ADVANCED CALCULUS & NUMERICAL METHODS 18MAT21

MODULE-V

IMPORTANT RESULTS:

1. Divided differences with equal length of interval: Suppose y = f(x) be a function, let $y_0, y_1, y_2, y_3, \dots, y_n$ be the set of values corresponding to its arguments $x_0, x_1, x_2, x_3, \dots, x_n$ with the equal length of interval h, then FORWARD DIVIDED DIFFERENCE TABLE:

BACKWARD DIVIDED DIFFERENCE TABLE:

2. Newton's forward interpolation formula:

$$y(x) = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \frac{p(p-1)(p-2)(p-3)}{4!} \Delta^4 y_0 + \dots ,$$
 Where $p = \frac{x - x_0}{h}$

3. Newton's backward interpolation formula:

$$y(x) = y_n + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + \frac{p(p+1)(p+2)}{3!}\nabla^3 y_n + \frac{p(p+1)(p+2)(p+3)}{4!}\nabla^4 y_n + \dots$$
, Where $p = \frac{x - x_n}{h}$

4. Newton's divided difference formula for unequal intervals:

$$f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3) + \dots + (x - x_0)(x - x_1)(x - x_2)\dots(x - x_{n-1})f(x_0, x_1, x_2, \dots x_n)$$

5. Lagrange's interpolation formula for unequal intervals:

$$y(x) = \frac{(x - x_1)(x - x_2)(x - x_3)....(x - x_n)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)....(x_0 - x_n)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)....(x - x_n)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)....(x_1 - x_n)} y_1 + \frac{(x - x_0)(x - x_1)(x_0 - x_3)....(x - x_n)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)....(x_2 - x_n)} y_2 +$$

- 6. Newton Raphson method:
 - i) Write the given transcendental equation as f(x) = 0.
 - ii) Choose the nearest root x_0 , for which $f(x_0)(0)$.
 - iii) Do the iterations by using $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}, n = 0,1,2,3,...$
- 7. Regula-False method.
 - i) Write the given transcendental equation as f(x) = 0.
 - ii) Choose the nearest root x_0 and x_1 , for which $f(x_0)(0)$ and $f(x_1)(0)$.

iii)
$$x_2 = \frac{x_1 f(x_0) - x_0 f(x_1)}{f(x_0) - f(x_1)}$$

8. Numerical Integration:

Simpson's
$$\frac{1}{3}rd$$
 Rule : $\int_{a}^{b} f(x)dx = \frac{h}{3}[(y_0 + y_n) + 2(y_2 + y_4 +) + 4(y_1 + y_3 +y_{n-1})]$
, $h = \frac{b-a}{n}$

ii) Simpson's
$$\frac{3}{8}th$$
 rule
$$\int_{a}^{b} f(x)dx = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 +) + 2(y_3 + y_6 +y_{n-3})], h = \frac{b-a}{n}$$

iii) Weddle's Rule:

$$\int_{a}^{b} f(x)dx = \frac{3h}{10} [y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6], h = \frac{b-a}{n} \text{ and } n \text{ should be a 6.}$$

PROBLEMS

1. The area A of a circle of diameter d is given for the following values.

	d	80	85	90	95	100
Ī	A	5026	5674	6362	7088	7854

Calculate the area of circle of diameter 105.

Solution:

d=x y=A
$$\nabla y$$
 $\nabla^2 y$ $\nabla^3 y$ $\nabla^4 y$
80 5626
648
85 5674 40
688 -2
90 6362 38 $4=\nabla^4 y_4$
726 $2=\nabla^3 y_4$
95 7088 $40=$
 $\nabla^2 y_4$
100 7854= y_4

