

Προγραμματισμός Ι Εργαστήριο 6

Διδάσκων: Χρήστος Δίου Βασισμένο στο υλικό του κ. Δημήτρη Μιχαήλ

1 Ελάχιστος

Γράψτε μια συνάρτηση

```
int min2(int a, int b);
```

που να επιστρέφει τον ελάχιστο 2 ακεραίων. Στην συνέχεια γράψτε την συνάρτηση

```
int min3(int a, int b, int c);
```

που να επιστρέφει τον ελάχιστο 3 ακεραίων. Χρησιμοποιήστε την min2 για να είναι πιο εύκολη η υλοποίηση. Τέλος γράψτε και τις

```
int min4(int a, int b, int c, int d);
int min5(int a, int b, int c, int d, int e);
```

που επιστρέφουν τον ελάχιστο 4 και 5 ακεραίων αντίστοιχα. Χρησιμοποιήστε τις min2 και min3 για πιο εύκολη υλοποίηση.

Για να ελέγξετε την ορθότητα γράψτε ένα πρόγραμμα που να ζητάει 5 ακεραίουs από τον χρήστη και να τυπώνει στην έξοδο τον ελάχιστο αυτών.

2 Προσέγγιση της e

Η τιμή της μαθηματικής σταθεράς e είναι $2.71828182845\ldots$, που ισοδυναμεί με την άπειρη σειρά:

$$e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

Γράψτε ένα πρόγραμμα που να ζητάει από τον χρήστη μία θετική ακέραια τιμή $1 \le n \le 10$ και μετά να προσεγγίζει την τιμή του e με τους πρώτους n όρους της παραπάνω άπειρης σειράς. Το πρόγραμμα σας πρέπει να τυπώνει αυτή την προσέγγιση.

Παράδειγμα εκτέλεσης του προγράμματος σας είναι:

3 Δυνάμεις

Γράψτε μια συνάρτηση που να δέχεται δύο ακέραιους αριθμούς x και $n \geq 0$ και να υπολογίζει την δύναμη x^n . Η συνάρτηση θα πρέπει να έχει το αρχέτυπο:

```
long power(int x, int n);
```

και να χρησιμοποιεί τον τύπο $x^n=x\cdot x\dots x$. Χρησιμοποιήστε επανάληψη. Στη περίπτωση όπου x=0 και n=0 θεωρούμε¹ πωs $0^0=1$.

Χρησιμοποιήστε το παρακάτω πρόγραμμα για να ελέγξετε την ορθότητα της συνάρτησης σας.

```
int main() {
    int i, j;

for(i=0;i<6;i++) {
        for(j=0;j<8;j++) {
            printf("%6ld ", power(i,j));
        }
        printf("\n");
    }

return 0;
}</pre>
```

Μετά την εκτέλεση του θα πρέπει να δείτε στην έξοδο:

1	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
1	2	4	8	16	32	64	128
1	3	9	27	81	243	729	2187
1	4	16	64	256	1024	4096	16384
1	5	25	125	625	3125	15625	78125

¹http://mathforum.org/dr.math/faq/faq.0.to.0.power.html