

3S20

1. Dans sa commode, Guillaume a mis dans le premier tiroir des paires de chaussettes. Il y a 2 paires de chaussettes rouges, 7 paires de chaussettes vertes, 6 paires de chaussettes bleues, 3 paires de chaussettes noires et 3 paires de chaussettes blanches.

Dans le deuxième tiroir, Guillaume a mis des T-shirt. Il y a 3 T-shirt rouges, 3 T-shirt verts, 6 T-shirt bleus, 6 T-shirt noirs et 4 T-shirt blancs.

Un matin, il y a une panne de courant et Guillaume prend au hasard une paire de chaussettes dans le premier tiroir et un T-shirt dans le deuxième.

- a. Quelle est la probabilité que Guillaume ait choisi des chaussettes et un T-shirt bleus?
- **b.** Quelle est la probabilité que Guillaume ait choisi des chaussettes et un T-shirt de la même couleur?
- c. Quelle est la probabilité que Guillaume ait choisi des chaussettes et un T-shirt de couleurs différentes?
- 2. José dispose d'un dé à 8 faces numérotées de 1 à 8 et d'un dé à 12 faces numérotées de 1 à 12.

Il lance ses deux dés et en fait la somme.

- a. Reporter dans un tableau les issues possibles de cette expérience aléatoire et leurs probabilités respectives.
- **b.** Dalila dispose d'un dé à 6 faces numérotées de 1 à 6 et d'un dé à 10 faces numérotées de 1 à 10.

Elle décide de proposer un défi à José : "On choisit un nombre cible entre 2 et 16, on lance nos deux dés en même temps. Le premier dont la somme des dés est la cible a gagné."

c. José qui connaît les probabilités calculées au 1) propose alors de choisir 9 comme nombre cible. Il pense avoir plus de chances de gagner que Dalila. A-t-il raison?

Si oui, quel nombre doit choisir Dalila pour avoir un défi qui lui soit favorable et si non, y a-t-il un meilleur choix pour José?

d. Y a-t-il un nombre cible qui donne un jeu équitable où chacun aura la même probabilité de gagner?

Exercice inspiré des problèmes DuDu (mathix.org)

3. Dans le frigo il y a 17 yaourts. 4 sont à l'abricot, 7 sont à la fraise et 6 sont à la banane.

Manon en choisit un au hasard. Son frère Jean-Claude en choisit un au hasard à son tour.

- a. Combien d'issues possède cette experience aléatoire? Donner un exemple d'issue.
- b. Est-ce une expérience en situation d'équiprobabilité? Justifier.
- c. Calculer la probabilité que Manon et Jean-Claude aient choisi tous les deux un yaourt à l'abricot.
- d. Calculer la probabilité qu'ils aient choisi des yaourts aux parfums identiques.
- e. Calculer la probabilité qu'ils aient choisi des yaourts aux parfums différents.

Corrections •

1. a. Il y a 6 paires de chaussettes bleues et il y a 21 paires de chaussettes possibles. La probabilité de choisir une paire de chaussettes bleues est : $\frac{6}{21} = \frac{2 \times 3}{7 \times 3} = \frac{2}{7}$.

Il y a 6 T-shirt bleus et il y a 22 T-shirt possibles. La probabilité de choisir un des T-shirt bleus est : $\frac{6}{22} = \frac{3 \times 2}{11 \times 2} = \frac{3}{11}$.

Guillaume a donc $\frac{3}{11}$ de 2 chances sur 7 de choisir des chaussettes et un T-shirt bleus.

Soit $\frac{3}{11} \times \frac{2}{7} = \frac{3 \times 2}{11 \times 7} = \frac{6}{77}$.

b. La probabilité de choisir une paire de chaussettes noires est : $\frac{3}{21} = \frac{1 \times 3}{7 \times 3} = \frac{1}{7}$ et

La probabilité de choisir l'un des T-shirt noirs est : $\frac{6}{22} = \frac{3 \times 2}{11 \times 2} = \frac{3}{11}$.

Donc la probabilité de choisir des chaussettes et un T-shirt noirs est 3 1 3×1 3

 $\frac{3}{11} \times \frac{1}{7} = \frac{3 \times 1}{11 \times 7} = \frac{3}{77}.$

La probabilité de choisir une paire de chaussettes blanches est : $\frac{3}{21} = \frac{1 \times 3}{7 \times 3} = \frac{1}{7}$ et

la probabilité de choisir l'un des T-shirt blancs est : $\frac{4}{22} = \frac{2 \times 2}{11 \times 2} = \frac{2}{11}$.

Donc la probabilité de choisir des chaussettes et un T-shirt blancs est : 2 , 1 , 2×1 , 2

 $\frac{2}{11} \times \frac{1}{7} = \frac{2 \times 1}{11 \times 7} = \frac{2}{77}.$

On en déduit que la probabilité de choisir des chaussettes et un T-shirt de la même couleur est :

 $\frac{6}{77} + \frac{3}{77} + \frac{2}{77} = \frac{6+3+2}{77} = \frac{11}{77} = \frac{1 \times 11}{7 \times 11} = \frac{1}{7}$

c. L'événement "choisir des chaussettes et un T-shirt de couleurs différentes" est l'événement contraire de l'événement "choisir des chaussettes et un T-shirt de même

couleur".

