Función de Error Entropía Cruzada Binaria

Error cuadrático medio

- $E = 1/n \sum_{i=1}^{n} Ei$ $Ei = (\sigma(mx_i + b) y_i)^2$
- Funciona, pero
 - \circ E es ECM de $\sigma(mx+b)$
 - E no es convexa
- Podemos definir otro E que sea convexa
 - Entropía Cruzada
 - Función de error
 - Convexa para $\sigma(mx_i+b)$

ECM de $\sigma(mx+b)$

Entropía Cruzada Binaria

Entropía Cruzada Binaria - Fórmula vectorial

- Ei =

 o $-\log(f(x_i))$ si $y_i=1$ o $-\log(1-f(x_i))$ si $y_i=0$
- Podemos escribir Ei como
 - o Ei = $y_i [-log(f(x_i))] + (1-y_i) [-log(1-f(x_i))]$
 - Ejemplo
 - \bullet $y_i = 1$
 - $y_i^*[-log(f(x_i))] + (1-y_i)[-log(1-f(x_i))]$ = $1[-log(f(x_i))] + 0[-log(1-f(x_i))]$ = $[-log(f(x_i))]$

- y_i actua como función indicadora
 - \circ Si y_i=1, contribuye [-log(f(x_i))]
 - Si y_i=0, contribuye 0
- Idem 1-y, al revés

Entropía Cruzada

Interpretación de entropía cruzada Binaria

- Distancia entre distribuciones
 - \circ f(x) = 0.3
 - \blacksquare P(x es de clase = 1) = 0.3
 - P(x es de clase = 0) = 1 P(x es de clase = 1)= 1 - 0.3 = 0.7
 - P(x es de clase = 1) y P(x es de clase = 0) forman una distribución de probabilidad
- ECM
 - Mide distancia entre puntos
 - o Distancia euclídea al cuadrado
- Entropía Cruzada
 - Mide distancia entre distribuciones de probabilidad
 - Distancia Kullback-Leibler (o Divergencia)

Distancia entre distribuciones

- Sean p y q distribuciones sobre n valores
 - o p_i y q_i = probabilidad de tomar el valor i
 - KullbackLeibler(p,q) = $\Sigma_i^n p_i \log(q_i/p_i)$
- KullbackLeibler(B,C)
 - = KullbackLeibler((0,1), (1,0))
 - = $B_1 \log(C_1/B_1) + B_2 \log(C_2/B_2)$ = $0*\infty + 1*\infty = \infty$

 - Peor caso
- KullbackLeiber(C,A)
 - = KullbackLeiber((1,0),(0.3,0.7))
 - $= 1 \log(0.3/1) + 0 \log(0.7/0) = \log(0.3)$
- KullbackLeiber(A,C)
 - = KullbackLeiber((0.3,0.7), (1,0))
 - $= 0.3 \log(1/0.3) + 0.7 \log(0/0.7) = ...$

Distribución	1	2
A	0.3	0.7
В	0.0	1.0
С	1.0	0.0

Derivadas de Entropía Cruzada Binaria

- $\delta E(m,b)/\delta b = 1/n \Sigma_i^n y_i f(x_i)$
- $\delta E(m,b)/\delta m = 1/n \sum_{i=1}^{n} (\dot{y}_i f(\dot{x}_i)) x_i$
 - o Son iguales que las de Regresión Lineal!
 - \circ [ojo: $f(x)=\sigma(mx+b)$]
- Mismas ecuaciones de Descenso de Gradiente
 - o b = b $\alpha 1/n \sum_{i=1}^{n} (y_{i}-f(x_{i}))$ o m = m - $\alpha 1/n \sum_{i=1}^{n} (y_{i}-f(x_{i})) x_{i}$

Accuracy: Métrica de clasificación

- Valores de entropía cruzada: 0 a +∞
 - Difíciles de interpretar
- Accuracy = % de ejemplos que clasificó correctamente

Aprobado	Predicción	Acierto
0	0	1
1	1	1
1	0	0
0	1	0
0	0	1
0	0	1
1	0	0
0	1	0

Acierto

1 si Aprobado = Predicción

Accuracy

- Promedio de columna Acierto
- Ejemplo
 - \circ N = 8
 - o aciertos=4
 - Accuracy = aciertos/N

$$= 4/8 = 0.5$$

Accuracy(%) = 50%

Resumen

Error Cuadrático Medio

- No es convexo
 - Respecto de σ(mx+b)

Entropía Cruzada Binaria

- Es convexa
- Derivadas simples
 - E iguales a Regresión Lineal + ECM
- Difícil de interpretar
 - Accuracy: métrica de clasificación
- 2 o m variables de entrada?
 - No lo vimos
 - Generalización similar a la de Regresión Lineal
 - Mismos resultados

Regresión Logística - Notebooks

- Abrir el archivo Regresion Logistica Modelo.ipynb
 - Modificar los parámetros, observar cómo cambia la función de predicción y el error.
- Abrir el archivo Regresion Logística Aprendizaje.ipynb
 - Experimentar con los valores iniciales de los parámetros, así como los hiperparámetros α y el número de iteraciones
- Idem versiones 2D de los cuadernos