Table des Matières

Ι	Log	Logique et raisonnements					
	1	Logiqu	ue	1			
		1.1	Assertions	1			
			1.1.1 La négation \overline{P}	2			
			1.1.2 L'implication \Rightarrow	2			
			1.1.3 L'équivalence \iff	3			
		1.2	Quantificateurs	3			
	2	Raison	nnements	4			
		2.1	Raisonnement direct	4			
		2.2	Contraposée	4			
		2.3	Absurde	5			
		2.4	Contre-exemple	5			
		2.5	Récurrence	5			
II	Les	ensem	ables, les relations et les applications	8			
	1	Ensen	ables	8			
		1.1	Définir des ensembles	8			
		1.2	Inclusion, union, intersection, complémentaire	9			
		1.3	Produit cartésien	11			
	2	Relati	ons d'équivalence-Relations d'ordre	12			
		2.1	Relations binaires	12			
		2.2	Relation d'équivalence	12			

	2.3	Relation d'ordre	14		
		2.3.1 L'ordre total et l'ordre partiel	14		
3	Appli	cations	14		
	3.1	Restriction et prolongement d'une application	16		
	3.2	Image directe, image réciproque	16		
4	Inject	cion, surjection, bijection	17		
	4.1	Injection, surjection	17		
	4.2	Bijection	18		
IIILes	fonct	ions réelles à une variable réelle	21		
1	Notio	ons de fonction	21		
	1.1	Définitions	21		
	1.2	Opérations sur les fonctions	22		
	1.3	Fonctions majorées, minorées, bornées	22		
	1.4	Fonctions croissantes, décroissantes	23		
	1.5	Parité et périodicité	24		
2	Limit	es	25		
	2.1	Limite en un point	25		
	2.2	Limite en l'infini	26		
		2.2.1 Limite à gauche et à droite	27		
3	Unicité de la limite				
4	Cont	zinuité en un point	29		
	4.1	Définition	29		
	4.2	Prolongement par continuité	31		
	4.3	Théorème des valeurs intermédiaires	31		
5	Fonct	zions monotones et bijections	32		
	5.1	Rappels: injection, surjection, bijection	32		
	5.2	Fonctions monotones et bijections	32		
6	Dériv	ée	34		
	6.1	Dérivée en un point	34		
	6.2	Dérivée de fonctions usuelles	36		
	6.3	Composition	36		
	6.4	Dérivées successives	37		
	6.5	Théorème de Rolle	37		
	6.6	Théorème des accroissements finis	38		

		6.7	Fonction croissante et dérivée	38			
IV	Fond	ctions	élémentaires	42			
	1	Fonction	ons trigonométriques	42			
		1.1	Les fonctions sinus et cosinus	42			
		1.2	Les fonctions tangent et cotangente	43			
	2	Les for	actions trigonométriques réciproques	44			
		2.1	Arccosinus	44			
		2.2	Arcsinus	46			
		2.3	Arctangente	47			
	3	Logarit	chme et exponentielle	48			
		3.1	Logarithme	48			
		3.2	Exponentielle	48			
	4	Fonctio	ons hyperboliques et hyperboliques inverses	49			
		4.1	Cosinus hyperbolique et son inverse	49			
		4.2	Sinus hyperbolique et son inverse	50			
		4.3	Tangente hyperbolique et son inverse	51			
		4.4	Trigonométrie hyperbolique	51			
So	lutio	ns Des	Exercices	53			
	Exer	cices du	ı Chapitre I	54			
Exercices du Chapitre II							
Exercices du Chapitre III							
	Exer	cices du	Chapitre IV	62			
	Bibliographie						

Chapitre I

Logique et raisonnements

1 Logique

1.1 Assertions

Une assertion est une phrase soit vraie, soit fausse, pas les deux en même temps.

Exemple 1.1

2 + 2 = 4 est une assertion vraie.

 $3 \times 2 = 7$ est une assertion fausse.

Pour tout $x \in \mathbb{R}$ on a $x^2 \ge 0$ est une assertion vraie.

Pour tout $z \in \mathbb{C}$ on a |z| = 1 est une assertion fausse.

Si P est une assertion et Q est une autre assertion, nous allons définir de nouvelles assertions construites à partir de P et de Q.

L'opérateur logique $et(\wedge)$

L'assertion $\ll Pet Q \gg$ est vraie si P est vraie et Q est vraie. L'assertion $\ll Pet Q \gg$ est fausse sinon. On résume ceci en une table de vérité :

$$\begin{array}{cccc} P & Q & P \wedge Q \\ V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \end{array}$$

Chapitre I. Logique et raisonnements

Exemple 1.2

" $3+5=8 \ \land \ 3\times 6=18$ " est une assertion vraie

" $2 + 2 = 4 \land 2 \times 3 = 7$ " est une assertion fausse.

L'opérateur logique $ou(\lor)$

L'assertion $\ll Pou Q \gg$ est vraie si l'une des deux assertions P ou Q est vraie. L'assertion $\ll Pou Q \gg$ est fausse si les deux assertions P et Q sont fausses. On reprend ceci dans la table de vérité :

Exemple 1.3

" $2+2=4 \lor 3 \times 2=6$ " est une assertion vraie

" $2 = 4 \lor 4 \times 2 = 7$ " est une assertion fausse.

1.1.1 La négation \overline{P}

L'assertion $\ll \overline{P} \gg$ est vraie si P est fausse, et fausse si P est vraie.

P \bar{P} V F

Exemple 1.4

La négation de l'assertion $3 \ge 0$ elle est l'assertion $3 \not \le 0$.

1.1.2 L'implication \Rightarrow

La définition mathématique est la suivante :

L'assertion $\ll \overline{P}$ ou $Q \gg$ est notée $P \Rightarrow Q$

Sa table de vérité est donc la suivante :

$$\begin{array}{cccc} P & Q & P \Longrightarrow Q \\ V & V & V \\ V & F & F \\ F & V & V \\ F & F & V \end{array}$$

Exemple 1.5

 $2+2=5\Rightarrow \sqrt{2}=2$ est vraie! Eh oui, si P est fausse alors l'assertion $P\Rightarrow Q$ est toujours vraie.

1.1.3 L'équivalence \iff

L'équivalence est définie par : $\ll P \Longleftrightarrow Q \gg$ est l'assertion $\ll (P \Rightarrow Q)$ et $(Q \Rightarrow P) \gg$ On dira $\ll P$ est équivalent à $Q \gg$ ou $\ll P$ équivaut à $Q \gg$ ou $\ll P$ si et seulement si $Q \gg$. Cette assertion est vraie lorsque P et Q sont vraies ou lorsque P et Q sont fausses. La table de vérité est :

$$\begin{array}{ccccc} P & Q & P \Leftrightarrow Q \\ V & V & V \\ V & F & F \\ F & V & F \\ F & F & V \end{array}$$

1.2 Quantificateurs

Le quantificateur \forall : \ll pour tout \gg

L'assertion

$$\forall x \in E, \ P(x)$$

est une assertion vraie lorsque les assertions P(x) sont vraies pour tous les éléments x de l'ensemble E. On lit \ll Pour tout x appartenant à E, P(x) est vraie \gg .

Par exemple:

 $\forall x \in \mathbb{R}, \ x^2 \ge 0 \text{ est une assertion vraie.}$

 $\forall x \in \mathbb{R}, \ x^2 \ge 1 \text{ est une assertion fausse.}$

Chapitre I. Logique et raisonnements

Le quantificateur \exists : \ll il existe \gg

L'assertion

$$\exists x \in E, \ P(x)$$

est une assertion vraie lorsque l'on peut trouver au moins un élément x de E pour lequel P(x) est vraie. On lit \ll il existe x appartenant à E tel que P(x) (soit vraie) \gg .

Par exemple:

 $\exists x \in \mathbb{R}, \ x^2 \leq 0$ est vraie, par exemple x = 0.

 $\exists x \in \mathbb{R}, \ x^2 < 0 \text{ est fausse.}$

La négation des quantificateurs

La négation de $\ll \forall x \in E, \ P(x) \gg \text{est} \ll \exists x \in E, \ \overline{P(x)} \gg .$

Exemple : la négation de $\ll \forall x \in \mathbb{R}, \ x^2 \ge 0 \gg \text{est l'assertion} \ll \exists x \in \mathbb{R}, \ x^2 < 0 \gg$

La négation de $\ll \exists x \in E, \ P(x) \gg \text{est} \ll \forall x \in E, \ \overline{P(x)} \gg .$

Exemple : la négation de $\ll \exists x \in \mathbb{R}, \ x \leq 0 \gg \text{est l'assertion} \ll \forall x \in \mathbb{R}, \ x > 0 \gg$

2 Raisonnements

2.1 Raisonnement direct

On veut montrer que l'assertion $P \Longrightarrow Q$ est vraie. On suppose que P est vraie et on montre qu'alors Q est vraie.

Exemple 2.1 Montrer que si $a = b \Longrightarrow \frac{a+b}{2} = b$

$$a = b \Longrightarrow \frac{a}{2} = \frac{b}{2}$$

$$\Longrightarrow \frac{a}{2} + \frac{b}{2} = \frac{b}{2} + \frac{b}{2}$$

$$\Longrightarrow \frac{a+b}{2} = b$$

2.2 Contraposée

Le raisonnement par contraposition est basé sur l'équivalence suivante.

L'assertion $P \Longrightarrow Q$ est équivalente à $\overline{Q} \Longrightarrow \overline{P}$.

Donc si l'on souhaite montrer l'assertion $P \Longrightarrow Q$.

On montre en fait que si \overline{Q} est vraie alors \overline{P} est vraie.

Exemple 2.2 Soit $n \in \mathbb{N}$. Montrer que si n^2 est pair alors n est pair.

$D\'{e}monstration$

Nous supposons que n n'est pas pair. Nous voulons montrer qu'alors n^2 n'est pas pair. Comme n n'est pas pair, il est impair et donc il existe $k \in \mathbb{N}$ tel que n = 2k + 1.

Alors $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2k' + 1$ avec $k' = 2k^2 + 2k \in \mathbb{N}$. Et donc n^2 est impair. Conclusion : nous avons montré que si n est impair alors n^2 est impair. Par contraposition ceci est équivalent à : si n^2 est pair alors n est pair .

2.3 Absurde

Le raisonnement par l'absurde pour montrer $\ll P \Longrightarrow Q \gg$ repose sur le principe suivant : On suppose à la fois que P est vraie et que Q est fausse et on cherche une contradiction. Ainsi si P est vraie alors Q doit être vraie et donc $\ll P \Longrightarrow Q \gg$ est vraie.

Exemple 2.3 Soient a, b > 0. Montrer que si $\frac{a}{1+b} = \frac{b}{1+a}$ alors a = b.

$D\'{e}monstration$

Nous raisonnons par l'absurde en supposant que $\frac{a}{1+b} = \frac{b}{1+a}$ et $a \neq b$. Cela conduit à (a-b)(a+b) = -(a-b).

Comme $a \neq b$ alors $a - b \neq 0$ et donc en divisant par a - b on obtient a + b = -1. La somme de deux nombres positifs ne peut être négative. Nous obtenons une contradiction.

