Kartkówka nr 3; (20') 25-11-2020 Proszę napisać język wszystkich słów nad alfabetem $\{a,b\}$ postaci a^k b^m , gdzie $k \ge 0$, $m \ge 0$ oraz 2k+1=3m-2.

Proszę podać krótkie uzasadnienie poprawności gramatyki.

Rozwiązanie:

Na przykład S ::= b | aaaSbb

Uzasadnienie:

Zgodność: $b \in L(G)$ dla m=1,k=0. Jeśli $S \rightarrow w \in L(G)$, to $w=a^k b^m$, dla pewnych k,m spełniających równanie 2k+1=3m-2. Wtedy wykonując zamiast ostatniej produkcji $S \rightarrow b$ produkcję $S \rightarrow aaaSbb$ i dopiero potem $S \rightarrow b$ dostalibyśmy słowo aaaa^k bbb^m . Ale ono też jest żądanej postaci dla k'=k+3 i m'=m+2, bo 2(k+3)+1=3(m+2)-2. Więc użycie drugiej produkcji pozostawia nas w języku.

Pełność: wszystkie słowa jednoelementowe (najkrótsze możliwe; w tym przypadku jest tylko jedno takie słowo: b) da się wyprowadzić. Załóżmy indukcyjnie, że słowa krótsze od n>1 daje się wyprowadzić. Weźmy słowo w długości n. Niech w=a^k b^m, dla pewnego m>1 i odpowiedniego k spełniających równanie 2k+1=3m-2. Liczba m jest nieparzysta, więc m>2. Dla m'=m-2 i odpowiedniego k' słowo w'=a^{k'}b^{m'}, daje się wyprowadzić na mocy założenia indukcyjnego. Przed ostatnią produkcją S→b, która kończy wyprowadzenie słowa w' dodajemy produkcję S→aaaSbb i otrzymujemy słowo w.