Kamil Jarkowski, Damian Forma, Paweł Drzyzga

Dokumentacja aplikacji

1. Wprowadzenie

Aplikacja ta jest narzędziem służącym do:

- Obliczania średnicy zbiorów,
- Obliczania odległości między zbiorami,
- (eksperymentalnie) Rysowania kul otwartych, domkniętych, jak i sfer w przestrzeni dwuwymiarowej.

Sama aplikacja została udostepniona przy pomocy oficjalnej strony streamlit pod linkiem https://kursapp-pg9qzqkjjdkuyezpwiurdn.streamlit.app/. Cały kod źródłowy aplikacji jest dostępny na platformie GitHub pod adresem https://github.com/Qertal/KursStreamlit/tree/main/projekt_topo.

W całości została ona wykonana w języku Python, głównie przy użyciu biblioteki **Numpy** do obliczeń numerycznych oraz **Streamlit** do stworzenia interfejsu użytkownika. Aplikacja jest prosta w obsłudze, a jej działanie jest intuicyjne. W tej dokumentacji zostaną przedstawione poszczególne sekcje aplikacji oraz ich funkcjonalności.

2. Pierwsze wejście na stronę aplikacji

Możliwe, że pierwsze wejście na stronę aplikacji będzie trwało dłużej niż zwykle. Jest to spowodowane tym, że aplikacja jest uruchamiana na serwerze, a nie lokalnie. Dodatkowo, możliwe, że aplikacja będzie w stanie uśpienia (2.1). Wtedy wystarczy kliknąć przycisk z napisem **Yes, get this app back up!**, a aplikacja zostanie uruchomiona ponownie.

Rysunek 2.1. Uśpiona aplikacja

2.1. Strona główna aplikacji

Na stronie głównej aplikacji (2.2) znajdują się wypisani autorzy, a także po lewej stronie mały panel nawigacyjny, który pozwala na przejście do poszczególnych sekcji aplikacji, poprzez kliknięcie w odpowiednią część. Warto zwrócić uwagę, że w każdej chwili można wrócić do strony głównej klikając przycisk **Strona Główna**.

Rysunek 2.2. Strona Główna

Przejdźmy do pierwszej sekcji, a mianowicie do Średnica zbioru.

3. Średnica zbioru

Klikając w przycisk **Średnica zbioru** w polu nawigacji, przenosi nas na stronę (3.1), gdzie możemy skorzystać z kalkulatora średnicy zbioru.

Rysunek 3.1. Formularz Średnica zbioru

Możemy zauważyć, różne sposoby interakcji ze stroną (numerki z listy poniżej są zgodne z numerkami na rysunku):

- 1. W tym miejscu, możemy wybrać, czy metryka z której chcemy skorzystać, jest to metryka Czebyszewa, z racji na jej utrudnioną w sposobie zapisu symbolikę, została ona odizolowana od reszty, od klasycznego wyboru rodzaju metryki.
- 2. Jeśli nie zdecydujemy się na wybór metryki Czebyszewa, możemy określić jakie użyjemy p $(p \in \mathbb{R}_+)$ dla metryki Minkowskiego, czyli $d(x,y) = \left(\sum_{i=1}^n |x_i y_i|^p\right)^{1/p}$. Możliwe jest wybranie wartości p < 1, co skutkuje użyciem wzoru $d(x,y) = \left(\sum_{i=1}^n |x_i y_i|^p\right)$. W momencie gdy wybierzemy metrykę Czebyszewa, pole to automatycznie znika.
- 3. W tym miejscu wybieramy wymiary przestrzeni, w której będziemy pracować. Czyli chodzi konkretnie o n dla przestrzeni \mathbb{R}^n $(n \in \mathbb{N} \setminus \{0\})$.
- 4. Tutaj wybieramy ile punktów będzie w naszej przestrzeni. Wybierając > 10 punktów, na sam koniec, nie zostanie wyświetlona macierz odległości, z racji na jej rozmiar. Warto mieć to na uwadzę.
- 5. Na koniec mamy przycisk **Generuj pola**, który generuje pola, które są potrzebne do wpisania punktów.

Po kliknięciu przycisku **Generuj pola**, zostanie wyświetlona "siatka pól" (3.2), gdzie możemy wpisać współrzędne punktów, które chcemy użyć do obliczenia średnicy zbioru. Warto zauważyć, że pola są automatycznie uzupełnione losowymi liczbami całkowitymi z przedziału [-15, 15], ale można je edytować. Po wprowadzeniu punktów, należy kliknąć przycisk **Oblicz**.

Rysunek 3.2. Formularz Średnica zbioru 2

Po kliknięciu przycisku **Oblicz**, pierwsze co zostanie wyświetlone, to macierz odległości między punktami (3.3). Jest to macierz symetryczna, gdzie d_{ij} to odległość między punktem i a punktem j. Następnie zostanie wyświetlona średnica zbioru, czyli maksymalna odległość między punktami.

```
Macierz odległości:
                                                                         4.10
                   0.00
                          4.07
                                3.06
                                       4.07
                         0.00
                                4.05
                                                           4.08
                                                                  4.10
                                                                         4.07
                   4.07
                                       4.08
                                              4.09
                                                     4.10
                   3.06
                         4.05
                                       4.06
                                                           4.08
                                                                         4.08
                                0.00
                                             4.08
                                                                  4.07
                                                     4.11
                   4.07
                         4.08
                                       0.00
                                                                         3.06
                                4.06
                                              4.08
                                                     4.10
                                                           3.07
                                                                  3.07
        D(X) =
                         4.09
                                       4.08
                                                                         3.07
                   4.09
                                4.08
                                             0.00
                                                           4.10
                                                                  4.06
                                                     4.11
                   4.10
                         4.10
                                       4.10
                                                    0.00
                                                           4.04
                                                                  4.12
                                                                         4.09
                                4.11
                                              4.11
                                                                         4.09
                   4.08
                         4.08
                                4.08
                                       3.07
                                              4.10
                                                     4.04
                                                           0.00
                                                                  4.11
                         4.10
                   4.08
                                4.07
                                       3.07
                                              4.06
                                                     4.12
                                                           4.11
                                                                  0.00
                                                                         3.07
                  4.10
                         4.07
                                4.08
                                       3.06
                                              3.07
                                                    4.09
                                                           4.09
                                                                  3.07
                                                                         0.00
Średnica zbioru: 4.1225
```

