Homework #1

Jonathan McFadden

TCSS - 580 : Winter 2018 Information Theory

Problem 2.3): Let \mathbb{P}^n be the set of all *n*-dimensional probability vectors, with elements $\vec{p} \in \mathbb{P}^n$ defined as $\vec{p} = (p_1, p_2, \dots, p_i, \dots, p_n)$ for $i \in \mathbb{Z}^+ \ni i \le n$. By the definition of a probability space, we must have

$$\vec{p} \cdot \vec{1} = \sum_{i=1}^{n} \{p_i\} = 1 , \quad \forall \vec{p} \in \mathbb{P}^n,$$
 (2.3-1)

where vector $\vec{1}$ is defined as $\vec{1} = (q_1, q_2, \dots, q_k, \dots, q_n) \in \mathbb{Z}^n$ with $q_k = 1, \forall k \in [1, n]$ (where the interval [1, n] is defined such that $[1, n] \subseteq \mathbb{Z}^+$). Furthermore, the definition of a probability space also requires that, for any $\vec{p} \in \mathbb{P}^n$, the elements of \vec{p} (the $p_i \in \vec{p}$ such that $i \in \mathbb{Z}^+ \ni i \leq n$) satisfy the condition

$$p_i \ge 0 \tag{2.3-2}$$

for all $i \in \mathbb{Z}^+ \ni i \leq n$.

The expression in 2.3-1 guarantees that the p_i of any $\vec{p} \in \mathbb{P}^n$ satisfy the bound $0 \le p_i \le 1$ where $i \in \mathbb{Z}^+ \ni i \le n$. Therefore, the relation

$$p_i \log_2 |p_i| \ge 0 \tag{2.3-3}$$

holds for all p_i of any $\vec{p} \in \mathbb{P}^n$. Moreover, for the cases where $p_i = 0$ or $p_i = 1$, it is clear that the expression in 2.3-3 reduces to equality. Specifically, the realation $p_i \log_2 [p_i]$ becomes

$$p_i \log_2 [p_i] = 0 (2.3-4)$$

for the case where $p_i = 0$ or $p_i = 1$. Moreover, the relation in 2.3-4 also represents the **smallest** possible value/result for the expression $p_i \log_2 [p_i]$. That is to say, that when $p_i = 0$ or $p_i = 1$, then $p_i \log_2 [p_i]$ is at a minimum.

The result in 2.3-1, makes it is clear that only <u>ONE</u> p_i in each $\vec{p} \in \mathbb{P}^n$ may have the value $p_i = 1$; therefore the probability vectors $\vec{p} \in \mathbb{P}^n$ which result in a minimum value for $p_i \log_2[p_i]$ all have exactly one non-zero element

with the non-zero element having a value of one. This implies that there are only n such probability vectors, \vec{p}^* within any \mathbb{P}^n . Furthermore, the value of $H(X) = \sum_{i=1}^n \{p_i \log_2 [p_i]\}$ for any such \vec{p}^* is also zero.

Problem 2.4 a): Recall the chain-rule for conditional entropies of X given Y,

$$H(X | Y) = H(X, Y) - H(Y)$$
 (2.4-1)

We apply the expression in 2.4-1 to the case of g(X) given X to obtain

$$H(g(X) | X) = H(g(X), X) - H(X)$$
 (0.0.1)

by rearranging the expression in the previous result as follows,

$$H(g(X), X) = H(X) + H(g(X) | X)$$
 (2.4-2)

we obtain the desired result.

Problem 2.4 b): For any given value of X, we automatically know g(X). Therefore, the expression for $\overline{H(g(X),X)}$ in 2.4-2 becomes

$$H\left(g\left(X\right),X\right) = H\left(X\right)$$

which is the desired result.