Chapitre 1

Éléments de logique et techniques de démonstrations

1.1 Éléments de logique

1.1.1 Définition

Une proposition mathématique P est un énoncé auquel on peut répondre par vrai ou faux.

- Lorsque P est une proposition vraie, on lui attribue la valeur de vérité 1 ou V.
- Lorsque P est une proposition fausse, on lui attribue la valeur de vérité 0 ou F.

1.1.2 Connecteurs logiques

À partir de propositions données, on peut former de nouvelles propositions à l'aide de symboles logiques appellés *connecteurs logiques*.

Soient P et Q deux propositions.

1.1.2.1 Négation

La négation de P est la proposition qui est vraie lorsque P est fausse; et fausse lorsque P est vraie. La négation de P est notée \overline{P} (nonP, $\neg P$).

La Table **??**, appelée *table de vérité*, fait apparaître les différentes valeurs de vérité possibles pour la négation de P.

P	P
1	0
0	1

TABLE 1.1 – Table de vérité de la négation

Ex	xemples : Donner la négation des propositions suivantes :	
	P: "2 est strictement plus petit que 3"	
	Q : "5 est égal à 7"	
	S: "3 est un nombre impair"	

1.1.2.2 Conjonction

La proposition P et Q, notée $P \wedge Q$, est vraie si P est vraie <u>et</u> Q est vraie.

P	Q	$P \wedge Q$
0	0	• • •
0	1	•••
1	0	•••
1	1	• • •

TABLE 1.2 – Table de vérité de la conjonction

1.1.2.3 Disjonction

La proposition P ou Q, notée $Q \lor P$, est fausse si P est fausse \underline{et} Q est fausse.

P	Q	$P \vee Q$
0	0	•••
0	1	
1	0	•••
1	1	•••

TABLE 1.3 – Table de vérité de la disjonction

1.1.2.4 Équivalence

La proposition P équivalente à Q, notée P ⇔ Q, est vraie si P et Q sont simultanément vraies ou simultanément fausses.

P	Q	P⇔Q	Q⇔P
0	0	•••	•••
0	1	•••	•••
1	0	•••	•••
1	1	•••	•••

TABLE 1.4 – Table de vérité de l'équivalence

1.1.2.5 Implication

La proposition P implique Q, notée $P \Rightarrow Q$, est fausse si P est vraie et Q est fausse.

P	Q	P	$P \Rightarrow Q$	$\overline{P} \vee Q$
0	0	•••	•••	• • •
0	1	•••	•••	•••
1	0	• • •	•••	• • •
1	1	• • •	•••	• • •

TABLE 1.5 – Table de vérité de l'implication

Remarques:

- 1. $P \Rightarrow Q$ ne suppose pas que la proposition P est vraie, mais :
 - Si la proposition P est vraie alors la proposition Q est vraie.
 - Si la proposition P est fausse, la proposition Q peut être vraie ou fausse.
- 2. La réciproque de la proposition $P \Rightarrow Q$ est la proposition $Q \Rightarrow P$.

Exemples: Étudier la valeur de vérité des propositions suivantes :

1.
$$(-5 > 0) \land ((-2)^2 = 4)$$

2.
$$(-5 > 0) \lor ((-2)^2 = 4)$$

3.
$$((-2)^2 = 2^2) \Leftrightarrow (4 = 4)$$

4.
$$(5 = 6) \Leftrightarrow (2 = 3)$$

5.
$$((-2)^2 = 2^2) \Leftrightarrow (-2 = 2)$$

6.
$$(2=3) \Rightarrow (5=5)$$
.....

1.1.2.6 Propriétés des connecteurs logiques

Soient P, Q et R trois propositions.

- 2. $(P \wedge P) \Leftrightarrow P$.
- 3. $(P \lor P) \Leftrightarrow P$.
- 4. Commutativité:
 - (a) $(P \land Q) \Leftrightarrow (Q \land P)$.

(b) $(P \lor Q) \Leftrightarrow (Q \lor P)$.

- 5. Associativité:
 - (a) $(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$.
- (b) $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$.

- 6. Distributivité:
 - (a) $P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$.
- (b) $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$.

- 7. Lois de De Morgan:
 - (a) $(\overline{P \vee Q}) \Leftrightarrow (\overline{P} \wedge \overline{Q})$.

