logo.png

title.jpg

POČÍTAČE A DATA

Data, informace, bit, byte Číselné soustavy

> Adam Klepáč 17. září 2023

OBSAH

Data vs. Informace

Bit a byte

Číselné soustavy

DATA VS. INFORMACE

DATA

DATUM

Datum můžeme vnímat jako reprezentaci faktů, konceptů nebo instrukcí způsobem dostatečně formálním na to, aby mohlo být interpretováno nebo vykonáno člověkem či přístrojem.

DATA - PŘÍKLADY

Co můžeme nazvat datem

• "Zítra bude pršet." je datum – fakt, který člověk umí interpretovat.

DATA – PŘÍKLADY

Co můžeme nazvat datem

- "Zítra bude pršet." je datum fakt, který člověk umí interpretovat.
- "Sečti 2 a 5." je datum instrukce, kterou umí člověk, a v mnoha podobách i počítač, interpretovat.

DATA - PŘÍKLADY

Co můžeme nazvat datem

- "Zítra bude pršet." je datum fakt, který člověk umí interpretovat.
- "Sečti 2 a 5." je datum instrukce, kterou umí člověk, a v mnoha podobách i počítač, interpretovat.
- "(255,0,0)" je většinou datum koncept, který umí počítač (prostřednictvím překladače programovacího jazyka) interpretovat jako červenou barvu.

DATA – PŘÍKLADY

Co datum spíš není

• "1,kuře,juxtapozice,feromon" – náhodná sada slov a symbolů bez kontextu nic nereprezentuje, přestože každý z nich má odděleně význam.

DATA - PŘÍKLADY

Co datum spíš není

- "1,kuře,juxtapozice,feromon" náhodná sada slov a symbolů bez kontextu nic nereprezentuje, přestože každý z nich má odděleně význam.
- zemětřesení (obecně jakákoli událost) údaj o tom, že se událost stala, datem je, ta samotná událost není.

DATA - PŘÍKLADY

Co datum spíš není

- "1,kuře,juxtapozice,feromon" náhodná sada slov a symbolů bez kontextu nic nereprezentuje, přestože každý z nich má odděleně význam.
- zemětřesení (obecně jakákoli událost) údaj o tom, že se událost stala, datem je, ta samotná událost není.
- obecně předměty zase, to, že se s předmětem něco děje, datum je, ten samotný předmět ne.

INFORMACE

INFORMACE

Informace jsou data, která jsou seřazena nebo roztříděna a mají hodnotu pro příjemce. Jsou to zpracovaná data, jimiž se řídí budoucí činy a rozhodnutí.

Aby mohlo být datum pro příjemce užitečné (a tedy být informací), musí být

Aby mohlo být datum pro příjemce užitečné (a tedy být informací), musí být

• včasné – poskytnuto v době, kdy je stále relevantní;

Aby mohlo být datum pro příjemce užitečné (a tedy být informací), musí být

- včasné poskytnuto v době, kdy je stále relevantní;
- přesné neobsahující chyby a víceznačné formulace;

Aby mohlo být datum pro příjemce užitečné (a tedy být informací), musí být

- včasné poskytnuto v době, kdy je stále relevantní;
- přesné neobsahující chyby a víceznačné formulace;
- úplné žádná část důležitá pro interpretaci nesmí chybět.

V jazyce občas říkáme "zbytečná informace". Bacha na to! Informace z definice není pro příjemce zbytečná. "Zbytečná informace" je tudíž prostě datum.

V jazyce občas říkáme "zbytečná informace". Bacha na to! Informace z definice není pro příjemce zbytečná. "Zbytečná informace" je tudíž prostě datum.

Kdy datum je a kdy není informací?

• V moment, kdy nakupuji, je datum ceny produktu informací.

V jazyce občas říkáme "zbytečná informace". Bacha na to! Informace z definice není pro příjemce zbytečná. "Zbytečná informace" je tudíž prostě datum.

- V moment, kdy nakupuji, je datum ceny produktu informací.
 - Je včasné? √ Nakupuji teď.

V jazyce občas říkáme "zbytečná informace". Bacha na to! Informace z definice není pro příjemce zbytečná. "Zbytečná informace" je tudíž prostě datum.

- V moment, kdy nakupuji, je datum ceny produktu informací.
 - Je včasné? √ Nakupuji teď.
 - Je přesné? ✓ Nemůže se stát, že bych produkt koupil za jinou cenu.

V jazyce občas říkáme "zbytečná informace". Bacha na to! Informace z definice není pro příjemce zbytečná. "Zbytečná informace" je tudíž prostě datum.

