CMSC 180 Introduction to Parallel Computing

OUTLINE

- What is the effect of memory cache on the performance of computations?
 - Example specifications of processor and memory
 - Example computation: Dot product of two vectors
 - Compare:
 theoretical processor rating vs. actual processor rating
 - Practical stuff

- 1 Processor:
 - 1GHz clock speed (1 clock tick per 1 ns)
 - Can execute 4 instructions per 1 cycle (1 ns)

WHICH MEANS
IT HAS
FOUR PIPELINES.

1GHz Pipeline 2
Processor Pipeline 3
Pipeline 4

- 1 Processor:
 - 1GHz clock speed (1 clock tick per 1 ns)
 - Can execute 4 instructions per 1 cycle (1 ns)
- 2 DRAM: 100ns latency

- 1 Processor:
 - 1GHz clock speed (1 clock tick per 1 ns)
 - Can execute 4 instructions per 1 cycle (1 ns)
- 2 DRAM: 100ns latency
- 3 Cache: 2ns latency, 64 double words

- 1 Processor:
 - 1GHz clock speed (1 clock tick per 1 ns)
 - Can execute 4 instructions per 1 cycle (1 ns)
- 2 DRAM: 100ns latency
- 3 Cache: 2ns latency, 64 double words
- 4 Datapath: 64 double words

EXAMPLE APPLICATION

Dot-product of two vectors: A and B

EXAMPLE APPLICATION

Dot-product of two vectors: A and B

- Theoretical processor rating:
 - Four billion multiply-add operations in a second
 - Four billion floating-point operations per second
 - >4GFLOPS

THAT'S AN AWESOME
4 GIGAFLOPS
RATING FOR A
1GHz PROCESSOR
SPEED.

Actual processor rating:

DRAM

THE DRAM CAN

Actual processor rating:

DRAM

SINCE THE

NOTE THAT IT

Actual processor rating:

Vector pairs	<u>Cache</u>	<u>Delivery</u>	<u>Compute</u>	EVERY 110ns.
1-4	Miss	100ns	1ns	
5-8		2ns	1ns	110ns
9-12		2ns	1ns	
13-16		2ns	1ns	
17-20	Miss	100ns	1ns	
21-24		2ns	1ns	110ns
25-28		2ns	1ns	
29-32		2ns	1ns	

SIXTEEN FLOATING POINT OPERATIONS

- Actual processor rating:
 - So, we can finish 16 pairs of vector elements every about 110ns.
 - OR, 16 floating point operations every 110ns.
 - ▷ OR, one floating point operation every 6.875ns.
 - >145 million floating point operations in a sec.
 - >145 MFLOPS

Comparison:

- Theoretical/Peak Rating: 4GFLOPS
- Actual Rating: 145MFLOPS
- Only 36.25% of what we expect
- Makes the 4 pipelines useful

PRACTICAL STUFF

Double the cache but not the datapath bandwidth

PRACTICAL STUFF

- Double the cache but not the datapath bandwidth
- Double the datapath bandwidth but not the cache

NEXT DISCUSSION...

Hiding Memory Latency