WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/46776				
C12N 15/82, 15/54	A2					
j		(43) International Publication Date: 22 October 1998 (22.10.98)				
(21) International Application Number: PCT/US (22) International Filing Date: 9 April 1998 ((30) Priority Data: 60/041,815 11 April 1997 (11.04.97) (71) Applicant (for all designated States except US): CALC [US/US]; 1920 Fifth Street, Davis, CA 95610	09.04.9 U	(81) Designated States: AU, BR, CA, JP, KR, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published Without international search report and to be republished upon receipt of that report.				
(72) Inventor; and (75) Inventor/Applicant (for US only): DEHESH, [US/US]; 521 Crownpointe Circle, Vacaville, C (US). (74) Agent: SCHWEDLER, Carl, J.; Calgene LLC, 19 Street, Davis, CA 95616 (US).	A 9566	ith				
(54) Title: PLANT FATTY ACID SYNTHASES AND I	JSE IN	IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN				

FATTY ACIDS

(57) Abstract

By this invention, compositions and methods of use related to β -ketoacyl-ACP synthase of special interest are synthases obtainable from Cuphea species. Amino acid and nucleic acid for synthase protein factors are provided, as well as methods to utilize such sequences in constructs for production of genetically engineered plants having altered fatty acid compositions. Of particular interest is the expression of synthase protein factors in conjunction with expression of plant medium-chain acyl-ACP thioesterases for production of increased levels and/or modified ratios of medium-chain fatty acids in oils of transgenic plant seeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	*****	Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DB	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/46776 PCT/US98/07114

PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN FATTY ACIDS

5

10

15

20

INTRODUCTION

Field of Invention

The present invention is directed to genes encoding plant fatty acid synthase enzymes relevant to fatty acid synthesis in plants, and to methods of using such genes in combination with genes encoding plant medium-chain preferring thioesterase proteins. Such uses provide a method to increase the levels of medium-chain fatty acids that may be produced in seed oils of transgenic plants.

Background

Higher plants synthesize fatty acids via a common metabolic pathway. In developing seeds, where fatty acids attached to triglycerides are stored as a source of energy for further germination, the fatty acid synthesis pathway is located in the plastids. The first step is the formation of acetyl-ACP (acyl carrier protein) from acetyl-CoA and ACP catalyzed by a short chain preferring condensing enzyme, \$\mathcal{G}\$-ketoacyl-ACP synthase (KAS) III. Elongation of acetyl-ACP to 16- and 18- carbon fatty acids involves the cyclical action of the following sequence of reactions: condensation with a two-carbon unit from malonyl-ACP to form a longer \$\mathcal{G}\$-ketoacyl-ACP (\$\mathcal{G}\$-ketoacyl-ACP synthase), reduction of the

keto-function to an alcohol (ß-ketoacyl-ACP reductase), dehydration to form an enoyl-ACP (ß-hydroxyacyl-ACP dehydrase), and finally reduction of the enoyl-ACP to form the elongated saturated acyl-ACP (enoyl-ACP reductase). ß-ketoacyl-ACP synthase I (KAS I), is primarily responsible for elongation up to palmitoyl-ACP (C16:0), whereas ß-ketoacyl-ACP synthase II (KAS II) is predominantly responsible for the final elongation to stearoyl-ACP (C18:0).

10 Genes encoding peptide components of ß-ketoacyl-ACP synthases I and II have been cloned from a number of higher plant species, including castor (Ricinus communis) and Brassica species (USPN 5,510,255). KAS I activity was associated with a single synthase protein factor having an approximate molecular weight of 50 kD (synthase factor B) and KAS II activity was associated with a combination of two synthase protein factors, the 50 kD synthase factor B and a 46 kd protein designated synthase factor A. Cloning and sequence of a plant gene encoding a KAS III protein has been 20 reported by Tai and Jaworski (Plant Physiol. (1993) 103:1361-1367).

The end products of plant fatty acid synthetase activities are usually 16- and 18-carbon fatty acids. There are, however, several plant families that store large

25 amounts of 8- to 14-carbon (medium-chain) fatty acids in their oilseeds. Recent studies with Umbellularia californica (California bay), a plant that produces seed oil rich in lauric acid (12:0), have demonstrated the existence of a medium-chain-specific isozyme of acyl-ACP thioesterase

in the seed plastids. Subsequent purification of the 12:0-ACP thioesterase from *Umbellularia californica* led to the cloning of a thioesterase cDNA which was expressed in seeds of *Arabidopsis* and *Brassica* resulting in a substantial accumulation of lauric acid in the triglyceride pools of these transgenic seeds (USPN 5,512,482). These results and subsequent studies with medium-chain thioesterases from other plant species have confirmed the chain-length-determining role of acyl-ACP thioesterases during de novo fatty acid biosynthesis (T. Voelker (1996) *Genetic Engineering*, Ed. J. K. Setlow, Vol. 18, pgs. 111-133).

DESCRIPTION OF THE FIGURES

Figure 1. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor B clone chKAS B-2 are provided. 15 Figure 2. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor B clone chKAS B-31-7 are provided. Figure 3. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor A clone chKAS A-2-7 are provided. Figure 4. DNA and translated amino acid sequence of Cuphea 20 hookeriana KAS factor A clone chKAS A-1-6 are provided. Figure 5. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor B clone cpuKAS B/7-8 are provided. Figure 6. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor B clone cpuKAS B/8-7A are provided. Figure 7. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor A clone cpuKAS A/p7-6A are provided. Figure 8. Preliminary DNA sequence of Cuphea pullcherrima KAS factor A clone cpuKAS A/p8-9A is provided.

- Figure 9. DNA and translated amino acid sequence of Cuphea hookeriana KASIII clone chKASIII-27 are provided.
- Figure 10. The activity profile for purified cpuKAS B/8-7A using various acyl-ACP substrates is provided.
- 5 Figure 11. The activity profile for purified chKAS A-2-7 and chKAS A-1-6 using various acyl-ACP substrates is provided.
 - Figure 12. The activity profile for purified castor KAS factor A using various acyl-ACP substrates is provided.
- 10 Figure 13. The activity profile for purified castor KAS factor B using various acyl-ACP substrates is provided.

 Figure 14. A graph showing the number of plants arranged according to C8:0 content for transgenic plants containing CpFatB1 versus transgenic plants containing CpFatB1 + chKAS A-2-7 is provided.
 - Figure 15. Graphs showing the %C10/%C8 ratios in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.
- 20 Figure 16. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.
- Figure 17. Graphs showing the %C10/%C8 ratios in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.
 - Figure 18. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in

plants resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.

Figure 19. Graphs showing the %C12:0 in transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 20. Graph showing the relative proportions of C12:0 and C14:0 fatty acids in the seeds of transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 21. Graphs showing the %C18:0 in transgenic plants containing Garm FatB1 (5266) and in seeds of plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 22. The activity profile of Ch KAS A in protein extracts from transgenic plants containing Ch KAS A-2-7. Extracts were preptreated with the indicated concentrations of cerulenin.

20

25

10

15

SUMMARY OF THE INVENTION

By this invention, compositions and methods of use related to ß-ketoacyl-ACP synthase (KAS) are provided. Also of interest are methods and compositions of amino acid and nucleic acid sequences related to biologically active plant synthase(s).

In particular, genes encoding KAS protein factors A and B from Cuphea species are provided. The KAS genes are of interest for use in a variety of applications, and may be

10

15

20

25

used to provide synthase I and/or synthase II activities in transformed host cells, including bacterial cells, such as E. coli, and plant cells. Synthase activities are distinguished by the preferential activity towards longer and shorter acyl-ACPs as well as by the sensitivity towards the KAS specific inhibitor, cerulenin. Synthase protein preparations having preferential activity towards medium chain length acyl-ACPs are synthase I-type or KAS I. The KAS I class is sensitive to inhibition by cerulenin at concentrations as low as $1\mu M$. Synthases having preferential activity towards longer chain length acyl-ACPs are synthase II-type or KAS II. The KAS enzymes of the II-type are also sensitive to cerulenin, but at higher concentrations (50μM). Synthase III-type enzymes have preferential activity towards short chain length acyl-ACPs and are insensitive to cerulenin inhibition.

Nucleic acid sequences encoding a synthase protein may be employed in nucleic acid constructs to modulate the amount of synthase activity present in the host cell, especially the relative amounts of synthase I-type, synthase II-type and synthase III-type activity when the host cell is a plant host cell. In addition, nucleic acid constructs may be designed to decrease expression of endogenous synthase in a plant cell as well. One example is the use of an antisense synthase sequence under the control of a promoter capable of expression in at least those plant cells which normally produce the enzyme.

Of particular interest in the present invention is the coordinate expression of a synthase protein with the

expression of thioesterase proteins. For example, coordinated expression of synthase factor A and a medium-chain thioesterase provides a method for increasing the level of medium-chain fatty acids which may be harvested from transgenic plant seeds. Furthermore, coordinated expression of a synthase factor A gene with plant medium-chain thioesterase proteins also provides a method by which the ratios of various medium-chain fatty acids produced in a transgenic plant may be modified. For example, by expression of a synthase factor A, it is possible to increase the ratio of C10/C8 fatty acids which are produced in plant seed oils as the result of expression of a thioesterase having activity on C8 and C10 fatty acids.

DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

A plant synthase factor protein of this invention includes a sequence of amino acids or polypeptide which is required for catalyzation of a condensation reaction between an acyl-ACP having a chain length of C2 to C16 and malonyl-ACP in a plant host cell. A particular plant synthase factor protein may be capable of catalyzing a synthase reaction in a plant host cell (for example as a monomer or homodimer) or may be one component of a multiple peptide enzyme which is capable of catalyzing a synthase reaction in a plant host cell, i.e. one peptide of a heterodimer.

Synthase I (KAS I) demonstrates preferential activity towards acyl-ACPs having shorter carbon chains, C2-C14 and is sensitive to inhibition by cerulenin at concentrations of 1µM. Synthase II (KAS II) demonstrates preferential

activity towards acyl-ACPs having longer carbon chains, C_{14} - C_{16} , and is inhibited by concentrations of cerulenin (50 μ M). Synthase III demonstrates preferential activity towards acyl-CoAs having very short carbon chains, C_{2} to C_{6} , and is insensitive to inhibition by cerulenin.

Synthase factors A and B, and synthase III proteins obtained from medium-chain fatty acid producing plant species of the genus Cuphea are described herein. As described in the following Examples, synthase A from C. hookeriana is naturally expressed at a high level and only 10 in the seeds. C. hookeriana synthase B is expressed at low levels in all tissues examined. Expression of synthase A and synthase B factors in E. coli and purification of the resulting proteins is employed to determine activity of the various synthase factors. Results of these analyses 15 indicate that synthase factor A from Cuphea hookeriana has the greatest activity on 6:0-ACP substrates, whereas synthase factor B from Cuphea pullcherrima has greatest activity on 14:0-ACP. Similar studies with synthase factors A and B from castor demonstrate similar activity profiles between the factor B synthase proteins from Cuphea and castor. The synthase A clone from castor, however, demonstrates a preference for 14:0-ACP substrate.

Expression of a Cuphea hookeriana KAS A protein in

transgenic plant seeds which normally do not produce mediumchain fatty acids does not result in any detectable
modification of the fatty acid types and contents produced
in such seeds. However, when Cuphea hookeriana KAS A
protein is expressed in conjunction with expression of a

10

25

medium-chain acyl-ACP thioesterase capable of providing for production of C8 and C10 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain thioesterase alone are observed. In addition, where significant amounts of C8 and C10 fatty acids are produced as the result of medium-chain thioesterase expression, coexpression of a Cuphea KAS A protein also results in an alteration of the proportion of the C8 and C10 fatty acids that are obtained. For example, an increased proportion of C10 fatty acids may be obtained by co-expression of Cuphea hookeriana ChFatB2 thioesterase and a chKAS A synthase factor proteins.

Furthermore, when Cuphea hookeriana KAS A protein is 15 expressed in conjunction with expression of a medium-chain acyl-ACP thioesterase capable of providing for production of C12 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain thioesterase alone are also observed. In addition, where significant amounts of C12 and C14 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a Cuphea KAS A protein also results in an alteration of the proportion of the C12 and C14 fatty acids that are obtained. For example, an increased proportion of C12 fatty acids may be obtained by co-expression of Uc FatB1 thioesterase and a chKAS A synthase factor proteins.

However, when Cuphea hookeriana KAS A protein is expressed in conjunction with the expression of a long-chain 10

15

25

acyl-ACP thioesterase capable of providing for production of C18 and C18:1 fatty acids in plant seed oils, no effect on the production of long chain fatty acids was observed. Furthermore, when plants transformed to express a long chain acyl-ACP thioesterase from mangosteen (GarmFatA1, U.S. Patent Application No. 08/440,845), which preferentially hydrolyzes C18:0 and C18:1 fatty acyl-ACPs, are crossed with nontransformed control plants, a significant reduction in the levels of C18:0 is obtained. Similar reductions are also observed in the levels of C18:0 in the seeds of plants resulting from crosses between plants transformed to express the GarmFatA1 and plants expressing the Cuphea hookeriana KAS A protein.

Thus, the instant invention provides methods of increasing and/or altering the medium-chain fatty acid compositions in transgenic plant seed oils by co-expression of medium-chain acyl-ACP thioesterases with synthase factor proteins. Furthermore, various combinations of synthase factors and medium-chain thioesterases may be achieved depending upon the particular fatty acids desired. For example, for increased production of C14 fatty acids, synthase protein factors may be expressed in combination with a C14 thioesterase, for example from Cuphea palustris or nutmeg may be employed (WO 96/23892). In addition, thioesterase expression may be combined with a number of different synthase factor proteins for additional effects on medium-chain fatty acid composition.

Synthases of use in the present invention include modified amino acid sequences, such as sequences which have

been mutated, truncated, increased and the like, as well as such sequences which are partially or wholly artificially synthesized. The synthase protein encoding sequences provided herein may be employed in probes for further screening or used in genetic engineering constructs for transcription or transcription and translation in host cells, especially plant host cells. One skilled in the art will readily recognize that antibody preparations, nucleic acid probes (DNA and RNA) and the like may be prepared and used to screen and recover synthases and/or synthase nucleic acid sequences from other sources. Typically, a homologously related nucleic acid sequence will show at least about 60% homology, and more preferably at least about 70% homology, between the R. communis synthase and the given plant synthase of interest, excluding any deletions which may be present. Homology is determined upon comparison of sequence information, nucleic acid or amino acid, or through hybridization reactions.

10

15

Recombinant constructs containing a nucleic acid

sequence encoding a synthase protein factor or nucleic acid

sequences encoding a synthase protein factor and a medium
chain acyl-ACP thioesterase may be prepared by methods well

known in the art. Constructs may be designed to produce

synthase in either prokaryotic or eukaryotic cells. The

increased expression of a synthase in a plant cell,

particularly in conjunction with expression of medium-chain

thioesterases, or decreasing the amount of endogenous

synthase observed in plant cells are of special interest.

Synthase protein factors may be used, alone or in combination, to catalyze the elongating condensation reactions of fatty acid synthesis depending upon the desired result. For example, rate influencing synthase activity may reside in synthase I-type, synthase II-type, synthase III-type or in a combination of these enzymes. Furthermore, synthase activities may rely on a combination of the various synthase factors described herein.

Constructs which contain elements to provide the 10 transcription and translation of a nucleic acid sequence of interest in a host cell are "expression cassettes". Depending upon the host, the regulatory regions will vary, including regions from structural genes from viruses, plasmid or chromosomal genes, or the like. For expression in prokaryotic or eukaryotic microorganisms, particularly unicellular hosts, a wide variety of constitutive or regulatable promoters may be employed. Among transcriptional initiation regions which have been described are regions from bacterial and yeast hosts, such as E. coli, 20 B. subtilis, Saccharomyces cerevisiae, including genes such as ß-galactosidase, T7 polymerase, trp-lac (tac), trp E and the like.

An expression cassette for expression of synthase in a plant cell will include, in the 5' to 3' direction of transcription, a transcription and translation initiation control regulatory region (also known as a "promoter") functional in a plant cell, a nucleic acid sequence encoding a synthase, and a transcription termination region.

Numerous transcription initiation regions are available

25

which provide for a wide variety of constitutive or regulatable, e.g., inducible, transcription of the desaturase structural gene. Among transcriptional initiation regions used for plants are such regions associated with cauliflower mosaic viruses (35S, 19S), and structural genes such as for nopaline synthase or mannopine synthase or napin and ACP promoters, etc. The transcription/ translation initiation regions corresponding to such structural genes are found immediately 5' upstream to the respective start codons. Thus, depending upon the intended use, different promoters may be desired.

