Devoir maison 9.

À rendre le Lundi 10 février 2025

Exercice

Pour tout intervalle I de \mathbb{R} , on note $\mathcal{A}(I,\mathbb{R})$ l'ensemble des fonctions $f:I\to\mathbb{R}$ de classe \mathcal{C}^{∞} sur I et vérifiant :

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ f^{(n)}(x) \ge 0.$$

Partie 1 : Premiers exemples

- $\mathbf{1}^{\circ}$) Montrer que $\exp \in \mathcal{A}(\mathbb{R}, \mathbb{R})$.
- 2°) Montrer que $f: x \mapsto \frac{1}{1-x}$ est un élément de $\mathcal{A}(]-\infty, 1[, \mathbb{R}).$

Partie 2 : Stabilité par quelques opérations

Dans cette partie, I est un intervalle quelconque de \mathbb{R} .

- 3°) Soit f et g des éléments de $\mathcal{A}(I,\mathbb{R})$. Montrer que $f+g\in\mathcal{A}(I,\mathbb{R})$ et que $fg\in\mathcal{A}(I,\mathbb{R})$.
- **4**°) Soit $f \in \mathcal{A}(I, \mathbb{R})$. Montrer que pour tout $p \in \mathbb{N}$, $f^{(p)} \in \mathcal{A}(I, \mathbb{R})$.
- **5**°) Soit $f \in \mathcal{A}(I, \mathbb{R})$. On pose $\varphi = \exp \circ f$.
 - a) Montrer que φ est de classe \mathcal{C}^{∞} sur I, et exprimer φ' en fonction de f' et de φ .
 - b) En déduire, pour tout $n \in \mathbb{N}$, une expression de $\varphi^{(n+1)}$ en fonction de dérivées successives de f et des dérivées de φ d'ordre plus petit.
 - c) Montrer alors, à l'aide d'une récurrence, que $\varphi \in \mathcal{A}(I, \mathbb{R})$.

Partie 3: Prolongement à gauche

Dans cette question, on suppose que I est un intervalle de la forme I =]a, b[, avec a et b des réels tels que a < b, ou bien avec a réel et $b = +\infty$.

- **6**°) Soit $f \in \mathcal{A}(]a, b[, \mathbb{R})$.
 - Montrer que f est positive et croissante sur]a,b[, et en déduire que f admet une limite finie ℓ_0 en a, et que $\ell_0 \geq 0$.
- **7°)** Montrer que si $f:[a,b[\to \mathbb{R} \text{ est continue et que } f\in \mathcal{A}(]a,b[,\mathbb{R}), \text{ alors } f \text{ est de classe } \mathcal{C}^1 \text{ sur } [a,b[,\text{ et } f'(a)\geq 0.$
- 8°) Soit $f \in \mathcal{A}(a, b[\mathbb{R})$.
 - À l'aide des questions 6 et 7, montrer que f se prolonge en une fonction de classe \mathcal{C}^{∞} sur [a, b[, et que la fonction f, ainsi prolongée, est dans $\mathcal{A}([a, b[, \mathbb{R})])$.
 - Indication : On effectuera une récurrence en réfléchissant bien à la propriété à démontrer pour tout $n \in \mathbb{N}$.
- 9°) Justifier par un contre-exemple qu'un tel prolongement n'est pas possible en b pour une fonction de $\mathcal{A}([a,b[,\mathbb{R}), \text{ avec } b \in \mathbb{R} \text{ et } a \in \mathbb{R} \cup \{-\infty\}.$