New Subset Selection Algorithms for Low Rank Approximation: Offline and Online

Taisuke Yasuda and David P. Woodruff

Low rank approximation

- Low rank approximation: given an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, find a rank k matrix $\hat{\mathbf{A}} \in \mathbb{R}^{n \times d}$ that is "close" to \mathbf{A}
 - $\underline{\quad \min_{\substack{\operatorname{rank}(\hat{\mathbf{A}}) \leq k}} \mathscr{L}(\mathbf{A}, \hat{\mathbf{A}}) \text{ for some loss function } \mathscr{L} }$
 - Frobenius norm low rank approximation:

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\mathbf{A} - \hat{\mathbf{A}})_{i,j}^{2} = \|\mathbf{A} - \hat{\mathbf{A}}\|_{2,2}^{2}$$

• Entrywise ℓ_p low rank approximation:

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i=1}^{n} \sum_{j=1}^{d} |(\mathbf{A} - \hat{\mathbf{A}})_{i,j}|^{p} = ||\mathbf{A} - \hat{\mathbf{A}}||_{p,p}^{p}$$

Entrywise *g*-norm low rank approximation:

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i=1}^{n} \sum_{j=1}^{d} g((\mathbf{A} - \hat{\mathbf{A}})_{i,j}) = \|\mathbf{A} - \hat{\mathbf{A}}\|_{g}$$

• ℓ_p subspace approximation:

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i=1}^{n} \|\mathbf{e}_{i}^{\mathsf{T}} \mathbf{A} - \mathbf{e}_{i}^{\mathsf{T}} \hat{\mathbf{A}} \|_{2}^{p} = \|\mathbf{A} - \hat{\mathbf{A}}\|_{p,2}^{p}$$

Assumptions on g:

- Symmetry: g(x) = g(|x|)

Approximate triangle inequality:
$$g\left(\sum_{i=1}^{t} x_i\right) \leq \operatorname{ati}_{g,t} \sum_{i=1}^{t} g(x_i)$$

_ Linear growth:
$$|x| \le |y| \implies \frac{g(y)}{g(x)} \ge \frac{|y|}{|x|}$$

Theorem (Song-Woodruff-Zhong 2019). There is an efficient algorithm for computing a set S of $O(k \log d)$ columns of A such that

$$\min_{\mathbf{X} \in \mathbb{R}^{s \times d}} \|\mathbf{A} - \mathbf{A}\|^{S} \mathbf{X}\|_{g} \leq \tilde{O}(k) \cdot \operatorname{ati}_{g, O(k)} \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$

Our results

Theorem (Song-Woodruff-Zhong 2019). There is an efficient algorithm for computing a set S of $O(k \log d)$ columns of A such that

$$\min_{\mathbf{X} \in \mathbb{R}^{s \times d}} \|\mathbf{A} - \mathbf{A}\|^{S} \mathbf{X}\|_{g} \leq \frac{\tilde{O}(k)}{O(k)} \cdot \operatorname{ati}_{g, O(k)} \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$

Theorem (Woodruff-Y 2023). There is an efficient algorithm for computing a set S of $O(k(\log \log k)\log d)$ columns of A such that

$$\min_{\mathbf{X} \in \mathbb{R}^{s \times d}} \|\mathbf{A} - \mathbf{A}\|^{S} \mathbf{X}\|_{g} \leq \tilde{O}(\sqrt{k}) \cdot \operatorname{ati}_{g, \tilde{O}(k)} \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$

- · Main technique: the power of relaxing linear bases to spanning sets
- Second application: nearly optimal oblivious ℓ_p subspace embeddings

Song-Woodruff-Zhong 2019: algorithm

1. Randomly sample a set H of 2k columns of A

- Goal: show that "typically", this is $O(k/d) \cdot \operatorname{ati}_{g,O(k)} \cdot \|\Delta\|_{g}$
- 2. For each remaining column \mathbf{a}^i for $i \in [d] \setminus H$, compute $\operatorname{cost}(i) := \min_{\mathbf{x}} ||\mathbf{A}|^H \mathbf{x} \mathbf{a}^i||_g$
- 3. Remove the top 0.1% of columns $i \in [d]\backslash H$ with the lowest cost(i)
- 4. Repeat
- \Rightarrow terminate after $O(\log d)$ rounds

Notation.

Let \mathbf{A}_* satisfy $\|\mathbf{A} - \mathbf{A}_*\|_g = \min_{\text{rank}(\hat{\mathbf{A}}) \le k} \|\mathbf{A} - \hat{\mathbf{A}}\|_g$.

Let $\Delta := A - A_*$

Song-Woodruff-Zhong 2019: well-conditioned basis

- Consider a set of n vectors $\{\mathbf{a}^i\}_{i=1}^n$ in k dimensions
- Well-conditioned basis: subset of |S| = k vectors maximizing $\det(\{\mathbf{a}^i\}_{i \in S})$

For any
$$i \in [n]$$
, write $\mathbf{a}^i = \sum_{j \in S} x_j \cdot \mathbf{a}^j$

_ By Cramer's rule,
$$|x_j| = \frac{|\det(\{\mathbf{a}^l\}_{l \in S - j + i})|}{\det(\{\mathbf{a}^l\}_{l \in S})} \le 1$$

- That is, any ${f a}^i$ can be written in this basis with small coefficients in ℓ_∞

Song-Woodruff-Zhong 2019: correctness

Randomly sample a set H of 2k columns of A

- Goal: show that "typically", this is $O(k/d) \cdot \mathsf{ati}_{g,O(k)} \cdot \|\mathbf{\Delta}\|_{g}$
- 2. For each remaining column \mathbf{a}^i for $i \in [d] \setminus H$, compute $\operatorname{cost}(i) := \min \|\mathbf{A}\|^H \mathbf{x} \mathbf{a}^i\|_g$
- Remove the top 0.1% of columns $i \in [d]\backslash H$ with the lowest cost(i)
- Repeat

Notation. Let \mathbf{A}_* satisfy $\|\mathbf{A} - \mathbf{A}_*\|_g = \min_{\mathrm{rank}(\hat{\mathbf{A}}) \leq k} \|\mathbf{A} - \hat{\mathbf{A}}\|_g$. Let $\mathbf{\Delta} := \mathbf{A} - \mathbf{A}_*$.

Approximate triangle inequality + linear growth

$$\min_{\mathbf{X}} \|\mathbf{A}\|^{H} \mathbf{X} - \mathbf{a}^{i}\|_{g} \leq \|\mathbf{A}\|^{H} \mathbf{X}_{*} - \mathbf{a}^{i}\|_{g} = \|\mathbf{\Delta}\|^{H} \mathbf{X}_{*} - \mathbf{\Delta}^{i}\|_{g} \leq \operatorname{ati}_{g,2k+1} \sum_{j \in H+i} |(\mathbf{X}_{*})_{j}| \|\mathbf{\Delta}^{j}\|_{g} \leq \frac{2k+1}{d} \cdot \operatorname{ati}_{g,2k+1} \sum_{j=1}^{d} \|\mathbf{\Delta}^{j}\|_{g}$$
Well conditioned basis \mathbf{A} if \mathbf{A} the for the \mathbf{A} the for the \mathbf{A} the forth \mathbf{A} the forth \mathbf{A} the \mathbf{A} the forth \mathbf{A} the \mathbf{A} the forth \mathbf{A} the fo

Well-conditioned basis $\Rightarrow \mathbf{a}_*^i = \mathbf{A}_*|^H \mathbf{x}_*$ for $\|\mathbf{x}_*\|_{\infty} \leq 1$

If i is random, H + i is a set of 2k + 1 random columns

Woodruff-Y 2023: well-conditioned basis spanning set

- Consider a set of n vectors $\{\mathbf{a}^i\}_{i=1}^n$ in k dimensions
- Well-conditioned basis: |S| = k vectors s.t. $\mathbf{a}^i = \mathbf{A}|^S \mathbf{x}$ with $||\mathbf{x}||_{\infty} \le 1$
- Well-conditioned spanning set: $|S| = \tilde{O}(k)$ vectors s.t. $\mathbf{a}^i = \mathbf{A}|^S \mathbf{x}$ with $||\mathbf{x}||_2 \le 1.1$
 - Construction: coresets for John ellipsoids [Kumar-Yildirim 2005, Todd 2016]

Woodruff-Y 2023: correctness

Randomly sample a set H of 2k columns of A

- Goal: show that "typically", this is $O(\sqrt{k}/d) \quad \frac{O(k/d)}{O(k/d)} \cdot \operatorname{ati}_{g,O(k)} \cdot \|\Delta\|_{g}$
- 2. For each remaining column \mathbf{a}^i for $i \in [d] \setminus H$, compute $\operatorname{cost}(i) := \min \|\mathbf{A}\|^H \mathbf{x} \mathbf{a}^i\|_g$
- 3. Remove the top 0.1% of columns $i \in [d]\backslash H$ with the lowest cost(i)
- Repeat

Notation. Let \mathbf{A}_* satisfy $\|\mathbf{A} - \mathbf{A}_*\|_g = \min_{\mathrm{rank}(\hat{\mathbf{A}}) \leq k} \|\mathbf{A} - \hat{\mathbf{A}}\|_g$. Let $\mathbf{\Delta} := \mathbf{A} - \mathbf{A}_*$.

$$\min_{\mathbf{x}} \|\mathbf{A}\|^{H} \mathbf{x} - \mathbf{a}^{i}\|_{g} \leq \|\mathbf{A}\|^{H} \mathbf{x}_{*} - \mathbf{a}^{i}\|_{g} = \|\mathbf{\Delta}\|^{H} \mathbf{x}_{*} - \mathbf{\Delta}^{i}\|_{g} \leq \operatorname{ati}_{g,2k+1} \sum_{j \in H+i} |(\mathbf{x}_{*})_{j}| \|\mathbf{\Delta}^{j}\|_{g} \leq \operatorname{ati}_{g,2k+1} \|\mathbf{x}_{*}\|_{2} \left(\sum_{j \in H+i} \|\mathbf{\Delta}^{j}\|_{g}^{2} \right)$$

$$|| \mathbf{\Delta}^{j} ||_{g} \text{ are ~same} | \lesssim \operatorname{ati}_{g,2k+1} \frac{1}{\sqrt{k}} \sum_{j \in H+i} || \mathbf{\Delta}^{j} ||_{g} \lesssim \operatorname{ati}_{g,2k+1} \frac{\sqrt{k}}{d} \sum_{j=1}^{d} || \mathbf{\Delta}^{j} ||_{g} |$$

Cauchy-Schwarz

Our results

Theorem (Song-Woodruff-Zhong 2019). There is an efficient algorithm for computing a set S of $O(k \log d)$ columns of A such that

$$\min_{\mathbf{X} \in \mathbb{R}^{s \times d}} \|\mathbf{A} - \mathbf{A}\|^{S} \mathbf{X}\|_{g} \leq \frac{\tilde{O}(k)}{O(k)} \cdot \operatorname{ati}_{g, O(k)} \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$

Theorem (Woodruff-Y 2023). There is an efficient algorithm for computing a set S of $O(k(\log \log k)\log d)$ columns of A such that

$$\min_{\mathbf{X} \in \mathbb{R}^{s \times d}} \|\mathbf{A} - \mathbf{A}\|^{S} \mathbf{X}\|_{g} \leq \tilde{O}(\sqrt{k}) \cdot \operatorname{ati}_{g, \tilde{O}(k)} \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$

- · Main technique: the power of relaxing linear bases to spanning sets
- Second application: nearly optimal oblivious ℓ_p subspace embeddings

Nearly optimal ℓ_p oblivious subspace embeddings

Applications of well-conditioned spanning sets

Theorem (Woodruff-Wang 2019). Let 1 . There is a distribution

over matrices $\mathbf{S} \in \mathbb{R}^{\tilde{O}(d) \times n}$ such that for any $\mathbf{A} \in \mathbb{R}^{n \times d}$, w.p. ≥ 0.99 ,

$$\forall \mathbf{x} \in \mathbb{R}^d, \|\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_p \le \frac{\tilde{O}(d)}{\|\mathbf{A}\mathbf{x}\|_p}$$

Theorem (Woodruff-Y 2023). Let 1 . There is a distribution over

matrices $\mathbf{S} \in \mathbb{R}^{\tilde{O}(d) \times n}$ such that for any $\mathbf{A} \in \mathbb{R}^{n \times d}$, w.p. ≥ 0.99 ,

$$\forall \mathbf{x} \in \mathbb{R}^d, \|\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_p \le \frac{\tilde{O}(d^{1/p})}{\|\mathbf{A}\mathbf{x}\|_p}$$

- Apply well-conditioned spanning sets to the set $\{\mathbf{A}\mathbf{x}: \|\mathbf{A}\mathbf{x}\|_p \le 1\}$
- Closes a long line of work initiated by Sohler-Woodruff 2011

Low rank approximation

- Low rank approximation: given an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, find a rank k matrix $\hat{\mathbf{A}} \in \mathbb{R}^{n \times d}$ that is "close" to A
 - min $\mathscr{L}(\mathbf{A}, \hat{\mathbf{A}})$ for some loss function \mathscr{L} $\operatorname{rank}(\hat{\mathbf{A}}) \leq k$
 - Frobenius norm low rank approximation:

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\mathbf{A} - \hat{\mathbf{A}})_{i,j}^{2} = \|\mathbf{A} - \hat{\mathbf{A}}\|_{2,2}^{2}$$

• Entrywise ℓ_p low rank approximation:

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i=1}^{n} \sum_{j=1}^{d} |(\mathbf{A} - \hat{\mathbf{A}})_{i,j}|^{p} = ||\mathbf{A} - \hat{\mathbf{A}}||_{p,p}^{p}$$

• Entrywise g-norm low rank approximation:

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i=1}^{n} \sum_{j=1}^{d} g((\mathbf{A} - \hat{\mathbf{A}})_{i,j}) = \|\mathbf{A} - \hat{\mathbf{A}}\|_{g}$$

$$\mathcal{E}_p$$
 subspace approximation:
$$\mathcal{Z}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i=1}^n \|\mathbf{e}_i^\mathsf{T} \mathbf{A} - \mathbf{e}_i^\mathsf{T} \hat{\mathbf{A}}\|_2^p = \|\mathbf{A} - \hat{\mathbf{A}}\|_{p,2}^p$$

Online coresets for ℓ_p subspace approximation

- ℓ_p subspace approximation:
 - For a rank k subspace $F \subseteq \mathbb{R}^d$, let \mathbf{P}_F be the orthogonal projection matrix

$$- \min_{\text{rank}(\hat{\mathbf{A}}) \le k} \|\mathbf{A} - \hat{\mathbf{A}}\|_{p,2}^p = \min_{\text{rank}(F) \le k} \|\mathbf{A} - \mathbf{AP}_F\|_{p,2}^p$$

• Coresets: weighted subset of $\{\mathbf{a}_i\}_{i=1}^n$ s.t. for all rank k subspaces $F\subseteq\mathbb{R}^d$,

$$\sum_{i=1}^{n} w_i \|\mathbf{e}_i^{\mathsf{T}} (\mathbf{A} - \mathbf{A} \mathbf{P}_F)\|_2^p = (1 \pm \varepsilon) \sum_{i=1}^{n} \|\mathbf{e}_i^{\mathsf{T}} (\mathbf{A} - \mathbf{A} \mathbf{P}_F)\|_2^p = (1 \pm \varepsilon) \|\mathbf{A} - \mathbf{A} \mathbf{P}_F\|_{p,2}^p$$

• Online coresets: rows $\{a_i\}_{i=1}^n$ arrive one by one, select subset online

Question. Do small online coresets for ℓ_p subspace approximation exist?

Online coresets for ℓ_p subspace approximation

- Coresets \mathcal{E}_p subspace approximation:
- This is a sequential procedure how can this be implemented online?

- Typical coreset algorithm:
 - 1. Compute a constant factor solution to ℓ_p subspace approximation
 - 2. Sample $poly(k/\epsilon)$ rows proportionally to the residual cost

Preserves only an approximately optimal solution (rather than all candidates)

Idea. Reduction to constant factor "weak" online coresets

- A constant factor online coreset of size s partitions the stream into s "phases"
- In each "phase", the online coreset defines a fixed constant factor solution
- Can sample proportionally to the residual cost in each "phase"

Lemma. Weak online coresets = Johnson—Lindenstrauss lemma + online coreset for ℓ_p subspace embeddings (Woodruff-Y 2023)

Online coresets for ℓ_p subspace approximation

Theorem (Woodruff-Y 2023). Let $1 \le p < \infty$. There is an online coreset algorithm that computes weights w_i with at most $s = \text{poly}(k, \varepsilon^{-1}, \log(n\kappa^{\text{OL}}))$ nonzero weights s.t.

$$\sum_{i=1}^{n} w_i \|\mathbf{e}_i^{\mathsf{T}} (\mathbf{A} - \mathbf{A} \mathbf{P}_F)\|_2^p = (1 \pm \varepsilon) \sum_{i=1}^{n} \|\mathbf{e}_i^{\mathsf{T}} (\mathbf{A} - \mathbf{A} \mathbf{P}_F)\|_2^p = (1 \pm \varepsilon) \|\mathbf{A} - \mathbf{A} \mathbf{P}_F\|_{p,2}^p$$

Online condition number κ^{OL}

Subset Selection for Low Rank Approximation

Summary

- · We study new subset selection algorithms for low rank approximation
 - Entrywise g-norm low rank approximation
 - We give a new structural result on a **relaxation of well-conditioned basis** to a **well-conditioned spanning set** with better conditioning properties
 - lacktriangle We improve the distortion of prior subset selection algorithms by a \sqrt{k} factor
 - lacktriangle We improve the distortion of oblivious ℓ_p subspace embeddings from $\tilde{O}(d)$ to a nearly optimal $\tilde{O}(d^{1/p})$
 - Online coresets for ℓ_p subspace approximation
 - We give the first $poly(k, \varepsilon^{-1}, \log(n\kappa^{OL}))$ -sized strong coreset for ℓ_p subspace approximation
 - We show a reduction to constant factor weak online coresets, which we obtain via Johnson-Lindenstrauss together with online coresets for ℓ_p subspace embeddings