

 $\overline{EQ}_{\mathsf{TM}}$ is recognizable by a Turing machine with an oracle for A_{TM} .

Step-by-step solution

Step 1 of 1

Given:

A language that is recognizable by an oracle Turing machine.

Consider Turing Machine T with an oracle for A_{TM} and consider 2 more Turing machines P and Q that will work as decider for T and then T will work as a decider for A_{TM} and further A_{TM} will work as a Turing recognizable for $\overline{EQ_{TM}}$. Use the following approach:

$$(P,w) \in A_{TM} \longleftrightarrow T(< M,w>) \in EQ_{TM}$$

Above statement can be applied by using following algorithm:

$$T = \text{on input } \langle P, w \rangle$$

Where $\ \ w$ is an input string and running on $\ \ P$

 \cdot Construct 2 Machines $\,P\,$ and $\,Q\,$

P = On any input: accept.

 $Q_{=}$ On any input: run P on w, if it accepts, accept

 \cdot Output $\langle P,Q \rangle$

Conclusion:

Here, it is quite obvious that T is working as a decider for A_{TM} and then A_{TM} for $\overline{EQ_{TM}}$. This way $\overline{EQ_{TM}}$ is recognizable by a Turing Machine with an

Comment