

Segundo examen parcial Fundamentos de lenguajes de programación

Duración: 2 horas Carlos Andres Delgado S, Ing * 05 de Junio 2017

Nombre:		
Código:		

1. Conceptos teóricos [30 puntos]

- 1. (15 puntos) ¿Cual es la diferencia entre los lenguajes de programación **fuertemente** y **débilmente** tipados? De un ejemplo práctico de cada caso.
- 2. (15 puntos) Cual es la diferencia entre encapsulamiento y agrupación en la programación orientada a objetos. Dé un ejemplo en cada caso.

2. Inferencia de tipos [35 puntos]

Para la siguiente expresión:

```
let
    f = proc(? x, ? y)
        if zero?(y) then proc (? k, ? l) >(k,l)
            else x
    g = proc(?z, ?a, ?b)
        if (a b 9) then a else b
    in let
        h = proc(?c, ?d)
            (d d c c)
        in
            (h f g)
```

Importante: Utilizar el nombramiento de variables indicado en la tabla, será penalizado si no lo hace. Para facilitar el proceso, se recomienda solucionar en el siguiente orden:

- 1. (10 puntos) Plantee las ecuaciones de los procedimientos y las evaluaciones que encuentre en el código
- 2. (10 puntos) Plantee las ecuaciones de las expresiones condicionales y primitivas de la expresión
- 3. (10 puntos) Resuelva el sistema de ecuaciones a partir de las ecuaciones anteriores, para encontrar el valor los tipos de las variables de la tabla 1
- 4. (5 puntos) A partir de la resolución del sistema de ecuaciones indique el tipo t_1 de la expresión

${f Expresi\'on}$	Variable
f	t_f
g	t_g
h	t_h
X	t_x
У	t_y
k	t_k
1	t_l
${f z}$	t_z
a	t_a
b	t_b
c	t_c
d	t_d
let in (h f g)	t_1
if zero?(y) then proc (? k, ? l) $>$ (k,l) else x	t_2
zero?(y)	t_3
proc (? k, ? l) > (k,l)	t_4
>(k,l)	t_5
if (a b 9) then a else b	t_6
(a b 9)	t_7
(d d c c)	t_8

Tabla 1: Variables de tipo

$3. \quad { m Objetos}$ [35 puntos]

Responda:

- 1. (15 puntos) Dibuje la representación de los objetos o1, o2 y o3 después de ejecutar +(a,+(b,c)) usando representación simple
- 2. (15 puntos) Dibuje la representación de los objetos o1, o2 y o3 después de ejecutar +(a,+(b,c)) usando representación plana
- 3. (5 puntos) Cuales son los valores de a,b y c, al finalizar la expresión.

Para la siguiente expresión:

^{*}carlos.andres.delgado@correounivalle.edu.co

```
class p1 extends object
     field a
     field b
     field c
     method initialize (f, g, h)
           begin
                set a = f;
                 set b = g;
                 set c = \bar{h};
                 0
     method setValor(p,q)
           begin
                set a = +(a,p);
                set b = +(b,q);

set c = +(c,b);
                send self getValor(a,b)
     method \ getValor\left(p\,,q\right)
           +(p, *(q,a))
class p2 extends p1
     field d
     field e method initialize(k, l, m)
           begin
                super initialize(k,l,m);
set a = super getValor(k,l);
set b = super getValor(l,m);
set c = super getValor(m,k);
                 0
           end
     method \ getValor\left(m,n\right)
           +(d, *(m,n))
class p3 extends p2
     field f
     field g
     method\ initialize\,(\,k\,,\ l\,,\ m)
           begin
                 super initialize(k,l,m);
set f = super getValor(k,l);
                 set f = super getValor(l,m);
                 0
           _{
m end}
     method \ getValor\left(m,n\right)
          +(g, +(m, n))
let
     o1 = new p1(4,3,1)
     o2 = new p2 (5, 4, 2)

o3 = new p3 (3, 4, 2)
     in
                a = send o1 setValor(1,4)

b = send o2 setValor(3,2)
                 c = \text{send o3 setValor}(4,8)
                       +(a,+(b,c))
```

¡Éxitos!