

Ahmed Osama Fathy

Abdelrahman Essam Ismail

• Slave Code:

```
module SPI (clk,rst_n,MOSI,MISO,SS_n,rx_data,rx_valid,tx_data,tx_valid);
parameter IDLE=3'b000;
parameter CHK_CMD=3'b001;
parameter WRITE=3'b010;
parameter READ_ADDRESS=3'b011;
parameter READ_DATA=3'b100;
input MOSI,SS_n,clk,rst_n;
output reg rx_valid;
output reg [9:0] rx_data;
input [7:0] tx_data;
input tx_valid;
reg rd_address_first;
output reg MISO;
reg[3:0] count_1;
reg [3:0]count_2;
reg [3:0] count_3;
(* fsm_encoding = "gray" *)
reg [2:0] ns,cs;
always@(cs,MOSI,SS_n)
begin
case (cs)
    IDLE:begin
        if(!SS_n)
        ns=CHK_CMD;
        else
         ns= IDLE;
    CHK_CMD:begin
         if(SS_n==0)
        begin
        if(MOSI==0)
         ns=WRITE;
        else
        if(rd_address_first==0)
         begin
         ns=READ_ADDRESS;
         else
         begin
         ns=READ_DATA;
```

```
ns= IDLE;
    WRITE:begin
        if(SS_n)
        ns= IDLE;
        begin
        if(count_1 <10)</pre>
        ns= WRITE;
        end
    READ_ADDRESS:begin
        if(SS_n)
        ns=IDLE;
        begin
            if(count_2 < 10)
            ns=READ_ADDRESS;
    READ_DATA: begin
         if(SS_n)
        ns=IDLE;
        begin
            if(count_3 < 8)</pre>
            ns=READ_DATA;
    default: ns= IDLE;
always@(posedge clk,negedge rst_n)
begin
 if(!rst_n)
```

```
cs<=IDLE;</pre>
else
cs<= ns;
always@(posedge clk,negedge rst_n)
begin
if(!rst_n)
begin
  rx_data<=0;</pre>
  rx_valid<=0;</pre>
  count_1<=0;
  count_2<=0;
  rd_address_first<=0;</pre>
  count_3<=0;
MISO<=0;
case(cs)
IDLE:begin
  rx_valid<=0;</pre>
  count_1<=0;
 count_2<=0;</pre>
  count_3<=0;</pre>
CHK_CMD:begin
     rx_valid<=0;</pre>
     count_1<=0;</pre>
    count_2<=0;</pre>
     count_3<=0;</pre>
WRITE: begin
     if(count_1<10)</pre>
     begin
          rx_data<={rx_data[8:0],MOSI};</pre>
          count_1<=count_1+1;</pre>
          rx_valid<=1;</pre>
READ_ADDRESS: begin
 rd_address_first<=1;</pre>
     if(count_2<10)</pre>
```

```
begin
        rx_data<={rx_data[8:0],MOSI };</pre>
       count_2<=count_2+1;</pre>
        rx_valid<=1;</pre>
   READ_DATA: begin
   rd_address_first<=0;</pre>
   if(count_2<10)</pre>
   begin
        rx_data<={rx_data[8:0],MOSI };</pre>
       count_2<=count_2+1;</pre>
        begin
        rx_valid<=1;</pre>
        if(count_3 < 8 )</pre>
        begin
             if(tx_valid==1)
             begin
             MISO <= tx_data[7-count_3];</pre>
             count_3<=count_3+1;</pre>
   default:begin
 rx_valid<=0;</pre>
count_1<=0;</pre>
count_2<=0;
count_3<=7;</pre>
```

