6. Prove the following:

$$\begin{array}{c} \text{if } (\neg P \vee R) \wedge (\neg Q \vee R) \wedge \\ (P \vee Q) \\ \text{then } R \end{array}$$

Prove by contradiction, using resolution.

1	¬P ∨ R	Premise
2	¬Q∨R	Premise
3	PVQ	Premise
4	¬R	PBC
5	¬P	Resolution - 1,3
6	¬Q	Resolution - 2,3
7	Q	Resolution - 3,5
8	FALSE	Resolution - 6,7

7. Use resolution to prove:

$$\begin{array}{c} \text{if } (\neg P \lor Q) \land \neg (\neg (R \Rightarrow \neg Q) \\ \lor \neg R) \\ \text{then } \neg P \end{array}$$

Construct your proof as follows.

- a) Convert the premise to conjunctive normal form.
- b) Using the re-written premises, prove by contradiction, using resolution.

$(\neg P \lor Q) \land \neg (\neg (R \Rightarrow \neg Q) \lor \neg R)$	Premise
$(\neg P \lor Q) \land \neg (\neg (\neg R \lor \neg Q) \lor \neg R)$	Implication
$(\neg P \lor Q) \land \neg((R \land Q) \lor \neg R)$	De Morgan's
(¬P ∨ Q) ∧ (¬(R ∧ Q) ∧ R)	De Morgan's
(¬P ∨ Q) ∧ (¬R ∨ ¬Q) ∧ R	De Morgan's

1	(¬P ∨ Q)	Premise
2	(¬R ∨ ¬Q)	Premise
3	R	Premise
4	Р	PCB
5	¬R V P	Resolution - 1,2
6	¬R	Resolution - 5,6
7	FALSE	Resolution - 3,6