Asignatura:	Curso:	Grupo:

Ampliación de Matemáticas. Final Ordinario Parte 2 (Versión 1). (01-02-2021)

1 -2 ___

3 ===

4 -5 =

6 = 7 🗀 8 ==

9 = 10 💳

11 ___

12 ___

13 === 14 ___ 15 ==

16 ==

17 = 18 ==

19 ===

20 🗀

21 ___ 22 ___ 23 == 24 ==

25 💳 26 ==

27 ___ 28 == 29 🗀

30 31 ===

32 ==

33 ===

34 ===

35 ===

37 == 38 ===

39 === 40 ==

41 42 ___

43 == 44 💳

45 💳 46 === 47 🗀

48 🗀

49 💳

50 ==

51 ___ 52 == 53 == 54 ==

57 💳

58 ==

59 === 60 == 61 == 62 ==

63 💳

64 ===

A. Sea $u: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución del problema de Cauchy definido

$$\frac{\partial u}{\partial t} = (1 + t^2 \ln^2(t)) \frac{\partial^2 u}{\partial x^2} \quad \text{en } (x, t) \in \mathbb{R} \times]0, +\infty[,$$
$$u(x, 0) = \exp(-2x^2) \quad x \in \mathbb{R},$$

u acotada en $\mathbb{R} \times]0, +\infty[, \int_{-\infty}^{+\infty} |u(x,t)| \mathrm{d}x$ acotada en $]0, +\infty[.$

Sea $\hat{u}: \mathbb{R} \times]0, +\infty[\to \mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. La función u verifica que:

(1)
$$u(3/\sqrt{2}, \exp(1)) = \frac{\exp\left(-\frac{9}{1+8\left(\exp(1) + \frac{17\exp(3)}{27}\right)}\right)}{\sqrt{1+8\left(\exp(1) + \frac{17\exp(3)}{27}\right)}}.$$
(2)
$$u(3/\sqrt{2}, \exp(1)) = \frac{\exp\left(-\frac{9}{1+8\left(\exp(1) + \frac{11\exp(3)}{27}\right)}\right)}{\sqrt{1+8\left(\exp(1) + \frac{11\exp(3)}{27}\right)}}.$$

(3)
$$u(3/\sqrt{2}, \exp(1)) = \frac{\exp\left(-\frac{5\exp(3)}{1+8\left(\exp(1) + \frac{5\exp(3)}{27}\right)}\right)}{\sqrt{1+8\left(\exp(1) + \frac{5\exp(3)}{27}\right)}}$$

(4) No es cierta ninguna de las otras tres respuestas.

Nota.
$$\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$$
, donde $b \in \mathbb{R}$ y $b > 0$.

Nombre:

Fecha:

Firma:

Así no marque

-

Marque así

EXPEDIENTE

1 2 3 4 5

Grupo

1 2 3 4 5 6 7 8 9 10 A B C D E

Auxiliar

1 a b c d e 2 a b c d e 3 a b c d e 8 a b c d e 9 a b c d e

3

31

Ampliación de Matemáticas. Final Ordinario Parte 2 (Versión 1). (01-02-2021)

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2}(t) + 2\frac{\mathrm{d}w}{\mathrm{d}t}(t) + 17w(t) = g(t) \text{ en }]0, +\infty[, \ w(0) = 0, \ \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por $g(t)=\frac{1}{2}+\cos^2(t)$ si $t \in [0, \frac{\pi}{2}[$ y $g(t) = \frac{1}{2}$ si $t \in [\frac{\pi}{2}, +\infty[$. La transformada de Laplace de la función $w: [0, +\infty[\to \mathbb{R}$ es tal que:

(5)
$$\mathcal{L}[w(t)](2) = \frac{1}{200}(13 - \exp(-\pi)).$$

(6) $\mathcal{L}[w(t)](2) = \frac{1}{200}(6 - \exp(-\pi)).$

(6)
$$\mathcal{L}[w(t)](2) = \frac{1}{200}(6 - \exp(-\pi)).$$

(7)
$$\mathcal{L}[w(t)](2) = \frac{1}{200}(5 + \exp(-\pi)).$$

(8) No es cierta ninguna de las otras tres respuestas.

