Bounded harmonic functions on groups acting on the circle

Eduardo Silva University of Münster

16th of October 2025 Postdoc colloquium

The classical Poisson integral representation formula

Correspondence between bounded harmonic functions on the unit disk $\mathbb{D} \subseteq \mathbb{C}$ and bounded measurable functions on the circle $S^1 = \partial \mathbb{D}$.

Poisson kernel $P_r(\theta) := \frac{1-r^2}{1-2r\cos(\theta)+r^2}$, for $0 \le r < 1$ and $-\pi \le \theta < \pi$.

 \longrightarrow Let $F \in L^{\infty}(S^1)$ and define $u : \mathbb{D} \to \mathbb{R}$ by

$$u(re^{i\theta}) := \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{it}) P_r(\theta - t) dt$$
, for $0 \le r < 1$ and $-\pi \le \theta < \pi$.

Then $u \in H^{\infty}(\mathbb{D})$ and its extension to S^1 coincides with F.

 \longrightarrow Any $u \in H^{\infty}(\mathbb{D})$ admits such a representation.

Group theory in the background: one can rewrite for each $z \in \mathbb{D}$

$$u(z) = \int_{S^1} F(\xi) dg_* \operatorname{Leb}(\xi),$$

where $g \in \mathrm{PSL}(2,\mathbb{R})$ satisfies g(0) = z. (actually $g \in \mathrm{PSL}(2,\mathbb{R})/\mathrm{PSO}(2)$)

Harmonic functions and the Poisson boundary

G a countable group, μ a probability measure on G.

A function $f: G \to \mathbb{R}$ is called μ -harmonic if $f(g) = \sum_{h \in G} f(gh)\mu(h)$ for all $g \in G$.

$$H^{\infty}(G,\mu) := \{f : G \to \mathbb{R} \mid f \text{ bounded and } \mu\text{-harmonic}\}$$

The Poisson boundary (B, v) of (G, μ) is a probability space endowed with a G-action such that $v = \mu * v$ (i.e., v is μ -stationary) and

$$H^{\infty}(G,\mu)\cong L^{\infty}(B,\nu).$$

(uniquely defined up to a *G*-equivariant measurable iso.; satisfies a universal property)

The circle

Source: https://www.kidsmathgamesonline.com/facts/geometry/circles.html

Theorem [Deroin-Kleptsyn-Navas '07]

Let $G \curvearrowright S^1$ by orientation-preserving homeos. with no invariant probability measure on S^1 and let $\mu \in \operatorname{Prob}(G)$ be non-degenerate. Suppose that $G \curvearrowright S^1$ is proximal. Then there is a **unique** μ -stationary probability measure on S^1 .

Groups acting on the circle

Theorem [Gilabert Vio - Kravaris - S. '25]

Let μ be a probability measure with finite entropy on a countable group G of orientation-preserving homeomorphisms of the circle acting proximally, minimally and topologically nonfreely on S^1 . Then the circle S^1 endowed with its unique μ -stationary probability measure **is not** the Poisson boundary of (G, μ) .

- This contrasts with the case of lattices in $PSL_2(\mathbb{R})$, in which case the circle **is** the Poisson boundary.
- Applies in particular when G is **Thompson's group** T and μ is finitely supported. This answers a question asked by B. Deroin and A. Navas [Proceedings of the ICM, 2018].
- Shows that a particular strategy for proving the amenability of Thompson's group F is (basically?) hopeless.