Report No: CCIS15060051106

FCC REPORT

Applicant: SUN CUPID TECHNOLOGY (HK) LIMITED

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Hong Kong

Equipment Under Test (EUT)

Product Name: LTE mobile phone

Model No.: Z8

Trade mark: NUU

FCC ID: 2ADINNUUZ8

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 29 Jun., 2015

Date of Test: 29 Jun, to 24 Jul., 2015

Date of report issued: 27 Jul., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Jul., 2015	Original

Prepared by: Date: 27 Jul., 2015

Report Clerk

Reviewed by: Date: 27 Jul., 2015

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4	TES	ST SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	EMISSION BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	37
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
	6.8	FREQUENCY STABILITY	50
7	TES	ST SETUP PHOTO	53
8	FIIT	CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.407 (a)	Pass
26dB Emission Bandwidth	15.407 (a)	Pass
6dB Emission Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407 (a)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SUN CUPID TECHNOLOGY (HK) LIMITED	
Address of Applicant:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Hong Kong	
Manufacturer:	Suncupid (ShenZhen) Electronic Ltd	
Address of Manufacturer:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7	

5.2 General Description of E.U.T.

Product Name:	LTE mobile phone
Model No.:	Z8
Operation Frequency:	Band 1: 5150MHz-5250MHz Band 4: 5725MHz-5850MHz
Operation mode:	Mobile operation
Channel numbers:	Band 1: 802.11ac:1, 802.11n40: 2 Band 4: 802.11ac:1, 802.11n40: 2
Channel separation:	802.11ac :80MHz, 802.11n40:40MHz
Modulation technology: (IEEE 802.11n)	BPSK,QPSK,16-QAM,64-QAM
Modulation technology: (IEEE 802.11ac)	BPSK,QPSK,16-QAM, 64-QAM, 256-QAM
Data speed (IEEE 802.11n40):	MCS0:13.5Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 1Gbps
Antenna Type:	Integral Antenna
Antenna gain:	-2.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V/2650mAh
AC adapter:	Input:100-240V AC,50/60Hz 0.35A Output:5V DC MAX 1.5A

Operation Frequency each of channel

operation respectively entire				
	Band 1			
802.	11n40	802.11ac		
Channel	Frequency	Channel	Frequency	
38	5190MHz	50	5210MHz	
46	5230MHz			
	Bai	nd 4		
802.	11n40	802.11ac		
Channel	Frequency	Channel	Frequency	
151	5755MHz	155	5775MHz	
159	5795MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Band 1					
802.11r	n40	802.11ac				
Channel	Frequency	Channel	Frequency			
The lowest channel	5190MHz	The lowest channel	5210MHz			
The highest channel	5230MHz					
	Bar	nd 4				
802.11r	140	802.11ac				
Channel	Frequency	Channel	Frequency			
The lowest channel	5755MHz	The lowest channel	5775MHz			
The highest channel	5795MHz					

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation in SISO mode.

Report No: CCIS15060051106

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11n40	13.5 Mbps
802.11ac	29.3Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 13.5 Mbps for 802.11n40 and 29.3Mbps for 802.11ac. Duty cycle all above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	CCIS0002	N/A	N/A
3	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
9	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
10	Pre-amplifier (18-40GHz)	A.H System	PAM-1840	GTS219	04-01-2015	03-31-2016
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Spectrum Analyzer	HP	8564E	CCIS0150	03-28-2015	03-28-2016

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016		
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.4: 2009				
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Fraguera (MIII-)	Limit (d	dBuV)		
	Frequency range (MHz)	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	 Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test setup:	LISN 40cm	U.T EMI Receiver	er — AC power		
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details	S.			
Test results:	Passed				

Measurement Data

Line:

Trace: 25

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition

Condition: FCC PART15 B QP LISN LINE
EUT: LTE mobile phone
Model: Z8
Test Mode: 5G WIFI-TX mode
Power Rating: AC 120V/60Hz
Environment: Temp: 23 'C Huni:56% Atmos:101KPa
Test Engineer: Carey
Remark:

lemark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	dB	dB	dBu₹	dBu∀	<u>dB</u>	
1	0.185	44.27	0.28	10.77	55.32	64.24	-8.92	QP
2	0.185	30.17	0.28	10.77	41.22	54.24	-13.02	Average
3 4 5 6	0.246	39.64	0.27	10.75	50.66	61.91	-11.25	QP
4	0.325	38.28	0.27	10.73	49.28	59.57	-10.29	QP
5	0.410	27.99	0.28	10.72	38.99	47.64	-8.65	Average
6	0.415	36.95	0.28	10.73	47.96	57.55	-9.59	QP
7 8 9	0.459	26.84	0.29	10.75	37.88	46.71	-8.83	Average
8	0.476	36.84	0.29	10.75	47.88	56.41	-8.53	QP
9	0.505	25.71	0.29	10.76	36.76	46.00	-9.24	Average
10	0.595	24.73	0.25	10.77	35.75	46.00	-10.25	Average
11	0.767	24.72	0.23	10.80	35.75	46.00	-10.25	Average
12	0.876	36.72	0.24	10.83	47.79	56.00	-8.21	QP

Neutral:

Trace: 27

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : LTE mobile phone

: Z8 Model

Test Mode : 5G WIFI-TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey

(emark								
	T	Read		Cable		Limit	Over	
	Freq	rever	Factor	Loss	Level	Line	LIMIT	Remark
	MHz	dBu∀	₫B	₫B	dBu∀	dBu∜	₫B	
1	0.320	23.97	0.26	10.74	34.97	59.71	-24.74	QP
2	0.320	16.93	0.26	10.74	27.93	49.71	-21.78	Average
3	0.686	17.46	0.19	10.77	28.42	46.00	-17.58	Average
4	0.731	24.78	0.18	10.78	35.74	56.00	-20.26	QP
1 2 3 4 5 6 7 8 9	1.054	11.26	0.22	10.88	22.36	46.00	-23.64	Average
6	1.106	18.76	0.23	10.88	29.87	56.00	-26.13	QP
7	1.878	14.94	0.28	10.95	26.17	56.00	-29.83	QP
8	1.908	4.88	0.29	10.95	16.12	46.00	-29.88	Average
9	17.018	21.61	0.25	10.91	32.77	60.00	-27.23	QP
10	17.944	7.19	0.26	10.90	18.35	50.00	-31.65	Average
11	18.820	18.61	0.26	10.92	29.79	60.00	-30.21	QP
12	21.946	8.35	0.33	10.90	19.58	50.00	-30.42	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 E Section 15.407 (a)				
Test Method:	ANSI C63.10:2013, KDB 789033 D02				
Limit:	Band 5150MHz~5250MHz: 250mW (If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi); Band 5725MHz~5850MHz: 1W (If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.)				
Test setup:	amount in dB that the directional gain of the antenna exceeds 6 dBi.) Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Report No: CCIS15060051106

Band 1:

802.11n (HT40):

Test CH	Maximum Conducted Output Power (dBm) 802.11n40	Limit(dBm)	Result			
Lowest	9.88					
Middle		24.00	Pass			
Highest	9.55					
Note: For the band 5150MHz-5250MHz, it used for mobile and portable client devices.						

802.11ac (VHT80):

	Test CH	Maximum Conducted Output Power (dBm) 802.11ac	Limit(dBm)	Result		
	Lowest	9.47	24.00	Pass		
ĺ	Note: For the band 5150MHz-5250MHz, it used for mobile and portable client devices.					

Band 4:

802.11n (HT40)

30211 III (111 + 0)						
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result			
Test Ch	802.11n40	Limit(abin)	Resuit			
Lowest	13.72					
Middle		30.00	Pass			
Highest	13.43					
Note: For the Band 5725MHz-5850MHz, the antenna gain of EUT is less than 6 dBi.						

802.11ac (VHT80):

Test CH	Maximum Conducted Output Power (dBm) 802.11ac	Limit(dBm)	Result			
Lowest	12.03	30.00	Pass			
Note: For the Band 5725MHz-5850MHz, the antenna gain of EUT is less than 6 dBi.						

