Homework 1

王一鑫 作业序号 42

2024年12月13日

PROBLEM 1. Let $\mathbb{X} := C[a,b]$, where $-\infty < a < b < \infty$ and $\|u\| := \max_{a \le x \le b} |u(x)|$. Show that $\{u \in \mathbb{X}: \int_a^b u(x) \mathrm{d}x = 0\}$ is a closed linear subspace of \mathbb{X} . This set is not dense in \mathbb{X} .

SOLUTION. (Subspace) First we show that $\mathbb{A} := \{u \in \mathbb{X}: \int_a^b u(x) dx = 0\}$ is a linear subspace of \mathbb{X} . For $\forall u, v \in \mathbb{A}$, we have

$$\int_{a}^{b} u(x) + v(x) dx = \int_{a}^{b} u(x) dx + \int_{a}^{b} v(x) dx = 0 + 0 = 0$$

thus $u + v \in \mathbb{A}$. For $\forall c \in \mathbb{R}, \forall u \in \mathbb{A}$, we have

$$\int_{a}^{b} cu(x) dx = c \int_{a}^{b} u(x) dx = 0$$

then $cu \in \mathbb{A}$.

(Closed) Let $u_n \to u$ as $n \to \infty$, where $u_n \in \mathbb{A}$ for all n. Since $u_n \in \mathbb{A}$ is bounded, by Lebesgue's Dominated Convergence Theorem, we have

$$\int_{a}^{b} u(x)dx = \int_{a}^{b} \lim_{n \to \infty} u_n(x)dx = \lim_{n \to \infty} \int_{a}^{b} u_n(x)dx = 0$$

Then $u \in \mathbb{A}.\mathbb{A}$ is closed.

(Not Dense) Let $v(x) \equiv 1 \in \mathbb{X}$ in [a, b]. Choose $\varepsilon_0 = \frac{1}{2}$. Then for $\forall u \in \mathbb{A}$, we have

$$|\int_{a}^{b} (u(x) - v(x)) dx| = b - a \le (b - a) ||u - v||$$

So

$$||u-v|| \ge 1 > \varepsilon_0$$

Thus \mathbb{A} is not dense in \mathbb{X} .

PROBLEM 2. Show that $\{u \in \mathbb{X}: u(a)^2 = u(b)\}$ is a closed subset of \mathbb{X} , but not a linear subspace of \mathbb{X} .

SOLUTION. (Closed) Let $u_n \to u$ as $n \to \infty$, where $u_n \in \mathbb{A}$ for all n. Since $u_n(a)^2 = u_n(b)$, take $n \to \infty$ on both sides, we have $u(a)^2 = u(b)$. Then $u \in \mathbb{A}$, so \mathbb{A} is closed.

(Not linear) For $\forall u, v \in \mathbb{A}$, we have

$$[(u+v)(a)]^2 = [u(a) + v(a)]^2 = u(a)^2 + v(a)^2 + 2u(a)v(a) \neq u(b) + v(b)$$

Thus $u + v \notin \mathbb{A}$. So \mathbb{A} is not linear.

PROBLEM 3. Show that $\{u \in \mathbb{X}: u(a) > 0\}$ is an open, convex, not dense subset of \mathbb{X} .

SOLUTION. (Open) $\forall u \in \mathbb{A}$, choose $\varepsilon = \frac{u}{2}$, then $(u - \varepsilon)(a) = \frac{u}{2}(a) > 0$, so $B(u, \varepsilon) \subset \mathbb{A}$, then \mathbb{A} is open.

(Convex) For $\forall u, v \in \mathbb{A}, 0 \le \alpha \le 1$, we have

$$[\alpha u + (1 - \alpha)v](a) = \alpha u(a) + (1 - \alpha)v(a) > 0$$

Thus $\alpha u + (1 - \alpha)v \in \mathbb{A}$. So \mathbb{A} is convex.

(Not Dense) Let $v(x) \equiv -1 \in \mathbb{X}$ in [a, b]. Choose $\varepsilon_0 = 1$. Then for $\forall u \in \mathbb{A}$, we have

$$|(u(x) - v(x))(a)| = u(a) + 1 \le ||u - v||$$

So

$$||u-v|| \ge 1 + u(a) > \varepsilon_0$$

Thus \mathbb{A} is not dense in \mathbb{X} .

PROBLEM 4. Show that $\{u \in \mathbb{X}: u(a) = 1\}$ is a closed, convex, not dense subset of \mathbb{X} .