- V moment, kdy nakupuji, je datum ceny produktu informací.
 - Je včasné? √ Nakupuji teď.
 - Je přesné? ✓ Nemůže se stát, že bych produkt koupil za jinou cenu.
 - Je úplné? ✓ Ano, číslo vyjadřuje absolutní hodnotu.

Kdy datum je a kdy není informací?

 Vzkaz "Supluješ první hodinu v pondělí." řečený v úterý odpoledne není informací. Je sice přesný, ale není ani včasný ani úplný.

- Vzkaz "Supluješ první hodinu v pondělí." řečený v úterý odpoledne není informací. Je sice přesný, ale není ani včasný ani úplný.
- Příkaz "Sečti nebo vyděl dvě čísla." není informací. Je sice včasný, ale ani přesný ani úplný.

V nejširším slova smyslu jsou počítače stroje, které data převádějí na informace.

V nejširším slova smyslu jsou počítače stroje, které data převádějí na informace. Každý počítačový program je cyklus zpracování dat.

V nejširším slova smyslu jsou počítače stroje, které data převádějí na informace. Každý počítačový program je cyklus zpracování dat.

vstup (input) – data ve formě umožňující zpracování

- vstup (input) data ve formě umožňující zpracování
- zpracování (processing) data jsou transformována v data užitečnější

- vstup (input) data ve formě umožňující zpracování
- zpracování (processing) data jsou transformována v data užitečnější
- výstup (output) transformovaná jsou sesbírána a předána jako informace

Náš mozek zpracovává data neustále.

Smysly – paprsky světla nebo vibrace ve vzduchu jsou data, nejsou nám nijak užitečná.
 Smysly jsou způsob, jak náš mozek dostává vstup. Výstupem je jakýsi model našeho okolí.

Náš mozek zpracovává data neustále.

- Smysly paprsky světla nebo vibrace ve vzduchu jsou data, nejsou nám nijak užitečná.
 Smysly jsou způsob, jak náš mozek dostává vstup. Výstupem je jakýsi model našeho okolí.
- Logika vzkaz "Zastávka na znamení." je datum, není v užitečné formě. Je vstupem, který vyhodnotíme (zpracujeme) a vyrobíme z něj výstup informaci, že musíme zmáčknout tlačítko, abychom směli vystoupit.

Teď něco s počítačem...

• Sečti čísla 2 a 3.

- Sečti čísla 2 a 3.
 - Vstupem jsou čísla 2 a 3.

- Sečti čísla 2 a 3.
 - Vstupem jsou čísla 2 a 3.
 - Zpracování spočívá v provedení operace součtu.

- Sečti čísla 2 a 3.
 - Vstupem jsou čísla 2 a 3.
 - Zpracování spočívá v provedení operace součtu.
 - Výstupem je číslo 5.

- Sečti čísla 2 a 3.
 - Vstupem jsou čísla 2 a 3.
 - Zpracování spočívá v provedení operace součtu.
 - Výstupem je číslo 5.
- · Otevření aplikace.

CYKLUS ZPRACOVÁNÍ DAT – PŘÍKLADY

Teď něco s počítačem...

- Sečti čísla 2 a 3.
 - Vstupem jsou čísla 2 a 3.
 - Zpracování spočívá v provedení operace součtu.
 - Výstupem je číslo 5.
- · Otevření aplikace.
 - Vstupem jsou dvě kliknutí na ikonku.

CYKLUS ZPRACOVÁNÍ DAT – PŘÍKLADY

Teď něco s počítačem...

- Sečti čísla 2 a 3.
 - Vstupem jsou čísla 2 a 3.
 - Zpracování spočívá v provedení operace součtu.
 - Výstupem je číslo 5.
- · Otevření aplikace.
 - Vstupem jsou dvě kliknutí na ikonku.
 - Zpracování spočívá v otevření aplikace s odpovídající ikonkou.

CYKLUS ZPRACOVÁNÍ DAT – PŘÍKLADY

Teď něco s počítačem...

- Sečti čísla 2 a 3.
 - Vstupem jsou čísla 2 a 3.
 - Zpracování spočívá v provedení operace součtu.
 - Výstupem je číslo 5.
- · Otevření aplikace.
 - Vstupem jsou dvě kliknutí na ikonku.
 - Zpracování spočívá v otevření aplikace s odpovídající ikonkou.
 - Výstupem je okno s otevřenou aplikací.

Віт а вуте

CO JE BIT

Віт

Bit (binary digit) je nejmenší datová jednotka, která může být uložena v paměti počítače.

JEDNOTKY POČÍTAČOVÉ PAMĚTI

	Název	Popis
	bit	Logická 0 ("ne") nebo 1 ("ano") představující stav komponenty elektrického obvodu.
	nibble	Skupina 4 bitů. <mark>Nepoužívá se</mark> .
	byte (B)	Skupina 8 bitů.
	slovo (word)	Skupina fixního počtu bitů. Různá procesor od procesoru (obvykle mezi 8 a 96 bity).

