ECE 100 (Spring 2021) - Quiz #1

(Format: 3 questions, 50 minutes)

Name:		
Student II	D:	
	Score:	out of 80

Instructions:

- 1. Register for the quiz (if you are seeing this, you should have already registered)
- 2. Once you register for the quiz, you will have 50 minutes to complete the quiz
- 3. After the quiz, you have 15 minutes to submit and upload your quiz to CCLE (under "Week 3 → Quiz 1").
- Please fill out this 'End of Quiz' survey to acknowledge that you have completed the quiz and submitted your answer sheet to CCLE: https://forms.gle/n2wxogiiQdKjAT5B6

Rules:

- Quiz is closed book. No computers, cell phones, etc.
- Scientific calculator allowed.
- Box all of your answers & show your work.
- If you have questions on the exam, please DO NOT post on Piazza. Email instructor(s) directly.

Quiz Start Time:

Wednesday, April 14th @ 6:00pm PDT

Note: Once you register for the quiz, you will have 1hr 5m to complete & upload your results. (50 minutes to take the exam, 15 minutes to upload).

End Time:

Thursday, April 15th @ 11:59am PDT (answer sheet must be submitted by this time)

No late submissions

Problem 1: Circuit Analysis (20 points)

(a) Find the equivalent resistance, as viewed from its port, of each resistor network shown below (3x2 = 6 points)

(b) Beginning with 1- Ω resistors, synthesize a resistor of (i) 0.75 Ω and (ii) a resistor of 1.5 Ω . Use no more than four 1- Ω resistors in each case. (2x3= 6 points)

(c) Find the voltages V_1 and V_2 and for the circuit shown below. (8 points)

Problem 2: Superposition & Source Transformations (20 points)

Hint: The following circuits can be solved using Superposition or Source Transformations.

(a) Find voltage, v. (8 points)

(b) Find voltage, v_o . (12 points)

Problem 3: Transformers (40 points)

W۵	haihuta	tha	leahi	transformer	· in	class
vve	Studied	ше	iueai	Hansionnei	- 111	Class.

(a) Draw the symbol for an ideal transformer. (4 points)

(b) If the transformer has N_P primary turns and has a turns ratio of n, what are the number of turns in the secondary coil N_s ? (4 points)

(c) For this ideal transformer, if the primary voltage is V_P , what is the secondary voltage V_S ? Does V_S depend on the current being drawn out of the secondary turns, I_S ? (4 points)

(g) Now let's assume the transformer also has core losses. Assume that the core losses only depend on the input voltage, V_i , to the transformer. How would you represent this loss on the model for the transformer? (4 points)

Hint: some of the primary current will be diverted to heating up the transformer core (the iron part of the transformer).

(h) For an input current, I_i, and an input voltage, V_i, what is the output voltage, V_o, and output current, I_o? (4 points)

