離散最適化基礎論 第2回 最小包囲円問題(1):基本的な性質

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2017年10月20日

最終更新: 2017年10月23日 08:44

主題

離散最適化のトピックの1つとして<mark>幾何的被覆問題</mark>を取り上げ、 その<mark>数理</mark>的側面と計算的側面の双方を意識して講義する

なぜ講義で取り扱う?

- ▶ 「離散最適化」と「計算幾何学」の接点として重要な役割を 果たしているから
- ▶ 様々なアルゴリズム設計技法・解析技法を紹介できるから
- ▶ 応用が多いから

スケジュール 前半 (予定)

1 幾何的被覆問題とは?	(10/6)
★ 国内出張のため休み	(10/13)
2 最小包囲円問題 (1):基本的な性質	(10/20)
3 最小包囲円問題 (2): 乱択アルゴリズム	(10/27)
★ 文化の日のため休み	(11/3)
4 クラスタリング (1): k-センター	(11/10)
5 幾何ハイパーグラフ (1): VC 次元	(11/17)
★ 調布祭 のため 休み	(11/24)
$oldsymbol{6}$ 幾何ハイパーグラフ $(2):arepsilon$ ネット	(12/1)

注意:予定の変更もありうる

スケジュール 後半 (予定)

7 幾何的被覆問題 (1):線形計画法の利用	(12/8)
🔞 幾何的被覆問題 (2):シフト法	(12/15)
9 幾何的被覆問題 (3):局所探索法	(12/22)
🔟 幾何的被覆問題 (4):局所探索法の解析	(1/5)
⋆ センター試験準備 のため 休み	(1/12)
💶 幾何ハイパーグラフ (3): $arepsilon$ ネット定理の証明	(1/19)
ldell 幾何アレンジメント (1) :合併複雑度と $arepsilon$ ネット	(1/26)
№ 幾何アレンジメント (2):合併複雑度の例	(2/2)
14 最近のトピック	(2/9)
15 期末試験	(2/16?)

注意:予定の変更もありうる

最小包囲円問題に対するアルゴリズムにむけて

- ▶ 最小包囲円とは?
- ▶ 最小包囲円の性質 (一意性など)
- ▶ アルゴリズム

次回:アルゴリズムの乱択化とその解析

幾何的被覆問題の例

連続型円被覆問題

平面上にいくつか点が与えられたとき いくつかの円によって、点をすべて覆いたい 用いる円の数を最も少なくするにはどうすればよいか?

→ 与えられた点をすべて含む円を1つ考えればよい (最適値 = 1)

幾何的被覆問題の例

連続型円被覆問題

平面上にいくつか点が与えられたとき いくつかの円によって、点をすべて覆いたい 用いる円の数を最も少なくするにはどうすればよいか?

→ 与えられた点をすべて含む円を1つ考えればよい (最適値 = 1)

最小包囲円問題 — 連続型円被覆問題から一歩進んで

最小包囲円問題

平面上にいくつか点が与えられたとき それらをすべて含む円の中で面積が最小のものを求めよ

注意:円に対しては、面積の最小化 ⇔ 半径の最小化

最小包囲円問題 — 連続型円被覆問題から一歩進んで

最小包囲円問題

平面上にいくつか点が与えられたとき それらをすべて含む円の中で面積が最小のものを求めよ

注意:円に対しては、面積の最小化 ⇔ 半径の最小化

最小包囲円の例 (1)

最小包囲円の例 (2)

注意:半径0,半径 ∞ の円も考えることがある

最小包囲円の例 (2)

 $\underline{注意}$: 半径 0, 半径 ∞ の円も考えることがある

1 最小包囲円の性質

2 最小包囲円を求めるアルゴリズム:アイディア

3 最小包囲円を求めるアルゴリズム

4 今日のまとめ と 次回の予告

最小包囲円:記法

記法

- ▶ $P \subseteq \mathbb{R}^2$:与えられる平面上の点の集合
- ▶ sed(P): Pの最小包囲円 (smallest enclosing disk)
 - ▶ P を含む円で面積最小のもの

最小包囲円:記法

記法

- ▶ $P \subseteq \mathbb{R}^2$:与えられる平面上の点の集合
- ▶ sed(P): Pの最小包囲円 (smallest enclosing disk)
 - ▶ P を含む円で面積最小のもの

「最小包含円」と呼ぶこともある

最小包囲円の一意性

点集合 $P \subseteq \mathbb{R}^2$ (ただし, $P \neq \emptyset$)

