Universidad Distrital Francisco José de Caldas Ingeniería Económica- Facultad de Ingeniería Diego Andrés Amaya Paez-20172015103 Johan Camilo Juez Mejía- 20172015115 Ejercicios Capítulo 4- Guía Ingeco Bogotá D.C – febrero 14 de 2021

Capítulo 4

1. Hallar el monto y el valor presente de 20 pagos de \$2000 c/u, suponga una tasa del 18% EA.

1. Asignación fecha focal

ff=20

2. Declaración de variables

VF = \$?

$$VP = \$?$$

$$n = 20$$

$$R = $2.000$$

j = 18 % EA

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VP = R_X \frac{1 - (1 + i)^{-n}}{i}$$
: Valor presente serie uniforme vencida

$$VF = R_X \frac{(1+i)^n - 1}{i}$$
: Valor futuro serie uniforme vencida

5. Procedimiento matemático

$$VP = \$2.000_X \frac{1 - (1 + 0.18)^{-20}}{0.18} = \$10.705,4929$$

$$VF = \$2.000_X \frac{(1+0.18)^{20}-1}{0.18} = \$293.255,94$$

6. Respuesta

El valor presente es de \$10.705,4929 y hay un monto de \$293.255,94

2. Para la compra de un automóvil que vale \$6 000 000; se exige una cuota inicial del 40% y el resto se cancela en 36 cuotas mensuales, ¿a cuánto ascenderá la cuota, si los intereses son del 3.5% pmv

1. Asignación fecha focal

2. Declaración de variables

i = 3.5 % pmv

n = 36 pmv

VP = \$6.000.000 - \$2.400.000

VF = \$3.600.000

R = \$?

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VF = R \frac{(1+i)^n - 1}{i}$$
: Valor futuro serie uniforme vencida

5. Procedimiento matemático

$$VF = R \left[\frac{(1+i)^n - 1}{i} \right]$$

$$R = \frac{\$3.600.000}{20.2904} = \$177.422,86$$

6. Respuesta

$$R = $177.422,86$$

3. Si en el problema anterior se ofrecen 2 cuotas extraordinarias: la primera de \$350.000 en el mes 5, y la segunda de \$500.000, en el mes 18, ¿cuál será el valor de la cuota ordinaria?

1. Asignación fecha focal

2. Declaración de variables

R = ?

VP = \$6.000.000

n = 36

i = 3.5 % E.M

cuota 1

n = 5

\$350.000

cuota 2

n = 18

\$500.000

3. Diagrama de flujo de caja

 $VF = R_X \frac{(1+i)^n - 1}{i}$: Valor futuro serie uniforme vencida

$$VP = R_1(1 - (1-i)^{-n_1}) + R_2(1 - (1-i)^{-n_2})$$

5. Procedimiento matemático

 $\$6.000 = \$240.000 + \$350.000 (1 + 0.035)^{-5} + \$500.000 (1 + 0.035)^{-18} + R \frac{(1 + 0.035)^{-36} - 1}{0.035}$ \$149.633,0671

6. Respuesta

\$149.633,0671

4. Una persona va a comprar una máquina que vale \$800.000, con el objeto de poder disponer de esa cantidad el 15 de diciembre de 1989. Comienza a hacer depósitos mensuales de \$R, en un fondo que paga el 30% namv. Si el primer depósito lo hace el 15 de febrero de 1988, Hallar el valor del depósito mensual.

1. Asignación fecha focal

$$ff=23 pmv$$

2. Declaración de variables

VF = \$800.000

i = 30% namv

n = 23 pmv

3. Diagrama de flujo de caja

4. Declaración de formulas

 $VF = R_X \frac{(1+i)^n - 1}{i}$: Valor futuro serie uniforme vencida

5. Procedimiento matemático

$$i = \frac{30\% \ namv}{12 \ pmv} = 0,025 \ pmv$$

$$$800.000 = R \frac{(1+0.025)^{23} - 1}{0.025}$$

$$R = $26.157,10$$

6. Respuesta

\$26.157,10

5. Un documento estipula pagos trimestrales de \$10.000 iniciando el primer pago el 20 de enero de 1987 y terminando el 20 de julio de 1995: Si se desea cambiar este documento por otro que estipule pagos trimestrales de \$R, comenzando el 20 de abril de 1988 y terminando el 20

de julio de 1989, Hallar el valor de la cuota. Suponga una tasa del 20% natv. Sugerencia: El valor de los documentos debe ser igual en el punto que escoja como fecha focal.

1. Asignación fecha focal

ff=34 ptv

2. Declaración de variables

$$R_1 = \$10.000$$

 $R_2 = \$?$
 $j = 20\% natv$
 $i = \frac{20\%}{4} = 5\% ptv$
 $n_1 = 34 ptv$
 $n_2 = 5 ptv$

VF = \$?

3. Diagrama de flujo de caja

Periodo	Inicia	Termina	
R_1	20/01/1987	20/07/1995	
R_2	20/04/1988	20/07/1989	

 $VP = R_X \frac{1 - (1 + i)^{-n}}{i}$: Valor presente serie uniforme vencida

 $F = P (1+i)^n : Valor futuro$

5. Procedimiento matemático

$$VP = \$10.000 \frac{1 - (1 + 0.05)^{-35}}{0.05} = \$163.741,9429$$

$$F = \$163.741,9429(1+0.05)^5$$

F = \$208.980,8228

$$VP = R \frac{1 - (1+i)^{-n}}{i}$$

$$$208.980,8228 = R \frac{1 - (1 + 0,05)^{-6}}{0,05}$$

$$$208.980,8228 = R(5,0756)$$

$$R = \frac{\$208.980,8228}{5,076}$$

$$R = \$41.173,6194$$

6. Respuesta

El valor de la cuota es de \$41.173,6194

- 6. Una persona se compromete a pagar \$60.000 mensuales, a partir del 8 de julio de 1988 hasta el 8 de diciembre de 1989. Se propone hacer depósitos mensuales de \$R c/u, en una cuenta de ahorros que como mínimo le garantiza el 1.5% pmv (periódico mes vencido). Si el primer depósito lo efectúa el 8 de marzo de 1986, ¿cuál será el valor de \$R (valor de la serie uniforme), suponiendo que el último depósito lo hará:
 - a, El 8 de diciembre de 1989
 - b. El 8 de julio de 1988
 - c. El 8 de junio de 1988
 - d. El 8 de abril de 1987

Planteamiento inicial. 8 de julio del 88, al 8 de diciembre del 89

	1. Asignación fecha focal	
	ff=18pmv	
	2. Declaración de variables	
$i = 1,5\% \ pmv$ $n = 18 \ pmv$ R = \$60.000 VF = \$? VP = \$?		
3. Diagrama de flujo de caja		

 $VF = R_X \frac{(1+i)^{-n}-1}{i}$: Valor futuro serie uniforme vencida

 $P = F(1+i)^n : Valor presente$

5. Procedimiento matemático

$$VF = \$60.000_X \frac{(1+0.15)^{18} - 1}{0.015}$$

VF = \$1.229.362,54

6. Respuesta

\$1.229.362,54

A. El 8 de diciembre de 1989

1. Asignación fecha focal

ff=46*pm*v

2. Declaración de variables

i = 1,5% pmv

n = 46 pmv

R = \$?

VF = \$?

VP = \$?

3. Diagrama de flujo de caja

 $VF = R_X \frac{(1+i)^{-n} - 1}{i}$: Valor futuro serie uniforme vencida

 $P = F(1+i)^n : Valor presente$

5. Procedimiento matemático

$$VF = R_X \frac{(1+i)^{-n} - 1}{i}$$

$$R = \frac{VF}{\underbrace{(1+i)^{-n} - 1}_{i}}$$

$$R = \frac{\$1.229.362,54}{(1+0,015)^{46} - 1}$$

$$0,015$$

R = \$18.749,31

6. Respuesta

R = \$18.749,31

B. 8 de julio de 1988

1. Asignación fecha focal

2. Declaración de variables

$$i = 1,5\% pmv$$

$$n = 29 pmv$$

$$R = \$?$$

$$VF = \$?$$

$$VP = \$?$$

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VF = R_X \frac{(1+i)^{-n}-1}{i}$$
: Valor futuro serie uniforme vencida

$$P = F (1+i)^n : Valor presente$$

5. Procedimiento matemático

$$VF = P = (1+i)^{-n}$$

$$VF = \$1.229.362,54 (1 + 0.015)^{-17}$$

$$VF = $954.458,95$$

$$VF = R_X \frac{(1+i)^{-n} - 1}{i}$$

$$R = \frac{VF}{\underbrace{(1+i)^{-n} - 1}_{i}}$$

$$R = \frac{\$954.458,95}{\frac{(1+0,015)^{29}-1}{0,015}}$$

$$R = $26.513$$

6. Respuesta

$$R = $26.513$$

C. 8 de junio de 1988

1. Asignación fecha focal

2. Declaración de variables

i = 1.5% pmv

n = 28 pmv

R = \$?

VF = \$?

VP = \$?

3. Diagrama de flujo de caja

4. Declaración de formulas

 $VF = R_X \frac{(1+i)^{-n}-1}{i}$: Valor futuro serie uniforme vencida

$$P = F(1+i)^n : Valor presente$$

5. Procedimiento matemático

$$VF = P = (1+i)^{-n}$$

$$VF = \$1.229.362,54 (1 + 0.015)^{-18}$$

$$VF = $940.353,65$$

$$VF = R_X \frac{(1+i)^{-n} - 1}{i}$$

$$R = \frac{VF}{\frac{(1+i)^{-n}-1}{i}}$$

$$R = \frac{\$940.353,65}{(1+0,015)^{28}-1}$$

$$0,015$$

$$R = $26.271$$

6. Respuesta

$$R = $26.271$$

D. 8 de abril de 1987.

1. Asignación fecha focal

2. Declaración de variables

i = 1.5% pmv

$$n = 14 pmv$$

$$R = \$?$$

$$VF = \$?$$

$$VP = \$?$$

3. Diagrama de flujo de caja

$$VF = R_X \frac{(1+i)^{-n}-1}{i}$$
: Valor futuro serie uniforme vencida

$$P = F(1+i)^n : Valor presente$$

5. Procedimiento matemático

$$VF = P = (1+i)^{-n}$$

$$VF = \$1.229.362,54 (1 + 0.015)^{-32}$$

$$VF = \$763.425,43$$

$$VF = R_X \frac{(1+i)^{-n} - 1}{i}$$

$$R = \frac{VF}{\frac{(1+i)^{-n}-1}{i}}$$

$$R = \frac{\$763.425,43}{\frac{(1+0,015)^{14}-1}{0,015}}$$

$$R = $49.411.42$$

6. Respuesta

$$R = $49.411.42$$

- 7. Una deuda de \$800.000 va a ser cancelado en pagos trimestrales de \$78.000 durante tanto tiempo como fuere necesario. Suponiendo una tasa del 30% natv.
- a. ¿Cuántos pagos de \$78.000 deben hacerse?

$$ff=0$$

2. Declaración de variables

$$i = \frac{30\% \, natv}{4 \, ptv} = 7.5 \, \% \, ptv$$

$$VP = \$800.000$$

$$R = $78.000$$

$$j = 30\% natv$$

$$n = ptv$$
?

3. Diagrama de flujo de caja

4. Declaración de formulas

 $VP = R_X \frac{1 - (1 + i)^{-n}}{i}$: Valor presente serie uniforme vencida

5. Procedimiento matemático

$$n = \frac{-\ln[1 - (VPi/R)]}{\ln(1+i)}$$

$$n = \frac{-\ln[1 - (\$800.000(0,075)/\$78.000)]}{\ln(1 + 0,075)}$$

$$n = 20,2755 = 20 pagos$$

6. Respuesta

$$n = 20$$

b. ¿Con qué pago final hecho 3 meses después del último pago de \$78.000 cancelará la deuda?

$$ff=21 ptv$$

2. Declaración de variables

$$i = \frac{30\% \, natv}{4 \, ptv} = 7.5 \, \% \, ptv$$

$$VP = \$800.000$$

$$R = $78.000$$

$$j = 30\%$$
 natv

$$n = 21 ptv$$

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VP = R_X \frac{1 - (1 + i)^{-n}}{i}$$
: Valor presente serie uniforme vencida

5. Procedimiento matemático

$$\$800.000 = \$78.000 \frac{1 - (1 + 0.075)^{-20}}{0.075} + R (1 + 0.075)^{-21}$$

$$R = \frac{\$800.000 - \$79.517,316}{(1 + 0,075ptv)}$$

$$R = $22.054,41622$$

6. Respuesta

$$R = $22.054,41622$$

8. Resuelva el problema anterior si la tasa es del 42% natv. Justifique su respuesta desde el punto de vista matemático y desde el punto de vista financiero.

2. Declaración de variables

j = 42 % natv

n = ptv?

 $i = 42\% \, natv \, / \, 4 \, ptv = 10,5\% \, ptv$

VP = \$800.000

R = \$78.000

3. Diagrama de flujo de caja

4. Declaración de formulas

 $VP = R_X \frac{1 - (1 + i)^{-n}}{i}$: Valor presente serie uniforme vencida

5. Procedimiento matemático

$$\$800.000 = \$78.000 \frac{1 - (1 + 0.105)^{-n}}{0.105}$$

Al intentar despejar n para saber cuántos el número de periodos de la serie, resulta imposible ya que necesitamos usar logaritmos y sus propiedades, y cómo los logaritmos de números negativos no existen, no es posible hay solución posible.

6. Respuesta

No hay solución

- 9. Desean reunirse exactamente \$60.000 mediante depósitos mensuales de \$1.000, en un fondo que paga el 36% namv.
- a. ¿Cuántos depósitos de \$1.000 deberán hacerse?

- b. b. ¿Qué depósito adicional hecho conjuntamente con el último depósito de \$1.000 completará los \$60.000?
- c. ¿Qué depósito adicional hecho un mes después del último depósito de \$1.000 completará los \$60.000?

$$ff=0$$

2. Declaración de variables

$$VF = $60.000$$

$$R = $1.000$$

$$j = 36\% namv$$

$$i = \frac{0.36 \, namv}{12} = 3\% \, pmv$$

$$i = 3\% pmv$$

$$n = pmv$$
?

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VF = R_X \frac{(1+i)^{-n}-1}{i}$$
: Valor futuro serie uniforme vencida

$$VF_a = R_X \frac{(1+i)^{-n}-1}{i}(1+i)$$
: Valor futuros erieuni forme anticipada

5. Procedimiento matemático

a.

$$n = \frac{\ln[1 + (VFi/R)]}{\ln(1+i)}$$

$$n = \frac{-\ln[1 + (\$60.000(0,03)/\$1.000)]}{\ln(1 + 0,03)}$$

$$n = 34,832920 = 34 pmv$$

$$d.$$

$$\$60.000 = \$1.000 \frac{(1 + 0,03)^{-34} - 1}{0,03} + R$$

$$R = \$2.269,823483$$
e.
$$VF_a = \$1.000 \frac{(1 + 0,03)^{-34} - 1}{0,03} (1 + 0,03) + R$$

$$R = \$537,918187$$
6. Respuesta
$$a.34 pagos, b. \$2.269,823483, c. \$537,918187$$

10. Resolver el problema anterior incluyendo un depósito adicional de \$7.000 en el período 10.

$$VF = R_X \frac{(1+i)^{-n}-1}{i}$$
: Valor futuro serie uniforme vencida

$$VF_a = R_X \frac{(1+i)^{-n}-1}{i}(1+i)$$
: Valorfuturo serie uniforme anticipada

5. Procedimiento matemático

a.

$$$60.000 (1 + 0.03)^{-n} = $1.000 \frac{(1 + 0.03)^{-n} - 1}{0.03} + $7.000 (1 + 0.03)^{-10}$$

$$$60.000(1,03)^{-n} = $1.000 \frac{(1,03)^{-n} - 1}{0,03} + $5.208,66$$

$$(1,03)^{-n} = \frac{38.541,99}{93.333,33}$$

$$n = -\frac{\ln(0,4129)}{\ln(1,03)} = 29,92 \, pmv$$

$$n = 29 pagos$$

b.

$$$60.000 = $1.000 \frac{(1+0.03)^{29}-1}{0.03} + $7.000(1+0.03)^{19} + R$$

$$R = $2.506,6$$

$$$60.000 = $1.000 \frac{(1+0.03)^{29}-1}{0.03} (1+0.03) + $7.000(1+0.03)^{20} + R$$

$$R = $781,8$$

6. Respuesta

a. 29 pagos , b. \$2.506,6 , c. \$781,8

- 11. Para cancelar una deuda de \$80.000, con intereses al 24% namv se hacen pagos mensuales de \$3.000 cada uno.
- a. ¿Cuántos pagos de \$3.000 deben hacerse?

