PHSX 565 Astrophysical Plasma Physics Problem Set 5 - Force-free Magnetic Fields Roy Smart

Prepare Mathematica environment

Clear variables

```
In[663]:= Clear["Global`*"]
    vals = {};
```

Define shortcut to convert rule to equation

```
In[665]:= r2e = Rule → Equal;
```

Use preprint variable to print derivatives in traditional form

Define the del operator

In[675]:=

```
In[667]:= x = \{x, y, z\};
\forall : \forall f := Grad[f, x]
\forall \cdot f := Div[f, x]
\forall : \forall x f := Curl[f, x]
\forall \cdot \forall x f := \Delta
\forall : \forall x f := \Delta
\forall : \forall x f := \Delta
\Delta := \Delta
CenterDot : (x \cdot \forall) f := Grad[f, x].
```

Part a.

Find the constant- α field

We are given the following boundary conditions in the Problem Statement.

```
ln[676] = bc1 = Bz[y, 0] \rightarrow B0 Cos[\frac{\pi}{l}y];
       bc2 = Bz[y, 2L] \rightarrow 0;
       bc3 = By[-L, z] \rightarrow 0;
       bc4 = By[L, z] \rightarrow 0;
ln[680]:= $Assumptions = B0 > 0;
```

Constant- α force-free fields with cartesian symmetry and boundary conditions are solutions to Longcope 10.41, given as

```
ln[681]:= f$a[y_, z_] := f[y, z] \rightarrow B1 Sin[k y] Cos[\sqrt{\alpha^2 - k^2} z];
       $Assumptions = $Assumptions && \alpha \ge \frac{\pi}{1} &&
           y \ge -L \&\& y \le L \&\& z \ge 0 \&\& z \le 2L \&\& \alpha > k \&\& k > 0;
```

Where CO is a unknown constant and the wavenumber, k, is

```
\ln[683]:= k \Rightarrow \frac{\pi}{1};
In[684]:= $Assumptions = $Assumptions && L > 0;
```

The magnetic field can be calculated through Longcope 10.27

```
In[685]:= B$a[y_, z_] = B[y, z] \rightarrow (\nabla (f[y, z] /. f$a[y, z])) \times (\nabla x)
\text{Out[685]= B[y,z]} \rightarrow \left\{\text{0,-B1}\,\sqrt{-\,k^2\,+\,\alpha^2}\,\,\text{Sin[k\,y]}\,\,\text{Sin}\!\left[z\,\sqrt{-\,k^2\,+\,\alpha^2}\,\,\right],\,-\,\text{B1\,k\,Cos[k\,y]}\,\,\text{Cos}\!\left[z\,\sqrt{-\,k^2\,+\,\alpha^2}\,\,\right]\right\}
```

Which is a solution to the Helmholtz equation, Longcope 10.41

$$\ln[686] = \$1041 = \Delta f[y, z] = -\alpha^2 f[y, z]$$

$$\cot[686] = \frac{\partial^2 f(y, z)}{\partial y^2} + \frac{\partial^2 f(y, z)}{\partial z^2} = -\alpha^2 f[y, z]$$

```
In[687]:= e1$a = Bz[y, 0] == B$a[y, 0][[2, 3]];

e2$a = Bz[y, 2 L] == B$a[y, 2 L][[2, 3]];

e3$a = By[-L, z] == B$a[-L, z][[2, 2]];

e4$a = By[L, z] == B$a[L, z][[2, 2]];

In[691]:= $Assumptions = $Assumptions && n ∈ Integers;

{{B1$a, \alpha$a1}, {B1$a, \alpha$a2}} =

(Solve[Reduce[{e1$a /. bc1, e2$a /. bc2, e3$a /. bc3, e4$a /. bc4} /. k$a] /.

C[1] \rightarrow n // FullSimplify, {B1, \alpha}] // FullSimplify // Quiet);

In[693]:= B1$a

\alpha$a1

\alpha$a2

Out[693]= B1 \rightarrow -\frac{B0 L}{\pi}

Out[694]= \alpha \rightarrow \frac{\sqrt{17 + 8 n (-1 + 2 n)} \pi}{4 L}

Out[695]= \alpha \rightarrow \frac{\sqrt{17 + 8 n (1 + 2 n)} \pi}{4 L}
```

