<u>江苏大学</u>

硕士研究生入学考试样题

科目代码:

601

科目名称: 数学分析

满分: 150 分

1. 填空(本题共24分,每一空格3分)

1)) 级数
$$\sum_{n=1}^{\infty} \frac{x^{22n+1}}{2n(2n+1)}$$
 的收敛半径和和函数分别是_____

- 2. 设函数 f(x)在 $(0,+\infty)$ 上满足方程 $f(x^{\alpha}) = f(x)$,且 $\lim_{x \to 0^{+}} f(x) = \lim_{x \to +\infty} f(x) = f(1)$,则当 α 满足何值时 $f(x) \equiv f(1)$, $x \in (0,+\infty)$,证明之。(10 分)
- 3. 设 $\lim_{n\to\infty}a_n=a$, 证明 $\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a$, 并据理说明其逆命题是否成立? (10 分)
- 4. 设 f(x)在 [a,b]上连续,且对任何 $x \in [a,b]$,存在 $y \in [a,b]$,使得 $|f(y)| \le \frac{1}{2} |f(x)|$,求证:存在 $x_0 \in [a,b]$,满足 $f(x_0) = 0$ 。(10 分)
- 5. 证明 $f(x) = x^2$ 在 [a,b]上一致连续但是在 $(-\infty,+\infty)$ 上非一致连续。(10分)
- 6. 设 f(x)在 x = 0 连续,且对任意 $x, y \in R$,成立 f(x + y) = f(x) + f(y)。求证: (1) f(x)在 R 上 连续; (2) f(x) = f(1)x。(12分)

- 7. 证明不等式: 当x > 0时, $\frac{1}{1+x} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}$ 。(8分)
- 8. 设点 $P_0(x_0, y_0, z_0)$ 是曲面 F(x, y, z) = 1 的非奇异点,F 在 $U(P_0)$ 可微,且为n次齐次函数,证明: 此曲面在 P_0 处的切平面方程是 $xF_x(P_0) + yF_y(P_0) + zF_z(P_0) = n$ 。(10 分)
- 9. 设f 是以 2π 为周期的周期函数。且具有二阶连续导数,证明: f 的傅立叶级数在 $\left(-\infty,+\infty\right)$ 上一致收敛于f。(10 分)
- 10. 若 f(x) 为区间 [0,1] 上的单调函数,且 $\int x^a f(x) dx$ 存在(这里 a 是非负实数),证明: $\lim_{x\to 0} x^{a+1} f(x) = 0 . (10 分)$
- 11. 设函数 f(x)在 [0,a] 上具有二阶导数,且 $|f''(x)| \le M$, f(x)在 (0,a) 内取得最大值,求证: $|f'(0)| + |f'(a)| \le Ma$ 。 (8分)
- 12. 证明可微函数 F(x,y,z) 是 k 次齐次函数的充要条件是: $xF_x + yF_y + zF_z = kF$ 。(10 分)
- 13. 假设 f(x) 是 $(0,\infty)$ 单调递减连续正函数,又 $a_n = \sum_{k=1}^n f(k) \int_1^n f(x) dx$,求证数列 $\{a_n\}$ 收敛。(10分)
- 14. 计算 $I=\iint_S xydydz+yzdzdx+zxdxdy$,其中 S 是柱面 $x^2+y^2=1$ 在 $-1\le z\le 1$, z>0 的部分,曲面正向为内法方向。(8 分)