Independent Validation Report

Corporate Credit Early Warning System (EWS)

Document Information

Model: Corporate Credit Early Warning System (12-month horizon)

Date: October 1, 2025

Purpose: Independent validation before production deployment

1. Executive Summary

Conclusion: APPROVED (with conditions)

Overall Assessment

Risk Classification Ability (Good)

- Model correctly distinguishes **82.3%** of high-risk vs. low-risk customers (scale 0-100%, higher is better)
- **60% of all defaults** are caught in the top 10% riskiest customers
- Stable performance across 18 months of testing, no degradation observed

Prediction Accuracy (Acceptable)

- Error rate: **1.26%** (meaning 98.74% accurate)
- Average difference between predicted vs. actual: 12.8 basis points (good)
- Some groups slightly over/under-predicted but not materially impactful

Alert Thresholds & Operational Capacity (Feasible)

Level	Threshold	Alert %	Precision	Recall	Alerts/Month	Staff Needed
Amber	2.0%	8.3%	9.6%	57.5%	830	~5 people
Red	5.0%	4.2%	16.3%	48.2%	421	~10 people
Total	_	8.3%	_	57.5%	830	~15 people

Explanation:

- **Amber**: Customers with default risk ≥ 2% → need quarterly monitoring
- **Red**: Customers with default risk ≥ 5% → need immediate review (Red is subset of Amber)
- Low precision (Red 16% = out of 6 alerts, 1 is real default, 5 are false alarms)

- Catches 57.5% = detects over half of defaults, but misses 42.5% (need supplementary periodic review)
- ✓ Workload is manageable: 15 people can handle vs. 20 available staff

Risks & Mitigation

- 1. **Test data is synthetic** (no real-world noise) → **Run 6-month pilot** with real data
- 2. **High false alarm rate** (90% of Amber alerts are false, 84% of Red are false) → **Review thresholds** after 6 months
- 3. **Misses 42.5% of defaults** → Combine with quarterly credit review for all customers
- 4. **Not tested by segment** → Analyze industry/grade performance in first 3 months

2. Data & Methodology

2.1 Target Population & Objective

- Population: Corporate customers (all industries, grades A–G, with outstanding credit)
- **Test data**: 180,000 samples (18 months × 10,000 customers/month, Jan 2024 Jun 2025)
- Prediction target: Probability of default within 12 months (90+ days delinquent or NPL classification)
- Actual default rate: 1.37% (i.e., 137 defaults / 10,000 customers)

2.2 Model Description

- Model type: Machine learning risk classifier (LightGBM)
- Input features: 20 financial metrics + payment behavior:
 - Top 3 most important: Days past due (recent), Debt/EBITDA ratio, Interest coverage ratio
 - Account for 45% of model influence
- Calibration: Probability adjustment for better accuracy (Isotonic regression)
- Explainability: Each alert includes 3 main drivers explaining why customer is risky

2.3 Data Quality (Limited due to synthetic data)

- Missing data: 0% (synthetic), needs real-world verification (requirement < 10% missing)
- Outliers: Normalized by industry scale
- Limitation: Test data is too perfect (no delays, errors like real data). First 3 months of production are critical for validation.

3. Validation Results

Model Validation Dashboard - Corporate Credit EWS

Validation Dashboard

3.1 Risk Discrimination Ability

AUC Score (Area Under ROC Curve)

• Average: 82.3% (good, minimum threshold 75%, target 80%)

• Range: 79.2% to 85.9% (across 18 test months)

Best month: 85.9% (Aug 2024)Worst month: 79.2% (May 2024)

• Trend: Stable, no degradation over 18 months

Explanation: Score of 82.3% means the model correctly ranks high-risk vs. low-risk customers 82.3% of the time. This is GOOD for early warning systems (industry typically accepts > 75%).

