Curso Sobre Medição Fasorial **Teoria e Prática**

Promoção: CIGRÉ - Brasil Vogré

Comitê de Estudos B5 – Proteção e Automação

Apoio:

Florianópolis, 8-9/11/2007

Curso Sobre Medição Fasorial Teoria e Prática

Objetivos

– Apresentar o estado da arte na área explorando todos os temas relacionados desde o princípio da tecnologia, sistemas de comunicação envolvidos, armazenamento de dados e aplicações atuais e futuras, bem como ilustrar aplicações práticas com a apresentação do projeto-piloto já em operação.

Equipe de Instrutores

- Ildemar C. Decker, D.Sc
 Professor (LabPlan/UFSC)
- Marcelo N. Agostini, D. Eng.
 Pesquisador (LabPlan/UFSC)
- Daniel Dotta, M. Eng.
 Pesquisador (LabPlan/UFSC)
- Aguinaldo S. e Silva, Ph.D
 Professor (Labspot/UFSC)

- Sérgio L Zimath
 Eng. Especialista (Reason)
- Breno Meyer
 Eng. Especialista (Eletrosul)
- Rui Moraes
 Eng. Especialista (ONS)
- Héctor Voskis
 Eng. Especialista (ONS)

Escopo Geral do Curso

- □ Tecnologia e Aplicações de Medição Fasorial Sincronizada
- □ Teoria de Sincrofasores
- Padronização
- Sistemas de Medição Fasorial Sincronizada (SPMS)
- Aplicações de SPMS
- □ A Tecnologia de SPMS no Brasil
- Experiência Prática no Brasil
- □ Painel de Discussões

Curso sobre Medição Fasorial Teoria e Prática

Tecnologia e Aplicações de Medição Fasorial Sincronizada

Prof. I. C. Decker – LabPlan / UFSC

08-09/11/2007

Tópicos

- □ A Medição Sincronizada de Fasores
- □ Histórico e Estado da Arte
- Desenvolvimentos e Aplicações no Brasil
- Comentários Finais

Medição Fasorial Sincronizada em SEE (Motivações)

- Demanda crescente pelo aprimoramento dos instrumentos de monitoração e controle em tempo real dos SEE
 - Introdução da competição nos mercados de EE
 - Restrições à expansão dos SEE
 - Requisitos crescentes de QEE
 - Redução do risco de blecautes
- Evolução tecnológica em diversas áreas
 - Sistemas de telecomunicações
 - Informática
 - Processamento de sinais
 - Automação
- Ação de organismos reguladores
 - Estabelecimento de responsabilidades e parâmetros de qualidade e desempenho

Medição Fasorial Sincronizada em SEE (O que é?)

- Medição simultânea de grandezas elétricas em instalações distantes geograficamente usando PMU (*Phasor Measurement Units*).
- Medições sincronizadas no tempo via sinal de satélite (GPS).
- Aquisição e tratamento de dados em sítio remoto (PDC).
- ◆ Taxa de atualização (varredura) >> SCADA.
- Permite a monitoração e o controle da dinâmica dos SEE.
- Novo paradigma para a operação.

Definição de Fasor

- O fasor é um número complexo associado a um sinal senoidal em regime permanente.
- O módulo do fasor é igual ao valor eficaz do sinal e o ângulo de fase é a fase do sinal para t=0.

$$\begin{cases} x(t) = X_{\text{max}} \cos(\omega_0 t + \phi) \\ \text{onde} \quad X = \frac{X_{\text{max}}}{\sqrt{2}} \end{cases}$$

 Realizado, em geral, a partir do cálculo da Transformada Discreta de Fourier (DFT - *Discrete Fourier Transform*), após a conversão A/D (analógico/digital), das grandezas tensão e corrente.

Sincrofasores

 Fasores calculados em instalações geograficamente distantes usando-se a mesma referência de tempo

Há necessidade de uma referência temporal única - Sincronização!

