See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231538757

Ternary Mutual Diffusion Coefficients of Aqueous NiCl2 + NaCl and NiCl2 + HCl Solutions at 298.15 K

ARTICLE in JOURNAL OF CHEMICAL & ENGINEERING DATA · SEPTEMBER 2011

Impact Factor: 2.04 · DOI: 10.1021/je2006693

CITATIONS

3

READS

91

6 AUTHORS, INCLUDING:

Ana C F Ribeiro

University of Coimbra

118 PUBLICATIONS 1,042 CITATIONS

SEE PROFILE

Cecilia Santos

University of Coimbra

29 PUBLICATIONS 303 CITATIONS

SEE PROFILE

Joselaine C. S. Gomes

Technical University of Lisbon

8 PUBLICATIONS 26 CITATIONS

SEE PROFILE

Miguel A Esteso

University of Alcalá

127 PUBLICATIONS 850 CITATIONS

SEE PROFILE

pubs.acs.org/jced

Ternary Mutual Diffusion Coefficients of Aqueous NiCl₂ + NaCl and NiCl₂ + HCl Solutions at 298.15 K

Ana C. F. Ribeiro,**,† Joselaine C. S. Gomes,†,|| Cecilia I. A. V. Santos,†,|| Victor M. M. Lobo,†,|| Miguel A. Esteso,†,|| and Derek G. Leaist $^{\S,||}$

ABSTRACT: The influence of sodium chloride and hydrochloric acid on the diffusion of aqueous nickel chloride has been investigated by using Taylor dispersion to measure ternary mutual diffusion coefficients for aqueous solutions of NiCl₂ + NaCl and NiCl₂ + HCl at 298.15 K and carrier concentrations from (0.000 to 0.050) mol·dm⁻³ for each solute. Mutual diffusion coefficients estimated from limiting ionic conductivities using Nernst equations are used to discuss the composition dependence of the diffusion coefficients and the electrostatic mechanism for the strongly coupled diffusion of the solutes.

■ INTRODUCTION

The diffusion of mixed electrolytes in aqueous solutions and its impact on biological systems is of great interest not only for fundamental purposes but also for many technical fields, such as studies of corrosion in biological systems (e.g., surgical implants and dental alloys¹), desalination, dissolution, electroplating, and crystallization. 2-5 We have been particularly interested in data on this property for chemical systems involving nickel ions in different mixed electrolytes, such as NiCl2-NaCl-water and NiCl₂-HCl-water, for which data are scarce. This work has been motivated by the fact that the nickel ion is one of the most mobile and bioavailable heavy metal ions present in different sources⁶⁻¹¹ (e.g., drinking water, food, active pharmaceutical ingredients and excipients, and dental casting alloys), and by the possibility that the diffusion of nickel salts could produce substantial coupled flows of other dissolved salts. However, to our knowledge, there are only a few publications devoted to the study of binary diffusion in aqueous nickel chloride solutions. 12,13 In the work reported here, Taylor dispersion 14-16 is used to measure ternary mutual diffusion coefficients for aqueous NiCl₂ + NaCl and aqueous NiCl₂ + HCl solutions at 298.15 K.

■ EXPERIMENTAL SECTION

Reagents and Solutions. Nickel chloride (Merck > 97 % purity), sodium chloride (Sigma, pro analysi, > 99.5 % purity), and hydrogen chloride (Sociedade Portuense de Drogas, 33.5 wt % HCl) were used without further purification. The solutions for the diffusion measurements were prepared in calibrated volumetric flasks using bidistilled water. The solutions were freshly prepared and deaerated for about 30 min before each set of runs.

Diffusion Measurements. The Taylor dispersion technique is well-described in the literature. Only a summary of the experimental procedure is reported here.

