Untitled1

June 9, 2021

```
[1]: import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.svm import SVC #support vector classifier
     from sklearn import svm
     from sklearn.neural_network import MLPClassifier
     #from sklearn.linear model import SGDClassifier
     from sklearn.metrics import confusion_matrix, classification_report
     from sklearn.preprocessing import StandardScaler, LabelEncoder
     from sklearn.model_selection import train_test_split
     %matplotlib inline
[2]: # loading dataset
     wine = pd.read_csv('winequality-red.csv', sep=',')
     wine.head()
[2]:
        fixed acidity volatile acidity citric acid residual sugar chlorides \
     0
                  7.4
                                   0.70
                                                 0.00
                                                                  1.9
                                                                           0.076
                  7.8
                                                                  2.6
     1
                                   0.88
                                                 0.00
                                                                           0.098
     2
                  7.8
                                   0.76
                                                 0.04
                                                                  2.3
                                                                           0.092
     3
                 11.2
                                   0.28
                                                 0.56
                                                                  1.9
                                                                           0.075
                  7.4
                                   0.70
                                                 0.00
                                                                  1.9
                                                                           0.076
        free sulfur dioxide total sulfur dioxide density
                                                               pH sulphates
     0
                       11.0
                                              34.0
                                                     0.9978 3.51
                                                                        0.56
     1
                       25.0
                                              67.0
                                                     0.9968 3.20
                                                                        0.68
     2
                       15.0
                                              54.0
                                                     0.9970 3.26
                                                                        0.65
                       17.0
                                              60.0
                                                             3.16
                                                                        0.58
     3
                                                     0.9980
                       11.0
                                              34.0
                                                     0.9978 3.51
                                                                        0.56
        alcohol quality
            9.4
     0
                       5
     1
            9.8
                       5
     2
            9.8
                       5
            9.8
                       6
     3
     4
            9.4
                       5
```

```
[3]: wine.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1599 entries, 0 to 1598
    Data columns (total 12 columns):
         Column
                               Non-Null Count Dtype
         ____
                                _____
     0
         fixed acidity
                               1599 non-null
                                                float64
     1
         volatile acidity
                               1599 non-null
                                                float64
     2
                                                float64
         citric acid
                               1599 non-null
     3
         residual sugar
                               1599 non-null
                                                float64
     4
         chlorides
                                1599 non-null
                                                float64
     5
         free sulfur dioxide
                               1599 non-null
                                                float64
         total sulfur dioxide 1599 non-null
                                                float64
                               1599 non-null
     7
                                                float64
         density
     8
         рΗ
                                1599 non-null
                                                float64
     9
         sulphates
                               1599 non-null
                                                float64
     10 alcohol
                               1599 non-null
                                                float64
                                1599 non-null
     11 quality
                                                int64
    dtypes: float64(11), int64(1)
    memory usage: 150.0 KB
[4]: wine.isnull().sum()
                             0
[4]: fixed acidity
    volatile acidity
                             0
     citric acid
                             0
                             0
     residual sugar
     chlorides
                             0
     free sulfur dioxide
                             0
     total sulfur dioxide
                             0
     density
                             0
                             0
    рΗ
                             0
     sulphates
     alcohol
                             0
                             0
     quality
     dtype: int64
[5]: # Preprocessing Data
     bins = (1, 6.5, 10) # 2 variants, mean, max
     group_names = ['bad', 'good']
     wine['quality'] = pd.cut(wine['quality'], bins= bins, labels= group_names)
     wine['quality'].unique()
[5]: ['bad', 'good']
     Categories (2, object): ['bad' < 'good']
[6]: label_quality = LabelEncoder()
```

```
[7]: wine['quality'] = label_quality.fit_transform(wine['quality'])
[8]: wine.head(10)
        fixed acidity volatile acidity citric acid residual sugar
                                                                          chlorides \
[8]:
     0
                   7.4
                                     0.70
                                                   0.00
                                                                     1.9
                                                                              0.076
     1
                   7.8
                                     0.88
                                                   0.00
                                                                     2.6
                                                                              0.098
     2
                   7.8
                                     0.76
                                                   0.04
                                                                     2.3
                                                                              0.092
     3
                  11.2
                                     0.28
                                                   0.56
                                                                     1.9
                                                                              0.075
     4
                   7.4
                                     0.70
                                                   0.00
                                                                     1.9
                                                                              0.076
     5
                   7.4
                                     0.66
                                                   0.00
                                                                     1.8
                                                                              0.075
                   7.9
                                                   0.06
                                                                     1.6
     6
                                     0.60
                                                                              0.069
     7
                   7.3
                                     0.65
                                                   0.00
                                                                     1.2
                                                                              0.065
     8
                   7.8
                                     0.58
                                                   0.02
                                                                     2.0
                                                                              0.073
                   7.5
                                                   0.36
     9
                                     0.50
                                                                     6.1
                                                                              0.071
        free sulfur dioxide
                              total sulfur dioxide density
                                                                 pH sulphates
                        11.0
                                                       0.9978 3.51
     0
                                               34.0
                                                                           0.56
     1
                        25.0
                                               67.0
                                                       0.9968
                                                               3.20
                                                                           0.68
     2
                        15.0
                                               54.0
                                                                           0.65
                                                       0.9970
                                                               3.26
     3
                        17.0
                                               60.0
                                                       0.9980
                                                               3.16
                                                                           0.58
     4
                        11.0
                                               34.0
                                                       0.9978
                                                                           0.56
                                                               3.51
     5
                        13.0
                                               40.0
                                                       0.9978
                                                                           0.56
                                                               3.51
     6
                        15.0
                                               59.0
                                                       0.9964
                                                               3.30
                                                                           0.46
     7
                        15.0
                                               21.0
                                                       0.9946
                                                                           0.47
                                                               3.39
                                               18.0
     8
                         9.0
                                                       0.9968
                                                               3.36
                                                                           0.57
     9
                                                                           0.80
                        17.0
                                              102.0
                                                       0.9978 3.35
        alcohol quality
            9.4
     0
                        0
     1
            9.8
                        0
     2
            9.8
                        0
     3
            9.8
                        0
     4
            9.4
                        0
            9.4
                        0
     5
     6
            9.4
                        0
     7
           10.0
                        1
     8
            9.5
                        1
     9
           10.5
                        0
[9]: wine['quality'].value_counts()
[9]: 0
          1382
     1
           217
     Name: quality, dtype: int64
```

```
[10]: #fig, ax = plt.subplots()
    #ax.hist(wine['quality'])
    #ax.set_xticks([0, 1])
    sns.countplot(wine['quality'])
```

