

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு நான்காம் தவணைப் பரீட்சை - 2024

National Field Work Centre, Thondaimanaru 4th Term Examination - 2024

இரசாயனவியல் Chemistry

Two Hours

Gr. 13 (2024)

- 01) ஐதரசன் அணுவின் காலல் நிறமாலை தொடர்பாக பிழையான கூற்று.
 - (1) ஐதரசன் கோட்டு நிறமாலையை விளக்க பிளாங்கின் சக்தி சொட்டாக்கல் கருத்துக்களும் நீல்போரின் அணு மாதிரி உருவும் கொருத்தமாக அமைந்தன.
 - (2) தொடர் ஒன்றில் சக்தி அதிகரிக்கும் திசை வழியே கோடுகள் நெருக்கமடையும்
 - (3) சக்தி $n = 4 \to n = 1 < n = 3 \to n = 2 < n = 2 \to n = 1$ என்றவாறு அதிகரிக்கும்.
 - (4) கோட்டுநிறமாலையின் கட்புலனாகும் தொடரில் ஏறத்தாள 410nm-660nm வரையான கதிர்ப்புகள் தென்படும்.
 - (5) சக்தி பன்ட் தொடர் < பிரக்கற் தொடர் < பாசன் தொடர் < பாமர் தொடர் < லைமர் தொடர் தொடர் என அதிகரிக்கும்.
- 02) $n+m\ell=+1$ என்றவாறு அமையக் கூடிய ஒபிற்றல்களின் எண்ணிக்கை.
 - (1) 2
- (2) 3
- (3) 4
- (4) 5
- (5) 6
- - $\begin{array}{c} :0: \\ :0: \\ \vdots \\ :0: \\ -\frac{s}{2^{+}} \\ \vdots \\ \vdots \\ :0: \\$
- 04) காபனேற்றுக்கள், நைத்திரேற்றுக்களின் வெப்ப பிரிகையின் போது உலோக ஒட்சைட்டை விளைவாக கொடுக்கக்கூடியது.
 - (1) *Li*
- (2) Na
- (3) Ag (4) K
- (5) Hg

- 05) பின்வரும் சேர்வையின் IUPAC பெயர் யாது?
 - (1) 2 hydroxy 3 methyl pentenamide
 - (2) 3 ethyl 2 hydroxy 3 butenamide
 - (3) 2 ethyl -3 hydroxy 1 butenamide
 - (4) 2 hydroxy 3 ethylbut 3 enamide
 - (5) 3 ethyl 2 hydroxybut 3 ene 1 amide

- 06) n A o விளைவுகள் என்ற தாக்கத்தை கருதுக. தாக்கவீதம் $R = K[A]^n$ என தரப்பட்டுள்ளது. $m k=2 imes10^{-3}mol^{-1}dm^3s^{-1}$ ஆகவும் தாக்கியின் செறிவு $0.2moldm^{-3}$ ஆகவும் உள்ள போது தாக்கவீதம் R உம் தாக்கி A யின் வரிசையும்
 - $(1) 4 \times 10^{-4} \text{moldm}^{-3} \text{s}^{-1}$, 1ம் வரிசையும்
 - (2) $4 \times 10^{-4} \text{moldm}^{-3} \text{s}^{-1}$, 2ம் வரிசையும்
 - (3) $8 \times 10^{-4} \text{moldm}^{-3} \text{s}^{-1}$, 2ம் வரிசையும்
 - (4) $16 \times 10^{-5} \text{moldm}^{-3} \text{s}^{-1}$, 1ம் வரிசையும்
 - $(5)\ 8 \times 10^{-5} \text{moldm}^{-3} \text{s}^{-1}$, 2ம் வரிசையும்
- 07) சேதன சேர்வை A ஆனது
 - (I) Na உடன் H₂ வாயுவை கொடுக்க கூடியது.
 - (II) 2,4,DNP உடன் நிற வீழ்படிவை கொடுக்கும்.
 - (III) NaHCO3 உடன் தாக்கம் இல்லை.
 - (IV) தொலனின் சேதனை பொருளுடன் வெள்ளி ஆடியை கொடுக்கும். எனின் A ஆக இருக்க பொருத்தமானது.

