D-finite Numbers

Hui Huang

Institute for Algebra Johannes Kepler University

joint work with Manuel Kauers

$$\label{eq:definite_posterior} \boxed{ \begin{aligned} & \text{D-finite functions} \\ & p_{\rho}(z)f^{(\rho)}(z) + \dots + p_{0}(z)f(z) = 0 \end{aligned} }$$

D-finite functions
$$p_{\rho}(z)f^{(\rho)}(z) + \cdots + p_{0}(z)f(z) = 0$$

Algebraic functions

roots
$$y(z)$$
 of $P(z,y) \in \mathbb{Q}[z,y]$

D-finite functions

$$p_{\rho}(z)f^{(\rho)}(z)+\cdots+p_{0}(z)f(z)=0$$

| Abel's theorem

Algebraic functions

roots
$$y(z)$$
 of $P(z,y) \in \mathbb{Q}[z,y]$

Rational functions quotients of polynomials

D-finite functions

$$p_{\rho}(z)f^{(\rho)}(z)+\cdots+p_{0}(z)f(z)=0$$

Algebraic functions

roots y(z) of $P(z,y) \in \mathbb{Q}[z,y]$

 $|\bigcup$

Rational functions quotients of polynomials

Rational numbers quotients of integers

D-finite functions

$$p_{\rho}(z)f^{(\rho)}(z)+\cdots+p_{0}(z)f(z)=0$$

Algebraic functions

roots y(z) of $P(z,y) \in \mathbb{Q}[z,y]$

Algebraic numbers roots of $P(y) \in \mathbb{Q}[y]$

 $|\bigcup$

 $|\bigcup$

Rational functions quotients of polynomials

Rational numbers quotients of integers

D-finite functions $\mathfrak{p}_{\rho}(z)f^{(\rho)}(z)+\cdots+\mathfrak{p}_{0}(z)f(z)=0$

D-finite numbers Limits of P-recursive seqs

 $\label{eq:algebraic functions} \mbox{ Algebraic functions } \\ \mbox{roots } y(z) \mbox{ of } P(z,y) \in \mathbb{Q}[z,y] \\$

Algebraic numbers $\text{roots of } P(y) \in \mathbb{Q}[y]$

 $|\bigcup$

 $|\bigcup$

Rational functions quotients of polynomials

Rational numbers quotients of integers

ACF

Algebraic functions and sequences

 \mathbb{F} a subfield of \mathbb{C} .

Definition. $f \in \mathbb{F}[[z]]$ is algebraic over \mathbb{F} if there exists nonzero $P(z,y) \in \mathbb{F}[z,y]$ s.t. P(z,f(z)) = 0.

Definition. $(a_n)_{n=0}^{\infty} \in \mathbb{F}^{\mathbb{N}}$ is algebraic over \mathbb{F} if $\sum_{n=0}^{\infty} a_n z^n$ is algebraic.

Algebraic functions and sequences

 \mathbb{F} a subfield of \mathbb{C} .

Definition. $f \in \mathbb{F}[[z]]$ is algebraic over \mathbb{F} if there exists nonzero $P(z,y) \in \mathbb{F}[z,y]$ s.t. P(z,f(z)) = 0.

Definition. $(a_n)_{n=0}^{\infty} \in \mathbb{F}^{\mathbb{N}}$ is algebraic over \mathbb{F} if $\sum_{n=0}^{\infty} a_n z^n$ is algebraic.

Goal. Study

$$\mathcal{A}_\mathbb{F} = \left\{ \lim_{n \to \infty} \alpha_n \middle| (\alpha_n)_n \in \mathbb{F}^\mathbb{N} \text{ algebraic and convergent} \right\}.$$

Given $(a_n)_n, (b_n)_n \in \mathbb{F}^{\mathbb{N}}$ algebraic.

Given $(a_n)_n, (b_n)_n \in \mathbb{F}^{\mathbb{N}}$ algebraic.

• $(a_n \pm b_n)_n$ is algebraic;

Given $(a_n)_n, (b_n)_n \in \mathbb{F}^{\mathbb{N}}$ algebraic.

• $(a_n \pm b_n)_n$ is algebraic;

Given $(a_n)_n, (b_n)_n \in \mathbb{F}^{\mathbb{N}}$ algebraic.

- $(a_n \pm b_n)_n$ is algebraic;
- \odot
- $(a_n \cdot b_n)_n$ may not be algebraic.

Given $(a_n)_n, (b_n)_n \in \mathbb{F}^{\mathbb{N}}$ algebraic.

•
$$(a_n \pm b_n)_n$$
 is algebraic;

• $(a_n \cdot b_n)_n$ may not be algebraic.

