

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 03-218905
(43)Date of publication of application : 26.09.1991

(51)Int.Cl. C01B 13/11
C01B 13/14
C23C 16/40
C23C 16/44

(21)Application number : 02-056869 (71)Applicant : MITSUBISHI ELECTRIC CORP
(22)Date of filing : 07.03.1990 (72)Inventor : MATSUURA MASAZUMI
TOTTORI ISAO
FUJII ATSUSHIRO

(30)Priority
Priority number : 01294926 Priority date : 15.11.1989 Priority country : JP

(54) OZONIZER AND INSULATING FILM FORMING DEVICE USING THE OZONIZER

(57) Abstract:

PURPOSE: To obtain concd. ozone with stabilized efficiency by applying specified treatment to a mixture of gaseous oxygen and nitrogen in a specified ratio to generate ozone.

CONSTITUTION: Specified treatment is applied to gaseous oxygen 2 as the raw material to generate ozone 5 in the ozonizer (1 and 4 are a discharge tube, and 3 is an electrode). A gaseous nitrogen supply means 100 for mixing gaseous nitrogen 9 into gaseous oxygen 2 to control the ratio of the gaseous oxygen to gaseous nitrogen in the mixture to 1:0.0002 to 1:0.02. When an insulating film is formed on a base layer, the gas generated from the ozonizer is allowed to react with the gas contg. an alcoholate (alcoholate+N₂), the insulating film is formed on the base layer by CVD, and an insulating film excellent in quality and step coverage is formed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C) 1998,2003 Japan Patent Office

⑫ 公開特許公報 (A) 平3-218905

⑤Int.Cl.⁵
 C 01 B 13/11
 13/14
 C 23 C 16/40
 16/44

識別記号 庁内整理番号
 L 6939-4G
 Z 6939-4G
 8722-4K
 8722-4K

⑪公開 平成3年(1991)9月26日

審査請求 未請求 請求項の数 3 (全7頁)

④発明の名称 オゾン発生装置及び該装置を用いた絶縁膜形成装置

②特 願 平2-56869

②出 願 平2(1990)3月7日

優先権主張 ③平1(1989)11月15日 ③日本(JP) ③特願 平1-294926

⑦発明者 松浦 正純 兵庫県伊丹市瑞原4丁目1番地 三菱電機株式会社エル・エス・アイ研究所内

⑦発明者 鳥取 功 兵庫県伊丹市瑞原4丁目1番地 三菱電機株式会社エル・エス・アイ研究所内

⑦発明者 藤井 淳弘 兵庫県伊丹市瑞原4丁目1番地 三菱電機株式会社エル・エス・アイ研究所内

⑦出願人 三菱電機株式会社 東京都千代田区丸の内2丁目2番3号

⑦代理人 弁理士 大岩 増雄 外2名

明細書

1. 発明の名称

オゾン発生装置及び該装置を用いた絶縁膜形成装置

2. 特許請求の範囲

(1) 酸素ガスを原料とし、前記酸素ガスに所定の処理を施してオゾンを発生させるオゾン発生装置において、

前記酸素ガスに窒素ガスを混入させる窒素ガス供給手段を設けたことを特徴とするオゾン発生装置。

(2) 酸素ガスを原料とし、前記酸素ガスに所定の処理を施すことでオゾンを発生させるオゾン発生装置において、

前記酸素ガスに窒素ガスを混入させる窒素ガス供給手段を設け、前記酸素ガスと前記窒素ガスとの混合比を酸素ガス：窒素ガス = 1 : 0.0002~0.02としたことを特徴とするオゾン発生装置。

(3) 下地層上に絶縁膜を形成する絶縁膜形成装置であって、

請求項1記載のオゾン発生装置と、

アルコラートを含むガスを発生させるガス発生装置と、

前記ガス発生装置から発生されたガスと前記オゾン発生装置から発生されたオゾンとを反応させ、CVD法により前記下地層上に前記絶縁膜を堆積させる反応装置とを備えた、オゾン発生装置を用いた絶縁膜形成装置。

