清华大学试题专用纸

考试课程: 概率论与数理统计 考试时间: 2021年1月10日19: 00-21: 00

	姓名	学号_20	班级	<u>.</u>
一 填空题(每空	3分, 共30分; 答案	均写在试卷上,注意标清题	号)	
1. 线上内容中提至	过的贝特朗奇论(Ber	trand's paradox)中,不同	同理解下得到的概率值分 别]是。
2. 将一枚均匀的	硬币独立地抛掷 16 次	,正面出现次数记为 <i>X</i> ,希	望 对概率P(6≤X≤10)↑	数尽可能准确的估计,
用中心极限定理的	的结果为	,用切比雪夫不	等式的结果为	
3. $ig(X,Yig)$ 的联合	密度函数 $p(x,y)=e^{-}$	$Z = \begin{cases} Y, \stackrel{\text{if }}{\not =} Y \end{cases}$	$X \geq Y$,则 $E(Z^2) = $	
4. 二维随机变量	$(X,Y) \sim N(0,0,4,4)$	$I, 0.5$),则 $E(X^2 X + Y =$	= 4)=	0
5. 设 <i>X</i> ₁ , <i>X</i> ₂ ,,	$oldsymbol{X}_8$ 为相互独立的 $oldsymbol{N}ig($	$(0,1)$ 随机变量,则 $P\left(\frac{X}{ X_1+X_2 }\right)$	$\frac{ X_1 - X_2 }{ X_2 + \dots + X_8 } \ge \underline{\qquad}$) = 0.05 °
6. 设 <i>X</i> ₁ ,, <i>X</i> ₁₀₀	$_0$ 是来自总体 $N(\mu,4)$	的样本。对期望进行假设检	验, $H_0: \mu = 0$, $H_1: \mu$	> 0 ,若取拒绝域为
$\{(x_1,\ldots,x_{100}):\bar{x}$	$\overline{z}>0.2$ },则此检验犯	第一类错误的概率为		,当 μ = 0.6 时,
此检验犯第二类锗	昔误的概率为	$\overline{x} = 0$.2 的 p 值为	o
7.对均匀总体 $\it U$	ig(ig(0, hetaig)做假设检验, $ig)$	原假设与备择假设分别为 $H_{_0}$	$: \theta = 5, \ H_1: \theta < 5, \ \bowtie x$	$c_{(n)} = \max\{x_1, \dots, x_n\}$
为检验统计量,显	L著性水平α=0.064	,若样本容量 n = 3 ,则拒纸	色域为	o
· · · · · · · · · · · · · · · · · · ·		¥题时,如果他知道正确答案 知道正确答案的概率是 0. 6,	· ·	•
(1) 求答对的概	率,(2)现从卷面上和	盾题是答对了,求学生知道 Ⅰ	E确答案的概率。	
三. (10 分) 设随	机变量 $X \sim N(0,2)$, $Y = X $,求随机变量 Y	的分布函数、密度函数、	期望和方差。
四(10分) X,Y	均服从参数为1的指	数分布,且相互独立。令 $oldsymbol{U}$	$= \max(X,Y), V = \min$	a(X,Y)
(1) 分别求 U、	V的密度函数,(2)) 计算 U 、 V 的相关系数。		
五.(10 分)泊松	分布总体 $X \sim P(\lambda)$, X_1, \cdots, X_n 为来自该总体	的样本,	

(1) 用最大似然估计法给出总体期望的估计量,(2)试给出参数 λ^2 的无偏估计量。

六.(10 分)设总体 $X \sim Ge(p)$, X_1, X_2, \cdots, X_n 为来自该总体的简单随机样本。定义 $Y = \begin{cases} 1, & X_1 = 1 \\ 0, & X_1 > 1 \end{cases}$

- (1) 计算 $E(Y|X_1+X_2+\cdots+X_n)$
- (2) 判断Y与 $E(Y|X_1+X_2+\cdots+X_n)$ 是否为参数p的无偏估计量?若不是,可否进行无偏校正。