10

15

Of special interest in this invention are the use of promoters which are capable of preferentially expressing the synthase in seed tissue, in particular, at early stages of seed oil formation. Examples of such seed-specific promoters include the region immediately 5' upstream of a napin or seed ACP genes such as described in USPN 5,420,034, desaturase genes such as described in Thompson et al (Proc. Nat. Acad. Sci. (1991) 88:2578-2582), or a Bce-4 gene such as described in USPN 5,530,194. Alternatively, the use of the 5' regulatory region associated with the plant synthase structural gene, i.e., the region immediately 5' upstream to a plant synthase structural gene and/or the transcription termination regions found immediately 3' downstream to the plant synthase structural gene, may often be desired. general, promoters will be selected based upon their expression profile which may change given the particular application.

In addition, one may choose to provide for the transcription or transcription and translation of one or more other sequences of interest in concert with the expression or anti-sense of the synthase sequence, particularly medium-chain plant thioesterases such as described in USPN 5,512,482, to affect alterations in the amounts and/or composition of plant oils.

When one wishes to provide a plant transformed for the combined effect of more than one nucleic acid sequence of interest, a separate nucleic acid construct may be provided for each or the constructs may both be present on the same plant transformation construct. The constructs may be introduced into the host cells by the same or different methods, including the introduction of such a trait by crossing transgenic plants via traditional plant breeding methods, so long as the resulting product is a plant having both characteristics integrated into its genome.

10

20

25

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for expression in a host and providing for selection of transformed cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of different host species into which the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

The manner in which the DNA construct is introduced into the plant host is not critical to this invention. Any method which provides for efficient transformation may be employed. Various methods for plant cell transformation include the use of Ti- or Ri-plasmids, microinjection, electroporation, liposome fusion, DNA bombardment or the like. In many instances, it will be desirable to have the construct bordered on one or both sides by T-DNA, particularly having the left and right borders, more particularly the right border. This is particularly useful when the construct uses A. tumefaciens or A. rhizogenes as a mode for transformation, although the T-DNA borders may find use with other modes of transformation.

The expression constructs may be employed with a wide variety of plant life, particularly plant life involved in the production of vegetable oils. These plants include, but are not limited to rapeseed, peanut, sunflower, safflower, cotton, soybean, corn and oilseed palm.

15

20

25

For transformation of plant cells using Agrobacterium, explants may be combined and incubated with the transformed Agrobacterium for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be grown to seed and the seed used to establish repetitive generations and for isolation of vegetable oils.

PCT/US98/07114

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

5

10

15

20

25

EXAMPLES

Example 1 Cuphea KAS Factor A and B Gene Cloning

Total RNA isolated from developing seeds of Cuphea hookeriana and Cuphea pullcherrima was used for cDNA synthesis in commercial 1-based cloning vectors. For cloning each type of KAS gene, approximately 400,000-500,000 unamplified recombinant phage were plated and the plaques transferred to nitrocellulose. For KAS factor B cloning from C. hookeriana, a mixed probe containing Brassica napus KAS factor B and Ricinus communis (Castor) KAS factor B radiolabeled cDNA's was used. Similarly, a mixed probe containing Brassica napus KAS factor A and Ricinus communis KAS factor A cDNA clones was used to obtain C. hookeriana KAS factor A genes. For KASIII, a spinach KASIII cDNA clone obtained from Dr. Jan Jaworski was radiolabeled and used as a probe to isolate a KASIII clone from C. hookeriana. For KAS B and KAS A cloning from C. pullcherrima, C. hookeriana KAS B and KAS A genes chKAS B-2 and chKAS A-2-7 (see below) were radiolabeled and used as probes.

DNA sequence and translated amino acid sequence for Cuphea KAS clones are provided in Figures 1-9. Cuphea hookeriana KAS factor B clones chKAS B-2 and chKAS B-31-7

are provided in Figures 1 and 2. Neither of the clones is full length. Cuphea hookeriana KAS Factor A clones chKAS A-2-7 and chKAS A-1-6 are provided in Figures 3 and 4. chKAS A-2-7 contains the entire encoding sequence for the KAS 5 factor protein. Based on comparison with other plant synthase proteins, the transit peptide is believed to be represented in the amino acids encoded by nucleotides 125chKAS A-1-6 is not a full length clone although some transit peptide encoding sequence is present. Nucleotides 1-180 represent transit peptide encoding sequence, and the mature protein encoding sequence is believed to begin at nucleotide 181.

10

15

20

25.

Cuphea pullcherrima KAS factor B clones cpuKAS B/7-8 and cpuKAS B/8-7A are provided in Figures 5 and 6. Both of the clones contain the entire encoding sequences for the KAS factor B proteins. The first 35 amino acids of cpuKAS B/7-8 are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide The first 39 amino acids of cpuKAS B/8-7A are believed 233. to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide 209. pullcherrima KAS factor A clones cpuKAS A/p7-6A and cpuKAS A-p8-9A are provided in Figures 7 and 8. Both of the clones contain the entire encoding sequences for the KAS factor A proteins. Translated amino acid sequence of cpuKAS A/p7-6A is provided. The mature protein is believed to begin at the lysine residue encoded 595-597, and the first 126 amino acids are believed to represent the transit peptide. The DNA sequence of KAS A clone cpuKAS A-p8-9A is preliminary.

Further analysis will be conducted to determine final DNA sequence and reveal the amino acid sequence encoded by this gene.

DNA and translated amino acid sequence of *Cuphea hookeriana* KASIII clone chKASIII-27 is provided in Figure 9. The encoding sequence from nucleotides 37-144 of chKASIII-27 are believed to encode a transit peptide, and the presumed mature protein encoding sequence is from nucleotides 145-1233.

10

15

20

25

Deduced amino acid sequence of the C. hookeriana KAS factor B and KAS factor A cDNA's reveals strong homology to the Brassica napus and Ricinus communis clones previously reported. The C. hookeriana KAS factor B clone is more homologous to the Ricinus and Brassica KAS factor B clones (94% and 91% respectively) than it is to the Ricinus and Brassica KAS factor A clones (60% for both). Furthermore, the C. hookeriana KAS factor A clone is more homologous to the Ricinus and Brassica KAS factor A clones (85% and 82% respectively) than it is the Ricinus and Brassica KAS factor B clone (60% for both). The C. hookeriana KAS factor B cDNAs designated as chKAS B-2 and chKAS B-31-7 are 96% identical within the mature portion of the polypeptide. Similarly, the deduced amino acid sequence of the mature protein regions of the C. hookeriana KAS factor A clones chKAS A-2-7 and chKAS A-1-6 are 96% identical. pullcherrima KAS clones also demonstrate homology to the R. communis and Brassica napus KAS clones. The mature protein portion of all of the KAS factor A family members in the different Cuphea species are 95% identical. Similarly the

mature protein portion of the KAS factor B genes in Cuphea are also 95-97% identical with each other. However there is only approximately 60% sequence identity between KAS factor B and KAS factor A clones either within the same or different species of Cuphea.

Example 2 Levels and Patterns of Expression

25

To examine tissue specificity of KAS expression in Cuphea hookeriana, Northern blot analysis was conducted using total RNA isolated from seed, root, leaf and flower tissue. Two separate but identical blots were hybridized with either chKAS B-31-7 or chKAS A-2-7 coding region probes. The data from this RNA blot analysis indicate that KAS B is expressed at a similar level in all tissues examined, whereas KAS A expression is detected only in the seed. These results also demonstrate a different level of expression for each of the synthases. KAS A is an abundant message, whereas KAS B is expressed at low levels. Furthermore, even under highly stringent hybridization conditions (65_C, 0.1 X SSC, 0.5% SDS), the KAS A probe 20 hybridizes equally well with two seed transcripts of 2.3 and The larger hybridizing band is likely the 1.9 kb. transcript of the KAS A-2-7 gene since the size of its cDNA is 2046bp, and the number of clones obtained from cDNA screening corresponds well with the apparent mobility of the mRNA and its abundance on the blot.

Example 3 Expression of Plant KAS Genes in E.coli

DNA fragments encoding the mature polypeptide of the Cuphea hookeriana KAS A cDNAs and the Cuphea pullcherrima KAS B cDNAs were obtained by PCR and cloned into a QIAexpress expression vector (Qiagene). Experimental conditions for maximum level of expression were determined for all of these clones and the parameters for highest level of soluble fraction were identified. Cells are grown in ECLB media containing 1M sorbitol and 2.5 mM betaine overnight and subcultured as a 1:4 dilution in the same medium. Cells are then grown for 2 hours (to approximately .6-.8 O.D.) and induced with 0.4 mM IPTG and allowed to grow for 5 more hours.

Enzyme activity of the affinity purified recombinant enzymes obtained from over-expression of the chKAS A-2-7 and cpuKAS B/8-7A clones was measured using a wide range of acyl-ACP substrates (6:0- to 16:1-ACP). The activity profile for cpuKAS B/8-7A is provided in Fig.10. The data demonstrate that the enzyme is active with all acyl-ACP substrates examined, although activity on 6:0 to 14:0-ACP substrates is substantially greater than the activity on 16:0 and 16:1 substrates.

15

20

The activity profile of the *C. hookeriana* KAS A clones

25 chKAS A-2-7 and chKAS A-1-6 is provided in Figure 11. The *C. hookeriana* KAS A clones are most active with C:6, and have the least activity with C:16:0 substrates. However, the activity of this clone on even the preferred C6:0 substrate

is 50 fold lower than the activity of the *C. pullcherrima* KAS B clones.

A fragment containing the mature protein encoding portion of a R. communis KAS factor A clone was also cloned into a QIAexpress expression vector, expressed in E. coli and the enzyme affinity purified as described above. activity profile for castor KAS A is provided in Figure 12. Highest activity is observed with C14:0 substrates, although some activity is also seen with C6:0 and C16:1. comparison, the activity profile obtained from purified R. communis KAS factor B also using the QIAexpress expression system is provided in Figure 13. The KAS B clone demonstrates substantially higher levels of activity (10 fold and higher) than the R. communis KAS A clone. The 15 preference of the KAS factor B for 6:0- to 14:0-ACP substrates is consistent with the previous observations that this protein provides KAS I activity.

Example 4 KAS and TE Expression in Transgenic Seed

Dehesh et al. (1996) Plant Physiol. 110:203-210) and the chKAS A-2-7 were PCR amplified, sequenced, and cloned into a napin expression cassette. The napin/cp FatB1 and the napin/KAS A-2-7 fusions were ligated separately into the binary vector pCGN1558 (McBride and Summerfelt (Pl.Mol.Biol. (1990) 14:269-276) and transformed into A. tumefaciens, EHA101. The resulting CpFatB1 binary construct is pCGN5400 and the chKAS A-2-7 construct is pCGN5401. Agrobacterium mediated transformation of a Brassica napus canola variety

was carried out as described by Radke et al. (Theor. Appl. Genet. (1988) 75:685-694; Plant Cell Reports (1992) 11:499-505). Several transgenic events were produced for each of the pCGN5400 and pCGN5401 constructs.

A double gene construct containing a napin/cpFatB1 expression construct in combination with a napin/chKAS A-2-7 expression construct was also assembled, ligated into a binary vector and used for co-cultivation of a canola Brassica variety. The binary construct containing the chFatB1 and chKAS A-2-7 expression constructs is pCGN5413.

Fatty acid analysis of 26 transgenic lines containing chKAS A-2-7 (5401 lines) showed no significant changes in the oil content or profile as compared to similar analyses of wild type canola seeds of the transformed variety.

10

15

20

25

Fatty acid analysis of 36 transgenic lines containing cpFatB1 (5400 lines) showed increased levels of C:8 and C:10 in transgenic seeds. The highest level of C:8 observed in a pool seed sample was 4.2 mol%. The C:10 levels were between 30 and 35% of the C:8 content. Fatty acid analysis of 25 transgenic lines containing the TE/KAS A tandem (5413 lines) demonstrated an overall increase in both C:8 and C:10 levels relative to those observed with TE containing lines (5400) alone. In lines containing the cpFatB1 construct alone, the average level of C:8 average were 1.5 mol%, whereas the C:8 average levels in TE/KAS A tandem containing lines was 2.37 mol%. The ratio of C:8 to C:10 remained constant in both populations. The number of transgenic events relative to the C:8 content are presented in Figure 14. These data show that the transgenic events with tandem TE/KAS A construct

yield more lines with higher levels of C:8 than those events with single TE construct. For example, several lines containing nearly 7 mole% C8 were obtained with the TE/KAS A pCGN5413 construct, whereas the highest C8 containing line from the pCGN5400 TE alone transformation contained 4.2 mole% C8.

Half seed analysis of the T3 generation of transgenic canola plants expressing a ChFatB2 (C. hookeriana thioesterase; Dehesh et al. (1996) The Plant Journal 9:167-172) indicate that these plant can accumulate up to 22 weight% (33 mol%) of 8:0 and 10:0 fatty acids (4804-22-357). Segregation analysis shows that these transformants contain two loci and that they are now homozygous. Selected plants grown from these half seeds were transferred into the greenhouse and later crossed with T1 transformants that had been transformed with either Cuphea hookeriana KAS A (5401) alone or KAS A/CpFatB1 double constructs (5413).

15

20

Fatty acid analysis of several events resulting from the crosses between transgenic lines containing ChFatB2 (4804-22-357) and chKAS A-2-7 (5401-9), reveal an increase in the ratio of C:10/C:8 levels (Figure 15). This C:10/C:8 ratio in nearly all of the transgenic events containing ChFatB2 TE alone fluctuates between 3 and 6, whereas in the F1 generation of transgenic containing both the TE and the KAS A-2-7, the ratio can be as high as 22. This increase in C:10 levels is accompanied by an increase in the total C:8 and C:10 content (Figure 16). The sum of the C:8 and C:10 fatty acids in the heterozygous F1 lines is as high as those in the homozygous parent line (4804-22-357), whereas the

heterozygous lines usually contain substantially less C:8 and C:10 than the homozygous lines.

Similar results were observed in F1 generation seeds resulting from crosses performed between 4804-22-357 (ChFatB2) and the 5413-17 event (CpFatB1 and chKAS A-2-7 tandem). Levels of C:8 and C:10 in the 5413-17 line were 6.3 and 2.8 mol% respectively. Data presented in Figure 17 show that there is shift towards C:10 fatty acids as was observed with the 4804-22-357 (ChFatB2) \times 5401-9 (chKAS A-2-7) crosses. Furthermore, Figure 18 indicates the presence 10 of two separate populations of heterozygotes. containing approximately 9-11 weight percent C:10 + C:8 are believed to represent offspring containing a single copy of the ChFatBl TE gene and no copies of the CpFatBl and chKAS A genes from 5413. Those plants containing approximately 15-20 weight percent C:10 + C:8 are believed to represent the heterozygotes containing a single ChFatB1 TE gene as well as the CpFatB1 and chKAS A genes from 5413. Thus, the level of the C:10 + C:8 fatty acids does not decrease to 50% of that detected in parent lines when a copy of the ChKAS A gene is 20 present.

To further characterize the chain length specificity of the Cuphea hookeriana KAS A enzyme, crosses between transgenic Brassica napus lines containing a California Bay (Umbellularia californica) 12:0 specific thioesterase, Uc FatB1 (USPN 5,344,771) and chKAS A-2-7 (5401-9) were made. Half seed analysis of transgenic plants containing Uc fatB1 have previuosly indicated that these plants can accumulate up to 52 mol% C12:0 in the seed oil of homozygous dihaploid

25

lines (LA86DH186). Crosses between the line LA86DH186 and untransformed control *Brassica* demonstrated a decrease in the C12:0 levels.

However, crosses between LA86DH186 and the 5401-9 hemizygous line led to an accumulation of up to 57 mol% C12:0 in the seed oil of F1 progeny (Figure 19). Interestingly, in crosses with LA86DH186 x untransformed control line and LA86DH186 x 5401-9, levels of C14:0 in the seeds of the F1 progeny decreased to 50% of the levels 10 obtained in homozygous LA86DH186 lines (Figure 20). Furthermore, increases in the proportion of C12:0 fatty acid resulted in a substantial decline in the proportions of all the long-chain fatty acyl groups (C16:0, C18:0, C18:2, and C18:3). These results indicate that the ChKAS A-2-7 is an enzyme with substrate specificity ranging from C6:0 to 15 C10:0-ACP, and that its over-expression ultimately reduces the longer chain acyl-ACP pools.

Further evidence is obtained in support of the chain length specificity of the ChKAS A-2-7 in crosses of the 5401-9 line with a transgenic line (5266) expressing an 18:1/18:0 TE from Garcinia mangostana (GarmFatA1, US patent application No. 08/440,845). Transgenic Brassica line 5266 has been shown to accumulate up to 24 mol% C18:0 in the seed oil of homozygous lines (Figure 21). However, in the seed oil of F1 progeny of crosses between 5266 and 5401-9 levels of C18:0 were reduced to approximately 12 mol%. Furthermore, levels of C16:0 generated from these crosses was similar to the levels obtained from the seed oil of nontransgenic control plants.

