GR5291 Advanced Data Analysis Problem Set Survival Analysis

Francis Zhang

November 22, 2024

Question

Consider the Mayo Clinic Lung Cancer Data in R package survival : data(lung) or data(cancer): including the variables

inst: Institution code

time: Survival time in days

status: censoring status 1=censored, 2=dead

age: Age in years

sex: Male=1 Female=2, etc.

- 1. Estimate and plot the survival curve for the combined Male and Female data using the following methods: a. Kaplan-Meier
- b.Fleming-Harrington
- 2. Estimate the median survival time, using the estimated survival curves from 1a and 1b.
- 3. Using a log-rank test, compare the survival distributions for Male and Female

Solution

Question 1

```
# Load necessary libraries
library(survival)
library(survminer)

## Loading required package: ggplot2

## Loading required package: ggpubr

##
## Attaching package: 'survminer'

## The following object is masked from 'package:survival':

##
## myeloma

# Load the lung dataset
data(lung)

## Warning in data(lung): data set 'lung' not found
```

head(lung)

```
##
     inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
## 1
           306
                     2
                       74
                                               90
                              1
                                      1
                                                         100
                                                                 1175
## 2
        3 455
                     2
                        68
                              1
                                      0
                                               90
                                                         90
                                                                 1225
                                                                            15
## 3
        3 1010
                     1
                        56
                              1
                                      0
                                               90
                                                         90
                                                                   NA
                                                                            15
## 4
        5
           210
                     2
                        57
                              1
                                      1
                                               90
                                                          60
                                                                 1150
                                                                            11
## 5
        1 883
                     2
                        60
                             1
                                              100
                                                         90
                                                                             0
                                      0
                                                                   NA
## 6
       12 1022
                        74
                             1
                                      1
                                               50
                                                          80
                                                                  513
                                                                             0
                     1
```

```
# Create a survival object
surv_object <- Surv(time = lung$time, event = lung$status == 2)
# Fit the Kaplan-Meier survival model
km_fit <- survfit(surv_object ~ 1, data = lung)
summary(km_fit)</pre>
```

a.Kaplan-Meier

```
## Call: survfit(formula = surv_object ~ 1, data = lung)
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
                           0.9956 0.00438
##
       5
            228
                       1
                                                  0.9871
                                                                 1.000
                           0.9825 0.00869
##
      11
            227
                       3
                                                  0.9656
                                                                 1.000
##
      12
            224
                           0.9781 0.00970
                                                 0.9592
                                                                 0.997
                       1
            223
                       2
##
      13
                           0.9693 0.01142
                                                  0.9472
                                                                 0.992
##
      15
            221
                       1
                           0.9649 0.01219
                                                 0.9413
                                                                 0.989
##
      26
            220
                           0.9605 0.01290
                                                  0.9356
                                                                 0.986
##
            219
      30
                           0.9561 0.01356
                                                 0.9299
                                                                 0.983
                       1
                                                 0.9243
##
      31
            218
                       1
                           0.9518 0.01419
                                                                 0.980
##
            217
                       2
      53
                           0.9430 0.01536
                                                 0.9134
                                                                 0.974
##
      54
            215
                           0.9386 0.01590
                                                 0.9079
                                                                 0.970
##
      59
            214
                           0.9342 0.01642
                                                 0.9026
                                                                 0.967
                       1
##
      60
            213
                       2
                           0.9254 0.01740
                                                 0.8920
                                                                 0.960
                           0.9211 0.01786
##
            211
      61
                       1
                                                 0.8867
                                                                0.957
##
      62
            210
                       1
                           0.9167 0.01830
                                                 0.8815
                                                                 0.953
            209
##
      65
                       2
                           0.9079 0.01915
                                                 0.8711
                                                                 0.946
##
      71
            207
                       1
                           0.9035 0.01955
                                                 0.8660
                                                                 0.943
##
      79
            206
                       1
                           0.8991 0.01995
                                                 0.8609
                                                                 0.939
                       2
##
      81
            205
                           0.8904 0.02069
                                                  0.8507
                                                                 0.932
                       2
##
      88
            203
                           0.8816 0.02140
                                                  0.8406
                                                                 0.925
##
      92
            201
                       1
                           0.8772 0.02174
                                                  0.8356
                                                                 0.921
##
      93
            199
                       1
                           0.8728 0.02207
                                                  0.8306
                                                                 0.917
##
      95
            198
                       2
                           0.8640 0.02271
                                                  0.8206
                                                                 0.910
##
     105
            196
                       1
                           0.8596 0.02302
                                                  0.8156
                                                                 0.906
##
                       2
                           0.8507 0.02362
     107
            194
                                                 0.8056
                                                                 0.898
##
     110
            192
                       1
                           0.8463 0.02391
                                                  0.8007
                                                                 0.894
##
     116
            191
                       1
                           0.8418 0.02419
                                                 0.7957
                                                                 0.891
##
     118
            190
                       1
                           0.8374 0.02446
                                                  0.7908
                                                                 0.887
##
     122
            189
                       1
                           0.8330 0.02473
                                                                0.883
                                                 0.7859
##
            188
                           0.8285 0.02500
                                                  0.7810
                                                                 0.879
     131
                       1
##
            187
                       2
     132
                           0.8197 0.02550
                                                  0.7712
                                                                 0.871
##
     135
            185
                           0.8153 0.02575
                                                  0.7663
                                                                 0.867
```

