

Maximum Flows

Definitions

- Network = directed weighted graph with source node *s* and sinknode *t*
- \square s has no incoming edges, t has no outgoing edges
- \square Weight c_e of an edge e = capacity of e (nonnegative!)

Definitions

- \square Flow = function f_e on the edges, $0 \le f_e \le c_e \forall e$ For each node: total incoming flow = total outgoing flow
- \square Value of a flow = total outgoing flow from s
- Goal: find a flow with maximum value

Applications

- ☐ Oil pipes
- Traffic flows on highways
- Machine scheduling. Example:

Job	1	2	3	4
Size	1.5	1.25	2.1	3.6
Release date	3	1	3	5
Due date	5	4	7	9

Suppose we have three machines. Does a feasible schedule exist?

Machine scheduling as a maxflow problem

- \Box First layer of nodes contains the jobs Each arc from s to a job has capacity equal to that job size
- Second layer of nodes contains intervals without release dates or due dates

Arc from job to admissible interval I has capacity equal to length of interval $\ell(I)$

Arc from each interval to t has capacity $3\ell(I)=$ total amount of work we can do in this interval (there are 3 machines)

Matrix rounding

3.1	6.8	7.3	17.2
9.6	2.4	0.7	12.7
3.6	1.2	6.5	11.3
16.3	10.4	14.5	

- Matrix with real numbers, column sums, row rums
- We can round each number up or down
- ☐ We want to get a *consistent* roundingsum of rounded numbers in each row = rounded row sum

Matrix rounding as a feasible flow problem

Feasible flow in this network = consistent rounding

Feasible circulation: for each node i, incoming flow minus outgoing flow = 0. Upper and lower bounds on flow on each arc New flow variables: *subtract* lower bound from all flow variables and constraints Now, for each node i, incoming flow minus outgoing flow = b(i)

Feasible circulation: for each node i, incoming flow minus outgoing flow = 0.

Upper and lower bounds on flow on each arc

New flow variables: *subtract lower bound* from all flow variables

Now, for each node i, incoming flow minus outgoing flow =b(i)

- \square Add new sink s' and new source t'
- \square For each node i with b(i)>0, add arc with capacity b(i) from s'
- \square For each node i with b(i) < 0, add arc with capacity -b(i) to t'
- \square Find maximum flow from s' to t'

- If we find a flow that saturates all source and sink arcs, we have a feasible flow in the original network
- If the maximum flow does not saturate those edges, no feasible flow exists!

Option 1: linear programming

- \square Flow variables x_e for each edge e
- Flow on each edge is at most its capacity
- Incoming flow at each vertex = outgoing flow from this vertex
- ☐ Maximize outgoing flow from starting vertex

We can do better!

Algorithms 1956–now

Year	Author	Running time	
1956	Ford-Fulkerson	O(mnU)	
1969	Edmonds-Karp	$O(m^2n)$	
1970	Dinic	$O(mn^2)$	
1973	Dinic-Gabow	$O(mn\log U)$	n = number of nodes
1974	Karzanov	$O(n^3)$	m = number of arcs
1977	Cherkassky	$O(n^2\sqrt{m})$	U= largest capacity
1980	Galil-Naamad	$O(mn\log^2 n)$	
1983	Sleator-Tarjan	$O(mn\log n)$	

Year	Author	Running time
1986	Goldberg-Tarjan	$O(mn\log(n^2/m))$
1987	Ahuja-Orlin	$O(mn + n^2 \log U)$
1987	Ahuja-Orlin-Tarjan	$O(mn\log(2+n\sqrt{\log U}/m))$
1990	Cheriyan-Hagerup-Mehlhorn	$O(n^3/\log n)$
1990	Alon	$O(mn + n^{8/3}\log n)$
1992	King-Rao-Tarjan	$O(mn + n^{2+e})$
1993	Philipps-Westbrook	$O(mn\log n/\log \frac{m}{n} + n^2\log^{2+\varepsilon} n)$
1994	King-Rao-Tarjan	$O(mn\log n/\log \frac{m}{n\log n})$ if $m \ge 2n\log n$
1997	Goldberg-Rao	$O(min\{m^{1/2}, n^{2/3}\}m\log(n^2/m)\log U)$

