آزمایش نهم: پیاده سازی حافظه شرکت پذیر نوع سه گانه

برای طراحی tcam، به یک حافظه با اندازه دو ثبات 16 بیتی کلید و آرگومان، ثبات 32 بیتی matched، که بیت های صفر آن نشان دهنده نابرابری داده موجود در ثبات آرگومان و داده موجود در خانه حافظه است و بیت 1 آن نشان دهنده برابری این دو است، ورودیهای write_addr، write ،read و سیگنال های reset و کلاک نیاز داریم. از آنجایی که reset، آسنکرون و است، ورودیهای active low سود، مدار، reset می شود. در این حالت enable = 0 (مربوط به فرآیند جستجو داده است) و خانه های حافظه به طوری پر می شوند که 16 بیتی پر ارزش آن ها 1 و بقیه صفر باشد. در اصل حافظه از 32 ثبات 16 بیتی تشکیل شده است. یعنی خانه های حافظه باید 16 بیتی باشند ولی از آنجایی که می توان x را هم در tcam ذخیره کرد و این وضعیت قابل سنتز نیست، پس در یک خانه حافظه مقدار ثبات کلید و آرگومان را ذخیره می کنیم.

اگر سیگنال read فعال شود، باید عملیات جستجو و پر کردن خانه های ثبات matched، انجام شود. بنابراین a comparator که مسئول بررسی برابری خانه های حافظه و آرگومان است، شروع به کار می کند. برای بررسی این برابری، کافی است بیت هایی از آرگومان با بیت متناظر آن ها در خانه حافظه مقایسه شود که که بیت مربوط به آن در ثبات کلید صفر نباشد (در این صورت اگر بیت ها برابر بودند، a = [i] matched و در غیر اینصورت برابر صفر می شود.) اگر بیت مربوطه در ثبات کلید صفر بود، نیازی به انجام مقایسه نیست. اگر یکی از بیت های حافظه X بود هم آن را با بیت متناظرش در ثبات آرگومان برابر در نظر می گیریم.

ماژول comparator، با گرفتن خانه های حافظه و k و a، برابری داده مربوط به آن خانه را با ثبات آرگومان، بیت به بیت بررسی می کند و خانه مربطه در ثبات matched را پر می کند (اگر حتی نتیجه برای یکی از بیت ها صفر شود، نتیجه کلی صفر می شود)

ماژول های comparator ،tcam و testbench، در ادامه آمده اند.

```
21 module TCAM #(parameter WORD_WIDTH = 16, parameter MEMORY_SIZE = 32)
                    (input [WORD WIDTH-1: 0] A, K,
                     input [$clog2 (MEMORY_SIZE) -1: 0] write_addr,
 23
                     input read, write, reset, clk,
output [MEMORY_SIZE-1: 0] matched);
 24
 25
 26
        reg [2*WORD WIDTH-1: 0] memory [MEMORY SIZE-1: 0];
  27
  28
        reg [2*WORD WIDTH-1: 0] search reg;
  29
  30
        reg enable;
  31
  32
        genvar i;
  33
  34
        integer j;
  35
  36
        generate
  37
           for (i = 0 ; i < MEMORY SIZE; i=i+1)
  38
               Comparator #(.WORD WIDTH(WORD WIDTH)) comparator (memory[i], {K, A}, enable, matched[i]);
  39
        endgenerate
  40
  41
        always @(posedge clk or negedge reset) begin
  42
           if (!reset) begin
  43
               enable = 1'b0;
  44
               search_reg = 0;
  45
              for (j = 0; j < MEMORY_SIZE; j=j+1)
memory[j] = {{WORD_WIDTH{1'b1}}, {WORD_WIDTH{1'b0}}};</pre>
  46
  47
           end else if (read) enable = 1'bl;
else if (write) begin
  48
  49
                 memory[write_addr] = {K, A};
  50
                  enable = 1'b0;
  51
                end
  52
  53
         end
  54
  55 endmodule
```

```
21 module Comparator # (parameter WORD_WIDTH = 14)
22
                       (input [2*WORD_WIDTH-1: 0] A, B,
23
                       input enable,
                        output reg equal);
24
25
      integer i;
26
27
28
      always @(posedge enable) begin
             equal = 1'bl;
29
             for (i = 0; i < WORD WIDTH; i=i+1)</pre>
30
               equal = equal & (!A[WORD_WIDTH + i] || !B[WORD_WIDTH + i] || A[i] == B[i]);
31
      end
32
33
34 endmodule
```

```
25 module testbench;
26
        // Inputs
27
        reg [15:0] A;
28
        reg [15:0] K;
30
        reg [4:0] write_addr;
31
        reg read;
        reg write;
32
        reg reset;
33
        reg clk = 0;
35
        // Outputs
36
        wire [31:0] matched;
37
38
        // Instantiate the Unit Under Test (UUT)
40
        TCAM uut (
           .A(A).
41
42
            .K(K),
           .write_addr(write_addr),
43
           .read(read),
45
            .write (write),
46
           .reset (reset) .
            .clk(clk),
47
48
           .matched (matched)
49
50
        always #5 clk = ~clk;
51
52
53
        initial begin
54
           A = 0;
55
           write_addr = 0;
56
           read = 0;
57
           write = 0;
58
           reset = 0;
59
60
61
           #18
           reset = 1;
62
           write_addr = 4;
write = 1;
63
64
           A = 16'b0000000011010011;
65
           K = 16'b0000000001111001;
66
67
           #10
           write_addr = 5;
A = 16'b000000001101001;
68
69
           K = 16'b00000000110000001;
70
71
           #10
72
           write_addr = 6;
           A = 16,P0000000011110111;
K = 16,P0000000011110111;
73
74
75
           #10
76
           read = 1;
77
           A = 16'b0000000011001010;
K = 16'b0000000010000000;
78
79
           #10
80
           read = 0;
           A = 16'b0000000001010101;
81
82
           K = 16'b0000000011111111;
           #10
83
           read = 1;
84
           A = 16'b000000010000101;
85
           K = 16'b000000010000000;
86
           #20
87
           $finish;
88
89
90
91
92 endmodule
```

