Clustering Problem

Find similar countries based on different attributes like Income per capita, phones per

→ 1000, GDP, etc. and create clusters for the same. Plot the cluster on the world map using the ISO codes provided, depicting the clusters created.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

df= pd.read_csv("/content/drive/MyDrive/MSBA/Semester 1/IDS-572-DataMiningProfNegar/project winter break/Country_Facts.csv")
df.head()

	Country	Region	Population	Area (sq. mi.)	Pop. Density (per sq. mi.)	Coastline (coast/area ratio)	Net migration	Infant mortality (per 1000 births)	GDP (\$ per capita)	Literacy (%)	Phones (per 1000)	Arabl
0	Afghanistan	ASIA (EX. NEAR EAST)	31056997	647500	48.0	0.00	23.06	163.07	700.0	36.0	3.2	12.1;
1	Albania	EASTERN EUROPE	3581655	28748	124.6	1.26	-4.93	21.52	4500.0	86.5	71.2	21.0!
2	Algeria	NORTHERN AFRICA	32930091	2381740	13.8	0.04	-0.39	31.00	6000.0	70.0	78.1	3.2
3	American Samoa	OCEANIA	57794	199	290.4	58.29	-20.71	9.27	8000.0	97.0	259.5	10.00
4	Andorra	WESTERN EUROPE	71201	468	152.1	0.00	6.60	4.05	19000.0	100.0	497.2	2.2:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 227 entries, 0 to 226
Data columns (total 20 columns):

Data	COTUMNS (COCAL 20 COTUMNS):		
#	Column	Non-Null Count	Dtype
0	Country	227 non-null	object
1	Region	227 non-null	object
2	Population	227 non-null	int64
3	Area (sq. mi.)	227 non-null	int64

```
227 non-null
     4 Pop. Density (per sq. mi.)
                                                            float64
     5 Coastline (coast/area ratio)
                                            227 non-null
                                                            float64
     6 Net migration
                                            224 non-null
                                                            float64
     7 Infant mortality (per 1000 births) 224 non-null
                                                           float64
     8 GDP ($ per capita)
                                            226 non-null
                                                           float64
     9 Literacy (%)
                                            209 non-null
                                                            float64
     10 Phones (per 1000)
                                            223 non-null
                                                            float64
     11 Arable (%)
                                            225 non-null
                                                            float64
                                            225 non-null
                                                            float64
     12 Crops (%)
     13 Other (%)
                                            225 non-null
                                                           float64
     14 Climate
                                            205 non-null
                                                           float64
     15 Birthrate
                                            224 non-null
                                                           float64
     16 Deathrate
                                            223 non-null
                                                           float64
     17 Agriculture
                                            212 non-null
                                                           float64
     18 Industry
                                                            float64
                                            211 non-null
     19 Service
                                            212 non-null
                                                            float64
     dtypes: float64(16), int64(2), object(2)
     memory usage: 35.6+ KB
df.columns
    Index(['Country', 'Region', 'Population', 'Area (sq. mi.)',
            'Pop. Density (per sq. mi.)', 'Coastline (coast/area ratio)',
            'Net migration', 'Infant mortality (per 1000 births)',
            'GDP ($ per capita)', 'Literacy (%)', 'Phones (per 1000)', 'Arable (%)',
            'Crops (%)', 'Other (%)', 'Climate', 'Birthrate', 'Deathrate',
            'Agriculture', 'Industry', 'Service'],
          dtype='object')
Double-click (or enter) to edit
df.shape
     (227, 20)
len(df['Country'].unique())
     227
df.describe().transpose()
```

	count	mean	std	min	25%	50%	75%	max	1
Population	227.0	2.874028e+07	1.178913e+08	7026.000	437624.00000	4786994.000	1.749777e+07	1.313974e+09	
Area (sq. mi.)	227.0	5.982270e+05	1.790282e+06	2.000	4647.50000	86600.000	4.418110e+05	1.707520e+07	
Pop. Density (per sq. mi.)	227.0	3.790471e+02	1.660186e+03	0.000	29.15000	78.800	1.901500e+02	1.627150e+04	
Coastline (coast/area ratio)	227.0	2.116533e+01	7.228686e+01	0.000	0.10000	0.730	1.034500e+01	8.706600e+02	
Net migration	224.0	3.812500e-02	4.889269e+00	-20.990	-0.92750	0.000	9.975000e-01	2.306000e+01	
Infant mortality (per 1000 births)	224.0	3.550696e+01	3.538990e+01	2.290	8.15000	21.000	5.570500e+01	1.911900e+02	
GDP (\$ per capita)	226.0	9.689823e+03	1.004914e+04	500.000	1900.00000	5550.000	1.570000e+04	5.510000e+04	
Literacy (%)	209.0	8.283828e+01	1.972217e+01	17.600	70.60000	92.500	9.800000e+01	1.000000e+02	
Phones (per 1000)	223.0	2.360614e+02	2.279918e+02	0.200	37.80000	176.200	3.896500e+02	1.035600e+03	

sns.displot(data=df,x= 'Population')