Augmenting paths

Find a path from s to t such that each edge has some spare capacity

On this path, fill up the edge with the smallest spare capacity

Adjust capacities for all edges (create residual graph) and repeat

Ford Fulkerson Algorithm

```
\begin{aligned} &\textbf{Function} \ \mathsf{FFMaxFlow}(G = (V, E), s, t, \mathsf{cap} : E \to \mathbb{R}) : E \to \mathbb{R} \\ &f \coloneqq 0 \\ &\textbf{while} \ \exists \mathsf{path} \ p = (s, \dots, t) \ \mathsf{in} \ G_f \textbf{do} \\ &\text{augment} \ f \ \mathsf{along} \ p \\ &\textbf{return} \ f \end{aligned} \mathsf{time} \ \mathsf{O}(m \mathsf{val}(f))
```


A Bad Example for Ford Fulkerson

A Bad Example for Ford Fulkerson

A Bad Example for Ford Fulkerson

Let
$$r = \frac{\sqrt{5} - 1}{2}$$
.

Consider the graph

And the augmenting paths

$$p_0 = \langle s, c, b, t \rangle$$

$$p_1 = \langle s, a, b, c, d, t \rangle$$

$$p_2 = \langle s, c, b, a, t \rangle$$

$$p_3 = \langle s, d, c, b, t \rangle$$

The sequence of augmenting paths $p_0(p_1, p_2, p_1, p_3)^*$ is an infinite sequence of positive flow augmentations.

The flow value does not converge to the maximum value 9.

Blocking Flows

 f_b is a blocking flow in H if

$$\forall \text{paths } p = \langle s, \dots, t \rangle : \exists e \in p : f_b(e) = \text{cap}(e)$$

Dinitz Algorithm

```
Function DinitzMaxFlow(G=(V,E),s,t,\operatorname{cap}:E\to\mathbb{R}):E\to\mathbb{R} f:=0 while \exists \operatorname{path} \ p=(s,\dots,t) \ \operatorname{in} \ G_f \operatorname{do} d=G_f.reverseBFS(t):V\to\mathbb{N} L_f=(V,\left\{(u,v)\in E_f:d(v)=d(u)-1\right\}) // layer graph find a blocking flow f_b in L_f augment f+=f_b return f
```



```
Function blockingFlow(H = (V, E)): E \to \mathbb{R}
     p = \langle s \rangle: Path v = \text{NodeRef} : p.\text{last}()
     f_b = 0
     loop
                                                                           // Round
           if v = t then
                                                                 // breakthrough
                \delta := \min \left\{ \operatorname{cap}(e) - f_b(e) : e \in p \right\}
                foreach e \in p do
                      f_b(e) + = \delta
                      if f_b(e) = \operatorname{cap}(e) then remove e from E
                p := \langle s \rangle
           else if \exists e = (v, w) \in E then p.pushBack(w)
                                                                          // extend
                                                                             // done
           else if v = s then return f_b
           else delete the last edge from p in p and E
                                                                           // retreat
```


Blocking Flows Analysis 1

- \square running time is $\#_{extends} + \#_{retreats} + n \cdot \#_{breakthroughs}$
- \square #_{breakthroughs} $\leq m$, since at least one edge is saturated
- \square #_{retreats} \leq m, since one edge is removed
- $\square \#_{extends} \le \#_{retreats} + n \cdot \#_{breakthroughs},$ since a retreat cancels one extend and a breakthrough cancels n extends

time is O(m+nm) = O(nm)

Blocking Flows Analysis 2

Unit capacities:

breakthroughs saturates all edges on p, i.e., amortized constant cost per edge.

time O(m+n)

Blocking Flows Analysis 3

Dynamic trees: breakthrough (!), retreat, extend in time O(log n)

time
$$O((m+n)\log n)$$

Theory alert: In practice, this seems to be slower (few breakthroughs, many retreat, extend ops.)