Given $(a_n)_n, (b_n)_n \in \mathbb{F}^{\mathbb{N}}$ algebraic.

•
$$(a_n \pm b_n)_n$$
 is algebraic;

Answer: Not clear!

Lemma. $\mathcal{A}_{\mathbb{F}} \subseteq \bar{\mathbb{F}}$.

Lemma. $\mathcal{A}_{\mathbb{F}} \subseteq \bar{\mathbb{F}}$.

Proof via example.

Consider
$$\alpha_n=\sum_{k=0}^n\binom{1/2}{k}\in\mathbb{Q}$$
 and $\lim_{n\to\infty}\alpha_n=\zeta$

Lemma. $\mathcal{A}_{\mathbb{F}} \subseteq \bar{\mathbb{F}}$.

Proof via example.

Consider
$$a_n=\sum_{k=0}^n \binom{1/2}{k}\in\mathbb{Q}$$
 and $\lim_{n\to\infty}a_n=\zeta\in\mathcal{A}_\mathbb{Q}$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \frac{\sqrt{1+z}}{1-z}$$

Lemma. $\mathcal{A}_{\mathbb{F}}\subseteq \bar{\mathbb{F}}$.

Proof via example.

Consider
$$a_n = \sum_{k=0}^n \binom{1/2}{k} \in \mathbb{Q}$$
 and $\lim_{n \to \infty} a_n = \zeta \in \mathcal{A}_{\mathbb{Q}}$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \frac{\sqrt{1+z}}{1-z} = \frac{\zeta}{1-z} + * + * \cdot (1-z) + \cdots$$

Lemma. $\mathcal{A}_{\mathbb{F}} \subseteq \bar{\mathbb{F}}$.

Proof via example.

Consider $a_n=\sum_{k=0}^n \binom{1/2}{k}\in\mathbb{Q}$ and $\lim_{n\to\infty}a_n=\zeta\in\mathcal{A}_\mathbb{Q}$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \frac{\sqrt{1+z}}{1-z} = \frac{\zeta}{1-z} + * + * \cdot (1-z) + \cdots$$

$$\exists k \ a(z) = (1-z)f(z) = \sqrt{1+z}$$

Lemma. $\mathcal{A}_{\mathbb{F}} \subseteq \bar{\mathbb{F}}$.

Proof via example.

Consider $a_n = \sum_{k=0}^n \binom{1/2}{k} \in \mathbb{Q}$ and $\lim_{n \to \infty} a_n = \zeta \in \mathcal{A}_{\mathbb{Q}}$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \frac{\sqrt{1+z}}{1-z} = \frac{\zeta}{1-z} + * + * \cdot (1-z) + \cdots$$

$$\downarrow g(z) = (1-z)f(z) = \sqrt{1+z}$$

$$\zeta = \lim_{z \to 1} g(z) = g(1)$$

Lemma. $\mathcal{A}_{\mathbb{F}} \subseteq \bar{\mathbb{F}}$.

Proof via example.

Consider
$$a_n = \sum_{k=0}^n \binom{1/2}{k} \in \mathbb{Q}$$
 and $\lim_{n \to \infty} a_n = \zeta \in \mathcal{A}_{\mathbb{Q}}$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \frac{\sqrt{1+z}}{1-z} = \frac{\zeta}{1-z} + * + * \cdot (1-z) + \cdots$$

$$\downarrow g(z) = (1-z)f(z) = \sqrt{1+z}$$

$$\zeta = \lim_{z \to 1} g(z) = g(1)$$

$$\downarrow g(z)^2 - (1+z) = 0$$

Lemma. $\mathcal{A}_{\mathbb{F}} \subseteq \bar{\mathbb{F}}$.

Proof via example.

Consider
$$a_n=\sum_{k=0}^n \binom{1/2}{k}\in\mathbb{Q}$$
 and $\lim_{n\to\infty}a_n=\zeta\in\mathcal{A}_\mathbb{Q}$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \frac{\sqrt{1+z}}{1-z} = \frac{\zeta}{1-z} + * + * \cdot (1-z) + \cdots$$

$$\downarrow g(z) = (1-z)f(z) = \sqrt{1+z}$$

$$\zeta = \lim_{z \to 1} g(z) = g(1)$$

$$\downarrow g(z)^2 - (1+z) = 0$$

$$\zeta^2 - 2 = 0$$

Algebraic elements are in $\mathcal{A}_{\mathbb{F}}$

Algebraic elements are in $\mathcal{A}_{\mathbb{F}}$

Lemma.

