CSE 230: Data Structures

Lecture 10 :Priority Queues Ritwik M

Based on the reference materials by Prof. Goodrich and Dr. Vidhya Balasubramanian

Priority Queues

- Is an abstract data type which is a collection of items like other ADTs
 - Additionally there is a priority associated with each item
 - An element with high priority is served before an element with lower priority
- Where is it used?

Priority Queue ADT

- An item in a priority queue P is represented as follows
 - (key, element), key is the priority
- Operations
 - insertItem(k, o): inserts an item with key k and element o
 - removeMin(): removes the item with the smallest key
 - minKey(): returns, but does not remove, the smallest key of P
 - minElement(): returns, but does not remove, the element of an item with smallest key
 - size(), isEmpty()

Example

Operation	Output	Priority Queue
insertItem(5,A)	-	{(5,A)}
insertItem(9,C)	-	{(5,A), (9,C)}
insertItem(3,B)	-	{(3,B), (5,A), (9,C)}
insertItem(7,D)	-	{(3,B),(5,A),(7,D) (9,C)}
minElement()	В	{(3,B),(5,A),(7,D) (9,C)}
minKey()	3	{(3,B),(5,A),(7,D) (9,C)}
removeMin()	(3,B)	{(5,A),(7,D) (9,C)}
minElement()	Α	{(5,A),(7,D) (9,C)}
removeMin()	(5,A)	{(7,D) (9,C)}
removeMin()	(7,D)	{(9,C)}

Total Order Relation

- Keys in a priority queue follow a total ordered relation
 - Two distinct items in a priority queue can have the same key
- A relation <= is a total order on a set S ("<= totally orders S") if the following properties hold.
 - Reflexivity: a<=a for all a in S.
 - Antisymmetry: a<=b and b<=a implies a=b.
 - Transitivity: a<=b and b<=c implies a<=c.
 - Comparability: For any a,b in S, either a<=b or b<=a

Comparator ADT

- comparator encapsulates the action of comparing two objects according to a given total order relation
- A generic priority queue uses a comparator as a template argument, to define the comparison function (<,=,>)
- Function
 - comp(a,b)
 - Returns integer i, such that i<0, i=0 or i>0
 - Value of i depends on whether a<b, a=b or a>b respectively
 - When the priority queue needs to compare two keys, it uses its comparator

Sequence based Priority Queue

- Unsorted Sequence
 - Store items in a list based sequence in an arbitrary order
 - Performance
 - insertItem: O(1) time since it can be inserted anywhere
 - removeMin: O(n) to find the smallest key in the array
- Sorted Sequence
 - Store items sorted by key
 - insertItem: O(n) to find and insert item at right place
 - removeMin: O(1): element is at front of sequence

Heaps

- A heap implements a priority queue
 - Stores elements in a binary tree
 - insertions and deletions logarithmic time

Properties of Heaps - I

- Heap-Order Property.
 - For every node v other than the root, the key stored at v is greater than or equal to the key stored at v's parent
 - key(v) ≥ key(parent(v)) (min-heap)
 - Or key(v) ≤ key(parent(v)) for a max-heap

Properties of Heaps - II

- Complete Binary tree
 - A binary tree with height h is complete if the levels 0,1,2,...h-1 have the maximum number of nodes possible and
 - All internal nodes are to the left of the external nodes
 - Helps keep the height of the heap small

Heaps: Key Points

- A binary tree has the heap property iff
 - it is empty or

11

- the key in the root is larger than that in either child and both subtrees have the heap property.
- So why is it used as a representation for priority queue?
 - The value of the heap structure is that we can both extract the highest priority item and insert a new one in O(logn) time.

Working with heaps

So how can we do this?

- Inserting in an empty tree is trivial
- Let us start with an existing heap

Source: www.cs.auckland.ac.nz

Heap: Insertion

- Corresponds to insertion in a priority queue
 - To Insert an element X into the heap:
 - Find the insertion node (the new last node) Here 'N'
 - Insert X as a child of N
 - Restore heap order property

Amrita Vishwa Vidhyapeetham Amrita School of Engineering

Upheap

- After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height O(log n), upheap runs in O(log n) time

Heap: Removal

- Removes root from the heap
- Replace the root key with the key of the last leaf node M at the lowest level
- Restore the heap-order property using down-heap

Heap: Removal

Replacing root with last leaf

But this has violated the Heap order property

Perform Downheap

Downheap

- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- Since a heap has height O(log n), downheap runs in O(log n) time

Downheap

Swap Root with largest child

Continue till heap order achieved.

Heap Implementation

Implemented using vector representation

19

The last node is the rightmost node in the last level

Analysis of Heaps

Insertion

- Element inserted in the last position
- Up-heap restores the heap-order property by swapping inserted element along an upward path from the insertion node
- Worst case O(log n)

Deletion

- Remove root and replace with last node
- Down-heap restores the heap-order property by swapping key k along a downward path from the root
- Worst case O(log n)

Merging heaps

- Given two heaps and a key k
 - Create a new heap with k as root, and the two heaps as subtrees
 - Down-heap to restore heap order property

Building the heap

- Bottom up building of the heap takes O(n) time
 - Construct (n+1)/2 elementary heaps composed of one key each.
 - Construct (n+1)/4 heaps, each with 3 keys, by joining pairs
 of elementary heads and adding a new key as the root.
 - Swap if heap-order not satisfied
 - In phase i, pairs of heaps with 2ⁱ -1 keys are merged into heaps with 2ⁱ⁺¹-1 keys
 - i.e form (n+1)/2ⁱ heaps, each storing 2ⁱ-1 keys, by
 - joining pairs of heaps storing (2ⁱ⁺¹-1) keys.

Example

Source: http://www.apl.jhu.edu/Classes/605202/felikson/lectures/L8/L8.html

- Atmost n nodes in the path of down-heap
- Hence cost of heap building is O(n)

Application of Heaps

Heapsort:

 One of the best sorting methods being in-place and with no quadratic worstcase scenarios.

Selection algorithms:

 A heap allows access to the min or max element in constant time, and other selections (such as median or kth-element) can be done in sub-linear time on data that is in a heap.

Graph algorithms:

 By using heaps as internal traversal data structures, run time will be reduced by polynomial order.

Priority Queue

Order statistics:

 The Heap data structure can be used to efficiently find the kth smallest (or largest) element in an array.

Exercise

- Create a heap by inserting the following elements in order
 - 2,5,16,4,10,23,39,18,26,15,9,8
 - What is the height of the heap
 - Demonstrate the deletion operation
 - Remove min element thrice and demonstrate how the heap changes
- 2. Is there a heap T storing seven distinct elements such that the preorder traversal of T yields the elements in sorted order?
 - What about the other traversals

Exercise

- Create a heap for the following data using the bottom-up approach
 - 2,5,16,4,10,23,39,18,26,15, 9, 8, 3, 22, 34
- 2. Draw an example of a heap whose keys are all odd numbers from 1 to 59 (no repeat), such that the insertion of an item with key 32 causes up-heap bubbling to proceed all the way up to a child of the root
- 3. Will the preorder traversal of a heap always yield the sorted order? Give an example to show it need not always be so.