SOLUTION. (Closed) Let $u_n \to u$ as $n \to \infty$, where $u_n \in \mathbb{A}$ for all n. Since $u_n(a)^2 = 1$, take $n \to \infty$ on both sides, we have $u^2(a) = 1$. Then $u \in \mathbb{A}$, so \mathbb{A} is closed.

(Convex) For $\forall u, v \in \mathbb{A}, \ 0 \le \alpha \le 1$, we have

$$[\alpha u + (1 - \alpha)v](a) = \alpha u(a) + (1 - \alpha)v(a) = \alpha + 1 - \alpha = 1$$

Thus $\alpha u + (1 - \alpha)v \in \mathbb{A}$. So \mathbb{A} is convex.

(Not Dense) Let $v(x) \equiv -1 \in \mathbb{X}$ in [a,b]. Choose $\varepsilon_0 = 1$. Then for $\forall u \in \mathbb{A}$, we have

$$|(u(x) - v(x))(a)| = u(a) + 1 < ||u - v||$$

So

$$||u - v|| \ge 1 + u(a) > \varepsilon_0$$

Thus \mathbb{A} is not dense in \mathbb{X} .

PROBLEM 5. Show that $\{u \in \mathbb{X}: ||u|| \le 1\}$ is not a compact subset of \mathbb{X} .

SOLUTION. To show that the set

$$\mathbb{A} = \{ u \in \mathbb{X} : ||u|| \le 1 \}$$

is not a compact subset of the Banach space $\mathbb{X} = C[a, b]$, we will construct a sequence in \mathbb{A} that does not contain a convergent subsequence.

WLOG, consider the sequence of functions $f_n = x^n \in \mathbb{A}$ defined on [0, 1]. Observe that f_n converges pointwise to f.

$$f(x) = \begin{cases} 1, & \text{if } 0 \le x < 1 \\ 0, & \text{if } x = 1. \end{cases}$$

Since f is not continuous, no subsequence of f_n converges. Then \mathbb{A} is not a compact subset of \mathbb{X} .

PROBLEM 6. Show that $\{u \in \mathbb{X}: u(x) = 0 \text{ on } [c, d]\}$ is not dense in \mathbb{X} provided $a \leq c \leq d \leq b$.

SOLUTION. Let $v(x) \in \mathbb{X}$ in [a,b] and v(x) = 1 in [c,d]. Choose $\varepsilon_0 = 1$. Then for $\forall u \in \mathbb{A}$, we have

$$||u - v|| \ge 1 \ge \varepsilon$$

Thus \mathbb{A} is not dense in \mathbb{X} .

PROBLEM 7. Show that $\mathbb{A} = \{u \in \mathbb{X} : u(a) \geq 0\}$ is the closure of the set $\mathbb{B} = \{u \in \mathbb{X} : u(a) > 0\}$.

SOLUTION. Recall that the closure of a set includes all the points of the set as well as all its limit points. Therefore, we need to show that for any $u \in \mathbb{A}$, there exists a sequence $\{u_n\} \subseteq \mathbb{B}$ such that $u_n \to u$ with the norm $\|\cdot\|$.

Consider $u \in \mathbb{A}$, then $u(a) \geq 0$. If u(a) > 0, then $u \in \mathbb{B}$. If u(a) = 0, we can construct a sequence $\{u_n\}$, define

$$u_n(x) = u(x) + \frac{1}{n}$$

for all $x \in [a, b]$. Clearly, $u_n(a) = u(a) + \frac{1}{n} > 0$, so $u_n \in \mathbb{B}$. As $n \to \infty$, we have $u_n \to u$ because

$$||u_n - u|| = \max_{a \le x \le b} \left| u(x) + \frac{1}{n} - u(x) \right| = \frac{1}{n} \to 0.$$

This shows that u is a limit point of \mathbb{B} .

Therefore, \mathbb{A} is the closure of \mathbb{B} .

PROBLEM 8. If we set $\phi(u) := |u(a)|$, then ϕ is not a norm on \mathbb{X} .

SOLUTION. We will check the properties of the norm. Let $\phi(u) = |u(a)| = 0$, which implies $u(a) \equiv 0$, but we can choose u such that $u(x) \neq 0$ in (a, b]. Thus $\phi(u)$ is not a norm on \mathbb{X} .

PROBLEM 9. If we set

$$||u||_1 \coloneqq \int_a^b |u(x)| \mathrm{d}x$$

then $\|\cdot\|_1$ is a norm on \mathbb{X} , but \mathbb{X} is not a Banach space with respect to $\|\cdot\|_1$.

SOLUTION. We will check the properties of the norm.

