1 Introduction

The following is a collection of synonyms for various operations in the computer algebra systems Axiom, Derive, GAP, Gmp, DoCon, Macsyma, Magnus, Maxima, Maple, Mathematica, MuPAD, Octave, Pari, Reduce, Scilab, Sumit and Yacas. This collection does not attempt to be comprehensive, but hopefully it will be useful in giving an indication of how to translate between the syntaxes used by the different systems in many common situations. Note that a blank entry means either (a) that there may be an exact translation of a particular operation for the indicated system, but we don't know what it is or (b) there is no exact translation but it may still be possible to work around this lack with a related functionality.

While commercial systems are not provided on this CD the intent of the Rosetta effort is to make it possible for experienced Computer Algebra users to experiment with other systems. Thus the commands for commercial systems are included to allow users of those systems to translate.

Some of these systems are special purpose and do not support a lot of the functionality of the more general purpose systems. Where they do support an interpreter the commands are provided.

Originally written by Michael Wester. Modified for Rosetta by Timothy Daly, Alexander Hulpke (GAP).

2 System availability

System	License	Status (May 2002)	Web Location
Axiom	BSD	available	http://www.aldor.org
Axiom	open source	pending	http://home.earthlink.net/jgg964/axiom.html
Derive	commercial	available	http://www.mathware.com
DoCon	open source	available	http://www.haskell.org/docon
GAP	GPL	Rosetta	http://www.gap-system.org/ gap
Gmp	GPL	Rosetta	http://www.swox.com/gmp
Macsyma	commercial	dead	unavailable
Magnus	GPL	Rosetta	http://sourceforge.net/projects/magnus
Maxima	GPL	Rosetta	http://www.ma.utexas.edu/maxima.html
Maple	commercial	available	http://www.maplesoft.com
Mathematica	commercial	available	http://www.wolfram.com
MuPAD	commercial	available	http://www.mupad.de
Octave	GPL	Rosetta	http://www.octave.org
Pari	GPL	Rosetta	http://www.parigp-home.de
Reduce	commercial	available	http://www.zib.de/Symbolik/reduce
Scilab	Scilab	available	http://www-rocq.inria.fr/scilab
Sumit		available	http://www-sop.inria.fr/cafe/soft-f.html
Yacas	GPL	available	http://yacas.sourceforge.net

System	Type	Interpreted or Compiled
Axiom	General Purpose	both
Derive	General Purpose	
DoCon	General Purpose	Interpreted in Haskell
GAP	Group Theory	
Gmp	arb. prec. arithmetic	
Macsyma	General Purpose	
Magnus	Infinite Group Theory	
Maxima	General Purpose	
Maple	General Purpose	
Mathematica	General Purpose	
MuPAD	General Purpose	
Octave	Numerical Computing	
Pari	Number Theory	
Reduce	General Purpose	
Scilab	General Purpose	
Sumit	Functional Equations	
Yacas	General Purpose	

3 Programming and Miscellaneous

	Unix/Microsoft user initialis	zation file
Axiom	~/axiom.input	
GAP	~/.gaprc	GAP.RC
Gmp		
DoCon		
Derive		derive.ini
Macsyma	~/macsyma-init.macsyma	mac-init.mac
Magnus		
Maxima	~/macsyma-init.macsyma	mac-init.mac
Maple	~/.mapleinit	maplev5.ini
Mathematica	~/init.m	init.m
MuPAD	~/.mupadinit	$\mbox{\tt mupad}\mbox{\tt bin}\mbox{\tt userinit.mu}$
Octave		
Pari		
Reduce	~/.reducerc	reduce.rc
Scilab		
Sumit		
Yacas		

	Describe keywor	rd	Find keyw	ords con	taining pat	tern
Axiom)what ope	rations	pattern	
Derive						
DoCon						
GAP	?keyword		??keyword	l		
Gmp						
Macsyma	describe("key	word")\$	apropos('	'patteri	n");	
Magnus						
Maxima	describe("key	word")\$	apropos('		n");	
Maple	?keyword		?pattern	1		
Mathematica	?keyword		?*patterr	1*		
MuPAD	?keyword		?*patterr	1*		
Octave	help -i keywo	rd				
Pari						
Reduce						
Scilab						
Sumit						
Yacas						
	ı					
		- .		Prev.	Case	Variables
	Comment		tinuation	expr.	sensitive	assumed
Axiom	comment		CR>input	%	Yes	real
Derive	"comment"	input ~	<cr>input</cr>		No	real
DoCon		. \		_		_
GAP	# comment	input\<	CR>input	last	Yes	no assumption
Gmp			.	0.4		_
Macsyma	/* comment */	input <c< td=""><td>R>input;</td><td>%</td><td>No</td><td>real</td></c<>	R>input;	%	No	real
Magnus			.	0.4		_
Maxima	/* comment */	-	-	%	No	real
Maple	# comment	-	R>input;	%	Yes	complex
Mathematica	(* comment *)	1		%	Yes	complex
MuPAD	# comment #	input <c< td=""><td>R>input;</td><td>%</td><td>Yes</td><td>complex</td></c<>	R>input;	%	Yes	complex
Octave	##				Yes	
Pari			. .			
Reduce	% comment	input <c< td=""><td>R>input;</td><td>WS</td><td>No</td><td>complex</td></c<>	R>input;	WS	No	complex
Scilab						
Sumit Yacas						
1 dCdS						

¹Only if the pattern is not a keyword and then the matches are simplistic.

	Load a f	ile	Time a command	Quit
Axiom)read "	file")quiet)set messages time on)quit
Derive	[Transf	er Load Derive	e]	[Quit]
DoCon				
GAP	Read("f	ile");	<pre>time; (also see Runtime();)</pre>	quit;
Gmp				
Macsyma	load("f	ile")\$	showtime: all\$	quit();
Magnus				
Maxima	load("f		showtime: all\$	quit();
Maple	read("f		<pre>readlib(showtime): on;</pre>	quit
Mathematica	0<< fil	е	Timing[command]	Quit[]
MuPAD	read("f	ile"):	<pre>time(command);</pre>	quit
Octave	load fi	le	<pre>tic(); cmd ; toc()</pre>	quit or exit
Pari				
Reduce	in "fil	e"\$	on time;	quit;
Scilab				quit
Sumit				
Yacas				
	1			
	Display	Suppress		
	output	output	Substitution: $f(x,y) \to f(z,w)$ subst(f(x, y), [x = z, y = w	
Axiom	input	<pre>input;</pre>		7])
Derive	input	var:= input	[Manage Substitute]	
DoCon				
GAP	input;	<pre>input;;</pre>	$Value(f,[x,y],[z,w]);^2$	
Gmp			. (5	
Macsyma	input;	input\$	subst([x = z, y = w], f(x, y))	7));
Magnus				
Maxima	input;	input\$	subst([x = z, y = w], f(x, y))	
Maple	input;	input:	$subs({x = z, y = w}, f(x, y)$);
Mathematica	input	<pre>input;</pre>	$f[x, y] /. \{x -> z, y -> w\}$	
MuPAD	input;	input:	subs(f(x, y), [x = z, y = w]);
Octave	input	<pre>input;</pre>		
Pari			. ((
Reduce	input;	input\$	$sub({x = z, y = w}, f(x, y))$;
Scilab				
Sumit				
Yacas				