Dinitz Analysis 1

Lemma 1. d(s) increases by at least one in each round.

Beweis. not here

Dinitz Analysis 2

- $\square \leq n$ rounds
- \square time O(mn) each

time $O(mn^2)$ (strongly polynomial)

time $O(mn \log n)$ with dynamic trees

Dinitz Analysis 3

unit capacities

Lemma 2. At most $2\sqrt{m}$ rounds:

Beweis. Consider round $k = \sqrt{m}$.

Any *s*-*t* path contains $\geq k$ edges

FF can find $\leq m/k = \sqrt{m}$ augmenting paths

Total time: $O((m+n)\sqrt{m})$

more detailed analysis: $O(m \min \{m^{1/2}, n^{2/3}\})$

 $\forall v \in V : \min \{ indegree(v), outdegree(v) \} = 1 : time:$

 $O((m+n)\sqrt{n})$

Disadvantage of augmenting paths algorithms

Preflow-Push Algorithms

Preflow f: a flow where the flow conservation constraint is relaxed to excess(v) > 0.

```
Procedure push(e = (v, w), \delta)
assert \delta > 0
assert residual capacity of e \geq \delta
assert excess(v) \geq \delta
excess(v) - = \delta
if f(e) > 0 then f(e) + = \delta
else f(\text{reverse}(e)) - = \delta
```


Level Function

Idea: make progress by pushing towards t

Maintain

an approximation d(v) of the BFS distance from v to t in G_f .

invariant d(t) = 0

invariant d(s) = n

invariant $\forall (v, w) \in E_f : d(v) \le d(w) + 1$ // no steep edges

Edge directions of e = (v, w)

steep: d(w) < d(v) - 1

downward: d(w) < d(v)

horizontal: d(w) = d(v)

upward: d(w) > d(v)


```
Procedure genericPreflowPush(G=(V,E), f)
     forall e = (s, v) \in E do push(e, cap(e))
                                                                           // saturate
     d(s) := n
     d(v) := 0 for all other nodes
     while \exists v \in V \setminus \{s,t\} : \mathsf{excess}(v) > 0 \, \mathsf{do} // active node
           if \exists e = (v, w) \in E_f : d(w) < d(v) then // eligible edge
                 choose some \delta \leq \min \{ \operatorname{excess}(v), \operatorname{resCap}(e) \}
                 \mathsf{push}(e,\delta)
                                                           // no new steep edges
           else d(v)++
                                              // relabel. No new steep edges
Obvious choice for \delta : \delta = \min \{ \operatorname{excess}(v), \operatorname{resCap}(e) \}
Saturating push: \delta = \operatorname{resCap}(e)
```

nonsaturating push: $\delta < \operatorname{resCap}(e)$

To be filled in: How to select active nodes and eligible edges?

Lemma 3.

 $\forall \ active \ nodes \ v : \mathsf{excess}(v) > 0 \Rightarrow \exists \ path \ \langle v, \dots, s \rangle \in G_f$

Intuition: what got there can always go back.

Beweis.
$$S := \{u \in V : \exists \text{ path } \langle v, \dots u \rangle \in G_f\}, T := V \setminus S.$$
 Then

$$\sum_{u \in S} excess(u) = \sum_{e \in E \cap (T \times S)} f(e) - \sum_{e \in E \cap (S \times T)} f(e),$$

$$\forall (u, w) \in E_f : u \in S \Rightarrow w \in S$$
 by Def. of G_f , $S \Rightarrow \forall e = (u, w) \in E \cap (T \times S) : f(e) = 0$ Otherwise $(w, u) \in E_f$ Hence, $\sum_{u \in S} excess(u) \leq 0$

One the negative excess of s can outweigh excess (v) > 0.

