STAT 331 - Applied Linear Models

Cameron Roopnarine

Last updated: September 23, 2020

Contents

Conten	ts	1
0.1	Multiple Linear Regression (MLR)	10

LECTURE 1 | 2020-09-08

Regression model infers the relationship between:

• Response (dependent) variable: variable of primary interest, denoted by a capital letter such as Y.

• Explanatory (independent) variables: (covariates, predictors, features) variables that potentially impact response, denoted (x_1, x_2, \dots, x_p) .

Alligator data:

• *Y*: length (m)

• x_1 : male/female (categorical, 0 or 1)

Mass in stomach:

• x_2 : fish

• x_3 : invertebrates

• x_4 : reptiles

• x_5 : birds

• x_6, \dots, x_p : other variables

We imagine we can explain Y in terms of (x_1,\ldots,x_p) using some function so that $Y=f(x_1,\ldots,x_p)$.

In this course, we will be looking at linear models.

The Linear regression model assumes that

$$Y=\beta_0+\beta_1x_1+\cdots+\beta_px_p+\varepsilon$$

• Y =value of response

• x_1, \dots, x_p = values of p explanatory variables (assumed to be fixed constants)

• $\beta_0, \beta_1, \dots, \beta_p = \text{model parameters}$

– $\beta_0 =$ intercept, expected value of Y when all $x_i = 0$.

– β_1,\dots,β_p all quantify effect on x_j on Y , $j=1,\dots,p$

 $- \varepsilon = \text{random error}$

A good quote:

"All models are wrong, but some are useful."

Assume $\varepsilon \sim N(0, \sigma^2)$. In general, the model will not perfectly explain the data.

Q: What is the distribution of Y under these assumptions?

We know:

• $E[Y] = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$, and

• $Var(Y) = Var(\varepsilon) = \sigma^2$.

Therefore,

$$Y \sim N\left(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p, \sigma^2\right)$$

A linear model with response variable (Y) and *one* explanatory variable (x) is called a **simple linear regression**; that is,

$$\bar{Y} = \beta_0 + \beta_1 x + \varepsilon$$

Data consists of pairs (x_i, y_i) where i = 1, ..., n.

Before fitting any model, we might

- make a scatterplot to visualize if there is a linear relationship between x and y
- calculate correlation

If X and Y are random variables, then

$$\rho = \mathsf{Corr}(X,Y) = \frac{\mathsf{Cov}(X,Y)}{\mathsf{Sd}(X)\mathsf{Sd}(Y)}$$

Based on (x_i, y_i) we can estimate the sample correlation:

$$\begin{split} r &= \frac{\frac{1}{n-1} \sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum\limits_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\frac{1}{n-1} \sum\limits_{i=1}^{n} (y_i - \bar{y})}} \\ &= \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum\limits_{i=1}^{n} (y_i - \bar{y})^2}} \\ &= \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \end{split}$$

The sample correlation measures the strength and direction of the *linear* relationship between *X* and *Y* .

- $|r| \approx 1$ strong linear relationship
- $|r| \approx 0$ lack of linear relationship
- r > 0 positive relationship
- r < 0 negative relationship
- $-1 \leqslant r \leqslant 1$

But does not tell us how to predict Y from X. To do so, we need to estimate β_0 and β_1 .

For data (x_i, y_i) for i = 1, ..., n, the simple linear regression model is

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Assume

$$\varepsilon \overset{\mathrm{iid}}{\sim} N(0,\sigma^2)$$

Therefore,

$$Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

In other words,

$$\mathsf{E}[Y_i] = \mu_i = \beta_0 + \beta_1 x_i \text{ and } \mathsf{Var}(Y_i) = \sigma^2$$

Note that the Y_i 's are independent, but they are *not* independently distributed.

Use the *Least Squares* (LS) to estimate β_0 and β_1 .

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n \left[y_i - (\beta_0 + \beta_1 x_i)\right]^2 = S(\beta_0,\beta_1)$$

LS is equivalent to MLE when ε_i 's are iid and Normal.

