Esercizio: Progettazione e analisi di un sistema di misura per un nastro trasportatore

Un sistema di misura è progettato per monitorare la posizione lineare di un oggetto che si muove lungo un nastro trasportatore.

Il sistema è composto da:

- Un sensore di posizione lineare S, con uscita analogica.
- Un blocco di condizionamento c, posto in prossimità del sensore.
- Un convertitore analogico-digitale ADC, connesso ad un sistema di elaborazione digitale P.

Il sensore S ha le seguenti caratteristiche:

- Campo di misura x: da 0 a 100 cm
- Sensibilità: 5 mV/cm
 Offset in uscita: 1 V
 Linearità ideale

L'ADC ha:

- Range di ingresso: [1 V, 6 V]

- Numero di bit: B = 9

Ouesiti:

- 1) Disegnare e scrivere la formula della trans-caratteristica del sensore (tensione in uscita vs posizione x).
- 2) Progettare il blocco c in modo da adattare perfettamente l'uscita del sensore all'intervallo di ingresso dell'ADC.
- 3) Calcolare la risoluzione in tensione Δv associata all'ADC.
- 4) Calcolare la risoluzione dell'intero sistema di misura, espressa in termini di distanza.
- 5) Determinare il valore di x stimato, assumendo che v = 3.5 V in ingresso all'ADC.

Soluzione:

```
1) Trans-caratteristica del sensore: 
 Il sensore è lineare, quindi: 
 v_s(x) = 0.005 * x + 1 [con x in cm] 
 Range uscita sensore: [1 V, 1.5 V]
```

2) Progettazione del blocco c: Il condizionatore deve trasformare: $v_s \in [1, 1.5] \rightarrow v_c \in [1, 6]$ Sia $v_c = k * v_s + V_0$: $1 = k * 1 + V_0$ $6 = k * 1.5 + V_0$ $\rightarrow k = 10, V_0 = -9$

3) Risoluzione ADC:
B = 9
$$\rightarrow$$
 512 livelli
 $\Delta v = (6 - 1) / 512 \approx 0.00977 V$

Quindi: $v_c = 10 * v_s - 9$

4) Risoluzione in distanza:
$$v_c = 0.05 * x + 1 \rightarrow x = (v_c - 1) / 0.05$$
 $\Delta x = \Delta v / 0.05 \approx 0.00977 / 0.05 \approx 0.1954 \text{ cm} \approx 1.95 \text{ mm}$

5) Stima della posizione: Dato $v_c = 3.5 \text{ V}$, x = (3.5 - 1) / 0.05 = 50 cm

Schema a blocchi del sistema di misura