Hence $s \in S$.

Lemma 3.

 $\forall \ active \ nodes \ v : \mathsf{excess}(v) > 0 \Rightarrow \exists \ path \ \langle v, \dots, s \rangle \in G_f$

Intuition: what got there can always go back.

Beweis.
$$S := \{u \in V : \exists \text{ path } \langle v, \dots u \rangle \in G_f\}, T := V \setminus S.$$
 Then

$$\sum_{u \in S} excess(u) = \sum_{e \in E \cap (T \times S)} f(e) - \sum_{e \in E \cap (S \times T)} f(e),$$

$$\forall (u, w) \in E_f : u \in S \Rightarrow w \in S$$
 by Def. of G_f , $S \Rightarrow \forall e = (u, w) \in E \cap (T \times S) : f(e) = 0$ Otherwise $(w, u) \in E_f$ Hence, $\sum_{u \in S} excess(u) \leq 0$

One the negative excess of s can outweigh excess (v) > 0.

Hence $s \in S$.

Lemma 4.

$$\forall v \in V : d(v) < 2n$$

Beweis. Suppose v is lifted to d(v) = 2n.

By Lemma 3, there is a (simple) path p to s in G_f .

p has at most n-1 nodes

$$d(s) = n$$
.

Hence d(v) < 2n. Contradiction.

Partial Correctness

Lemma 5. When genericPreflowPush terminates f is a maximal flow.

Beweis.

f is a flow since $\forall v \in V \setminus \{s,t\}$: excess(v) = 0.

To show that f is maximal, it suffices to show that

 $\not\exists$ path $p = \langle s, ..., t \rangle \in G_f$ (Max-Flow Min-Cut Theorem):

Since d(s) = n, d(t) = 0, p would have to contain steep edges.

That would be a contradiction.

Lemma 6. # Relabel operations $\leq 2n^2$

Beweis. $d(v) \leq 2n$, i.e., v is relabeled at most 2n time.

Hence, at most $|V| \cdot 2n = 2n^2$ relabel operations.

Lemma 7. # saturating pushes $\leq nm$

Beweis.

We show that there are at most n sat. pushes over any edge e = (v, w).

A saturating push(e, δ) removes e from E_f .

Only a push on (w, v) can reinsert e into E_f .

For this to happen, w must be lifted at least two levels.

Hence, at most 2n/2 = n saturating pushes over (v, w)

Lemma 8. # nonsaturating pushes = $O(n^2m)$ if $\delta = \min \{ excess(v), resCap(e) \}$ for arbitrary node and edge selection rules. (arbitrary-preflow-push)

Beweis.
$$\Phi := \sum_{\{v:v \text{ is active}\}} d(v)$$
. (Potential)

 $\Phi = 0$ initially and at the end (no active nodes left!)

Operation	$ig \Delta(\Phi)$	How many times?	Total effect
relabel	1	$\leq 2n^2$	$\leq 2n^2$
saturating push		$\leq nm$	$\leq 2n^2m$
nonsaturating push	≤ -1		

$$\Phi \ge 0$$
 always.

Searching for Eligible Edges

Every node v maintains a currentEdge pointer to its sequence of outgoing edges in G_f .

invariant no edge e = (v, w) to the left of currentEdge is eligible

Reset currentEdge at a relabel

 $(\leq 2n \times)$

Invariant cannot be violated by a push over a reverse edge e'=(w,v) since this only happens when e' is downward,

i.e., *e* is upward and hence not eligible.

Lemma 9.

Total cost for searching
$$\leq \sum_{v \in V} 2n \cdot \text{degree}(v) = 4nm = O(nm)$$

Satz 10. Arbitrary Preflow Push finds a maximum flow in time $O(n^2m)$.

Beweis.

Lemma 5: partial correctness

Initialization in time O(n+m).

Maintain set (e.g., stack, FIFO) of active nodes.

Use reverse edge pointers to implement push.

