

Routers & Routing

Joao.Neves@fe.up.pt

João Neves, 2020

1

Router Main Functions

 Routing = build maps and choose routes

 Switching = move packets between interfaces, based on routing tables information

Characteristics of an AS

- An AS is a set of networks subordinated to a single Technical Management and that share the same Routing policy (Unique Administrative Management);
- An AS# is a number in the range [1, 65535];
- AS# of the range [64512, 65535] are reserved for private use;
- Interior Gateway Protocol (IGP) operate within an AS to ensure IP connectivity within it;
- Exterior Gateway Protocol (EGP) operate between AS's to allow routing and policies between them.

João Neves, 2020

João Neves, 2020

32-bit Autonomous System Numbers

Number	Description	WHOIS	RDAP	Reference	Registration Date
0-65535	See Sub-registry 16-bit AS numbers			[RFC1930]	
65536-65551	Reserved for use in documentation and sample code			[RFC5398]	2008-12-03
65552-131071	Reserved				
131072-132095	Assigned by APNIC	whois.apnic.net	https://rdap.apnic.net/		2006-11-29
132096-133119	Assigned by APNIC	whois.apnic.net	https://rdap.apnic.net/		2011-08-09
133120-133631	Assigned by APNIC	whois.apnic.net	https://rdap.apnic.net/		2013-09-11
133632-134556	Assigned by APNIC	whois.apnic.net	https://rdap.apnic.net/		2014-09-02
134557-135580	Assigned by APNIC	whois.apnic.net	https://rdap.apnic.net/		2014-09-02
135581-196607	Unallocated				
196608-197631	Assigned by RIPE NCC	whois.ripe.net	https://rdap.db.ripe.net/		2006-11-29
197632-198655	Assigned by RIPE NCC	whois.ripe.net	https://rdap.db.ripe.net/		2011-01-04
198656-199679	Assigned by RIPE NCC	whois.ripe.net	https://rdap.db.ripe.net/		2012-03-21
199680-200191	Assigned by RIPE NCC	whois.ripe.net	https://rdap.db.ripe.net/		2013-09-09
200192-201215	Assigned by RIPE NCC	whois.ripe.net	https://rdap.db.ripe.net/		2014-02-28
201216-202239	Assigned by RIPE NCC	whois.ripe.net	https://rdap.db.ripe.net/		2014-02-28
202240-203263	Assigned by RIPE NCC	whois.ripe.net	https://rdap.db.ripe.net/		2015-06-11
203264-204287	Assigned by RIPE NCC	whois.ripe.net	https://rdap.db.ripe.net/		2015-06-11
204288-262143	Unallocated				
262144-263167	Assigned by LACNIC	whois.lacnic.net	https://rdap.lacnic.net/rdap/		2006-11-29
263168-263679	Assigned by LACNIC	whois.lacnic.net	https://rdap.lacnic.net/rdap/		2013-06-11
263680-264604	Assigned by LACNIC	whois.lacnic.net	https://rdap.lacnic.net/rdap/		2014-09-05
264605-265628	Assigned by LACNIC	whois.lacnic.net	https://rdap.lacnic.net/rdap/		2014-09-05
265629-327679	Unallocated				
327680-328703	Assigned by AFRINIC	whois.afrinic.net	https://rdap.afrinic.net/rdap/ http://rdap.afrinic.net/rdap/		2006-11-29
328704-393215	Unallocated				
393216-394239	Assigned by ARIN	whois.arin.net	https://rdap.arin.net/registry http://rdap.arin.net/registry		2006-11-30
394240-395164	Assigned by ARIN	whois.arin.net	https://rdap.arin.net/registry http://rdap.arin.net/registry		2015-04-29
395165-4199999999	Unallocated				
4200000000-4294967294	1 Reserved for Private Use			[RFC6996]	
4294967295	Reserved			[RFC7300]	

Interior and Exterior Routing

- One router may run one or more Interior Gateway Protocol (IGP) simultaneous;
- One router may run only one Exterior Gateway Protocol (EGP);
- One router may run one or more IGPs for exchanging routes within its AS, simultaneously may run one EGP for routes exchange with others AS.

Administrative Distance

- Cisco routers use the routing concept of administrative distance;
- The administrative distance is a value ∈ [0, 255];
- When a router speaks multiple routing protocols, it will have a problem deciding the best path based on different metric structures and incompatible algorithms;
- Administrative distance rates the trustability of a routing protocol.

