Database Management Systems (DBMS)

Lec 3: Relational model of data (Cont.)

Ramesh K. Jallu

IIIT Raichur

Date:29/01/21

Recap

- Data models: Relational model
- Schema: the logical design of a database
 - Relational schema and database schema
- Constraints
 - Entity integrity constraint: Primary key
 - Referential integrity constraint: Foreign key

Recap (Terminology)

Recap (referential integrity constraint)

- Let R₁ and R₂ be two relations. A set of attributes K in R₁ is a foreign key of R₁ that references to relation R₂
 - 1. The attributes in K have the same domain(s) as the primary key attributes of R_2
 - 2. A value of K in a tuple t_i of R_1 either occurs as a value of primary key in some tuple of t_i of R_2 or is **NULL**
 - *I.e.*, *t_i*[K] = *t_i*[primary key]

Recap (Foreign key)

INSTRUCTOR

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

DEPARTMENT

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

INSTRUCTOR(<u>ID</u>, name, dept name, salary)

DEPARTMENT(dept name, building, budget)

Today's plan

- Schema diagram and other constraints
- Relational algebra
 - Basic relational operations

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_san	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jen nifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_san	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Diocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	<u>Pno</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

F--- B 11

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	De pendent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theo dore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabe th	F	1967-05-05	Spouse

Schema diagram with RICs

EMPLOYEE

Other constraints

- Semantic integrity constraints
- Functional dependency constraint
 - Establishes a functional relationship among two sets of attributes X and Y, and is denoted by $X \rightarrow Y$
 - The value of X determines the value of Y in all states of a relation
 - I.e., for any two tuples t_1 and t_2 in r that have $t_1[X] = t_2[X]$, implies that $t_1[Y] = t_2[Y]$

Example: functional dependency

EXAMPLE

A	В	C	D
a_1	b_1	c_1	d_1
a_1	b_2	c_1	d_2
a_2	b_2	c_2	d_2
a_2	b_3	c_2	d_3
a_3	b_3	c_2	d_4

 $A \rightarrow C$ is satisfied

C → **A** is **not** satisfied

 $D \rightarrow \{C,A\}$?

 $\{A,B\} \rightarrow \{C,D\}$?

Relational query languages

- Query: A question or an inquiry it causes some data to be retrieved from the database
- Query language: a language in which a user requests information from the database
- Categories
 - a. Imperative (or procedural) query language: Relational Algebra
 - b. Declarative (or non-procedural) query language: Relational Calculus

An example

Imperative programming

```
var income_m = 0, income_f = 0;
for (var i = 0; i < income_list.length; i++) {
    if (income_list[i].gender == 'M')
        income_m += income_list[i].income;
    else
        income_f += income_list[i].income;
}</pre>
```

Declarative programming

```
select gender, sum(income)
from income_list
group by gender;
```

Relational Algebra

The basic set of operations:

```
Select: σ
Project: \pi
                   Unary operations
Rename: p _
Union: U
Intersection: \(\cappa\)
Set difference: -
                           Binary operations
Cartesian product: x
Join: ⋈
Divison: ÷
```

Relational Algebra

- 1. It provides a formal foundation for relational model operations
- 2. It is used as a basis for implementing and optimizing queries in relational DBMS
- 3. Some of its concepts are incorporated into the SQL

1. The select operation

- The select operation selects tuples that satisfy a given selection condition
- Notation: $\sigma_{\langle selection\ condition \rangle}(R)$
- R is a relation or a relational algebra expression whose result is a relation

Example-1

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Query: $\sigma_{DNo=4}$ (EMPLOYEE)

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4

Example-2

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Query: $\sigma_{(Dno=4 \text{ AND Salary}>25000)}$ OR (Dno=5 AND Salary>30000) (EMPLOYEE)

Example-2

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Query: $\sigma_{(Dno=4 \text{ AND Salary}>25000)}$ OR (Dno=5 AND Salary>30000) (EMPLOYEE)

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5

Observations

- 1. $|\sigma_{\langle selection\ condition \rangle}(R)| \leq |R|$
- 2. Commutative: $\sigma_{<cond1>}(\sigma_{<cond2>}(R)) = \sigma_{<cond2>}(\sigma_{<cond1>}(R))$
- 3. Cascade (or sequence) of **Select** operations:
 - $\sigma_{\text{cond1}}(\sigma_{\text{cond2}}(\dots(\sigma_{\text{condn}}(R))\dots)) = \sigma_{\text{cond1}} + AND < \text{cond2} + AND < \dots AND < \text{condn} < (R)$

2. The project operation

- The Projection operation selects certain columns from the relation and discards the other columns
- Notation: $\pi_{\langle attributes\ list \rangle}(R)$
- R is a relation or a relational algebra expression whose result is a relation
- Removes any *duplicate tuples* in the resultant relation

