On Deciding Linear Arithmetic Constraints Over p-adic Integers for All Primes

Christoph Haase and Alessio Mansutti

University of Oxford

Diophantine systems and arithmetic theories

- Presburger arithmetic: first-order theory of $\langle \mathbb{Z}, 0, 1, <, + \rangle$ Decidable (Presburger, '29) in 2ExpSpace (Reddy & Loveland, '78)
- Büchi arithmetic: first-order theory of $\langle \mathbb{Z},0,1,<,+,V_p\rangle$ Decidable in non-elementary time (Bruyère, '85)
- existential theory of $\langle \mathbb{Z},0,1,=,+,\cdot \rangle$ $\it Undecidable$ (Matiyasevich, Robinson, Davis & Putnam, '70)
- existential theory of $\langle \mathbb{Z},0,1,<,+,| \rangle$ Decidable (Lipshitz, '78) in NEXPTIME (Lechner et al., '15)

 $\text{Consider a formula } \Phi \stackrel{\text{\tiny def}}{=} \bigwedge_{i \in I} f_i(\mathbf{x}) \mid g_i(\mathbf{x}) \text{ from } \langle \mathbb{Z}, 0, 1, <, +, | \, \rangle.$

If Φ is in *increasing normal form (INF)*, then

 Φ has a solution over $\mathbb Z$ if and only if

$$\bigwedge_{i\in I} v_p(f_i(\mathbf{x})) \leq v_p(g_i(\mathbf{x})) \text{ has a solution over } \mathbb{Z}_p, \text{ for every prime } p.$$

 $\text{Consider a formula }\Phi \stackrel{\text{\tiny def}}{=} \bigwedge_{i \in I} f_i(\mathbf{x}) \mid g_i(\mathbf{x}) \text{ from } \langle \mathbb{Z}, 0, 1, <, +, | \, \rangle.$

If Φ is in *increasing normal form (INF)*, then

 Φ has a solution over $\mathbb Z$ if and only if

$$\bigwedge_{i\in I} v_p(f_i(\mathbf{x})) \leq v_p(g_i(\mathbf{x})) \text{ has a solution over } \mathbb{Z}_p, \text{ for every prime } p.$$

 $\uparrow p$ -adic integers

Consider a formula $\Phi \stackrel{\text{\tiny def}}{=} \bigwedge_{i \in I} f_i(\mathbf{x}) \mid g_i(\mathbf{x}) \text{ from } \langle \mathbb{Z}, 0, 1, <, +, | \rangle.$

If Φ is in *increasing normal form (INF)*, then

 Φ has a solution over $\mathbb Z$ if and only if

$$\bigwedge_{i\in I}v_p(f_i(\mathbf{x}))\leq v_p(g_i(\mathbf{x})) \text{ has a solution over } \mathbb{Z}_p, \text{ for every prime } p.$$

 $\text{Consider a formula }\Phi \stackrel{\text{\tiny def}}{=} \bigwedge_{i \in I} f_i(\mathbf{x}) \mid g_i(\mathbf{x}) \text{ from } \langle \mathbb{Z}, 0, 1, <, +, | \, \rangle.$

If Φ is in increasing normal form (INF), then

 Φ has a solution over $\mathbb Z$ if and only if

$$\bigwedge_{i\in I} v_p(f_i(\mathbf{x})) \leq v_p(g_i(\mathbf{x})) \text{ has a solution over } \mathbb{Z}_p, \text{ for every prime } p.$$

Question: Can we decide these universality questions in general?

In this talk

...we consider formulae Φ from

- linear arithmetic over p-adic integers; or
- existential Büchi arithmetic,

and study the following decision problems:

p-UNIVERSALITY: Is Φ satisfiable for all bases $p \geq 2 / p$ prime?

p-EXISTENCE: Is Φ satisfiable for some base $p \geq 2 / p$ prime?

In this talk...

