Projeto prático 4

SCC 0224 – Estrutura de Dados II Prof. Maria Cristina Ferreira de Oliveira 10 de junho de 2024

1. Descrição

A melhor época do ano começou, e com ela, as festas juninas! João gosta muito de viajar pelo Brasil em busca de conhecer festas juninas de cidades diferentes. Uma dificuldade é que os custos das viagens são muito altos, mas a boa notícia é que, no caso de algumas cidades, o João é pago para viajar! João lhe passou uma lista de conexões entre as cidades, com o custo estimado da viagem (inclui pedágio, combustível, alimentação, etc.). Caso seja um trajeto em que ele ganha, ao invés de gastar, ele informa um custo negativo, do contrário o custo informado é positivo. João pede que você calcule qual é o custo mínimo para viajar entre todos os pares de cidades que ele informar.

As cidades são representadas por números inteiros de 0 a N-1, o custo estimado entre um par de cidades que se conectam é um número inteiro D, só é possível ir de uma cidade a outra na ordem que ela for dada na entrada(o grafo é direcional).

Será passado o algoritmo T que você deve usar para calcular o menor custo entre os pares de cidades: se T = 1, utilize o algoritmo de *Dijkstra*, se T = 2, utilize o algoritmo de *Floyd-Warshall*. Eles possuem as seguintes restrições de entrada:

```
Se T = 1:

2 <= N <= 1000

1 <= D <= 10000

Se T = 2:

2 <= N <= 200

-10000 <= D <= 10000
```

2. Entrada e Saída

Primeiramente, seu programa receberá o valor T; em seguida dois inteiros N e M, que informam, respectivamente, o número de cidades e o número de conexões. As próximas M linhas contém os inteiros Xi, Yi, Di, $1 \le i \le M$; representando a estrada i entre as cidades Xi e Yi, cujo custo associado estimado é Di. Em seguida, será passado o inteiro K, e as próximas K linhas informam os valores Xk e Yk, $1 \le k \le K$, que identificam um par de cidades para o qual João deseja saber o custo mínimo. Na saída imprima para cada linha da entrada o custo mínimo

possível para chegar na cidade Yk a partir da cidade Xk, imprima -1 caso não exista uma maneira de chegar até Yk a partir de Xk.

3. Conteúdo e data de entrega

O trabalho é individual e a data limite de submissão é **30/06/2024** (trabalhos em atraso não serão aceitos), no sistema RunCodes (https://runcodes.icmc.usp.br/). O formato da entrega deve ser um arquivo com o código fonte desenvolvido.

- O código deverá estar adequadamente comentado/documentado;
- O trabalho pode ser desenvolvido utilizando C ou Python, a escolha;
- Não é permitido utilizar bibliotecas que já disponibilizam os algoritmos de forma parcial ou total, o que inclui bibliotecas com algoritmos de ordenação;
- Todo o código deve ser desenvolvido pelo próprio aluno. Os códigos serão submetidos a um detector de plágio, e a utilização de código criado por terceiros será tratada como plágio (nota zero).

Dica: caso seu programa esteja gerando alguma saída errada, mas está difícil identificar a diferença entre a saída esperada e a resultante, este site para comparação de textos pode ser útil: https://www.diffchecker.com/text-compare/

Dica 2: se quiser visualizar melhor os grafos utilize o site: https://csacademy.com/app/graph_editor/

4. Critérios de avaliação

- 9,0 pontos pela implementação dos algoritmos solicitados, de forma correta (avaliado segundo o resultado do RunCodes, e por inspeção do código).
- 1,0 ponto por código legível, bem estruturado e bem comentado.

5. Exemplos de entrada e saída

Entrada	Saída
1 66 0120 0250 0335 042 1260 1310 4 03 02 41	30 50 -1 -1

Entrada	Saída
2	30
66	50
0 1 20	-1
0 2 50	-1
0 3 35	
0 4 2	
1 2 60	
1 3 10	
4	
03	
02	
4 1	
25	

Entrada	Saída
2 6 6 0 1 20 0 3 35 0 4 -2 1 2 -60 1 3 10 2 0 50 4 0 3 0 2	30 -40 -1 -1
4 1 2 5	

Entrada	Saída
2	6
7 11	4
011	4
021	-1
211	-1
134	2
3 2 -2	
3 4 -1	
351	
451	
463	
451	
561	
6	
06	
0 4	
15	
30	
31	
4 6	

Entrada	Saída
2 5 10 0 1 6 0 2 3 0 3 11 0 4 20 2 1 10 1 3 2 4 1 4 2 3 -3 2 4 4 3 4 -5 8 0 1 0 2 0 3 0 4 1 0 2 0	Saída -1 3 0 -5 -1 -1 -1 -8 -5
2 4 3 4	