

AGRUPACIÓN - ALGORITMOS

Elizabeth León Guzmán

Research Group on Data Mining – MIDAS Universidad Nacional de Colombia, Bogotá D.C., Colombia

June 4, 2025

Agenda

Nearest Neighbor Clustering

2 DBScan

3 GMM

4 ECSAGO

Gravitational Clustering

Agenda

Nearest Neighbor Clustering

2 DBScar

3 CMM

4 ECSAGO

5 Gravitational Clusterin

Nearest Neighbor clustering

- Calcular la matriz de proximidad
- Seleccionar un punto como primer cluster, k_1
- Seleccionar otro punto j (de acuerdo a un orden) y revisar su distancia con el cluster inicial k_1 . Si la distancia es menor del umbral, el nuevo punto j es asignado al cluster k_1 . En caso contrario el nuevo punto j formará un nuevo cluster, k_2 .
- Seleccionar otro punto (de acuerdo al orden) y asignarlo al cluster más cercano, si la distancia es menor que el umbral. En caso del que la distancia sea mayor al umbral, el punto formará un nuevo cluster.
- Repetir el paso anterior hasta terminar los puntos.

Nearest Neighbor clustering

Matriz de proximidad (distancia Euclidean)

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	√36	√13	√50	√52	$\sqrt{65}$	$\sqrt{5}$
A2		0	√37	√18	$\sqrt{25}$	√17	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	√41
A4				0	√13	√17	√52	$\sqrt{2}$
A5					0	$\sqrt{2}$	√45	√25
A6						0	√29	√29
A7							0	√58
A8								0

Nearest Neighbor clustering

Ejemplo: umbral = 4

- $K_1 = A1, A8, A4,$ $K_2 = A2, A7,$ $K_3 = A3, A5, A6$
- ¡Orden de los datos! ¿Diferentes resultados?
- Clustering On line (streamming)

DBScan

- Algoritmo basado en densidad. Descubrir Clusters en grandes bases de datos espaciales con ruido (DBSCAN)
- Propuesto por Martin Ester, Hans-Peter Kriegel, Jörg Sander y Xiaowei Xu en 1996.Instituto de Ciencias de la Computación
 Universidad de Munich. Ester et al. (1996)
- Los clusters son como cúmulos de alta densidad de puntos.
 Por lo cual, si un punto pertenece a un clúster, debe estar cerca de un montón de otros puntos de dicho clúster. Kriegel et al. (2011)

DBScan

- Dos parámetros: un número ε positivo y un número natural minPoints.
 - ε distancia (radio de un punto seleccionado)
 - minPoints número de puntos mínimo en la distancia arepsilon
- Se elige un punto arbitrario en el conjunto de datos. Si hay una cantidad de puntos mayor o igual a minPoints a una distancia ε del punto arbitrario, a partir de ese momento se consideran todos los puntos como parte de un "cluster".

DBScan

- A continuación, se expande ese grupo mediante la comprobación de todos los nuevos puntos y ver si ellos también tienen más puntos minPoints a una distancia épsilon, creciendo el cluster de forma recursiva en caso afirmativo.
- A medida que se generan los clúster, quedan puntos sin añadir al clúster.
- Se elige un nuevo punto arbitrario y se repite el proceso. Es posible que el punto arbitrario escogido tenga menos de minPoints puntos en su círculo de radio ε , y tampoco sea parte de cualquier otra agrupación. Si ese es el caso, se considera un puntoderuido que no pertenecen a ningún grupo.

DBScan

- Densidad: Número de puntos en un radio específico (epsilon).
- Puntos "core": Puntos interiores de un cluster (cuando tienen, al menos, un número mínimo de puntos minPoints en su vecindario de radio ε ,).
- Puntos "border": Tienen menos de minPoints puntos en su vecindario de radio ε , estando en el vecindario de algún punto "core".
- Ruido: Cualquier punto que no forma parte de un cluster ("core") ni está en su frontera ("border").

Enlace ejemplo: http://educlust.dbvis.de/#

- Asume que los datos provienen de varias subpoblaciones (modeladas separadamente) y toda la población es una mezcla de esas subpoblaciones.
- Cada grupo o cluster corresponde a una subpoblación.
- Ejemplo: para agrupación de documentos, GMM encuentra grupos donde un documento puede pertenecer a más de un grupo, y cada documento tiene una representación probabilística a cada uno de los grupos encontrados.