Taking partial derivatives:

$$\begin{split} \frac{dS}{d\beta_0} &= 2\sum_{i=1}^n \left[y_i - (\beta_0 + \beta_1 x_i)\right](-1) \\ \frac{dS}{d\beta_1} &= 2\sum_{i=1}^n \left[y_i - (\beta_0 + \beta_1 x_i)\right](-x_i) \end{split}$$

Now,

$$\begin{split} \frac{dS}{d\beta_0} &= 0 \iff \sum_{i=1}^n y_i - n\beta_0 - \beta_1 \sum_{i=1}^n x_i = 0 \iff \beta_0 = \bar{y} - \beta_1 \bar{x} \\ \frac{dS}{d\beta_1} &= 0 \iff \sum_{i=1}^n \left[y_i - \bar{y} + \beta_1 \bar{x} - \beta_1 x_i \right] x_i = 0 \\ &\iff \sum_{i=1}^n x_i (y_i - \bar{y}) - \beta_1 \sum_{i=1}^n x_i (x_i - \bar{x}) = 0 \\ &\iff \beta_1 = \frac{\sum_{i=1}^n x_i (y_i - \bar{y})}{\sum_{i=1}^n x_i (x_i - \bar{x})} \end{split}$$

We can also show that

$$\beta_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{x})}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$

We use a hat on the β 's to show that they are estimates; that is,

$$\begin{split} \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ \hat{\beta}_1 &= \frac{\sum\limits_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum\limits_{i=1}^n (x_i - \bar{x})^2} \end{split}$$

Call $\hat{\mu}_i=\hat{\beta}_0+\hat{\beta}_1x_i$ the fitted values and $e_i=y_i-\hat{\mu}_i$ the residual.

LECTURE 3 | 2020-09-14

Model: $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$

Equation of fitted line: $y = \hat{\beta}_0 + \hat{\beta}_1 x$

Interpretation:

- $\hat{\beta}_0$ is the estimate of the expected response when x=0 (but not always meaningful if outside range of x_i 's in data)
- $\hat{\beta}_1$ is the estimate of expected change in response for unit increase in x

$$\hat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x}) \sum\limits_{i=1}^{n} (y_i - \bar{y})}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}$$

• σ^2 is the "variability around the line."

Recall that
$$\sigma^2 = \mathsf{Var}(\varepsilon_i) = \mathsf{Var}(Y_i)$$

Q: How to estimate σ^2 ?

$$\varepsilon_i = Y_i - (\beta_0 + \beta_1 x_i)$$

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

Intuition: use variability in residuals to estimate σ^2 .

We use

$$\hat{\sigma}^2 = \frac{\sum\limits_{i=1}^n (e_i - \bar{e})^2}{n-2}$$

which looks looks like sample variance of e_i 's. Therefore,

$$\hat{\sigma}^2 = \frac{\sum\limits_{i=1}^n e_i^2}{n-2} = \frac{\operatorname{Ss}(\operatorname{Res})}{n-2}$$

Note that "Square Sum" is abbreviated as "Ss". Now,

$$\bar{e} = \bar{y} - (\hat{\beta}_0 + \hat{\beta}_1 \bar{x}) = 0$$

The n-2 will be looked are more carefully later, but for now it suffices to say that n-2=d.f.=number of parameters estimated. It allows $\hat{\sigma}^2$ to be an unbiased estimator for the true value of σ^2 ; that is,

$$\mathsf{E}[\hat{\sigma}^2] = \sigma^2$$

whenever $\hat{\sigma}^2$ is viewed as a random variable.

Q: Is there a statistically significant relationship?

Fact (proved using mgf in STAT 330): Suppose $Y_i \sim N(\mu_i, \sigma_i^2)$ are all independent. Then,

$$\sum_{i=1}^n a_i Y_i \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$$

for any constant a_i .

In words,

"Linear combination of Normal is Normal."

Viewing $\hat{\beta}_1$ as a random variable:

$$\hat{\beta}_1 = \frac{\sum\limits_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{\sum\limits_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum\limits_{i=1}^n (x_i - \bar{x})Y_i - \bar{Y}\sum\limits_{i=1}^n (x_i - \bar{x})}{\sum\limits_{i=1}^n (x_i - \bar{x})x_i - \bar{x}\sum\limits_{i=1}^n (x_i - \bar{x})} = \frac{\sum\limits_{i=1}^n (x_i - \bar{x})Y_i}{\sum\limits_{i=1}^n (x_i - \bar{x})x_i}$$

