TrachtPS4

February 6, 2019

1 Problem Set 4

1.0.1 by Daniel Tracht, February 2019

1.1 Problem 1

For this problem, we use the 200 data points provided in the incomes.txt file, containing incomes reported in U.S. dollars. We will be using the log normal distribtion

1.1.1 Part a

We wish to plot a histogram of the percentages from our data with 30 bins:

```
In [1]: # Import the necessary libraries
        import numpy as np
        import scipy.stats as sts
        import requests
        # Download and save the data file incomes.txt
        url = ('https://raw.githubusercontent.com/dtracht/persp-model-econ_W19/' +
               'master/ProblemSets/PS4/data/incomes.txt')
        data_file = requests.get(url, allow_redirects=True)
        open('data/incomes.txt', 'wb').write(data_file.content)
        # Load the data as a NumPy array
        pts = np.loadtxt('data/incomes.txt')
In [3]: import matplotlib.pyplot as plt
        num_bins = 30
        # normed option has been deprecated
        # using density=True instead
        count, bins, ignored = plt.hist(pts, num_bins, density=True,
                                        edgecolor='k')
        plt.title("MACSS Incomes, Classes of 2018-20", fontsize=20)
        plt.xlabel("Incomes in U.S. Dollars")
        plt.ylabel("Percent of incomes")
        plt.xlim([0,140000])
```

Out[3]: (0, 140000)

1.1.2 Part b

We wish to plot the probability density function of the lognormal distribution,

$$f(x|\mu = 11.0, \sigma = 0.5)$$

for

 $0 \le x \le 150000$

:

Lognormal PDF 0.000014 0.000012 0.000010 0.000008 0.000006 0.000004 0.000002 0.000000 20000 40000 60000 0 80000 100000 120000 140000 Х

```
linewidth=2, color='r', label='1: $\mu$=11.0,$\sigma$=0.5')
plt.legend(loc='upper left')
plt.show()
```

MACSS Incomes, Classes of 2018-20

We wish to find the log likelihood value for this particular parameteriziation of this function form and the given data:

1.1.3 Part c

We wish to estimate the parameters for a log normal distribution to fit this data by the method of maxmimum likelihood estimation:

```
In [9]: # a critereon function to be passed to the minimizer
        def crit(params, *args):
            mu, sigma = params
            xvals, junk = args
            log likelihood value = log likelihood(xvals, mu, sigma)
            neg_log_likelihood_value = -log_likelihood_value
            return neg_log_likelihood_value
In [10]: import scipy.optimize as opt
         # starting from our values in part b
         mu_init = 11
         sig_init = 0.5
         params_init = np.array([mu_init, sig_init])
         mle_args = (pts, 0)
         # constraining sigma to be positive
         bnds = ((None, None), (1e-16, None))
         results = opt.minimize(crit, params_init, args=(mle_args), method='SLSQP', bounds=bnd
         mu_MLE, sig_MLE = results.x
  We wish to plot our new distribution as well as our original guess and the data:
In [11]: # Plot histogram with the old PDF and new PDF overlaid
```

```
num bins = 30
# normed option has been deprecated
# using density=True instead
count, bins, ignored = plt.hist(pts, num_bins, density=True,
                                edgecolor='k')
plt.title("MACSS Incomes, Classes of 2018-20", fontsize=20)
plt.xlabel("Incomes in U.S. Dollars")
plt.ylabel("Percent of incomes")
plt.xlim([0,140000])
plt.plot(dist_pts, lognormal_pdf(dist_pts, mu_1, sig_1),
         linewidth=2, color='r', label='1: $\mu$=11.0,$\sigma$=0.5')
plt.legend(loc='upper left')
plt.plot(dist_pts, lognormal_pdf(dist_pts, mu_MLE, sig_MLE),
         linewidth=2, color='g', label='MLE: $\mu$=11.4,$\sigma$=0.2')
plt.legend(loc='upper left')
plt.show()
```

MACSS Incomes, Classes of 2018-20

We wish to get the variance-covariance matrix for out estimates. However, using the contstrained method above, the optimizer does not return an inverse Hessian object. To get it, we can simply use a method that returns one beginning at the solution to the contstrained problem.

```
In [12]: # starting from our values in the constrained case
         mu init = mu MLE
         sig_init = sig_MLE
         params_init = np.array([mu_init, sig_init])
         mle_args = (pts, 0)
         results = opt.minimize(crit, params_init, args=(mle_args))
         mu_MLE_2, sig_MLE_2 = results.x
         print('mu_MLE=', mu_MLE_2, ' sig_MLE=', sig_MLE_2)
         print('MLE Log-likelihood:', log_likelihood(pts, mu_MLE_2, sig_MLE_2))
         vcv_mle = results.hess_inv
         stderr_mu_mle = np.sqrt(vcv_mle[0,0])
         stderr_sig_mle = np.sqrt(vcv_mle[1,1])
         print('VCV(MLE) = ', vcv_mle)
         print('Standard error for mu estimate = ', stderr_mu_mle)
         print('Standard error for sigma estimate = ', stderr_sig_mle)
mu_MLE= 11.359022994120751 sig_MLE= 0.20817731910735596
MLE Log-likelihood: -2241.7193013573587
```

```
VCV(MLE) = [[1.94308215e-04 1.27192004e-05]

[1.27192004e-05 1.24567598e-04]]

Standard error for mu estimate = 0.013939448157069998

Standard error for sigma estimate = 0.01116098553849848
```

