Lineare Algebra und Geometrie 1 (WS 2018/19 - Pinsker) Prüfung am 10.1.2019

Name: Matrikelnummer:

Nickname:

Übungsgruppe (falls zutreffend) (Zeit / Gruppenleiter):

Ihre Antworten - bitte W (wahr) oder F (falsch) eintragen!

Aufgabe	Antwort A	Antwort B	Antwort C
1	W	W	W
2	W	W	F
3	W	F	W
4	W	W	F
5	W	F	W
6	F	F	W
7	F	F	W
8	F	F	W
9	W	F	W
10	F	F	F
11	W	F	W
12	F	F	W
13	W	F	F
14	W	W	F
15	W	F	F

Erklärungen zum Prüfungsmodus:

- Bitte wählen Sie einen beliebigen Nickname die Ergebnisse werden als für alle einsehbare Liste unter den Nicknamen veröffentlicht.
- Es sind 15 Aufgaben zu lösen, und jede Aufgabe besteht aus drei Teilfragen (A,B,C), welche jeweils mit WAHR (W) oder FALSCH (F) zu beantworten sind.
- WICHTIG: WAHR (W) bedeutet, daß die jeweilige Behauptung für ALLE X,f,K,\ldots aus der gegebenen Annahme folgt. Das heißt, daß die Behauptung notwendig ist (und nicht nur möglich).
- Sie bekommen die bei einer Aufgabe angegebene Punktezahl (diesmal immer 4), wenn Sie ALLE drei Teilfragen der Aufgabe richtig beantworten.
- Wenn Sie mindestens eine Teilfrage einer Aufgabe falsch beantworten, so bekommen Sie O Punkte.
- In allen anderen Fällen (also Aufgabe entweder gar nicht oder korrekt, aber unvollständig gelöst) bekommen Sie 1 Punkt.

Aufgabe 1 (4 Punkte)

Sei X ein unendlichdimensionaler Vektorraum, und sei S ein Erzeugendensystem von X.

- (A) S ist unendlich.
- (B) S hat eine endliche linear unabhängige Teilmenge.
- (C) S hat eine unendliche linear unabhängige Teilmenge.

Aufgabe 2 (4 Punkte)

Sei K ein Körper, und seien $\{b_1,b_2,b_3\}$ und $\{c_1,c_2,c_3\}$ zwei Basen des K^3 . Sei $B\in K^{3\times 3}$ jene Matrix, deren Spalten die Vektoren b_1,b_2,b_3 sind; weiters sei $C\in K^{3\times 3}$ jene Matrix, deren Spalten die Vektoren c_1,c_2,c_3 sind.

- (A) B ist regulär.
- (B) $\exists D \in K^{3\times 3} \ (C = B \cdot D)$.
- (C) $B \cdot C$ ist nicht regulär.

Aufgabe 3 (4 Punkte)

Sei X ein unendlichdimensionaler Vektorraum über \mathbb{R} , und sei S eine endliche linear unabhängige Teilmenge von X. Sei weiters $f: S \to \mathbb{R}^3$ eine Funktion.

- (A) f läßt sich zu einer linearen Abbildung von X nach \mathbb{R}^3 fortsetzen.
- (B) f läßt sich eindeutig zu einer linearen Abbildung von X nach \mathbb{R}^3 fortsetzen.
- (C) Es gibt unendlich viele paarweise verschiedene Fortsetzungen von f zu einer linearen Abbildung von X nach \mathbb{R}^3 .

Aufgabe 4 (4 Punkte)

Sei X ein Vektorraum über einem Körper K der Charakteristik 0.

- (A) Wenn X mindestens zwei Elemente besitzt, dann ist X unendlich.
- (B) Wenn die Dimension von X mindestens 1 beträgt, dann ist X unendlich.
- (C) X ist unendlich.

Aufgabe 5 (4 Punkte)

Sei K ein Körper. Auf $K^{5\times 5}$ definieren wir eine binäre Relation R, indem wir für $A,B\in K^{5\times 5}$ folgendes festlegen:

$$R(A, B) : \leftrightarrow \exists C \in K^{5 \times 5} \ (A = C \cdot B)$$
.

- (A) R ist reflexiv.
- (B) R ist symmetrisch.
- (C) R ist transitiv.

Aufgabe 6 (4 Punkte)

Es gelten die Bedingungen von Aufgabe 5.

- (A) R ist eine Äquivalenzrelation.
- (B) R ist eine Halbordnung.
- (C) Es existiert ein $D\in K^{5\times 5}$ sodass für alle $A\in K^{5\times 5}$ die Relation R(A,D) erfüllt ist.

Aufgabe 7 (4 Punkte)

Sei V ein Vektorraum über \mathbb{Z}_2 , und sei $\{b_1,b_2,b_3\}$ eine Basis von V. Sei weiters $f\in L(V,(\mathbb{Z}_2)^2)$ so, daß

$$f(b_1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad f(b_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad f(b_3) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- (A) f ist injektiv.
- (B) Der Rang von f beträgt 1.
- (C) f ist surjektiv.

Aufgabe 8 (4 Punkte)

Es gelten die Bedingungen von Aufgabe 7.

(A)
$$f(b_1+b_2)=\left(egin{array}{c} 0 \\ 0 \end{array}\right).$$

- (B) Der Defekt von f beträgt 2.
- (C) Der Kern von f enthält genau 2 Elemente.

Aufgabe 9 (4 Punkte)

Sei $\{b_1,b_2\}$ eine Basis des \mathbb{R}^2 , und seien

$$c_1 := b_1 - b_2, \quad c_2 := -b_1 + 2b_2.$$

- (A) $\{c_1, c_2\}$ ist linear unabhängig.
- (B) $b_1 = (-2)c_1 + (-1)c_2$.
- (C) Die Matrix $\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$ ist regulär.

Aufgabe 10 (4 Punkte)

Es gelten die Bedingungen von Aufgabe 9. Seien $v:=-7b_1+3b_2$ und $w:=-4c_1+c_2$.

- (A) $v = 3c_1 c_2$.
- (B) $w = 2b_1 + 4b_2$.
- (C) $\{v, w\}$ ist linear abhängig.

Aufgabe 11 (4 Punkte)

Sei V ein unendlichdimensionaler Vektorraum, $B\subseteq V$ eine Basis von V, und $C\subseteq V$ eine endliche linear unabhängige Teilmenge von V. Sei

$$S := \{B' \subseteq B \mid C \cup B' \text{ ist linear unabhängig} \} \;.$$

Die Elemente von S sind natürlich durch die Inklusion (\subseteq) geordnet.

- (A) S enthält sowohl eine endliche, als auch eine unendliche Menge.
- (B) S enthält ein maximales Element B', und B' ist eine Basis von V.
- (C) S enthält ein maximales Element B', und $B' \cup C$ ist eine Basis von V.

Aufgabe 12 (4 Punkte)

Sei V ein 3-dimensionaler Vektorraum über einem Körper K der Charakteristik 0. Sei $c \in V$ ungleich dem Nullvektor, und $\{b_1,b_2\}$ ein Erzeugendensystem eines Komplements von $[\{c\}]$ in V.

- (A) $\{b_1,b_2,b_1+b_2\}$ ist linear unabhängig.
- (B) $\{c, b_1, b_2\}$ ist linear abhängig.
- (C) $\{c, b_1, b_1 + b_2\}$ ist linear unabhängig.

Aufgabe 13 (4 Punkte)

Es gelten die Bedingungen von Aufgabe 12.

- (A) $[\{b_1+c,b_2+c\}]$ ist ein Komplement von $[\{c\}]$ in V.
- (B) $[\{b_1+c,b_2+c\}] = [\{b_1,b_2\}].$
- (C) $[\{b_1+c+c,b_2+c+c\}] = [\{b_1,b_2\}].$

Aufgabe 14 (4 Punkte)

Es gelten die Bedingungen von Aufgabe 12.

- (A) $[\{c\}]$ besitzt unendlich viele paarweise verschiedene Komplemente in V.
- (B) Wenn U,W verschiedene Komplemente von $[\{c\}]$ in V sind, dann ist V die Summe von U und W.
- (C) Wenn U,W verschiedene Komplemente von $[\{c\}]$ in V sind, dann ist V die direkte Summe von U und W.

Aufgabe 15 (4 Punkte)

Sei $V:=(\mathbb{Z}_2)^{<\mathbb{N}>}$ der Vektorraum jener Funktionen von \mathbb{N} nach \mathbb{Z}_2 , welche nur endlich oft einen Wert ungleich 0 annehmen. Sei $\phi\colon V\to\mathbb{Z}_2$ durch

$$\phi(f) := \sum_{n \in \mathbb{N}} f(n)$$

definiert. Weiters sei für alle $j \in \mathbb{N}$ eine Funktion $g_j \in V$ durch

$$g_j(n) := \begin{cases} 1, & j = n \\ 0, & j \neq n \end{cases}$$

gegeben.

- (A) ϕ ist eine surjektive Linearform von V.
- (B) ϕ läßt sich als Linearkombination über $\{g_i^* \mid j \in \mathbb{N}\}$ darstellen.
- (C) ϕ läßt sich eindeutig als Linearkombination über $\{g_j^* \mid j \in \mathbb{N}\}$ darstellen.