Test plot as follows:

Band 1:

802.11n40

Date: 24.JUL.2015 17:07:19

Lowest channel

Highest channel

802.11ac

Date: 24.JUL.2015 17:31:27

Band 4:

802.11n40

Date: 24.JUL.2015 17:08:49

Lowest channel

Date: 24.JUL.2015 17:24:55

Highest channel

802.11ac

Date: 24.JUL.2015 17:30:41

6.4 Emission Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) and Section 15.407 (e)				
Test Method:	ANSI C63.10: 2013 and KDB 789033 D02				
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Band 1:

Test Channel	26dB Emission	Limit	Result	
rest Chamilei	802.11n40	802.11ac	LIIIIII	Result
Lowest	40.52	79.65		
Middle			For report purpose	
Highest	40.41			

Toot Channal	99% Occupy	Limit	Dogult	
Test Channel	802.11n40	802.11ac	Limit	Result
Lowest	36.01	75.02		
Middle			For repor	t purpose
Highest	36.01		7	

Band 4:

Test Channel	26dB Emission	Limit	Result	
rest Channel	802.11n40	802.11ac	LIIIIII	Result
Lowest	47.81	115.77		
Middle			For report purpo	
Highest	52.10			

Test Channel	99% Occupy	Limit	Result	
rest Charmer	802.11n40	802.11ac	LIIIIII	Result
Lowest	36.58	75.95		
Middle			For repor	t purpose
Highest	36.58			

Test Channel	6dB Emission Bandwidth (MHz)		Limit	Result
	802.11n40	802.11ac	LITTIL	Result
Lowest	35.66	76.41		
Middle			>500kHz	Pass
Highest	35.77			

Test plot as follows:

Band 1:

Test mode: 26dB EBW 802.11n40

Date: 24.JUL.2015 17:38:46

Lowest channel

Date: 24.JUL.2015 17:40:48

Highest channel

Test mode: 26dB EBW 802.11ac

Date: 24.JUL.2015 17:35:43

Lowest channel

Test mode: 99% OBW

802.11n40

Date: 24.JUL.2015 17:38:14

Lowest channel

Highest channel

Test mode: 99% OBW 802.11ac

Date: 24.JUL.2015 17:32:41

Lowest channel

Band 4:

Test mode: 26dB EBW 802.11n40

Date: 24.JUL.2015 17:42:24

Lowest channel

Date: 24.JUL.2015 17:43:07

Highest channel

Test mode: 26dB EBW 802.11ac

Date: 24.JUL.2015 17:35:16

Lowest channel

Test mode: 99% OBW 802.11n40

Date: 24..TUT..2015 17:41:44

Lowest channel

Highest channel

Test mode: 99% OBW 802.11ac

Date: 24.JUL.2015 17:33:27

Lowest channel

Test mode: 6dB BW

802.11n40

Date: 24.JUL.2015 17:47:51

Lowest channel

Highest channel

Test mode: 6dB BW

802.11ac

Date: 24.JUL.2015 17:48:50

Lowest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 E Section 15.407 (a)		
Test Method:	ANSI C63.10: 2013, KDB 789033 D02		
Limit:	Band 5150MHz-5250MHz: 11 dBm/MHz (If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi); Band 5725MHz-5850MHz: 30dBm/500kHz (If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details.		
Test results:	Passed		

Measurement Data

Report No: CCIS15060051106

Band 1:

802.11n40:

Test CH	Power Spectral Density (dBm) 802.11n 40	Limit(dBm)	Result
Lowest	3.80		
Middle		11.00	Pass
Highest	3.25		

Note: For the band 5150MHz-5250MHz, it used for mobile and portable client devices.

802.11ac:

Test CH	Power Spectral Density (dBm) 802.11ac	Limit(dBm)	Result	
Lowest	0.37	11.00	Pass	
Note: For the band 5150MHz-5250MHz, it used for mobile and portable client devices.				

Band 4:

802.11n40:

VV2.1.111.1V			
Test CH	Power Spectral Density (dBm)	Limit/dDm\	Result
	802.11n 40	Limit(dBm)	Result
Lowest	5.13		
Middle		30.00	Pass
Highest	3.71		

802.11ac:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
	802.11n 40		
Highest	1.68	30.00	Pass

Test plot as follows:

Band 1:

802.11n40

Date: 24.JUL.2015 17:51:22

Lowest channel

Date: 24.JUL.2015 17:51:54

Highest channel

802.11ac

Date: 24.JUL.2015 17:52:25

Lowest channel

Band 4:

802.11n40

Date: 24..TUI..2015 17:50:21

Lowest channel

Highest channel

802.11ac

Date: 24.JUL.2015 17:49:39

6.6 Band Edge

o.o Band Edge									
Test Requirement:	FCC Part15 E Section	15.407 (b)							
Test Method:	ANSI C63.10:2013, KI	DB 789033 D0)2						
Receiver setup:	ANSI C63.10:2013, KDB 789033 D02 Detector								
, , , , , , , , , , , , , , , , , , , ,	Peak	1MHz	3MHz	Peak Value					
	RMS	1MHz	3MHz	Average Value					
Limit:	Band	Limit	(dBuV/m @3ı	m) Remark					
	Band 1		68.20	Peak Value					
	Dallu I		54.00	Average Value					
	Band 4		78.20	Peak Value					
	Danu 4		54.00	Average Value					
Test estate	2. Band 4 limit: E[dBµV/m] = EIRP 1. The EUT was pla the ground at a 3 to determine the plants 2. The EUT was set antenna, which we tower. 3. The antenna heigen the ground to determine the plants of the ground to determine the ground to determine to determine the maxim 4. For each suspect case and then the meters and the rotto find the maxim 5. The test-receiver specified Bandwi 6. If the emission lever the limit specified of the EUT would have 10dB margin.	r[dBm] + 95.2=7 ced on the top meter cambe cosition of the 3 meters awa ras mounted o this varied from emine the man of vertical policy ement. ed emission, the antenna was tota table was to tum reading. system was so dth with Maxim vel of the EUT then testing of the reported. On would be re-	r8.2 dBuV/m, for of a rotating r. The table whighest radiating from the intensity from the top of a common meter eximum value arizations of the EUT was attended to height from 0 det to Peak Demum Hold Moral in peak mode could be stopp Otherwise the tested one by	erference-receiving variable-height antenna to four meters above of the field strength. The antenna are set to arranged to its worst that from 1 meter to 4 degrees to 360 degrees tect Function and					
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier								
Test Instruments:	Refer to section 5.6 fo	r details							
Test mode:	Refer to section 5.3 fo	r details							
Test results:	Passed								

Band 1:

Dana I.								
			8	02.11n-HT40				
Test c	hannel	Lowest			Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	41.14	32.07	10.96	40.06	44.11	68.20	-24.09	Vertical
5150.00	40.56	32.07	10.96	40.06	43.53	68.20	-24.67	Horizontal
			8	02.11n-HT40				
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	31.01	32.07	10.96	40.06	33.98	54.00	-20.02	Vertical
5150.00	30.76	32.07	10.96	40.06	33.73	54.00	-20.27	Horizontal

			8	02.11n-HT40				
Test c	hannel	Highest			Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	39.98	31.78	11.19	40.18	42.77	68.20	-25.43	Vertical
5350.00	38.71	31.78	11.19	40.18	41.50	68.20	-26.70	Horizontal
			8	02.11n-HT40				
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	29.19	31.78	11.19	40.18	42.77	54.00	-11.23	Vertical
5350.00	28.51	31.78	11.19	40.18	43.45	54.00	-10.55	Horizontal

	802.11ac-VHT80											
Test c	hannel	Lowest			Level		Peak					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	41.47	32.07	10.96	40.06	44.44	68.20	-23.76	Vertical				
5150.00	40.25	32.07	10.96	40.06	43.22	68.20	-24.98	Horizontal				
			80	2.11ac-VHT80)							
Test c	hannel		Lowest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	31.31	32.07	10.96	40.06	34.28	54.00	-19.72	Vertical				
5150.00	30.42	32.07	10.96	40.06	33.39	54.00	-20.61	Horizontal				

	802.11ac-VHT80											
Test c	hannel	Highest			Level		Peak					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	40.53	31.78	11.19	40.18	43.32	68.20	-24.88	Vertical				
5350.00	39.68	31.78	11.19	40.18	42.47	68.20	-25.73	Horizontal				
			80	2.11ac-VHT80)							
Test c	hannel		Highest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	30.74	31.78	11.19	40.18	33.53	54.00	-20.47	Vertical				
5350.00	29.17	31.78	11.19	40.18	31.96	54.00	-22.04	Horizontal				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

			8	02.11n-HT40				
Test c	hannel	Lowest			Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	39.42	32.27	9.30	40.54	40.45	68.20	-27.75	Vertical
5725.00	41.11	32.27	9.30	40.54	42.14	68.20	-26.06	Horizontal
			8	02.11n-HT40				
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	29.24	32.27	9.30	40.54	30.27	54.00	-23.73	Vertical
5725.00	31.27	32.27	9.30	40.54	32.3	54.00	-21.70	Horizontal

