

BGA824N6

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems (GNSS)

Data Sheet

Revision 3.0, 2013-06-24

RF & Protection Devices

Edition 2013-06-24

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History							
Page or Item	Subjects (major changes since previous revision)						
Revision 3.0, 2	Revision 3.0, 2013-06-24						
all	"Preliminary" status removed						
9	Thermal Resistance R_{thJS} specified						
13	Drawing of application board updated						
Revision 2.0, 2	013-02-04						
all	Preliminary Data Sheet						
14, 15	Package drawings and information completed						
7, 8, 10, 11	Electrical Characteristics adjusted						

Trademarks of Infineon Technologies AG

AURIXTM, C166TM, Canpaktm, CIPOSTM, CIPURSETM, Econopacktm, CoolMostm, CoolSettm, Corecontroltm, Crossavetm, Davetm, DI-Poltm, EasyPIMTM, Econobridgetm, Econopualtm, Econopimtm, Econopacktm, Eicedrivertm, eupectm, Fcostm, Hitfettm, Hybridpacktm, I²rftm, Isofacetm, Isopacktm, MIPaqtm, Modstacktm, my-dtm, NovalithIctm, OptiMostm, Origatm, Powercodetm; Primariontm, Primepacktm, Primestacktm, Pro-Siltm, Profettm, Rasictm, Reversavetm, Satrictm, Siegettm, Sindriontm, Sipmostm, Smartlewistm, Solid Flashtm, Tempfettm, thinq!tm, Trenchstoptm, Tricoretm.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANI ZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Table of Contents

Table of Contents

	Table of Contents
	List of Figures
	List of Tables
	Features
I	Maximum Ratings
2	Electrical Characteristics
3	Application Information
1	Package Information

List of Figures

List of Figures

Figure 1	Block Diagram	7
Figure 2	Application Schematic BGA824N6	12
Figure 3	Drawing of Application Board	13
Figure 4	Application Board Cross-Section	13
Figure 5	TSNP-6-2 Package Outline (top, side and bottom views)	14
Figure 6	Footprint Recommendation TSNP-6-2	14
Figure 7	Marking Layout (top view)	14
Figure 8	Tape & Reel Dimensions (reel diameter 180 mm, pieces/reel 15000)	15

List of Tables

List of Tables

Table 1	Pin Definition and Function	8
Table 2	Maximum Ratings	
Table 3	Thermal Resistance	
Table 4	Electrical Characteristics: T_A = 25 °C, V_{CC} = 1.8 V, $V_{PON,ON}$ = 1.8 V, $V_{PON,OFF}$ = 0 V, f = 1550 - 1615 MHz (GPS / Glonass / Beidou / Galileo)	. 10
Table 5	Electrical Characteristics: T_A = 25 °C, V_{CC} = 2.8 V, $V_{PON,ON}$ = 2.8 V, $V_{PON,OFF}$ = 0 V, f = 1550 - 1615 MHz (GPS / Glonass / Beidou / Galileo)	
Table 6	Bill of Materials	

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems (GNSS)

BGA824N6

Features

- High insertion power gain: 17.0 dB
- Out-of-band input 3rd order intercept point: +7 dBm
- Input 1 dB compression point: -6 dBm
- Low noise figure: 0.55 dB
- · Low current consumption: 3.8 mA
- Operating frequencies: 1550 1615 MHz
- Supply voltage: 1.5 V to 3.3 V
- Digital on/off switch (1V logic high level)
- Ultra small TSNP-6-2 leadless package (footprint: 0.7 x 1.1 mm²)
- B7HF Silicon Germanium technology
- RF output internally matched to 50 Ω
- Only 1 external SMD component necessary
- 2kV HBM ESD protection (including Al-pin)
- · Pb-free (RoHS compliant) package

Application

• Ideal for all Global Navigation Satellite Systems (GNSS) like GPS, GLONASS, Beidou, Galileo and others.

Figure 1 Block Diagram

Product Name	Marking	Package	
BGA824N6	F	TSNP-6-2	

Features

Description

The BGA824N6 is a front-end low noise amplifier for Global Navigation Satellite Systems (GNSS) from 1550 MHz to 1615 MHz like GPS, GLONASS, Beidou, Galileo and others. The LNA provides 17.0 dB gain and 0.55 dB noise figure at a current consumption of 3.8 mA in the application configuration described in **Chapter 3**. The BGA824N6 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates from 1.5 V to 3.6 V supply voltage.

Pin Definition and Function

Table 1 Pin Definition and Function

Pin No.	Name	Function
1	GND	Ground
2	VCC	DC supply
3	AO	LNA output
4	GND	Ground
5	Al	LNA input
6	PON	Power on control

Maximum Ratings

1 Maximum Ratings

Table 2 Maximum Ratings

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Voltage at pin VCC	V_{CC}	-0.3	_	3.6	V	1)
Voltage at pin Al	V_{Al}	-0.3	_	0.9	V	_
Voltage at pin AO	V_{AO}	-0.3	_	$V_{\rm CC}$ + 0.3	V	_
Voltage at pin PON	V_{PON}	-0.3	_	$V_{\rm CC}$ + 0.3	V	_
Voltage at pin GNDRF	V_{GNDRF}	-0.3	_	0.3	V	_
Current into pin VCC	I_{CC}	_	_	16	mA	_
RF input power	P_{IN}	_	_	0	dBm	_
Total power dissipation, $T_{\rm S}$ < 148 °C ²⁾	P_{tot}	_	_	60	mW	-
Junction temperature	T_{J}	_	_	150	°C	_
Ambient temperature range	T_{A}	-40	_	85	°C	_
Storage temperature range	T_{STG}	-65	_	150	°C	_
ESD capability all pins	$V_{\mathrm{ESD_HBM}}$	_	_	2000	V	according to JESD22A-114

