Teoretické základy informatiky

Vypočítateľnosť

Mgr. Daniela Chudá, PhD., chuda@fiit.stuba.sk

Turingov stroj (opakovanie)

Definícia:

Nedeterministický Turingov stroj je šestica $A = (K, \Sigma, \Gamma, \delta, q_0, F)$, kde K je konečná množina stavov, Σ je vstupná abeceda, Γ ja pracovná abeceda ($\Sigma \subseteq \Gamma; B \in \Gamma; B - blank$) δ je prechodová funkcia $\delta: K \times \Gamma \to 2^{K \times \Gamma \times \{-1,0,1\}}$, $q_0 \in K$ je počiatočný stav, $F \subseteq K$ je množina koncových stavov.

Poznámka:

Ak platí: $\#(\delta(q,a)) \le 1$, hovoríme, že Turingov stroj je Deterministický.

Algoritmizovateľ nosť

Teória vypočítateľ nosti skúma otázky **algoritmizovateľ nosti** na rôznych výpočtových modeloch.

Pojem vypočítateľného problému sa používa ako synonymum pre algoritmizovateľný problém.

Exaktné vymedzenie samotného pojmu **algoritmus** je však vysoko netriviálne. Kvôli tomu sa v teórii, ktorá sa zaoberá vypočítateľnosťou skúmajú rôznorodé problémy, z ktorých najdôležitejšie sú nasledujúce:

- algoritmus a jeho vlastnosti,
- problémy, ktoré sa dajú algoritmizovať a tie, ktoré sa algoritmizovať nedajú.

Výpočtové modely

Kľúčom k riešeniu otázok algoritmizovateľnosti sú rôzne výpočtové modely, ktoré vznikli preto, aby čo možno najvernejšie reprezentovali pojmy algoritmus a počítač. Ich vlastnosti a vzájomné vzťahy (ekvivalencia) dokážu v značnej miere odpovedať na uvedené otázky.

Budeme zaoberať tromi vzájomne ekvivaletnými výpočtovými modelmi. Sú to nasledujúce modely:

- Turingov stroj,
- Počítadlový stroj,
- stroj RAM.

T-vypočítateľná funkcia

Definícia: T-vypočítateľná funkcia

 $Nech \ k \in \mathbb{N}^+$. Funkcia $f: \mathbb{N}^k \to \mathbb{N}$ sa nazýva T-vypočítateľná funkcia, ak existuje Turingov stroj A, ktorý rozpoznáva jazyk

$$L = \{ 1^{x_1} \mathbf{Y} 1^{x_2} \mathbf{Y} \dots \mathbf{Y} 1^{x_k} \$ 1^{f(\overline{x})} \}$$

pre všetky $\overline{x} = (x_1, \dots, x_k) \in \mathbb{N}^k$.

Príklady T-vypočítateľných funkcií:

- lineárne funkcie,
- polynomiálne funkcie,
- exponenciálne funkcie,
- logaritmické funkcie,
- lineárne kombinácie T-vypočítateľných funkcií.

Príklad: T-vypočítateľná funkcia f(a,b)=(a+b)

Zadanie:

Dokážte, že funkcia f(a,b)=(a+b) je T-vypočítateľná.

Vstup:

11¢111\$

Výstup:

$$11 ¢ 111 $11111$$

a b $f(a,b)=(a+b)$

Neformálne riešenie:

- z a okopírovať každú 1 za \$
 z b okopírovať každú 1 za \$

Príklad: T-vypočítateľná funkcia f(a,b)=(a+b)

Formálne

$$copy \ a \begin{cases} \delta(q_0, 1) = (q_1, \underline{1}, R) \\ \delta(q_1, x) = (q_1, x, R) \\ \delta(q_1, B) = (q_2, 1, L) \\ \delta(q_2, x) = (q_2, x, L) \\ \delta(q_2, \underline{1}) = (q_0, \underline{1}, R) \end{cases} x \in \{1, \mathcal{C}, \$\}$$

musím prejsť do q_3 a nie q_0 , lebo by spracoval nekonečný cyklus – nekonečné množstvo úsekov $11...1 \not\subset 11...1
onumber 11...1 \not\subset 11...1
onumber 11...1
onumbe$

$$\delta(q_{0}, \mathcal{C}) = (q_{3}, \mathcal{C}, R)$$

$$\begin{cases}
\delta(q_{3}, 1) = (q_{4}, \underline{1}, R) \\
\delta(q_{4}, y) = (q_{4}, y, R) \\
\delta(q_{4}, B) = (q_{5}, 1, L) \\
\delta(q_{5}, y) = (q_{5}, y, L) \\
\delta(q_{5}, \underline{1}) = (q_{3}, \underline{1}, R)
\end{cases}$$

$$\delta(q_{3}, \mathcal{S}) = (q_{6}, \mathcal{S}, R)$$

$$F \in \{q_{6}\}$$

Simulácia T-vypočítateľnej funkcie **f(a,b)=(a+b)** na simulátore TS

Ďakujem za pozornosť. chuda@fiit.stuba.sk