L'ordre dans \mathbb{R}

Exercice 1: Comparer les nombres réels a et b dans les cas suivants :

1.
$$a = \frac{496}{55}$$
; $b = 9$

2.
$$a = \frac{386}{35}$$
; $b = 11$

3.
$$a = 2\sqrt{3}$$
: $b = 3\sqrt{5}$

4.
$$a = 5 + \sqrt{2}$$
; $b = \sqrt{25 + 10\sqrt{2}}$

5.
$$a = \sqrt{11}$$
: $b = \sqrt{5 + \sqrt{6}}$

6.
$$a = 2\sqrt{5} - 3\sqrt{2}$$
; $b = \sqrt{39 - 12\sqrt{10}}$

7.
$$a = \frac{\sqrt{3} - 1}{\sqrt{3}} + 1$$
; $b = \frac{2 - \sqrt{3}}{\sqrt{3} - 1}$

8.
$$a = x\sqrt{x+1}$$
; $b = (x+1)\sqrt{x}$ $x > 0$

9.
$$a = (x + y)^2$$
; $b = 4xy$ $(x, y \in \mathbb{R})$

Exercice 2:

1. Écrire sans symbole de la valeur absolue les nombres suivants :

$$|3-2\sqrt{3}|$$
, $|2\sqrt{3}-3\sqrt{2}|$, $|\sqrt{2}-2|$, $\sqrt{(5-2\sqrt{2})^2}$

2. Résoudre dans ℝ :

$$|4x-5| = 1$$
, $|3x+7| \le 2$, $|4x-9| > 1$, $|3x+7| = 2$
 $|2x+1| = |x+5|$, $|x-7| = 0$, $|x+5| < 4$.

Exercice 3: Soit $(x, y) \in \mathbb{R}^2$ tels que $x \ge \frac{1}{2}$, $y \le 1$, et x - y = 3.

1. Simplifier le nombre *E* tel que :

$$E = \sqrt{(2x-1)^2} + \sqrt{(2y-2)^2}.$$

- 2. Vérifier que $\frac{1}{2} \le x \le 4$ et $\frac{-5}{2} \le y \le 1$.
- 3. Calculer la valeur de *F* tel que :

$$F = |x + y - 5| + |x + y + 2|.$$

Exercice 4:

1. Écrire sous forme d'un intervalle les ensembles suivants :

$$x \le -3$$
; $x \ge -1$; $x \le \sqrt{2}$; $x > -5$; $-4 \le x < 6$

- 2. Écrire si possible sous forme d'un intervalle les ensembles suivants :
 - (a) $[-3;3] \cap]0;5[$ et $[-3;3] \cup]0;5[$
 - (b) $[0;5] \cap]4; +\infty[$ et $[0;5] \cup]4; +\infty[$
 - (c) $]-\infty;1] \cap [-3;3[\text{ et }]-\infty;1] \cup [-3;3[$

Exercice 5:

1. Soit a et b deux réels tels que $3 \le a \le 4$ et $2 \le b \le 7$

Donner l'encadrement de a+b, a-b, $a \times b$, et $\frac{a}{b}$.

2. Soit a et b deux réels tels que $-3 \le a \le 4$ et $2 \le b \le 7$

Donner l'encadrement de a+b, a-b, $a \times b$, et $\frac{a}{b}$.

3. Soit *x* et *y* deux réels tels que

 $2 \le x \le 5$ et $-4 \le y \le 1$

Donner un encadrement de -x + 2y, xy - 4, $\frac{x}{y+5}$, $\frac{x+y+3}{x-y}$.

Exercice 6: Montrer, dans chaque cas, que A est une valeur approchée du nombre x à r prés:

1.
$$x = \frac{7}{6}$$
 ; $A = 1,1666$; $r = 10^{-4}$

2. $x = \frac{1}{3}$; A = 0,4; $r = 8 \times 10^{-2}$

Exercice 7: Soit *a* une approximation de $\frac{1}{2}$ à la précision $\frac{1}{12}$ près.

- 1. Montrer que $\frac{5}{12} < a < \frac{7}{12}$.
- 2. Encadrer le nombre $\frac{a}{3a-1}$.
- 3. En déduire que $\frac{13}{9}$ est une approximation de $\frac{a}{3a-1}$ à la précision $\frac{8}{9}$ près.