

Course > Week 7 > Home... > hw4_m...

hw4_mdps_q1_solving_mdps

Question 1: Solving MDPs

0.0/6.0 points (graded)

Consider the gridworld MDP for which \mathbf{Left} and \mathbf{Right} actions are 100% successful. Specifically, the available actions in each state are to move to the neighboring grid squares. From state \mathbf{a} , there is also an exit action available, which results in going to the terminal state and collecting a reward of 10. Similarly, in state \mathbf{e} , the reward for the exit action is 1. Exit actions are successful 100% of the time.

Let the discount factor $\gamma=1$. Fill in the following quantities.

$$V_0\left(d
ight) = egin{array}{c} 0 & ext{Answer: 0} \end{array}$$

When value iteration is initialized, the \emph{V}_0 value of each state is 0.

$$V_1\left(d
ight) = 0$$
 Answer: 0

At the first iteration, each state knows about the V_0 values of successor states. Because $V_0\left(e\right)=0$, the state d will not know about the exit reward at state e.

Call t the terminal state. Notice the transition probabilities do not show up in our equation, because the transitions are all deterministic.

$$V_{1}\left(a
ight) =R\left(a,exit,t
ight) +V_{0}\left(t
ight) =10$$

$$V_{1}\left(b
ight) =max\left(V_{0}\left(a
ight) ,V_{0}\left(c
ight)
ight) =0$$

$$V_{1}\left(c
ight) =max\left(V_{0}\left(b
ight) ,V_{0}\left(d
ight)
ight) =0$$

$$V_{1}\left(d
ight) =max\left(V_{0}\left(c
ight) ,V_{0}\left(e
ight)
ight) =0$$

$$V_1\left(e
ight)=R\left(e,exit,t
ight)+V_0\left(t
ight)=1$$

$$V_2\left(d
ight) =$$

1

Answer: 1

At the second iteration, each state knows about the V_1 values of successor states. State d will now know about the exit reward of state e, and V_1 (d) will be updated to 1.

$$V_2\left(a\right)=10$$

$$V_{2}\left(b
ight) =max\left(V_{1}\left(a
ight) ,V_{1}\left(c
ight)
ight) =10$$

$$V_{2}\left(c
ight) =max\left(V_{1}\left(b
ight) ,V_{1}\left(d
ight)
ight) =0$$

$$V_{2}\left(d
ight)=max\left(V_{1}\left(c
ight),V_{1}\left(e
ight)
ight)=1$$

$$V_2(e)=1$$

$$V_3(d) =$$

1

Answer: 1

$$V_3(a) = 10$$

$$V_{3}\left(b
ight) =max\left(V_{2}\left(a
ight) ,V_{2}\left(c
ight)
ight) =10$$

$$V_{3}\left(c
ight) =max\left(V_{2}\left(b
ight) ,V_{2}\left(d
ight)
ight) =10$$

$$V_{3}\left(d
ight)=max\left(V_{2}\left(c
ight),V_{2}\left(e
ight)
ight)=1$$

$$V_3(e) = 1$$

$$V_4\left(d
ight) =$$

10

Answer: 10

At the fourth iteration, state d will see the exit reward of state a, so $V_4\left(d\right)$ will be updated to 10. $V_4\left(a\right)=10$

$$V_{4}\left(b
ight) =max\left(V_{3}\left(a
ight) ,V_{3}\left(c
ight)
ight) =10$$

$$V_{4}\left(c
ight) =max\left(V_{3}\left(b
ight) ,V_{3}\left(d
ight)
ight) =10$$

$$V_{4}\left(d
ight) =max\left(V_{3}\left(c
ight) ,V_{3}\left(e
ight)
ight) =10$$

$$V_4(e)=1$$

$$V_5(d) =$$

10	Answer: 10
. •	

Nothing will change between the fourth and fifth iteration.

Alternatively, for a simple MDP like this one, the values could also be computed directly from the meaning of V_i (d), which is the expected discounted sum of rewards if acting optimally for i time steps, starting from state d. With i=0 and i=1, no reward can be obtained from state d, so V_0 (d) = V_1 (d) = 0. With i=2 and i=3, a reward of 1 can be obtained through "Right", "Exit" from state d, so V_2 (d) = V_3 (d) = 1. Because it takes four steps to obtain the reward of 10 ("Left", "Left", "Exit"), V_i (d) = 10 for $i \ge 4$.

Submit

1 Answers are displayed within the problem

© All Rights Reserved