開集合の公理

集合 X の部分集合族 \mathcal{O} について次の 3 条件を開集合の公理という。

- 1. $\emptyset \in \mathcal{O}, X \in \mathcal{O}$
- 2. $O_1, O_2 \in \mathcal{O}$ ならば $O_1 \cap O_2 \in \mathcal{O}$
- 3. $O_{\lambda} \in \mathcal{O} \ (\lambda \in \Lambda)$ ならば $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{O}$

問題

1. 相対位相

 (X,\mathcal{O}) が位相空間とする。 $A \subset X$ を部分集合とする。 $\mathcal{O}_A = \{A \cap U \mid U \in \mathcal{O}\}$ とする時、 (A,\mathcal{O}_A) は位相空間であることを確かめよ。

.....

 \mathcal{O}_A に対して開集合の公理を確認すればよい。

$$\emptyset = A \cap \emptyset \in \mathcal{O}_A, \ A = A \cap X \in \mathcal{O}_A \tag{1}$$

 $\forall U_1, U_2 \in \mathcal{O}_A$ に対して $U_1 = A \cap O_1$, $U_2 = A \cap O_2$ となる $O_1, O_2 \in \mathcal{O}$ が存在する。

$$U_1 \cap U_2 = (A \cap O_1) \cap (A \cap O_2) = A \cap (O_1 \cap O_2) \in \mathcal{O}_A$$
 (2)

 ${}^{\forall}U_{\lambda}\in\mathcal{O}_{A}\;(\lambda\in\Lambda)$ に対して $U_{\lambda}=A\cap O_{\lambda}$ となる $O_{\lambda}\in\mathcal{O}$ が存在する。

$$\bigcup_{\lambda \in \Lambda} U_{\lambda} = \bigcup_{\lambda \in \Lambda} (A \cap O_{\lambda}) = A \cap \left(\bigcup_{\lambda \in \Lambda} O_{\lambda}\right) \in \mathcal{O}_{A}$$
 (3)

以上により \mathcal{O}_A は開集合の公理を満たす。よって、 (A,\mathcal{O}_A) は位相空間である。

2. $X = \mathbb{Z}$, $\mathcal{L} = \{\{[3n-1,\infty) \cap X \mid n \in \mathbb{Z}\}, \{(-\infty,2n] \cap X \mid n \in \mathbb{Z}\}\}$ とする。 \mathcal{L} によって生成される X 上の位相は離散位相か?

.....

離散位相は全ての部分集合が開集合となる位相空間である。

$$[-1, \infty) \cap (\infty, 0] = \{-1, 0\}$$
 (4)

$$[2,\infty)\cap(\infty,0]=\emptyset \tag{5}$$

$$[-1,\infty) \cap (\infty,-2] = \emptyset \tag{6}$$

上記のように $\{0\}$ という集合は作ることができない。この為、 \mathcal{L} は離散位相を生成しない。

3.	$X=\{1,2,3,4\},\; \mathcal{T}=\{\{1,2\},\{2,3\},4\}$ とする。 \mathcal{T} によって生成される。 開集合系を求めよ。	集合 <i>X</i> の
	$\mathcal{T}=\{\{1,2\},\{2,3\},4\}$ とあるが、 $\mathcal{T}=\{\{1,2\},\{2,3\},\{4\}\}$ ではないかとこちらで記述を行う。	:思うので
	$\{1,2\} \cap \{4\} = \emptyset$	(7)
	$\{1,2\} \cup \{2,3\} \cup \{4\} = X$	(8)
	$\{1,2\} \cap \{2,3\} = \{2\}$	(9)
	$\{1,2\} \cup \{2,3\} = \{1,2,3\}$	(10)
	$\{1,2\} \cup \{4\} = \{1,2,4\}$	(11)
	$\{2,3\} \cup \{4\} = \{2,3,4\}$	(12)
	$\{2\} \cup \{4\} = \{3,4\}$	(13)

(14)