Example

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Lname	Fname	Salary
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

Query1: $\pi_{\text{Lname, Fname, Salary}}$ (EMPLOYEE)

Query2: $\pi_{Salary,DNo}(EMPLOYEE)$

Salary	Dno
30000	5
40000	5
25000	4
43000	4
38000	5
25000	5
55000	1

Observations

- 1. $|\pi_{\langle attribute\ list \rangle}(R)/\leq |R|$; When does the equality hold?
- 2. Commutative? I.e., $\pi_{< list1>}(\pi_{< list2>}(R)) = \pi_{< list2>}(\pi_{< list1>}(R))$?
- 3. $\pi_{\langle list1 \rangle}(\pi_{\langle list2 \rangle}(R)) = \pi_{\langle list1 \rangle}(R)$ if and only if $\langle list1 \rangle \subseteq \langle list2 \rangle$

3. The rename operation

- Unlike relations, the results of relational algebra expressions do not have a name
- Given a relational-algebra expression E, the expression $\rho_x(E)$ returns the result of expression E under the name x
- $\rho_x(A_1,A_2,...,A_n)(E)$ returns the result of expression E under the name x, and with the attributes renamed to $A_1,A_2,...,A_n$

Example

$$\pi_{\text{Fname}}$$
, Lname, Salary ($\sigma_{\text{Dno}=5}(\text{EMPLOYEE})$)

| Fname | Lname | Salary | John | Smith | 30000 | Franklin | Wong | 40000 | Ramesh | Narayan | 38000 | Joyce | English | 25000

TEMP $\leftarrow \sigma_{Dno=5}(EMPLOYEE)$ R(First_name, Last_name, Salary) $\leftarrow \pi_{Fname, Lname, Salary}(TEMP)$

TEMP

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston,TX	M	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston,TX	М	40000	888665555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble,TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

R

First_name	Last_name	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

4. The set theoritic operations

- Union-compatibility: Two relations $R(A_1, A_2, ..., A_n)$ and $S(B_1, B_2, ..., B_n)$ are said to be union compatible if they have the same degree n and if $dom(A_i) = dom(B_i)$ for $1 \le i \le n$
- Given two union-compatibility relations R and S
 - a. R U S: includes all tuples that are either in R or in S or in both R and S. Duplicate tuples are eliminated in the result.
 - **b.** $R \cap S$: includes all tuples that are in both R and S
 - c. R S: includes all tuples that are in R but not in S

Example

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.

- (b) STUDENT ∪ INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT INSTRUCTOR.
- (e) INSTRUCTOR STUDENT.

(a) STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

(b)

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

(c)

Fn	Ln		
Susan	Yao		
Ramesh	Shah		

(d)

Fn	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

(e)

e)	Fname	Lname
	John	Smith
	Ricardo	Browne
	Francis	Johnson

5. The Cartesian product operation

- The Cartesian product of two relations $R(A_1, A_2, ..., A_n)$ and $S(B_1, B_2, ..., B_m)$ is a new relation $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$
- The degree of Q is n+m, and the cardinality is |R||S|

Example

- FEMALE_EMPS $\leftarrow \sigma_{Sex='F'}(EMPLOYEE)$
- EMPNAMES $\leftarrow \pi_{\text{Fname. Lname. Ssn}}(\text{FEMALE_EMPS})$
- EMP_DEPENDENTS ← EMPNAMES × DEPENDENT
- ACTUAL_DEPENDENTS $\leftarrow \sigma_{Ssn=Essn}(EMP_DEPENDENTS)$
- RESULT $\leftarrow \pi_{\text{Fname},\text{Lname},\text{Dependent name}}(\text{ACTUAL_DEPENDENTS})$

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_san	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
J en nifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_san	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

_	
Dnumber	Diocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Esan	De pendent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theo dore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabe th	F	1967-05-05	Spouse

FEMALE_EMPS

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	1968-07-19	3321Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291Berry, Bellaire, TX	F	43000	888665555	4
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

EMPNAMES

Fname	Lname	Ssn
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

EMP DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	М	1983-10-25	
Joyce	English	453453453	333445555	Joy	F	1958-05-03	
Joyce	English	453453453	987654321	Abner	М	1942-02-28	
Joyce	English	453453453	123456789	Michael	М	1988-01-04	
Joyce	English	453453453	123456789	Alice	F	1988-12-30	
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

ACTUAL_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	

RESULT

		Dependent_name
Jennifer	Wallace	Abner

What we learned today?

- Schema diagram and other constraints
- Relational algebra and a few operations
 - Selection
 - Projection
 - Rename
 - Set theoritic operations
 - Cartesian product

Thank you!