Tarefa não-trivial: Envolve grandes distâncias e alta precisão temporal

Sincrofasores - Ilustração

◆ Sincrofasores de um sistema hipotético:

Sistema de Sincronização (GPS)

- 24 Satélites
- ◆ Tempo de órbita:
 - 12 horas
- Visibilidade:
 - 5 a 8 unidades de qualquer lugar e a qualquer tempo
- Sinais:
 - Posição
 - Velocidade
 - Tempo (1 PPS)
- ◆ Precisão:
 - Horizontal: 22 m.
 - Vertical: 27.7 m.
 - Temporal: ≈100 nanosegundos

GPS Nominal Constellation
24 Satellites in 6 Orbital Planes
4 Satellites in each Plane
20,200km Altitudes, 55 Degree Inclination

Sistema de Medição Fasorial Sincronizada (SPMS)

Estrutura Básica

 Unidades de medição fasorial (PMUs) conectadas a um Concentrador de Dados (PDC) através de um *link* de comunicação.

Sistema de Medição Fasorial Sincronizada (SPMS)

◆ PMU - Phasor Measurement Unit

- Composta por um receptor de sinal de GPS, sistema de aquisição (filtro + módulo de conversão A/D), e um microprocessador.
- Realiza a aquisição das tensões e correntes das barras e linhas.
- Processa os dados amostrados, obtendo assim os valores complexos de tensão e corrente.
- Formata os dados obtidos segundo um padrão (IEEE 1344/95 ou IEEE C37.118/2005).
- Envia as medidas fasoriais formatadas ao concentrador de dados.

Sistema de Medição Fasorial Sincronizada (SPMS)

- ◆ PDC Phasor Data Concentrator
 - Funções Básicas

Sistema de Medição Fasorial Sincronizada (Requisitos)

Exatidão

- Aplicações em monitoração, controle e proteção requerem uma exatidão em torno de 0,1 graus elétricos.
- Fontes de erro:
 - ✓ Sinal de sincronismo a precisão do sinal de sincronismo utilizado em SPMS é em geral menor que 1 µs (0,021 graus elétricos)
 - ✓ PMUs introduzem erro relativamente baixo em regime permanente.
 - ✓ Transformadores de instrumentos podem representar a maior parte dos erros dependendo do equipamento em específico.

Confiabilidade:

disponibilidade do sinal de sincronismo e dos canais de comunicação.

Latência:

- Tempo de atraso da informação nos equipamentos e na comunicação.
- Crítico para aplicações em tempo real.

Sistemas de Medição Fasorial Sincronizada (SCADA x SPMS)

SCADA

- ✓ Taxas de atualização entre 2 e 5 segundos
- ✓ Dados não sincronizados no tempo
- ✓ Links de comunicação tradicionais (normalmente lentos)
- ✓ Permite visualizar o comportamento estático do SEE
- ✓ Variações de freqüência: representam o desbalanço entre geração e carga

SPMS

- ✓ Taxas entre 10 e 60 atualizações por segundo
- ✓ Dados sincronizados no tempo
- ✓ Compatível com tecnologias modernas de comunicação
- ✓ Permite visualizar o comportamento dinâmico do SEE
- ✓ Variações angulares: representam os fluxos de MW no sistema

(SCADA x SPMS) (Ilustração)

Histórico e Estado da Arte

Experiências Selecionadas

Estados Unidos da América

- Projeto WAMS Wide Area
 Measurements Systems
 - Sistema oeste (WECC)
 - Início: 1989

- Projeto EIPP Eastern
 Interconnection Phasor Project
 - Sistema leste
 - Início: 2003

WECC - Western Electric Coodinating Council

Projeto WAMS (WECC)

Objetivo original

 Determinar necessidades e melhorar os instrumentos utilizados no controle e operação dos SEE em ambientes desregulamentados.

Constatação

- O aprimoramento das funções de controle e operação dos SEE requer medições amplas para um maior conhecimento do comportamento do sistema.
- ◆ Implementação de SPMS iniciada em 1995
- Aplicações de monitoramento
 - Visualização on-line dos fasores; registro de perturbações; análise offline; aprimoramento e validação de modelos de simulação.
- Aplicações em Controle
 - Desenvolvimento do conceito de WACS Wide Area Control System

Projeto WAMS (WECC)

(Situação em 2007)

