

A Course In Business Statistics 4th Edition

Chapter 9

Estimation and Hypothesis Testing for Two Population Parameters

Chapter Goals

After completing this chapter, you should be able to:

- Test hypotheses or form interval estimates for
 - two independent population means
 - Standard deviations known
 - Standard deviations unknown
 - two means from paired samples
 - the difference between two population proportions
 - Set up a contingency analysis table and perform a chi-square test of independence

Estimation for Two Populations

Estimating two population values

Population means, independent samples

Paired samples

Population proportions

Examples:

Group 1 vs. independent Group 2

Same group before vs. after treatment

Proportion 1 vs. Proportion 2

Difference Between Two Means

Population means, independent samples

 σ_1 and σ_2 known

Goal: Form a confidence interval for the difference between two population means, $\mu_1 - \mu_2$

The point estimate for the difference is

$$\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$$

Independent Samples

Population means, independent samples

 σ_1 and σ_2 known

- Different data sources
 - Unrelated
 - Independent
 - Sample selected from one population has no effect on the sample selected from the other population
- Use the difference between 2 sample means
- Use z test or pooled variance t test

火

Population means, independent samples

 σ_1 and σ_2 known

Assumptions:

- Samples are randomly and independently drawn
- population distributions are normal or both sample sizes are ≥ 30
- Population standard deviations are known

(continued)

Population means, independent samples

 σ_1 and σ_2 known

When σ_1 and σ_2 are known and both populations are normal or both sample sizes are at least 30, the test statistic is a z-value...

...and the standard error of $\overline{x}_1 - \overline{x}_2$ is

$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

(continued)

Population means, independent samples

 σ_1 and σ_2 known

The confidence interval for $\mu_1 - \mu_2$ is:

$$(x_1 - x_2) \pm z_{\alpha/2} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$$

Population means, independent samples

 σ_1 and σ_2 known

 σ_1 and σ_2 unknown,

Assumptions:

- populations are normally distributed
- the populations have equal variances
- samples are independent

(continued)

Population means, independent samples

 σ_1 and σ_2 known

 σ_1 and σ_2 unknown,

Forming interval estimates:

 The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ

the test statistic is a t value with (n₁ + n₂ - 2) degrees of freedom

(continued)

Population means, independent samples

The pooled standard deviation is

 σ_1 and σ_2 known

$$s_{p} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}}$$

 σ_1 and σ_2 unknown

(continued)

Population means, independent samples

 σ_1 and σ_2 known

 σ_1 and σ_2 unknown

The confidence interval for $\mu_1 - \mu_2$ is:

$$\begin{pmatrix} - & - \\ x_1 - x_2 \end{pmatrix} \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Where $t_{\alpha/2}$ has $(n_1 + n_2 - 2)$ d.f.,

and

$$s_{p} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}}$$

Paired Samples

Paired samples

Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$d = x_1 - x_2$$

- Eliminates Variation Among Subjects
- Assumptions:
 - Both Populations Are Normally Distributed
 - Or, if Not Normal, use large samples

Paired Differences

Paired samples

The ith paired difference is d_i, where

$$d_i = x_{1i} - x_{2i}$$

The point estimate for the population mean_paired difference is d:

$$\bar{d} = \frac{\sum_{i=1}^{n} d_i}{n}$$

The sample standard deviation is

$$s_d = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n-1}}$$

n is the number of pairs in the paired sample

Paired Differences

(continued)

Paired samples

The confidence interval for \overline{d} is

$$\frac{1}{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$$

Where $t_{\alpha/2}$ has n - 1 d.f. and S_d is:

$$s_d = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n-1}}$$

n is the number of pairs in the paired sample

Hypothesis Tests for the Difference Between Two Means

- Testing Hypotheses about μ₁ μ₂
- Use the same situations discussed already:
 - Standard deviations known or unknown

