2. Real numbers

- ordered sets
- least upper bound property
- fields
- real numbers
- archimedian property
- using supremum and infimum
- absolute value
- triangle inequality
- uncountabality of the real numbers

Ordered sets

Definition 2.1 An **ordered set** is a set S with a relation < called an 'ordering' such that:

- 1. Trichotomy. For all $x, y \in S$, either x < y, x = y, or x > y.
- 2. Transitivity. If $x, y, z \in S$ have x < y and y < z, then x < z.

examples:

- **Z** is an ordered set with ordering $m > n \iff m n \in \mathbf{N}$
- ${f Q}$ is an ordered set with ordering $p>q\Longleftrightarrow p-q=m/n$ for some $m,n\in{f N}$
- $\mathbf{Q} \times \mathbf{Q}$ is an ordered set with dictionary ordering $(q,r) > (s,t) \Longleftrightarrow q > s$, or q=s and r>t
- the set $\mathcal{P}(\mathbf{N})$ with ordering defined by $A \prec B$ if $A \subseteq B$ is *not* an ordered set

Least upper bound property

Definition 2.2 Let S be an ordered set and let $E \subseteq S$, then:

- If there exists some $b \in S$ such that $x \leq b$ for all $x \in E$, then E is **bounded above** and b is an **upper bound** of E.
- If there exists some $c \in S$ such that $x \ge c$ for all $x \in E$, then E is **bounded below** and c is a **lower bound** of E.
- If there exists an upper bound b_0 of E such that $b_0 \le b$ for all upper bounds b of E, then b_0 is the **least upper bound** or the **supremum** of E, written as

$$b_0 = \sup E$$
.

• If there exists a lower bound c_0 of E such that $c_0 \ge c$ for all lower bounds c of E, then c_0 is the **greatest lower bound** or the **infimum** of E, written as

$$c_0 = \inf E$$
.

examples:

- $S = \mathbf{Z}$ and $E = \{-2, -1, 0, 1, 2\}$, then $\inf E = -2$ and $\sup E = 2$
- $S = \mathbf{Q}$ and $E = \{q \in \mathbf{Q} \mid 0 \le q < 1\}$, then $\inf E = 0$ and $\sup E = 1 \notin E$, *i.e.*, the supremum or infimum need not be in E
- $S = \mathbf{Z}$ and $E = \mathbf{N}$, then $\inf E = 1$ but $\sup E$ does not exist

Definition 2.3 Least upper bound property. An ordered set S has the least upper bound property if every $E \subseteq S$ which is nonempty and bounded above has a supremum in S.

example: $-\mathbf{N} = \{-1, -2, -3, \ldots\}$, to show this (informally), suppose $E \subseteq -\mathbf{N}$ is bounded above, then $-E \subseteq \mathbf{N}$ is bounded below and according to the well ordering principle, -E has a least element $x \in -E$, and thus $-x = \sup E$

Theorem 2.4 If $x \in \mathbf{Q}$ and

$$x = \sup\{q \in \mathbf{Q} \mid q > 0, \ q^2 < 2\},$$

then $x \ge 1$ and $x^2 = 2$.

proof: let $E = \{ q \in \mathbf{Q} \mid q > 0, \ q^2 < 2 \}$

- $x \ge 1$ since $1 \in E \implies \sup E \ge 1$
- ullet we show $x^2 \ge 2$ by contradiction: suppose $x^2 < 2$, let

$$h = \min\left\{\frac{1}{2}, \ \frac{2 - x^2}{2(2x+1)}\right\}$$

- since $x \ge 1$ and $x^2 < 2$, we have $0 < h \le 1/2 < 1$
- $-h < 1 \implies (x+h)^2 = x^2 + 2hx + h^2 < x^2 + 2hx + h$

