Crypto Maths

San Kho Lin

1 Divisibility

An integer a is said to be divisible by a positive integer b and this is written as b|a (i.e. b divides a), if a = bc for a third integer c and $c \neq 0$.

- 1. a|a
- 2. a|1 then $a = \pm b$
- 3. a|b and b|c then a|c
- 4. a|b and b|a then $a = \pm b$
- 5. a|b and a|c then a|(bx + cy) for some integers x, y
- 6. a|b then ca|cb for any c

Proof (5): a|b and a|c then a|(bx+cy) for some integers x,y

- Since a|b we have b = ma for some integer m.
- Similarly, $a \mid c$ we have c = na for some integer n.
- Now consider, bx + cy = ma.x + na.y = a(mx + ny)
- Therefore, a|(bx + cy)

1.1 Division Algorithm

a = qn + r whereas $0 \le r < n$ and $q = \lfloor a/n \rfloor$

- a = dividend
- n = divisor (modulus)
- q = quotient
- r = remainder (simplest remainder is known as *residue*)

2 Prime

2.1 Relatively Prime and Co-prime

Relatively Prime and **Co-Prime** are the same.. ¹

Two numbers are relatively prime if they have no prime factors in common; that is, their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime if their gcd(a, b) = 1.

finite field set

prime twin-prime co-prime semi-prime composite numbers

3 Euclidean Algorithm

Euclidean Algorithm find **Greatest Common Divisor** (GCD) of two positive integers. The greatest common divisor of a and b is the largest integer that divides both a and b.

- gcd(a,b) = max[k], such that k|a and k|b
- gcd(0,0) = 0
- gcd(a,0) = a
- If gcd(a, b) = 1, then a and b are relatively prime

Assume $a \ge b > 0$. Find gcd(a, b) by applying *Division Algorithm* iteratively deducing such that:

$$a = q_1b + r_1$$

$$b = q_2r_1 + r_2$$

$$r_1 = q_3r_2 + r_3$$

$$\cdot$$

$$\cdot$$

$$r_{n-2} = q_nr_{n-1} + r_n$$

$$r_{n-1} = q_{n+1}r_n + 0$$

```
Therefore, d = gcd(a, b) = r_n.

d = gcd(r_i, r_{i+1})

r_{i-2} = q_i r_{i-1} + r_i
```

```
Euclid(a,b);
X:=a; y:=b;
while y > 0 do {
   r = x mod y;
   x:=y;
   y:=r; }
return(x);
```

 $^{^{1} \}verb|https://en.wikipedia.org/wiki/Coprime_integers|$

3.1 Extended Euclidean Algorithm

XGCD

4 Modular Arithmetic

From *Division Algorithm*, we can rewrite $a = \lfloor a/n \rfloor \times n + (a \mod n)$. Therefore, we can rewrite remainder as $r = a \mod n$. We call r is the remainder modulo n.

4.1 Binary Operations

The rules for ordinary arithmetic involving addition, subtraction, and multiplication carry over into modular arithmetic.

- $[(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n$
- $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Exponentiation is performed by repeated multiplication, as in ordinary arithmetic. Technique known as **Repeated Squaring and Multiplying Algorithm**, but work for smaller exponent. Recall:

$$(x^a)^2 = x^{2a}$$
$$x^{a+b} = x^a x^b$$

4.2 Congruence

...Two numbers are congruent if they are equal to the same thing in mod something...

Two integers a and b are said to be congruent modulo n, if $(a \mod n) = (b \mod n)$ and, can be written as $a \equiv b \pmod n$.

- 1. $a \equiv b \pmod{n}$ if $n \mid (a b)$
- 2. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$
- 3. $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply $a \equiv c \pmod{n}$

If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ for some integers a, b, c, d, n

- 1. $a \pm c \equiv b \pm d \pmod{n}$ remainder of sum = sum of remainder
- 2. $ma \equiv mb \pmod{n}$ remainder of multiple = multiple of remainder
- 3. $ac \equiv bd \pmod{n}$ remainder of product = product of remainder

Note on expression:

• express as **binary operator** that produces a remainder: $a \mod n$

• express as **congruence relation** that shows the equivalence of two integers: $a \equiv b \pmod{n}$

Notation:

$$5 \equiv 3 \pmod{3}$$
$$5 \mod 3 = 2 \mod 3$$

4.3 Inverse

Additive Inverse = Subtraction a - b = a + (-b) because b + (-b) = 0(-b) in modulo m is just (m-b).

Multiplicative Inverses (and hence Division) are numbers such that when you multiply by multiplicative inverses you get back multiplicative identity, which is 1. We never have multiplicative inverse for 0 i.e. any number times zero will always get 0. 1 will always have multiplicative inverse i.e. $1^{-1} = 1$, but not 2 as $2^{-1} = \frac{1}{2}$ in ordinary arithmetic. But in modular arithmetic, multiplicative inverses exists sometimes... in such that inverse of a exists modulo m wherever a and m have no factor in common. We say this, in terms of Euclidean Algorithm:

 $a^{-1} \mod m$ exists when gcd(a, m) = 1

In other word, the multiplicative inverse of $a \mod m$ is the integer b such that $ab = 1 \mod m$, write $b = a^{-1} \mod m$.

5 **Euler Totient Function**

For $n \ge 1$, let $\phi(n)$ denote the number of integers less than n but are relatively prime to n.

 $\phi(n) = \text{count the number of integers between 1 and } n \text{ whose gcd with } n \text{ is 1}.$

$$\phi(n) = |\{x : 1 \le x \le n, \gcd(x, n) = 1\}|$$

$$\gcd(1, 6) = 1$$

$$\gcd(2, 6) = 2$$

$$\gcd(3, 6) = 3$$

$$\gcd(4, 6) = 2$$

gcd(5,6) = 1

Then, $R = \{1, 5\}$. Hence, $\phi(6) = 2$.

Example: $\phi(6) = 2$

Fact 1: $\phi(p) = p - 1$ for any prime p.

Fact 2: $\phi(p) = p^a - p^{a-1} = p^{a-1}(p-1)$ for any prime p and a **Fact 3:** $\phi(pq) = (p-1)(q-1)$ for any pair of primes p and q. for any prime p and any integer $a \ge 1$.

Fact 4: $\phi(ab) = \phi(a) \times \phi(b)$ if a and b are relatively prime numbers i.e. gcd(a,b) = 1.

Notes:

- Fact 1 to 3 deal with primes.
- Fact 4 is used when any two integers are co-prime.
- $\bullet\,$ And use the first form in Fact 2 which is easier to track! 2^3-2^2

6 Fermat's Little Theorem

If 2 p is prime and a is a positive integer not divisible by p , then

$$a^{p-1} \equiv 1 \pmod{p} \tag{1}$$

If p is prime and a is a positive integer, then

$$a^p \equiv a \pmod{p} \tag{2}$$

7 Euler's Theorem

For every a and n that are relatively prime (i.e. coprime), then

$$a^{\phi(n)} \equiv 1 \pmod{n} \tag{3}$$

Alternate form: when a does not need to be relatively prime to n, then

$$a^{\phi(n)+1} \equiv a \pmod{n} \tag{4}$$

8 Trick

When a is one less than p.

$$8 \mod 9 = (-1) \mod 9 \\
(-1)^{100} \mod 9 \\
1 \mod 9$$

When *a* power is equal to modulo *p* then answer is just *a*. This is because Fermat's Eq (2). $3 \equiv 3^{17} \pmod{17}$

²In other word: *if a and p are coprime*

Fremat's Lil' Theorem can be used only when modulo p is prime. Otherwise use Euler's Theorem which is more generalized i.e. modulo n does not need to be prime.

