# УО «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ А.А. КУЛЕШОВА» СОЦИАЛЬНО-ГУМАНИТАРНЫЙ КОЛЛЕДЖ



Дисциплина «Конструирование программ и языки программирования»

## Разработка линейных программ (2 часа)

Методические рекомендации к лабораторной работе  $\mathfrak{N}_{2}$  2

Понятия «Линейная программа», «Типы данных», «Математические функции». Методические указания по лабораторной работе № 2 по дисциплине «Конструирование программ и языки программирования». Для учащихся 3 курса очной формы обучения специальности 2—40 01 01 «Программное обеспечение информационных технологий.

#### Оглавление

| 1 Цель работы                                     | ∠            |
|---------------------------------------------------|--------------|
| 2 Краткие теоретические сведения                  |              |
| 2.1 Типы данных                                   |              |
| 2.2 Переменные                                    | <del>(</del> |
| 2.3 Математические функции                        |              |
| 2.4 Организация ввода-вывода данных               |              |
| 2.4.1 Ввод данных                                 |              |
| 2.4.2 Вывод данных                                | 10           |
| 2.5 Использование управляющих последовательностей |              |
| 3. Задания                                        |              |
| 4 Контрольные вопросы                             |              |

### 1 Цель работы

выработать умение разрабатывать линейные программы.

#### 2 Краткие теоретические сведения

#### 2.1 Типы данных.

Язык С# имеет набор встроенных типов, которые рассматриваются как псевдонимы типов в пространстве имен System. Например, тип string — это псевдоним типа System.String, а тип int — псевдоним типа System.Int32. Все встроенные типы подразделены на группы: целочисленные типы; вещественные типы; логический тип; символьные типы; объектный тип (object). Описание типов приведено в таблице 1.

Иерархия классов NET Framework имеет один общий корень - класс System. Објест. Если објест является базовым классом для всех остальных типов и упаковка значений простых типов происходит автоматически, то класс object можно вполне использовать в качестве "универсального" типа данных.

Таблица 1. Встроенные типы С#

| таолица т. Бет | таолица т. ветроенные типы сп |             |                                                        |                    |                  |
|----------------|-------------------------------|-------------|--------------------------------------------------------|--------------------|------------------|
| Название       | Ключевое<br>слово             | Тип<br>.NET | Диапазон значений                                      | Описание           | Размер,<br>битов |
| Логический     | bool                          | Boolean     | true, false                                            |                    |                  |
| ТИП            |                               |             |                                                        |                    |                  |
| Целые типы     | sbyte                         | SByte       | От –128 до 127                                         | Со знаком          | 8                |
|                | byte                          | Byte        | От 0 до 255                                            | Без знака          | 8                |
|                | short                         | Int16       | От –32768 до 32767                                     | Со знаком          | 16               |
|                | ushort                        | UInt16      | От 0 до 65535                                          | Без знака          | 16               |
|                | int                           | Int32       | От –2 x 10 <sup>9</sup> до 2 x 10 <sup>9</sup>         | Со знаком          | 32               |
|                | uint                          | UInt32      | От 0 до 4 x 10 <sup>9</sup>                            | Без знака          | 32               |
|                | long                          | Int64       | От –9 x 10 <sup>18</sup> до 9 x 10 <sup>18</sup>       | Со знаком          | 64               |
|                | ulong                         | UInt64      | От 0 до 18 x 10 <sup>18</sup>                          | Без знака          | 64               |
| Символьный     | char                          | Char        | От U+0000 до U+ffff                                    | Unicode-символ     | 16               |
| тип            |                               |             |                                                        |                    |                  |
| Вещественные   | float                         | Single      | От 1.5 x 10 <sup>-45</sup> до 3.4 x 10 <sup>38</sup>   | 7 цифр             | 32               |
|                | double                        | Double      | От 5.0 x 10 <sup>-324</sup> до 1.7 x 10 <sup>308</sup> | 15–16 цифр         | 64               |
| Финансовый     | decimal                       | Decimal     | От $1.0 \times 10^{-28}$ до $7.9 \times 10^{28}$       | 28–29 цифр         | 128              |
| ТИП            |                               |             |                                                        |                    |                  |
| Строковый тип  | string                        | String      | Длина ограничена объемог                               | мСтрока из Unicode | <del>)</del> -   |
|                |                               |             | доступной памяти                                       | СИМВОЛОВ           |                  |
| Тип object     | object                        | Object      | Можно хранить все, чт                                  | оВсеобщий предок   |                  |
|                |                               |             | угодно                                                 |                    |                  |

