SBML Model Report

Model name: "Caydasi2012 - Regulation of Tem1 by the GAP complex in spindle position cell cycle checkpoint - Ubiquitous association model"

May 21, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Matthieu MAIRE¹ and Maiko Lohel² at February nineth 2012 at 1:51 p. m. and last time modified at May eleventh 2018 at 5:08 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	36
events	1	constraints	0
reactions	48	function definitions	32
global parameters	23	unit definitions	4
rules	12	initial assignments	0

Model Notes

Caydasi2012 - Inhibition of Tem1 by the GAPcomplex in spindle position cell cycle checkpoint

¹EMBL-EBI, matt.maire@free.fr

 $^{^2} Deutsches \ Krebsforschungszentrum \ Heidelberg, \verb|m.lohel@dkfz.de|$

This model is described in the article: A dynamical model of the spindle position check-point. Caydasi AK, Lohel M, Grnert G, Dittrich P, Pereira G, Ibrahim B.Mol. Syst. Biol. 2012; 8: 582

Abstract:

The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother-to-daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase-activating protein (GAP) complex Bfa1-Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1-Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1-Bub2 and Tem1 localization at the SPBs. Based on the measured SPB-bound protein levels, we introduce a dynamical model of the SPOC that describes the regulation of Bfa1 and Tem1. Our model suggests that Bfa1 interacts with Tem1 in the cytoplasm as well as at the SPBs to provide efficient Tem1 inhibition.

This model is hosted on BioModels Database and identified by: BIOMD0000000699.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of eight unit definitions of which four are predefined by SBML and not mentioned in the model.

```
2.1 Unit time
```

Name time

Definition 60 s

2.2 Unit unit_0

Name 1/(mol*s)

Definition $\text{mol}^{-1} \cdot 1 \cdot \text{s}^{-1}$

2.3 Unit unit_1

Name 1/s

Definition s^{-1}

2.4 Unit unit_2

Name 1

Definition dimensionless⁰

2.5 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.6 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
c2	Cytosol		3	10^{-13}	1		
c3	SPB		3	$3 \cdot 10^{-18}$	1		

3.1 Compartment c2

This is a three dimensional compartment with a constant size of 10^{-13} litre.

Name Cytosol

3.2 Compartment c3

This is a three dimensional compartment with a constant size of $3 \cdot 10^{-18}$ litre.

Name SPB

4 Species

This model contains 36 species. The boundary condition of twelve of these species is set to true so that these species' amount cannot be changed by any reaction. Section 10 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

		Table 3. Froperties of each species.	D 1 177 1	<u> </u>	
Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
SPB_B	В	c3	$\text{mol} \cdot 1^{-1}$		\Box
SPB_T	T	c3	$\text{mol} \cdot l^{-1}$		\Box
Bfa1	Bfa1	c2	$\operatorname{mol} \cdot 1^{-1}$		\Box
Bfa1P4	Bfa1P4	c2	$\operatorname{mol} \cdot 1^{-1}$		\Box
Bfa1P5	Bfa1P5	c2	$\mathrm{mol}\cdot\mathrm{l}^{-1}$	\Box	\Box
Tem1GTP	Tem1GTP	c2	$\text{mol} \cdot l^{-1}$	\Box	\Box
Tem1GDP	Tem1GDP	c2	$\text{mol} \cdot l^{-1}$	\Box	\Box
B_Bfa1	B-Bfa1	c3	$\text{mol} \cdot l^{-1}$	\Box	\Box
B_Bfa1P4	B-Bfa1P4	c3	$\text{mol} \cdot l^{-1}$	\Box	\Box
B_Bfa1P5	B-Bfa1P5	c3	$\mathrm{mol}\cdot\mathrm{l}^{-1}$	\Box	\Box
$T_{-}Tem1GTP$	T-Tem1GTP	c3	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
$T_{-}Tem1GDP$	T-Tem1GDP	c3	$\operatorname{mol} \cdot 1^{-1}$		\Box
B_Bfa1_Tem1GTP	B-Bfa1-Tem1GTP	c3	$\text{mol} \cdot l^{-1}$	\Box	\Box
B_Bfa1P4_Tem1GTP	B-Bfa1P4-Tem1GTP	c3	$\text{mol} \cdot l^{-1}$	\Box	\Box
B_Bfa1P5_Tem1GTP	B-Bfa1P5-Tem1GTP	c3	$\text{mol} \cdot l^{-1}$	\Box	\Box
B_Bfa1_Tem1GDP	B-Bfa1-Tem1GDP	c3	$\text{mol} \cdot l^{-1}$	\Box	\Box
B_Bfa1P4_Tem1GDP	B-Bfa1P4-Tem1GDP	c3	$\mathrm{mol}\cdot\mathrm{l}^{-1}$	\Box	\Box
B_Bfa1P5_Tem1GDP	B-Bfa1P5-Tem1GDP	c3	$\operatorname{mol} \cdot 1^{-1}$		\Box
$Bfa1_Tem1GTP$	Bfa1-Tem1GTP	c2	$\operatorname{mol} \cdot 1^{-1}$		\Box
Bfa1P4_Tem1GTP	Bfa1P4-Tem1GTP	c2	$\text{mol} \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Bfa1P5_Tem1GTP	Bfa1P5-Tem1GTP	c2	$\text{mol} \cdot 1^{-1}$	\Box	
$Bfa1_Tem1GDP$	Bfa1-Tem1GDP	c2	$\operatorname{mol} \cdot 1^{-1}$	\Box	
Bfa1P4_Tem1GDP	Bfa1P4-Tem1GDP	c2	$\operatorname{mol} \cdot 1^{-1}$		
Bfa1P5_Tem1GDP	Bfa1P5-Tem1GDP	c2	$\operatorname{mol} \cdot 1^{-1}$		
Active_Bfa1_at- _the_SPB	Active Bfa1 at the SPB	c3	$\operatorname{mol} \cdot \mathbf{l}^{-1}$		
Active_Bfa1_at- _the_Cytosol	Active Bfa1 at the Cytosol	c2	$\operatorname{mol} \cdot \mathbf{l}^{-1}$		
Active_Tem1_at- _the_SPB	Active Tem1 at the SPB	c3	$\operatorname{mol} \cdot \mathbf{l}^{-1}$		
Active_Tem1_in- _the_Cytosol	Active Tem1 in the Cytosol	c2	$\mathrm{mol} \cdot \mathrm{l}^{-1}$		
Inactive_Bfa1_at- _the_SPB	Inactive Bfa1 at the SPB	c3	$\operatorname{mol} \cdot \mathbf{l}^{-1}$		\mathbf{Z}
<pre>Inactive_Bfa1_inthe_cytosol</pre>	Inactive Bfa1 in the cytosol	c2	$\operatorname{mol} \cdot \mathbf{l}^{-1}$		\mathbf{Z}
<pre>Inactive_Tem1_atthe_SPB</pre>	Inactive Tem1 at the SPB	c3	$\operatorname{mol} \cdot \mathbf{l}^{-1}$		\mathbf{Z}
<pre>Inactive_Tem1_inthe_cytosol</pre>	Inactive Tem1 in the cytosol	c2	$\text{mol} \cdot l^{-1}$		\square
Total_Bfa1_at_the- _SPB	Total Bfa1 at the SPB	c3	$\text{mol} \cdot l^{-1}$		\square
Total_Bfa1_in_the- _Cytosol	Total Bfa1 in the Cytosol	c2	$\operatorname{mol} \cdot \mathbf{l}^{-1}$		\square
Total_Tem1_at_the- _SPB	Total Tem1 at the SPB	c3	$\operatorname{mol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Total_Tem1_in_the- _Cytosol	Total Tem1 in the Cytosol	c2	$\operatorname{mol} \cdot 1^{-1}$		

5 Parameters

This model contains 23 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
konB	konB		1250000.000	$\text{mol}^{-1} \cdot 1 \cdot \text{s}^{-1}$	
koffB	koffB		0.001	s^{-1}	
konB4	konB4		20000.000	$\text{mol}^{-1} \cdot \mathbf{l} \cdot \mathbf{s}^{-1}$	
koffB4	koffB4		0.037	s^{-1}	$\overline{\mathbf{Z}}$
konBT	konBT		$3.65 \cdot 10^{7}$	$\text{mol}^{-1} \cdot \mathbf{l} \cdot \mathbf{s}^{-1}$	$\overline{\mathbf{Z}}$
konB4T	konB4T		$3.65 \cdot 10^{7}$	$\text{mol}^{-1} \cdot \text{l} \cdot \text{s}^{-1}$	$\overline{\mathbf{Z}}$
konB5T	konB5T		7000000.000	$\text{mol}^{-1} \cdot \mathbf{l} \cdot \mathbf{s}^{-1}$	$\overline{\mathbf{Z}}$
koffBT	koffBT		0.183	s^{-1}	$\overline{\mathbf{Z}}$
konT	konT		1900000.000	$\text{mol}^{-1} \cdot \mathbf{l} \cdot \mathbf{s}^{-1}$	$\overline{\mathbf{Z}}$
koffT	koffT		0.183	s^{-1}	$\overline{\mathbf{Z}}$
kfKin4	kfKin4		1000.000	s^{-1}	$\overline{\mathbf{Z}}$
kfKin4Cyto	kfKin4Cyto		0.090	s^{-1}	$\overline{\mathbf{Z}}$
krKin4	krKin4		0.025	s^{-1}	$\overline{\mathbf{Z}}$
kfCdc5	kfCdc5		1.000	s^{-1}	$\overline{\mathbf{Z}}$
krCdc5	krCdc5		0.010	s^{-1}	$\overline{\mathbf{Z}}$
khyd	khyd		0.002	s^{-1}	$\overline{\mathbf{Z}}$
knex	knex		0.014	s^{-1}	$\overline{\mathbf{Z}}$
khydBT	khydBT		2.000	s^{-1}	$\overline{\mathbf{Z}}$
khydB4T	khydB4T		2.000	s^{-1}	$\overline{\mathbf{Z}}$
u	u		1.000	dimensionless ⁰	
alpha	alpha		1.000	dimensionless ⁰	
q	q		1.000	dimensionless ⁰	\mathbf{Z}
avogadro	avogadro		$6.0221415 \cdot 10^{23}$		\mathbf{Z}

6 Function definitions

This is an overview of 32 function definitions.

6.1 Function definition Function_for_R21__Rev__association_of_Tem1GDP-_with_Cdc5_phosphorylated_Bfa1

Name Function for R21: Rev. association of Tem1GDP with Cdc5-phosphorylated Bfa1

Arguments [Bfa1P5], [Bfa1P5_Tem1GDP], [Tem1GDP], alpha, koffBT, konB5T

Mathematical Expression

$$alpha \cdot konB5T \cdot [Bfa1P5] \cdot [Tem1GDP] - koffBT \cdot [Bfa1P5_Tem1GDP] \quad (1)$$

6.2 Function definition Function_for_R22__Rev__SPB_association_of_Tem1GTP

Name Function for R22: Rev. SPB-association of Tem1GTP

Arguments [SPB_T], [T_Tem1GTP], [Tem1GTP], vol (c3), koffT, konT

Mathematical Expression

$$vol(c3) \cdot (konT \cdot [SPB_T] \cdot [Tem1GTP] - koffT \cdot [T_Tem1GTP])$$
 (2)

6.3 Function definition Function_for_R23__Rev__SPB_association_of_Tem1GDP

Name Function for R23: Rev. SPB-association of Tem1GDP

Arguments [SPB_T], [T_Tem1GDP], [Tem1GDP], vol (c3), koffT, konT

Mathematical Expression

$$vol(c3) \cdot (konT \cdot [SPB_T] \cdot [Tem1GDP] - koffT \cdot [T_Tem1GDP])$$
 (3)

6.4 Function definition

Function_for_R24_Phosphorylation_of_SPB_bound_Bfa1_by_Kin4

Name Function for R24: Phosphorylation of SPB-bound Bfa1 by Kin4

Arguments [B_Bfa1], kfKin4, u

Mathematical Expression

$$u \cdot kfKin4 \cdot \left[B_Bfa1 \right] \tag{4}$$

6.5 Function definition

Function_for_R25__Phosphorylation_of_SPB_bound_Bfa1_Tem1GTP_by_Kin4

Name Function for R25: Phosphorylation of SPB-bound Bfa1:Tem1GTP by Kin4

Arguments [B_Bfa1_Tem1GTP], kfKin4, u

$$u \cdot kfKin4 \cdot [B_Bfa1_Tem1GTP]$$
 (5)

6.6 Function definition

Function_for_R26__Phosphorylation_of_SPB_bound_Bfa1_Tem1GDP_by_Kin4

Name Function for R26: Phosphorylation of SPB-bound Bfa1:Tem1GDP by Kin4

Arguments [B_Bfa1_Tem1GDP], kfKin4, u

Mathematical Expression

$$u \cdot kfKin4 \cdot [B_Bfa1_Tem1GDP]$$
 (6)

