[2]

E-522

Roll No.

E-522

M. A./M. Sc. (Second Semester) (Main/ATKT) EXAMINATION, May-June, 2021

MATHEMATICS

Paper Fourth

[Advanced Complex Analysis (II)]

Time: Three Hours [Maximum Marks: 80

Note: Attempt all Sections as directed.

Section—A

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer out of four alternative answers:

- 1. Which of the following is entire function?
 - (a) Transcendental function
 - (b) Polynomial
 - (c) Algebraic function
 - (d) None of the above

- 2. $\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1)....(z+n)}$ is known as:
 - (a) Gauss's formula
 - (b) Functional equation
 - (c) Legendre's duplication formula
 - (d) None of the above
- 3. Value of $\zeta(z)$ is:

(a)
$$\zeta(z) = \sum_{n=1}^{\infty} z^n$$

(b)
$$\zeta(z) = \sum_{n=1}^{\infty} n^z$$

(c)
$$\zeta(z) = \sum_{n=1}^{\infty} n^{-z}$$

- (d) None of the above
- 4. The value of $E_p(1) = :$
 - (a) 1
 - (b) 3
 - (c) 0
 - (d) 2
- 5. An analytic function f with its domains i.e. (f, D) is called :
 - (a) Analytic continuation
 - (b) Function element
 - (c) Direct analytic continuation
 - (d) None of the above

1 each

- 6. The collection of all function elements is called:
 - (a) Germ
 - (b) Genus
 - (c) Univalent function
 - (d) None of the above
- 7. Germ of f at a i.e. $[f]_a$ is :
 - (a) a function element
 - (b) not a function element
 - (c) Both (a) and (b)
 - (d) None of the above
- 8. Analytic continuation of an analytic function is:
 - (a) unique
 - (b) non unique
 - (c) vanish
 - (d) None of the above
- 9. If $f: G \to \mathbb{C}$ is an analytic function, then u = Re f and v = Im f are called:
 - (a) Harmonic function
 - (b) Laplace equation
 - (c) Poisson kernel
 - (d) Harmonic conjugates

10. If Pr is a periodic in θ with period 2π and Pr $(\theta) > 0$, for all θ , then :

[4]

- (a) $Pr(\theta) = -Pr(\theta)$
- (b) $Pr(-\theta) = Pr(\theta)$
- (c) $Pr(-\theta) = -Pr(\theta)$
- (d) $-\Pr(\theta) = \Pr(2\pi \theta)$
- 11. Perron family consists of:
 - (a) All subharmonic functions
 - (b) All superhharmonic functions
 - (c) Harmonic functions
 - (d) None of the above
- 12. If $g_a: G \to R$ is a Green's function with singularity at $a \in G$, then for each $w \in \partial_{\infty}G$, $\lim_{z \to w} g_a(z) = :$
 - (a) 1
 - (b) -1
 - (c) 0
 - (d) 2
- 13. Order of $e^{z^{\lambda}}$ (λ is +ve integer) is :
 - (a) 1
 - (b) 0
 - (c) λ
 - (d) 2

- 14. The genus and the order of an entire function satisfy the inequality:
 - (a) $h \le \lambda \le h + 1$
 - (b) $h \ge \lambda \ge h + 1$
 - (c) $h + 1 \le \lambda \le h$
 - (d) None of the above
- 15. The sufficient condition for a real function f(x) to be convex is:
 - (a) $f''(x) \le 0$
 - (b) $f''(x) \ge 0$
 - (c) f''(x) = 0
 - (d) f''(x) does not exist
- 16. If p is the rank of f and q is the degree of polynomial g, then $u = \max(p, q)$ is called:
 - (a) germ of g
 - (b) genus of f
 - (c) growth of f
 - (d) None of the above
- 17. Condition for univalent function is:
 - (a) $z_1 \neq z_2 \Rightarrow f(z_1) \neq f(z_2)$
 - (b) $z_1 = z_2 \Rightarrow f(z_1) \neq f(z_2)$
 - (c) $z_1 \neq z_2 \Rightarrow f(z_1) = f(z_2)$
 - (d) None of the above

- 18. If f is an entire function that omits two values, then:
 - (a) f is not constant
 - (b) f is constant
 - (c) f is non-linear
 - (d) None of the above
- 19. A univalent function that maps $|z| < \infty$ onto $|w| < \infty$ must be:
 - (a) zero
 - (b) equal
 - (c) linear
 - (d) non-linear
- 20. "If f has an isolated singularity at $z = z_0$ and if there are two complex numbers that are not assumed infinitely often by f, then $z = z_0$ is either a pole or removable singularity." Is statement of:
 - (a) Little Picard theorem
 - (b) Great Picard theorem
 - (c) Bloch's theorem
 - (d) $\frac{1}{4}$ -theorem

Section—B

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions in 2-3 sentences.

- 1. Define Weirstrass primary factor.
- 2. Define analytic continuation along path.

[8]

E-522

- 3. Write the statement of Monodromy theorem.
- 4. Define canonical product.
- 5. Explain exponent of convergence.
- 6. Define Dirichlet region.
- 7. State Schwarz reflection principle.
- 8. State the Bieberbach conjecture.

Section—C 3 each

(Short Answer Type Questions)

Note: Attempt all questions.

- 1. If $|z| \le 1$ and $p \ge 0$, then $|1 \mathbf{E}_p(z)| \le |z|^{p+1}$.
- 2. Define Euler's Gamma function and write any *two* properties of Gamma function.
- 3. Let $u: G \to R$ be a harmonic function and let $\overline{B}(a,r)$ be a closed disc such that $\overline{B}(a;r) \subset G$. If γ is the circle |z-a|=r, then:

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) d\theta$$

- 4. State and prove Jensen's inequality.
- 5. Let G be a bounded Dirichlet region. Then for each $a \in G$, there is a Green's function on G with singularity at a.
- 6. If f(z) is an entire function of order ρ and convergence exponent σ , then $\sigma \leq \rho$.

7. If ρ be the order of an integral function f(z), then:

$$\rho = \limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}$$

where M $(r) = \max |f(z)|$ or |z| = r.

8. Let *g* be analytic in B (0; R), *g* (0) = 0, $|g'(0)| = \mu > 0$, $|g(z)| \le M$, for all *z*. Then:

$$g\left(B\left(O;R\right)\right)\supset B\left(O;\frac{R^{2}\mu^{2}}{6M}\right)$$

Section—D

5 each

(Long Answer Type Questions)

Note: Attempt all questions.

1. State and prove Legendre's duplication formula.

Or

State and prove Runge's theorem.

2. State and prove Mittag-Leffler's theorem.

Or

State and prove Harnack's inequality.

3. State and prove Poisson-Jensen formula.

Or

State and prove Borel's theorem.

4. State and prove Bolch's theorem.

Or

State and prove $\frac{1}{4}$ - theorem.

E-522