Линейная алгерба стр. 1 из 6

Алгебра скалярных полиномов

 $\sphericalangle K$ — поле, над которым задано множество полиномов $K_\infty[\lambda]$, также обозначается $P_\infty[K]$

$$P_{\infty}[K] = \{p_n(\lambda) = \sum_{i=1}^n \alpha_i \lambda^i \quad \forall n\}$$

Примечание. $P_{\infty}[K]$ — линейное пространство:

$$p,q\in P_{\infty}[K];\lambda\in K\Rightarrow \begin{cases} (p+q)(\lambda)=p(\lambda)+q(\lambda)\\ (\lambda p)(\lambda)=\alpha p(\lambda) \end{cases} \Rightarrow P_{\infty}[K]$$
 — линейное пространство

Примечание. $P_{\infty}[K]$ — коммутативная алгебра

Зададим операцию умножения в $P_{\infty}[K]$:

$$\forall p,q \in P_{\infty}[K] \quad (p \cdot q)(\lambda) = p(\lambda)q(\lambda)$$

$$(p \cdot q)(\lambda) = p(\lambda)q(\lambda) = q(\lambda)p(\lambda) = (qp)(\lambda) \Rightarrow \text{коммутативность}$$

$$(p \cdot q) \cdot r = p \cdot (q \cdot r) = p \cdot q \cdot r$$

$$(p+q)r = pr + qr$$

$$(\lambda p)q = p(\lambda q) = \lambda(pq)$$

Нейтральный элемент:

• по сложению: $0(\lambda) = 0$

• по умножению: $1(\lambda) = 1$

Примечание. $\{1,t,t^2\dots t^n\dots\}$ — базис $P_\infty[K]\Rightarrow \dim P_\infty[K]=\infty$

Определение. Идеалом J алгебры $P_{\infty}[K]$ называется такое её подпространство, что

$$\forall q \in J \ \forall p \in P_{\infty}[K] \quad q \cdot p \in J$$

Пример. Тривиальные идеалы:

- {0}
- $P_{\infty}[K]$

Пемма 1. J — линейное подпространство $P_{\infty}[K]$

Доказательство. $]q_1, q_2 \in J \quad q_1 + q_2 \in J$?

$$q_1, q_2 \in J \Rightarrow \forall p \ q_1 p, q_2 p \in J$$

$$q_1 = r\tilde{q}_1, q_2 = r\tilde{q}_2 \quad (q_1 + q_2)p = r(\tilde{q}_1 + \tilde{q}_2)p$$

$$(\tilde{q}_1 + \tilde{q}_2)p \in P_{\infty}[K] \Rightarrow r(\tilde{q}_1 + \tilde{q}_2)p \in J$$

М3137у2019 Лекция 7

Линейная алгерба стр. 2 из 6

Лемма 2. J — подалгебра $P_{\infty}[K]$

Доказательство.

$$(q_1 \cdot q_2)p = q_1(q_2p) \in J$$

Пример. $J_{\alpha} = \{ p \in P_{\infty}[K] : p(\alpha) = 0 \}$ — идеал

Лемма 3. $q \in P_{\infty}[K] \Rightarrow J_q = q \cdot P_{\infty}[K]$ — идеал в $P_{\infty}[K]$

Доказательство. $]r \in J_q \Rightarrow \exists p \in P_\infty[K] : r = q \cdot p$

$$|\tilde{p} \in P_{\infty}[K]|$$

$$r\tilde{p} = (qp)\tilde{p} = q(p\tilde{p})$$

$$p ilde{p} \in P_{\infty}[K] \Rightarrow q(p ilde{p}) \in q \cdot P_{\infty}[K] = J_q \Rightarrow J_q$$
 – идеал

Определение. Полином $q:J_q=q\cdot P_\infty[K]$ называется порождающим полиномом идеала J_q

Примечание. Если идеал содержит $1(\lambda)$, то данный идеал совпадает с $P_{\infty}[K]$:

$$J_1 = 1 \cdot P_{\infty}[K] = P_{\infty}[K]$$

Определение. $]J_1$ и J_2 — идеалы в $P_{\infty}[K]$

1. Суммой $J_1 + J_2$ называется множество

$$J_s = \{ p \in P_{\infty}[K] : p = p_1 + p_2 \quad p_1 \in J_1, p_2 \in J_2 \}$$

2. Пересечением $J_1 \cap J_2$ называется множество:

$$J_r = \{ p \in P_{\infty}[K] : p \in J_1 \land p \in J_2 \}$$

Лемма 4. J_s и J_r — идеалы в $P_{\infty}[K]$

Доказательство. $J_s = J_1 + J_2 -$ идеал?

$$|q \in J_s \Rightarrow q = q_1 + q_2 \quad q_1 \in J_1, q_2 \in J_2$$

$$p \in P_{\infty}[K]$$
 $qp = (q_1 + q_2)p = q_1p + q_2p$

$$q_1p \in J_1, q_2p \in J_2 \Rightarrow q_1p + q_2p \in J_s$$

$$J_r = J_1 \cap J_2 -$$
 идеал?

$$|q \in J_r \Rightarrow q \in J_1; q \in J_2$$

$$p \in P_{\infty}[K] \quad qp \in J_1; qp \in J_2 \Rightarrow qp \in J_r$$

М3137у2019 Лекция 7

Линейная алгерба стр. 3 из 6

Определение. Нетривиальный полином минимальной степени, содержащийся в идеале, называется минимальным полиномом идеала.

