Contents

1	Aufgabe 1	1
2	Aufgabe 2 2.1 a) zz: $g, h \in G$: $g \sim h \Leftrightarrow g = h \lor g = h^{-1}$, $\sim \text{Äquivalenz relation}$ 2.2 TODO b) zz.: $ G = 2n, n \in \mathbb{N} \Rightarrow \exists g \in G - \{e\} \text{ mit } g^2 = e$. 2.3 c) zz.: $g^2 = e \forall g \in G \Rightarrow G \text{ abelsch}$	2 2 2 2
3	Aufgabe 3 3.1 a) zz: $(K, +, \cdot)$ ist ein Körper	2 3 3 3
1	Aufgabe 4 4.1 a)	4 4
Sei	i G eine Gruppe und $g \in G$. Sei e das neutrale Element von G . z $n, n \in \mathbb{Z} : g^m g^n = g^{m+n}$ Beweis:	z.:
ΙA	$g^0 = e, g^1 = g \Rightarrow g^0 g^1 = g^{0+1} = g^1$	
IV	$g^mg^n=g^{m+n}$ gelte für feste $m,n\in\mathbb{Z}$	
IS	$zz.:g^{m+1}g^{n+1} = g^{m+1+n+1}$	
	• Roweige	

• Beweis:

$$g^{m+1}g^{n+1} = g^mg^ngg = g^{m+n}gg = g^{m+n+2} = g^{m+1+n+1}$$

Geht so nur wenn G abelsch. Alternative:

$$g^{m+1}g^{n+1} = g^m g g^n g = g^m g^{n+1} g = g^m g^n g^2 = g^{m+n} g^2 = g^{m+n+2} = g^{m+1+n+1}$$

2 Aufgabe 2

Sei G eine Gruppe mit neutralem Element e

2.1 a) zz: $g,h \in G: g \sim h \Leftrightarrow g = h \vee g = h^{-1}$, \sim Äquivalenzrelation

Beweis:

~ reflexiv $g \sim g \Leftrightarrow g = g \vee g = g^{-1}$ Immer wahr, da \((g=g \forall g \in G\) \(\Rightarrow \) reflexiv

~ symmetrisch zz.: $g \sim h \Leftrightarrow h \sim g$ Beweis:

$$g \sim h \Leftrightarrow g = h \vee g = h^{-1} \Leftrightarrow h = g \vee h = g^{-1} \Leftrightarrow h \sim g$$

~ transitiv zz.: $g, h, b \in G : g \sim h \land h \sim b \Rightarrow g \sim b$ Beweis:

$$\begin{split} g \sim h &\Leftrightarrow h \sim b \\ \Leftrightarrow (g = h \vee g = h^{-1}) \wedge (h = b \vee h = b^{-1}) \\ \Leftrightarrow (g = h \wedge h = b) \vee (g = h \wedge h = b^{-1}) \vee (g = h^{-1} \wedge h = b) \vee (g = h^{-1} \wedge h = b^{-1}) \\ \Leftrightarrow (g = b) \vee (g = b^{-1}) \vee (b = g^{-1}) \vee (g^{-1} = b^{-1}) \\ \Leftrightarrow g = b \vee g = b^{-1} \\ \Leftrightarrow g \sim b \end{split}$$

- **2.2** TODO b) zz.: $|G| = 2n, n \in \mathbb{N} \Rightarrow \exists g \in G \{e\} \text{ mit } g^2 = e$
- **2.3** c) zz.: $g^2 = e \forall g \in G \Rightarrow G$ abelsch

Beweis: Sei b ein beliebiges Element aus G mit $b \neq g$. $g^2 = e = ee = ggbb = (gb)^2 = (bg)^2 = bbgg$ und wenn $(bg)^2 = (gb)^2$, dann auch bgbg = bbgg. Also gilt Kommutativgesetz.

3 Aufgabe 3

3.1 a) zz: $(K, +, \cdot)$ ist ein Körper.

Lemma 1. (K,+) ist eine Abelsche Gruppe.

Proof. Da nach Vorlesung $(\mathbb{Q}, +)$ eine Abelsche Gruppe ist und die Elemente der Paare aus K einfach nur elementweise addiert werden, muss K auch eine Abelsche Gruppe sein.

Lemma 2. (K, \cdot) ist eine Abelsche Gruppe.

3.1.1 TODO Assoziativgesetz

3.1.2 Existenz des neutralen Elements $e = (e_1, e_2)$

$$(a,b)(e_1, e_2) = (a,b)$$

$$\Leftrightarrow (ae_1 - be_2, ae_2 + be_1) = (a,b)$$

$$\Leftrightarrow ae_1 - be_2 = a \land ae_2 + be_1 = b$$

$$\Leftrightarrow ae_1 - be_2 - a = 0 \land ae_2 + be_1 = b$$

$$\Leftrightarrow e_2 = \frac{e_1 - 1}{b} \cdot a \land ae_2 + be_1 = b$$

$$\Rightarrow a(\frac{e_1 - 1}{b} \cdot a) + be_1 = b$$

$$\Leftrightarrow b^2(e_1 - 1) = a^2(e_1 - 1)$$

$$\Leftrightarrow e_1(b^2 - a^2) = b^2 - a^2$$

$$\Leftrightarrow e_1 = 1$$

Dann ist $e_2 = \frac{(1-1)a}{b} = 0$ Also: e = (1,0)

3.1.3 Existenz der Inversen

zz.: Zu jedem $(a,b) \in K$ gibt es ein $(x,y) \in K$ mit (a,b)(x,y) = e.

$$(a,b)(x,y) = (1,0)$$

$$\Leftrightarrow ax - by = 1 \land ay + bx = 0$$

$$\Leftrightarrow x = \frac{1+by}{a} \land ay + bx = 0$$

$$\Rightarrow ay + b(\frac{1+by}{a}) = 0$$

$$\Leftrightarrow a^2y = -b - b^2y$$

$$\Leftrightarrow y(a^2 + b^2) = -b$$

$$\Leftrightarrow y = \frac{-b}{a^2 + b^2}$$

$$\Rightarrow x = \frac{1+b(\frac{-b}{a^2+b^2})}{a}$$

$$\Leftrightarrow \frac{a^2 + b^2 - b}{a^3 + b^2a}$$

Also $(a,b)^{-1}=(\frac{1+by}{a},\frac{a^2+b^2-b}{a^3+b^2a})$ (Sieht komisch aus)

4 Aufgabe 4

 $U = (x, y) \in \mathbb{R} | 3x + 7y = 0$ Unterraum von \mathbb{R}^2 .

4.1 a)

4.2 b) Finden Sie zwei verschiedene Unterräume $W_1, W_2 \leq \mathbb{R}^2$ mit $U \oplus W_1 = \mathbb{R}^2 = U \oplus W_2$

Es gilt $\mathbb{R}^2 = W_1 \oplus U$ gdw. $\mathbb{R}^2 = W_1 + U \wedge U \cap W_1 = \{0\}.$

Vermutung So wie ich das interpretiere, ist die zweite Bedingung leicht zu erfüllen. Ich denke mann muss nur sozusagen eine Gerade konstruieren,

die 3x+7y=0 im Punkt (0,0) schneidet, also z.B. x-y = 0. Die Herausforderung ist jetzt (wahrscheinlich Intention des Dozenten), die so zu wählen, dass die Unterräume eben \mathbb{R}^2 bilden.