20

25

Example 5 In vitro Analysis of Plant KAS Enzymes

10

15

20

Seed extracts were prepared from developing seeds of nontransgenic controls or transgenic Brassica expressing chKAS A-2-7 as described in Slabaugh et al. (Plant Journal, 5 1998 in press) and Leonard et al. (Plant Journal, 1998, in press). In vitro fatty acid synthesis assays were performed as described by Post-Beittenmiller (J. Biol. Chem. (1991), 266:1858-1865). Extracts were concentrated by ammonium sulfate precipitation and desalting using P-6 columns (Bio-Rad, Hercules, CA). Reactions (65µl) contained 0.1M Tris/HCl (pH 8.0), 1 mM dithiothreitol, 25 mM recombinant spinach ACP1, 1 mM NADH, 2 mM NADPH, 50 µM malonyl-CoA, 10 μ M [1-14C]acetyl-CoA (50 mCi/mmol), 1mg/ml BSA, and 0.25 mg/ml seed protein. Selected seed extracts were preincubated with cerulenin at 23°C for 10 min. Reaction products were separated on an 18% acrlamide gel containing 2.25M urea, electroblotted onto to nitrocellulose and quntitated by phosporimaging using Image QuaNT software (Molecular Dynamics, Sunnyvale, CA). Authentic acyl-ACPs were run in parallel, immunoblotted and finally detected by anti-ACP serum to confirm fatty acid chain lengths.

The results (Figure 22) indicate that the fatty acid synthesis capabilities of transgenic Brasica (5401-9) seed extracts was greater than that obtained from in the 25 nontransgenic controls as measured by the relative abundance of C8:0- and C10:0-ACP at all time points tested. addition, pretreatment of the extracts with cerulenin, markedly reduced the synthesis of longer chain fatty acids in both the transgenic and nontransgenic control seed

extracts. However, the extension of the spinach-ACP was much less inhibited in the seed extracts from the transgenic lines than in the seed extracts of nontransgenic control Brassica.

These data further support that Ch KAS A-2-7 is a condensing enzyme active on medium chain acyl-ACPs, and that expression of this enzyme in plants results in enlarged substrate pools to be hydrolyzed by medium-chain specific thioesterases. Furthermore, these data suggest that chKAS A-2-7 also is a cerulenin-resistant condensing enzyme.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains.

- 15 All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claim.

MISSING UPON TIME OF PUBLICATION

- 13. The construct of Claim 5 wherein said encoding sequence is cpuKAS A/p8-9A.
- 14. The construct of Claim 5 wherein said encoding sequence is chKASIII-27.
- 15. An improved method for producing medium-chain fatty acids in transgenic plant seeds by expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant,

the improvement comprising expression of a plant synthase

factor protein heterologous to said transgenic plant in

conjunction with expression of said plant medium-chain

thioesterase, whereby the percentage of medium-chain fatty

acids produced in seeds expressing both a plant synthase factor

protein and a plant medium-chain thioesterase protein is

increased as compared to the percentage of medium-chain fatty

acids produced in seeds expressing only said plant medium-chain

thioesterase protein.

- 16. The method of Claim 15 wherein said medium-chain thioesterase protein is a ChFatB2 protein.
- 20 17. The method of Claim 15 wherein said medium-chain thioesterase protein is a CpFatB1 protein.
 - 18. The method of Claim 15 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.
- 19. The method of Claim 15 wherein said plant synthase factor protein is expressed from a construct according to Claim 1.
 - 20. The method of Claim 19 wherein said synthase factor A protein is from a Cuphea species.

- 21. The method of Claim 20 wherein said Cuphea species is C. hookeriana or C. pullcherrima.
- 22. A method of altering the medium-chain fatty acid composition in plant seeds expressing a heterologous plant medium-chain preferring thioesterase, wherein said method comprises

providing for expression of a plant synthase factor protein heterologous to said transgenic plant in conjunction with expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant, whereby the composition of medium-chain fatty acids produced in said seeds is modified as compared to the composition of medium-chain fatty acids produced in seeds expressing said plant medium-chain thioesterase protein in the absence of expression of said plant synthase factor protein.

23. The method of Claim 22 wherein said medium-chain thioesterase protein is a ChFatB2 protein.

15

25

- 24. The method of Claim 22 wherein said medium-chain thioesterase protein is a CpFatBl protein.
- 25. The method of Claim 22 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.
 - 26. The method of Claim 22 wherein said plant synthase factor protein is expressed from a construct according to Claim 1.
 - 27. The method of Claim 26 wherein said synthase factor A protein is from a Cuphea species.
 - 28. The method of Claim 27 wherein said Cuphea species is C. hookeriana or C. pullcherrima.

WO 98/46776 PCT/US98/07114

29. The method of Claim 22 wherein said fatty acid composition is enriched for C10 fatty acids.

- 30. The method of Claim 22 wherein said fatty acid composition is enriched for C12 fatty acids.
- 31. The method of Claim 22 wherein said fatty acid composition is enriched for at least one medium chain fatty acid and at least one other medium chain fatty acid is decreased.
- 32. The method of Claim 31 wherein said enriched fatty acid is C12 and said decreased fatty acid is C14.

48	96	144	192	240	. 288	336	384
GGC Gly	AAG Lys	GGT Gly	CAC His	GGG G1y	TCA	GCT Ala	ACT Th <i>r</i>
CCG	TCC Ser	GGT G1y	GGT Gly	ATG Met	TAT Tyr	GCC Ala	66C 61y
CCC Pro	CTC	ATG Met	AAG Lys	AAC Asn	AAC Asn	GCT	GGA Gly
GAT Asp	CGC Arg	GGA Gly	GAG Glu	ACA Thr	CCA	CAT	GCT
GTG Val	GAC Asp	ACA Thr	ATC Ile	ATT Ile	66C 61y	TTC	ATT
CTA Leu	GCC Ala	GGA Gly	CTT Leu	GCC Ala	ATG Met	TGC Cys	ATG
GAA Glu	GGT G1y	GTC Val	TCT Ser	TAT Tyr	CTC	TAC Tyr	CTT
CTA Leu	CTC Leu	CTG Leu	CAG Gln	CCC Pro	GGT Gly	AAC Asn	GAT
GCT Ala	GAT Asp	GTG Val	GTT Val	ATC Ile	TTT Phe	TCC	GCT
GCC Ala	GCC	GGA G1y	GGG G1y	TTC Phe	GAA Glu	ACT Thr	GAG Glu
gcg Ala	CGA Arg	GCC	GAC Asp	TTC	ATC Ile	GCC Ala	GGT Gly
GTG Val	GCA Ala	AGA Arg	TCT Ser	CCT	GCT	TGT Cys	CGT Arg
GCG Ala	TCG Ser	GAG Glu	TTC Phe	ACC Thr	CTC	GCA Ala	CGC
ACC Thr	AAT Asn	AAG Lys	GTC Val	ATC Ile	CTG	ACT Thr	ATC Ile
TCC	AGG Arg	GAC Asp	ACT Thr	AAA Lys	GCC Ala	TCC	CAT
AGC	TGC	ATC Ile	CTG	CGG	TCT	ATT	AAT

FIGURE 1 1 OF 4

432	480	528	576	624	672	720	768
•					•		
AGG	TGG	TTG	ATT	ACT	AGC	GCT	ATC
Arg	Trp		Ile	Thr	Ser	Ala	Ile
TGC	CCC	GTG	ATT	ATG	AGT	AAT	GCC
Cys		Val	Ile	Met	Ser	Asn	Ala
GCT	AGG Arg	GGA G1Y	CCG	CAC His	GAG Glu	ATA Ile	AAT Asn
GTG	TCT	GCT	GCA	TAT	ATT	TAC	ATA
Val	Ser	Ala	Ala	Tyr	Ile	Tyr	Ile
rrr	GCC	GGT	GGA	GCT	TGC	AAT	GAG
Phe	Ala	Gly	G1y	Ala	Cys	Asn	Glu
GGC	ACT	GAA	CGA	GAT	TCT	GTC	GCC
Gly	Thr	Glu	Arg	Asp	Ser	Val	Ala
GGA	CAG	GGT	AGA	TGT	TCT	GAG	
Gly	Gln	Gly	Arg	Cys	Ser	Glu	
TTG	CCG	ATG Met	ATG Met	AAC Asn	GTC Val	GAA Glu	GAT CTC ASP Leu FIGURE 1 2 OF 4
GGG	gac	GTG	GCA	ATC	GGT	CCT	666
G1y	Asp	Val	Ala	Ile	Gly		61y
ATT	GAT	TTT	CAT	GCA	CTT	TCA	GCT
Ile	Asp	Phe	His	Ala	Leu	Ser	Ala
CCA	AAC	GGT	GAA	GGT	GGT	GTC	CTA
Pro	Asn	Gly	Glu	Gly	Gly	Val	
ATT	AGG	GAT	TTG	GGA	GAT	66C	ACT
Ile	Arg	Asp	Leu	Gly	Asp	G1Y	Thr
ATC	CAA	CGT	AGC	TTG	GCT	GCT	TCT
Ile	Gln	Arg	Ser	Leu	Ala	Ala	
GCA	TCT	GAC	GAG	ТАТ	AGG	GAT	ACT
Ala	Ser	Asp	Glu	ТУГ	Arg	Asp	Thr
GCC	TTG	AAA	ATG	GAG	CCA	GAA	GCG
Ala		Lys	Met	Glu	Pro	Glu	Ala
GAG	GCT	GAT	GTG	GCA	GAT	CTT	CAT
Glu	Ala	Asp	Val	Ala	Asp	Leu	His

FIGURE 1 3 OF 4

FIGURE 1 4 OF 4

1236	1296	1348
TCTATGTAAT AAAACTAAGG ATTATTAATT TCCCTTTTAA TCCTGTCTCC AGTTTGAGCA 1236	TGAAATTATA TTTATTTTAT CTTAGAAAGG TCAAATAAGA TTTTGTTTTA CCTCTGTAAA 1296	AA.
rccrercrcc	TTTTGTTTTA	ACTITITGITI GIATIGGAAA GGAAGIGCCG ICICAAAAAA AAAAAAAA AA
TCCCTTTTAA	TCAAATAAGA	TCTCAAAAAA
ATTATTAATT	CTTAGAAAGG	GGAAGTGCCG
AAAACTAAGG	TTTATTTTAT	GTATTGGAAA
TCTATGTAAT	тсалаттата	ACTTTTGTTT

Sequence Range: 1 to 1704

						•					
40 GTG Val>		GCA Ala>		TCT Ser>	0	GAC Asp>	240	* CGG Arg>	CTC Leu>		GAA Glu>
GNG		TCG	140	GAC Asp	190	ATC Ile		ATC Ile	AGG Arg		CTC
ACC	90	AAT Asn		GTC Val		TTA Leu		CAG Gln	280 GAC AGG ASP Arg	330	GCT
30 TCC Ser		AGG Arg		GAC Asp		AGC	230	GGC GGC G	28 GAC Asp		AAG Lys
AGC		TGC	130	TCC	180	ATC Ile		GGC Gly	AAC Asn		AAG Lys
TGG Trp	80	GGC G1y	Ħ	GGC Gly		GGG		TTC	AAG Lys	320	GCC GGG Ala Gly
20 AAA AGC Lys Ser		CCG		TTC		AGC	220	ACC AGG Thr Arg	270 GGG Gly	(*)	GCC
AAA Lys		CCC		GTA Val	170	GAG Glu	23		GAC Asp		GTC Val
AAC Asn	70	GAT Asp	120	TCC	` '	GGC Gly		CCC	ATC Ile	0	ATT Ile
10 AAA GGG Lys Gly	-	GTG Val		GTC		TCC		TTC	260 TAC TYY	310	TGC ATT Cys Ile
AAA Lys		CTA		CTC	160	CTC	210	AAG Lys	2 GGA Gly		TAC Tyr
ACT		GAA Glu	110	66C 61y	1	CTC		TCC	ACG Thr		CGC Arg
CTC	09	CTA Leu		ATG Met		AAG Lys		GCT	50 GCG Ala	300	CTC
ACC		GCT Ala		$_{\rm GGC}$		GAA Glu	200	GAC Asp	250 AAC GC Asn A]		TGC
TTA Leu		GCC	100	GCC	150	TAC	. 4	TTC Phe	TTC Phe		GAT Asp
AAA Lys	20	GCG	Ä	CGA		TAT Tyr	*	CGC	GGA Gly	90	GAC

FIGURE 2 1/5

FIGURE 2 2/5

								•					
	AGA Arg>	430	TCT Ser>	480	ccG Pro>	GCC Ala>		TGT Cys>		CGA Arg>	0	ATT Ile>	
380	GAG Glu	4	TTC		TCC	CTT Leu		GCA Ala	620	CGC Arg	670	ATC Ile	
` '	AAG Lys		GTC Val		ATC Ile	20 CTG Leu	570	ACT Thr	•	ATC Ile		GCA	
	GAT Asp		ACC Thr	470	AAG Lys	520 GCT CTC Ala Leu		TCA		CAT His		GCT	
370	ATT Ile	420	CTA Leu	7	CGG Arg	TCT Ser		ATT Ile	0	AAT Asn	099	GAG Glu	
'n	AAG Lys		GGC Gly		CAC His	666 61y	260	TCG	610	GCC		ACT Thr	
	TCC		GGT Gly	460	GGT Gly	510 ATG Met	u i	TAT Tyr		GCT Ala		$_{ m GGA}$	
	CTC	410	ATG Met	4(AAA Lys	AAC Asn		AAC Asn		GCC Ala	650	GGA Gly	
360	AGC	•	GGT Gly		GAG Glu	ACA Thr	0.0	CCA	009	\mathtt{TAT}	φ.	GCT Ala	
	GAA Glu		ACT Thr		ATC Ile	500 ATT Ile	550	66C 61y		TTT Phe		ATT Ile	
	GGT Gly	400	GGA Gly	450	CTC	GCC Ala		ATG Met		TGC	0	CTC ATG	
350	$ ext{GGC}$	4(GTT Val		AAT Asn	$\mathtt{TAT}\\ \mathtt{Ty}_{\mathcal{I}}$		CTG	590	\mathtt{TAC}	640	CTC	
•	CTC Leu		CTA Leu		CAG Gln	490 ATT CCC Ile Pro	540	GGT Gly	L)	AAC Asn		GAC	
	GAT Asp		GTG Val	440	GTT Val	49 ATT Ile		$ ext{TTG}$		TCC		GCT	
340	TCC	390	GGA Gly	7	$_{\rm GGG}$	TTC Phe	٠	GAT Asp	0	ACT Thr	630	GAG Glu	
m	AAT Asn		GCT Ala		GAC	TTT Phe	30	ATC Ile	580	GCT Ala		GGC Gly	

SUBSTITUTE SHEET (RULE 26)

720	AGG Arg>	GAT Asp>		TTG Leu>		GGA Gly>	0.	GAT Asp>	096	GGG G1y>	ACT Thr>
	CAA Gln	CGT Arg		AGC	860	TTG GGA Leu Gly>	910	GCT Ala		GCT	TCC
	TCT	760 AAG GAC Lys Asp	810	GAG Glu	~	TAT Tyr		AGG		GAT Asp	O ACT Thr
710	GCT TTA Ala Leu	76 AAG Lys		ATG Met		GAA Glu		CCA Pro	950	GAA Glu	1000 GCG ACT Ala Thr
•		GAT Asp		GTT Val	850	GCA Ala	006	GAT Asp	01	CTG	CAT His
	AGG Arg	TGG Trp	800	TTG	8	ATT Ile		ACT Thr		AGT	GCT
700	TGC	750 CCG Pro	w	GTA Val		ATT Ile		ATG Met	940	AGC Ser	990 AAT Asn
7(GCC Ala	AGG Arg		GGA Gly		CCG	890	CAT	6	GAG Glu	ATA Ile
	GTT Val	TCA	790	GCT	840	GCG Ala	w	\mathtt{TAT}		ATT Ile	TAC
	TTC	740 GCC Ala	7.5	$^{\rm GGG}_{\rm G1Y}$		${\tt GGA} \\ {\tt G1y}$		GCT Ala		TGC Cys	980 AAT ASD
069	GGA Gly	ACT Thr		GAA Glu		CGA Arg	0	GAT Asp	930	TCT Ser	GTC Val
	GGA Gly	CAG Gln		GGC Gly	830	AAA Lys	880	TGT Cys		TCC Ser	GAG Glu
	TTA Leu	30 CCT Pro	780	ATG Met	ω	ATG Met		AAT		GTC Val	0 GAA Glu
089	$_{\rm GGG}$	730 GAC CC' ASP Pr		GTG Val		GCA Ala		GTC Val	920	GGT Gly	970 CCT GAA Pro Glu
•	ATT Ile	GAT Asp		TTT Phe	820	CAT His	870	GCA	O1	CTT Leu	TCA
	CCA Pro	AAT Asn	10	GGT Gly	8	GAA Glu		GGT Gly		GGG Gly	GTC Val