При создании переменной размерного типа под нее в стеке выделяется определенный объем памяти, соответствующий типу этой переменной. При передаче такой переменной в качестве параметра выполняется передача значения, а не ссылки на него. Значение размерного типа не может быть равным null. К размерным типам, например, относятся целочисленные и вещественные типы, структуры.

При создании переменной ссылочного типа память под созданный объект выделяется в другой области памяти, называемой кучей. Ссылка всегда указывает на объект заданного типа.

#### 2.2 Переменные

Переменная – именованная область памяти, для хранения данных определенного типа. При выполнении программы значение переменной величины можно изменять. Все переменные должны быть описаны явно, при описании переменной задается ее значение и тип. При объявлении переменной может быть задано начальное значение.

Имя переменной может содержать буквы, цифры и символ подчеркивания. Прописные и строчные буквы различаются. Например, переменные Long, LONG, long - три разных переменные.

Имя переменной может начинаться с буквы или знака подчеркивания, но не цифры. Имя переменной не должно совпадать с ключевыми словами. Не рекомендуется начинать имя с двух подчеркиваний (такие имена зарезервированы для служебного использования).

```
Правильные имена переменных: MaxLen, iMaxLen, Max_Len Неправильные имена переменных: 2Len, Le# Примеры описания переменных: int a =-14; // числовая целая 32 бита float c = -0.00151f; // числовая вещественная 32 бита double I = 123.56789; // числовая вещественная 64 бита bool l = false; // логическая 16 бит string name = "Petrov"; //строковая
```

Выражение - состоит из одного или более операндов (которые могут быть переменными, константами, функциями или символьными значениями), знаков операций и круглых скобок.

Примеры выражений:

```
2 * 2 + 1 полученное значение 5
1 / 2 - 3 полученное значение -3
1.0 / 2 - 3 полученное значение -2,5
```

Присвоение значения переменной представляет оператор присваивания (знаки основных операций приведены в таблице 2):

$$y = 2*x*x + 3*x - 1.$$

Таблица 2. Знаки операций

| Знак операции | Название           |  |
|---------------|--------------------|--|
| +             | Сложение           |  |
| -             | Вычитание          |  |
| *             | Умножение          |  |
| /             | Деление            |  |
| %             | Остаток от деления |  |

Если в арифметических выражениях используются целые числа, то результатом вычислений будет целое число, и любой остаток от деления будет отброшен. Для получения остатка можно использовать соответствующую операцию %, например 10 % 3 возвращает

остаток от целочисленного деления, равный 1.

Когда в арифметических выражениях используются числа с плавающей точкой, то результатом деления 10f / 3f будет число 3,333333.