<seaborn.axisgrid.FacetGrid at 0x7fc41d7d2d30>

Population is data is very skewed and not normally distributed

df['Region'].value_counts()

SUB-SAHARAN AFRICA	51
LATIN AMER. & CARIB	45
ASIA (EX. NEAR EAST)	28
WESTERN EUROPE	28
OCEANIA	21
NEAR EAST	16
EASTERN EUROPE	12
C.W. OF IND. STATES	12
NORTHERN AFRICA	6
NORTHERN AMERICA	5
BALTICS	3
Name: Region, dtype: int64	

```
plt.figure(figsize=(10,6),dpi=150)
sns.barplot(data=df,y='GDP ($ per capita)',x='Region',estimator=np.mean)
plt.xticks(rotation=90)
```

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), <a list of 11 Text major ticklabel objects>)


```
sns.scatterplot(data=df,x= 'GDP ($ per capita)',y= 'Phones (per 1000)',hue='Region')
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
```


df[(df['GDP (\$ per capita)'] > 30000) & (df['Phones (per 1000)'] < 600)]['Country']</pre>

121 Luxembourg 154 Norway

Name: Country, dtype: object

These 2 countries have high GDP but less Number of Phones. An interesting finding

```
sns.scatterplot(data=df,x='GDP ($ per capita)',y='Literacy (%)',hue='Region')
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
```


df = df.drop('Other (%)',axis=1)

df.isnull().sum()

Country 0
Region 0
Population 0

Area (sq. mi.)	0
Pop. Density (per sq. mi.)	0
Coastline (coast/area ratio)	0
Net migration	3
Infant mortality (per 1000 births)	3
GDP (\$ per capita)	1
Literacy (%)	18
Phones (per 1000)	4
Arable (%)	2
Crops (%)	2
Climate	22
Birthrate	3
Deathrate	4
Agriculture	15
Industry	16
Service	15
dtype: int64	

sns.heatmap(df.corr(), cmap='Paired')

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 227 entries, 0 to 226
Data columns (total 19 columns):

νατα	columns (total 19 columns):		
#	Column	Non-Null Count	Dtype
0	Country	227 non-null	object
1	Region	227 non-null	object
2	Population	227 non-null	int64
3	Area (sq. mi.)	227 non-null	int64
4	Pop. Density (per sq. mi.)	227 non-null	float64
5	Coastline (coast/area ratio)	227 non-null	float64
6	Net migration	224 non-null	float64
7	<pre>Infant mortality (per 1000 births)</pre>	224 non-null	float64
8	GDP (\$ per capita)	226 non-null	float64

9	Literacy (%)	209 non-null	float64
10	Phones (per 1000)	223 non-null	float64
11	Arable (%)	225 non-null	float64
12	Crops (%)	225 non-null	float64
13	Climate	205 non-null	float64
14	Birthrate	224 non-null	float64
15	Deathrate	223 non-null	float64
16	Agriculture	212 non-null	float64
17	Industry	211 non-null	float64
18	Service	212 non-null	float64

dtypes: float64(15), int64(2), object(2)

memory usage: 33.8+ KB

df[df['Agriculture'].isnull()][['Country','GDP (\$ per capita)']]

	Country	GDP	(\$	per	capita)
3	American Samoa				8000.0
4	Andorra				19000.0
78	Gibraltar				17500.0
80	Greenland				20000.0
83	Guam				21000.0
134	Mayotte				2600.0
140	Montserrat				3400.0
144	Nauru				5000.0
153	N. Mariana Islands				12500.0
171	Saint Helena				2500.0
174	St Pierre & Miquelon				6900.0
177	San Marino				34600.0
208	Turks & Caicos Is				9600.0
221	Wallis and Futuna				3700.0
223	Western Sahara				NaN

