Package 'inDAGO'

July 5, 2025

Title A GUI for Dual and Bulk RNA-Sequencing Analysis

Version 1.0.0

Description A 'shiny' app that supports both dual and bulk RNA-seq, with the dual RNA-seq functionality offering the flexibility to perform either a sequential approach (where reads are mapped separately to each genome) or a combined approach (where reads are aligned to a single merged genome). The user-friendly interface automates the analysis process, providing step-by-step guidance, making it easy for users to navigate between different analysis steps, and download intermediate results and publication-ready plots.

License GPL (>= 3)

URL https://github.com/inDAGOverse/inDAGO

BugReports https://github.com/inDAGOverse/inDAGO/issues

Encoding UTF-8 **RoxygenNote** 7.3.2

Imports bigtabulate, BiocGenerics, Biostrings, bsicons, bslib, callr, checkmate, data.table, dplyr, DT, edgeR, fs, ggplot2, ggrepel, grDevices, heatmaply, Hmisc, htmltools, HTSFilter, limma, magrittr, matrixStats, memuse, methods, paletteer, parallel, pheatmap, plotly, R.devices, readr, reshape2, Rfastp, rintrojs, Rsamtools, Rsubread, rtracklayer, S4Vectors, seqinr, shiny, shinycssloaders, shinyFiles, shinyjs, shinyWidgets, ShortRead, spsComps, stats, tibble, tidyr, tools, upsetjs, UpSetR, utils, XVector

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Carmine Fruggiero [aut, cre],

Gaetano Aufiero [aut]

Maintainer Carmine Fruggiero < fruggiero carmine 30 gmail.com>

Repository CRAN

Date/Publication 2025-07-05 15:00:02 UTC

2 Contents

Contents

arplotExp	3
BaseAverageQualityPlot	4
BaseAverageQualityPlotly	4
BaseCompositionAreaChartPlot	5
BaseCompositionLinePlot	5
BaseQualityBoxplotPlot	5
oxplotExp	6
BulkAlignment	7
heckMetadata	8
CombinedAlignment	9
CorrPlotHeatmap	10
CorrPlotHeatmaply	11
ounting_Reads	12
DEGsServerLogic	13
DEGsUserInterface	13
EDAServerLogic	13
EDAUserInterface	14
EdgerDEG	14
Filtering	16
FilteringServerLogic	17
Filtering User Interface	18
GCcontentDistributionPlot	18
GCcontentDistributionPlotly	18
etDegMerged	19
GetEdgerY	19
JeatmapExp	20
HeatmapExpPlotly	22
nDAGO	
ndexingBulk	
ndexingBulkServerLogic	
ndexingBulkUserInterface	
ndexingComb	
ndexingCombinedServerLogic	
ndexingCombinedUserInterface	
ndexingSequentialParallel	
ndexingSequentialProgressive	
ndexingSequentialServerLogic	
ndexingSequentialUserInterface	28
nappingBulkServerLogic	29
nappingBulkUserInterface	29
nappingCombinedServerLogic	29
nappingCombinedUserInterface	30
nappingSequentialServerLogic	30
nappingSequentialUserInterface	30
ndsinfo	31
ndsPlot	31

barplotExp	
varpiouzap	

	mdsPlottly	32
	pcainfo	33
	pcaPlot	34
	pcaPlottly	35
	QualityCheckAnalysis	
	qualityControlServerLogic	36
	qualityControlUserInterface	
	Saturation	
	SequenceLengthDistributionPlot	
	SequenceLengthDistributionPlotly	
	Sequential Alignment	
	Summarization	
	SummarizationServerLogic	
	SummarizationUserInterface	
	UpsetjsPlot	
	UpSetPlot	
	volcanoPlot	
	volcanoPlottly	
	WorkflowServerLogic	
	WorkflowUserInterface	
Index		49
	1.1.5	
barp	lotExp barplotExp	

Description

Create a barplot of library sizes per sample, optionally using effective library sizes.

Usage

barplotExp(x, palette, main, selectOrder, effecLibSize)

Arguments

x	A DGEList object from "edgeR".
palette	Character. Name of a discrete color palette from the "paletteer" package.
main	Character. Title for the barplot.
selectOrder	Character. Either "Groups" (order samples by group) or "Samples" (order by sample name).
effecLibSize	Logical. If TRUE, use effective library size (norm factors × raw size); otherwise use raw size.

Details

This function extracts library size information from an "edgeR" "DGEList", computes effective library sizes if requested, orders samples by group or name, and plots library sizes (in millions) colored by group.

- 1. Extracts or computes (effecLibSize = TRUE) the library size for each sample.
- 2. Orders samples by group or sample name per selectOrder.
- 3. Plots bar heights as library size $(\times 10^{\circ}6)$ with white fill and colored borders.

Value

A "ggplot" object showing per-sample barplots of library size in millions.

 ${\tt BaseAverageQualityPlot}$

Base Average Quality Plot

Description

BaseAverageQualityPlot

Usage

BaseAverageQualityPlot(input_data)

Arguments

input_data folder containing data

BaseAverageQualityPlotly

interactive BaseAverageQualityPlot

Description

interactive BaseAverageQualityPlot

Usage

 ${\tt BaseAverageQualityPlotly(input_data)}$

Arguments

input_data folder containing data

 ${\tt Base Composition Area Chart Plot}$

Base Composition Area Chart Plot

Description

Base Composition Area Chart Plot

Usage

BaseCompositionAreaChartPlot(input_data)

Arguments

input_data folder containing data

 ${\tt Base Composition Line Plot}$

BaseCompositionLinePlot

Description

Base Composition Line Plot

Usage

BaseCompositionLinePlot(input_data)

Arguments

input_data

folder containing data

 ${\tt BaseQualityBoxplotPlot}$

BaseQualityBoxplotPlot

Description

Base Quality Boxplot Plot

Usage

BaseQualityBoxplotPlot(input_data)

Arguments

input_data folder containing data

6 boxplotExp

|--|

Description

Generate a boxplot of log-CPM expression values per sample, colored by group.

Usage

```
boxplotExp(x, y, palette, main, selectOrder)
```

Arguments

X	A DGEList object from "edgeR".
у	Numeric matrix of log-CPM values (genes × samples), e.g., from edgeR::cpm().
palette	Character. Name of a discrete palette from the paletteer package.
main	Character. Title for the boxplot.
selectOrder	Character. Either "Groups" (order samples by group) or "Samples" (order by sample name).

Details

This function orders samples by group or sample name, and produces a ggplot2 boxplot with a horizontal line at the overall median.

- 1. Extract sample metadata (Samples, Groups) from "x\$samples".
- 2. Order columns of y by group or sample name per "selectOrder".
- 3. Melt the ordered matrix to long format and join with metadata.
- 4. Plot boxplots with no outliers, colored by group, and include a dashed line at the overall median.