	Set	List	Matrix	
Axiom	set [1, 2]	[1, 2]	matrix(@[[1,	2],[3, 4]])
Derive	{1, 2}	[1, 2]	@[[1,2], [3,4	.]]
DoCon				
GAP	Set([1,2])	[1, 2]	0[[1,2], [3,4	.]] ³
Gmp				
Macsyma	[1, 2]	[1, 2]	matrix([1, 2]	, [3, 4])
Magnus				
Maxima	[1, 2]	[1, 2]	matrix([1, 2]	
Maple	{1, 2}	[1, 2]	matrix(@[[1,	2], [3, 4]])
Mathematica	{1, 2}	$\{1, 2\}$	$\{\{1, 2\}, \{3,$	4}}
MuPAD	{1, 2}	[1, 2]	<pre>export(Dom):</pre>	$ ext{export(linalg)}:$
			matrix:= Expr	ressionField(normal)):
			matrix(@[[1,	2], [3, 4]])
Octave				
Pari				
Reduce	{1, 2}	$\{1, 2\}$	mat((1, 2), ((3, 4))
Scilab		list(1,2)	A=[1,2;3,4]	
Sumit				
Yacas				
	l 5 0		3.5	T 1 11
		List element	Matrix element	Length of a list
Axiom	x = 0	1 . 2	m(2, 3)	#1
Derive	x = 0	1 SUB 2	m SUB 2 SUB 3	DIMENSION(1)
DoCon	_	- 5-3	5-7 5-7	- (-)
GAP	x=0	1[2]	m[2][3]	Length(1)
Gmp		7 [0]	FO 07	7 (7)
Macsyma	x = 0	1[2]	m[2, 3]	length(1)
Magnus		7 [0]	FO 07	7 (7)
Maxima	x = 0	1[2]	m[2, 3]	length(1)
Maple	x = 0	1[2]	m[2, 3]	nops(1)
Mathematica	x == 0	10[[2]]	m@[[2, 3]]	Length[1]
MuPAD	x = 0	1[2]	m[2, 3]	nops(1)
Octave				
Pari		. (7 - 0)	(0 0)	7 (7)
Reduce	x = 0	part(1, 2)	m(2, 3)	length(1)
Scilab		1(2)		
Sumit				
Yacas				

	Prepend/append an eleme	ent to a list	Append two lists
Axiom	cons(e, 1)	concat(1, e)	append(11, 12)
Derive	APPEND([e], 1)	APPEND(1, [e])	APPEND(11, 12)
DoCon			
GAP	Concatenation([e],1)	Add(1,e)	Append(11, 12)
Gmp			
Macsyma	cons(e, 1)	endcons(e, 1)	append(11, 12)
Magnus			
Maxima	cons(e, 1)	<pre>endcons(e, 1)</pre>	append(11, 12)
Maple	[e, op(1)]	[op(1), e]	[op(11), op(12)]
Mathematica	Prepend[1, e]	Append[1, e]	Join[11, 12]
MuPAD	[e, op(1)]	append(1, e)	11 . 12
Octave	_		
Pari			
Reduce	e . 1	append(1, e)	append(11, 12)
Scilab			
Sumit			
Yacas			
	!		
	Matrix column dimension		to a column vector
Axiom	ncols(m)	transpose(matr	rix([1]))
Derive	DIMENSION(m SUB 1)	[1]`	
DoCon	5.7		
GAP	Length(mat[1])	objects are ident	cical
Gmp			
Macsyma	$\mathtt{mat}_{\mathtt{n}}\mathtt{ncols}(\mathtt{m})$	transpose(matr	rix(1))
Magnus		,	
Maxima	mat_ncols(m)	transpose(matr	
Maple	linalg[coldim](m)		ose](matrix([1]))
Mathematica	Dimensions[m]@[[2]]	Transpose [$\{1\}$]	
MuPAD	linalg::ncols(m)	transpose(matr	rix([l])) *
Octave			
Pari			
Reduce	<pre>load_package(linalg)\$</pre>	matrix v(lengt	
	column_dim(m)	for i:=1:lengt	
		v(i, 1):=	<pre>part(1, i)</pre>
Scilab			
Sumit			
Yacas			

⁴See the definition of matrix above.

	Conve	rt a colun	nn vect	or int	o a list	-	
Axiom		1) for					
Derive	v` SU						
DoCon							
GAP	object	s are iden	tical				
Gmp							
Macsyma	part(transpos	e(v),	1)			
Magnus	_	-					
Maxima	<pre>part(transpose(v), 1)</pre>						
Maple	<pre>op(convert(linalg[transpose](v), listlist))</pre>						
Mathematica	Flatten[v]						
MuPAD	[op(v)]					
Octave							
Pari							
Reduce	load_	package(linalg	()\$			
	for i	:=1:row_	dim(v)	col	lect(v	(i, 1))	
Scilab							
Sumit							
Yacas							
	True	False	And	Or	Not	Equal	Not equal
Axiom	true	false	and	or	not	= Equal	~=
Derive	TRUE	FALSE	AND	OR	NOT	=	/=
DoCon	IIIOL	LALOL	AND	UIL	NOI		, –
GAP	true	${ t false}^5$	and	or	not	=	<>
Gmp	orac	14100	ana	01	1100		•
Macsyma	true	false	and	or	not	=	#
Magnus	02.00						
Maxima	true	false	and	or	not	=	#
Maple	true	false	and	or	not	=	<>
Mathematica	True	False	&&	11	!	==	!=
MuPAD	true	false	and	or	not	=	<>
Octave							
Pari							
Reduce	t	nil	and	or	not	=	neq
Scilab	%t	%f					•
Sumit							
Yacas							

	If+then+else statements	Strings (concatenated)
Axiom	if _ then _ else if _ then _ el	
Derive	IF(_, _, IF(_, _, _))	"xy"
DoCon	1 (-, -, 1 (-, -, -/)	хy
GAP	if _ then _ elif _ then _ else	fi Concetenation (Harl Harl)
GMP	II _ then _ elli _ then _ else	fi Concatenation("x","y")
Macsyma	if the classif then cl	
•	if _ then _ else if _ then _ el	se _ concat("x", "y")
Magnus Maxima	if _ then _ else if _ then _ el	se _ concat("x", "y")
		<u> </u>
Maple Mathematica	if _ then _ elif _ then _ else	_ 11
MuPAD	If[_, _, If[_, _, _]]	· ·
MUPAD	if _ then _ elif _ then _ else end_if	_ "x" . "y"
Octave		
Pari		
Reduce	if _ then _ else if _ then _ el	se _ "xy" or mkid(x, y)
Scilab		, , , , , , , , , , , , , , , , , , ,
Sumit		
Yacas		
	ı	
	Simple loop and Block	Generate the list $[1, 2, \ldots, n]$
Axiom	for i in 1n repeat (x; y)	
Derive		
Derive	VECTOR([x, y], i, 1, n)	[f(i) for i in 1n] VECTOR(f(i), i, 1, n)
DoCon	VECTOR([x, y], i, 1, n)	
	<pre>VECTOR([x, y], i, 1, n) for i in [1n] do _ od;</pre>	
DoCon GAP Gmp	for i in [1n] do _ od;	VECTOR(f(i), i, 1, n) [1n] or [1,2n]
DoCon GAP	·	VECTOR(f(i), i, 1, n)
DoCon GAP Gmp Macsyma Magnus	for i in [1n] do _ od; for i:1 thru n do (x, y);	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n);</pre>
DoCon GAP Gmp Macsyma Magnus Maxima	for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y);	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n);</pre>
DoCon GAP Gmp Macsyma Magnus	for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od;	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n];</pre>
DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica	for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}]	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n]; Table[f[i], {i, 1, n}]</pre>
DoCon GAP Gmp Macsyma Magnus Maxima Maple	for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n];</pre>
DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD	for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}]	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n]; Table[f[i], {i, 1, n}]</pre>
DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave	for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n]; Table[f[i], {i, 1, n}]</pre>
DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari	<pre>for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y end_for;</pre>	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n]; Table[f[i], {i, 1, n}] [f(i) \$ i = 1n];</pre>
DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n]; Table[f[i], {i, 1, n}] [f(i) \$ i = 1n];</pre>
DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce Scilab	<pre>for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y end_for;</pre>	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n]; Table[f[i], {i, 1, n}] [f(i) \$ i = 1n];</pre>
DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	<pre>for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y end_for;</pre>	<pre>VECTOR(f(i), i, 1, n) [1n] or [1,2n] makelist(f(i), i, 1, n); makelist(f(i), i, 1, n); [f(i) \$ i = 1n]; Table[f[i], {i, 1, n}] [f(i) \$ i = 1n];</pre>

Axiom for x in [2, 3, 5] while x**2 < 10 repeat output(x) Derive DoCon GAP for x in [2, 3, 5] do while x^2<10 do Print(x);od;od;
DoCon
GAP for x in [2, 3, 5] do while $x^2 \le 10$ do Print(x):od:od:
5
Gmp
Macsyma for x in [2, 3, 5] while $x^2 < 10$ do print(x)\$
Magnus
Maxima for x in [2, 3, 5] while $x^2 < 10$ do print(x)\$
Maple for x in $[2, 3, 5]$ while $x^2 < 10$ do print(x) od:
Mathematica For $[1 = \{2, 3, 5\}, 1 != \{\} \&\& 10[[1]]^2 < 10,$
<pre>1 = Rest[1], Print[10[[1]]]]</pre>
MuPAD for x in [2, 3, 5] do if x^2 < 10 then print(x) end_if end_for:
Octave
Pari
Reduce for each x in $\{2, 3, 5\}$ do if $x^2 < 10$ then write(x)\$
Scilab
Sumit
Yacas
Assignment Function definition Clear vars and funs
Axiom $y:= f(x)$ $f(x, y) == x*y$)clear properties y f
Derive $y := f(x)$ $f(x, y) := x*y$ $y := f :=$
DoCon
GAP $y:= f(x); f:=function(x, y) return x*y; end; There are no symbolic variables$
Gmp
Macsyma $y: f(x); f(x, y):= x*y;$ remvalue(y)\$
remfunction(f)\$
Magnus
Maxima $y: f(x); f(x, y):= x*y;$ remvalue(y)\$
remfunction(f)\$
Maple $y:= f(x); f:= proc(x, y) x*y end;$ $y:= 'y': f:= 'f':$
Mathematica $y = f[x]$ $f[x, y] := x*y$ Clear[y, f]
MuPAD y:= f(x); f:= proc(x, y) y:= NIL: f:= NIL: begin x*y end_proc;
Octave
Pari
Reduce $y:= f(x);$ procedure $f(x, y); x*y;$ clear $y, f;$
Scilab
Sumit
Yacas

```
Axiom
             f(x) == (local n; n := 2; n*x)
Derive
DoCon
GAP
             f:=function(x) local n; n:=2;return n*x; end;
Gmp
Macsyma
             f(x) := block([n], n: 2, n*x);
Magnus
Maxima
             f(x) := block([n], n: 2, n*x);
Maple
             f:= proc(x) local n; n:= 2; n*x end;
Mathematica
             f[x_{-}] := Module[\{n\}, n = 2; n*x]
MuPAD
             f:= proc(x) local n; begin n:= 2; n*x end_proc;
Octave
Pari
Reduce
             procedure f(x); begin scalar n; n:= 2; return(n*x) end;
Scilab
Sumit
Yacas
             Return unevaluated symbol
                                        Define a function from an expression
Axiom
             e:= x*y;
                        'e
                                         function(e, f, x, y)
                                         f(x, y) :== e
Derive
             e := x*y 'e
DoCon
GAP
             No unevaluated symbols<sup>6</sup>
Gmp
Macsyma
             e: x*y$ 'e;
                                         define(f(x, y), e);
Magnus
Maxima
             e: x*y$
                                         define(f(x, y), e);
                       'e;
Maple
                        'e';
                                         f:= unapply(e, x, y);
             e:= x*y:
Mathematica
             e = x*y;
                       HoldForm[e]
                                         f[x_{-}, y_{-}] = e
MuPAD
             e := x*y: hold(e);
                                         f:= hold(func)(e, x, y);
Octave
Pari
Reduce
             e := x*y$
                                         for all x, y let f(x, y) := e;
Scilab
Sumit
Yacas
```

Function definition with a local variable

⁶Variables can be assigned to generators of a suitable free object, for example x:=X(Rationals,"x"); or f:=FreeGroup(2);x:=f.1;.

	Fun. of an indefinit	te number of args	Apply "+" to sum a list
Axiom			reduce(+, [1, 2])
Derive	LST 1:= 1		
DoCon			
GAP	lst:=function(ar	rgs) _ end;	Sum([1,2])
Gmp			
Macsyma	lst([1]):= 1;		apply("+", [1, 2])
Magnus			
Maxima	lst([1]):= 1;		apply("+", [1, 2])
Maple	lst:=proc() [arg	gs[1nargs]] end;	convert([1, 2], `+`)
Mathematica	lst[l]:= {1}	_	Apply[Plus, $\{1, 2\}$]
MuPAD	lst:= proc(1) be	egin [args()]	_plus(op([1, 2]))
	end_proc;		-
Octave	•		
Pari			
Reduce			xapply(+, $\{1, 2\}$) 6
Scilab			11 3 . 7 (7).
Sumit			
Yacas			
	Apply a fun. to a		
	list of its args	Map an anonymous f	function onto a list
Axiom	reduce(f, 1)	map(x +-> x + y,	
Derive		x:= [1, 2]	
			, i, 1, DIMENSION(x))
DoCon		•	
GAP	List(1,f)	List([1,2],x->x+y))
Gmp		•	
Macsyma	apply(f, 1)	<pre>map(lambda([x], x</pre>	+ y), [1, 2])
Magnus	11 0	1	
Maxima	apply(f, 1)	<pre>map(lambda([x], x</pre>	+ y), [1, 2])
Maple	f(op(1))	$map(x \rightarrow x + y, [:]$	
Mathematica	Apply[f, 1]	$Map[# + y &, {1, 2}]$	
MuPAD	f(op(1))	map([1, 2], func(
Octave	- (- 3,,,
Pari			
Reduce	$xapply(f, 1)^6$	for each x in $\{1,$	2 collect x + v
Scilab		(1)	_, ,
Sumit			
Yacas			
	l		

