1. A MIPS-like processor working at 2GHZ is available. This processor runs a program P with the following distribution of instructions.

Tipo	%	CPI
load	25	1.2
store	15	1
add	40	1.4
mult	10	1.4
branch	10	1.2

An improvement in the manufacturing process leads to an increase in the integration scales, which enables the addition of a second execution stage just after the memory access stage. This modification enriches the instruction set with arithmetic instructions having one operand in memory (load-add) and with combined arithmetic instructions (add-mult) executing two operation within a single instruction. However, adding such instructions requires a new instruction format making more complex the decoding process. Since the decoding stage is already the slowest one, this modification slows down in 5% the clock period.

Once analyzing the code generated by the compiler, it is determined that new arithmetic instructions <code>load-add</code> affect to 25% of <code>load</code> instructions. These percentage of <code>load</code> instructions and the <code>add</code> instructions following them are replaced by the new <code>load-add</code> instructions. On the other hand, <code>add-mult</code> affect to 12.5% of <code>add</code> instructions, which are followed by a <code>mult</code> instructions. In this case the sequence of two instructions (<code>add</code> and <code>mult</code>) is replaced by the new <code>add-mult</code> instructions. Furthermore, both new arithmetic instructions, <code>load-add</code> and <code>add-mult</code>, have a CPI of 2.

- (a) Compute the execution time of program P in the original processor. Express that time attending to the number n of executed instructions.
- (b) Assuming the compiler uses the new instructions whenever possible, How many instructions would contain program P if executed in the new processor?
- (c) Compute the new distribution of instructions including instructions load-add and add-mult.
- (d) Calculate the average CPI with the modified datapath when new instructions are used.
- (e) Justify whether the modification of the datapath and the use of the new instructions is worthy from the perspective of the execution time of program P.

Solución:

(a) Compute the execution time of program P in the original processor.

$$T_{ex} = I \times CPI \times T$$

We have that I=n, $T=1/2\cdot 10^6$. The only term missing is CPI

$$CPI = 0.25 \times 1.2 + 0.15 \times 1 + 0.5 \times 1.4 + 0.1 \times 1.2$$

= $0.3 + 0.15 + 0.7 + 0.12 = 1.27$
 $T_{ex} = n \times 1.27 \times 0.5 \text{ ns} = 0.635 \cdot n \text{ ns}$

(b) How many instructions would contain program P if executed in the new processor? Number of cases where a load instruction is followed by a add instruction, so they can be replaced by the new load-add instruction:

$$I_{load-add} = n \times 0.25 \times 0.25 = n \times 0.0625$$

Number of cases where an add instructions is followed by mul instruction, so they can be replaced by the new mult-add:

$$I_{add-mul} = n \times 0.4 \times 0.125 = n \times 0.05$$

In each of the aforementioned cases the number of instructions in the program is reduced in one instruction, as a result:

$$I' = n - n \times 0.0625 - n \times 0.05 = 0.8875 \cdot n$$

(c) New distribution of instructions in the new processor

$$f_{\text{load}} = \frac{0.25 - 0.25 \times 0.25}{0.8875} = \frac{0.1875}{0.8875} = 21.13\%$$

$$f_{\text{store}} = \frac{0.15}{0.8875} = 16.90\%$$

$$f_{\text{add}} = \frac{0.4 - 0.4 \times 0.125 - 0.25 \times 0.25}{0.8875} = \frac{0.2875}{0.8875} = 32.39\%$$

$$f_{\text{mult}} = \frac{0.1 - 0.4 \times 0.125}{0.8875} = \frac{0.05}{0.8875} = 5.63\%$$

$$f_{\text{branch}} = \frac{0.1}{0.8875} = 11.27\%$$

$$f_{\text{load-add}} = \frac{0.25 \times 0.25}{0.8875} = \frac{0.0625}{0.8875} = 7.04\%$$

$$f_{\text{add-mult}} = \frac{0.4 \times 0.125}{0.8875} = \frac{0.05}{0.8875} = 5.63\%$$

(d) New CPI

$$CPI' = \frac{0.1875 \times 1.2 + 0.15 \times 1 + 0.2875 \times 1.4 + 0.05 \times 1.4 + 0.1 \times 1.2 + 0.0625 \times 2 + 0.05 \times 2}{0.8875}$$

$$CPI' = \frac{0.225 + 0.15 + 0.4025 + 0.07 + 0.12 + 0.125 + 0.1}{0.8875} = \frac{1.1925}{0.8875} = 1.34$$

(e) New execution time

$$T'_{ej} = I' \times CPI' \times T'$$

$$T' = 1.05 \times 0.5 \text{ ns} = 0.525 \text{ ns}$$

$$T'_{ej} = 0.8875 \times n \times \frac{1.1925}{0.8875} \times 0.525 \text{ ns} = 1.1925 \times 0.525 \times n \text{ ns} = 0,6261 \cdot n \text{ ns}$$

$$S = \frac{T_{ej}}{T'_{ej}} = \frac{0.635 \cdot n}{0.6261 \cdot n} = 1,0142 \rightarrow 1,42\%$$

Rúbricas:

		٥	C	
	¥	D)	D
1a	Selects the formula $t = I \times$)	Applies the formula with the cor-	
	$CPI \times T$ (20%).	tribution of instructions, the CPI	responding units (40%).	
		of each instruction, and the clock		
		period considering the clock fre-		
		quency (40%).		
1b	Combines percentages of af-	Computes the variations in the	Compute the total number of in-	
	fected instructions (33%).	number of instructions of each	structions in the new program	
		type (33%).	(33%)	
10	Combines percentages of af-	Computes the variations in the	Provides the new distribution	
	fected instructions (33%).	number of instructions of each	of instructions in the program	
		type (33%).	(33%).	
1d	Computes the CPI from a dis-			
	tribution of instructions and the			
	CPI of each instructions (100%).			
1e	Selects the formula $t = I \times$	Computes the new clock period	Applies the formula with the cor-	Justifies correctly whether the
	CPI imes T (20%).	(20%).	responding units (30%).	modification is worthy and sup-
				ports the decision by computing
				the speed up and interpreting it,
				or by comparing the resulting ex-
				ecution times (30%).