Hash Table

IT5003: Data Structures and Algorithms (AY2019/20 Semester 1)

Lecture Outline

Direct Addressing Table

- Hash Table
 - Definition
 - Hash Function
 - Modulo Method
 - Multiplicative Method
 - Collision Resolution
 - Restructuring of Hash Table
 - Open Addressing

Table ADT: Recap and Preview

	Unsorted	Sorted	Sorted
	Array/List	Array	LinkedList
insert	0(1)	O(N)	O(N)
delete	O(N)	O(N)	O(N)
search	O(N)	O(log ₂ N)	O(N)
	BST	Balanced BST	Hash Table
insert	BST O(h)		
insert		BST	Table

Table ADT: Recap and Preview

- BST is dependent on height of tree:
 - Inconsistent behaviour ranging from O(log N) to O(N)
- Balanced BST (e.g. AVL Tree) provides consistent O(log N) performance
 - But we can do even better!
- Hash table can support Table ADT in constant time on average!

Back to Basics?

DIRECT ADDRESSING TABLE

Example: The SBS Bus Problem

- Consider a system to manage information about **bus services** for the bus companies SBS and Tower Transit
- The main operations are:

Operations	Functionality
Find(N)	Does bus service N exists?
Insert(N)	Add bus service N
Delete(N)	Remove bus service N

[IT5003 - L11 - AY1920S1]

Observations: The SBS Bus Problem

The bus service are indicated by an integer between [1 ... 999]

Efficient Solution:

- Use an array of 1000 elements
- Element at index N represent the bus service N
 - Can store an object with information about the bus service
- Known as direct addressing table

Direct Addressing Table: Complexity

Direct Addressing Table: Summary

- Direct addressing table is very efficient
- However, there are many restrictions
 - Key must be integer
 - e.g. how about bus service "NR10", "151e", "96A"?
 - Range of keys must be small
 - Keys must be dense
 - Most keys in the range are valid
 - Not many "gaps" in the key values

Improved Direct Addressing Table

HASH TABLE

Example: The IT-Bank Account

Suppose the account number of IT Bank Accounts follow the format:

IT-12459-K

Bank name prefix: same for every account

Running sequence number: unique for each account, only odd numbers are used Check alphabet: computed from the sequence number to detect fake account

- Can we use direct addressing table?
 - Can we convert the account number to integer?

Example: A possible conversion

Treat the account number as a string and then:

[IT5003 - L11 - AY1920S1]

Hash Table: Generalized Idea

- Use a conversion function to map:
 - Non-integer → integer
 - □ Sparse integers in a large range → a dense integers in a smaller range
- This conversion function is known as hash function
 - The fundamental idea behind hash table!
 - Hash Table (or Hash Map)
 - = Direct Addressing Table + Hash Function

Hash Table: Operations

- One additional step:
 - Apply hash function h() to the key value
 - h(key) gives the home address of the key

Operations	Basic Steps
Find(N)	return a[h(N)]
Insert(N, data)	a[h(N)] = data
Delete(N)	a[h(N)] = None

Time complexity now depends on the performance of the hash function h()

Hash Tables: **Problems**

- In the IT-Bank example:
 - The result of the hash function is unique
 - Each key is mapped to a difference home address
 - known as perfect hash function
- Unfortunately, this is not always true!
 - Given two different keys, it is possible for a hash function to give the same result!

```
Hash(key1) == Hash(key2)
but key1 != key2
```

This problem is known as collision

Example: Hashing Collision

Given the hash function:

$$h(\text{key}) = \text{key} % 17$$

Hash Table: Important Issues

- How to define good hash function?
 - What are the properties of a good hash function?

How to resolve collision?

My hash is better than your hash ©

HASH FUNCTIONS

Terminology

Given a hash table of size N

Good Hash Functions: Properties

- Fast to compute
 - O(1) if possible
- Scatter keys evenly throughout the hash table
- Result in none of few collisions

- Allow the hash table to be small
 - As compared to the entire range of possible keys

Bad Hash Functions: Example

Select Digits:

```
Hash( d_0d_1d_2...d_7)
= d_2d_7
```

- hash(67547378) = 58
- hash(34508108) = 58

What happen when you hash Singapore's house phone numbers by selecting the *first* three digits?

