SCHOLAE UROPACA

EUROPEAN BACCALAUREATE 2015

CHEMISTRY

DATE: 11 June 2015

DURATION OF EXAMINATION:

3 hours (180 minutes)

PERMITTED EQUIPMENT:

Calculator: TI-Nspire in 'Press-to-Test' mode

INSTRUCTIONS:

Answer <u>both</u> A questions and <u>both</u> B questions.

Use a separate answer sheet for each of the four main questions.

1/12 EN

i. Give the conjugation of the pH of the iv. Explai	gör uppgift A1 som provfråga Question A1			
i. Give the conjugation of the pH of the iv. Explaid	Page 1/3	Marks		
ii. Give the conjugation of the pH of the conjugation. Give the acetyle of the iv. Explair	acetylsalicylic acid, is a monoprotic acid with the following ral formula:			
ii. Give the conjugation of the pH of the conjugation. Give the acetyle of the iv. Explair	О С О О Н ₃ С С О			
ii. Give the conjugation of the pH of the conjugation. Give the acetyle of the iv. Explair	Aspirin			
For simplicity, in acid should be d b) i. Write the with was ii. Give the acetyls iii. Calcul acetyls up to a the iv. Explair	Give the Brønsted definition of an acid.	1 mark		
acid should be d b) i. Write to with was ii. Give the acetyls up to acetyls iii. The pH of the iv. Explair	Give the structural formula of the acetylsalicylate ion, that is the conjugate base of acetylsalicylic acid.	1 mark		
ii. Give the acetyle iii. Calcule acetyle up to fiv. Explai	city, in the questions that follow and in your answers, acetylsalicylic d be designated by just HA.			
iii. Calcul acetyle up to f The pH of the iv. Explai	Vrite the equation for the reaction of acetylsalicylic acid, HA(aq), with water.	2 marks		
acetyle up to f The pH of the iv. Explai	Give the expression for the acid dissociation constant, K_a , for acetylsalicylic acid, HA(aq).	1 mark		
iv. Explai	Calculate the pH of the solution obtained by dissolving 1.80 g of acetylsalicylic acid in distilled water and making the total volume up to 1.00 dm ³ .	4 marks		
	of the gastric juice in the stomach is around 2.			
	Explain, using its pK_a value, why acetylsalicylic acid exists mainly in the undissociated form in the stomach.	2 marks		
<u>Given:</u> pK _a o	pK _a of acetylsalicylic acid : 3.5			
Molar molecu	nolecular mass of acetylsalicylic acid (in g mol ⁻¹) : 180			

Question A1				
		Page 2/3	Marks	
c)	it can sodiur	undissociated acetylsalicylic acid stays in the stomach for too long cause stomach ulcers. This is why different formulations, such as macetylsalicylate, NaA(s), exist that are less aggressive to the walls stomach.		
	Sodiu	m acetylsalicylate is soluble in water.		
	i.	Explain why.	2 marks	
	ii.	Give the equation for the reaction that occurs when sodium acetylsalicylate comes into contact with the acid in the stomach.	1 mark	
d)	The la	abel on a box of aspirin tablets states: "Aspirin content: 100 mg per		
	A stud tablet. volum	dent wanted to check the mass of acetylsalicylic acid, HA, in a A solution was prepared by placing one aspirin tablet in a 500 cm ³ etric flask, dissolving it in distilled water and then making it up the m ³ mark with distilled water.		
		m ³ of this solution was titrated with 1.00 x 10 ⁻² mol dm ⁻³ sodium kide solution, NaOH(aq).		
	Pheno	olphthalein was used as the indicator.		
	The volume of sodium hydroxide solution required to reach the equivalence point, $V(NaOH)$, was 10.7 cm ³ .			
	i.	Give the equation for the reaction occurring during the titration.	1 mark	
	ii.	Using the titration result, calculate the amount (in mol) of acetylsalicylic acid in 100 cm ³ of the solution before it was titrated.	2 marks	
	iii.	From the titration result, determine the mass of acetylsalicylic acid contained in the tablet.	2 marks	
	iv.	Determine the percentage difference based on the value found in iii. and the value stated on the label.	1 mark	
	v.	Explain why phenolphthalein is used as the indicator whereas methyl red cannot be used in this titration.	1 mark	
	·	$_{\rm c}$ p $K_{\rm a}$ of phenolphthalein : 9.3 ; p $K_{\rm a}$ of methyl red: 5.1 molecular mass of acetylsalicylic acid (in g mol ⁻¹) : 180		