Lemma 6: $2n^2$ relabel operations

Lemma 7: nm saturating pushes

Lemma 8: $O(n^2m)$ nonsaturating pushes

Lemma 9: O(nm) search time for eligible edges

Total time $O(n^2m)$

Examine active nodes in first-in, first-out order

Node examination = sequence of saturating pushes followed by nonsaturating push or relabel

Examine active nodes in first-in, first-out order

Node examination = sequence of saturating pushes followed by nonsaturating push or relabel

Partition sequence of examinations into phases

Phase 1 = examination of nodes that became active in preprocessing

Phase 2 = examination of nodes that became active in phase 1

. . .

Phase i = examination of nodes that became active in phase i-1

At most *n* nonsaturating pushes per phase. But how many phases?

Node examination = sequence of saturating pushes followed by nonsaturating push or relabel

Phase i = examination of nodes that became active in phase i-1

$$\Phi := \max_{\{v:v \text{ is active}\}} d(v). \tag{Potential}$$

 $\Phi = 0$ initially and at the end (no active nodes left!)

 $\Phi \geq 0$ always.

 $\Phi = n$ after preprocessing (pushing flow out of s): d(s) = n

How does Φ change in a phase?

$$\Phi := \max_{\{v:v \text{ is active}\}} d(v). \tag{Potential}$$

- ☐ At least one relabel operation in a phase:
 - $\Delta(\Phi) \leq$ maximum increase of any distance label Total increase in Φ over all phases $\leq 2n^2$
- $\hfill \square$ No relabel operation: all excess moves to nodes with smaller distance labels Φ decreases by at least 1

There cannot be more than $2n^2+n$ phases before $\Phi=0$ No active nodes left \Rightarrow FIFO-PP runs in $O(n^3)$

Modified FIFO preflow push

FIFO: examine nodes in FIFO order

MFIFO: when a node is relabeled, put it first in the list

MFIFO does not leave a node until all excess is pushed out of it (FIFO leaves a node when it is relabeled)

Bucket-Queues

Eine Bucket-Queue ist ein kreisförmiges Array B von C+1 doppelt gelinkten Listen

Ein Knoten mit aktuelle Distanz d[v] wird gespeichert bei Index

$$d[v] \mod (C+1)$$

Alle Knoten im gleichen Bucket haben die gleiche Distanz d[v]!

Bucket queue with C = 9

Content=

Highest Level Preflow Push

Always select active nodes that maximize d(v)

Use bucket priority queue

(insert, increaseKey, deleteMax)

not monotone (!) but relabels "pay" for scan operations

Lemma 11. At most $n^2\sqrt{m}$ nonsaturating pushes.

Beweis. later

Satz 12. Highest Level Preflow Push finds a maximum flow in time $O(n^2\sqrt{m})$.

Proof of Lemma 11

$$K := \sqrt{m} \qquad \qquad \text{tuning parameter}$$

$$d'(v) := \frac{|\{w : d(w) \le d(v)\}|}{K} \qquad \text{scaled number of dominated nodes}$$

$$\Phi := \sum_{\{v : v \text{ is active}\}} d'(v). \qquad \qquad \text{(Potential)}$$

$$d^* := \max\{d(v) : v \text{ is active}\} \qquad \qquad \text{(highest level)}$$

phase:= all pushes between two consecutive changes of d^*

expensive phase: more than K pushes

cheap phase: otherwise

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.
- 4. a nonsaturating push does not increase Φ .
- 5. an expensive phase with $Q \ge K$ nonsaturating pushes decreases Φ by at least Q.