- Sistema WECC
 - 82 PMUs
 - 9 PDCs
- Caiso (Operador Independente da Califórnia)
 - 53 PMUs pertencentes ao WECC enviam dados em tempo real ao PDC do CAISO.
 - Desenvolvimento de ferramentas de monitoramento da dinâmica do Sistema (RTDMS - Real Time Dynamics Monitoring System)
 - » Monitoramento da abertura angular (stress do sistema)
 - Protótipo de monitoramento de estabilidade para pequenos sinais.
 - » Análise de oscilações eletromecânicas inter-área (frequência e amortecimento)

Rede de SPMS do WECC

(Situação em 2007)

Projeto EIPP

(Eastern Interconnection Phasor Project)

Objetivo

 Criar uma rede de SPMS robusta, abrangente e segura para compartilhar dados de medição fasorial sincronizada sobre o sistema leste, bem como ferramentas de monitoração e análise para melhorar a confiabilidade operacional e os processos de planejamento (Início em 2003)

Participantes

- CERTS Consortium for Electric Reliability Technology Soluctions, reúne profissionais de operadores, fabricantes, transmissores e universidades
- Financiamento
 - DOE (Department of Energy) e Indústria
- Situação em 01/2007
 - 35 Phasor Measurement Units (PMUs)
 - 5 Phasor Data Concentrators (PDCs) Ameren, AEP, TVA, NYISO, Entergy
 - TVA SuperPDC
 - Redefinido como NASPI North American SynchroPhasor Initiative

Projeto NASPI

(Organização e Grupos de Trabalho)

Japão

(Projeto envolve 11 Universidades – Situação em 2007)

Objetivos:

 Implementar um SPMS em baixa tensão para monitorar oscilações de freqüência entre áreas no sistema elétrico japonês.

Resultados obtidos:

- Instalação de um SPMS em baixa tensão com 11 PMUs
- Registro e análise de diversos casos de oscilações da freqüência síncrona

- KIT:Kyushu Institute of Technology
- Kumamoto University
- Miyazaki University
- Hiroshima University
- University of Tokushima
- Osaka University
- University of Fukui
- NIT: Nagoya Institute of Technology
- Hokkaido University
- Hachinohe Institute of Technology
- Yokohama National University

WAMS México (Comision Federal de Electricidad - CFE)

Início entre 1996 e 1997

Instalação de 6 PMUs no sistema de transmissão de 230kV e 400kV.

Objetivos

 Registro de eventos de longo duração; análise de estabilidade; medir a eficácia dos sistemas de controle; validação de simulações.

Aplicação no sistema CFE

- Análise de desligamentos de linhas
- Visualização do sistema em tempo real
- Sistemas especiais de controle e proteção
- Estimação de estados

Situação em 2007

- 37 PMUs
- 73 Relés-PMUs
- 5 PDCs

WAMS México (Sistema CFE)

WAMS na China

- Aspectos Gerais da arquitetura:
 - Início dos trabalhos de pesquisa em 1994
 - 10 projetos de WAMS em desenvolvimento sob IEEE 1344/95 Std.
 - 5 sistemas de potência regionais + 5 sistemas de potência provinciais
 - Cerca de 400 PMUs serão instaladas até o final 2007.
 - Investimento superior a 12 milhões de dólares.
 - 380 GW (Cap. Ger.)

Fonte: North China Electric Power University

WAMS na China

(Ilustração)

XIE, X.; XIN, Y.; XIAO, J.; WU, J.; HAN, Y. Wams applications in chinese power system. *IEEE - power & energy magazine*, v. 1, p. 54–63, June 2006.

WAMS na China (Aplicações Enumeradas)

Aplicações Básicas:

- Aquisição e tratamento de dados fasoriais (função PDC)
- Análise e monitoração da dinâmica de grandes áreas
- Registro sincronizado de dados de perturbações

Aplicações de Monitoramento:

- Monitoração do estado de geradores
- Análise on-line de pequenas perturbações
- Estimação de estados híbrida
- Monitoração de estabilidade de tensão

Aplicações de Controle e Proteção

- Controle de emergência,
- Predição e alarme de estabilidade angular
- Identificação on-line de perturbações
- Controle automático de tensão.