At the start of each run, a six-port Teflon injection valve (Rheodyne, model 5020) was used to introduce 0.063 cm³ of solution into a laminar carrier stream of slightly different compositions at the

entrance to a Teflon dispersion tube [length 32.799 (\pm 0.001) m, internal radius r=0.5570 (\pm 0.0003) mm]. A flow rate of 0.17 cm³·min⁻¹ maintained by a metering pump (Gilson model Minipuls 3) gave retention times of about $1.1 \cdot 10^4$ s. The dispersion tube and the injection valve were kept at 298.15 K (\pm 0.01 K) in an air thermostat. The dispersion of the injected samples was monitored by a differential refractometer (Waters model 2410) at the outlet of the dispersion tube. Detector voltages, V(t), were measured at accurately timed 5 s intervals with a digital voltmeter (Agilent 34401 A) with an IEEE interface.

Mutual diffusion in ternary solutions is described by the equations

$$J_1 = -D_{11}\nabla c_1 - D_{12}\nabla c_2 \tag{1}$$

$$J_2 = -D_{12}\nabla c_1 - D_{22}\nabla c_2 \tag{2}$$

where J_1 and J_2 and ∇c_1 and ∇c_2 are the molar fluxes and the gradients in the concentrations of solute 1 and 2, respectively. Main diffusion coefficients D_{11} and D_{22} give the flux of each solute produced by its own concentration gradient. Cross-diffusion coefficients D_{12} and D_{21} give the coupled flux of each solute driven by a concentration gradient in the other solute. A positive D_{ik} cross-coefficient $(i \neq k)$ indicates cocurrent coupled transport of solute i from regions of higher to lower concentrations of solute k. A negative D_{ik} coefficient indicates counter-current coupled transport of solute i from regions of lower to higher concentration of solute k.

Special Issue: Kenneth N. Marsh Festschrift

Received: July 4, 2011
Accepted: September 9, 2011
Published: September 30, 2011

[†]Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

[‡]Departamento de Química Física, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain

[§]Department of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 2W5

Table 1. Ternary Mutual Diffusion Coefficients of Aqueous NiCl₂ (c_1) + NaCl (c_2) Solutions at 298.15 $K^{a,b}$

c_1	c_2	X_1	D_{11}	D_{12}	D_{21}	D_{22}	$D_{12}/D_{22}^{\ \ c}$	$D_{21}/D_{11}^{\ \ d}$
0.000	0.050	0.00	$\boldsymbol{0.728 \pm 0.010}$	0.050 ± 0.044	0.246 ± 0.010	1.419 ± 0.001	0.035	0.338
0.001	0.050	0.02	0.712 ± 0.017	-0.003 ± 0.003	0.211 ± 0.026	1.491 ± 0.001	-0.002	0.296
0.001	0.010	0.10	0.719 ± 0.008	0.045 ± 0.030	0.243 ± 0.007	$\boldsymbol{1.419 \pm 0.022}$	0.032	0.338
0.001	0.001	0.50	0.760 ± 0.030	0.142 ± 0.070	0.237 ± 0.050	1.461 ± 0.053	0.097	0.312
0.005	0.005	0.50	0.883 ± 0.002	0.143 ± 0.017	0.190 ± 0.018	1.416 ± 0.002	0.101	0.215
0.010	0.010	0.50	0.870 ± 0.014	0.137 ± 0.050	0.141 ± 0.011	$\boldsymbol{1.334 \pm 0.032}$	0.103	0.162
0.010	0.001	0.90	1.063 ± 0.020	0.320 ± 0.090	0.004 ± 0.001	1.310 ± 0.033	0.244	0.004
0.050	0.000	1.00	1.061 ± 0.005	0.294 ± 0.018	$\boldsymbol{0.001 \pm 0.002}$	$\boldsymbol{1.300 \pm 0.015}$	0.226	0.001

 $[^]a$ c_1 and c_2 in units of mol·dm⁻³. $^bD_{ik} \pm S_D$ in units of 10^{-9} m²·s⁻¹. $^cD_{12}/D_{22}$ gives the number of moles of NiCl₂ transported per mole of NaCl. $^dD_{21}/D_{11}$ gives the number of moles of NaCl transported per mole of NiCl₂.

