CS-2001 Data Structures

AVL Tree

Problem

 When a Binary Search Tree (BST) is skewed, it's worst-time complexity becomes the same as that of Linear Search i.e. O(n)

 Searching 1 in the given tree takes n comparisons

Solution

 In case of skewed Binary Search Trees, we might as well be using Linear Search

 This bad worst case behavior can be avoided by using an idea called height balancing

Balanced Trees

 The height balanced trees are represented with HB(k), where k is the difference between left subtree height and right subtree height.

Sometimes k is called balance factor

Full Balanced BST

In HB(k), if k = 0 (if balance factor is zero),
then we call such a binary search tree as Full
Balanced Binary Search Tree

Self-balancing Binary Tree

 A self-balancing BST or height-balanced BST is a binary search tree that attempts to keep its height as small as possible at all times (after every node insertion)

Example:

- AVL Tree
- Red Black Tree
- B+ Trees (balanced but not binary trees)

AVL Trees

 An AVL (Adelson-Velskii and Landis) Tree is one with the following properties:

- 1) It is a Binary Search Tree
- 2) For any given node X, the height of left subtree of X and right subtree of X differs by at most 1

A height balanced tree

Not a height balanced tree

• If HB(Node 1):

 There are no nodes with a difference in height of left and right subtrees of more than 1

• If HB(Node 1):

Rotations

 When the tree structure changes (e.g., with insertion or deletion), we need to modify the tree to restore the AVL tree property. This can be done using single rotations or double rotations

 If we balance the AVL tree every time, then at any point for a given node X, the difference in heights of left(X) and right(X) differ by exactly

Important Observation

- Only nodes that are on the path from the insertion point to the root might have their balances altered
- To restore the AVL tree property, we start at the insertion point and keep going to the root of the tree.
- While moving to the root, we need to consider the first node that is not satisfying the AVL property. From that node onwards, every node on the path to the root will have the issue.

Observation

 Difference is at most 2 (in case of violation) at any given time

Types of Violations

The violation may occur in four cases:

- 1) An insertion into the left subtree of the left child of node X (L-L case)
- 2) An insertion into the right subtree of the left child of node X (L-R case)
- 3) An insertion into the left subtree of the right child of node X (R-L case)
- 4) An insertion into the right subtree of the right child of node X (R-R case)

Case 1: L-L case

Solution: Single Right Rotation

Performing single right rotation:

Case 4: R-R case

Solution: Single Left Rotation

Performing single left rotation:

Case 2: L-R case

Solution: Double Rotation

Performing left rotation then right rotation

Case 3: R-L case

Solution: Double Rotation

Performing right rotation then left rotation

Deletion in AVL

Deletion is similar to any BST

 After deletion, we need to restore the balance of tree

For that, we perform rotations

Case 1

When Node B has balance factor 0

AVL Tree Non AVL Tree R0 Rotated Tree

Case 1: Example

AVL Tree

Case 1: Example

Non AVL Tree

R0 Rotated Tree

Case 2

Node B has balance factor 1

AVL Tree Non AVL Tree R1 Rotated Tree

Case 2: Example

AVL Tree

Case 2: Example

Non AVL Tree

R1 Rotated Tree

Case 3

When Node B has balance factor -1

AVL Tree

Non AVL Tree

R-1 Rotated Tree

Case 3: Example

AVL Tree

Case 3: Example

Non AVL Tree

R-1 Rotated Tree

Implementation: C++

 A C++ implementation can be found in the folder titled "Code" on course Google Drive