Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrif
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- 12. NP-Vollständigkeit
- 13 PSPACE

Vielleicht das wichtigste Konzept der Komplexitätstheorie!

Definition

Wir nennen f eine

Eine Sprache $\underline{A} \subseteq \Sigma^*$ heißt **reduzierbar auf** eine Sprache $\underline{B} \subseteq \Pi^*$ (in Zeichen $\underline{A} \subseteq \underline{B}$), wenn es eine totale, berechenbare Funktion $\underline{f} : \Sigma^* \to \Pi^*$

gibt, sodass für alle $\underline{x} \in \Sigma^*$ gilt

 $x \in A \Leftrightarrow \underline{f(x)} \in B$.

Reduktion von A auf B

(Beachte: f muss weder surjektiv noch injektiv sein).

"Reduktionseigenschaft"

Vielleicht das wichtigste Konzept der Komplexitätstheorie!

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt **polynomiell reduzierbar auf** eine Sprache $B \subseteq \Pi^*$ (**in Zeichen** $A \leq_{\mathbf{n}}^{\mathbf{p}} B$), wenn es eine totale, in Polynomzeit berechenbare Funktion $f : \Sigma^* \to \Pi^*$ gibt, sodass für alle $x \in \Sigma^*$ gilt

 $x \in A \Leftrightarrow f(x) \in B$.

Wir nennen f eine Polynomzeit-Reduktion von A auf B

(Beachte: f muss weder surjektiv noch injektiv sein).

Vielleicht das wichtigste Konzept der Komplexitätstheorie!

Definition

Eine Sprache $A\subseteq \Sigma^*$ heißt **polynomiell reduzierbar auf** eine Sprache $B\subseteq \Pi^*$ (**in Zeichen** $A\leq_m^p B$), wenn es eine totale, in Polynomzeit berechenbare Funktion $f\colon \Sigma^*\to \Pi^*$ gibt, sodass für alle $x\in \Sigma^*$ gilt

$$x \in A \Leftrightarrow f(x) \in B$$
.

Wir nennen f eine Polynomzeit-Reduktion von A auf B

(**Beachte**: *f* muss weder surjektiv noch injektiv sein).

Bemerkung: "m" in \leq_m^p steht für "many-one-Reduktion".

Vielleicht das wichtigste Konzept der Komplexitätstheorie!

Definition

Eine Sprache $A\subseteq \Sigma^*$ heißt **polynomiell reduzierbar auf** eine Sprache $B\subseteq \Pi^*$ (**in Zeichen** $A\leq_m^p B$), wenn es eine totale, in Polynomzeit berechenbare Funktion $f:\Sigma^*\to\Pi^*$ gibt, sodass für alle $x\in\Sigma^*$ gilt

$$x \in A \Leftrightarrow f(x) \in B$$
.

Wir nennen f eine Polynomzeit-Reduktion von A auf B

(Beachte: f muss weder surjektiv noch injektiv sein).

Bemerkung: "m" in \leq_m^p steht für "many-one-Reduktion".

Mitteilungen:

(a)
$$A \leq_m^p B \Rightarrow A \leq B$$

Vielleicht das wichtigste Konzept der Komplexitätstheorie!

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt polynomiell reduzierbar auf eine Sprache $B \subseteq \Pi^*$ (in Zeichen $A < {}^p_m B$), wenn es eine totale, in Polynomzeit berechenbare Funktion $f: \Sigma^* \to \Pi^*$ gibt, sodass für alle $x \in \Sigma^*$ gilt

$$x \in A \Leftrightarrow f(x) \in B$$
.

Wir nennen f eine Polynomzeit-Reduktion von A auf B

(Beachte: f muss weder surjektiv noch injektiv sein).

Bemerkung: "m" in \leq_m^p steht für "many-one-Reduktion".

Mitteilungen:

(a)
$$A \leq_m^p B \Rightarrow A \leq B$$

$$\leq B$$

(b) \leq_m^p ist transitiv, d.h. wenn $\underline{A} \leq_m^p \underline{B}$ und $\underline{B} \leq_m^p \underline{C}$, dann auch $\underline{A} \leq_m^p \underline{C}$ (Konkatenation der Reduktionen ist Polynomzeitreduktion von A auf C)

Lemma

Gilt $A \leq B$ und ist B (semi-)entscheidbar, so ist auch A (semi-)entscheidbar.

Polynomzeitreduktion II _ "leicht"

Lemma

Gilt $A \leq_{m}^{p} B$ und ist $B \in P$ (bzw. $B \in NP$), so ist auch $A \in P$ (bzw. $A \in NP$).

Lemma

Gilt $A \leq_m^p B$ und ist $B \in P$ (bzw. $B \in NP$), so ist auch $A \in P$ (bzw. $A \in NP$).

Beweis

1. $A \leq_m^p B \sim$ "Reduktionsfunktion" f in p(n) Schritten berechenbar durch TM M_f

Lemma

Gilt $A \leq_{m}^{P} B$ und ist $B \in P$ (bzw. $B \in NP$), so ist auch $A \in P$ (bzw. $A \in NP$).

Beweis

- 1. $A \leq_m^p B \sim$ "Reduktionsfunktion" f in p(n) Schritten berechenbar durch TM M_f
- 2. $B \in P$ (bzw. $B \in NP$) $\sim B$ in $\underline{q(n)}$ Schritten entscheidbar durch \underline{TM} \underline{M}_B (wobei p und q Polynome)

Lemma

Gilt $A \leq_{m}^{P} B$ und ist $B \in P$ (bzw. $B \in NP$), so ist auch $A \in P$ (bzw. $A \in NP$).

Beweis

- 1. $A \leq_m^p B \sim$ "Reduktionsfunktion" \underline{f} in $\underline{p}(\underline{n})$ Schritten berechenbar durch TM M_f
- 2. $B \in P$ (bzw. $B \in NP$) $\rightarrow B$ in $\underline{q(n)}$ Schritten entscheidbar durch TM M_B (wobei p und q Polynome)

Wie zuvor gilt
$$\chi_A = \chi_B \circ f$$

 $\sim \chi_A$ berechnet in p(|x|) + q(p(|x|)) (also polynomiell viele) Schritten.

Vertex Cover

Independent Set

Dominating Set

Eingabe: ungerichteter Graph G, Zahl k > 0

Eingabe: ungerichteter Graph G, Zahl k > 0

Frage: gibt es k Knoten in G, sodass . . .

Vertex Cover: ... jede Kante in *G* mindestens einen dieser *k* Knoten als Endpunkt hat?

Dominating Set

Eingabe: ungerichteter Graph G, Zahl k > 0

Frage: gibt es k Knoten in G, sodass ...

Vertex Cover: ... jede Kante in *G* mindestens einen dieser *k* Knoten als Endpunkt hat?

Independent Set: ... keine 2 dieser *k* Knoten mit einer Kante verbunden sind?

Eingabe: ungerichteter Graph G, Zahl k > 0

Frage: gibt es k Knoten in G, sodass ...

Vertex Cover: ... jede Kante in *G* mindestens einen dieser *k* Knoten als Endpunkt hat?

Independent Set: ... keine 2 dieser *k* Knoten mit einer Kante verbunden sind?

Dominating Set: ... jeder andere Knoten eine Kante zu mindestens einem dieser Knoten hat?

VERTEX COVER und INDEPENDENT SET

Theorem

Vertex Cover \leq_m^p Independent Set.

VERTEX COVER und INDEPENDENT SET

Theorem

VERTEX COVER \leq_m^p INDEPENDENT SET.

Beweis

Definiere Reduktionsfunktion f vermöge $f(\langle \underline{G}, \underline{k} \rangle) := \langle \underline{G}, |\underline{V}(\underline{G})| - \underline{k} \rangle$. (offensichtlich ist f in polynomieller Zeit berechenbar)

JV(g)=Knoken et

VERTEX COVER und INDEPENDENT SET

Theorem

Vertex Cover \leq_m^p Independent Set.

7 3 Y u&X

Beweis

Definiere Reduktionsfunktion f vermöge $f(\langle G, k \rangle) := \langle G, | V(G) | - k \rangle$. (offensichtlich ist f in polynomieller Zeit berechenbar)

Dann gilt:

$$\langle G, k \rangle \in \text{Vertex Cover}$$

 $\langle G, k \rangle \in \text{VERTEX COVER} \Leftrightarrow G$ hat eine Knotenmenge $X \subseteq V(G)$ mit $|X| \leq k$, so dass jede Kante mindestens einen Endpunkt in X hat

- \Leftrightarrow G hat eine Knotenmenge $X \subseteq V(G)$ mit $|X| \leq k$, so dass
 - keine Kante beide Endpunkte in $V(G) \setminus X$ hat
- $\Leftrightarrow \langle G, |V(G)| k \rangle \in \text{Independent Set.}$

Definition problem

Eine Sprache $A \subseteq \Sigma^*$ heißt...

a) ... **NP-schwer**, falls $\forall_{L \in \mathbb{NP}} L \leq_m^p A$.