七.(15 分) X_1, X_2, \cdots, X_n 是来自总体 $X \sim N\left(\mu_1, \sigma^2\right)$ 的样本, Y_1, Y_2, \cdots, Y_m 是来自总体 $Y \sim N\left(\mu_2, c \cdot \sigma^2\right)$ 的样本, $n = 4, m = 6, c = 4.5, \overline{x} = 52, \overline{y} = 47, s_y^2 = 30, s_y^2 = 99$ 。

- (1) 给出参数 $\mu_1 \mu_2$ 的矩估计量,并计算该估计量的期望和方差;
- (2) 若已知 $\sigma^2 = 25$, 给出参数 $\mu_1 \mu_2$, 的 95%置信水平的双侧置信区间;
- (3) 若 σ^2 未知,给出参数 $\mu_{\!\scriptscriptstyle 1}$ $-\mu_{\!\scriptscriptstyle 2}$ 的90%置信水平的单侧置信区间的置信下界。

八.(5 分)给定n个不同的数 x_1, \dots, x_n ,设 y_1, \dots, y_n 是 x_1, \dots, x_n 按照升序排列后的结果,即 $y_1 < y_2 < \dots < y_n$ 。用随机化快速排序算法对 x_1, \dots, x_n 进行排序,每一次都是从所有可能的元素中独立且均匀地选取基准元素,对 $1 \le i < j \le n$,定义随机变量 X_{ij} ,如果在算法过程中 y_i 与 y_j 进行了比较 $X_{ij} = 1$,否则 $X_{ij} = 0$ 。求 $E\left(X_{ij}\right)$ 。

备注 1. 本考卷的样本均为简单随机样本,样本均值
$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$
,样本方差为 $S^2 = \frac{1}{n-1} \sum_{k=1}^n \left(X_k - \overline{X} \right)^2$

备注 2. 正态总体的样本均值和样本方差相互独立,且
$$\frac{\left(n-1\right)S^2}{\sigma^2}\sim \chi^2\left(n-1\right)$$
,其中 n 为样本容量

备注 3. 泊松分布随机变量
$$X \sim P(\lambda)$$
 的分布列 $P(X=k) = e^{-\lambda} \lambda^k / k!$

备注 4. 指数分布随机变量
$$X \sim Exp(\lambda)$$
, $F_X(x) = (1 - e^{-\lambda x})I_{x>0}$, $E(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$

备注 5. 第三题解答中标准正态随机变量的分布函数和密度函数分别可用 $\Phi(x)$ 和 $\rho(x)$ 表示

备注 6. 分布函数和分位数 (题目解答要严格按照下面给出数值进行计算)

$$\Phi(1.28) = 0.9$$
, $\Phi(1.44) = 0.925$, $\Phi(1.65) = 0.95$, $\Phi(1.96) = 0.975$,

$$\Phi(1) = 0.84$$
, $\Phi(1.25) = 0.89$, $\Phi(1.5) = 0.93$, $\Phi(1.75) = 0.96$, $\Phi(2) = 0.98$, $\Phi(3) = 0.999$

$$P(t(1) > 3.10) = 0.1, P(t(2) > 1.89) = 0.1, P(t(8) > 1.40) = 0.1, P(t(9) > 1.38) = 0.1, P(t(10) > 1.37) = 0.1$$

$$P(t(1) > 6.32) = 0.05, P(t(2) > 2.92) = 0.05, P(t(8) > 1.86) = 0.05, P(t(9) > 1.83) = 0.05, P(t(10) > 1.81) = 0.05$$

$$P(F(1,1) > 40) = 0.1, P(F(1,2) > 8.5) = 0.1, P(F(1,5) > 4.1) = 0.1, P(F(2,1) > 50) = 0.1, P(F(5,1) > 57) = 0.1$$

$$P(F(1,1) > 161) = 0.05, P(F(1,2) > 19) = 0.05, P(F(1,5) > 6.6) = 0.05, P(F(2,1) > 200) = 0.05, P(F(5,1) > 230) = 0.05$$