Value

A ggplot object showing per-sample boxplots of log-CPM values.

BulkAlignment 7

BulkAlignment

Bulk alignment function

Description

Bulk alignment function

Usage

```
BulkAlignment(
  lalista,
  nodes,
  readsPath,
  GenomeIndex,
  outBam,
  threads,
  outFormat,
  phredScore,
 maxExtractedSubreads,
  consensusVote,
 mismatchMax,
  uniqueOnly,
  maxMultiMapped,
  indelLength,
  fragmentMinLength,
  fragmentMaxLength,
 matesOrientation,
  readOrderConserved,
  coordinatesSorting,
  allJunctions,
  tempfolder
)
```

Arguments

lalista list of samples nodes logic cores readsPath sample folders GenomeIndex genome index outBam output folder threads processes outFormat BAM or SAM phredScore quality score maxExtractedSubreads

number of subreads

8 checkMetadata

consensusVote consensus mismatchMax mismatch

uniqueOnly no multimapping maxMultiMapped multimapping

indelLength indel
fragmentMinLength

fragment minumum length

fragmentMaxLength

fragment maximum length

matesOrientation

mate orientation

readOrderConserved

read order

coordinatesSorting

sorting

allJunctions junctions

tempfolder temporary folder

checkMetadata

checkMetadata

Description

Validate and extract non-empty annotation fields from a GTF file.

Usage

```
checkMetadata(gtfPath, typeFilter)
```

Arguments

gtfPath Character. Path to the directory or file location of the GTF file. typeFilter Character. The feature type to filter on (e.g., "gene", "exon").

Details

This function imports a GTF file, filters entries by a specified feature type, and identifies metadata columns that contain at least one non-missing value.

- 1. Imports the GTF into a data frame via "rtracklayer::import()".
- 2. Filters rows by "type" == typeFilter.
- 3. Tests each column for all-NA or empty-string entries.
- 4. Returns names of columns with at least one non-missing, non-empty value.

Value

Character vector of column names in the GTF annotation that are not entirely NA or empty.

CombinedAlignment 9

 ${\tt CombinedAlignment}$

Title

Description

Title

Usage

```
CombinedAlignment(
  lalista,
  nodes,
  readsPath,
  GenomeConcIndex,
  outBam,
  threads,
  outFormat,
  phredScore,
 maxExtractedSubreads,
  consensusVote,
 mismatchMax,
  uniqueOnly,
 maxMultiMapped,
  indelLength,
  fragmentMinLength,
  fragmentMaxLength,
 matesOrientation,
  readOrderConserved,
  coordinatesSorting,
  allJunctions,
  tempfolder,
  readsAlignedBlock
)
```

Arguments

phredScore

lalista list of samples nodes logic cores readsPath sample folders GenomeConcIndex genome index outBam output folder threads processes outFormat BAM or SAM

quality score

10 CorrPlotHeatmap

```
maxExtractedSubreads
                 number of subreads
consensusVote
                 consensus
mismatchMax
                 mismatch
uniqueOnly
                 no multimapping
maxMultiMapped multimapping
indelLength
                 indel
{\it fragment Min Length}
                 fragment minumum length
{\tt fragment} {\tt MaxLength}
                 fragment maximum length
matesOrientation
                 mate orientation
readOrderConserved
                 read order
coordinatesSorting
                 sorting
allJunctions
                 junctions
tempfolder
                 temporary folder
readsAlignedBlock
                 chunks
```

 ${\tt CorrPlotHeatmap}$

CorrPlotHeatmap

Description

Plot a correlation heatmap of top variable genes across samples.

Usage

```
CorrPlotHeatmap(
    x,
    scale,
    Color,
    type,
    display,
    round_number,
    cutree_rows,
    cutree_cols,
    cluster,
    show_names,
    NumGenes
)
```

CorrPlotHeatmaply 11

Arguments

Numeric matrix of log-CPM values (genes × samples), e.g., from "edgeR::cpm()".
Character. Scaling mode for the heatmap: "row", "column", or "none".
Character. Name of a continuous palette from the "paletteer" package.
Character. Correlation method passed to "Hmisc::rcorr()": "pearson", "spearman", or "kendall".
Character. Which matrix to display: "correlation" (coefficients) or "pvalue".
Integer. Number of decimal places to round displayed numbers.
Integer. Number of clusters to cut for row dendrogram.
Integer. Number of clusters to cut for column dendrogram.
Character. Clustering mode: one of "both", "row", "column", or "none".
Character. One of "both", "row", "column", or "none" to display row/column labels.
Integer. Number of top-variance genes to include in the correlation.

Details

This function selects the highest-variance genes from a log-CPM matrix, computes pairwise correlation coefficients (or p-values) with "Hmisc::rcorr()", and renders a heatmap via "pheatmap", with options for clustering, scaling, and number display.

- 1. Compute per-gene variance and select the top "NumGenes".
- 2. Subset the matrix and compute correlations (and p-values) via "Hmisc::rcorr()".
- 3. Choose to display correlation coefficients or p-values, rounded to "round_number".
- 4. Determine clustering and label visibility from cluster and "show_names".
- 5. Render the heatmap with "pheatmap::pheatmap()", passing in custom distance, color, clustering, and "display" number settings, saving to a temporary file to suppress autosave.

Value

A "pheatmap" object representing the correlation heatmap with clustering.

Description

Create an interactive correlation heatmap of top variable genes using Heatmaply.

Usage

```
CorrPlotHeatmaply(x, Color, type, cluster, scale, show_names, NumGenes)
```

12 counting_Reads

Arguments

X	Numeric matrix of log-CPM values (genes × samples), e.g., from "edgeR::cpm()".
Color	Character. Name of a continuous palette from the "paletteer" package.
type	Character. Correlation method passed to "Hmisc::rcorr()": "pearson", "spearman", or "kendall".
cluster	Character or logical. Clustering option for dendrogram: "both", "row", "column", or "none".
scale	Character. Scaling mode for the heatmap: "row", "column", or "none".
show_names	Character. One of "both", "row", "column", or "none" to display row/column labels.
NumGenes	Integer. Number of top-variance genes to include in the correlation.

Details

This function selects the highest-variance genes from a log-CPM matrix, computes pairwise correlation coefficients (and p-values) with "Hmisc::rcorr()", and renders an interactive correlation heatmap via "heatmaply::heatmaply_cor()", using clustering and scaling options derived from "pheatmap" call.

- 1. Compute per-gene variance and select the top "NumGenes".
- 2. Subset the matrix and compute correlations (and p-values) via "Hmisc::rcorr()".
- 3. Generate a temporary static heatmap with "pheatmap" to extract dendrograms.
- 4. Render an interactive heatmap with "heatmaply::heatmaply_cor()", passing in color, clustering, scaling, tick-label visibility, and point size based on -log10(p-value).

