

#### **□1.** General case

we now consider a monochromatic uniform plane wave that travels through one medium and then enters another medium of infinite extent.

We further presume that

- a) the incident wave is propagating in the z direction which is normal to the interface between the two media.
- b)the interface is an infinite plane at z=0



- c) the region to the right of the interface is medium 1(z < 0), the region to the left of the interface is medium 2(z > 0)
- d) The wave penetrate the boundary and continues its propagation in medium 2. the wave is referre d to as the transmittedwave.
- e) The remainder of the wave is reflected at the interface and then propagates in the negative z irection, the wave is called the reflected wave.



#### Reflection coefficient and transmission coefficient

$$\begin{cases} \dot{\vec{E}}_i = \vec{a}_x \dot{E}_{i0} e^{-\gamma_1 z} \\ \dot{\vec{H}}_i = \vec{a}_y \frac{\dot{E}_{i0}}{\eta_{c1}} e^{-\gamma_1 z} \end{cases}$$

$$\begin{cases} \dot{\vec{E}}_r = \vec{a}_x \dot{R} \dot{E}_{i0} e^{\gamma_1 z} \\ \dot{\vec{H}}_r = -\vec{a}_y \frac{\dot{R} \dot{E}_{i0}}{\eta_{c1}} e^{\gamma_1 z} \end{cases}$$



$$\dot{\vec{E}}_{t}(z) = \dot{T}\dot{E}_{0}e^{-\gamma_{2}z}\vec{a}_{x}$$

$$\dot{\vec{H}}_{t}(z) = \frac{1}{\eta_{c2}}\dot{T}\dot{E}_{0}e^{-\gamma_{2}z}\vec{a}_{y}$$

### If the electric field and the magnetic of the Incident wave are .

$$\dot{\vec{E}}_{i}(z) = \dot{E}_{0}e^{-\gamma_{1}z}\vec{\mathbf{a}}_{\mathbf{x}}$$

$$\dot{\vec{H}}_{i}(z) = \frac{1}{\eta_{c1}}\dot{E}_{0}e^{-\gamma_{1}z}\vec{\mathbf{a}}_{\mathbf{y}}$$

where the subscript *i* stands for the incident wave. Subscripts *r* and *t* are used for the reflected and transmitted waves, respectively. By defining, at the interface, a complex quantity known as the reflection coefficient:

$$\dot{R} = \frac{\dot{\bar{E}}_r(0)}{\dot{\bar{E}}_i(0)}$$
 we can write the reflected fields as

$$\dot{\vec{E}}_{r}(z) = \dot{R}\dot{E}_{0}e^{\gamma_{1}z}\vec{\mathbf{a}}_{x} \qquad \dot{\vec{H}}_{r}(z) = -\frac{1}{\eta_{c1}}\dot{R}\dot{E}_{0}e^{\gamma_{1}z}\vec{\mathbf{a}}_{y}$$

the negative sign for the magnetic field is in accordance with the flow of energy in the negative z direction. If we define another complex quantity  $\dot{T} = \frac{\dot{\bar{E}}_t(0)}{\dot{\bar{E}}_s(0)}$ 

as the coefficient of transmission, then the transmitted fields are

$$\dot{\vec{E}}_{t}(z) = \dot{T}\dot{E}_{0}e^{-\gamma_{2}z}\vec{a}_{x}$$

$$\dot{\vec{H}}_{t}(z) = \frac{1}{\eta_{c2}}\dot{T}\dot{E}_{0}e^{-\gamma_{2}z}\vec{a}_{y}$$

where  $\eta_{c2}$  and  $\gamma_2$  are the propagation constant and the intrinsic impedance in medium 2, respectively.

Therefore, supplying the boundary conditions at z=0, the continuity of the tangential components of the electromagnetic fields (the surface current density is neglected), we obtain

$$\dot{\vec{E}}_{i}(0) + \dot{\vec{E}}_{r}(0) = \dot{\vec{E}}_{t}(0) 
\dot{\vec{H}}_{i}(0) + \dot{\vec{H}}_{r}(0) = \dot{\vec{H}}_{t}(0) 
\dot{\vec{H}}_{i}(0) + \dot{\vec{H}}_{r}(0) = \dot{\vec{H}}_{t}(0)$$

#### thus, we have

$$1 + \dot{R} = \dot{T}$$

$$\frac{1}{\eta_{c1}}(1-\dot{R}) = \frac{1}{\eta_{c2}}\dot{T}$$

#### manipulating the two equations, we get

$$\dot{R} = \frac{\eta_{c2} - \eta_{c1}}{\eta_{c2} + \eta_{c1}}$$
 and  $\dot{T} = \frac{2\eta_{c2}}{\eta_{c2} + \eta_{c1}}$ 

as the reflection and transmission coefficients, respectively.