1. Asignación fecha focal

ff=0

2. Declaración de variables

R = \$80.000

j = 24% namv

$$i = \frac{24\%}{12} = 2\% \, pmv$$

n = ?

3. Diagrama de flujo de caja

$$VF = R_X \frac{(1+i)^{-n}-1}{i}$$
: Valor futuro serie uniforme vencida

$$F = P(1+i)^n$$
: Valor futuro

5. Procedimiento matemático

$$\$80.000(1+0.02)^{-n} = \$3.000 \left[\frac{(1+0.02)^{-n}-1}{0.02} \right]$$

$$\$80.000(1,02)^{-n} = \frac{\$3.000(1,02)^{-n}}{0,02} - \frac{\$3.000}{0,02}$$

$$\$80.000(1,02)^{-n} = \$150.000(1,02)^{-n} - \$150.000$$

$$\$80.000(1,02)^{-n} - \$150.000(1,02)^{-n} = -\$150.000$$

$$-\$70.000(1,02)^{-n} = -\$150.000$$

$$(1,02)^{-n} = \frac{-\$150.000}{\$ - 70.000}$$

$$(1,02)^{-n} = 2,1428$$

$$-n \ln(1,02) = \ln(2,1428)$$

$$n = \frac{\ln(2,1428)}{\ln(1,02)}$$

$$n = 38,4854 \, pmv$$

$$n = 38$$

6. Respuesta

b. ¿Con qué pago adicional hecho conjuntamente con el último pago de \$3.000 se cancelará la deuda?

2. Declaración de variables

$$R = \$80.000$$

$$j = 24\% namv$$

$$i = \frac{24\%}{12} = 2\% \, pmv$$

$$n = 38 pmv$$

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VF = R_X \frac{(1+i)^{-n}-1}{i}$$
: Valor futuro serie uniforme vencida

$$F = P (1+i)^n$$
: Valor futuro

5. Procedimiento matemático

$$$80.000(1+0.02)^{38} = $3.000 \left[\frac{(1+0.02)^{38}-1}{0.02} \right] + X$$

$$\$80.000(1,02)^{38} = \$30.000 \frac{(1,02)^{38}}{0.02} - \$150.000 + X$$

$$$169.783,9034 = $318.344,8189 - $150.000 + X$$

$$X = \$150.000 + \$169.783,9034 - \$318.344,8189$$

X = \$1.439,0844

6. Respuesta

X = \$1.439,0844

c. c. ¿Qué pago adicional hecho un mes después del último pago de \$3.000 cancelará la deuda?

1. Asignación fecha focal

2. Declaración de variables

R = \$80.000

j = 24% namv

 $i = \frac{24\%}{12} = 2\% \, pmv$

n = 38 pmv

3. Diagrama de flujo de caja

4. Declaración de formulas

 $VF = R_X \frac{(1+i)^{-n}-1}{i}$: Valor futuro serie uniforme vencida

 $F = P (1+i)^n$: Valor futuro

5. Procedimiento matemático

$$\$80.000(1+0.02)^{39} = \$3.000 \left[\frac{(1+0.02)^{39}-1}{0.02} \right] + X$$

$$\$80.000(1,02)^{39} = \$30.000 \frac{(1,02)^{39}}{0,02} - \$150.000 + X$$

$$$173.179,5815 = $324.711,7152 - $150.000 + X$$

$$X = \$150.000 + \$173.179,5815 - \$324.711,7152$$

$$X = -\$1.532,1377$$

El valor negativo significa que sobran \$1.532,1337, es decir que el monto adicional que tiene que pagar en el último pago es \$3.000 - \$1.532,1337 = \$1.467,8662.

6. Respuesta

$$X = $1.467,8662$$

- 12. Resolver el problema anterior suponiendo que se hace un pago adicional de \$10.000 con la décima cuota.
- a. ¿Cuántos pagos de \$3.000 deben hacerse?

1. Asignación fecha focal

$$ff=0$$

2. Declaración de variables

$$VP = \$80.000$$

$$R = \$3.000$$

$$i = 24 \% namv$$

$$i = \frac{24\% \, namv}{12 \, pmv} = 2\% \, pmv$$

n = pmv?

$$R_1 = \$?$$

$$R_2 = \$$$

3. Diagrama de flujo de caja

$$VF = R_X \frac{(1+i)^{-n}-1}{i}$$
: Valor futuro serie uniforme vencida

$$VP = R_X \frac{1 - (1 + i)^{-n}}{i}$$
: Valor presente serie uniforme vencida

$$F = P (1+i)^n$$
: Valor futuro

5. Procedimiento matemático

$$$80.000 = $3.000 X \frac{1 + (1 + 0.02)^{-n}}{0.02} + $10.000 (1 + 0.02)^{-10}$$

$$n = \frac{0,653}{0,012} = 32,89$$

$$n = 32$$

6. Respuesta

32 pagos

b. ¿Con qué pago adicional hecho conjuntamente con el último pago de \$3.000 se cancelará la deuda?

1. Asignación fecha focal

2. Declaración de variables

$$VP = \$80.000$$

$$R = \$3.000$$

$$j = 24 \% namv$$
 $i = \frac{24\% namv}{12 pmv} = 2\% pmv$
 $n = pmv$?
 $R_1 = \$$?
 $R_2 = \$$

3. Diagrama de flujo de caja

4. Declaración de formulas

 $VF = R_X \frac{(1+i)^{-n}-1}{i}$: Valor futuro serie uniforme vencida

 $VP = R_X \frac{1 - (1 + i)^{-n}}{i}$: Valor presente serie uniforme vencida

 $F = P (1+i)^n$: Valor futuro

5. Procedimiento matemático

$$\$80.000 (1 + 0.02)^{32} = \$3.000 \frac{(1 + 0.02)^{32} - 1}{0.02} + \$10.000 (1 + 0.02)^{22} + R$$

R = \$2.66,36

6. Respuesta

$$R = $2.66,36$$

c. ¿Qué pago adicional hecho un mes después del último pago de \$3.000 cancelará la deuda?

2. Declaración de variables

$$VP = \$80.000$$
 $R = \$3.000$
 $j = 24 \% namv$
 $i = \frac{24\% namv}{12 pmv} = 2\% pmv$
 $n = pmv$?
 $R_1 = \$$?
 $R_2 = \$$

3. Diagrama de flujo de caja

4. Declaración de formulas

 $VF = R_X \frac{(1+i)^{-n}-1}{i}$: Valor futuro serie uniforme vencida $VP = R_X \frac{1-(1+i)^{-n}}{i}$: Valor presente serie uniforme vencida

 $F = P (1+i)^n$: Valor futuro

5. Procedimiento matemático

$$\$80.000 (1 + 0.02)^{33} = \$3.000 \frac{(1 + 0.02)^{33} - 1}{0.02} + \$10.000(1 + 0.02)^{23} + R$$

R = \$2.674,81

6. Respuesta

$$R = $2.674,81$$

13. . Una máquina cuesta al contado \$600.000, para promover las ventas, se ofrece que puede ser vendida en 24 cuotas mensuales iguales, efectuándose la primera el día de la venta. Si se carga un interés del 3% pmv (periodo mes vencido). Calcular el valor de cada pago.

