

Lesson 34F

Cho dãy số nguyên dương phân biệt $a_1, a_2, ..., a_n$.

Chúng ta định nghĩa hàm f(l,r) như sau:

- Đầu tiên, chúng ta tạo mảng $b_1, b_2, ..., b_{r-l+1}$ với $b_i = a_{l-1+i}$.
- Sắp xếp lại mảng b.
- Lúc này giá trị f(l,r) sẽ là $\sum_{i=1}^{r-l+1} b_i * i$.

Yêu cầu: Tính $\sum_{1 \le l \le r \le n} f(l,r)$

Input:

• Dòng đầu tiên in ra một số nguyên dương $n \ (1 \le n \le 5 * 10^5)$.

• Dòng thứ hai gồm n số nguyên dương phân biệt $a_1, a_2, ..., a_n$ $(1 \le a_i \le a_i \le a_i)$ 10^9 , $a_i \neq a_i \ \forall \ i \neq j$).

Output: In ra kết quả bài toán chia lấy dư cho $10^9 + 7$.

Ví dụ:

Sample Input	Sample Output
4	167
5 2 4 7	
3	582491518
123456789	
214365879	
987654321	

Giải thích test mẫu đầu tiên:

- $f(1,1) = 5 \cdot 1 = 5$;
- $f(1,2) = 2 \cdot 1 + 5 \cdot 2 = 12$;
- $f(1,3) = 2 \cdot 1 + 4 \cdot 2 + 5 \cdot 3 = 25$;
- $f(1,4) = 2 \cdot 1 + 4 \cdot 2 + 5 \cdot 3 + 7 \cdot 4 = 53$;
- $f(2,2) = 2 \cdot 1 = 2$;
- $f(2,3) = 2 \cdot 1 + 4 \cdot 2 = 10$;
- $f(2,4) = 2 \cdot 1 + 4 \cdot 2 + 7 \cdot 3 = 31$;
- $f(3,3) = 4 \cdot 1 = 4$;
- $f(3,4) = 4 \cdot 1 + 7 \cdot 2 = 18$;

• $f(4,4) = 7 \cdot 1 = 7$;

