Rockchip RK818 Datasheet

Revision 1.0 July.2017

Revision History

Date	Revision	Description
2017-7-24	1.0	Update mark information
2015-5-12	0.3	Update
2015-3-10	0.1	Initial release

Table of Content

Figure Table I	f Content	. 4
	r 1 Introduction	
1.1	Overview	. 7
1.2	Feature	. 8
1.3	Typical Application Diagrams	. 8
Chapte 2.1	r 2 Package information	
2.2	Top Marking	10
2.3	Dimension	11
2.4	Pin Assignment	12
2.5	Pinout Number Order	13
Chapte 3.1	r 3 Electrical Characteristics	
3.2	Recommended Operating Conditions	15
3.3	DC Characteristics	15
Chapte 4.1	r 4 Function Description	
4.2	State Machine Description	33
4.3	Device Power on Enable Conditions	33
4.4	Device Power on Disable Conditions	33
4.5	Device Sleep Enable Conditions	34
4.6	Power Sequence	34
4.7	Power Control Timing	37
Chapte 5.1	r 5 Register Description	
5.2	Register Description	44
•	r 6 Thermal Management Overview	
6.2 F	Package Thermal Characteristics	93

Figure Index

Fig. 1-1	RK818 Typical Application Diagram	. 9
_	QFN68 7mm X 7mm	
_	Pin Assignment QFN7x7-68(Pitch=0.35mm)	
	State Machine	
_	Power On/Off Timing BOOT1=1 BOOT0=1	

Table Index

Table 4-1 Power Start Up Sequence	35
Table 4-2 Boot Timing Characteristics	37
Table 6-1 Thermal Resistance Characteristics	93

Warranty Disclaimer

Rockchip Electronics Co., Ltd makes no warranty, representation or guarantee (expressed, implied, statutory, or otherwise) by or with respect to anything in this document, and shall not be liable for any implied warranties of non-infringement, merchantability or fitness for a particular purpose or for any indirect, special or consequential damages.

Information furnished is believed to be accurate and reliable. However, Rockchip Electronics Co., Ltd assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use.

Rockchip Electronics Co., Ltd's products are not designed, intended, or authorized for using as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Rockchip Electronics Co., Ltd's product could create a situation where personal injury or death may occur, should buyer purchase or use Rockchip Electronics Co., Ltd's products for any such unintended or unauthorized application, buyers shall indemnify and hold Rockchip Electronics Co., Ltd and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Rockchip Electronics Co., Ltd was negligent regarding the design or manufacture of the part.

Copyright and Patent Right

Information in this document is provided solely to enable system and software implementers to use Rockchip Electronics Co., Ltd 's products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Rockchip Electronics Co., Ltd does not convey any license under its patent rights nor the rights of others.

All copyright and patent rights referenced in this document belong to their respective owners and shall be subject to corresponding copyright and patent licensing requirements.

Trademarks

Rockchip and Rockchip[™] logo and the name of Rockchip Electronics Co., Ltd's products are trademarks of Rockchip Electronics Co., Ltd. and are exclusively owned by Rockchip Electronics Co., Ltd. References to other companies and their products use trademarks owned by the respective companies and are for reference purpose only.

Confidentiality

The information contained herein (including any attachments) is confidential. The recipient hereby acknowledges the confidentiality of this document, and except for the specific purpose, this document shall not be disclosed to any third party.

Reverse engineering or disassembly is prohibited.

ROCKCHIP ELECTRONICS CO.,LTD. RESERVES THE RIGHT TO MAKE CHANGES IN ITS PRODUCTS OR PRODUCT SPECIFICATIONS WITH THE INTENT TO IMPROVE FUNCTION OR DESIGN AT ANY TIME AND WITHOUT NOTICE AND IS NOT REQUIRED TO UNDATE THIS DOCUMENTATION TO REFLECT SUCH CHANGES.

Copyright ©2017 Rockchip Electronics Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Rockchip Electronics Co., Ltd.

Chapter 1 Introduction

1.1 Overview

The RK818 is a complex power-management integrated circuit (PMIC) for multi-core system applications powered by a Li-ion or a Li-ion polymer battery cell, or by a 5V input either from an USB port or from an adaptor. The RK818 can provide a complete power management solution with very few external components.

The RK818 provides four configurable synchronous step-down converters and one synchronous step-up converter with current capability up to 4A and 2.5A, respectively. The device also contains 9 LDO regulators, one linear switch, one switch-mode charger, a battery fuel gauge, and the power path management function. Power-up/power-down controller is configurable and can support any customized power-up/power-down sequences (OTP based). A real-time clock (RTC) is also integrated to provide a 32-kHz output buffer, and real time function. The RK818 supports 32-kHz clock generation based on a crystal oscillator.

The switch-mode charger, together with the power path controller integrated in the RK818, allows supplying power to the loads while it is charging the battery. The charger provides functions such as input current limiting, trickle current charging, constant current (CC)/constant voltage (CV) charging, charging termination, charging over time protection, etc. All these functions can be conveniently configured through the I2C digital interface. The input current limit can be set to maximum 3A to accommodate a power adaptor as the input supply. When an input current limiting is triggered, the power path controller will distribute the input power in a way that the loads have the higher priority than the battery to take the input power. The difference between the input and output power will be used to charge the battery. In a case that the output power required by the loads exceeds the input power, the power path controller will automatically turn on the battery switch so that the battery can supply extra power to the loads together with the input supply. A "battery fuel gauge" is also integrated in the RK818. Using the proprietary algorithms and the sensed battery current and voltage, the gauge can accurately calculate the battery capacity based on the charging/discharging characteristics of the battery preloaded in the system. The gauge then sends the battery capacity information to the processor through the I2C interface. Other functions that the charger provides includes tiny current charging for an over discharged battery, or so called "dead battery", battery temperature monitoring, safe charging timer and over temperature shut down.

The RK818 can dynamically adjust the output voltage of each DC-DC converter, as required by the processor based on the processor's operation status so as to maximize the system efficiency. The output voltages of most channels can be configured through the I2C interface. The inputs of all channels have soft start function, which greatly reduces the inrush current at the startup. The frequency compensations of all the control loops are implemented internally to eliminate external compensation components.

The 2MHz switching frequency allows small size inductors to be used for both buck and boost converters. Also, as all the power switches are integrated on chip, no external power switches and Schottky diodes are needed, which reduces the system cost significantly.

The RK818 is available in a QFN68 7.0 mm x 7.0 mm package, with a 0.35-mm pin pitch.

1.2 Feature

- Input range: 3.8V 6V for USB input; 2.7V 4.5V for BAT input
- Switch mode Li-ion battery charger providing charging current up to 3A.
- Power path controller with 5A current path.
- Accurate battery fuel gauge.
- Real time clock (RTC)
- Low standby current of less than 40uA (at 32KHz clock frequency)
- 2MHz switching frequency for the buck converters
- 1MHz switching frequency for the boost converter
- Fast transient response due to the current mode architecture
- Internal frequency compensation and soft start
- Programmable output voltage and power up/down sequence through I2C interface
- Proprietary circuit architecture achieving high efficiency
- Internal discharge path in off state for BUCs and LDOs
- Power channels:
 - Ch1: Synchronous buck converter, 4A max
 - Ch2: Synchronous buck converter, 4A max
 - Ch3: Synchronous buck converter, 2.5A max
 - Ch4: Synchronous buck converter, 2.5A max
 - Ch5: Synchronous boost converter, 2.5A max
 - Ch6-7, Ch9 and Ch11: LDOs, 150mA max
 - Ch8: Low noise, high PSRR LDO ,100mA max
 - Ch10, 12,14: LDOs, 300mA max
 - Ch13: LDO, 400mA max
 - Ch15: Low R_{dson} switch,0.15ohm (Vgs=3V)
 - Ch16: HDMI5V switch, 80mA max
 - Ch17: OTG switch, 800mA max
- Fixed and programmable power up/down sequences
- Package: 7mmx7mm QFN68

1.3 Typical Application Diagrams

Fig. 1-1 RK818 Typical Application Diagram

Chapter 2 Package information

2.1 Ordering information

Orderable Device	RoHS status	Package	Package Qty	Device special feature
RK818-1	RoHS pass	QFN68(7X7)	2600ea/inner box* 6 inner boxes/outer box	For RK3288/RK3368
RK818-2	RoHS pass	QFN68(7X7)	2600ea/inner box* 6 inner boxes/outer box	For Sofia-3GR
RK818-3	RoHS pass	QFN68(7X7)	2600ea/inner box* 6 inner boxes/outer box	For RK3399

2.2 Top Marking

2.3 Dimension

Fig. 2-1 QFN68 7mm X 7mm

DESCRIPTION	CVMPOL	MILLIMETER			
DESCRIPTION	SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS	Α	0.70	0.75	0.80	

DECORIDATION	CVMPOL	MILLIMETER			
DESCRIPTION	SYMBOL	MIN	NOM	MAX	
STAND OFF	A1	0	0.035	0.05	
MOLD THICKNESS	A2	-	0.55	0.57	
MATERIAL THICKNESS	А3	-	0.203 _{REF}	-	
DACKACE CIZE	D	-	7 _{BSC}	-	
PACKAGE SIZE	E	-	7 _{BSC}	-	
EP SIZE	D1	5.39	5.49	5.59	
EP SIZE	E1	5.39	5.49	5.59	
LEAD LENGTH	L	0.30	0.4	0.50	
LEAD PITCH	е	0.35 _{BSC}			
LEAD WIDTH	b	0.1	0.15	0.2	
LEAD OSITION OFFSET	aaa		0.07		
LEAD COPLANARITY	LEAD COPLANARITY bbb		0.08		
PACKAGE EDGE PROFILE	ссс	0.10			
MOLD FLATNESS	MOLD FLATNESS ddd 0.10				
EP POSITION OFFSET	eee	0.10			
	fff		0.05		

Note:

- Coplanarity applies to leads, corner leads and die attach pad.
- Dimension b applies to metalized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension b should not be measure in that radius area.

2.4 Pin Assignment

Fig. 2-2 Pin Assignment QFN7x7-68(Pitch=0.35mm)

2.5 Pinout Number Order

Pin No	Pin Name	Pin Description
1	INT	Interrupt request pin. Active low.
2	SLEEP	Input pin for switching state between sleep and non-sleep state.
3	H_5V	5v supply output for HDMI
4	GND5	Power ground
5	SW5	Switch output
6,7	BOOST	BOOST output
8,9	USB	Power input from USB
10	MIDU	Middle point of USB power supply
11,12	SW6	Switch output
13	GND6	Power ground
14	VLDO1	LDO1 output
15	VCC6	Power supply for LDO
16	VLDO2	LDO2 output
17	XIN	32.768KHz crystal oscillator input
18	XOUT	32.768KHz crystal oscillator output
19	BOOT0	Boot sequence selection, low bit
20	BOOT1	Boot sequence selection, high bit
21	PWRON	Power on or power off enable pin, active low, internal 100K
21	1 WICOIN	pull high to power supply
22	VCC3	Power supply for DCDC3
23	SW3	Switch output of DCDC3
24	GND3	Power ground for DCDC3
25	VFB3	feedback voltage for DCDC3
26	VFB2	DCDC2 output voltage feedback input
27	GND2	Power ground for DCDC2
28,29	SW2	Switch output of DCDC2
30	VCC2	Power supply for DCDC2
31	CLK32K1	32.768K clock1 output, open drain,
32	CLK32K1 CLK32K2	32.768K clock1 output, open drain,
33	VDDIO	Power supply for IO
34	NRESPWON	Reset pin after power on, active low
35	SCL	Clock input of I2C
36	SDA	Data input/output of I2C
37	VPP	Power supply for testing, floating in the application
38	VFB1	DCDC1 output voltage feedback input
39	VCC1	Power supply for DCDC1
40,41	SW1	Switch output of DCDC1
42,43	GND1	Power ground for DCDC1
44	VLD07	LDO7 output
45	VCC7	Power supply for LDO
46	VLDO5	LDO5 output
47	VLD03	LDO3 output
48	VLD04	LDO4 output
49	VLD06	LDO6 output
50	VCC8	Power supply for switch
51	VLD08	LDO8 output
52	VLDO9	LDO9 output
53	VCC9	Power supply for LDO
54	VSWOUT	Switch output
55	VREF	Internal reference voltage
56	REFGND	Reference ground

Pin No	Pin Name	Pin Description
57	SNSN	Bat charging and discharging sense current negative pin
58	SNSP	Bat charging and discharging sense current positive pin
59,60	BAT	Positive battery terminal
61,62	SYS	DC-DC regulator output to power the system load and charge the battery
63	VCC4	Power supply for DCDC4
64	SW4	Switch output of DCDC4
65	VFB4	DCDC4 output voltage feedback input
66	GND4	Power ground for DCDC4
67	TS1	Thermistor1 input. Connect a thermistor from this pin to
		ground. The thermistor is usually inside the battery pack.
68	TS2	Thermistor2 input. Connect a thermistor from this pin to ground. Or it can be used as analog input pin of internal ADC
		if the control bit is set to ADC function.
Exposed	Exposed	It must be connected to ground for thermal and electrical
pad	ground	enhancement.

Chapter 3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Parameter	Min	Max	Units
Voltage range on pins USB ,MIDU ,BOOST ,SWx/H_5V	-0.3	6.5	V
Voltage range on pins VCCx, VFBx, VLDOx, VSWOUT, VREF	-0.3	6.5	V
Voltage range on pin CLK32K1,CLK32K2, SLEEP	-0.3	6.5	V
Voltage range on pins XIN,XOUT, BOOT0,BOOT1, PWRON	-0.3	VSYS _{MAX} +0.3	
Voltage range on pins NRESPWRON, INT, SDA, SCL	-0.3	4	V
Storage temperature range, T _S	-40	150	
Operating temperature range, T _J	-40	125	
Maximum Soldering Temperature, T _{SOLDER}		300	

Note 1. Exposure to the conditions exceeded absolute maximum ratings may cause the permanent damages and affect the reliability and safety of both device and systems using the device. The functional operations cannot be guaranteed beyond specified values in the recommended conditions.

3.2 Recommended Operating Conditions

Parameter	Min	TYP	Max	Units
Voltage range on pins USB	4	5	5.5	V
Voltage range on other pins			5.5	V
Power Dissipation			2.7	W

3.3 DC Characteristics

Test conditions: VUSB =5.0V, TA = $25^{\circ}C$ for typical values, unless otherwise noted.

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
USBIN						
USB Operating Range	V_{USB}		4	5	6	V
USB Under Voltage Lockout		Rising	3.65	3.8	3.95	٧
Threshold		Falling		3.6		V
LICD vs DATT Threehold		Rising		70		mV
USB vs BATT Threshold		Falling		30		mV
		Min Current	60	80	100	mA
LIGD To and Comment Line's	I _{USB}	Default	400	450	500	mA
USB Input Current Limit		Max current	2.7	3	3.3	Α
		step (from 1A to 3A)		200		mA
Maximum USB and BATT	V _{PORH}				2.2	V
Power on Reset Threshold						
(Rising)						
Maximum USB and BATT	V _{PORL}		1.2			V
Power on Reset Threshold						
(Falling)						
Over Voltage Lock Out	V _{TH(OVLO)}		5.7	6.0	6.3	V
Threshold (USB Rising)						
Over Voltage Lock Out	V _{HYS (OVLO)}			0.2		V

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Hysteresis						
High-Side PMOS Peak Current		0.5A step,	4		F -	
Limit		Default=4.5A	4		5.5	Α
LICD Toput Outseast Comment	IUSBquie	Charger Enable			10	0
USB Input Quiescent Current	t	mode			10	mA
CHARGING CONTROLLER						
				4.05		V
				4.1		V
		VDAT: VDECH ICHC		4.15		V
Taurainal Bathau Valtara	V_{BAT}	VBAT>VRECH, ICHG ≤ IBF		4.2		V
Terminal Battery Voltage		≥ IDF		4.25		V
				4.3		V
				4.35		V
	accuracy		-1		1	%
Dealers Thursday 14 at W	.,			V_{BAT}	-	.,
Recharge Threshold at V _{BATT}	V_{RECH}			0.15		V
Recharge Hysteresis				75		mV
Trickle Charge Threshold	V _{TRICKLE}		2.85	3.0	3.15	V
Trickle Charge Hysteresis				200		mV
Trickle Charge Current	I _{TRICKLE}			10%		I_{CC}
Dead bat Charge Threshold	V_{DEAD}		1.8	2	2.2	V
Dead bat Charge Hysteresis				200		mV
Dead bat Charge Current	I _{DEAD}			70		mA
Termination Charger Current	т	50mA Step,	100		250	m 1
Termination Charger Current	I_{BF}	default=150mA	100		230	mA
		VBAT=4.2V, SYS				
BAT Leakage Current	I _{BATT}	float,		20 30	uA	
		USB float				
Charge current	I_{CC}	0.2A step,	1		3	Α
Charge current	1CC	default=2A	1		3	A
Trickle Charge Time		30 minutes step,	30		210	Min
Trickle Charge Time		default=60 minutes	30		210	1*1111
Total Charge Time		2 hours	4		16	Hour
Total Charge Time		step,default=6	4		10	Tioui
Conversion Efficiency,						
Constant voltage stage						
(Vin=5V,Vbat=4.2V)				84		
Ibat=3A				87		
Ibat=2.5A				89		%
Ibat=2A				91		/0
Ibat=1.5A				94		
Ibat=1A				93		
Ibat=500mA				95		
Ibat=200mA						
Conversion Efficiency,				86		%

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Constant voltage stage				87		
(Vin=5V,Ibat=2A)				88		
Vbat=3.6V				89		
Vbat=3.8V						
Vbat=4.0V						
Vbat=4.2V						
A/D CONVERTER			ı			
Resolution				12		bits
		Battery voltage	0		4.4	V
Input voltage range		Current channel	-64		64	mV
		TS1/TS2	0		2.2	V
Supply current	Active	,		0.6		mA
SYS INPUT	1100110			1		1
				3.6		V
SYS Regulation Voltage	VSYS	Auto setting		4.4		V
		ISYS=200mA,		7.7		V
BAT to SYS Resistance		VBAT=4.2V		0.05	0.08	Ω
BAT to SYS Current Limit	IBATLIM	0.5A	3		5	Α
		step,default=5A		200		
		SYS short		200		mA
BAT to SYS Current Limit			-10		10	%
accuracy						
SYS voltage range	V _{SYSINPUT}		2.7		5.45	V
SYS low alarm voltage, if						
3.3V	V _{BLO}		3.25	3.3	3.35	V
(2.8V~3.5V programmable,	520					
step=100mV)						
SYS under voltage threshold	V _{BUVL}			2.7		V
(vin falling)						
SYS under voltage threshold	V _{BUVH}		2.8	2.9	3.0	V
(vin rising)						
SYS OK voltage threshold	V _{BOK}			3.4		V
(3.3V~3.6V OTP						
programmable ,						
step=100mV)						
Stand-by current, $V_{DD}=3.6V$,	$I_{Q(STNBY)}$			40		uA
device OFF state 32KHz clock						
running						
THERMAL PROTECTION	•		•	.	•	-
The correct Life State		10 °C step,	85		445	
Thermal Limit Temperature		default=85 °C			115	°C
		20 °C step,	140			
Thermal Shutdown		default=140 °C			160	°C
OSCILLATOR	<u>I</u>		1	1	1	1
Switching Frequency	f _{SW}		1.8	2	2.2	MHz
Trequency	1300	J				2

