Punktweise und Gleichmäßige Konvergenz

Es sei $f(n): D \to \mathbb{R}$ eine Folge von Funktionen, dann heißt $(f_n)n_{n\in\mathbb{N}}$ punktweise Konvergent falls die Folge $(f_n(x))_n$ für alle $x \in D$ konvergiert. Die Funktionen-Folge $(f_n)_{n\in\mathbb{N}}$ heißt gleichmäßig Konvergent gegen f falls $\forall x \forall \epsilon > 0 \exists N_0 \in \mathbb{N} \forall n \geq N_0 \forall x \in D | f_n(x) - f(x) | < \epsilon$ oder äquivalent $\forall \epsilon > 0 \exists N_0 \in \mathbb{N} \forall n \geq N_0 \sup(|f_n(x) - f(x)|) < \epsilon$

Satz: Ist $(f_n)_n$ eine gleichmäßig Konvergente Folge stetiger Funktionen, dann ist ihr Grenzwert auch stetig.

Bsp: Sei $f_n:[0,1]\to\mathbb{R}$ $f_n(x)=x^n$ hat Punktmäßig Grenzwerte.

$$f(x) = \begin{cases} 0 & \text{für alle } x \in [0, 1) \\ 1 & \text{für } x = 1 \end{cases}$$
 (1)

Der Grenzwert ist nicht stetig also Konvergenz nicht gleichmäßig. Warum wichtig für Infos?

Oft ist idealer Weg gesucht, z.B Flugbahn, Fräsbahn. Diese wird durch Funktion $\gamma:[0,1]\to\mathbb{R}^3$ beschrieben. Nur passen allgemeine Funktionen nicht in den Computer rein.

Man behilft sich durch diskretisierung γ_n der Funktion $\gamma_n[0,\frac{1}{h},\frac{2}{h},\frac{3}{h},...,1] \to \mathbb{R}^3$

Dieses γ_n soll für jede Folge $h_n \to 0$ gleichmäßig gegen γ konvergieren.

Aufgabe 1

Zeigen sie die Funktionen-Folge $f_n : \mathbb{R} \to \mathbb{R}mit$

$$f_n(x) := \begin{cases} 0 & \text{für } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{n} & \text{für } x \in \mathbb{Q} \end{cases}$$
 (2)

konvergiert gleichmäßig.

Aufgabe 2

Es sei $f_n: D \to \mathbb{R}$ mit $f_n(x) = \frac{1}{n}x$ eine Funktionen-Folge. Zeigen sie:

- a) Ist D = [a, b] mit $a, b \in \mathbb{R}, a \in b$ beliebig so konvergiert $(f_n)_n$ gleichmäßig auf D
- b) Ist $D = \mathbb{R}$ so konvergiert $(f_n)_n$ zwar punktweise aber nicht gleichmäßig.

Lösung zu Aufgabe 1

Es sei $\epsilon > 0$ beliebig (aber fest).

Wähle $N_0 \in \mathbb{N}$, so dass $N_0 > \frac{1}{\epsilon}$ dann gilt für alle $n \geq N_0$ und alle $x \in D$ $|f_n(x) - 0| \leq \frac{1}{n} \leq \frac{1}{N_0} < \epsilon$.

Damit ist gleichmäßige Konvergenz von f_n gegen die Null-Funktion gezeigt.

Lösung 2a)

Es sei $\epsilon > 0$ (beliebig aber fest). Wähle $N_0 \in \mathbb{N}$, so dass $N_0 > \frac{1}{\epsilon} \cdot max|a|, |b|$ Dann gilt für alle $n \geq N_0$ und alle $x \in D$, dass $|f_n(x) - 0| = |\frac{1}{n}x| \leq \frac{1}{n}|x| \leq \frac{1}{n}max|a|, |b| \leq \frac{1}{N_0} \cdot max|a|, |b| < \epsilon$

Lösung 2b)

Es sei $x \in \mathbb{R}$ beliebig aber fest.

Es sei $\epsilon > 0$ beliebig aber fest.

Dann wähle $N_0 \in \mathbb{N}N_0 > \frac{1}{\epsilon} \cdot |x|$

Dann gilt für alle $n \ge N_0$, dass $|f_n(x) - 0| = \frac{1}{n} \cdot |x| \le \frac{1}{N_0} |x| < \epsilon$.

Zur gleichmäßigen Konvergenz.

Angenommen (f_n) würde gleichmäßig konvergieren, dann da $f_n(x) \stackrel{P}{\to} 0$ müsste der gleichmäßige Grenzwert auch die Nullfunktion sein.

Wähle $\epsilon = \frac{1}{2}$ und setze $x_n = n$, dann gilt $|f_n(x_n) - 0| = 1 > \frac{1}{2} = \epsilon$.

Also:

 $\exists \epsilon > 0 \forall N_0 \in \mathbb{N} \exists n \geq N_0 \exists X |f_n(x) - 0| \geq \epsilon$