# Symulacja procesu Wienera, wyznaczanie współczynnika dyfuzji, symulacja procesu dyfuzji i absorpcji

Metody Monte Carlo w fizyce Nanoinżynieria materiałów

Łukasz Ruba



Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

14 kwietnia 2024

# Spis treści

|   | Cel ćwiczenia                                                                                           | 3  |
|---|---------------------------------------------------------------------------------------------------------|----|
| 1 | Wstęp teoretyczny 1.1 Symulacja procesu Wienera i wyznaczanie współczynnika dyfuzji w układzie otwartym |    |
| 2 | Metodyka                                                                                                | 4  |
| 3 | Wyniki 3.1 Proces Wienera                                                                               |    |
| 4 | Wnioski                                                                                                 | 11 |
|   | Literatura                                                                                              | 12 |

#### Cel ćwiczenia

Celem ćwiczenia było wykonanie symulacji procesów Wienera oraz dyfuzji i absorpcji. Na podstawie zebranych danych wyznaczono współczynniki dyfuzji oraz przeanalizowano wpływ częstości dostarczania cząstek do układu i powierzchni absorbenta na ilość aktywnych czasteczek.

### 1 Wstęp teoretyczny

# 1.1 Symulacja procesu Wienera i wyznaczanie współczynnika dyfuzji w układzie otwartym

Dla modeli 1D można zapisać równanie dyfuzji jako:

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial t^2},\tag{1}$$

gdzie u = u(x,t) i wyraża stężenie w danym układzie, a D to współczynnik dyfuzji. Warunek początkowy wybrany jako źródło punktowe można wyrazić poprzez delte Diraca [1]:

$$u(x = 0, t = 0) = \delta(x - x_0). \tag{2}$$

Rozwiązaniem takiego układu przy tak zadanych warunkach brzegowych jest funkcja u(x,t) w postaci:

$$u(x,t) = \frac{1}{\sigma_t \sqrt{2\pi}} exp\left[-\frac{(x-x_0)^2}{2\sigma_t^2}\right],\tag{3}$$

gdzie:

$$\sigma_t = \sqrt{2Dt}.\tag{4}$$

Jak można zauważyć, wyrażenie (3) ma postać taką samą jak rozkład normalny  $N_t(x_0, \sigma_t)$ . Dzięki temu proces dyfuzji można symulować wykonując ewolucję czasową grupy cząstek, które w kolejnych chwilach czasowych są przemieszczane losowo tak jak w procesie stochastycznym Wienera:

$$X_i(t + \Delta t) = X_i(t) + \Delta X_i, \qquad \Delta X \ N_{\Delta t}(0, \sigma_t), \tag{5}$$

gdzie korzystając ze wzoru (3) i podstawiając  $t \to \Delta t$  oraz  $(x - x_0) \to \Delta x$  otrzymujemy funkcję gęstości prawdopodobieństwa tego rozkładu:

$$f(\Delta x, \Delta t) = \frac{1}{\sigma_{\Delta t} \sqrt{2\pi}} exp \left[ -\frac{\Delta x^2}{2\sigma_{\Delta t}^2} \right], \tag{6}$$

$$\sigma_{\Delta t} = \sqrt{2D\Delta t}.\tag{7}$$

W algorytmach Monte Carlo proces ten możemy łatwo zasymulować w przestrzeni 2D w oparciu o zmodyfikowaną metodę Boxa-Mullera:

$$\Delta x = \sqrt{-2\ln(1 - U_1)} \cdot \cos(2\pi U_2) \cdot \sigma_{\Delta t},\tag{8}$$

$$\Delta y = \sqrt{-2\ln(1 - U_1)} \cdot \sin(2\pi U_2) \cdot \sigma_{\Delta t},\tag{9}$$

gdzie  $U_1$  i  $U_2$  to dwie liczby pseudolosowe z przedziału [0,1].

