It can be applied for both kind of problems

- 1. Regression technique
- 2. Classification technique

To identify the Root variables, we have many techniques

- 1. Miss classification Error (R only)
- 2. Gini Index (R and Python) --> Classification
- 3. Information gain / Entropy (Python) --> Classification
- 4. Mean square error (Python) --> Regression
- 5. ID3
- 6. CHAID
- 7. Variance reduction technique
- 8. C4.5

Gini Index

Gini =
$$\sum_{i=1}^{C} (p_i)^2$$

$$\Sigma Wi(p2+q2)$$

Gini index will be calculated for each of the X variable and will see which X variable contains highest Gini index that variable will become Root Variable.

Steps to Calculate Gini for a split

- 1. Calculate Gini for sub-nodes, using formula sum of square of probability for success and failure (p^2+q^2).
- 2. Calculate Gini for split using weighted Gini score of each node of that split
- 3. To calculate the exact Gini score by multiplying Total(step 1 * step 2)

We have to verify same calculative method for each of the x variable and finalized with one of the X variable.

When you run this decision trees, our accuracies are actually not in stable.

One single decision tree will be not enough to learn.

Ensemble methods:

- 1. Parallel ensemble methods
- 2. Sequential ensemble methods.

Parallel ensemble methods:

- 1. Bagging
- 2. Random Forests

Bagging: Bagging classifier, Bagging Regressor

n_estimators = 100, data size = (1000, 10), Max_sample = 0.6, base_estimator = Decision Tree

- 1. Tree1 ---> 0.6 --> (600, 10) ---> Accuracy ----> 0.79
- 2. Tree2 ---> 0.6 --> (600, 10) ---> Accuracy ----> 0.83
- 3. Tree3 ---> 0.6 --> (600, 10) ---> Accuracy ----> 0.85

Max sample is tuning parameter

0.1, 0.2, 0.3, 0.4, 0.5.......0.9 --> what percentage of samples we get higher average accuracy that is final.

Note: when more number of samples which are greater than 10,000 are there in data set, prefer Bagging method.

Random Forests: This is exclusively for Decision Tree only

RandomForestsClassifier, RandomForestsRegressor

n estimators = 100, data size = (1000, 10), Max features = 0.6,

- 1. Tree1 ---> 0.6 --> (1000, 6) ---> Accuracy ----> 0.79
- 2. Tree2 ---> 0.6 --> (1000, 6) ---> Accuracy ----> 0.83
- 3. Tree3 ---> 0.6 --> (1000, 6) ---> Accuracy ----> 0.85

4. Tree3 ---> 0.6 --> (1000, 6) ---> Accuracy ----> 0.82

Average (0.79, 0.83, 0.85,.....0.82) = 0.83

0.1, 0.2, 0.3, 0.4, 0.5.......0.9 --> what percentage of variables we get higher average accuracy that is final.

Note: when more number of variables are there in data set, prefer Random Forests.

Sequential ensemble methods.

Sequential ensemble methods:

- 1. Gradient Boosting
- 2. Adative Boosting --> AdaBoost
- 3. Extreme Gradient Boosting --> XGBoost
- 4. LP Boosting
- 5. Brown Boosting

Gradient Boosting:

We should have the knowledge of Gradient Descent

2x + 1

Steps for Gradient Boosting:

Steps to fit a Gradient Boosting model

- 1. Fit a simple linear regressor or decision tree on data [call x as input and y as output]
- 2. Calculate error residuals. Actual target value, minus predicted target value [e1= y y_predicted1]
- Fit a new model on error residuals as target variable with same input variables [call it e1 _predicted]
- 4. Add the predicted residuals to the previous predictions [y_predicted2 = y_predicted1 + e1_predicted]
- 5. Fit another model on residuals that is still left. i.e. **[e2 = y y_predicted2]** and repeat steps 2 to 5 until it starts overfitting or the sum of residuals become constant. Overfitting can be controlled by consistently checking accuracy on validation data

		Α	В	С	D	Е	F	G	Н	I	J	K
L	Χ	Υ		alpha	Y_pred	e1(Target)	e1_pred	Y_pred2	e2(Target)	e2_pred	Y_pred3	e3(Target)
2		10	30	0.1	35	-5	-3	32	-2	-1	31	-1
3		20	50	0.1	52	-2	-2	50	0	0	50	0
ļ		30	70	0.1	68	2	2	70	0	0	70	0
5		40	80	0.1	85	-5	-7	78	2	1	79	1
5						14			4			2
7												
3	alp	ha	0.1									
)	n_e	estimato	3									
0	lea	st error	2									

