Worked Examples using R, Introductory Statistics, 7th ed. by Neil Weiss

Charles Carter*

October 1, 2014

Contents

1	Cha	apter 1	3			
	1.1	Example 1.1, Descriptive Statistics	3			
	1.2	Example 1.2, Inferential Statistics	3			
	1.3	Example 1.3, Classifying Statistical Studies	3			
	1.4	Example 1.4, Classifying Statistical Studies	3			
	1.5	Example 1.5, Simple Random Samples	3			
	1.6	Example 1.6, Random-Number Tables	4			
	1.7	Example 1.7, Systematic Random Sampling	4			
2	Cha	apter 2	5			
3	Cha	apter 3	5			
4	Chapter 4					
5	Chapter 5					
6 Chapter 6						
	6.1	Example 6.1,	5			
	6.2	Example 6.2,	5			
	6.3	Example 6.3,	5			
	6.4	Example 6.4,	5			
	6.5	Example 6.5,	5			
	6.6	Example 6.6,	5			
	6.7	Example 6.7,	5			
	6.8	Example 6.8,	5			
	6.9	Example 6.9,	5			
	C 10	Example 6.10	5			
	0.10	Example 6.10,	٠			

^{*}cccaqrter@troy.edu

	6.13	Example 6.12,	5 5 5
7		apter 7	6
8	Cha	apter 8	6
	8.1	Example 8.1, Estimating a Population Mean	6
	8.2	Example 8.2, Introducing Confidence Intervals	7
	8.3	Example 8.3, Interpreting Confidence Intervals	8
	8.4	Example 8.1,	8
9	Cha	apter 9	8
	9.1	Example 9.1, Choosing the Null and Alternative Hypotheses	8
	9.2	Example 9.2, Choosing the Null and Alternative Hypotheses	9
	9.3	Example 9.3, Choosing the Null and Alternative Hypotheses	9
	9.4	Example 9.4, The Logic of Hypothesis Testing	9
	9.5	Example 9.5, Type I and Type II Errors	9
	9.6	Example 9.6, Obtaining the Critical Values	10
	9.7	Example 9.7, The One-Sample z-Test	10
	9.8	Example 9.8, The One-Sample z-Test	11
	9.9	Example 9.9, The One-Sample z-Test	11
	9.10	Example 9.10,	13
	9.11	Example 9.11,	13
		Example 9.12,	13
		Example 9.13,	13
		Example 9.14,	13
		Example 9.15,	13
		Example 9.16,	13
		Example 9.17,	13
		Example 9.18,	13
		Example 9.19,	13
		Example 9.20,	13
	9.21	Example 9.21,	13
10	Cha	apter 10	13
11	Cha	pter 11	13

Abstract

This paper consists of the worked examples in each chapter of $Introductory\ Statistics,\ 7th\ Edition$ by Neil Weiss, using the R programming language

1 Chapter 1

1.1 Example 1.1, Descriptive Statistics

This example contains no code.

1.2 Example 1.2, Inferential Statistics

This example contains no code.

1.3 Example 1.3, Classifying Statistical Studies

This example contains no code.

1.4 Example 1.4, Classifying Statistical Studies

This example contains no code.

1.5 Example 1.5, Simple Random Samples

```
#create vector of officials
library(prob)
off <- c('G', 'L', 'S', 'A', 'T')
#part a, list of samples of size 2
urnsamples(off, 2)
     X1 X2
## 1
      G L
## 2
      G S
## 3
     G A
## 4
     G T
## 5 L S
## 6 L A
## 7
     L T
## 8
     S A
## 9
      S T
## 10 A T
#part d, list of samples of size 4
urnsamples(off, 4)
## X1 X2 X3 X4
## 1 G L S A
## 2 G L S T
## 3 G L A T
## 4 G S A T
## 5 L S A T
```

1.6 Example 1.6, Random-Number Tables

```
#generate 15 random integers between 1 and 728
sample(1:728, 15)
## [1] 93 482 537 251 540 254 684 373 232 619 64 243 25 297 289
```

1.7 Example 1.7, Systematic Random Sampling

```
#declare variables
pop <- 728
sos <- 15
division <- floor(pop / sos)
division
## [1] 48
start <- sample(1:division, 1)
start
## [1] 46
#generate sequence
s <- seq(start, pop, division)
s
## [1] 46 94 142 190 238 286 334 382 430 478 526 574 622 670 718</pre>
```

