Tutorial T6

T6.1 Let us consider the L-match network in figure, where R_L =50 Ω .

- a) Size L and C in order to obtain R_{in} =100 Ω at 5 GHz. What is the Q of the network?
- b) Driving the input port of the network with a current source, evaluate the complex transimpedance V_{out}/I_{in} at 5GHz.

[Solution: a. C = 318fF, L = 1.59nH; b. $V_{out}/|I_{in} = 50\Omega - j50\Omega|$

T6.2 Let us consider the π -match network in figure, where R_L=50Ω. Size L, C₁ and C₂ in order to obtain R_{in}=100Ω at 5GHz, and a quality factor of the resulting network equal to Q=5.

[Solution: a. $C_1 = 955fF$, $C_2 = 1.274fF$, L = 1.59nH]

T6.3 Let us consider the impedance transformation network in figure. Assuming R_L =50Ω and C=2pF, size L and C₁ to obtain an equivalent input impedance of 5Ω at 5GHz. What is the quality factor of the network?

[Solution: L = 258pH, $C_1 = 2.12pH$, Q = 3]

T6.4 We want to design a differential to single-ended signal converter Let us consider the circuit in figure, where R_L =50 Ω .

- a) Find the values of L and C to have a gain $|V_{out}|/|V_1-V_2| = 1$ at 5GHz.
- b) Evaluate the differential impedance between V_1 and V_2 at 5GHz.

[Solution: a. L=1.59nH, C=637fF; b. R_{diff} =50 Ω]

T6.5 We want to design a single-ended-to-differential converter of a sinusoidal signal from V_{IN} to V_{OUT} , using the circuit in figure. Assuming a 50Ω source resistance for V_{IN} , set C_1 , C_2 , and L to achieve differential output and $V_{OUT}/V_{IN} = 3$ at 5GHz.

[Solution: $C_1 = C_2 = 424fF$, L = 4.78nH]

T6.6 Let us consider the impedance-matching network in figure, based on a real transformer. Given a coupling factor k=0.5 between primary and secondary windings, $L_2 = 1.59$ nH and $R_L = 50\Omega$, size L_1 and C_1 to obtain an equivalent input impedance of $S\Omega$ at S and S at S

[Solution: $L_1 = 1.237$ nH, $C_1 = 909.5$ fF, Q = 7]