Plug constants into solution

Evaluate magnetic field

$$\begin{array}{l} \text{In} [698] \coloneqq & \text{B$a1[y_, z_]} = & \text{B$a[y, z] /. B1$a /. αa1 /. ka // FullSimplify } \\ & \text{B$a2[y_, z_]} = & \text{B$a[y, z] /. B1$a /. αa2 /. ka // FullSimplify } \\ \text{Out} [698] \coloneqq & \text{B}[y, z] \to \left\{0, \frac{1}{4} \text{B0} \ (1-4 \ n) \ \text{Sin} \left[\frac{\pi \ y}{L}\right] \ \text{Sin} \left[\frac{(1-4 \ n) \ \pi \ z}{4 \ L}\right], \ \text{B0} \ \text{Cos} \left[\frac{\pi \ y}{L}\right] \ \text{Cos} \left[\frac{(1-4 \ n) \ \pi \ z}{4 \ L}\right] \right\} \\ \text{Out} [699] \vDash & \text{B}[y, z] \to \left\{0, \frac{1}{4} \text{B0} \ (1+4 \ n) \ \text{Sin} \left[\frac{\pi \ y}{L}\right] \ \text{Sin} \left[\frac{(1+4 \ n) \ \pi \ z}{4 \ L}\right], \ \text{B0} \ \text{Cos} \left[\frac{\pi \ y}{L}\right] \ \text{Cos} \left[\frac{(1+4 \ n) \ \pi \ z}{4 \ L}\right] \right\} \\ \end{array}$$

Plot solution

 $\label{eq:local_local_local_local} $$ \ln[700] := ContourPlot[f$a1[[2]] /. B0 \rightarrow 1 /. L \rightarrow 1 /. n \rightarrow 0, \{y, -1, 1\}, \{z, 0, 2\}] $$$

Part b.

Compute the magnetic energy per unit length

The magnetic energy is calculated using Longcope 8.21

Part c.

Find the field line

The magnetic field line has the boundary conditions

$$ln[704]:=$$
 bc\$c = $z\left[\frac{L}{2} + \varepsilon\right] == 0$;
\$Assumptions = \$Assumptions && $\varepsilon > 0$ && $\varepsilon < L$;

A magnetic field line satisfies Longcope 9.1

Form a ratio of the coupled differential equations

Solve the ODE for z as a function of y

$$\text{Out[710]= } \mathbf{Z}[\mathbf{y}] \rightarrow -\frac{4 \, L \, \text{ArcCos} \left[\text{Csc}\left[\frac{\pi \, \mathbf{y}}{L}\right] \, \text{Sin}\left[\frac{\pi \left(\frac{L}{2} + \epsilon\right)}{L}\right]\right]}{\left(-1 + 4 \, n\right) \, \pi}$$

$$\text{Out[711]= } \text{Z[y]} \rightarrow \frac{\text{4 L ArcCos} \left[\text{Csc}\left[\frac{\pi \, y}{\text{L}}\right] \, \text{Sin}\left[\frac{\pi \, \left(\frac{\text{L}}{2} + \epsilon\right)}{\text{L}}\right]\right]}{\left(-1 + 4 \, n\right) \, \pi}$$

How does the location of the other footpoint vary with α ?

Set expression above and solve for y.

We find that the results are independent of α

$$ln[713]:= (z0$c1 = y \rightarrow Series[z0$c1[[2]], {\epsilon, 0, 1}] // Normal) // Framed (z0$c2 = y \rightarrow Series[z0$c2[[2]], {\epsilon}, 0, 1}] // Normal) // Framed$$

Out[713]=
$$y \rightarrow \frac{L}{2} + \varepsilon$$

Out[714]=
$$y \rightarrow \frac{L}{2} - \epsilon$$

Set the derivative equal to zero and solve for the y-value

Plug in y-value to find height

$$ln[716]:=$$
 zL\$c = z\$c1 /. dz0\$c /. n\$b // FullSimplify // Framed

Part d.

Find solutions with homogenous boundary conditions

Homogenous boundary conditions

$$ln[717]:=$$
 bc1\$d = Bz[y, 0] \rightarrow 0;
bc2\$d = Bz[y, 2L] \rightarrow 0;
bc3\$d = By[-L, z] \rightarrow 0;
bc4\$d = By[L, z] \rightarrow 0;

Propose even and odd flux function solution

With wavenumber

$$ln[723]:= k$d = k \rightarrow \frac{l \pi}{2 L};$$

\$Assumptions = \$Assumptions && l ∈ Integers && m ∈ Integers;

Use the boundary conditions to find α

$$\ln[725] := \{\alpha \$ d1, \alpha \$ d2\} = Solve \left[2 L \sqrt{-k^2 + \alpha^2} =: n \pi, \alpha \right] \left[\left[;; , 1 \right] \right]$$

$$\operatorname{Out}[725] := \left\{ \alpha \to -\frac{\sqrt{4 k^2 L^2 + n^2 \pi^2}}{2 L}, \alpha \to \frac{\sqrt{4 k^2 L^2 + n^2 \pi^2}}{2 L} \right\}$$

Plug into flux function

Out[726]=
$$f[y,z] \rightarrow B1 Sin\left[\frac{m \pi y}{L}\right] Sin\left[\frac{\pi z Abs[n]}{2 L}\right]$$

Out[727]=
$$f[y,z] \rightarrow B1 Cos \left[\frac{\left(1+2 m\right) \pi y}{2 L}\right] Sin \left[\frac{\pi z Abs[n]}{2 L}\right]$$