⁶procedure xapply(f, lst); lisp(f . cdr(lst))\$

```
Pattern matching: f(3y) + f(zy) \rightarrow 3f(y) + f(zy)
Axiom
              f:= operator('f);
              ( rule f((n \mid integer?(n)) * x) == n*f(x) )(__
                  f(3*y) + f(z*y)
Derive
DoCon
GAP
Gmp
Macsyma
              matchdeclare(n, integerp, x, true)$
              defrule(fnx, f(n*x), n*f(x))$
              apply1(f(3*y) + f(z*y), fnx);
Magnus
Maxima
              matchdeclare(n, integerp, x, true)$
              defrule(fnx, f(n*x), n*f(x))$
              apply1(f(3*y) + f(z*y), fnx);
Maple
              map(proc(q) local m;
                     if match(q = f(n*y), y, 'm') and
                         type(rhs(op(m)), integer) then
                       subs(m, n * f(y)) else q fi
                  end,
                  f(3*y) + f(z*y));
Mathematica
              f[3*y] + f[z*y] /. f[n_Integer * x_] -> n*f[x]
MuPAD
              d:= domain("match"): d::FREEVARIABLE:= TRUE:
              n \colon= \: new(\texttt{d}, \ "n", \ func(testtype(\texttt{m}, \ DOM\_INT), \ m)) \colon
              x := new(d, "x", TRUE):
              map(f(3*y) + f(z*y),
                  proc(q) local m; begin m:= match(q, f(n*x));
                     if m = FAIL then q
                     else subs(hold("n" * f("x")), m) end_if
                  end_proc);
Octave
Pari
Reduce
              operator f;
              f(3*y) + f(z*y)
                  where \{f(\tilde{n} * \tilde{x}) \Rightarrow n*f(x) \text{ when } fixp(n)\};
Scilab
Sumit
Yacas
```

Axiom	Denne a new min.	1			
Derive					
DoCon					
GAP	One can overload	existing infix opera	ators for ones own purposes		
Gmp					
Macsyma	infix("~")\$	"~"(x, y):= sqrt	$(x^2 + y^2)$ \$ 3 ~ 4;		
Magnus		-	•		
Maxima	infix("~")\$	"~"(x, y):= sqrt	$(x^2 + y^2)$ \$ 3 ~ 4;		
Maple	`&~`:= (x, y)	-> sqrt(x^2 + y^2	2): 3 &~ 4;		
Mathematica]; 3 \[Tilde] 4		
MuPAD	,		$x^2 + y^2$ end_proc:		
Octave					
Pari					
Reduce	infix \$ pro	cedure (x, y); s	$sqrt(x^2 + y^2)$ \$ 3 4;		
Scilab	_				
Sumit					
Yacas					
	ı				
	Main expression				
	operator	$1^{\rm st}$ operand	List of expression operands		
Axiom ⁷		kernels(e) . 1	kernels(e)		
Derive			${\it various}^8$		
DoCon					
GAP	There are no form	There are no formal unevaluated expressions			
C			pressions		
Gmp		_	Dressions		
Gmp Macsyma	part(e, 0)	part(e, 1)	args(e)		
•	part(e, 0)				
Macsyma	part(e, 0) part(e, 0)				
Macsyma Magnus	-	part(e, 1)	args(e)		
Macsyma Magnus Maxima	part(e, 0)	<pre>part(e, 1) part(e, 1)</pre>	args(e) args(e)		
Macsyma Magnus Maxima Maple	part(e, 0) op(0, e)	<pre>part(e, 1) part(e, 1) op(1, e)</pre>	args(e) args(e) [op(e)]		
Macsyma Magnus Maxima Maple Mathematica	part(e, 0) op(0, e) Head[e]	<pre>part(e, 1) part(e, 1) op(1, e) e@[[1]]</pre>	<pre>args(e) args(e) [op(e)] ReplacePart[e, List, 0]</pre>		
Macsyma Magnus Maxima Maple Mathematica MuPAD	part(e, 0) op(0, e) Head[e]	<pre>part(e, 1) part(e, 1) op(1, e) e@[[1]]</pre>	<pre>args(e) args(e) [op(e)] ReplacePart[e, List, 0]</pre>		
Macsyma Magnus Maxima Maple Mathematica MuPAD Octave	part(e, 0) op(0, e) Head[e]	<pre>part(e, 1) part(e, 1) op(1, e) e@[[1]]</pre>	<pre>args(e) args(e) [op(e)] ReplacePart[e, List, 0] [op(e)] for i:=1:arglength(e)</pre>		
Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari	part(e, 0) op(0, e) Head[e] op(e, 0)	<pre>part(e, 1) part(e, 1) op(1, e) e@[[1]] op(e, 1)</pre>	<pre>args(e) args(e) [op(e)] ReplacePart[e, List, 0] [op(e)]</pre>		
Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	part(e, 0) op(0, e) Head[e] op(e, 0)	<pre>part(e, 1) part(e, 1) op(1, e) e@[[1]] op(e, 1)</pre>	<pre>args(e) args(e) [op(e)] ReplacePart[e, List, 0] [op(e)] for i:=1:arglength(e)</pre>		
Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	part(e, 0) op(0, e) Head[e] op(e, 0)	<pre>part(e, 1) part(e, 1) op(1, e) e@[[1]] op(e, 1)</pre>	<pre>args(e) args(e) [op(e)] ReplacePart[e, List, 0] [op(e)] for i:=1:arglength(e)</pre>		

Define a new infix operator and then use it

⁷The following commands work only on expressions that consist of a single level (e.g., x + y + zbut not a/b+c/d). $^6 \text{TERMS}$, FACTORS, NUMERATOR, LHS, etc.

```
Print text and results
             output(concat(["sin(", string(0), ") = ",
Axiom
               string(sin(0))]));
Derive
             "\sin(0)" = \sin(0)
DoCon
GAP
             Print("There is no sin, but factors(10)= ",Factors(10), "\n")
Gmp
             print("sin(", 0, ") =", sin(0))$
Macsyma
Magnus
             print("sin(", 0, ") =", sin(0))$
Maxima
Maple
             printf("sin(%a) = %a n", 0, sin(0)):
            Print[StringForm["sin(``) = ``", 0, Sin[0]]];
Mathematica
            print(Unquoted, "sin(".0.")" = sin(0)):
MuPAD
Octave
Pari
Reduce
             write("sin(", 0, ") = ", sin(0))$
Scilab
Sumit
Yacas
             Generate FORTRAN
                                                  Generate TFX/LATFX
Axiom
             outputAsFortran(e)
                                                  outputAsTex(e)
Derive
             [Transfer Save Fortran]
DoCon
GAP
                                                  Print(LaTeX(e));
Gmp
             fortran(e)$ or gentran(eval(e))$
Macsyma
                                                  tex(e);
Magnus
Maxima
             fortran(e)$ or gentran(eval(e))$
                                                  tex(e);
Maple
             fortran([e]);
                                                  latex(e);
Mathematica
            FortranForm[e]
                                                  TexForm[e]
MuPAD
             generate::fortran(e);
                                                  generate::TeX(e);
Octave
Pari
Reduce
             on fort;
                        e;
                             off fort; or
                                                  load_package(tri)$
             load_package(gentran)$ gentran e;
                                                 on TeX; e; off TeX;
Scilab
Sumit
Yacas
```