By the Newton's backward interpolation formula, we have

$$y(x) = y_4 + p\nabla y_4 + \frac{p(p+1)}{2!}\nabla^2 y_4 + \frac{p(p+1)(p+2)}{3!}\nabla^3 y_4 + \frac{p)p+1)(p+2)(p+3)}{4!}\nabla^4 y_4$$
Where $p = \frac{x - x_4}{h}$

$$\therefore p = \frac{105 - 100}{5} = 1$$

$$\therefore y(105) = 7854 + 766(1) + \frac{(1)(2)(40)}{2} + \frac{(1)(2)(3)(2)}{6} + \frac{(1)(2)(3)(4)(4)}{24}$$

$$\Rightarrow y(105) = 7854 + 766 + 40 + 2 + 4$$

$$\Rightarrow y(105) = 8666$$

Thus the area A corresponding to diameter 105 is 8666

2. From the data given below, find the number of students who obtained i) Less than 45 marks ii) Between 40 and 45 marks.

Marks	0-40	41-50	51-60	61-70	71-80
No.os Students	31	42	51	35	31

Let x be the marks obtained the students and let y = f(x) be the number of students getting less than x marks.

$$x$$
 $y = f(x)$ Δy $\Delta^2 y$ $\Delta^3 y$ $\Delta^4 y$ < 40 31 42 50 73 9 51 -25 60 124 -15 37 70 159 -4 31 80 190

By the Newton's forward interpolation formula, we have

$$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \frac{p)p-1)(p-2)(p-3)}{4!}\Delta^4 y_0$$
Where $p = \frac{x-x_0}{h}$

$$\therefore p = \frac{45-40}{10} = 0.5$$

$$\therefore y(45) = 31 + (0.5)(42) + \frac{(0.5)(0.5-1)(9)}{2} + \frac{(0.5)(0.5-1)(0.5-2)(-25)}{6} + \frac{(0.5)(0.5-1)(0.5-2)(0.5-3)(37)}{24}$$

$$\Rightarrow y(45) = 31 + 21 - 1.125 - 1.5625 - 1.445$$

$$\Rightarrow y(45) = 47.8675$$

$$\Rightarrow y(45) = 48$$

- ... The number of students, who obtained less than 45 marks = 48 Since the number of students who obtained less than 40 marks is 31
- ... The number of students, who obtained marks between 40 to 45 is : 48-31 =17
- 3. Use appropriate interpolating formula to compute y(82) and y(98) for the data.

x	80	85	90	95	100
y = f(x)	5026	5674	6362	7088	7854

100 $7854 = y_4$

To find y(82):

By the Newton's interpolation, we have

$$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \frac{p)p-1)(p-2)(p-3)}{4!}\Delta^4 y_0 \qquad ,$$
 Where $p = \frac{x-x_0}{h}$
$$\therefore p = \frac{82-80}{5} = 0.4$$

$$\therefore y(82) = 5026 + (0.4)(648) + \frac{(0.4)(-0.6)(40)}{2} + \frac{(0.4)(-0.6)(-1.6)(-2)}{6} + \frac{(0.4)(-0.6)(-1.6)(-2.6)(4)}{24}$$

$$\Rightarrow y(82) = 5026 + (0.4)(648) + (0.4)(-0.6)(20) + (0.4)(-0.6)(-1.6)(-0.3333) + (0.4)(-0.6)(-1.6)(-2.6)(0.1666)$$
 To
$$\Rightarrow y(82) = 5280.1$$
 find $y(98)$:

By the Newton's backward formula, we have

$$y(x) = y_4 + p\nabla y_4 + \frac{p(p+1)}{2!}\nabla^2 y_4 + \frac{p(p+1)(p+2)}{3!}\nabla^3 y_4 + \frac{p(p+1)(p+2)(p+3)}{4!}\nabla^4 y_4$$
Where $y = \frac{x - x_4}{4!}$