df[df['Industry'].isnull()][['Country','GDP (\$ per capita)']]

```
Country GDP ($ per capita)
                                          0.0008
      3
             American Samoa
       4
                     Andorra
                                         19000.0
                                         17500.0
      78
                    Gibraltar
                                         20000.0
      80
                   Greenland
      83
                      Guam
                                         21000.0
      134
                     Mayotte
                                          2600.0
                                         27000.0
      138
                     Monaco
      140
                   Montserrat
                                          3400.0
df[df['Agriculture'].isnull()] = df[df['Agriculture'].isnull()].fillna(0)
            N. Mariana Islands
                                         12500.0
df.isnull().sum()
     Country
     Region
     Population
     Area (sq. mi.)
     Pop. Density (per sq. mi.)
     Coastline (coast/area ratio)
     Net migration
                                            1
     Infant mortality (per 1000 births)
     GDP ($ per capita)
     Literacy (%)
                                           13
                                            2
     Phones (per 1000)
     Arable (%)
                                            1
     Crops (%)
                                            1
     Climate
                                           18
     Birthrate
                                            1
                                            2
     Deathrate
                                            0
     Agriculture
     Industry
                                            1
     Service
                                            1
     dtype: int64
df['Climate'] = df['Climate'].fillna(df.groupby('Region')['Climate'].transform('mean'))
df.isnull().sum()
     Country
                                            0
                                            0
     Region
     Population
                                            0
     Area (sq. mi.)
     Pop. Density (per sq. mi.)
     Coastline (coast/area ratio)
     Net migration
     Infant mortality (per 1000 births)
     GDP ($ per capita)
     Literacy (%)
                                           13
     Phones (per 1000)
                                            2
     Arable (%)
                                            1
     Crops (%)
                                            1
     Climate
                                            0
```

```
Birthrate
                                            1
    Deathrate
                                            2
                                            0
     Agriculture
     Industry
                                            1
     Service
                                            1
     dtype: int64
df['Literacy (%)'] = df['Literacy (%)'].fillna(df.groupby('Region')['Literacy (%)'].transform('mean'))
df.isnull().sum()
     Country
     Region
                                           0
     Population
                                           0
     Area (sq. mi.)
                                           0
     Pop. Density (per sq. mi.)
                                           0
     Coastline (coast/area ratio)
                                           0
     Net migration
                                           1
     Infant mortality (per 1000 births)
     GDP ($ per capita)
     Literacy (%)
                                           0
     Phones (per 1000)
                                           2
     Arable (%)
     Crops (%)
                                           1
     Climate
                                           0
     Birthrate
                                           1
     Deathrate
                                           2
     Agriculture
                                           0
                                           1
     Industry
     Service
                                           1
     dtype: int64
df= df.dropna()
df.isnull().sum()
     Country
                                           0
     Region
                                           0
     Population
                                           0
                                           0
     Area (sq. mi.)
                                           0
     Pop. Density (per sq. mi.)
     Coastline (coast/area ratio)
     Net migration
                                           0
    Infant mortality (per 1000 births)
                                           0
     GDP ($ per capita)
     Literacy (%)
                                           0
     Phones (per 1000)
                                           0
                                           0
     Arable (%)
     Crops (%)
                                           0
     Climate
     Birthrate
                                           0
    Deathrate
                                           0
     Agriculture
                                           0
     Industry
                                           0
     Service
     dtype: int64
```

All missing values handled!

