Exercises: Clustering

October 16, 2017

1 K-means Clustering

Consider the following data set consisting of the scores of two variables on each of seven individuals:

Subject	A	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Given K=2 and (1.0,1.0), (5.0,7.0) as the initial selection of points as centroids, perform 2 iterations of the K-means clustering algorithm.

Draw the data points and cluster centroids in a coordinate system.

Algorithm

• Assign each point to the closest centroid. The Euclidean distance between two objects, with n attributes, $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ is computed as follows:

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$
 (1)

E.g., the Euclidean distance between two points (2,4) and (3,1) is $\sqrt{(2-3)^2+(4-1)^2}=\sqrt{10}$.

• Recompute the centroid of each cluster. The centroid of the *i*th cluster is defined as follows:

$$\mathbf{c}_i = \frac{1}{m_i} \sum_{x \in C_i} \mathbf{x},\tag{2}$$

where m_i is the number of data points in cluster i. E.g., the centroid of a cluster containing three 2-dimensional points, (1,1), (2,3), and (6,2) is ((1+2+6)/3,(1+3+2)/3)=(3,2).

Solution

Round numbers to the first digit.

	Distance to centroid			
Subject	of Cluster 1	of Cluster 2		
	(1.0, 1.0)	(5.0, 7.0)		
1	0.0	7.2		
2	1.1	6.1		
3				
4				
5				
6				
7				

Table 1: Iteration 1

	Distance to centroid					
Subject	of Cluster 1		of C	Clust	er 2	
	(,)	(,)
1						
2						
3						
4						
5						
6						
7						

Table 2: Iteration 2

2 Hierarchical Agglomerative Clustering

Perform a hierarchical clustering of some Italian cities, based on their distances, using the single-linkage method.

Draw a dendogram after each step, showing the distance on the y-axis.

Algorithm

- Compute the proximity matrix and begin with a disjoint clustering.
- Find the most similar pair of clusters in the current clustering, c_i and c_i , based on min $d(c_i, c_i)$.
- Merge c_i and c_j into a single cluster and update the proximity matrix.
 - Delete the rows and columns corresponding to c_i and c_j and add a new row and new column for the merged cluster c_k .
 - The proximity between the merged cluster (c_i, c_j) and an other (old) cluster c_k is: $d(c_k, (c_i, c_j)) = \min\{d(c_k, c_i), d(c_k, c_j)\}.$
- Repeat until all objects are in a single cluster.

Solution

Init: Compute the proximity matrix (This is already given.) Each item corresponds to a (singleton) cluster.

	BA	FI	MI	NA	$\mathbf{R}\mathbf{M}$	то
BA	0	662	877	255	412	996
FI	662	0	295	468	268	400
MI	877	295	0	754	564	138
NA	255	468	754	0	219	869
RM	412	268	564	219	0	669
то	996	400	138	869	669	0

Repeat: Find the nearest pair of cities, merge them, and update the proximity matrix.

0				
	0			
		0		
			0	
				0

Table 3: Step 1 (5 clusters)

0		
	0	
		0

Table 5: Step 3 (3 clusters)

0			
	0		
		0	
			0

Table 4: Step 2 (4 clusters)

0	
	0

Table 6: Step 4 (2 clusters)