subset \mathbb{C}$ kompakt, $f: D \to \mathbb{C}$ stetig $\Rightarrow f$ gleichmässig stetig

6 Winkelfunktionen

Definitionen

- $\cos : \mathbb{R} \to [-1, 1], x \mapsto \Re(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix})$
- $\sin : \mathbb{R} \to [-1, 1], x \mapsto \Im(e^{ix}) = \frac{1}{2i}(e^{ix} e^{-ix})$
- Cosinus: $\cos : \mathbb{C} \to \mathbb{C}, z \mapsto \frac{1}{2}(e^{iz} + e^{-iz})$
- Sinus: $\sin : \mathbb{C} \to \mathbb{C}, z \mapsto \frac{1}{2i}(e^{iz} e^{-iz})$

- **Pi**: $\alpha \in [0, 2]$: $\cos(\alpha) = 0$: $\pi := 2\alpha = 2 \cdot \inf\{x > 0 : \cos(x) = 0\}$
- Polarkoordinaten von $z \in \mathbb{C}$: $(r, \varphi) \in \mathbb{R}_0^+ \times \mathbb{R}$: $z = r \cdot e^{i\varphi}$
- Argument von $z \in \mathbb{C}$: $\arg(z) = \varphi$, falls $\varphi \in [0, 2\pi)$, $\exists r \geq 0$: $z = r \cdot e^{\varphi i}$ (Oft wird statt $[0, 2\pi)$ das Intervall $[-\pi, \pi)$ verwendet.)
- *n*-te Einheitswurzeln: $e^{\frac{2k\pi i}{n}}$, k=0,...,n-1
- Tangens: $\tan : \mathbb{C} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\} \to \mathbb{C}, z \mapsto \frac{\sin(z)}{\cos(z)}$ (stetig)
- Cotangens: $\tan : \mathbb{C} \setminus \{k\pi : k \in \mathbb{Z}\} \to \mathbb{C}, z \mapsto \frac{\cos(z)}{\sin(z)}$ (stetig)

Sätze

- $\forall z \in \mathbb{C} : \exp(\overline{z}) = \overline{\exp(z)}$
- $x \in \mathbb{R} \Rightarrow |\exp(ix)| = |e^{ix}| = 1$
- Eulersche Formel: $e^{iz} = \cos z + i \sin z \quad \forall z \in \mathbb{C}$
- $\forall z \in \mathbb{C}$: $\cos(-z) = \cos(z)$, cos ist gerade Funktion
- $\forall z \in \mathbb{C}$: $\sin(-z) = -\sin(z)$, sin ist ungerade Funktion
- $\cos^2(z) + \sin^2(z) = 1 \quad \forall z \in \mathbb{C}$
- Additionstheoreme: $\forall w, z \in \mathbb{C}$:

$$-\cos(w+z) = \cos(w) \cdot \cos(z) - \sin(w) \cdot \sin(z)$$

$$-\sin(w+z) = \sin(w) \cdot \cos(z) + \cos(w) \cdot \sin(z)$$

• $\forall w, z \in \mathbb{C}$:

$$-\cos(w) - \cos(z) = -2\sin(\frac{w+z}{2}) \cdot \sin(\frac{w-z}{2})$$

- $-\sin(w) \sin(z) = 2\cos(\frac{w+z}{2}) \cdot \sin(\frac{w-z}{2})$
- $\sin, \cos : \mathbb{C} \to \mathbb{C}$ stetig
- $\forall z \in \mathbb{C}$: $\cos(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$, $\sin(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$ (absolut konvergent)
- $\lim_{z\to 0} \frac{\sin(z)}{z} = 1$
- $f: \mathbb{C} \to \mathbb{C}, z \mapsto \begin{cases} \frac{\sin(z)}{z} & z \neq 0 \\ 1 & z = 0 \end{cases}$ stetig
- $[0,2] \to \mathbb{R}, x \mapsto \cos(x)$ streng monoton fallend
- cos(0) = 1, cos(2) < 0 ($\Rightarrow \pi$ wohldefiniert)
- 0 < x < 2:

$$-1 - \frac{x^2}{2} < \cos(x) < 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

