Surname	Other na	mes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Mechanica Advanced/Advance		
1		
Tuesday 20 January 2015 – Time: 1 hour 30 minutes	Morning	Paper Reference WME01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

PEAL

Turn over ▶

1.	A railway truck A of mass m and a second railway truck B of mass Am are ropposite directions on a smooth straight horizontal track when they collide Immediately before the collision the speed of truck A is $3u$ and the speed of truck In the collision the trucks join together. Modelling the trucks as particles, find	directly.
	(a) the speed of A immediately after the collision,	
		(3)
	(b) the direction of motion of A immediately after the collision,	(1)
	(c) the magnitude of the impulse exerted by A on B in the collision.	(3)

2.

Figure 1

A block of mass 50 kg lies on a rough plane which is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{7}{24}$. The block is held at rest by a vertical rope, as shown in Figure 1, and is on the point of sliding down the plane. The block is modelled as a particle and the rope is modelled as a light inextensible string. Given that the friction force acting on the block has magnitude 65.8 N, find

(a) the tension in the rope,

(4)

(b) the coefficient of friction between the block and the plane.

(4)

Question 2 continued		bla
		_
		_
		_
		_
		_

3.	[In this question ${\bf i}$ and ${\bf j}$ are unit vectors directed due east and due north respective	vely.]
	A particle P is moving with constant velocity $(-6\mathbf{i} + 2\mathbf{j}) \mathrm{m s^{-1}}$. At time $t = 0$, P through the point with position vector $(21\mathbf{i} + 5\mathbf{j}) \mathrm{m}$, relative to a fixed origin O .	passes
	(a) Find the direction of motion of <i>P</i> , giving your answer as a bearing to the degree.	nearest (3)
	(b) Write down the position vector of P at time t seconds.	(1)
	(c) Find the time at which <i>P</i> is north-west of <i>O</i> .	(3)

		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

The points P and Q are at the same height h metres above horizontal ground. A stone is dropped from rest from P . Half a second later a second small stone is vertically downwards from Q with speed $7.35 \mathrm{ms^{-1}}$. Given that the stones ground at the same time, find the value of h .	thrown

5.

Figure 2

A particle P of mass 2 kg is pushed up a line of greatest slope of a rough plane by a horizontal force of magnitude X newtons, as shown in Figure 2. The force acts in the vertical plane which contains P and a line of greatest slope of the plane. The plane is

inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$

The coefficient of friction between P and the plane is 0.5

e acceleration of P is 1.45 m s ⁻² , find the value of X .	(

6.	A uniform rod AC , of weight W and length $3l$, rests horizontally on two supports, one at A and one at B , where $AB = 2l$. A particle of weight $2W$ is placed on the rod at a distance x from A . The rod remains horizontal and in equilibrium.	ora
	(a) Find the greatest possible value of x. (5)	
	(3)	
	The magnitude of the reaction of the support at A is R . Due to a weakness in the support at A , the greatest possible value of R is $2W$,	
	(b) find the least possible value of x .	
	(5) This the reast possible value of x .	
_		

7.	A train travels along a straight horizontal track between two stations A and B . The train starts from rest at A and moves with constant acceleration until it reaches its maximum speed of 108 km h ⁻¹ . The train then travels at this speed before it moves with constant deceleration coming to rest at B . The journey from A to B takes 8 minutes.				
	(a) Change 108 km h^{-1} into m s^{-1} . (2)				
	(b) Sketch a speed-time graph for the motion of the train between the stations A and B.				
	(2)				
	Given that the distance between the two stations is 12 km and that the time spent decelerating is three times the time spent accelerating,				
	(c) find the acceleration, in m s ⁻² , of the train. (6)				

(2)

8.

A particle A of mass 3m is held at rest on a rough horizontal table. The particle is attached to one end of a light inextensible string. The string passes over a small smooth pulley P which is fixed at the edge of the table. The other end of the string is attached to a particle B of mass 2m, which hangs freely, vertically below P. The system is released from rest, with the string taut, when A is 1.3 m from P and B is 1 m above the horizontal floor, as shown in Figure 3.

Given that B hits the floor 2 s after release and does not rebound,

(a) find the acceleration of A during the first two seconds,

(b) find the coefficient of friction between A and the table, (8)

(c) determine whether A reaches the pulley.

Question 8 continued		blank
Question o continued		
		Q8
	(TD) 146 1 1	70
	(Total 16 marks) TOTAL FOR PAPER: 75 MARKS	
EN		