Multivariable Calculus Winter Notes

Camila Restrepo

Last updated January 25, 2024

1	Classifying Critical Points	2
2	Inverse Function Theorem and Implicit Function Theorem	5
3	IPFT Practice and Constraints 3.1 Constrained Extrema and Lagrange Multipliers	15 17

Note: Theorem numbers come from the order they are presented in lecture, and do not correspond to any textbook or written course material.

${f Week} \,\, 1$

Classifying Critical Points

Theorem 1.1 2nd Derivative Test

Let $f \in C^2(\Omega)$ and let $a \in \Omega(\Omega \subseteq \mathbb{R}^n)$ be a critical point of f.

- 1. If $H_f(a)$ is positive definite then f has a local minimum at a.
- 2. If $H_f(a)$ is negative definite then f has a local maximum at a.
- 3. If $H_f(a)$ is indefinite then f has a saddle point at a.

Recall: Any symmetric $n \times n$ matrix A can be diagonalized, i.e., \exists an orthonormal basis u_1, u_2, \ldots, u_n in \mathbb{R}^n and real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $Au_i = \lambda_i u_i \forall i = 1, 2, \ldots, n$.

Proposition 1.2

Let Q be the quadratic form associated with an $n \times n$ symmetric matrix A. Then:

- 1. Q is positive \iff all the eigenvalues of A are positive,
- 2. Q is negative \iff all the eigenvalues of A are negative,
- 3. Q is indefinite \iff A has both positive and negative eigenvalues.

Corollary 1.3

Let a be a critical point of a C^2 function $f: \Omega \to \mathbb{R}$. If det $H_f(a) \neq 0$, then f has either a local minimum or a local minimum or a saddle point at a.

Definition of degenerate critical points:

A critical point a of a C^2 function f is called non-degenerate if $\det H_f(a) \neq 0$ and degenerate otherwise.

Example of a degenerate critical point:

When $f(x,y) = x^3$ then (0,0) is a degenerate critical point of f, and f has neither a local extremum at (0,0) nor a saddle point.

Definition of the principal minors of a matrix:

Let $A = (a_{ij})_{i,j=1}^n$ be an $n \times n$ matrix. Given k = 1, 2, ..., n, we will denote by A_k the $k \times k$ submatrix $A_k = (a_{ij})_{i,j=1}^k$.

The determinants det A_k are called the **principal minors of A**.

Proposition 1.4

Let A be a symmetric $n \times n$ matrix with det $A \neq 0$. Then:

- 1. A is positive definite \iff det $A_k > 0 \forall k = 1, 2, ..., n$.
- 2. A is negative definite \iff $(-1)^k \det A_k > 0 \forall k = 1, 2, \dots, n$.
- 3. A is indefinite \iff A is neither positive definite nor negative definite.

Corollary 1.5

Let
$$A = \begin{bmatrix} \alpha & \beta \\ \beta & \gamma \end{bmatrix}$$
. Then:

- 1. A is positive definite $\iff \alpha > 0$ and $\alpha \gamma \beta^2 > 0$
- 2. A is negative definite $\iff \alpha < 0$ and $\alpha \gamma \beta^2 > 0$
- 3. A is indefinite $\iff \alpha \gamma \beta^2 < 0$

Example of classifying a critical point:

We found that the function $f(x,y) = xye^{-x^2-y^2}$ has 5 critical points: $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$, $\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right)$, and (0,0), with an absolute maximum at $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$ and an absolute minimum at $\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right)$.

Investigate the nature of (0,0),

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[y(1 - 2x^2)e^{-x^2 - y^2} \right] = -4xye^{-x^2 - y^2} - 2xy(1 - 2x^2)e^{-x^2 - y^2} \\ \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} \left[x(1 - 2y^2)e^{-x^2 - y^2} \right] = -4xye^{-x^2 - y^2} - 2xy(1 - 2y^2)e^{-x^2 - y^2} \\ \frac{\partial^2 f}{\partial x \partial y} &= (1 - 2y^2)e^{-x^2 - y^2} - 2x^2(1 - 2y^2)e^{-x^2 - y^2} \end{split}$$

So $H_f(0,0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is indefinite $\implies f$ has a saddle point at (0,0).

Example of non-degenerate critical points:

Find and classify the critical points of $f: \mathbb{R}^3 \to \mathbb{R}$ where $f(x, y, z) = x^3 - y^3 + 3xy + z^2 - 2z$.

$$\nabla f = (3x^2 + 3y, -3y^2 + 3x, 2z - 2) = 0 \implies x^2 = -y, y^2 = x, z = 1 \implies x^2 = -y, x^4 = x, z = 1 \implies x^2 = -y, x = 0 \text{ or } x = 1, z = 1 \implies (x, y, z) = (0, 0, 1), (1, -1, 1).$$

So
$$(0,0,1)$$
 and $(1,-1,1)$ are the critical points. We have $H_f(x,y,z) = \begin{bmatrix} 6x & 3 & 0 \\ 3 & -6y & 0 \\ 0 & 0 & 2 \end{bmatrix}$,

so $H_f(0,0,1) = \begin{bmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is clearly indefinite since the first principal minor is

0 and
$$H_f(1, -1, 1) = \begin{bmatrix} 6 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is positive definite.

So we have non-degenerate critical points (as det $H_f \neq 0$). Hence, (0,0,1) is a saddle point; (1,-1,1) is a local minimum.

But f has no global extrema because $f(x, 0, 0) = x^3$ can take arbitrarily positive and negative values.

Example of a degenerate critical point:

Let
$$f(x,y) = x^4 + y^4$$
 (with $(x,y) \in \mathbb{R}^2$).
 $\nabla f = (4x^3, 4y^3) = 0 \iff (x,y) = (0,0)$.
 $H_f(x,y) = \begin{bmatrix} 12x^2 & 0 \\ 0 & 12y^2 \end{bmatrix}, H_f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

So (0,0) is a degenerate critical point and the 2nd derivative test does not apply. However, f has a global minimum at (0,0).

