Paul Gustafson

Texas A&M University - Math 482

Instructor: Dr. David Larson

Cantor Spaces in \mathbb{R}

This paper describes some basic properties of Cantor subspaces of the real line. It includes an application of these Cantor subspaces to a characterization of the countability of closed subsets of \mathbb{R} in terms of some simple exterior measures.

Recall that a *perfect* set is a set for which every point is a limit point. A set S is called *totally disconnected* if for every $x,y\in S$, there exist disjoint open sets $U,V\subset S$ such that $x\in U,\,y\in V$, and $U\cup V=S$.

Definition 1. A Cantor space is a non-empty, totally disconnected, perfect, compact metric space.

Example 1. Let $C_0 := [0,1]$, $C_1 := [0,1/3] \cup [2/3,1]$, and $C_2 = [0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$. Similarly, for i > 2, let C_i be the closed set given by removing the open middle third of each interval of C_{i-1} . The ternary Cantor set

$$\Delta := \bigcap_{i=0}^{\infty} C_i$$

is a Cantor space.

Proof. Since $0 \in C_i$ for all i, Δ is non-empty. Since each interval in C_i is of length 3^{-i} , Δ is totally disconnected. It is closed and bounded, so compact by the Heine-Borel theorem.

To see that Δ is perfect, first note that the endpoints of any interval in any C_i remain endpoints of intervals in C_{i+1} , and $C_{i+1} \subset C_i$. Hence, every point that is an endpoint of an interval in some C_i is in Δ . Now, fix $x \in \Delta$. Given $\epsilon > 0$, there exists a C_i whose intervals are of length less than ϵ . Hence, both endpoints of the interval in C_i containing x are within ϵ of x, and are members of Δ . Thus, x is a limit point, so Δ is perfect.

Theorem 1. Let K be a Cantor space. If $A \subset K$ is nonempty and clopen, then A is Cantor.

Proof. A is compact since it is closed in K, and totally disconnected since it is open. To see that A is perfect, let $x \in A$. Since K is perfect, there exists a sequence $(x_n) \subset K$ such that $x_n \to x$. Since A is open, all but a finite number of x_n lie in A.

Theorem 2. If $A \subset \mathbb{R}$ is a Cantor space, then there is a order-preserving homeomorphism $f: A \to \{0,1\}^{\mathbb{N}}$, where $\{0,1\}^{\mathbb{N}}$ is ordered lexicographically and equipped with the product metric $d(x,y) = \sum_{i=1}^{n} |x(i) - y(i)| 2^{-n}$.

Proof. Step 1. Let $a := \inf(A)$, and $d := \sup(A) - a = \operatorname{diam}(A)$. Since A is totally disconnected, there exists $c \in [a + \frac{d}{4}, a + \frac{3d}{4}] \setminus A$. Then $M_0 := (-\infty, c) \cap A$ and $M_1 := (c, \infty) \cap A$ are clopen relative to A, hence Cantor spaces by Theorem 1. Moreover, $\operatorname{diam}(M_i) \leq \frac{3}{4}\operatorname{diam}(A)$ for i = 0, 1.

Step 2. For n > 1, apply Step 1 to M_t for each $t \in \{0,1\}^{n-1}$ to get clopen Cantor spaces $M_{t,0}, M_{t,1} \subset M_t$ with $M_{t,0} < M_{t,1}$ and $\operatorname{diam}(M_{t,i}) \leq \frac{3}{4}\operatorname{diam}(M_t)$ for i = 0, 1. By recursion on n, for all $r, s \in \{0, 1\}^n$ we have $\operatorname{diam}(M_s) \leq \left(\frac{3}{4}\right)^n \operatorname{diam}(A)$, and if r < s in the lexicographical ordering then $M_r < M_s$, i.e. $x \in M_r, y \in M_s$ implies x < y. Moreover, for any fixed $n, A = \bigcup_{s \in \{0,1\}^n} M_s$.

