Quiz # 2 In-class, open books and notes

Problem 1 (40 Points)

An environmental variable X has value X_i in day i. Due to budgetary constraints, X is measured only every third day. If X is measured in day i, then the observed value of X_i is used to estimate the three-day average $\overline{X} = \frac{1}{3}(X_{i-1} + X_i + X_{i+1})$. Given that the variables X_i have multivariate normal distribution with common mean value m and common variance σ^2 and that the correlation coefficient between X_i and X_j is $\rho_{ij} = 0.9^{|i-j|}$,

- (a) Find the distribution of $(\overline{X} \mid X_i)$. [Hint: start by finding the joint distribution of \overline{X} and X_i].
- (b) Based on the answer to (a), suggest a better estimator of \overline{X} from X_i .

Problem 2 (30 Points)

In a river reach, flooding occurs if the water level H exceeds 8 meters. Following a heavy rainstorm, the water level is $H = H_o + 0.5 I D^{0.8}$, where H_o is the water level before the storm, I is storm depth in meters/hour (integrated over the river catchment) and D is the storm duration in hours. Suppose that H_o is known and equal to 3 meters and that ln (I) and ln (D) are independent normal variables with distributions

$$ln (I) \sim N(0, 1)$$

 $ln (D) \sim N(1, 1)$

where N(m, σ^2) is the normal distribution with mean value m and variance σ^2

- (a) Find the distribution of $\ln (ID^{0.8})$.
- (b) State the condition for flooding in terms of ln (I) and ln (D), and evaluate the second moment reliability index β in the [ln (I), ln (D)] plane. For this problem, is $\Phi(-\beta)$ the exact probability of flooding?

Problem 3 (30 Points)

Using a computer, one can simulate random points with uniform distribution inside the unit square $\{0 \le X_1 \le 1, 0 \le X_2 \le 1\}$.

Let Y be an indicator variable as follows:

Y = 1 if the point is inside the inscribed circle (see the figure above) Y = 0 otherwise

(a) Show that $E[Y] = \frac{\pi}{4}$

One may estimate E[Y] (hence $\frac{\pi}{4}$) as the sample average:

$$\overline{Y} = \frac{1}{n} \sum_{i} Y_{i}$$

where $\{Y_1, \ldots, Y_n\}$ is a random sample from the distribution of Y obtained through repeated computer simulations.

- (b) Find the mean value and variance of \overline{Y}
- (c) What sample size n is needed to estimate $\frac{\pi}{4}$ with a standard deviation of the estimation error equal to 0.001?