20 сентября 2024 г.

Задача 1.

Два игрока по очереди подбрасывают монетку; каждый из них видит только результат своего броска. Постройте сигма-алгебры случайных событий, соответствующие случайным экспериментам, в которых экспериментатор имеет доступ к информации о результатах:

- а) Известных первому игроку;
- b) Известных второму игроку;
- с) Известных обоим игрокам одновременно;
- d) Известных хотя бы одному из игроков.

Решение

 $\Omega = \{(O, O), (O, P), (P, O), (P, P)\}$ – общее для всех случаев. Вероятность любого случайного события $A_{i,j} \in \mathcal{F}_j, \ j=1,\ldots,4$ тоже можно сразу определить (в силу равной вероятности каждого элементарного исхода) для всех четырёх случаев, как отношение количества элементарных исходов в событии $A_{i,j}$ к их количеству в Ω :

$$\Pr(A_{i,j}) = \frac{|A_{i,j}|}{|\Omega|}.$$

а) Первый игрок не может различать события (O, P) и (O, O), (P, P) и (P, O). Поэтому алгебра событий в этом случае будет иметь вид:

$$\mathcal{F}_1 = \{\emptyset, \{(O, P), (O, O)\}, \{(P, P), (P, O)\}, \Omega\}.$$

b) Этот случай симметричен первому:

$$\mathcal{F}_2 = \{\emptyset, \{(O, O), (P, O)\}, \{(O, P), (P, P)\}, \Omega\}.$$

c) События, взаимно-известные обоим игрокам, должны принадлежать \mathcal{F}_1 и \mathcal{F}_2 одновременно:

$$\mathcal{F}_3 = \mathcal{F}_1 \cap \mathcal{F}_2 = \{\emptyset, \Omega\}.$$

d) \mathcal{F}_4 должна содержать все элементы \mathcal{F}_1 и \mathcal{F}_2 , но можно заметить, что простое объединение \mathcal{F}_1 и \mathcal{F}_2 не является алгеброй:

$$F = \mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \{(O, O), (P, O)\}, \{(O, P), (P, P)\}, \{(O, P), (O, O)\}, \{(P, P), (P, O)\}, \Omega\},$$
$$\{(O, O), (P, O)\} \cap \{(O, P), (O, O)\} = \{(O, O)\} \notin F.$$

Поэтому \mathcal{F}_4 является пополнением F – минимальной алгеброй, содержащей все элементы F. Можно заметить, что все элементарные события $\omega \in \Omega$ можно представить в виде пересечения множеств, являющихся элементами F. Тогда \mathcal{F}_4 должна содержать все возможные наборы элементарных исходов, т.е. $\mathcal{F}_4 = 2^{\Omega}$. Интуитивное объяснение полученному результату – информация, известная двум игрокам, позволяет однозначно определить исход эксперимента, – поэтому не существует таких подмножеств Ω (наборов элементарных исходов), которые экспериментатор не смог бы отличить друг от друга, – а следовательно, на каждом подмножестве Ω определена его вероятность.

Задача 2.

Пусть A – некоторое множество и $\{B_{\lambda}\}_{{\lambda}\in\Lambda}$ – некоторая система множеств. Докажите следующее равенство:

 $A \bigcup \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} \left(A \bigcup B_{\lambda}\right). \tag{1}$

Подсказка: самый простой способ доказательства в задачах такого типа — это показать два отношения включения: любой элемент, содержащийся в левой части выражения должен принадлежать множеству в правой части и наоборот.

Решение

- 1. Рассмотрим элемент ω_L , принадлежащий левой части выражения (1). По построению, $\omega_L \in A$, либо ω_L является элементом каждого из B_{λ} . В обоих случаях ω_L принадлежит каждому из $A \cup B_{\lambda}$, а следовательно, и их пересечению.
- 2. Теперь возьмём элемент ω_R множества из правой части выражения. По построению, он принадлежит каждому из $A \cup B_{\lambda}$. Тогда он может принадлежать либо A, либо $\cap_{\lambda \in \Lambda} (B_{\lambda} \setminus A)$, и поэтому принадлежит множеству в левой части (1), так как $\cap_{\lambda \in \Lambda} B_{\lambda} \supseteq \cap_{\lambda \in \Lambda} (B_{\lambda} \setminus A)$.

Задача 3.

Покажите, что \mathcal{F} – минимальная σ -алгебра на \mathbb{R} , содержащая все отрезки, совпадает с борелевской σ -алгеброй $\mathcal{B}(\mathbb{R})$.

Решение

Здесь достаточно показать что порождающие множества \mathcal{F} являются элементами $\mathcal{B}(\mathbb{R})$ и наоборот, порождающие множества $\mathcal{B}(\mathbb{R})$ являются элементами \mathcal{F} . Для этого можно представить произвольный отрезок в виде набора операций, не выводящих из σ -алгебры над интервалами, и наоборот.

Докажем, что $[a,b] \in \mathcal{B}(\mathbb{R})$:

$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n} \right)$$

Теперь докажем, что $(a,b) \in \mathcal{F}$. Если b-a>2, то можно использовать похожее построение:

$$(a,b) = \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n} \right].$$

В случае, когда $b-a \le 2$, то нужно сделать небольшую поправку, чтобы концы отрезка не "нахлестывались"

друг на друга:

$$(a,b) = \bigcup_{n=1}^{\infty} \left[a + \frac{b-a}{2n}, b - \frac{b-a}{2n} \right].$$

Задача 4.

Пусть даны множества A, B и C. Выразите следующие множества через A, B и C при помощи операций \cup, \cap, \setminus и \triangle :

- а) Множество элементов, принадлежащих всем трём множествам;
- b) Множество элементов, принадлежащих хотя бы двум из множеств A, B и C;
- с) Множество элементов, принадлежащих ровно двум из множеств A, B и C;
- d) Множество элементов, принадлежащих ровно одному из множеств A, B, но не принадлежащих C.

Решение

- a) $\{\omega : \omega \in A \cap B \cap C\};$
- b) $\{\omega : \omega \in (A \cap B) \cup (A \cap C) \cup (B \cap C)\};$
- c) $\{\omega : \omega \in (A \cap B) \cup (A \cap C) \cup (B \cap C) \setminus (A \cap B \cap C)\};$
- d) $\{\omega : \omega \in (A \triangle B) \setminus C\}$.

Задача 5.

Пусть $\{A_i\}_{i=1}^{\infty}$ — некоторый (счётный) набор множеств, являющихся подмножествами Ω . Выразите при помощи операций \cup и \cap с множествами A_i следующие элементы $\omega \in \Omega$:

- а) Элементы, общие для всех A_i в наборе;
- b) Элементы, являющиеся общими для всех $A_{i\geq n}$ (номер n не известен заранее);
- с) Элементы, являющиеся общими для бесконечного количества A_i (например, повторяющиеся в каждом A_i с чётным номером).

Решение

- a) $\omega \in \bigcap_{i=1}^{\infty} A_i$.
- b) $\omega \in \bigcup_{i=1}^{\infty} \bigcap_{j=i}^{\infty} A_j$. Логика такая: $B_i = \bigcap_{j=i}^{\infty} A_j$ это элементы, принадлежащие всем множествам A_j , начиная с номера i. Очевидно, что $B_i \subset B_{i+1} \subset \ldots$, тогда объединение B_i по всем натуральным i равно "самому большому" предельному множеству B_{∞} , в которое попадают все ω , отсутствующие только в конечном наборе A_i . Построенное множество называется нижним пределом последовательности $\{A_i\}_{i=1}^{\infty}$.
- с) Дополнением к искомому множеству являются $\omega \in \Omega$, попавшие только в конечное количество множеств A_i , т.е. для каждого из этих ω существует номер n, такой, что $\omega \notin A_{i \geq n} \Rightarrow \omega \in \overline{A}_{i \geq n} = \bigcup_{i=1}^{\infty} \bigcap_{j=i}^{\infty} \overline{A}_j$. Тогда искомое множество это $\overline{\bigcup_{i=1}^{\infty} \bigcap_{j=i}^{\infty} \overline{A}_j} = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j$. Объяснение полученного результата: рассмотрим последовательность $C_i = \bigcup_{j=i}^{\infty} A_j$ элементов, принадлежащих хотя бы одному из множеств

 A_j с номерами от i. Это убывающая последовательность множеств, т.е. $C_i \supset C_{i+1} \supset \ldots$, и поэтому $\bigcap_{i=1}^{\infty} C_i = \lim_{i \to \infty} C_i = C_{\infty}$. В отличие от элементов $\omega \in \Omega$, попавших только в конечное число A_j , те из них, которые попали в бесконечное количество A_j окажутся в каждом из C_i , а следовательно, и в C_{∞} . Построенное множество называется верхним пределом последовательности $\{A_i\}_{i=1}^{\infty}$.

Задача 6.

Монетка подкидывается бесконечное количество раз: X_n равно 1, если при n-ом подбрасывании выпадает орел и 0, если решка. Определим набор σ -алгебр: $\mathcal{F}_n := \sigma(X_1, X_2, \ldots, X_n), \ \mathcal{H}_n := \sigma(X_n, X_{n+1}, X_{n+2}, \ldots)^1$ Приведите по два нетривиальных (отличных от Ω и \emptyset) примера такого события A, что:

- $A \in \mathcal{F}_{2021}$;
- $A \notin \mathcal{F}_{2021}$;
- A лежит в каждой \mathcal{H}_n .

В какие из упомянутых σ -алгебр входят события:

- $X_{37} > 0$;
- $X_{37} > X_{2021}$;
- $X_{37} > X_{2021} > X_1$.

Решение:

 $A \in \mathcal{F}_{2021}$: "в первом броске выпал орёл", "в 2021-м броске выпал орёл";

 $A \notin \mathcal{F}_{2021}$: "в 2022-м броске выпал орёл", "в последовательности выпало бесконечно много решек";

A лежит в каждой \mathcal{H}_n : "в последовательности выпало бесконечно много решек", "начиная с броска с некоторым номером, выпадали только решки";

 $\{\omega: X_{37}(\omega) > 0\}$ входит в каждое \mathcal{F}_k с $k \geq 37$ и во все \mathcal{H}_k с $k \leq 37$;

 $\{\omega: X_{37}(\omega) > X_{2021}(\omega)\}$ входит в каждое \mathcal{F}_k с $k \ge 2021$ и во все \mathcal{H}_k с $k \le 37$;

 $\{\omega: X_{37}(\omega) > X_{2021}(\omega) > X_1(\omega)\} = \emptyset$, поскольку X_k принимает только два разных возможных значения. По свойствам σ -алгебр, \emptyset содержится в каждой из \mathcal{F}_n и \mathcal{H}_n .

¹Также см. параграф 2.1 в учебнике Клебанера.