1 Finite state machine minimization

- Algorithm: Finite state machine minimization (algo. 1)
- Input: A finite state machine
- Complexity: $\mathcal{O}(n^{2 \log n})$
- Data structure compatibility: Finite state machine (Deterministic finite automaton)
- Common applications: compilers, network protocols, theory of computation

Finite state machine minimization

Given a finite state machine, minimize the states.

Description

1. Definition of FSM

The formal definition of a finite state machine (deterministic finite automaton) is

$$M: (Q, \Sigma, \delta, q_0, F)$$

- (a) Q: finite set of states
- (b) Σ : finite set of input symbols
- (c) $\delta: Q \times \Sigma \leftarrow Q$: transition function
- (d) $q_0 \in Q$: initial state
- (e) $F \subseteq Q$: accept state

The automaton will accept a string w if it starts at start state q_0 , and given each character in w, the transition rule will transit state to state according to δ , and the final state shall halt at F states.

2. Input

The input of the algorithm shall be a finite state machine.

3. Complexity

Algorithm 1: FSM minimization

Input:

Output:

1 return

References

- If available provide URLs, e.g. http://mywebsite.org
- Wikipedia is not acceptable if this is the unique reference
- Reference some books, or published articles
- Use reliable websites (no blog allowed) that are not likely to disappear any time soon