A Novel Robust R-Squared Measure and Its Applications in Linear Regression

Conference Paper in Advances in Intelligent Systems and Computing · October 2016

DOI: 10.1007/978-3-319-48517-1_12

CITATIONS READS
3 1,294

1 author:

Sougata Deb National University of Singapore 5 PUBLICATIONS 22 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Disease and Epidemic Modelling View project

Applications of Forecasting View project

A Novel Robust R-Squared Measure and Its Applications in Linear Regression

Sougata Deb

This public document is a summary presentation highlighting the key aspects covered in the original paper.

For the peer-reviewed and **published version** of the paper, please access: https://doi.org/10.1007/978-3-319-48517-1_12

For a raw, unreviewed **pre-print version** of the paper, please let me know of your interest and I will share it privately

For questions, remarks and feedback, please drop a message to deb.sougata@gmail.com

A Novel Robust R-Squared Measure

and Its Applications in Linear Regression

Sougata Deb

Analytics Professional and Independent Researcher

Agenda

Problem Overview

• R², Goodness of Fit, Robust Regression and Contamination Detection

Solution Process

- ROR² Computation
- Evolution of the Main Algorithm

Empirical Results

- Results on Synthetic Data
- Results on Real Datasets

Conclusions

Problem Overview

R-Squared: Why or Why Not?

$$R^2 = 1 - \frac{SSE}{SST}$$

It's difficult to understand model fit using R-squared alone. Research shows that **graphs** are essential to correctly interpret regression analysis results.

In general, the higher the R-squared, the better the model fits your data. However, there are **important conditions** for this guideline.

R-squared *cannot* determine whether the coefficient estimates and predictions are biased ...

Are Low R-squared Values Inherently Bad?

No! There are **two major reasons** why it can be just fine to have low R-squared values.

I also showed how it can be a **misleading statistic** because a low R-squared isn't necessarily bad and a high R-squared isn't necessarily good.

Problem Scope

- Only 1 underlying process generating the data
 - Everything else is contamination: outliers or leverage points

Solution Process

Basic Architecture

- If a model captures this underlying process well
 - **Low error** on *good / regular* observations
 - **High error** on *bad / contaminated* observations
- In such a scenario, we should expect

$$\{\,e_{(1)}^2,e_{(2)}^2,\dots,e_{(m)}^2,e_{(m+1)}^2,e_{(m+2)}^2,\dots,e_{(n)}^2\,\}$$

Regular observations

Contaminated Observations

where,
$$e_{(1)}^2 \le e_{(2)}^2 \le \cdots \le e_{(n)}^2$$

Let $\{y_{(1)}, y_{(2)}, ..., y_{(n)}\}$ be the corresponding actuals

Defining Progressive Metrics

- Take out the outliers, then calculate the R²
- "Take out the outliers" => identify the true underlying process / relationship
- *True* relationship is independent of any particular model being evaluated

Trial 1: **OLS** initialization

- Start with OLS estimates, drop observations beyond *argmax* RoR²
- Re-estimate regression parameters and repeat the last step
- Finding: it works for outliers, but gets trapped by leverage points

Leverage Point Contamination --->

Trial 2: Committee of OLS Initializations

- Apply the same methodology on multiple subsets of the original data
- Check 1: Subset Creation
 - No resampling, partition into k subsets
 - No random partitioning, using distance from median
- Check 2: Pruning
 - Discard subsets that end up selecting < 50% of starting sample size
 - Discard subsets whose final parameter estimates are different from majority

- Define a *distance* metric for different sets of parameter estimates: **Cosine Similarity**
- Retain only *similar* estimates, final model becomes an average of these estimates

Trial 2: Committee of OLS Initializations

- Check 3: Coverage
 - Check 2 leads to over-pruning but gives a representative model
 - Use this model on the discarded subsets and select observations with low error (<maximum error for regular observations)

Leverage Point Contamination --->

$\sum (xy) = (\sum x)(\sum y)$

Complete Algorithm at-a-glance

Empirical Results

Hypotheses and Simulation Construct

- Two subsets **R** (retained) and **E** (excluded) obtained as output of the algorithm represent *Regular* and *Contaminated* observations respectively
- RoR² based on **R** can select the "best" model more effectively
- Simulation Construct
 - Benefit: Ground truth is known

- Elaborate contamination scheme covers extensive varieties of scenarios
- 35,000 simulated datasets
- 8 different modeling techniques

Contamination Detection Performance

 $\sum x^2 - \frac{(\sum x^2)}{n} \sum x^2$

Proposed

- Type I Error: A regular observation included in subset E
- Type II Error: A *contaminated* observation **included** in subset **R**

Model Selection Performance

Measure	Type I Error	Type II Error	Measure	Type I Error	Type II Error
\mathbb{R}^2	27.0%	28.8%	F-statistic	44.0%	7.1%
Wilcoxon Dispersion	29.1%	22.2%	Median-R ²	23.3%	5.6%
Least Trimmed Square	4.4%	10.3%	RoR ²	1.4%	3.1%

