Amendments to the Claims

1. (Original) A compound represented by Formula (1) or Formula (2):

$$Ra - \left(A^{12} - Z^{12}\right) + \left(A^{11} - Z^{11}\right) + \left(A^{1} - Y\right) + \left(Z^{2} - A^{2}\right) + \left(Z^{21} - A^{21}\right) + \left(Z^{22} - A^{22}\right) + \left(Z^{22} - A^{22}\right) + \left(Z^{21} - A^{21}\right) + \left(Z^{22} - A^{22}\right) + \left(Z^{21} - A^{21}\right) + \left$$

$$\begin{array}{c} F_{3}C \\ F_{3$$

in which Ra and Rb each independently is hydrogen or alkyl of 1 to 20 carbon atoms; in the alkyl, arbitrary -CH₂- may be replaced by -O-, -S-, -CO- or -SiH₂-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by halogen;

 A^{1} , A^{11} , A^{2} , A^{2} and A^{22} each independently is 1,4-cyclohexylene, 1,4-phenylene, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or naphthale-2,6-diyl; in the rings, one or not-adjacent two -CH₂- may be replaced by -O-, -S-, -CO-, or -SiH₂-, and arbitrary hydrogen may be replaced by halogen;

Y is a single bond, $-(CH_2)_2$ -, -CH=CH-, -CF=CF-, $-CF_2O$ -, $-OCF_2$ -, $-CH_2CO$ -, $-COCH_2$ -, $-CH_2SiH_2$ -, $-SiH_2CH_2$ -, $-(CH_2)_4$ -, -CH=CH-(CH_2)₂-, $-(CH_2)_2$ -CH=CH-, $-(CH_2)_2$ CF₂O-, or $-OCF_2(CH_2)_2$ -;

W is -(CH₂)₂-, -CH=CH-, -CF=CF-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH₂CO-, -COCH₂-, -CH₂SiH₂-, -SiH₂CH₂-, -(CH₂)₄-, -(CH₂)₃-O-, -O-(CH₂)₃-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -(CH₂)CF₂O-, or $-OCF_2(CH_2)$ -;

 Z^{11} , Z^{12} , Z^2 , Z^{21} and Z^{22} each independently is a single bond, -(CH₂)₂-, -COO-, -OCO-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH=CH-, -CF=CF-, -CH₂CO-, -COCH₂-, -(CH₂)₄-, -(CH₂)₃-O-, -O-(CH₂)₃-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -(CH₂)₂CF₂O-, or -OCF₂ (CH₂)₂-;

j, k, m, n, p and q each independently is 0 or 1, and the sum of them is 1, 2 or 3; when m is 0, each of j and k is 0, Ra in Formula (1) is none of hydrogen, alkoxy, or alkoxymethyl, and Ra in Formula (2) is 1-alkenyl.

- 2. (Original) The compound according to claim 1, wherein the sum of j, k and m, and the sum of n, p and q each independently is 1 or 2.
- 3. (Original) The compound according to claim 1, which is represented by any one of Formula (1-1) to Formula (1-9) and Formula (2-1) to Formula (2-9).

$$HF_2C$$
 F $Ra-A^1-Y$ Rb $(1-1)$

$$HF_2C$$
 F Z^2-A^2-Rb (1-2)

$$HF_2C$$
 F
 $Ra-A^{11}-Z^{11}-A^1-Y$ Rb (1-3)

$$HF_2C F$$

$$Ra - A^1 - Y - Z^2 - A^2 - Rb$$

$$(1-4)$$

$$HF_2C$$
 F

 $Ra \longrightarrow Z^2 - A^2 - Z^{21} - A^{21} - Rb$ (1-5)

$$HF_{2}C F$$

$$Ra-A^{12}-Z^{12}-A^{11}-Z^{11}-A^{1}-Y - Rb$$
 (1-6)

$$HF_2C$$
 F
 $Ra-A^{11}-Z^{11}-A^1-Y$ Z^2-A^2-Rb (1-7)