6.7 Function definition

Function_for_R30__Phosphorylation_of_Bfa1_by_cytosolic_Kin4

Name Function for R30: Phosphorylation of Bfa1 by cytosolic Kin4

Arguments [Bfa1], kfKin4Cyto, u

Mathematical Expression

$$u \cdot kfKin4Cyto \cdot [Bfa1]$$
 (7)

6.8 Function definition Function_for_R36__Dephosphorylation_of_Cdc5-_phosphorylated_Bfa1_presumably_by_PP2A

Name Function for R36: Dephosphorylation of Cdc5-phosphorylated Bfa1 presumably by PP2A

Arguments [Bfa1P5], krCdc5, u

Mathematical Expression

$$u \cdot krCdc5 \cdot [Bfa1P5]$$
 (8)

6.9 Function definition Function_for_R37__Dephosphorylation_of_Cdc5-_phosphorylated_Bfa1_presumably_by_PP2A

Name Function for R37: Dephosphorylation of Cdc5-phosphorylated Bfa1 presumably by PP2A

Arguments [Bfa1P5_Tem1GTP], krCdc5, u

$$u \cdot krCdc5 \cdot [Bfa1P5_Tem1GTP]$$
 (9)

6.10 Function definition Function_for_R31__Phosphorylation_of_Bfa1-_Tem1GTP_by_cytosolic_Kin4

Name Function for R31: Phosphorylation of Bfa1:Tem1GTP by cytosolic Kin4

Arguments [Bfa1_Tem1GTP], kfKin4Cyto, u

Mathematical Expression

$$u \cdot kfKin4Cyto \cdot [Bfa1_Tem1GTP]$$
 (10)

6.11 Function definition Function_for_R38__Dephosphorylation_of_Cdc5-_phosphorylated_Bfa1_presumably_by_PP2A

Name Function for R38: Dephosphorylation of Cdc5-phosphorylated Bfa1 presumably by PP2A

Arguments [Bfa1P5_Tem1GDP], krCdc5, u

Mathematical Expression

$$u \cdot krCdc5 \cdot [Bfa1P5_Tem1GDP]$$
 (11)

6.12 Function definition Function_for_R32__Phosphorylation_of_Bfa1-_Tem1GDP_by_cytosolic_Kin4

Name Function for R32: Phosphorylation of Bfa1:Tem1GDP by cytosolic Kin4

Arguments [Bfa1_Tem1GDP], kfKin4Cyto, u

Mathematical Expression

$$u \cdot kfKin4Cyto \cdot [Bfa1_Tem1GDP]$$
 (12)

6.13 Function definition Function_for_R18__Rev__association_of_Tem1GTP-_with_Cdc5_phosphorylated_Bfa1

Name Function for R18: Rev. association of Tem1GTP with Cdc5-phosphorylated Bfa1

Arguments [Bfa1P5], [Bfa1P5_Tem1GTP], [Tem1GTP], alpha, koffBT, konB5T

$$alpha \cdot konB5T \cdot [Bfa1P5] \cdot [Tem1GTP] - koffBT \cdot [Bfa1P5_Tem1GTP]$$
 (13)

6.14 Function definition

Function_for_R19_Rev_association_of_Tem1GDP_with_Bfa1

Name Function for R19: Rev. association of Tem1GDP with Bfa1

Arguments [Bfa1], [Bfa1_Tem1GDP], [Tem1GDP], alpha, koffBT, konBT

Mathematical Expression

$$alpha \cdot konBT \cdot [Bfa1] \cdot [Tem1GDP] - koffBT \cdot [Bfa1_Tem1GDP]$$
 (14)

6.15 Function definition Function_for_R20__Rev__association_of_Tem1GDP-_with_Kin4_phosphorylated_Bfa1

Name Function for R20: Rev. association of Tem1GDP with Kin4-phosphorylated Bfa1

Arguments [Bfa1P4], [Bfa1P4_Tem1GDP], [Tem1GDP], alpha, koffBT, konB4T

Mathematical Expression

$$alpha \cdot konB4T \cdot [Bfa1P4] \cdot [Tem1GDP] - koffBT \cdot [Bfa1P4_Tem1GDP]$$
 (15)

6.16 Function definition

Function_for_R16__Rev__association_of_Tem1GTP_with_Bfa1

Name Function for R16: Rev. association of Tem1GTP with Bfa1

Arguments [Bfa1], [Bfa1_Tem1GTP], [Tem1GTP], alpha, koffBT, konBT

Mathematical Expression

$$alpha \cdot konBT \cdot [Bfa1] \cdot [Tem1GTP] - koffBT \cdot [Bfa1_Tem1GTP]$$
 (16)

6.17 Function definition Function_for_R17__Rev__association_of_Tem1GTP-_with_Kin4_phosphorylated_Bfa1

Name Function for R17: Rev. association of Tem1GTP with Kin4-phosphorylated Bfa1

Arguments [Bfa1P4], [Bfa1P4_Tem1GTP], [Tem1GTP], alpha, koffBT, konB4T

$$alpha \cdot konB4T \cdot [Bfa1P4] \cdot [Tem1GTP] - koffBT \cdot [Bfa1P4_Tem1GTP]$$
 (17)

6.18 Function definition Function_for_R6__Rev__SPB_association_of_Cdc5-_phosphorylated_Bfa1_Tem1GTP_complex

Name Function for R6: Rev. SPB-association of Cdc5-phosphorylated Bfa1-Tem1GTP complex

Arguments [B_Bfa1P5_Tem1GTP], [Bfa1P5_Tem1GTP], [SPB_B], vol(c3), koffB, konB

Mathematical Expression

$$vol(c3) \cdot (konB \cdot [SPB_B] \cdot [Bfa1P5_Tem1GTP] - koffB \cdot [B_Bfa1P5_Tem1GTP]) (18)$$

6.19 Function definition

Function_for_R2_Rev__SPB_association_of_Kin4_phosphorylated_Bfa1

Name Function for R2: Rev. SPB-association of Kin4-phosphorylated Bfa1

Arguments [B_Bfa1P4], [Bfa1P4], [SPB_B], vol(c3), koffB4, konB4

Mathematical Expression

$$vol(c3) \cdot (konB4 \cdot [SPB_B] \cdot [Bfa1P4] - koffB4 \cdot [B_Bfa1P4])$$
 (19)

6.20 Function definition Function_for_R1_Rev_SPB_association_of_Bfa1

Name Function for R1: Rev. SPB-association of Bfa1

Arguments [B_Bfa1], [Bfa1], [SPB_B], vol (c3), koffB, konB

Mathematical Expression

$$vol(c3) \cdot (konB \cdot [SPB_B] \cdot [Bfa1] - koffB \cdot [B_Bfa1])$$
 (20)

6.21 Function definition

Function_for_R3_Rev__SPB_association_of_Cdc5_phosphorylated_Bfa1

Name Function for R3: Rev. SPB-association of Cdc5-phosphorylated Bfa1

Arguments [B_Bfa1P5], [Bfa1P5], [SPB_B], vol(c3), koffB, konB

$$vol(c3) \cdot (konB \cdot [SPB_B] \cdot [Bfa1P5] - koffB \cdot [B_Bfa1P5])$$
 (21)

6.22 Function definition

 $Function_for_R4_Rev__SPB_association_of_Bfa1_Tem1GTP_complex$

Name Function for R4: Rev. SPB-association of Bfa1-Tem1GTP complex

Arguments [B_Bfa1_Tem1GTP], [Bfa1_Tem1GTP], [SPB_B], vol(c3), koffB, konB

Mathematical Expression

$$vol(c3) \cdot (konB \cdot [SPB_B] \cdot [Bfa1_Tem1GTP] - koffB \cdot [B_Bfa1_Tem1GTP])$$
 (22)

6.23 Function definition Function_for_R5__Rev__SPB_association_of_Kin4-_phosphorylated_Bfa1_Tem1GTP_complex

Name Function for R5: Rev. SPB-association of Kin4-phosphorylated Bfa1-Tem1GTP complex

Arguments [B_Bfa1P4_Tem1GTP], [Bfa1P4_Tem1GTP], [SPB_B], vol (c3), koffB4, konB4

Mathematical Expression

$$vol(c3) \cdot (konB4 \cdot [Bfa1P4_Tem1GTP] \cdot [SPB_B] - koffB4 \cdot [B_Bfa1P4_Tem1GTP])$$

6.24 Function definition

Function_for_R7__Rev__SPB_association_of_Bfa1_Tem1GDP_complex

Name Function for R7: Rev. SPB-association of Bfa1-Tem1GDP complex

Arguments [B_Bfa1_Tem1GDP], [Bfa1_Tem1GDP], [SPB_B], vol(c3), koffB, konB

Mathematical Expression

$$vol(c3) \cdot (konB \cdot [SPB_B] \cdot [Bfa1_Tem1GDP] - koffB \cdot [B_Bfa1_Tem1GDP]) \quad (24)$$

6.25 Function definition Function_for_R8_Rev___SPB_association_of_Kin4-_phosphorylated_Bfa1_Tem1GDP_complex

Name Function for R8: Rev. SPB-association of Kin4 phosphorylated Bfa1-Tem1GDP complex

Arguments [B_Bfa1P4_Tem1GDP], [Bfa1P4_Tem1GDP], [SPB_B], vol(c3), koffB4, konB4

Mathematical Expression

 $vol(c3) \cdot (konB4 \cdot [SPB_B] \cdot [Bfa1P4_Tem1GDP] - koffB4 \cdot [B_Bfa1P4_Tem1GDP])$

6.26 Function definition Function_for_R9__Rev__SPB_association_of_Cdc5-_phosphorylated_Bfa1_Tem1GDP_complex

Name Function for R9: Rev. SPB-association of Cdc5-phosphorylated Bfa1-Tem1GDP complex

Arguments [B_Bfa1P5_Tem1GDP], [Bfa1P5_Tem1GDP], [SPB_B], vol(c3), koffB, konB

Mathematical Expression

 $vol\left(c3\right)\cdot\left(konB\cdot\left[SPB_B\right]\cdot\left[Bfa1P5_Tem1GDP\right]-koffB\cdot\left[B_Bfa1P5_Tem1GDP\right]\right)(26)$

6.27 Function definition

Function_for_R10__Rev__association_of_Tem1GTP_with_SPB_bound_Bfa1

Name Function for R10: Rev. association of Tem1GTP with SPB-bound Bfa1

Arguments [B_Bfa1], [B_Bfa1_Tem1GTP], [Tem1GTP], vol(c3), koffBT, konBT

Mathematical Expression

$$vol\left(c3\right)\cdot\left(konBT\cdot\left[B_Bfa1\right]\cdot\left[Tem1GTP\right]-koffBT\cdot\left[B_Bfa1_Tem1GTP\right]\right)\quad(27)$$

6.28 Function definition Function_for_R11__Rev__association_of_Tem1GTP-_with_SPB_bound_Kin4_phosphorylated_Bfa1

Name Function for R11: Rev. association of Tem1GTP with SPB-bound Kin4-phosphorylated Bfa1

Arguments [B_Bfa1P4], [B_Bfa1P4_Tem1GTP], [Tem1GTP], vol(c3), koffBT, konB4T

Mathematical Expression

 $vol(c3) \cdot (konB4T \cdot [B_Bfa1P4] \cdot [Tem1GTP] - koffBT \cdot [B_Bfa1P4_Tem1GTP]) (28)$

6.29 Function definition Function_for_R12__Rev__association_of_Tem1GTP-_with_SPB_bound_Cdc5_phosphorylated_Bfa1

Name Function for R12: Rev. association of Tem1GTP with SPB-bound Cdc5-phosphorylated Bfa1

Arguments [B_Bfa1P5], [B_Bfa1P5_Tem1GTP], [Tem1GTP], vol(c3), koffBT, konB5T

Mathematical Expression

 $vol(c3) \cdot (konB5T \cdot [B_Bfa1P5] \cdot [Tem1GTP] - koffBT \cdot [B_Bfa1P5_Tem1GTP])$ (29)

6.30 Function definition

Function_for_R13_Rev_association_of_Tem1GDP_with_SPB_bound_Bfa1

Name Function for R13: Rev. association of Tem1GDP with SPB-bound Bfa1

Arguments [B_Bfa1], [B_Bfa1_Tem1GDP], [Tem1GDP], vol (c3), koffBT, konBT

Mathematical Expression

$$vol\left(c3\right)\cdot\left(konBT\cdot\left[B_Bfa1\right]\cdot\left[Tem1GDP\right]-koffBT\cdot\left[B_Bfa1_Tem1GDP\right]\right)\quad(30)$$

6.31 Function definition Function_for_R14__Rev__association_of_Tem1GDP-_with_SPB_bound_Kin4_phosphorylated_Bfa1

Name Function for R14: Rev. association of Tem1GDP with SPB-bound Kin4-phosphorylated Bfa1

Arguments [B_Bfa1P4], [B_Bfa1P4_Tem1GDP], [Tem1GDP], vol(c3), koffBT, konB4T

Mathematical Expression

$$vol(c3) \cdot (konB4T \cdot [B_Bfa1P4] \cdot [Tem1GDP] - koffBT \cdot [B_Bfa1P4_Tem1GDP])$$
 (31)

6.32 Function definition Function_for_R15__Rev__association_of_Tem1GDP-_with_SPB_bound_Cdc5_phosphorylated_Bfa1

Name Function for R15: Rev. association of Tem1GDP with SPB-bound Cdc5-phosphorylated Bfa1

Arguments [B_Bfa1P5], [B_Bfa1P5_Tem1GDP], [Tem1GDP], vol(c3), koffBT, konB5T

Mathematical Expression

$$vol(c3) \cdot (konB5T \cdot [B_Bfa1P5] \cdot [Tem1GDP] - koffBT \cdot [B_Bfa1P5_Tem1GDP])$$
 (32)

7 Rules

This is an overview of twelve rules.

