5 Papers

Title	Publication source	Year
A Deep Multimodal Model for Bug Localization	DMKD	2021
Enhancing Supervised Bug Localization with Metadata and Stack- Trace	KIS	2020
Learning Unified Features from Natural and Programming Languages for Locating Buggy Source Code	IJCAI	2016
Locating Faulty Methods with a Mixed RNN and Attention Model	ICPC	2021
Multi-Dimension Convolutional Neural Network for Bug Localization	TSC	2020

Multi-Dimension
Convolutional Neural Network
for Bug Localization

汇报人: 王昭丹

CONTENTS

01. BACKGROUND

02. APPROACH OVERVIEW

03. STATISTICAL FEATURE EXTRACTION

BACKGROUND

Static Bug Localization

Mismatch of text similarity

- Structured Information Retrieval
- Semantic Information
- Bug-fixing History

Dynamic Bug Localization

Gather information from execution traces of the system

- Spectrum-based
- Model-based

1

2

Possibility of combining multiple features

How to effectively combine multiple dimensions of features for bug localization

BACKGROUND

IR-based Bug Localization

- Vector Space Model (VSM)
- Latent Semantic Indexing (LSI)
- Latent Dirichlet Allocation (LDA)
- Unigram Model (UM)
- Cluster Based Document Model (CBDM)

ML-based Bug Localization

- Trained BP Neural Network
- BugScout —— an extended LDA
- A Two-phase Recommendation Model
- Learning to Rank
- Combine the LSTM and CNN Model
- HyLoc Combine IR with Six DNNs
- Enhanced CNN

1

2

Combine the best of both worlds

More on extracting semantic information in bug reports but ignored many useful IR-base features

SOLUTION APPROACH: AN OVERVIEW

Assumption

For a repository of software projects, there are **three repositories** available:

- a repository of historical bug reports,
- a repository of source code files,
- a repository of bug fixing history.

Let **SF** and **BR** denote the set of N_s source files and the set of N_b bug reports.

Source file $s \in SF$

- Source File Identifier
- the Class
- the Method
- the Variable
- the Comment
- API Documents

Bug report $b \in BR$

- Bug Identifier
- the Summary
- the Description

Bug fixing history record

- Bug Identifier
- Time Stamp tb when the bug report is fixed
- Set of source file identities associated with this bug b

SOLUTION APPROACH: AN OVERVIEW

MD-CNN Design Overview

The development of MDCNN bug localization model consists of **two phases**:

- Model Training
- Model Deployment

Fig. 1. The Overall Framework of MD-CNN

APPROACH OVERVIEW — MD-CNN Model Training

Statistical Feature Extraction

The goal of the first task:

- prepare the training dataset by preprocessing the raw input data from a set of historical bug reports stored in the bug tracking system,
- generate a set of statistical features that capture the varying types of relationships between bug reports and source code files.

Text similarity between bug report and source file

Bug-source relationship by **similarity of bug reports**

Bug-source relationship by recently-fixed source files

Bug-source relationship by class name similarity

Bug-source relationship by structural similarity

Construct Feature Matrix

The second task is to construct a feature matrix of size $\mathbf{5}$ $\times N_s$ for each bug report in the training set, say N_b .

- provide N_b training **inputs**, each is represented as a feature matrix of N_s columns and five rows, and corresponds to a bug report in the training set.
 - A column corresponds to a source file in the training set
 - The five statistical features (ranking scores in the range of [0,1]) as its row values
- □ Configuring a CNN model with varying number of kernels in convolutional layers
- ☐ The row values are the **output** generated by the feature extraction task for each pair of source file and bug report

APPROACH OVERVIEW — Model Deployment

Model Deployment

The pretrained MD-CNN model for automated bug localization prediction will be performed upon request. Let $\mathbf{f}_{\text{MD-CNN}(\theta,\mathbf{r})}$ denote the trained MD-CNN model:

- > r as the query with the new bug report
- \triangleright θ as the model parameters
 - the number of hidden layers used by the MD-CNN model
 - the number of kernel filters Wi(i > 1)

The **output** of $f_{MD-CNN(\theta,r)}$ is a probability vector of size N_s for the query \mathbf{r} with the top \mathbf{k} highest scores as the top \mathbf{k} best source files that match the new bug report.