Conclusion: $si \frac{a}{1+b} = \frac{b}{1+a} alors a = b.$

2.4 Contre-exemple

Si l'on veut montrer qu'une assertion du type $\ll \forall x \in E \ P(x) \gg$ est vraie alors pour chaque x de E il faut montrer que p(x) est vraie. Par contre pour montrer que cette assertion est fausse alors il suffit de trouver $x \in E$ tel que P(x) soit fausse. (Rappelez-vous la négation de $\ll \forall x \in E, \ P(x) \gg \text{est} \ll \exists x \in E, \ \overline{P(x)} \gg$). Trouver un tel x c'est trouver un contre-exemple à l'assertion $\ll \forall x \in E, \ P(x) \gg$.

Exemple 2.4 Montrer que l'assertion suivante est fausse $\ll \forall x \in \mathbb{R}, \ x^2 \ge 1 \gg$ **Démonstration**. Un contre-exemple est x = 0.5

2.5 Récurrence

Le principe de récurrence permet de montrer qu'une assertion P(n), dépendant de n, est vraie pour tout $n \in \mathbb{N}$. La démonstration par récurrence se déroule en deux étapes :

Chapitre I. Logique et raisonnements

- On prouve P(0). Est vraie.
- On suppose $n \ge 0$ donné avec P(n) vraie, et on démontre alors que l'assertion P(n+1) est vraie.

Enfin dans la conclusion, on rappelle que par le principe de récurrence P(n) est vraie pour tout $n \in \mathbb{N}$.

Exemple 2.5 Montrer que pour tout $n \in \mathbb{N}$ $2^n > n$.

Démonstration Pour $n \ge 0$, notons P(n) l'assertion suivante : $2^n > n$

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}$.

Pour n = 0 nous avons $2^0 = 1 > 0$. Donc P(0) est vraie.

Supposons que P(n) soit vraie. Nous allons montrer que P(n+1) est vraie.

$$2^{n+1} = 2^n + 2^n$$

> $n+2^n$ car par $P(n)$ nous savons $2^n > n$,
> $n+1$ car $2^n \ge 1$.

Donc P(n+1) est vraie

Conclusion. Par le principe de récurrence P(n) est vraie pour tout $n \geq 0$, c'est-à-dire $2^n > n$ pour tout $n \geq 0$.

Remarque 2.1 Si on doit démontrer qu'une propriété est vraie pour tout $n \ge n_0$, alors on commence l'initialisation au rang n_0 .

Exercice 1.1

Soient les quatre assertions suivantes :

(a)
$$\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x+y>0$$
 ; (b) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y>0$;

(c)
$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0 \ ; \quad (d) \ \exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ y^2 > x.$$

- 1. Les assertions a, b, c, d sont-elles vraies ou fausses?
- 2. Donner leur négation.

Exercice 1.2

Compléter les pointillés par le connecteur logique qui s'impose : \iff , \iff .

1.
$$x \in \mathbb{R} \ x^2 = 4 \ \dots \ x = 2$$
;

$$2. \ z \in \mathbb{C} \ z = \overline{z} \ \dots \ z \in \mathbb{R} \ ;$$

3.
$$x \in \mathbb{R} \ x = \pi \ \dots \ e^{2ix} = 1$$
.

Exercice 1.3

Montrer:

1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad \forall n \in \mathbb{N}^*.$$

2.
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \quad \forall n \in \mathbb{N}^*$$
.

Chapitre II

Les ensembles, les relations et les applications

vous connaissez déjà quelques ensembles :

- l'ensemble des entiers naturels $\mathbb{N} = \{0,1,2,3,\ldots\}.$
- l'ensemble des entiers relatifs $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$
- l'ensemble des rationnels $\mathbb{Q} = \left\{ \begin{smallmatrix} p \\ q \end{smallmatrix} \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \right\}$.
- l'ensemble des réels \mathbb{R} , par exemple $3, \sqrt{2}, \pi, \ln(2), \dots$
- l'ensemble des nombres complexes \mathbb{C} .

Nous allons essayer de voir les propriétés des ensembles, sans s'attacher à un exemple particulier.

Vous vous apercevrez assez rapidement que ce qui est au moins aussi important que les ensembles, ce sont les relations entre ensembles : ce sera la notion d'application (ou fonction) entre deux ensembles.

1 Ensembles

1.1 Définir des ensembles

• On va définir informellement ce qu'est un ensemble : un ensemble est une collection d'éléments.

• Exemples :

$$\{0,1\}, \{\text{rouge, noir}\}, \{0,1,2,3,\ldots\} = \mathbb{N}.$$

- Un ensemble particulier est l'ensemble vide, noté \varnothing qui est l'ensemble ne contenant aucun élément.
- On note $x \in E$ si x est un élément de E, et $x \notin E$ dans le cas contraire.
- Voici une autre façon de définir des ensembles : une collection d'éléments qui vérifient une propriété.
- Exemples:

$$\{x \in \mathbb{R} \mid |x - 3| < 1\}, \quad \{z \in \mathbb{C} \mid z^3 = 1\}, \quad \{x \in \mathbb{R} \mid 0 \le x \le 1\} = [0, 1].$$

1.2 Inclusion, union, intersection, complémentaire

• L'inclusion. $E \subset F$ si tout élément de E est aussi un élément de F. Autrement dit : $\forall x \in E \ (x \in F)$. On dit alors que E est un sous-ensemble de F ou une partie de F.

- L'égalité. E = F si et seulement si $E \subset F$ et $F \subset E$.
- Ensemble des parties de E. On note $\mathcal{P}(E)$ l'ensemble des parties de E. Par exemple si $E = \{1, 2, 3\}$:

$$\mathcal{P}(\{1,2,3\}) = \Big\{\varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\Big\}.$$

• Complémentaire. Si $A \subset E$.

$$\square_E A = \{ x \in E \mid x \notin A \}$$

Chapitre II. Les ensembles, les relations et les applications

• Union. Pour $A, B \subset E$.

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$

Le "ou" n'est pas exclusif : x peut appartenir à A et à B en même temps.

• intersection. Pour $A, B \subset E$.

$$A \cap B = \{ x \in E \mid x \in A \text{ et } x \in B \}$$

• L'ensemble fini On dit que l'ensemble E est fini si nombre d'éléments de E est fini. Nombre d'éléments de E s'appelle le cardinal de E noté Card(E)

Par exemple si
$$E = \{0, 1, 2, 3, 5, 7\}$$

donc
$$Card(E) = 6$$

 $\mathbb N$ n'est pas un ensemble fini.

$$Card(\emptyset) = 0.$$

- $A \setminus B$ l'ensemble $\{x \in A \mid x \notin B\}$ et on l'appelle différence de A et B.
- $A \triangle B$ l'ensemble $(A \cup B) \setminus (A \cap B)$ et on l'appelle différence symétrique A et B.

Proposition 1.1 Soient A, B, C des parties d'un ensemble E.

- $A \cap B = B \cap A$ et $A \cup B = B \cup A$ (commutativité)
- $A \cap (B \cap C) = (A \cap B) \cap C$ et $A \cup (B \cup C) = (A \cup B) \cup C$ (associativité)
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ et $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributivité)
- $C_E(A \cap B) = C_E A \cup C_E B$ et $C_E(A \cup B) = C_E A \cap C_E B$ (loi de Morgan)
- $C_E(C_EA) = A$

Preuve 1.1 • Preuve de $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$: $x \in A \cap (B \cup C) \iff x \in A$ et $x \in (B \cup C) \iff x \in A$ et $(x \in B)$ ou $(x \in A)$ et $(x \in A)$ ou $(x \in A)$ ou $(x \in A)$ ou $(x \in A)$ et $(x \in A)$ ou $(x \in A)$

• Preuve de $C_E(A \cap B) = C_E A \cup C_E B$: $x \in C_E(A \cap B) \iff x \notin (A \cap B) \iff (x \in A \cap B) \iff x \notin A \text{ ou } x \notin B \iff x \in C_E A \cup C_E B$.

1.3 Produit cartésien

Soient E et F deux ensembles.

Le produit cartésien, noté $E \times F$, est l'ensemble des couples (x, y) où $x \in E$ et $y \in F$.

$$E \times F = \{(x, y) \mid x \in E \text{ et } y \in F\}.$$

Exemple 1.1 $E = \{1, 2\}$ et $F = \{3, 5\}$ alors

$$E \times F = \{(1,3), (1,5), (2,3), (2,5)\}.$$
$$\mathbb{R}^2 = \{(x,y) \mid x, y \in \mathbb{R}\}.$$

2 Relations d'équivalence-Relations d'ordre

2.1 Relations binaires

Définition 2.1 On appelle relation binaire, toute assertion entre deux objets, pouvant être vérifiée ou non. On note xRy et on lit $\ll x$ est en relation avec $y \gg$.

2.2 Relation d'équivalence

Définition 2.2 Soit R une relation binaire dans un ensemble E et x, y, z des éléments de E, R est dite

- A Réflexive si : xRx c'est à dire chaque élément est en relation avec lui même.
- \clubsuit Symétrique si : $xRy \Longrightarrow yRx$. Si x est en relation avec y alors y est en relation avec x.
- \clubsuit Transitive $si: [xRy \ et \ yRz] \Longrightarrow xRz$. $Si \ x \ est \ en \ relation \ avec \ y \ et \ y \ en \ relation \ avec \ z$ alors $x \ est \ en \ relation \ avec \ z$.
- Anti-symétrique $si:[xRy\ et\ yRx]\Longrightarrow x=y.$ Si deux éléments sont en relation l'un avec l'autre, ils sont égaux.

La relation R est une relation d'équivalence si elle est à la fois réflexive, symétrique et transitive. Dans ce cas, on appelle classe d'équivalence d'un élément x de E, l'ensemble des éléments de E en relation avec x par R, notée \dot{x} ou cl(x) ou bien C(x):

$$\dot{x} = \{ y \in E \mid yRx \}.$$

La classe d'équivalence \dot{x} est non vide car R est réflexive et contient de ce fait au moins x. On notera par

$$E/R = \{\dot{x} \mid x \in E\}.$$

L'ensemble des classes d'équivalence de E par la relation R. (ou l'ensemble quotient de E par la relation d'équivalence R)

Exemple 2.1 Dans \mathbb{R} on définit la relation R par :

$$\forall x,y \in \mathbb{R} \quad xRy \Longleftrightarrow x^2 = y^2$$

12

Montrer que R est une relation d'équivalence et donner l'ensemble quotient \mathbb{R}/R

- R est une relation d'équivalence.
- $\star R$ est une relation réflexive, car $\forall x \in \mathbb{R}, \ x^2 = x^2 \ donc$

$$\forall x \in \mathbb{R}, \ xRx$$

ce qui montre que R est une relation réflexive.

★ R est une relation Symétrique, car

$$\forall x, y \in \mathbb{R}, \ (xRy) \Longleftrightarrow x^2 = y^2$$

$$\iff y^2 = x^2$$

$$\iff yRx$$

 $\star R$ est une relation Transitive, car

$$\forall x, y, z \in \mathbb{R}, \ (xRy) \land (yRz) \Longrightarrow x^2 = y^2 \land y^2 = z^2$$

$$\Longrightarrow x^2 = z^2$$

$$\Longrightarrow xRz$$

ce qui montre que R est une relation Transitive. on déduit que R est une relation d'équivalence.

• Déterminer l'ensemble quotient \mathbb{R}/R Soit $x \in \mathbb{R}$, alors :

$$\forall y \in \mathbb{R}, \qquad xRy \Longleftrightarrow x^2 = y^2$$

$$\iff (y = x) \ \lor \ (y = -x)$$

 $donc: \dot{x} = \{x, -x\}, par suite$

$$\mathbb{R}/R = \{\{x, -x\}\}$$

2.3 Relation d'ordre

Définition 2.3 Une relation R sur E est dite relation d'ordre si elle est antisymétrique, transitive et réflexive.

