LIE GROUPS 2013 FALL PROBLEM SET 2

- (1) (a) Prove: The exponential map $\exp : \mathfrak{so}(2) \to SO(2)$ is surjective.
 - (b) Prove: The exponential map $\exp: \mathfrak{gl}(2,\mathbb{R}) \to \mathrm{GL}_+(2,\mathbb{R})$ is not surjective.
 - (c) Is $SL(2,\mathbb{R})$ is connected? Is $\exp:\mathfrak{sl}(2,\mathbb{R})\to SL(2,\mathbb{R})$ surjective?
- (2) Suppose G is a Lie group, with Lie algebra \mathfrak{g} . Its center is by definition

$$Z(G) = \{ g \in G \mid gg' = g'g \text{ for all } g' \in G \}$$

Prove Z(G) is a normal Lie subgroup of G, and find its Lie algebra $Z(\mathfrak{g})$.

(3) (a) Let $\varphi: G \to G$ a Lie group automorphism. Let H be the set of fixed points of φ , i.e.

$$H = \{ g \in G \mid \varphi(g) = g. \}$$

Prove H is a Lie subgroup of G, and find the Lie algebra of H.

- (b) Realize O(n) and $SL(n,\mathbb{R})$ as the fixed point set of some automorphism of $GL(n,\mathbb{R})$.
- (4) (a) Show that the universal cover group of $S^1 \times S^1$ is given by the map

$$\mathbb{R} \times \mathbb{R} \to S^1 \times S^1, \quad (s,t) \mapsto (e^{2\pi i s}, e^{2\pi i t}).$$

- (b) Show that the group of Lie group automorphisms of $S^1 \times S^1$ is $SL(2, \mathbb{Z})$.
- (5) Let G be a connected Lie group, and H and K two commuting closed Lie subgroups of G such that $H \cap K = \{e\}$. Moreover, assume $\dim H + \dim K = \dim G$. Prove: G is isomorphic to $K \times H$.
- (6) Let $H \subset GL(3,\mathbb{R})$ be the Heisenberg group, i.e. the group of all 3×3 upper triangular real matrices whose diagonal entries are 1.
 - (a) Find the Lie algebra \mathfrak{h} of H. What is Z(H)? What is $Z(\mathfrak{h})$?
 - (b) Prove: The exponential map $\exp: \mathfrak{h} \to H$ is a diffeomorphism.
 - (c) Find the formula for $\mu(X,Y)$ so that $\exp(\mu(X,Y)) = \exp X \exp Y$.
- (7) (a) Let G be the Lie group $\mathbb{C} \times \mathbb{C}$ with group multiplication

$$(z, w) \cdot (z', w') = (z + z', w + e^z w').$$

Check that G is a simply connected Lie group, and find its center.

(b) For each $n \in \mathbb{N}$, let G_n be the Lie group $\mathbb{C}^* \times C$ with group multiplication

$$(z, w) \cdot (z', w') = (zz', w + z^n w').$$

Check that G_n is a Lie group, and G is the universal cover group of G.

- (c) Show that for $n \neq m$, G_n is not isomorphic to G_m .
- (8) (a) Let \mathfrak{g} be a two dimensional Lie algebra. Prove: Either \mathfrak{g} is abelian, or there exists a basis $\{X,Y\}$ of \mathfrak{g} so that [X,Y]=Y.
 - (b) For each case in (a), find a simply connected Lie group G whose Lie algebra is g.