##	142	184	1		0.02598	0.7615	0.863
##	144	183	1		0.02622	0.7566	0.859
##	145	182	2		0.02667	0.7469	0.852
##	147	180	1	0.7931	0.02688	0.7421	0.848
##	153	179	1	0.7887	0.02710	0.7373	0.844
##	156	178	2	0.7798	0.02751	0.7277	0.836
##	163	176	3	0.7665	0.02809	0.7134	0.824
##	166	173	2	0.7577	0.02845	0.7039	0.816
##	167	171	1		0.02863	0.6991	0.811
##	170	170	1		0.02880	0.6944	0.807
##	175	167	1		0.02898	0.6896	0.803
##	176	165	1		0.02915	0.6848	0.799
##	177	164	1		0.02932	0.6800	0.795
##	179	162	2		0.02965	0.6704	0.787
##	180	160	1		0.02981	0.6655	0.783
##			2				0.774
	181	159			0.03012	0.6559	
##	182	157	1		0.03027	0.6511	0.770
##	183	156	1		0.03041	0.6464	0.766
##	186	154	1		0.03056	0.6416	0.761
##	189	152	1		0.03070	0.6367	0.757
##	194	149	1		0.03085	0.6318	0.753
##	197	147	1		0.03099	0.6269	0.749
##	199	145	1		0.03113	0.6219	0.744
##	201	144	2		0.03141	0.6120	0.735
##	202	142	1		0.03154	0.6071	0.731
##	207	139	1		0.03168	0.6020	0.726
##	208	138	1		0.03181	0.5970	0.722
##	210	137	1	0.6517	0.03194	0.5920	0.717
##	212	135	1	0.6469	0.03206	0.5870	0.713
##	218	134	1	0.6421	0.03218	0.5820	0.708
##	222	132	1	0.6372	0.03231	0.5769	0.704
##	223	130	1	0.6323	0.03243	0.5718	0.699
##	226	126	1	0.6273	0.03256	0.5666	0.694
##	229	125	1	0.6223	0.03268	0.5614	0.690
##	230	124	1	0.6172	0.03280	0.5562	0.685
##	239	121	2	0.6070	0.03304	0.5456	0.675
##	245	117	1	0.6019	0.03316	0.5402	0.670
##	246	116	1	0.5967	0.03328	0.5349	0.666
##	267	112	1	0.5913	0.03341	0.5294	0.661
##	268	111	1	0.5860	0.03353	0.5239	0.656
##	269	110	1	0.5807	0.03364	0.5184	0.651
##	270	108	1	0.5753	0.03376	0.5128	0.645
##	283	104	1		0.03388	0.5071	0.640
##	284	103	1		0.03400	0.5014	0.635
##	285	101	2	0.5531	0.03424	0.4899	0.624
##	286	99	1		0.03434	0.4841	0.619
##	288	98	1		0.03444	0.4784	0.614
##	291	97	1		0.03454	0.4727	0.608
##	293	94	1		0.03464	0.4669	0.603
##	301	91	1		0.03475	0.4609	0.597
##	303	89	1		0.03485	0.4549	0.592
##	305	87	1		0.03496	0.4488	0.586
##	306	86	1		0.03506	0.4427	0.581
##	310	85	2		0.03523	0.4306	0.569
π#	010	00	2	J. 1 3300	0.00020	0.4500	0.509