Lemma 6+Lemma 7+2.+3.+4.: \Rightarrow total possible decrease $\leq (2n^2 + nm)\frac{n}{K} + \frac{n^2}{K}$

Operation	Amount
Relabel	$2n^2$
Sat.push	nm

This
$$+5.: \leq \frac{2n^3+n^2+mn^2}{K}$$
 nonsaturating pushes in expensive phases This $+1.: \leq \frac{2n^3+n^2+mn^2}{K} + 4n^2K = O\left(n^2\sqrt{m}\right)$ nonsaturating pushes overall for $K = \sqrt{m}$

1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together

We first show that there are at most $4n^2$ phases (changes of $d^*=\max\{d(v):v\text{ is active}\}$). $d^*=0$ initially, $d^*\geq 0$ always.

Only relabel operations increase d^* , i.e.,

 $\leq 2n^2$ increases by Lemma 6 and hence

 $\leq 2n^2$ decreases

 $\leq 4n^2$ changes overall

By definition of a cheap phase, it has at most K pushes.

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.

Let *v* denote the relabeled or activated node.

$$d'(v) := \frac{|\{w : d(w) \le d(v)\}|}{K} \le \frac{n}{K}$$

A relabel of v can increase only the d'-value of v.

A saturating push on (u, w) may activate only w.

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.
- 4. a nonsaturating push does not increase Φ .

v is deactivated (excess(v) is now 0)

w may be activated

but $d'(w) \le d'(v)$ (we do not push flow away from the sink)

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.
- 4. a nonsaturating push does not increase Φ .
- 5. an expensive phase with $Q \ge K$ nonsaturating pushes decreases Φ by at least Q.

During a phase d^* remains constant

Each nonsat, push decreases the number of nodes at level d^*

Hence, $|\{w:d(w)=d^*\}| \geq K$ during an expensive phase

Each nonsat. push across (v, w) decreases Φ by

$$\geq d'(v) - d'(w) \geq |\{w : d(w) = d^*\}| / K \geq K / K = 1$$

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.
- 4. a nonsaturating push does not increase Φ .
- 5. an expensive phase with $Q \ge K$ nonsaturating pushes decreases Φ by at least Q.

Lemma 6+Lemma 7+2.+3.+4.: \Rightarrow total possible decrease $\leq (2n^2 + nm)\frac{n}{K} + \frac{n^2}{K}$

Operation	Amount
Relabel	$2n^2$
Sat.push	nm

This
$$+5.: \leq \frac{2n^3+n^2+mn^2}{K}$$
 nonsaturating pushes in expensive phases This $+1.: \leq \frac{2n^3+n^2+mn^2}{K} + 4n^2K = O\left(n^2\sqrt{m}\right)$ nonsaturating pushes overall for $K=\sqrt{m}$

Heuristic Improvements

Naive algorithm has best case $\Omega(n^2)$. Why? We can do better.

aggressive local relabeling:

 $d(v) \coloneqq 1 + \min\left\{d(w) : (v, w) \in G_f\right\}$

(like a sequence of relabels)

Heuristic Improvements

Naive algorithm has best case $\Omega\left(n^2\right)$. Why? We can do better.

aggressive local relabeling: d(v):= $1 + \min \{d(w) : (v, w) \in G_f\}$ (like a sequence of relabels)

global relabeling: (initially and every O(m) edge inspections): $d(v) := G_f$.reverseBFS(t) for nodes that can reach t in G_f .

Special treatment of nodes with $d(v) \ge n$. (Returning flow is easy)

Gap Heuristics. No node can connect to t across an empty level:

if $\{v: d(v) = i\} = \emptyset$ then foreach v with d(v) > i do d(v) := n

Experimental results

We use four classes of graphs:

- \square Random: n nodes, 2n+m edges; all edges (s,v) and (v,t) exist
- Cherkassky and Goldberg (1997) (two graph classes)
- Ahuja, Magnanti, Orlin (1993)

Timings: Random Graphs

Rule	BASIC	HL	LRH	GRH	GAP	LEDA
FF	5.84	6.02	4.75	0.07	0.07	_
	33.32	33.88	26.63	0.16	0.17	
HL	6.12	6.3	4.97	0.41	0.11	0.07
	27.03	27.61	22.22	1.14	0.22	0.16
MF	5.36	5.51	4.57	0.06	0.07	
	26.35	27.16	23.65	0.19	0.16	_