Week 2

Inverse Function Theorem and Implicit Function Theorem

Theorem 2.1

Let $I\subseteq \mathbb{R}$ be an interval and $f:I\to \mathbb{R}$ is a continuous injective function. Then:

- 1. f is either strictly increasing or strictly decreasing.
- 2. f(I) is an interval containing the same number of endpoints as I.
- 3. f is a homeomorphism of I onto f(I).

- Proof. 1. Let us first consider the case that I = [a, b](a < b). Since f is injective, either f(a) < f(b) or f(b) < f(a). Assume that f(a) < f(b) (the other case can be done symmetrically). Let's show that f is strictly increasing on [a, b], i.e., f(x) < f(y)whenever $a \le x < y \le b$. We argue by contradiction, supposing that f(x) > f(y) for some $a \le x < y \le b$. Note that f(y) > f(a), for otherwise f(y) < f(a) < f(b) and by the Intermediate Value Theorem (IVT), $\exists \alpha \in (y, b)$ such that $f(\alpha) = f(a)$, contradicting the injectivity of f. Therefore f(a) < f(y) < f(x) and so, again, by the IVT $\exists y' \in (a, x)$ such that f(y') = f(y), again contradicting the injectivity of f. Next, let I be any interval. Pick up any $a, b \in I$ with a < b. Suppose that f(a) < f(b) (the case f(a) > f(b) can be done symmetrically). By the previous paragraph, we know that f is strictly increasing on [a, b]. Now, if $x, y \in I$ and x < y, then with $\alpha = \min\{a, x\}, \beta = \max\{y, b\}, \text{ we have } [a, b], [x, y] \subseteq [\alpha, \beta] \subseteq I.$ Since f is strictly increasing on [a, b], we must have (using the 1st paragraph again) $f(\alpha) < f(\beta)$ and f is strictly increasing on $[\alpha, \beta]$. Hence, we conclude that f is strictly increasing on I.
 - Since f is continuous, J = f(I) is an interval. Suppose that f is strictly increasing. Note that the inverse function f⁻¹ is then also strictly increasing.
 Now, if I contains its left endpoint a, then ∀x ∈ I, f(a) ≤ f(x), so f(a) is a left endpoint of J. Similarly, if I contains its right endpoint b, then f(b) is the right endpoint of J. Applying the same argument with f⁻¹ in place of f, we conclude if I contains its left (respectively, right) endpoint c, then f⁻¹(c) is the left (respectively, right) endpoint of I. It follows that I and J contain the same number of endpoints.
 - 3. If I=[a,b], then f is a homeomorphism of I onto f(I) because of our general result about continuous injective functions on compact sets. Otherwise, it follows that f|[a,b] is a homeomorphism onto f([a,b]) for any $a,b\in I$ with $a\leq b$. This implies that $f^{-1}:f(I)\to I$ is continuous (at any $y\in f(I)$). Indeed, let $y\in f(I)$ and consider any sequence (y_n) in f(I) with $y_n\to y$. Then the set $S=\{y\}\cup\{y_n:n\in N\}$ is compact, so it has both a smallest element c=f(a) and a largest element c=f(b). Assuming that c=f(b) is strictly increasing we must have c=f(b) and c=f(b) in c=f(b) is a homeomorphism onto c=f(b) (i.e., c=f(b)) is a homeomorphism onto c=f(b) (i.e., c=f(b)) is continuous), we obtain c=f(b) is continuous at any c=f(b). It follows that c=f(b) is continuous at any c=f(b).

Theorem 2.2

Let f be a bijection of a non-zero interval $I \subseteq \mathbb{R}$ onto an interval $J \subseteq \mathbb{R}$. If f is differentiable at $a \in I$, $f'(a) \neq 0$, and f^{-1} is continuous at f(a) and $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$

(Sketch).

Definition of a diffeomorphism:

Let f be a bijection of an open subset $U \subseteq \mathbb{R}^n$ onto an open subset $V \subseteq \mathbb{R}^n$. If both f and f^{-1} are differentiable (on U and V respectively), then f is called a **diffeomorphism** of U onto V. If both f and f^{-1} are C^k functions $(k = 1, 2, ..., \infty)$, then f is called a **diffeomorphism of class** C^k .

Corollary 2.3

Let f be a differentiable homeomorphism of an open subset $U \subseteq \mathbb{R}$ onto an open subset $V \subseteq \mathbb{R}$. If $f'(a) \neq 0$ for all $a \in U$, then f is a diffeomorphism of U onto V. Moreover, if $f \in C^k(U)$, then f is a C^k diffeomorphism.

Proof. If $b=f(a)\in V$ (where $a\in U$), then there exists an open interval $I\subseteq U$ such that $a\in I$. Then f(I) is another open interval and f|I is a homeomorphism onto f(I) (by the Inverse Function Theorem), and f|I satisfies the assumptions of the above theorem. Hence, $(f|I)^{-1}=f^{-1}|f(I)$ is differentiable at b. But this means that f^{-1} is differentiable at b. Since $b\in V$ is artbitrary, f^{-1} is differentiable on V and so f is a diffeomorphism.

We also have $(f^{-1})'(b) = \frac{1}{f^{-1}(a)} = \frac{1}{f'(f^{-1}(b))}$ for any $b = f(a) \in V$. Thus, $(f^{-1})' = \frac{1}{f'} \circ f^{-1}$. That f^{-1} is C^k when f is C^k follows by induction on $k = 1, 2, \ldots$: When k = 1, then $\frac{1}{f'}$ is continuous (as $f \in C^1(U)$), and f^{-1} is continuous, so $(f^{-1})' = \frac{1}{f'} \circ f^{-1}$ is continuous. Assuming that our claim is true for C^k functions, consider $f \in C^{k+1}(U)$. Then $f' \in C^k(U)$, and as $f \in C^k(U)$, $f^{-1} \in C^k(V)$ by induction. Hence, $(f^{-1})' = \frac{1}{f'} \circ f^{-1}$ is a C^k function as the composition of two C^k functions. Therefore $f^{-1} \in C^k(V)$

Let $I \subset \mathbb{R}$ be an open interval and $f: I \to \mathbb{R}$ a C^k function such that $f'(x) \neq 0$ for all $x \in I$. Then f is a C^k diffeomorphism of I onto f(I).

