Contents

PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2002	2
PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2003	7
PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2004	11
*PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2005	17
DEUXIEME EPREUVE DE MATHEMATIQUES : ISFA 2006	21
PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2007	25
DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A : ISFA 2007	29
DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A : ISFA 2008	34
PREMIERE DE MATHEMATIQUES : ISFA 2009	38
*PREMIERE EPREUVE DE MATHEMATIQUESZ : ISFA 2010	42
*DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A : ISFA 2011	44
DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A : ISFA 2012	48
PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2013	55
*DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A:ISFA 2013	61

PREMIERE EPREUVE DE MATHEMATIQUES: ISFA 2002

EXERCICE 1

1) $\ln\left(1+\frac{1}{x^2}\right)\sim_{\infty}\frac{1}{x^2}$ ainsi la fonction $x\mapsto \ln\left(1+\frac{1}{x^2}\right)$ est intégrable sur $[1,+\infty[$. Et en remarquant que $\ln\left(1+\frac{1}{x^2}\right)=\ln(1+x^2)-2\ln(x)$ on a $\ln\left(1+\frac{1}{x^2}\right)=_{0^+}o\left(\frac{1}{\sqrt{x}}\right)$ et par suite $x\mapsto \ln\left(1+\frac{1}{x^2}\right)$ est intégrable sur [0,1]. Ainsi $\int_0^{\infty}\ln\left(1+\frac{1}{x^2}\right)dx$ est convergente.

2) Soient $\varepsilon, M > 0$,on intègre par parties puis : $I(\varepsilon, M) = \int_{\varepsilon}^{M} \ln\left(1 + \frac{1}{x^2}\right) dx = \int_{\varepsilon}^{M} \frac{x'}{x'} \ln\left(1 + \frac{1}{x^2}\right) dx$

$$\begin{split} I(\varepsilon;M) &= \left[x \ln \left(1 + \frac{1}{x^2} \right) \right]_{\varepsilon}^M + 2 \int_{\varepsilon}^M \left(\frac{x \cdot \frac{1}{x^3}}{1 + \frac{1}{x^2}} \right) dx = \left[x \ln \left(1 + \frac{1}{x^2} \right) \right]_{\varepsilon}^M + 2 \int_{\varepsilon}^M \frac{dx}{1 + x^2} \text{ ce qui donne} \\ I(\varepsilon,M) &= M \ln \left(1 + \frac{1}{M^2} \right) - \varepsilon \ln \left(1 + \frac{1}{\varepsilon^2} \right) + 2 \left(\operatorname{Arctan}(M) - \operatorname{Arctan}(\varepsilon) \right) \text{ et maintenant en faisant} \\ \varepsilon \to 0 \text{ puis } M \to \infty \text{ on trouve } \int_0^\infty \ln \left(1 + \frac{1}{x^2} \right) dx = 2 \cdot \frac{\pi}{2} = \pi. \end{split}$$

PROBLEME A

1) $\forall x \in [0,1], P'(x) = \sum_{i=0}^k i p_i x^{i-1} \ge 0.$ P est donc une fonction continue croissante et réalise ainsi une bijection de [0,1] sur [P(0),P(1)] et comme $P(0)=p_0$ et $P(1)=\sum_{i=0}^k p_i=1$ on a notre résultat.

2.

- i) P(1) = 1 donc $1 \in E$.
- ii) Posons $\varphi(x) = P(x) x$ ainsi $\varphi'(x) = P'(x) 1$ puis $\varphi''(x) = P''(x) \ge 0$. Nous déduisons que φ' est croissante.
- *Si P'(1) > 1 alors $\varphi'(1) > 0$ et $\varphi'(0) = p_1 1 \le 0$ donc il existe un unique $\lambda' \in [0,1[$ tel que $\varphi'(\lambda') = 0$.Ce faisant φ est décroissante sur $[0,\lambda']$ et croissante sur $[\lambda',1]$ où l'on a $\varphi(x) \le 0$ car $\varphi(1) = 0$.Sur $[0,\lambda']$ on a $\varphi(\lambda') < 0$ et $\varphi(0) = p_0 \ge 0$ ainsi il existe un unique $\lambda \in [0,\lambda']$ tel que $\varphi(\lambda) = 0$.On a bien $E = \{\lambda,1\}$.
- * Si $P'(1) \le 1$ alors $\varphi'(x) \le 0$ donc φ est décroissante de p_0 vers 0. Si $p_0 > 0$ on a alors un unique point fixe et $E = \{1\}$. Si $p_0 = 0$ alors E = [0,1], maintenant il reste à trouver le (ou les) polynômes correspondants. Dans ce cas $\sum_{i=0}^k p_i = 1$ maintenant s'il existe un i > 1 tel que $p_i > 0$ alors $P'(1) = \sum_{i=0}^k i p_i > \sum_{i=0}^k p_i = 1$ contradiction. Par suite $p_1 = 1$ et le polynôme recherché est P(x) = x.

3.

i) Prenons $P(x) = p_1 x + (1 - p_1)$, on a : $P_2(x) = p_1 \left(p_1 x + (1 - p_1) \right) + (1 - p_1)$ ainsi on trouve $P_2(x) = p_1^2 x + (1 - p_1^2)$. Et par une récurrence simple on arrive à démontrer la relation $P_n(x) = p_1^n x + (1 - p_1^n)$. D'où $\lim_{n \to \infty} P_n(x) = \begin{cases} 1 & \text{si } 0 \le p_1 < 1 \\ x & \text{si } p_1 = 1 \end{cases}$.

ii) On montrera par récurrence sur $n \in \mathbb{N}^*$ que $u_n \le u_{n+1} \le 1$. On a d'abord que $0 \le P(0) \le 1$ et comme P est croissant on a $P(0) \le P(P(0)) \le 1$ soit $u_1 \le u_2 \le 1$. Maintenant supposons que pour un $n \in \mathbb{N}^*$ l'on ait $u_n \le u_{n+1} \le 1$ et en remarquant que $u_{n+1} = P(u_n)$ et que P croît on a $P(u_n) \le P(u_{n+1}) \le P(1)$ soit $u_{n+1} \le u_{n+2} \le 1$. Nous achevons ainsi notre récurrence. $(u_n)_{n\ge 1}$ est alors une suite croissante majorée elle est donc convergente vers un point fixe de P.

*Si $P'(1) \le 1$ P a un unique point fixe et alors $\lim_{n \to \infty} u_n = 1$.

*Si P'(1) > 1.Distinguons des cas . Si $u_1 \le \lambda$ on a par récurrence que $u_n \le \lambda$.Comme les seuls points fixes de P sont λ et 1 et que $\lambda < 1$ on a que $\lim_{n \to \infty} u_n = \lambda$. Si $u_1 > \lambda$ on a par récurrence que $u_n > \lambda$ mais $(u_n)_{n \ge 1}$ devant converger vers sa borne supérieure on a obligatoirement $\lim_{n \to \infty} u_n = 1$. En somme $\lim_{n \to \infty} u_n = \begin{cases} \lambda & \text{si } u_1 \le \lambda \\ 1 & \text{si } u_1 > \lambda \end{cases}$.

iii)

*Si $P'(1) \le 1$ on a que $\forall x \in]0,1], P(x) \ge x$. De là il est facile de voir que la suite $(P_n(x))_{n\ge 1}$ est croissante majorée par 1 ; elle converge donc vers le point fixe 1 de P.

* Si P'(1) > 1.On va discuter suivant les positions de x. Si $x \le \lambda$ alors $x \le P_1(x) \le \lambda$ on a par récurrence que $P_n(x) \le P_{n+1}(x) \le \lambda$. $\left(P_n(x)\right)_{n\ge 1}$ est croissante majorée par λ ; elle converge donc vers l'un des points fixes de P.Comme les seuls points fixes de P sont λ et 1 et que $\lambda < 1$ on a que $\lim_{n\to\infty} u_n = \lambda$. Si $x > \square$ il vient $x \ge P_1(x) > \lambda$ et par récurrence que $P_n(x) \ge P_{n+1}(x) > \lambda$. mais $(P_n)_{n\ge 1}$ étant une suite décroissante minorée elle doit converger vers sa borne inférieure on a obligatoirement $\lim_{n\to\infty} u_n = \lambda$. Dans tous les cas $\lim_{n\to\infty} P_n(x) = \lambda$.

PROBLEME B

PARTIE I

1.

i) En posant $n=\deg(P)$ on peut écrire $P(x)=\sum_{k=0}^n a_k x^k$ avec $a_n\neq 0$. Par définition de D: $D(P)(x)=\sum_{k=1}^n a_k \left((x+1)^k-x^k\right)=\sum_{k=1}^n \left(\sum_{j=0}^{k-1} a_k C_k^j x^j\right)=\sum_{j=0}^{n-1} \left(\sum_{k=j+1}^n a_k C_k^j\right) x^j$. D(P) est bien un polynôme de terme dominant $na_n X^{n-1}$ ainsi nous concluons que

$$\deg(D(P)) = \begin{cases} \deg(P) - 1 \text{ si } \deg(P) \ge 1\\ -\infty \text{ si } \deg(P) \in \{-\infty, 0\} \end{cases}$$

ii) On montre que D est une application linéaire puis en regardant la question précédente on voit qu'elle applique $\mathbb{R}^n[X]$ sur $\mathbb{R}^{n-1}[X]$. Pour trouver la matrice il suffit de voir que D(1)=0 et que $D(X^k)=\sum_{j=0}^{k-1}C_k^jX^j$ pour $1\leq k\leq n$. En notant $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n+1}}$ la matrice de D sur les bases canoniques de $\mathbb{R}^n[X]$ sur $\mathbb{R}^{n-1}[X]$. M est une matrice

triangulaire supérieure définie par $a_{i,j} = \begin{cases} 0 \text{ si } i \geq j \\ C_{j-1}^{i-1} \text{ si } i \geq j \end{cases}$. Il est facile de voir que rang(M) = n soit $\dim(Im(D)) = \dim(\mathbb{R}^{n-1}[X])$ or $Im(D) \subseteq \mathbb{R}^{n-1}[X]$ ainsi $Im(D) = \mathbb{R}^{n-1}[X]$. En regardant la première colonne de D on trouve $\ker(D) = \operatorname{Vect}(1)$.

iii) Prenons $n \in \mathbb{N}$ tel que $Q \in \mathbb{R}^{n-1}[X]$, d'après la question précédente qu'il existe $R \in \mathbb{R}^n[X]$ tel que D(R) = Q. Pour l'existence il est indéniable que P = R - R(0) satisfait les conditions voulues. Prenons un autre P' qui vérifie les mêmes conditions que P alors $P' - P \in KerD$. Ainsi il existe un réel α tel que $P' - P = \alpha$. En prenant α on a α

2.

- i) En regardant à la question 1.ii on voit que P_1 et P_2 sont respectivement de degré 1 et 2. Avec l'autre condition on écrit $P_1(x) = \alpha x$ et $P_2(x) = \beta x^2 + \gamma x$. Ainsi $D(P_1)(x) = \alpha$ donc $\alpha = 1$ puis $D(P_2)(x) = 2\beta x + \beta + \gamma$ ainsi $(\beta, \gamma) = \left(\frac{1}{2}, -\frac{1}{2}\right)$. Enfin $P_1 = X$ et $P_2 = \frac{X(X-1)}{2}$.
- ii) Nous raisonnons par récurrence sur $n \in \mathbb{N}^*$, on vérifie à la main que la propriété est vraie pour n=1,2. Maintenant supposons la propriété vraie pour un $n \in \mathbb{N}$. En tenant compte de la formule $P_{n+1}(x+1)-P_{n+1}(x)=P_n(x)$. En mettant x=0 on trouve $P_{n+1}(1)=0$, puis x=1 donne $P_{n+1}(2)=0$...et x=n-1 donne $P_{n+1}(n)=0$. En particulier avec x=n on trouve $P_{n+1}(n+1)-P_{n+1}(n)=P_n(n)$ donc $P_{n+1}(n+1)=P_n(n)=1$. Ceci achève la récurrence.

Les racines de P_n étant $0,1,\ldots,n-1$ on peut écrire $P_n(X)=AX(X-1)\ldots(X-n+1)$ pour un certain $A\in\mathbb{R}$. La condition $P_n(n)=1$ donne An!=1 soit $A=\frac{1}{n!}$. D'où $P_n(X)=\frac{X(X-1)\ldots(X-n+1)}{n!}$.

- iii) $\{P_0, P_1, \dots, P_n\}$ est une famille de polynômes de $\mathbb{R}_n[X]$ à degré croissant ainsi cette famille est libre et possède n+1 éléments or $\dim(\mathbb{R}^{n-1}[X])=n+1$. C'est donc une base de $\mathbb{R}_n[X]$. Un polynôme Q de $\mathbb{R}_n[X]$ s'écrit $Q=\sum_{i=0}^n\alpha_iP_i$. A partir de $D(P_n)=P_{n-1}$ on déduit facilement que $D^k(P_n)=P_{n-k}$ d'où $D^k(Q)=\sum_{i=0}^n\alpha_iD^k(P_i)=\sum_{i=k}^n\alpha_iP_{i-k}$. En gardant à l'esprit que $P_0=1$ on déduit à partir de la dernière relation que $D^k(Q)(0)=\alpha_k$ pour un $k\in[0,n]$. On réécrit et on a $P=\sum_{k=0}^nD^k(Q)\times P_k$.
- iv) Nous procédons par récurrence sur $n \in \mathbb{N}$. Les cas n = 0,1 sont vérifiés. Nous allons que la véracité de cette propriété pour un entier n entraine l'hérédité au rang n+1. Mais avant il est utile de remarquer que $P_{k+1}(x) = \frac{x-k}{k+1} P_k(x)$.

$$P_{n+1}(x+y) = \frac{x+y-n}{n+1} P_k(x+y) = \frac{[(x-k)+(y-(n-k))]}{n+1} P_k(x+y)$$

$$P_{n+1}(x+y) = \left\{ \sum_{k=0}^{\square} \left(\frac{x-k}{n+1} \right) P_k(x) P_{n-k}(y) + \sum_{k=0}^{n} \left(\frac{y-(n-k)}{n+1} \right) P_k(x) P_{n-k}(y) \right\}$$

$$P_{n+1}(x+y) = \left\{ \sum_{k=0}^{n} \left(\frac{k+1}{n+1} \right) P_{k+1}(x) P_{n-k}(y) + \sum_{k=0}^{n} \left(\frac{n-k+1}{n+1} \right) P_{k}(x) P_{n-k+1}(y) \right\}$$

$$= \left\{ P_{n+1}(x) + \sum_{k=1}^{n} \left(\frac{k}{n+1} \right) P_{k}(x) P_{n-k+1}(y) + \sum_{k=1}^{n} \left(\frac{n-k+1}{n+1} \right) P_{k}(x) P_{n-k+1}(y) + P_{n+1}(y) \right\}$$

$$P_{n+1}(x+y) = \left\{ P_{n+1}(x) + \sum_{k=1}^{n} \left(\frac{k+n-k+1}{n+1} \right) P_{k}(x) P_{n-k+1}(y) + P_{n+1}(y) \right\}$$

$$P_{n+1}(x+y) = \left\{ P_{n+1}(x) P_{0}(y) + \sum_{k=1}^{n} P_{k}(x) P_{n-k+1}(y) + P_{0}(x) P_{n+1}(y) \right\}$$

D'où $P_{n+1}(x+y) = \sum_{k=0}^{n+1} P_k(x) P_{n-k+1}(y)$ et on achève notre récurrence.

PARTIE II

- 1) Notons $n = \deg(f)$ on a donc $f \in \mathbb{R}_n[X]$ puis $D(f) \in \mathbb{R}_{n-1}[X]$ et $D^2(f) \in \mathbb{R}_{n-2}[X]$. En poursuivant on a $D^n(f) \in \mathbb{R}_0[X]$ et alors $D^{n+1}(f) = 0$ donc $D^k(f) = 0$ pour $k \ge n+1$. Nous déduisons que $\forall k \ge n+1$ on a $u_k(x) = 0$, la série comporte donc un nombre fini de termes non nuls. La somme de cette série vérifie : $\sum_{k=0}^n u_k(x) = \sum_{k=0}^n D^k(f)(0) \times P_k(x) = f(x)$.
- 2.i) Comme D(f)(x) = f(x+1) f(x) on trouve $D^2(f)(x) = f(x+2) 2f(x+1) + f(x)$. Ainsi on montre par récurrence que $D^n(f)(x) = \sum_{i=0}^n (-1)^{n-i} C_n^i f(x+i)$. Si cette formule est vraie à l'ordre n on a alors

$$D^{n+1}(f)(x) = D(D^{n}(f)(x)) = \sum_{i=0}^{n} (-1)^{n-i} C_{n}^{i} f(x+i+1) - \sum_{i=0}^{n} (-1)^{n-i} C_{n}^{i} f(x+i)$$

$$D^{n+1}(f)(x) = \sum_{i=1}^{n+1} (-1)^{n+1-i} C_{n}^{i-1} f(x+i) + \sum_{i=0}^{n} (-1)^{n+1-i} C_{n}^{i} f(x+i)$$

$$D^{n+1}(f)(x) = f(x+n+1) + \sum_{i=1}^{n} (-1)^{n+1-i} (C_{n}^{i} + C_{n}^{i-1}) f(x+i) + (-1)^{n+1} f(x)$$

 $D^{n+1}(f)(x) = f(x+n+1) + \sum_{i=1}^{n} (-1)^{n+1-i} C_{n+1}^{i} f(x+i) + (-1)^{n+1} f(x) \text{ ce qui finit par donner } D^{n+1}(f)(x) = \sum_{i=0}^{n+1} (-1)^{n+1-i} C_{n+1}^{i} f(x+i).$ Fin de la récurrence.

En particulier pour x=0 on a $D^k(f)(x)=\sum_{i=0}^k C_k^i(-1)^{k-i}a^i=(a-1)^k$. Finalement on trouve $u_k(x)=(a-1)^k\frac{x(x-1)...(x-k+1)}{k!}$.

- 2.ii) Le calcul donne $\frac{u_{k+1}(x)}{u_k(x)} = \frac{(a-1)(x-k)}{k+1}$ et nous trouvons $\lim_{k\to\infty} \left|\frac{u_{k+1}(x)}{u_k(x)}\right| = |a-1|$. Si |a-1| < 1 alors $\sum |u_k(x)|$ converge d'après la règle de D'Alembert ainsi la série $\sum u_k(x)$ est absolument convergente.
- 2.iii)Soit |a-1| > r > 1 et comme $\lim_{k \to \infty} \left| \frac{u_{k+1}(x)}{u_k(x)} \right| = |a-1|$ il existe $n_0 \in \mathbb{N}$ tel que $\forall k \geq n_0$, $\left| \frac{u_{k+1}(x)}{u_k(x)} \right| > r$ donc $|u_{n_0+1}(x)| > r|u_{n_0}(x)|$. Et une récurrence immédiate montre que $\forall k \geq 1$, $|u_{k+n_0}(x)| > r^k |u_{n_0}(x)|$. Le terme général de la série étant non majoré il ne converge donc pas vers 0. De ce fait la série diverge.

i)
$$S(0) = \sum_{k=0}^{\infty} (a-1)^k \times P_k(0) = P_0(0) = 1.$$

 $S(n+1) - S(n) = \sum_{k=1}^{\infty} (a-1)^k (P_k(n+1) - P_k(n))$ or $\forall k \geq 1 : D(P_k) = P_{k-1}$ ainsi nous déduisons $P_k(n+1) - P_k(n) = P_{k-1}(n)$. D'où $S(n+1) - S(n) = \sum_{k=1}^{\infty} (a-1)^k P_{k-1}(n)$ puis $S(n+1) - S(n) = (a-1) \sum_{k=1}^{\infty} (a-1)^k P_k(n) = (a-1) S(n)$. On obtient ainsi la relation de récurrence S(n+1) = aS(n) alors $S(n) = a^n S(0) = a^n$.

ii)
$$S_n(x) \times S_n(y) = (\sum_{k=1}^n (a-1)^k P_k(x)) (\sum_{k=1}^n (a-1)^k P_k(y))$$

$$S_n(x) \times S_n(y) = \sum_{k=0}^n \sum_{i=0}^k (a-1)^k P_i(x) P_{k-i}(y) + \sum_{k=n+1}^{2n} \sum_{i=k-n}^n (a-1)^k P_i(x) P_{k-i}(y)$$

$$S_n(x) \times S_n(y) = \sum_{k=0}^n (a-1)^k P_k(x+y) + \sum_{k=n+1}^{2n} \sum_{i=k-n}^n (a-1)^k P_i(x) P_{k-i}(y).$$

Aussi
$$S_{2n}(x+y) = \sum_{k=0}^{n} (a-1)^k P_k(x+y) + \sum_{k=n+1}^{2n} (a-1)^k P_k(x+y)$$

$$\begin{split} S_{2n}(x+y) &= \sum_{k=0}^n (a-1)^k P_k(x+y) + \sum_{k=n+1}^{2n} \sum_{i=0}^k (a-1)^k P_i(x) P_{k-i}(y). \text{En regardant bien} \\ \text{les sommations on peut écrire } S_{2n}(x+y) &= S_n(x) \times S_n(y) + A_n(x+y) + B_n(x+y) \ (I) \text{ avec} \\ B_n(x,y) &= \sum_{k=n+1}^{2n} \sum_{i=0}^{k-n-1} (a-1)^k P_i(x) P_{k-i}(y) = \sum_{k=n+1}^{2n} \sum_{i=0}^{k-n-1} u_i(x) u_{k-i}(y) \text{ et} \\ A_n(x,y) &= \sum_{k=n+1}^{2n} \sum_{i=n+1}^k (a-1)^k P_i(x) P_{k-i}(y) = \sum_{k=n+1}^{2n} \sum_{i=n+1}^k u_i(x) u_{k-i}(y). \end{split}$$

Pour la suite écrivons de façon subtile en changeant les indices $B_n(x,y) = \sum_{i=0}^{n-1} \sum_{k=i+n+1}^{2n} u_i(x) u_{k-i}(y)$ et $A_n(x,y) = \sum_{i=n+1}^{2n} \sum_{k=i}^{2n} u_i(x) u_{k-i}(y)$. Ainsi $|B_n(x,y)| \le \sum_{i=0}^{n-1} \sum_{k=n+1}^{2n} |u_i(x) u_k(y)| \le (\sum_{k=n+1}^{2n} |u_k(y)|) (\sum_{i=0}^{n-1} |u_i(x)|)$ et par suite $|B_n(x,y)| \le (\sum_{k=n+1}^{2n} |u_k(y)|) (\sum_{i=0}^{\infty} |u_k(x)|)$.

$$\begin{split} |A_n(x,y)| &\leq \sum_{i=n+1}^{2n} \sum_{k=n+1}^{2n} |u_i(x)u_k(y)| \leq \left(\sum_{i=n+1}^{2n} |u_k(x)|\right) \left(\sum_{k=n+1}^{2n} |u_i(y)|\right) \text{ et par suite } \\ |A_n(x,y)| &\leq \left(\sum_{k=n+1}^{2n} |u_k(x)|\right) \left(\sum_{k=0}^{\infty} |u_k(y)|\right). \end{split}$$

De là $\lim_{n\to\infty}A_n(x,y)=\lim_{n\to\infty}B_n(x,y)=0$ ainsi en faisant tendre n vers $+\infty$ dans la relation (I) on obtient S(x+y)=S(x)S(y).

iii) Comme S(x+y)=S(x)S(y) en prenant x=y on a $S(2x)=S(x)^2$. En particulier $S(1)=S\left(\frac{1}{2}\right)^2=a$ donc $S\left(\frac{1}{2}\right)=\sqrt{a}$. Intuitivement la relation $S(2x)=S(x)^2$ nous amène à prouver par récurrence que $S(nx)=S(x)^n$. Ceci est vrai pour n=2 et si $S(nx)=S(x)^n$ on a alors $S\left((n+1)x\right)=S(nx)S(x)=S(x)^{n+1}$ ainsi nous achevons la récurrence. Ceci étant $a=S(1)=S\left(q\times\frac{1}{q}\right)=S\left(\frac{1}{q}\right)^q$ donc $S\left(\frac{1}{q}\right)=a^{\frac{1}{q}}$. En outre $S\left(\frac{p}{q}\right)=S\left(\frac{1}{q}\right)^p=a^{\frac{p}{q}}$.

iv) Pour x positif on a :1 = S(0) = S(x - x) = S(-x)S(x) donc S(-x) = 1/S(x).

Remarque : Pour tout $r \in \mathbb{Q}^+$ on peut écrire $r = \frac{p}{q}$ avec $p \ge 0, q > 0$. On a alors le résultat suivant $S(r) = S\left(\frac{p}{q}\right) = a^{\frac{p}{q}} = a^r$ ainsi $S(-r) = 1/S(r) = a^{-r}$. On a alors le résultat important $S(r) = a^r$ pout tout $r \in \mathbb{Q}$.

- v) D'abord démontrons que pour $n \geq 1$; $|P_n(h)| \leq |h|$ pour $|h| \leq 1$. On a pour un entier $i \geq 1$: $-1 \leq h \leq 1$ donc $-i 1 \leq h i \leq 1 i$ d'où $|h i| \leq i + 1$. Or $|P_n(h)| = \frac{|h|}{n!} \prod_{i=1}^{n-1} |h i|$ par conséquent $|P_n(h)| \leq \frac{|h|}{n!} \times 2 \times 3 \times ... \times n = \frac{|h|}{n!} \times n!$ soit $|P_n(h)| \leq |h|$. L'on a $S(h) 1 = \sum_{k=1}^{\infty} (a-1)^k P_k(h)$. Sous réserve de convergence $|S(h) 1| \leq \sum_{k=1}^{\infty} |(a-1)^k P_k(h)| \leq \sum_{k=1}^{\infty} |h| |a-1|^k \leq |h| \sum_{k=1}^{\infty} |a-1|^k$. Cette inégalité prouve que $\lim_{h \to 0} S(h) = 1 = S(0)$ ainsi S est continue en S(h) = 1 and S(h) = 1 and S(h) = 1 and S(h) = 1 are S(h) = 1 and S(h) = 1 and S(h) = 1 are S(h) = 1 and S(h)
- iv) On a $S(x) = a^x$ pour $x \in \mathbb{Q}$. Pour $x \in \mathbb{R} \setminus \mathbb{Q}$ il existe une suite $(x_n)_{n \geq 0}$ des rationnels convergeant vers x. Mais alors $S(x) = S(x_n)S(x x_n) = a^{x_n}S(x x_n)$ et comme S est continue on a alors $S(x) = \lim_{n \to \infty} a^{x_n}S(x x_n) = a^xS(0) = a^x$. Ceci conclut.

PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2003

PROBLEME 1

QUESTION 1

Notons X_M le polynôme caractéristique de M. Nous avons à l'ordre 3 la fameuse formule : $X_M(\lambda) = -\lambda^3 + \operatorname{Tr}(M)\lambda^2 - \operatorname{Tr}(\operatorname{Com} M)\lambda + \det(M)$ donc $X_M(\lambda) = -\lambda^3 + 14\lambda^2 - 44\lambda + 40$. En factorisant $X_M(\lambda) = (\lambda - 2)^2(10 - \lambda)$, ainsi les valeurs propres de M sont 2 et 10 et les sous espaces propres sont $\operatorname{Ker}(M-2I) = \operatorname{Vect}\left\{\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}\right\}$ et $\operatorname{Ker}(M-10I) = \operatorname{Vect}\left\{\begin{pmatrix} 17 \\ 8 \\ 7 \end{pmatrix}\right\}$.

QUESTION 2

a) On note respectivement X_n, Y_n et Z_n les évènements le client est satisfait, indifférent et mécontent après la n-ième année. Par la formule de sommation totale :

$$\begin{cases} P(X_n) = P(X_n \setminus X_{n-1}) P(X_{n-1}) + P(X_n \setminus Y_{n-1}) P(Y_{n-1}) + P(X_n \setminus Z_{n-1}) P(Z_{n-1}) \\ P(Y_n) = P(Y_n \setminus X_{n-1}) P(X_{n-1}) + P(Y_n \setminus Y_{n-1}) P(Y_{n-1}) + P(Y_n \setminus Z_{n-1}) P(Z_{n-1}) \\ P(Z_n) = P(Z_n \setminus X_{n-1}) P(X_{n-1}) + P(Z_n \setminus Y_{n-1}) P(Y_{n-1}) + P(Z_n \setminus Z_{n-1}) P(Z_{n-1}) \end{cases}$$
 soit
$$\begin{cases} x_n = 0.6x_{n-1} + 0.5y_{n-1} + 0.4z_{n-1} \\ y_n = 0.2x_{n-1} + 0.4y_{n-1} + 0.2z_{n-1} \\ z_n = 0.2x_{n-1} + 0.1y_{n-1} + 0.4z_{n-1} \end{cases}$$
 avec
$$A = \begin{pmatrix} 0.6 & 0.5 & 0.4 \\ 0.2 & 0.4 & 0.2 \\ 0.2 & 0.1 & 0.4 \end{pmatrix} = \frac{1}{10}M.$$

b) Posons $X = {}^t[x,y,z]$ on doit résoudre AX = X soit MX = 10X donc $X \in \text{Vect}\left\{\begin{pmatrix} 17\\8\\7 \end{pmatrix}\right\}$. Il existe $\alpha \in \mathbb{R}$ vérifiant $X = {}^t[17\alpha, 8\alpha, 7\alpha]$ mais la condition x + y + z = 1 donne $\alpha = \frac{1}{32}$. Cette équation admet une seule solution $X_{\infty} = {}^t\left[\frac{17}{32}, \frac{1}{4}, \frac{7}{32}\right]$. En notant $X_n = {}^t[x_n, y_n, z_n]$ si $X_n = X_{\infty}$ alors $X_{n+1} = AX_n = AX_{\infty} = X_{\infty}$ ainsi si une année si les proportions de satisfaits,

d'indifférents et mécontents sont égaux à $\frac{17}{32}$, $\frac{1}{4}$ et $\frac{7}{32}$ elles restent constantes les années suivantes.

c) En remplaçant z_n par $1-x_n-y_n$ dans le système de la question 1 on obtient

$$\begin{cases} x_n = \frac{x_{n-1}}{5} + \frac{y_{n-1}}{10} + \frac{2}{5} \\ y_n = \frac{y_{n-1}}{5} + \frac{1}{5} \end{cases} \text{ donc } \begin{bmatrix} x_n \\ y_n \end{bmatrix} = B \begin{bmatrix} x_{n-1} \\ y_{n-1} \end{bmatrix} + C \text{ avec } B = \begin{pmatrix} \frac{1}{5} & \frac{1}{10} \\ 0 & \frac{1}{5} \end{pmatrix} \text{ et } C = \begin{pmatrix} \frac{2}{5} \\ \frac{1}{5} \end{pmatrix}. \text{ En}$$

manipulant il vient : $\begin{bmatrix} x_n \\ y_n \end{bmatrix} = B^n \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + (I + B + \dots + B^{n-1})C$. Il est facile de voir que $B^n = B^n$

$$\begin{pmatrix} \frac{1}{5^n} & \frac{n}{2.5^n} \\ 0 & \frac{1}{5^n} \end{pmatrix} \text{ ,ensuite } \begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{pmatrix} \frac{1}{5^n} & \frac{n}{2.5^n} \\ 0 & \frac{1}{5^n} \end{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{pmatrix} \frac{5}{4} \left(1 - \frac{1}{5^n}\right) & \frac{5}{32} - \frac{1+4n}{32.5^{n-1}} \\ 0 & \frac{5}{4} \left(1 - \frac{1}{5^n}\right) \end{pmatrix} \begin{bmatrix} \frac{2}{5} \\ \frac{1}{5} \end{bmatrix} = 0$$

$$\begin{bmatrix} \frac{17}{32} \left(1 - \frac{1}{5^n} \right) + \frac{3n}{8.5^n} \\ \frac{1}{4} \left(1 + \frac{3}{5^n} \right) \end{bmatrix} \text{.De ce fait } \lim_{n \to \infty} x_n = \frac{17}{32} \text{ , } \lim_{n \to \infty} y_n = \frac{1}{4} \text{ puis } \lim_{n \to \infty} z_n = 1 - \frac{17}{32} - \frac{1}{4} = \frac{7}{32} \text{ .}$$

PROBLEME II

QUESTION 1

Montrons par récurrence sur $n \in \mathbb{N}$ que u_n est définie et que $u_n > 0$. Maintenant pour un $n \geq 2$ supposons que cette propriété est vérifiée pour tout $p \leq n$. Mais alors on a $u_{n+1} = \frac{u_n u_{n-1} + k}{u_{n-2}}$ qui est ainsi bien défini et strictement positif.

QUESTION 2

i) Par définition de α il s'en suit que $u_4=\alpha u_2-u_0$ et maintenant montrons par récurrence que $u_{n+4}=\alpha u_{n+2}-u_n$. Supposons que la propriété tienne pour un entier $n\in\mathbb{N}$. En additionnant les deux égalités $\begin{cases} u_{n+3}u_n=u_{n+1}u_{n+2}+k\\ u_{n+3}u_{n+4}+k=u_{n+2}u_{n+5} \end{cases}$ puis en supprimant k il vient

 $u_{n+3}(u_{n+4}+u_n)=u_{n+2}(u_{n+5}+u_{n+1})$ soit $\alpha u_{n+2}u_{n+3}=u_{n+2}(u_{n+5}+u_{n+1})$. En simplifiant $u_{n+5}+u_{n+1}=\alpha u_{n+3}$ d'où $u_{n+5}=\alpha u_{n+3}-u_{n+1}$. Ceci achève la récurrence.

- ii) Par calcul $u_3 = \frac{bc+k}{a}$, $u_4 = \frac{c}{a}\left(c + \frac{k}{b}\right) + \frac{k}{b}$ donc $\alpha = \frac{u_4+u_0}{u_2} = \frac{\frac{c}{a}\left(c + \frac{k}{b}\right) + \frac{k}{b}+a}{c} = \frac{a}{c} + \frac{c}{a} + k\left(\frac{1}{bc} + \frac{1}{ab}\right)$. Comme $\frac{a}{c} + \frac{c}{a} - 2 = \left(\sqrt{\frac{a}{c}} - \sqrt{\frac{c}{a}}\right)^2$ on $a + \frac{c}{a} \ge 2$ alors $\alpha > 2$.
- iii) Les suites $(u_{2n})_{n\geq 0}$ et $(u_{2n+1})_{n\geq 0}$ satisfont une récurrence linéaire d'ordre 2 d'équation caractéristique $X^2-\alpha X+1=0$. Ses racines sont $\lambda=\frac{\alpha+\sqrt{\alpha^2-4}}{2}$ et $\mu=\frac{\alpha-\sqrt{\alpha^2-4}}{2}$, λ et μ sont strictement positives et aussi $\lambda<1<\mu$. Par conséquent il existe des réels A,B,C et D tels que $u_{2n}=A\lambda^n+B\mu^n$ et $u_{2n+1}=C\lambda^n+D\mu^n$. Il faut aussi noter que $B,D\geq 0$ car sinon la suite $(u_n)_{n\geq 0}$ serait négative à partir d'un certain rang. Ainsi l'éventuelle limite de la suite $(u_n)_{n\geq 0}$ est soit 0 ou $+\infty$. Notons cette limite l, si l=0 en

regardant à la relation $u_{n+3}u_n = u_{n+1}u_{n+2} + k$ on doit avoir $l^2 = l^2 + k$ ce qui ne se peut pas si l = 0. Finalement $l = +\infty$.

QUESTION 3

Vu la forme donnée à la question précédente on calcule A et B par la donnée $(u_0,u_1)=(1,2)$ et nous trouvons $u_{2n}=\left(\frac{1}{2}+\frac{1}{2\sqrt{3}}\right)\left(2+\sqrt{3}\right)^n+\left(\frac{1}{2}-\frac{1}{2\sqrt{3}}\right)\left(2-\sqrt{3}\right)^n$. On calcule et on trouve $u_0=1,u_1=1,u_2=3,u_3=7,u_4=11$. A ce niveau on constate que $u_1=\frac{u_0+u_2}{2}$ et $u_3=\frac{u_2+u_4}{2}$. Maintenant démontrons par récurrence sur $n\in\mathbb{N}$ que $u_{2n+1}=\frac{u_{2n}+u_{2n+2}}{2}$. En remarquant que ici $\alpha=4$ on a $u_{n+4}=4u_{n+2}-u_n$. Supposons que pour un $n\geq 1$ la propriété est vraie pour tout $k\leq n-1$. On a $u_{2n+1}=4u_{2n-1}-u_{2n-3}$ puis $u_{2n+1}=4\left(\frac{u_{2n}+u_{2n-2}}{2}\right)-\left(\frac{u_{2n-2}+u_{2n-4}}{2}\right)$ d'après l'hypothèse de récurrence. Ainsi $u_{2n+1}=\frac{4u_{2n}-u_{2n-2}}{2}+\frac{4u_{2n-2}-u_{2n-4}}{2}=\frac{u_{2n}+u_{2n+2}}{2}$. Ceci achève la récurrence.

PROBLEME III

QUESTION 1

a) $\frac{1-\cos(t)}{t^{3/2}} \sim_0 2\sqrt{t}$ puis $\frac{1-\cos(t)}{t^{3/2}} =_\infty O\left(\frac{1}{t^{3/2}}\right)$ et comme $t \mapsto 2\sqrt{t}$ est intégrable sur [0,1] et $t \mapsto \frac{1}{t^{3/2}}$ est intégrable sur $[1,+\infty[$ alors $\int_0^\infty \frac{1-\cos(t)}{t^{3/2}}dt$ est absolument convergente. Aussi $\frac{\sin(t)}{t^{3/2}} \sim_0 \frac{1}{\sqrt{t}}$ puis $\frac{\sin(t)}{t^{3/2}} =_\infty O\left(\frac{1}{t^{3/2}}\right)$ et comme $t \mapsto \frac{1}{\sqrt{t}}$ est intégrable sur [0,1] et $t \mapsto \frac{1}{t^{3/2}}$ est intégrable sur $[1,+\infty[$ alors $\int_0^\infty \frac{\sin(t)}{t^{3/2}}dt$ est absolument convergente.

b)
$$I_A = \int_0^A \cos(x^2) dx = \frac{1}{2} \int_0^{A^2} \frac{\cos(u)}{\sqrt{u}} du = \frac{1}{2} \int_0^{A^2} \frac{\sin(u)}{\sqrt{u}} du = \frac{1}{2} \left(\frac{\sin(A^2)}{A} + \frac{1}{2} \int_0^{A^2} \frac{\sin(u)}{u^{3/2}} du \right)$$

 $J_A = \int_0^A \sin(x^2) dx = \frac{1}{2} \int_0^{A^2} \frac{\sin(u)}{\sqrt{u}} du = \frac{1}{2} \int_0^{A^2} \frac{(1 - \cos(u))'}{\sqrt{u}} du = \frac{1}{2} \left(\frac{1 - \cos(A^2)}{A} + \frac{1}{2} \int_0^{A^2} \frac{1 - \cos(u)}{u^{3/2}} du \right)$

En faisant tendre A vers $+\infty$ on voit que I et J convergent et on obtient en plus les relations $I = \int_0^\infty \cos(x^2) \, dx = \frac{1}{4} \int_0^\infty \frac{\sin(x)}{x^{3/2}} \, dx$ et $J = \int_0^\infty \sin(x^2) \, dx = \frac{1}{4} \int_0^\infty \frac{1 - \cos(x)}{x^{3/2}} \, dx$. Cependant la fonction $x \mapsto \frac{1 - \cos(x)}{x^{3/2}}$ étant positive non nulle alors $\int_0^\infty \frac{1 - \cos(x)}{x^{3/2}} \, dx > 0$ d'où J > 0.

QUESTION 2

- a) C et S sont dérivables car elles sont des intégrales de fonctions continues. On a aussi $C(t) = \frac{1}{2} \left(\frac{\sin(t^2)}{t} + \frac{1}{2} \int_0^{t^2} \frac{\sin(x)}{x^{3/2}} dx \right) \text{ et } S(t) = \frac{1}{2} \left(\frac{1 \cos(t^2)}{t} + \frac{1}{2} \int_0^{t^2} \frac{1 \cos(x)}{x^{3/2}} dx \right). \text{ En notant } M_1 = \sup_{t \geq 0} \left| \frac{\sin(t^2)}{t} \right| \text{ et } M_2 = \sup_{t \geq 0} \left| \frac{1 \cos(t^2)}{t} \right| \text{ alors } \forall t \geq 0, |S(t)| \leq \frac{M_2}{2} + \frac{1}{4} \int_0^{\infty} \frac{1 \cos(x)}{x^{3/2}} dx \text{ et } |C(t)| \leq \frac{M_1}{2} + \frac{1}{4} \int_0^1 \frac{\sin(x)}{x^{3/2}} dx + \frac{1}{2} \int_1^{\infty} \frac{2}{x^{3/2}} dx. \text{ Finalement } C \text{ et } S \text{ sont bornées.}$
- b) Passons en complexe en introduisant $D(t) = C(t) + iS(t) = \int_0^t e^{ix^2} dx$, Introduisons encore $E(t) = D^2(t) = C^2(t) S^2(t) + 2iC(t)S(t) = A(t) + iB(t) = \left(\int_0^t e^{ix^2} dx\right)^2$. Il s'en suit

que $E'(t) = A'(t) + iB'(t) = 2e^{it^2} \int_0^t e^{ix^2} dx = 2\int_0^t e^{i(t^2+x^2)} dx$. On utilise le changement de variable $x = t\tan(\theta)$ on a $dx = \frac{t}{\cos^2(\theta)} d\theta$ et $t^2 + x^2 = t^2 (1 + \tan^2(\theta)) = \frac{t^2}{\cos^2(\theta)}$. Finalement on trouve $A'(t) + iB'(t) = 2\int_0^{\frac{\pi}{4}} e^{i\left(\frac{t^2}{\cos^2(\theta)}\right)} \frac{t}{\cos^2(\theta)} d\theta$. En prenant les parties réelles et imaginaires on a $A'(t) = 2\int_0^{\frac{\pi}{4}} \cos\left(\frac{t^2}{\cos^2(\theta)}\right) \frac{t}{\cos^2(\theta)} d\theta$ et $A'(t) = 2\int_0^{\frac{\pi}{4}} \sin\left(\frac{t^2}{\cos^2(\theta)}\right) \frac{t}{\cos^2(\theta)} d\theta$.

QUESTION 3

Posons $M(t) = \int_0^{\frac{\pi}{4}} \sin\left(\frac{t^2}{\cos^2(\theta)}\right) d\theta$ et $N(t) = \int_0^{\frac{\pi}{4}} (1 - \cos\left(\frac{t^2}{\cos^2(\theta)}\right)) d\theta$. On ajoute les fonctions $K_M(\theta,t) = \sin\left(\frac{t^2}{\cos^2(\theta)}\right)$ et $K_N(\theta,t) = 1 - \cos\left(\frac{t^2}{\cos^2(\theta)}\right)$. K_M et K_N sont continues sur $\left[0,\frac{\pi}{4}\right] \times \mathbb{R}^+$. En plus $\frac{\partial K_M}{\partial t}(\theta,t) = 2\cos\left(\frac{t^2}{\cos^2(\theta)}\right)\frac{t}{\cos^2(\theta)}$ et $\frac{\partial K_N}{\partial t}(\theta,t) = 2\sin\left(\frac{t^2}{\cos^2(\theta)}\right)\frac{t}{\cos^2(\theta)}$ qui sont continues sur $\left[0,\frac{\pi}{4}\right] \times \mathbb{R}^+$. Par le théorème $M(t) = \int_0^{\frac{\pi}{4}} K_M(\theta,t) d\theta$ et $N(t) = \int_0^{\frac{\pi}{4}} K_N(\theta,t) d\theta$ sont dérivables et $M'(t) = A'(t) = 2\int_0^{\frac{\pi}{4}} \cos\left(\frac{t^2}{\cos^2(\theta)}\right)\frac{t}{\cos^2(\theta)} d\theta$ et $N'(t) = B'(t) = 2\int_0^{\frac{\pi}{4}} \sin\left(\frac{t^2}{\cos^2(\theta)}\right)\frac{t}{\cos^2(\theta)} d\theta$. Comme M(0) = A(0) = 0 et N(0) = B(0) = 0 alors M = A et N = B. Pour conclure on a les formes intégrables $A(t) = \int_0^{\frac{\pi}{4}} \sin\left(\frac{t^2}{\cos^2(\theta)}\right) d\theta$ et $B(t) = \int_0^{\frac{\pi}{4}} (1 - \cos\left(\frac{t^2}{\cos^2(\theta)}\right)) d\theta$.

QUESTION 4

i) $K(t) = \int_0^{\frac{\pi}{4}} R(\theta,t) d\theta$ avec $R(\theta,t) = \int_0^t \sin\left(\frac{y^2}{\cos^2(\theta)}\right) dy$ et $\frac{\partial R}{\partial t}(\theta,t) = \sin\left(\frac{t^2}{\cos^2(\theta)}\right)$. R et $\frac{\partial R}{\partial t}$ étant continues sur $\left[0,\frac{\pi}{4}\right] \times \mathbb{R}^+$ alors K est dérivable et $K'(t) = \int_0^{\frac{\pi}{4}} \sin\left(\frac{t^2}{\cos^2(\theta)}\right) d\theta = A(t)$. K'(t) = A(t) et K(0) = 0 alors $K(t) = \int_0^t A(u) du$. $G(u) = \frac{1}{u} \int_0^u A(t) dt = \frac{K(u)}{u}$. Le changement de variable $z = \frac{y}{\cos(\theta)}$ donne $\int_0^u \sin\left(\frac{y^2}{\cos^2(\theta)}\right) dy = \cos(\theta) \int_0^{u/\cos(\theta)} \sin^2(z) dz = \cos(\theta) S(u/\cos(\theta))$. Par conséquent $G(u) = \frac{1}{u} \int_0^{\frac{\pi}{4}} \left[\int_0^u \sin\left(\frac{y^2}{\cos^2(\theta)}\right) dy\right] d\theta = \frac{1}{u} \int_0^{\frac{\pi}{4}} \cos(\theta) S(u/\cos(\theta)) d\theta$. S étant borné il existe un réel M_S tel que $\forall x \geq 0$, $|S(x)| \leq M_S$ donc $\forall u > 0$, $|G(u)| \leq \frac{\pi M_S}{4u}$ ainsi $\lim_{u \to \infty} G(u) = 0$.

ii) Comme au 4.i on introduit $L(t) = \int_0^{\frac{\pi}{4}} \left[\int_0^u (1 - \cos\left(\frac{y^2}{\cos^2(\theta)}\right) dy \right] d\theta$. De même L est dérivable et L'(t) = B(t) puis $L(t) = \int_0^t B(u) du$. D'où $H(u) = \frac{1}{u} \int_0^{\frac{\pi}{4}} \left[\int_0^u (1 - \cos\left(\frac{y^2}{\cos^2(\theta)}\right) dy \right] d\theta$. On procède de même et $H(u) = \frac{1}{u} \int_0^{\frac{\pi}{4}} (1 - \cos(\theta) C(u/\cos(\theta))) d\theta = \frac{\pi}{4} - \frac{1}{u} \int_0^{\frac{\pi}{4}} \cos(\theta) C(u/\cos(\theta)) d\theta$. Sans difficultés on achève cette section par $\lim_{u \to \infty} H(u) = \frac{\pi}{4}$.

QUESTION 5

a)Comme $\lim_{u\to\infty} f(u)=0$ alors pour $\varepsilon>0$ il existe un réel A tel que pour tout $x>A, |f(x)|<\frac{\varepsilon}{2}$ Ce faisant pour t>A; $|F(t)|\leq \frac{\int_0^A|f(u)|du}{t}+\frac{\varepsilon(t-u)}{2t}<\frac{\int_0^A|f(u)|du}{t}+\frac{\varepsilon}{2}$. D'autre part il existe un réel B tel que pour tout t>B; $\frac{\int_0^A|f(u)|du}{t}<\frac{\varepsilon}{2}$. En posant $M=\max\{A,B\}$ on a alors pour tout t>M l'inégalité $|F(t)|<\varepsilon$ d'où $\lim_{t\to\infty} F(t)=0$.

b) En écrivant $F(t) = \lambda + \frac{1}{t} \int_0^t (f(u) - \lambda) du$ puis en appliquant le point précédent on a alors $\lim_{t \to \infty} \left(\frac{1}{t} \int_0^t (f(u) - \lambda) du \right) = 0$ donc $\lim_{t \to \infty} F(t) = \lambda$.

QUESTION 6

C et S admettent des limites en $+\infty$ qui sont I et J. Ce qui entraine que A et B admettent des limites en $+\infty$ qui sont respectivement I^2-J^2 et 2IJ. En appliquant la question 5-b deux fois on a : $I^2-J^2=\lim_{t\to\infty}\left(\frac{1}{t}\int_0^tA(u)du\right)=0$ et $2IJ=\lim_{t\to\infty}\left(\frac{1}{t}\int_0^tB(u)du\right)=\frac{\pi}{4}$. Comme $I^2-J^2=0$ on a |I|=|J| or $IJ=\frac{\pi}{8}$ donc I et J sont de même signe alors I=J et $I^2=\frac{\pi}{8}$. En conclusion à notre problème $I=J=\frac{\sqrt{2\pi}}{4}$.

PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2004 PROBLEME I

PARTIE A : L'endomorphisme ϕ

- 1) En posant u = xt on trouve $\phi(f)(x) = \int_0^1 f(xt)dt = \frac{\int_0^x f(u)du}{x}$.
- 2) On a $\phi(f)(0) = f(0)$ et aussi f(u) = f(0) + o(1) donc $\int_0^x f(u) du = f(0)x + o(x)$. Par conséquent $\phi(f)(x) = f(0) + o(1)$ ainsi $\lim_{x \to 0^+} \phi(f)(x) = f(0)$ ce qui justifie que $\phi(f)$ est continue en 0.
- 3) ϕ est linéaire ainsi il suffit de montrer que $Ker\phi = \{0\}$. Soit $f \in \mathbb{E}$ telle que $\phi(f) = 0$ alors f(0) = 0 et $\int_0^x f(u)du = 0$ pour x > 0. En dérivant la dernière on trouve que f(x) = 0 pour x > 0 donc f = 0. ϕ est donc injectif.

4) Si $f \in \mathbb{E}$ telle que $\phi(f) = h$. Alors $\forall x \geq 0$; $\int_0^x f(u) du = x^2 \sin\left(\frac{1}{x}\right)$ mais $x \mapsto \int_0^x f(u) du$ est de classe \mathcal{C}^1 alors $k: x \mapsto x^2 \sin\left(\frac{1}{x}\right)$ devrait être de classe \mathcal{C}^1 . Comme $\frac{k(x)-k(0)}{x} = \frac{k(x)}{x} = x \sin\left(\frac{1}{x}\right)$ on a ainsi k'(0) = 0. Or $k'(x) = 2x\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$ n'admet pas de limite en 0 par conséquent k ne peut pas être de classe \mathcal{C}^1 . k n'est donc pas élément de k. Puisque k ne peut pas être de classe k no k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est donc pas élément de k n'est de classe k n'est de classe k n'est donc pas élément de k n'est de classe k n'est de cla

5) Si $\phi(f) = \lambda f$ alors $f(0)(1 - \lambda) = 0$ et $\int_0^x f(u) du = \lambda x f(x)$ pour x > 0. En dérivant on trouve $f(x) = \lambda(f(x) + xf'(x))$ comme T est injectif alors 0 n'est pas valeur propre de T. Donc $f'(x) = \left(\frac{1-\lambda}{\lambda x}\right) f(x)$ pour x > 0.

*Si $\lambda \neq 1$ on trouve comme solution $f(x) = Cx^{\frac{1-\lambda}{\lambda}}$ pour x > 0. Et comme est définie et continue en 0 il faut que $\frac{1-\lambda}{\lambda} > 0$ donc $\lambda \in]0,1[$. Aussi f(0) = 0 donc $f(0)(1-\lambda) = 0$. Nous concluons que tout $\lambda \in]0,1[$ est valeur propre de T avec pour fonctions propres $x \mapsto Cx^{\frac{1}{\lambda}-1}$ ($C \neq 0$).

* Si $\lambda = 1$, il reste plus que la condition f'(x) = 0 pour x > 0. Ainsi 1 est valeur propre de T associée aux fonctions constantes non nulles.

En gros tout $\lambda \in]0,1]$ est valeur propre de T avec pour fonctions propres $x \mapsto Cx^{\frac{1}{\lambda}-1}$ $(C \neq 0)$.

6.

i) Montrons par récurrence sur $n \in \mathbb{N}^*$ que la famille $(f_1, \dots, f_n, g_1, \dots, g_n)$ est libre. Pour n=1 prenons \mathfrak{a} et \mathfrak{b} tels que $\forall x \geq 0, \alpha f_1(x) + \beta g_1(x) = 0$. En mettant x=1 on trouve $\alpha=0$ puis avec par exemple x=e on trouve $\beta=0.0$ n a bien que (f_1,g_1) est libre. Supposons la formule établie pour n-1 ($n \geq 2$) ainsi prouvons qu'elle est vraie pour n. Prenons $(\alpha_k)_{1 \leq k \leq n}$ des réels tels que . $\forall x \geq 0$; $\sum_{k=1}^n \alpha_k f_k(x) + \sum_{k=1}^n \beta_k g_k(x) = 0$ et en divisant par g_n on a $\forall x > 1$; $\sum_{k=1}^n \alpha_k \frac{f_k(x)}{g_n(x)} + \sum_{k=1}^n \beta_k \frac{f_k(x)}{g_n(x)} = 0$. Si $\beta_n \neq 0$ en faisant tendre vers $+\infty$, on obtient $0=\pm\infty$ ce qui est impossible. Donc $\beta_n=0$ ainsi $\sum_{k=1}^n \alpha_k f_k(x) + \sum_{k=1}^{n-1} \beta_k g_k(x) = 0$. A nouveau $\forall x > 1$; $\sum_{k=1}^n \alpha_k \frac{f_k(x)}{f_n(x)} + \sum_{k=1}^{n-1} \beta_k \frac{f_k(x)}{f_n(x)} = 0$. Si $\alpha_n \neq 0$ en faisant tendre vers $+\infty$, on obtient $0=\pm\infty$ ce qui est impossible. Donc $\alpha_n=0$ puis $\forall x \geq 0$; $\sum_{k=1}^{n-1} \alpha_k f_k(x) + \sum_{k=1}^{n-1} \beta_k g_k(x) = 0$ et par l'hypothèse de récurrence $\forall 1 \leq k \leq n-1, \alpha_k = \beta_k = 0$. Ceci achève la récurrence et comme $(f_1, \dots, f_n, g_1, \dots, g_n)$ est libre c'est une base de \mathbb{F}_n donc $\dim(\mathbb{F}_n) = 2n$.

ii) Pour montrer que ϕ_n est un endomorphisme il suffit de montrer que les $\phi(f_i)$ et les $\phi(g_i)$ sont éléments de \mathbb{F}_n pour $1 \leq i \leq n$. On a $\phi(f_i)(x) = \frac{\int_0^x u^i du}{x} = \frac{1}{i+1} \frac{x^{i+1}}{x} = \frac{x^i}{i+1} = \frac{1}{i+1} f_i(x)$ et aussi $\phi(g_i)(x) = \frac{\int_0^x u^i \ln(u) du}{x} = \frac{1}{i+1} \frac{x^{i+1} \left(\ln(x) - \frac{1}{i+1}\right)}{x} = \frac{x^i \ln(x)}{i+1} - \frac{x^i}{(i+1)^2} = \frac{1}{i+1} g_i(x) - \frac{1}{(i+1)^2} f_i(x)$. En résumé pour tout $i \in [1,n]$ que $\phi(f_i) = \frac{1}{i+1} f_i$ et $\phi(g_i) = \frac{1}{i+1} g_i - \frac{1}{(i+1)^2} f_i$ donc $\phi(f_i)$, $\phi(g_i) \in \mathbb{F}_n$. ϕ_n est donc un endomorphisme dont la matrice peut être donnée vu les

relations ci-dessus. La matrice est $\Omega_{2n} = \begin{pmatrix} D_n & -E_n \\ 0 & D_n \end{pmatrix}$ où $D_n = \operatorname{diag}\left(\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n+1}\right)$ et $E_n = \operatorname{diag}\left(\frac{1}{4}, \frac{1}{9}, \dots, \frac{1}{(n+1)^2}\right)$.

iii) Notons $f(x) = ax + bx^2 + cx\ln(x) + dx^2\ln(x)$. Cela implique le système d'équations : $\frac{a}{2} = \frac{c}{4}$, $\frac{b}{3} = \frac{d}{9}$, $\frac{c}{2} = 1$ et $\frac{d}{3} = 1$ donc c = 2, d = 3 et $a = \frac{c}{2} = 1$, $b = \frac{d}{3} = 1$. Ainsi la solution est $f(x) = x + x^2 + 2x\ln(x) + 3x^2\ln(x)$.

PARTIE B : L'APPLICATION ϕ ET PROPRIETES DE MONOTONIE

- 1) Si $f \le g$ alors $\forall x \ge 0, \forall u \in [0, x]; f(u) \le g(u)$ donc $\frac{\int_0^x f(u)du}{x} \le \frac{\int_0^x g(u)du}{x}$ c'est-à-dire que $\phi(f)(x) \le \phi(g)(x)$. Finalement $\phi(f) \le \phi(g)$.
- 2) Si f est croissante alors pour $x \le y$, $\forall t \in [0,1]$; $f(xt) \le g(xt)$ donc $\int_0^1 f(xt)dt \le \int_0^1 f(yt)dt$ soit $\phi(f)(x) \le \phi(f)(y)$. $\phi(f)$ est donc croissante.

Si f est décroissante alors pour $x \le y$, $\forall t \in [0,1]$; $f(xt) \ge g(xt)$ donc $\int_0^1 f(xt)dt \ge \int_0^1 f(yt)dt$ soit $\phi(f)(x) \ge \phi(f)(y)$. $\phi(f)$ est donc décroissante.

3) Si f est croissante alors $\forall x \ge 0, \forall t \in [0,1]; f(xt) \le f(x) \operatorname{donc} \int_0^1 f(xt) dt \le \int_0^1 f(x) dt$ soit $\phi(f)(x) \le f(x)$. Donc $\phi(f) \le f$.

Si f est décroissante alors $\forall x \ge 0$, $\forall t \in [0,1]$; $f(xt) \ge f(x)$ donc $\int_0^1 f(xt)dt \ge \int_0^1 f(x)dt$ soit $\phi(f)(x) \ge f(x)$. Donc $\phi(f) \ge f$.

PARTIE C : ETUDE DES ITEREES DE ϕ

- 1. Pour unifier les notations on posera $u_0(x) = f(x)$.
- i) Nous savons que $\phi(F)(0) = F(0)$ pour $F \in \mathbb{E}$. En particulier en prenant $F = \phi^n(f)$ on trouve $\phi^{n+1}(f)(0) = \phi^n(f)(0)$ soit $u_{n+1}(0) = u_n(0)$ donc $(u_n(0))_{n \ge 0}$ est constante. On répond maintenant avec $u_n(0) = u_0(0) = f(0)$.
- ii) f est croissante donc $\phi(f) = u_1$ est croissante. Ainsi on montre par récurrence que u_n est croissante. En effet si u_n est croissante alors $\phi(u_n) = u_{n+1}$ est croissante et puisque la propriété est vraie pour n = 0,1 ceci achève notre récurrence.
- iii) Comme u_n est croissante on alors que $\phi(u_n) \leq u_n$ c'est-à-dire que $u_{n+1} \leq u_n$. Et donc pout tout réel x on a $u_{n+1}(x) \leq u_n(x)$ donc $\left(u_n(x)\right)_{n\geq 0}$ est décroissante et aussi positive. En effet $u_n(x) \geq u_n(0) = f(0) \geq 0$. En d'autres termes $\left(u_n(x)\right)_{n\geq 0}$ est décroissante et minorée elle converge vers un réel l(x). u_n étant croissante pour $x \leq y$ on a donc $u_n(x) \leq u_n(y)$ puis en faisant tendre n vers $+\infty$ on trouve $l(x) \leq l(y)$. l est bien croissante.
- iv) Par définition $\int_0^x f(u)du = x\phi(f)(x)$ et donc $f(x) = \phi(f)(x) + x\phi'(f)(x)$. Avec $f = u_n$ il vient $u_n(x) = u_{n+1}(x) + xu_{n+1}'(x)$ donc $u_n(x) u_{n+1}(x) = xu_{n+1}'(x)$ et donc en sommant

on a $\sum_{k=0}^{n-1} x u_{k+1}'(x) = \sum_{k=0}^{n-1} (u_k(x) - u_{k+1}(x)) = u_0(x) - u_n(x)$ et en faisant apparaître les termes on a $x(u_1'(x) + \dots + u_n'(x)) = f(x) - u_n(x)$.

Maintenant on introduit la fonction $S_n(x) = \sum_{k=1}^n u_n(x)$ et la suite $u_n(x,y) = u_n(y) - u_n(x)$ pour 0 < x < y ainsi $u_n(x,y) \ge 0$. Aussi $S_n'(x) = \frac{f(x) - u_n(x)}{x}$ donc $|S_n'(x)| \le \frac{f(x)}{x}$. En outre d'après l'inégalité de la moyenne on a $\sum_{k=1}^n u_n(x,y) = S_n(y) - S_n(x) \le \frac{(y-x)f(x)}{x}$ ainsi $\sum_{k=1}^\infty u_n(x,y)$ converge.

v) $\sum_{k=1}^{\infty} u_n(x,y)$ converge alors $\lim_{n\to\infty} u_n(x,y) = l(y) - l(x) = 0$ donc l(y) = l(x). D'où l est constante sur \mathbb{R}^{+*} . Soit $\varepsilon>0$ et comme u_1 est continue il existe x>0 tel que $|u_1(x)-u_n(0)|<\frac{\varepsilon}{2}$ c'est-à-dire $u_1(x)-f(0)<\frac{\varepsilon}{2}$ donc $0\leq u_n(x)-f(0)<\frac{\varepsilon}{2}$ pour tout $n\geq 1$ car $(u_n(x))_{n\geq 0}$ est décroissante. Puisque $\lim_{n\to\infty} u_n(x) = l$ il existe un entier N>0 tel que $|l-u_N(x)|<\frac{\varepsilon}{2}$. Par conséquent $|l-f(0)|\leq |l-u_N(x)|+|u_N(x)-f(0)|<\varepsilon$ donc $|l-f(0)|<\varepsilon$ pour tout $\varepsilon>0$ donc $|l-f(0)|<\varepsilon$ pour tout $\varepsilon>0$ donc

2.

 $(u_n(x))_{n\geq 0}$ est croissante et majorée par f(0) ainsi elle converge vers un réel l(x).La fonction $x\mapsto l(x)$ est décroissante

3. S et I sont évidements des fonctions positives respectivement croissante et décroissante, il reste à montrer qu'elles sont continues. Pour un x positif f étant continue en x il existe un réel positif α tel que pour tout réel x' vérifiant $|x'-x| < \alpha$ on ait $|f(x') - f(x)| < \varepsilon$. Donc pour $x' \in [x, x + \alpha[; f(x) - \varepsilon < f(x') < f(x) + \varepsilon$ c'est-à-dire $I(x) - \varepsilon < f(x') < S(x) + \varepsilon$ alors pout $t \in [0, x'[$ on a $I(x) - \varepsilon < f(t) < S(x) + \varepsilon$. En passant à la borne inférieure et supérieure on trouve $S(x') < S(x) + \varepsilon$ et $I(x) - \varepsilon < I(x')$ pour $x' \in [x, x + \alpha[$. De même pour $x' \in [x - \alpha, x[$ on a $S(x) < S(x') + \varepsilon$ et $I(x') - \varepsilon < I(x)$. En récapitulant on a dans tous les cas pour $|x' - x| < \alpha$ que $|S(x') - S(x)| < \varepsilon$ et $|I(x') - I(x)| < \varepsilon$. Nous avons bien la continuité de S et I.

Maintenant comme $I \le f \le S$ on a par récurrence que $\phi^n(I) \le \phi^n(f) \le \phi^n(S)$ et alors pour tout $x \ge 0$ et $n \ge 1$ alors $\phi^n(I)(x) \le \phi^n(f)(x) \le \phi^n(S)(x)$. Mais par les questions précédentes $\lim_{n \to \infty} \phi^n(S)(x) = \lim_{n \to \infty} \phi^n(I)(x) = S(0) = I(0) = f(0)$ par conséquent par le théorème des gendarmes on a que $\lim_{n \to \infty} \phi^n(f)(x) = f(0)$.

Soit $f \in \mathbb{E}$ et x un réel positif. Définissons un intervalle I = [0, x'] avec x' > x et $\mu = \inf_{x \in I} f(x)$ puis $g: \begin{cases} I \to \mathbb{R} \\ x \mapsto f(x) - \mu \end{cases}$ est donc positive et $\phi^n(g)(x) = \phi^n(f)(x) - \mu$ par suite

 $u_n(0) = f(0)$.

^{*}La fonction $x \mapsto u_n(x)$ est décroissante.

^{*}Les points 2.iv et 2.v sont conservées.

en calculant on a $\lim_{n\to\infty} \phi^n(g)(x) = g(0) = f(0) - \mu$ donc $\lim_{n\to\infty} \phi^n(f)(x) = \mu + \lim_{n\to\infty} (\phi^n(f)(x) - \mu)$ et finalement $\lim_{n\to\infty} \phi^n(f)(x) = f(0)$ pour toute fonction $f \in \mathbb{E}$.

PROBLEME II

PARTIE A: FONCTION MAJORANTE DE LA FONCTION K

$$1)p_1 = 2 \ , p_2 = 3 \ \text{et} \ p_3 = 5 \ \text{et} \ K(x) = \begin{cases} 1 \ \text{si} \ 0 \le x < 2 \\ 2 \ \text{si} \ 2 \le x < 3 \\ 6 \ \text{si} \ 3 \le x < 5 \end{cases} \ . \ \text{En g\'en\'eral les points de}$$

discontinuité de K sont les nombres premiers.

2) Pour
$$0 \le z \le y \le x$$
: $P(x, z) = \prod_{i/z < p_i \le x} p_i = (\prod_{i/y < p_i \le x} p_i) (\prod_{i/z < p_i \le y} p_i) = P(x, y) P(y, z)$.

3i) $C_{2n+1}^n = \frac{(2n+1)(2n)...(n+2)}{n!}$ Donc n! $C_{2n+1}^n = (2n+1)(2n)...(n+2)$. Pour un nombre premier p_i tel que $n+1 < p_i \le 2n+1$ comme $p_i|(2n+1)(2n)...(n+2)$ alors $p_i|n!$ C_{2n+1}^n et par le lemme de Gauss $p_i|C_{2n+1}^n$. Les p_i étant premiers entre eux alors $\prod_{i/n+1 < p_i \le 2n+1} p_i |C_{2n+1}^n$ ce qui n'est rien d'autre que $P(n+1,2n+1)|C_{2n+1}^n$.

3ii) Comme
$$P(n+1,2n+1)|C_{2n+1}^n$$
 alors $P(n+1,2n+1) \le C_{2n+1}^n$. Or $C_{2n+1}^n = \frac{C_{2n+1}^n + C_{2n+1}^{n+1}}{2}$ par suite $C_{2n+1}^n \le \frac{\sum_{k=0}^{2n+1} C_{2n+1}^k}{2} = \frac{2^{2n+1}}{2} = 2^{2n} = 4^n$ et enfin $P(n+1,2n+1) \le C_{2n+1}^n \le 4^n$.

4) Comme K(x) = K([x]) il suffit de montrer que pour tout $n \in \mathbb{N}$ que $K(n) \leq 4^n$. Nous procédons par récurrence sur $n \in \mathbb{N}$. Cette propriété est vraie pour $n \in \{0,1,2,3;4;5\}$. Maintenant pour un $n \geq 3$ supposons que la propriété soit vraie pour tout $k \leq n-1$. Si n est pair alors il existe un entier $p \geq 1$ tel que n = 2p donc K(n) = K(2p-1)car 2p n'est pas un nombre premier. De là $K(n) \leq 4^{2p-1} \leq 4^{2p} = 4^n$. Si n est impair alors il existe un entier $p \geq 1$ tel que n = 2p+1 donc K(n) = K(2p+1) = K(p+1)P(p+1,2p+1)d'après l'hypothèse de récurrence et la question précédente on a $K(n) \leq 4^{p+1}4^p = 4^{2p+1} \leq 4^n$. Fin de la récurrence d'où la conclusion.

PARTIE B : FONCTION MAJORANTE DU NOMBRE D'ENTIERS PREMIERS INFERIEURS A UN REEL X

1) Comme $K(x) \le 4^{[x]}$ pour $x \ge 2$ donc $\ln(K(x)) \le 2[x]\ln(2)$ soit $S(x) \le 2x \ln(2)$.

2.

i) On introduira
$$p_0 = 1$$
.
Et comme $K(p_i) = p_i K(p_{i-1})$ alors $S(p_i) = S(p_{i-1}) + \ln(p_i)$. Ceci étant $I_k = \int_2^{p_k} S(t) f'(t) dt = \sum_{i=1}^{k-1} \int_{p_i}^{p_{i+1}} S(t) f'(t) dt = \sum_{i=1}^{k-1} S(p_i) \int_{p_i}^{p_{i+1}} f'(t) dt$

$$\int_{2}^{p_{k}} S(t)f'(t)dt = \sum_{i=1}^{k-1} S(p_{i}) (f(p_{i+1}) - f(p_{i}))$$
 après intégration

$$\textstyle \int_{2}^{p_{k}} S(\Box) f'(t) dt = \sum_{i=1}^{k-1} S(p_{i}) f(p_{i+1}) - S(p_{i-1}) f(p_{i}) - \sum_{i=1}^{k-1} \ln(p_{i}) f(p_{i}) \text{ et par télescopage}$$

 $I_k = \frac{S(p_{k-1})f(p_k) - \sum_{i=1}^{k-1} \ln(p_i) f(p_i)}{\sum_{i=1}^{p_k} S(t)f'(t)dt} = \frac{S(p_k) - \ln(p_k)}{\sum_{i=1}^{k-1} \ln(p_i) f(p_i)} = \frac{S(p_k) - \ln(p_i)}{\sum_{i=1}^{k-1} \ln(p_i)} = \frac{S(p_i)}{\sum_{i=1}^{k-1} \ln(p_i)} =$

- ii) $\int_2^x S(t)f'(t)dt = \int_2^{p_{N(x)}} S(t)f'(t)dt + \int_{p_{N(x)}}^x S(t)f'(t)dt$ et par la question précédente on a $\int_2^x S(t)f'(t)dt = S(p_{N(x)})f(p_{N(x)}) \sum_{i=1}^{N(x)} \ln(p_i)f(p_i) + S(p_{N(x)})\left(f(x) f(p_{N(x)})\right) \text{ et comme}$ $S(x) = S(p_{N(x)}) \text{ alors } \int_2^x S(t)f'(t)dt = S(x)f(x) \sum_{i=1}^{N(x)} \ln(p_i)f(p_i) \text{ et on déduit aisément}$ que $\sum_{i=1}^{N(x)} \ln(p_i)f(p_i) = S(x)f(x) \int_2^x S(t)f'(t)dt.$
- 3) Avec $f(x) = \frac{1}{\ln(x)}$ on a $N(x) = \frac{S(x)}{\ln(x)} + \int_2^x \frac{S(t)}{t(\ln(t))^2} dt$ or $S(x) \le 2x \ln(2)$ ce qui nous conduit à $N(x) \le 2 \ln(2) \left(\frac{x}{\ln(x)} + \int_2^x \frac{dt}{(\ln(t))^2} \right)$.

4.

- i) On trouve que la fonction $g: u \mapsto \frac{e^u}{u^2}$ est décroissante sur $[\ln(2), 2]$ et croissante sur $[2, +\infty[$ ainsi il existe un unique rée u_0 tel que $u_0 > 2$ tel que $\frac{e^{u_0}}{u_0^2} = g(u_0) = g(\ln(2)) = \frac{2}{(\ln(2))^2}$.
- ii) Pour $x > e^{u_0}$ on a $\ln(x) > u_0$ ainsi dans ce cas g est majorée par $g(\ln(x)) = \frac{x}{(\ln(x))^2}$. D'où $\int_{\ln(2)}^{\ln(x)} \frac{e^u}{u^2} du \le \frac{x}{(\ln(x))^2} \int_{\ln(2)}^{\ln(x)} du = \frac{x}{(\ln(x))^2} (\ln(x) \ln(2)).$
- iii) Posant $u = \ln(t)$ on a $\int_{\ln(2)}^{\ln(x)} \frac{e^u}{u^2} du = \int_2^x \frac{dt}{(\ln(t))^2}$ ainsi $\int_2^x \frac{dt}{(\ln(t))^2} \le \frac{x}{(\ln(x))^2} (\ln(x) \ln(2)) \le \frac{x}{\ln(x)}$
- iv) Pour $x > e^{u_0}$ on a $N(x) \le 2 \ln(2) \left(\frac{x}{\ln(x)} + \int_2^x \frac{dt}{(\ln(t))^2} \right)$ donc $N(x) \le 2 \ln(2) \left(\frac{x}{\ln(x)} + \frac{x}{\ln(x)} \right)$ ce qui n'est rien d'autre que $N(x) \le 4 \ln(2) \frac{x}{\ln(x)}$.

*PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2005 PROBLEME I

A-Etude de quelques propriétés de l'application $f \mapsto I(f)$

1) Soit f une fonction positive telle que I(f)=0 donc $\int_0^t \frac{F(t)}{(1+t)^2} dt=0$. Par définition on a $F(t)=\int_0^t f(u)du$ ainsi si f est positive alors F est positive puis $t\mapsto \frac{F(t)}{(1+t)^2}$ est continue positive. D'où $\frac{F(t)}{(1+t)^2}=0$ et alors F(t)=0 ce pour tout $t\geq 0$. Donc pour tout $t\geq 0$ alors $\int_0^t f(u)du=0$. Ainsi on déduit que f(u)=0 pour tout $u\in [0,t]$ avec t quelconque. Ainsi f(u)=0, $\forall u\geq 0$ f est donc la fonction nulle.

2) Pour
$$A > 0$$
, $\int_0^A \frac{F(t)}{(t+1)^2} dt = \int_0^A F(t) \left(\frac{-1}{t+1}\right)' dt = \left[\frac{-F(t)}{t+1}\right]_0^A + \int_0^A \frac{f(t)}{t+1} dt = -\frac{F(A)}{1+A} + \int_0^A \frac{f(t)}{t+1} dt$.

(⇒) Si $\int_0^{+\infty} \frac{f(t)}{t+1} dt$ converge alors $\int_0^A \frac{F(t)}{(t+1)^2} dt = -\frac{F(A)}{1+A} + \int_0^A \frac{f(t)}{t+1} dt$ permet d'écrire puisque F(t) est positive que $\int_0^A \frac{F(t)}{(t+1)^2} dt \le \int_0^A \frac{f(t)}{t+1} dt \le \int_0^{+\infty} \frac{f(t)}{t+1} dt$ pour tout A > 0. Nous déduisons que f(t) = E(t) puisque $\int_0^{+\infty} \frac{F(t)}{(t+1)^2} dt$ converge.

 $(\Leftarrow) \text{ Si } \int_0^{+\infty} \frac{F(t)}{(t+1)^2} dt \text{ converge alors } \frac{F(A)}{1+A} = \int_A^{+\infty} \frac{F(A)}{(t+1)^2} dt \leq \int_A^{+\infty} \frac{F(t)}{(t+1)^2} dt \text{ puisque } F \text{ est}$ croissante. Aussi $\int_0^A \frac{F(t)}{(t+1)^2} dt + \frac{F(A)}{1+A} = \int_0^A \frac{f(t)}{t+1} dt \text{ alors } \int_0^A \frac{F(t)}{t+1} dt \leq \int_0^A \frac{F(t)}{(t+1)^2} dt + \int_A^{+\infty} \frac{F(t)}{(t+1)^2} dt = \int_0^{+\infty} \frac{F(t)}{(t+1)^2} dt. \text{ Puisque } A \text{ est positif quelconque alors } \int_0^{+\infty} \frac{f(t)}{t+1} dt \text{ converge.}$

Ceci achève la démonstration avec un résultat supplémentaire $\int_0^{+\infty} \frac{f(t)}{t+1} dt = \int_0^{+\infty} \frac{F(t)}{(t+1)^2} dt$.

3) A titre d'exemple on prend $f(t) = (1 + t)\sin(t)$.

4) Avec
$$t = \frac{1}{u}$$
 on a $\int_0^{+\infty} \frac{F(t)}{(t+1)^2} dt = \int_{+\infty}^0 \frac{F(\frac{1}{u})(-\frac{1}{u^2})}{\left(\frac{1}{u}+1\right)^2} du = -\int_{+\infty}^0 \frac{F(\frac{1}{u})}{(u+1)^2} du = \int_0^{+\infty} \frac{F(\frac{1}{t})}{(t+1)^2} dt$. Le résultat $I(f) = \frac{1}{2} \int_0^{+\infty} \frac{F(t) + F(\frac{1}{t})}{(t+1)^2} dt$ en découle immédiatement.

B- L'objet de cette partie est le calcul de l'intégrale I(f) pour une fonction f particulière

Préliminaire

- a) Pour la convergence des intégrales J et K il suffit de régler le problème en 0 car les fonctions concernées sont continues en 1. Comme $\frac{\ln(t)}{1+t} \sim_0 \ln(t)$ et $\frac{\ln(1+t)}{t} \sim_0 1$ et que $t \mapsto \ln(t)$ est intégrable par exemple sur $\left[0,\frac{1}{2}\right]$ on a notre conclusion.
- b) $J(\varepsilon) = \int_{\varepsilon}^{1} \frac{\ln(t)}{1+t} dt = \int_{\varepsilon}^{1} \ln(t) \ln'(1+t) dt = [\ln(t) \ln(1+t)]_{\varepsilon}^{1} + K(\varepsilon)$ où $K(\varepsilon) = -\int_{\varepsilon}^{1} \frac{\ln(1+t)}{t} dt$. Puis $J(\varepsilon) = K(\varepsilon) \ln(\varepsilon) \ln(1+\varepsilon)$ or $\ln(\varepsilon) \ln(1+\varepsilon) \sim_{0} \varepsilon \ln(\varepsilon)$ donc en faisant tendre $\varepsilon \to 0$ on obtient J = K.
- c) En utilisant les séries on a $\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k}$ sur [0,1]. Et en utilisant e critère des séries alternées : $\left|\ln(1+x) \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k}\right| \leq \frac{x^{n+1}}{n}$ et en divisant cette inégalité par x on a $\left|\frac{\ln(1+x)}{x} \sum_{k=1}^{n} (-1)^{k-1} \frac{x^{k-1}}{k}\right| \leq \frac{x^n}{n} \leq \frac{1}{n}$ donc $\frac{\ln(1+x)}{x} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{k-1}}{k}$ et cette convergence est uniforme sur [0,1]. On peut donc permuter \int et \sum . Donc on écrit ensuite que

$$\begin{split} &\int_0^1 \frac{\ln(1+t)}{t} dt = \int_0^1 \left(\sum_{k=1}^\infty (-1)^{k-1} \frac{t^{k-1}}{k} \right) dt = \sum_{k=1}^\infty (-1)^{k-1} \int_0^1 \frac{t^{k-1}}{k} dt = \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k^2}. \text{ Mais par calcul } \sum_{k=1}^\infty \frac{(-1)^k}{k^2} = \sum_{k=1}^\infty \frac{1}{4k^2} - \sum_{k=1}^\infty \frac{1}{(2k+1)^2} = \sum_{k=1}^\infty \frac{1}{2k^2} - \sum_{k=1}^\infty \frac{1}{k^2} = -\frac{1}{2} \sum_{k=1}^\infty \frac{1}{k^2} = -\frac{\pi^2}{12} \text{ et puisque } K = -\int_0^1 \frac{\ln(1+t)}{t} dt = \sum_{k=1}^\infty \frac{(-1)^k}{k^2} \text{ on a bien } J = K = -\frac{\pi^2}{12}. \end{split}$$

- 1i) Pour montrer que $f \in E$ il suffit de montrer que $\int_0^{+\infty} \frac{f(t)}{t+1} dt$ converge. Ici $\frac{f(t)}{t+1} = \frac{\ln(t+1)}{t(t+1)}$ ainsi $\frac{f(t)}{t+1} \sim_0 \frac{1}{t+1}$ donc $t \mapsto \frac{f(t)}{t+1}$ est intégrable sur [0,1]. Encore $\frac{f(t)}{t+1} \sim_{+\infty} \frac{\ln(t+1)}{t^2}$ puis $t^{\frac{3}{2}} \frac{f(t)}{t+1} \sim_{+\infty} \frac{\ln(t+1)}{t^{\frac{1}{2}}}$ alors $\frac{f(t)}{t+1} =_{+\infty} o\left(t^{\frac{3}{2}}\right)$ d'où $t \mapsto \frac{f(t)}{t+1}$ est intégrable sur [1, $+\infty$ [. Joignant ces deux résultats on a bien la convergence de $\int_0^{+\infty} \frac{f(t)}{t+1} dt$ pour conclure.
- 1ii) On a $F(x) = \int_0^x \frac{\ln(1+t)}{t} dt$ or $\frac{1}{t} = +\infty$ o $\left(\frac{\ln(1+t)}{t}\right)$ donc $\int_0^{+\infty} \frac{\ln(1+t)}{t} dt$ diverge vers $+\infty$ ce qui est évidemment le cas pour F en $+\infty$.
- 2) On trouve $f(x) \frac{1}{x^2} f\left(\frac{1}{x}\right) = \frac{\ln(x)}{x}$. Or $\left(F(x) + F\left(\frac{1}{x}\right)\right)' = f(x) \frac{1}{x^2} f\left(\frac{1}{x}\right) = \frac{\ln(x)}{x}$ ainsi en intégrant il vient $F(x) + F\left(\frac{1}{x}\right) = \frac{1}{2}(\ln(x))^2 + 2F(1)$. Et puisque $t \mapsto \frac{(\ln(t))^2}{(1+t)^2}$ et $t \mapsto \frac{F(1)}{(1+t)^2}$ sont intégrables sur $[0, +\infty[$ on a $I(f) = \frac{1}{2} \int_0^{+\infty} \frac{F(t) + F\left(\frac{1}{t}\right)}{(t+1)^2} dt = I(f) = \frac{1}{4} \int_0^{+\infty} \left(\frac{\ln(t)}{t+1}\right)^2 dt + \int_0^{+\infty} \frac{F(1)}{(t+1)^2} dt$. D'où $I(f) = \frac{1}{4} \int_0^{+\infty} \left(\frac{\ln(t)}{t+1}\right)^2 dt + F(1)$ or $F(1) = \int_0^1 \frac{\ln(1+t)}{t} dt = -K$. Et nous avons le résultat voulu $I(f) = \frac{1}{4} \int_0^{+\infty} \left(\frac{\ln(t)}{t+1}\right)^2 dt K$.
- 3) $\int_{\varepsilon}^{1} \left(\frac{\ln(t)}{t+1}\right)^{2} dt = \int_{\varepsilon}^{1} (\ln(t))^{2} \left(\frac{-1}{t+1}\right)' dt = \left[\frac{-(\ln(t))^{2}}{t+1}\right]_{\varepsilon}^{1} + 2 \int_{\varepsilon}^{1} \frac{\ln(t)}{t(t+1)} dt \quad \text{or } \frac{\ln(t)}{t(t+1)} = \frac{\ln(t)}{t} \frac{\ln(t)}{(t+1)} \text{ puis en remplaçant } \int_{\varepsilon}^{1} \left(\frac{\ln(t)}{t+1}\right)^{2} dt = \left[\frac{t(\ln(t))^{2}}{t+1}\right]_{\varepsilon}^{1} 2 \int_{\varepsilon}^{1} \frac{\ln(t)}{(t+1)} dt \text{ puis en faisant tendre } \varepsilon \to 0 \text{ on trouve que } \int_{0}^{1} \left(\frac{\ln(t)}{t+1}\right)^{2} dt = -2 \int_{0}^{1} \frac{\ln(t)}{(t+1)} dt = -2J.$

Avec $t = \frac{1}{u}$ on a $\int_{1}^{+\infty} \left(\frac{\ln(t)}{t+1}\right)^{2} dt = \int_{1}^{0} \left(\frac{-\ln(u)}{\frac{1}{u}+1}\right)^{2} \left(\frac{-1}{u^{2}}\right) dt = \int_{0}^{1} \left(\frac{\ln(t)}{t+1}\right)^{2} dt$. Ceci nous conduit à $I(f) = \frac{1}{4} \int_{0}^{+\infty} \left(\frac{\ln(t)}{t+1}\right)^{2} dt - K = I(f) = \frac{1}{2} \int_{0}^{1} \left(\frac{\ln(t)}{t+1}\right)^{2} dt - K = -J - K = \frac{\pi^{2}}{6}$. Finalement $I(f) = \frac{\pi^{2}}{6}$.

PROBLEME IIII

- 1) A partir de la relation de récurrence $z_{n+1} = \frac{z_n^2}{2}$ on a $w_{n+1} = w_n^2$ pour $w_n = \frac{u_n}{2}$. Chose qui par une récurrence simple donne $w_n = w_0^{2^n}$
- * Si $|u_0| < 2$ alors $|w_0| < 1$ or $w_n = {w_0}^{2^n}$ ce qui prouve que $(w_n)_{n \in \mathbb{N}}$ est décroissante et converge vers 0. C'est aussi le cas de $(u_n)_{n \in \mathbb{N}}$.
- * Si $|u_0| = 2$ alors $|w_0| = 1$ or $w_n = {w_0}^{2^n}$ ce qui prouve que $(w_n)_{n \in \mathbb{N}}$ es constante et converge vers 1. C'est aussi le cas de $(u_n)_{n \in \mathbb{N}}$ constante égale à 2.
- * Si $|u_0| > 2$ alors $|w_0| > 1$ or $w_n = {w_0}^{2^n}$ ce qui prouve que $(w_n)_{n \in \mathbb{N}}$ est croissante et diverge vers $+\infty$. C'est aussi le cas de $(u_n)_{n \in \mathbb{N}}$.

Réponse alternative : Si $|u_0| < 2$ alors $|w_0| < 1$. Comme $w_1 = w_0^2$ il s'en suit que $w_1 < |w_0| < 1$. Maintenant nous montrons par récurrence sur $n \in \mathbb{N}$ que $0 \le w_{n+1} < w_n < 1$. En effet si l'on a $w_n < w_{n-1} < 1$ du fait que $w_n < 1$ et que $w_{n+1} = w_n^2$ alors on déduit que $0 \le w_{n+1} < w_n < 1$. Par conséquent $(u_n)_{n \in \mathbb{N}}$ est une suite décroissante minorée elle converge donc cers un réel l vérifiant $l^2 = l$. De ce fait $l \in \{0,1\}$ mais la suite devant converger vers sa borne inférieure alors l = 0.

- * Si $|u_0| > 2$ alors $|w_0| > 1$ or $w_n = {w_0}^{2^n}$ ce qui prouve que $(w_n)_{n \in \mathbb{N}}$ est croissante et converge vers $+\infty$. C'est aussi le cas de $(w_n)_{n \in \mathbb{N}}$.
- * Si $|u_0| = 2$ alors $|w_0| = 1$ or $w_n = 1$ pour $n \ge 1$ ce qui prouve que $(w_n)_{n \in \mathbb{N}}$ est constante et converge vers 1. $(w_n)_{n \in \mathbb{N}}$ l'est aussi mais reste égale à 2.
- 2i) Soit L=(l,l') une limite éventuelle de la suite $(U_n)_{n\in\mathbb{N}}$ ce qui signifie que les suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ convergent respectivement vers l et l'. Compte tenu de $\begin{cases} x_{n+1} = \frac{x_n^2 + y_n^2}{2} \\ y_{n+1} = x_n y_n \end{cases}$ on

en déduit que $\begin{cases} l=\frac{l^2+(l')^2}{2} \text{. Avec la dernière égalité on trouve } l'=0 \text{ ou } l=1. \text{ Si } l'=0 \text{ on } l'=ll' \end{cases}$

a $l = \frac{l^2}{2}$ soit l = 0 ou l = 2. Si l' = 1 on a $l^2 = 1$ soit l = 1 ou l = -1. Les éventuelles points limites sont donc (0,0), (2,0), (1,1) et (1,-1).

2ii) On utilise le changement de variable suggéré avec $s_n=x_n+y_n$ et $d_n=x_n-y_n$ et on trouve alors $s_{n+1}=\frac{s_n^2}{2}$ et $d_{n+1}=\frac{d_n^2}{2}$ qui est la relation de récurrence du 1. Maintenant répondons à la question :

*L = (0,0) dans ce cas $(s_n, d_n) \to (0,0)$ et donc d'après la question 1 il faut et il suffit que $|x_0 - y_0| < 2$ (a) et $|x_0 + y_0| < 2$ (b). Ainsi on se sert des droites d'équation $D_{1,2}$: $x - y = \pm 2$ et $D_{3,4}$: $x + y = \pm 2$ puis des points A(0,2), B(2,0), C(0,-2) et D(-2,0) dans le tracé des différents domaines pour résoudre les inéquations (a) et (b). On trouve que E_L est l'intérieur du carré ABCD.

*L = (2,0) dans ce cas $(s_n, d_n) \to (2,2)$ donc toujours d'après la question 1 on a $|x_0 - y_0| = 2$ et $|x_0 + y_0| = 2$. Ici sans difficulté on trouve que $E_L = \{A, B, C, D\}$.

*L = (1,1) dans ce cas $(s_n, d_n) \to (2,0)$ donc toujours d'après la question 1 on a $|x_0 - y_0| < 2$ et $|x_0 + y_0| = 2$. Ici sans difficulté on trouve que $\Box_L =]AB[\cup]CD[$. Où par exemple on utilise la définition $]AB[= [AB] \setminus \{A, B\}$.

*L = (1, -1) dans ce cas $(s_n, d_n) \to (0, 2)$ donc toujours d'après la question 1 on a $|x_0 - y_0| = 2$ et $|x_0 + y_0| < 2$. Ici sans difficulté on trouve que $E_L =]AD[\cup]BC[$.

3) Vu les résultats $w_n = w_0^{2^n}$ et $w_n = \frac{u_n}{2}$ de la question 1 on déduit aisément que $u_n = 2\left(\frac{u_0}{2}\right)^{2^n}$. Or $x_n = \frac{s_n + d_n}{2}$ et $y_n = \frac{s_n - d_n}{2}$ par conséquent avec les résultats $s_{n+1} = \frac{s_n^2}{2}$ et $d_{n+1} = \frac{d_n^2}{2}$ on a alors $x_n = \left(\frac{x_0 + y_0}{2}\right)^{2^n} + \left(\frac{x_0 - y_0}{2}\right)^{2^n}$ et $y_n = \left(\frac{x_0 + y_0}{2}\right)^{2^n} - \left(\frac{x_0 - y_0}{2}\right)^{2^n}$. En remarquant que pour a > b > 1 on a $b^n = o(a^n)$. Maintenant si (x_0, y_0) n'appartient à aucun E_L il est évident $|x_0 - y_0| > 2$ et $|x_0 + y_0| > 2$.

*1er cas : $x_0y_0 \neq 0$

Comme $y_n = \left(\frac{x_0^2 + 2x_0y_0 + y_0^2}{4}\right)^{2^{n-1}} - \left(\frac{x_0^2 - 2x_0y_0 + y_0^2}{4}\right)^{2^{n-1}}$ maintenant $y_n \sim \left(\frac{x_0^2 + 2x_0y_0 + y_0^2}{4}\right)^{2^{n-1}}$ si $x_0y_0 > 0$ et $y_n \sim \left(\frac{x_0^2 + 2x_0y_0 + y_0^2}{4}\right)^{2^{n-1}}$ si $x_0y_0 < 0$ donc $\lim_{n \to \infty} y_n = \begin{cases} +\infty \text{ si } x_0y_0 > 0 \\ -\infty \text{ si } x_0y_0 < 0 \end{cases}$ et aussi sans problèmes $\lim_{n \to \infty} x_n = +\infty$.

*2ème cas : $x_0y_0 = 0$

Si $x_0 = 0$ alors $x_n = 2\left(\frac{y_0}{2}\right)^{2^n}$ et $y_n = 0$ pour $n \ge 1$ donc $\lim_{n \to \infty} x_n = +\infty$ et $\lim_{n \to \infty} y_n = 0$. Avec $y_0 = 0$ on a $x_n = 2\left(\frac{x_0}{2}\right)^{2^n}$ et $y_n = 0$ pour $n \ge 1$ donc $\lim_{n \to \infty} x_n = +\infty$ et $\lim_{n \to \infty} y_n = 0$.

DEUXIEME EPREUVE DE MATHEMATIQUES : ISFA 2006

EXERCICE

- 1) Vu le terme $(x^2 1)y'$ il est subtil de choisir un polynôme p de second degré. En choisissant $p = ax^2 + bx + c$ on trouve $(x^2 1)p' + xp = 3ax^3 + 2bx^2 + (-2a + c)x b = x^3 x$. Chose qui nous ramène les équations b = 0.3a = 1 et -2a + c = -1 donc $a = \frac{1}{3}$ et $c = -\frac{1}{3}$. Ainsi notre solution particulière est $p(x) = \frac{1}{3}(x^2 1)$.
- 2) Notons $I_0 =]-\infty, -1[$, $I_1 =]-1,1[$ et $I_2 =]-1,1[$. En résolvant $(x^2-1)y'+xy=0$ (E_H) l'équation homogène associé sur chaque intervalle I_k on trouve comme solution $y_k = Ae^{\int \frac{-x}{x^2-1} dx}$. Comme $\frac{x}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right)$ alors $\int \frac{-x}{x^2-1} dx = \ln \left(\frac{1}{\sqrt{|x^2-1|}} \right) + C$ et finalement $y_k = \frac{A}{\sqrt{|x^2-1|}}$. Et finalement l'ensemble solution S_k de (E) sur I_k est $S_k = \left\{ x \mapsto \frac{1}{3} (x^3 x) + \frac{A}{\sqrt{|x^2-1|}} / A \in \mathbb{R} \right\}$.
- 3) Prenons une solution y de (E) sur tout \mathbb{R} , on peut écrire $\forall x \in I_k, y(x) = \frac{1}{3}(x^3 x) + \frac{A_k}{\sqrt{|x^2 1|}}$. Si par exemple $A_0 \neq 0$ on trouve $\lim_{x \to 1^-} y(x) = \pm \infty$ ainsi $A_0 = 0$ et il en est de même pour A_1 et A_2 d'où la seule solution de (E) sur \mathbb{R} est p.

PROBLEME 1

1.a) Le calcul donne ${}^tA = -A$. Comme $\det(A) = 0$ on a toujours $rg(A) \le 2$. rg(A) = 2 si $(a, b, c) \ne (0,0,0)$ et rg(A) = 0 si (a, b, c) = (0,0,0).

- 1.b) Le polynôme caractéristique de A est $X_A(\lambda) = \det(A \lambda I) = -\lambda(\lambda^2 + a^2 + b^2 + c^2)$.
- *Si $(a, b, c) \neq (0,0,0)$ la seule valeur propre réelle de A est $\lambda = 0$ or dim(KerA) = 3 rg(A) = 1 ainsi A n'est pas diagonalisable.
- *Si $(a, b, c) = (0,0,0), A = 0_3$ ainsi A est diagonalisable.
- 2) Si $u \in \mathcal{A}(E)$, $\forall (x,y) \in E^2$, (u(x)|y) = -(x|u(y)) en prenant x = y on a (u(x)|x) = -(x|u(x)) donc 2(u(x)|x) = 0 soit (u(x)|x) = 0 pour tout $x \in E$. Maintenant supposons que (u(x)|x) = 0 pour tout $x \in E$. On a donc $\forall (x,y) \in E^2$, (u(x+y)|x+y) = (u(x)|x) + (u(y)|y) + (u(x)|y) + (x|u(y)) = (u(x)|y) + (x|u(y)) = 0 donc $\forall (x,y) \in E^2$, (u(x)|y) = -(x|u(y)) donc $u \in \mathcal{A}(E)$ ce qui achève notre résultat.
- 3) Notons $\mathcal{B} = (e_i)_{1 \le i \le n}$ on sait que $u \in \mathcal{A}(E)$ ssi $\forall (x,y) \in E^2$, (u(x)|y) = -(x|u(y)). En se rapportant à une base il faut que $\forall (i,j) \in [1,n]^2$, $(u(e_i)|e_j) = -(e_i|u(e_j))$ cependant si $A = (a_{i,j})_{1 \le i,j \le n}$ on a $(u(e_i)|e_j) = a_{i,j}$ et $(e_i|u(e_j)) = a_{j,i}$ on finit par aboutir à $u \in \mathcal{A}(E)$ ssi $\forall (i,j) \in [1,n]^2$, $a_{i,j} = -a_{ji}$ donc ssi A = -A.
- 4) Sans difficultés $\mathcal{A}(E)$ est un espace vectoriel. Maintenant en notant $E_{kl} = (\delta_{ki}\delta_{jl})_{1\leq i,j\leq n}$ la base canonique $\mathcal{M}_n(\mathbb{R})$ et $A = (a_{i,j})_{1\leq i,j\leq n}$ appartenant à $\mathcal{A}(E)$ on peut écrire que $A = \sum_{1\leq l< k\leq n} a_{kl}(E_{kl} E_{lk})$ ainsi $(E_{kl} E_{lk})_{1\leq l< k\leq n}$ est une base de $\mathcal{A}(E)$ or cette base contient $\frac{n(n-1)}{2}$ éléments d'où $\dim(\mathcal{A}(E)) = \frac{n(n-1)}{2}$.
- $5.a)\forall x \in E, (u(x)|x) = (a|x)(b|x) (b|x)(a|x) = 0 \text{ ainsi } u \in \mathcal{A}(E).$
- 5.b) On peut écrire $u(x) = \|a\| \|b\| \left((e_1|x)e_2 (e_2|x)e_1 \right)$ ainsi $(e_k) = 0$ si $3 \le k \le n$, $u(e_1) = \|a\| \|b\| e_2$ et $u(e_2) = \|a\| \|b\| e_1$ alors $U = \mathcal{M}at_{\mathcal{B}}(u) = \begin{pmatrix} A_2 & 0_{2,n-2} \\ 0_{n-2,2} & 0_{n-2} \end{pmatrix}$ par blocs avec $A_2 = \begin{pmatrix} 0 & -\|a\| \|b\| \\ \|a\| \|b\| & 0 \end{pmatrix}$, le polynôme caractéristique est $(-\lambda)^{n-2}(\lambda^2 + \|a\|^2 \|b\|^2)$.
- 6a) Soit λ une valeur propre réelle de u associé au vecteur propre x on a $(u(x)|x) = \lambda(x|x) = 0$
- Comme (x|x) > 0 on a alors $\lambda = 0$ d'où la seule valeur propre possible pour u est 0.
- 6b) La seule valeur propre réelle possible étant 0,si *u* est diagonalisable il doit donc être l'endomorphisme nul sinon il n'est pas diagonalisable.
- 6c) $\forall (x,y) \in E^2$, $(u \circ u(x)|y) = -(u(x)|u(y)) = -(-(x|u \circ u(y))) = (x|u \circ u(y))$ donc $u \circ u$ est un endomorphisme symétrique réel.
- 6d) Soit λ une valeur propre complexe de u associé au vecteur propre x, on notera \bar{x} son conjugué c'est-à-dire le vecteur dont les composantes sont les conjugués de celles de x. Ainsi $(x|u(\bar{x})) = (x|\bar{u}(x)) = (x|\bar{\lambda}\bar{x}) = \bar{\lambda}(x|\bar{x})$ et $(x|u(\bar{x})) = -(u(x)|\bar{x}) = -\lambda(x|\bar{x})$ et par conséquent $\bar{\lambda} = -\lambda$, λ est donc imaginaire pur d'où la conclusion.

- 7a) Il est classique que chaque polynôme de degré impair admet une racine réelle or ici puisque n est impair alors le polynôme caractéristique de u étant de degré n admet nécessairement une racine réelle. Nous savons d'après la question 6a) que cette racine est 0 qui est aussi valeur propre de u d'où det(u) = 0.
- 7b) Soit $x \in Keru$ et $y \in Im(u)$. Par définition de Im(u), $\exists x' \in E$ tel que y = u(x'), nous avons ainsi (x|y) = (x|u(x')) = -(u(x)|x') = -(0|x') = 0. Nous concluons que Ker(u) et Im(u) sont orthogonaux.
- 7c) Nous savons que v est un endomorphisme sur Im(u) ainsi pour montrer qu'il est bijectif il suffit de montrer qu'il est injectif. Pour se faire prenons $x \in Ker(v)$ on a donc u(x) = 0 ainsi $x \in Keru \cap Im(u)$ or $Keru \cap Im(u) = 0$ car Ker(u) et Im(u) sont orthogonaux alors x = 0. Autrement dit v est injectif donc bijectif.
- 7d) On a dim(Imu) est pair car s'il était impair on aurait d'après la question 7.a que det(v) = 0 ce qui serait contradictoire avec le résultat du 7.c, le rang de u est donc pair.
- 8) Les éventuelles valeurs propres de u sont 0 et les imaginaires pur $\lambda_1, \lambda_2, ..., \lambda_N$. Nous savons que rg(u) est pair ainsi on peut écrire que rg(u) = 2p pour un certain entier p. Cela nécessite que N = 2p et que le polynôme caractéristique de u soit de la forme $(-1)^n X^{n-2p} \prod_{k=1}^{2p} (X \lambda_k)$. Ce polynôme étant à coefficients réels si λ est une racine $\bar{\lambda}$ l'est ainsi en réarrangeant les indices on peut supposer que $\lambda_{k+p} = \bar{\lambda}_k = -\mathrm{i}a_k$ pour $1 \le k \le p$ et des réels $a_1, a_2, ..., a_p$. Le polynôme caractéristique est donc $\mathcal{X}_u = (-1)^n X^{n-2p} \prod_{k=1}^{2p} (X \lambda_k) (X \bar{\lambda}_k)$

 $\mathcal{X}_u = (-1)^n X^{n-2p} \prod_{k=1}^p (X^2 + |\lambda_k|^2) = (-1)^n X^{n-2p} \prod_{k=1}^p (X^2 + a_k^2)$ ce qu'il fallait démontrer.

PROBLEME 2

A. règle de Cauchy

- 1a) On a $k \in]L, 1[$ et posons $\varepsilon = k L$. Comme $\lim_{n \to \infty} \sqrt[n]{u_n} = L$ il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, |\sqrt[n]{u_n} L| < \varepsilon$ donc $\sqrt[n]{u_n} < L + \varepsilon = k$. Il existe donc $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Rightarrow u_n < k^n$.
- 1b) Pour $n \ge n_0, u_n < k^n$ et comme $k < 1, \sum k^n$ converge ce qui nous permet de conclure que $\sum u_n$ converge.
- 2a) On a L>1et posons $\varepsilon=L-1$. Comme $\lim_{n\to\infty}\sqrt[n]{u_n}=L$ il existe $n_0\in\mathbb{N}$ tel que $\forall n\geq n_0,$ $\left|\sqrt[n]{u_n}-L\right|<\varepsilon \text{ donc } \sqrt[n]{u_n}>L-\varepsilon=1 \text{ .Il existe donc } n_0\in\mathbb{N} \text{ tel que } n\geq n_0\Rightarrow u_n>1.$
- 2b) Pour $n \ge n_0$, $u_n > 1$ et comme \sum 1 diverge alors $\sum u_n$ diverge.
- 3) En prenant les suites $u_n = \frac{1}{n}$ et $v_n = \frac{1}{n^2}$ on a $\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{v_n} = 1$ cependant $\sum_{n \ge 1} u_n$ diverge alors que $\sum_{n \ge 1} v_n$ diverge.

4) On applique la règle de Cauchy

*Pour
$$a_n = \left(\frac{n}{n+1}\right)^{n^2}$$
 on a $\sqrt[n]{a_n} = \left(\frac{n}{n+1}\right)^n = \left(1 + \frac{1}{n}\right)^{-n}$ donc $\lim_{n \to \infty} \sqrt[n]{a_n} = \frac{1}{e}$ et comme $\frac{1}{e} < 1$ on a alors que $\sum_{n \ge 0} \left(\frac{n}{n+1}\right)^{n^2}$ converge.

* Pour
$$a_n = \left(\frac{n+2}{n+1}\right)^{n^2+n}$$
 on a $\sqrt[n]{a_n} = \left(\frac{n+2}{n+1}\right)^{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}$ donc $\lim_{n \to \infty} \sqrt[n]{a_n} = e$, et comme $e > 1$ on a alors que $\sum_{n \ge 0} \left(\frac{n+2}{n+1}\right)^{n^2+n}$ diverge.

B.COMPARAISON AVEC LA REGLE DE D'ALEMBERT

- 5. Notons $u_n=w_n-w_{n-1}$ pour $n\in\mathbb{N}^*$ mais alors $\frac{u_1+u_2+\cdots+u_n}{n}=\frac{w_n-u_0}{n}$ ainsi d'après le théorème de Césaro on a que $\lim_{n\to\infty}\frac{w_n-w_0}{n}=l$ et comme $\lim_{n\to\infty}\frac{w_0}{n}=0$ alors $\lim_{n\to\infty}\frac{w_n}{n}=l$.
- 6) Etant donné que $\lim_{n\to\infty}\frac{u_n}{u_{n-1}}=l$ on a $\lim_{n\to\infty}\ln(u_n)-\ln(u_{n-1})=\ln(l)$. En appliquant le résultat de la question 5 à $\ln(u_n)$ on trouve $\lim_{n\to\infty}\frac{\ln(u_n)}{n}=\lim_{n\to\infty}\ln\left(\sqrt[n]{u_n}\right)=\ln(l)$ en utilisant la fonction exp on obtient ainsi $\lim_{n\to\infty}\sqrt[n]{u_n}=l$.
- 7) Nous avons $\sqrt[2p]{u_{2p}} = \sqrt{3}$, $\sqrt[2p+1]{u_{2p+1}} = 3^{\frac{p}{2p+1}}$, $\frac{u_{2p+1}}{u_{2p}} = 1$ $\frac{u_{2p+2}}{u_{2p+1}} = 3$ ainsi $\lim_{n\to\infty} \sqrt[n]{u_n} = 3$ alors que $\lim_{n\to\infty} \frac{u_n}{u_{n-1}}$ n'existe pas. Ainsi la réciproque n'est pas vérifiée.

C.APPLICATION AUX SERIES ENTIERES

- 8) Comme $\lim_{n\to\infty} \sqrt[n]{|a_n|} = l$ alors $\lim_{n\to\infty} \sqrt[n]{|a_nx^n|} = |x|l$. Si $|x| < \frac{1}{l}$, la série $\sum a_nx^n$ est absolument convergente et si $|x| > \frac{1}{l}$, la série $\sum |a_n||x|^n$ est divergente ainsi le rayon de convergence de cette série entière est $R = \frac{1}{l}$.
- 9.a) On applique le résultat de la question 8

*Pour $a_n=2^n$ on a $\sqrt[n]{a_n}=2$ donc $\lim_{n\to\infty}\sqrt[n]{|a_n|}=2$. Le rayon de convergence de $\sum 2^n x^n$ est $R=\frac{1}{2}$.

*Pour $a_n = n^{(-1)^n}$ on trouve que $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$. Le rayon de convergence de $\sum n^{(-1)^n} x^n$ est R = 1.

9.b) Notons R_a le rayon de convergence de $\sum a^{n^2}x^n$. Pour $a_n=a^{n^2}$ on a $\sqrt[n]{a_n}=a^n$ donc $\lim_{n\to\infty}\sqrt[n]{|a_n|}=\begin{cases} 0 \text{ si } a<1\\ 1 \text{ si } a=1\\ +\infty \text{ si } a>1 \end{cases}$ donc $R_a=\begin{cases} +\infty \text{ si } a<1\\ 1 \text{ si } a=1\\ 0 \text{ si } a>1 \end{cases}$

PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2007 EXERCICE 1

1) On a $\dim(F) \leq 3$, en regardant la matrice M formée par les vecteurs V_1, V_2 et V_3 on remarque une sous matrice d'ordre 3 en rouge inversible $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & a \\ 1 & -1 & 1 \\ -1 & 0 & c \end{pmatrix}$ en effet

 $\begin{array}{c|c} & -1 & 0 & c/\\ 0 & 1 & a\\ 1 & -1 & 1 \end{array} = 1. \\ \text{Donc dim}(F) = 3 \text{ mais } (V_1, V_2, V_3) \text{ étant un système libre il est une base de de } \\ \text{de } F. F \text{ étant un hyperplan de } \mathbb{R}^4 \text{ il existe une forme linéaire } \varphi \text{ telle que } F = Ker \varphi. \\ \text{En écrivant } \varphi = \alpha x + \beta y + \gamma z + \delta t, \text{ après calcul on prend } \alpha = -a - c - 1, \beta = -1, \gamma = a + c \\ \text{et } \delta = -1 \text{ . Par conséquent on a } F = \{(x,y,z,t) \in \mathbb{R}^4/-(a+c+1)x - \beta y + (a+c)z - t = c \\ \text{et } \delta = -1 \text{ output } \beta = -1, \beta = -1,$

2) Notons C_1 , C_2 et C_3 les colonnes de A, elle est équivalente à la matrice A' dont les colonnes sont C_1 , $C_1 + C_2$, $C_3 - aC_2 - aC_1$. On a $A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & b \\ -1 & 0 & c + a \end{pmatrix}$ nous voyons que

0}.

 $rg(A) \ge 2$ pour que f soit injective il faut que rg(A) = 2 ce qui est équivalent b = 0 et c = -a.

Si une matrice B vérifie AB = 0 alors toutes les colonnes de B sont dans KerA = 0

$$Vect\left\{\begin{pmatrix} a \\ a \\ -1 \end{pmatrix}\right\} \text{ dans ce cas -ci. Donc } A \text{ est de la forme} \begin{pmatrix} \alpha a & \beta a & \gamma a \\ \alpha a & \beta a & \gamma a \\ -\alpha & -\beta & -\gamma \end{pmatrix} \text{ avec } \alpha,\beta,\gamma \in \mathbb{R} \,.$$

3) Lorsque b=1, f est injective donc l'équation AX=Y admet au plus une solution pour $Y \in \mathbb{R}^4$ donné. Pour qu'il y ait une solution il faut que $Y \in Im(A) = F$ ainsi si Y = t(x,y,z,t) on doit avoir l'équation $-(a+c+1)x-\beta y+(\Box+c)z-t=0$.

EXERCICE 2

- 1) Après une heure on a $\frac{a}{2}$ de la substance A, entre la première et la deuxième heure $\frac{1}{2} \left(\frac{a}{2}\right) = \frac{a}{4}$ de la substance A se transforme. Et par une récurrence immédiate entre la (n-1)-ème heure et la n-ème heure il se transforme encore $\frac{a}{2^n}$ de la substance A. Au total après une heure il s'est transformé une proportion $S_n = \frac{a}{2} + \frac{a}{2^2} + \dots + \frac{a}{2^n} = \frac{a}{2} \left(a + \frac{a}{2} + \dots + \frac{a}{2^{n-1}}\right) = \frac{a}{2} \left(\frac{1-\frac{1}{2^n}}{1-\frac{1}{2}}\right) = a\left(1-\frac{1}{2^n}\right)$. On vérifie que $S_4 = a\left(1-\frac{1}{2^4}\right) = a\left(1-\frac{1}{16}\right) = \frac{15}{16}a$.
- 2) Notons aussi a(t) la quantité de la substance A restante à l'instant t. On a le système $\begin{cases} a(t)+x(t)+y(t)=0\\ x'(t)=ka(t) & \text{avec } a(0)=a, x(0)=y(0)=0 \text{ et } k,l\in\mathbb{R} \text{ .En sommant les deux}\\ y'(t)=la(t) & \text{dernières } x'(t)+y'(t)=(k+l)a(t) \text{ on a aussi } a'(t)+x'(t)+y'(t)=0 \text{ en dérivant la} \end{cases}$

dernières x'(t) + y'(t) = (k+l)a(t) on a aussi a'(t) + x'(t) + y'(t) = 0 en dérivant la première. On en déduit que a'(t) + (k+l)a(t) = 0 d'où $a(t) = ae^{-(k+l)t}$. Comme $a(1) = \frac{a}{2}$

alors
$$k+l=\ln(2)$$
 et $a(t)=\frac{a}{2^t}$. Il reste
$$\begin{cases} x'(t)=k\frac{a}{2^t}\\ y'(t)=l\frac{a}{2^t} \end{cases} \text{ puis } \begin{cases} x(t)=\frac{ka}{\ln(2)}\left(1-\frac{1}{2^t}\right)\\ y(t)=\frac{la}{\ln(2)}\left(1-\frac{1}{2^t}\right) \end{cases} \text{ en tenant}$$

compte des conditions initiales, aussi $x(1) = \frac{a}{8}$ et $y(1) = \frac{3a}{8}$ donc $k = \frac{\ln(2)}{4}$ et $l = \frac{3\ln(2)}{4}$. Enfin $x(t) = \frac{a}{4} \left(1 - \frac{1}{2t}\right)$ et $y(t) = \frac{3a}{4} \left(1 - \frac{1}{2t}\right)$.

EXERCICE 3

- 1) Soit (\vec{i},\vec{j}) la base de \mathbb{R}^2 . Maintenant $\frac{\partial \|\overline{OM}\|}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$, $\frac{\partial \|\overline{OM}\|}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$ donc pour $M \neq O(0,0)$ on a : $grad(\|\overline{OM}\|) = \frac{x\vec{i} + y\vec{j}}{\sqrt{x^2 + y^2}} = \frac{\overline{OM}}{\|\overline{OM}\|}$
- 2) D'après la question précédente $grad(f(M)) = \frac{\overline{AM}}{\|\overline{AM}\|} + \frac{\overline{BM}}{\|\overline{BM}\|} + \frac{\overline{CM}}{\|\overline{CM}\|}$ pour M différent de A, B, C. Comme $\forall M \in \mathbb{R}^2, df_M(H) = \left(grad(f(M))|H\right)$ alors f est différentiable si $M \in \mathbb{R}^2 \setminus \{A, B; C\}$. Remarquons que $\vec{u} = \frac{\overline{AM}}{\|\overline{AM}\|}, \vec{v} = \frac{\overline{BM}}{\|\overline{BM}\|}$ et $\vec{w} = \frac{\overline{CM}}{\|\overline{CM}\|}$ sont des vecteurs unitaires donc dans une base orthonormée (\vec{u}, \vec{z}) on peut écrire

 $\frac{\vec{u}(1,0), \vec{v}(\cos(\theta), \sin(\theta))\vec{w}(\cos(\theta + \varphi), \sin(\theta + \varphi))}{\cos(\theta + \varphi)}. \text{ Commesin}(\theta) + \sin(\theta + \varphi) = 2\sin(\theta + \varphi)$ $\frac{\varphi}{2}\cos(\frac{\varphi}{2}) \text{ pour annuler le gradient il suffit de résoudre} \begin{cases} 1 + \cos(\theta) + \cos(\theta + \varphi) = 0\\ 2\sin(\theta + \frac{\varphi}{2})\cos(\frac{\varphi}{2}) = 0 \end{cases}$

Si $\cos\left(\frac{\varphi}{2}\right)=0$ alors $1+\cos(\theta)+\cos(\theta+\varphi)=1+\cos(\theta)-\cos(\theta)=1=0$ contadiction, donc $\sin\left(\theta+\frac{\varphi}{2}\right)=0$. Autrement $\varphi\equiv-2\theta[2\pi]$ donc $1+\cos(\theta)+\cos(\theta+\varphi)=1+2\cos(\theta)=0$ ainsi $\cos(\theta)=-\frac{1}{2}$ d'où $(\theta,\varphi)=\left(\frac{2\pi}{3},\frac{2\pi}{3}\right)$ ou $(\theta,\varphi)=\left(\frac{2\pi}{3},\frac{2\pi}{3}\right)$ modulo 2π . Pour faire simple le seul point qui point qui annule le gradient est le point M vérifiant la condition angulaire $\widehat{AMB}=\widehat{BMC}=\widehat{AMC}=120^\circ$. Ceci tient si le triangle ABC n' a aucun angle de mesure 120° car sinon ce point-là sera l'un de A, B ou C où le gradient n'est pas défini.

Remarque : ce point M est appelé le point de Torricelli du triangle ABC.

3) Notons Δ le compact formé de l'union de l'intérieur et du pourtour du triangle ABC. Ainsi la fonction f atteint son maximum et son minimum sur Δ . Ici le point de Torricelli coïncide avec le centre G de ABC mais alors $f(G) = 3\frac{l}{\sqrt{3}} = l\sqrt{3}$ et sur la frontière f(A) = f(B) = f(C) = 2l. Donc $\inf_{\Delta}(f) = l\sqrt{3}$ et ainsi $\sup_{\Delta}(z) = (2 - \sqrt{3})l$ atteint au point G. En outre $\inf_{\Delta}(z) = 0$ atteint en seulement A, B et C.

EXERCICE 4

1.a) Par définition g est continue sur $]0,+\infty[$, il reste à prouver qu'elle est continue en 0. Comme f(t)=f(0)+o(1) on a tf(t)=tf(0)+o(t) puis en intégrant $\int_0^x tf(t)dt=\frac{x^2}{2}f(0)+o(x^2)$. Ainsi au voisinage de 0 on a $g(x)=\frac{f(0)}{2}+o(1)$ donc $\lim_{x\to 0^+}g(x)=g(0)$ ce qui conclut.

1.b) T est évidemment linéaire et d'après la question 1.a on a que pour $f \in E$ l'on a $T[f] \in E$ donc T est un endomorphisme. Nous voyons que toute fonction de Im(T) est dérivable sur $]0, +\infty[$, et comme toute fonction de E n'est pas dérivable on prouve bien que T n'est pas surjectif. Soit $f \in E$ telle que T[f] = 0 alors f(0) = 1 et $\int_0^x tf(t)dt = 0$ pour x > 0. En dérivant la dernière on trouve que tf(t) = 0 soit f(t) = 0 pour t > 0 donc t = 0. The est donc injectif.

Si $T[f] = \lambda f$ alors $f(0)\left(\frac{1}{2} - \lambda\right) = 0$ et $\int_0^x t f(t) dt = \lambda x^2 f(x)$ pour x > 0. En dérivant on trouve $xf(x) = \lambda(2xf(x) + x^2f'(x))$ comme T est injectif alors 0 n'est pas valeur propre de T. Donc $f'(x) = \left(\frac{1-2\lambda}{\lambda x}\right) f(x)$ pour x > 0.

*Si $\lambda \neq \frac{1}{2}$ on trouve comme solution $f(x) = Cx^{\frac{1-2\lambda}{\lambda}}$ pour x > 0. Et comme est définie et continue en 0 il faut que $\frac{1-2\lambda}{\lambda} > 0$ donc $\lambda \in \left]0, \frac{1}{2}\right[$. Aussi f(0) = 0 donc $f(0)\left(\frac{1}{2} - \lambda\right) = 0$. Nous concluons que tout $\lambda \in \left]0, \frac{1}{2}\right[$ est valeur propre de T avec pour fonctions propres $x \mapsto Cx^{\frac{1-2\lambda}{\lambda}}$ $(C \neq 0)$.

* Si $\lambda = \frac{1}{2}$, il reste plus que la condition f'(x) = 0 pour x > 0. Ainsi $\frac{1}{2}$ est valeur propre de T associée aux fonctions constantes non nulles.

2.a) H_n est linéaire, il reste que pour un $f \in E$, $H_n[f]$ soit continue en 0 pour que H_n soit un endomorphisme. De $t^n f(t) = t^n f(0) + o(t^n)$ il vient que $\int_0^x \Box^n f(t) dt = \frac{x^{n+1}}{n+1} f(0) + o(x^{n+1})$ d'où $H_n[f](x) = \frac{n}{n+1} f(0) + o(1)$. Il faut prendre $H_n[f](0) = \frac{n}{n+1} f(0)$.

2.b) Pour x > 0, $T[f](x) = \frac{1}{x^2} \int_0^x tf(t)dt$ donc $T[f](x) \le \frac{m(A,f)}{x^2} \int_0^x tdt$ d'où $T[f](x) \le \frac{m(A,f)}{2}$ pour tout $x \in]0,A]$. Ceci étant vrai pour x = 0 on a alors $m(A,T[f]) = \frac{m(A,f)}{2}$.

En particulier l'on a $m(A, T^{(n)}[f]) \le \frac{m(A, T^{(n)}[f])}{2}$ et une récurrence simple donne la relation $m(A, T^{(n)}[f]) \le \frac{m(A, T^{(n)}[f])}{2^n}$. Pour $f \in E^+$ et x > 0 on peut prendre un A positif tel que $x \le A$ donc $T^{(n)}[f](x) \le m(A, T^{(n)}[f]) \le \frac{m(A, T^{(n)}[f])}{2^n}$ donc $\lim_{n \to \infty} T^{(n)}[f](x) = 0$.

Ce résultat est valable pour $f \in E$ en raisonnant avec m(A, |f|).

2.c) $H_n[f](x) - \frac{n}{n+1}f(x) = \frac{n}{x^{n+1}} \int_0^x t^n f(t) dt - \frac{n}{x^{n+1}} \int_0^x t^n f(x) dt = \frac{n}{x^{n+1}} \int_0^x t^n \left(f(t) - f(x) \right) dt \cdot f$ étant continue en x: $\forall \varepsilon > 0$, $\exists \alpha > 0$ tel que $\forall t \in]\alpha, x]$ on ait $|f(t) - f(x)| < \frac{\varepsilon}{2}$. Pour la suite on fixe x et on note $M_\alpha = \sup_{t \in [0,\alpha]} |f(t) - f(x)|$ donc d'après la relation de Chasles on a : $\int_0^x t^n (f(t) - f(x)) dt = \int_0^\alpha t^n (f(t) - f(x)) dt + \int_\alpha^x t^n (f(t) - f(x)) dt \cdot Par \text{ conséquent il vient}$ $|\int_0^x t^n (f(t) - f(x)) dt| < M_\alpha \cdot \frac{\alpha^{n+1}}{n+1} + \frac{\varepsilon}{2(n+1)} (x^{n+1} - \alpha^{n+1}) < \square_\alpha \cdot \frac{\alpha^{n+1}}{n+1} + \frac{\varepsilon}{2(n+1)} x^{n+1} \text{ ainsi}$ $\left| \frac{n}{x^{n+1}} \int_0^x t^n (f(t) - f(x)) dt \right| < M_\alpha \left(\frac{\alpha}{x} \right)^{n+1} + \frac{\varepsilon}{2} \text{ or } \lim_{n \to \infty} M_\alpha \left(\frac{\alpha}{x} \right)^{n+1} = 0 \text{ donc il existe un entier } N$ tel que pour n > N: $\left| \frac{n}{x^{n+1}} \int_0^x t^n (f(t) - f(x)) dt \right| < \varepsilon$ soit $\lim_{n \to \infty} H_n[f](x) - \frac{n}{n+1} f(x) = 0$. En écrivant $H_n[f](x) = \frac{n}{n+1} f(x) + \left(\square_n[f](x) - \frac{n}{n+1} f(x) \right) \text{ il apparait que } \lim_{n \to \infty} H_n[f](x) = f(x).$

Vu la démonstration ce résultat est valable pour f élément de E.

3a) On va montrer que pour $f \in E^+$ tel que $\int_0^\infty f(t)dt$ converge que $\lim_{x \to \infty} \frac{1}{x} \int_0^x t f(t)dt = 0$. Comme $x \mapsto \frac{1}{x} \int_0^x t f(t)dt$ est continue il suffit de montrer que $\lim_{n \to \infty} \frac{1}{n} \int_0^n t f(t)dt = 0$. En notant $F(x) = \int_0^x f(t)dt$ il vient $\frac{1}{n} \int_0^n t f(t)dt = \frac{1}{n} \int_0^n t F'(t)dt = F(n) - \frac{1}{n} \int_0^n F(t)dt$ en intégrant par parties. On sait que $\lim_{n \to \infty} F(n) = \int_0^\infty f(t)dt$, F étant croissante on a donc

 $\frac{F(0)+\cdots+F(n-1)}{n}\leq \frac{1}{n}\int_0^n F(t)dt\leq \frac{F(1)+\cdots+F(n)}{n} \text{ or d'après le théorème de la moyenne de Césaro}$ que $\lim_{n\to\infty}\left(\frac{F(0)+\cdots+F(n-1)}{n}\right)=\lim_{n\to\infty}\left(\frac{F(1)+\cdots+F(n)}{n}\right)=\lim_{n\to\infty}F(n)=\int_0^\infty f(t)dt \text{ d'où la conclusion.}$ Aussi $\frac{1}{x^n}\int_0^x t^n f(t)dt\leq \frac{1}{x^n}\int_0^1 t^n f(t)dt+\frac{1}{x^n}\int_0^1 x^{n-1}t f(t)dt\leq \frac{1}{x^n}\int_0^1 t^n f(t)dt+\frac{1}{x}\int_0^x t f(t)dt \text{ donc}$ $\lim_{x\to\infty}\frac{1}{x^n}\int_0^x t^n f(t)dt=0.$

Soient ε , A > 0; maintenant en intégrant par parties on obtient :

 $\int_{\varepsilon}^{A} H_{n}[f](x)dx = \int_{\varepsilon}^{A} \left(\frac{1}{x^{n}}\right)' \left(\int_{0}^{x} t^{n} f(t)dt\right)dx = \left[-\frac{1}{x^{n}} \int_{0}^{x} t^{n} f(t)dt\right]_{\varepsilon}^{A} + \int_{\varepsilon}^{A} f(x)dx. \text{Avec } \varepsilon \to 0 \text{ il}$ vient $\int_{0}^{A} H_{n}[f](x) \Box x = \int_{0}^{A} \left(\frac{1}{x^{n}}\right)' \left(\int_{0}^{x} t^{n} f(t)dt\right)dx = \int_{0}^{A} f(x)dx - \frac{1}{A^{n}} \int_{0}^{A} t^{n} f(t)dt. \text{ D'après ce qui précède en faisant } A \to \infty \text{ il vient } \int_{0}^{\infty} H_{n}[f](x)dx = \int_{0}^{\infty} f(x)dx = I.$

3.b) En remarquant que $T[f] = H_1[f]$ alors $\int_0^\infty T[f](x)dx$ converge et que $\int_0^\infty T[f](x)dx = I$. Maintenant montrons par récurrence sur $n \in \mathbb{N}^*$ que $\int_0^\infty T^{(n)}[f](x)dx = I$. Ce qui est chose évidente car $T^{(n)}[f] = T\left[T^{(n-1)}[f]\right] = H_1\left[T^{(n-1)}[f]\right]$, puis on déduit que si c'est vrai pour n-1 alors $\int_0^\infty T^{(n)}[f](x)dx = \int_0^\infty T^{(n-1)}[f](x)dx = I$. On achève notre récurrence.

Remarque : la question est plutôt rapprocher en les commentant les questions 2.a ,2.b ,3.a et 3.b

Ici on se restreint aux fonctions $f \in E^+$ tel que $\int_0^\infty f(x)dx$ est non nulle. Les questions 2.a et 2.b montrent que les suites $\left(T^{(n)}[f]\right)_{n\geq 1}$ et $(H_n[f])_{n\geq 1}$ convergent simplement respectivement vers la fonction nulle et la fonction f. Cependant $\left(\int_0^\infty T^{(n)}[f](x)dx\right)_{n\geq 1}$ et $\left(\int_0^\infty H_n[f](x)dx\right)_{n\geq 1}$ convergent toutes les deux vers $\int_0^\infty f(x)dx$. Ceci prouve que $\left(T^{(n)}[f]\right)_{n\geq 1}$ ne satisfait pas à l'hypothèse de domination sinon d'après le théorème de convergence dominée elle convergerait vers 0. D'autre part on peut vérifier que $\left(\int_0^\infty H_n[f](x)dx\right)_{n\geq 1}$ vérifie l'hypothèse de domination $\forall x>0: H_n[f](x)\leq \frac{1}{x^2}\int_0^1 f(t)dt+H_1[f](x)$.

DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A : ISFA 2007

EXERCICE 1: REDUCTION DES MATRICES DE RANG 1

$$1)C_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ est de rang 1 et diagonalisable car elle est semblable à } D_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ avec pour matrice de passage } P_1 = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. C_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ est de rang } C_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

1 et non diagonalisable. En effet son polynôme caractéristique est $X_{C_2}(\lambda) = -\lambda^3$ ainsi si C_2 est diagonalisable, elle serait diagonalisable à la matrice nulle donc égale à la matrice nulle ce qui est absurde.

2.a) Si A est une matrice de rang 1 on a alors $\dim(kerA) = n-1$,on peut prendre $(u_i)_{1 \le i \le n-1}$ comme base de Ker(A). En complétant cette base pour former une base $(u_i)_{1 \le i \le n}$ de \mathbb{R}^n , on peut donc trouver a_1, a_2, \ldots, a_n tel que $Au_n = \sum_{k=1}^n a_k u_k$. Dans la base

 $(u_i)_{1 \le i \le n}$ la matrice de A s'écrit $B = \begin{pmatrix} 0 & 0 & a_1 \\ \vdots & \vdots & a_2 \\ 0 & 0 & a_n \end{pmatrix}$ qui est donc semblable à A.

- 2.b) la matrice A est trigonalisable car elle est semblable à la matrice B qui est triangulaire supérieure.
- 2.c) Comme $A \sim B$ on a $Tr(A) = Tr(B) = a_n$. Si $a_n \neq 0$ on trouve que $X_B(\lambda) = (-\lambda)^{n-1}(a_n \lambda)$ et que $\dim(\ker B) = n-1$ puis $\dim(\ker(B-a_n I)) = 1$ car $\ker(B-a_n I) = Vect(w)$ avec $w = {}^t(a_1, a_2, ..., a_n)$. Dans ce cas B donc A est diagonalisable. Si $a_n = 0$ on a $X_B(\lambda) = (-\lambda)^n$ alors que $\dim(\ker B) = n-1$ d'où B donc A n'est pas diagonalisable. Finalement A est diagonalisable si et seulement si $Tr(A) \neq 0$.
- 3) Comme Tr(u) = rg(u) = 1 d'après la question 2 .c) u est diagonalisable et on peut trouver une base \mathcal{B} telle que $P = Mat_{\mathcal{B}}(u) = \text{diag}(0, ..., 0, 1)$.Ainsi $Pr^2 = Pr = \text{diag}(0, ..., 0, 1)$ ou encore $u^2 = u$ c'est-à-dire que u est un projecteur.

 $Ae_2=Ae_3=0$ et $Ae_4=4e_4$. A est donc diagonalisable en s'appuyant sur la base

4b) Avec les mêmes notations qu'à la question 4.a) on reconnaît immédiatement que A = 2006I + J. Ainsi A est diagonalisable avec $A = PD_1P^{-1}$ où

$$P = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \text{et } D_1 = 2006I + D = \begin{pmatrix} 2006 & 0 & 0 & 0 \\ 0 & 2006 & 0 & 0 \\ 0 & 0 & 2006 & 0 \\ 0 & 0 & 0 & 2010 \end{pmatrix}.$$

EXERCICE 2

1) En intégrant par parties : $\int_0^1 (t-1)f''(t)dt = [(t-1)f'(t)]_0^1 - \int_0^1 f'(t)dt = 1 - [f(t)]_0^1 = 1$

- 2) D'après l'inégalité de Cauchy-Schwarz $\left(\int_0^1 (f''(t))^2 dt\right) \left(\int_0^1 (t-1)^2 dt\right) \ge \left(\int_0^1 (t-1)^2 dt\right)$ puis en remplaçant par leurs valeurs : $\frac{1}{3} \left(\int_0^1 (f''(t))^2 dt\right) \ge 1$ soit $\int_0^1 (f''(t))^2 dt \ge 3$ et ce pour tout f élément de E.
- 3) Soit un réel k tel que l'équation différentielle y'' = k(t-1) ait une solution dans E. En intégrant deux fois on obtient : $y' = \frac{k}{2}(t-1)^2 + C$ puis que $y = \frac{k}{6}(t-1)^3 + C(t-1) + D$ avec $C, D \in \mathbb{R}$. Comme y(1) = 0 on a D = 0 et en retranscrivant que y(0) = 1 et y'(0) = 1 alors $\begin{cases} \frac{k}{6} + C \\ \frac{k}{2} + C = 1 \end{cases}$ puis k = 3 et $C = -\frac{1}{2}$. On a notre réponse car nous avons obtenu un seul couple solution (k, y) avec k = 3 et $y = \frac{1}{2}(t-1)^3 \frac{1}{2}(t-1)$ $(y \in E)$.
- 4) Il y'a égalité dans l'inégalité de la question 2 si les fonctions f'' et $t \mapsto t-1$ sont colinéaires. Il devrait exister k un réel tel que f'' = k(t-1), nous savons d'après la question précédente qu'on doit avoir k=3 et $f=\frac{1}{2}(t-1)^3-\frac{1}{2}(t-1)$. D'où $\inf_{f\in E}\left(\int_0^1 (f''(t))^2 dt\right)=3$, cette borne inférieure est atteinte en $f=\frac{1}{2}(t-1)^3-\frac{1}{2}(t-1)$.

