Chapter 5: Mining Frequent Patterns, Association and Correlations

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

Contents

- Basic concepts and a road map
- Efficient and scalable frequent pattern (itemset) mining methods
- Mining association rules
- From association mining to correlation analysis
- Constraint-based frequent pattern and association mining
- Summary

Frequent Pattern Mining

- □ Frequent pattern: a pattern (a set of co-purchased items, subsequences, substructures, etc.) that occurs frequently in a data set sequential data. I graph data.
- First proposed in 1993 in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent patterns in data
 - □ What products were often purchased together? (this will be our main example) Beer and diapers item set Jata
 - What are the subsequent purchases after buying a digital camera?
 - What kinds of DNA are sensitive to this new drug?

Gequential Lata

Graph data

Applications

Basket data analysis, DNA sequence analysis

Basic Concepts

- □ Itemset $X = \{x_1, ..., x_k\}$ \rightarrow $\{x_1, ..., x_k\}$ \Rightarrow $\{x_1, ..., x_k\}$ $\{x_1, ..., x_k\}$
 - Frequent pattern is defined on an itemset
- **□** Association rules $X \rightarrow Y$
 - It is defined on two itemsets X and Y, where X U Y must be a frequent pattern. Association rules can be

 $X = \{A, D\} : 3$

Transaction -id	Items bought
nt pattern	(A, B, D)
20	(A, C, D)
30	A, D E
40	B, E, F
50	B, C, D, E, F

- □ Support and Confidence: Originated from frequent pattern

 □ Support, s, is probability (or, frequency) that a transaction contains X.

 □ Support and Confidence:

 □ Support, s, is probability (or, frequency) that a transaction contains X.
 - Minimum support: a threshold that decides whether X is a frequent pattern or not, based on its support
 - Confidence, c, conditional probability that a transaction having X also contains Y
 - **Minimum confidence:** it is also a threshold $\chi = \{A, D\}$ $Y = \{B\}$

Let
$$sup_{min} = 50\%$$
, $conf_{min} = 50\%$, then:

Size Q: Find all association rules. A:

FAR EBB KY EDR (E) EXT SIZEZ) EABREACT. A > D (60%) 400%) frequent of 2 Association

 $(AD) \stackrel{?}{=} D \rightarrow A (60\%, 275\%)$

rules of-y conft = association rules 32 pt z

Closed Patterns and Max-Patterns => Can Ignine huge amount of useless pattern and only ficus on the most meaningful, important patterns

- A long pattern contains too many number of sub-patterns, e.g.,
- [a₁, ..., a₁₀₀] contains **2¹⁰⁰ 1** sub-patterns!

 omi frequent pattern of subjects & frequent pattern

 Solution: Mine closed patterns and max-patterns instead, which can be representatives of those sub-patterns
- An itemset X is closed if X is frequent and there exists no superpattern Y \(\to X\), with the same support as X \(\times \) is the superset
- □ An itemset X is a max-pattern if X is frequent and there exists no SUPmin = 7 -> X.Y,Z: frequent pattern **frequent** super-pattern Y ⊃ X 2: Max pattern
- □ Closed pattern is a lossless compression of freq. patterns

 Reducing the # of redundant patterns and intermediate patterns. □ Reducing the # of redundant patterns and rules patterns

Support (frequency)

$$X = \{a, b, c, d\} : 10$$

 $Y = \{a, b, c, d\} : 10$ (times - Integer)

Y To superset Y is closed puttern

Z= {a,b, c.d. e 7:8 Z is superset of Y But Support 7/22 > Closed pattern 21-73-114

=> which one is more important? Y! Becuz Y is including X, so Y is more informative ZE YE

Closed Patterns and Max-Patterns

- transaction (**Exercise.** DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$ including only two transactions and 100 items
 - □ Let Min_sup = 1.)

 The teger the frequency wether

 The probability of the probability

Questions:

- How many frequent patterns are there? all the sigle items is frequent

 2100-1

 So, all possible combinations of items are

 frequent patterns? (write each one's support as well)

- - <a₁, ..., a₁₀₀>: 1
 - \bullet < $a_1, ..., a_{50}$ >: 2
- □ What is the set of max-pattern? (write each one's support as well)
 - <a₁, ..., a₁₀₀>: 1
- Superset

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper} also frequent.
 - I.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}

 If \$a,b,C\$ is not frequent, there's no way that \$a,b,C,d3 is frequent
- Scalable mining methods: Three major approaches
 - □ **Apriori** (Agrawal & Srikant@VLDB′ 94)
 - □ Freq. pattern growth (FP-growth, @SIGMOD′ 00)
 - Vertical data format approach (Charm, @SDM' 02)

Apriori: A Candidate Generation-and-Test Approach

□**Apriori pruning principle**: If there is any itemset which is infrequent, its superset should not be generated/tested!

■Method:

- Initially, scan DB once to get frequent 1-itemset
- Repeat with index [k]: belf-joining [x
 puning (before candidate generation)

 Generate candidate itemsets of length (k+1) from frequent
 - itemsets of length k
 - **Test** the candidates against DB
 - **Terminate** when no frequent or candidate set can be generated > Pruning after candidate generation
 - Supmin 121 2012 2117

The Apriori Algorithm—An Example

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 $Sup_{min} = 2$ C_{1}

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

15	+		_
$ L_2 $	Itemset	sup	
	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
	{C, E}	2	
· .	EABICZ	₹B,C,	Ę

ndidate)	
Ite	mset	sup
	B}	1
{ <i>P</i>	C}	2
({A	(, E}	1
{E	3, C}	2
{E	3, E}	3
{(C, E}	2

2nd scan

sup

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 3^{rd} scan L_3 [B, C, E]

LILZL3 -> OU+PU+

The Apriori Algorithm: Pseudo-code

Pseudo-code:

```
C_k: Candidate itemset of size k
     L_k: frequent itemset of size k
     L_1 = \{ frequent items \};  terminates when there's no additional candidate generation step k+1
     for (k = 1; L_k! = \emptyset; k++) do begin
         C_{k+1} = candidates generated from L_k
for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t
L_{k+1} = \text{candidates in } C_{k+1} \text{ with min\_support}
         end
     return Uk Lk LIUL2UL3 ... ULK : Result of frequent pattern mining
```

Important Details of Apriori

- □ How to generate candidates, from L_k to C_{k+1} ?
 - \square Step 1: self-joining L_k
 - □ Step 2: pruning: Before condidate generation LK b_

 → infrequent item set Folkshotzally

- Example of candidate generation via self-joining and pruning
 - $\square L_3 = \{abc, abd, acd, ace, bcd\}$
 - □ Self-joining: L_3*L_3
 - abcd can be a candidate from abc, abd, bcd, all of which are frequent
 - Pruning:
 - **acde** cannot be included because **ade** is not in L_3 , i.e., not frequent!
 - $\Box C_{\Delta} = \{abcd\}$

Challenges of Frequent Pattern Mining

Challenges

- Multiple scans of a transaction database (about k times)
- Huge number of candidates
- Tedious workload of support counting for candidates

General ideas of improving efficiency of frequent pattern mining

- Reduce the number of transaction database scans
- Reduce the number of candidates
- Facilitate support counting of candidates

Thank You