- (b) $(\overline{P} \wedge \overline{Q}) \Leftrightarrow (\overline{P} \vee \overline{Q})$.
- 8. Transitiviré de l'implication : $(P \Rightarrow Q) \land (Q \Rightarrow R) \Leftrightarrow (P \Rightarrow R)$.
- 9. Réécriture de l'implication $(P \Rightarrow Q) \Leftrightarrow (\overline{P} \lor Q)$.
- 10. Négation de l'implication : $(\overline{P} \Rightarrow \overline{Q}) \Leftrightarrow (P \land \overline{Q})$.
- 11. Contraposée de l'implication : $(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P})$.

1.1.3 Notions d'ensembles

Un ensemble E est une collection d'objets satisfaisant un certain nombre de propriétés et chacun de ces objets est appelé éléments de cet ensemble. E peut contenir un nombre fini d'éléments ou un nombre infini d'éléments.

Exemples:

- $E = \{1, 0, e, f\}$ est un ensemble.
- $\mathbb{N} = \{0, 1, 2, \dots\}$ est l'ensemble des entiers naturels.
- $\mathbb{Z} = \{\cdots -2, -1, 0, 1, 2, \cdots\}$ est l'ensemble des entiers relatifs.
- $\mathbb{Q} = \{\frac{p}{q} / p \in \mathbb{Z} \text{ et } q \in \mathbb{Z}^*\}$ est l'ensemble des nombres rationnels.

1.1.3.1 Cardinal d'un ensemble fini

- 1. On appelle cardinal d'un ensemble E le nombre d'éléments de E et on note card(E) ou |E|.
- 2. E est dit ensemble vide s'il ne contient aucun élément (card(E) = 0) et on note $E = \emptyset$.
- 3. E est dit un ensemble singleton s'il contient exactement un élément (card(E) = 1).

Exemples: Donner le cardinal des ensembles E et F suivants :

- Si E = $\{a, b, c, d, e\}$ alors card(E) =
- Si $F = \{1, 2, 3, 4\}$ alors card $(F) = \dots$

1.1.3.2 Appartenance à un ensemble

Soit E un ensemble. Si x est un élément de E, on dit que x appartient à E et on note $x \in E$. Dans le cas contraire, si x n'appartient pas à E on note $x \notin E$.

Exemple: Si E = $\{0, 1, 2, a, b\}$ alors $0 \in E$ et $c \notin E$.

1.1.3.3 Écriture d'un ensemble

Il existe deux manières d'écrire un ensemble :

1. **Écriture en extension :** Lorsqu'on énumère les éléments d'un ensemble E, on dit qu'on a défini ou écrit l'ensemble E *en extension*. Dans ce cas, on écrit tous les éléments de l'ensemble E considéré entre accolade : {···}.

Exemples: Les ensembles suivant sont écrits en extension

- E = {0, a, b, *}.
- B = {0,1} est l'ensemble des Booléens.
- $D = \{0,1,2,3,4,5,6,7,8,9\}$ est l'ensemble des 10 chiffres servants à la numérotation décimale.
- 2. Écriture en compréhension : Lorqu' on caractérise les éléments d'un ensemble E par une ou plusieurs propriétés, on dit qu'on a écrit ou défini l'ensemble E par *compréhension*. Dans ce cas, on définit l'ensemble E comme étant constitué de tous les éléments *x* d'un autre ensemble A qui vérifient une propriété P(*x*), on écrit :

$$E = \{x \in A / P(x)\}.$$

Exemples: Définir les ensembles suivants en extension :

--
$$E = \{x \in \mathbb{Z} / x^2 + 2 \le 6\} = \dots$$

—
$$F = \{x \in \mathbb{R} / 1 \le x \le 3\} = \dots$$

—
$$G = \{x \in \mathbb{N} / x(2x+3) = 14\} = \dots$$

1.1.4 Quantificateurs

Soit P(x) une proposition dont les valeurs de vérité sont en fonction des éléments x appartenant à un ensemble D.

Exemple: Considérons la proposition P(x): x est un nombre premier.

La véracité de P(x) dépend de la valeur de x. En effet, elle est vraie quand x = 2 ou x = 3 et est fausse si x est un nombre pair plus grand que 2.

1.1.4.1 Quantificateur universel

Le quantificateur universel, noté \forall , permet d'exprimer qu'une proposition P(x) est vraie pour tous les éléments x de D, on écrit : $\forall x \in D$, P(x) et on lit : "Quelque soit x dans D, la proposition P(x) est vérifiée".

1.1.4.2 Quantificateur existentiel

- 1. Le quantificateur existentiel, noté \exists , permet d'exprimer qu'une proposition P(x) est vraie pour au moins un élément x de D, on écrit : $\exists x \in D$, P(x) et on lit : "Il existe au moins un x dans D tel que la proposition P(x) est vérifiée " ou "Il existe x dans D qui vérifie P(x)".
- 2. Pour exprimer qu'une proposition P(x) est vraie pour exactement un et un seul élément x de D, on écrit : $\exists ! x \in D, P(x)$ et on lit "Il existe un unique x dans D tel que la proposition P(x) est vérifiée".

Exemples : En utilisant les quantificateurs, réécrire les propositions suivantes :

- 1. "Le carré de tout nombre réel est positif".....
- 3. "Il existe un réel inférieur à 10".....
- 4. "L'équation $3x^2 1 = 0$ admet au moins une solution dans \mathbb{R} "
- 5. "L'équation 3x 1 = 0 admet une unique solution dans \mathbb{N} "

1.1.4.3 Négation des quatificateurs

- $-(\overline{\forall x \in D, P(x)}) \Leftrightarrow (\exists x \in D, \overline{P(x)}).$
- $-(\exists x \in D, P(x)) \Leftrightarrow (\forall x \in D, \overline{P(x)}).$
- $(\overline{\exists! x \in \mathcal{D}, \ \mathcal{P}(x)}) \Leftrightarrow \left[(\forall x \in \mathcal{D}, \ \overline{\mathcal{P}(x)}) \lor (\exists x_1 \in \mathcal{D}, \exists x_2 \in \mathcal{D}, \ \mathcal{P}(x_1) \land \mathcal{P}(x_2) \land \ x_1 \neq x_2) \right].$

Exemples: Écrire la négation des propositions suivantes :

- 1. $\forall x \in \mathbb{R}, x \ge 0$
- 2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^2 \neq y$
- 3. $\exists ! x \in \mathbb{R}, 3x 1 = 0$

Remarques: Soit P(x, y) une proposition dépendant de $x \in D_1$ et $y \in D_2$. Alors,

- 1. $[\forall x \in D_1, \forall y \in D_2, P(x, y)] \Leftrightarrow [\forall y \in D_2, \forall x \in D_1, P(x, y)].$
- 2. $[\exists x \in D_1, \exists y \in D_2, P(x, y)] \Leftrightarrow [\exists y \in D_2, \exists x \in D_1, P(x, y)].$
- 3. Par contre, $\forall x \in D_1, \exists y \in D_2, P(x, y)$ n'est pas équivalente à $\exists y \in D_2, \forall x \in D_1, P(x, y)$. En effet, la proposition $\forall x \in D_1, \exists y \in D_2, P(x, y)$ signifie que pour tout x dans D_1 , il existe une valeur y (qui dépend apriori de x) telle que P(x, y) est vérifée, alors que $\exists y \in D_2, \forall x \in D_1, P(x, y)$ signifie qu'il existe une valeur de y dans D_2 telle que P(x, y) est vérifée pour toutes les valeurs de x dans D_1 . En conclusion, l'ordre dans lequel on place les quantificateurs est important.

Exemples:

- La proposition " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y > x$ " signifie que quel que soit le réel x, il existe au moins un réel y tel que y est supérieur à x. La proposition est vraie car on peut toujours trouver un nombre supérieur à un nombre réel donné.
- La proposition " $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y > x$ " signifie qu'il existe au moins un réel x (indépendant de y) tel que pour tout réel y, y est supérieur à x. Cette proposition est fausse car on ne peut pas trouver un réel inférieur à tous les autres.

1.1.5 Inclusion et égalité entre deux ensembles

1.1.5.1 Inclusion

Soient E et F deux ensembles.

On dit que F est inclus au sens large dans E, si tout élément de F est un élément E.
On dit aussi que F est un sous ensemble ou une partie de E. On note F ⊆ E.

$$F \subseteq E \Leftrightarrow (\forall x \in F, x \in E)$$

— On dit que F est inclus au sens stricte dans E, si tout élément de F est un élément de E et il existe au moins un élément de E qui n'est pas dans F. On note $F \subset E$.

$$F \subset E \Leftrightarrow (\forall x \in F, x \in E) \land (\exists x \in E, x \notin F)$$

— On dit que F n'est pas inclus dans E s'il existe au moins un élément de F qui n'appartient pas à E . On note F $\not\subset$ E.

$$F \not\subset E \Leftrightarrow (\exists x \in F, x \notin E)$$

Exemples: Dans chacun des cas suivants, quelles sont les relations d'inclusion existantes entre ces ensembles?

