

Διερεύνηση του ρυθμού αποχωρήσεων πελατών από μία επιχείρηση τηλεπικοινωνιών (Costumers' churn rate investigation of a telco).

Data Organization and Data Mining

Οικονόμου Αλέξανδρος

AM: 2019119

# Χαρακτηριστικά Διερεύνησης:

- ο Γλώσσα προγραμματισμού: Python με χρήση scikit-learn.
- ο Λογισμικό/Πρόγραμμα: Visual Studio Code.
- Ζήτημα Α: Κατάλληλη εφαρμογή των αλγορίθμων συσταδοποίησης k-means,
   Agglomerative clustering, DBSCAN και σχολιασμός αποτελεσμάτων/συστάδων.
- Ζήτημα Β: Σύγκριση των αλγορίθμων κατηγοριοποίησης D-Tree, kNN και επιλογή του βέλτιστου/καλύτερου μοντέλου.

# Ζήτημα Α:

# **1.** (K-means)

Μετά από τις κατάλληλες αλλαγές στον κώδικα, την εκτέλεση του αλγορίθμου συσταδοποίησης k-means, την αποθήκευση του telco\_clusterAssignments.csv αρχείου αλλά και την μελέτη των δεδομένων του, παρατηρώ τα εξής:

# Κατάλληλη Επιλογή του Κ:

Βάζω K=5 λόγω του κατάλληλου σημείου στο SSE (Sum of Squares Error), όπως φαίνεται και στην παρακάτω εικόνα (Elbow method), στο οποίο παρατηρείτε μια άνοδος αγκόνα.



Image1: Elbow method

```
kmeans - telco_2023.py X
Python > 🧓 kmeans - telco_2023.py > ...
      from sklearn.cluster import KMeans
      import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      from pandas.plotting import parallel_coordinates
     telco = pd.read_csv('Datasets/telco_2023.csv')
      print(telco.head())
     print(telco.info())
      #Elbow method
      sse = []
      for i in range(1,11):
        kmeans = KMeans(n_clusters=i, n_init='auto')
         kmeans.fit(data)
         sse.append(kmeans.inertia_)
     plt.plot(range(1,11), sse, marker='o')
     plt.title('Elbow method')
plt.xlabel('Number of clusters')
     plt.ylabel('inertia/SSE')
     plt.savefig('Elbow method - telco.png')
     plt.show()
     #Applying k-means clustering with the appropriate number of clusters
     kmeans = KMeans(n_clusters=k, n_init='auto')
     kmeans.fit(data)
     print('SSE:', kmeans.inertia_)
print('Final locations of the centroid:', kmeans.cluster_centers_)
      print("The number of iterations required to converge", kmeans.n_iter_)
      telco['cluster'] = kmeans.labels_.tolist()
     #Ploting some clusters in scatter plots
      sns.scatterplot(x='longmon', y='tollmon', hue='cluster', data=telco)
      plt.show()
      sns.scatterplot(x='equipmon', y='cardmon', hue='cluster', data=telco)
     plt.show()
      sns.scatterplot(x='wiremon', y='ebill', hue='cluster', data=telco)
      plt.show()
      print(telco)
      #Saving cluster assignments to a csv file
      telco.to_csv('telco_clusterAssignments.csv')
     df['Clusters']=kmeans.labels_
     parallel_coordinates(df, 'Clusters', color=('#383c4a','#0a3661','#dcb536'))
 63 plt.show()
```

# ο Ανάλυση των 5 Clusters στο Excel:

#### Cluster 0:

Συνολικά 90 δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 5.

#### Cluster 1:

Συνολικά 192 δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 82.

#### Cluster 2:

Συνολικά 199 δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 31.

#### Cluster 3:

Συνολικά 447 δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 141.

#### Cluster 4:

Συνολικά 72 δεδομένα δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 15.

Άρα: Η 4η συστάδα (Cluster 3) θεωρείται η πιο προβληματική καθώς εκεί παρατηρείτε μεγαλύτερο ποσοστό πελατών που αποχώρησαν από την επιχείρηση τηλεπικοινωνιών.

