Rev 1.0, 7/10/2016

本应用笔记主要介绍 V98xx(S/A)系列的 RTC 校正。主要内容包括

- ➤ 不带温度补偿功能的 RTC 校正
- ▶ 带温度补偿功能的 RTC 校正

本应适用笔记用芯片:

- ▶ V98xx 系列: V9801、V9811
- ▶ V98xx (S/A) 系列: V9801S、V9811S、V9811A、V9821、V9821S、V9881D

目录

目录		. 2
第1章	f 晶振特性简介	. 3
	5 实时时钟补偿及秒脉冲校正	
2.1	不带温度补偿校正 RTC 时钟校正	. 4
2.1.1	实时时钟校正寄存器	
2.1.2		. 4
2.1.3	通过校正秒脉冲输出来校正 RTC	. 5
2.2	带温度补偿的 RTC 校正	. 5
2.2.1	温度测量	. 5
2.2.2	温度标定	
2.2.3	基于温度补偿 RTC 校正公式	. 7
2.2.4	晶振曲线偏移值 ΔC 的校正	. 8
2.2.5	全温度范围内 Bpara 确定	.8
2.2.6		.9
2.3	利用 SD502 校正 RTC	.9
	新说明	

第1章 晶振特性简介

本文中所介绍的 RTC 校正方法所涉及的数据与公式,均根据我们所使用的日本精工的晶体 VT-200-F 得到。 晶体的具体信息如表 1-1 所示。

	参数	符号	规格
	标称频率(Nominal Frequency)	F_nom	32.768kHz
V/T 200 F	频率容许偏差(Frequency Tolerance)	F_tol	±5ppm
VT-200-F	顶点温度(Turnover Temperature)	Ti	+24±5°C
	二次温度系数(Parabolic Coefficient)	В	$(-3.5\pm0.8)\times10^{-8}/^{\circ}C^{2}$
	负载容量(Load Capacitance)	CL	12.5pF

表 1-1 晶振 VT-200-F 参数说明

注:表1-1数据来源于日本精工网站。

音叉型石英晶体的振荡频率与温度之间存在如图 1-2 所示的关系。在顶点温度(即图中的 25°C)时,晶体的振荡频率偏差最小。温度偏离顶点温度越远,则晶体的振荡频率偏差越大。

图 1-1 晶体的频率-温度特性(来源: 日本精工网站)

晶体的振荡频率与温度之间存在如下关系:

公式 1-1 $F = B \times (T - Ti)^2 \times 32768 + 32768$

其中, $B \times (T - Ti)^2 = F_{-tem} = \frac{\Delta f}{f_0}$,振荡频率偏差;

- T: 当前温度, °C;
- Ti: 顶点温度,如表 1-1 所示,°C。典型值为 25°C;
- B: 二次温度系数,如表 1-1 所示,°C⁻²。典型值为-3.5×10-8/°C²。

在顶点温度下,晶体振荡频率存在偏差(K,以下简称为晶体常温偏移),所以,实际的晶体振荡频率可根据公式 1-2 计算得到。

第2章 实时时钟补偿及秒脉冲校正

本章主要介绍,芯片 RTC 的温度补偿、晶体常温偏移校正和全温度范围内二次温度系数 (B) 校正的原理和实现方法。

2.1 不带温度补偿校正 RTC 时钟校正

在不需要做温度补偿时,用户可以通过以下方法校正 RTC 在常温下计时误差。

2.1.1 实时时钟校正寄存器

在 V98xx(S)系列中中,RTC 的时钟源是外部 32768 晶振,RTC 校正寄存器用于校正实时时钟(RTC),校正周期为 30 秒,即每 30 秒对 RTC 时钟进行一次校正。校正分辨率为 30.5ppm/30s,其调整范围为± 249826ppm/30s(\pm 12 分/天)。