- 2 Chapter 2
- 3 Chapter 3
- 4 Chapter 4
- 5 Chapter 5
- 6 Chapter 6
- 6.1 Example 6.1,
- 6.2 Example 6.2,
- 6.3 Example 6.3,
- 6.4 Example 6.4,
- 6.5 Example 6.5,
- 6.6 Example 6.6,
- 6.7 Example 6.7,
- 6.8 Example 6.8,
- 6.9 Example 6.9,
- 6.10 Example 6.10,
- 6.11 Example 6.11,
- 6.12 Example 6.12,
- 6.13 Example 6.13, Using Technology to Obtain Normal Percentiles

```
mu <- 100
sigma <- 16
ptile <- qnorm(0.90, mu, sigma)
ptile
## [1] 120.5</pre>
```

6.14 Example 6.14, Normal Probability Plots

```
#read in the data
income <- read.csv("data/Tb06-03.txt")
str(income)</pre>
```

```
## 'data.frame': 12 obs. of 1 variable:
## $ AGI: num 9.7 93.1 33 21.2 81.4 51.1 43.5 10.6 12.8 7.8 ...
qqnorm(income$AGI, datax = TRUE)
```

Normal Q-Q Plot

7 Chapter 7

8 Chapter 8, Confidence Intervals for One Population Mean

8.1 Example 8.1, Estimating a Population Mean

```
#read in the data
prices <- read.csv("data/Tb08-01.txt")
str(prices)
## 'data.frame': 36 obs. of 1 variable:
## $ PRICE: num 53.8 54.4 45.2 42.9 49.9 48.2 41.6 58.9 48.6 53.1 ...
hist(prices$PRICE, breaks = 5)</pre>
```

Histogram of prices\$PRICE


```
sum <- sum(prices$PRICE)
n <- nrow(prices)
mu <- sum / n
#alternatively
mu1 <- mean(prices$PRICE)</pre>
```

The estimated population, μ , from the sample mean, \bar{x} , is 49.2778.

8.2 Example 8.2, Introducing Confidence Intervals

```
#read in the data
prices <- read.csv("data/Tb08-01.txt")
str(prices)
## 'data.frame': 36 obs. of 1 variable:
## $ PRICE: num 53.8 54.4 45.2 42.9 49.9 48.2 41.6 58.9 48.6 53.1 ...
hist(prices$PRICE, breaks = 5)</pre>
```

Histogram of prices\$PRICE


```
sum <- sum(prices$PRICE)
n <- nrow(prices)
mu <- sum / n
sigma <- 7.2
s <- sigma / sqrt(n)
cat(sum, n, mu, sigma, s)
## 1774 36 49.28 7.2 1.2
confidence.interval <- simple.z.test(prices$PRICE, sigma, conf.level = 0.9544)
confidence.interval
## [1] 46.88 51.68</pre>
```

- 8.3 Example 8.3, Interpreting Confidence Intervals
- 8.4 Example 8.1,
- 9 Chapter 9, Hypothesis Tests for One Population Mean
- 9.1 Example 9.1, Choosing the Null and Alternative Hypotheses

This example contains no code.

9.2 Example 9.2, Choosing the Null and Alternative Hypotheses

This example contains no code.

9.3 Example 9.3, Choosing the Null and Alternative Hypotheses

This example contains no code.

9.4 Example 9.4, The Logic of Hypothesis Testing

Null hypothesis is $H_0: \mu = 454$. Alternative hypothesis is $H_\alpha: \mu \neq 454$.

```
# load the data file
weights <- read.csv("data/Tb09-01.txt")</pre>
str(weights)
## 'data.frame': 25 obs. of 1 variable:
## $ WEIGHT: int 465 456 438 454 447 449 442 449 446 447 ...
#declare and initialize variables
mu <- 454
sigma <- 7.8
n <- 25
xbar <- mean(weights$WEIGHT)</pre>
ztest <- (xbar - mu) / (sigma / sqrt(n))</pre>
ztest
## [1] -2.564
#determine the result of the test
result <- pnorm(ztest)</pre>
result
## [1] 0.005172
#use simple z test from UsingR package
library(UsingR)
conf.int <- simple.z.test(weights$WEIGHT, sigma = sigma, conf.level = 0.9544)</pre>
conf.int
## [1] 446.9 453.1
```

The claimed weight of the population is μ per bag, 454 grams. The mean sample weight is \bar{x} per bag, 450 grams. The z value is -2.5641, which is more than two standard deviations below the population mean.