$$HF_2C$$
 F

 $Ra - A^1 - Y - Z^2 - A^2 - Z^{21} - A^{21} - Rb$ (1-8)

$$HF_2C$$
 F $Ra \longrightarrow Z^2 - A^2 - Z^{21} - A^{21} - Z^{22} - A^{22} - Rb$ (1-9)

$$F_3C$$
 F $Ra-A^1-W$ Rb (2-1)

$$F_3C$$
 F $Ra \longrightarrow Z^2 - A^2 - Rb$ (2-2)

$$F_3C$$
 F

Ra-A¹¹-Z¹¹-A¹-W-Rb (2-3)

$$F_{3}C F$$

$$Ra-A^{12}-Z^{12}-A^{11}-Z^{11}-A^{1}-W - Rb$$
(2-6)

$$F_3C$$
 F

Ra-A¹¹-Z¹¹-A¹-W Z²-A²-Rb (2-7)

in which Ra and Rb each independently is hydrogen or alkyl of 1 to 20 carbon atoms; in the alkyl, arbitrary -CH₂- not situated on the terminal may be replaced by -O-, -S-, or -CO-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by halogen;

A1, A¹¹, A¹², A², A²¹ and A²² each independently is 1,4-cyclohexylene, 1,4-phenylene, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or naphthalene-2,6-diyl; and in the rings, one or not-adjacent two -CH₂- may be replaced by -O-, -S- or -CO-, and arbitrary hydrogen may be replaced by halogen;

Y is a single bond, $-(CH_2)_2$ -, -CH=CH-, -CF=CF-, $-CF_2O$ -, $-OCF_2$ -, $-CH_2CO$ -, $-COCH_2$ -, $-CH_2SiH_2$ -, $-SiH_2CH_2$ -, $-(CH_2)_4$ -, -CH=CH-(CH_2)₂-, $-(CH_2)_2$ -CH=CH-, $-(CH_2)_2$ -CF₂O-, or $-OCF_2(CH_2)_2$ -;

W is –(CH₂)₂-, -CH=CH-, -CF=CF-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH₂CO-, -COCH₂-, -CH₂SiH₂-, -SiH₂CH₂-, -(CH₂)₄-, -(CH₂)₃-O-, -O-(CH₂)₃-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -(CH₂)₂CF₂O-, or –OCF₂(CH₂)₂-;

 Z^{11} , Z^{12} , Z^2 , Z^{21} and Z^{22} each independently is a single bond, -(CH₂)₂-, -COO-, -OCO-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH=CH-, -CF=CF-, -CH₂CO-, -COCH₂-, -(CH₂)₄-, -(CH₂)₃-O-, -O-(CH₂)₃-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -(CH₂)₂CF₂O-, or -OCF₂(CH₂)₂-;

Ra is none of hydrogen, alkoxy and alkoxymethyl in Formula (1-2), Formula (1-5) and formula (1-9); and Ra is 1-alkenyl in Formula (2-2), Formula (2-5) and Formula (2-9).

4. (Original) The compound according to claim 3, wherein Ra and Rb each independently is alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, alkoxyalkyl of 2 to 10 carbon atoms, alkenyl of 2 to 10 carbon atoms, alkenyloxy of 3 to 10 carbon atoms, perfluoroalkyl of 1 to 10 carbon atoms, or perfluoroalkoxy of 1 to 10 carbon atoms;

A¹, A¹¹, A¹², A², A²¹ and A²² each independently is 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 4,6-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or naphthalene-2,6-diyl;

 Z^{11} and Z^{12} each independently is a single bond, -(CH₂)₂-, -COO-, -OCO-,-CF₂O-, -OCF₂-, -CH=CH-, -(CH₂)₄-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -(CH₂)₂CF₂O-, or -OCF₂(CH₂)₂-;