$$-x - \frac{x^3}{6} < \sin(x) < x$$
, insb. $\sin(x) > 0$

- $\bullet \ e^{i\frac{\pi}{2}} = i, \quad e^{i\pi} = -1, \quad e^{i\frac{3\pi}{2}} = -i, \quad e^{2\pi i} = 1$
- $\cos(\frac{\pi}{2}) = 0$, $\cos(\pi) = -1$, $\cos(\frac{3\pi}{2}) = 0$, $\cos(2\pi i) = 1$
- $\sin(\frac{\pi}{2}) = 1$, $\sin(\pi) = 0$, $\sin(\frac{3\pi}{2}) = -1$, $\sin(2\pi i) = 0$
- $z \in \mathbb{C}$: $e^{z + \frac{\pi}{2}i} = i \cdot e^z e^{z + \pi i} = \cdot e^z e^{z + \frac{3\pi}{2}i} = -i \cdot e^z, e^{z + 2\pi i} = e^z$
- $z \in \mathbb{C}$:

$$-\cos(z + \frac{\pi}{2}) = -\sin(z), \quad \cos(z + \pi) = -\cos(z), \quad \cos(z + 2\pi) = \cos(z) -\sin(z + \frac{\pi}{2}) = \cos(z), \quad \sin(z + \pi) = -\sin(z), \quad \sin(z + 2\pi) = \sin(z)$$

• $z \in \mathbb{R}$:

$$-\cos(z) = 0 \Leftrightarrow \exists k \in \mathbb{Z} : z = \frac{\pi}{2} + k\pi \Leftrightarrow \frac{z - \frac{\pi}{2}}{\pi} \in \mathbb{Z}$$
$$-\sin(z) = 0 \Leftrightarrow \exists k \in \mathbb{Z} : z = k\pi \Leftrightarrow \frac{z}{\pi} \in \mathbb{Z}$$

- $\forall z \in \mathbb{Z}$: $[e^z = 1 \Leftrightarrow \exists k \in \mathbb{Z} : z = 2k\pi i]$
- $\cos: [0,\pi] \to \mathbb{R}$, $\sin: [-\frac{\pi}{2},\frac{\pi}{2}]$ stetig, streng monoton (cos fallend, sin wachsend)
- $\mathbb{R}^+ \times \mathbb{R} \to \mathbb{C} \setminus \{0\}, (r, \varphi) \mapsto r \cdot e^{i\varphi}$ stetig, surjektiv, 2π -periodisch in φ
- $\mathbb{R}^+ \times [0, 2\pi) \to \mathbb{C} \setminus \{0\}, (r, \varphi) \mapsto r \cdot e^{i\varphi}$ bijektiv
- $\bullet \ n \in \mathbb{N}: \quad z^n = 1 \Leftrightarrow \ z \in \{e^{\frac{2k\pi i}{n}}: \ k = 0,...,n-1\}$
- $\forall z \in \mathbb{C}$: $\tan(z+\pi) = \tan(z)$, $\tan(-z) = -\tan(z)$
- $\tan_{|(-\frac{\pi}{2},\frac{\pi}{2})}$ streng monoton wachsend, Umkehrfunktion **arctan**: $\mathbb{R} \to (-\frac{\pi}{2},\frac{\pi}{2})$

7 Folgen und Reihen von Funktionen

Sei $\emptyset \neq D \subset \mathbb{C}, f_n : D \to \mathbb{C}, n \in \mathbb{N}$

Definitionen

- $(f_n)_n$ konvergiert punktweise gegen $f: D \to \mathbb{C} : \Leftrightarrow f_n(z) \xrightarrow{n \to \infty} f(z) \ \forall z \in D \Leftrightarrow \forall z \in D, \forall \varepsilon > 0 \ \exists N_z \in \mathbb{N}: |f_n(z) f(z)| < \varepsilon \quad \forall n \geq N_z$
- Supremums norm: $f:D\to\mathbb{C}:\ ||f||_{\infty}:=\sup\{|f(x)|:\ x\in D\}\in[0,\infty]$
- $f: D \to \mathbb{C}$ beschränkt : $\Leftrightarrow ||f||_{\infty} < \infty$
- $(f_n)_n$ konvergiert gleichmässig gegen $f: D \to \mathbb{C} :\Leftrightarrow ||f_n f||_{\infty} \xrightarrow{n \to \infty} 0 \Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N}: |f_n(z) f(z)| < \varepsilon \quad \forall n \geq N, z \in D$
- *n*-te Partialsumme: $F_n := \sum_{k=1}^n f_k$
- $\sum_{k=1}^{\infty} f_k$ pkt.weise bzw. gl.m. konvergent : $\Leftrightarrow (F_n)_n$ pkt.weise bzw. gl.m. konvergent

