1 Floats

Let \mathcal{N} be the set of strictly positive integers.

For
$$n \in \mathcal{N}$$
, define $F_n = \{2^{-n}j : j \in \mathcal{N}\}$.

Define
$$\mathscr{F} = \bigcup_{n \in N} F_n$$
.

For
$$A \subset \mathscr{F}$$
, define $A_n = A \cap F_n$, so that $A = \bigcup A_n$.

Closure
$$x, y \in \mathscr{F} \implies x + y, xy \in \mathscr{F}$$
.

(1)
$$2^{-m}j + 2^{-n}k = 2^{-m-n+n}j + 2^{-n-m+m}k = 2^{-m-n}(2^nj + 2^mk).$$

(2)
$$2^{-m}j2^{-n}k = 2^{-m-n}jk$$
.

2 The Carpenter Sequence

The elements of each ladder A are conveniently ordered. Just enumerate $A \cap F_n$ in the usual way for n = 1, 2, 3, ...

Let $c_A: \mathcal{N} \to A$ be this enumeration. Then $c(\mathcal{N}) = A$.

(0) $A = \bigcup (A \cap F_n)$ and $\forall n \in N \ A \cap F_n$ is finite. So

3 Floating Ladders

Intuitively, the every ladder in $\mathscr L$ is an initial piece or stretch of $\mathscr F$ with its elements (rungs) stacked vertically. Then ladders start from 0 (without containing it) and shoot up some finite distance. More formally, $A \subset \mathscr F$ is a ladder if it is nonempty, closed downward, has no maximum, and yet is not all of $\mathscr F$.

- $(1) \exists x \in A$
- $(2) \ x < y \in A \implies x \in A.$
- (3) $x \in A \implies \exists y \in A \ x < y$
- $(4) \exists x \in A^c$

4 Simple Ladders

Define $\phi : \mathscr{F} \to \mathscr{L}$ by $\phi(e) = \{d < e\} = \{d \in \mathscr{F} : d < e\}$. Then $\phi(\mathscr{F}) \subset \mathscr{L}$.

- (1) $0 < 2^{-1}e < e \implies 2^{-1}e \in \phi(e)$.
- $(2) d < d_1 \in \phi(e) \implies 0 < d < d_1 < e \implies d \in \phi(e).$
- $(3) \ d \in \phi(e) \implies d < e \implies d < 2^{-1}(d+e) < e \implies 2^{-1}(d+e) \in \phi(e).$
- (4) $d \in \phi(e) \implies d < e \implies e \notin \phi(e)$.

We call any element of $\phi(\mathscr{F})$ a **simple** ladder.

5 The Fireman Sequence

For each $A \in L$ we now construct $f_A : \mathscr{N} \to A \subset \mathscr{F}$ such that $\forall n \in N \ f_A(n) \in A$ and $f_A(n) + 2^{-n} \notin A$.

Define $f_A(n) = 2^{-m_0 - n} j_n$, where $m_0 = \min\{m \in \mathcal{N} : 2^{-m} \in A\}$ and $j_n = \max\{k : 2^{-m_0 - n} k \in A\}$

Nondecreasing $\forall n \in \mathcal{N} \quad f_A(n) \leq f_A(n+1)$.

$$(1) \ 2^{-m_0-n}k_n \in A < 2^{-m_0-n-1}(k_{n+1}+1) \notin A \implies 2k_n \le k_{n+1} \implies 2^{-m_0-n-1}2k_n = f_A(n) \le 2^{-m_0-n-1}k_{n+1} = f_A(n+1).$$

The fireman eventually climbs every rung of his assigned ladder.

Surpassing $\forall a \in A \ \exists n \in \mathcal{N} \ f_A(n) > a$

$$(1) \ a \in A \implies a < a_0 \in A \implies a + 2^{-n_0} < a_0 < f_A(n_0) + 2^{-n_0} \notin A \implies a < a_0 - 2^{-n_0} < f_A(n_0) \in A.$$

The Leaper Function 6

Given a ladder and one of its rungs, it's convenient sometimes to generate a higher rung (to 'leap' the given rung.)