			8	02.11n-HT40				
Test c	hannel		Highest			vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	43.73	32.71	9.37	40.69	45.12	68.20	-23.08	Vertical
5850.00	42.49	32.71	9.37	40.69	43.88	68.20	-24.32	Horizontal
			8	02.11n-HT40				
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	33.26	32.71	9.37	40.69	40.14	54.00	-13.86	Vertical
5850.00	32.82	32.71	9.37	40.69	40.58	54.00	-13.42	Horizontal

	802.11ac-VHT80										
Test channel Lowest					Level			Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	39.18	32.27	9.30	40.54	40.21	68.20	-27.99	Vertical			
5725.00	41.78	32.27	9.30	40.54	42.81	68.20	-25.39	Horizontal			
			80	2.11ac-VHT80)						
Test c	hannel		Lowest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	29.23	32.27	9.30	40.54	30.26	54.00	-23.74	Vertical			
5725.00	31.11	32.27	9.30	40.54	32.14	54.00	-21.86	Horizontal			

	802.11ac-VHT80										
Test c	hannel	Highest			Level		Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	43.58	32.71	9.37	40.69	44.97	68.20	-23.23	Vertical			
5850.00	42.46	32.71	9.37	40.69	43.85	68.20	-24.35	Horizontal			
			80	2.11ac-VHT80)						
Test c	hannel		Highest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	33.42	32.71	9.37	40.69	34.81	54.00	-19.19	Vertical			
5850.00	32.74	32.71	9.37	40.69	34.13	54.00	-19.87	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Spurious Emission

6.7.1 Restricted Band

Test Requirement:	FCC Part15 E	Section 15.40)7(b)					
Test Method:			(5)					
Test Frequency Range:	ANSI C63.10: 2013 Band 1: 4.5 GHz to 5.15 GHz and 5.35GHz to 5.46GHz							
rest requeitey range.	Band 4: 5.35 G			12 10 3.4001	12			
Test site:	Measurement I		· ·-					
	Frequency	Detector	RBW	VBW	Remark			
Receiver setup:		Peak	1MHz	3MHz	Peak Value			
	Above 1GHz RMS 1MHz 3MHz Average Value							
Limit:	Frequency Limit (dBuV/m @3m) Remark							
	Above 1		54.0	0	Average Value			
			74.0		Peak Value			
Test Procedure:	the ground to determing to determing to determing the second seco	d at a 3 meter ne the position was set 3 met which was more managed and very measurement ontal and very measurement of the rota tab maximum respected emeasurement of the rota tab maximum respected emeasurement of the rota tab maximum respected the rota tab maximum respected emeasurement of the rota tab maximum respected emeasurement of the rota tab maximum respected emeasurement of the rotatable of the rotatabl	camber. The n of the higher ters away from bunted on the framed from once the maximur tical polarization. The Europe was turned ading. In was set to Fith Maximum Fithe EUT in period testing could ported. Otherwood be re-tested.	table was rest radiation. In the interfectop of a variation of a variation of the analysis of the emit one by one of the analysis of the emit one by one	e 0.8 meters above otated 360 degrees rence-receiving table-height antennatour meters above he field strength. Intenna are set to reged to its worst from 1 meter to 4 rees to 360 degrees. Function and as 10dB lower than and the peak values issions that did not e using peak, quasi-eported in a data			
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table A A Amplifier							
Test Instruments:	Refer to section	n 5.6 for deta	ils					
Test mode:	Refer to section	n 5.3 for deta	ils					
Test results:	Passed							

Band 1:

			8	02.11n-HT40)			
Test ch	nannel	Lowest			Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	42.01	30.72	10.22	40.67	42.28	74.00	-31.72	Vertical
4500.00	42.76	30.72	10.22	40.67	43.03	74.00	-30.97	Horizontal
Test ch	nannel		Lowest	.owest		vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.11	30.72	10.22	40.67	32.38	54.00	-21.62	Vertical
4500.00	32.26	30.72	10.22	40.67	32.53	54.00	-21.47	Horizontal

