1 Section 2.8 Exercises

Exercises with solutions from Section 2.8 of [UA].

Exercise 2.8.1. Using the particular array (a_{ij}) from Section 2.1, compute $\lim_{n\to\infty} s_{nn}$. How does this value compare to the two iterated values for the sum already computed?

Solution. The array in question is

$$\begin{bmatrix} -1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \cdots \\ 0 & -1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \cdots \\ 0 & 0 & -1 & \frac{1}{2} & \frac{1}{4} & \cdots \\ 0 & 0 & 0 & -1 & \frac{1}{2} & \cdots \\ 0 & 0 & 0 & 0 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix},$$

where $a_{ij} = 1/2^{j-i}$ if j > i, $a_{ij} = -1$ if j = i, and $a_{ij} = 0$ if j < i. If we let f(j) be the sum of the first row up to the jth column, then using the formula for the partial sums of a geometric series, we find that

$$f(j) = \begin{cases} -1 & \text{if } j = 1, \\ -1 + \frac{1}{2} + \dots + \frac{1}{2^{j-1}} = -\frac{1}{2^{j-1}} & \text{if } j \ge 2 \end{cases}$$
$$= -\frac{1}{2^{j-1}}.$$

Since subsequent rows are simply the first row shifted along, it is clear that $s_{11} = f(1), s_{22} = f(1) + f(2), s_{33} = f(1) + f(2) + f(3)$, and in general

$$s_{nn} = \sum_{j=1}^{n} f(j) = \sum_{j=1}^{n} \frac{-1}{2^{j-1}} = -\sum_{j=0}^{n-1} \frac{1}{2^{j}}.$$

It follows that

$$\lim_{n \to \infty} s_{nn} = -\sum_{j=0}^{\infty} \frac{1}{2^j} = -2.$$

At the beginning of Section 2.1, we found that summing along the rows first gave a value for the double sum of 0, whereas summing down the columns first gave a value of -2.

Exercise 2.8.2. Show that if the iterated series

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|$$

converges (meaning for each fixed $i \in \mathbf{N}$ the series $\sum_{j=1}^{\infty} |a_{ij}|$ converges to some real number b_i , and the series $\sum_{i=1}^{\infty} b_i$ converges as well), then the iterated series

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}$$

converges.

Solution. For each $i \in \mathbb{N}$, Theorem 2.7.6 implies that the series $\sum_{j=1}^{\infty} a_{ij}$ converges to some real number c_i . Observe that

$$0 \le |c_i| = \left| \sum_{j=1}^{\infty} a_{ij} \right| \le \sum_{j=1}^{\infty} |a_{ij}| = b_i.$$

Since $\sum_{i=1}^{\infty} b_i$ converges, the Comparison Test implies that the series $\sum_{i=1}^{\infty} c_i$ is absolutely convergent and hence convergent.

Exercise 2.8.3. (a) Prove that (t_{nn}) converges.

- (b) Now, use the fact that (t_{nn}) is a Cauchy sequence to argue that (s_{nn}) converges.
- Solution. (a) Since $|a_{ij}| \ge 0$ for all positive integers i and j, the sequence (t_{nn}) is increasing and bounded above by the real number $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|$. Hence by the Monotone Convergence Theorem, (t_{nn}) converges.
 - (b) Suppose n > m are positive integers. By examining the array

$$\begin{bmatrix} a_{11} & \cdots & a_{1m} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} & \cdots & a_{mn} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} & \cdots & a_{nn} \end{bmatrix},$$

we see that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} - \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} = \sum_{i=1}^{m} \sum_{j=m+1}^{n} a_{ij} + \sum_{i=m+1}^{n} \sum_{j=1}^{n} a_{ij}.$$

(The sum of the top right "square" and the bottom "rectangle" of the array.) Let $\epsilon > 0$ be given. Since (t_{nn}) is a Cauchy sequence, there exists an $N \in \mathbb{N}$ such that $n > m \geq N$ implies that

$$|t_{nn} - t_{mm}| = t_{nn} - t_{mm} < \epsilon.$$

For such n and m, observe that

$$|s_{nn} - s_{mm}| = \left| \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} - \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} \right|$$

$$= \left| \sum_{i=1}^{m} \sum_{j=m+1}^{n} a_{ij} + \sum_{i=m+1}^{n} \sum_{j=1}^{n} a_{ij} \right|$$

$$\leq \sum_{i=1}^{m} \sum_{j=m+1}^{n} |a_{ij}| + \sum_{i=m+1}^{n} \sum_{j=1}^{n} |a_{ij}|$$

$$= t_{nn} - t_{mm}$$

$$< \epsilon.$$

It follows that (s_{nn}) is a Cauchy sequence and hence convergent.

Exercise 2.8.4. (a) Let $\epsilon > 0$ be arbitrary and argue that there exists an $N_1 \in \mathbb{N}$ such that $m, n \geq N_1$ implies $B - \frac{\epsilon}{2} < t_{mn} \leq B$.

(b) Now, show that there exists an N such that

$$|s_{mn} - S| < \epsilon$$

for all $m, n \geq N$.

- Solution. (a) By the approximation property for suprema, there exist positive integers m', n' such that $B \frac{\epsilon}{2} < t_{m'n'} \le B$. Set $N_1 = \max\{m', n'\}$. Since each $|a_{ij}|$ is positive, (t_{mn}) is increasing in both m and n; it follows that for $m, n \ge N_1$ we have $B \frac{\epsilon}{2} < t_{mn} \le B$.
 - (b) Since $\lim_{n\to\infty} s_{nn} = S$, there is an $N_2 \in \mathbb{N}$ such that $n \geq N_2$ implies that $|s_{nn} S| < \frac{\epsilon}{2}$.

Set $N = \max\{N_1, N_2\}$ and suppose that m, n > N. Similarly to Exercise 2.8.3 (b), we have

$$|s_{mn} - s_{NN}| = \left| \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} - \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} \right|$$

$$= \left| \sum_{i=1}^{N} \sum_{j=N+1}^{n} a_{ij} + \sum_{i=N+1}^{m} \sum_{j=1}^{n} a_{ij} \right|$$

$$\leq \sum_{i=1}^{N} \sum_{j=N+1}^{n} |a_{ij}| + \sum_{i=N+1}^{m} \sum_{j=1}^{n} |a_{ij}|$$

$$= t_{mn} - t_{NN}$$

$$\leq B - t_{NN}$$

$$< \frac{\epsilon}{2}.$$

It follows that

$$|s_{mn} - S| \le |s_{mn} - s_{NN}| + |s_{NN} - S| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Exercise 2.8.5. (a) Show that for all $m \geq N$

$$|(r_1 + r_2 + \dots + r_m) - S| \le \epsilon.$$

Conclude that the iterated sum $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}$ converges to S.

(b) Finish the proof by showing that the other iterated sum, $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$, converges to S as well. Notice that the same argument can be used once it is established that, for each fixed column j, the sum $\sum_{i=1}^{\infty} a_{ij}$ converges to some real number c_j .

Solution. (a) Suppose that $n \geq N$. Then

$$|(r_1 + r_2 + \dots + r_m) - S| \le |(r_1 + r_2 + \dots + r_m) - s_{mn}| + |s_{mn} - S|$$

$$< \left| (r_1 + r_2 + \dots + r_m) - \left(\sum_{j=1}^n a_{1j} + \sum_{j=1}^n a_{2j} + \dots + \sum_{j=1}^n a_{mj} \right) \right| + \epsilon$$

$$\le \left| r_1 - \sum_{j=1}^n a_{1j} \right| + \left| r_2 - \sum_{j=1}^n a_{2j} \right| + \dots + \left| r_m - \sum_{j=1}^n a_{mj} \right| + \epsilon.$$

Since this is true for any $n \ge N$ and for any given i we have $\sum_{j=1}^{\infty} a_{ij} = r_i$, taking the limit in n on both sides of the inequality

$$|(r_1 + r_2 + \dots + r_m) - S| < \left| r_1 - \sum_{j=1}^n a_{1j} \right| + \left| r_2 - \sum_{j=1}^n a_{2j} \right| + \dots + \left| r_m - \sum_{j=1}^n a_{mj} \right| + \epsilon$$

gives us

$$|(r_1 + r_2 + \dots + r_m) - S| \le \epsilon.$$

It follows that $\lim_{m\to\infty} \left(\sum_{i=1}^m r_i\right) = S$, i.e. $\sum_{i=1}^\infty \sum_{j=1}^\infty a_{ij} = S$.