Hypothesis Tests for Two Population Proportions

Two Population Means, Independent Samples

Lower tail test:

$$H_0: \mu_1 \ge \mu_2$$

 $H_A: \mu_1 < \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \ge 0$
 H_A : $\mu_1 - \mu_2 < 0$

Upper tail test:

$$H_0: \mu_1 \le \mu_2$$

 $H_A: \mu_1 > \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \le 0$
 H_{Δ} : $\mu_1 - \mu_2 > 0$

Two-tailed test:

$$H_0$$
: $\mu_1 = \mu_2$
 H_A : $\mu_1 \neq \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 = 0$
 H_A : $\mu_1 - \mu_2 \neq 0$

Hypothesis tests for $\mu_1 - \mu_2$

Population means, independent samples

 σ_1 and σ_2 known

Use a **z** test statistic

 σ_1 and σ_2 unknown

Use s to estimate unknown σ, use a t test statistic and pooled standard deviation

Population means, independent samples

The test statistic for

$$\mu_1 - \mu_2$$
 is:

 σ_1 and σ_2 known

|*

$$z = \frac{\left(\bar{x}_{1} - \bar{x}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

 σ_1 and σ_2 unknown

Population means, independent samples

 σ_1 and σ_2 known

 σ_1 and σ_2 unknown

The test statistic for

$$\mu_1 - \mu_2$$
 is:

$$t = \frac{\left(\frac{-}{x_1} - \frac{-}{x_2}\right) - \left(\mu_1 - \mu_2\right)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Where $t_{\alpha/2}$ has $(n_1 + n_2 - 2)$ d.f.,

and

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Hypothesis tests for $\mu_1 - \mu_2$

Two Population Means, Independent Samples

Lower tail test:

 $H_0: \mu_1 - \mu_2 \ge 0$

 H_A : $\mu_1 - \mu_2 < 0$

Upper tail test:

 H_0 : $\mu_1 - \mu_2 \le 0$

 H_A : $\mu_1 - \mu_2 > 0$

Two-tailed test:

 H_0 : $\mu_1 - \mu_2 = 0$

 H_A : $\mu_1 - \mu_2 \neq 0$

Reject H_0 if $z < -z_\alpha$

Reject H_0 if $z > z_{\alpha}$

Reject H₀ if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$

Pooled t Test: Example

You're a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

Number Sample mean Sample std dev

NYSE	NASDAQ	
21	25	
3.27	2.53	
1.30	1.16	

Assuming equal variances, is there a difference in average yield ($\alpha = 0.05$)?

Calculating the Test Statistic

The test statistic is:

$$t = \frac{\left(\bar{x}_{1} - \bar{x}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} = \frac{\left(3.27 - 2.53\right) - 0}{1.2256\sqrt{\frac{1}{21} + \frac{1}{25}}} = \boxed{2.040}$$

$$s_p = \sqrt{\frac{\left(n_1 - 1\right)\!{s_1}^2 + \left(n_2 - 1\right)\!{s_2}^2}{n_1 + n_2 - 2}} = \sqrt{\frac{\left(21 - 1\right)\!1.30^2 + \left(25 - 1\right)\!1.16^2}{21 + 25 - 2}} = 1.2256$$

Solution

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_A$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha = 0.05$$

$$df = 21 + 25 - 2 = 44$$

Critical Values: $t = \pm 2.0154$

Test Statistic:

$$t = \frac{3.27 - 2.53}{1.2256\sqrt{\frac{1}{21} + \frac{1}{25}}} = 2.040$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is evidence of a difference in means.

Hypothesis Testing for Paired Samples

Paired samples

The test statistic for \overline{d} is

$$t = \frac{\bar{d} - \mu_d}{\frac{s_d}{\sqrt{n}}}$$

n is the number of pairs in the paired sample

Where $t_{\alpha/2}$ has n-1 d.f. and s_d is: s_d

$$s_d = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n-1}}$$

Hypothesis Testing for Paired Samples

(continued)

Paired Samples

Lower tail test:

 $H_0: \mu_d \ge 0$

 H_A : $\mu_d < 0$

Upper tail test:

 $H_0: \mu_d \le 0$

 H_A : $\mu_d > 0$

Two-tailed test:

 H_0 : $\mu_d = 0$

 H_A : $\mu_d \neq 0$

Reject H_0 if $t < -t_{\alpha}$

Reject H_0 if $t > t_{\alpha}$

Where t has n-1 d.f.

