

REPORT SERIES WITH DLOOKR

Transformation Report

 $\begin{array}{l} \textit{Author:} \\ \textit{dlookr package} \end{array}$

Version: 0.3.12

Contents

1	Imp	outation
	1.1	Missing Values
		1.1.1 Missing values imputation information
	1.2	Outliers
		1.2.1 Outliers imputation information
2	Rese	olving Skewness
		Skewed variables information
3	Binı	$\operatorname{ning} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \qquad 7$
	3.1	Numerical Variables for Binning
	3.2	Binning
		3.2.1 displ
		3.2.2 year
		3.2.2 year

Chapter 1

Imputation

1.1 Missing Values

1.1.1 Missing values imputation information

The variables for imputate missing values are as follows.

There are no variables including missing values.

1.2 Outliers

1.2.1 Outliers imputation information

The numerical variables for imputate outliers are as follows.

There are no variables including outliers.

Chapter 2

Resolving Skewness

2.1 Skewed variables information

The numerical variables for resolving skewness are as follows.

There are no variables including skewed.

Chapter 3

Binning

3.1 Numerical Variables for Binning

The numerical variables for binning are as follows.

displ, year, cyl, cty

3.2 Binning

3.2.1 displ

Binning with quantile

Table 3.1: Frequency of Levels : displ with 'quantile'

levels	freq	rate
[1.6,2]	43	0.1838
(2,2.4]	19	0.0812
(2.4, 2.5]	20	0.0855
(2.5,3]	26	0.1111
(3,3.5]	24	0.1026
(3.5,4]	31	0.1325
(4,4.7]	33	0.1410
(4.7, 5.3]	13	0.0556
(5.3,7]	25	0.1068

Figure 3.1: displ - quantile

Binning with equal

Table 3.2: Frequency of Levels : displ with 'equal'

levels	freq	rate
[1.6, 2.2]	49	0.2094
(2.2,2.8]	51	0.2179
(2.8, 3.4]	27	0.1154
(3.4,4]	36	0.1538
(4,4.6]	16	0.0684
(4.6, 5.2]	24	0.1026
(5.2, 5.8]	23	0.0983
(5.8, 6.4]	6	0.0256
(6.4,7]	2	0.0085

Figure 3.2: displ - equal

Binning with pretty

Table 3.3: Frequency of Levels : displ with 'pretty'

freq	rate
43	0.1838
39	0.1667
26	0.1111
24	0.1026
31	0.1325
5	0.0214
30	0.1282
19	0.0812
12	0.0513
4	0.0171
1	0.0043
	43 39 26 24 31 5 30 19 12 4

Information of Binning

Bar plot of levles frequency using 'pretty' method

Figure 3.3: displ - pretty

Binning with kmeans

Table 3.4: Frequency of Levels : displ with 'kmeans'

levels	freq	rate
[1.6, 1.7]	5	0.0214
(1.7,2.3]	44	0.1880
(2.3, 2.9]	51	0.2179
(2.9, 3.55]	32	0.1368
(3.55, 4.3]	35	0.1496
(4.3, 4.85]	29	0.1239
(4.85, 5.5]	21	0.0897
(5.5, 6.05]	12	0.0513
(6.05,7]	5	0.0214

Figure 3.4: displ - kmeans

Binning with bclust

Table 3.5: Frequency of Levels : displ with 'bclust'

levels	freq	rate
[1.6, 2.3]	49	0.2094
(2.3, 3.2]	65	0.2778
(3.2, 3.55]	18	0.0769
(3.55,4.1]	31	0.1325
(4.1, 4.85]	33	0.1410
(4.85, 5.5]	21	0.0897
(5.5, 6.35]	15	0.0641
(6.35, 6.75]	1	0.0043
(6.75,7]	1	0.0043

Figure 3.5: displ - bclust

3.2.2 year

Binning with quantile

Table 3.6: Frequency of Levels: year with 'quantile'

levels	freq	rate
[1.99e+03,2e+03]	117	0.5
(2e+03,2.01e+03]	117	0.5

Figure 3.6: year - quantile

Binning with equal

Table 3.7: Frequency of Levels : year with 'equal'

levels	freq	rate
[1.99e+03,2e+03]	117	0.5
(2e+03,2.01e+03]	117	0.5

Figure 3.7: year - equal

Binning with pretty

Table 3.8: Frequency of Levels: year with 'pretty'

levels	freq	rate
[1.99e+03,2e+03]	117	0.5
(2e+03,2.01e+03]	117	0.5

Figure 3.8: year - pretty

Binning with kmeans

Table 3.9: Frequency of Levels : year with 'kmeans'

levels	freq	rate
[1.99e+03,2e+03]	117	0.5
(2e+03,2.01e+03]	117	0.5

Figure 3.9: year - kmeans

Binning with bclust

Table 3.10: Frequency of Levels : year with 'bclust'

levels	freq	rate
[1.99e+03,2e+03]	117	0.5
(2e+03,2.01e+03]	117	0.5

Figure 3.10: year - b
clust

3.2.3 cyl

Binning with quantile

Table 3.11: Frequency of Levels : cyl with 'quantile'

levels	freq	rate
[3.5, 4.5]	81	0.3462
(4.5, 5.5]	4	0.0171
(5.5,7]	79	0.3376
(7,9]	70	0.2991

