Learning Discriminative Representations to Interpret Image Recognition Models Thèse de Doctorat

Felipe Torres Figueroa

École Centrale de Marseille

Laboratoire d'Informatique et de Systèmes (LIS)

Marseille, September 23rd 2024

Table of Contents

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- A learning paradigm for interpretable gradients
- References

Table of Contents

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

Low Stakes

My go to exercise is running, but...

Low Stakes

My go to exercise is running, but...

I think my running shoes are getting worn

Low Stakes

My go to exercise is running, but...

I think my running shoes are getting worn

I want a replacement, but I know about machines, not shoes!

Low Stakes

My go to exercise is running, but...

I think my running shoes are getting worn

I want a replacement, but I know about machines, not shoes!

My phone can identify my current shoes

Low Stakes

My go to exercise is running, but...

I think my running shoes are getting worn

I want a replacement, but I know about machines, not shoes!

My phone can identify my current shoes

Nike Free RN Distance 2

Low Stakes

My go to exercise is running, but...

I think my running shoes are getting worn

I want a replacement, but I know about machines, not shoes!

My phone can identify my current shoes

Nike Free RN Distance 2

How could my phone identify that model?

Raising the stakes

Raising the stakes

Raising the stakes

Raising the stakes

Straight to the point

How do we know how a system works?

Straight to the point

- How do we know how a system works?
- How do we know how safe a system is?

Straight to the point

- How do we know how a system works?
- How do we know how safe a system is?
- If a system fails, who is accountable?

We must **understand** the behaviour of these models.

Step by step

Computation,
Computer
Vision and Al

→ Explainable AI

Thesis objectives

troduction Background Opti-CAM CA-Stream Gradient References

Computation, Computer Vision and AI

Computation

Alan Turing forefather of current computer science.

Better known as *Computer Science*.

troduction Background Opti-CAM CA-Stream Gradient References

Computation, Computer Vision and AI

Computation

Alan Turing forefather of current computer science.

Better known as *Computer Science*.

Study of:

- Algorithms.
- Data structures.
- Design of hardware and software.

Computer Vision

Replication of human vision capabilities.

Computer Vision

Replication of human vision capabilities.

Three fundamental tasks[1]:

- Recognition.
- Reconstruction.
- Reorganization.

Artificial Intelligence

Systems capable of performing tasks requiring human intelligence [2].

Artificial Intelligence

Systems capable of performing tasks requiring human intelligence [2].

Subfields:

- Machine Learning (ML) & Deep Learning (DL).
- Computer Vision(CV).
- Natural Language Processing (NLP).
- Robotics.

Explainable Al

We are interested in understanding models, behaving like a black box model:

Explainable Al

We are interested in understanding models, behaving like a black box model:

We want to *know why* $f(x) \rightarrow y$

Fitting it all together

Fitting it all together

Fitting it all together

Thesis Objectives

Improvement of recognition and interpratable properties of model predictions.

Thesis Objectives

Improvement of recognition and interpratable properties of model predictions.

In particular:

- Development of low cost/complexity explainability approaches.
- Establishment of a fixed evaluation protocol.
- Differenciation of human based and machine explanations.

Table of Contents

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

Background

To familiarize with this work, we split it into three points:

Background

To familiarize with this work, we split it into three points:

Preliminaries

- Approaching Vision.
- David Marr's approach.
- CV currently.
- Desiredata of Interpretability Study.

Image Recognition Models

- Traditional Models.
- Convolutional Neural Networks (CNN).
- The Current Landscape.

Interpretability

- Transparency.
- Post-Hoc Interpretability.
 - Class Activation Methods.
- Evaluating Interpretability.

Preliminaries

Approaching Vision

Preliminaries

David Marr's approach

Addressing vision on three levels:

- Algorithmic.
- Implementation.
- Computational.
 - Three fundamental tasks. [1]

Preliminaries

David Marr's approach

Addressing vision on three levels:

- Algorithmic.
- Implementation.
- Computational.
 - Three fundamental tasks. [1]

Computer Vision focuses on the last level.

Preliminaries

CV Currently

Preliminaries

Desiredata of Interpretability Study

We ask questions regarding black box models.

- How does it work?
- How safe is it?
- Who is accountable for it?
- Who benefits from it?
- Who uses it?.

Accepted AI systems within society must answer this.

Preliminaries

Desiredata of Interpretability Study

We ask questions regarding black box models.

- How does it work?
- How safe is it?
- Who is accountable for it?
- Who benefits from it?
- Who uses it?.

Accepted AI systems within society must answer this.

Regulation planned with the European Al act[3]

Classic Models

A two step process:

Classic Models

A two step process:

Feature Extraction:

Extracting meaningful features from high noise/complexity $H \times W \times 3$ images.

Examples such as: •

Classic Models

A two step process:

Feature Extraction:

Extracting meaningful features from high noise/complexity $H \times W \times 3$ images.

Examples such as: •

Classifier Training:

Relying on *Machine Learning* methodologies.

Convolutional Neural Networks

Based on the **convolution operation**. A representation $f \star g$ is computed for a feature map f and a kernel g. First approach with *Neocognitron*[4]

Convolutional Neural Networks

Based on the **convolution operation**.

A representation $f \star g$ is computed for a feature map f and a kernel g.

First approach with Neocognitron[4]

Self Attention Architectures

Updates a representation, using the relevance of each element relative to others in an embedding.

An input is projected to three spaces (QKV), the projection weights (W_Q, W_K, W_V) control the relevance of each element.

Introduction Background Opti-CAM CA-Stream Gradient References

Image Recognition Models

The Current Landscape

Transformers had a strong impact on image recognition.

Transparency

Post-Hoc Interpretability

Class Activation Methods

Evaluating Interpretability

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- A learning paradigm for interpretable gradients
- References

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

References I

- J. McCarthy et al., "What is artificial intelligence," 2007.
- T. Madiega, "Artificial intelligence act," European Parliament: European Parliamentary Research Service, 2021.
- K. Fukushima, "Cognitron: A self-organizing multilayered neural network," *Biological cybernetics*, vol. 20, no. 3-4, pp. 121–136, 1975.