Table 2. Ternary Mutual Diffusion Coefficients of Aqueous NiCl₂ (c_1) + HCl (c_2) Solutions at 298.15 K^{a,b}

c_1	c_2	X_1	D_{11}	D_{12}	D_{21}	D_{22}	$D_{12}/D_{22}^{\ \ c}$	$D_{21}/D_{11}^{\ \ d}$
0.000	0.050	0.00	0.769 ± 0.016	0.030 ± 0.029	0.422 ± 0.013	2.970 ± 0.031	0.010	0.549
0.001	0.010	0.10	0.734 ± 0.022	-0.226 ± 0.098	0.498 ± 0.018	3.270 ± 0.049	-0.069	0.678
0.010	0.050	0.20	0.739 ± 0.009	-0.363 ± 0.063	0.352 ± 0.010	3.262 ± 0.034	-0.111	0.476
0.010	0.010	0.50	0.863 ± 0.008	-1.212 ± 0.019	0.255 ± 0.004	4.303 ± 0.016	-0.282	0.295
0.050	0.010	0.80	0.872 ± 0.007	-2.538 ± 0.060	0.186 ± 0.008	5.881 ± 0.041	-0.432	0.213
0.050	0.050	0.50	0.825 ± 0.007	-1.364 ± 0.025	0.336 ± 0.007	4.694 ± 0.032	-0.291	0.407
0.050	0.000	1.00	1.056 ± 0.017	-4.107 ± 0.090	$\boldsymbol{0.034 \pm 0.032}$	7.537 ± 0.060	-0.545	0.032

 $[^]a$ c_1 and c_2 in units of mol·dm⁻³. b $D_{ik} \pm S_D$ in units of 10^{-9} m²·s⁻¹. c D_{12}/D_{22} gives the number of moles of NiCl₂ transported per mole of HCl. d D_{21}/D_{11} gives the number of moles of HCl transported per mole of NiCl₂.

Equation 3²⁰ was fitted to pairs of dispersion profiles for each carrier solution.

$$V(t) = V_0 + V_1 t + V_{\text{max}} (t_{\text{R}}/t)^{1/2} \left[W_1 \exp\left(-\frac{12D_1(t - t_{\text{R}})^2}{r^2 t}\right) + (1 - W_1) \exp\left(-\frac{12D_2(t - t_{\text{R}})^2}{r^2 t}\right) \right]$$
(3)

The additional fitting parameters were the mean sample retention time $t_{\rm R}$, peak height $V_{\rm max}$ baseline voltage V_0 , and baseline slope V_1 . One of the profiles was generated by injecting solution samples containing a higher concentration of solute 1 relative to the carrier and the other by injecting solution samples containing a higher concentration of solute 2. Ternary mutual D_{ik} coefficients were calculated from the least-squares values of the eigenvalues of the D_{ik} matrix $(D_1$ and $D_2)$ and the pre-exponential weighting factors $(W_1$ and $1-W_1)$.

■ RESULTS AND DISCUSSION

Aqueous NiCl₂ (1) + NaCl (2) Solutions. Ternary mutual diffusion coefficients were measured six times at each composition and averaged. The results for the aqueous NiCl₂ + NaCl solutions and aqueous NiCl₂ + HCl solutions are summarized in Tables 1 and 2, respectively. The main diffusion coefficients D_{11} and D_{22} were generally reproducible to within \pm 0.030 · 10⁻⁹ m²·s⁻¹. The cross diffusion coefficients were reproducible to within about \pm 0.050 · 10⁻⁹ m²·s⁻¹.

As indicated in Table 1, D_{11} values are smaller than D_{22} values. In general, D_{11} and D_{22} increase and decrease, respectively, with the solute fraction of NiCl₂, defined as $X_1 = c_1/(c_1 + c_2)$. The cross-coefficients are generally positive, indicating cocurrent

Table 3. Limiting Ionic Conductivities^{24,25} and Diffusion Coefficients^a at 298.15 K

	λ_i	D_i			
ion	$10^{-4}\mathrm{S}\!\cdot\!\mathrm{m}^2\!\cdot\!\mathrm{mol}^{-1}$	$10^{-9} \mathrm{m}^2 \cdot \mathrm{s}^{-1}$			
Ni ²⁺	53.3	0.71			
Na ⁺	50.1	1.33			
H^{+}	350.1	9.32			
Cl ⁻	76.3	2.03			
^a Calculated from $D_i = RT\lambda_i/z_iF^2$.					