Rysunek 3.3. Macierz odległości i średnica zbioru

4. Odległość między zbiorami

Teraz z lewegu panelu wybieramy przycisk **Odległość między zbiorami**, co przenosi nas do sekcji poświęconej (jak sama nazwa wskazuje) obliczaniu odległości między dwoma zbiorami (4.1).

Rysunek 4.1. Odległość między zbiorami

Tak jak wcześniej, mamy różne sposoby interakcji ze stroną (numerki z listy poniżej są zgodne z numerkami na rysunku):

- 1. Tak jak wcześniej, możemy wybrać metrykę Czebyszewa, która jest odizolowana od reszty, ze względu na jej utrudnioną w sposobie zapisu symbolikę.
- 2. W momencie, kiedy nie zdecydujemy się na metrykę Czebyszewa, możemy wybrać wartość p dla metryki Minkowskiego, tak jak wcześniej.
- 3. W tym miejscu wybieramy wymiary przestrzeni, w której będziemy pracować. Czyli chodzi konkretnie o n dla przestrzeni \mathbb{R}^n $(n \in \mathbb{N} \setminus \{0\})$.
- 4. Tutaj wybieramy ile punktów będzie w pierwszym zbiorze E.
- 5. Tutaj wybieramy ile punktów będzie w drugim zbiorze F.

Po kliknięciu przycisku **Generuj punkty**, zostaną wygenerowane pola, w które możemy wpisać współrzędne punktów zbiorów E i F (4.2). Warto zauważyć, że pola są automatycznie uzupełnione losowymi liczbami całkowitymi z przedziału [-15, 15], ale można je edytować. Po wprowadzeniu punktów, należy kliknąć przycisk **Oblicz**. Wszystko to jest analogiczne do poprzedniej sekcji, z tą różnicą, że mamy dwa zbiory punktów.

Rysunek 4.2. Odległość między zbiorami: pola

Po zdefiniowaniu punktów, klikamy przycisk **Oblicz odległość**, a aplikacja wypisze najpierw punkty dla obu zbiorów, a następnie obliczy odległość między zbiorami (4.3).

Rysunek 4.3. Odległość między zbiorami: wyniki

5. Rysowanie kul i sfer (eksperymentalnie)

W tej sekcji aplikacji możemy rysować kule otwarte, domknięte oraz sfery w przestrzeni dwuwymiarowej. Aby skorzystać z tej funkcji, należy kliknąć przycisk **Kule na płaszczyźnie** (tak, jestem świadomy tego, ze sfera nie jest kulą), co przeniesie nas do sekcji (5.1).

Rysunek 5.1. Rysowanie kul i sfer

W tej sekcji mamy możliwość wyboru:

- 1. Wybieramy czy chcemy rysować kulę otwartą, domkniętą czy sferę (chociaż **Wybierz typ** kuli może być mylące, to tak, da się wybrać sferę).
- 2. Wybieramy pierwszą współrzędną środka kuli/sfery.
- 3. Wybieramy drugą współrzędną środka kuli/sfery.
- 4. Wybieramy promień kuli/sfery.
- 5. Wybieramy metrykę. Nie ma tutaj niestety do wyboru metryki Czebyszewa. Jednak z punktu widzenia stricte rysowania, możemy wybrać górną granicę p jaka jest narzucona, w tym przypadku jest to p=75. Wartość ta bardzo dobrze przybliża kule bądź sferę w przestrzeni dwuwymiarowej z metryką Czebyszewa.

Warto wspomnieć, ze zostało wprowadzone tutaj troche limitów, są one skutkiem ograniczeń przy rysowaniu wykresów i generowaniu punktów, zarówno ze strony logicznej jak i technicznej (ograniczenia złożoności obliczeniowej). Głównie chodzi o to że:

- 1. promień kuli/sfery musi być z przedziału [1.5, 10] (sam promień paradoksalnie nie ma zbyt dużego wpływu na to jak my ten rysunek i tak będziemy widzieć),
- 2. p dla metryki Minkowskiego musi być z przedziału [0.2, 75]

Klikając przycisk \mathbf{Rysuj} , aplikacja wygeneruje wykres z kulą/sferą w przestrzeni dwuwymiarowej (5.2).

Rysunek 5.2. Rysowanie kul i sfer: wykres

6. Podsumowanie i możliwości rozwoju

Jak widać, aplikacja jest dośc prosta w budowie jak i w obsłudze. Spełnia jednak ona swoje zadanie, czyli pozwala na obliczanie średnicy zbiorów, odległości między zbiorami oraz (poza koncertowo) rysowanie kul otwartych, domkniętych i sfer w przestrzeni dwuwymiarowej. W ramach rozwoju aplikacji, można by pomyśleć o obsłudzie wyrażeń niewymiernych przy obliczaniu średnicy zbiorów, czy też odległości między zbiorami. Dodatkowo można by dodać możliwość wyboru pomiędzy obliczeniami numerycznymi a symbolicznymi, co pozwoliłoby na uzyskanie dokładniejszych wyników. Może to być przydatne narzędzie dla studentów matematyki, którzy są na początku swojej drogi z topologią.