			8	302.11n-HT40)			
Test ch	nannel	Highest			Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	43.13	31.99	11.32	40.23	46.21	74.00	-27.79	Vertical
5460.00	40.56	31.99	11.32	40.23	43.64	74.00	-30.36	Horizontal
Test cl	nannel		Highest		Le	vel	Av	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	33.25	31.99	11.32	40.23	36.33	54.00	-17.67	Vertical
5460.00	30.27	31.99	11.32	40.23	33.35	54.00	-20.65	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11ac-VHT80									
Test ch	nannel		Lowest			vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	42.72	30.72	10.22	40.67	42.99	74.00	-31.01	Vertical		
4500.00	42.26	30.72	10.22	40.67	42.53	74.00	-31.47	Horizontal		
Test ch	nannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	32.57	30.72	10.22	40.67	32.84	54.00	-21.16	Vertical		
4500.00	30.54	30.72	10.22	40.67	30.81	54.00	-23.19	Horizontal		

	802.11ac-VHT80										
Test ch	nannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	43.82	31.99	11.32	40.23	46.90	74.00	-27.10	Vertical			
5460.00	40.93	31.99	11.32	40.23	44.01	74.00	-29.99	Horizontal			
Test ch	nannel		Highest		Le	vel	Av	-27.10 Vertical			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	33.15	31.99	11.32	40.23	36.23	54.00	-17.77	Vertical			
5460.00	30.18	31.99	11.32	40.23	33.26	54.00	-20.74	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			80)2.11n-HT4()			
Test ch	nannel		Highest		Le	evel		Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	43.97	31.78	11.19	40.18	46.76	74.00	-27.24	Vertical
5460.00	43.39	31.99	11.32	40.23	46.47	74.00	-27.53	Vertical
5350.00	41.35	31.78	11.19	40.18	44.14	74.00	-29.86	Horizontal
5460.00	40.72	31.99	11.32	40.23	43.80	74.00	-30.20	Horizontal
Test ch	nannel		Highest		Le	evel	А	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.24	31.78	11.19	40.18	36.03	54.00	-17.97	Vertical
5460.00	33.36	31.99	11.32	40.23	36.44	54.00	-17.56	Vertical
5350.00	31.33	31.78	11.19	40.18	34.12	54.00	-19.88	Horizontal
5460.00	30.12	31.99	11.32	40.23	33.20	54.00	-20.80	Horizontal

			802	2.11ac-VHT	30		802.11ac-VHT80									
Test ch	nannel		Highest		Le	evel		Peak								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization								
5350.00	43.13	31.78	11.19	40.18	45.92	74.00	-28.08	Vertical								
5460.00	43.28	31.99	11.32	40.23	46.36	74.00	-27.64	Vertical								
5350.00	41.57	31.78	11.19	40.18	44.36	74.00	-29.64	Horizontal								
5460.00	40.83	31.99	11.32	40.23	43.91	74.00	-30.09	Horizontal								
Test ch	nannel		Hig	hest	Level		А	verage								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization								
5350.00	33.14	31.78	11.19	40.18	35.93	54.00	-18.07	Vertical								
5460.00	33.18	31.99	11.32	40.23	36.26	54.00	-17.74	Vertical								
5350.00	31.27	31.78	11.19	40.18	34.06	54.00	-19.94	Horizontal								
5460.00	30.42	31.99	11.32	40.23	33.50	54.00	-20.50	Horizontal								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Radiated Spurious Emission

Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205				
Test Method:	ANSI C63.10: 20	013					
Test Frequency Range:	30MHz to 40GH	Z					
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value		
	Above 1GHz	Peak	3MHz	Peak Value			
	71.5070 10112	RMS	1MHz	3MHz	Average Value		
Limit:	Freque	ncy	Limit (dBuV	/m @3m)	Remark		
	30MHz-8	8MHz	40.0		Quasi-peak Value		
	88MHz-21	6MHz	43.5		Quasi-peak Value		
	216MHz-9		46.0		Quasi-peak Value		
	960MHz-	1GHz	54.0		Quasi-peak Value		
	Above 1	GHz -	68.2		Peak Value		
			54.0	0	Average Value		
	Remark:						
	1. Above 1GH:		0.5 0 00 0 ID	= = = = = = = = = = = = = = = = =			
					PR [dBm] =-27dBm.		
Test Procedure:					0.8 meters above		
		at a 3 meter c he position of			tated 360 degrees to		
					ence-receiving		
					ble-height antenna		
	tower.				gg		
	3. The antenn	a height is var	ried from one	meter to fo	ur meters above the		
					ld strength. Both		
			larizations of	the antenna	a are set to make the		
	measureme			_			
					ged to its worst case meter to 4 meters		
					60 degrees to find the		
	maximum r		nea nom o a	egrees to 5	oo degrees to find the		
			was set to Pe	eak Detect F	Function and		
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the						
					the peak values of		
					ons that did not have		
	10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
	average me	etnod as speci	tied and then	reported in	a data sheet.		