 Z^2 , Z^{21} and Z^{22} each independently is a single bond, -(CH₂)₂-, -COO-, -OCO-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH=CH-, -CF=CF-, -(CH₂)₄-, -(CH₂)₃-O-, -O-(CH₂)₃-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -(CH₂)₂CF₂O-, or -OCF₂ (CH₂)₂-;

Y is a single band, -(CH₂)₂-, -CH=CH-, -CF₂O-, -OCF₂, -(CH₂)₄-, -(CH₂)₂CF₂O-, or -OCF₂(CH₂)₂-; and

W is -(CH₂)₂-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH=CH-, -(CH₂)₄-, -(CH₂)₃-O-, -O-(CH₂)₃-, -(CH₂)₂CF₂O-, or $-OCF_2(CH_2)_2$ -.

5. (Original) The compound according to claim 3, wherein Ra and Rb each independently is alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, alkoxyalkyl of 2 to 10 carbon atoms, or alkenyl of 2 to 10 carbon atoms;

A¹, A¹¹, A¹², A², A²¹ and A²² each independently is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, or 2,3-difluoro-1,4-phenylene;

 Z^{11} and Z^{12} each independently is a single bond, -(CH₂)₂-, -CF₂O-, -OCF₂-, -CH=CH-, -(CH₂)₄-, CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -(CH₂)₂CF₂O-, or -OCF₂(CH₂)₂-;

 Z^2 , Z^{21} and Z^{22} each independently is a single bond, -(CH₂)₂-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH=CH-, -(CH₂)₂CF₂O-, or -OCF₂(CH₂)₂-;

Y is a single band, -(CH₂)₂-, -CH=CH-, -CF₂O-, -OCF₂, -(CH₂)₄-, -(CH₂)₂CF₂O-, or -OCF₂(CH₂)₂-; and

W is -(CH₂)₂-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH=CH-, -(CH₂)₄-, -(CH₂)₃-O-, -O-(CH₂)₃-, -(CH₂)₂CF₂O-, or -OCF₂(CH₂)₂-.

6. (Original) The compound according to claim 3, wherein Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, and Rb is alkoxy of 1 to 10 carbon atoms;

A¹, A¹¹, A¹², A², A²¹ and A²² each independently is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 3-fluoro-1,4-phenylene;

 Z^{11} and Z^{12} each independently is a single bond, or -CH=CH-;

 Z^2 , Z^{21} and Z^{22} each independently is a single bond, -CH₂O-, -OCH₂-, -CF₂O-, -or OCF₂-,;

Y is a single bond, -(CH₂)₂-, -CH=CH-, -CF₂O-, -OCF₂-, -(CH₂)₄-, -(CH₂)₂CF₂O-, or -OCF₂(CH₂)₂-; and

W is -(CH₂)₂-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -CH=CH-, -(CH₂)₄-, -(CH₂)₃-O-, -O-(CH₂)₃-, -(CH₂)₂CF₂O-, or $-OCF_2(CH_2)_2$ -.

- 7. (Currently amended) The compound according to any one of claims 3 to 6 claim 3, wherein A¹ or A² is 1,4-cyclohexylene.
- 8. (Currently amended) The compound according to any one of claims 3 to 6 claim $\underline{3}$, wherein A^1 or A^2 is 1,4-phenylene.
- 9. (Currently amended) The compound according to any one of claims 3 to 6 claim $\underline{3}$, wherein Y or Z^2 is a single bond in Formula (1-1) to Formula (1-9), and Z^2 is a single bond in Formula (2-1) to Formula (2-9).
- 10. (Currently amended) The compound according to any one of claims 3 to 6 claim $\underline{3}$, wherein A^1 or A^2 is 1,4-cyclohexylene, Y or Z^2 is a single bond in Formula (1-1) to Formula (1-9), and Z^2 is a single bond in Formula (2-1) to Formula (2-9).
- 11. (Currently amended) The compound according to any one of claims 3 to 6 claim 3, wherein A^1 or A^2 is 1,4-cyclohexylene, Y or Z^2 is a single bond in Formula (1-1) to Formula (1-9), and Z^2 is a single bond in Formula (2-1) to Formula (2-9).
- 12. (Currently amended) The compound according to any one of claims 3 to 6 claim 3, which is represented by any one of Formula (2-1), Formula (2-3), Formula (2-4), Formula (2,6), Formula (2-7) and Formula (2-8); in which A¹ is 1,4-cyclohexylene.
- 13. (Currently amended) The compound according to any one of claims 3 to 6 claim $\underline{3}$, which is represented by Formula (2-1); in which A^1 is 1,4-cyclohexylene, and W is $(CH_2)_2$ -, $-CH_2O$ -, or $-CF_2O$ -.
- 14. (Currently amended) The compound according to any one of claims 3 to 6 claim $\underline{3}$, which is represented by Formula (2-3); in which any of A^1 and A^{11} is 1,4-cyclohexylene, Z^{11} is a single bond, and W is -(CH₂)₂-, -CH₂O⁻, or -CF₂O-.