- CHO
- ČOCH₂
- 08) நீருடன் தாக்கமடையும் போது இருவழி விகாரம் அடையக் கூடிய சோடிகள்.

- (1) NCl_3 , NO_2 (2) SCl_2 , NO_2 (3) PCl_5 , CO_2 (4) SCl_2 , SO_2 (5) $BiCl_3$, P_2O_3
- 09) ஊக்கி ஒன்றின் பண்பு அல்லாதது.
 - (1) குறைந்தபட்சம் ஒரு தாக்கியுடனேயும் இணைந்து குறைந்த ஏவற்சக்தி கொண்ட மாற்றுபாதை வழியே தாக்கத்தை நடைபெற செய்யும்.
 - (2) தாக்கத்தின் வெப்பவுள்ளுறை மாற்றத்தை மாற்றுவதில்லை.
 - (3) விளை பொருளுடன் இணைந்து விளைபொருளின் செறிவை குறைப்பதன் மூலம் தாக்கவீதத்தை கூட்டும்.
 - (4) ஊக்கியின் தொழிற்பாடு வெப்பனிலையால் பாதிப்படையலாம்
 - (5) ஊக்கி ஓரலகுநேரத்தில் பெறப்படும் விளைவை கூட்டும்.
- 10) T வெப்பநிலையில் மூடியவிளைந்த கொள்கலமொன்றில் A,B ஆகிய இருவாயுக்கள் மொத்த அமுக்கம் P ஆகவும் A யின் பகுதி அமுக்கம் $\frac{2}{3}P$ ஆகவும் காணப்பட்டது. திணிவு படி A:B=2:3 என்ற விகிதத்தில் காணப்படும் போது A:B இடையிலான சார் மூலக்கூற்றுதிணிவு விகிதம் யாது
 - (1) 5:3
- (2) 4: 3
- (3) 2:1
- $(4) \ 3: 4$
- (5) 3: 5

- 11) ஒளியியல் தொழிற்பாட்டை காண்பிற்க கூடிய ஐதரோகாபன்.
 - (1) $C_6 H_{14}$
- (2) $C_5 H_{12}$
- (3) $C_5 H_{10}$
- (4) $C_7 H_{16}$
- $(5) C_4 H_{10}$

12) 1 மூல் H_2O காணப்படும் பல்வேறுபட்ட பின்வரும் தொகுதிகளை கருதுக.

அமுக்கம்

வெப்பநிலை

- I) $H_2 O_{(\ell)}$
- 1 atm
- $100^{0}C$

- II) $H_2 O_{(s)}$
- 1 atm
- $0^{0}C$

- III) $H_2 O_{(\ell)}$
- 1 atm
- 25°C

- IV) $H_2 O_{(a)}$
- $\frac{1}{2}$ atm
- $100^{0}C$

- V) $H_2 O_{(a)}$
- 1 atm
- $100^{0}C$

இவற்றின் எந்திரப்பி அதிகரிக்கும் ஒழுங்கு,

- $(1) \ II < III < I < V < IV \qquad (2) \ III < II < I < IV < V \qquad (3) \ II < III < V < I < IV$

- (4) V < IV < I < III < II (5) II < III < I < V
- 13) திணிவுப்படி மில்லியனுக்கு 75 செறிவுடைய NO வாயுவை கொண்ட வளிமாதிரி ஒன்றின் $2000 {
 m cm}^3~Fe^{3+}{}_{(aq)}$ ஊடாக செலுத்தப்பட்டு NO_2 ஆக ஒட்சியேற்றப்பட்டது விளைவாக பெறப்பட்ட $Fe^{2+}{}_{(aq)}$ முழுவதையும் நியமிக்க $2 imes 10^{-4}$ செறிவுடைய அமில $K_2 \, Cr_2 O_7$ ன் கனவளவு யாது? (வளியின் அடர்த்தி $1.2 kgm^{-3}$)
 - (1) $1cm^3$
- (2) $10cm^3$
- (3) $20cm^3$
- (4) $30cm^3$
- $(5) 40cm^3$
- 14) மிகக் கூடிய 3ம் அயனாக்க சக்தியையும் மிக குறைந்த 2ம் அயனாக்க சக்தியையும் கொண்ட மூலக சோடி முறையே,
 - (1) Ca, Na
- (2) Be, Ca
- (3) Mg, Be
- (4) Al, Ca
- (5) Na, Mg