Aplicações Especiais

- validação de modelos e simulações
- Identificação e validação de modelos

Outros Países

Suíça

 5 PMUs instaladas e desenvolvimento de alarmes e monitoração de oscilações eletromecânicas (2007)

Itália

 Previsão de instalação de 30 PMUs e desenvolvimento de possíveis aplicações de estimação de estados, validação de modelos e teste em equipamentos de proteção, entre outras (2007)

Países Nórdicos

 Há registros de algumas PMU instaladas na Islândia e Dinamarca visando estudos de monitoramento de perturbações, análises off-line e validação modelos de simulação.

Coréia do Sul

24 PMUs instaladas e uma aplicação de monitoração (2005)

Taiwan

5 PMUs e aplicações de monitoração e localização de faltas (2005)

Aplicações de SPMS no Brasil

- ✓ O projeto de SPMS para o SIN/ONS
- ✓ O projeto MedFasee

O Projeto de SPMS para o SIN

Objetivo Geral:

Aumentar a confiabilidade do SIN usando a tecnologia de Medição
 Fasorial Sincronizada para o registro da dinâmica de perturbações,
 monitoração em tempo real e melhoria da estimação de estados.

◆ Projetos Específicos:

- Projeto 6.2: Sistema de Oscilografia de Longa Duração
 - ✓ Proposto inicialmente em outubro de 2000 após blecaute de 1999
 - ✓ Reativado pela Resolução Autorizativa Aneel 170/2005
 - ✓ Suporte a estudos off-line.
- Projeto 11.11 Aplicações para Suporte a Decisão em Tempo Real
 - ✓ Preferencialmente, utilizar medições de PMU para a melhoria da estimação de estados no SIN

Fonte: ONS

Aplicações de Interesse do ONS

- Registro da dinâmica do SIN:
 - suporte a análise de pós-perturbação, incluindo a análise modal de frequência
 - Validação de modelos dinâmicos e de ajustes de controladores
 - Monitoração de atuação da proteção
 - Medição de parâmetros de linhas de transmissão
- Monitoração de dados em tempo real:
 - Predição de eventos por meio do uso de ferramentas de visualização nos Centros de Controle do ONS
- Introdução de medições fasoriais no EMS:
 - Visa a melhoria da estimação de estados no SIN

O Projeto de SPMS para o SIN

(Organização e Responsabilidades)

- Projeto 6.2 Oscilografia de Longa Duração
 - Resolução Autorizativa Aneel 170/2005 define as seguintes atribuições:
 - ✓ ONS: especificar a arquitetura e requisitos do SPMS, coordenar a implantação das PMUs e adquirir um PDC central.
 - ✓ <u>Agentes:</u> adquirir, instalar e manter as PMUs e prover os meios de comunicação necessários.
 - Dimensão estimada:
 - ✓ Monitoração em cerca 58 subestações (≈ 400 circuitos)
 - ✓ Aquisição e armazenamento confiável de dados
- ◆ Projeto 11.11 Aplicações em tempo real
 - Incluído no Projeto Estal:
 - ✓ Projeto de Assistência Técnica ao Setor Elétrico.
 - Dimensão estimada:
 - ✓ Instalação de PMU em todas as subestações acima de 345 kV (≈ 350 SE).
 - ✓ Requisito inicial de latência inferior a 2 segundos.

Fonte: ONS

Projeto MEDFASEE

Sistema de Medição Fasorial Sincronizada com Aplicações em Sistemas de Energia Elétrica

Visão Geral

Parceria UFSC / Reason / Finep

2003/2006

Projeto MEDFASEE (Objetivos)

- Desenvolver um protótipo de Sistema de Medição Fasorial Sincronizada para Sistemas de Energia Elétrica, envolvendo atividades de pesquisa e implementação relacionadas aos seguintes temas:
 - unidades de medição fasorial (PMUs);
 - sistema de aquisição e tratamento dos dados de medições fasoriais (PDC);
 - aplicações nas áreas de monitoração e controle da operação do sistema em tempo real.

