

Xyba Project

Pengantar Teori Probabilitas Rangkuman UAS 2018

- 1. This document is version: 0.7.2

 Version should be at least 0.9 if you want to share this document to other people
- 2. You may not share this document if version is less than 1.0 unless you have my permission to do so
- 3. This document is created by Xyba, Student of Mathematics University of Indonesia Batch 2016
- 4. Should there be any mistakes or feedbacks you'd like to give, please contact me
- 5. Last Updated: 25/05/2018

Thank you for your cooperation >v<

2.1. Fungsi dan Fungsi Invers

A. Pemetaan

Misal Ω adalah ruang sampel dengan titik-titik sampel ω . Terkadang kita tertarik dengan nilai $X(\omega)$ yang terasosiasi dengan ω , dan bukan ω sendiri. $X(\omega)$ mungkin dapat diobservasi namun ω belum tentu.

Sebuah fungsi X pada ruang Ω menuju ruang Ω' mengasosiasikan tiap titik dari Ω dengan titik dari Ω' . Ω dinamakan domain dari X dan Ω' dinamakan range dari X.

Himpunan $\Omega'' = \{X(\omega) : \omega \in \Omega\}$ yang merupakan subset dari Ω' , dinamakan strict range dari X.

Jika $\Omega' = \Omega''$, kita katakan X adalah mapping dari Ω onto Ω' . Jika tidak, maka kita katakan X adalah mapping dari Ω into Ω' .

Kita hanya konsiderasikan fungsi bernilai satu saja. Sehingga, $\omega_1 = \omega_2 \Rightarrow X(\omega_1) = X(\omega_2)$. Fungsi seperti $X(\omega) = \pm \sqrt{\omega}, \omega \in \mathbb{R}$ tidak kita konsideransikan.

Secara umum, $X(\omega_1) = X(\omega_2) \Rightarrow \omega_1 = \omega_2$ karena mungkin terdapat lebih dari satu ω yang dipetakan ke peta ω' yang sama.

Jika $X(\omega_1)=X(\omega_2)\Rightarrow \omega_1=\omega_2$ untuk sembarang $\omega_1,\omega_2\in\Omega$, maka X dikatakan sebuah fungsi satu-satu.

e.g.:

Misal $\Omega = \{0, \pm 1, \pm 2, \pm 3, \dots\}, \Omega' = \{0,1,2,3,\dots\}, \text{dan } \Omega'' = \{0,1,4,9,\dots\}.$

Kita definisikan sebuah fungsi *X* sebagai $X(\omega) = \omega^2$.

Apabila $X: \Omega \to \Omega'$, maka X adalah fungsi into.

Apabila $X: \Omega \to \Omega''$, maka X adalah fungsi onto.

Apabila $X: \Omega' \to \Omega''$, maka X adalah fungsi satu-satu dan onto.

B. Fungsi Titik dan Fungsi Himpunan

Jika ruang rangenya adalah garis real $\mathbb R$ atau subsetnya, fungsinya dikatakan sebagai fungsi numerikal atau bernilai real. Artinya kita mempunyai pemetaan Ω ke $\mathbb R$.

Apabila argumen-argumen dari X adalah titik-titik dari ruang Ω , kita punya sebuah fungsi titik.

Apabila argument-argumen dari sebuah fungsi adalah himpunan dari suatu kelas, maka kita akan punya fungsi himpunan.

e.g.:

Misal $X: \Omega \to \mathbb{R}$ dan $X(\omega) = \omega + 2$.

X(2) = 4 dikatakan fungsi titik dan $X(\{1,3\}) = \{3,5\}$ dikatakan fungsi himpunan.

Definisikan μ sebagai panjang interval.

Sehingga kita akan punya:

$$\mu((a,b)) = b - a \operatorname{dan} \mu((a,b) \cup (c,d)) = (b-a) + (d-c)$$

dan sebagainya.

C. Perbandingan Himpunan

Misal X dan Y adalah fungsi bernilai real pada Ω .

$$\begin{split} X &= Y \Leftrightarrow X(\omega) = Y(\omega), \forall \omega \in \Omega \\ X &< Y \Leftrightarrow X(\omega) < Y(\omega), \forall \omega \in \Omega \\ X &> Y \Leftrightarrow X(\omega) > Y(\omega), \forall \omega \in \Omega \end{split}$$

Fungsi konstan $X(\omega) = c, \forall \omega \in \Omega$ dikatakan sebagai fungsi degenerate.