So,

$$\hat{\beta}_1 = \sum_{i=1}^n a_i Y_i$$

where
$$a_i = \frac{x_i - \bar{x}}{\sum\limits_{i=1}^n x_i (x_i - \bar{x})}.$$

$$\begin{split} \mathsf{E}[\hat{\beta}_{1}] &= \sum_{i=1}^{n} a_{i} \mathsf{E}[Y_{i}] \\ &= \sum_{i=1}^{n} a_{i} (\beta_{0} + \beta_{1} x_{i}) \\ &= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (\beta_{0} + \beta_{1} x_{i})}{\sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})} \\ &= \frac{\beta_{0} \sum_{i=1}^{n} (x_{i} - \bar{x}) + \beta_{1} \sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})}{\sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})} \\ &= \beta_{1} \end{split}$$

On average, $\hat{\beta}_1$ is an unbiased estimator for β_1 .

Now, we calculate the variance of $\hat{\beta}_1$:

$$\begin{split} \mathsf{Var}(\hat{\beta}_1) &= \sum_{i=1}^n a_i^2 \mathsf{Var}(Y_i) \\ &= \sigma^2 \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\left[\sum_{i=1}^n x_i (x_i - \bar{x})\right]^2} \\ &= \sigma^2 \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\left[\sum_{i=1}^n (x_i - \bar{x})^2\right]^2} \\ &= \frac{\sigma^2}{S_{rr}} \end{split}$$

So, since $\hat{\beta}_1$ is a linear combination of Normals,

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right)$$

In a similar manner,

$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right)\right)$$

That is, $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimates.

Then,

$$\frac{\hat{\beta}_1 - \beta_1}{\sigma / \sqrt{S_{xx}}} \sim N(0, 1)$$

However, σ is unknown, so need to estimate with $\hat{\sigma}$:

$$\frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{S_{xx}}} \sim t(n-2)$$

Since $Sd(\hat{\beta}_1) = \hat{\sigma}^2/S_{xx}$, we say the standard error of $\hat{\beta}_1$ is $Se(\hat{\beta}_1) = \hat{\sigma}/\sqrt{S_{xx}}$

DEFINITION 0.0.1: Student's T-distribution

T is said to follow a **Student's T-distribution** with k degrees of freedom, denoted $T \sim t(k)$, if

$$T = \frac{Z}{\sqrt{U/k}}$$

where $Z \sim N(0,1)$ and $U \sim \chi^2(k)$.

Fact: For the simple linear regression model,

$$\frac{\hat{\sigma}^2(n-2)}{\sigma^2} = \frac{\mathsf{Ss}(\mathsf{Res})}{\sigma^2} \sim \chi^2(n-2)$$

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}/\sqrt{S_{xx}}} = \frac{\frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{S_{xx}}}}{\sqrt{\frac{\hat{\sigma}^2(n-2)}{\sigma^2} \left(\frac{1}{n-2}\right)}} \sim t(n-2)$$

A $(1-\alpha)$ confidence interval for β_1 is

$$\hat{\beta}_1 \pm (c) \mathsf{Se}(\hat{\beta}_1)$$

where c is the $1-\frac{\alpha}{2}$ quantile of t(n-2); that is,

- $P(|T| \leqslant c) = 1 \alpha$, or
- $P(T \leqslant c) = 1 \frac{\alpha}{2}$

where $T \sim t(n-2)$.

If H_0 is true, then

$$\frac{\hat{\beta}_1 - \beta_1}{\mathsf{Se}(\hat{\beta}_1)} = \frac{\hat{\beta}_1}{\mathsf{Se}(\hat{\beta}_1)} \sim t(n-2)$$

so calculate

$$t = \frac{\hat{\beta}_1}{\mathsf{Se}(\hat{\beta}_1)}$$

and reject H_0 at level α if |t|>c where c is $1-\frac{\alpha}{2}$ quantile of t(n-2).

$$p\text{-value} = P(|T| \geqslant |t|) = 2P(T \geqslant |t|)$$

<u>Prediction for SLR</u>: Suppose we want to predict the response y for a new value of x. Say $x=x_0$. Then, SLR model says

$$Y_0 \sim N(\beta_0 + \beta_1 x_0, \sigma^2)$$

where Y_0 is a r.v. for response when $x=x_0$.