7.1 Rule Active_Bfa1_at_the_Cytosol

Rule Active_Bfa1_at_the_Cytosol is an assignment rule for species Active_Bfa1_at_the_Cytosol:

$$\begin{split} Active_Bfa1_at_the_Cytosol &= (q \cdot ([Bfa1] + [Bfa1_Tem1GTP] + [Bfa1_Tem1GDP]) \\ &+ [Bfa1P4] + [Bfa1P4_Tem1GTP] + [Bfa1P4_Tem1GDP]) \\ &\cdot vol(c2) \cdot avogadro \end{split}$$

(33)

7.2 Rule Active_Tem1_at_the_SPB

Rule Active_Tem1_at_the_SPB is an assignment rule for species Active_Tem1_at_the_SPB:

$$\label{eq:active_Tem1_at_the_SPB} \begin{split} Active_Tem1_at_the_SPB &= ([T_Tem1GTP] + [B_Bfa1_Tem1GTP] + [B_Bfa1P4_Tem1GTP] \\ &+ [B_Bfa1P5_Tem1GTP]) \cdot vol\left(c3\right) \cdot avogadro \\ &\qquad \qquad (34) \end{split}$$

7.3 Rule Active_Tem1_in_the_Cytosol

Rule Active_Tem1_in_the_Cytosol is an assignment rule for species Active_Tem1_in_the-_Cytosol:

$$Active_Tem1_in_the_Cytosol = ([Tem1GTP] + [Bfa1_Tem1GTP] + [Bfa1P4_Tem1GTP] + [Bfa1P5_Tem1GTP]) \cdot vol(c2) \cdot avogadro$$

$$(35)$$

7.4 Rule Active_Bfa1_at_the_SPB

Rule Active_Bfa1_at_the_SPB is an assignment rule for species Active_Bfa1_at_the_SPB:

$$\label{eq:continuous} \begin{split} Active_Bfa1_at_the_SPB &= (q \cdot ([B_Bfa1] + [B_Bfa1_Tem1GTP] + [B_Bfa1_Tem1GDP]) \\ &+ [B_Bfa1P4] + [B_Bfa1P4_Tem1GTP] + [B_Bfa1P4_Tem1GDP]) \\ &\cdot vol\left(c3\right) \cdot avogadro \end{split} \tag{36}$$

7.5 Rule Inactive_Bfa1_at_the_SPB

Rule Inactive_Bfa1_at_the_SPB is an assignment rule for species Inactive_Bfa1_at_the_SPB:

$$\begin{split} \text{Inactive_Bfa1_at_the_SPB} &= ((1-q) \cdot ([B_Bfa1] + [B_Bfa1_Tem1GTP] + [B_Bfa1_Tem1GDP]) \\ &+ [B_Bfa1P5] + [B_Bfa1P5_Tem1GTP] + [B_Bfa1P5_Tem1GDP]) \\ &\cdot \text{vol} \, (c3) \cdot \text{avogadro} \end{split}$$

7.6 Rule Inactive_Bfa1_in_the_cytosol

Rule Inactive_Bfa1_in_the_cytosol is an assignment rule for species Inactive_Bfa1_in_the_cytosol:

7.7 Rule Inactive_Tem1_at_the_SPB

Rule Inactive_Tem1_at_the_SPB is an assignment rule for species Inactive_Tem1_at_the_SPB:

7.8 Rule Inactive_Tem1_in_the_cytosol

Rule Inactive_Tem1_in_the_cytosol is an assignment rule for species Inactive_Tem1_in_the_cytosol:

$$Inactive_Tem1_in_the_cytosol = ([Tem1GDP] + [Bfa1_Tem1GDP] + [Bfa1P4_Tem1GDP] + [Bfa1P5_Tem1GDP]) \cdot vol(c2) \cdot avogadro$$

$$(40)$$

7.9 Rule Total_Tem1_at_the_SPB

 $\label{eq:continuous_continuous$

Derived unit $mol \cdot l^{-1}$

7.10 Rule Total_Bfa1_in_the_Cytosol

Rule Total_Bfa1_in_the_Cytosol is an assignment rule for species Total_Bfa1_in_the-_Cytosol:

 $Total_Bfa1_in_the_Cytosol = [Active_Bfa1_at_the_Cytosol] + [Inactive_Bfa1_in_the_cytosol]$ (42)

Derived unit $mol \cdot 1^{-1}$

7.11 Rule Total_Bfa1_at_the_SPB

 $Rule\ Total_Bfa1_at_the_SPB\ is\ an\ assignment\ rule\ for\ species\ Total_Bfa1_at_the_SPB:$

 $Total_Bfa1_at_the_SPB = [Active_Bfa1_at_the_SPB] + [Inactive_Bfa1_at_the_SPB]$ (43)

Derived unit $mol \cdot l^{-1}$

7.12 Rule Total_Tem1_in_the_Cytosol

Rule Total_Tem1_in_the_Cytosol is an assignment rule for species Total_Tem1_in_the-_Cytosol:

 $Total_Tem1_in_the_Cytosol = [Active_Tem1_in_the_Cytosol] + [Inactive_Tem1_in_the_cytosol]$ (44)

Derived unit $mol \cdot l^{-1}$

8 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

8.1 Event SPOC_deactivation_upon_correct_spindle_alignment

Name SPOC deactivation upon correct spindle alignment

Trigger condition $time \ge 1800 \tag{45}$

Delay 0 (46)

 This model contains 48 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	R1	R1: Rev. SPB-association of Bfa1	$SPB_B + Bfa1 \Longrightarrow B_Bfa1$	
2	R2	R2: Rev. SPB-association of Kin4-	$Bfa1P4 + SPB_B \Longrightarrow B_Bfa1P4$	
		phosphorylated Bfa1		
3	R3		$Bfa1P5 + SPB_B \Longrightarrow B_Bfa1P5$	
		phosphorylated Bfa1		
4	R4		$Bfa1_Tem1GTP + SPB_B \Longrightarrow B_Bfa1_Tem1GTP$	
5	DE	complex R5: Rev. SPB-association of Kin4-	Bfa1P4_Tem1GTP +	
5	R5		•	
		phosphorylated Bfa1-Tem1GTP complex	SPB_B ⇒ B_Bfa1P4_Tem1GTP	
6	R6	R6: Rev. SPB-association of Cdc5-	Bfa1P5_Tem1GTP +	
		phosphorylated Bfa1-Tem1GTP complex	$SPB_B \Longrightarrow B_Bfa1P5_Tem1GTP$	
7	R7	R7: Rev. SPB-association of Bfa1-Tem1GDP complex	$Bfa1_Tem1GDP + SPB_B \Longrightarrow B_Bfa1_Tem1GDP$	
8	R8	R8: Rev. SPB-association of Kin4 phospho-	Bfa1P4_Tem1GDP +	
		rylated Bfa1-Tem1GDP complex	$SPB_B \Longrightarrow B_Bfa1P4_Tem1GDP$	
9	R9	R9: Rev. SPB-association of Cdc5-	Bfa1P5_Tem1GDP +	
		phosphorylated Bfa1-Tem1GDP complex	$SPB_B \Longrightarrow B_Bfa1P5_Tem1GDP$	
10	R10	R10: Rev. association of Tem1GTP with	$Tem1GTP + B_Bfa1 \Longrightarrow B_Bfa1_Tem1GTP$	
		SPB-bound Bfa1		
11	R11	R11: Rev. association of Tem1GTP with	$Tem1GTP + B_Bfa1P4 \Longrightarrow B_Bfa1P4_Tem1GTP$	
		SPB-bound Kin4-phosphorylated Bfa1		

Nº	Id	Name	Reaction Equation	SBO
12	R12	R12: Rev. association of Tem1GTP with	Tem1GTP+B_Bfa1P5 = B_Bfa1P5_Tem1GTP	
		SPB-bound Cdc5-phosphorylated Bfa1		
13	R13	R13: Rev. association of Tem1GDP with	$Tem1GDP + B_Bfa1 \Longrightarrow B_Bfa1_Tem1GDP$	
		SPB-bound Bfa1		
14	R14	R14: Rev. association of Tem1GDP with	$Tem1GDP + B_Bfa1P4 \Longrightarrow B_Bfa1P4_Tem1GDP$	
		SPB-bound Kin4-phosphorylated Bfa1		
15	R15	R15: Rev. association of Tem1GDP with	$Tem1GDP + B_Bfa1P5 \Longrightarrow B_Bfa1P5_Tem1GDP$	
		SPB-bound Cdc5-phosphorylated Bfa1		
16	R16	R16: Rev. association of Tem1GTP with Bfa1	$Bfa1 + Tem1GTP \Longrightarrow Bfa1_Tem1GTP$	
17	R17	R17: Rev. association of Tem1GTP with	$Bfa1P4 + Tem1GTP \Longrightarrow Bfa1P4_Tem1GTP$	
		Kin4-phosphorylated Bfa1		
18	R18	R18: Rev. association of Tem1GTP with	$Bfa1P5 + Tem1GTP \Longrightarrow Bfa1P5_Tem1GTP$	
		Cdc5-phosphorylated Bfa1		
19	R19	R19: Rev. association of Tem1GDP with	$Bfa1 + Tem1GDP \Longrightarrow Bfa1 - Tem1GDP$	
		Bfa1		
20	R20	R20: Rev. association of Tem1GDP with	$Bfa1P4 + Tem1GDP \Longrightarrow Bfa1P4_Tem1GDP$	
		Kin4-phosphorylated Bfa1		
21	R21	R21: Rev. association of Tem1GDP with	$Bfa1P5 + Tem1GDP \Longrightarrow Bfa1P5_Tem1GDP$	
		Cdc5-phosphorylated Bfa1		
22	R22	R22: Rev. SPB-association of Tem1GTP	$Tem1GTP + SPB_T \rightleftharpoons T_Tem1GTP$	
23	R23	R23: Rev. SPB-association of Tem1GDP	$Tem1GDP + SPB_T \rightleftharpoons T_Tem1GDP$	
24	R24	R24: Phosphorylation of SPB-bound Bfa1 by	$B_Bfa1 \longrightarrow B_Bfa1P4$	
		Kin4		
25	R25	* *	$B_Bfa1_Tem1GTP \longrightarrow B_Bfa1P4_Tem1GTP$	
		Bfa1:Tem1GTP by Kin4		
26	R26	* *	$B_Bfa1_Tem1GDP \longrightarrow B_Bfa1P4_Tem1GDP$	
		Bfa1:Tem1GDP by Kin4		
27	R27	R27: Phosphorylation of SPB-bound Bfa1 by	$B_Bfa1 \longrightarrow B_Bfa1P5$	
		Cdc5		