Extract Important Dimensions Of Features

- Features between each pair of a bug report and a source file, denoted by (b, s), ∀b ∈ BR,
 ∀s ∈ SF.
- For each pair (b, s), we extract **k** features from them and build the feature vectors $Score(b,s) = [Score_i(b,s)]_{1 \le i \le k}$.
- Each feature extraction algorithm will take the data input from the three repositories and output a similarity score for each pair (b, s).

TABLE 1
Features Used in the MD-CNN Model

Dimension	Formula
Text Similarity	$Score_{t-sim}(b,s) = g(n_t) \times cos(b,s) = \frac{1}{1 + e^{\gamma_{mm}(n_t)}} \times \frac{\vec{b} \cdot \vec{s}}{\ \vec{b}\ \ \vec{s}\ }$
Similar Bug History	$Score_{cf-sim}(b,s) = \sum_{i=1}^{k} \frac{1}{i} sim - rank(b,B(s))$
Bug-fixing History	$Score_{h-sim}(b,s) = \sum_{s \in H_m} \frac{1}{1+e^{-\frac{12t_{elapse}(s,b)}{m} + w(s)}}$
Class Name Similarity	$Socre_{c-sim}(b,s) = \begin{cases} max_len(cn) & if \ cn \in s.class \cap b.class \\ 0 & otherwise \end{cases}$
Structural Similarity	$Score_{s-sim}(b,s) = \sum_{b_p \in b} \sum_{s_p \in s} sim(b_p, s_p)$

Text Similarity

rVSM

Term frequency tf(t, d)

Inverse document frequency idf(t, d)

Term weight w_t in each document vector of size n

number of occurrences of a term ${\bf t}$ in a document ${\bf d}$ number of documents that $tf(t,d) = log [f_{td} + 1)$ contain the term ${\bf t}$

$$w_{t \in d} = tf(t, d) \times idf_{t, D} = \log\left(f_{td} + 1\right) \times \log\left(\frac{|D|}{d_t}\right)$$
 (2)

• cosine similarity \rightarrow Equation (4) total number of distinct terms in the source file s

$$Score_{t-sim}(b,s) = g[n_t] \times cos(b,s)$$
 length of document s takes into account of larger documents during the ranking
$$= \frac{1}{1 + e^{\gamma_{mm}(n_t)}} \times \frac{\vec{b} \cdot \vec{s}}{\|\vec{b}\| \|\vec{s}\|}$$
 Min-Max normal method to n

Bug report, extract the text of

> summary, description and comments

Source file, extract the

string-literal in addition to comments and identifiers

API documentation in the source file

text description of the classes and interfaces through term extraction from API speciation

Bug Report

Project: Eclipse_Platform_UI

Bug_ID: 407505

Summary: Maximise-Restore causes hidden editor area to be shown

Description: In our Eclipse-based RCP we don't always need to have an editor area, so hide it using

WorkbenchPage.setEditorAreaVisible(false).

Even though it is not visible it is getting added to elements-ToMinimize which means is gets tagged with MINIMIZED & MINIMIZED_BY_ZOOM and therefore set to visible when restore is called.

Bug_Files

 $bundles/org.eclipse.e4.ui.workbench.addons.swt/src/org/eclipse/e4/ui/workbench/addons/minmax/{\bf MinMaxAddon.java}$

Source File

File_Name: MinMaxAddon.java

Content:

method to normalize nt

import org.eclipse.swt.widgets.Shell

final Shell winShell = (Shell) window.getWidget();

partService.requestActivation();

API Document

API_Name: Shell Content:

Instances that do have a parent are described as secondary or dialog shells. Instances are always displayed in one of the maximized, minimized or normal states: When an instance is marked as maximized, the window manager will typically resize it to fill the entire visible area of the display, and the instance is usually put in a state where it can not be resized (even if it has style RESIZE) until it is no longer maximized. When an instance is in the normal state (neither maximized or minimized), its appearance is controlled by the style constants which were specified when it was created and the restrictions of the window manager (see below). When an instance has been marked as minimized

API_Name: partService

Content:

A part service tracks the creation and activation of parts within a workbench page. This service can be acquired from your service locator: IPartService service = (IPartService) getSite(), getService(IPartService.class); This service is not available globally, only from the workbench window level down. See Also: IWorkbenchPage, IServiceLocator.getService(Class) Restriction: This interface is not intended to be implemented by clients.