Value

A Plotly object (heatmaply) representing the interactive correlation heatmap.

counting_Reads	COUNTING SEQUENCES	

Description

COUNTING SEQUENCES

Usage

```
counting_Reads(input_data)
```

Arguments

input_data sample folder

DEGsServerLogic 13

DEGsServerLogic

Server function for DEGs module in Shiny application

Description

Server function for DEGs module in Shiny application

Usage

DEGsServerLogic(id)

Arguments

id

Shiny module identifier

DEGsUserInterface

UI function for DEGs module in Shiny application

Description

UI function for DEGs module in Shiny application

Usage

DEGsUserInterface(id)

Arguments

id

Shiny module identifier

EDAServerLogic

Server function for EDA module in Shiny application

Description

Server function for EDA module in Shiny application

Usage

EDAServerLogic(id)

Arguments

id

14 EdgerDEG

 ${\tt EDAUserInterface}$

UI function for EDA module in Shiny application

Description

UI function for EDA module in Shiny application

Usage

```
EDAUserInterface(id)
```

Arguments

id

Shiny module identifier

EdgerDEG

EdgerDEG

Description

Perform differential expression analysis on RNA-seq count data using edgeR.

Usage

```
EdgerDEG(
  gr,
 WD_samples,
 WD_DEGs,
  colIDgene,
  colCounts,
  skip_preN,
  grContrast,
  filter,
 model,
  normMethod,
 min_count,
 min_total_count,
  large_n,
 min_prop,
  adjustPvalue,
 Th_logFC,
  Th_Pvalue
)
```

EdgerDEG 15

Arguments

gr		Data frame. Sample metadata with columns Samples and Groups.
WD_sa	amples	Character. Directory containing raw count .tab files.
WD_DE	EGs	Character. Directory in which to write results and logs.
colI	Ogene	Integer. Column index in each count file for gene IDs.
colCo	ounts	Integer. Column index in each count file for raw counts.
skip_	_preN	Integer. Number of header lines to skip when reading count files.
grCor	ntrast	Data frame. Two-column table with Test and Baseline group names for contrasts.
filte	er	Character. Filtering method: "filterByExpr" or "HTSFilter".
mode	l	Character. Statistical test: "exactTest", "glmQLFTest", or "glmLRT".
norm	Method	Character. Normalization method for edgeR (e.g., "TMM", "RLE").
min_d	count	Numeric. Minimum count per gene for "filterByExpr".
min_t	total_coun	t
		Numeric. Minimum total count per gene for "filterByExpr".
large	e_n	Integer. Sample size threshold for "filterByExpr".
min_p	orop	Numeric. Proportion threshold for "filterByExpr".
adjus	stPvalue	Character. P-value adjustment method (e.g., "fdr", "holm", "none").
Th_lo	ogFC	Numeric. Absolute log-fold-change threshold to call differential expression.
Th_P	value	Numeric. Adjusted p-value threshold to call differential expression.

Details

This function reads raw count tables, applies expression filtering (via "filterByExpr" or "HTSFilter"), normalizes library sizes, estimates dispersion, fits statistical models ("exactTest", "glmQLFTest", or "glmLRT"), and writes per-contrast results and diagnostic plots.

- 1. Reads in per-sample count files and generate a DGEList.
- 2. Builds the design matrix and contrast definitions from "grContrast".
- 3. Filters lowly expressed genes, normalizes library sizes, and logs filtering summary.
- 4. Estimates dispersion (standard or quasi-likelihood).
- 5. Runs chosen differential test per contrast, annotates each gene as "UP", "DOWN", or "NO", and writes CSV output files named by filter, model, and contrast.
- 6. Captures and saves BCV and QL dispersion plots as SVGs in WD_DEGs.

Value

A list invisibly returned containing any captured plots and log messages; primary results are written to CSV files in "WD_DEGs".

Filtering Filtering

Description

Filter paired-end FASTQ files in parallel based on quality and adapter trimming criteria.

Usage

```
Filtering(
  Nodes,
  Χ,
  UploadPath,
  DownloadPath,
  qualityType,
  minLen,
  trim,
  trimValue,
  Adapters,
  Lpattern,
  Rpattern,
  max.Lmismatch,
  max.Rmismatch,
  k₩,
  left,
  right,
  halfwidthAnalysis,
  halfwidth,
  compress
)
```

Arguments

Nodes	Integer. Number of parallel processing nodes (e.g., CPU cores).
X	List of character vectors. Each element is a character vector of paired file names (e.g., $c("sample_1.fq", "sample_2.fq"))$.
UploadPath	Character. Path to directory containing raw FASTQ files.
DownloadPath	Character. Path to directory where filtered files will be saved.
qualityType	Character. Type of quality score encoding, e.g., "Sanger" or "Illumina".
minLen	Integer. Minimum length of reads to retain after filtering.
trim	Logical. Whether to perform quality-based trimming of reads.
trimValue	Integer. Minimum Phred score threshold for trimming.
n	Integer. Number of reads to stream per chunk (default typically set to 1e6).

FilteringServerLogic 17

Adapters Logical. Whether to remove adapters from reads.

Lpattern Character. Adapter sequence to remove from the 5' end (left).

Rpattern Character. Adapter sequence to remove from the 3' end (right).

max.Lmismatch Integer. Maximum mismatches allowed for the left adapter.

max.Rmismatch Integer. Maximum mismatches allowed for the right adapter.

kW Integer. Minimum number of low-quality scores in a window to trigger trimming

(sliding window analysis).

left Logical. Whether to allow trimming from the left end.
right Logical. Whether to allow trimming from the right end.

halfwidthAnalysis

Logical. Whether to perform sliding window-based trimming.

halfwidth Integer. Half-width of the sliding window.

compress Logical. Whether to compress the output FASTQ files.

Details

This function processes raw paired-end FASTQ files to remove low-quality bases, trim adapters, and filter out short reads. It supports quality-based end trimming, sliding window trimming, and adapter removal. The processing is done in parallel across multiple nodes to enhance performance when working with large datasets.

- Paired FASTQ files must be named consistently, distinguished by "_1" and "_2" for forward and reverse reads.
- This function uses the "ShortRead" and "Biostrings" packages for FASTQ processing and quality filtering.
- Filtered files in FASTO format".
- Log files containing read counts before and after filtering are written per sample.

Value

Filtered FASTQ files written to "DownloadPath"; one log file per sample.