...we consider formulae Φ from

- linear arithmetic over p-adic integers; or
- existential Büchi arithmetic,

and study the following decision problems:

```
p-UNIVERSALITY: Is \Phi satisfiable for all bases p \geq 2 / p prime?

p-EXISTENCE: Is \Phi satisfiable for some base p \geq 2 / p prime?
```

Theorem 1

```
For both theories, p-universality is in conexp and p-existence is in NEXP.
```

Theorem 2

For Büchi arithmetic, p-UNIVERSALITY is CONEXP-hard.

p-adic numbers

Fix a prime number p.

$$\begin{array}{c} p\text{-adic valuation } v_p(.)\colon \mathbb{Q}\to \overline{\mathbb{Z}}\text{, with }\overline{\mathbb{Z}}\stackrel{\mathrm{def}}{=}\mathbb{Z}\cup\{\infty\}:\\ \\ v_p(0)\stackrel{\mathrm{def}}{=}\infty\\ \\ v_p(q)=k \text{ iff } q=p^k\cdot \frac{a}{b} \text{ for some } a,b\in\mathbb{Z} \text{ coprime with } p. \end{array}$$

p-adic numbers

Fix a prime number p.

$$\begin{array}{c} p\text{-adic valuation } v_p(.) \colon \mathbb{Q} \to \overline{\mathbb{Z}} \text{, with } \overline{\mathbb{Z}} \stackrel{\text{def}}{=} \mathbb{Z} \cup \{\infty\} \colon \\ \\ v_p(0) \stackrel{\text{def}}{=} \infty \\ \\ v_p(q) = k \text{ iff } q = p^k \cdot \frac{a}{b} \text{ for some } a,b \in \mathbb{Z} \text{ coprime with } p. \end{array}$$

p-adic numbers \mathbb{Q}_p :

Cauchy completion of $\mathbb Q$ under the p-adic norm $|q|_p \stackrel{\mathrm{def}}{=} p^{-v_p(q)}$.

p-adic numbers : representations

p-adic expansion of $r \in \mathbb{Q}_p \setminus \{0\}$:

$$r = \sum_{i=k}^{\infty} a_i \cdot p^i \qquad \text{where } k \in \mathbb{Z} \text{, } a_k \neq 0 \text{ and } a_i \in [0,p-1] \text{, for all } i.$$

p-adic numbers : representations

p-adic expansion of $r \in \mathbb{Q}_p \setminus \{0\}$:

$$r = \sum_{i=k}^{\infty} a_i \cdot p^i \qquad \text{where } \mathbf{k} \in \mathbb{Z} \text{, } a_k \neq 0 \text{ and } a_i \in [0,p-1] \text{, for all } i.$$

 $\bullet \ v_p(r) = k, \qquad \bullet \ p \text{-adic integers } \mathbb{Z}_p \text{: } r \in \mathbb{Q}_p \text{ s.t. } v_p(r) \geq 0.$

p-adic numbers : representations

p-adic expansion of $r \in \mathbb{Q}_p \setminus \{0\}$:

$$r=\sum_{i=k}^{\infty}a_i\cdot p^i \qquad \text{where } k\in\mathbb{Z} \text{, } a_k\neq 0 \text{ and } a_i\in[0,p-1] \text{, for all } i.$$

 $\bullet \ v_p(r) = k, \qquad \bullet \ p \text{-adic integers } \mathbb{Z}_p \text{: } r \in \mathbb{Q}_p \text{ s.t. } v_p(r) \geq 0.$

Isd-first encoding for \mathbb{Z}_n :

• The ω -word $w=u_0u_1\cdots\in [0,p-1]^\omega$ encodes

$$[\![w]\!]_p = \sum_{i=0}^{\infty} u_i \cdot p^i.$$

 $\bullet \ v_p([\![w]\!]_p) = k \text{ if and only if } w \in \{0\}^{k-1}[1,p-1][0,p-1]^\omega.$

Existential theory of the structure $(\{\mathbb{Z}_p,\overline{\mathbb{Z}}\},0,1,+,=,<,v_p).$

- 0, 1, + and =, defined for both sorts.
- <: less-than relation on $\overline{\mathbb{Z}}$.
- v_p : p-adic valuation $(\mathbb{Z}_p \to \overline{\mathbb{Z}})$.

