Advanced C++: HW 4 - Problem 1

Yalid Rahman

Problem 1: Vega of a Digital Option

Compute analytically the Vega of a digital call and put option in the Black-Scholes model. For a short digital call position with strike K and expiration T, under what condition is the Vega positive? Answer the same for a short digital put position.

Solution

The Vega for a digital option (call or put) is derived as:

$$\frac{\partial V}{\partial \sigma}(t) = \phi \cdot e^{-r(T-t)} \mathcal{N}'(d_2) \left(\frac{\ln(F/K)}{\sigma^2 \sqrt{T-t}} + \frac{1}{2} \sqrt{T-t} \right),$$

where $\phi = 1$ for a call and $\phi = -1$ for a put. For a **short** position, the Vega sign depends on the term:

$$A = \frac{\ln(F/K)}{\sigma^2 \sqrt{T - t}} + \frac{1}{2} \sqrt{T - t}.$$

Conditions for Positive Vega

• Short Digital Call ($\phi = 1$):

$$Vega > 0$$
 when $A > 0$ \Rightarrow $F > Ke^{-\frac{1}{2}\sigma^2(T-t)}$

• Short Digital Put ($\phi = -1$):

$$Vega > 0$$
 when $A < 0 \Rightarrow F < Ke^{-\frac{1}{2}\sigma^2(T-t)}$

Explanation

Since $\mathcal{N}'(d_2) > 0$, the sign of Vega is determined by A. The inequalities simplify to the forward price F relative to $Ke^{-\frac{1}{2}\sigma^2(T-t)}$.