Harmonic Analysis: Problem Set II

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set II of Harmonic Analysis 2016 at Courant Institute of Mathematical Sciences.

Question 1.

1. Solve Exercise 1.8 in Muscalu & Schlag.

Solution.

Question 2.

2. The following (non-absolutely convergent) series define functions in $H^{\frac{1}{2}}(\mathbb{T})$. (Why?)

$$f_S(x) := \sum_{n=2}^\infty rac{\sin(2\pi n x)}{n\log n}, \qquad f_C(x) := \sum_{n=2}^\infty rac{\cos(2\pi n x)}{n\log n}$$

Show that the first series converges uniformly (hence $f_S \in C(\mathbb{T})$), but the second does not. In fact, show that $f_C(x) \geq c \log \log \frac{1}{|x|}$ as $x \to 0$ so that f_C is not even essentially bounded. (Hint: Summation by parts.)

Remark: For an example of a $C^{1/2}(\mathbb{T})$ function which is not in $A(\mathbb{T})$, see Proposition 1.14 in Muscalu & Schlag. (There is also another example, due to Hardy-Littlewood:

$$\sum_{n=1}^{\infty} \frac{e^{in\log n}}{n} e^{2\pi i nx},$$

Proof of this is given in Zygmund's "Trigonometric Series", vol. 1, p.197.)

Solution. Define $g_{n,m} = \sum_{i=n}^m \frac{\sin(2\pi nx)}{n\log(n)}$. For $x \in [0, \frac{1}{m}]$, we have

$$|g_{n,m}| \leq \sum_{i=n}^{m} \left| \frac{\sin(2\pi i x)}{i \log(i)} \right| \leq \sum_{i=n}^{m} \frac{2\pi i x}{i \log(i)} = \sum_{i=n}^{m} \frac{2\pi x}{\log(i)}$$
$$\leq \frac{1}{\log(n)} \leq \frac{1}{m \log(n)} \sum_{i=n}^{m} 2\pi \leq \frac{2\pi}{\log(n)}.$$

For $x \in [\frac{1}{m}, \frac{1}{n}]$, we obtain

Therefore, we have that

$$|g_{n,m}| = O(\frac{1}{\log(n)}),$$

and the partial sums of f_S is cauchy. Thus, f_S converges uniformly and $f \in C(\mathbb{T})$.

Question 3.

3. (Problem 1.5 in Muscalu & Schlag) Suppose $f \in H^{\frac{1}{2}}(\mathbb{T}) \cap C(\mathbb{T})$. Show that $S_N f \to f$ uniformly. (Hint: Study $S_N f - \sigma_N f$.)

Solution. By the triangle inequality of the supnorm, we have

$$||S_N f - f||_{\infty} \le ||S_N f - \sigma_N f||_{\infty} + ||\sigma_N f - f||_{\infty},$$

for all $N \in \mathbb{Z}^+$. As $f \in C(\mathbb{T})$, we have that $||\sigma_N f - f||_{\infty} \to 0$ as $N \to \infty$. Therefore, by the linearity of limit, it suffices to show that $||S_N f - \sigma_N f||_{\infty} \to 0$ as $N \to \infty$. By definition of S_N and σ_N , triangle inequality, and Cauchy-Schwarz, we obtain

$$||S_N f - \sigma_N f||_{\infty} = \leq \sum_{n = -N}^{N} \frac{|n|}{N} |\hat{f}(n)|$$

$$\leq \sum_{n = -M}^{M} \frac{|n||\hat{f}(n)|}{N} + (\sum_{N \geq |n| > M} \frac{|n|}{N^2})^{\frac{1}{2}} (\sum_{N \geq |n| > M} |n||\hat{f}(n)|^2)^{\frac{1}{2}},$$

$$\leq \sum_{n = -M}^{M} \frac{|n||\hat{f}(n)|}{N} + 2(\sum_{N > |n| > M} |n||\hat{f}(n)|^2)^{\frac{1}{2}},$$

for any N > M. Taking \limsup with respect to N on both sides, we get

$$\limsup_{N\to\infty} ||S_N f - \sigma_N f||_{\infty} \leq 2(\sum_{|n|>M} |n||\hat{f}(n)|^2)^{\frac{1}{2}},$$

As $f \in H^{\frac{1}{2}}(\mathbb{T})$, taking the limit as $M \to \infty$ gives

$$\limsup_{N \to \infty} ||S_N f - \sigma_N f||_{\infty} \le 0$$

Hence, we have shown that $||S_N f - \sigma_N f||_{\infty} \to 0$ as $N \to \infty$ as desired.

Question 4.

4. Let $0 < \alpha < 1$. Note by a theorem we have seen in class (which one?) that $f \in C^{\alpha}(\mathbb{T})$ implies $\hat{f}(n) = O(|n|^{-\alpha})$. Then, note that the exponent in this decay estimate cannot be improved by showing that the function

$$F(x) = \sum_{m=1}^{\infty} \frac{1}{3^{m\alpha}} \cos(2\pi 3^m x)$$

belongs to $C^{\alpha}(\mathbb{T})$. Also solve Exercise 1.9 in Muscalu & Schlag.

Solution.

A theorem that gives this result of $f \in C^{\alpha}(\mathbb{T}) \implies \hat{f}(n) = O(n^{-\alpha})$ is recorded in section 1.4.4, pg.18 of Schleg.

Question 5.

5. Draw a minimal Venn diagram that shows all possible intersections of the sets below:

$$C(\mathbb{T}), A(\mathbb{T}), C^{2/3}(\mathbb{T}), H^{1/2}(\mathbb{T}), U(\mathbb{T}) := \{f : S_N f \to f \text{ uniformly}\}.$$

Your diagram should not have any redundancy or ambiguity, i.e., if $A \cap B = \emptyset$, $A \subset B$, or $A \neq B$, this should be visible and indicated. Give an example (or show the existence) of a function in each region of intersection.

Solution.