3. 発明の詳細な説明

〔産業上の利用分野〕

この発明は、オゾン発生装置及び該装置を用いた絶縁膜形成装置に関し、特に十分に高濃度のオゾンを安定供給することができるオゾン発生装置及び該装置を用いることにより膜質及び段差被覆性に優れた絶縁膜を形成することができる絶縁膜形成装置に関する。

〔従来の技術〕

第8図は従来のオゾン発生装置を示す一部破断構成図である。酸素ガスO₂は酸素ガス供給管2から円柱状の放電管1に供給される。放電管1の

中心部には電極3が配置されており、この電極3は放電管1内に導入された酸素ガスO₂を励起しオゾン発生のためのエネルギーを供給する機能を有する。酸素ガス供給管2が接続された放電管1は、これに隣接する放電管4と連通しており、放電管4には発生したオゾンO₃を放出するオゾン排出管5が接続されている。放電管1、4は高温になるため、その周囲は冷却水収納容器6中の冷却水によって冷却されている。この冷却水収納容器6は接地されており、その底部には冷却水を導入、排出する冷却水導入管7、冷却水排出管8がそれぞれ設けられている。

従来のオゾン発生装置は上述したように構成され、酸素ガスO₂が導入された放電管1、4では電極3によって無声放電が行われる。この無声放電によって酸素ガスO₂が励起されオゾンO₃を発生する。発生したオゾンO₃は、未反応の酸素O₂と共にオゾン排出管5から排出される。

上述したようなオゾン発生装置では、オゾンO₃発生の過程は以下に示す(1)式、(2)式の反

応式により行なわれることが解明されている。

ここでeはエネルギー、O₂^{*}は酸素ラジカルである。

また、上述したようなオゾン発生装置では、例えば半導体製造用の高純度酸素ガス(純度99.95%以上、以下同様)を原料ガスとして使用した場合、通常の酸素ボンベガス(純度99.95%未満、以下同様)を使用した場合に比べてオゾンの発生効率が大幅に減少するという事実がある。この事実に基づき、上述した(1)式、(2)式に加えオゾン発生の過程はさらに(3)式に示す反応によっても行われているのではないかと一般に考えられている。

ここでMは触媒として作用する物質である。つまり、上述の高純度酸素ガスを原料ガスとして使用した場合よりも酸素ボンベガスを原料ガスとして使用した場合の方がオゾンの発生効率が高いこ

とから、酸素ボンベガスに含まれている他の物質が触媒作用をしているものと考えられているわけである。

一方、酸素ボンベガスを原料ガスとして使用した場合には比較的高濃度のオゾンO₃を発生させることができるが、酸素ボンベガスに含まれる酸素ガスO₂の純度によりオゾンの発生効率が異なる。

第9図はオゾン発生装置を用いた従来の絶縁膜形成装置の模式図である。この装置は上述した従来のオゾン発生装置(第9図において記号Xで示す)より発生されるオゾンと有機ソースガスを反応させて常圧CVD法により基板上に絶縁膜を形成するものである。この装置は、1989 VLSI MULTILEVEL INTERCONNECTION CONFERENCE(IEE主催)予稿集、386ページFig.1に記載されているものである。以下、この装置の概略構成について述べる。

1.0は層間絶縁膜を形成するためのチャンバー部、1.2は原料ガスを供給するガス供給系である。

チャンバー部1.0は、スリット状のガス吹き出し口をもつディスパージョンヘッド1.5と、ウェハ1.7を接着しヒータ1.6によりウェハ1.7を加熱することができるサセプタ1.8とから成る。ガス供給系1.2は、テトラエトキシシランガス(以下TEOSガスという)を発生させるバブラー1.3と、オゾンを供給するオゾン発生器1.4を含む第8図と同一構成のオゾン発生装置Xとから成る。

このように構成された絶縁膜形成装置を用いてウェハ1.7上に層間絶縁膜を形成する場合、酸素ガスO₂をオゾン発生器1.4に導入し、前述したように無声放電することでオゾンO₃と酸素O₂の混合ガス(O₃/O₂)を発生させる。また、60℃前後の恒温槽内に配置されたバブラー1.3内に窒素ガスN₂を導入しバーピングすることによりシリコン系アルコラートの代表的なものであるTEOSをガス化させ、TEOSガスと窒素ガスN₂との混合ガス(TEOS/N₂)を発生させる。そしてO₃/O₂混合ガスとTEOS/N₂混合ガスとを混合して原料ガスとしてチャンバ

