Test di Calcolo Numerico

Ingegneria Informatica 30/06/2010

C	OGNOME NOME					
Μ	ATRICOLA					
RISPOSTE						
1)						
2)						
3)						
4)						
5)						

N.B. Le risposte devono essere giustificate ed i dati dello studente devono essere scritti a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 30/06/2010

1) Determinare l'espressione dell'errore relativo commesso nel calcolo della fun-

$$f(x,y) = \frac{x-y}{x+y}$$

evidenziando l'errore relativo algoritmico e l'errore relativo trasmesso dai dati.

2) L'equazione

zione

$$x^3 - 6x^2 + 5x + 6 = 0$$

ha soluzioni $\alpha_1 = 2$, $\alpha_2 = 2 + \sqrt{7}$, e $\alpha_3 = 2 - \sqrt{7}$. Se si utilizza il metodo di Newton per approssimare tali valori, qual è l'ordine di convergenza di tale processo iterativo?

3) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{ccc} 2 & 3 & 1 \\ 1 & 3 & 1 \\ 0 & 2 & 1 \end{array}\right) .$$

4) Determinare il grado del polinomio che interpola la funzione f(x) di cui sono noti i seguenti valori:

5) Si vuole approssimare $\int_0^1 x \sin(x) dx$ utilizzando la formula di Newton-Cotes generalizzata dei Trapezi.

In quanti sottointervalli si deve dividere l'intervallo di integrazione per ottenere una approssimazione che in valore assoluto differisca dal valore esatto meno di 10^{-3} ?

SOLUZIONE

1) Si segue, per esempio, l'algoritmo di calcolo

$$r_1 = x - y$$
, $r_2 = x + y$, $r_3 = \frac{r_1}{r_2}$.

Indicando con ϵ_x e ϵ_y gli errori relativi con cui si introducono i dati w e y e ponendo ϵ_i , i = 1, 2, 3, gli errori relativi algoritmici delle tre operazioni, si ha

$$\epsilon_f = \underbrace{\epsilon_1 - \epsilon_2 + \epsilon_3}_{\epsilon_a} + \underbrace{\frac{2xy}{x^2 - y^2} (\epsilon_x - \epsilon_y)}_{\epsilon_d}.$$

- 2) Ponendo $f(x) = x^3 6x^2 + 5x + 6$ si ha f'' = 6x 12. Segue che la convergenza del metodo di Newton è di ordine 2 per le radici α_2 e α_3 mentre risulta di ordine 3 (almeno) per la radice α_1 poiché per tale valore si annulla la derivata seconda della funzione f(x).
- 3) La fattorizzazione si può ottenere, per esempio, con il metodo di Gauss ed è

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 4/3 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 3/2 & 1/2 \\ 0 & 0 & 1/3 \end{pmatrix} .$$

4) Dal quadro delle differenze divise

x	f(x)	DD1	DD2	DD3
-2	-5			
-1	1	6		
0	1	3	-3	
1	1	2	-2	1
2	7	3	-1	1
3	25	6	0	1
4	61	11	1	1

si deduce che il polinomio di interpolazione ha grado 3 (tre).

5) Posto $f(x) = x \sin(x)$, risulta $f''(x) = 2\cos(x) - x \sin(x)$. Poiché $\sup_{x \in [0,1]} |f''(x)| = M_2 = 2$, per trovare il numero k di sottointervalli in cui dividere l'intervallo di integrazione basta risolvere la disequazione $\frac{1}{6k^2} \leq \frac{10^{-3}}{2}$ (si è tenuto conto degli errori nel calcolo della formula). Si ricava

$$k \ge 19$$
.