Dla symulacji prowadzonych w wyższych wymiarach np. 2D, zagadnienie to można odwrócić i na podstawie analizy przemieszczeń cząstek (zmiany koordynatów danych punktów) można wyznaczyć wartości współczynników dyfuzji:

$$D_{xx}(t) = \frac{\langle x^2(t) \rangle - \langle x(t) \rangle^2}{2t},\tag{10}$$

oraz analogicznie dla wartości  $D_{yy}(t)$ , zaś współczynnik  $D_{xy}(t)$  określający korelację kierunków x-y wyznacza się ze wzoru:

$$D_{xx}(t) = \frac{\langle x(t)y(t)\rangle - \langle x(t)\rangle\langle y(t)\rangle}{2t}.$$
(11)

Jako, że współczynniki D obliczane są na podstawie procesów stochastycznych, to występują w ich wartościach fluktuacje. W celu uzyskania wyniku niezależnego od czasu oraz jego odchylenia należy uśrednić zebrane wyniki w wybranym odcinku czasu. Na tej podstawie możemy policzyć m-ty moment:

$$\langle D_{\alpha\beta}^m \rangle \approx \overline{D_{\alpha\beta}^m} = \frac{1}{N_t} \sum_{k=1}^{N_t} D_{\alpha\beta}^m(t_k),$$
 (12)

gdzie  $\alpha$ ,  $\beta = x,y$ , zaś  $N_t$  to ilość kroków czasowych w wybranym przedziale czasu  $[t_A, t_B]$ . Dzięki temu odchylenie standardowe możemy wyrazić wzorem:

$$\sigma_{\overline{D_{\alpha\beta}}} = \sqrt{\frac{\overline{D_{\alpha\beta}^2} - \left(\overline{D_{\alpha\beta}^1}\right)^2}{N_t}}.$$
(13)

#### 1.2 Symulacja dyfuzji i absorpcji w układzie zamknietym

W trakcie symulacji rozważano układ zamknięty, którego brzeg stanowił okrąg o parametrach  $K_r(xr, yr, Rr)$ . W układzie znajdowało się źródło dostarczające do układu cząstki z wydajnością:

$$\omega = \frac{dn}{dt}.\tag{14}$$

Cząstki dostarczone do układu podlegały w nim dyfuzji o stałych współczynnikach dyfuzji D. W chwili t dana cząstka znajdowała się w położeniu  $\vec{P_i}(t)$  i przemieszczała się do położenia  $\vec{P_i}(t+\Delta t) = \vec{P_i}(t) + [\Delta x, \Delta y]$ , gdzie wartość tego przesunięcia była obliczana tak samo jak w ruchach Wienera (rów. (5)). Jeżeli położenie cząstki w chwili  $t+\Delta t$  znajdowało się poza obszarem okręgu  $K_r$ , to obliczano nowe położenie cząstki zgodnie z prawem odbici. Jeżeli zaś trajektoria cząstki przecinała obszar absorbenta, zdefiniowanego jako okrąg  $K_a(xa,ya,Ra)$ , to zostawała "pochłonięta", czyli nie brano jej pod uwagę w kolejnych obliczeniach. Przy stałym wydatku cząstek ze źródła  $\omega = const$ . występowanie absorbenta ogranicza gęstość (liczbę) cząstek w układzie.

Przedstawione powyżej założenia realizowała gotowa funkcja "particle\_translation.cpp", której to podaje się następujące parametry:

- xr, yr, Rr środek i promień obszaru, poza który cząsteczka nie może się wydostać,
- xa, ya, Ra środek i promień absorbenta,
- xs, ys położenie źródła,
- $N_{max}$  maksymalna liczba aktywnych cząstek w układzie,
- $t_{max}$ ,  $\Delta t$ ,  $N = t_{max}/\Delta t$  czas trwania symulacji, krok czasowy i liczba kroków,
- $\omega = \Delta n/\Delta t$  wydajność źródła,
- $\theta$  znacznik, czy czastka jest aktywna.

## 2 Metodyka

Obie symulacje wymienione we wstępie teoretycznym (1) zaimplementowano w kodzie napisanym w języku C++.

Dla procesu Wienera przeprowadzono symulację dyfuzji N cząstek umieszczonych w chwili t=0 w punkcie (0,0), gdzie  $N=[10^2,10^3,10^4,10^5]$ . Założono współczynnik dyfuzji D=1, krok czasowy  $\Delta t=0.1$  oraz całkowity czas symulacji  $t_{max}=100$ . Na podstawie zebranych danych obliczono podstawowe momenty, które pozwoliły obliczyć współczynniki dyfuzji  $D_{xx}$ ,  $D_{yy}$  i  $D_{xy}$ . Dodatkowo dla każdego wspł. dyfuzji wyznaczono wartość średnią i odchylenie standardowe.