- since $h \leq \frac{2-x^2}{2(2x+1)}$, we have

$$(x+h)^2 < x^2 + (2x+1)h \le x^2 + \frac{1}{2}(2-x^2) < x^2 + 2 - x^2 = 2$$

$$\implies x + h \in E$$

- $-h > 0 \implies x + h > x$, but $x + h \in E \implies x$ is not an upper bound for E, i.e., $x \neq \sup E$, which is a contradiction
- ullet we now show $x^2 \not > 2$ by contradiction: suppose $x^2 > 2$, let

$$h = \frac{x^2 - 2}{2x}$$

- since $x^2 > 2$ and $x \ge 1$, we have h > 0

$$-h > 0 \implies (x-h)^2 = x^2 - 2hx + h^2 > x^2 - 2hx = x^2 - (x^2 - 2) = 2$$

- let $q \in E$, then $q^2 < 2 < (x - h)^2$, hence

$$(x-h)^2 - q^2 = ((x-h) + q)((x-h) - q) > 0$$

 $\implies (x-h)-q>0, \ i.e., \ x-h>q \ {\rm for \ all} \ q\in E \implies x-h \ {\rm is \ an}$ upper bound for E

- $-h>0 \implies x>x-h \implies x\neq \sup E$, which is a contradiction
- therefore, $x^2 = 2$

Theorem 2.5 The set $E=\{q\in \mathbf{Q}\mid q>0,\ q^2<2\}$ does not have a supremum in \mathbf{Q} .

proof (by contradiction): suppose there exists some $x \in \mathbf{Q}$ such that $x = \sup E$

- ullet by theorem 2.4, we have $x\geq 1$ and $x^2=2$
- in particular, x > 1 since if $x = 1 \implies x^2 = 1 \neq 2$
- $x \in \mathbf{Q} \implies$ there exist $m, n \in \mathbf{N}$ (m > n) such that x = m/n, *i.e.*, $m = nx \in \mathbf{N}$
- let $S = \{k \in \mathbb{N} \mid kx \in \mathbb{N}\} \subseteq \mathbb{N}$, then $S \neq \emptyset$ since $n \in S$
- ullet by the well ordering property, there is a least element $k_0 \in S$

- let $k_1 = k_0(x-1) = k_0x k_0 \in \mathbf{Z}$, in particular, $k_1 \in \mathbf{N}$ since $x > 1 \implies k_1 > 0$
- $x^2 = 2 \implies x < 2$ as otherwise $x^2 \ge 4$, hence

$$k_1 = k_0(x-1) < k_0(2-1) = k_0 \implies k_1 \notin S$$

• $k_1 = k_0(x-1) \implies k_1 x = k_0 x^2 - k_0 x$, since $x^2 = 2$, we have

$$k_1x = 2k_0 - k_0x = k_0 - k_0(x - 1) = k_0 - k_1 \in \mathbf{N} \implies k_1 \in S,$$

which is a contradiction

Fields

Definition 2.6 A set F is a **field** if it has two operations: addition (+) and multiplication (\cdot) with the following properties.

- (A1) If $x, y \in F$ then $x + y \in F$.
- (A2) Commutativity. For all $x, y \in F$, x + y = y + x.
- (A3) Associativity. For all $x, y, z \in F$, (x + y) + z = x + (y + z).
- (A4) There exists an element $0 \in F$ such that 0 + x = x = x + 0 for all $x \in F$.
- (A5) For all $x \in F$, there exists a $y \in F$ such that x + y = 0, denoted by y = -x.
- (M1) If $x, y \in F$ then $x \cdot y \in F$.
- (M2) Commutativity. For all $x, y \in F$, $x \cdot y = y \cdot x$.

- (M3) Associativity. For all $x, y, z \in F$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- (M4) There exists an element $1 \in F$ such that $1 \cdot x = x = x \cdot 1$ for all $x \in F$.
- (M5) For all $x \in F \setminus \{0\}$, there exists an $x^{-1} \in F$ such that $x \cdot x^{-1} = 1$.
 - (D) Distributativity. For all $x, y, z \in F$, $(x + y) \cdot z = x \cdot z + y \cdot z$.

examples:

- Q is a field
- **Z** is not a field since it fails (M5)
- $\mathbf{Z}_2 = \{0, 1\}$ where $1 + 1 = 0 \pmod{2}$ is a field
- $\mathbf{Z}_3 = \{0, 1, 2\}$ with $c = a + b \pmod{3}$, *i.e.*,

$$2+1=3=0$$
 and $2 \cdot 2=4=3+1=1$,

is a field

Theorem 2.7 If $x \in F$ where F is a field then 0x = 0.

proof:
$$xx = (x + 0)x = xx + 0x \implies 0x = 0$$

Definition 2.8 A field F is an **ordered field** if F is also an ordered set with ordering < and satisfies:

- 1. For all $x, y, z \in F$, $x < y \implies x + z < y + z$.
- 2. If x > 0 and y > 0 then xy > 0.

If x > 0 we say x is **positive**, and if $x \ge 0$ we say x is **nonnegative**.

examples:

- Q is an ordered field
- $\mathbf{Z}_2 = \{0, 1\}$ where 1 + 1 = 0 is not a ordered field (if $0 > 1 \implies 0 + 1 > 1 + 1 \implies 1 > 0$; if $1 > 0 \implies 1 + 1 > 1 + 0 \implies 0 > 1$)

Theorem 2.9 Let F be an ordered field and $x,y,z,w\in F$, then:

- If x > 0 then -x < 0 (and vice versa).
- If x > 0 and y < z then xy < xz.
- If x < 0 and y < z then xy > xz.
- If $x \neq 0$ then $x^2 > 0$.
- If 0 < x < y then 0 < 1/y < 1/x.
- If 0 < x < y then $x^2 < y^2$.
- If $x \le y$ and $z \le w$ then $x + z \le y + w$.

Theorem 2.10 Let $x, y \in F$ where F is an ordered field. If x > 0 and y < 0 or x < 0 and y > 0, then xy < 0.

proof:

• x > 0, $y < 0 \implies x > 0$, $-y > 0 \implies -xy > 0 \implies xy < 0$

• $x < 0, y > 0 \implies -x > 0, y > 0 \implies -xy > 0 \implies xy < 0$

Theorem 2.11 Greatest lower bound. Let F be an ordered field with the least upper bound property. If $A \subseteq F$ is nonempty and bounded below, then $\inf A$ exists in F.

proof: let $B = \{-x \mid x \in A\}$

- $A \subseteq F$ bounded below $\Longrightarrow \exists a \in F, \ \forall x \in A, \ a \leq x \Longrightarrow \exists a \in F, \ \forall x \in A, \ -a \geq -x \Longrightarrow \exists a \in F, \ \forall x \in B, \ -a \geq x \Longrightarrow B \subseteq F$ has an upper bound -a (this also shows that if a is a lower bound of A then -a is an upper bound of B)
- F has the least upper bound property $\implies \sup B \in F$
- let $c = \sup B$, then $c \ge x$, $\forall x \in B \implies -c \le -x$, $\forall x \in B \implies -c \le x$, $\forall x \in A \implies -c \in F$ is an lower bound of A
- we also have $c \le -a$ with a being a lower bound of $A \implies -c \ge a$ $\implies -c \in F$ is the greatest lower bound of A, i.e., $-c = \inf A \in F$

Real nubmers

Theorem 2.12 There exists a "unique" ordered field, labeled \mathbf{R} , such that $\mathbf{Q} \subseteq \mathbf{R}$ and \mathbf{R} has the least upper bound property.

ullet one can construct ${f R}$ using Dedekind cuts or as equivalence classes of Cauchy sequences.

