건강음료 판매량 예측을 위한 최적의 모델과 분석방법 탐색

분석 과정

분석 도구

다중회귀분석 모델 1 평균 제곱근 오차 (RMSE) 분 데 데 의사결정나무 판 석 모 모 모델 2 매 0 0| 방 델 델 터 터 량 SVR 결정계수(R²) 구 법 평 탐 분 예 모델 3 가 성 설 할 색 측 랜덤포레스트 정 수정된 모델 4 결정계수(adj R²) 인공신경망 Python, R Python

변수 파악

1	A	В	C	D	E	F	G	Н	I
1	YM	CATEGOR	ITEM_CNT	QTY	PRICE	MAXTEME	SALEDAY	RAIN_DAY	HOLIDAY
2	200901	건강음료	37	1410	1543	4	126753	151	12
3	200902	건강음료	37	1209	1543	9	113399	3014	8
4	200903	건강음료	38	1348	1547	12	129162	1383	Ç
5	200904	건강음료	38	1377	1500	19	126277	3564	8
6	200905	건강음료	40	1406	1528	25	129584	9288	12
7	200906	건강음료	39	1343	1623	27	123218	9998	8
8	200907	건강음료	38	1313	1600	28	131083	17405	8
9	200908	건강음료	39	1448	1577	29	130040	7704	10
10	200909	건강음료	41	1531	1559	27	131989	4096	8
11	200910	건강음료	43	1670	1586	22	136095	2824	10
1	200911	건강음료	44	1572	1573	12	136152	3684	

■ YM: 판매년월

■ CATEGORI : 음료 카테고리

■ ITEM_CNT : 상품 품목수

■ QTY: 판매량

■ PRICE: 가격

■ MAXTEMP: 기온

■ SALEDAY : 영업(판매)일수

■ RAIN_DAY: 강우일수

■ HOLIDAY : 휴일일수

연도별 상품 품목수

연도별 상품 가격

연도별 기온

연도별 판매일수

연도별 강우일수

연도별 휴일일수

독립변수와 종속변수 간의 관계

판매량과의 상관관계

종속변수(판매량) 정규성 검정

P-value: 0.0347

첫번째 모델

QTY ~ ITEM_CNT + PRICE + MAXTEMP + SALEDAY + RAIN_DAY + HOLIDAY

판매량 ~ 품목수 + 가격 + 기온 + 판매일수 + 강수일수 + 휴일일수

	Regression	RMSE	R2	Adj_R2
1	LinearRegression	143.4655	0.3722	-0.0987
2	DecisionTreeRegressor	220.5543	-0.4838	-1.5966
3	SVR	181.0748	-0.0001	-0.7502
4	RandomForestRegressor	162.1092	0.1984	-0.4028
5	ArtificialNeuralNetwork	330.6585	-2.3350	-4.8362

두번째 모델

QTY ~ ITEM_CNT + PRICE + MAXTEMP + SALEDAY + RAIN_DAY + HOLIDAY + MON

판매량 ~ 품목수 + 가격 + 기온 + 판매일수 + 강수일수 + 휴일일수 + 월

	Regression	RMSE	R2	Adj_R2
1	LinearRegression	96.6141	0.7153	0.4306
2	DecisionTreeRegressor	127.7573	0.5021	0.0043
3	SVR	181.0748	-0.0001	-1.0002
4	RandomForestRegressor	53.3110	0.9133	0.8266
5	ArtificialNeuralNetwork	204.4915	-0.2755	-1.5510

세번째 모델

QTY ~ ITEM_CNT + MAXTEMP + SALEDAY + RAIN_DAY + HOLIDAY + MON (-PRICE)

판매량 ~ 품목수 + 기온 + 판매일수 + 강수일수 + 휴일일수 + 월

	Regression	RMSE	R2	Adj_R2
1	LinearRegression	100.8029	0.6901	0.4576
2	DecisionTreeRegressor	131.4040	0.4733	0.0783
3	SVR	181.0748	-0.0001	-0.7502
4	RandomForestRegressor	105.2482	0.6621	0.4087
5	ArtificialNeuralNetwork	322.9863	-2.1820	-4.5685

변수 선택 with R

BIC: 가격 + 판매일수 + 강우일수 + 월

CP: 품목수 + 가격 + 기온 + 판매일수 + 강우일수 + 월

Adj R2: 모든 변수

네번째 모델

QTY ~ PRICE + SALEDAY + RAIN_DAY + MON (-ITEM_CNT, MAXTEMP, HOLIDAY)

판매량 ~ 가격 + 판매일수 + 강수일수 + 월

	Regression	RMSE	R2	Adj_R2
1	LinearRegression	105.9867	0.6574	0.5203
2	DecisionTreeRegressor	122.8376	0.5397	0.3556
3	SVR	181.0748	-0.0001	-0.4002
4	RandomForestRegressor	126.2652	0.5137	0.3192
5	ArtificialNeuralNetwork	305.7147	-1.8508	-2.9911

모델 비교 평균제곱근오차(RMSE)

	RMSE_1	RMSE_2	RMSE_3	RMSE_4
Regression				
LinearRegression	143.4655	96.6141	100.8029	105.9867
DecisionTreeRegressor	220.5543	127.7573	131.4040	122.8376
SVR	181.0748	181.0748	181.0748	181.0748
RandomForestRegressor	162.1092	53.3110	105.2482	126.2652
ArtificialNeuralNetwork	330.6585	204.4915	322.9863	305.7147

모델 비교 ^{결정계수(R²)}

	R2_1	R2_2	R2_3	R2_4
Regression				
LinearRegression	0.3722	0.7153	0.6901	0.6574
DecisionTreeRegressor	-0.4838	0.5021	0.4733	0.5397
SVR	-0.0001	-0.0001	-0.0001	-0.0001
RandomForestRegressor	0.1984	0.9133	0.6621	0.5137
ArtificialNeuralNetwork	-2.3350	-0.2755	-2.1820	-1.8508

모델 비교

수정된 결정계수 $(adj R^2)$

	Adj_R2_1	Adj_R2_2	Adj_R2_3	Adj_R2_4
Regression				
LinearRegression	-0.0987	0.4306	0.4576	0.5203
DecisionTreeRegressor	-1.5966	0.0043	0.0783	0.3556
SVR	-0.7502	-1.0002	-0.7502	-0.4002
RandomForestRegressor	-0.4028	0.8266	0.4087	0.3192
ArtificialNeuralNetwork	-4.8362	-1.5510	-4.5685	-2.9911

결론

- 건강음료 판매량 예측을 위한 최적의 모델은 두 번째 모델
- QTY ~ ITEM_CNT + PRICE + MAXTEMP + SALEDAY + RAIN_DAY + HOLIDAY + MON
- 모든 모델에서 회귀분석이 양호한 성능을 발휘
- 하지만 가장 좋은 예측 성능은 랜덤포레스트 방법

Q & A

분석과정과 모든 코드는 구글 드라이브를 참고해주세요

[PJT - 1조 - mini_project_01(py).html]