Halteproblem?

frage: Liónnen Sie Zeigen, dass das * Hatteproblem NP-schoer ist!

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt...

- a) ... **NP-schwer**, falls $\forall_{L \in \mathbb{NP}} \underline{L} \leq_m^p A$.
- b) ... NP-vollständig, wenn A NP-schwer ist und $A \in NP$ gilt.

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt...

- a) ... **NP-schwer**, falls $\forall_{L \in NP} L \leq_m^p A$.
- b) ... NP-vollständig, wenn A NP-schwer ist und $A \in NP$ gilt.

Anschaulich: (mit "polynomieller Unschärfe")

- 1. NP-schwere Sprachen sind "mindestens so schwer" zu entscheiden wie jede Sprache in NP
- ② NP-vollständige Sprachen sind "genau so schwer" wie jede NP-vollständige Sprache

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt...

- a) ... **NP-schwer**, falls $\forall_{L \in \mathbb{NP}} L \leq_m^p A$.
- b) ... **NP-vollständig**, wenn A NP-schwer ist und $A \in NP$ gilt.

Anschaulich: (mit "polynomieller Unschärfe")

- 1. NP-schwere Sprachen sind "mindestens so schwer" zu entscheiden wie jede Sprache in NP
- 2. NP-vollständige Sprachen sind "genau so schwer" wie jede NP-vollständige Sprache

Lemma

Ist \underline{A} NP-schwer und $\underline{A} \leq_{m}^{p} \underline{B}$, so ist auch \underline{B} NP-schwer

Beweis

Für jede Sprache $L \in NP$ gilt $L \leq_m^p A \leq_m^p B$.

Somit gilt wegen Transitivität auch $L \leq_m^p B$. Also ist B auch NP-schwer.

Theorem

Für jede NP-vollständige Sprache A gilt: $A \in P \Leftrightarrow P = NP$.

Theorem

Beweis

Für jede NP-vollständige Sprache A gilt: $A \in P \Leftrightarrow P = NP$.

NP S P

$$\Rightarrow$$
": $(\forall_{L \in NP} \ L \leq_m^p A) \land (A \in P)$

$$= \mathsf{NP}) \Rightarrow A \in \mathsf{P}$$

Theorem

Für jede NP-vollständige Sprache A gilt: $A \in P \Leftrightarrow P = NP$.

Beweis

"⇒":
$$(\forall_{L \in NP} \ L \leq_m^p A) \land (A \in P) \Rightarrow \forall_{L \in NP} \ L \in P \Rightarrow NP = P$$

"←": $(A \in NP) \land (P = NP) \Rightarrow A \in P$

"**Geglaubte**" (d.h. Annahme $P \neq NP$) **Situation**:

Cook & Levin

SAT

Eingabe: aussagenlogische Formel F

Frage: Ist \overline{F} erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in \overline{F} verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

SAT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

0, 1,

 $\underline{x_1}, \underline{x_2}, \overline{\underline{x_3}},$

 $(x_1 \wedge \overline{x_2})$

 $(\overline{(x_1 \wedge \overline{x_2})} \vee x_2 \vee \overline{x_3})$

SAT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

 $0, 1, \qquad x_1, x_2, \overline{x_3},$

 $(x_1 \wedge \overline{x_2}),$

 $(\overline{(x_1 \wedge \overline{x_2})} \vee x_2 \vee \overline{x_3})$

Theorem (Satz von Cook und Levin)

SAT ist NP-vollständig.

SAT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

 $0,1, x_1, x_2, \overline{x_3},$

 $(x_1 \wedge \overline{x_2}),$

 $(\overline{(x_1 \wedge \overline{x_2})} \vee x_2 \vee \overline{x_3})$

Theorem (Satz von Cook und Levin)

SAT ist NP-vollständig.

Beweis (Idee, Details später)

Teil 1: "SAT \in NP": rate erfüllende Belegung (Zertifikat) und verifiziere sie.

Teil 2: "SAT ist NP-schwer": mit $L \in NP$ beliebig,

transformiere NTM N mit T(N) = L in Formel $\varphi(x)$ sodass $\underline{x \in L} \Leftrightarrow \varphi(x) \in SAT$.

quess & check