Where
$$p = \frac{x - x_4}{h}$$

$$\therefore p = \frac{98 - 100}{5} = -0.4$$

$$\therefore y(98) = 7854 + 766((-0.4)) + \frac{(-0.4)(0.6)(40)}{2} + \frac{(-0.4)(0.6)(1.6)(2)}{6} + \frac{(-0.4)(0.6)(1.6)(2.6)(4)}{2} + \frac{(-0.4)(0.6)(1.6)(2.6)(4)}{24}$$

$$\Rightarrow y(98) = 7854 + (0.4)(766) + (-0.4)(0.6)(20) + (-0.4)(0.6)(1.6)(0.3333) + (-0.4)(0.6)(1.6)(2.6)(0.1666)$$

$$y(98) = 7547.30$$

4. The table gives the distances in nutrical miles of the visible horizon for the given heights in feet above the earth's surface:

x = I	Height	100	150	200	250	300	350	400
y = D	is tan ce	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find the values of y at i) x=160 ft . ii) x=410ft.

Solution:

We can find the distance at both x=160 and x=410 by using Newton's forward and Backward formulas simultaneously.

The divided difference table as follows.

X	y	I DD	II DD	III DD	IV DD	V DD	VI DD
100	10.63						
		2.4					
150	13.03		-0.39				
		2.01		0.15			
200	15.04		-0.24		-0.07		
		1.77		0.08		0.02	
250	16.81	4.04	-0.16	0.00	-0.05	0.04	0.02
000	40.40	1.61	0.40	0.03	0.04	0.04	
300	18.42	4 40	-0.13	0.02	-0.01		
350	19.90	1.48	-0.11	0.02			
330	19.90	1.37	-0.11				
400	21.27	1.57					

(i) Since x = 160 ft. is near to the x_0 . To Find y(160):

$$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \frac{p(p-1)(p-2)(p-3)}{4!}\Delta^4 y_0$$
Where $p = \frac{x - x_0}{h}$

$$\therefore p = \frac{160 - 100}{50} = 1.2$$

$$\begin{split} y(x) &= y_n + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!} \nabla^3 y_n + \frac{p)p+1)(p+2)(p+3)}{4!} \nabla^4 y_n + \dots, \\ \text{, Where } p &= \frac{x - x_n}{h} \\ &\Rightarrow p = \frac{410 - 400}{50} = 0.2 \\ &\therefore y(410) = 21.27 + 0.2(1.7) + \frac{0.2(1.2)(-0.11)}{2} + \frac{0.2(1.2)(2.2)(0.02)}{6} + \frac{0.2(1.2)(2.2)(3.2)(-0.01)}{24} + \frac{0.2(1.2)(2.2)(3.2)(4.2)(0.04)}{120} + \frac{0.2(1.2)(2.2)(3.2)(4.2)(0.02)}{720} \\ &\Rightarrow y(410) = 21.27 + 0.274 - 0.0132 + 0.00176 - 0.000704 + 0.002365 + 0.001025 \\ &\Rightarrow y(410) = 21.5352 \end{split}$$

5. Use an appropriate interpolation formula to compute f(42) using the following data.

х	40	50	60	70	80	90
y = f(x)	184	204	226	250	276	304

Solution:

We can find the solution of f(42) by using Newton's forward interpolation formula , because the value of x=42 is near to x_{θ} , the formula is

$$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \frac{p(p-1)(p-2)(p-3)}{4!}\Delta^4 y_{0+\dots}$$
Where $p = \frac{x - x_0}{h}$

6. Find the equation of the polynomial , which passes through (4,-43),(7,83),(9,327),(12,1053) using Newton's divided difference interpolation formula.

Solution:

The Newton's divided difference table for unequal intervals as follows.

$$x \quad y = f(x) \quad \text{IDD} \quad \text{IIIDD} \quad \text{IIIDD$$

7. Using Newton's divided difference interpolation formula fit a polynomial for the following data.

х	2	4	5	6	8	10
y = f(x)	10	96	196	350	868	1746

Newton's divided difference table for unequal intervals as follows.

