Sistemas de información y base de datos

CLASE 2

UNTREF 2016

Emilio Platzer emilioplatzer@gmail.com

álgebra de conjuntos

conjuntos

álgebra de conjuntos

operaciones con conjuntos

álgebra de conjuntos

relaciones

álgebra de conjuntos

Producto Cartesiano

BD	D el modelo relacional			
Relaciones		tablas o relaciones entre conjuntos de datos homogéneos		

columnas o cada uno de los conjuntos sobre los que se **Atributos**

basa la relación

Tuplas filas o cada uno de los elementos de una relación

Dominios tipos de las columnas o universos de los conjuntos

contenido de la relación en algún momento del tiempo Instancia

restricciones sobre la relación cuando no se concibe que Claves determinados conjuntos de atributos no pueden tener valores repetidos en ninguna instancia

Sistemas de Información y Base de I

año	nombre	duración	género
1968	El planeta de los simios	112	CF
1984	Terminator	108	CF
1985	Volver al Futuro	116	CF
1989	Volver al Futuro 2	108	CF
1990	Volver al Futuro 3	116	CF
1991	Terminator 2: El juicio final	137	CF
1993	El día de la marmota	119	Comedia F
1995	12 Monos	129	CF
2001	El planeta de los simios	119	CF
2003	Terminator 3: la rebelión de las máquinas	109	CF

la tarea de definir la Clave primaria

- Clave es un concepto matemático: un conjunto de atributos C₁,
 C₂, C_n es clave si todos los demás atributos dependen funcionalmente de ellos. C₁, C₂, C_n → A_i
- La identificación de las claves es conceptual, no solo tiene que cumplirse la dependencia funcional en los datos actuales, tiene que ser inconcebible que en algún momento la dependencia funcional no se cumpla
- Llevado a tablas reales en la base de datos:
 - Hay que definir una clave como clave primaria (PK)
 - No es obligatorio (pero sí conveniente) definir la PK
 - A veces se definen PK autonuméricas (ID) aunque no sea necesario

BD c/SQL

el contenido almacenado

Datos	los datos propiamente dichos		
Metadatos	información sobre la estructura de la BD		
bitácora	los cambios en la BD		
estadísticas	estadística sobre información almacenada		
índices	información duplicada para acelerar los resultados de las consultas		

BD c/SQL

el sistema transaccional

ACID: Atómico - Consistente - Aislado - Durable

```
BEGIN TRANSACTION;
INSERT INTO plan
  SELECT mes, detalle, monto*w
    FROM plan, modo detallar
    WHERE momento IS
NULL;
DELETE FROM plan
 WHERE momento IS NULL;
COMMIT;
select * from plan;
```

```
INSERT INTO presupuesto
   SELECT 'plan', sum(monto)
   FROM plan;
```

El tiempo se bifurca

Sistemas de Información y Base de Datos

EVEN WHEN PARTIES TRAVEL BACK IN TIME... THE FUTURE THEY LEFT CANNOT BE CHANGED. **ALL EVENTS REMAIN AS** FIXED POINTS IN TIME. THE **ACTIONS OF THE TRAVELER** IN THE PAST HAVE ALREADY BECOME PART OF HISTORY. THIS IS KNOWN AS THE NOVIKOV SELF-CONSISTENCY

> PRINCIPLE FOR EXAMPLE:

SAY YOU TRAVEL BACK IN TIME IN ORDER TO KILL ADOLF HITLER AS A BABY, IN ORDER TO PREVENT WWII.

ORPHANED BABY, SO THAT THE FAMILY WILL NOT NOTICE YOU TRAVEL BACK TO THE FUTURE, AND THE REPLACED ADOLF HITLER HIMSELF.

AS SEEN IN: HARRY POTTER 3 12 MONKEYS

IN A DYNAMIC

TIMELINE

ALTERED EVENTS IN THE PAST HAVE

DEFINITE IMPACTS ON THE PRESENT. FOR EXAMPLE: IF YOU TRAVEL BACK

IN TIME AND KILL YOUR GRANDFATHER...

YOU ALSO PREVENT YOUR OWN BIRTH, AND YOUR **EVENTUAL TRIP BACK IN** TIME. IN TURN, YOUR **GRANDFATHER IS NEVER**

KILLED, AND YOU ARE BORN AGAIN, ONLY TO GO BACK IN TIME AND KILL YOUR GRANDFATHER ANYWAY.

THIS LOOP CONTINUES INFINITELY, AND CREATES A

AS SEEN IN:

THE CONCEPT OF A **MULTIVERSE SUPPORTS ALTERNATE**

TIMELINES

TIMELINE FROM THE FIRST. BECAUSE OF THIS, THE TRAVELER CAN DO AŃYTHING WITH IMPUNITY, AND ONLY THE NEW TIMELINE WILL BE

AFFECTED. **FOR EXAMPLE:**

IF YOU TRAVEL BACK IN TIME AND KILL ALL YOUR GRANDPARENTS.

NOTHING HAPPENS. THERE IS NO PARADOX A NEW TIMELINE IN WHICH

YOU WILL NOT EXIST, BUT THE ORIGINAL TIMELINE IS UNAFFECTED. HOWEVER YOU CANNOT RETURN TO

YOUR ORIGINAL TIMELINE AS SEEN IN:

THE TERMINATOR 2 AND 3 MISFITS Star Trek (2009) **BACK TO THE FUTURE**

el modelo de entidad relación

Sistemas de Información y Base de Datos - UNTREF - 2016 **SQL SELECT c/juntas** WITH personas AS (SELECT CASE v2_2 WHEN 1 THEN 'casa' WHEN 2 THEN 'dept' La condicón **ELSE** 'otros' END AS tipo viv, i.fexp La junta FROM eah2015 usuarios hog h INNER JOIN eah2015 usuarios ind i ON h.id=i.id **SELECT** tipo viv, **SUM**(fexp)

SUM(fexp)*100.0/(SELECT SUM(fexp) FROM personas), FROM personas **GROUP BY** tipo viv;