Telco Customer churn EDA

July 15, 2022

0.0.1 Telco Customer churn EDA by P.Pallavi.

https://www.kaggle.com/bandiatindra/telecom-churn-prediction/data

```
[13]: import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
[14]: # to read the dataset in the Jupiter Notebook
      df1 = pd.read_csv("Telecom.csv")
[15]: # to make the copy of dataset
      df = df1.copy()
[16]: # to drop the column customerid as it of no use in EDA
      df.drop(columns = ['customerid'], inplace = True)
[17]: # Adding to the column SerialNumber to the dataset
      df["SerialNumber"] = np.arange(1,len(df)+1)
[18]: # setting the SerialNumber as index to the dataset
      df.set index("SerialNumber", inplace = True)
[19]: # to find the dimensions of data set
      df.shape
[19]: (7043, 20)
[20]: # to find the type of columns present in the dataset and observed \Box
      → dtype(SeniorCitizen) as int64 and dtype(TotalCharges)
      # as object
      df.dtypes
[20]: gender
                           object
      SeniorCitizen
                            int64
      Partner
                           object
      Dependents
                           object
```

```
tenure
                       int64
PhoneService
                      object
MultipleLines
                      object
InternetService
                      object
OnlineSecurity
                      object
OnlineBackup
                      object
DeviceProtection
                      object
TechSupport
                      object
StreamingTV
                      object
StreamingMovies
                      object
                      object
Contract
PaperlessBilling
                      object
PaymentMethod
                      object
MonthlyCharges
                     float64
TotalCharges
                      object
Churn
                      object
dtype: object
```

[21]: pd.set_option("display.max_rows", None)

- [22]: # Converting the dtype(SeniorCitizen) to object and dtype(Totalcharges) to

 →numeric for analysis

 df["SeniorCitizen"] = df["SeniorCitizen"].astype(object, errors = "raise")

 df["TotalCharges"] = pd.to_numeric(df["TotalCharges"], errors = "coerce")
- [23]: #to find the count of data in every column and found data missing in Total

 →Charges column

 df.count()
- [23]: gender 7043 SeniorCitizen 7043 7043 Partner 7043 Dependents 7043 tenure PhoneService 7043 MultipleLines 7043 InternetService 7043 7043 OnlineSecurity OnlineBackup 7043 DeviceProtection 7043 7043 TechSupport StreamingTV 7043 StreamingMovies 7043 Contract 7043 PaperlessBilling 7043 PaymentMethod 7043 MonthlyCharges 7043

TotalCharges 7006 Churn 7043

dtype: int64

[24]: #to fill the missing data in Totalcharges with tenure*Monthlycharges

df['TotalCharges'].fillna(df["tenure"]*df["MonthlyCharges"], inplace = True)

[25]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 7043 entries, 1 to 7043
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype		
0	gender	7043 non-null	object		
1	SeniorCitizen	7043 non-null	object		
2	Partner	7043 non-null	object		
3	Dependents	7043 non-null	object		
4	tenure	7043 non-null	int64		
5	PhoneService	7043 non-null	object		
6	MultipleLines	7043 non-null	object		
7	InternetService	7043 non-null	object		
8	OnlineSecurity	7043 non-null	object		
9	OnlineBackup	7043 non-null	object		
10	DeviceProtection	7043 non-null	object		
11	TechSupport	7043 non-null	object		
12	StreamingTV	7043 non-null	object		
13	${\tt StreamingMovies}$	7043 non-null	object		
14	Contract	7043 non-null	object		
15	PaperlessBilling	7043 non-null	object		
16	PaymentMethod	7043 non-null	object		
17	MonthlyCharges	7043 non-null	float64		
18	TotalCharges	7043 non-null	float64		
19	Churn	7043 non-null	object		
$\frac{1}{2}$					

dtypes: float64(2), int64(1), object(17)

memory usage: 687.8+ KB

[26]: df.describe()

[26]:		tenure	MonthlyCharges	TotalCharges
	count	7043.000000	7043.000000	7043.000000
	mean	32.371149	64.761692	2279.701257
	std	24.559481	30.090047	2266.810129
	min	0.000000	18.250000	0.000000
	25%	9.000000	35.500000	397.775000
	50%	29.000000	70.350000	1394.550000
	75%	55.000000	89.850000	3786.600000

