香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九五年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1995

附加數學 試卷二 ADDITIONAL MATHEMATICS PAPER II

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成 閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對, 但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取 此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考 試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上 述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

在今年考試結束後,各科評卷參考將存放於北角教師中心,供教師參閱。
Each year after the examinations, marking schemes will be available for reference at the North Point Teachers' Centre.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1995

95-CE-A MATHS II-1

只限教師參閱 FOR TEACHERS' USE ONLY

GENERAL INSTRUCTIONS TO MARKERS

- 1. It is very important that all markers should adhere as closely as possible too the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method is specified in the question.
- In the marking scheme, marks are classified as follows:
 - 'M' marks awarded for knowing a correct method of solution and attempting to apply it;
 - 'A' marks awarded for the accuracy of the answer;
 - Marks without 'M' or 'A' awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous erroneous answers. However, 'A' marks for the corresponding answer should NOT be awarded. Unless otherwise specified, no marks in the marking scheme are subdivisible.

- 3. The symbol pp-1 should be used to denote marks deducted for poor presentation (p.p.). Marks entered in the Page Total Box should be the net total score on that page. Note the following points:
 - (a) At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
 - (b) For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.
 - (c) In any case, do not deduct any marks for p.p. in those parts where candidates could not score any marks.
- Unless otherwise specified in the question, numerical answers not given in exact values would not be accepted.

	Solution	Marks	Remarks
		·	
•	$y = \int 2x\sqrt{x^2 + 1} \mathrm{d}x$		
	Let $u = x^2 + 1$		
	du = 2xdx		
	$y = \int u^{\frac{1}{2}} du$	1A	(pp-1) for omitting du
	$= \frac{2}{3} u^{\frac{3}{2}} + C$	1A	
	$=\frac{2}{3}(x^2+1)^{\frac{3}{2}}+C$ (where C is a constant)	1A	no mark if C is omitted
	Alternative solution		
	$y = \int 2x\sqrt{x^2 + 1} dx$		(pp-1) for omitting dx
	$= \int \sqrt{x^2 + 1} \mathrm{d} (x^2 + 1)$	1A	(Can be omitted)
	$=\frac{2}{3}(x^2+1)^{\frac{3}{2}}+C$	2A	1A only if C is omitted
	Put $x = 0$, $y = 1$		
	$1 = \frac{2}{3} + C$	1M	
	$C=\frac{1}{3}$		
	The equation of C is $y = \frac{2}{3}(x^2 + 1)^{\frac{3}{2}} + \frac{1}{3}$.	1A _5	
	•		
•			
*			
	CE-A MATHS II-3	1	I

Solution			Marks	Remarks
	(a)	Substitute (1, 0) into the equation,		
	(-/	2 + 4 + k(4 - 1) = 0	1M	
		k = -2	1A	
		The equation of the line is $6x + 7y - 6 = 0$.	1A	or $y = \frac{-6}{7}x + \frac{6}{7}$ etc.
	(b)	2x - 3y + 4 + k(4x + 2y - 1) = 0		
		(2 + 4k)x + (2k - 3)y + 4 - k = 0		
		$Slope = -\frac{2+4k}{2k-3}$	1M+1A	
		$-\frac{2+4k}{2k-3}=2$		
		$k=\frac{1}{2}$		
		The equation of the line is $8x - 4y + 7 = 0$.	1A	or $y = 2x + \frac{7}{4}$ etc.
		Alternative solution		,
		(a) $\begin{cases} 2x - 3y + 4 = 0 (1) \\ 4x + 2y - 1 = 0 (2) \end{cases}$; ₹
		$(1) \times 2 - (2), -8y + 9 = 0$		
		$y = \frac{9}{8}$	1A	
		$2x = 3(\frac{9}{8}) - 4$		
		$x = \frac{-5}{16}$	1A	
		The family of lines always passes through $(\frac{-5}{16}, \frac{9}{8})$.		
•		The equation of the line is		
		$\frac{y-0}{x-1} = \frac{\frac{9}{8}-0}{\frac{-5}{16}-1}$	1M	
		$y = \frac{-6}{7}x + \frac{6}{7}.$	1A	or $6x + 7y - 6 = 0$ etc.
		(b) The equation of the line is		
		$\frac{y - \frac{9}{8}}{x + \frac{5}{16}} = 2$	1M	
		$y = 2x + \frac{7}{4}.$	1A	or $8x - 4y + 7 = 0$ etc
			6	
		TYO H. 4		
-C]	E-A MAT	HS II-4		

