MATH 601 (DUE 9/25)

HIDENORI SHINOHARA

Exercise. (Problem 1) Define $\gamma: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}[\sqrt{2}]$ by $\gamma(a+b\sqrt{2}) = a-b\sqrt{2}$. Show that γ is a ring isomorphism and compute its inverse.

Proof. Let $a + b\sqrt{2}$, $c + d\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ be given.

$$\begin{split} \gamma((a+b\sqrt{2}) + (c+d\sqrt{2})) &= \gamma((a+c) + (b+d)\sqrt{2}) \\ &= (a+c) - (b+d)\sqrt{2} \\ &= (a-b\sqrt{2}) + (c-d\sqrt{2}) \\ &= \gamma(a+b\sqrt{2}) + \gamma(c+d\sqrt{2}). \\ \gamma((a+b\sqrt{2})(c+d\sqrt{2})) &= \gamma((ac+2bd) + (ad+bc)\sqrt{2}) \\ &= (ac+2bd) - (ad+bc)\sqrt{2} \\ &= (ac+2(-b)(-d)) + (a(-d) + (-b)c)\sqrt{2} \\ &= (a-b\sqrt{2})(c-d\sqrt{2}) \\ &= \gamma(a+b\sqrt{2})\gamma(c+d\sqrt{2}). \end{split}$$

Moreover, $\gamma(1) = 1 - 0\sqrt{2} = 1$. Therefore, γ is a ring homomorphism. For any $a + b\sqrt{2}$, $\gamma(\gamma(a+b\sqrt{2})) = \gamma(a-b\sqrt{2}) = a+b\sqrt{2}$. Therefore, γ has an inverse, and the inverse of γ is γ . This implies that γ is bijective.

In conclusion, γ is an isomorphism and its inverse is itself.

Exercise. (Problem 2) Define $N: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$ by $N(a+b\sqrt{2}) = (a+b\sqrt{2})\gamma(a+b\sqrt{2})$. Show that $N(\beta) = N(\alpha)N(\beta)$.

Proof. Let $a + b\sqrt{2}$, $c + d\sqrt{2}$ be given.

$$\begin{split} N((a+b\sqrt{2})(c+d\sqrt{2})) &= N((ac+2bd) + (ad+bc)\sqrt{2}) \\ &= ((ac+2bd) + (ad+bc)\sqrt{2})\gamma((ac+2bd) + (ad+bc)\sqrt{2}) \\ &= (a+b\sqrt{2})(c+d\sqrt{2})\gamma((a+b\sqrt{2})(c+d\sqrt{2})) \\ &= (a+b\sqrt{2})(c+d\sqrt{2})\gamma(a+b\sqrt{2})\gamma(c+d\sqrt{2}) \\ &= (a+b\sqrt{2})\gamma(a+b\sqrt{2})(c+d\sqrt{2})\gamma(c+d\sqrt{2}) \\ &= N(a+b\sqrt{2})N(c+d\sqrt{2}). \end{split}$$

Exercise. (Problem 4) What does finding the units in $\mathbb{Z}[\sqrt{2}]$ have to do with solving the equation $x^2 - 2y^2 = \pm 1$?

Proof. Let (a,b) be a solution to the equation. Then $a^2 - 2b^2 = \pm 1$, so $(a+b\sqrt{2})(a-b\sqrt{2}) = \pm 1$. This implies that $a \pm b\sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$.

On the other hand, let $a+b\sqrt{2}$ be a unit in $\mathbb{Z}[\sqrt{2}]$. By Problem 3, $N(a+b\sqrt{2})=\pm 1$. Thus $\pm 1=N(a+b\sqrt{2})=(a+b\sqrt{2})(a-b\sqrt{2})=a^2-b^2$. Hence, (a,b) is a solution to $x^2-2y^2=\pm 1$.

In conclusion, there exists a bijective correspondence between the units in $\mathbb{Z}[\sqrt{2}]$ and the solutions to $x^2 - 2y^2 = \pm 1$.