JEDNOTKY POČÍTAČOVÉ PAMĚTI

Název	Popis	
kilobyte (KB)	1024 bytů.	
megabyte (MB)	1024 KB = 1048576 B.	
gigabyte (GB)	1024 MB = 1073741824 B.	
terabyte (TB)	1024 GB = 1099511628000 B.	

ČÍSELNÉ SOUSTAVY

Počítače umějí interpretovat pouze čísla. Hodnota každé číslice v čísle je dána

Počítače umějí interpretovat pouze čísla. Hodnota každé číslice v čísle je dána

tou číslicí,

Počítače umějí interpretovat pouze čísla. Hodnota každé číslice v čísle je dána

- tou číslicí,
- pozicí této číslice v čísle,

Počítače umějí interpretovat pouze čísla. Hodnota každé číslice v čísle je dána

- tou číslicí,
- pozicí této číslice v čísle,
- základem číselné soustavy (počtu číslic, které jsou v dané soustavě k dispozici).

HODNOTA ČÍSLICE – PŘÍKLAD

Desítkovou soustavu používáme nejčastěji (protože máme deset prstů).

Desítkovou soustavu používáme nejčastěji (protože máme deset prstů). Používá číslice od 0 do 9.

Desítkovou soustavu používáme nejčastěji (protože máme deset prstů).

Používá číslice od 0 do 9.

Každé číslo v desítkové soustavě lze rozložit na součet násobků mocnin čísla 10.

Desítkovou soustavu používáme nejčastěji (protože máme deset prstů).

Používá číslice od 0 do 9.

Každé číslo v desítkové soustavě lze rozložit na součet násobků mocnin čísla 10. Například:

$$\begin{aligned} 4321 &= (4 \cdot 1000) + (3 \cdot 100) + (2 \cdot 10) + (1 \cdot 1) \\ &= (4 \cdot 10^3) + (3 \cdot 10^2) + (2 \cdot 10^1) + (1 \cdot 10^0). \end{aligned}$$

DALŠÍ SOUSTAVY BĚŽNÉ V INFORMATICE

Název	Popis	
dvojková (binární)	Základ 2. Číslice 0 a 1.	
osmičková (oktální)	Základ 8. Číslice od 0 do 7.	
šestnáctková (hexadecimální)	Základ 16. Číslice od 0 do 9 a písmena od A do F.	

B 8 F A 5 D F 8

2 | 5 | B | 3 | 6 | 0 | F | 7

Převod cokoliv ightarrow desítková

Když je třeba, píšeme u čísel soustavu v dolním indexu.

PŘEVOD COKOLIV → DESÍTKOVÁ

Když je třeba, píšeme u čísel soustavu v dolním indexu.

Například 4056 $_{10}$ je číslo 4056 v desítkové soustavě, $A4578FB_{16}$ je číslo A4578FB

v šestnáctkové soustavě a 1000101₂ je číslo 1000101 dvojkové soustavě.

PŘEVOD COKOLIV → DESÍTKOVÁ

Když je třeba, píšeme u čísel soustavu v dolním indexu. Například 4056₁₀ je číslo 4056 v desítkové soustavě, *A*4578*FB*₁₆ je číslo *A*4578*FB* v šestnáctkové soustavě a 1000101₂ je číslo 1000101 dvojkové soustavě.

- Číslo se v každé soustavě rozkládá na součet násobků mocnin 10.
- Abychom převedli číslo z libovolné soustavy do desítkové, stačí tedy číslo 10 převést do desítkové soustavy a pak násobky mocnin sečíst.
- To je snadné, protože 10 je vždy základ soustavy.

PŘEVOD COKOLIV → DESÍTKOVÁ – PŘÍKLAD

Vezměme třeba číslo 10011101₂. To se v dvojkové soustavě rozkládá jako

$$\begin{aligned} 10011101_2 &= 1 \cdot 10_2^7 + 0 \cdot 10_2^6 + 0 \cdot 10_2^5 + 1 \cdot 10_2^4 + 1 \cdot 10_2^3 + 1 \cdot 10_2^2 + 0 \cdot 10_2^1 + 1 \cdot 10_2^0 \\ &= 10_2^7 + 10_2^4 + 10_2^3 + 10_2^2 + 10_2^0. \end{aligned}$$

