Final Assessment Test (FAT) - November/December 2022

Programme	B.Tech.	Semester	Fall Semester 2022-23
Course Title	CIRCUIT THEORY	Course Code	BECE203L
Faculty Name	Prof. Anith Nelleri	Slot	A1+TA1+TAA1
		Class Nbr	CH2022231001147
Time	3 Hours	Max. Marks	100

Section-A (6 X 15 Marks) Answer All questions

1. (a) Use nodal analysis and find V_x in the circuit shown in Fig.1. [8 Marks]

[15]

Fig.1

(b) The variable resistor R in the circuit shown in Fig.2 is adjusted until it absorbs the maximum average power. Find R and the maximum average power absorbed. [7 Marks]

Fig.2

2. (a) The switch was in position 'a' for a long time in Fig.3. At t=0, the switch is moved to position 'b'. Find v(t) and v_R(t) for t>0. [8 Marks]

[15]

Fig.3

(b) A circuit consisting of a coil with inductance 10 mH and resistance 20 Ω is connected in series with a capacitor and a generator with an rms voltage of

120 V. Find:

- (i) the value of the capacitance that will cause the circuit to be in resonance at 15 kHz
- (ii) the current through the coil at resonance
- (iii) the Q of the circuit

[7 Marks]

3. (a) For the circuit shown in the Fig.4, Calculate the Y parameters. [8 Marks]

[15]

(b) Obtain the Z parameters for the network in Fig.5. [7 Marks]

Fig.5

- 4. (a) Design a T type attenuator to provide 80dB attenuation with a characteristic impedance of 70 [15]
 - Ω . [8 Marks] (b) What is the significance of a filter and explain briefly the different types of filters using appropriate illustration. [7 Marks]
- 5. (a) A parallel RL circuit has R = 4 Ω and L = 1 H. The input to the circuit is i_s(t) = 2e^{-t} u(t)
 A. Find the inductor current i_L(t) for all t > 0 and assume that i_L(0) = -2 A. Solve this problem using Laplace transform. [8 Marks]
 - (b) A circuit has a transfer function, $H(S) = \frac{(S+4)}{(S+1)(S+2)(S+2)}$ Find the impulse response, using Laplace transform. [7 Marks]
- 6. (a) Determine the Fourier series of the given signal x(t) shown in Fig. 6. [8 Marks]

Fig.6

(b) Compare Fourier transform and Laplace transform and point out their similarities and differences. [7 Marks]

Section-B (1 X 10 Marks) Answer All questions

7. For the network given in Fig.7, draw the graph and write a tie-set matrix. Using the tie-set matrix, obtain the loop equations and find the current i. Consider branches 2,4, and 5 as the twigs of the tree.

Fig.7

[15]