Bayesian Inference for Stochastic Volatility in Financial Markets: A Case Study on the S&P 500

Group 4: Zhiyuan Jia, Abdumalik Abdukayumov, Baran Sen

Department of Economics & Computer Science, Duke University

April 10, 2024

Overview

- 1 Introduction
- 2 Estimation: the theory
- 3 An Application: S&P 500 Returns
- 4 Conclusion and references

Motivation

- To predict the returns of a financial asset, we want to understand the evolution behind it
- Finance Model: there is an unobservable variable that drove the evolution: Volatility
- Our project: forecast daily S&P 500 closing returns

Motivation

- To predict the returns of a financial asset, we want to understand the evolution behind it
- Finance Model: there is an unobservable variable that drove the evolution: Volatility
- Our project: forecast daily S&P 500 closing returns
- Takeaway of presentation:
 - 1 A brief introduction to a canonical SV Model (State space model)
 - 2 Estimation technique in the model

Equation 1: observable variable

Formally,

 Start with a list of observable data (the return of assets at different time)

$$y_1, y_2, ..., y_t, ..., y_T.$$

Equation 1: observable variable

Formally,

 Start with a list of observable data (the return of assets at different time)

$$y_1, y_2, ..., y_t, ..., y_T.$$

Finance Model:

$$y_t = \exp\left(\frac{h_t}{2}\right)\varepsilon_t\tag{1}$$

for h_t as the unobservable volatility, ε_t is i.i.d.¹ N(0,1)

¹observable noise

Equation 2: volatility process

Formally,

volatility is not constant but evolves over time

$$h_{t+1} = \mu + \phi (h_t - \mu) + \eta_t$$
 (2)

- μ is the long time mean to which volatility reverts over time
- ullet ϕ is the persistence parameter
- $\eta_t \sim N(0, \sigma_n^2)$ i.i.d, the dynamic noise
- initial condition $h_1 \sim \mathcal{N}\left(\mu, rac{\sigma^2}{1-\phi^2}
 ight)$

Estimation

$$y_t = \exp\left(\frac{h_t}{2}\right) \varepsilon_t$$

$$h_{t+1} = \mu + \phi \left(h_t - \mu \right) + \eta_t$$

$$egin{aligned} arepsilon_t \sim \mathit{N}(0,1), \eta_t \sim \mathit{N}(0,\sigma_\eta^2), h_1 \sim \mathit{N}\left(\mu, rac{\sigma^2}{1-\phi^2}
ight) \end{aligned}$$

Given the model and data $y^T := \{y_1, y_2, ... y_T\}$, our project

Estimation

$$y_t = \exp\left(\frac{h_t}{2}\right) \varepsilon_t$$

$$h_{t+1} = \mu + \phi \left(h_t - \mu \right) + \eta_t$$

$$oldsymbol{arepsilon_t} oldsymbol{arepsilon_t} \sim extstyle extstyle extstyle N(0, \sigma_{\eta}^2), extstyle h_1 \sim extstyle N\left(\mu, rac{\sigma^2}{1-\phi^2}
ight)$$

Given the model and data $y^T := \{y_1, y_2, ... y_T\}$, our project

ullet estimate the parameters $\{\mu,\phi,\sigma_n^2\}$ in the spirit of Bayesian

Estimation

$$y_t = \exp\left(\frac{h_t}{2}\right) \varepsilon_t$$

$$h_{t+1} = \mu + \phi \left(h_t - \mu \right) + \eta_t$$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_t \sim extstyle extstyle N(0, \sigma_\eta^2), h_1 \sim extstyle N\left(\mu, rac{\sigma^2}{1-\phi^2}
ight) \end{aligned}$$

Given the model and data $y^T := \{y_1, y_2, ... y_T\}$, our project

- estimate the parameters $\{\mu,\phi,\sigma_{\eta}^2\}$ in the spirit of Bayesian
- estimate the unobservable variable $h^T := \{h_1, h_2, ... h_T\}$

General idea

- Derive full conditionals and use MCMC (Gibbs Sampling)
 - **1** Derive $\sigma_n^2 \mid y, h, \phi, \mu$
 - **2** Derive $\mu \mid y, h, \phi, \sigma_{\eta}^2$
 - **3** Derive $\phi \mid y, h, \phi, \mu, \sigma_{\eta}^2$