8. Use Lagrange's interpolation formula to find f(4) for the following data.

X	0	2	3	6
y = f(x)	-4	2	14	158

Solution:

Given
$$x_0 = 0$$
, $x_1 = 2$, $x_2 = 3$, $x_3 = 6$
 $y_0 = -4$, $y_1 = 2$, $y_2 = 14$, $y_3 = 158$

We know that

$$y(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

$$\Rightarrow y(4) = \frac{(4-2)(4-3)(4-6)(-4)}{(0-2)(0-3)(0-6)} + \frac{(4-0)(4-3)(4-6)(2)}{(2-0)(2-3)(2-6)} + \frac{(4-0)(4-2)(4-6)(14)}{(3-0)(3-2)(3-6)} + \frac{(4-0)(4-2)(4-3)(158)}{(6-0)(6-2)(6-3)}$$

$$\Rightarrow y(4) = -0.44 - 2 + 24.89 + 17.56$$

$$\Rightarrow y(4) = 40.81$$

9. Applying Lagrange's interpolation formula to find $\mathit{u}(4)$ for the data

$$u_0 = 707$$
, $u_2 = 819$, $u_3 = 866$, $u_6 = 966$

Solution:

Let
$$x_0 = 0$$
, $x_1 = 2$, $x_2 = 3$, $x_3 = 6$
 $y_0 = 707$, $y_1 = 819$, $y_2 = 866$, $y_3 = 966$

We know that

$$y(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_2)(x_1 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

$$\Rightarrow y(4) = \frac{(4 - 2)(4 - 3)(4 - 6)(707)}{(0 - 2)(0 - 3)(0 - 6)} + \frac{(4 - 0)(4 - 3)(4 - 6)(819)}{(2 - 0)(2 - 3)(2 - 6)} + \frac{(4 - 0)(4 - 2)(4 - 3)(966)}{(3 - 0)(3 - 2)(3 - 6)} + \frac{(4 - 0)(4 - 2)(4 - 3)(966)}{(6 - 0)(6 - 2)(6 - 3)}$$

$$\Rightarrow y(4) = 78.56 - 819 + 1539.56 + 107.$$

$$\Rightarrow y(4) = 906.45$$

10. Write an interpolating polynomial of the form x = f(y) and hence find x(5) and y(5) for the following data.

x	2	10	17
y = f(x)	1	3	4

Solution:

Let
$$x_0 = 2 \ x_1 = 10 \ x_2 = 17$$

 $y_0 = 1, \ y_1 = 3, \ y_2 = 4,$

By the inverse Lagrange's interpolation formula, we have

$$x(y) = \frac{(y - y_1)(y - y_2)}{(y_0 - y_1)(y_0 - y_2)} x_0 + \frac{(y - y_0)(y - y_2)}{(y_1 - y_0)(y_1 - y_2)} x_1 + \frac{(y - y_0)(y - y_1)}{(y_2 - y_0)(y_2 - y_1)} x_2$$

11. Find the root of the equation $Cosx = xe^x$ using Regula-falsi method.

Solution:

Given

 $v = \pm 2$

$$Cosx = xe^{x}$$

$$\Rightarrow Cosx - xe^{x} = 0$$

$$\therefore f(x) = Cosx - xe^{x}$$
Let $x_0 = 0$, $x_1 = 0$

$$\Rightarrow f(x_0) = f(0) = 1 > 0$$

$$f(x_1) = f(1) = -2.1779 < 0$$

The root lies between 0 and 1

By the Regula-falsi method, we have

$$x_{2} = \frac{x_{0} f(x_{1}) - x_{1} f(x_{0})}{f(x_{1}) - f(x_{0})}$$

$$\Rightarrow x_{2} = \frac{(0)(-2.1779) - (1)(1)}{-2.1779 - 1} = 0.31467$$

$$\therefore f(x_{2}) = f(0.31467) = 0.51987 > 0$$

$$\therefore x_{3} = \frac{x_{2} f(x_{1}) - x_{1} f(x_{2})}{f(x_{1}) - f(x_{2})}$$

$$\Rightarrow x_{3} = \frac{(0.31467)(-2.1779) - (1)(0.51987)}{-2.1779 - 0.51987} = 0.44672$$

