IN THE CLAIMS:

5

6

7

8

9

10

11

12

13

Please write the claims to read as follows: 1-29 (cancelled)

- 1 30. (Previously Presented) A router for use in routing packets over a network, the 2 router supporting a plurality, X, of classes of service and including:
- A. a plurality of input ports for receiving packets over the network;
- B. a plurality of output ports for transferring packets over the network;
 - C. a classifier for assigning packets received by the input ports to X * Y classes of service, where * represents multiplication, and mapping the XY classes of service to the X classes of service that are supported by the router, the classifier assigning to the packet one of Y associated levels of priority, wherein each level of priority is associated with a different probability of packet loss;
 - D. a buffer subsystem for retaining the packets in class of service per output port queues based on probabilities of discard associated with the X * Y classes of service; and
 - E. a scheduler for transferring the packets from the buffer subsystem through each of the output ports based on the X classes of service.
- 1 31. (Original) The router of claim 30 wherein the buffer subsystem includes multiple 2 storage locations and links available storage locations in a free queue.
- 1 32. (Original) The router of claim 31 wherein the buffer subsystem includes a processor that determines:

- i. a new weighted average depth for the free queue, and
- ii. a probability of discard for a given packet if the new weighted average queue
- depth falls below a predetermined maximum threshold associated with the class of ser-
- 6 vice to which the packet is assigned by the classifier.
- 1 33. (Original) The router of claim 32 wherein the buffer subsystem discards a
- 2 given packet if the associated new weighted average depth for the free queue falls below
- a minimum threshold associated with the class of service to which the packet is assigned.
- 1 34. (Original) The router of claim 33 wherein the buffer subsystem processor cal-
- culates the probability of discard as $P_d = c-(m^*A_{NEW})$ where c is an intercept and m is a
- slope that is associated with a line that plots average free queue depth versus probability
- of discard for the class of service to which the packet is assigned, and A_{NEW} is the new
- weighted average depth of the free queue.
- 1 35. (Original) The router of claim 34 wherein the buffer subsystem processor cal-
- culates the new weighted average depth of the free queue as $A_{NEW} = A_{CURRENT} + w(I-$
- 3 A_{CURRENT}) where w is a weighting factor, I represents the instantaneous depth of the free
- 4 queue and A_{CURRENT} is the current weighted average depth of the free queue.
- 1 36. (Previously Presented) The router of claim 30 wherein the scheduler selects from
- the buffer subsystem packets for transfer based on weighting factors associated with the
- 3 respective X classes of service.
- 1 37. (Previously Presented) A router for use in routing packets over a network, the
- 2 router supporting a plurality, X, of classes of service and including:

- A. a plurality of input ports for receiving packets over the network;
- B. a plurality of output ports for transferring packets over the network;
- C. a multiple storage location buffer for retaining packets to be transferred through the output ports;
- D. a buffer subsystem for retaining the packets in class of service per output port
- queues based on probabilities of discard associated with X*Y classes of service, where Y
- 9 represents a number and * represents multiplication; and
- E. a scheduler for transferring the packets from the buffer subsystem through each of the output ports based on the X classes of service that the router supports.
- 1 38. (Previously Presented) The router of claim 37 further including a classifier for:
- i. assigning packets received by the input ports to X*Y classes of service,
- ii. associating the packets with the X classes of service that are supported by the router, and
- 5 iii. assigning to the packet one of Y associated levels of priority, wherein each
- level of priority is associated with a different probability of packet loss.
- 1 39. (Previously Presented) The router of claim 37 wherein the buffer subsystem in-2 cludes a processor that determines
- i. a new weighted average queue depth for a free queue that links available buffer storage locations, and
- ii. a probability of discard for a given packet if the new weighted average free queue depth falls below a predetermined maximum threshold associated with the class of service to which the packet is assigned.
- 1 40. (Original) The router of claim 39 wherein the buffer subsystem processor calcu-
- lates the probability of discard as $P_d = c-(m^*A_{NEW})$ where c is an intercept and m is a

- slope that are associated with a line that plots average free queue depth versus probability
- of discard for the class of service to which the packet is assigned, and A_{NEW} is the new
- weighted average depth of the free queue.
- 1 41. (Original) The router of claim 40 wherein the buffer subsystem processor calcu-
- lates the new depth of the weighted average free queue as $A_{NEW} = A_{CURRENT} + w$ (I-
- 3 A_{CURRENT}) where w is a weighting factor, I represents the instantaneous depth of the free
- 4 queue and A_{CURRENT} is the current weighted average depth of the free queue.
- 1 42. (Previously Presented) The router of claim 40 wherein the buffer subsystem dis-
- 2 cards a given packet if the new weighted average free queue depth falls below a mini-
- mum threshold associated with the class of service to which the packet is assigned.
- 1 43. (Previously Presented) The router of claim 40 wherein the buffer subsystem re-
- tains a given packet if the new weighted average free queue depth is above a maximum
- threshold associated with the class of service to which the packet is assigned.
- 1 44. (Previously Presented) The router of claim 37 wherein the scheduler selects
- 2 packets for transfer through each output port based on weighting factors associated with
- 3 the respective X classes of service.
 - 45. (Previously Presented) An apparatus for routing packets through a router that
- supports a plurality, X, of classes of service, the apparatus comprising:
- means for receiving packets through one or more input ports and assigning the
- 4 packets to X*Y classes of service, where Y represents a number and * represents multi-
- 5 plication;