- 15. (Currently amended) The compound according to any one of claims 3 to 6 claim 3, which is represented by Formula (2-6); in which any of A^1 , A^{11} and A^{12} is 1,4-cyclohexylene; any of Z^{11} and Z^{12} is a single bond; and W is -(CH₂)₂-, -CH₂-O- or -CF₂O-.
- 16. (Currently amended) The compound according to any one of claims 3 to 6 claim $\underline{3}$, which is represented by any one of Formula (1-2), Formula (1-4), Formula (1-5), Formula (1-7), Formula (1-8), and Formula (1-9); in which Z^2 is -CH₂O-, -OCH₂-, -CF₂O- or -OCF₂-.
- 17. (Original) The compound according to claim 3, which is represented by Formula (1-3); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, any of A^1 and A^{11} is 1,4-cyclohexylene, and any of Y and Z^{11} is a single bond.
- 18. (Original) The compound according to claim 3, which is represented by Formula (1-3); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, any of A^1 and A^{11} is 1,4-cyclohexylene, Y is -CH₂CH₂-, and Z^{11} is a single bond.
- 19. (Original) The compound according to claim 3, which is represented by Formula (1-3); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, A¹ is 1,4-phenylene, A¹¹ is 1,4-cyclohexylene, and any of Y and Z¹¹ is a single bond.
- 20. (Currently amended) The compound according to any one of claims 3 to 6 claim $\underline{3}$, which is represented by Formula (1-3); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atom, Rb is alkoxy of 1 to 10 carbon atoms, any of A^1 and A^{11} is 1,4-phenylene, and any of Y and Z^{11} is a single bond.

- 21. (Original) The compound according to claim 3, which is represented by Formula (1-1); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, A¹ is 1,4-cyclohexylene, and Y is a single bond.
- 22. (Original) The compound according to claim 3, which is represented by Formula (1-1); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, A¹ is 1,4-cyclohexylene, and Y is -CH₂CH₂.
- 23. (Original) The compound according to claim 3, which is represented by Formula (2-1); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, A¹ is 1,4-cyclohexylene, and W is -(CH₂)₂-.
- 24. (Original) The compound according to claim 3, which is represented by Formula (2-1); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, A¹ is 1,4-cyclohexylene, and W is -CH₂O-.
- 25. (Original) The compound according to claim 3, which is represented by Formula (2-1); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, A¹ is 1,4-phenylene, and W is -(CH₂)₂-.
- 26. (Original) The compound according to claim 3, which is represented by Formula (2-3); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, any of A^1 and A^{11} is 1,4-cyclohexylene, Z^{11} is a single bond, and W is -(CH₂)₂-.
- 27. (Original) The compound according to claim 3, which is represented by Formula (2-3); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, any of A¹ and A¹¹ is 1,4-cyclohexylene, Z¹¹ is a single bond, and W is -CH₂O-.