- If $\mathbb{F} \subseteq \mathbb{R}$ then $\bar{\mathbb{F}} \cap \mathbb{R} \subseteq \mathcal{A}_{\mathbb{F}}$.
- If $\mathbb{F} \setminus \mathbb{R} \neq \emptyset$ then $\bar{\mathbb{F}} \subseteq \mathcal{A}_{\mathbb{F}}$.

Algebraic elements are in $\mathcal{A}_{\mathbb{F}}$

Lemma.

- If $\mathbb{F} \subseteq \mathbb{R}$ then $\bar{\mathbb{F}} \cap \mathbb{R} \subseteq \mathcal{A}_{\mathbb{F}}$.
- If $\mathbb{F} \setminus \mathbb{R} \neq \emptyset$ then $\bar{\mathbb{F}} \subseteq \mathcal{A}_{\mathbb{F}}$.

Proof via example.

Consider
$$\zeta = \sqrt{2}$$
, a root of $p(y) = y^2 - 2 \in \mathbb{Q}[y]$.

Lemma.

- If $\mathbb{F} \subseteq \mathbb{R}$ then $\bar{\mathbb{F}} \cap \mathbb{R} \subseteq \mathcal{A}_{\mathbb{F}}$.
- If $\mathbb{F} \setminus \mathbb{R} \neq \emptyset$ then $\bar{\mathbb{F}} \subseteq \mathcal{A}_{\mathbb{F}}$.

Proof via example.

Consider
$$\zeta = \sqrt{2}$$
, a root of $p(y) = y^2 - 2 \in \mathbb{Q}[y]$.

$$P(z,y) = p((1-z)y) - p(...)(1-z) \in \mathbb{Q}[z,y].$$

Lemma.

- If $\mathbb{F} \subseteq \mathbb{R}$ then $\bar{\mathbb{F}} \cap \mathbb{R} \subseteq \mathcal{A}_{\mathbb{F}}$.
- If $\mathbb{F} \setminus \mathbb{R} \neq \emptyset$ then $\bar{\mathbb{F}} \subseteq \mathcal{A}_{\mathbb{F}}$.

Proof via example.

Consider
$$\zeta = \sqrt{2}$$
, a root of $p(y) = y^2 - 2 \in \mathbb{Q}[y]$.

$$P(z,y) = p((1-z)y) - p\left(\frac{14}{10}\right)(1-z) \in \mathbb{Q}[z,y].$$

Lemma.

- If $\mathbb{F} \subseteq \mathbb{R}$ then $\bar{\mathbb{F}} \cap \mathbb{R} \subseteq \mathcal{A}_{\mathbb{F}}$.
- If $\mathbb{F} \setminus \mathbb{R} \neq \emptyset$ then $\bar{\mathbb{F}} \subseteq \mathcal{A}_{\mathbb{F}}$.

Proof via example.

Consider
$$\zeta = \sqrt{2}$$
, a root of $p(y) = y^2 - 2 \in \mathbb{Q}[y]$.

$$P(z, y) = (1-z)^2 y^2 - 2 - (\frac{14^2}{10^2} - 2)(1-z) \in \mathbb{Q}[z, y].$$

Lemma.

- If $\mathbb{F}\subseteq\mathbb{R}$ then $ar{\mathbb{F}}\cap\mathbb{R}\subseteq\mathcal{A}_{\mathbb{F}}$.
- If $\mathbb{F}\setminus\mathbb{R}
 eq\emptyset$ then $\bar{\mathbb{F}}\subseteq\mathcal{A}_{\mathbb{F}}$.

Proof via example.

Consider
$$\zeta = \sqrt{2}$$
, a root of $p(y) = y^2 - 2 \in \mathbb{Q}[y]$.

$$P(z,y) = (1-z)^2 y^2 - 2 - (\frac{14^2}{10^2} - 2)(1-z) \in \mathbb{Q}[z,y].$$

$$\downarrow$$

$$\frac{\sqrt{z+49}}{5(1-z)} = \frac{7}{5} + \frac{99}{70}z + \frac{19403}{13720}z^2 + \frac{380299}{268912}z^3 + \frac{149077207}{105413504}z^4 + \dots \in \mathbb{Q}[[z]]$$

Lemma.

- If $\mathbb{F} \subseteq \mathbb{R}$ then $\bar{\mathbb{F}} \cap \mathbb{R} \subseteq \mathcal{A}_{\mathbb{F}}$.
- If $\mathbb{F} \setminus \mathbb{R} \neq \emptyset$ then $\bar{\mathbb{F}} \subseteq \mathcal{A}_{\mathbb{F}}$.

Proof via example.