For $A \in \mathcal{L}$ define $l_A : A \to A$ by $l_A(a) = f_A(m_0)$, where $m_0 = \min\{f_A(n) > a\}$.

Then $l_A(a)$ is the first term of A's fireman sequence greater than a, which is always of course itself in A.

7 Umbrellas

For each A define the umbrella u_A of A by $u_A = \min\{k : k \notin A\}$.

Then $u_A \notin A \implies \forall n \in \mathcal{N} \ f_A(n) < u_A$, else $u_A \in A$, a contradiction.

Products

For $A, B \in \mathcal{L}$ define the product AB as $\{d < ab\} = \{d \in \mathcal{F} : \exists a \in A \ \exists b \in B \ d < ab\}.$

Closure Under Multiplication The product of ladders is always a ladder.

- (1) $2^{-m_0} < ab \implies 2^{-m_0} \in AB$.
- $(2) \ x < y \in AB \implies x < y < ab \implies x \in AB.$
- (3) $x \in AB \implies x < ab < f_A(n_0)f_B(m_0) \in AB \implies ab \in AB$.
- (4) $x \in AB \implies x < ab < u_A u_B \implies u_A u_B \notin AB$, else $u_A u_B < u_A u_B$, a contradiction.

A Multiplicative Identity 9

Define $I = \{d < 1\}$, then $\forall A \in \mathcal{L} \ AI = A$.

- (1) $d \in AI \implies d < ai < a \implies d \in A$, so $AI \subset A$.
- $(2) \ d \in A \implies d < e \in A \implies a < e(1 2^{-n_0}) \in AI \implies d \in AI, \text{ hence } A \subset AI.$

Square Roots For Simple Ladders 10

Now that we have multiplication and the 'integers' like $\phi(2) \in \mathcal{L}$, we can construct that most famous of square roots.

Define $\Psi: \mathscr{F} \to \mathscr{L}$ by $\Psi(e) = \{d^2 < e\}$. Then $\Psi(\mathscr{F}) \subset \mathscr{L}$.

- (1) $2^{-n_0} < \min\{x, 1\} \implies (2^{-n_0})^2 = 2^{-2n_0} < 2^{-n_0} < e \implies 2^{-n_0} \in \Psi(e)$.
- (2) $d < d_1 \in \Psi(e) \implies d^2 < d_1^2 < x \implies d \in \Psi(e)$. (3) $d \in \Psi(e) \implies d^2 < e \implies (d + 2^{-n_0})^2 = d^2 + 2^{1-n_0}d + 2^{-2n_0} < e \implies (d + 2^{-n_0})^2 \in \Psi(e)$.
- (4) $d = \max\{e, 1\} \implies d^2 \ge d \ge e \implies d \notin \Psi(e)$.

Simple Square Root Theorem If $Q = \{d^2 < e\}$ and $P = \{d < e\}$, then $Q^2 = P$.

- (1) $s \in Q^2 \implies \exists q_0, q_1 \in Q \ s < q_0 q_1 < \max\{p_0, p_1\}^2 < e \implies s \in P$.
- $(2) \ p \in P \implies p < [f_{\Psi(p)}(n_0) + 2^{-n_0}]^2 < p + 2^{1-n_0}u_P + 2^{-2n_0} < e \implies f_{\Psi(p)}(n_0) + 2^{-n_0} \in Q \implies p \in Q^2.$

The Multiplicative Inverse 11

For $d \in \mathscr{F}$ and $A \subset \mathscr{F}$, define d < A as $\forall a \in A \ d < a$ and d > A as $\forall a \in A \ d > a$.

For
$$A \subset \mathscr{F}$$
, define $A^{-1} = \{a^{-1}\} \subset \mathscr{Q}$.

