MATH 100B: Homework #4

Due on Feb 8, 2024 at 12:00pm

Professor McKernan

Section A02 6:00PM - 6:50PM Section Leader: Castellano-Macías

Source Consulted: Textbook, Lecture, Discussion, Office Hour

Ray Tsai

A16848188

Let R be an integral domain. Let a and b be two elements of R. Show that if d and d' are both a gcd for the pair a and b, then d and d' are associates.

Proof. Since d and d' both divides a and b and d is a gcd, d'|d. However, d' is also a gcd, so d|d'. The result then follows.

Let R be a UFD.

- (a) Prove that for every pair of elements a and b of R, we may find an element m = [a, b] that is a least common multiple, that is
 - (i) a|m and b|m,
 - (ii) and if a|m' and b|m' then m|m'.

Show that any two lcm's are associates.

Proof. Let $a, b \in R$. If either a or b is 0, then 0 is the only possible common multiple of a and b, and thus 0 is their lcm. Since R is a UFD, we may put a and b into a standard form of prime factorizations

$$a = up_1^{m_1} p_2^{m_2} \dots p_k^{m_k}$$
 and $b = vp_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$,

where u, v are invertible and p_i and p_j are associates if and only if i = j. Let $m = p_1^{l_1} p_2^{l_2} \dots p_k^{l_k}$ such that $l_i = \max(m_i, n_i)$. It is obvious that a|m and b|m. Suppose that a|m' and b|m'. Then, $m' = op_1^{h_1} p_2^{h_2} \dots p_k^{h_k}$, where $h_i \geq m_i$ and $h_i \geq n_i$, for all i. However, this means that $h_i \geq \max(m_i, n_i)$, so m|m'. Hence, m is a least common multiple of a and b. Suppose that m' is also a least common multiple of a, b. Then, we have m'|m, which makes m and m' associates.

(b) Show that if (a, b) denotes the gcd then (a, b)[a, b] is an associate of ab.

Proof. Again, we put a and b into a standard form of prime factorizations

$$a = u p_1^{m_1} p_2^{m_2} \dots p_k^{m_k} \quad \text{and} \quad b = v p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}.$$

Let $d = \alpha p_1^{s_1} p_2^{s_2} \dots p_k^{s_k}$, $m = \beta p_1^{l_1} p_2^{l_2} \dots p_k^{l_k}$, where d = (a, b), m = [a, b], and α, β are invertible. Then, we know $l_i = \max(m_i, n_i)$ and $s_i = \min(m_i, n_i)$, for all i. However, this means that $l_i + s_i = m_i + n_i$, and thus

$$dm = \alpha \beta p_1^{m_1 + n_1} p_2^{m_2 + n_2} \dots p_k^{m_k + n_k} = \alpha \beta (uv)^{-1} ab.$$

Since $\alpha\beta(uv)^{-1}$ is invertible, dm and ab are associates, and this completes the proof.

Find the greatest common divisor of the following polynomials over \mathbb{Q} ,

(a) $x^3 - 6x + 7$ and x + 4.

Proof. x+4 is prime as it is degree 1, so either $x+4|x^3-6x+7$ or they are coprime. However, $x^3-6x+7=(x+4)(x^2-4x+10)-33$, so the greatest common divisor of the two polynomials is 1. \Box

(b) $x^3 - 1$ and $x^7 - x^4 + x^3 - 1$.

Proof. Note that $x^7 - x^4 + x^3 - 1 = (x^3 - 1)(x^4 + 1)$, so $x^3 - 1$ is their common divisor.

Find the greatest common divisor of 135 - 14i and 155 + 34i in the ring of Gaussian integers $\mathbb{Z}[i]$.

Proof. We apply the Euclidean Algorithm. Since

$$\frac{155 + 34i}{134 - 14i} = \frac{\left(134 + 14i\right)\left(155 + 34i\right)}{135^2 + 14^2} = \frac{20294 + 6726i}{18421} \approx 1.1 + 0.37i,$$

we may pick q = 1 and the remainder is r = (155 + 34i) - (135 - 14i)q = 20 + 48i.

Since

$$\frac{135 - 14i}{20 + 48i} = 0.75 - 2.5i,$$

we may pick q = 1 - 2i and the remainder r = (135 - 14i) - (20 + 48i)q = 19 - 22i.

Since

$$\frac{20 + 48i}{19 - 22i} = -0.8 + 1.6i,$$

we may pick q = -1 + 2i and the remainder r = (20 + 48i) - (19 - 22i)q = -5 - 12i.