	Sol	ution	Marks	Remarks
3.	(a)	Let (x, y) be the mid-point of AB.		
	` .		1A	
		$x = \frac{t+2}{2}$ $\begin{cases} y = \frac{\frac{1}{2}t^2 + 2}{2} \end{cases}$		
		$V = \frac{\frac{1}{2}t^2 + 2}{2}$	1A	
		$\therefore \begin{cases} 2x - 2 = t \\ 4y - 4 = t^2 \end{cases}$		
		Eliminating t,		
		$(2x-2)^2=4y-4$	1M	
		$y = (x - 1)^2 + 1$	1A	or $(x-1)^2 = y-1$, $y = x^2 - 2x + 2$ etc.
	()			$y = x^2 - 2x + 2 \text{ etc.}$
	(b)	V		
•		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		<u>. </u>
		$y=(x-1)^2+1$		
		2		
		(1,1)	1A	Shape
		$\longrightarrow \times$	1A	Labelling the vertex (1,
				Axes not labelled (pp-1)
			6	
				_
•				
			1	
		HS II-5		1

	Solution	Marks	Remarks
•	$(x^2 + \frac{1}{x})^5 - (x^2 - \frac{1}{x})^5$		
	$= (x^2)^5 + 5(x^2)^4(\frac{1}{x}) + 10(x^2)^3(\frac{1}{x})^2 + 10(x^2)^2(\frac{1}{x})^3 +$		
	$5(x^2)(\frac{1}{x})^4+(\frac{1}{x})^5$	1A	Accept 5Cr notations
	$-[(x^2)^5 - 5(x^2)^4(\frac{1}{x}) + 10(x^2)^3(\frac{1}{x})^2 - 10(x^2)^2(\frac{1}{x})^3 +$		
	$5(x^2)(\frac{1}{x})^4 - (\frac{1}{x})^5]$	1A	
	A - A		
	$= 10x^7 + 20x + \frac{2}{x^5}$		
	a = 10, b = 20, c = 2	2A	All correct - 2A 1 or 2 correct - 1A only
_	Put $x = \sqrt{2}$,		
•	$(2 + \frac{1}{\sqrt{2}})^5 - (2 - \frac{1}{\sqrt{2}})^5 = 10(\sqrt{2})^7 + 20\sqrt{2} + \frac{2}{(\sqrt{2})^5}$	1M	
	$= \frac{401\sqrt{2}}{4} (\text{or } \frac{401}{2\sqrt{2}}, 401(2)^{-\frac{3}{2}})$	1A	141.77 - no mark
	₹ 2√2	_6	
· .	(a) Area = $\int_0^{\pi} \sin x dx$	1A	(pp-1) for omitting dx
	$= \left[-\cos x\right]_0^{\pi}$		
	= 2	1A	
	(b) (i) The coordinates of B are $(\frac{5\pi}{6}, \frac{1}{2})$.	1A	No marks for degrees
	(ii) Area = $\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \left(\sin x - \frac{1}{2}\right) dx$	1M+1A	1M for limits
_	$J\frac{\pi}{6}$ 2		1A for $\int (y_2 - y_1) dx$
	$= \left[-\cos x - \frac{1}{2} x \right]_{\frac{\pi}{6}}^{\frac{5\pi}{6}}$, , , , , , , , , , , , , , , , , , , ,
	$= -\cos\frac{5\pi}{6} - \frac{1}{2}(\frac{5\pi}{6}) + \cos\frac{\pi}{6} + \frac{1}{2}(\frac{\pi}{6})$		
		1,,	
	$=\sqrt{3}-\frac{\pi}{3}$	1A _6	
	-A MATHS II6		