The fitted model predicts the *value* of *y* to be

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

As a random variable,

$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

then,

$$\mathsf{E}[\hat{Y}_0] = \mathsf{E}[\hat{\beta}_0] + x_0 \mathsf{E}[\hat{\beta}_1] = \beta_0 + \beta_1 x_0 = \mathsf{E}[Y_0]$$

since $\hat{\beta}_i$ for i=0,1 are unbiased. We can say that \hat{Y}_0 is an unbiased estimate of the random variable for the prediction: Y_0 .

We claim that:

$$\mathsf{Var}(\hat{Y}_0) = \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)$$

by expressing $\hat{Y}_0 = \sum_{i=1}^n a_i Y_i$. This implies that,

$$\hat{Y}_0 \sim N\left(\beta_0 + \beta_1 x_0, \sigma^2 \left(\frac{1}{n} + \frac{\left(x_0 - \bar{x}\right)^2}{S_{xx}}\right)\right)$$

The random variable for prediction error is

$$Y_0 - \hat{Y}_0$$

where Y_0 and \hat{Y}_0 are independent.

$$\mathsf{E}[Y_0 - \hat{Y}_0] = \mathsf{E}[Y_0] - \mathsf{E}[\hat{Y}_0] = 0$$

$$\mathsf{Var}(Y_0 - \hat{Y}_0) = \mathsf{Var}(Y_0) + (-1)^2 \mathsf{Var}(\hat{Y}_0) = \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)$$

Again, we have a linear combination of independent Normals, so

$$Y_0 - \hat{Y}_0 \sim N\left(0, \sigma^2\left(1 + \frac{1}{n} + \frac{\left(x_0 - \bar{x}\right)^2}{S_{xx}}\right)\right)$$

Since σ is unknown, we use $\hat{\sigma}$ and get the following:

$$\frac{Y_0 - \hat{Y}_0}{\hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}} \sim t(n - 2)$$

Intuition for prediction error composed of 2 terms:

- $Var(Y_0)$: random error of new observation
- $Var(\hat{Y}_0)$ (predictor): estimating β_0 and β_1

Those are 2 sources of uncertainty.

<u>Note</u>: Be careful that the prediction may not make sense if x_0 is outside the range of the x_i 's in the data.

 $(1-\alpha)$ prediction interval for y_0 :

$$\hat{y}_0 \pm c \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

where c is the $1 - \frac{\alpha}{2}$ quantile of t(n-2).

Orange production 2018 in FL

- x: acres
- y: # boxes of oranges (thousands)
- (x_i, y_i) recorded for each of 25 FL counties
- r = 0.964
- $\bar{x} = 16133$
- $\bar{y} = 1798$
- $S_{xx} = 1.245 \times 10^{10}$
- $S_{xy} = 1.453 \times 10^9$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = 0.1167$$

which is a positive slope (positive correlation between x and y). The expected number of boxes produced is estimated to be about 117 higher per an additional acre.

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = -85.3$$

Not meaningful to interpret, since it is the expected production if there were 0 acres (outside the range of x_i) as no county has x=0.

Now suppose

$$Ss(Res) = 1.31 \times 10^7$$

the residuals are the differences between y_i and the fitted regression line.

- $\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n-2} = \frac{1.31 \times 10^7}{25-2} = 5.7 \times 10^5$
- $\bullet \ \operatorname{Se}(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{S_{xx}}} = 0.00676$
- To test H_0 : $\beta_1 = 0$, calculate

$$t = \frac{\hat{\beta}_1 - 0}{\mathsf{Se}(\hat{\beta}_0)} = \frac{0.1167}{0.00676} \approx 17.3$$

Select the 0.975 quantile (for demonstration purposes) of t(23) is 2.07.

• Note that 17.3 is very unlikely to see in t(23).

Since 17.3>2.07, we reject H_0 at $\alpha=0.05$ level, conclude there's a significant linear relationship between acres and oranges produced.