## 2. (Agglomerative Clustering)

Μετά από τις κατάλληλες αλλαγές στον κώδικα, την εκτέλεση του αλγορίθμου Ιεραρχικής Συσταδοποίησης (Agglomerative Clustering), την αποθήκευση του telco\_clusterAssignmentsHierarchical.csv αρχείου αλλά και την μελέτη των δεδομένων του, παρατηρώ τα εξής:

# ο Κατάλληλη Επιλογή Αριθμού των Clusters:

Επιλέγω συνολικά 3 Clusters λόγω του παρακάτω Δενδρογράμματος (Dendrogram), στο οποίο χρησιμοποίησα ward μέθοδο και euclidean απόσταση. Επίσης, το έκοψα στο ύψος 450 για τον καλύτερο διαμοιρασμό των συστάδων (Clusters).





#### Image4: agglomerative - telco\_2023.py

```
🔁 agglomerative - telco_2023.py 🗙
Python > 🔁 agglomerative - telco_2023.py > ...
     #https://scipv.github.io/devdocs/reference/generated/scipy.cluster.hierarchy.dendrogram.html
#https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
      from scipy.cluster.hierarchy import dendrogram, linkage
      from sklearn.cluster import AgglomerativeClustering
      import seaborn as sn
      from pandas.plotting import parallel_coordinates
      telco = pd.read_csv('Datasets/telco_2023.csv')
      #Using 'ward' method and 'euclidean' metric.
linkage_data = linkage(data, method='ward', metric='euclidean')
     dendrogram(linkage_data, color_threshold=450) #Cutting the dendrogram at 450
     plt.savefig('Dendrogram - telco.png')
      hierarchical_cluster = AgglomerativeClustering(n_clusters=3, metric='euclidean', linkage='ward')
      labels = hierarchical_cluster.fit_predict(data)
      telco['cluster'] = hierarchical_cluster.labels_.tolist()
sns.scatterplot(x='longmon', y='equipmon', hue='cluster', data=telco, color='blue')
     plt.show();
      telco.to_csv('telco_clusterAssignmentsHierarchical.csv')
     df['Clusters']=hierarchical cluster.labels
      parallel_coordinates(df, 'Clusters', color=('#383c4a','#0a3661','#dcb536'))
```

## ο Ανάλυση των 3 Clusters στο Excel:

#### Cluster 0:

Συνολικά 493 δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 139.

#### Cluster 1:

Συνολικά 202 δεδομένο/γραμμή (πελάτης).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι 87.

#### Cluster 2:

Συνολικά 305 δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 48.

Άρα: Η 1η συστάδα (Cluster 0) θεωρείται η πιο προβληματική καθώς εκεί παρατηρείτε μεγαλύτερο ποσοστό πελατών που αποχώρησαν από την επιχείρηση τηλεπικοινωνιών.

## 3. (DBSCAN)

Μετά από τις κατάλληλες αλλαγές στον κώδικα, την εκτέλεση του αλγορίθμου Βάση Πυκνότητας (DBSCAN), την αποθήκευση του telco\_clusterAssignmentsDBScan.csv αρχείου αλλά και την μελέτη των δεδομένων του, παρατηρώ τα εξής:

# ο Κατάλληλη Επιλογή epsilon και min\_samples:

Αρχικά, επιλέγω min\_samples=5 επειδή το σύνολο δεδομένων είναι δυσδιάστατο (γενικά το MinPts/min\_samples θα πρέπει να είναι μεγαλύτερο ή ίσο με τη διάσταση του συνόλου δεδομένων). Επέλεξα το 5 διότι παρατηρείτε μικρότερος θόρυβος στα δεδομένα σε σχέση με το 4. Στην συνέχεια και σύμφωνα με το παρακάτω k-dist Graph, κατέληξα ότι epsilon=18 είναι η καλύτερη τιμή, επειδή στο συγκεκριμένο σημείο παρατηρείται η άνοδος της καμπύλης. Επομένως, θα έχουμε K=2 (2 Clusters).





