

Määritä oheisen pallokalotin muotoisen kalvovoimien N_{ω} ja N_{θ} lausekkeet, kun kuormituksena on pyörähdysakselin suuntainen painovoima. Kuoren materiaalin tiheys on $\rho\,.$ Laske kalvojännitykset $\,\sigma_{\phi}\,$ ja $\,\sigma_{\theta}\,.$ Selvitä, millä kulman α arvoilla kuoressa on vain puristusjännityksiä $(0 < \alpha \le 90^{\circ}).$

Ratkaisu:

$$r_{\varphi} = r_{\theta} = r$$
 $q = \rho gh$

$$p_r = -q\cos\phi$$
 $p_{\phi} = q\sin\phi$

$$\begin{split} N_{\phi} &= \frac{1}{r \sin^2 \phi} \int\limits_0^{\phi} r^2 q (-\cos^2 \phi - \sin^2 \phi) \sin \phi \; d\phi \\ &= \frac{-r^2 q}{r \sin^2 \phi} \int\limits_0^{\phi} \sin \phi \; d\phi = \frac{qr}{\sin^2 \phi} \int\limits_0^{\phi} \cos \phi = \frac{qr}{\sin^2 \phi} (\cos \phi - 1) \end{split}$$

$$\Rightarrow \qquad N_{\phi} = \frac{qr(\cos\phi - 1)}{1 - \cos^2\phi} = \frac{qr(\cos\phi - 1)}{(1 - \cos\phi)(1 + \cos\phi)} \qquad \Rightarrow \qquad N_{\phi} = \frac{-qr}{1 + \cos\phi}$$

$$N_{\theta} = -r q \cos \varphi - \frac{r}{r} \cdot \left(\frac{-qr}{1 + \cos \varphi} \right) \Rightarrow N_{\theta} = qr \left(\frac{1}{1 + \cos \varphi} - \cos \varphi \right)$$

$$\sigma_{\varphi} = \frac{-qr}{h(1+\cos\varphi)}$$

$$\sigma_{\theta} = \frac{qr}{h} \left(\frac{1}{1+\cos\varphi} - \cos\varphi \right)$$

 $\sigma_{\phi} \le 0$, kun $0 < \phi \le 90^{\circ}$

σ_θ voi olla vetoa tai puristusta, etsitään nollakohta:

$$\frac{h}{qr}\sigma_{\theta} = \frac{1}{1 + \cos\varphi} - \cos\varphi = 0 \qquad \Rightarrow \qquad \frac{1 - \cos\varphi - \cos^2\varphi}{1 + \cos\varphi} = 0$$

$$\Rightarrow \cos^2 \varphi + \cos \varphi - 1 = 0 \qquad \Rightarrow \qquad \cos \varphi = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{\sqrt{5} - 1}{2} \quad (\text{vain - kelpaa})$$

$$\Rightarrow$$
 $\cos \varphi = 0.618$ \Rightarrow $\varphi = 51.83^{\circ}$ \Rightarrow $\sigma_{\theta} \le 0$, kun $0 < \varphi \le 51.83^{\circ}$

Kuoressa on vain puristusjännityksiä, kun $0 < \alpha \le 51,83^{\circ}$