- $||u||_1 = \int_a^b |u(x)| dx \ge 0$ and $||u||_1 = 0$ iff u = 0.
- $\forall \alpha \in \mathbb{R}$, we have $\|\alpha u\|_1 = \int_a^b |\alpha u(x)| dx = |\alpha| \int_a^b |u(x)| dx = |\alpha| \|u\|_1$.
- $\forall u, v \in \mathbb{X}$, we have

$$||u+v||_1 = \int_a^b |u(x)+v(x)| dx \le \int_a^b |u(x)| dx + \int_a^b |v(x)| dx = ||u||_1 + ||v||_1$$

then $\|\cdot\|_1$ is a norm on \mathbb{X} . Define a discontinuous function $w:[a,b]\to\mathbb{R}$, say,

$$w(x) := \begin{cases} 1, & \text{if } a \le x \le c < b \\ 0, & \text{if } c < x \le b \end{cases}$$

Construct a sequence $\{u_n\}$ in \mathbb{X}

$$u_n(x) := \begin{cases} 1, & \text{if } a \le x \le c - \frac{1}{n}, \\ n(c - x), & \text{if } c - \frac{1}{n} < x < c, \\ 0, & \text{if } c \le x \le b. \end{cases}$$

such that

$$||u_n - w||_1 = \int_{c-\frac{1}{n}}^c |n(c-x) - 1| dx \le \frac{1}{n} \to 0 \text{ as } n \to \infty$$

 $\forall \varepsilon > 0$, choose $n_{\varepsilon} > \varepsilon$, then for $\forall n > m \ge n_{\varepsilon}$, we have

$$||u_n - u_m||_1 \le \int_{c-1}^c 1 dx \le \frac{1}{m} < \varepsilon$$

Then $\{u_n\}$ is Cauchy with respect to $\|\cdot\|_1$. Suppose that $\|u_n - u\|_1 \to 0$ as $n \to \infty$, where $u \in \mathbb{X}$. Then,

$$||u - w||_1 \le ||u - u_n||_1 + ||u_n - w||_1 \to 0$$

Here u(x) = w(x) on [a, b], contradicting the continuity of the function u.

PROBLEM 10. The operators $A: \mathbb{X} \to \mathbb{X}$ and $B: \mathbb{X} \to \mathbb{X}$ defined through

$$(Au)(x) := u(a)$$
 and $(Bu)(x) := \int_a^x u(y) dy$

are linear and continuous with ||A|| = 1 and ||B|| = b - a.

SOLUTION. For all $u, v \in \mathbb{X}$ and $\alpha, \beta \in \mathbb{R}$, we have

$$(A(\alpha u + \beta v))(x) = \alpha u(a) + \beta v(a) = \alpha (Au)(x) + \beta (Av)(x)$$

and

$$(B(\alpha u + \beta v))(x) = \alpha \int_a^x u(y) dy + \beta \int_a^x v(y) dy = \alpha (Bu)(x) + \beta (Bv)(x)$$

imply that the operators are linear. Notice that

$$||Au|| = \max_{a \le x \le b} |(Au)(x)| = u(a) \le \max_{a \le x \le b} |u(x)| = ||u||$$

and

$$||Bu|| = \max_{a \le x \le b} |(Bu)(x)| \le (b-a) \max_{a \le x \le b} |u(x)| = (b-a)||u||$$

Thus the operators are continuous. Further, $||A|| = \sup_{\|u\|=1} ||Au|| = 1$ and $||B|| = \sup_{\|u\|=1} ||Bu|| = b - a$.

PROBLEM 11. If we set

$$f(u) := \int_a^b y u(y) dy$$
 for all $u \in X$

then $f \in \mathbb{X}^*$ with $||f|| = \frac{(b-a)^2}{2}$.

Solution. For all $u \in X$,

$$|f(u)| \le \max_{a \le x \le b} |u(x)| \int_a^b y dy = \frac{(b-a)^2}{2} ||u||$$

Thus
$$||f|| = \sup_{\|u\| \le 1} |f(u)| = \frac{(b-a)^2}{2}$$

PROBLEM 12. Let $\alpha \in \mathbb{R}$ with $|\alpha|(b-a) < 1$. For each given $u_0 \in \mathbb{X}$, the iteration method

$$u_{n+1}(x) = \alpha \int_a^b \sin u_n(x) dx + 1 \quad n = 0, 1, \dots \ x \in [a, b]$$

converges uniformly on [a,b] to the unique solution $u \in \mathbb{X}$ of the integral equation