C:\Users\Harald\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[10]: <AxesSubplot:xlabel='quality', ylabel='count'>


```
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

1 Random Forest Classifier

```
[20]: rfc = RandomForestClassifier(n_estimators=200) # n_estimator = number of trees

→ in model

rfc.fit(X_train, y_train)

pred_rfc = rfc.predict(X_test)
```

[21]: print (classification_report(y_test, pred_rfc))
print (confusion_matrix(y_test, pred_rfc))

precision	recall	f1-score	support
0.92	0.97	0.95	273
0.77	0.51	0.62	47
		0.91	320
0.85	0.74	0.78	320
0.90	0.91	0.90	320
	0.92 0.77 0.85	0.92 0.97 0.77 0.51 0.85 0.74	0.92 0.97 0.95 0.77 0.51 0.62 0.91 0.85 0.74 0.78

[[266 7] [23 24]]

2 SVM Classifier

```
[22]: clf = svm.SVC()
    clf.fit(X_train, y_train)
    pred_clf = clf.predict(X_test)
```

[23]: print (classification_report(y_test, pred_clf))
print (confusion_matrix(y_test, pred_clf))

	precision	recall	f1-score	support
0 1	0.88 0.71	0.98 0.26	0.93 0.37	273 47
accuracy macro avg weighted avg	0.80 0.86	0.62 0.88	0.88 0.65 0.85	320 320 320

[[268 5] [35 12]]

3 Neural Wokrs