Find remainder when 999998 \times 99994 is divided by 9. In modular group, if a number is divisible means modulo is zero. i.e. 999999 \div 9 = 111111; r = 0

$$999998 \times 99994$$
= $(999999 - 1) \times (99994 - 5)$
 $\equiv (0 - 1) \times (0 - 5) \pmod{9}$
 $\equiv 5 \pmod{9}$

9 Chinese Remainder Theorem

CRT

10 Polynomial

- poly = many, nomial = terms
- a term may have: coefficient, variable and non-negative integer exponent: Ax^n
- monomial: 6, which is also $6x^0$ and, πb^5 , $10z^{15}$ one term
- binomial: $1x^2 + 1$ two terms, here 1 is known as *constant term* whereas x^2 is *variable term*.
- trinomial: $4x^3 + 2x^2 + 7$, $7y^2 3y + \pi$ three terms
- polynomial: $10x^7 9x^2 + 15x^3 + 9$, can be also written as $10x^7 9x^2 + 15x^3 + 9x^0$
- not a polynomial: $x^{-\frac{1}{2}} + 1$, $9a^{\frac{1}{2}} 5$ ($\frac{1}{2}$ is fraction, not integer), $9\sqrt{a} 5$, $9a^a 5$ (exponent a is variable, not integer)
- polynomial is the sum of finite number of terms
- have a notion of **Degree** such that what is the degree of a given polynomial or what is the degree of a give term of polynomial? Degree is the power that variable is risen to... i.e. exponent of a term. The highest degree of a give polynomial is the highest exponent of given terms in a polynomial. e.g. $10x^7 9x^2 + 15x^3 + 9$ degree is $7 7^{th}$ degree polynomial. $x^2 + 1$ is 2^{nd} degree binomial. $4x^3 + 2x^2 + 7$ is 3^{rd} degree trinomial.
- have a notion of **Standard Form** which is sorted by keeping highest to lowest exponent order and, have a notion of **Leading Term** that is, a term at first position...

11 Abstract Algebra

Abstract concept

11.1 Set

- A set is a collection of objects.
- These objects are referred to as elements of the set.

11.2 Group

- Set of elements : $G = \{a, b, c\}$ (OR) $a, b, c \in G$
- Group has binary operations : +, ×
- Closed under operation: Closure integer times integer get another integer
- Identity *e* in such that: $a \times e = e \times a = a$
- Identity *e* in such that: a + e = a
- Inverse : a^{-1} exists for all $a \in G$ such that $a \times a^{-1} = e$
- Inverse : -a exists for all $a \in G$ such that a + (-a) = e
- Associative : $(a \times b) \times c = a \times (b \times c)$
- Commutative : group is not required to be commutative i.e. possible for $a \times b \neq b \times a$. However, if a group is commutative, it is called *Commutative Group* or **Abelian Group**. Otherwise, it is called *Non-commutative Group*.

11.3 Cyclic Group

- A group *G* is **cyclic** group, if it is generated by **a single element**, $G = \langle x \rangle$.
- If $G = \langle x \rangle$ for some x, then we call G a cyclic group.
- e.g. a cyclic group generated by x with operation \times , then smallest subgroup of G containing x is: $\langle x \rangle = \{\dots, x^{-1}, 1, x, x^2, x^3, \dots\}$.
- Let H be a group with operation +, pick $y \in H$, then group generated by y = smallest subgroup of H containing y, such that $\langle y \rangle = \{\dots, -2y, -y, 0, y, 2y, \dots\}$. If $H = \langle y \rangle$ for some y, then we call H a cyclic group.
- Example: Group of integers \mathbb{Z} under +, claim that $\mathbb{Z} = \langle 1 \rangle$. Then, $\langle 1 \rangle = \{..., -2, -1, 0, 1, 2, ...\}$. This covers all the integers, hence, \mathbb{Z} is a cyclic group. It is an example of **Infinite Cyclic Group**.
- Finite Cyclic Group is such that G = Integers mod n under addition. Then, all possible elements are $G = \{0, 1, 2, ..., n 1\}$. Integers mod n is written like this: $\mathbb{Z}/n\mathbb{Z}$.

11.4 Ring

11.5 Polynomial Ring

11.6 Field

... Every Field is a Ring. But not every Ring is a Field.

$$Z_p = \{0,1,...,p-1\}$$

set of reminders obtained by $Z = (Z_p,+)(Z_p,*)$
 $0 = \text{identity in addition}$
 $(Zp^*,*) = \text{identity in multiplication}$