Projeto MEDFASEE (Desenvolvimentos Realizados)

- Simulador de SPMS Sistema de Medição Fasorial Sincronizada
- Protótipo de SPMS (3 PMUs + PDC)
- Aplicações de monitoração em tempo real e estudos off-line
- Monitoração e análise da freqüência em 3 capitais do sul do Brasil
- Registro e análise de ocorrências no SIN
- Metodologias para aplicações envolvendo:
 - Controle e estabilidade
 - Localização de faltas
 - Estimação de estados

Protótipo de SPMS

(Estrutura e Localização Geográfica)

- PMUs instaladas nas 3 capitais do Sul do Brasil
- Medição das tensões trifásicas da rede de distribuição
- Uso da Internet para conexão entre PMUs e PDC
 - Protocolo UDP/IP
 - 60 sincrofasores / segundo
- PDC instalado no LabPlan/UFSC
- Histórico de dados de 7 dias

http://pdc.labplan.ufsc.br/mapa.html

Avaliação do Protótipo

Monitoração de Freqüência

Monitoração contínua da freqüência do SIN - Região Sul

a) Evolução no tempo

b) Espectro de frequência

Avaliação do Protótipo

Registros de Ocorrências no SIN:

- Desligamento Total da Usina de G.B.Munhoz (05/01/2005)
- Perturbação no Sudeste / Centro-Oeste (14/03/2005)
- Queda da LT Foz do Iguaçu Ivaiporã (14/06/2005)
- Desligamentos na SECI da CEEE, RS (23/08/2005)
- Queda da LT Campos Novos Caxias (29/08/2005)
- Queda da LT Foz do Iguaçu Ivaiporã (04/10/2005)
- Desligamento da UG7 de Jorge Lacerda (09/01/2006)
- Explosão de Pára-Raio no RS (11/01/2006)
- Comportamento da Carga do SIN na Copa (27/06/2006)

- Oscilações eletromecânicas no momento do desligamento da UG7
 - Demais UG de Jorge Lacerda oscilando contra o sistema elétrico

(09/01/2006 - 13h45min31s)

Identificação do modo de oscilação:

- Desvio de freqüência em Florianópolis, SC
- Filtro passa-baixa em 5Hz
- Modo detectado: 1,14Hz, com amortecimento de 10,1%

Projeto MedFasee – Eletrosul

((Projeto de P&D Eletrosul/UFSC/Reason))

Implementação de um Protótipo de SPMS no Sistema de Transmissão da Eletrosul

Parceria Eletrosul / LabPlan/ Reason

2007/2008

Visão Geral do Protótipo Instalado

Subestações (4):

- SE Ivaiporã (SE-IVA): RPV-304
- SE Areia (SE-ARE): RPV-310
- SE Campos Novos (SE-CNO): RPV-310
- SE Nova Santa Rita (SE-NSR): RPV-304

Circuitos monitorados (6):

- LT 500kV <u>Ivaiporã</u> Londrina C1
- LT 500kV <u>Ivaiporã</u> S.Santiago C1
- LT 500kV <u>Ivaiporã</u> <u>Areia</u>
- LT 500kV <u>Areia</u> <u>C.Novos</u>
- LT 500kV <u>C.Novos</u> Caxias
- LT 500kV <u>N.S.Rita</u> Gravatai

Visão Geral do Protótipo Instalado

□ PDC (1):

 Instalado na sede da empresa, em Florianópolis, SC

Monitoração:

- Grandezas trifásicas de cada circuito
 - » tensões e correntes
 - » total de 45 canais
- Taxa de transmissão:
 - » 60 sincrofasores por segundo
- Dados históricos:
 - » 5 dias

Comentários Finais

- É elevada a demanda pelo desenvolvimento da tecnologia de SPMS em todo o mundo.
- A monitoração da dinâmica do sistema em tempo real e o registro de perturbações são as aplicações predominantes.
- A integração de aplicações de Controle e Proteção e Estimação de Estados ainda encontram-se em estágio incipiente.
- Constatou-se no projeto MedFasee que informações relevantes sobre o desempenho dinâmico de sistemas elétricos de potência podem ser obtidas a partir da monitoração em baixa tensão.
- O projeto atual de SPMS para o SIN é de grande relevância para a capacitação técnica dos agentes e desenvolvimento desta tecnologia no Brasil.

Obrigado!

◆ Ildemar C. Decker

- Laboratório de Planejamento de Sistemas de Energia Elétrica LabPlan
- Departamento de Engenharia Elétrica EEL
- Centro Tecnológico CTC
- Universidade Federal de Santa Catarina UFSC
- E-mail: decker@labplan.ufsc.br