Homework 7 by Jingmin Sun Mar. 31 2020

1. Page 139,4

Suppose $u \in U_1 + U_2 + \cdots + U_m$, so we can express u as

$$u = u_1 + u_2 \cdots u_m$$

such that $u_i \in U_i$ for $i = 1 \cdots m$

Since T is a linear map, we can get:

$$T(u) = T(u_1 + u_2 + \dots + u_m)$$

= $T(u_1) + T(u_2) + \dots + T(u_m)$

Since $U_1 \cdots U_m$ are invariant under T, which means $T(u_i) \in U_i$ for all i. Thus, $T(u) \in U_1 + U_2 + \cdots + U_m$. So $U_1 + U_2 + \cdots + U_m$ is invariant.

2. Page 139,5

Suppose U_1 and U_2 are invariant under T, let $u \in U_1 \cap U_2$, we can get $u \in U_1$ and $u \in U_2$, then $T(u) \in U_1$ and $T(u) \in U_2$ follows, which means $T(u) \in U_1 \cap U_2$, and $U_1 \cap U_2$ is invariant under T.

3. Page 139,7

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} 0 & -3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} -\lambda & -3 \\ 1 & -\lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$
$$\lambda^2 = -3$$

If x = 0, y = 0; and if y = 0, x = 0. So there is no eigenvectors and eigenvalues for T.

4. Page 139,8

$$T\begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$
$$\lambda^2 = 1$$
$$\lambda = \pm 1$$

So, when
$$\lambda = 1$$
, $x = y$, and $\begin{bmatrix} x \\ y \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

And when
$$\lambda = -1$$
, $x = -y$, and $\begin{bmatrix} x \\ -y \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

5. Page 139,10

(a)

$$T(x_{1}, x_{2} \cdots x_{n}) = (x_{1}, 2x_{2}, 3x_{3} \cdots nx_{n}) = \lambda(x_{1}, x_{2}, x_{3} \cdots x_{n})$$

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & n \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \lambda \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$\begin{bmatrix} 1 - \lambda & 0 & 0 & \cdots & 0 \\ 0 & 2 - \lambda & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & n - \lambda \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = 0$$

Thus, the eigenvalues $\lambda_i = i$, with $i = 1, 2, \dots, n$, and with corresponding eigenvectors $e_i = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$, and the *i*th element is 1.

(b) Let e_i defined as above, and we get to know that $\{e_i\}_{i=1}^n$ is a set of basis of \mathbb{F}^n . Let U be a subspace of \mathbb{F}^n , and we set $U \cap \{e_i\}_{i=1}^n = \{e_{ij}\}_{j=1}^k$

So, there exist $v = \sum_{j=1}^{k} a_j e_{ij} \in U$ with nonzero $a_j s$.

And we assume that there exists $m \in U \setminus \text{span } \{e_{ij}\}$, so we can express m as

$$m = \sum_{j=1}^{k} b_j e_{ij} + \sum_{r=1}^{q} c_r e_q$$

This contradicts with t $U \cap \{e_i\}_{i=1}^n = \{e_{ij}\}_{j=1}^k$, so that $U = \text{span } \{e_{ij}\}$. Thus, the invariant subspaces of T are spanning set of $\{e_{ij}\}_{j=1}^k$, $0 \le k \le n$.

6. Page 140,14

Write v = u + w for all $v \in V$, since we want to find eigenvalues and eigenvectors of P, so we can write

$$Pv = \lambda v$$

and we can get

$$u = \lambda(u+w)$$
$$(\lambda - 1)u + \lambda w = 0$$

If $\lambda_1 = 1$, the corresponding eigenvectors are w = 0, which is $v_1 = u$.

And if $\lambda_2 = 0$, so u = 0, and the corresponding eigenvectors are $v_2 = w$.

7. Page 140,21

(a) If λ is an eigenvalue of T, so for some $v \in V$, we can get $T(v) = \lambda v$, which means

$$T^{-1}(\lambda v) = v$$
$$w = \lambda v$$
$$T^{-1}(w) = \frac{1}{\lambda}w$$

Thus, $\frac{1}{\lambda}$ is an eigenvalue for T^{-1}

And if λ^{-1} is an eigenvalue of T^{-1} , so for some $v \in V$, we can get $T^{-1}(v) = \frac{1}{\lambda}v$, which means

$$T(\frac{1}{\lambda}v) = v$$

$$w = \frac{1}{\lambda}v$$

$$T(w) = \lambda w$$

Thus, λ is an eigenvalue for T

(b) As above, suppose λ is an eigenvalue of T, so for some $v \in V$, we can get $T(v) = \lambda v$, v is an eigenvectors of T, and since $w = \lambda v$ is an eigenvector of T^{-1} , so v and w are differ by a constant factor, so they have the same eigenvectors, i.e. all kv are both eigenvectors for T and T^{-1} for eigenvector v for T.