Universidade Federal de Santa Catarina

MTM 5161 - Cálculo A

Professor Adriano Né

1ª Lista de Exercícios

1) Dada
$$f(x) = \frac{3}{x}$$
, determine: (a) $f(x) = \frac{1}{3}$; (b) $f(x) - f(3)$; (c) $\frac{f(x+h) - f(x)}{h}$, $h \neq 0$.

2) Dada
$$f(x)=2x^2+5x-3$$
 , determine: (a) $f(h+1)$; (b) $f(2x^2)$; (c) $f(x^2-3)$; (d) $\frac{f(x+h)-f(x)}{h}$, $h\neq 0$.

3) Dada G(x)=|x-2|-|x|+2 , expresse G(x) sem as barras de valor absoluto, se x estiver no intervalo dado:

(a)
$$\begin{bmatrix} 2, +\infty \end{bmatrix}$$

(b)
$$(-\infty,0)$$

4) Determine se a função dada é par ou ímpar, ou se não em paridade.

(a)
$$g(x)=5x^2-4$$

(d)
$$g(x) = \frac{|x|}{x^2 + 1}$$

(b)
$$g(r) = \frac{r^2 - 1}{r^2 + 1}$$

(e)
$$f(x) = \sqrt[3]{x}$$

(c)
$$f(x) = |x|$$

5) Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função par e $g: \mathbb{R} \to \mathbb{R}$ ímpar.

- (a) Mostre que $f \cdot g$ é ímpar.
- (b) O que podemos dizer sobre f+g e f-g?

6) Se $f \in g$ são ímpares, mostre que $f \cdot g$ é par.

7) Determine o domínio das seguintes funções:

(a)
$$f(x) = \sqrt{x^2 - 4x + 3}$$

(f)
$$f(x)=\ln(1+\sin x)$$

(b)
$$g(x) = \sqrt{3+x} + \sqrt[4]{7-x}$$

(g)
$$s(x) = \ln(-\cos x)$$

(c)
$$h(x) = \sqrt[3]{x+7} - \sqrt[5]{x+8}$$

(h)
$$h(x) = \sqrt[4]{-x^3 + 3x^2 - 4}$$

(d)
$$f(x) = \sqrt{\frac{x}{x+1}}$$

(i)
$$f(x) = \sqrt{x^3 - 2x^2 - 5x + 6}$$

(e)
$$y = \frac{1}{1 + \sqrt{x}}$$

(j)
$$g(x)=e^{x+\cos x}$$

8) Verifique se cada função f abaixo é bijetora. Em caso afirmativo determine f^{-1} . Caso f não seja bijetora faça uma restrição no domínio e/ou contradomínio para que f se torne bijetora e determine a inversa de f nesta situação.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$

 $f(x) = 4x - 5$

(d)
$$f: \mathbb{R} - \{0\} \rightarrow \mathbb{R}$$

 $f(x) = \ln(x^2)$

(b)
$$f: \mathbb{R} \to \mathbb{R}$$

 $f(x) = x^2 - 5$

(e)
$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = e^{|x|}$$

(c)
$$f: (-\infty,1] \rightarrow \mathbb{R}$$

 $f(x)=(x-1)^3$

9) Suponha que as funções f e g a seguir são bijetoras. Então determine suas funções inversas:

(a)
$$f(x) = tg(4x+5)$$

(b)
$$g(x) = \cos\left(\frac{x-2}{3}\right)$$

10) Encontre uma fórmula para a função descrita e obtenha seu domínio:

(a) Um retângulo tem perímetro de 20 metros. Expresse a área do retângulo como uma função de um de seus lados.

(b) Expresse a área de um triângulo equilátero como uma função do comprimento de um lado.

(c) Uma caixa retangular aberta com volume de 2 m³ tem base quadrada. Expresse a área da superfície da caixa como uma função do comprimento de um lado da base.

11) Em um certo país, o imposto de renda é taxado da maneira a seguir. Não há taxa para rendimentos até \$ 10.000,00. Qualquer renda acima de \$ 10.000,00 e abaixo de \$ 20.000,00 é taxada em 10%. Qualquer renda acima de \$ 20.000,00 é taxada em 15%.

(a) Esboce o gráfico da taxa de imposto R como uma função da renda I.

(b) Qual o imposto cobrado sobre um rendimento de \$ 14.000,00? E sobre \$ 26.000,00?

(c) Esboce o gráfico do imposto total cobrado T como função da renda I.

Respostas: **1)** (a) 9; (b) $\frac{3-x}{x}$; (c) $\frac{-3}{x(x+h)}$.

- **2)** (a) $2h^2+9h+4$; (b) $8x^4+10x^2-3$; (c) $2x^4-7x^2$; (d) 4x+2h+5.
- 4) (a) par; (b) par; (c) par; (d) par; (e) impar.
- **7)** (a) $(-\infty, 1]$ U $[3, +\infty]$; (b) [-3, 7]; (c) \mathbb{R} ; (d) $(-\infty, -1]$ U $[0, +\infty]$; (e) [-3, 7]; (fundamental $[0, +\infty]$); (fundame

$$0,+\infty$$
); (f) $\mathbb{R}-\left\{\frac{3\pi}{2}+2k\pi,\ k\in\mathbb{Z}\right\}$ (g) $\left(\frac{(4k+1)\pi}{2},\ \frac{(4k+3)\pi}{2}\right)$, com $k\in\mathbb{Z}$;

(h)($-\infty$, -1]; (i) [-2,1] U [3, $+\infty$); (j) \mathbb{R} .

- **9)** (a) $f^{-1}(x) = \frac{-5 + arctg x}{4}$; (b) $g^{-1}(x) = 2 + 3 \arccos x$.
- **10)** (a) $A(L)=10L-L^2$, 0 < L < 10; (b) $A(x)=\frac{x^2\sqrt{3}}{4}$, x > 0; (c) $A(x)=x^2+\frac{8}{x}$, x > 0.