- Potenzreihe: $\mathbb{C} \to \mathbb{C}, z \mapsto \sum_{n=0}^{\infty} a_n z^n \quad (a_i \in \mathbb{C})$
- Konvergenzradius von $\sum_{n=0}^{\infty} a_n z^n$: $R := \sup\{r \geq 0 : \sum_{n=0}^{\infty} a_n r^n \text{ konvergent}\} \in [0,\infty]$
- Konvergenzkreis von $\sum_{n=0}^{\infty} a_n z^n$: $U_R(0) := \{z \in \mathbb{C} : |z| < R\}$
- trigonometrisches Polynom vom Grad $\leq n \in \mathbb{N}_0$: $\mathbb{R} \to \mathbb{C}, x \mapsto \sum_{k=-n}^n c_k e^{ikx}, c_i \in \mathbb{C}$

Sätze

- $f: D \to \mathbb{C}$ stetig, D kompakt $\Rightarrow f$ beschränkt
- $B := \{f : D \to \mathbb{C} : f \text{ beschränkt}\} \Rightarrow$ - $||f||_{\infty} = 0 \Leftrightarrow f = 0$
 - $-\lambda \in \mathbb{C}, f \in B: ||\lambda \cdot f||_{\infty} = |\lambda| \cdot ||f||_{\infty}$
 - $-f,g \in B: ||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$ (Dreiecksungleichung)
- $(f_n)_n$ konvergiere gleichmässig gegen $f: f_n$ stetig $\forall n \in \mathbb{N} \Rightarrow f$ stetig
- $f_n: D \to \mathbb{C}$ beschränkt, $\sum_n ||f_n||_{\infty} < \infty$
 - $-\sum_n f_n(z)$ konvergiert absolut $\forall z \in D$
 - $F:D\to \mathbb{C}, z\mapsto \sum_n f_n(z)\Rightarrow \ \sum_n f_n$ konvergiert gl.m. gegen F
 - $-f_n$ stetig $\forall n \in \mathbb{N} \Rightarrow F$ stetig
- $z_0 \in \mathbb{C}, \sum_{n=0}^{\infty} a_n z_0^n$ konvergent $\Rightarrow \sum_{n=0}^{\infty} a_n z^n \quad \forall |z| \leq |z_0|$ konvergent
- $z \in U_R(0) \Rightarrow \sum_{n=0}^{\infty} a_n z^n$ absolut konvergent
- $|z| > R \Rightarrow \sum_{n=0}^{\infty} a_n z^n$ divergent
- $R = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1}$ (hier: $\frac{1}{0} = \infty, \frac{1}{\infty} = 0$)
- $\sum_{n=0}^{\infty} a_n z^n$ konvergiert gl.m. auf $B_r(0) \ \forall r < R, \ f: U_R(0) \to \mathbb{C}, z \mapsto \sum_{n=0}^{\infty} a_n z^n$ stetig
- p, q trigonometrische Polynome, $Grad(p) \le m, Grad(q) \le n \Rightarrow p+q, p \cdot q$ trigonometrische Polynome, $Grad(p+q) \le \max\{m,n\}, Grad(p \cdot q) \le m+n$
- $p(x) \in \mathbb{R} \ \forall x \in \mathbb{R} \Leftrightarrow c_{-k} = \overline{c_k} \ \forall k$
 - $-a_k := c_k + c_{-k} = 2\Re(c_k) \in \mathbb{R}$
 - $-b_k := i(c_k c_{-k}) = -2\Im(c_k) \in \mathbb{R}$
 - $p(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))$
- $\sum_{k \in \mathbb{Z}} |c_k| < \infty \Rightarrow \sum_{k \in \mathbb{Z}} c_k e^{ikx}$ konvergent, gl.m. gegen $\mathbb{R} \to \mathbb{C}, x \mapsto \sum_{k \in \mathbb{Z}} c_k e^{ikx}$