No	Id	Name	Reaction Equation	SBO
28	R28	R28: Phosphorylation of SPB-bound	$B_Bfa1_Tem1GTP \longrightarrow B_Bfa1P5_Tem1GTP$	
		Bfa1:Tem1GTP by Cdc5		
29	R29	R29: Phosphorylation of SPB-bound	$B_Bfa1_Tem1GDP \longrightarrow B_Bfa1P5_Tem1GDP$	
		Bfa1:Tem1GDP by Cdc5		
30	R47	R47: GAP-accelerated GTP-hydrolysis	$B_Bfa1P4_Tem1GTP \longrightarrow B_Bfa1P4_Tem1GDP$	
31	R46	R46: GAP-accelerated GTP-hydrolysis	$B_Bfa1_Tem1GTP \longrightarrow B_Bfa1_Tem1GDP$	
32	R48	R48: GTP-hydrolysis with intrinisc GTPase	$B_Bfa1P5_Tem1GTP \longrightarrow B_Bfa1P5_Tem1GDP$	
		activity		
33	R30	R30: Phosphorylation of Bfa1 by cytosolic	$Bfa1 \longrightarrow Bfa1P4$	
		Kin4		
34	R33	R33: Dephosphorylation of Bfa1 by a yet	$Bfa1P4 \longrightarrow Bfa1$	
		unidentified phosphatase counteracting Kin4		
35	R36	R36: Dephosphorylation of Cdc5-	Bfa1P5 \longrightarrow Bfa1	
		phosphorylated Bfa1 presumably by PP2A		
36	R40	R40: GDP- for GTP nucleotide exchange	$Tem1GDP \longrightarrow Tem1GTP$	
37	R39	R39: GTP-hydrolysis with intrinisc GTPase	$Tem1GTP \longrightarrow Tem1GDP$	
		activity		
38	R42	R42: GDP- for GTP nucleotide exchange	$T_{-}Tem1GDP \longrightarrow T_{-}Tem1GTP$	
39	R41	R41: GTP-hydrolysis with intrinisc GTPase	$T_{-}Tem1GTP \longrightarrow T_{-}Tem1GDP$	
		activity		
40	R44	R44: GAP-accelerated GTP-hydrolysis	$Bfa1P4_Tem1GTP \longrightarrow Bfa1P4_Tem1GDP$	
41	R43	R43: GAP-accelerated GTP-hydrolysis	$Bfa1_Tem1GTP \longrightarrow Bfa1_Tem1GDP$	
42	R45	R45: GTP-hydrolysis with intrinisc GTPase	$Bfa1P5_Tem1GTP \longrightarrow Bfa1P5_Tem1GDP$	
		activity		
43	R34	R34: Dephosphorylation of Bfa1 by a yet	$Bfa1P4_Tem1GTP \longrightarrow Bfa1_Tem1GTP$	
		unidentified phosphatase counteracting Kin4		
44	R37	R37: Dephosphorylation of Cdc5-	Bfa1P5_Tem1GTP \longrightarrow Bfa1_Tem1GTP	
		phosphorylated Bfa1 presumably by PP2A		

N⁰	Id	Name	Reaction Equation	SBO
45	R31	R31: Phosphorylation of Bfa1:Tem1GTP by cytosolic Kin4	$Bfa1_Tem1GTP \longrightarrow Bfa1P4_Tem1GTP$	
46	R35	R35: Dephosphorylation of Bfa1 by a yet unidentified phosphatase counteracting Kin4	Bfa1P4_Tem1GDP \longrightarrow Bfa1_Tem1GDP	
47	R38	R38: Dephosphorylation of Cdc5-phosphorylated Bfa1 presumably by PP2A	Bfa1P5_Tem1GDP \longrightarrow Bfa1_Tem1GDP	
48	R32	R32: Phosphorylation of Bfa1:Tem1GDP by cytosolic Kin4	Bfa1_Tem1GDP → Bfa1P4_Tem1GDP	

9.1 Reaction R1

This is a reversible reaction of two reactants forming one product.

Name R1: Rev. SPB-association of Bfa1

Reaction equation

$$SPB_B + Bfa1 \Longrightarrow B_Bfa1 \tag{48}$$

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
SPB_B	В	
Bfa1	Bfa1	

Product

Table 7: Properties of each product.

Id	Name	SBO
B_Bfa1	B-Bfa1	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$\begin{array}{c} v_1 = Function_for_R1_Rev_SPB_association_of_Bfa1 \\ ([B_Bfa1],[Bfa1],[SPB_B], \\ vol \\ (c3),koffB,konB) \end{array} \tag{49} \label{eq:49}$$

$$\begin{aligned} & Function_for_R1_Rev_SPB_association_of_Bfa1 \, ([B_Bfa1], [Bfa1], [SPB_B], \\ & vol \, (c3) \, , koffB, konB) = vol \, (c3) \cdot (konB \cdot [SPB_B] \cdot [Bfa1] - koffB \cdot [B_Bfa1]) \end{aligned} \tag{50}$$

9.2 Reaction R2

This is a reversible reaction of two reactants forming one product.

Name R2: Rev. SPB-association of Kin4-phosphorylated Bfa1

Reaction equation

$$Bfa1P4 + SPB_B \Longrightarrow B_Bfa1P4 \tag{51}$$

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
Bfa1P4	Bfa1P4	
SPB_B	В	

Product

Table 9: Properties of each product.

Id	Name	SBO
B_Bfa1P4	B-Bfa1P4	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_2 = Function_for_R2_Rev_SPB_association_of_Kin4_phosphorylated_Bfa1 ([B_Bfa1P4], [Bfa1P4], [SPB_B], vol (c3), koffB4, konB4) \eqno(52)$$

$$\label{eq:function_for_R2_Rev_SPB_association_of_Kin4_phosphorylated_Bfa1 ([B_Bfa1P4], [Bfa1P4], [SPB_B], vol (c3), koffB4, konB4) = vol (c3) \\ \cdot (konB4 \cdot [SPB_B] \cdot [Bfa1P4] - koffB4 \cdot [B_Bfa1P4]) \tag{53}$$

9.3 Reaction R3

This is a reversible reaction of two reactants forming one product.

Name R3: Rev. SPB-association of Cdc5-phosphorylated Bfa1

Reaction equation

$$Bfa1P5 + SPB_B \Longrightarrow B_Bfa1P5$$
 (54)

Table 10: Properties of each reactant.

Id	Name	SBO
Bfa1P5	Bfa1P5	
SPB_B	В	

Table 11: Properties of each product.

Id	Name	SBO
B_Bfa1P5	B-Bfa1P5	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_3 = Function_for_R3__Rev__SPB_association_of_Cdc5_phosphorylated_Bfa1([B_Bfa1P5], [Bfa1P5], [SPB_B], vol (c3), koffB, konB) \eqno(55)$$

9.4 Reaction R4

This is a reversible reaction of two reactants forming one product.

Name R4: Rev. SPB-association of Bfa1-Tem1GTP complex

Reaction equation

$$Bfa1_Tem1GTP + SPB_B \Longrightarrow B_Bfa1_Tem1GTP$$
 (57)

Table 12: Properties of each reactant.

Id	Name	SBO
Bfa1_Tem1GTP	Bfa1-Tem1GTP	
SPB_B	В	

Table 13: Properties of each product.

Id	Name	SBO
B_Bfa1_Tem1GTP	B-Bfa1-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $\begin{array}{l} \nu_{4} \\ = Function_for_R4_Rev_SPB_association_of_Bfa1_Tem1GTP_complex ([B_Bfa1_Tem1GTP], \\ [Bfa1_Tem1GTP], [SPB_B], vol (c3), koffB, konB) \end{array} \tag{58}$

$$\label{eq:function_for_R4_Rev_SPB_association_of_Bfa1_Tem1GTP_complex} Function_for_R4_Rev_SPB_association_of_Bfa1_Tem1GTP_complex ([B_Bfa1_Tem1GTP], [Bfa1_Tem1GTP], [SPB_B], vol (c3), koffB, konB) = vol (c3) \\ \cdot (konB \cdot [SPB_B] \cdot [Bfa1_Tem1GTP] - koffB \cdot [B_Bfa1_Tem1GTP])$$
 (59)

9.5 Reaction R5

This is a reversible reaction of two reactants forming one product.

Name R5: Rev. SPB-association of Kin4-phosphorylated Bfa1-Tem1GTP complex

Reaction equation

$$Bfa1P4_Tem1GTP + SPB_B \rightleftharpoons B_Bfa1P4_Tem1GTP$$
 (60)

Table 14: Properties of each reactant.

Id	Name	SBO
Bfa1P4_Tem1GTP	Bfa1P4-Tem1GTP	
SPB_B	В	

Table 15: Properties of each product.

Id	Name	SBO
B_Bfa1P4_Tem1GTP	B-Bfa1P4-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $v_{5} \\ = Function_for_R5_Rev__SPB_association_of_Kin4_phosphorylated_Bfa1_Tem1GTP_complex ([B_Bfa1P4_Tem1GTP], [SPB_B], vol (c3), koffB4, konB4)$

Function_for_R5__Rev__SPB_association_of_Kin4_phosphorylated_Bfa1_Tem1GTP_comple**x6**[**B**_Bfa1P4_Tem1GTP] [Bfa1P4_Tem1GTP], [SPB_B], vol (c3), koffB4, konB4)

$= vol\left(c3\right) \cdot \left(konB4 \cdot \left[Bfa1P4_Tem1GTP\right] \cdot \left[SPB_B\right] - koffB4 \cdot \left[B_Bfa1P4_Tem1GTP\right]\right)$

9.6 Reaction R6

This is a reversible reaction of two reactants forming one product.

Name R6: Rev. SPB-association of Cdc5-phosphorylated Bfa1-Tem1GTP complex

Reaction equation

$$Bfa1P5_Tem1GTP + SPB_B \Longrightarrow B_Bfa1P5_Tem1GTP$$
 (63)

Table 16: Properties of each reactant.

Id	Name	SBO
Bfa1P5_Tem1GTP	Bfa1P5-Tem1GTP	
SPB_B	В	

Table 17: Properties of each product.

Id	Name	SBO
B_Bfa1P5_Tem1GTP	B-Bfa1P5-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $v_{6} \\ = Function_for_R6_Rev__SPB_association_of_Cdc5_phosphorylated_Bfa1_Tem1GTP_complex ([B_Bfa1P5_Tem1GTP], [SPB_B], vol (c3), koffB, konB) \\ [Bfa1P5_Tem1GTP], [SPB_B], vol (c3), koffB, konB)$

 $Function_for_R6_Rev__SPB_association_of_Cdc5_phosphorylated_Bfa1_Tem1GTP_complex(5B_Bfa1P5_Tem1GTP), [SPB_B], vol (c3), koffB, konB)$

$$= vol\left(c3\right)\cdot\left(konB\cdot\left[SPB_B\right]\cdot\left[Bfa1P5_Tem1GTP\right] - koffB\cdot\left[B_Bfa1P5_Tem1GTP\right]\right)$$

9.7 Reaction R7

This is a reversible reaction of two reactants forming one product.

Name R7: Rev. SPB-association of Bfa1-Tem1GDP complex

Reaction equation

$$Bfa1_Tem1GDP + SPB_B \rightleftharpoons B_Bfa1_Tem1GDP$$
 (66)

Table 18: Properties of each reactant.

Id	Name	SBO
Bfa1_Tem1GDP	Bfa1-Tem1GDP	
SPB_B	В	

Table 19: Properties of each product.

Id	Name	SBO
B_Bfa1_Tem1GDP	B-Bfa1-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $\begin{array}{l} v_7 \\ = Function_for_R7_Rev_SPB_association_of_Bfa1_Tem1GDP_complex ([B_Bfa1_Tem1GDP], \\ [Bfa1_Tem1GDP], [SPB_B], vol (c3), koffB, konB) \end{array}$

$$\label{eq:function_for_R7_Rev_SPB_association_of_Bfa1_Tem1GDP_complex} \begin{subarray}{ll} Function_for_R7_Rev_SPB_association_of_Bfa1_Tem1GDP_complex ([B_Bfa1_Tem1GDP], [Bfa1_Tem1GDP], [Bfa1_Tem1GDP], [Bfa1_Tem1GDP]) \\ & \cdot (konB \cdot [SPB_B] \cdot [Bfa1_Tem1GDP] - koffB \cdot [B_Bfa1_Tem1GDP]) \end{subarray} \end{subarray} \begin{subarray}{ll} (68) \end{subarray}$$

9.8 Reaction R8

This is a reversible reaction of two reactants forming one product.

Name R8: Rev. SPB-association of Kin4 phosphorylated Bfa1-Tem1GDP complex

Reaction equation

$$Bfa1P4_Tem1GDP + SPB_B \Longrightarrow B_Bfa1P4_Tem1GDP$$
 (69)

Table 20: Properties of each reactant.

Id	Name	SBO
Bfa1P4_Tem1GDP	Bfa1P4-Tem1GDP	
SPB_B	В	

Table 21: Properties of each product.

Id	Name	SBO
B_Bfa1P4_Tem1GDP	B-Bfa1P4-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $v_{8} \tag{70} \\ = Function_for_R8_Rev__SPB_association_of_Kin4_phosphorylated_Bfa1_Tem1GDP_complex ([B_Bfa1P4_Tem1GDP], [SPB_B], vol (c3), koffB4, konB4)$

 $Function_for_R8_Rev__SPB_association_of_Kin4_phosphorylated_Bfa1_Tem1GDP_complex(\B_Bfa1P4_Tem1GDP) \\ [Bfa1P4_Tem1GDP], [SPB_B], vol (c3), koffB4, konB4) \\ = vol (c3) \cdot (konB4 \cdot [SPB_B] \cdot [Bfa1P4_Tem1GDP] - koffB4 \cdot [B_Bfa1P4_Tem1GDP]) \\$

9.9 Reaction R9

This is a reversible reaction of two reactants forming one product.

Name R9: Rev. SPB-association of Cdc5-phosphorylated Bfa1-Tem1GDP complex

Reaction equation

$$Bfa1P5_Tem1GDP + SPB_B \Longrightarrow B_Bfa1P5_Tem1GDP$$
 (72)

Table 22: Properties of each reactant.

Id	Name	SBO
Bfa1P5_Tem1GDP SPB_B	Bfa1P5-Tem1GDP B	

Table 23: Properties of each product.