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 221 entries, 0 to 226
Data columns (total 19 columns):
                                      Non-Null Count Dtype
# Column
--- -----
                                      -----
0 Country
                                      221 non-null
                                                     object
1 Region
                                      221 non-null
                                                     object
2 Population
                                      221 non-null
                                                     int64
    Area (sq. mi.)
                                      221 non-null
                                                     int64
    Pop. Density (per sq. mi.)
                                      221 non-null
                                                     float64
    Coastline (coast/area ratio)
                                      221 non-null
                                                     float64
6
   Net migration
                                      221 non-null
                                                     float64
    Infant mortality (per 1000 births) 221 non-null
                                                     float64
   GDP ($ per capita)
                                      221 non-null
                                                     float64
9 Literacy (%)
                                      221 non-null
                                                     float64
10 Phones (per 1000)
                                      221 non-null
                                                     float64
                                      221 non-null
11 Arable (%)
                                                     float64
12 Crops (%)
                                      221 non-null
                                                     float64
13 Climate
                                      221 non-null
                                                     float64
14 Birthrate
                                      221 non-null
                                                     float64
15 Deathrate
                                      221 non-null
                                                     float64
                                      221 non-null
16 Agriculture
                                                     float64
17 Industry
                                      221 non-null
                                                     float64
18 Service
                                      221 non-null
                                                     float64
dtypes: float64(15), int64(2), object(2)
memory usage: 34.5+ KB
```

X = df.drop('Country',axis=1)

X = pd.get_dummies(X)

X.head()

	Population	Area (sq. mi.)	Pop. Density (per sq. mi.)	Coastline (coast/area ratio)	Net migration	Infant mortality (per 1000 births)	GDP (\$ per capita)	Literacy (%)	Phones (per 1000)	Arable (%)	•••	Region_BALTICS	Region_C.W. OF IND. STATES	Region_EASTERN EUROPE	Region_LATIN AMER. & CARIB	Region_NEAR EAST	Regi
0	31056997	647500	48.0	0.00	23.06	163.07	700.0	36.0	3.2	12.13		0	0	0	0	0	
1	3581655	28748	124.6	1.26	-4.93	21.52	4500.0	86.5	71.2	21.09		0	0	1	0	0	
2	32930091	2381740	13.8	0.04	-0.39	31.00	6000.0	70.0	78.1	3.22		0	0	0	0	0	
3	57794	199	290.4	58.29	-20.71	9.27	8000.0	97.0	259.5	10.00		0	0	0	0	0	
4	71201	468	152.1	0.00	6.60	4.05	19000.0	100.0	497.2	2.22		0	0	0	0	0	

5 rows × 28 columns

Scaling the features of X dataframe

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_X = scaler.fit_transform(X)
scaled_X
     array([[2.36307140e-02, 3.79200985e-02, 2.96607551e-03, ...,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
            [2.72048678e-03, 1.68320206e-03, 7.69943768e-03, ...,
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
            [2.50562403e-02, 1.39484983e-01, 8.52746710e-04, ...,
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
            [1.63239770e-02, 3.09198848e-02, 2.50880554e-03, ...,
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
            [8.74830703e-03, 4.40760465e-02, 9.45436569e-04, ...,
            0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
            [9.30752592e-03, 2.28737092e-02, 1.93412841e-03, ...,
             0.00000000e+00, 1.00000000e+00, 0.00000000e+00]])
from sklearn.cluster import KMeans
inertias = []
for i in range(2,30):
    kmeans = KMeans(n_clusters=i)
    kmeans.fit(scaled X)
    inertias.append(kmeans.inertia_)
plt.plot(range(2,30), inertias, marker='o')
plt.title('Elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('Sum of Squared Distances')
plt.show()
```

```
kmeans = KMeans(n clusters=15)
kmeans.fit(scaled X)
     KMeans(n_clusters=15)
     ĕ l ₹
kmeans.labels_
    array([13, 10, 9, 2, 4, 1, 0, 0, 12, 3, 0, 2, 4, 3, 0, 5, 13,
            0, 3, 4, 12, 11, 8, 13, 12, 10, 6, 12, 0, 13, 10, 1, 13, 11,
           13, 11, 8, 6, 0, 1, 1, 12, 13, 12, 11, 1, 6, 12, 11, 10, 12,
           10, 4, 6, 12, 12, 12, 9, 12, 6, 6, 14, 1, 4, 2, 4, 4, 0,
            2, 6, 11, 5, 3, 4, 11, 4, 4, 8, 12, 0, 2, 12, 1, 1, 12,
           12, 12, 7, 10, 4, 13, 13, 13, 5, 4, 4, 5, 4, 12, 7, 4, 5,
            3, 6, 2, 13, 7, 5, 3, 13, 14, 5, 6, 1, 9, 4, 14, 4, 7,
           10, 11, 11, 13, 13, 1, 4, 2, 0, 1, 11, 1, 12, 2, 3, 13, 12,
            9, 1, 6, 2, 13, 4, 0, 2, 2, 12, 1, 11, 2, 4, 5, 13, 2,
           12, 2, 12, 12, 13, 10, 4, 12, 5, 6, 10, 3, 11, 6, 0, 12, 8,
           12, 2, 4, 11, 5, 11, 6, 1, 7, 10, 10, 2, 1, 6, 4, 13, 11,
           12, 6, 4, 4, 5, 7, 3, 1, 13, 11, 2, 12, 9, 5, 3, 12, 2,
           11, 3, 5, 4, 8, 12, 3, 2, 12, 13, 0, 2, 5, 9, 5, 6, 6],
          dtype=int32)
iso_codes = pd.read_csv('/content/drive/MyDrive/MSBA/Semester 1/IDS-572-DataMiningProfNegar/project winter break/country_iso_codes.csv')
iso_codes.head()
                                      Country
                                                                            ISO Code
     0
                                                                                AFG
                                    Afghanistan
     1 Akrotiri and Dhekelia - See United Kingdom, The Akrotiri and Dhekelia - See United Kingdom, The
     2
                                   Åland Islands
                                                                                ALA
     3
                                       Albania
                                                                                ALB
     4
                                        Algeria
                                                                                DZA
iso_mapping = iso_codes.set_index('Country')
iso mapping.head()
                                                                            ISO Code
                                      Country
                                                                                AFG
                    Afghanistan
     Akrotiri and Dhekelia - See United Kingdom, The Akrotiri and Dhekelia - See United Kingdom, The
                    Åland Islands
                                                                                ALA
                      Albania
                                                                                ALB
                      Algeria
                                                                                DZA
```