Similarity to Historical Bug Reports

Examine the bug fixing history to extract those previously fixed bug reports that are textually similar to the current bug report.

Let **br(b, s)** denote the set of historical bug reports associated with a source file **s** and are fixed before the current bug report **b**.

Carres and Clas	A i Duild Managariana									
Source code file: AjBuildManager.java										
Bug ID: 272591	Summary: couldn't find aspectjrt.jar on classpath									
	Description: I am using the aspectj runtime jar that is in the spring source bundle									
	repository. The have renamed their jar to match their naming conventions and it is									
	causing the warning to occur. Their bundle is named									
	com.springsource.org.aspectj.runtime-1.6.3.RELEASE.jar. It would be nice if this									
	warning was not printed out in this case.									
Bug ID:34951	Summary: NPE compiling without aspectjrt.jar									
	Description: Compiling spacewar without specifying aspectjrt.jar on the									
	classpath causes a NPE. Expected an error message "aspectjrt.jar required". Steps									
	to reproduce: 1) install latest 2) cd doc/examples3) java -jar//lib/aspectjtools.jar -									
	verbose @spacewar/debug.lst Result :NPE in attached log									
Bug ID: 112830	Warning "couldn't find aspectjrt.jar on classpath"									
	The compiler makes this warning if "aspectrt.jar" file has a different name like									
	"aspectrt-1.3.jar", which is the case when compiling with maven.									

Computes the textual similarity between the current bug report **b** and the summaries of all the bug reports in br(b, s).

$$Score_{hbs-sim}(b,s) = cosine(b,br(b,s))$$
 (5)

Normalize the CF score of the similar historical bugs for each source file.

$$Score_{cf-sim}(b,s) = \sum_{i=1}^k \frac{1}{i} sim - rank(b,B(s)) \tag{6}$$
 set of bug reports for which the source file s was fixed before the current bug report b was received

Fig. 3. Bug reports that are similar with a single source file

Similarity to Recent Buggy Source Files

- The change history data of source code in the version control systems.
- A source file is more likely to contain faults if it has recently been changed by fixing bugs.

Bug ID: 272354

Report_Time: 2009-04-15 14:21 Modify_Time: 2009-04-16 03:00

Buggy Files:

org.eclipse.jdt.junit.core/src/org/eclipse/jdt/internal/junit/buildpath/**P2Utils.java** org.eclipse.jdt.junit/src/org/eclipse/jdt/internal/junit/buildpath/**P2Utils.java**

Bug ID: 272418

Report Time: 2009-04-15 19:57

Buggy_Files:

org.eclipse.jdt.junit.core/src/org/eclipse/jdt/internal/junit/buildpath/P2Utils.java

Bug ID: 274041

Report_Time: 2009-04-28 10:07

Buggy_Files:

org.eclipse.jdt.junit.core/src/org/eclipse/jdt/internal/junit/buildpath/**P2Utils.java** org.eclipse.jdt.junit/src/org/eclipse/jdt/internal/junit/buildpath/**P2Utils.java**

- Time based decaying method
- Equation (7) defines the similarity to the recent buggy files
- w(s) denotes the shortest time between a bug-fixing commit for the source file s and the current bug
 report b
 set of buggy source files that are found in m

$$Score_{h-sim}(b,s) = \sum_{s \in H_m} \frac{1}{1 + e^{-\frac{12t_{elapse}(s,b)}{m} + w(s)}}$$
 (7)

$$w(s) = \min_{s \in H_m, t_{elapse}(s,b) \le m} t_{elapse}(s,b)$$
 (8)

number of days that have elapsed between a bug-fixing commits and a newly submitted bug report **b**

days before receiving the bug report **b** at **tb**

Fig. 5. Three bug reports corresponding to the same source code file

Class Name Similarity

- Checking whether the name of each class in the source code file is also included in the bug report.
- For all the class names present in the bug report, use the maximum length of the class name as the similarity value for the $Score_{cn}(b,s)$.

