PSTAT 174 HW.3 Q6

Kendall Brown 8564403

Winter 2018

Creating the ARMA models for part a and b

Theoretical ACF

Theoretical PACF

par(op)

Q6.a Sample ACF and PACF

Sample PACF

par(op)

For part A the sample and theoretical ACF and PACFs differ in that the sample ACF has much more covariance with larger values of h, and the PACF has some oscilation at larger values of h.

$\operatorname{Q6.b}$ Theoretical ACF and PACF

```
op=par(mfrow=c(1,2))
plot(q6.b.theo.acf,type="h",ylim=c(-1,1),
    main = "Theoretical ACF",
    ylab = expression(rho[X](h)),
    xlab = "h")
abline(h=0)
plot(q6.b.theo.pacf,type="h",ylim=c(-1,1),
    main = "Theoretical PACF",
    ylab = expression(rho[X](h)),
    xlab = "h")
abline(h=0)
```

Theoretical ACF

Theoretical PACF

par(op)

Q6.b Sample ACF and PACF

par(op)

In part b, the sample ACF and PACF differ from the theoreticals by having larger covariances at larger values of h.

In both a and b, the sample ACFs oscilate quite frequently and sharply indicating little smoothness and little dependence between points.