Discrimination Metrics Trend (18 Months)

AUC and KS Trend Over Time

3.2 Prediction Accuracy

Overall Error Rate (Brier Score)

• **Average**: 1.26% error (meaning 98.74% accurate)

• **Range**: 1.06% to 1.44%

• **Assessment**: Very good (acceptable threshold is < 2%)

Detailed Accuracy by Risk Group (Decile Calibration)

Divide 10,000 customers into 10 groups by risk score:

Predicted Default	Actual Default	Difference	Assessment
0.056%	0.078%	+0.02%	√ Accurate
0.239%	0.117%	-0.12%	Slightly over- predicted
0.361%	0.472%	+0.11%	Slightly under- predicted
0.5-0.6%	0.5-0.6%	±0.07%	√ Accurate
0.648%	0.489%	-0.16%	Slightly over- predicted
	0.056% 0.239% 0.361% 0.5-0.6%	0.056% 0.078% 0.239% 0.117% 0.361% 0.472% 0.5-0.6% 0.5-0.6%	0.056% 0.078% +0.02% 0.239% 0.117% -0.12% 0.361% 0.472% +0.11% 0.5-0.6% 0.5-0.6% ±0.07%

Group	Predicted Default	Actual Default	Difference	Assessment
7-8	0.7-0.9%	0.8-0.9%	±0.04%	√ Accurate
9	1.173%	0.917%	-0.26%	Slightly over- predicted
10 (highest risk)	7.92%	8.83%	+0.91%	Slightly under- predicted

Observations:

- **Average error**: 0.128% (acceptable, threshold < 0.20%)
- **Highest risk group** (Group 10): Predicts 0.91% lower than actual → Model is slightly **conservative** (tends to predict less than reality). This is **acceptable** for early warning (better to miss some than overalert).
- **Groups 2, 6, 9**: Over-predict by 0.12-0.26% → May cause some false alerts but within tolerance.

Decile Calibration (Pooled 18 Months)

Calibration by Decile

3.3 Risk Concentration Ability

- Top 10% riskiest customers → Catch 60% of all defaults
- Top 20% riskiest customers → Catch 70% of all defaults
- Top 8% customers (Amber threshold at 2%) → Catch 57.5% of defaults

Explanation: Model concentrates risk very well. Only need to monitor 8% of customers (830/month) to catch over half of defaults → Workload is feasible.

4. Stability & Drift

4.1 Data Stability (PSI)

- **PSI = 0.00** across all 18 test months (too perfect due to synthetic data)
- Real-world validation needed: Use first 3 months of production to establish real PSI baseline
- Alert thresholds:
 - PSI > 0.10 → Monitor (data starting to change)
 - PSI > 0.25 → Mandatory recalibration

PSI Explanation: Measures how much customer characteristics change over time. High PSI = data changed a lot \rightarrow need to recalibrate model.

4.2 Performance Trend

- **AUC score** fluctuated from 83.4% (Q1/2024) down to 81.9% (Q2/2025)
- Difference of -1.5% is within acceptable range (no severe degradation observed)
- **No trigger** for recalibration (AUC > 75% consistently)

5. Alert Thresholds & Operational Capacity

5.1 Selected Thresholds

Amber Alert = Default risk ≥ 2.0%

Red Alert = Default risk ≥ **5.0%** (Red is subset of Amber)

Threshold	Default Risk	Alerts/Month	% of Total	Precision	Recall	Assessment
Amber	≥ 2.0%	830	8.3%	9.6%	57.5%	√ Acceptable
Red	≥ 5.0%	421	4.2%	17.3%	52.7%	√ Priority

Metric Explanations:

- Precision: Out of all customers flagged, what % actually default
 - Amber 9.6%: Out of 10 alerts, ~1 is correct (9 are false alarms) → High false alarm rate but acceptable for early warning
 - Red 17.3%: Out of 6 alerts, ~1 is correct (5 are false alarms) → Lower false alarm rate
- **Recall**: Out of all actual defaults, what % are caught
 - Amber 57.5%: Catches over half of defaults (misses 42.5%)

• Red 52.7%: Catches over half of defaults (misses 47.3%)

Precision-Recall curve
Amber (2%)
Red (5%)
P=15.8%, R=48.2%

Amber (2%)
P=9.6%, R=57.5%

Recall (%)