Exemple 2.2 Soit R la relation définie sur \mathbb{N}^* par la relation $\ll x$ divise $y \gg$. Vérifions qu'elle est antisymétrique

$$xRy \iff \exists k \in \mathbb{N}^* : y = kx$$

 $yRx \iff \exists k' \in \mathbb{N}^* : x = k'y$

il vient que kk'=1, comme k et $k'\in\mathbb{N}^*$, alors k=k'=1 c'est-à-dire x=y.

2.3.1 L'ordre total et l'ordre partiel

Définition 2.4 Soit R une relation d'ordre définie sur un ensemble E, alors si pour tout $x, y \in E$, on a ou bien xRy ou yRx, on dira que l'ordre est total, si non c'est à dire

$$\exists \alpha, \beta \in E \text{ tel que on a ni } \alpha R \beta \text{ ni } \beta R \alpha$$

alors R est un ordre partiel.

Exemple 2.3 Soit R une relation d'ordre définie sur \mathbb{N}^* par:

$$pRq \iff \exists n \in \mathbb{N}^* tel \ que \quad p^n = q$$

R est un ordre partiel car:

pour
$$\alpha = 2$$
 et $\beta = 3$ ni $\alpha R\beta$ ni $\beta R\alpha$

3 Applications

Définition 3.1 On appelle Fonctions d'un ensemble E dans un ensemble F, toute correspondance f entre les éléments de E et ceux de F.

Domaine de définition de f : noté D_f l'ensemble des éléments $x \in E$ fait correspondre un unique élément $y \in F$ noté f(x).

y = f(x) est appelé image de x et x est un antécédant de y.

E est appelé ensemble de départ et F l'ensemble d'arrivée de l'application f.

On écrit

$$f: E \longrightarrow F$$

$$x \longmapsto f(x)$$

Définition 3.2 L'application est une fonctions d'un ensemble E dans un ensemble F, tel que $D_f = E$

- Égalité. Deux applications $f, g: E \to F$ sont égales si et seulement si pour tout $x \in E$, f(x) = g(x). On note alors f = g.

• graphe de
$$f: E \to F$$
 est
$$\Gamma_f = \left\{ \left(x, f(x) \right) \in E \times F \mid x \in E \right\}$$

• Composition. Soient $f: E \to F$ et $g: F \to G$ alors $g \circ f: E \to G$ est l'application définie par $g \circ f(x) = g(f(x))$.

Exemple 3.1 1. L'identité, $id_E : E \longrightarrow E$ est simplement définie par $x \longrightarrow x$ et sera très utile dans la suite.

2. Définissons f, g ainsi

Alors $g \circ f : [0, +\infty[\to \mathbb{R} \text{ v\'erifie pour tout } x \in]0, +\infty[$:

$$g \circ f(x) = g(f(x)) = g(\frac{1}{x}) = \frac{\frac{1}{x}-1}{\frac{1}{x}+1} = \frac{1-x}{1+x} = -g(x).$$

3.1 Restriction et prolongement d'une application

Définition 3.3 Etant donnée une application $f: E \longrightarrow F$

1. On appelle restriction de f à un sous ensemble non vide X de E, l'application $g:X\longrightarrow F$ telle que

$$\forall x \in X, \quad g(x) = f(x)$$

On note $g = f_{\mid_X}$.

2. Etant donné un ensemble G tel que $E \subset G$, on appelle prolongement de l'application f à l'ensemble G, toute application h de G dans F telle que f est la restriction de h à E. D'après cette définition, f est un prolongement de $f_{|_X}$ à E.

Exemple 3.2 Etant donnée l'application

$$\begin{array}{ccc} f : & \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \ln x \end{array}.$$

alors

3.2 Image directe, image réciproque

Soient E, F deux ensembles.

Définition 3.4 Soit $A \subset E$ et $f: E \longrightarrow F$, l'image directe de A par f est l'ensemble

$$f(A) = \{ f(x) \mid x \in A \}$$

Définition 3.5 Soit $B \subset F$ et $f : E \longrightarrow F$, l'image réciproque de B par f est l'ensemble

$$f^{-1}(B) = \left\{ x \in E \mid f(x) \in B \right\}$$

16

4 Injection, surjection, bijection

4.1 Injection, surjection

Soit E, F deux ensembles et $f: E \to F$ une application.

Définition 4.1 f est injection si pour tout $x, x' \in E$ avec f(x) = f(x') alors x = x'. Autrement dit:

$$\forall x, x' \in E \quad (f(x) = f(x') \implies x = x')$$

Définition 4.2 f est surjection si pour tout $y \in F$, il existe $x \in E$ tel que y = f(x). Autrement dit:

$$\forall y \in F \quad \exists x \in E \quad (y = f(x))$$

Exemple 4.1 1. Soit $f_1: \mathbb{N} \longrightarrow \mathbb{Q}$ définie par $f_1(x) = \frac{1}{1+x}$

Montrons que f_1 est injective : soit $x, x' \in \mathbb{N}$ tels que $f_1(x) = f_1(x')$.

Alors $\frac{1}{1+x} = \frac{1}{1+x'}$, donc 1 + x = 1 + x' et donc x = x'.

Ainsi f_1 est injective.

Par contre f_1 n'est pas surjective. Il s'agit de trouver un élément y qui n'a pas d'antécédent par f_1 . Ici il est facile de voir que l'on a toujours $f_1(x) \leq 1$ et donc par exemple y = 2 n'a pas d'antécédent.

Ainsi f_1 n'est pas surjective.

2. Soit $f_2: \mathbb{Z} \longrightarrow \mathbb{N}$ définie par $f_2(x) = x^2$.

Alors f_2 n'est pas injective.

En effet on peut trouver deux éléments $x, x' \in \mathbb{Z}$ différents tels que $f_2(x) = f_2(x')$.

Il suffit de prendre par exemple x = 2, x' = -2.

 f_2 n'est pas non plus surjective, en effet il existe des éléments $y \in \mathbb{N}$ qui n'ont aucun antécédent. Par exemple y=3: si y=3 avait un antécédent x par f_2 , nous aurions $f_2(x)=y$, c'est-à-dire $x^2=3$, d'où $x=\pm\sqrt{3}$.

Mais alors x n'est pas un entier de \mathbb{Z} .

Donc y = 3 n'a pas d'antécédent et f_2 n'est pas surjective.

4.2 Bijection

Définition 4.3 f est bijective si elle injective et surjective. Cela équivaut a: pour tout $y \in F$ il existe un unique $x \in E$ tel que y = f(x). Autrement dit:

$$\forall y \in F \quad \exists \ unique \ x \in E \quad \left(y = f(x)\right)$$

Proposition 4.1 Soit E, F des ensembles et $f: E \longrightarrow F$ une application.

- 1. L'application f est bijective si et seulement si il existe une application $g: F \longrightarrow E$ telle que $f \circ g = id_F$ et $g \circ f = id_E$.
- 2. Si f est bijective alors l'application g est unique et elle aussi est bijective. L'application g s'appelle la bijection réciproque (ou l'application réciproque) de f et est notée f^{-1} . De plus $(f^{-1})^{-1} = f$.

Remarque 4.1 • $f \circ g = id_F$ se reformule ainsi

$$\forall y \in F \quad f(g(y)) = y.$$

• Alors que $g \circ f = id_E$ s'écrit :

$$\forall x \in E \quad g(f(x)) = x.$$

• Par exemple $f: \mathbb{R} \longrightarrow]0, +\infty[$ définie par $f(x) = \exp(x)$ est bijective, sa bijection réciproque est $g:]0, +\infty[\longrightarrow \mathbb{R}$ définie par $g(y) = \ln(y)$. Nous avons bien $\exp\left(\ln(y)\right) = y$, pour tout $y \in]0, +\infty[$ et $\ln\left(\exp(x)\right) = x$, pour tout $x \in \mathbb{R}$.

Proposition 4.2 Soient $f: E \longrightarrow F$ et $g: F \to G$ des applications bijectives. L'application $g \circ f$ est bijective et sa bijection réciproque est

$$g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

18

Exercice 2.1

Montrer par contraposition la assertion suivante, E étant un ensemble :

$$\forall A, B \in \mathcal{P}(E) \quad (A \cap B = A \cup B) \Longrightarrow A = B$$

Exercice 2.2

Soit A, B deux ensembles, montrer $\mathcal{C}_E(A \cup B) = \mathcal{C}_E A \cap \mathcal{C}_E B$ et $\mathcal{C}_E(A \cap B) = \mathcal{C}_E A \cup \mathcal{C}_E B$.

Exercice 2.3

Soient E et F deux ensembles, $f: E \longrightarrow F$. Démontrer que :

$$\forall A, B \in \mathcal{P}(E) \quad (A \subset B) \Longrightarrow (f(A) \subset f(B)),$$

$$\forall A, B \in \mathfrak{P}(E) \quad f(A \cap B) \subset f(A) \cap f(B),$$

$$\forall A, B \in \mathcal{P}(E) \quad f(A \cup B) = f(A) \cup f(B),$$

$$\forall A, B \in \mathcal{P}(F) \quad f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B),$$

$$\forall A \in \mathcal{P}(F) \quad f^{-1}(F \setminus A) = E \setminus f^{-1}(A).$$

Exercice 2.4

Dans $\mathbb C$ on définit la relation $\mathcal R$ par :

$$z\Re z' \iff |z| = |z'|.$$

- 1. Montrer que ${\mathcal R}$ est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de $z\in\mathbb{C}.$

Exercice 2.5

Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ telles que f(x) = 3x + 1 et $g(x) = x^2 - 1$. A-t-on $f \circ g = g \circ f$?

Exercice 2.6

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = 2x/(1+x^2)$.

- 1. f est-elle injective? surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.

Chapitre II. Les ensembles, les relations et les applications

Exercice 2.7

Soit $f:[1,+\infty[\longrightarrow [0,+\infty[$ telle que $f(x)=x^2-1.$ f est-elle bijective ?

20

Chapitre III

Les fonctions réelles à une variable réelle

1 Notions de fonction

1.1 Définitions

Définition 1.1 Une fonction d'une variable réelle à valeurs réelles est une application $f: U \longrightarrow \mathbb{R}$, où U est une partie de \mathbb{R} .

En général, U est un intervalle ou une réunion d'intervalles. On appelle U le domaine de définition de la fonction f.

Exemple 1.1 La fonction inverse:

$$f:]-\infty, 0[\cup]0, +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{x}.$$

Le graphe d'une fonction $f:U\longrightarrow \mathbb{R}$ est la partie Γ_f de \mathbb{R}^2 définie par

$$\Gamma_f = \{(x, f(x)) \mid x \in U\}.$$

Le graphe d'une fonction (à gauche), l'exemple du graphe de $x \mapsto \frac{1}{x}$ (à droite).

1.2 Opérations sur les fonctions

Soient $f:U\longrightarrow \mathbb{R}$ et $g:U\longrightarrow \mathbb{R}$ deux fonctions définies sur une même partie U de \mathbb{R} . On peut alors définir les fonctions suivantes :

- la somme de f et g est la fonction $f+g:U\longrightarrow \mathbb{R}$ définie par (f+g)(x)=f(x)+g(x) pour tout $x\in U$;
- le produit de f et g est la fonction $f \times g : U \longrightarrow \mathbb{R}$ définie par $(f \times g)(x) = f(x) \times g(x)$ pour tout $x \in U$;
- la multiplication par un scalaire $\lambda \in \mathbb{R}$ de f est la fonction $\lambda \cdot f : U \longrightarrow \mathbb{R}$ définie par $(\lambda \cdot f)(x) = \lambda \cdot f(x)$ pour tout $x \in U$.

1.3 Fonctions majorées, minorées, bornées

Définition 1.2 Soient $f: U \longrightarrow \mathbb{R}$ et $g: U \longrightarrow \mathbb{R}$ deux fonctions. Alors:

- $f \ge g \ si \ \forall x \in U \ f(x) \ge g(x) \ ;$
- $f \ge 0$ si $\forall x \in U$ $f(x) \ge 0$;
- f > 0 si $\forall x \in U$ f(x) > 0;
- f est dite constante sur U si $\exists a \in \mathbb{R} \ \forall x \in U \ f(x) = a$;
- f est dite nulle sur U si $\forall x \in U$ f(x) = 0.

Définition 1.3 Soit $f: U \longrightarrow \mathbb{R}$ une fonction. On dit que :

• f est majorée $sur\ U\ si\ \exists M\in\mathbb{R}\ \forall x\in U\ f(x)\leq M$;

- f est minorée sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \geq m$;
- f est bornée sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

Voici le graphe d'une fonction bornée (minorée par m et majorée par M).

1.4 Fonctions croissantes, décroissantes

Définition 1.4 Soit $f: U \longrightarrow \mathbb{R}$ une fonction. On dit que :

- f est croissante sur U si $\forall a,b \in U$ $a \leq b \implies f(a) \leq f(b)$
- f est strictement croissante sur U si $\forall a,b \in U$ $a < b \implies f(a) < f(b)$
- f est décroissante sur U si $\forall a, b \in U$ $a \leq b \implies f(a) \geq f(b)$
- f est strictement décroissante sur U si $\forall a,b \in U$ $a < b \implies f(a) > f(b)$
- f est monotone (resp. strictement monotone) sur U si f est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur U.

Voici le graphe d'une fonction strictement croissante

Chapitre III. Les fonctions réelles à une variable réelle

Exemple 1.2 • La fonction racine carrée $\begin{cases} [0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x} \end{cases}$ est strictement croissante.

- Les fonctions exponentielle exp : $\mathbb{R} \longrightarrow \mathbb{R}$ et logarithme ln :]0, $+\infty$ [$\longrightarrow \mathbb{R}$ sont strictement croissantes.
- La fonction valeur absolue $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{cases}$ n'est ni croissante, ni décroissante. $Par\ contre,\ la\ fonction \begin{cases} [0,+\infty[\longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{cases}$ est strictement croissante.

1.5 Parité et périodicité

Définition 1.5 Soit I un intervalle de \mathbb{R} symétrique par rapport à 0 (c'est-à-dire de la forme]-a,a[ou [-a,a] ou \mathbb{R}). Soit $f:I\longrightarrow\mathbb{R}$ une fonction définie sur cet intervalle. On dit que :

- f est paire si $\forall x \in I$ f(-x) = f(x),
- f est impaire si $\forall x \in I$ f(-x) = -f(x).

Interprétation graphique :

- f est paire si et seulement si son graphe est symétrique par rapport à l'axe des ordonnées (figure de gauche).
- f est impaire si et seulement si son graphe est symétrique par rapport à l'origine (figure de droite).

Exemple 1.3 • La fonction $\cos : \mathbb{R} \longrightarrow \mathbb{R}$ est paire. La fonction $\sin : \mathbb{R} \longrightarrow \mathbb{R}$ est impaire.

Définition 1.6 Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction et T un nombre réel, T > 0. La fonction f est dite périodique de période T si $\forall x \in \mathbb{R}$ f(x+T) = f(x).

Exemple 1.4 Les fonctions sinus et cosinus sont 2π -périodiques. La fonction tangente est π -périodique.

2 Limites

2.1 Limite en un point

Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit $x_0 \in \mathbb{R}$ un point de I ou une extrémité de I.

Définition 2.1 Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en x_0 si

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - \ell| < \epsilon$$

On dit aussi que f(x) tend vers ℓ lorsque x tend vers x_0 . On note alors $\lim_{x \to x_0} f(x) = \ell$ ou bien $\lim_{x_0} f = \ell$.

Remarque 2.1 • L'inégalité $|x - x_0| < \delta$ équivaut à $x \in]x_0 - \delta, x_0 + \delta[$.

• L'inégalité $|f(x) - \ell| < \epsilon$ équivaut à $f(x) \in]\ell - \epsilon, \ell + \epsilon[$

Soit f une fonction définie sur un ensemble de la forme $]a,x_0[\cup]x_0,b[$.

Chapitre III. Les fonctions réelles à une variable réelle

Définition 2.2 • On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A$$

On note alors $\lim_{x \to x_0} f(x) = +\infty$.

• On dit que f a pour limite $-\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) < -A$$

On note alors $\lim_{x \to x_0} f(x) = -\infty$.

2.2 Limite en l'infini

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle de la forme $I=]a,+\infty[$.

Définition 2.3 • Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en $+\infty$ si

$$\forall \epsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies |f(x) - \ell| < \epsilon$$

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{t \to \infty} f = \ell$.

• On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies f(x) > A$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$.

On définirait de la même manière la limite en $-\infty$ pour des fonctions définies sur les intervalles du type $]-\infty,a[.$

Exemple 2.1 On a les limites classiques suivantes pour tout $n \ge 1$:

•
$$\lim_{x \to +\infty} x^n = +\infty$$
 et $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est } pair \\ -\infty & \text{si } n \text{ est } impair \end{cases}$

•
$$\lim_{x \to +\infty} \left(\frac{1}{x^n}\right) = 0$$
 et $\lim_{x \to -\infty} \left(\frac{1}{x^n}\right) = 0$.

2.2.1 Limite à gauche et à droite

Soit f une fonction définie sur un ensemble de la forme $]a, x_0[\cup]x_0, b[$.

Définition 2.4 • On appelle limite à droite en x_0 de f la limite de la fonction $f_{\mid]x_0,b[}$ en x_0 et on la note $\lim_{x_0^+} f$.

- On définit de même la limite à gauche en x_0 de f: la limite de la fonction f_{a,x_0} en a et on la note $\lim_{x_0^-} f$.
- On note aussi $\lim_{\substack{x \to x_0 \\ x \to x}} f(x)$ pour la limite à droite et $\lim_{\substack{x \to x_0 \\ x \to x}} f(x)$ pour la limite à gauche.

Dire que $f: I \to \mathbb{R}$ admet une limite $\ell \in \mathbb{R}$ à droite en x_0 signifie donc :

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad x_0 < x < x_0 + \delta \implies |f(x) - \ell| < \epsilon$$

3 Unicité de la limite

Proposition 3.1 Si une fonction admet une limite, alors cette limite est unique.

Proposition 3.2
$$\lim_{x \to x_0} f(x) = \ell \iff \lim_{\substack{x \to x_0 \\ <}} f(x) = \lim_{\substack{x \to x_0 \\ >}} f(x) = \ell$$

Chapitre III. Les fonctions réelles à une variable réelle

Exemple 3.1

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 2x+3 & si \quad x \ge 0 \\ 4x+5 & si \quad x < 0 \end{cases}.$$

 $On \ a$

 $\lim_{\substack{x\to 0\\ >}} f(x) = 3 \text{ et } \lim_{\substack{x\to 0\\ >}} f(x) = 5 \text{ Dans ce cas on dit que } f \text{ n'admet pas une limite en } 0.$

Soient deux fonctions f et g. On suppose que x_0 est un réel, ou que $x_0 = \pm \infty$

Proposition 3.3 Si $\lim_{x_0} f = \ell \in \mathbb{R}$ et $\lim_{x_0} g = \ell' \in \mathbb{R}$, alors :

- $\lim_{x_0} (\lambda \cdot f) = \lambda \cdot \ell$ pour tout $\lambda \in \mathbb{R}$
- $\lim_{x_0} (f+g) = \ell + \ell'$
- $\lim_{x_0} (f \times g) = \ell \times \ell'$
- $si \ \ell \neq 0$, $alors \lim_{x_0} \frac{1}{f} = \frac{1}{\ell}$ $De \ plus, \ si \lim_{x_0} f = +\infty \ (ou \infty) \ alors \lim_{x_0} \frac{1}{f} = 0$
- si h est une fonction bornée et $\lim_{x_0} f = 0$ alors $\lim_{x_0} (h \cdot f) = 0$.

Proposition 3.4 (Composition de limites)

$$Si \lim_{x_0} f = \ell \ et \lim_{\ell} g = \ell', \ alors \lim_{x_0} g \circ f = \ell'.$$

Proposition 3.5 • Si $f \leq g$ et si $\lim_{x_0} f = \ell \in \mathbb{R}$ et $\lim_{x_0} g = \ell' \in \mathbb{R}$, alors $\ell \leq \ell'$.

- Si $f \leq g$ et si $\lim_{x_0} f = +\infty$, alors $\lim_{x_0} g = +\infty$.
- Théorème des gendarmes

Si $f \leq g \leq h$ et si $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim_{x_0} g = \ell$.

4 Continuité en un point

4.1 Définition

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

Définition 4.1 • On dit que f est continue en un point $x_0 \in I$ si

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

c'est-à-dire

$$\lim_{x \to x_0} f(x) = f(x_0)$$

On dit que f est continue sur I si f est continue en tout point de I.
On note C(I; ℝ) ou C⁰(I; ℝ) l'ensemble des fonctions continues sur I à valeurs dans ℝ.

Définition 4.2 • On dit que f est continue à droite en point $x_0 \in I$ si

$$\lim_{\substack{x \to x_0 \\ >}} f(x) = f(x_0)$$

c'est-à-dire

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad x_0 < x < x_0 + \delta \implies |f(x) - f(x_0)| < \epsilon$$

• On dit que f est continue à gauche en point $x_0 \in I$ si

$$\lim_{\substack{x \to x_0 \\ <}} f(x) = f(x_0)$$

c'est-à-dire

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad x_0 - \delta < x < x_0 \implies |f(x) - f(x_0)| < \epsilon$$

Chapitre III. Les fonctions réelles à une variable réelle

Exemple 4.1

$$x \longmapsto \begin{cases} 2x+1 & si \quad x > 1 \\ 3 & si \quad x = 1 \\ 4x+5 & si \quad x < 1 \end{cases}$$

On a

 $\lim_{\substack{x\to 1\\ >\\ en}} f(x) = 3 = f(1) \ et \lim_{\substack{x\to 1\\ <\\ <}} f(x) = 9 \neq f(1) \ Dans \ ce \ cas \ on \ dit \ que \ f \ n'admet \ pas \ une \ limite$

f est continue à droite en 1 mais n'est pas ontinue à gauche en 1. donc f n'est pas ontinue en 1

Exemple 4.2 Les fonctions suivantes sont continues :

- la fonction racine carrée $x \mapsto \sqrt{x} \ sur \ [0, +\infty[$,
- les fonctions sin et cos sur \mathbb{R} ,
- la fonction valeur absolue $x \mapsto |x| \sin \mathbb{R}$,
- $la\ fonction\ \exp\ sur\ \mathbb{R}$,
- la fonction $\ln sur \]0, +\infty[$.