##	320	82	1	0.4890 0.03532	0.4244	0.563
##	329	81	1	0.4830 0.03539	0.4183	0.558
##	337	79	1	0.4768 0.03547	0.4121	0.552
##	340	78	1	0.4707 0.03554	0.4060	0.546
##	345	77	1	0.4646 0.03560	0.3998	0.540
##	348	76	1	0.4585 0.03565	0.3937	0.534
##	350	75	1	0.4524 0.03569	0.3876	0.528
##	351	74	1	0.4463 0.03573	0.3815	0.522
##	353	73	2	0.4340 0.03578	0.3693	0.510
##	361	70	1	0.4278 0.03581	0.3631	0.504
##	363	69	2	0.4154 0.03583	0.3508	0.492
##	364	67	1	0.4092 0.03582	0.3447	0.486
##	371	65	2	0.3966 0.03581	0.3323	0.473
##	387	60	1	0.3900 0.03582	0.3258	0.467
##	390	59	1	0.3834 0.03582	0.3193	0.460
##	394	58	1	0.3768 0.03580	0.3128	0.454
##	426	55	1	0.3700 0.03580	0.3060	0.447
##	428	54	1	0.3631 0.03579	0.2993	0.440
##	429	53	1	0.3563 0.03576	0.2926	0.434
##	433	52	1	0.3494 0.03573	0.2860	0.427
##	442	51	1	0.3426 0.03568	0.2793	0.420
##	444	50	1	0.3357 0.03561	0.2727	0.413
##	450	48	1	0.3287 0.03555	0.2659	0.406
##	455	47	1	0.3217 0.03548	0.2592	0.399
##	457	46	1	0.3147 0.03539	0.2525	0.392
##	460	44	1	0.3076 0.03530	0.2456	0.385
##	473	43	1	0.3004 0.03520	0.2388	0.378
##	477	42	1	0.2933 0.03508	0.2320	0.373
##	519		1	0.2857 0.03498	0.2248	
##	520	39 30	1	0.2782 0.03485	0.2246	0.363
		38				0.356
##	524	37	2	0.2632 0.03455	0.2035	0.340
##	533	34	1	0.2554 0.03439	0.1962 0.1887	0.333
##	550	32	1	0.2475 0.03423		0.325
##	558	30	1	0.2392 0.03407	0.1810	0.316
##	567	28	1	0.2307 0.03391	0.1729	0.308
##	574	27	1	0.2221 0.03371	0.1650	0.299
##	583	26	1	0.2136 0.03348	0.1571	0.290
##	613	24	1	0.2047 0.03325	0.1489	0.281
##	624	23	1	0.1958 0.03297	0.1407	0.272
##	641	22	1	0.1869 0.03265	0.1327	0.263
##	643	21	1	0.1780 0.03229	0.1247	0.254
##	654	20	1	0.1691 0.03188	0.1169	0.245
##	655	19	1	0.1602 0.03142	0.1091	0.235
##	687	18	1	0.1513 0.03090	0.1014	0.226
##	689	17	1	0.1424 0.03034	0.0938	0.216
##	705	16	1	0.1335 0.02972	0.0863	0.207
##	707	15	1	0.1246 0.02904	0.0789	0.197
##	728	14	1	0.1157 0.02830	0.0716	0.187
##	731	13	1	0.1068 0.02749	0.0645	0.177
##	735	12	1	0.0979 0.02660	0.0575	0.167
##	765	10	1	0.0881 0.02568	0.0498	0.156
##	791	9	1	0.0783 0.02462	0.0423	0.145
##	814	7	1	0.0671 0.02351	0.0338	0.133
##	883	4	1	0.0503 0.02285	0.0207	0.123

Kaplan-Meier Survival Curve for Combined Data

Strata + All


```
# Fit the Fleming-Harrington survival model
fh_fit <- survfit(surv_object ~ 1, type = "fh", data = lung)
summary(fh_fit)</pre>
```

b.Fleming-Harrington

```
## Call: survfit(formula = surv_object ~ 1, data = lung, type = "fh")
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
       5
             228
                        1
                            0.9956 0.00437
                                                   0.9871
                                                                  1.000
##
      11
             227
                        3
                            0.9825 0.00868
                                                   0.9656
                                                                  1.000
##
      12
             224
                            0.9781 0.00968
                                                   0.9593
                                                                  0.997
                        1
             223
##
      13
                            0.9694 0.01140
                                                   0.9473
                                                                  0.992
      15
             221
                            0.9650 0.01216
                                                   0.9414
                                                                  0.989
##
                        1
##
      26
             220
                            0.9606 0.01287
                                                   0.9357
                                                                  0.986
##
      30
             219
                            0.9562 0.01353
                                                   0.9301
                                                                  0.983
                        1
             218
##
      31
                            0.9519 0.01416
                                                   0.9245
                                                                  0.980
##
      53
             217
                            0.9431 0.01532
                                                   0.9135
                                                                  0.974
##
      54
             215
                            0.9387 0.01587
                                                   0.9081
                                                                  0.970
##
      59
             214
                            0.9344 0.01638
                                                  0.9028
                                                                  0.967
```

