Cervical Spine Fracture Detection through Two-stage Approach of Mask Segmentation and Windowing based on Convolutional Neural Network

Doyeon Kim¹, Xujia Ning², Kaicheng Liang³, Yi Ni⁴, Duan Wang⁵, Mingyuan Li⁶, Yichuan Wang⁷, Erick Purwanto⁸. Ka Lok Man⁹

CONTENTS

01

Background

02

Introduction

03

Challenges

04

Methodology

05

Experiment results

06

Conclusion

Background

01

02

03

04

05

06

Cervical spine fracture: break / dislocation

Most occurrence:

- 15 24 years
- Over 55 years

Severe consequence:

- disorder
- paralysis

Malunion / delayed union

Fractured bone debris

Background

Radiologists' detection on fracture:

=> Limitation of human capability

Acute fracture

Blunt trauma / no symptom

01

02

03

04

05

Introduction

01

02

03

04

05

06

 Kaggle RSNA Competition: Cervical Spine Fracture Detection

• Train_images: 2019 CT scans segmentations: 87 scans

Challenges

1. Extreme imbalanced sample distribution

Challenges

2. Imbalanced train image file slices distribution

Challenges

3. Small segmentations for initial provision

Stage 1 preprocessing: HU scaling / windowing

Extract clearer bone image from provided dataset

- Window = 1800 & level = 400; **spine bone**
- Window = 2800 & level = 600; head and neck temporal bone 1
- Window = 4000 & level = 700; head and neck temporal bone 2

01

02

03

04

05

Stage 1: **UNet + EfficientNet-B5**

- Semantic segmentation
- Classifies the bone image for each vertebra

UNet

traditional and widely used model for medical imaging

EfficientNet-B5

large enough parameters to process the CT images without overfitting

01

02

03

04

05

01

02

03

04

05

06

Stage 1: **UNet + EfficientNet-B5**

- Encoder: EfficientNet = create the representation of features at different levels
- Decoder: UNet = combines the features and generates a prediction as a segmentation mask

Stage 2 preprocessing 1: Vertebrae image centering

- Create bounding boxes around the vertebrae
- Focus the images with Yolov5

01

02

03

04

05

Stage 2 preprocessing 2: Cropping voxel

- Take average slice for each vertebra = 30 slices
- Combine the cervical bones
- Combination: utilizing the Yolov5 cropped images

01

02

03

04

05

Stage 2: CrackNet + BiLSTM

Detects the bone fracture with each vertebra combined images

CrackNet

simply finds the crack and the characteristics of the bone fracture

LSTM

classifies the fractured bones.

The correlations between fracture and neighboring cervical spine is high

01

02

03

04

05

Stage 2: CrackNet + BiLSTM

- 1. Binary weighted log loss
 - RSNA competition metrics

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i)$$

- 2. Jaccard index
 - Used only for stage 1 training
 - False Positive scaling

$$J = \frac{|A \cap B|}{|A \cup B|}$$

- 3. Dice coefficient
 - Precision calculation

$$DICE = \frac{2|A \cap B|}{2|A| + |B|}$$

01

02

03

04

05

Stage 1 Model	Accuracy	Dice precision
UNet-EfficientNet with Windowing	0.999	1.000
UNet-EfficientNet with 2.5D	0.980	1.000
3D ResNet-101	0.82	0.52
EfficientNet-V2	0.953	_

Stage 2 Model	Loss	Accuracy
CrackNet-LSTM without YOLOv5	0.21 <u>±</u> 0.01	0.943
CrackNet-LSTM with YOLOv5	0.20 <u>±</u> 0.01	0.949
YOLOv5	0.64	0.94
ResNet-50 without Cropping Voxel	1.6	0.4
Simple CNN-LSTM	0.32	0.87

)	
))

Stage 1+2 Model	Accuracy
UNet-EfficientNet + CrackNet-LSTM	0.949
UNet-EfficientNet + YOLOv5	0.94
UNet-EfficientNet + ResNet-50 no cropping voxel	0.4
UNet-EfficientNet + Simple CNN-LSTM	0.87
AlexNet + LSTM	0.71
ResNet + LSTM	0.71
VGGNet + LSTM	0.84
CNN + SVM	0.70
ResNet-50 + BLSTM-256	0.792

Conclusion

Lots of increase in the accuracy

Will help radiologists on missing detections

CONTACTS

- 1. Doyeon Kim [Presenter] D.Kim19@student.xjtlu.edu.cn
- 2. Xujia Ning Xujia.Ning21@student.xjtlu.edu.cn
- 3. Kaicheng Liang Kaicheng.Liang21@student.xjtlu.edu.cn
- 4. Yi Ni Yi.Ni21@student.xjtlu.edu.cn
- 5. Duan Wang Duan.Wang21@student.xjtlu.edu.cn
- 6. Mingyuan Li Mingyuan.Li21@student.xjtlu.edu.cn
- 7. Yichuan Wang Yichuan.Wang21@student.xjtlu.edu.cn
- 8. Erick Purwanto Erick.Purwanto@xjtlu.edu.cn
- 9. Ka Lok Man Ka.Man@xjtlu.edu.cn