FilteringServerLogic Server function for filtering module in Shiny application

Description

Server function for filtering module in Shiny application

Usage

FilteringServerLogic(id)

Arguments

FilteringUserInterface

UI function for filtering module in Shiny application

Description

UI function for filtering module in Shiny application

Usage

FilteringUserInterface(id)

Arguments

id

Shiny module identifier

 ${\tt GCcontentDistributionPlot}$

GCcontentDistributionPlot

Description

GCcontentDistributionPlot

Usage

GCcontentDistributionPlot(input_data)

Arguments

input_data

samples folder

 ${\tt GCcontentDistributionPlotly}$

interactive GCcontentDistributionPlot

Description

interactive GCcontentDistributionPlot

Usage

GCcontentDistributionPlotly(input_data)

Arguments

input_data samples folder

getDegMerged 19

Description

Merge multiple DEG result CSVs with GTF annotations into a single data frame.

Usage

```
getDegMerged(path, gtfPath, columns, collapseName, typeFilter, selectUpDown)
```

Arguments

path	Character. Directory containing DEG result CSV files.
gtfPath	Character. Path to the GTF annotation file.
columns	Character vector. Names of annotation columns to include from the GTF.
collapseName	Logical. If TRUE, strip method/model prefixes from file names when prefixing columns.
typeFilter	Character. GTF feature type to filter (e.g., "gene" or "transcript").
selectUpDown	Logical. If TRUE, only include IDs with "diffExp" == UP or DOWN.

Details

This function reads all CSV files in a directory, validates presence of required columns ("ID", and optionally "diffExp"), filters for up/down regulated genes if requested, extracts annotation fields from a GTF, and returns a merged table of selected annotation columns alongside all DEG metrics (with optional file-based column prefixes).

Value

A combined data frame

GCCLagor 1	GetEdgerY		GetEdgerY			
------------	-----------	--	-----------	--	--	--

Description

Calculate and return filtered DGEList object and log-CPM matrices using edgeR and optional HTS-Filter

20 HeatmapExp

Usage

```
GetEdgerY(
   gr,
   WDpn,
   colIDgene,
   colCounts,
   skip_preN,
   filterMethod,
   min_count,
   min_total_count,
   large_n,
   min_prop,
   normMethod
)
```

Arguments

gr Data frame with sample	e metadata, including sampl	e names and group labels
---------------------------	-----------------------------	--------------------------

WDpn Directory containing count files (*.tab)

colIDgene Column index of gene IDs in count files

colCounts Column index of counts in count files

skip_preN Number of header lines to skip in count files

filterMethod Either "filterByExpr" or "HTSFilter"
min_count Minimum count per gene (filterByExpr)

min_total_count

Minimum total count per gene (filterByExpr)

large_n Number of samples per group to consider as "large" (filterByExpr)
min_prop Minimum proportion of samples with expression (filterByExpr)

normMethod Normalization method (e.g., "TMM", "RLE")

Value

A list with total/kept gene counts, filtered DGEList objects, and log-CPM matrices

Description

Plot a heatmap of the top variable genes across samples.

HeatmapExp 21

Usage

```
HeatmapExp(
    x,
    ColorPanel,
    scale,
    cutree_rows,
    cutree_cols,
    cluster,
    show_names,
    NumGenes
)
```

Arguments

X	Numeric matrix of log-CPM values (genes \times samples), e.g., from edgeR::cpm().
ColorPanel	Character. Name of a continuous palette from the paletteer package.
scale	Character. Scaling mode for heatmap: "row", "column", or "none".
cutree_rows	Integer. Number of clusters for rows (genes).
cutree_cols	Integer. Number of clusters for columns (samples).
cluster	Character. One of "both", "row", "column", or "none" to specify clustering.
show_names	Character. One of "both", "row", "column", or "none" to show row/col names.
NumGenes	Integer. Number of top-variance genes to include in the heatmap.

Details

This function selects the highest-variance genes from a log-CPM matrix, transposes the data, and renders a heatmap with customizable clustering, scaling, and color palettes using pheatmap.

- 1. Compute per-gene variance and select the top "NumGenes".
- 2. Transpose the subsetted matrix so samples are rows.
- 3. Apply the specified color palette (n = 50) via paletteer::paletteer_c().
- 4. Determine clustering and name-display options from "cluster" and "show_names".
- 5. Render the heatmap with "pheatmap::pheatmap()", saving to a temporary file to suppress autosave.

Value

A "pheatmap" object containing the heatmap and clustering information.

22 HeatmapExpPlotly

Description

Create an interactive heatmap of top variable genes using Heatmaply.

Usage

```
HeatmapExpPlotly(x, ColorPanel, scale, cluster, show_names, NumGenes)
```

Arguments

X	Numeric matrix of log-CPM values (genes × samples), e.g., from edgeR::cpm().
ColorPanel	Character. Name of a continuous palette from the paletteer package.
scale	Character. Scaling mode: "row", "column", or "none".
cluster	Character or logical. Clustering option for dendrogram: "both", "row", "column", or "none".
show_names	Character. One of "both", "row", "column", or "none" to display row/column labels.
NumGenes	Integer. Number of top-variance genes to include in the heatmap.

Details

This function selects the highest-variance genes from a log-CPM matrix, transposes the data, and renders an interactive heatmap via "heatmaply", using "pheatmap" call.

- 1. Compute per-gene variance and select the top NumGenes.
- 2. Transpose the subsetted matrix so samples are rows.
- 3. Generate a temporary static heatmap with pheatmap to extract dendrograms.
- 4. Render an interactive heatmap with heatmaply::heatmaply().

Value

A Plotly object (heatmaply) representing the interactive heatmap.

inDAGO 23

inDAGO inDAGO

Description

A Shiny app for dual and bulk RNA-sequencing analysis.

Usage

inDAGO()

Details

This function allows to launch in DAGO Shiny interface.

Value

No return value, called for side effects

IndexingBulk Bulk indexing

Description

Bulk indexing

Usage

IndexingBulk(basename, reference, gappedIndex, indexSplit, memory, TH_subread)

Arguments

basename output basename
reference reference genome
gappedIndex gapped structure
indexSplit split structure
memory handling memory

TH_subread threshold memory usage

Indexing Bulk Server Logic

Indexing bulk server logic

Description

Indexing bulk server logic

Usage

IndexingBulkServerLogic(id)

Arguments

id Shiny module identifier

Indexing Bulk User Interface

Indexing bulk ui

Description

Indexing bulk ui

Usage

IndexingBulkUserInterface(id)

Arguments

IndexingComb 25

IndexingComb

Combined indexing

Description

Combined indexing

Usage

```
IndexingComb(
  basename,
  reference,
  gappedIndex,
  indexSplit,
  memory,
  TH_subread,
  gen1,
  gen2,
  outfolder,
  tempfolder = file.path(fs::path_temp(), "TempDirSum_3738"),
  tag1,
  tag2
)
```

Arguments

basename output basename reference reference genome gappedIndex gapped structure ${\tt indexSplit}$ split structure memory handling memory TH_subread threshold memory usage first reference genome gen1 gen2 second reference genome

outfolder output folder
tempfolder temporary folder
tag1 first genome label
tag2 second genome label

 ${\tt IndexingCombinedServerLogic}$

Indexing combined server logic

Description

Indexing combined server logic

Usage

IndexingCombinedServerLogic(id)

Arguments

id

Shiny module identifier

 ${\tt IndexingCombinedUserInterface}$

Indexing combined ui

Description

Indexing combined ui

Usage

IndexingCombinedUserInterface(id)

Arguments

id

 ${\tt Indexing Sequential Parallel}$

Indexing sequential parallel

Description

Indexing sequential parallel

Usage

```
IndexingSequentialParallel(
  basename,
  reference,
  gappedIndex,
  indexSplit,
  memory,
  TH_subread
)
```

Arguments

basename output basename
reference reference genome
gappedIndex gapped structure
indexSplit split structure
memory handling memory

TH_subread threshold memory usage

 ${\tt Indexing Sequential Progressive}$

Indexing sequential progressive

Description

Indexing sequential progressive

Usage

```
IndexingSequentialProgressive(
  outfolder1,
  outfolder2,
  refgen1,
  refgen2,
  gappedIndex,
```

```
indexSplit,
memory,
TH_subread
)
```

Arguments

outfolder1first output folderoutfolder2second output folderrefgen1first reference genomerefgen2second reference genome

gappedIndex
indexSplit
memory
gapped structure
split structure
handling memory

TH_subread threshold memory usage

Indexing Sequential Server Logic

Indexing sequential server logic

Description

Indexing sequential server logic

Usage

IndexingSequentialServerLogic(id)

Arguments

id

Shiny module identifier

Indexing Sequential User Interface

Indexing sequential ui

Description

Indexing sequential ui

Usage

IndexingSequentialUserInterface(id)

Arguments

id

mappingBulkServerLogic

Mapping bulk server logic

Description

Mapping bulk server logic

Usage

```
mappingBulkServerLogic(id)
```

Arguments

id

Shiny module identifier

mappingBulkUserInterface

Mapping bulk ui

Description

Mapping bulk ui

Usage

mappingBulkUserInterface(id)

Arguments

id

Shiny module identifier

 ${\tt mappingCombinedServerLogic}$

Mapping combined server logic

Description

Mapping combined server logic

Usage

mappingCombinedServerLogic(id)

Arguments

id

 ${\tt mappingCombinedUserInterface}$

Mapping combined ui

Description

Mapping combined ui

Usage

mappingCombinedUserInterface(id)

Arguments

id

Shiny module identifier

 ${\tt mappingSequentialServerLogic}$

Mapping sequential server logic

Description

Mapping sequential server logic

Usage

mappingSequentialServerLogic(id)

Arguments

id

Shiny module identifier

 ${\tt mapping Sequential User Interface}$

Mapping sequential ui

Description

Mapping sequential ui

Usage

mappingSequentialUserInterface(id)

Arguments

id

mdsinfo 31

mdsinfo mdsinfo

Description

Compute MDS coordinates for expression data using limma's plotMDS.

Usage

```
mdsinfo(matrix, top, gene.selection)
```

Arguments

```
matrix A DGEList object.

top Integer. Number of top most variable genes to include in MDS.

gene.selection Method for gene selection: one of "pairwise", "common", or "logFC".
```

Details

This function performs multidimensional scaling (MDS) on a DGEList or log-expression matrix using limma's "plotMDS()" function. It returns the MDS object containing coordinates and eigenvalues without generating a plot.

Value

A list object from "plotMDS()" containing MDS coordinates and eigenvalues.

mdsPlot mdsPlot

Description

Generate a multidimensional scaling (MDS) plot based on expression data.

Usage

```
mdsPlot(
    x,
    Sample,
    Group,
    title,
    palette,
    maxOverlaps,
    sizeLabel,
    top,
    gene.selection
)
```

32 mdsPlottly

Arguments

DGEList object from edgeR. Sample A character vector of sample labels (one per column in "x"). Group A factor or character vector specifying the group/class of each sample. title Plot title as a character string. palette Name of a palette from the "paletteer" package for coloring groups. maxOverlaps Maximum number of overlapping labels allowed by "geom_text_repel". sizeLabel Numeric value for label font size. Integer. Number of top most variable genes to include in MDS. top gene.selection Method for gene selection: one of "pairwise", "common", or "logFC".

Details

This function performs MDS analysis using limma's "plotMDS()" and visualizes the sample relationships in two dimensions using "ggplot2" and "ggrepel".

Value

A "ggplot " object representing the MDS plot.

|--|--|

Description

Generate an interactive MDS plot using Plotly based on expression data.

Usage

```
mdsPlottly(x, Sample, Group, title, palette, top, gene.selection)
```

Arguments

X	A DGEList object from edgeR.
Sample	Character vector. Sample names corresponding to columns of "x ".
Group	Factor or character vector. Group or condition for each sample.
title	Character. Title for the plot.
palette	Character. Name of a discrete palette from the "paletteer " package.
top	Integer. Number of top most variable genes (by logFC) to include in MDS.
gene.selection	Character. Gene selection method: one of ""pairwise" ", ""common" ", or ""logFC" ".

pcainfo 33

Details

This function computes multidimensional scaling (MDS) coordinates with limma's "plotMDS()" and then renders an interactive scatterplot via "plotly::ggplotly()".

- 1. Compute MDS on the input data with "limma::plotMDS()".
- 2. Extract eigenvalues and first two dimensions for variance annotation.
- 3. Build a ggplot2 scatterplot with axis labels showing percent variance explained.
- 4. Convert the ggplot to an interactive Plotly graph.

Value

A Plotly object ("plotly::ggplotly") representing the interactive MDS scatterplot.

|--|--|

Description

Perform Principal Component Analysis (PCA) on log-expression data.

Usage

```
pcainfo(logcounts, center, scale)
```

Arguments

logcounts	Numeric matrix. Log-CPM values (genes × samples), e.g., from edgeR::cpm
center	Logical. If TRUE, center variables by subtracting the mean (default: TRUE).
scale	Logical. If TRUE, scale variables to unit variance (default: FALSE).

Details

This function transposes a log-count matrix (samples as columns, genes as rows) and runs PCA using "stats::prcomp()", with options to center and scale variables.

Value

An object of class "prcomp " containing the PCA results, including loadings, scores, and explained variance.

pcaPlot

|--|

Description

Create a PCA scatter plot from log-expression data with sample labels.

Usage

```
pcaPlot(
  logcounts,
  Sample,
  Group,
  title,
  palette,
  maxOverlaps,
  sizeLabel,
  center,
  scale
)
```

Arguments

logcounts	Numeric matrix of log-CPM values (genes × samples), e.g., from edgeR::cpm.
Sample	Character vector of sample names corresponding to the columns of "logcounts".
Group	Factor or character vector denoting group/condition for each sample.
title	Character. Title for the PCA plot.
palette	Character. Name of a discrete color palette from the "paletteer" package.
max0verlaps	Integer. Maximum number of overlapping labels allowed by "ggrepel".
sizeLabel	Numeric. Font size for sample labels.
center	Logical. If TRUE, center variables before PCA.
scale	Logical. If TRUE, scale variables to unit variance before PCA.

Details

This function performs Principal Component Analysis (PCA) on a log-count matrix and visualizes the first two principal components using ggplot2 and ggrepel. Each point represents a sample, colored by group, with hover labels.

- 1. Transposes the "logcounts" matrix so samples are rows.
- 2. Runs PCA via "stats::prcomp()" with centering and scaling options.
- 3. Calculates percent variance explained by PC1 and PC2.
- 4. Builds a scatter plot with black-bordered points and non-overlapping labels.

pcaPlottly 35

Value

A "ggplot" object displaying the PCA scatter plot of PC1 vs PC2.

pcaPlottly pcaPlottly

Description

Create an interactive PCA scatter plot using Plotly from log-expression data.

Usage

```
pcaPlottly(logcounts, Sample, Group, title, palette, center, scale)
```

Arguments

logcounts	Numeric matrix of log-CPM values (genes × samples), e.g., from edgeR::cpm.
Sample	Character vector of sample names corresponding to the columns of "logcounts ".
Group	Factor or character vector denoting group/condition for each sample.
title	Character. Title for the PCA plot.
palette	Character. Name of a discrete color palette from the "paletteer" package.
center	Logical. If TRUE, center variables (genes) before PCA.
scale	Logical. If TRUE, scale variables to unit variance before PCA.

Details

This function performs Principal Component Analysis (PCA) on a log-count matrix and generates an interactive plot of the first two principal components via "plotly::ggplotly()".

- 1. Transposes the "logcounts" matrix so samples are rows.
- 2. Runs PCA with "stats::prcomp()", using centering and scaling as specified.
- 3. Computes percent variance explained by PC1 and PC2.
- 4. Builds a ggplot2 scatterplot and converts it to an interactive Plotly graph.

Value

A Plotly object ("plotly::ggplotly") representing the interactive PCA scatterplot.

 ${\it Quality Check Analysis} \quad {\it QUALITY CONTROL ANALYSIS}$

Description

QUALITY CONTROL ANALYSIS

Usage

```
QualityCheckAnalysis(
  directoryInput,
  inputFormat,
  Nodes,
  ReadsNumber,
  directoryOutput,
  tempFolder
)
```

Arguments

```
directoryInput sample directory
inputFormat raw read format
Nodes cores
ReadsNumber chunk
```

directoryOutput

output folder

tempFolder temporary folder

```
qualityControlServerLogic
```

Quality control server logic

Description

Quality control server logic

Usage

```
qualityControlServerLogic(id)
```

Arguments

qualityControlUserInterface

Quality control ui

Description

Quality control ui

Usage

qualityControlUserInterface(id)

Arguments

id

Shiny module identifier

Saturation

Saturation

Description

Generate a saturation curve plot showing gene detection versus sequencing depth.

Usage

Saturation(matrix, method, max_reads, palette)

curve colors.

Arguments

matrix	Numeric matrix or object coercible to matrix (genes × samples), e.g., log-counts or raw counts. Genes are rows; samples are columns.	
method	Character. Estimation method: "division" or "sampling".	
max_reads	Numeric. Maximum number of reads to include in the rarefaction (default: Inf).	
palette	Character. Name of a discrete color palette from the "paletteer " package for	

Details

This function estimates how many genes are detected at increasing read depths using a rarefaction-based approach ("estimate_saturation() from RNAseQC package https://github.com/BenaroyaResearch/RNAseQC.git"), and plots the saturation curves for each sample. It supports two estimation methods: "division" for a fast analytic approximation and "sampling" for more realistic approach.

1. Internally, "extract_counts()" (from countSubsetNorm) extracts a counts matrix from various input classes (matrix, DGEList, EList, ExpressionSet).

- 2. "estimate_saturation()" (from RNAseQC package https://github.com/BenaroyaResearch/RNAseQC.git) rarefies each library at multiple depths:
- "division" divides counts by scale factors;
- "sampling" performs repeated random sampling to simulate read down sampling.
- 1. The resulting data frame contains one row per sample per depth, with the number of detected genes ("sat") and, for sampling, its variance ("sat.var").
- 2. The function then plots gene saturation curves ("sat" vs. "depth") colored by sample.

Extract counts matrix from different types of expression objects

Estimate saturation of genes based on rarefaction of reads

Value

A "ggplot" object showing saturation (genes detected) versus sequencing depth for each sample.

 ${\tt SequenceLengthDistributionPlot}$

SequenceLengthDistributionPlot

Description

SequenceLengthDistributionPlot

Usage

SequenceLengthDistributionPlot(input_data)

Arguments

input_data result tables folder

 ${\tt SequenceLengthDistributionPlotly}$

 $interactive\ Sequence Length Distribution Plot$

Description

 $interactive \ Sequence Length Distribution Plot$

Usage

SequenceLengthDistributionPlotly(input_data)

Arguments

input_data result tables folder

Sequential Alignment 39

SequentialAlignment Sequen

Sequential alignment function

Description

Sequential alignment function

Usage

```
SequentialAlignment(
  lalista,
  nodes,
  readsPath,
 GenomeFirstIndex,
 GenomeSecondIndex,
  outBam1,
  outBam2,
  threads,
  outFormat,
  phredScore,
 maxExtractedSubreads,
  consensusVote,
 mismatchMax,
  uniqueOnly,
 maxMultiMapped,
  indelLength,
  fragmentMinLength,
  fragmentMaxLength,
 matesOrientation,
  readOrderConserved,
  coordinatesSorting,
  allJunctions,
  tempfolder,
  readsAlignedBlock
)
```

Arguments

```
lalista list of samples
nodes logic cores
readsPath sample folders
GenomeFirstIndex
first genome index
GenomeSecondIndex
second genome index
outBam1 first output folder
```

40 Summarization

outBam2 second output folder

threads processes

outFormat BAM or SAM phredScore quality score

maxExtractedSubreads

number of subreads

consensusVote consensus mismatchMax mismatch

uniqueOnly no multimapping maxMultiMapped multimapping

indelLength indel
fragmentMinLength

fragment minumum length

fragmentMaxLength

fragment maximum length

matesOrientation

mate orientation

readOrderConserved

read order

coordinatesSorting

sorting

allJunctions junctions

tempfolder temporary folder

readsAlignedBlock

chunks

Summarization

Summarization

Description

Summarizes read counts from multiple BAM/SAM files in parallel using feature annotations.

Usage

Summarization(

NodesSum,

Xsum,

UploadPathSum,

DownloadPathSum,

annot.ext,

isGTFAnnotationFile,

GTF.featureType,

Summarization 41

```
GTF.attrType,
  useMetaFeatures,
  allowMultiOverlap,
 minOverlap,
  fracOverlap,
  fracOverlapFeature,
  largestOverlap,
  countMultiMappingReads,
  fraction,
 minMQS,
  primaryOnly,
  ignoreDup,
  strandSpecific,
  requireBothEndsMapped,
  checkFragLength,
 minFragLength,
 maxFragLength,
  countChimericFragments,
  autosort,
  nthreads,
  tmpDir,
  verbose
)
```

Arguments

NodesSum Integer. Number of parallel R nodes (e.g., CPU cores) to spawn.

Xsum Character vector. Filenames of BAM or SAM files to process.

UploadPathSum Character. Directory containing the raw input files.

DownloadPathSum

Character. Directory into which all output files will be written.

annot.ext Character. Path to an external annotation file (e.g., GTF/GFF).

isGTFAnnotationFile

Logical. Should annot .ext be treated as a GTF file?

GTF.featureType

Character. Feature type (e.g., "exon").

GTF.attrType Character. GTF attribute (e.g., "gene_id").

useMetaFeatures

Logical. Collapse sub-features into meta-features before counting.

allowMultiOverlap

Logical. Allow reads overlapping multiple features to be counted.

minOverlap Integer. Minimum number of overlapping bases to assign a read.

fracOverlap Numeric. Minimum fraction of read that must overlap a feature.

fracOverlapFeature

Numeric. Minimum fraction of feature that must be covered by a read.

42 Summarization

largestOverlap Logical. When overlapping multiple features, assign based on largest overlap. countMultiMappingReads

Logical. Count reads that map to multiple locations.

fraction Logical. Distribute counts fractionally for multi-mapping reads.

minMQS Integer. Minimum mapping quality score for reads to be counted.

primaryOnly Logical. Count only the primary alignments of multi-mapping reads.

ignoreDup Logical. Exclude PCR duplicates from counting.

strandSpecific Integer. Strand-specific counting mode (0 = unstranded, 1 = stranded, 2 = re-

versely stranded).

requireBothEndsMapped

Logical. In paired-end mode, require both mates to map.

checkFragLength

Logical. Enforce fragment length checks on paired-end reads.

minFragLength Numeric. Minimum fragment length to keep.
maxFragLength Numeric. Maximum fragment length to keep.
countChimericFragments

Logical. Count discordant or chimeric read pairs.

autosort Logical. Automatically sort input files if not already sorted.

nthreads Integer. Number of threads per featureCounts call.

tmpDir Character. Directory for temporary files (e.g., large intermediate files).

verbose Logical. Print verbose messages during execution.

Details

This function run Rsubread::featureCounts() on each input file, capturing count statistics, annotation data, and per-sample summary logs. Results are written to the specified output directory.

- 1. A socket cluster of NodesSum workers is created.
- 2. Each worker invokes featureCounts() on one sample, using the annotation and counting parameters.
- 3. Outputs per sample:
 - A text summary (*_summary.txt) capturing the console output.
 - A CSV of count statistics (*_stat.csv).
 - A CSV of feature annotations (*_annotation.csv).
 - A tab-delimited count matrix saved under Counts/<sample>. tab.
- 4. The cluster is terminated once all samples complete.

Value

Writes files to DownloadPathSum.

 ${\tt SummarizationServerLogic}$

Server function for Summarization module in Shiny application

Description

Server function for Summarization module in Shiny application

Usage

```
SummarizationServerLogic(id)
```

Arguments

 id

Shiny module identifier

SummarizationUserInterface

UI function for Summarization module in Shiny application

Description

UI function for Summarization module in Shiny application

Usage

SummarizationUserInterface(id)

Arguments

id

Shiny module identifier

44 UpsetjsPlot

Description

Create an interactive UpSet plot of overlapping DEGs using "UpsetJS".

Usage

```
UpsetjsPlot(
   WD_samples,
   Th_logFC,
   Th_Pvalue,
   collapseName,
   nintersects,
   st_significance
)
```

Arguments

WD_samples Character. Directory containing DEG result CSV files.

Th_logFC Numeric. Absolute log2 fold-change threshold to include a gene.

Th_Pvalue Numeric. P-value threshold for significance (0 < Th_Pvalue <= 1).

collapseName Logical. If TRUE, strip method/model prefixes from file names when labeling

sets.

nintersects Integer. Maximum number of intersections to display.

st_significance

Character. Which p-value to use: "adjustPvalue" (FDR or FWER) or "PValue".

Details

This function reads DEG CSV files from a directory, filters genes by log-FC and p-value thresholds (adjusted or raw), optionally simplifies file names, and visualizes the intersections of gene sets using the "UpsetJS" package.

- 1. Lists all CSV files in "WD_samples" and reads each into a data frame.
- 2. Checks for duplicate IDs and selects "ID", "logFC", and either "adjustPvalue" or "PValue".
- 3. Filters each set by "llogFCl" >= Th_logFC" and p-value < "Th_Pvalue".
- 4. Renames each gene-ID list to the (optionally collapsed) file name.
- 5. Feeds the list of gene sets into "upsetjs::upsetjs()"

Value

An interactive "UpsetJS" object.

UpSetPlot 45

Description

Generate an UpSet plot of overlapping DEGs across multiple contrasts.

Usage

```
UpSetPlot(
   WD_samples,
   Th_logFC,
   Th_Pvalue,
   collapseName,
   nintersects,
   st_significance,
   scale
)
```

Arguments

WD_samples Character. Directory containing DEG result CSV files.

Th_logFC Numeric. Absolute log2 fold-change threshold to include a gene.

Th_Pvalue Numeric. P-value threshold for significance (0 < Th_Pvalue <= 1).

collapseName Logical. If TRUE, strip method/model prefixes from file names when labeling sets.

nintersects Integer. Maximum number of intersections to display.

st_significance Character. Which p-value to use: "adjustPvalue" (FDR or FWER) or "PValue".

scale Numeric. Text scaling factor for plot labels and annotations.

Details

This function reads DEG CSV files from a directory, filters genes by log-FC and p-value thresholds (adjusted or raw), optionally simplifies file names, and visualizes the intersections of gene sets using an UpSet plot.