- Type I Error: An "Actual Best" model is **not selected** by the Metric
- Type II Error: Model selected by the Metric is **not** "Actual Best"

$\sum (xy) = (\sum x)(\sum y)$ $\Sigma x^2 = (\Sigma x^2) \Sigma y^2$

Additional Insights on Model Suitability

OLS: Ordinary Least Square

QNT: Quantile Regression using finite smoothing

HUB: Huber's M-estimator with Huber weight

BIS: Huber's M-estimator with Tukey's bisquare weight

LTS: Rousseeuw and Leroy's Least Trimmed Square estimator

MML: Yohai's MM-estimator with LTS initialization

SES: Rousseeuw and Yohai's S-estimator

ROR: RoR² regression estimator, which is an OLS estimator used on the identified set of regular observations

Good Average Bad

Performance on Real Datasets

- Real datasets do **not** come with a ground truth
- 3 datasets were chosen from UC Irvine ML repository: Combined Cycle Power Plant (CCPP), Concrete Compressive Strength (CCS) and Boston Housing (BH)
- Root Mean Square Error (RMSE) and correlation coefficient (r) used for validation

Dataset	CCPP				CCS			ВН				
Decision	E	l	R	Total	E		R	Total	E	R		Total
Obs.	53	9,515		9,568	173	857		1,030	166	340		506
Model	r	r	RMSE	RoR ²	r	r	RMSE	RoR ²	r	r	RMSE	RoR ²
OLS	0.496	0.967	4.314	0.931	0.347	0.850	8.502	0.630	0.778	0.910	0.128	0.563
QNT	0.492	0.967	4.326	0.931	0.266	0.874	7.793	0.666	0.745	0.932	0.111	0.596
HUB	0.494	0.967	4.315	0.931	0.319	0.860	8.214	0.645	0.760	0.928	0.114	0.589
BIS	0.494	0.967	4.315	0.931	0.175	0.906	6.751	0.699	0.746	0.934	0.109	0.598
SES	0.492	0.967	4.335	0.930	0.155	0.913	6.522	0.707	0.722	0.937	0.108	0.600
MML	0.493	0.967	4.322	0.931	0.155	0.913	6.500	0.707	0.710	0.934	0.110	0.595
LTS	0.489	0.967	4.474	0.927	0.152	0.911	6.599	0.705	0.704	0.935	0.113	0.596
ROR	0.495	0.967	4.314	0.931	0.133	0.895	7.211	0.686	0.500	0.921	0.121	0.595

Conclusions and Next Steps

- Contamination detection performance was significantly better than existing model-based methods
- RoR² reduced model selection (and interpretation) error to < 5% from 50%+ observed for the traditional R² measure
- OLS based on chosen subset of regular observations, performed similar to existing robust regression methods.
 - Outperformed others at extremely high contamination scenarios

Future Research

- Evaluate contamination detection performance more extensively
- Explore if / how the methodology can be customized for non-linear regression
- Study behavior of RoR² in presence of extra or truncated set of covariates (compared to what is used in the underlying model)

Thank You

For the peer-reviewed and **published version** of the paper, please access: https://doi.org/10.1007/978-3-319-48517-1_12

For a raw, unreviewed **pre-print version** of the paper, please let me know of your interest and I will share it privately

For questions, remarks and feedback, please drop a message to deb.sougata@gmail.com

$\sum x^2 - \frac{(\sum x^2)}{n} \sum y^2$

References

- 1. Peter, J. R.: Least median of squares regression. Journal of the American Statistical Association 79(388), 871-880 (1984)
- 2. James, P. S.: Outliers and influential data points in regression analysis. Psychological Bulletin 95(2), 334-344 (1984)
- 3. John, M. S., William, L. S.: Algorithms and complexity for least median of squares regression. Discrete Applied Mathematics 14(1), 93-100 (1986)
- 4. Santiago, V.: On the behaviour of residual plots in robust regression. Statistics and Econometrics Series 04, Working Paper 93-04 (1993)
- 5. I-Cheng, Y.: Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research, Vol. 28, No. 12, 1797-1808 (1998)
- 6. Victoria, J. H., Jim, A.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85-126 (2004)
- 7. Peter, J. R., Annick, M. L.: Robust Regression and Outlier Detection (Vol. 589). John Wiley & Sons (2005)
- 8. Jeff, T. T., Joseph, W. M.: Rank-based analysis of linear models using R. Journal of Statistical Software 14(7), 1-26 (2005)
- 9. Heysem, K., Pınar, T., Fikret, S. G.: Local and global learning methods for predicting power of a combined gas & steam turbine. In: Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering (ICETCEE 2012). Dubai, UAE, pp. 13-18 (2012)
- 10. S.M.A.Khaleelur, R., M.Mohamed, S., K.Senthamarai, K.: Multiple linear regression models in outlier detection. International Journal of Research in Computer Science 2(2), 23-28 (2012)
- 11. Moshe, L.: UCI Machine Learning Repository. [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science (2013)
- 12. Pinar, T.: Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. International Journal of Electrical Power & Energy Systems, Volume 60, ISSN 0142-0615, 126-140 (2014)