(b) Fix $j \in \mathbb{N}$ and let (x_n) be the sequence of partial sums of the series $\sum_{i=1}^{\infty} |a_{ij}|$, i.e.

$$x_n = |a_{1j}| + |a_{2j}| + \dots + |a_{nj}|.$$

Since each $|a_{ij}|$ is a term of the convergent series $\sum_{j=1}^{\infty} |a_{ij}| = r_i$, which has only non-negative terms, we see that $|a_{ij}| \leq r_i$, so that

$$x_n \le r_1 + r_2 + \dots + r_n \le \sum_{i=1}^{\infty} r_i,$$

where the last inequality follows since each r_i is non-negative. So (x_n) is an increasing and bounded sequence and hence converges by the Monotone Convergence Theorem. It follows that $\sum_{i=1}^{\infty} a_{ij}$ converges to some (non-negative) real number c_j .

Let $\epsilon > 0$ be given. As in Exercise 2.8.4, there is an $N \in \mathbb{N}$ such that $|s_{mn} - S| < \epsilon$ for all $m, n \geq N$. We can write s_{mn} as

$$s_{mn} = \sum_{i=1}^{m} a_{i1} + \sum_{i=1}^{m} a_{i2} + \dots + \sum_{i=1}^{m} a_{in}.$$

Suppose that $m, n \geq N$. Then

$$|(c_{1} + c_{2} + \dots + c_{n}) - S| \leq |(c_{1} + c_{2} + \dots + c_{n}) - s_{mn}| + |s_{mn} - S|$$

$$< \left| (c_{1} + c_{2} + \dots + c_{n}) - \left(\sum_{i=1}^{m} a_{i1} + \sum_{i=1}^{m} a_{i2} + \dots + \sum_{i=1}^{m} a_{in} \right) \right| + \epsilon$$

$$\leq \left| c_{1} - \sum_{i=1}^{m} a_{i1} \right| + \left| c_{2} - \sum_{i=1}^{m} a_{i2} \right| + \dots + \left| c_{n} - \sum_{i=1}^{m} a_{in} \right| + \epsilon.$$

Since this is true for any $m \ge N$ and for any given j we have $\sum_{i=1}^{\infty} a_{ij} = c_j$, taking the limit in m on both sides of the inequality

$$|(c_1 + c_2 + \dots + c_n) - S| < \left| c_1 - \sum_{i=1}^m a_{i1} \right| + \left| c_2 - \sum_{i=1}^m a_{i2} \right| + \dots + \left| c_n - \sum_{i=1}^m a_{in} \right| + \epsilon$$

gives us

$$|(c_1+c_2+\cdots+c_n)-S|\leq \epsilon.$$

It follows that $\lim_{n\to\infty} \left(\sum_{j=1}^n c_j\right) = S$, i.e. $\sum_{j=1}^\infty \sum_{i=1}^\infty a_{ij} = S$.

Exercise 2.8.6. (a) Assuming the hypothesis—and hence the conclusion—of Theorem 2.8.1, show that $\sum_{k=2}^{\infty} d_k$ converges absolutely.

(b) Imitate the strategy in the proof of Theorem 2.8.1 to show that $\sum_{k=2}^{\infty} d_k$ converges to $S = \lim_{n \to \infty} s_{nn}$.

Solution. (a) Observe that

$$|d_2| = |a_{11}|$$

$$|d_2| + |d_3| = |a_{11}| + |a_{12} + a_{21}| \le (|a_{11}| + |a_{12}|) + |a_{21}|$$

$$|d_2| + |d_3| + |d_4| = |a_{11}| + |a_{12} + a_{21}| + |a_{13} + a_{22} + a_{31}|$$

$$\le (|a_{11}| + |a_{12}| + |a_{13}|) + (|a_{21}| + |a_{22}|) + |a_{31}|,$$

and in general for $n \geq 2$,

$$\sum_{k=2}^{n} |d_k| \le \sum_{i=1}^{n-1} \sum_{j=1}^{n-i} |a_{ij}| \le \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|,$$

where the last inequality follows since each $|a_{ij}|$ is non-negative. By assumption $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|$ is some real number, so the sequence $\sum_{k=2}^{n} |d_k|$ is increasing and bounded above and hence converges by the Monotone Convergence Theorem.