Id	Name	SBO
B_Bfa1P5_Tem1GDP	B-Bfa1P5-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $v_9 = Function_for_R9_Rev__SPB_association_of_Cdc5_phosphorylated_Bfa1_Tem1GDP_complex ([B_Bfa1P5_Tem1GDP], [SPB_B], vol (c3), koffB, konB)$ $[Bfa1P5_Tem1GDP], [SPB_B], vol (c3), koffB, konB)$

 $Function_for_R9_Rev_SPB_association_of_Cdc5_phosphorylated_Bfa1_Tem1GDP_completed_Bfa1P5_Tem1G$

$$= vol\left(c3\right) \cdot \left(konB \cdot \left[SPB_B\right] \cdot \left[Bfa1P5_Tem1GDP\right] - koffB \cdot \left[B_Bfa1P5_Tem1GDP\right]\right)$$

9.10 Reaction R10

This is a reversible reaction of two reactants forming one product.

Name R10: Rev. association of Tem1GTP with SPB-bound Bfa1

Reaction equation

$$Tem1GTP + B_Bfa1 \Longrightarrow B_Bfa1_Tem1GTP$$
 (75)

Table 24: Properties of each reactant.

Id	Name	SBO
Tem1GTP	Tem1GTP	
B_Bfa1	B-Bfa1	

Table 25: Properties of each product.

Id	Name	SBO
B_Bfa1_Tem1GTP	B-Bfa1-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{10} = Function_for_R10_Rev_association_of_Tem1GTP_with_SPB_bound_Bfa1 ([B_Bfa1], \\ [B_Bfa1_Tem1GTP], [Tem1GTP], vol (c3), koffBT, konBT)$$
 (76)

9.11 Reaction R11

This is a reversible reaction of two reactants forming one product.

Name R11: Rev. association of Tem1GTP with SPB-bound Kin4-phosphorylated Bfa1

Reaction equation

$$Tem1GTP + B_Bfa1P4 \Longrightarrow B_Bfa1P4_Tem1GTP$$
 (78)

Table 26: Properties of each reactant.

Id	Name	SBO
Tem1GTP	Tem1GTP	
B_Bfa1P4	B-Bfa1P4	

Table 27: Properties of each product.

Id	Name	SBO
B_Bfa1P4_Tem1GTP	B-Bfa1P4-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $\begin{array}{c} \nu_{11} \\ = Function_for_R11_Rev_association_of_Tem1GTP_with_SPB_bound_Kin4_phosphorylated_Bfa1 ([B_Bfa1P4],\\ [B_Bfa1P4_Tem1GTP], [Tem1GTP], vol (c3), koffBT, konB4T) \end{array}$

 $\label{eq:function_for_R11_Rev_association_of_Tem1GTP_with_SPB_bound_Kin4_phosphorylated \textbf{(Bf)}) 1 ([B_Bfa1P4], [B_Bfa1P4_Tem1GTP], [Tem1GTP], vol (c3), koffBT, konB4T) \\ = vol (c3) \cdot (konB4T \cdot [B_Bfa1P4] \cdot [Tem1GTP] - koffBT \cdot [B_Bfa1P4_Tem1GTP])$

9.12 Reaction R12

This is a reversible reaction of two reactants forming one product.

Name R12: Rev. association of Tem1GTP with SPB-bound Cdc5-phosphorylated Bfa1

Reaction equation

$$Tem1GTP + B_Bfa1P5 \Longrightarrow B_Bfa1P5_Tem1GTP$$
 (81)

Table 28: Properties of each reactant.

Id	Name	SBO
Tem1GTP	Tem1GTP	
B_Bfa1P5	B-Bfa1P5	

Table 29: Properties of each product.

Id	Name	SBO
B_Bfa1P5_Tem1GTP	B-Bfa1P5-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $v_{12} \\ = Function_for_R12_Rev_association_of_Tem1GTP_with_SPB_bound_Cdc5_phosphorylated_Bfa1([B_Bfa1P5], [B_Bfa1P5_Tem1GTP], [Tem1GTP], vol(c3), koffBT, konB5T)$

 $\label{eq:function_for_R12_Rev_association_of_Tem1GTP_with_SPB_bound_Cdc5_phosphorylated(B3)1 ([B_Bfa1P5], [B_Bfa1P5_Tem1GTP], [Tem1GTP], vol (c3) , koffBT, konB5T) \\ = vol (c3) \cdot (konB5T \cdot [B_Bfa1P5] \cdot [Tem1GTP] - koffBT \cdot [B_Bfa1P5_Tem1GTP])$

9.13 Reaction R13

This is a reversible reaction of two reactants forming one product.

Name R13: Rev. association of Tem1GDP with SPB-bound Bfa1

Reaction equation

$$Tem1GDP + B_Bfa1 \Longrightarrow B_Bfa1_Tem1GDP$$
 (84)

Table 30: Properties of each reactant.

Id	Name	SBO
Tem1GDP	Tem1GDP	
B_Bfa1	B-Bfa1	

Table 31: Properties of each product.

Id	Name	SBO
B_Bfa1_Tem1GDP	B-Bfa1-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{13} = Function_for_R13_Rev_association_of_Tem1GDP_with_SPB_bound_Bfa1 ([B_Bfa1], \\ [B_Bfa1_Tem1GDP], [Tem1GDP], vol (c3), koffBT, konBT)$$
 (85)

$$Function_for_R13_Rev_association_of_Tem1GDP_with_SPB_bound_Bfa1 ([B_Bfa1], \\ [B_Bfa1_Tem1GDP], [Tem1GDP], vol (c3), koffBT, konBT) = vol (c3) \\ \cdot (konBT \cdot [B_Bfa1] \cdot [Tem1GDP] - koffBT \cdot [B_Bfa1_Tem1GDP])$$
 (86)

9.14 Reaction R14

This is a reversible reaction of two reactants forming one product.

Name R14: Rev. association of Tem1GDP with SPB-bound Kin4-phosphorylated Bfa1

Reaction equation

$$Tem1GDP + B_Bfa1P4 \Longrightarrow B_Bfa1P4_Tem1GDP$$
 (87)

Table 32: Properties of each reactant.

Id	Name	SBO
Tem1GDP	Tem1GDP	
B_Bfa1P4	B-Bfa1P4	

Table 33: Properties of each product.

Id	Name	SBO
B_Bfa1P4_Tem1GDP	B-Bfa1P4-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $v_{14} \\ = Function_for_R14_Rev_association_of_Tem1GDP_with_SPB_bound_Kin4_phosphorylated_Bfa1([B_Bfa1P4], \\ [B_Bfa1P4_Tem1GDP], [Tem1GDP], vol(c3), koffBT, konB4T)$

 $\label{lem:cond_for_R14_Rev_association_of_Tem1GDP_with_SPB_bound_Kin4_phosphorylated. \end{cases} Fall P4 Lem1GDP, [B_Bfa1P4], [B_Bfa1P4_Tem1GDP], [Tem1GDP], vol (c3), koffBT, konB4T) = vol (c3) \cdot (konB4T \cdot [B_Bfa1P4] \cdot [Tem1GDP] - koffBT \cdot [B_Bfa1P4_Tem1GDP])$

9.15 Reaction R15

This is a reversible reaction of two reactants forming one product.

Name R15: Rev. association of Tem1GDP with SPB-bound Cdc5-phosphorylated Bfa1

Reaction equation

$$Tem1GDP + B_Bfa1P5 \Longrightarrow B_Bfa1P5_Tem1GDP$$
 (90)

Table 34: Properties of each reactant.

Id	Name	SBO
Tem1GDP	Tem1GDP	
B_Bfa1P5	B-Bfa1P5	

Table 35: Properties of each product.

Id	Name	SBO
B_Bfa1P5_Tem1GDP	B-Bfa1P5-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $\begin{array}{c} \nu_{15} \\ = Function_for_R15__Rev__association_of_Tem1GDP_with_SPB_bound_Cdc5_phosphorylated_Bfa1 ([B_Bfa1P5],\\ [B_Bfa1P5_Tem1GDP], [Tem1GDP], vol (c3), koffBT, konB5T) \end{array}$

 $\label{eq:cdc5_phosphorylated} Function_for_R15_Rev_association_of_Tem1GDP_with_SPB_bound_Cdc5_phosphorylated(\textbf{93}) 1 ([B_Bfa1P5], [B_Bfa1P5_Tem1GDP], [Tem1GDP], vol (c3), koffBT, konB5T) \\ = vol (c3) \cdot (konB5T \cdot [B_Bfa1P5] \cdot [Tem1GDP] - koffBT \cdot [B_Bfa1P5_Tem1GDP])$

9.16 Reaction R16

This is a reversible reaction of two reactants forming one product.

Name R16: Rev. association of Tem1GTP with Bfa1

Reaction equation

$$Bfa1 + Tem1GTP \Longrightarrow Bfa1_Tem1GTP \tag{93}$$

Table 36: Properties of each reactant.

Id	Name	SBO
Bfa1	Bfa1	
Tem1GTP	Tem1GTP	

Table 37: Properties of each product.

Id	Name	SBO
Bfa1_Tem1GTP	Bfa1-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{16} = \text{vol}(c2) \cdot \text{Function_for_R16_Rev_association_of_Tem1GTP_with_Bfa1}([Bfa1], [Bfa1_Tem1GTP], [Tem1GTP], alpha, koffBT, konBT)$$

$$Function_for_R16_Rev_association_of_Tem1GTP_with_Bfa1 ([Bfa1], \\ [Bfa1_Tem1GTP], [Tem1GTP], alpha, koffBT, konBT) = alpha \\ \cdot konBT \cdot [Bfa1] \cdot [Tem1GTP] - koffBT \cdot [Bfa1_Tem1GTP]$$

$$(95)$$

$$Function_for_R16_Rev_association_of_Tem1GTP_with_Bfa1 ([Bfa1], \\ [Bfa1_Tem1GTP], [Tem1GTP], alpha, koffBT, konBT) = alpha \\ \cdot konBT \cdot [Bfa1] \cdot [Tem1GTP] - koffBT \cdot [Bfa1_Tem1GTP]$$

$$(96)$$

9.17 Reaction R17

This is a reversible reaction of two reactants forming one product.

Name R17: Rev. association of Tem1GTP with Kin4-phosphorylated Bfa1

Reaction equation

$$Bfa1P4 + Tem1GTP \Longrightarrow Bfa1P4_Tem1GTP \tag{97}$$

Table 38: Properties of each reactant.

Id	Name	SBO
Bfa1P4	Bfa1P4	
Tem1GTP	Tem1GTP	

Table 39: Properties of each product.

Id	Name	SBO
Bfa1P4_Tem1GTP	Bfa1P4-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{17} = \text{vol}(\text{c2})$$
 (98)
·Function_for_R17__Rev__association_of_Tem1GTP_with_Kin4_phosphorylated_Bfa1 ([Bfa1P4],

[Bfa1P4_Tem1GTP], [Tem1GTP], alpha, koffBT, konB4T)

 $Function_for_R17_Rev_association_of_Tem1GTP_with_Kin4_phosphorylated_Bfa1 ([Bfa1P4], [Bfa1P4_Tem1GTP], [Tem1GTP], alpha, koffBT, konB4T) = alpha \\ \cdot konB4T \cdot [Bfa1P4] \cdot [Tem1GTP] - koffBT \cdot [Bfa1P4_Tem1GTP]$ (99)

 $Function_for_R17__Rev__association_of_Tem1GTP_with_Kin4_phosphorylated_Bfa1 ([Bfa1P4], [Bfa1P4_Tem1GTP], [Tem1GTP], alpha, koffBT, konB4T) = alpha$

 $\cdot konB4T \cdot [Bfa1P4] \cdot [Tem1GTP] - koffBT \cdot [Bfa1P4_Tem1GTP]$ (100)

9.18 Reaction R18

This is a reversible reaction of two reactants forming one product.

Name R18: Rev. association of Tem1GTP with Cdc5-phosphorylated Bfa1

Reaction equation

$$Bfa1P5 + Tem1GTP \Longrightarrow Bfa1P5_Tem1GTP \tag{101}$$

Table 40: Properties of each reactant.

Id	Name	SBO
Bfa1P5	Bfa1P5	
Tem1GTP	Tem1GTP	

Table 41: Properties of each product.

Id	Name	SBO
Bfa1P5_Tem1GTP	Bfa1P5-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{18} = vol(c2)$$

$$\cdot Function_for_R18_Rev_association_of_Tem1GTP_with_Cdc5_phosphorylated_Bfa1([Bfa1P5], [Bfa1P5_Tem1GTP], [Tem1GTP], alpha, koffBT, konB5T)$$

 $\label{eq:function_for_R18__Rev_association_of_Tem1GTP_with_Cdc5_phosphorylated_Bfa1 ([Bfa1P5], [Bfa1P5_Tem1GTP], [Tem1GTP], alpha, koffBT, konB5T) = alpha \\ \cdot konB5T \cdot [Bfa1P5] \cdot [Tem1GTP] - koffBT \cdot [Bfa1P5_Tem1GTP] \tag{103}$

 $Function_for_R18_Rev_association_of_Tem1GTP_with_Cdc5_phosphorylated_Bfa1 ([Bfa1P5], [Bfa1P5_Tem1GTP], [Tem1GTP], alpha, koffBT, konB5T) = alpha \\ \cdot konB5T \cdot [Bfa1P5] \cdot [Tem1GTP] - koffBT \cdot [Bfa1P5_Tem1GTP]$ (104)

9.19 Reaction R19

This is a reversible reaction of two reactants forming one product.

Name R19: Rev. association of Tem1GDP with Bfa1

Reaction equation

$$Bfa1 + Tem1GDP \Longrightarrow Bfa1_Tem1GDP$$
 (105)

Table 42: Properties of each reactant.

Id	Name	SBO
Bfa1	Bfa1	
Tem1GDP	Tem1GDP	

Table 43: Properties of each product.

Id	Name	SBO
Bfa1_Tem1GDP	Bfa1-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{19} = vol(c2) \cdot Function_for_R19_Rev_association_of_Tem1GDP_with_Bfa1([Bfa1], [Bfa1_Tem1GDP], [Tem1GDP], alpha, koffBT, konBT)$$
 (106)

$$Function_for_R19_Rev_association_of_Tem1GDP_with_Bfa1 ([Bfa1], \\ [Bfa1_Tem1GDP], [Tem1GDP], alpha, koffBT, konBT) = alpha \\ \cdot konBT \cdot [Bfa1] \cdot [Tem1GDP] - koffBT \cdot [Bfa1_Tem1GDP]$$
 (107)

$$Function_for_R19_Rev_association_of_Tem1GDP_with_Bfa1 ([Bfa1], \\ [Bfa1_Tem1GDP], [Tem1GDP], alpha, koffBT, konBT) = alpha \\ \cdot konBT \cdot [Bfa1] \cdot [Tem1GDP] - koffBT \cdot [Bfa1_Tem1GDP]$$
 (108)

9.20 Reaction R20

This is a reversible reaction of two reactants forming one product.

Name R20: Rev. association of Tem1GDP with Kin4-phosphorylated Bfa1

Reaction equation

$$Bfa1P4 + Tem1GDP \Longrightarrow Bfa1P4_Tem1GDP \tag{109}$$

Table 44: Properties of each reactant.

Id	Name	SBO
Bfa1P4	Bfa1P4	
Tem1GDP	Tem1GDP	

Table 45: Properties of each product.

Id	Name	SBO
Bfa1P4_Tem1GDP	Bfa1P4-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$\begin{split} v_{20} &= vol(c2) \\ &\cdot Function_for_R20_Rev_association_of_Tem1GDP_with_Kin4_phosphorylated_Bfa1 ([Bfa1P4], \\ & [Bfa1P4_Tem1GDP], [Tem1GDP], alpha, koffBT, konB4T) \end{split}$$

 $\label{eq:function_for_R20_Rev_association_of_Tem1GDP_with_Kin4_phosphorylated_Bfa1 ([Bfa1P4], [Bfa1P4_Tem1GDP], [Tem1GDP], alpha, koffBT, konB4T) = alpha \\ \cdot konB4T \cdot [Bfa1P4] \cdot [Tem1GDP] - koffBT \cdot [Bfa1P4_Tem1GDP] \\ \tag{111}$

 $Function_for_R20_Rev_association_of_Tem1GDP_with_Kin4_phosphorylated_Bfa1 ([Bfa1P4], \\ [Bfa1P4_Tem1GDP], [Tem1GDP], alpha, koffBT, konB4T) = alpha \\ \cdot konB4T \cdot [Bfa1P4] \cdot [Tem1GDP] - koffBT \cdot [Bfa1P4_Tem1GDP]$ (112)

9.21 Reaction R21

This is a reversible reaction of two reactants forming one product.

Name R21: Rev. association of Tem1GDP with Cdc5-phosphorylated Bfa1

Reaction equation

$$Bfa1P5 + Tem1GDP \Longrightarrow Bfa1P5_Tem1GDP \qquad (113)$$

Table 46: Properties of each reactant.

Id	Name	SBO
Bfa1P5	Bfa1P5	
Tem1GDP	Tem1GDP	

Table 47: Properties of each product.

Id	Name	SBO
Bfa1P5_Tem1GDP	Bfa1P5-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{21} = \text{vol}(c2)$$
 (114)
·Function_for_R21__Rev__association_of_Tem1GDP_with_Cdc5_phosphorylated_Bfa1 ([Bfa1P5], [Bfa1P5_Tem1GDP], [Tem1GDP], alpha, koffBT, konB5T)

 $Function_for_R21_Rev_association_of_Tem1GDP_with_Cdc5_phosphorylated_Bfa1 ([Bfa1P5], [Bfa1P5_Tem1GDP], [Tem1GDP], alpha, koffBT, konB5T) = alpha$

$$\cdot \, konB5T \cdot [Bfa1P5] \cdot [Tem1GDP] - koffBT \cdot [Bfa1P5_Tem1GDP]$$

(115)

 $Function_for_R21_Rev_association_of_Tem1GDP_with_Cdc5_phosphorylated_Bfa1 ([Bfa1P5], [Bfa1P5_Tem1GDP], [Tem1GDP], alpha, koffBT, konB5T) = alpha$

$$\cdot \, konB5T \cdot [Bfa1P5] \cdot [Tem1GDP] - koffBT \cdot [Bfa1P5_Tem1GDP]$$

(116)

9.22 Reaction R22

This is a reversible reaction of two reactants forming one product.

Name R22: Rev. SPB-association of Tem1GTP

Reaction equation

$$Tem1GTP + SPB_T \Longrightarrow T_Tem1GTP \tag{117}$$

Table 48: Properties of each reactant.

Id	Name	SBO
Tem1GTP	Tem1GTP	
SPB_T	T	

Table 49: Properties of each product.

Id	Name	SBO
T_Tem1GTP	T-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{22} = Function_for_R22_Rev__SPB_association_of_Tem1GTP([SPB_T], [T_Tem1GTP], [T_Tem1GTP], vol(c3), koffT, konT)$$
 (118)

$$Function_for_R22__Rev__SPB_association_of_Tem1GTP ([SPB_T], [T_Tem1GTP], [Tem1GTP], vol(c3), koffT, konT) = vol(c3)$$

$$\cdot (konT \cdot [SPB_T] \cdot [Tem1GTP] - koffT \cdot [T_Tem1GTP])$$

$$(119)$$

9.23 Reaction R23

This is a reversible reaction of two reactants forming one product.

Name R23: Rev. SPB-association of Tem1GDP

Reaction equation

$$Tem1GDP + SPB_T \rightleftharpoons T_Tem1GDP$$
 (120)

Table 50: Properties of each reactant.

Id	Name	SBO
Tem1GDP	Tem1GDP	
$\mathtt{SPB}_{-}\mathtt{T}$	T	

Table 51: Properties of each product.

Id	Name	SBO
T_Tem1GDP	T-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{23} = Function_for_R23_Rev__SPB_association_of_Tem1GDP([SPB_T], [T_Tem1GDP], [Tem1GDP], vol(c3), koffT, konT)$$
 (121)

$$Function_for_R23_Rev_SPB_association_of_Tem1GDP([SPB_T], \\ [T_Tem1GDP], [Tem1GDP], vol(c3), koffT, konT) = vol(c3) \\ \cdot (konT \cdot [SPB_T] \cdot [Tem1GDP] - koffT \cdot [T_Tem1GDP])$$
 (122)

9.24 Reaction R24

This is an irreversible reaction of one reactant forming one product.

Name R24: Phosphorylation of SPB-bound Bfa1 by Kin4

Reaction equation

$$B_Bfa1 \longrightarrow B_Bfa1P4$$
 (123)

Table 52: Properties of each reactant.

Id	Name	SBO
B_Bfa1	B-Bfa1	

Table 53: Properties of each product.

Id	Name	SBO
B_Bfa1P4	B-Bfa1P4	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{24} = vol\left(c3\right) \\ \cdot Function_for_R24_Phosphorylation_of_SPB_bound_Bfa1_by_Kin4\left([B_Bfa1],kfKin4,u\right) \\ (124)$$

$$\label{eq:function_for_R24_Phosphorylation_of_SPB_bound_Bfa1_by_Kin4} $$\operatorname{EB}_{a1}, kfKin4, u) = u \cdot kfKin4 \cdot [B_Bfa1] $$ (125)$$

$$\label{eq:function_for_R24_Phosphorylation_of_SPB_bound_Bfa1_by_Kin4} $$\operatorname{EB}_{a1}, kfKin4, u) = u \cdot kfKin4 \cdot [B_Bfa1] $$ (126)$$

9.25 Reaction R25

This is an irreversible reaction of one reactant forming one product.

Name R25: Phosphorylation of SPB-bound Bfa1:Tem1GTP by Kin4

Reaction equation

$$B_Bfa1_Tem1GTP \longrightarrow B_Bfa1P4_Tem1GTP \tag{127}$$

Table 54: Properties of each reactant.

Id	Name	SBO
B_Bfa1_Tem1GTP	B-Bfa1-Tem1GTP	

Table 55: Properties of each product.

Id	Name	SBO
B_Bfa1P4_Tem1GTP	B-Bfa1P4-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{25} = vol\left(c3\right) \\ \cdot Function_for_R25_Phosphorylation_of_SPB_bound_Bfa1_Tem1GTP_by_Kin4\left([B_Bfa1_Tem1GTP], \\ kfKin4, u\right)$$

 $Function_for_R25_Phosphorylation_of_SPB_bound_Bfa1_Tem1GTP_by_Kin4 ([B_Bfa1_Tem2\mathfrak{O}TP], kfKin4, u) = u \cdot kfKin4 \cdot [B_Bfa1_Tem1GTP]$

 $Function_for_R25_Phosphorylation_of_SPB_bound_Bfa1_Tem1GTP_by_Kin4 ([B_Bfa1_Te(h3@)TP], kfKin4, u) = u \cdot kfKin4 \cdot [B_Bfa1_Tem1GTP]$

9.26 Reaction R26

This is an irreversible reaction of one reactant forming one product.

Name R26: Phosphorylation of SPB-bound Bfa1:Tem1GDP by Kin4

Reaction equation

$$B_Bfa1_Tem1GDP \longrightarrow B_Bfa1P4_Tem1GDP$$
 (131)

Table 56: Properties of each reactant.

Id	Name	SBO
B_Bfa1_Tem1GDP	B-Bfa1-Tem1GDP	

Table 57: Properties of each product.

Id	Name	SBO
B_Bfa1P4_Tem1GDP	B-Bfa1P4-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{26} = \text{vol}(c3)$$
 (132)
Function for R26. Phosphorylation of SPR bound Rfa1 Tem1GDP by Kin4 ([R Rfa1 Tem1GD])

 $\cdot Function_for_R26_Phosphorylation_of_SPB_bound_Bfa1_Tem1GDP_by_Kin4 ([B_Bfa1_Tem1GDP], \\ kfKin4, u)$

 $Function_for_R26_Phosphorylation_of_SPB_bound_Bfa1_Tem1GDP_by_Kin4 ([B_Bfa1_Tem3GDP], kfKin4, u) = u \cdot kfKin4 \cdot [B_Bfa1_Tem1GDP]$

 $Function_for_R26_Phosphorylation_of_SPB_bound_Bfa1_Tem1GDP_by_Kin4 ([B_Bfa1_Tem343DP], kfKin4, u) = u \cdot kfKin4 \cdot [B_Bfa1_Tem1GDP]$

9.27 Reaction R27

This is an irreversible reaction of one reactant forming one product.

Name R27: Phosphorylation of SPB-bound Bfa1 by Cdc5

Reaction equation

$$B_Bfa1 \longrightarrow B_Bfa1P5 \tag{135}$$

Table 58: Properties of each reactant.

Id	Name	SBO
B_Bfa1	B-Bfa1	

Table 59: Properties of each product.

Id	Name	SBO
B_Bfa1P5	B-Bfa1P5	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{27} = \text{vol}(c3) \cdot \text{kfCdc5} \cdot [\text{B_Bfa1}]$$
 (136)

9.28 Reaction R28

This is an irreversible reaction of one reactant forming one product.

Name R28: Phosphorylation of SPB-bound Bfa1:Tem1GTP by Cdc5

Reaction equation

$$B_Bfa1_Tem1GTP \longrightarrow B_Bfa1P5_Tem1GTP \tag{137}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
B_Bfa1_Tem1GTP	B-Bfa1-Tem1GTP	

Product

Table 61: Properties of each product.

Id	Name	SBO
B_Bfa1P5_Tem1GTP	B-Bfa1P5-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{28} = \text{vol}(c3) \cdot \text{kfCdc5} \cdot [\text{B_Bfa1_Tem1GTP}]$$
 (138)

9.29 Reaction R29

This is an irreversible reaction of one reactant forming one product.