, 160KE , 3/5

				•								,
	AAG Lys>		CAC His>	0	GGA Gly>	1200	GAG Glu>	GAA Glu>		TCA Ser>		GCA
	TTC Phe	1100	GGA Gly	1150	AAG Lys	7	CCC	CAT		AAC Asn	1340	
1050	GTT Val	H	ATC Ile		ATT Ile		AAT Asn	1240 CAG CAA Gln Gln	1290	CAC	13	TCA AAT
•	AAG Lys		ATG Met		ACA Thr	1190	TTC Phe		П	GGC G1y		GGT
	AAG Lys	0.6	TCG	1140	GCG Ala	11	CAA Gln	AAG Lys		GGA Gly	0	TTA CTC
1040	ATC Ile	1090	AAG Lys	•	ATT Ile		AAC Asn	AAG Lys	1280	TTC Phe	1330	TTA
1(GCC		ACT Thr		GCC Ala	30	AGC ATA Ser Ile	1230 GCC AAC AAG Ala Asn Lys	12	GGA Gly		TGA
	AAT Asn		GCA Ala	1130	GAA Glu	1180	AGC			TTC Phe		CCA
30	GAG ATA Glu Ile	1080	AAT Asn	Ħ	CTT		CCC	Grr Val	0	AAT TCA Asn Ser	1320	TTC AAG Phe Lys
1030	GAG Glu	` '	ATC Ile		$_{\rm G1y}^{\rm GGT}$		CAT His	20 ACA Thr	1270	AAT Asn	П	TTC Phe
	GCC		ACA Thr	02	TCA GGG Ser Gly	1170	CTT Leu	12 GAC ASP		TCA		GCC
	CTT Leu	1070	ATC Ile	1120	TCA		TGG Trp	TTC Phe		ATC Ile	1310	TCA
1020	GAT Asp	1(GAA Glu		GCA Ala		GGC Gly	.0 GAA Glu	1260	GCT Ala	13	TTC Phe
••	GGG Gly		AAG Lys		GGA Gly	1160	ACC Thr	1210 GTG GAA Val Glu	П	GTT Val		GCT
	GCT Ala	0.9	ACC Thr	1110	CTT Leu	11	ACC Thr	TCA Ser		AAT Asn	0	GTA Val
10	CTT	1060	AAC Asn	•	TGT		ATA Ile	CCA TCA Pro Ser	20	GTG Val	1300	GTT GTA Val Val

FIGURE 2

FIGURE 2 5/5

AATTIGITGC IGAGACAGIG AGCTICAACT IGCAGAGCAA ITTITITACAI GCCITGICGI AATCGAAGAT TATTTCCATT CTAATCCAGT CTCCGNCGAG TTTGAGAATC TATCTGTTTG CGGAAGAGCG TAATACCGGG ATAGTTCCTT GATAGTTCAT TTAGGATGTT TTACTGCAAT TATTAGAAAG AACGAGGCAA GATTTTGTTT CATGTTTGTG TTTGTATTAC TTTCTTTTTG CCCTTGTCAA TGGCATTTAA GATAAGCTTA TAAAAAAAA AAAAAAAAA AAAACTCGAG GGGGGGCCCG GTACCCAATT CGCCCTATAG TGAGTCGTAT GACAATTCAC TGTCCGTCGG

	•											
09	CCGCTCTAGA ACTAGTGGAT	120	GCTCAGGTGT	G TGG r Trp		TCC		TCC		TGC Cys	360	GGA Gly
	ACTA		GCTC	T ACG s Thr		CGT Arg	260	CTC	310	CCT Pro	(')	TTC
20	AGA	110		O C TGT e Cys	210	CCA	7	ACT Thr		GAT Asp		CTC
	CTCT		GGTCGGCTCA	160 T TTC o Phe		GAC		AGG Arg		CTC	350	TCC
				C CCT r Pro		AAC Asn		CGG Arg	300	TGC	ñ	GCT
40	ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG	100	TTCTTACTTG	G TCC a Ser	200	GAC	250	CGC		CAA		$\mathbf{T}\mathbf{T}\mathbf{C}$
	GGTG		CTTA	150 T GCG	7	Ser		CGT		$ ext{TTC}$		GGA Gly
30	ည	06		1 G GTT t Val		TCA		TCC	290	ACC	340	AAC Asn
m	CCAC	Q	GAGT	c ATG s Met		CCC ACT Pro Thr	240	CTC	73	TCC		GAT Asp
	AGCT		GGCACGAGTT	140 TCT TGC . Ser Cys 1	190	CCC		CGC Arg		GGA G1y		GGG G1y
20	D DI	80		T TC a Se		ATG Met		CTC		CGC Arg	330	CTC
	AAGC		GCAGGAATTC	C GCT r Ala		TGC	230	CGG Arg	280	CTC	•	TTC
	ACAA		GCAG	0 G ACC a Thr	180	GCA	7	AAG Lys		TCC		CGC
10	GGA	70	GCT	130 G GCG t Ala		GCT		CAC His		TGC	320	CAA Gln
	AAAG		CCCCGGGGCT	A ATG Met		GTA Val		TCC	270	CAT His	ä	CAG Gln
	ACT		သသ	TCCA	170	CTC	220	CTT Leu	- •	TCC		AAC Asn

FIGURE 3 1/6

EН		& D		ტ ⊢ 4		ОЫ		ប្រជ	F4 V		<i>r</i> . o
ACT Thr		GAA Glu		GTG Val		TAC	009	AAC Asn	TCT Ser		GAC Asp
CGC	•	CAG Gln	200	GTT Val	550	GTT Val	v	GAG Glu	AAG Lys		ATG Met
GGC G1y	450	GCA Ala	ហ	GTA Val		GAT Asp		ATA Ile	ATC Ile	069	AGG Arg
400 CTC Leu		CCT		CGA Arg		CCC Pro	290	GAG Glu	640 GAG Glu	ŭ	GAG Glu
AGG		CAA Gln		AGG Arg	540	GAC Asp	55	AGT	GGA G1y		TCC
CTG	40	ATG Met	490	CAA	۵,	CAT His		ATA Ile	GCC	0	TTC Phe
390 CAC His	44	GCT Ala		AAG Lys		GGC Gly		GGC Gly	630 ATT Ile	680	AAG Lys
660 61y		GTG Val		ACC Thr	530	CTA	580	AGT	6 AGA Arg		CCA
CGC Arg		GCT Ala	480	GCT	5.3	CCT Pro		ATA Ile	ACG Thr		GCC
80 AAT Asn	430	ATG Met	•	CCT Pro		ACT Thr		GGA Gly	620 TTT CCC Phe Pro	019	GTG Val
380 TCA AA Ser As		GTC Val		AAA Lys		GTG Val	570	GAC	620 TTT C(Phe P)		${\tt TGG}$
CGT		GAG Glu	470	AAG Lys	520	GTG Val	u,	CTA Leu	CAG Gln		GGC Gly
CTT Leu	420	$_{\rm GGG}$	4	AAT Asn		GGC Gly		CTC	TCT Ser	099	GAT Asp
370 CCT Pro		TCC		ACA Thr		ATG Met	0	AAT Asn	610 TGC Cys	ø	ACA Thr
AAG Lys		CAT His		TCC	510	GGT Gly	260	AAC Asn	GAC Asp		TCC
TCC	410	TCC	460	GTC Val	Δ,	ACA Thr		TAC	TTC	650	TTT Phe

FIGURE 3 2 OF 6

	•											
_	GAT Asp		TGT Cys	840	GAT Asp	TGT Cys		GAC Asp		ACA Thr		GAA Glu
740	GCA Ala	790	AAG Lys	ω	AGC	TTT Phe		ATG Met	980	GCA Ala	1030	GGC Gly
	TTA Leu		AGA Arg		TTC	CCC	930	GCA Ala	36	TGT Cys	П	AAA Lys
	GCA Ala		AAA Lys	0 0	GTA Val	880 AGT Ser	01	CTT		GCC		ATC Ile
730	AAA Lys	780	AAT Asn	83	AAG Lys	ATC Ile		ATT Ile		ACT Thr	1020	CAC ATA His Ile
•	AAG Lys		CTC	-	ATG Met	AAG Lys	920	GCT	970	TCA	10	CAC His
	66C 61y		GAG Glu		$_{\rm GGT}^{\rm GGT}$	870 AAG Lys	92	TCC		ATA Ile		AAC Asn
720	GCA Ala	170	AAA Lys	820	66C 61y	8 TAT TYY		GGA G1y		TCG	0.	GCT GCG Ala Ala
7:	ACT	7.	ATG Met		TTG Leu	TCA Ser		ATG Met	096	\mathtt{TAT}	1010	GCT Ala
	CTG		GCG Ala		GGA Gly	860 G ACT g Thr	910	AAT Asn	Oi	AAC Asn		AAT Asn
0	* ATG Met		GAT Asp	810	TCC	86 AGG Arg		ACA Thr		CCT		CTG
710	TAC Tyr	760	GAA Glu	w	GGC Gly	CTG Leu		ACC Thr	0.9	GGC Gly	1000	ATA Ile
	CTT Leu		ACT Thr		ATT Ile	GCT Ala	006 *	TCT	950	ATG Met	Η.	TGT Cys
	ATG Met		ATC Ile	800	CTC	850 GAA Glu	01	TTT Phe		TGG Trp		TTC Phe
700	TTC	750	GGA	8	GTT Val	ATT Ile		CCT		GGA Gly	066	AAC Asn
•	AAG Lys		GGT		GGA Gly	TCC	068	GTA Val	940	TTG	o,	AGT

FIGURE 3 3 OF 6

1070

1060

1050

,	GTT Val	AAT Asn		TTT Phe		CAT His		AGT Ser	1320	GCT Ala	TCG
	CCT	AAT Asn		GGA Gly	02	GAG Glu	1270	$_{\rm GGG}$	13	GGA Gly	GTC Val
	TTA	AGG Arg	1170	GAT Asp	1220	TTA Leu	П	$_{\rm GGT}$		GAA Glu	GGA Gly
	GTT Val	1120 CAG Gln	11	CGT Arg		GAG Glu		CTA Leu	0	CCT	1360 TCC Ser
	GCC	TCA Ser		AAT Asn		GAG Glu	1260	TTT Phe	1310	CAC His	cAG Gln
	GCG Ala	TTG	0.0	AGT	1210	CTT	12	GAA Glu		CCT Pro	GCT Ala
	GAT Asp	1110 CGA GCT Arg Ala	1160	GAC	17	CTT Leu		GCG Ala		GAG Glu	1350 GCC TTG Ala Leu
	TCG	11 CGA Arg		TGG Trp		TTA Leu	0.0	TAT Tyr	1300	ACC Thr	13 GCC Ala
	GGC Gly	TGC		CCA	1200	GTT Val	1250	ATT		ATG Met	AAG Lys
	GGT Gly	1100 GTA GCA Val Ala	1150	AGA Arg	13	$_{\rm GGA}^{\rm GGA}$		ACC Thr		CAC His	1340 ATA GAG Ile Glu
	TGT Cys		•••	TCG		GCT Ala		GCA Ala	1290	TAC	1340 ATA G Ile G
	CTT	TTC		GCT	0	$_{\rm GGA}$	1240	$_{\rm GGT}$	12	GCC	TGC Cys
	ATG Met	GGT Gly	1140	aaa Lys	1190	GAA Glu	П	AGA GGT (Arg Gly)		GAC	CTC
*	ATG Met	1090 GGA Gly	ਜ	ACC Thr		GGA Gly		AAA Lys	0	TGC	1330 ATC Ile
	GAC	TTG Leu		CCT		ATG Met	1230	AAG Lys	128(ACT Thr	1 GTG Val
	GCA	GGT G1y	1130	GAC Asp	1180	GTG Val	12	GCA Ala		TTC	GGT G1y

FIGURE 3 4 OF 6

	.											
	GCT		AAC Asn		CTT Leu	1560	AGG Arg	GGC Gly		GTC Val		TCC
	CCT Pro	20	CAA Gln	1510	CTT Leu	H	ATA AGG Ile Arg	GAA Glu		AAG Lys	0	TCA
1410	ACT Thr	1460	GGC Gly	77	CAC His		GCA Ala	GAC Asp	1650	CTG Leu	1700	AAC Asn
1,	TCC		TTC Phe		GGT Gly	0	CAG Gln	600 CCG Pro	16	AAA Lys		CAT
	ACT Thr		TGT Cys	1500	ATC Ile	1550	GTT Val	1 GAC ASP		GAG Glu		GGC Gly
00	GCA	1450	CAC His	15	ATG		GTA Val	GAA Glu	0	AAG Lys	1690	GGC Gly
1400	CAT His		GCC Ala		TCG		GCA Ala	90 TTG Leu	1640	AAG Lys	⊣	TTC
	GCG Ala		CTC	0.	AAA Lys	1540	GTT Val	1590 AAT TTG Asn Leu		CCT		GGG G1y
	ATA AAT Ile Asn	1440	GCT	1490	ACC	7	GCA Ala	ATT Ile		GGC Gly	1680	
1390	ATA Ile	14	CAA Gln		TCC		GAA Glu	0 AAT Asn	1630	GTC Val	16	TCA TTT Ser Phe
• •	TAC		TAC		AAT Asn	1530	GTA Val	1580 CCA AA Pro As	-	CTC		AAT Asn
	AAT Asn	30	GAA Glu	1480	GTG Val	15	GGC G1y	CAT His		CTG	0	TCC
1380	GAC GTA Asp Val	1430	AAG Lys	П	AGA Arg		$_{\rm GLY}^{\rm GGT}$	ATC Ile	1620		1670	TTG Len
Ĥ			ATC Ile		CTG Leu	0	GCT Ala	1570 TGG Trp	16	GCA AAA Ala Lys		GGT Gly
	GAA		GAT Asp	1470	GAG Glu	1520	GGA Gly	1 GGA Gly		GAT Asp		GTC Val
1370	AGG Arg	1420	GGA G1y	14	AGT		GGA Gly	ACA Thr	1610	GTG	1660	AAG

FIGURE 3 5 OF 6

1760	SAGTCTTTGA	1820	SCTACTCGA	1880	GTCCTTT	1940	CTTTTCGAAT	2000	ATTTTGAA		
1750	TGGAAGCCGA GAGTCTTTGA	1810	GAACTCATGC ACGTTAGTAG CTTCTTATGC CTCTGAAACC GAGATAGACC GGCTACTCGA	1870	GGGGATGCCA AAGATACTCC TTGCCGGTAT TGGTGTTAAG AGATCACTGC TTGTCCCTTT	1930	TATTTCGAG CI	1990	ACATGITCGI TAICGGAICA AIGIGITICI ICIAAGAICA ITIGIAAIGC AIAITIIGAA		aaaaa
1740	TAG A AAAGAGTCTG	1800	CTCTGAAACC	1860	TGGTGTTAAG	1920	GAGGTAGTCG	1980	rctaagatca	2040	*
1730	AAC Asn	1790	CTTCTTATGC	1850	TTGCCGGTAT	1910	TTCTTTTGAG AGCTTTAACC GAGGTAGTCG TATTTTCGAG	1970	ATGTGTTTCT :	2030	* AAACCACATC TCAGTATGCA AAATAAAAA AAAAAAAAAA
1720	T GCC CCC TGC 1 e Ala Pro Cys 1	1780	ACGTTAGTAG	1840	AAGATACTCC	1900	TTCTTTTGAG	1960	TATCGGATCA	2020	TCAGTATGCA
1710	ATA CTA TTT Ile Leu Phe	1770	GAACTCATGC	1830	GGGGATGCCA	1890	TATTTTCTTC	1950	ACATGTTCGT	2010	AAACCACATC

FIGURE 3 6 OF 6

Sequence Range: 1 to 1921

09	CTACACCTCC	120	GGCACCGGAG GCTCAATCGA	180	* CTGCACAGGA AGTTACCACA	GGA ATG Gly Met>		AAT AAT Asn Asn>	320	GAT TGT Asp Cys>	370	TCC ACA Ser Thr>
20	TA C	110	AG G	170	GA A		270	TAC	m	TTT Phe		TTC
	GCCATGACTA	П	SSSS	7	ACAG	220 GTG ACT Val Thr		TTC		ACC		TCT
						GTT Val		GTT Val	0	GAG Glu	360	AAG Lys
40	CCT	100	GCA	160	AAC	210 CGA GTA Arg Val	260	GAT Asp	310	ATA Ile		ATC Ile
	TTCGAGCCCT		SACCO		GCTCTGCAAC		N	CCT		GAG Glu		GAG Glu
		0	ACC	_		CGG Arg		GAC Asp		AGT	350	GGA Gly
30	CTG	90	יככפכ	150	TGTC	CAG Gln	0.0	CAT	300	ATA Ile	ю	GCT
	TCACCTCTTA CCTCGCCTGC		GCCCATCCGC ACCACCCGCA		GCTTCCCCTT CCGGGGAGGC AATGGCTGTG	00 AAA Lys	250	${\tt GGC} {\tt G1y}$		66C		ATT Ile
20	ra cc	80		140	SC AZ			CTA		AGT Ser	0	AGA Arg
.,	CTCT	w	ATCC2	14	SGAGG	AGT Ser		CCT Pro	290	ACG Thr	340	ACG
	rcacc		GCATCCTTGT TCGGATCCAG		2002	190 AAG CCA Lys Pro	240	ACT Thr	N	GGA Gly		CCT Pro
10		7.0	rgr 1	130	TT			GTG Val		GAT		TTT Phe
	CGGCACGAGG		rcctr	• •	וככככ	AAG Lys		GTG Val	0	CTT Leu	330	CAA Gln
)992		GCAS		GCT	AAG Lys	230	GGT Gly	280	CTG		GCT

FIGURE 4

420	ATG Met>	ATC Ile>		CTC Leu>		GAA Glu>	610	TTC Phe>	099	TGG Trp>	TTT Phe>
	TTC	GGA Gly		GTT Val	260	ATT Ile	61	CCT		GGA Gly	AAC Asn
	AAG Lys	460 T GGT n Gly	510	GGA Gly	٠,	GCC Ala		GTA Val		TTG	700 ACG AGT Thr Ser
410	GAC	AA As		TGC		GAT Asp		TGT Cys	650	GAC Asp	
•	ATG Met	ACA		AAA Lys	550	AAT Asn	600	TTT Phe	v	ATG Met	GCA Ala
	AGG	TTA	200	AGA Arg	5	TTC		CCC		GCA	TGT Cys
400	AAG Lys	450 GCA Ala		AAA Lys		GTA Val		AAT Asn	640	CTT Leu	690 GCT Ala
4	TCC	AAA Lys		GAT Asp		AAG Lys	290	ATG Met	9	ATG Met	ACT Thr
	CTC	AAG Lys	490	CTA Leu	540	ATG Met	٠.	AAG Lys		GCT Ala	TCT Ser
	AAG Lys	440 GGC Gly	4	GAG Glu		GGA Gly		AAG Lys		TCA	680 ATA Ile
390	CCG	GCC		AAA Lys		GGT Gly	580	\mathtt{TAT}	630	GGA Gly	6 TCG Ser
	GCC Ala	ACT		ATG Met	530	GCA ATG Ala Met	2	TCA		ATG Met	TAC
	GTG Val	430 ATG CTG Met Leu	480	GTG Val				ATT Ile		AAT Asn	670 CCC AAC Pro Asn
380	TGG			GAT Asp		TCA		AGG Arg	620	ACA Thr	670 CCC AAC Pro Asn
	GGT Gly	TAC		GAA Glu	520	GGC Gly	570	CTA	¥	ACC Thr	GGC Gly
	GAT Asp	CTT	470	ACC	5,	ATT Ile		GCC Ala		GCT Ala	ATG Met

FIGURE 4 2/6

	•											
	GTG Val>		GGA Gly>	850	ACT Thr>	006	GGG G1y>	AAA Lys>		TGC Cys>		ATT Ile>
	GAT Asp	800	ATG Met	8	CCT Pro		ATG Met	AAG Lys		ACT Thr	1040	GTG Val
750	GCA Ala	w	GGT		GAC		GTT Val	40 GCA Ala	066	TTC	10	GGA G1y
	GAA Glu		ATT Ile		GCC Ala	890	TTT Phe	9, CAT His		AGT Ser		GCT
	GGC Gly	190	CCT	840	AAT Asn	w	GGA Gly	GAG		GGA Gly	000	GGA Gly
740	AGA Arg	7.	ATA Ile		AGA Arg		GAT Asp	TTA	980	GGT Gly	1030	GAT Asp
•	ATC Ile		ATC Ile		CAG Gln	880	CGT Arg	930 GAG Glu	O1	CTA		CCT
	ATA Ile		GTA Val	830	TCA	88	AAT Asn	GAG Glu		TTT Phe		CAC His
730	CAC His	780	GCG Ala	~	TTG		AGT	CTA Leu	970	GAA Glu	1020	CCT
7.	AAC Asn		GAT Asp		GCT Ala		GAC Asp	920 CTA Leu	97	GCA Ala	[]	GAG Glu
	GCG Ala		TCA	820	CGA Arg	870	TGG Trp	CTA Leu		TAC		ACC Thr
	GCT Ala	770	GGC Gly	88	TGC		CCA Pro	GTG Val		ATT Ile	1010	CAC ATG His Met
720	AAT Asn	•	GGG Gly		GCA Ala		AGA Arg	LO GGA Gly	960	ACT Thr	10	CAC His
	CTG		TGC		GTT Val	860	TCA	910 GCT GG2 Ala Gl ₃		GCG Ala		TAC Tyr
	ATC Ile	760	CTT Leu	810	TTT Phe	w	GCT Ala	GGA Gly		$_{\rm GGT}$	0	GCC
710	TGT Cys	7(ATG		GGT Gly		AAA Lys	GAA Glu	950	AGA Arg	1000	GAT Asp

FIGURE 4

1090	GAA GAC Glu Asp>	1140	GAT ATC Asp Ile>	GAG TTA Glu Leu>		GCA GCC Ala Ala>	30	GGG TGG Gly Trp>	1330	GAT ACC Asp Thr>	1380	src GGr /al Gly>
	AGG		CCA GCT GGA Pro Ala Gly	an Sin	1230	GGA Gly	1280	ACT Thr		GTG (Val 1		AAG GTC (Lys Val
	TCT	1130	GCT	1180 AAC A ASn A8	(1	CTC		AGG Arg		GGC Gly	1370	ATT Ile
1080	GTC Val	ä		CAA Gln		CTT Leu	0	GCA ATA AGG Ala Ile Arg	1320	GAA Glu	13	AAC ATT A
•	GGA G1y		ACT Thr	GGC	1220	CAC His	1270	GCA Ala	£-4	GAT Asp		CTG Leu
	TCA	50	ACA TCC Thr Ser	1170 TGT TTC Cys Phe	ä	$_{\rm GLY}^{\rm GGT}$		CAG Gln		CCA Pro	0.0	GAG AGA Glu Arg
1070	CAG Gln	1120	ACA Thr	TGT		ATT Ile		GTT Val	1310	AAC Asn	1360	GAG
.	GCT		GCC	CAC His	10	TCA ATG Ser Met	1260	TCA GTA GTT Ser Val Val	13	GAA Glu		AAG AAG Lys Lys
	TTG		CAT His	1160 T ATC	1210	TCA				TTG Leu		AAG Lys
09	GCT Ala	1110	GCA CAT	១ដ		AAA Lys		GTT Val	00	AAT Asn	1350	CCT Pro
1060	AAG Lys	•	AAT Asn	GCT		ACC Thr	1250	GCA Ala	1300	ATT Ile	-	
	GAG Glu		ATA Ile	1150 TAC CAA TYr Gln	1200	TCT	12	GAA Glu		AAT Asn		GTG Val
	ATA Ile	1100	TAC Tyr	1150 TAC C TYF G	T	AAT		GTG Val		CCG	1340	CTC
1050	TGC	H	AAT Asn	GAG Glu		GTG Val	0.	GGT Gly	1290	CAT His	13	TTG
•	CTC		GTA Val	AAA Lys	1190	AAA Lys	1240	GGT	П	ATC Ile		AAA Lys

FIGURE 4

A CTC TTC e Leu Phe>	1480	ATCAAA	1540	CGTCTCTAGA CATGCCCATG	1600	GGCGACACAG	1660	TTTCTGAAAT	1720	GAAGAGAACA	1780	TTTATCGCCG	1840	ATCATTGGAG
1420 TCG TCC ATA Ser Ser Ile	1470	PACTCA ATCT	1530	CGTCTCTAGA	1590	GAGTACTCAT	1650	TCCCATTTTT	1710	AGTCAGTGAA	1770	TGCTCTCTAT	1830	TTTTCTCTTG ATCATTGGAG
1410 GGG CAC AAC TCG TCC ATA Gly His Asn Ser Ser Ile	1460	rgrgga attc	1520	тасстсстта	1580	ATGACGGATT	1640	TGTTAGAGCA CTATTCATTA	1700	CGTTTCATCG	1760	CCCTTTGTTT	1820	GACTGGTTTG
1400 GGG TTT GGT (Gly Phe Gly (1450	TAG GGCGTTT CATGTGGA ATTCTACTCA ATCTATCAAA ***>	1510	TGAGGACTCC AGCATGTTGG TAGCTCCTTA	1570	CGGGAGCTGT AGTCGGAACC ATGACGGATT GAGTACTCAT GGCGACACAG	1630		1690	CTCCCTCCTT ACGGTAGTTG TACTTTCGAG CGTTTCATCG AGTCAGTGAA GAAGAGAACA	1750	TAACCATTTG	1810	TTTTGTGGGT TAAAATTTGT AAAACTAGAC GACTGGTTTG
TCA TTC Ser Phe	1440	AAC Asn	1500		1560		1620	TTGCTAGAAT	1680	ACGGTAGTTG	1740	GGGCACGTAG	1800	TAAAATTTGT
1390 TTG TCT AAT Leu Ser Asn	1430	GCC CCT TAC Ala Pro Tyr	1490	GCTGAAGTTT	1550	AGTTTTGTGT	1610	GATATACTCC	1670	CTCCCTCCTT	1730	AAGCTAACTC	1790	TTTTGTGGGT

FIGURE 4 5/6

1900

1890

1880

1870

1860

1850

ATGTATGGCC ATATTTGCCT TTCATTGATG ATAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAA AAAAAAAA A 1920 1910

FIGURE 4 6/6

						•			
09	120	169	217	265	313	361	409	457	505
ည္ပ	ည္								
CCGTCTTCCC	CGCCATCCTC	CTC Leu	GCA Ala 30	AAG Lys	CTT Leu	CTG	AAG Lys	GGA G1y 110	TAC Tyr
CCGT	29007	CCG	CGA Arg	CCC Pro 45	66C 61y	CTC	TCC	ATG Met	CGC Arg 125
		TCC Ser	CAC His	GCT Ala	ATG Met 60	AAG Lys	GCC Ala	TCC	CTT Leu
CACG	TTGGCTTCTC	GCC Ala	CTC	TCC Ser	GGA Gly	GAC Asp 75	GAC Asp	AAC Asn	TGC Cys
ACC		CGG Arg 10	CCC	GTC Val	ACC Thr	TAC Tyr	TTC Phe 90	TTC Phe	GAT Asp
GGTCCGGAAT TCCCGGGTCG ACCCACGCGT	TTCTCTTCTC	CTT Leu	CGC Arg 25	ACC Thr	ATC Ile	TAC Tyr	CGC Arg	GGC G1Y 105	GAT Asp
SSSS	CTCT	TCC	GTC Val	CCC Pro 40	GTG Val	GCG Ala	GAC Asp	CGT Arg	CTT Leu 120
I TC		CCC	ACC Thr	TCC	GTC Val 55	GAT Asp	ATC Ile	ATT Ile	CGG Arg
3GAA'	ATCT	TCA	TCC	GCT Ala	CGC Arg	GTC Val 70	CCA Pro	CAG Gln	AGG Arg
GTCC	ACCGCATCTC	CAG Gln 5	TCA	GCC Ala	AAG Lys	GAC Asp	GGC Gly 85	66C 61y	GAC Asp
ეე დ		CTC	AAA Lys 20	CGG Arg	AAG Lys	TCC Ser	ATC Ile	GGC G1y 100	AAC Asn
CTGGTACGCC TGCAGGTACC	TTCTTCTTCC	TCC Ser	CCC	GTC Val 35	CCC Pro	66C G1y	$\frac{\text{GGG}}{\text{Gl} Y}$	TTC Phe	AAA Lys 115
TGCA	$ ext{rTCT}$	CAT His	CGC Arg	AAC Asn	GAC ASD 50	TTC Phe	AGC Ser	AGG Arg	66C G1y
ညည		ATG Met 1	TTC	CCC Pro	ACC Thr	GTT Val 65	GAG Glu	ACC Thr	GAC Asp
GTAC	ACTCCGATCG	ວວອວວອວ	CCC	ATT Ile	GAG Glu	TCC Ser	GGC G1y 80	CCC	ATT Ile
CŢĠ	ACT	CGC	GAC ASP 15	TCA	CGC Arg	GTC Val	TCA	TTC Phe 95	TAC Tyr

SUBSTITUTE SHEET (RULE 26)

553	601	649		745	793	841	888
GCC Ala	666 G1y	CTT Leu	GCC Ala 190	ATG Met	TGC Cys	ATG Met	GGC Gly
GGT G1y	GTT Val	TCT Ser	TAT Tyr	CTG Leu 205	TAC Tyr	CTT Leu	GGA Gly
CTC Leu 140	CTG Leu	CAA Gln	CCC	GGT Gly	AAC Asn 220	GAT Asp	TTG Leu
GAT Asp	GTG Val 155	GTT Val	ATC Ile	CTC	TCC	GCT Ala 235	GGG G1y
GCC Ala	GGA Gly	GGG G1y 170	TTC Phe	GAA Glu	ACT Thr	GAG Glu	ATT I1e 250
gac Asp	GCC Ala	GAC Asp	TTC Phe 185	ATT Ile	GCC Ala	$_{\rm G1Y}^{\rm GGT}$	CCA Pro
GAG Glu	AGA Arg	TCT Ser	CCT Pro	GCT Ala 200	TGT Cys	CGT Arg	ATT Ile
CTT Leu 135	GAG Glu	TTC Phe	ACC Thr	CTC	GCA Ala 215	CGC Arg	ATC Ile
TCT Ser	AAG Lys 150	GTC Val	ATC Ile	CTG Leu	ACT Thr	ATC Ile 230	GCA Ala
AAG Lys	GAC Asp	ACT Thr 165	AAA Lys	GCC Ala	TCC	CAT His	GCC Ala 245
AAG Lys	ATC Ile	CTG Leu	CGG Arg 180	TCT Ser	ATT Ile	AAT Asn	GAG Glu
666 G1y	AAG Lys	GGT Gly	CAC His	GGG Gly 195	TCA Ser	GCT Ala	ACT Thr
GCC Ala 130	TCC	GGT Gly	GGT Gly	ATG Met	TAT Tyr 210	GCT Ala	66C 61y
GTC Val	CTC Leu 145	ATG Met	AAG Lys	AAC Asn	AAC Asn	GCT Ala 225	GGA Gly
ATT Ile	CGC Arg	GGA G1y 160	GAG Glu	ACA Thr	CCA	CAT His	GCT Ala 240
TGC	GAC Asp	ACA Thr	ATC Ile 175	ATT Ile	GGC Gly	TTC Phe	ATT Ile

FIGURE 5

937	985	1033	1081	1129	1176	1224	1272
ACT Thr 270	GAA Glu	CGA Arg	GAT Asp	TCT Ser	GTC Val 350	GCC Ala	AAA Lys
CAG Gln	GGT G1Y 285	AAA Lys	TGT Cys	TCC	GAG Glu	CTC Leu 365	ATC Ile
CCT	ATG Met	ATG Met 300	AAC Asn	GTC Val	GAA Glu	GAT Asp	GAT ASP 380
GAC Asp	GTG	GCA Ala	ATC Ile 315	GGT G1y	CCT Pro	GGG G1y	AAG Lys
GAT Asp	TTT Phe	CAT His	GCA Ala	CTC Leu 330	TCA Ser	GCT Ala	ACA Thr
AAC Asn 265	GGT Gly	GAA Glu	GGT Gly	GGT Gly	GTC Val 345	CTA Leu	AAC Asn
AGG Arg	GAT Asp 280	TTG Leu	GGA Gly	GAT Asp	GGC Gly	ACT Thr 360	AAG Lys
CAA Gln	CGT Arg	AGC Ser 295	TTG Leu	GCT Ala	GCT Ala	TCT Ser	TTC Phe 375
TCT Ser	GAC Asp	GAG Glu	$\begin{array}{c} \mathtt{TAT} \\ \mathtt{TYr} \\ 310 \end{array}$	AGG Arg	GAT Asp	ACT Thr	GTT Val
CTG Leu	AAA Lys	CTG	GAG Glu	CCA Pro 325	GAA Glu	GCG Ala	AAG Lys
GCT Ala 260	GAT Asp	GTG Val	GCA Ala	GAC Asp	CTT Leu 340	CAT His	AAG Lys
AGG Arg	TGG Trp 275	TTG Leu	ATT Ile	ACT Thr	AGC Ser	GCT Ala 355	ATC Ile
TGC	CCC	GTG Val 290	ATT Ile	ATG Met	AGT Ser	AAT Asn	GCC Ala 370
GCT Ala	AGG Arg	GGA Gly	CCT Pro 305	CAC His	GAG Glu	ATA Ile	AAT Asn
GTG Val	TCT Ser	GCT	GCA Ala	TAT Tyr 320	ATT Ile	TAC Tyr	ATA Ile
ттт Рће 255	GCC Ala	GGT Gly	GGA Gly	GCT	TGC Cys 335	AAT Asn	GAG Glu

