Proseminar

Digitale Rechenanlagen

WS 2017/2018

Übungszettel 2

- 8. Gegeben sind die Zeichenvorräte A, B. Berechnen Sie allgemein:
 - (a) die Anzahl der möglichen Codewörter $|A^n|$ der Länge n, sowie $|B^m|$.
 - (b) die Anzahl der möglichen Codewörter mit maximaler Länge $n: |A^0 \cup \ldots \cup A^n|$.
 - (c) die Anzahl der möglichen Codewörter $|(A \cup B)^{m+n}|$ mit gemeinsamem Zeichenvorrat.
 - (d) die Anzahl der konkatenierten Codewörter $|A^n \circ B^m|$.

Demonstrieren Sie die Ergebnisse am Beispiel $A = \{a, b, c\}, n = 2, B = \{1, 2\}, m = 3.$

- 9. Gegeben ist die Abbildung $c: \{0, \ldots, n\} \longrightarrow \{0, 1, 2, 3\}^3$ mit $c(k) = a_4 \circ a_3 \circ a_2$, wobei $a_p = k$ mod p (= Rest bei Teilung durch p). Also z.B. c(7) = 311. Ist diese Abbildung für n = 10 ein decodierbarer Code? Und wie sieht es für n = 20 aus? Begründen Sie Ihre Antwort.
- 10. Ein Code besteht aus vier Zeichen aus dem Zeichenvorrat $\{a, b, c\}$, wobei korrekte Codewörter jene sind, in denen kein Zeichen zweimal direkt hintereinander steht. Wieviele mögliche und wieviele korrekte Codewörter gibt es?
- 11. Folgende Codes a und $b: \mathbb{N} \longrightarrow \{0,1\}^*$ sind rekursiv definiert:

(a)
$$a(0) = 0$$
, $a(1) = 1$, und für $n > 1$: $a(n) = a(\lfloor \frac{n}{2} \rfloor) \circ \begin{cases} 1 & n \text{ ungerade} \\ 0 & n \text{ gerade} \end{cases}$

(b)
$$b(0) = 0$$
, $b(1) = 1$, und für $n > 1$: $b(n) = b(\lfloor \log_2 n \rfloor) \circ b(n - 2^{\lfloor \log_2 n \rfloor})$

wobei |x| für Abrundung steht. Geben Sie die Codewörter für $n=0,\ldots,15$ an.

12. Die *Decodierung* eines Codes $c: \mathbb{N} \longrightarrow 1\{0,1\}^*$ ist gegeben durch

$$c^{-1}(a_n \dots a_1 a_0) = \sum_{k=0}^n a_k b_k$$
,

wobei $b_0 = 1$ und $b_k = \lceil \frac{3}{2} b_{k-1} \rceil$. $\lceil \rceil$ steht für Aufrunden. So ist z.B. $c^{-1}(101) = 3 + 1 = 4$. Decodiere die Codewörter 10101010 und 101010101. Finde mindestens fünf mögliche Codewörter für c(47).

- 13. Der Hamming(7,4)-Code besitzt vier Datenbits d_1, d_2, d_3, d_4 und drei Paritybits p_1, p_2, p_3 , wobei p_1 die Parity der Bits d_1, d_2, d_4 angibt, p_2 der Bits d_1, d_3, d_4 und p_3 der Bits d_2, d_3, d_4 . Wie groß ist die minimale Hamming-Distanz des Codes? Zeigen Sie, dass
 - (a) 1-Bit-Fehler in Daten- oder Parity-Bits erkannt und korrigiert werden können,
 - (b) 2-Bit-Fehler erkannt aber nicht korrigiert werden können.