General idea

- Derive full conditionals and use MCMC (Gibbs Sampling)
 - **1** Derive $\sigma_{\eta}^2 \mid y, h, \phi, \mu$
 - 2 Derive $\mu \mid y, h, \phi, \sigma_{\eta}^2$
 - **3** Derive $\phi \mid y, h, \phi, \mu, \sigma_{\eta}^2$
- Untrivial part: posterior of h^T
 - Alternative: derive full conditionals for each h_t separately
 - Kim (1998) developed a more efficient method

Preliminary: Kalman Filter

• Consider a linear system with Gaussian noise

$$y_t = x_t + v_t$$

$$x_t = \theta x_{t-1} + w_t$$
(3)

where
$$w_t \sim \mathcal{N}\left(0, \tau^2\right)$$
 and $v_t \sim \mathcal{N}\left(0, \sigma^2\right)$

Preliminary: Kalman Filter

• Consider a linear system with Gaussian noise

$$y_t = x_t + v_t$$

$$x_t = \theta x_{t-1} + w_t$$
(3)

where
$$w_t \sim \mathcal{N}\left(0, au^2\right)$$
 and $v_t \sim \mathcal{N}\left(0, \sigma^2\right)$

• Given θ, τ^2, σ^2 , and data $\{y_t\}_{t=1}^T$, there is a simulator for $\{x_t\}_{t=1}^T$: Kalman filtering and smoothing (omit detail here)

Generate all h^T at the same time

• Taking log over (1) to get a linear model²

$$y_t^* = h_t + \varepsilon_t^* \tag{4}$$

(Zhiyuan J, Abdumalik A, Baran S)

STA 602L

April 10, 2024

Generate all h^T at the same time

• Taking log over (1) to get a linear model²

$$y_t^* = h_t + \varepsilon_t^* \tag{4}$$

• ε_t^* does not follow normal distribution anymore

²where $y_t^* = log(y_t^2), \varepsilon_t^* = log(\varepsilon_t^2)$, and so $E[\varepsilon_t^*] = 1.27036$ and $Var(\varepsilon_t^*) = 4.93$.

(Zhiyuan J, Abdumalik A, Baran S)

STA 602L April 10, 2024

Generate all h^T at the same time

• Taking log over (1) to get a linear model²

$$y_t^* = h_t + \varepsilon_t^* \tag{4}$$

- ullet $arepsilon_t^*$ does not follow normal distribution anymore
- Solution: using Gaussian mixture model
 - Approximate the exact likelihood
 - Why we want to do so?

²where $y_t^* = log(y_t^2), \varepsilon_t^* = log(\varepsilon_t^2)$, and so $E[\varepsilon_t^*] = 1.27036$ and $Var(\varepsilon_t^*) = 4.93$.

Approximation

Now, using the Gaussian mixture model to approximate the distribution of \mathcal{E}_t^* , namely,

$$f\left(\varepsilon_{t}^{*}\right) = \sum_{i=1}^{l} q_{i} f_{normal}\left(\varepsilon_{t}^{*} \mid m_{i} - 1 \cdot 2704, v_{i}^{2}\right) \tag{5}$$

$s_t = i$	q_i	m_i	v _i ²
1	0.04395	2.77786	0.16735
2	0.24566	1.79518	0.34023
3	0.34001	0.61942	0.64009
4	0.25750	-1.08819	1.26261
5	0.10556	-3.97281	2.61369
6	0.00002	-8.56686	5.17950
7	0.00730	-10.12999	5.79596

4□▶ 4□▶ 4 亘 ▶ 4 亘 ▶ 9 ♀

Sampling from mixture

 Naturally we could use a two-step sampling to sample from the mixture of normal distribution. namely,

$$p(h_t|s_t, \{y_t\}_{t=1}^T, \mu, \phi, \sigma_{\eta}^2) * p(s_t|\{y_t\}_{t=1}^T, \mu, \phi, \sigma_{\eta}^2)$$

• sample $s_t | \{y_t\}_{t=1}^T, \phi, \mu, \sigma_{\eta}^2$

$$\Pr(s_t = i \mid y_t^*, h_t) \propto q_i f_{Normal}(y_t^* \mid h_t + m_i - 1 \cdot 2704, v_i^2)$$

and notice in full conditionals, the right-hand side is known.

