JEE MAINS

EE24BTECH11029- JANAGANI SHRETHAN REDDY

- 1) The area of the region, enclosed by the circle $x^2 + y^2 = 2$ which is not common to the region bounded by the parabola $y^2 = x$ and straight line y = x, is
 - a) $(\frac{1}{3})(12\pi 1)$
 - b) $\binom{\frac{1}{6}}{6}(12\pi 1)$ c) $\binom{\frac{1}{3}}{6}(6\pi 1)$

 - d) $(\frac{1}{6})(24\pi 1)$
- 2) Total number of six-digit numbers in which only and all five digits 1, 3, 5, 7 and 9 appear, is
 - a) 5^6
 - b) $(\frac{1}{2})(6!)$ c) 6!

 - d) $(\frac{5}{2})6!$
- 3) An unbiased coin is tossed 5 times. Suppose that a variable X is assigned the value k when k consecutive heads are obtained for k = 3, 4, 5,otherwise X takes the value -1. The expected value of X, is

 - a) $\frac{1}{8}$ b) $\frac{3}{16}$ c) $\frac{-1}{8}$ d) $\frac{-3}{16}$
- 4) If Re $\frac{(z-1)}{(2z+i)} = 1$, where z = x + iy, then the point (x, y) lies on a

 - a) circle whose centre is at $\left(\frac{-1}{2}, \frac{-3}{2}\right)$ b) straight line whose slope is $\frac{3}{2}$

 - c) circle whose diameter is $\frac{\sqrt{5}}{2}$ d) straight line whose slope is $\frac{-2}{3}$
- 5) If $f(a+b+1-x) = f(x) \forall x$, where a and b are fixed positive real numbers, then $\frac{1}{(a+b)} \int_{a}^{b} x \left(f(x) + f(x+1) \right) dx \text{ is equal to}$

 - a) $\int_{a-1}^{b-1} f(x) dx$ b) $\int_{a+1}^{b+1} f(x+1) dx$

- c) $\int_{a-1}^{b-1} f(x+1) dx$ d) $\int_{a+1}^{b+1} f(x) dx$
- 6) If the distance between the foci of an ellipse is 6 and the distance between its directrices is 12, then the length of its latus rectum is

1

- a) $2\sqrt{3}$
- b) $\sqrt{3}$
- c) $\frac{3}{\sqrt{2}}$
- d) $3\sqrt{2}$
- 7) The logical statement $(p \implies q) \land (q \implies \sim p)$ is equivalent to
 - a) $\sim p$
 - b) *p*
 - c) q
 - d) $\sim q$
- 8) Te greatest positive integer k, for which $49^k + 1$ is a factor of the sum $49^{125} + 49^{124} + \cdots + 49^2 +$ 49 + 1, is
 - a) 32
 - b) 60
 - c) 65
 - d) 63
- 9) A vector $\mathbf{a} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k} (\alpha, \beta \in \mathbf{R})$ lies in the plane of the vectors, $\mathbf{b} = \hat{i} + \hat{j}$ and $\mathbf{c} = \hat{i} - \hat{j} + 4\hat{k}$. If a bisects the angle between b and c, then
 - a) $a\hat{i} + 3 = 0$
 - b) $a\hat{k} + 4 = 0$
 - c) $a\hat{i} + 1 = 0$
 - d) $\mathbf{a}\hat{k} + 2 = 0$
- 10) If $y(\alpha) = \sqrt{2\left(\frac{\tan\alpha + \cot\alpha}{1 + \tan^2\alpha}\right) + \frac{1}{\sin^2\alpha}}$ where $\alpha \in \left(\frac{3\pi}{4}, \pi\right)$ then $\frac{dy}{d\alpha}$ at $\alpha = \frac{5\pi}{6}$ is

 - a) $-\frac{1}{4}$ b) $\frac{4}{3}$ c) 4

 - d) -4

- 11) y = mx + 4 is a tangent to both the parabolas, $y^2 = 4x$ and $x^2 = 2by$, then b is equal to
 - a) -64
 - b) 128
 - c) -128
 - d) -32
- 12) Let α be a root of the equation $x^2 + x + 1 = 0$ and the matrix $A = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha^4 \end{pmatrix}$ then the matrix A^{31} is equal to
 - a) *A*
 - b) A^2
 - c) A^3
 - d) l_3
- 13) If $g(x) = x^2 + x 1$ and $(gof)(x) = 4x^2 10x + 10$ 5,then $f\left(\frac{5}{4}\right)$ is equal to

 - a) $\frac{-3}{2}$ b) $\frac{-1}{2}$ c) $\frac{1}{2}$ d) $\frac{3}{2}$
- 14) let α and β are two real roots of the equation $(k+1) \tan^2 x - \sqrt{2}\lambda \tan x = 1 - k$, where $(k \neq -1)$ and are real numbers. If $\tan^2(\alpha + \beta) =$ 50, then value of λ is
 - a) $5\sqrt{2}$
 - b) $10\sqrt{2}$
 - c) 10
 - d) 5
- 15) Let P be a plane passing through the points (2,1,0),(4,1,1) and (5,0,1) and R be any point (2, 1, 6). Then the image of R in the plane *P* is:
 - a) (6,5,2)
 - b) (6, 5, -2)
 - c) (4, 3, 2)
 - d) (3, 4, -2)