电子商务系统结构

实验四报告

3160103785 叶梓成 3170102587 蒋仕彪

实验一

第一部分:

&自动加载分析 **2** 自动整理结果

统计信息概要表

运行 Vuser 的最大数目:

O 97,927,672 总吞叶里(字节): 404, 660 平均吞叶里(字节/秒): 0 总点击次数: 0 3,019

平均每秒点击次数: 0 12.475 查看 HTTP 响应概要

50

错误总数: 0 725

您可以使用以下对象定义 SLA 数据 SLA 配置向导 您可以使用以下对象分析事务行为 分析事务机制

事务摘要

事务:通过总数: 204 失败总数: 722 停止总数: 0 平均响应时间

事务名称	SLA 状态	最小值	平均值	最大值	标准偏差	90 百分比	通过	失败	停止
Action Transaction	0	6.058	71.852	139.098	32.935	117.557	104	722	0
vuser end Transaction	0	0	0	0.001	0	0	50	0	0
vuser init Transaction	0	0	0	0	0	0	50	0	0

HTTP 响应概要

нттр ф	合计	每秒
HTTP 200	2,915	12.045
HTTP 204	104	0.43

具体参数:

详见上面一些截图。

一个 trick:

刚开始测试的时候,我们发现:线程一开多,电脑就会变得特别卡,而且经常出现 Fail。在尝试了很多操作以后我们发现:网速也是至关重要的一点。校园网好像限制了带宽,所以我们最后通过烧流量来完成实验。

分析:

首先,在开多了线程后、服务器响应的平均时间显著地变长了。

鼠标点击量和响应时间好像没有正向关联。

在并发数减少的时候,吞吐量会显著增加,说明网站依然以高负载的状态运行,即使并发数正在减少。

第二部分:

统计信息概要表

运行 Vuser 的最大数目:

 总吞叶里(字节):
 ○ 62,868,305

 平均吞叶里(字节/秒):
 ○ 361,312

 总占击次教:
 ○ 8,128

错误总数: ○ 41

您可以使用以下对象定义 SLA 数据 SLA 配罟向导 您可以使用以下对象分析事务行为 分析事务机制

事务摘要

事务:通过总数: 133 失败总数: 41 停止总数: 0 平均响应时间

事务名称	SLA 状态	最小值	平均值	最大值	标准偏差	90 百分比	通过	失败	停止
Action Transaction	0	20.227	83. 772	120.999	32. 262	116. 735	33	41	0
vuser end Transaction	0	0	0	0	0	0	50	0	0
vuser init Transaction	0	0	0	0.001	0	0	50	0	0

HTTP 响应概要

HTTP 响应	合计	每秒	
HTTP 200	7, 834	45. 023	
HTTP 302	294	1.69	

具体参数:

详见上面一些截图。

分析:

理论上思考, 当操作/秒增加时, 响应时间应该会有一个肉眼可见的上升(点击率越大,对服务器的压力越大), 但第一部分和第二部分的两个例子告诉我们: **实际上它们没有关联**。我们怀疑网站会无视那些无用的点击。

吞吐量也和第一部分表现差不多:在并发数大量减少时,会产生一个峰值。观察本页的那张图,响应时间在前2分半左右随着并发数的增加而飙升,说明并发效果特别差。设计者应该没有专门去处理并发问题,或者说访问数据库需要固定的时间,所以增加了并发会线性增加时间。

实验二:

首先我们登陆百度知道(这一步试了很多次, 电脑经常卡死)。

一些截图:

结果的呈现和分析:

统计信息概要表

运行 Vuser 的最大数目: 50

总吞叶里(字节):○ 562,883,963平均吞叶里(字节/秒):○ 582,093总占击次数:○ 28,274

平均每秒点击次数: ○ 29.239 <u>查看 HTTP 响应概要</u>

錯误总数: ○ 111

您可以使用以下对象定义 SLA 数据 SLA 配罟向导 您可以使用以下对象分析事务行为 分析事务机制

事务摘要

事务:通过总数: 308 失败总数: 109 停止总数: 0 平均响应时间

事务名称	SLA 状态	最小值	平均值	最大值	标准偏差	90 百分比	通过	失败	停止
Action Transaction	0	4.054	72.998	212.313	49. 751	139.687	208	109	0
vuser end Transaction	0	0	0	0	0	0	50	0	0
vuser init Transaction	0	0	0	0.001	0	0.001	50	0	0

HTTP 响应概要

HTTP 响应	合计	每秒
HTTP 200	28, 054	29.011
HTTP 302	220	0. 228

具体参数:

详见上面一些截图。

分析:

登陆了之后,吞吐量的变化十分明显:以前是比较稳定、偶有震荡,现在是一直震的比较厉害,而且值比登陆前大:说明登陆后有更多的操作要做。

平均响应时间在中间出反而出现了一个谷, 我们猜测登陆后网站会优化掉大量无用的并发。

每秒点击次数似乎依然没啥关联。