1. Asignación fecha focal

$$ff=24 pmv$$

2. Declaración de variables

VP = \$600.000

n = 24 pmv

i = 3% pmv

R = \$?

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VP_a = R_X \frac{1 - (1 + i)^{-n}}{i} (1 + i)$$
: Valor presente serie uniforme anticipada

5. Procedimiento matemático

$$$600.000 = R \frac{1 - (1 + 0.03)^{-n}}{0.03} (1 + 0.03)$$

$$R = \frac{\$600.000}{17,4436} = \$34.396,55289$$
6. Respuesta
$$\$34.396,55289$$

- 14. Un fondo para empleados presta a un socio la suma de \$2 millones para ser pagado en 3 años, mediante cuotas mensuales uniformes, con intereses sobre saldos al 24% namv. Si en el momento de pagar la sexta cuota, decide pagar en forma anticipada las cuotas 7, 8 y 9:
- a. . ¿cuál debe ser el valor a cancelar al vencimiento de la sexta cuota?

ff= 36 pmv

2. Declaración de variables

VP = \$2.000.000

R = \$?

i = 24 namv / 12 = 2% pmv

n = 36 pmv

3. Diagrama de flujo de caja

4. Declaración de formulas

$$P = \frac{F}{(1+i)^n}: Valor \ presente$$

$$F = P (1+i)^n$$
: Valor futuro

$$VF = R_X \frac{(1+i)^n - 1}{i}$$
: Valor futuro serie uniforme vencida

Procedimiento matemático

a.
$$R = \frac{P i (1+i)^n}{(1+i)^n - 1}$$

$$R = \frac{\$2.000.000(0,02)(1+0,02)^{36}}{(1+0,02)^{36} - 1} = \$78.465,7052$$

$$I = 4R = (78.465,7052)(4) = 313.862,8212$$
b.
$$F = \$78.465,7052 + 78.465,7052(1+0,02)^{-1} + 78.465,7052(1+0,02)^{-2} + 78.465,7052(1+0,02)^{-3}$$

$$F = \$304.751,6339$$

I = \$313.862,8212 - 304.751,6339

I = \$9.111,18

6. Respuesta

a. 304.751,66 , b. \$9.111,18

15. Una persona adopta un plan de ahorros del fondo ABC, que establece depósitos mensuales de \$1.000, comenzando el primero de febrero de 1986 hasta el primero de abril de 1987 y, depósitos mensuales de \$2.000, desde el primero de mayo de 1987 hasta el primero de diciembre de 1987. El capital así reunido permanecerá en el fondo hasta el primero de junio de 1988, fecha en la cual le será entregado al suscriptor junto con intereses calculados al 12% namy.

Por razones comerciales la junta directiva del fondo ABC decidió que, a partir del primero de octubre de 1986, el fondo pagará a todos sus clientes de ahorros el 18% namv. ¿Cuál será el capital que, el primero de junio de 1988, le entregarán a la persona que ha decidido adoptar el plan?

1. Asignación fecha focal

ff=15 pmv

2. Declaración de variables

$$R_1 = \$1.000$$
 $R_2 = \$2.000$ $j = 12\% \ namv$ $j = 18\% \ namv$ $i = 12\% \ namv/12 = 12\% \ pmv$ $i = 18\% \ namv \ / \ 12 = 18\% \ pmv$ $n = 15 \ pmv$

3. Diagrama de flujo de caja

4. Declaración de formulas

$$F = P (1 + i)^n$$
: Valor futuro

$$VF_a = R_X \frac{(1+i)^n - 1}{i} (1+i)$$
: Valorfuturo serie uniforme anticipada

5. Procedimiento matemático

$$VF_a = \$1.000 \frac{(1+0.012)^9 - 1}{0.012} (1+0.012)^{20} + \$1.000 \frac{(1+0.015)^6 - 1}{0.015} (1+0.012)^{14} + \$2.000 \frac{(1+0.015)^8 - 1}{0.015} (1+0.015)^6$$

$$VF_a = \$38.732,99$$

6. Respuesta

El capital entregado será de \$38.732,99

16. Un contrato de arriendo por un año establece el pago de \$20.000 mensuales al principio de cada mes. Si ofrecen cancelar todo el contrato a su inicio, ¿cuánto deberá pagar? Suponiendo:

a. Tasa del 30% nama (Nominal Anual mes anticipado).

1. Asignación fecha focal

$$ff=12 pmv$$

2. Declaración de variables

R = \$20.000

n = 12 pma

j = 30% nama

$$i = {0,30 \choose 12} = 0,025 = 2,5 \% pma$$

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VP_a = R_X \frac{1 - (1+i)^{-n}}{i} (1+i)$$
: Valor presente serie uniforme anticipada

5. Procedimiento matemático

$$VP_a = $20.000 \frac{1 - (1 + 0.025)^{-12}}{0.025} (1 + 0.025)$$

 $VP_a = \$210.284,1743$

6. Respuesta

b. tasa 3% pma (periódica mes anticipado)

1. Asignación fecha focal

2. Declaración de variables

i = 3% pma

n = 12 pma

m = 1 pma

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VP_a = R_X \frac{1 - (1+i)^{-n}}{i} (1+i)$$
: Valor presente serie uniforme anticipada

$$i = (1 + i_1)^{m_1} = (1 + i_2)^{m_2}$$
: Equivalencia de tasas

5. Procedimiento matemático

$$i_1 = \frac{0,03}{1 - 0,03}$$

$$i_1 = 0.0309 pmv$$

$$m_{1} = 1 \ y \ m_{2} = \frac{1}{12}$$

$$i_{2} = \left(\left(1 + \frac{3}{97}\right)^{12} - 1\right) = 0.4412 = 44.12 \% \ pav$$

$$m_{1} = 1 \ y \ m_{2} = 12$$

$$i_{2} = (1 + 0.4412)^{\frac{1}{12}} - 1 = 3.92 \% \ pma$$

$$VP_{a} = \$20.000 \frac{1 - (1 + 0.03927835)^{-12}}{0.03927835} (1 + 0.03927835) = \$204.105.0927$$
6. Respuesta
$$= \$204.105.0927$$

17. Una máquina produce 2.000 unidades mensuales las cuales deben venderse a \$80 c/u. El estado actual de la máquina es regular y si no se repara podría servir durante 6 meses más y luego desecharla, pero si hoy le hacemos una reparación total a un costo de \$800.000, se garantizaría que la máquina podría servir durante un año contado a partir de su reparación. Suponiendo una tasa del 4% pma ¿será aconsejable repararla?