		Question A1	
	е	ffervesce- bubbla Page 3	/3 Marks
e)		can also find aspirin tablets that effervesce when dissolved in water include sodium hydrogencarbonate, NaHCO $_3$ (s).	
	i.	Give the equation for the reaction that occurs between acetylsalicylic acid and sodium hydrogencarbonate when the table is dissolved in water.	2 marks
	ii.	Explain, using their respective pK_a values, why acetylsalicylic acid and sodium hydrogenearbonate react together when in aqueous solution.	d 2 marks
	Giver	<u>ı:</u>	
	pK _a o	f acetyl salicylic acid : 3.5	
	pK _a o	f carbonic acid $H_2CO_3(aq) = 6.4$	

			Ques	stion A2		
					Page 1/3	Marks
a)	i. <u>Giver</u>	equations equation for reacts with	relevant couples from for oxidation and for the formation of sometimes oxygen in a humid a redox potentials:	reduction and tilver(I) oxide, Ag	the overall redox	3 marks
			Couple	<i>E</i> ⊖ / V	1	
			Ag ₂ O(s) /Ag(s)	+ 1.17	1	
			O ₂ (aq) /H ₂ O(I)	+ 1.23		
	ii. <u>Giver</u>	·	s difference in behavi			3 marks
			Couple	<i>E</i> ⊖ / V		
		-	H⁺(aq)/H₂(aq)	0,00		
		-	Ag ⁺ (aq)/Ag(s)	+ 0.80		
		_	NO₃¯(aq)/NO(g)	+ 0.96		
			Cl₂(g)/Cl¯(aq)	+ 1.36		
b)		ide, H ₂ S(g).	silver is a complex pr It can be summarise		, ,	
		Ag(s) + $H_2S(g) + O_2(g)$	\rightarrow Ag ₂ S(s) + H ₂	₂ O(I)	
	i.		the oxidation numbe des of this equation.	rs of the four elen	nents that appear	4 marks

Question A2			
	Page 2/3	Marks	
	ii. Identify the species that is oxidised and the species that is reduced.	2 marks	
	iii. Balance the equation given in b) above.	1 mark	
c)	When silver corrodes, a thin dark-grey layer composed of silver(I) sulphide, $Ag_2S(s)$, is formed. The silver(I) sulphide can be removed by bringing the corroded silver object into contact with a piece of aluminium foil, $Al(s)$, in a bath of warm salty water.		
	The unbalanced equation for the reaction occurring is:		
	$AI(s) + Ag_2S(s) \longrightarrow AI^{3+}(aq) + S^{2-}(aq) + Ag(s)$		
	i. Give the oxidation half-equation.	1 mark	
	ii. Give the reduction half-equation.	1 mark	
	iii. Give the balanced overall equation for the reaction.	1 mark	
	The remainder of this question is on the next page.		

		Question A2	
		Page 3/3	Marks
d)	protect for bo The e	face coating on a metal, obtained by electrolysis, can be used as a ction against corrosion or to change the appearance of the metal or th of these reasons. Ilectrolytic cell described below was used to cover the surface of a pot with silver by electrolysis.	
		Battery Ammeter Copper pot ectrode AgNO ₃ (aq)	
	i.	Indicate the polarity of the electrode made from the copper pot which becomes covered in silver.	1 mark
	ii.	Give the half-equations of the two main reactions taking place at the electrodes.	2 marks
	iii.	Explain why a silver electrode is used rather than an inert electrode, such as graphite.	1 mark
	A cop	per pot has a total surface area of 600 cm ² and is to be uniformly ed by a layer of silver 3.00 x 10 ⁻³ cm thick.	
	iv.	Show by calculation that the mass of silver required to cover the pot is 18.9 g.	2 marks
	A stea	ady current of 5.00 x 10 ⁻¹ A is used.	
	٧.	Calculate the time, in seconds, it will take to cover the pot with a layer of silver 3.00×10^{-3} cm thick.	3 marks
	Giver	1 $F = 9.65 \times 10^4 \text{ C mol}^{-1}$ Density (in g cm ⁻³) of Ag : 10.5 Molar atomic mass (in g mol ⁻¹) of Ag : 108	

Question B1	
Page 1/2	Marks
 a) A, B, C and D are four organic compounds. B, C and D can be made from A. 	
CH ₃ CH ₂ CH ₂ CH ₂ OH	
C_4H_8O $C_4H_8O_2$ $C_4H_8O_2$	
i. Give the systematic (IUPAC) name of compound A .	1 mark
ii. Give the structural formula and systematic name (IUPAC) of compound B .	2 marks
iii. Name the type of reaction that occurs when A is converted into B and suggest an appropriate catalyst.	2 marks
Compound C gives a positive test with Fehling's solution.	
iv. Give the structural formula and systematic name (IUPAC) name of compound C.	2 marks
The reactions for the conversion of A to C and from C to D involve oxidation in acid solution.	
v. Give the half-equation for the reduction of one of the oxidising agents commonly used in these reactions.	2 marks
vi. Place compounds A, B and C in increasing order of their boiling points and explain your reasoning.	3 marks
points and explain your reasoning.	

