

FVCOM 泥沙模拟技术手册(初本)

华东师范大学河口海岸学国家重点实验室

一、模型介绍

FVCOM-SED 模型可以进行水动力-波浪-泥沙-地貌的耦合计算。模型考虑多海底条件、无限泥沙组分,包含了悬沙输运和底沙输运等过程,可以用于模拟大陆架、河口海岸等海域的泥沙输运,也能应用于河流的模拟中。FVCOM4.0版的泥沙模块,除了保留原有的泥沙模型之外,还加入了 Community Sediment Transport Model(CSTM)泥沙输运模型。其主要考虑的泥沙动力过程如下:

- 1. 底床沙纹以及活动泥沙层对粗糙度和底部拖曳系数的影响。
- 2. 非线性波浪过程(如波浪不对称性)对泥沙输运的影响
- 3. 波流相互作用对泥沙输运的影响
- 4. 泥沙对水动力的影响(如考虑浮泥、悬沙含量对水体密度的影响等)
- 5. 精细的底床过程(多层底床、固结、底质粗化等)
- 6. 近岸海域特有的水动力过程(如波浪破碎)
- 7. 泥沙-水质的耦合
- 8. 粘性泥沙动力过程(如絮凝沉降、海底固结等)

图 1 悬沙输运中的主要过程,及其重要参数

悬沙输运模型中,有三个重要过程:沉降、侵蚀和水平输运。其中沉降速度

二、FVCOM 进行泥沙模拟的主要过程(offline)

1. make.inc 文件

make.inc 文件是 FVCOM 控制各种模块的开关文件。去掉 FLAG 之前的#号表示打开这项功能,不去掉则默认关闭这一项功能。对于泥沙模型,其控制 FLAG 如图 2 所示。

```
# FLAG_21 = -DSEDIMENT

# FLAG_211 = -DORIG_SED

FLAG_211 = -DCSTMS_SED

# FLAG_22 = -DOFFLINE_SEDIMENT

# FLAG_43 = -DFLUID_MUD
```

图 2 make.inc 文件中关于 FVCOM 泥沙模型的控制 FLAG

需要使用 FVOM 进行泥沙模拟时,FLAG_21 必须打开。其后两项表示 FVCOM 中的两个泥沙模块,开且只开一个。ORIG_SED 是在 FVCOM3.1 版本中由 Geoffey Cowles 开发的泥沙模型,适合于使用一组泥沙,采用空间分布的参数进行泥沙模拟。而 CSTMS_SED 是由美国地质调查局 (USGS) 基于 ROMS 开发的泥沙模型,功能较为全面,是 FVCOM4.0 版本的主要更新之一。CSTMS 模型较为全面,不仅可以方便的进行多组泥沙模拟,而且对絮凝沉降等复杂的泥沙过程也有较为先进的描述。

泥沙模型还有很多过程是根据经验和实验得到的,里面很多参数需要调整。在调整参数时,建议使用 offline_sediment。所谓 offline, 就是先用模型算好水动力,然后使用水动力结果驱动泥沙模型模拟泥沙的运动过程。虽然这样做无法考虑泥沙运动对水动力的影响,但是 offline 在模拟泥沙的时候,不用计算水动力,可以节约 80%的时间。而且,offline 计算泥沙的时候,其时间步长也可以取的比水动力的时间步长更大一些,这又能节约不少时间。待各种参数都已经比较可靠时,如果需要考虑泥沙对水动力的影响,这才关掉 FLAG 22。FLAG 43 是浮泥

