5

10

ABSTRACT

The present invention is directed to polymeric-prodrug transport forms of

E₁₋₄ are independently selected from the group consisting of hydrogen,

C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls,

C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls,

substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxy, phenoxy, C₁₋₆ heteroalkoxy,

$$= \begin{bmatrix} R_3 \\ C \\ R_4 \end{bmatrix}_{d1} \begin{bmatrix} M_2]_{e_1} \begin{bmatrix} Y_2 \\ C \end{bmatrix}_{f_1} \begin{bmatrix} R_5 \\ C \\ R_6 \end{bmatrix}_{g_1} \begin{bmatrix} M_3]_{h_1} \underbrace{\begin{bmatrix} R_7 \\ C \\ R_8 \end{bmatrix}_{i_1}}_{k_1} \begin{bmatrix} M_4]_{i_1} \underbrace{\begin{bmatrix} R_9 \\ C \\ R_{10} \end{bmatrix}_{i_1}}_{k_1} \begin{bmatrix} M_5]_{m_1} - \underbrace{C - B}_{i_1} \begin{bmatrix} M_2 \\ C \\ R_{10} \end{bmatrix}_{i_1}$$

and at least one of E_{1.4} includes a B moiety;

B is a leaving group, OH, a residue of a hydroxyl-containing moiety, a residue of an amine-containing moiety or E₅

wherein E₅ is independently selected from the same group which defines

$$E_{1.4}$$
;
 J_1 is $-\overset{\mathsf{E}_{1a}}{\overset{\mathsf{C}_{-\mathsf{E}_{2a}}}{\overset{\mathsf{E}_{3a}}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}}{\overset{\mathsf{E}_{3a}}}{\overset{\mathsf{E}_{3a}}}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}}{\overset{\mathsf{E}_{3a}}{\overset{\mathsf{E}_{3a}}}}}}}}}}}}}}}}$

 E_{1a-3a} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy, C_{1-6} heteroalkoxy,

or
$$\begin{array}{c|c} R_{3b} \\ \hline \begin{pmatrix} R_{3b} \\ C \\ R_{4b} \end{pmatrix}_{d4} & \begin{array}{c|c} Y_{2b} \\ C \\ R_{6b} \end{array} & \begin{array}{c|c} R_{5b} \\ C \\ R_{6b} \end{array} & \begin{array}{c|c} R_{7b} \\ C \\ R_{8b} \end{array} & \begin{array}{c|c} R_{9b} \\ C \\ R_{8b} \end{array} & \begin{array}{c|c} R_{9b} \\ C \\ R_{10b} \end{array} & \begin{array}{c|c} R_{9b} \\ R_{10b} \end{array} & \begin{array}{c|c} R_{3b} \\ R_{10b} \end{array} & \begin{array}{c|c} R_{10b} \\ R_{10b} \\ R_{10b} \\ R_{10b} \\ R_{10b} \end{array} & \begin{array}{c|c} R_{10b} \\ R_{$$

wherein B_1 is a leaving group, OH, a residue of a hydroxyl-containing moiety or a residue of an amine-containing moiety or E_6

wherein E₆ is independently selected from the same group which defines

10 E_{1-4} ;

5

$$J_2$$
 is $-\stackrel{\mathsf{E}_{1b}}{\overset{\mathsf{E}_{2b}}{\mathsf{E}_{2b}}}$,

wherein E_{1b-3b} are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxy, phenoxy, C₁₋₆ heteroalkoxy,

$$\begin{array}{c|c} \hline \begin{bmatrix} R_{3c} \\ \dot{C} \\ \dot{R}_{4c} \end{bmatrix}_{d5} & \begin{bmatrix} Y_{2c} \\ \dot{C} \\ \dot{R}_{6c} \end{bmatrix}_{f5} & \begin{bmatrix} R_{5c} \\ \dot{C} \\ \dot{R}_{6c} \end{bmatrix}_{g5} & \begin{bmatrix} R_{7c} \\ \dot{C} \\ \dot{R}_{8c} \end{bmatrix}_{15} & \begin{bmatrix} R_{9c} \\ \dot{C} \\ \dot{R}_{10c} \end{bmatrix}_{15} & \begin{bmatrix} R_{9c} \\ \dot{R}_{10$$

or
$$\begin{bmatrix} R_{3d} \\ C \\ R_{4d} \end{bmatrix}_{d6} = \begin{bmatrix} M_{2d} \end{bmatrix}_{e6} = \begin{bmatrix} R_{5d} \\ C \\ R_{6d} \end{bmatrix}_{e6} = \begin{bmatrix} R_{7d} \\ C \\ R_{6d} \end{bmatrix}_{e6} = \begin{bmatrix} R_{7d} \\ C \\ R_{8d} \end{bmatrix}_{e6} = \begin{bmatrix} R_{9d} \\ C \\ R_{10d} \end{bmatrix}_{e6} = \begin{bmatrix} M_{3d} \\ R_{10d}$$

wherein B₂ is a leaving group, OH, a residue of a hydroxyl-containing moiety or a residue of an amine-containing moiety;

G is a polymeric residue;

 $Y_{1\text{-}3},\,Y_{2a\text{-}d}$ and $Y_{3a\text{-}d}$ are each independently $O,\,S$ or NR_{11a}

 $M_{1.4},\,M_{2a-2d},\,M_{3a-3d},$ and M_{4a-4d} are each independently O, S or NR_{11b};

M₅ and M_{5a-d} are each independently X or Q,

wherein X is an electron withdrawing group and Q is a moiety containing a free electron pair positioned three to six atoms from $C(=Y_3)$ or $C(=Y_{3a-d})$;

 $R_{1\text{--}10}$, $R_{1a\text{--}11a}$, $R_{1b\text{--}11b}$, $R_{1c\text{--}10c}$ and $R_{1d\text{--}10d}$ are each independently selected from the group consisting of hydrogen, $C_{1\text{--}6}$ alkyls, $C_{3\text{--}12}$ branched alkyls, $C_{3\text{--}8}$ cycloalkyls, $C_{1\text{--}6}$ substituted alkyls, $C_{3\text{--}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls,

 C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy; and

a, b, c, d1-d6, e1-e6, f1-f6, g1-g6, h1-h6, i1-i6, j1-j6, k1-k6, l1-l6, m1-m6 are each independently zero or a positive integer.

15

5