coupled flows. In the limit $X_1 \rightarrow 0$, however, D_{12} is zero because NaCl concentration gradients cannot drive coupled flows of NiCl₂ in solutions that do not contain NiCl₂. Similarly, D_{21} is zero in the limit $X_1 \rightarrow 1$. The values of the ratio D_{12}/D_{22} show that a mole of diffusing NaCl cotransports at most 0.2 mol of NiCl₂, whereas the values of D_{21}/D_{11} show that a mole of diffusing NiCl₂ can cotransport up to 0.3 mol of NaCl.

Nernst equations²³ 4 to 7 provide values of the D_{ik} coefficients in the limit of infinite dilution. These equations are very useful for qualitatively understanding the main features of the results, including the mechanism of coupled diffusion and the composition dependence of the D_{ik} coefficients.

$$D_{11}^{o} = D_{Ni} + t_{Ni}(D_{Cl} - D_{Ni})$$
 (4)

$$D_{21}^{o} = 2t_{Na}(D_{Cl} - D_{Ni}) (5)$$

$$D_{12}^{o} = t_{Ni}(D_{Cl} - D_{Na})/2 \tag{6}$$

$$D_{22}^{o} = D_{Na} + t_{Na}(D_{Cl} - D_{Na})$$
 (7)

Figure 1. Ternary mutual diffusion coefficients of aqueous NiCl₂ (c_1) + NaCl (c_2) solutions at 298.15 K plotted against the solute fraction of NiCl₂. Calculated limiting D°_{ik} values (eqs 4 to 7), solid line. Measured values: \bigcirc , D_{11} ; \blacksquare , D_{12} ; \blacktriangle , D_{21} ; \diamondsuit , D_{22} .

$$t_{\text{Ni}} = \frac{4c_1 D_{\text{Ni}}}{4c_1 D_{\text{Ni}} + c_2 D_{\text{Na}} + (2c_1 + c_2) D_{\text{Cl}}}$$
(8)

$$t_{\text{Na}} = \frac{c_2 D_{\text{Na}}}{4c_1 D_{\text{Ni}} + c_2 D_{\text{Na}} + (2c_1 + c_2) D_{\text{Cl}}}$$
(9)

 D_{Ni} , D_{Na} , and D_{Cl} are the limiting diffusion coefficients of the Ni²⁺, Na⁺, and Cl⁻ ions, respectively, and t_{Ni} and t_{Na} represent the fraction of the total current carried by the Ni²⁺ and Na⁺ ions, respectively. Conveniently, the ionic diffusion coefficients used in the Nernst equations can be evaluated from limiting ionic conductivities (see Table 3).

Each main D_{ii}° coefficient is the sum of a pure diffusion contribution and an electrostatic contribution from the drift of ions in the electric field (diffusion potential gradient) generated by mutual diffusion. $^{20,23}D_{11}^{\circ}$, for example, is the sum of the pure-diffusion term $D_{\rm Ni}$ for the Ni²⁺ ions and the electrostatic term $t_{\rm Ni}(D_{\rm Cl}-D_{\rm Ni})$ for the migration of Ni²⁺ ions in the electric field produced by NiCl₂ concentration gradients. Cross-diffusion coefficients D_{12}° and D_{21}° , in contrast, are purely electrostatic.

In Figure 1 the limiting Nernst D°_{ik} coefficients and the measured D_{ik} coefficients are plotted against the solute fraction of NiCl₂. The Nernst D°_{11} values for composition limits $X_1=0$ and $X_1=1$ are $D_{\rm Ni}$ (the tracer diffusion coefficient of Ni²⁺ ions in supporting NaCl solutions) and $3D_{\rm Ni}D_{\rm Cl}/(2D_{\rm Na}+D_{\rm Cl})$ (the binary mutual diffusion coefficient of aqueous NiCl₂), respectively. Similarly, the limiting D°_{22} values for $X_1=0$ and $X_1=1$ are $2D_{\rm Na}D_{\rm Cl}/(D_{\rm Na}+D_{\rm Cl})$ and $D_{\rm Na}$. As the solute fraction of NiCl₂ increases from 0 to 1, D°_{12} changes from 0 to $t_{\rm Ni}(D_{\rm Cl}-D_{\rm Na})/2$, and D°_{21} changes from $2t_{\rm Na}(D_{\rm Cl}-D_{\rm Ni})$ to 0.

