Algorithm	Program
Algorithms are written at design phase	Programs are written at Implementation Stage
Algorithms are programming syntax independent	Programs are programming syntax dependent
Algorithms are not dependant on operating system architecture and hardware	Programs are dependent on operating system architecture and hardware
Algorithms are analysed on efficiency in terms of completion time and the space used.	We just test the program to see if it will scale in production

A POSTERIORI

KNOWLEDGE IS OBTAINED THROUGH EXPERIENCE

A PRIORI

KNOWLEDGE IS OBTAINED BY ANALYZING CONCEPTS INDEPENDENT OF EXPERIENCE

ANALYSIS OF ALGORITHM

PRIORI

- 1.Done priori to run algorithm 1.Analysis after running on a specific system
- 2.Hardware independent
- 3.Approximate analysis
- 4.Dependent on no of time statements are executed

POSTERIORI

- it on system.
- 2.Dependent on hardware
- 3.Actual statistics of an algorithm
- 4. They do not do posteriori analysis

Characteristics of Algorithm

Unambiguous:

Algorithm should be clear and unambiguous. Each of its steps (or phases), one and their inputs/outputs should be clear and must lead to only meaning.

Input:

An algorithm should have 0 or more well-defined inputs.

Output:

An algorithm should have 1 or more well-defined outputs, and should match the desired output.

· Finiteness:

Algorithms must terminate after a finite number of steps.

Feasibility:

Should be feasible with the available resources.

Independent:

An algorithm should have step-by-step directions, which should be independent of any programming code.

Time complexity

WHY ..?

SEARCHING, SORTING, ETC

HOUSE A

HOUSE B

ALGORITHMS..?

WEAKNESS

WORST CASE

Big Oh Notation O

f(n) = Our Algorithm

MATHS....

rate of growth

in put size

f(n)

f(n) = O(g(n))means $c \cdot g(n)$ is an upper bound on f(n). C and n_0 are constant

Find upper bound for $f(n) = n^2 + 1$

$$f(n) \leq c.g(n)$$

$$n^2 + 1 \le c. n^2$$

$$n^2 + 1 \le 2 \cdot n^2$$
, for $n \ge 1$

$$n^2 + 1 = O(n^2)$$
 for c = 2 and n0 >= 1

This is Big Oh Notation

Omega-Q Notation

Omega-Q Notation
$$\Omega$$

 $f(n) = Our Algorithm$

Worst Case (Big Oh): Upperbound Function
Best Case (Omega): Lowerbound Function

So formally
$$f(n) = C \cdot g(n)$$

$$f(n) = \Omega(g(n))$$

Find lower bound for $f(n) = 5n^2$

Find lower bound for $f(n) = 5n^2$

So
$$5n^2 = \Omega(n^2)$$

$$f(n) \ge c.g(n)$$

$$5n^2 >= c. n^2$$

from c = 5 and n =1 it hold true

AVERAGE CASE

Theta Notation 0

Theta Notation
$$\Theta$$

 $f(n) = Our Algorithm$

$$c1.g(n) \leftarrow f(n) \leftarrow c2.g(n)$$
$$f(n) = \theta g(n)$$

where c1, c2, n > 0

Prove that $f(n) = \Theta$ g(n) where

$$f(n) = 3n + 2$$
 and $g(n) = n$

Lowerbound: c1. $g(n) \le f(n)$

c1.
$$n \le 3n + 2$$

c1 = 1 and $n \ge 1$

$$n \le 3n+2$$
 for $n \ge 1$ is True

Upperbound: $f(n) \le c2$. g(n)

$$3n + 2 \le c2 \cdot n$$

for $c2 = 4$ and $n \ge 1$

$$3n + 2 \le 4n$$

for $n \ge 1$ is True

 $3n+2=\Theta(n)$

ASYMPTOTIC NOTATION

Some Common Algo's Complexities

[n - f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
	10	$0.003 \ \mu s$	$0.01~\mu \mathrm{s}$	$0.033~\mu { m s}$	$0.1~\mu \mathrm{s}$	$1~\mu \mathrm{s}$	$3.63 \mathrm{\ ms}$
	20	$0.004~\mu s$	$0.02~\mu \mathrm{s}$	$0.086 \; \mu { m s}$	$0.4~\mu \mathrm{s}$	1 ms	77.1 years
	30	$0.005 \ \mu s$	$0.03~\mu \mathrm{s}$	$0.147 \; \mu { m s}$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
	40	$0.005 \ \mu s$	$0.04~\mu \mathrm{s}$	$0.213 \; \mu { m s}$	$1.6~\mu s$	18.3 min	5/300
d _X	50	$0.006~\mu \mathrm{s}$	$0.05~\mu \mathrm{s}$	$0.282~\mu \mathrm{s}$	$2.5~\mu \mathrm{s}$	13 days	
	100	$0.007 \; \mu s$	$0.1~\mu \mathrm{s}$	$0.644~\mu {\rm s}$	$10~\mu \mathrm{s}$	$4 \times 10^{13} \text{ yrs}$	
~	1,000	$0.010 \; \mu { m s}$	$1.00~\mu \mathrm{s}$	$9.966 \ \mu s$	1 ms		
	10,000	$0.013~\mu { m s}$	$10~\mu s$	$130~\mu s$	100 ms		
	100,000	$0.017 \; \mu s$	$0.10~\mathrm{ms}$	$1.67~\mathrm{ms}$	$10 \sec$		
	1,000,000	$0.020 \; \mu { m s}$	$1 \mathrm{ms}$	19.93 ms	$16.7 \min$		
	10,000,000	$0.023~\mu { m s}$	$0.01~{\rm sec}$	$0.23 \sec$	$1.16 \mathrm{days}$		
	100,000,000	$0.027~\mu s$	$0.10 \sec$	2.66 sec	115.7 days		
l	1,000,000,000	$0.030 \; \mu s$	1 sec	$29.90 \mathrm{sec}$	31.7 years		

Figure 2.4: Growth rates of common functions measured in nanoseconds

Book: Algorithm Design Manual by Skiena