Nonogram Solver Implementations

This repository contains a set of Python implementations for solving and visualizing Nonograms using techniques such as backtracking and line-solving. It includes visualization of the solving process and support for configurable Nonogram puzzles through constraints.

Features

• Backtracking-based Nonogram Solver:

- o Implements a constraint satisfaction problem (CSP) approach with
- o heuristics like Minimum Remaining Values (MRV) and forward checking.
- Outputs the solving process as a visual animation in MP4 format.

Line Solver:

- Solves Nonograms using domain consistency and line-by-line processing.
- Provides visualization for solving steps.

• Interactive Visualizations:

- Displays solving steps using Matplotlib animations.
- Supports custom clue input for both rows and columns.

Prerequisites

To run the scripts, ensure you have Python installed (version 3.7 or later). The following

Python libraries are required:

- numpy
- matplotlib
- tqdm
- opency-python

Install the dependencies using pip: pip install numpy matplotlib tqdm opencv-python

File Descriptions

1. Backtracking Algorithm Implementation.py

This script implements a CSP-based Nonogram solver with the following steps:

- Initializes the grid and domains based on row and column constraints.
- Applies heuristics like MRV and forward checking to reduce the search space.
- Saves the solving process as a video.

Usage

Run the script directly:

bash
Copy code
python Backtracking Algorithm Implementation.py

It includes sample constraints, but you can modify row_constraints and col_constraints for custom puzzles.

2. Line Solver Visualization.py

This script focuses on line-solving techniques without backtracking. It uses arc consistency to deduce the puzzle's solution iteratively.

Usage

Run the script:

bash Copy code python Line Solver Visualization.py

3. Line Solver Implementation.ipynb

A Jupyter Notebook providing interactive exploration of Nonogram solving techniques. Useful for debugging and step-by-step analysis.

Usage

Open the notebook:

bash

Copy code

jupyter notebook Line Solver Implementation.ipynb

Example Configuration

For each script, you can customize the puzzle by modifying the row_clues and col_clues. Example clues for a 5x5 grid:

Output

- Backtracking Solver:
 - Final solution printed in the console.
 - Video saved as nonogram_solution.mp4.
- Line Solver:
 - o Solution grid displayed in a Matplotlib animation.