1.
$$E = \{3, 4, 5, 6, 7, 8\}$$
 et $F = \{4, 5, 6, 7\}$

2.
$$E = \{4, 5, 6, 7\}$$
 et $F = \{5, 6, 7, 4\}$

4.
$$E = \{x \in \mathbb{R} / x > 0\}$$
 et $F = \{x \in \mathbb{R} / x \ge |x|\}$

1.1.5.2 Égalité

Soient E et F deux ensembles.

On dit que E est égal à F, et on note E = F, si tout élément de E est un élément de F
et tout élément de F est un élément de E.

$$E = F \Leftrightarrow (E \subseteq F) \land (F \subseteq E)$$

— On dit que E n'est pas égal à F, s'il existe au moins un élément de E qui n'appartient pas à F ou il existe au moins un élément de F qui n'appartient pas à E.

$$E \neq F \Leftrightarrow (E \not\subset F) \lor (F \not\subset E)$$

Exemples: Dans chacun des cas suivants, déterminer si les ensembles sont égaux :

- 1. Si $E = \{4, 5, 6, 7\}$ et $F = \{4, 6, 5, 7\}$,
- 2. Si $E = \{x \in \mathbb{R} / x^2 \le 4\}$ et F = [-2, 2],
- 3. Si E = $\{x \in \mathbb{Z} / x^2 \le 4\}$ et F = [-2,2],

1.1.5.3 Propriétés:

- 1. Tout ensemble E est inclus dans lui-même : $E \subseteq E$.
- 2. L'ensemble vide est inclus dans tout ensemble $E : \emptyset \subseteq E$.
- 3. Si E, F et G sont trois ensembles, alors : $((E \subseteq F) \text{ et } (F \subseteq G)) \Rightarrow (E \subseteq G)$.

1.1.6 Opérations sur les ensembles

1.1.6.1 Ensembles de parties d'un ensemble

Soit E un ensemble. L'ensemble de parties de E, noté $\mathscr{P}(E)$, est l'ensemble de tous les sous ensembles de E.

$$\mathscr{P}(E) = \{F/F \subseteq E\}$$

Si card(E) = n alors card($\mathscr{P}(E)$) = 2^n .

Exemple: Si $E = \{a, b, c\}$ alors

$$\mathscr{P}(E) = \dots$$

Remarques: Si *x* est un élément d'un ensemble E, alors :

- $-x \in E : x \text{ est un élément de E.}$
- $\{x\} \subset E : \{x\}$ est un sous ensemble de E.
- $\{x\} \in \mathcal{P}(E) : \{x\}$ est un élément de $\mathcal{P}(E)$.
- $x \in \{x\}$: x est un élément du singleton $\{x\}$.

1.1.6.2 Réunion et intersection de deux ensembles

Soient A et B deux parties de E.

— On appelle $r\acute{e}union$ des ensembles A et B l'ensemble, noté A \cup B, contenant tous les éléments de A et B.

$$A \cup B = \{x \in E / x \in A \lor x \in B\}.$$

— On appelle *intersection* des ensembles A et B l'ensemble, noté $A \cap B$, contenant tous les éléments qui sont à la fois dans A et dans B.

$$A \cap B = \{x \in E / x \in A \land x \in B\}.$$

Exemples: Dans chacun des cas suivants, déterminer l'intersection et la réunion des ensembles A et B.

1.
$$A = \{a, b, c, 3\}$$
 et $B = \{0, 1, 3, a, e\}$.

2. Soient A =
$$\{2x + 1 / x \in [-\frac{1}{2}, \frac{1}{2}]\}$$
 et B = $] - 1, 1[$.

Remarques: Soient A et B deux parties de E.

- 1. $x \in A \cup B \Leftrightarrow (x \in A \text{ et } x \in B) \text{ ou } (x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x \in B)$.
- 2. $x \notin A \cup B \Leftrightarrow (x \notin A \text{ et } x \notin B)$.
- 3. $x \in A \cap B \Leftrightarrow (x \in A \text{ et } x \in B)$.
- 4. $x \notin A \cap B \Leftrightarrow ((x \notin A \text{ et } x \notin B) \text{ ou } (x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x \in B).$
- 5. Si $A \cap B = \emptyset$ alors A et B sont dits disjoints.

