APMA 2550, Homework 3: Due Nov. 10

Problem 1 Consider the equation (here d = 1 and m = 1).

$$u_t(x,t) = a\partial_x^s u(x,t)$$
$$u(x,0) = f(x)$$

where is s is a positive integer and a is a constant. What does a have to be for the problem to be stable?

Problem 2

a) Suppose that d > 1 and m = 1 and consider the problem

$$u_t(x,t) = Pu = \sum_{\ell=1}^d \sum_{j=1}^d \partial_{x_\ell} (a_{\ell j}(x) \partial_{x_j} u(x,t))$$
$$u(x,0) = f(x).$$

Let A the $d \times d$ matrix with entries $(a_{\ell j})$. We assume that the coefficients are 2π -periordic in each variable. Assume that A is symmetric and uniformly positive definite. That is, it is symmetric and there exists $\theta > 0$ for every $v \in \mathbb{R}^d$

$$v^T A(x) v \ge \theta v^T v \quad \forall v \in \mathbb{R}^d, \forall x.$$

Show that Pu is semi-bounded. Hint: you should show that

$$\langle v, Av \rangle \ge \theta \langle v, v \rangle \quad \forall v \in \mathbb{C}^d, \forall x.$$

b) Again assuming that d > 1 and m = 1 consider the problem:

$$u_t(x,t) = \sum_{\ell=1}^d \sum_{j=1}^d \partial_{x_\ell} (a_{\ell j}(x) \partial_{x_j} u(x,t)) + \sum_{j=1}^d \beta_j \partial_{x_j} u.$$

$$u(x,0) = f(x).$$

Where the coefficients are 2π periodic and uniformly bounded. That is, there exists a constant C so that $|\beta_i(x)| \leq C$, $\forall x$. Show that this problem is stable.

Problem 3 Consider the Laplace operator $\Delta = \partial_{x_1}^2 + \cdots + \partial_{x_d}^2$. Let $d \ge 1$ and m = 1.

- a) Show that $(\Delta u, w) = -\sum_{j=1}^{d} (\partial_{x_j} u, \partial_{x_j} w)$ when u and w are smooth 2π in each variable. Also, show that $(\Delta u, w) = (u, \Delta w)$.
 - b) Let s be a positive integer. For what value r is $P = (-1)^r \Delta^s$ semi-bounded?
 - c) Can you find $\hat{P}(i\omega)$ where $P = (-1)^r \Delta^s$?

Problem 4 Let d=1 and $m\geq 1$. Consider the problem

$$u_t(x,t) = A\partial_x u(x,t)$$
$$u(x,0) = f(x)$$

Here A is a constant $m \times m$ matrix. Suppose we can write $A = \Psi \Lambda \Psi^{-1}$ where Λ is a diagonal matrix.

a) In the case $A = \Lambda$ find the solution operator $S(t, \tau)$.

b) Again in the case $A = \Lambda$ consider the problem

$$u_t(x,t) = A\partial_x u(x,t) + F(x,t)$$

$$u(x,0) = f(x)$$

Using Duhamel's principle write out the solution for u(x,t). In particular, what is the representation of $u_1(x,t)$?

c) In the more general case when $A = \Psi \Lambda \Psi^{-1}$. Find the solution operator $S(t,\tau)$. Hint: Let $v(x,t) = \Psi^{-1}u(x,t)$. Which equation does v(x,t) satisfy?