8 Integration

Definitionen

- Menge der integrierbaren Funktionen: $I_a^b \subset \{f: [a,b] \to \mathbb{R}\}$
 - (Lebesgue-)integrierbare Funktionen: I_a^b
 - Riemann-integrierbare Funktionen: $R_a^b \subset I_a^b$
- Integral: $\int_a^b : I_a^b \to \mathbb{R}, f \mapsto \int_a^b f = \int_a^b f(x) dx$
 - 1. $f(x) = c \in \mathbb{R} \ \forall x \Rightarrow \int_a^b f = c \cdot (b a)$
 - 2. $a < c < b, f \in I_a^b \Rightarrow f_{|[a,c]} \in I_a^c, f_{|[c,b]} \in I_c^b, \int_a^b f = \int_a^c f + \int_c^b f$ (Intervalladditivität)
 - 3. $f,g \in I_a^b \Rightarrow f+g \in I_a^b, \ \int_a^b (f+g) = \int_a^b f + \int_a^b g$ (Additivität)
 - 4. $f \in I_a^b, \lambda \in \mathbb{R} \Rightarrow \lambda f \in I_a^b, \int_a^b \lambda f = \lambda \cdot \int_a^b f$ (Homogenität)
 - 5. $f, g \in I_a^b, f \leq g \Rightarrow \int_a^b f \leq \int_a^b g$ (Monotonie)
- Lipschitz-Stetigkeit von $f: D \to \mathbb{C}: \exists L > 0: |f(x) f(y)| \leq L \cdot |x y| \quad \forall x, y \in D$
- Treppenfunktion $f:[a,b] \to \mathbb{R}: \exists a_0=a < a_1 < ... < a_n=b: f_{|(a_{k-1},a_k)}=c_k \in \mathbb{R} \ \forall k=1,...,n$
 - minimale Zerlegung $a_0 < ... < a_n : c_{k-1} \neq c_k \ \forall k = 1, ..., n$
 - Menge allen Treppenfunktionen: T^b_a
- $f \in T_a^b, a_0 < ... < a_n$ minimale Zerlegung: $\int_a^b f := \sum_{k=1}^n c_k (a_k a_{k-1})^k dk$
- $f:[a,b]\to\mathbb{R}$ beschränkt:
 - $-\int_a^{*b} f := \inf\{\int_a^b \psi : \psi \in T_a^b, f \le \psi\}$ Oberintegral von f
 - $-\int_{*a}^{b} f := \sup\{\int_{a}^{b} \psi : \psi \in T_{a}^{b}, f \ge \psi\}$ Unterintegral von f
- Riemann-int.bare Funktionen: $R_a^b := \{f: [a,b] \to \mathbb{R}: f \text{ beschränkt}, \int_a^{*b} f = \int_{*a}^b f \}$
- $f \in R_a^b$: $\int_a^b f := \int_a^{*b} f = \int_{*a}^b f$ Integral von f über [a, b]
- $f:[a,b] \to \mathbb{R}: \int_b^a f := -\int_a^b f$
- $a < b \in \mathbb{R} \cup \{-\infty, \infty\}, f : (a, b) \to \mathbb{R}, \forall c < d \in (a, b) : f_{|[c,d]} \in R_c^d, \exists \lim_{c \to a, d \to b} \int_c^d f \Rightarrow \int_a^b f := \lim_{c \to a, d \to b} \int_c^d f$ uneigentliches Integral von f
- $\bullet \ f:[a,b]\to \mathbb{C}:\ f\in R^b_a(\mathbb{C})\ :\Leftrightarrow\ \Re(f), \Im(f)\in R^b_a$
 - $-\int_a^b f := \int_a^b \Re(f) + i \int_a^b \Im(f) \in \mathbb{C}$

Sätze

- $f \in I_a^b, |f(x)| \le M \ \forall x \in [a,b] \Rightarrow$ - $F_a: [a,b] \to \mathbb{R}, x \mapsto \int_a^x f \text{ stetig } (\text{unbestimmtes Integral von } f)$ - $F^b: [a,b] \to \mathbb{R}, x \mapsto \int_a^b f \text{ stetig}$
- $f \in I_a^b, f_{|(a,b)} = c \Rightarrow \int_a^b f = c \cdot (b-a)$
- T_a^b ⊂ R_a^b
- $\int_a^b: R_a^b \to \mathbb{R}$ ist Integral (erfüllt also 1.-5.)
- $f, g \in R_a^b \Rightarrow \max\{f, g\} : [a, b] \to \mathbb{R}, x \mapsto \max\{f(x), g(x)\} \in R_a^b$ $\min\{f, g\}, : [a, b] \to \mathbb{R}, x \mapsto \min\{f(x), g(x)\} \in R_a^b$
- $f \in R_a^b \Rightarrow |f| \in R_a^b, |\int_a^b f| \le \int_a^b |f|$
- $f_n \in R_a^b \ \forall n \in \mathbb{N}, f_n \stackrel{n \to \infty}{\longrightarrow} f \ \text{gl.m.} \Rightarrow f \in R_a^b, \ \int_a^b f = \int_a^b \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_a^b f_n$
- $f:[a,b] \to \mathbb{R}:$ $f \text{ stetig} \Rightarrow f \in R_a^b$ $f \text{ monoton} \Rightarrow f \in R_a^b$
- $f_n:[a,b] \to \mathbb{R} \in R_a^b \ \forall n \in \mathbb{N}, \ f = \sum_{n \in \mathbb{N}} f_n$ gleichmässig konvergent $\Rightarrow \ f \in R_a^b, \ \int_a^b f = \int_a^b \sum_{n \in \mathbb{N}} f_n = \sum_{n \in \mathbb{N}} \int_a^b f_n$
- Mittelwertsatz der Integralrechnung: $f: [a,b] \to \mathbb{R}$ stetig $\Rightarrow \exists \xi \in [a,b]: f(\xi) = \frac{1}{h-a} \int_a^b f(\xi) d\xi$
- $f:[a,b]\to\mathbb{R}$ stetig, $p\in R_a^b\Rightarrow f\cdot p\in R_a^b$