1995 HKCE Add. Maths. II Marking Scheme

	Solu	tion	Marks	Remarks
•	For n	1 = 1,		
	6 7			
		1 = 8 - 1 = 7 which is divisible by 7. statement is true for $n = 1$.	1	
	Assum	he $8^k - 1$ is divisible by 7. (for some +ve integer k .)	1	
		(or $8^k - 1 = 7N$, where N is positive integer)		
	Then	$8^{k+1}-1=8(8^k)-1$	1	
		= 8(7N + 1) - 1	,	
		= 56N + 7	2	
		= 7(8N + 1))	
	∴ (8 ^k	(+1 - 1) is also divisible by 7.		
	(∴th	he statement is also true for $n = k + 1$ if it is		
	(By t	tue for $n = k$.) The principle of mathematical induction.)		
	The s	statement is true for all positive integers n.	6	
•	(a)	$\angle PQU = \frac{1}{2} (180^{\circ} - 42^{\circ}) = 69^{\circ}$	1A	
•	(-/	2		
		PU = 10 sin 69° = 9.34 (cm)	1A	
			1A	
		$\angle PQR = 108^{\circ}$	IA	
		$PR = 2(10) \sin 54^{\circ}$		or $\sqrt{10^2 + 10^2 - 2(10)^2 \cos 1}$
		= 16.2 (cm)	1A	
	(p)	The angle between the faces is $\angle PUR$.	1A	Can be omitted
		In ΔPUR , $PU = UR$		
		1		
		$\sin\left(\frac{1}{2}\angle PUR\right) = \frac{\frac{1}{2}PR}{PU}$	1M	
		$= \frac{\frac{1}{2}(20\sin 54^{\circ})}{10\sin 69^{\circ}}$		
			1	
•		$\angle PUR = 120^{\circ} (2.10)$	1A	
		Alternative solution		
		$\cos \angle PUR = \frac{PU^2 + UR^2 - PR^2}{2(PU)(UR)}$	1M	
		$= \frac{2(10\sin 69^{\circ})^{2} - (20\sin 54^{\circ})^{2}}{2(10\sin 69^{\circ})^{2}}$		
		$\angle PUR = 120^{\circ}$ (2.10)	1A	
		<u> </u>		
			7	