 $Socre_{c-sim}(b,s) = \begin{cases} max_len(b,s) & if \ cn \in s.class \cap b.class \\ otherwise \end{cases}$ Set of class names in a source file s

which appeared in the bug report b

Structural Similarity

MD-CNN MODELING

Feature Scaling with Min-Max Normalization

For a given feature ξ , set ξ min and ξ max as the minimum and the maximum observed values in the training dataset.

- ightharpoonup If $\xi > \xi \max$, set ξ to be $\xi \max$;
- \rightarrow if $\xi < \xi \min$, then set $\xi = 0$.
- For $\xi \min \le \xi \le \xi \max$, if $\xi > 1$, then need to employ the min-max normalization to scale ξ to the value range of [0,1].

$$\frac{\xi - \xi_{min}}{\xi_{max} - \xi_{min}}$$

MD-CNN MODELING

Feature Combination

- Linear models fail to capture the hidden and nonlinear relationship among the different types of features across bug reports and source files.
- Replace the linear model for combining the bugsource file similarity features for bug localization by using deep neural networks such as convolutional neural network.
- □ Take a **two phase approach** to develop a CNN-based non-linear feature combinator

Project: AspectJ Bug ID: **263837**

Summary: Error during Delete AJ Markers

Description: Error sent through the AJDT mailing list. I believe this is an LTW weaving

error, so not raising it against AJDT.

Bug_Files: weaver/src/org/aspectj/weaver/bcel/BcelClassWeaver.java

weaver/src/org/aspectj/weaver/bcel/**BcelTypeMunger.java**weaver/src/org/aspectj/weaver/bcel/**BcelWeaver.java**

scores after normalization	t_sim	cf_sim	h_sim	c_sim	s_sim
BcelClassWeaver.java	0	0.87	0.03	0.43	0
BcelTypeMunger.java	0.01	0.59	0.8	0	0
BcelWeaver.java	0.86	0.71	0.81	0.43	0.08

Fig. 6. An example of the non-linear relationship between the features

MD-CNN MODELING

Convolutional Neural Network Structure

- > two epochs
- the learning rate = 1e3 and batch size = 32
- brute force method

$$Lost(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{T} W * t_{ij} log(y_{ij}) + (1 - t_{ij}) log(1 - y_{ij}))$$
 (11)

Fig. 7. The architecture of convolutional neural network

Dataset

- For comparison, use the same collection of datasets provided in LR.
- It contains a total of 22,747 bug reports from six popular open-source projects: Eclipse Platform UI, JDT, Bir747t, SWT, Tomcat, and AspectJ.

TABLE 2 Benchmark Datasets

Project	Time Range	#bug reports	$\# source \ files$	#API entries
Eclipse	10/01-01/14	6495	3454	1314
JDT	10/01-01/14	6274	8184	1329
Birt	06/05-12/13	4178	6841	957
SWT	02/02-01/14	4151	2056	161
Tomcat	07/02-01/14	1056	1552	389
AspectJ	03/02-01/04	593	4439	54

Training, Validation, and Testing Data

Evaluation Metrics

- Accuracy@k: the percentage of the bug reports that have found at least one buggy source files in the top k (k= 1,5,10,20) ranked files returned.
- MAP (Mean Average Precision): the mean of the Average Precision (AvgP) scores across all bug report queries.
- MRR (Mean inverse Rank): the mean of the Reciprocal Rank for all queries.

Evaluation Plan

Four evaluation objectives:

- ☐ The effectiveness of our MD-CNN by comparing it with existing representative bug localization systems.
- ☐ The importance of different features on the overall performance of our MD-CNN.
- ☐ The impact of training data on the performance of our MD-CNN.
- The impact of multiple system parameters on the performance of MD-CNN.