Приоритет и ассоциативность операторов С# влияют на группировку и оценку операндов в выражениях. Приоритет оператора имеет смысл только в том случае, если присутствуют другие операторы с более высоким или более низким приоритетом. Сначала оцениваются выражения с операторами с более высоким приоритетом. Приоритет также можно описать словом «привязка». Говорят, что операторы с более высоким приоритетом имеют более жесткую привязку (рисунок 1)

| Symbol1                                  | Type of Operation               | Associativity |
|------------------------------------------|---------------------------------|---------------|
| []()> postfix ++ and postfix             | Expression                      | Left to right |
| prefix ++ and prefix — sizeof & * + - ~! | Unary                           | Right to left |
| typecasts                                | Unary                           | Right to left |
| */%                                      | Multiplicative                  | Left to right |
| +-                                       | Additive                        | Left to right |
| <<>>>                                    | Bitwise shift                   | Left to right |
| <><=>=                                   | Relational                      | Left to right |
| ==!=                                     | Equality                        | Left to right |
| &                                        | Bitwise-AND                     | Left to right |
| Λ                                        | Bitwise-exclusive-OR            | Left to right |
| 1                                        | Bitwise-inclusive-OR            | Left to right |
| 8:8:                                     | Logical-AND                     | Left to right |
|                                          | Logical-OR                      | Left to right |
| ?:                                       | Conditional-expression          | Right to left |
| = *= /= %=                               | Simple and compound assignment2 | Right to left |
| +=-=<<=>>=&=                             |                                 |               |
| ^=  =                                    |                                 |               |
|                                          | Sequential evaluation           | Left to right |

Рисунок 1. Приоритет операций

#### 2.3 Математические функции

C# содержит большое количество встроенных математических функций, которые реализованы в классе Math пространства имен System.

Рассмотрим краткое описание некоторых математических функций, подробнее с ни-

ми можно познакомиться в справочной системе VS или технической документации. Особое внимание следует обратить на типы операндов и результатов, т. к. каждая функция может иметь несколько перегруженных версий.

Замечание. Использование нескольких функций с одним и тем же именем, но с различными типами параметров, называется перегрузкой функции. Например, функция Math.Abs(), вычисляющая модуль числа, имеет 7 перегруженных версий: double Math.Abs (double x), float Math.Abs (float x), int Math.Abs(int x), и т. д. (таблица 3)

Таблица 3 Математические функции

| №   | Название                          | Описание                      |
|-----|-----------------------------------|-------------------------------|
| 1.  | Math.Abs(выражение)               | Модуль                        |
| 2.  | Math.Ceiling(выражение)           | Округление до большего целого |
| 3.  | Math.Cos(выражение)               | Косинус                       |
| 4.  | Math.E                            | Число е                       |
| 5.  | Math.Exp(выражение)               | Экспонента                    |
| 6.  | Math.Floor(выражение)             | Округление до меньшего целого |
| 7.  | Math.Log(выражение)               | Натуральный логарифм          |
| 8.  | Math.Log10(выражение)             | Десятичный логарифм           |
| 9.  | Math.Max(выражение1, выражение2)  | Максимум из двух значений     |
| 10. | Math.Min (выражение1, выражение2) | Минимум из двух значений      |
| 11. | Math.PI                           | Число пи                      |
| 12. | Math.Pow(выражение1, выражение2)  | Возведение в степень          |
| 13. | Math.Round(выражение)             | Простое округление            |
|     | Math.Round(выражение, число)      | Округление до заданного числа |
| 14. | Math.Sign (выражение)             | Знак числа                    |
| 15. | Math.Sin(выражение)               | Синус                         |
| 16. | Math.Sqrt(выражение)              | Корень квадратный             |

Пример 1. Вычислить значения функции  $Y=\frac{\cos pi*x}{1+x^2}$  при x=2,5 using System; namespace Lab\_2 { class Example2 // начало описание класса Example2 { static void Main(string[] args) {

```
double p = 3.14159;
    double x = 2.5;
    double y = Math.Cos(p * x) / (1 + x * x);
    Console.WriteLine();
    Console.WriteLine("x = {0} \t y = {1}", x, y);
}
}
```

Эта программа выводит следующее окно с результатом:

```
x = 2,5 y = 9,15030963158186E-07
```

**Замечание.** Функция выводит на экран пустую строку. Это сделано для более комфортной работы.

#### 2.4 Организация ввода-вывода данных.

Программа при вводе данных и выводе результатов взаимодействует с внешними устройствами. Совокупность стандартных устройств ввода (клавиатура) и вывода (экран) называется консолью. В языке С# нет операторов ввода и вывода. Вместо них для обмена данными с внешними устройствами используются специальные объекты. В частности, для работы с консолью используется стандартный класс Console, определенный в пространстве имен System.