E o F எனும் தாக்கத்தை கருதுக. E யின் செறிவுடன் தாக்கவீதம் பின்வருமா<u>ற</u>ு மாறுகின்றது. எனின் $\log R$ எதிர் $\log[E]$ வரைபின் அமைப்பு.

log R log R▲ log[E](3)

 $CO_2C_2H_5$ 16) CH2 CHO

எனும் தாக்கத்தின் பிரதான விளைபொருள்

 $CO_2C_2H_5$ (2) (3) $CH_2 - CH_2OH$

COOH**(4) (5)** $CH_2 - CH_2 - OH$

- 17) $\operatorname{Cr_2O_7^{2-}}_{(\operatorname{ag})} + 2\overline{\operatorname{O}}\operatorname{H}_{(\operatorname{ag})} \rightleftharpoons 2\operatorname{CrO_4^{2-}}_{(\operatorname{ag})} + \operatorname{H_2O}_{(\ell)}$ எனும் சமநிலைத் தொகுதியில் சிறிதளவு ஐதான NaOH சேர்க்கும் போது
 - (1) Qc > Kcஆகும் அத்துடன் செம்மஞ்சள் நிற செறிவு குறைவடையும்.
 - (2) Qc < Kcஆகும் அத்துடன் செம்மஞ்சள் நிற செறிவு குறைவடையும்.
 - (3) Qc > Kcஆகும் அத்துடன் செம்மஞ்சள் நிற செறிவு கூடும்.
 - (4) Qc = Kcஆகவும் நிறமாற்றம் இன்றியும் காணப்படும்.
 - (5) Qc < Kcஆகும் அத்துடன் செம்மஞ்சள் நிற செறிவு கூடும்.
- 18) நியம நிபந்தனைகளில் ${\cal C}_2 H_{6(g)}$ இன் தகன வெப்பவுள்ளுறை மாற்றம் $\Delta H_{\cal C}^0 = -1550 \ kJ \ mol^{-1}$ என தரப்படுகின்றது. இத்தாக்கம் தொடர்பாக பிழையான கூற்று.
 - (1) பயன்படுத்தப்பட்ட O_{2} இன் $3.5\ mol\$ க்கு 1550kJ வெப்பசக்தி வெளிவிடப்படுகின்றது.
 - (2) உண்டாகும் $H_2O_{(\ell)}$ இன் 6 mol களிற்கு 3100kJ வெப்பசக்தி வெளிவிடப்படுகின்றது.
 - (3) உண்டாகும் $\mathcal{CO}_{2_{(a)}}$ இன் 1 mol ற்கு 775kJ வெப்பசக்தி வெளிவிடப்படுகின்றது.
 - (4) உண்டாகும் $H_2O_{(g)}$ இன் 3 mol களிற்கு 1550kJ இலும் கூடிய சக்தி வெளிவிடப்படும்.
 - (5) பயன்படுத்தப்படும் $\mathcal{C}_2H_{6(a)}$ இன் ஒரு மூலிற்கு 1550kJ சக்தி வெளிவிடப்படும்.
- 19) $2Mg(No_3)_{2(s)} \rightleftharpoons 2MgO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ எனும் பிரிகை தாக்கம் T K வெப்பநிலையில் சமனிலை அடையும் போது $NO_{2(g)}$ ன் பகுதி அமுக்கம் $1\times 10^4 Pa$ ஆக காணப்பட்டது என இதன் K_p, K_c முறையே $RT=10000 Jmol^{-1})$
 - (1) $2.5 \times 10^{20} Pa^5$, $2.5 \, mol^5 m^{-15}$
 - (2) $2.5 \times 10^{19} Pa^5$, $0.25 \, mol^5 m^{-15}$
 - (3) $1 \times 10^{20} Pa^5$, $0.1 mol^5 m^{-15}$
 - (4) $25 \times 10^{21} Pa^5$, $0.25 mol^5 m^{-15}$
 - (5) $2.5 \times 10^{19} Pa^5$, $0.1 mol^5 m^{-15}$
- 20) Mn இன் இராசயன இயல்புகள் தொடர்பாக தவறானது
 - (1) MnO_2 ஈரியல்பு உடையது.
 - (2) $KmnO_{4(ag)}$ இற்கு NaOH சேர்க்கும் போது பச்சை நிறகரைசல் உருவாதலுடன் O_2 வாயுக்குமிழ் வெளிவரும்.
 - (3) 3d மூலகங்களில் மிக தாழ்ந்த உருகுநிலை உடையது.
 - (4) K_2MnO_4 கரைசலிற்கு H_2O_2 சேர்க்கும் போது கடும் கபில நிற MnO_2 தோன்றும்.
 - $(5) \ MnO_2 \ Cl^-$ ஐ Cl_2 ஆக ஒட்சியேற்றக்கூடியது.

