北京理工大学 2014-2015 学年第二学期《微积分 A》 期中试题解答及评分标准

一、填空题(每小题 4 分, 共 28 分)

1.
$$-18$$
; $\arccos \frac{\sqrt{21}}{14}$; 2. $\frac{\sqrt{6}}{2}$;

3.
$$-\frac{1}{3}(dx+2dy)$$
; 4. 0, $-\frac{1}{2}$;

5.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{\sqrt{\sin 2\theta}}{\sqrt{2\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho;$$

6.
$$\frac{1}{4}$$
; 7. 6π

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y} = -2e^{2x} \sin y f_2' + 6e^{2x} y^2 \cos y f_{21}'' - e^{4x} \sin 2y f_{22}'' \dots 8$$

三、 过点M且平行于 π 的平面 π_1 的方程为: 3x - 4y + z - 1 = 0.

L的参数方程为:
$$\begin{cases} x = -1 + t \\ y = 3 + t \end{cases}$$
,
$$z = 2t$$

将 L 的参数方程代入 π_1 的方程得: t=16,

得L与 π_1 的交点坐标为:(15,19,32)4 分

所求直线的方向向量可取为: $\overline{MA} = \{16,19,28\}$,

四、
$$\frac{\partial f}{\partial x} = 3x^2 - 6x = 0$$

$$\frac{\partial^2 f}{\partial x^2} = 6x - 6, \quad \frac{\partial^2 f}{\partial x \partial y} = 0, \quad \frac{\partial^2 f}{\partial y^2} = 6y - 6. \quad \dots \dots 4$$

在点(0,0)

$$A = -6$$
, $B = 0$, $C = -6$, $\Delta = B^2 - AC = -36 < 0$,

又 A = -6 < 0 , 所以点 (0,0) 是极大值点;

在点(0,2)

$$A = -6$$
, $B = 0$, $C = 6$, $\Delta = B^2 - AC = 36 > 0$,

所以点(0,2)不是极值点;

在点(2,0)

$$A = 6$$
, $B = 0$, $C = -6$, $\Delta = B^2 - AC = 36 > 0$,

所以点(2,0)不是极值点;

在点(2,2)

$$A = 6$$
, $B = 0$, $C = 6$, $\Delta = B^2 - AC = -36 < 0$,

$$=\frac{8}{9}a^2$$
.10 分

六、 (1) 由题意知, 切点坐标为: (1,1,0)

切线L的方向向量为 $\vec{s} = \{2y,1,3\}|_{y=1} = \{2,1,3\}$,

(2) 设平面π与曲面 $x^2 + y^2 = 4z$ 的切点坐标为 $(x_0, y_0, \frac{x_0^2 + y_0^2}{4})$,

则平面π的法向量为 $\vec{n} = \{\frac{x_0}{2}, \frac{y_0}{2}, -1\},$

平面π的方程为: $x_0x + y_0y - 2z = \frac{x_0^2 + y_0^2}{2}$

切线L的参数方程为: $\begin{cases} x = 1 + 2t \\ y = 1 + t \end{cases}$, z = 3t

代入平面π的方程,得 $(2x_0 + y_0 - 6)t + x_0 + y_0 - \frac{x_0^2 + y_0^2}{2} = 0$

得
$$\begin{cases} 2x_0 + y_0 - 6 = 0 \\ x_0 + y_0 - \frac{x_0^2 + y_0^2}{2} = 0 \end{cases}$$

解得: $x_0 = 2.4, y_0 = 1.2,$ 或 $x_0 = 2, y_0 = 2$

故平面 π 的方程为: 6x + 3y - 5z = 9

七、
$$I = \iiint_{\Omega} z^2 dx dy dz$$

$$= \frac{4\pi R^5}{5} \int_0^{\frac{\pi}{4}} \cos^2 \varphi \sin \varphi d\varphi$$

$$= \frac{4\pi R^5}{15} (1 - \frac{\sqrt{2}}{4}).$$

$$\iint_{\mathbb{R}} x\mu dx dy \qquad \iint_{\mathbb{R}} y\mu dx dy$$

$$\iint_{D} x \mu dx dy = \iint_{D} x^{3} y dx dy = \int_{0}^{1} x^{3} dx \int_{x^{2}}^{x} y dy = \frac{1}{48}, \quad \dots 6 \text{ fb}$$

$$\bar{x} = \frac{35}{48}, \quad \bar{y} = \frac{35}{54}, \quad (\bar{x}, \bar{y}) = (\frac{35}{48}, \frac{35}{54}).$$
10 \(\frac{2}{35}\)

九、设P(x,y)为曲线C上任意一点,则f在P点的最大方向导数为:

所以可设目标函数为: $(1+x)^2 + (1+y)^2$

约束条件为: $x^2 + y^2 + xy = 3$

构造拉氏函数: $F(x, y) = (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3)$

解得驻点为:A(2,-1), B(-1,-1), C(-1,2), D(1,1)

$$\mathbf{Z} \frac{\partial f}{\partial \vec{l}}|_{A} = \sqrt{(1+x)^{2} + (1+y)^{2}}|_{A} = 3$$

$$\frac{\partial f}{\partial \vec{l}}|_{B} = \sqrt{(1+x)^{2} + (1+y)^{2}}|_{B} = 0$$

$$\frac{\partial f}{\partial \vec{l}}|_{C} = \sqrt{(1+x)^{2} + (1+y)^{2}}|_{C} = 3$$

$$\frac{\partial f}{\partial \vec{l}}|_{D} = \sqrt{(1+x)^{2} + (1+y)^{2}}|_{D} = 2\sqrt{2}$$

比较知,函数 f(x,y) 在点 A(2,-1), C(-1,2) 处取得最大方向导数,且方向导数的最大值为 3.