برای تست مدار، بعد از reset شدن، داده در خانه هایی با آدرس 4، 5 و 6 نوشته می شود. سپس با تغییر دادن ثبات های A و K داده را در حافظه جستجو کرده و ثبات matched را پر می کنیم. نتایج این تست و بخش هایی از گزارش سنتز مربوط به این مدار، به شرح زیر است.

Project File:	tcam, xise	Parser Errors:	No Errors
rroject riie.	tcam.xise	raiser tirois.	140 EITOIS
Module Name:	TCAM	Implementation State:	Placed and Routed
Target Device:	xc6slx9-2tqg144	• Errors:	No Errors
Product Version:	ISE 14.7	• Warnings:	1 Warning (1 new)
Design Goal:	Balanced	• Routing Results:	All Signals Completely Routed
Design Strategy:	Xilinx Default (unlocked)	• Timing Constraints:	All Constraint Met
Environment:	System Settings	• Final Timing Score:	0 (Timing Report)

Device Utilization Summary					
Slice Logic Utilization	Used	Available	Utilization	Note(s)	
Number of Slice Registers	1,025	11,440	8%		
Number used as Flip Flops	1,025				
Number used as Latches	0				
Number used as Latch-thrus	0				
Number used as AND/OR logics	0				
Number of Slice LUTs	1,329	5,720	23%		
Number used as logic	1,329	5,720	23%		
Number using O6 output only	1,056				
Number using O5 output only	0				

Number using O5 and O6	273			
Number used as ROM	0			
Number used as Memory	0	1,440	0%	
Number of occupied Slices	368	1,430	25%	
Number of MUXCYs used	0	2,860	0%	
Number of LUT Flip Flop pairs used	1,330			
Number with an unused Flip Flop	305	1,330	22%	
Number with an unused LUT	1	1,330	1%	
Number of fully used LUT-FF pairs	1,024	1,330	76%	
Number of unique control sets	2			
Number of slice register sites lost to control set restrictions	7	11,440	1%	
Number of bonded <u>IOBs</u>	73	102	71%	
IOB Flip Flops	32			
Number of RAMB 16BWERs	0	32	0%	
Number of RAMB8BWERs	0	64	0%	
Number of BUFIO2/BUFIO2_2CLKs	0	32	0%	
Number of BUFIO2FB/BUFIO2FB_2CLKs	0	32	0%	
Number of BUFG/BUFGMUXs	2	16	12%	
Number used as BUFGs	2			
Number used as BUFGMUX	0			
Number of DCM/DCM_CLKGENs	0	4	0%	
Number of ILOGIC2/ISERDES2s	0	200	0%	

Number of IODELAY2/IODRP2/IODRP2_MCBs	0	200	0%	
Number of OLOGIC2/OSERDES2s	32	200	16%	
Number used as OLOGIC2s	32			
Number used as OSERDES2s	0			
Number of BSCANs	0	4	0%	
Number of BUFHs	0	128	0%	
Number of BUFPLLs	0	8	0%	
Number of BUFPLL_MCBs	0	4	0%	
Number of DSP48A1s	0	16	0%	
Number of ICAPs	0	1	0%	
Number of MCBs	0	2	0%	
Number of PCILOGICSEs	0	2	0%	
Number of PLL_ADVs	0	2	0%	
Number of PMVs	0	1	0%	
Number of STARTUPs	0	1	0%	
Number of SUSPEND_SYNCs	0	1	0%	
Average Fanout of Non-Clock Nets	4.37			