Лемма 5. Любой полином идеала J делится на p_J без остатка:

$$p \in J \Rightarrow p \mid p_J$$

Доказательство.] $\exists p: p \nmid p_J \Rightarrow p = qp_J + r; \deg r < \deg p_J \Rightarrow r = p - qp_J : \min$ полином — противоречие.

Примечание. Если p_1 и p_2 — минимальные полиномы $J\Rightarrow p_1=\alpha p_2; \alpha\in K$

Теорема 1. Минимальный полином идеала является его порождающим полиномом.

Доказательство.
$$\forall p \in J \quad p \mid p_J \Rightarrow p = p_J \cdot q \in p_J \cdot P_\infty[K]$$

$$\forall p \in q \cdot P_\infty[K] \Rightarrow p = qr; r \in P_\infty[K] \Rightarrow \forall p \mid q \Rightarrow q = p_J \qquad \Box$$

Лемма 6. Сравнение идеалов:

$$J_1 \subset J_2 \Leftrightarrow p_{J_1} \mid p_{J_2}$$

Доказательство. "⇒"

$$J_1 \subset J_2 \Rightarrow p_{J_1} \in J_2 \Rightarrow p_{J_1} \mid p_{J_2}$$
" \Leftarrow "

$$|p_{J_1}| p_{J_2} \Rightarrow p_{J_1} = rp_{J_2}$$

$$\forall q \in J_1 \quad q = \tilde{q}p_{J_1} = \tilde{r}P_{J_2} \Rightarrow q \mid p_{J_2} \Rightarrow J_1 \subset J_2$$

Лемма 7. О минимальном полиноме пересечения

$$J_1 \leftrightarrow p_{J_1}$$
 $J_2 \leftrightarrow p_{J_2} \Rightarrow J_r = J_1 \cap J_2 \leftrightarrow r_J = \text{HOK}(p_{J_1}, p_{J_2})$

Доказательство. $J_r=J_1\cap J_2\Rightarrow J_r\subset J_1\wedge J_r\subset J_2\Rightarrow r_J\mid p_{J_1}\wedge r_J\mid p_{J_2}\Rightarrow r_J=\mathrm{HOK}(p_{J_1},p_{J_2})$

Лемма 8. О минимальном полиноме суммы

$$J_s = J_1 + J_2 \Rightarrow S_J = \text{HOД}(p_{J_1}, p_{J_2})$$

Доказательство.
$$J_s = J_1 + J_2 \Rightarrow J_S \supset J_1 \wedge J_S \supset J_2 \Rightarrow p_{J_1} \mid S_J \wedge p_{J_2} \mid S_j \Rightarrow S_j = \text{HOД}(p_{J_1}, p_{J_2})$$

M3137y2019 Лекция 7

Линейная алгерба стр. 4 из 6

Теорема 2. О взаимно простых полиномах

$$]p_1,p_2$$
 — взаимно простые, т.е. НОД $(p_1,p_2)=1\Rightarrow \exists q_1,q_2\in P_\infty[K]:p_1q_1+p_2q_2=1$

Доказательство. $p_1 \leftrightarrow J_1 = p_1 P_{\infty}[K]$

$$p_2 \leftrightarrow J_2 = p_2 P_{\infty}[K]$$

$$\mathrm{HOД}(p_1,p_2)=1 \leftrightarrow J_1+J_2=P_\infty[K]$$

$$p_1q_1 + p_2q_2 = 1$$

Теорема 3. Обобщение

$$p_1 \dots p_k \in P_\infty[K], \text{HOД}(p_1 \dots p_k) = 1 \Rightarrow \exists q_1 \dots q_k : \sum_{i=1}^k p_i q_i = 1$$

Доказательство. Аналогично.

Примечание. $]p=p_1\cdot p_2\cdots p_k, \{p_i\}$ взаимно простые $\Rightarrow \exists q_1\dots q_k: p_1'q_1+p_2'q_2+\dots+p_k'q_k=1, p_j'=rac{p}{p_i}$

Алгебра операторных полиномов

 $| \varphi : X \to X$ — линейный оператор

Определение. Операторным полиномом $p(\varphi)$ называется полином вида:

$$p(\varphi) = \sum_{i=1}^{n} \alpha_i \varphi^i, \varphi^0 = I$$

Определение. $\mathcal{P}_{\varphi} = \{p_n(\varphi) \mid \forall n\}$ — множество операторных полиномов

Лемма 9. \mathcal{P}_{φ} — линейное пространство

Лемма 10. \mathcal{P}_{φ} — коммутативная алгебра

Доказательство.