[IT5003 - L11 - AY1920S1]

Perfect Hash Function

Perfect Hash Function:

One-to-one mapping between the keys and array indices

NO collision

Possible if we know all keys in advance

Example:

- The IT-Bank account number example
- When a compiler search for keywords

Minimal perfect hash function:

 The table size is the same as the number of keywords supplied

Hash Function: How To

- We will cover the following approaches in this course:
 - Uniform hash function
 - Division method
 - Multiplication method
 - d. Hashing of strings

Uniform Hash Function

Uniform Hash Function:

 Distribute the keys evenly throughout the hash table

Formal definition:

- Given K keys and M locations in hash table
- H(K) is uniform if each location receive no more than $\left\lceil \frac{K}{M} \right\rceil$ keys

Uniform Hashing Function: Example

Given:

- Keys are integers uniformly distributed in [0,X)
- Hash table of size m (m < X)</p>
- We can hash the keys uniformly into the table by:

$$k \in [0, X)$$

$$hash (k) = \left| \frac{km}{X} \right|$$

k is the key value

[]: close interval

(): open interval

Hence, $0 \le k < X$

is the *floor* function

Hash Function: Modulo Method

- Given a hash table of m slots
 - Modulo operator "%" maps an integer to a value between 0 and m-1:

$$hash(k) = k \% m$$

- One of the most popular methods
- Behavior of the hash function depends on:
 - Key distribution
 - Table size m

Modulo Method: Table Size m

- Generally, we want the hash function to generate "random-like" home addresses even if the keys are in continuous range
 - Some table size should be avoided in modulo method due to commonly encountered key sequence

Example:

- $m = 10^{n}$
 - Hash function returns the last n-digits of the key!
- \square m = 2^n
 - Hash function returns the last n-bits of the key!

Modulo Method: Table Size m

Rule of thumb:

 Choose table size to be a large prime number close to a power of 2

Several reasons:

We can get a "shuffling" effect by first multiplying the key with another prime number q:

$$hash(k) = (k * q) \% m$$

 Prime table size allows effective collision resolution method (more later)

Hash Function: Multiplicative Method

- Hash function takes the following form:
 - Multiply key with a real number A between [0..1]
 - 2. Extract the fractional part
 - Multiply by hash table size, m

$$hash (k) = \lfloor m(kA - \lfloor kA \rfloor \rfloor$$

Rationale:

- Fraction part of multiplication is "random-like" even for continuous key range
- A common choice for A is the reciprocal of **golden ratio**: $\sqrt{5}-1$

[IT5003 - L11 - AY1920S1]

Hash Function: Handling Strings

- For non-integer keys:
 - Convert the key into an integer
 - Then apply hash function on the result
- Let us use string as illustration

```
def HashString( str ):
    sum = 0

    for ch in str:
        #ord() gives the ASCII encoding of char
        sum += ord(ch)

    return sum % tableSizeM
```

[IT5003 - L11 - AY1920S1]

Hashing String: Problems

- The method used is not very good:
 - Many strings converted to the same sum
 - → Result in large number of collisions

Example:

Hash("abc") == Hash("bac") == Hash("cba")

Problem:

- The conversion fails to take the position of each character into account
- → Permutations of a strings get the same sum!

Hashing Strings: Better Conversion

Idea:

Associate a weight to each position in string

Common approach:

Multiply each position by X^{position}, for a chosen X

Example (X = 17, m = 1023):

```
    Hash("abc")
    = (97*17² + 98*17¹ + 99*17⁰) % 1023
    = 29798 %1023 = 131
```

Hash(" bac")
 = (98*17² + 97*17¹ + 99*17⁰) % 1023 = 403

Hashing Strings: Better Conversion

- The idea can be implemented efficiently:
 - Using Horner's Rule

```
def HashStringPos( str ):
    sum = 0

    for ch in str:
        #ord() gives the ASCII encoding of char
        sum = sum * X + ord(ch)

return sum % tableSizeM
```

 In actual implementations, popular choice of X is 31 or 37

[IT5003 - L11 - AY1920S1]

Hash Function: Summary

- First convert non-integer key into integer
 - Quality of conversion affects the hashing
- Perform hashing using the integer key
 - Take note of the range and characteristics of the input when designing hash function
 - Try to meet the qualities of a good hash function
- Modulo method is one of the most common choices for hash function

[IT5003 - L11 - AY1920S1]

Warning! Warning! Collision Imminent!