The diffusion coefficient of the Cl^- ions is larger than that of the Ni^{2+} ions. Consequently, a $NiCl_2$ concentration gradient produces an electric field which slows down the Cl^- ions and speeds up the Ni^{2+} ions to maintain electroneutrality along the diffusion path. If NaCl is present in the solution, the electric field generated by a $NiCl_2$ concentration gradient drives a coupled flow of Na^+ ions in the same direction as the flux of Ni^{2+} , helping to explain the positive values measured for cross-coefficient D_{21} .

Figure 2. Ternary mutual diffusion coefficients of aqueous NiCl₂ (c_1) + HCl (c_2) solutions at 298.15 K plotted against the solute fraction of NiCl₂. Calculated limiting D°_{ik} values (eqs 4 and 10 to 12), solid line. Measured values: \bigcirc , D_{11} ; \blacksquare , D_{12} ; \blacktriangle , D_{21} ; \diamondsuit , D_{22} .

Similarly, $D_{\rm Cl} > D_{\rm Na}$ and $D_{12} > 0$. But, as shown in Figure 1, only qualitative agreement is obtained for the predicted Nernst D°_{ik} coefficients and the measured D_{ik} coefficients. Nonideal solution behavior (which changes the driving forces for diffusion) and electrophoretic terms are not included in the Nernst limiting D°_{ik} estimates

Aqueous NiCl₂ (1) + HCl (2) Solutions. The ternary diffusion coefficients measured for aqueous NiCl₂ (c_1) + HCl (c_2) solutions are summarized in Table 2. The D_{22} values are considerably larger than the D_{11} values and increase dramatically with the solute fraction of NiCl₂. Also, cross-coefficient D₁₂ becomes very large and negative with increasing solute fraction of NiCl₂. These results are a consequence of the relatively large mobility of aqueous H⁺ ions from the anomalous mechanism for proton transport in water. In the limit $X_1 \rightarrow 1$, for example, D_{22} is the tracer diffusion coefficient of H⁺ in NiCl₂ solutions. Also, the relatively strong electric field generated by a concentration gradient in HCl, to slow down the H⁺ ions drives large counter-current fluxes of Ni²⁺. However, in the limit $X_1 \rightarrow 0$, D_{12} is zero because HCl concentration gradients cannot drive coupled flows of NiCl₂ in solutions that do not contain NiCl₂. Similarly, D_{21} , is zero when $X_1 \rightarrow 1$. The values of D_{12}/D_{22} indicate that a mole of diffusing HCl counter-transports up to 0.5 mol of NiCl₂. From the D_{21}/D_{11} values, a mole of diffusing NiCl₂ cotransports at most 0.7 mol of HCl.

In Figure 2, the D_{ik} coefficients measured for the aqueous NiCl₂ (c_1) + HCl (c_2) solutions are plotted against the solute fraction of NiCl₂ together with the Nernst D_{ik} ° coefficients calculated from the eqs 4 and 10 to 12.

$$D_{12}^{o} = t_{Ni}(D_{Cl} - D_{H})/2 \tag{10}$$

$$D_{21}^{o} = 2t_{\rm H}(D_{\rm Cl} - D_{\rm Ni}) \tag{11}$$

$$D_{22}^{\circ} = D_{\rm H} + t_{\rm H}(D_{\rm Cl} - D_{\rm H}) \tag{12}$$

In the limit of zero solute fraction of NiCl₂ ($X_1 = 0$), D°_{11} is the tracer diffusion coefficient of Ni²⁺ ions in supporting solutions of HCl. In the other limiting case ($X_1 = 1$), D°_{11} is the binary mutual diffusion coefficient of aqueous NiCl₂ solutions. Similarly, the Nernst D°_{22} values in these composition limits are $D_{\rm H}$ and $2D_{\rm H}D_{\rm Cl}/(D_{\rm H} + D_{\rm Cl})$, respectively.