Existential theory of the structure $(\{\mathbb{Z}_p,\overline{\mathbb{Z}}\},0,1,+,=,<,v_p).$

- 0, 1, + and =, defined for both sorts.
- <: *less-than* relation on $\overline{\mathbb{Z}}$.
- v_p : p-adic valuation $(\mathbb{Z}_p \to \overline{\mathbb{Z}})$.

E.g.,

 $\bullet \ u=2 \wedge v_p(u)=0, \qquad \ p\text{-existential, not p-universal.}$

Existential theory of the structure $(\{\mathbb{Z}_p,\overline{\mathbb{Z}}\},0,1,+,=,<,v_p).$

- 0, 1, + and =, defined for both sorts.
- <: *less-than* relation on $\overline{\mathbb{Z}}$.
- v_p : p-adic valuation $(\mathbb{Z}_p \to \overline{\mathbb{Z}})$.

E.g.,

- $\bullet \ u=2 \wedge v_p(u)=0, \qquad \ p\text{-existential, not p-universal.}$
- $u \neq 2 \lor v_p(u) \neq 0$, p-existential, p-universal.

Existential theory of the structure $(\{\mathbb{Z}_p,\overline{\mathbb{Z}}\},0,1,+,=,<,v_p).$

- 0, 1, + and =, defined for both sorts.
- <: *less-than* relation on $\overline{\mathbb{Z}}$.
- v_p : p-adic valuation $(\mathbb{Z}_p \to \overline{\mathbb{Z}})$.

E.g.,

- $u=2 \wedge v_p(u)=0$, p-existential, not p-universal.
- $u \neq 2 \lor v_p(u) \neq 0$, p-existential, p-universal.
- $\bullet \ A \cdot \mathbf{u} = \mathbf{c} \wedge B \cdot \mathbf{x} \ge \mathbf{d} \wedge \bigwedge\nolimits_{(i,j) \in J} v_p(u_i) = x_j.$

p-automata for linear systems (Wolper & Boigelot, '00)

(msd-first)
$$p$$
-automaton $\langle \Sigma_p, Q, \delta_p, \mathbf{q}_0, F \rangle$ for the system $A \cdot \mathbf{x} = \mathbf{c}$ with $A \in \mathbb{Z}^{n \times d}$ and $\mathbf{c} \in \mathbb{Z}^n$:

- alphabet: $\Sigma_p = [0, p-1]^d$,
- states: $Q = \mathbb{Z}^n$, initial state: $\mathbf{q}_0 = \mathbf{0}$, final states: $F = \{\mathbf{c}\}$,
- transition function: $\delta_p(\mathbf{q}, \mathbf{u}) = p \cdot \mathbf{q} + A \cdot \mathbf{u}$.

p-automata for linear systems (Wolper & Boigelot, '00)

(msd-first)
$$p$$
-automaton $\langle \Sigma_p, Q, \delta_p, \mathbf{q}_0, F \rangle$ for the system $A \cdot \mathbf{x} = \mathbf{c}$ with $A \in \mathbb{Z}^{n \times d}$ and $\mathbf{c} \in \mathbb{Z}^n$:

- alphabet: $\Sigma_p = [0, p-1]^d$,
- ullet states: $Q=\mathbb{Z}^n$, initial state: $\mathbf{q}_0=\mathbf{0}$, final states: $F=\{\mathbf{c}\}$,
- transition function: $\delta_p(\mathbf{q}, \mathbf{u}) = p \cdot \mathbf{q} + A \cdot \mathbf{u}$.

$$\begin{split} \mathbf{x} &= \mathbf{u}_0 \cdot p^\ell + \mathbf{u}_1 \cdot p^{\ell-1} + \mathbf{u}_2 \cdot p^{\ell-2} + \dots + \mathbf{u}_\ell \quad \in \ \mathbb{N}^d \\ & A \cdot \mathbf{x} = \mathbf{c} \text{ if and only if } \mathbf{0} \xrightarrow{\mathbf{u}_0 \mathbf{u}_1 \dots \mathbf{u}_\ell} \mathbf{c} \end{split}$$

$$\begin{split} &\mathbf{s} \overset{\mathbf{u}}{\longrightarrow} \mathbf{t} & \text{ iff } & \delta(\mathbf{s}, \mathbf{u}) = \mathbf{t}, \\ &\mathbf{s} \overset{w \, \mathbf{u}}{\longrightarrow} \mathbf{t} & \text{ iff } & \text{there is } \mathbf{r} \in \mathbb{Z}^n \text{ such that } \mathbf{s} \overset{w}{\longrightarrow} \mathbf{r} \text{ and } \mathbf{r} \overset{\mathbf{u}}{\longrightarrow} \mathbf{t}. \quad \mathbf{u} \in \Sigma, w \in \Sigma^* \end{split}$$

p-automata for linear systems (Wolper & Boigelot, '00)

