Marine Carpuat University of Maryland marine@cs.umd.edu

sem•an•tics (sĭ-măn'tĭks)

n. *Linguistics* The study or science of meaning in language.

n. *Linguistics* The study of relationships between signs and symbols and what they represent.

n. The meaning or the interpretation of a word, sentence, or other language form: We're basically agreed; let's not quibble over semantics.

وسيتولى قيادة الفرقة الموسيقية الأستاذ أحمد عاشور قائد الأوركسترا

• • •

Reference:

mr. ahmad ashour , conductor of the tunisian symphony orchestra , will lead the orchestra , which will be infused with a number of levantine instruments [...]

MT:

mr. ahmad ashour , commander of the tunisian symphony orchestra and will be vaccinated by a group of eastern instruments

[...]

 Machine Translation goal: produce fluent translations that adequately capture meaning of the source.

 In NLP, this is the focus of semantic analysis, a long-standing research area

 Yet, most MT systems do not have dedicated semantic analysis components

The Vauquois Triangle

This lecture

- Key problems/tasks in semantic analysis of text and how they relate to MT
- How can semantic analysis be used in MT?
- How can MT (data and models) help improve semantic analysis?

bank: wall street or river?

Ambiguity

- words can have more than one meaning/sense
- NLP task: word sense disambiguation

shore - coast

Variability

- distinct word forms might have the same meaning
- NLP task: word semantic similarity, paraphrase detection

John broke the window
The window was broken by John
John destroyed the window

Sentence-level variability

- many different sentences can express the same meaning
- NLP task: paraphrase detection, semantic textual similarity, semantic composition

He misses Paris Paris lui manque

Structural divergence across languages

- same meaning different structure across languages
- NLP task:
 - semantic parsing
 - "who did what to whom"

Predicate argument structure "who did what to whom"

- (I) John broke the window
- (2) The window broke
- (3) The window was broken by John

- (4) John <u>busted</u> the window
- (5) The window was <u>destroyed</u> by John
- (6) John tore down the window

Semantic Roles:

AGENT – an initiator/doer in the event [Who?]

PATIENT - an affected entity [to Whom / to What?]

Case studies: MT with models of

- word senses
- word similarity
- predicate argument structure
- paraphrase

Word Sense Disambiguation (WSD)

 Goal: identify correct meaning of a word ("sense") in context:

- Long standing area of research in NLP
 - Perhaps first formulation by Warren Weaver
 - Used in early MT [Brown et. al 1991, Berger et al. 1996]

Warren Weaver's intuition, 1955

If one examines the words in a book, one at a time as through an opaque mask with a hole in it one word wide, then it is obviously impossible to determine, one at a time, the meaning of the words...

But if one lengthens the slit in the opaque mask, until one can see not only the central word in question but also say N words on either side, then if N is large enough one can unambiguously decide the meaning of the central word...

The practical question is: ``What minimum value of N will, at least in a tolerable fraction of cases, lead to the correct choice of meaning for the central word?"

From Word Sense Disambiguation...

- PredictsP(sense|s,context)
- Meanings of s
 represented by hand
 defined sense inventory
 - Small, exhaustive
 - Mutually exclusive senses
 - Learning requires annotation by hand

```
Senses of "ring (n)" in WordNet
```

- 1.ring (a characteristic
 sound)
 2.ring, halo, annulus,
 doughnut (a toroidal
 shape)
 3.gang, pack, ring, mob
 (an association of
 criminals)
- 8. ring, band (jewelry consisting of a circlet of precious metal worn on the finger)

From Word Sense Disambiguation...

- Motivation for WSD in MT: disambiguating sense of word should help eliminate incorrect translations
- But using senses to constrain translation lexicon hurts MT quality
 - On Chinese-English translation
 - Using HowNet sense representations
- Why?
 - Representation mismatch
 - Training data mismatch

... to Context-Dependent Translation Lexicons

- Learn P(t|s,context)
- Represents meanings of s using translations
 - Very large, very sparse
 - Only partially observed
 - More than I correct translation possible
 - Learn from automatically constructed annotation

The twelve stars of the European flag are depicted on the outer **ring**.

es: anillo

The terrors which Mr Cash expresses about our future in the community have a familiar ring about them.

es: sonar

... to Context-Dependent Translation Lexicons

Context-dependent translation lexicons

- MT-driven sense representation
- Modest improvements in translation quality
 [Carpuat & Wu, 2007]

See also:

[Vickrey et al. 2005, Cabezas & Resnik 2005, Chan et al. 2007, Gimenez & Marquez 2007, Stroppa et al. 2008]
[Apidianaki 2009, Xiong and Zhang 2014]

Context-dependent translation lexicons in PBMT

Prof. Zhang gave a lecture on "China and India" to a packed audience.

Everyone is welcome to attend class tomorrow, on the topic "China and India".

Word Senses & Neural MT

 Neural MT already conditions on broader source context

 But does this help address word sense translation errors?

Case studies: MT with models of

- word senses
- word similarity
- predicate argument structure
- paraphrase

Modeling Word Semantic Similarity

Task: score how similar are "coast" and "shore"?

Approach: Distributional hypothesis

- Intuition: if 2 words appear in the same context,
 then they must be similar
- "You shall know a word by the company it keeps!"[Firth, 1957]
- "Differences of meaning correlates with differences of distribution" [Harris, 1970]

Representing words as features vectors

Word co-occurrence within a window

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	0	0	1	1	1	0	1	0
information	0	0	1	1	1	0	1	0

How can we use word semantic similarity in MT?

Improve coverage

- by replacing source OOVs or creating new rules with known paraphrases
- based on monolingual distributional information
 [e.g., Marton et al. 2009]

Src: the conductor of the Tunisian orchestra

If "conductor" is OOV, replace it with similar term

New src: the **music director** of the Tunisian orchestra

Word semantic similarity for MT evaluation

```
MT1 the music director of the Tunisian orchestra
MT2 the commander of the Tunisian orchestra
REF the conductor of the Tunisian orchestra
```

Approach

- Replace exact match with semantic similarity score
- Or allow matches with words that share a sense (e.g., WordNet synset)

[e.g., Liu et al. 2010, Dahlmeier et al. 2011, Denkowski and Lavie 2011]

Neural language models induce continuous word representations

Word representations learned in monolingual neural LM (and variants) improve NLP tasks

[Turian et al. 2010, and many many others since]

	1	2		d
cat	2.059	-1.134	:	2.004
dog	2.011	-1.005		0.135
January	-3.193	0.145	:	0.001
February	-3.016	0.196		0.025

Neural Translation Models Capture Monolingual Semantic Similarity

		Monolingual models			Bilin	g. models	NMT models	
		Skipgram	Glove	\mathbf{CW}	FD	BiCVM	RNNenc	RNNsearch
WordSim-353	$\overline{\rho}$	0.52	0.55	0.51	0.69	0.50	0.57	0.58
MEN	ho	0.44	0.71	0.60	0.78	0.45	0.63	0.62
	$-\overline{\rho}$	$0.\overline{29}$	$-0.3\overline{2}$	$0.\overline{28}$	$\overline{0.39}$	0.36	$--\bar{0.52}^-$	0.49
SimLex-333	ρ	018	0.18	0.07	0.24	0.34	0.49	0.45
TOEFL	%	0.75	0.78	0.64	0.84	0.87	0.93	0.93
Syn/antonym	%	0.69	0.72	0.75	0.76	0.70	0.79	0.74

English word representations learned by Neural MT models correlate better than monolingual representations with human judgements of

- similarity (e.g., coast-shore)
- relatedness (e.g., clothes-closet)

[Hill et al. ICLR 2015]

Neural Translation Models Capture Monolingual Semantic Similarity

	Skipgram	Glove	CW	FD	BiCVM	RNNenc	RNNsearch
teacher	vocational	student	student	elementary	faculty	professor	instructor
	in-service	pupil	tutor	school	professors	instructor	professor
	college	university	mentor	classroom	teach	trainer	educator
eaten	spoiled	cooked	baked	ate	eating	ate	ate
	squeezed	eat	peeled	meal	eat	consumed	consumed
	cooked	eating	cooked	salads	baking	tasted	eat
Britain	Northern		Luxembourg	\overline{UK}	UK	UK	England
	Great	Kingdom	Belgium	British	British	British	UK
	Ireland	Great	Madrid	London	England	America	Syria

3 nearest neighbors for "teacher", "eaten" and "Britain", based on different word embeddings From Hill et al. ICLR 2015

Case studies: MT with models of

- word senses
- word similarity
- semantic structure
- paraphrase

Predicate argument structure for MT

Predicate argument structure for MT

Chinese to English MT, with Chinese PAS

- Predicate translation model:
 - context-dependent lexicon P(English|Chinese predicate, context) where context includes PAS features