1.1.4 Part d

We wish to preform a likelihood ratio test to determine the probability that the data came from the distribution using the parameters from part b:

```
In [13]: # null hypothesis coming from the parameters in part b
    mu_new, sig_new = np.array([11, 0.5])
    log_lik_h0 = log_likelihood(pts, mu_new, sig_new)
    print('hypothesis value log likelihood', log_lik_h0)
    log_lik_mle = log_likelihood(pts, mu_MLE, sig_MLE)
    print('MLE log likelihood', log_lik_mle)
    LR_val = 2 * (log_lik_mle - log_lik_h0)
    print('likelihood ratio value', LR_val)
    pval_h0 = 1.0 - sts.chi2.cdf(LR_val, 2)
    print('chi squared of H0 with 2 degrees of freedom p-value = ', pval_h0)

hypothesis value log likelihood -2385.856997808558
MLE log likelihood -2241.7193013574033
likelihood ratio value 288.27539290230925
chi squared of H0 with 2 degrees of freedom p-value = 0.0
```

The probability of the data being observed under the assumption of the functional form and parameters in part b is so small it rounds to zero in floating point operation.

1.1.5 Part e

We wish to estimate the probability that a graduate of MACSS will earn more than 100,000 dollars and the probability that a graduate of MACSS will ear less than 75,000 dollars using the model and parameters we have estimated. For this we can go to the CDF of the log normal distribution

1.2 Problem 2

In this problem we will be solving a linear regression using maximum likelihood estimation. Our model is

$$sick_i = \beta_0 + \beta_1 age_i + \beta_2 children_i + \beta_3 temp_w inter_i + \varepsilon_i$$

where

$$\varepsilon_i \sim N\left(0, \sigma^2\right)$$

1.2.1 Part a

We begin by estimating the parameters through maximum likelihood estimation:

```
In [15]: # Download and save the data file incomes.txt
         url = ('https://raw.githubusercontent.com/dtracht/persp-model-econ_W19/' +
                'master/ProblemSets/PS4/data/sick.txt')
         data_file = requests.get(url, allow_redirects=True)
         open('data/sick.txt', 'wb').write(data_file.content)
         # Load the data as a NumPy array
         pts = np.genfromtxt("data/sick.txt", delimiter=",", skip_header=1)
         y_pts = pts[:,0]
         x1_pts = pts[:,1]
         x2_pts = pts[:,2]
         x3_pts = pts[:,3]
In [16]: # takes vector of x values, sigma
         # returns vector of pdf values for the normal with mean O
         from scipy.stats import norm
         def normal_pdf (xvals, sigma):
             # reset sigma to absolute value
             # get around negative issue here as opposed to solving and then getting the VCV m
             # don't see a way around this now, but it feels dirty
             sigma = abs(sigma)
             pdf_vals = (1 / np.sqrt(2 * np.pi * sigma**2)) * np.exp(-(xvals) ** 2 / (2 * sigma**2))
             #pdf_vals = norm.pdf(xvals, loc=0, scale=sigma)
             # take values rounded to zero and reset to very low
             pdf_zero = pdf_vals == 0
             pdf_vals[pdf_zero] = 1e-16
             return pdf_vals
In [17]: # function that takes an array of data, vector of betas, and sigma parameter
         # returns the log likelihood for that vector for the normal distribution with mean O
         def log_likelihood_normal(beta_0, beta_1, beta_2, beta_3, sigma, y_vals, x1_vals, x2_
```

epsilon_vals = y_vals - beta_0 - beta_1*x1_vals - beta_2*x2_vals - beta_3*x3_vals

calculates epsilon values for beta vector and data

pdf_vals = normal_pdf(epsilon_vals, sigma)

```
log_likelihood = log_pdf_vals.sum()
             return log_likelihood
In [18]: # a critereon function to be passed to the minimizer
         def crit_normal(params, *args):
             beta_0, beta_1, beta_2, beta_3, sigma = params
             y_vals, x1_vals, x2_vals, x3_vals = args
             log_likelihood_value = log_likelihood_normal(beta_0, beta_1, beta_2, beta_3, sigmants)
             neg_log_likelihood_value = -log_likelihood_value
             return neg_log_likelihood_value
In [19]: import scipy.optimize as opt
         # starting from visual inspection
         beta_0_init = 0
         beta_1_init = 0
         beta_2_init = 0
         beta_3_init = 0
         sigma_init = 1
         params_init = np.array([beta_0_init, beta_1_init, beta_2_init, beta_3_init, sigma_init
         mle_args = (y_pts, x1_pts, x2_pts, x3_pts)
         # constraining sigma to be positive
         #bnds = ((None, None), (None, None), (None, None), (None, None), (1e-16, None))
         #results = opt.minimize(crit_normal, params_init, args=(mle_args), method='L-BFGS-B',
         results = opt.minimize(crit_normal, params_init, args=(mle_args))
         beta_0_MLE, beta_1_MLE, beta_2_MLE, beta_3_MLE, sigma_MLE = results.x
         print('beta_0_MLE=', beta_0_MLE)
         print('beta_1_MLE=', beta_1_MLE)
         print("beta_2_MLE=", beta_2_MLE)
         print("beta_3_MLE=", beta_3_MLE)
         print("sigma_MLE=", sigma_MLE)
         print('MLE Log-likelihood:', log_likelihood_normal(beta_0_MLE, beta_1_MLE, beta_2_MLE
         vcv_mle = results.hess_inv
         print('VCV(MLE) = ', vcv_mle)
beta_0_MLE= 0.25164638362713215
beta_1_MLE= 0.012933350045131211
beta 2 MLE= 0.400502048301034
beta_3_MLE= -0.009991673036254978
sigma_MLE= 0.003017682175869847
MLE Log-likelihood: 876.8650462887678
VCV(MLE) = [[ 9.21562214e-08 -6.95529550e-10 -5.02282376e-09 -9.62673307e-10 ]
  -2.62646033e-08]
 [-6.95529550e-10 6.61646149e-10 -2.29838661e-09 -4.87517749e-10
   1.64799761e-09]
```

```
[-5.02282376e-09 -2.29838661e-09 2.31900554e-08 1.25339295e-09
 -1.30889427e-08]
 [-9.62673307e-10 -4.87517749e-10 1.25339295e-09 4.29373073e-10
 -4.75934351e-10]
 [-2.62646033e-08 1.64799761e-09 -1.30889427e-08 -4.75934351e-10
   1.66995820e-08]]
In []: '''
        # starting from our values in the constrained case
        beta_0_init_2 = beta_0_MLE
        beta_1_init_2 = beta_1_MLE
        beta_2_init_2 = beta_2_MLE
        beta_3_init_2 = beta_3_MLE
        sigma\_init\_2 = sigma\_MLE
        params_init_2 = np.array([beta_0_init_2, beta_1_init_2, beta_2_init_2, beta_3_init_2,
        print(params_init_2)
        mle\_args = (y\_pts, x1\_pts, x2\_pts, x3\_pts)
        results = opt.minimize(crit_normal, params_init_2, args=(mle_args))
        beta\_0\_MLE\_2, \ beta\_1\_MLE\_2, \ beta\_2\_MLE\_2, \ beta\_3\_MLE\_2, \ sigma\_MLE\_2 = results.x
        print('beta_0_MLE=', beta_0_MLE_2)
        print('beta_1_MLE=', beta_1_MLE_2)
        print("beta_2_MLE=", beta_2_MLE_2)
        print("beta_3_MLE=", beta_3_MLE_2)
        print("sigma_MLE=", sigma_MLE_2)
        print('MLE Log-likelihood:', log likelihood normal(beta 0 MLE 2, beta 1 MLE 2, beta 2.
        vcv_mle = results.hess_inv
        print('VCV(MLE) = ', vcv_mle)
```

1.2.2 Part b

We wish to use a likelihood ratio test to determine the probability that $\beta_0 = 1.0$, $\sigma^2 = 0.01$, and $\beta_1 = \beta_2 = \beta_3 = 0$:

```
In [20]: beta_0_null = 1
    beta_1_null = 0
    beta_2_null = 0
    beta_3_null = 0
    sigma_null = 0.01
    log_lik_h0 = log_likelihood_normal(beta_0_null, beta_1_null, beta_2_null, beta_3_null
    print('hypothesis value log likelihood', log_lik_h0)
    log_lik_mle = log_likelihood_normal(beta_0_MLE, beta_1_MLE, beta_2_MLE, beta_3_MLE, s
    print('MLE log likelihood', log lik_mle)
```

```
LR_val = 2 * (log_lik_mle - log_lik_h0)
    print('likelihood ratio value', LR_val)
    pval_h0 = 1.0 - sts.chi2.cdf(LR_val, 2)
    print('chi squared of H0 with 2 degrees of freedom p-value = ', pval_h0)

hypothesis value log likelihood -30663.099086401762

MLE log likelihood 876.8650462887678
likelihood ratio value 63079.92826538106
chi squared of H0 with 2 degrees of freedom p-value = 0.0
```

We strongly reject the hypothesis that the data was generated with a true process of the given function and parameters.