Theorem 2.13 There exists a unique $r \in \mathbf{R}$ such that $r \geq 1$ and $r^2 = 2$, i.e., $\sqrt{2} \in \mathbf{R}$ but $\sqrt{2} \notin \mathbf{Q}$.

proof: let $E = \{x \in \mathbf{R} \mid x > 0, \ x^2 < 2\} \subseteq \mathbf{R}$

- we have x < 2 for all $x \in E$ (since if $x \ge 2 \implies x^2 \ge 4$) $\implies E$ is bounded above $\implies \sup E$ exists in \mathbf{R}
- let $r = \sup E$, using the same proof for theorem 2.4 we have $r \ge 1$ and $r^2 = 2$

• to show the uniqueness, suppose $\tilde{r} \geq 1$, $\tilde{r}^2 = 2$, then

$$r^2 - \tilde{r}^2 = 0 \implies (r + \tilde{r})(r - \tilde{r}) = 0 \implies r - \tilde{r} = 0 \implies r = \tilde{r}$$

(since
$$r \geq 1$$
, $\tilde{r} \geq 1 \implies r + \tilde{r} > 0$)

Theorem 2.14 If $x \in \mathbf{R}$ satisfies $x < \epsilon$ for all $\epsilon \in \mathbf{R}$, $\epsilon > 0$, then $x \le 0$.

proof by contradiction:

- ullet suppose x>0 satisfies $x\leq \epsilon$ for all $\epsilon>0$
- $x > 0 \implies 2x > x > 0 \implies x > x/2 > 0$
- ullet take $\epsilon=x/2$ we have $x>\epsilon>0$, which is a contradiction

Archimedian property

Theorem 2.15 Archimedian property. If $x, y \in \mathbf{R}$ and x > 0, then there exists an $n \in \mathbf{N}$ such that nx > y.

proof by contradiction:

- suppose $nx \le y$ for all $n \in \mathbb{N} \implies \forall n \in \mathbb{N}, n \le y/x \implies \mathbb{N}$ is bounded above by $y/x \implies$ there exists $\sup \mathbb{N} \in \mathbb{R}$
- let $a = \sup \mathbf{N} \implies a 1 < a$ is not an upper bound of $\mathbf{N} \implies \exists m \in \mathbf{N}, \ a 1 < m \implies a < m + 1 \in \mathbf{N} \implies a$ is not an upper bound of \mathbf{N} , which is a contradiction

Theorem 2.16 Density of \mathbf{Q} . If $x, y \in \mathbf{R}$ and x < y then there exists some $r \in \mathbf{Q}$ such that x < r < y.

proof:

• first suppose $0 \le x < y$, by the Archimedian property, we have

$$n(y-x) > 1 \implies ny > nx+1$$

for some $n \in \mathbf{N}$

- let $S = \{k \in \mathbb{N} \mid k > nx\} \subseteq \mathbb{N}$, by Archimedian property, there exists some $p \in \mathbb{N}$ such that $p > nx \implies S \neq \emptyset$
- ullet by the well ordering property, there is a least element $m \in S$ such that m > nx
- $\bullet m \in \mathbb{N} \implies m \ge 1$
- \bullet if m=1, then $m-1=0 \implies nx \ge m-1=0$ since $x \ge 0$

- if m>1, then $m-1 \in \mathbb{N}$ but $m-1 \notin S$ since m>m-1 is the least element $\implies nx \geq m-1 \implies m \leq nx+1 < ny$
- hence, we have

$$nx < m < ny \implies x < m/n < y$$

for some $m,n \in \mathbf{N}$, i.e., there exists an $r=m/n \in \mathbf{Q}$ such that x < r < y

• now suppose x<0, if x<0< y then simply take r=0; if $x< y\leq 0$, we have $0\leq -y<-x$, thus there exists some $\tilde{r}\in \mathbf{Q}$ such that

$$-y < \tilde{r} < -x \implies x < -\tilde{r} < y$$

(by the first case), *i.e.*, we have x < r < y by taking $r = -\tilde{r}$

Theorem 2.17 Suppose $S \subseteq \mathbf{R}$ is nonempty and bounded above. Then, $x = \sup S$ if and only if:

- 1. x is an upper bound of S.
- 2. For all $\epsilon > 0$, there exists some $y \in S$ such that $x \epsilon < y \le x$.

proof:

- first suppose $x = \sup S$
 - obviously, x is an upper bound of S
 - for all $\epsilon > 0$, we have $x > x \epsilon \implies x \epsilon$ is not an upper bound of S, i.e., there exists some $y \in S$ such that $x \epsilon < y \le x$
- now suppose x is an upper bound of S, and satisfies $x \epsilon < y \le x$ for all $\epsilon > 0$ and for some $y \in S$, we only need to show that for all z that is an upper bound of S, we have $x \le z$
 - assume there exists an upper bound z of S smaller than x, i.e., $y \le z < x$ for all $y \in S$

- take $\epsilon = x - z > 0$ (since x > z) $\implies x \ge y > x - \epsilon = x - x + z = z$ $\implies y > z \text{ for some } y \in S$ i.e., z is not an upper bound of S, which is a contradiction

Theorem 2.18 Let $S = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\}$, then $\sup S = 1$.

proof:

- ullet if $n \in \mathbb{N}$, then $1 \frac{1}{n} < 1 \implies 1$ is an upper bound of S
- let $\epsilon > 0$, then by the Archimedian property, for some $n \in \mathbb{N}$, we have

$$n\epsilon > 1 \implies \epsilon > \frac{1}{n} \implies -\epsilon < -\frac{1}{n} \implies 1 - \epsilon < 1 - \frac{1}{n} \le 1$$

by theorem 2.17, we have $\sup S = 1$

Remark 2.19 We have similar property as theorem 2.17 for infimum. Suppose $S \subseteq \mathbf{R}$ is nonempty and bounded below, then $x = \inf S$ if and only if:

- \bullet x is a lower bound of S.
- For all $\epsilon > 0$, there exists some $y \in S$ such that $x \leq y < x + \epsilon$.

Real numbers

Using supremum and infimum

Definition 2.20 For $x \in \mathbf{R}$ and $A \subseteq \mathbf{R}$, define

$$x + A = \{x + a \mid a \in A\}, \qquad xA = \{xa \mid a \in A\}.$$

Theorem 2.21 Let $A \subseteq \mathbf{R}$ be nonempty, we have:

- If $x \in \mathbf{R}$ and A is bounded above, then $\sup(x+A) = x + \sup A$.
- If x > 0 and A is bounded above, then $\sup(xA) = x \sup A$.

proof:

- suppose $x \in \mathbf{R}$ and A is bounded above:
 - for all $a \in A$, we have $a \le \sup A \implies x + a \le x + \sup A$, *i.e.*, the set x + A is bounded by $x + \sup A$

- let $\epsilon > 0$, for some $b \in A$, we have

$$\sup A - \epsilon < b \le \sup A \implies (x + \sup A) - \epsilon < x + b \le x + \sup A,$$
 i.e.,
$$\sup (x + A) = x + \sup A$$

- suppose x > 0 and A is bounded above:
 - for all $a \in A$, $a \le \sup A \implies xa \le x \sup A$, i.e., the set xA is bounded by $x \sup A$
 - let $\epsilon > 0 \implies \epsilon/x > 0$, for some $b \in A$, we have

$$\sup A - \epsilon/x < b \le \sup A \implies x \sup A - \epsilon < xb \le x \sup A,$$

i.e.,
$$\sup(xA) = x \sup A$$

Remark 2.22 Similarly, we can also show that:

- If $x \in \mathbf{R}$ and A is bounded below, then $\inf(x+A) = x + \inf A$.
- If x > 0 and A is bounded below, then $\inf(xA) = x \inf A$.
- If x < 0 and A is bounded below, then $\sup(xA) = x \inf A$.
- If x < 0 and A is bounded above, then $\inf(xA) = x \sup A$.

Theorem 2.23 Let $A, B \subseteq \mathbf{R}$ where $x \leq y$ for all $x \in A$, $y \in B$, then $\sup A \leq \inf B$.

proof: for all $x \in A$, $y \in B$, $x \le y \implies B$ is bounded below by $x \implies x \le \inf B \implies A$ is bounded above by $\inf B \implies \sup A \le \inf B$

Absolute value

Definition 2.24 If $x \in \mathbf{R}$, we define the **absolute value** of x as

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0. \end{cases}$$

Theorem 2.25

- $|x| \ge 0$, and, |x| = 0 if and only if x = 0.
- |-x| = |x| for all $x \in \mathbf{R}$.
- |xy| = |x||y| for all $x, y \in \mathbf{R}$.
- $|x|^2 = x^2$ for all $x \in \mathbf{R}$.
- $|x| \le y$ if and only if $-y \le x \le y$.
- $-|x| \le x \le |x|$ for all $x \in \mathbf{R}$.

Triangle inequality

Theorem 2.26 Triangle inequality. For all $x, y \in \mathbf{R}$,

$$|x+y| \le |x| + |y|.$$

proof: let $x, y \in \mathbf{R}$

 $\bullet \ x + y \le |x| + |y|$

•
$$-x + -y \le |-x| + |-y| = |x| + |y| \implies -(|x| + |y|) \le x + y$$

• hence, we have

$$-(|x|+|y|) \le x+y \le |x|+|y| \implies |x+y| \le |x|+|y|$$

Corollary 2.27 Reverse triangle inequality. For all $x, y \in \mathbf{R}$,

$$||x| - |y|| \le |x - y|.$$

Uncountabality of the real numbers

Definition 2.28 Let $x \in (0,1]$ and let $d_{-i} \in \{0,1,\ldots,9\}$. We say that x is represented by the digits $\{d_{-i} \mid i \in \mathbb{N}\}$, *i.e.*, $x = 0.d_{-1}d_{-2}\cdots$, if

$$x = \sup\{10^{-1}d_{-1} + 10^{-2}d_{-2} + \dots + 10^{-n}d_{-n} \mid n \in \mathbb{N}\}.$$

example:

$$0.2500 \dots = \sup\{\frac{2}{10}, \frac{2}{10} + \frac{5}{100}, \frac{2}{10} + \frac{5}{100} + \frac{5}{1000}, \dots\} = \sup\{\frac{1}{5}, \frac{1}{4}\} = \frac{1}{4}$$

Theorem 2.29

- For all set of digits $\{d_{-i} \mid i \in \mathbf{N}\}$, there exists a unique $x \in [0,1]$ such that $x = 0.d_{-1}d_{-2}\cdots$.
- For all $x \in (0,1]$, there exists a unique sequence of digits d_{-i} such that $x = 0.d_{-1}d_{-2}\cdots$ and

$$0.d_{-1}d_{-2}\cdots d_{-n} < x \le 0.d_{-1}d_{-2}\cdots d_{-n} + 10^{-n}$$
, for all $n \in \mathbb{N}$. (2.1)

• the second part indicates that the digital representation of 1/2 is $0.4999\cdots$

Theorem 2.30 Cantor. The set (0,1] is uncountable.

proof (by contradiction):

ullet assume (0,1] is countable, then there exists a bijection $x\colon \mathbf{N} \to (0,1]$, let

$$x(n) = 0.d_{-1}^{(n)}d_{-2}^{(n)}\cdots, n \in \mathbf{N},$$

where $d_{-i}^{(n)}$ denotes the ith decimal of the real number $x(n) \in (0,1]$, and let

$$e_{-i} = \begin{cases} 1 & d_{-i}^{(i)} \neq 1 \\ 2 & d_{-i}^{(i)} = 1 \end{cases}$$
 (2.2)

- let $y=0.e_{-1}e_{-2}\cdots$, since all e_{-i} are nonzero, e_{-1},e_{-2},\ldots satisfies (2.1); according to theorem 2.29, we have $0.e_{-1}e_{-2}\cdots$ being the unique decimal representation of y
- again according to theorem 2.29 and all e_{-i} are nonzero, we have $y \in (0,1] \implies \exists m \in \mathbb{N}, \ y = x(m) = 0.d_{-1}^{(m)}d_{-2}^{(m)}\cdots = 0.e_{-1}e_{-2}\cdots$, however, we have $e_{-m} \neq d_{-m}^{(m)}$ since (2.2), *i.e.*, for all $m \in \mathbb{N}$, $x(m) \neq y$, which is a contradiction

Corollary 2.31 The set of real numbers ${\bf R}$ is uncountable.

Real numbers 2–33