Examine if CLT holds for the sequence $\{X_k\}$ with p.m.f. $P(X_k = \pm k^{\lambda}) = \frac{1}{2}$.

Solution:

We have
$$\mu_k = E(X_k) = k^{\lambda} \frac{1}{2} - k^{\lambda} \frac{1}{2} = 0$$
, $\sigma_k^2 = V(X_k) = k^{2\lambda} \frac{1}{2} + k^{2\lambda} \frac{1}{2} = k^{2\lambda}$ and $\rho_k^3 = E\{|X_k - 0|^3\} = E(|X_k|^3) = k^{3\lambda} \cdot \frac{1}{2} + k^{3\lambda} \cdot \frac{1}{2} = k^{3\lambda}$ Let $S_n = \sum_{k=1}^n X_k$. Then we have $\mu = \sum_{k=1}^n \mu_k = 0$, $\sigma^2 = \sum_{k=1}^n \sigma_k^2 = \sum_{k=1}^n k^{2\lambda}$ $\rho^3 = \sum_{k=1}^n \rho_k^3 = \sum_{k=1}^n k^{3\lambda}$ and
$$\frac{\rho^3}{\left(\sigma^2\right)^{\frac{3}{2}}} = \frac{\sum_{k=1}^n k^{3\lambda}}{\left(\sum_{k=1}^n k^{2\lambda}\right)^{\frac{3}{2}}} = \frac{n^{3\lambda+1}}{3\lambda+1} \times \left(\frac{2\lambda+1}{n^{2\lambda+1}}\right)^{\frac{3}{2}}$$
 $\left(\because \sum_{k=1}^n k^{\alpha} = \int_0^n x^{\alpha} dx = \frac{n^{\alpha+1}}{\alpha+1} \\ Euler - maclaurian formula\right)$ $= \frac{(2\lambda+1)^{\frac{3}{2}}}{(3\lambda+1)} n^{(3\lambda+1)-(2\lambda+1)^{\frac{3}{2}}}$ $= \frac{(2\lambda+1)^{\frac{3}{2}}}{(3\lambda+1)} n^{-\frac{1}{2}} \to 0$ as $n \to \infty$

Since Liapnounoff's condition is satisfied, CLT holds.