Dla symulacji dyfuzji i absorpcji przyjęto stałą liczbę cząstek  $N=10^4$  dodawanych do układu z prędkościami  $\omega=[10,50,100]$   $\frac{\text{cząstek}}{\text{s}}$  w punkcie (-4.5, 0). Okrąg ograniczający przestrzeń miał promień Rr=5 i środek w punkcie (0, 0), zaś w punkcie (3, 0) umieszczono absorbent o powierzchni koła zadanego promieniem Ra=[0.1,0.5]. Dla każdej kombinacji  $\{\omega_i,Ra_j\}$  wykonano symulację i przeanalizowano wpływ tych parametrów na ilość aktywnych cząstek w układzie.

Na podstawie zebranych danych utworzono wykresy lokalizacji cząstek w przestrzeni dla różnych chwil czasowych, krzywe zmiany współczynników dyfuzji oraz ilości aktywnych cząstek w układzie. Wszystkie grafiki wykonany przy pomocy biblioteki matplotlib w Python.

# 3 Wyniki

#### 3.1 Proces Wienera

Na Rysunku 1 pokazano położenia cząstek w układzie otwartym w zależności od czasu i ich ilości. Wraz ze wzrostem ilości cząstek coraz wyraźniej widać jak rozkładają się one równomiernie w kołach o środku w punkcie startowym. Powierzchnia koła rośnie wraz z upływem czasu, czyli zgodnie z przypuszczeniami istnieje w układzie zjawisko dyfuzji.



**Rysunek 1:** Położenie cząsteczek w układzie otwartym w zależności od czasu pokazane dla czterech ilości cząstek  $N = [10^2, 10^3, 10^4, 10^5]$ .

3.1 Proces Wienera 3 WYNIKI

Dla każdego N wyznaczono współczynniki dyfuzji  $D_{xx}$ ,  $D_{yy}$  i  $D_{xy}$  w zależności od czasu (Rys. 2). Jak można zauważyć, im mniej cząstek w układzie tym większe są fluktuacje wartości współczynnika dyfuzji. Wraz ze wzrostem czasu symulacji każda linia coraz lepiej zbiega do wartości teoretycznej  $D_{xx} = D_{yy} = 1$  oraz  $D_{xy} = 0$ .



**Rysunek 2:** Współczynniki dyfuzji cząsteczek w układzie otwartym w zależności od czasu pokazane dla czterech ilości cząstek  $N = [10^2, 10^3, 10^4, 10^5]$ .

W Tabeli 1 przedstawiono wartości dyfuzji wraz z ich odchyleniami standardowymi dla każdej symulacji obliczone w przedziale (0, tmax]. Widać, że wraz ze wzrostem ilości cząstek maleją odchylenia oraz wartości dyfuzji pokrywają się z teoretycznymi do drugiego oraz trzeciego miejsca po przecinku w zależności od przypadku.

3.1 Proces Wienera 3 WYNIKI

**Tabela 1:** Wartości współczynników dyfuzji cząsteczek w układzie otwartym w ostatniej chwili czasowej pokazane dla czterech ilości cząstek  $N=[10^2,10^3,10^4,10^5]$ . Tło każdej linii pokazuje jej odchylenie standardowe w danym czasie.

|                   | Ilość cząstek N |             |             |             |  |
|-------------------|-----------------|-------------|-------------|-------------|--|
|                   | $10^{2}$        | $10^{3}$    | $10^{4}$    | $10^{5}$    |  |
| $\mathbf{D}_{xx}$ | 1.1575          | 1.0007      | 9.9941e-01  | 1.0002      |  |
| $\sigma_{D_{xx}}$ | 2.9336e-03      | 1.3069e-03  | 3.1472e-04  | 9.7710e-05  |  |
| $\mathbf{D}_{yy}$ | 1.0243          | 1.0163      | 1.0079      | 1.0050      |  |
| $\sigma_{D_{yy}}$ | 2.0644e-03      | 1.1975e-03  | 4.0698e-04  | 9.2684e-05  |  |
| $\mathbf{D}_{xy}$ | 1.9515e-03      | -1.3111e-02 | -1.3187e-03 | -2.9196e-03 |  |
| $\sigma_{D_{xy}}$ | 2.0517e-03      | 7.5340e-04  | 2.6532e-04  | 8.3302e-05  |  |