• RAM Code:

```
module RAM_pr2(clk,rst_n,din,rx_valid,dout,tx_valid);
parameter MEM DEPTH = 256;
  parameter ADDR SIZE = 8;
  input [9:0] din;
  input rx valid,clk,rst n;
   output reg[7:0] dout;
  output reg tx_valid;
   reg [ADDR_SIZE-1:0] wr_address;
   reg [ADDR_SIZE-1:0] mem_1 [MEM_DEPTH-1:0];
   always @(posedge clk,negedge rst_n) begin
       if(!rst_n)
       begin
       dout<=0;</pre>
       tx_valid<=0;</pre>
       begin
       if(rx_valid==1)
       begin
       case (din[9:8])
       2'b00: begin
         wr_address<= din[7:0];</pre>
         tx_valid<=0;</pre>
       2'b01: begin
            mem_1[wr_address]<= din[7:0];</pre>
            tx_valid<=0;</pre>
       2'b10:begin
             wr_address<= din[7:0];</pre>
             tx_valid<=0;</pre>
       2'b11: begin
            dout<= mem_1[wr_address];</pre>
            tx_valid<=1;</pre>
        default: wr_address<= din[7:0];</pre>
   endmodule
```

Master_Code:

```
module Master(SS_n,MOSI,MISO,clk,rst_n);
input MOSI,SS_n,clk,rst_n;
output MISO;
wire rx_valid;
wire [9:0] rx_data;
wire [7:0] tx_data;
wire tx_valid;
SPI s1 (clk,rst_n,MOSI,MISO,SS_n,rx_data,rx_valid,tx_data,tx_valid);
RAM_pr2 R1(clk,rst_n,rx_data,rx_valid,tx_data,tx_valid);
endmodule
```

• TB Code:

```
module master_slave();
 reg MOSI,SS_n,clk,rst_n;
  wire MISO;
 Master M1(SS_n,MOSI,MISO,clk,rst_n);
  initial begin
      clk=1;
  forever
     #1 clk=~clk;
  initial begin
      rst_n=0;
      #5;
  rst_n=1;
  //giving write address
  SS n=0;
  @(negedge clk);
  MOSI=0;
  @(negedge clk);
  repeat(2)
    @(negedge clk) MOSI=0;
  repeat(8)
     @(negedge clk) MOSI=1;
   #5;
   SS_n=1;
```

```
#10;
// store data in ram at the address given before
SS_n=0;
@(negedge clk);
MOSI=0;
@(negedge clk);
  @(negedge clk) MOSI=0;
 @(negedge clk) MOSI =1;
 repeat(8)
   @(negedge clk) MOSI=$random;
 #5;
 SS_n=1;
#10;
// giving address to read data from it
rst_n=1;
SS_n=0;
@(negedge clk);
MOSI=1;
@(negedge clk);
  @(negedge clk) MOSI=1;
 @(negedge clk) MOSI =0;
 repeat(8)
   @(negedge clk) MOSI=1;
#5;
SS_n=1;
rst_n=1;
SS_n=0;
@(negedge clk);
MOSI=1;
```

```
@(negedge clk);
  @(negedge clk) MOSI=1;
@(negedge clk) MOSI =1;
repeat(8)
   @(negedge clk) MOSI=0;
#24;
SS_n=1;
#10;
// giving new write address
SS_n=0;
@(negedge clk);
MOSI=0;
@(negedge clk);
repeat(2)
  @(negedge clk) MOSI=0;
repeat(7)
   @(negedge clk) MOSI=1;
   @(negedge clk) MOSI=0;
#5;
SS_n=1;
#10;
// write new data in the given address inside RAM
SS_n=0;
@(negedge clk);
MOSI=0;
@(negedge clk);
```

```
@(negedge clk) MOSI=0;
  @(negedge clk) MOSI=1;
repeat(4)
   @(negedge clk) MOSI=1;
   repeat(4)
   @(negedge clk) MOSI=0;
#5;
SS_n=1;
#10;
SS_n=0;
@(negedge clk);
MOSI=1;
@(negedge clk);
  @(negedge clk) MOSI=1;
  @(negedge clk) MOSI=0;
repeat(7)
   @(negedge clk) MOSI=1;
   @(negedge clk) MOSI=0;
#5;
SS_n=1;
#10;
//read data from memory
SS_n=0;
@(negedge clk);
MOSI=1;
@(negedge clk);
repeat(2)
```

```
@(negedge clk) MOSI=1;

repeat(8)

@(negedge clk) MOSI=1;

#24;

$$S_n=1;
#10;

$$S_n=0;
#2;

$$S_n=1;
#2;

$$stop;

end
endmodule
```

• DO_File:

```
vlib work
vlog SPI.v Master.v master_slave_tb.v RAM_pr2.v
vsim -voptargs=+acc master_slave
add wave -position insertpoint \
sim:/master_slave/clk \
sim:/master slave/MISO \
sim:/master_slave/MOSI \
sim:/master_slave/rst_n \
sim:/master_slave/SS_n \
sim:/master_slave/M1/rx_data \
sim:/master slave/M1/rx valid \
sim:/master_slave/M1/tx_data \
sim:/master_slave/M1/tx_valid \
sim:/master_slave/M1/s1/count_1 \
sim:/master_slave/M1/s1/count_2 \
sim:/master_slave/M1/s1/count_3 \
sim:/master_slave/M1/s1/cs \
sim:/master_slave/M1/s1/ns \
sim:/master_slave/M1/R1/mem_1
run -all
```

• Snippets_of_waveform:

Vivado:

- Gray_Encoding
- Elaboration_with_no_errors

Synthesis_schematic_with_no_errors

Synthesis_Report

State Ne	w Encoding	Previous Encoding
IDLE	000	000
CHK_CMD	001	001
WRITE	011	010
READ_ADDRESS	010	011
READ_DATA	111	100

Synthesis_time_report

Critical_Path

Report_utilization_after_implementation

Resource	Utilization	Available	Utilization %
LUT	890	20800	4.28
FF	2107	41600	5.06
Ю	5	106	4.72

implementation_time_report

Setup Hold **Pulse Width** Worst Negative Slack (WNS): 0.970 ns Worst Hold Slack (WHS): 0.070 ns Worst Pulse Width Slack (WPWS): 4.500 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Number of Failing Endpoints: Number of Failing Endpoints: Number of Failing Endpoints: Total Number of Endpoints: Total Number of Endpoints: 2105 Total Number of Endpoints: All user specified timing constraints are met.

Device_implementation_with_no_errors

One_hot_encoding

Elaboration_with_no_errors

Synthesis_schematic_with_no_errors

Synthesis_Report

State	1	New Encoding	Previous Encoding
IDLE		00001	000
CHK_CMD	1	00010	001
WRITE	1	00100	010
READ_ADDRESS	1	01000	011
READ_DATA	1	10000	100

Synthesis_time_report

Tcl Console M	Messages Log	Reports	Design R	uns Timing	× Debug						
Q ¥ ♦	C 💾 🌑		•	Design Timing	Summary						
General Info Timer Settin Design Tim Clock Sum > limita-Clock Timir Inter-Clock Inter-Clock Fundar-Path (Timing Summar	ngs ing Summary mary (1) ng (40) Paths Paths		Î	Total Neg Number Total Nur	of Failing Endpoints: 0	000 ns Total Hold Slack (THS): Number of Failing Endpoi Total Number of Endpoint		Total Pulse \	Width Slack (WPV Width Negative Sla ailing Endpoints: er of Endpoints:	ick (TPWS):	4.500 ns 0.000 ns 0 2105
1 Path 1	6.235	3	4	116	s1/rx_valid_reg/C	R1/mem_1_reg[111][0]/CE	3.383	1.019	2.364	10.0	sys_c
∿ Path 2	6.235	3	4	116	s1/rx_valid_reg/C	R1/mem_1_reg[111][1]/CE	3,383	1.019	2.364	10.0	sys_c
Path 3	6.235	3	4	116	s1/rx_valid_reg/C	R1/mem_1_reg[111][2]/CE	3.383	1.019	2.364	10.0	sys_c
3 Path 4	6.235	3	4	116	s1/rx_valid_reg/C	R1/mem_1_reg[111][3]/CE	3.383	1.019	2.364	10.0	sys_c
1 Path 5	6.235	3	4	116	s1/rx_valid_reg/C	R1/mem_1_reg[111][4]/CE	3.383	1.019	2.364	10.0	sys_c
4 Path 6	6.235	3	4	116	s1/rx valid rea/C	R1/mem 1 rea[111][5]/CE	3.383	1.019	2.364	10.0	svs c

