Ejemplo comparación de resultados predictores in sillico

Cambio de estudio TP53 c.266G>A (chr17:7674220 G/A, rs11540652 o NM_000546.6: c.266G>A)

Exón 3 e intrones adyacentes:

El cambio se encuentra en la segunda línea del exón 3 (la **g** en color rojo y subrayada en amarillo a la izquierda de la primera g en rojo).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice s	ites, direct	strand			Donor splice s	ites, direct	strand		
	pos 5'->3' 291	phase strand 2 +	confidence 0.91	5' exon intron 3' AAGACTCCAG^GTCAGGAGCC H		pos 5'->3' 291	phase strand 2 +	confidence 0.91	5' exon intron 3' AAGACTCCAG^GTCAGGAGCC H
Donor splice s	ites, comple				Donor splice s	ites, comple	ement strand		
pos 3'->5' 373 366	pos 5'->3' 98 105	phase strand 1 - 2 -	confidence 0.63 0.37	5' exon intron 3' GAAGAAATCG^GTAAGAGGTG TCGGTAAGAG^GTGGGCCCAG	pos 3'->5' 373 366	pos 5'->3' 98 105	phase strand 1 - 2 -	confidence 0.63 0.37	5' exon intron 3' GAAGAAATCG^GTAAGAGGTG TCGGTAAGAG^GTGGGCCCAG
Acceptor splic	e sites, dir	ect strand			Acceptor splic	e sites, dir	rect strand		
	pos 5'->3' 131 180 227	phase strand 0 + 0 + 2 +	confidence 0.56 1.00 0.17	5' intron exon 3' CTTGCCACAG^GTCTCCCCAA TATCTCCTAG^GTTGGCTCTG H TGTGTAACAG^TTCCTGCATG		pos 5'->3' 131 180 227	phase strand 0 + 0 + 2 +	0.54	5' intron exon 3' CTTGCCACAG^GTCTCCCCAA TATCTCCTAG^GTTGGCTCTG H TGTGTAACAG^TTCCTGCATG
Acceptor splic	e sites, con	plement strand			Acceptor splic	e sites, cor	mplement strand		
pos 3'->5' 285 277 262	pos 5'->3' 186 194 209	phase strand 0 - 2 - 0 -	confidence 0.18 0.19 0.19	5' intron exon 3' TGACCTGGAG^TCTTCCAGTG AGTCTTCCAG^TGTGATGATG TGATGGTGAG^GATGGGCCTC	pos 3'->5' 285 277 262	pos 5'->3' 186 194 209	phase strand 0 - 2 - 0 -	0.17	5' intron exon 3' TGACCTGGAG^TCTTCCAGTG AGTCTTCCAG^TGTGATGATG TGATGGTGAG^GATGGGCCTC

Aunque dos de los acceptor bajan su confianza un poco, los sitios siguen siendo los mismos, por lo que no causa mayores consecuencias.

Splice Site Prediction by Neural Network (NNSplice)

Dono	r site p	prediction	ns for wt :		Donor site predictions for mut :								
Start 284	End 298	Score 0.90	Exon Intron actccag gt caggag		Start 284	End 298	Score 0.90	Exon Intron actccag gt caggag	5				
Acceptor site predictions for wt :						Acceptor site predictions for mut :							
Accep	otor sit	te predic	tions for wt :		Accep	tor si	te predic	tions for mut :					
Accep Start	otor sid	te predic	tions for wt :	Exon	Accep	otor si	te predic	tions for mut :	Exon				
•		•	Intron	Exon c ag gtctccccaaggcgcactgg	*		•	Intron	Exon ccac ag gtctccccaaggcgcactgg				
Start	End	Score	Intron ggcctcccctgcttgcca		Start	End	Score	Intron ggcctcccctgcttgc					

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
gaacc(g/a)gaggc	cggagg	cagagg	30592	78%

Human Splicing Finder

New Acceptor splice	Activation of a cryptic Ac	ceptor site. Potential alteration of sp	blicing
Algorithm/Matix	position	sequences	variation
HSF Acceptor site (matrix AG)	chr17:7674230	- REF : GGCATGAACCGGAG - ALT : GGCATGAACCAGAG	42.91 > 70.78 => 64.95%

SVM-BPfinder

seq_id	agez	ss_dist	bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	13	62	gcatgaacc	-0.554895229849	0.526315789474	9	18	24	0.0083901318
wt	13	44	tcctcacca	2.05523814278	0.512820512821	39	0	0	-1.0965077
wt	13	38	ccatcatca	-1.79062982431	0.484848484848	33	0	0	-2.2315911
wt	13	35	tcatcacac	-0.982973709553	0.466666666667	30	0	0	-1.7313328
wt	13	15	aggtcagga	-3.39037967028	0.5 10	0	0	-1.3972	139
mut	13	62	gcatgaacc	-0.554895229849	0.526315789474	9	18	24	0.0083901318
mut	13	44	tcctcacca	2.05523814278	0.512820512821	39	0	0	-1.0965077
mut	13	38	ccatcatca	-1.79062982431	0.484848484848	33	0	0	-2.2315911
mut	13	35	tcatcacac	-0.982973709553	0.466666666667	30	0	0	-1.7313328
mut	13	15	aggtcagga	-3.39037967028	0.5 10	0	0	-1.3972	139

Variant Effect Predictor tool

ENST00000619186.4:c.266G>A	<u>17:7674220-</u> T <u>7674220</u>	downstream_gene_variant	TP53	ENSG00000141510 Transcript	ENST00000604348.5	protein_coding	-	-	-	-	-	-	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	17:7674220- T 7674220	missense_variant	TP53	ENSG00000141510 Transcript	ENST00000610292.4	protein_coding	6/10	993	626	209	R/Q	CGG/CAG	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	17:7674220- T 7674220	missense_variant	TP53	ENSG00000141510 Transcript	ENST00000610538.4	protein_coding	7/12	876	626	209	R/Q	CGG/CAG	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	17:7674220- T 7674220	missense_variant	TP53	ENSG00000141510 Transcript	ENST00000610623.4	protein_coding	3/8	625	266	89	R/Q	CGG/CAG	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	17:7674 <u>220-</u> T <u>7674220</u>	<u>missense_variant</u>	TP53	ENSG00000141510 Transcript	ENST00000618944.4	protein_coding	3/8	625	266	89	R/Q	CGG/CAG	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	17:7674220- T 7674220	missense_variant	TP53	ENSG00000141510 Transcript	ENST00000619186.4	protein_coding	3/7	625	266	89	R/Q	CGG/CAG	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	17:7674220- T 7674220	missense_variant	TP53	ENSG00000141510 Transcript	ENST00000619485.4	protein_coding	7/11	879	626	209	R/Q	CGG/CAG	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	<u>17:7674220-</u> T <u>7674220</u>	missense_variant	TP53	ENSG00000141510 Transcript	ENST00000620739.4	protein_coding	7/11	933	626	209	R/Q	CGG/CAG	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	<u>17:7674220-</u> T <u>7674220</u>	missense_variant	TP53	ENSG00000141510 Transcript	ENST00000622645.4	protein_coding	7/12	876	626	209	R/Q	CGG/CAG	COSV52661580, COSV52661580, COSV52661580, COSV52675468, COSV52802300
ENST00000619186.4:c.266G>A	17:7674220- T 7674220	missense variant, NMD_transcript_variant	TP53	ENSG00000141510 Transcript	ENST00000635293.1	nonsense_mediated_decay	7/12	886	626	209	R/Q	CGG/CAG	rs11540652, CM920675, COSV52661091, COSV52661580, COSV52675468, COSV52802300

ESEfinder

No hay puntuaciones positivas para ninguna de las secuencias.

En cuanto a los ESE, se producen algunas alteraciones que pueden estar afectando al *splicing:*

					-
245 (-226)	TGAACCG	-2.42315	245 (-226) TGAACCG -1.25361	245 (-226) TGAACCGG -1.62681	245 (-226) TGAACCG 1.89123
246 (-225)	GAACCGG	0.98144	246 (-225) GAACCGG -0.10348	246 (-225) GAACCGGA 1.39492	246 (-225) GAACCGG -0.18362
247 (-224)	AACCGGA	2.48624	247 (-224) AACCGGA 1.65143	247 (-224) AACCGGAG 1.50263	247 (-224) AACCGGA -4.32378
248 (-223)	ACCGGAG	-4.45876	248 (-223) ACCGGAG -2.55758	248 (-223) ACCGGAGG -4.52911	248 (-223) ACCGGAG -1.96748
249 (-222)	CCGGAGG	-1.54168	249 (-222) CCGGAGG 0.27017	249 (-222) CCGGAGGC -8.58655	249 (-222) CCGGAGG 1.63459
250 (-221)	CGGAGGC	3.08488	250 (-221) CGGAGGC 3.68554	250 (-221) CGGAGGCC -5.30017	250 (-221) CGGAGGC -2.42886
251 (-220)	GGAGGCC	-6.04253	251 (-220) GGAGGCC -3.96346	251 (-220) GGAGGCCC -1.05945	251 (-220) GGAGGCC -2.42862
245 (-226)	TGAACCA	-1.69637	245 (-226) TGAACCA -0.81824	245 (-226) TGAACCAG -0.32992	245 (-226) TGAACCA -0.49050
246 (-225)	GAACCAG	-1.59630	246 (-225) GAACCAG -1.88314	246 (-225) GAACCAGA 1.03343	246 (-225) GAACCAG -0.75145
247 (-224)	AACCAGA	0.56663	247 (-224) AACCAGA -0.05496	247 (-224) AACCAGAG 1.92790	247 (-224) AACCAGA -1.76922
248 (-223)	ACCAGAG	-1.55019	248 (-223) ACCAGAG -0.83782	248 (-223) ACCAGAGG -4.52911	248 (-223) ACCAGAG -1.81218
249 (-222)	CCAGAGG	-3.60547	249 (-222) CCAGAGG -1.11358	249 (-222) CCAGAGGC -7.28965	249 (-222) CCAGAGG 4.24338
250 (-221)	CAGAGGC	3.53210	250 (-221) CAGAGGC 3.38732	250 (-221) CAGAGGCC -5.66102	250 (-221) CAGAGGC -3.87403
251 (-220)	AGAGGCC	-6.97040	251 (-220) AGAGGCC -4.20101	251 (-220) AGAGGCCC -2.81152	251 (-220) AGAGGCC -0.97390

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	1	3	2	12	154.5907	6	-10.0546	9	12	33	407.2447	41	53.6785	24	95	0.25
mut	1	3	2	12	154.5907	6	-10.0546	10	15	34	422.8006	41	54.0224	24	100	0.24

Allele wt has a higher chance of exon skipping than allele mut.

HOT-SKIP