Preparing your Data for SEM Estimation

Basic Steps

Lilian Kojan and André Calero Valdez

updated: 2021-07-12

Data preparation

- 1. Data requirements
- 2. Recoding variables
- 3. Treating missing values
- 4. Renaming variables

Data preparation steps

Basic steps:

- Recoding variables
- Treating missing data
- Renaming variables

Advanced steps:

- Examining data distribution
- Removing low quality responses
- Treating outliers

Example data

Quality Expectation	Expectation Products	Problem Expectation		Expectation Fulfillment
7	rather agree	5	6	NA
10	strongly agree	2	10	10
7	rather agree	4	8	7
7	strongly agree	6	10	NA
8	rather agree	1	10	8
10	agree	4	8	NA

Recoding variables: Numerical

Quality Expectation	Expectation Products	Problem Expectation		Expectation Fulfillment
7	rather agree	5	6	NA
10	strongly agree	2	10	10
7	rather agree	4	8	7
7	strongly agree	6	10	NA
8	rather agree	1	10	8
10	agree	4	8	NA

Data should be

numerical

But also...

Data should be

numerical

But also...

... approximately equidistant

Data should be

numerical

But also...

... approximately equidistant (i.e., not scaled like this)

Data should be

- numerical
- ordinal scaled
- and the scale should be approximately equidistant

Quality Expectation	Expectation Products	Problem Expectation		Expectation Fulfillment
7	rather agree	5	6	NA
10	strongly agree	2	10	10
7	rather agree	4	8	7
7	strongly agree	6	10	NA
8	rather agree	1	10	8
10	agree	4	8	NA

```
df <- df %>%
                                # assign changes to existing data frame
                                       # add new variable based on existing
  dplyr::mutate(
    `Expectation Products` = # name for the new variable
      dplyr::recode(
                                       # replace values
        `Expectation Products`, # variable to replace values in
        "rather agree" = 7, # old value = new value
        "agree" = 9,
        "strongly agree" = 10
# because we gave the new variable the same name,
# it replaces the old variable
# use mutate(across(v1:v3), fnc) to recode variables v1 to v3 using fnc
```

Quality Expectation				<u>-</u>
7	7	5	6	NA
10	10	2	10	10
7	7	4	8	7
7	10	6	10	NA
8	7	1	10	8
10	9	4	8	NA

Quality Expectation	-			Expectation Fulfillment
7	7	5	6	NA
10	10	2	10	10
7	7	4	8	7
7	10	6	10	NA
8	7	1	10	8
10	9	4	8	NA

	Expectation	Satis	sfaction	
Quality Expectation	•			Expectation Fulfillment
7	7	5	6	NA
10	10	2	10	10
7	7	4	8	7
7	10	6	10	NA
8	7	1	10	8
10	9	4	8	NA

```
df <- df %>%
                         # assign changes to existing data frame
 mutate(
                         # add new variable based on existing variables
   `Expectation Products` = # name for the new variable
     # old value = new value
       1 = 10,
       ^{2} = 9,
       3 = 8,
       ^{4} = 7
       5 = 6,
       ^{\circ}6^{\circ} = 5,
       7 = 4
       8 = 3,
       10' = 1
```

Quicker option:

	Expectation	Satis	sfaction	
Quality Expectation	Expectation Products	Problem Expectation		Expectation Fulfillment
7	7	6	6	NA
10	10	9	10	10
7	7	7	8	7
7	10	5	10	NA
8	7	10	10	8
10	9	7	8	NA

	Expectation	Satis	sfaction	
Quality Expectation	_	Problem Expectation	Satisfaction Overall	Expectation Fulfillment
7	7	6	6	NA
10	10	9	10	10
7	7	7	8	7
7	10	5	10	NA
8	7	10	10	8
10	9	7	8	NA

	Expectation	Sati	sfaction	
Quality Expectation	<u>-</u>	Problem Expectation		-
7	7	6	6	NA
10	10	9	10	10
7	7	7	8	7
7	10	5	10	NA
8	7	10	10	8
10	9	7	8	NA

	Expectation	Sati	sfaction	
Quality Expectation		Problem Expectation		
7	7	6	6	8
10	10	9	10	10
7	7	7	8	7
7	10	5	10	8
8	7	10	10	8
10	9	7	8	8

	Expectation	Satis	sfaction	
Quality Expectation	<u>-</u>			Expectation Fulfillment
7	7	6	6	NA
10	10	9	10	10
7	7	7	8	7
7	10	5	10	NA
8	7	10	10	8
10	9	7	8	NA

- Impute missing data
- Remove variables containing missing data (Hair et al., 2017)
- Ignore missing data

- Impute missing data
- Remove variables containing missing data (Hair et al., 2017)
- Ignore missing data

```
# remove variable with missing data
df <- df %>%
  select(!'Expectation Fulfillment')
```

	Satisfaction		
Quality Expectation	Expectation Products	Problem Expectation	Satisfaction Overall
7	7	6	6
10	10	9	10
7	7	7	8
7	10	5	10
8	7	10	10
10	9	7	8

Long variable names...

Long variable names...

... vs. abbreviated names

Long variable names...

```
# define measurement model
measurement model <- constructs(</pre>
  reflective(
                                     # define a reflective construct
    construct_name = "Expectation", # construct name
    item names = c(
                                     # item names = df variable names
      "Quality Expectation",
      "Expectation Products",
      "Problem Expectation"
  reflective(
    construct name = "Satisfaction",
    item_names = c("Expectation Fulfillment")
```

... vs. abbreviated names

... vs. abbreviated names

```
measurement_model <- constructs(
  reflective(
    construct_name = "Expectation",
    item_names = multi_items("CUEX", 1:3)
  ),
  reflective(construct_name = "Satisfaction",
        item_names = "CUSA1")
)</pre>
```

Rename variables associated with the same construct with the same prefix, e.g. for CUSA for Customer Satisfaction

```
df <- df %>%
  rename("CUSA1" = "Satisfaction Overall") # new name = old name
```

Rename variables associated with the same construct with the same prefix, e.g. for CUSA for Customer Satisfaction

Summary

CUEX1	CUEX2	CUEX3	CUSA1
7	7	6	6
10	10	9	10
7	7	7	8
7	10	5	10
8	7	10	10
10	9	7	8

- Data is numerical and unidirectional
- There are no missing values
- Variables are named for use in SEMinR

Sources for this video

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (Second edition). Sage.