Fundação Getúlio Vargas

Matemática Aplicada

Nome:

Monitores: Cleyton e Jeann

Exercício 1 - Extensão Contínua nos Extremos

Seja $f:[a,b) \to \mathbb{R}$ uma função derivável, com derivada limitada. Mostre que f pode ser extendida a uma função $F:[a,b] \to \mathbb{R}$ contínua. Conclua o mesmo resultado para a função $G(x) = \int\limits_a^x g(t)dt$, onde $g:[a,b) \to \mathbb{R}$ é uma função contínua limitada.

Exercício 2 - Equações Funcionais

Ache, para cada caso abaixo, todas as funções f deriváveis tais que

(a)
$$f:(0,+\infty) o \mathbb{R}$$
 e $f(xy)=f(x)+f(y)$

(b)
$$f:\mathbb{R} o\mathbb{R}$$
 e $e^{-2x}f'(x)=2e^{-2x}f(x)+1$

(c)
$$f:[1,+\infty) o\mathbb{R}$$
 e $\int\limits_1^{x^my^n}f(t)dt=m\int\limits_1^xf(t)dt+n\int\limits_1^yf(t)dt,orall m,n\in\mathbb{N}$

(d)
$$f:[1,+\infty) o \mathbb{R}$$
 e $f(x)=1+rac{1}{x}\int\limits_{1}^{x}f(t)dt$

Exercício 3 - Uma Derivada Descontínua

Mostre que a função $f(x)=egin{cases} x^2\sin\left(rac{1}{x}
ight) & ext{se } x
eq 0 \ 0 & ext{se } x=0 \end{cases}$ é derivável, mas a derivada não é contínua em 0.

Exercício 4 - Integral por Partição

Severo, conhecido como um ser vero, isto é, uma pessoa verossímel, pois tinha muito cuidado em não omitir detalhes ou afirmar resultados não-verdadeiros em suas soluções de Análise, aprendeu a definição e propriedades básicas de integrais de funções em uma variável. Em um dado momento, ele se deparou com a seguinte integral

$$\int_0^{2\pi} \frac{\sin t}{1+t} dt$$

a qual ele deveria mostrar que era > 0. Seus amigos, Robertinha, Nati, Gustavo, Murilo, Eulerverton, Matosmático, Π-vanato, Cardineiro, Borges, Rodrigues, Benzo, Daviros e Beatriza recoreram a você para ajudá-lo.

Exercício 5 - Comportamento Integral

Ao aprender como ocorre o crescimento, decrescimento e pontos críticos de funções deriváveis, Jeã e Luka, estavam estudando uma certa função contínua $f:[a,b]\to\mathbb{R}$. Jeã descobriu que existia um ponto $c\in(a,b)$ tal que $f(x)<0, \forall x\in[a,c)$ e Luka discobriu que $f(x)>0, \forall x\in(c,b]$ para o mesmo ponto c. O problema é que eles queriam informações a respeito da função integral $F(x)=\int\limits_a^x f(t)dt$. Ajude-os fornecendo o comportamento da função em [a,c), em (c,b] e, consequentemente, no ponto c.

Comentário: Acho que você já deve saber, mas Jeã e Luka são amigos de Robertinha, Nati, Gustavo, Murilo, Eulerverton, Matosmático, Π-vanato, Cardineiro, Borges, Rodrigues, Benzo, Daviros, Beatriza e Severo.

Exercício 1 - Solução

No Exercício 1 da Lista 5 vimos que se f tem a derivada limitada, então ela satisfaz a existência de um valor $\lambda>0$ tal que $|f(x)-f(y)|\leq \lambda|x-y|$. Disto segue que f é limitada, pois $|f(x)-f(y)|\leq \lambda|x-y|\leq \lambda(b-a), \forall x,y\in [a,b)$. Assim, dada (x_n) sequência em [a,b) tal que $x_n\to b$, temos que $(f(x_n))_n$ é limitada e, portanto, admite uma subsequência convergente $f(y_n)=(f(x_{n_k}))$ para algum valor L>0. Agora, dada (z_n) outra sequência tal que $z_n\to b$, temos que $|y_n-z_n|\to 0$ e, portanto, $|f(y_n)-f(z_n)|\leq \lambda|x_n-y_n|\to 0$, ou seja, $f(z_n)\to L$. Logo, basta estender f para $F:[a,b]\to\mathbb{R}$ pondo F(x)=f(x) se $x\in [a,b)$ e F(b)=L.