模块,建议,若不是一定要做浮泥,最好不要开。

在近岸水域,波浪对于水体底层的切应力有重要影响。因此,在模拟近岸泥沙过程时,最好加入波流相互作用过程(图 3)。首先必须打开 FLAG_32。FLAG_33 是控制周期性侧向边界的,一般对于实际情况的模拟中不会用到。FLAG_34 表示使用显式计算波流相互作用,用时较短,在计算泥沙时,往往采用这种方法。FLAG_35 一般不开。波浪也可以像水动力一样采用 offline 的形式,先计算好,然后用以驱动泥沙运动。

```
# WAVE-CURRENT INTERACTION

FLAG_32 = -DWAVE_CURRENT_INTERACTION

FLAG_33 = -DPLBC

NOTE! This option is for wave code

FLAG_34 = -DEXPLICIT

WAVE ONLY

FLAG_35 = -DWAVE_ONLY

Svendsen Roller contribution

FLAG_36 = -DWAVE_ROLLER

FLAG_37 = -DWAVE_OFFLINE

include ${PETSC_DIR}/bmake/common/variables
```

图 3 make.inc 文件中关于波流相互作用过程的控制 FLAG

2. run.nml 文件

改好 make.inc,编译好后执行./fvcom -create_namelist=test,得到进行泥沙模拟所需要的 run.nml(此处生成为 test_run.nml,用户需根据自己的模型名称进行修改),用以控制 FVCOM 的运行。泥沙模拟的 run.nml 与一般水动力的 run.nml 主要有两个地方不同:一是在 NML_ADDITIONAL_MODELS 中多了几个对泥沙模型的控制选项(图 4);二是在 NML_SURFACE_FORCING 中多了波浪的控制选项(图 5)。

```
&NML_ADDITIONAL_MODELS
DATA ASSIMILATION
                         = F,
BIOLOGICAL_MODEL
                          = F,
STARTUP_BIO_TYPE
                          = 'observed'.
SEDIMENT_MODEL = T,
SEDIMENT_MODEL_FILE
                          = 'fvcom_sediment_inlet_test.inp',
OFFLINE_SEDIMENT_FILE = 'inlet_offline_forcing.nc',
SEDIMENT_PARAMETER_TYPE = 'uniform',
SEDIMENT_PARAMETER_FILE = 'auxiliary_data.nc',
BEDFLAG_TYPE
                 = 'constant'
ICE MODEL
                 = F,
ICING MODEL
                 =F
```

图 4 run.nml 中关于泥沙模型的控制选项


```
WAVE_ON = T,

WAVE_FILE = 'inlet_offline_forcing.nc',

WAVE_KIND = 'variable',

WAVE_HEIGHT = 0.00000,

WAVE_LENGTH = 0.00000,

WAVE_DIRECTION = 0.00000,

WAVE_PERIOD = 0.00000,

WAVE_PER_BOT = 0.00000,

WAVE_UB_BOT = 0.00000
```

图 5 run.nml 中关于波浪的控制选项

在图 4 中 SEDIMENT_MODEL=T 表示进行泥沙的运算。注意这与图 2 中的 FLAG_21 并不冲突。将 FVCOM 类比于汽车,make.inc 就相当于在组装一辆汽车时选取的各项功能,有高配低配之分;泥沙模块我们也可以类比于倒车雷达,make.inc 中开了 Sediment 就表示车辆组装的时候加入了倒车雷达;但是实际使用中我们并不是倒车的时候就一定要用倒车雷达,而这是用 run.nml 来选择的。

Sediment_model_file 中保存了控制泥沙模型运行的各种参数。
Offline_sediment_file 是用来驱动泥沙进行 offline 计算的水动力文件。这两个文件在后面会仔细讲解。

Sediment_parameter_type 主要用于指定三大泥沙参数: 沉降速度、临界侵蚀应力和侵蚀速率。有两种: uniform 和其他。在 CSTM 泥沙模型中,uniform 表示参数空间均匀,为一个常数; 若是其他,则只表示临界启动应力为空间分布的。而在 ORIG 泥沙模型中,已经默认沉降速度的空间差异性(由公式计算得到),非 uniform 表示其余两个泥沙参数也是空间分布的。当 Sediment_parameter_type 不是 uniform 的时候,就需要提供 Sediment parameter file 用以提供空间分布的泥沙参数了。