- 28. (Original) The compound according to claim 3, which is represented by Formula (2-3); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, A^1 is 1,4-phenylene, A^{11} is 1,4-cyclohexylene, Z^{11} is a single bond, and W is -(CH₂)₂-.
- 29. (Original) The compound according to claim 3, which is represented by Formula (2-3); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, any of A^1 and A^{11} is 1,4-phenylene, Z^{11} is a single bond, and W is -(CH₂)₂-.
- 30. (Original) The compound according to claim 3, which is represented by Formula (2,6); in which Ra is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, Rb is alkoxy of 1 to 10 carbon atoms, any of A^1 , A^{11} and A^{12} is 1,4-cyclohexylene; any of Z^{11} and Z^{12} is a single bond, and W is -(CH₂)₂- or -CH₂O-.
- 31. (Original) The compound according to claim 3, which is represented by Formula (1-2); in which Ra is alkyl of 1 to 10 carbon atoms, Rb is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, A^2 is 1,4-cyclohexylene, and Z^2 is -OCH₂-.
- 32. (Original) The compound according to claim 3, which is represented by Formula (1-5); in which Ra is alkyl of 1 to 10 carbon atoms, Rb is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, any of A^2 and A^{21} is 1,4-cyclohexylene, Z^2 is OCH₂-, and Z^{21} is a single bond.
- 33. (Original) The compound according to claim 3, which is represented by Formula (1-4); in which Ra and Rb each independently is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, any of A^1 and A^2 is 1,4-phenylene, and any of Y and Z^2 is a single bond.
- 34. (Original) The compound according to claim 3, which is represented by Formula (1-4); in which Ra and Rb each independently is alkyl of 1 to 10 carbon atoms

or alkenyl of 2 to 10 carbon atoms, A^1 is 1,4-cyclohexylene, A^2 is 1,4-phenylene, and any of Y and Z^2 is a single bond.

- 35. (Original) The compound according to claim 3, which is represented by Formula (1-4); in which Ra and Rb each independently is alkyl of 1 to 10 carbon atoms or alkenyl of 2 to 10 carbon atoms, A^1 is 1,4-phenylene, A^2 is 1,4-cyclohexylene, and any of Y and Z^2 is a single bond.
- 36. (Original) A liquid crystal composition which contains at least one of the compounds described in claim 1 and may contain at least one optically active compound.
- 37. (Original) A liquid crystal composition which contains at least one of the compounds described in claim 1 and at least one compound selected from the group consisting of compounds represented by Formula (3), Formula (4), and Formula (5) respectively, and may contain at least one optically active compound:

$$R^{1}-B^{1}-Z^{4}- \underbrace{\sum_{L^{2}}^{L^{1}}}_{L^{2}} X^{1}$$
 (3)

$$R^{1}-B^{1}-Z^{4}-D-Z^{5}-\underbrace{\sum_{L^{2}}^{L^{1}}}_{L^{2}}X^{1}$$
(4)

$$R^{1}-B^{1}-D-Z^{4}-E-Z^{5} L^{2}$$
(5)

in which R^1 is alkyl of 1 to 10 carbon atoms; in the alkyl, arbitrary -CH₂- may be replaced by -O-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by fluorine; X^1 is fluorine, chlorine, -OCF₃, -OCHF₂, -CF₃, -CHF₂, -CH₂F, -OCF₂CHF₂ or -OCF₂CHFCF₃; B^1 and D each independently is 1,4-cyclohexylene, 1,4-phenylene, 1,3-dioxane-2,5-diyl, or 1,4-phenylene in which at least

one hydrogen is replaced by fluorine; E is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine; Z^4 and Z^5 each independently is -(CH₂)₂-, -(CH₂)₄-, -COO-, -CF₂O-, -OCF₂-, -CH=CH-, or a single bond; and L^1 and L^2 each independently is hydrogen or fluorine.