2.1.2 秒脉冲输出

V9801(S)集成了一个24位的高频计数器(PLLCNT),该计数器的时钟源是MCU的系统时钟,其工作模式由高频计数器状态寄存器(PLLCNT SFR)控制,该计数器可作为分频器或计数器使用,用于RTC高频秒脉冲校正及输出。

当 PLLCNT SFR 为 00 时, 24 位高频计数器作高速分频器用。在这个模式下,PLLCNT 从 0 开始计数,每个时钟周期累加 1。用户可通过高速分频门限值寄存器(DIVTHH/DIVTHM/DIVTHL SFR)预设其分频门限值(TH_0),当 PLLCNT 计数到预设分频门限值时,PLLCNT 清零,重新开始计数,并从引脚 PLLDIV 输出系统分频时钟。该分频时钟用作高频秒脉冲或高频时钟输出。系统分频时钟的频率由公式 2-1 得到:

公式 2-1
$$TH_0 = \frac{k \times 32768}{2 \times f_{DIV}} - 1$$

其中, f_{DIV} :系统分频时钟输出频率,Hz;在用作RTC时,输出是 1HZ。

k: PLL 的倍频倍数: 100、200、400 (注意: 在采用 60Hz 计量模式是, 该系数还要乘以 1.2 倍)。

 TH_0 :为预设的分频门限值(即寄存器 DIVTHH/DIVTHM/DIVTHL 的值)。当 TH_0 为 0 时(即默认情况下),系统时钟被 2 分频,系统时钟最高可被 2^25 分频。

例如: V9801 的国网方案中,系统时钟 PLL 的倍数是 400X32768=13.1072MHz; 输出秒脉冲时, f_{DIV} =1Hz; 所以,根据公式 2-1,可以计算得到 TH_0 值,

$$TH_0 = \frac{k \times 32768}{2 \times f_{DW}} - 1 = \frac{400 \times 32768}{2 \times 1} - 1 = 6553599 = 0x63FFFF$$

将上述计算得到的 TH_0 值写入寄存器 DIVTHH/DIVTHM/DIVTHL,系统即可输出秒脉冲。

注意:该值是预设的分频门限值,是假设外部晶振为标准的32768Hz的情况计算出来的理论值。当外部晶振有误差时,秒脉冲输出也不是标准的1Hz,此时需要通过下面章节描述的方法进行校正。

2.1.3 通过校正秒脉冲输出来校正 RTC

RTC(实时时钟)的时钟源为外部的 32768Hz 晶振,高频秒脉冲输出的时钟源为 MCU 的系统时钟,但是因为 MCU 的系统时钟为外部 32768 晶振经过 PLL 倍频的来,所以实时时钟和高频秒脉冲的时钟源实际是相同的。我们能通过校正高频秒脉冲输出来校正实时时钟。具体实现方式如下:

高频分频门限值的校正值 TH ((DIVTHH/DIVTHM/DIVTHL SFR)) 的计算公式:

公式 2-2
$$TH = TH_0 + (\frac{1}{t} - 1) \times \frac{k \times 32768}{2} \approx Err \times \frac{k}{60} + TH_0$$

以上公式中: t:实际测得的高频秒脉冲秒脉冲周期,单位 S。

K: PLL 的倍频倍数: 100、200、400(注意: 在采用 60Hz 计量模式是,该系数还要乘以 1.2 倍)。

THo: 预设高频分频门限值,由公式 2-1 计算得来。

TH: 新的高频分频门限值

Err: 通过高频秒脉冲输出测量得到时钟误差,单位 ppm。

在得知秒脉冲误差的情况下,用户可通过公式 2-4 计算得到新的高频分频门限值 TH,并写入寄存器 DIVTHH SFR (0xDB)、DIVTHM SFR (0xDC) 和 DIVTHH SFR (0xDD),校正高频秒脉冲的输出。

由数据手册的公式 19-6 我们得知 C 与 TH 存在如下关系:

公式 2-3
$$C-1 = -\Delta TH \times \frac{60}{k} = -Err$$

公式中: $\Delta TH = TH - TH_0$

所以,在校正高频秒脉冲的同时可以直接得出实时时钟补偿值,即寄存器 RTCCH SFR(0x94)和 RTCCL SFR(0x95)的值。将 C(转换成 HEX)值写入寄存器 RTCCH SFR(0x94)和 RTCCL SFR(0x95):

- 1. C < 0,调慢时钟,将(3FFFH-|C|)的值写入校正寄存器;
- 2. C > 0, 调快时钟,将 C 值直接写入校正寄存器。

通过以上方式,用户就可以实现常温下的 RTC 的校正。

2.2 带温度补偿的 RTC 校正

由于晶振在高低温是频率会发生改变,如果希望在高低温时,RTC 都保证一定的精度,就需要做温度补偿。在 V98xx(S)系列中,温度补偿的实现方式如下:

2.2.1 温度测量

芯片内部集成了测温电路(图 2-1),其温度测量精度可以达到 \pm 1°C以内。测试结果表明,温度和 ADC测量值(寄存器 DATAOM(0x10CE)或 DATADM(0x10CF)的值)之间的关系如图 2-2 所示。

图 2-1 测温电路原理框图

图 2-2 温度曲线

采用二次曲线拟合,可得 ADC 测量值的高 16-bit 值(y)与温度(T)之间的关系式:

公式 2-4
$$T = \frac{B \times \sqrt{(D \times k \times y) + C} - A}{E} + \Delta T$$

根据公式 2-4 计算,测温精度达±1°C。

算式中: A~E 为曲线参数,该参数根据芯片不同会有差异,详见下表

	V98xx 系列	V98xxS/A 系列
Α	116500	18018
В	80	1
С	1042777	224019254
D	60	7092
E	99	10

实时时钟补偿及秒脉冲校正

 ΔT 为常温偏移值,虽然每颗芯片的 ADC 曲线是一致的,但是在常温下的偏移值是不一样的,需要每颗芯片进行标定。

K 值和 CtrlBGP[1:3]配置有关,具体数据请参照附录

注:在实际应用中,参数 A~E 在出厂前已经写在芯片的固定的 flash 地址中,用户只需要读取就可以。

用户真正需要校正的是 ΔT ,V98xxS/A 系列芯片出厂前温度已经校正, ΔT 已经写在 flash 固定地址中,用户只需要读取就可以得到正确的温度值。

以上参数的存贮地址见附录。

2.2.2 温度标定

所谓的温度标定,就是确定公式 2-4 中的 ΔT 值。用户可根据以下步骤进行温度标定:

1. 开启测温功能

默认情况下,斩波去直功能开启(BGPCHOPN,bit0,CtrlBGP,0x2862),所以,BandGap 电路中的直流偏置可被消除,可一定程度地改善温度系数。在确认斩波去直功能开启的情况下,开启 M 通道 ADC 和电压通道 ADC,再配置寄存器 PMCtrl1(0x2878),使能有效值计算并开启两个通道的计量信号输入,最后,通过配置寄存器 CtrlADC5(0x2863)将 M 通道用于温度测量。推荐配置如下(以下配置仅为参考,详细配置请看数据手册中关于 M 通道温度测量的描述):

 $Ctr|BGP&=(\sim(BIT2+BIT1+BIT3));Ctr|BGP|=(BIT2);XBYTE[0x2865]=BIT0;$

CtrlADC6=0x0f;//开启 MADC, UADC

PMCtrl1=0x1f;//使能 ADC 计算

CtrlADC5=0x81; //开启测温功能

2. 标定温度

从寄存器 DATAOM (0x10CE) 或 DATADM (0x10CF) 读取 M 通道 ADC 测量值,并将其代入公式 2-4 (注意在标定之前 ΔT 值默认为 0),求得温度值 T'。然后,将该值与实际温度 T 比较计算得到参数 ΔT 的值,从而完成温度补偿。比如,标定前温度计算值 (T') 为 20°C,实际环境温度值温度 T 为 25°C,则 ΔT =T-T'=5°C,将该参数保存并代入到公式 2-4,则得到正确的温度值 (即 25°C)。

2.2.3 基于温度补偿 RTC 校正公式

根据晶振温度曲线公式 1-2 和数据手册的公式 19-4,可以得出带温度补偿的 RTC 校正值计算公式:

$$C-1 = 30 \times (32768 - f_{osc}) = 30 \times (32768 - (B \times (T - T_i)^2 \times 32768 + 32768 + k))$$
公式 2-5
$$= -B \times (T - T_i)^2 \times 30 \times 32768 - 30 \times k$$

$$\approx -B \times (T - T_i)^2 \times 10^6 - 30 \times k$$

为了方便计算,定义: $B_{para}=-B\times 10^{13}$, $\Delta C=-30\times k$, 根据公式 2-3 和 2-5 得到公式

公式 2-9
$$C-1 = B_{para} \times (T-T_i)^2 \times 10^{-7} + \Delta C = -Err$$

其中,

C : 写入 RTC 校正寄存器的值;单位: ppm

实时时钟补偿及秒脉冲校正

T : 当前温度, °C;

 T_i : 顶点温度, °C;

Err: 通过高频秒脉冲输出测量得到时钟误差,单位 ppm。

由公式 2-9 可知, RTC 的校正值 C 实际上由两部分构成,

- 1)晶振的温度特征曲线 $B_{para} \times (T T_i)^2 \times 10^{-7}$,对于选定的晶振来说,这个曲线的形状差不多是一致的,因此对于用户来说,只要获得该晶振的 B 参数,在后期的生产中,不需要再对该曲线进行校正。而获得 B 参数的方法有两种,一种是晶振厂家提供,另外就是用户自己测量(万高提供配套晶振的 B 参数)。
- 2)晶振曲线偏移值 ΔC : 同品牌的晶振虽然曲线形状相同,但是每颗晶振的温度曲线会有一定的偏移,而且每颗晶振的偏移量是不一样的,因此就需要对每颗晶振的偏移进行修正,**所以,生产中的 RTC 校正,主要就是对参数** ΔC 的校正。

以下介绍用户如何自己测量 B_{nara} 和校正 ΔC 。

2.2.4 晶振曲线偏移值 △C 的校正

为了提高常温秒脉冲校正的误差精度,我们将 Err 扩大了 10 倍,得到公式:

公式 2-10
$$\Delta C' = -Err' - B_{para} \times (T - T_i)^2 \times 10^{-6}$$

根据该公式,得到的 ΔC '也是真实值 ΔC 的10倍。

再将公式 2-3 调整为:

公式 2-11
$$TH - TH_0 = \Delta TH = Err' \times \frac{k}{600} = -\left(B_{para} \times (T - T_i)^2 \times 10^6 + \Delta C'\right) \times \frac{k}{600}$$

根据公式 2-10 和 2-11, 用户就可以用如下方法来校正 RTC 的 ΔC 和 ΔTH 值:

- 1) 在校正之前,必须确保温度测量准确,Bpara 参数是正确的(因为是在常温下,所以一般可以采用晶振厂家 推 荐 值)。 然 后 将 通 过 公 式 2-1 计 算 得 到 的 TH_0 值 写 入 高 速 分 频 门 限 值 寄 存 器 (DIVTHH/DIVTHM/DIVTHL SFR)。
- 2) 通过高频秒脉冲输出口测量时钟误差 Err.
- 3) 通过公式 **2-10** 获取得到晶振曲线偏移值 ΔC 的 **10** 倍值 $\Delta C'$ 。保存该值,作为该表的时钟校正值。因为 $\Delta C'$ 和 ΔTH 存在固定的数学关系,因此只需要保存 $\Delta C'$ 即可。

得到 $\Delta C'$ 值之后,用户就可以通过公式 2-9 和公式 2-11 得到不同温度下实时时钟校正值 C 和与之匹配的高频秒脉冲分频门限值TH。

2.2.5 全温度范围内 Bpara 确定

为了提高秒脉冲(日计时)误差校正的精度及灵活性,我们将晶振温度曲线分为 5 段: -50~-20°C、-19~0°C、1~39°C、40~59°C 和 60~99°C,每一段都设定各自的温度系数 (Bpara)。Bpara 可根据不同批次进行测试修改,一般同一品牌的晶振,该参数是固定的,只需要在第一次使用时测量这个参数,然后存贮到程序中,后续生产中只需要校正 ΔC 即可,一般晶振供应商会提供该参数,目前万高使用的晶振的 Bpara 值如表 2-1 所示。

表 2-1 不同温度段的默认温度系数 (Bpara)

温度段 (°C)	温度系数(Bpara,°C ⁻²)
-50~-20	3.2×10 ⁵
-19~0	3.4×10 ⁵
1~39	3.5×10 ⁵
40~59	3.7×10 ⁵
60~99	3.8×10^5

一般情况下,用户不需要测试 **1~39**℃的 Bpara 参数,用供应商提供的参数就可以了。而其他几个温度点的 Bpara 参数有可能需要用户自己测定,方法如下:

在完成晶体常温偏移校正后,用户分别在-30°C、-10°C、50°C 和 70°C 时,根据公式 2-11,通过调整 Bpara来调整秒脉冲输出误差。

如果秒脉冲误差为负值,则用户可通过增大 B 值来减小误差;如果秒脉冲误差为正值,则用户可通过减小 B 值来减小误差。

表 2-2 不同温度段的秒脉冲校正率

温度 (°C)	Bpara (°C ²)	说明
-30	320000	每调整 10000, 能校正秒脉冲约 0.25%~0.3%
-10	340000	每调整 10000, 能校正秒脉冲约 0.1%~0.15%
25	350000	常温偏移时已修正,不用再次校正
50	370000	每调整 10000, 能校正秒脉冲约 0.1%~0.15%
75	380000	每调整 10000, 能校正秒脉冲约 0.25%~0.3%

通过以上方式,我们就可以测量出在各个温度范围内,该品牌晶振的温度曲线参数 Bpara。

2.2.6 批量生产时的秒脉冲校正

在批量生产时,用户应根据以下步骤进行秒脉冲校正:

- 1. 从同一批硬件中抽 4~8 只表计,写入晶体顶点温度和默认的 Bpara 值,读取寄存器 DATAOM(0x10CE)或 DATADM(0x10CF)的 ADC 测量值,然后在常温下(20~30℃),根据公式 2-4 和公式 2-10 进行温度校正(ΔT)和晶体常温偏移修正值($\Delta C'$)校正。
- 2. 对抽出表计进行高低温全温度秒脉冲验证及校正,对默认 Bpara 值进行调整及验证,得出在各温度下的平均 Bpara 值(同一批表计同一温度点 Bpara 值差异不大)。
- 3. 对批量生产的表计进行 RTC 校正时,只需要校正常温偏移修正值,这样就完成了表计的秒脉冲校正。不需要再进行高低温全温度秒脉冲的验证。

目前,我公司可以提供烧写器程序和 RTC 校正一体化的批量生产工具,能大大提高生产效率。

2.3 利用 SD502 校正 RTC

为了方便客户的使用,万高的芯片在出厂前已经对温度进行了标定,同时也提供了专用的工具 SD502 完成常温下对芯片 RTC 校正。详细的使用方法,可以参看参考 SD502 手册中的带 RTC 脱机烧写部分。

SD502 校正之后,与温度补偿和 RTC 校正有关的参数会放在 Flash 的固定区域(详见附录)。用户只需要读取相应的参数,代到前面提到的计算公式中,就能完成 RTC 的全温度补偿。

程序设计可以参照相关例程。

附录一:

表 2-3 只校正常温误差

温度 (°C)								RTC (ppm)							
値及 (*し)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
-40	8	8	5.8	7	7	7.9	8.5	8	8	1.6	6.5	9	9	7	9	8
-25	-1.19	0	5	6	5	4	7	6.5	5.5	-0.26	5	6	7	5	5.8	6
-10	-0.8	-6.9	4	3	3.9	2.5	6	4.2	4.67	-0.3	3.3	4.3	5	3	3.9	4
25	-0.3	0.4	-0.5	0.1	-0.1	-0.3	-0.4	-0.1	0.4	0	-0.3	-0.4	0.4	-0.1	0	0
50	-2.9	-2.7	-1.3	-5.1	-2.3	-0.4	-5.2	-6.5	-3.1	0.9	-3.5	-2.3	-2.5	-2	-0.9	-3.1
70	-5.1	-5.7	-1.6	-8.1	-1.9	0.7	-5.2	-7.5	-6	-0.9	-7.1	-3.7	-5.3	-5	-1.7	-5.6
80	-7.7	-8.5	-3.1	-9	-3.5	-0.8	-8.4	-9	-9	-1.2	-9	-6.5	-8.9	-7	-4.5	-7.5

表 2-4 全温度校正误差

温度 (°C)	RTC (ppm)															
価浸(し)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
-40	-3.9	1	3.2	-0.3	1.3	3.6	1.3	3.2	-0.5	1.6	2.5	2	-1.2	-0.1	1.6	2.8
-25	-1.19	0	-0.5	0	0.3	1.9	1.1	3.9	-1.7	-0.26	0.3	-0.8	-2.3	-0.8	-0.4	-0.1
-10	-0.8	0.5	-0.7	0.4	0.1	0.4	0.5	0	0.5	-0.3	0.8	-0.3	0.3	0.9	0.5	0.4
25	-0.3	0.4	-0.5	0.1	-0.1	-0.3	-0.4	-0.1	0.4	0	-0.3	-0.4	0.4	-0.1	0	0
50	-1.9	-1.3	-1.3	-1.1	0.5	-0.4	0.7	-0.8	-0.8	0.9	-0.5	1.3	-0.7	-1.1	-0.9	-0.1
70	-1	-0.3	-1.6	1.3	-0.8	0.7	0.4	0.5	-1	-0.9	2	0	-0.9	0.7	-1.7	-0.1
80	-1.5	-1.6	-3.1	2.4	-1.7	-0.8	0.3	0.3	-1.73	-1.2	0.3	-1.3	-0.8	0.7	-4.5	-1.5

附录二: 温度测量 K 系数值

RESTL<1:0>	REST<2:0>	值	K 系数
	000	0	0. 997
	001	1	1.000
	010	2	1.004
00	011	3	1. 007
00	100	4	0. 985
	101	5	0. 988
	110	6	0. 992
	111	7	0. 995
	000	8	0. 979
	001	9	0. 982
	010	10	0. 985
0.1	011	11	0. 988
01	100	12	0. 966
	101	13	0. 969
	110	14	0. 972
	111	15	0. 975
	000	16	1. 040
	001	17	1.043
	010	18	1. 046
10	011	19	1. 049
10	100	20	1. 027
	101	21	1.031
	110	22	1. 034
	111	23	1. 037
	000	24	1. 018
	001	25	1.021
	010	26	1. 024
11	011	27	1. 027
11	100	28	1.005
	101	29	1.009
	110	30	1.012
	111	31	1. 015

V98xx(S/A)应用笔记—RTC 校正 实时时钟补偿及秒脉冲校正

附录三: RTC 温度补偿参数在 Flash 中存贮地址和格式

偏移地址	功能说明	字节	数据格式	大小端	说明
(0x400)	归幼	数			
12	保留	2	0.44	小端	
14	芯片小版本	1	0xA4	小编	CtrlBGP[1:3]配置,表示 Flash 中温度参数值
15	Ref 温度系数备份 1	1	0x01	小端	是在该配置下获得。如果实际应用中不是该参数,用户需要将 M 通道的值再乘以系数 K。
16	ADD33 校验值	2	0xD8D8	小端	版本号和 ref 温度系数 的校验和加 0x33
18	芯片小版本	1	0xA4	小端	
19	Ref 温度系数备份 2	1	0x01	小端	
1A	ADD33 校验值	2	0xD8D8	小端	
1C	芯片小版本	1	0xA4	小端	
1D	Ref 温度系数备份 3	1	0x01	小端	
1E	ADD33 校验值	2	0xD8D8	小端	
20	а	4	18018	小端	
24	b	4	1	小端	
28	С	4	224019254	小端	温度曲线参数备份1
2C	d	4	7092	小端	
30	е	4	10	小端	
34	ADD33 值	2		小端	
36	保留	2		小端	
38	а	4	18018	小端	
3C	b	4	1	小端	
40	С	4	224019254	小端	
44	d	4	7092	小端	
48	е	4	10	小端	
4C	ADD33 值	2		小端	
4E	保留	2		小端	
50	а	4	18018	小端	
54	b	4	1	小端	
58	С	4	224019254	小端	
5C	d	4	7092	小端	
60	е	4	10	小端	
64	ADD33 值	2	4F	小端	
80	温度偏移值备份一	2		大端	温度测量偏移值,单位 0.1度
82	ADD33 值	2		大端	
84	温度偏移值备份二	2		大端	
86	ADD33 值	2		大端	

V98xx(S/A)应用笔记—RTC校正 实时时钟补偿及秒脉冲校正

				关时时 种们 伝及炒 脉冲仪
88	温度偏移值备份三	2	大端	
8A	ADD33 值	2	大端	
8C	RTC 常温偏移备份一	2	大端	常温 RTC 矫正值. 单位 0.1ppm
8E	ADD33 值	2	大端	
90	RTC 常温偏移备份二	2	大端	
92	ADD33 值	2	大端	
94	RTC 常温偏移备份三	2	大端	
96	ADD33 值	2	大端	
98	晶体二次校准系数备份一	4	大端	Bpara 参数 (-40 ℃ ~-20℃)
9C	晶体二次校准系数备份一	4	大端	Bpara 参数 (-19℃ ~0℃)
A0	晶体二次校准系数备份一	4	大端	Bpara 参数 (1℃ ~39℃)
A4	晶体二次校准系数备份一	4	大端	Bpara 参数 (40 ℃ ~59℃)
A8	晶体二次校准系数备份一	4	大端	Bpara 参数 (60 ℃ ~85℃)
AC	ADD33 值	2	大端	
AE	晶体二次校准系数备份二	4	大端	
B2	晶体二次校准系数备份二	4	大端	
B6	晶体二次校准系数备份二	4	大端	
ВА	晶体二次校准系数备份二	4	大端	
BE	晶体二次校准系数备份二	4	大端	
C2	ADD33 值	2	大端	
C4	晶体二次校准系数备份三	4	大端	
C8	晶体二次校准系数备份三	4	大端	
CC	晶体二次校准系数备份三	4	大端	
D0	晶体二次校准系数备份三	4	大端	
D4	晶体二次校准系数备份三	4	大端	
D8	ADD33 值	2	大端	
DA	晶体顶点温度备份一	2	大端	晶振顶点温度,单位:℃
DC	ADD33 值	2	大端	
DE	晶体顶点温度备份二	2	大端	
E0	ADD33 值	2	大端	
E2	晶体顶点温度备份三	2	大端	
E4	ADD33 值	2	大端	

V98xx(S/A)应用笔记─RTC 校正 版本更新说明

版本更新说明

时间	版本	修改内容
2016-07-05	Rev1.0	正式发布