2022 Research Interim Report

Qichen Eric Dai

University of Toronto
Engineering Science 2T3 + PEY
Aerospace Option

July 22, 2022

Mathematical Foundations

Mathematical Foundations

Variational Methods

find a function u such that it satisfies

$$a(u,v) = l(v) \quad \forall v \in \mathcal{V}$$

where a(u,v) is the bilinear form, l(v) is the linear form of the variational problem. $\mathcal V$ is the function space.

Finite Flement Method

After discretizing our domain, we wish to find a piecewise continuous function $u_h \in \mathcal{V}_h$ that satisfies

$$a(u_h, v) = l(v) \quad \forall v \in \mathcal{V}_h$$

Where V_h is a space of piecewise linear functions defined over our triangulation of the domain.

Finite Element Method Formulation

We can represent u_h and v using Lagrange basis:

$$u_h = \hat{u}_{h,j}\phi_j$$
$$v = \hat{v}_i\phi_i$$

where $\hat{u}_{h,i}$ and \hat{v}_i are the function values at the i-th nodes of our triangulation, and ϕ_i is the i-th piecewise Lagrange basis polynomial.

Finite Element Method Formulation:

The problem became: find a vector $\mathbf{u} = \begin{bmatrix} \hat{u}_{h,1} & \dots & \hat{u}_{h,N} \end{bmatrix}^\mathsf{T}$ such that

$$a(\phi_i, \phi_i)\hat{u}_{h,j} = l(\phi_i) \quad \forall i = 1, 2, \dots, N$$

Visualization of Lagrange Polynomials

Figure: Piecewise linear lagrange basis polynomials with 4 degrees of freedom

Vectorization of Problem

find \hat{u}_h such that

$$a(\phi_{j}, \phi_{i})\hat{u}_{h} = l(\phi_{i}) \quad \forall i = 1, 2, \dots, N$$

$$\rightarrow \begin{bmatrix} a(\phi_{1}, \phi_{1}) & \dots & a(\phi_{N}, \phi_{1}) \\ \vdots & \ddots & \vdots \\ a(\phi_{1}, \phi_{N}) & \dots & a(\phi_{N}, \phi_{N}) \end{bmatrix} \begin{bmatrix} \hat{u}_{h,1} \\ \vdots \\ \hat{u}_{h,N} \end{bmatrix} = \begin{bmatrix} l(\phi_{1}) \\ \vdots \\ l(\phi_{N}) \end{bmatrix}$$

$$\rightarrow \mathbf{A}\mathbf{u} = \mathbf{f}$$

Where A is the stiffness matrix, and f is the load vector.

Question 1 - Linear FEM

- Problem Statement
- Weak Form Formulation
- Well-Posedness
- 1D FEM Solver

Question 1 - Linear FEM

- Problem Statement
- Weak Form Formulation
- Well-Posedness
- 1D FEM Solver

Sample Problem Statement

Linear reaction-diffusion

We have a physical domain $\Omega \equiv (0,1) \in \mathbb{R}^1$ and a parameter domain $\mathcal{D} \equiv (10^{-4},10^{-1}) \subset \mathbb{R}^1$. Reaction-diffusion system is given by the following problem statement:

Given $\mu \in \mathcal{D}$, find $u(\mu) : \Omega \to \mathcal{R}$ such that:

$$-\mu\Delta u(\mu) + u(\mu) = 1 \quad \text{in } \Omega$$

$$u(\mu) = 0 \quad \text{on } \partial\Omega$$

Question 1 - Linear FEM

- Problem Statement
- Weak Form Formulation
- Well-Posedness
- 1D FEM Solver

Weak Form Formulation

To find the weak form, we adhere to the given example in the AER1418 note, multiplying the ODE by a test function v, where $v=0 \ \forall x \in \partial \Omega$. We then integrate both side of the equation:

$$\int_{\Omega} v(-\mu \Delta u + u) dx = \int_{\Omega} v dx$$

We integrate the first term by part:

$$-\int v\mu\Delta u dx = -\left[\mu v \frac{\mathrm{d}u}{\mathrm{d}x}\right]_0^1 - \int \mu \frac{\mathrm{d}v}{\mathrm{d}x} \frac{\mathrm{d}u}{\mathrm{d}x} dx$$
$$= \mu \int \frac{\mathrm{d}v}{\mathrm{d}x} \frac{\mathrm{d}u}{\mathrm{d}x} dx$$

