Метод главных компонент

(Principal component analysis) Стешенко Артем Александрович @steshenkotema

Применение

- Сокращение признаков для увеличения скорости обучения
- Визуализация
- Компрессия видео и фото

Кратко о машинном обучении

Jabel																
	<u> </u>	<u> </u>	Malic.acid	Ash	Acl		Phenois	Flavanoids	Nonflavanoid.phenols	Proanth	Color.int	Hue	OD	Proline		
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29		1.04	3.92	1065	\supset	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050	1	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185	ſ,	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480	\ \ n\	ojects
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735	("	درد
5	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450	\	
6	1	14.39	1.87	2.45	14.6	96	2.50	2.52	0.30	1.98	5.25	1.02	3.58	1290	\	
7	1	14.06	2.15	2.61	17.6	121	2.60	2.51	0.31	1.25	5.05	1.06	3.58	1295	1	
8	1	14.83	1.64	2.17	14.0	97	2.80	2.98	0.29	1.98	5.20	1.08	2.85	1045		
9	1	13.86	1.35	2.27	16.0	98	2.98	3.15	0.22	1.85		1.01		1045		
Y	_ +	f/x) + [,	וסיו	- <u>.</u>	£,	ror -	→mih	X-Maj	рищ а	مام	j e C	Ł১	* {ea+	tures	

В машинном обучении часто встречается задача уменьшения размерности признакового пространства

Допустим $X \in \mathbb{R}^{n^*l}$,где I — количество признаков(столбцы), n — количество объектов(строки), x_i — объект

Пусть данные у нас центрированные (то есть среднее в каждом столбце равно 0)

Задача: необходимо получить матрицу $Z \in R^{n*d}$, такую чтобы потерять как можно меньше информации из матрицы X

Геометрический смысл

Zi – главная компонента, линейная комбинация x1,, xn. Подберем такие параметры a1,..., an, чтобы дисперсия выборки была максимальной, так как дисперсия показывает, то как хорошо мы преобразовали информацию, на картинке показаны правильный и неправильный выбор параметров

Будем искать главные компоненты u1, u2, ..., ud. Они будут задавать новое векторное пространство

1) (ui, uj) = 0

2) ||ui||2= 1

3) Dui -> max

Дисперсия проецированной выборки показывает, как много информации нам удалось сохранить после понижения размерности

Проекция объекта на компоненту: (xi, ui) (такая формула, потому что главные компоненты нормированы $\|ui\|^2=1$,), проекция всех объектов: X^*ui -

Проекция всех объектов на все компоненты: X*Ud

Посчитаем дисперсию проецированной выборки. Мы можем записать ковариационную матрицу. И числа по диагонали будут дисперсиями проекции X на все ui. То есть след ковариационной матрицы - дисперсия

$$\Sigma = [\sigma_{ij}], \ \sigma_{ij} = \operatorname{cov}(X_i, X_j) = \operatorname{E}[(X_i - \operatorname{E}[X_i])(X_j - \operatorname{E}[X_j])].$$

X*ui — случайный вектор, где хi, объект, - это случайный вектор, X — множество случайных векторов

Элемент ковариационной матрицы: cov(X*ui, X*uj) = E(uiт*Xт*X*uj)-E(X*ui)-E(X*uj) = E(uiт*Xт*X*uj) = E(X*uj) = E(uiт*Xт*X*uj) = E(X*uj) = 0, E(X*uj) = 0, так как X – центрированная матрица

Ковариационная матрица UTXTXU

На диагонали ковариационной матрицы находятся дисперсии $tr(U^TX^TXU) = \Sigma||X^*ui||^2$, где $||X^*ui||^2 = ui^TX^TX^*ui - норма матрицы из одного элемента – это сам элемент$

 $Di = ||X*ui||^2$

Найдем компоненту ui. Так как нам нужно максимизировать дисперсию Di при условии $\|ui\|^2 = 1$, то мы можем записать это как оптимизационную задачу и решить с помощью функции Λ агранжа

$$\begin{cases} ||X^*ui||^2 \rightarrow \max \\ ||ui||^2 = 1 \end{cases}$$

 $L(ui, \lambda) = ||X^*ui||^2 + \lambda^*(||ui||^2 - 1)$ необходимо найти экстремум

$$d(L(ui, \boldsymbol{\lambda}))/d(ui) = 2*XT*X*ui + 2*\boldsymbol{\lambda}*ui = 0$$

ui — собственный вектор ковариационной матрицы $X^{\intercal*}X$, где $X^{\intercal*}X^*$ ui = λ *ui, отсюда посчитаем дисперсию $\|X^*$ ui $\|^2$ = ui $^\intercal$ * $X^{\intercal*}X^*$ ui = ui $^\intercal$ * λ *ui -> max

3) условие, которое требует (ui, uj) = 0 также выполняется, так как мы знаем, что собственные векторы, отвечающие различным собственным значениям, ортогональны

