Алгоритм Шеннона — Фано

Сирота Александр

ГУАП 5 факультет Группа 5511

Санкт-Петербург, 2016

План

- 1 Основные сведения
 - Коды переменной длины
 - Префиксный код
 - Пример кодирования
- 2 Основные этапы
- 3 Алгоритм вычисления кодов
 - Пример кодового дерева
 - Пример сгенерированного словаря
- 4 Оценка сложности

Основные сведения

Алгоритм Шеннона — **Фано** — один из первых алгоритмов сжатия, который сформулировали американские учёные Клод Шеннон и Роберт Фано.

- Относится к вероятностным методам сжатия
- Алгоритм использует коды переменной длины
- Коды Шеннона Фано префиксные

Коды переменной длины

При использовании **кодов переменной длины** символы кодируются набором бит различной длины. Часто встречающийся символ кодируется кодом меньшей длины, редко встречающийся — кодом большей длины.

Префиксный код

Префиксный код (англ. prefix code) — код, в котором никакое кодовое слово не является префиксом какого-то другого кодового слова.

Пример кодирования

$$U = \{a, b, c\}$$

$$Z = \{0, 1\}$$

$$c(a) = 00 \qquad c(b) = 01 \qquad c(c) = 1$$

Закодируем строку abacaba:

$$c^*(abacaba) = 0001001000100$$

Такой код можно однозначно разбить на слова:

Алгоритм Фано: Основные этапы

Алгоритм Фано:

- 1 Выписать символы по убыванию вероятностей.
- 2 Разделить список на две части с равными долями вероятности.
- \blacksquare Для первой части добавить к коду «0», для второй «1».
- Повторить шаги (1–3) для каждой части.

Символы первичного алфавита выписывают по убыванию вероятностей.

Символ	Вероятность		
a	0.36		
b	0.18		
С	0.18		
d	0.12		
е	0.09		
f	0.07		

Символы полученного алфавита делят на две части, суммарные вероятности символов которых максимально близки друг другу.

Символ	Вероятность		
a	0.36		
b	0.18		
С	0.18		
d	0.12		
е	0.09		
f	0.07		

В префиксном коде для первой части алфавита присваивается двоичная цифра «0», второй части — «1».

Символ	Вероятность	1		
a	0.36	0		
b	0.18	U		
С	0.18			
d	0.12	1		
е	0.09			
f	0.07			

Полученные части рекурсивно делятся и их частям назначаются соответствующие двоичные цифры в префиксном коде.

Символ	Вероятность	1	2	3	4	Итог	
a	0.36	0	00			00	
b	0.18	U	01			01	
С	0.18		10 110			10	
d	0.12	1			10	110	
е	0.09	1	11 111	1 11	111	1110	1110
f	0.07			1111	1111		

Вычисление кодов

Особенности реализации:

- Простота
- Низкая сложность
- Иногда коды строятся неоптимально
- Необходимо дописывать шапку в файл

Вычисление кодов

Алгоритм:

- Код Шеннона Фано строится с помощью бинарного дерева
- Всё множество кодируемых элементов соответствует корню дерева
- Множество разбивается на два подмножества с примерно одинаковыми суммарными вероятностями
- Если подмножество содержит единственный элемент, то такое подмножество последующему разбиению не подлежит
- Ветви кодового дерева размечаются символами 1 и 0

Пример кодового дерева

Исходные символы:

Символ	Частота Встречаемости		
Α	50		
В	39		
С	18		
D	49		
E	35		
F	24		

Пример кодового дерева

Полученные коды:

Α	В	С	D	Е	F
11	101	100	00	011	010

Пример сгенерированного словаря

Для фразы:

«Lorem ipsum dolor sit amet, consectetur adipisicing elit. Odit sint cupiditate magni, illo officia facere magnam, ad pariatur ipsum explicabo sit nostrum aliquid nisi necessitatibus natus temporibus. Ut, optio, odit.»

```
user@nuked-PC: ~/Documents/Study/courseWork
     View Search Terminal Help
nuked-PC:~/Documents/Study/courseWork$ ./exec
                                                  ←□ → ←□ → ← ≧ →
```

Оценка сложности

Кодирование файла:

- Подсчёт символов: O(n)
- \blacksquare Построение дерева: O(c)
- lacktriangle Создание шапки для закодированного файла: O(c)
- lacksquare Запись закодированных данных в файл: O(n)

Итоговая сложность — линейная O(n)

Спасибо за внимание!