7

Weak Form Formulation

Weak form of reaction - diffusion equation:

Biliner Form:

$$a(u,v) = \mu \int \frac{\mathrm{d}v}{\mathrm{d}x} \frac{\mathrm{d}u}{\mathrm{d}x} dx + \int uv dx$$

Linear Form:

$$l(v) = \int v dx$$

Question 1 - Linear FEM

- Problem Statement
- Weak Form Formulation
- Well-Posedness
- 1D FEM Solver

Well-Posedness of Problem

Lax - Milgram Theorem: Given a Hilbert Space \mathcal{V} , a continuous, coercive bilinear form $a: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$, and a continuous linear functional $l \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ such that

$$a(u,v) = l(v) \quad \forall v \in \mathcal{V}$$

where $\mathcal{V} = H^1(\Omega)$

Can prove:

- a is coercive and continuous;
- l is also continuous.

Question 1 - Linear FEM

- Problem Statement
- Weak Form Formulation
- Well-Posedness
- 1D FEM Solver

1D FEM Solver

Weak Form Rewritten:

$$a(\phi_j, \phi_i)\hat{u}_{h,j} = l(\phi_i) \quad \forall i = 1, 2, \dots, N$$

$$\rightarrow \left(\mu \int \frac{\mathrm{d}\phi_i}{\mathrm{d}x} \frac{\mathrm{d}\phi_j}{\mathrm{d}x} dx + \int \phi_i \phi_j dx\right) \hat{u}_{h,j} = \int \phi_i dx$$

We can compute the integrals using Gauss quadrature

Gauss Quadrature

We wish to approximate the integral with a finite summation

$$\int_{\Omega} f(x)dx \approx w_i f(x_i)$$

 w_i -s are the integration weights and the x_i -s are the quadrature points. The weights and quadrature points are predefined in tables.

 $N\mbox{-point Gauss quadrature rule can integrate }2N-1\mbox{ degree polynomial exactly.}$

Integration Matrices

For a domain with K degrees of freedom, we can apply a total of N-points Gauss Quadrature rule over the entire domain. Can define:

Weight Vector $\mathbf{w} : \mathbb{R}^N$ contains the quadrature weights to all quadrature points in the domain.

Basis Matrix $\Phi: \mathbb{R}^{N \times K}$ where its entry ϕ_{ij} is the function value of the j-th basis function evaluated at the i-th quadrature point. Derivative Basis Matrix $\Phi': \mathbb{R}^{N \times K}$ where its entry ϕ'_{ij} is the derivative value of the j-th basis function evaluated at the i-th quadrature point.

Integrating Functions

Integrating our solution over the domain became:

$$\int_{\Omega} u_h(x; \mu) dx \approx w_i u_h(x_i)$$

$$= w_i \phi_{ij} \hat{u}_{h,j}$$

$$= \mathbf{w}^{\mathsf{T}} \mathbf{\Phi} \mathbf{u}$$

The stiffness matrix A_h is:

$$\mathbf{A} = \mu \mathbf{\Phi}'^{\mathsf{T}} \mathbf{W} \mathbf{\Phi}' + \mathbf{\Phi}^{\mathsf{T}} \mathbf{W} \mathbf{\Phi}$$
$$= \mu \mathbf{A}_1 + \mathbf{A}_2$$

Where $\mathbf{W} = \mathsf{diag}(\mathbf{w})$

And the load vector f is

$$\mathbf{f} = \mathbf{\Phi}^\intercal \mathbf{w}$$

Finite Element Result

Solving the linear equation, we can get the following results in MATLAB:

Figure: Finite element method result on reaction-diffusion equation with $\mu=0.01$, using linear basis functions

Finite Element Result

Figure: Finite element method result on reaction-diffusion equation with $\mu=0.01$, using quadratic basis functions

Figure: Finite Element error convergence rate

Functional Evaluation

Now we can compute our approximation solution u_h , we wish to approximate a desired value $s \equiv \int_\Omega 1 - u(x;\mu) \ dx$. Using our integration matrix, we can get:

$$s = \int_0^1 1 - u(x; \mu) dx$$
$$= \int_0^1 1 dx - \int_0^1 u(x; \mu) dx$$
$$\approx 1 - \mathbf{w}^{\mathsf{T}} \Phi \mathbf{u}$$

Question 2 - Optimization

- Problem Statement
- Gradient-Free optimization
- Adjoint-Based Method
- Gradient-Based Optimization

Question 2 - Optimization

- Problem Statement
- Gradient-Free optimization
- Adjoint-Based Method
- Gradient-Based Optimization

Problem Statement

We wish to inversely find the μ_{true} value that gives us the desired s_{true} value. The objective is to

$$\min \; (s_{true} - s)^2 \label{eq:strue}$$
 where $\; s = \int_{\Omega} (1 - u(x;\mu)) \; dx \;$

Question 2 - Optimization

- Problem Statement
- Gradient-Free optimization
- Adjoint-Based Method
- Gradient-Based Optimization

Gradient-Free Optimization

>> grad_free

			First-order
Func-count	f(x)	Step-size	optimality
2	0.0121151		0.864
10	0.000223879	0.0295014	0.186
12	0.000140069	1	0.134
14	9.40704e-07	1	0.0114
16	4.31609e-09	1	0.000774
18	9.55124e-14	1	4.16e-06
20	1.91625e-15	1	1.5le-09
	12 14 16 18	2 0.0121151 10 0.000223879 12 0.000140069 14 9.40704e-07 16 4.31609e-09 18 9.55124e-14	2 0.0121151 10 0.000223879 0.0295014 12 0.000140069 1 14 9.40704e-07 1 16 4.31609e-09 1 18 9.55124e-14 1

Local minimum found.

Optimization completed because the $\underline{\text{size of the gradient}}$ is less than the value of the $\underline{\text{optimality tolerance}}$.

```
<stopping criteria details>
Elapsed time is 0.424427 seconds.
mu = 0.0269833, true mu = 0.0269850
```

Figure: Gradient-free optimization result

education and an

Question 2 - Optimization

- Problem Statement
- Gradient-Free optimization
- Adjoint-Based Method
- Gradient-Based Optimization

Adjoint-Based Method

For an ODE/PDE constrained optimization problem, we wish to:

Minimize
$$J(u) = q(u(\mu); \mu)$$

Subject to $R(u(\mu); \mu) = 0$

We can compute the Jacobian of the functional:
$$\frac{\partial J}{\partial \mu} = \frac{\partial q}{\partial u} \frac{\partial u}{\partial \mu} + \frac{\partial q}{\partial \mu}$$
 Since
$$\frac{\partial R}{\partial u} \frac{\partial u}{\partial \mu} + \frac{\partial R}{\partial \mu} = 0$$
 from the residual constraint, we can rewrite

$$\frac{\partial u}{\partial \mu} = -\left(\frac{\partial R}{\partial u}\right)^{-1} \frac{\partial R}{\partial \mu}$$

Adjoint-Based Method

Thus we can write our Jacobian to be:

$$\frac{\partial J}{\partial \mu} = -\frac{\partial q}{\partial u} \left(\frac{\partial R}{\partial u}\right)^{-1} \frac{\partial R}{\partial \mu} + \frac{\partial q}{\partial \mu}$$
$$= -\psi^{\dagger} \frac{\partial R}{\partial \mu} + \frac{\partial q}{\partial \mu}$$

where ψ is the adjoint that satisfies

$$\left(\frac{\partial R}{\partial u}\right)^{\mathsf{T}}\psi = \left(\frac{\partial q}{\partial u}\right)^{\mathsf{T}}$$

Adjoint-Based Method

Our question can be rewritten as:

Minimize
$$J(\mathbf{u}) = (s_{true} - s)^2 = (s_{true} - 1 + \mathbf{w}^{\mathsf{T}} \mathbf{\Phi} \mathbf{u})^2$$

Subject to $\mathbf{R}(\mathbf{u}) = \mathbf{A}\mathbf{u} - \mathbf{f} = (\mu \mathbf{A}_1 + \mathbf{A}_2) \mathbf{u} - \mathbf{f} = \mathbf{0}$

