JAYPEE INSTITUE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering

Course: VLSI Design
Course Code: 18B11EC315

Tutorial-3

- Q1. Consider a CMOS inverter with given process trans-conductance parameters: $k'_n=140~\mu\text{A/V}^2$, $k'_p=60~\mu\text{A/V}^2$, $V_{to,n}=0.7~V$, $V_{to,p}=-0.7~V$, $V_{DD}=3~V$.
- (a) If the design is ideal and symmetrical, then find out the ratio of (W/L)p and (W/L)n. (b) Take the case when (W/L)p = (W/L)n, then find out the inverter threshold voltage.
- Q2. A CMOS inverter is built in a process where $k'_n=100~\mu\text{A/V}^2$, $k'_p=42~\mu\text{A/V}^2$, $V_{to,n}=0.7~V$, $V_{to,p}=-0.8V$ and a power supply of $V_{DD}=3.3~V$ is used. Calculate the inverter threshold voltage V_{th} if $(W/L)_n=10$ and $(W/L)_p=14$.
- Q3. Find the ratio k_n/k_p needed to obtain a CMOS inverter threshold voltage of $V_{th}=1.3~V$ with a power supply of 3 V. Assume that $V_{to,n}=0.6~V$ and $V_{to,p}=-0.82$. Find the relative device sizes if the mobility are related as: $\mu_n=2.2\mu_p$.
- Q4. Consider the CMOS inverter circuit with $V_{DD}=3.3$ V. The I-V characteristics of the nMOS transistor are specified as follows: when $V_{GS}=3.3$ V, the drain current reaches its saturation level $I_{DSAT}=2$ mA for $V_{DS} \ge 2.5$ V. Assume that the input signal applied to the gate is a step pulse that switches instantaneously from 0 V to 3.3 V. Using the data above, calculate the delay time necessary for the output to fall from its initial value of 3.3V to 1.65V, assuming an output load capacitance of 300 fF.
 - **Q.5.** Consider a CMOS inverter, with the following device parameters:
 - (i) $V_{t0,n} = 0.8 \text{ V}$
 - (ii) $V_{t0,p} = -1.0 \text{ V}$
 - (iii) $W_{min} = 1.2 \mu m$

Design this CMOS inverter by determining the channel widths W_n and W_p of the nMOS and pMOS transistors, to meet the following performance specifications:

- (a) $V_{th} = 1.5 \text{ V for } V_{DD} = 3 \text{ V}$
- (b) Propagation delay times $t_{PHL} \le 0.2$ ns and $t_{PLH} \le 0.15$ ns,
- (c) A falling delay of 0.35 ns for an output transition from 2 V to 0.5 V, Assume a combined output load capacitance of 300 fF and an ideal step input.

Q.6. For the RC network shown in Fig. 1, calculate the Elmore delay from In to Out1 and from In to Out2.

Fig. 1. Diagram of a RC network