1.6M Tweets Sentiment Analysis

CS542 Course Project

Jinye Cai, Xichao Geng, Tianmu Hu, Yu Sang

Sentiment Analysis

Predict the polarity, negative or positive of a sentence

- 98.1% positive

MAKE AMERICA GREAT AGAIN!

3:53 PM - 1 Sep 2018

Snighdha Choudhury @snighdhalicious

I hate the rain

4:34 AM - 23 Apr 2019

- 0.45% positive

Outline

- 1. Problem definition
- 2. Analysis
- 3. Model and Verification
- 4. Discussion
- 5. Conclusion

Problem Definition

Kaggle's Sentiment140 Dataset

	# 1467810369	Mon Apr 06 22:19:45 PE	A NO_QUERY	A _TheSpecialOne_	A @switchfoot http://twi
	id	date	flag	user	text
0	1467810672	Mon Apr 06 22:19:49 PDT 2009	NO_QUERY	scotthamilton	is upset that he can't update his Facebook by texting it and might cry as a result School today also. Blah!
0	1467810917	Mon Apr 06 22:19:53 PDT 2009	NO_QUERY	mattycus	@Kenichan I dived many times for the ball. Managed to save 50% The rest go out of bounds
0	1467811184	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	ElleCTF	my whole body feels itchy and like its on fire
0	1467811193	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	Karoli	<pre>@nationwideclass no, it's not behaving at all. i'm mad. why am i here? because I can't see you all over there.</pre>

Problem Definition

- 1. Text categorization of two classes: Positive or Negative
- 2. Natural Language Processing
- 3. Usage: Opinion mining/Reputation management/Brand monitoring etc.

Analysis

- Train Set: 128 million tweets;
- 2. Test Set: 32 million tweets;
- 3. Output: 2 dimensions, probabilities of N/P;

How do human recognize sentiment?

1. Words,

e.g. Perfect, it is a nice solution!

2. Terms,

e.g. I do not like this person.

3. Short sentences,

e.g. Although something negative, I feel positive.

How do human recognize sentiment?

- Capability to extract feature with different sizes.
- 2. Memorizing and understanding the **sequence** of feature words.

Solution

Preprocess

- 1. Tokenize words in data set
- 2. Word embedding with GLoVe

Unique Tokens	335,650
Word Vectors	400,000
Average words	11
Average chars	60

^{*} Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826).

Gated recurrent unit (GRU)*

^{*} Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Attention*

$$egin{aligned} u_{it} &= anh(W_w h_{it} + b_w) \ lpha_{it} &= & rac{\exp(u_{it}^ op u_w)}{\sum_t \exp(u_{it}^ op u_w)} \ s_i &= & \sum_t lpha_{it} h_{it}. \end{aligned}$$

Figure 2: Hierarchical Attention Network.

^{*} Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1480-1489).

Summary

Layer (type)	Output	Shape	Param #	Connected to
input_1 (InputLayer)	(None,	150)	0	
embedding_1 (Embedding)	(None,	150, 200)	8000000	input_1[0][0]
dropout_1 (Dropout)	(None,	150, 200)	0	embedding_1[0][0]
conv1d_1 (Conv1D)	(None,	150, 64)	38464	dropout_1[0][0]
conv1d_3 (Conv1D)	(None,	150, 64)	12864	dropout_1[0][0]
conv1d_2 (Conv1D)	(None,	150, 64)	20544	conv1d_1[0][0]
conv1d_4 (Conv1D)	(None,	150, 64)	12352	conv1d_3[0][0]
conv1d_5 (Conv1D)	(None,	150, 64)	38464	dropout_1[0][0]
conv1d_6 (Conv1D)	(None,	150, 64)	12864	dropout_1[0][0]
mix0 (Concatenate)	(None,	150, 256)	0	conv1d_2[0][0] conv1d_4[0][0] conv1d_5[0][0] conv1d_6[0][0]

max_pooling1d_1 (MaxPooling1D)	(None,	75,	256)	0	mix0[0][0]
batch_normalization_1 (BatchNor	(None,	75,	256)	1024	max_pooling1d_1[0][0]
bidirectional_1 (Bidirectional)	(None,	75,	256)	295680	batch_normalization_1[0][0]
bidirectional_2 (Bidirectional)	(None,	75,	256)	295680	bidirectional_1[0][0]
attention_1 (Attention)	(None,	256)	331	bidirectional_2[0][0]
dropout_2 (Dropout)	(None,	256)	0	attention_1[0][0]
dense_1 (Dense)	(None,	2)		514	dropout_2[0][0]

Model Verification

Model Verification

Baseline: 1-layer LSTM

Layer (type)	Output	Shape	Param #			
embedding_1 (Embedding)	(None,	======================================	======= 87125700			
dropout_1 (Dropout)	(None,	300, 300)	0			
lstm_1 (LSTM)	(None,	100)	160400			
dense_1 (Dense)	 (None, ======	1)	 101 			
Total params: 87,286,201						
Trainable params: 160,501						
Non-trainable params: 87,125,700						

Model Verification

	Our Model	Baseline
Accuracy (%)	83.66	79.12
Loss	0.3648	0.4442

Demo

Extracting insights from Mr. President's tweets

Donald J. Trump @realDonaldTrump

Apr. 18, 2019, 12:59 p.m.

Donald J. Trump @realDonaldTrump

God bless the people of France!

Apr. 15, 2019, 5:58 p.m.

Demo

Extracting insights from Mr. President's tweets

Mr. President fought on his midterm!

Discussions

1. Reasonable to predict three labels:

negative, positive, and neutral;

2. Can we do better?

Multimodal, new structures, etc.

Conclusions

- Represented texts in vectors;
- Designed the inception block of CNN that creatively imitate human understanding of sentence, and Bidirectional GRU to handle sequence patterns;
- 3. Implemented **Hierarchical Attention** to memorize features of long sentence.
- Improved the acc ~4%, wrt baseline;
- Demonstration our model by extracting insights from Mr. President's tweets.

References

- [1] Kaggle.com. (2019). Sentiment140 dataset with 1.6 million tweets. [online] Available at: https://www.kaggle.com/kazanova/sentiment140 [Accessed 30 Apr. 2019].
- [2] Nltk.org. (2019). Natural Language Toolkit NLTK 3.4.1 documentation. [online] Available at: https://www.nltk.org/ [Accessed 30 Apr. 2019].
- [3] Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
- [4] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826).
- [5] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
- [6] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1480-1489).
- [7] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
- [8] Twitter.com. (2019). Twitter. [online] Available at: https://twitter.com/ [Accessed 30 Apr. 2019].

Thank you!