		TEN CYME I	093
	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIV	ERSITY,	
	LONERE		
	End Semester Examination - Winter 2019		
	Course: B. Tech in Sen	a: III	
	Subject Name: Engineering Mathematics-III (BTBSC301) Ma	rks: 60	
		ration: 3 Hr.	
	Instructionts to the Students: 1. Solve ANY FIVE questions out of the following. 2. The level question/expected answer as per OBE or the Course Outcom which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly.	ne (CO) on	
		(Level/CO)	Ma
Q. 1	Attempt the following.		1
A)		Analysis	4
В)	If $f(t) = \begin{cases} t, & 0 < t < \pi \\ \pi - t, & \pi < t < 2\pi \end{cases}$ is a periodic function with period 2π . Find $L\{f(t)\}$.	Analysis	4
(C)	Using Laplace transform evaluate $\int_0^\infty e^{-at} \frac{\sin^2 t}{t} dt$	Evaluation	. 4
Q. 2	Attempt any three of the following.		1
A)	Using convolution theorem find $L^{-1}\left\{\frac{1}{s(s+1)(s+2)}\right\}$	Application	4
B)	Find $L^{-1}\{\bar{f}(s)\}$, where $\bar{f}(s) = \log\left(\frac{s^2+1}{s(s+1)}\right)$	Analysis	4
C)	Using Laplace transform solve $y'' + 2y' + 5y = e^{-t} \sin t$; $y(0) = 0$, $y'(0) = 1$	Application	4
D)	Find $L^{-1}\left\{\frac{s^2+2s-4}{(s-5)(s^2+9)}\right\}$	Analysis	۷
• • •			-
Q. 3	Attempt any three of the following.		1

A)	Express the function $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as a Fourier sine integral	Evaluation	4
<i>.</i>	and hence evaluate that $\int_0^\infty \frac{\sin \lambda x \sin \lambda \pi}{1-\lambda^2} d\lambda$.		
	1-A2		
		A T* 45	
B)	Using Parseval's identity for cosine transform, evaluate	Application	4
	$\int_0^\infty \frac{dx}{(x^2 + \alpha^2)(x^2 + b^2)}$		
	$\int_{0}^{3} (x^{2} + a^{2})(x^{2} + b^{2})$		
C)	Find the Fourier sine transform of $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2. \\ 0, & x > 2 \end{cases}$	Analysis	4
	Find the Fourier sine transform of $f(x) = \begin{cases} 2-x, & 1 \le x \le 2. \\ 0, & x > 2. \end{cases}$		
			-
D)	If $F_s\{f(x)\}=\frac{e^{-as}}{s}$, then find $f(x)$. Hence obtain the inverse Fourier sine	Analysis	4
	transform of $\frac{1}{5}$.		
Q. 4	Attempt any three of the following.		12
A)	Form the partial differential equation by eliminating arbitrary function f	Synthesis	4
	from $f(x^2 + y^2 + z^2, 3x + 5y + 7z) = 0$		
	점점요. 및 하존하는 얼룩집합합니다		ļ
B)	Solve $pz - qz = z^2 + (x+y)^2$	Application	4
C)	Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ where	Analysis	4
	the boundary conditions are $u(0,t) = 0$, $u(l,t) = 0$ ($t > 0$) and the	. "	
	initial condition $u(x, 0) = x$; l being the length of the bar.		
D	Use the method of separation of variables to solve the equation	Application	4
	$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given that $u(x, 0) = 6e^{-3x}$		
Q. 5	Attempt the following.		12
A)	Determine the analytic function $f(z)$ in terms of z whose real part is	Analysis	4
	$\frac{\sin 2x}{\cosh 2y - \cos 2x}$		
	cusii 2y – cus 2x		
B)	Prove that $u = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic. Find a function v such that $f(z) = u + iv$ is analytic.	Analysis	4
İ	such that $f(x) = u + \iota v$ is analytic.		
C)	Find the bilinear transformation which maps the points $z = 0, -1, -i$ onto	Analysis	4
	the points $w = i, 0, \infty$. Also, find the image of the unit circle $ z = 1$.	exnaiy 515	7
Q. 6	Attempt the following.		12

EC2FA3D0100FD3760E4B79796AAC06EC

A)	Use Cauchy's integral formula to evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle $ z = 3$.	Evaluation	4
B)	Find the poles of function $\frac{z^2-2z}{(z+1)^2(z^2+4)}$. Also find the residue at each pole.	Analysis	4
C)	Evaluate $\oint_C \frac{e^z}{\cos nz} dz$, where C is the unit circle $ z = 1$.	Evaluation	4
	*** Paper End ***		