Using the adjoint-based method formulation, we have

$$\frac{\partial q}{\partial \mathbf{u}} = 2(s_{true} - 1 + \mathbf{w}^{\mathsf{T}} \mathbf{\Phi} \mathbf{u}) \mathbf{w}^{\mathsf{T}} \mathbf{\Phi}$$

$$\frac{\partial q}{\partial \mu} = \mathbf{0}$$

$$\frac{\partial \mathbf{R}}{\partial \mathbf{u}} = \mathbf{A}$$

$$\frac{\partial \mathbf{R}}{\partial \mu} = \mathbf{A}_1 \mathbf{u}$$

Question 2 - Optimization

- Problem Statement
- Gradient-Free optimization
- Adjoint-Based Method
- Gradient-Based Optimization

Gradient-Based Optimization Result

Using the formulation from adjoint-based method, we can construct a gradient-based optimization scheme. The resulting runtime is shown below:

```
>> optim grad
   0.0943
                              Norm of
                                          First-order
Iteration
               f(x)
                                           optimality
                                                        CG-iterations
                              step
               0.0274198
                                                1.48
             0.00623217
                             0.0230088
                                               0.504
             0.000660485
                        0.0187058
                                               0 131
             1.43326e-05
                            0.00906815
                                              0.0174
             9.63375e-09
                            0.00161849 0.000443
             4.6507e-15
                            4.3433e-05
                                            3.08e-07
Local minimum possible.
fminunc stopped because the final change in function value relative to
its initial value is less than the value of the function tolerance.
<stopping criteria details>
Elapsed time is 0.044588 seconds.
mu = 0.0942773, true mu = 0.0942794
```

Figure: Gradient-based optimization result using adjoint-based method

Comparison

Method	iterations	runtime(s)
Gradient-Free	6	0.424427
Gradient-Based	5	0.04588

Table: Runtime comparison between gradient-based and gradient-free optimization

Question 3 - Optimization Constrained By Non-Linear PDE

- Problem Statement
- Weak Form
- FEM Solution
- Adjoint-Based Optimization

- Problem Statement
- Weak Form
- FEM Solution
- Adjoint-Based Optimization

Problem Statement

Given $\mu \in \mathcal{D}$, find $u(x; \mu)$ such that

$$\begin{split} -\nabla \cdot (\mu_i \nabla u(\mu)) + u(\mu)^3 &= 1 \quad \text{in } \Omega_i \ \forall i=1,...,P \\ u(\mu) &= 0 \quad \text{on } \partial \Omega \end{split}$$

And

$$\min \quad (s_{true} - s)^2$$
 subject to
$$-\nabla \cdot (\mu_i \nabla u(\mu)) + u(\mu)^3 - 1 = 0$$
 where
$$s = \int (1 - u(x; \mu)) \ dx$$

- Problem Statement
- Weak Form
- FEM Solution
- Adjoint-Based Optimization

Weak Form

The weak form of the equation can be derived by multiplying test function \boldsymbol{v} and integrating both sides:

$$\int v(-\mu\Delta u + u^3) \, dx = \int v \, dx$$

$$\to \mu \int \nabla u \nabla v \, dx + \int u^3 v \, dx = \int v \, dx$$

Unfortunately the weak form is non-linear, thus must be solved using root-finding algorithms like Newton's Method.

- Problem Statement
- Weak Form
- FEM Solution
- Adjoint-Based Optimization

Residual

Substituting $u=u_{h,j}\phi_j$ and $v=v_i\phi_i$, we can define residual vector ${\bf R}$ such that:

$$R_{i} = \mu \int \frac{\mathrm{d}\phi_{j}}{\mathrm{d}x} \frac{\mathrm{d}\phi_{i}}{\mathrm{d}x} \hat{u}_{h,j} dx + \int (\hat{u}_{h,k}\phi_{k})^{3} \phi_{i} dx - \int \phi_{i} dx$$
$$\mathbf{R} = \mu \mathbf{A}_{1} \mathbf{u} + \left[(\mathbf{\Phi} \mathbf{u})^{\circ 3} \circ \mathbf{\Phi} \right]^{\mathsf{T}} \mathbf{w} - \mathbf{f}$$

where o is the Hadamard product.