#### 3.2 Symulacja dyfuzji i absorpcji

Na Rysunkach 3 i 4 zaprezentowano układ o częstości dostarczania cząstek do układu  $\omega=50\,\frac{1}{\rm s}$  oraz różnych promieniach powierzchni absorbenta. Jak można się spodziewać, w układzie z mniejszym absorbentem wizualnie widać, że aktywnych cząstek w układzie jest znacznie więcej. Zależność tą dla każdej przeprowadzonej symulacji pokazano na Rysunku 5.

$$\omega = 50, R_a = 0.1$$



Rysunek 3: Wizualizacja symulowanego układu z częstością dostarczania cząstek do układu  $\omega = 50 \frac{1}{s}$  oraz promieniem powierzchni absorbującej Ra = 0.1. Na czerwono oznaczono granicę układu, obszar brązowy pokazuje miejsce dostarczania cząstek - czarne kropki, zaś niebieski okrag to absorbent.

$$\omega = 50, R_a = 0.5$$



Rysunek 4: Wizualizacja symulowanego układu z częstością dostarczania cząstek do układu  $\omega=50~\frac{1}{\rm s}$  oraz promieniem powierzchni absorbującej Ra = 0.5. Na czerwono oznaczono granicę układu, obszar brązowy pokazuje miejsce dostarczania cząstek - czarne kropki, zaś niebieski okrąg to absorbent.

Na Rysunku 5 pokazano ilość aktywnych cząstek w układzie dla przedziału czasu [0, 1000 s]. Chcąc lepiej zobaczyć zależności między krzywymi utworzono Rysunek 6 gdzie skupiono się na dwóch konkretnych rejonach - wzrostu ilości cząstek aktywnych (od 0 do 2.5 sekund) oraz stanu ustalonego (od 4 do 10 sekund).



Rysunek 5: Krzywe ilości cząstek w układzie w czasie [0, 1000 s] w zależności od parametrów  $\omega$  i Ra.

Na podstawie Rysunku 6 widać, że układy z mniejszym absorbentem wolniej się się nasycały, za to osiągały większą liczbę cząsteczek po ustaleniu się stanu równowagi, co jest zgodne z intuicją. Wielkość częstości dostarczania cząsteczek determinowała ilość możliwych cząstek w układzie i wraz z jej wzrostem N rosło. Patrząc na krzywe zieloną i brązową możemy wysnuć twierdzenie, że większe znaczenie dla ilości cząstek w układzie ma obszar absorbentu, niż częstość dostarczania cząstek. Choć w przypadku reprezentowanym przez krzywą brązową  $\omega$  była dwukrotnie większa niż w przypadku reprezentowanym przez krzywą zieloną, to w stanie ustalonym krzywa zielona przyjmuje znacznie większe wartości.



**Rysunek 6:** Po lewej - obszar wzrostu krzywych reprezentujących ilość cząstek w układzie od czasu; po prawej) stan równowagi w każdym z układów.

## 4 Wnioski

Na podstawie analizy procesów Wienera pokazano, że wraz ze wzrostem ilości cząstek w układzie jesteśmy w stanie lepiej oszacować wartości współczynników dyfuzji układu. W każdym przypadku wartości te oscylowały wokół wartości teoretycznych, co oznacza, że symulacje tego typu można wykorzystać do odtworzenia parametrów dyfuzji.

W symulacja dyfuzji i absorpcji pokazano, że parametry częstości dostarczania cząstek oraz wielkości absorbenta znacząco wpływają na zachowanie się układu, a ilości aktywnych cząstek w układach znacząco się od siebie różnią. Zauważono również, że przeważający wpływ na ilość cząstek ma wielkość absorbenta. Najprawdopodobniej wynika to z faktu, że zmiana promienia 5 razy oznacza tak naprawdę powiększenie się obszaru absorbenta 25-krotnie, czego nie rekompensuje dwu- lub dziesięciokrotny wzrost częstości dostarczania cząstek.

LITERATURA LITERATURA

# Literatura

[1] Tomasz Chwiej, dr hab. inż., skrypt do zadania "Monte Carlo: symulacja procesu Wienera, wyznaczanie współczynnika dyfuzji, symulacja procesu dyfuzji i absorpcji", AGH, Kraków, 3 kwietnia 2024.