## **Cache Simulator**

Cache simulator is written in C++ which gives number of hits and miss ratio for the given address file. The simulator gives the ratio for cache implemented with Direct Mapping function and 2-way set associative function with LRU and FIFO as replacement algorithms.

| Bytes/Method | 1024     | 2048     | 4096     | 8192     | 16384    |
|--------------|----------|----------|----------|----------|----------|
| Direct       | 1.00E+00 | 1.00E+00 | 9.87E-07 | 9.87E-07 | 2.96E-06 |
| 2-Way_LRU    | 1.00E+00 | 1.98E-06 | 1.98E-06 | 1.98E-06 | 1.98E-06 |
| 2-Way_FIFO   | 1.00E+00 | 1.98E-06 | 1.98E-06 | 1.98E-06 | 1.98E-06 |

The above table displays the hit rate for the different mapping with different replacement algorithms for the given address file. But it can be seen that for the given address file it is not easy to come to any conclusion. So that's why I have also use my own created address file to get a clear observation.

| Bytes/Method | 1024      | 2048      | 4096      | 8192      | 16384     |
|--------------|-----------|-----------|-----------|-----------|-----------|
| Direct       | 0.5843247 | 0.5856023 | 0.5927234 | 0.5945364 | 0.5975465 |
| 2-Way_FIFO   | 0.5923465 | 0.5934566 | 0.5945623 | 0.5955654 | 0.5978451 |
| 2-Way_LRU    | 0.6146626 | 0.6148957 | 0.6155656 | 0.6162155 | 0.6175646 |

So from the second table it can be clearly seen that 2-Way LRU method is ahead of the Direct method and 2-way FIFO method.

This is because 2-Way set associative method is a moderation between direct and associative mapping which is complemented by LRU as replacement algorithm which is surely a logical choice over FIFO method.

## **Cache Details of my Laptop**

```
suryavansht@MSI-GE63VR-7RE:~$ lscpu
Architecture:
                    x86 64
CPU op-mode(s):
                   32-bit. 64-bit
Byte Order:
                   Little Endian
CPU(s):
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s):
NUMA node(s):
Vendor ID:
                   GenuineIntel
CPU family:
Model:
                   158
Model name:
                    Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
Stepping:
CPU MHz:
                   831.071
CPU max MHz:
                    3800.0000
CPU min MHz:
                   800.0000
BogoMIPS:
                   5616.00
Virtualization:
                   VT-x
L1d cache:
                   32K
L1i cache:
                    32K
L2 cache:
                    256K
L3 cache:
                   6144K
NUMA node0 CPU(s): 0-7
```

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant\_tsc art arch\_perfmon pebs bts rep\_good nopl xtopology nonstop\_tsc cpuid aperfmperf tsc\_known\_freq pni pclmulqdq dtes64 monitor ds\_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4\_1 sse4\_2 x2apic movbe popcnt tsc\_deadline\_t imer aes xsave avx f16c rdrand lahf\_lm abm 3dnowprefetch cpuid\_fault epb invpcid\_single pti tpr\_shadow vnmi flexpriority ept vpid fsgsbase tsc\_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap c lflushopt intel pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp notify hwp act window hwp epp



| Details/Cache | Size (in KB) | Туре                   |
|---------------|--------------|------------------------|
| L1-D          | 128          | 8-way set associative  |
| L1-I          | 128          | 8-way set associative  |
| L2            | 1024         | 4-way set associative  |
| L3            | 6144         | 12-way set associative |