Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem

Abstrakt: V úloze si osvojíte práci s jednoduchými elektrickými obvody. Pomocí technického kompenzátoru zkalibrujete ručičkový ampérmetr a voltmetr, poté změříte jejich vnitřní odpor.

1 Pracovní úkoly

1. DÚ: V přípravě odvoď te vztah (7).

- 2. Pomocí kompenzátoru ocejchujte stupnici voltmetru (cejchujte v celém rozsahu stupnice). Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 3. Pomocí kompenzátoru ocejchujte stupnici miliampérmetru (cejchujte v celém rozsahu stupnice). Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 4. Pomocí kompenzátoru ocejchujte odporovou dekádu. Měření proveď te pro 10 hodnot v rozsahu $100-1000~\Omega$. Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 5. Rozšiřte rozsah miliampérmetru dvakrát a určete jeho vnitřní odpor R_0 . Měření proveďte pro 10 různých nastavení obvodu, t.j. pro 10 různých proudů.
- 6. Rozšiřte rozsah voltmetru dvakrát a určete jeho vnitřní odpor. Měření proveď te pro 10 různých nastavení obvodu, t.j. pro 10 různých napětí.
- 7. Při zpracování výsledků z měření vnitřních odporů vezměte v úvahu výsledky získané cejchováním stupnic voltmetru, miliampérmetru a odporové dekády a proveď te korekci naměřených hodnot. Diskutujte rozdíl mezi výsledkem získaným bez korekce a s korekcí.

2 Pomůcky

Pomůcky: Miliampérmetr, voltmetr, zdroj 0–20 V, odporová dekáda, reostaty 115 Ω a 6 000 Ω , dva vypínače, multimetr, odporové normály 100 Ω , 1 000 Ω a 10 000 Ω , technický kompenzátor QTK Metra, Westonův normální článek, vodiče.

3 Základní pojmy a vztahy

3.1 Kompenzátor

Pro přesné měření elektromotorického napětí stejnosměrných zdrojů se zpravidla používá kompenzační metody. Tato metoda je založena na poznatku, že lze s daleko větší přesností indikovat nulový proud v obvodu, než určit absolutně jeho nenulovou velikost. Kompenzátory měří s vysokou přesností a nezatěžují měřený zdroj proudem.

Principiální schéma zapojení kompenzátoru je znázorněno na Obr. 1. Neznámé napětí je označené U_x , referenční U. Předpokládáme, že U je dobře definované a lze jej plynule měnit.

Obr. 1: Principiální schéma kompenzátoru.

Obr. 2: Zjednodušené schéma kompenzátoru METRA QTK.

Pokud se U_x a U liší, protéká obvodem proud a galvanometr G ukazuje výchylku. Pokud $U_x=U$ (t.j. U_x je vykompenzováno napětím U), pak galvanometr neukáže nic.

K měření budete používat kompenzátor METRA typ QTK. Na Obr. 2 je zjednodušené schéma technického kompenzátoru METRA. Na Obr. 2 je písmenem A označen pomocný obvod a písmenem B měrný obvod. Oba obvody jsou navzájem vázány skrze přesný odpor r_1 , který je zapojen jako potenciometr. Je-li jezdec potenciometru v takové poloze, že je na něm napětí U rovné napětí měřeného zdroje U_m , bude proud I_m =0 a obvod B nebude ovlivňovat proud I_p v obvodě A a tedy ani napětí U. Tuto okolnost využijeme k určení napětí U_m . Nulovou hodnotu proudu I_m dosahujeme tak, že měníme polohu jezdce na potenciometru tak dlouho, až velikost napětí U na výstupu potenciometru vykompenzuje měřené napětí U_m . Potom platí, $U = U_m$. Napětí U můžeme vyjádřit jako $U = RI_p$, kde R je ta část odporu r_1 , která je zařazena v měrném obvodu B a I_p je proud protékající tímto odporem. Poté dostaneme

$$U_m = RI_p. (1)$$

Velikost proudu I_p protékajícího pomocným obvodem A určujeme zpravidla nepřímo, užitím Westonova normálního článku, který zapojíme na místo měřeného napětí U_m . Nechť napětí U_N tohoto článku je vykompenzováno $(I_m=0)$ napěťovým úbytkem na potenciometru, potom platí: $U=U_N$ a $U=I_pR_N$. Odtud pak

$$U_N = R_N I_p \tag{2}$$

$$U_m = \frac{R}{R_N} U_N. (3)$$

4 Postup měření

4.1 Rozšíření rozsahu miliampérmetru

Obr. 3: Zapojení k rozšíření rozsahu miliampérmetru.

