W1&2

A is a proper subset of B A 是 B 的真子集

$A\cap B$	The intersection of the sets A and B : $A\cap B=\{x\mid x\in A\ and\ x\in B\}.$
$A\setminus B$	The difference of the sets A and B : $A\setminus B=\{x\mid x\in A\ but\ x otin B\}.$

Set	Description
The natural numbers, $\mathbb N$	The positive whole numbers $\{1,2,3,4,\ldots\}$.
The integers, $\mathbb Z$	All positive and negative whole numbers $\{\dots,-3,-2,-1,0,1,2,3,\dots\}$. Note that $\mathbb{N}\subset\mathbb{Z}$.
The rational numbers, $\mathbb Q$	These are fractions, such as $\frac{1}{2},-\frac{5}{4},2$ (since $2=\frac{2}{1}$). Since we can write every integer as a fraction, $\mathbb{Z}\subset\mathbb{Q}$.
The real numbers, $\mathbb R$	This set includes all of the rational numbers, as well as other numbers that can't be represented as fractions, such as $\sqrt{2}$ and π . The best way to think of it is by forming a number line where you fill in all the gaps between rational numbers. We have $\mathbb{Q} \subset \mathbb{R}$.
The complex numbers, ${\mathbb C}$	An extension of the real numbers to incorporate $\sqrt{-1}$ and similar numbers. We won't focus on these in this course.

rational number Q 有理数 real number R 实数 complex number C 虚数 0不是自然数,不属于N

The statement 'if A is true then B is true' can also be read as 'A implies B', and is often written as $A \Rightarrow B$.

If we have both $A\Rightarrow B$ and $B\Rightarrow A$, then we say 'A is true if and only if B is true'. This is often written as 'A is true iff B is true', where 'iff' is an abbreviation for 'if and only if'. This can also be written as $A\Leftrightarrow B$.

In this course (and in much of mathematics, statistics, and data science) we most commonly work with logarithms in base e.

This means we generally use $\log(x)$ to denote the *natural logarithm* of x. You may previously have seen this written instead as $\ln(x)$.

We will use $\log_k(x)$ to denote the logarithm of x in some base k, e.g., $\log_{10}(x)$ for log in base 10, $\log_2(x)$ for log in base 2.

Polynomials 多项式 quadratic 二次的 rational function 有理函数 piecewise function 分段函数 Logistic function

i Logistic function

This is the type of function being plotted in Figures 1.14 and 1.15 on <u>Week 1: Functions — Motivating Example: A Statistical Model</u>. The logistic function $f(x) = \operatorname{logistic}(x)$ is defined by:

logistic(x) =
$$\frac{1}{1 + e^{-(ax+b)}} = \frac{e^{ax+b}}{1 + e^{ax+b}}$$

for constants $a,b\in\mathbb{R}$. This function is essential in *logistic regression*.

logit function

i Logit function

Very much connected to the logistic function is the *logit* function, in that they are inverse functions of each other (as we will discover in the next sections). It is defined as:

$$\operatorname{logit}(x) = \operatorname{log}(\frac{x}{1-x})$$

and is the inverse for the logistic function if a=1 and b=0 (see later in this section for what an inverse function is).

ReLU and softplus

i ReLU and softplus

The rectified linear unit (ReLU) function is a common activation function in neural networks. It is defined as:

$$ext{ReLU}(x) = \left\{egin{array}{ll} x & ext{if } x \geq 0, \ 0 & ext{if } x < 0. \end{array}
ight.$$

The domain and range are the same as for |x|.

A smooth approximation to this function is the softplus function:

$$softplus(x) = log(1 + e^x)$$

the domain of function 函数的自变量范围 the range of function 函数的值范围

quotient 商

the sum
$$f+g: (f+g)(x)=f(x)+g(x)$$

difference
$$f - g$$
: $(f - g)(x) = f(x) - g(x)$

product
$$f \cdot g$$
: $(f \cdot g)(x) = f(x)g(x)$

quotient
$$\frac{f}{g}$$
: $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$

复合函数

Definition: Composition of functions

$$(f\circ g)(x)=f(g(x))$$
 and $(g\circ f)(x)=g(f(x))$

Domains of $f\circ g$ and $g\circ f$

In general, the domain of $f\circ g$ (or $g\circ f$) depends on both the domain of f and g. The composition $f\circ g$ has domain $\{x\in\mathcal{D}(g)\mid g(x)\in\mathcal{D}(f)\}$.

horizontal 水平的

The inverse function of f(x) is usually written as $f^{-1}(x)$,

linear operator.

Definition: Linear operator

An operator L is *linear* if for all functions f and g, and every scalar $c \in \mathbb{R}$,

$$L(cf) = cL(f)$$

$$L(f+g) = L(f) + L(g).$$

1.
$$\sum_{i=1}^{n} 1 = \underbrace{1 + \dots + 1}_{n} = n$$

2.
$$\sum_{j=0}^n ar^j = a + ar + ar^2 + \cdots + ar^n = a \frac{1-r^{n+1}}{1-r}$$
 is the geometric sum.

3.
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$$

4.
$$\sum_{i=1}^n i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} = \frac{n}{6}(2n^2 + 3n + 1) = \frac{n}{6}(2n + 1)(n + 1)$$

Multiple Summation

\(\left(\)
$$\sum_{1 \leq (j,k) \leq 3} a_j b_k = a_1 b_1 + a_1 b_2 + a_1 b_3 + a_2 b_1 + a_2 b_2 + a_2 b_3 + a_3 b_1 + a_3 b_2 + a_3 b_3$$
\\\\\\\\\\\\}

$$\sum_{j=1}^{3} \left(\sum_{k=1}^{3} a_j b_k \right)$$

结合律 Associativity

$$\sum_{j \;\in\; J} \;\sum_{k \;\in\; K} \;a_{j,k} \;=\; \sum_{k \;\in\; K} \sum_{j \;\in\; J} \;a_{j,k}$$

分配律 Distributivity

$$\sum\limits_{j \in J, k \in K} a_j b_k = \left(\sum\limits_{j \in J} a_j
ight) \left(\sum\limits_{k \in K} b_k
ight)$$

$$\sum\limits_{j=1}^{3}\left(\sum\limits_{k=1}^{3}a_{j}b_{k}
ight)=\left(\sum\limits_{j=1}^{3}a_{j}
ight)\left(\sum\limits_{k=1}^{3}b_{k}
ight)$$

判断级数是否收敛

$oldsymbol{p}$ -series

The p-series $\sum\limits_{n=1}^{\infty} rac{1}{n^p}$ is convergent if p>1 and divergent if $p\leq 1$.

Geometric series

The geometric series $\sum\limits_{n=0}^{\infty}x^n=1+x+x^2+\ldots$ is convergent if |x|<1 and divergent if $|x|\geq 1$

Vanishing criterion

If a series $\sum_{n=0}^{\infty}a_n$ converges then $a_n o 0$ as $n o \infty$. Another way of saying this is that if $\lim_{n o \infty}a_n$ is **not** equal to zero, then the series $\sum_{n=0}^{\infty}a_n$ diverges.

vanishing criterion 反之不成立

