5.3 Übertragungssicherheit

© Lernziele

Nach dieser Einheit sind Sie in der Lage dazu

- verschiedene Fehlertypen bei der Datenübertragung unterscheiden
- Maßnahmen zur Erkennung und Behebung von Übertragungsfehlern beschreiben
- die Hamming-Distanz verschiedener Codes ermitteln

Informationsgehalt von Telegrammen

Steuerfeld	Quelladresse	Zieladresse	Routing Z.	Länge	Nutzinformation	Sicherungs F.
1 Byte	2 Byte	2 Byte+1 Bit	3 Bit	4 Bit	1 Bit bis 14 Byte	1 Byte

- Unterscheidet sich je nach Bussystem, üblich sind unter anderem:
 - Steuerfeld: Priorität der Nachricht
 - Quelladresse: Absender (vgl. MAC-Adresse)
 - Zieladresse: Empfänger (vgl. MAC-Adresse)
 - Routing Zähler: Zählt wie oft über Koppler gesendet
 - Nutzinformation: Eigentlich Information (z.B. Messwerte eines Sensor)
 - Sicherungs-Feld: Wurden die Daten richtig übertragen (vgl. Hash)

Datensicherung

Gesendet: 010000010000001110000000 Empfangen 1: 010000110000001110000000 Empfangen 2: 01000010000001110000000

- Bit können aus verschiedenen Gründen verloren gehen (z.B. Störung durch Elektromagnetische Felder, Probleme mit der Taktung, etc.)
- wie stellt man sicher, dass keine Daten verloren gehen oder korrumpiert werden?
 - OSI-Schicht 1: technische Vorkehrungen die Wahrscheinlichkeit von Störungen, z. B. durch geschirmte Kabel, Glasfaserkabel, potentialfreie Übertragung.
 - OSI-Schicht 2: Überwachung der Nachricht auf Fehler und Gegenmaßnahmen

Fehlerarten

- Wir betrachten im Folgenden stets transparente (bitorientierte) Codes. (d.h. jede Bitkombination ist erlaubt und sinnvoll)
- Bitfolge allein lässt nicht auf einen eventuellen Fehler schließen
- Es gibt drei Arten von Fehlern

Fehlermaße

• Bitfehlerrate p

$$p = rac{Anzahl\ der\ fehlerhaften\ Bits}{Gesamtzahl\ der\ gesendeten\ Bits}$$

- ullet Der ungünstigste Wert p=0.5. Jedes zweite Bit ist dann im Mittel gestört, die Nachricht also wertlos
- \bullet wäre p=1: \circ 001 : 110
- ullet realistischer Wert $p=10^{-4}$

Erkennen von Übertragungsfehlern

- Ob Fehler erkennbar sind, hängt auch davon ab, wie die Information codiert wurde
- Code: z.B. Deutsche Sprache
 - Fehler ist offensichtlich: Mein , Tein
 - Fehler ist nicht erkennbar: Mein ,Dein
 - Fehler ist erkennbar und korrigierbar:
 Gxbäude , Gebäude

kein Fehler erkannt kein Fehler erkannt rekennbar & erkennbar & korrigierbar nicht erkennbar rekennbar & nicht-korrigierbar

- Codes können so definiert, werden, dass das Auftreten einzelner Übertragungsfehler offensichtlich wird.
 - o 00 : Schalter ein
 - Ø1 : nicht definiert
 - 10 : nicht definiert
 - 11 : Schalter aus
 - Die Schalterstellung kann nicht verwechselt werden (bei einem Ein-Bit-Fehler)

kein Fehler erkannt kein Fehler erkannt kein Fehler erkannt kein Fehler erkennbar & korrigierbar nicht erkennbar korrigierbar

Hamming-Abstand

- ullet Unter dem Hamming-Abstand H eines Codes versteht man das **Minimum aller Abstände** zwischen verschiedenen Wörtern innerhalb des Codes
- Abstand: An wie vielen Stellen muss ein Wort verändert werden
- $H(\{00,11\})=2$
- $H(\{00, 01, 10, 11\}) = 1$
- $H(\{00110, 00100\}) = 1$
- $H(\{'12345', '13349'\}) = 2$
- $H(\{'Haus', 'Baum', 'Tier'\}) = 2$

[Quelle](Beachte: bei den Strings zählt nicht, wie weit die Buchstaben auseinander liegen)

Anwendung des Hamming-Abstand zur Fehlererkennung

- Ein Code besteht aus folgenden drei Wörtern:
- aus , ein , sie
- Der kleinste der drei Abstände ist 2, also ist der Hamming-Abstand des Codes ebenfalls gleich h=2 (zwischen ein , sie).
- Bei Codes mit Hamming-Abstand h=2 können alle 1 -Bit-Fehler erkannt werden.
- D.h. der veränderte Code kann mit keinem anderen Wort verwechselt werden (_ie , s_e , si_)
- Ein 2 -Bit-Fehler kann nicht immer erkannt werden (ein , _i_ , sie)

