Cálculo I (grupo 715) Primer curso del Grado en Matemáticas, UAM, Curso 2010-2011

Control 1, 12 de noviembre de 2010

Apellidos,	${\it Nombre}$	 	 	

1. Considera el conjunto de números reales

$$A = [0,1) \bigcup \left\{3 - \frac{1}{n}, \ n = 1, 2, 3, \dots\right\}.$$

Determina el conjunto de las cotas superiores de A. Calcula el supremo de A. Determina también el conjunto de las cotas inferiores de A (y calcula el ínfimo de A). ¿Tiene A máximo? ¿Y mínimo?

2. Estudia los límites de las sucesiones cuyos términos generales vienen dados por

$$a_n = (-1)^n \frac{n}{n+1}$$
 y $b_n = \frac{(-1)^n}{n}$.

3. Considera la sucesión (a_1, a_2, a_3, \dots) dada por

$$a_1 = 100$$
 y $a_{n+1} = \frac{9}{10} a_n$ para $n \ge 1$.

Prueba que es acotada y monótona (y, por tanto, convergente). Justifica cuál es el valor de su límite.

4. La función f(x) cumple que

$$\lim_{x \to 3} f(x) = 0.$$

Tenemos además dos funciones g(x) y h(x) acotadas, es decir, tales que, para todo $x \in \mathbb{R}$,

$$|h(x)| \le M$$
 y $|g(x)| \le N$,

donde N y M son dos números positivos. Prueba que

$$\lim_{x \to 3} \left[f(x) \cdot g(x) \cdot h(x) \right] = 0.$$

Control 2, 4 de noviembre de 2010

поте у Арен	naos		 •	· · · · · · · · · · · · · · · · · · ·	
		1			

- 1. Definimos el grafo H_n de la siguiente manera: sus 2^n vértices son las listas de longitud n formadas con los símbolos $\{0,1\}$. Hay una arista entre dos vértices si sus respectivas listas difieren exactamente en dos posiciones. ¿Cuántas aristas tiene H_n ?
- **2.** Sea G un grafo con n vértices y dos componentes conexas. ¿Cuál es el número máximo de vértices de grado 1 que puede tener?
- **3.** Queremos formar grafos con vértices $\{1, 2, \dots, 2n\}$ de manera que los vértices $\{1, \dots, n\}$ tengan todas las aristas posibles entre sí. ¿Cuántos distintos habrá?