La duración del examen es de una hora. La fecha estimada de publicación de notas es el lunes 5 de julio. La fecha estimada de la revisión presencial es el jueves 8 de julio a las 13h.

Problema 1: Se han tomado medidas de la altura h(x) del perfil de una ladera y se va a simular dicho perfil utilizando distintos tipos de funciones y conjuntos de datos, en el intervalo [0, 3], según se indica en cada apartado:

1. Se considera una función h(x) del tipo

$$h(x) = \begin{cases} ax^2, & x \in [0,1] \\ A(x-1)^2 + B(x-1) + C, & x \in [1,3] \end{cases}$$

Determinar los valores de a, A, B y C para que dicha función sea un spline cuadrado e interpole los datos h(0)=0, h(1)=10 y h(3)=54.

- 2. Si los datos de los que se dispone son h(0)=0, h(3)=54 y h'(0)=d (siendo d un valor dado), dar la expresión usando la Fórmula de Newton del polinomio de interpolación de grado 2 (en función de d) que interpola dichos datos.
- 3. Se consideran los datos del perfil de la ladera que se recogen en la siguiente tabla

$x_1 = 1$	$x_2 = 2$
h ₁ =10	$h_2 = 30$

Calcular el valor de d en la expresión del polinomio obtenido en el apartado 2 para que dicha función ajuste lo mejor posible (en sentido mínimos cuadrados) los datos de la tabla anterior. Dar la matriz H de coeficientes de las incógnitas y el vector b de términos independientes del sistema lineal sobredeterminado. Resolver las ecuaciones normales.

Sin realizar ningún cálculo ¿cuál es la derivada en 0 del polinomio de grado dos que interpola los datos h(0)=0 y h(3)=54 y ajusta los datos de la tabla?

Problema 2: Se va a aplicar el método Newton-Raphson a la ecuación $x^4-5=0$

- Demostrar que tiene una solución en el intervalo [1.4, 1.5].
- Dar la expresión de dicho método y realizar dos iteraciones comenzando en x₀=1.
- Sabiendo que los cinco primeros dígitos de la solución exacta son 1.4953, calcular el error relativo entre la segunda iteración y la solución exacta y las cifras decimales correctas.
- Verificar que el método es convergente si comenzamos las iteraciones en cualquier punto x_0 del intervalo [1.4, 1.5]
- Si comenzamos en cualquier punto x_0 del intervalo [1.4, 1.5], ¿cuántas iteraciones son suficientes para tener todas las cifras correctas si se trabaja en doble precisión?

Ejercicio 1

1.

Verifica h(0)=0.

h(1)=10, tenemos a=C=10.

h(3)=54, tenemos 4A+2B+10=54.

h'(1)=2a=20=B. Luego A=1.

$$h(x) = \begin{cases} 10x^2, & x \in [0, 1] \\ (x-1)^2 + 20(x-1) + 10, & x \in [1, 3] \end{cases}$$

2.

Tabla de diferencias divididas

	0	0	d	(18-d)/3
;	0	0	54/3 = 18	
	3	54		

El polininomio de Newton es $h(x) = d + \frac{18-d}{3}$

3.

Imponemos $h(x_i) = h_i$ y obtenemos el sistema lineal sobredeterminado:

$$h(1) = d + \frac{18 - d}{3}, \quad \frac{2}{3}d = 4$$

$$h(2) = 2d + \frac{18 - d}{3}4, \quad \frac{2}{3}d = 6$$

$$\begin{pmatrix} 2/3 \\ 2/3 \end{pmatrix} d = \begin{pmatrix} 4 \\ 6 \end{pmatrix} , \begin{pmatrix} 2/3 \\ 2/3 \end{pmatrix} \begin{pmatrix} 2/3 \\ 2/3 \end{pmatrix} d = \begin{pmatrix} 2/3 & 2/3 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

$$(8/9)d = 20/3$$
 $d = 7.5$ $h(x) = 7.5x + 3.5x^2$

El polinomio que interpola los datos h(0)=0 y h(3)=54 y ajusta los datos de la tabla del apartado anterior es el mismo polinomio solución del apartado anterior

$$h(x) = 7.5x + 3.5x^2$$
 $h'(0) = 7.5$

Ejercicio 2

La función es continua (polinomio) y $1,4^4-5<0$ $1,5^4-5>0$ por el Teorema de Bolzano, al cambiar de signo, tiene al menos una raíz.

$$x_{n+1} = x_n - (x_n^4 - 5)/(4 * x_n^3)$$

$$x_1 = 1 + 1 = 2$$
 $x_2 = 1,6562$

errorrelativo=(1.6562 - 1.4953) / 1.4953 = 0.10764 cifras= $-\log 10$ (errorrelativo)=0.96804 prácticamente una. $C = max\{|f''(x)|\}/(2min\{|f'(x)\} \text{ con } x \in [1.4,1.5]$ $f'(x) = 4x^3$ $f''(x) = 12x^2$ son positivas y crecientes, por lo que $C = 27/21,952... \approx 1,23$

Puesto que la longitud del intervalo es 0.1 entonces $|Ce_0| < 1$ y es convergente.

Como C es muy similar a 1 usando la propiedad $|e_{n+1}| \approx C|e_n|^2 \approx |en|^2$ y la longitud del intervalo inicial, tengo un cifra decimal 10^{-1} , en la primera iteración dos 10^{-2} , luego cuatro 10^{-4} , ocho, dieciseis. O sea, cuatro iteraciones para alcanzar la precisión máxima.