The average power density of the transmitted wave in medium 2 is

$$\begin{split} \vec{S}_{tave} &= \frac{1}{2} \text{Re}[\dot{\vec{E}}_{t}(z) \times \dot{\vec{H}}_{t}^{*}(z)] \\ &= \frac{1}{2} \text{Re}[\dot{T}\dot{E}_{0}e^{-\alpha_{2}z-j\beta_{2}z}\vec{\mathbf{a}}_{x} \times \frac{1}{\eta_{c2}}\dot{T}^{*}\dot{E}_{0}^{*}e^{-\alpha_{2}z+j\beta_{2}z}\vec{\mathbf{a}}_{y}] \\ &= \vec{\mathbf{a}}_{z} \frac{1}{2|\eta_{c2}^{*}|}|\dot{T}|^{2}|\dot{E}_{0}|^{2}e^{-2\alpha_{2}z}\cos\theta_{\eta_{c2}} \end{split}$$

The average power density of the incident wave in medium 1 is

wave in medium 1 is
$$\vec{S}_{iave} = \frac{1}{2} \operatorname{Re} \left[ \dot{\vec{E}}_{i}(z) \times \dot{\vec{H}}_{i}^{*}(z) \right]$$

$$= \frac{1}{2} \operatorname{Re} \left[ \dot{E}_{0} e^{-\alpha_{1}z - j\beta_{1}z} \vec{\mathbf{a}}_{x} \times \frac{1}{\eta_{c1}} \dot{E}_{0}^{*} e^{-\alpha_{1}z + j\beta_{1}z} \vec{\mathbf{a}}_{y} \right]$$

## $= \vec{\mathbf{a}}_z \frac{1}{2|\eta_{c1}^*|} |\dot{E}_0|^2 e^{-2\alpha_1 z} \cos \theta_{\eta_{c1}}$

#### the average power density of the reflected wave is

$$\vec{S}_{rave} = \frac{1}{2} \text{Re}[\dot{\vec{E}}_r(z) \times \dot{\vec{H}}_r^*(z)]$$

$$= -\frac{1}{2} \operatorname{Re} \left[ \dot{R} \dot{E}_0 e^{\alpha_1 z + j\beta_1 z} \vec{\mathbf{a}}_x \times \frac{1}{\eta_{c1}} \dot{R}^* \dot{E}_0^* e^{\alpha_1 z - j\beta_1 z} \vec{\mathbf{a}}_y \right]$$

$$= -\vec{\mathbf{a}}_{z} \frac{1}{2|\eta_{c1}^{*}|} |\dot{R}|^{2} |\dot{E}_{0}|^{2} e^{-2\alpha_{1}z} \cos \theta_{\eta_{c1}}$$

#### the average power density due to the crosscoupling of the incident and the reflected

waves is

$$\vec{S}_{irave} = \frac{1}{2} \text{Re}[\dot{\vec{E}}_{i}(z) \times \dot{\vec{H}}_{r}^{*}(z) + \dot{\vec{E}}_{r}(z) \times \dot{\vec{H}}_{i}^{*}(z)]$$

$$= -\vec{\mathbf{a}}_{z} \frac{1}{|\eta_{c1}^{*}|} |\dot{R}| |\dot{E}_{0}|^{2} \sin(2\beta_{1}z + \theta_{\dot{R}}) \sin\theta_{\eta_{1}}$$

Example 8.7 you read by yourself.

- **□2.** special cases
  - **□** Dielectric-Dielectric Interface

When both media are lossless ( $\sigma 1 = 0$ ,  $\sigma 2 = 0$ ), the intrinsic impedance of each medium is a real quantity. Accordingly, the transmission and the reflection coefficients are real quantities.