1

- 6 means for retaining packets based on probabilities of discard associated with the
- 7 X*Y classes of service in a multiple storage location buffer that links available storage
- 8 locations to a free queue; and
- means for transferring the packets through one or more output ports based on the
- 10 X classes of service.
- 1 46. (Previously Presented) The apparatus of claim 45, further including:
- means for associating packets assigned to the X*Y classes of service with the X
- 3 classes of service supported by the apparatus; and
- 4 means for assigning to the respective packets one of Y associated levels of prior-
- ity, each level of priority being associated with a different probability of packet loss.
- 1 47. (Previously Presented) The apparatus of claim 46, further comprising:
- means for determining a new weighted average depth for the free queue; and
- means for determining a probability of discard for a given packet if the new
- 4 weighted average free queue depth falls below a predetermined maximum threshold as-
- sociated with the class of service to which the packet is assigned.
- 1 48. (Previously Presented) The apparatus of claim 47, wherein the means for retain-
- 2 ing packets further comprises:
- means for discarding a given packet if the new weighted average free queue depth
- 4 is less than a minimum threshold associated with the class of service to which the packet
- 5 is assigned.

1

- 49. (Previously Presented) The apparatus of claim 47, wherein the means for retaining
- 2 packets further comprises:

3	means for retaining a given packet if the new weighted average free queue depth		
4	is greater than a maximum threshold associated with the class of service to which the		
5	packe	et is assigned.	
	50.	(Draviovaly Dragouted) A commuter read-ble modic commissions	
1	30.	(Previously Presented) A computer-readable media, comprising:	
2	.1	instructions for execution in a processor for the practice of a method, said	
3	meth	od having the steps,	
4		receiving packets through one or more input ports and assigning the pack	
5		ets to X*Y classes of service, where * represents multiplication;	
6		retaining packets based on probabilities of discard associated with the	
7		X*Y classes of service in a multiple storage location buffer that links available	
8		storage locations to a free queue; and	
9		transferring the packets through one or more output ports based on the X	
10		classes of service.	
1	51.	(Previously Presented) The computer-readable media of claim 50, wherein the	
2	method further comprises the steps of:		
3		associating packets assigned to the X*Y classes of service with the X	
4		classes of service supported by the apparatus; and	
5		assigning to the respective packets one of Y associated levels of priority,	
6		each level of priority being associated with a different probability of packet loss.	
	50		
1	52.	(Previously Presented) The computer-readable media of claim 51, wherein the	
2	method further comprises the steps of:		
3		determining a new weighted average depth for the free queue; and	

4	determining a probability of discard for a given packet if the new weighte	d
5	average free queue depth falls below a predetermined maximum threshold associ	-
6	ated with the class of service to which the packet is assigned.	
1	53. (Previously Presented) The computer-readable media of claim 52, wherein the	
2	method further comprises the step of:	
3	discarding a given packet if the new weighted average free queue depth is	;
4	less than a minimum threshold associated with the class of service to which the	
5	packet is assigned.	
1	54. (Previously Presented) The computer-readable media of claim 52, wherein the	
2	method further comprises the step of:	
3	retaining a given packet if the new weighted average free queue depth is	
4	greater than a maximum threshold associated with the class of service to which	
5	the packet is assigned.	
1	55. (Previously Presented) Electromagnetic signals propagating on a computer net-	
2	work, comprising:	
3	instructions for execution on a processor for the practice of a method, said	ł
4	method having the steps,	-
5	receiving packets through one or more input ports and assigning the pack-	
6	ets to X*Y classes of service, where * represents multiplication;	
7	retaining packets based on probabilities of discard associated with the	
8	X*Y classes of service in a multiple storage location buffer that links available	
9	storage locations to a free queue; and	
10	transferring the packets through one or more output ports based on the X	
11	classes of service.	

11

1	56.	(Previously Presented) The electromagnetic signals of claim 55, wherein the		
2	method further comprises the steps of:			
3		associating packets assigned to the X*Y classes of service with the X		
4		classes of service supported by the apparatus; and		
5		assigning to the respective packets one of Y associated levels of priority,		
6		each level of priority being associated with a different probability of packet loss.		
1	57.	(Previously Presented) The electromagnetic signals of claim 56, wherein the		
2	metho	od further comprises the steps of:		
3		determining a new weighted average depth for the free queue; and		
4		determining a probability of discard for a given packet if the new weighted		
5		average free queue depth falls below a predetermined maximum threshold associ-		
6		ated with the class of service to which the packet is assigned.		
1	58.	(Previously Presented) The electromagnetic signals of claim 57, wherein the		
2	metho	od further comprises the step of:		
3		discarding a given packet if the new weighted average free queue depth is		
4		less than a minimum threshold associated with the class of service to which the		
5		packet is assigned.		
1	59.	(Previously Presented) The electromagnetic signals of claim 57, wherein the		
2	metho	od further comprises the step of:		
3		retaining a given packet if the new weighted average free queue depth is		
4		greater than a maximum threshold associated with the class of service to which		
5		the packet is assigned.		