C. Considérese el problema de Cauchy definido por

$$(1+t^2)\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} + \frac{1}{1+t^2}w = 0$$
 en $]0, +\infty[, w(0) = 0, \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1.$

Sean $w:[0,+\infty[\to\mathbb{R}$ la solución del problema anterior y $v:\mathbb{R}\to\mathbb{R}$ la función definida por v(t)=w(t) si $t\in [0,+\infty[$ y v(t)=-w(-t) si $t\in]-\infty,0[$. El desarrollo en serie de Taylor de la función v en 0 es $\sum\limits^{\infty} c_k t^k.$ Las función w y los coeficientes c_k son tales que:

Los coeficientes
$$c_k$$
 verifican la relación $c_{k+2} = \frac{(2k(k-1)+1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \geqslant 4$ y

$$c_5 = \frac{13}{120}$$
.

$$c_{5} = \frac{13}{120}.$$
(10) Los coeficientes c_{k} verifican la relación $c_{k+2} = \frac{(k(k-1)+1)c_{k} + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \geqslant 4$ y
$$c_{5} = \frac{13}{120}.$$

$$c_5 = \frac{13}{120}.$$
(11) Los coeficientes c_k verifican la relación $c_{k+2} = \frac{(k(k-1)+1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \geqslant 4$ y
$$c_5 = \frac{11}{120}.$$
(12) No esciente pingupo de les etres tres respuestes

$$c_5 = \frac{11}{120}.$$

(12) No es cierta ninguna de las otras tres respuestas.

Ampliación de Matemáticas. Final Ordinario Parte 2 (Versión 1). (01-02-2021)

D. Considérese la ecuación diferencial

$$z \sinh(z) \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{\sin(2z)}{4} \frac{\mathrm{d}w}{\mathrm{d}z} - \sinh(z)w = 0.$$

Las soluciones de la ecuación anterior, en $D\subset \mathbb{C}$, verifican que:

- (13) Existe una solución de la ecuación del enunciado, $w_{s1}(z)$, tal que $\lim_{z\to 0}\frac{w_{s1}(z)}{\ln(z)}=1.$
- (14) Existe una solución de la ecuación del enunciado, $w_{s2}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_{s2}(z)}{z^{\frac{1}{4}}} = 1$.

 (15) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta
- (15) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_{s3}(z)}{z^{\frac{1}{2}}} = 1$.
 - (16) No es cierta ninguna de las otras tres respuestas.

E. Considérese el problema de autovalores

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = \lambda u \quad \text{para } (r, \theta) \in]0, 1[\times] - \pi, \pi[, \quad (1)$$

$$u(1,\theta)=0$$
 para $\theta\in[-\pi,\pi],\ u$ acotada en $]0,1[\times]-\pi,\pi[,$ (2)

$$u(r,\pi) = u(r,-\pi), \quad \frac{\partial u}{\partial \theta}(r,\pi) = \frac{\partial u}{\partial \theta}(r,-\pi) \quad \text{para } r \in [0,1], \quad (3)$$

donde $u \in C^{\infty}([0,1] \times [-\pi,\pi])$. El probrema de autovalores (1)-(3) verifica que:

- (17) La función $w(r,\theta) = J_3(\alpha r) \sin(4\theta + \varphi)$ es una autofunción del problema (1)-(3) asociada al autovalor $\lambda = -\alpha^2$, donde $\alpha > 0$, $J_3(\alpha) = 0$ y $\varphi \in \mathbb{R}$.
- (18) La función $w(r,\theta) = J_3(\alpha r)\sin(3\theta + \varphi)$ es una autofunción del problema (1)-(3) asociada al autovalor $\lambda = -\alpha^2$, donde $\alpha > 0$, $J_3(\alpha) = 0$ y $\varphi \in \mathbb{R}$.
- (19) La función $w(r,\theta) = J_3(\alpha r) \sin(3\theta + \varphi)$ es una autofunción del problema (1)-(3) asociada al autovalor $\lambda = -\alpha^2$, solamente si $\varphi = \frac{k\pi}{2}$ con $k \in \mathbb{Z}$, donde $J_3(\alpha) = 0$ con $\alpha > 0$.
- (20) No es cierta ninguna de las otras tres respuestas.

		٠	

Ampliación de Matemáticas. Final Ordinario Parte 2 (Versión 2). (01-02-2021)

 $\textbf{\textit{A}}.$ Sea $u:\mathbb{R}\times]0,+\infty[\to\mathbb{R}$ la solución del problema de Cauchy definido por

$$\begin{split} \frac{\partial u}{\partial t} &= (1+t^2\ln^2(t))\frac{\partial^2 u}{\partial x^2} \quad \text{en } (x,t) \in \mathbb{R} \times]0, +\infty[, \\ & u(x,0) = \exp(-3x^2) \quad x \in \mathbb{R}, \\ u \text{ acotada en } \mathbb{R} \times]0, +\infty[, \int_{-\infty}^{+\infty} |u(x,t)| \mathrm{d}x \text{ acotada en }]0, +\infty[. \end{split}$$

Sea $\hat{u}: \mathbb{R} \times]0, +\infty[\to \mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. La función u verifica que:

$$(1) u(2/\sqrt{3}, \exp(1)) = \frac{\exp\left(-\frac{4}{1+12\left(\exp(1) + \frac{5\exp(3)}{27}\right)}\right)}{\sqrt{1+12\left(\exp(1) + \frac{5\exp(3)}{27}\right)}}.$$

$$(2) u(2/\sqrt{3}, \exp(1)) = \frac{\exp\left(-\frac{4}{1+12\left(\exp(1) + \frac{17\exp(3)}{27}\right)}\right)}{\sqrt{1+12\left(\exp(1) + \frac{17\exp(3)}{27}\right)}}.$$

$$(3) u(2/\sqrt{3}, \exp(1)) = \frac{\exp\left(-\frac{4}{1+12\left(\exp(1) + \frac{17\exp(3)}{27}\right)}\right)}{\sqrt{1+12\left(\exp(1) + \frac{11\exp(3)}{27}\right)}}.$$

(4) No es cierta ninguna de las otras tres respuestas.

Nota.
$$\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$$
, donde $b \in \mathbb{R}$ y $b > 0$.

Ampliación de Matemáticas. Final Ordinario Parte 2 (Versión 2). (01-02-2021)

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2}(t) + 2\frac{\mathrm{d}w}{\mathrm{d}t}(t) + 17w(t) = g(t) \text{ en }]0, +\infty[, \ w(0) = 0, \ \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 2$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por $g(t)=\frac{1}{2}+\cos^2(t)$ si $t\in[0,\frac{\pi}{2}[$ y $g(t)=\frac{1}{2}$ si $t\in[\frac{\pi}{2},+\infty[$. La transformada de Laplace de la función $w:[0,+\infty[\to\mathbb{R}$ es tal que:

(5)
$$\mathcal{L}[w(t)](2) = \frac{1}{200}(6 - \exp(-\pi)).$$

(6) $\mathcal{L}[w(t)](2) = \frac{1}{200}(5 + \exp(-\pi)).$
(7) $\mathcal{L}[w(t)](2) = \frac{1}{200}(21 - \exp(-\pi)).$
(8) No es cierta ninguna de las otras tres respuestas.

(6)
$$\mathcal{L}[w(t)](2) = \frac{1}{200}(5 + \exp(-\pi)).$$

(7)
$$\mathcal{L}[w(t)](2) = \frac{200}{200}(21 - \exp(-\pi)).$$

${\cal C}$. Considérese el problema de Cauchy definido por

$$(1+t^2)\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} + \frac{1}{1+t^2}w = 0$$
 en $]0, +\infty[, w(0) = 0, \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1.$

Sean $w:[0,+\infty[\to\mathbb{R}$ la solución del problema anterior y $v:\mathbb{R}\to\mathbb{R}$ la función definida por v(t)=w(t) si $t\in [0,+\infty[$ y v(t)=-w(-t) si $t\in]-\infty,0[.$ El desarrollo en serie de Taylor de la función v en 0 es $\sum\limits_{k=0}^{\infty}c_{k}t^{k}$. Las función w y los coeficientes c_{k} son tales que:

(9) Los coeficientes
$$c_k$$
 verifican la relación $c_{k+2} = \frac{(2k(k-1)+1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \ge 4$ y
$$c_5 = \frac{13}{120}.$$
(10) Los coeficientes c_k verifican la relación $c_{k+2} = \frac{13}{120}$

$$c_5 = \frac{13}{120}$$

(10) Los coeficientes
$$c_k$$
 verifican la relación $c_{k+2} = -\frac{(k(k-1)+1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \ge 4$ y

(10) Los coeficientes
$$c_k$$
 verifican la relación $c_{k+2} = -\frac{(k(k-1)+1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \ge 4$ y
$$c_5 = \frac{13}{120}.$$
(11) Los coeficientes c_k verifican la relación $c_{k+2} = -\frac{(k(k-1)+1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \ge 4$ y
$$c_5 = \frac{11}{120}.$$
(12) No es cierta ninguna de las otras tres respuestas.

$$c_5 = \frac{11}{120}.$$

(12) No es cierta ninguna de las otras tres respuestas.