iso_mapping_dict = iso_mapping['ISO Code'].to_dict()

```
iso_mapping_dict
      'Switzerland': 'CHE',
      'Syrian Arab Republic (the)\u200a[x]': 'SYR',
      'Taiwan (Province of China)\u200a[y]': 'TWN',
      'Tajikistan': 'TJK',
      'Tanzania, the United Republic of': 'TZA',
      'Thailand': 'THA',
      'Timor-Leste\u200a[aa]': 'TLS',
      'Togo': 'TGO',
      'Tokelau': 'TKL',
      'Tonga': 'TON',
      'Trinidad and Tobago': 'TTO',
      'Tunisia': 'TUN',
      'Turkey': 'TUR',
      'Turkmenistan': 'TKM',
      'Turks and Caicos Islands (the)': 'TCA',
      'Tuvalu': 'TUV',
      'Uganda': 'UGA',
      'Ukraine': 'UKR',
      'United Arab Emirates (the)': 'ARE',
      'United Kingdom of Great Britain and Northern Ireland (the)': 'GBR',
      'United States Minor Outlying Islands (the)\u200a[ac]': 'UMI',
      'United States of America (the)': 'USA',
      'United States Virgin Islands - See Virgin Islands (U.S.).': 'United States Virgin Islands - See Virgin Islands (U.S.).',
      'Uruguay': 'URY',
      'Uzbekistan': 'UZB',
      'Vanuatu': 'VUT',
      'Vatican City - See Holy See, The.': 'Vatican City - See Holy See, The.',
      'Venezuela (Bolivarian Republic of)': 'VEN',
      'Viet Nam\u200a[ae]': 'VNM',
      'Virgin Islands (British)\u200a[af]': 'VGB',
      'Virgin Islands (U.S.)\u200a[ag]': 'VIR',
      'Wales - See United Kingdom, The.': 'Wales - See United Kingdom, The.',
      'Wallis and Futuna': 'WLF',
      'Western Sahara\u200a[ah]': 'ESH',
      'Yemen': 'YEM',
      'Zambia': 'ZMB',
      'Zimbabwe': 'ZWE',
      'United States': 'USA',
      'United Kingdom': 'GBR',
      'Venezuela': 'VEN',
      'Australia': 'AUS',
      'Iran': 'IRN',
      'France': 'FRA',
      'Russia': 'RUS',
      'Korea, North': 'PRK',
      'Korea, South': 'KOR',
      'Myanmar': 'MMR',
      'Burma': 'MMR',
      'Vietnam': 'VNM',
      'Laos': 'LAO',
      'Bolivia': 'BOL',
      'Niger': 'NER',
      'Sudan': 'SDN',
      'Congo, Dem. Rep.': 'COD',
      'Congo, Repub. of the': 'COG',
      'Tanzania': 'TZA',
      'Central African Rep.': 'CAF',
      "Cote d'Ivoire": 'CIV'}
```

https://colab.research.google.com/drive/1WuDUpgb36rLDQBc1OoS-1UasSk6 rncS?authuser=1#scrollTo=hiOebJQc39Ko&printMode=true

df['ISO Code'] = df['Country'].map(iso_mapping_dict)

df[['Country','ISO Code']].head()

	Country	ISO Code
0	Afghanistan	AFG
1	Albania	ALB
2	Algeria	DZA
3	American Samoa	ASM
4	Andorra	AND

df['Cluster'] = kmeans.labels_

import plotly.express as px

fig.update_layout(title_text="Clustering Countries based on K-Means Algorithm")
fig.show()

Clustering Countries based on K-Means Algorithm

1s completed at 9:28 PM

• ×