Mecánica Clásica

- (i) Sistema: N partículas, N∈IN de masas m; o bien de q; cargas, 1≤i≤N que interactóan por fuerzas "entre ellas" y en fuerzas externas.
- (ii) Estado del sistema: las partículas y los momentos de las N partículas

$$(\vec{r}_1, \vec{p}_1)$$
, (\vec{r}_2, \vec{p}_2) , \cdots $(\vec{r}_N, \vec{p}_N) \equiv (q, p)$

- (iii) Dado un estado INICIAL (t=0) la Mecánica Clásica predice que (q(t), p(t)) el estado $\forall t>0$ $(q(t), p(t)) = (\vec{r}_1(t), \vec{p}_1(t)), \ldots, (\vec{r}_2(t), \vec{p}_2(t)), (\vec{r}_N(t), \vec{p}_N(t))$
- (iv) Predice con ECS. DE MOVIMIENTO
- (v) Si conocemos el estado del sistema en algún tiempo t, entonces conocemos ToDO al tiempo t.

"TODO": Cantidades físicas del sistema.

Entonces, para una camtidad física f = f(q, p) si conozco el estado al tiempo $\pm \dots$ $(q(t), p(t)) \Rightarrow f(t) = f(q(t), p(t)) \ \forall f$.

(i) Sistema: N partículas, NEN

$$H = H(p,q) \qquad \text{Hamiltoniano}$$

$$= \sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2m_{i}} + \sqrt{(\vec{r}_{i}, \vec{r}_{2}, ..., \vec{r}_{N})}$$
energía patencial

e.g.
$$V(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N) = \sum_{i \in j} U(r_{ij}) + \sum_{i=1}^N V_{ext}(\vec{r}_i)$$
interacción entre externo
partículas

e.g.
$$\vec{F}_{i}(\vec{r}_{i}, \vec{r}_{2}, ..., \vec{r}_{N}) = -\frac{\partial}{\partial r_{i}} V(\vec{r}_{i}, ..., \vec{r}_{N})$$
 fuerza que "siente" la partícula i-ésima debida $\frac{\partial}{\partial \vec{r}_{i}} = \hat{i} \frac{\partial}{\partial x_{i}} + \hat{j} \frac{\partial}{\partial y_{i}} + \hat{k} \frac{\partial}{\partial z_{i}}$ a las demás

Ecuaciones de Hamilton $H(\vec{r}_1,...,\vec{r}_N,\vec{p}_1,...,\vec{p}_N)$

$$\frac{d\vec{r}_{i}}{dt} = \frac{\partial H}{\partial \vec{r}_{i}}$$

$$\frac{d\vec{\rho}_{i}}{dt} = -\frac{\partial H}{\partial \vec{r}_{i}}$$

$$\forall i = 1, 2, ..., N$$

e. c]	di	- - -	9514 9H	Ξ	<u>9</u> 9517	<u></u> β17 2r	2 = n	<u>β</u> ₁₇	- ⇒	ρ̃ι τ	, = n	n <u>di</u> dt	ÎF						
		d Pr dt	7 =	_ 3	ÐΗ Đζ _{ia}	=	- 17	(r,,.	, ີ	_N)										
		⇒	dpr		$\frac{d^2}{d}$	r _H	⇒	m	d²r; dt²	= F	; (テ,,	, ,	ŕ _Ν)	∀.:	=1,	2,,,	., N			
				gve iðl													'			
ew3	cion	nes	de	Han	ailt	on.														
				,ρ) (g()		ſ					<i>t</i>). (o(t))		مرم	pi ed	ad	física	do		
				`+`						'		ρ(ο))			tado					
				rge (
sist	ema			ul i em										[Ne-(×ρ	f		9	
Aho	a b	ien,	dad	lo ur Zəmi	es	tado	in	Kisi	ó	cond	i cion	es i	nicia			1 2	f_1),	
t di	ado	y m	edin	nos	f	y g								.03		: V	; ;		: } _N	
Con	los	da	tos.	Es	decir	, da	do f	= f	(₹, ,	,	ζ, ř	, ,	(مَ أَرْ.				/N		-/N	
nos	ТІЗО	MIV)>	en	f y	_ no	en	lada	1 (4	,,	, \ _N	, ρ,	,,	۲.) •							