```
[24]: mlpc = MLPClassifier(hidden_layer_sizes=(11, 11, 11), max_iter=500)
      mlpc.fit(X_train, y_train)
      pred_mlpc = mlpc.predict(X_test)
     C:\Users\Harald\anaconda3\lib\site-
     packages\sklearn\neural_network\_multilayer_perceptron.py:582:
     ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and
     the optimization hasn't converged yet.
       warnings.warn(
[25]: print (classification report(y test, pred clf))
      print (confusion_matrix(y_test, pred_clf))
                   precision
                                 recall f1-score
                                                     support
                0
                         0.88
                                   0.98
                                              0.93
                                                         273
                         0.71
                                   0.26
                                              0.37
                                                          47
                1
                                              0.88
                                                         320
         accuracy
        macro avg
                         0.80
                                   0.62
                                              0.65
                                                         320
     weighted avg
                         0.86
                                   0.88
                                              0.85
                                                         320
     [[268
             5]
      [ 35 12]]
[26]: from sklearn.metrics import accuracy_score
      cm = accuracy_score(y_test, pred_rfc)
      cm
[26]: 0.90625
[27]:
      wine.head(10)
[27]:
         fixed acidity volatile acidity citric acid residual sugar
                                                                         chlorides \
                   7.4
                                     0.70
                                                  0.00
                                                                    1.9
      0
                                                                             0.076
                   7.8
                                                                    2.6
      1
                                     0.88
                                                  0.00
                                                                             0.098
      2
                   7.8
                                     0.76
                                                  0.04
                                                                    2.3
                                                                             0.092
                  11.2
                                                  0.56
                                                                    1.9
      3
                                     0.28
                                                                             0.075
      4
                   7.4
                                     0.70
                                                  0.00
                                                                    1.9
                                                                             0.076
      5
                   7.4
                                     0.66
                                                  0.00
                                                                    1.8
                                                                             0.075
                   7.9
                                     0.60
                                                  0.06
                                                                    1.6
      6
                                                                             0.069
      7
                   7.3
                                     0.65
                                                  0.00
                                                                    1.2
                                                                             0.065
                   7.8
                                                                    2.0
      8
                                     0.58
                                                  0.02
                                                                             0.073
      9
                   7.5
                                     0.50
                                                  0.36
                                                                    6.1
                                                                             0.071
         free sulfur dioxide total sulfur dioxide density
                                                                 pH sulphates \
      0
                         11.0
                                               34.0
                                                      0.9978 3.51
                                                                          0.56
```

```
25.0
                                                                         0.68
      1
                                               67.0
                                                      0.9968 3.20
      2
                        15.0
                                               54.0
                                                      0.9970 3.26
                                                                         0.65
      3
                        17.0
                                               60.0
                                                                         0.58
                                                      0.9980
                                                              3.16
      4
                        11.0
                                               34.0
                                                      0.9978
                                                                         0.56
                                                              3.51
      5
                        13.0
                                               40.0
                                                      0.9978 3.51
                                                                         0.56
      6
                        15.0
                                               59.0
                                                      0.9964
                                                              3.30
                                                                         0.46
      7
                        15.0
                                               21.0
                                                      0.9946
                                                              3.39
                                                                         0.47
      8
                         9.0
                                               18.0
                                                      0.9968 3.36
                                                                         0.57
      9
                        17.0
                                              102.0
                                                      0.9978 3.35
                                                                         0.80
         alcohol quality
             9.4
      0
             9.8
                        0
      1
      2
             9.8
                        0
      3
             9.8
                        0
      4
             9.4
                        0
      5
             9.4
                        0
             9.4
                        0
      6
      7
            10.0
                        1
      8
             9.5
                        1
            10.5
                        0
[30]: X_{new} = [[7.3, 0.65, 0.00, 1.2, 0.065, 15.0, 21.0, 0.9946, 3.39, 0.47, 10.0]]
      X_new = sc.transform(X_new)
      ynew = rfc.predict(X_new)
      ynew
[30]: array([1])
```

[]: