MLE and Conditional Probability Models

Shubham Chandel, Xintian Han & David S. Rosenberg

New York University

March 25, 2020

Contents

- Maximum Likelihood
- 2 Bernoulli Regression
- Multinomial Logistic Regression
- 4 Conditional Gaussian Regression

Maximum Likelihood

Maximum Likelihood Estimation

• Suppose $\mathcal{D} = (y_1, \dots, y_n)$ is an i.i.d. sample from some distribution.

Definition

A maximum likelihood estimator (MLE) for θ in the model $\{p(y;\theta) \mid \theta \in \Theta\}$ is

$$\begin{split} \hat{\theta} &\in & \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log p(\mathcal{D}, \hat{\theta}) \\ &= & \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{i=1}^{n} \log p(y_i; \theta). \end{split}$$

Maximum Likelihood Estimation

- Finding the MLE is an **optimization problem**.
- For some model families, calculus gives a closed form for the MLE.
- Can also use numerical methods we know (e.g. SGD).

MLE Existence

- In certain situations, the MLE may not exist.
- But there is usually a good reason for this.
- e.g. Gaussian family $\left\{\mathcal{N}(\mu,\sigma^2) \mid \mu \in \textbf{R}, \sigma^2 > 0\right\}$
- We have a single observation y.
- Is there an MLE?
- Taking $\mu = y$ and $\sigma^2 \to 0$ drives likelihood to infinity.
- MLE doesn't exist.

Bernoulli Regression

Probabilistic Binary Classifiers

- Setting: $X = \mathbb{R}^d$, $\mathcal{Y} = \{0, 1\}$
- For each x, need to predict a distribution on $\mathcal{Y} = \{0, 1\}$.
- How can we define a distribution supported on {0,1}?
- Sufficient to specify the Bernoulli parameter $\theta = p(y = 1)$.
- We can refer to this distribution as Bernoulli(θ).

Linear Probabilistic Classifiers

- Setting: $X = \mathbb{R}^d$, $\mathcal{Y} = \{0, 1\}$
- Want prediction function to map each $x \in \mathbb{R}^d$ to $\theta \in [0,1]$.
- We first extract information from $x \in \mathbb{R}^d$ and summarize in a single number.
 - That number is analogous to the **score** in classification.
- For a linear method, this extraction is done with a linear function:

$$\underbrace{x}_{\in \mathbf{R}^d} \mapsto \underbrace{w^T x}_{\in \mathbf{R}}$$

- As usual, $x \mapsto w^T x$ will include affine functions if we include a constant feature in x.
- $w^T x$ is called the **linear predictor**.
- Still need to map this to [0,1].

The Transfer Function

• Need a function to map the linear predictor in R to [0,1]:

$$\underbrace{x}_{\in \mathbf{R}^d} \mapsto \underbrace{w^T x}_{\in \mathbf{R}} \mapsto \underbrace{f(w^T x)}_{\in [0,1]} = \theta,$$

where $f : \mathbb{R} \to [0,1]$. We'll call f the **transfer** function.

• So prediction function is $x \mapsto f(w^T x)$.

Transfer Functions for Bernoulli

• Two commonly used transfer functions to map from $w^T x$ to θ :

- Logistic function: $f(\eta) = \frac{1}{1+e^{-\eta}} \implies \text{Logistic Regression}$
- Normal CDF $f(\eta) = \int_{-\infty}^{\eta} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \Longrightarrow$ Probit Regression

Learning

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Outcome space $\mathcal{Y} = \{0, 1\}$
- Action space A = [0,1] (Representing Bernoulli(θ) distributions by $\theta \in [0,1]$)
- Hypothesis space $\mathcal{F} = \{x \mapsto f(w^T x) \mid w \in \mathbb{R}^d\}$
- Parameter space \mathbb{R}^d (Each prediction function represented by $w \in \mathbb{R}^d$.)
- We can choose w using maximum likelihood...

A Clever Way To Write $\hat{p}(y \mid x; w)$

• For a given $x, w \in \mathbb{R}^d$ and $y \in \{0, 1\}$, the likelihood of w for (x, y) is

$$p(y \mid x; w) = \begin{cases} f(w^T x) & y = 1\\ 1 - f(w^T x) & y = 0 \end{cases}$$

• It will be convenient to write this as

$$p(y | x; w) = [f(w^T x)]^y [1 - f(w^T x)]^{1-y},$$

which is obvious as long as you remember $y \in \{0, 1\}$.

Bernoulli Regression: Likelihood Scoring

- Suppose we have data \mathcal{D} : $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{0, 1\}$.
- The likelihood of $w \in \mathbb{R}^d$ for data \mathcal{D} is

$$p(\mathcal{D}; w) = \prod_{i=1}^{n} p(y_i \mid x_i; w) \text{ [by independence]}$$

$$= \prod_{i=1}^{n} \left[f(w^T x_i) \right]^{y_i} \left[1 - f(w^T x_i) \right]^{1 - y_i}.$$

• Easier to work with the log-likelihood:

$$\log p(\mathcal{D}; w) = \sum_{i=1}^{n} (y_i \log f(w^T x_i) + (1 - y_i) \log [1 - f(w^T x_i)])$$

Bernoulli Regression: MLE

- Maximum Likelihood Estimation (MLE) finds w maximizing $\log p(\mathcal{D}, w)$.
- Equivalently, minimize the negative log-likelihood objective function

$$J(w) = -\left[\sum_{i=1}^{n} y_{i} \log f(w^{T} x_{i}) + (1 - y_{i}) \log \left[1 - f(w^{T} x_{i})\right]\right].$$

- For differentiable f,
 - J(w) is differentiable, and we can use SGD.
 - What guarantees us to find the global minima of J(w) by SGD?
 - Convexity of J(w)!

- Setting: $X = \mathbb{R}^d$, $y = \{1, ..., k\}$
- \bullet For each x, we want to produce a distribution on k classes.
- Such a distribution is called a "multinoulli" or "categorical" distribution.
- Represent categorical distribution by probability vector $\theta = (\theta_1, \dots, \theta_k) \in \mathbb{R}^k$:
 - $\sum_{i=1}^k \theta_i = 1$ and $\theta_i \geqslant 0$ for i = 1, ..., k (i.e. θ represents a **distribution**) and
- So $\forall y \in \{1, \ldots, k\}, \ p(y) = \theta_y$.

• From each x, we compute a linear score function for each class:

$$x \mapsto (\langle w_1, x \rangle, \dots, \langle w_k, x \rangle) \in \mathbf{R}^k$$
,

where we've introduced parameter vectors $w_1, \ldots, w_k \in \mathbb{R}^d$.

- We need to map this \mathbf{R}^k vector of scores into a probability vector.
- Consider the softmax function:

$$(s_1,\ldots,s_k)\mapsto\theta=\left(\frac{\mathrm{e}^{s_1}}{\sum_{i=1}^k\mathrm{e}^{s_i}},\ldots,\frac{\mathrm{e}^{s_k}}{\sum_{i=1}^k\mathrm{e}^{s_i}}\right).$$

• Note that $\theta \in \mathbb{R}^k$ and

$$\theta_i > 0 \qquad i = 1, \dots, k$$

$$\sum_{i=1}^k \theta_i = 1$$

- Say we want to get the predicted categorical distribution for a given $x \in \mathbb{R}^d$.
- First compute the scores $(\in \mathbb{R}^k)$ and then their softmax:

$$x \mapsto (\langle w_1, x \rangle, \dots, \langle w_k, x \rangle) \mapsto \theta = \left(\frac{\exp(w_1^T x)}{\sum_{i=1}^k \exp(w_i^T x)}, \dots, \frac{\exp(w_k^T x)}{\sum_{i=1}^k \exp(w_i^T x)}\right)$$

• We can write the conditional probability for any $y \in \{1, ..., k\}$ as

$$p(y \mid x; w) = \frac{\exp(w_y^T x)}{\sum_{i=1}^k \exp(w_i^T x)}.$$

Putting this together, we write multinomial logistic regression as

$$p(y \mid x; w) = \frac{\exp(w_y^T x)}{\sum_{i=1}^k \exp(w_i^T x)}.$$

- How do we do learning here? What parameters are we estimating?
- Our model is specified once we have $w_1, \ldots, w_k \in \mathbb{R}^d$.
- ullet Find parameter settings maximizing the log-likelihood of data ${\mathfrak D}.$
- This objective function is concave in w's and straightforward to optimize.

Gaussian Linear Regression

- Input space $\mathfrak{X} = \mathsf{R}^d$, Output space $\mathfrak{Y} = \mathsf{R}$
- \bullet In Gaussian regression, prediction functions produce a distribution $\mathcal{N}(\mu,\sigma^2).$
 - Assume σ^2 is known.
- Represent $\mathcal{N}(\mu, \sigma^2)$ by the mean parameter $\mu \in \mathbf{R}$.
- Action space A = R
- In Gaussian linear regression, x enters linearly: $x \mapsto \underbrace{w^T x}_{\mathbf{R}} \mapsto \mu = \underbrace{f(w^T x)}_{\mathbf{R}}$.
- Since $\mu \in \mathbb{R}$, we can take the identity transfer function: $f(w^Tx) = w^Tx$.

Gaussian Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}.$
- Compute the model likelihood for \mathfrak{D} :

$$p(\mathcal{D}; w) = \prod_{i=1}^{n} p(y_i \mid x_i; w) \text{ [by independence]}$$

- Maximum Likelihood Estimation (MLE) finds w maximizing $\hat{p}(\mathcal{D}; w)$.
- Equivalently, maximize the data log-likelihood:

$$w^* = \arg\max_{w \in \mathbb{R}^d} \sum_{i=1}^n \log p(y_i \mid x_i; w)$$

Let's start solving this!

Gaussian Regression: MLE

• The conditional log-likelihood is:

$$\begin{split} &\sum_{i=1}^{n} \log p(y_i \mid x_i; w) \\ &= \sum_{i=1}^{n} \log \left[\frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right] \\ &= \underbrace{\sum_{i=1}^{n} \log \left[\frac{1}{\sigma \sqrt{2\pi}} \right]}_{\text{independent of } w} + \underbrace{\sum_{i=1}^{n} \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right)}_{\text{independent of } w} \end{split}$$

- MLE is the w where this is maximized.
- Note that σ^2 is irrelevant to finding the maximizing w.
- Can drop the negative sign and make it a minimization problem.

Gaussian Regression: MLE

• The MLE is

$$w^* = \arg\min_{w \in \mathbf{R}^d} \sum_{i=1}^n (y_i - w^T x_i)^2$$

- This is exactly the objective function for least squares.
- From here, can use usual approaches to solve for w^* (SGD, linear algebra, calculus, etc.)