That is,

$$R = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 and  $T = \frac{2\eta_2}{\eta_2 + \eta_1}$ 

where

$$\eta_1 = \sqrt{\frac{\mu_1}{\varepsilon_1}}$$
and
 $\eta_2 = \sqrt{\frac{\mu_2}{\varepsilon_2}}$ 

the propagation constants are

$$\gamma_1 = j\omega(\mu_1 \varepsilon_1)^{1/2} = j\beta_1 \quad and \quad \gamma_2 = j\omega(\mu_2 \varepsilon_2)^{1/2} = j\beta_2,$$

## we can express the incident, reflected, and transmitted fields as

$$\dot{\vec{E}}_{i}(z) = \dot{E}_{0}e^{-j\beta_{1}z}\vec{a}_{x}$$

$$\dot{\vec{H}}_{i}(z) = \frac{1}{\eta_{1}}\dot{E}_{0}e^{-j\beta_{1}z}\vec{a}_{y}$$

$$\dot{\vec{E}}_{r}(z) = R\dot{E}_{0}e^{j\beta_{1}z}\vec{a}_{x}$$

$$\dot{\vec{H}}_{r}(z) = -\frac{1}{\eta_{1}}R\dot{E}_{0}e^{j\beta_{1}z}\vec{a}_{y}$$

$$\dot{\vec{E}}_{t}(z) = T\dot{E}_{0}e^{-j\beta_{2}z}\vec{a}_{x}$$

$$\dot{\vec{H}}_{t}(z) = \frac{1}{\eta_{2}}T\dot{E}_{0}e^{-j\beta_{2}z}\vec{a}_{y}$$

## the average power densities of the incident, reflected, and transmitted waves are

$$\vec{S}_{iave} = \frac{1}{2} \operatorname{Re}[\dot{\vec{E}}_{i}(z) \times \dot{\vec{H}}_{i}^{*}(z)]$$

$$= \frac{1}{2} \operatorname{Re}[\dot{E}_{0}e^{-j\beta_{1}z}\vec{\mathbf{a}}_{x} \times \frac{1}{\eta_{1}^{*}} \dot{E}_{0}^{*}e^{+j\beta_{1}z}\vec{\mathbf{a}}_{y}]$$

$$= \vec{\mathbf{a}}_{z} \frac{1}{2\eta_{1}} |\dot{E}_{0}|^{2}$$



$$\vec{S}_{rave} = \frac{1}{2} \operatorname{Re}[\dot{\vec{E}}_{r}(z) \times \dot{\vec{H}}_{r}^{*}(z)]$$

$$= -\frac{1}{2} \operatorname{Re}[R\dot{E}_{0}e^{+j\beta_{1}z}\vec{\mathbf{a}}_{x} \times \frac{1}{\eta_{1}^{*}}R^{*}\dot{E}_{0}^{*}e^{-j\beta_{1}z}\vec{\mathbf{a}}_{y}]$$

$$= -\vec{\mathbf{a}}_{z} \frac{1}{2\eta_{1}}R^{2}|\dot{E}_{0}|^{2}$$

and 
$$\vec{S}_{tave} = \frac{1}{2} \text{Re}[\dot{\vec{E}}_{t}(z) \times \dot{\vec{H}}_{t}^{*}(z)]$$
  

$$= \frac{1}{2} \text{Re}[T\dot{E}_{0}e^{-j\beta_{2}z}\vec{\mathbf{a}}_{x} \times \frac{1}{n_{2}}T^{*}\dot{E}_{0}^{*}e^{+j\beta_{2}z}\vec{\mathbf{a}}_{y}]$$

$$= \vec{\mathbf{a}}_z \frac{1}{2\eta_2} T^2 \left| \dot{E}_0 \right|^2$$

the total fields in medium 1 are (we assumed that  $E_0$  is the maximum value of the incident electric field at the interface, that is,

 $\dot{E}_0 = E_0$  is a real quantity, initial phase is zero.)

$$\dot{\vec{E}}_{1}(z) = \dot{\vec{E}}_{i}(z) + \dot{\vec{E}}_{r}(z)$$

$$= (1 + Re^{2j\beta_{1}z})\dot{E}_{0}e^{-j\beta_{1}z}\mathbf{\bar{a}}_{x}$$

$$\begin{aligned} \dot{\vec{H}}_1(z) &= \dot{\vec{H}}_i(z) + \dot{\vec{H}}_r(z) \\ &= (1 - Re^{2j\beta_1 z}) \frac{1}{\eta_1} \dot{E}_0 e^{-j\beta_1 z} \mathbf{\bar{a}}_y \end{aligned}$$

since 
$$(1 \pm Re^{2j\beta_1 z}) E_0$$
  

$$= [1 \pm R(j\sin(2\beta_1 z) + \cos(2\beta_1 z))] E_0$$
  

$$= \sqrt{1 \pm 2R\cos(2\beta_1 z) + R^2} e^{j\varphi_{E(H)}} E_0$$

### the amplitudes of the electromagnetic field in medium are

$$\left| \dot{\vec{E}}_{1}(z) \right| = \sqrt{1 + 2R\cos(2\beta_{1}z) + R^{2}} E_{0}$$

$$|\dot{\vec{H}}_1(z)| = \sqrt{1 - 2R\cos(2\beta_1 z) + R^2} E_0 / \eta_1$$

\*Discussion:

$$\begin{split} \dot{\vec{E}}_{1}(z) &= \dot{\vec{E}}_{i}(z) + \dot{\vec{E}}_{r}(z) = (1 + Re^{2j\beta_{1}z})E_{0}e^{-j\beta_{1}z}\vec{\mathbf{a}}_{x} \\ &= \left|\dot{\vec{E}}_{1}(z)\right|e^{-j\beta_{1}z + j\varphi_{E}}\vec{\mathbf{a}}_{x} \\ \dot{\vec{H}}_{1}(z) &= \dot{\vec{H}}_{i}(z) + \dot{\vec{H}}_{r}(z) = (1 - Re^{2j\beta_{1}z})\frac{1}{\eta_{1}}E_{0}e^{-j\beta_{1}z}\vec{\mathbf{a}}_{y} \\ &= \left|\dot{\vec{H}}_{1}(z)\right|e^{-j\beta_{1}z + j\varphi_{H}}\vec{\mathbf{a}}_{y} \\ \begin{vmatrix} \dot{\vec{E}}_{1}(z) \end{vmatrix} &= \sqrt{1 + 2R\cos(2\beta_{1}z) + R^{2}}E_{0} \\ \begin{vmatrix} \dot{\vec{H}}_{1}(z) \end{vmatrix} &= \sqrt{1 - 2R\cos(2\beta_{1}z) + R^{2}}E_{0} / \eta_{1} \end{split}$$

 $\Box$ i) the traveling-wave still exists in medium 1 since the factor  $e^{-j\beta_1 z + j\varphi_{E(H)}}$ 

Dii) the amplitudes of the electromagnetic fields are functions of z. the space period length is  $\lambda/2$ . When  $\eta_2 > \eta_1$ , R > 0

Note that  $2\beta_{1}z = -2n\pi$ , n=0,1,2,...

$$\begin{vmatrix} \dot{\vec{E}}_{1}(z) \end{vmatrix}_{\text{max}} = \sqrt{1 + 2R + R^{2}} E_{0} = (1 + R) E_{0}$$
$$\begin{vmatrix} \dot{\vec{H}}_{1}(z) \end{vmatrix}_{\text{min}} = \sqrt{1 - 2R + R^{2}} E_{0} / \eta_{1} = (1 - R) E_{0} / \eta_{1}$$

and

$$2\beta_1 z = -(2n+1)\pi, n=0,1,2,...$$



$$\left| \dot{\vec{E}}_{1}(z) \right|_{\min} = \sqrt{1 - 2R + R^{2}} E_{0} = (1 - R) E_{0}$$

$$\left| \dot{\vec{H}}_{1}(z) \right|_{\max} = \sqrt{1 + 2R + R^{2}} E_{0} / \eta_{1} = (1 + R) E_{0} / \eta_{1}$$

Obviously, the distance between the maximum and the minimum value of the amplitude of the electric field is  $\lambda_1/4$ :  $2\beta_1|z_{max}-z_{min}|=\pi$ 

$$2(2\pi/\lambda_I) |z_{max}-z_{min}| = \pi$$
  $|z_{max}-z_{min}| = \lambda_1/4$ 

Q(2) Dielectri-Perfect conductor interface Now let us consider the case when a wave traveling in a dielectric medium (medium 1) impinges normally upon a perfectly conducting medium (medium 2).

## As the electromagnetic fields cannot exist inside a perfect conductor, that is,

$$\eta_{c2} = \sqrt{\frac{\mu_2}{\varepsilon_{c2}}} = \sqrt{\frac{\mu_2}{\varepsilon(1-j\frac{\sigma}{\omega})}} = 0$$

thus, we obtain

$$\dot{R} = \frac{\eta_{c2} - \eta_{c1}}{\eta_{c2} + \eta_{c1}} = -1$$
 and  $\dot{T} = \frac{2\eta_{c2}}{\eta_{c2} + \eta_{c1}} = 0$ 

in other words, the incident wave is totally reflected from the boundary.



#### The fields in medium 2(perfect conductor) are

$$\vec{E}_{t}(z) = \vec{T} \vec{E}_{0} e^{-j\beta_{2}z} \vec{a}_{x} = 0$$

#### the fields in medium 1 are

$$\begin{split} \dot{\bar{E}}_{i}(z) &= \dot{E}_{0}e^{-j\beta_{1}z}\vec{a}_{x} \\ \dot{\bar{H}}_{i}(z) &= \frac{1}{\eta_{1}}\dot{E}_{0}e^{-j\beta_{1}z}\vec{a}_{y} \\ \dot{\bar{E}}_{r}(z) &= \dot{R}\dot{E}_{0}e^{j\beta_{1}z}\vec{a}_{x} = -\dot{E}_{0}e^{j\beta_{1}z}\vec{a}_{x} \\ \dot{\bar{H}}_{r}(z) &= -\frac{1}{\eta_{1}}\dot{R}\dot{E}_{0}e^{j\beta_{1}z}\vec{a}_{y} = \frac{1}{\eta_{1}}\dot{E}_{0}e^{j\beta_{1}z}\vec{a}_{y} \end{split}$$

thus



## $\dot{\vec{E}}_{1}(z) = \dot{\vec{E}}_{i}(z) + \dot{\vec{E}}_{r}(z) = (e^{-j\beta_{1}z} - e^{j\beta_{1}z})\dot{E}_{0}\vec{\mathbf{a}}_{x}$ $= -j2\sin(\beta_{1}z)\dot{E}_{0}\vec{\mathbf{a}}_{x}$

$$\dot{\vec{H}}_{1}(z) = \dot{\vec{H}}_{i}(z) + \dot{\vec{H}}_{r}(z) = (e^{-j\beta_{1}z} + e^{j\beta_{1}z}) \frac{1}{\eta_{1}} \dot{E}_{0} \vec{\mathbf{a}}_{y}$$

$$= 2\cos(\beta_{1}z) \frac{1}{\eta_{1}} \dot{E}_{0} \vec{\mathbf{a}}_{y}$$

#### where

$$\beta_1 = \omega \sqrt{\mu_1 \varepsilon_1}$$





$$\eta_1 = \sqrt{rac{\mu_1}{arepsilon_1}}$$

#### \*discussion:

i) the fields in medium can be rewritten in the time domain as

$$\vec{E}_1(z,t) = \text{Re}[\dot{\vec{E}}_1(z)e^{j\omega t}]$$

$$= 2E_0 \sin(\beta_1 z) \sin(\omega t) \mathbf{\bar{a}}_{\mathbf{x}}$$

letting 
$$\dot{E}_0 = E_0$$

# $\vec{H}_{1}(z,t) = \text{Re}[\dot{\vec{H}}_{1}(z)e^{j\omega t}]$ $= \frac{2}{\eta_{1}}E_{0}\cos(\beta_{1}z)\cos(\omega t)\vec{\mathbf{a}}_{y}$

#### the amplitudes of the fields are

$$\left| \vec{E}_1(z) \right| = \left| 2E_0 \sin(\beta_1 z) \sin(\omega t) \right|$$

$$\left| \vec{H}_1(z) \right| = \left| \frac{2}{\eta_1} E_0 \cos(\beta_1 z) \cos(\omega t) \right|$$

At any time, the magnitudes of the fields are functions of space (z)





the magnitude of the electric field is maximum when  $\sin(\beta_1 z) = \pm 1$ 

the point at which the field is maximum is called a loop----loop point. The magnitude of the electric field is zero(minimum) when

$$\sin(\beta_1 z)=0$$

the point at which the field is minimum is called a node----node point

Note that where there are loops of the electric field there are nodes of the magnetic field.

# The waves is called pure standing waves. The standing waves are $90^{\circ}$ out of time and space phase.

#### □ii)the surface current density

$$\dot{\vec{J}}_s = \vec{a}_n \times (\dot{\vec{H}}_2 - \dot{\vec{H}}_1) = -\vec{a}_z \times \dot{\vec{H}}_1(0) = \frac{2}{\eta_1} E_0 \vec{a}_x$$

#### in the time domain

$$\vec{J}_s = \frac{2}{\eta_1} E_0 \cos(\omega t) \vec{\mathbf{a}}_{\mathbf{x}}$$



