#### IDI – Quantitative and Qualitative Methods for Human-Subject Experiments

#### **Motivation**

- Measuring the response of humans to different experiments is the only way to:
  - Evaluate how humans perceive, manipulate, reason with applications or webpages
  - Measure utility of applications and webpages
- Key issue in software development
- It is important to do before launching any product!





### **Outline**

- Motivation
- Validity of experiments
- Experiment design
- Data analysis





### Validity of experiments

- Experimental Validity
  - Does experiment really measure what we want it to measure?
  - Do our results really mean what we think (and hope) they mean?
  - Are our results reliable?
    - If we run the experiment again, will we get the same results?
    - Will others get the same results?





### Validity of experiments

- Experimental variables: Independent Variables
  - What the experiment is studying
  - Systematically varied by experiment
  - Example: stereopsis, at the levels of stereo, mono





#### Validity of experiments

- Experimental variables:
  - Independent variables can vary in two ways
    - Between-subjects: each subject sees a different level of the variable
      - Example: 1/2 of subjects see stereo, 1/2 see mono
    - Within-subjects: each subject sees all levels of the variable
      - Example: each subject sees both stereo and mono





### Validity of experiments

- Experimental variables: Dependent Variables
  - What the experiment measures
  - Assume dependent variables will be <u>affected by</u> <u>independent variables</u>
  - Must be <u>measurable quantities</u>
    - Time, task completion counts, error counts, survey answers, scores, etc.
    - Example: VR navigation performance, in total time; number of errors...





#### Validity of experiments

- Experimental variables: Confounding factors (or confounding variables)
  - Factors that are not being studied, but will still affect experiment
    - Example: stereo condition less bright than mono condition
  - Important to predict and control confounding factors, or experimental validity will suffer





### **Outline**

- Motivation
- Validity of experiments
- Experiment design
- Data analysis





- To avoid skewing effects, experiments must be designed carefully
  - E. g.: Learning a technique
    - After N repetitions of the same experiment, the user will go fast to solve the same problem
  - E. g.: Suffering fatigue
    - After N repetitions, if the task requires physical effort, the performance may suffer





- Counterbalancing design:
  - Avoid learning/fatigue effects by randomizing the tasks
    - Randomizing does not necessarily mean random,
    - but sorting adequately users and conditions (systematic variation)





### **Experiment design**

Let's imagine we have 10 subjects and we want to test solving the same task (e. g. buying a book) using two different websites:

| Subjects       | First shopping | Second shopping |
|----------------|----------------|-----------------|
| 1, 3, 5, 7, 9  | Website A      | Website B       |
| 2, 4, 6, 8, 10 | Website B      | Website A       |





- Let's imagine we want to test solving the same task (e. g. buying a book) using three different devices (desktop, tablet, and mobile).
  - We will have the following conditions:

|            | Website   |           |
|------------|-----------|-----------|
| Device     | Website A | Website B |
| Smartphone |           |           |
| Tablet     |           |           |
| Desktop    |           |           |





- Say that we want each user to perform each task 4 times
  - We will have 3 (devices) x 2 (websites) x 4 (repetitions) = 24 tasks
    - Note that this grows with a factorial explosion!!!
- To ensure reliability, those tests must be performed in the adequate order
  - Different for each subject





- Latin squares :
  - Tabular expression of systematic variations
  - Can be used to adequately sort experimental tasks
  - Counterbalances to avoid confounding factors
    - Within-subjects variables: control fatigue and learning effects
    - Between-subjects variables: control other factors that change with time (e. g. network speed, cache contents)





- Latin squares. Properties:
  - Every level appears in the every position the same number of times
  - Every level is followed by every other level
  - Every level is preceded by every other level





Latin squares. Examples:

2X2

6x3

4X4



| 1 | 2 | 3 |
|---|---|---|
| 2 | 3 | 1 |
| 3 | 1 | 2 |

| 1 | 3 | 2 |
|---|---|---|
| 2 | 1 | 3 |
| 3 | 2 | 1 |

| 1 | 2 | 3 | 4 |
|---|---|---|---|
| 2 | 4 | 1 | 3 |
| 3 | 1 | 4 | 2 |
| 4 | 3 | 2 | 1 |





- Studying the previous example 3 devices using 2 websites with 4 repetitions (different books):
  - If we consider that the book we want to buy does not affect the experiment.
  - Form a Cartesian product of Latin Squares:
    - 6 conditions (3 devices) x 2 conditions (2 webs) = 12 systematic variation
    - This will counterbalance properly a group of 12 subjects









### **Data analysis**

- Descriptive statistics:
  - Describe and explore data
  - All types of graphs, histograms...
    - Understand data distribution
    - Start to think of significance tests
- Inferential statistics:
  - Detect relationships in data
  - Significance tests
  - Infer population characteristics from sample characteristics







## **Data analysis**

- Hypothesis testing, analysis of variance
  - Read in the PDF, your notes of statistics previous courses...





## Adequate data representation

 The objective of a chart is to help user understand data





- Basic principles:
  - Avoid Pie charts
  - Avoid 3D projections of charts
  - Keep a high data to chart ratio
  - Use the appropriate graph for the appropriate purpose
    - And NEVER use a pie chart!









- Types of graphs
  - Trend graphs
  - Relative size graphs
  - Composition graphs
- Chartjunk: Unnecessary or confusing visual elements in charts and graphs





- Typical problems
  - Wrong graph type
  - Missing information (graph title, scale, labels,...)
  - Inconsistent scale (changes in the scale)
  - Misplaced zero point
  - Poor chart effects (ducks, shadows...)
  - Confusing of area and length
  - No adjustment for inflation
  - Too much precision
  - Poor ink-data balance













- Composition graphs
  - Pie-charts are inadequate:
    - People not able to compare angles properly
  - Better use segmented bar-chart where the bar (that streches from 0 to 100%) is segmented into pieces.
    - Most important segments at the top or the bottom









- Make sure that the graph is complete.
  - All axes must be labelled.
  - There should be a title on the graph

















