Repetition

Theorem: The Law of rare events

Let $p_1, p_2, \ldots \in [0, 1]$ be a sequence such that $\lim_{n \to \infty} n p_n = \lambda < \infty$, then

$$\lim_{n \to \infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, \dots$$

Note: We are saying that Binomial (n, p_n) converges to Poisson (λ) when $n \to \infty$ if $\lim_{n \to \infty} n p_n = \lambda < 0$.

Note 2: If you are counting the number of successes among many independent trials and success is rare, then the Poisson distribution is a reasonable model.

Definition

Let f and g be real functions. We use **little-oh notation** in the two following ways

$$f(n) = o(g(n)) \quad (\text{as } n \to \infty) \quad \iff \quad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0,$$

$$f(h) = o(g(h) \quad (\text{as } h \to 0^+) \quad \iff \quad \lim_{h \to 0^+} \frac{f(h)}{g(h)} = 0.$$

Note: Our main focus are statements such as $f(h) = \lambda h + o(h)$ (as $h \to 0^+$). The interpretation is that f decays linearly as h goes to zero with an error that is very small compared to h.

Definition

A **counting process** is a stochastic process $\{N(t): t \geq 0\}$ so that

- 1. N(t) is integer for $t \geq 0$.
- 2. $N(t) \ge 0 \text{ for } t \ge 0.$
- 3. If $s \leq t$, then $N(s) \leq N(t)$.

Note: We sometimes write N((a, b]) = N(b) - N(a) = "Number of events in (a, b]", $0 \le a < b$. This notation is not a focus for us.

Definition

Let $\{N(t): t \geq 0\}$ be a counting process. Then $\{N(t): t \geq 0\}$ is a **Poisson process** with **rate (intensity)** $\lambda > 0$ if

1. For every integer m > 1, for any time points $0 = t_0 < t_1 < \cdots < t_m$,

$$N(t_1) - N(t_0), N(t_2) - N(t_1), \dots, N(t_m) - N(t_{m-1})$$

are independent.

- 2. For $t \ge 0$ and h > 0, the distribution of N(t+h) N(t) only depends on h and not t.
- 3. $\Pr\{N(t+h) N(t) = 1\} = \lambda h + o(h)$ (as $h \to 0^+$), $\forall t \ge 0$.
- 4. $\Pr\{N(t+h) N(t) = 0\} = 1 \lambda h + o(h)$ (as $h \to 0^+$), $\forall t \ge 0$.
- 5. N(0) = 0.

Note: 1. is often shortened to "independent increments" and 2. is often shortened to "stationary increments".

Theorem

The above definition is equivalent to the counting process satisfying

- 1. increments are independent.
- 2. for $s \ge 0$ and t > 0,

$$N(s+t) - N(s) \sim \text{Poisson}(\lambda t)$$
.

3. N(0) = 0.