Route Source	Default Distance	
Directly connected interface	0	
Static route	1	
EIGRP summary route	5	
External BGP	20	
Internal EIGRP	90	
IGRP	100	
OSPF	110	
IS-IS (IP)	115	
RIPv1, RIPv2	120	
EGP	140	
External EIGRP	170	
Internal BGP	200	
Unknown	255	

João Neves, 2020

33

Characterization of Routing Protocols

Which information is exchanged?

- Distance-vector
 - Based on "rumors" (I heard that ...)
- Path-vector

Advertised de distance and the path to destination

Link-state

Based on "advertising" (we only have exactly what you are looking for ...)

Link-State Routing

- Build Link-State Packet (LSP) that includes information learned from local discoveries
- Flood LSP for all routers
- Use the received LSPs to build a global network model
- Build the routing table

João Neves, 2020 44

Routing Protocols

João Neves, 2020

IP classless Routing Algorithm

Route_IP_Datagram(datagram, routing_table):

Extract destination IP address, ID, from datagram;

If prefix of I_D matches address of any directly connected network then

Send datagram to destination over that network

($\ensuremath{\mathsf{I}}_{\ensuremath{\mathsf{D}}}$ is mapped to a physical address and the datagram is encapsulated in a frame.)

else

foreach routing table entry do

Let N be the bitwise-and of l_{D} and the net mask; if N equals the network address field of the entry **then**

forward the datagrama to the specified next hop

end

If the table contains a default route then

send datagram to the default router

else

return forwarding error;

Routing Table

Network	Interface	Next Hop	Distance /Metric	Age	Status
194.117.30.0/24	Ethernet1	192.135.129.35	[90/307200]	02:03:50	D
198.113.178.0/24	Ethernet0	192.150.42.177	[110/20]	04:10:22	0
193.136.77.0/24	Ethernet0	192.150.42.177	[110/20]	03:36:50	0
193.136.32.0/21		192.150.42.178	[20/0]	1d20	В
192.135.129.160/30	Serial0				С
192.135.129.32/28	Ethernet1				С
192.150.42.0/24	Ethernet0				С
127.0.0.0/8	Null0				С
0.0.0.0/0		192.150.42.177	[1/0]		S
193.137.32.128/0		192.150.42.176	[1/0]		S

João Neves, 2020

. .

Routing Information Protocol (RIP)

- RIP is a standard and the oldest IP routing protocol
- It's a Distance-Vector protocol
- Routers exchange full Routing tables
- Metric is Hop Count
- Mainly for it's simplicity still is widely used

João Neves, 2020 56

RIP v2

- As RIPv1 is Distance-Vector
- Variable Length Subnet Mask
- Routing Updates by Multicast
- Additional Metrics (throughput)

IGRP

- Distance-Vector Protocol
- Powerful Metric delay, bandwidth, reliability, load and administrative weight
- Load Balancing
- Cisco Systems proprietary
- Allows route redistribution
- Transported directly over IP (IP Protocol = 88)

João Neves, 2020

67

Enhanced IGRP

- Distance-Vector Protocol
- Fast convergence (< 1 sec)</p>
- Variable Length Subnet Mask
- Partial Updates
- Updates contain five metrics: minimum bandwidth (of entire path),
 delay, load, reliability, and maximum transmission unit (MTU)
- Cisco Systems proprietary
- Interoperates with IGRP
- Originally allows routing of various protocols: IP, Novell, Appletalk

João Neves, 2020 68

(IP Protocol = 89)

João Neves, 2020

69

OSPF Areas

- OSPF recognizes one or more areas
- At least the backbone (area 0) must be configured
- The router may have interfaces in different areas
- All areas must be connected to the backbone
- Backbone must be contiguous

João Neves, 2020

71

OSPF Areas Characteristics

- Minimizes routing tables
- Topology of an area is invisible from outside
- Localizes impact of a topology change within an area
- Detailed LSA floods stops at the area boundary
- Hierarchical network design

João Neves, 2020

72

OSPF Cost

- The OSPF cost is a value of [0,65535];
- Cost is set up for each interface, as desired;
- The smaller cost means smaller distance;
- Some routers automatically add costs, depending on the line speed.

João Neves, 2020

77

OSPF Cost Calculation

Cost = reference bandwidth / interface bandwidth in bit/s

- Typical reference bandwidth is 100 000 000 (108)
- Different manufacturers use different reference bandwidths
- The reference bandwidth should be the same on all routers of the AS

Default Convergence Time

Routing Protocol	Time to Converge
• RIP	90s
• IGRP	270s
• EIGRP	~1s
• OSPF	~1s

BGP and **IP** Routing Table

- The BGP process builds and manage a specific table, and the router uses the routing table for IP forwarding;
- The information from both tables may be redistributed, and usually is, but in a limited fashion;
- BGP selects a single best path to a destination, and inserts it in the IP routing table. IP forwarding decision is based on the routes in the IP table, NOT by the routes in the BGP table.

João Neves, 2020

91

BGP4

- Path-Vector Protocol
- Inter-Autonomous System Communication
- Announces Reach ability Information
- Next Hop Paradigm
- Distributes routes information
- Supports Routing Politics
- Fast Convergence

João Neves, 2020

BGP4 (cont.)

- Transport based on Transmission Control Protocol and sessions are established on port 179
- Incremental updates
- CIDR addresses
- Understands routes aggregation
- Authentication (is possible to verify who is sending routing updates)

João Neves, 2020

TCP and Timers

- All communications between BGP peers are based on TCP;
- An IP connection must be established between the peers before a relationship can be set up;
- eBGP is designed to run only between directly connected neighbors;
- eBGP normally sets the time to live (TTL) in all packets to 1;
- You can you tell BGP to set the TTL to other value than 1 by declaring a multihop connection (ebgp-multihop);

TCP and Timers

- Keepalive interval indicates the time between successive Keepalive messages, used to maintain the session established in the absence of Updates;
- Hold time indicates the time that a router will wait without receiving an Update or Keepalive and before declaring a neighbor down;
- Each BGP speaker advertises its Hold time;
- Each BGP speaker compares its locally configured Hold time with the Hold time it receives from its peer, and chooses the lower of these two values;
- Keepalive timer is always set to one third of the Hold time.

João Neves, 2020

95

Cisco BGP-4 Route selection criteria

- 1. Prefer the path with the highest WEIGHT.
 - Note: WEIGHT is a Cisco-specific parameter. It is local to the router on which it is configured.
- 2. Prefer the path with the highest LOCAL_PREF (global within AS).
- Prefer the path that was locally originated via a network or aggregate BGP subcommand or through redistribution from an IGP (next hop = 0.0.0.0).
- 4. Prefer the path with the shortest AS_PATH.
- 5. Prefer the path with the lowest origin type (IGP < EGP < INCOMPLETE).
- 6. Prefer the path with the lowest multi-exit discriminator (MED) from other AS.
- 7. Prefer eBGP over iBGP paths.
- 8. Prefer the path with the lowest IGP metric to the BGP next hop (closest IGP neighbor).
- 9. When both paths are external, prefer the path that was received first (the oldest one).
- 10. Prefer the route that comes from the BGP router with the lowest router ID.
 - The router ID is the highest IP address on the router, with preference given to loopback addresses. Also, you can use the bgp router-id command to manually set the router ID.
- 11. Prefer the path that comes from the lowest neighbor address.
 - This address is the IP address that is used in the BGP neighbor configuration. The address corresponds to the remote peer that is used in the TCP connection with the local router.

Source: https://gigapix.pt/en/members/

João Neves, 2020

traceroute

https://www.verisign.com/

https://www.vivendi.com

https://www.vodafone.pt

http://www.verizonbusiness.com

101

702

36924

12353

Verisign

Verizon

Vodafone

Vivendi Africa

```
# trace www.telepac.pt
Translating "www.telepac.pt"...domain server (193.136.192.40)
Translating "www.telepac.pt"...domain server (193.136.192.40) [OK]
Type escape sequence to abort.
Tracing the route to home.telepac.pt (194.65.62.76)
1 ROUTER11.GE.Porto.fccn.pt (193.137.4.18) 0 msec
 ROUTER11.GE.Porto.fccn.pt (193.137.4.2) 0 msec
 ROUTER11.GE.Porto.fccn.pt (193.137.4.18) 0 msec
2 ROUTER8.GE.Lambda.Lisboa.fccn.pt (193.137.1.241) 4 msec 8 msec 4 msec
3 ROUTER1.GE0-2-0.5.Lisboa.fccn.pt (193.137.0.11) 8 msec 8 msec 4 msec
4 ROUTER16.FE4-1.Lisboa.fccn.pt (193.137.0.21) 8 msec 8 msec 4 msec
5 GIGAPIX.telepac.pt (193.136.250.30) 4 msec 8 msec 12 msec
6 halley.telepac.net (194.65.12.161) 8 msec 8 msec 8 msec
7 lcatrt1.telepac.net (213.13.135.137) 12 msec 12 msec 12 msec
8 katrt4.telepac.net (213.13.135.202) 8 msec 8 msec 12 msec
9 diogo.sbd.telepac.pt (194.65.62.75) 8 msec * 8 msec
```