Propriétés: Soient A, B et C trois parties de E.

- 1. $A \cup A = A$ et $A \cap A = A$.
- 2. $A \cup B = B \cup A$ et $A \cap B = B \cap A$.
- 3. $(A \cup B) \cup C = A \cup (B \cup C)$ et $(A \cap B) \cap C = A \cap (B \cap C)$.
- 4. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 5. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 6. $card(A \cup B) = card(A) + card(B) card(A \cap B)$.
- 7. $A \cup \emptyset = A \text{ et } A \cap \emptyset = \emptyset$.

1.1.6.3 Complémentaire d'un ensemble

Soit A une partie de E. On appelle *complémentaire de* A *par rapport* \tilde{A} E l'ensemble, noté C_E^A , contenant tous les éléments de E n'appartenant pas à A.

$$C_{E}^{A} = \{x \in E / x \notin A\}.$$

Exemples: Dans chacun des cas, déterminer le complémentaire de A par rapport E.

1.
$$E = \{a, b, c, d, e, f\}$$
 et $A = \{a, b, e\}$ alors $C_E^A = \dots$

2. Si
$$E=\mathbb{R}$$
 et $A=[0,2[\cup]2,6]$ alors ${\complement}_E^A=\dots$

Propriétés: Soient A et B deux parties de E.

1.
$$C_E^{C_E^A} = A$$
.

4.
$$A \subseteq B \Leftrightarrow C_F^A \subseteq C_F^B$$
.

2.
$$A \cup C_E^A = E$$
.

5.
$$C_E^{(A \cup B)} = C_E^A \cap C_E^B$$
.

3.
$$A \cap C_E^A = \emptyset$$
.

6.
$$C_E^{(A \cap B)} = C_E^A \cup C_E^B$$

1.1.6.4 Différence et différence symétrique entre deux ensembles

Soient A et B deux parties de E.

1. On appelle *différence* de A et B l'ensemble, noté A \ B, contenant tous les éléments de E appartenant A et n'appartenant pas à B.

$$A \setminus B = \{x \in E / x \in A \land x \notin B\} = A \cap \mathbb{C}_E^B.$$

2. On appelle *différence symétrique* de A et B l'ensemble, noté $A\Delta B$, contenant tous les éléments appartenant soit à A soit à B, mais pas aux deux ensembles A et B à la fois. Autrement dit, $A\Delta B$ est la réunion des deux différences $A \setminus B$ et $B \setminus A$.

$$A\Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

Exemples: Si A = $]-\infty,1]$ et B = $]-2,+\infty[$, alors

3.
$$A\Delta B = \dots$$

4.
$$B\Delta A = \dots$$

1.2 Techniques de démonstrations

1.2.1 Raisonnement direct d'une implication

Soient P et Q deux propositions logiques. Montrer que $P\Rightarrow Q$ est une proposition vraie, revient à supposer que P vraie et montrer directement par un argument juste que Q est vraie.

Exemple:	Montrer que $\forall x, y \in \mathbb{R}$, $(x-1)(y+1) = (x+1)(y-1) \Rightarrow x = y$.
	tion
1.2.2 Ra	isonnement par contraposée d'une implication
Soient F	et Q deux propositions logiques. Le raisonnement par contraposée se base
sur l'équiva	llence
	$(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P}).$
que sa cont	montrer que $P\Rightarrow Q$ est une proposition vraie, il faut et il suffit de montrer traposée $\overline{Q}\Rightarrow \overline{P}$ est une proposition vraie. Autrement dit, on suppose que \overline{Q} on montre directement avec un argument juste que \overline{P} est vraie.
Exemple:	Montrer que $\forall x, y \in \mathbb{R} \setminus \{1\}, \ x \neq y \Rightarrow \frac{1}{1-x} \neq \frac{1}{1-y}.$
Démonstra	tion
• • • • • • • •	
•••••	
•••••	

1.2.3 Raisonnement par l'absurde

_	Pour montrer qu'une proposition P est vraie, on peut raisonner par l'absurde. On
	suppose que sa negation $\overline{\mathbf{P}}$ est vraie, puis on montre que cette hypothèse conduit
	à une contradiction (une absurdité), cela signifie que la proposition \overline{P} est fausse
	et donc P est vraie.

