# Invertible Residual Networks

Иван Провилков

20 декабря 2019 г.

### 1 Введение

Invertible Residual Network – архитектура, работающая хорошо одновременно как на дискриминативных, так и на генеративных задачах. Авторы концентрируются на нормализующих потоках и показывают, что заменив нормализацию в ResNet-ax, можно достичь их обратимости.

# 2 Нормализующие потоки

Нормализующий поток это алгоритм, который преобразует плотность начального распределение серией обратимых преобразований в плотность другого распределения.

Например, если мы генерируем x, то можем фактаризовать логарифм правдоподобия:

$$\log p_{\theta}(x) = \log \int p(x|z)p(z)dz = \log \int \frac{q_{\phi}(z|x)}{q_{\phi}(z|x)}p(x|z)p(z)dz \ge \mathbb{D}_{KL}[q_{\phi}(z|x)||p(z)] + \mathbb{E}_{q}[\log p_{\theta}(x|z)] = -\mathbb{F}(x),$$

где  $\theta$  - параметры модели, z - скрытые переменные  $q_{\phi}$  - аппроксиматор скрытых переменных.  $\mathbb{F}$  (ELBO) – evidence lower bound, нижняя вариационная оценка. Во время обучения можно оптимизировать ELBO используя различные методы.

# 3 Обратимость

Авторы рассматривают ResNet как Эйлерову дискретизацию обыкновенного дифференциального уравнения:

$$x_{t+1} = x_t + g_{\theta_t}(x_t)$$
  
 $x_{t+1} = x_t + h f_{\theta_t}(x_t),$ 

где g - residual block, h - step size. Их интересует обратная динамика:

$$x_{t} = x_{t+1} - g_{\theta_{t}}(x_{t})$$
$$x_{t} = x_{t+1} - h f_{\theta_{t}}(x_{t}),$$

решение такой динамики позволило бы Residual block-у работать в обратную сторону. Следующая теорема накладывает достаточные условия для того, чтобы ResNet block был обратимым:

**Theorem 1** Пусть  $F_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$  и пусть  $F_{\theta} = (F_{\theta}^1 \cdot ... \cdot F_{\theta}^T)$  обозначет ResNet с блоками  $F_{\theta}^t = I + g_{\theta_t}$ . Тогда, если  $Lip(g_{\theta_t}) < 1, t = 1, ..., T$ , тогда ResNet обратим. Где Lip(.) - означает константу Липшица.

Так как аналитическую форму обратной функции найти сложно, а правая часть уравнения обратной динамики является сжимающей в нашем случае, то авторы используют метод простой итерации для обращения ResNet блока:

```
Algorithm 1. Inverse of i-ResNet layer via fixed-point iteration.  
Input: output from residual layer y, contractive residual block g, number of fixed-point iterations n  
Init: x^0 := y  
for i = 0, \ldots, n do  
x^{i+1} := y - g(x^i) end for
```

Согласно теореме Банаха такая итерация имеет экспоненциальную скорость сходимости.

Для того, чтобы ограничение на константу Липшица выполнялось, достаточно сделать спектральную норму весов сверток меньше 1:  $g = W_3 f(W_2(f(W_1)), Lip(g) < 1$ , if  $||W_i||_2 < 1$ . Авторы аппроксимируют спектральную норму с помощью метода степенной итерации, а затем нормализуют матрицу используя полученное значение  $\sigma_i \leq ||W_i||_2$ .

значение  $\sigma_i \leq ||W_i||_2$ .  $W_i^{new} = \frac{cW_i}{\sigma_i} I(\frac{c}{\sigma_i} < 1) + W_i I(\frac{c}{\sigma_i} \geq 1)$ , где c – гиперпараметр. Метод не дает полной гарантии того, что  $||W_i||_2 \leq c$ , однако авторы делали точный подсчет нормы, и это ограничение на Липшицевость выполнялось в экспериментах.