• Cada subpoblacion proviene de una distribución **Gaussiana**, y forman un función que son la mezcla de Gaussianas. Cada Gaussiana tiene: media μ , covarianza Σ , y mezcla de probabilidades que indica el tamaño del cluster.

El modelo GMM es una generalización de K-means con un enfoque más probabilístico, se asume que las representaciones de los documentos son realizaciones de una variable aleatoria X con distribución $(X|\Theta)$, donde Θ son los parámetros del modelo. La distribución $P(X|\Theta)$ es una función compuesta de las distribuciones de cada cluster $P(X|C_j)$ siguiente forma:

$$P(X = \vec{x}_i | \Theta) = \sum_{j=1}^k \lambda_j P(X = \vec{x}_i | C_j)$$

Donde k es el número de clusters y λ_j son constantes de normalización de las distribuciones de cada uno de los clusters C_j .

Adicionalmente, para cada una de estas distribuciones se asume normalidad, por ello, cada cluster se representa por medio de una media $\vec{\mu}_j$ y una matríz de covarianza Σ_j :

$$P(X = \vec{x}_i | C_j) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}_j|}} \exp\left(-\frac{1}{2}(\vec{x}_i - \vec{\mu}_j)\mathbf{\Sigma}_j^{-1}(\vec{x}_i - \vec{\mu}_j)^T\right)$$

- Finalmente, la estimación de parámetros de un GMM se realiza por medio de algoritmos como expectation-maximization, inferencia variacional o estrategias basadas en Markov-Chain Monte Carlo.
- GMM es una generalización de K-means, el K-means puede verse como un caso específico de GMM donde las matrices de covarianza Σ_j son matrices identidad (una matriz de ceros con una diagonal de unos), y un caso donde cada punto pertenece únicamente a un único cluster $\vec{x}_i \in C_j \rightarrow P(X = \vec{x}_i | C_j) = 1$.

ECSAGO

Inspirado en la formación de "Nichos" en la naturaleza.

Nicho en la naturaleza

Cada especie pertenece a un niche en una comunidad. Un nicho representa "un role" de las especies que incluye tipo de comida, donde viven, donde se reproducen y su relación con otras especies.

https://socratic.org/questions/what-are-some-examples-of-an-ecological-niche

ECSAGO: "Genetic Niching". Leon et al. (2006)

Cada nicho es un grupo (cluster) el algoritmo intenta encontrar los nichos usando un algoritmo evolutivo y una técnica de "niching"

ECSAGO

- "Genetic Niching"
- Basado en:
 - Densidad
 - Conceptos de evolución natural
- Areas densas son clusters
- Clusters circulares → centro y radio
- Encuentra centros y radios de los clusters

ECSAGO

ECSAGO

Modelo

Fitness, pesos y escala (radio σ)

$$f_i = \frac{\sum_{j=1}^{N} w_{ij}}{\sigma_i^2}$$

$$w_{ij} = exp(\frac{d_{ij}^2}{2\sigma_i^2})$$

$$\sigma_i^2 = \frac{\sum\limits_{j=1}^N w_{ij} d_{ij}^2}{\sum\limits_{j=1}^N w_{ij}}$$

ECSAGO - Results

ECSAGO - Aplicación Agrupación de Documentos

"20 NewsGroup Data set"

ECSAGO

Ventajas

- No supervisado en número de clusters. Encuentra el número de clusters automáticamente.
- Robusto al ruido
- Estimación automática del tamaño del niche (cluster)

Limitaciones

- Número de parámetros
- Complejidad

eleonguz@unal.edu.co www.midas.unal.edu.co

References I

- Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In *Proceedings of the second international conference on knowledge discovery and data mining (kdd-96)* (p. 226-231).
- Kriegel, H., Kröger, P., Sander, J., & Zimek, A. (2011).
 Density-based clustering. WIREs Data Mining Knowledge Discovery, 231-240. doi: 10.1002/widm.30
- Leon, E., Nasraoui, O., & Gomez, J. (2006, 01). Ecsago: Evolutionary clustering with self adaptive genetic operators. In (p. 1768 1775). doi: 10.1109/CEC.2006.1688521