Jacobian

We can also define the Jacobian of the residual ${\mathcal J}$ with respect to ${\bf u}$

$$\mathcal{J}_{ij} = \frac{\partial R_i}{\partial u_j} = \mu \int \nabla \phi_j \cdot \nabla \phi_i \ dx + \int 3(\hat{u}_{h,k}\phi_k)^3 \phi_i \phi_j \ dx$$
$$\mathcal{J} = \mu \mathbf{A}_1 + \mathbf{\Phi}^{\mathsf{T}} \mathbf{Z} \mathbf{\Phi}$$

Where
$$\mathbf{Z} = \mathsf{diag}(3\mathbf{w} \circ (\mathbf{\Phi}\mathbf{u})^{\circ 2})$$

Newton's Method

We can use Newton's Methods to numerically find the root of the residual:

$$\mathbf{u}^{i+1} = \mathbf{u}^i + \delta \mathbf{u}$$
 where $oldsymbol{\mathcal{J}} \delta \mathbf{u} = -\mathbf{R}$

>> demo

1 2.17640516e-02

2 2.24634793e-03

3 1.90450115e-05

4 1.38134265e-09

Figure: Newton's method error shows quadratic convergence as expected

Figure: Finite element method result on non-linear reaction-diffusion equation with $\mu=0.01$, using quadratic basis functions

- Problem Statement
- Weak Form
- FEM Solution
- Adjoint-Based Optimization

Adjoint-Based Optimization

We wish to do the same thing as question 2 to inversely find the μ value that gives the desired s value. Using adjoint optimization we can redefine our question to:

Minimize
$$J(\mathbf{u}; \mu) = (s_{true} - s)^2 = (s_{true} - 1 + \mathbf{w}^{\mathsf{T}} \mathbf{\Phi} \mathbf{u})^2$$

Subject to $\mathbf{R} = \mu \mathbf{A}_1 \mathbf{u} + \left[(\mathbf{\Phi} \mathbf{u})^{\circ 3} \circ \mathbf{\Phi} \right]^{\mathsf{T}} \mathbf{w} - \mathbf{f}$
The components of the adjoint-based method are:

$$\begin{split} \frac{\partial q}{\partial \mathbf{u}} &= 2(s_{true} - 1 + \mathbf{w}^{\mathsf{T}} \mathbf{\Phi} \mathbf{u}) \mathbf{w}^{\mathsf{T}} \mathbf{\Phi} \\ \frac{\partial q}{\partial \mu} &= 0 \\ \frac{\partial \mathbf{R}}{\partial \mathbf{u}} &= \mathcal{J} \\ \frac{\partial \mathbf{R}}{\partial \mu} &= \mathbf{A}_1 \mathbf{u} \end{split}$$

>> optim_nonlin_gradfree

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	2	0.000500672		0.234
1	8	9.41675e-05	0.01	0.109
2	10	4.76115e-06	1	0.0264
3	12	4.05795e-08	1	0.0024
4	14	1.65018e-11	1	4.89e-05
5	16	2.72037e-15	1	9.25e-08

Local minimum found.

Optimization completed because the <u>size of the gradient</u> is less than the value of the <u>optimality tolerance</u>.

```
<stopping criteria details>
Elapsed time is 0.225611 seconds.
mu = 0.01340377, true mu = 0.01340378
```

Figure: Non-linear PDE constrained optimization result using gradient-free method

>> optim_nonlin_adjoint

Iteration	f(x)	Norm of step	First-order optimality	CG-iterations
0	0.0754556		4.13	
1	0.0425862	0.0115499	2.02	1
2	0.0150892	0.020641	0.853	1
3	0.00197385	0.0253044	0.25	1
4	3.37869e-05	0.0143498	0.03	1
5	1.10081e-08	0.00222396	0.000535	1
6	1.19818e-15	4.11175e-05	1.77e-07	1

Local minimum found.

Optimization completed because the <u>size of the gradient</u> is less than the value of the <u>optimality tolerance</u>.

```
<stopping criteria details>
Elapsed time is 0.073293 seconds.
mu = 0.08254883, true mu = 0.08254885
```

Figure: Non-linear PDE constrained optimization result using adjoint-based method

Method	iterations	runtime(s)
Gradient-Free	5	0.225611
Gradient-Based	6	0.073923

Table: Runtime comparison between gradient-based and gradient-free optimization