Paired Samples Example

 Assume you send your salespeople to a "customer service" training workshop. Is the training effective?
 You collect the following data:

Salesperson	Number of Complaints: Before (1) After (2)		(2) - (1) <u>Difference,</u> <u>d</u> _i
C.B.	6	4	- 2
T.F.	20	6	-14
M.H.	3	2	- 1
R.K.	0	0	0
M.O.	4	0	<u>- 4</u>
			-21

$$d = \frac{1}{n}$$

$$= -4.2$$

$$s_d = \sqrt{\frac{\sum (d_i - \overline{d})^2}{n-1}}$$

$$= 5.67$$

Paired Samples: Solution

• Has the training made a difference in the number of complaints (at the 0.01 level)?

$$H_0: \mu_d = 0$$

 $H_A: \mu_d \neq 0$

$$\alpha = .01$$
 $\overline{d} = -4.2$

Critical Value =
$$\pm 4.604$$

d.f. = n - 1 = 4

Test Statistic:

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = \boxed{-1.66}$$

Decision: Do not reject H_0 (t stat is not in the reject region)

Conclusion: There is not a significant change in the number of complaints.

Two Population Proportions

Population proportions

Goal: Form a confidence interval for or test a hypothesis about the difference between two population proportions, $p_1 - p_2$

Assumptions:

$$n_1p_1 \ge 5$$
 , $n_1(1-p_1) \ge 5$

$$n_2p_2 \ge 5$$
 , $n_2(1-p_2) \ge 5$

The point estimate for the difference is

$$\overline{p}_1 - \overline{p}_2$$

Confidence Interval for Two Population Proportions

Population proportions

The confidence interval for $p_1 - p_2$ is:

$$(\bar{p}_1 - \bar{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\bar{p}_1(1-\bar{p}_1)}{n_1} + \frac{\bar{p}_2(1-\bar{p}_2)}{n_2}}$$

Hypothesis Tests for Two Population Proportions

Population proportions

Lower tail test:

$$H_0: p_1 \ge p_2$$

 $H_A: p_1 < p_2$
i.e.,

$$H_0: p_1 - p_2 \ge 0$$

 $H_A: p_1 - p_2 < 0$

Upper tail test:

$$H_0: p_1 \le p_2$$

 $H_A: p_1 > p_2$
i.e.,

$$H_0: p_1 - p_2 \le 0$$

 $H_A: p_1 - p_2 > 0$

Two-tailed test:

$$H_0$$
: $p_1 = p_2$
 H_A : $p_1 \neq p_2$
i.e.,

$$H_0$$
: $p_1 - p_2 = 0$
 H_A : $p_1 - p_2 \neq 0$

Two Population Proportions

Population proportions

Since we begin by assuming the null hypothesis is true, we assume $p_1 = p_2$ and pool the two \bar{p} estimates

The pooled estimate for the overall proportion is:

$$\frac{-}{p} = \frac{n_1 \overline{p}_1 + n_2 \overline{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2}$$

where x_1 and x_2 are the numbers from samples 1 and 2 with the characteristic of interest

Two Population Proportions

(continued)

Population proportions

The test statistic for $p_1 - p_2$ is:

$$z = \frac{(\bar{p}_{1} - \bar{p}_{2}) - (p_{1} - p_{2})}{\sqrt{\bar{p}(1-\bar{p})}(\frac{1}{n_{1}} + \frac{1}{n_{2}})}$$

Hypothesis Tests for Two Population Proportions

Population proportions

Lower tail test:

$$H_0: p_1 - p_2 \ge 0$$

$$H_A$$
: $p_1 - p_2 < 0$

Upper tail test:

$$H_0: p_1 - p_2 \le 0$$

$$H_A: p_1 - p_2 > 0$$

Two-tailed test:

$$H_0$$
: $p_1 - p_2 = 0$

$$H_A: p_1 - p_2 \neq 0$$

Reject H_0 if $z < -z_\alpha$

Reject H_0 if $z > z_{\alpha}$

Reject H_0 if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$

Example: Two population Proportions

Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A?

- In a random sample, 36 of 72 men and 31 of 50 women indicated they would vote Yes
- Test at the .05 level of significance

Example: Two population Proportions

(continued)

The hypothesis test is:

$$H_0$$
: $p_1 - p_2 = 0$ (the two proportions are equal)

$$H_A$$
: $p_1 - p_2 \neq 0$ (there is a significant difference between proportions)

The sample proportions are:

• Men:
$$\overline{p}_1 = 36/72 = .50$$

• Women:
$$\overline{p}_2 = 31/50 = .62$$

The pooled estimate for the overall proportion is:

$$\bar{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{36 + 31}{72 + 50} = \frac{67}{122} = .549$$

Example: Two population Proportions

(continued)

The test statistic for $p_1 - p_2$ is:

$$z = \frac{(\bar{p}_{1} - \bar{p}_{2}) - (p_{1} - p_{2})}{\sqrt{\bar{p}(1 - \bar{p})} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}$$

$$=\frac{(.50-.62)-(0)}{\sqrt{.549(1-.549)\left(\frac{1}{72}+\frac{1}{50}\right)}}=\boxed{-1.31}$$

Critical Values = ± 1.96 For $\alpha = .05$

Decision: Do not reject H_0

Conclusion: There is not significant evidence of a difference in proportions who will vote yes between men and women.

Chap 9-37

Two Sample Tests in EXCEL

For independent samples:

- Independent sample Z test with variances known:
 - Tools | data analysis | z-test: two sample for means
- Independent sample Z test with large sample
 - Tools | data analysis | z-test: two sample for means
 - If the population variances are unknown, use sample variances

For paired samples (t test):

Tools | data analysis... | t-test: paired two sample for means

Two Sample Tests in PHStat

Two Sample Tests in PHStat

_			
	A	В	
1	t Test for Differences in Two Means		
2			
3	Data		
4	Hypothesized Difference	0	
5	Level of Significance	0.05	
6	Population 1 Sample		
7	Sample Size	21	Input
8	Sample Mean	3.27	
9	Sample Standard Deviation	1.3	
10	Population 2 Sample		
11	Sample Size	25	
12	Sample Mean	2.53	
13	Sample Standard Deviation	1.16	
14			
15	Intermediate Calculations		
16	Population 1 Sample Degrees of Freedom	20	
17	Population 2 Sample Degrees of Freedom	24	0.45.46
18	Total Degrees of Freedom	44	Output
19	Pooled Variance	1.502145	—
20	Difference in Sample Means	0.74	
21	t-Test Statistic	2.039748	
22			
23	Two-Tailed Test		
24	Lower Critical Value	-2.01537	—
25	Upper Critical Value	2.015367	4
26	ρ-Value	0.047407	_ `
27	Reject the null hypothesis		
			T .

Two Sample Tests in PHStat

	A	В	Г
1	Z Test for Differences in Two	_	_
2	2 restroi binerences in two	rioporaons	_
3	Data		
4	Hypothesized Difference	П	
5	Level of Significance	0.05	j.
6	Group 1	0.03	_
7	Number of Successes	36	Input
8	Sample Size	72	Input
9	Group 2	, ,,,	_
10	Number of Successes	31	_
11	Sample Size	50	
12			
13	Intermediate Calculat	ions	
14	Group 1 Proportion	0.5	_
15	Group 2 Proportion	0.62	Output
16	Difference in Two Proportions	-0.12	Output
17	Average Proportion	0.549180328	•
18	Z Test Statistic	-1.310067478	
19			
20	Two-Tailed Test		
21	Lower Critical Value	-1.959962787	—
22	Upper Critical Value	1.959962787	
23	ρ-Value	0.190173138	
24	Do not reject the null hy	pothesis	

Contingency Tables

Contingency Tables

- Situations involving multiple population proportions
- Used to classify sample observations according to two or more characteristics
- Also called a crosstabulation table.