(b) For $k \geq 2$, let

$$e_k = |a_{1,k-1}| + |a_{2,k-2}| + \dots + |a_{k-1,1}|.$$

By considering Figure 1, which shows the special case n = 6, we see that for each $n \ge 2$,

$$s_{nn} - \sum_{k=2}^{n} d_k = \sum_{i=1}^{n} \sum_{j=n+1-i}^{n} a_{ij}$$
 and $t_{nn} - \sum_{k=2}^{n} e_k = \sum_{i=1}^{n} \sum_{j=n+1-i}^{n} |a_{ij}|$.

This implies that

$$\left| s_{nn} - \sum_{k=2}^{n} d_k \right| = \left| \sum_{i=1}^{n} \sum_{j=n+1-i}^{n} a_{ij} \right| \le \sum_{i=1}^{n} \sum_{j=n+1-i}^{n} |a_{ij}| = t_{nn} - \sum_{k=2}^{n} e_k.$$
 (1)

Let $\epsilon > 0$ be given. Since $\lim_n s_{nn} = S$ and (t_{nn}) is an increasing Cauchy sequence, there are positive integers N_1, N_2 such that

$$n \ge N_1 \implies |s_{nn} - S| < \frac{\epsilon}{2} \quad \text{and} \quad n > m \ge N_2 \implies t_{nn} - t_{mm} < \frac{\epsilon}{2}.$$
 (2)

Set $N = \max\{N_1, 2N_2\}$ and suppose $n \ge N$. Since $n \ge 2N_2$, each term of $t_{N_2N_2}$ appears in $\sum_{k=2}^{n} e_k$ (see Figure 1, which has the special case $N_2 = 2$); it follows that $t_{N_2N_2} \le \sum_{k=2}^{n} e_k$. Then by (1) and (2) we have

$$\left| s_{nn} - \sum_{k=2}^{n} d_k \right| \le t_{nn} - t_{N_2 N_2} < \frac{\epsilon}{2},$$

which implies

$$\left| \sum_{k=2}^{n} d_k - S \right| \le |s_{nn} - S| + \left| s_{nn} - \sum_{k=2}^{n} d_k \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

It follows that $\lim_{n \to \infty} \sum_{k=2}^{n} d_k = S$.

a_{11}	a_{12}			
a_{21}	٠.			$t_{2,2}$
÷				$\sum_{k=2}^{6} d_k$
				$\sum_{k=2}^{6} \frac{1}{\sum_{i=1}^{6} \sum_{j=7-i}^{6} a_{ij} }$

Figure 1: $s_{6.6}$

Exercise 2.8.7. Assume that $\sum_{i=1}^{\infty} a_i$ converges absolutely to A, and $\sum_{j=1}^{\infty} b_j$ converges absolutely to B.

- (a) Show that the iterated sum $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_i b_j|$ converges so that we may apply Theorem 2.8.1.
- (b) Let $s_{nn} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j$, and prove that $\lim_{n\to\infty} s_{nn} = AB$. Conclude that

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_i b_j = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_i b_j = \sum_{k=2}^{\infty} d_k = AB,$$

where, as before, $d_k = a_1 b_{k-1} + a_2 b_{k-2} + \cdots + a_{k-1} b_1$.

Solution. (a) Let $A' = \sum_{i=1}^{\infty} |a_i|$ and $B' = \sum_{j=1}^{\infty} |b_j|$. Suppose $i \in \mathbb{N}$ is fixed. Then

$$\sum_{j=1}^{n} |a_i b_j| = |a_i| \sum_{j=1}^{n} |b_j| \to |a_i| B' \text{ as } n \to \infty.$$

It follows that

$$\sum_{i=1}^{n} |a_i| B' = B' \sum_{i=1}^{n} |a_i| \to A'B' \text{ as } n \to \infty,$$

i.e.

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_i b_j| = A' B'.$$

(b) For each $n \in \mathbf{N}$ we have

$$s_{nn} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j = \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{j=1}^{n} b_j\right).$$

The Algebraic Limit Theorem now implies that $\lim_{n\to\infty} s_{nn} = AB$, and Theorem 2.8.1 then gives the desired result.

[UA] Abbott, S. (2015) Understanding Analysis. 2nd edition.