1. Asignación fecha focal ff=6pmv2. Declaración de variables VP = \$? R = \$160.000 i = 4% pmv n = 6 pmv3. Diagrama de flujo de caja VP = \$? VP = \$? R = \$160.000 i = 4% pmv R = \$160.000 i = 6 pmv

$$VP = R_X \frac{1 - (1 + i)^{-n}}{i}$$
: Valorfuturo serie uniforme vencida

5. Procedimiento matemático

$$VP = \$160.000 \frac{1 - (1 + 0.04)^{-6}}{0.04} = \$838.741,8971$$

Con n = 12

$$VP = \$160.000 \frac{1 - (1 + 0.04)^{-12}}{0.04} = \$1.501.611.80$$

$$VP - \$Reparaci\'on = \$1.501.611,80 - \$800.000 = \$701.611,80$$

6. Respuesta

No es aconsejable repararla

18. Elaborar una tabla para amortizar la suma de \$3 millones en pagos trimestrales durante 15 meses con una tasa del 46% natv

1. Asignación fecha focal

$$ff=5 ptv$$

2. Declaración de variables

VP = \$3.000.000

$$n = 5 ptv$$

i = 11,5 %

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VF = R_X \frac{(1+i)^{-n}-1}{i}$$
: Valor futuro serie uniforme vencida

5. Procedimiento matemático

$$$3.000.000 = R \frac{(1+0.115)^{-5}-1}{0.115}$$

$$R = \$821.945,3159$$

6. Respuesta

	Valor	Abono	Abono	Saldo
n	Cuota	Interés	Capital	Balance
0	\$ 0	\$ 0	\$ 0	\$ 3.000.000
1	\$ 821.945,3159	\$ 345.000	\$ 476.945,3159	\$ 2.523.054,6841
2	\$ 821.945,3159	\$ 290.151,2887	\$ 531.794,0272	\$ 1.991.260,6569
3	\$ 821.945,3159	\$ 228.995	\$ 592.950,3404	\$ 1.398.310,3165
4	\$ 821.945,3159	\$ 160.805,6864	\$ 661.139,6295	\$ 737.170,6870

19. . Elaborar una tabla para capitalizar la suma de \$2 millones mediante depósitos semestrales durante 3 años. Suponga una tasa del 42% nasv

1. Asignación fecha focal

$$ff=6 psv$$

2. Declaración de variables

VP = \$2.000.000

$$n = 6 psv$$

$$i = \% psv$$
?

$$R = \$?$$

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VP = R_X \frac{1 - (1 + i)^{-n}}{i}$$
: Valor presente serie uniforme vencida

j = i m : Tasa nominal

5. Procedimiento matemático

$$i = \frac{42\% nasv}{2 psv} : 21 \% psv$$

$$$2.000.000 = R \frac{1 - (1 + 0.21)^{-6}}{0.21}$$

R = \$616.406,9025

6. Respuesta

PERIODO	DEPOSITO	INTERESES	ACUMULADO	INCREMENTO
1	616.405,9234	0,00	616.405,9234	616.405,9234
2	616.405,9234	129.445,24	1.362.257,0907	745.851,1673
3	616.405,9234	286.073,99	2.264.737,0032	902.479,9124
4	616.405,9234	475.594,77	3.356.737,6972	1.092.000,6941
5	616.405,9234	704.914,92	4.678.058,5370	1.321.320,8398
6	616.405,9234	982.392,29	6.276.856,7532	1.598.798,2162

20. Una persona desea reunir \$800.000 mediante depósitos mensuales de \$R c/u durante 5 años en una cuenta que paga el 30% namv. ¿Cuál es el total de intereses ganados hasta el mes 30?

1. Asignación fecha focal

$$ff=60$$

2. Declaración de variables

j = 30% namv

$$i = \frac{30\%}{12} = 2.5\% pmv$$

VF = \$800.000

$$R = \$?$$

3. Diagrama de flujo de caja

4. Declaración de formulas

 $VF = R_X \frac{(1+i)^{-n} - 1}{i}$: Valor futuro serie uniforme vencida

5. Procedimiento matemático

$$i = \frac{30\% \ naamv}{12} : 2,5 \% \ pmv$$

$$$800.000 = R \frac{(1+0.025)^{-60} - 1}{0.025}$$

$$R = $5.882,71672$$

Tabla de amortización

PERIODO	DEPOSITO	INTERESES	INCREMENTO	ACUMULADO
1	\$ 5.882,7167	\$ 0,0000	\$ 5.882,7167	\$ 5.882,7167
2	\$ 5.882,7167	\$ 147,0679	\$ 6.029,7846	\$ 11.912,5013
3	\$ 5.882,7167	\$ 297,8125	\$ 6.180,5293	\$ 18.093,0306
4	\$ 5.882,7167	\$ 452,3258	\$ 6.335,0425	\$ 24.428,0731
5	\$ 5.882,7167	\$ 610,7018	\$ 6.493,4185	\$ 30.921,4916
6	\$ 5.882,7167	\$ 773,0373	\$ 6.655,7540	\$ 37.577,2456
7	\$ 5.882,7167	\$ 939,4311	\$ 6.822,1479	\$ 44.399,3935
8	\$ 5.882,7167	\$ 1.109,9848	\$ 6.992,7016	\$ 51.392,0950
9	\$ 5.882,7167	\$ 1.284,8024	\$ 7.167,5191	\$ 58.559,6141
10	\$ 5.882,7167	\$ 1.463,9904	\$ 7.346,7071	\$ 65.906,3212
11	\$ 5.882,7167	\$ 1.647,6580	\$ 7.530,3747	\$ 73.436,6959
12	\$ 5.882,7167	\$ 1.835,9174	\$ 7.718,6341	\$ 81.155,3301
13	\$ 5.882,7167	\$ 2.028,8833	\$ 7.911,6000	\$ 89.066,9300
14	\$ 5.882,7167	\$ 2.226,6733	\$ 8.109,3900	\$ 97.176,3200
15	\$ 5.882,7167	\$ 2.429,4080	\$ 8.312,1247	\$ 105.488,4447
16	\$ 5.882,7167	\$ 2.637,2111	\$ 8.519,9278	\$ 114.008,3726
17	\$ 5.882,7167	\$ 2.850,2093	\$ 8.732,9260	\$ 122.741,2986
18	\$ 5.882,7167	\$ 3.068,5325	\$ 8.951,2492	\$ 131.692,5478
19	\$ 5.882,7167	\$ 3.292,3137	\$ 9.175,0304	\$ 140.867,5782
20	\$ 5.882,7167	\$ 3.521,6895	\$ 9.404,4062	\$ 150.271,9844
21	\$ 5.882,7167	\$ 3.756,7996	\$ 9.639,5163	\$ 159.911,5007
22	\$ 5.882,7167	\$ 3.997,7875	\$ 9.880,5042	\$ 169.792,0049
23	\$ 5.882,7167	\$ 4.244,8001	\$ 10.127,5168	\$ 179.919,5218
24	\$ 5.882,7167	\$ 4.497,9880	\$ 10.380,7048	\$ 190.300,2265
25	\$ 5.882,7167	\$ 4.757,5057	\$ 10.640,2224	\$ 200.940,4489
26	\$ 5.882,7167	\$ 5.023,5112	\$ 10.906,2279	\$ 211.846,6768
27	\$ 5.882,7167	\$ 5.296,1669	\$ 11.178,8836	\$ 223.025,5605
28	\$ 5.882,7167	\$ 5.575,6390	\$ 11.458,3557	\$ 234.483,9162
29	\$ 5.882,7167	\$ 5.862,0979	\$ 11.744,8146	\$ 246.228,7308
30	\$ 5.882,7167	\$ 6.155,7183	\$ 12.038,4350	\$ 258.267,1658

INTERESES GANADOS	
MES 30	

\$ 81.785,6643

6. Respuesta

\$81.785,6644

- 21. Para cancelar una deuda de \$2 millones con intereses al 36% namv se hacen pagos mensuales de \$R c/u, durante 15 años.
- a. Calcular el valor de la deuda después de haber hecho el pago número 110

b. Calcular el total de los intereses pagados hasta el mes 110 Sugerencia:para la parte a. calcule el valor presente en el mes 110 de los 70 pagos que falta por cancelar, para la parte b. halle la diferencia entre el total pagado y el total amortizado.

1. Asignación fecha focal

2. Declaración de variables

$$VP = $2.000.000$$

$$i = 36\% \, naav \, / 12 = 3 \% \, pmv$$

$$n = 180 pmv$$

R = \$?

