Algorithms for Big Data

Spring Semester 2022

Exercise Set 3

Sketching: we want to represent some large input (say M) with a much shorter sketch s. Additionally we want to be able to produce some form of estimate based solely on sketch (sketches). For example: Alice and Bob both hold long input strings, respectively M_A and M_B . They want to compute (based only on their inputs) sketches s_A and s_B and send them to Charlie, who then computes e.g. a distance between M_A and M_B (approximately).

Exercise 1:

Lets say $M \in [0,1]^n$ represents a vector of user preference. We can define a user cosine similarity score as

$$sim(A, B) = cos(\sphericalangle(M_A, M_B)),$$

that is cosine of an angle the respective vectors make. Show an efficient way of sketching the vectors so that the cosine similarity can be computed with $\pm \varepsilon$ precision.

The goal for next exercises is to derive a sketching scheme for estimating *Hamming distance*: $\operatorname{Ham}(x,y) = |\{i: x[i] \neq y[i]\}|.$

Exercise 2:

Consider binary alphabet $\{0,1\}$. Use AMS sketches to derive efficient sketching scheme for binary inputs for estimating Hamming distance (up to $1 \pm \varepsilon$ factor). What is the size of sketches?

Exercise 3:

Consider random projection $\varphi: \Sigma \to \{0,1\}$. Show that for any words x,y, the value of $2 \cdot \operatorname{Ham}(\varphi(x), \varphi(y))$ approximates $\operatorname{Ham}(x,y)$ in expectation. Improve the quality of estimation to multiplicative $1 \pm \varepsilon$ by averaging over many independent choices of φ . (How many?)

Exercise 4:

Show a sketching scheme for $1 \pm \varepsilon$ approximating Hamming distance with sketches using $\mathcal{O}(\frac{\log^2 \delta^{-1}}{\varepsilon^4})$ words and working with probability $1 - \delta$.

Improve the sketches from previous exercise to $\mathcal{O}(\frac{\log \delta^{-1}}{\varepsilon^2})$ words.