Proof. By the IVT either f'(x) > 0 for all $x \in I$ (i.e., f is strictly increasing) or f'(x) < 0 for all $x \in I$ (i.e., f is strictly decreasing). Hence, f is injective and is a homeomorphism of I onto an open interval J. The assumption of the previous corollary are satisfied, hence the conclusion.

Corollary 2.5 Inverse Function Theorem in 1 variable, local version $\,$

Let $U \in \mathbb{R}$ be open and $f: U \to \mathbb{R}$ be a C^k function. If $f'(a) \neq 0$ at some $a \in U$, then there exists an open interval I such that $a \in I \subseteq U$ and f|I is a C^k diffeomorphism of I onto f(I)

How do these results generalize to functions of n variables?

Theorem 2.6

Let $\Omega \subseteq \mathbb{R}^n$ be an open set and let $f: \Omega \to \mathbb{R}^n$ be injective. Then $f(\Omega)$ is open and f is a homeomorphism of Ω onto $f(\Omega)$.

Proof. Omitted due to high difficulty.

Lemma 2.7

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear transformation then there exists a c > 0 such that for all $x \in \mathbb{R}^n$, $||T(x)|| \ge C||x||$

Proof. Recall that T^{-1} is a Lipschitz function, i.e., there exists M>0 such that $\|T^{-1}\left(x\right)\|\leq M\|x\|$ for all $x\in\mathbb{R}^n$. Hence, for all $x\in\mathbb{R}^n$, $\|x\|=\|T^{-1}\left(T\left(x\right)\right)\|\leq M\|T\left(x\right)\|$, so $\|T\left(x\right)\|\geq\frac{1}{M}\|x\|$.

Theorem 2.8

Let f be a bijection of an open subset $U \subseteq \mathbb{R}^n$ onto an open subset $V \in \mathbb{R}^n$. If f is differentiable at $a \in U$, $\det(D_f(a)) \neq 0$, and f^{-1} is continuous at b = f(a), then f^{-1} is differentiable at b and $D_{f^{-1}}(b) = (D_f(a))^{-1}$.

Proof. Let $T = D_f(a)$, b = f(a). It suffices to show that

$$\lim_{y \to b} \frac{f^{-1}(y) - f^{-1}(b) - T^{-1}(y - b)}{\|y - b\|} = 0$$

But,

$$\frac{f^{-1}(y) - f^{-1}(b) - T^{-1}(y - b)}{\|y - b\|} = -T^{-1}\left(\frac{y - b - T(f^{-1}(y) - f^{-1}(b))}{\|y - b\|}\right)$$

So it suffices to show that

$$\lim_{y \to b} \frac{y - b - T\left(f^{-1}(y) - f^{-1}(b)\right)}{\|y - b\|} = 0$$

and this will be done if we show that

$$\lim_{k \to \infty} \frac{y_k - b - T\left(f^{-1}(y_k) - f^{-1}(b)\right)}{\|y_k - b\|} = 0$$

For every sequence $(y_k) \in V \setminus \{b\}$ with $y_k - b$. Let $x_k = f^{-1}(y_k) \in U \setminus \{a\}$ (i.e., $y_k = f(x_k)$). Then $x_k \to f^{-1}(b) = a$ because f^{-1} is continuous at b. Thus we need to show that

$$\lim_{k \to \infty} \frac{f(x_k) - f(a) - T(x_k - a)}{\|f(x_k) - f(a)\|} =$$

$$\lim_{k \to \infty} \left[\frac{\|x_k - x\|}{\|f(x_k) - f(a)\|} \frac{f(x_k) - f(a) - T(x_k - a)}{\|x_k - a\|} \right] = \lim_{k \to \infty} A_k B_k = 0$$

Now, as $T = D_f(a)$, $\lim_{k\to\infty} B_k = 0$ (by the definition of the derivative). So to complete the proof it is enough to show that the sequence (A_k) is bounded. But

$$\frac{1}{A_k} = \left\| \frac{f(x_k) - f(a) - T(x_k - a)}{\|x_k - a\|} + T\left(\frac{x_k - a}{\|x_k - a\|}\right) \right\| =$$

$$||B_k + T\left(\frac{x_k - a}{||x_k - a||}\right)|| \ge ||T\left(\frac{x_k - a}{||x_k - a||}\right)|| - ||B_k||$$

and by the lemma, there exists a c>0 such that $||T\left(\frac{x_k-a}{||x_k-a||}\right)|| \geq c$ for all k. As $B_k \to 0$, there exists a k_0 such that for all $k>k_0$ $\frac{1}{A_k} \geq \frac{c}{2}$ and so for all $k \in \mathbb{N}$ $\frac{1}{A_k} \geq \min\left\{\frac{c}{2}, \frac{1}{A_1}, \frac{1}{A_2}, \dots, \frac{1}{A_{k_0}}\right\} > 0$. Hence, (A_k) is bounded.

Corollary 2.9

Let f be a differentiable homeomorphism of an open subset $U \subseteq \mathbb{R}^n$ onto an open subset $V \subseteq \mathbb{R}^n$. If $\det(D_f(x)) \neq 0$ for all $x \in U$, then f is a diffeomorphism of U onto V. Moreover, if $f \in C^k(U)$ then f is a C^k diffeomorphism.

Proof. Clearly, the assumptions of the previous theorem are satisfied for each $a \in U$, so f^{-1} is differentiable at each b = f(a), and f is thus a diffeomorphism of U onto V.

Remark: The following example shows that the 1-dimensional Inverse Function Theorem cannot be generalized to n-dimensions.

Example of Polar Coordinate Mapping:

Let $f:(0,\infty)\times\mathbb{R}$ be given by f(s,t)

Theorem 2.10 Inverse Function Theorem (IFT)

Let $f: \Omega \to \mathbb{R}^n$ be a C^k function where $\Omega \subseteq \mathbb{R}^n$ is open (and $k = 1, 2, ..., \infty$). If $\det(D_f(a)) \neq 0$ for some $a \in \Omega$, then there exists an open set $U \in \Omega$ with $a \in U$ and an open set $V \subseteq \mathbb{R}^n$ with $f(a) \in V$ such that f|U is a C^k diffeomorphism of U onto V.

Corollary 2.11 Open Mapping Theorem

Let $F: \Omega \to \mathbb{R}^n$ be C^1 function where $\Omega \subseteq \mathbb{R}^n$ is open. If $\det(D_f(x)) \neq 0$ for all $x \in \Omega$, then f is an open wrapping, i.e., for every open subset $W \subseteq \Omega$, f(W) is open in \mathbb{R}^n .

Proof. Let $W \subseteq \Omega$ be open. To conclude that f(W) is open, it suffices to show that for all $b \in f(W)$ there exists an open V such that $b \in V \subseteq f(W)$. But b = f(a) for some $a \in W$ and f|W and $a \in W$ satisfy the assumption of the IFT. Thus, there exists open $U \subseteq W$ and open $V \subseteq \mathbb{R}^n$ such that $a \in U$, $b \in V$ and f(U) = (f|W)(U) = V. Clearly, $b \in V \subseteq f(W)$.

Corollary 2.12

Let $f: \Omega \to \mathbb{R}^n$ bw a C^k function where $\Omega \to \mathbb{R}^n$ is open. If f is injective and $\det(D_f(x)) \neq 0$ for all $x \in \Omega$, then $f(\Omega)$ is open and f is a C^k diffeomorphism of Ω onto $f(\Omega)$.

Proof. By a previous corollary, it suffices to show that $f(\Omega)$ is open and f is a homeomorphism of Ω onto $f(\Omega)$. But by the previous corollary, f is an open mapping, so, in particular, $f(\Omega)$ is open. Thus, it remains to prove that $f^{-1}:f(\Omega)\to\Omega$ is continuous. Recall that this will be true if for each open $U\subseteq R^n$, $\left(f^{-1}\right)^{-1}(U)$ is open relative to $f(\Omega)$, i.e., is open in \mathbb{R}^n because $f(\Omega)$ is open. But $\left(f^{-1}\right)^{-1}(U)=\left(f^{-1}\right)^{-1}(U\cap\Omega)=f(U\cap\Omega)$ is indeed open in R^n by the Open Mapping Theorem.

Example of determining a diffeomorphism:

The polar coordinate mapping $f(r,\theta) = (rcos\theta, rsin\theta)$ (considered on $(0,\infty) \times \mathbb{R}$), is an open mapping of $(0,\infty) \times \mathbb{R}$ onto $\mathbb{R}^2 \setminus \{(0,0)\}$ because $\det(D_f(r,\theta)) = r > 0$ for all $(r,\theta) \in (0,\infty) \times \mathbb{R}$.

Note that $\varphi = f|((0,\infty) \times (-\pi,\pi))$ is injective. Hence, by the last corollary φ is a C^{∞} diffeomorphism on $(0,\infty) \times (-\pi,\pi)$ onto $\varphi((0,\infty) \times (-\pi,\pi)) = \mathbb{R}^2 \setminus ((-\infty,0] \times \mathbb{R})$.

$$D_{\varphi^{-1}}\left(rcos\theta,rsin\theta\right) = \begin{bmatrix} cos\theta & -rsin\theta\\ sin\theta & rcos\theta \end{bmatrix}^{-1} = \frac{1}{r} \begin{bmatrix} rcos\theta & rsin\theta\\ -sin\theta & cos\theta \end{bmatrix}$$

Similarly $\varphi|((0,\infty)\times(a,b))$, where $b-a=2\pi$ is a c^{∞} diffeomorphism on $(0,\infty)\times(a,b)$ onto $\mathbb{R}^2\setminus\{r\left(\cos\theta,\sin\theta\right):r\geq 0\}$.

Definition of an implicit function:

Let $\Omega_n \subseteq \mathbb{R}^n$, $\Omega_m \subseteq \mathbb{R}^m$, $F: \Omega_n \times \Omega_m \to \mathbb{R}^m$, and $c \in \mathbb{R}^m$. Consider the equation

$$F(x,y) = c (x \in \Omega_n, y \in \Omega_m)(*)$$

which we suppose needs to solved for y. If for every $x \in \Omega_n$ this equation has a solution, then by choosing for each $x \in \Omega_n$ a solution $y \in \Omega_m$ and calling it f(x), we obtain a function $f: \Omega_n \to \Omega_m$ such that F(x, f(x)) = c for all $x \in \Omega_n$. Any such function is called an **implicit** function defined by Eq. (*).

Note: If for all $x \in \Omega_n$ there exists a unique $y \in \Omega_m$ such that F(x, y) = c, then Eq. (*) defines a unique implicit function, but in general, implicit functions are not unique.

Example of:

Let $n=m=1, \Omega_n=\Omega_m=[-1,1], F(x,y)=x^2+y^2, c=1$. Then the functions $f_{\pm}(x)=\pm\sqrt{1-x^2}$ are implicit functions defined by (*) (i.e., eg. $x^2+y^2=1$) and there are many other implicit functions.

If we replace Ω_m by [0,1], then f_+ will be the unique implicit function defined by (*) $(f_+(x) = \sqrt{1-x^2})$.