The 95% confidence interval for β_1 is

$$0.1167 \pm 2.07 (0.00676)$$

which does not contain 0.

$$p$$
-value = $P(|t_{23}| \ge 17.3) = 2P(t_{23} \ge 17.3) \approx 1.2 \times 10^{-14}$

Predict the # of boxes in thousands produced if we had 10000 acres to grow oranges.

$$\hat{\beta}_0 + \hat{\beta}_1 x_0 = -85.3 + (0.1167)(10000) \approx 1082$$

The 95% prediction interval is:

$$1082 \pm 2.07 \sqrt{5.69 \times 10^5} \sqrt{1 + \frac{1}{25} + \frac{(6133)^2}{1.245 \times 10^{10}}}$$

Note: not trying to establish causation.

Check LEARN for florange.csv.

Is σ the same for all values of y?

It appears to be violated, can consider taking the log.

Are the error terms plausibly independent? (e.g. does knowing one e_i help predict e_j for a different county?)

LECTURE 5 | 2020-09-21

0.1 Multiple Linear Regression (MLR)

p explanatory variables which can be categorical, continuous, etc.

Rocket

- x_1 : nozzle area (large or small)
- x_2 : mixture in propellent, ratio oxidized fuel
- *Y*: thrust

Want to develop linear relationship between y and x_1, x_2, \dots, x_p .

<u>Data</u> n observations each consists of response and p explanatory variables $(y_i, x_{i1}, x_{i2}, \dots, x_{ip})$. Then,

$$Y_i \sim N(\underbrace{\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}}_{\mathbb{E}[Y_i] = \mu_i}, \sigma^2)$$

or $Y_i = \mu_i + \varepsilon_i$ where $\varepsilon_i \sim N(0, \sigma^2)$.

We can write in vector/matrix form

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} \beta_0 + \beta_1 x_{11} + \dots + \beta_p x_{1p} \\ \beta_0 + \beta_1 x_{21} + \dots + \beta_p x_{2p} \\ \vdots \\ \beta_0 + \beta_1 x_{n1} + \dots + \beta_p x_{np} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Which we can write as

$$\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where

$$\boldsymbol{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1}, \ \boldsymbol{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}_{n \times (n+1)}, \ \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_p \end{bmatrix}_{(p+1) \times 1}, \ \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{n \times 1}$$

We call $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^{\top}$ a **random vector** (vector of r.v.'s), analogue of expectation and variance properties.

• Mean vector:

$$\mathsf{E}[\boldsymbol{Y}] = \begin{bmatrix} \mathsf{E}[Y_1] \\ \mathsf{E}[Y_2] \\ \vdots \\ \mathsf{E}[Y_n] \end{bmatrix}$$

• Covariance matrix (variance-covariance matrix):

$$\mathsf{Var}(\boldsymbol{Y}) = \begin{bmatrix} \mathsf{Var}(Y_1) & \mathsf{Cov}(Y_1,Y_2) & \cdots & \mathsf{Cov}(Y_1,Y_{n-1}) & \mathsf{Cov}(Y_1,Y_n) \\ \mathsf{Cov}(Y_2,Y_1) & \mathsf{Var}(Y_2) & \cdots & \mathsf{Cov}(Y_2,Y_{n-1}) & \mathsf{Cov}(Y_2,Y_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathsf{Cov}(Y_{n-1},Y_1) & \mathsf{Cov}(Y_{n-1},Y_2) & \cdots & \mathsf{Var}(Y_{n-1}) & \mathsf{Cov}(Y_{n-1},Y_n) \\ \mathsf{Cov}(Y_n,Y_1) & \mathsf{Cov}(Y_n,Y_2) & \cdots & \mathsf{Cov}(Y_n,Y_{n-1}) & \mathsf{Var}(Y_n) \end{bmatrix}$$

- symmetric since $Cov(Y_i, Y_i) = Cov(Y_i, Y_i)$
- positive semi-definite since $a^{\top} Var(Y) a \ge 0$ for all $a \in \mathbb{R}^n$.

