Exercice 1 : On considère une droite D muni d'un repère (O, \vec{i}) . Soit (A_n) la suite de points de la droite D ainsi définie :

- A_0 est le point O;
- A_1 est le point d'abscisse 1;
- pour tout entier nature n, le point A_{n+2} est le milieu du segment $[A_n A_{n+1}]$.
- 1. a. Placer sur un dessin la droite D, les points A_0 , A_1 , A_2 , A_3 , A_4 , A_5 et A_6 . On prend 10 cm comme unité graphique.
 - b. Pour tout entier nature n, on note a_n l'abscisse du point A_n .

Calculer a_2 , a_3 , a_4 , a_5 et a_6 .

- c. Pour tout entier nature n, justifier l'égalité $a_{n+2} = \frac{a_n + a_{n+1}}{2}$.
- 2. Démontrer par récurrence que pour tout entier nature $n: a_{n+1} = \frac{-1}{2}a_n + 1$.
- 3. Soit (v_n) la suite définie, pour tout entier nature n, par $v_n = a_n \frac{2}{3}$.

Démontrer que (v_n) est une suite de raison $\frac{-1}{2}$.

4. Déterminer la limite de la suite (v_n) , puis celle de la suite (a_n) .

Exercice 2 : Les fonctions avec un paramètre.

Rappel:

Définition : Une fonction f , définie sur un ensemble de définition D symétrique par rapport à 0 est dite paire si, pour tout réel x de D, on a f(-x)=f(x)

Définition : Une fonction f , définie sur un ensemble de définition D symétrique par rapport à 0 est dite impaire si, pour tout réel x de D, on a f(-x)=-f(x)

Soit λ un réel non nul fixé et g_{λ} la fonction définie sur \mathbb{R} par $g_{\lambda} = e^{-\lambda x^2}$.

Soit Γ_{λ} la courbe représentative de g_{λ} dans un repère.

- 1. Étudier la parité de la fonction g_{λ} .
- 2. Déterminer le sens de variation de g_{λ} .
- 3. Déterminer la dérivée seconde de la fonction g_{λ} . En déduire la convexité de g_{λ} .
- 4. La courbe Γ_{λ} présente-t-elle des points d'inflexion? Si oui, en donner l'abscisse.
- 5. Tracer la représentation graphique de la fonction Γ_{λ} .