9 Differentiation

Definitionen

- $D \subset \mathbb{R}$ offen, $f: D \to \mathbb{R}, a \in D:$ f differenzierbar in $a:\Leftrightarrow \exists \lim_{\substack{x \to a \\ x \to a}} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
 - $-f'(a) = \frac{df}{dx}(a) := \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ Ableitung von f in a
 - f differenzierbar : $\Leftrightarrow f$ differenzierbar in $a \ \forall a \in D$
 - f stetig differenzierbar : \Leftrightarrow f differenzierbar, $f': D \to \mathbb{R}$ stetig
 - -f n-mal stetig diff.bar : $\Leftrightarrow f(n-1)$ -mal diff.bar, (n-1). Abl. stetig diff.bar
 - f bel. oft diffbar (glatt) : $\Leftrightarrow f$ n-mal stetig diff.bar $\forall n \in \mathbb{N}$
- f von rechts diff.bar in $a :\Leftrightarrow \exists f'_+(a) := \lim_{h \downarrow 0} \frac{f(a+h) f(a)}{h}$
- f von links diff.bar in $a :\Leftrightarrow \exists f'_{-}(a) := \lim_{h \uparrow 0} \frac{f(a+h) f(a)}{h}$

- $x_0 \in D$ lokales Maximum von $f: D \to \mathbb{R} : \Leftrightarrow \exists \varepsilon > 0 : [x \in D, |x x_0| < \varepsilon \Rightarrow$ $f(x) \leq f(x_0)$
 - $-\exists \varepsilon > 0 : [x_0 \neq x \in D, |x x_0| < \varepsilon \Rightarrow f(x) < f(x_0)] : x_0$ striktes lokales
- $x_0 \in D$ lokales Minimum von $f: D \to \mathbb{R} : \Leftrightarrow \exists \varepsilon > 0: [x \in D, |x x_0| < \varepsilon \Rightarrow$ $f(x) > f(x_0)$
 - $-\exists \varepsilon > 0 : [x_0 \neq x \in D, |x x_0| < \varepsilon \Rightarrow f(x) > f(x_0)] : x_0 \text{ striktes lokales}$ Minimum
- $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $I \subset D$ Intervall:
 - -f konvex in $I:\Leftrightarrow \forall x_0, x_1 \in I, \lambda \in (0,1): f((1-\lambda)x_0 + \lambda x_1) < (1-\lambda)f(x_0) + (1$ $\lambda f(x_1)$
 - f strikt konvex in $I:\Leftrightarrow \forall x_0,x_1\in I,\lambda\in(0,1): f((1-\lambda)x_0+\lambda x_1)<$ $(1-\lambda)f(x_0) + \lambda f(x_1)$
 - f konkav in $I :\Leftrightarrow -f$ konvex
 - f strikt konkav in $I :\Leftrightarrow -f$ strikt konvex
- $D \subset \mathbb{R}$ offen, $f: D \to \mathbb{R}$ stetig: $x_0 \in D$ Wendepunkt : $\Leftrightarrow \exists \varepsilon > 0: [f \text{ konvex in}]$ $(x_0 - \varepsilon) \wedge f$ konkav in $(x_0, x_0 + \varepsilon) \vee [f$ konkav in $(x_0 - \varepsilon) \wedge f$ konvex in $(x_0, x_0 + \varepsilon)$
- $D \subset \mathbb{R}$ offen, $f: D \to \mathbb{R}: F: D \to \mathbb{R}$ Stammfunktion von $f: \Leftrightarrow F$ diff.bar, F' = f

Sätze

- $\varphi: D \Rightarrow \mathbb{C}, x \mapsto \begin{cases} \frac{f(x) f(a)}{x a} & x \neq a \\ f'(a) & x = a \end{cases}$ stetig in $a \Rightarrow f: D \to \mathbb{R}$ diff.bar in $a \in D$
- $f: D \to \mathbb{C}$ in a diff.bar $\Leftrightarrow f$ in a vor rechts und links diff.bar, $f'_{-}(a) = f'_{+}(a)$
- $f: D \to \mathbb{C}$ in a diff.bar $\Rightarrow f$ in a stetig
- $f, q: D \to \mathbb{C}$ in $a \in D$ diff.bar:
 - $-f \pm g$ in a diff.bar, $(f \pm g)'(a) = f'(a) \pm g'(a)$
 - $-f \cdot q$ in a diff.bar, $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$ (**Produktregel**)
 - $-g(a) \neq 0 \Rightarrow \frac{f}{g}$ in a diff.bar, $\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) f(a) \cdot g'(a)}{g(a)^2}$ (Quotientenregel)
- Kettenregel: $f: D_f \to \mathbb{R}, q: D_g \to \mathbb{R}, D_f, D_g \subset \mathbb{R}$ offen, $f(D_f) \subset D_g$: f in $a \in D_f$, g in $f(a) \in D_g$ diff.bar $\Rightarrow g \circ f$ in a diff.bar, $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$
- Ableitung der Umkehrfunktion: $f: D \to \mathbb{R}$ stetig, streng monoton: f in $a \in D$ diff.bar, $f'(a) \neq 0 \Rightarrow f^{-1}$ in f(a) diff.bar, $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$
- $f: D \to \mathbb{R}$ in $x_0 \in D$ diff.bar, x_0 lokalen Extremum von $f \Rightarrow f'(x_0) = 0$
- Mittelwertsatz der Differentialrechnung: $f:[a,b]\to\mathbb{R}$ stetig, $f_{|(a,b)|}$ diff.bar $\Rightarrow \exists \xi\in(a,b): f'(\xi)=\frac{f(b)-f(a)}{b-a}$

• Satz von Rolle:

$$f:[a,b]\to\mathbb{R}$$
 stetig, $f_{|(a,b)|}$ diff.bar, $f(a)=f(b)\Rightarrow\exists\xi\in(a,b):f'(\xi)=0$

- $f: [a, b] \to \mathbb{R}, \ f_{|(a,b)|} \text{ diff.bar} \Rightarrow |f(b) f(a)| \le \max\{|f'(x)|: \ a < x < b\} \cdot (b a)$
- $f:[a,b]\to\mathbb{R}$ stetig, $f_{|(a,b)}$ diff.bar: f konstant $\Leftrightarrow f'\equiv 0$
- $f: \mathbb{R} \to \mathbb{R}$ diff.bar, $c \in \mathbb{R}$: $f(x) = a \cdot e^{cx} \quad \forall x \in \mathbb{R} \iff \begin{cases} f'(x) = c \cdot f(x) & \forall x \in \mathbb{R} \\ f(0) = a \end{cases}$
- Monotoniekriterium: $f:(a,b)\to\mathbb{R}$ diff.bar:

$$-f'(x) > 0 \quad \forall x \in (a,b) \Rightarrow f \text{ streng monoton wachsend}$$

$$-f'(x) < 0 \quad \forall x \in (a,b) \Rightarrow f \text{ streng monoton fallend}$$

$$-f'(x) \ge 0 \quad \forall x \in (a,b) \Rightarrow f \text{ monoton wachsend}$$

$$-f'(x) \leq 0 \quad \forall x \in (a,b) \Rightarrow f \text{ monoton fallend}$$

• $f:(a,b)\to \mathbb{R}$ diff.bar, $x_0\in(a,b), f'(x_0)=0$

$$-\exists \varepsilon > 0: \begin{cases} f'(x) \ge 0 \ \forall x \in (x_0 - \varepsilon, x_0) \\ f'(x) \le 0 \ \forall x \in (x_0, x_0 + \varepsilon) \end{cases} \Rightarrow x_0 \text{ lokales Maximum}$$

$$- \ \exists \varepsilon > 0 : \begin{cases} f'(x) > 0 \ \forall x \in (x_0 - \varepsilon, x_0) \\ f'(x) < 0 \ \forall x \in (x_0, x_0 + \varepsilon) \end{cases} \Rightarrow x_0 \text{ striktes lokales Maximum}$$

$$-\exists \varepsilon > 0: \begin{cases} f'(x) \le 0 \ \forall x \in (x_0 - \varepsilon, x_0) \\ f'(x) \ge 0 \ \forall x \in (x_0, x_0 + \varepsilon) \end{cases} \Rightarrow x_0 \text{ lokales Minimum}$$

$$-\exists \varepsilon > 0 : \begin{cases} f'(x) \leq 0 \ \forall x \in (x_0 - \varepsilon, x_0) \\ f'(x) \geq 0 \ \forall x \in (x_0, x_0 + \varepsilon) \end{cases} \Rightarrow x_0 \text{ lokales Minimum}$$

$$-\exists \varepsilon > 0 : \begin{cases} f'(x) < 0 \ \forall x \in (x_0 - \varepsilon, x_0) \\ f'(x) > 0 \ \forall x \in (x_0, x_0 + \varepsilon) \end{cases} \Rightarrow x_0 \text{ striktes lokales Minimum}$$

- f 2-mal stetig diff.bar: $f''(x_0) < 0 \Rightarrow x_0$ striktes lokales Maximum
- f 2-mal stetig diff.bar: $f''(x_0) > 0 \Rightarrow x_0$ striktes lokales Minimum
- $f:[a,b]\to\mathbb{R}$ stetig, $f_{|(a,b)}$ diff.bar, f' monoton wachsend $\Rightarrow f$ konvex in [a,b]
- $f:[a,b]\to\mathbb{R}$ stetig, $f_{|(a,b)|}$ diff.bar, f' streng mon. wachsend $\Rightarrow f$ strikt konvex in [a,b]
- $f:[a,b]\to\mathbb{R}$ stetig, $f_{|(a,b)}$ 2-mal stetig diff.bar:

$$-f''(x) \ge 0 \quad \forall x \in (a,b) \Leftrightarrow f \text{ konvex}$$

$$-f''(x) > 0 \quad \forall x \in (a,b) \Rightarrow f \text{ streng konvex}$$

• $f:[a,b] \to \mathbb{R}$ stetig, $f_{|(a,b)}$ diff.bar: $f \text{ konvex} \Leftrightarrow f(x) > f(x_0) + f'(x_0)(x - x_0) \quad \forall x_0, x \in (a, b)$

•
$$f:(a,b)\mathbb{R}$$
 2-mal diffbar: x_0 Wendepunkt $\Rightarrow f''(x_0)=0$

• $f:(a,b)\mathbb{R}$ 3-mal diffbar, $x_0\in(a,b):f''(x_0)=0, f'''(x_0)\neq0\Rightarrow x_0$ Wendepunkt

10 Hauptsatz der Differential- und Integlalrechnung

- Hauptsatz der Differential- und Integralrechnung: $D \subset \mathbb{R}$ offenes Intervall, $f: D \to \mathbb{R}$ stetig, $x_0 \in D \Rightarrow F: D \to \mathbb{R}, x \mapsto \int_{x_0}^x f \text{ diff.bar}, F' = f$
- $D \subset \mathbb{R}$ offen, $f_n : D \to \mathbb{R}$ stetig diff.bar $\forall n \in \mathbb{R}, (f'_n)_n$ gl.m. konvergent $\Rightarrow f$ stetig diffbar, $f' = \lim_{n \to \infty} f'_n$
- $\sum_{k=0}^{\infty} a_k x^k$ Potenzreihe mit Konvergenzradius $R>0 \Rightarrow f:(-R,R) \to \mathbb{R}, x \mapsto \sum_{k=0}^{\infty} a_k x^k$ beliebig oft diff.bar, $f'(x)=\sum_{k=1}^{\infty} k a_k x^{k-1}$ mit Konvergenzradius R
- partielle Integration: $f, g: D \to \mathbb{R}$ stetig diff.bar, $[a, b] \subset D \Rightarrow \int_a^b fg' = [fg]_a^b \int_a^b f'g'$
- Transformationssatz bzw. Substitutionsregel: $f: D_f \to \mathbb{R}, g: D_g \to \mathbb{R}$ stetig diff.bar, $[a,b] \subset D_g, g([a,b]) \subset D_f \Rightarrow \int_a^b f(g(t))g'(t)dt = \int_{g(a)}^{g(b)} f(x)dx$

11 Lokale Approximation durch Polynome

Definitionen

- $D \subset \mathbb{R}$ offen, $a \in D, f : D \to n$ -mal diff.bar in a: n-tes Taylor-Polynom von $f : T_a^n f : \mathbb{R} \to \mathbb{R}, x \mapsto \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$
- $f,g:D\to\mathbb{R}: f,g$ stimmen bei $a\in D$ in n-ter Ordnung überein : $\Leftrightarrow\exists \varphi:D\to\mathbb{R}: \varphi$ stetig, $f(x)-g(x)=(x-a)^n\varphi(x)$ $[f(x)=g(x)+\mathrm{HOT}^1]$
- $f, g: D \to \mathbb{R}$, $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$: f ist für $x \to a$ von der Ordnung o(h)
- $D \subset \mathbb{R}$ Intervall, $f: D \to \mathbb{R}$ bel. oft diff.bar, $a \in D: T_a(x) := \sum_{k=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ Taylorreihe von f in a
- $f: D \to \mathbb{R}$ analytisch: $\Leftrightarrow f \in \mathcal{C}^{\infty}, \forall a \in D \exists r > 0: \forall x \in (a-r,a+r): f(x) = T_a f(x)$