#### 2.4.1 Ввод данных

Для ввода данных обычно используется метод ReadLine, реализованный в классе Console. Особенностью данного метода является то, что в качестве результата он возвращает строку (string).

Для того чтобы получить числовое значение необходимо воспользоваться преобразованием данных

}

#### Или сокращенный вариант:

Для преобразования строкового представления целого числа в тип int мы используем метод int.Parse(), который реализован для всех числовых типов данных. Таким образом, если нам потребуется преобразовать строковое представление в вещественное, мы можем воспользоваться методом float.Parse() или double. Parse(). В случае, если соответствующее преобразование выполнить невозможно, то выполнение программы прерывается и генерируется исключение System.FormatExeption (входная строка имела неверный формат).

#### 2.4.2 Вывод данных

В приведенных выше примерах мы уже рассматривали метод WriteLine, реализованный в классе Console, который позволяет организовывать вывод данных на экран. Однако существует несколько способов применения данного метода (таблица 4):

Таблица 4. Способы вывода данных

| Console.WriteLine(x);                             | На экран выводится значение идентификатора х                                                                                                                 |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>Console.WriteLine("x="+x+"y=" +y);</pre>     | На экран выводится строка, образованная последовательным слиянием строки "x=" и значения x, "y=" и значения y,                                               |
| <pre>Console.WriteLine("x ={0} y={1}",x,y);</pre> | На экран выводится строка, формат которой задан первым аргументом метода, при этом вместо параметра { 0 } выводится значение x, a { 1 } вместо – значение y. |

Если использовать при выводе вместо метода WriteLine метод Write, вывод будет выполняться без перевода строки.

#### 2.5 Использование управляющих последовательностей

Управляющей последовательностью называют определенный символ, предваряемый обратной косой чертой. Данная совокупность символов интерпретируется как одиночный символ и используется для представления кодов символов, не имеющих графического обозначения (например, символа перевода курсора на новую строку) или символов, имеющих специальное обозначение в символьных и строковых константах (например, апо-

строф). Рассмотрим управляющие символы (таблица 5):

Таблица 5. Управляющие символы

| Вид        | Наименование         | Вид        | Наименование             |  |
|------------|----------------------|------------|--------------------------|--|
| \a         | Звуковой сигнал      | \t         | Горизонтальная табуляция |  |
| \ <b>b</b> | Возврат на шаг назад | \ <b>v</b> | Вертикальная табуляция   |  |
| \ <b>f</b> | Перевод страницы     | //         | Обратная косая черта     |  |
| \n         | Перевод строки       | \'         | Апостроф                 |  |
| \ <b>r</b> | Возврат каретки      | \"         | Кавычки                  |  |

Пример 3. Вывести сообщение о версии текущей ОС, текущую дату и время.

```
using System;
using System.IO;
using System.Text;
namespace Lab 2
{
    class Program
        static void Main(string[] args)
        {
            //вывести версию ОС
            OperatingSystem os = Environment.OSVersion;
            Console.WriteLine("Platform: {0}", os.Platform);
            Console.WriteLine("The current date and time is " +
DateTime.Now);
            // дата и время
            Console.ReadKey();
        }
    }
}
```

Пример 4. Использование консольного ввода для вычисления значения функции

$$Y = \frac{\cos \pi x}{1 + x^2}$$

```
using System;
using System.IO;
using System.Text;
namespace Lab_2
```