Při přímém měření ampérmetrem je velikost měřeného proudu omezená rozsahem použitého přístroje. Při měření vyšších proudů zabráníme přetížení ampérmetru připojením bočníku (odporu) Obr. 3. Při vypnutém klíči K_2 je proud měřený ampérmetrem A_2 a pomocným ampérmetrem A_1 stejný,

$$I_1 = I_2 = \frac{U}{R + R_0} \tag{4}$$

je určen elektromotorickou silou zdroje U a odpory R a R_0 , kde R_0 je vnitřní odpor ampérmetru A_2 a do odporu R je zahrnut vnitřní odpor zdroje i pomocného ampémetru A_1 . Při sepnutí klíče K_2 bude platit

$$I_1 = I_2 + I_b, \frac{I_2}{I_b} = \frac{R_b}{R_0}, \frac{I_b}{I_2} = \frac{I_1 - I_2}{I_2} = \frac{I_1}{I_2} - 1.$$
 (5)

Pokud potřebujeme změnit rozsah ampérmetru n-krát, musí platit $I_1/I_2=n$. Pak odpor bočníku zvolíme takto

$$R_b = R_0 \frac{I_2}{I_b} = \frac{R_0}{\frac{I_b}{I_2}} = \frac{R_0}{\frac{I_1}{I_2} - 1} = \frac{R_0}{n - 1}.$$
 (6)

4.2 Rozšíření rozsahu voltmetru

Chceme-li měřit vyšší napětí než jaké odpovídá plné výchylce měřidla, musíme upravit vnitřní odpor obvodu sériovým zařazením předřadného odporu R_p tak, aby při zapojení této kombinace

Obr. 4: Zapojení k rozšíření rozsahu voltmetru.

na měřené napětí proud tekoucí měřidlem nepřesáhl maximální dovolenou hodnotu. Podobně jako u ampérmetru lze odvodit pro vnitřní odpor voltmetru:

$$R_V = \frac{R_p}{n-1},\tag{7}$$

odpor R_p je odpor dekády, R_V vnitřní odpor voltmetru V a n udává kolikrát je rozsah voltmetru rozšířen. Odpor dekády si nastavíte tak, aby platilo

$$U_2 = \frac{U_1}{n},\tag{8}$$

 U_1 je hodnota napětí na V při zapnutém klíči v poloze 1, U_2 je hodnota napětí na V při zapnutém klíči v poloze 2. K tomuto měření je nutné použít dostatečně tvrdý dělič napětí, tzn. použít reostat s nepříliš velkým odporem. Pro přesné měření je nutné udržovat konstantní napětí na V' pomocí odporu R.

4.2.1 Cejchování voltmetru

Nejprve provedete kalibraci kompenzátoru pomocí normálového Westonova článku, který připojíte ke svorkám kompenzátoru označených U_N . Kalibraci provádějte velmi opatrně, Westonův článek je velmi křehký a je snadné ho zničit. Důležitým předpokladem pro správné měření je neproměnlivost pomocného proudu I_p během měření, proto je zapotřebí velikost tohoto proudu během měření hlídat. **Instrukce pro správné měření s kompenzátorem najdete v návodech k přístrojům** [1].

Obr. 5: Schéma zapojení pro cejchování voltmetru.

Schéma zapojení pro cejchování voltmetru je na Obr. 5. Samotné cejchování se provádí tak, že pomocí reostatu R_1 vkládáme na svorky voltmetru různé stejnosměrné napětí. Odečteme výchylku na voltmetru a pomocí kompenzátoru určíme správnou hodnotu napětí. Kompenzátorem se cejchují voltmetry třídy 0.2.

