Dynamic Programming Algorithms

Knapsack

CS 336: Design and Analysis of Algorithms © Konstantin Makarychev

Picture credit: Wikipedia.com

Knapsack Problem

We are given n items 1,...,n with weights w_1,\ldots,w_n and values v_1,\ldots,v_n . Our goal is to find a collection of items $S\subset\{1,\ldots,n\}$ of maximum possible value that fits in a knapsack of size W.

Goal: maximize $\sum_{i \in S} v_i$

Subject to the packing constraint: $\sum_{i \in S} w_i \leq W$.

Knapsack Problem

We are given n items 1,...,n with weights w_1,\ldots,w_n and values v_1,\ldots,v_n . Our goal is to find a collection of items $S\subset\{1,\ldots,n\}$ of maximum possible value that fits in a knapsack of size W.

Goal: maximize $\sum_{i \in S} v_i$

Subject to the packing constraint: $\sum_{i \in S} w_i \leq W$.

Today, we will assume that all weights w_i and W are "small" integers.

Warm-up: All weights w_i are equal to 1

• What shall we do?

Warm-up: $W \gg \max_i w_i$

• What shall we do now?

Warm-up: $W \gg \max_{i} w_{i}$

- What shall we do now?
- Pick items with maximum value per unit of weight v_i/w_i .

DP for Knapsack

What is the right subproblem for Knapsack?

- Approach 1: Find the optimum solution for items {1, ..., i}.
 - What is the optimum? Maximum value or minimum weight?

DP for Knapsack

What is the right subproblem for Knapsack?

- Approach 1: Find the optimum solution for items $\{1, ..., i\}$.
- Approach 2: MaxKnapsack (i, W') the maximum value of items from the set $\{1, ..., i\}$ we can pack in Knapsack of size W'.

To solve the original Knapsack problem we need to find ${\sf MaxKnapsack}(n,W)$.

Recursive Relation

- Two options:
 - a. We put item i in the knapsack; or
 - b. We don't put item *i* in the knapsack.

```
MaxKnapsack(i, W') = \max \{
a. v_i + \text{MaxKnapsack}(i - 1, W' - w_i),
b. MaxKnapsack(i - 1, W') \}
```

DP Algorithm

```
for i = 1, ..., n

for W' = 1, ..., W

OptionA = v_i + MaxKnapsack(i - 1, W' - w_i);

OptionB = MaxKnapsack(i - 1, W');

MaxKnapsack(i, W') = max (OptionA, OptionB);
```

Are we missing anything?

DP Algorithm

```
for i = 1, ..., n

for W' = 1, ..., W

OptionA = v_i + MaxKnapsack(i - 1, W' - w_i);

OptionB = MaxKnapsack(i - 1, W');

MaxKnapsack(i, W') = max (OptionA, OptionB);
```

Are we missing anything? Need to handle the case of $\,i=1\,$ and $\,w_i\,>\,W'$ separately.