Fourier pour Ichimoku + ATR — Guide d'application Date: 2025-08-21

Voir aussi : - FOURIER_SERIES_RAPPEL_FR.md pour un rappel théorique. - FOURIER_SERIES_WELCH_HALVING_FR.md pour l'analyse alignée sur le halving.

1) Pourquoi la transformée de Fourier ici?

- Passer du temps aux fréquences pour comprendre « quelles » périodicités dominent et avec quelle puissance.
- Applications concrètes trading:
- Détecter des cycles dominants hebdo/mensuel/saisonniers
- Filtrer le bruit passe-bas/passe-bande avant les signaux Ichimoku
- Accélérer des convolutions moyennes, lissagesATR via FFT en $O(N \log N)$
- $\hbox{ \it Cr\'eer des features ML} \\ entropies pectrale, spectral flatness, Fourier features sin/cos \\$

2) Outils et définitions

- PSD *densitéspectraledepuissance*: mesure de l'énergie par fréquence; méthode de Welch recommandée.
- ullet Période dominante: $P=1/f_*\ enbarres; convertirenjours pour intuition.$
- Low-Freq Power Ratio LFP: $LFP=rac{\sum_{f < f_0} PSD(f)}{\sum_f PSD(f)}$, typiquement avec f_0 fixant >5 jours en H2.
- Entropie/flatness spectrale: niveau de « bruit » vs « tonalité » du spectre.

3) Recette plug-and-play

1) Fenêtre roulante: dernières 180–360 jours 2160-4320barresH2 2) PSD Welch, extraire ($f_-) \Rightarrow (P = 1/f_-)$ 3) Calculer LFP pour f_0 cycles > 5joursH2 4) Mapper vers Ichimoku: - kijun \approx P/2, tenkan \approx P/8-P/6, senkou_b \approx P, shift \approx kijun/2 - Si LFP > 0.6: privilégier kijun long, atr_mult 3-5; sinon: kijun 26-55, atr_mult 2-3, filtre cloud strict

4) Détection de régime et scheduling

- Régime « lent/tendanciel »: LFP haut, flatness basse \rightarrow Pool Trend $kijun/atr_multplusélevés$
- Régime « bruyant »: flatness élevée \rightarrow Pool Bruit $kijun/atr_multplusserrés, règlesstrictes$

 Phase halving: aligne t=0 et calcule spectres moyens par phase; conditionne les plages et la cadence d'exploration.

5) Intégration pipeline

- Pré-module « suggesteur » qui lit un CSV OHLCV, calcule P, LFP, flatness et produit un JSON baseline par symbole:
- { symbol: { tenkan, kijun, senkou_b, shift, atr_mult } }
- Le scheduler charge ce JSON comme baseline (option --baseline-json) et resserre/ élargit les ranges en conséquence.

6) Limites & alternatives

- Non-stationarité → préférer STFT/ondelettes si besoin de localisation temporelle.
- Si trous de données → Lomb-Scargle.
- Éviter le sur-réglage: valider par walk-forward et Monte Carlo; surveiller variance inter-seeds.

7) Commande d'export PDF

8) Exemples chiffrés BTCH2/D1depuis2020

- Rolling monthly *médianes*:
- P1 \approx 26.4 jours H2 vs 26.16 jours D1; P2 \approx 15.0 vs 14.95; P3 \approx 10.36 vs 10.05.
- LFP: H2 D1 \approx -0.005 $faible\acute{e}cart$.
- Rolling annual: $\Delta LFP \approx -3.6 \times 10^{-4}$.
- ullet Interprétation: privilégier D1 pour la robustesse peudedrift, H2 pour la finesse des réglages du scheduler.

```
python .\scripts\export_docs_to_pdf.py --docs .\docs\FOURIER_STRATEGIE_FR.
```

9) Règles de bascule de phase et indexation Ichimoku op'erationnel

Cycles H2 typiques P1: ~120 barres 10j, ~180 barres 15j, ~360 barres 30j. On calibre Ichimoku sur P1 dominant et on « gate » l'intensité par LFP.

- ullet 3 phases up/down/range, H2
- up: LFP ≥ 0.83 ET momentum M ≥ +0.05 pendant ≥ 24–48 barres H2 ET P1 ≥ 120; confirmation si STFT/CWT_LFP_like ≥ 0.70. Sortie si LFP < 0.79 OU M < 0 pendant ≥ 24 barres hystérésis.

- down: LFP ≥ 0.83 ET M ≤ -0.05 pendant ≥ 24-48 barres H2 ET P1 ≥ 120. Sortie si LFP < 0.79 OU M > 0 pendant ≥ 24 barres.
- range: LFP < 0.80 OU P1 ≤ 90 OU flatness élevée.
- 5 phases accumulation, expansion, euphoria, distribution, bear
- accumulation: LFP remonte de <0.75 → >0.80, P1 s'allonge, M -0.02..+0.05, V modérée,
 DD se résorbe.
- expansion: LFP ≥ 0.83, M +0.05..+0.12, V en hausse, P1 120–240.
- euphoria: LFP ≥ 0.88, M ≥ +0.12, V élevée; P1 souvent 90–150.
- distribution: LFP encore élevé mais M \searrow < 0 ou < +0.02, V haute; P1 moyen/long.
- bear: LFP \geq 0.83 et M \leq -0.05; si LFP < 0.80 \rightarrow range baissier.

Déclencheurs de bascule - Entrée: franchissement de seuils LFP/M maintenu N=24-48 barres + confirmation STFT/CWT. - Sortie: franchissement inverse OU absence de confirmation N barres. - Filtre D1 de contexte optionnel: D1_LFP_mean > 0.80 favorise up/expansion; < 0.80 favorise range.

Indexation Ichimoku depuis P1–P3 - Tenkan $\approx {\rm round} P1/12$, Kijun $\approx {\rm round} P1/6$, Senkou shift $\approx {\rm round} P2/6\ bornes: 9/26/26, 12/34/26, 26/52/26.}$ - Range: set court 9/26, stops serrés; Trend fort LFPhaut, P1long: set long 12/34ou26/52, ATR élargi. - Gating intensité: LFP ≥ 0.88 pleine charge; 0.83–0.88 demi-charge; <0.80 laisser passer.

Implémentation - Lecture temps réel H2 \rightarrow calcul LFP, M, P1... \rightarrow « state machine » 3ou5phases avec hystérésis \rightarrow mapping phase \rightarrow Ichimoku, ATR, taille, seedpool.