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
CH1,2,3,4(Tj=25℃)						
Switching Frequency,	f _{SW}		0.9	1	1.1	MHz
CH5(Tj=25℃)						
LOGIC INPUT						
Input LOW-Level Voltage	V _{IL}				0.3xV _{DDI}	V
(V _{DDIO})					0	
Input HIGH-Level Voltage	V_{IH}		0.7xV _{DDI}			V
(V _{DDIO})			0			
LOGIC OUTPUT						
LOW-Level Output Voltage,	V _{OL}				0.4	V
3.0 mA sink current						
HIGH-Level Output Voltage,	V _{OH}		V _{DDIO} -			V
3.0 mA source current			0.4			
NRESPWON pin LOW-Level	V _{OL(NRES)}				0.4	V
Output Voltage, 3.0mA sink						
current						
CLK32KOUT1 pin LOW-Level	V _{OL(CLKO1)}				0.4	V
Output Voltage, 3.0mA sink						
current						
CLK32KOUT2 pin LOW-Level	V _{OL(CLKO2)}				0.4	
Output Voltage, 3.0mA sink						
current						
CLK32KOUT2 pin HIGH-Level	V _{OH(CLKO2)}		V _{DDIO} -			V
Output Voltage, 3.0mA source			0.4			
current						
CH1: BUCK DC-DC CONVERT	TER(BUCK1)				
Input supply voltage range	V _{INPUT1}		2.7		5.5	V
Voltage Adjustable Range, 6bit	V _{FB1}	Step=12.5mV	0.7125		1.500	V
Output voltage transition rate						
BUCK1_RATE=00				2		
BUCK1_RATE=01				3		mV/us
BUCK1_RATE=10				4.5		
BUCK1_RATE=11				6		
Power Good threshold (Vout	V _{PG1}			93		%
rising)						
Output under voltage	V_{UV1}			85		%
lockout(Vout falling)						
Output over voltage lockout	V _{OV1}			117		%
(Vout rising)						
Preset Voltage,	V _{FB1(Default)}		1.078	1.100	1.122	V
Default(Tj=25°C)						
Preset Voltage, Default(-10°C≦	V _{FB1(Default)}		1.067	1.100	1.133	V
T _j ≦+85°C)						
Load Regulation, $I_{OUT1} =$				0.1		%/A
200mA to 4A						

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Line Regulation, VCC1 = 3 to				0.1		%/V
$5.5V, I_{OUT1} = 2A$						
Rated output current	I _{MAX1}	Reg90H<1:0>=<11		4		А
Switch Current Limit	I _{CL1}	0.4A step, default=3.6A	3.2		4.4	А
Operating Quiescent Current, No load, V _{DD} =3.8V	I_{Q1}			70		uA
Minimun Switch Current Limit	I _{CLMIN1}	50mA step, default=150mA	50		400	mA
Minimum ON Time	T _{on1(min)}			45		ns
Soft-start Time	t _{SS1}	Step=400us, default=400us	400		800	us
C _{OUT} Discharge Switch ON Resistance	R _{DIS2}			250		ohm
Conversion Efficiency (Vin=3.8V,Vout=1.1V) Iout=4A Iout=3.5A Iout=3.5A Iout=2.5A Iout=1.5A Iout=1 A Iout=500mA Iout=100 mA Iout=10 mA CH2: BUCK DC-DC CONVERT Input supply voltage range Voltage Adjustable Range, 6bit Output voltage transition rate BUCK2_RATE=00 BUCK2_RATE=01 BUCK2_RATE=10	FER (BUCK2 VINPUT2 VFB2	2) Step=12.5mV	2.7 0.7125	65 68 71 75 79 83 86 89 80 81	5.5	% V V mV/us
BUCK2_RATE=11 Power Good threshold (Vout	V _{PG2}			93		%
rising) Output under voltage lockout (Vout falling)	V _{UV2}			85		%
Output over voltage lockout (Vout rising)	V _{OV2}			117		%
Preset Voltage, Default(Tj=25°C)	V _{FB2(Default)}		1.078	1.100	1.122	V
Preset Voltage, Default(- $10^{\circ}C \le T_{j} \le +85^{\circ}C$)	V _{FB2} (Default)		1.067	1.100	1.133	V

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Load Regulation, $I_{OUT2} = 200$				0.1		%/A
mA to 4A						
Line Regulation, VCC2 = 3 to				0.1		%/V
$5.5V$, $I_{OUT2} = 2A$						
Rated output current	I _{MAX2}	Reg90H<3:2>=<11		4		А
	_	>				
Switch Current Limit	I_{CL2}	0.4A step,	3.2		4.4	Α
	-	default=3.6A		70		
Operating Quiescent Current,	I_{Q2}			70		uA
No load, V _{DD} =3.8V	_					
Minimun Switch Current Limit	I_{CLMIN2}	50mA step,	50		400	mA
	_	default=150mA		<u> </u>		
Minimum ON Time	T _{on2(min)}			45		ns
Soft-start Time	t _{SS2}	Step=400us,	400		800	us
		default=400us				
C _{OUT} Discharge Switch ON	R _{DIS2}			250		ohm
Resistance						
Conversion Efficiency						
(Vin=3.8V,Vout=1.1V)				62		
Iout=4A				65		
Iout=3.5A				69		
Iout=3A				73		
Iout=2.5A				76		%
Iout=2A				81		/0
Iout=1.5A				85		
Iout=1 A				89		
Iout=500mA				85		
Iout=100 mA				83		
Iout=10 mA				63		
CH3: BUCK DC-DC CONVERT	ER (BUCK3	5)				
Input supply voltage range	V _{INPUT3}		2.7		5.5	V
Feedback Voltage,	V _{FB3(Default)}		0.98	1.00	1.02	V
Default(Tj=25℃)						
Feedback Voltage, Default(-	V _{FB3(Default)}		0.97	1.00	1.03	V
10°C≦T _i ≦+85°C)	, ,					
Power Good threshold (Vout	V _{PG3}			93		%
rising)						
Output under voltage lockout	V _{UV3}			85		%
(Vout falling)						
Output over voltage lockout	V _{OV3}			117		%
(Vout rising)						
Load Regulation, $I_{OUT3} =$			 	0.1		%/A
100mA to 2.5A						13/11
Line Regulation, VCC3 = 3 to				0.1		%/V
$5.5V$, $I_{OUT3} = 2A$.5, \$
3.34, 10013 - 2A						

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Switch Current Limit Icl3 0.5A step, default=2.5A 2 3.5 A Operating Quiescent Current, No load, V _{DO} =3.8V IQ3 70 UA Minimum Switch Current Limit Iclmin3 50mA step, 50 400 mA Minimum ON Time Ton3(min) 45 ns Soft-start Time tss3 Step=400us, default=400us 400 800 us Cour Discharge Switch ON Resistance RD153 250 ohm Conversion Efficiency (Vin=3.8V,Vout=1.5V) Iout=2.5A 70 70 70 Iout=2A 80 80 80 80 Iout=1.5A 88 84 84 84 Iout=10 mA 88 84 83 88 CH4: BUCK DC-DC CONVERTER (BUCK4) Input supply voltage range V _{INPUT4} V _{IPM} Step=100mV 1.8 3.6 V Feedback Voltage, Default(- Tj=25°C) V _{FB4(Default)} Default(- PFB4(Default) Default(- Tj=25°C) 2.94 3.00 3.06 V Power Good threshold (Vout rising) V _{FB4} (Default) -2.91 3.00 3.09 V	Rated output current	I _{MAX3}	Reg90H<5:4>=<11		2.5		Α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			>				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Switch Current Limit	I _{CL3}	0.5A step,	2		3.5	Α
No load, V _{DD} =3.8V			default=2.5A				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Operating Quiescent Current,	I_{Q3}			70		uA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No load, V _{DD} =3.8V						
Minimum ON Time $T_{On3(min)}$ 45 ns Soft-start Time t_{SS3} Step=400us, default=400us 400 800 us Cour Discharge Switch ON Resistance RDIS3 250 ohm Conversion Efficiency (Vin=3.8V,Vout=1.5V) Iout=2.5A 70 70 75 Iout=2A Iout=1.5A Iout=1.5A Iout=1.5A 80 84 88 Iout=10 mA 88 88 88 CH4: BUCK DC-DC CONVERTER (BUCK4) 84 83 84 Input supply voltage range VINPUT4 Voltage Adjustable Range, 4bit VFB4 Step=100mV 1.8 3.6 V Feedback Voltage, Default(Tj=25°C) VFB4(Default) 2.94 3.00 3.06 V Feedback Voltage, Default(-VFB4(Default)) -2.91 3.00 3.09 V 10°C≦T _J ≤+85°C) Power Good threshold (Vout VPG4 93 %	Minimum Switch Current Limit	I _{CLMIN3}	50mA step,	50		400	mA
Soft-start Time tss3			default=150mA				
Cour Discharge Switch ON Resistance	Minimum ON Time	T _{on3(min)}			45		ns
Cout Discharge Switch ON Resistance Resistance 250 ohm Conversion Efficiency (Vin=3.8V,Vout=1.5V) Iout=2.5A 70 75 80 84 80 84 80 84 84 84 84 84 84 84 84 88 84 83 84 84 83	Soft-start Time	t _{SS3}	Step=400us,	400		800	us
Resistance RDIS3 250 ohm Conversion Efficiency (Vin=3.8V,Vout=1.5V) 70 75 Iout=2A 75 80 84 80 Iout=1.5A 84 84 88 84 83 Iout=10 mA 83 84 84 83 84 83 84 83 84 83 84 83 84 83 84 83 84 83 84 83 84 83 84 <td< td=""><td></td><td></td><td>default=400us</td><td></td><td></td><td></td><td></td></td<>			default=400us				
Resistance	C _{OUT} Discharge Switch ON	Roses			250		ohm
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Resistance	TVD153			250		Omm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Conversion Efficiency						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					70		
	Iout=2.5A						
Iout=1.5A	Iout=2A						
Iout=1 A	Iout=1.5A						%
Iout=100 mA	Iout=1 A						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Iout=500mA						
	Iout=100 mA						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Iout=10 mA				05		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH4: BUCK DC-DC CONVERT	ER (BUCK4)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input supply voltage range	V _{INPUT4}		2.7		5.5	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Voltage Adjustable Range, 4bit	V _{FB4}	Step=100mV	1.8		3.6	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Feedback Voltage,	V _{FB4(Default)}		2.94	3.00	3.06	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Default(Tj=25°C)						
Power Good threshold (Vout V _{PG4} 93 % rising)	Feedback Voltage, Default(-	V _{FB4(Default)}		-2.91	3.00	3.09	V
rising)	10°C≦Tj≦+85°C)						
	Power Good threshold (Vout	V_{PG4}			93		%
Output under voltage lockout V _{UV4} 85 %	rising)						
	Output under voltage lockout	V_{UV4}			85		%
(Vout falling)	(Vout falling)						
Output over voltage lockout V _{OV4} 117 %	Output over voltage lockout	V _{OV4}			117		%
(Vout rising)	(Vout rising)						
Load Regulation, I _{OUT4} = 0.1 %/A	Load Regulation, I_{OUT4} =				0.1		%/A
100mA to 2.5A	100mA to 2.5A						
Line Regulation, VCC4 = 3 to 0.1 %/V	Line Regulation, VCC4 = 3 to				0.1		%/V
5.5V, I _{OUT4} = 2A	$5.5V, I_{OUT4} = 2A$						
Rated output current I_{MAX4} Reg90H<7:6>=<11 2.5 A	Rated output current	I _{MAX4}	_		2.5		А
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Switch Current Limit	I _{CL4}	0.5A step,	2.5		4	А
Operating Quiescent Current, I_{Q4}		I _{Q4}			70		uA

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Minimun Switch Current Limit	I _{CLMIN4}	50mA step, default=150mA	50		400	mA
Minimum ON Time	T _{on4(min)}			45		ns
Soft-start Time	t _{SS4}	Step=400us, default=400us		400		us
C _{OUT} Discharge Switch ON Resistance	R _{DIS4}			250		Ohm
Conversion Efficiency,						
(DCR<50mohm)						%
Vin=3.8V,Vout=3V				81		
Iout=2.5A				84		
Iout=2A				87		
Iout=1.5A				91		
Iout=1 A				94		
Iout=500mA				88		
Iout=100mA				75		
Iout=10mA						
CH5: BOOST DC-DC CONVER	RTER (BOOS	ST)			•	•
Input supply voltage range	V _{INPUT5}		2.7		4.4	V
Output Voltage	V _{FB5}	Step=0.1v,default=5	4.7		5.4	V
		v				
Voltage, Default(Tj=25℃)	V _{FB5(Default)}		4.90	5.0	5.10	V
Voltage, Default(-10 °C $\leq T_j \leq$	V _{FB5(Default)}		4.75	5.0	5.25	V
+85°C)						
Power Good threshold (Vout	V _{PG5}			90		%
rising)						
Output under voltage lockout	V _{UV5}			85		%
(Vout falling)						
Load Regulation, I_{OUT5} =				0.2		%/A
100mA to 2.5A						
Line Regulation, Vin = 3 to				0.1		%/V
4.2V, $I_{OUT5} = 1.5A$						
Rated output current	I _{MAX5}	Reg3A<4:3>=11		2.5		Α
Switch Current Limit	I _{CL5}	0.5A step,	4		5.5	Α
		default=4.5A				
Minimum ON Time	T _{on5(min)}			70		ns
Soft-start Time	t _{SS5}			400		us
C _{OUT} Discharge Switch ON	R _{DIS5}					
Resistance				250		ohm
Operating Quiescent Current,	I _{Q5}			250		uA
No load, V _{DD} =3.8V	45					
Auto switch load current	I _{PWM/PFM5}			50		mA
between PWM and PFM	-1 *****/ F1 1*13					,
Conversion Efficiency,						
(DCR<50mohm)				80		%
(DCK_20H0HHI)				00		70

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Vin=3.8V,Vout=5V				85		
Iout=2.5A				89		
Iout=2A				93		
Iout=1.5A				94		
Iout=800mA				90		
Iout=500mA				71		
Iout=100mA						
Iout=10mA						
1000 1000						
CH6 : LDO1						
Input supply voltage range	V _{INPUT6}		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT6}		1.8		3.4	V
Adjustable Range,						
4bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT6(Defaul}		3.234	3.300	3.366	V
Default(Tj=25℃)	t)					
V _{OUT} Output Voltage,	V _{OUT6(Defaul}		3.201	3.300	3.399	V
Default(Tj= -10~85℃)	t)					
Power Good threshold (Vout	V _{PG6}			93		%
rising)						
Output under voltage lockout	V _{UV6}			85		%
(Vout falling)	0.0					
V_{OUT} Load Regulation, $I_{OUT} =$				0.005		%/mA
1mA to 150mA						,
V_{OUT} Line Regulation, $V_{IN6} = 3$				0.03		%/V
to 5V, $I_{OUT6} = 0.1A$						70, 5
Power Supply Reject Ratio (f =	PSRR6			50		dB
10kHz, V _{OUT6} =3.3V)	1 Sixixo					l ab
Output noise (10Hz to	OUT _{NOISE6}			300		uVrms
100kHz, V _{OUT6} =3.3V)	OO I NOISE6			300		uviiis
Dropout voltage @ 150mA	V _{DROP6}			200		mV
(V _{OUT6} =3.3V)	V DROP6			200		IIIV
Rated output current	T			150		mΛ
·	I _{MAX6}					mA
Operating Quiescent Current,	I_{Q6}			28		uA
No load, V _{DD} =3.8V	-		250	200		
Current Limit, VOUT6 = V_{OUT6}	I_{CL6}		250	300		mA
x 0.95				100		
Soft-start Time	t _{SS6}			400		us
C _{OUT} Discharge Switch ON	R _{DIS6}			400		ohm
Resistance						
CH7: LDO2			127	<u> </u>	T	1,,
Input supply voltage range	V _{INPUT7}		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT7}		1.8		3.4	V
Adjustable Range,						
4bit(step=100mv)						

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
V _{OUT} Output Voltage,	V _{OUT7(Defaul}		3.234	3.300	3.366	V
Default(Tj=25℃)	t)					
V _{OUT} Output Voltage,	V _{OUT7(Defaul}		3.201	3.300	3.399	V
Default(Tj=-10~85℃)	t)					
Power Good threshold (Vout	V _{PG7}			93		%
rising)						
Output under voltage lockout	V _{UV7}			85		%
(Vout falling)						
Output over voltage lockout	V _{OV7}			125		%
(Vout rising)						
V _{OUT} Load Regulation, I _{OUT} =				0.005		%/mA
1mA to 150mA						
V_{OUT} Line Regulation, $V_{IN7}=3$				0.03		%/V
to 5V, I _{OUT7} = 0.1A						
Power Supply Reject Ratio (f =	PSRR7			50		dB
10kHz, V _{OUT7} =3.3V)						
Output noise (10Hz to	OUT _{NOISE7}			300		uVrms
100kHz, V _{OUT7} =3.3V)						
Dropout voltage @ 150mA	V _{DROP7}			200		mV
(V _{OUT7} =3.3V)						
Operating Quiescent Current,	I _{Q7}			28		uA
No load, V _{DD} =3.8V						
Rated output current	I _{MAX7}			150		mA
Current Limit, VOUT7 = V _{OUT7}	I _{CL7}		250	300		mA
x 0.95						
Soft-start Time	t _{SS7}			400		us
C _{OUT} Discharge Switch ON	_					
Resistance	R _{DIS7}			400		Ohm
CH8: LDO3	1	L		<u> </u>	l	l
Input supply voltage range	V_{INPUT7}		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT8}		0.8		2.5	V
Adjustable Range,						
4bit (0.8V~2V, step=100mV,						
2V~ 2.5V step=500mV)						
V _{OUT} Output Voltage,	V _{OUT8(Defaul}		1.078	1.100	1.122	V
Default(Tj=25℃)	t)					
V _{OUT} Output Voltage,	V _{OUT8}		1.067	1.100	1.133	V
Default(Tj=-10~85℃)	(Default)					
Power Good threshold (Vout	V _{PG8}			93		%
rising)						
Output under voltage lockout	V _{UV8}			85		%
(Vout falling)						
V_{OUT} Load Regulation, I_{OUT} =				0.006		%/mA
1mA to 150mA						
V_{OUT} Line Regulation, $V_{IN8} = 3$				0.015		%/V

