

Relatório do trabalho prático de Sistemas Digitais

Grupo 15
Criado por: Luís Faria Nº47350, Rui Branca Nº 51337, Rodrigo Marques Nº52183
Curso de Engenharia Informática
Professor Pedro Salgueiro

Índice

•	Introdução	.3
•	Modelo de controle do modo de funcionamento	4
•	Módulo de controle do mecanismo de oscilação	.8
•	Relógio de 2 ticks	.12
•	Conclusão	.16

Introdução

Como trabalho final para a cadeira de Sistemas Digitais, foi-nos proposto que implementássemos um aquecedor elétrico. O aquecedor elétrico é dividido em dois circuitos distintos, ligados entre si por forma a implementar o sistema completo.

Com este trabalho, o nosso objetivo foi criar um sistema de controlo para um aquecedor elétrico, para tal começámos por implementar o módulo de controlo do modo de funcionamento e depois o módulo de controlo do mecanismo de oscilação. No trabalho inteiro decidimos utilizar flip-flops do tipo T.

Começámos por definir as entradas e saídas do módulo e chegámos à conclusão que teria duas entradas, o botão para ligar/desligar o aquecedor (BL) e o botão para mudar o modo de funcionamento do aquecedor (BM). Em relação às saídas este módulo terá três, sendo elas o motor que ativa a ventilação(MV), a resistência 1(R1) e a resistência 2 (R2). Depois disso verificámos que o módulo teria três estados: o estado 00, que seria o estado inicial em que apenas estão ligados o ventilador e a resistência 1; o estado 01 que será o próximo ao estado 00 e tem o ventilador, a resistência 1 e a resistência 2 ligadas; e por fim o estado 10 que tem apenas o ventilador ligado e é o último estado antes voltar ao estado inicial. Com isto tudo conseguimos construir o modelo ASM que seria assim:

Depois do modelo ASM fomos construir a tabela de transições e chegámos à seguinte conclusão:

		C	(n	Qn	ı+1	-	Γ		S	
BL	ВМ	x1	х0	x1	х0	t1	t0	MV	R1	R2
0	1	0	0	0	0	0	0	0	0	0
0	-	0	1	0	0	0	1	0	0	0
0	-	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	0	1	1	0
1	1	0	0	0	1	0	1	1	1	0
1	0	0	1	0	1	0	0	1	1	1
1	1	0	1	1	0	1	1	1	1	1
1	0	1	0	1	0	0	0	1	0	0
1	1	1	0	0	0	1	0	1	0	0

E com esta tabela fomos conseguir as expressões dos flip-flops e das saídas:

$$t1 = BL.BM.x0 + BM.x1 + \sim BL.x1$$

BLBM/x1x0	00	01	11	10
00	0	0	-	1
01	0	0	-	1
11	0	1	-	1
10	0	0	-	0

 $t0 = \sim BL.x0 + BL.BM.\sim x1$

BLBM/x1x0	00	01	01 11	
00	0	1	-	0
01	0	1	-	0
11	1	1	-	0
10	0	0	-	0

MV = BL

BLBM/x1x0	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	1	1	1	1
10	1	1	-	1

R1 = BL.~x1

BLBM/x1x0	00	01	11	10
00	0	0	-	0
01	0	0	-	0
11	1	1	-	0
10	1	1	-	0

R2 = BL.x0

BLBM/x1x0	00	01	11	10
00	0	0	-	0
01	0	0	-	0
11	0	1	-	0
10	0	1	-	0

Com os mapas de karnaugh feitos fomos implementar o circuito no logisim e fomos testar. Este foi o circuito obtido.

Ao testar o circuito verificámos que ele está a funcionar corretamente e então avançámos para o próximo módulo.

Para o mecanismo de oscilação usámos o mesmo método de anteriormente. Começámos por ver as entradas e saídas, sendo elas quatro, o botão de ligar e desligar o aquecedor (BL), o botão para ligar o modo de oscilação (BO), o sentido para a direita (SD) e, por fim, o sentido para a esquerda (SE). Este circuito terá uma saída que é o motor a funcionar (MO). Verificámos que este circuito teria apenas dois estados, um em que o motor está ligado e outro em que está desligado. Assim obtemos o seguinte modelo ASM:

Depois de construir o modelo ASM criámos a tabela de transições deste módulo:

