Parte A

- **1.** [punti 6] Enunciare il Criterio di Nyquist (sia il caso generale che quello particolare) avendo cura di definire i concetti e le premesse teoriche sui quali si basa. Riportare inoltre una dimostrazione di tale criterio.
- **2.** [punti 6] Data la funzione di trasferimento $G(s) = \frac{s-5}{s(s+10)}$ tracciarne
- 1) il diagramma di Nyquist con determinazione dell'asintoto e dell'intersezione con l'asse reale;
- 2) i diagrammi di Bode asintotici (diagramma dei moduli e diagramma delle fasi).

Suggerimento per il tracciamento dei diagrammi di Bode: si assegnino 10 quadretti del foglio protocollo per una decade delle pulsazioni. Si riportano per comodità dello studente i logaritmi in base 10 degli interi da 2 a 9: $\log_{10} 2 \cong 0,30$, $\log_{10} 3 \cong 0,48$, $\log_{10} 4 \cong 0,60$, $\log_{10} 5 \cong 0,70$, $\log_{10} 6 \cong 0,78$, $\log_{10} 7 \cong 0,85$, $\log_{10} 8 \cong 0,90$, $\log_{10} 9 \cong 0,95$.

3. [punti 6] Presentare e dimostrare la formula di antitrasformazione zeta, ovvero l'espressione con l'integrale su curva chiusa del piano complesso che determina la sequenza a tempo discreto x(k) nota che sia $X(z) \triangleq \mathcal{Z}[x(k)]$.

4. [punti 6] Sia dato lo schema di sistema di controllo in figura dove $P(s) = \frac{1 - 0.1s}{(s^2 + s + 1)(s + 2)}$.

Determinare un controllore con struttura $C(s) = K \frac{s^2 + b_1 s + b_0}{(s + 100)^2}$, $K, b_0, b_1 \in \mathbb{R}$ e il blocco algebrico

 $F \in \mathbb{R}$ affinché il sistema di controllo in risposta ad un gradino del riferimento abbia sovraelongazione nulla (S=0), tempo di assestamento $T_a=0.2$ s e un errore di inseguimento a regime nullo $(e_\infty:=\lim_{t\to\infty}r_01(t)-y(t)=0)$.

5. [punti 6] Si consideri il seguente sistema di controllo

dove $P(s) = \frac{100(s+1)}{(s+2)^2(s+10)}$. Si chiede di progettare un controllore di struttura (rete ritardatrice)

$$C(s) = K \frac{1 + \alpha \tau s}{1 + \tau s}, K > 0, \alpha \in (0,1), \tau > 0$$
 affinché:

- a) l'errore a regime in risposta ad un gradino unitario del segnale di riferimento sia $e_{\scriptscriptstyle R}=0.02$.
- b) Il margine di fase sia $M_F = 45^{\circ}$.
- **6.** [punti 6] Un sistema a tempo discreto è in evoluzione libera (ingresso identicamente nullo) e la trasformata zeta dell'uscita è $Y_{\text{lib}} = \frac{1}{\left(z \frac{1}{2}\right)^2 (z^2 + 1)}$. Determinare la corrispondente evoluzione

libera $y_{lib}(k)$, $k \ge 0$.