Assignment 8

BCNF Verification

The functional dependencies (\rightarrow)

student

student id → email address, student name, phone number

Since student_id is the primary key and thus a candidate key, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key student id.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on student_id (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies

librarybranch

branch id → branch name, contact number, city, street address

Since branch_id is the primary key and thus a candidate key, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key student id.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on branch_id (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we only had one (city and postal code). Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies (removing the postal code didn't change anything in our database)

university_admin

admin id → email address, admin name, phone number, branch id

Since admin_id is the primary key and thus a candidate key, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key student_id.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on admin id (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies

author

author_id → author_name

Since author_id is the primary key and thus a candidate key, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key student_id.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on author id (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies

book

ISBN → book_title, author_id, publication_year, genre

Since **ISBN** is the primary key and does not have partial dependencies, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key student id.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on ISBN (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies

can_contain

{ISBN, branch id} \rightarrow (for can contain)

Since **ISBN**, **branch_id** are combined primary key and does not have any additional attribute, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key(combined primary key) ISBN, branch_id.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on ISBN, branch_id (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies

published

{author id, ISBN} \rightarrow (for published)

Since **ISBN**, **author_id** are combined primary key and does not have any additional attribute, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key(combined primary key) author id, ISBN.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on author id, ISBN (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies

part_of

 $\{\text{student id}, \text{ branch id}\} \rightarrow (\text{for part of})$

Since **student_id**, **branch_id** are combined primary key and does not have any additional attribute, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key(combined primary key) student id, branch id.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on student id, branch id (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies

book fine

fine_id → student_id, status, amount, reason, fine_date

Since fine_id is the primary key and thus a candidate key, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key fine id.
- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on fine_id (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other dependencies

loan

loan_id → student_id, ISBN, loan_date

Since loan_id is the primary key, this table satisfies BCNF

- There are no partial or transitive dependencies, as each non-key attribute fully depends on the candidate key loan_id.

- This table satisfies 3NF and BCNF because all non-key attributes are fully dependent on loan (the candidate key and superkey).

Step1: we listed all the attributes and FD's

Step2: reduced the list of FD's, but in this case we didn't have many. Then we got a list of

minimum FD's

Step3: identified the key's (left hand side)

Step4: we derived the final schema which was lossless and preserved all the other

dependencies