FIGURE 5

C	m	10		01	•	•		
1320	1368	1416	1464	1512	1569	1629	1689	1712
CAC TGT CTT GGA GCC TCT GGA His Cys Leu Gly Ala Ser Gly 395	GGA ATA AAC ACC GGC TGG CTT Gly Ile Asn Thr Gly Trp Leu 410	GAG CCA TCC GTG GAG TTC GAC Glu Pro Ser Val Glu Phe Asp 425	GAA GTT AAT GTT GCG ATC TCG Glu Val Asn Val Ala Ile Ser 440	TCA GTC GTG GCT TTC TCG GCT Ser Val Val Ala Phe Ser Ala 460	TGA TTACC CATTTCACAA GGCACTTGTC ATTGAGAGTA CGGTTGTTCG	TCAAACCCAT TTAGGATACT GTTCTATGTA AAAAAAGTA AGGATTATCA CTTTCCCTTC	ATATTTATTT TAAAAAAAA AAAAAAGGGC	
GGA Gly	AAG Lys	CCT	CAC His	AAC Asn 455	A GGCAC	'A AAAAA	т ататт	
G ATC st Ile 390	TATT r ile 5	C AAT e Asn	G CAA n Gln	C CAC Y His	TCACA	TATGT	GAAAT	
AAG TCA ATG Lys Ser Met	ATA GCG ACT Ile Ala Thr 405	AAT CAA TTC Asn Gln Phe 420	AAG AAG CAG Lys Lys Gln 435	TTC GGA GGC Phe Gly Gly	TACC CATT	PACT GTTC	TCCAGTTTGA GAATGAAATT	GGCCGCTCTA GAGGATCCAA GCT
ACT A Thr L	GCT A Ala I	ATT A Ile A	AAC A Asn L	GGA T Gly P 450	rga T	ragga	CAGT	AGGAT
GCA Ala 385	GAA Glu	AGC Ser	GCC 1 Ala 1	TTT (Phe (CCA 7 Pro 465	AT T		TA G2
AAT Asn	CTT Leu 400	CCC	GTT Val	TCA	AAG Lys	ACCC	TAATCCTGTC	GCTC
ATT Ile	GGT Gly	CAT His 415	ACT Thr	AAT Asn	TTC	TCA	TAAT	ງວອອ

FIGURE 5

Sequence Range: 1 to 1802

			. ΩH									
	0 9	GGTCGACCCA CGCGTCCGGG CTTTCCGACC ACATTTCATT TCTTGCCTCG TTATCTCCGC	CCT TCC Pro Ser		TCC	210	CGT		CGG		GTC Val	CTA
		гтат	110 TCC CCT Ser Pro	160	TCC		ATC Ile		AAG Lys		GAC Asp	AGC Ser
	20	icg :	CAC 7		CCC		GTC Val		AAG Lys	300	TCC	350 ATC AGC Ile Ser
		က်ငှင်ငျ	CTC C		TCC	0	CCC Pro	250	CCC Pro	m	GGC Gly	GGC
		TCTI	100 TCC C Ser L	150	AAT Asn	200	CTC		GAC Asp		TTC Phe	AGC
	40	ATT	1 CAA T Gln S	∺	CTC		AGC		TCC	0	GTC	340 GAG Glu
		TTTC	ATG C Met G		CGC		GCC	240	GAG Glu	290	TCC (Ser	GGC (
		ACA	Ö	0	TTC	190	CGC	8	CGC		GTC	TCC
	30	GACC	ລອລລອລລອລລ 06	140	CCC		CGT		AAG		CTC	330 CTC
		TTCC	ອວວອ		GAG Glu		CTC	0	CCC	280	GGC Gly	CTG CTG
	20	ig CT			CTC	180	CCC Pro	230	GCC		ATG	AAG
	(7)	ອອວວຸ	8 GTTC	130	CCT Pro	H	CGC		TCC		GGC G1y	ည္က ထို
		GCGT	CGTC		TCC		CTC		GCC	270	ACC	320 TAC G2 TYF A8
	10	CAC	70 CGCTCCTCCG CCGTCGTTCG		CCC	0	GCT	220	ACC	7	ATC Ile	TAC ' Tyr'
		GACC	CCTC	120	CGC Arg	170	GCC		GCC		GTC	GCC A
ı		GGTC	CGCT	7	CTC		GCC		GCT	260	GTC Val	310 GAC ASP
										(2)		

FIGURE 6 1/5

	CAG Gln	450	CGG Arg		GCT Ala		AAG Lys	GTC Val		ATC Ile	069	CTG	
400	$_{\rm GGC}^{\rm GGC}$	4	GAC Asp		AAG Lys		GAT Asp	590 A ACT u Thr	640	AAG Lys	9	GCG	
	GCC Ala		AAC Asn		AAG Lys	540	ATT	59 CTA Leu		CGG Arg		TCT	
	TTC	440	AAG Lys	490	GGC Gly	4	AAG Lys	GGC G1y		CAC His	089	$_{\rm GGG}$	
390	AGG Arg	44	GGC Gly		GCC		TCC	GGT Gly	630	$_{\rm GGT}$	89	ATG Met	
• •	ACC Thr-		GAC Asp		GTC Val	530	CTC	580 ATG Met	W.	AAA Lys		AAC Asn	
	CCC		ATC Ile	480	ATT Ile	5	TCC	GGT Gly		GAG Glu		ACA Thr	ဖ
380	TTC	430	TAC	7	TGC		CAA Gln	ACC Thr	620	ATC Ile	670	ATT Ile	FIGURE 2/5
m	AAA Lys		GGC		${ t TAC}$		GGC G1y	570 GGA Gly	65	CTC		GCC	FIG 2
	TCC		ACG Thr	470	CGC	520	GCC Ala	GTT Val		AAT Asn		TAT Tyr	
	GCT	420	GCG Ala	4,	CTC		CTC	CTA		CAG Gln	* 099	CCA Pro	
370	GAC	•	AAC Asn		TGC		GAT Asp	50 GTG Val	610	GTT Val	v	ATT Ile	
	TTC		TTC Phe		GAT Asp	510	GCC	560 GGA GT Gly Va		GGG		TTC Phe	
	CGC Arg	410	GGC G1y	460	GAC	-,	GAC	GCC		GAC	20	TTT Phe	
360	GAC	4	CGT Arg		CTC		GAA Glu	AGG Arg	* 009	TCT	9	CCG	
•	ATC Ile		ATC Ile		CGG Arg	200	CTC	550 GAG Glu	v	TTC Phe		TCC	

SUBSTITUTE SHEET (RULE 26)

	ACT		ATC	GCG		TCT Ser	930	GAC		GAG Glu		TAT Tyr
	TCA		CAT His	830 G GCT u Ala	880	TTA Leu	סח	AAG Lys		ATG Met		GAA Glu
	TCG ATT Ser Ile	780	AAT Asn	GP G1		GCT		GAT Asp		GTT Val	1020	ATT GCA Ile Ala
730		•	GCC	ACT		AGG Arg	920	CCG TGG Pro Trp	970		10	ATT Ile
	\mathtt{TAT}		GCC	GGA Gly	870	TGC	92			GTA Val		ATT Ile
	AAC Asn	170	GCT Ala	820 GGA G1y	w	GCC Ala		AGG Arg		GGA Gly	01	CCG
720	CCA Pro	1.	TAT Tyr	GCT Ala		GTT Val		TCA	960	GCT Ala	1010	GCG Ala
•	GGC Gly		$\mathbf{r}\mathbf{r}\mathbf{r}$	ATT Ile	860	TTC	910	GCC Ala	0,	$_{\rm GGG}$		GGA Gly
	ATG Met		TGC	810 ATG Met	æ	GGA Gly		ACT Thr		GAA Glu		CGG Arg
710	CTG	760	TAC	CTG Leu		GGA Gly		CAG Gln	950	GGT Gly	1000	AAA Lys
7	$_{\rm GIY}^{\rm GGT}$		AAC Asn	GAC		TTA Leu	*	CCT Pro	9,	ATG Met	•	ATG Met
	TTG Leu		TCC	800 GAG GCT Glu Ala	850	GGT Gly	01	GAT Asp		GTG Val		GCA Ala
	GAT Asp	750	ACT Thr			ATT Ile		GAT Asp		TTT Phe	066	CAT His
700	ATC Ile	•	GCT Ala	GGT Gly		CCA Pro	890	AAT Asn	940	GGC Gly		GAG Glu
	GCC		TGT	CGA Arg	840	ATT Ile	8	AGG Arg		GAT Asp		TTG
	CTT Leu	740	GCA Ala	790 CGC Arg	~	GTC Val		CAA Gln		CGT Arg	086	AGC

FIGURE 6 3/5

						·					
AGG Arg		GAT Asp	1170	ACT		GTT Val		ATC Ile	ATT Ile		AAT
1070 GAT CCA ASP Pro	1120	GAA Glu	11	GCG		AAA Lys				1360	GGA ATA ACC ACC GGC TGG CTT CAT CCC AGC ATT AAT CAA TTT AAT Gly Ile Thr Thr Gly Trp Leu His Pro Ser Ile Asn Gln Phe Asn
107 GAT ASP		CTC		CAT His		ATT AAG	1260	AAG TCA ATG Lys Ser Met	1310 GCA ACC Ala Thr	17	CAA
ATG ACT Met Thr		AGT	20	GCT	1210	ATT Ile	H	AAG Lys	ATC		AAT Asn
ATG Met	1110	GAG AGC AGT Glu Ser Ser	1160	ATA AAT GCT Ile Asn Ala	,,	GCC		GCA ACT Ala Thr	GCC	1350	ATT Ile
1060 TAT CAT 1	H	GAG Glu		ATA Ile		AAT Asn	0.9	AAT GCA Asn Ala	1300 CTT GAA GCC Leu Glu Ala	Ħ	AGC
TAT Tyr		TCG TGC ATT Ser Cys Ile		AAT TAC A	1200	GAG ATA Glu Ile	1250	AAT Asn			CCC
GCT Ala	00	TGC	1150	AAT Asn	Ä			ATC AAA ATC Ile Lys Ile	1290 GCA TCA GGA GGT Ala Ser Gly Gly	40	CAT
1050 TGT GAT Cys Asp	1100	TCG		GTC Val		GCC Ala		AAA Lys	1290 A GGA E G1y	1340	CTT Leu
10 TGT Cys		TCC		CCT GAA GAG Pro Glu Glu	06	CTT Leu	1240	ATC Ile	12 TCA Ser		TGG
AAC Asn		GTC Val	1140	GAA Glu	1190	GAT Asp	-	GAA Glu	GCA Ala		GGC Gly
40 GTC Val	1090	GGT	Ħ			$^{\rm GGG}_{\rm G1Y}$		AAG Lys	1280 CTT GGA Leu Gly	1330	ACC Thr
1040 GCA GTC Ala Val	``	CTT		TCA		GCT Ala	1230	ACC Thr	128 CTT Leu	П	ACC
GGT		GGG Gly	30	GTC Val	1180	CTT	12	AAC Asn	TGT Cys		ATA Ile
GGA G1y	1080	GAT Asp	1130	$^{\rm GGG}_{\rm G1y}$	•	ACT Thr		AAG Lys	CAC	1320	GGA Gly
1030 TTG Leu	1(GCT Ala		GCC Ala		TCT	1220	TTC Phe	1270 GGA Gly	13	AAG Lys
					٠						

FIGURE 6

1410	G CAG CAA s Gln Gln		A GGG CAC Y Gly His	1510	ATTCT ACTTGGTTCA	1570	TAAATGCCTT	1630	AGTTCCTCGA AGCCATTTAG	1690	CTCTGATTTA	1750	GTTATTTAAG		CT
1400	AAC AAA AAG Asn Lys Lys	1450	GGA TTT GGA Gly Phe Gly	1500	TGA * * *	1560	AGCAATTTTT	1620		1680	TAAATCTAGT	1740	TGTTGTCAAT	1800	ATCCAGCTTA
1390	ACT GTT GCC Thr Val Ala	1440	AAT TCT TTT Asn Ser Phe	1490	TTC AAG CCA Phe Lys Pro	1550	CAACTTGCAG	1610	GTCCTTTGAT	1670	ATTCCCATTT	1730	GTCATGTTTG	1790	GCTCTAGAGG
	TTC AAC Phe Asn	1430	GCT ATC TCG A Ala Ile Ser A	1480	TTC TCA GCT I	1540	GATAGGGCTT	1600	GAATAGGTCG	1660	TACTGTAATA ATCGAAGATG ATTCCCATTT TAAATCTAGT CTCTGATTTA	1720		1780	ATAAAGCAAA AAAAAAAA AAGGGCGGCC GCTCTAGAGG ATCCAGCTTA CT
1380	A TCG GTG GAC O		AAC GTC Asn Val	1470	GTG GCA Val Ala	1530	AAATGCACAC CAGTTGCTGA GATAGGGCTT	1590	CGTAATACCG	1650		1710	TGTATTAGAA AGACCAATGA AAGATTTTGT	1770	AAAAAAAAA
1370	CCC GAG CCA Pro Glu Pro	1420	CAT GAA GTG His Glu Val	1460	AAC TCG GTT Asn Ser Val	1520	AAATGCACAC	1580	GTCGGAAGAG	1640	GATGATGTTT	1700	TGTATTAGAA	1760	ATAAAGCAAA

FIGURE 6 5/5

Sequence Range: 1 to 2369

	•											
	CATAAAAGAG	120	TTACCATACC	180	ATCCTTTTCT	230 TCT TCC Ser Ser>	280	Met Ser>	330	TCT CCT		CCA CTA Pro Leu>
50	CACGCGTCCG	110	CTTCGATTCA	170	CCCAAAGGGT	2 CCT GCC GCC Pro Ala Ala	270	GCC GCC TGC Ala Ala Cys	320	TCC ATC TCC Ser Ile Ser	370	CAA TGC GCC Gln Cys Ala
40	CGGGTCGACC	100	CTCCTTTCAT	160	GGTCTTTCAT	220 CCTCCA ATG CCT Met Pro	0.	TGG CTC CTT Trp Leu Leu	310	CTT CCG CCT Leu Pro Pro	360	ATT CTC TCC Ile Leu Ser
30	CCGGAATTCC	06	TGCGGCCACC	150	GCCTTTTCCG	210 CAGTCAGTTC	260	TGT ACG Cys Thr	0 *	CCT Pro	350	CGC CGG Arg Arg
20	GTACGCCTGC AGGTACCGGT CCGGAATTCC CGGGTCGACC CACGCGTCCG	80	AGAGAGAGG ATCCATCGAA TGCGGCCACC CTCCTTTCAT CTTCGATTCA	140	ATTCCGCTGA TCCATTTTCC GCCTTTTCCG GGTCTTTCAT CCCAAAGGGT	200 CTCAAAGGGT	250	TCC CCT CTC	300	CAC CCC TCC GAC His Pro Ser Asp	340	CTC TCC Leu Ser
10	GTACGCCTGC	70	AGAGAGAGGG	130	ATTCCGCTGA	190 ATCCTATCTT	240	CTG CTC GCT Leu Leu Ala	290	ACC TCC TTC Thr Ser Phe	æ	CGC CGA CGC Arg Arg Arg

FIGURE 7

I..