Ampliación de Matemáticas. Final Ordinario Parte 2 (Versión 2). (01-02-2021)

D. Considérese la ecuación diferencial

$$z \sinh(z) \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{\sin(2z)}{8} \frac{\mathrm{d}w}{\mathrm{d}z} - \sinh(z)w = 0.$$

Las soluciones de la ecuación anterior, en $D \subset \mathbb{C}$, verifican que:

- (13) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_{s3}(z)}{z^{\frac{3}{4}}} = 1$.
- (14) Existe una solución de la ecuación del enunciado, $w_{s1}(z)$, tal que $\lim_{z\to 0}\frac{w_{s1}(z)}{\ln(z)}=1.$
- (15) Existe una solución de la ecuación del enunciado, $w_{s2}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_{s2}(z)}{z^{\frac{3}{8}}} = 1$.
- (16) No es cierta ninguna de las otras tres respuestas.

E. Considérese el problema de autovalores

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = \lambda u \quad \text{para } (r, \theta) \in]0, 1[\times] - \pi, \pi[, \quad (1)$$

$$u(1,\theta) = 0$$
 para $\theta \in [-\pi, \pi]$, u acotada en $]0,1[\times] - \pi, \pi[$, (2)

$$u(r,\pi) = u(r,-\pi), \quad \frac{\partial u}{\partial \theta}(r,\pi) = \frac{\partial u}{\partial \theta}(r,-\pi) \quad \text{para } r \in [0,1],$$
 (3)

donde $u \in C^{\infty}([0,1] \times [-\pi,\pi])$. El probrema de autovalores (1)-(3) verifica que:

- La función $w(r,\theta) = J_4(\alpha r) \sin(4\theta + \varphi)$ es una autofunción del problema (1)-(3) asociada al autovalor $\lambda = -\alpha^2$, donde $\alpha > 0$, $J_4(\alpha) = 0$ y $\varphi \in \mathbb{R}$.
- (18) La función $w(r,\theta) = J_4(\alpha r) \sin(3\theta + \varphi)$ es una autofunción del problema (1)-(3) asociada al autovalor $\lambda = -\alpha^2$, donde $\alpha > 0$, $J_4(\alpha) = 0$ y $\varphi \in \mathbb{R}$.
- (19) La función $w(r,\theta) = J_4(\alpha r) \sin(4\theta + \varphi)$ es una autofunción del problema (1)-(3) asociada al autovalor $\lambda = -\alpha^2$, solamente si $\varphi = \frac{k\pi}{2}$ con $k \in \mathbb{Z}$, donde $J_4(\alpha) = 0$ con $\alpha > 0$.
- (20) No es cierta ninguna de las otras tres respuestas.

Tomando la transformada de Fourier con respecto a la voriable û cw,t) es la transformada le Fourier de ucxet. Terrendo en cuenta que 10(1+62 ln26) d6 = t+ = (ln26 - 2 lnt + =), este resultado se obliene integrando por partes, e integrando la ocuación de primer ordon que verifica à se obtiena $\hat{u}(\omega_t t) = C \exp(-\omega^2(t + \frac{t^3}{3}(2n^2t - \frac{2}{3}\ln t + \frac{2}{3})))$. Imponiondo la Condición unicial se dotione û(w(t) = \(\frac{1}{10} \) exp(-\(\omega^2 \left(\frac{1}{10} \) + \(\frac{1}{3} \) (lm²t - \(\frac{2}{3} \) lnt+ 2/)). Tomando la transformada unversa se obtione Le (xcot) = 1 (1+4x(t+t3cm2t-3mt+2)) exp(- xx2 (1+4x(t+t3cm2t-3mt+2))).

