

TD Nº2: Les filtres RLC

Eléments Électronique-AP2

2018-2019

Excercice 1:

On considère le filtre de la figure 1

Figure 1: filtre d'ordre 1 ($R_1 = R_2 = 680 \Omega$ et $C = 4.7 \mu$ F)

- 1. Par une analyse rapide ($\omega \to 0$ et $\omega \to \infty$), déterminer le comportement fréquentiel du filtre.
- 2. Exprimer la fonction de transfert du filtre.
- 3. Représenter le diagramme de Bode asymptotique et réelle.
- 4. V_e étant est une tension continu de 6V, calculer alors V_s .
- 5. V_e étant est une tension sinusoi dale de valeur efficace $V_{eff} = 6V$ et de fréquence $f = 10 \, KHz$.
 - 5.1) Déterminer l'atténuation apporté par le circuit.
 - 5.2) Calculer la valeur efficace de V_s .

Excercice 2:

soit la fonction de transfert suivante:

$$\underline{H}(j\omega) = \frac{\left(1 + j\frac{\omega}{\omega_0}\right)\left(1 + 0.2j\frac{\omega}{\omega_1} + \left(j\frac{\omega}{\omega_1}\right)^2\right)}{\left(j\frac{\omega}{\omega_0}\right)^2\left(1 + j\frac{\omega}{\omega_2} + \left(j\frac{\omega}{\omega_2}\right)^2\right)\left(1 + j\frac{\omega}{\omega_3}\right)}$$

Avec $\omega_1 = 10 \,\omega_0$, $\omega_2 = 100 \,\omega_0$ et $\omega_3 = 1000 \,\omega_0$

- 1. Indiquer les valeurs des coefficients d'amortissement ξ_1 en ω_1 et ξ_2 en ω_2 .
- 2. Tracer les diagrammes asymptotiques de Bode et l'allure réelle de $\underline{H}(j\omega)$.

Excercice 3:

Déterminer les fonctions de transfert correspondant aux diagrammes de Bode de la figure 2.

Figure 2: Diagrammes de Bode des fonctions de transfert à identifier

Excercice 4:

On propose le filtre de la figure 3

Figure 3: filtre à étudier $C_1 = 100 \,\mathrm{nF} \, C_2 = 900 \,\mathrm{nF} \,\mathrm{et} \, R = 100 \,\mathrm{K}\omega$

- 1. Quel est le degré du filtre proposé?
- 2. Par une analyse rapide, déterminer le comportement fréquentiel du filtre.
- 3. Calculer la fonction de transfert $\underline{H}\left(\ j\omega\right)=\frac{V_{s}}{\overline{V}_{e}}.$

4. Tracer les diagrammes de Bode du filtre.

Excercice 5:

On considère le filtre biporte RC de la figure 4

Figure 4: filtre biporte RC

- 1. Déterminer la transmittance $\underline{H}(j\omega) = \frac{\underline{V}_s}{\underline{V}_e}$ du filtre sous la forme: $\underline{H}(j\omega) = \frac{1}{1-\alpha\omega^2+j\beta\omega}$.
- 2. Montrer que cette fonction de transfert peut s'écrire: $\underline{\underline{H}}(j\omega) = \frac{1}{\left(1+j\frac{\omega}{a}\right)\left(1+j\frac{\omega}{b}\right)}$. Où a et b sont solution d'une équation du second degré que l'on déterminera.
- 3. On se place dans le cas où $R_1 = R_2 = R$ et $C_1 = C_2 = C$. Déterminer la pulsaction de coupure, ω_c , du filtre.
- 4. Tracer les diagrammes de Bode du filtre en fonction de $\log(x)$; avec $x = \frac{\omega}{\omega_0}$ et $\omega_0 = \frac{1}{\sqrt{RC}}$.