2014/06/12 Exercise 3

Consider the following function $g: \{-1, +1\}^N \to \{-1, 1\}$:

$$g(\mathbf{x}) = \begin{cases} 1 & \text{if } \sum_{i=1}^{N} x_i \in [S_{min}, S_{max}], \\ -1 & \text{otherwise,} \end{cases}$$
 (1)

where $S_{min}, S_{max} \in \mathbb{Z}$ and $-N \leq S_{min} \leq S_{max} \leq N$.

- 1. Show that in general $g(\mathbf{x})$ cannot be reproduced using a single perceptron.
- 2. Show that the function $g(\mathbf{x})$ can be reproduced using a network with one hidden layer and two neurons using

$$\sigma(z) = \operatorname{sign}(z) = \begin{cases} +1 & \text{if } z \ge 0, \\ -1 & \text{otherwise,} \end{cases}$$
 (2)

with all weights and biases integers.

3. Show that the function $g(\mathbf{x})$ can be reproduced using a network with one hidden layer and two neurons using $\sigma(z) = ReLU(z)$.

- derine
$$s_2 \stackrel{\sim}{\underset{i=1}{\mathbb{Z}}} X_i$$
, $S \in [-N,N]$ and all values are add at even interges denoting on N

- Neuron $1: h_1 = Sign (S - Jain + C.S)$ — $S = 1$ when $S = 1$ Sign $S = 1$ when $S = 1$ when $S = 1$ when $S = 1$ sign $S = 1$ sign $S = 1$ when $S = 1$ sign $S = 1$

* 3(x) csing RelV (RelV(z)= mex (0,2))

S= Ex,

h= RelV (5-Smin)
h= RelV (Smex-5)

Derine 3(x)= { 1 io h= 0 and h= 70}

c others.

Lo sine coloids we relV size alues >0

at= RelV (1- RelV(+h=) - PelV (1-h=2))

Lo at= 1 and who h= 1, h= >1 ie. SE[Sm-11, Snex-1]

if $h_1 70$ he 70 at=(1-0-0)-1if $h_1 70$ or $h_2 70$ cut=(1-1-...) = 6