João Neves, 2020 102

Example No.4

Use of an transit AS to transport traffic from other AS's

João Neves, 2020

103

BGP hijacks

- BGP hijacks take place when an ISP announces the wrong Internet route to a specific destination;
- In most cases, BGP hijacks are accidents, such as typos;
- But in some cases, malicious ISPs intentionally announce a wrong BGP route in order to hijack traffic meant for particular targets, such as critical DNS servers, financial services, government sites, etc...
- These malicious BGP hijacks make traffic to those targets to flow through the malicious ISP's network, where it can sniff its content or perform Man-in-the-Middle attacks;
- Bitcanal (AS3266) was the biggest BGP hijack offender in recent years, earning the nickname of "BGP hijack factory".

E

BGP hijack factory - Case Study

- Hijack Internet address ranges that have gone unused for periods of time and "unannounced";
- Announce to the Internet that their hosting facilities was the authorized location for those IP address blocks;
- After obtaining a chunk of IP addresses, Bitcanal would apparently sell or lease the space to spammers, who would then begin sending junk email from those addresses;
- Much of the hijacked address space routed by Bitcanal and used by its customers, was once assigned to business entities that no longer exist;
- But some were assigned to active organizations, such as the Texas State Attorney General's office, as well as addresses managed by the U.S. Department of Defense!...

BGP hijack factory - Case Study

 Hijack Internet address ranges that have gone unused for periods of the control of

"Shutting down the BGP Hijack Factory"
Doug Madory, ORACLE Dyn,
Jul 10, 2018

https://dyn.com/blog/shutting-down-the-bgp-hijack-factory/

used used asiness entities that n

 But some were gned to active organizations, such as the Texas State Attorney General's office, as well as addresses managed by the U.S. Department of Defense!...

João Neves, 2020

Routes Symmetry Validation

 To validate the symmetry of our traffic, in result of the routes propagation, the best approach is to consult a looking glass...

Looking Glass Sites

- Route Views Project http://www.routeviews.org/
- BGP4.net http://www.bgp4.net/rs
- CERN http://lg.cern.ch/

João Neves, 2020

Route Views

 Telnet to the server and make queries using a CLI a la IOS or query a Cisco box...

telnet route-views2.routeviews.org
Trying 128.223.51.102...
Connected to route-views2.routeviews.org.
Escape character is '^]'.

Hello, this is zebra (version 0.95a). Copyright 1996-2004 Kunihiro Ishiguro.

route-views2.routeviews.org> show ip bgp regexp AS#

Routing Protocols

Protocols	RIP	HELLO	IGRP	OSPF	EIGRP	IS-IS	EGP	BGP4
Туре	IGP	IGP	IGP	IGP	IGP	IGP	EGP	EGP
Algorithm	DV	DV	DV	SPF	DUAL	SPF	DV	PV
Metric	Hop count	Delay	Speed	Arb.	Speed	Arb.	Policy	Policy
Convergence	Slow	Unstable	Medium	Fast	Fast	Fast	Slow	Fast
Standard	IETF	No	No	IETF	No	OSI	Hist.	IETF
Complex	No	No	No	Yes	Yes	Yes	No	Yes
VLSM	No	No	No	Yes	Yes	Yes	No	Yes

João Neves, 2020

Bibliography

• Comer, Douglas E.
Internetworking with TCP/IP (VOL I)

Pearson, 6th Edition (2014)
ISBN-10: 0-13-608530-X
ISBN-13: 978-0-13-608530-0

• Tanenbaum, Andrew S.

Computer Networks

Prentice Hall International Editions
4th edition (August 9, 2002)

ISBN 0-13-066102-3

• "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006