命題:最小包囲円の一意性

Pの最小包囲円はただ1つ存在する

この意味で、sed(P) は well-defined

最小包囲円の一意性:証明

(背理法) P の最小包囲円が2つあると仮定する

- ▶ その 2 つを D_0 , D_1 とする $(r = D_0)$ の半径 $= D_1$ の半径とする)
- ▶ このとき、次の円 D₂ を考える
 - ▶ D₂ の中心: D₀ の中心と D₁ の中心の中点
 - D_2 の半径: $\sqrt{r^2-a^2}$ (ただし、a は D_0 と D_2 の中心間の距離)

最小包囲円の一意性:証明

(背理法) P の最小包囲円が2つあると仮定する

- ightharpoonup その 2 つを D_0 , D_1 とする $(r = D_0 \,$ の半径 $= D_1 \,$ の半径とする)
- ▶ このとき,次の円 D₂ を考える
 - ▶ D₂ の中心: D₀ の中心と D₁ の中心の中点
 - D_2 の半径: $\sqrt{r^2-a^2}$ (ただし、a は D_0 と D_2 の中心間の距離)

最小包囲円の一意性:証明

(背理法) P の最小包囲円が2つあると仮定する

- ▶ その 2 つを D_0 , D_1 とする $(r = D_0$ の半径 $= D_1$ の半径とする)
- ▶ このとき、次の円 D₂ を考える
 - ▶ D₂ の中心: D₀ の中心と D₁ の中心の中点
 - D_2 の半径: $\sqrt{r^2-a^2}$ (ただし、a は D_0 と D_2 の中心間の距離)

最小包囲円の一意性:証明(続き)

▶ *D*₂ も *P* を含む

$$(:: P \subseteq D_0 \cap D_1 \subseteq D_2)$$

- **▶** しかし, D_2 の半径 = $\sqrt{r^2 a^2} < r = D_0$ の半径
- ▶ これは、*D*₀ が *P* の最小包囲円であることに矛盾

最小包囲円の一意性:証明(続き)

▶ *D*₂ も *P* を含む

 $(:: P \subseteq D_0 \cap D_1 \subseteq D_2)$

- **▶** しかし, D_2 の半径 = $\sqrt{r^2 a^2} < r = D_0$ の半径
- ▶ これは、*D*₀ が *P* の最小包囲円であることに矛盾

最小包囲円の半径の単調性

点集合 $P \subseteq \mathbb{R}^2$ (ただし, $|P| \ge 2$), 点 $p \in P$

命題:最小包囲円の半径の単調性

sed(P) の半径 $\geq sed(P - \{p\})$ の半径

証明:Pの包囲円は $P - \{p\}$ の包囲円であるから

注: $sed(P) \supseteq sed(P - \{p\})$ が成り立つわけではない

最小包囲円の半径の単調性:系

点集合 $P \subseteq \mathbb{R}^2$ (ただし, $|P| \ge 2$), 点 $p \in P$

系

$$p \in \operatorname{sed}(P - \{p\})$$
 ならば、 $\operatorname{sed}(P) = \operatorname{sed}(P - \{p\})$

証明: $p \in \operatorname{\mathsf{sed}}(P - \{p\})$ ならば, $\operatorname{\mathsf{sed}}(P - \{p\})$ は P の包囲円

- $\therefore \operatorname{sed}(P \{p\})$ の半径 $\leq \operatorname{sed}(P)$ の半径 $\leq \operatorname{sed}(P \{p\})$ の半径
- \therefore 最小包囲円の一意性より、 $sed(P) = sed(P \{p\})$

最小包囲円の境界上への拘束

点集合 $P \subseteq \mathbb{R}^2$ (ただし, $|P| \ge 2$), 点 $p \in P$

命題:最小包囲円の境界上への拘束

 $p \notin \text{sed}(P - \{p\})$ ならば、sed(P) は p をその境界上に持つ

最小包囲円の境界上への拘束:証明(1)

(背理法) $D_0 = \text{sed}(P - \{p\})$, $D_1 = \text{sed}(P)$ とする

- ▶ $p \notin D_0$ と p が D_1 の境界上にないことを仮定する
- ▶ このとき, $P \{p\} \subseteq D_0 \cap D_1$

補足: D₀ の半径 < D₁ の半径

(∵ 半径の単調性)

最小包囲円の境界上への拘束:証明(1)

(背理法) $D_0 = \text{sed}(P - \{p\})$, $D_1 = \text{sed}(P)$ とする

- ▶ このとき, $P \{p\} \subseteq D_0 \cap D_1$

補足: D₀ の半径 < D₁ の半径

(∵ 半径の単調性)

最小包囲円の境界上への拘束:証明(2)

▶ D_0 と D_1 の中心を λ : $1 - \lambda$ に内分する点を中心に持ち, 半径 $r(\lambda)$ が次の式で定められる円 D_λ を考える

$$r(\lambda)^2 = (1 - \lambda)r_0^2 + \lambda r_1^2 - \lambda(1 - \lambda)d$$

(ただし, r_0 , r_1 はそれぞれ D_0 , D_1 の半径, d は D_0 , D_1 の中心間距離)

 $lacksymbol{\triangleright}$ $0<\lambda<1$ のとき, D_{λ} の半径 $< D_1$ の半径であり, $D_0\cap D_1\subseteq D_{\lambda}$

最小包囲円の境界上への拘束:証明(2)

▶ D_0 と D_1 の中心を λ : $1-\lambda$ に内分する点を中心に持ち, 半径 $r(\lambda)$ が次の式で定められる円 D_λ を考える

$$r(\lambda)^2 = (1 - \lambda)r_0^2 + \lambda r_1^2 - \lambda(1 - \lambda)d$$

(ただし, r_0 , r_1 はそれぞれ D_0 , D_1 の半径, d は D_0 , D_1 の中心間距離)

▶ $0 < \lambda < 1$ のとき, D_{λ} の半径 $< D_1$ の半径であり, $D_0 \cap D_1 \subseteq D_{\lambda}$

最小包囲円の境界上への拘束:証明(2)

▶ D_0 と D_1 の中心を λ : $1 - \lambda$ に内分する点を中心に持ち, 半径 $r(\lambda)$ が次の式で定められる円 D_λ を考える

$$r(\lambda)^2 = (1 - \lambda)r_0^2 + \lambda r_1^2 - \lambda(1 - \lambda)d$$

 $(ただし, r_0, r_1$ はそれぞれ D_0, D_1 の半径, d は D_0, D_1 の中心間距離)

▶ $0 < \lambda < 1$ のとき, D_{λ} の半径 $< D_1$ の半径であり, $D_0 \cap D_1 \subseteq D_{\lambda}$

最小包囲円の境界上への拘束:証明(3)

 $otag p
otin D_0$ かつ $otag \in D_1$ なので,ある $otag \lambda^*$ に対して, $otag D_{\lambda^*}$ は otag p をその境界上に持つ $otag (
otag b, 0 < \lambda^* < 1)$

最小包囲円の境界上への拘束:証明(3)

 $p \notin D_0$ かつ $p \in D_1$ なので,ある λ^* に対して, D_{λ^*} は p をその境界上に持つ (ただし, $0 < \lambda^* < 1$)

最小包囲円の境界上への拘束:証明 (4)

- ▶ つまり, D_{λ^*} の半径 $< D_1$ の半径
- ▶ *D*₁ が *P* の最小包囲円であることに矛盾

1 最小包囲円の性質

2 最小包囲円を求めるアルゴリズム:アイディア

3 最小包囲円を求めるアルゴリズム

4 今日のまとめ と 次回の予告

ここまでの議論の帰結

点集合 $P \subseteq \mathbb{R}^2$ ($|P| \ge 2$), $p \in P$

ここまでの議論の帰結

まず、 $sed(P - \{p\})$ を考える

- **1** $p \in \text{sed}(P \{p\})$ ならば、 $\text{sed}(P) = \text{sed}(P \{p\})$
- 2 p ∉ sed(P {p}) ならば、sed(P) は p を境界上に持つ

ここから再帰アルゴリズムの構想が得られる

最小包囲円を求めるアルゴリズム:アイディア

- 入力:有限点集合 $P \subseteq \mathbb{R}^2 (|P| \ge 1)$
- (1) |P| = 1 ならば、sed(P) = P として、終了
- (2) $|P| \ge 2$ ならば、 $p \in P$ を任意に選ぶ
- (2-1) sed $(P \{p\})$ を再帰的に計算
- (2-2) $p \in sed(P \{p\})$ ならば、 $sed(P) = sed(P \{p\})$ として、終了
- (2-3) $p \notin sed(P \{p\})$ ならば、p を境界に持つ P の最小包囲円を計算し、終了

問題点

「p を境界に持つ P の最小包囲円の計算」をどのように行なえばよいか わからない

別の言い方をすれば,それさえ分かればよい

最小包囲円を求めるアルゴリズム:アイディア

- 入力:有限点集合 $P \subseteq \mathbb{R}^2 (|P| \ge 1)$
- (1) |P| = 1 ならば、sed(P) = P として、終了
- (2) $|P| \ge 2$ ならば、 $p \in P$ を任意に選ぶ
- (2-1) sed $(P \{p\})$ を再帰的に計算
- (2-2) $p \in sed(P \{p\})$ ならば、 $sed(P) = sed(P \{p\})$ として、終了
- (2-3) $p \notin sed(P \{p\})$ ならば、p を境界に持つ P の最小包囲円を計算し、終了

問題点

「p を境界に持つ P の最小包囲円の計算」をどのように行なえばよいか わからない

別の言い方をすれば,それさえ分かればよい

1 最小包囲円の性質

2 最小包囲円を求めるアルゴリズム:アイディア

3 最小包囲円を求めるアルゴリズム

4 今日のまとめ と 次回の予告

境界に拘束のある最小包囲円:記法

記法

- ▶ $P \subseteq \mathbb{R}^2$:与えられる平面上の点の集合
- ▶ R ⊆ P:部分集合
- ▶ sed(P, R): R を境界上に持つ P の包囲円の中で、面積最小のもの

R以外の点が境界にあってもよい

境界に拘束のある最小包囲円:記法

記法

- ▶ $P \subseteq \mathbb{R}^2$: 与えられる平面上の点の集合
- ▶ R ⊆ P : 部分集合
- ▶ sed(P, R): R を境界上に持つ P の包囲円の中で、面積最小のもの

R以外の点が境界にあってもよい

境界に拘束のある最小包囲円:記法

記法

- ▶ $P \subseteq \mathbb{R}^2$: 与えられる平面上の点の集合
- ▶ R ⊆ P:部分集合
- ▶ sed(P, R): R を境界上に持つ P の包囲円の中で、面積最小のもの

R以外の点が境界にあってもよい

境界に拘束のある最小包囲円:注意

記法

- ▶ $P \subseteq \mathbb{R}^2$: 与えられる平面上の点の集合
- ▶ R ⊆ P : 部分集合
- ▶ sed(P, R): R を境界上に持つ P の包囲円の中で,面積最小のもの

注意: sed(P, R) は存在しないかもしれない

境界に拘束のある最小包囲円:注意

記法

- ▶ $P \subseteq \mathbb{R}^2$: 与えられる平面上の点の集合
- ▶ R ⊂ P: 部分集合
- ▶ sed(P, R): R を境界上に持つ P の包囲円の中で、面積最小のもの

注意: sed(P,R) は存在しないかもしれない

境界に拘束のある最小包囲円:性質

命題:境界に拘束のある最小包囲円の性質 (1)

点集合 $P(P \neq \emptyset)$, 部分集合 $R \subseteq P$

1 sed(P,R) は存在するならば,ただ1つ存在する

命題:境界に拘束のある最小包囲円の性質 (2)

点集合 $P(|P| \ge 2)$, 部分集合 $R \subseteq P$, 点 $p \in P - R$

- \blacksquare sed $(P-\{p\},R)$ が存在し、 $p\in \operatorname{sed}(P-\{p\},R)$ ならば、 $\operatorname{sed}(P,R)=\operatorname{sed}(P-\{p\},R)$
- 2 $\operatorname{sed}(P \{p\}, R)$ が存在し、 $p \notin \operatorname{sed}(P \{p\}, R)$ ならば、 $\operatorname{sed}(P, R \cup \{p\})$ も存在するとき、 $\operatorname{sed}(P, R) = \operatorname{sed}(P, R \cup \{p\})$

証明は演習問題 (sed(P) に対する証明と同様の方針で考えればよい)

境界に拘束のある最小包囲円を求めるアルゴリズム

- 入力:有限点集合 $P \subseteq \mathbb{R}^2$ ($|P| \ge 1$), $R \subseteq P$
- (1) $|P| \le 2$ ならば、sed(P,R) を直接計算して、終了
- (2) $|R| \ge 3$ ならば、sed(P,R) を直接計算して、終了
- $|P| \ge 3$ かつ $|R| \le 2$ ならば、 $p \in P R$ を任意に選ぶ
- (3-1) sed $(P \{p\}, R)$ を再帰的に計算 (存在しないならば終了)
- (3-2) $sed(P \{p\}, R)$ が存在し、 $p \in sed(P \{p\}, R)$ ならば、 $sed(P, R) = sed(P \{p\}, R)$ として、終了
- (3-3) $\operatorname{sed}(P \{p\}, R)$ が存在し, $p \notin \operatorname{sed}(P \{p\}, R)$ ならば, $\operatorname{sed}(P, R \cup \{p\})$ を再帰的に計算して, $\operatorname{sed}(P, R) = \operatorname{sed}(P, R \cup \{p\})$ として,終了

