Chapter 23

More NP-Complete Problems

CS 473: Fundamental Algorithms, Spring 2011 April 21, 2011

23.0.0.1 Recap

NP: languages that have polynomial time certifiers/verifiers A language L is NP-Complete iff

- \bullet L is in NP
- for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, $L' \leq_P L$.

Theorem 23.0.1 (Cook-Levin) Circuit-SAT and SAT are NP-Complete.

23.0.0.2 Recap contd

Theorem 23.0.2 (Cook-Levin) Circuit-SAT and SAT are NP-Complete.

Establish NP-Completeness via reductions:

- SAT \leq_P 3-SAT and hence 3-SAT is NP-complete
- 3-SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-complete
- Vertex Cover is NP-complete
- Clique is NP-complete
- Set Cover is NP-Complete

23.0.0.3 Today

Prove

- Hamiltonian Cycle Problem is NP-Complete
- 3-Coloring is NP-Complete

23.0.0.4 Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

23.0.0.5 Directed Hamiltonian Cycle is NP-complete

- \bullet Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- \bullet $\mathit{Hardness}$: We will show 3-SAT \leq_P DIRECTED HAMILTONIAN CYCLE

23.0.0.6 Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- ullet G_{arphi} should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$

Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

23.0.0.7 Reduction: First Ideas

- \bullet Viewing SAT: Assign values to n variables, and each clauses has 3 ways in which it can be satisfied
- Construct graph with 2^n Hamiltonian cycles, where each cycle corresponds to some boolean assignment
- Then add more graph structure to encode constraints on assignments imposed by the clauses

23.0.0.8 The Reduction: Phase I

- Traverse path i from left to right iff x_i is set to true
- Each path has 3(m+1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m+3)

23.0.0.9 The Reduction: Phase II

• Add vertex c_j for clause C_j . c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j , and has edge from vertex 3j + 1 and to vertex 3j if $\neg x_i$ appears in C_j .

23.0.0.10 Correctness Proof

Proposition 23.0.3 φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle *Proof*:

- \Rightarrow Let a be the satisfying assignment for φ . Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path i from left to right
 - If $a(x_i) = 0$ then traverse path i from right to left

- For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

23.0.0.11 Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

23.0.0.12 Example

23.0.0.13 Hamiltonian Cycle \Rightarrow Satisfying assignment (contd)

• Thus, vertices visited immediately before and after C_i are connected by an edge

- We can remove c_j from cycle, and get Hamiltonian cyle in $G c_j$
- Consider hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

23.0.0.14 Hamiltonian Cycle

Problem 23.0.4 Input Given undirected graph G = (V, E)

Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

23.0.0.15 NP-completeness

Theorem 23.0.5 Hamiltonian cycle problem for undirected graphs is NP-complete

Proof:

- The problem is in NP; proof left as exercise
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

23.0.0.16 Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

23.0.0.17 Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

23.0.0.18 Graph Coloring

Input Given an undirected graph G = (V, E) and integer k

Goal Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

23.0.0.19 Graph 3-Coloring

Input Given an undirected graph G = (V, E)

Goal Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

23.0.0.20 Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS (see Chapter 3 of Kleiberg-Tardos book).

23.0.0.21 Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR \leq_P K-REGISTER ALLOCATION, for any $k \geq 3$

23.0.0.22 Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient? Reduce to Graph k-Coloring problem Create graph G

- a node v_i for each class i
- an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

23.0.0.23 Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers

23.0.0.24 3-Coloring is NP-Complete

- 3-Coloring is in NP
 - Certificate: for each node a color from $\{1, 2, 3\}$
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v
- Hardness: We will show 3-SAT \leq_P 3-Coloring

23.0.0.25 Reduction Idea

Start with 3-SAT formula φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

i+-i need to establish truth assignment for x_1,\ldots,x_n via colors for some nodes in G_{φ} .

i+-¿ create triangle with node True, False, Base

i+-i for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base

i+-i If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i

j+-¿ Need to add constraints to ensure clauses are satisfied (next phase)

23.0.0.26 Figure

23.0.0.27 Clause Satisfiability Gadget

For each cluase $C_j = (a \lor b \lor c)$, create a small gadget graph

• gadget graph connects to nodes corresponding to a, b, c

• needs to implement OR

OR-gadget-graph:

23.0.0.28 OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

23.0.0.29 Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

23.0.0.30 Reduction

Claim 23.0.6 No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

23.0.0.31 Reduction Outline

Example 23.0.7 $\varphi = (u \lor \neg v \lor w) \land (v \lor x \lor \neg y)$

23.0.0.32 Correctness of Reduction

 φ is satisfiable implies G_{φ} is 3-colorable

j+-¿ if x_i is assigned True, color v_i True and \bar{v}_i False

j+-i for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

 G_{φ} is 3-colorable implies φ is satisfiable

i+-i if v_i is colored True then set x_i to be True, this is a legal truth assignment

i+-i consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

23.0.0.33 Other NP-Complete Problems

- 3-Dimensional Matching
- Subset Sum

Read book.

23.0.0.34 Need to Know NP-Complete Problems

- 3-SAT
- Circuit-SAT
- Independent Set