Question

Under what conditions does an implicit function exist; is unique; is it differentiable? If it is differentiable how can we obtain its derivative?

Note: Let $F: \Omega \to \mathbb{R}^m$ be a C^k function where $\Omega \subseteq \mathbb{R}n + m = \mathbb{R}^n \times R^m$ is open. We will write the elements of $\mathbb{R}^n + m = R^n \times R^m$ as (x, y) where $x \in R^n$, $y \in R^m$. Then

$$D_f(x,y) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(x,y) & \dots & \frac{\partial F_1}{\partial x_n}(x,y) & \frac{\partial F_1}{\partial y_1}(x,y) & \dots & \frac{\partial F_1}{\partial y_m}(x,y) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1}(x,y) & \dots & \frac{\partial F_m}{\partial x_n}(x,y) & \frac{\partial F_m}{\partial y_1}(x,y) & \dots & \frac{\partial F_m}{\partial y_m}(x,y) \end{bmatrix}$$

with the first $m \times n$ block will be named $\frac{\partial F}{\partial x}(x,y)$ and the second $m \times m$ block will be named $\frac{\partial F}{\partial y}(x,y)$.

Thus, we can write $D_F(x,y) = \begin{bmatrix} \frac{\partial F}{\partial x}(x,y) & \frac{\partial F}{\partial y}(x,y) \end{bmatrix}$

Theorem 2.13 Implicit Function Theorem (IPFT)

Let $F: \Omega \to \mathbb{R}^m$ be a C^k function where $\Omega \subseteq \mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m$ is open. Suppose that for $(a,b) \in \Omega$ and $c \in \mathbb{R}^m$, F(a,b) = c and $\det\left(\frac{\partial F}{\partial y}(a,b)\right) \neq 0$. Then there exist open sets $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ that satisfy:

- 1. $(a,b) \in U \times V$,
- 2. for all $x \in U$, there exists a unique $y \in V$ such that F(x,y) = c.

Moreover, the unique implicit function $f: U \to V$ defined by the equation F(x,y) = c $(x \in U, y \in V)$ is a C^k function.

Proof. Define $G: \Omega \to \mathbb{R}^{n+m}$ by G(x,y) = (x,F(x,y)). This is a C^k function, G(a,b) = (a,c) and

$$D_G(x,y) = \begin{bmatrix} I_n & 0\\ \frac{\partial F}{\partial x}(x,y) & \frac{\partial F}{\partial x}(x,y) \end{bmatrix}$$

Thus $\det (D_G(a,b)) = (\det I_n) \left(\det \left(\frac{\partial F}{\partial y}(a,b) \right) \right) \neq 0.$

Thus by the IFT, there exists an open subset $\Omega_1 \subseteq \Omega$ with $(a,b) \in \Omega_1$ and an open subset $\Omega \subseteq \mathbb{R}^{n+m}$ with $(a,c) = G(a,b) \in W$ such that $G|\Omega_1$ is a C^k diffeomorphism of Ω_1 onto W. Let $H = (G|\Omega_1)^{-1}: W \to \Omega_1$. Then H(x,y) = (j(x,y),k(x,y)) where $j:W \to \mathbb{R}^n$ and $k:W \to \mathbb{R}^m$ are C^k functions. Note that (x,y) = G(H(x,y)) = (j(x,y),F(k(x,y))) for all $(x,y) \in W$. Hence, j(x,y) = x and F(k(x,y)) = y for all $(x,y) \in W$. Thus H(x,y) = (x,k(x,y)) and so for all $(x,y) \in W$,

$$(x, k(x, y)) \in \Omega_1$$
 and $F(x, k(x, y)) = y$

Note that we may assume that $\Omega_1 = U' \times V$ where $U' \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ are open. [Indeed, $(a,b) \in \Omega_1$ and Ω_1 is open, so there exists an r > 0 such that $B_r^{n+m}(a,b) \in \Omega_1$. But $B_r^{n+m}(a,b) \supseteq B_{\frac{r}{2}}^n(a) \times B_{\frac{r}{2}}^m(b)$. So we can take $U' = B_{\frac{r}{2}}^n(a)$, $V = B_{\frac{r}{2}}^m(b)$ and replace Ω_1 with $U' \times V$ and W with $G(U' \times V)$.

Moreover, since $(a,c) \in W$, we can find an open set U such that $a \in U \subseteq U'$ and $U \times \{c\} \subseteq W$. Then for all $x \in U$, $(x,c) \in W$ and so F(x,k(x,c)) = c. Thus when $f:U \to V$ is given by f(x) = k(x,c), then f is an implicit function defined by the equation F(x,y) = c (for $x \in U, y \in V$). It is clear that f is a C^k function.

It remains to confirm that for all $x \in U$ there exists a unique $y \in V$ such that F(x,y) = c. But if $y_1, y_2 \in V$ and $F(x,y_1) = c = f(x,y_2)$, then $G(x,y_1) = (x,c) = G(x,y_2)$, and so $y_1 = y_2$ as $G|U \times V$ is injective.

Week 3

IPFT Practice and Constraints

Corollary 3.1

With the assumptions and notation of the IPFT, let $S=\{(x,y)\in\Omega: F(x,y)=c\}$. Then $S\cap (U\times V)=\{(x,y)\in\mathbb{R}^{n+m}: x\in U \text{ and } y=f(x)\}.$

Remark: Note that when m=1, then $\det\left(\frac{\partial F}{\partial y}\right)=\frac{\partial F}{\partial y}$. So if $\frac{\partial F}{\partial y}\left(a,b\right)\neq0$ then the level set $S=\left\{(x,y)\in\mathbb{R}^{n+1}:F\left(x,y\right)=c\right\}$ in a neighbourhood of (a,b) is the graph of the implicit function.

Example of:

(IPFT, level set, and graph) Consider the level set $S=\left\{(x,y)\in\mathbb{R}^2: x^3y^2+y^3(x-1)^2=1\right\}$ of $F\left(x,y\right)=x^3y^2+y^3(x-1)^2$.

- 1. Show that S is not the graph of any function y=f(x), i.e., $S\neq \left\{(x,y)\in\mathbb{R}^2:y=f\left(x\right)\right\}.$
- 2. Show that in a neighbourhood of (1,1), S is the graph of a smooth function f and find the slope of the tangent line to the graph of f at (1,1).

Solutions:

- 1. $(1,-1),(1,1) \in S$, so no such function exists.
- 2. $\frac{\partial F}{\partial y}(1,1) = 2x^3y + 3^2(x-1)^2\Big|_{x=1,y=1} = 2 \neq 0$. So by the IPFT (with a=b=c=1) and the corollary there exist open sets $U,V\in\mathbb{R}$ with $(1,1)\in U\times V$ and a smooth function $f:U\to V$ such that f(1)=1, $F(x,f(x))=1=x^3f(x)^2+f(x)^3(x-1)^2=1$ for all $x\in U$, and $S\cap (U\times V)=\{(x,y):x\in U \text{ and } y=f(x)\}.$

The slope is $f^{-1}(1)$: Since $x^3 f(x)^2 + f(x)^3 (x-1)^2 = 1$ for all $x \in U$, so $0 = \frac{d}{dx} \left[x^3 f(x)^2 + f(x)^3 (x-1)^2 \right] = 3x^2 f(x)^2 + 2x^3 f(x) f'(x) + 3f(x)^2 f'(x) (x-1)^2 + 2f(x)^3 (x-1)$. When x = 1, f(1) = 1, and so 0 = 3 + 2f'(1). Thus $f'(1) = \frac{3}{2}$

Example of:

(Finding the derivative without the function) Consider the problem of solving the system of equations: $\begin{cases} xy^2 + xzu + yv^2 = 3 \\ u^3yz + 2xv - u^2v^2 = 2 \end{cases}$ (*). for u and v in terms of x,y,z near x=y=z=u,v=1 and computing the partial $\frac{\partial u}{\partial z},\frac{\partial v}{\partial z}$.

Let $a = (1, 1, 1), b = (1, 1), c = (3, 2), \text{ and } F : \mathbb{R}^3 \to \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$F(x, y, z, u, v) = (xy^{2} + xzu + yu^{2}, u^{3}yz + 2xv - u^{2}v^{2}).$$

Then
$$F(a,b) = c$$
, $\frac{\partial F}{\partial (u,v)} = \begin{bmatrix} xz & 2yv \\ 3u^2yz - 2uv^2 & 2x - 2u^2v \end{bmatrix}$.

$$\det\left(\frac{\partial F}{\partial(u,v)}\left(a,b\right)\right)=\det\begin{bmatrix}1&2\\1&0\end{bmatrix}=-2\neq0.$$

Hence, by the IPFT there exists a smooth function $f(x,y,z)=(f_1(x,y,z),f_2(x,y,z))$ defined on a neighbourhood U of u=(1,1,1) such that F(x,y,z,f(x,y,z))=(3,2)=c for all $(x,y,z)\in U$ and f(1,1,1)=(1,1): $u=f_1(x,y,z),v=f_2(x,y,z)$ are the expressions of u and v in terms of x,y,z. To find $\frac{\partial u}{\partial z}$ and $\frac{\partial v}{\partial z}$ we differentiate Eqs(*) with respect to z, treating u and v as functions of x,y,z:

$$0 = \frac{\partial}{\partial z} (xy^2 + xzu + yv^2) = xu + xz\frac{\partial u}{\partial z} + 2yv\frac{\partial v}{\partial z}$$

$$0 = \frac{\partial}{\partial z} (u^3yz + 2xv - u^2v^2) = 3u^2\frac{\partial u}{\partial z}yz + u^3y + 2x\frac{\partial v}{\partial z} - 2u\frac{\partial u}{\partial z}v^2 - u^22v\frac{\partial v}{\partial z}$$

With (x, y, z) = (1, 1, 1), (u, v) = (1, 1) we get

$$1 + \frac{\partial u}{\partial z} + 2\frac{\partial v}{\partial z} = 0, \frac{\partial u}{\partial z} + 1 = 0.$$

Hence,
$$\frac{\partial f_1}{\partial z} = \frac{\partial u}{\partial z}(1,1,1) = -1, \frac{\partial f_2}{\partial z} = \frac{\partial v}{partialz}(1,1,1) = 0.$$

Proposition 3.2 Implicit Differentiation

Let $F: \Omega_n \times \Omega_m \to \mathbb{R}^m$ be a C^1 function where $\Omega_n \subset \mathbb{R}^n$ and $\Omega_m \subset \mathbb{R}^m$ are open and let $c \in \mathbb{R}^m$. If $f: \Omega_n \to \Omega_m$ is a differentiable function such that F(x, f(x)) = c for all $x \in \Omega_n$, then

$$\frac{\partial F}{\partial y}(x, f(x)) D_f(x) = -\frac{\partial F}{\partial x}(x, f(x))$$

and

$$D_{f}(x) = -\left[\frac{\partial F}{\partial y}(x, f(x))\right]^{-1} \frac{\partial F}{\partial x}(x, f(x))$$

provided det $\left(\frac{\partial F}{\partial y}(x, f(x))\right) \neq 0$.

Proof. Define $g: \Omega_n \to \Omega_n \times \Omega_m$ by g(x, f(x)). Then g is differentiable and

$$D_{g}\left(x\right) = \begin{bmatrix} I_{n} \\ D_{f}\left(x\right) \end{bmatrix}.$$

Since $(F \circ g)(x) = c$, the chain rule yields $0 = D_{F \circ g}(x) = D_F(g(x))D_g(x) = \left[\frac{\partial F}{\partial x}(g(x)) - \frac{\partial F}{\partial y}(g(x))\right] \begin{bmatrix} I_n \\ D_f(x) \end{bmatrix} = \frac{\partial F}{\partial x}(x, f(x)) + \frac{\partial F}{\partial y}(x, f(x))D_f(x).$ Hence, the result.

3.1 Constrained Extrema and Lagrange Multipliers

Let $\Omega \subseteq \mathbb{R}^n$ be open and $f, g_1, g_1, \ldots, g_m : \Omega \to \mathbb{R}$ be C^1 functions. Suppose that for some $c_1, c_2, \ldots, c_m \in \mathbb{R}$, $S = \{x \in \Omega : g_1(x) = c_1, g_2(x) = c_2, \ldots, g_m(x) = c_m\} \neq \emptyset$. The problem of finding the extreme values of f on the set S (i.e., the extrema of f|S) is referred to as the problem of of finding the extreme values of f subject to (or with) the constraints $g_1(x) = c_1, \ldots, g_m(x) = c_m$.

E.g., finding the extreme values of $f(x, y, z) = \sin(x + y)\cos(y + z)$ subject to the constraint $g(x, y, z) = x^2 + y^2 + z^2 = 1$ means finding the extreme values of f on the sphere $S_1(0, 0, 0) = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$.

Theorem 3.3

Let $f,g:\Omega\to\mathbb{R}$ be C^1 functions where $\Omega\subseteq\mathbb{R}^{n+1}$ and let $S=\{x\in\Omega:g(x)=c\}$ (where $c\in\mathbb{R}$). If f|S attains an extreme value at some $s\in S$ where $\nabla g(s)\neq 0$, then there exists an $x\in\mathbb{R}$ (called a Lagrange multiplier) such that $\nabla f(s)=\lambda\nabla g(s)$.

Proof. Since $\nabla g\left(s\right) \neq 0$, $\frac{\partial g}{\partial x_i}\left(s\right) \neq 0$ for some $i=1,2,\ldots,n+1$. Let us first consider the case that $\frac{\partial g}{\partial x_{n+1}}\left(s\right) \neq 0$. Let $a=(s_1,\ldots,s_n),$ $b=s_{n+1}$ (so s=(a,b)). Then $g\left(a,b\right)=c$ and $\frac{\partial g}{\partial x_{n+1}}\left(a,b\right) \neq 0$. Hence by the IPFT there exist open sets $U\in\mathbb{R}^n,\ V\in\mathbb{R}$ such that $s=(a,b)\in U\times V$ and a C^1 function $\varphi:U\to V$ such that $\varphi\left(a\right)=b$ and $g\left(x,\varphi x\right)=c$ (i.e., $\left(x,\varphi\left(x\right)\right)\in S$) for all $x\in U$. Define $\tilde{f}:U\to\mathbb{R}$ by $\tilde{f}\left(x\right)=f\left(x,\varphi\left(x\right)\right)$. Clearly, \tilde{f} is a C^1 function and \tilde{f} has an extremum at x=a, so $\nabla \tilde{f}\left(a\right)=0=D_{\tilde{f}}\left(a\right)$. Note that $\tilde{f}=f\circ h$ where $h:U\to S\subseteq\mathbb{R}^{n+1}$ is given by $h\left(x\right)=\left(x,\varphi\left(x\right)\right)$. Hence, by the Chain Rule

$$0 = D_{\tilde{f}}(a) = D_{f}(h(a)) D_{h}(a) = D_{f}(s) \begin{bmatrix} I_{n} \\ D_{\varphi}(a) \end{bmatrix}$$

or

$$0 = \frac{\partial f}{\partial x_i}(s) + \frac{\partial f}{\partial x_{n+1}} + \frac{\partial \varphi}{\partial x_i}(a) \,\forall i = 1, 2, \dots, n.$$

But by the Implicit Differentiation Formula,

$$D_{\varphi}(a) = -\left[\frac{\partial g}{\partial x_{n+1}}(a, \varphi a)\right]^{-1} \left[\frac{\partial g}{\partial x_{1}}(a, \varphi(a)), \dots, \frac{\partial g}{\partial x_{n}}(a, \varphi a)\right]$$
$$= -\left[\frac{\partial g}{\partial x_{n+1}}(s)\right]^{-1} \left[\frac{\partial g}{\partial x_{1}}(a, \varphi(a)), \dots, \frac{\partial g}{\partial x_{n}}(s)\right]$$

Therefore,

$$0 = \frac{\partial f}{\partial x_1}(s) - \frac{\partial f}{\partial x_{n+1}}(s) \left(\frac{\partial g}{\partial x_{n+1}}(s)\right)^{-1} \frac{\partial g}{\partial x_i}(s) \,\forall i = 1, 2, \dots, n$$

Note that this equality also trivially holds when i=n+1. Thus, with $\lambda=\frac{\partial f}{\partial x_{n+1}}\left(s\right)\left(\frac{\partial g}{\partial x_{n+1}}\left(s\right)\right)^{-1}$ we obtain $\nabla f\left(s\right)=\lambda\nabla g\left(s\right)$. If $\frac{\partial g}{\partial x_{n+1}}\left(s\right)=0$, we can choose $p=1,2,\ldots,n$ such that $\frac{\partial g}{\partial x_p}\left(s\right)\neq 0$. Define a linear isomorphism $T:\mathbb{R}^{n+1}\to\mathbb{R}^{n+1}$ by $T\left(x_1,x_2,\ldots,x_{n+1}\right)=\left(x_1,x_2,\ldots,x_{p-1},x_{n+1},x_p,x_{p+1},\ldots,x_n\right)$, and let $\Omega_*=T^{-1}\left(\Omega\right),\,S_*=T^{-1}\left(S\right),\,s_*=T^{-1}\left(s\right),\,f_*=f\circ T:\Omega_*\to\mathbb{R},\,g_*=g\circ T:\Omega_*\to\mathbb{R}.$ Then $S_*=\left\{x\in\Omega_*:g_*\left(x\right)=c\right\}$ and $f_*|S_*$ has an extremum at s_* . Moreover, $\frac{\partial g_*}{\partial x_{n+1}}\left(s_*\right)=\frac{\partial g}{\partial x_p(s)\neq 0}.$ So by the 1st part of the proof, there exists a $\lambda\in\mathbb{R}$ such that $\nabla f_*\left(s_*\right)=\lambda\nabla g_*\left(s_*\right).$ But

$$\frac{\partial f_*}{\partial x_i}(s*) = \begin{cases} \frac{\partial f}{\partial x_i}(s) & \text{for } i = 1, 2, \dots, p-1\\ \frac{\partial f}{\partial x_{i+1}}(s) & \text{for } i = p, p+1, \dots, n\\ \frac{\partial f}{\partial x_p}(s) & \text{for } i = n+1 \end{cases}$$

and similarly for g_* . Hence, $\nabla f(s) = \lambda \nabla g(s)$.

Example of Minimum distance with the Lagrange multiplier:

Find the minimum distance from the point (1,2,0) to the surface $z^2 = x^2 + y^2, z \ge 0$, using the Lagrange multiplier.

The distance from (1,2,0) to a point (x,y,z) is $d = \sqrt{(x-1)^2 + (y-2)^2 + z^2}$ and it suffices to minimize d^2 , i.e., the function $f(x,y,z) = (x-1)^2 + (y-2)^2 + z^2$ on the set $\tilde{S} = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 0, z \ge 0\}$. Recall that in Lecture 25 we solved this problem by eliminating z.

In particular, we found that f attains a global min value of \tilde{S} but there does not exist a global max. Note also that $z=0 \implies x^2+y^2=0$, and f(0,0,0)=5 while f(0,1,1)=3<5. So f attains a global min on $S=\left\{(x,y,z):x^2+y^2-z^2=0 \text{ and } z>0\right\}$ and does not have a global max on S. We can apply our theorem to:

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}. \ f: \Omega \to \mathbb{R}, \ f(x, y, z) = (x - 1)^2 + (y - 2)^2 + z^2, \ g: \Omega \to \mathbb{R}, \ g(x, y, z) = x^2 + y^2 - z^2, \ \text{and} \ S = \{(x, y, z) \in \Omega : g(x, y, z) = 0\} = \{(x, y, z) \in \Omega : x^2 + y^2 - z^2 = 0\} \ (c = 0).$$

Note that $\nabla g(x,y,z)=(2x,2y,-2z)\neq 0$ for all $(x,y,z)\in \Omega$, so by the theorem if a minimum occurs at $(x,y,z)\in S$ then $\nabla f(x,y,z)=(2(x-1),2(y-2),2z)=\lambda(2x,2y,-2z)$ for some $\lambda\in\mathbb{R}$. So we need to solve the system:

$$\begin{cases} 2(x-1) = 2\lambda x \\ 2(y-2) = 2\lambda y \\ 2z = -2\lambda z \\ x^2 + y^2 - z^2 = 0 \end{cases} \implies \lambda = -1 \implies x = \frac{1}{2}, y = 1 \implies z = \sqrt{\frac{5}{4}}$$

So a minimum occurs at
$$\left(\frac{1}{2}, 1, \sqrt{\frac{5}{4}}\right)$$
 and the min distance is $d_{\min} = \sqrt{f\left(\frac{1}{2}, 1, \sqrt{\frac{5}{4}}\right) = \sqrt{\frac{5}{2}}}$.

Example of Maximum volume with the Lagrange multiplier:

Consider rectangular boxes $[-x,x] \times [-y,y] \times [-z,z]$ (x,y,z) incubed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (i.e., with vertices on the ellipsoid). Find the values of x,y,z which maximize the volume of such a box and the maximum volume.

Intuitively, it seems clear that the maximum exists. Can we confirm this mathematically?

Note that $\tilde{S} = \left\{ (x,y,z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$ is compact, so by the EVT f(x,y,z) = 8xyz attains its absolute maximum on \tilde{S} . It is clear that the maximum value is strictly positive, so (among other possibilities), it is attained at a point where x,y,z>0. Hence, our problem has a solution.

Formally we work with the open set $\Omega=\{(x,y,z):x,y,z>0\}$ with the constraint function $g:\Omega\to\mathbb{R}$ given by $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$, and the function to maximize is f(x,y,z)=8xyz. Note that $\nabla g(x,y,z)=\left(\frac{2x}{a^2},\frac{2y}{b^2},\frac{2z}{c^2}\right)\neq 0$ for all $(x,y,z)\in\Omega$. By the theorem, the max occurs at a point $(x,y,z)\in S$ where $\nabla f(x,y,z)=(8yz,8xz,8xy)=\lambda\left(\frac{2x}{a^2},\frac{2y}{b^2},\frac{2z}{c^2}\right)$ for some $\lambda\in\mathbb{R}$. So we need to solve the system:

$$\begin{cases} 8yz = \lambda \frac{2x}{a^2} \\ 8xz = \lambda \frac{2y}{b^2} \\ 8xy = \lambda \frac{2z}{c^2} \\ 8xy = \lambda \frac{2z}{c^2} \end{cases} \implies 4xyz = \lambda \frac{x^2}{a^2} \\ 4xyz = \lambda \frac{y}{b^2} \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \end{cases} \implies 2xyz = \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) = \lambda$$

Given that x, y, z > 0, $\frac{1}{b} = \frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2} \implies x = \frac{a}{\sqrt{3}}, y = \frac{b}{\sqrt{3}}, z = \frac{c}{\sqrt{3}}$. The max volume is then $f\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}\right) = \frac{8abc}{3\sqrt{3}}$.