9.5 Example 9.5, Type I and Type II Errors

This example contains no code.

9.6 Example 9.6, Obtaining the Critical Values

```
left.tail <- qnorm(0.05)
left.tail
## [1] -1.645

right.tail <- qnorm(0.95)
right.tail
## [1] 1.645

two.tail.left <- qnorm(0.025)
two.tail.left
## [1] -1.96

two.tail.right <- qnorm(0.975)
two.tail.right
## [1] 1.96</pre>
```

9.7 Example 9.7, The One-Sample z-Test

Null hypothesis is $H_0: \mu = \$51.46$. Alternative hypothesis is $H_\alpha: \$51.46$

```
# load the data file
books <- read.csv("data/Tb09-05.txt")</pre>
str(books)
## 'data.frame': 40 obs. of 1 variable:
## $ PRICE: num 56 46.2 47.3 54 53.7 ...
#declare and initialize variables
mu <- 51.46
sigma <- 7.61
n <- 40
xbar <- mean(books$PRICE)</pre>
right.tail = 0.01
ztest <- (xbar - mu) / (sigma / sqrt(n))</pre>
ztest
## [1] 2.851
right.crit <- qnorm(1 - right.tail)</pre>
right.crit
## [1] 2.326
```

The z statistic is 2.8508, which is greater than the critical value of 2.3263, so we reject the null hypothesis.

9.8 Example 9.8, The One-Sample z-Test

Null hypothesis is $H_0: \mu = 800$. Alternative hypothesis is $H_\alpha: < 800$

```
# load the data file
rda <- read.csv("data/Tb09-06.txt")</pre>
str(rda)
## 'data.frame': 18 obs. of 1 variable:
## $ CALCI: int 686 433 743 647 734 641 993 620 574 634 ...
#declare and initialize variables
mu <- 800
sigma <- 188
n <- 18
xbar <- mean(rda$CALCI)</pre>
left.tail = 0.05
ztest <- (xbar - mu) / (sigma / sqrt(n))</pre>
ztest
## [1] -1.187
left.crit <- qnorm(left.tail)</pre>
left.crit
## [1] -1.645
```

The z statistic is -1.1873, which is less than the critical value of -1.6449, so we do not reject the null hypothesis.

9.9 Example 9.9, The One-Sample z-Test

Null hypothesis is $H_0: \mu = 60$. Alternative hypothesis is $H_\alpha: \neq 60$

```
# load the data file
cheetah <- read.csv("data/Tb09-07.txt")
str(cheetah)

## 'data.frame': 35 obs. of 1 variable:
## $ SPEEDS: num 57.3 57.5 59 56.5 61.3 57.6 59.2 65 60.1 59.7 ...

#histogram of the data set
hist(cheetah$SPEEDS, breaks = 15, xlab = "Cheetah Speeds", ylab = "Counts", main = "Histogram of</pre>
```

Histogram of Cheetah Speeds Sample


```
#declare and initialize variables
mu <- 60
sigma <- 3.2
n <- 35
xbar <- mean(cheetah$SPEEDS)
tails = 0.05
ztest <- (xbar - mu) / (sigma / sqrt(n))
ztest
## [1] -0.8768
crits <- qnorm(c( tails / 2, (1 - tails / 2)))
crits
## [1] -1.96 1.96</pre>
```

The z statistic is -0.8768, which is less than the critical values of -1.96, 1.96, so we do not reject the null hypothesis.

- 9.10 Example 9.10,
- 9.11 Example 9.11,
- 9.12 Example 9.12,
- 9.13 Example 9.13,
- 9.14 Example 9.14,
- 9.15 Example 9.15,
- 9.16 Example 9.16,
- 9.17 Example 9.17,
- 9.18 Example 9.18,
- 9.19 Example 9.19,
- 9.20 Example 9.20,
- 9.21 Example 9.21,
- 10 Chapter 10
- 11 Chapter 11