Performance and Effectiveness of MD-CNN

Tour representative baseline approaches:

- Learning to Rank (LR)
- BugLocator (BL)
- ☐ The standard VSM method VSM
- Deep Neural Networks (DNN)

Performance Impact of Each Feature on MD-CNN

- Compute the MAP of each feature on all six datasets
- ☐ Greedy algorithm to sort the five features on each dataset
- Performance of combining features

- TensorFlow to construct the CNN model
- □ A server with Intel Xeon CPU E5-2650 and NVIDIA GPU TITAN V

TABLE 5 Performance comparison (MAP and MRR) with four representative baseline methods (VSM, BL, LR, DNN)

Different cliff's delta and effectiveness level [6]

Cliff's Delta ($ \delta $)	Effectiveness Level
$0.000 \le \delta < 0.147$	Negligible
$0.147 \le \delta < 0.330$	Small
$0.330 \le \delta < 0.474$	Medium
$0.474 \le \delta \le 1.000$	Large

TABLE 3

TABLE 6 Training and Test Time of MD-CNN (in minutes)

Direct			IVIAI					IVIIXIX				rraining ar	ID-CININ (III IIIII	·Civiv (in minutes)		
Dataset	VSM [21]	BL [49]	LR [44]	DNN	MD-CNN	VSM [21]	BL [49]	LR [44]	DNN	MD-CNN				`		
AspectJ	0.12 0.05	0.22 0.14	0.38 0.17	0.40 0.21	0.41 0.22	0.16 0.07	0.32 0.18	0.44 0.21	0.46 0.23	0.46 0.25		Training time on	the dataset (Average)	Test time for or	ne report (Average)	
Birt Eclipse	0.20	0.31	0.44	0.47	0.48	0.25	0.37	0.51	0.54	0.54	Project	Feature Extraction	Feature Combination	Feature Extraction	Feature Combination	
JDT SWT	0.12 0.08	0.23	$0.40 \\ 0.40$	0.45 0.51	0.45 0.53	0.15 0.09	$0.30 \\ 0.44$	$0.47 \\ 0.46$	0.53 0.56	0.53 0.57	AspectJ	89	177	0.46	0.07	
Tomcat	0.33	0.43	0.52	0.54	0.55	0.36	0.48	0.55	0.59	0.60	Birt	138	181	0.68	0.08	
Average	0.15	0.285	0.385	0.43	0.44	0.18	0.348	0.44	0.485	0.492	Eclipse IDT	196 210	193 199	0.39 0.82	0.07 0.08	
Improved% p-Value	+193.3	+54.4	+14.3 >0.05	+2.3	-	+173.3 <0.01	+41.4 >0.05	+11.8 >0.05	+1.4	-	SWT	129	186	0.25	0.06	
δ	$< 0.01 \\ 0.944$	$< 0.05 \\ 0.667$	0.5	-	-	0.889	0.667	0.388	-	-	Tomcat	68	170	0.15	0.05	

TABLE 4 Performance comparison (Accuracy@k, k=1,5,10,20) of four representative baseline methods (VSM, BL, LR, DNN)

