I232 Information Theory Chapter 7: Channel Coding and Channel Capacity

Brian Kurkoski

Japan Advanced Institute of Science and Technology

2023 May

Channel Coding Motivation

- Wireless Communications
- ▶ Data storage SSDs, flash memory, hard drives
- Optical communications
- Distributed data storage
- Blockchain

Reliable Communications Over Unreliable Channels

Code Rate R

$$R = \frac{\# \text{ messasge bits}}{\# \text{ codeword symbols}}$$

For example:

$$= \frac{\text{length } 1010}{\text{length } 10101111} = \frac{4}{7}$$

Central Question

Under what condition is reliable communication possible?

where $C = \max I(X; Y)$ is capacity.

Fundamental Question for Channel Coding

Given an unreliable communications channel, what is the greatest rate at which reliable communications is possible?

Outline

- 7.1 Communication System Model
 - 7.1.1 Encoder
 - 7.1.2 Discrete Memoryless Channel (DMC)
 - 7.1.3 Decoder
- 7.2 Example Using Repeat Code
- 7.3 Channel Capacity
 - 7.3.1 Motivating Examples
 - 7.3.2 Definition of Channel Capacity
 - 7.3.3 Capacity of the Zero-Error Channel
 - 7.3.4 Capacity of the Binary Symmetric Channel (BSC)

7.1 Communication System Model

Figure 1: A model of a communications system.

- lacksquare Encoder: encodes message w to codeword ${f x}$
- ► Channel: model of how noise occurs in transmission
- lacktriangle Decoder: decodes ${f y}$ to estimated message \widehat{w}

Goal: decoder output \widehat{w} should be equal to w. Otherwise, an error has occurred.

7.1.1 Encoder

The encoder maps messages to codewords. The terms message, code, encoder and rate are defined as follows.

Definition

A $\it message$ W is random variable representing one of $\it M$ information symbols:

$$\mathcal{W} = \{1, 2, \dots, M\}.$$

W is uniformly distributed.

Encoder — (M, n) code

Definition

An (M,n) code having a codebook $\mathcal C$ consists of M vectors:

$$\mathcal{C} = egin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \ dots \ \mathbf{x}_M \end{bmatrix}$$

where each *codeword* \mathbf{x}_i consists of n symbols:

$$\mathbf{x} = (x_1, x_2, \dots, x_n),$$

with $x_i \in \mathcal{X}$.

The codebook alphabet is \mathcal{X} . For a binary code, $\mathcal{X} = \{0, 1\}$.

Encoder — Rate

Definition

The rate R of an (M, n) code is:

$$R = \frac{1}{n} \log M.$$

If we take log base 2, then the units of R is bits per transmission.

The rate R measures how much information a code can carry for each channel use:

- For a code with *n* symbols, the channel is used *n* times.
- ▶ The code carries $\log M$ bits of information in other words, we need $\log M$ bits to select one of the codewords.
- ▶ Then, $\frac{1}{n} \log M$ is the number of bits transmitted per channel use.

Encoder

Figure 2: An encoder maps information to codewords.

Definition

An encoder is a mapping from the M messages of \mathcal{W} to the M codewords of \mathcal{C} :

$$\mathcal{W} \to \mathcal{C}$$

Example of a Ternary code

Example

The table below gives an encoding mapping for a ternary code with $\mathcal{X}=\{0,1,2\}$:

$message\ w$	codeword ${f x}$		
1	210210		
2	200011		
3	220221		
4	102021		

What are M, n and R?

7.1.2 Discrete Memoryless Channel (DMC)

The channel model is a DMC:

A discrete memoryless channel (DMC) consists of:

- ightharpoonup an input alphabet \mathcal{X} ,
- lacktriangle an output alphabet ${\mathcal Y}$ and
- ▶ a conditional probability distribution $p_{Y|X}(y|x)$.

Figure 3: Transition diagram for DMC.

Discrete Memoryless Channel

Figure 4: Use the channel n times.

► The codeword x is the input to the channel:

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

► The sequence y is the output of the channel:

$$\mathbf{v} = (y_1, y_2, \dots, y_n)$$

For a memoryless channel, the joint conditional distribution is:

$$p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = p_{\mathbf{Y}|\mathbf{X}}(y_1|x_1)p_{\mathbf{Y}|\mathbf{X}}(y_2|x_2)\cdots p_{\mathbf{Y}|\mathbf{X}}(y_n|x_n)$$

Binary Symmetric Channel (BSC)

In the binary symmetric channel (BSC), an error occurs with probability α .

It has binary inputs and binary outputs.

The probability transition matrix $p_{Y|X}(y|x)$ is:

$$p_{\mathsf{Y}|\mathsf{X}}(y|x) = \begin{bmatrix} 1 - \alpha & \alpha \\ \alpha & 1 - \alpha \end{bmatrix},$$

where $0 \le \alpha \le 1$. There is no error with probability $1 - \alpha$.

Binary Erasure Channel (BEC)

In the binary erasure channel (BEC), an erasure occurs with probability p.