Band 1: **Below 1GHz** Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : LTE mobile phone Condition

EUT

Model : Z8

Test mode : 5G WIFI-TX Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK

Linunai		P4	Aust	Cabla	Dunne		T 3-34	0	
	Freq		Antenna Factor						
_	MHz	dBu∜	<u>dB</u> /m	₫B	dB	dBuV/m	dBuV/m	dB	
1	76.512	57.36	8.03	0.83	29.67	36.55	40.00	-3.45	QP
2	95.427	56.76	12.87	0.93	29.55	41.01	43.50	-2.49	QP
2 3 4 5	180.649	59.13	9.76	1.36	28.97	41.28	43.50	-2.22	QP
4	216.783	54.89	11.10	1.47	28.73	38.73	46.00	-7.27	QP
5	268.485	46.60	12.34	1.68	28.51	32.11	46.00	-13.89	QP
6	377.259	45.77	14.57	2.04	28.68	33.70	46.00	-12.30	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : LTE mobile phone Condition

EUT

: Z8 Model

Test mode : 5G WIFI-TX Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

EMARK	:								
	_		Antenna				Limit		2 2
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	74.919	53.54	7.80	0.82	29.68	32.48	40.00	-7.52	QP
2	96.775	46.39	12.97	0.94	29.54	30.76	43.50	-12.74	QP
2 3 4 5	181.920	50.54	9.84	1.36	28.96	32.78	43.50	-10.72	QP
4	216.783	44.89	11.10	1.47	28.73	28.73	46.00	-17.27	QP
5	373.311	37.05	14.54	2.03	28.66	24.96	46.00	-21.04	QP
6	454.310	35.14	15.58	2.27	28.88	24.11	46.00	-21.89	QP

Report No: CCIS15060051106

Above 1GHz: Band 1:

	802.11n-HT40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	43.13	39.29	15.42	41.31	56.53	68.20	-11.67	Vertical			
10380.00	42.65	39.29	15.42	41.31	56.05	68.20	-12.15	Horizontal			
		802.11n-H	T40 mode Lo	owest char	nnel (Averag	e Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	33.15	39.29	15.42	41.31	46.55	54.00	-7.45	Vertical			
10380.00	32.69	39.29	15.42	41.31	46.09	54.00	-7.91	Horizontal			

	802.11n-HT40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	41.92	39.54	15.51	41.17	55.80	68.20	-12.40	Vertical			
10460.00	41.46	39.54	15.51	41.17	55.34	68.20	-12.86	Horizontal			
		802.11n-H	T40 mode H	ighest char	nnel (Averag	je Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	31.51	39.54	15.51	41.17	45.39	54.00	-8.61	Vertical			
10460.00	31.54	39.54	15.51	41.17	45.42	54.00	-8.58	Horizontal			

	802.11ac-VHT80 mode (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10420.00	42.36	39.46	15.46	41.24	56.04	68.20	-12.16	Vertical		
10420.00	42.57	39.46	15.46	41.24	56.25	68.20	-11.95	Horizontal		
		802.	.11ac-VHT80) mode (Av	erage Value	e)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10420.00	32.06	39.46	15.46	41.24	45.74	54.00	-8.26	Vertical		
10420.00	31.94	39.46	15.46	41.24	45.62	54.00	-8.38	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bana T.										
	802.11n-HT40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11510.00	40.74	40.26	16.83	40.77	57.06	68.20	-11.14	Vertical		
11510.00	42.28	40.26	16.83	40.77	58.60	68.20	-9.60	Horizontal		
		802.11n-H	T40 mode Lo	owest char	nnel (Averag	e Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11510.00	30.19	40.26	16.83	40.77	46.51	54.00	-7.49	Vertical		
11510.00	32.24	40.26	16.83	40.77	48.56	54.00	-5.44	Horizontal		

	802.11n-HT40 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11590.00	42.20	40.08	16.93	40.95	58.26	68.20	-9.94	Vertical		
11590.00	40.12	40.08	16.93	40.95	56.18	68.20	-12.02	Horizontal		
		802.11n-H	T40 mode H	ighest chai	nnel (Averag	ge Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11590.00	39.74	40.08	16.93	40.95	55.80	54.00	1.80	Vertical		
11590.00	31.59	40.08	16.93	40.95	47.65	54.00	-6.35	Horizontal		