Step 3. Fix $x \in A$. The construction in Step 2 generates a descending sequence of sets $(M_{t_n})_{t_n \in \{0,1\}^n}$, each containing x. Since for all n we have $t_{n+1} = t_n, i$ for some $i \in \{0,1\}$, this sequence of sets determines a unique element $f(x) \in \{0,1\}^{\mathbb{N}}$ such that, for any n, the first n entries of f(x) are t_n . To see that f is bijective, note that if $t \in \{0,1\}^{\mathbb{N}}$ and $t_n = (t(1), t(2), ...t(n))$, then $f^{-1}(t) = \bigcap_{n=1}^{\infty} M_{t_n}$ contains exactly one point, since M_{t_n} is a descending chain of compact sets with diameters going to 0.

To see that f is continuous, let $x \in A$. If $x_m \to x$ then, for every M_{t_n} containing x, all but finitely many x_m lie in M_{t_n} since M_{t_n} is open relative to A. Thus, $f(x_m) \to f(x)$ since $\operatorname{diam}(f(M_{t_n})) = 2^{-n} \to 0$ as $n \to \infty$. Since A is compact, the continuity of f implies f^{-1} is also continuous.

To see that f is order-preserving, if x < y there exists n so large that $x \in M_s, y \in M_t$ for s, t of length n with $s \neq t$. By Step 2, this implies s < t. Hence, f(x) < f(t).

Theorem 3. If $S \subset \mathbb{R}$ is a Cantor space, there exists a nondecreasing, onto, continuous function $g: S \to [0, 1]$.

Proof. Let $h:\{0,1\}^{\mathbb{N}}\to [0,1]$ be defined by $h(x)=\sum_{i=0}^{\infty}x(i)2^{-i}$. Defining f as in Theorem 2, let $g=h\circ f$. Thus, it suffices to show that h is nondecreasing, onto, and continuous.

Let $x,y\in\{0,1\}^{\mathbb{N}}$. Then $|h(x)-h(y)|=|\sum_{i=0}^{\infty}(x(i)-y(i))2^{-i}|\leq\sum_{i=0}^{\infty}|x(i)-y(i)|2^{-i}=d(x,y)$, so h is continuous. If x< y, then there exists a minimal n such that $x(n)\neq y(n)$. By the definition of lexicographical ordering, x(n)=0 and y(n)=1. Thus, $h(y)-h(x)=\sum_{i=n}^{\infty}(y(i)-x(i))2^{-i}=2^{-n}+\sum_{i=n+1}^{\infty}(y(i)-x(i))2^{-i}\geq 2^{-n}+\sum_{i=n+1}^{\infty}(-1)2^{-i}=0$. Hence, h is nondecreasing. To see that h is onto, let $E_n:=\{x\in\{0,1\}^{\mathbb{N}}:x(i)=0\text{ for all }i>n\}$. Then each $h(E_n)$ is a 2^{-n+1} -net for [0,1], so the image of h is dense in [0,1]. Since S is compact, h(S) is compact, so h is onto.

Lemma 1. If $f:[a,b] \to [0,1]$ is nondecreasing and onto, then f is continuous.

Proof. Let $c \in (a,b]$. Since f is nondecreasing, $\sup_{x < c} f(x) \le f(c) = \inf_{x \ge c} f(x)$. Hence, since f is onto, $\sup_{x < c} f(x) = f(c)$. To see that f(c-) = f(c), set $\epsilon > 0$. By the definition of supremum, there exists a < c such $f(c) - f(a) < \epsilon$. Then if a < x < c, since f is nondecreasing, $f(c) - f(x) < \epsilon$. Hence, f(c-) = f(c). The proof for right continuity is analogous.

Lemma 2. Every compact metric space K can be written as $K = A \cup B$, where A is perfect (hence compact), B is countable, and $A \cap B = \emptyset$.

Proof. Let U be a countable base for K. Let $V:=\{S\in U: S \text{ is countable}\}$, and $W:=U\setminus V$. Then $B:=\bigcup_{S\in V}S$ is countable and open. Let $A:=K\setminus B$. Then A is closed, hence compact.

