Heaps

School of Computer Science and Informatics University College Dublin, Ireland

Priority Queues: Concept

- A priority queue is an abstract data type for storing a collection of prioritized elements.
 - Like a queue but, removal is based on a priority
- Terminology:
 - Priority Queues hold entries (key + value) the key is the priority
 - An object can be inserted at any time with any priority
 - Only the element with the highest priority can be removed
- Example: Airport landing schedule

Priority Queues: Funct. Spec.

- Priority Queues work with two objects:
 - a data object
 - A key (priority) object
- Core Operations:

insert(k,e)Insert a new element e with key k into P

min()
 Return (but don't remove) an element of P

with highest priority; error occurs if P empty.

remove()
 Remove from P and return an element with the

highest priority; an error occurs if P is empty.

Support Operations:

isEmpty()
 Returns true if the priority queue is empty, or false

otherwise

size()
 Returns the number of elements in the priority queue

Priority Queue: Java Interfaces

```
public interface PriorityQueue<K,V> {
    public int size();
    public boolean isEmpty();
    public void insert(K key, V value);
    public V min();
    public V remove();
}
```

Priority Queue Impl. Strategies

- List-Based Strategies:
 - Unsorted List:
 - Insert at end of the list
 - Use linear search to find which item to remove
 - Sorted List:
 - Insert based on priority (like insertion sort)
- Both strategies have O(n) performance on some operations
 - Unsorted List: min() and removeMin()
 - Sorted List: insert()
- Sorted Lists are "better" because they only affect one operation

Heaps

- A heap is a binary tree that stores keys (key-value pairs) at its internal nodes and that satisfies two additional properties:
 - Order Property: key(parent) ≤ key(child)
 - Structural "Completeness" Property: all levels are full, except the bottom, which is "left-filled"

Rule 1. Level i has 2ⁱ nodes, for 0<i<h

Rule 2. At level h-1, all leafs are to right of all internal nodes

Examples that are NOT heaps

A useful fact

A heap storing N keys has height

h =
$$\lceil \log(N+1) \rceil$$
 $\lceil x \rceil$ = smallest integer greater than x
h = $\lceil \log(13+1) \rceil$ = $\lceil 3.8074... \rceil$ = 4

Inserting into Heaps

- To insert an entry into a heap, we must perform three steps:
 - 1. Insert the new entry at the last position in the heap.
 - 2. Upheap to restore the "order property". This involves repeatedly swapping the newly added entry with parent entries until the property is restored.
 - Identify the "new" last position in the heap. This involves finding the next position in an in-order traversal of the tree. If no next position exists, then the new "last" position is the leftmost child on the next level down.
- Example: Add the following numbers into a heap:
 - 5, 30, 12, 23, 26, 3, 6, 15, 18, 21, 9, 29, 33

Inserting into Heaps

- Upheap terminates when new value is greater than the value of its parent, or the top of the heap is reached.
- Note: after Upheap the heap is again valid!
- Complexity Analysis:
 cost(insert) = (total#swaps) ≤ (h-1) = \[log_2(N+1) \] = O(log n)

Removing from Heaps

- To remove an entry from the heap, we must:
 - 1. Remove the root node (this is the current min entry).
 - 2. Replace this node with the last item in the heap, node L.
 - 3. Perform a Downheap to re-establish the "ordering property". This involves checking whether L is less that its children. If it is not, then L is swapped with the smaller of the two children, and downheap is performed again on L in its new position.
 - 4. **Update the "last" reference.** Need to do an inverse pre-order traversal (I.e. goto the node that is before the last node in a pre-order traversal). If there is no previous node, then find the last node on the next level up.

Removing from Heaps

- Downheap terminates when the key is greater than the keys of both its children, or the bottom of the heap is reached.
- Note that after Downheap the heap is again valid!
- Complexity Analysis:
 cost(rMin) = (total#swaps) ≤ (h-1) = \[log₂(N+1) \] = O(log n)

Complete Binary Trees

- Heaps are a type of Binary Tree that is known as a Complete Binary Tree.
- A Binary Tree T, with height h, is complete if:
 - Levels 0 to h-1 have the maximum number of nodes possible
 - In level h-1, all the internal nodes are to the left of the external nodes, and there is at most one node that has only a left child.
- When dealing with Complete Binary Trees, there are two important nodes:
 - The *root* node (the top of the tree)
 - The *last* node (the next insertion point for the tree).
- To support this, we introduce the CompleteBinaryTree ADT.

The Complete Binary Tree ADT

- A Complete Binary Tree (CBT) is a Binary Tree that also supports the following operations:
 - add(e) adds e to the tree and returns a new external node, v, such that the resulting tree is a complete binary tree with last node v.
 - remove() removes the last node of T and returns its element
- Java Interface:

```
interface CompleteBinaryTree<T> extends BinaryTree<T> {
    public Position<T> add(T elem);
    public T remove();
}
```

Implementing a CBT

- Vectors are a particularly suitable way of implementing Complete Binary Trees (CBT):
 - This is due to the structured way in which items are inserted into and removed from CBTs.
 - This is illustrated in the figure below…

With a vector, the last node is the last item!

Heap Sort

- A simple PQ-based sorting algorithm called "heap sort":
 - Insert all items to be sorted into a Priority Queue
 - Remove them; they'll be in sorted order

$$[4,19,10,3,22,13,8,21,20,28,7,25]$$

$$cost = n \times cost(insert) = n \times O(log(n))$$

$$cost = n \times cost(remove) = n \times O(log(n))$$

$$[3,4,7,8,10,13,19,20,21,22,25,28]$$

total cost =
$$2 \times n \times O(\log(n)) = O(n \times \log(n))$$

Heap Sort - analysis

- All heap methods run in O(log(n)) time, and need n insertions & n removals.
 - Therefore total time is O(2n log(n)) = O(n log(n))
- Compare to the selection and insertion sort's which had O(n2) complexity

 Illustrate Bottom-Up heap construction by adding the following elements to a heap:

Step 1: Construct (n + 1)/2 elementary heaps storing one entry each.

- Step 2: Construct (n + 1)/4 heaps, each storing 3 entries.
 - This is done by joining pairs of elementary heaps and adding a new entry placed at the root.
 - A downheap operation may be performed on the new root if necessary.

- Step 3: Construct (n + 1)/8 heaps, each storing 7 entries.
 - This is done by joining pairs of 3-entry heaps and adding a new entry placed at the root.
 - A downheap operation may be performed on the new root if necessary.

And so on...

- Final Step: Construct (n + 1)/16 heaps, each storing 15 entries.
 - This is done by joining pairs of 7-entry heaps and adding a new entry placed at the root.
 - A downheap operation may be performed on the new root if necessary.

Using a heap to implement a PQ

an instance of the HeapPriorityQueue class

For simplicity... only keys are shown (elements not displayed) keys are integers ordered by the ordinary "<" relation

PQ Comparison

<u>Operation</u>	<u>Heap</u>	<u>SortedSeq</u>	<u>UnsortedSeq</u>
Size, isEmpty	O(1)	O(1)	O(1)
min	O(1)	O(1)	O(n) ouch
insert	O(log n)	O(1) O(n) ouch	O(1)
removeMin	O(log n)	O(1)	O(1) O(n) ouch
mixture of all operations	O(log n)	O(n)	O(n)