Contingency Table Example

Left-Handed vs. Gender

- Dominant Hand: Left vs. Right
- Gender: Male vs. Female

H₀: Hand preference is independent of gender

H_A: Hand preference is not independent of gender

Contingency Table Example

(continued)

Sample results organized in a contingency table:

sample size = n = 300:

120 Females, 12were left handed180 Males, 24 were

left handed

	Hand Pro		
Gender	Left	Right	
Female	12	108	120
Male	24	156	180
	36	264	300

Logic of the Test

H₀: Hand preference is independent of gender

H_A: Hand preference is not independent of gender

- If H₀ is true, then the proportion of left-handed females should be the same as the proportion of left-handed males
- The two proportions above should be the same as the proportion of left-handed people overall

Finding Expected Frequencies

120 Females, 12 were left handed

180 Males, 24 were left handed

If independent, then

P(Left Handed | Female) = P(Left Handed | Male) = .12

So we would expect 12% of the 120 females and 12% of the 180 males to be left handed...

i.e., we would expect (120)(.12) = 14.4 females to be left handed (180)(.12) = 21.6 males to be left handed

Expected Cell Frequencies

(continued)

Expected cell frequencies:

$$e_{ij} = \frac{(i^{th} Row total)(j^{th} Columntotal)}{Total samplesize}$$

Example:

$$e_{11} = \frac{(120)(36)}{300} = 14.4$$

Observed v. Expected Frequencies

Observed frequencies vs. expected frequencies:

	Hand Pr			
Gender	Sender Left Right			
Female	Observed = 12	Observed = 108	120	
remale	Expected = 14.4	Expected = 105.6	120	
Male	Observed = 24	Observed = 156		
iviale	Expected = 21.6	Expected = 158.4	180	
	36	264	300	

The Chi-Square Test Statistic

The Chi-square contingency test statistic is:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$
 with

with d.f. = (r-1)(c-1)

where:

 o_{ij} = observed frequency in cell (i, j)

 e_{ij} = expected frequency in cell (i, j)

r = number of rows

c = number of columns

Observed v. Expected Frequencies

	Hand Pr		
Gender	Gender Left Right		
Female	Observed = 12	Observed = 108	
remale	Expected = 14.4	Expected = 105.6	120
Male	Observed = 24	Observed = 156	180
IVIAIE	Expected = 21.6	Expected = 158.4	100
	36	264	300

$$\chi^2 = \frac{(12 - 14.4)^2}{14.4} + \frac{(108 - 105.6)^2}{105.6} + \frac{(24 - 21.6)^2}{21.6} + \frac{(156 - 158.4)^2}{158.4} = 0.6848$$

Contingency Analysis

Here, $\chi^2 = 0.6848$ < 3.841, so we do not reject H₀ and conclude that gender and hand preference are independent

Chapter Summary

- Used the chi-square goodness-of-fit test to determine whether data fits a specified distribution
 - Example of a discrete distribution (uniform)
 - Example of a continuous distribution (normal)
- Used contingency tables to perform a chi-square test of independence
 - Compared observed cell frequencies to expected cell frequencies

Chapter Summary

- Compared two independent samples
 - Formed confidence intervals for the differences between two means
 - Performed Z test for the differences in two means
 - Performed t test for the differences in two means
- Compared two related samples (paired samples)
 - Formed confidence intervals for the paired difference
 - Performed paired sample t tests for the mean difference
- Compared two population proportions
 - Formed confidence intervals for the difference between two population proportions
 - Performed Z-test for two population proportions
- Used contingency tables to perform a chi-square test of independence