	Solu	tion	Marks	Remarks
		, 3		
	(a)	$\frac{d}{dx} \left[x^{n-1} \left(1 - x^2 \right)^{\frac{3}{2}} \right]$		
		$= (n-1)x^{n-2}(1-x^2)^{\frac{3}{2}} + \frac{3}{2}(1-x^2)^{\frac{1}{2}}(-2x)x^{n-1}$	1A+1A	1A for each term
		$= (n-1)x^{n-2}(1-x^2)\sqrt{1-x^2}-3x^n\sqrt{1-x^2}$	1M	For $(1-x^2)^{\frac{3}{2}} = (1-x^2)\sqrt{1-x^2}$
		$= (n-1)x^{n-2}\sqrt{1-x^2} - (n-1+3)x^n\sqrt{1-x^2}$		
		$= (n-1)x^{n-2}\sqrt{1-x^2} - (n+2)x^n\sqrt{1-x^2}$	<u>4</u>	
	(p)	Integrating with respect to x ,		
		$[x^{n-1}(1-x^2)^{\frac{3}{2}}]_0^1 = \int_0^1 [(n-1)x^{n-2}\sqrt{1-x^2}]_0^1$		
		$-(n+2) x^n \sqrt{1-x^2} dx$	1A	
		$0 = \int_0^1 (n-1) x^{n-2} \sqrt{1-x^2} dx - \int_0^1 (n+2) x^n \sqrt{1-x^2} dx$	1A	For L.H.S. = 0 (can be omitted)
		$\int_0^1 x^n \sqrt{1-x^2} dx = \frac{n-1}{n+2} \int_0^1 x^{n-2} \sqrt{1-x^2} dx$	1	(can be omitted)
		J.,	3	
	(c)	$dx = \cos\theta d\theta$		
		$\int_0^1 \sqrt{1 - x^2} \mathrm{d}x = \int_0^{\frac{\pi}{2}} \cos^2 \theta \mathrm{d}\theta$	1A	
		$= \int_0^{\frac{\pi}{2}} \frac{1}{2} \left(1 + \cos 2\theta \right) d\theta$	1M	For $\cos^2\theta = \frac{1}{2}(1 + \cos 2\theta)$
		$=\frac{1}{2}\left[\theta+\frac{1}{2}\sin 2\theta\right]_{0}^{\frac{\pi}{2}}$		
_		$=\frac{\pi}{4}$	1A	
			3	
	(d)	$(i) \qquad \int_0^1 x^4 \sqrt{1-x^2} \mathrm{d}x$		
		$= \frac{4-1}{4+2} \int_0^1 x^2 \sqrt{1-x^2} \mathrm{d}x$	1A	For using (b)
		$= \frac{3}{6} \cdot \frac{2-1}{2+2} \int_0^1 \sqrt{1-x^2} dx$		
		$= \frac{3}{6} \cdot \frac{1}{4} \cdot \frac{\pi}{4}$	1M	For using (c) (accept
				using the susbstitution $x = \sin \theta$)
	•	$=\frac{\pi}{32}$	1A	
5–CI	e-a mati	IS II–8		

Solution	Marks	Remarks
(ii) Put $x = \sin \theta$	1A	
$\int_0^{\frac{\pi}{2}} \sin^6\theta \cos^2\theta d\theta = \int_0^1 x^6 \sqrt{1 - x^2} dx$	1A	
$= \frac{6-1}{6+2} \int_0^1 x^4 \sqrt{1-x^2} \mathrm{d}x$		
$=\frac{5}{8}\cdot\frac{\pi}{32}$		
$=\frac{5\pi}{256}$	1A	
-CE-A MATHS II-9		

1995 HKCE Add. Maths. II Marking Scheme

	Solu	tion	Marks	Remarks
).	(a)	$\cos^2 A - \cos^2 B$		
•	(4)	$= (\cos A + \cos B) (\cos A - \cos B)$		
		$= (2\cos\frac{A+B}{2}\cos\frac{A-B}{2}) \left(-2\sin\frac{A+B}{2}\sin\frac{A-B}{2}\right)$	1A	
		$= (2\sin\frac{A+B}{2}\cos\frac{A+B}{2}) \left(-2\sin\frac{A-B}{2}\cos\frac{A-B}{2}\right)$		
		$=-\sin\left(A+B\right)\sin\left(A-B\right)$	1A	
		$= \sin(A+B)\sin(B-A)$	1	
		Alternative solution 1		
		$\sin(A+B)\sin(B-A)$		
		= $(\sin A \cos B + \sin B \cos A) (\sin B \cos A - \sin A \cos B)$	1A	
		$= \sin^2 B \cos^2 A - \sin^2 A \cos^2 B$		
		$= (1 - \cos^2 B) \cos^2 A - (1 - \cos^2 A) \cos^2 B$	1A	
		$= \cos^2 A - \cos^2 A \cos^2 B - \cos^2 B + \cos^2 A \cos^2 B$		
		$= \cos^2 A - \cos^2 B$	1	
		Alternative solution 2		
		$\sin(A+B)\sin(B-A)$		
•		$=-\frac{1}{2}\left(\cos 2B-\cos 2A\right)$	1A	
		$= -\frac{1}{2} \left[2\cos^2 B - 1 - \left(2\cos^2 A - 1 \right) \right]$	1A	
		$= \cos^2 A - \cos^2 B$	1	
		Alternative solution 3		
_		$\cos^2 A - \cos^2 B$		
		$= \frac{1}{2} (1 + \cos 2A) - \frac{1}{2} (1 + \cos 2B)$	1A	
		$=\frac{1}{2}\left(\cos 2A-\cos 2B\right)$		
		$= -\sin(A + B)\sin(A - B)$	1A	
		$= \sin(A + B)\sin(B - A)$	1	
			3	+1
	(b)	(i) $\cos^2 A - \cos^2 B + \sin^2 C$		
	(/	$= \sin(A + B)\sin(B - A) + \sin^2 C$	1A	For using (a)
		$= \sin (\pi - C) \sin (B - A) + \sin^2 C$	1A	For using $A + B + C = -$
		$= \sin C \left[\sin (B - A) + \sin (A + B) \right]$		
		= 2sinCsinBcosA	1	
s on	-A MATH	IS II–10	1	ļ

Solu	tion		Marks	Remarks
	(ii) $\cos^2 A - \cos^2 B - \cos^2 C$			
	$\cos^2 A - \cos^2 B - \cos^2 C$			
	$\cos^2 A - \cos^2 B + \sin^2 C$	C = 0	1A	e de la companya de
	$2\cos A \sin C \sin B = 0$		1A	
	$(:\sin C \neq 0, \sin B \neq 0)$	$\therefore \cos A = 0) , \angle A = \frac{\pi}{2}$	1A	
	$\therefore \Delta ABC$ is a right an	gled triangle.	6	
(c)	$\cos^2 x - \sin^2 y$			
	$=\cos^2 x - \cos^2\left(\frac{\pi}{2} - y\right)$		1A	
	$= \sin\left(x + \frac{\pi}{2} - y\right) \sin\left(\frac{\pi}{2} - y\right)$	y - x)	1A	For using (a)
•	$= \cos(x + y)\cos(x - y)$		1	
	Alternative solution (1)			-
	$\cos(x+y)\cos(x-y)$			
	$= (\cos x \cos y - \sin x \sin y) (\cos x \cos y - \sin x \sin y)$	cosxcosy + sinxsiny)	1A	
	$= \cos^2 x \cos^2 y - \sin^2 x \sin^2 y$			
	$= \cos^2 x (1 - \sin^2 y) - (1 - \cos^2 x)$	$(\operatorname{ps}^2 x) \sin^2 y$	1A	
	$= \cos^2 x - \sin^2 y$		1	
	Alternative solution (2)			
	$\cos^2 x - \sin^2 y = \frac{1}{2} \left(1 + \cos x \right)$	$(2x) - \frac{1}{2}(1 - \cos 2y)$	1A+1A	
	$=\frac{1}{2}(\cos 2x +$	- cos2 <i>y</i>)		_
	$=\cos\left(x+y\right)$	cos (x - y)	i	
	$\cos^2 2\theta - \sin^2 3\theta + \cos\theta \sin 5\theta$	θ = 0		
	$\cos 5\theta \cos (-\theta) + \cos \theta \sin 5\theta$	= 0	1A	
	$\cos\theta (\cos 5\theta + \sin 5\theta) = 0$			
•	$\cos\theta = 0$ or $\sin 5\theta +$	$\cos 5\theta = 0$		
	$tan 5\theta =$	-1	1M	For any correct method of solving $\sin 5\theta + \cos 5\theta = 0$
	$5\theta = n\pi$	$-\frac{\pi}{4}$		
	$\theta = 2n\pi \pm \frac{\pi}{2} \qquad \theta = \frac{n\pi}{5}$ (or 360n° ± 90°) (or 36n°		1A+1A	2nπ ± 90° etc (pp-1)
95-CE-A MAT	IS II-11			

