COMP6262 Logic Assignment - 3

Mukund Balaji Srinivas - u7274095

May 30, 2022

Introduction

Unlike the implication used in = natural language that can indicate causation, formal logic on the other hand is un-intuitive. Consider an example the phrase *philosophers are superhuman* can have two different meanings. If one is a philosopher, one is superhuman or all superhuman are philosophers. To circumvent these ambiguities, formal logic defines a truth table as below:

p	$\mid q \mid$	$p \to q$
1	1	1
1	0	0
0	1	1
0	0	1

However, such strict interpretations are often at odds with the way implication is perceived in natural language. and thus are paradoxical

This discussion shall be centered around the following implications:

1.
$$A \vdash (A \rightarrow B)$$

2.
$$\neg B \vdash (A \rightarrow B)$$

Following which a new paradigm for solving implication shall be introduced that circumvent the demerits of the first definition

Solution to the paradox

The objective of introducing a new paradigm to precisely and coherently formalize the implication used in natural language would be :

p	$\mid q \mid$	$p \rightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

The merits and demerits along with the proofs of sequents [1] and [2] from the introduction should be discussed by proving them using both the old and new natural deduction rules that need to be introduced.

Modified Implication Elimination \dots (1)			
$X \vdash A \to B$	$Y \vdash \neg B$		
$X,Y \vdash \neg B$			
Modified Implication Elimination (2)			
$X \vdash A \to B$	$Y \vdash A$		
$X,Y \vdash B$			
Modified Implication Introduction \dots (3)			
$X,A \vdash B$			
$X \vdash A \to B$			
Modified Implication Introduction	. (4)		