[Xiong et al. 2012]

Predicate argument structure for MT

Chinese to English MT, with Chinese PAS

- Argument reordering model:
 - predict relative position of English argument wrt English predicate
 - integrate in hierarchical MT system

[Xiong et al. 2012]

Other ways to use predicate argument structure

For reordering

- Detect PAS on MT output, and reorder in postprocessing step [Wu & Fung 2009]
- Detect POS on source and automatically reorder before MT [Wu et al. 2011]
- Soft reordering constraints based on source side semantic roles in a tree-to-string translation model [Liu & Gildea 2010]
- Soft semantic constraints not as useful if syntactic constraints already included in system [Li et al. 2014]

For MT evaluation

 Constrain matches between MT and reference using semantic roles [e.g., MEANT Lo et al.]

Case studies: MT with models of

- word senses
- word similarity
- predicate argument structure
- paraphrases

Detecting Paraphrases

- Task: predict whether "John broke the window" and "the window was broken by John" are paraphrases
- Advantages of this formulation
 - A representation-agnostic form of semantic analysis
 - Can use similar models for word, phrase, sentence

Paraphrasing source language to improve MT

[Callison-Burch et al. 2006, among others]

- Paraphrase OOVs
- Paraphrases are learned by bilingual projection

Paraphrasing source language to improve MT

- Expand training data by paraphrasing noun compounds and prepositional phrases in source [Nakov 2008]
 - Hand-written paraphrasing rules

I welcome the Commissioner 's statement about the progressive and rapid beef import ban lifting.

I welcome the progressive and rapid beef import ban lifting Commissioner's statement.

I welcome the Commissioner's statement about the beef import ban's progressive and rapid lifting.

I welcome the beef import ban 's progressive and rapid lifting Commissioner's statement.

I welcome the Commissioner's statement about the progressive and rapid lifting of the ban on beef imports.

Paraphrasing target language to improve MT

MT the music director of the Tunisian orchestra REF the conductor of the Tunisian orchestra REF' the music director of the Tunisian orchestra

- [Madnani et al. 2007]
 - Goal
 - create additional reference translations for tuning
 - How?
 - view paraphrasing as monolingual MT
 - monolingual MT rules learned by pivoting

(Manually) paraphrasing references for MT evaluation

- HyTER networks [Dreyer and Marcu 2012]
 - requires significant annotation effort
 - encodes exponential number of reference translations for a given source sentence
 - improves MT evaluation (HyTER = TER + network)
 - but even networks that encode billions of translations do not contain all independently produced human translations!

Case studies: MT with models of

- word senses
- word similarity
- semantic structure
- paraphrases

- Many approaches, no clear single-best solution
- But common themes emerge
 - Application-driven semantic analysis
 - Word translations rather than WordNet senses
 - Paraphrases rather than PAS (?)
 - Models are often learned on same parallel corpus as MT
 - Semantic analysis often easier to integrate in evaluation than MT

(Machine) Translation for Semantics

Idea: view 2nd language as supervision/annotation for making predictions in the 1st language

Cross-lingual projection

[Yarowsky et al. 2001; Pado & Lapata 2009; Banea et al. 2008...]

- Learning semantics
 - paraphrases [Callison-Burch, Ganitkevitch et al. 2013...]
 - word senses [Diab 2004, Apidianaki 2008...]
 - semantic role induction [Titov & Klementiev 2012]

•

(Machine) Translation for Semantics

 Retrofitting sense-specific word vectors using parallel text

[Ettinger, Resnik & Carpuat, NAACL 2016 (Short)]

- Sparse Bilingual Word Representations for Cross-lingual lexical entailment [Vyas & Carpuat, NAACL 2016]
- Learning Easy to Compose Word Representations using Bilingual Supervision

[Elgohary & Carpuat, ACL 2016 (Short)]

Figure 2: Illustration of parallel-text-based sense graph.

English-English	English-French
affection \rightarrow feeling	affection \rightarrow sentiment
aspirin \rightarrow drug	aspirin → drogue
water \rightarrow wet	water \rightarrow humide
feeling → nostalgia	feeling \rightarrow nostalgie

Intersection of semantics & MT is a fertile area!

Still many long-standing open questions

 Neural models offer an opportunity to revisit them with new tools

Marine Carpuat University of Maryland marine@cs.umd.edu