Problem 1. (35 pts)

Consider a disk with block size B = 1024 bytes. A block pointer is P = 6 bytes long, and a record pointer is $P_R = 7$ bytes long. A file has r = 1,000,000 EMPLOYEE records of fixed length. Each record has the following fields: NAME (25 bytes), SSN (10 bytes), DEPARTMENTCODE (9 bytes), ADDRESS (35 bytes), BIRTHDATE (8 bytes), JOBCODE (2 bytes), and SALARY (3 bytes).

a. Calculate the record size *R* in bytes.

b. Calculate the blocking factor bfr and the number of file blocks b, assuming an unspanned organization.

organization.

(1)

$$b = ceil(\frac{r}{bfr})$$

$$= floor(\frac{1024}{92})$$

$$= 11$$

(2)

$$b = ceil(\frac{r}{bfr})$$

$$= (eil(\frac{1000,000}{11})$$

$$= 90,910$$

- c. Suppose that the file is ordered by the key field SSN and we want to construct a primary index on SSN. Calculate
- (i) the index blocking factor bfri
- (ii) the number of first-level index entries and the number of first-level index blocks
- (iii) the number of levels needed if we make it into a multilevel index
- (iv) the total number of blocks required by the multilevel index, and
- (v) the number of block accesses needed to search for and retrieve a record from the file—given its SSN value—using the primary index.

(1)

key field length = 10

Block pointer length = 6

Ri = 16

Block size = 1024

bfri = floor
$$\left(\frac{8}{a_i}\right)$$

= floor $\left(\frac{1024}{16}\right)$
= 64

(4)
Total number of blocks required by

with lare |
$$iadz = \frac{2}{5}bi$$

= $b_1 + b_2 + b_3 = 1421 + 23 + 1$

= 1445 blocks

number of first level intex entries
$$(v_1) = 90910$$

number of first level intex

llocks $(b_1) = \text{Ceil}\left(\frac{v_1}{bR_1}\right)$
 $= \text{Ceil}\left(\frac{90910}{64}\right)$
 $= 421$ blocks

number of second level index entires (
$$V_2$$
)

= number of second level blacks (b_1)

= [42]

number of second level index blacks (b_2)

= $ceil\left(\frac{V_2}{G_1}\right)$

= $ceil\left(\frac{H21}{G_1}\right)$

= 23 blacks

number of third level index entires (V_3)

Problem 2. (15 pts)

Given the same specifications of Problem 1, consider this time you are building a primary index on SSN using B-tree. Calculate (i) the order *p* for the B-tree, (ii) the number of levels needed if blocks are approximately 69% full (round up for convenience), and (iii) the worst-case number of blocks needed to search for and retrieve a record from the file—given its SSN value—using the B-tree you are estimating.

(1) Order:
$$p \cdot P + (V + P) \cdot (P - 1) \leq black size$$

$$p = black paints - length, P = 6 bytes$$

$$V = Key Kell length, V = 10 bytes$$

Assuming w69% fill-ration

(2) Number of backs maded for produce u/ 69% fill-ratio

\bigcap	Nodes	Pointers	Key Entries	(unulation they Extres
Root		33	n	32
level 1	33	1089	1056	1086
land 2	1089	35937	35104	36992
Local 3	35937	1185921	1184832	1221 824

This, there lack are needed to accomplete 100,000 records.

$$\sum_{i=0}^{3} \text{ whis}_{i} \Rightarrow 1+73+1069+35927 = 37060 \text{ blocks}$$

Problem 3. (30 pts)

A PARTS file with Part# as key field includes records with the following Part# values: 3, 29, 39, 61, 21, 19, 6, 55, 22, 28, 14, 42, 2, 26, 8, 15, 9, 11. Suppose that the search field values are inserted in the given order in a B+-tree of order p = 4 and p | eaf = 3.

(i) Show how the tree will expand (show all steps as in Fig 17.12 (7th ed)) and what the final tree will look like.

(ii) What is the fill ratio of the B+-tree you created? (Note: we learned 69% is the average fill ratio in class.)

(ii) Fill Patio:

Only the Lotton row =
$$\frac{18}{24}$$
 = 75%.
All notes = $\frac{25}{36}$ = 69.4%.