

estimation of index of intersection subgroup

Canonical name EstimationOfIndexOfIntersectionSubgroup

Date of creation 2013-03-22 18:56:46 Last modified on 2013-03-22 18:56:46

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 5

Author pahio (2872) Entry type Theorem Classification msc 20D99

Synonym index of intersection subgroup

Related topic LogicalAnd Related topic Cardinality **Theorem.** If H_1, H_2, \ldots, H_n are subgroups of G, then

$$\left[G:\bigcap_{i=1}^n H_i\right] \leq \prod_{i=1}^n [G:H_i].$$

Proof. We prove here only the case n=2; the general case may be handled by the induction.

Let $H_1 \cap H_2 := K$. Let R be the set of the right cosets of K and R_i the set of the right cosets of H_i (i = 1, 2). Define the relation ϱ from R to $R_1 \times R_2$ as

$$\rho := \{ (Kx, (H_1x, H_2x)) : x \in G \}.$$

We then have the http://planetmath.org/Equivalent3equivalent conditions

$$Kx = Ky,$$

 $xy^{-1} \in K,$
 $xy^{-1} \in H_1 \quad \land \quad xy^{-1} \in H_2,$
 $H_1x = H_1y \quad \land \quad H_2x = H_2y,$
 $(H_1x, H_2x) = (H_1y, H_2y),$

whence ϱ is a mapping and injective, $\varrho: R \to R_1 \times R_2$. i.e. it is a bijection from R onto the subset $\{\varrho(x): x \in R\}$ of $R_1 \times R_2$. Therefore,

$$\operatorname{card}(R) \leq \operatorname{card}(R_1 \times R_2) = \operatorname{card}(R_1) \cdot \operatorname{card}(R_2).$$

As a consequence one obtains the

Theorem (Poincaré). The index of the intersection of finitely many subgroups with finite http://planetmath.org/Cosetindices is finite.