Semaine 5 – Lundi 04 mai

30 min

Préparation d'une solution aqueuse

Rappel

On prépare par dissolution une solution aqueuse à partir d'un solide ionique $A_aB_b(s)$. L'équation de dissolution est :

$$A_a B_b(s) \rightarrow a A^{b+}(aq) + b B^{a-}(aq)$$

La quantité de matière de cette espèce A_aB_b est :

$$n=\frac{m}{M}$$

avec m la masse (g), n la quantité de matière (mol) et M la masse molaire moléculaire $(g.mol^{-1})$. La concentration molaire de la solution est :

$$C = \frac{n}{V}$$

avec C la concentration (mol), n la quantité de matière (mol) et V le volume de la solution (L).

À retenir

La concentration molaire des espèces ioniques dans la solution n'est généralement pas la même que la concentration molaire de la solution C. La concentration molaire de l'espèce A^{b+} est notée $[A^{b+}]$, elle vaut :

$$[A^{b+}] = \frac{n(A^{b+})}{V}$$

avec $[A^{b+}]$ la concentration molaire de l'espèce A^{b+} ($mol.L^{-1}$), $n(A^{b+})$ la quantité de matière de l'espèce A^{b+} , et V le volume de la solution (L).

Remarque : la difficulté est de déterminer la quantité de matière $n(A^{b+})$. Pour cela on fait un tableau d'avancement.

Exemple:

On prépare V = 1.0 L de sulfate de potassium telle que la concentration molaire en sulfate de potassium est $C = 5.0 \ mol. L^{-1}$.

potassiam est d = 3,0 mot. L :					
	Équation de dissolution		$K_2SO_4(s)$ -	$\rightarrow 2 K^+(aq)$	$+ SO_4^{2-}(aq)$
	État	Avancement (mol)	Quantité de matière en mol		
			$n(K_2SO_4)$	$n(K^+)$	$n(SO_4^{2-})$
	Initial	x = 0	5	0	0
	Final	$x = x_{max}$	0	$2x_{max} = 10$	$x_{max} = 5$

Donc à l'état final on a $n(K^+) = 10 \ mol. \ L^{-1}$ et $n(SO_4^{2-}) = 5 \ mol. \ L^{-1}$.

La concentration en ion potassium $[K^+]$ est :

$$[K^{+}] = \frac{n(K^{+})}{V}$$
$$= \frac{10 \ mol}{1,0 \ L}$$
$$= 10 \ mol, L^{-1}$$

La concentration en ion sulfate $[SO_4^{2-}]$ est :

$$[SO_4^{2-}] = \frac{n(SO_4^{2-})}{V}$$
$$= \frac{5 \, mol}{1,0 \, L}$$
$$= 5 \, mol, L^{-1}$$

Exercice 1.

On réalise une solution de sulfate de potassium K_2SO_4 . On pèse une masse m=2,0 g que l'on dissout dans une fiole de volume V=1,0L.

<u>Donnée</u>: $M(K_2SO_4) = 174,3 g. mol^{-1}$.

- 1) Calculer la quantité de matière n_0 de sulfate de potassium versée dans la fiole.
- 2) En déduire la concentration molaire de la solution préparée ?
- 3) Déterminer la concentration molaire de chaque espèce présente dans la solution.

Exercice 2.

Une solution aqueuse de volume $V_{solution} = 150,0 \ mL$ est préparée en dissolvant $500 \ mg$ de chlorure de gallium (III), $GaC\ell_3(s)$, dans de l'eau.

- 4) Écrire l'équation de dissolution du chlorure de gallium.
- 5) Calculer la concentration molaire de chaque espèce présente dans la solution.