■ CONCLUSIONS

The effects of added sodium chloride and hydrochloric acid on the diffusion of aqueous nickel chloride have been investigated by measuring ternary mutual diffusion coefficients for aqueous solutions of $\mathrm{NiCl_2} + \mathrm{NaCl}$ and $\mathrm{NiCl_2} + \mathrm{HCl}$. The measured D_{ik} coefficients have been compared with limiting D°_{ik} coefficients calculated from limiting ionic conductivities using Nernst equations to help understand the main features of the results, including the mechanism of coupled diffusion and the composition dependence of the D_{ik} coefficients.

AUTHOR INFORMATION

Corresponding Author

*E-mail: anacfrib@ci.uc.pt. Tel.: +351-239-854460. Fax: +351-239-827703.

Funding Sources

One of the authors (M.A.E.) is grateful to the University of Alcalá (Spain) for the financial assistance (Mobility Grants for Researchers Program). C.I.A.V.S. is grateful for SFRH/BD/45669/2008 from "Fundação para a Ciência e Tecnologia". D.G.L. acknowledges financial support from the Natural Sciences and Engineering Research Council.

Notes

"E-mail: leidygomes18@hotmail.com (J.C.S.G.); cecilia.alves@uah.es (C.I.A.V.S.); vlobo@ci.uc.pt (V.M.M.L.); miguel.esteso@uah.es (M.A.E.); dleaist@stfx.ca (D.G.L.).

REFERENCES

- (1) Ribeiro, A. C. F.; Lobo, V. M. M.; Oliveira, L. R. C.; Burrows, H. D.; Azevedo, E. F. G.; Fangaia, S. I. G.; Nicolau, P. M. G.; Guerra, F. A. D. R. A. Diffusion Coefficients of Chromium Chloride in Aqueous Solutions at 298.15 and 303.15 K. J. Chem. Eng. Data 2005, 50, 1014–1017.
- (2) Erdey-Grúz, T. Transport Phenomena in Aqueous Solutions, 2nd ed.; Adam Hilger: London, 1974.
- (3) Tyrrell, H. J. V.; Harris, K. R. Diffusion in Liquids, 2nd ed.; Butterworths: London, 1984.
- (4) Horvath, A. L. Handbook of Aqueous Electrolyte Solutions. Physical Properties. Estimation and Correlation Methods; John Wiley and Sons: New York, 1985.
- (5) Robinson, R. A.; Stokes, R. H. *Electrolyte Solutions*, 2nd revised ed.; Dover Publications, Inc.: New York, 2002.
- (6) Baccouch, S.; Chaoui, A.; Ferjani, E. El. Nickel toxicity: Effects on growth and metabolism of maize. *J. Plant Nutr.* **1998**, *21*, 577–588.
- (7) Janicka, K.; Cempel, M. Effect of nickel (II) chloride oral exposure on urinary nickel excretion and some other elements. *Pol. J. Environ. Stud.* **2003**, *12*, 563–566.
- (8) De Paula, O. J.; Graça, D. S.; Vasquez, E. A.; Martins, R. G. R. Effect of nickel and protein concentration on consumption and apparent digestibility of dry matter, crude protein, energy, and nitrogen balance of a Brachiaria brizantha cv. Marandu hay, in ovines. *Arq. Bras. Med. Vet. Zootec.* **2005**, *57*, 212–219.
- (9) Rahm, E.; Kunzmann, D.; Döring, H.; Holze, R. Corrosion-stable nickel- and cobalt-based alloys for dental applications. *Microchim. Acta* **2006**, *156*, 141–145.
- (10) López-Aliás, J. F.; Martinez-Gomis, J.; Anglada, J. M.; Peraire, M. Ion release from dental casting alloys as assessed by a continuous flow system: Nutritional and toxicological implications. *Dent. Mater.* **2006**, 22, 832–837.
- (11) Bubnič, Z.; Urleb, U.; Kreft, K.; Veber, M. Determination of Nickel in Active Pharmaceutical Ingredients by Electrothermal Atomic Absorption Spectrometry. *Acta Chim. Slov.* **2010**, *57*, 37–44.