$$\therefore f(x_{3}) = f(0.44672) = 0.20356 > 0$$

$$\therefore x_4 = \frac{x_3 f(x_1) - x_1 f(x_3)}{f(x_1) - f(x_3)}$$

$$x_4 = \frac{(0.44672)(-2.17790.) - (1)(0.20356)}{-2.1779 - 0.2.356}$$

$$\therefore x_4 = 0.49402$$
Similarly, we can get
$$\therefore x_5 = 0.50995$$

$$\Rightarrow x = 0.5100 \text{ be approximate real root.}$$

12. Solve $xe^x - 2 = 0$ by Regula-falsi method.

Solution:

$$xe^{x} - 2 = 0$$
Given $\Rightarrow f(x) = 0$

$$\therefore f(x) = xe^{x} - 2$$
Let $x_{0} = 0.8$, $x_{1} = 0.9$

$$\Rightarrow f(x_{0}) = f(0.8) = -0.2195 < 0$$

$$f(x_{1}) = f(0.9) = 0.2136 > 0$$

$$x_{2} = \frac{x_{0}f(x_{1}) - x_{1}f(x_{0})}{f(x_{1}) - f(x_{0})}$$

$$\Rightarrow x_{2} = \frac{(0.8)(0.2136) - (0.9)(-0.2195)}{0.2136 + 0.2195} = 0.8506$$

$$\therefore f(x_{2}) = f(0.8536) = -0.0087 < 0$$

$$\therefore x_{3} = \frac{x_{2}f(x_{1}) - x_{1}f(x_{2})}{f(x_{1}) - f(x_{2})}$$

$$\Rightarrow x_{3} = \frac{(0.8506)(0.2136) - (0.9)(-0.0087)}{0.2136 + 0.0087} = 0.0.8525$$

$$\therefore f(x_{3}) = f(0.8525) = -0.0004 < 0$$

$$\therefore x_{4} = \frac{x_{3}f(x_{1}) - x_{1}f(x_{3})}{f(x_{1}) - f(x_{3})}$$

$$\Rightarrow x_{4} = \frac{(0.8525)(0.2136) - (0.9)(-0.0004)}{0.2136 + 0.0004} = 0.0.8526$$

$$\therefore f(x_{4}) = f(0.8526) = -0.00002 < 0$$

The real root of the equation is x = 0.8526

13. Find the real root of the equation $x \log_{10} x - 1.2 = 0$ by using Regula-falsi method.

Given
$$x log_{10} x - 1.2 = 0$$

 $\Rightarrow f(x) = 0$
 $\therefore f(x) = x log_{10} x - 1.2$
Let $x_0 = 2.7$, $x_1 = 2.8$
 $\Rightarrow f(x_0) = f(2.7) = -0.0353 < 0$
 $f(x_1) = f(2.8) = 0.0520 > 0$
 $x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$
 $\Rightarrow x_2 = \frac{(2.8)(0.0520) - (2.9)(-0.0353)}{0.0520 + 0.0353} = 2.7404$
 $\therefore f(x_2) = f(2.7404) = -0.0002 < 0$
 $\therefore x_3 = \frac{x_2 f(x_1) - x_1 f(x_2)}{f(x_1) - f(x_2)}$
 $\Rightarrow x_3 = \frac{(2.7404)(0.0520) - (2.9)(-0.0002)}{0.0520 + 0.0002} = 2.7406$
 $\therefore f(x_3) = f(2.7406) = -0.00002 < 0$