(msd-first) p-automaton $\langle \Sigma_p, Q, \delta_p, \mathbf{q}_0, F \rangle$ for the system $A \cdot \mathbf{x} = \mathbf{c}$ with $A \in \mathbb{Z}^{n \times d}$ and $\mathbf{c} \in \mathbb{Z}^n$:

- alphabet: $\Sigma_p = [0, p-1]^d$,
- states: $Q = \mathbb{Z}^n$, initial state: $\mathbf{q}_0 = \mathbf{0}$, final states: $F = \{\mathbf{c}\}$,
- transition function: $\delta_p(\mathbf{q}, \mathbf{u}) = p \cdot \mathbf{q} + A \cdot \mathbf{u}$.

$$w=\mathbf{u}_0\mathbf{u}_1\cdots\in\Sigma_p^\omega$$
 is the Isd-first encoding of $[\![w]\!]_p=\sum_{i=0}^\infty p^i\cdot\mathbf{u}_i.$

Proposition (acceptance)

 $A\cdot [\![w]\!]_p=\mathbf{c}$ if and only if in the p-automaton for $A\cdot \mathbf{x}=\mathbf{c}$, there is $\mathbf{r}\in Q$ and a strictly ascending sequence $(\lambda_i)_{i\in\mathbb{N}}$ such that

$$\mathbf{r} \xrightarrow{\mathbf{u}_{\lambda_0-1}\cdots\mathbf{u}_0} \mathbf{c} \quad \text{and} \quad \mathbf{r} \xrightarrow{\mathbf{u}_{\lambda_{j+1}-1}\cdots\mathbf{u}_j} \mathbf{r}, \text{ for all } j \in \mathbb{N}.$$

Towards p-universality I: live states

Question: How does the set of live states looks for different p?

• Live states \mathcal{L} : states that reach an accepting state.

Proposition (finiteness, Wolper & Boigelot, '00)

Every live state $q \in \mathcal{L}$ of the p-automaton for $A \cdot x = c$ is s.t.

$$\|\mathbf{q}\|_{\infty} \le \max(d \cdot \|A\|_{\infty}, \|\mathbf{c}\|_{\infty}).$$

Key properties: we can restrict the set of states Q to a finite set that does not depend on the base p.

Consider $\mathfrak{S}\colon A\cdot \mathbf{x}=\mathbf{c}$ with $A\in\mathbb{Z}^{n\times d}$, and two vectors $\mathbf{s},\mathbf{t}\in\mathbb{Z}^n$.

Question: For which bases $p\geq 2$ does the p-automaton for $\mathfrak S$ have a transition $\mathbf s\stackrel{\mathbf u}{\to} \mathbf t$ for some $\mathbf u\in \Sigma_p$?

Consider $\mathfrak{S} \colon A \cdot \mathbf{x} = \mathbf{c}$ with $A \in \mathbb{Z}^{n \times d}$, and two vectors $\mathbf{s}, \mathbf{t} \in \mathbb{Z}^n$.

Question: For which bases $p \geq 2$ does the p-automaton for \mathfrak{S} have a transition $\mathbf{s} \overset{\mathbf{u}}{\to} \mathbf{t}$ for some $\mathbf{u} \in \Sigma_p$?

We characterise the set B of such bases:

$$\begin{split} B &= \{ p \geq 2 : \exists \mathbf{u} \in \Sigma_p, \delta_p(\mathbf{s}, \mathbf{u}) = \mathbf{t} \} \\ &= \{ p \in \mathbb{N} : p \geq 2 \wedge \exists \mathbf{u} \left(\max \mathbf{u}$$

Consider $\mathfrak{S} \colon A \cdot \mathbf{x} = \mathbf{c}$ with $A \in \mathbb{Z}^{n \times d}$, and two vectors $\mathbf{s}, \mathbf{t} \in \mathbb{Z}^n$.

