第一周.md 2020/9/19

计算理论——第一周

- 计算理论——第一周
 - 。 课程信息
 - 邮箱
 - 教材
 - 成绩
 - Introduction
 - Theory of Computation(计算理论概论)
 - Automator Theory
 - Computability Theory
 - Complexity Theory
 - 复习离散数学的知识
 - 语言(Language)
 - alphabet(字母表)
 - Definition
 - Language
 - Definition
 - Finite Automata(有限的自动装置)
 - 设备的严格定义
 - Configuration
 - Yields in One Step(走一步)
 - Yields in more than one step
 - Accept
 - Operation
 - Example

课程信息

邮箱

maoyc@zju.edu.cn

教材

• Elements of the Theory of Computation

成绩

- 作业10%
- 期中20%
- 期末70%

Introduction

Theory of Computation(计算理论概论)

第一周.md 2020/9/19

Automator Theory

- 自动机理论
- computation device(计算设备)
- language(语言)

Computability Theory

• 可计算理论

Complexity Theory

- 复杂性理论
- resource
 - time
 - o space
- Complexity class
 - P and NP(non-determinist polynomial)
 - PSPACE
 - EXPTION
- 不可解决的问题
 - o halting problem(停机问题)

复习离散数学的知识

- 集合
- 关系
- 函数

语言(Language)

alphabet(字母表)

Definition

- any sets being non-empty and finite
 - The elements in the set also are called symbol
 - A string over an alphabet is a finite sequence of symbols in this alphabet
 - The length of the string is the number of symbols in w, when w is an alphabet.
 - |w|
 - \circ Let Σ be an alphabet:
 - $\Sigma^* = \{\text{all string of } \Sigma\}$
 - this is an infinite set
 - concotenation x and y
 - \bullet $x \circ y = xy$
 - 事 连接
 - lacksquare v is a substring of w if w=xvy for some $x,y\in \Sigma^*$
 - v is a prefix of w if w=vx for some x in Σ^*

- 从头开始的字符串子串
- v is a sufix of w if w=xv for some x in $\Sigma *$
 - 从结尾开始的字符串子串
- o string exponentiation(字符乘方)
 - $w^0 = e(e$ 代表的是空集)
 - $lacksquare orall i \geq 0, w^{i+1} = w^i \circ w$

Language

Definition

• A language over an alphabet Σ is a subset of Σ^* (finite and infinite)

Finite Automata(有限的自动装置)

- Device with extremely limitted memory(内存机器有限的设备)
 - 。 自动门模型

。 简单演示

第一周.md 2020/9/19

设备的严格定义

- K
- o a finite set of states
- 。 状态集合
- \bullet Σ
- o an alphabet
- 8
- transition function
- S
- \circ $S \in K$
- o initial state(unique)
- F
- \circ $F\subseteq K$
- the set of final states(no unique)
- 在上面的简单演示模型中
 - $\circ \ \ K = \{q_1, q_2, q_3\}$
 - \circ $\Sigma = \{0,1\}$
 - symbols read by head
 - \circ $S=q_1$
 - \circ $F=\{q_2\}$

- \circ δ
- \$\$K\times \Sigma \rightarrow K^*\$
 - K means current state
 - lacksquare Σ means symbols read by head
 - K^* means next state

$$egin{array}{ccc} (q_1,0) & q_1 \ \hline (q_1,1) & q_2 \end{array}$$

Configuration

- A Configuration of $FA(F, \Sigma, \delta, S, K)$ is an element of
 - $\circ K imes \Sigma^*$
 - K means current state
 - lacksquare Σ^* means unread string

Yields in One Step(走一步)

- $(q,w) \vdash_M (q',w')$
 - \circ if $ackslash \mathbf{exist} a \in \Sigma, w = aw'$ and $q' = \delta(q,a)$
- 拿上面的简单演示举例子,有:
 - \circ $(q_1, 1001) \vdash_M (q_2, 001)$
 - \circ $(q_2,001) \vdash_M (q_3,01)$
 - \circ $(q_3,01) \vdash_M (q_2,1)$
 - $\circ (q_2,1) \vdash_M (q_2,e)$

Yields in more than one step

- $(q,w) \vdash_M^* (q',w')$
 - $\circ \ \text{ if } \backslash \underline{\mathrm{exist}}(q_1,w_1), \ldots (q_i,w_i) \ \text{ and we have } (q,w) \vdash_M (q_1,w_1) \vdash \ldots \vdash (q_i,w_i) \vdash \ldots \vdash (q',w')$
- 拿上面的简单演示举例子,有:
 - $\circ \ (q_1, 1001) \vdash_M^* (q_2, e)$

Accept

- ullet A string $w\in \Sigma^*$ accepted by a FA $M=(K,\Sigma,\delta,S,F)$ if
 - $\circ \ \ (s,w)dash_M^*\ (q,e) \ ext{for} \ q\in F$
 - 。 即被接受的意思是,通过一系列的操作后最终能够到达终止状态
 - 如果没有能到达终止状态的话,就会被拒绝(所以上面的简单示例是会被接受的)
 - 。 FA中的状态(Σ)不一定需要是0,1,在选定一个FA以后,相应的 $alphabet(\Sigma)$ 也就被给定了
- The language accepted by a $FAM=(K,\Sigma,\delta,S,F)$ is the set of all strings accepted by M
 - $\circ L(M) = \{all\ string\ accepted\ by\ M\}$
- A language is regular if it is accepted by some FA

Operation

- Suppose A,B are language over Σ
- Union

$$\circ \ A \bigcup B = \{x | x \in A \ or \ x \in B\}$$

• Concotenation

$$\circ \ \ A \circ B = \{xy | x \in A \ and \ y \in B\}$$

• (Kleene) Star

$$\circ \ A^* = \{x_1, x_2, \ldots x_k | k \geq 0 \ and \ x_i \in A\}$$

• when
$$k=0, A^*=\{e\}$$

Example

- Show that $L=\{w\in\{0,1\}^*:w\ ends\ with\ 1\}$ is regular
- Suppose
 - $\circ K = S$
 - \circ $\Sigma = \{0,1\}$
 - \circ $F=\{q_1\}$
 - \circ S=S
- Draw the diagram

δ

- $\circ \ w$ ends with 1
- All satisfy
 - $lacksquare (s,w)dash_M^*(q_1,e) ext{ for } q_1\in F$

$$egin{array}{ccc} (s,0) & q_0 \ \hline (q_0,1) & \mathsf{q_1} \end{array}$$

 $(s,1) \quad q_1$

第一周.md

2020/9/19

(s,0)	q_0
$(q_0,0)$	q_0
$(q_0,1)$	q_1
$(q_1,1)$	q_1

Theory of Computation Q & A

Yuchen Mao

- 1. Question: Does a language always contain the empty string e?

 Answer: No. For example, $A = \{0\}$ contains only one string 0, and it does not contain e.
- 2. Question: Can substring, prefix, suffix be empty string e?

 Answer: Yes. Indeed, by definition, e is a substring (prefix, suffix) of every string.
- 3. Question: Can the initial state s also be a final state?

 Answer: Yes. Think about the definition of finite automata. The definition does not prevent F from containing s.
- 4. Question: Given a finite automaton M, is the language L(M) accepted by M unique? Answer: Yes. It is unique. L(M) is defined to be the set of all strings accepted by M. In other words, $w \in L(M)$ if and only if w is accepted by M. For example, consider the following automaton M.

M accepts every string it receives, so $L(M) = \Sigma^*$. Σ^* is the only language accepted by M. No other language is accepted by M.

5. Question: Given a regular language L, is the automaton that accepts L unique? Answer: No, two different automata may accept the same language. For the example, the following finite automaton is different from the one in the previous question, but it accepts Σ^* , too.

6. Question: Given a configuration (q, w), does (q, w) yield itself? In other words, is $(q, w) \vdash_M^* (q, w)$

Answer: Yes, $(q, w) \vdash_M^* (q, w)$ is always true.

Question*: But according the definition of \vdash_M^* you gave in the class, this is not true.

Answer*: Sorry, I gave an incomplete definition in the class. The correct definition is the following

Given two configurations (q, w) and (q', w'), we say $(q, w) \vdash_M^* (q', w')$ if the condition I gave in the class holds or (q, w) = (q', w').