3. Diagrama de flujo de caja

4. Declaración de formulas

$$VP = R_X \frac{1 - (1+i)^{-n}}{i}$$
: Valor presente serie uniforme vencida

5. Procedimiento matemático

$$i = \frac{0,36}{12} = 0,03 EPM$$

$$$2.000.000 = R_X \frac{1 - (1 + 0.03)^{-180}}{0.03}$$

$$R = \$60.294,83543$$

Tabla de amortización

	ibia ac amo	TUZUCIOTI			
	n	VALOR CUOTA	ABONO INTERES	ABONO CAPITAL	SALDO BALANCE
Ī	0	\$ 0			\$ 2.000.000
Ī	1	\$ 60.294,8354	\$ 60.000	\$ 294,8354	\$ 1.999.705,1646

2	\$ 60.294,8354	\$ 59.991,1549	\$ 303,6805	\$ 1.999.401,4841
3	\$ 60.294,8354	\$ 59.982	\$ 312,7909	\$ 1.999.088,6932
4	\$ 60.294,8354	\$ 59.972,6608	\$ 322,1746	\$ 1.998.766,5185
5	\$ 60.294,8354	\$ 59.963	\$ 331,8399	\$ 1.998.434,6787
6	\$ 60.294,8354	\$ 59.953,0404	\$ 341,7951	\$ 1.998.092,8836
7	\$ 60.294,8354	\$ 59.943	\$ 352,0489	\$ 1.997.740,8347
8	\$ 60.294,8354	\$ 59.932,2250	\$ 362,6104	\$ 1.997.378,2243
9	\$ 60.294,8354	\$ 59.921	\$ 373,4887	\$ 1.997.004,7356
10	\$ 60.294,8354	\$ 59.910,1421	\$ 384,6934	\$ 1.996.620,0422
11	\$ 60.294,8354	\$ 59.899	\$ 396,2342	\$ 1.996.223,8081
12	\$ 60.294,8354	\$ 59.886,7142	\$ 408,1212	\$ 1.995.815,6869
13	\$ 60.294,8354	\$ 59.874	\$ 420,3648	\$ 1.995.395,3220
14	\$ 60.294,8354	\$ 59.861,8597	\$ 432,9758	\$ 1.994.962,3463
15	\$ 60.294,8354	\$ 59.849	\$ 445,9650	\$ 1.994.516,3812
16	\$ 60.294,8354	\$ 59.835,4914	\$ 459,3440	\$ 1.994.057,0372
17	\$ 60.294,8354	\$ 59.822	\$ 473,1243	\$ 1.993.583,9129
18	\$ 60.294,8354	\$ 59.807,5174	\$ 487,3180	\$ 1.993.096,5949
19	\$ 60.294,8354	\$ 59.793	\$ 501,9376	\$ 1.992.594,6573
20	\$ 60.294,8354	\$ 59.777,8397	\$ 516,9957	\$ 1.992.077,6616
21	\$ 60.294,8354	\$ 59.762	\$ 532,5056	\$ 1.991.545,1560
22	\$ 60.294,8354	\$ 59.746,3547	\$ 548,4807	\$ 1.990.996,6753
23	\$ 60.294,8354	\$ 59.730	\$ 564,9352	\$ 1.990.431,7401
24	\$ 60.294,8354	\$ 59.712,9522	\$ 581,8832	\$ 1.989.849,8569
25	\$ 60.294,8354	\$ 59.695	\$ 599,3397	\$ 1.989.250,5171
26	\$ 60.294,8354	\$ 59.677,5155	\$ 617,3199	\$ 1.988.633,1972
27	\$ 60.294,8354	\$ 59.659	\$ 635,8395	\$ 1.987.997,3577
28	\$ 60.294,8354	\$ 59.639,9207	\$ 654,9147	\$ 1.987.342,4430
29	\$ 60.294,8354	\$ 59.620	\$ 674,5621	\$ 1.986.667,8809
30	\$ 60.294,8354	\$ 59.600,0364	\$ 694,7990	\$ 1.985.973,0819
31	\$ 60.294,8354	\$ 59.579	\$ 715,6430	\$ 1.985.257,4389
32	\$ 60.294,8354	\$ 59.557,7232	\$ 737,1123	\$ 1.984.520,3266
33	\$ 60.294,8354	\$ 59.536	\$ 759,2256	\$ 1.983.761,1010
34	\$ 60.294,8354	\$ 59.512,8330	\$ 782,0024	\$ 1.982.979,0986
35	\$ 60.294,8354	\$ 59.489	\$ 805,4625	\$ 1.982.173,6361
36	\$ 60.294,8354	\$ 59.465,2091	\$ 829,6263	\$ 1.981.344,0098
37	\$ 60.294,8354	\$ 59.440	\$ 854,5151	\$ 1.980.489,4946
38	\$ 60.294,8354	\$ 59.414,6848	\$ 880,1506	\$ 1.979.609,3440
39	\$ 60.294,8354	\$ 59.388	\$ 906,5551	\$ 1.978.702,7889
40	\$ 60.294,8354	\$ 59.361,0837	\$ 933,7518	\$ 1.977.769,0372
41	\$ 60.294,8354	\$ 59.333	\$ 961,7643	\$ 1.976.807,2728
42	\$ 60.294,8354	\$ 59.304,2182	\$ 990,6172	\$ 1.975.816,6556
43	\$ 60.294,8354	\$ 59.274	\$ 1.020,3358	\$ 1.974.796,3198
44	\$ 60.294,8354	\$ 59.243,8896	\$ 1.050,9458	\$ 1.973.745,3740
45	\$ 60.294,8354	\$ 59.212	\$ 1.082,4742	\$ 1.972.662,8998
46	\$ 60.294,8354	\$ 59.179,8870	\$ 1.114,9484	\$ 1.971.547,9514
47	\$ 60.294,8354	\$ 59.146	\$ 1.148,3969	\$ 1.970.399,5545
48	\$ 60.294,8354	\$ 59.111,9866	\$ 1.182,8488	\$ 1.969.216,7057
49	\$ 60.294,8354	\$ 59.077	\$ 1.218,3343	\$ 1.967.998,3714

50	\$ 60.294,8354	\$ 59.039,9511	\$ 1.254,8843	\$ 1.966.743,4871
51	\$ 60.294,8354	\$ 59.002	\$ 1.292,5308	\$ 1.965.450,9563
52	\$ 60.294,8354	\$ 58.963,5287	\$ 1.331,3067	\$ 1.964.119,6496
53	\$ 60.294,8354	\$ 58.924	\$ 1.371,2459	\$ 1.962.748,4036
54	\$ 60.294,8354	\$ 58.882,4521	\$ 1.412,3833	\$ 1.961.336,0203
55	\$ 60.294,8354	\$ 58.840	\$ 1.454,7548	\$ 1.959.881,2655
56	\$ 60.294,8354	\$ 58.796,4380	\$ 1.498,3975	\$ 1.958.382,8680
57	\$ 60.294,8354	\$ 58.751	\$ 1.543,3494	\$ 1.956.839,5186
58	\$ 60.294,8354	\$ 58.705,1856	\$ 1.589,6499	\$ 1.955.249,8688
59	\$ 60.294,8354	\$ 58.657	\$ 1.637,3394	\$ 1.953.612,5294
60	\$ 60.294,8354	\$ 58.608,3759	\$ 1.686,4595	\$ 1.951.926,0698
61	\$ 60.294,8354	\$ 58.558	\$ 1.737,0533	\$ 1.950.189,0165
62	\$ 60.294,8354	\$ 58.505,6705	\$ 1.789,1649	\$ 1.948.399,8516
63	\$ 60.294,8354	\$ 58.452	\$ 1.842,8399	\$ 1.946.557,0117
64	\$ 60.294,8354	\$ 58.396,7104	\$ 1.898,1251	\$ 1.944.658,8866
65	\$ 60.294,8354	\$ 58.340	\$ 1.955,0688	\$ 1.942.703,8178
66	\$ 60.294,8354	\$ 58.281,1145	\$ 2.013,7209	\$ 1.940.690,0969
67	\$ 60.294,8354	\$ 58.221	\$ 2.074,1325	\$ 1.938.615,9644
68	\$ 60.294,8354	\$ 58.158,4789	\$ 2.136,3565	\$ 1.936.479,6079
69	\$ 60.294,8354	\$ 58.094	\$ 2.200,4472	\$ 1.934.279,1607
70	\$ 60.294,8354	\$ 58.028,3748	\$ 2.266,4606	\$ 1.932.012,7001
71	\$ 60.294,8354	\$ 57.960	\$ 2.334,4544	\$ 1.929.678,2456
72	\$ 60.294,8354	\$ 57.890,3474	\$ 2.404,4881	\$ 1.927.273,7576
73	\$ 60.294,8354	\$ 57.818	\$ 2.476,6227	\$ 1.924.797,1349
74	\$ 60.294,8354	\$ 57.743,9140	\$ 2.550,9214	\$ 1.922.246,2135
75	\$ 60.294,8354	\$ 57.667	\$ 2.627,4490	\$ 1.919.618,7645
76	\$ 60.294,8354	\$ 57.588,5629	\$ 2.706,2725	\$ 1.916.912,4920
77	\$ 60.294,8354	\$ 57.507	\$ 2.787,4607	\$ 1.914.125,0313
78	\$ 60.294,8354	\$ 57.423,7509	\$ 2.871,0845	\$ 1.911.253,9468
79	\$ 60.294,8354	\$ 57.338	\$ 2.957,2170	\$ 1.908.296,7298
80	\$ 60.294,8354	\$ 57.248,9019	\$ 3.045,9335	\$ 1.905.250,7962
81	\$ 60.294,8354	\$ 57.158	\$ 3.137,3115	\$ 1.902.113,4847
82	\$ 60.294,8354	\$ 57.063,4045	\$ 3.231,4309	\$ 1.898.882,0538
83	\$ 60.294,8354	\$ 56.966	\$ 3.328,3738	\$ 1.895.553,6800
84	\$ 60.294,8354	\$ 56.866,6104	\$ 3.428,2250	\$ 1.892.125,4550
85	\$ 60.294,8354	\$ 56.764	\$ 3.531,0718	\$ 1.888.594,3832
86	\$ 60.294,8354	\$ 56.657,8315	\$ 3.637,0039	\$ 1.884.957,3792
87	\$ 60.294,8354	\$ 56.549	\$ 3.746,1141	\$ 1.881.211,2652
88	\$ 60.294,8354	\$ 56.436,3380	\$ 3.858,4975	\$ 1.877.352,7677
89	\$ 60.294,8354	\$ 56.321	\$ 3.974,2524	\$ 1.873.378,5153
90	\$ 60.294,8354	\$ 56.201,3555	\$ 4.093,4800	\$ 1.869.285,0354
91	\$ 60.294,8354	\$ 56.079	\$ 4.216,2844	\$ 1.865.068,7510
92	\$ 60.294,8354	\$ 55.952,0625	\$ 4.342,7729	\$ 1.860.725,9781
93	\$ 60.294,8354 \$ 60.204,8354	\$ 55.822 \$ 55.697.5977	\$ 4.473,0561	\$ 1.856.252,9220 \$ 1.851.645.6742
94	\$ 60.294,8354	\$ 55.687,5877	\$ 4.607,2478	\$ 1.851.645,6742
95	\$ 60.294,8354	\$ 55.549 \$ 55.407.0063	\$ 4.745,4652	\$ 1.846.900,2090
96	\$ 60.294,8354 \$ 60.294,8354	\$ 55.407,0063 \$ 55.260	\$ 4.887,8292 \$ 5.034,4640	\$ 1.842.012,3799 \$ 1.836.077.0158
97	\$ 60.294,8354	\$ 55.260	\$ 5.034,4640	\$ 1.836.977,9158

6 Pasmuesta				
SUMATORI A	\$ 6.632.431,8973	\$ 6.388.423,7927		
110	\$ 60.294,8354	\$ 52.901,5553	\$ 7.393,2802	\$ 1.755.991,8954
109	\$ 60.294,8354	\$ 53.117	\$ 7.177,9419	\$ 1.763.385,1756
108	\$ 60.294,8354	\$ 53.325,9598	\$ 6.968,8756	\$ 1.770.563,1175
107	\$ 60.294,8354	\$ 53.529	\$ 6.765,8987	\$ 1.777.531,9931
106	\$ 60.294,8354	\$ 53.726,0018	\$ 6.568,8337	\$ 1.784.297,8918
105	\$ 60.294,8354	\$ 53.917	\$ 6.377,5084	\$ 1.790.866,7254
104	\$ 60.294,8354	\$ 54.103,0797	\$ 6.191,7557	\$ 1.797.244,2339
103	\$ 60.294,8354	\$ 54.283	\$ 6.011,4133	\$ 1.803.435,9896
102	\$ 60.294,8354	\$ 54.458,5118	\$ 5.836,3236	\$ 1.809.447,4029
101	\$ 60.294,8354	\$ 54.629	\$ 5.666,3336	\$ 1.815.283,7266
100	\$ 60.294,8354	\$ 54.793,5406	\$ 5.501,2948	\$ 1.820.950,0602
99	\$ 60.294,8354	\$ 54.954	\$ 5.341,0629	\$ 1.826.451,3550
98	\$ 60.294,8354	\$ 55.109,3375	\$ 5.185,4980	\$ 1.831.792,4179

6. Respuesta

a. \$1.755.991,8954, b. \$6.388,7927

22.Se necesita \$1 millón, para realizar un proyecto de ampliación de una bodega, una compañía A ofrece prestar el dinero, pero exige que le sea pagado en 60 cuotas mensuales vencidas de \$36.132,96 c/u. La compañía B ofrece prestar el dinero, pero para que le sea pagado en 60 pagos mensuales de \$19.000 c/u y dos cuotas adicionales así: la primera de \$250 000, pagadera al final del mes 12, la segunda, de \$350 000, pagadera al final del mes 24. Hallar la tasa periódica mes vencido que cobra cada uno, para decidir qué préstamo debe utilizar.

1. Asignación fecha focal		
ff=60 pmv		
2. Declaración	n de variables	
COMPAÑÍA A	COMPAÑÍA B	
VP = \$1'000.000 n = 60 pmv R = \$36.132,96 i =?% pmv	VP = \$1'000.000 n = 60 pmv n = 12 pmv n2 = 24 pmv n3 = 60 pmv R1 = \$19.000 R2 = \$250.000 R3 = \$350.000 i =?%pmv	
3. Diagrama de flujo de caja		

COMPAÑÍA A

COMPAÑÍA B

4. Declaración de fórmulas

$$VP = R \frac{[1 - (1 + i)^{-n}]}{i}$$
 FÓRMULA DE VALOR PRESENTE
 $P = F (1 + i)^{-n}$: Valor futuro

5. Desarrollo matemático

COMPAÑIA A

$$1000.000 = \left(36.132,96 \times \left(\frac{1 - (1+i)^{-60}}{i}\right)\right)$$

Metodo de tanteo

$$\frac{VP}{R} \cong \frac{1 - (1+i)^n}{n}$$

VP/R	27,6755627	
	$\left(\frac{1-(1+i)^{-60}}{i}\right)$	Tasa
i1	30,90865649	0,025
i2	27,67556367	0,03
i3	33,53208848	0,0215
i	0,03	

Metodo Interpolacion

$$i = i1 + \left(\frac{VP - VP1}{(VP - VP2) - (VP - VP1)}\right)x(i2 - i1)$$

vp	1000000
i1	0,0215
12	0,025
vp1	1211613,612
vp2	1116821,248
	•
vp-vp1	-211613,6118
vp-vp2	-116821,2484
(vp-vp2)-(vp-vp1)	94792,36336
i2-i1	0,0035
i	$0,029313368 \approx 0,03$

COMPAÑÍA B

$$VP = \frac{R((1+i)^{-n}-1)}{i} + R1(1+i)^{-n1} + R2(1+i)^{-n2}$$
 Ecuación de Valor

$$1.000.000 = \frac{19.000 ((1+i)^{-60}-1)}{i} + 250.000(1+i)^{-12} + 350.000 (1+i)^{-24}$$

Metodo Interpolacion

$$i = i1 + \left(\frac{VP - VP1}{(VP - VP2) - (VP - VP1)}\right)(i2 - i1)$$

vp	1000000		
i1	0,02		
I2	0,025		
vp1	1075182,662		
vp2	966659,819		
vp-vp1	-75182,6616		
vp-vp2	33340,181		
(vp-vp2)-(vp-vp1)	108522,8426		
i2-i1	0,005		
i	$0,02346391 \approx 0,0235$		

6. Respuestas

COMPAÑIA A
$$i = 3\%$$
 pmv
COMPAÑIA B $i = 2,35\%$ pmv

Se debe elegir la opción B ya que ofrece una menor tasa de crédito.

23. Un equipo de sonido cuesta \$400 000 al contado, pero puede ser cancelado en 24 cuotas mensuales de \$33 000 c/u efectuándose la primera el día de la venta. ¿Qué tasa efectiva mensual se está cobrando?

1. Asignación fecha focal

$$ff=24 pmv$$

2. Declaración de variables

VP= \$400.000 n = 24 pmv R= \$33.000

3. Diagrama de flujo de caja

4. Declaración de fórmulas

$$VP = R \frac{[1 - (1 + i)^{-n}]}{i}$$
 FÓRMULA DE VALOR PRESENTE

5. Desarrollo matemático

$$$400.00 = $33.000 \left[\frac{1 - (1 + iIP)^{-24}}{IP} \right]$$

$$12,12121212 = \left[\frac{1 - (1 + IP)^{-24}}{IP} \right]$$

$$I = 7,159\% \ pmv$$

6. Respuestas

Se cobra una tasa del 7,159% pmv

24. A qué tasa nominal, convertible mensualmente, está siendo amortizada una deuda de \$300.000, mediante pagos mensuales de \$10.000, ¿durante 4 años?

1. Asignación fecha focal

ff=48 pmv

2. Declaración de variables

VP = \$300.000

R = \$10.000

i = ?% pmv

n = 48 pmv

3. Diagrama de flujo de caja

4. Declaración de fórmulas

$$VP = R \frac{[1 - (1 + i)^{-n}]}{i}$$
 FÓRMULA DE VALOR PRESENTE

5. Desarrollo matemático

$$$300.000 = $10.000 \left[\frac{1 - (1+i)^{-48}}{i} \right]$$

Para hallar la tasa debemos interpolar y así obtendremos la respuesta correcta

Arbitraria mente tomamos un interés del 2.124% pmv

$$300000 = 10000 \left[\frac{1 - (1,02)^{-48}}{0.02} \right] \Rightarrow 300000 - 10000 \left[\frac{1 - (1,02)^{-48}}{0,02} \right] = -6731,19572$$

Interés 2,15% pmv

$$300000 = 10000 \left[\frac{1 - (1,0215)^{-48}}{0.0215} \right] \Rightarrow 300000 - 10000 \left[\frac{1 - (1,0215)^{-48}}{0,0215} \right]$$
$$= 242419254$$

Interpolamos y así obtenemos la tasa utilizada

$$\frac{2-X}{2-2.5} = \frac{-6731,19572 - 0}{-6731,19572 - 2424,19254} \Rightarrow X = 0.021103 \Rightarrow 2,1103\% EM$$

$$(0.021103)x(12) = 0.253236 \Rightarrow 25.3236\% NAMV$$

6. Respuestas

La tasa nominal que está amortizando la deuda es del 25,3236% navm

25. A qué tasa nominal, convertible trimestralmente, está reuniéndose un capital de \$400000, mediante depósitos trimestrales de \$20000 c/u durante 3 años?

1. Asignación fecha focal

2. Declaración de variables

$$VF = 400.000$$

 $R = 20.000
 $n = 3 \text{ años} = 12 \text{ ptv}$
 $i = ?$

3. Diagrama de flujo de caja

4. Declaración de fórmulas

$$VP = R \frac{[1 - (1 + i)^{-n}]}{i}$$
 FÓRMULA DE VALOR PRESENTE

5. Desarrollo matemático

Utilizamos un interés del 9% ptv

$$\$400.000 = \$20.000 \left[\frac{(1,09)^{12} - 1}{0,09} \right] \Rightarrow \$400.000 - \$20.000 \left[\frac{(1,09)^{12} - 1}{0,09} \right]$$

= $-\$2.814,39595$

Con interés 8,8% ptv

$$$400.000 = $20.000 \left[\frac{(1,088)^{12} - 1}{0,088} \right] \Rightarrow$$

$$$400.000 - $20.000 \left[\frac{(1,088)^{12} - 1}{0,088} \right] = $1.964,60789$$

INTERRPOLANDO PARA OBTENER LA TASA UTILIZADA

$$\frac{9-X}{9-8.8} = \frac{-2814.60789 - 0}{-2814.60789 - 1964.60789}$$
$$X = 0.08882147$$
$$X = 8.8822147\% ET$$

(0.08882147).(4) = 0.35528858 = 35.5288% ntv

6. Respuestas

Los \$400.000 se están reuniendo a unta tasa del 35,5288% NTv

26. Una entidad financiera me propone que el deposite mensualmente \$ 10.000 durante 3 años comenzando el primer deposito el dia de hoy y me promete devolver al final de este tiempo \$7.000.000. Que tasa efectiva mensual me va a pagar.

1. Asignación fecha focal

ff=*36 pma*

2. Declaración de variables

VF = \$7.000.000

R = \$10.000

i = ?% pma

n = 36 pma

3. Diagrama de flujo de caja

4. Declaración de fórmulas

 $VF = R_X \frac{(1+i)^n - 1}{i}$: Valor futuro serie uniforme vencida

5. Desarrollo matemático

$$$7.000.000 = $10.000 \left(\frac{(1+i)^{36} - 1}{i} \right)$$

$$i = 12,9999\% \ pmv$$

6. Respuestas

Al despejar la tasa de la fórmula anterior tenemos que la tasa utilizada en esta transacción es de 13 % pmv

- 27. Un señor compro un automóvil dando una cuota inicial de 20% y el saldo lo cancela con cuotas mensuales de \$ 317.689,78 durante 3 años. Después de efectuar el pago de la cuota 24 ofrece cancelar el saldo de la deuda de un solo contado y le dicen que su saldo en ese momento asciende a la suma de \$3.060.682,56.
 - A. Calcular con 2 decimales exactos la tasa efectiva mensual que le están cobrando.
 - B. Calcular la tasa efectiva anual equivalente que le cobran.
 - C. Cual es el costo total del automóvil.

1. Asignación fecha focal

ff=

2. Declaración de variables

R = \$317.689,78 n = 12 pmv VP = \$3.060.682,56 i = ?% pmv

3. Diagrama de flujo de caja

4. Declaración de fórmulas

 $(1+i_1)^{m1} = (1+i_2)^{m2}$ Equivalencia de tasas $VP = R * \frac{1-(1+i)^{-n}}{i}$ Valor presente serie uniforme vencida

5. Desarrollo matemático

A.
$$P = R \left[\frac{1 - (1 + ip)^{-n}}{ip} \right]$$

$$\$3'060.928.56 = 317689.78 \left[\frac{1 - (1 + i)^{-12}}{i} \right]$$

$$9,634960747 = \frac{1}{i} - \frac{(1 + i)^{-12}}{i}$$

$$i = 3,55\%EPM$$

В.

$$(1+i_1)^n = (1+i_2)^n$$

 $(1+0.0355)^{12} = (1+i_2)^1$
 $i = 51,9851\% \ pav$

C.

$$VP = R \left[\frac{1 - (1 + IP)^{-N}}{IP} \right]$$

$$VP = 317689.78 \left[\frac{1 - (1.0355)^{-36}}{0.0355} \right]$$

$$VP = \$80'000.000$$

6. Respuestas

- A. La tasa efectiva que le están cobrando al señor por el automóvil es de 3.55% EM
- B. La tasa anual equivalente que le están cobrando es del 51.9851 % EA
- C. El costo total del automóvil es de \$ 8.000.000.035