I claim that $\widetilde{W} := \{S \cap A : S \in W\}$ is a base for the topology of A. Suppose $C \subset A$ is open in A, and $x \in C$. Then $C \cup B$ is open in K, so there exists $S \in U$ with $x \in S \subset (C \cup B)$. Since $x \notin B$, S cannot be countable, so $S \in W$. Hence, $x \in S \cap A \subset C$, so \widetilde{W} is a base for A.

Note that every element of W is uncountable, so, since B is countable, every element of \widetilde{W} is also uncountable. Thus, A has no isolated points, so A is perfect.

Definition 2. Given an nondecreasing function $\alpha : \mathbb{R} \to \mathbb{R}$, the α -exterior measure of a set $E \subset \mathbb{R}$ is defined to be

$$m_{\alpha}^*(E) := \inf\{\sum_{i=1}^{\infty} \alpha(b_i) - \alpha(a_i) : E \subset \bigcup_{i=1}^{\infty} (a_i, b_i)\}$$

Theorem 4. Let $E \subset \mathbb{R}$ be a closed set. Then E is countable iff $m_{\alpha}^*(E) = 0$ for all nondecreasing, continous $\alpha : \mathbb{R} \to \mathbb{R}$.

Proof. The forward implication is obvious. For the converse, suppose E were uncountable. If E contains a nontrivial interval, then let α be the identity. Since E contains an interval, it contains a compact set of the form [a,b] for a < b. Hence, any cover of E by open intervals must contain a finite subcover of [a,b]. The sum of the lengths of intervals in this subcover must be at least b-a, so $m_{\alpha}^{*}(E) \geq b-a > 0$, a contradiction.

Suppose E does not contain any nontrivial intervals. Note that $E \cap [n, n+1]$ must be uncountable for some n, so WLOG, E is compact. Then, by Lemma 2, $E = A \cup B$ where A is a Cantor space and B is countable. Since $A \subset E$, $m_{\alpha}^*(A) \leq m_{\alpha}^*(E)$, so it suffices to show that $m_{\alpha}^*(A) > 0$.

Let $f:A\to [0,1]$ be the increasing, onto, continuous function defined in Theorem 3. Define

$$\alpha(x) = \left\{ \begin{array}{ll} 0 & : x \leq \inf(A) \\ \sup\{f(y) : y \in A \cap (-\infty, x)\} & : x > \inf(A) \end{array} \right.$$

Since A is closed and f is onto [0,1], α is onto [0,1]. Also, α is clearly non-decreasing. Since α is constant outside $(\inf(A), \sup(A))$, Lemma 1 implies α is continuous.

Let U be a cover of A by open intervals. Since A is compact, there exists a finite subcover $F \subset U$. Denote the elements of F by $((a_i, b_i))_{i=1}^n$, sorted so that $a_i \leq a_{i+1}$ for all i < n. If $b_{i+1} < b_i$ for some i < n, then $(a_{i+1}, b_{i+1}) \subset (a_i, b_i)$. Since F is finite, we can recursively throw out all such redundant sets. This procedure only reduces the sum of interval lengths of F, so we may assume

 $b_i \leq b_{i+1}$ for all i < n. For i < n, if $b_i \geq a_{i+1}$, then $\alpha(b_i) - \alpha(a_{i+1}) \geq 0$ since α is nondecreasing. On the other hand, if $b_i < a_{i+1}$, then $\alpha(b_i) - \alpha(a_{i+1}) = 0$ since $A \cap [b_i, a_{i+1}] = \emptyset$. Thus, $\sum_{i=1}^n \alpha(b_i) - \alpha(a_i) \ge \alpha(b_n) - \alpha(a_1) = 1$. Hence, $m_{\alpha}^*(A) \ge 1$.

Acknowledgements

I am grateful to Bill Johnson for discussing this material in his Math 446/447 Real Analysis courses at Texas A&M University. I am also indebted to Dave Larson for his advice and instruction.

References

- [1] Carothers N.L., Real Analysis. Cambridge University Press, 2000.
- [2] Munkres, James R., Topology. Prentice Hall, 2000.