Solution	Marks	Remarks
	1	
Alternative solution of solving $\sin 5\theta + \cos 5\theta$	= 0	
$\sin 5\theta + \cos 5\theta = 0$		
$\cos 5\theta = \cos\left(\frac{\pi}{2} + 5\theta\right)$	1M	
$5\theta = 2n\pi \pm (\frac{\pi}{2} + 5\theta)$		
$100 = 2n\pi - \frac{\pi}{2}$		
$\theta = \frac{n\pi}{5} - \frac{\pi}{20}$	1A	
	7_	
•		
MATHS II–12		

			1	1
	Solu	ıtion	Marks	Remarks
0.	(a)	$x^2 + y^2 - 16x - 36 = 0$		
		$(x - 8)^2 + y^2 = 100$		
		The centre is (8, 0).	1A	
		The radius is 10.	1A	
		Since C_1 touches C_2 , distance between centres = sum of radius		
		$8 - (-7) = 10 + r$ (where $r = radius of C_2$)	1M	·
		r = 5	1A	, .
	(b)	Let R be the radius of the circle centred at P.	4	
		$\sqrt{(h-8)^2 + k^2} = R + 10$,	
		$\sqrt{(h+7)^2+k^2}=R+5$	}1M	(Can be omitted)
		$\sqrt{(h-8)^2+k^2}-10=\sqrt{(h+7)^2+k^2}-5$	1M	(Can be omitted)
		$\sqrt{(h-8)^2+k^2}=\sqrt{(h+7)^2+k^2}+5$		
		$h^2 - 16h + 64 + k^2 = h^2 + 14h + 49 + k^2$		
		$+\ 10\sqrt{(h+7)^2+k^2}+25$	1M	For squaring both sides
		$10\sqrt{(h+7)^2+k^2}=-30h-10$	1A	OR $10\sqrt{(h-8)^2+k^2} = -30h+40$
		$\sqrt{(h+7)^2+k^2}=-3h-1$		
		$9h^2 + 6h + 1 = h^2 + 14h + 49 + k^2$		
		$8h^2 - k^2 - 8h - 48 = 0$	<u>1</u>	
	(c)	(i) By symmetry, the equation of the locus of P is $y = 20$.	2A	or k = 20
		Alternative solution		
		$\sqrt{(h+7)^2 + (k-40)^2} = \sqrt{(h+7)^2 + k^2}$	1M	`
		$(k-40)^2 = k^2$		
		k = 20		
		The equation of the locus is $y = 20$.	1A	or $k = 20$
		(ii) $\begin{cases} 8h^2 - k^2 - 8h - 48 = 0 \\ \frac{1}{2} - $	1M	
		k = 20	111	
		$8h^2 - 8h - 448 = 0$ $h^2 - h - 56 = 0$		
		(h + 7) (h - 8) = 0		
		h = -7 or 8 (rejected $h < 0$)	1A+1A	
		The centre of the circle is (-7, 20).		
		Radius = 20 - 5 = 15	1A	
		The equation of the circle is	_	
		$(x + 7)^2 + (y - 20)^2 = 15^2$.	1A	
		$(or x^2 + y^2 + 14x - 40y + 224 = 0)$	7	