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
to 5V, $I_{OUT8} = 0.05A$						
Power Supply Reject Ratio (f =	PSRR8			70		dB
10kHz, V _{OUT8} =1.1V)						
Output noise (10Hz to	OUT _{NOISE8}			30		uVrms
100kHz, V _{OUT8} =1.1V)						
Dropout voltage @ 100mA	V_{DROP8}			200		mV
(V _{OUT8} =2.5V)						
Rated output current	I _{MAX8}			100		mA
Operating Quiescent Current,	I_{Q8}			52		uA
No load, V _{DD} =3.8V						
Current Limit, VOUT8 = V _{OUT8}	I _{CL8}		150	200		mA
x 0.95						
Soft-start Time	t _{SS8}			400		us
C _{OUT} Discharge Switch ON						
Resistance	R _{DIS8}			400		Ohm
CH9: LDO4		I		L	l .	
Input supply voltage range	V _{INPUT9}		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT9}		1.8		3.4	V
Adjustable Range,						
4bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT9(Defaul}		2.450	2.500	2.550	V
Default(Tj=25℃)	t)					
V _{OUT} Output Voltage,	V _{OUT9(Defaul}		2.425	2.500	2.575	V
Default(Tj=-10~85℃)	t)					
Power Good threshold (Vout	V_{PG9}			93		%
rising)						
Output under voltage lockout	V _{UV9}			85		%
(Vout falling)						
V_{OUT} Load Regulation, I_{OUT} =				0.005		%/mA
1mA to 150mA						
V_{OUT} Line Regulation, $V_{IN9} = 3$				0.03		%/V
to 5V, $I_{OUT9} = 0.15A$						
Power Supply Reject Ratio (f =	PSRR9			50		dB
10kHz, V _{OUT9} =3.3V)						
Output noise (10Hz to	OUT _{NOISE9}			300		uVrms
100kHz, V _{OUT9} =3.3V)						
Dropout voltage @ 150mA	V_{DROP9}			200		mV
(V _{OUT9} =3.3V)						
Operating Quiescent Current,	I_{Q9}			28		uA
No load, V _{DD} =3.8V						
Rated output current	I _{MAX9}			150		mA
Current Limit, VOUT9 = V _{OUT9}	I_{CL9}		250	300		mA
x 0.95						
Soft-start Time	t _{SS9}			400		us
C _{OUT} Discharge Switch ON	R _{DIS9}			400		Ohm

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Resistance						
CH10 : LDO5						
Input supply voltage range	V _{INPUT10}		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT10}		1.8		3.4	V
Adjustable Range,						
4bit(step=100mv)						
V_{OUT} Output Voltage,	V _{OUT10(Defa}		2.744	2.800	2.856	V
Default(Tj=25℃)	ult)					
V_{OUT} Output Voltage,	$V_{OUT10(Defa}$		2.716	2.800	2.884	V
Default(Tj=-10 \sim 85 $^{\circ}$ C)	ult)					
Power Good threshold (Vout	V _{PG10}			93		%
rising)						
Output under voltage lockout	V _{UV10}			85		%
(Vout falling)						
V_{OUT} Load Regulation, I_{OUT} =				0.003		%/mA
1mA to 300mA						
V_{OUT} Line Regulation, $V_{\text{IN10}} = 3$				0.01		%/V
to 5V, $I_{OUT10} = 0.3A$						
Power Supply Reject Ratio (f =	PSRR10			52		dB
10kHz, V _{OUT10} =3.3V)						
Output noise (10Hz to	OUT _{NOISE1}			300		uVrms
100kHz, V _{OUT10} =3.3V)	0					
Dropout voltage @ 300mA	V_{DROP10}			200		mV
(V _{OUT10} =2.8V)						
Operating Quiescent Current,	I_{Q10}			28		uA
No load, V _{DD} =3.8V						
Rated output current	I _{MAX10}			300		mA
Current Limit, VOUT10 =	I _{CL10}		350	500		mA
V _{OUT10} x 0.95						
Soft-start Time	t _{SS10}			400		us
C _{OUT} Discharge Switch ON	R _{DIS10}			400		Ohm
Resistance	1101310			.00		0
CH11: LD06						
Input supply voltage range	V _{INPUT11}		2.7		5.5	V
$V_{\text{OUT}} \qquad \text{Output} \qquad \text{Voltage}$	V _{OUT11}		0.8		2.5	V
Adjustable Range,						
5bit(step=100mv)						
V_{OUT} Output Voltage,	V _{OUT11(Defa}		1.176	1.200	1.224	V
Default(Tj=25℃)	ult)					
V _{OUT} Output Voltage,	V _{OUT11(Defa}		1.164	1.200	1.236	V
Default(Tj=-10~85℃)	ult)					
Power Good threshold (Vout	V _{PG11}			93		%
rising)						
Output under voltage lockout	V _{UV11}			85		%
(Vout falling)						

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
V_{OUT} Load Regulation, I_{OUT} =				0.005		%/mA
1mA to 150mA						
V_{OUT} Line Regulation, $V_{IN11} = 3$				0.015		%/V
to 5V, $I_{OUT11} = 0.1A$						
Power Supply Reject Ratio (f =	PSRR11			70		dB
10kHz, V _{OUT11} =3.3V)						
Output noise (10Hz to	OUT _{NOISE1}			30		uVrms
100kHz, V _{OUT11} =3.3V)	1					
Dropout voltage @ 150mA	V_{DROP11}			200		mV
(V _{OUT11} =2.5V)						
Operating Quiescent Current,	I_{Q11}			52		uA
No load, V _{DD} =3.8V						
Rated output current	I _{MAX11}			150		mA
Current Limit, VOUT11 =	I_{CL11}		200	300		mA
V _{OUT11} x 0.95						
Soft-start Time	t _{SS11}			400		us
C _{OUT} Discharge Switch ON	R _{DIS11}			400		Ohm
Resistance						
CH12: LD07	1	T				1
Input supply voltage rangef	V _{INPUT12}		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT12}		0.8		2.5	V
Adjustable Range,						
5bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT12(Defa}		1.764	1.800	1.836	V
Default(Tj=25℃)	ult)		4 706	1 000	1.054	.,
Vout Output Voltage,	V _{OUT12(Defa}		-1.736	1.800	1.854	V
Default(Tj=-10~85℃)	ult)			02		0/
Power Good threshold (Vout rising)	V_{PG12}			93		%
Output under voltage lockout	V _{UV12}			85		%
(Vout falling)	V UV12			83		70
V_{OUT} Load Regulation, $I_{OUT} =$				0.005		%/mA
1mA to 300mA				0.003		70/11/4
V_{OUT} Line Regulation, $V_{IN12} = 3$				0.015		%/V
to 5V, $I_{OUT12} = 0.3A$				0.013		70, •
Power Supply Reject Ratio (f =	PSRR12			65		dB
10kHz, V _{OUT12} =3.3V)						
Output noise (10Hz to	OUT _{NOISE1}			50		uVrms
100kHz, V _{OUT12} =3.3V)	2					
Dropout voltage @ 300mA	V _{DROP12}			200		mV
(V _{OUT12} =2.5V)						
Operating Quiescent Current,	I_{Q12}			48		uA
No load, V _{DD} =3.8V	_					
Rated output current	I _{MAX12}			300		mA
Current Limit, VOUT12 =	I _{CL12}		400	400		mA

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
V _{OUT12} x 0.95						
Soft-start Time	t _{SS12}			400		us
C _{OUT} Discharge Switch ON	В			250		Olavas
Resistance	R _{DIS12}			250		Ohm
CH13 : LD08						
Input supply voltage range	V _{INPUT13}		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT13}		1.8		3.4	V
Adjustable Range,						
4bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT13(Defa}		3.234	3.300	3.366	V
Default(Tj=25℃)	ult)					
V _{OUT} Output Voltage,	V _{OUT13(Defa}		3.201	3.300	3.399	V
Default(Tj=-10~85℃)	ult)					
Power Good threshold (Vout	V_{PG13}			93		%
rising)						
Output under voltage lockout	V _{UV13}			85		%
(Vout falling)						
V_{OUT} Load Regulation, I_{OUT} =				0.003		%/mA
1mA to 150mA						
V_{OUT} Line Regulation, $V_{IN13} = 3$				0.01		%/V
to 5V, $I_{OUT6} = 0.15A$						
Power Supply Reject Ratio (f =	PSRR13			50		dB
10kHz, V _{OUT13} =3.3V)						
Output noise (10Hz to	OUT _{NOISE1}			300		uVrms
100kHz, V _{OUT13} =3.3V)	3					
Dropout voltage @ 300mA	V _{DROP13}			200		mV
(V _{OUT13} =2.8V)						
Operating Quiescent Current,	I _{Q13}			30		uA
No load, V _{DD} =3.8V						
Rated output current	I _{MAX13}			400		mA
Current Limit, VOUT13 =	I _{CL13}		500	600		mA
V _{OUT13} x 0.95						
Soft-start Time	t _{SS13}			400		us
C _{OUT} Discharge Switch ON	D			400		Ohm
Resistance	R _{DIS13}			400		Onin
CH14 : LD09						
Input supply voltage range	V _{INPUT14}		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT14}		1.8		3.4	V
Adjustable Range,						
4bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT14(Defa}		3.234	3.300	3.366	V
Default(Tj=25℃)	ult)					
V _{OUT} Output Voltage, Default	V _{OUT14Defau}		3.201	3.300	3.399	V
(Tj=-10~85℃)	lt)					
•	V _{PG14}			93	+	%

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT	
rising)							
Output under voltage lockout	V _{UV14}			85		%	
(Vout falling)							
V_{OUT} Load Regulation, I_{OUT} =				0.003		%/mA	
1mA to 150mA							
V_{OUT} Line Regulation, $V_{IN14} = 3$				0.01		%/V	
to 5V, $I_{OUT14} = 0.15A$							
Power Supply Reject Ratio (f =	PSRR14			50		dB	
10kHz, V _{OUT14} =3.3V)							
Output noise (10Hz to	OUT _{NOISE1}			300		uVrms	
100kHz, V _{OUT13} =3.3V)	4						
Dropout voltage @ 300mA	V _{DROP14}			200		mV	
(V _{OUT13} =2.8V)							
Operating Quiescent Current,	I _{Q14}			30		uA	
No load, V _{DD} =3.8V							
Rated output current	I _{MAX14}			300		mA	
Current Limit, VOUT14 =	I _{CL14}		400	500		mA	
V _{OUT14} x 0.95							
Soft-start Time	t _{SS14}			400		us	
C _{OUT} Discharge Switch ON	р			400		Ohm	
Resistance	R _{DIS14}			400		Ollili	
CH15 :SWITCH							
Input supply voltage range	V _{INPUT15}		2.7		5.5	V	
Rated output current	I _{MAX15}			300		mA	
On resistance(Vgs=3V)				150		mohm	
Current Limit	I _{CL15}		400	500		mA	
C _{OUT} Discharge Switch ON	R _{DIS15}			400		Ohm	
Resistance	1101313						
CH16: H_5V (HDMI_5V)	T	1		1			
Input supply voltage range	V _{INPUT16}		4.7		5.4	V	
Rated output current	I _{MAX16}			80		mA	
CH17: OTG Switch	.,		1		 	1,,	
Input supply voltage range	V _{INPUT17}		4.7	655	5.4	V	
Rated output current	I _{MAX17}			800		mA	
output current limit	I_{CL17}		ep, 0.7		1	Α	
		default=0.8A					
Real Time Clock (RTC)							
RTC Operating Voltage Range	V_{IN}		2.5		5.5	V	
RTC Supply Current	I_Q			5	10	uA	
CLK32OUT1 jitter (open drain)				100		ns	
(always on)							
CLK32OUT1 duty cycle			40		60	%	

PARAMETERS	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
CLK32OUT2 jitter (open drain)				100		ns
CLK32OUT2 duty cycle			40		60	%
I2C Interface (The 7-bits s	lave addres	ss is: 0011100)				
SCL clock frequency	f _{SCL}				400	kHz
SCL high time	t _{HIGH}		0.6			us
SCL low time	t _{LOW}		1.3			us
Data setup time	t _{SU,DAT}		0.1			us
Data hold time	t _{HD,DAT1}		0.3			us
Setup time for repeated start	t _{SU,STA}		0.6			us
HOLD time for start/repeated	t _{HD,STA}		0.6			us
start						
Bus free time between a stop	t _{BUF}		1.3			us
and condition						
Rise time of SCL/SDA	t _r		20 +		300	ns
			0.1C _B			
Fall width of SCL/SDA	t _f		20 +		300	ns
			0.1C _B			
Pulse width of suppressed spike	t _{SP}		0		50	ns
Capacitive load for each of bus line	C _{B2}				400	pF

Chapter 4 Function Description

4.1 Function overview

4.1.1 POWER UP/POWER DOWN

The RK818 can be powered by either a battery, or an external power supply through the USB port. When the PMIC is powered by a battery only, pressing the PWRON key powers up the PMIC. All the power channels start up at the default output voltages with a preset power up sequence, which has 2mS intervals between the channels. When the power up process is done, the NRESPWRON turns to high logic level to inform the processor that all the power rails are up and stable. And now the processor can communicate with the PMIC to reconfigure the output voltage of each power channel if needed.

To power down the PMIC, the processor needs to issue a "power down" signal through the I^2C interface. Upon receiving the power down signal, the PMIC first saves all the information on the existing states, and then switches the NRESPWRON to low logic level. At this point, the power channels start to be turned off one after another with the power down sequence. If for any reason the processor fails to issue the power down signal, the PMIC can be powered off by "pressing and holding" the PWRON key.

In a case where a battery is the sole power supply and the PMIC is in off state, when an external power supply is plugged into the USB, the PMIC will first check to see if this is a valid power supply. If the power supply from the USB is valid, then the power channels are turned on and the battery is charged.

4.1.2 SWITCHING CHARGER

The RK818 has integrated a switch mode charger, which provides the functions like trickle current charging, constant current charging, constant voltage charging, charging termination, automatic recharging, battery temperature monitoring, charging timer and thermal feedback protection. The values of constant current and constant voltage charging can be set through $\rm I^2C$ interface.

The input average current limit function allows as large as possible a charging current to be used without having to worry about the input current exceeding the maximum current allowed by the USB port. The input current limits can be configured through $\rm I^2C$ interface. For example, when an USB port is used as the input, the input current limit can be configured to either 450mA, or 850mA, to meet the requirements of USB2.0 and USB3.0 respectively.

The charger also has a timer function which sets the maximum charging time for trickle, constant current and constant voltage charging, respectively. If the charging does not complete when a preset maximum charging time is reached, the charging is terminated.

The battery temperature can be monitored through the TS1 pin. A battery typically has a thermistor inside. The RK818 sinks a constant current into the thermistor and senses the voltage across the thermistor through an internal ADC. A safe charging temperature range is preset in the PMIC. The charging can proceed normally if the battery temperature falls within the preset range. If, however, the battery temperature goes either above the upper limit or below the lower limit of the preset range, the charging will pause until the battery temperature goes back in the preset range. If the value of the available thermistor is either too large or too small, a normal resistor can be connected in series or in parallel with the thermistor so that the sensed voltage fits the ADC's input range.

During Charging, Vsys will be set to 3.6V when the battery voltage is below 3.6V. This design is to guarantee that when an external power supply is plugged into the USB port to charge the battery while the battery voltage is low, the Vsys is already at 3.6V, which allows the PMIC to start up quickly without having to wait for the Vsys ramping up.

4.1.3 POWER PATH MANAGEMENT

A power path management function is integrated in the RK818, which, together with the accurate input current limit function, can provide intelligent power path control. In a power path control process, the PMIC gives the outputs, or the system loads, the highest priority of using the input power. The battery is getting charged only if the input power is greater than the output power required by the system loads. The intelligent power path control function automatically reduces the charging current when the output power required by the loads increases. In an extreme case where the required output power is greater than the input power, the charging current will be cut off and the battery will join the input power supply to provide power to the load. This is how the intelligent power path control works: As the system power loading increases, the PMIC will draw more input current from the power supply to meet the output power requirement while keep the charging current unchanged. If the system power loading continues to increase to the point where the input current limit is reached, then the PMIC will lower the charging current so that enough power still goes to the load. If the system power loading further increases and due to the input current limit, the input power can not meet the output power requirement, then the battery will start to discharge to supply power to the load together with the USB power supply. If for some reason the USB is unplugged, the battery will automatically switched in to take over the USB power supply and provide full power to the load. The wide power path loop bandwidth allows all the above mentioned power path switching transient to be quick and seamless and therefore no overshoot and notch occur at the system and output voltages.

To minimize the loss from the voltage drop along the current path when the battery is charged or discharged, a $50m\Omega$ MOSFET is integrated in the RK818 to serve as a control switch as well as the power switch of the switching mode battery charger.

4.1.4 THERMAL FOLDBACK

Generally speaking, the higher the operating junction temperature is, the shorter the chip's life time. Therefore, keeping the operating junction temperature as low as possible is one of the keys in reliability design. The RK818 provides a thermal feedback protection function for charging process. When the die temperature reaches a preset value, the PMIC will lower the charging current so as to keep the die temperature within an appropriate range. The life time of the PMIC equipped with this function can be reliably prolonged and no overheat damage will occur.

4.1.5 BATTERY FUEL GAUGE

The RK818 provides an accurate battery fuel gauge. A 12-bit ADC is integrated in the RK818 to collect the information on the battery, such as battery voltage, charging/discharging status, battery temperature, etc. Using the proprietary algorithms and the information collected by the ADC, the battery fuel gauge can accurately calculate the battery capacity based on the charging/discharging characteristics of the battery preloaded in the system. The gauge then sends the battery capacity information to the processor through the I²C interface.

4.1.6 BUCK CONVERTERS

The RK818 provides four high current synchronous buck converters, which deliver up to 4A, 4A, 2.5A and 2.5A, respectively. An enhanced current mode architecture is used, which improves the transient response significantly. All output voltages can be adjusted dynamically during operation through DVS (Dynamic Voltage Scaling), which guarantees a linear and gradual voltage ramping up and down. A complete set of protection functions, such as short circuit protection, is implemented in the buck converters too.

The key parameters such as operating mode, output voltage, DVS change rate, and output current limit can be configured through the I²C interface.

4.1.7 BOOST CONVERTER

The synchronous boost converter has 2.5A current capability and is used to power the

OTG and the HTMI5V. The OTG has a built-in current limiting switch, which can effectively protect the boost converter from being damaged if a short circuit occurs at the OTG port.

As the USB input port and the OTG output port share a same pin, when the USB port is being used as a power supply and charging the battery, the OTG switch is forbidden to be turned on. Only when there is no external power supply plugged into the USB port, can the OTG be turned on and serve as a power supply.

The key parameters such as operating mode, output voltage, and output current limit can be configured through the I²C interface.

4.1.8 LOW DROPOUT REGULATORS (LDOS)

The RK818 also integrates nine LDOs and one low R_{dson} switch, with four LDOs (Ch6, Ch7, Ch9 and Ch11) capable of providing up to 150mA and three LDOs (CH10, CH12 and CH14) providing maximum 300mA. The LDO on Ch8 is a low noise, high PSRR LDO which delivers up to 100mA current and the LDO on Ch14 has 400mA current capability. The parameters such as output voltage in the different operating modes can be adjusted through the I^2C interface.

4.1.9 REAL TIME CLOCK (RTC)

The RK818 integrates a crystal oscillator buffer and a real time clock (RTC). The buffer works with an external 32.768kHz crystal oscillator. With the RTC function, the PMIC provides second/minute/hour/day/month/year information, alarm wake up as well as time calibration. The RK818 provides two channels of 32.768kHz clocks with open drain outputs, where one channel is constantly on and the other is enabled through I²C interface.

4.2 State Machine Description

Fig. 4-1 State Machine

4.3 Device Power on Enable Conditions

If none of the device power-on disable conditions is met, the following conditions are available to turn on and/or maintain the ON state of the device:

- PWRON signal is low for a period of time
- USB is plugged in. (PLUG_IN_INT goes to high level)
- RTC set time power on

4.4 Device Power on Disable Conditions

The PMIC will be powered off, or can not be powered on under the following conditions:

 PWRON signal keeps at low lever longer than the long-press delay TDPWRONLP and PWRON_LP_ACT is set to "0" (If it is set to "1", the PMIC will restart automatically after the it is shut down) The interrupt corresponding to this condition is PWRON_LP_INT in the INT_STS_REG register.