	Import two space separated columns of integers from file
Axiom	
Derive	[Transfer Load daTa] (from file.dat)
DoCon	
GAP	
Gmp	
Macsyma	<pre>xy: read_num_data_to_matrix("file", nrows, 2)\$</pre>
Magnus	
Maxima	<pre>xy: read_num_data_to_matrix("file", nrows, 2)\$</pre>
Maple	<pre>xy:= readdata("file", integer, 2):</pre>
Mathematica	<pre>xy = ReadList["file", Number, RecordLists -> True]</pre>
MuPAD	
Octave	
Pari	
Reduce	
Scilab	
Sumit	
Yacas	

```
Export two space separated columns of integers to file<sup>7</sup>
Axiom
             )set output algebra "file"
                                            (creates file.spout)
             for i in 1...n repeat output(
               concat([string(xy(i, 1)), " ", string(xy(i, 2))]) )
             )set output algebra console
Derive
             xy [Transfer Print Expressions File] (creates file.prt)
DoCon
GAP
             PrintTo("file");for i in [1..n] do
               AppendTo("file",xy[i][1]," ",xy[i][2],"\n");od;
Gmp
             writefile("file")$
Macsyma
                                 for i:1 thru n do
               print(xy[i, 1], xy[i, 2])$
                                             closefile()$
Magnus
Maxima
             writefile("file")$
                                  for i:1 thru n do
               print(xy[i, 1], xy[i, 2])$
                                             closefile()$
Maple
             writedata("file", xy);
Mathematica
             outfile = OpenWrite["file"];
             Do[WriteString[outfile,
               xy@[[i, 1]], " ", xy@[[i, 2]], "\n"], {i, 1, n}]
             Close[outfile];
MuPAD
             fprint(Unquoted, Text, "file",
               ("\n", xy[i, 1], xy[i, 2]) $ i = 1..n):
Octave
Pari
Reduce
             out "file";
                           for i:=1:n do
               write(xy(i, 1), " ", xy(i, 2));
                                                   shut "file";
Scilab
Sumit
Sumit
Yacas
```

4 Mathematics and Graphics

Since GAP aims at discrete mathematics, it does not provide much of the calculus functionality listed in the following section.

⁷Some editing of file will be necessary for all systems but Maple and Mathematica.

	$\mid e \mid$	π	i	$+\infty$	$\sqrt{2}$	$2^{1/3}$
Axiom	%e	%pi	%i	%plusInfinit	y sqrt(2)	2**(1/3)
Derive	#e	pi	#i	inf	SQRT(2)	2^(1/3)
DoCon		•			,	
GAP			E(4)	infinity	$ER(2)^{8}$	
Gmp				·		
Macsyma	%e	%pi	%i	inf	sqrt(2)	2^(1/3)
Magnus						
Maxima	%e	%pi	%i	inf	sqrt(2)	2^(1/3)
Maple	exp(1)	Pi	I	infinity	sqrt(2)	2^(1/3)
Mathematica	E	Pi	I	Infinity	Sqrt[2]	2^(1/3)
MuPAD	E	ΡI	I	infinity	sqrt(2)	2^(1/3)
Octave						
Pari						
Reduce	е	рi	i	infinity	sqrt(2)	2^(1/3)
Scilab						
Sumit						
Yacas						
	Euler's o	onetor	at Na	tural log	Arctangent	n!
Axiom	Eulei s c	Onstai		g(x)	atan(x)	factorial(n)
Derive	euler_g	amma		•	ATAN(x)	n!
DoCon	Cuici_g	aiiiiia	LO	J(X)	ATAN (X)	11.
GAP			Los	gInt(x,base)		Factorial(n)
Gmp			108	Sino (A, babe)		ractoriar(n)
Macsyma	%gamma		10	g(x)	atan(x)	n!
Magnus	700000000			5 ()	(11)	
Maxima	%gamma		10	g(x)	atan(x)	n!
Maple	gamma			g(x)	arctan(x)	n!
Mathematica	EulerGa	mma	•	_	ArcTan[x]	n!
MuPAD	EULER			(x)	atan(x)	n!
Octave						
Pari						
Reduce	Euler_G	amma	108	g(x)	atan(x)	factorial(n)
Scilab						
Sumit						
Yacas						

⁸ER represents special cyclotomic numbers and is not a root function.

	Legendre polynomial	Chebyshev poly. of the 1 st kind
Axiom	legendreP(n, x)	chebyshevT(n, x)
Derive	LEGENDRE_P(n, x)	CHEBYCHEV_T(n, x)
DoCon		
GAP		
Gmp		
Macsyma	legendre_p(n, x)	$chebyshev_t(n, x)$
Magnus		
Maxima	legendre_p(n, x)	$chebyshev_t(n, x)$
Maple	orthopoly[P](n, x)	orthopoly[T](n, x)
Mathematica	LegendreP[n, x]	<pre>ChebyshevT[n, x]</pre>
MuPAD	orthpoly::legendre(n, x)	orthpoly::chebyshev1(n, x)
Octave		
Pari		
Reduce	LegendreP(n, x)	ChebyshevT(n, x)
Scilab		
Sumit		
Yacas		
	Fibonacci number	Elliptic integral of the 1 st kind
Axiom	fibonacci(n)	
Derive		Elliptic integral of the 1 st kind ELLIPTIC_E(phi, k^2)
Derive DoCon	fibonacci(n) FIBONACCI(n)	
Derive DoCon GAP	fibonacci(n)	
Derive DoCon GAP Gmp	fibonacci(n) FIBONACCI(n) Fibonacci(n)	ELLIPTIC_E(phi, k^2)
Derive DoCon GAP Gmp Macsyma	fibonacci(n) FIBONACCI(n)	
Derive DoCon GAP Gmp Macsyma Magnus	fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n)	ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2)
Derive DoCon GAP Gmp Macsyma Magnus Maxima	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n)</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n)</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n)</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k) EllipticE[phi, k^2]</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce Scilab	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k) EllipticE[phi, k^2]</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k) EllipticE[phi, k^2]</pre>