Name R29: Phosphorylation of SPB-bound Bfa1:Tem1GDP by Cdc5

Reaction equation

$$B_Bfa1_Tem1GDP \longrightarrow B_Bfa1P5_Tem1GDP$$
 (139)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
B_Bfa1_Tem1GDP	B-Bfa1-Tem1GDP	

Product

Table 63: Properties of each product.

Id	Name	SBO
B_Bfa1P5_Tem1GDP	B-Bfa1P5-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{29} = \text{vol}(\text{c3}) \cdot \text{kfCdc5} \cdot [\text{B_Bfa1_Tem1GDP}]$$
 (140)

9.30 Reaction R47

This is an irreversible reaction of one reactant forming one product.

Name R47: GAP-accelerated GTP-hydrolysis

Reaction equation

$$B_Bfa1P4_Tem1GTP \longrightarrow B_Bfa1P4_Tem1GDP \tag{141}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
B_Bfa1P4_Tem1GTP	B-Bfa1P4-Tem1GTP	

Product

Table 65: Properties of each product.

Id	Name	SBO
B_Bfa1P4_Tem1GDP	B-Bfa1P4-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{30} = \text{vol}(c3) \cdot \text{khydB4T} \cdot [\text{B_Bfa1P4_Tem1GTP}]$$
 (142)

9.31 Reaction R46

This is an irreversible reaction of one reactant forming one product.

Name R46: GAP-accelerated GTP-hydrolysis

Reaction equation

$$B_Bfa1_Tem1GTP \longrightarrow B_Bfa1_Tem1GDP$$
 (143)

Table 66: Properties of each reactant.

Id	Name	SBO
B_Bfa1_Tem1GTP	B-Bfa1-Tem1GTP	

Table 67: Properties of each product.

Id	Name	SBO
B_Bfa1_Tem1GDP	B-Bfa1-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{31} = \text{vol}(c3) \cdot \text{khydBT} \cdot [\text{B_Bfa1_Tem1GTP}]$$
 (144)

9.32 Reaction R48

This is an irreversible reaction of one reactant forming one product.

Name R48: GTP-hydrolysis with intrinisc GTPase activity

Reaction equation

$$B_Bfa1P5_Tem1GTP \longrightarrow B_Bfa1P5_Tem1GDP$$
 (145)

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
B_Bfa1P5_Tem1GTP	B-Bfa1P5-Tem1GTP	

Product

Table 69: Properties of each product.

Id	Name	SBO
B_Bfa1P5_Tem1GDP	B-Bfa1P5-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{32} = \text{vol}(c3) \cdot \text{khyd} \cdot [B_Bfa1P5_Tem1GTP]$$
 (146)

9.33 Reaction R30

This is an irreversible reaction of one reactant forming one product.

Name R30: Phosphorylation of Bfa1 by cytosolic Kin4

Reaction equation

$$Bfa1 \longrightarrow Bfa1P4 \tag{147}$$

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
Bfa1	Bfa1	

Product

Table 71: Properties of each product.

Id	Name	SBO
Bfa1P4	Bfa1P4	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{33} = \text{vol}(c2) \cdot \text{Function_for_R30_Phosphorylation_of_Bfa1_by_cytosolic_Kin4}([Bfa1], \\ kfKin4Cyto, u)$$
 (148)

$$Function_for_R30_Phosphorylation_of_Bfa1_by_cytosolic_Kin4([Bfa1],kfKin4Cyto,u)\\ = u \cdot kfKin4Cyto \cdot [Bfa1]$$
 (149)

$$\begin{aligned} & Function_for_R30_Phosphorylation_of_Bfa1_by_cytosolic_Kin4([Bfa1],kfKin4Cyto,u) \\ & = u \cdot kfKin4Cyto \cdot [Bfa1] \end{aligned} \tag{150}$$

9.34 Reaction R33

This is an irreversible reaction of one reactant forming one product.

Name R33: Dephosphorylation of Bfa1 by a yet unidentified phosphatase counteracting Kin4

Reaction equation

$$Bfa1P4 \longrightarrow Bfa1 \tag{151}$$

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
Bfa1P4	Bfa1P4	

Product

Table 73: Properties of each product.

Id	Name	SBO
Bfa1	Bfa1	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{34} = \text{vol}(c2) \cdot \text{krKin4} \cdot [\text{Bfa1P4}] \tag{152}$$

9.35 Reaction R36

This is an irreversible reaction of one reactant forming one product.

Name R36: Dephosphorylation of Cdc5-phosphorylated Bfa1 presumably by PP2A

Reaction equation

$$Bfa1P5 \longrightarrow Bfa1 \tag{153}$$

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
Bfa1P5	Bfa1P5	

Product

Table 75: Properties of each product.

Id	Name	SBO
Bfa1	Bfa1	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{35} = vol\left(c2\right) \\ \cdot Function_for_R36_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A\left([Bfa1P5], \\ krCdc5, u\right)$$

 $Function_for_R36_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A5(\$Bfa1P5], \\ krCdc5, u) = u \cdot krCdc5 \cdot [Bfa1P5]$

 $Function_for_R36_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A5(\textbf{B}fa1P5], \\ krCdc5, u) = u \cdot krCdc5 \cdot [Bfa1P5]$

9.36 Reaction R40

This is an irreversible reaction of one reactant forming one product.

Name R40: GDP- for GTP nucleotide exchange

Reaction equation

$$Tem1GDP \longrightarrow Tem1GTP \tag{157}$$

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
Tem1GDP	Tem1GDP	

Product

Table 77: Properties of each product.

Id	Name	SBO
Tem1GTP	Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{36} = \text{vol}(c2) \cdot \text{knex} \cdot [\text{Tem1GDP}]$$
 (158)

9.37 Reaction R39

This is an irreversible reaction of one reactant forming one product.

Name R39: GTP-hydrolysis with intrinisc GTPase activity

Reaction equation

$$Tem1GTP \longrightarrow Tem1GDP \tag{159}$$

Table 78: Properties of each reactant.

Id	Name	SBO
Tem1GTP	Tem1GTP	

Table 79: Properties of each product.

Id	Name	SBO
Tem1GDP	Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{37} = \text{vol}(c2) \cdot \text{khyd} \cdot [\text{Tem1GTP}]$$
 (160)

9.38 Reaction R42

This is an irreversible reaction of one reactant forming one product.

Name R42: GDP- for GTP nucleotide exchange

Reaction equation

$$T_{-}Tem1GDP \longrightarrow T_{-}Tem1GTP$$
 (161)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
T_Tem1GDP	T-Tem1GDP	

Product

Table 81: Properties of each product.

Id	Name	SBO
T_Tem1GTP	T-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{38} = \text{vol}(c3) \cdot \text{knex} \cdot [\text{T}_{-}\text{Tem1GDP}]$$
 (162)

9.39 Reaction R41

This is an irreversible reaction of one reactant forming one product.

Name R41: GTP-hydrolysis with intrinisc GTPase activity

Reaction equation

$$T_{-}Tem1GTP \longrightarrow T_{-}Tem1GDP$$
 (163)

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
$T_{-}Tem1GTP$	T-Tem1GTP	

Product

Table 83: Properties of each product.

Id	Name	SBO
T_Tem1GDP	T-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{39} = \text{vol}(c3) \cdot \text{khyd} \cdot [\text{T}_{-}\text{Tem1GTP}]$$
 (164)

9.40 Reaction R44

This is an irreversible reaction of one reactant forming one product.

Name R44: GAP-accelerated GTP-hydrolysis

Reaction equation

Bfa1P4_Tem1GTP
$$\longrightarrow$$
 Bfa1P4_Tem1GDP (165)

Table 84: Properties of each reactant.

Id	Name	SBO
Bfa1P4_Tem1GTP	Bfa1P4-Tem1GTP	

Table 85: Properties of each product.

Id	Name	SBO
Bfa1P4_Tem1GDP	Bfa1P4-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{40} = vol(c2) \cdot khydB4T \cdot [Bfa1P4_Tem1GTP]$$
 (166)

9.41 Reaction R43

This is an irreversible reaction of one reactant forming one product.

Name R43: GAP-accelerated GTP-hydrolysis

Reaction equation

Bfa1_Tem1GTP
$$\longrightarrow$$
 Bfa1_Tem1GDP (167)

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
Bfa1_Tem1GTP	Bfa1-Tem1GTP	

Product

Table 87: Properties of each product.

Id	Name	SBO
Bfa1_Tem1GDP	Bfa1-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{41} = \text{vol}(c2) \cdot \text{khydBT} \cdot [\text{Bfa1_Tem1GTP}]$$
 (168)

9.42 Reaction R45

This is an irreversible reaction of one reactant forming one product.

Name R45: GTP-hydrolysis with intrinisc GTPase activity

Reaction equation

Bfa1P5_Tem1GTP
$$\longrightarrow$$
 Bfa1P5_Tem1GDP (169)

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
Bfa1P5_Tem1GTP	Bfa1P5-Tem1GTP	

Product

Table 89: Properties of each product.

Id	Name	SBO
Bfa1P5_Tem1GDP	Bfa1P5-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{42} = \text{vol}(c2) \cdot \text{khyd} \cdot [\text{Bfa1P5_Tem1GTP}] \tag{170}$$

9.43 Reaction R34

This is an irreversible reaction of one reactant forming one product.

Name R34: Dephosphorylation of Bfa1 by a yet unidentified phosphatase counteracting Kin4

Reaction equation

Bfa1P4_Tem1GTP
$$\longrightarrow$$
 Bfa1_Tem1GTP (171)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
${\tt Bfa1P4_Tem1GTP}$	Bfa1P4-Tem1GTP	

Product

Table 91: Properties of each product.

Id	Name	SBO
Bfa1_Tem1GTP	Bfa1-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{43} = \text{vol}(c2) \cdot \text{krKin4} \cdot [\text{Bfa1P4_Tem1GTP}]$$
 (172)

9.44 Reaction R37

This is an irreversible reaction of one reactant forming one product.

Name R37: Dephosphorylation of Cdc5-phosphorylated Bfa1 presumably by PP2A

Reaction equation

Bfa1P5_Tem1GTP
$$\longrightarrow$$
 Bfa1_Tem1GTP (173)

Table 92: Properties of each reactant.

Id	Name	SBO
Bfa1P5_Tem1GTP	Bfa1P5-Tem1GTP	

Table 93: Properties of each product.

Id	Name	SBO
Bfa1_Tem1GTP	Bfa1-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{44} = \operatorname{vol}(c2) \tag{174}$$

 $\cdot Function_for_R37_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A \\ ([Bfa1P5_Tem1GT] krCdc5_u)$

 $Function_for_R37_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A7(\$Bfa1P5_Tem1GTP], \\ krCdc5, u) = u \cdot krCdc5 \cdot [Bfa1P5_Tem1GTP]$

 $Function_for_R37_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A7(6Bfa1P5_Tem1GTP], \\ krCdc5, u) = u \cdot krCdc5 \cdot [Bfa1P5_Tem1GTP]$

9.45 Reaction R31

This is an irreversible reaction of one reactant forming one product.

Name R31: Phosphorylation of Bfa1:Tem1GTP by cytosolic Kin4

Reaction equation

Bfa1_Tem1GTP
$$\longrightarrow$$
 Bfa1P4_Tem1GTP (177)

Table 94: Properties of each reactant.

Id	Name	SBO
Bfa1_Tem1GTP	Bfa1-Tem1GTP	

Table 95: Properties of each product.

Id	Name	SBO
Bfa1P4_Tem1GTP	Bfa1P4-Tem1GTP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{45} = \text{vol} (\text{c2})$$

$$\cdot \text{Function_for_R31_Phosphorylation_of_Bfa1_Tem1GTP_by_cytosolic_Kin4} ([\text{Bfa1_Tem1GTP}], \\ \text{kfKin4Cyto}, \textbf{u})$$

$$Function_for_R31_Phosphorylation_of_Bfa1_Tem1GTP_by_cytosolic_Kin4 ([Bfa1_Tem1GTP], kfKin4Cyto, u) = u \cdot kfKin4Cyto \cdot [Bfa1_Tem1GTP]$$
 (179)

$$Function_for_R31_Phosphorylation_of_Bfa1_Tem1GTP_by_cytosolic_Kin4 ([Bfa1_Tem1GTP], kfKin4Cyto, u) = u \cdot kfKin4Cyto \cdot [Bfa1_Tem1GTP]$$
 (180)

9.46 Reaction R35

This is an irreversible reaction of one reactant forming one product.

Name R35: Dephosphorylation of Bfa1 by a yet unidentified phosphatase counteracting Kin4

Reaction equation

Bfa1P4_Tem1GDP
$$\longrightarrow$$
 Bfa1_Tem1GDP (181)

Table 96: Properties of each reactant.

Id	Name	SBO
Bfa1P4_Tem1GDP	Bfa1P4-Tem1GDP	

Table 97: Properties of each product.