COLLISION RESOLUTION

Probability of Collision

von Mises Paradox (The Birthday Paradox)

"How many people must be in a room before the probability that some share a birthday becomes at least 50 percent?"

$$Q(n)$$
 = Probability of **unique** birthday for **n** people

$$= \frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \dots \frac{365 - n + 1}{365}$$

P(n) = Probability of collisions (same birthday) for n people = 1 – Q(n)

P(23) = 0.507 (i.e. you need only 23 people in the room!)

Probability of Collision

- In the hashing context:
 - If we insert 23 keys into a table with 365 slots, more than half of the time we will get collisions!
 - Such a result is quite counter-intuitive
- Since collision is very likely
 - → Any good hash table implementation needs to take collision into account!

Collision resolutions: Overview

There are two main approaches:

Restructuring the Hash Table

 Change the way we store items in hash table to accommodate multiple items per slot

2. Open Addressing

Instead of looking at a single home address in the hash table, we look for another suitable location for the collided item

Restructuring HT: Separate Chaining

Idea:

Instead of storing one item per slot, we can store
 a linked list of items at each slot

Separate Chaining: Operations

Separate chaining requires modification of the hash table operations:

Operations	Basic Steps	
Find(N)	Search through the linked list at a [h(N)]	
Insert(N,data)	Add data to the head of linked list at a [h(N)]	
Delete(N)	Search through the linked list at a [h(N)] and delete N	

Separate Chaining: Analysis (1/2)

- Let
 - N = number of keys in a hash table
 - □ *m* = size of hash table
- We can then define the load factor α
 - $\alpha = N/m$
 - Measures how full is the hash table
- As **N** increases, α also increases
 - Large α indicates higher chance of collision
 - \Box For separate chaining, α can rise above 1.0

Separate Chaining: Analysis (2/2)

The operations are dependent on the length of the linked list at each slot

Operations	Average Running Time	
Find(N)	O(1+α)	
Insert(N, data)	O(1)	
Delete(N)	O(1+α)	

- If α is bounded by a constant, then the running time gives O(1) for all operations
- Question:
 - What is the worst case analysis?

I'm not at home, perhaps you can try my office address?

OPEN ADDRESSING

Open Addressing: Overview

- If collision occurs:
 - We probe (try out) other suitable locations
 - The series of locations probed is known as the probe sequence

Open Addressing: Common Schemes

- There are three common schemes to generate the probe sequence
 - Decides where to look for suitable slots when collision occurs
 - 1. Linear Probing
 - 2. Quadratic Probing
 - 3. Double Hashing

Linear Probing: Overview

Linear Probe Sequence

idx, idx+1, idx+2, ..., m-1, 0, 1, 2, ..., idx-1

Basic Idea:

- Whenever collision occurs, we look at the next slot in the table
 - Wraps around when the end of the array is encountered

Continue until:

- An empty slot is found OR
- Visited every slot and could not find an empty slot

Example: Find 35

Example: Find 8

Linear Probing: Probe Sequence

- The find and delete must be replicate the same probe sequence used in insert
 - □ If the probe sequence is broken → leads to incorrect operation!

Example:

- The probe sequence of find(35) is the same as insert(35)
- The probe sequence of find(8) is the same as insert(8) if we were to perform the insertion
- This requirement complicates the deletion operation

Example: Delete 21

Example: Find 35

Linear Probing: Deletion

Problem:

- Cannot break off the probe sequence in any location
- → Cannot remove any item!

Solution:

- Keep a status information for each slot
 - { Empty, Occupied, Deleted }
- Mark the slot as **Deleted** when item is removed
- Known as lazy deletion

Example: Delete 21

Example: Find 35


```
Hash( key)
 = key % 7
                                    14
                                    15
Hash( 15 )
= 15 % 7
                              0
                                   35
                                    18
                               Ε
During insertion, "deleted"
                            6
slots are treated as "empty"
                               Ε
```

15 inserted

the previously deleted slot is changed to occupied

Linear Probing: Problem

- Linear probing can cause:
 - Many consecutive occupied slots in the hash table
 - Known as the clustering effect
- Clustering is undesirable:
 - Increase the running time for all hash table operations
- In linear probing:
 - Clustering occurs around the home address of a key
 - Known as Primary Clustering