Consider
$$\zeta = \sqrt{2}$$
, a root of $p(y) = y^2 - 2 \in \mathbb{Q}[y]$.

$$P(z,y) = (1-z)^2 y^2 - 2 - (\frac{14^2}{10^2} - 2)(1-z) \in \mathbb{Q}[z,y].$$

$$\frac{\sqrt{z+49}}{5(1-z)} = \frac{7}{5} + \frac{99}{70}z + \frac{19403}{13720}z^2 + \frac{380299}{268912}z^3 + \frac{149077207}{105413504}z^4 + \dots \in \mathbb{Q}[[z]]$$

$$\approx 1.4 + 1.41428z + 1.414212z^2 + 1.41421357z^3 + 1.41421356z^4 + \cdots$$

Sum up

Theorem.

- If $\mathbb{F}\subseteq\mathbb{R}$ then $\mathcal{A}_{\mathbb{F}}=ar{\mathbb{F}}\cap\mathbb{R}.$
- $\blacktriangleright \ \ \mathsf{If} \ \mathbb{F} \setminus \mathbb{R} \neq \emptyset \ \mathsf{then} \ \mathcal{A}_{\mathbb{F}} = \bar{\mathbb{F}}.$

Sum up

Theorem.

- If $\mathbb{F}\subseteq\mathbb{R}$ then $\mathcal{A}_{\mathbb{F}}=ar{\mathbb{F}}\cap\mathbb{R}.$
- If $\mathbb{F} \setminus \mathbb{R} \neq \emptyset$ then $\mathcal{A}_{\mathbb{F}} = \bar{\mathbb{F}}$.

Conclusion. $\mathcal{A}_{\mathbb{F}}$ is a field!

R a subring of $\mathbb C$ and $\mathbb F$ a subfield of $\mathbb C$.

Definition. $f \in R[[z]]$ is D-finite over \mathbb{F} if there exists $p_0, \dots, p_\rho \in \mathbb{F}[z]$, not all zero , s.t.

$$p_{\rho}(z)D_{z}^{\rho}f(z)+\cdots+p_{0}(z)f(z)=0.$$

Definition. $(a_n)_{n=0}^{\infty} \in R^{\mathbb{N}}$ is P-recursive over \mathbb{F} if there exists $p_0, \dots, p_n \in \mathbb{F}[n]$, not all zero , s.t.

$$p_{\rho}(n)\alpha_{n+\rho}+\cdots+p_{0}(n)\alpha_{n}=0\quad\text{for all }n\in\mathbb{N}.$$

R a subring of $\mathbb C$ and $\mathbb F$ a subfield of $\mathbb C$.

Definition. $f \in R[[z]]$ is D-finite over \mathbb{F} if there exists $p_0, \dots, p_\rho \in \mathbb{F}[z]$, not all zero , s.t.

$$(p_{\rho}(z)D_z^{\rho}+\cdots+p_0(z))\cdot f(z)=0.$$

Definition. $(a_n)_{n=0}^{\infty} \in R^{\mathbb{N}}$ is P-recursive over \mathbb{F} if there exists $p_0, \dots, p_{\rho} \in \mathbb{F}[n]$, not all zero , s.t.

$$(\mathfrak{p}_{\varrho}(\mathfrak{n})S_{\mathfrak{n}}^{\varrho}+\cdots+\mathfrak{p}_{\mathfrak{0}}(\mathfrak{n}))\cdot \mathfrak{a}_{\mathfrak{n}}=\mathfrak{0}\quad \text{for all } \mathfrak{n}\in\mathbb{N}.$$

R a subring of $\mathbb C$ and $\mathbb F$ a subfield of $\mathbb C$.

Definition. $f \in R[[z]]$ is D-finite over \mathbb{F} if there exists $p_0, \dots, p_\rho \in \mathbb{F}[z]$, not all zero , s.t.

$$\underbrace{(p_{\rho}(z)D_{z}^{\rho}+\cdots+p_{0}(z))}_{I}\cdot f(z)=0.$$

Definition. $(a_n)_{n=0}^{\infty} \in R^{\mathbb{N}}$ is P-recursive over \mathbb{F} if there exists $p_0, \dots, p_{\rho} \in \mathbb{F}[n]$, not all zero , s.t.

$$\underbrace{(p_{\rho}(n)S_{n}^{\rho}+\cdots+p_{0}(n))}_{L}\cdot \alpha_{n}=0\quad \text{for all } n\in\mathbb{N}.$$

R a subring of \mathbb{C} and \mathbb{F} a subfield of \mathbb{C} .

Definition. $f \in R[[z]]$ is D-finite over \mathbb{F} if there exists a nonzero operator $L \in \mathbb{F}[z][D_z]$, s.t.

$$L \cdot f(z) = 0$$
.