எனும் தாக்கத்தின் பொறிமுறையில் பிழையான குறிப்பிடப்பட்ட படிமுறை எது?

- 22) 4.48 Volume செறிவுடைய H_2O_2 கரைசலின் மூலர் செறிவு $moldm^{-3}$ இல் (STP யில் மூலர் கனவளவு $22.4dm^3$)
 - (1) 0.04
- (2) 0.2
- (3) 0.4
- (4) 0.02
- (5) 3.33
- 23) மாணவன் ஒருவர் $[CuCl_4]^{2-}$ இன் IUPAC பெயரை tetrachlorocopper(II) ion என பெயரிட்டு இருந்தார் இப்பெயரில் உள்ள குறைபாடுகள் தொடர்பாக வேறு 3 மாணவர்கள் தெரிவித்த கருத்துகள் பின்வருமாறு
 - A -> Cu இன் ஒட்சியேற்றநிலை பிழையாக கணிக்கப்பட்டுள்ளது.
 - $\mathrm{B} \longrightarrow$ chloro என்பதற்கு பதிலாக chlorido என பெயரிடப்படல் வேண்டும்.
 - C -> copper இற்கு பதிலாக cuprate என பெயரிடப்படல் வேண்டும்.
 - D -> பெயரின் தொடர்ச்சியாக இடைவெளியின்றி ion சேர்த்து எழுதப்படல் வேண்டும்.
 - (1) A,B,C
- (2) B,D
- (3) B,C
- (4) B,C,D
- (5) C,D

- 24) H_2SO_4 தொடர்பாக சரியான கூற்று
 - (1) $C_6H_{12}O_6$ ற்கு செறி H_2SO_4 சேர்க்கும் போது நீரகற்றப்பட்டு $CO_{(q)}$ வாயு வெளியேறும்.
 - (2) $H_2SO_{4(\ell)}$ ஆனது C,S இனை முறையே CO_2 , SO_2 ஆக ஒட்சியேற்ற கூடியது.
 - (3) ஐதான H_2SO_4 Cu உடன் தாக்கி H_2 வாயுவை வெளிவிடக்கூடியது.
 - (4) மிகை ஐதான H_2SO_4 உடன் NaOH தாக்கமடையும் போது Na_2SO_4 என்ற உப்பும் H_2O உம் மாத்திரமே உருவாகும்.
 - (5) இது HNO_3 உடன் மூலமாக தொழிற்படகூடியது.
- 25) பின்வரும் இருதாக்கங்களும் அவற்றிற்கான சமநிலை மாறிலிகள் $K_1,~K_2$ என்பன கீழே தரப்பட்டுள்ளது. $01)~A+B \overset{K_1}{\rightleftharpoons} AB \qquad 2AB \underset{K_2}{\longleftarrow} 4D$

எனின் $A+B \leftrightharpoons 2D$ என்ற தாக்கத்தின் சமநிலை மாறிலி?