Question: For which bases $p \geq 2$ does the p-automaton for \mathfrak{S} have a transition $\mathbf{s} \overset{\mathbf{u}}{\to} \mathbf{t}$ for some $\mathbf{u} \in \Sigma_p$?

We characterise the set B of such bases:

$$\begin{split} B &= \{ p \geq 2 : \exists \mathbf{u} \in \Sigma_p, \delta_p(\mathbf{s}, \mathbf{u}) = \mathbf{t} \} \\ &= \{ p \in \mathbb{N} : \underbrace{p \geq 2 \land \exists \mathbf{u} \left(\max \mathbf{u}$$

Consider $\mathfrak{S} \colon A \cdot \mathbf{x} = \mathbf{c}$ with $A \in \mathbb{Z}^{n \times d}$, and two vectors $\mathbf{s}, \mathbf{t} \in \mathbb{Z}^n$.

Question: For which bases $p\geq 2$ does the p-automaton for $\mathfrak S$ have a transition $\mathbf s\stackrel{\mathbf u}{\to} \mathbf t$ for some $\mathbf u\in \Sigma_p$?

We characterise the set B of such bases:

Proposition (bases characterisation)

The set B is an ultimately periodic set with period and threshold bounded by $||A| |\mathbf{s}| |\mathbf{t}||_{\infty}^{O((n+d)log(n+d))}$.

Ultimately periodic set:

Key structural result

Consider Φ from linear arithmetic over p-adic integers.

Proposition

The set B of bases $p\geq 2$ for which Φ is satisfiable is an <u>ultimately periodic set</u> with period and threshold bounded by $2^{2^{\mathcal{O}(|\Phi|^2)}}$.

Key structural result

Consider Φ from linear arithmetic over p-adic integers.

Proposition

The set B of bases $p\geq 2$ for which Φ is satisfiable is an ultimately periodic set with period and threshold bounded by $2^{2^{\mathcal{O}(|\Phi|^2)}}$.

- By Linnik's theorem, if B (equiv., $\mathbb{N}\backslash B$) contains a prime, then it has one bonded by $2^{2^{\mathcal{O}(|\Phi|^2)}}$
- \Rightarrow p-universality is in coNEXP, and p-existence is in NEXP.

The same result is established for existential Büchi arithmetic.

Existential Büchi arithmetic

Existential theory of the structure $\langle \mathbb{N}, 0, 1, +, =, V_p \rangle$

- $V_p(0) = 1$
- if $n \ge 1$, $V_p(n) = p^{v_p(n)}$ (i.e. largest power of p that divides n)
- Note: p is not necessarily a prime number.

Existential Büchi arithmetic

Existential theory of the structure $\langle \mathbb{N}, 0, 1, +, =, V_p \rangle$

- $V_p(0) = 1$
- if $n \geq 1$, $V_p(n) = p^{v_p(n)}$ (i.e. largest power of p that divides n)
- Note: p is not necessarily a prime number.

Theorem 2

The p-universality problem for existential Büchi arithmetic is hard for conexp.

• Proof by reduction from the CONEXP-complete problem $QO\Pi_1\text{-}SAT$ [L. Babai et al., CC'91].

$QO\Pi_1$ -SAT:

Input: (Ψ,m,n) with $m\leq n$ encoded in unary and Ψ Boolean combination of $x_1,\dots,x_n,f(x_1,\dots,x_m)$.

Question: Is $\forall f \in [\{0,1\}^m \to \{0,1\}] \, \exists x_1,\dots,x_n \in \{0,1\} \Psi$ true?

Main difficulty: encode the function f using the base p.

$QO\Pi_1$ -SAT:

Input: (Ψ,m,n) with $m\leq n$ encoded in unary and Ψ Boolean combination of $x_1,\dots,x_n,f(x_1,\dots,x_m)$.

Question: Is $\forall f \in [\{0,1\}^m \to \{0,1\}] \, \exists x_1,\dots,x_n \in \{0,1\} \Psi$ true?

