Odpowiedzi i schematy oceniania

Arkusz 6

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania
zadania	odpowiedź	
1.	C.	$9^{\frac{1}{2}}4^{-\frac{1}{2}}5 = 3 \cdot \frac{1}{2} \cdot 5 = \frac{15}{2}$
2.	B.	$0,003x = 21 \Rightarrow x = 7000$
3.	C.	$\log_3 5 + \log_3 45 = \log_3 5 + \log_3 3^2 \cdot 5 = \log_3 5 + \log_3 3^2 + \log_3 5 = 2a + 2$
4.	B.	Są to potęgi: 9, 27, 81, 243, 729.
5.	D.	$x = \sqrt{9 + 16} \Rightarrow x = \sqrt{25} \Rightarrow x = 5$
6.	D.	Wszystkie liczby naturalne należące do zbioru A to 0, 1, 2, 3, 4.
7.	C.	Liczbą odwrotną do a jest liczba $\frac{1}{a}$, zatem
		$\frac{1}{a} = \frac{1}{2\sqrt{3} - \sqrt{5}} = \frac{2\sqrt{3} + \sqrt{5}}{7}.$
8.	A.	Skorzystaj z interpretacji graficznej wartości bezwzględnej.
9.	В.	$(x+y)^2 = x^2 + 2xy + y^2 \Rightarrow (x+y)^2 = 84 + 70 = 154$
10.	D.	Trójmian po lewej stronie nierówności nie ma miejsc zerowych, zaś
		parabola będąca jego wykresem ma ramiona skierowane do góry.
11.	A.	Ze zbioru liczb rzeczywistych należy odjąć liczby, dla których
		mianowniki ułamków mają wartość 0 (również po przekształceniu).
12.	A.	Po podzieleniu stronami równania drugiego przez 4 i dodaniu równań
		otrzymujemy: $0 = -1$, zatem równanie sprzeczne (a więc cały układ
		sprzeczny).
13.	C.	Miejsca zerowe mianownika to liczby – 2, 2, 4, ale liczba 2 nie
		należy do dziedziny równania.
14.	B.	Należy skorzystać z własności wartości bezwzględnej, która dla każdej
		liczby rzeczywistej ma wartość nieujemną.
15.	C.	Aby zbiorem wartości funkcji był podany przedział, funkcja musi mieć
		jedno miejsce zerowe. Zatem: $\Delta = 0 \Rightarrow b^2 - 16 = 0 \Rightarrow b = -4 \lor b = 4$.

16.	A.	Zbiorem wartości funkcji wykładniczej jest przedział: (0, +∞).
17.	В.	$a_{n+1} = \frac{2(n+1)-3}{(n+1)+1} = \frac{2n-1}{n+2}$
18.	C.	Ogólna postać liczby naturalnej, która z dzielenia przez 5 daje resztę 4, to $5n + 4$. Pierwszą dwucyfrową liczbą o tej własności jest liczba 14.
19.	A.	$\frac{2+2n}{2}n = 930 \Rightarrow n^2 + n - 930 = 0 \Rightarrow n_1 = 30, n_2 = -31 \notin N_+$
20.	C.	Parzysta liczba początkowych wyrazów ciągu daje zawsze 0 , a nieparzysta $\sqrt{3}$.
21.	D.	$\frac{n(n-3)}{2} = 4n \Rightarrow n-3 = 8n \Rightarrow n = 11$

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
22.	Wykorzystanie kwadratu sumy sinusa i cosinusa	1
	kąta:	
	$(\sin \alpha + \cos \alpha)^2 = \frac{45}{25} \Rightarrow \sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = \frac{9}{5}.$	
	Obliczenie szukanej wartości: $\sin \alpha \cos \alpha = \frac{2}{5}$.	1
23	Wprowadzenie oznaczeń i zapisanie równania:	1
	$4a = 2\pi r \Rightarrow a = \frac{\pi r}{2},$	
	gdzie a – bok kwadratu, r – promień koła.	
	Porównanie pól: $P_{kw} = \frac{\pi^2 r^2}{4}$, $P_{kolo} = \pi r^2 \Rightarrow \frac{P_{kw}}{P_{kolo}} \frac{\pi}{4} < 1$, zatem	1
	większe pole ma koło.	
24.	Wyznaczenie miary kąta <i>CBD</i> : 20°	1
	Wyznaczenie miary kąta <i>CDB</i> :120°	1

25.	$a\sqrt{3}$	1
	Zapisanie proporcii: $\frac{a}{2} = \frac{a}{2}$,	
	Zapisanie proporcji: $\frac{\frac{a\sqrt{3}}{2}}{\frac{a\sqrt{3}}{2} - x} = \frac{a}{x}$,	
	_	
	gdzie x – bok wpisanego kwadratu.	1
	Wyznaczenie boku kwadratu: $x = a(2\sqrt{3} - 3)$.	1
26.	Wyznaczenie długości krawędzi prostopadłościanu: 5, 7, 9.	1
	Wyznaczenie pola powierzchni całkowitej: 286.	1
27.	Wykazanie, że trójmian nie ma miejsc zerowych: $\Delta = -23$.	1
	Rozwiązanie nierówności: $x \in R$.	1
28.	Wyznaczenie liczby wszystkich zdarzeń	1
	elementarnych: $\bar{\Omega} = 12 \cdot 11$.	
	Wyznaczenie liczby wszystkich zdarzeń elementarnych	1
	sprzyjających zdarzeniu $A: \bar{A} = 5 \cdot 7 + 7 \cdot 5$	
	i prawdopodobieństwa zdarzenia $A: P(A) = \frac{35}{66}$.	
29.	Wyznaczenie średniej arytmetycznej danych: $\bar{x} = 3.5$.	1
	Wyznaczenie mediany: 4.	1
	Wyznaczenie odchylenia standardowego: $\delta \approx 7,13$.	2 (1 punkt za
		metodę i 1 za
		obliczenia)
30.	Wyznaczenie środka okręgu: $S = (2, -1)$.	1
	Wyznaczenie promienia okręgu: $r = 3\sqrt{5}$.	1
	Zapisanie równania okręgu: $(x-2)^2 + (y+1)^2 = 45$.	1
	Zapisanie równania prostej $AB: y = -\frac{1}{2}x$.	1
	Wyznaczenie równania średnicy prostopadłej do średnicy	2 (w tym
	AB: y = 2x - 5.	1 punkt za
		wyznaczenie
		współczynnika
		kierunkowego)

31.	Wyznaczenie krawędzi podstawy ostrosłupa: $a = 6$.	1	
	Wyznaczenie wysokości ostrosłupa: $h = 3$.	1	
	Wyznaczenie objętości ostrosłupa: $V = 9\sqrt{3}$.	1	
	Wyznaczenie wysokości ściany bocznej ostrosłupa: $H = 2\sqrt{3}$.	1	-
	Wyznaczenie pola powierzchni bocznej ostrosłupa:	1	-
	$P_b = 18\sqrt{3} .$		