Bedflag_type: constant 正常的侵蚀沉降过程。

非 constant: 需要有 bedflag_file 文件。Bedflag=0 底床没有沉降再悬浮, =1 则有沉降再悬浮过程。

泥沙模拟时,最好加入波流相互作用过程,打开 WAVE_ON,若波浪也采用 offline 的形式,则波浪文件由 wave_file 指定,wave-kind 为 variable;若不采用 variable 指定,还有 constant,periodic 两种波浪给定形式。Constant 时,图 5 中的 wave_height 等参数则需要详细给定。其余则请参照 FVCOM 波浪的技术手册。

3. 输入文件

FVCOM 进行 offline 的泥沙模拟时,除了需要所有参与水动力的输入文件外,还需要三个文件:模型计算期间的水动力数据文件、波浪数据文件和泥沙参数文件。

水动力文件一般使用 FVCOM 的输出结果。需要注意的是,水动力文件中,必须有三维的流速场、温盐和 Turbulence 的输出;否则无法驱动泥沙模型。

波浪文件目前必须采用 FVCOM 网格, 需要有 hs, wlen, dirm(wdir), tpeak, pwave_bot(tmbot), ub_bot (ubot)等参数。

下面重点介绍泥沙的参数文件: sediment.inp

Sediment.inp 文件中主要指定粘性沙、非粘性沙的设置及其参数,底床性质, 絮凝模型设置及其参数, 植被影响的设置及其参数, 以及地貌模型的设置等。

注 1: 等号两边必须有空格

主要设置泥沙模型中某些功能是否使用	
NCS = 4	4 组粘性泥沙
NNS = 0	0 组非粘性泥沙
Bedload = F	不进行底沙输运的模拟
Susload = T	进行悬沙输运的模拟
Cohesive_bed = T	设置底床性质,至多一个 T;不同性质的底床,其侵
Mixed_bed = F	蚀、固结等过程都不一样
Noncohesive_bed2 = F	(注: 当为粘性底时,不能加非粘性沙)
sed_morph = F	底床性质是否更新
sed_flocs = F	不模拟絮凝过程
sed_biomass = F	不模拟植被对泥沙的影响(主要和沉降有关)
sed_biodiff = F	植被对底床混合过程的影响
sed_defloc = F	絮凝体在底床的分解,只有在 sedflocs = T 时才起效
vert_hindered = F	阻滞沉降; 当泥沙含量过高时, 沉降速度反而会下降
sed_oned = F	一维泥沙模型

R T. A.	
sed_nudge = F	开边界不加入泥沙
sed_alpha = 0.5	业。1 1 TH十七四
sed_ramp = 360	当 sed_nudge = T 时才有用
sed_start = 0	第0步开始计算泥沙
N_report = 60	每 60 次出一次泥沙的报告
sed_prsource = T	点源泥沙 (主要是河流泥沙输入)
sed_hot_start = F	热启动
植被对泥沙的影响	
seagrass_bottom =T	只有当 sed_biomass = T 时才有用
seagrass_sink = T	
底沙输运模型设置	
bedload_mpm = T	底沙模型的两种计算方法,只开一个
bedload_soulsby = F	
slope_nemeth = F	只开一个, 斜坡的处理
slope_lesser = T	
bedload_coeff = 0.15	底质输运率
地貌模型设置	
morpho_model = T	是否模拟地貌过程
morpho_factor = 1.0	地貌加速因子,即使不开地貌也会使用
morpho_incr = 1	第0步开始每1步都更新水深
morpho_strt = 0	只有 morpho_model = T 时才有用。
输出设置	
sed_dumpbed = T	输出底床参数(厚度、年龄、孔隙率、临界启动应力等)
sed_dumpbot = T	输出床面参数,表层底床上更为详细的参数
悬沙设置	
min_srho = 1050.	最小泥沙密度(一般就是 1050.)
init_mud_concentration	初始泥沙浓度;一般都是0.0
= 0.0 0.0 0.0	
sed_tau_cd_const = F	泥沙临界沉降应力; 开且只开一个

