ISFT Nº 151

TRABAJO PRÁCTICO Nº 4

Álgebra de Boole

1.- Simplificar las siguientes funciones booleanas utilizando los postulados y teoremas del Algebra de Boole. Verificar con las tablas de verdad.

a)
$$F = \overline{a} + \overline{b} + \overline{c} + \overline{abc}$$

b)
$$F = (ac) + (abc)$$

c)
$$F = (a\overline{c} + c)(\overline{a+c})(bc + a + \overline{a})$$

d)
$$F = (a\overline{b}\overline{c}) + (a\overline{b}\overline{c}d) + (a\overline{b})$$

e)
$$F = \left[\overline{ab} (c + bd) + \overline{ab} \right] c$$

f)
$$F = ab + a(b+c) + b(b+c)$$

g)
$$F = \overline{(a+b)a} + \overline{\overline{(ab)}(a+c)} + \overline{(a\oplus b)}$$

- **2.-** Escribir las funciones del ejercicio 1 en las dos formas canónicas, como Suma de Productos (Sumatoria de Mintérminos) y como producto de sumas (Productoria de Maxtérminos) utilizando la tabla de verdad o la función simplificada.
- **3.-** En la siguiente tabla de verdad se definen 5 funciones en tres variables. Para cada función obtener:
- a) La expresión en maxtérminos y mintérminos
- b) Simplificar la expresión con los mapas de Karnaugh
- c) Representar la fun<u>ci</u>ón con compuertas lógicas. Se dispone de todas las variables en su forma directa y de compuertas AND, OR, NAND, NOR de dos y tres entradas y negadores NOT.

Decimal	а	b	С	F ₁	F ₂	F ₃	F ₄	F ₅
0	0	0	0	1	0	1	1	0
1	0	0	1	0	0	1	0	1
2	0	1	0	1	1	1	1	0
3	0	1	1	1	0	0	0	1
4	1	0	0	1	1	0	1	1
5	1	0	1	0	0	1	0	1
6	1	1	0	0	0	1	1	1
7	1	1	1	0	0	1	0	0

- 4.- El siguiente es un Mapa de Karnaugh en cuatro variables (abcd)
- a) Expresar la función como una sumatoria de Mintérminos o productoria de Maxtérminos
- b) Simplificar la función
- c) Representar la función con compuertas lógicas antes y después de la simplificación.

ab \cd	00	01	11	10
00	1	0	0	1
01	1	1	0	1
11	1	1	0	1
10	1	0	1	1

Algebra 1ero 1era

ISFT Nº 151

Profesor: Julio E. RIERA

5.- Determinar las tablas de verdad de los siguientes circuitos lógicos y escribir sus funciones de salida Z

¿Se pueden expresar las funciones de salida con una única compuerta lógica cada una?

- 6.- Para el circuito de la figura:
- a) Escribir la función F(A,B,C,D)
- b) Realizar la tabla de verdad
- c) Hallar la expresión mínima aplicando los teoremas del Álgebra de Boole o los mapas de Karnaugh
- d) Representar la función simplificada con compuertas lógicas NAND y OR

- 7.- Un sistema de control tiene 3 sensores, A temperatura, B humedad y C presión. La salida del sistema se activa, es decir pasa a 1 si el sensor A está en 1 o si los sensores B y C están en 1 al mismo tiempo.
- a) Realizar la tabla de verdad
- b) Definir la expresión de la salida del sistema según las formas canónicas de los mintérminos y maxtérminos
- c) Representar la salida del sistema en un circuito con compuertas lógicas de 2 y 3 entradas.
- d) Simplificar la expresión de salida utilizando los teoremas booleanos y los mapas de Karnaugh.
- e) Representar la salida simplificada del sistema con compuertas lógicas AND y OR
- 8.- Utilizando los mapas de Karnaugh simplificar las siguientes funciones y representarlas con compuertas lógicas

a)
$$F(abc) = \sum m(0,3,6,7)$$

b)
$$F(abc) = \sum m(0,1,2,4,5,7)$$

c)
$$F(abcd) = \sum m(0,1,4,5,6,7,9,11)$$

d)
$$F(abcd) = \prod M(0,2,8,9,12)$$

e)
$$F(abcd) = \prod M(1,2,3,4,9,12)$$