

热成形钢材料卡片开发与零部件碰撞验证 Material failure characterization and validation for boron steel

潘锋博士 | Feng Pan, PhD 经理, 上海迅仿工程技术有限公司 Manager, ShareFEA Engineering Technology

Content

- Why failure prediction and fracture model
- Material failure model with CrachFEM
- Material testing schedule
- Material card development
- Validation under crash loadcase
- Summary and outlook

Why failure prediction and fracture model

Material failure model with CrachFEM

- Comprehensive material and failure model
 - Material model: MF GenYld
 - Failure model: CrachFEM
 - User-defined material model
- Plasticity and fracture inextricably linked
 - Fracture strains only have meaning when they are viewed together with plasticity information
 - Good fracture predictions require using a good plasticity model

Material failure model with CrachFEM

- Material plasticity
 - Uniaxial tensile test
 - No strain rate effect for Boron steel
 - Torsion or shear test
 - Layered compression

Figure 7. Torsion device: 1 – frame; 2 – specimen; 3 – external press-holder; 4 –washer –press-holder; 5 – thrust bearing; 6 – turn cylinder; 7 –internal press-holder

Layered compression

Figure 5

1 – base plate; 2- force transducer; 3- pilot pin; 4-measured staple; 5-punch; 6-TEFLON films of thickness 0.4mm; 7 –disk of layered specimen; 8- deformation transducer; 9 –movable rod; 10- support; 11 – post; 12- movable support

Fracture limit curves

Ductile normal fracture

$$\eta = -3 * p/\sigma_M$$
 $\beta = (1 - s_{NF} \eta)/v$

$$v = \sigma_1/\sigma_M$$
 $\varepsilon_{eq}^{**} = d \cdot e^{q \cdot \beta}$

Ductile shear fracture

$$\begin{split} w &= \frac{\tau_{max}}{\sigma_{M}} \qquad \theta = (1 - k_{SF} \cdot \eta) / w \\ \varepsilon_{eq}^{**} &= \frac{\varepsilon_{SF}^{+} \sinh \left(f \left(\theta - \theta^{-} \right) \right) + \varepsilon_{SF}^{-} \sinh \left(f \left(\theta^{+} - \theta \right) \right)}{\sinh \left(f \left(\theta^{+} - \theta^{-} \right) \right)} \end{split}$$

Fracture Tests	Theory		DAFOOLIC
	Normal	Shear	B1500HS
Tension of specimens with groove 45 deg	200		shear
Tension of specimens with groove 90 deg	511		shear
Tension of specimens with hole			shear-normal
Tension of waisted specimens			shear
Unibiaxial tension- Erichsen's test			shear
Shear test			shear
Bend			normal

- Tips
 - Steel plates should mark the rolling direction
 - Quality of quenched steel plates should be checked
 - Perform microhardness measurement in the 4 corners of the plates

Identification of yield locus

Mises with biax and waist scaling

Identification of strain hardening

Ghosh extended: $s = a^* (e0 + eps)^n + k + r^*exp(-q^*eps)$ Hocket-sherby extended: $s = a - (a - s0)^*exp(-c^*phi^n) + r^*exp(-q^*phi)$ Swift: $s = a^* (e0 + phi)^n$

Derivation of CrachFEM parameters for localized necking (FLC)

- Crach requires the following data:
 - Anisotropy (Hill 1948)
 - Total hardening
 - Kinematic hardening (Backhaus)
 - Strain rate sensitivity m
 - Initial inhomogeneity d

Approximation of fracture curves for ductile normal fracture – Beta model

Approximation of fracture curves for ductile shear fracture – Theta model

Ductile shear fracture

$$w = \frac{\tau_{max}}{\sigma_M} \qquad \theta = (1 - k_{SF} \cdot \eta) / w$$

$$w = \frac{\tau_{max}}{\sigma_{M}} \qquad \theta = (1 - k_{SF} \cdot \eta) / w$$

$$\varepsilon_{eq}^{**} = \frac{\varepsilon_{SF}^{+} \sinh(f(\theta - \theta^{-})) + \varepsilon_{SF}^{-} \sinh(f(\theta^{+} - \theta))}{\sinh(f(\theta^{+} - \theta^{-}))}$$

- ductile shear fracture (experiment; sta)
- ductile shear fracture theta model

Fracture limit curves (in condition of plane stress status)

- uniaxial tension LT ELS
- uniaxial tension L ELS
- uniaxial tension D ELS
- ductile shear fracture (experiment; sta)
- ductile normal fracture (experiment; sta)
- —instability ELS
- ductile shear fracture theta model
- —ductile normal fracture beta model

- Material tests simulation and calibration
 - Waisted tension
 - Tension with hole

- 3-point bending
 - Quasi-static
 - Dynamic

Dynamic bending simulation

Boron steel: 1.45mm

Back plate: DP590, 1.5mm

– ELFORM=2

Mesh sizing=2mm

– Drop mass =70kg

Velocity=12.5m/s

Simulation vs. test

Failure mainly caused by ductile normal fracture

Force-displacement comparison

Summary and outlook

- CrachFEM material model shows an efficient and closeto-application of fracture characterization and modeling of modern steel materials
- Introduce material testing and theory study schedule for boron steel
- 3-point bending simulations show good correlation to experiments
- Small mesh sizing is recommended to predict failure which increases the crash model complexity
- Spotweld HAZ modeling for crash simulation
- Work with potential partners to study structural design and optimization with boron steel to avoid failure

Feng Pan, PhD / 潘锋 博士

Manager / 经理

ShareFEA Engineering Technology

惠民家园

上海迅仿工程技术有限公司

Email: feng.pan@sharefea.com

Mobile: +86 135 8573 3126

Tel: 021 - 6126 0759

Web: www.sharefea.com

Add: 上海嘉定区天祝路789弄

金嘉商务广场2号楼1301A室

上海市公安局