- The die temperature reaches the TSD threshold, in which case the TSD_STS bit in the register THERMAL_REG is set to "1".
- Vsys is lower than UVLO threshold, in which case the VB_UV_STS bit in the register VB_MON_REG is set to "1".
- Vsys is lower than the low voltage warning threshold which can be set with the VB_LO_SEL bit in the register VB_MON_REG, and the VB_LO_ACT bit is set to "0".
- Vsys is higher than the over voltage protection threshold.
- The DEV_OFF control bit is set to "1". (DEV_OFF is reset when the system is powered off).
- The temperature sensed at TS2 is either too high or too low. (To use TS2, a thermistor on a device to be monitored should be connected between TS2 and GND, and the ADC_TS2_EN bit in the register ADC_CTRL_REG must be set to "enable". When the sensed voltage at TS2, which is saved in the register TS2_ADC_REG, is greater than the value in BAT_LTS_TS2_REG or smaller than the value in BAT_HTS_TS2_REG, the PMIC will be powered off.

4.5 Device Sleep Enable Conditions

- SLEEP signal high level and Reg50<1>=1.
- SLEEP signal low level and Reg50<1>=0.
- Reg4b<1>=1.

4.6 Power Sequence

	168/ RK318	88/RK3 88M/RK	Partial Custon otp/										
AP		1/RK30 K3028	LDO3/	BUCK1~4, LDO3/LDO4/ LDO5/LDO7		RK3066		RK3288/RK3 368		Sofia-3GR		RK3399	
Al	TRIKES	20	LDOS	LDO7	KKSOO		00 Sulla-SGR						
воот	11		10				RK818	3-2	-2 RK818-3				
	Typ Vout	Sequ ence	Typ Vout	Seque nce	Typ Vout	Sequ ence	Typ Vout	Sequ ence	Typ Vout	Sequ ence	Typ Vout	Sequen ce	
BUCK1	1.1V	3	OTP	ОТР	1.2V	3	1.1V	3	1.0V	12	0.9V	6	
BUCK2	1.1V	1	OTP	ОТР	1.2V	1	1.1V	1	1.0V	12	0.9V	4	
BUCK3	Х	4	Х	ОТР	Х	4	Х	3	Х	13	Х	5	
BUCK4	3.0V	1	OTP	ОТР	3.0V	1	3.3V	4	3.3V	14	1.8V	3	
LDO1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	1.8V	11	OFF	OFF	
LDO2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
LDO3	1.1V	1	OTP	ОТР	1.1V	1	1.0V	2	1.8V	15	OFF	OFF	
LDO4	2.5V	2	OTP	ОТР	2.5V	2	OFF	OFF	1.8V	1	3.3V	1	
LDO5	3V	1	ОТР	ОТР	3.0V	2	1.8V	4	1.8V	11	3.0V	7	
LDO6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	1.5V	2	
LD07	1.8V	2	OTP	ОТР	1.8V	2	1.8V	3	1.1V	15	OFF	OFF	
LDO8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3.0V	14	3.3V	8	
LDO9	3.0V	4	3.0V	5	3.0V	4	3.3V	10	1.8V	15	3.0V	9	
SWITCH	OFF	OFF	OFF	OFF	OFF	OFF	5V	10	OFF	OFF	5V	10	
OTG	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
HDMI_5V	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	

Table 4-1 Power Start Up Sequence

X: The buck3 voltage is decided by external resistors.

4.5.1 BOOT1=1, BOOT0=1

Fig. 4-2 Power On/Off Timing, BOOT1=1, BOOT0=1

4.5.2 BOOT1=0, BOOT0=1

Fig. 4-3 Power On/Off Timing, BOOT1=0, BOOT0=1

4.5.3 BOOT1=1, BOOT0=0

In the "10" mode, 9 power channels are powered up, which are BUCK1- BUCK4, LDO3-LDO5 and LDO7. The power up sequence and the default output voltage of these 9 channels can be configured through OTP. The default output voltage of the BUCK3 can also be set by the external resistors. The default output voltage of the LDO9 is 3V, and the startup sequency of the LDO9 is 9th.

4.5.4 BOOT1=0, BOOT0=0

In the mode of "00", 14 power channels are powered up, among which, the power up sequence and the default voltage of the BUCK1-4, LDO1-9 and the SWITCH can be configured through OTP. Again, The default output voltage of the BUCK3 can also be set by the external resistors. The voltage of the SWITCH is the same as the input supply.

4.5.5 Boot Timing Characteristic

PARAMETERS	DESCRIPTION	MIN	TYP	MAX	UNIT
т	power on enable to system ready and reference				
Tona	ready delay				us
Ton1	Reference and system ready to boost enable delay		66×t _{ск32к}		us
Ton2	Boost enable delay to 1st channel enable delay		66×t _{скз2к}		us
Ton3	1st channel enable to 2st channel enable delay		66×t _{скз2к}		us
Ton4	2nd channel enable to 3rd channel enable delay		66×t _{ск32к}		us
Ton5	3rd channel enable to 4th channel enable delay		66×t _{ск32к}		us
Ton6	1st channel enable to NRESPWRON rising edge		82		mc
	delay		62		ms

PARAMETERS	DESCRIPTION	MIN	TYP	MAX	UNIT
toff1	PWRON disable to NRESPWRON falling delay		1×t _{CK32K}		us
Toff2	NRESPWRON falling delay to supplies disable delay		2		ms
Toff3	Other supplies disable to boost disable		2		ms
Toff4	Supplies disable to house-keeping disable delay		1×t _{СК32К}		us

Table 4-2 Boot Timing Characteristics

4.7 Power Control Timing

4.6.1 Device Turn On With USB Plug_in

Fig. 4-3 Turn on sequence when USB is plugged in (PLUP_IN_INT triggered power on enable)

4.6.2 Power Control Timing When Powered By BAT

Fig. 4-4 Power Control Timing with VBAT Falling

4.6.3 Timing Characteristics (USB or VBAT Rising, Falling and Plug in)

Parameter	Description	Min	Тур	Max	Unit
T _{dbVB_LOF}	VB_LO falling-edge de-bouncing delay		2		ms
T _{dbVB_LOR}	VB_LO rising-edge de-bouncing delay		2		ms
T _{dbVB_UVF}	VB_UV falling-edge de-bouncing delay		2		ms
T _{dbPLUG_IN}	USB plug-in de-bouncing delay		100		ms
T _{dbPLUG_OUT}	USB plug-out de-bouncing delay		100		ms

Table 4-3 Timing characteristics of USB and VSYS voltages

4.6.4 Device State Control Through PWRON Signal

Fig. 4-5 PWRON turn on/DEV_OFF turn off

Fig. 4-6 PWRON long press turn off

4.6.5 Timing Characteristics (PWRON, DEV_OFF)

Parameter	Description	Min	Тур	Max	Unit
$T_{dbPWRONF}$	PWRON falling-edge de-bouncing delay		500		ms
T _{dPWRONLP}	PWRON long press delay to interrupt (PWRON falling edge to		1		S

Parameter	Description	Min	Тур	Max	Unit
	PWRON_LP_INT=1)				
	PWRON long press delay to turn off				
T _{dPWRONLPTO}	(PWRON falling edge to NRESPWRON		6		S
	falling edge)				

Table 4-4 Timing Characteristics of PWRON/DEV_OFF

4.6.6 SLEEP State Control

Fig. 4-7 SLEEP/ACTIVE Transition Timing

4.6.7 Timing Characteristics (SLEEP)

Parameter	Description	Min	Тур	Max	Unit
T _{dbACT2SLP}	SLEEP falling-edge de-bouncing delay		3×t _{ck32k}		us
T _{dbSLP2ACT}	SLEEP rising-edge de-bouncing delay		3×t _{ck32k}		us
T _{dSLPON}	Delay to turn on enable after SLEEP rising-edge de-bouncing		1×t _{ck32k}		us

Table 4-5 Timing Characteristics of SLEEP

Chapter 5 Register Description

5.1 Register Summary

HEX ADDRESS	FUNCTION DESCRIPTION	r/W	DEFAUL T/RESE T
RTC REGIS	TERS	•	
00	SECONDS REG	RW	00
01	MINUTES REG	RW	50
02	HOURS REG	RW	08
03	DAYS_REG	RW	21
04	MONTHS_REG	RW	01
05	YEARS_REG	RW	13
06	WEEKS_REG	RW	01
08	ALARM_SECONDS_REG	RW	00
09	ALARM_MINUTES REG	RW	00
0A	ALARM_HOURS REG	RW	00
0B	ALARM_DAYS_REG	RW	01
0C	ALARM_MONTHS_REG	RW	01
0D	ALARM_YEARS_REG	RW	00
10	RTC_CTRL_REG	RW	00
11	RTC_STATUS_REG	RW	82
12	RTC_INT_REG	RW	00
13	RTC_COMP_LSB_REG	RW	00
14	RTC_COMP_MSB_REG	RW	00
RESERVED	REGISTERS		L
0E	RESERVED	RW	00
0F	RESERVED	RW	00
15	RESERVED	RW	00
16	RESERVED	RW	00
17	RESERVED	RW	00
18	RESERVED	RW	00
MISC REGI	STERS	<u> </u>	<u> </u>
20	CLK32KOUT_REG	RW	00
21	VB_MON_REG	RW	06
22	THERMAL_REG	RW	00
POWER CH	ANNEL CONTROL/MONITOR REGISTERS	S	<u> </u>
23	DCDC EN REG	RW	boot
24	LDO EN REG	RW	boot
25	SLEEP_SET_OFF_REG1	RW	00
26	SLEEP_SET_OFF_REG2	RW	00
27	DCDC_UV_STS_REG	RO	00
28	DCDC_UV_ACT_REG	RW	1F
29	LDO_UV_STS_REG	RO	00
2A	LDO_UV_ACT_REG	RW	FF
2B	DCDC_PG_REG	RO	00

HEX ADDRESS	FUNCTION DESCRIPTION	r/W	DEFAUL T/RESE T	
2C	LDO_PG_REG	RO	00	
2D	VOUT_MON_TDB_REG	RW	02	
POWER CH	ANNEL CONFIGIRATION REGISTERS	•	•	
2E	BUCK1_CONFIG_REG	RW	01	
2F	BUCK1_ON_VSEL	RW	boot	
30	BUCK1_SLP_VSEL	RW	00	
31	BUCK1_DVS_VSEL	RW	00	
32	BUCK2_CONFIG_REG	RW	01	
33	BUCK2_ON_VSEL	RW	boot	
34	BUCK2_SLP_VSEL	RW	00	
35	BUCK2_DVS_VSEL	RW	00	
36	BUCK3_CONFIG_REG	RW	01	
37	BUCK4_CONFIG_REG	RW	00	
38	BUCK4_ON_VSEL	RW	boot	
39	BUCK4_SLP_VSEL_REG	RW	00	
3A	BOOST_CONFIG_REG	RW	09	
3B	LDO1_ON_VSEL_REG	RW	boot	
3C	LDO1_SLP_VSEL_REG	RW	00	
3D	LDO2_ON_VSEL_REG	RW	boot	
3E	LDO2_SLP_VSEL_REG	RW	00	
3F	LDO3_ON_VSEL_REG	RW	boot	
40	LDO3_SLP_VSEL_REG	RW	00	
41	LDO4_ON_VSEL_REG	RW	boot	
42	LDO4_SLP_VSEL_REG	RW	00	
43	LDO5_ON_VSEL_REG	RW	boot	
44	LDO5_SLP_VSEL_REG	RW	00	
45	LDO6_ON_VSEL_REG	RW	boot	
46	LDO6_SLP_VSEL_REG	RW	00	
47	LDO7_ON_VSEL_REG	RW	boot	
48	LDO7_SLP_VSEL_REG	RW	00	
49	LDO8_ON_VSEL_REG	RW	boot	
4A	LDO8_SLP_VSEL_REG	RW	00	
4B	DEVCTRL_REG	RW	00	
INTERRUP'	T REGISTERS			
4C	INT_STS_REG1	RW	00	
4D	INT_STS_MSK_REG1	RW	00	
4E	INT_STS_REG2	RW	00	
4F	INT_STS_MSK_REG2	RW	00	
50	IO_POL_REG	RW	06	
BOOST/OT	G/DCDC CURRENT LIMIT REGISTERS	1	l	
52	H5V_EN_REG	RW	00	
53	SLEEP_SET_OFF_REG3	RW	00	
54	BOOST LDO9 ON VSEL REG	RW		

HEX ADDRESS	FUNCTION DESCRIPTION	r/W	DEFAUL T/RESE T
55	BOOST_LDO9_SLP_VSEL_REG	RW	60
56	BOOST_CTRL_REG	RW	00
90	DCDC_ILMAX	RW	55
CHARGING	CONTROL REGISTERS	'	1
9A	CHRG_COMP_REG	RW	00
A0	SUP_STS_REG	RW	0C
A1	USB_CTRL_REG	RW	
A3	CHRG_CTRL_REG1	RW	B5
A4	CHRG_CTRL_REG2	RW	4A
A5	CHRG_CTRL_REG3	RW	02
A6	OTG_ILIM_REG BAT_CTRL_REG	RW	8C
A8	BAT_HTS_TS1_REG	RW	00
A9	BAT_LTS_TS1_REG	RW	FF
AA	BAT_HTS_TS2_REG	RW	00
AB	BAT_LTS_TS2_REG	RW	FF
AC	TS_CTRL_REG	RW	8F
AD	ADC_CTRL_REG	RW	00
AE	ON_SOURCE	RO	00
AF	OFF_SOURCE	RO	00
BATTERY F	UEL GAUSE REGISTER		
В0	GGCON	RW	4A
B1	GGSTS	RW	40
B2	FRAME_SMP_INTERV_REG	RW	01
В3	AUTO_SLP_CUR_THR_REG	RW	40
B4	GASCNT_CAL_REG3	RW	00
B5	GASCNT_CAL_REG2	RW	00
В6	GASCNT_CAL_REG1	RW	00
B7	GASCNT_CAL_REG0	RW	00
B8	GASCNT3	R	00
В9	GASCNT2	R	00
ВА	GASCNT1	R	00
ВВ	GASCNT0	R	00
ВС	BAT_CUR_AVG_REGH	R	00
BD	BAT_CUR_AVG_REGL	R	00
BE	TS1_ADC_REGH	R	00
BF	TS1_ADC_REGL	R	00
C0	TS2_ADC_REGH	R	00
C1	TS2_ADC_REGL	R	00
C2	BAT_OCV_REGH	R	00

HEX ADDRESS	FUNCTION DESCRIPTION	r/W	DEFAUL T/RESE T	
C3	BAT_OCV_REGL	R	00	
C4	BAT_VOL_REGH	R	00	
C5	BAT_VOL_REGL	R	00	
C6	RELAX_ENTRY_THRES_REGH	RW	00	
C7	RELAX_ENTRY_THRES_REGL	RW	60	
C8	RELAX_EXIT_THRES_REGH	RW	00	
C9	RELAX_EXIT_THRES_REGL	RW	60	
CA	RELAX_VOL1_REGH	R	00	
СВ	RELAX_VOL1_REGL	R	00	
CC	RELAX_VOL2_REGH	R	00	
CD	RELAX_VOL2_REGL	R	00	
CE	BAT_CUR_R_CALC_REGH	R	00	
CF	BAT_CUR_R_CALC_REGL	R	00	
D0	BAT_VOL_R_CALC_REGH	R	00	
D1	BAT_VOL_R_CALC_REGL	R	00	
D2	CAL_OFFSET_REGH	RW	7F	
D3	CAL_OFFSET_REGL	RW	FF	
D4	NON_ACT_TIMER_CNT_REGL	R	00	
D5	VCALIB0_REGH	R	00	
D6	VCALIB0_REGL	R	00	
D7	VCALIB1_REGH	R	00	
D8	VCALIB1_REGL	R	00	
DD	IOFFSET_REGH	R	00	
DE	IOFFSET_REGL	R	00	
DATA REGI	STERS	•		
DF	DATA0	RW	00	
E0	DATA1	RW	00	
E1	DATA2	RW	00	
E2	DATA3	RW	00	
E3	DATA4	RW	00	
E4	DATA5	RW	00	
E5	DATA6	RW	00	
E6	DATA7	RW	00	
E7	DATA8	RW	00	
E8	DATA9	RW	00	
E9	DATA10	RW	00	
EA	DATA11	RW	00	
EB	DATA12	RW	00	
EC	DATA13	RW	00	

HEX ADDRESS	FUNCTION DESCRIPTION	r/W	DEFAUL T/RESE T
ED	DATA14	RW	00
EE	DATA15	RW	00
EF	DATA16	RW	00
F0	DATA17	RW	00
F1	DATA18	RW	00
F2	DATA19	RW	00

NOTE: Address 60h through 97h are for OTP registers. Customer's accessibility to those addresses is not allowed.

5.2 Register Description

5.2.1 RTC Registers

• SECONDS_REG: RTC SECOND REGISTER

Address: 00H			Type: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV		SEC1		SEC0			
Default	0	0	0	0	0	0	0	0

Description

Bit 7 Reserved

Bit 6-4 Set the second digit of the RTC seconds (0-5)

Bit 3-0 Set the first digit of the RTC seconds (0-9)

Note BCD coding from 00 - 59

• MINUTES REG: RTC MINUTE REGISTER

ADDRESS: 01H			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	MIN1			MINO			
DEFAULT	0	1	0	1	0	0	0	0

Description

Bit 7 Reserved

Bit 6-4 Set the second digit of the RTC minutes (0-5)

Bit 3-0 Set the first digit of the RTC minutes (0-9)

Note BCD coding from 00 to 59

• HOURS REG: RTC HOUR REGISTER

ADDRESS: 02H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	PM/AM	RESV	HOUR1		HOUR0				
DEFAULT	0	0	0	0	1	0	0	0	

Description

Bit 7 Set PM or AM: Only used in PM-AM mode, 1: PM. 0:AM.

Bit 6 Reserved

Bit 5-4 Set the second digit of the RTC hours Bit 3-0 Set the first digit of the RTC hours

Note HOUR1/0 BCD coding from 0 to11/23

• DAYS_REG: RTC DAY REGISTER

ADDRESS: 03H				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	DAY1		DAY0			
DEFAULT	0	0	1	0	0	0	0	1

Description

Bit 7-6 Reserved

Bit 5-4 Set the second digit of the RTC days Bit 3-0 Set the first digit of the RTC days

Note BCD coding from 0 to 28/29/30/31

• MONTHS_REG: RTC MONTH REGISTER

ADDRESS: 04H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	MONTH 1	MONTH)			
DEFAULT	0	0	0	0	0	0	0	1	

Description

Bit 7-5 Reserved

Bit 4 Set the second digit of the RTC months

Bit 3-0 Set the first digit of the RTC months

Note BCD coding from 01 to 12

YEARS_REG : RTC YEAR REGISTER

ADDRESS: 05H				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	YEAR1				YEAR0			
DEFAULT	0	0	0	1	0	0	1	1

Description

Bit 7-5 Set the second digit of the RTC years

Bit 3-0 Set the first digit of the RTC years

Note BCD coding from 00 to 99

• WEEKS REG: RTC WEEK REGISTER

ADDRESS: 06H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	RESV	RESV	WEEK			
DEFAULT	0	0	0	0	0	0	0	1	

Description

Bit 7-3 Reserved

Bit 3-0 Set the second digit of the RTC weeks

Note BCD coding from 1 to 7

ALARM_SECONDS_REG: RTC ALARM SECOND REGISTER

ADDRESS: 08H				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	ALARM_	SEC1		ALARM_	SEC0		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 Reserved

Bit 6-4 Set the second digit of the RTC alarm seconds

Bit 3-0 Set the first digit of the RTC alarm seconds

Note BCD coding from 00 to 59

• ALARM_MINUTES_REG: RTC ALARM MINUTE REGISTER

ADDRESS: 09H				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	ALARM_	MIN1		ALARM_	MINO		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 Reserved

Bit 6-4 Set the second digit of the RTC alarm minutes

Bit 3-0 Set the first digit of the RTC alarm minutes

Note BCD coding from 00 to 59

• ALARM_HOURS_REG: RTC ALARM HOUR REGISTER

ADDRESS: 0AH			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	ALARM_PM_A M	RESV	ALARM_	HOUR1	ALARM_	HOUR0		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7	Set PM)	or AM: onl	lv used in	PM-AM mod	le, 1: PM. 0:AM.