Sampling from mixture (continue)

- sample $h_t | s_t, \{y_t\}_{t=1}^T, \phi, \mu, \sigma_{\eta}^2$
 - We want to solve $\{h_t\}_{t=1}^T$ in the system

$$y_t^* = h_t + \varepsilon_t^* | s_t$$

 $h_t = \mu + \phi (h_{t-1} - \mu) + \eta_{t-1}$

- Normal noise, there is a standard method to deal with: Kalman filter (see detail in appendix)
- Can use package/functions: KalmanLike(), KalmanRun(), and KalmanSmooth()

Full conditionals of σ_n^2 , μ , ϕ

using the regression method discussed in Lecture 15, and equation (2) structure, for σ_n^2 , given an inverse gamma prior,

$$\sigma_{\eta}^2 \sim IG(\frac{v_0}{2}, \frac{v_0\sigma_0^2}{2}) \tag{6}$$

$$\sigma_{\eta}^{2} \mid y, h, \phi, \mu \sim IG\left\{\frac{n + v_{0}}{2}, \frac{v_{0}\sigma_{0}^{2} + SSR}{2}\right\}$$

$$SSR = (h_{1} - \mu)^{2} (1 - \phi^{2}) + \sum_{t=1}^{n-1} ((h_{t+1} - \mu) - \phi(h_{t} - \mu))^{2}$$
(7)

Full conditionals of σ_{η}^2 , μ , ϕ

For μ , given a diffuse prior, ³

$$\mu \mid h, \phi, \sigma_{\eta}^{2} \sim \mathcal{N}(\hat{\mu}, \sigma_{\mu}^{2})$$

$$, \hat{\mu} = \sigma_{\mu}^{2} \left\{ \frac{(1 - \phi^{2})}{\sigma_{\eta}^{2}} h_{1} + \frac{(1 - \phi)}{\sigma_{\eta}^{2}} \sum_{t=1}^{n-1} (h_{t+1} - \phi h_{t}) \right\}$$

$$\sigma_{\mu}^{2} = \sigma_{\eta}^{2} \left\{ (n-1)(1 - \phi)^{2} + (1 - \phi^{2}) \right\}^{-1}.$$
(8)

Similarly, we can derive a posterior for ϕ , given different prior.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ · ㅌ · 쒸٩@

³in practice, can use a slightly informative prior

MCMC

- **1** Initialize s, ϕ, σ_{η}^2 and μ .
- 2 Sample h from $h \mid y^*, s, \phi, \sigma_{\eta}^2, \mu$.
- 3 Sample s from $s \mid y^*, h$.
- **4** Update $\phi, \sigma_{\eta}^2, \mu$
- **6** Goto 2.

S&P 500 Closing Prices

Figure: Closing Prices of SP 500

Log S&P 500 Returns

S&P 500 Log Returns

Figure: Log Returns of SP 500

Estimated Volatility

Figure: Volatility Plot

Trace Plots of Model Parameters

Figure: Model Parameters

Density Plots of Model Parameters

Figure: Model Parameter Densities

Forecasting

Predicted data (2.5% / 50% / 97.5% quantiles)

Figure: 30 - Day Forecast

Takeaways

- SV/ State-space Model could be used to model financial data, which consider the randomness in the volatility
- Estimation of the volatility: using Gaussian Mixture model to approximate $log \chi^2$
- Limitations: incorporate unexpected shock in the economy (e.g. Covid)
- Future work: we can build the model with more complex specifications (SVt, include AR terms)

References

- Greenberg, E. (2012). Introduction to Bayesian econometrics.
 Cambridge University Press.
- Hosszejni D, Kastner G (2021). "Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol." *Journal of Statistical Software*, 100(12), 1–34. doi:10.18637/jss.v100.i12.
- Kim, S., Shephard, N., Chib, S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. The review of economic studies, 65(3), 361-393.

Appendix

Rudolf Kalman developed a method to do so:

- 1 Initialize λ_0^0, P_0^0
- 2 Calculate $\lambda_1^1, P_1^1, \lambda_2^2, P_2^2, \lambda_3^3, P_3^3, \dots, \lambda_T^T, P_T^T$ using the following update:
 - update

$$\lambda_t^{t-1} = \theta \lambda_{t-1}^{t-1}$$
 $P_t^{t-1} = \theta^2 P_{t-1}^{t-1} + \tau^2$

2 calculate $K_t = \frac{P_t^{t-1}}{P_t^{t-1} + \sigma^2}$ and update

$$\lambda_{t}^{t} = \lambda_{t}^{t-1} + K_{t} (y_{t} - \lambda_{t}^{t-1})$$
 $P_{t}^{t} = (I - K_{t}) P_{t}^{t-1}$

3 sample x_t from $\mathcal{N}(\lambda_t^t, P_t^t)$

Thanks for your attention