(B) la función g puede escriberse en la forma $g(t) = (\mu(t) - H(t-\frac{\Omega}{2}))(\frac{1}{2} + \omega^2 t)$ $+ H(t-\frac{\Omega}{2})\frac{1}{2} = H(t)\left(H(\frac{\omega 2t}{2}) - H(t-\frac{\Omega}{2})\left(\frac{1+(\omega 2(t-\frac{\Omega}{2}+\frac{\Omega}{2}))}{2}\right) = H(t)\left(1+\frac{(\omega 2t)}{2}\right)$ - H(t-=) = + H(t-=) (0) 2Ct-=). Tomando la transformada de daplace de la senación y temendo en cuenta las condiciones iniciales (22+22+17) &[WEI] (2) = dw(0) + &[g(t)] (2). Temendo en cuenta que d[0,2t](2)= = = = = , d[1](2)= = = y que d[h(ta) f(ta)](z) = cap(-az) d[f(t)](z) para aso, se detione que 2[wth](2) = 1 (24)2+42 (dw(0)+1/2+2(2244)(4+exp(-1)/2))emp (-122) - Patanto, &[wt](2) = 1 (8 dw (0) +5 - emp (-17)).

O ba solution del problema de Guchy del eneurcia de es una función de close $C^0(7-6.81)$ porà um 6>0. Por tento $W(t)=t+\sum_{k\geq 2} \operatorname{Cet}^k$. Sustituyendo el desorrello anterior un la evación $(1+t^2)^2 \frac{d^2w}{dt^2} + w = 0$ se obtaine $c_{2=0}, c_{3}=\frac{1}{6}$, $c_{4=0}$ $c_{5=\frac{13}{120}}$. Y $c_{k+2}=-\frac{(2k(k-1)+1)c_{k+(k-2)(k-3)}c_{k-2}}{(k+2)(k+1)}$ la evación por $\frac{dw}{dt}$, la expresión resultante de puede rescribir tomo $\frac{d}{dt}(\frac{1}{2}(\frac{dw}{dt})^2+\frac{1}{(1+t^2)^2}\frac{w^2}{2})=\frac{-2t}{(1+t^2)^3}$ $w^2 \neq 0$ pora todo $t\in C_0$; toot.

Por tanto, $\frac{1}{2}(\frac{dw}{dt})^2+\frac{1}{(1+t^2)^2}\frac{(wt)^2}{2} \leq \frac{1}{2}(\frac{dw}{dt}o)^2+\frac{w(0)^2}{2}=\frac{1}{2}$, de donde $|\frac{dw}{dt}(t)| \leq 1$ para tado $t\in C_0$; + ∞C .

De souación del emenciado puede envilonce como $\frac{d^2w}{dz^2} = \frac{1}{z} - \frac{8n}{4r} \frac{2z}{8nz} \frac{dw}{dz} + \frac{1}{z^2} \frac{z}{z}.$

El punto 2=0 es un punto singular regular para la ecuación anterior. Nótose que li -sen 27 = -2, por lo que la función sen 27 es analítica en 7=0 cuando se la define de forma continua con 7=0. El comportamiento de la solución está determinado por los autovalores de la matriz (0 1), es decin, $\lambda_1 = 1 - \frac{1}{28}$, $\lambda_2 = 0$ con $\gamma > \frac{1}{2}$.

Por tonto, para >>= , la solución general de la ecuación en de la gorma w(x) = C1 7 20 p(x) + G2 p2(x) donde py p2 son dos funciones analíticas um un centermo del origen con p(0) = P2(0) = 1.

Para G=1 y Cz =0 & W(2) =1 y & W(2) o no 2 words o as distante de 1.

E) la función f(r) sen (no+e) con $n \in \mathbb{N}$ satisface las condiciones (3) del amunciado. Para $\lambda = -\alpha^2$, sustiluyendo f(r) sen (no+e) en (2) de obtiene la ecuación

NS 97 + L 97 + C 05 NS - NS) ECO =0.

La solution general de la acuación anterior en for = G Jn(ar) + Cz Yn (ar). Par solutionen acatedos en Jo, 13 de la ecuación anterior son de la forma for) = G, In(ar). Si a un tal que Jn(a) = 0 centancen wor) = In(ar) sen (no+e) un una auto función del problema (4)-(3) para todo Q E IR.