Definition. $(a_n)_{n=0}^{\infty} \in R^{\mathbb{N}}$ is P-recursive over \mathbb{F} if there exists a nonzero operator $L \in \mathbb{F}[n][S_n]$, s.t.

$$L \cdot a_n = 0$$
 for all $n \in \mathbb{N}$.

R a subring of $\mathbb C$ and $\mathbb F$ a subfield of $\mathbb C$.

Definition. $f \in R[[z]]$ is D-finite over \mathbb{F} if there exists a nonzero operator $L \in \mathbb{F}[z][D_z]$, s.t.

$$L \cdot f(z) = 0$$
.

Definition. $(a_n)_{n=0}^{\infty} \in R^{\mathbb{N}}$ is P-recursive over \mathbb{F} if there exists a nonzero operator $L \in \mathbb{F}[n][S_n]$, s.t.

$$L \cdot a_n = 0$$
 for all $n \in \mathbb{N}$.

Remark. $\sum_{n=0}^{\infty} a_n z^n$ D-finite $\iff (a_n)_n$ P-recursive.

D-finite numbers

Definition. $\zeta \in \mathbb{C}$ is D-finite (w.r.t. R and \mathbb{F}) if there exists $(a_n)_n \in R^{\mathbb{N}}$ convergent and P-recursive over \mathbb{F} s.t.

$$\lim_{n\to\infty}a_n=\zeta.$$

D-finite numbers

Definition. $\zeta \in \mathbb{C}$ is D-finite (w.r.t. R and \mathbb{F}) if there exists $(a_n)_n \in R^{\mathbb{N}}$ convergent and P-recursive over \mathbb{F} s.t.

$$\lim_{n\to\infty}a_n=\zeta.$$

Goal. Study

 $\mathcal{D}_{R,\mathbb{F}} = \{\text{all D-finite numbers w.r.t. } R \text{ and } \mathbb{F}\}$.

$$\sqrt{2} = \sum_{k=0}^{\infty} {1/2 \choose k}$$

$$\bullet \ e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\bullet \ e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\qquad \qquad \pi = \textstyle \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right).$$

$$\sqrt{2} = \sum_{k=0}^{\infty} {1/2 \choose k}$$

$$\bullet \ e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\qquad \qquad \pi = \textstyle \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right).$$

$$1/\pi = \sum_{k=0}^{\infty} {2k \choose k}^3 \frac{42k+5}{2^{12k+4}}$$

•
$$e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\qquad \qquad \pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right).$$

$$1/\pi = \sum_{k=0}^{\infty} {2k \choose k}^3 \frac{42k+5}{2^{12k+4}}$$

$$\zeta(3) = \sum_{k=0}^{\infty} \frac{1}{k^3}$$

•
$$e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\qquad \qquad \pi = \textstyle \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right).$$

$$1/\pi = \sum_{k=0}^{\infty} {2k \choose k}^3 \frac{42k+5}{2^{12k+4}}$$

$$\zeta(3) = \sum_{k=0}^{\infty} \frac{1}{k^3}$$

$$\qquad \qquad \Gamma(\alpha) = \textstyle \sum_{k=0}^{\infty} \binom{n+\alpha}{k+\alpha} \frac{(-1)^k}{k!(k+\alpha)} \text{ with } \alpha < 1 \text{ and } \alpha \in \mathbb{Q}$$

D-finite numbers 11/18

•
$$e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\qquad \qquad \pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right).$$

$$1/\pi = \sum_{k=0}^{\infty} {2k \choose k}^3 \frac{42k+5}{2^{12k+4}}$$

$$\zeta(3) = \sum_{k=0}^{\infty} \frac{1}{k^3}$$

$$\qquad \qquad \Gamma(\alpha) = \textstyle \sum_{k=0}^{\infty} \binom{n+\alpha}{k+\alpha} \frac{(-1)^k}{k!(k+\alpha)} \text{ with } \alpha < 1 \text{ and } \alpha \in \mathbb{Q}$$

$$\sqrt{2} = \sum_{k=0}^{\infty} {1/2 \choose k}$$

•
$$e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\qquad \qquad \pi = \textstyle \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right).$$

$$1/\pi = \sum_{k=0}^{\infty} {2k \choose k}^3 \frac{42k+5}{2^{12k+4}}$$

$$\zeta(3) = \sum_{k=0}^{\infty} \frac{1}{k^3}$$

$$\qquad \qquad \Gamma(\alpha) = \textstyle \sum_{k=0}^{\infty} \binom{n+\alpha}{k+\alpha} \frac{(-1)^k}{k!(k+\alpha)} \text{ with } \alpha < 1 \text{ and } \alpha \in \mathbb{Q}$$

Proposition.