Platform: Win32**N**T

The current date and time is 28.01.2017 15:11:28

```
{
    class Program
    {
        static void Main(string[] args)
    {
        Console.WriteLine("The current date and time is " +
DateTime.Now);
        double pi = 3.14159;
        Console.WriteLine("Input x =\r");
        double x = Convert.ToDouble(Console.ReadLine());
        double y = Math.Cos(pi * x) / (1 + x * x);
        Console.WriteLine("x = \{0\} \setminus y = \{1\}", x, y);
        Console.ReadKey();
    }
    }
}
```

```
The current date and time is 28.01.2017 15:04:28
Input x =
2
x = 2 y = 0,1999999997183
```

#### 3. Задания

1. Напишите программу для расчета функции, согласно номеру варианта:

1) 
$$y = \frac{a^2 \cdot \ln(2/a)}{\sin(x + \sqrt{x + b^2})} + e^{x/z}$$

при a = 1,678; b = 19,792; x = 3,67; z = 2.

2) 
$$d = (a^2 + \cos b^2) \cdot \sin^2 x + y/\sqrt{a}$$

при a = 5,234; b = 2,94; y = -18,32;  $x = 65^{\circ}$ .

3) 
$$S = (x/a + b) \cdot e^{-x/a+1} \cdot \frac{\sin(x+y)}{\cos(a+1)}$$

при a = 2,961; b = 1,96; x = 11,271; y = 6,718.

4) 
$$y = \sqrt{a\sqrt{\pi} + e^{bx}} \cdot m \ln \left( a + \frac{x}{\sin x} \right)$$

при a = 1,297; b = 0,5054; x = 2,1212; m = 3.

5) 
$$S = \frac{\cos^2 z - ax^2 \sqrt{b}}{e^{b+ax} + \sqrt{2\pi y}}$$

при a = 1,1111; b = 2,2222; x = 3,45; y = 1,234; z = 14,8.

6) 
$$Z = \frac{\sqrt{a + \cos^2 x}}{b + y \sin x} \cdot \ln q$$

при a = 1; b = 2; q = 3;  $x = 137^{\circ}$ ; y = 1,158.

7) 
$$y = \frac{ax - e^{-b/x}}{z \cdot \sqrt{|\sin(z/t+t)|}}$$

при a = 1,957; b = 9; t = 6; x = 8,33; z = 5,777.

8) 
$$y = e^{x/\sqrt{b}} \cos \sqrt[4]{x} / b + \pi/2 \sqrt{2\pi x + x/a}$$

при a = 1,79; b = 2; x = 27.

9) 
$$y = \frac{\sqrt{2\pi x} \cdot x^{x+1} \cdot e^{-x}}{\cos \frac{x}{p+a/b}}$$

при a = 1,234; b = 0,4321; p = 2; x = 0,378.

10) 
$$Z = \frac{x+b}{y+b^2} + \frac{a \ln x + y}{e^x + y}$$

при a = 19,78; b = 1; x = 3,413; y = 1,789.

11) 
$$y = \frac{1}{\sin a\sqrt[3]{\ln + 3/p^2}} - \frac{5bc + d}{\cos x}$$

при  $a = 173,5^{\circ}$ ; b = 0,8; c = 5,0839; d = -3,39; m = 4; p = -2; x = 1.

12) 
$$S = \frac{t + py^2}{t^2 + p^2} \cdot \sin x \cdot e^{pt^2/\sqrt{2}}$$

при  $x = 119^\circ$ ; y = 2,345; t = 3,788; p = 0,198.

13) 
$$y = \frac{\sqrt{3ab}}{m-i} + \frac{m}{5} \cdot \cos x - \ln z$$

при a = 1,645; b = 0,069; I = 2; m = 4;  $x = 18^{\circ}$ ; z = 3.

14) 
$$y = \ln\left(\frac{m+n}{7}\right) + \sin ax - 1,24 \sqrt{\frac{2,5+ac}{|\cos b|}}$$

при a = 4;  $b = 34^{\circ}$ ; c = 1,097; m = 11; n = -3; x = 1.

15) 
$$y = \frac{i^3 - 1}{k - 4} \sqrt{2ab + \sin x + \cos z}$$

при a = 1,835; b = 3; I = 3; k = 7; x = 0,2;  $z = 20^{\circ}$ .

16) 
$$Z = \frac{A^2 + b^2x + y^2 \sqrt{x+y}}{a+b}$$

при a = -1,791; b = 2,796; x = 0,798; y = 1,678.

17) 
$$y = \sin \sqrt{m+2}/x + k/n + \ln \sqrt[3]{k/2 + x^2}$$

при k = 17; m = 6; n = 3; x = 1,726.

18) U = 
$$4\sqrt{x^2 + y^2} + b \ln x / y e^{x+y}$$

при a = -6.918; b = 3.961; x = 1.892; y = 0.3671.

19) 
$$y = \frac{\sqrt{a\sqrt{\pi} + e^{bx}}}{bx^2 + az - \cos^{bx}}$$

при a = 1,297; b = 0,5054; x = 2,1212; z = 0,5.

20) 
$$Z = \frac{\cos^2 b + e^{-x/a} \sqrt{x^2 + y^2}}{\sqrt{a} + \sqrt{b} + \sqrt{x} + \sqrt{y}}$$

при a = 5,65; b = 1,472; x = 1,87; y = 4,17.

2. Написать программу, реализующую функцию согласно варианту задания. Исходные данные вводятся с клавиатуры.

| Bap. | Функция                                                                                            | X            | у       |
|------|----------------------------------------------------------------------------------------------------|--------------|---------|
| 1    | $A = \sqrt{\ln(\frac{4}{3} + x) + \frac{9}{7}} - e^{-\sin(1,3x - 0,7)}$                            | 0,31<br>2,5  | -0,0049 |
| 2    | $B = (x + \frac{7}{6})^{\frac{4}{3}} + \sin^{2} x + \arcsin(\cos px)$                              | -0,75<br>1,2 | -0,018  |
| 3    | $C = 3.7\sqrt{5 - x}\cos(3.5 - x) - \sqrt[5]{(5 - x)^3}$                                           | 2,23         | -0,018  |
|      | $C = 3,7 \sqrt{3}$ $RedS(3,3 - R) = \sqrt{3} - R$                                                  | 3,2          |         |
|      | $-\cos_{3}\sqrt{x+\frac{5}{2}}$ v 3                                                                | -0,35        | -1,318  |
| 4    | $D = -e^{-\cos\sqrt{x + \frac{5}{3}}} - 1,7\arctan(\frac{x}{5} - \frac{3}{4})\sin 1,7x$            | 1,5          |         |
|      | p                                                                                                  | 0,40         | 0,016   |
| 5    | E = 6,3sin(1,3x - $\frac{p}{3}$ ) - x + $\sqrt{x + \frac{9}{4} + (x + \frac{7}{3})^{\frac{2}{3}}}$ |              |         |
|      | $\sin(x+\frac{4}{2})$ 7                                                                            | 2,26         | 0,235   |
| 6    | $F = \cos 1.5x - e^{\sin(x + \frac{4}{3})} + \sqrt{x + \frac{7}{6}}$                               | 1,2          |         |
| 7    | $\frac{x}{5}$                                                                                      | 2,09         | 0,920   |
| ,    | $G = \frac{5}{3} - \arctan\sqrt{2 - \cos 2x} - e^{-5}$                                             | 1,7          |         |
| 8    | $H = \sinh(x + 2) = \cos(\pi \ln(x + 5)) + X$                                                      | -0,26        | -0,0049 |
|      | H = $sinln(x + 2) - cos(\pi ln(x + \frac{5}{3})) + \frac{x}{5}$                                    | 0,25         |         |
| 9    | $\frac{x}{5}$                                                                                      | -0,61        | -0,012  |
|      | $I = 4\sin(15e^{\frac{8}{8}} + 10.2) - 9\cos^{-x} + \sqrt{x + \frac{5}{3}}$                        | 0,5          |         |
| 10   | $\int_{-\infty}^{\infty} \frac{4x}{5} + 2\sin(71\pi)(x + 5)$                                       | 0,97         | -0,0024 |
|      | $J = e^{\frac{i\pi}{5}} + 2\sin(7\ln(x + \frac{5}{3})) - p$                                        | -0,5         |         |