Critical_Path

Report_utilization_after_implementation

Resource	Utilization	Available	Utilization %
LUT	892	20800	4.29
FF	2111	41600	5.07
Ю	5	106	4.72

implementation_time_report

◆ Design Timing Summary

All user specified timing constraints are met.

Setup Hold **Pulse Width** Worst Negative Slack (WNS): 2.767 ns Worst Hold Slack (WHS): 0.059 ns Worst Pulse Width Slack (WPWS): 4.500 ns Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns Number of Failing Endpoints: Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Total Number of Endpoints: Total Number of Endpoints: 4194 Total Number of Endpoints: 2107

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement
Path 1	2.767	6	2	668	R1/wr_address_reg[1]/C	R1/dout_reg[7]/D	7.232	1.587	5.645	10.0
Path 2	2.891	6	2	668	R1/wr_address_reg[1]/C	R1/dout_reg[2]/D	7.106	1.543	5.563	10.0
Path 3	2.929	6	2	668	R1/wr_address_reg[1]/C	R1/dout_reg[3]/D	7.115	1.546	5.569	10.0
Path 4	2.942	6	2	668	R1/wr_address_reg[1]/C	R1/dout_reg[6]/D	7.053	1.538	5.515	10.0
Path 5	3.105	6	2	668	R1/wr_address_reg[1]/C	R1/dout_reg[5]/D	6.891	1.518	5.373	10.0
Path 6	3.116	1	2	159	R1/wr address reg(41/C	R1/mem 1 rea[25][5]/CE	6.582	0.580	6.002	10.0

Device_implementation_with_no_errors

- Sequential_encoding
- Elaboration_with_no_errors

Synthesis_schematic_with_no_errors

✓ □ rtl_2 (2 infos)

∨
☐ General Messages (2 infos)

(Project 1-570) Preparing netlist for logic optimization

Synthesis_Report

State	New Encod	ing Pr	evious Encoding
IDLE	1	000	000
CHK_CMD	I	001	001
WRITE	I	010	010
READ_ADDRESS	1	011	011
READ DATA	1	100	100

INFO: [Synth 8-3354] encoded FSM with state register 'cs_reg' using encoding 'sequential' in module 'SPI' WARNING: [Synth 8-327] inferring latch for variable 'FSM_sequential_ns_reg' [C:/Users/DELL/Desktop/Digital course/Projetal.

Synthesis_time_report

Critical_Path

Report_utilization_after_implementation

Name	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Bonded IOB (106)	BUFGCTRL (32)
∨ N Master	891	2107	273	136	806	891	27	5	1
R1 (RAM_pr2)	843	2069	273	136	795	843	8	0	0
I s1 (SPI)	48	38	0	0	27	48	18	0	0

implementation_time_report

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.990 ns	Worst Hold Slack (WHS):	0.164 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4194	Total Number of Endpoints:	4194	Total Number of Endpoints:	2105
l user specified timing constrai	nts are met.				

Device_implementation_with_no_errors

Observation

First

According to the setup time slack after implementation of each type of encoding we found that hot_one encoding has better setup time slack in the worst case(worst path) than that of gray and sequential encoding. So, we choose one_hot encoding then generate bit stream file.

Generation of bit stream

Second

we observe that no ram used in the implementation only many flipflops are used and that because of Asynchrouns reset is not supported in the FPGA KIT used.

So, we make reset synchronized with clk to check that ram is used during implementation.

An arrow points to the ram used during implementation as shown below

Synthesis&Debug of one hot encoding after comparison

Synthesis_schematic_with_debug_cores_no_errors

Device_implementation_with_debug_cores_no_errors