802.11ac-VHT80 mode (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	41.05	40.21	16.86	40.88	57.24	68.20	-10.96	Vertical
11550.00	42.23	40.21	16.86	40.88	58.42	68.20	-9.78	Horizontal
	802.11ac-VHT80 mode (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	31.01	40.21	16.86	40.88	47.20	54.00	-6.80	Vertical
11550.00	32.21	40.21	16.86	40.88	48.40	54.00	-5.60	Horizontal

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)		
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the		
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply		
Test procedure:	 Note: Measurement setup for testing on Antenna connector The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.		
Test results:	Passed		

Peport No: CCIS15060051106

Measurement Data (the worst channel):

Band 1:

802.11n-HT40:

Voltage vs. Frequency Stability (Lowest channel=5190MHz)

Test conditions		Frague nov/MU=)	May Davistian (nnm)
Temp(℃)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)
	138	5189.987800	-2.35
20	120	5189.990400	-1.85
	102	5189.986500	-2.60

Temperature vs. Frequency Stability (Lowest channel=5190MHz)

remperature vs. rrequeries stability (Lowest chamilei-5750iii 12)					
Test conditions		Eregueney/MU=)	May Davietien (num)		
Voltage(AC /60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)		
	-20	5189.985800	-2.74		
	-10	5189.985400	-2.81		
	0	5189.991100	-1.71		
120	10	5189.984500	-2.99		
120	20	5189.984700	-2.95		
	30	5189.986900	-2.52		
	40	5189.989500	-2.02		
	50	5189.990700	-2.74		

802.11ac-VHT80:

Voltage vs. Frequency Stability (Lowest channel=5210MHz)

Test conditions		Fraguency/MU=)	May Davistian (nnm)	
Temp(°C)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)	
20	138	5209.985700	-2.74	
	120	5209.984800	-2.92	
	102	5209.987500	-2.40	

Temperature vs. Frequency Stability (Lowest channel=5210MHz)

Test conditions		Francisco (MILITA)	May Deviction (com)	
Voltage(AC /60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)	
	-20	5209.985700	-2.74	
	-10	5209.986200	-2.65	
	0	5209.997500	-0.48	
120	10	5209.987400	-2.42	
120	20	5209.996700	-0.63	
	30	5209.995700	-0.83	
	40	5209.984700	-2.94	
	50	5209.985700	-2.74	

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n-HT40

Voltage vs. Frequency Stability (Lowest channel=5755MHz)

Test conditions		Francisco (MIII-)	May Pariation (nam)	
Temp(°C)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)	
	138	5754.984500	-2.69	
20	120	5754.985700	-2.48	
	102	5754.983600	-2.85	

Temperature vs. Frequency Stability (Lowest channel=5755MHz)

remperature vs. i requeries etablits (Lowest enaimer=5755minz)				
Test conditions		Frequency(MHz)	Max. Deviation (ppm)	
Voltage(AC /60Hz)	Temp(°C)	Frequency(MH2)	Max. Deviation (ppin)	
	-20	5754.988400	-2.02	
	-10	5754.986700	-2.31	
	0	5754.987700	-2.14	
120	10	5754.983700	-2.83	
120	20	5754.987500	-2.17	
	30	5754.984500	-2.69	
	40	5754.989800	-1.77	
	50	5754.984800	-2.64	

802.11ac-VHT80

Voltage vs. Frequency Stability (Lowest channel=5775MHz)

Test conditions		Francisco (MIII-)	Man Davistian (num)
Temp(°C)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)
	138	5774.984400	-2.70
20	120	5774.987800	-2.11
	102	5774.988200	-2.04

Temperature vs. Frequency Stability (Lowest channel=5755MHz)

remperature vs. rrequericy stability (Lowest charmer=3753W112)					
Test conditions		Fraguency/MUz)	Max Deviation (nnm)		
Voltage(AC /60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)		
	-20	5774.986500	-2.34		
	-10	5774.987400	-2.18		
	0	5774.986300	-2.37		
120	10	5774.987400	-2.18		
120	20	5774.986300	-2.37		
	30	5774.982500	-3.03		
	40	5774.985100	-2.58		
	50	5774.988400	-2.01		

7 Test Setup Photo

Conducted Emission

8 EUT Constructional Details

Reference to the test report No. CCIS15060051101

-----End of report-----