- 1. Validates thresholds (Th $_{logFC} >= 0$, $0 < Th_{Pvalue} <= 1$).
- 2. Lists all CSV files in WD_samples and reads each into a data frame.
- 3. Checks for duplicate IDs and standardizes to columns ID, logFC, and adjustPvalue or PValue.
- 4. Filters each set of results by llogFCl >= Th_logFC and p-value < Th_Pvalue.
- 5. Renames each gene-ID column to the (optionally collapsed) file name.
- 6. Converts the list of filtered ID sets to an UpSetR input and calls UpSetR::upset().

volcanoPlot

Value

An UpSet plot.

volcanoPlot

volcanoPlot

Description

Create a volcano plot of differential expression results.

Usage

```
volcanoPlot(
    x,
    palettePoint,
    maxOverlaps,
    sizeLabel,
    Th_logFC,
    Th_Pvalue,
    subsetGenes,
    st_significance
)
```

Arguments

X	Character. File path to a CSV containing DEG results, with at least columns "ID", "logFC", and one of "PValue", "FDR", or "FWER".	
palettePoint	Character. Name of a discrete palette from the "paletteer" package, supplying colors for "UP", "DOWN", and "NO".	
maxOverlaps	$Integer.\ Maximum\ allowed\ label\ overlaps\ passed\ to\ "ggrepel::geom_text_repel()".$	
sizeLabel	Numeric. Font size for gene labels in the plot.	
Th_logFC	Numeric. Absolute log2 fold-change threshold to call a gene "UP" or "DOWN".	
Th_Pvalue	Numeric. P-value threshold to call significance (uses "FDR"/"FWER" if "st_significance = "adjustPvalue"", otherwise raw "PValue").	
subsetGenes	Integer or "Inf". If numeric, only the top "subsetGenes" genes by p-value are shown and labeled.	
st_significance		
	Character. Which p-value column to use: "adjustPvalue" (FDR or FWER) or "PValue".	

volcanoPlottly 47

Details

This function reads a CSV of DEGs, classifies genes as up/down/no change based on log-fold change and p-value thresholds, and plots –log10(p-value) versus log-FC using ggplot2.

- 1. Reads the input CSV and checks for duplicate IDs.
- 2. Standardizes columns to "ID", "logFC", and "adjustPvalue" or "PValue".
- 3. Optionally subsets to the top N genes by p-value.
- 4. Classifies each gene as "UP", "DOWN", or "NO" based on thresholds.
- 5. Plots points with manual fill, size, and alpha scales, adds threshold lines, and repels labels using "ggrepel".

Value

A "ggplot" object displaying the volcano plot.

volcanoPlottly

volcanoPlottly

Description

Create an interactive volcano plot of differential expression results using "Plotly".

Usage

```
volcanoPlottly(
   x,
   palettePoint,
   Th_logFC,
   Th_Pvalue,
   subsetGenes,
   st_significance
)
```

Arguments

x Character. File path to a CSV containing DEG results, with at least columns

"ID", "logFC", and one of "PValue", "FDR", or "FWER".

palettePoint Character. Name of a discrete palette from the "paletteer" package, supplying

colors for "UP", "DOWN", and "NO".

Th_logFC Numeric. Absolute log2 fold-change threshold to call a gene "UP" or "DOWN".

Th_Pvalue Numeric. P-value threshold to call significance (uses "FDR"/"FWER" if "st_significance

= "adjustPvalue"", otherwise raw "PValue").

subsetGenes Integer or "Inf". If numeric, only the top "subsetGenes" genes by p-value are

included in the plot.

st_significance

Character. Which p-value column to use: "adjustPvalue" (FDR or FWER) or "PValue".

48 WorkflowUserInterface

Details

This function reads a CSV of DEGs, classifies genes as up/down/no change based on log-fold change and p-value thresholds, and renders an interactive volcano plot via "plotly::ggplotly()".

- 1. Reads the input CSV and checks for duplicate IDs.
- 2. Standardizes columns to "ID", "logFC", and "adjustPvalue" or "PValue".
- 3. Optionally subsets to the top N genes by p-value.
- 4. Classifies each gene as "UP", "DOWN", or "NO" based on thresholds.
- 5. Plots points with manual fill, size, and alpha scales, adds threshold lines, and converts to an interactive Plotly graph.

Value

A Plotly object ("plotly::ggplotly") representing the interactive volcano plot.

WorkflowServerLogic

Server function for workflow module in Shiny application

Description

Server function for workflow module in Shiny application

Usage

WorkflowServerLogic(id)

Arguments

id

Shiny module identifier

WorkflowUserInterface UI function for workflow module in Shiny application

Description

UI function for workflow module in Shiny application

Usage

WorkflowUserInterface(id)

Arguments

id

Shiny module identifier

Index

barplotExp, 3	IndexingSequentialParallel, 27
BaseAverageQualityPlot, 4	IndexingSequentialProgressive, 27
${\tt BaseAverageQualityPlotly,4}$	${\tt IndexingSequentialServerLogic, 28}$
${\tt Base Composition Area Chart Plot}, 5$	IndexingSequentialUserInterface, 28
BaseCompositionLinePlot, 5	
BaseQualityBoxplotPlot, 5	mappingBulkServerLogic, 29
boxplotExp, 6	mappingBulkUserInterface, 29
BulkAlignment, 7	<pre>mappingCombinedServerLogic, 29 mappingCombinedUserInterface, 30</pre>
checkMetadata, 8	mappingSequentialServerLogic, 30
CombinedAlignment, 9	mappingSequentialUserInterface, 30
CorrPlotHeatmap, 10	mdsinfo, 31
CorrPlotHeatmaply, 11	mdsPlot, 31
counting_Reads, 12	mdsPlottly, 32
DEGsServerLogic, 13	pcainfo, 33
DEGsUserInterface, 13	pcaPlot, 34
	pcaPlottly, 35
EDAServerLogic, 13	
EDAUserInterface, 14	QualityCheckAnalysis, 36
EdgerDEG, 14	qualityControlServerLogic, 36
F11. 1. 16	qualityControlUserInterface, 37
Filtering, 16	0 1 1 27
FilteringServerLogic, 17	Saturation, 37
FilteringUserInterface, 18	SequenceLengthDistributionPlot, 38 SequenceLengthDistributionPlotly, 38
GCcontentDistributionPlot, 18	SequentialAlignment, 39
GCcontentDistributionPlotly, 18	Summarization, 40
getDegMerged, 19	SummarizationServerLogic, 43
GetEdgerY, 19	SummarizationUserInterface, 43
HeatmapExp, 20	UpsetjsPlot,44
HeatmapExpPlotly, 22	UpSetPlot, 45
inDAGO, 23	volcanoPlot, 46
IndexingBulk, 23	volcanoPlottly, 47
<pre>IndexingBulkServerLogic, 24</pre>	
IndexingBulkUserInterface, 24	WorkflowServerLogic, 48
IndexingComb, 25	WorkflowUserInterface, 48
<pre>IndexingCombinedServerLogic, 26</pre>	
<pre>IndexingCombinedUserInterface, 26</pre>	