 $n \in \{1000, 2000\}, m = 3n$

FF=FIFO node selection, HL=hightest level, MF=modified FIFO $HL=d(v) \geq n$ is special,

Timings: CG1

Rule	BASIC	HL	LRH	GRH	GAP	LEDA
FF	3.46	3.62	2.87	0.9	1.01	
	15.44	16.08	12.63	3.64	4.07	
HL	20.43	20.61	20.51	1.19	1.33	8.0
	192.8	191.5	193.7	4.87	5.34	3.28
MF	3.01	3.16	2.3	0.89	1.01	
	12.22	12.91	9.52	3.65	4.12	

 $n \in \{1000, 2000\}, m = 3n$

FF=FIFO node selection, HL=hightest level, MF=modified FIFO $HL=d(v) \geq n$ is special,

Timings: CG2

Rule	BASIC	HL	LRH	GRH	GAP	LEDA
FF	50.06	47.12	37.58	1.76	1.96	
	239	222.4	177.1	7.18	8	
HL	42.95	41.5	30.1	0.17	0.14	0.08
	173.9	167.9	120.5	0.36	0.28	0.18
MF	45.34	42.73	37.6	0.94	1.07	
	198.2	186.8	165.7	4.11	4.55	

 $n \in \{1000, 2000\}, m = 3n$

FF=FIFO node selection, HL=hightest level, MF=modified FIFO $HL=d(v) \geq n$ is special,

Timings: AMO

Rule	BASIC	HL	LRH	GRH	GAP	LEDA
FF	12.61	13.25	1.17	0.06	0.06	_
	55.74	58.31	5.01	0.1399	0.1301	
HL	15.14	15.8	1.49	0.13	0.13	0.07
	62.15	65.3	6.99	0.26	0.26	0.14
MF	10.97	11.65	0.04999	0.06	0.06	
	46.74	49.48	0.1099	0.1301	0.1399	

 $n \in \{1000, 2000\}, m = 3n$

FF=FIFO node selection, HL=hightest level, MF=modified FIFO $HL=d(v) \geq n$ is special,

Asymptotics, $n \in \{5000, 10000, 20000\}$

Gen	Rule	GRH			GAP			LEDA		
rand	FF	0.16	0.41	1.16	0.15	0.42	1.05	_	_	
	HL	1.47	4.67	18.81	0.23	0.57	1.38	0.16	0.45	1.09
	MF	0.17	0.36	1.06	0.14	0.37	0.92	_		
CG1	FF	3.6	16.06	69.3	3.62	16.97	71.29	_		
	HL	4.27	20.4	77.5	4.6	20.54	80.99	2.64	12.13	48.52
	MF	3.55	15.97	68.45	3.66	16.5	70.23	_		
CG2	FF	6.8	29.12	125.3	7.04	29.5	127.6	_		
	HL	0.33	0.65	1.36	0.26	0.52	1.05	0.15	0.3	0.63
	MF	3.86	15.96	68.42	3.9	16.14	70.07	_		
AMO	FF	0.12	0.22	0.48	0.11	0.24	0.49	_		
	HL	0.25	0.48	0.99	0.24	0.48	0.99	0.12	0.24	0.52
	MF	0.11	0.24	0.5	0.11	0.24	0.48			

Minimum Cost Flows

Define G = (V, E), f, excess, and cap as for maximum flows.

Let $c: E \to \mathbb{R}$ denote the edge costs.

Consider supply : $V \to \mathbb{R}$ with $\sum_{v \in V} \operatorname{supply}(v) = 0$. A negative supply is called a demand.