$$u(x) = \alpha \int_{a}^{b} \sin u(x) dx + 1 \quad x \in [a, b]$$

SOLUTION. Define the operator

$$(Au)(x) := \alpha \int_a^b \sin u(x) dx + 1 \quad x \in [a, b]$$

Then, the original equation corresponds to the fixed-point problem

$$u = Au$$

If $u \in \mathbb{X}$, then so is the function $Au : [a, b] \to R$. This way we get the operator

$$A: \mathbb{X} \to \mathbb{X}$$

For $\forall u, v \in \mathbb{X}$, we have

$$\begin{aligned} \|Au - Av\| &= \max_{a \le x \le b} |(Au)(x) - (Av)(x)| \\ &\leq |\alpha| \int_a^b \max_{a \le x \le b} |\sin u(x) - \sin v(x)| \mathrm{d}x \\ &\leq |\alpha| \int_a^b \max_{a \le x \le b} |\cos w(x)| |u(x) - v(x)| \mathrm{d}x \\ &\leq |\alpha| (b - a) \|u - v\| \end{aligned}$$

Since $|\alpha|(b-a) < 1$, by Banach Fixed Point Theorem we show the conclusion.

PROBLEM 13. Let $\alpha \in \mathbb{R}$ with $|\alpha| < 1$. For each given $u_0 \in \mathbb{R}$, the iteration method

$$u_{n+1} = \alpha \sin u_n + 1 \quad n = 0, 1, \cdots$$

converges to the unique solution $u \in \mathbb{R}$ of the equation $u \in \mathbb{R}$ of the equation $u = \alpha \sin u + 1$.

SOLUTION. Define the operator

$$f(u) \coloneqq \alpha \sin u + 1$$

Then, the original equation corresponds to the fixed-point problem

$$u = f(u)$$

If $u_0 \in \mathbb{R}$, then except for u_0 , $u_n \in \mathbb{I} = [0, 2]$ for $n \geq 1$, so is the function f(u). This way we get the operator

$$f: \mathbb{I} \to \mathbb{I}$$

Where \mathbb{I} is a closed nonempty set in the Banach space \mathbb{R} . For $\forall u, v \in \mathbb{I}$, we have

$$||Au - Av|| = \max_{0 \le x \le 2} |(Au)(x) - (Av)(x)|$$

$$\leq |\alpha| \max_{0 \le x \le 2} |\sin u(x) - \sin v(x)|$$

$$\leq |\alpha| \max_{0 \le x \le 2} |\cos w(x)| |u(x) - v(x)|$$

$$\leq |\alpha| ||u - v||$$

Since $|\alpha| < 1$, by Banach Fixed Point Theorem we show the conclusion.

PROBLEM 14. Let $K(x,y): [a,b] \times [a,b] \to \mathbb{R}$ be continuous with $0 \le K(x,y) \le d$ for all $x,y \in [a,b]$. Let $2(b-a)d \le 1$ along with $u_0(x) \equiv 0$ and $v_0(x) \equiv 2$. Then, the two iteration methods

$$u_{n+1}(x) = \int_{a}^{b} K(x, y)u_{n}(y)dy + 1 \quad n = 0, 1, \dots \ x \in [a, b]$$
$$v_{n+1}(x) = \int_{a}^{b} K(x, y)v_{n}(y)dy + 1$$

converge uniformly on [a, b] to the unique solution $u \in \mathbb{X}$ of the integral equation

$$u(x) = \int_a^b K(x, y)u(y)dy + 1 \quad x \in [a, b]$$

where $u_0(x) \le u_1(x) \le \cdots \le v_1(x) \le v_0(x)$ for all $x \in [a, b]$

SOLUTION. Define the operator

$$(Au)(x) := \int_a^b K(x,y)u(y)dy + 1$$

If $u \in \mathbb{X}$, then so is the function $Au : [a, b] \to R$. This way we get the operator

$$A: \mathbb{X} \to \mathbb{X}$$

A is continuous, X is bounded, it suffices to show

- A(X) is bounded.
- A(X) is equicontinuous.

For all $u \in \mathbb{X}$,

$$||Au|| = \max_{a \le x \le b} |\int_a^b K(x, y)u(y)dy + 1| \le (b - a)d||u|| + 1$$

Since K(x,y) is uniformly continuous, then for $\forall \varepsilon > 0$, $\exists \delta > 0$, such that $|x - z| < \delta$ and $x, z \in [a, b]$, we have $|K(x, y) - K(z, y)| < \varepsilon$. Then

$$|(Au)(x) - (Au)(z)| \le \int_a^b |K(x,y) - K(z,y)| |u(y)| dy \le (b-a) ||u|| \varepsilon$$

By Arzelà-Ascoli theorem, A is a compact operator. Obviously A is monotone increasing. Further,

$$Au_0 = 1 > u_0$$

and

$$Av_0 = 2\int_a^b K(x,y)dy + 1 \le 2(b-a)d + 1 \le 2 = v_0$$

By Theorem 1.E, we have the conclusion.

