Übungsblatt 15 zur Kommutativen Algebra

Aufgabe 1. (m) Eine explizite Beschreibung der adischen Vervollständigung Sei $\mathfrak{a}=(x_1,\ldots,x_n)$ ein Ideal in einem noetherschen Ring A. Zeige, dass die Vervollständigung $\hat{A}_{\mathfrak{a}}$ isomorph zu $A[\![X_1,\ldots,X_n]\!]/(X_1-x_1,\ldots,X_n-x_n)$ ist.

Aufgabe 2. (m+m) Intervalle von Primidealen in noetherschen Ringen

- a) Seien $\mathfrak{p} \subseteq \mathfrak{q}$ Primideale in einem noetherschen Ring. Sei $(\mathfrak{p}, \mathfrak{q})$ die Menge all derjenigen Primideale \mathfrak{r} mit $\mathfrak{p} \subseteq \mathfrak{r} \subseteq \mathfrak{q}$. Zeige, dass $(\mathfrak{p}, \mathfrak{q})$ entweder leer oder unendlich ist.
- b) Sei A ein noetherscher Ring in dem alle Primideale in einer einzigen Kette $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ mit $n \geq 2$ auftreten. Zeige: Es gibt ein Element $x \in A$ mit $x + 0 \neq x$.

Aufgabe 3. (m) Dimension des Polynomrings im noetherschen Fall

- a) Sei $\mathfrak p$ ein Primideal in einem Ring, das minimal mit der Eigenschaft ist, ein gegebenes zerlegbares Ideal $\mathfrak a$ zu umfassen. Zeige, dass $\mathfrak p$ zu $\mathfrak a$ assoziiert ist.
- b) Sei \mathfrak{p} ein Primideal der Höhe r in einem noetherschen Ring. Zeige, dass Elemente x_1, \ldots, x_r existieren, sodass \mathfrak{p} unter allen Primidealen, die diese Elemente enthalten, minimal ist.
- c) Zeige für alle Primideale \mathfrak{p} eines noetherschen Rings: ht $\mathfrak{p}[X] = \operatorname{ht} \mathfrak{p}$.
- d) Sei A ein Ring in dem die Behauptung von c) gilt. Sei $\mathfrak{q} \subseteq A[X]$ ein Primideal. Sei $\mathfrak{p} := A \cap \mathfrak{q}$. Zeige: ht $\mathfrak{q} \leq \operatorname{ht} \mathfrak{p} + 1$.
- e) Folgere: Für noethersche Ringe A gilt $\dim A[X] = 1 + \dim A$.

Aufgabe 4. (m) Gar nicht mehr erste Schritte mit der Dimension von Ringen Berechne die Dimension des Rings $\mathbb{C}[X,Y,Z]/(X-Z,X^2+Y^2+Z^2)$.

Aufgabe 5. (0) Der mystische Körper mit einem Element

Der n-dimensionale projektive Raum \mathbb{P}^n_k über einem Körper k ist der Raum der Ursprungsgeraden in k^{n+1} .

- a) Wie viele Punkte enthält \mathbb{P}_k^n , wenn k ein Körper mit q Elementen ist? Gib die Anzahl als Polynom in q an.
- b) Im klassischen Zugang zur Algebra gibt es nichts, was die Bezeichnung Körper mit einem Element verdient hätte. Was passiert, wenn man trotzdem in der Formel aus a) q := 1 setzt? Was sollte also ein n-dimensionaler projektiver Raum über dem Körper mit einem Element sein?

Mumfords Schatzkarte: die Primideale von $\mathbb{Z}[X]$