	Performance Summary		[-]	
Final Timing Score:	0 (Setup: 0, Hold: 0)	Pinout Data:	Pinout Report	
Routing Results:	All Signals Completely Routed	gnals Completely Routed Clock Data:		
Timing Constraints:	All Constraints Met			

Detailed Reports						E
Report Name	Status	Generated	Errors	Warnings	Infos	
<u>Synthesis</u> <u>Report</u>	Current	Thu Sep 1 02:59:43 2022	0	1 Warning (1 new)	0	
<u>Translation</u> <u>Report</u>	Current	Thu Sep 1 02:59:49 2022	0	0	0	
Map Report	Current	Thu Sep 1 03:00:06 2022	0	0	6 Infos new)	(6
Place and Route Report	Current	Thu Sep 1 03:00:15 2022	0	0	3 Infos new)	(3
Power Report						
Post-PAR Static Timing Report	Current	Thu Sep 1 03:00:19 2022	0	0	4 Infos new)	(4
Bitgen Report						

Se	L	-1		
Report Name	Status	Generated		
ISIM Simulator Log	Out of Date	Thu Sep 1 02:56:16 2022		

```
Advanced HDL Synthesis
_____
______
Advanced HDL Synthesis Report
Macro Statistics
# Registers
Flip-Flops
                               : 1057
                               : 1057
# Comparators
                               : 512
1-bit comparator equal
                               : 512
# Multiplexers
                               : 1024
1-bit 2-to-1 multiplexer
                               : 1024
_____
Final Macro Processing ...
-----
Final Register Report
Macro Statistics
# Registers
                               : 1057
Flip-Flops
                               : 1057
______
* Partition Report *
Partition Implementation Status
 No Partitions were found in this design.
-----
* Design Summary *
Top Level Output File Name
                    : TCAM.ngc
Primitive and Black Box Usage:
# BELS
                    : 1603
   INV
                    : 1
: 2
# # #
    LUT3
                    : 1024
   LUT4
                    : 256
   LUT5
                    : 224
    LUT6
# FlipFlops/Latches
# FD
                   : 1057
: 32
    FDCE
# FDPE
# Clock Buffers
                    : 512
                    : 2
   BUFG
                    : 1
    BUFGP
# IO Buffers
# IBUF
                    : 72
                    : 40
Device utilization summary:
-----
Selected Device : 6slx9tqg144-2
```

Slice Logic Utilization: Number of Slice Registers: Number of Slice LUTs:	1025 1603	out of		
Number used as Logic:	1603	out of	5720	28%
Slice Logic Distribution: Number of LUT Flip Flop pairs used: Number with an unused Flip Flop: Number with an unused LUT:	1604 579 1			36% 0%
Number of fully used LUT-FF pairs:	_	out of		
Number of unique control sets:	3	040 01	1004	03%
IO Utilization:				
Number of IOs:	73		400	740/
Number of bonded IOBs:	73	out of	102	71%
IOB Flip Flops/Latches:	32			
Specific Feature Utilization:				
Number of BUFG/BUFGCTRLs:	2	out of	16	12%
Doubition Descriptor Communication				
Partition Resource Summary:				
No Partitions were found in this de	sign.			

Timing Report

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

Clock Signal | Clock buffer(FF name) | Load |

clk | BUFGP | 1025 |

enable | BUFG | 32 |

Asynchronous Control Signals Information:

No asynchronous control signals found in this design

Timing Summary: -----Speed Grade: -2

> Minimum period: 1.579ns (Maximum Frequency: 633.312MHz) Minimum input arrival time before clock: 7.567ns Maximum output required time after clock: 4.118ns Maximum combinational path delay: No path found

```
Timing Details:
All values displayed in nanoseconds (ns)
_____
Timing constraint: Default period analysis for Clock 'clk'
 Clock period: 1.579ns (frequency: 633.312MHz)
Total number of paths / destination ports: 1024 / 1024
_____
           1.579ns (Levels of Logic = 1)
Delay:
 Source: memory_0_0 (FF)
Destination: memory_0_0 (FF)
Source Clock: clk rising
 Destination Clock: clk rising
 Data Path: memory_0_0 to memory_0_0
                                  Net
   Cell:in->out fanout Delay Delay Logical Name (Net Name)
    .....
              2 0.525 0.726 memory_0_0 (memory_0_0)
1 0.254 0.000 mux99211 (memory[0][31]_K[15]_mux_32_OUT<0>)
0.074 memory 0 0
    FDCE:C->O
    LUT3:I2->0
   0.074 memory_0_0
                    1.579ns (0.853ns logic, 0.726ns route)
(54.0% logic, 46.0% route)
_____
Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'
 Total number of paths / destination ports: 9220 / 3075
```