- (1) $(K_1^2, K_2)^{\frac{1}{2}}$
- (2) $K_1^2.K_2$

(3) $\left(K_1^2 / K_2\right)^{1/2}$

- $(4) (K_1^2 + K_2)/2$
- $(5) \ \frac{2K_1 + K_2}{2}$

- 26) $C_2H_5-CN \xrightarrow{dil\ H_2\ SO_4} C_2H_5COOH$ என்ற தாக்கத்தில் காபன் சார்பாக பரிமாறப்பட்ட இலத்திரன் எண்ணிக்கை
 - (1) 4
- (2) 3
- *(*3*)* 2
- *(*4*)* 1
- (5) 0
- 27) He வாயு 27°C இல் காணப்படுகின்றது. இதன் இடைவர்க்க மூல கதி 2 மடங்காகும் வெப்பநிலை,
 - (1) 1200°C
- (2) 327°C
- (3) 54°C
- (4) 927°C
- (5) 900°C
- (28) T o S எனும் முதன்மை தாக்கத்தில் தாக்கி Tஇன் ஆரம்ப செறிவு $(0.8moldm^{-3}$ ஆகவும் 120s இற்கு பின்பு 0.1ஆகவும் காணப்பட்டால் அதன் அரைவாழ்வுக்காலம்
 - (1) 60*s*
- (2) 40s
- (3) 30s
- (4) 20s
- (5) 10s
- 29) சேதனச்சேர்வை A ஆனது $dil\ H_2SO_4, HgSO_4$ உடன் தாக்கமடைந்த போது இடைநிலை

விளைவாக $CH_3-CH_2-\overset{1}{C}=CH_2$ பெறப்பட்டது A யினது, இறுதிவிளைபொருளினதும் கட்டமைப்பு முறையே (1) $CH_3 - C \equiv C - CH_3$, $CH_3 - C - CH_2 = CH_3$

- (2) $CH_3 CH_2 C \equiv CH$, $CH_3CH_2CH_2 CHO$
- $(3) \quad CH_3-C=CH_2, \quad CH_3-CH-CHO$
- (4) $CH_3 CH_2 C \equiv CH$, $CH_3 CH_2 C CH_3$
- (5) $CH_3CH_2 CH = CH_2$, $CH_3 CH_2 C CH_3$
- 30) 2.87g மாசுக்கள் அற்ற $KNO_{3(s)}$, $NaNO_{3(s)}$ ஆகியனவற்றின் கலவை ஒன்றினை வன்மையாக்கி வெப்பமாக்கி அவற்றின் உலோக நைத்திரைற்று (MNO_2) , ஆகவும் O_2 ஆகவும் முற்றாக பிரிகை அடையச் செய்த போது 0.48g நிறை இழப்பு ஏற்பட்டது எனின் ஆரம்ப கலவையில் இருந்த KNO_3 : $NaNO_3$ இடையிலான மூல விகிதம்
 - (1) 1:1
- (2) 1:2
- (3) 3:1
- (4) 1:3
- (5) 2:1
- 💠 31 40 வரையான வினாக்களுக்கான அறிவுறுத்தற் சுருக்கம்

(1)	(2)	(3)	(4)	(5)
(a), (b) ஆகி யன மாத்திரம் திருத்தமானவை	(b), (c) ஆகி யன மாத்திரம் திருத்தமானவை.	(c), (d) ஆகி யன மாத்திரம் திருத்தமானவை	(a), (d) ஆகி யன மாத்திரம் திருத்தமானவை.	வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவை.

- 31) A+B oவிளைவுகள் என்ற தாக்கம் A சார்பாக μ ழதலாம் வரிசை ஆகவும், Bசார்பாக பூச்சிய வரிசை ஆகவும் காணப்படுகின்றது. இத்தாக்கம் தொடர்பாக எது/எவை சரியானது,
 - (a) B யின் செறிவில் ஏற்படும் மாற்றம் தாக்கவீதத்தைப் பாதிக்காது.
 - (b) B இல்லாமலும் தாக்கம் நிகழ முடியும்.
 - (c) இது முதன்மைத் தாக்கமாக அமையலாம்.
 - (d) தாக்கவீத மாறிலி k இன் அலகு S^{-1} ஆகும்.