72.000000 118.750000 8684.800000 max[27]: df[df['tenure'] == 0].shape [27]: (11, 20) [28]: #df['gender'].replace("Female",0, inplace = True) #df['gender'].replace("Male",1, inplace = True) df['Churn'].replace("No",0, inplace = True) #to replace Churn value with '0' if \hookrightarrow No and with '1' if Yes df['Churn'].replace("Yes",1, inplace = True) 0.0.2 Data Visualization using Matplotlib and Seaborn [29]: # 1. From the plot it is learnt that, nearly 50% of customers are male and \rightarrow remaining Female. print("""Percentages of Male and Female """) a = df["gender"].value_counts()*100/len(df) print(a) ax = (df["gender"].value_counts()*100/len(df)).plot(kind = "bar",_ \rightarrow color=['#67BB20',"b"], width = 0.3) ax.set_xlabel("Gender")

Percentages of Male and Female Male 50.47565

ax.set_ylabel("% of Customers")

ax.set_title("Gender Distribution plot")

Female 49.52435

Name: gender, dtype: float64

[29]: Text(0.5, 1.0, 'Gender Distribution plot')


```
Count of Senior Citizens(denoted by 1) and young group(denoted by 0)
0 5901
1 1142
Name: SeniorCitizen, dtype: int64
The percentage of youth = 83.79% and percentage of Senior Citizens = 16.21%

[30]: Text(0, 0.5, '% of Senior Citizens')
```



```
[31]: print("""Count of Churn of Customers from Telco""")
    c = df["Churn"].value_counts()
    print(c)
    cx = (df["Churn"].value_counts()).plot(kind ='bar',color= ['r','g'])
    cx.set_xlabel("Churn")
    cx.set_ylabel("Total no. of Customers")
    cx.set_title("Churn graph of Customers")

Count of Churn of Customers from Telco
    0    5174
    1    1869
    Name: Churn, dtype: int64

[31]: Text(0.5, 1.0, 'Churn graph of Customers')
```



```
[32]: #3. Nearly 26.5% of Customers are churning from Telco because of different

→ factors.

print("""Percentage of Churn of Customers from Telco""")

d = df["Churn"].value_counts()*100/len(df)

print(d)

dx = (df["Churn"].value_counts()*100/len(df)).plot(kind = "bar",

→color=['#67BB20',"b"], width = 0.3)

dx.set_xlabel("Churn")

dx.set_ylabel("% of Customers")

dx.set_title("Percentage of Churn of customers")
```

Percentage of Churn of Customers from Telco

0 73.463013 1 26.536987

Name: Churn, dtype: float64

[32]: Text(0.5, 1.0, 'Percentage of Churn of customers')

Percentage of Churn of customers


```
[33]: # 4. Shows various services provided by the Telco and observed that most of the
      \rightarrow customers opted for Fibreoptic services. The
      # telco provides less online security and Techsupport. Nearly 50% of the
      →customers opted for Streaming TV and Streaming movies.
     Facility = {1: 'PhoneService', 2: 'MultipleLines', 3: 'InternetService', 4:
      5: 'OnlineBackup',6: 'DeviceProtection',7: 'TechSupport',8:
      fig, axes = plt.subplots(3, 3,figsize = (15,12))
     for i, item in Facility.items():
         if i <=3:
             Fx = df[item].value_counts().plot(kind = 'bar',rot=0,ax=axes[i-1,0],__
      Fx.set title(item)
         elif i<=6:</pre>
             Fx = df[item].value_counts().plot(kind = 'bar',ax=axes[i-4,1],rot=0,__

color = ['r','b','y'])

             Fx.set_title(item)
         elif i<=9:
             Fx = df[item].value_counts().plot(kind = 'bar',ax=axes[i-7,2],rot=0,__

\Leftrightarrow \operatorname{color} = ['r', 'b', 'y'])

             Fx.set_title(item)
```


[34]: # 5. The Customers in the dataset preferred lower contract periods i.e_

→Month-to-Month than two or three year Contract period.