Information of Binning

Histogram of original data using 'equal' method

Bar plot of levles frequency using 'equal' method

Figure 3.11: cyl - quantile

Binning with equal

Table 3.12: Frequency of Levels : cyl with 'equal'

levels	freq	rate
[3.5, 4.5]	81	0.3462
(4.5, 5.5]	4	0.0171
(5.5,7]	79	0.3376
(7,9]	70	0.2991

Information of Binning

Histogram of original data using 'equal' method

Bar plot of levles frequency using 'equal' method

Figure 3.12: cyl - equal

Binning with pretty

Table 3.13: Frequency of Levels: cyl with 'pretty'

levels	freq	rate
[3.5, 4.5]	81	0.3462
(4.5, 5.5]	4	0.0171
(5.5,7]	79	0.3376
(7,9]	70	0.2991

Information of Binning

Histogram of original data using 'equal' method

Bar plot of levies frequency using "equal method

Figure 3.13: cyl - pretty

Binning with kmeans

Table 3.14: Frequency of Levels : cyl with 'kmeans'

levels	freq	rate
[3.5, 4.5]	81	0.3462
(4.5, 5.5]	4	0.0171
(5.5,7]	79	0.3376
(7,9]	70	0.2991

Information of Binning

Histogram of original data using 'equal' method

Bar plot of levles frequency using 'equal' method

Figure 3.14: cyl - kmeans

Binning with bclust

Table 3.15: Frequency of Levels : cyl with 'bclust'

levels	freq	rate
[3.5, 4.5]	81	0.3462
(4.5, 5.5]	4	0.0171
(5.5,7]	79	0.3376
(7,9]	70	0.2991

Information of Binning

Histogram of original data using 'equal' method

3.5,4.5] (4.5,5.5] (5.5,7] (7,9]

Figure 3.15: cyl - b
clust

3.2.4 cty

Binning with quantile

Table 3.16: Frequency of Levels : cty with 'quantile'

levels	freq	rate
[9,12]	33	0.1410
(12,13]	21	0.0897
(13,15]	43	0.1838
(15,16]	19	0.0812
(16,17]	16	0.0684
(17,18]	26	0.1111
(18,20]	31	0.1325
(20,21]	23	0.0983
(21,35]	22	0.0940

Information of Binning

Bar plot of levles frequency using 'quantile' method

Figure 3.16: cty - quantile

Binning with equal

Table 3.17: Frequency of Levels : cty with 'equal'

levels	freq	rate
[9,11.9]	25	0.1068
(11.9, 14.8]	48	0.2051
(14.8,17.7]	59	0.2521
(17.7,20.6]	57	0.2436
(20.6, 23.4]	30	0.1282
(23.4, 26.3]	10	0.0427
(26.3, 29.2]	3	0.0128
(32.1, 35]	2	0.0085

Figure 3.17: cty - equal

Binning with pretty

Table 3.18: Frequency of Levels : cty with 'pretty'

levels	freq	rate
[5,10]	5	0.0214
(10,15]	92	0.3932
(15,20]	92	0.3932
(20,25]	37	0.1581
(25,30]	6	0.0256
(30,35]	2	0.0085

Information of Binning

Histogram of original data using 'pretty' method

Bar plot of levles frequency using 'pretty' method

Figure 3.18: cty - pretty

Binning with kmeans

Table 3.19: Frequency of Levels : cty with 'kmeans'

levels	freq	rate
[9,11.5]	25	0.1068
(11.5, 13.5]	29	0.1239
(13.5, 15.5]	43	0.1838
(15.5, 17.5]	35	0.1496
(17.5, 19.5]	46	0.1966
(19.5, 20.5]	11	0.0470
(20.5, 23.5]	30	0.1282
(23.5,31]	13	0.0556
(31,35]	2	0.0085

Figure 3.19: cty - kmeans

Binning with bclust

 $\label{eq:condition} Error \ in \ bclust(x = var, \, centers = n, \, ...) \ : \ Could \ not \ find \ valid \ cluster \ solution \ in \ 20 \ replications$

Table 3.20: Frequency of Levels : cty with 'bclust'

levels	freq	rate
[8.82,9.99]	5	0.0214
(9.99, 13.5]	49	0.2094
(13.5, 15.5]	43	0.1838
(15.5, 18.5]	61	0.2607
(18.5, 23.2]	61	0.2607
(23.2,26]	10	0.0427
(26,28.5]	2	0.0085
(28.5, 31]	1	0.0043
(31, 35.1]	2	0.0085

Figure 3.20: cty - b
clust $\,$

3.3 Optimal Binning

For the scoring modeling, optimal binning is performed considering the characteristics of numerical data. This work uses the recursive partitioning technique known as supervised discretization when categorizing numeric data as categorical data.

The target variable is not a binary class.