

Implémentez un modèle de scoring

Projet 7 du parcours « Data Scientist » d'OpenClassrooms

Mark Creasey

Sommaire

Implémentez un modèle de scoring

- 01 La problématique
- 02 Les données
- 03 Modélisation
- 04 Dashboard
- 05 Conclusion

01 Présentation de la problématique

Mission – Implémenter un modèle de scoring

La société financière « Prêt à dépenser » propose:

- des crédits à la consommation
- pour les personnes ayant peu ou pas du tout d'historique de prêt

Basée sur les données financières

- Données internes
- Données externes

Critères de succès

- Maximiser le nombre de prêts aux clients qui peuvent payer (le profit)
- Minimiser les pertes en refusant les clients qui ne peuvent pas repayer
- Transparence de la décision sur l'octroi du crédit
- Déploiement d'un dashboard permettant de visualiser les informations clients pour
- Permettre l'interprétation de la décision faite par le modèle

02 Les données

Nettoyage, exploration

Données financières sous 7 tables

Feature engineering script:

- https://www.kaggle.com/jsaguiar/light gbm-with-simple-features/script
- Agrégations
- LabelEncode (catégories binaires)
- OneHotEncode (catégories)
- Traitement valeurs aberrantes

Sélection de top 100 features

- Ensemble de Filter, Embed et Wrapper méthodes
- Elimination de colonnes hautement colinéaires (VIF > 5)

Distribution de la variable cible très déséquilibrée

Prédiction que tous les clients sont bons

- → précision de 93%
- → on n'aura identifié aucun client défaillant.

- 0 client non-défaillant
- 1 client défaillant

Certains modèles sont très sensibles à des classes déséquilibrées

Exploration des features importants

Facteurs de risque (entre autres)

- Les hommes
- < 40 ans
- Bas niveau d'éducation
- Un score <0.5 dans des sources externes
 - o EXT_SOURCE_1
 - o EXT_SOURCE_2
 - EXT_SOURCE_3

03. Modélisation

Sampling: Options pour re-équilibrage des classes

Cost-sensitive

 Plusieurs modèles permettent de multiplier le score de la classe minoritaire par un poids (class_weight = 'balanced')

Random under/over sample

- Undersample: sélectionner aléatoirement le même nombre de clients dans la classe majoritaire qui sont dans la classe minoritaire
- Oversample: dupliquer aléatoirement les clients de la classe minoritaire

SMOTE (Synthetic Minority Oversampling **TE**chnique)

 synthétiser des nouveaux éléments pour la classe minoritaire, basés sur les valeurs des variables des k voisins les plus proches

SMOTE Tomek links

 Oversample la classe minoritaire avec SMOTE, puis supprimer les pairs d'observations plus proches mais de classes différentes

Métriques d'évaluation

Précision

 Quelle portion des clients prédits comme défaillants sont de la vraie classe défaillante?

$$\frac{TP}{TP + FP}$$

Recall

• Quelle portion de la vraie classe est présente dans le cluster prédit ? $\frac{TP}{TP + FN}$

F1 Score

accuracy « équilibré » :

$$2*\frac{Precision*Recall}{Precision+Recall}$$

F(beta) score

Peser plus sur recall (beta >1)

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}.$$

ROC AUC

• Meilleur compromis entre sensibilité (FPR)

et sensitivité (TPR)

•
$$FPR = \frac{FP}{FP + TN}$$

• TPR = recall

La fonction coût métier

Un score représentant un bénéfice financier pour la banque:

Les gains (profit):

- donner un prêt à un bon payeur (TN)
- refuser un prêt à un mauvais payeur (TP)

Les pertes (loss):

- donner un prêt à un mauvais payeur (FN)
- refuser un prêt à un bon client (FP)

```
Custom Credit Score (entre 0 et 1)
= (Profit - Loss)
/ (Max Profit - Max Loss)
```

Les pondérations (à revoir avec les experts métier):

- tn_profit = Profit moyenne par prêt = 1
- fp_loss = perte moyenne par prêt non donné = 0.5
- fn_loss = perte moyenne par prêt défaillant = 10
- tp_profit = profit de refuser un mauvais payeur = 0.2