Proposition 4.1 Soient $f, g: I \to \mathbb{R}$ deux fonctions continues en un point $x_0 \in I$. Alors

- $\lambda \cdot f$ est continue en x_0 (pour tout $\lambda \in \mathbb{R}$),
- f + g est continue en x_0 ,
- $f \times g$ est continue en x_0 ,
- $si\ f(x_0) \neq 0$, alors $\frac{1}{f}$ est continue en x_0 .

Proposition 4.2 Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$. Si f est continue en un point $x_0 \in I$ et si g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

30

4.2 Prolongement par continuité

Définition 4.3 Soit I un intervalle, x_0 un point de I et $f: I \setminus \{x_0\} \to \mathbb{R}$ une fonction.

- On dit que f est prolongeable par continuité en x_0 si f admet une limite finie en x_0 . Notons alors $\lim_{x \to x_0} f(x) = \ell$.
- On définit alors la fonction $\tilde{f}:I\to\mathbb{R}$ en posant pour tout $x\in I$

$$\tilde{f}(x) = \begin{cases} f(x) & si \ x \neq x_0 \\ \ell & si \ x = x_0. \end{cases}$$

Alors \tilde{f} est continue en x_0 et on l'appelle le prolongement par continuité de f en x_0 .

Exemple 4.3 $f(x) = x \sin \frac{1}{x} et \lim_{x \to 0} f(x) = 0$ Le prolongement \tilde{f} de f définie par

$$\tilde{f}(x) = \begin{cases} x\sin\frac{1}{x} & \text{si } x \neq 0\\ 0 & \text{si } x = 0. \end{cases}$$

4.3 Théorème des valeurs intermédiaires

Théorème 4.1 Soit f une fonction continue sur intervalle [a, b].

Pour tout réel k compris entre f(a) et f(b), il existe $c \in [a,b]$ tel que f(c) = k.

Voici la version la plus utilisée du théorème des valeurs intermédiaires.

Théorème 4.2 Soit f une fonction continue sur intervalle [a, b].

Si
$$f(a) \cdot f(b) < 0$$
, alors il existe $c \in]a, b[$ tel que $f(c) = 0$.

5 Fonctions monotones et bijections

5.1 Rappels: injection, surjection, bijection

Définition 5.1 Soit $f: E \to F$ une fonction, où E et F sont des parties de \mathbb{R} .

- f est injective $si \ \forall x, x' \in E$ $f(x) = f(x') \implies x = x'$;
- f est surjective $si \ \forall y \in F \ \exists x \in E \ y = f(x)$;
- f est bijective si f est à la fois injective et surjective, c'est-à-dire si $\forall y \in F \exists unique x \in E \ y = f(x)$.

Proposition 5.1 Si $f: E \to F$ est une fonction bijective alors il existe une unique application $g: F \to E$ telle que $g \circ f = id_E$ et $f \circ g = id_F$. La fonction g est la bijection réciproque de f et se note f^{-1} .

5.2 Fonctions monotones et bijections

Lemme 5.1 Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est strictement monotone sur I, alors f est injective sur I.

Preuve 5.1 Soient $x, x' \in I$ tels que f(x) = f(x'). Montrons que x = x'. par la contraposition $x \neq x' \Longrightarrow f(x) \neq f(x')$ Si on avait x < x', alors on aurait nécessairement f(x) < f(x') ou f(x) > f(x'), suivant que f est strictement croissante, ou strictement décroissante.

Voici un théorème très utilisé dans la pratique pour montrer qu'une fonction est bijective.

Théorème 5.1 (Théorème de la bijection) Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est continue et strictement monotone sur I, alors

- 1. f établit une bijection de l'intervalle I dans l'intervalle image J = f(I),
- 2. la fonction réciproque $f^{-1}: J \to I$ est continue et strictement monotone sur J et elle a le même sens de variation que f.
- 3. les graphes des fonctions f et f^{-1} sont symétriques par rapport à la première bissectrice y = x.

Exemple 5.1

$$f_1: \left\{ \begin{array}{c}]-\infty,0] \longrightarrow [0,+\infty[\\ x \longmapsto x^2 \end{array} \right. \qquad et \qquad f_2: \left\{ \begin{array}{c} [0,+\infty[\longrightarrow [0,+\infty[\\ x \longmapsto x^2 \end{array} \right.$$

On remarque que $f(]-\infty,0])=f([0,+\infty[)=[0,+\infty[$. D'après le théorème précédent, les fonctions f_1 et f_2 sont des bijections. Déterminons leurs fonctions réciproques $f_1^{-1}:[0,+\infty[\to]-\infty,0]$ et $f_2^{-1}:[0,+\infty[\to[0,+\infty[$. Soient deux réels x et y tels que $y\geq 0$. Alors

$$y = f(x) \Leftrightarrow y = x^2$$

 $\Leftrightarrow x = \sqrt{y} \quad ou \quad x = -\sqrt{y},$

c'est-à-dire y admet (au plus) deux antécédents, l'un dans $[0, +\infty[$ et l'autre dans $]-\infty, 0]$. Et donc $f_1^{-1}(y) = -\sqrt{y}$ et $f_2^{-1}(y) = \sqrt{y}$. On vérifie bien que chacune des deux fonctions f_1 et f_2 a le même sens de variation que sa réciproque.

6 Dérivée

6.1 Dérivée en un point

Soit I un intervalle ouvert de \mathbb{R} et $f:I\to\mathbb{R}$ une fonction. Soit $x_0\in I$.

Définition 6.1 f est dérivable en x_0 si le taux d'accroissement $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 .

La limite s'appelle alors le nombre dérivé de f en x_0 et est noté $f'(x_0)$. Ainsi

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Remarque 6.1 Autre écriture de la dérivée.

• f est dérivable en x_0 si et seulement si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est finie.

Définition 6.2 f est dérivable sur I si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la fonction dérivée de f, elle se note f' ou $\frac{df}{dx}$.

Exemple 6.1 La fonction définie par $f(x) = x^2$ est dérivable en tout point $x_0 \in \mathbb{R}$. En effet

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0 \xrightarrow[x \to x_0]{} 2x_0.$$

On a même montré que le nombre dérivé de f en x_0 est $2x_0$, autrement dit : f'(x) = 2x.

Définition 6.3 • f est dérivable à droite en x_0 , $si \lim_{\substack{x \to x_0 \\ x \to x}} \frac{f(x) - f(x_0)}{x - x_0} = f'_d(x_0)$

- f est dérivable à gauche en x_0 , si $\lim_{\substack{x \to x_0 \\ <}} \frac{f(x) f(x_0)}{x x_0} = f'_g(x_0)$
- f est dérivable en $x_0 \iff f$ est dérivable à droite et à gauche en x_0 et $f'(x_0) = f'_d(x_0) = f'_d(x_0)$

Proposition 6.1 Soit I un intervalle ouvert, $x_0 \in I$ et soit $f: I \to \mathbb{R}$ une fonction.

- Si f est dérivable en x_0 alors f est continue en x_0 .
- $\bullet \ \ Si \ f \ est \ d\'erivable \ sur \ I \ alors \ f \ est \ continue \ sur \ I.$

Remarque 6.2 La réciproque est fausse : par exemple, la fonction valeur absolue est continue en 0 mais n'est pas dérivable en 0.

En effet, le taux d'accroissement de f(x) = |x| en $x_0 = 0$ vérifie :

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} +1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}.$$

Il y a bien une limite à droite ($f'_d(0) = +1$), une limite à gauche ($f'_g(0) = -1$) mais elles ne sont pas égales : il n'y a pas de limite en 0. Ainsi f n'est pas dérivable en x = 0. Cela se lit aussi sur le dessin, il y a une demi-tangente à droite, une demi-tangente à gauche, mais elles ont des directions différentes.

Proposition 6.2 Soient $f, g: I \to \mathbb{R}$ deux fonctions dérivables sur I. Alors pour tout $x \in I$

- (f+g)'(x) = f'(x) + g'(x)
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$
- $\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f(x)^2}$ (si $f(x) \neq 0$)
- $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$ (si $g(x) \neq 0$)

Remarque 6.3 Il est plus facile de mémoriser les égalités de fonctions :

$$(f+g)' = f' + g' \qquad (\lambda f)' = \lambda f' \qquad (f \times g)' = f'g + fg'$$

$$\left(\frac{1}{f}\right)' = -\frac{f'}{f^2} \qquad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Preuve 6.1 Prouvons par exemple $(f \times g)' = f'g + fg'$.

Fixons $x_0 \in I$. Nous allons réécrire le taux d'accroissement de $f(x) \times g(x)$:

$$\frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0}g(x) + \frac{g(x) - g(x_0)}{x - x_0}f(x_0)$$

$$\xrightarrow[x \to x_0]{} f'(x_0)g(x_0) + g'(x_0)f(x_0).$$

6.2 Dérivée de fonctions usuelles

u représente une fonction $x \mapsto u(x)$.

Fonction	Dérivée			
x^n	$nx^{n-1} (n \in \mathbb{Z})$			
$\frac{1}{x}$	$-\frac{1}{x^2}$			
\sqrt{x}	$\frac{1}{2}\frac{1}{\sqrt{x}}$			
x^{α}	$\alpha x^{\alpha-1} (\alpha \in \mathbb{R})$			
e^x	e^{x} $\frac{1}{x}$ $-\sin x$			
$\ln x$				
$\cos x$				
$\sin x$	$\cos x$ $1 + \tan^2 x = \frac{1}{\cos^2 x}$			
$\tan x$				

Fonction	Dérivée			
u^n	$nu'u^{n-1} (n \in \mathbb{Z})$			
$\frac{1}{u}$	$-\frac{u'}{u^2}$			
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$			
u^{α}	$\alpha u' u^{\alpha - 1} (\alpha \in \mathbb{R})$			
e^u	$u'e^{u}$ $\frac{u'}{u}$ $-u'\sin u$			
$\ln u$				
$\cos u$				
$\sin u$	$u'\cos u$ $u'(1+\tan^2 u) = \frac{u'}{\cos^2 u}$			
$\tan u$				

6.3 Composition

Proposition 6.3 Si f est dérivable en x_0 et g est dérivable en $f(x_0)$ alors $g \circ f$ est dérivable en x_0 de dérivée :

$$g \circ f'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

Preuve 6.2

$$\frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \times \frac{f(x) - f(x_0)}{x - x_0}$$
$$\xrightarrow[x \to x_0]{} g'(f(x_0)) \times f'(x_0).$$

Exemple 6.2 Calculons la dérivée de $\ln(1+x^2)$. Nous avons $g(x) = \ln(x)$ avec $g'(x) = \frac{1}{x}$; et $f(x) = 1 + x^2$ avec f'(x) = 2x. Alors la dérivée de $\ln(1+x^2) = g \circ f(x)$ est

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x) = g'(1+x^2) \cdot 2x = \frac{2x}{1+x^2}.$$

6.4 Dérivées successives

Soit $f:I\to\mathbb{R}$ une fonction dérivable et soit f' sa dérivée.

Si la fonction $f': I \to \mathbb{R}$ est aussi dérivable on note f'' = (f')' la dérivée seconde de f. Plus généralement on note :

$$f^{(0)} = f, \quad f^{(1)} = f', \quad f^{(2)} = f'' \quad \text{et} \quad f^{(n+1)} = (f^{(n)})'$$

Si la dérivée n-ième $f^{(n)}$ existe on dit que f est n fois dérivable.

Si f est n fois dérivable sur I et $f^{(n)}$ est continue sur I on dite que f est classe $C^n(I,\mathbb{R})$.

6.5 Théorème de Rolle

Théorème 6.1 (Théorème de Rolle) Soit $f:[a,b] \to \mathbb{R}$ telle que

- f est continue sur[a, b],
- f est dérivable sur]a, b[,
- f(a) = f(b).

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

il existe au moins un point du graphe de f où la tangente est horizontale.

6.6 Théorème des accroissements finis

Théorème 6.2 (Théorème des accroissements finis) Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b].

Alors il existe $c \in]a, b[$ tel que

$$f(b) - f(a) = f'(c) (b - a)$$

Preuve 6.3 Posons $\ell = \frac{f(b) - f(a)}{b - a}$ et $g(x) = f(x) - \ell \cdot (x - a)$. Alors g(a) = f(a), $g(b) = f(b) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = f(a)$. Par le théorème de Rolle, il existe $c \in]a, b[$ tel que g'(c) = 0. Or $g'(x) = f'(x) - \ell$. Ce qui donne $f'(c) = \frac{f(b) - f(a)}{b - a}$.

6.7 Fonction croissante et dérivée

Corollaire 6.1 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b].

- 1. $\forall x \in]a,b[f'(x) \ge 0 \iff f \text{ est croissante } ;$
- 2. $\forall x \in]a,b[f'(x) \leq 0 \iff f \text{ est d\'ecroissante } ;$
- 3. $\forall x \in]a, b[f'(x) = 0 \iff f \text{ est constante } ;$
- 4. $\forall x \in]a, b[f'(x) > 0 \implies f \text{ est strictement croissante } ;$
- 5. $\forall x \in]a, b[f'(x) < 0 \implies f \text{ est strictement décroissante.}$

Remarque 6.4 La réciproque au point (4) (et aussi au (5)) est fausse.

Par exemple la fonction $x \mapsto x^3$ est strictement croissante et pourtant sa dérivée s'annule en 0.

Corollaire 6.2 (Règle de l'Hospital) Soient $f, g: I \to \mathbb{R}$ deux fonctions dérivables et soit $x_0 \in I$.

On suppose que

• $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$, (ou ∞)

$$Si$$
 $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$ $(\in \mathbb{R})$ $alors$ $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$.

Exemple 6.3 Calculer la limite en 1 de $\frac{\ln(x^2+x-1)}{\ln(x)}$. On vérifie que :

•
$$f(x) = \ln(x^2 + x - 1)$$
, $\lim_{x \to 1} f(x) = 0$, $f'(x) = \frac{2x+1}{x^2+x-1}$,

•
$$g(x) = \ln(x)$$
, $\lim_{x \to 1} g(x) = 0$, $g'(x) = \frac{1}{x}$,

$$\frac{f'(x)}{g'(x)} = \frac{2x+1}{x^2+x-1} \times x = \frac{2x^2+x}{x^2+x-1} \xrightarrow[x \to 1]{} 3.$$

Donc

$$\frac{f(x)}{g(x)} \xrightarrow[x \to 1]{} 3.$$

Chapitre III. Les fonctions réelles à une variable réelle

Exercice 3.1

1. Démontrer que $\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = 1$.

2. Soient m, n des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.

3. Démontrer que $\lim_{x\to 0} \frac{1}{x}(\sqrt{1+x+x^2}-1) = \frac{1}{2}$.

Exercice 3.2

Etudier la continuité de f la fonction réelle à valeurs réelles définie par $f(x) = (\sin x)/x$ si $x \neq 0$ et f(0) = 1.

Exercice 3.3

Les fonctions suivantes sont-elles prolongeables par continuité sur $\mathbb R$?

a)
$$f(x) = \sin x \sin(\frac{1}{x})$$
; b) $f(x) = \frac{1}{x} \ln \frac{e^x + e^{-x}}{2}$;
c) $f(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$.

Exercice 3.4

Déterminer les domaines de définition des fonctions suivantes

$$f(x) = \sqrt{\frac{2+3x}{5-2x}}$$
; $g(x) = \sqrt{x^2-2x-5}$; $h(x) = \ln(4x+3)$

Exercice 3.5

Étudier la dérivabilité des fonctions suivantes :

$$f_1(x) = x^2 \cos \frac{1}{x}$$
 si $x \neq 0$ $f_1(0) = 0$;

$$f_2(x) = \sin x \sin \frac{1}{x} \text{ si } x \neq 0 \qquad f_2(0) = 0;$$

Chapitre IV

Fonctions élémentaires

Vous connaissez déjà des fonctions classiques : exp, ln, cos, sin, tan. Dans ce chapitre il s'agit d'ajouter à notre catalogue de nouvelles fonctions : cosh, sinh, tanh, arccos, arcsin, arctan, Argch, Argsh, Argth.

1 Fonctions trigonométriques

1.1 Les fonctions sinus et cosinus

Fonction	Domaine de définition	Parité	Période	Continuité	La dérivée
$\sin x$	\mathbb{R}	impaire	2π	sur R	$\cos x$
$\cos x$	\mathbb{R}	paire	2π	sur R	$-\sin x$

La relation fondamentale en trigonométrique est :

$$\cos^2 x + \sin^2 x = 1 , \forall x \in \mathbb{R}$$

Formule d'addition $\forall a, b \in \mathbb{R}$ on a :

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

Formule de duplication $\forall x \in \mathbb{R} \text{ on a}$:

$$\sin 2x = 2\sin x \cos x$$
$$\cos 2x = \cos^2 x - \sin^2 x = -1 + 2\cos^2 x = 1 - 2\sin^2 x$$

variations

les fonctions sinus et cosinus sont continues et dérivables sur tout \mathbb{R} . Comme elles sont périodiques, de période 2π , on peut restreindre le domaine de l'étude à l'intervalle de longueur 2π , par exemple $[-\pi, \pi]$.

1.2 Les fonctions tangent et cotangente

Définition 1.1 \bigstar On appelle tangente la fonction tan (ou tg) définie par :

$$x \longmapsto \tan x = \frac{\sin x}{\cos x}, \ \forall x \in \mathbb{R} - A, \ où \ A = \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}.$$

★ On appelle cotangente la fonction cot définie par :
$$x \mapsto \cot x = \frac{\cos x}{\sin x}, \forall x \in \mathbb{R} - B, \text{ où } B = \{k\pi \mid k \in \mathbb{Z}\}.$$

Pour tout $x \in \mathbb{R} - (A \cup B)$, on a l'éalité : $\cot x = \frac{1}{\tan x}$.

Dérivées-Variations

Les fonctions tangente et cotangente sont continues et dérivable sur leurs domaines se définition et l'on a :

$$\forall x \in \mathbb{R} - A$$
 $\tan' x = \frac{1}{\cos^2 x} \Longleftrightarrow \tan' x = 1 + \tan^2 x$

$$\forall x \in \mathbb{R} - B$$
 $\cot' x = \frac{-1}{\sin^2 x} \Longleftrightarrow \cot' x = -(1 + \cot^2 x)$

Les deux fonctions étant périodiques de période π , on peut donc restreindre le domaine de l'étude à un intervalle de longueur π , par exemple $\left]\frac{-\pi}{2}, \frac{\pi}{2}\right[$ pour la tangente et $]0, \pi[$ pour la cotangente.

2 Les fonctions trigonométriques réciproques

2.1 Arccosinus

Considérons la fonction cosinus cos : $\mathbb{R} \to [-1, 1], x \mapsto \cos x$.

Pour obtenir une bijection à partir de cette fonction, il faut considérer la restriction de cosinus à l'intervalle $[0, \pi]$. Sur cet intervalle la fonction cosinus est continue et strictement décroissante, donc la restriction

$$\cos:[0,\pi]\to[-1,1]$$

est une bijection. Sa fonction (bijection) réciproque est la fonction arccosinus :

$$\arccos: [-1,1] \to [0,\pi]$$

On a donc, par définition de la fonction réciproque :

$$\cos\left(\arccos(x)\right) = x \quad \forall x \in [-1, 1]$$

 $\arccos\left(\cos(x)\right) = x \quad \forall x \in [0, \pi]$

Autrement dit:

Si
$$x \in [0, \pi]$$
 $\cos(x) = y \iff x = \arccos y$

la dérivée de arccos :

$$\arccos'(x) = \frac{-1}{\sqrt{1 - x^2}} \qquad \forall x \in]-1,1[$$

Preuve 2.1 On démarre de l'égalité $\cos(\arccos x) = x$ que l'on dérive :

$$\cos(\arccos x) = x$$

$$\implies -\arccos'(x) \times \sin(\arccos x) = 1$$

$$\implies \arccos'(x) = \frac{-1}{\sin(\arccos x)}$$

$$\implies \arccos'(x) = \frac{-1}{\sqrt{1 - \cos^2(\arccos x)}} \tag{*}$$

$$\implies \arccos'(x) = \frac{-1}{\sqrt{1 - x^2}}$$

Le point crucial (*) se justifie ainsi : on démarre de l'égalité $\cos^2 \alpha + \sin^2 \alpha = 1$, en substituant $\alpha = \arccos x$ on obtient $\cos^2(\arccos x) + \sin^2(\arccos x) = 1$ donc $x^2 + \sin^2(\arccos x) = 1$.

Chapitre IV. Fonctions élémentaires

On en déduit : $\sin(\arccos x) = +\sqrt{1-x^2}$ (avec le signe + car $\arccos x \in [0,\pi]$, et donc on a $\sin(\arccos x) \ge 0$).

2.2 Arcsinus

La restriction

$$\sin: \left[-\frac{\pi}{2}, +\frac{\pi}{2} \right] \to \left[-1, 1 \right]$$

est une bijection.

Sa fonction réciproque est la fonction arcsinus:

$$\arcsin: [-1,1] \to [-\tfrac{\pi}{2},+\tfrac{\pi}{2}]$$

$$\sin\left(\arcsin(x)\right) = x \quad \forall x \in [-1, 1]$$

 $\arcsin\left(\sin(x)\right) = x \quad \forall x \in [-\frac{\pi}{2}, +\frac{\pi}{2}]$

Si
$$x \in \left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$$
 $\sin(x) = y \iff x = \arcsin y$

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} \qquad \forall x \in]-1,1[$$

2.3 Arctangente

La restriction

$$\tan:]-\frac{\pi}{2},+\frac{\pi}{2}[\to\mathbb{R}$$

est une bijection.

Sa fonction réciproque est la fonction arctangente :

$$\arctan: \mathbb{R} \to]-\tfrac{\pi}{2}, +\tfrac{\pi}{2}[$$

$$\tan\left(\arctan(x)\right) = x \quad \forall x \in \mathbb{R}$$

 $\arctan\left(\tan(x)\right) = x \quad \forall x \in]-\frac{\pi}{2}, +\frac{\pi}{2}[$

Si
$$x \in]-\frac{\pi}{2}, +\frac{\pi}{2}[$$
 $\tan(x) = y \iff x = \arctan y$

$$\arctan'(x) = \frac{1}{1+x^2} \quad \forall x \in \mathbb{R}$$

3 Logarithme et exponentielle

3.1 Logarithme

Proposition 3.1 Il existe une unique fonction, notée $\ln :]0, +\infty[\to \mathbb{R}$ telle que :

$$\ln'(x) = \frac{1}{x} \quad (pour \ tout \ x > 0) \qquad et \qquad \ln(1) = 0.$$

De plus cette fonction vérifie (pour tout a, b > 0):

- 1. $\ln(a \times b) = \ln a + \ln b$,
- $2. \ln(\frac{1}{a}) = -\ln a,$
- 3. $\ln(a^n) = n \ln a$, (pour tout $n \in \mathbb{N}$)
- 4. In est une fonction continue, strictement croissante et définit une bijection de $]0, +\infty[$ sur \mathbb{R} .