1995 HKCE Add. Maths. II Marking Scheme

	Solu	ıtion		Marks	Remarks
1.	(a)	(i)	In ΔPAQ, by Sine Law,		
			$\frac{QA}{\sin\alpha} = \frac{PA}{\sin\phi}$		
			•		
			$\therefore \frac{QA}{PA} = \frac{\sin\alpha}{\sin\phi}$	1A	
,		(ii)	In ΔPQB,		
		` '	$\frac{QB}{PB} \left(= \frac{\sin \beta}{\sin (\pi - \phi)} \right) = \frac{\sin \beta}{\sin \phi}$	1A	
			If $\frac{QA}{PA} = \frac{QB}{PB}$, $\frac{\sin \alpha}{\sin \phi} = \frac{\sin \beta}{\sin \phi}$		
			$\sin \alpha = \sin \beta$		
			$\alpha = \beta$	<u>1</u>	
•	(b)	(i)	$9x^2 + 25y^2 = 225$		
			$18x + 50y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	1A	
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-9x}{25y}$		
			Slope of tangent at $P = \frac{dy}{dx}\Big _{(5\cos\theta, 3\sin\theta)}$		
			$=-\frac{3\cos\theta}{5\sin\theta}$		
•			Slope of normal at $P = \frac{5\sin\theta}{3\cos\theta}$	1A	
			Alternative solution		
			The equation of the tanget at P is		
			$9x(5\cos\theta) + 25y(3\sin\theta) = 225$	1A	or $\frac{x}{5}\cos\theta + \frac{y}{3}\sin\theta = 1$
-			$45x\cos\theta + 75y\sin\theta = 225$		
			Slope = $-\frac{3\cos\theta}{5\sin\theta}$		
			$\therefore \text{Slope of normal at } p = \frac{5\sin\theta}{3\cos\theta}$	1A	
			Equation of PQ is		
			$\frac{y - 3\sin\theta}{x - 5\cos\theta} = \frac{5\sin\theta}{3\cos\theta}$	1M	
			$3y\cos\theta - 9\sin\theta\cos\theta = 5x\sin\theta - 25\sin\theta\cos\theta$		
			$5x\sin\theta - 3y\cos\theta - 16\sin\theta\cos\theta = 0$	1	
•			Put $y = 0$, $x = \frac{16\cos\theta}{5}$		
			The coordinates of Q are $(\frac{16\cos\theta}{5}, 0)$.	1A	
5–CF	E-A MAT	HS II-14			

1995 HKCE Add. Maths. II Marking Scheme

Solution	Marks	Remarks
(ii) $PA = \sqrt{(5\cos\theta + 4)^2 + (3\sin\theta)^2}$	2	
$=\sqrt{25\cos^2\theta + 40\cos\theta + 16}$	9 sin ² 0	·
$=\sqrt{25\cos^2\theta} + 40\cos\theta + 16 +$	$9(1-\cos^2\theta)$ 1M	(can be omitted)
$= \sqrt{16\cos^2\theta + 40\cos\theta + 25}$		
$= 5 + 4\cos\theta$	1	
$PB = \sqrt{(5\cos\theta - 4)^2 + (3\sin\theta)^2}$	ī	
$=\sqrt{25\cos^2\theta} - 40\cos\theta + 16 +$	9 sin²θ	
$= \sqrt{16\cos^2\theta - 40\cos\theta + 25}$		
= 5 - 4cosθ	1A	Accept 4cosθ - 5
$QA = 4 + \frac{16\cos\theta}{5}$	1A	
3		, -
$QB = 4 - \frac{16\cos\theta}{5}$	1A	
16 cos 0		
$\frac{QA}{PA} = \frac{\frac{16\cos\theta}{5} + 4}{5 + 4\cos\theta} = \frac{4}{5}$		1M for considering the rati
	1M+1A	of length
$\frac{QB}{PB} = \frac{4 - \frac{16\cos\theta}{5}}{5 - 4\cos\theta} = \frac{4}{5}$		1A for showing that the tw
	J	ratios are equal
(Since $\frac{QA}{PA} = \frac{QB}{PB}$, $\angle APQ = \angle QPB$		
∴ PQ bisects ∠APB.	$\frac{1}{13}$	
		-