			•								
	GTC Val>	TCC Ser>	520	CGG Arg>	570	CTG Leu>		CAG Gln>		CAT His>	ATA Ile>
	CTC	470 ACA Thr	52	CAC		GCT	-	AAA Lys		GGC Gly	710 GGC Gly
420	ACC	TAT Tyr		AGG Arg		GTG Val	610	ATC Ile	099	CTA	AGT
	CAT His	TAC		CGC Arg	260	GCC	61	AGT		CCT	ACG Thr
	$ ext{TTC}$	50 GAC Asp	510	ACC Thr	۵,	ATG Met		CCA		ACT	700 : GAT GGA AC : Asp Gly Th
410	AGT	460 CAT GAC His Asp		ACC		GCA Ala		AAG Lys	650	GTG Val	70 GAT ASP
•	TCC Ser	TGC Cys		CGC Arg	550	GAG Glu	009	AAG Lys	•	GTC Va]	CTJ
	GGA Gly	CCC	200	ATT Ile	55	AGG Arg		AAG Lys		$_{\rm GGT}^{\rm GGT}$	CTG Leu
400	CGC	450 GAG Glu	•,	CCC		TCC		ACA Thr	640	ATG Met	690 AAT Asn
4	CTC	TTC		AGA Arg		CCT Pro	290	ACC Thr	9	GGA Gly	AAT Asn
	GCC	TGC	490	TCC	540	TCC	u,	GTT Val		ACT Thr	TAC
	TCC	440 CTC GCC Leu Ala	4	GGA Gly		GCT Ala		GAA Glu		GTG Val	680 TTC Phe
390	TCC	CTC		TTC		CGA Arg	580	CAG Gln	630	GTT Val	GTT Val
	GCT Ala	TAC		TTG	530	AAT Asn	28	GAA Glu		GTA Val	GAT Asp
	TCT Ser	430 ACC TCT Thr Ser	480	TCC Ser	u,	CIC		CCT		CGA Arg	O CCT Pro
380	CCT	43 ACC Thr		GCA		AGG Arg		CAA Gln	620	CGG Arg	670 GAC CO ASP PI

FIGURE 7 2/7

160	GCT Ala>	810	CTC Leu>		AAG Lys>		CTA Leu>	ATG Met>	00	AAG Lys>	1050	GCT Ala>
76	ATT Ile		AAG Lys		GGC Gly		GAG Glu	950 GGA G1y	1000	AAG Lys	Н	TCA
	AGA Arg		CCG Pro	850	GCT Ala	900	AAA Lys	GGT GIY		TAT Tyr		GGA Gly
	ACG	800	GCC Ala	∞,	ACC Thr		ATG Met	ATG		TCA	1040	ATG Met
750	CCT Pro	~	GTG Val		CTG		GTG Val	940 TCA GCA Ser Ala	066	ATT Ile	1(AAT Asn
	TTT Phe		TGG		ATG Met	890	GAT Asp	94 TCA Ser		AGG Arg		ACA Thr
	CAA Gln	790	$_{\rm G1y}^{\rm GGT}$	840	TAC		GAA Glu	GGC Gly		CTA	30	ACC Thr
740	GCT Ala	7	GAT Asp		CTA Leu		ACC	ATT Ile	980	GCC Ala	1030	GCT
	TGT		ACA Thr		ATG Met	880	ATC Ile	930 CTC Leu	Ŭ.	GAA Glu		TTC
	GAT Asp		TCC	830	TTC	æ	GGA Gly	GTT Val		ATT Ile		CCT
730	TTT Phe	780	TTC		AAG Lys		$_{\rm G1Y}^{\rm GGT}$	GGA Gly	970	GCC Ala	1020	GTA Val
7	ACC		TCT		GAC		GAT Asp	920 TGC Cys	Ġ	GAT Asp	• •	TGT
	GAG Glu		AAG Lys	820	ATG Met	870	ACA Thr	AAA Lys		AAT Asn		$ extsf{TTT}$
	ATA Ile	170	ATC Ile	æ	AGG		TTA Leu	AGA Arg		TTC	1010	CCC
720	GAG Glu	•	GAG Glu		AAG Lys		GCA Ala	10 AAA Lys	* 096	GTA Val	1(AAT Asn
	AGC		GGA Gly		TCT	860	AAA Lys	910 GAT AA ASP LY		AAG Lys		ATG Met

FIGURE 7 3/7

TCT Ser>		CAT His>	GCG Ala>	0 #	TTG Leu>	1290	AGT Ser>		CTA Leu>		GAA Glu>
		AAC Asn	.90 GAT Asp	124	GCT Ala	.,			CTA Leu		GCA Ala
TCG	.140	GCG Ala	11 TCA Ser		CGA Arg		TGG Trp	0 0	CTA	1380	TAC Tyr
\mathtt{TAC}	П	GCT Ala	GGC Gly		TGC Cys	083		133		•	ATT Ile
AAC Asn		AAT Asn	6 6 6 61	.230	GCA Ala	12	AGA Arg				ACT
CCC Pro	.30	ATG Met	118 TGC Cys	П	GTT Val				GCT Ala	370	GCG Ala
GGG	11	ATA Ile	CTT Leu		TTT Phe	0,	GCT Ala	.320 *	$_{\rm GGA}$	13	GGT
ATG Met		TGT Cys	ATG Met	220	$_{\rm GGT}^{\rm GGT}$	127	AAA Lys	•			AGA Arg
TGG Trp	0;	TTT Phe	.170 GTG Val	12			ACT Thr		666	20	AAA Lys
$_{\rm GGA}$	112		1 GAT ASP		ATG Met		CCT Pro	310	ATG Met	136	AAG Lys
TTG		AGT Ser	GCA Ala	01	GGT Gly	1260	GAC	ਜ	GTT Val		GCA Ala
GAC Asp		ACG Thr	.60 GAA Glu	121	ATT Ile	-					CAT His
ATG Met	110	GCA Ala			CCT Pro		AAT Asn	0.0	GGA Gly	1350	GAG Glu
GCA Ala	-	TGT Cys	AGA Arg		ATA Ile	250	AGA Arg	13(GAT Asp	•	TTG
CTT Leu		GCT Ala	00 ATC Ile	.200	ATC Ile	12	CAG Gln		CGT Arg		GAG Glu
ATG Met	1100	ACT Thr	115 ATA Ile	L1	GTA Val		TCC		AAT Asn	1340	GAG Glu
	CTT GCA ATG GAC TTG GGA TGG ATG GGG CCC AAC TAC TCG ATA Leu Ala Met Asp Leu Gly Trp Met Gly Pro Asn Tyr Ser Ile	GCTT GCA ATG GAC TTG GGA TGG ATG GGG CCC AAC TAC TCG ATA E Leu Ala Met Asp Leu Gly Trp Met Gly Pro Asn Tyr Ser Ile 1110 1120 1130 1140	GCTT GCA ATG GAC TTG GGA TGG ATG GGG CCC AAC TAC TCG ATA Leu Ala Met Asp Leu Gly Trp Met Gly Pro Asn Tyr Ser Ile TGCT TGT GCA ACG AGT AAC TTT TGT ATA ATG AAT GCT GCG AAC Ala Thr Ser Asn Phe Cys Ile Met Asn Ala Ala Asn	GCTT GCA ATG GAC TTG GGA TGG ATG GGG CCC AAC TAC TCG ATA Leu Ala Met Asp Leu Gly Trp Met Gly Pro Asn Tyr Ser Ile 1110 1120 1130 1140 1150 1160 A ATC AGA GGA CCC AAC TAC TCG ATA 1130 1130 1140 1150 1160 A ATC AGA GCA GAT GTG ATG ATG ATG ATG ATG ACT GCG GGA GCT TCA GAT ACT ACT ACT ACT ACT ACT ACT ACT ACT A	CTT GCA ATG GAC TTG GGA TTG ATG ATG GTG CCC AAC TTC TTG ATA	Then Ala Met Asp Leu Gly Try Met Gly Pro Asn Tyr Ser Ile 1110 1120 A ATC AGA GGC GAA GGA TGG ATG GGG CCC AAC TYG SER Ile A ATC AGA GGC GAA GCA ASD ASD THAN ATG ATA ATG ASD	Then Ala Met Asp Leu Gly Trp Met Gly Pro Asn Tyr Ser Ile 1110 1120 1220	CTT GCA ATG GAC TTG GGA TTG GCA GCA	CCT GCA ATG GAC TTG GGA TGG ATG GGG CCC AAC TAC TCG ATA	110	CTT CCA ATG CAC TTG CGA TTG CGA TTG CTG ATG CTG CTG ATG CTG CTG

FIGURE / 4/7

	CCT Pro>	0	TTG GCT Leu Ala>	1530	GCC Ala>		CAC His>		ATG Met>	GTA Val>	0.5	GAA Glu>
1430	GAG Glu	1480		7	CAT His		ATC Ile		ACC AAA TCA ATG Thr Lys Ser Met	1670 GTT TCA Val Ser	1720	TTG
14	ACC Thr		GCT Ala		GCC Ala	07	GCT CTT Ala Leu	1620	AAA Lys	1(GTT Val		AAT Asn
	ATG Met		AAG Lys	1520	AAT Asn	1570		••		GCA Ala		ATT Ile
0.	TAC CAC Tyr His 1	1470	GAG Glu	1.5	ATA Ile		CAA Gln		AAT TCA Asn Ser	1660 GTG GAA Val Glu	1710	CCG AAT ATT Pro Asn Ile
142	TAC	,-1	ATA Ile		TAC		TAC	1610	AAT Asn		•	
	gcc Ala		TGC	07	AAT Asn	1560	GAG Glu	1	AAA GTT Lys Val	GGT Gly		CAT
	GAT Asp	1460	CTC Leu	1510	GTA Val		AAA Lys			GGT G1y	1700	ATC Ile
1410	ACT TGC C	14	ATT Ile		GAC Asp		ATC Ile	00	AGA GAG TTA Arg Glu Leu	1650 GCA GCC Ala Ala	1.	TGG ATC (Trp Ile F
•	ACT Thr		GTG Val		GAA Glu	1550	GAT	1600	GAG	1 GCA Ala		GCA ATA AGG ACT GGG Ala Ile Arg Thr Gly
	rrc Phe	0.9	GGA Gly	1500	AGG Arg	75	GGA			1640 CTT CTC GGA Leu Leu Gly	90	ACT
001	AGT Ser	1450	GCT Ala	\	TCT		GCT		CAA AAC Gln Asn	1640 T CTC	1690	AGG
17	GGG AGT G		GGA Gly		GTC Val	0	CCG	1590				ATA Ile
	GGT Gly		GAT Asp	1490	GGA Gly	1540	ACT Thr	` '	GGC Gly	CAC		GCA
0	CTA Leu	1440	CCT Pro	17	TCA		TCC		TTC Phe	1630 ATT GGT Ile Gly	1680	CAG Gln
1390	TTT Phe	П	CAC His		CAG Gln		ACA	1580	TGT Cys	1630 ATT GC Ile Gl	• •	GTT Val

FIGURE 7 5/7

FIGURE 7 6/7

1770	AAG AAG Lys Lys>		TTT GGT Phe Gly>	1870	GTTTCCGTGT	1930	GTTGGTAGCT	1990	GAACCATGAC	2050	GTAGAGCAAT	2110	GTTGTACTTT	2170	CACGTAGTAA
1760	GTG GGT CCT Val Gly Pro	1810	TCA TTT GGG Ser Phe Gly	1860	ATC TAG GAC Ile ***>	1920	ACTCCAGCAT	1980	TGTGTCCGGA GCTTTAGTCG	2040	AGAATTGTTG	2100	CCTTGCAATA	2160	TTAACTCGGG
1750	AAA TTG CTC Lys Leu Leu	1800	TTG TCT AAT Leu Ser Asn	1850	GCC CCT TAC Ala Pro Tyr	1910	AGTTTTGAGG	1970	твтвтссвва	2030	ACTCCTTGCT	2090	AAATCTCCCT	2150	AACAAAGCTG
0 *	GAT ACA Asp Thr	1790	GTC GGT Val Gly	1840	CTC TTC Leu Phe	1900	TCAAAGCTGA	1960	CCATGAGTTT	2020	САСТТGАТАТ	2080	TTTTTCTCTG	2140	TGAAGAAGAG
1740	GAA GGC Glu Gly	1780	AAC GTT Asn Val	1830	TCG TCC ATA Ser Ser Ile	1890	ACTCAACATA	1950	CTAGACATGC	2010	CTCATGGCGA	2070	TCATATTTT	2130	ATCGAGTCAG TGAAGAAGAG
1730	AAC CCA GAT Asn Pro Asp	17	GAG AGA CTG Glu Arg Leu	820	GGG CAC AAC Gly His Asn	1880	GIGGAATICT ACTCAACATA TCAAAGCTGA AGTITIGAGG	1940	CCTTACGTCT	2000	GGATTGAGTA	2060	APTCATTATC TCATATTTTT TTTTTCTCTG	2120	CGAGCTTTTC

SUBSTITUTE SHEET (RULE 26)

ааааааааа	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	TGGAAATAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA	TGGAAATAAA
2350	2340	2330	2320	2310	2300
ATGTATGTTT	TAATTGGGGR	TTCTCATTGA	TTGGTTTGTT	AACTAGAAGA CTGGTTTAGA TTGGTTTGTT TTCTCATTGA TAATTGGGGR ATGTATGTTT	AACTAGAAGA
2290	2280	2270	2260	2250	2240
AAATTTGTAA	TGTGGTTTTA	ATCACCGTTT	TCTCTATTTC	CCATTIGCCC TITGITIGC ICTCTATITC ATCACCGITT IGIGGITTIA AAATTIGTAA	CCATTTGCCC
2230	2220	2210	2200	2190	2180

2360 AGGCCGCCG CTCTAGAGG FIGURE 7

Sequence Range: 1 to 2374

0*	CACACCAAAC	120	ACAGACAGAC	180	TCTTCGATTC	240	TCCCAAAGGG	300 *	CCTGCCGCCT	360	TCTACCTCCT	420	CTCTCCCGCC	480	CGCGGATCCA
50	CGGAATTCCC GGGTCGACCC ACGCGTCCGC GACGCCAACC CACACCAAAC	110	AGACAGACAG	170	CCTCCTTTCA	230	GGGTCTTTCA	290	TATCCTATCT TCTCAAAGG TCAGTCAGTT CCCTCCAATG CCTGCCGCCT	350	CGCCTGCATG	410	TCGCCGACGC	470	CTCCCAATGC GCCCCACTAC CTTCTGCTTC CTCCGCCCTC CGCGGATCCA
40	ACGCGTCCGC	100	CATTGGCAGC	160	GATCCATCGA ATGCGGCCAC	220	CGCCTTTTCC	280	TCAGTCAGTT	340	CTCTGTACGT GGCTCCTTGC	400	TCTCCTCTCC	460	CTTCTGCTTC
30	GGGTCGACCC	06	AGACGGACGC	150	GATCCATCGA	210	ATCCATTTTC	270	TCTCAAAGGG	330		390	CCGCCTTCCA	450	GCCCCACTAC
20	CGGAATTCCC	80	TTCCTCAGCT TCTCTTCTCA AGACGGACGC CATTGGCAGC AGACAGACAG ACAGACAGAC	140	CCATAAAAGA GAGAGAGAGG	200	CATTCCGCTG	260	TATCCTATCT	320	CGCTTCCCCT	380	CGACCCTCTT	440	
10	-A-CNTGGTC	70	TTCCTCAGCT	130	CCATAAAAGA	190	ATTACCATAC	250	TATCCTTTTC	310	CTTCCCTGCT	370	TCCACCCCTC	430	GCCGGATTCT

FIGURE 8 1/5

540	GACTACTATA	*	CGGAGGCTCA	*	ACAGGAAGTT	720	TTGTGACTGG AATGGGTGTG	780	ATGGAACGAG	840	TTGCTGGAGA	*	GGATGGACAA	096 *	GAATCACCGA	1020	CAGCAATGGG
530	GCCCTGCCAT	290	CCGCAGGCAC	650	TGCAACCTGA	710	TTGTGACTGG	770	TTTCTACAAT AATCTGCTTG	830	CCTACGAGAA	068	CTCTCTAAGA	950	ACAGATGGTG	1010	CTCATTGGCT
520	CCTGCTTCGA GCCCTGCCAT	580	TTCGCACCAC	640	вссетвест с	700	CGGCGAGTAG	160		820	TGCTCAATTT	880	GGCCCCGAAG	940	GAAAGCATTA ACAGATGGTG	1000	ATGCGGAGTT
510	TCTTACCTCG	570	TCCAGACCCA	630	GGAGGCAATG	069	TATCAAACAG	750	TAGGCCATGA ACCTGATGTT	810	CCTTTGATTG	870	ATGGTTGGGT	930	CTGCTGGCAA	066	ATAAAAGAAA
200	GTTTCCATAC CCTCGTCACC TCTTACCTCG	260	CATCCGCATC CTTGTTCGGA TCCAGACCCA TTCGCACCAC CCGCAGGCAC CGGAGGCTCA	620	ATCGAGCTTC CCCTTCCAGG GGAGGCAATG GCCGTGGCTC TGCAACCTGA ACAGGAAGTT	089	ACCACAAAGA AGAAGCCAAG TATCAAACAG	740	TAGGCCATGA	800	GAGATAGAGA	860	TTCTCCACAG	920	GTTCATGCTA TACATGCTGA	980	AGATGTGATG AAAGAGCTAG ATAAAAGAAA ATGCGGAGTT CTCATTGGCT CAGCAATGGG
490	GTTTCCATAC	550	CATCCGCATC	610	ATCGAGCTTC	670	ACCACAAAGA	730	GTGACTCCTC	790	TGGCATAAGC	850	GATCAAGTCT	910	GTTCATGCTA	970	AGATGTGATG

