About Chapter 1

In the first chapter, you will need to be familiar with the binomial distribution. And to solve the exercises in the text – which I urge you to do – you will need to know *Stirling's approximation* for the factorial function, $x! \simeq x^x e^{-x}$, and be able to apply it to $\binom{N}{r} = \frac{N!}{(N-r)! r!}$. These topics are reviewed below.

Unfamiliar notation? See Appendix A, p.598.

The binomial distribution

Example 1.1. A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability distribution of the number of heads, r? What are the mean and variance of r?

Solution. The number of heads has a binomial distribution.

$$P(r \mid f, N) = \binom{N}{r} f^r (1 - f)^{N - r}.$$
 (1.1)

The mean, $\mathcal{E}[r]$, and variance, $\mathrm{var}[r]$, of this distribution are defined by

$$\mathcal{E}[r] \equiv \sum_{n=0}^{N} P(r \mid f, N) r \tag{1.2}$$

Figure 1.1. The binomial distribution P(r | f = 0.3, N = 10).

$$var[r] \equiv \mathcal{E}\left[(r - \mathcal{E}[r])^2 \right]$$
 (1.3)

$$= \mathcal{E}[r^2] - (\mathcal{E}[r])^2 = \sum_{r=0}^{N} P(r \mid f, N) r^2 - (\mathcal{E}[r])^2.$$
 (1.4)

Rather than evaluating the sums over r in (1.2) and (1.4) directly, it is easiest to obtain the mean and variance by noting that r is the sum of N independent random variables, namely, the number of heads in the first toss (which is either zero or one), the number of heads in the second toss, and so forth. In general,

$$\mathcal{E}[x+y] = \mathcal{E}[x] + \mathcal{E}[y]$$
 for any random variables x and y ; var $[x+y] = \text{var}[x] + \text{var}[y]$ if x and y are independent. (1.5)

So the mean of r is the sum of the means of those random variables, and the variance of r is the sum of their variances. The mean number of heads in a single toss is $f \times 1 + (1 - f) \times 0 = f$, and the variance of the number of heads in a single toss is

$$[f \times 1^2 + (1 - f) \times 0^2] - f^2 = f - f^2 = f(1 - f), \tag{1.6}$$

so the mean and variance of r are:

$$\mathcal{E}[r] = Nf$$
 and $\operatorname{var}[r] = Nf(1-f)$. \square (1.7)

Approximating x! and $\binom{N}{r}$

Let's derive Stirling's approximation by an unconventional route. We start from the Poisson distribution with mean λ ,

$$P(r \mid \lambda) = e^{-\lambda} \frac{\lambda^r}{r!} \quad r \in \{0, 1, 2, \dots\}.$$
 (1.8)

For large λ , this distribution is well approximated – at least in the vicinity of $r \simeq \lambda$ – by a Gaussian distribution with mean λ and variance λ :

$$e^{-\lambda} \frac{\lambda^r}{r!} \simeq \frac{1}{\sqrt{2\pi\lambda}} e^{-\frac{(r-\lambda)^2}{2\lambda}}.$$
 (1.9)

Let's plug $r = \lambda$ into this formula, then rearrange it.

$$e^{-\lambda} \frac{\lambda^{\lambda}}{\lambda!} \simeq \frac{1}{\sqrt{2\pi\lambda}}$$
 (1.10)

$$\Rightarrow \quad \lambda! \quad \simeq \quad \lambda^{\lambda} e^{-\lambda} \sqrt{2\pi\lambda}. \tag{1.11}$$

This is Stirling's approximation for the factorial function.

$$x! \simeq x^x e^{-x} \sqrt{2\pi x} \Leftrightarrow \ln x! \simeq x \ln x - x + \frac{1}{2} \ln 2\pi x.$$
 (1.12)

We have derived not only the leading order behaviour, $x! \simeq x^x e^{-x}$, but also, at no cost, the next-order correction term $\sqrt{2\pi x}$. We now apply Stirling's approximation to $\ln \binom{N}{r}$:

$$\ln \binom{N}{r} \equiv \ln \frac{N!}{(N-r)! \, r!} \simeq (N-r) \ln \frac{N}{N-r} + r \ln \frac{N}{r}. \tag{1.13}$$

Since all the terms in this equation are logarithms, this result can be rewritten in any base. We will denote natural logarithms (\log_e) by 'ln', and logarithms to base 2 (\log_2) by 'log'.

If we introduce the binary entropy function,

$$H_2(x) \equiv x \log \frac{1}{x} + (1-x) \log \frac{1}{(1-x)},$$
 (1.14)

then we can rewrite the approximation (1.13) as

$$\log \binom{N}{r} \simeq NH_2(r/N), \tag{1.15}$$

or, equivalently,

$$\binom{N}{r} \simeq 2^{NH_2(r/N)}. \tag{1.16}$$

If we need a more accurate approximation, we can include terms of the next order from Stirling's approximation (1.12):

$$\log \binom{N}{r} \simeq NH_2(r/N) - \frac{1}{2}\log\left[2\pi N \frac{N-r}{N} \frac{r}{N}\right]. \tag{1.17}$$

Figure 1.2. The Poisson distribution $P(r | \lambda = 15)$.

Recall that
$$\log_2 x = \frac{\log_e x}{\log_e 2}$$
.
Note that $\frac{\partial \log_2 x}{\partial x} = \frac{1}{\log_e 2} \frac{1}{x}$.

Figure 1.3. The binary entropy function.