Donc sa probabilité est : $1 - \frac{1}{7} = \frac{7-1}{7} = \frac{6}{7}$

a. Les différ	rents	s rés	ultat	s d	e l'	— expé	- érien	ce d	le J	osé	sont	prés	entés	dar	ns ce	ette	table	 :	
Dé 1/Dé 2		2	3	4	5	6	7	8	9	10	11	12							
1	2	3	4	5	6	7	8	9	10	11	12	13							
2	3	4	5	6	7	8	9	10	11	12	13	14							
3	4	5	6	7	8	9	10	11	12	13	14	15							
4	5	6	7	8	9	10	11	12	13	14	15	16							
5	6	7	8	9	10	11	12	13	14	15	16	17							
6	7	8	9	10	11	12	13	14	15	16	17	18							
7	8	9	10	11	12	13	14	15	16	17	18	19							
8	9	10	11	12	13	14	15	16	17	18	19	20							
Les probabil	ités	de	chaq	ue	issu	e so	nt o	donn	ées	par	ce 1	table	au :						-
résultats	2	3	$\begin{vmatrix} 1 & 4 & 1 \end{vmatrix}$	5	. .	6	7	8	9	10	11	12	13	14	15	16	17	18	
Probabilité	$\frac{1}{96}$	$\frac{2}{96}$	$\frac{3}{96}$	$\frac{4}{96}$	<u>5</u> <u>5</u>	506	6 96	$\frac{7}{96}$	8 96	$\frac{8}{96}$	$\frac{8}{96}$	$\frac{8}{96}$	$\frac{8}{96}$	$\frac{7}{96}$	$\frac{6}{96}$	$\frac{5}{96}$	$\frac{4}{96}$	$\frac{3}{96}$	
b. Les proba	abilit	tés e	en ce	qu	i co	ncer	ne l	Dalil	a so	nt d	onné	es p	ar le	tabl	eau	ci-de	essous	:	
Résultats	2	3	$\begin{vmatrix} 4 \end{vmatrix}$	5	. .	5	7	8	9	10	11	12	13	14	15	16			
Probabilité	$\frac{1}{60}$	$\frac{2}{60}$	$\frac{3}{60}$	$\frac{4}{60}$	_ _	_ .	6 60	$\frac{6}{60}$	6 60	$\frac{6}{60}$	$\frac{6}{60}$	$\frac{5}{60}$	$\frac{4}{60}$	$\frac{3}{60}$	$\frac{2}{60}$	$\frac{1}{60}$			

La probabilité qu'a Dalila de faire 9 est : $\frac{6}{60} = \frac{1 \times 6}{10 \times 6} = \frac{1}{10}$.

20

96

La probabilité qu'a José de faire 9 est : $\frac{8}{96} = \frac{1 \times 8}{12 \times 8} = \frac{1}{12}$.

José se trompe en croyant avoir plus de chances de gagner car $\frac{1}{10} > \frac{1}{12}$.

c. José aurait du choisir 16 comme nombre cible.

Sa probabilité de réussir serait alors de $\frac{5}{96}$ et celle de Dalila serait de $\frac{1}{60}$.

d. En choisissant 12 comme cible, José et Dalila ont la même probabilité de gagner.

Pour José la probabilité est : $\frac{8}{96} = \frac{1 \times 8}{12 \times 8} = \frac{1}{12}$ tout comme pour Dalila :

$$\frac{5}{60} = \frac{1 \times 5}{12 \times 5} = \frac{1}{12}.$$

3. a. Manon peut avoir choisi un yaourt à l'abricot, à la fraise ou à la banane. Une fois qu'elle a choisi, et comme il y a au moins 2 yaourts de chaque sorte, Jean-Claude a les mêmes 3 possibilités. Il y a donc $3 \times 3 = 9$ issues possibles.

Par exemple : Manon a pris un yaourt à l'abricot et Jean-Claude un yaourt à la fraise. Ce qu'on peut noter (A,F).

Les 9 issues sont : (A,A) (A,F) (A,B) (F,A) (F,F) (F,B) (B,A) (B,F) (B,B)

- **b.** Comme le nombre de yaourts est différent d'un parfum à l'autre, Manon n'a pas la même probabilité de choisir n'importe quel parfum. On en déduit qu'il est impossible que les issues (A,A), (F,F) et (B,B) aient la même probabilité.
- c. Il y a 4 yaourts à l'abricot, et 17 yaourts en tout, la probabilité que Manon choisisse un yaourt à l'abricot est : $\frac{4}{17}$.

Ensuite il reste 3 yaourts à l'abricot pour Jean-Claude sur un total de 16 yaourts. La probabilité qu'il choisisse à son tour et dans ces conditions ce parfum est; $\frac{3}{16}$.

La probabilité de l'issue (A,A) est le produit de ces deux probabilités, donc : $4 \quad 3 \quad 12 \quad 3 \times 4 \quad 3$

$$\frac{4}{17} \times \frac{3}{16} = \frac{12}{272} = \frac{3 \times 4}{68 \times 4} = \frac{3}{68}.$$

 ${\bf d.}$ Les probabilités des issues (F,F) et (B,B) peuvent être calculées de la même façon qu'à la question c) :

$$\frac{7}{17} \times \frac{6}{16} = \frac{42}{272}.$$

$$\frac{6}{17} \times \frac{5}{16} = \frac{30}{272}.$$

La probabilité qu'ils choisissent le même parfum est la somme des probabilités des

issues (A,A), (F,F) et (B,B), soit :

$$\frac{12}{272} + \frac{42}{272} + \frac{30}{272} = \frac{84}{272} = \frac{21 \times 4}{68 \times 4} = \frac{21}{68}$$

e. Choisir des parfums différents est l'événement contraire de l'événement dont on a calculé la probabilité à la question d).

La probabilité de cet événement est donc : $1 - \frac{21}{68} = \frac{68}{68} - \frac{21}{68} = \frac{47}{68}$