CAMPINA GRANDE, 04/09/14. CONTAS FEITAS COM O MAPLE A PARTIR DOS MANUSCRITOS DO FRED. CIDO

1. EQUAÇÕES DAS RETAS DE BIFURCAÇÃO.

Todas parametrizadas pelo parâmetro s, o qual corresponde a "saturação efetiva".

$$E - W$$
: $s_w = (1 - s)$, $s_o = \frac{\mu_o s}{\mu_o + \mu_g}$, $0 \le s \le 1$.
Neste caso $s = s_g + s_o$.

$$B - O$$
: $s_w = \frac{\mu_w s}{\mu_w + \mu_g}$, $s_o = (1 - s)$, $0 \le s \le 1$.
Neste caso $s = s_w + s_g$.

$$D - G$$
: $s_w = \frac{\mu_w s}{\mu_w + \mu_o}$, $s_o = \frac{\mu_o s}{\mu_w + \mu_o}$, $0 \le s \le 1$.
Neste caso $s = s_w + s_o$.

2. Coordenadas dos pontos E, $B \in D$ correspondentes ao valor s=1.

$$E: \quad s_w(E) = 0, \quad s_o(E) = \frac{\mu_o}{\mu_o + \mu_g}$$

$$B: \quad s_w(B) = \frac{\mu_w}{\mu_w + \mu_q}, \quad s_o(B) = 0$$

$$D: \quad s_w(D) = \frac{\mu_w}{\mu_w + \mu_o}, \quad s_o(D) = \frac{\mu_o}{\mu_w + \mu_o}$$

3. Coordenadas dos pontos E_1 , $B_1 \in D_1$.

São respectivamente pontos de extensão-1 de E, B e D e também os pontos de 1-bifurcação secundária de H(E), $H(B) \in H(D)$.

Definitions: $\mu_{tot} = \mu_w + \mu_o + \mu_q$.

 E_1 sobre E - W com $\sigma(E, E_1) = \lambda_1(E_1)$.

$$s_w(E_1) = \frac{2\mu_w}{\mu_{tot} + \mu_w}, \quad s_o(E_1) = \frac{\mu_o}{\mu_{tot} + \mu_w}.$$

$$B_1 \text{ sobre } B - O \text{ com } \sigma(B, B_1) = \lambda_1(B_1).$$

$$s_w(B_1) = \frac{\mu_w}{\mu_{tot} + \mu_o}, \quad s_o(B_1) = \frac{2\mu_o}{\mu_{tot} + \mu_o}.$$

 D_1 sobre D - G com $\sigma(D, D_1) = \lambda_1(D_1)$.

$$s_w(D_1) = \frac{\mu_w}{\mu_{tot} + \mu_g}, \quad s_o(D_1) = \frac{\mu_o}{\mu_{tot} + \mu_g}.$$

4. Coordenadas dos pontos E_2 , $B_2 \in D_2$.

Calculadas usando as parametrizações (i), (ii) e (iii) das retas de bifurcação feitas na Seção 1 em termos dos valores de s_* dados pelos pontos de Weldge, com

$$s_*(E_2) = 1 - \sqrt{\frac{\mu_w}{\mu_{tot}}},$$

 $s_*(B_2) = 1 - \sqrt{\frac{\mu_o}{\mu_{tot}}},$
 $s_*(D_2) = 1 - \sqrt{\frac{\mu_g}{\mu_{tot}}},$

e $\mu_{tot} = \mu_w + \mu_o + \mu_g$ obtemos:

 E_2 sobre E-W extensão de E com $\sigma(E,E_2)=\lambda_2(E_2)$.

$$s_w(E_2) = \sqrt{\frac{\mu_w}{\mu_{tot}}}, \quad s_o(E_2) = \frac{\mu_o}{\mu_o + \mu_g} \left(1 - \sqrt{\frac{\mu_w}{\mu_{tot}}} \right).$$

 B_2 sobre B-O extensão de B com $\sigma(B,B_2)=\lambda_2(B_2)$.

$$s_w(B_2) = \frac{\mu_w}{\mu_w + \mu_g} \left(1 - \sqrt{\frac{\mu_o}{\mu_{tot}}} \right) , \quad s_o(B_2) = \sqrt{\frac{\mu_o}{\mu_{tot}}} .$$

 D_2 sobre D-G extensão de D com $\sigma(D,D_2)=\lambda_2(D_2)$.

$$s_w(D_2) = \frac{\mu_w}{\mu_w + \mu_o} \left(1 - \sqrt{\frac{\mu_g}{\mu_{tot}}} \right) , \quad s_o(D_2) = \frac{\mu_o}{\mu_w + \mu_o} \left(1 - \sqrt{\frac{\mu_g}{\mu_{tot}}} \right) .$$