90

100

Threshold Selection: Precision-Recall Trade-off

Precision-Recall Curve

5

0 40

5.2 Operational Capacity

50

- Monthly workload:
 - Amber alerts: **830 customers** (manageable with 2-3 relationship managers)

60

- Red alerts: **421 customers** (highest priority)
- Overload threshold: If > 1,000 alerts/month → Need to raise Amber threshold to 2.5% or 3%

5.3 Alternative Threshold Comparison

Tested 20 threshold levels from 0.5% to 10%:

- If lower to 1.0%: 1,200 alerts/month → Overload, not feasible
- If raise to 3.0%: 620 alerts/month → Recall drops to 50% (misses too many)
- **2.0% threshold is optimal** balance between detection (57.5%) and workload (830 customers)

Alert Volume vs Threshold

Alert Volume vs Threshold

6. Regulatory Compliance

Requirements Met:

- **Independent validation**: Performed by independent Validation team (not involved in model development)
- Separate test data: 18-month test period (Jan 2024-Jun 2025) completely separate from training
- **Complete documentation**: Source code, data, procedures archived with version control (SHA256 hash)
- **Performance thresholds**: AUC > 75%, Brier < 2% (requirements met)
- Clear explanations: Each alert includes 3 main reason codes (SHAP-based)
- Monitoring plan: Monthly PSI, AUC tracking with clear trigger thresholds

Supporting Documentation:

- Source code: src/modeling/, src/calibrate.py, src/scoring.py
- Data: data/processed/portfolio_scored.csv (180,000 records)
- Validation report: This file + charts in artifacts/validation/plots/

7. Post-Deployment Monitoring

Monitoring Frequency: Monthly (after real results available)

Key Metrics to Track:

- PSI (Stability):
 - PSI > 0.10 → Warning (data starting to change)
 - o PSI > 0.25 → Mandatory immediate recalibration
- AUC (Classification Ability):
 - AUC < 75% for 2 consecutive months → Recalibrate
 - AUC drops > 5% from baseline → Investigate root cause
- Alert Rate:
 - Alert rate > 15% → Overload warning (need to raise threshold)
 - Alert rate < 5% → Threshold too high (may miss too many)
- Actual Precision (after 12 months):
 - Compare expected precision (9.6%) with actual
 - o If difference > 30% → Recalibration needed

Monitoring Tools:

- Automated script: src/run_monitoring.py (run monthly)
- Dashboard: See artifacts/monitoring/ (PSI, AUC, alert trends)

8. Validator's Opinion

8.1 Overall Conclusion

MODEL APPROVED FOR DEPLOYMENT

Reasons:

- Good performance: AUC 82.3%, Brier 1.26% (exceeds minimum requirements)
- Reasonable balance: Detects 57.5% of defaults with 830 alerts/month (feasible)
- Stable over 18 months: No degradation observed
- Regulatory compliance: Complete documentation, independent validation

8.2 Deployment Conditions

Mandatory:

- 1. **Establish PSI baseline** in first 3 months of production (current test data too perfect)
- 2. Monthly monitoring: PSI, AUC, alert rate (per Section 7)
- 3. 12-month review: Compare actual vs. expected precision/recall

Recommendations:

- Start with Amber threshold at 2% for first 6 months
- If overloaded (> 1,000 alerts/month) → Raise to 2.5% or 3%

 Monitor Group 10 (highest risk) closely: Model predicts 0.91% lower than actual → May need calibration adjustment for tail risk

8.3 Remaining Risks

Synthetic test data risk: * PSI = 0.00 (too perfect) \rightarrow Needs real-world validation * Stress test uses hard-coded data \rightarrow Need to retest with real shock scenarios

Low precision risk (9.6%): * High false alarm rate (9 false / 1 true) → May overload relationship managers if not managed well * Mitigation: Clear workflow assignment, prioritize Red before Amber

Missed detection risk (42.5%): * Misses 42.5% of defaults (not alerted) → Credit risk still exists * Mitigation: Combine with other risk management measures (periodic review, human judgment)