-
$$Var(Y) = E[(Y - E[Y])(Y - E[Y])^{\top}]$$

Properties of random vector: let a be a $1 \times n$ matrix (row vector) of constants and A be an $n \times n$ matrix of constants.

$$\mathsf{E}[m{a}m{Y}] = m{a}m{Y}$$
 $\mathsf{E}[Am{Y}] = A\mathsf{E}[m{Y}]$ $\mathsf{Var}(m{a}m{Y}) = m{a}\mathsf{Var}(m{Y})m{a}^ op$ $\mathsf{Var}(Am{Y}) = A\mathsf{Var}(m{Y})A^ op$

Derivation of (4):

$$\begin{split} \mathsf{Var}(A\boldsymbol{Y}) &= \mathsf{E}[(A\boldsymbol{Y} - \mathsf{E}[A\boldsymbol{Y}]) \left(A\boldsymbol{Y} - \mathsf{E}[A\boldsymbol{Y}]\right)^\top] \\ &= \mathsf{E}[(A\boldsymbol{Y} - A\mathsf{E}[\boldsymbol{Y}]) \left(A\boldsymbol{Y} - A\mathsf{E}[\boldsymbol{Y}]\right)^\top] \\ &= \mathsf{E}[A \left(\boldsymbol{Y} - \mathsf{E}[\boldsymbol{Y}]\right) \left(A \left(\boldsymbol{Y} - \mathsf{E}[\boldsymbol{Y}]\right)\right)^\top] \\ &= \mathsf{E}[A \left(\boldsymbol{Y} - \mathsf{E}[\boldsymbol{Y}]\right) \left(\boldsymbol{Y} - \mathsf{E}[\boldsymbol{Y}]\right)^\top A^\top] \\ &= A\mathsf{E}[\left(\boldsymbol{Y} - \mathsf{E}[\boldsymbol{Y}]\right) \left(\boldsymbol{Y} - \mathsf{E}[\boldsymbol{Y}]\right)^\top] A^\top \\ &= A\mathsf{Var}(\boldsymbol{Y}) A^\top \end{split}$$

Numerical example: $\mathbf{Y} = (Y_1, Y_2, Y_3)^{\mathsf{T}}$. Suppose

$$\mathsf{E}[\boldsymbol{Y}] = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

and

$$\mathsf{Var}(Y) = \begin{bmatrix} 4 & 1/2 & -2 \\ 1/2 & 1 & 0 \\ -2 & 0 & 3 \end{bmatrix}$$

and

$$\boldsymbol{a} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$$

and

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Exercise:

- E[aY]
- Var(aY)
- $\mathsf{E}[AY]$
- Var(AY)

Let's do the first two,

$$\mathsf{E}[\boldsymbol{a}\boldsymbol{Y}] = \boldsymbol{a}\mathsf{E}[\boldsymbol{Y}] = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = 1(3) - 1(1) + 2(2) = 6$$

$$\begin{aligned} \mathsf{Var}(\pmb{aY}) &= \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 1/2 & -2 \\ 1/2 & 1 & 0 \\ -2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 4(1) + (1/2)(-1) - 2(2) \\ (1/2)(1) + 1(-1) + 0(2) \\ -2(1) + 0(-1) + 3(2) \end{bmatrix} \\ &= \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} -1/2 \\ -1/2 \\ 4 \end{bmatrix} \\ &= 1(-1/2) - 1(-1/2) + 2(4) \\ &= 8 \end{aligned}$$

Multivariate normal distribution (MVN): We say that $Y \sim \text{MVN}(\mu, \Sigma)$ where $\mu = \text{mean vector}$ and $\Sigma = \text{covariance matrix}$. Suppose $Y = (Y_1, \dots, Y_n)^{\top}$.

$$f(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\varSigma}) = \frac{1}{(2\pi)^{n/2}|\boldsymbol{\varSigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^{\top}\boldsymbol{\varSigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right\}$$

where Σ^{-1} is the inverse of the covariance matrix and $|\Sigma|$ is the determinant of Σ .

Properties of MVN: Suppose $\boldsymbol{Y}=(Y_1,\dots,Y_n)^{\top}\sim \text{MVN}(\boldsymbol{\mu},\boldsymbol{\Sigma})$ and \boldsymbol{a} is a $1\times n$ constant and A is an $n\times n$ matrix of constants.

1. Linear transformations of MVN is MVN, so

$$\boldsymbol{a}\boldsymbol{Y} \sim \mathsf{MVN}(\boldsymbol{a}\boldsymbol{\mu}, \boldsymbol{a}\boldsymbol{\Sigma}\boldsymbol{a}^{\top})$$

$$A\boldsymbol{Y} \sim \mathsf{MVN}(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}A^\top)$$

2. Marginal distribution of Y_i is Normal,

$$Y_i \sim N(\mu_i, \Sigma_{ii})$$

In fact, any subset of Y_i 's is MVN

- 3. Conditional MVN is MVN, e.g. $Y_1 \mid Y_2, \dots, Y_n$
- 4. Another property:

$$Cov(Y_i, Y_i) = 0 \iff Y_i, Y_i \text{ independent}$$

that is, Y_i and Y_j are uncorrelated.

$$\Sigma_{ij} = 0$$

LECTURE 6 | 2020-09-23

MLR: $Y = XB + \varepsilon$

Recall: $\varepsilon \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

So random vector:

$$\boldsymbol{\varepsilon} \sim \text{MVN} \left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma^2 & 0 \\ 0 & 0 & \cdots & 0 & \sigma^2 \end{bmatrix} \right) = (\mathbf{0}_{n \times 1}, \sigma^2 I_{n \times n})$$

since $\mathsf{Cov}(\varepsilon_1,\varepsilon_2)=0$ due to independence.

Thus, $Y \sim \text{MVN}(XB, \sigma^2 I)$.

Least squares: Define

$$S(\beta_0,\beta_1,\dots,\beta_p) = \sum_{i=1}^n (y_i - (\underline{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}))^2$$

First partial:

$$\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n 2(y_i - \mu_u)(-1)$$

We observe that all other partials for j = 1, ..., p are:

$$\frac{\partial S}{\partial \beta_j} = \sum_{i=1}^n 2(y_i - \mu_i)(-x_{ij})$$

Set
$$\frac{\partial S}{\partial \beta_0} = 0$$
 and $\frac{\partial S}{\partial \beta_j} = 0$ for $j = 1, \dots, p$.

$$\begin{cases} \sum_{i=1}^n (y_i - \mu_i) \iff \mathbf{1}_{n \times n}^\top (\boldsymbol{y} - \boldsymbol{\mu}) = 0 \\ \sum_{i=1}^n (y_i - \mu_i) x_{ij} = 0 \iff \boldsymbol{x}_j^\top (\boldsymbol{y} - \boldsymbol{\mu}) = 0 \quad j = 1, \dots, p \end{cases}$$

since we recall that

$$X = \begin{bmatrix} 1 & x_{11}x_{12} & \cdots & x_{1p} \\ \vdots & & & \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n\times 1} & \mathbf{x}_1 & \cdots & \mathbf{x}_{p-1} & \mathbf{x}_p \end{bmatrix}$$

Therefore,

$$X^{\top}(\boldsymbol{y} - X\boldsymbol{B}) = 0 \iff X^{\top}\boldsymbol{y} - X^{\top}X\boldsymbol{B} = 0 \iff X^{\top}X\boldsymbol{B} = X^{\top}\boldsymbol{y} \iff \boldsymbol{B} = (X^{\top}X)^{-1}X^{\top}\boldsymbol{y}$$

assuming $X^{T}X$ is invertible (full rank of p+1, or linearly independent columns).

Define residuals:

$$e_i = y_i - (\underline{\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \cdots \hat{\beta}_p x_{ip}})$$
 fitted value μ_i

or equivalently,

$$\hat{\boldsymbol{\mu}} = X\hat{\boldsymbol{B}}, \quad \boldsymbol{e} = \boldsymbol{y} - \boldsymbol{\mu}$$

and estimate σ^2 based on e_i 's

$$\sigma^2 = \frac{\mathsf{Ss}(\mathsf{Res})}{n - (p+1)} = \frac{\sum\limits_{i=1}^n e_i^2}{n - p - 1} = \frac{\boldsymbol{e}^\top \boldsymbol{e}}{n - p - 1}$$

since d.f. is n - (no. estimated parameters). When viewed as a random variable,

$$\frac{(n-p-1)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-p-1)$$

Inference for

$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \dots, \hat{\beta}_p)^\top = (X^\top X)^{-1} X^\top \boldsymbol{Y}$$

Note that $\hat{\beta}$ is a matrix of constants and Y is a random vector, and

$$Y \sim \text{MVN}(X\beta, \sigma^2 I)$$

$$\begin{split} \mathsf{E}[\hat{\boldsymbol{\beta}}] &= \mathsf{E}[(X^\top X)^{-1} X^\top \boldsymbol{Y}] \\ &= (X^\top X)^{-1} X^\top \mathsf{E}[\boldsymbol{Y}] \\ &= (X^\top X)^{-1} (X^\top X) \boldsymbol{\beta} \\ &= \boldsymbol{\beta} \end{split}$$

