

Year 11 Mathematics Methods (AEMAM)

Test 5 2016 Calculator Free

Time Allowed: 20 minutes

Marks / 25

Name: Marking Kay

Circle Your Teachers Name:

McRae

Friday

Mackenzie

- 1. [5,2 marks]
- (a) Show use of calculus methods to determine the coordinates and nature of any stationary points of the function $f(x) = 3x^2 - x^3$.

$$f(x) = 3x^{2} - x^{3}$$

$$f'(x) = 6x - 3x^{2}$$

$$Stationary when $f'(x) = 0$

$$6x - 3x^{2} = 0$$

$$3x (2-x) = 0$$

$$X = 0 \text{ or } x = 2$$

$$f(0) = 0 \quad f(2) = 4$$

Test
$$f'(x) = 0$$

$$x = 1 \quad 0 \quad 0 \cdot 1$$

$$f'(x) = 0 \quad x = 2$$

$$f'(x) = 0 \quad x$$$$

(b) Determine the minimum and maximum values of f(x) if $-2 \le x \le 3$

$$f(-2) = 20$$

 $f(3) = 0$

2. [2,3 marks]

Determine the antiderivative of:

(i)
$$\frac{dy}{dx} = 3x^3 + 4$$

$$y = \frac{3}{4}x^4 + 4x + C$$
works out $y = \frac{3}{4}x^4 + 4x + C$

(ii)
$$\frac{dy}{dx} = \frac{9x^3 - 8x^4}{x^2}$$

$$\frac{dy}{dx} = \frac{9x - 8x^2}{2} - \frac{8x^3}{3} + C \text{ works}$$

$$y = \frac{9x^2 - \frac{8x^3}{3} + C \text{ works}}{2}$$

$$Why once over whole paper.$$

3. [3 marks]

The function $y = x^3 + ax + b$ has a local minimum point at (2,3). Use differentiation to find the values of a and b.

$$\frac{dy}{dx} = 3x^{2} + a$$

$$M \text{ in when } 3x^{2} + a = 0 \text{ at } x = 2$$

$$12 + a = 0$$

$$a = -12$$

$$at(2,3) \quad 3 = 8 - 12(2) + b$$

$$ie \quad b = 19$$

Vrewgmus

that
$$3x^2 + a = 0$$

at $x = 2$
 $\sqrt{a = -12}$
 $\sqrt{b = 19}$

4. [3,2 marks]

Below is a graph of y = f(x)

a) State the value(s) of x for which:

i)
$$f'(x)<0$$
 $\chi<-\chi$ and $\chi>1$ Both $\sqrt{}$

ii)
$$f'(x)=0$$
 $\chi=2$ and $\chi=1$ Both $\sqrt{}$

iii)
$$f'(x) > 0$$
 $-2 < \lambda \leq 1$

b) On the grid above, draw a possible graph of y = f'(x)

5. [3,2 marks]

(a) Determine the rule for the curve that passes through (1,-1) with a gradient function $f'(x) = 6(1-x^2)$.

$$f'(x) = 6(1-x^{2}) = 6-6x^{2}$$

$$f(x) = 6x - 2x^{3} + C$$

$$at(1-1) = 6-2+C$$

$$c = -5$$

$$f(x) = 6x - 2x^{3}-5$$

$$to correct value of 'c'$$

$$to complete rule$$

(b) Find the equation of the tangent to the curve at the point (2,-9)

$$f'(x) = 6-6x^{2}$$

$$f'(2) = -18$$

Eqn of tangent:
$$y = -18x + 6$$

$$at (2,-9) - 9 = -36 + 6$$

$$b = 27$$

$$y = -18x + 27$$

Lossect equation

Year 11 Mathematics Methods (AEMAM)

Test 5 2016

Calculator Assumed

Time Allowed: 30 minutes

Marks / 32

Name: Marking Key

I page of notes one side allowed.

Circle Your Teachers Name:

McRae

Friday

Mackenzie

[5 marks]

Given that $A = x^2y$ and x + y = 10, where x > 0, use a calculus method to determine the maximum value of A and the corresponding values of x and y. Give exact answers.

The total cost of producing x blankets per day is $\frac{1}{4}x^2 + 8x + 20$ dollars and each blanket may be sold at $\left(23-\frac{1}{2}x\right)$ dollars.

Use a calculus method to determine how many blankets should be produced each day to maximise the total profit.

Profit =
$$S \cdot P - C \cdot P$$
 each blanket $= (23 - \frac{1}{2}x)x - (\frac{1}{4}x^2 + 8x + 20)$ regulation for $P = \frac{dP}{dx} = -1.5x + 15$

Max when $= 10$ $=$

A bullet is fired upwards. After t seconds the height of the bullet is found from the rule

 $H(t) = 150t - 4.9t^2 + 2$ where t is measured in seconds and H in metres.

(a) Find the height of the bullet after 5 seconds.

/ height

(b) Determine the average speed of the bullet during the fifth second. Indicate your method.

AV Speed =
$$\frac{H(5) - H(4)}{5 - 4}$$
 | Method
= $629.5 - 523.6$
= 105.9 m/s | Aw speed

The speed of the bullet is the instantaneous rate of change of the height of the bullet.

(c) Find the speed of the bullet after 5 seconds.

V speed

(d) Find the maximum height of the bullet, to the nearest metre.

Max Height when
$$H'(t) = 0$$

 $t = 15.315$ Correct time
if shown
 $H(t) = 1150$ m Correct height
with correct
accuracy.

(e) Determine the bullet's speed as it hits the ground, on the way down correct to two decimal places.

Hits ground when
$$H(t) = 0$$

 $t = 30.63s$ $V t = 0$
 $H'(t) = -150.13$ V writet speed
... speed on way down 150.13 m/s.

9. [2,1,3 marks]

A piece of wire, 300cm long is used to make the 12 edges of the frame of a rectangular box. The length of the rectangular frame is three times that of the width of the frame, x cm.

(a) Show that the height, h, of the rectangular box is given by, h = 75 - 4x.

$$300 = 4(3x) + 4x + 4h$$

$$4h = 300 - 16x$$

$$h = 75 - 4x$$

(b) Show that the volume , V, of the box is given by $V=225x^2-12x^3$

$$V = L. w. h.$$

= $(3x)(x)(75-4x)$ / correct 1xwxh shown
= $225x^2 - 12x^3$

(c) Use a calculus method to determine the dimensions of the frame that will maximize the volume of the box.

$$V = 225x^{2} - 12x^{3}$$
Max when $\frac{dV}{dx} = 0$ (w. $-36x^{2} + 450x = 0$) Process
$$X = 0 \quad \text{or} \quad X = 12.5$$

$$\frac{dV}{dx} = 0$$
Check Max $\frac{2}{dx} = \frac{12 \cdot 5}{13}$

$$\frac{dV}{dx} = \frac{12 \cdot 5}{13}$$

$$\frac{dV}{dx} = \frac{12 \cdot 5}{13}$$

$$\frac{dV}{dx} = \frac{12 \cdot 5}{13}$$

10. [1,1,3,4 marks]

The displacement s (in metres) at time t (in seconds) of a particle moving in a horizontal straight line is given by:

$$s(t) = (t-3)(2t+3)(t-6)$$

Determine

(a) The initial displacement of the particle.

Vinitial displacement

(b) the displacement of the particle when t=4.

1 5(4)

(c) When the particle changes direction, using calculus.

The particle changes direction, using calculus.
$$S'(t) = 0 \quad \text{when} \quad t = 0.32065 \qquad \forall s'(t) = 0$$
and
$$t = 4.685 \qquad \forall t = 0.4685 \qquad \forall t = 0.46$$

(d) The total distance travelled in the first four seconds (to the nearest metre).

$$t=4$$

$$t=0$$

$$t=0.32065$$

$$-22m$$

$$0$$

$$54m$$

$$55.4m$$

$$55.4m$$

$$-54.154$$

$$= 79 \text{ m to the nearest m to total dist}$$

$$0R$$

$$(55.41+22) + (55.41-54)$$

$$= 77.41 + 1.41$$

$$= 78.82$$

$$= 79 \text{ m to nearest m }$$