PROBLEM 15. Let $\alpha \in \mathbb{R}$ and $f \in \mathbb{X}$ be given. Then, the nonlinear integral equation

$$u(x) = \alpha \int_{a}^{b} \sin u(x) dx + f(x)$$

has a solution $u \in \mathbb{X}$.

SOLUTION. Define the operator

$$(Au)(x) := \alpha \int_a^b \sin u(x) dx + f(x)$$

We first show that $A : \mathbb{X} \to \mathbb{X}$ is a compact operator. Continuity is obviously, it suffices to show that $A(\mathbb{X})$ is bounded and equicontinuous.

For all $u \in \mathbb{X}$, we have

$$||Au|| \le \alpha(b-a) + \max_{a \le x \le b} f(x) \coloneqq r$$

Since $f \in \mathbb{X}$, it's bounded in [a,b]. For $u,f \in \mathbb{X}$, u and f are uniformly continuous. For each $\varepsilon > 0$, there is a $\delta > 0$ such that $|x-y| < \delta$ imply $|u(x) - u(y)| < \frac{\varepsilon}{2\alpha(b-a)}$ and $|f(x) - f(y)| < \frac{\varepsilon}{2}$.

$$|(Au)(x)-(Au)(y)| \leq |\alpha| \int_a^b \max_{a \leq x \leq b} |cosu(z)| |u(x)-u(y)| \mathrm{d}x + |f(x)-f(y)| < \varepsilon$$

By Arzelà-Ascoli theorem, A is a compact operator. Further we have priori estimate

$$||u|| = |t| ||\alpha \int_a^b \sin u(x) dx + f(x)|| = |t|r$$

Apply Leray-Schaude Principle we have the conclusion.

PROBLEM 16. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous. Then, the system

$$\xi = 10^{27} + \sin f(\xi, \eta) \quad \eta = \cos f(\xi, \eta)$$

has a solution $(\xi, \eta) \in \mathbb{R}^2$

SOLUTION. Define operators

$$A\xi = 10^{27} + \sin f(\xi, \eta) \quad B\eta = \cos f(\xi, \eta)$$

By Arzelà-Ascoli theorem, A and b are compact operators. Details are similar to the previous problem. Further, we have the priori estimate

$$\|\xi\| = |t| \|10^{27} + \sin f(\xi, \eta)\| \le (10^{27} + 1)|t|$$

and

$$\|\eta\| = |t| \|\cos f(\xi, \eta)\| \le |t|$$

Apply Leray-Schaude Principle we have the conclusion.

PROBLEM 17. Let $\sigma(A)$ denote the spectrum of the linear operator $A: \mathbb{X} \to \mathbb{X}$. Show that $\sigma(A) = 2$ provided $\mathbb{X} := \mathbb{C}$ and Au = 2u.

Solution. Consider whether $(\lambda I - A)^{-1}$ exists. Since Au = 2u

$$(\lambda I - A)u = (\lambda - 2)u$$

If $\lambda=2$, $(\lambda I-A)^{-1}$ doesn't exist. If $\lambda\neq 2$, $(\lambda I-A)^{-1}=\frac{I}{\lambda-2}.$ By definition, $\sigma(A)=2.$

PROBLEM 18. The spectral radius. Let $A: \mathbb{X} \to \mathbb{X}$ be a linear continuous operator on the complex Banach space \mathbb{X} . Define the spectral radius r(A) of A through

$$r(A)\coloneqq \sup_{\lambda\in\sigma(A)}|\lambda|$$

Show that $r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$

Solution. For any $\varepsilon > 0$, let's define the two following matrics

$$A_{\pm} = \frac{A}{r(A) \pm \varepsilon}$$

Thus

$$r(A_{\pm}) = \frac{r(A)}{r(A) \pm \varepsilon}$$

and

$$r(A_{+}) < 1 < r(A_{-})$$

Then

$$\lim_{n \to \infty} A_+^k = 0$$

This shows the existence of $N_+ \in \mathbb{N}$ such that, for all $n \geq N_+$

$$||A_+^n|| < 1$$

Therefore

$$||A^n||^{\frac{1}{n}} < r(A) + \varepsilon$$

Similarly, the theorem on power sequences implies that $||A_{-}^{n}||$ is not bounded and that there exists $N_{-} \in \mathbb{N}$ such that, for all $n N_{-}$

$$||A_{-}^{n}|| > 1$$

Therefore

$$||A^n||^{\frac{1}{n}} > r(A) - \varepsilon$$

Let $N = max\{N_+, N_-\}$, for $\forall \varepsilon, \exists N \in \mathbb{N}, \forall n \geq N$

$$r(A) - \varepsilon < ||A^n||^{\frac{1}{n}} < r(A) + \varepsilon$$

That is, $r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$.