print("The no.of Customers based on Contract")

g = df['Contract'].value_counts()

print(g)

gx = df['Contract'].value_counts().plot(kind = 'bar',color = ["r","y","b"],

→width = 0.3, rot=0)

gx.set_ylabel('No. of Customers')

gx.set_title("No.of Customers based on Contract")

The no.of Customers based on Contract

Month-to-month 3875 Two year 1695 One year 1473

Name: Contract, dtype: int64

[34]: Text(0.5, 1.0, 'No.of Customers based on Contract')

[35]: gx = sns.displot(df["Contract"], kde=True, bins=10 ,color = "orange")


```
[36]: #6.The Customers in the dataset opted mostly for one month tenure or 72 months

→ tenure

hx = sns.displot(df['tenure'], kde=True, bins=70 ,color = "orange")
```



```
[37]: # 7. The count of churn in Male and Female is nearly same.

print("The count of churn in Male and Female")

i = df.groupby(['gender','Churn']).size()

print(i)

sns.countplot(df['Churn'], hue = df['gender'], dodge = True, palette = □

→['green', 'yellow'])
```

The count of churn in Male and Female gender Churn

Female 0 2549 1 939 Male 0 2625 1 930

dtype: int64

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or

```
misinterpretation.
warnings.warn(
```

[37]: <AxesSubplot:xlabel='Churn', ylabel='count'>


```
The count of Churn of Seniorcitizens
SeniorCitizen Churn
```

0	0	4508
	1	1393
1	0	666
	1	476

dtype: int64

The rate of churn in youth: 23.61%

The rate of churn in SeniorCitizens : 41.68%

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36:

FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[38]: <AxesSubplot:xlabel='Churn', ylabel='count'>

[39]: <seaborn.axisgrid.JointGrid at 0xa92fdc0>


```
[40]: #10. The customers with lower tenure preferring to churn than the customers with high tenure. sns.boxplot(x = df["Churn"], y = df["tenure"])
```

[40]: <AxesSubplot:xlabel='Churn', ylabel='tenure'>


```
[41]: # 11. The churn count is high where customers opted for Month-to-Month contract

→ than one year and two year contract.

sns.countplot(df['Contract'], hue = df['Churn'], dodge = True, palette = 

→ ['yellow', 'lightgreen'])
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[41]: <AxesSubplot:xlabel='Contract', ylabel='count'>

Contract	Churn	
Month-to-month	0	2220
	1	1655
One year	0	1307
	1	166
Two year	0	1647
	1	48

dtype: int64


```
[43]: #12.
sns.countplot(df['Partner'], hue = df['Churn'], dodge = True, palette = □

→['orange', 'lightgreen'])
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[43]: <AxesSubplot:xlabel='Partner', ylabel='count'>

[44]: #13.
sns.countplot(df['Dependents'], hue = df['Churn'])

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[44]: <AxesSubplot:xlabel='Dependents', ylabel='count'>

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[45]: <AxesSubplot:xlabel='PaperlessBilling', ylabel='count'>

[46]: #15. The customers prefer Electronic check method than other payment methods.

sns.countplot(df["PaymentMethod"], hue = df["PaymentMethod"], dodge = True,

→palette = ['orange', 'green', "b", "#CCOOFF"], orient = "h")

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[46]: <AxesSubplot:xlabel='PaymentMethod', ylabel='count'>


```
[47]: df.corr() #
[47]:
                        tenure MonthlyCharges TotalCharges
                                                                 Churn
      tenure
                      1.000000
                                      0.247900
                                                    0.826176 -0.352229
     MonthlyCharges
                     0.247900
                                      1.000000
                                                    0.651170 0.193356
      TotalCharges
                      0.826176
                                      0.651170
                                                    1.000000 -0.198313
      Churn
                     -0.352229
                                      0.193356
                                                   -0.198313 1.000000
[48]: #16. The churn and tenure are inversely related. The customers with lower
      →tenure prefer to churn than customers with long tenure
      sns.heatmap(df.corr(), annot = True, cmap = 'viridis')
```

[48]: <AxesSubplot:>

[49]: hx = sns.displot(df['TotalCharges'], kde=True, bins=70 ,color = "orange")

[]: