

Lenguajes formales

Valencia Gonzalez David Leneck February 27, 2025

1

Un lenguaje formal es un conjunto de cadenas sobre un alfabeto Σ , that is a finito conjunto of smbolos. Se utilizan en la teoría de la computación y en la lingüística computacional para definir estructuras sintácticas.

Los lenguajes formales pueden clasificarse en la **jerarquía de Chomsky**, que los divide en:

- Lenguajes regulares: Aquellos que pueden ser reconocidos por un autómata finito determinista (AFD) o no determinista (AFND) y definidos por expresiones regulares.
- Lenguajes libres de contexto: Son reconocidos por autómatas de pila y definidos por gramáticas libres de contexto.
- Lenguajes sensibles al contexto: Definidos por gramáticas sensibles al contexto y reconocidos por autómatas linealmente acotados.
- Lenguajes recursivamente enumerables: Aquellos que pueden ser reconocidos por una máquina de Turing.

Ejemplos:

- Lenguaje regular: $L = \{a^n b^n | n \ge 0\}$, reconocido por un AFD.
- Lenguaje libre de contexto: $L = \{a^n b^n c^n | n \ge 0\}$, reconocido por un autómata de pila.
- Lenguaje no regular: $L = \{a^n b^n | n \ge 0\}$, demostrado por el lema del bombeo.

3 Operaciones con Palabras

Dadas dos palabras x y y, pertenecientes a un alfabeto Σ , las principales operaciones son:

- Concatenación: La operación de concatenación entre dos palabras x y y es la secuencia de símbolos de x seguida de los símbolos de y, denotada como xy.
- Longitud: La función longitud de una palabra x, denotada como |x|, devuelve el número de símbolos que la componen.
- Reversa: La reversa de una palabra x, denotada como x^R , es la palabra obtenida invirtiendo el orden de sus símbolos.
- Potenciación: La potencia de una palabra x^n consiste en repetir x un total de n veces, con x^0 definido como la cadena vacía ε .

	 	Ejemp	los:		 00000	 	 0000000	00000

- Siversided ab by only the techniques xy=abcd.
- La reversa de x = abc es $x^R = cba$.
- La potencia de x = ab con n = 3 es $x^3 = ababab$.

4 Autómatas Finitos Deterministas (AFD) y No Deterministas (AFND)

Un autómata finito determinista (AFD) es una quíntupla $(Q, \Sigma, \delta, q_0, F)$ donde:

- \bullet Q es un conjunto finito de estados.
- Σ es un alfabeto finito de entrada.
- $\delta: Q \times \Sigma \to Q$ es la función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados de aceptación.

Un autómata finito no determinista (AFND) difiere en que la función de transición permite múltiples transiciones para un mismo estado y símbolo de entrada, es decir, $\delta: Q \times \Sigma \to 2^Q$.

Ejemplos:

- Un AFD que reconoce el lenguaje $L = \{a^n b^n | n \ge 0\}.$
- Un AFND con transiciones múltiples en un mismo símbolo.
- \bullet Un AFND con una transición- ϵ que permite cambiar de estado sin consumir un símbolo.

5 Conversión de AFND a AFD

El **algoritmo de subconjuntos** permite transformar un AFND en un AFD mediante los siguientes pasos: $\|$

- 1. Construir el conjunto de estados del AFD como subconjuntos de estados del AFND.
- 2. El estado inicial del AFD es el conjunto de estados alcanzables desde el estado inicial del AFND mediante transiciones- ϵ .
- 3. Para cada símbolo del alfabeto, determinar las transiciones desde cada subconjunto de estados.
- 4. Definir los estados de aceptación como aquellos subconjuntos que contienen al menos un estado de aceptación del AFND.

- Conversión de un AFND con tres estados a un AFD con cuatro estados.
- Eliminación de transiciones- ϵ en un AFND para convertirlo en AFD.
- Determinización de un AFND con múltiples caminos para un mismo símbolo.

6 Autómata con Transiciones

Los autómatas con transiciones- ϵ permiten movimientos entre estados sin consumir un símbolo de entrada. Se eliminan mediante:

- 1. Calcular el cierre- ϵ de cada estado, que es el conjunto de estados alcanzables mediante transiciones- ϵ .
- 2. Modificar la función de transición del autómata para reflejar el cierre- ϵ en lugar de las transiciones- ϵ directas.
- 3. Eliminar las transiciones- ϵ del autómata resultante.

Ejemplos:

- Un AFND con una transición- ϵ desde q_0 a q_1 .
- \bullet Un autómata con cierre- ϵ aplicado para convertirlo en AFD.
- Eliminación de transiciones- ϵ en un autómata con múltiples estados.