38. (Original) A liquid crystal composition which contains at least one of the compounds described in claim 1 and at least one compound selected from the group consisting of compounds represented by Formula (6-1), Formula (6-2), and Formula (7) respectively, and may contain at least one optically active compound:

$$R^{2}-G - \left(J + \frac{1}{b}Z^{6} - \left(J + \frac{1}{c}Z^{6} - \left(J + \frac{1}{c}Z^{6} - \frac{1}{c$$

$$R^{3} \xrightarrow{N} \frac{L^{5}}{h}$$
 (7)

in which R^2 and R^3 each independently is alkyl of 1 to 10 carbon atoms; in the alkyl, arbitrary -CH₂- may be replaced by -O-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by fluorine; X^2 is -CN or -C=C-CN; G is 1,4-cyclohexylene, 1,4-phenylene, 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl; J is 1,4-cyclohexylene, 1,4-phenylene, pyrimidine-2,5-diyl or 1,4-phenylne in which at least one hydrogen is replaced by fluorine; Z^6 is -(CH₂)₂-, -COO-, -CF₂O-, OCF₂- or a single bond; L^3 , L^4 and L^5 each independently is hydrogen or fluorine; and b, c and d each independently is 0 or 1.

39. (Original) A liquid crystal composition which contains at least one of the compounds described in claim 1 and at least one compound selected from the group

consisting of compounds represented by Formula (8), Formula (9), Formula (10), Formula (11) and Formula (12) respectively, and may contain at least one optically active compound:

$$R^{4} - Z^{7} - P^{1} - Z^{8} - R^{5}$$
 (9)

$$R^{4} \xrightarrow{L^{6}} Z^{7} \xrightarrow{L^{6}} L^{6} \qquad L^{7} \qquad L^{7}$$

$$R^{4} \xrightarrow{} Z^{7} \xrightarrow{} Z^{8} \xrightarrow{} R^{5} \qquad (10)$$

$$R^4-M-Z^7 \xrightarrow{F} F \qquad (11)$$

$$R^4 - Z^7 - P^1 - Z^8 - F - F$$
 (12)

in which R^4 is alkyl of 1 to 10 carbon atoms and R^5 is fluorine or alkyl of 1 to 10 carbon atoms; in the alkyls, arbitrary -CH₂- may be replaced by -O, arbitrary -(CH₂)₂- may be replaced by -CH=CH- and arbitrary hydrogen may be replaced by fluorine; M and P^1 each independently is 1,4-cyclohexylene, 1,4-phenylene, or decahydro-2,6-naphthylene; Z^7 and Z^8 each independently is -(CH₂)₂-, -COO-, or a single bond; L^6 and L^7 each independently is hydrogen or fluorine; and at least one of L^6 and L^7 is fluorine.

40. (Original) A liquid crystal composition which contains at least one of the compounds described in claim 1 and at least one compound selected from the group consisting of compounds represented by Formula (13), Formula (14) and Formula (15) respectively, and may contain at least one optically active compound:

$$R^{6}-Q-Z^{9}-T-Z^{10}-R^{7}$$
 (13)

$$R^6 - Q - Z^9 - T - Z^{10} - U - R^7$$
 (14)

$$R^6 - Q - Z^9 - T - U - R^7$$
 (15)

in which R^6 and R^7 each independently is alkyl of 1 to 10 carbon atoms; in the alkyl, arbitrary -CH₂- may be replaced by -O-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by fluorine; Q, T and U each independently is 1,4-cyclohexylene, 1,4-phenylene, pyrimidine-2,5-diyl, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine; and Z^9 and Z^{10} each independently is -C=C-,-COO-, -(CH₂)₂-, -CH=CH-, -CH₂O-, or a single bond.