PROBLEM 19. Volterra integral operator. Let $\mathbb{X} := C[a,b]_{\mathbb{C}}$, where $-\infty < a < b < \infty$. Define the operator $A : \mathbb{X} \to \mathbb{X}$ through

$$(Au)(x) := \int_{a}^{x} K(x,y)u(y)dy$$
 for all $x \in [a,b]$

where $K:[a,b]\times[a,b]\to\mathbb{C}$ is continuous. Then, r(A)=0, and hence $\sigma(A)=\{0\}.$

SOLUTION. Set

$$c = \max_{a \le x, y \le b} |K(x, y)|$$

Then

$$|(Au)(x)| = \int_{a}^{x} K(x,y)u(y)dy \le c||u||(x-a)$$

and

$$|(A^{2}u)(x)| = \int_{a}^{x} K(x,y)(Au)(y)dy \le c^{2}||u|| \int_{a}^{x} (y-a)dy = \frac{c^{2}||u||(x-a)^{2}}{2!}$$

Continuing in this way, we have

$$|(A^n u)(x)| \le \frac{c^n ||u|| (x-a)^n}{n!}$$

and therefore

$$||A^n u|| = \max_{a \le x \le b} |(A^n u)(x)| = \frac{c^n ||u|| (b-a)^n}{n!}$$

Thus we find the radius $r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}} = 0$, and hence $\sigma(A) = \{0\}$.

PROBLEM 20. Fredholm integral operator.Let $\mathbb{X} := C[a,b]_{\mathbb{C}}$, where $-\infty < a < b < \infty$. Define the operator $A : \mathbb{X} \to \mathbb{X}$ through

$$(Au)(x) := \int_a^b K(x,y)u(y)dy$$
 for all $x \in [a,b]$

where $K:[a,b]\times[a,b]\to\mathbb{C}$ is continuous. Show that

$$r(A) \le (b-a) \max_{x,y \in [a,b]} |K(x,y)|$$

SOLUTION. We have shown that

$$||A|| \le \sup_{\|u\| \le 1} c||u||(b-a) = (b-a) \max_{x,y \in [a,b]} |K(x,y)|$$

Combining with

$$r(A) \leq \|A\|$$

We have the conclusion.

PROBLEM 21. The Banach space $l_{\infty}^{\mathbb{K}}$. Let \mathbb{K}^{∞} denote the space of all sequences $(u_n)_{n\geq 1}$, where $u_n\in\mathbb{K}$ for all $n\in\mathbb{N}$. Moreover, let $l_{\infty}^{\mathbb{K}}$ denote the set of all $(u_n)\in\mathbb{K}^{\infty}$ such that

$$\|(u_n)\|_{\infty} := \sup_{n \ge 1} |u_n| < \infty$$

Define

$$\alpha(u_n) + \beta(v_n) = (\alpha u_n + \beta v_n)$$
 for all $\alpha, \beta \in \mathbb{K}$

Show that \mathbb{K}^{∞} is an infinite-dimensional linear space over \mathbb{K} .

Solution. Since \mathbb{K} is a linear space, It suffices to show that $\alpha(u_n) + \beta(v_n) \in$

 \mathbb{K}^{∞} . We have

$$\alpha(u_n) + \beta(v_n) = (\alpha u_n + \beta v_n)$$
 for all $\alpha, \beta \in \mathbb{K}$

Since $\alpha u_n + \beta v_n \in \mathbb{K}$, $\alpha(u_n) + \beta(v_n) \in \mathbb{K}^{\infty}$.

Now we choose $(e_{1n}), e_{2n}, \dots e_{Nn}$, and $e_{kn} = \{0, \dots, 0, 1, 0 \dots\}$ such that 1 arise in the k-th place. Thus for each $N = 1, 2, \dots$,

$$\alpha_1(e_{1n}) + \alpha_2(e_{2n}) + \cdots + \alpha_N(e_{Nn}) = 0$$

always implies $\alpha_1 = \alpha_2 = \cdots = \alpha_N = 0$, so \mathbb{K}^{∞} is an infinite-dimensional linear space over \mathbb{K} .