Para $G(x) = \int_a^x g(t)dt$ o resultado continua verdadeiro, uma vez que G é derivável pelo Teorema Fundamental do Cálculo, com derivada G' = g, que é limitada.

Exercício 2 - Solução

- (a) Pelo mesmo raciocínio dos Exercícios 2 e 3 da Lista 4, temos que $f(x)=a\ln(x)$, com $a\in\mathbb{R}$.
- (b) Basta notar que

$$e^{-2x}f'(x)=2e^{-2x}f(x)+1\Leftrightarrow (e^{-2x}f(x))'=1\Leftrightarrow e^{-2x}f(x)=x+C\ \Leftrightarrow f(x)=xe^{2x}+Ce^{2x}$$

 $\operatorname{\mathsf{com}} C \in \mathbb{R}.$

- (c) Seja $F(x)=\int\limits_1^x f(t)dt$. Então, temos $F(x^my^n)=mF(x)+nF(y)$. Tomando m=n=1, temos F(xy)=F(x)+F(y). Do item a), segue que $F(x)=a\ln x$, com $a\in\mathbb{R}$. Ou seja, $f(x)=F'(x)=\frac{a}{x}$, com $a\in\mathbb{R}$.
- (d) Temos que $x(f(x)-1)=\int\limits_1^x f(t)dt$. Derivando ambos os lados, obtemos xf'(x)+f(x)-1=f(x), ou seja, $f'(x)=\frac{1}{x}$. Portanto, $f(x)=\ln x+C$, onde $f(1)=1\Rightarrow C=1$. Logo, $f(x)=\ln x+1$.

Exercício 3 - Solução

Temos $f'(x)=2x\sin\left(\frac{1}{x}\right)-\cos\left(\frac{1}{x}\right)$ se x
eq 0.

Para x=0, temos $f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\frac{x^2\sin\left(\frac{1}{x}\right)}{x}=\lim_{x\to 0}x\sin\left(\frac{1}{x}\right)=0,$ pois $x\to 0$ e $\sin\left(\frac{1}{x}\right)$ é limitado.

Mas, como $\lim_{x\to 0}f'(x)=\lim_{x\to 0}2x\sin\left(\frac{1}{x}\right)-\cos\left(\frac{1}{x}\right)=\lim_{x\to 0}-\cos\left(\frac{1}{x}\right)$, que não existe, segue que f' não é contínua em 0.

Exercício 4 - Solução

A ideia consiste em notar que $\sin t>0$ em $(0,\pi)$ e $\sin t<0$ em $(\pi,2\pi)$, sedo que o denominador 1+t torna-se-a cada vez maior em $(\pi,2\pi)$ do que em $(0,\pi)$, contribuindo assim para um valor negativo menor em $\int\limits_{\pi}^{2\pi} \frac{\sin t}{1+t} dt$ do que o valor positivo em $\int\limits_{0}^{\pi} \frac{\sin t}{1+t} dt$, fazendo com que a integral fique positiva.

Em termos mais explícitos, considere a partição $P = \dots$ (Adicionar uma partição adequada e mostrar que a soma inferior é > 0).

Outra Solução: Notando que $\sin t + \pi = -\sin t, \forall t \in \mathbb{R}$, temos

$$egin{split} \int_0^{2\pi} rac{\sin t}{1+t} dt &= \int_0^{\pi} rac{\sin t}{1+t} dt + \int_{\pi}^{2\pi} rac{\sin t}{1+t} dt \ &= \int_0^{\pi} rac{\sin t}{1+t} dt + \int_0^{\pi} rac{\sin t + \pi}{1+t + \pi} dt = \int_0^{\pi} rac{\sin t}{1+t} dt - \int_0^{\pi} rac{\sin t}{1+t + \pi} dt \ &= \int_0^{2\pi} \sin t \left(rac{1}{1+t} - rac{1}{1+t + \pi}
ight) dt > 0 \end{split}$$

Exercício 5 - Solução

Do Teorema Fundamental do Cálculo, F é derivável, com derivada F'=f. Assim, como f é negativa em [a,c), temos que F é estritamente decrescente em [a,c). Analogamente, como f é positiva em (c,b], temos que F é estritamente crescente em (c,b]. Como F é contínua, concluímos que c é ponto de mínimo.