| _   |                                                                                      | _     |         |
|-----|--------------------------------------------------------------------------------------|-------|---------|
| 11  | $\frac{-x}{2}$   $2\pi x$   6                                                        | 2,81  | 0,253   |
| 11  | $K = 1.3e^{-\frac{x}{2}} + \left \cos(\frac{2\pi x}{3} - 1.4)\right  - \frac{6}{11}$ | 1,25  |         |
|     |                                                                                      | 2,03  | 1,043   |
| 12  | $L = p + \ln \left  \frac{4}{7} - \frac{\sin \arctan x}{2} \right $                  | 1,7   |         |
| 1.2 | - <u>x</u> 4                                                                         | 1,97  | 0,0017  |
| 13  | $M = e^{-\frac{x}{p}} + \frac{4}{3}\arcsin\cos x$                                    | 0,7   |         |
|     | $\sin(x+\frac{5}{2})$                                                                | 0,96  | -0,528  |
| 14  | $F = \cos 1.5x - e^{\sin(x + \frac{5}{3})} + \sqrt{x + \frac{7}{6}}$                 | 1,23  |         |
|     | $O = \arccos \sin(3x+1,3) - xe^{\arctan + 0,7}$                                      | 1,32  | 0,307   |
| 15  | 15 $O = \arccos \sin(3x + 1, 3) - xe + 0,7$                                          | -0,5  |         |
| 16  | D 10 05 (5 4                                                                         | -0,71 | 0,0252  |
| 16  | $P = 1.3x - 2.5\sin(5\sqrt{\frac{4}{3}} + \arctan(5.7))$                             | 0,7   |         |
| 17  | $-\frac{x}{2}$ $x^2$                                                                 | -0,73 | -4,197  |
| 1 / | $Q = e^{-\frac{x}{2}}\cos(2x - 0.3) + \frac{x^2}{2.7 + x}$                           | 1,53  |         |
| 18  | _ <u>x</u>                                                                           | 2,15  | -1,485  |
| 10  | $R = \sqrt{e^{-\frac{x}{2}}} - 0.1 - x\cos(3x - 1.5)$                                | 1,2   |         |
| 19  | $S = 5 \sin(x + 0.2) = \sqrt{2 + e^{-x} + 0.1 + e^{2}}$                              | 0,62  | -0,0082 |
| 17  | $S = 5\sin(x - 0.3) - \sqrt{2 + e^{-x}} - 0.1x^{2}$                                  | 1,1   |         |
| 20  | $T = 20.7 + (\sin^2(1.2x) - \arccos^{-X}) \cdot \sin^{1.5x}$                         | 2,07  | -0,1699 |
| 20  | $T = 20.7 + (\sin^2(1.2x) - \arccos\frac{x}{8}) \cdot e^{1.5x}$                      | 1,35  |         |
| J   |                                                                                      | 1     | 1       |

#### 4 Контрольные вопросы

- 1. Как записываются операторы начала и конца программы?
- 2. Какой метод позволяет организовывать вывод данных на экран? Какие способы существуют?
- 3. Какие типы данных существуют в С#?
- 4. Что такое переменная?
- 5. Для чего необходим класс Math пространства имен System? Перечислите некоторые математические функции(минимум 4).
- 6. Каким преобразованием необходимо воспользоваться, для того чтобы получить числовое значение?
- 7. Что называется управляющей последовательностью? Какие существуют управляющие последовательности?