Elements of DeFi

https://web3.princeton.edu/elements-of-defi/

Professor Pramod Viswanath

Princeton University

Lecture 14

Wrapped tokens and bridges

Interconnecting Blockchains

Last lecture: Attack Surface due to Lending

Attacker can be attacked:

- Sandwich
- Poisoned sandwich

Attacks can be done cheaply:

- Flash loan attacks
- Euler labs attack and the dangers of contagion

Attacks can destabilize the trust platform:

- Shorting attacks in PoS protocols: dangers to consensus
- Lending vs Staking tradeoff in PoS protocols: danger even without byzantine agents

This Lecture: Wrapped tokens and bridges

- Importing data from other blockchains
 - Wrapped tokens
- General bridge architecture
 - Design space
 - Desired properties
- Bridge designs
- Blockchain interoperability not via bridges

Recap: Oracles

 Oracles are a general-purpose fabric connecting blockchains with other off chain systems

Ground truth from other blockchains

Need for blockchain interoperability

- Increased liquidity
 - Smooth exchange of assets between different blockchain networks

- Enhanced functionality
 - Access to smart contracts, enhanced privacy, or improved scalability on other blockchains

Wrapped token as an example

Wrapped token as an example

Trusted party X

Bridges enabled DeFi applications

- Cross chain token exchange
- Cross-chain collateralized loans
- Cross-chain yield harvesting

To enable these applications, we need a general-purpose messaging protocols among blockchains, aka cross-chain **bridges**.

Strawman bridge design

Issues: single point of failure; no verification of data

General bridge architecture

data = cross-chain message + "proof of consensus"

Design space

- Middleman
 - Relayer: simply relay the data
 - Validator: validate and sign the data
 - Any oracle network design
- Verification module
 - On-chain light client
 - Signature verification
 - Oracle contract

Desired properties

- Trustlessness: equivalent security to the underlying blockchains
- Extensibility: able to be supported on any blockchain
- Generalizability: capable of handling arbitrary applications

Bridge designs

- Oracle-network bridges
 - Layer O: Oracle and relayer cooperate to verify data
 - Axelar: full consensus for verifying data

- Light-client bridges
 - Cosmos IBC: light clients embedded in Cosmos-SDK
 - ZkBridge: verifier contract checks the validity of the data via ZKP

Oracle-network bridges

- Middleman: a set of validators or an oracle network
- Verification module: verifies signatures
 - **X** Trustless
 - Extensible
 - Generalizable

Layer 0

- An Oracle like ChainLink verifies the block headers
- Nodes called Relayers provide proof of inclusion of a message
- Security assumption: Relayer and Oracle assumed not to collude

Axelar

A validator set of 50 validators run a full consensus protocol

Light-client bridges

- Light clients are blockchain nodes that can verify the confirmation of certain transactions without running a full node
 - 8. Simplified Payment Verification

It is possible to verify payments without running a full network node. A user only needs to keep

- Middle copy of the block headers of the longest proof of work chain, which he can get by querying header with header with header the has the longest chain, and obtain the Merkle branch linking the transaction to the block it's timestamped in. He can't check the transaction for
- Verific hat hypiroid it he place in the high he chief that extremely has accepted it, and blocks added after it further confirm the network has accepted it.

Cosmos IBC

- The confirmation certificate is a set of valid signatures by the source blockchain nodes
- IBC protocol is a part of Cosmos consensus mechanism
- The validators of destination chain verify the validity of data

zkBridge

- On-chain smart contract verifies the data
- Verification cost reduced by using zero-knowledge proofs

Interoperability not via bridges

Hashed timelock contract (HTLC)

- HTLC stores a pair (x, t), where x is a hash puzzle and t is a timeout
- If the contract receives the matching secret s such that x = H(s), before time t has elapsed, then the transaction will be executed.
- If the contract does not receive the matching secret s before time t has elapsed, then the transaction will be aborted.

Cross-chain atomic swap

Commit

Abort

A: 20 ETH -> B
This tx gets unlocked
only when solution for
puzzle X is provided

If User A doesn't reveal the solution for X none of them will get their txs => atomicity

B: 1 BTC -> A
This tx gets unlocked
only when solution for
puzzle X is provided

Comparison

	Trustlessness	Extensibility	Generalizability	Middleman assumption
WBTC	No	Yes	No	- Trusted middleman
Atomic swap	Yes	Yes	No	- No middleman
Layer 0	No	Yes	Yes	Relayer and Oracle should not colludeOne honest relayer
Axelar	No	Yes	Yes	- Full consensus
Cosmos IBC	Yes	No	Yes	- One honest relayer
zkBridge	Yes	No	Yes	- One honest relayer

LECTURE ENDS