Solution				Marks	Remarks
	5010				
·	(a)	_	$= \cos\theta$		
		dy = -	$-\sin heta\mathrm{d} heta$		
		$\int_{k-1}^{k+1} v$	$\sqrt{1-(y-k)^2}dy = \int_{\pi}^{0} \sqrt{1-\cos^2\theta} \; (-\sin\theta d\theta)$	1A+1A	1A for integrand,1A for limits
			$= \int_0^{\pi} \sin^2 \theta d\theta$		
			$=\int_0^{\pi}\frac{1}{2}\left(1-\cos 2\theta\right)\mathrm{d}\theta$	1M	For $\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$
			$=\frac{1}{2}\left[\theta-\frac{1}{2}\sin 2\theta\right]_0^{\pi}$	1	
			$=\frac{\pi}{2}$	1	
		(i)	$\int_0^2 \left[2 + \sqrt{1 - (y - 1)^2}\right]^2 \mathrm{d}y$		
			$= \int_0^2 \left[4 + 1 - (y - 1)^2 + 4\sqrt{1 - (y - 1)^2} \right] dy$		
			= $\left[5y - \frac{1}{3}(y-1)^3\right]_0^2 + 4\int_0^2 \sqrt{1-(y-1)^2} dy$	1A	For integrating the 1st three terms
			$= (10 - \frac{1}{3} - \frac{1}{3}) + 4(\frac{\pi}{2})$	1M	For using the earlier result to evalua
			$=\frac{28}{3}+2\pi$	1	the last integral
		(ii)	$\int_{3}^{4} \left[2 - \sqrt{1 - (y - 3)^{2}}\right]^{2} dy$		
			$= \int_{2}^{4} 4 + 1 - (y-3)^{2} - 4\sqrt{1 - (y-3)^{2}} dy$		
			= $[5y - \frac{1}{3}(y-3)^3]_2^4 - 4\int_2^4 \sqrt{1-(y-3)^2}] dy$		
			$= (20 - \frac{1}{3} - 10 - \frac{1}{3}) - 4(\frac{\pi}{2})$		
•			$=\frac{28}{3}-2\pi$	1	
				_8	-
	(p)	(i)	Equation of ABC $(x-2)^2 + (y-3)^2 = 1$		
			$x-2=-\sqrt{1-(y-3)^2}$ (: $x \le 2$)	}1	
			$x = 2 - \sqrt{1 - (y - 3)^2}$	ν	
			Equation of CDE		
			$(x-2)^2 + (y-1)^2 = 1$	}	
			$x-2 = \sqrt{1-(y-1)^2}$ (: $x \ge 2$)	 }1	
			$x = 2 + \sqrt{1 - (y - 1)^2}$		
			7 - 5 + y = - (y = +)		
					·
5C	E-A MAT	THS II-16			

(ii) Capacity $= \pi \int_0^2 \left[2 + \sqrt{1 - (y - 1)^2}\right]^2 dy$ $+ \pi \int_2^4 \left[2 - \sqrt{1 - (y - 3)^2}\right]^2 dy$ $= \pi \left(\frac{28}{3} + 2\pi\right) + \pi \left(\frac{28}{3} - 2\pi\right)$	1A	
+ $\pi \int_{2}^{4} \left[2 - \sqrt{1 - (y - 3)^{2}}\right]^{2} dy$	1A	
••	1A	I .
$= \pi \left(\frac{28}{3} + 2\pi \right) + \pi \left(\frac{28}{3} - 2\pi \right)$	1	
3	1м	For using results of (a)
$= \frac{56 \pi}{3}$	1A	
	_5	
<pre>(c) Volume = Volume of solid CDE - Volume of solid ABG</pre>	C 1M	(Can be omitted)
$= \pi \left(\frac{28}{3} + 2\pi \right) - \pi \left(\frac{28}{3} - 2\pi \right)$	1M	For using result of (a
$= 4 \pi^2$	1A	
Alternative solution		
Equation of circle : $(x-2)^2 + (y-1)^2 = 1$		
$x = 2 \pm \sqrt{1 - (y - 1)^2}$		
Volume = $\pi \int_0^2 [2 + \sqrt{1 - (y - 1)^2}]^2 dy$		
$-\pi \int_0^2 \left[2 - \sqrt{1 - (y - 1)^2}\right]^2 dy$	1M	
$= 8\pi \int_0^2 \sqrt{1 - (y - 1)^2} dy$		
$=8\pi\left(\frac{\pi}{2}\right)$	1м	For using result of (a)
$=4\pi^2$	1A	
	3	