Proposition.

 $\mathbf{1} \ \mathsf{R} \subseteq \mathcal{D}_{\mathsf{R},\mathbb{F}} \ \mathsf{and} \ \mathcal{A}_{\mathbb{F}} \subseteq \mathcal{D}_{\mathbb{F}}.$

Proposition.

- **1** $R \subseteq \mathcal{D}_{R,\mathbb{F}}$ and $\mathcal{A}_{\mathbb{F}} \subseteq \mathcal{D}_{\mathbb{F}}$.
- **2** $R_1 \subseteq R_2 \Rightarrow \mathcal{D}_{R_1,\mathbb{F}} \subseteq \mathcal{D}_{R_2,\mathbb{F}}$ and $\mathbb{F} \subseteq \mathbb{E} \Rightarrow \mathcal{D}_{R,\mathbb{F}} \subseteq \mathcal{D}_{R,\mathbb{E}}$.

Proposition.

- **1** $R \subseteq \mathcal{D}_{R,\mathbb{F}}$ and $\mathcal{A}_{\mathbb{F}} \subseteq \mathcal{D}_{\mathbb{F}}$.
- **2** $R_1 \subseteq R_2 \Rightarrow \mathcal{D}_{R_1,\mathbb{F}} \subseteq \mathcal{D}_{R_2,\mathbb{F}}$ and $\mathbb{F} \subseteq \mathbb{E} \Rightarrow \mathcal{D}_{R,\mathbb{F}} \subseteq \mathcal{D}_{R,\mathbb{E}}$.
- **3** If R is a ring/an \mathbb{F} -algebra, then so is $\mathcal{D}_{R,\mathbb{F}}$.

Proposition.

- **1** $R \subseteq \mathcal{D}_{R,\mathbb{F}}$ and $\mathcal{A}_{\mathbb{F}} \subseteq \mathcal{D}_{\mathbb{F}}$.
- $\textbf{2} \ R_1 \subseteq R_2 \Rightarrow \mathcal{D}_{R_1,\mathbb{F}} \subseteq \mathcal{D}_{R_2,\mathbb{F}} \text{ and } \mathbb{F} \subseteq \mathbb{E} \Rightarrow \mathcal{D}_{R,\mathbb{F}} \subseteq \mathcal{D}_{R,\mathbb{E}}.$
- **3** If R is a ring/an \mathbb{F} -algebra, then so is $\mathcal{D}_{R,\mathbb{F}}$.
- **4** If $\mathbb{F}\subseteq\mathbb{E}$ is an algebraic extension, then $\mathcal{D}_{R,\mathbb{F}}=\mathcal{D}_{R,\mathbb{E}}$.

Proposition.

- 1 $R \subseteq \mathcal{D}_{R,\mathbb{F}}$ and $\mathcal{A}_{\mathbb{F}} \subseteq \mathcal{D}_{\mathbb{F}}$.
- $\textbf{2} \ R_1 \subseteq R_2 \Rightarrow \mathcal{D}_{R_1,\mathbb{F}} \subseteq \mathcal{D}_{R_2,\mathbb{F}} \text{ and } \mathbb{F} \subseteq \mathbb{E} \Rightarrow \mathcal{D}_{R,\mathbb{F}} \subseteq \mathcal{D}_{R,\mathbb{E}}.$
- **3** If R is a ring/an \mathbb{F} -algebra, then so is $\mathcal{D}_{R,\mathbb{F}}$.
- **4** If $\mathbb{F}\subseteq\mathbb{E}$ is an algebraic extension, then $\mathcal{D}_{R,\mathbb{F}}=\mathcal{D}_{R,\mathbb{E}}$.
- 5 If $R\subseteq \mathbb{F}$ then $\mathcal{D}_{R,\mathbb{F}}=\mathcal{D}_{R,\mathrm{Quot}(R)}.$

Proposition.