Převod cokoliv ightarrow desítková – příklad

Vezměme třeba číslo 10011101₂. To se v dvojkové soustavě rozkládá jako

$$\begin{aligned} 10011101_2 &= 1 \cdot 10_2^7 + 0 \cdot 10_2^6 + 0 \cdot 10_2^5 + 1 \cdot 10_2^4 + 1 \cdot 10_2^3 + 1 \cdot 10_2^2 + 0 \cdot 10_2^1 + 1 \cdot 10_2^0 \\ &= 10_2^7 + 10_2^4 + 10_2^3 + 10_2^2 + 10_2^0. \end{aligned}$$

Ale, $10_2 = 2_{10}$. Čili, v desítkové soustavě je to číslo

$$2^7 + 2^4 + 2^3 + 2^2 + 2^0 = 157.$$

Převod cokoliv \rightarrow desítková – příklad

Vezměme třeba číslo 10011101₂. To se v dvojkové soustavě rozkládá jako

$$\begin{split} 10011101_2 &= 1 \cdot 10_2^7 + 0 \cdot 10_2^6 + 0 \cdot 10_2^5 + 1 \cdot 10_2^4 + 1 \cdot 10_2^3 + 1 \cdot 10_2^2 + 0 \cdot 10_2^1 + 1 \cdot 10_2^0 \\ &= 10_2^7 + 10_2^4 + 10_2^3 + 10_2^2 + 10_2^0. \end{split}$$

Ale, $10_2 = 2_{10}$. Čili, v desítkové soustavě je to číslo

$$2^7 + 2^4 + 2^3 + 2^2 + 2^0 = 157.$$

Takže,

$$10011101_2 = 157_{10}$$
.

Převod desítková \rightarrow cokoliv

• Opačný postup nebude efektivní, protože neumíme rychle počítat v jiných soustavách.

PŘEVOD DESÍTKOVÁ → COKOLIV

- Opačný postup nebude efektivní, protože neumíme rychle počítat v jiných soustavách.
- Místo toho využijeme tzv. Hornerova schématu.

Převod desítková ightarrow cokoliv

- Opačný postup nebude efektivní, protože neumíme rychle počítat v jiných soustavách.
- Místo toho využijeme tzv. Hornerova schématu.
- To je způsob, jak rozdělit dané číslo na součet násobků mocnin libovolného jiného čísla "opakovaným vytýkáním".

Převod desítková ightarrow cokoliv

- Opačný postup nebude efektivní, protože neumíme rychle počítat v jiných soustavách.
- Místo toho využijeme tzv. Hornerova schématu.
- To je způsob, jak rozdělit dané číslo na součet násobků mocnin libovolného jiného čísla "opakovaným vytýkáním".
- Při převodu z desítkové soustavy do soustavy se základem a tedy stačí pořád dokola z
 tohoto čísla vytýkat a, dokud se nedostanu na 1.

PŘEVOD DESÍTKOVÁ → COKOLIV – PŘÍKLAD

Převedeme číslo 49_{10} do dvojkové soustavy, tím že z něj budeme opakovaně vytýkat dvojku.

Převedeme číslo 49_{10} do dvojkové soustavy, tím že z něj budeme opakovaně vytýkat dvojku.

$$49 = 2 \cdot (24) + 1$$

$$= 2 \cdot (2 \cdot (12)) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot (6))) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot (2 \cdot (3)))) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot (2 \cdot (2 \cdot (1) + 1)))) + 1$$

$$= 2^{5} + 2^{4} + 2^{0}$$

$$= 10^{5}_{2} + 10^{4}_{2} + 10^{0}_{2}$$

$$= 1 \cdot 10^{5}_{2} + 1 \cdot 10^{4}_{2} + 0 \cdot 10^{3}_{2} + 0 \cdot 10^{2}_{2} + 0 \cdot 10^{1}_{2} + 1 \cdot 10^{0}_{3} = 110001_{2}.$$

Ten samý postup se přehledněji zapíše do tabulky.

Ten samý postup se přehledněji zapíše do tabulky. Totiž, opakovaně vytýkat dvojku vlastně znamená opakovaně dělit číslo 2 se zbytkem.

Ten samý postup se přehledněji zapíše do tabulky.

Totiž, opakovaně vytýkat dvojku vlastně znamená opakovaně dělit číslo 2 se zbytkem. Pro číslo 49 vypadá tabulka následovně.

Podíl	Zbytek
24	1
12	0
6	0
3	0
1	1
0	1

Ten samý postup se přehledněji zapíše do tabulky.

Totiž, opakovaně vytýkat dvojku vlastně znamená opakovaně dělit číslo 2 se zbytkem. Pro číslo 49 vypadá tabulka následovně.

Podíl	Zbytek
24	1
12	0
6	0
3	0
1	1
0	1

Když sloupec se zbytky přečteme zezdola nahoru, objevíme číslo 110001, což je číslo 49 ve dvojkové soustavě.