##	60	213	2	0.01736	0.8922	0.960
##	61	211	1	0.01782	0.8870	
##	62	210	1	0.01827	0.8817	
##	65	209	2	0.01911	0.8714	
##	71	207	1	0.01951	0.8663	
##	79	206	1	0.01990	0.8612	
##	81	205	2	0.02065	0.8510	
##	88	203	2	0.02135	0.8410	
##	92	201	1	0.02169	0.8360	
##	93	199	1	0.02202	0.8309	
##	95	198	2	0.02266	0.8210	
##	105	196	1	0.02297	0.8160	
##	107	194	2	0.02357	0.8061	
##	110	192	1	0.02386	0.8011	
##	116	191	1	0.02414	0.7962	
##	118	190	1	0.02442	0.7913	
##	122	189	1	0.02468	0.7863	
##	131	188	1	0.02495	0.7814	
##	132	187	2	0.02545	0.7717	
##	135	185	1	0.02569	0.7668	
##	142	184	1	0.02593	0.7620	
##	144	183	1	0.02617	0.7571	
##	145	182	2	0.02662	0.7475	
##	147	180	1	0.02683	0.7427	
##	153	179	1	0.02705	0.7379	
##	156	178	2	0.02746	0.7283	
##	163	176	3	0.02804	0.7140	
##	166	173	2	0.02840	0.7045	
##	167	171	1	0.02858	0.6998	
##	170 175	170 167	1 1	0.02875	0.6951 0.6903	
## ##	176	165	1	0.02092	0.6855	
##	177	164	1	0.02910	0.6807	
##	179	162	2	0.02927	0.6711	
##	180	160	1	0.02900	0.6663	
##	181	159	2	0.03007	0.6567	
##	182	157	1	0.03007	0.6519	
##	183	156	1	0.03036	0.6471	
##	186	154	1	0.03050	0.6423	
##	189	152	1	0.03065	0.6375	
##	194	149	1	0.03079	0.6326	
##	197	147	1	0.03094	0.6277	
##	199	145	1	0.03108	0.6227	
##	201	144	2	0.03136	0.6128	
##	202	142	1	0.03149	0.6079	
##	207	139	1	0.03162	0.6029	
##	208	138	1	0.03176	0.5979	
##	210	137	1	0.03188	0.5929	
##	212	135	1	0.03201	0.5879	
##	218	134	1	0.03213	0.5829	
##	222	132	1	0.03225	0.5778	
##	223	130	1	0.03237	0.5728	
##	226	126	1	0.03250	0.5675	
##	229	125	1	0.03263	0.5623	