	$\Gamma(x)$	$\psi(x)$	Cosine	integral	Bessel fun. (1^{st})	
Axiom	Gamma(x)	psi(x)	real(E	i(%i*x))	besselJ(n, x)	
Derive	GAMMA(x)	PSI(x)	CI(x)		$BESSEL_J(n, x)$	
DoCon						
GAP						
Gmp						
Macsyma	gamma(x)	psi[0](x)	cosin	t(x)	$bessel_{-}j[n](x)$	
Magnus						
Maxima	gamma(x)	psi[0](x)	cos_in	t(x)	$bessel_{-j}[n](x)$	
Maple	GAMMA(x)	Psi(x)	Ci(x)		BesselJ(n, x)	
Mathematica	Gamma[x]	PolyGamma[x]	CosInt	egral[x]	BesselJ[n, x]	
MuPAD	gamma(x)	psi(x)			besselJ(n, x)	
Octave						
Pari						
Reduce	Gamma(x)	Psi(x)	Ci(x)		BesselJ (n, x)	
Scilab						
Sumit						
Yacas						
	Hypergeon	netric fun. $_2F_1(a,$	b: c: x)	Dirac del	ta Unit step fun.	
Axiom	, F 8	Z-1(w)	-, -,,			_
Derive	GAUSS(a,	b, c, x)			STEP(x)	
DoCon		, , ,				
GAP						
Gmp						
Macsyma	hgfred([a	, b], [c], x)		delta(x)	$unit_step(x)$	
Magnus					-	
Maxima	hgfred([a	, b], [c], x)		delta(x)	$unit_step(x)$	
Maple	hypergeom	([a, b], [c],	x)	Dirac(x)	Heaviside(x)	
Mathematica	Hypergeom	$etricPFQ[{a,b}]$	$, \{c\}, x]$	@<< Cal	culus`DiracDelta`	
MuPAD				dirac(x)	heaviside(x)	
Octave						
Pari						
Reduce	hypergeom	etric($\{a, b\}$,	$\{c\}, x)$			
Scilab						
Sumit						
Yacas						

	Define $ x $ via a piecewise funct	ion
Axiom		
Derive	a(x) := -x*CHI(-inf, x, 0)	+ x*CHI(0, x, inf)
DoCon		
GAP		
Gmp		
Macsyma	$a(x) := -x*unit_step(-x) +$	$x*unit_step(x)$ \$
Magnus		
Maxima	$a(x) := -x*unit_step(-x) +$	$x*unit_step(x)$ \$
Maple	$a:= x \rightarrow piecewise(x < 0,$	-x, x):
Mathematica	<pre>@<< Calculus`DiracDelta`</pre>	
	$a[x_{-}] := -x*UnitStep[-x] + x$	x*UnitStep[x]
MuPAD	a:= proc(x) begin -x*heavi	side(-x) + x*heaviside(x)
	end_proc:	
Octave		
Pari		
Reduce		
Scilab		
Sumit		
Yacas		
	Assume x is real	Remove that assumption
Axiom		
Derive	x :epsilon Real	x:=
DoCon		
GAP		
Gmp		
Macsyma	<pre>declare(x, real)\$</pre>	remove(x, real)\$
Magnus		
Maxima	<pre>declare(x, real)\$</pre>	remove(x, real)\$
Maple	<pre>assume(x, real);</pre>	x:= 'x':
Mathematica	x/: Im[x] = 0;	Clear[x]
MuPAD	assume(x, Type::RealNum):	unassume(x, Type::RealNum):
Octave		
Pari		
Reduce		
Scilab		
Sumit	I .	
Yacas		

	Assume $0 < x \le 1$	Remove that assumption
Axiom		
Derive	x :epsilon (0, 1]	x:=
DoCon		
GAP		
Gmp		
Macsyma	assume($x > 0$, $x <= 1$)\$	$forget(x > 0, x \le 1)$ \$
Magnus		
Maxima	assume($x > 0$, $x <= 1$)\$	forget($x > 0$, $x <= 1$)\$
Maple	assume(x > 0);	x:= 'x':
•	additionally(x <= 1);	
Mathematica	Assumptions \rightarrow 0 < x <= 1 ⁸	
MuPAD	assume(x > 0): assume(x <= 1):	unassume(x):
Octave		
Pari		
Reduce		
Scilab		
Sumit		
Yacas		
	I	
	Basic simplification of an expression	e
Axiom	simplify(e) or $normalize(e)$ or	complexNormalize(e)
Derive	е	
DoCon		
GAP	е	
Gmp		
Macsyma	ratsimp(e) or $radcan(e)$	
Magnus		
Maxima	ratsimp(e) or $radcan(e)$	
Maple	simplify(e)	
Mathematica	Simplify[e] or FullSimplify[e]	
MuPAD	simplify(e) or $normal(e)$	
Octave		
Pari		
Reduce	е	
Scilab		
Sumit		
Yacas		
	•	

⁸This is an option for Integrate.

	Use an unknown	function	Numerically evaluate an expr.
Axiom	f:= operator('	f); f(x)	exp(1) :: Complex Float
Derive	f(x):=		Precision:= Approximate
	f(x)		APPROX(EXP(1))
			Precision:= Exact
DoCon			
GAP			EvalF(123/456)
Gmp			
Macsyma	f(x)		<pre>sfloat(exp(1));</pre>
Magnus			-
Maxima	f(x)		<pre>sfloat(exp(1));</pre>
Maple	f(x)		evalf(exp(1));
Mathematica	f[x]		N[Exp[1]]
MuPAD	f(x)		<pre>float(exp(1));</pre>
Octave			•
Pari			
Reduce	operator f;	f(x)	on rounded; exp(1);
	_		off rounded;
Scilab			
Sumit			
Yacas			
	'		
	$n \mod m$		$\mod m$ for x
Axiom	rem(n, m)		0 :: PrimeField(m), x)
Derive	MOD(n, m)	SOLVE_MOD((e = 0, x, m)
DoCon			
GAP	n mod m	solve using	finite fields
Gmp			
Macsyma	mod(n, m)	modulus: m	solve(e = 0, x)
Magnus			
Maxima	mod(n, m)	modulus: m	· · · · · · · · · · · · · · · · · · ·
Maple	n mod m	msolve(e =	
Mathematica	Mod[n, m]		== 0, Modulus == m}, x]
MuPAD	n mod m	solve(poly	r(e = 0, [x], IntMod(m)), x)
Octave			
Pari			
Reduce	on modular;		age(modsr)\$ on modular;
	setmod m\$ n	setmod m\$	$m_solve(e = 0, x)$
Scilab			
Sumit			
Yacas			

```
Put over common denominator
                                           Expand into separate fractions
                                           (a*d + b*c)/(b*d) :: _
Axiom
             a/b + c/d
                                            MPOLY([a], FRAC POLY INT)
Derive
             FACTOR(a/b + c/d, Trivial)
                                          EXPAND((a*d + b*c)/(b*d))
DoCon
GAP
             a/b+c/d
Gmp
Macsyma
             xthru(a/b + c/d)
                                           expand((a*d + b*c)/(b*d))
Magnus
Maxima
             xthru(a/b + c/d)
                                           expand((a*d + b*c)/(b*d))
Maple
             normal(a/b + c/d)
                                           expand((a*d + b*c)/(b*d))
Mathematica
             Together[a/b + c/d]
                                           Apart[(a*d + b*c)/(b*d)]
MuPAD
             normal(a/b + c/d)
                                           expand((a*d + b*c)/(b*d))
Octave
Pari
Reduce
             a/b + c/d
                                           on div; (a*d + b*c)/(b*d)
Scilab
Sumit
Yacas
             Manipulate the root of a polynomial
Axiom
             a := rootOf(x**2 - 2);
Derive
DoCon
GAP
             x:=X(Rationals,"x");
               a:=RootOfDefiningPolynomial(AlgebraicExtension(Rationals,x^2-2)); a^2
Gmp
Macsyma
             algebraic:true$
                                tellrat(a^2 - 2)$
                                                    rat(a^2);
Magnus
Maxima
             algebraic:true$
                                tellrat(a^2 - 2)$
                                                    rat(a^2);
Maple
             a := RootOf(x^2 - 2):
                                     simplify(a^2);
Mathematica
             a = Root[\#^2 - 2 \&, 2]
MuPAD
Octave
Pari
Reduce
             load_package(arnum)$
                                     defpoly(a^2 - 2);
                                                          a^2;
Scilab
Sumit
Yacas
```

