Week 3. Running a Lasso Regression Analysis

June 30, 2016

```
In [1]: #
        # Created on Mon Dec 14 16:26:46 2015
        # @author: jrose01
        # Modified by: mcolosso
In [2]: %matplotlib inline
        from pandas import Series, DataFrame
        import pandas as pd
        import numpy as np
        import os
        import matplotlib.pylab as plt
       from sklearn.cross_validation import train_test_split
        from sklearn.linear_model import LassoLarsCV
        #pd.set_option('display.float_format', lambda x:'%.3f'%x)
        #pd.set_option('display.mpl_style', 'default') # --deprecated
        #plt.style.use('ggplot') # Make the graphs a bit prettier
       plt.rcParams['figure.figsize'] = (15, 5)
In [3]: #os.chdir("C:/Users/MColosso/Documents/CURSOS/Wesleyan University/Machine Learning for Data Ana
In [4]: #
        # Data Engineering and Analysis
In [5]: #Load the dataset
        loans = pd.read_csv("./LendingClub.csv", low_memory = False)
        # LendingClub.csv is a dataset taken from The LendingClub (https://www.lendingclub.com/)
        # which is a peer-to-peer leading company that directly connects borrowers and potential
        # lenders/investors
In [6]: #
        # Exploring the target column
In [7]: # The target column (label column) of the dataset that we are interested in is called
        # 'bad_loans'. In this column **1** means a risky (bad) loan **0** means a safe loan.
        # In order to make this more intuitive, we reassign the target to be:
        # * ** 1 ** as a safe loan,
```

```
# * ** 0 ** as a risky (bad) loan.
       #
        # We put this in a new column called 'safe_loans'.
       loans['safe_loans'] = loans['bad_loans'].apply(lambda x : 1 if x == 0 else 0)
       loans.drop('bad_loans', axis = 1, inplace = True)
In [8]: # Select features to handle
                                                  # grade of the loan
       predictors = ['grade',
                      'sub_grade',
                                                  # sub-grade of the loan
                     'short_emp',
                                                  # one year or less of employment
                                                  # number of years of employment
                      'emp_length_num',
                      'home_ownership',
                                                  # home_ownership status: own, mortgage or rent
                     'dti',
                                                  # debt to income ratio
                     'purpose',
                                                  # the purpose of the loan
                                                  # the term of the loan
                     'term',
                      'last_delinq_none',
                                                  # has borrower had a delinquincy
                     'last_major_derog_none',
                                                  # has borrower had 90 day or worse rating
                                                  # percent of available credit being used
                     'revol_util',
                      'total_rec_late_fee',
                                                  # total late fees received to day
       target = 'safe_loans'
                                                  # prediction target (y) (+1 means safe, 0 is risky)
        # Extract the predictors and target columns
       loans = loans[predictors + [target]]
        # Delete rows where any or all of the data are missing
       data_clean = loans.dropna()
In [9]: # Convert categorical variables into binary variables
       data_clean = pd.get_dummies(data_clean, prefix_sep = '=')
In [10]: (data_clean.describe()).T
Out[10]:
                                                                           25%
                                                                                  50% \
                                       count
                                                               std min
                                                   mean
        short_emp
                                    122607.0
                                               0.123672
                                                          0.329208 0.0
                                                                         0.00
                                                                                0.00
        emp_length_num
                                    122607.0
                                              6.370256
                                                          3.736014 0.0
                                                                         3.00
                                                                                6.00
                                                          7.497442 0.0
                                                                          9.88 15.26
        dti
                                    122607.0 15.496888
        last_delinq_none
                                                         0.492177 0.0
                                                                         0.00
                                                                                1.00
                                    122607.0
                                              0.588115
        last_major_derog_none
                                   122607.0
                                              0.873906
                                                         0.331957 0.0
                                                                         1.00
                                                                                1.00
                                    122607.0 53.716307 25.723881 0.0 34.80 55.70
        revol_util
        total_rec_late_fee
                                             0.742344
                                                         5.363268 0.0
                                                                         0.00
                                                                                0.00
                                   122607.0
        safe_loans
                                    122607.0 0.811185
                                                         0.391363 0.0
                                                                        1.00
                                                                                1.00
        grade=A
                                    122607.0 0.181996 0.385843 0.0
                                                                          0.00
                                                                                 0.00
        grade=B
                                    122607.0 0.303180
                                                         0.459634 0.0
                                                                          0.00
                                                                                 0.00
        grade=C
                                    122607.0
                                              0.244276
                                                         0.429659 0.0
                                                                          0.00
                                                                                 0.00
                                                         0.363230 0.0
                                                                          0.00
                                                                                 0.00
        grade=D
                                    122607.0
                                              0.156394
        grade=E
                                    122607.0
                                               0.073324
                                                          0.260668 0.0
                                                                          0.00
                                                                                 0.00
                                                          0.176187 0.0
        grade=F
                                    122607.0
                                               0.032070
                                                                          0.00
                                                                                 0.00
                                    122607.0
                                               0.008760
                                                          0.093183 0.0
                                                                          0.00
                                                                                 0.00
        grade=G
        sub_grade=A1
                                    122607.0
                                               0.024362
                                                          0.154172 0.0
                                                                          0.00
                                                                                0.00
                                    122607.0
                                               0.027339
                                                          0.163071 0.0
                                                                         0.00
                                                                                0.00
        sub_grade=A2
```

sub_grade=A3	122607.0	0.032258	0.176684	0.0	0.00	0.00
sub_grade=A4	122607.0	0.048880	0.215617	0.0	0.00	0.00
sub_grade=A5	122607.0	0.049157	0.216197	0.0	0.00	0.00
sub_grade=B1	122607.0	0.047607	0.212935	0.0	0.00	0.00
sub_grade=B2	122607.0	0.057876	0.233510	0.0	0.00	0.00
sub_grade=B3	122607.0	0.073699	0.261281	0.0	0.00	0.00
sub_grade=B4	122607.0	0.067525	0.250930	0.0	0.00	0.00
sub_grade=B5	122607.0	0.056473	0.230834	0.0	0.00	0.00
$sub_grade=C1$	122607.0	0.057648	0.233077	0.0	0.00	0.00
sub_grade=C2	122607.0	0.054858	0.227704	0.0	0.00	0.00
sub_grade=C3	122607.0	0.046408	0.210369	0.0	0.00	0.00
sub_grade=C4	122607.0	0.044059	0.205228	0.0	0.00	0.00
sub_grade=C5	122607.0	0.041303	0.198990	0.0	0.00	0.00
• • •	• • •	• • •		• • •	• • •	• • •
sub_grade=E4	122607.0	0.012895	0.112821	0.0	0.00	0.00
sub_grade=E5	122607.0	0.011092	0.104735	0.0	0.00	0.00
sub_grade=F1	122607.0	0.009013	0.094506	0.0	0.00	0.00
sub_grade=F2	122607.0	0.007585	0.086763	0.0	0.00	0.00
sub_grade=F3	122607.0	0.006280	0.078999	0.0	0.00	0.00
sub_grade=F4	122607.0	0.005130	0.071442	0.0	0.00	0.00
sub_grade=F5	122607.0	0.004062	0.063603	0.0	0.00	0.00
sub_grade=G1	122607.0	0.003018	0.054852	0.0	0.00	0.00
sub_grade=G2	122607.0	0.001966	0.044292	0.0	0.00	0.00
sub_grade=G3	122607.0	0.001362	0.036881	0.0	0.00	0.00
sub_grade=G4	122607.0	0.001240	0.035188	0.0	0.00	0.00
sub_grade=G5	122607.0	0.001174	0.034251	0.0	0.00	0.00
home_ownership=MORTGAGE	122607.0	0.483170	0.499719	0.0	0.00	0.00
home_ownership=OTHER	122607.0	0.001460	0.038182	0.0	0.00	0.00
home_ownership=OWN	122607.0	0.081097	0.272984	0.0	0.00	0.00
home_ownership=RENT	122607.0	0.434274	0.495663	0.0	0.00	0.00
purpose=car	122607.0	0.019371	0.137825	0.0	0.00	0.00
purpose=credit_card	122607.0	0.179843	0.384058	0.0	0.00	0.00
purpose=debt_consolidation	122607.0	0.556518	0.496797	0.0	0.00	1.00
purpose=home_improvement	122607.0	0.061522	0.240286	0.0	0.00	0.00
purpose=house	122607.0 122607.0	0.008197 0.031621	0.090165 0.174991	0.0	0.00	0.00
<pre>purpose=major_purchase purpose=medical</pre>	122607.0	0.031021	0.113733	0.0	0.00	0.00
purpose=moving	122607.0	0.013107	0.113733	0.0	0.00	0.00
purpose=other	122607.0	0.009024	0.261959	0.0	0.00	0.00
purpose=small_business	122607.0	0.026622	0.160976	0.0	0.00	0.00
purpose=vacation	122607.0	0.020022	0.083457	0.0	0.00	0.00
purpose=wedding	122607.0	0.007014	0.110867	0.0	0.00	0.00
term= 36 months	122607.0	0.797679	0.401732	0.0	1.00	1.00
term= 60 months	122607.0	0.737073	0.401732	0.0	0.00	0.00
COIM CO MONORE	122001.0	0.202021	0.101702	0.0	0.00	0.00
	75%	max				
short_emp		.00				
emp_length_num		.00				
dti		9.88				
last_delinq_none	1.00 1.00					
last_major_derog_none	1.00 1.00					
revol_util	74.30 150.70					
total_rec_late_fee	0.00 208.82					
safe_loans 1.00 1.00						

d A	0 00	1 00
grade=A	0.00	1.00
grade=B	1.00	1.00
grade=C	0.00	1.00
grade=D	0.00	1.00
grade=E	0.00	1.00
grade=F	0.00	1.00
grade=G	0.00	1.00
sub_grade=A1	0.00	1.00
sub_grade=A2	0.00	1.00
sub_grade=A3	0.00	1.00
sub_grade=A4	0.00	1.00
sub_grade=A5	0.00	1.00
sub_grade=B1	0.00	1.00
sub_grade=B2	0.00	1.00
sub_grade=B3	0.00	1.00
sub_grade=B4	0.00	1.00
sub_grade=B5	0.00	1.00
sub_grade=C1	0.00	1.00
sub_grade=C2	0.00	1.00
sub_grade=C3	0.00	1.00
sub_grade=C4	0.00	1.00
sub_grade=C5	0.00	1.00
Bab_grade oo		
sub_grade=E4	0.00	1.00
_	0.00	1.00
sub_grade=E5 sub_grade=F1	0.00	1.00
_		1.00
sub_grade=F2	0.00	
sub_grade=F3	0.00	1.00
sub_grade=F4	0.00	1.00
sub_grade=F5	0.00	1.00
sub_grade=G1	0.00	1.00
sub_grade=G2	0.00	1.00
sub_grade=G3	0.00	1.00
sub_grade=G4	0.00	1.00
sub_grade=G5	0.00	1.00
home_ownership=MORTGAGE	1.00	1.00
home_ownership=OTHER	0.00	1.00
home_ownership=OWN	0.00	1.00
home_ownership=RENT	1.00	1.00
purpose=car	0.00	1.00
purpose=credit_card	0.00	1.00
${\tt purpose=debt_consolidation}$	1.00	1.00
purpose=home_improvement	0.00	1.00
purpose=house	0.00	1.00
purpose=major_purchase	0.00	1.00
purpose=medical	0.00	1.00
purpose=moving	0.00	1.00
purpose=other	0.00	1.00
purpose=small_business	0.00	1.00
purpose=vacation	0.00	1.00
purpose=wedding	0.00	1.00
term= 36 months	1.00	1.00
term= 60 months	0.00	1.00
July Co Mondin	3.00	1.00

```
[68 rows x 8 columns]
In [11]: # Extract new features names
         features = data_clean.columns.values
         features = features[features != target]
In [12]: #
         # Modeling and Prediction
In [13]: predvar = data_clean[features]
         predictors = predvar.copy()
         target
                  = data_clean.safe_loans
In [14]: # Standardize predictors to have mean=0 and sd=1
         from sklearn import preprocessing
         for attr in predictors.columns.values:
             predictors[attr] = preprocessing.scale(predictors[attr].astype('float64'))
In [15]: #Split into training and testing sets
         pred_train, pred_test, tar_train, tar_test = train_test_split(predictors, target,
                                                                       test_size = .4,
                                                                       random_state = 123)
         print('pred_train.shape', pred_train.shape)
         print('pred_test.shape', pred_test.shape)
         print('tar_train.shape', tar_train.shape)
         print('tar_test.shape', tar_test.shape)
pred_train.shape (73564, 67)
pred_test.shape (49043, 67)
tar_train.shape (73564,)
tar_test.shape (49043,)
In [16]: # Specify the lasso regression model
         model = LassoLarsCV(cv = 10, precompute = False).fit(pred_train, tar_train)
In [17]: # Print variable names and regression coefficients
         pd.DataFrame([dict(zip(predictors.columns, model.coef_))], index=['coef']).T
Out[17]:
                                         coef
                                    -0.031080
         dti
                                    0.000000
         emp_length_num
         grade=A
                                     0.036706
                                     0.015090
         grade=B
         grade=C
                                    0.000000
                                    -0.014125
         grade=D
         grade=E
                                    -0.017393
         grade=F
                                    -0.015787
         grade=G
                                    -0.009659
         home_ownership=MORTGAGE
                                    0.010588
```