That is, $\mathsf{E}[\hat{\beta}_0], \dots, \mathsf{E}[\hat{\beta}_p] = \beta_p$ all unbiased.

$$\begin{split} \mathsf{Var}((X^\top X)^{-1}X^\top) &= (X^\top X)^{-1}X^\top \mathsf{Var}(\boldsymbol{Y}) \left[(X^\top X)^{-1}X^\top \right]^\top \\ &= (X^\top X)^{-1}X^\top \sigma^2 I(X^\top)^\top \left[(X^\top X)^{-1} \right]^\top \\ &= \sigma^2 (X^\top X)^{-1} (X^\top) (X^\top X) (X^\top X)^{-1} \end{split}$$

 $X^{\top}X$ symmetric

 $\hat{\beta}$ is a linear transformation of Y, so

$$\hat{\boldsymbol{\beta}} \sim \text{MVN}(\boldsymbol{\beta}, \sigma^2 \underbrace{(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1}}_{V})$$

For a specific parameter β_j ,

$$\hat{\beta}_j \sim N(\beta_j, \sigma^2 V_{jj})$$

from marginal property of MVN.

$$\frac{\hat{\beta}_j - \beta_j}{\sigma \sqrt{V_{jj}}} \sim N(0,1)$$

$$\frac{\hat{\beta}_j - \beta_j}{\hat{\sigma} \sqrt{V_{jj}}} \sim t(n - p - 1)$$

We define the standard error of $\hat{\beta}_j$ as

$$\mathrm{Se}(\hat{\beta}_j) = \hat{\sigma} \sqrt{V_{jj}}$$

So, a $(1-\alpha)$ confidence interval for β_j is

$$\hat{\beta}_i \pm c \mathsf{Se}(\hat{\beta}_i)$$

where c is $(1-(\alpha/2))$ quantile of t(n-p-1).

To test H_0 : $\beta_j=0$ vs H_A : $\beta_j\neq 0$, calculate t-statistic

$$t = \frac{\hat{\beta}_j}{\mathsf{Se}(\hat{\beta}_i)}$$

reject at level α if |t| > c and p-value is $2P(T \ge |t|)$ where $T \sim t(n-p-1)$.

Interpretation of $\hat{\beta}$: fitted linear regression model says $\widehat{\mathsf{E}[Y]}$ (estimate of the expected response) is $\hat{\beta}_0 + \dots + \beta_1 x_1 + \hat{\beta}_p x_p$.

- $\hat{\beta}_0$ is the estimate of expected response when all explanatory variables are equal to 0.
- $\hat{\beta}_j$ is the estimated change in expected response for a unit increase in x_j , when holding all other explanatory variables constant, e.g.

$$\hat{\beta}_0+\hat{\beta}_1(x_1+1)+\cdots+\hat{\beta}_px_p-(\hat{\beta}_0+\hat{\beta}_1x_1+\cdots+\hat{\beta}_px_p)=\hat{\beta}_1$$

Rocket example: n = 12

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} 473.6 \\ 16.7 \\ -1.09 \end{bmatrix} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)^{\top}$$

- x_1 : nozzle area (1 = L, 0 = S)
- x₂: propellent ratio
- *Y*: thrust

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{12} e_i^2}{12 - 1 - 2}} = 2.655$$

Interpretation of $\hat{\beta}$:

- $\hat{\beta}_1$ estimated change in expected thrust is 16.7 when changing small to large nozzle while holding other variables (propellent ratio) constant.
- $\hat{\beta}_2$ estimated thrust to decrease by 1.09 on average for a unit increase in propellent ratio while holding other variables (nozzle area) constant.

Given: $\operatorname{Se}(\hat{\beta}_2) = 0.94$.

Then: t-statistic for H_0 : $\beta_2=0$ vs H_A : $\beta_2\neq 0$ is t=-1.09/0.94=-1.16

p-value =
$$2P(T \ge 1.16) = 0.275$$
 from R where $T \sim t(9)$

Do not reject H_0 (e.g. $\alpha=0.05$), therefore propellent ratio does not significantly influence thrust.