Chapitre 10 — Vecteurs II

Savoir-faire 1

- □ Représenter un vecteur dont on connaˆit les coordonnées.
- □ Lire les coordonnées d'un vecteur.
- □ Calculer les coordonnées d'une somme de vecteurs, d'un produit d'un vecteur par un nombre réel.
- □ Caractériser alignement et parallélisme par la colinéarité de vecteurs.
- ☐ Résoudre des problèmes en utilisant la représentation la plus adaptée des vecteurs.

1 Coordonnées d'un vecteur

Définition 1

Soit O un point et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1. On dit que (\vec{i}, \vec{j}) est une base orthonormée du plan et que $(O; \vec{i}, \vec{j})$ est un repère orthonormée du plan.

Définition 2

Dans une base (\vec{i}, \vec{j}) , soit \vec{u} un vecteur. Il existe un unique couple (x; y) tel que $\vec{u} = x\vec{i} + y\vec{j}$. x et y sont les coordonnées de \overrightarrow{u} dans la base $(\overrightarrow{i}, \overrightarrow{j})$, notées $\begin{pmatrix} x \\ u \end{pmatrix}$

Exemple 1

Dans la base (\vec{i}, \vec{j}) , \vec{u} a ainsi pour coordonnées $\begin{pmatrix} 3\\2 \end{pmatrix}$.

Propriété 1: Coordonnées d'un vecteur

Dans un repère, si deux points A et B ont pour coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$, le vecteur AB a pour coordonnées

Démonstration 1

Soit M(x;y) le point tel que $\overrightarrow{OM} = \overrightarrow{AB}$. \overrightarrow{ABMO} est un parallélogramme et [OB] et [AM] ont même milieu. Les coordonnées du milieu de [OB] sont $(\frac{x_B}{2}; \frac{y_B}{2})$.

Les coordonnées du milieu de [AM] sont $(\frac{\overline{x_A}+\overline{x}}{2}; \frac{y_A+y}{2})$. On en déduit que $\frac{x_B}{2} = \frac{x_A+x}{2}$ et $\frac{y_B}{2} = \frac{y_A+y}{2}$, d'où $x = x_B - x_A$ et $y = y_B - y_A$.

Exemple 2

Sur le graphique ci-dessus, on a : A(1;3) et B(4;1). Les coordonnées du vecteur \overrightarrow{AB} sont donc $\begin{pmatrix} 4-1\\1-3 \end{pmatrix}$ soit $\overrightarrow{AB} = \begin{pmatrix} 3\\-2 \end{pmatrix}$

Propriété 2: Caractérisation analytique de l'égalité de deux vecteurs

Deux vecteurs sont égaux si et seulement si ils ont les mêmes coordonnées dans un repère du plan.

Autrement dit, si les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont égaux, alors x = x' et y = y'.

Exercices: 80–82 p.139, 83–89 p.140

Méthode 1: Montrer qu'un quadrilatère ABCD est un parallélogramme

- on calcule les coordonnées de \overrightarrow{AB} et de \overrightarrow{DC} .
- on vérifie qu'elles sont égales.

Définition 3

Dans un repère orthonormé (O, I, J), soit \overrightarrow{u} un vecteur de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$.

La norme du vecteur \overrightarrow{u} , notée $\|\overrightarrow{u}\|$, est

$$\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$$

Définition 4

Dans un repère orthonormé (O,I,J), soient $A\left(x_{A};y_{A}\right)$ et $B\left(x_{B};y_{B}\right)$. Alors :

$$\left\| \overrightarrow{AB} \right\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Propriété 3: Coordonnées de la somme de deux vecteurs

Dans un repère, si $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors $\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x+x' \\ y+y' \end{pmatrix}$

Démonstration 2

Dans un repère d'origine O, la translation de vecteur $\overrightarrow{u}(x;y)$ associe au point O le point M(x;y). La translation de vecteur $\overrightarrow{v}(x';y')$ associe au point M le point N. Alors, $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{ON}$. Cherchons les coordonnées de N: Les coordonnées de \overrightarrow{MN} sont $(x_N - x; y_N - y)$. Or, $\overrightarrow{MN} = \overrightarrow{v}$, c'est-à-dire

 $x_N - x = x'$ et $y_N - y = y'$. On en déduit que N a pour coordonnées (x + x'; y + y'), d'où $\vec{u} + \vec{v} \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Exemple 3

Soient $\vec{u} \begin{pmatrix} -3 \\ 5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 10 \\ -8 \end{pmatrix}$, alors $\vec{u} + \vec{v} \begin{pmatrix} 7 \\ -3 \end{pmatrix}$

Définition 5: Déterminant de deux vecteurs

Soit $(\overrightarrow{i}, \overrightarrow{j})$ une base orthonormée et deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On appelle **déterminant** de \vec{u} et \vec{v} dans la base (\vec{i}, \vec{j}) le nombre $det(\vec{u}, \vec{v}) = xy' - yx'$, noté également $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix}$

Propriété 4

Soit (\vec{i}, \vec{j}) une base orthonormée et deux vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$. \vec{u} et \vec{v} sont colinéaires si et seulement si $det(\vec{u}, \vec{v}) = 0$.

Démonstration au programme 1

- Supposons que \vec{u} et \vec{v} sont colinéaires.
 - Si l'un des deux vecteurs est nul (par exemple \vec{u}), alors $det(\vec{u}, \vec{v}) = 0 \times y' 0 \times x' = 0$
 - Sinon, il existe un nombre k tel que $\vec{v} = k\vec{x}$, soit x' = kx et y' = ky. Alors $det(\vec{u}, \vec{v}) = xy' yx' = x \times ky y \times kx = kxy kxy = 0$.
- Réciproquement, supposons que xy' yx' = 0.

On a alors xy' = yx'.

- Si l'un des vecteurs est nul, alors il est nécessairement colinéaire à l'autre.
- Si les deux vecteurs sont non nuls, alors \vec{u} a au moins une coordonnée non nulle, par exemple x, donc $x \neq 0$. On pose alors $k = \frac{x'}{x}$, et on obtient que $xy' = yx' \iff y' = \frac{yx'}{x} \iff y' = ky$, car $x \neq 0$. Par conséquent, $\vec{v} = k\vec{u}$, et les vecteurs \vec{u} et \vec{v} sont colinéaires.

Exemple 4

Soient dans une base $\overrightarrow{u} \begin{pmatrix} 12 \\ -26 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 35 \\ -72 \end{pmatrix}$.

Alors $\begin{vmatrix} 12 & 35 \\ -26 & -72 \end{vmatrix} = 12 \times (-72) - (-26) \times 35 = 46 \neq 0$, donc les deux vecteurs ne sont pas colinéaires.

 $\textbf{Exercices:}\ 108\text{--}110\ \text{p.}141,\ 112\text{--}117\ \text{p.}141,\ 118\text{--}120\ \text{p.}142$