தொடர்பாக சரியான கூற்று

- a) NaNO $_2$ உடன் $5^{\circ}\mathcal{C}$ இலும் குறைந்த வெப்பநிலையில் \bigcirc ஐ உருவாக்க கூடியது.
- b) $Na_2 CO_3$ உடன் CO_2 வாயுவை கொடுக்க கூடியது.
- c) $AgNO_{3}{}_{(qq)}$ சேர்க்கும் போது ஐதான NH_3 இல் கரையாத வீழ்படிவை உருவாக்ககூடியது.
- d) வலிமையான ஓதோ, பரா வழிகாட்டியாக தொழிற்படகூடியது.
- 33) SO₂ தொடர்பாக தவறான கூற்று/கூற்றுக்கள்
 - a) இன் மைய அறுவின் பிணைப்பு கோணம் SCl_2 இலும் உயர்வு
 - b) \mathcal{CO}_2 இலும் இதன் கொதிநிலை உயர்வு
 - c) Mg உடன் தாக்கமடைந்து MgS ஐயும் O_2 வாயுவையும் விளைவாக கொடுக்கும்
 - d) காகிதக் கூழினை மீண்டும் ஒட்சியேற்றப்படாதவாறு வெண்மை நிறமாக வெளிற்றக்கூடியது.
- 34) பிழையான கூற்று/ கூற்றுகள்
 - (a) Ca இன் ஆரை S^{2-} , Cl^{-} போன்றவற்றின் ஆரையிலும் உயர்வு
 - (b) ஒரே ஆவர்த்தனத்தில் கருவேற்றம் அதிகரிக்கும் போது அனு ஆரை அதிகரிக்கும்.
 - (c) சடத்துவ வாயுக்கள் யாவற்றினதும் மின் எதிர்தன்மை பூச்சியம்
 - (d) F இன் முதலாம் அயனாக்சக்தி He தவிர்ந்த ஏனையவற்றிலும் உயர்வு

 $C^b = C^c \stackrel{C^d}{\longleftarrow} C^d \equiv C^e H$ மூலக்கூறுபற்றி எது/ எவை உண்மையானது

- (a) 3 காபன் அணுக்களும் ஒரு H ஆணுவும் ஒரே நேர்கோட்டில் காணப்படுகின்றன.
- (b) a,b,c,d,e என பெயரிடப்பட்ட காபன் அணுக்களும் அவற்றுடன் இணைந்துள்ள H உம் ஒரே தளத்தில் காணப்படுகின்றன.
- (c) C-C பிணைப்பு நீளம் $\mathcal{C}^c \mathcal{C}^d < \mathcal{C}^a \mathcal{C}^b$
- (d) இதன் ஒரு மூல் உடன் தாக்கமடைவதற்கு $Br_{2(CCl_{A})}$ இன் $6 \mathrm{mol}$ தேவைப்படும்
- 36) $0.54 \mathrm{g} \, \mathrm{Al}$ ஆனது $1 \mathrm{M}$ செறிவுடைய HCl இன் $50 \mathrm{cm}^3$ மாதிரியுடன் தாக்கமடைய விடப்பட்டது. இத்தாக்கம் தொடர்பாக சரியான கூற்று (Al – 27)
 - (a) Al எல்லைப்படுத்தும் தாக்கியகதாகவும் HCl மிகை தாக்கியாக காணப்படும்.
 - (b) இத்தாக்கத்தின் போது விடுவிக்கப்பட்ட $m H_2$ வாயுவின் கனவளவு STP யில் $m 560cm^3$
 - (c) HCl எல்லைப்படுத்தும் தாக்கியாக காணப்படும்.
 - (d) இந்த அளவு Al முற்றாக தாக்கமடைய $\mathrm{1M}\ \mathrm{NaOH}$ இன் $\mathrm{30cm}^3$ தேவைப்படும்