— Pour montrer que $P \Rightarrow Q$ est vraie, on peut raisonner par l'absurde. On suppose que $\overline{P \Rightarrow Q}$ est vraie. Autrement dit, on suppose que P et \overline{Q} est vraie et on montre que cette hypothèse conduit à une contradiction (une absurdité), cela signifie que la proposition $P \wedge \overline{Q}$ est fausse et donc $P \Rightarrow Q$ est vraie..

quon	a proposition 1 // Q est rausse et done 1 // Q est viaie
Exemple:	Montrer que pour tout x , y dans $\mathbb{R} - \{\frac{3}{2}\}$, on a $4xy - 6x - 6y + 12 \neq 3$.
Démonstra	tion
•••••	
1.2.4 Ra	isonnement par un contre exemple
Pour mo	ontrer qu'une proposition de type $\forall x \in D, P(x)$ est fausse, il suffit de trouver
un contre e	xemple, c'est à dire trouver au moins un élément $x_0 \in D$ qui vérifie $\overline{P(x_0)}$.
Exemple:	Montrer que $\forall x \in \mathbb{R}, x \ge 0$ est fausse
Démonstra	tion. Contre exemple :
1.2.5 Ra	isonnement par disjonction des cas
Soient F	P et Q deux propositions. Pour montrer que $P \Rightarrow Q$ est vraie, on peut sépare
• -	e P de départ en différents cas possibles et on montre que l'implication est
vraie dans o	chacun des cas.
Exemple:	Montrer que si n est un entier alors $n(n+1)$ est entier un pair.
Démonstra	tion
•••••	

CHAPITRE 1. ÉLÉMENTS DE LOGIQUE ET TECHNIQUES DE DÉMONSTRATIONS
1.2.6 Raisonnement par récurrence
Soit $P(n)$ une propriété sur \mathbb{N} (ou I une partie de \mathbb{N}). Pour montrer que $P(n)$ est vraie
pour tout $n \in \mathbb{N}$ (ou à partir d'un certain rang n_0), on raisonne par récurrence.
Principe de réccurence : Soit $n_0 \in \mathbb{N}$.
Si $P(n_0)$ est vraie (initialisation) et pour tout entier naturel $n \ge n_0$, $P(n) \Rightarrow P(n+1)$ est
vraie (héridité) alors pour tout entier naturel $n \ge n_0$, $P(n)$ est vraie.
Pour démontrer une propriété par un raisonnement par récurrence, la preuve se
fait en trois étapes :
1. Initialisation : On vérifie la propriété pour le premier rang $n_0 \in \mathbb{N}$, c'est à dire, on vérifie que $P(n_0)$ est vraie.
2. Héridité : On suppose que $P(k)$ vraie pour un certain $k \ge n_0$ (hypothèse de ré-
currence), et on montre $P(k+1)$ à l'aide de cette hypothèse.
3. Conclusion : Le principe de récurrence permet de conclure que $P(n)$ est vraie
pour tout entier $n \ge n_0$.
pour tout entrer $n \ge n_0$.
Exemple: Montrer que : $\forall n \in \mathbb{N}^*$, $\sum_{p=1}^{p=n} p = \frac{n(n+1)}{2}$.
Démonstration

1P111	VL I	. E	LEN	VIL	N I v	ענ	EL	JUL	лζ	וטי	L	1 1	EC	1111	NΙζ	Įυ.	ĿS	וע	ىلد	LI	VIC	INC) 1 1	NA.	ПС	INC	<u> </u>
• • • • •		• • • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • • •
 .							• • •																				
 .																											
• • • • •	• • • •	• • • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • • •
• • • • •	• • • •	• • • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • • •
• • • • •	• • • •	• • •	• • • •	• • •	•••	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • • •
· · · · ·																											
 .																											
• • • • •		• • • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • • •
• • • • • ·								• • •										• • •				• • •					
• • • • •	• • • •	• • • •	• • •	• • • •	•••	• • •	• • •	• • •	• • •	• • •			• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • • •
• • • • •					• • •	• • •	• • •	• • •					• • •	• • •			• • •		• • •		• • •						• • • •
 .																											
• • • • •	• • • •	• • • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	•••	• • •	•••	• • •	• • •	• • •	•••	• •	• • •	• • •	• • •	• • • •
• • • • •			• • •		• • •	• • •	• • •	• • •										• • •				• • •	• •				• • • •
	• • • •	• • • •	• • • •	• • •	•••	• • •	• • •	• • •		• • •	• • •	•															