Homework 3

Homework 3 Blake Tindol & Sydney Haase

Q1 a) What is the predicted value and 95% confidence interval for the mean muscle mass for women of age 60?

```
fit <- lm(mass ~ age, data = muscle)
new.data = data.frame(age = 60)
newpred <- predict(fit, newdata = new.data,interval = 'predict',level = 0.95)
newpred

## fit lwr upr
## 1 84.94683 68.45067 101.443

# 95% of predicted values fall between 68.45 and 101.44
# 84.95 is the mean predicted muscle mass for womens age of 60 95% of time is going to be between 68.45 and 101.443</pre>
```

```
Q1 b) plot the residuals yi=y^i against xi on graph
plot(muscle$age, fit$residuals,main = "Residuals",ylim=c(-25, 25))
```

Residuals

Q1 c) plot the values yi=y^i against xi on graph

```
muscle$fitvalues <- predict(fit) - mean(muscle$mass)
plot(muscle$age, muscle$fitvalues,ylim=c(-25, 25))</pre>
```


Q1 d) From two graphs in part b and c does sse or ssr appear larger component of SSTO? what does this imply of magnitude of R2?

```
# SSE is smaller than SSR that implys that the r squared is larger
# When see is small, SSR large and Rsquare is large
# When SSE large, SSR small R square is small
```

Q1 e) Provide the anova table.

Q1 f) What portion of the total variance in muscle mass remains unexplained when age is added into the model? is this portion relatively small or large?

```
fit.reduced = lm(mass ~age,data=muscle)
summary(fit.reduced)$r.squared
```

```
## [1] 0.7500668

# 75% of the total variance is explained in the model
# 25% of the model reamins unexplained
```

Q1 g) Conduct a hypothesis test using an F test with a significance level of .05 clearly state the alternatives, test the statistics and conclusion.

Q1 h) Obtain r and R2.

```
cor(muscle$mass,muscle$age) # R again
## [1] -0.866064
cor(muscle$mass,muscle$age)^2 # R squared
## [1] 0.7500668
# slope is negative so r is negative
```

```
Q2 a) plot a scatter plot of the data. Is a simple linear regression appropirate?

plot(production$x,production$y,ylab = "y",xlab = "x",main = "production")

abline(lm(production$y~ production$x, data = production), col = "blue")
```

production

Yes there appears to be no curvilinear trends between x and y

Q2 b) Obtain the estimated linear regression function for the data

```
fit2 <- lm(y \sim x, data= production)
summary(fit2)
##
## Call:
## lm(formula = y \sim x, data = production)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -6.3535 -1.3154 0.0036 1.2405 4.2469
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.86349
                            0.39863
                                      17.22
                                              <2e-16 ***
                                              <2e-16 ***
## x
                0.53327
                            0.03028
                                      17.61
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.118 on 109 degrees of freedom
## Multiple R-squared: 0.74, Adjusted R-squared: 0.7376
## F-statistic: 310.2 on 1 and 109 DF, p-value: < 2.2e-16
\# y<sup>^</sup> = 6.86349 + 0.53 xi (fitted regression line no error)
```

Q2 c) Do you consider any transformation on x or y? Explain

```
production$xlog <- log(production$x)
production$sqrtx <- sqrt(production$x)

plot(production$x,production$y,main = "no transformation")</pre>
```

no transformation

plot(production\$xlog,production\$y,main = "Log transformation")

Log transformation

plot(production\$sqrtx,production\$y,main = "sqrt transformation")

sqrt transformation

Yes because when you transform the data it becomes more linear

Q2 d) use the transformation sqrt(x) and obtiain the estimated linear regression transformation

```
production$sqrtx <- sqrt(production$x)</pre>
fit3 <- lm(y ~ sqrtx, data= production)</pre>
summary(fit3)
##
## Call:
## lm(formula = y ~ sqrtx, data = production)
##
## Residuals:
               10 Median
##
      Min
                               3Q
                                      Max
## -5.0008 -1.2161 0.0383 1.3367 4.1795
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                1.2547 0.6389
                                    1.964
                                            0.0521 .
                                            <2e-16 ***
## sartx
                3.6235
                           0.1895 19.124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 109 degrees of freedom
## Multiple R-squared: 0.7704, Adjusted R-squared: 0.7683
## F-statistic: 365.7 on 1 and 109 DF, p-value: < 2.2e-16
# the estimated transformation equation is y = 1.25 + 3.623xi
```

Q2 e) Plot a scatter plot of the transformed data then add the estimated regression line on a graph.

```
production$sqrtx <- sqrt(production$x)
fit3 <- lm(y ~ sqrtx, data= production)
plot(production$sqrtx,production$y,main = "sqrtx") # more linear
lines(production$sqrtx,fit3$fitted.values)</pre>
```


Q2 f) plot residuals against fitted values. What does plot show plot(fit3, which = c(1))

Q3 What is the reduced model? What are the degree of freedom of the reduced model?

The reduced model is: E(yi) = B0 + 5Xi

The degrees of freedom is n-1 because only one parameter is being estimated (the y-intercept)