Remarque 3.1 ln x s'appelle le logarithme naturel ou aussi logarithme néperien

3.2 Exponentielle

Définition 3.1 La fonction réciproque de ln :]0, $+\infty$ [$\to \mathbb{R}$ s'appelle la fonction exponentielle, notée exp : $\mathbb{R} \to$]0, $+\infty$ [.

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition 3.2 La fonction exponentielle vérifie les propriétés suivantes :

$$\exp(\ln x) = x \text{ pour tout } x > 0$$

$$et \left[\ln(\exp x) = x \text{ pour tout } x \in \mathbb{R} \right]$$

- $\exp(a+b) = \exp(a) \times \exp(b)$
- $\exp(nx) = (\exp x)^n$
- $\exp: \mathbb{R} \to]0, +\infty[$ est une fonction continue, strictement croissante vérifiant $\lim_{x \to -\infty} \exp x = 0$ et $\lim_{x \to +\infty} \exp = +\infty$.
- La fonction exponentielle est dérivable et $\exp' x = \exp x$, pour tout $x \in \mathbb{R}$.

4 Fonctions hyperboliques et hyperboliques inverses

4.1 Cosinus hyperbolique et son inverse

Pour $x \in \mathbb{R}$, le cosinus hyperbolique est :

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

La restriction cosh : $[0, +\infty[\to [1, +\infty[$ est une bijection.

Sa fonction réciproque est $Argch: [1, +\infty[\to [0, +\infty[.(Argument cosinus hyperbolique)$

4.2 Sinus hyperbolique et son inverse

Pour $x \in \mathbb{R}$, le sinus hyperbolique est :

 $\sinh: \mathbb{R} \to \mathbb{R}$ est une fonction continue, dérivable, strictement croissante vérifiant $\lim_{x \to -\infty} \sinh x = -\infty$ et $\lim_{x \to +\infty} \sinh x = +\infty$, c'est donc une bijection.

la fonction réciproque est $Argsh: \mathbb{R} \to \mathbb{R}$. (Argument sinus hyperbolique)

Proposition 4.1 • $\cosh^2 x - \sinh^2 x = 1$

- $\cosh' x = \sinh x$, $\sinh' x = \cosh x$
- $Argsh: \mathbb{R} \to \mathbb{R}$ est strictement croissante et continue.
- Argsh est dérivable et Argsh' $x = \frac{1}{\sqrt{x^2+1}}$.
- $Argsh \ x = \ln\left(x + \sqrt{x^2 + 1}\right)$

Preuve 4.1

 $\cosh^2 x - \sinh^2 x = \frac{1}{4} \left[(e^x + e^{-x})^2 - (e^x - e^{-x})^2 \right] = \frac{1}{4} \left[(e^{2x} + 2 + e^{-2x}) - (e^{2x} - 2 + e^{-2x}) \right] = 1.$

- $\frac{d}{dx}(\cosh x) = \frac{d}{dx}\frac{e^x + e^{-x}}{2} = \frac{e^x e^{-x}}{2} = \sinh x$.
- Car c'est la réciproque de sinh.
- Comme la fonction $x \mapsto \sinh' x$ ne s'annule pas sur \mathbb{R} alors la fonction Argsh est dérivable sur \mathbb{R} . On calcule la dérivée par dérivation de l'égalité $\sinh(Argsh\ x) = x$:

$$Argsh' x = \frac{1}{\cosh(Argsh x)} = \frac{1}{\sqrt{\sinh^2(Argsh x) + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

• Notons $f(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$ alors

$$f'(x) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}} = Argsh' x$$

Comme de plus $f(0) = \ln(1) = 0$ et Argsh0 = 0 (car $\sinh 0 = 0$), on en déduit que pour tout $x \in \mathbb{R}$, f(x) = Argsh x.

4.3 Tangente hyperbolique et son inverse

Par définition la tangente hyperbolique est :

La fonction $\tanh : \mathbb{R} \to]-1,1[$ est une bijection, on note $Argth :]-1,1[\to \mathbb{R}$ sa fonction réciproque.

4.4 Trigonométrie hyperbolique

$$\cosh^2 x - \sinh^2 x = 1$$

$$\cosh(a+b) = \cosh a \cdot \cosh b + \sinh a \cdot \sinh b$$
$$\cosh(2a) = \cosh^2 a + \sinh^2 a = 2 \cosh^2 a - 1 = 1 + 2 \sinh^2 a$$

$$\sinh(a+b) = \sinh a \cdot \cosh b + \sinh b \cdot \cosh a$$

 $\sinh(2a) = 2 \sinh a \cdot \cosh a$

$$\tanh(a+b) = \frac{\tanh a + \tanh b}{1 + \tanh a \cdot \tanh b}$$

Chapitre IV. Fonctions élémentaires

$$\cosh' x = \sinh x$$

$$\sinh' x = \cosh x$$

$$\tanh' x = 1 - \tanh^2 x = \frac{1}{\cosh^2 x}$$

$$Argch' x = \frac{1}{\sqrt{x^2 - 1}} \quad (x > 1)$$

$$Argsh' x = \frac{1}{\sqrt{x^2 + 1}}$$

$$Argth' x = \frac{1}{1 - x^2} \quad (|x| < 1)$$

$$\begin{aligned} & Argch \ x = \ln \left(x + \sqrt{x^2 - 1} \right) \quad (x \ge 1) \\ & Argshx = \ln \left(x + \sqrt{x^2 + 1} \right) \quad (x \in \mathbb{R}) \\ & Argth \ x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad (-1 < x < 1) \end{aligned}$$

Exercice 4.1

Écrire sous forme d'expression algébrique

$$\sin(\arccos x)$$
, $\cos(\arcsin x)$.

Exercice 4.2

Résoudre les équation suivantes :

$$\arcsin x = \arcsin \frac{2}{5} + \arcsin \frac{3}{5}, \quad \arccos x = 2\arccos \frac{3}{4},$$

Exercice 4.3

Vérifier

$$\arcsin x + \arccos x = \frac{\pi}{2}, \qquad \arctan x + \arctan \frac{1}{x} = \operatorname{sgn}(x)\frac{\pi}{2}.$$

(sgn(x) : Signe de x, positive ou négative)

Solutions Des Exercices

Exercices du Chapitre I

Exercice 1.1

- 1. (a) est fausse. Car sa négation qui est $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y \leq 0$ est vraie. Étant donné $x \in \mathbb{R}$ il existe toujours un $y \in \mathbb{R}$ tel que $x+y \leq 0$, par exemple on peut prendre y = -(x+1) et alors $x+y = x-x-1 = -1 \leq 0$.
- 2. (b) est vraie, pour un x donné, on peut prendre (par exemple) y=-x+1 et alors x+y=1>0. La négation de (b) est $\exists x\in\mathbb{R}\ \forall y\in\mathbb{R}\ x+y\leq 0$.
- 3. (c) : $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x+y>0$ est fausse, par exemple $x=-1,\ y=0$. La négation est $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y\leq 0$.
- 4. (d) est vraie, on peut prendre x=-1. La négation est: $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ y^2 \leq x$.

Exercice 1.2

- 1. ⇐=
- $2. \iff$

 $3. \Longrightarrow$

Exercice 1.3

Rédigeons la deuxième égalité. Soit \mathcal{P}_n , $n \in \mathbb{N}^*$ l'assertion suivante:

$$(\mathcal{P}_n)$$
 $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}.$

- \mathcal{P}_1 est vraie (1 = 1).
- Étant donné $n \in \mathbb{N}^*$ supposons que \mathcal{P}_n soit vraie. Alors

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)(n(2n+1) + 6(n+1))}{6}$$

$$= \frac{(n+1)(n+2)(2(n+1) + 1)}{6}$$

Ce qui prouve \mathcal{P}_{n+1} .

• Par le principe de récurrence nous venons de montrer que \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}^*$.

Exercices du Chapitre II

Exercice 2.1

Nous allons démontrer l'assertion 1. de deux manières différentes.

1. Tout d'abord de façon "directe". Nous supposons que A et B sont telles que $A \cap B = A \cup B$. Nous devons montrer que A = B.

Pour cela étant donné $x \in A$ montrons qu'il est aussi dans B. Comme $x \in A$ alors $x \in A \cup B$ donc $x \in A \cap B$ (car $A \cup B = A \cap B$). Ainsi $x \in B$.

Maintenant nous prenons $x \in B$ et le même raisonnement implique $x \in A$. Donc tout élément de A est dans B et tout élément de B est dans A. Cela veut dire A = B.

2. Ensuite, comme demandé, nous le montrons par contraposition. Nous supposons que $A \neq B$ et non devons monter que $A \cap B \neq A \cup B$.

Si $A \neq B$ cela veut dire qu'il existe un élément $x \in A \setminus B$ ou alors un élément $x \in B \setminus A$. Quitte à échanger A et B, nous supposons qu'il existe $x \in A \setminus B$. Alors $x \in A \cup B$ mais $x \notin A \cap B$. Donc $A \cap B \neq A \cup B$.

Exercice 2.2

$$x \in \mathbf{C}_E(A \cup B) \iff x \notin A \cup B$$

$$\iff x \notin A \text{ et } x \notin B$$

$$\iff x \in \mathbf{C}_E A \text{ et } x \in \mathbf{C}_E B$$

$$\iff x \in \mathbf{C}_E A \cap \mathbf{C}_E B.$$

$$x \in \mathcal{C}_E(A \cap B) \iff x \notin A \cap B$$

 $\iff x \notin A \text{ ou } x \notin B$
 $\iff x \in \mathcal{C}_E A \text{ ou } x \in \mathcal{C}_E$
 $\iff x \in \mathcal{C}_E A \cup \mathcal{C}_E B.$

Exercice 2.3

Montrons quelques assertions. $f(A \cap B) \subset f(A) \cap f(B)$.

Si $y \in f(A \cap B)$, il existe $x \in A \cap B$ tel que y = f(x), or $x \in A$ donc $y = f(x) \in f(A)$ et de même $x \in B$ donc $y \in f(B)$. D'où $y \in f(A) \cap f(B)$. Tout élément de $f(A \cap B)$ est un élément de $f(A) \cap f(B)$ donc $f(A \cap B) \subset f(A) \cap f(B)$.

Remarque : l'inclusion réciproque est fausse. Exercice : trouver un contre-exemple.

$$f^{-1}(F \setminus A) = E \setminus f^{-1}(A).$$

$$x \in f^{-1}(F \setminus A) \iff f(x) \in F \setminus A$$

$$\iff f(x) \notin A$$

$$\iff x \notin f^{-1}(A) \text{ car } f^{-1}(A) = \{x \in E \mid f(x) \in A\}$$

$$\iff x \in E \setminus f^{-1}(A)$$

Exercice 2.4

1. Soit z, z', z'' des complexes quelconques.

• Reflexivité : $z\Re z$ car |z| = |z|.

• Symétrie : $z\Re z' \Rightarrow z'\Re z$ car |z| = |z'| et donc |z'| = |z|.

• Transitivité : $z\Re z'$ et $z'\Re z''$ alors |z|=|z'|=|z''| donc $z\Re z''$.