PROBLEM 22. $l_{\infty}^{\mathbb{K}}$ is an infinite-dimensional Banach space over \mathbb{K} with respect to the norm $\|\cdot\|_{\infty}$.

SOLUTION. First we show that $l_{\infty}^{\mathbb{K}}$ is linear. For $\forall (u_n), (v_n) \in l_{\infty}^{\mathbb{K}}$ and $\alpha, \beta \in \mathbb{K}$, we have

$$\|\alpha(u_n)+\beta(v_n)\| = \|(\alpha u_n+\beta v_n)\| = \sup_{n\geq 1} |\alpha u_n+\beta v_n| \leq \alpha \sup_{n\geq 1} |u_n|+\beta \sup_{n\geq 1} |v_n| < \infty$$

Thus $\alpha(u_n)+\beta(v_n)\in l_\infty^{\mathbb{K}}$.

Then we show each Cauchy sequences is convergent. Choose a Cauchy sequence $(u_n^{(k)})$ in $l_{\infty}^{\mathbb{K}}$, which means for $\forall \varepsilon > 0$, there exists N > 0, such that $\forall k_1, k_2 \geq N$, we have

$$\|(u_n^{(k_1)} - u_n^{(k_2)})\| = \sup_{n \ge 1} |u_n^{(k_1)} - u_n^{(k_2)}| < \varepsilon$$

That is, for each $u_n \in \mathbb{K}$, $u_n^{(k)}$ is a Cauchy sequence, and by applying the traditional Cauchy convergent criterion, $u_n^{(k)}$ converges to u_n^* , then

$$\|(u_n^{(k)} - u_n^*)\| = \sup_{n \ge 1} |u_n^{(k)} - u_n^{(*)}| < \varepsilon$$

 $l_{\infty}^{\mathbb{K}}$ is an infinite-dimensional Banach space over \mathbb{K} with respect to the norm $\|\cdot\|_{\infty}$.

Classical function spaces on [a, b]. Let $-\infty < a < b < \infty$. Show that the following function spaces are Banach spaces.

PROBLEM 23. Let B[a,b] denote the set of all bounded functions $u:[a,b]\to\mathbb{R}$ and set

$$||u|| \coloneqq \sup_{a \le x \le b} |u(x)|$$

Solution. First we show $\|\cdot\|$ is a norm.

- $||u|| = \sup_{a \le x \le b} |u(x)| = 0 \Leftrightarrow u \equiv 0.$
- For $\alpha \in \mathbb{R}$, $\|\alpha u\| = \sup_{a \le x \le b} |\alpha u(x)| = \alpha \sup_{a \le x \le b} |u(x)| = \|\alpha u\|$
- For $\forall u, v \in [a, b]$

$$\|u+v\| = \sup_{a \leq x \leq b} |u(x)+v(x)| \leq \sup_{a \leq x \leq b} |u(x)| + \sup_{a \leq x \leq b} |v(x)| = \|u\| + \|v\|$$

Then we show each Cauchy sequences is convergent. Choose a Cauchy sequence (u_n) in B[a, b], i.e.

$$||u_n - u_m|| = \sup_{a \le x \le b} |u_n(x) - u_m(x)| < \varepsilon \text{ for all } n, m \ge N$$

This implies the pointwise convergence

$$u_n(x) \to u(x)$$
 for all $x \in [a, b]$

Letting $m \to \infty$, we obtain

$$\sup_{a \le x \le b} |u_n(x) - u(x)| \le \varepsilon$$

Thus the convergence is uniform on the interval [a, b]. Further

$$||u|| = ||u - u_n + u_n|| \le ||u - u_n|| + ||u_n|| < \varepsilon + ||u_n||$$

Since u_n is bounded, $u \in B[a, b]$, and

$$u_n \to u$$
 in $B[a, b]$ as $n \to \infty$

PROBLEM 24. For $0 < \alpha \le 1$, let $C^{0,\alpha}[a,b]$ denote the set of all the so-called Hölder continuous function $u:[a,b] \to \mathbb{R}$, i.e., by definition,

$$|u(x) - u(y)| \le \text{const}|x - y|^{\alpha}$$
 for all $x, y \in [a, b]$

Let

$$H_{\alpha}(u) := \sup \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

where the supremum is taken over all $x, y \in [a, b]$ with $x \neq y$. In particular

$$|u(x) - u(y)| \le H_{\alpha}(u)|x - y|^{\alpha}$$
 for all $x, y \in [a, b]$

Set

$$||u|| \coloneqq \max_{a \le x \le b} |u(x)| + H_{\alpha}(u)$$

SOLUTION. It's easy to show $\|\cdot\|$ is a norm as before. Choose a Cauchy sequence (u_n) in $C^{0,\alpha}$, i.e.