- 37) $\mathrm{Mg}\,\mathrm{F}_2$ இன் சாலகசக்தி துணிவதற்கான போர்ன் ஏபர் சக்கரத்தில் இடம் பெறாத தாக்க செயன்முறை எது / எவை?
 - (a) $F_{(a)}$ இன் 2ம் இலத்திரன் நாட்ட வெப்பவுள்ளுளை மாற்றம்
 - (b) $Mg_{(s)}$ இன் அணுவாதல் வெப்பவுள்ளுளை மாற்றம்
 - (c) F இன் அணுவாதல் வெப்பவுள்ளுளை மாற்றம்
 - (d) Mg இன் உருகலின் வெப்பவுள்ளுளை மாற்றம்
- 38) பின்வரும் இரசாயன தாக்கங்களில் சரியாக வகை குறிப்பிடப்பட்டது எது / எவை?
 - (a) $Na_2S_2O_3$ இற்கு அமிலம் சேர்க்கும் போது அது இரு வழிவிகாரத்திற்கு உட்படும்
 - (b) $\mathrm{NH_3}\,\mathrm{Li}\,$ உடன் தாக்கமடையும் போது $\mathrm{LiNH_2}\,$ உம் $\mathrm{H_2}\,$ வாயுவும் விளைவாக பெறப்படும்.
 - (c) $\mathrm{H_2O_2}$ ஆனது $\mathrm{Fe}^{\ 2^+}$ உடன் தாக்கமடையும் போது $\mathrm{H_2O}$ ஐயும் MnO_4^- உடன் தாக்கமடையும் போது 🔾 ஐயும் விளைவாக கொடுக்கும்
 - $\left(ext{d}
 ight)$ FeCl $_3$ நீர்கரைசலுக்கு $ext{SO}_2$ வாயுவை செலுத்தும் போது மென்பச்சை கரைசல் பெறப்படுவதுடன் $BaCl_{2(aq)}$ சேர்க்கும் போது HCl இல் கரையாத வெள்ளை வீழ்படிவும் பெறப்படும்.
- 39) தாக்கவரிசைக்கும் மூலக்கூற்று திறனுக்குமான ஒப்பீடுகளில் தவறானது?
 - (a) இவை இரண்டு பூச்சியமாக அமையலாம்.
 - (b) தாக்கவரிசை பரிசோதனை ரீதியாக துணியக்கூடியது ஆனால் மூலக்கூற்று திறன் கொள்கை ரீதியானது தாக்க பொறிமுறை ஊடாக துணியப்படுகின்றது.
 - (c) தாக்கவரிசை $0,\,1,\,2,\,3,\,4,\ldots$ என அமையலாம் ஆனால் மூலக்கூற்று திறன் 3 இலும் அதிகமாக அரிகாகவே இடம்பெறும்
 - (d) தாக்கம் ஒன்றின் வரிசை என்பது தாக்கத்தை தீர்மானிக்கும் படிமுறையில் இடம்பெறும் தாக்கிகளின் பீசமான எண்களின் கூட்டுத்தொகை ஆனால் தாக்கம் ஒன்றின் மூலக்கூற்றுதிறன் என்பது தாக்கத்தை தீர்மானிற்கும் படியில் மோத<u>லுற</u>ும் அயன்கள் / மூலக்கூறுகளின் எண்ணிக்கை ஆகும்.
- 40) பின்வரும் தாக்க பொறிமுறைகளில் அதிகளவு இடம் பெறக்கூடிய படிகள்

(a)
$$R - C \stackrel{\bigcirc}{\underset{-OH}{\longrightarrow}} Cl \rightarrow R - C \stackrel{\bigcirc}{\underset{-Cl}{\longrightarrow}} R - C - OH + Cl^-$$