Obr. 6: Schéma zapojení pro cejchování ampérmetru.

4.2.2 Cejchování miliampérmetru

Pro měření použijeme zapojení zobrazené na Obr. 6. Průchodem proudu I_x odporovým normálem R_N vznikne úbytek napětí $U_x=R_NI_x$, který změříme pomocí kompenzátoru. Hodnotu měřeného proudu určíme ze vzorce

$$I_x = \frac{U_x}{R_N}. (9)$$

Při měření volíme hodnotu odporového normálu tak, aby měřený úbytek napětí bylo možné určit bez použití děliče napětí, t.j. do 1500 mV.

4.2.3 Cejchování odporové dekády

Cejchování odporové dekády provádíme opět pomocí odporových normálů. Zvlášť výhodné je použití kompenzátoru při srovnávání odporů o hodnotách sobě velmi blízkých. Schéma zapojení je na Obr. 7. Neznámý odpor R_X zapojíme do série s odporovým normálem R_N a zdrojem napětí U_B a obvodem necháme procházet proud I. Na obou odporech vzniká spád napětí, který postupně přivádíme na svorky U_X . Poměr napětí na obou odporech je roven poměru hodnot příslušných odporů, platí

$$\frac{U_X^{R_X}}{U_X^{R_N}} = \frac{IR_X}{IR_N} = \frac{R_X}{R_N}, R_X = \frac{U_X^{R_X}}{U_X^{R_N}} R_N.$$
 (10)

Během měření kontrolujeme stálost protékajícího proudu.

Obr. 7: Schéma zapojení pro cejchování odporové dekády.

5 Poznámky

- 1. Při měření vnitřních odporů volte takovou konfiguraci obvodu, aby se výchylky ručiček přístrojů pohybovaly v poslední třetině stupnice.
- 2. Na začátku měření kompenzátor zkalibrujte pomocí Westonova článku.
- 3. Při kalibrování odporové dekády (úkol 4) použijte v oboru 100-500 Ω odporový normál 100 Ω a v oboru 500-1000 Ω odporový normál 1000 $\Omega.$
- 4. Mezinárodní Westonův normální článek má při 20°C elektromotorickou sílu $U_{20}=1,01865$ V. Elektromotorickou sílu při teplotě t°C lze vypočítat podle rovnice

$$U_t = U_{20} - 4,06 \cdot 10^{-5} (t - 20) - 0,95 \cdot 10^{-6} (t - 20)^2 + 1 \cdot 10^{-8} (t - 20)^3 \text{ V}.$$
 (11)

normální článek nesmíte zatížit. Z článku se nesmí odebírat proud větší než 1 μA .

5. Při zapojení obvodů s voltmetrem (cejchování i měření vnitřního odporu) použijte jako dělič napětí reostat 115 Ω , při měření s miliampérmetrem pak reostat 6000 Ω společně (sériově) s odporem $10\,000\,\Omega$.

6 Otázky

- 1. V čem spočívá kompenzační metoda měření napětí a jaké jsou její hlavní výhody?
- 2. Proč musíte kompenzátor nejprve zkalibrovat?
- 3. Víte jak kompenzátor zkalibrovat? Víte jak s kompenzátorem pracovat, tj. přečetli jste si návod ke kompenzátoru [1]?
- 4. Který odporový normál (100 Ω , nebo 1000 Ω) použijete při cejchování miliampérmrtru, pokud víte, že jeho měřící rozsah je 1 mA? (Pozn.: Zbylé potřebné údaje jsou uvedeny v návodu.)
- 5. Jak budete sestavovat kalibrační křivky pro jednotlivé přístroje? Rozmyslete si věci jako, která veličina bude závislá a která nezávislá, jakou funkci použijete pro sestrojení kalib. křivky.
- 6. Jak při zpracování využijete to, že si jednotlivé přístroje ocejchujete?

Reference

[1] Návody k přístrojům [online], [cit. 28. 09. 2017], Dostupné z: http://praktikum.fjfi.cvut.cz/documents/chybynav/navody-o.pdf