- (12) Ribeiro, A. C. F.; Gomes, J. C. S.; Barros, M. C. F.; Lobo, V. M. M.; Esteso, M. A. Diffusion Coefficients of Nickel Chloride in Aqueous Solutions of Lactose at 298.15 K and 310.15 K. *J. Chem. Thermodyn.* **2011**, 43, 270–274.
- (13) Ribeiro, A. C. F.; Gomes, J. C. S.; Rita, M. B. B. J.; Lobo, V. M. M.; Esteso, M. A. Ternary Diffusion Coefficients of Nickel Chloride + Theophylline + Water at 298.15 K. *Food Chem.* **2011**, *128*, 957–960.
- (14) Vitagliano, V. Some phenomenological and thermodynamic aspects of diffusion in multicomponent systems. *Pure Appl. Chem.* **1991**, 63, 1441–1448.
- (15) Barthel, J.; Gores, H. J.; Lohr, C. M.; Seidl, J. J. Taylor dispersion measurements at low electrolyte concentrations. 1. Tetraalk-ylammonium perchlorate aqueous solutions. *J. Solution Chem.* **1996**, 25, 921–935
- (16) Deng, Z. P.; Leaist, D. G. Ternary mutual diffusion-coefficients of KCl-LaCl₃-water mixtures from Taylor dispersion profiles. *J. Solution Chem.* **1992**, 21, 15–22.
- (17) Leaist, D. G.; Curtis, N. Hartley-Crank equations for coupled diffusion in concentrated mixed electrolyte solutions. The $CaCl_2 + HCl + H_2O$ system. *J. Solution Chem.* **1999**, 28, 341–366.
- (18) Leaist, D. G.; Kanakos, M. A. Measured and predicted ternary diffusion coefficients for concentrated aqueous LiCl + KCl solutions over a wide range of compositions. *Phys. Chem. Chem. Phys.* **2000**, *2*, 1015–1021.
- (19) Leaist, D. G.; Al-Dhaher, F. F. Predicting the diffusion coefficients of concentrated mixed electrolyte solutions from binary solution data. NaCl + MgCl₂ + H₂O and NaCl + SrCl₂ + H₂O at 25 $^{\circ}$ C. *J. Chem. Eng. Data* **2000**, 45, 308–314.
- (20) Deng, Z.; Leaist, D. G. Ternary mutual diffusion coefficients of $MgCl_2 + MgSO_4 + H_2O$ and $Na_2SO_4 + MgSO_4 + H_2O$ from Taylor dispersion profiles. *Can. J. Chem.* **1991**, *69*, 1548–1553.
- (21) Ribeiro, A. C. F.; Lobo, V. M. M.; Leaist, D. G.; Natividade, J. J. S.; Verissimo, L. P.; Barros, M. C. F.; Cabral, A. M. T. D. P. V. Binary diffusion coefficients for aqueous solutions of lactic acid. *J. Solution Chem.* **2005**, *34*, 1009–1016.
- (22) Ribeiro, A. C. F.; Leaist, D. G.; Lobo, V. M. M.; Esteso, M. A.; Valente, A. J. M.; Santos, C. I. A.V.; Cabral, A. M. T. D. P. V.; Veiga, F. J. B. Binary mutual diffusion coefficients of aqueous solutions of β -cyclodextrin at temperatures from 298.15 to 312.15 K. *J. Chem. Eng. Data* **2006**, *51*, 1368–1371.
- (23) Leaist, D. G.; Hao, L. Diffusion in buffered protein solutions combined Nernst-Planck and multicomponent Fick equations. *J. Chem. Soc., Faraday Trans.* **1993**, *89*, 2775–2782.
- (24) Lobo, V. M. M. Handbook of Electrolyte Solutions; Elsevier: Amsterdam, 1990.
- (25) Dobos, D. Electrochemical Data. A Handbook for Electrochemists in Industry and Universities; Elsevier: New York, 1975; pp 87–88.