FIGURE 8 2/5

1500 * ACCACATGAC	1490 TGCGATGCCT	1480 1490 1500 * GAGTTTCACT TGCGATGCCT ACCACATGAC	1450 1460 1470 TGCGACTATT TACGCAGAAT TTCTAGGTGG	1460 PACGCAGAAT	1450 TATT 1
GAGCATGCAA AGAAAAGAGG		TGCTACTACT AGAGGAGTTG		TGGAG	TATGGGGGAA GGAGCTGGAG
1440	1430	1420	1410	1400	1390
ATGGATTTGT	AGTAATCGTG	ACCATGGGAC	GAGAAATTCC GACCCTACTA AAGCTTCAAG ACCATGGGAC AGTAATCGTG ATGGATTTGT	ACTA	GACCCT
1380	1370	1360	1350	1340	Η.
CTTTGTCCCA	GCATGCCGAG	AGGTTTTGTT	AGATGCGGTA ATCATACCTA TTGGTATGGG AGGTTTTGTT GCATGCCGAG CTTTGTCCCA	TA	ATCATACO
1320	1310	1300	1290	1280	1270 12
GCGGGGGCTC	GTGATGCTTT	CGAAGCAGAT GTGATGCTTT GCGGGGGCTC	GCGAACCATA TAATCAGAGG	ΤA	AATGAATGCT GCGAACCA
1260	1250	1240	1230	20	1210 1220
ACTTTTGTAT	GCAACGAGTA ACTTTTGTAT	TACTGCTTGT	ACTCGATATC	H	GGGATGGATG GGGCCCAACT
1200	1190	1180	1170	0	1150 1160
CAATGGACTT	GCTATGCTTG	TATGGGATCA	TCCCTTTTGT GTACCTTTCG CTACCACAAA TATGGGATCA GCTATGCTTG	Ŋ	GTACCTTTC
1140	1130	1120	1110	0	1090 1100
AGAAGATGAA	ATTTCATATA	AGCCCTAAGG	TGGAATGAAG GTATTCAATG ATGCCATTGA AGCCCTAAGG ATTTCATATA AGAAGATGAA	Ō	GTATTCAAT
1080	1070	1060	1050	0	1030 1040

FIGURE 8 3/5

TTTGTGTCCG	GCCCATGAGT	CTCCTTACGT CTCTAGACAT		ATGTTGGTAG	GGACTCCAGC
2040	2030	2020	2010	2000	1990
GAAGTTTTGA	TATCAAAGCT	GTGTGGAATT CTACTCAACA TATCAAAGCT GAAGTTTTGA		GACGTTTCGT	TTACATCTAG
1980	1970	1960	1950	1940	1930
TCTTCGCCCC	TCGTCCATAC	TGGGCACAAC	TCTAATTCAT TTGGGTTTGG TGGGCACAAC TCGTCCATAC	TCTAATTCAT	GGTCGGTTTG
1920	1910	1900	1890	1880	1870
AAGGAGAGAC TGAACGTTAA	AAGGAGAGAC	GGGTCCTAAG	GTGGATACAA AATTGCTCGT GGGTCCTAAG	GTGGATACAA	AGATGAAGGC
1860	1850	1840	1830	1820	1810
TGGAAAACCC	AATATTAATT TGGAAAACCC	GATCCATCCG	CAGGCAATAA GGACTGGGTG		TTCAGTAGTT
1800	1790	1780	1770	1760	1750
TGGAAGCAGT	GCCGGTGGTG	TCTCGGAGCA	TTGGTCACCT	TAATTCAACC AAATCAATGA TTGGTCACCT TCTCGGAGCA GCCGGTGGTG TGGAAGCAGT	TAATTCAACC
1740	1730	1720	1710	1700	1690
AGTTAAAAGT	CAAAACAGAG	CTGTTTCGGC	CTCTTATCCA	AGATATCAAA GAGTACCAAG CTCTTATCCA CTGTTTCGGC CAAAACAGAG AGTTAAAAGT	AGATATCAAA
1680	1670	1660	1650	1640	1630
CTCCGGCTGG	GCCACATCCA CTCCGGCTGG	AAATGCCCAT		AGGAGTCTCT AGGGAAGACG TAAATTACAT	AGGAGTCTCT
1620	1610	1600	1590	1580	1570
TGGCTCAGTC	GAGAAGGCTT	TCTCTGCATA GAGAAGGCTT TGGCTCAGTC	CTGGAGTGAT	CGAGCCTCAC CCTGATGGAG CTGGAGTGAT	CGAGCCTCAC
1560	1550	1540	1530	1520	1510

FIGURE

		ATCC	2370 GCTCTAGAGG	2350 2360 2370 AAAAAAAAA AAGGGCGGCC GCTCTAGAGG ATCC	2350 AAAAAAAAA
TTTTCTCAAA	TTTGTGGTTT TAAAATTTGT AAAACTAGAA GACTGGTTTA GATTGGTTTG TTTTCTCAAA	GACTGGTTTA	AAAACTAGAA	TAAAATTTGT	TTTGTGGTTT
2340	2330	2320	2310	2300	2290
TCATCACCGT	TGTTAACTCG GGCACGTAGT AACCATTTGC CCTTTGTTTT GCTCTCTATT TCATCACCGT	CCTTTGTTTT	AACCATTTGC	GGCACGTAGT	TGTTAACTCG
2280	2270	2260	2250	2240	2230
AGAACAAAGC	CTCCTTGCAA TAGTTGTACT TTCGAGCTTT TCATCGAGTC AGTGAAGAAG AGAACAAAGC	TCATCGAGTC	TTCGAGCTTT	TAGTTGTACT	CTCCTTGCAA
2220	2210	2200	2190	2180	2170
TGAAATCTCC	CTAGAATTGT IGGTAGAGCA ATATTCATTA ICTCATATTT TTTTTTTCTC IGAAATCTCC	TCTCATATTT	ATATTCATTA	TGGTAGAGCA	CTAGAATTGT
2160	2150	2140	2130	2120	2110
ATACTCCTTG	GAGCTTTAGT CGGAACCATG ACGGATTGAG TACTCATGGC GACACTTGAT ATACTCCTTG	TACTCATGGC	ACGGATTGAG	CGGAACCATG	GAGCTTTAGT
2100	2090	2080	2070	2060	2050

FIGURE 8 5/5

Sequence Range: 1 to 1580

						•					
GGG G1y>	100	TCG Ser>	150	GTG Val>		GAT Asp>		TCT Ser>	AAA Lys>	340	CGC Arg>
50 TCT Ser	1(CAT		AGG Arg		GGT Gly		GGA Gly	290 GCT Ala	3,4	ATC Ile
GCA Ala		CAG Gln		AAA Lys	190	TTG	240	ATT Ile	CTT Leu		GGG G1y
AAT Asn		GCA ACT Ala Thr	140	TCC	1.9	TCT		TTA	GAT Asp		ACG Thr
40 GCG Ala	90	GCA	•	GTC Val	•	CAG Gln		TGC AAA Cys Lys	280 AAT GAT Asn Asp	330	CGA Arg
10 20 30 40 CCTGAATCGG ATTCAAGAGA GAGTTTCGTT GCTGGG ATG GCG		AGG		$ ext{TTT}$		AGG Arg	230	TGC Cys	28 AAT Asn		GTC Val
rggg		AGA Arg	130	GAG Glu	180	GAC Asp	(4	GGA G1y	TCA		ACT Thr
D F GC	80	CTG	ਜ	TCG		TCT		AGA Arg	GTC	320	ATT Ile
30 rcgrt		GCC		TCC		GAT Asp	220	AGT Ser	270 CAA Gln	(*)	TGG Trp
AGTT		CCT		TCT Ser	170	CAG Gln	22	GTG Val	CTT		GAA Glu
20 GA G	70	GTT Val	120	GGA G1y	• • •	GTT Val		CTT Leu	GCT	310	AAT GAT Asn Asp
AAGAG	•	TCA		CGT Arg		GCC		CCG AGG Pro Arg	260 CCA Pro	31	
ATTC.		TCT		TCT Ser	160	AGT Ser	210		2 ATA I1e		ACC Thr
10 366 7		GGT Gly	110	TCG	1(TGT Cys		TCG	GCT		GAC Asp
3AAT(60	CTG	ν-1	TCA		TGC		CGC	TCT	300	GTC Val
CCTC		TTT Phe		ATT Ile		TTT Phe	200	TCT	250 GGT TCT Gly Ser		ATT Ile

FIGURE 9 1/5

•												
390	TCA Ser>		GAT Asp>		GGC G1y>	TTG Leu>	580	GTC Val>	630	GTG Val>		GGA Gly>
	GCA		AAT Asn		TTC	530 CCT Pro	22	TTA Leu		CTA Leu		CGG Arg
	TTA	430	GCA Ala	480	CTT	5 AAT Asn		GGT Gly		ATT Ile	0	GAT Asp
380	AAT Asn	43	GAC		GAC Asp	AAG Lys		TTG	620	AAT Asn	670	ACC Thr
\ .,	ACA		GTA Val		GAG Glu	20 AAA Lys	570	GTG Val	Q	AAC Asn		TGG Trp
	CTT Leu		CAG Gln	470	CCT	520 TGC AAA Cys Lys		TTT Phe		TTT Phe		GAC
370	AGT	420	GCA Ala	7	ACC Thr	66C Gly		GGA Gly	0.	$_{\rm GLY}^{\rm GGT}$	660	GTT Val
E.	GAT Asp		ATG Met		TCT	CTT Leu	260	AGT	610	GGG		TAT Tyr
	AAA Lys		GAG Glu	460	ACT Thr	510 GCA Ala	и,	TGC		$_{\rm GGT}^{\rm GGT}$		CGG Arg
	GGT Gly	410	CTA Leu	4(TGT Cys	AAA Lys		GCA Ala		AGA Arg	650	CTT TCT Leu Ser
360	TCA	•	GCT Ala		ATG Met	TCG Ser	550	GCT Ala	*	ATT Ile	Ψ	CTT Leu
	CTC		AAA Lys		TTG	500 ATA Ile	5.0	ACC Thr		CAC His		TCT Ser
	GTT Val	400	AGG Arg	450	GTT Val	cag Gln		ATT Ile		TGC Cys	0	GAT Asp
350	AGG Arg	4(GCA Ala		ATG Met	CCT		GAC Asp	290	GCT Ala	640	GCT
. ,	CGA Arg		GCA Ala		GAT Asp	490 T GCT T Ala	540	TAC Tyr	u)	GCT		GGT Gly
	AAC Asn		GAG Glu	440	GTG Val	49 AGT Ser		TCT		TCA		ATT Ile

FIGURE 9 2/5

	TCA Ser>	GAT Asp>	820	GTT Val>	870	AGG Arg>		CGC Arg>		AAG Lys>	GCA Ala>
	CAG Gln	770 AGC Ser	8	GAA Glu		CCA Pro		TTC Phe		GGA Gly	1010 CAT CAG His Gln
720	grg Val	CAT His		GAT Asp		CCA Pro	0	GTA Val	096	CTT Leu	10 CAT His
	GTG Val	TTG		GAA Glu	860	TTT Phe	910	GAG Glu		GCA Ala	CTT
	GTA Val	760 TTT GAT Phe Asp	810	AAA Lys	ω	GAT Asp		AAA Lys		TCA	OCTG CTG Leu
710	GCT Ala	76 TTT Phe		ATC Ile		AGA Arg		GGT Gly	950	GAA Glu	1000 TTG CTG Leu Leu
	GGA Gly	GCT		GCA Ala	850	ATC Ile	006	AAC Asn	o,	ATC Ile	TGG Trp
	GCT Ala	TTT Phe	800	GCT Ala	8	TCC		ATG Met		TCA	GAC Asp
700	GCT	750 CTC Leu	w	AAA Lys		$_{\rm GGG}$		CAA Gln	0	CAG Gln	990 ATC Ile
7(GAT Asp	GGG Gly		CTA		AAT Asn	890	ATC Ile	940	CCT	AAC Asn
	GGA Gly	GAT Asp	190	CAT	840	CAT	ω	TGC		GTG Val	TCC Ser
	TTT Phe	740 GAA Glu	75	AGG Arg		GGA G1y		TCT Ser		TCT Ser	980 GGA Gly
690	CTC	7 GAG Glu		CAA Gln		CTG	0	TAC Tyr	930	CGC	9 AAT Asn
	ATT Ile	GCT		$_{\rm GGG}$	830	GCC	880	TCA		TGC	CTT Leu
	TGT	730 TGT GAT Cys Asp	780	GAT Asp	ω	AAA Lys		TCT Ser		GCT	0 GGT Gly
680	ACA Thr	730 TGT G2 Cys A8		GGA Gly		GAT Asp		CGT Arg	920	TTT Phe	970 GCC GGT Ala Gly

FIGURE 9 3/5

46/66

1060	CCT CAA Pro Gln>	1110	G GCA a Ala>		G AAG 1 Lys>		A TGG r Trp>	1260	CACTGCAGCT	1320	CCANAAAAAG AAGAAGTCAG	1380	TCGTTCCCCT
⊣	GTT CCT Val Pro		AGT GCG Ser Ala		AT GTG sn Val	1200	TC ACA	0		0	G AAG	0	
	CTA GAG G Leu Glu V	1100	GGG AAC ACT AGT Gly Asn Thr Ser	1150	GGA AAT Gly Asn	12	GGA CTC Gly Leu	1250	TGG GGA TAA GACTGAA GCCGAGCCAG Trp Gly ***>	1310	IAAAAA	1370	TTGCCCTTTT
1050	CTA	11	AAC Asn		AGG AGT Arg Ser		GCC		ອວວອ				TTGC
, ,	CGT				AGG Arg	1190	GGC Gly	1240	IGAA	1300	CCGATGTTTC ACGAAATTTT GCTTCCATGA	1360	CTTCATCACA
	ACA Thr	1090	AAT TAC Asn Tyr	1140	GTG Val	⊣	PTT		GAC'		rrcc.	.,	rcat(
1040	GCA Ala	10	AAT Asn		GCT		GGA G1y		TAA ***>	0	D GC	0	r CT
ਜ	GTA Val		GCA Ala		GAA Glu	30	GCA	1230	GGA Gly	1290	\T'T'!	1350	ACGAT
	GCA Ala		CGA ATT ATC TCA AAC TTG Arg Ile Ile Ser Asn Leu	1130	GAC Asp	1180	ACC	• •			GAAA		AGCAAGCAAC ACGACACGAT
30	CAG AGG ATC ATT GAT Gln Arg Ile Ile Asp	1080	AAC Asn	ਜ	CTA		GCA Ala		ATT ATC AGG Ile Ile Arg	30	rc A	10	AC AC
1030	ATT Ile		TCA		GCA Ala		ATT Ile	1220	ATC Ile	1280	rGTTJ	1340	AGCA2
	ATC Ile		ATC Ile	50	CCC TTG Pro Leu	1170	GTG Val	13	ATT Ile		CGA		AGCA2
	AGG	1070	ATT Ile	1120	CCC	• •	CAC His		GCT	1270	AA O	1330	7 99.
1020	CAG Gln	ĭ			ATT Ile		GGT Gly	0]	TCT Ser	13	тсстстсала	73	TCTTTTATGG
• •	AAT Asn		GAA		TCC	1160	CCG	1210	GGT Gly		TCC1		TCTI

FIGURE 9

					•	
1440	TTGTCCCCAA	1500	TAAGTTATTT GTTTCTTGTT TAATTGTTCA GCTTTTACTT CATTTTGTCT CGGGACATTG	1560	aaaaaaaaa	
1430	ATAGTTTCTT	1490	CATTTTGTCT	1550	ААААААААА	
1420	TACAATACCC	1480	GCTTTTACTT	1540	TTTGCTAAAA	
1410	TTGCTGACAA	1470	TAATTGTTCA	1530	ATGTTTATAT	
1400	TITCCATIAG IITGAIGAIT ITGCIGACAA IACAAIACCC AIAGITICIT ITGICCCCAA	1460	GTTTCTTGTT	1520	GAGATGACAG CATAAACATC ATGTTTATAT TTTGCTAAAA AAAAAAAAA AAAAAAAA	1580 AAAAAAAAA
1390	TTTCCATTAG	1450	TAAGTTATTT	1510	GAGATGACAG	1570 AAAAAAAA AAAAAAAA

FIGURE 9 5/5

FIGURE 10

FIGURE 11

FIGURE 12

E328013-28

FIGURE 13

FIGURE 15

FIGURE 15 2/2

SUBSTITUTE SHEET (RULE 26)

FIGURE 17 1/2

FIGURE 17

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

12:0 levels (w%)

FIGURE 19 1/3

- 03

FIGURE 19 3/3 SUBSTITUTE SHEET (RULE 26)

FIGURE 19

SUBSTITUTE SHEET (RULE 26)

2/3.

FIGURE 20

18:0 levels (w%)

FIGURE -21

1/3

18:0 levels (w%)

FIGURE 21

Number of independent events

FIGURE 21

FIGURE 22