

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

Суперкомпьютерное моделирование и технологии

Отчет по заданию N2 «Численное интегрирование многомерных функций методом Монте-Карло»

Вариант №6

Богатенкова Анастасия Олеговна 628 группа

Содержание

1	Математическая постановка задачи	2
2	Численный метод решения задачи	2
3	Нахождение точного значения интеграла аналитически	3
4	Описание программной реализации	4
5	Результаты численных экспериментов	5
6	Выволы	7

Математическая постановка задачи 1

Функция f(x,y,z) – непрерывна в ограниченной замкнутой области $G\subset R^3$. Требуется вычислить определённый интеграл:

$$\iiint\limits_G f(x,y,z) \ dxdydz$$

В полученном варианте используется следующие функция и область:

$$f(x, y, z) = \sin(x^2 + z^2) \cdot y$$

$$G = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, \ x \ge 0, \ y \ge 0, \ z \ge 0)\}$$

Численный метод решения задачи 2

Пусть область G ограниченна параллелепипедом Π : $\begin{cases} a_1 \leqslant x \leqslant b_1 \\ a_2 \leqslant y \leqslant b_2 \\ a_3 \leqslant z \leqslant b_3 \end{cases}$ Рассмотрим функцию: $F(x,y,z) = \begin{cases} f(x,y,z), \ (x,y,z) \in G \\ 0, \ (x,y,z) \notin G \end{cases}$

Преобразуем искомый интеграл:

$$\iiint\limits_{G} f(x,y,z) \; dxdydz = \iiint\limits_{\Pi} F(x,y,z) \; dxdydz$$

Пусть $p_1(x_1, y_1, z_1), p_2(x_2, y_2, z_2), \ldots$ – случайные точки, равномерно распределённые в Π . Возьмём n таких случайных точек. В качестве приближённого значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i) \tag{1}$$

где $|\Pi|$ – объём параллеленинеда Π : $|\Pi|=(b_1-a_1)(b_2-a_2)(b_3-a_3)$

3 Нахождение точного значения интеграла аналитически

Рис. 1: Область интегрирования

Ограниченная область представляет собой сектор шара (см. рисунок 1). Для вычисления интеграла по этой области, перейдём в цилиндрическую систему координат.

$$\begin{split} I &= \iiint_G \sin(x^2 + z^2) \cdot y \; dx dy dz = \{x = r \cos \varphi, \; y = y, \; z = r \sin \varphi\} = \\ &= \iint_0^{\frac{\pi}{2}} \int_0^{\sqrt{1-r^2}} \sin(r^2 \cos^2 \varphi + r^2 \sin^2 \varphi) y r \; dr d\varphi dy = \int_0^1 \int_0^{\frac{\pi}{2}} \int_0^{\sqrt{1-r^2}} \sin(r^2) y r \; dr d\varphi dy = \\ &= \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r \sin(r^2) \; dr \int_0^{\sqrt{1-r^2}} y \; dy = \frac{\pi}{2} \int_0^1 r \sin(r^2) \; dr \cdot \frac{1-r^2}{2} = \\ &= \frac{\pi}{8} \int_0^1 \sin(r^2) (1-r^2) \; dr^2 = \frac{\pi}{8} \int_0^1 \sin(r^2) \; dr^2 - \frac{\pi}{8} \int_0^1 \sin(r^2) r^2 \; dr^2 = \\ &= \{ \int x \sin x = -x \cos x + \sin x \} = -\frac{\pi}{8} \cos(r^2) \Big|_0^1 + \frac{\pi}{8} (r^2 \cos(r^2) - \sin(r^2)) \Big|_0^1 = \frac{\pi}{8} (1-\sin 1) \end{split}$$

4 Описание программной реализации

Реализована параллельная MPI-программа, которая принимает на вход требуемую точность ε и имя выходного файла для вывода результатов. Программа генерирует случайные точки до тех пор, пока требуемая точность не будет достигнута. Точность вычисляется как модуль разности между приближённым значением, полученным методом Монте-Карло, и точным значением, вычисленным аналитически в предыдущей главе.

Программа считывает в качестве аргумента командной строки требуемую точность ε и имя выходного файла и выводит четыре числа:

- Посчитанное приближённое значение интеграла.
- Ошибка посчитанного значения: модуль разности между приближённым и точным значениями интеграла.
- Количество сгенерированных случайных точек.
- Время работы программы в секундах.

Время работы программы измеряется следующим образом: каждый MPIпроцесс измеряет своё время выполнения, затем среди полученных значений берётся максимум с помощью операции редукции MPI Reduce.

В рамках полученного варианта, распараллеливание в программе проводилось независимым генерированием случайных точек каждым из процессов. Каждый процесс генерировал 1000 точек с помощью функции rand(), предварительно вызвав $srand(2^{process}_^{num})$, где $process_^{num}$ — номер текущего процесса. Все процессы вычисляют свою часть суммы в формуле. Затем вычисляется общая сумма с помощью операции редукции MPI_Reduce на одном из процессов. Далее процесс, который получил значение суммы, вычисляет приближённое значение интеграла по формуле (1), а также ошибку посчитанного значения и рассылает с помощью MPI_Bcast значение флага, означающего индикатор продолжения работы процесса (нужно ли сгенерировать больше точек). Если нужная точность достигнута, процессы завершают свою работу, и один из них выводит полученные результаты в файл. Иначе, генерация точек продолжается и пересылки происходят аналогично описанным выше.

В рамках полученного варианта, все вычисления проводились с функцией $f(x,y,z)=\sin(x^2+z^2)\cdot y$ в области $G=\{(x,y,z): x^2+y^2+z^2\leqslant 1, x\geqslant 0, y\geqslant 0, z\geqslant 0)\}$, которая ограничивается прямоугольником $\Pi=[0,1]\times[0,1]\times[0,1],$ $|\Pi|=1$, приближённое значение интеграла сравнивалось с вычисленным аналитически $\frac{\pi}{8}(1-\sin 1)$.

5 Результаты численных экспериментов

Точность ε	Число	Время	Ускорение	Ошибка
	MPI-	работы		
	процессов	программы		
$1.0 \cdot 10^{-4}$	1	0.755	1.000	$9.9 \cdot 10^{-5}$
$1.0 \cdot 10^{-4}$	4	0.025	30.735	$7.4 \cdot 10^{-5}$
$1.0 \cdot 10^{-4}$	16	0.002	360.163	$7.9 \cdot 10^{-5}$
$1.0 \cdot 10^{-4}$	64	0.574	1.316	$9.9 \cdot 10^{-5}$
$2.0 \cdot 10^{-5}$	1	2.104	1.000	$1.9 \cdot 10^{-5}$
$2.0 \cdot 10^{-5}$	4	0.771	2.729	$1.8 \cdot 10^{-5}$
$2.0 \cdot 10^{-5}$	16	0.031	68.942	$1.2 \cdot 10^{-5}$
$2.0 \cdot 10^{-5}$	64	0.907	2.320	$1.9 \cdot 10^{-5}$
$8.0 \cdot 10^{-6}$	1	2.184	1.000	$7.3 \cdot 10^{-6}$
$8.0 \cdot 10^{-6}$	4	0.818	2.670	$7.8 \cdot 10^{-6}$
$8.0 \cdot 10^{-6}$	16	0.032	69.267	$5.6 \cdot 10^{-6}$
$8.0 \cdot 10^{-6}$	64	2.140	1.021	$7.6 \cdot 10^{-6}$

Таблица 1: Результаты для Bluegene

Точность ε	Число	Время	Ускорение	Ошибка
	MPI-	работы		
	процессов	программы		
$3.0 \cdot 10^{-5}$	1	0.237	1.000	$2.7 \cdot 10^{-5}$
$3.0 \cdot 10^{-5}$	4	0.015	15.695	$2.6 \cdot 10^{-5}$
$3.0 \cdot 10^{-5}$	16	0.017	13.822	$2.6 \cdot 10^{-5}$
$3.0 \cdot 10^{-5}$	32	0.007	33.707	$1.3 \cdot 10^{-5}$
$5.0 \cdot 10^{-6}$	1	0.278	1.000	$3.0 \cdot 10^{-6}$
$5.0 \cdot 10^{-6}$	4	0.156	1.776	$3.1 \cdot 10^{-6}$
$5.0 \cdot 10^{-6}$	16	0.071	3.889	$3.2 \cdot 10^{-6}$
$5.0 \cdot 10^{-6}$	32	0.033	8.521	$3.4 \cdot 10^{-6}$
$1.5 \cdot 10^{-6}$	1	0.276	1.000	$1.3 \cdot 10^{-6}$
$1.5 \cdot 10^{-6}$	4	0.144	1.912	$1.2 \cdot 10^{-6}$
$1.5 \cdot 10^{-6}$	16	0.068	4.044	$ 6.7 \cdot 10^{-8} $
$1.5\cdot 10^{-6}$	32	0.037	7.499	$4.8 \cdot 10^{-7}$

Таблица 2: Результаты для Polus

В таблицах 1 и 2 представлены результаты запусков программы на суперкомпьютерах Bluegene и Polus. Для каждого набора параметров (точность, число процессов) программа запускалась 10 раз и в таблицах представлены усреднённые результаты. Результаты работы также представлены на графиках времени работы и ускорения (см. рисунки 2 и 3).

Рис. 2: Графики времени работы и ускорения для Bluegene

Рис. 3: Графики времени работы и ускорения для Polus

6 Выводы

Полученные результаты работы программы выглядят очень противоречиво, однако можно предположить, что это связано с неоднородностью генерации случайных точек в процессах. Количество генерируемых точек, необходимых для достижения определённой точности, сильно варьируется в зависимости от выбранного seed в srand(), а также от количества процессов, для каждого из которых генерируется своя последовательность чисел. Например, для $\varepsilon = 1.0 \cdot 10^{-4}$ при запуске на Bluegene на 1 процессе генерируется 753,000 точек, на 4 процес- $\cos - 96,000$ точек, на 16 процессах - 32,000 точек, а на 64 процессах - 35,968,000точек. Соответственно, для 1, 4 и 16 процессов ускорение повышается не только засчет распараллеливания, но и засчет «удачного» выбора точек, в случае с 64 процессами распараллеливание тоже есть, но оно незаметно, так как все ресурсы тратятся на генерацию большего количества точек и на накладные расходы в виде пересылок между процессами. Предположительно, эту проблему можно исправить выбором более «продвинутого» генератора случайных чисел, однако программу с таким генератором с большой вероятностью будет невозможно запустить на Bluegene, так как там устаревший компилятор.

По еще одному предположению, вычисление интеграла методом Монте-Карло – задача, не очень хорошо подходящая для распараллеливания, так как каждый из процессов выполняет достаточно простую задачу (генерация чисел, вычисление функции, сложение). Если бы у процессов были более «тяжеловесные» задачи, параллельный вариант был бы более эффективен.