$$||u_n - u_m|| = \max_{a \le x \le b} |u_n(x) - u_m(x)| + H_\alpha(u_n - u_m) < \varepsilon \text{ for all } n, m \ge N$$

Obviously $H_{\alpha}(u_n - u_m) \ge 0$, it implies

$$\max_{a \le x \le b} |u_n(x) - u_m(x)| < \varepsilon$$

The pointwise convergence holds

$$u_n(x) \to u(x)$$
 for all $x \in [a, b]$

Letting $m \to \infty$, we obtain

$$||u_n - u|| = \max_{a \le x \le b} |u_n(x) - u(x)| + H_\alpha(u_n - u) \le \varepsilon$$

Thus the convergence is uniform on the interval [a, b]. Further

$$||u|| = ||u - u_n + u_n|| \le ||u - u_n|| + ||u_n|| \le \varepsilon + ||u_n||$$

 u_n is Hölder continuous, which implies $||u_n|| < \infty$. Thus u is also Hölder continuous.

PROBLEM 25. Let $C^k[a,b]$ with $k=1,2,\cdots$ denote the set of all continuous functions $u:[a,b]\to\mathbb{R}$ that have continuous derivatives on [a,b] up to the order k. Set

$$||u|| \coloneqq \sum_{i=0}^{k} \max_{a \le x \le b} |u^{(j)}(x)|$$

where u^j denotes the jth derivative.

SOLUTION. It's easy to show $\|\cdot\|$ is a norm as before. Choose a Cauchy sequence (u_n) in $C^k[a,b]$, i.e.

$$||u_n - u_m|| = \sum_{j=0}^k \max_{a \le x \le b} |u_n^{(j)}(x) - u_m^{(j)}(x)| < \varepsilon \quad \text{for all } n, m \ge N$$

$$\max_{a \le x \le b} |u_n^{(j)}(x) - u_m^{(j)}(x)| < \varepsilon \quad \text{for all } j = 1, 2, \dots, k$$

It implies the pointwise convergence

$$u_n^{(j)}(x) \to u^{(j)}(x)$$
 for all $x \in [a, b]$ and $j = 1, 2, \dots, k$

Letting $m \to \infty$, we obtain

$$||u_n - u|| = \sum_{j=0}^k \max_{a \le x \le b} |u_n^{(j)}(x) - u^{(j)}(x)| \le \varepsilon$$

Thus the convergence is uniform on the interval [a,b]. Further for $\varepsilon > 0$, $|x-y| < \delta, j = 1, 2, \dots, k$

$$|u^{(j)}(x)-u^{(j)}(y)| \leq |u^{(j)}(x)-u_n^{(j)}(x)| + |u_n^{(j)}(x)-u_n^{(j)}(y)| + |u_n^{(j)}(y)-u^{(j)}(y)| < \varepsilon$$
 We obtain $u \in C^k[a,b]$.

PROBLEM 26. For $0 < \alpha \le 1$ and $k = 1, 2, \dots$, let $C^{k,\alpha}[a, b]$ denote the set of all functions $u \in C^k[a, b]$ with $u^{(k)} \in C^{0,\alpha}[a, b]$. Set

$$||u|| := \sum_{j=0}^{k} \max_{a \le x \le b} |u^{(j)}(x)| + H_{\alpha}(u^{(k)})$$

SOLUTION. Combining previous two problems.

PROBLEM 27. Let $C[a,b]_{\mathbb{C}}$ denote the set of all complex continuous functions $u:[a,b]\to\mathbb{C}$. Define

$$\|u\| \coloneqq \max_{a \le x \le b} |u(x)|$$

SOLUTION. Apply the condition of C[a, b] to real and imaginary parts respectively.

PROBLEM 28. **Density**. Let D be a dense subset of the normed space X over \mathbb{K} . Show that

$$\langle u^*, u \rangle = 0$$
 for all $u \in D$ and fixed $u^* \in X$

implies $u^* = 0$.

SOLUTION. Let $v \in X$ be given. Since D is dense in X, there exists a sequence (u_n) in D such that $u_n \to v$ as $n \to \infty$. The functional u^* is continuous and $u^*(u_n) = 0$ for all n. Hence

$$\langle u^*, v \rangle = \lim_{n \to \infty} \langle u^*, u_n \rangle = 0$$
 for all $v \in X$

Therefore, $u^* = 0$.