$$\forall p(\varphi), q(\varphi) \quad p(\varphi)q(\varphi) = q(\varphi)p(\varphi) \Leftrightarrow \varphi^m \varphi^n = \varphi^n \varphi^m$$

M3137y2019 Лекция 7

Линейная алгерба стр. 5 из 6

 $\triangleleft S_{\omega}: P_{\infty}[K] \to \mathcal{P}_{\omega}$

$$p(\lambda) = \sum_{i=1}^{n} \alpha_i \lambda^i \stackrel{S_{\varphi}}{\mapsto} p(\varphi) = \sum_{i=1}^{n} \alpha_i \varphi^i$$

Лемма 11. S_{arphi} — гомоморфизм алгебр $P_{\infty}[K]$ и \mathcal{P}_{arphi}

Доказательство.

$$p(\lambda) + q(\lambda) = (p+q)(\lambda) = \sum_{i=1}^{n} (\lambda_i + \beta_i)\lambda^i \mapsto \sum_{i=1}^{n} (\lambda_i + \beta_i)\varphi^i = (p+q)(\varphi) = p(\varphi) + q(\varphi)$$

$$\alpha p(\lambda) \mapsto \alpha p(\varphi)$$
аналогично

$$p(\lambda)q(\lambda) = (pq)(\lambda) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j \lambda^{i+j} \mapsto \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j \varphi^{i+j} = (pq)(\varphi) = p(\varphi)q(\varphi)$$
$$1 \mapsto \varphi^0 = I$$

Лемма 12. $p_1, p_2 \in P_\infty[K]$, НОД $(p_1, p_2) = 1 \Rightarrow \exists q_1, q_2 \in P_\infty[K] : p_1(\varphi)q_1(\varphi) + p_2(\varphi)q_2(\varphi) = I$

Доказательство. Применим к обеим частям $p_1(\lambda)q_1(\lambda)+p_2(\lambda)q_2(\lambda)=1$ отображение S_{φ} :

$$p_1(\varphi)q_1(\varphi) + p_2(\varphi)q_2(\varphi) = I$$

Теорема 4. О сумме ядер.

$$]p = p_1 \cdot p_2, \ p_1, p_2 \in P_{\infty}[K]$$

 $]p_1, p_2$ — взаимно простые

Тогда

$$\operatorname{Ker}\, p(\varphi) = \operatorname{Ker}\, p_1(\varphi) \dot{+} \operatorname{Ker}\, p_2(\varphi)$$

Т.е., по определению \dotplus :

$$\forall x \in \text{Ker } p(\varphi) \ \exists ! x_1 \in \text{Ker } p_1(\varphi), x_2 \in \text{Ker } p_2(\varphi) \ x = x_1 + x_2$$

М3137у2019 Лекция 7

Линейная алгерба стр. 6 из 6

Доказательство. Покажем, что $\operatorname{Ker} p_1(\varphi) + \operatorname{Ker} p_2(\varphi) \subset \operatorname{Ker} p(\varphi)$

 $]x_j \in \operatorname{Ker} p_j(\varphi) \Rightarrow$

$$p(\varphi)(x) = p(\varphi)(x_1 + x_2) = p_1(\varphi)p_2(\varphi)x_1 + p_1(\varphi)p_2(\varphi)x_2 = 0 + 0 = 0$$

Покажем, что Ker $p(\varphi) \subset \text{Ker } p_1(\varphi) + \text{Ker } p_2(\varphi)$

 $|x \in \operatorname{Ker} p(\varphi)|$

$$\begin{split} \text{HOД}(p_1,p_2) &= 1 \Rightarrow p_1(\varphi)q_1(\varphi) + p_2(\varphi)q_2(\varphi) = I \\ x &= Ix = p_1(\varphi)q_1(\varphi)x + p_2(\varphi)q_2(\varphi)x \\ p_2(\varphi)q_2(\varphi)x &\in \text{Ker } p_1(\varphi) \Leftarrow p_1(\varphi)p_2(\varphi)q_2(\varphi)x = p(\varphi)q_2(\varphi)x = 0 \end{split}$$

Покажем, что Ker $p_1(\varphi)$ + Ker $p_2(\varphi)$ — прямая сумма

 $\triangleleft \operatorname{Ker} p_1(\varphi) \cap \operatorname{Ker} p_2(\varphi) \ni z$

$$z=Iz=p_1(\varphi)q_1(\varphi)z+p_2(\varphi)q_2(\varphi)z=0+0=0\Rightarrow \dim \operatorname{Ker}\, p_1(\varphi)\cap \operatorname{Ker}\, p_2(\varphi)=0\Rightarrow$$

$$\Rightarrow \operatorname{Ker}\, p_1(\varphi)+\operatorname{Ker}\, p_2(\varphi)-\operatorname{прямая}\, \operatorname{сумма}$$

Примечание. Пусть $p=p_1\dots p_k, \{p_k\}$ — взаимно простые \Rightarrow

$$\operatorname{Ker} p(\varphi) = \dot{+} \sum_{j=1}^{k} \operatorname{Ker} p_{j}(\varphi)$$

M3137y2019 Лекция 7