Bit 6 Reserved

Bit 5-4 Set the second digit of the RTC alarm hours

Bit 3-0 Set the first digit of the RTC alarm hours Note HOUR1/0 BCD coding from 0 to 11/23

• ALARM_DAYS_REG: RTC ALAR DAY REGISTER

ADDRESS: 0BH	TYPE: RW
--------------	----------

Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	ALARM_	DAY1	ALARM_	DAY0		
DEFAULT	0	0	0	0	0	0	0	1

Description

Bit 7-6 Reserved

Bit 5-4 Set the second digit of the RTC alarm days

Bit 3-0 Set the first digit of the RTC alarm days

Note BCD coding from 0 to 28/29/30/31

• ALARM MONTHS REG: RTC ALARM MONTH REGISTER

	<u> </u>							
ADDRESS: 0CH			TYPE: RV	V				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL				ALARM_				
	RESV	RESV	RESV	MONTH	ALARM	I_MONTH	10	
				1				
DEFAULT	0	0	0	0	0	0	0	1

Description

Bit 7-5 Reserved

Bit 4 Set the second digit of the RTC alarm months

Bit 3-0 Set the first digit of the RTC alarm months

Note BCD coding from 01 to 12

• ALARM_YEARS_REG: RTC ALARM YEAR REGISTER

ADDRESS: 0DH				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL ALARM_YEAR1					ALARM	_YEAR0		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 Set the second digit of the RTC alarm years

Bit 3-0 Set the first digit of the RTC alarm years

Note BCD coding from 00 to 99

RTC_CTRL_REG: RTC CONTROL REGISTER

ADDRESS:	ADDRESS: 10H							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RTC_REA DSEL	GET_T IME	SET_32_ COUNTE R	TEST_ MODE	AMPM _MOD E	AUTO _CO MP	ROUND_3 0S (Auto Clr)	STOP _RTC
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 RTC_READ_SEL: 0: Read access directly to dynamic registers.

1: Read access to static shadowed registers.

Bit 6 GET_TIME: Rising transition of this register transfers dynamic registers into static shadowed registers..

- Bit 5 SET_32_COUNTER: 1: Set the 32Khz counter with COMP_REG value. It must only be used when the RTC is frozen.
- Bit 4 TEST_MODE: 1: Test mode (Auto compensation is enabled when the 32kHz counter reaches at its end)
- Bit 3 AMPM_MODE: 0: 24 hours mode.
 - 1: 12 hours mode (PM-AM mode)
- Bit 2 AUTO_COMP: 0: No auto compensation RW0.
 - 1: Auto compensation enabled
- Bit 1 ROUND_30S: 1: When "1" is written, the time is rounded to the closest minute in the next second, and is self-cleared after rounding.
- Bit 0 STOP_RTC: 0: RTC is running.
 - 1: RTC is frozen.

RTC_time can only be changed during RTC frozen.

• RTC_STATUS_REG: RTC STATUS REGISTER

ADDRES	ADDRESS: 11H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMB	POWER_	ALARM	EVENT_1	EVENT_1	EVENT_1	EVENT_1				
OL	UP	(Write 1	D	Н	М	S	RUN	RES		
	(Write 1	`	(Write 1	(Write 1	(Write 1	(Write 1	(RO)	V		
	Clr)	Clr)	Clr)	Clr)	Clr)	Clr)				
DEFAU	1	0	0	0	0	0	1	0		
LT										

Description

Bit 7	POWER_UP: POWER_UP is set by a reset, is cleared by writing one in	this
	bit.	

- Bit 6 ALARM: Indicates that an alarm interrupt has been generated (bit clear by writing 1) The alarm interrupt keeps its low level, until the micro-controller writes 1 in the ALARM bit of the RTC_STATUS register. The timer interrupt is a low-level pulse (15 µs duration).
- Bit 5 EVENT_1D: One day has occurred
- Bit 4 EVENT 1H: One hour has occurred
- Bit 3 EVENT_1M: One minute has occurred
- Bit 2 EVENT_1S :One secondr has occurred
- Bit 1 RUN: 0: RTC is frozen. 1: RTC is running. This bit shows the real state of the RTC
- Bit 0 RESEVERED

• RTC_INT_REG: RTC INTERRUPT REGISTER

ADDRESS:	12H			TYPE: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV	RESV	RESV	INT_SLEEP	INT_ALAR	INT_TIM	EVERY			
	RESV	RESV	RESV	_MASK_EN	M_EN	ER_EN				

DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 RESEVERED

Bit 4 INT_SLEEP_MASK_EN:

1: Mask periodic interrupt while the device is in SLEEP mode

0: Normal mode, no interrupt masked.

Bit 3 INT_ALARM_EN: Enable one interrupt when the alarm value is reached

1: Enable

0: Disable

Bit 2 INT_TIMER_EN:Enable periodic interrupt

Bit 1-0 EVERY: 00: every second 01: every minute 10: every hour 11: every

day

• RTC_COMP_LSB_REG: RTC COMPENSATION LSB REGISTER

ADDRESS: 13H	TYPE: R	W						
Bit	Bit5	Bit4 Bit3 Bit2 Bit1 Bit0						
SYMBOL	RTC_COM	1P_LSB						
DEFAULT	0	0	0	0	0			

Description

Bit7-0 This register contains the number of 32-kHz periods to be added into the 32KHz counter every hour [LSB]

• RTC_COMP_MSB_REG: RTC COMPENSATION MSB REGISTER

ADDRESS: 14H				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RTC_COM	RTC_COMP_MSB						
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit7-0 This register contains the number of 32-kHz periods to be added into the 32KHz counter every hour [MSB]

5.2.2 MISC REGISTERS

• CLK32KOUT_REG: RTC 32KHz CLOCK OUTPUT REGISTER

ADDRESS: 20H				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESERV	ED					CLK32KO	CLK32KO
	KLJLKV	LD					UT2_FUN	UT2_EN
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-2 RESERVED

Bit 1 CLK32KOUT2_FUN: CLK32KOUT2 pin functional definition

0: 32.768K clock output

1: Recovery function

Bit 0 CLK32KOUT2_EN: If CLK32KOUT2_FUN=0, then

1: CLK32KOUT2 is enabled 0: CLK32KOUT2 is disabled

• VB_MON_REG: BATTERY VOLTAGE MONITOR REGISTER

ADDRESS:	21H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	PLUG_I N_STS (RO)	VB_UV_ STS (RO)	VB_LO_ ACT	VB_LO_ STS (RO)	VB_LO_	SEL	
DEFAULT	0	0	0	1	0	1	0	0

Description

Bit 7 RESERVED

Bit 6 PLUG_IN_STS: charger plug-in event occurs(DC PIN voltage >3.8V)

0: no charger plug in1: charger pluged inThis bit is read only

Bit 5 VB_UV_STS: Battery under voltage lockout status(shut down system if the

bit=1)

This bit is read only

Bit 4 VB_LO_ACT: VBAT low action

0: shut down system

1: insert interrupt

Bit 3 VB_LO_STS: Battery low voltage status

0: VBAT>VB_LO_SEL1: VBAT<VB_LO_SELThis bit is read only

Bit 2-0 VB_LO_SEL: Battery low voltage threshold

000~111: 2.8V~ 3.5V, step=100mV

• THERMAL_REG: THERMAL CONTROL REGISTER

ADDRESS:	22H			TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	TSD_T EMP	HOTDIE	_TEMP	HOTDIE_ST S (RO)	TSD_STS (RO)
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 Reserved

Bit 4 TSD_TEMP: Thermal shutdown temperture threshold

0: 140°C; 1: 160°C

Bit 3-2 HOTDIE_TEMP: Hot-die temperature threshold

00: 85° ; 01: 95° ; 10: 105° ; 11: 115° ;

Bit 1 HOTDIE_STS: Hot-die warning

This bit is read only bit.

Bit 0 TSD-STS: Thermal shut down

5.2.3 POWER CHANNEL CONTROL/MONITOR REGISTERS

• DCDC_EN_REG: DC-DC CONVERTER ENABLE REGISTER

ADDRESS: 23H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	OTG_E	SWITC	LD09_	BOOS	BUCK4	BUCK3	BUCK2	BUCK1	
	N	H_EN	EN	T_EN	_EN	_EN	_EN	_EN	
DEFAULT	Boot								

Description

Bit 7 OTG EN, OTG enable

1: Enable

0: Disable

DEFAULT value is set by boot.

Bit 6 SWITCH_EN: SWITCH enable

1: Enable

0: Disable

DEFAULT **bootSet**.

Bit 5 LDO9_EN: LDO9 enable

1: Enable

0: Disable

DEFAULT value is set by boot.

Bit 4 BOOST_EN: BOOST enable

1: Enable

0: Disable

The default value is set by boot.

Bit 3-0 BUCK(n)_EN: BUCKn enable

1: Enable

0: Disable

The default value is set by boot.

• LDO_EN_REG: LDO ENABLE REGISTER

ADDRESS: 24H				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	LD08_	LD07_	LD06_	LD05_	LD04_	LDO3_	LD02_	LD01_
	EN							
DEFAULT	Boot							

Description

Bit 7-0 LDOn: LDO(n) enable

1: Enable

0: Disable

The default value is set by boot.

• SLEEP_SET_OFF_REG1 : SLEEP SET OFF REGISTER #1

ADDRESS:	25H			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	OTG_ SLP_ SET_ OFF	SWITCH _SLP_S ET_OFF	LDO9_S LP_SET _OFF	BOOST _SLP_S ET_OFF	BUCK4_ SLP_SE T_OFF	BUCK3_ SLP_SE T_OFF	BUCK2_ SLP_SE T_OFF	BUCK1 _SLP_ SET_O FF	
DEFAULT	0	0	0	0	0	0	0	0	

Description

0: No effect.

Bit 6 1: Switch is set off in sleep mode

0: No effect.

Bit 5 1: LDO9 is set off in sleep mode

0: No effect.

Bit 4 1: The boost converter is set off in sleep mode

0: No effect.

Bit 3 1: Buck4 is set off in sleep mode

0: No effect.

Bit 2 1: Buck3 is set off in sleep mode

0: No effect.

Bit 1 1: Buck2 is set off in sleep mode

0: No effect.

Bit 0 1: Buck1 is set off in sleep mode

0: No effect.

• SLEEP_SET_OFF_REG2: SLEEP SET OFF REGISTER #2

	<u> </u>		<u> </u>		 			
ADDRESS: 26H	TYPE:	RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	LD08_	LD07_	LD06_	LD05_	LD04_	LDO3_	LD02_	LD01_
	SLP_S	SLP_S	SLP_S	SLP_S	SLP_S	SLP_S	SLP_S	SLP_S
	ET_OF	ET_OF	ET_OF	ET_OF	ET_OF	ET_OF	ET_OF	ET_OF
	F	F	F	F	F	F	F	F
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 1: LDO8 is set off in sleep mode

0: No effect.

Bit 6 1: LDO7 is set off in sleep mode

0: No effect.

Bit 5 1: LDO6 is set off in sleep mode

0: No effect.

Bit 4 1: LDO5 is set off in sleep mode

0: No effect.

Bit 3 1: LDO4 is set off in sleep mode

0: No effect.

Bit 2 1: LDO3 is set off in sleep mode

0: No effect.

Bit 1 1: LDO2 is set off in sleep mode

0: No effect.

Bit 0 1: LDO1 is set off in sleep mode

0: No effect.

• DCDC_UV_STS_REG: DC-DC UNDER VOLTAGE STATUS REGISTER

ADDRESS: 27H				TYPE: R	0			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	OTG_U V_STS	H5V_U V_STS	LDO9_U V_STS	BOOST _UV_ST S	BUCK4_ UV_STS	BUCK3_ UV_STS		BUCK1_ UV_STS
DEFAUL T	0	0	0	0	0	0	0	0

Description

Bit 7 OTG_UV_STS: OTG under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 6 H5V_UV_STS: H5V under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 5 LDO9_UV_STS: LDO9 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 4 BOOST_UV_STS: BOOST under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 3 BUCK4_UV_STS: BUCK4 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 2 BUCK3_UV_STS: BUCK3 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 1 BUCK2_UV_STS: BUCK2 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 0 BUCK1 UV STS: BUCK1 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

• DCDC_UV_ACT_REG: DC-DC UNDER VOLTAGE ACTION REGISTER

ADDRESS: 28H			TYPE: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	OTG_U V_ACT	H5V_U V_ACT	LDO9_U V_ACT	BOOST _UV_AC T	BUCK4_ UV_ACT	BUCK3_ UV_ACT		BUCK1_ UV_ACT
DEFAUL T	0	0	0	0	0	0	0	0

Description

Bit 7 OTG UV ACT: OTG under voltage action.

1: Restart OTG

0: No effect

Bit 6 H5V_UV_ACT: H5V under voltage action.

1: Restart H5V

0: No effect

Bit 5 LDO9_UV_ACT: LDO9 under voltage action.

1: Restart LDO9

0: No effect

Bit 4 BOOST_UV_ACT: BOOST under voltage action.

1: shut down converter(this shut down action will also reset the BOOST_EN bit to 0)

0: No effect

Bit 3 BUCK4_UV_ACT: BUCK4 under voltage action.

1: Restart BUCK4

0: No effect

Bit 2 BUCK3_UV_ACT: BUCK3 under voltage action.

1: Restart BUCK3

0: No effect

Bit 1 BUCK2_UV_ACT: BUCK2 under voltage action.

1: Restart BUCK2

0: No effect

Bit 0 BUCK1_UV_ACT: BUCK1 under voltage action.

1: Restart BUCK1

0: No effect

• LDO_UV_STS_REG: LDO UNDER VOLTAGE S TATUS REGISTER

ADDRESS: 29H				TYPE: R	.0			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	LDO8 U	LDO7 II	LDO6 U	LDO5_U	LDO4 U	LD03_	LD02_	LD01_
	V STS	V STS	V STS	V STS	V STS	UV_ST	UV_ST	UV_ST
	V_313	V_313	V_313	V_313	V_313	S	S	S
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 LDO8_UV_STS: LDO8 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 6 LDO7_UV_STS: LDO7 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 5 LDO6_UV_STS: LDO6 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 4 LDO5_UV_STS: LDO5 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 3 LDO4_UV_STS: LDO4 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 2 LDO3_UV_STS: LDO3 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 1 LDO2_UV_STS: LDO2 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

Bit 0 LDO1_UV_STS: LDO1 under voltage flag.

1: Output voltage drop below 85% of nominal voltage

0: Normal

• LDO_UV_ACT_REG: LDO UNVER VOLTAGE ACTION REGISTER

ADDRESS: 2AH				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	LD08_	LD07_	LD06_	LD05_	LD04_	LD03_	LD02_	LD01_
	UV_AC							
	Т	Т	Т	Т	Т	Т	Т	Т
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 LDO8_UV_ACT: LDO8 under voltage action

1: Restart LDO8

0: No effect

Bit 6 LDO7_UV_ACT: LDO7 under voltage action

1: Restart LDO7

0: No effect

Bit 5 LDO6_UV_ACT: LDO6 under voltage action

1: Restart LDO6

0: No effect

Bit 4 LDO5_UV_ACT: LDO5 under voltage action

1: Restart LDO5

0: No effect

Bit 3 LDO4_UV_ACT: LDO4 under voltage action

1: Restart LDO4

0: No effect

Bit 2 LDO3 UV ACT: LDO3 under voltage action

1: Restart LDO3

0: No effect

Bit 1 LDO2_UV_ACT: LDO2 under voltage action

1: Restart LDO2

0: No effect

Bit 0 LDO1_UV_ACT: LDO1 under voltage action

1: Restart LDO1

0: No effect

DCDC_PG_REG : DC-DC POWER GOOD STATUS REGISTER

ADDRESS: 2BH				TYPE: R	0			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	OTG_ PG_S TS	H5V_P G_STS	LDO9_P G_STS	BOOST _PG_ST S	BUCK4_ PG_STS	BUCK3_ PG_STS	BUCK2_ PG_STS	BUCK1_ PG_STS
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 OTG_PG_STS: OTG power good flag.

1: Power good, Vout>90% of setting voltage

0: Power not good, Vout<90% of setting voltage

Bit 6 H5V_PG_STS: H5V power good flag.

1: Power good, Vout>90% of setting voltage

0: Power not good, Vout<90% of setting voltage

Bit 5 LDO9_PG_STS: LDO9 power good flag.

1: Power good, Vout>90% of setting voltage

0: Power not good, Vout<90% of setting voltage

Bit 4 BOOST_PG_STS: BOOST power good flag.

1: Power good, Vout>90% of setting voltage

0: Power not good, Vout<90% of setting voltage

Bit 3 BUCK4_PG_STS: BUCK4 power good flag.

1: Power good, Vout>90% of setting voltage

0: Power not good, Vout<90% of setting voltage

Bit 2 BUCK3_PG_STS: BUCK3 power good flag.

1: Power good, Vout>90% of setting voltage

0: Power not good, Vout<90% of setting voltage

Bit 1 BUCK2 PG STS: BUCK2 power good flag.

1: Power good, Vout>90% of setting voltage

0: Power not good, Vout<90% of setting voltage

Bit 0 BUCK1_PG_STS: BUCK1 power good flag.

1: Power good, Vout>90% of setting voltage

0: Power not good, Vout<90% of setting voltage

LDO_PG_REG: LDO POWER GOOD STATUS REGISTER

ADDRESS:	ADDRESS: 2CH			TYPE: RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

SYMBOL	LDO8_P G_STS	LDO7_P G_STS		LDO5_P G_STS	LDO4_P G_STS	LDO3_ PG_ST S	LDO2_ PG_ST S	LDO1_ PG_ST S
DEFAULT	0	0	0	0	0	0	0	0

Description

- Bit 7 LDO8_PG_STS: LDO8 power good flag.
 - 1: Power good, Vout>90% of setting voltage
 - 0: Power not good, Vout<90% of setting voltage
- Bit 6 LDO7_PG_STS: LDO7 power good flag.
 - 1: Power good, Vout>90% of setting voltage
 - 0: Power not good, Vout<90% of setting voltage
- Bit 5 LDO6_PG_STS: LDO6 power good flag.
 - 1: Power good, Vout>90% of setting voltage
 - 0: Power not good, Vout<90% of setting voltage
- Bit 4 LDO5 PG STS: LDO5 power good flag.
 - 1: Power good, Vout>90% of setting voltage
 - 0: Power not good, Vout<90% of setting voltage
- Bit 3 LDO4_PG_STS: LDO4 power good flag.
 - 1: Power good, Vout>90% of setting voltage
 - 0: Power not good, Vout<90% of setting voltage
- Bit 2 LDO3_PG_STS: LDO3 power good flag.
 - 1: Power good, Vout>90% of setting voltage
 - 0: Power not good, Vout<90% of setting voltage
- Bit 1 LDO2_PG_STS: LDO2 power good flag.
 - 1: Power good, Vout>90% of setting voltage
 - 0: Power not good, Vout<90% of setting voltage
- Bit 0 LDO1_PG_STS: LDO1 power good flag.
 - 1: Power good, Vout>90% of setting voltage
 - 0: Power not good, Vout<90% of setting voltage

• VOUT_MON_TDB_REG: VOUT DEBOUNCE MONITOR REGISTER

ADDRESS: 2DH			TYPE: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	RESV	RESV	RESV	VOUT_M B	10N_TD
DEFAULT	0	0	0	0	0	0	1	0

Description

Bit 7-2 Reserved

Bit 1-0 VOUT_MON_TDB: Vout monitor debouncing time(UV_STS rising edge and PG STS rising edge debounce time)

00: 62us

01: 124us(default)

10: 186us 11: 248us

5.2.4 POWER CHANNEL CONFIGURATION REGISTER

BUCK1_CONFIG_REG: BUCK1 CONFIGURATION REGISTER

ADDRESS: 2EH				TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	BUCK1_ PHASE	RESV	BUCK1_RATE		BUCK1_I	LMIN	
DEFAULT	0	0	0	1	1	0	1	0

Description

Bit 7 Reserved

Bit 6 BUCK1_PHASE,

0: Normal,

1: Inverted

Bit 5 Reserved

Bit 4-3 BUCK1_RATE: Voltage change rate after DVS

00: 2mv/us 01: 3mv/us 10: 4.5mv/us

11: 6mv/us

Bit 2-0 BUCK1 ILMIN:

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA 100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

• BUCK1_ON_VSEL : BUCK1 ACTIVE MODE REGISTER

ADDRESS:	2FH			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK1_ ON_FPW M	RESV	BUCK1_C	N_VSEL				
DEFAULT	0	0	Boot					

Description

Bit 7 BUCK1 ON FPWM:

1: Forced PWM mode in active mode.

0: PWM/PFM auto change mode.(default)

Bit 6 Reserved

Bit 5-0 BUCK1_ON_VSEL: BUCK1 active mode voltage selection,

 $0.7125V\sim1.5V$, step=12.5mV

000 000: 0.7125V 000 001: 0.725V

.....

111 111: 1.5V

The default value is set by boot.

BUCK1_SLP_VSEL : BUCK1 SLEEP MODE REGISTER

ADDRESS: 30H			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	BUCK1_S LP_FPWM	RESV	BUCK1_	SLP_VSEL				
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 BUCK1_SLP_FPWM:

1: Forced PWM mode in sleep mode.

0: PWM/PFM auto change mode.(default)

Bit 6 Reserved

Bit 5-0 BUCK1_SLP_VSEL: BUCK1 sleep mode voltage selection, 0.7125V~1.5V,

step=12.5mV

000 000: 0.7125V 000 001: 0.725V

.

111 111: 1.5V

• BUCK2_CONFIG_REG: BUCK2 CONFIGURATION REGISTER

ADDRESS:	ADDRESS: 32H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	BUCK2_ PHASE	RESV	BUCK2_RATE		BUCK2_	ILMIN	
DEFAULT	0	0	0	1	1	0	1	0

Description

Bit 7 Reserved

Bit 6 BUCK2_PHASE,

0: Normal,

1: Inverted

Bit 5 Reserved

Bit 4-3 BUCK2_RATE: Voltage change rate after DVS.

00: 2mv/us

01: 3mv/us

10: 4.5mv/us

11: 6mv/us

Bit 2-0 BUCK2_ILMIN:

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA 100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

• BUCK2_ON_VSEL : BUCK2 ACTIVE MODE REGISTER

ADDRESS:	ADDRESS: 33H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK2_ ON_FPW M	RESV	BUCK2_C	N_VSEL				
DEFAULT	0	0	Boot					

Description

Bit 7 BUCK2 ON FPWM

1: Forced PWM mode in active mode.

0: PWM/PFM auto change mode.(default)

Bit 6 Reserved

Bit 5-0 BUCK2_ON_VSEL: BUCK2 active mode voltage selection, 0.7125V~1.5V,

step=12.5mV

000 000: 0.7125V 000 001: 0.725V

• • • • •

111 111: 1.5V

The default value is set by boot.

• BUCK2_SLP_VSEL : BUCK2 SLEEP MODE REGISTER

ADDRESS:	ADDRESS: 34H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK2_S LP_FPWM	RESV	BUCK2_SLP_VSEL					
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 BUCK2_SLP_FPWM:

1: Forced PWM mode in sleep mode.

0: PWM/PFM auto change mode.(default)

Bit 6 Reserved

Bit 5-0 BUCK2_SLP_VSEL: BUCK1 sleep mode voltage selection, 0.7125V~1.5V,

step=12.5mV

000 000: 0.7125V 000 001: 0.725V

.

111 111: 1.5V

• BUCK3_CONFIG_REG: BUCK3 CONFIGURATION REGISTER

ADDRESS:	ADDRESS: 36H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK3_ ON_FPW M	BUCK3_ PHASE	RESV	RESV	RESV	BUCK3_ILMIN		
DEFAULT	0	0	0	0	0	0	1	0

Description

Bit 7 BUCK3_ON_FPWM:

1: Forced PWM mode in active mode.

0: PWM/PFM auto change mode.(default)

Bit 6 BUCK3_PHASE,

0: Normal,

1: Inverted

Bit 5-3 Reserved

Bit 2-0 BUCK3_ILMIN:

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA 100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

• BUCK4_CONFIG_REG: BUCK4 CONFIGURATION REGISTER

ADDRESS: 37H				TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	BUCK4_ PHASE	RESV	RESV	RESV	BUCK4_ILMIN		
DEFAULT	0	0	0	0	0	0	1	0

Description

Bit 7 RESERVED

Bit 6 BUCK4_PHASE,

0: Normal,

1: Inverted

Bit 2-0 BUCK4_ILMIN:

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA 100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

• BUCK4_ON_VSEL: BUCK4 ACTIVE MODE REGISTER

ADDRESS:	38H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1 Bit0				
SYMBOL	BUCK4_							
	ON_FPW	RESV	RESV	BUCK4_ON_VSEL				
	М							
DEFAULT	0	0	0	Boot				

Description

Bit 7 BUCK4_ON_FPWM:

1: Forced PWM mode in active mode.

0: PWM/PFM auto change mode.(default)

Bit 6-4 RESERVED

Bit 3-0 BUCK4_ON_VSEL: BUCK4 active mode voltage selection, 1.8V~3.3V ,

step=100Mv

00000: 1.8V 00001: 1.9V

.

01110: 3.2V 01111: 3.3V 10000: 3.4V 10001: 3.5V 10010: 3.6V

The default value is set by boot.

• BUCK4_SLP_VSEL: BUCK4 SLEEP MODE REGISTER

ADDRESS:	ADDRESS: 39H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK4_S LP_FPWM	RESV	RESV	BUCK4_SLP_VSEL				
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 BUCK4_SLP_FPWM:

1: Forced PWM mode in sleep mode.

0: PWM/PFM auto change mode.(default)

Bit 6-5 Reserved

Bit 4-0 BUCK4_SLP_VSEL: BUCK4 sleep mode voltage selection, 1.8V~3.3V,

step=100Mv

00000: 1.8V 00001: 1.9V

.

01110: 3.2V 01111: 3.3V 10000: 3.4V 10001: 3.5V 10010: 3.6V

• BOOST_CONFIG_REG: BOOST CONFIGURATIN REGISTER

ADDRESS:	ADDRESS: 3AH				1			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	BOOST_ ANTI_RI NG	BOOST _PHASE	BOOST_IL	MAX	BOOST_	_ILMIN	
DEFAULT	0	0	0	0	1	0	1	0

Description

Bit 7 RESERVED

Bit 6 BOOST_ANTI_RING: BOOST anti-ring enable

0: Disable

1: Enable

Bit 5 BOOST_PHASE,

0: Normal

1: Inverted

Bit 4-3 BOOST_ILMAX:

00: 4A,

01: 4.5A, 10: 5A, 11: 5.5A

Bit 2-0 BOOST ILMIN:

000: 75mA, 001: 100mA, 010: 125mA, 011: 150mA 100: 175mA, 101: 200mA, 110: 225mA, 111: 250mA

• LDO1_ON_VSEL_REG: LDO1 ACTIVE MODE VOLTAGE REGISTER

ADDRESS:	ADDRESS: 3BH			TYPE: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	LDO1_ON_	_VSEL			
DEFAULT	0	0	0	Boot				

Description

Bit 7-5 RESERVED

Bit 4-0 LDO1_ON_VSEL: LDO1 active mode voltage selection, 1.8V~3.4V,

step=0.1V 00000: 1.8V 00001: 1.9V

....

01110: 3.2V 01111: 3.3V 10000: 3.4V

The default value is set by boot.

• LDO1_SLP_VSEL_REG: LDO1 SLEEP MODE VOLTAGE SELECT REGISTER

ADDRESS: 3CH				TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1				Bit0
SYMBOL	RESV	RESV	RESV	LDO1_SLP_VSEL				
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 Reserved

Bit 4-0 LDO1_SLP_VSEL: LDO1 SLEEP mode voltage selection. 1.8V~3.4V,

step=0.1V 00000: 1.8V 00001: 1.9V

• • • •

01110: 3.2V 01111: 3.3V 10000: 3.4V

• LDO2_ON_VSEL_REG: LDO2 ACTIVE MODE VOLTAGE SELECT REGISTER

ADDRESS: 3DH			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	RESV	RESV	RESV	LDO2_ON_VSEL
DEFAULT	0	0	0	Boot

Description

Bit 7-5 RESERVED

Bit 4-0 LDO2_ON_VSEL: LDO2 active mode voltage selection. 1.8V~3.4V,

step=0.1V 00000: 1.8V 00001: 1.9V

· · · •

01110: 3.2V 01111: 3.3V 10000: 3.4V

DEFAULT value is set by boot.

• LDO2_SLP_VSEL_REG: LDO2 SLEEP MODE VOLTAGE SELECT REGISTER

ADDRESS:	ADDRESS: 3EH				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1				Bit0		
SYMBOL	RESV	RESV	RESV	LDO2_SLP_VSEL						
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-5 RESERVED

Bit 4-0 LDO2_SLP_VSEL: LDO2 sleep mode voltage selection.

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

. . . .

01110: 3.2V 01111: 3.3V 10000: 3.4V

• LDO3_ON_VSEL_REG: LDO3_ACTIVE MODE VOLTAGE SELECT REGISTER

ADDRESS	ADDRESS: 3FH				RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	RESV	LDO3_C	N_VSEL			
DEFAULT	0	0	0	0	Boot				

Description

Bit 7-4 RESERVED

Bit 4-3 LDO3_ON_VSEL: LDO3 active mode voltage selection.

 $0.8V \sim 2.5V$, step=0.1V

0000: 0.8V 0001: 0.9V

....

1100: 2.0V 1101: 2.2V 1111: 2.5V

DEFAULT value is set by boot.

• LD03_SLP_VSEL_REG: LD03 SLEEP MODE VOLTAGE SELECT REGISTER

ADDRESS:	ADDRESS: 40H				RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	RESV	LDO3_SL	P_VSEL		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 RESERVED

Bit 3-0 LDO3_SLP_VSEL: LDO3 sleep mode voltage selection.

 $0.8V \sim 2.5V$, step=0.1V

0000: 0.8V 0001: 0.9V

....

1100: 2.0V 1101: 2.2V 1111: 2.5V

DEFAULT value is set by boot.

• LDO4_ON_VSEL_REG: LDO4 ACTIVE MODE VOLTAGE SELECT

ADDRESS:	ADDRESS: 41H				RW			
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1 Bit				
SYMBOL	RESV	RESV	RESV	LDO4_0	N_VSEL			
DEFAULT	0	0	0	Boot				

Description

Bit 7-5 RESERVED

Bit 4-0 LDO4_ON_VSEL: LDO4 active mode voltage selection.

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

...

01110: 3.2V 01111: 3.3V 10000: 3.4V

DEFAULT value is set by boot.

LD04 SLP VSEL REG: LD04 SLEEP MODE VOLTAGE SELECT REGISTER

ADDRESS:	42H			TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	RESV	RESV	RESV	LDO4_S	LP_VSEL			
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 RESERVED

Bit 4-0 LDO2_SLP_VSEL: LDO2 sleep mode voltage selection.

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

. . . **.**

01110: 3.2V 01111: 3.3V 10000: 3.4V

• LDO5_ON_VSEL_REG: LDO5 ACTIVE MODE VOLTAGE SELECT REGISTER

ADDRESS:	ADDRESS: 43H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1				Bit0		
SYMBOL	RESV	RESV	RESV	LDO5_C	N_VSEL					
DEFAULT	0	0	0	Boot						

Description

Bit 7-5 RESERVED

Bit 4-0 LDO5_ON_VSEL: LDO5 active mode voltage selection.

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

···•

01110: 3.2V 01111: 3.3V 10000: 3.4V

DEFAULT is set by boot.

• LDO5_SLP_VSEL_REG: LDO5 SLEEP MODE VOLTAGE SELECT REGISTER

ADDRESS:	ADDRESS: 44H				RW			
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1 I				Bit0
SYMBOL	RESV	RESV	RESV	LDO5_SLP_VSEL				
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 RESERVED

Bit 4-0 LDO5_SLP_VSEL: LDO5 sleep mode voltage selection.

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V

00001: 1.9V

....

01110: 3.2V 01111: 3.3V 10000: 3.4V

• LDO6_ON_VSEL_REG: LDO6 ACTIVE MODE VOLTAGE SELECT REGISTER

ADDRESS:	TYPE: RW							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	LDO6_ON_VSEL				
DEFAULT	0	0	0	Boot				

Description

Bit 7-5 RESERVED

Bit 4-0 LDO6_ON_VSEL: LDO6 active mode voltage selection.

 $0.8V \sim 2.5V$, step=0.1V

00000: 0.8V 00001: 0.9V

.....

10000: 2.4V 10001: 2.5V

DEFAULT is set by boot.

• LDO6_SLP_VSEL_REG: LDO6 SLEEP MODE VOLTAGE SELECT REGISTER

ADDRESS: 46H				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	LDO6_SLP_VSEL				
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 RESERVED

Bit 4-0 LDO6_SLP_VSEL: LDO6 sleep mode voltage selection.

 $0.8V \sim 2.5V$, step=0.1V

00000: 0.8V 00001: 0.9V

.

10000: 2.4V 10001: 2.5V

• LDO7_ON_VSEL_REG: LDO7 ACTIVE MODE VOLTAGE SELECT REGISTER

ADDRESS:	TYPE:	RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	LDO7_ON_VSEL				
DEFAULT	0	0	0	Boot				

Description

Bit 7-5 RESERVED

Bit 4-0 LDO7_ON_VSEL: LDO7 active mode voltage selection.

 $0.8V \sim 2.5V$, step=0.1V

00000: 0.8V 00001: 0.9V

....

10000: 2.4V 10001: 2.5V

DEFAULT is set by boot.

• LDO7_SLP_VSEL_REG: LDO7 SLEEP MODE VOLTAGE SELECT REGISTER

ADDRESS	TYPE: RW							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	LDO7_SLP_VSEL				
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 RESERVED

Bit 4-0 LDO7_SLP_VSEL: LDO7 sleep mode voltage selection.

 $0.8V \sim 2.5V$, step=0.1V

00000: 0.8V 00001: 0.9V

.

10000: 2.4V 10001: 2.5V

• LDO8_ON_VSEL_REG: LDO8 ACTIVE MODE VOLTAGE SELECT REGISTER

ADDRESS:	TYPE:	RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	LDO8_ON_VSEL				
DEFAULT	0	0	0	Boot				

Description

Bit 7-5 RESERVED

Bit 4-0 LDO8_ON_VSEL: LDO8 active mode voltage selection.

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

...**.**

01110: 3.2V 01111: 3.3V 10000: 3.4V

DEFAULT is set by boot.

• LD08_SLP_VSEL_REG: LD08_SLEEP MODE VOLTAGE SELECT REGISTER

ADDRESS:	TYPE:	RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	LD08_SLP_VSEL				
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 RESERVED

Bit 4-0 LDO8_SLP_VSEL: LDO8 sleep mode voltage selection.

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

. . . .

01110: 3.2V 01111: 3.3V 10000: 3.4V

• DEV CTRL REG: DEVICE CONTROL REGISTER

ADDRESS:	4BH			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	PWRO N_LP_ ACT	PWRON_I	_P_OFF_	DEV_OFF _RST	RESV	DEV_SL P	DEV_O FF	
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7 RESERVED

Bit 6 Long Press Action Selection

0: Power off

1: Power off and restart

Bit 5-4 PWRON_LP_OFF_TIME: PWRON long press turn off time:

00: 6s

01: 8s

10: 10s

11: 12s

Bit 3 DEV_OFF_RST: Write 1 will start an ACTIVE to OFF or SLEEP to OFF device state transition (switch-off event) and activate reset of the digital core.

Bit 2 Reserved

Bit 1 DEV_SLP: Write 1 allows SLEEP device state (if DEV_OFF = 0 and DEV_OFF_RST = 0).

Write '0' will start a SLEEP to ACTIVE device state transition (wake-up event) (if $DEV_OFF = 0$ and $DEV_OFF_RST = 0$). This bit is cleared in OFF state.

Bit 0 DEV_OFF: Write 1 will start an ACTIVE to OFF or SLEEP to OFF device state transition (switch-off event). This bit is cleared in OFF state.

5.2.5 INTERRUPT REGISTER

• INT_STS_REG1 : INTERRUPT STATUS REGISTER #1

ADDRE	SS: 4CH		TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMB OL	USB_OV _INT(Wri te 1 clr or RegA3<7 >=0 clr	RTC_PER IOD_INT (Write 1 clr)	RTC_ALA RM_INT (Write 1 clr)	HOTDI E_INT (Write 1 clr)	PWRON _LP_IN T (Write 1 clr)	PWRO N_INT (Write 1 clr)	VB_LO _INT (Write 1 clr)	VOUT_L O_INT (Write 1 clr)
DEFA ULT	0	0	0	0	0	0	0	0

Description

	2 000 i paion
Bit 7	USB_OV_INT: USB over voltage event interrupt.
Bit 6	RTC_PERIOD_INT: RTC period event interrupt.
Bit 5	RTC_ALARM_INT: RTC alarm event interrupt.
Bit 4	HOTDIE_INT: Hot die event interrupt status.
Bit 3	PWRON_LP_INT: PWRON PIN long press event interrupt status.
Bit 2	PWRON_INT: PWRON event interrupt status.
Bit 1	VB_LO_INT: Battery under voltage alarm event interrupt status.
Bit 0	VOUT_LO_INT: VOUT under voltage alarm event interrupt status
Note:	1: Interrupt asserted, write "1" to clear
	0: No interrupt

• INT_MSK_REG1: INTERRUPT MASK REGISTER #1

ADDRES	SS: 4DH			TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMB OL	USB_O V_INT_I M	RTC_PE RIOD_I M	RTC_AL ARM_IM	HOTDIE _IM	PWRON _LP_IM	PWRON _IM	VB_LO_ IM	VOUT_ LO_IM
DEFAU LT	0	0	0	0	0	0	0	0

Description

Bit 7	USB_OV_INT_IM: USB over voltage event interrupt mask.
Bit 6	RTC_PERIOD_INT: RTC period event interrupt mask.
Bit 5	RTC_ALARM_INT: RTC alarm event interrupt mask.
Bit 4	HOTDIE_INT: Hot die event interrupt status mask.
Bit 3	PWRON_LP_INT: PWRON PIN long press event interrupt status mask.
Bit 2	PWRON_INT: PWRON event interrupt status mask.
Bit 1	VB_LO_INT: Battery under voltage alarm event interrupt status mask.
Bit 0	VOUT_LO_IM: Vout under voltage alarm event interrupt status mask
Note:	1: Mask the specified interrupt

0: Do not mask the specified interrupt

• INT STS REG2: INTERRUPT STATUS REGISTER#2

ADDR	RESS: 4E	Н		TYPE: RW	TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYM BOL	DISCH G_ILIM _INT (Write 1 clr)	CHG_CVT LIM_INT (Write 1 clr or RegA3<7 >=0 clr)	TS2_ INT (Writ e 1 clr)	CHGTS1_IN T (Write 1 clr or RegA3<7> =0 clr)	CHGTE_ INT (Write 1 clr or RegA3< 7>=0 clr)	CHGOK _INT (Write 1 clr or RegA3< 7>=0 clr)	PLUG_O UT_INT (Write 1 clr)	PLUG_ IN_IN T (Write 1 clr)		
DEF AUL T	0	0	0	0	0	0	0	0		

Description

	Bit 7	DISCHG ILIM INT	: Discharging triggering	current limit event interrupt.
--	-------	-----------------	--------------------------	--------------------------------

Bit 6 CHG_CVTLIM_INT: Charging triggering input voltage limit, or current limit, or temperature protection event interrupt.

Bit 5 TS2_INT: TS2 value exceeding upper or lower limits event interrupt.

Bit 4 CHGTS1_INT: TS1 value exceeding upper or lower limits event interrupt.

Bit 3 CHGTE INT: Charging overtime event interrupt.

Bit 2 CHGOK_INT: Charging termination event interrupt

Bit 1 PLUG_OUT_INT: charger plug out event interrupt(PLUG_IN_STS falling edge interrupt)

Bit 0 PLUG_IN_INT: charger plug in event interrupt(PLUG_IN_STS rising edge

interrupt)

Note: Write "1" to clear.

• INT_STS_MSK_REG2: INTERRUPT MASK REGISTER#2

ADDRESS: 4FH				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMB OL	DISCHG_ ILIM_INT	CHG_CVT LIM_INT_	TS2_ INT_	CHGTS1 _INT_I	CHGTE_ INT IM	CHGO K_INT	PLUG_O UT_INT_	PLUG_I N_INT_	
OL	_IM	IM	IM	M	1111 _111	_IM	IM	IM	
DEFAU	0	0	0	0	0	0	0	0	
LT									

Description

Bit 7 DISCHG_ILIM_INT_IM: Discharging triggering current limit event interrupt mask

1: Mask the interrupt

Bit 6 0: Do not mask the interrupt

CHG_CVTLIM_INT_IM: Charging triggering input voltage limit, or current limit, or temperature protection event interrupt mask.

1: Mask the interrupt

Bit 5 0: Do not mask the interrupt

TS2_INT_IM: TS2 value exceeding upper or lower limits event interrupt mask

Bit 4 1: Mask the interrupt

0: Do not mask the interrupt

CHGTS1_INT_IM:TS1 value exceeding upper or lower limits event interrupt mask.

Bit 3 1: Mask the interrupt

0: Do not mask the interrupt

CHGTE_INT_IM: Charging overtime event interrupt mask

Bit 2 1: Mask the interrupt

0: Do not mask the interrupt

CHGOK_INT_IM: Charging termination event interrupt mask.

1: Mask the interrupt

0: Do not mask the interrupt

Bit 1 PLUG_OUT_INT_IM: Charger plug out event interrupt mask.

1: Mask the interrupt

0: Do not mask the interrupt

Bit 0 PLUG_IN_INT_IM: Charger plug in event interrupt mask

1: Mask the interrupt

0: Do not mask the interrupt

• IO_POL_REG: IO POLARITY REGISTER

ADDRESS: 50H				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	RESV	RESV	RESV	RESV	INT_PO L
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-1 RESERVED

Bit 0 INT_POL: INT pin polarity

0: active low1: active high

5.2.6 BOOST/OTG/DCDC REGISTER

H5V_EN_REG:

ADDRESS: 52H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	RESV	RESV	BST_UHV_ ST	REF_RDY_ CTRL	H5V_EN	
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-3 RESERVED

Bit 2 BST_UHV_ST: Boost over load enable

0: Enable1: Disable

Bit 1 REF_RDY_CTRL: ref_rdy control

0: After PMIC is powered up, if vref is lower than a preset value, then

ref_rdy can be switched to logic low level.

1: After PMIC is powered up, if vref is lower than a preset value, then

RED_rdy must be kept at logic high level.

Bit 0 H5V_EN: HDMI 5V enable control

1: Enable0: Disable

• SLEEP_SEL_OFF_REG3:

ADDRESS:	ADDRESS: 53H				RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	RESV	RESV	RESV	RESV	H5V_SLP_SET _OFF
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-1 RESERVED

Bit 0 1: HDMI 5V disabled in the SLEEP mode

0: HDMI 5V enabled in the SLEEP mode

BOOST_LDO9_ON_VSEL_REG:

ADDRESS: 54H				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BOOST_	ON_VS	EL	LD09_0	N_VSEL			
DEFAULT	曲 воот	设定						

Description

Bit 7-5 BOOST_ON_VSEL<2:0>: BOOST active mode voltage selection

000: 4.7V 001: 4.8V 010: 4.9V 011: 5V 100: 5.1V 101: 5.2V 110: 5.3V 111: 5.4V

Bit 4-0 LDO9_ON_VSEL: LDO9 active mode voltage selection

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

••••

01110: 3.2V 01111: 3.3V 10000: 3.4V

Default value is set by boot.

BOOST_LDO9_SLP_VSEL_REG:

ADDRESS: 55H			TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	BOOST_	SLP_VS	EL	LDO9_S	LP_VSEL			
DEFAULT	0	1	1	0	0	0	0	0

Description

Bit 7-5 BOOST_SLP_VSEL<2:0>: BOOST SLEEP mode voltage selection

000: 4.7V 001: 4.8V 010: 4.9V 011: 5V 100: 5.1V 101: 5.2V 110: 5.3V 111: 5.4V

Bit 4-0 LDO9_SLP_VSEL: LDO9 SLEEP mode voltage selection

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

...**.**

01110: 3.2V 01111: 3.3V 10000: 3.4V

BOOST_CTRL_REG: BOOST CONTROL REGISTER

ADDRESS:	ADDRESS: 56H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV	BST_H V_ST	BST_SWI TCH_VT	BST_SWITC H_VT_HYS	BST_SWI TCH_EN	RESV	RESV	RESV		
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7 RESERVED

Bit 6 BST_HV_ST: boost startup with heavy load

0: disable 1: enable

Bit 5 BST_SWITCH_VT: Switching threshold from Boost mode to Switch mode.

0: 3.8V 1: 3.9V

Bit 4 BST SWITCH VT HYS: Hysteresis of switching threshold from Boost mode

to Switch mode.

0: 200mV 1: 300mV

Bit 3 BST_SWITCH_EN: Boost operating in the switch mode enable control.

0: Disable 1: Enable

Bit 2:0 RESERVED

• DCDC_ILMAX: DCDC inductor peak current register

ADDRESS:	56H			TYPE: I	RW			
Bit	Bit7 Bit6 Bit5				Bit3	Bit2	Bit1	Bit0
SYMBOL	DUCKS TH			MAX	BUCK2_ILN	MAX	BUCK1_ILM	IAX

DEFAULT	0	1	0	1	0	1	0	1

Bit 7:6 BUCK4_ILMAX:BUCK4 inductor peak current bit

00: 2.5A 01:3A 10:3.5A 11:4A

Bit 5:4 BUCK3_ILMAX:BUCK3 inductor peak current bit

00: 2A 01:2.5A 10:3A 11:3.5A

Bit 3:2 BUCK2_ILMAX:BUCK2 inductor peak current bit

00: 3.2A 01:3.6A 10:4A 11:5A

Bit 1:0 BUCK1_ILMAX:BUCK1 inductor peak current bit

00: 3.2A 01:3.6A 10:4A 11:5A

5.2.7 CHARGER SET REGISTER

• CHRG_COMP_REG:

ADDRESS:	9AH			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV		BAT_SYS_CMP_DL Y		CHRG_I	RVS	CHRG_OUTC	V_COMP
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-6 RESERVED

Bit 5-4 BAT_SYS_CMP_DLY: Delay time for the voltage comparator between BAT

and SYS.

00: 20uS

10: 10uS

01: 40uS

11: 20uS

Bit 3-2 CHRG_IRVS: Setting the charger reverse current.

Bit 1-0 CHRG_OUTCV_COMP: Setting the charger output voltage loop

compensation

• SUP_STS_REG:

ADDRESS:	ADDRESS: A0H							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BAT_EXS (Read only)	CHG_ (Read	_STS d only)		RESV	USB_I LIM_E N	USB_EXS (Read only)	USB_EFF (Read only)
DEFAULT	0	0	0	0	1	1	0	0

Description

Bit 7 BAT_EXS: Battery existence monitor

0: No battery

1: With battery

Bit 6-4 CHG_STS: Charging status

000: No Charging

001: Wakeup current charging010: Trickle current charging

011: Constant current or constant voltage charging

100: Charging termination101: USB over voltage

110: Battery temperature fault

111: Charging time fault

Bit 3 RESV: Reserved

Bit 2 USB_ILIM_EN: USB input current limit enable control

0: Disable 1: Enable

Bit 1 USB_EXS: USB plug-in monitor

0: No USB plugged in1: USB plugged in

Bit 0 USB EFF: USB fault monitor

0: USB fault 1: USB okay

• USB_CTRL_REG:

ADDRESS: A1H				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CHRG_ CT_EN	USB_C	USB_CHG_SD_VSEL			M_SEL		
DEFAULT	OTP							

Description

Bit 7 CHRG_CT_EN: Constant temperature charging enbale

0:disable

1:enable

Bit 6-4 USB_CHG_SD_VSEL: the USB low voltage shutdown charger voltage

selection

000: 2.78V, 001:2.85V, 010: 2.92V, 011: 2.99V

100: 3.06V, 101: 3.13V, 110: 3.19V, 111: 3.26V

Bit 3-0 USB_ILIM_SEL: USB input current selection

0000: 0.45A, 0001: 0.08A, 0010: 0.85A, 0011: 1A, 0100: 1.25A, 0101: 1.5A, 0110: 1.75A, 0111: 2A, 1000: 2.25A, 1001: 2.5A, 1010: 2.75A, 1011: 3A,

11xx:3A

DEFAULT value is set by BOOT

CHRG_CTRL_REG1: CHARGE CONTROL REGISTER1

ADDRESS: A3H				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	CHRG_ EN	CHRG_VOL_SEL		CHRG_CL	JR_SEL			
DEFAULT	1	0	1	1	0	1	0	1

Description

Bit 7 CHRG_EN: Charger enable

0: Disable

1: Enable

Bit 6-4 CHRG_VOL_SEL: Charging termination voltage selection

000: 4.05V, 001:4.1V, 010:4.15V, 011:4.2V

100: 4.25V, 101: 4.3V, 110/111: 4.35V

Bit 3-0 CHRG_CUR_SEL: Charging current selection

0000:1A, 0001:1.2A, 0010:1.4A, 0011:1.6A 0100:1.8A, 0101:2A, 0110:2.2A, 0111:2.4A

1000:2.6A, 1001:2.8A, 1010--1111:3A

• CHRG_CTRL_REG2: CHARGER CONTROL REGISTER2

ADDRESS: A4H				TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CHRG_TERM_SE L		CHRG_	_TIMER_TR	RIKL	CHRG_TI	MER_CCC\	J
DEFAULT	0 1		0	0	1	0	1	0

Description

Bit 7-6 CHRG_TERM_SEL: Charging termination current selection

00:100mA, 01:150mA, 10:200mA, 11:250mA

Bit 5-3 CHRG_TIMER_TRIKL: Trickle current charging time selection

000:30min. 001:60min, 010:90min, 011:120min,

100:150min, 101:180min, 110, 111:210min

Bit 2-0 CHRG_TIMER_CCCV: Constant current/voltage charging timeout threshold

selection

000:4h, 001:5h, 010:6h, 011:8h, 100:10h

101:12h, 110:14h, 111:16h

• CHRG_CTRL_REG3: CHARGING CONTROL REGISTER3

ADDRESS:	A5H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	SYS_C	TS2_S	CHRG_TE	CHRG_	CHRG_TI	CHRG_TIM	RESV	
SYMBOL	AN_SD	D_EN	RM_ANA_	PHASE	MER_TRI	ER_CCCV_		
			DIG		KL_EN	EN		
DEFAULT	0	0	0	0	0	0	1	0

Description

Bit 7 SYS_CAN_SD: Vsys shutdown control with battery as sole power supply

0: Disable 1: Enable

Bit 6 TS2_SD_EN: PMIC EN bit control when TS2 is over either upper or lower

limit

0: Disable the EN bit 1: Enable the EN bit

Bit 5 CHRG_TERM_ANA_DIG: Charging termination flag bit source selection

0: Analog

1: Digital

Bit 4 CHRG_PHASE: Charger timer reverse mode control

0: Normal

1: Reverse

Bit 3 CHRG_TIMER_TRIKL_EN: Trickle current charging timer control

0: Enable

1: Disable

Bit 2 CHRG_TIMER_CCCV_EN: Constant current/constant voltage timer control

0: Disable

1: Enable

Bit 1-0 Reserved

OTG_ILIM_REG/BAT_CTRL_REG: OTG/BATTERY CURRENT LIMIT REGISTER

ADDRESS:	TYPE: RW							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BAT_DIS_IL	H5V_IPK	OTG_IPK	OTG_ILIN	1_SEL	BAT_D	ISCHRG	_ILIM
STMBOL	IM_EN	LIM_SEL	LIM_SEL					
DEFAULT	1	0	0	0	1	1	0	0

Description

Bit 7 BAT DIS ILIM EN: Discharging current limit function control

0: Disable

1: Enable

Bit 6 H5V_IPKLIM_SEL: HDMI 5V peak current limit selection

0: 100mA

1: 115mA

Bit 5 OTG_IPKLIM_SEL: OTG peak current limit selection

0:125%*OTG_ILIM_SEL

1:150%*OTG_ILIM_SEL

Bit 4-3 OTG_ILIM_SEL:OTG current limit selection

00:700mA, 01:800mA, 10:900mA, 11:1A

Bit 2-0 BAT_DISCHRG_ILIM: Discharging current limit selection

000:3A, 001:3.5A, 010:4A, 011 4.5A, 1xx:5A

• BAT_HTS_TS1_REG: TS1 HT PROTECTION THRESHOLD REGISTER

ADDRESS: A8H				TYPE:	TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	BAT_HT	BAT_HTS_TS1							
DEFAULT	0	0	0	0	0	0	0	0	

Bit 7-0 BAT_HTS_TS1: Battery over temperature protection threshold sensed at TS1.

• BAT_LTS_TS1_REG: TS1 LT PROTECTION REGISTER

ADDRESS:	: A9H			TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BAT_LTS	S_TS1						
DEFAULT	1	1	1	1	1	1	1	1

Description

Bit 7-0 BAT_LTS_TS1: Battery low temperature protection threshold sensed at TS1.

• BAT_HTS_TS2_REG: TS2 HT PROTECTION REGISTER

ADDRESS: AAH				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BAT_HT	BAT_HTS_TS2						
DEFAULT	0 0 0			0	0	0	0	0

Description

Bit 7-0 BAT_HTS_TS2: Battery over temperature protection threshold sensed at TS2

• BAT_LTS_TS2_REG: TS2 LT PROTECTION REGISTER

ADDRESS: ABH				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BAT_LTS	BAT_LTS_TS2						
DEFAULT	1	1	1	1	1	1	1	1

Description

Bit 7-0 BAT_LTS_TS2: Battery low temperature protection threshold sensed at TS2.

• TS_CTRL_REG: TS PIN CONTROL REGISTER

ADDRESS:	TYPE: R	W						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	GG_EN	TS2_TE (Read only)	TS2_FU N	TS1_FU N	TS2_C	UR	TS1_C	UR
DEFAULT	1	0	0	0	1	1	1	1

Description

Bit 7 GG_EN: Battery fuel gauge enable control

0: Disable

1: Enable

Bit 6 TS2_TE: Flag for TS2 value out of higher or lower limit

0: Out of limit 1: In the limit

Bit 5 TS2_FUN: TS2 pin function selection

0: External temperature monitoring (NTC thermistor connected externally)

1: ADC input

Bit 4 TS1_FUN: TS1pin function selection

0: External temperature monitoring (NTC thermistor connected externally)

1:ADC input

Bit 3-2 TS2_CUR: TS2 pin output current selection in the temperature monitoring

00:20uA, 01:40uA, 10:60uA, 11:80uA

Bit 1-0 TS1_CUR: TS1 pin output current selection in the temperature monitoring

mode

00:20uA, 01:40uA, 10:60uA, 11:80uA

• ADC CTRL REG: ADC CONTROL REGISTER

ADDRESS: ADH				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	ADC_V	ADC_CU	ADC_TS1	ADC_TS	ADC_PH	ADC_C	CLK_SEL	
STMBUL	OL_EN	R_EN	_EN	2_EN	ASE			
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7	ADC VOL	EN: If GG	EN=0: Battery	y voltage ADC	enable control

0: Disable

1: Enable

Bit 6 ADC_CUR_EN: If GG_EN=0: Battery current ADC enable control

0: Disable

1: Enable

Bit 5 ADC_TS1_EN: TS1 ADC enable control

0: Disable

1: Enable

Bit 4 ADC_TS2_EN: TS2 ADC enable control

0: Disable 1: Enable

ADC_PHASE: ADC's clock phase

0: Normal

Bit 3

1: Reverse

Bit 2-0 ADC CLK SEL: ADC clock frequency selection

000: 2Meg, 001: 1Meg, 010: 500K, 011: 250K, 100: 125K

101: 64K, 110: 32K, 111: 16K

• ON_SOURCE_REG: POWER UP SOURCE REGISTER

ADDRESS: AEH				TYPE: RW	J .			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	ON_P	ON_PL	ON_	RESTART	RESTART_P	RESTART_	RESV	RESV
STMBOL	WRON	UG_IN	RTC	_RESETB	WRON_LP	RECOVERY	RESV	KESV
DEFAULT	0	0	0	0	0	0	0	0

Description

	■
Bit 7	ON_PWRON: PMIC power up by pressing PWRON
Bit 6	ON_PLUG_IN: PMIC power up by USB plugging in
Bit 5	ON_RTC: PMIC power up by RTC timer
Bit 4	RESTART_RESETB: PMIC restart by pulling down NRESPWRON pin
Bit 3	RESTART_PWRON_LP: PMIC restart by long pressing PWRON
Bit 2	RESTART_RECOVERY: PMIC restart by long pressing PWRON to trigger
	Recovery
Bit 1-0	RESERVED

• OFF_SOURCE_REG: POWER OFF SOURCE REGISTER

ADDRESS: A	TYPE: R							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	OFF_RE	OFF_S	OFF_T	OFF_S	OFF_DE	OFF_PW	OFF_	OFF_S
STMBOL	F_DN	YS_OV	SD	YS_UV	V_OFF	RON_LP	TS2	YS_LO
DEFAULT	0	0	0	0	0	0	0	0

Description

	•
Bit 7	OFF_REF_DN: PMIC power off due to Vref off the range during normal
	operation
Bit 6	OFF_SYS_OV: PMIC power off by Vsys over voltage protection
Bit 5	OFF_TSD: PMIC power off due to over temperature protection
Bit 4	OFF_SYS_UV: PMIC power off due to Vsys under voltage protection
Bit 3	OFF_DEV_OFF: PMIC power off due to DEV_OFF bit written
Bit 2	OFF_PWRON_LP: PMIC power off due to long pressing PWRON
Bit 1	OFF_TS2: PMIC power off due to TS2 value over the high or low limit
Bit 0	OFF_SYS_LO: PMIC power off due to Vsys low voltage set by software (If
	Reg21<4> vb_lo_act=0)

5.2.8 BATTERY FUEL GAUGE CONFIGURATION REGISTER

• GGCON REG: FUEL GAUGE CONFIGURATION REGISTER

	_							
ADDRESS	: B0H			TYPE: RW	/			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CUR_SA	_	ADC_C	OFF_CAL_ V	OCV_ INTER	SAMPL_ RV	ADC_CUR _VOL_MO DE	ADC_RE S_MOD E

DEFAULT	0	1	0	0	1	0	1	0

Description

Bit 7-6 CUR_SAMPL_CON_TIMES: The number of continuous sampling on the battery current ADC

00:8 01:16 10:32 11:64

Bit 5-4 ADC_OFF_CAL_INTERV<1:0>: ADC's error calibration interval time 00:8min, 01:16min, 10:32min, 11:48min

Bit 3-2 OCV_SAMPL_INTERV<1:0>: OCV sampling interval time 00:8min, 01:16min, 10:32min, 11:48min

Bit 1 ADC_CUR_VOL_MODE: Fuel gauge operation mode selection

0: Voltage mode

1: Current mode

Bit 0 ADC_RES_MODE: Battery internal resistance calculation control

0: Disable 1: Enable

GGSTS_REG: FUEL GAUGE STATUS REGISTER

ADDRESS: B1H				TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RES_C G_SEL	_	BAT_ CON	RELAX_ VOL1_U PD	RELAX_ VOL2_U PD	RELAX_ STS(RO)	IV_AVG_ UPD_STS
DEFAULT	0	1	0	0	0	0	0	0

Description

Bit 7 RESERVED

Bit 6-5 RES_CUR_AVG_SEL<1:0>: The fraction of the current ripple for internal resistance calculation

00: 1/2, 01:1/4, 10:1/8, 11:1/16

Bit 4 BAT_CON: The rising edge detection when the battery is first connected

0: Not detected

1: Detected

Bit 3 RELAX_VOL1_UPD:Flag bit for battery voltage1 update in the relaxation

state.

0:NOT

1:YES

Bit 2 RELAX VOL2 UPD: Flag bit for battery voltage1 update in the relaxation

state

0:NOT

1:YES

Bit 1 RELAX_STS: Flag bit for battery turning to relaxation state

0: Not in relaxation

1: in relaxation

Bit 0 IV AVG UPD STS: Flag bit for the internal resistance successfully sensed

0: Not sensed

1: Sensed

1.1.1.1 **FRAME_SMP_INTERV_REG:**

ADDRESS:	ADDRESS: B2H					TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
SYMBOL	RESV	RESV	AUTO_SLP_EN	FRAME_S	MP_INTE	RV_REG	<4:0>				
DEFAULT	0	0	0	0	0	0	0	1			

Description

Bit 7-6 RESERVED

Bit 5 AUTO SLP EN: Automatically switching to SLEEP mode control

0: Disable

1: Enable

Bit4- FRAME_SMP_INTERV_REG<4:0>: The interval of DATA frame acquisition

Bit0 in the SLEEP mode

• AUTO_SLP_CUR_THR_REG: CURRENT THRESHOLD REGISTER

ADDRESS:	взн			TYPE:	TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	AUTO_S	AUTO_SLP_CUR_THR_REG<7:0>								
DEFAULT	0	1	0	0	0	0	0	0		

Description

Bit 7-0 AUTO_SLP_CUR_THR_REG<7:0>: Current threshold for automatically switching to Sleep mode

• GASCNT_CAL_REG3: BAT CAPACITY CALIBRATION REGISTER3

ADDRESS: B4H				TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT_CAL<31:24>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 GASCNT_CAL<31:24>: Calibrated battery capacity value bits <31:24>
Note The register B4 must be written first, and then B5, B6...B7 must be written last.

• GASCNT_CAL_REG2: BAT CAPACITY CALIBRATION REGISTER2

ADDRESS: B5H			TYPE:	RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT_CAL<23:16>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 GASCNT_CAL<23:16>: Calibrated battery capacity value bits <23:16>

• GASCNT_CAL_REG1: BAT CAPACITY CALIBRATION REGISTER1

ADDRESS: B6H			TYPE:	TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT_CAL<15:8>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 GASCNT_CAL<15:8>: Calibrated battery capacity value bits <15:8>

• GASCNT CAL REGO: BAT CAPACITY CALIBRATION REGISTERO

ADDRESS:	B7H			TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT_CAL<7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 GASCNT_CAL<7:0>: Calibrated battery capacity value bits <7:0>

• GASCNT_REG3: BAT CAPACITY REGISTER3

ADDRESS: B8H				TYPE:	TYPE: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	GASCNT	GASCNT <31:24>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 GASCNT<31:24>: Battery capacity value bits<31:24>

• GASCNT_REG2: BAT CAPACITY REGISTER2

ADDRESS:			TYPE:	R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	GASCNT	GASCNT <23:16>								
DEFAULT	0 0 0 0 0						0	0		

Description

Bit 7-0 GASCNT<23:16>: Battery capacity value bits<23:16>

• GASCNT_REG1: BAT CAPACITY REGISTER1

ADDRESS:	BAH			TYPE:	R					
Bit	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1						Bit1	Bit0		
SYMBOL	GASCNT	GASCNT <15:8>								
DEFAULT	0	0 0 0 0 0 0 0								

Bit 7-0 GASCNT<15:8>: Battery capacity value bits<15:8>

• GASCNT_REGO: BAT CAPACITY REGISTERO

ADDRESS:	BBH			TYPE:	R					
Bit	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit						Bit0		
SYMBOL	GASCNT	GASCNT <7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 GASCNT<7:0>: Battery capacity value bits<7:0>

• BAT_CUR_REGH: BAT CURRENT HIGH BITS REGISTER

ADDRESS:			TYPE:	R					
Bit	Bit Bit7 Bit6 Bit5 Bit4					Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	RESV	BAT_CUR_AVG<11:8>				
DEFAULT	0	0	0	0	0 0 0				

Description

Bit 7-4 RESERVED

Bit 3-0 BAT_CUR_AVG<11:8>: Battery average current value bits<11:8>

• BAT_CUR_AVG_REGL: BAT CURRENT LOW BITS REGISTER

ADDRESS: BDH			TYPE:	R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	L BAT_CUR_AVG<7:0>								
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 BAT_CUR_AVG<7:0>: Battery average current value bits<7:0>

• TS1 ADC REGH: TS1 ADC HIGH BITS REGISTER

ADDRESS:	BEH			TYPE:	R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 Bit0				
SYMBOL	RESV	RESV	RESV	RESV	TS1_ADC<11:8>				
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-4 RESERVED

Bit 3-0 TS1_ADC<11:8>: TS1 ADC value bits<11:8>

• TS1_ADC_REGHL: TS1 ADC LOW BITS REGISTER

ADDRESS: BFH			TYPE:	R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	TS1_AD	TS1_ADC<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 TS1_ADC<7:0>: TS1 ADC value bits<7:0>

• TS2_ADC_REGH: TS2 ADC HIGH BITS REGISTER

ADDRESS:	C0H			TYPE:	R				
Bit	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV	RESV	RESV	RESV	TS2_ADC<11:8>				
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-4 RESERVED

Bit 3-0 TS2_ADC<11:8>: TS2 ADC value bits<15:8>.

• TS2_ADC_REGHL: TS2 ADC LOW BITS REGISTER

ADDRESS:			TYPE:	R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	TS2_AD	TS2_ADC<7:0>								
DEFAULT	0 0 0 0 0 0							0		

Description

Bit 7-0 TS2_ADC<7:0>: TS2 ADC value bits<7:0>

• BAT_OCV_REGH: BAT OVER VOLTAGE HIGH BITS REGISTER

ADDRESS:	C2H			TYPE:	R				
Bit	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV	RESV	RESV	RESV	BAT_OCV<11:8>				
DEFAULT	0	0	0	0	0 0 0				

Description

Bit 7-4 RESERVED

Bit 3-0 BAT_OCV<11:8>: Battery OCV value bits<11:8>

• BAT_OCV_REGL: BAT OVER TEMP LOW BITS REGISTER

ADDRESS:			TYPE:	R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BAT_OC	BAT_OCV<7:0>								
DEFAULT	0 0 0 0 0 0							0		

Bit 7-0 BAT_OCV<7:0>: Battery OCV voltage value bits<7:0>.

• BAT_VOL_REGH: BAT VOLTAGE HIGH BITS REGISTER

ADDRESS:	ADDRESS: C4H				R			
Bit	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1					Bit0	
SYMBOL	RESV	RESV	RESV	RESV	BAT_VOL<11:8>			
DEFAULT	0	0	0	0	0 0 0 0			

Description

Bit 7-4 RESERVED

Bit 3-0 BAT_VOL<11:8>: Real time battery voltage value bits<11:8>.

• BAT_VOL_REGL: BAT VOLTAGE LOW BITS REGISTER

ADDRESS: C5H				TYPE:	TYPE: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BAT_VO	BAT_VOL<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 BAT_VOL<7:0>: Real time battery voltage value bits<7:0>.

RELAX_ENTRY_THRES_REGH

ADDRESS:	C6H			TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 Bit0				
SYMBOL	RESV	RESV	RESV	RESV	RELAX_ENTRY_THRES<11:8>				
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-4 RESERVED

Bit 3-0 RELAX_ENTRY_THRES<11:8>: The threshold value bits<15:8> for the battery going into relaxation state

• RELAX_ENTRY_THRES_REGL

ADDRESS: C7H				TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RELAX_	RELAX_ENTRY_THRES<7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 RELAX_ENTRY_THRES<7:0>: The threshold value bits<7:0> for the battery going into relaxation state

• RELAX_EXIT_THRES_REGH

ADDRESS: C8H	TYPE: RW
--------------	----------

Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	RESV	RELAX_EXIT_THRES<11:8>			
DEFAULT	0	0	0	0	0	0	0	0

Bit 7-4 RESERVED

Bit 3-0 RELAX_EXIT_THRES<11:8>: The threshold value bits<15:8> for the battery out of relaxation state

• RELAX_EXIT_THRES_REGL

ADDRESS:			TYPE:	RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RELAX_	RELAX_EXIT_THRES<7:0>							
DEFAULT	0	1	1	0	0	0	0	0	

Description

Bit 7-0 RELAX_EXIT_THRES<7:0>: The threshold value bits<7:0> for the battery out of relaxation state

• RELAX_VOL1_REGH

ADDRESS:	CAH			TYPE:	R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit3 Bit2 Bit1 Bit0			
SYMBOL	RESV	RESV	RESV	RESV	RELAX_VOL1<11:8>				
DEFAULT	DEFAULT 0 0 0 0					0	0	0	

Description

Bit 7-4 RESERVED

Bit 3-0 RELAX_VOL1<11:8>: Voltage1 value bits<11:8> in the relaxation state

• RELAX_VOL1_REGL

ADDRESS	: СВН			TYPE: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RELAX_	RELAX_VOL1<7:0>							
DEFAULT	0	0 0 0 0 0 0							

Description

Bit 7-0 RELAX_VOL1<7:0>: Voltage1 value bits<7:0> in the relaxation state

• RELAX_VOL2_REGH

ADDRESS:	ADDRESS: CCH				R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit3 Bit2 Bit1 Bit0			
SYMBOL	RESV	RESV	RESV	RESV	RELAX_VOL2<11:8>				
DEFAULT	0	0	0	0	0	0	0	0	

Bit 7-4 RESERVED

Bit 3-0 RELAX_VOL2<11:8>: Voltage2 value bits<11:8> in the relaxation state

RELAX_VOL2_REGL

ADDRESS: CDH				TYPE:	TYPE: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RELAX_'	RELAX_VOL2<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 RELAX_VOL2<7:0>: Voltage2 value bits<7:0> in the relaxation state

• BAT_CUR_R_CALC_REGH:BAT CURRENT HIGH BITS REGISTER

ADDRESS:	CEH			TYPE:	R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 Bit0				
SYMBOL	RESV	RESV	RESV	RESV	BAT_CUR_R_CALC<11:8>				
DEFAULT	DEFAULT 0 0 0 0					0	0	0	

Description

Bit 7-4 RESERVED

Bit 3-0 BAT_CUR_R_CALC<11:8>: Battery stable current value bits<11:8> for the internal resistance calculation.

• BAT_CUR_R_CALC_REGL: BAT CURRENT LOW BITS REGISTER

ADDRESS: CFH			TYPE:	R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BAT_CU	BAT_CUR_R_CALC<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 BAT_CUR_R_CALC<7:0>: Battery stable current value bits<7:0> for the internal resistance calculation.

• BAT_VOL_R_CALC_REGH: BAT VOLTAGE HIGH BITS REGISTER

ADDRESS:	: D0H			TYPE:	R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	RESV	BAT_VOL_R_CALC<11:8>				
DEFAULT	0	0	0	0	0 0 0 0				

Bit 7-4 RESERVED

Bit 3-0 BAT_VOL_R_CALC<11:8>: Battery stable voltage value bits<11:8> for the internal resistance calculation.

• BAT_VOL_R_CALC_REGL: BAT VOLTAGE LOW BITS REGISTER

ADDRESS: D1H				TYPE:	R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BAT_VO	BAT_VOL_R_CALC<7:0>								
DEFAULT	0 0 0 0 0 0						0	0		

Description

Bit 7-0 BAT_VOL_R_CALC<7:0>: Battery stable voltage value bits<7:0> for the internal resistance calculation.

• CAL_OFFSET_REGH: OFFSET HIGH BITS REGISTER

ADDRESS: D2H				TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 Bit0				
SYMBOL	RESV	RESV	RESV	RESV	CAL_OFFSET_REG<11:8>				
DEFAULT	0	1	1	1	1 1 1 1				

Description

Bit 7-4 RESERVED

Bit 3-0 CAL OFFSET REG<11:8>: PCB current offset value bits<11:8>.

Note The register D2 must be written first, and D3 must be written last.

• CAL_OFFSET_REGL: OFFSET LOW BITS REGISTER

ADDRESS: D3H				TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	CAL_OF	CAL_OFFSET_REG<7:0>							
DEFAULT	1 1 1 1 1 1 1							1	

Description

Bit 7-0 CAL_OFFSET_REG<7:0>: PCB current offset value bits<7:0>.

• NON_ACT_TIMER_CNT_REGL:

ADDRESS:			TYPE:	R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	NON_AC	NON_ACT_TIMER_CNT<7:0>								
DEFAULT	0 0 0 0 0 0						0			

Description

Bit 7-0 NON_ACT_TIMER_CNT<7:0>: Timer for SLEEP or OFF state (Unit: minute)

• VCALIBO_REGH: VOLTAGEO CALIBRATION HIGH BITS REGISTER

ADDRESS:			TYPE:	R				
Bit	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	RESV	VCALIB0<11:8>			
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 RESERVED

Bit 3-0 Voltage0 calibration value bits<11:8> for calculating offset error and gain error.

• VCALIBO REGL: VOLTAGEO CALIBRATION LOW BITS REGISTER

ADDRESS: D6H			TYPE:	R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	VCALIBO	VCALIB0<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 Voltage0 calibration value bits<7:0> for calculating offset error and gain error.

• VCALIB1_REGH: VOLTAGE1 CALIBRATION HIGH BITS REGISTER

ADDRESS:			TYPE:	R				
Bit	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	RESV	VCALIB1<11:8>			
DEFAULT	0	0	0	0	0 0 0			

Description

Bit 7-4 RESERVED

Bit 3-0 Voltage1 calibration value bits<11:8> for calculating offset error and gain error.

• VCALIB1_REGL: VOLTAGE1 CALIBRATION LOW BITS REGISTER

ADDRESS: D8H			TYPE:	R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	VCALIB:	VCALIB1<7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7- Voltage1 calibration value bits<7:0> for calculating offset error and gain error.

• IOFFSET_REGH: CURRENT OFFSET HIGH BITS REGISTER

ADDRESS:			TYPE:	R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 Bit0				
SYMBOL	RESV	RESV	RESV	RESV	IOFFSET<11:8>				
DEFAULT	0	0	0	0	0 0 0				

Description

Bit 7-4 RESERVED

Bit 3-0 Calculated current offset value bits<11:8>

• IOFFSET_REGL: CURRENT OFFSET LOW BITS REGISTER

ADDRESS: DEH			TYPE:	R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	IOFFSET	IOFFSET<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 Calculated current offset value bits<7:0>

5.2.9 DATA Registers : DATA(n)_REG (REG[DF]~REG[F2])

Address from [DF] to [F2] are 8-bits data RAM register, it's convenient to be read or written by users.

Chapter 6 Thermal Management

6.1 Overview

For reliability and operability concerns, the absolute maximum junction temperature of RK818 has to be below 125°C.

Depending on the thermal mechanical design (Smartphone, Tablet, Personal Navigation Device, etc), the system thermal management software and worst case thermal applications, the junction temperature might be exposed to higher values than those specified above.

Therefore, it is recommended to perform thermal simulations at device level (Smartphone, Tablet, Personal Navigation Device, etc) with the measured power of the worst case UC of the device.

6.2 Package Thermal Characteristics

Table 6-1 provides the thermal resistance characteristics for the package used on this device.

Table 6-1 Thermal Resistance Characteristics

PACKAGE (QFN7X7-68)	POWER(W)	$ heta_{JA}(^{\circ}\mathtt{C}/W)$	$ heta_{JB}(^{\circ}\mathbb{C}/W)$	$\theta_{JC}(^{\circ}C/W)$
RK818	2	21.99	12	6.58

Note: The testing PCB is based on 4 layers, 114mm x 76 mm, 1.6mm thickness, Ambient temperature is 85°C.