- 1 $R \subseteq \mathcal{D}_{R,\mathbb{F}}$ and $\mathcal{A}_{\mathbb{F}} \subseteq \mathcal{D}_{\mathbb{F}}$.
- $\mathbf{2} \ R_1 \subseteq R_2 \Rightarrow \mathcal{D}_{R_1,\mathbb{F}} \subseteq \mathcal{D}_{R_2,\mathbb{F}} \text{ and } \mathbb{F} \subseteq \mathbb{E} \Rightarrow \mathcal{D}_{R,\mathbb{F}} \subseteq \mathcal{D}_{R,\mathbb{E}}.$
- **3** If R is a ring/an \mathbb{F} -algebra, then so is $\mathcal{D}_{R,\mathbb{F}}$.
- **4** If $\mathbb{F}\subseteq\mathbb{E}$ is an algebraic extension, then $\mathcal{D}_{R,\mathbb{F}}=\mathcal{D}_{R,\mathbb{E}}$.
- 5 If $R\subseteq \mathbb{F}$ then $\mathcal{D}_{R,\mathbb{F}}=\mathcal{D}_{R,\mathrm{Quot}(R)}.$
- **6** If R and \mathbb{F} are closed under ($\bar{}$), then so is $\mathcal{D}_{R,\mathbb{F}}$ and $\mathcal{D}_{R,\mathbb{F}} = \mathcal{D}_{R\cap\mathbb{R},\mathbb{F}} + i\mathcal{D}_{R\cap\mathbb{R},\mathbb{F}}$ (if $i\in\mathcal{D}_{R,\mathbb{F}}$).

D-finite numbers are "evaluations"

Theorem. For every $\xi \in \mathcal{D}_{R,\mathbb{F}}$, there exists $g(z) \in R[[z]]$ D-finite over \mathbb{F} s.t. $\xi = \lim_{z \to 1^-} g(z)$.

Proof via example. $\zeta(3) = \sum_{n=0}^{\infty} \frac{1}{n^3} = \lim_{z \to 1^-} \text{Li}_3(z) = \text{Li}_3(1)$.

D-finite numbers are "evaluations"

Theorem. For every $\xi \in \mathcal{D}_{R,\mathbb{F}}$, there exists $g(z) \in R[[z]]$ D-finite over \mathbb{F} s.t. $\xi = \lim_{z \to 1^-} g(z)$.

Proof via example. $\zeta(3) = \sum_{n=0}^{\infty} \frac{1}{n^3} = \lim_{z \to 1^-} \text{Li}_3(z) = \text{Li}_3(1)$.

$$\begin{aligned} \operatorname{Li}_{3}(z) &= \sum_{n=0}^{\infty} \frac{z^{n}}{n^{3}} = \frac{\zeta(3)}{1-z} - * + * \cdot (1-z) + * \cdot (1-z)^{2} + \cdots \\ &+ \log(z-1) \cdot \left(* \cdot (1-z) + * \cdot (1-z)^{2} + \cdots \right) \\ &+ \left| -\frac{\arg(z-1)}{2\pi} \right| \left(* \cdot (1-z) + * \cdot (z-1)^{2} + \cdots \right) \end{aligned}$$

D-finite numbers are "evaluations"

Theorem. For every $\xi \in \mathcal{D}_{R,\mathbb{F}}$, there exists $g(z) \in R[[z]]$ D-finite over \mathbb{F} s.t. $\xi = \lim_{z \to 1^-} g(z)$.

Proof via example. $\zeta(3) = \sum_{n=0}^{\infty} \frac{1}{n^3} = \lim_{z \to 1^-} \text{Li}_3(z) = \text{Li}_3(1)$.

$$\begin{split} \operatorname{Li}_{3}(z) &= \sum_{n=0}^{\infty} \frac{z^{n}}{n^{3}} = \frac{\zeta(3)}{1-z} - * + * \cdot (1-z) + * \cdot (1-z)^{2} + \cdots \\ &+ \log(z-1) \cdot \left(* \cdot (1-z) + * \cdot (1-z)^{2} + \cdots \right) \\ &+ \left[-\frac{\arg(z-1)}{2\pi} \right] \left(* \cdot (1-z) + * \cdot (z-1)^{2} + \cdots \right) \end{split}$$

Corollary. D-finite numbers are computable when R and \mathbb{F} are.

Evaluations are D-finite numbers

Theorem.

Let $R \supseteq \mathbb{F}$ and $f \in \mathcal{D}_{R,\mathbb{F}}[[z]]$. If there exists $L \in \mathbb{F}[z][D_z] \setminus \{0\}$ with zero ordinary s.t. $L \cdot f = 0$, then $\forall \zeta \in \overline{\mathbb{F}}$ non-singular and $\forall k \in \mathbb{N}$,

$$f^{(k)}(\zeta)\in\mathcal{D}_{R,\mathbb{F}}.$$

Evaluations are D-finite numbers

Theorem.

Let $R \supseteq \mathbb{F}$ and $f \in \mathcal{D}_{R,\mathbb{F}}[[z]]$. If there exists $L \in \mathbb{F}[z][D_z] \setminus \{0\}$ with zero ordinary s.t. $L \cdot f = 0$, then $\forall \zeta \in \overline{\mathbb{F}}$ non-singular and $\forall k \in \mathbb{N}$,

$$f^{(k)}(\zeta) \in \mathcal{D}_{R,\mathbb{F}}$$
.

Proof. Algebraic case + analytic continuation.

Analytic continuation

Figure: a simple path $\mathcal P$ with a finite cover $\bigcup_{j=0}^s \mathcal B_{r_j}(\beta_j)$, $\beta_j \in \mathbb F$ (x stands for singularities of L)

1/e,
$$\sqrt{e}$$
, $\exp(\sqrt{2})$

$$\sqrt{2}^{\sqrt{2}}$$

$$\log(1+\sqrt{3})$$

$$e^{\pi}$$

▶ 1/e,
$$\sqrt{\mathrm{e}}$$
, $\exp(\sqrt{2})$: $f = \exp(z) \in \mathbb{Q}[[z]]$ annihilated by
$$L = D_z - 1$$

$$\sqrt{2}^{\sqrt{2}}$$

$$\log(1+\sqrt{3})$$

$$e^{\pi}$$

▶ 1/e, $\sqrt{\mathrm{e}}$, $\exp(\sqrt{2})$: $f = \exp(z) \in \mathbb{Q}[[z]]$ annihilated by $L = D_z - 1$

$$\sqrt{2}^{\sqrt{2}}: \ f=(z+1)^{\sqrt{2}}\in \mathcal{D}_{\mathbb{Q},\mathbb{Q}}[[z]] \ \text{annihilated by}$$

$$L=(z+1)^2D_z^2+(z+1)D_z-2$$

 $\log(1+\sqrt{3})$

 e^{π}

▶ 1/e, $\sqrt{\mathrm{e}}$, $\exp(\sqrt{2})$: $f = \exp(z) \in \mathbb{Q}[[z]]$ annihilated by $L = D_z - 1$

$$\sqrt{2}^{\sqrt{2}}: \ f=(z+1)^{\sqrt{2}}\in \mathcal{D}_{\mathbb{Q},\mathbb{Q}}[[z]] \ \text{annihilated by}$$

$$L=(z+1)^2D_z^2+(z+1)D_z-2$$

 $\blacktriangleright \ \log(1+\sqrt{3}): \ f = \log(1+z) \in \mathbb{Q}[[z]]$ annihilated by $L = (z+1)D_z^2 + D_z$

 e^{π}

▶ 1/e, $\sqrt{\mathrm{e}}$, $\exp(\sqrt{2})$: $\mathrm{f} = \exp(z) \in \mathbb{Q}[[z]]$ annihilated by $\mathrm{L} = \mathrm{D}_z - 1$

$$\sqrt{2}^{\sqrt{2}}: \ f=(z+1)^{\sqrt{2}}\in \mathcal{D}_{\mathbb{Q},\mathbb{Q}}[[z]] \ \text{annihilated by}$$

$$L=(z+1)^2D_z^2+(z+1)D_z-2$$

- $\log(1+\sqrt{3})$: $f=\log(1+z)\in\mathbb{Q}[[z]]$ annihilated by $L=(z+1)D_z^2+D_z$
- ${
 m e}^\pi$: ${
 m f}=(z+1)^{-{
 m i}}\in \mathbb{Q}({
 m i})[[z]]$ annihilated by ${
 m L}=(z+1){
 m D}_z+{
 m i}$

Open questions

Evaluation at singularities

Quotients of D-finite numbers

D-finite functions $p_{\rho}(z)f^{(\rho)}(z)+\cdots+p_{0}(z)f(z)=0$

D-finite numbers Limits of P-recursive seqs

U Abel's theorem

 $\label{eq:algebraic functions} \mbox{ Algebraic functions } \\ \mbox{roots } y(z) \mbox{ of } P(z,y) \in \mathbb{Q}[z,y] \\$

Algebraic numbers roots x of $P \in \mathbb{F}[x]$

 $|\bigcup$

 $|\bigcup$

Rational functions quotients of polynomials

Rational numbers quotients of integers

D-finite functions $p_{\rho}(z)f^{(\rho)}(z)+\cdots+p_{0}(z)f(z)=0$

D-finite numbers Limits of P-recursive seqs

|∪ Abel's theorem

IU

 $\label{eq:algebraic functions} \mbox{ Algebraic functions } \\ \mbox{roots } y(z) \mbox{ of } P(z,y) \in \mathbb{Q}[z,y] \\$

Algebraic numbers roots x of $P \in \mathbb{F}[x]$

 $|\bigcup$

 $|\bigcup$

Rational functions quotients of polynomials

Rational numbers quotients of integers