The real root of the equation is x = 2.7406

14. Find the real root of the equation $x^3 - 2x - 5 = 0 = 0$ by using Regula-falsi method.

$$x^{3}-2x-5=0=0$$

$$\Rightarrow f(x)=0$$

$$\therefore f(x)=x^{3}-2x-5$$

Let
$$x_0 = 2$$
, $x_1 = 2.1$

$$\Rightarrow f(x_0) = f(2) = -1 < 0$$

$$f(x_1) = f(2.1) = 0.061 > 0$$

$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$$

$$\Rightarrow x_2 = \frac{(2)(0.061) - (2.1)(-1)}{0.061 + 1} = 2.0942$$

$$\therefore f(x_2) = f(2.0942) = -0.003922 < 0$$

$$\therefore x_3 = \frac{x_2 f(x_1) - x_1 f(x_2)}{f(x_1) - f(x_2)}$$

$$\Rightarrow x_3 = \frac{(2.0942)(0.061) - (2.1)(-0.003922)}{0.061 + 0.003922} = 2.0945$$

$$\therefore f(x_3) = f(2.0945) = -0.0005 < 0$$

The real root of the equation is x = 2.0945

- 15. Solve $xe^x 3 = 0$ by Regula-falsi method. (HW)
- 16. Use Newton-Raphson method to find a real root of xSinx + Cosx = 0 (Or xtanx + I = 0) near $x = \pi$ correct to three decimal places.(Convert calculator to radian mode)

Solution:

Given

$$xSinx + Cosx = 0 , x_0 = \pi$$

$$\Rightarrow f(x) = 0$$

$$\therefore f(x) = xSinx + Cosx$$

$$f'(x) = xCosx$$

By the Newton-Raphson method, we know that

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\Rightarrow x_{1} = \pi - \frac{(-1)}{\pi} = \pi - \frac{1}{\pi} = 2.8246$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$\Rightarrow x_{1} = 2.8246 - \frac{(-0.06971)}{(-2.6839)} = 2.8246 - 0.0259 = 2.7987$$

$$x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$$

$$\Rightarrow x_{3} = 2.7987 - \frac{(-0.00082742)}{(-2.6358)} = 2.7987 - 0.0003139 = 2.7983$$

- \therefore The real root of the equation is x = 2.7983
- 17. Using Newton-Raphson method find the real root of the equation 3x = Cosx + 1. **Solution:**

Given

$$3x = Cosx + 1$$
, Let $x_0 = 0.5$

$$\Rightarrow f(x) = 0$$

$$\therefore f(x) = 3x - Cosx - 1$$

$$f'(x) = 3 + Sinx$$

By the Newton-Raphson method, we know that

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\Rightarrow x_{1} = 0.5 - \frac{(-0.3775)}{(3.4794)} = 0.5 + 0.1085 = 0.6085$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$\Rightarrow x_{2} = 0.6085 - \frac{(0.004993)}{(3.5716)} = 0.6085 - 0.001397 = 0.6071$$

$$x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$$

$$\Rightarrow x_{3} = 0.6071 - \frac{(0.000005884)}{(3.5704)} = 0.6071 + 0.000001647 = 0.6071$$

- Clearly $x_2 = x_3 = 0.6071$ \therefore The real root of the equation is x = 0.6071
- 18. Using Newton-Raphson method find the real root of the equation $x \log_{10} x = 1.2$. **Solution:**

Given

$$x \log_{10} x = 1.2$$

 $\Rightarrow x \log_{10} x - 1.2 = 0$
 $\Rightarrow f(x) = 0$
 $\therefore f(x) = x \log_{10} x - 1.2 = x \frac{\log_e x}{\log_e 10} - 1.2 = (0.4343)x \log x - 1.2$
 $f'(x) = (0.4343)(1 + \log_e x)$
Let $x_0 = 2$

By the Newton-Raphson method, we know that

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\Rightarrow x_{1} = 2 - \frac{(-0.5979)}{0.7352} = 2 + 0.8132 = 2.8132$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{0})}$$

$$x_{2} = 2.8132 - \frac{0.0636}{0.8834} = 2.8132 - 0.7200 = 2.7412$$

$$x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$$

$$x_{3} = 2.7412 - \frac{0.0004831}{0.8691} = 2.7412 - 0.00055 = 2.74064$$

$$x_{4} = x_{3} - \frac{f(x_{3})}{f'(x_{3})}$$

- Clearly $x_3 = x_4 = 2.7406$
- \therefore The real root of the equation is x = 2.7406
- 19. Using Newton-Raphson method find the cube root of 37.