観察

- ▶ 前ページの命題より、このアルゴリズムの出力は正しい
- ▶ 再帰呼出において,|P|が減るか,または,|R|が増えるので, アルゴリズムは必ず終了する

境界に拘束のある最小包囲円を求めるアルゴリズム:使い方

- 入力:有限点集合 $P \subseteq \mathbb{R}^2 (|P| \ge 1), R \subseteq P$
- (1) $|P| \le 2$ ならば、sed(P,R) を直接計算して、終了
- (2) $|R| \ge 3$ ならば、sed(P,R) を直接計算して、終了
- (3) $|P| \ge 3$ かつ $|R| \le 2$ ならば、 $p \in P R$ を任意に選ぶ
- (3-1) sed $(P \{p\}, R)$ を再帰的に計算 (存在しないならば終了)
- (3-2) $sed(P \{p\}, R)$ が存在し、 $p \in sed(P \{p\}, R)$ ならば、 $sed(P, R) = sed(P \{p\}, R)$ として、終了
- (3-3) $\operatorname{sed}(P \{p\}, R)$ が存在し、 $p \not\in \operatorname{sed}(P \{p\}, R)$ ならば、 $\operatorname{sed}(P, R \cup \{p\})$ を再帰的に計算して、 $\operatorname{sed}(P, R) = \operatorname{sed}(P, R \cup \{p\})$ として、終了

Pの最小包囲円を求めるためには?

 $R = \emptyset$ として,このアルゴリズムを動かせばよい

ステップ(1),(2)の「直接計算」は演習問題

境界に拘束のある最小包囲円を求めるアルゴリズム:計算量 (1)

次の量 *t*(*n*, *k*) を考える

$$t(n,k) = (|P| = n, |R| = k$$
のときの最悪計算量)

- (1) $n \le 2$ のとき, t(n,k) = O(1)
- (2) $k \ge 3$ のとき,t(n, k) = O(n)
- (3) $n \ge 3$ かつ $k \le 2$ のとき、 最悪の場合を考えると、sed(P,R) の計算のために $sed(P - \{p\}, R)$ と $sed(P,R \cup \{p\})$ を計算するので

$$t(n,k) \leq O(1) + t(n-1,k) + t(n,k+1)$$

これを解く

境界に拘束のある最小包囲円を求めるアルゴリズム:計算量 (2)

$$n \ge 3$$
 かつ $k = 2$ のとき,

$$t(n,2) \leq O(1) + t(n-1,2) + t(n,3)$$

$$= O(1) + t(n-1,2) + O(n)$$

$$= t(n-1,2) + O(n)$$

したがって,
$$t(n,2) \leq O(n^2)$$

境界に拘束のある最小包囲円を求めるアルゴリズム:計算量 (3)

$$n \ge 3$$
 かつ $k = 1$ のとき,

$$t(n,1) \leq O(1) + t(n-1,1) + t(n,2)$$

= $O(1) + t(n-1,1) + O(n^2)$
= $t(n-1,1) + O(n^2)$

したがって,
$$t(n,1) \leq O(n^3)$$

境界に拘束のある最小包囲円を求めるアルゴリズム:計算量 (4)

 $n \ge 3$ かつ k = 0 のとき,

$$t(n,0) \leq O(1) + t(n-1,0) + t(n,1)$$

$$= O(1) + t(n-1,0) + O(n^3)$$

$$= t(n-1,0) + O(n^3)$$

したがって、 $t(n,0) \leq O(n^4)$

結論

平面上に与えられたn個の点の最小包囲円は $O(n^4)$ 時間で計算できる

この結論は「当たり前」(もっと簡単なアルゴリズムで実現できる)

● 最小包囲円の性質

② 最小包囲円を求めるアルゴリズム:アイディア

③ 最小包囲円を求めるアルゴリズム

4 今日のまとめ と 次回の予告

最小包囲円問題に対するアルゴリズムにむけて

- ▶ 最小包囲円とは?
- ▶ 最小包囲円の性質 (一意性など)
- ▶ アルゴリズム

次回の予告

アルゴリズムの乱択化とその解析

▶ 「 $p \in P - R$ の選択」を確率的に行うことで、 計算量の期待値が O(n) になる

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

1 最小包囲円の性質

2 最小包囲円を求めるアルゴリズム:アイディア

3 最小包囲円を求めるアルゴリズム

4 今日のまとめ と 次回の予告