41. (Original) The liquid crystal composition according to claim 37, which further contains at least one compound selected from the group consisting of compounds represented by Formula (6-1), Formula (6-2) and Formula (7), respectively:

$$R^{2}-G \xrightarrow{\int_{b} Z^{6}} Z^{6} \xrightarrow{\int_{c} Z^{2}} Z^{2}$$
 (6-1)

$$R^{2}-G-\left(J\right)_{b}Z^{6}-\left(C\right)_{c}Z^{2}$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{N}} \mathbb{N} \longrightarrow \mathbb{C}^{5}$$

in which R^2 and R^3 each independently is alkyl of 1 to 10 carbon atoms; in the alkyl, arbitrary -CH₂- may be replaced by -O-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by fluorine; X^2 is -CN or -C=C-CN; G is 1,4-cyclohexylene, 1,4-phenylene, 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl; J is 1,4-

cyclohexylene, 1,4-phenylene, pyrimidine-2,5-diyl, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine; Z^6 is -(CH₂)₂-, -COO-, -CF₂O_, -OCF₂- or a single bond; L^3 , L^4 and L^5 each independently is hydrogen or fluorine; and b, c, and d each independently is 0 or 1.

42. (Original) The liquid crystal composition according to claim 37, which further contains at least one compound selected from the group consisting of compounds represented by Formula (13), Formula (14) and Formula (15), respectively:

$$R^6 - Q - Z^9 - T - Z^{10} - R^7$$
 (13)

$$R^6 - Q - Z^9 - T - Z^{10} - U - R^7$$
 (14)

$$R^6 - Q - Z^9 - T - U - R^7$$
 (15)

in which R^6 and R^7 each independently is alkyl of 1 to 10 carbon atoms; in the alkyl, arbitrary -CH₂- may be replaced by -O-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by fluorine; Q, T and U each independently is 1,4-cyclohexylene, 1,4-phenylene, pyrimidine-2,5-diyl, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine; and Z^9 and Z^{10} each independently is -C=C-,-COO-, -(CH₂)₂-, -CH=CH-, -CH₂O-, or a single bond.

43. (Original) The liquid crystal composition according to claim 38, which further contains at least one compound selected from the group consisting of compounds represented by Formula (13), Formula (14) and Formula (15), respectively:

$$R^6 - Q - Z^9 - T - Z^{10} - R^7$$
 (13)

C at .

$$R^6 - Q - Z^9 - T - Z^{10} - U - R^7$$
 (14)

$$R^6 - Q - Z^9 - T - U - R^7$$
 (15)

in which R^6 and R^7 each independently is alkyl of 1 to 10 carbon atoms; in the alkyl, arbitrary -CH₂- may be replaced by -O-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by fluorine; Q, T and U each independently is 1,4-cyclohexylene, 1,4-phenylene, pyrimidine-2,5-diyl, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine; and Z^9 and Z^{10} each independently is -C=C-,-COO-,-(CH₂)₂-, -CH=CH-, -CH₂O-, or a single bond.

44. (Original) The liquid crystal composition according to claim 39, which further contains at least one compound selected from the group consisting of compounds represented by Formula (13), Formula (14) and Formula (15), respectively:

$$R^6 - Q - Z^9 - T - Z^{10} - R^7$$
 (13)

$$R^6 - Q - Z^9 - T - Z^{10} - U - R^7$$
 (14)

$$R^6 - Q - Z^9 - T - U - R^7$$
 (15)

in which R^6 and R^7 each independently is alkyl of 1 to 10 carbon atoms; in the alkyl, arbitrary -CH₂- may be replaced by -O-, arbitrary -(CH₂)₂- may be replaced by -CH=CH-, and arbitrary hydrogen may be replaced by fluorine; Q, T and U each independently is 1,4-cyclohexylene, 1,4-phenylene, pyrimidine-2,5-diyl, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine; and Z^9 and Z^{10} each independently is -C=C-,-COO-,-(CH₂)₂-, -CH=CH-, -CH₂O-, or a single bond.

- 45. (Currently amended) Use of the liquid crystal composition described in any one of claims 36 to 44 claim 36 for producing a liquid crystal display device.
- 46. (Currently amended) A liquid crystal display device containing the liquid crystal composition described in any one of claims 36 to 44 claim 36.