#### Image6: dbscan - telco\_2023.py

```
🔁 dbscan - telco_2023.py 🗙
Python > dbscan - telco_2023.py > ...
      from sklearn.cluster import DBSCAN
      import pandas as pd
      import numpy as np
      import seaborn as sns
      import matplotlib.pyplot as plt
      from pandas.plotting import parallel_coordinates
      telco = pd.read_csv('Datasets/telco_2023.csv')
      data = telco[['longmon', 'tollmon', 'equipmon', 'cardmon', 'wiremon',
                     'multline', 'voice', 'pager', 'internet', 'forward', 'confer', 'ebill']]
       from sklearn.neighbors import NearestNeighbors # importing the library
      neighb = NearestNeighbors(n_neighbors=2) # creating an object of the NearestNeighbors class
      nbrs=neighb.fit(data) # fitting the data to the object
      distances,indices=nbrs.kneighbors(data) # finding the nearest neighbours
      distances = np.sort(distances, axis = 0) # sorting the distances
      distances = distances[:, 1] # taking the second column of the sorted distances
      plt.plot(distances) # plotting the distances
      plt.show() # showing the plot
      neighb = NearestNeighbors(n_neighbors=4) # creating an object of the NearestNeighbors class
      nbrs=neighb.fit(data) # fitting the data to the object
      distances,indices=nbrs.kneighbors(data) # finding the nearest neighbours
      # Sort and plot the distances results
      distances = np.sort(distances, axis = 0) # sorting the distances
      distances = distances[:, 1] # taking the second column of the sorted distances
      plt.plot(distances) # plotting the distances
      plt.savefig('K-dist Graph - telco.png')
      plt.show() # showing the plot
      #parameter eps=18, min_samples=5
      dbscan = DBSCAN(eps = 18, min_samples = 5)
      dbscan.fit(data)
      telco['cluster'] = dbscan.labels_.tolist()
      sns.scatterplot(x='longmon', y='equipmon', hue='cluster', data=telco, color='blue')
      plt.show();
      print(telco)
       telco.to_csv('telco_clusterAssignmentsDBScan.csv')
      df = pd.DataFrame(telco ,columns = ['longmon', 'tollmon', 'equipmon', 'cardmon', 'wiremon',
                                           'multline', 'voice', 'pager', 'internet', 'forward', 'confer', 'ebill'])
      df['Clusters']=dbscan.labels_
      print(df)
      parallel_coordinates(df, 'Clusters',color=('red','blue','green', "yellow", "black"))
      plt.show()
```

## ο Ανάλυση των 2 Clusters στο Excel:

#### Cluster -1:

Συνολικά 54 δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 9.

#### Cluster 0:

Συνολικά 946 δεδομένα/γραμμές (πελάτες).

Τα δεδομένα με churn = 1 (αποχώρηση από την εταιρία) είναι συνολικά 265.

Άρα: Η 2η συστάδα (Cluster 0) θεωρείται ξεκάθαρα η πιο προβληματική καθώς εκεί παρατηρείτε μεγαλύτερο ποσοστό πελατών που αποχώρησαν από την επιχείρηση τηλεπικοινωνιών.

# Ζήτημα Β:

Μετά από τις κατάλληλες αλλαγές στους κώδικες και την εκτέλεση των αλγορίθμων κατηγοριοποίησης του Δέντρου Αποφάσεων (Decision Tree) και Κ-εγγύτερων Γειτόνων (kNN) αντίστοιχα, διαπίστωσα τα εξής:

ο Ανάλυση Αποτελεσμάτων των x-fold cross validation:

Αρχικά, εκτελώ 10-fold cross validation για τον κάθε αλγόριθμο ξεχωριστά, επειδή θεωρείται ως μία από τις πιο αξιόπιστες μεθόδους για την αποτίμηση της ακρίβειας (accuracy). Τα αποτελέσματα της εκτέλεσης είναι τα εξής:

dt crossvalidation – telco 2023.py (Έξοδος/Output):

Accuracy of each fold - [0.7, 0.71, 0.71, 0.76, 0.65, 0.68, 0.63, 0.67, 0.58, 0.66]

Avg accuracy: 0.675

kNN\_crossvalidation – telco.py (Έξοδος/Output):

Accuracy of each fold - [0.71, 0.67, 0.75, 0.81, 0.74, 0.8, 0.73, 0.71, 0.72, 0.68]

Avg accuracy: 0.732

## Ανάλυση Αποτελεσμάτων των αλγορίθμων kNN και D-Tree:

Έπειτα, εκτελώ τους αλγορίθμους kNN και D-Tree προκειμένου να βρω τις κατάλληλες τιμές της ορθότητας (precision), της ευαισθησίας (recall) και του F-score αντίστοιχα. Τα αποτελέσματα της εκτέλεσης είναι τα εξής:

## dt – telco\_2023.py (Έξοδος/Output):

Precision: 0.345

Recall: 0.392

F-score: 0.367

# kNN– telco.py (Έξοδος/Output):

Precision: 0.514

Recall: 0.446

F-score: **0.477** 

Άρα: Εξαιτίας της υψηλότερης ακρίβειας του κάθε fold (Accuracy of each fold), της υψηλότερης μέσης ακρίβειας (Avg accuracy) αλλά και της καλύτερης ορθότητας (Precision), ευαισθησίας (Recall) και του F-score, διαπιστώνω ότι καλύτερος αλγόριθμος για τα συγκεκριμένα δεδομένα είναι ο k-Neirest Neighbors (kNN).

Image7: dt\_crossvalidation - telco\_2023.py

```
dt_crossvalidation - telco_2023.py ×
Python > 👶 dt_crossvalidation - telco_2023.py > ...
       import pandas as pd
       from sklearn.model_selection import KFold
       import matplotlib.pyplot as plt
       filename = 'Datasets/telco_2023.csv'
       data = pd.read_csv(filename)
      kf = KFold(n_splits=k, random_state=None)
model = DecisionTreeClassifier()
       acc score = []
       for train_index , test_index in kf.split(attr):
    X_train , X_test = attr.iloc[train_index,:], attr.iloc[test_index,:]
    y_train , y_test = classlabel[train_index] , classlabel[test_index]
          model.fit(X_train, y_train)
           pred_values = model.predict(X_test)
           acc = metrics.accuracy_score(pred_values , y_test)
           acc_score.append(acc)
       avg_acc_score = sum(acc_score)/k
       print(('Accuracy of each fold - {}'.format(acc_score)())
       print('Avg accuracy : {}'.format(avg_acc_score))
```

#### Image8: dt - telco\_2023.py

```
💡 dt - telco_2023.py 🗙
Python > dt - telco_2023.py > ...
  1 import pandas as pd
       from sklearn import metrics
       from sklearn.model_selection import train_test_split
       filename = 'Datasets/telco_2023.csv'
      data = pd.read_csv(filename)
      classlabel = data.iloc[:, -1]
      attr = data[['longmon', 'tollmon', 'equipmon', 'cardmon', 'wiremon',
| 'multline', 'voice', 'pager', 'internet', 'forward', 'confer', 'ebill']]
      attr_train, attr_test, class_train, class_test = train_test_split(attr, classlabel, test_size=0.2, random_state=42)
       model = DecisionTreeClassifier()
      model.fit(attr_train, class_train)
      predictions = model.predict(attr_test)
      precision = metrics.precision_score(class_test, predictions)
      recall = metrics.recall_score(class_test, predictions)
      fscore = metrics.f1_score(class_test, predictions)
      print('Precision:', precision)
     print('Recall:', recall)
print('F-score:', fscore)
```

Image9: kNN\_crossvalidation - telco\_2023.py

```
kNN_crossvalidation - telco_2023.py ×
Python > Python > kNN_crossvalidation - telco_2023.py > ...
      import pandas as pd
      from sklearn.neighbors import KNeighborsClassifier
     from sklearn.model_selection import KFold
      from sklearn import metrics
      import matplotlib.pyplot as plt
      filename = 'Datasets/telco_2023.csv'
      data = pd.read_csv(filename)
     k=10
      kf = KFold(n_splits=k, random_state=None)
      model = KNeighborsClassifier(n_neighbors=5)
      acc_score = []
      for train_index , test_index in kf.split(attr):
          X_train , X_test = attr.iloc[train_index,:], attr.iloc[test_index,:]
          y_train , y_test = classlabel[train_index] , classlabel[test_index]
          model.fit(X_train, y_train)
         pred_values = model.predict(X_test)
 27
          acc = metrics.accuracy_score(pred_values , y_test)
          acc_score.append(acc)
      avg_acc_score = sum(acc_score)/k
      print('Accuracy of each fold - {}'.format(acc_score))
      print('Avg accuracy : {}'.format(avg_acc_score))
```

#### Image10: kNN - telco\_2023.py