Since

$$\frac{19 - 22i}{-5 - 12i} = 1 + 2i,$$

-5-12i|19-22i so there are no remainders left. Hence, the gcd of 135-14i and 155+34i is -5-12i. \square

(a) Show that the elements 2, 3 and $1 \pm \sqrt{-5}$ are irreducible elements of $R = \mathbb{Z}[\sqrt{-5}]$.

Proof. Define $f: \mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}_{>0}$ as $f(a+b\sqrt{-5}) = a^2 + 5b^2$. For $a+b\sqrt{-5} \in R$, we know

$$\begin{split} f((a+b\sqrt{-5})(c+d\sqrt{-5})) &= f(ac-5bd+(ad+bc)\sqrt{-5}) \\ &= a^2c^2 + 5a^2d^2 + 5b^2c^2 + 25b^2d^2 \\ &= (a^2+5b^2)(c^2+5d^2) \\ &= f(a+b\sqrt{-5})f(c+d\sqrt{-5}), \end{split}$$

and $f(a+b\sqrt{-5}) \ge 0$. Notice that $f(a+b\sqrt{-5}) \ge 5$ if b is positive, so $f(a+b\sqrt{-5}) = a^2 + 5b^2 = 1$ if and only if $a+b\sqrt{-5} = 1$, and thus $f(a+b\sqrt{-5}) \ge 2$ when $a+b\sqrt{-5}$ is not 0 or 1.

Let $m = a + b\sqrt{-5}$, $n = c + d\sqrt{-5} \in R$. Suppose that mn = 2. Then, f(2) = 4 = f(m)f(n), so f(m) or f(n) is a multiple of 2. Suppose that f(m) is a multiple of 2. We know $f(m) = a^2 + 5b^2$ cannot be 2, as f(m) > 2 if b is positive but there are no integers such that $a^2 = 2$, so f(m) = 4. But then f(n) = 1, so n = 1, which is invertible. Hence, 2 is irreducible.

Suppose that mn = 3. Similarly, f(3) = 9 = f(m)f(n), so f(m) or f(n) is a multiple of 3. Suppose that f(m) is a multiple of 3. We know $f(m) = a^2 + 5b^2$ cannot be 3, as f(m) > 3 if b is positive but there are no integers such that $a^2 = 3$, so f(m) = 9. But then f(n) = 1, so n = 1, which is invertible. Hence, 3 is irreducible.

Suppose that $mn = 1 \pm \sqrt{-5}$. Then, $f(1 \pm \sqrt{-5}) = f(m)f(n) = 6$. Suppose for the sake of contradiction that $m, n \neq 1$. Then, either f(m) or f(n) must be 2. However, we already know $f(k) \neq 2$ for all $k \in R$, contradiction. Hence, either m or n is 1, so $1 \pm \sqrt{-5}$ is irreducible.

(b) Show that every element of R can be factored into irreducibles.

Proof. By Proposition 6.11, it suffices to show that the set of principal ideals of R satisfies ACC. Suppose that we have an increasing sequence of principal ideals of R

$$\langle a_1 \rangle \subset \langle a_2 \rangle \subset \cdots \subset \langle a_n \rangle \subset \cdots$$

for $a_1 \neq 0$ and $a_i = a_j$ if and only if i = j. Suppose for the sake of contradiction that the increasing sequence does not stabilize. Since for $i \in \mathbb{Z}^+$, $a_{i+1} = ka_i$ for some $k \in R$, we know $f(a_{i+1}) = f(k)f(a_i)$. Hence, $f(a_{i+1}) \geq 2f(a_i)$, as $k \neq 1$. Since the sequence does not stabilize and $f(a_i)$ is finite, $f(a_n) < 1$ for large enough n. But then $a_n = 0$, which forces $\langle a_n \rangle = \{0\}$, and this contradiction completes the proof.

(c) Show that R is not a UFD.

Proof. Consider 2. We already know 2 is irreducible. Notice that, $2|(1+\sqrt{-5})(1-\sqrt{-5})$. Suppose for the sake of contradiction that $2=x(1+\sqrt{-5})$, for some $x\in R$. Then, $x=\frac{1-\sqrt{-5}}{3}\notin R$, contradiction. Similarly, we also know $2\nmid 1-\sqrt{-5}$. Hence, 2 does not divide $1\pm\sqrt{-5}$, so 2 is not prime. The result now follows from Proposition 6.17.