Coût métier

```
= (TN - 0.5*FP - 10*FN + 0.2*TP)
```

normalisé entre 0 et 1

Pénaliser les FN

Favoriser le recall

Evaluation AUC - compromis entre précision et recall

Les modèles

Chaque Modèle

composé d'une pipeline imblearn:

- Preprocess (preprocessor)
- Sampling (sampler)
- Feature Selection (passthrough)
- Classification (classifier)

Train-Test Split

• 80% données train, 20% test

Sampling

- Cost-sensitive (balanced weights)
- Random under/over sample
- SMOTE / TomekLinks

Les Classifiers

- Dummy
- RidgeClassifier (linéaire, rapide)
- LogisticRegression
- RandomForestClassifier
- LightGBM Classifier

Stratified Gridsearch

Avec données train sur les hyperparamètres associés à chaque modèle

Cross-validation

- sur des données test

Performance metrics

Choix du modèle

Meilleur ROC_AUC sur le jeu de test:

- LightGBM Classifier
 - class_weight = balanced
 - Min child_samples=50
 - \circ max_depth = 6
- Autres méthodes de sampling:
 - overfitting sur jeu d'entrainement (Random Forest et LGBM)
 - SMOTE très lent à faire l'entrainement
 - Amélioration de ROC_AUC n'est pas significative

Optimisation du seuil (discrimination threshold)

Pour optimiser le bénéfice pour la banque l'ajustement du threshold de risque dépend du:

- coût de prêter à un mauvais payeur (fn_loss = -10) et
- coût de ne pas prêter à un bon client (fp_loss = -0.5)

Feature Importances – interprétabilité globale

Permutation importance

SHAP – global feature importance

Interprétabilité locale – SHAP values

Client ayant très peu de risque (p=0.03)

Client ayant beaucoup de risque (p=0.95)

SHAP (Shapley Additive exPlanations)

04 Dashboard

API du dashboard

Fonction

- Gérer l'accès aux prédictions
- Gérer l'accès aux données (interprétabilité)
- Fournir un interface public pour plusieurs clients

REST API

Réponses json aux requêtes GET

Code source dans dossier **api** sur dépôt : https://github.com/mrcreasey/oc-ds-p7-scoring-dashboard

Instructions pour développement

Voir README.md dans dossier api

Flask application

Déploiement sur heroku

https://mc-oc-7.herokuapp.com/

Visualisation du dashboard

- Visualisation des prédictions et données fournies par l'api
- Ecrit avec streamlit

Lien vers dashboard déploiement:

https://mrcreasey-oc-ds-p7-scoring-dashboard-dashboard-dashboardmain-70agjx.streamlitapp.com/

Code source dans dossier **dashboard** sur dépôt :

 https://github.com/mrcreasey/oc-ds-p7-scoringdashboard

Instructions pour développement

Voir README.md dans dossier dashboard

05 Conclusion et améliorations à faire

Conclusions

Meilleur modèle

- LGBMClassifier (class-weights='balanced'),
- Performance
 - \circ ROC_AUC = 0.78

Fonction coût métier

- Vrais coûts des pertes à paramétrer.
- Bénéfice Optimum pour la banque
 - Discrimination threshold = 0.6

Déploiement

- API Flask sous heroku
- dashboard sous streamlit

Limites

- Performance très sensible à feature engineering / feature sélection
- SMOTE ne semble pas le plus adapté pour les grands jeux de données
 - très lent à créer des nouveaux points synthétiques
 - besoin de calculer les voisins sur toutes les colonnes
- Besoin de travailler avec un souséchantillon de données

Améliorations à faire

Modélisation

- Feature création avec experts du métier
- Revoir stratégie pour traiter les valeurs manquantes
- Sélection de features à chaque modèle (Wrapper/Embedded)
- Optimiser la taille des échantillons
 - learning curves des modèles
- Explorer hyperparamètres des modèles

Déploiement

- Changer de Flask API vers fastapi
- Requirements.txt différents pour code, api, dashboard
 - Dêpots github ou branches séparées
- Ajouter authentification (accès au dashboard)
- Ajouter encryptage des données client
- Stocker les données client séparément de l'API - par exemple dans un S3 bucket sur AWS
- Situer le client dans les distributions pour les features les plus importantes

Questions

images: Mark Creasey

mrcreasey@gmail.com

Code source: https://github.com/mrcreasey/oc-ds-p7-scoring-dashboard

Merci!