How Computers Work

Lecture 5

Memory Implementation

Q: Is it practical to do the big Memory this way?

A: NO

The N-Channel FET (NFET)

$$H \rightarrow \Box$$

How Computers Work Lecture 5 Page 21

The P-Channel FET (PFET)

$$H \rightarrow H \rightarrow H$$

How do we implement multiple ports?

- 2 Read and 1 Write Ports
 - For now, LD and ST instructions are mutually exclusive.
 - 1 RD + 1 RD/WR port needed
- LD and ST are don't happen that often
 - Most of the time only 1RD port necessary
- Easy answer : Do them sequentially
 - Need a way to "stall" machine waiting for Mem

A: Stalls are done by:

- Disabling WERF
- Disabling Memory Write
- Disabling PC write

How Computers Work Lecture 5 Page 25

Another Approach - Increasing Memory *Bandwidth*

- Make memory twice as wide
 - 64 Bits Instead of 32
- Should work out in the long run, as 2 words are read per machine cycle, but
 - Words read are next to each other in address space
 - Need a place to stash the extra word
 - Sometimes, the stashed word isn't used.

Summary

- What Did we learn today?
 - How to Implement Registers + Big Memory
 - Multi-Port Big Memories aren't easy
 - Sequential Access (stalls + extra logic)
 - Wide Access + Some sort of *cache* + extra logic
- Recitation
 - Review of today's lecture