Главная компонента ui равна собственному вектору, соответствующему собственному значению λi , где $\lambda 1 > \lambda 2 > \lambda 3 > ... > \lambda d$ U — матрица поворота, матрица главных компонент . Z = X * U

Матрица VSU[⊤] – сингулярное разложение матрицы X, то мы можем представить задачу так:

 $Z = XU = VSU^{T}U = VS = Z$

 $X = VSU^{T} = Z^{*}U^{T}$

Теперь в зависимости о от того, какое k главных компонент мы хотим использовать, такое k сингулярных чисел нужно взять, пример на картинке следующего слайда

Связь с сингулярным разложением

По теореме Эккарта-Янга Ак это лучшая аппроксимация матрицы А ранга к

```
import numpy as np
from sklearn.decomposition import PCA
X = np.array([[-1, -1, 1], [-2, -1, 3], [-3, 1, -2], [2, 1, 1], [1, 2, 1], [3, 3, 2]]) #матрица 6 * 3
pca = PCA(n components=3) #приминяем метод главных компонент
Z = pca.fit transform(X) #данные центрируются, потом применяется
                       #сингулярное разложние с k = n components
                       # k = 3 сингулярными числами
#fit transform создает вектора - главные компоненты
#затем проецирует данные на них
Z #если бы мы взяли, например, k=2, то Z состояла из первых двух стобцлв
array([[-1.66578638, -0.96625837, 0.8078438],
      [-2.00544699, -2.63099797, -0.6458662],
      [-3.28582985, 2.6786842, -0.23611634],
       [ 1.79266035, 0.04886353, 0.9009767 ],
       [ 1.37266021, 0.60746729, -0.32847917],
       [ 3.79174267, 0.26224132, -0.49835879]])
pca.explained variance_ratio_ #две главные компоненты сохранили
                             #около 96% иннформации
array([0.6760209, 0.2821519, 0.0418272])
sin = pca.singular values
sin #сингулярные числа
array([6.08838889, 3.93336107, 1.51443875])
```

Датасет Wine

- Набор данных вин содержит результаты химического анализа вин, выращенных в определенной области Италии. В 178 образцах представлены три вида вина, для каждого образца записаны результаты 13 химических анализов. Качественные переменные были преобразованы в категориальные переменные.
- Наша задача построить модель, чтобы классифицировать эти вина.
 Посмотрим, поможет ли РСА улучшить алгоритм

$$\frac{1}{2}||W||^2 + C\sum_{i=1}^{\ell} \xi_i \to \min_{W,\xi}$$

Метод опорных векторов ищет гиперплоскость wx+b=0 с такими параметрами w и b, чтобы максимизировать 2/||w|| и минимизировать сумму ошибок


```
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=9)
```

```
%%time
pca = PCA(n_components=6) #приминяем метод главных компонент
pca.fit_transform(X)
X_train_pca = pca.transform(X_train) #получаем матрицу с новыми признаками
X_test_pca = pca.transform(X_test)

clf = LinearSVC(random_state=17).fit(X_train_pca, y_train) #обучаем модель
y_pred = clf.predict(X_test_pca) #предсказания
accuracy_pca = accuracy_score(y_pred, y_test) #точность
print(accuracy_pca)
```

0.9555555555556 Wall time: 14 ms Можно заметить, если не применить РСА, то качество нашей модели будет не сильно лучше, но на большем количестве данных обучение будет происходить гораздо дольше

```
%%time
clf2 = LinearSVC(random_state=17).fit(X_train, y_train)
y_pred = clf2.predict(X_test)
accuracy_pca = accuracy_score(y_pred, y_test)
print(accuracy_pca)
```

0.977777777777777777Wall time: 29.9 ms

```
import pandas as pd
import seaborn as sns
wine = pd.read_csv('wine.csv')
X = wine.drop(['Wine'], axis=1)
sns.heatmap(X.corr(), cmap='RdYlBu_r', vmin=-1, vmax=1, center= 0)
```

<matplotlib.axes._subplots.AxesSubplot at 0x156b3fb0>

<matplotlib.axes._subplots.AxesSubplot at 0x168</pre>


```
plt.figure() |
plt.scatter(wine['Phenols'], wine['Nonflavanoid.phenols'], c=y, )
plt.show()
```


Наши объекты, которые описываются I3 признакам, мы представили в двумерном пространстве

```
from sklearn import datasets

wine = datasets.load_wine() #загружаем данные
X, y = wine.data, wine.target #делим на признаки и целевую переменную

pca = PCA(n_components=2) #приминяем метод главных компонент
Z = pca.fit_transform(X)

plt.figure() #pucyem
plt.scatter(Z[:, 0], Z[:, 1], c=y, )
plt.show()
```


Новые признаки – это линейные комбинации старых