$$x = \sqrt[3]{37}$$

$$\Rightarrow x^3 = 37$$
Let
$$x^3 - 37 = 0$$

$$f(x) = 0$$

$$\therefore f(x) = x^3 - 37$$

$$f'(x) = 3x^2$$

Let $x_0 = 3$, then by the Newton-Raphson method, we have

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\Rightarrow x_{1} = 3 - \frac{(-10)}{27} = \frac{91}{27} = 3.3703$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$\Rightarrow x_{2} = 3.3703 - \frac{(1.2830)}{(34.0767)} = 3.3703 - 0.03765 = 3.3327$$

$$x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$$

$$\Rightarrow x_{3} = 3.3327 - \frac{(0.01592)}{(33.3206)} = 3.3327 - 0.0004778 = 3.3322$$
Clearly $x_{2} = x_{3} = 3.3322$

20. Use Weddle's rule to evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} Cosxdx$ by dividing into 6 equal parts.

Solution:

Let
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} Cosxdx$$
 , $n = 6$

$$\therefore h = \frac{b-a}{n} = \frac{\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)}{6} = \frac{\pi}{6} = 30^{\circ} = 0.5238$$

:. Partition
$$P = \{a = x_0 = -90^\circ, -60^\circ, -30^\circ, 0,30^\circ, 60^\circ, 90^\circ = x_6 = b\}$$

•		
х	y =	Cosx
-90	Cos(-90)	$y_0 = 0$
-60	Cos(-60)	$y_1 = 0.5$
-30	Cos(-30)	y ₂ =0.8660
0	Cos(0)	$y_3 = 1$
30	Cos(30)	y ₄ =0.8660
60	Cos(60)	y₅= 0.5
90	Cos(90)	y ₆ = 0

· By the Weddle's rule, we have

$$\int_{a}^{b} f(x)dx = \frac{3h}{10} [y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6]$$

$$\Rightarrow I = \frac{3 \times 0.5238}{10} [0 + 2.5 + 0.8660 + 6 + 0.8660 + 2.5 + 0]$$

$$\Rightarrow I = (0.15714)(12.732)$$

$$\Rightarrow I = 2.0007$$

$$\Rightarrow I = 2$$

21. Compute the value of $\int_{0.2}^{1.4} (Sinx - log x + e^x) dx$ by using Simpson's 3/8th rule.

Let
$$I = \int_{0.2}^{1.4} (Sinx - log x + e^x) dx$$
 $n = 6$

$$\therefore h = \frac{b - a}{n} = \frac{1.4 - 0.2}{6} = 0.2$$

$\therefore Partition \ P = \{a = x_0 = 0.2, a \in A\}$	$0.4, 0.6, 0.8, 1, 1.2, 1.4 = x_6 = b$
---	--

X	$y = Sinx - log x + e^x$
0.2	y₀ =3.0295
0.4	y ₁ =2.7975
0.6	<i>y</i> ₂ =2.8976
0.8	у _з =3.1660
1	y ₄ =3.5597
1.2	y ₅ =4.0698
1.4	<i>y</i> ₆ =4.4042

By the Simpson's 3/8th rule, we have

$$\int_{a}^{b} f(x)dx = \frac{3h}{8} [(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3)]$$

$$\Rightarrow I = \frac{3 \times 0.2}{8} [(3.0295 + 4.4042) + 3(13.3247) + 2(3.1660)]$$

$$\Rightarrow I = 4.053$$

22. Evaluate $\int_{0}^{3} \frac{dx}{(I+x)^{2}}$ by using Simpson's 3/8th rule.

Solution:

Let
$$I = \int_0^3 \frac{dx}{(1+x)^2}$$
, n=6

$$\therefore h = \frac{b-a}{n} = \frac{3-0}{6} = 0.5$$

$$\therefore Partition \ P = \left\{ a = x_0 = 0.0.5, 1.1.5, 2.2.5, 3 = x_6 = b \right\}$$

х	$y = \frac{1}{(1+x)^2}$
0	$y_0 = 1$
0.5	y ₁ =0.4444
1	<i>y</i> ₂ =0.25
1.5	<i>y</i> ₃ =0.16
2	y ₄ =0.3333
2.5	<i>y</i> ₅ =0.0816
3	y ₆ =0.0625

By the Simpson's $3/8^{th}$ rule , we have

$$\int_{a}^{b} f(x)dx = \frac{3h}{8} [(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3)]$$

$$\Rightarrow I = \frac{3 \times 0.5}{8} [(1 + 0.0625) + 2(0.16) + 3(1.1093)]$$

$$\Rightarrow I = (0.1875)(1.0625 + 0.32 + 3.3279)$$

$$\Rightarrow I = (0.1875)(4.7104)$$

$$\Rightarrow I = 0.8832$$
Evaluate $\int_{a}^{5.2} log_e x dx$ taking 6 equal parts by applying Weddle's rule.

Let
$$I = \int_{4}^{5.2} log_e x dx$$
, n=6

$$\therefore h = \frac{b-a}{n} = \frac{5.2-4}{6} = 0.2$$

$$\therefore Partition \ P = \{a = x_0 = 4,4.2,4.4,4.6,4.8,5,5.2 = x_6 = b\}$$

х	$y = \log_e x$
4	y₀ =1.3863
4.2	y ₁ =1.4351
4.4	y ₂ =1.4816
4.6	^y ₃=1.5261
4.8	y ₄ =1.5686
5	<i>y</i> ₅ =1.6094
5.2	<i>y</i> ₆ =1.6487

· By the Weddle's rule, we have

$$\int_{a}^{b} f(x)dx = \frac{3h}{10} [y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6]$$

$$\Rightarrow I = \frac{3 \times 0.2}{10} [1.3863 + 7.1755 + 1.4816 + 9.1566 + 1.5686 + 8.0470 + 1.6487]$$

$$\Rightarrow I = 1.8279$$

24. Use Simpson's $\frac{1}{3}$ rd rule to evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{Sinx} dx$ by dividing into 10 equal parts.

Let
$$I = \int_{0}^{\frac{\pi}{2}} \sqrt{Sinx} dx$$
, $n = 10$

$$\therefore h = \frac{b-a}{n} = \frac{\frac{\pi}{2} - 0}{10} = \frac{\pi}{20} = 9^0 = 0.1571$$

$$\therefore Partition \ P = \left\{ a = x_0 = 0^0, 9^0, 18^0, 27^0, 36^0, 45^0, 54^0, 63^0, 72^0, 81^0, 90^0 = x_{10} = b \right\}$$

x	$y = \sqrt{Sinx}$
0	$y_0 = 0$
9	y ₁ =0.3955
18	<i>y</i> ₂ =0.5559
27	y₃=0.6738
36	y ₄ =0.7667
45	<i>y</i> ₅ =0.8409
54	$y_6 = 0.8995$
63	<i>y</i> ₇ =0.9439
72	y ₈ =0.9752
81	y ₉ =0.9938
90	y ₁₀ =1

 \therefore By the Simpson's $\frac{1}{3}rd$ rule, we have

$$\int_{a}^{b} f(x)dx = \frac{h}{3} [(y_0 + y_{10}) + 2(y_2 + y_4 + y_6 + y_8) + 4(y_1 + y_3 + y_5 + y_7 + y_9)]$$

$$\Rightarrow I = \frac{0.1571}{3} [1 + 2(3.1973) + 4(3.8479)]$$

$$\Rightarrow I = (0.0524)(1 + 15.3916 + 6.3946)$$

$$\Rightarrow I = (0.0524)(22.7862)$$

$$\Rightarrow I = 1.1932$$