Linear Probing: Problem

- Probe sequence in linear probing:
 - Hash(key)
 - (Hash(key) + 1) % m
 - (Hash(key) + 2) % m
 - **-**

 Primary Cluster keeps expanding as a result

QUADRATIC PROBING

Quadratic Probing: Overview

Basic Idea:

- Essentially a modified linear probing
- Instead of probing the next slot, we jump by P² slots, where P is the number of probing

Quadratic Probe Sequence:

Hash(key)	P = 0
(Hash(key) + 1 ²) % m	P = 1
(Hash(key) + 2 ²) % m	P = 2
(Hash(key) + 3 ²) % m	P = 3

Quadratic Probing: Overview

 The probe sequence can be calculated as a displacement from the home address

```
\square P_i = (Hash(key) + i^2) \% m
```

The sequence can also be calculated as a displacement from the previous probe

```
\square P_0 = Hash(key)
```

$$P_2 = (P_1 + 3) \% m$$

$$P_3 = (P_2 + 5) \% m$$

$$P_{i} = (P_{i-1} + (2i-1)) \% m$$

Quadratic Probing: Theorem

Question:

How do we know when to stop in quadratic probing?

Theorem:

If load factor α < 0.5 and the table size m is prime, then we can always find an empty slot using quadratic probe

One of the advantages of prime table size

Quadratic Probing: Problem

- If two keys share the same home address, then their probing sequences are the same
 - → Clusters form along the path of probing
 - Known as Secondary Clustering
- Secondary clustering is less severe compared to primary clustering

DOUBLE HASHING

Double Hashing: Overview

Idea:

- Give different probe sequence for keys even when they have the same home address
- Use an additional hash function:
 - To determine the displacement used in each probe
 - Also known as secondary hash function

Double Hashing Probe Sequence:

Hash(key)	P = 0
(Hash(key) + 1 * Hash ₂ (key) % m	P = 1
(Hash(key) + 2 * Hash ₂ (key) % m	P = 2
(Hash(key) + i * Hash ₂ (key) % m	P = i

```
Hash( key )
= key % 7
                              14
Hash<sub>2</sub>(key)
= key % 5
                              21
                                       Hash_2(21)
Hash( 21 )
                                       = 21 % 5
= 21 % 7
= 0
                              18
                          4
                          5
                          6
```


Double Hashing: Secondary Hash Function

Be careful:

- Secondary hash function should never evaluates to zero
 - to avoid infinite probe sequence

Easy solution:

Secondary hash function usually takes the form of

$$Hash_2(k) = (k \% 5) + 1 //Result = [1..5]$$

OR

$$Hash_2(k) = 5 - (k \% 5)$$
 //Result = [1..5]

Double Hashing: Theorem

If the secondary hash function evaluates to values that are **coprime** of the table size **m**,

Then, we always take no more than m probes to find empty slot in table if it exists

- Two integers i and j are coprime if their greatest common divisor is 1
- If the table size m, is prime, then any positive value lesser than m are coprime!
 - → Easy choice for secondary hash function

Collision Resolution: Summary

- Good collision resolution method should:
- Minimize clustering (Primary and Secondary)
- 2. Always find an empty slot if it exists
- 3. Give different probe sequences when 2 keys collide (i.e. no secondary clustering)
- 4. Fast

Rehash (Enlarging Hash Table)

- When to rehash?
 - When the table is getting full, the operations are getting slow
 - For quadratic probing, insertions might fail when the table is more than half full
- Rehash operation:
 - Build another table about twice as big with a new hash function
 - Insert each key from the original table into the new table using the new hash function
 - 3. Delete the original table

Table ADT: With Hash Table

	Unsorted Array/List	Sorted Array	Sorted LinkedList
insert	O(1)	O(N)	O(N)
delete	O(N)	O(N)	O(N)
search	O(N)	O(log ₂ N)	O(N)
	BST	Balanced BST	Hash Table
insert	BST O(h)		
insert		BST	Table

Summary

- How to hash?
 - Criteria for good hash functions
- How to resolve collision?
 - Separate chaining
 - Linear probing
 - Quadratic probing
 - Double hashing
- Problem on deletions
- Primary clustering and secondary clustering

END

_ [IT5003 - L11 - AY1920S1] _