Sätze

- $f: D \to \mathbb{R}, D$ offenes Intervall in $\mathbb{R}, f(n+1)$ -mal stetig diff.bar in $a \in D, R_{n+1}(x) := f(x) T_a^n f(x) \Rightarrow R_{n+1}(x) = \frac{1}{n!} \int_x^x (x-t)^n f^{(n+1)}(t) dt \quad \forall x \in D$
- f(n+1)—mal stetig diff.bar, $D \subset \mathbb{R}$ offenes Intervall $\Rightarrow \forall x \in D \ \exists \xi \in [a,x] \cup [x,a] : R_{n+1}(x) = \frac{f^{(n+1)!}(\xi)}{(n+1)!}(x-a)^{n+1}$
- $f: D \to \mathbb{R}$ n-mal diff.bar, $a \in D, f'(a) = 0, ..., f^{(n-1)} = 0, f^{(n)}$:
 - $-n \in 2\mathbb{N}, f^{(n)} < 0 \Rightarrow a \text{ striktes lokales Maximum}$
 - $-n \in 2\mathbb{N}, f^{(n)} > 0 \Rightarrow a \text{ striktes lokales Minimum}$
 - $-n \in 2\mathbb{N} + 1 \Rightarrow a$ kein lokales Extremum
- $f \in \mathcal{C}(D, \mathbb{R}) \Rightarrow f(x) = T_a^n f(x) + \text{HOT}$
- $f \in \mathcal{C}(D,\mathbb{R}) \Rightarrow f T_a^n f(x) = o(|x-a|^n)$ für $x \to a$

12 Kurven in der Ebene

Definitionen

- euklidischer Abstand: $d: \mathbb{R}^2 \times \mathbb{R}^2, (x,y) \mapsto \sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$
- euklidische Norm: $||.||_2: \mathbb{R}^2 \to \mathbb{R}_0^+, x \mapsto \sqrt{x_1^2 + x_2^2} = d(x,0)$
- parametrisierte Kurve in \mathbb{R}^2 : $D \subset \mathbb{R}$, $\gamma : D \to \mathbb{R}^2$ stetig
- γ differentierbar : $\Leftrightarrow \gamma_1, \gamma_2$ differentierbar
- $\gamma \in \mathcal{C}^1$ regulär : $\Leftrightarrow \gamma'(t) \neq 0 \quad \forall t \in D$
- $I, J \subset \mathbb{R}$ Intervalle: $\sigma: I \to J$ C^k -Parameter transformation : $\Leftrightarrow \sigma$ bijektiv, σ, σ^{-1} kmal stetig diff.bar
- $D \subset \mathbb{R}$ Intervall: $\gamma: D \to \mathbb{R}^2 \in \mathcal{C}^1$ nach der Bogenlänge parametrisiert : $\Leftrightarrow ||\gamma'(x)||_2 = 1 \quad \forall x \in D$
 - Länge des Weges $[a,b] \to \mathbb{R}^2, x \mapsto \gamma(x): b-a \quad (a < b \in D)$
- $\gamma: D \to \mathbb{R}^2$ reguläre \mathcal{C}^1 -Kurve, $[a,b] \subset D:$ Länge der Kurve γ zwischen a und $b: L(\gamma_{[a,b]}) := \int_a^b ||\gamma'(t)||_2 dt$

Sätze

- $||x y||_2 = d(x, y) \quad \forall x, y \in \mathbb{R}^2$
- $||x||_2 = |x_1 + x_2i| \quad \forall x \in \mathbb{R}^2$
- $I,J\subset\mathbb{R}$ Intervalle, $\gamma:J\to\mathbb{R}^2$ \mathcal{C}^k -Kurve, $\sigma:I\to J$ \mathcal{C}^k -Parameter transformation $\Rightarrow \gamma\circ\sigma:I\to\mathbb{R}^2$ \mathcal{C}^k -Kurve
- $\gamma: D \to \mathbb{R}^2$ reguläre \mathcal{C}^k -Kurve, $k \geq 1 \Rightarrow \exists \sigma: D \to I: \sigma \mathcal{C}^k$ -Parameter transformation, $\gamma \circ \sigma: I \to \mathbb{R}^2$ nach der Bogenlänge parametrisier
 - $-t_0 \in D \Rightarrow \sigma(t) := \int_{t_0}^t ||\gamma'(s)||_2 ds$ mögliche Parametertransformation

¹higher order terms