Teoria węzłów

L. Aragonés

21 lutego 2016

Spis treści

1 Definicja węzła. Ruchy Reidemeistera

2

Rozdział 1

Definicja węzła. Ruchy Reidemeistera

Rozpoczynamy ten rozdział od sformułowania definicji węzła. Obiekt, który zaraz określimy, powinien odpowiadać naszym oczekiwaniom, posiadać własności węzłów (żeby móc się tak nazywać), a przy tym zachowywać jak największy stopień ogólności.

Wydaje się, że poniższa definicja jest dosyć rozsądna.

Definicja 1.0.1. Węzłem nazywamy obraz gładkiej funkcji $f: \mathbb{R} \to \mathbb{R}^3$ o nieznikającej pochodnej, która posiada następującą własność: $f(\mathfrak{u}) = f(\mathfrak{v})$ wtedy i tylko wtedy gdy $\mathfrak{u} - \mathfrak{v} \in \mathbb{Z}$.

Okazuje się jednak, że ma dość poważne wady. Nie dopuszcza wprawdzie węzłów dzikich (rysunek poniżej), które posiadają nieskończenie wiele "pętli". Sprawia ona jednak kłopot w określeniu, kiedy dwa węzły są równoważne.

Rysunek 1.1: Węzeł dziki.

Węzły K i J chcielibyśmy uważać za równoważne, jeżeli istnieje rodzina węzłów K_t dla $t \in [0,1]$, taka że $K_0 = K$, $K_1 = J$ i K_t powinien "nie różnić się" znacznie od K_s dla $s \approx t$. Niestety umożliwia ona ściągnięcie każdej pętli do punktu.

Rysunek 1.2: Ściągnięcie pętli.

Rozwiązanie tych problemów jest zaskakująco proste: zamiast odwoływać się do pojęcia gładkiej krzywej, wystarczy posłużyć się łamaną. Posiada ona skończenie wiele wierzchołków, więc wyklucza z rozważań dzikie węzły. Pozwala również na podanie prostego opisu dozwolonych deformacji.

Skorzystamy z notacji $[p,q]:=\{\lambda p+(1-\lambda)(q-p):\lambda\in[0,1]\}$ dla różnych punktów $p,q\in\mathbb{R}^3$. Łamaną o parami różnych wierzchołkach $p_1,\ldots,p_n\in\mathbb{R}^3$ jest zbiór $\bigcup_{i< n}[p_i,p_{i+1}]$. Jeżeli $p_1=p_n$, to łamana jest zamknięta. Łamana jest pozbawiona samoprzecięć, kiedy każdy jej punkt naeży do dokładnie jednego odcinka postaci $[p_i,p_{i+1}]$.

Definicja 1.0.2. Węzeł to łamana zamknięta w \mathbb{R}^3 bez samoprzecięć.

Zauważmy, że każdy węzeł jest jednoznacznie wyznaczony przez minimalny (w sensie zawierania) zbiór wierzchołków łamanej.

Definicja 1.0.3. Splot to teoriomnogościowa suma skończenie wielu parami rozłącznych węzłów, zwanych składowymi.

Zajmiemy się teraz utożsamianiem tylko pozornie różnych węzłów.

Definicja 1.0.5. O węźle J rozpiętym na wierzchołkach p_0, \ldots, p_n mówimy, że powstaje przez elementarną definicję węzła K rozpiętego na p_1, \ldots, p_n , gdy p_0 nie leży na odcinku $[p_1, p_n]$, zaś przekrój trójkąta $p_0p_1p_n$ z K zawiera się w $[p_1, p_n]$.

Przekształcenie odwrotne do elementarnej deformacji również jest elementarną deformacją.

Definicja 1.0.6. Węzeł to łamana $w \mathbb{R}^3$ bez samoprzecięć.