		Accuracy@1					Accuracy@5				Accuracy@10				Accuracy@20					
Dataset	VSM [21]	BL [49]	LR [44]	DNN	MD-CNN	VSM [21]	BL [49]	LR [44]	DNN	MD-CNN	VSM [21]	BL [49]	LR [44]	DNN	MD-CNN	VSM [21]	BL [49]	LR [44]	DNN	MF-CNN
AspectJ Birt Eclipse JDT SWT	0.116 0.043 0.185 0.097 0.044	0.251 0.111 0.271 0.181 0.198	0.374 0.124 0.397 0.334 0.313	0.402 0.173 0.402 0.427 0.418	0.453 0.197 0.448 0.439 0.464	0.209 0.096 0.337 0.201 0.118	0.404 0.259 0.538 0.39 0.381	0.523 0.289 0.654 0.635 0.624	0.567 0.371 0.713 0.714 0.739	0.59 0.403 0.735 0.720 0.752	0.285 0.117 0.422 0.287 0.199	0.48 0.321 0.616 0.502 0.496	0.637 0.381 0.743 0.729 0.75	0.738 0.513 0.805 0.800 0.852	0.752 0.530 0.822 0.811 0.867	0.40 0.178 0.523 0.396 0.433	0.505 0.399 0.710 0.604 0.612	0.738 0.489 0.821 0.832 0.835	0.785 0.568 0.833 0.827 0.878	0.801 0.609 0.844 0.831 0.893
Tomcat	0.208	0.351	0.419	0.434	0.467	0.487	0.651	0.715	0.743	0.776	0.599	0.716	0.802	0.827	0.859	0.680	0.815	0.898	0.856	0.871
Average Improved% p-Value δ	0.116 +255.17 <0.01 0.944	0.227 +81.49 <0.05 0.778	0.327 +25.99 <0.05 0.722	0.376 +9.57 -	0.412 - - -	0.241 +175.1 <0.01 0.944	0.437 +51.71 <0.05 0.778	0.573 +15.71 >0.05 0.5	0.641 +3.43 -	0.663 - - -	0.318 +143.08 <0.01 0.944	0.522 +48.08 <0.05 0.889	0.673 +14.86 >0.05 0.667	0.756 +2.25 -	0.773 - - -	0.435 +86.9 <0.01 0.944	0.608 +33.72 <0.05 0.778	0.769 +5.72 >0.05 0.167	0.791 +2.78 -	0.813 - - -

Impact of Each Feature on MD-CNN

- ☐ These five dimensions features contribute differently to each dataset in terms of the accuracy of bug localization.
- Every feature in these five is useful, effective, and necessary.

TABLE 7
The MAP of each feature on six projects

Feature	AspectJ	Birt	Eclipse	JDT	SWT	Tomcat
Text Similarity	0.264	0.157	0.352	0.312	0.344	0.457
Similar Bug History	0.090	0.178	0.212	0.372	0.413	0.307
Bug-fixing History	0.247	0.049	0.089	0.042	0.135	0.037
Class Name Similarity	0.133	0.050	0.197	0.146	0.167	0.094
Structural Similarity	0.093	0.076	0.194	0.126	0.105	0.196
MD-CNN (5 combo)	0.41	0.22	0.48	0.45	0.53	0.55

TABLE 8

The importance of features using greedy algorithm (Feature NO.1: Text Similarity; Feature NO.2: Similar Bug History; Feature NO.3: Bug-fixing History; Feature NO.4: Class Name Similarity; Feature NO.5: Structural Similarity;)

Dataset		First	Second	Third	Fourth	Fifth
AspectJ	Feature MAP Improved	1 0.264	3 0.359 +36.0%	4 0.387 +7.8%	2 0.405 +4.7%	5 0.412 +1.7%
Birt	Feature MAP Improved	2 0.178 -	1 0.195 +9.6%	4 0.209 +7.2%	5 0.216 +3.3%	3 0.220 +1.9%
Eclipse	Feature MAP Improved	1 0.352	2 0.415 +17.9%	4 0.441 +6.3%	5 0.466 +5.7%	3 0.479 +2.8%
JDT	Feature MAP Improved	2 0.372 -	1 0.413 +11.0%	4 0.431 +4.4%	5 0.444 +3.0%	3 0.452 +1.8%
SWT	Feature MAP Improved	2 0.413	1 0.475 +15.0%	4 0.507 +6.7%	3 0.523 +3.2%	5 0.534 +2.1%
Tomcat	Feature MAP Improved	1 0.457 -	2 0.494 +8.1%	5 0.524 +6.1%	4 0.543 +3.6%	3 0.548 +0.9%

Impact of Model Parameters on MD-CNN

Three parameters:

- □ cf-sim feature (similarity to the historical fixed bugs)
- □ h-sim feature (similarity to the recent-fixed source files)
- number of convolutional layers

Fig. 10. MAP scores of six projects with varying number of convolution layers in MD-CNN

论 文 汇 报 展 示

感谢您的聆听

汇报人: 王昭丹

