■ Exemple 1.

Voici l'évolution de la population française entre 1851 et 1911 (source : INSEE).

Décennie	1851	1861	1881	1891	1901	1911
Rang de la décennie : x_i	0	1	3	4	5	6
Population en millions : y_i	35	37,4	37,7	39,9	39	39,6

- 1. Tracer le nuage de points sur le graphique ci-dessous.
- 2. La droite approximant le mieux le nuage de points est la droite d'équation y = 0,7x + 35,9. Tracer cette droite ci-dessous.
- 3. Avec ce modèle, quelle serait la population en 2011? Ce modèle semble-il toujours valable en 2021?

Exemple 2.

La banque mondiale ¹ fournit des données sur l'évolution de la population chinoise.

	Population				
Année	(millions)				
2010	1337,705				
2011	$1344,\!130$				
2012	$1350,\!695$				
2013	$1357,\!380$				
2014	$1364,\!270$				
2015	$1371,\!220$				
2016	$1378,\!665$				
2017	1386,395				
2018	1392,730				
2019	1397,715				

^{1.} https://data.worldbank.org/indicator/SP.POP.TOTL?locations=CN

Une suite u est	une liste	ordonnée d	e nombre u	(0)):	u(1));	u(2);	u(3)	
--------------------------	-----------	------------	--------------	-----	----	------	----	-----	----	------	--

Attention au décalage! u(0) est le premier terme, u(1) est le second terme, u(2) est le troisième terme. . . On appelle u(n) l'effectif de la population chinoise en millions d'habitants à l'année 2010 + n.

- 1. Que vaut u(0)? ______
- 2. Que vaut u(3)? ______
- 3. Quel est la valeur du cinquième terme de la suite u?

Pour une population dont **la variation absolue** est presque **constante** d'un palier à l'autre, on peut modéliser son évolution et faire des prédictions en utilisant une suite dite **arithmétique**.

Une suite arithmétique est une suite telle que la différence u(n+1) - u(n) est constante. Cette constante est notée r et s'appelle la raison de la suite.

Pour tout entier naturel n, on peut prévoir l'effectif d'une population pour une année n a à l'aide de la formule :

$$u(n) = u(0) + n \times r$$
 avec $r = u(n+1) - u(n)$

Graphiquement, les points de la représentation graphique d'une suite arithmétique (de coordonnées (n; u(n))) sont

- 1. Expliquer pourquoi on peut assimiler l'évolution de la population chinoise depuis 1960 à une suite arithmétique.
- 2. On admet que la croissance de la population chinoise à partir de 2010 est modélisée par une suite arithmétique : u(n) est l'effectif de la population chinoise en millions d'habitants à l'année 2010 + n et sa raison est r = 7.
 - (a) Exprimer u(n) en fonction de n.

(b) Suivant ce modèle, quel serait l'effectif de la population chinoise en 2022? en 2050?

- (c) Quelle limite peut-on émettre quant à ce type de modélisation?