2. La classe d'équivalence d'un point $z \in \mathbb{C}$ est l'ensemble des complexes qui sont en relation avec z, *i.e.* l'ensemble des complexes dont le module est égal à |z|. Géométriquement la classe d'équivalence de z est le cerlce \mathcal{C} de centre 0 et de rayon |z|.

$$\mathcal{C} = \{ |z|e^{i\theta} / \theta \in \mathbb{R} \}.$$

Exercice 2.5

Si $f \circ g = g \circ f$ alors

$$\forall x \in \mathbb{R} \ f \circ g(x) = g \circ f(x).$$

Nous allons montrer que c'est faux, un contre-exemple. Prenons x=0. Alors $f\circ g(0)=f(-1)=-2$, et $g\circ f(0)=g(1)=0$ donc $f\circ g(0)\neq g\circ f(0)$. Ainsi $f\circ g\neq g\circ f$

Exercice 2.6

1. f n'est pas injective car $f(2) = \frac{4}{5} = f(\frac{1}{2})$. f n'est pas surjective car y = 2 n'a pas d'antécédent: en effet l'équation f(x) = 2 devient $2x = 2(1+x^2)$ soit $x^2 - x + 1 = 0$

qui n'a pas de solutions réelles.

2. f(x) = y est équivalent à l'équation $yx^2 - 2x + y = 0$. Cette équation a des solutions x si et seulement si $\Delta = 4 - 4y^2 \ge 0$ donc il y a des solutions si et seulement si $y \in [-1, 1]$. Nous venons de montrer que $f(\mathbb{R})$ est exactement [-1, 1].

Exercice 2.7

 \bullet f est injective :

$$f(x)=f(y)\Rightarrow x^2-1=y^2-1$$

$$\Rightarrow x=\pm y \text{ où } x,y\in [1,+\infty[\text{ donc } x,y \text{ sont de même signe}]$$

$$\Rightarrow x=y.$$

• f est surjective : soit $y \in [0, +\infty[$. Nous cherchons un élément $x \in [1, +\infty[$ tel que $y = f(x) = x^2 - 1$. Le réel $x = \sqrt{y+1}$ convient !

Exercices du Chapitre III

Exercice 3.1

Généralement pour calculer des limites faisant intervenir des sommes racines carrées, il est utile de faire intervenir "l'expression conjuguées":

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

Les racines au numérateur ont "disparu" en utilisant l'identité $(x-y)(x+y)=x^2-y^2$.

Appliquons ceci sur un exemple :

$$f(x) = \frac{\sqrt{1 + x^m} - \sqrt{1 - x^m}}{x^n}$$

$$= \frac{(\sqrt{1 + x^m} - \sqrt{1 - x^m})((\sqrt{1 + x^m} + \sqrt{1 - x^m}))}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{1 + x^m - (1 - x^m)}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{2x^m}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{2x^{m-n}}{\sqrt{1 + x^m} + \sqrt{1 - x^m}}$$

Et nous avons

$$\lim_{x \to 0} \frac{2}{\sqrt{1 + x^m} + \sqrt{1 - x^m}} = 1.$$

Donc l'étude de la limite de f en 0 est la même que celle de la fonction $x \mapsto x^{m-n}$. Distinguons plusieurs pour la limite de f en 0.

- Si m > n alors x^{m-n} et donc f(x) tend vers 0.
- Si m = n alors x^{m-n} et f(x) vers 1.
- Si m < n alors $x^{m-n} = \frac{1}{x^{n-m}} = \frac{1}{x^k}$ avec k = n m un exposant positif. Si k est pair alors les limites à droite et à gauche de $\frac{1}{x^k}$ sont $+\infty$. Pour k impair la limite à droite vaut $+\infty$ et la limite à gauche vaut $-\infty$. Conclusion pour k = n m > 0 pair, la limite de f en 0 vaut $+\infty$ et pour k = n m > 0 impair f n'a pas de limite en 0 car les limites à droite et à gauche ne sont pas égales.

Exercice 3.2

Soit $x_0 \neq 0$, alors la fonction f est continue en x_0 , car elle s'exprime sous la forme d'un quotient de fonctions continues où le dénominateur ne s'annule pas en x_0 . Reste à étudier la continuité en 0. Mais

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 = f(0)$$

donc f est continue en 0.

Exercice 3.3

1. La fonction en définie sur \mathbb{R}^* . Et elle est continue sur \mathbb{R}^* . Il faut déterminer un prolongement par continuité en x = 0, c'est-à-dire savoir si f a une limite en 0.

$$\lim_{x \to 0} \sin x \sin(\frac{1}{x}) = 0$$

donc le prolongement par continuité définie par $\tilde{f}: \mathbb{R} \longrightarrow \mathbb{R}$ tel que

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

2. La fonction f est définie et continue sur \mathbb{R}^* . Etudions la situation en 0. f est la taux d'accroissement en 0 de la fonction $g(x) = \ln \frac{e^x + e^{-x}}{2}$. Donc si les objets suivants existent : la limie de f en 0 est égale à la valeur de g' en 0. Calculons g' sur \mathbb{R}^* :

$$g'(x) = \left(\ln\frac{e^x + e^{-x}}{2}\right)' = \frac{\frac{e^x - e^{-x}}{2}}{\frac{e^x + e^{-x}}{2}} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Quand $x \to 0$ alors le numérateur tend vers 0 et le dénominateur vers 2, donc g'(x) tend vers 0. Donc g est dérivable en 0 et g'(0) = 0. Donc le prolongement par continuité définie par $\tilde{f}: \mathbb{R} \longrightarrow \mathbb{R}$ tel que

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

3. f est définie et continue sur $\mathbb{R} \setminus \{-1, 1\}$.

$$f(x) = \frac{1}{1-x} - \frac{2}{1-x^2} = \frac{1+x-2}{(1-x)(1+x)} = \frac{-1+x}{(1-x)(1+x)} = \frac{-1}{(1+x)}.$$

Donc f a pour limite $-\frac{1}{2}$ quand x tend vers 1. Et donc en posant $f(1) = -\frac{1}{2}$, nous définissons une fonction continue sur $\mathbb{R} \setminus \{-1\}$. En -1 la fonction f ne peut être prolongée continuement, car en -1, f n'admet de limite finie.

Donc f n'admet pas un prolemngement par continuité sur \mathbb{R} .

Exercice 3.4

- 1. Il faut que le dénominateur ne s'annule pas donc $x \neq \frac{5}{2}$. En plus il faut que le terme sous la racine soit positif ou nul, c'est-à-dire $(2+3x)\times (5-2x)\geq 0$, soit $x\in [-\frac{2}{3},\frac{5}{2}]$. L'ensemble de définition est donc $[-\frac{2}{3},\frac{5}{2}[$.
- 2. Il faut $x^2 2x 5 \ge 0$, soit $x \in]-\infty, 1 \sqrt{6}] \cup [1 + \sqrt{6}, +\infty[$.
- 3. Il faut 4x + 3 > 0 soit $x > -\frac{3}{4}$, l'ensemble de définition étant $] \frac{3}{4}, +\infty[$.

Exercice 3.5

1. La fonction f_1 est dérivable en dehors de x = 0. Pour savoir si f_1 est dérivable en 0 regardons le taux d'accroissement:

$$\frac{f_1(x) - f_1(0)}{x - 0} = x \cos \frac{1}{x}.$$

Mais $x\cos(1/x)$ tend vers 0 (si $x\to 0$) car $|\cos 1/x|\le 1$ (ou $\cos 1/x$ est bornée au voisinage de 0 et la fonction x tend vers 0). Donc le taux d'accroissement tend vers 0. Donc f_1 est dérivable en 0 et $f_1'(0)=0$.

2. Encore une fois f_2 est dérivable en dehors de 0. Le taux d'accroissement en x=0 est :

$$\frac{f_2(x) - f_2(0)}{x - 0} = \frac{\sin x}{x} \sin \frac{1}{x}$$

Nous savons que $\frac{\sin x}{x} \to 1$ et que $\sin 1/x$ n'a pas de limite quand $x \to 0$. Donc le taux d'accroissement n'a pas de limite, donc f_2 n'est pas dérivable en 0.

Exercices du Chapitre IV

Exercice 4.1

- 1. $\sin^2 y = 1 \cos^2 y$ donc $\sin y = \pm \sqrt{1 \cos^2 y}$. Donc $\sin \arccos x = \pm \sqrt{1 \cos^2 \arccos x} = \pm \sqrt{1 x^2}$ et comme $\arccos x \ge 0$ on a $\sin \arccos x = +\sqrt{1 x^2}$.
- 2. De la même manière $\cos \arcsin x = +\sqrt{1-x^2}.$

Exercice 4.2

- 1. En prenant le sinus de l'équation $\arcsin x = \arcsin \frac{2}{5} + \arcsin \frac{3}{5}$ on obtient $x = \sin(\arcsin \frac{2}{5} + \arcsin \frac{3}{5})$, donc $x = \frac{2}{5}\cos \arcsin \frac{3}{5} + \frac{3}{5}\cos \arcsin \frac{2}{5}$. En utilisant la formule $\cos \arcsin x = +\sqrt{1-x^2}$. On obtient $x = \frac{2}{5}\frac{4}{5} + \frac{3}{5}\sqrt{\frac{21}{25}} = \frac{8}{25} + \frac{3\sqrt{21}}{25}$.
- 2. En prenant le cosinus de l'équation $\arccos x = 2\arccos\frac{3}{4}$ on obtient $x = \cos(2\arccos\frac{3}{4})$ on utilise la formule $\cos 2u = 2\cos^2 u 1$ et on arrive à : $x = 2(\frac{3}{4})^2 1 = \frac{1}{8}$.

Exercice 4.3

- 1. Soit f la fonction sur [-1,1] définie par $f(x) = \arcsin x + \arccos x$ alors f'(x) = 0 pour $x \in]-1,1[$ donc f est une fonction constante sur [-1,1] Or $f(0) = \frac{\pi}{2}$ donc pour tout $x \in [-1,1]$, $f(x) = \frac{\pi}{2}$.
- 2. Soit $g(x) = \arctan x + \arctan \frac{1}{x}$, la fonction est définie sur $]-\infty, 0[$ et sur $]0, +\infty[$. On a g'(x) = 0 donc g est constante sur chacun des ses intervalle de définition. $g(x) = c_1$ sur $]-\infty, 0[$ et $g(x) = c_2$ sur $]0, +\infty[$. En calculant g(1) et g(-1) on obtient $c_1 = -\frac{\pi}{2}$ et $c_2 = +\frac{\pi}{2}$.

Bibliography

- [1] Hitta Amara : Cours Algebre et Analyse I ,LMD : DEUG I-MI/ST 2008-2009
- [2] Mohamed Mehabali : Mathématique 1, Fonction d'une variable réelle. Première année Universitaire 2011 .
- [3] M. Mechab : Cours d'algèbre-LMD Sciences et Techniques.
- [4] Cours de mathématiques Première année : exo7.
- [5] Serie Ramis, Mathématiques Tout-en-un pour la Licence Cours complet et 270 exercices corrigés, (2007).
- [6] Marc Hindry: Cours mathématiques première année (L1).

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

C.U Relizane . Ahmed Zabana

Institut des Sciences et Technologies

 1^{er} Année ST

Cours Maths 1 Et Exercices Avec Solutions

Dr Djebbar Samir

ssamirdjebbar@yahoo.fr