PROBLEME: UN THEOREME DE HARDY-LITTLEWOOD

1a) $\forall X \in]-1,1[$, $\frac{1}{1-X} = \sum_{n=0}^{+\infty} X^n$ puis en dérivant $\frac{1}{(1-X)^2} = \sum_{n=0}^{+\infty} (n+1)X^n$. En particulier on écrit $\forall x \in]-1,1[$, $\frac{1}{(1-x^2)^2} = \sum_{n=0}^{+\infty} (n+1)x^{2n}$ d'où $\frac{1-x}{(1-x^2)^2} = \sum_{n=0}^{+\infty} (n+1)x^{2n} - \sum_{n=0}^{+\infty} (n+$

- 1b) $\forall x \in]-1,1[$, $(1-x)f(x)=\frac{4}{(1+x)^2}$ donc $\lim_{x\to 1^-}(1-x)f(x)=1$ c'est-à-dire que f vérifie (1) Toutefois comme $\sum_{k=0}^{2n+1}a_k=0$ il est évident que f ne vérifie pas (2) .
- 2.a) Pour tout X > 0, il existe un entier N tel que $\sum_{n=0}^{N} a_n > X$. Comme le polynôme $\sum_{n=0}^{N} a_n x^n$ converge vers $\sum_{n=0}^{N} a_n$ en 1⁻, il existe $\alpha \in]0,1[$ tel que $\forall x \in]\alpha,1[,X < \sum_{n=0}^{N} a_n x^n \le f(x)$. Par conséquent $\lim_{x \to 1^-} f(x) = +\infty$.

2.b)

- i) Comme $\alpha_n \sim b_n$ alors $\alpha_n b_n = o(\alpha_n)$ donc $\exists n_0 \in \mathbb{N}$ tel que pour $n \ge n_0$ l'on ait $|\alpha_n b_n| < \frac{\varepsilon}{2} \alpha_n$.
- ii) $\forall x \in]0,1[,|f(x)-g(x)|=|\sum_{n=0}^{+\infty}(\alpha_n-b_n)x^n|\leq \sum_{n=0}^{n_0-1}|\alpha_n-b_n|x^n+\sum_{n=n_0}^{+\infty}|\alpha_n-b_n|x^n.$ Comme pour tout $n\leq n_0-1,x^n\leq 1$ et pour tout $n\geq n_0,|\alpha_n-b_n|<\frac{\varepsilon}{2}\alpha_n$ on obtient donc que $\forall x\in]0,1[,|f(x)-g(x)|\leq \sum_{n=0}^{n_0-1}|\alpha_n-b_n|+\frac{\varepsilon}{2}f(x)$

- iii) Comme $\lim_{x\to 1^-} f(x) = +\infty$ il existe $\alpha \in]0,1[$ tel que $\forall x \in]\alpha,1[,\sum_{n=0}^{n_0-1}|\alpha_n-b_n|<\frac{\varepsilon}{2}f(x).$ Finalement $\forall x \in]\alpha,1[,|\Box(x)-g(x)|<\varepsilon f(x)$ d'où $f(x)\sim g(x)$ au voisinage de 1^- .
- 2.c) Comme $\alpha_n \sim l$ on en déduit que $\sum_{n=0}^{+\infty} \alpha_n x^n \sim \sum_{n=0}^{+\infty} l x^n$ ce qui est aussi $f(x) \sim \frac{l}{1-x}$ au voisinage de 1⁻.
- 3.a) Posons $S_n = \sum_{k=0}^n a_k$ il est facile de voir que $(S_n)_{n \in \mathbb{N}}$ est le produit de Cauchy des suites $(c_n = 1)_{n \in \mathbb{N}}$ et $(a_n)_{n \in \mathbb{N}}$ donc $\frac{1}{1-x} \sum_{n=0}^{+\infty} a_n x^n = (\sum_{n=0}^{+\infty} x^n)(\sum_{n=0}^{+\infty} a_n x^n) = \sum_{n=0}^{+\infty} S_n x^n$. Son rayon de convergence est 1 car $S_n \sim n + 1$.
- 3.b) Puisque $S_n \sim n+1$ on a $\frac{1}{1-x} \sum_{n=0}^{+\infty} a_n x^n \sim \sum_{n=0}^{+\infty} (n+1) x^n$ soit $\frac{1}{1-x} \sum_{n=0}^{+\infty} a_n x^n \sim \frac{1}{(1-x)^2}$ au voisinage de 1⁻.
- 3.c) On a obtenu à la question précédente $\operatorname{que}_{1-x}^{f(x)} \sim \frac{1}{(1-x)^2} \operatorname{donc}(1-x)f(x) \sim 1$ au voisinage de 1 Nous concluons que $\lim_{x \to 1^-} (1-x)f(x) = 1$.
- 4) Si $g \in \mathcal{B}, \forall x \in [0,1], a_n x^n g(x^n) \leq \|g\|_{\infty} a_n x^n$ et comme la série $\sum_{n=0}^{+\infty} a_n x^n$ converge on en déduit aisément que la série $\sum_{n=0}^{+\infty} a_n x^n g(x^n)$ converge.
- $5.a) S(g_k)(x) = (1-x) \sum_{n=0}^{+\infty} a_n x^n x^{nk} = (1-x) \sum_{n=0}^{+\infty} a_n x^{n(k+1)} = \left(\frac{1-x}{1-x^{k+1}}\right) \left[\left(1-\frac{x^{k+1}}{1-x^{k+1}}\right) \left[(1-x^{k+1})f(x^{k+1})\right] \right] \\ = \lim_{x \to 1^-} (1-x)f(x) = 1 \\ \text{ après changement de variables } X = x^k. \\ \text{ Par dérivation on a } \lim_{x \to 1^-} \left(\frac{1-x^{k+1}}{1-x}\right) = k+1 \\ \text{ et par suite } \lim_{x \to 1^-} S(g_k)(x) = \frac{1}{k+1} \\ \text{ mais aussi } \int_0^1 x^k dx = \frac{1}{k+1}. \\ \text{ D'où } l(g_k) = \int_0^1 x^k dx.$
- 5.b) $\forall f, g \in E \text{ et } \forall \lambda, \mu \in \mathbb{R} \text{ on a } S(\lambda f + \mu g)(x) = \lambda S(f)(x) + \mu S(g)(x).$ Les limites en 1⁻ de S(f) et S(g) existant il en est de même pour $\lambda f + \mu g$ donc $\lambda f + \mu g \in E.E$ est bien un \mathbb{R} -espace vectoriel. En passant aux limites dans la relation précédente il vient : $l(\lambda f + \mu g) = \lambda l(f) + \mu l(g)$ ainsi l est une application linéaire.
- 5.c) $\forall g \in E, \forall x \in [0,1], |S(g)(x)| \leq ||g||_{\infty} (1-x) \sum_{n=0}^{+\infty} a_n x^n$ en faisant tendre x vers 1^- on a $|l(g)| \leq ||g||_{\infty}$. Cette inégalité prouve que l est bornée sur le disque unité ainsi l est continue et $||l|| \leq 1$. Nous avons égalité $|l(g)| = ||g||_{\infty}$ avec $g = g_0$ donc ||l|| = 1.
- 6)∀ $k \in \mathbb{N}$, $l(g_k) = \int_0^1 g_k(x) dx$ or l et $f: f \in E \mapsto \int_0^1 f(x) dx$ sont des applications linéaires et $(g_k)_{k \in \mathbb{N}}$ est une base de $\mathbb{R}[X]$ donc∀ $P \in \mathbb{R}[X]$, $l(P) = \int_0^1 P(x) dx$. Maintenant prenons une fonction continue $g \in E$, d'après le théorème de Weierstrass il existe une suite $(P_n)_{n \in \mathbb{N}}$ de polynôme convergent uniformément vers f. $l(g) \int_0^1 g(x) dx = l(g g_n) + l(g_n) \int_0^1 g(x) dx$ soit $l(g) \int_0^1 g(x) dx = l(g g_n) + \int_0^1 (g_n(x) g(x)) dx$ puis il vient sans difficultés $\left| l(g) \int_0^1 g(x) dx \right| \le 2 ||g g_n||_{\infty}$. Comme $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$ vérifiant $||g g_n||_{\infty} < \frac{\varepsilon}{2}$ et donc $\forall \varepsilon > 0$, $\left| l(g) \int_0^1 g(x) dx \right| < \varepsilon$ d'où $l(g) = \int_0^1 g(x) dx$.

- 7.a) Introduisons les points $A_{\varepsilon}\left(\frac{1}{e}-\varepsilon,0\right)$, $B\left(\frac{1}{e},0\right)$, $C\left(\frac{1}{e},e\right)$ et $D\left(\frac{1}{e}+\varepsilon,h\left(\frac{1}{e}+\varepsilon\right)\right)$. Après avoir représenté les fonctions h, a_{ε} et b_{ε} et par les calculs d'aires par intégrales on en déduit que $\int_{0}^{1}b_{\varepsilon}(x)dx=\int_{0}^{1}h(x)dx+ \mathrm{Aire}(ABC)$ et $\int_{0}^{1}a_{\varepsilon}(x)dx=\int_{0}^{1}h(x)dx- \mathrm{Aire}(BCD)$. Mais le miracle est que $\mathrm{Aire}(BCD)=\mathrm{Aire}(ABC)=\frac{\mathrm{base}\times\mathrm{hauteur}}{2}=\frac{e\varepsilon}{2}$ ainsi avec $\lambda=\frac{e}{2}$ on conclut que $\int_{0}^{1}b_{\varepsilon}(x)dx=\int_{0}^{1}h(x)dx+\lambda\varepsilon$ et $\int_{0}^{1}a_{\varepsilon}(x)dx=\int_{0}^{1}h(x)dx-\lambda\varepsilon$.
- 7.b) Du fait que $a_{\varepsilon} \leq h \leq b_{\varepsilon}$ il est évident que $\forall x \in [0,1], S(a_{\varepsilon})(x) \leq S(h)(x) \leq S(b_{\varepsilon})(x)$. Puisque $\lim_{x \to 1^{-}} S(a_{\varepsilon})(x) = l(a_{\varepsilon})$ et $\lim_{x \to 1^{-}} S(b_{\varepsilon})(x) = l(b_{\varepsilon})$, il existe $\alpha \in]0,1[$ tel que $\forall x \in]\alpha,1[$, $|S(a_{\varepsilon})(x)-l(a_{\varepsilon})| \leq \varepsilon$ et $|S(b_{\varepsilon})(x)-l(b_{\varepsilon})| \leq \varepsilon$, en particulier $S(b_{\varepsilon})(x) \leq l(b_{\varepsilon}) + \varepsilon$ et $l(a_{\varepsilon}) \varepsilon \leq S(a_{\varepsilon})(x)$. En joignant tout ceci il existe bien $\alpha \in]0,1[$ tel que

 $\forall x \in]\alpha, 1[, l(a_{\varepsilon}) - \varepsilon \le S(a_{\varepsilon})(x) \le S(h)(x) \le S(b_{\varepsilon})(x) \le l(b_{\varepsilon}) + \varepsilon.$

- 7.c) L'inégalité de la question précédente montre que S(h) admet une limite en 1⁻ ainsi $h \in E$. Maintenant par les encadrements extrêmes nous concluons que $l(a_{\varepsilon}) - \varepsilon \le l(h) \le l(b_{\varepsilon}) + \varepsilon$ pour tout $\varepsilon \in \left]0, \frac{1}{e}\right[$. On a $l(b_{\varepsilon}) = \int_0^1 b_{\varepsilon}(x) dx = \int_0^1 h(x) dx + \lambda \varepsilon = 1 + \lambda \varepsilon$ de même $l(a_{\varepsilon}) = 1 - \lambda \varepsilon$. En faisant tendre ε vers 0 alors on trouve l(h) = 0.
- 7.d) On a $\sum_{n=0}^{+\infty} a_n e^{-\frac{n}{N}h} \left(e^{-\frac{n}{N}}\right) = \sum_{n=0}^{N} a_n e^{-\frac{n}{N}h} \left(e^{-\frac{n}{N}}\right) + \sum_{n=N+1}^{+\infty} a_n e^{-\frac{n}{N}h} \left(e^{-\frac{n}{N}}\right)$, remarquons que par définition de h on a $h\left(e^{-\frac{n}{N}}\right) = e^{\frac{n}{N}}$ pour $n \le N$ et $h\left(e^{-\frac{n}{N}}\right) = 0$ pour n > N. Ainsi on trouve $\sum_{n=0}^{+\infty} a_n e^{-\frac{n}{N}h} \left(e^{-\frac{n}{N}}\right) = \sum_{n=0}^{N} a_n = S_N \text{ donc } S(h) \left(e^{-\frac{1}{N}}\right) = \left(1 e^{-\frac{1}{N}}\right) \sum_{n=0}^{+\infty} a_n e^{-\frac{n}{N}h} \left(e^{-\frac{n}{N}}\right) = \left(1 e^{-\frac{1}{N}}\right) S_N$ or $\lim_{N\to\infty} S(h) \left(e^{-\frac{1}{N}}\right) = l(h) = 1 \text{ donc } \left(1 e^{-\frac{1}{N}}\right) S_N \sim 1 \text{ soit } S_N \sim \frac{1}{1-e^{-\frac{1}{N}}}$. Comme $1 e^{-\frac{1}{N}} = \frac{1}{N} + o\left(\frac{1}{N}\right)$ c'est-à-dire $1 e^{-\frac{1}{N}} \sim \frac{1}{N}$ d'où la conclusion $S_N \sim N$.
- 8) Posons $v_n = \frac{u_n}{l}$ et $S_n = \sum_{k=0}^n u_k$. Il vient $v_n \sim 1$ au voisinage de $+\infty$ donc $\sum_{n=0}^{+\infty} v_n x^n \sim \frac{1}{1-x}$ et alors $(1-x)\sum_{n=0}^{+\infty} a_n x^n \sim 1$ au voisinage de 1^- . Ainsi d'après le théorème énoncé en début d'énoncé on a $\frac{S_n}{l} \sim n$ ou encore $\frac{S_n}{l} \sim n + 1$ d'où $\frac{S_n}{n+1} \sim l$ ce qui achève la démonstration du théorème de Césario.
- 9) Comme $\lim_{k\to\infty} \sqrt[k]{k}$ on a d'après le théorème de Césaro que $\lim_{n\to\infty} \left(\frac{\sum_{k=1}^n \sqrt[k]{k}}{n}\right) = 1$. Alors $\sum_{k=1}^n \sqrt[k]{k} \sim n$ puis $u_n \sim \frac{1}{n}$ donc $\sum_{n\geq 1} u_n$ diverge.

DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A: ISFA 2008

PROBLEME 1: RELATION DE RECURRENCE

I.1) Pour $n \in \mathbb{N}$, sur D(0,r): $\sum_{k=0}^n u_n z^n + o(z^n) = g_u(z) = g_v(z) = \sum_{k=0}^n v_n z^n + o(z^n)$, au voisinage de 0. Et par unicité du développement limité en 0 on a que: $\forall k \in [0,n], u_k = v_k$, en particulier nous avons donc $u_n = v_n$ pour tout $n \in \mathbb{N}$.

I.2.a) Pour
$$u_n = 1$$
 on a $r_u = 1$ et il est connu que $\sum_{k=0}^{\infty} z^n = \frac{1}{1-z}$

Pour
$$u_n = n$$
 on a $r_u = 1$ et $\sum_{k=0}^{\infty} n z^k = z(\sum_{k=0}^{\infty} z^k)' = \frac{z}{(1-z)^2}$

I. 2. b)
$$\frac{1}{\sqrt{1-4z}} = \sum_{n=0}^{\infty} (-4)^n C_n^{-\frac{1}{2}} z^n \text{ où } C_n^{-\frac{1}{2}} = \frac{\prod_{k=0}^{n-1} \left(-\frac{1}{2} - k\right)}{n!} = (-1)^n \frac{\prod_{k=0}^{n-1} (2k+1)}{2^n n!}$$

$$C_n^{-\frac{1}{2}} = (-1)^n \frac{\prod_{k=1}^n (2k-1)(2k)}{2^n n! \prod_{k=1}^n (2k)} = \frac{(2n)!}{(-4)^n (n!)^2} = \frac{C_{2n}^n}{(-4)^n} \text{ alors } \frac{1}{\sqrt{1-4z}} = \sum_{n=0}^{\infty} C_{2n}^n z^n$$

I.3.a) A partir de la relation de récurrence $nu_n=2nu_{n-1}+1$ pour $n\geq 1$ et $u_0=0$;on trouve $u_1=1$. Montrons par récurrence que $\forall n\in\mathbb{N}, u_n\leq 2^n-1$. Maintenant supposons que cela soit vrai pour $n-1\in\mathbb{N}$ $(n\geq 1)$. Comme $nu_n=2nu_{n-1}+1$ on a donc $nu_n\leq 2n(2^{n-1}-1)+1$

 $nu_n \le n2^n - 2n + 1 \le n2^n - n$, d'où $u_n \le 2^n - 1$, les premiers cas se vérifiant à la main cela achève notre récurrence. On écrit mieux $u_n \le 2^\square$ ainsi $r_u \ge \frac{1}{2}$ donc g_u est définie sur $D\left(0,\frac{1}{2}\right)$.

I.3.b) Nous réécrivons la relation de récurrence comme $(n+1)u_{n+1}=2nu_n+2u_n+1$ pour $n\geq 0$. En multipliant cette relation par z^n on obtient et en sommant pour $n\geq 0$, il vient

$$\sum_{n>0} (n+1)u_{n+1}z^n = \sum_{n>0} 2nu_nz^n + \sum_{n>0} 2u_nz^n + \sum_{n>0} z^n \text{ or } \sum_{n>0} (n+1)u_{n+1}z^n = g'_u(z) \text{ et}$$

$$\sum_{n \ge 0} n u_n z^n = z \left(\sum_{n \ge 0} n u_n z^{n-1} \right) = z g_u'(z) \text{ donc } g_u'(z) = 2z \ g_u'(z) + 2g_u(z) + \frac{1}{1-z} \text{ et on arrange}$$

Pour avoir
$$(1 - 2z)g'_u(z) = 2g_u(z) + \frac{1}{1-z}$$

I.3.c) L'équation homogène associé à cette équation différentielle est $(1-2z)g_u'(z)=2g_u(z)$. En

résolvant sur
$$D\left(0,\frac{1}{2}\right)$$
 on trouve, $h(z)=Ae^{\int \frac{2dz}{1-2z}}=\frac{A}{1-2z}$ avec $A\in\mathbb{R}$. Cherchons une solution

particulière de la forme
$$\frac{A(z)}{1-2z}$$
, on obtient à $A'(z)=\frac{1}{1-z}$ on choisit $A(z)=-\ln(1-z)$. Enfin

on a:
$$g_u(v) = -\frac{\ln(1-2z)}{1-2z} + \frac{A}{1-2z}$$
, comme $g_u(0) = u_0 = 0$, $A = 0$ et $g_u(v) = -\frac{\ln(1-2z)}{1-2z}$.

$$\operatorname{Or} \sum_{n \geq 0} 2^n z^n = \frac{1}{1 - 2z} \operatorname{et} \sum_{n \geq 1} \frac{z^n}{n} = -\ln(1 - z), \operatorname{ainsi} g_u(v) \operatorname{est le produit de Cauchy} \operatorname{de ses deux}$$

séries entières d'où
$$u_n=\sum_{k=1}^n\frac{1}{k}.2^{n-k}=2^n\sum_{k=1}^n\frac{1}{2^kk}.$$
 Ce qui est le résultat voulu

I. 3. d) Comme
$$\sum_{n \ge 1} \frac{z^n}{n} = -\ln(1-z)$$
, avec $z = \frac{1}{2}$ il vient $\lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{2^k k} \right) = -\ln\left(1 - \frac{1}{2}\right) = \ln(2)$.

De là on trouve $\sum_{k=1}^{n} \frac{1}{2^{k}k} \sim \ln(2)$, on conclut avec $u_n \sim 2^n \ln(2)$.

- II.1) On le fait à la main et on trouve : $T_0 = 1$, $T_1 = 1$ et $T_2 = 2$
- II.2 Démontrons par récurrence que $T_N \leq 4^N$. Ceci est manifestement vrai pour les cas de bases. Maintenant supposons que l'hypothèse soit vraie pour un $N \geq 2$. Remarquons qu'un arbre binaire de N+1 nœuds internes possède 4 derniers nœuds externes dont deux par sous —arbres. En supprimant deux d'un sous-arbre on obtient un arbre de N nœuds internes. Aussi pour un arbre de N nœuds internes en éclatant un des derniers nœuds externes en deux nouveaux on obtient un arbre à N+1 nœuds internes , cependant un nœud pouvant être compté 2 fois on en déduit que $T_{N+1} \leq 4T_N$. Avec l'hypothèse de récurrence on trouve $T_{N+1} \leq 4^{N+1}$. Nous pouvons écrire $T_N \geq \frac{1}{4}$, c'est-à-dire que T_N a un rayon de convergence non nul.
- II.3) Pour un N > 0, remarquons qu'en dessous du premier nœud interne lorsque le sous-arbre gauche contient k noeuds internes ,celui du gauche contient N-k-1 nœuds internes ($0 \le k \le n-1$), chose qui peut se faire de $T_k T_{N-k-1}$ manières. Ces cas étant disjoints on a donc

$$T_N = \sum_{k=0}^{n-1} T_k T_{N-k-1} \text{ en changeant les indices il vient } T_N = \sum_{k=1}^n T_{k-1} T_{N-k}.$$

II. 4) Posons
$$R_N = \sum_{k=0}^n T_k T_{N-k}$$
, R_N est bien un produit de Cauchy et $\sum_{N\geq 0} R_N z^N = S_T^2(z)$. On peut

ecrire
$$T_N = R_{N-1}$$
 pour $N \ge 1$ et $\sum_{N \ge 1} R_N z^N = \sum_{N \ge 1} R_{N-1} z^N = z \sum_{N \ge 0} R_N z^N$ soit $S_T(z) - T_0 = z S_T^2(z)$

Comme $T_0=1$, on déduit l'équation différentielle $zS_T^2(z)-S_T(z)+1=0$. C'est une équation de degré 2 en $S_T(z)$ et on trouve $S_T(z)=\frac{1+\sqrt{1-4z}}{2z}$ ou $S_T(z)=$

$$\frac{1-\sqrt{1-4z}}{2z} \sup D\left(0,\frac{1}{4}\right)$$
.
Par souci de continuité en $z=0,$ on garde $S_T(z)=$

$$\frac{1-\sqrt{1-4z}}{2z}$$
. Mais $\frac{1-\sqrt{1-4z}}{2}$ étant une primitive de $\frac{1}{\sqrt{1-4z}}$ s'annulant en 0, alors $\frac{1-\sqrt{1-4z}}{2}$

$$\sum_{N\geq 0} \frac{1}{N+1} C_{2N}^N \, z^{N+1} \text{ puis } \frac{1-\sqrt{1-4z}}{2z} = \sum_{N\geq 0} \frac{1}{N+1} C_{2N}^N \, z^N = S_T(z).$$

Enfin $T_N = \frac{1}{N+1}C_{2N}^N$.

PROBLEME 2: ANALYSE EN COMPOSANTES PRINCIPALES

- I.1) On peut écrire $X=(x_i^j)_{1\leq i,j\leq n}$ alors ${}^tX=(x_j^i)_{1\leq i,j\leq n}$. Posons ${}^tXX=(a_{i,j})_{1\leq i,j\leq n}$, un calcul élémentaire donne $a_{i,j}=\sum_{k=1}^p x_k^i x_k^j={}^tx^i x^j=\langle x^i,x^j\rangle_n=v_{i,j}$, soit $V={}^tXX$.
- I.2) ${}^tV = {}^t({}^tXX) = {}^tXX = V.V$ est donc symétrique. Montrons qu'elle est positive

 $\forall y \in \mathbb{R}^p, \langle Vy,y \rangle_p = {}^t \big({}^t XXy \big) y = \big({}^t y {}^t X \big) (Xy) = {}^t (Xy) \big({}^t Xy \big) = \|Xy\|_n^2 \geq 0. \text{ Soit } \lambda \text{ une}$ valeur propre de Vet y un vecteur propre associé, on a $\|Xy\|_n^2 = \langle \lambda y,y \rangle_n = \lambda \|y\|_n^2$ donc $\lambda \geq 0.$ Prenons

 λ, μ des valeurs propres distinctes de V associé au vecteur y et w de \mathbb{R}^p . Par symétrie on peut écrire $\lambda \langle y, w \rangle_p = \langle Vy, w \rangle_p = \langle y, Vw \rangle_p = \lambda \langle y, w \rangle_p$ soit $(\lambda - \mu) \langle y, w \rangle_p = 0$ ou $\langle y, w \rangle_p = 0$ autrement dit y et w sont orthogonaux.

I. 3)
$$I = \sum_{i=1}^{p} ||x^{i}||_{n}^{2} = \sum_{i=1}^{p} \langle x^{i}, x^{i} \rangle_{n} = \sum_{i=1}^{n} v_{i,i} = Tr(V)$$

- II.1) Soit P_F un k-projecteur sur son image F.On complète une base (u_1, \dots, u_k) de F pour avoir pour $\langle \ , \ \rangle_p$ c'est-à-dire que $\sum_{i=1}^n x_i^2 = 1$.Comme $P_F(X) = \sum_{i=1}^q x_i u_i$ et alors l'on a $\|P_F(X)\|_p^2 = \sum_{i=1}^q x_i^2 \le \sum_{i=1}^n x_i^2 = 1$ donc $\|P_F(X)\|_p \le 1$ avec égalité pou par exemple $X = u_1$. D'où $\|P_F\|_p = 1$
- II.2) Sans difficultés ${}^t\tilde{X} = P {}^tX$ et comme le projecteur P est symétrique on déduit en que $\tilde{X} = X {}^tP = XP$. Le reste est trivial puisque $\tilde{V} = {}^t\tilde{X}\tilde{X} = (P {}^tX)(XP) = P({}^tXX)P = PVP$. En plus $Tr(\tilde{V}) = Tr(PVP) = Tr(VP^2) = Tr(VP)$ car $P^2 = P$.
- II.3.a) Par définition de l'orthogonalité et de la somme directe on a que $P_{F \oplus G}(x) = P_F(x) + P_G(x)$ pour tout $x \in \mathbb{R}^p$. Ainsi $P_{F \oplus G} = P_F + P_G$ et par suite $I_{F \oplus G} = Tr(VP_{F \oplus G})$ s'écrit en remplaçant $I_{F \oplus G} = I_F + I_G$.
- II.3.b) Puisque nous sommes en dimension finie il suffit de montrer que \mathcal{E}_k est un fermé borné. D'après la question II.1 on a que $\forall P \in \mathcal{E}_k$, $\|P\|_p = 1$ ainsi \mathcal{E}_k est borné. Maintenant montrons qu'il est fermé. Soit $(P_n)_{n \in \mathbb{N}}$ une suite de \mathcal{E}_k convergeant versP. Aussi $\forall \lambda, \mu \in \mathbb{R}$; $\forall x \in \mathbb{R}^p$ on a $P_n(\lambda x + \mu y) = \lambda P_n(x) + \mu P_n(y)$, en faisant tendre n vers l'infini on obtient $P(\lambda x + \mu y) = \lambda P(x) + \mu P(y)$ ainsi P est linéaire. En plus $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}^p, P_n^2(x) = P_n(x)$ et $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ tel que $\forall n > N$ on ait $\|P P_n\|_p < \varepsilon$. Mais alors $P^2(x) P(x) = \left(P^2(x) P_n^2(x)\right) \left(P(x) P_n(x)\right)$ donc $\|P^2(x) P(x)\|_p < 3\varepsilon \|x\|_p$; ε étant un nombre positif quelconque $P^2(x) = P(x)$ et P est un projecteur ainsi \mathcal{E}_k est un fermé et donc un compact.

L'application $I: \begin{cases} \mathcal{E}_k \to \mathbb{R} \\ P \mapsto Tr(VP) \end{cases}$ est une application linéaire en dimension finie elle est donc continue sur le compact \mathcal{E}_k ainsi elle atteint son maximum sur \mathcal{E}_k en un espace F.

II.3.c) Raisonnons par l'absurde et prenons un sous espace d'inertie maximale F_{k+1} de dimension k+1. Soit (w_1,w_2,\dots,w_{k+1}) une base orthonormale de F_{k+1} , au plus k-1 de ces vecteurs sont éléments d'un F_k donc au moins deux ne le sont pas : nommons les w_k et w_{k+1} . En posant $G_k = Vect\{(w_1,w_2,\dots,w_k)\}$ on a donc $F_{k+1} = G_k \oplus Vect(w_{k+1})$. Et maintenant considérons $\tilde{F}_{k+1} = F_k \oplus Vect(w_{k+1})$. Par définition de F_{k+1} on a $I_{\tilde{F}_{k+1}} \leq I_{F_{k+1}}$. D'après la question II.3.a on a $I_{\tilde{F}_{k+1}} = I_{F_k} + I_{Vect(w_{k+1})}$ et $I_{F_{k+1}} = I_{G_k} + I_{Vect(w_{k+1})}$ or $I_{G_k} < I_{F_k}$. De là nous tirons que

 $I_{F_{k+1}} < I_{\tilde{F}_{k+1}} \le I_{F_{k+1}}$ une contradiction et nous avons notre résultat.

III.1) On peut écrire $\forall x \in \mathbb{R}^p, x = \lambda(x)a + q(x)$ avec $\langle a, q(x) \rangle_p = 0$ ainsi $\langle a, x \rangle_p = \lambda(x)\langle a, a \rangle_p$ et $\lambda(x) = \frac{\langle a, x \rangle_p}{\|a\|_p^2}$ soit $P_a x = \frac{\langle a, x \rangle_p}{\|a\|_p^2} a$. En posant $v_1 = \frac{a}{\|a\|}$ on complète pour former une base (v_1, \dots, v_p) de \mathbb{R}^p . Dans cette base si nous posons $PV = (c_{i,j})_{1 \le i,j \le n}$ on a $c_{i,i} = 0$ pour $1 \le i \le 2$ et

$$c_{1,1} = \frac{\langle a, a \rangle_p}{\|a\|_p^2} \cdot \frac{\langle a, Va \rangle_p}{\|a\|_p^2} = \frac{\langle a, Va \rangle_p}{\|a\|_p^2} \cdot \text{Comme } I_a = Tr(PV) = \sum_{i=1}^n c_{ii} \text{ et } I_a = \frac{\langle a, Va \rangle_p}{\|a\|_p^2}.$$

III.2) V étant une matrice symétrique elle est donc diagonalisable. Soient $(\lambda_i)_{1 \le i \le p}$ les valeurs propres de V associées respectivement à la base orthonormée $(z_i)_{1 \le i \le p}$, on prend

$$\lambda_1 \leq \cdots \leq \lambda_p. \text{ Avec } x = \sum_i^p \alpha_i z_i, Vx = \sum_i^p \lambda_i \alpha_i z_i \text{ et } \|Vx\|_p = \sqrt{\sum_{i=1}^p \lambda_i^2 \alpha_i^2} \leq \lambda_1 \sqrt{\sum_{i=1}^p \alpha_i^2} = \lambda_1 \|x\|_p, \text{il y'a \'egalit\'e si } x \text{ est un vecteur propre associ\'e \`a } \lambda_1 \text{ donc } \|V\|_p = \lambda_1 \text{ . Maintenant revenons \`a notre problème}$$

$$I_a = \frac{\langle a, Va \rangle_p}{\|a\|_p^2} \le \frac{\|a\|_p \|Va\|_p}{\|a\|_p^2} \le \frac{\|\Box\|_p \|V\|_p \|a\|_p}{\|a\|_p^2} \le \|V\|_p. \text{Il } y' \text{a \'egalit\'e si } a \text{ et } Va \text{ sont colin\'eaires et }$$

a est valeur propre de V et compte tenu de l'avant dernière égalité elle est associé à $\|V\|_p = \sup_i(\lambda_i)$.

III.3) En conservant les notations de la question III.2 on peut choisir comme sous espace d'inertie maximale $F_k = Vect(z_i)_{1 \le i \le k}$.

PREMIERE DE MATHEMATIQUES: ISFA 2009

EXERCICE1

- 1. Soit un polynôme $P \in \mathbb{R}_n[X]$ on peut l'écrire comme $P = \sum_{k=0}^n a_k X^k$.cependant nous voyons que le coefficient de X^{n+1} dans T(P) est $a_{n+1} = (3+2n-n^2)a_n = (3-n)(1+n)a_n$.Par conséquent T est stable si (3-n)(1+n)=0 soit si n=3 qui est la seule valeur recherchée.
- 2. Soit P un vecteur propre attribué à la valeur propre λ . Si nous choisissons n tel que $P \in \mathbb{R}_n[X]$ on doit avoir $T(P) \in \mathbb{R}_n[X]$ ainsi d'après la première question nous déduisons que $P \in \mathbb{R}_3[X]$. On écrit $P = \sum_{k=0}^3 a_k X^k$ on trouve alors après calcul $P = \sum_{k=0}^3 b_k X^k$ où $b_0 = 8a_0, b_1 = 3a_1 + 3a_0, b_2 = 4a_1$ et $b_1 = -a_3 + 3a_2$. Comme $T(P) = \lambda P$ on $8a_0 = \lambda a_0$.
- Si $a_0 \neq 0$ on trouve $\lambda = 8$ et après résolution des équations $b_k = \lambda a_k$ on trouve sans difficulté $(a_0, a_1, a_2, a_3) \in \text{Vect}(10,6,3,1)$.
- Si $a_0 = 0$ et $a_1 \neq 0$ l'équation $b_1 = \lambda a_1$ donne $\lambda = 3$ puis en résolvant les autres équations on trouve que $(a_0, a_1, a_2, a_3) \in \text{Vect}(0,3,4,3)$.
- Si $a_0 = 0$, $a_1 = 0$ et $a_2 \neq 0$ l'équation $b_2 = \lambda a_2$ donne $\lambda = 0$ puis en résolvant les autres équations on trouve que $(a_0, a_1, a_2, a_3) \in \text{Vect}(0,0; 1,3)$.
- Si $a_0 = 0$, $a_1 = 0$, $a_2 = 0$ et $a_3 \neq 0$ l'équation $b_3 = \lambda a_3$ donne $\lambda = -1$ et finalement $(a_0, a_1, a_2, a_3) \in \text{Vect}(0,0;0,1)$.

Pour résumer

- $*\lambda = -1$ est valeur propre de T avec pour vecteurs propres μX^3 avec $\mu \in \mathbb{R}$.
- * $\lambda = 0$ est valeur propre de T avec pour vecteurs propres $\mu(3X^3 + X^2)$ avec $\mu \in \mathbb{R}$.
- * $\lambda = 3$ est valeur propre de T avec pour vecteurs propres $\mu(3X^3 + 4X^2 + 3X)$ avec $\mu \in \mathbb{R}$.
- * $\lambda = 8$ est valeur propre de T avec pour vecteurs propres $\mu(X^3 + 3X^2 + 6X + 10)$ avec $\mu \in \mathbb{R}$.

3)T n'est pas injectif car il possède 0 comme valeur propre.

EXERCICE 2

1) Une récurrence immédiate montre que $\forall n \in \mathbb{N}, v_n > 0$. En prenant la relation de récurrence $v_{n+1} = \frac{v_n}{2(1+\sqrt{1+v_n})}$ on a sans difficulté $v_{n+1} < \frac{v_n}{2} < v_n$ et encore par récurrence nous en déduisons que $v_n < \frac{v_0}{2^n}$, $\forall n \in \mathbb{N}^*$. Par conséquent la suite $(v_n)_{n \in \mathbb{N}}$ est décroissante et converge vers 0.

 $2)\forall x>0, f(x)=\frac{x}{2(1+\sqrt{1+x})}=\frac{\sqrt{1+x}-1}{2} \text{ donc par calcul on dérive } f \text{ puis on trouve} f'(x)=\frac{1}{4\sqrt{1+x}}.$ Puis $f(x)(f(x)+1)=\left(\frac{x}{2(1+\sqrt{1+x})}\right)\left(\frac{\sqrt{1+x}+1}{2}\right)=\frac{x}{4} \text{ et on conclut par } \frac{2f'(x)}{\sqrt{f(x)(f(x)+1)}}=\frac{2}{4\sqrt{1+x}}\sqrt{\frac{4}{x}}, \text{ ce qui se réécrit que } \forall x>0, \frac{2f'(x)}{\sqrt{f(x)(f(x)+1)}}=\frac{1}{\sqrt{x(1+x)}}. \text{ On a } 2w_{n+1}=\int_0^{v_{n+1}}\frac{2dt}{\sqrt{t(1+t)}} \text{ avec le changement de variable } t=f(u) \text{ il vient } 2w_{n+1}=\int_0^{v_n}\frac{2f'(u)}{\sqrt{f(u)(f(u)+1)}}\Box u=\int_0^{v_n}\frac{du}{\sqrt{u(1+u)}}=w_n$ CQFD. Maintenant en regardant que $w_{n+1}=\frac{w_n}{2}$ on a alors $w_n=\frac{w_0}{2^n}.$ En remarquant que la primitive $\ln(\sqrt{t}+\sqrt{1+t})$ de $\frac{1}{\sqrt{t(1+t)}}$ est aussi égale à $\operatorname{Argsh}(\sqrt{t}), w_n=\int_0^{v_n}\frac{dt}{\sqrt{t(1+t)}}=[\operatorname{Argsh}(\sqrt{v_0})]_0^{v_n}=\operatorname{Argsh}(\sqrt{v_n}) \operatorname{donc } v_n=\operatorname{sh}^2(w_n).$ Nos dernières réponses sont $w_n=\frac{\operatorname{Argsh}(\sqrt{v_0})}{2^n}.$ Ensuite $v_n=\operatorname{sh}^2\left(\frac{\operatorname{Argsh}(\sqrt{v_0})}{2^n}\right)\operatorname{donc } v_n\sim\left(\frac{\operatorname{Argsh}(\sqrt{v_0})}{2^n}\right)^2.$

PROBLEME

Partie A

1) On a l'équation différentielle $f(x) - \int_0^x (x-t)f(t)dt = g(x)$ (1). L'équation (1) montre que f est continue ce qui implique $\int_0^x (x-t)f(t)dt$ est dérivable puisque g est dérivable on a que f est dérivable. Mais si f est dérivable $\int_0^x (x-t)f(t)dt$ est deux fois dérivables or g est deux fois dérivables ce qui entraine que f est deux fois dérivables.

Maintenant on réécrit $f(x) - x \int_0^x f(t)dt + t \int_0^x f(t)dt = g(x)$ on dérive on obtient la relation $f'(x) - \int_0^x f(t)dt = g'(x)$ (1') on dérive encore puis f''(x) - f(x) = g''(x) (2) CQFD.

Pour déduire les solutions des cas ci-dessous. Notons d'abord que $Ae^x + Be^{-x}$ s'écrit aussi (A + B)sh(x) + (A - B)chx. Ainsi il est judicieux de prendre une solution de la forme f(x) = Cch(x) + Dsh(x) ce faisant C = f(0) et D = f'(0).

- *Si g est la fonction nulle on a f(0) = g(0) = 0 et f'(0) = g'(0) = 0 ainsi la solution est la fonction nulle.
- * Si g est la fonction constante $x \mapsto D$ on a f(0) = g(0) = D et f'(0) = g'(0) = 0, la solution est donc la fonction $f: x \mapsto D\operatorname{ch}(x)$.

* Si g est la fonction polynomiale $x \mapsto Ex + D$ on a f(0) = g(0) = Det f'(0) = g'(0) = E, la solution est donc la fonction $f: x \mapsto Dch(x) + Esh(x)$.

Supposons que l'équation (1) admet deux solutions f_1 et f_2 pour un g donné .Dans ce cas $f_1 - f_2$ est solution de (1) pour g = 0 ,or pour g = 0 la seule solution à (1) est la fonction nulle donc $f_1 - f_2 = 0$ soit $f_1 = f_2$. Nous avons donc au plus une solution.

2) Cherchons une solution particulière à (2) de la forme $\varphi(x) = A(x)e^x + B(x)e^{-x}$ par la méthode de variations des constantes. On obtient le système d'équations ci-dessous

$$\begin{cases} A'(x)e^{x} + B'(x)e^{-x} = 0 \\ A'(x)e^{x} + B'(x)e^{-x} = g''(x) \end{cases} \text{ puis } \begin{cases} A'(x) = \frac{1}{2}e^{-x}g''(x) \\ B'(x) = -\frac{1}{2}e^{-x}g''(x) \end{cases} \text{ on prend } \begin{cases} A(x) = \frac{1}{2}\int_{0}^{x}e^{-t}g''(t)dt \\ B(x) = -\frac{1}{2}\int_{0}^{x}e^{t}g''(t)dt \end{cases}.$$

Ainsi $\varphi(x) = \frac{e^x}{2} \int_0^x e^{-t} g''(t) dt - \frac{e^{-x}}{2} \int_0^x e^t g''(t) dt$ ce qui justifie que toute fonction de la forme $f(x) = \frac{e^x}{2} \left[\int_0^x e^{-t} g''(t) dt + k_A \right] - \frac{e^{-x}}{2} \left[\int_0^x e^t g''(t) dt + k_B \right]$ est solution ce qui répond à la question. Pour être solution il faut vérifier les conditions à l'origine qui sont en regardant aux équations (1) et (1') : f(0) = g(0) et f'(0) = g'(0).

En prenant $g(x) = e^x$, $f(x) = \frac{e^x}{2} \left[\int_0^x dt + k_A \right] - \frac{e^{-x}}{2} \left[\int_0^x e^{2t} dt + k_B \right] = \frac{xe^x}{2} + ae^x + be^{-x}$ avec $a = \frac{2k_A - 1}{4}$ et $\Box = \frac{1 - 2k_B}{4}$. En tenant compte des conditions à l'origine on obtient le système $\begin{cases} a + b = 1 \\ \frac{1}{2} + a - b = 1 \end{cases}$ donc $(a, b) = \left(\frac{3}{4}, \frac{1}{4}\right)$.

La solution est $g(x) = \frac{xe^x}{2} + \frac{3}{4}e^x + \frac{1}{4}e^{-x} = \frac{xe^x}{2} + \text{ch}(x) + \frac{1}{2}\text{sh}(x).$

PARTIE B

- 2) Il est évident que A est une application linéaire ainsi il suffit de montrer que $KerA = \{0\}$. Prenons f tel que A(f) = 0 c'est-à-dire $\forall x \in \mathbb{R}, A(f)(x) = \int_0^x (x-t)f(t)dt = 0$. En dérivant on obtient que $\forall x \in \mathbb{R}, \int_0^x f(t)dt = 0$ on dérive encore et $\forall x \in \mathbb{R}, f(x) = 0$ d'où la conclusion.
- 3) En double intégrant par parties $\int \Box g'' = fg' f'g + \int fg''$. Maintenant en prenant deux fonctions f et g tels que :f(x) = 0, f'' = 0 et g'(0) = g(0) = 0 alors on obtient alors $\int_0^x fg''(t)dt = [fg'(t) f'g(t)]_0^x + \int_0^x f''(t)g(t)dt = -f'g(x)$. (*)

Posons $G_2(x) = \int_0^x \frac{1}{3!} (x-t)^3 f(t) dt$ on a $G_2'(x) = \int_0^x \frac{1}{2!} (x-t)^2 f(t) dt$ puis $G_2''(x) = A(f)(x)$.

Ainsi d'après la relation (*) il vient :

$$A_2(f)(x) = \int_0^x (x-t)A(f)(t)dt = \int_0^x (x-t)G_2''(t)dt = G_2(x) = \int_0^x \frac{1}{3!}(x-t)^3 f(t)dt.$$

Maintenant montrons par récurrence que $A_n(f)(x) = \int_0^x \frac{1}{(2n-1)!} (x-t)^{2n-1} f(t) dt$.

Posons $G_{n+1}(x) = \int_0^x \frac{1}{(2n+1)!} (x-t)^{2n+1} f(t) dt$ on a $G_{2n+1}'(x) = \int_0^x \frac{1}{(2n)!} (x-t)^{2n} f(t) dt$ puis $G_{2n+1}''(x) = A_n(f)(x)$.

Ainsi d'après la relation (*) il vient :

$$A_{n+1}(f)(x) = \int_0^x (x-t)A_n(f)(x)dt = \int_0^x (x-t)A_{n+1}''(f)(t)dt = A_{n+1}(x)$$
$$= \int_0^x \frac{1}{(2n+1)!}(x-t)^{2n+1}f(t)dt.$$

Ceci achève notre récurrence.

4) Pour une fonction f de classe C^{∞} on a $\left| f(x) - \sum_{k=0}^{N-1} \frac{f^{(k)}(0)}{k!} x^k \right| \leq \frac{|x|^N}{N!} \sup_{[0,x]} |f|$ d'après l'inégalité de Taylor-Lagrange. Ainsi en prenant $f = \operatorname{sh}$ et N = 2n-1 on obtient l'inégalité. $\left| \operatorname{sh}(u) - \sum_{k=1}^n \frac{u^{2k-1}}{(2k-1)!} \right| \leq \frac{\operatorname{ch}(u)|u|^{2n}}{(2n)!}$.

On trouve par définition de $U_n: U(f)(x) - U_n(f)(x) = \int_0^x \left(sh(x-t) - \sum_{k=1}^n \frac{(x-t)^{2k-1}}{(2k-1)!}\right) f(t) dt$ et $|U(f)(x) - U_n(f)(x)| \le \int_0^x \left| \left(sh(x-t) - \sum_{k=1}^n \frac{(x-t)^{2k-1}}{(2k-1)!}\right) f(t) \right| dt \le \int_0^x \frac{ch(x-t)|x-t|^{2n}}{(2n)!} |f(t)| dt$ d'o ù $|U(f)(x) - U_n(f)(x)| \le \frac{ch(x)|x|^{2n}}{(2n)!} \int_0^x |f(t)| dt$ comme voulu. Maintenant an fixant x et en faisant tendre n vers $+\infty$ alors $U(f)(x) = \lim_{n\to\infty} U_n(f)(x) = \sum_{n=1}^\infty A_n(f)(x)$ ainsi $U = \sum_{n=1}^\infty A_n$. On a donc pour $f \in E$:

 $(U \circ A)(f) = U(A)(f) = \sum_{n=1}^{\infty} A_n(A(f)) = \sum_{n=1}^{\infty} A_{n+1}(f) = (\sum_{n=1}^{\infty} A_n(f)) - A = U(f) - A(f).$ Sous réserve de convergence

$$(A \circ U)(f) = A(U(f)) = A(\sum_{n=1}^{\infty} A_n(f)) = \sum_{n=1}^{\infty} A(A_n(f)) = \sum_{n=1}^{\infty} A_{n+1}(f) = U(f) - A(f).$$

Nous venons de prouver que $U \circ A = A \circ U = U - A$.

$$5)*(I-A) \circ (I+U) = I+U-A-A \circ U = I+U-A-(U-A) = I$$

 $(I + U) \circ (I - A) = I + U - A - U \circ A = I + U - A - (U - A) = I$. Ainsi d'après le théorème de la bijection on a que I - A et I + U sont des bijections réciproques.

*L'équation (1) s'écrit (I - A)(f) = g d'où f = (I + U)(g) est la solution de (1).

*Calcul de *f* pour la fonction paire *g*

Remarquons que $U(g)(x) = \int_0^x sh(x-t)g(t)dx = \int_0^x sh(t)g(x-t)dt$ et $\int xsh = xch - sh$.

Pour $x \le -2$, $f(x) = \int_0^{-2} sh(x-t)g(t)dt = -\int_x^{x+2} sh(t)g(x-t)dt$ et avec la définition de g(x)

$$f(x) = \int_{x}^{x+1} (x-t)sh(t)dt - \int_{x+1}^{x+2} (2+x-t)sh(t)dt = 2sh(x+1) - shx - sh(x+2)$$

Pour
$$-2 \le x \le -1$$
, $f(x) = \int_0^x sh(x-t)g(t)dt = \int_0^{-1} sh(x-t)g(t)dt + \int_{-1}^x sh(x-t)g(t)dt$ et

$$f(x) = \int_{x}^{x+1} (x-t)sh(t)dt - \int_{x+1}^{0} (2+x-t)sh(t)dt = 2sh(x+1) - shx - x - 2$$

Pour
$$-1 \le x \le 0$$
, $f(x) = \int_0^x sh(x-t)g(t)dt = \int_0^x sh(t)g(x-t)dt = \int_0^x sh(t)(t-x)dt$ puis

$$f(x) = -shx + x$$

Pour
$$0 \le x \le 1$$
, $f(x) = \int_0^x sh(x-t)g(t)dt = \int_0^x sh(t)g(x-t)dt = \int_0^x sh(t)(x-t)dt$ puis

$$f(x) = shx - x$$

Pour
$$1 \le x \le 2$$
, $f(x) = \int_0^x sh(x-t)g(t)dt = \int_0^1 sh(x-t)g(t)dt + \int_1^x sh(x-t)g(t)dx$ et

$$f(x) = \int_{x-1}^{x} (x-t)sh(t)dx + \int_{0}^{x-1} (2-x+t)sh(t)dx = sh(x) - 2sh(x-1) + x - 2$$

Pour
$$x \ge 2$$
, $f(x) = \int_0^2 sh(x-t)g(t)dt = \int_{x-2}^x sh(t)g(x-t)dt$ et avec la définition de $g(x)$

$$f(x) = \int_{x-1}^{x} (x-t)sh(t)dt + \int_{x-2}^{x-1} (2+t-x)sh(t)dt = sh(x) - 2sh(x-1) + sh(x-2)$$
. On peut remarquer que la solution f est une fonction paire.

*PREMIERE EPREUVE DE MATHEMATIQUESZ: ISFA 2010

1. Intégration

a)
$$\int_{\theta}^{\theta} \frac{x}{\cos(x)} dx = 0$$
 , par imparité évidente de la fonction sous l'intégrale

b)On intègre par parties
$$\int_0^\pi x \sin(x) dx = [-x \cos(x)]_0^\pi + \int_0^\pi \cos(x) dx = [-x \cos(x) + \sin(x)]_0^\pi = \pi$$

c) Avec
$$u = x^2$$
, $\int_0^1 x\sqrt{1+x^2} dx = \frac{1}{2} \int_0^1 \sqrt{1+u} du = \left[\frac{(1+u)^{\frac{3}{2}}}{3} \right]_0^1 = \frac{2^{\frac{3}{2}}-1}{3}$

- 2. Diagonalisation et exponentielle d'une matrice
- 1) le polynôme caractéristique de M est $P_M(X) = (X-1)^2(X-2)^2$ après quelques développements élémentaires. La condition cherchée est dimker $(M-I_4)=2$ et

 $\dim \text{Ker}(M-2I_4)=2.$ En d'autres termes $M-I_4$ et $M-2I_4$ sont de rang 2.On a

$$M - 2I_4 = \begin{pmatrix} -1 & a & b & c \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \text{ et } M - I_4 = \begin{pmatrix} 0 & a & b & c \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}. M - 2I_4 \text{ est \'evidemment de rang 2}$$

En regardant les colonnes 1 et 2. $M-I_4$ possède une sous-matrice (en rouge) d'ordre2), elle est de rang 2 si $\begin{vmatrix} a & b & c \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = c + a - b = 0$, soit a = b - c ce qui est la condition recherchée.

2) En notant C_1 , C_2 , C_3 et C_4 les colonnes de $M-I_4$ puis C'_1 , C'_2 , C'_3 et C'_4 les colonnes de $M-2I_4$

Les relations $C_1 = 0$, $C_2 - C_3 + C_4 = 0$, $bC_1 + C_3 = cC_1 + C_4 = 0$. Il est facile de voir que 1 est valeur propre de vecteurs propres $Vect \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$ et 2 pour vecteurs propres $Vect \left\{ \begin{pmatrix} b \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} c \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$

3)M est semblable à
$$D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
 et $M = PDP^{-1}$ avec $P = \begin{pmatrix} 1 & 0 & b & c \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$

4) On sait que le classique $M=PDP^{-1}$ entraine $M^n=PD^nP^{-1}.$ Donc sous réserve de convergence

$$exp(M) = \sum_{n=0}^{\infty} \frac{M^n}{n!} = \sum_{n=0}^{\infty} \frac{PD^nP^{-1}}{n!} = P\left(\sum_{n=0}^{\infty} \frac{D^n}{n!}\right)P^{-1} = Pexp(D)P^{-1}$$

$$5)D^2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} \text{ et } D^3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{pmatrix}. \text{ Par récurrence } D^k = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2^k & 0 \\ 0 & 0 & 0 & 2^k \end{pmatrix}. \text{Si}$$

$$\text{c'est le cas pour un k} \geq 1 \text{ alors } D^{k+1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2^k & 0 \\ 0 & 0 & 0 & 2^k \end{pmatrix} . \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2^{k+1} & 0 \\ 0 & 0 & 0 & 2^{k+1} \end{pmatrix}$$

On achève la récurrence.

6)On a
$$\exp(D) = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{1}{n!} & 0 & 0 & 0 \\ 0 & \sum_{n=0}^{\infty} \frac{1}{n!} & 0 & 0 \\ 0 & \sum_{n=0}^{\infty} \frac{2^{n}}{n!} & 0 \\ 0 & 0 & \sum_{n=0}^{\infty} \frac{2^{n}}{n!} \end{pmatrix} = \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & e & 0 & 0 \\ 0 & 0 & e^{2} & 0 \\ 0 & 0 & 0 & e^{2} \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & e & 0 & 0 \\ 0 & 0 & 0 & e^{2} \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & e & 0 & 0 \\ 0 & 0 & 0 & e^{2} \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & e & 0 & 0 \\ 0 & 0 & 0 & e^{2} \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & 0 & e^{2} & 0 \\ 0 & 0 & 0 & e^{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 & -a & -b & -c \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

$$7) \exp(M) = \operatorname{Pexp}(D) \operatorname{P}^{-1} = \begin{pmatrix} 1 & 0 & b & c \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & e & 0 & 0 \\ 0 & 0 & e^2 & 0 \\ 0 & 0 & 0 & e^2 \end{pmatrix} \begin{pmatrix} 1 & -a & -b & -c \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \text{ et au final }$$

$$\exp(M) = \begin{pmatrix} e & a(e^2 - e) & b(e^2 - e) & c(e^2 - e) \\ 0 & e & 0 & 0 \\ 0 & e^2 - e & e^2 & 0 \\ 0 & e - e^2 & 0 & e^2 \end{pmatrix}$$

Nombres complexes et arithmétique

On notera $\bar{z} = a - ib$ le conjugué de z = a + ib

PARTIE1

- 1) Soit z un entier de gauss inversible, $\exists z' \in \mathcal{G}, zz' = 1$ donc N(z)N(z') = 1 ensuite N(z) = 1 car $N(z), N(z') \in \mathbb{N}^*$. Réciproquement si N(z) = 1 en réécrivant comme $z\overline{z} = 1$ on voit que z est inversible
- 2)Prenons $z \in \mathcal{G}$ tel que N(z) soit premier ordinaire .Raisonnons par l'absurde en supposant que z n'est pas \mathcal{G} -premier. On peut donc écrire z = rs avec r, $s \in \mathcal{G}$ avec r et s non inversibles donc N(r) > 1 et N(s) > 1, par conséquent N(z) = N(r)N(s) ne plus être premier ordinaire. D'oū le résultat.
- 3)13 = (3 + 2i)(3 2i) et 17 = (4 + i)(4 i) en sont deux exemples.
- 4) Soit p un nombre premier ordinaire qui s'écrit $p = a^2 + b^2$; p n'est pas \mathcal{G} -premier et on peut écrire comme : p = (a + ib)(a ib) avec (a + ib) et (a ib) \mathcal{G} -premiers.

*DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A : ISFA 2011

1. Intégration

a) Pour $x \in [0;2]$; max(ln(1 + x^2), 1) = 1 \Leftrightarrow ln(1 + x^2) \leq 1 \Leftrightarrow $x \leq \sqrt{e-1}$. D'après la relation de Chasles sans difficultés on écrit

$$\int_0^2 \max(\ln(1+x^2),1) \, \mathrm{d}x = \int_0^{\sqrt{e-1}} \, \mathrm{d}x + \int_{\sqrt{e-1}}^2 \ln(1+x^2) \, dx. \text{ En intégrant par parties on obtient}$$

$$\int \ln(1+x^2) \, \mathrm{d}x = \int x' \ln(1+x^2) \, \mathrm{d}x = x \ln(1+x^2) - 2 \int \frac{x^2}{1+x^2} \, \mathrm{d}x \text{ or } \frac{x^2}{1+x^2} = 1 - \frac{x^2}{1+x^2} \text{ alors}$$

$$\int \ln(1+x^2) \, \mathrm{d}x = x \ln(1+x^2) - 2x + 2 \operatorname{Arctanx} + C \, (C \in \mathbb{R}), \text{ le calcul se conclut facilement par}$$

$$\int_0^2 \max(\ln(1+x^2),1) \, \mathrm{d}x = [x]_0^{\sqrt{e-1}} + [x \ln(1+x^2) - 2x + 2 \operatorname{Arctanx}]_{\sqrt{e-1}}^2 = 2 \ln 5 - 4 - 2 \sqrt{e-1}$$

 $+2Arctan2 - 2Arctan\sqrt{e-1}$ s

b) Pour $x \in [0; 2]$, on définit la suite récursive $u_1(x) = \sqrt{x}$, $u_n(x) = \sqrt{x + u_{n-1}(x)}$ (n > 1). Intuitivement le point fixe positif de la fonction implicite vérifie $l(x) = \sqrt{x + l(x)}$; on calcule puis

$$l(x) = \frac{1+\sqrt{1+4x}}{2} \ . \ De \ l'inégalité \ 2\sqrt{x} < 1+\sqrt{1+4x} \ , il \ vient \ u_1(x) < l(x) \ et \ une \ récurrence$$

immédiate donne que $u_n(x) < l(x)$. En effet si $u_{n-1}(x) < l(x)$ on a $u_n(x) < \sqrt{x + l(x)} = l(x)$. Le polynome $T_x(X) = -X^2 + X + x$ étant positif pour $X \in [0; l(x)]$; et puisque $u_n(x) \in [0; l(x)]$ alors

 $u_n(x)=\sqrt{x+u_{n-1}(x)}>\sqrt{u_{n-1}(x)^2}=u_{n-1}(x). \\ \text{Ainsi la suite } (u_n(x))_{n\in\mathbb{N}^*} \\ \text{est croissante majorée et donc converge exactement vers } l(x). \\ \text{Par définition de } u_n(x) \text{ on peut remarquer que}$

$$u_n(x) = \sqrt{x + \sqrt{x + \sqrt{\dots + \sqrt{x}}}}; \text{ on calcule } \int_0^1 \frac{1 + \sqrt{1 + 4x}}{2} dx = \left[\frac{x}{2} + \frac{(1 + 4x)^{\frac{3}{2}}}{12} \right]_0^1 = \frac{5 + 5^{\frac{3}{2}}}{12}$$

$$\int_0^1 \lim_{n \to \infty} \sqrt{x + \sqrt{x + \sqrt{\dots + \sqrt{x}}}} dx = \frac{5 + 5^{\frac{3}{2}}}{12}$$

$$\forall x \in [\pi; 2\pi], |\sin(nx)| \le 1, \text{ainsi } \int_{\pi}^{2\pi} \frac{|\sin(nx)|}{x} dx \le \int_{\pi}^{2\pi} \frac{1}{x} dx = \ln\left(\frac{2\pi}{\pi}\right) = \ln 2. \text{ En posant } x = \text{nu}$$

$$\int_{\pi}^{2\pi} \frac{|\sin(nx)|}{x} dx = \int_{\pi}^{2\pi\pi} \frac{|\sin(u)|}{x} du = \sum_{\pi}^{2\pi-1} \int_{\pi}^{\pi} \frac{|\sin(u)|}{x} du = \sum_{\pi}^{2\pi-1} \int_{\pi}^{2\pi-1} \frac{|\sin(u)|}{x} du = \sum_{\pi}^{2\pi-1} \int_{\pi}^{2\pi-1} \frac{|\sin(u)|}{x} du = \sum_{\pi}^{2\pi-1} \frac{|\sin(u)|}{x} du = \sum_{\pi}^{2\pi-$$

$$\int_{\pi}^{2\pi} \frac{|\sin(nx)|}{x} dx = \int_{n\pi}^{2n\pi} \frac{|\sin(u)|}{u} du = \sum_{k=n}^{2n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin(u)|}{u} du = \sum_{k=n}^{2n-1} \int_{0}^{\pi} \frac{|\sin(v)|}{v + k\pi} dv (v)$$

$$= u + k\pi$$

$$\int_{\pi}^{2\pi} \frac{|\sin(nx)|}{x} dx \ge \sum_{k=n}^{2n-1} \int_{0}^{\pi} \frac{|\sin(v)|}{\pi + k\pi} dv = \left(\frac{1}{\pi} \sum_{k=n+1}^{2n} \frac{1}{k}\right) \int_{0}^{\pi} |\sin(v)| dv = \frac{2}{\pi} \sum_{k=n+1}^{2n} \frac{1}{k}$$

Ce qui est clairement la deuxième inégalité.

2-Equation aux dérivées partielles

Notons D = $[0; 10] \times \mathbb{R}$

a)
$$\frac{\partial v}{\partial t}(t, x) = \gamma'(t)x^2 + \varphi'(t)x + \rho'(t)$$
; $\frac{\partial v}{\partial x}(t, x) = 2x\gamma(t) + \varphi(t)$; $\frac{\partial^2 v}{\partial x^2}(t, x) = 2\gamma(t)$

b)
$$\forall x \in \mathbb{R}, v(10, x) = x^2 - x = \gamma(10)x^2 + \varphi(10)x + \rho(10)$$
 ainsi $\gamma(10) = 1, \varphi(10) = -1, \rho(10) = 0$

$$c) - \gamma'(t)x^2 - \phi'(t)x - \rho'(t) + \max_{a \in \mathbb{R}} \left[-(x+2a) \left(2x\gamma(t) + \phi(t)\right) - a^2\gamma(t) \right] = 0; \forall (t,x) \in \mathbb{D}$$

d)En étudiant le polynôme de second degré $T(x) = \alpha x^2 + \beta x + c$; on trouve sans difficultés

$$\text{max}_{x \in \mathbb{R}} T(x) = T\left(\frac{-\beta}{2\alpha}\right) = \frac{4\alpha c - \beta^2}{4\alpha}. \text{ En posant } G(a) = -\frac{\partial v}{\partial t}(t,x)(x+2a) - \frac{\partial^2 v}{\partial x^2}(t,x)\frac{a^2}{2}, \text{ mieux } (x+2a) = \frac{\partial^2 v}{\partial x^2}(t,x)\frac{a^2}{2}$$

 $G(a) = -a^2\gamma(t) - 2a(2x\gamma(t) + \phi(t)) - x\gamma(t)(2x\gamma(t) + \phi(t)); \text{ avec le point précédent on trouve}$

$$m(v) = max_{a \in \mathbb{R}}G(a) = \frac{(2x\gamma(t) + \phi(t)^2 - x\gamma(t)(2x\gamma(t) + \phi(t))}{\gamma(t)} = 2x^2\gamma(t) + 3x\phi(t) + \frac{\phi^2(t)}{\gamma(t)}$$

 $\text{L'\'equation 1 devient alors } \big(\frac{2\gamma(t) - \gamma'(t)}{\gamma(t)} \big) x^2 \Big(\frac{3\phi(t) - \phi'(t)}{\gamma(t)} + \left(\frac{\phi^2(t)}{\gamma(t)} - \rho'(t) \right) = 0, \forall (t,x) \in D \, .$

e)la nouvelle équation étant polynomiale les coefficients en x^2 et x s'annulent ainsi les équations différentielles sont $\begin{cases} \gamma'(t) = 2\gamma(t) \\ \phi'(t) = 3\phi(t) \end{cases}$

f)la détermination de γ et ϕ est classique et l'on trouve $\begin{cases} \gamma(t) = e^{2(t-10)} \\ \phi(t) = -e^{3(t-10)} \end{cases}$

Maintenant on a
$$\rho(t) = \frac{\phi^2(t)}{\gamma(t)} = e^{7(t-10)}$$
 soit $\rho(t) = \frac{e^{7(t-10)}-1}{7}$

g)
$$v(t, x) = e^{2(t-10)}x^2 - e^{3(t-10)}x + \frac{e^{7(t-10)} - 1}{7}$$

3-Polynôme

1)D'après la formule du binôme de Newton l'on a

$$A = (X+1)^{2n} - 1 = \sum_{k=1}^{2n} C_{2n}^k X^k = X \sum_{k=1}^{2n} C_{2n}^k X^{k-1}, \text{ ainsi } A = XB \text{ oū } B = \sum_{k=1}^{2n} C_{2n}^k X^{k-1}. \text{ Le coefficient}$$

Dominant est 1 et le terme constant est $b_0 = 2n$

2) Notons $(z_k)_{0 \le k \le 2n-1}$ les racines de A. Un z_k vérifie $(z_k+1)^{2n}=1$ soit $z_k=-1+e^{i\frac{k\pi}{n}}$, ce qui est sans problème car on a $z_0=0$. $z_k=-1+e^{i\frac{k\pi}{n}}=e^{i\frac{k\pi}{2n}}\left(e^{i\frac{k\pi}{2n}}-e^{-i\frac{k\pi}{2n}}\right)=2i\sin\left(\frac{k\pi}{2n}\right)e^{i\frac{k\pi}{2n}}$, on garde

$$z_k = 2i \sin \left(\frac{k\pi}{2n} \right) e^{i\frac{k\pi}{2n}} = -2 sin^2 \left(\frac{k\pi}{2n} \right) + i sin \left(\frac{k\pi}{n} \right)$$

$$3)P_n = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right) = \prod_{k=1}^{n-1} \sin\left(\pi - \frac{k\pi}{2n}\right) = \prod_{k=1}^{n-1} \sin\left(\frac{(2n-k)\pi}{2n}\right) \text{ quand k parcourt } \llbracket 1, n-1 \rrbracket \text{ alors,}$$

$$2n-k \text{ parcourt } \llbracket n+1,\!2n-1 \rrbracket \text{ ainsi } P_n = \prod_{k=n+1}^{2n-1} \sin \left(\! \frac{k\pi}{2n} \! \right) \text{. La suite devient plus simple avec}$$

$$Q_n = \prod_{k=1}^{2n-1} sin\left(\frac{k\pi}{2n}\right) = \prod_{k=1}^{n-1} sin\left(\frac{k\pi}{2n}\right). \prod_{k=n+1}^{2n-1} sin\left(\frac{k\pi}{2n}\right). sin\left(\frac{\pi}{2}\right) \ d'o\bar{u} \ Q_n = P_n^2. \ Pour \ 1 \leq k \leq n-1$$

 $0 < \frac{k\pi}{2n} < \frac{\pi}{2}$ donc $0 < \sin\left(\frac{k\pi}{2n}\right) < 1$, ensuite $P_n > 0$ et on conclut que $P_n = \sqrt{Q_n}$.

4) Par les relations racines-coefficient (formule de Viète) l'on peut écrire $\prod_{k=1}^{2n-1} z_k = -2n$. Encore

$$\prod_{k=1}^{2n-1} z_k = \prod_{k=1}^{2n-1} 2i \sin \left(\frac{k\pi}{2n}\right) e^{i\frac{k\pi}{2n}} = Q_n (2i)^{2n-1} e^{i\frac{\pi}{2n} \sum_{k=1}^{2n-1} k} = 2^{2n-1} Q_n i^{4n-2} = -2^{2n-1} Q_n i^{4n-2} =$$

$$\prod_{k=1}^{2n-1} z_k = -2n = -2^{2n-1} Q_n \text{ donc } Q_n = \frac{n}{2^{2(n-1)}} \text{ donc } P_n = \frac{\sqrt{n}}{2^{n-1}}$$

$$5)\frac{1}{A} = \sum_{k=0}^{2n-1} \frac{\alpha_k}{X-z_k} \text{, on a } \alpha_k = \lim_{X \to z_k} \frac{X-z_k}{A} = \frac{1}{A'(z_k)} = \frac{1}{2n(z_k+1)^{2n-1}} = \frac{z_k+1}{2n} = \frac{e^{i\frac{k\pi}{n}}}{2n} \text{. On \'ecrit}$$

$$\frac{1}{A} = \sum_{k=0}^{2n-1} \frac{e^{i\frac{k\pi}{n}}}{2n(X - z_k)}$$

6) Pour un polynôme scindé P à racines
$$(x_k)_{1 \le k \le n}$$
 on a $\frac{P'}{P} = \sum_{k=1}^{n} \frac{1}{X - x_k}$. Pour $P = A \prod_{k=1}^{n} (X - x_k)$

on a $\ln |P| = \ln |A| + \sum_{k=1}^n \ln |X - x_k|$, puis en dérivant on obtient le résultat voulu. Ici on obtient

$$-\frac{P'(2)}{P(2)} = \sum_{k=1}^n \frac{1}{x_k - 2} \text{ avec } P = \sum_{k=0}^n X^k = \frac{X^{n+1} - 1}{X - 1} \text{ , } P' = \frac{nX^{n+1} - (n+1)X^n + 1}{(X - 1)^2}$$

$$\frac{P'}{P} = \frac{nX^{n+1} - (n+1)X^n + 1}{(X-1)(X^{n+1}-1)} \text{ soit } \sum_{k=1}^{n} \frac{1}{x_k - 2} = -\frac{n2^{n+1} - (n+1)2^n + 1}{2^{n+1}-1} = -\frac{(n-1)2^n + 1}{2^{n+1}-1}$$

4 Matrices

I-1)En calculant de deux manières

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} = \sum_{i=1}^{n} \sigma(A) = n\sigma(A) = \sum_{k=1}^{n^2} k = \frac{n^2(1+n^2)}{2} = n\sigma(A) d'o\bar{u} \sigma(A) = \frac{n(1+n^2)}{2}$$

- I-2) Raisonnons par l'absurde et prenons $(a_{i,j})_{1 \le i,j \le 2}$ un carré magique d'ordre 2.Par définition on écrit $\sigma(A) = a_{1,1} + a_{1,2} = a_{1,1} + a_{2,1}$ donc $a_{1,2} = a_{2,1}$ (contradiction) .CQFD
- II-1) élémentaire

II-2-a) On constate que $\sigma(J_n)=n$ qui est bien magique .Enfin la bien connue relation $J_n^2=nJ_n$ donne à la suite d'une récurrence $J_n^p=n^{p-1}J_n$.Notons $\phi_i(A)=\sum_{k=1}^n a_{i,k}$ et $\psi_j(A)=\sum_{k=1}^n a_{k,j}$

$$AJ_n = \begin{pmatrix} \phi_1(A) & \phi_1(A) & ... & \phi_1(A) \\ \phi_2(A) & \phi_2(A) & ... & \phi_2(A) \\ \vdots & \vdots & & \vdots \\ \phi_n(A) & \phi_n(A) & ... & \phi_n(A) \end{pmatrix}, \\ J_nA = \begin{pmatrix} \psi_1(A) & \psi_2(A) & ... & \psi_n(A) \\ \psi_1(A) & \psi_2(A) & ... & \psi_n(A) \\ \vdots & \vdots & & \vdots \\ \psi_1(A) & \psi_2(A) & ... & \psi_n(A) \end{pmatrix} \\ o\bar{u} \ A = (a_{i,j})_{1 \leq i,j \leq n}$$

 $AJ_n = J_nA = \lambda J_n \Leftrightarrow \forall 1 \leq i, j \leq n; \phi_i(A) = \psi_i(A) = \lambda \Leftrightarrow A \in \mathcal{P}_n. \ \text{Ici } \lambda \ \text{représente} \ \sigma(A).$

II-2-b) \mathcal{P}_n est évidemment un sous espace vectoriel. On a aussi $I_n \in \mathcal{P}_n$. Il reste à vérifier qu'il est stable par produit. $\forall A, B \in \mathcal{P}_n$: $\begin{cases} ABJ_n = \sigma(B)AJ_n = \sigma(A)\sigma(B)J_n \\ J_nAB = \sigma(A)J_nB = \sigma(A)\sigma(B)J_n \end{cases} Ainsi AB \in \mathcal{P}_n.$

 Q_n N'est pas une sous-algèbre car $I_n \notin Q_n$.

II-2-c)D'après ce qui précède $\sigma(AB) = \sigma(A)\sigma(B)$. Aussi $\sigma(I_n) = 1$ et σ étant déjà une forme linéaire elle est bien un morphisme d'algèbres.

II-2-d) De $J_nA=\sigma(A)J_n$ on a $J_nA=\sigma(A)J_nA^{-1}$ donc $\sigma(A)\neq 0$ sinon on aurait $J_n=O_n$.

Aussi
$$1 = \sigma(I_n) = \sigma(AA^{-1}) = \sigma(A)\sigma(A^{-1})$$
 donc $\sigma(A^{-1}) = \frac{1}{\sigma(A)}$.

III-1) $\mathcal{P}_n(\mathbb{Q})$ et $\mathcal{Q}_n(\mathbb{Q})$ sont des \mathbb{Q} – ev. Pour répondre à notre question il suffit de montrer que tout élément A de $\mathcal{P}_n(\mathbb{Q})$ s'écrit de façon unique $A = M + rI_n + sM_n$; $M \in \mathcal{Q}_n(\mathbb{Q})$ et r, $s \in \mathbb{Q}$. On prend $M = A - rI_n - sM_n$, en écrivant $Tr(M) = Tr(M_nM) = \sigma(M)$ avec $\varepsilon = Tr(M_n) \in \{0,1\}$

$$\sigma(A) - s - r = Tr(A) - nr - \epsilon s = Tr(M_nA) - \epsilon r - ns \text{ , soit } \begin{cases} r - s = \frac{Tr(A) - Tr(M_nA)}{n - \epsilon} \\ (n - 1)r + (\epsilon - 1)s = Tr(A) - \sigma(A) \end{cases}$$

L'unicité de l'écriture énoncée ci-dessus réside dans l'unicité du couple (r,s) chose constatée car le système d'équation induit est de Cramer à coefficients rationnels.

III-2) Evidemment $\mathcal{P}_n(\mathbb{Q})$ est un \mathbb{Q} -espace vectoriel (comme au I-1) et on montre qu'il est stable par multiplication comme au II-3-b) et puisque $I_n \in \mathcal{P}_n(\mathbb{Q})$, on en déduit que $\mathcal{P}_n(\mathbb{Q})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{Q})$.

DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A: ISFA 2012

PARTIE

1)a) $\forall t \in \mathbb{R}, a^2 - 2 \operatorname{acos}(t) + 1 = (a - \operatorname{cost})^2 + \sin^2(t) \ge 0$. Mais $a^2 - 2 \operatorname{acos}(t) + 1 = 0$ donne avec la seconde écriture $\sin(t) = 0$ et $a = \cos(t) = \pm 1$: ce qui est exclus. C'est le résultat voulu.

b)Comme $\forall t \in \mathbb{R}, a^2 - 2 \operatorname{acos}(t) + 1 > 0$, la fonction λ_a : $\begin{cases} [0; \pi] \to \mathbb{R} \\ t \mapsto \ln(a^2 - 2 \operatorname{acos}(t) + 1) \end{cases}$ est continue.

donc $I_a = \int_0^\pi \ln(a^2 - 2 a \cos(t) + 1) dt$ est bien définie comme l'intégrale d'unefonction continue

sur un segment.

$$c)I_{a} = \int_{0}^{\pi} \ln(a^{2} - 2 a \cos(t) + 1) dt = I_{a} = \int_{0}^{\pi} \ln\left[a^{2} \left(1 - \frac{2}{a} \cos(t) + \frac{1}{a^{2}}\right)\right] dt$$

$$I_{a} = \int_{0}^{\pi} \ln \left[\left(1 - \frac{2}{a} \cos(t) + \frac{1}{a^{2}} \right) \right] dt + \int_{0}^{\pi} 2 \ln|a| dt = I_{1/a} + 2\pi \ln|a|$$

2a) Notons $(\zeta_k)_{0 \le k \le 2n-1}$ les racines de $X^{2n}-1$.On a $\zeta_k=e^{i\frac{k\pi}{n}}$ et $\overline{\zeta_k}=\zeta_{2n-k}$.Sans problèmes

$$X^{2n}-1=\prod_{k=0}^{2n-1}(X-\zeta_k)=(X-1)(X+1)\prod_{k=1}^{n-1}(X-\zeta_k)(X-\overline{\zeta_k})=$$

$$(X-1)(X+1)\prod_{k=1}^{n-1}(X^2-2\text{Re}(\zeta_k)X+|\zeta_k|^2)=(X-1)(X+1)\prod_{k=1}^{n-1}(X^2-2\text{X}\cos\left(\frac{k\pi}{n}\right)+1)$$

2b) La question précédente donne que $\prod_{k=1}^{n-1}(a^2-2a\cos\left(\frac{k\pi}{n}\right)+1)=\frac{a^{2n}-1}{(a-1)(a+1)}$, il s'en suit que

$$\prod_{k=1}^{n} (a^2 - 2 a \cos\left(\frac{k\pi}{n}\right) + 1) = (a+1)^2 \prod_{k=1}^{n-1} (a^2 - 2 a \cos\left(\frac{k\pi}{n}\right) + 1) = \frac{(a+1)(a^{2n} - 1)}{(a-1)}$$

$$3a) \ \text{Soit} \ a_n = \frac{1}{n} \sum_{k=1}^n \lambda_a \left(\frac{k}{n}\right) = \frac{1}{n} \ln \left(\prod_{k=1}^n (a^2 - 2 a cos \left(\frac{k\pi}{n}\right) + 1 \right) = \frac{1}{n} \ln \left(\frac{(a+1)(a^{2n}-1)}{(a-1)}\right) \text{ , } a_n \ \text{est}$$

Somme de Riemann donc $\lim_{n\to\infty} a_n = I_a.$ On calcule maintenant cette limite en écrivant

$$a_n = \frac{1}{n} ln(a+1) + \frac{1}{n} ln \left(\frac{a^{2n}-1}{a-1} \right), \text{ Or } \lim_{n \to \infty} \frac{a^{2n}-1}{a-1} = \frac{1}{1-a} \text{ ainsi } \lim_{n \to \infty} a_n = I_a = 0 \text{ pour } |a| < 1$$

3b)
Pour
$$|a| > 1$$
, $I_a = \underbrace{I_{1/a}}_{=0, \text{car}} + 2\pi \ln|a| = 2\pi \ln|a| \text{ soit } I_a = 2\pi \ln|a| \text{ quand } |a| > 1.$

Une formule plus générale est $I_a = 2\pi \ln[\max(1; |a|)]$.

4) Notons $U = \{(x, y) \in \mathbb{R}^2 / x^2 \neq y^2\}$. Soit $(x, y) \in U$, nécessairement l'un de x^2 ou y^2 est non nul .Dans la suite nous prendrons y^2 non nul. On procède comme à la question 1.

$$\forall t \in \mathbb{R}, x^2 - 2\operatorname{xycos}(t) + y^2 = y^2 \left[\left(\frac{x}{y} \right)^2 - 2\left(\frac{x}{y} \right) \cos(t) + 1 \right] > 0, \operatorname{car} \frac{x}{y} \in \mathbb{R} \setminus \{-1, 1\}. \operatorname{Ainsi}(t) = 0$$

$$\lambda_a : \left\{ \begin{aligned} &[0;\pi] \to \mathbb{R} \\ t &\mapsto \ln(x^2 - 2 \, xy cos(t) + y^2) \end{aligned} \right. \text{est continue} \; ; \text{donc } I_{x,y} = \int_0^\pi \ln(x^2 - 2 \, xy cos(t) + y^2) dt \; \text{est} \;$$

Bien définie comme l'intégrale d'une fonction continue sur un segment. De la relation

$$\ln(x^2 - 2\, xy cos(t) + y^2) = 2\ln|y| + \ln\left[\left(\frac{x}{y}\right)^2 - 2\left(\frac{x}{y}\right) cos(t) + 1\right] \text{ on a que } I_{x,y} = I_{x/y} + 2\pi \ln|y|$$

donc
$$I_{x,y} = 2\pi \ln \left[\max \left(1; \left| \frac{x}{y} \right| \right) \right] + 2\pi \ln |y| = 2\pi \ln \left[|y| \max \left(1; \left| \frac{x}{y} \right| \right) \right] = 2\pi \ln \left[\max (|x|, |y|) \right] = I_{x,y}$$
PARTIE 2

5a) Posons
$$m = \min(x^2, y^2)$$
 et $M = \max(x^2, y^2)$. $[x^2, y^2] \cup [y^2, x^2] = [m, M] \cup [M, m] = [m, M]$ car $[M, m] = \emptyset$. $\forall \theta \in \left[0; \frac{\pi}{2}\right]$, On peut par définition de m et M écrire que

$$m\cos^2(\theta) + m\sin^2(\theta) \le x^2\cos^2(\theta) + y^2\sin^2(\theta) \le M\cos^2(\theta) + M\sin^2(\theta)$$
 or il est clair que $\cos^2(\theta) + \sin^2(\theta) = 1$ donc $m \le x^2\cos^2(\theta) + y^2\sin^2(\theta) \le M$. Ceci répond à la question.

5b) Soit la fonction
$$f_{x,y}(\theta) = x^2 \cos^2(\theta) + y^2 \sin^2(\theta)$$
, pour $\theta \in \left]0; \frac{\pi}{2}\right[$. On peut ramener D_F aux valeurs (x,y) pour les quelles $\int_{\left]0; \frac{\pi}{2}\right[} \ln(f_{x,y})$ soit définie. On voit bien que $(0,0) \notin D_F$. Maintenant pour $(x,y) \neq (0,0)$ on a $f_{x,y}(\theta) > 0$ sur $\left]0; \frac{\pi}{2}\right[$; dans ce cas $\ln(f_{x,y})$ est continue sur $\left]0; \frac{\pi}{2}\right[$ et alors $\int_{\left[0; \frac{\pi}{2}\right]} \ln(f_{x,y})$ est bien définie ; d'où $D_F = \mathbb{R}^2 \setminus \{(0,0)\}$.

6) Si
$$(x, y) \in D_F$$
 alors $(x, y) \neq (0, 0)$, par symétrie $(y, x) \neq (0, 0)$ donc $(x, y) \in D_F$. Soit $(x, y) \in D_F$

$$\int_0^{\frac{\pi}{2}} \ln(x^2 \cos^2(\theta) + y^2 \sin^2(\theta)) d\theta = -\int_{\frac{\pi}{2}}^0 \ln\left(x^2 \cos^2\left(\frac{\pi}{2} - \delta\right) + y^2 \sin^2\left(\frac{\pi}{2} - \delta\right)\right) d\delta \ \text{avec} \ \theta = \frac{\pi}{2} - \delta$$

$$F(x,y) = \int_0^{\frac{\pi}{2}} \ln(x^2 \cos^2(\theta) + y^2 \sin^2(\theta)) d\theta = \int_0^{\frac{\pi}{2}} \ln(y^2 \cos^2(\delta) + x^2 \sin^2(\delta)) d\delta = F(y;x)$$

$$7)$$
1^{er}cas : $u \ge 1$ (lnu ≥ 0)

 $t \le v \operatorname{donc} \ln(t) \le \ln(v) \operatorname{alors} \ln(t) \le \ln(v) + \ln(u) \operatorname{ou} \operatorname{encore} |\ln(t)| \le |\ln(u)| + |\ln(v)|$

$$2^{e}$$
 cas: $v \ge 1$ et $t \le 1$ ($|\ln(u)| = -\ln(u)$, $|\ln(t)| = -\ln(t)$ et $|\ln(v)| = \ln(v)$)

$$\text{avec } u \leq t \text{ ona } \frac{u}{t} \leq 1 \leq v \text{ donc } \ln\left(\frac{u}{t}\right) \leq \ln(v) \text{ donc } -\ln(t) \leq -\ln(u) + \ln(v) \text{ comme d\'esir\'e}$$

$$3^{e}$$
 cas: $v \ge 1$, $t \ge 1$ et $u \le 1$ ($|\ln(u)| = -\ln(u)$, $|\ln(t)| = \ln(t)$ et $|\ln(v)| = \ln(v)$)

de $t \le 1$, ut $\le t \le v$ et $t \le \frac{v}{u}$ d'oū $\ln(t) \le -\ln(u) + \ln(v)$ qui est notre résultat.

$$4^{e}$$
 cas: $u \le 1$ ($|\ln(u)| = -\ln(u)$, $|\ln(t)| = \ln(t)$ et $|\ln(v)| = \ln(v)$)

 $t \in [u; v]$ donc $\exists \lambda \in [0; 1]$ tel que $t = \lambda u + (1 - \lambda)v$. Or sur [0; 1] la fonction $|\ln| = -\ln$ est convexe donc $|\ln(t)| = |\ln(\lambda u + (1 - \lambda)v)| \le \lambda |\ln(u)| + (1 - \lambda)|\ln(v)| \le |\ln(u)| + |\ln(v)|$.

8a)Sans difficultés nous voyons que $\forall n \in \mathbb{N}, \forall \theta \in \left]0; \frac{\pi}{2}\right], x_n^2 \cos^2(\theta) + y^2 \sin^2(\theta) \in \left[y^2 \sin^2(\theta), y^2\right]$

Pour la borne supérieure comme $x_n \le y$ on $a: x_n^2 \cos^2(\theta) + y^2 \sin^2(\theta) \le y^2 \cos^2(\theta) + y^2 \sin^2(\theta)$.

En appliquant le point précédent on trouve que

$$\left| \ln \left(x_n^2 \cos^2(\theta) + y^2 \sin^2(\theta) \right) \right| \le \left| \ln (y^2) \right| + \left| \ln \left(y^2 \sin^2(\theta) \right) \right| = 2[\ln |y| + \ln |y \sin \theta|]$$

8b) Soit $(x_n)_{n\geq 0}$ une suite convergent vers 0.On définit ainsi la suite $(f_n)_{n\geq 0}$ de fonctions par

$$f_n : \begin{cases} \left[0; \frac{\pi}{2} \right] \to \mathbb{R} \\ \theta \mapsto \ln \left(x_n^2 \text{cos}^2(\theta) + y^2 \text{sin}^2(\theta) \right) \end{cases} . \text{Puisque } \lim_{n \to \infty} x_n = 0 : \exists N \in \mathbb{N}, \forall n \geq N, |u_n| \leq y. \text{ Notons}$$

 $g(\theta)=2[\ln|y|+\ln|y\sin\theta|]$. $(f_n)_{n\geq N}$ Converge simplement vers f telle $f(\theta)=2\ln|y\sin\theta|$. On a aussi $\forall n\geq N$, $|f_n|\leq g$ et g est intégrable car $\ln|y\sin\theta|\sim_0\ln((|y|\theta)$. Ainsi d'après le théorème de

$$\text{convergence domin\'ee on a } \lim_{n \to \infty} F_y(x_n) = \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \!\! f_n(\theta) d\theta = \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\! 2ln|y sin\theta| d\theta = F_y(0). \text{ Par suite } \int_0^{\frac{\pi}{2}} \!\!$$

d'après la caractérisation séquentielle de la limite F_{ν} est continue en 0.

9a) On va considérer la fonction Y_{η} : $\begin{cases} [\eta;y] \times \left]0; \frac{\pi}{2}\right] \to \mathbb{R} \\ (x,\theta) \mapsto \ln(x^2 \text{cos}^2(\theta) + y^2 \text{sin}^2(\theta)) \end{cases}$ un calcul simple donne

$$\frac{\partial Y_{\eta}}{\partial \theta}(x;y) = \frac{2x cos^2(\theta)}{x^2 cos^2(\theta) + y^2 sin^2(\theta)}. \text{ Il convient de majorer } \frac{\partial Y_{\eta}}{\partial \theta} \text{ qui était inconnu sous un trait.}$$

$$\text{Si } \eta \in \left]0,y\right],x \in \left]\eta,y\right] \text{ et } \theta \in \left]0,\frac{\pi}{2}\right] \text{ on a } \frac{\partial Y_{\eta}}{\partial \theta}(x;y) \leq \frac{2}{x^2 \text{cos}^2(\theta) + x^2 \text{sin}^2(\theta)} = 2\frac{1}{x} \leq 2\frac{1}{\eta}$$

9b)On voit que Y_{η} est continue par rapport à x et y ,puis intégrable. En plus $\frac{\partial Y_{\eta}}{\partial \theta}$ vérifie l'hypothèse de domination et est continue. D'après le théorème de dérivation sous le signe on a F_y est de classe \mathcal{C}^1 sur tout intervalle $]\eta,y]$ avec $\eta>0$; d'où F_y est dérivable sur]0,y].

9c)
$$\frac{1}{(y^2X^2 + x^2)(X^2 + 1)} = \frac{\lambda}{y^2X^2 + x^2} + \frac{\mu}{y^2X^2 + x^2}$$
 avec $\lambda = \frac{y^2}{y^2 - x^2}$ et $\mu = -\frac{1}{y^2 - x^2}$

9d) Avec le théorème de dérivation sous le signe avec Y_{η} tel que $x\in]\eta,y]$ et $\eta{>}0$;il vient

$$\forall x \in]0, y[: F_y'(x) = \int_0^{\frac{\pi}{2}} \frac{\partial Y_{\eta}}{\partial \theta}(x; y) d\theta = \int_0^{\frac{\pi}{2}} \frac{2x \cos^2(\theta)}{x^2 \cos^2(\theta) + y^2 \sin^2(\theta)} d\theta = \int_0^{\frac{\pi}{2}} \frac{2x}{x^2 + y^2 \tan^2(\theta)} d\theta$$

$$posant \ X = tan\theta \ , F_y'(x) = \int_0^\infty \frac{2x}{(y^2X^2 + x^2)(X^2 + 1)} \, dx = 2x \int_0^\infty \left(\frac{\lambda}{y^2X^2 + x^2} + \frac{\mu}{y^2X^2 + x^2}\right) dx$$

$$F_y'(x) = \frac{2x}{y^2 - x^2} \left[\frac{y}{x} \operatorname{Arctan}\left(\frac{y}{x}X\right) - \operatorname{Arctanx} \right]_0^{\infty} = \frac{\pi x}{y^2 - x^2} \left(\frac{y}{x} - 1\right) = \frac{\pi}{x + y}$$

 $10a) \ F_y'(x) = \frac{\pi}{x+y} \operatorname{donc} \forall x \in]0, y[: F_y(x) = \pi \ln(x+y) + C \ (C \in \mathbb{R}). \\ \text{En faisant tendre x vers y} \\ \text{on trouve } \pi \ln(2y) + C = \pi \ln(y) \text{ soit } C = -\pi \ln 2 \text{ et } F_y(x) = \pi \ln\left(\frac{x+y}{2}\right). \\ \text{Maintenant prenons } (x;y) \in D_F \text{ , sans perte de généralité on peut supposer que } |x| \leq |y| \text{ alors on trouve}$

$$F(x,y) = F_{|y|}(|x|) = \pi \ln \left(\frac{|x|+|y|}{2}\right)$$

10b)
$$\int_{0}^{\frac{\pi}{2}} \ln(\cos(t)) dt = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln(\cos^{2}(t)) dt = \frac{1}{2} F(1,0) = \frac{1}{2} F(0,1) = \int_{0}^{\frac{\pi}{2}} \ln(\sin(t)) dt = -\frac{\pi}{2} \ln(2)$$

PARTIE III

11a) Cette condition est licite , puisque a+b>0 ainsi donc $\rho=\frac{b-a}{b+a}$ est bien défini. On a aussi $-1=\frac{-b-a}{b+a}<\rho=\frac{b-a}{b+a}<\frac{b+a}{b+a}=1$ ou aussi $\rho\in]-1,1[$.

11b)Il est évident que $\cos\left(k\frac{\pi}{2}\right) = \begin{cases} 0 & \text{si } k = 2n+1 \\ (-1)^n & \text{si } k = 2n \end{cases}$. Comme $\rho^k \frac{\cos\left(k\frac{\pi}{2}\right)}{k} = o(\rho^k)$, la série converge

et on obtient :
$$2\sum_{k=1}^{\infty} \rho^k \frac{\cos\left(k\frac{\pi}{2}\right)}{k} = \sum_{n=1}^{\infty} \rho^{2n} \frac{(-1)^n}{n} = -\ln(1+\rho^2) = \ln\left(\frac{(a+b)^2}{2(a^2+b^2)}\right)$$

12)Il est trivial de montrer que $f(x) = \ln(a^2\cos^2(x) + b^2\sin^2(x))$ est π -périodique, ce qui prouve bien que ce choix est licite . On calcule et $f\left(\frac{\pi}{4}\right) = \ln\left(\frac{a^2+b^2}{2}\right)$.

13a) On sait que $\forall x \in \mathbb{R}$, $a^2\cos^2(x) + b^2\sin^2(x) > 0$. En appliquant les théorèmes généraux f est dérivable et $f'(x) = \frac{(b^2 - a^2)\sin(2x)}{a^2\cos^2(x) + b^2\sin^2(x)}$. Elle est même de classe \mathcal{C}^1 donc la série de Fourrier de f' converge vers f', ainsi trouvons là. Combinant les formules d'Euler on a que

$$f'(x) = \frac{2(b^2 - a^2)(e^{4ix} - 1)}{i[(a^2 - b^2)e^{4ix} + 2(a^2 + b^2)e^{2ix} + (a^2 - b^2)]} = \frac{2(1 - e^{4ix})}{i(e^{2ix} - \rho)\left(e^{2ix} - \frac{1}{\rho}\right)}$$

$$f'(x) = 2\left(\frac{1 - e^{4ix}}{i}\right)\left(\frac{1}{\rho - \frac{1}{\rho}}\right)\left(\frac{e^{-2ix}}{1 - \rho e^{-2ix}} + \frac{\rho}{1 - \rho e^{-2ix}}\right), \text{ Par quelques développements simples}$$

$$A = 2 \left(\frac{1 - e^{4ix}}{i} \right) \left(\frac{e^{-2ix}}{1 - \rho e^{-2ix}} + \frac{\rho}{1 - \rho e^{-2ix}} \right) = 2 \left(\frac{1 - e^{4ix}}{i} \right) \sum_{k=0}^{\infty} \left(\rho^k e^{-2i(k+1)x} + \rho^{k+1} e^{-2ikx} \right)$$

$$A = \frac{2}{i} \left(\rho - \frac{1}{\rho} \right) \sum_{k=1}^{\infty} \rho^k (e^{2ikx} - e^{-2ikx}) = 4 \left(\rho - \frac{1}{\rho} \right) \sum_{k=1}^{\infty} \rho^k sin(2kx) \ d'ou \ f'(x) = 4 \sum_{k=1}^{\infty} \rho^k sin(2kx)$$

Ce qui est la série de Fourrier de f'.