For
$$A \subset \mathscr{F}$$
, define $\overline{A} := \{ \exists n \in \mathscr{N} \mid d + 2^{-n} < A^{-1} \}.$

Then $A \in \mathcal{L} \implies \overline{A} \in \mathcal{L}$.

$$\begin{array}{l} (1) \ A < u_A < 2^{m_0-1} \implies 2^{1-m_0} = 2^{-m_0} + 2^{-m_0} < u_A^{-1} < A^{-1} \implies 2^{-m_0} \in \overline{A}. \\ (2) \ y < x \in \overline{A} \implies y + 2^{m_0} < x + 2^{m_0} < A^{-1} \implies y \in \overline{A}. \\ (3) \ x \in \overline{A} \implies x + 2^{-m_0} = x + 2^{-m_0-1} + 2^{-m_0-1} < A^{-1} \implies x + 2^{-m_0-1} \in \overline{A}. \end{array}$$

$$(2) \ y < x \in \overline{A} \implies y + 2^{m_0} < x + 2^{m_0} < A^{-1} \implies y \in \overline{A}.$$

$$(3) \ x \in \overline{A} \implies x + 2^{-m_0} = x + 2^{-m_0 - 1} + 2^{-m_0 - 1} < A^{-1} \implies x + 2^{-m_0 - 1} \in \overline{A}.$$

$$(4) \ 2^{-n_0} < a \in A \implies a^{-1} < 2^{n_0} \implies 2^{n_0} \notin \overline{A}.$$

So
$$A \in \mathscr{L} \implies \overline{A} \in \mathscr{L}$$
.

Inverse Theorem If $A \in \mathcal{L}$ and $B = \overline{A}$, then AB = I.

(1) Let
$$x \in AB$$
 so $x < ab \in AB$. Also $i < b + \varepsilon < a^{-1} \implies ab < 1 \implies x < ab < 1 \implies x \in I$.

$$\stackrel{(2)}{(2)}p\in I, f_{\overline{A}}(n)+2^{2-n}\notin \overline{A} \implies a_n^{-1}\leq f_{\overline{A}}(n)+2^{2-n}+2^{2-n} \implies 1-2^{1-n}\leq a_nf_{\overline{A}}(n)<1 \implies p< a_{n_0}f_{\overline{A}}(n_0) \implies p\in A\overline{A}.$$

12Square Roots For All Ladders

 $\mathbf{Lemma} \quad P \in \mathscr{L} \implies \sqrt{P} := \{d^2 \in P\} \in \mathscr{L}.$

(1)
$$2^{-n_0} \in P \implies 2^{-2n_0} < 2^{-n_0} \in P \implies 2^{-2n_0} \in P \implies 2^{-n_0} \in \sqrt{P}$$
.

$$(2) \ d < d_1 \in \sqrt{P} \implies d^2 < d_1^2 \in P \implies d^2 \in P \implies d \in \sqrt{P}.$$

(3)
$$d \in \sqrt{P} \implies d^2 < p_0 \in P \implies (d + 2^{-n_0})^2 < p_0 \implies d + 2^{-n_0} \in \sqrt{P}$$
.

$$(4) \forall p \in P \quad p < \max\{u_P, 2\} \le [\max\{u_P, 2\}]^2 \Longrightarrow \max\{u_P, 2\} \notin \sqrt{P}.$$

General Square Root Theorem $Q = \sqrt{P} \implies Q^2 = P$.

$$(1) \ s \in Q^2 \implies \exists q_0, q_1 \in Q \quad s < q_0 q_1 < q_{\max\{n_0, n_1\}}^2 \in P \implies s \in P$$

$$\begin{array}{l} (1) \ s \in Q^2 \implies \exists q_0, q_1 \in Q \ \ s < q_0 q_1 < q^2_{\max\{p_0, p_1\}} \in P \implies s \in P. \\ (2) \ p \in P \implies p < [f_{\Psi(p)}(n_0) + 2^{-n_0}]^2 < p + 2^{1-n_0} u_P + 2^{-2n_0} < l_P(p) \in P \implies f_{\Psi(p)}(n_0) + 2^{-n_0} \in Q \implies p \in Q^2. \end{array}$$