

COLLEGE

Data Analysis Tutoring Effect Evaluation

Term: 2025Q1

Masae Wen Mentor: Bryan Queme 8/14/2025

Agenda

- Executive Overview
 - > The Question
 - > The Answer
 - > The Evidences
 - > The Insights

Comprehensive Statistical Overview (Appendix)

Agenda

- Executive Overview
 - > The Question
 - > The Answer
 - > The Evidences
 - > The Insights

The Big Question: Does Tutoring Work?

- Our Question: Are students who use our tutoring sessions making more progress than those who don't?
- Our Goal: To understand the effect of tutoring on student progress
 - Key metric of learner success: competency completion (0 12)
- Data Used: Cleaned Gradebook and Cleaned Post Tutor Form
 - Data Range: 2025 Q1
 - Overall: 2558 observations
 - Tutored Group: 137 observations
 - Untutored Group: 2421 observations

Agenda

- Executive Overview
 - > The Question
 - > The Answer
 - > The Evidences
 - > The Insights

The Answer is a Resounding YES!

Finding 1: Tutored students complete more than DOUBLE the coursework.

- Students who receive tutoring complete on average 2.16 times* as many competencies as students who don't.
 - *95% Confidence Interval (CI): [1.56, 3.01]
 - o p < 0.00001 (highly statistically significant)

Finding 2: Tutoring Appears Critical for Student Engagement

- 77% of untutored students completed zero competencies (untutored: 2421)
- 33% of tutored student completed zero competencies (tutored: 137)

Agenda

- Executive Overview
 - > The Question
 - > The Answer
 - > The Evidence
 - > The Insights

A First Look: A Powerful Initial Effect

Competency Completion

Average Completions:

2.0 (Tutored) vs. 0.5 (Untutored)

Median Completions:

1.0 (Tutored) vs. 0.0 (Untutored)

Initial Conclusion:

The raw data shows a strong positive effect, but its complexity requires a deeper analysis for an accurate measure.

How Tutoring Changes the Path to Completion

Untutored group (in red)

Majority at Zero Completions.

Tutored group (in blue)

 Many students showed 1 or more Completions.

Measuring the Impact: A Rigorous Approach

Method 1: Confirming the Difference

 A Wilcoxon Rank-Sum test confirms the group difference is highly statistically significant (p < 0.00001).

A Rigorous Approach to Measuring the Impact

Method 2: Quantifying the Effect Size

- A Zero-Inflated Negative Binomial (ZINB) model was used to accurately measure the impact, accounting for the data's excess zeros and skewed distribution.
- Finding 1 Confirmation: Tutored students complete 2.16 times* as many competencies as untutored students.
 - *95% Confidence Interval (CI): [1.56, 3.01]
 - o p < 0.00001

Tutored Students Show Drastically Less Disengagement

No Progress: Number of Completed Competencies = 0

Progress: Number of Completed Competencies > 0 (1 or more)

Finding 2 Confirmation: 33% No Progress (Tutored) vs. 77% No Progress (Untutored)

Agenda

- Executive Overview
 - > The Question
 - > The Answer
 - > The Evidences
 - > The Insights

Our Findings Are Robust and Reliable

Robust Analysis: Advanced statistical methods ensure accurate and reliable conclusions.

Strong Evidence: Differences are not due to chance and are statistically significant.

Clear Impact: Tutoring is a major factor in observed improvements.

Bottom Line: Tutoring Works!

The data confirms tutoring more than doubles competency completions

Identifying Key Student Groups

Tutoring Impact on Student Progress	Tutored	Untutored
Made Progress (≥1)	67 % Successful Engagement	23 % Self-Starters
Made No Progress (0)	33% Opportunity Group "Quick Win"	77 % Challenge

Tutoring Success:

67% of tutored students achieved progress.

Challenge:

77% of untutored students made no progress.

The "Opportunity Group":

33% of tutored students made no progress, showing a quick win chance.

What This Means for Us: Actionable Insights

Tutoring is a Proven Success: Effective tool for student progress.

Recommendation 1: Use Tutoring as a **Targeted** Intervention.

- Proactively support the "Opportunity Group" with personalized outreach.
- Implement an onboarding survey to identify "at-risk" students even earlier.

Recommendation 2: Promote and Expand Tutoring.

Increase awareness and accessibility for all students via Canvas and Email.

17

Additional Tutoring Impact: Supports Our Instructors

- Effective tutoring reduces repetitive questions for instructors.
- Frees up instructor time for faster grading and feedback.
- Leads to higher overall student satisfaction.

Looking Ahead: Next Steps

- Continue this analysis for future terms to track ongoing impact.
 - Identify "Opportunity Group" students sooner than Quarterly analysis if possible.
- Explore applying this analytical framework to other Calbright programs.