##	230	124	1	0.6181	0.03275	0.5572	0.686
##	239	121	2		0.03299	0.5466	0.676
##	245	117	1	0.6028	0.03311	0.5412	0.671
##	246	116	1	0.5976	0.03323	0.5359	0.666
##	267	112	1	0.5923	0.03335	0.5304	0.661
##	268	111	1	0.5870	0.03348	0.5249	0.656
##	269	110	1	0.5817	0.03359	0.5194	0.651
##	270	108	1	0.5763	0.03371	0.5139	0.646
##	283	104	1	0.5708	0.03383	0.5082	0.641
##	284	103	1	0.5653	0.03395	0.5025	0.636
##	285	101	2	0.5541	0.03418	0.4910	0.625
##	286	99	1	0.5486	0.03429	0.4853	0.620
##	288	98	1	0.5430	0.03439	0.4796	0.615
##	291	97	1	0.5374	0.03449	0.4739	0.609
##	293	94	1	0.5317	0.03459	0.4681	0.604
##	301	91	1	0.5259	0.03470	0.4621	0.599
##	303	89	1	0.5200	0.03480	0.4561	0.593
##	305	87	1	0.5141	0.03491	0.4500	0.587
##	306	86	1	0.5082	0.03501	0.4440	0.582
##	310	85	2	0.4963	0.03518	0.4319	0.570
##	320	82	1	0.4903	0.03527	0.4258	0.564
##	329	81	1	0.4842	0.03534	0.4197	0.559
##	337	79	1	0.4782	0.03542	0.4135	0.553
##	340	78	1	0.4721	0.03549	0.4074	0.547
##	345	77	1	0.4660	0.03555	0.4013	0.541
##	348	76	1	0.4599	0.03560	0.3951	0.535
##	350	75	1	0.4538	0.03565	0.3890	0.529
##	351	74	1	0.4477	0.03569	0.3829	0.523
##	353	73	2	0.4355	0.03574	0.3708	0.512
##	361	70	1	0.4293	0.03576	0.3647	0.505
##	363	69	2	0.4170	0.03578	0.3524	0.493
##	364	67	1	0.4108	0.03578	0.3463	0.487
##	371	65	2	0.3983	0.03577	0.3340	0.475
##	387	60	1	0.3917	0.03578	0.3275	0.468
##	390	59	1	0.3851	0.03578	0.3210	0.462
##	394	58	1	0.3785	0.03577	0.3145	0.456
##	426	55	1		0.03577	0.3078	0.449
##	428	54	1	0.3649	0.03576	0.3011	0.442
##	429	53	1	0.3581	0.03573	0.2944	0.435
##	433	52	1	0.3512	0.03570	0.2878	0.429
##	442	51	1	0.3444	0.03565	0.2812	0.422
##	444	50	1	0.3376	0.03559	0.2746	0.415
##	450	48	1	0.3306	0.03553	0.2678	0.408
##	455	47	1	0.3237	0.03546	0.2611	0.401
##	457	46	1	0.3167	0.03537	0.2544	0.394
##	460	44	1	0.3096	0.03529	0.2476	0.387
##	473	43	1		0.03519	0.2408	0.380
##	477	42	1		0.03507	0.2340	0.373
##	519	39	1		0.03497	0.2269	0.365
##	520	38	1		0.03485	0.2198	0.358
##	524	37	2		0.03456	0.2057	0.343
##	533	34	1		0.03440	0.1984	0.335
##	550	32	1	0.2498	0.03425	0.1910	0.327
##	558	30	1	0.2416	0.03409	0.1833	0.319

```
0.2332 0.03393
##
     567
              28
                                                    0.1753
                                                                   0.310
##
     574
              27
                             0.2247 0.03374
                                                    0.1674
                                                                   0.302
##
     583
              26
                             0.2162 0.03352
                                                    0.1596
                                                                   0.293
##
                             0.2074 0.03329
                                                    0.1514
                                                                   0.284
     613
              24
##
     624
              23
                             0.1986 0.03302
                                                    0.1433
                                                                   0.275
##
     641
                             0.1897 0.03271
                                                    0.1353
                                                                   0.266
##
     643
                             0.1809 0.03236
                                                    0.1274
                                                                   0.257
                             0.1721 0.03196
                                                    0.1196
                                                                   0.248
##
     654
##
     655
              19
                             0.1633 0.03152
                                                    0.1118
                                                                   0.238
##
              18
                             0.1544 0.03102
                                                    0.1042
     687
                        1
                                                                   0.229
##
     689
              17
                             0.1456 0.03048
                                                    0.0966
                                                                   0.219
     705
##
              16
                             0.1368 0.02988
                                                    0.0892
                                                                   0.210
     707
                             0.1280 0.02923
                                                    0.0818
                                                                   0.200
##
              15
##
     728
              14
                             0.1192 0.02851
                                                    0.0745
                                                                   0.190
##
     731
              13
                             0.1103 0.02773
                                                    0.0674
                                                                   0.181
##
     735
              12
                             0.1015 0.02688
                                                    0.0604
                                                                   0.171
##
     765
              10
                             0.0919 0.02600
                                                    0.0527
                                                                   0.160
##
     791
                             0.0822 0.02499
                                                    0.0453
                                                                   0.149
               7
##
     814
                             0.0712 0.02394
                                                    0.0369
                                                                   0.138
     883
                             0.0555 0.02324
##
                                                    0.0244
                                                                   0.126
# Plot the Fleming-Harrington survival curve
```

Fleming-Harrington Survival Curve for Combined Data

Question 2

Median survival means half of the people survived at that time. According to the summary tables above, median points should be around 310.

Kaplan-Meier Survival Curve for Combined Data


```
fh_median <- summary(fh_fit)$table["median"]
fh_median

## median

## 310

ggsurvfh$plot +
   geom_vline(xintercept = fh_median, linetype = "dashed", color = "blue") +
   geom_hline(yintercept = 0.5, linetype = "dotted", color = "red") +
   annotate("text", x = fh_median, y = 0.55, label =</pre>
```

```
paste("Median:", round(fh_median, 1)), color = "blue",
hjust = -0.1)
```

Fleming-Harrington Survival Curve for Combined Data

Question 3

The log-rank test is used to compare the survival distributions of two samples.

Kaplan-Meier Survival Curves by Sex

The Kaplan-Meier survival analysis indicates that females tend to have a higher survival probability compared to males over time. The log-rank test confirms a statistically significant difference in survival distributions between males and females ($\chi^2=10.3$, p=0.001), suggesting that sex significantly impacts survival in this dataset.