(b)
$$CH = C - CH_3$$
 $H - Br \rightarrow CH_2 - CH_3 + Br^ CH_3$ CH_3 CH_3

(c)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

(d)
$$AlCl_4$$
 H $C - CH_3$ $COCH_3$ $+$ $AlCl_3 + HCl$

💠 41 – 50 வரையான வினாக்களுக்கான அறிவுறுத்தல் சுருக்கம்

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று
(01)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத்
		திருத்தமான விளக்கத்தைத் தருவது.
(02)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத்
		திருத்தமான விளக்கத்தைத் தராதது.
(03)	உண்மை	பொய்
(04)	பொய்	உண்மை
(05)	பொய்	பொய்

கூற்று I

- 41) 3d மூலகங்களில் 2ம் அயனாக்க சக்தி உயர்வாக இருப்பது Cu க்கு ஆகும்.
- 42) CH_3CHO இல் $CH_3-C\equiv CH$ இல் காணப்படும் அமில ஐதரசனிலும் பார்க்க வலிமையான அமில H உண்டு.
- 43) $HClO_3, HClO_4$ ஆகியன வன் அமிலங்களாகும்.
- 44) தாக்கிகளின் செறிவு அதிகரிக்கும் சந்தர்ப்பங்களில் எல்லாம் தாக்க வீதம் அதிகரிக்கும்.
- 45) முதலாம் வரிசைதாக்கத்தில் குறித்த தாக்கியின் தாக்க வீதம் செறிவுடன் மாறும் வரைபும், தாக்கியின் செறிவு நேரத்துடன் மாறும் வரைபும் சாய்வான நேர்கோடாக அமையும்.
- 46) $NO_{(g)}$ உம் $NO_{2(g)}$ உம் தாக்கமடையும் போது $N_2O_{3(g)}$ உருவாகும் போது இரண்டினதும் N அணுக்கள் மோதலுற வேண்டும்.

கூற்று II

இறுதி ஒட்டில் உள்ள ஒரு இலத்திரனை இழந்தவுடன்சடத்துவ அமைப்பை பெறும்.

 $\mathrm{CH_3CHO}$ ஆனது NaOH உடன்தாக்கி கருநாடியையும் $\mathrm{H_2O}$ ஐயும் உருவாக்கும்.

இவற்றில் Cl Sp³ கலப்பு அடைந்துள்ளது.

செறிவு அதிகரிக்கும் போது ஒரலகு கனவளவில் ஓரலகு நேரத்தில் நிகழும் மோதல் எண்ணிக்கை அதிகரிக்கும்.

முதலாம் வரிசை தாக்கதில் வெவ்வேறு நேர இடைவெளிகளில் தாக்கியின், தாக்கவீதம் மாற்றமடைந்து கொண்டு செல்லும்.

இரு இனங்களிலும் N அணுவில் சோடி சேரா இலத்திரன் காணப்படுகின்றது.

(All Rights Reserved / முழுப் பதிப்புரிமை உடையது)

- 47) மாறா வெப்பநிலையில் $2NO_{2(g)} \leftrightarrows N_2O_{4(g)}$ என்னும் சமநிலைக்கலவையின் வெளியே இருந்து வாயுக்களை சேர்க்காது அமுக்கத்தை அதிகரிக்கும் போது நிறச்செறிவு கூடும்.
- 48) பிரிகை வெப்பநிலை CaCO₃ < BaCO₃ ஆகும்.
- 49) N இன் மின்எதிர்த்தன்மை $NO_3^- > NO_2Cl$ ஆகும்.
- 50) மூலவலிமை பீனோலிலும் அல்ககோலிற்கு உயர்வாகும்

மாற வெப்பநிலையில் இரசாயன சமநிலையில் வாயு கலவையின் அமுக்கத்தை அதிகரிக்கும் போது மூல் எண்ணிக்கை குறையும் விதத்தில் தாக்க சமநிலைப் புள்ளி நகரும்.

அன்னயன் மாறாது கற்றயன் பெரிதாகும் போது முனைவாகுதன்மை குறைவடையும்.

N இன் கலப்பு தன்மையில் s ஒபிற்றலின் சதவீதம் அதிகரிற்கும் போது மின் தன்மை கூடும்.

பீனோலில் ஒட்சிசன் தனிச்சோடி வளையத்துடன் ஓரிடப்பாடற்று காணப்படும்.