R T R. T.	
sed_tau_cd_lin = F	
linear_continuation = T	沉降计算方案中所采取的两个插值方法
Neumann = F	
db_profile = T	植被对泥沙扩散的影响是随深度变化的
底床设置及其初始条件	
nbed = 4	4 层底床
inf_bed = F	是否有无限量的泥沙供应
init_bed_thickness	初始底床厚度(多个底床,以空格分开)
init_bed_age	初始底床年龄
init_bed_porosity	初始孔隙率
init_bed_biodiff	必须大于 0; sed_biodiff=T时才有用
init_bed_tau_crit	临界启动应力
init_bed_fraction	组分((i=1:NNS+NCS),j=1,nbed)
床面条件设置	
newlayer_thick = 0.01	沉降量超过 0.01m 时,新加一层
transc = 0.03	mixed_bed = T 时使用,用以定量混合底中粘性行为的
transn = 0.2	含量
dbmax = 1.0E-10	
dbmin = 1.0E-12	CED DIODIEE T叶体田
dbzs = 0.002	SED_BIODIFF = T 时使用
dbzm = 0.08	用以限定 biodiffusivity
dbzp = 0.01	
悬浮粘性泥沙参数	
mud_name	名称 (i=1, NCS)
mud_sd50	中值粒径
mud_csed	初始的浓度
mud_srho	密度 (一般取 2650.0)
mud_wsed	颗粒沉降速度
mud_erate	侵蚀系数

mb_bbl_use = F	Meinte Blaas BBL 方案
底边界层设置(三种 BBL 方案)	
sgr_hthres	高度
sgr_dens	密度
sgr_diam	直径
植被参数	
population during a tidal of	fite, J Claude Brun-Cottan, P Le Hir. Behaviour of a floc cycle: Laboratory experiments and numerical modelling[J]. Lesearch. 2011, 31(10, Supplement): S64-S83, 2005
絮凝参数	
mud_taucr_time	越大,固结速度越慢
mud_taucr_off	
mud_taucr_slope	$ au_{cr} = e^{\frac{tcrslp}{}}$
mud_taucr_max	log(bmz)—tcroff
mud_taucr_min	
 粘性或混合底床参数	
sand poros	孔隙率; V _* /(V _* +V _*)
sand tau cd	临界沉降应力
sand tau ce	临界侵蚀应力
sand erate	侵蚀系数
sand wsed	颗粒沉降速度
sand srho	密度(一般取 2650.0)
sand csed	初始的浓度
sand_name	中值粒径
sand name	名称(i=1, NNS)
悬浮非粘性泥沙参数	「TLPS: 平; ド 水(ド 水 「ド 沙)
mud_tau_cd mud_poros	孔隙率; V _* /(V _* +V _*)
	临界沉降应力
mud tau ce	临界侵蚀应力

建布托 生	
mb_calc_znot = F	计算床面糙率
mb_calc_ub = F	计算底部轨道速度
mb_z0bio = F	生物活动对糙率的影响
$mb_z0bl = F$	底沙对糙率的影响
mb_z0rip = F	波纹对糙率的影响
sg_bbl_use = F	Styles and Glenn (2000) BBL 方案
sg_calc_znot = F	计算床面糙率
sg_calc_ub = F	计算底部轨道速度
sg_logint = F	对数插值
ssw_bbl_use = T	Sherwood/Signell/Warner BBL 方案(常用)
ssw_calc_znot = T	计算床面糙率
ssw_logint = F	对数插值
ssw_calc_ub = F	计算底部轨道速度
ssw_form_drag_cor = F	形阻;波流相互作用下使用最大剪切应力时必须为 T
ssw_zobio = F	生物活动对糙率的影响
ssw_zobl = F	底沙对糙率的影响
ssw_zorip = F	波纹对糙率的影响
sgwc = F	— ₩ 1¤
m94wc = T	二者择一
gm82_ripruf = F	
n92_ripruf = T	三者择一,计算 ripple roughness 的方法
r88_ripruf = F	