一部10へ導入する。チャ...一部10へ導入された原料ガスはスリット状の流路をもつディスバージョンヘッド15から、表面を下方向にしてサセプタ18に接着され、ヒータ16により加熱されているウェハ17に供給される。そして、常圧CVD法により、ウェハ17の表面に層間絶縁膜となるシリコン酸化膜が堆積される。なお、膜形成中において、膜厚の均一性の向上のためウェハ17は矢印B方向に振動されている。その後、原料ガスは矢印A方向に排気される。上述のようにして形成されたシリコン酸化膜はオゾン濃度が大きいほど膜質、段差被覆性に優れていることが知られている。

[発明が解決しようとする課題]

従来のオゾン発生装置は以上のように構成されており、高純度酸素ガスを原料ガスとして使用した場合オゾン発生効率が低い。一方、酸素ボンベガスを原料ガスとして使用した場合、ある程度高濃度のオゾンO₃は得られるが、酸素ガスO₂の純度が変化するとオゾン発生効率も変化するとい

う問題点があった。

また、オゾン発生装置を用いた従来の絶縁膜形成装置では、従来のオゾン発生装置が前述のように高純度酸素ガスを原料ガスとして使用した場合にはオゾン発生効率が低いため、シリコン酸化膜の膜質及び段差被覆性が優れないという問題点があった。一方、酸素ボンベガスを原料ガスとして使用した場合には従来のオゾン発生装置でもある程度高濃度のオゾンは得られるが、その品質は前述のように安定しておらず、また十分に高濃度ではないため満足なシリコン酸化膜の膜質及び段差被覆性を得るには至らないという問題点があった。

この発明は上記のような問題点を解決するためになされたもので、十分に高濃度のオゾンを安定して発生することができるオゾン発生装置及び該装置を用いることにより膜質及び段差被覆性に優れた絶縁膜を形成することができる絶縁膜形成装置を得ることを目的とする。

[課題を解決するための手段]

この発明に係るオゾン発生装置は、酸素ガスを

原料とし、該酸素ガスに所定の処理を施すことでおゾンO₃を発生させるオゾン発生装置において、酸素ガスに窒素ガスを混入させる窒素ガス供給手段を設けたことを特徴とする。

前記窒素ガス供給手段による酸素ガスと窒素ガスとの混合比は、酸素ガス：窒素ガス=1:0.0002~0.02としてもよい。

この発明に係る絶縁膜形成装置は、前記構成のオゾン発生装置と、アルコラートを含むガスを発生させるガス発生装置と、前記ガス発生装置から発生されたガスと前記オゾン発生装置から発生されたオゾンとを反応させ、CVD法により下地層上に絶縁膜を堆積させる反応装置とを備えている。

[作用]

この発明に係るオゾン発生装置においては、酸素ガスに窒素ガスを混入させる窒素ガス混入手段を設け、窒素ガスが混入された酸素ガスにオゾン発生のための所定の処理を施すようにしているので、窒素ガスの作用により高濃度のオゾンを発生させることができる。

酸素ガスと窒素ガスとの混合比を酸素ガス：窒素ガス=1:0.002~0.02とすれば、高濃度のオゾンが得られかつオゾン発生効率が安定する。

この発明に係る絶縁膜形成装置は、高濃度のオゾンを発生できる上記構成のオゾン発生装置を備えているので、下地層上に形成される絶縁膜の膜質及び段差被覆性が向上する。

[実施例]

第1図はこの発明に係るオゾン発生装置の一実施例を示す一部破断構成図である。図において第8図に示した従来装置との相違点は窒素ガス供給手段100を新たに設けたことである。窒素ガス供給手段100から窒素ガス供給管9を介し窒素ガスN₂が放電管1内に供給される。その他の構成は従来と同様である。

次に動作について説明する。酸素ガス供給管2から高純度酸素ガスO₂が、また窒素ガス供給手段100から窒素ガス供給管9を介し窒素ガスN₂が円形状の放電管1に各々導入され、放電管1の中心部に配置された電極3により無声放電が行

われる。第2図は高純度酸素ガスO₂に対する窒素ガスN₂の混合比と発生するオゾン濃度との関係を示すグラフである。横軸は高純度酸素ガスに対する窒素ガスN₂の混合比を標準状態(0℃, 1気圧)に換算した値で示しており、縦軸は発生したオゾン濃度を同じく標準状態に換算した値で示している。また、白丸は窒素ガスを混合した場合の測定結果、黒丸は高純度酸素ガスのみの測定結果、一点鎖線は高純度酸素ガスO₂にアルゴンを混合した場合の測定結果である。

このグラフより、例えば高純度酸素ガスO₂ 30 lの0.02%、つまりわずか6ccの窒素ガスN₂を添加すれば、添加しない場合に比し、オゾン濃度が約6倍に増加しており、高純度酸素ガスO₂に対する窒素ガスN₂の混合比が 0.02×10^{-2} 以下ではオゾン濃度が小さいのがわかる。

また、窒素ガスN₂の混合比が 0.02×10^{-2} 以上では $100\text{ g}/\text{Nm}^3$ 以上のオゾンを安定して発生させることができ、特に $0.1 \times 10^{-2} \sim 1.7 \times 10^{-2}$ の範囲においては、 $120\text{ g}/\text{Nm}^3$ 程度の

オゾンを安定して発生させることができるのがわかる。

また、高純度酸素ガスO₂に対する窒素ガスN₂の混合比が 0.33×10^{-2} を超えるあたりから少しずつ、発生するオゾン濃度が低下しているのがわかる。さらに、あまり窒素ガスN₂の混合比が大きくなりすぎると窒素酸化物が生成される場合があるので、好ましくない。これらのこと考慮すると高純度酸素ガスO₂に対する窒素ガスN₂の混合比を $0.02 \times 10^{-2} \sim 2.0 \times 10^{-2}$ にするのが望ましいという結果が得られており、これにより高濃度でかつ安定したオゾンを供給することができる。

なお、窒素ガスN₂の代わりにアルゴンガスを高純度酸素ガスO₂に混合した場合には、発生したオゾン濃度はアルゴン混合量に依存せず $20\text{ g}/\text{Nm}^3$ 程度であり、アルゴンガスを高純度酸素ガスO₂に混合してもオゾン発生率は変化しなかった。

この実験結果より、窒素ガスN₂が(3)式で示

した触媒Mとして機能しているのではないかとの予想が確からしいことになる。

一方、高純度酸素ガスの代りに酸素ボンベガスを用いた場合、窒素ガスN₂を混入すると、高純度酸素ガスを用いた程ではないが、オゾン濃度が上昇することも実験で確認されており、酸素ボンベガスと窒素ガスの混合比と発生するオゾン濃度との関係を示すグラフの形も第2図のグラフと同様の形となることも確認されている。

上記のようにこの発明に係るオゾン発生装置を用いればより高濃度のオゾンを生成することができる。

なお、上記実施例では無声放電によりオゾンを生成する場合について説明したが、この発明は酸素ガスを原料とするオゾン発生装置すべてに適用できる。

第3図はこの発明に係る絶縁膜形成装置の一実施例を示す模式図であり、上述したオゾン発生装置(第3図において記号Yで示す)を利用していいる。つまり、第9図に示した絶縁膜形成装置に新

たに窒素ガス供給手段100を設けている。その他の構成は従来と同様である。また動作も従来と同様である。

この発明に係るオゾン発生装置を用いると前述のように高濃度のオゾンを安定して供給することができるため、シリコン酸化膜の膜質や段差被覆性を向上させることができる。このことを第4図～第7図を用いて示す。

第4図～第7図はオゾン濃度の変化により膜質や段差被覆性が変化することを示す図である。

第4図は、オゾン濃度とシリコン酸化膜のエッティングレートの関係を示す図であり、白丸は単にシリコン酸化膜を積層した場合、黒丸は450℃下で30分間アーナーを施した場合である。両者共に、オゾン濃度が高くなるにつれ、エッティングレートが減少するのがわかる。

第5図はオゾン濃度とシリコン酸化膜の膜収縮率の関係を示す図である。なお、この場合のシリコン酸化膜は、450℃下で30分間アーナーが施されている。オゾン濃度が上昇するにつれ膜収縮

率が低下することがわかる。

第6図はオゾン濃度とシリコン酸化膜のリーク電流との関係を示す図である。白丸は単にシリコン酸化膜を積層した場合、黒丸は450℃下で30分間アニールを施した場合である。両者ともオゾン濃度が高くなるにつれリーク電流が減少するのがわかる。

このように、オゾン濃度を高濃度にすれば、エッティングレート、膜収縮率、リーク電流が各々減少する。従って、高濃度オゾンにより膜質がより緻密になり、耐クラック性、絶縁性に優れたシリコン酸化膜が得られる。

第7図はオゾン濃度とシリコン酸化膜の段差被覆性を示す図である。比較的高濃度のオゾンを使用した場合（点線）の方が、比較的低濃度のオゾンを使用した場合（実線）より表面形状が平坦になり、段差被覆性に優れているのがわかる。

以上のように、高濃度のオゾンを使用することにより膜質（エッティングレート、膜収縮率、リーク電流）及び段差被覆性に優れたシリコン酸化膜

を形成することができる。

なお、上記実施例では常圧CVD法によりシリコン酸化膜を形成したが、減圧CVD法によっても同様の効果が得られる。

また、上記実施例ではシリコン系アルコラートを用いてシリコン酸化膜を形成する場合について説明したが、シリコン系アルコラート以外にポロンやリンを含むアルコラート、例えばトリエチルボレート（TEB）、トリメチルfosfato（TMPo）などを同時に原料ガスと用いてポロン・リンガラス（BPSG）膜を形成する場合でも高濃度オゾンを用いれば同様の効果が得られると考えられる。

【発明の効果】

以上のように請求項1に係るオゾン発生装置によれば、酸素ガスに窒素ガスを混入させる窒素ガス供給手段を設けたので、高濃度のオゾンを生成することができるという効果がある。

また、請求項2に係るオゾン発生装置によれば、酸素ガスに窒素ガスを混入させる窒素ガス供給手

段を設け、酸素ガスと窒素ガスとの混合比を1:0.0002~0.02にしたので高濃度のオゾンを得ることができるとともにオゾン発生効率を高い値で安定させることができるという効果がある。

さらに、請求項3に係る絶縁膜形成装置によれば、高濃度のオゾンを発生する請求項1に係るオゾン発生装置を用いたので、下地層上に形成される絶縁膜の膜質及び段差被覆性が向上するという効果がある。

4. 図面の簡単な説明

第1図はこの発明に係るオゾン発生装置の一実施例を示す一部破断構成図、第2図は第1図に示した装置の動作を説明するためのグラフ、第3図はこの発明に係るオゾン発生装置を用いた絶縁膜形成装置の構成を示す模式図、第4図ないし第7図は第3図に示した装置の動作を説明するための図、第8図は従来のオゾン発生装置を示す一部破断構成図、第9図は従来の絶縁膜形成装置の構成を示す模式図である。

図において、1及び4は放電管、2は酸素ガス

供給管、3は電極、5はオゾン排出管、6は冷却水収納容器、7は冷却水導入管、8は冷却水排出管、9は窒素ガス供給管、100は窒素ガス供給手段、Yはオゾン発生装置である。

なお、各図中同一符号は同一または相当部分を示す。

代理人 大岩 増雄

第1図

- 1, 4: 放電管
2: 電極
3: 冷却水収納容器
4: 冷却水排出管
5: 水素ガス供給管
6: 水素ガス供給管
7: 水素ガス供給管
8: 水素ガス供給管
9: 水素ガス供給管

第3図

Y: オゾン発生装置

第2図

第4図

第5図

第6図

第7図

第8図

第9図