	Noncommutative multiplic	ation Solve a pair of equations
Axiom		solve([eqn1, eqn2], [x, y])
Derive	x :epsilon Nonscalar	SOLVE([eqn1, eqn2], [x, y])
	y :epsilon Nonscalar	
D . C	х. у	
DoCon GAP		
GAP	*	
Macsyma	х. у	solve([eqn1, eqn2], [x, y])
Magnus	A . y	borve([eqn1, eqn2], [x, y])
Maxima	х. у	solve([eqn1, eqn2], [x, y])
Maple	x &* y	solve({eqn1, eqn2}, {x, y})
Mathematica	x ** y	Solve[$\{eqn1, eqn2\}, \{x, y\}$]
MuPAD	,	$solve(\{eqn1, eqn2\}, \{x, y\})$
Octave		
Pari		
Reduce	operator x, y;	$solve({eqn1, eqn2}, {x, y})$
	noncom x, y;	
Callah	x() * y()	
Scilab Sumit		
Yacas		
Tacas		
	Decrease/increase angles in	n trigonometric functions
Axiom	simplify(normalize(sin	(2*x)))
Derive		Trigonometry:= Collect
	sin(2*x)	2*sin(x)*cos(x)
DoCon		
GAP		
Gmp Macsyma	+mimormond(gin(2***))	+ mi mmoduco (O+ gin (m) + gog (m))
Magnus	<pre>trigexpand(sin(2*x))</pre>	<pre>trigreduce(2*sin(x)*cos(x))</pre>
Maxima	trigexpand(sin(2*x))	<pre>trigreduce(2*sin(x)*cos(x))</pre>
Maple	expand(sin(2*x))	combine(2*sin(x)*cos(x))
Mathematica	TrigExpand[Sin[2*x]]	TrigReduce[2*Sin[x]*Cos[x]]
MuPAD	expand(sin(2*x))	<pre>combine(2*sin(x)*cos(x), sincos)</pre>
Octave	_	
Pari		
Reduce	<pre>load_package(assist)\$</pre>	
.	<pre>trigexpand(sin(2*x))</pre>	trigreduce(2*sin(x)*cos(x))
Scilab		
Sumit		
Yacas		

```
Gröbner basis
Axiom
             groebner([p1, p2, ...])
Derive
DoCon
GAP
Gmp
             grobner([p1, p2, ...])
Macsyma
Magnus
Maxima
             grobner([p1, p2, ...])
Maple
             Groebner[gbasis]([p1, p2, ...], plex(x1, x2, ...))
Mathematica
             GroebnerBasis[\{p1, p2, \ldots\}, \{x1, x2, \ldots\}]
MuPAD
             groebner::gbasis([p1, p2, ...])
Octave
Pari
Reduce
             load_package(groebner)$
                                         groebner({p1, p2, ...})
Scilab
Sumit
Yacas
             Factorization of e over i = \sqrt{-1}
             factor(e, [rootOf(i**2 + 1)])
Axiom
             FACTOR(e, Complex)
Derive
DoCon
GAP
             Factors(GaussianIntegers,e)
Gmp
             gfactor(e); or factor(e, i^2 + 1);
Macsyma
Magnus
             gfactor(e); or factor(e, i^2 + 1);
Maxima
Maple
             factor(e, I);
Mathematica
             Factor[e, Extension -> I]
MuPAD
             QI:= Dom::AlgebraicExtension(Dom::Rational, i^2 + 1);
             QI::name:= "QI":
                                 Factor(poly(e, QI));
Octave
Pari
Reduce
             on complex, factor;
                                          off complex, factor;
                                    e;
Scilab
Sumit
Yacas
```

	Real part		Conve	rt a complex expr. to rectangular form
Axiom	real(f(z))		compl	exForm(f(z))
Derive	RE(f(z))		f(z)	
DoCon				
GAP	(f(z)+GaloisCyc	c(f(z),-1))/2		
Gmp				
Macsyma	realpart(f(z))		rectf	orm(f(z))
Magnus	_			
Maxima	realpart(f(z))		rectform(f(z))	
Maple	Re(f(z))		evalc	(f(z))
Mathematica	Re[f[z]]		Compl	exExpand[f[z]]
MuPAD	Re(f(z))		rectf	orm(f(z))
Octave				
Pari				
Reduce	repart(f(z))		repar	t(f(z)) + i*impart(f(z))
Scilab	-		-	-
Sumit				
Yacas				
	l			
	Matrix addition	Matrix multipli	ication	Matrix transpose
Axiom	A + B	A * B		transpose(A)
Derive	A + B	А.В		A`
DoCon				
GAP	A + B	A * B		TransposedMat(A)
Gmp				
Macsyma	A + B	А.В		transpose(A)
Magnus				
Maxima	A + B	А.В		transpose(A)
Maple	evalm(A + B)	evalm(A &* B))	<pre>linalg[transpose](A)</pre>
Mathematica	A + B	А.В		Transpose[A]
MuPAD	A + B	A * B		transpose(A)
Octave				
Pari				
Reduce	A + B	A * B		tp(A)
Scilab				
Sumit				
Yacas				

```
Solve the matrix equation Ax = b
Axiom
             solve(A, transpose(b)) . 1 . particular :: Matrix ___
Derive
DoCon
GAP
             SolutionMat(TransposedMat(A),b)
Gmp
Macsyma
             xx: genvector('x, mat_nrows(b))$
             x: part(matlinsolve(A . xx = b, xx), 1, 2)
Magnus
Maxima
             xx: genvector('x, mat_nrows(b))$
             x: part(matlinsolve(A . xx = b, xx), 1, 2)
Maple
             x:= linalg[linsolve](A, b)
Mathematica
             x = LinearSolve[A, b]
MuPAD
Octave
Pari
Reduce
Scilab
Sumit
Yacas
             Sum: \sum_{i=1}^{n} f(i)
                                       Product: \prod_{i=1}^{n} f(i)
             sum(f(i), i = 1..n)

SUM(f(i), i, 1, n)
                                       product(f(i), i = 1..n)
Axiom
                                       PRODUCT(f(i), i, 1, n)
Derive
DoCon
                                       Product([1..n],f)
GAP
             Sum([1..n],f)
Gmp
Macsyma
             closedform(
                                       closedform(
                sum(f(i), i, 1, n))
                                         product(f(i), i, 1, n))
Magnus
Maxima
             closedform(
                                       closedform(
                sum(f(i), i, 1, n))
                                         product(f(i), i, 1, n))
Maple
             sum(f(i), i = 1..n)
                                       product(f(i), i = 1..n)
Mathematica
             Sum[f[i], {i, 1, n}]
                                       Product[f[i], {i, 1, n}]
MuPAD
             sum(f(i), i = 1..n)
                                       product(f(i), i = 1..n)
Octave
Pari
             sum(f(i), i, 1, n)
                                       prod(f(i), i, 1, n)
Reduce
Scilab
Sumit
Yacas
```

