Przemysław Szymoniak

Przetwarzanie współbieżne. Programowanie równoległe i rozproszone.

Sprawozdanie z laboratorium 1.

Celem laboratorium była organizacja środowiska tworzenia oprogramowania w systemie Linux oraz przeprowadzenie pomiarów czasu CPU, zegarowego wykonywania operacji przy użyciu interfejsu procedur pomiaru czasu.

W ramach zajęć zrealizowałem następujące kroki:

- skopiowałem wskazane pliki ("**Makefile**", "**pomiar_czasu.c**", "**pomiar_czasu.h**", "**moj_program.c**") do katalogu roboczego "**lab 1**"
- zmodyfikowałem plik źródłowy "moj_program.c":

```
√ #include "pomiar_czasu.h"
```

- zmodyfikowałem plik "Makefile" tak aby poprawnie tworzyć plik binarny "moj program":
 - ✓ moj_program.o: moj_program.c pomiar_czasu.h \$(CCOMP) -c \$(OPT) moj_program.c
 - ✓ kompilacje pliku źródłowego "moj_program.c" przez wykonanie w terminalu polecenia: make
- uruchomienie programu
- przetestowałem działanie uzyskują następujące wyniki (najkrótsze czasy, najdłuższe czasy):

Pomiary przy użyciu opcji optymalizacji w wersji do debugowania									
Lp	Czas wykonania 1000 operacji we/wy			Czas wykonania 1000 operacji arytmetycznych mnożenia					
•	Czas standard.	Czas CPU	Czas zegarowy	Czas CPU	Czas zegarowy				
1.	0.000000	0.004658	0.020673	0.000289	0.000361				
2.	0.000000	0.007469	0.051436	0.000204	0.000350				
3.	0.000001	0.017540	0.056388	0.000416	0.000539				
4.	0.000000	0.008295	0.042655	0.000247	0.000412				
5.	0.000001	0.018519	0.057720	0.000382	0.000467				

Pomiary przy użyciu opcji optymalizacji w wersji do mierzenia czasu									
Lp.	Czas wykonania 1000 operacji we/wy			Czas wykonania 1000 operacji arytmetycznych mnożenia					
	Czas standard.	Czas CPU	Czas zegarowy	Czas CPU	Czas zegarowy				
1.	0.000000	0.007107	0.021099	0.000183	0.000206				
2.	0.000001	0.010117	0.035946	0.000154	0.000200				
3.	0.000001	0.014127	0.054166	0.000235	0.000381				
4.	0.000001	0.015783	0.066726	0.000203	0.000280				
5.	0.000001	0.011439	0.039744	0.000173	0.000205				

W ramach zadań dodatkowych zrealizowałem:

- przeniosłem pliki związane z pomiarem czasu do osobnego katalogu "pomiar czasu" a te związane z programem do katalogu "moj_program"
- utworzyłem bibliotekę "libpomiar_czasu.a" z pliku "pomiar_czasu.o" w katalogu "pomiar_czasu" za pomoca polecenia:
 - ✓ ar -rs libpomiar czasu.a pomiar czasu.o
- Zmieniłem plik "Makefile" tak aby zamiast z plików źródłowych i pośrednich pomiaru czasu korzystał ze stworzonej wcześniej biblioteki "libpomiar_czasu.a":
 - ✓ usunąłem odniesienia do plików "pomiar_czasu.c" i "pomiar_czasu.o" oraz stworzyłem dla "pomiar_czasu.o" osobny "Makefile" w folderze "pomiar_czasu"
 - ✓ nadałem właściwe wartości symbolom LIB i INC
 - ✓ dodałem właściwe wykorzystanie symboli **LIB** i **INC** w trakcie kompilacji
 - ✓ Zmiany w pliku **Makefile**:

```
# pliki nagłówkowe
```

INC = -I../pomiar czasu

biblioteki

LIB = -L../pomiar_czasu -lm

zależności i komendy

moj_program: moj_program.o \$(LOADER) \$(OPT) moj_program.o -o moj_program \$(LIB)

jak uzyskać plik moj program.o?

moj_program.o: moj_program.c ../pomiar_czasu/pomiar_czasu.h \$(CCOMP) -c \$(OPT) moj_program.c \$(INC)

wykonanie polecenia: make clean && make oraz sprawdzenie poprawności działania programu wraz z końcowym pomiarem czasu pokazanym w tabelach w pierwszej cześci sprawozdania.

Wnioski:

- dzięki wykorzystaniu narzędzia make oraz odpowiednio modyfikowanego pliku Makefile udało się zrealizować sprawne i elastyczne tworzenie kodu binarnego z plików źródłowych
- pomiar czasu realizacji procedur wykazał, że:
 - ✓ czas realizacji procedur wejścia/wyjścia jest znacznie dłuższy niż czas realizacji operacji arytmetycznych
 - ✓ przy realizacji procedur wejścia/wyjścia czas wykorzystania procesora (czas CPU) stanowi bardzo mały procent czasu realizacji operacji (procesor zdecydowaną większość czasu czeka na wykonanie operacji przez twardy dysk)
- wykorzystanie optymalizacji w wersji do mierzenia czasu przyniosło oczekiwane rezultaty przy obliczaniu czasu dla 1000 operacji arytmetycznych mnożenia:
 - ✓ najkrótszy czas CPU zmniejszył o 5 x 10⁻⁵ a czas zegarowy zaś o 1.5x10⁻⁴, najdłuższy czas CPU zmniejszył się 1.81x10⁻⁴ natomiast czas zegarowy o 1.58x10⁻⁴ w odniesieniu do wersji optymalizowanej do debugowania
 - ✓ zmniejszenie rozbieżności pomiędzy poszczególnymi pomiarami na skutek zmniejszenia różnicy pomiarowej między czasem najdłuższym oraz najkrótszym
- wykorzystanie optymalizacji w wersji do mierzenia czasu przyniosło mizerne rezultaty przy obliczaniu czasu dla 1000 operacji we/wy
 - ✓ najkrótszy czas CPU zwiększył się o 2.5 x 10⁻³ a czas zegarowy zaś o 4.26x10⁻⁴, najdłuższy czas CPU zmniejszył się 2.74x10⁻³ natomiast czas zegarowy zwiększył się o 9x10⁻³ w odniesieniu do wersji optymalizowanej do debugowania
 - ✓ zmniejszenie rozbieżności pomiędzy poszczególnymi pomiarami dla czasu CPU na skutek spadku różnicy między maksymalnym i minimalnym pomiarem o wartość 5.2 x 10⁻³
 - ✓ zwiększenie rozbieżności pomiędzy poszczególnymi pomiarami dla czasu zegarowego na skutek wzrostu różnicy między maksymalnym i minimalnym pomiarem o wartość 8.6 x 10⁻³
- wykorzystanie optymalizacji do pomiaru czasu w każdym przypadku skróci wartość zmierzoną dla czasu CPU, czas zegarowy natomiast zostanie skrócony dla operacji arytmetycznych mnożenia.