13b) a)Soit
$$f_k(x) = -2 \frac{\rho^k \cos(2kx)}{k}$$
, alors $f_k'(x) = 4\rho^k \sin(2kx)$. La série $g(x) = \sum_{k=1}^{\infty} f_k(x)$ converge

Simplement car $f_k(x) = o(\rho^k)$, et $\sum f_k'$ converge simplement car normalement convergente. En effet $\forall x \in \mathbb{R}, f_k'(x) \leq 4\rho^k$. Par suite g est de classe \mathcal{C}^1 et $g'(x) = \sum_{k=1}^{\infty} f_k'(x) = f'(x)$. Ainsi f = g + C ($C \in \mathbb{R}$). Ecrivons

$$f(x) = C - 2\sum_{k=1}^{\infty} \frac{\rho^k \cos(2kx)}{k} \text{, en mettant } x = \frac{\pi}{4} \text{ on } a : \ln\left(\frac{a^2 + b^2}{2}\right) = C - \ln\left(\frac{(a+b)^2}{2(a^2 + b^2)}\right). \text{ De là}$$

$$C = 2 \ln \left(\frac{a+b}{2}\right). \text{ Et la reponse est } f(x) = C = 2 \ln \left(\frac{a+b}{2}\right) - 2 \sum_{k=1}^{\infty} \frac{\rho^k \cos(2kx)}{k} \text{ (I)}$$

14a) f est π-périodique donc on a : $f(x) = \frac{a_0(f)}{2} + \sum_{n=1}^{\infty} [a_n(f)\cos(2nx) + b_n(f)\sin(2nx)] .$ Par suite ses coefficients de Fourrier sont : $\begin{cases} a_0(f) = 4\ln\left(\frac{a+b}{2}\right), a_n(f) = -2\frac{\rho^k}{k} \text{ pour } n \geq 1\\ b_n(f) = 0 \end{cases}$

14b)f étant de classe C^1 donc sa série de Fourrier est normalement convergente ainsi en peut permuter \sum et \int dans (I).Comme aussi on a $\int_0^{\frac{\pi}{2}} \cos(2kx) dx = \left[\frac{\sin(2kx)}{2k}\right]_0^{\frac{\pi}{2}} = 0$, il s'écrit donc

$$F(a,b) = \int_0^{\frac{\pi}{2}} f(x) dx = 2 \ln \left(\frac{a+b}{2}\right) \int_0^{\frac{\pi}{2}} dx - 2 \sum_{k=1}^{\infty} \int_0^{\frac{\pi}{2}} \frac{\rho^k \cos(2kx)}{k} dx = \pi \ln \left(\frac{a+b}{2}\right).$$
 Résultat qui

Est conforme au 10a)

15)D'après la formule de Parseval on est à mesure d'écrire

$$\begin{split} \frac{1}{\pi} \int_0^{\pi} f^2(x) dx &= \frac{a_0(f)^2}{4} + \frac{1}{2} \sum_{k=1}^{\infty} a_k(f)^2 = 4 \ln^2 \left(\frac{a+b}{2} \right) + 2 \sum_{k=1}^{\infty} \frac{\rho^{2k}}{k^2} = 2 \left(2 \ln^2 \left(\frac{a+b}{2} \right) + \sigma(\rho^2) \right) \\ &\int_0^{\pi} f^2(x) dx = 2 \cdot \pi \cdot \left(2 \ln^2 \left(\frac{a+b}{2} \right) + \sigma(\rho^2) \right) \end{split}$$

16a) Ecrivons $\sigma(x) = \sum_{k=1}^{\infty} u_k x^k$ avec $u_k = \frac{1}{k^2}$. $\sigma(x)$ est une série entière , d'après la règle de D'Alembert comme $\lim_{n \to \infty} \frac{u_{k+1}}{u_k} = 1$, son rayon de convergence est R=1 .En étudiant au bord du disque de convergence ,il y'a convergence en x=1 car il est donné que $\sigma(1) = \frac{\pi^2}{6}$ et en

x=-1 d'après le critère spécial des suites alternées . L'ensemble de définition de σ est :D $_{\sigma}=[-1,1].$

16b) Puisqu'il y'a convergence sur le bord du disque de convergence σ est continue sur D_{σ} .

$$16c)\sigma(-1) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} = \sum_{k=1}^{\infty} \frac{1}{4k^2} - \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} = \sum_{k=1}^{\infty} \frac{1}{2k^2} - \sum_{k=1}^{\infty} \frac{1}{k^2} = -\frac{1}{2}\sigma(1) = -\frac{\pi^2}{12}$$

$$\begin{split} 17a) \forall x \in \]0,\pi[,\lim_{n\to\infty} g_n(x) &= 4[\ln(\sin(x)]^2. \ \mathrm{Ainsi} \ \mathrm{la} \ \mathrm{suite} \ (g_n)_{n\geq 1} \ \mathrm{converge} \ \mathrm{simplement} \ \mathrm{vers} \\ \mathrm{la} \ \mathrm{fonction} \ \ g: & \begin{cases} \ \]0,\pi[\to\mathbb{R} \\ x \longmapsto 4[\ln(\sin(x)]^2 \end{cases}. \end{split}$$

17b) La fonction sin étant concave sur l'intervalle $[0,\pi]$, elle donc en dessous de ses tangentes dont la première bissectrice :sa tangente en 0.Par conséquent $\forall x \in]0,\pi[,\sin(x) \leq x]$

$$\forall n \in \mathbb{N}^*, \forall x \in \left]0, \pi [\, g_n(x) \leq [\ln(1+\sin^2(x)]^2 \leq [\ln(1+x^2)]^2 \leq 4[\ln(1+x)]^2$$

18) $(g_n)_{n\geq 1}$ est une suite de fonctions continues et intégrables sur $\left]0,\frac{\pi}{2}\right[$ convergent simplement vers g et vérifiant la condition de domination. Donc d'après le théorème de convergence dominée on a $\lim_{n\to\infty}\int_0^{\frac{\pi}{2}}g_n(x)dx=\int_0^{\frac{\pi}{2}}g(x)dx=4\int_0^{\frac{\pi}{2}}[\ln(\sin(x))]^2dx$. D'où l'existence de

$$\int_0^{\frac{\pi}{2}} [\ln(\sin(x))]^2 dx \cdot \text{En posant } x = \frac{\pi}{2} - \text{u, on trouve } J = \int_0^{\frac{\pi}{2}} [\ln(\sin(x))]^2 dx = \int_0^{\frac{\pi}{2}} [\ln(\cos(u))]^2 du$$

 $\begin{array}{l} {\rm Comme} \ 0 \leq 2 (\ln(\sin(t)) \ln(\cos(t))) \leq [\ln(\sin(t))]^2 + [\ln(\cos(t))]^2, \ {\rm on} \ a \ l'existence \ de \ K = \\ \int_0^{\frac{\pi}{2}} (\ln(\sin(t)) \ln(\cos(t))) dt. \\ {\rm Commen} \ cos(t) = c \ calculs \ ,, par \ translation \ et \ parité \ on \ a \\ \end{array}$

$$J = \int_0^{\frac{\pi}{2}} [\ln(\cos(u))]^2 du = \int_{u=v-\frac{\pi}{2}}^{\frac{\pi}{2}} = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} [\ln(\sin(x))]^2 dx = \int_0^{\frac{\pi}{2}} [\ln(\sin(x))]^2 dx = \frac{1}{2} \int_0^{\pi} [\ln(\sin(x))]^2 dx$$

Pour (a, b) =
$$(0,1)$$
 on a: $\int_0^{\pi} [\ln(\sin^2(x))]^2 dx = 4 \int_0^{\pi} [\ln(\sin(x))]^2 dx = 2 \cdot \pi \cdot (2\ln^2(2) + \sigma(1))$

On en déduit que $J = \int_0^{\frac{\pi}{2}} [\ln(\sin(t))]^2 dt = \int_0^{\frac{\pi}{2}} [\ln(\cos(t))]^2 dt = \frac{\pi}{4} \cdot \left(2\ln^2(2) + \frac{\pi^2}{6}\right)$. D'autre part :

$$L = \int_0^{\frac{\pi}{2}} \left[\ln \left(\frac{\sin(2t)}{2} \right) \right]^2 dt = \frac{1}{2} \int_0^{\pi} \left[\ln \left(\frac{\sin(t)}{2} \right) \right]^2 dt = \int_0^{\frac{\pi}{2}} [\ln(\sin(t)) + \ln(\cos t)]^2 dt = 2J + 2K$$

$$L = \frac{1}{2} \int_0^{\pi} [\ln(\sin(t))]^2 dt - \int_0^{\pi} \ln(2) \cdot \ln(\sin(t)) dt + \frac{1}{2} \int_0^{\pi} \ln^2(2) dt = \frac{\pi}{4} \cdot \left(8\ln^2(2) + \frac{\pi^2}{6} \right); \text{ après}$$

avoir vu que
$$\int_0^{\pi} \ln(\sin(t)) dt = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) dt + \int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt = -\pi \ln(2) dans le calcul.$$

$$\text{De L} = 2J + 2K \text{ soit } K = \frac{L}{2} - J, \text{ enfin } K = \int_0^{\frac{\pi}{2}} (\ln(\sin(t)) \ln(\cos(t))) dt = \frac{\pi}{4} \cdot \left(2\ln^2(2) - \frac{\pi^2}{6}\right).$$

PREMIERE EPREUVE DE MATHEMATIQUES : ISFA 2013

Partie1: intégrales impropres de référence et matrices associées

- 1) Comme $\lim_{t\to +\infty} t^{n+2}e^{-t^2}=0$ alors $t^ne^{-t^2}=_{+\infty}o\left(\frac{1}{t^2}\right)$ ainsi $\forall x\in\mathbb{R}\ t\mapsto t^ne^{-t^2}$ est intégrable sur $[x,+\infty[$ d'où la convergence de $E_n(x)=\int_x^{+\infty}t^ne^{-t^2}dt$.
- 2. *a*)En posant $u = -t : \int_{-\infty}^{0} e^{-u^2} du = -\int_{+\infty}^{0} e^{-t^2} dt = \int_{0}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$. D'après la relation de

Chasles $E_0(x) = \int_0^{+\infty} e^{-t^2} dt + \int_x^0 e^{-t^2} dt = \frac{\sqrt{\pi}}{2} + \int_x^0 e^{-t^2} dt$ or d'après le calcul précédent on trouve que $\lim_{x \to -\infty} \int_x^0 e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$ par conséquent $\lim_{x \to -\infty} E_0(x) = \sqrt{\pi}$.

- 2b) La fonction $t\mapsto e^{-t^2}$ est continue elle admet donc une primitive sur $\mathbb R$ que nous notons F. A la question 2a) nous avons trouvé que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$ ainsi F admet des limites a en $+\infty$. Ce faisant : $E_0(x) = a F(x)$ alors $E_0'(x) = -F'(x) = -e^{-x^2}$ et de là $E_0''(x) = 2xe^{-x^2}$. Ainsi on a que E_0'' est positive sur $\mathbb R_+$ et négative sur $\mathbb R_-$ et on finit par conclure sur sa concavité. $E_0(x) + E_0(-x) = \int_x^{+\infty} e^{-t^2} dt + \int_{-x}^{+\infty} e^{-t^2} dt = \int_x^{+\infty} e^{-t^2} dt = \sqrt{\pi}$, d'où le point $\Omega\left(0, \frac{\sqrt{\pi}}{2}\right)$ est centre de symétrie de E_0 .
- $3.a)E_{n+2}(x) = \int_{x}^{+\infty} t^{n+2} e^{-t^2} dt = \int_{x}^{+\infty} t^{n+1} \left(-\frac{e^{-t^2}}{2} \right)' dt = \left[-\frac{t^{n+1}e^{-t^2}}{2} \right]_{x}^{+\infty} + \frac{n+1}{2} \cdot \int_{x}^{+\infty} t^n e^{-t^2} dt ;$ après intégration par parties et encore $E_{n+2}(x) = \frac{x^{n+1}e^{-x^2}}{2} + \frac{n+1}{2} E_n(x)$ (I).
- 3.b)Par définition les fonctions E_n sont strictement positives .En mettant x=0 dans (I) on a : $\forall p \in \mathbb{N}, E_{n+2p}(0) = \frac{n+1}{2}E_{n+2p-1}(0)$ et par un télescopage produit on trouve alors

$$E_{n+2p}(0) = \left(\prod_{k=1}^{p} \frac{E_{n+2k}(0)}{E_{n+2k-2}(0)}\right) E_n(0) = \left(\prod_{k=1}^{p} \frac{n+2k-1}{2^p}\right) E_n(0) \quad (II). \text{ En posant } n=0 \text{ , alors}$$

$$E_{2p}(0) = \left(\prod_{k=1}^{p} \frac{2k-1}{2^p}\right) \frac{\sqrt{\pi}}{2} = \left(\prod_{k=1}^{p} \frac{2k(2k-1)}{2k \cdot 2^p}\right) \cdot \frac{\sqrt{\pi}}{2} = \frac{(2p)!}{p! \cdot 2^{2p}} \cdot \frac{\sqrt{\pi}}{2} = \frac{(2p)!}{p! \cdot 2^{2p+1}} \sqrt{\pi} \text{ comme voulu.}$$

3b)
$$E_1(0) = \int_0^{+\infty} t^1 e^{-t^2} dt = \int_0^{+\infty} \left(-\frac{e^{-t^2}}{2} \right)' dt = \left[-\frac{e^{-t^2}}{2} \right]_0^{+\infty} = \frac{1}{2}$$
, en prenant $n = 1$ dans (II) alors

$$E_{2p+1}(0) = \left(\prod_{k=1}^{p} \frac{2k}{2^p}\right) \cdot \frac{1}{2} = \frac{p!}{2^p} \cdot \frac{1}{2} = \frac{p!}{2}$$
 ce qui est le résultat démandé.

$$4a)M_2 = \begin{pmatrix} \frac{\sqrt{\pi}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{\pi}}{4} \end{pmatrix} \text{ et son polynôme caractéristique est } X_M(\lambda) = \lambda^2 - 3\frac{\sqrt{\pi}}{4}\lambda + \frac{\pi}{8} - \frac{1}{4} \text{ et son}$$

discriminant est $\Delta = \frac{\pi}{16} + 1$. Ainsi les valeurs propres sont $\lambda_{1,2} = \frac{3\sqrt{\pi} \pm \sqrt{\pi + 16}}{8}$ qui sont positives.

4b) $\forall i, j \in [1; n]^2, M_n[i, j] = M_n[j, i] = E_{i+j-2}(0)$ ainsi M_n est symétrique, elle est donc diagonalisable sur $\mathfrak{M}_n(\mathbb{R})$.

4c) Posons ${}^{t}Y = (a_1, a_2, ..., a_n)$ ainsi

$${}^{t}YM_{n}Y = \sum_{1 \leq i,j \leq n} a_{i}a_{j}E_{i+j-2}(0) = \int_{0}^{+\infty} \left(\sum_{1 \leq i,j \leq n} a_{i}a_{j}t^{i+j-2}e^{-t^{2}}\right)dt = \int_{0}^{+\infty} \left(\sum_{i=1}^{n} a_{i}t^{i-1}e^{-\frac{t^{2}}{2}}\right)^{2}dt$$

Ainsi ${}^t Y M_n Y \geq 0$. Ainsi pour $Y \neq 0$ alors ${}^t Y M_n Y > 0$. Et maintenant si nous prenons Y un vecteur propre de M_n associé à la valeur propre λ alors $0 < {}^t Y M_n Y = \lambda {}^t Y Y$ d'où $\lambda > 0$. On conclut que toutes les valeurs propres de M_n sont strictement positives.

Partie 2: approximations polynomiales usuelles.

1a) $\forall P \in \mathbb{R}[X], e^t - P(t) \sim_{+\infty} e^t$ par suite $(e^t - P(t))^2 e^{-t^2} \sim_{+\infty} e^{2t-t^2}$ et comme $t \mapsto e^{2t-t^2}$ est intégrable sur $[0, +\infty[$ ainsi il en est de même pou $t \mapsto (e^t - P(t))^2 e^{-t^2}$ donc l'intégrable $d(P) = \int_0^{+\infty} (e^t - P(t))^2 e^{-t^2} dt$ est intégrable.

- 1b) Pour simplifier les notations écrivons : $P_n = \{d(P), P \in \mathbb{R}_n[X]\}$ ainsi $\forall a \in P_n, a \geq 0$. P_n étant non vide et minoré il admet donc une borne inférieure d'où l'existence de u_n . Comme $A_n \subseteq A_{n+1}$, alors $\forall a \in P_n, a \geq u_{n+1}$ et par définition $u_n \geq u_{n+1}$. La suite $(u_n)_{n \in \mathbb{N}}$ est donc décroissante et minorée par 0 ;elle est donc convergente.
- 2) Courbe :ok. Il est facile de voir que les tangentes en 0 aux fonctions exp, R_2 et S_2 n'est que la première bissectrice.
- 3a)Par concavité du ln on a évidement $\forall x > -1, \ln(1+x) \le x$ à cause de la tangente en 0. Et alors $\ln\left(\frac{1}{1+x}\right) \le \frac{1}{1+x} 1 = -\frac{x}{1+x}$ soit $\frac{x}{1+x} \le \ln(1+x)$ donc $\frac{x}{1+x} \le \ln(1+x) \le x$. En prenant $x = \frac{t}{n}$ dans l'inégalité précédente on trouve $: \frac{t}{1+\frac{t}{n}} \le n \ln\left(1+\frac{t}{n}\right) \le t$.

3b) De $n \ln \left(1 + \frac{t}{n}\right) \le t$ il vient $\left(1 + \frac{t}{n}\right)^n \le e^t \text{soit } e^t - \left(1 + \frac{t}{n}\right)^n \ge 0$ (a). D'autre part il vient : $n \ln \left(1 + \frac{t}{n}\right) \ge \frac{t}{1 + \frac{t}{n}} \ge t \left(1 - \frac{t}{n}\right) = t - \frac{t^2}{n} \ge t + \ln \left(1 - \frac{t^2}{n}\right) \operatorname{donc} \left(1 + \frac{t}{n}\right)^n \ge e^t \left(1 - \frac{t^2}{n}\right)$. Ainsi on retrouve $e^t - \left(1 + \frac{t}{n}\right)^n \le \frac{t^2 e^t}{n}$ (b). En combinant (a) et (b) on a notre résultat $0 \le e^t - \left(1 + \frac{t}{n}\right)^n \le \frac{t^2 e^t}{n}$.

3c)En exploitant 3b) on trouve $0 \le d(R_n) \le \frac{A}{n^2}$ avec $A = \int_0^{+\infty} t^4 e^{2t-t^2} dt$. En appliquant le théorème des gendarmes $\lim_{n \to +\infty} d(R_n) = 0$.

3d) L'idée est de montrer que $R_n \leq S_n$ sur \mathbb{R}_+ . Maintenant en éclatant R_n il suffit de montrer que $\forall k \in [0,n]$; $\frac{C_n^k}{n^k} \leq \frac{1}{k!}$ Soit $\forall k \in [0,n]$, $C_n^k \leq \frac{n^k}{k!}$ Chose qui sera démontrée par récurrence. Les cas n=0,1,2 se vérifient à la main. Prenons un $n \in \mathbb{N}$ pour laquelle l'hypothèse de récurrence est vraie. En remarquant que $C_{n+1}^{k+1} = \frac{k+1}{n+1} C_n^k$ il vient $\forall k \in [0,n]$, $C_{n+1}^{k+1} \leq \frac{k+1}{n+1} \frac{n^k}{k!}$ Il suffit alors de démontrer que $\frac{k+1}{n+1} \frac{n^k}{k!} \leq \frac{(n+1)^{k+1}}{(k+1)!}$ Ce qui est équivalent à $(k+1)^2 \leq \frac{(n+1)^{k+2}}{n^k}$ et même évident. Le

Cas k=0 étant trivial on achève notre récurrence .On a même mieux $R_n \leq S_n \leq exp$ ce qui donne sans controverse $0 \leq u_n \leq d(S_n) \leq d(R_n)$ d'où $\lim_{n \to +\infty} d(R_n) = \lim_{n \to +\infty} u_n = 0$.

4a) D'après l'inégalité de Taylor-Lagrange on a $\forall n \geq 2, \forall x \geq 0, |e^x - S_{n-1}(x)| \leq \frac{x^n}{n!} e^x$ ainsi $d(S_{n-1}) \leq \frac{1}{(n!)^2} \int_0^{+\infty} t^{2n} e^{2t-t^2} dt$ (c), aussi en remarquant que $t^{2n} e^{2t-t^2} = \left(te^{\frac{-2t}{n}}\right)^{2n} e^{6t-t^2}$ et en étudiant $\varphi(t) = te^{\frac{-2t}{n}}$ on trouve $\max_{\mathbb{R}_+} \varphi = \varphi\left(\frac{n}{2}\right) = \frac{n}{2} e^{-1}$. En combinant ces deux idées à l'inégalité (c) on trouve $d(S_{n-1}) \leq \frac{1}{(n!)^2} \int_0^{+\infty} t^{2n} e^{2t-t^2} dt \leq \frac{\left(\frac{n}{2}\right)^{2n} e^{-2n}}{(n!)^2} \int_0^{+\infty} e^{6t-t^2} dt$

4b) D'après la formule de Stirling on a $n! \sim \left(\frac{n}{e}\right)^{2n} \sqrt{2\pi n}$ ce qui implique que $\frac{\left(\frac{n}{2}\right)^{2n} e^{-2n}}{(n!)^2} \sim \frac{2^{-2(n-1)}}{8\pi n} \text{ d'où } d(S_{n-1}) = o\left(2^{-2(n-1)}\right) \text{ ou en ré indiçant } d(S_n) = o(2^{-2n}).$

Partie 3: approximations polynomiales optimales

1.a) Nous connaissons le produit scalaire φ_1 : $\begin{cases} E^2(\mathbb{R},\mathbb{R}) \to \mathbb{R} \\ (f,g) \mapsto \int_0^{+\infty} f(t)g(t)e^{-t^2}dt \end{cases}$ et la forme quadratique définie positive qui lui est associée q_1 : $\begin{cases} E(\mathbb{R},\mathbb{R}) \to \mathbb{R} \\ f \mapsto \int_0^{+\infty} f^2(t)e^{-t^2}dt \end{cases}$ Ici $E(\mathbb{R},\mathbb{R})$ désigne l'ensemble des fonctions f telles que $\int_0^{+\infty} f^2(t)e^{-t^2}dt \text{ converge. De là il est évident que } q: (x_0, x_1, \dots, x_n) \mapsto \int_0^{+\infty} (\sum_{k=0}^n x_k t^k)^2 e^{-t^2}dt \text{ est une forme quadratique définie positive sur } \mathbb{R}^{n+1} \text{ comme étant isomorphe à la restriction de } q_1 \text{ sur } \mathbb{R}_n[X].$

1.b) Pour alléger les notations , notons $X=(x_0,x_1,\dots,x_n)$ et $P=\sum_{k=0}^n x_k t^k$ et $\|X\|_2=\sqrt{\sum_{k=0}^n x_k^2}$

Ainsi $\phi_n(X) = q_1(exp - P) = q_1(ex) - 2\varphi_1(exp, P) + q_1(P)$. D'après l'inégalité de Cauchy-Schwarz $\varphi_1(exp, P) \leq \sqrt{q_1(ex)q_1(P)}$ ainsi $\phi_n(X) \geq \left(\sqrt{q_1(P)} - \sqrt{q_1(ex)}\right)^2$. q étant une forme quadratique définie positive en dimension finie il existe une base $\mathcal B$ dans laquelle on peut écrire $q_1(P) = q(X) = \sum_{k=0}^n \lambda_k a_k^2$ où $(a_0, a_1, ..., a_n)$ sont les coordonnées de X dans $\mathcal B$. Maintenant comme $\|X\|_2$ tend vers $+\infty$ alors l'un des x_i et alors l'un des a_i tend vers $+\infty$. Par conséquent $q_1(P)$ tend vers $+\infty$ car les λ_k sont strictement positives. Ainsi par encadrement $p_1(X)$ tend vers $p_2(X)$ tend vers $p_3(X)$ tend vers $p_4(X)$ tend vers $p_4(X)$

- 1.c) $\mathbb{R}_n[X]$ est connexe par arcs car convexe et fermé car en dimension finie. Ainsi comme ϕ_n est continue alors $\phi_n(\mathbb{R}_n[X])$ est un intervalle fermé. D'après la question 1b) cet intervalle est non majoré ainsi $\phi_n(\mathbb{R}_n[X]) = [c, +\infty[$ où $c = \inf(\phi_n(\mathbb{R}_n[X])) = u_n$ soit $\phi_n(\mathbb{R}_n[X]) = [u_n, +\infty[$. On en déduit $\exists P_n \in \mathbb{R}_n[X], d(P_n) = u_n$. Ici $P_n = \sum_{k=0}^n x_k t^k$ où $(x_0, x_1, ..., x_n) = \phi_n^{-1}(u_n)$.
- 2) Prenons P=A un polynôme constant .On a : $d(P)=\int_0^{+\infty}(e^t-A)^2e^{-t^2}dt$ est un polynôme du second degré : $d(P)=\alpha A^2-2\beta A+\gamma=R(A)$, avec $\gamma=\int_0^{+\infty}e^{2t-t^2}dt=\int_0^{+\infty}e^{1-(t-1)^2}dt=e^1\int_{-1}^{+\infty}e^{-t^2}dt=\exp(1)E_0(-1)$, $\beta=\int_0^{+\infty}e^{t-t^2}dt=\int_0^{+\infty}e^{\frac{1}{4}-\left(t-\frac{1}{2}\right)^2}dt=e^{\frac{1}{4}}\int_{-\frac{1}{4}}^{+\infty}e^{-t^2}dt=\exp\left(\frac{1}{4}\right)E_0\left(-\frac{1}{4}\right)$ et $\alpha=E_0(0)$. Cette fonction polynômiale atteint son minimum en $\alpha=\frac{\beta}{\alpha}$ et $\inf(S(\alpha))=\gamma-\frac{\beta^2}{\alpha}$. maintenant on répond et on a $P_0=\frac{\exp\left(\frac{1}{4}\right)E_0\left(-\frac{1}{4}\right)}{E_0(0)}$ et $u_0=\exp(1)E_0(-1)-\frac{\exp\left(\frac{1}{2}\right)\left(E_0\left(-\frac{1}{2}\right)\right)^2}{E_0(0)}$.
- 3a) Il est facile de voir que chaque fonction partielle vérifie les hypothèses de dérivation sous le signe ainsi chaque dérivée partielle est continue d'où ϕ_n est de classe \mathcal{C}^1 sur \mathbb{R}^{n+1} . En plus

$$\frac{\partial \phi_n}{\partial x_i}(x_0, x_1, \dots, x_n) = \int_0^{+\infty} \frac{\partial \left(e^t - \left(\sum_{k=0}^n x_k t^k\right)\right)^2}{\partial x_i} e^{-t^2} dt = -2 \int_0^{+\infty} t^i \left(e^t - \left(\sum_{k=0}^n x_k t^k\right)\right) e^{-t^2} dt$$

- 3b)Soit $(x_0, x_1, ..., x_n)$ un point critique de ϕ_n .Alors $\forall 1 \leq i \leq n+1, \frac{\partial \phi_n}{\partial x_{i-1}}(x_0, x_1, ..., x_n) = 0$ et $\sum_{k=0}^n \int_0^{+\infty} x_k t^{i+k-1} e^{-t^2} dt = \int_0^{+\infty} t^{i-1} e^{t-t^2} dt = \sum_{k=1}^{n+1} \int_0^{+\infty} x_{k-1} t^{i+k-2} e^{-t^2} dt$ ce qu'on réécrit comme $\forall 1 \leq i \leq n+1, \sum_{k=1}^{n+1} M_{n+1}[i,k]x_{k-1} = \int_0^{+\infty} t^{i-1} e^{t-t^2} dt$ (d); ce qui est un système de Cramer de matrice M_{n+1} . ϕ_n admet donc un unique point critique solution d'un système de Cramer de matrice M_{n+1} .
- 3c) En considérant l'espace normé $(\mathbb{R}^{n+1}; \sqrt{q(.)})$, \mathbb{R}^{n+1} est un ouvert ainsi ϕ_n atteint son minimum en un point intérieur qui est donc un point critique. Comme ϕ_n admet un unique point critique ; elle admet son minimum en un unique vecteur de \mathbb{R}^{n+1} . En remontant avec les polynômes $\exists ! P_n \in \mathbb{R}_n[X]$, $d(P_n) = u_n$.
- 3d)
la relation (d) de la question 3b) montre que A_n vérifie $M_{n+1}A_n=B$. Et si $B=(b_0,b_1,\ldots,b_n)$

On a
$$\forall 1 \le i \le n+1$$
, $b_i = \int_0^{+\infty} t^{i-1} e^{t-t^2} dt = \int_0^{+\infty} t^{i-1} e^{\frac{1}{4} - \left(t - \frac{1}{2}\right)^2} dt = e^{\frac{1}{4}} \int_{-\frac{1}{2}}^{+\infty} \left(t + \frac{1}{2}\right)^{i-1} e^{-t^2} dt$

$$b_i = e^{\frac{1}{4}} \sum_{k=0}^{i-1} \binom{i-1}{k} \binom{1}{2}^{i-1-k} \int_{-\frac{1}{2}}^{+\infty} t^k e^{-t^2} dt = e^{\frac{1}{4}} \sum_{k=0}^{i-1} \binom{i-1}{k} \binom{1}{2}^{i-1-k} E_k \left(-\frac{1}{2}\right). \text{ Et } A_n = M_{n+1}^{-1} B$$

avec B défini comme dans l'énoncé.

Partie 4 : développement en série de polynômes orthogonaux.

1a) Nous allons montrer que la somme $\mathcal{P}+\mathcal{Q}$ est directe. Considérons $f\in\mathcal{P}\cap\mathcal{Q}$, on peut écrire $f=\sum_{k=1}^i\alpha_ke^{n_kx}=\sum_{k=1}^j\beta_kx^{m_k}$ avec $(n_k)_{1\leq k\leq i}$ et $(m_k)_{1\leq k\leq j}$ des suites croissantes. Ainsi $e^{-n_ix}f=\sum_{k=1}^i\alpha_ke^{(n_k-n_i)x}=\sum_{k=1}^j\beta_ke^{-n_ix}x^{m_k}$ et en faisant tendre vers $+\infty$,on obtient $\lim_{x\to+\infty}e^{-n_ix}f=\alpha_i=0$. Et ainsi de suite on obtient que $\forall 1\leq k\leq i, \alpha_k=0$,soit f=0. De là on tire que $\mathcal{P}\cap\mathcal{Q}=\{0\}$:la somme est alors directe.

1b) \mathcal{E} est un sous espace vectoriel de $E(\mathbb{R}, \mathbb{R})$ ainsi $b = \varphi_{1|\mathcal{E}}$ est un produit scalaire.

- 1c) En prenant par exemple $f(t) = e^{t^2}$ et g(t) = 1 des fonctions de \mathcal{C} , on ne peut pas calculer b(f,g).
- 2). On construit par récurrence sur N une suite de polynômes $(U_n)_{0 \le n \le N}$ à partir de la base canonique par le procédé de Schmidt. On prend tout simplement $U_0=1$ pour N=0. Et maintenant supposons le résultat établi pour un $N \in \mathbb{N}$, pour la suite on prend

$$U_{N+1} = x^{N+1} - \sum_{k=0}^{N} \frac{b(x^{N+1}, U_k)}{\|U_k\|^2} U_k; \text{comme } \forall k \le N, \deg(U_k) = k \text{ alors } \deg(U_{N+1}) = N+1 \text{ et}$$

 $U_{N+1} \text{ est unitaire .En plus } \forall k \leq N : \frac{b(U_k, U_{N+1})}{b(U_k, U_{N+1})} = b(x^{N+1}, U_{N+1}) - \frac{b(x^{N+1}, U_{N+1})}{\|U_k\|^2} \|U_k\|^2 = 0.$

On finit par achever la récurrence et en étendant on construit une famille infinie $(U_n)_{n\in\mathbb{N}}$ qui satisfait les conditions de l'énoncé. Maintenant montrons l'unicité de cette suite, prenons $(V_n)_{n\in\mathbb{N}}$ une autre suite de polynômes solution. On va montrer par récurrence sur $n\in\mathbb{N}$ que $\forall k\leq n; U_k=V_k$. Ceci est évident pour n=0 car $U_0=V_0=1$. En la supposant vrai pour $n\in\mathbb{N}$, on a alors $\forall k\leq n: b(U_k,U_{n+1}-V_{n+1})=0$ or $(U_k)_{0\leq k\leq n}$ est une base de $\mathbb{R}_n[X]$ et $U_{n+1}-V_{n+1}\in\mathbb{R}_n[X]$ ainsi $U_{n+1}-V_{n+1}=0$ soit $U_{n+1}=V_{n+1}$. Ceci achève la récurrence et on alors l'unicité.

3.a) P_n est le projeté orthogonal de exp $\sup_n[X]$ au sens du produit scalaire b(.,.). Et comme $(H_k)_{0 \le k \le n}$ est une base orthonormée de $\mathbb{R}_n[X]$, par les formules de projection on trouve

$$P_n = \sum_{k=0}^n b(H_k, \exp) H_k.$$

3.b) On sait que les sommes partielles de cette série vérifient : $P_n = \sum_{k=0}^n c_k H_k$, ainsi il suffit de montrer que la suite $(P_n)_{n\in\mathbb{N}}$ converge vers exp. En effet $\|exp - P_k\|^2 = u_k$ donc $\lim_{n\to+\infty} \|exp - P_k\| = 0$ et on conclut que $\sum_{k\geq 0} c_k H_k$ converge et sa somme est la fonction exponentielle.

- 3c) En remarquant que $\sum_{n=0}^N c_n^2 = \left\|\sum_{n=0}^N c_n H_n\right\|^2$ et que $\sum_{n\geq 0} c_n H_n$ converge vers exp dans $(\mathcal{E}, \| \ \|)$ on voit que $\sum_{n\geq 0} c_n^2$ converge et sa somme est $\sum_{n=0}^{+\infty} c_n^2 = \|exp\|^2 = \int_0^{+\infty} e^{2t-t^2} dt$. D'après la question 1c) de la partie 3 on trouve $\sum_{n=0}^{+\infty} c_n^2 = \exp(1) E_0(-1)$.
- 3d) On peut aussi écrire que $c_n = \frac{\|exp\|^2 + \|H_n\|^2 \|exp P_k\|^2}{2} \ge \frac{\|exp\|^2 \|exp P_k\|^2}{2}$. En prenant un nombre arbitraire ε vérifiant $0 < \varepsilon < \|exp\|^2$; $\exists N \in \mathbb{N}, \left(n > N \Rightarrow c_n > \frac{\varepsilon}{2}\right)$ car $\lim_{n \to +\infty} \|exp P_k\| = 0. \ \sum_{n \ge 0} c_n \ \text{n'est pas convergente}.$

*DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A:ISFA 2013

PARTIE I

- 1.a) Par définition de f_T , on a que $\forall k \in N_p$, $\forall t \in K$, $f_T^{(k)}(t) = f^{(k)}(t+T)$; puisque f est de classe \mathcal{C}^p on en déduit de l'égalité précédente que $\forall k \in N_p$, $f_T^{(k)}$ est continue d'où f_T est de classe \mathcal{C}^p . En particulier $\forall t \in K$, $f_T^{(p)}(t) = f^{(p)}(t+T) = (f^{(p)})_T(t)$ ainsi $(f_T)^{(p)} = (f^{(p)})_T$.
- 1.b) On a $(f_T)^{(p)} = (f^{(p)})_T$ et si f est T-périodique alors $(f)^{(p)} = (f^{(p)})_T$ par conséquent $(f)^{(p)}$ est T-périodique.
- 2) Soit λ une valeur propre de D et f un vecteur propre associé à λ . On a alors l'équation différentielle $f' = \lambda f$ et la solution de cette équation est $Vect(F_{\lambda})$ où $F_{\lambda}: \lambda \mapsto e^{\lambda t}$. Ainsi tout élément λ de \mathbb{R} est valeur propre de D avec pour vecteurs propres associés $Vect(F_{\lambda})$.

PARTIE II

- 3) Soit y un élément de S. On a donc $y^{(n)} = -\frac{1}{\alpha_n} \left(\sum_{k=0}^{n-1} \alpha_k y^{(k)} \right)$, à partie de cette égalité nous voyons que si y est de classe \mathcal{C}^{n+p} alors y est de classe \mathcal{C}^{n+p+1} . Le cas fondamental p=0 étant vrai on vient de montrer par récurrence que $\forall k\geq n, y$ est de classe \mathcal{C}^k d'où y est de classe \mathcal{C}^∞ . Maintenant l'équation différentielle (E) étant singulière alors $\dim(S)=n$. En plus on a que $\forall k\in \square_n^*; \sum_{p=0}^n \alpha_p \phi_k^{(p)} = \left(\sum_{p=0}^n \alpha_p r_k^p\right) \phi_k = 0$ donc la famille $(\phi_k)_{1\leq k\leq n}$ est ensemble de vecteurs solutions de (E), aussi cette famille est libre car famille de vecteurs propres de l'endomorphisme D. S étant de dimension n alors $(\phi_k)_{1\leq k\leq n}$ en est une base. D'où $S=\bigoplus_{k=1}^n S_k$
- 4) Soit $f \in S$; $\exists (\lambda_k)_{1 \le k \le n} \in K^n$, $f = \sum_{k=0}^n \lambda_k \phi_k$ donc $p_k(f) = \lambda_k \phi_k$ pour un $k \in N_n^*$. En remplaçant f par f_T on $p_k(f_T) = \lambda_k (\phi_k)_T$ car $f_T = \sum_{k=0}^n \lambda_k (\phi_k)_T$. Comme $p_k(f) = \lambda_k \phi_k$ on en déduit que $(p_k(f))_T = \lambda_k (\phi_k)_T$ d'où $p_k(f_T) = (p_k(f))_T$.