	Limit: $\lim_{x\to 0-} f(x)$	Taylor/Laurent/etc. series
Axiom	limit(f(x), x = 0, "left")	series(f(x), x = 0, 3)
Derive	LIM(f(x), x, 0, -1)	TAYLOR(f(x), x, 0, 3)
DoCon		
GAP		
Gmp		
Macsyma	limit(f(x), x, 0, minus)	taylor(f(x), x, 0, 3)
Magnus		
Maxima	limit(f(x), x, 0, minus)	taylor(f(x), x, 0, 3)
Maple	limit(f(x), x = 0, left)	series(f(x), x = 0, 4)
Mathematica	Limit[f[x], x->0, Direction	,
MuPAD	limit(f(x), x = 0, Left)	series(f(x), x = 0, 4)
Octave		
Pari		
Reduce	limit!-(f(x), x, 0)	taylor(f(x), x, 0, 3)
Scilab		
Sumit		
Yacas		
	$d^3 f(x, y)$	
	Differentiate: $\frac{d^3 f(x,y)}{dx dy^2}$	Integrate: $\int_0^1 f(x) dx$
Axiom	D(f(x, y), [x, y], [1, 2])	integrate($f(x)$, $x = 01$)
Derive	DIF(DIF(f(x, y), x), y, 2)	INT(f(x), x, 0, 1)
DoCon		
GAP		
Gmp	1:66/6/	
Macsyma	diff(f(x, y), x, 1, y, 2)	integrate(f(x), x, 0, 1)
Magnus	1:55/5/	
Maxima	diff(f(x, y), x, 1, y, 2)	integrate(f(x), x, 0, 1)
Maple	diff(f(x, y), x, y\$2)	int(f(x), x = 01)
Mathematica	D[f[x, y], x, {y, 2}]	Integrate $[f[x], \{x, 0, 1\}]$
MuPAD	diff(f(x, y), x, y\$2)	int(f(x), x = 01)
Octave Pari		
Reduce	df(f(x, y), x, y, 2)	int(f(x), x, 0, 1)
Scilab	ur(r(x, y), x, y, 2)	III (I (X), X, U, I)
Sumit		
Sumit Yacas		

	Laplace transform	Inverse Laplace transform
Axiom	laplace(e, t, s)	inverseLaplace(e, s, t)
Derive	LAPLACE(e, t, s)	
DoCon		
GAP		
Gmp		
Macsyma	laplace(e, t, s)	ilt(e, s, t)
Magnus		
Maxima	laplace(e, t, s)	ilt(e, s, t)
Maple	<pre>inttrans[laplace](e,t,s)</pre>	<pre>inttrans[invlaplace](e,s,t)</pre>
Mathematica	<pre>@<< Calculus`LaplaceTran</pre>	sform`
	LaplaceTransform[e, t, s]	<pre>InverseLaplaceTransform[e,s,t]</pre>
MuPAD	<pre>transform::laplace(e,t,s)</pre>	<pre>transform::ilaplace(e, s, t)</pre>
Octave		
Pari		
Reduce	load_package(laplace)\$	<pre>load_package(defint)\$</pre>
	laplace(e, t, s)	<pre>invlap(e, t, s)</pre>
Scilab		
Sumit		
Yacas		
	'	
	Solve an ODE (with the initial	condition $y'(0) = 1$
Axiom	solve(eqn, y, x)	
Derive	APPLY_IC(RHS(ODE(eqn, x, y	$, y_{-})), [x, 0], [y, 1])$
DoCon		
GAP		
Gmp		
Macsyma	$ode_ibc(ode(eqn, y(x), x),$	x = 0, $diff(y(x), x) = 1$
Magnus		
Maxima	$ode_ibc(ode(eqn, y(x), x),$	
Maple	$dsolve(\{eqn, D(y)(0) = 1\},$	
Mathematica	DSolve[{eqn, y'[0] == 1},	
MuPAD	$solve(ode({eqn, D(y)(0)} =$	1}, y(x)))
Octave		
Pari		
Reduce	odesolve(eqn, $y(x)$, x)	
Scilab		
Sumit		
Yacas		

```
Define the differential operator L = D_x + I and apply it to \sin x
Axiom
             DD : LODO(Expression Integer, e +-> D(e, x)) := D();
            L:=DD + 1;
                          L(sin(x))
Derive
DoCon
GAP
Gmp
             load(opalg)$
                            L: (diffop(x) - 1)$
                                                  L(sin(x));
Macsyma
Magnus
Maxima
             load(opalg)$
                            L: (diffop(x) - 1)$
                                                   L(sin(x));
Maple
                            L:= (D + id): L(sin)(x);
             id:= x -> x:
Mathematica
            L = D[\#, x] \& + Identity;
                                        Through[L[Sin[x]]]
MuPAD
            L:=(D+id): L(sin)(x);
Octave
Pari
Reduce
Scilab
Sumit
Yacas
             2D plot of two separate curves overlayed
Axiom
             draw(x, x = 0..1);
                                  draw(acsch(x), x = 0..1);
Derive
             [Plot Overlay]
DoCon
GAP
Gmp
            plot(x, x, 0, 1)$
                                plot(acsch(x), x, 0, 1)$
Macsyma
Magnus
Maxima
            plot(x, x, 0, 1)$ plot(acsch(x), x, 0, 1)$
            plot({x, arccsch(x)}, x = 0..1):
Maple
            Plot[{x, ArcCsch[x]}, {x, 0, 1}];
Mathematica
MuPAD
            plotfunc(x, acsch(x), x = 0..1):
Octave
Pari
Reduce
             load_package(gnuplot)$ plot(y = x, x = (0 .. 1))$
             plot(y = acsch(x), x = (0 .. 1))$
Scilab
Sumit
Yacas
```

```
Simple 3D plotting
             draw(abs(x*y), x = 0..1, y = 0..1);
Axiom
             [Plot Overlay]
Derive
DoCon
GAP
Gmp
Macsyma
            plot3d(abs(x*y), x, 0, 1, y, 0, 1)$
Magnus
Maxima
            plot3d(abs(x*y), x, 0, 1, y, 0, 1)$
Maple
            plot3d(abs(x*y), x = 0..1, y = 0..1):
Mathematica
            Plot3D[Abs[x*y], {x, 0, 1}, {y, 0, 1}];
MuPAD
            plotfunc(abs(x*y), x = 0..1, y = 0..1):
Octave
Pari
Reduce
            load_package(gnuplot)$
            plot(z = abs(x*y), x = (0 .. 1), y = (0 .. 1))$
Scilab
Sumit
Yacas
```