5. Equações das retas $B-D,\,D-E\to E-B,\,$ ramos não locais das Hugoniots por $E,\,B\to D,\,$ respectivamente.

Todas parametrizadas por um parâmetro s apropriado com $0 \le s \le 1$.

$$B - D:$$

$$s_w = \frac{\mu_w}{\mu_w + \mu_g} s + \frac{\mu_w}{\mu_w + \mu_o} (1 - s), \quad s_o = \frac{\mu_o}{\mu_w + \mu_o} (1 - s).$$

$$s = 1 \iff B, s = 0 \iff D.$$

$$D - E:$$

$$s_w = \frac{\mu_w}{\mu_w + \mu_o} s, \quad s_o = \frac{\mu_o}{\mu_w + \mu_o} s + \frac{\mu_o}{\mu_o + \mu_g} (1 - s).$$

$$s = 1 \iff D, s = 0 \iff E.$$

$$E - B:$$

$$s_w = \frac{\mu_w}{\mu_w + \mu_g} (1 - s), \quad s_o = \frac{\mu_o}{\mu_o + \mu_g} s.$$

$$s = 1 \iff E, s = 0 \iff B.$$

6. Funções de fluxo fracionário ao longo das RETAS E-W, $B-O \in D-G$

Definimos a "saturação efetiva" como $s = s_{\alpha} + s_{\beta}$,

a "viscosidade efetiva" como $\mu_{\alpha\beta}=\mu_{\alpha}+\mu_{\beta}$

e a razão
$$r = \frac{\mu_{\alpha\beta}}{\mu_{\gamma}}$$
.

Em
$$E - W$$
: $\alpha = g$, $\beta = o$, $\gamma = w$, $r = \frac{\mu_g + \mu_o}{\mu_w}$.

Em
$$B-O$$
: $\alpha=w$, $\beta=g$, $\gamma=o$, $r=\frac{\mu_w+\mu_g}{2}$.

Em
$$B-O$$
: $\alpha=w$, $\beta=g$, $\gamma=o$, $r=\frac{\mu_w+\mu_g}{\mu_o}$.
Em $D-G$: $\alpha=w$, $\beta=o$, $\gamma=g$, $r=\frac{\mu_w+\mu_o}{\mu_g}$.

$$f(s) = \frac{s^2/\mu_{\alpha\beta}}{s^2/\mu_{\alpha\beta} + (1-s)^2/\mu_{\gamma}} \equiv \frac{s^2}{s^2 + r(1-s)^2}.$$

7. Autovalores ao longo das retas E-W, B-OE D - G.

Definimos:
$$M(s) = \frac{s^2}{\mu_{\alpha\beta}} + \frac{(1-s)^2}{\mu_{\gamma}}$$
.

$$\lambda_{\parallel} \equiv rac{df(s)}{ds} = rac{2s(1-s)}{\mu_{lphaeta}\,\mu_{\gamma}\,M^2(s)}, \quad \lambda_{\perp} = rac{2s/\mu_{lphaeta}}{M(s)} \,.$$

O ponto umbílico U corresponde ao valor do parâmetro s(U) = r/(1+r).

Para s entre 0 e s(U) = r/(1+r) tem-se que $\lambda_{\perp} \equiv \lambda_1$ e $\lambda_{\parallel} \equiv \lambda_2.$

Para sentre s(U)=r/(1+r)e 1, tem-se que $\lambda_\parallel \equiv \lambda_1$ e $\lambda_{\perp} \equiv \lambda_2$.

8. Determinação do par de pontos (C_1,C_2) sobre uma das retas de bifurcação correspondendo ao contato duplo com $\sigma(C_1,C_2)=\lambda_2(C_1)=\lambda_2(C_2)$

Polinômio de grau 5, cujas raizes fornecem os candidatos a C_2 em função da saturação efetiva s.

$$polgrau5(s) = -2(1+r)^3 s^5 + 6r(1+r)^2 s^4 - r(1+r)(5r+1)s^3 - r^2(1+r)s^2 + r^2(1+3r)s - r^3.$$

Raizes:

$$\begin{split} raiz1 &= \frac{\sqrt{2}}{2} \sqrt{\frac{r}{1+r}} \,, \quad raiz2 = -\frac{\sqrt{2}}{2} \sqrt{\frac{r}{1+r}} \,, \\ raiz3 &= \frac{r}{1+r} \,, \\ raiz4 &= \frac{r+\sqrt{-r}}{1+r} \,, \quad raiz5 = \frac{-r+\sqrt{-r}}{1+r} \,. \end{split}$$

As candidatas a ponto de contato duplo no triangulo são $s(C_2) = raiz1$ e $s(C_2) = raiz3$. No entanto, para s = raiz3 obtemos que o ponto C_1 (correspondente ao contato duplo com C_2) também é a própria raiz3. Na realidade esta raiz corresponde ao ponto umbílico.

Lembrando que $s(C_1)$ é dado pela fórmula

$$s(C_1) = \frac{rs}{2(1+r)s^2 - 2rs + r}$$

obtemos para $s = s(C_2) = raiz1$ que

$$s(C_1) = -\frac{1}{2} \frac{\sqrt{2}\sqrt{\frac{r}{1+r}}}{-2 + \sqrt{2}\sqrt{\frac{r}{1+r}}}$$

9. Extremidades dos segmentos de choques transicionais.

O valores das raizes encontradas (na variável x) correspondem a valores da saturação efetiva s que parametriza as retas E-W, B-O e D-G como na Seção1. Portanto com estes valores das raizes encontra-se os valores das coordenadas s_w e s_o ao longo das retas.

No caso a letra maiúscula L está sendo utilizada para identificar o ponto base e também o valor do parâmetro s no ponto base, ou seja, estamos identificando s(L) com L.

9.1. Estado base L entre E_2 e E_1 .

$$\sigma = \frac{2L(1-L)}{r(L^2/r + (1-L)^2)^2}$$

 $polgrau2(x) = -\sigma(L^2 + r(1-L)^2)(x^2 + r(1-x)^2) + r(L+x) - 2rLx$ Substituindo σ e calculando as raizes obtemos

$$raiz1 = L \tag{1}$$

(2)

$$raiz2 = \frac{1}{2} \frac{L^2(1+r) - r}{L(L-1)(1+r)}$$
 (3)

As extremidades procuradas correspondem a $s_r = 1$ e a $s_l = raiz2$, ou seja, o valor $s_r = 1$ corresponde à extremidade sobre o lado do triângulo e o valor $s_l = raiz2$ corresponde à outra extremidade do segmento de choque transicional.

9.2. Estado base L entre E_1 e C_2 .

$$\sigma = \frac{2L}{r(L^2/r + (1-L)^2)^2}$$

 $polgrau2(x) = -\sigma(L^2 + r(1-L)^2)(x^2 + r(1-x)^2) + r(L+x) - 2rLx + r(1-x)^2 + r(1-x)^2$

Substituindo σ e calculando as raizes obtemos

$$raiz3 = \frac{1}{4} \frac{r(2L+1) + \sqrt{4r^2L(1-L) + r^2 - 8rL^2}}{L(1+r)}$$
 (4)

(5)

$$raiz4 = \frac{1}{4} \frac{r(2L+1) - \sqrt{4r^2L(1-L) + r^2 - 8rL^2}}{L(1+r)}$$
 (6)

As extremidades procuradas correspondem a $s_r = raiz3$ e $s_l = raiz2$ do Caso 9.1 (agora com L entre E_1 e C_2).

9.3. Estado base L entre C_2 e U.

$$polgrau1(x) = (-2L^2 - 2r(1-L)^2 + r - 2rL)x + rL$$

A raiz procurada é

$$raiz5 = \frac{rL}{2(1+r)L^2 + (1-2L)r}$$

As extremidades procuradas correspondem a $s_r = raiz3$ do Caso 9.2 (agora com L entre C_2 e U) e $s_l = raiz5$.

Obs. Note que para L = 1/2 tem-se que $s_l = raiz5 = r/(r+1)$ correspondendo ao valor do parâmetro s do ponto umbílico.

9.4. Estado base L entre U e E. Deve-se tomar cuidado se L = 1/2 ou $L \neq 1/2$.

Caso genérico com $L \neq 1/2$.

$$polgrau3(x) = (1+r)(1-2L)x^3 + (1+r)L(2L+1)x^2 - (r+2(1+r)L^2)x + rL$$
 As raizez são

raiz6 = L

$$raiz7 = \frac{L(r+1) + \sqrt{L^2(r+1)^2 - 2rL(1+r) + r(r+1)}}{(2L-1)(1+r)}$$

$$raiz8 = \frac{L(r+1) - \sqrt{L^2(r+1)^2 - 2rL(1+r) + r(r+1)}}{(2L-1)(1+r)}$$

As extremidades procuradas correspondem a $s_r = raiz5$ do caso anterior (agora com L entre U e E) e $s_l = raiz8$.

Obs. Se $L \to 1/2$ então $raiz8 \to r/(1+r)$. Já os valores de raiz7 explodem quando $L \to 1/2$.

Caso degenerado com L=1/2.

$$polgrau2(x) = (1+r)x^{2} - \frac{1}{2}(3r+1)x + \frac{1}{2}r$$

As raizes são

$$raiz9 = 1/2 \equiv L$$

$$raiz10 = \frac{r}{1+r}$$
 (Ponto Umbílico)

As extremidades procuradas correspondem a $s_r = raiz5$ do Caso 9.3 (agora com L = 1/2) e $s_l = raiz10$. No entanto também teremos que raiz5 = r/(1+r) = raiz10 e consequentemente não há segmento de choque transicional!