It has binary inputs, and three outputs: 0, 1 and an erasure symbol "?"

For a parameter $0 \le p \le 1$, the probability transition matrix $p_{Y|X}(y|x)$ is:

$$p_{\mathsf{Y}|\mathsf{X}}(y|x) = \begin{bmatrix} 1-p & p & 0 \\ 0 & p & 1-p \end{bmatrix}.$$

7.1.3 Decoder

The decoding function g maps channel output $\mathbf y$ to estimated message $\widehat w$:

$$\widehat{w} = g(\mathbf{y})$$

If $\widehat{w}=w$ then there is no error. If $\widehat{w}\neq w$, then an error occurred.

Probabilities of error:

conditional probability of error
$$\lambda_w = \Pr\left(\widehat{W} \neq w | W = w\right)$$

average probability of error $P_e = \frac{1}{M} \sum_{w \in W} \lambda_w$

7.2 Example Using Repeat Code

Repeat code:

- ightharpoonup Repeats the message n times
- ► Simple, low code rate, can correct many errors.

Encoder Message set is $\mathcal{W}=\{0,1\}$. With n=5, codewords are $\mathbf{x}(0)=00000$ and $\mathbf{x}(1)=11111$.

Channel Binary symmetric channel (BSC) with error probability $\alpha=0.1$ $\bigstar 1$ Decoder is "majority vote"

Majority Vote Decoder for Repeat Code

Majority vote decoding rule (n odd):

- ▶ If channel output y has (n-1)/2 or more zeros, then estimated message is $\widehat{w} = 0$.
- ▶ If channel output y has (n-1)/2 or more ones, then estimated message is $\widehat{w}=1$.

The symbol with the most "votes" wins.

Example of decoding rule when n = 5:

		estimated	estimated
${f y}$ has	example ${f y}$	codeword $\widehat{\mathbf{x}}$	message \widehat{w}
0 ones	00000	00000	0
1 one	00010	00000	0
2 ones	10010		

Majority Vote Decoder for Repeat Code

Majority vote decoding rule (n odd):

- ▶ If channel output y has (n-1)/2 or more zeros, then estimated message is $\widehat{w} = 0$.
- ▶ If channel output y has (n-1)/2 or more ones, then estimated message is $\widehat{w}=1$.

The symbol with the most "votes" wins.

Example of decoding rule when n = 5:

		estimated	estimated
${f y}$ has	example ${f y}$	codeword $\widehat{\mathbf{x}}$	message \widehat{w}
0 ones	00000	00000	0
1 one	00010	00000	0
2 ones	10010	00000	0
3 ones	01110		

Majority Vote Decoder for Repeat Code

Majority vote decoding rule (n odd):

- ▶ If channel output y has (n-1)/2 or more zeros, then estimated message is $\widehat{w} = 0$.
- ▶ If channel output y has (n-1)/2 or more ones, then estimated message is $\widehat{w}=1$.

The symbol with the most "votes" wins.

Example of decoding rule when n = 5:

		estimated	estimated
${f y}$ has	example ${f y}$	codeword $\widehat{\mathbf{x}}$	message \widehat{w}
0 ones	00000	00000	0
1 one	00010	00000	0
2 ones	10010	00000	0
3 ones	01110	11111	1
4 ones	10111	11111	1
5 ones	11111	11111	1

Example: Repeat Code

Questions:

1. What is the code rate?

For BSC with $\alpha = 0.1$:

- 2. What is the probability of error λ_0 and λ_1 ?
- 3. What is the average probability of error n?

★2

7.3 Channel Capacity

- 7.3.1 Motivating Examples
- 7.3.2 Definition of Channel Capacity
- 7.3.3 Capacity of the Zero-Error Channel
- 7.3.4 Capacity of the Binary Symmetric Channel (BSC)

7.3.1 Motivating Examples

Motivate channel capacity by considering how many bits simple channels can carry.

Consider the zero-error channel (error-free channel):

This channel adds no errors, for example:

input
$$\mathbf{x} = 1010100111$$

output $\mathbf{y} = 1010100111$

How many bits can be transmitted for each channel use? Answer:

7.3.1 Motivating Examples

Motivate channel capacity by considering how many bits simple channels can carry.

Consider the zero-error channel (error-free channel):

This channel adds no errors, for example:

input
$$\mathbf{x} = 1010100111$$

output $\mathbf{y} = 1010100111$

How many bits can be transmitted for each channel use? Answer: 1 bit/channel use

Channel Capacity: 4-input Example

Consider this four input, four output channel with no errors:

Note: You can choose one of the four inputs as the message to transmit.

How many bits can be transmitted for each channel use? Answer:

Channel Capacity: 4-input Example

Consider this four input, four output channel with no errors:

Note: You can choose one of the four inputs as the message to transmit.

How many bits can be transmitted for each channel use? Answer: 2 bit/channel use

Channel Capacity: 3-input Example

Consider this three input, three output channel with no errors:

How many bits can be transmitted for each channel use? Answer:

Channel Capacity: 3-input Example

Consider this three input, three output channel with no errors:

How many bits can be transmitted for each channel use? Answer:

$$\log 3 \approx 1.585$$
 bits/channel use

Deal with non-integer number of bits by averaging over many channel uses.

Channel Capacity: 4-Input, 2-Output Example

How many bits can be transmitted for each channel use?

Channel Capacity: 4-Input, 2-Output Example

How many bits can be transmitted for each channel use?

Answer: Only use two of the four inputs. 1 bit/channel use

Key point: the choice of inputs is important.

Noisy Keyboard Channel

Suppose we have a noisy keyboard:

- ► If you press "A", the keyboard will output "A" or "B" with probability 0.5 each. Et cetera.
- While we can consider the capacity of this channel, consider a simpler channel on the next slide.

image credit: Wikipedia/Michael Maggs/CC BY-SA

Channel Capacity: Simplified Keyboard Channel

How many bits can be transmitted for each channel use?

Channel Capacity: Simplified Keyboard Channel

How many bits can be transmitted for each channel use?

Answer: Only use two of the four inputs. 1 bit/channel use

Key points: A channel has a maximum number of bits it can carry. Choosing how to use the inputs is important.

★poll

7.3.2 Definition of Channel Capacity

Definition

For a discrete memoryless channel $p_{Y|X}(y|x)$, the "information" capacity C of a discrete memoryless channel is:

$$C = \max_{p_{\mathsf{X}}(x)} I(\mathsf{X}; \mathsf{Y}).$$

Definition

An optimal $p_{\mathsf{X}}^*(x)$ is called the *capacity-achieving input distribution*:

$$p_{\mathsf{X}}^*(x) = \arg\max_{p_{\mathsf{X}}(x)} I(\mathsf{X}; \mathsf{Y}).$$

Five Properties of Channel Capacity

Five properties related to channel capacity are given:

- 1. C > 0.
- 2. $C \leq \log |\mathcal{X}|$,
- 3. $C \leq \log |\mathcal{Y}|$.
- 4. I(X;Y) is a continuous function of $p_X(x)$.
- 5. I(X;Y) is a concave function of $p_X(x)$.

Example: Capacity of BSC with $\alpha=0.215$

For a BSC with $\alpha = 0.215$, the input distribution is $p_X(0) = 1 - p$ and $p_X(1) = p$.

I(X;Y) is a continuous function of p. I(X;Y) is a concave function of p.

Example: Capacity of BSC with $\alpha=0.215$

For a BSC with $\alpha = 0.215$, the input distribution is $p_X(0) = 1 - p$ and $p_X(1) = p$. Recall the definition of capacity:

$$C = \max_{p_{\mathsf{X}}(x)} I(\mathsf{X};\mathsf{Y})$$

What is the capacity?

$$C =$$

What is the capacity-achieving distribution?

$$p^* =$$

Example: Capacity of BSC with $\alpha=0.215$

For a BSC with $\alpha = 0.215$, the input distribution is $p_X(0) = 1 - p$ and $p_X(1) = p$. Recall the definition of capacity:

$$C = \max_{p_{\mathsf{X}}(x)} I(\mathsf{X};\mathsf{Y})$$

What is the capacity?

$$C = 0.25$$

What is the capacity-achieving distribution?

$$p^* = 0.5$$

7.3.3 Capacity of the Zero-Error Channel

Find the capacity of the zero-error channel having input distribution $p_X(x) = [1 - p, p]$:

Clearly, the capacity is C = 1. Let's verify that analytically.

Recall the binary entropy function $h(p) = -p \log p - (1-p) \log (1-p)$.

★3

7.3.4 Capacity of the Binary Symmetric Channel (BSC)

Consider the general BSC with error probability $0 \le \alpha \le 1$ having input distribution $p_{\mathbf{X}}(x) = [1-p,p]$:

Proposition

The capacity of the binary symmetric channel (BSC) with error probability α is:

$$C = 1 - h(\alpha)$$

with capacity-achieving input distribution $p_X^*(x) = [\frac{1}{2}, \frac{1}{2}].$ $\bigstar 4$

Capacity of the BSC

The capacity of the BSC is $C = 1 - h(\alpha)$.

Class Info

- ▶ Tutorial Hours: Monday, May 8 at 13:30. Ask questions about homework.
- ▶ Homework 5 and 6 on LMS. Deadline Monday, May 8 at 18:00.
- Next lecture: Wednesday, May 10. Channel Coding Theorem. There will be a popquiz on Fano's inequality — understand the proof of Fano's inequality.
- ▶ Midterm exam on May 15 at 13:30.
- ► Homework 7 on LMS (soon)

Midterm Exam

The exam is closed book. You may use:

- ▶ One page of notes, A4-sized paper, double-sided OK.
- Blank scratch paper

You may not use anything else: No printed materials, including books, lecture notes, and slides. No notes (except as above). No internet-connected devices. No calculators. You may need to perform a 2×2 matrix inverse.

Exam Content

- Covers Chapters 1–6
- ▶ Study Homework 1–6. Solutions to Homework 1–6 are provided.
- No programming questions.

Practice problems will be provided.