Objective: minimize $c(f) := \sum_{e \in E} f(e)c(e)$

subject to

 $\forall v \in V : \mathsf{excess}(v) = -\mathsf{supply}(v)$ flow conservation constraints $\forall e \in E : f(e) \leq \mathsf{cap}(e)$ capacity constraints

The Cycle Canceling Algorithm for Min-Cost Flow

Residual cost: Let $e=(v,w)\in G_f$, e'=(w,v). $c_f(e)=-c(e')$ if $e'\in E$, f(e')>0, $c_f(e)=c(e)$ otherwise.

Lemma 13. A feasible flow is optimal iff

$$\not\exists cycle \ C \in G_f : c_f(C) < 0$$

Beweis. not here

A pseudopolynomial Algorithm:

f:= any feasible flow// Exercise: solve this problem using maximum flows invariant f is feasible

while \exists cycle $C: c_f(C) < 0$ do augment flow around C

Korollar 14 (Integrality Property:). If all edge capacities are integral then there exists an integral minimum cost flow.

Finding a Feasible Flow

set up a maximum flow network G^* starting with the min cost flow problem G:

- Add a vertex s
- Add a vertex t
- $\square \ \forall v \in V \text{ with supply}(v) < 0, \text{ add edge } (v,t) \text{ with cap. } -\text{supply}(v)$
- \square find a maximum flow f in G^*

f saturates the edges leaving $s\Rightarrow f$ is feasible for G otherwise there cannot be a feasible flow f' because f' could easily be converted into a flow in G^* with larger value.

Better Algorithms

Satz 15. The min-cost flow problem can be solved in time $O(mn \log n + m^2 \log \max_{e \in E} \operatorname{cap}(e))$.

For details take the courses in optimization or network flows.

Special Cases of Min Cost Flows

Transportation Problem: $\forall e \in E : \operatorname{cap}(e) = \infty$

Minimum Cost Bipartite Perfect Matching:

A transportation problem in a bipartite graph $G=(A\cup B, E\subseteq A\times B)$ with

 $\begin{aligned} &\operatorname{supply}(v) = 1 \text{ for } v \in A, \\ &\operatorname{supply}(v) = -1 \text{ for } v \in B. \end{aligned}$

An integral flow defines a matching

Reminder: $M \subseteq E$ is a matching if (V, M) has maximum degree one.

A rule of Thumb: If you have a combinatorial optimization problem. Try to formulate it as a shortest path, flow, or matching problem. If this fails its likely to be NP-hard.

Maximum Weight Matching

Generalization of maximum cardinality matching. Find a matching

$$M^* \subseteq E$$
 such that $w(M^*) := \sum_{e \in M^*} w(e)$ is maximized

Applications: Graph partitioning, selecting communication partners...

Satz 16. A maximum weighted matching can be found in time $O(nm + n^2 \log n)$. [Gabow 1992]

Approximate Weighted Matching

Satz 17. There is an O(m) time algorithm that finds a matching of weight at least $\max_{matching M} w(M)/2$. [Drake Hougardy 2002]

The algorithm is a 1/2-approximation algorithm.

Approximate Weighted Matching Algorithm

```
M' := \emptyset
```

invariant M' is a set of simple paths

```
while E \neq \emptyset do  // find heavy simple paths select any v \in V with \operatorname{degree}(v) > 0  // select a starting node while \operatorname{degree}(v) > 0  do  // extend path greedily (v,w) := \operatorname{heaviest} \operatorname{edge} \operatorname{leaving} v  // (*) M' := M' \cup \{(v,w)\} remove v from the graph v := w
```

return any matching $M \subseteq M'$ with $w(M) \ge w(M')/2$

// one path at a time, e.g., look at the two ways to take every other edge.

Proof of Approximation Ratio

Let M^* denote a maximum weight matching.

It suffices to show that $w(M') \ge w(M^*)$.

Assign each edge to that incident node that is deleted first.

All $e^* \in M^*$ are assigned to different nodes.

Consider any edge $e^* \in M^*$ and assume it is assigned to node v.

Since e^* is assigned to v, it was available in line (*).

Hence, there is an edge $e \in M_{01}$ assigned to v with $w(e) \geq w(e^*)$.