Acknowledgement

• Byan Queme: Data Analysis Program Mentor

Richard Garcia: Exll Intern Supervisor

Evaluating the Impact of Peer Tutoring on Competency Completion in the Calbright Data Analysis Program

A Statistical Analysis Using Zero-Inflated Negative Binomial Regression

Agenda

- Comprehensive Statistical Overview
 - Introduction
 - Exploratory Data Analysis
 - Modeling
 - Conclusion
 - > Future Direction

Introduction & Research Question

- **Objective:** To evaluate the effect of a peer tutoring program on student competency completion within the Calbright Data Analysis Program.
- **Dataset:** The analysis utilizes cleaned gradebook data, separating learners into two groups: those who received tutoring (n=137) and those who did not (n=2,421).
 - Data Range: 2025 Q1
 - Overall: 2558 observations
 - Key Identifier: Calbright Student Email
 - Tools: Google Sheets, Python (Jupyter Notebook)
- Response Variable: The primary outcome is Completion Count Progress (Competency Completion), an integer count variable ranging from 0 to 12.

Data Characteristics: The response variable exhibits properties that violate assumptions of standard linear models:

- **Count Data:** The outcome is a non-negative integer.
- **Excess Zeros:** A large proportion of students have zero completions, particularly in the untutored group where the median is 0 and the 75th percentile is also 0. For tutored students, the median is 1.
- **Overdispersion:** The variance in completion counts is substantially larger than the mean for both groups, as seen in the descriptive statistics.

Visual Justification 1:

 The ECDF plot shows a maximum gap of 0.44 between the two groups at a completion count of 0, where 76.5% of untutored students have zero completions compared to only 32.9% of tutored students.

Visual Justification 2:

 A density histogram visually confirms the high concentration of zeros in the untutored population (~77%) versus the tutored population (~33%).

Chosen Analytical Framework:

- A **Wilcoxon Rank-Sum test** confirmed a highly significant difference between the groups (p < 0.00001), supporting further investigation.
- Based on these characteristics, Negative Binomial (NB) and Zero-Inflated Negative
 Binomial (ZINB) regression models were selected as appropriate tools for the analysis.

Model Selection & Diagnostics

Systematic Comparison: A systematic model selection process was undertaken to identify the best-fitting and most stable model. Configurations tested included:

- Model Type: Standard Negative Binomial vs. ZINB.
- **ZINB Inflation Structure:** A full model (with 'Tutored' as a predictor in both count and zero-inflation components) vs. an intercept-only inflation model.
- **Optimizers:** lbfgs, bfgs, and newton were tested to ensure convergence.

Model Selection & Diagnostics

Selection Criteria: Models were evaluated based on Log-Likelihood, AIC, BIC, Pseudo R², and successful convergence without warnings (e.g., Hessian inversion failures).

Winning Model: The ZINB model with a full inflation structure, using the lbfgs optimizer and 100 iterations, was selected. It demonstrated superior fit over the standard NB model:

Model	Log-Likelihood	AIC	BIC
NB	-2470.26	4946.51	4964.06
ZINB	-2456.79	4923.57	4952.81

Final Model Interpretation: ZINB Results

The selected ZINB model (Full_Infl_LBFGS_Iter100) provides the following insights:

Count Model Component (Negative Binomial):

- The coefficient for Tutored is 0.7722 (p < 0.00001). The Incidence Rate Ratio (IRR) is e0.7722≈2.16*.
 - *95% Confidence Interval (CI) of [1.56, 3.01]
- **Interpretation:** For learners not in the "always-zero" latent class, receiving tutoring is associated with a **116% increase** in the expected number of completed competencies, holding other factors constant.

Final Model Interpretation: ZINB Results

Zero-Inflation Component (Logit):

- The coefficient for inflate_Tutored is -12.0146 (p = 0.879).
- **Interpretation:** The effect of tutoring on the log-odds of being in the "always-zero" group is not statistically significant. There is no evidence that tutoring affects whether a student belongs to a latent class of structural non-completers.

Final Model Interpretation: ZINB Results

Dispersion Parameter:

- alpha is 1.9521 (p < 0.00001).
- **Interpretation:** The significant and positive alpha confirms the presence of overdispersion, validating the use of a Negative Binomial distribution over a Poisson.

Conclusion & Summary of Findings

- Primary Finding: Tutoring is strongly associated with higher competency completion.
 The model estimates that tutoring more than doubles the expected completion count for students who are actively participating in the course.
- Secondary Finding: The mechanism of this effect appears to be through increasing progress among active learners, not by changing the status of structurally disengaged learners.
- Model Validation: The data strongly supports the use of a ZINB model over simpler alternatives, as evidenced by the significant overdispersion parameter and the superior AIC/BIC fit statistics compared to a standard Negative Binomial model.

Limitations & Future Directions

- Observational Data: This analysis is observational, not experimental. Causality cannot be
 definitively established due to potential self-selection bias (i.e., more motivated students
 may be more likely to seek tutoring).
- **Future Work:** A more robust analysis could include controlling for covariates such as program start date, demographics, or prior academic history. A randomized controlled trial would be the ideal design to isolate the causal effect of tutoring.

COLLEGE

END