- Drehschalter vier
 Einstellmöglichkeiten
- werden als binäre Zahl (Codewort) an einen Empfänger übermittelt:

 Empfänger erhält das Codewort, hat sonst keine Möglichkeit, die Schalterstellung zu überprüfen

Quelle

- 00 , 01 , 10 , 11
- Hamming-Abstand zwischen den vier Worten ist jeweils 1,
- d. h. falls durch einen Fehler nur ein Bit umgekehrt wird, erhält der Empfänger zwar ein anderes, aber ebenso gültiges Codewort
 - Angenommen es treten nur Einfachfehler auf (es wird also maximal ein Bit geflippt)
 - Kann man einen binären Code entwickeln, der es nicht nur ermöglicht Fehler zu erkennen, sondern diese auch zu beheben?

√ Lösung

- Um Einfachfehler zu korrigieren benötigt man einen Code, der einen Hamming-Abstand ≥ 3 hat:
 - o z.B. 11000000, 00110000, 00001100, 00000011.
- Einfachfehler können nur erkannt und behoben werden:
 - 10000000 --> 11000000
 - 11100000 --> 11000000
 - 10110000 --> 00110000

Paritätsbit zur Fehlererkennung

- Wir senden eine Zahl mit 4 Bit, z. B. 0010 (2_{10})
- Zahl der positiven Bits im Binärcode ist ungerade
- Paritätsbit E=1 (even = True) wird hinzugefügt (Paritäts-/ Evenbit ist 1, wenn einegerade Zahl von Bit übertagen werden) und mit übertragen
- Alle ungeraden Anzahlen an Fehlern werden erkannt:
 - Original: 0010 E=1 erwartet E=1
 - 1 Fehler: 0011 E=1 erwartet E=0
 - 1 Fehler: 0010 E=0 erwartet E=1
 - 2 Fehler: 1010 E=1 erwartet E=1

Blocksicherung

 Anstelle nur nach allen X-Bits eine Paritätsbit einzufügen wird auch ein spaltenweises Paritätsbit

	1.	2.	3.	4.	5.	6.	7.	P
1.	0	1	0	1	0	1	1	0
2.	1	1	1	0	0	0	1	0
3.	1	0	0	1	0	0	1	1
4.	0	0	1	1	0	0	1	1
5.	1	1	0	0	1	1	1	1
6.	0	0	1	1	0	0	1	1
7.	1	1	0	0	0	1	1	0
P	0	0	1	0	1	1	1	0

[Quelle](Gerhard Schnell & Bernhard Wiedemann)

1 Bit-Fehler in Daten

	1.	2.	3.	4.	5.	6.	7.	P
1.	0	0	0	1	0	1	1	1 0
2.	1	1	1	0	0	0	1	0
3.	1	0	0	1	0	0	1	1
4.	0	0	1	1	0	0	1	1
5.	1	1	0	0	1	1	1	1
6.	0	0	1	1	0	0	1	1
7.	1	1	0	0	0	1	1	0
P	0	10	1	0	1	1	1	0

Fehler

1 Bit-Fehler in Kontrollfeld

	1.	2.	3.	4.	5.	6.	7.	P
1.	0	1	0	1	0	1	1	0
2.	1	1	1	0	0	0	1	0
3.	1	0	0	1	0	0	1	1
4.	0	0	1	1	0	0	1	1
5.	1	1	0	0	1	1	1	1
6.	0	0	1	1	0	0	1	1 0
7.	1	1	0	0	0	1	1	0
P	0	0	1	0	1	1	1	0 1

Fehler

2 Bit-Fehler in Kontrollfeld

	1.	2.	3.	4.	5.	6.	7.	P
1.	0	1	0	1	0	1	1	0
2.	1	1	1	0	0	0	1	0
3.	1	0	0	1	0	0	1	1
4.	0	0	1	1	0	0	1	1
5.	1	1	0	0	1	1	1	1
6.	0	0	1	1	0	0	1	1 0
7.	1	1	0	0	0	1	1	0 1
P	0	0	1	0	1	1	1	0

Fehler

Unerkennbarer 4 Bit-Fehler in Daten und Kontrollfeld

	1.	2.	3.	4.	5.	6.	7.	P
1.	0	0	0	1	0	1	1	1
2.	1	1	1	0	0	0	1	0
3.	1	0	0	1	0	0	1	1
4.	0	0	1	1	0	0	1	1
5.	1	1	0	0	1	1	1	1
6.	0	0	1	1	0	0	1	1
7.	1	1	0	0	0	1	1	0
P	0	1	1	0	1	1	1	1

Fehler

Weiterhin gerade Zahl an Paritätsbits

≥ 3Blue1Brown: A discovery-oriented introduction to error correction code