### 4 Генеративная модель

Чтобы сгенерировать x, вначале генерируется другое распределение  $z \sim p_z(z)$ , а затем применяется функция F: x = F(z). Для любого x можно рассчитать правдоподобие с помощью формулы замены переменных:

$$\ln p_x(x) = \ln p_z(z) + \ln |\det J_{F^{-1}}(X)|,$$

где  $J_{F^{-1}}$  – Якобиан обратной функции к F.

Так как iResNet обратим, то мы можем использовать его как параметризацию  $F^{-1}$ . Мы можем сэмплить  $z \sim p(z)$ , а затем считать x = F(z).

Главной проблемой в этом процессе является подсчет  $\ln |\det J_{F^{-1}}(X)|$ , так как явное вычисление этой величины требует  $O(d^3)$  времени, где d – размерность переменной.

С помощью нескольких лемм авторы показывают, что  $\ln |det J_{F^{-1}}(X)| = tr(\ln J_{F^{-1}})$ , в нашем случае  $\ln p_x(x) = \ln p_z(z) + tr(\ln (I+J_q(x)))$ .

Нужное нам выражение может быть записано в форме ряда:

$$tr(\ln(I+J_g(x))) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{tr(J_g^k)}{k},$$

который сходится при  $||J_g||_2 < 1$ . Это условие следует из Липшицевости.

Аппроксимируя первые члены этого ряда авторы и считают логарифм детерминанта.

Algorithm 2. Forward pass of an invertible ResNets with Lipschitz constraint and log-determinant approximation, SN denotes spectral normalization based on (2).

```
Input: data point x, network F, residual block g, number of power series terms n for Each residual block \operatorname{do} Lip constraint: \hat{W}_j := \operatorname{SN}(W_j, x) for linear Layer W_j. Draw v from \mathcal{N}(0, I) w^T := v^T ln \det := 0 for k = 1 to n do w^T := w^T J_g (vector-Jacobian product) ln \det := \ln \det + (-1)^{k+1} w^T v/k end for end for
```

2

# 5 Результаты

Результаты на дискриминативной задаче:

#### Invertible Residual Networks

|                           |          | ResNet-164 | Vanilla | c = 0.9 | c = 0.8 | c = 0.7 | c = 0.6 | c = 0.5 |
|---------------------------|----------|------------|---------|---------|---------|---------|---------|---------|
| Classification            | MNIST    | -          | 0.38    | 0.40    | 0.42    | 0.40    | 0.42    | 0.86    |
| Error %                   | CIFAR10  | 5.50       | 6.69    | 6.78    | 6.86    | 6.93    | 7.72    | 8.71    |
|                           | CIFAR100 | 24.30      | 23.97   | 24.58   | 24.99   | 25.99   | 27.30   | 29.45   |
| <b>Guaranteed Inverse</b> |          | No         | No      | Yes     | Yes     | Yes     | Yes     | Yes     |

Результаты на генеративной задаче:

| Method                          | MNIST | CIFAR10 |
|---------------------------------|-------|---------|
| NICE (Dinh et al., 2014)        | 4.36  | 4.48†   |
| MADE (Germain et al., 2015)     | 2.04  | 5.67    |
| MAF (Papamakarios et al., 2017) | 1.89  | 4.31    |
| Real NVP (Dinh et al., 2017)    | 1.06  | 3.49    |
| Glow (Kingma & Dhariwal, 2018)  | 1.05  | 3.35    |
| FFJORD (Grathwohl et al., 2019) | 0.99  | 3.40    |
| i-ResNet                        | 1.06  | 3.45    |

*Table 4.* MNIST and CIFAR10 bits/dim results. † Uses ZCA preprocessing making results not directly comparable.

Примеры картинок, сгенерированных при обучении на CIFAR10:



#### 6 Заключение

В этой статье авторы представили iResNet – архитектуру, основанную на нормализующем потоке и позволяющую при небольших ограничениях на слои делать интерпретируемую генеративную модель. Эта же модель хорошо показывает себя на дискриминативной задаче, не сильно уступая бейзлайну.