D. Fungsi Invers

Himpunan dari semua titik $\omega \in \Omega$ dimana peta dari X adalah ω' adalah peta invers dari $\{\omega'\}$, yang dinotasikan sebagai $X^{-1}(\{\omega'\})$. Sehingga,

$$X^{-1}(\{\omega'\}) = \{\omega \in \Omega : X(\omega) = \omega'\}$$

Secara umum, misal $B' \subset \Omega'$. Himpunan dari semua titik dari Ω dimana $X(\omega) \in B'$ dinamakan peta invers dari B' di bawah X, dinotasikan $X^{-1}(B')$:

$$X^{-1}(B') = \{\omega : X(\omega) \in B'\}$$

Dengan setiap fungsi titik X, kita asosiasikan fungsi himpunan X^{-1} , dimana domainnya adalah sebuah kelas \mathcal{B}' dari subset-subset dari Ω' dimana rangenya adalah kelas \mathcal{B} , adalah subset-subset dari Ω . X^{-1} dikatakan fungsi invers dari X. Kita notasikan:

$$X(B) = \{X(\omega) \colon \omega \in B\}, B \subset \Omega$$
$$X^{-1}(\mathcal{B}') = \{X^{-1}(B') \colon B' \in \mathcal{B}'\}$$

Sehingga kita akan punya:

$$X^{-1}(\Omega') = \{\omega : X(\omega) \in \Omega'\} = \Omega$$

$$X^{-1}(\emptyset) = \emptyset$$

e.g.:

Misal
$$X(\omega) = \omega^2 \operatorname{dan} B' = (1,2)$$

Apabila
$$X: \mathbb{R} \to \mathbb{R}$$
, maka $X^{-1}(B') = (-\sqrt{2}, -1) \cup (1, \sqrt{2})$

Apabila
$$X: (0, \infty) \to (0, \infty)$$
, maka $X^{-1}(B') = (1, \sqrt{2})$

E. Fungsi Indikator

Definisikan fungsi bernilai real I_A atau I(A) yang didefinisikan pada Ω sebagai fungsi indikator atau fungsi karakteristik dari A sebagai berikut:

$$I_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \in A^c \end{cases}$$

Strict range dari I_A adalah $I_A(\Omega) = \{I_A(\omega) : \omega \in \Omega\} = \{0,1\}.$

Jika B ⊂ \mathbb{R} , maka:

$$I_A^{-1}(B) = egin{cases} \emptyset, & ext{ jika B tidak mengandung 0 dan 1} \ A, & ext{ jika B hanya mengandung 1} \ A^c, & ext{ jika B hanya mengandung 0} \ \Omega, & ext{ jika B mengandung kedua 0 dan 1} \end{cases}$$

Sehingga, $I_A^{-1}(\mathcal{B}) = \{\emptyset, A, A^c, \Omega\} = \sigma(A)$.

Kita juga dapat definisikan:

$$cI_A(\omega) = \begin{cases} c, & \omega \in A \\ 0, & \omega \in A^c \end{cases}$$

Dapat ditunjukkan bahwa $(cI_A^{-1})(\mathcal{B}) = I_A^{-1}(\mathcal{B}) = \{\emptyset, A, A^c, \Omega\} = \sigma(A)$

Lebih lanjut, kita bisa definisikan:

$$I_{\Omega}(\omega) = \begin{cases} 1, & \omega \in \Omega \\ 0, & \omega \in \emptyset \end{cases}$$

Jika $X(\omega) = c$, $\forall \omega \in \Omega$, maka $X = cI_{\Omega}$. Pada kasus ini, kita akan punya $X^{-1}(B') = \emptyset$ atau Ω, apa pun $B' \subset \mathbb{R}$.

Sehingga:

$$cI_{\Omega}^{-1}(\omega) = I_{\Omega}^{-1}(\omega) = \{\emptyset, \Omega\}$$

F. Sifat-sifat Fungsi Indikator

$$\begin{array}{l} A \subset B \Leftrightarrow I_A \leq I_B \\ A = B \Leftrightarrow I_A = I_B \end{array}$$

$$I_A = I_A^2 = \dots = I_A^n$$

$$I_\Omega = 1$$

$$I_{A^c} = 1 - I_A$$

$$I_{B-A} = I_B - I_A$$

$$\begin{split} I_{AB} &= I_{A}I_{B} \\ I_{\bigcap_{i=1}^{n}A_{i}} &= \prod_{i=1}^{n}I_{A_{i}} = \min\{I_{A_{1}}, \dots, I_{A_{n}}\} \end{split}$$

$$\begin{split} I_{A \cup B} &= I_A + I_B - I_A I_B = \max\{I_A, I_B\} \\ I_{A + B} &= I_A + I_B \\ I_{\bigcup_i A_i} &= \sum_i I_{A_i} - \sum_{i \neq j} I_{A_i} I_{A_j} + \sum_{i \neq j \neq k} I_{A_i} I_{A_j} I_{A_k} - \cdots \\ &= \max\{I_{A_1}, \dots, I_{A_n}\} \end{split}$$

G. Lemma 2.1

Lemma 2.1

Pemetaan Invers mempertahankan semua relasi himpunan.

Bukti:

(i) Misal $B \subset C \subset \Omega'$. Akan ditunjukkan $X^{-1}(B) \subset X^{-1}(C)$. Perhatikan:

$$X^{-1}(B) = \{\omega : X(\omega) \in B\} \subset \{\omega : X(\omega) \in C\}$$

$$\therefore X^{-1}(B) \subset X^{-1}(C)$$

(ii) Misal $B_k \subset \Omega'$. Akan ditunjukkan:

$$X^{-1}\left(\bigcap_{k}B_{k}\right)=\bigcap_{k}\left(X^{-1}(B_{k})\right)$$
 Ambil $\omega\in X^{-1}\left(\bigcap_{k}B_{k}\right)$, perhatikan:
$$\omega\in X^{-1}\left(\bigcap_{k}B_{k}\right)\Leftrightarrow X(\omega)\in\bigcap_{k}B_{k}$$

$$\Leftrightarrow X(\omega)\in B_{k},\forall k$$

$$\Leftrightarrow \omega\in X^{-1}(B_{k}),\forall k$$

$$\Leftrightarrow \omega\in\bigcap_{k}\left(X^{-1}(B_{k})\right)$$

$$\therefore X^{-1}\left(\bigcap_{k}B_{k}\right)=\bigcap_{k}\left(X^{-1}(B_{k})\right)$$

(iii) Misal $B_k \subset \Omega'$. Akan ditunjukkan:

$$X^{-1}\left(\bigcup_k B_k\right) = \bigcup_k \left(X^{-1}(B_k)\right)$$
 Ambil $\omega \in X^{-1}\left(\bigcup_k B_k\right)$, perhatikan:
$$\omega \in X^{-1}\left(\bigcup_k B_k\right) \Leftrightarrow X(\omega) \in \bigcup_k B_k$$

$$\Leftrightarrow X(\omega) \in B_k, \text{ untuk beberapa } k$$

$$\Leftrightarrow \omega \in X^{-1}(B_k), \text{ untuk beberapa } k$$

$$\Leftrightarrow \omega \in \bigcup_k \left(X^{-1}(B_k)\right)$$

$$\therefore X^{-1}\left(\bigcup_k B_k\right) = \bigcup_k \left(X^{-1}(B_k)\right)$$

(iv) Misal $B \subset \Omega'$. Akan ditunjukkan $X^{-1}(B^c) = (X^{-1}(B))^c$. Ambil $\omega \in X^{-1}(B^c)$, perhatikan:

$$\omega \in X^{-1}(B^c) \Leftrightarrow X(\omega) \in B^c$$

$$\Leftrightarrow X(\omega) \notin B$$

$$\Leftrightarrow \omega \notin X^{-1}(B)$$

$$\Leftrightarrow \omega \in (X^{-1}(\omega))^c$$

$$\therefore X^{-1}(B^c) = (X^{-1}(B))^c$$

H. Corollary Lemma 2.1

Corollary 2.1

Jika $\mathcal A$ adalah kelas dari subset-subset dari Ω dan adalah sebuah σ -field, maka kelas $\mathcal B$ dari semua himpunan yang peta inversnya tergabung dalam $\mathcal A$ juga adalah σ -field.

I. Corollary 2 Lemma 2.1

Corollary 2.2

Jika $\mathcal C$ adalah sebuah field (atau σ -field) dari subset-subset dari Ω' , maka $X^{-1}(\mathcal C)$ adalah sebuah field (atau σ -field) dari subset-subset dari Ω . Peta invers dari minimal σ -field dari kelas $\mathcal C$ apa pun adalah minimal σ -field dari $X^{-1}(\mathcal C)$, yakni:

$$\sigma\big(X^{-1}(\mathcal{C})\big) = X^{-1}\big(\sigma(\mathcal{C})\big)$$