Question B1				
	Page 2/2	2 Marks		
b)	Linoleic acid, C ₁₇ H ₃₁ COOH, and linoleneic acid, C ₁₇ H ₂₉ COOH, both contain eighteen carbon atoms and have very similar molar molecular masses.			
	The iodine index is expressed as the mass of iodine, $I_2(s)$, in g, which reacts with 100 g of an organic compound.			
	i. What information does the iodine index provide about an organic compound?	1 mark		
	ii. Calculate the iodine index for linoleic acid, C ₁₇ H ₃₁ COOH.	3 marks		
	iii. On the basis of their molecular structures, deduce the ratio between the iodine index for linoleneic acid and the iodine index for linoleic acid.	2 marks		
	Given: Molar atomic mass (in g mol ⁻¹) of I : 127 Molar molecular mass (in g mol ⁻¹) of linoleic acid: 280			
c)	A molecule of lactic acid contains two functional groups. Molecules of lactic acid can react amongst themselves to form a condensation polymer. The polymer formed from lactic acid is used, among other things, for tissue implants and surgical sutures.			
	HO - C - C			
	н он			
	Lactic acid			
	i. Give the systematic (IUPAC) name for lactic acid.	1 mark		
	ii. Represent, using the structural formula, a portion of the polymer made from three molecules of lactic acid.	2 marks		
	iii. Represent, using the structural formula, the repeating unit of the polymer made from lactic acid.	1 mark		
	iv. State the type of condensation polymer formed.	1 mark		
	Lactic acid exists in two enantiomeric forms.			
	v. Draw the three-dimensional representation of the two enantiomers of lactic acid.	2 marks		

Question B2				
		Page 1/3	Marks	
a)	Alanir	ne is an amino acid with the following structural formula :		
		$ \begin{array}{ccc} O & H \\ & \\ C - C - NH_2 \\ & \\ HO & CH_3 \end{array} $		
		Alanine		
	i.	Give the systematic (IUPAC) name for this amino acid.	1 mark	
	Amino	o acids are amphoteric substances.		
	ii.	Taking alanine as an example and using the simplified structural formulas write two equations that illustrate this property.	2 marks	
	iii.	State the meaning of isoelectric point with regard to amino acids.	1 mark	
	iv.	Explain why alanine has a relatively high melting point.	2 marks	
b)	-	ne and isoleucine are two other amino acids with the following ural formulas :		
	1	H ₂ N - CH ₂ - COOH H ₂ N - CH - COOH		
		Glycine H₃C – ĊH		
		ĊH₂		
		ČH₃ Isoleucine		
	Unlike	e glycine, isoleucine can show optical activity.		
	i.	Explain what is meant by optical activity.	1 mark	
	ii.	Using their structural formulas, explain why isoleucine can show optical activity whereas glycine cannot.	1 mark	
	iii.	Explain why these two amino acids are soluble in water.	2 marks	
	iv.	Explain why isoleucine is less soluble in water than glycine.	1 mark	

Question B2	
Page 2/3	Marks
In order to prepare a certain dipeptide, the following three successive reactions were performed:	
 Reaction A: An ester was made by reacting isoleucine, CH₃CH₂CH(CH₃)CH(NH₂)COOH, with methanol, CH₃OH. 	
 Reaction B : The ester obtained from reaction A was then reacted with glycine, H₂NCH₂COOH. 	
Reaction C: One of the product from reaction B was then hydrolysed to obtain the required dipeptide and methanol.	
 v. Using the simplified structural formulas, such as those given above, write the equations for the two reactions A and B. 	4 marks
vi. State two necessary experimental conditions for reaction A.	2 marks
vii. Give the structural formula of the dipeptide obtained from reaction C.	2 marks
The remainder of this question is on the next page.	

		Question B2	
		Page 3/3	Marks
c)	Methy In aq the p value	yl red is used as an acid base indicator. yl red is a weak acid with a pK _a value of 5.1. ueous solution its colour is red when the pH is below 4.4, yellow if the is above 6.2, and orange if the pH lies between these two pH is. structure of methyl red is given below. CH ₃ CH ₃ Methyl red	
	i. ii.	Name the oxygen-containing functional group and the two nitrogen-containing functional groups present in the molecule. Give the structural formula of the dominant form of methyl red when the pH is greater than 6.2	3 marks
	iii.	when the pH is greater than 6.2. Explain, by referring to its molecular structure, why this compound is coloured.	2 marks