$home_ownership=OTHER$	-0.001163			
home_ownership=OWN	0.000000			
home_ownership=RENT	-0.007503			
last_delinq_none	-0.008092			
last_major_derog_none	-0.002272			
purpose=car	0.000000			
purpose=credit_card	0.006216			
purpose=debt_consolidation	0.000000			
purpose=home_improvement	-0.001184			
purpose=house	0.000000			
purpose=major_purchase	0.000000			
purpose=medical	-0.003115			
purpose=moving	-0.000223			
purpose=other	-0.005091			
purpose=small_business	-0.019715			
purpose=vacation	-0.000638			
purpose=wedding	0.002051			
revol_util	-0.012068			
short_emp	-0.009104			
sub_grade=A1	0.002509			
sub_grade=B4	0.000000			
sub_grade=B5	-0.001996			
sub_grade=C1	0.001869			
sub_grade=C2	0.001481			
sub_grade=C3	0.000000			
sub_grade=C4	-0.001447			
sub_grade=C5	0.000000			
sub_grade=D1	0.000000			
sub_grade=D2	0.000000			
sub_grade=D3	-0.000327			
sub_grade=D4	-0.003696			
sub_grade=D5	-0.001762			
sub_grade=E1	0.004096			
sub_grade=E2	0.000000			
sub_grade=E3	-0.001249			
sub_grade=E4	-0.003977			
sub_grade=E5	-0.001715			
sub_grade=F1	0.000000			
sub_grade=F2	0.000000			
sub_grade=F3	-0.003955			
sub_grade=F4	-0.004832			
sub_grade=F5	-0.005503			
sub_grade=G1	-0.000474			
sub_grade=G2	-0.001004			
sub_grade=G3	0.000000			
sub_grade=G4	0.004561			
sub_grade=G5	0.000000			
term= 36 months	0.026618			
term= 60 months	-0.005477			
total_rec_late_fee	-0.044206			

[67 rows x 1 columns]

In [18]: # Plot coefficient progression

Out[18]: <matplotlib.text.Text at 0x17aaab94390>

In [19]: # Plot mean square error for each fold

Out[19]: <matplotlib.text.Text at 0x17aac05cef0>


```
In [20]: # MSE from training and test data
         from sklearn.metrics import mean_squared_error
         train_error = mean_squared_error(tar_train, model.predict(pred_train))
         test_error = mean_squared_error(tar_test, model.predict(pred_test))
         print ('training data MSE')
         print(train_error)
         print ('test data MSE')
         print(test_error)
training data MSE
0.141354906717
test data MSE
0.140656085708
In [21]: # R-square from training and test data
         rsquared_train = model.score(pred_train, tar_train)
         rsquared_test = model.score(pred_test, tar_test)
         print ('training data R-square')
         print(rsquared_train)
         print ('test data R-square')
         print(rsquared_test)
training data R-square
```

In []:

0.0799940399148 test data R-square 0.0772929635462