BL	ВО	SE	SD	SE+SD	~(SE.SD)	Х	xn+1	Т	МО
0	-	-	-	-	-	0	0	0	0
0	-	-	-	-	-	1	0	1	0
1	0	-	-	-	-	0	0	0	0
1	0	-	-	-	-	1	0	1	0
1	1	1	0	1	1	0	1	1	0
1	1	1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	1	1	0	1
1	1	1	1	1	0	0	0	0	0
1	1	1	1	1	0	1	0	1	0
1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	1	1	0	1	0

Por fim fomos obter as expressões para os flip-flops e as saídas com os mapas de karnaugh:

$$T = BL.BO.\sim SE.SD.\sim x + BL.BO.SE.\sim SD.\sim x + \sim BL + \sim BO + \sim SE.\sim SD + SE.SD$$

$$x = 0$$

BLBO/SESD	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	0	1
10	0	0	0	0

x = 1

BLBO/SESD	00		0	01 11		10				
00		1		1			1		1	
01		1		1			1		1	
11		1		0			1		0	
10		1		1			1		1	

MO = BL.BO.~SE.SD.x + BL.BO.SE.~SD.x

x = 0

BLBO/SESD	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

x = 1

BLBO/SESD	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	0	1
10	0	0	0	0

Por fim com as expressões dos flip-flops e das saídas criámos o circuito no logisim, obtendo:

Após testar o circuito podemos verificar que o motor só ativa quando o BL e o BO estão ativas e apenas um dos sentidos (SD/SE) está ativo.

Com o módulo de oscilação concluído começámos a pensar em como poderíamos fazer com que as entradas SE e SD fossem mudando a cada 2 ticks do clock e chegámos à conclusão que para um flip-flop ser alterado é necessário que haja um tick de relógio então poderíamos fazer esse "relógio de 2 ticks" através de flip-flops.

Para este relógio tentámos criar o modelo ASM sem qualquer entrada, mas ao fazer os mapas de karnaugh reparámos que um flip-flop não teria nenhuma expressão e então o circuito não poderia funcionar. Então decidimos usar a entrada BL e BO já que se o aquecedor estivesse desligado ou o motor não fosse necessário não faria sentido o sentido da direita e da esquerda estar a mudar. Então, por fim, verificámos que este circuito teria duas entradas o botão de ligar o aquecedor (BL) e o botão de ligar o módulo de oscilação (BO), o circuito teria duas saídas o sentido da esquerda e o sentido da direita (SE,SD) e que o circuito teria quatro estados, dois deles em que o sentido da direita (SD) está ativo e dois deles em que o sentido da esquerda (SE) está ativo. Com isto tudo podemos fazer o modelo ASM chegando a:

Com este modelo depois conseguimos construir a tabela de estados mais facilmente obtendo:

		Q	n	Qn	Qn+1		Т		S	
ВО	BL	x1	x0	x1	х0	t1	t0	SD	SE	
0	-	0	0	0	0	0	0	1	0	
0	-	0	1	0	1	0	0	1	0	
0	-	1	0	1	0	0	0	0	1	
0	-	1	1	1	1	0	0	0	1	
1	0	0	0	0	0	0	0	1	0	
1	0	0	1	0	1	0	0	1	0	
1	0	1	0	1	0	0	0	0	1	
1	0	1	1	1	1	0	0	0	1	
1	1	0	0	0	1	0	1	1	0	
1	1	0	1	1	0	1	1	1	0	
1	1	1	0	1	1	0	1	0	1	
1	1	1	1	0	0	1	1	0	1	

Com a tabela vamos obter as expressões dos flip-flops e das saídas:

T1 = BO.BL.x0

BOBL/x1x0	00	01	11	10
00	0	0	0	0
01 0		0	0	0
11	0	1	1	0
10	0	0	0	0

T0 = BO.BL

BOBL/x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	0	0

 $SD = \sim x1$

BOBL/x1x0	00		01		11	10
00		1	1		0	0
01		1	1		0	0
11		1	1		0	0
10		1	1		0	0

SE = x1

BOBL/x1x0	00	01	11		10	
00	0	0		1	1	
01	0	0		1	1	
11	0	0		1	1	
10	0	0		1	1	

Após terminar tudo fomos construir o circuito no logisim e obtivemos:

Ao testar, verificámos que a entrada SD e SE vai mudando a cada dois ticks do relógio.

Conclusão

Com a elaboração deste projeto, no âmbito da cadeira de Sistemas Digitais, conseguimos aprofundar os conhecimentos obtidos ao longo do semestre.

A realização deste projeto permitiu-nos um sistematizar ideias no que diz respeito à construção de circuitos, modelos ASM, tabelas de transição de estados, implementação de circuitos no Logisim e mapas de Karnaugh.