¹⁾ All voltages refer to GND-Node unless otherwise noted

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Thermal Resistance

Table 3 Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}	25	K/W

¹⁾ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

²⁾ $T_{\rm S}$ is measured on the ground lead at the soldering point

Electrical Characteristics

2 Electrical Characteristics

Table 4 Electrical Characteristics:¹⁾ T_A = 25 °C, V_{CC} = 1.8 V, $V_{PON,ON}$ = 1.8 V, $V_{PON,OFF}$ = 0 V, f = 1550 - 1615 MHz (GPS / Glonass / Beidou / Galileo)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V_{CC}	1.5	_	3.3	V	_
Supply current	I_{CC}	_	3.8	4.8	mA	ON-mode
		_	0.2	3	μА	OFF-mode
Power On voltage	V_{pon}	1.0	_	Vcc	V	ON-mode
		0	_	0.4	V	OFF-mode
Power On current	I_{pon}	_	5	10	μΑ	ON-mode
		_	_	1	μΑ	OFF-mode
Insertion power gain	$ S_{21} ^2$	_	17.0	_	dB	-
Noise figure ²⁾	NF	_	0.55	_	dB	$Z_{\rm S}$ = 50 Ω
Input return loss	RL_{in}	_	14	_	dB	-
Output return loss	RL_{out}	_	17	_	dB	-
Reverse isolation	$1/ S_{12} ^2$	_	23	_	dB	-
Power gain settling time ³⁾	t_{S}	_	5	_	μS	OFF- to ON-mode
		_	5	_	μS	ON- to OFF-mode
Inband input 1dB-compression point	IP_{1dB}	-	-9	_	dBm	_
Inband input 3 rd -order intercept point ⁴⁾	IIP_3	_	+2	_	dBm	f_1 = 1575 MHz f_2 = f_1 +/-1 MHz
Out-of-band input 3 rd -order intercept point ⁵⁾	IIP _{3oob}	_	+7	_	dBm	f_1 = 1712.7 MHz f_2 = 1850 MHz
Stability	k	_	> 1.2	_		f = 20 MHz 10 GHz

¹⁾ Based on the application described in chapter 3

²⁾ PCB losses are subtracted

³⁾ To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode

⁴⁾ Input power = -30 dBm for each tone

⁵⁾ Input power = -20 dBm for each tone

Electrical Characteristics

Table 5 Electrical Characteristics: $^{1)}$ $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm PON,ON}$ = 2.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 1550 - 1615 MHz (GPS / Glonass / Beidou / Galileo)

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage	$V_{\sf CC}$	1.5	_	3.3	V	_	
Supply current	I_{CC}	_	3.9	4.9	mA	ON-mode	
		_	0.2	3	μА	OFF-mode	
Power On voltage	V_{pon}	1.0	_	Vcc	V	ON-mode	
		0	_	0.4	V	OFF-mode	
Power On current	I_{pon}	_	10	15	μА	ON-mode	
		_	_	1	μА	OFF-mode	
Insertion power gain	$ S_{21} ^2$	_	17.1	_	dB	_	
Noise figure ²⁾	NF	_	0.55	_	dB	$Z_{\rm S}$ = 50 Ω	
Input return loss	RL_{in}	_	15	_	dB	_	
Output return loss	RL_{out}	_	18	_	dB	_	
Reverse isolation	$1/ S_{12} ^2$	_	23	_	dB	_	
Power gain settling time ³⁾	$t_{\rm S}$	_	5	_	μS	OFF- to ON-mode	
		_	5	_	μS	ON- to OFF-mode	
Inband input 1dB-compression point	IP_{1dB}	_	-6	_	dBm	_	
Inband input 3 rd -order intercept point ⁴⁾	IIP_3	_	+3	_	dBm	$f_1 = 1575 \text{ MHz}$ $f_2 = f_1 + /-1 \text{ MHz}$	
Out-of-band input 3 rd -order intercept point ⁵⁾	IIP _{3oob}	_	+7	_	dBm	f_1 = 1712.7 MHz f_2 = 1850 MHz	
Stability	k	_	> 1.2	_		f = 20 MHz 10 GHz	

¹⁾ Based on the application described in chapter 3

²⁾ PCB losses are subtracted

³⁾ To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode

⁴⁾ Input power = -30 dBm for each tone

⁵⁾ Input power = -20 dBm for each tone

Application Information

3 Application Information

Application Board Configuration

Figure 2 Application Schematic BGA824N6

Table 6 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1 (optional)	1nF	0402	Various	DC block 1)
C2 (optional)	> 10nF ²⁾	0402	Various	RF bypass 3)
L1	6.8nH	0402	Murata LQW type	Input matching
N1	BGA824N6	TSNP-6-2	Infineon	SiGe LNA

- 1) DC block might be realized with pre-filter in GNSS applications
- 2) For data sheet characteristics $1\mu F$ used
- 3) RF bypass recommended to mitigate power supply noise

A list of all application notes is available at http://www.infineon.com/gpslna.appnotes.

Application Information

Figure 3 Drawing of Application Board

Figure 4 Application Board Cross-Section

Package Information

4 Package Information

Figure 5 TSNP-6-2 Package Outline (top, side and bottom views)

Figure 6 Footprint Recommendation TSNP-6-2

Figure 7 Marking Layout (top view)

Package Information

Figure 8 Tape & Reel Dimensions (reel diameter 180 mm, pieces/reel 15000)

www.infineon.com