Main difficulty: encode the function f using the base p.

$QO\Pi_1$ -SAT :

Input: (Ψ, m, n) with $m \leq n$ encoded in unary and Ψ Boolean combination of $x_1, \ldots, x_n, f(x_1, \ldots, x_m)$.

Question: Is $\forall f \in [\{0,1\}^m \to \{0,1\}] \, \exists x_1,\dots,x_n \in \{0,1\} \Psi$ true?

Main difficulty: encode the function f using the base p.

We say that $z \in \mathbb{N}$ encodes f iff for all $b, b_0, \dots, b_{m-1} \in [0, 1]$,

$$\begin{array}{l} f(b_0,\ldots,b_{m-1})=b \; \Leftrightarrow z\equiv b \, \mathrm{mod} \, q, \mathrm{for \; all \; primes} \; q\in [k^3,(k+1)^3), \\ \\ \mathrm{where} \; k=\sum_{i=0}^{m-1} 2^i \cdot b_i. \end{array}$$

$QO\Pi_1$ -SAT:

Input: (Ψ, m, n) with $m \leq n$ encoded in unary and Ψ Boolean combination of $x_1, \dots, x_n, f(x_1, \dots, x_m)$.

Question: Is $\forall f \in [\{0,1\}^m \to \{0,1\}] \, \exists x_1,\dots,x_n \in \{0,1\} \Psi$ true?

Main difficulty: encode the function f using the base p.

We say that $z\in\mathbb{N}$ encodes f iff for all $b,b_0,\dots,b_{m-1}\in[0,1]$, $\begin{array}{c} \text{Ingham's theorem} \\ f(b_0,\dots,b_{m-1})=b &\Leftrightarrow z\equiv b \operatorname{mod} q, \text{for all primes } q\in[k^3,(k+1)^3), \\ \text{where } k=\sum_{i=0}^{m-1}2^i\cdot b_i. \end{array}$

$QO\Pi_1$ -SAT :

Input: (Ψ, m, n) with $m \leq n$ encoded in unary and Ψ Boolean combination of $x_1, \ldots, x_n, f(x_1, \ldots, x_m)$.

Question: Is $\forall f \in [\{0,1\}^m \to \{0,1\}] \, \exists x_1,\dots,x_n \in \{0,1\} \Psi$ true?

Main difficulty: encode the function f using the base p.

$QO\Pi_1$ -SAT to p-universality

$QO\Pi_1$ -SAT :

Input: (Ψ, m, n) with $m \leq n$ encoded in unary and Ψ Boolean combination of $x_1, \dots, x_n, f(x_1, \dots, x_m)$.

Question: Is $\forall f \in [\{0,1\}^m \to \{0,1\}] \exists x_1,\ldots,x_n \in \{0,1\} \Psi$ true?

- every f is encoded by some $z \ge 2$,
- for all $i \geq 1$, z encodes f if and only if z^i encodes f,
- q.f. formula $\phi_{\text{invalid}}(z)$, true iff z does not encode some f.

 (Ψ,m,n) is a yes instance of $\mathrm{QO\Pi}_1 ext{-SAT}$ if and only if $V_n(z)=z\wedge z\geq 2\wedge (\phi_{\mathsf{invalid}}(z)\vee \Psi^T) \text{ is } p\text{-universal}.$

Conclusion

We studied the p-universality and p-existence problems for linear arithmetic over \mathbb{Z}_p and existential Büchi arithmetic.

Theorem 1

For both theories, p-universality is in CoNEXP and p-existence is in NEXP.

Theorem 2

For Büchi arithmetic, p-universality is CONEXP-hard.

Conclusion

We studied the p-universality and p-existence problems for linear arithmetic over \mathbb{Z}_p and existential Büchi arithmetic.

Theorem 1

For both theories, p-universality is in CoNEXP and p-existence is in NEXP.

Theorem 2

For Büchi arithmetic, p-universality is coNEXP-hard.

Open problems:

- tight bound for the p-UNIVERSALITY problem of linear arithmetic over p-adic integers.
- improved upper bound on p-EXISTENCE.
- p-UNIVERSALITY for full Büchi arithmetic.