Plot flux function

In[728]:= ContourPlot[

 $f\$d4[y,\,z][[2]] \ /. \ L \rightarrow \, 1 \,\, /. \ B1 \rightarrow \, 1 \,\, /. \ m \rightarrow \, 0 \,\, /. \ n \rightarrow \, 1, \, \{y,\,-1,\,1\}, \, \{z,\,0,\,2\}]$

Evaluate magnetic field

$$\begin{array}{ll} \text{In[729]:=} & B\$d3[y_,z_] &= B[y,z] \rightarrow \left(\triangledown \left(f[y,z] \text{ /. } f\$d3[y,z] \right) \right) \times \left(\triangledown x \right) \text{ // Simplify} \\ & B\$d4[y_,z_] &= B[y,z] \rightarrow \left(\triangledown \left(f[y,z] \text{ /. } f\$d4[y,z] \right) \right) \times \left(\triangledown x \right) \text{ // Simplify} \\ \text{Out[729]:=} & B[y,z] \rightarrow \left\{ 0 \text{ , } \frac{B1 \pi \text{ Abs}[n] \text{ } Cos\left[\frac{\pi z \text{ Abs}[n]}{2 \text{ L}}\right] \text{ } Sin\left[\frac{m \pi y}{\text{ L}}\right]}{2 \text{ L}} \text{ , } - \frac{B1 m \pi \text{ } Cos\left[\frac{m \pi y}{\text{ L}}\right] \text{ } Sin\left[\frac{\pi z \text{ Abs}[n]}{2 \text{ L}}\right]}{\text{ L}} \right\} \end{array}$$

Out[730]=
$$B[y, z] \rightarrow$$

$$\left\{0, \frac{\mathsf{B1}\,\pi\,\mathsf{Abs}\,[\mathsf{n}]\,\mathsf{Cos}\big[\frac{(1+2\,\mathsf{m})\,\pi\,\mathsf{y}}{2\,\mathsf{L}}\big]\,\mathsf{Cos}\big[\frac{\pi\,\mathsf{z}\,\mathsf{Abs}\,[\mathsf{n}]}{2\,\mathsf{L}}\big]}{2\,\mathsf{L}}, \frac{\mathsf{B1}\,\big(1+2\,\mathsf{m}\big)\,\pi\,\mathsf{Sin}\big[\frac{(1+2\,\mathsf{m})\,\pi\,\mathsf{y}}{2\,\mathsf{L}}\big]\,\mathsf{Sin}\big[\frac{\pi\,\mathsf{z}\,\mathsf{Abs}\,[\mathsf{n}]}{2\,\mathsf{L}}\big]}{2\,\mathsf{L}}\right\}$$

Find magnetic field line parallel to x-axis

Solve for the y and z values where the magnetic field is zero (not including the edges of the domain)

Solve Longcope 9.1 for the field line

Part f.

Construct constant- α solution as a combination of homogenous and inhomogenous solutions

Sum magnetic fields found in part a. and d.

```
 \begin{split} & \text{In} [736] \text{:= } B \$ e [y\_, z\_] = B [y, z] \to B \$ a 1 [y, z] [[2]] + B \$ d 3 [y, z] [[2]] \\ & \text{Out} [736] \text{= } B [y, z] \to \\ & \left\{ 0 \, , \, \frac{B1 \, \pi \, \mathsf{Abs} [n] \, \mathsf{Cos} \left[ \frac{\pi \, \mathsf{z} \, \mathsf{Abs} [n]}{2 \, \mathsf{L}} \right] \, \mathsf{Sin} \left[ \frac{m \, \pi \, \mathsf{y}}{\mathsf{L}} \right]}{2 \, \mathsf{L}} + \frac{1}{4} \, \mathsf{B0} \, \left( 1 - 4 \, \mathsf{n} \right) \, \mathsf{Sin} \left[ \frac{\pi \, \mathsf{y}}{\mathsf{L}} \right] \, \mathsf{Sin} \left[ \frac{(1 - 4 \, \mathsf{n}) \, \pi \, \mathsf{z}}{4 \, \mathsf{L}} \right], \\ & \mathsf{B0} \, \mathsf{Cos} \left[ \frac{\pi \, \mathsf{y}}{\mathsf{L}} \right] \, \mathsf{Cos} \left[ \frac{(1 - 4 \, \mathsf{n}) \, \pi \, \mathsf{z}}{4 \, \mathsf{L}} \right] - \frac{\mathsf{B1} \, \mathsf{m} \, \pi \, \mathsf{Cos} \left[ \frac{m \, \pi \, \mathsf{y}}{\mathsf{L}} \right] \, \mathsf{Sin} \left[ \frac{\pi \, \mathsf{z} \, \mathsf{Abs} [n]}{2 \, \mathsf{L}} \right] \right\} \end{aligned}
```


Out[738]=
$$EM \to \frac{B1^2 \left(4 \ m^2 + n^2 \right) \ \pi^3 + B0^2 \ L^3 \ \alpha^2}{32 \ \pi^2}$$