Id	Name	SBO
Bfa1_Tem1GDP	Bfa1-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{46} = vol(c2) \cdot krKin4 \cdot [Bfa1P4_Tem1GDP]$$
 (182)

9.47 Reaction R38

This is an irreversible reaction of one reactant forming one product.

Name R38: Dephosphorylation of Cdc5-phosphorylated Bfa1 presumably by PP2A

Reaction equation

Bfa1P5_Tem1GDP
$$\longrightarrow$$
 Bfa1_Tem1GDP (183)

Reactant

Table 98: Properties of each reactant.

Id	Name	SBO
Bfa1P5_Tem1GDP	Bfa1P5-Tem1GDP	

Product

Table 99: Properties of each product.

T 1	. I	CDO
Id	Name	SBO
${\tt Bfa1_Tem1GDP}$	Bfa1-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{47} = \text{vol}(c2)$$
 (184)

 $\cdot Function_for_R38_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A \\ ([Bfa1P5_Tem1GDkrCdc5,u)$

 $Function_for_R38_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A8(5Bfa1P5_Tem1GDP], \\ krCdc5, u) = u \cdot krCdc5 \cdot [Bfa1P5_Tem1GDP]$

 $Function_for_R38_Dephosphorylation_of_Cdc5_phosphorylated_Bfa1_presumably_by_PP2A8(Bfa1P5_Tem1GDP], \\ krCdc5, u) = u \cdot krCdc5 \cdot [Bfa1P5_Tem1GDP]$

9.48 Reaction R32

This is an irreversible reaction of one reactant forming one product.

Name R32: Phosphorylation of Bfa1:Tem1GDP by cytosolic Kin4

Reaction equation

Bfa1_Tem1GDP
$$\longrightarrow$$
 Bfa1P4_Tem1GDP (187)

Reactant

Table 100: Properties of each reactant.

Id	Name	SBO
Bfa1_Tem1GDP	Bfa1-Tem1GDP	

Product

Table 101: Properties of each product.

Id	Name	SBO
Bfa1P4_Tem1GDP	Bfa1P4-Tem1GDP	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{48} = \text{vol}(\text{c2})$$
 (188)
·Function_for_R32__Phosphorylation_of_Bfa1_Tem1GDP_by_cytosolic_Kin4([Bfa1_Tem1GDP],

·Function_for_R32__Phosphorylation_of_Bfa1_Tem1GDP_by_cytosolic_Kin4([Bfa1_Tem1GDP_kfKin4Cyto,u)

 $Function_for_R32_Phosphorylation_of_Bfa1_Tem1GDP_by_cytosolic_Kin4([Bfa1_Tem1GDP], \\ kfKin4Cyto, u) = u \cdot kfKin4Cyto \cdot [Bfa1_Tem1GDP]$ (189)

 $Function_for_R32_Phosphorylation_of_Bfa1_Tem1GDP_by_cytosolic_Kin4 ([Bfa1_Tem1GDP], \\ kfKin4Cyto, u) = u \cdot kfKin4Cyto \cdot [Bfa1_Tem1GDP]$ (190)

10 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

10.1 Species SPB_B

Name B

Notes Binding site for Bfa1 in SPB

Initial concentration $8.33 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in R1, R2, R3, R4, R5, R6, R7, R8, R9).

$$\frac{d}{dt}SPB_{-}B = -v_1 - v_2 - v_3 - v_4 - v_5 - v_6 - v_7 - v_8 - v_9$$
(191)

10.2 Species SPB_T

Name T

Notes Binding site for Tem1 in SPB

Initial concentration $1.66 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R22, R23).

$$\frac{d}{dt}SPB_{-}T = -v_{22} - v_{23} \tag{192}$$

10.3 Species Bfa1

Name Bfa1

Initial concentration $2.03 \cdot 10^{-8} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R1, R16, R19, R30 and as a product in R33, R36).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bfa1} = v_{34} + v_{35} - v_1 - v_{16} - v_{19} - v_{33} \tag{193}$$

10.4 Species Bfa1P4

Name Bfa1P4

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R2, R17, R20, R33 and as a product in R30).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bfa}1\mathrm{P4} = v_{33} - v_2 - v_{17} - v_{20} - v_{34} \tag{194}$$

10.5 Species Bfa1P5

Name Bfa1P5

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R3, R18, R21, R36).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bfa1P5} = -v_3 - v_{18} - v_{21} - v_{35} \tag{195}$$

10.6 Species Tem1GTP

Name Tem1GTP

Initial concentration $4.91 \cdot 10^{-8} \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in R10, R11, R12, R16, R17, R18, R22, R39 and as a product in R40).

$$\frac{d}{dt}\text{Tem1GTP} = v_{36} - v_{10} - v_{11} - v_{12} - v_{16} - v_{17} - v_{18} - v_{22} - v_{37}$$
 (196)

10.7 Species Tem1GDP

Name Tem1GDP

Initial concentration $7.99 \cdot 10^{-9} \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in R13, R14, R15, R19, R20, R21, R23, R40 and as a product in R39).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Tem1GDP} = v_{37} - v_{13} - v_{14} - v_{15} - v_{19} - v_{20} - v_{21} - v_{23} - v_{36}$$
(197)

10.8 Species B_Bfa1

Name B-Bfa1

Initial concentration $8.33 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R10, R13, R24, R27 and as a product in R1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{B}_{-}\mathbf{B}\mathbf{fa1} = v_1 - v_{10} - v_{13} - v_{24} - v_{27} \tag{198}$$

10.9 Species B_Bfa1P4

Name B-Bfa1P4

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R11, R14 and as a product in R2, R24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{B}_{-}\mathbf{B}\mathbf{fa}\mathbf{1}\mathbf{P4} = v_2 + v_{24} - v_{11} - v_{14} \tag{199}$$

10.10 Species B_Bfa1P5

Name B-Bfa1P5

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R12, R15 and as a product in R3, R27).

$$\frac{d}{dt}B_{-}Bfa1P5 = v_3 + v_{27} - v_{12} - v_{15}$$
 (200)

10.11 Species T_Tem1GTP

Name T-Tem1GTP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R41 and as a product in R22, R42).

$$\frac{d}{dt}T_{-}Tem1GTP = v_{22} + v_{38} - v_{39}$$
 (201)

10.12 Species T_Tem1GDP

Name T-Tem1GDP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R42 and as a product in R23, R41).

$$\frac{d}{dt}T_{-}Tem1GDP = v_{23} + v_{39} - v_{38}$$
 (202)

10.13 Species B_Bfa1_Tem1GTP

Name B-Bfa1-Tem1GTP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R25, R28, R46 and as a product in R4, R10).

$$\frac{d}{dt}B_{-}Bfa1_{-}Tem1GTP = v_4 + v_{10} - v_{25} - v_{28} - v_{31}$$
(203)

10.14 Species B_Bfa1P4_Tem1GTP

Name B-Bfa1P4-Tem1GTP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R47 and as a product in R5, R11, R25).

$$\frac{d}{dt}B_Bfa1P4_Tem1GTP = v_5 + v_{11} + v_{25} - v_{30}$$
 (204)

10.15 Species B_Bfa1P5_Tem1GTP

Name B-Bfa1P5-Tem1GTP

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R48 and as a product in R6, R12, R28).

$$\frac{d}{dt}B_{-}Bfa1P5_{-}Tem1GTP = v_6 + v_{12} + v_{28} - v_{32}$$
 (205)

10.16 Species B_Bfa1_Tem1GDP

Name B-Bfa1-Tem1GDP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R26, R29 and as a product in R7, R13, R46).

$$\frac{d}{dt}B_Bfa1_Tem1GDP = v_7 + v_{13} + v_{31} - v_{26} - v_{29}$$
 (206)

10.17 Species B_Bfa1P4_Tem1GDP

Name B-Bfa1P4-Tem1GDP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in R8, R14, R26, R47).

$$\frac{d}{dt}B_Bfa1P4_Tem1GDP = v_8 + v_{14} + v_{26} + v_{30}$$
 (207)

10.18 Species B_Bfa1P5_Tem1GDP

Name B-Bfa1P5-Tem1GDP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in R9, R15, R29, R48).

$$\frac{d}{dt}B_{B}Bfa1P5_{Tem1}GDP = v_9 + v_{15} + v_{29} + v_{32}$$
 (208)

10.19 Species Bfa1_Tem1GTP

Name Bfa1-Tem1GTP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R4, R43, R31 and as a product in R16, R34, R37).

$$\frac{d}{dt}Bfa1_{-}Tem1GTP = v_{16} + v_{43} + v_{44} - v_4 - v_{41} - v_{45}$$
(209)

10.20 Species Bfa1P4_Tem1GTP

Name Bfa1P4-Tem1GTP

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in R5, R44, R34 and as a product in R17, R31).

$$\frac{d}{dt}Bfa1P4_Tem1GTP = v_{17} + v_{45} - v_5 - v_{40} - v_{43}$$
 (210)

10.21 Species Bfa1P5_Tem1GTP

Name Bfa1P5-Tem1GTP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R6, R45, R37 and as a product in R18).

$$\frac{d}{dt}Bfa1P5_Tem1GTP = v_{18} - v_6 - v_{42} - v_{44}$$
 (211)

10.22 Species Bfa1_Tem1GDP

Name Bfa1-Tem1GDP

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in R7, R32 and as a product in R19, R43, R35, R38).

$$\frac{d}{dt}Bfa1_Tem1GDP = v_{19} + v_{41} + v_{46} + v_{47} - v_7 - v_{48}$$
(212)

10.23 Species Bfa1P4_Tem1GDP

Name Bfa1P4-Tem1GDP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R8, R35 and as a product in R20, R44, R32).

$$\frac{d}{dt}Bfa1P4_Tem1GDP = v_{20} + v_{40} + v_{48} - v_8 - v_{46}$$
(213)

10.24 Species Bfa1P5_Tem1GDP

Name Bfa1P5-Tem1GDP

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R9, R38 and as a product in R21, R45).

$$\frac{d}{dt}Bfa1P5_Tem1GDP = v_{21} + v_{42} - v_9 - v_{47}$$
 (214)

10.25 Species Active_Bfa1_at_the_SPB

Name Active Bfa1 at the SPB

Initial concentration $150.493316085 \text{ mol} \cdot 1^{-1}$

Involved in rule Active_Bfa1_at_the_SPB

One rule determines the species' quantity.

10.26 Species Active_Bfa1_at_the_Cytosol

Name Active Bfa1 at the Cytosol

Initial concentration $1222.4947245 \text{ mol} \cdot l^{-1}$

Involved in rule Active_Bfa1_at_the_Cytosol

One rule determines the species' quantity.

10.27 Species Active_Tem1_at_the_SPB

Name Active Tem1 at the SPB

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Active_Tem1_at_the_SPB

One rule determines the species' quantity.

10.28 Species Active_Tem1_in_the_Cytosol

Name Active Tem1 in the Cytosol

Initial concentration $2956.8714765 \text{ mol} \cdot l^{-1}$

Involved in rule Active_Tem1_in_the_Cytosol

One rule determines the species' quantity.

10.29 Species Inactive_Bfa1_at_the_SPB

Name Inactive Bfa1 at the SPB

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Inactive_Bfa1_at_the_SPB

One rule determines the species' quantity.

10.30 Species Inactive_Bfa1_in_the_cytosol

Name Inactive Bfa1 in the cytosol

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Inactive_Bfa1_in_the_cytosol

One rule determines the species' quantity.

10.31 Species Inactive_Tem1_at_the_SPB

Name Inactive Tem1 at the SPB

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Inactive_Tem1_at_the_SPB

One rule determines the species' quantity.

10.32 Species Inactive_Tem1_in_the_cytosol

Name Inactive Tem1 in the cytosol

Initial concentration $481.16910585 \text{ mol} \cdot l^{-1}$

Involved in rule Inactive_Tem1_in_the_cytosol

One rule determines the species' quantity.

10.33 Species Total_Bfa1_at_the_SPB

Name Total Bfa1 at the SPB

Initial concentration $150.493316085 \text{ mol} \cdot l^{-1}$

Involved in rule Total_Bfa1_at_the_SPB

One rule determines the species' quantity.

10.34 Species Total_Bfa1_in_the_Cytosol

Name Total Bfa1 in the Cytosol

Initial concentration $1222.4947245 \text{ mol} \cdot l^{-1}$

Involved in rule Total_Bfa1_in_the_Cytosol

One rule determines the species' quantity.

10.35 Species Total_Tem1_at_the_SPB

Name Total Tem1 at the SPB

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

Involved in rule Total_Tem1_at_the_SPB

One rule determines the species' quantity.

10.36 Species Total_Tem1_in_the_Cytosol

Name Total Tem1 in the Cytosol

Initial concentration $3438.04058235 \text{ mol} \cdot l^{-1}$

Involved in rule Total_Tem1_in_the_Cytosol

One rule determines the species' quantity.

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany