

Student Satellite Project Indian Institute of Technology, Bombay Powai, Mumbai - 400076, INDIA

Website: www.aero.iitb.ac.in/satlab

Readme file for detumbling_con.py

Attitude Determination and Control Subsystem

magMoment(sat)

Author: Riva

Date: 13 June, 2018

This function gives required magnetic moment according to B-dot controller.

Input: Object of satellite class.

Output: Required magnetic moment in body frame.

Required magnetic moment according to B-dot law is given by: [1]

$$\mathbf{m} = \frac{k}{||\mathbf{B}||} \dot{B} \tag{1}$$

where \dot{B} is derivative of magnetic field vector (obtained from sensors) in body frame and $||\mathbf{B}||$ is magnitude of the magnetic field vector. \mathbf{k} is given by:

$$k = \frac{4\pi}{T_{orb}} (1 + \sin\xi_m) J_{min} \tag{2}$$

where T_{orb} is the orbital period in seconds, ξ_m is the inclination of the spacecraft orbit relative to the geomagnetic equatorial plane and J_{min} is the minimum principal moment of inertia.

To find \dot{B} in code, we are taking difference of two consecutive magnetic field measurements and dividing it by the time interval between these two measurements.

References

[1] F Landis Markley and John L Crassidis. *Fundamentals of spacecraft attitude determination and control*. Vol. 33. Springer, 2014.