ЛЕКЦІЯ 11–12

2.7. СИСТЕМИ ДВОХ ВИПАДКОВИХ ВЕЛИЧИН

2.7.1. Поняття системи двох випадкових величин. Матриця розподілу системи дискретних випадкових величин та ряди розподілу її складових

В попередніх пунктах глави розглядались окремі випадкові величини, закони їх розподілу та числові характеристики. В практичних застосуваннях теорії ймовірностей часто виникають задачі, в яких результат випробування описується кількома випадковими величинами, які утворюють систему.

Наведемо приклади систем двох випадкових величин (X,Y).

- 1. При постановці літака на періодичне технічне обслуговування його стан характеризується випадковими величинами: X наліт годин після попереднього обслуговування і Y кількість дефектів, виявлених в процесі обстеження. Ці випадкові величини приймають окремі цілочисельні значення. Число цих можливих значень, як правило, скінченне. Отже, (X,Y) система $\partial ucкретних$ випадкових величин.
- 2. Положення літака на екрані локатора визначається випадковими величинами: X дальність і Y азимут. Ці величини можуть приймати довільні значення з деяких інтервалів і число цих значень нескінченне. Отже, (X,Y) система *неперервних* випадкових величин.

Величини X і Y, які утворюють систему (X,Y), називаються її *складовими*. Систему випадкових величин називають також *двовимірною випадковою величиною* (X,Y).

Закон розподілу системи (X,Y) дискретних випадкових величин задається таблицею, яку називають *матрицею розподілу*:

Y	y_1	y_2		y_m
x_1	p_{11}	p_{12}	•••	p_{1m}
x_2	p_{21}	p_{22}	•••	p_{2m}
•••	•••	•••	•••	•••
x_k	p_{k1}	p_{k2}		p_{km}

в першому стовпці якої вказані всі можливі значення x_i (i=1,2,..,k) складової X, в першому рядку — можливі значення y_j (j=1,2,..,m) складової Y, а на перетині рядків і стовпців — імовірності p_{ij} , тобто ймовірності подій $\{X=x_i,Y=y_j\}$. Оскільки ці події складають повну групу, то для ймовірностей p_{ij} виконується умова

$$\sum_{i=1}^{k} \sum_{j=1}^{m} p_{ij} = 1, \qquad (2.106)$$

(2.105)

яка називається умовою нормування системи (X,Y).

За матрицею розподілу (2.105) системи (X,Y) можна побудувати ряди розподілу її складових X і Y, для чого потрібно взяти суму ймовірностей відповідно в рядках і стовпцях матриці.

Тому ряди розподілу складових X і Y мають вигляд:

X	x_1	x_2	•••	x_k
P	$\sum_{j=1}^{m} p_{1j}$	$\sum_{j=1}^{m} p_{2j}$:	$\sum_{j=1}^{m} p_{kj}$

Y	y_1	<i>y</i> ₂	•••	\mathcal{Y}_m	
G	$\sum_{i=1}^k p_{i1}$	$\sum_{i=1}^{k} p_{i2}$	•••	$\sum_{i=1}^k p_{im}$	(2.107)

Приклад 2.37.

2.7.2. Функція розподілу системи двох випадкових величин та її властивості

Матриця розподілу (2.105) є досить повною характеристикою системи (X,Y) дискретних випадкових величин, але її не можна побудувати для неперервної системи. Загальною формою закону розподілу, застосовною для систем як дискретних, так і неперервних випадкових величин, є функція розподілу.

<u>Означення 2.20.</u> Функцією розподілу системи називається функція F(x,y), яка для кожної пари значень x,y визначає ймовірність того, що складова X прийме значення, менше x, а Y – менше y:

$$F(x, y) = P\{X < x, Y < y\}. \tag{2.108}$$

<u>Геометрично</u> функція F(x,y) визначає ймовірність потрапляння випадкової точки (X,Y) в нескінченний квадрант з вершиною в точці (x,y), розташований лівіше і нижче цієї точки (рис.2.21).

Властивості функції F(x, y) в основному співпадають з властивостями функції розподілу F(x) однієї випадкової величини X (п.2.1.3).

<u>Властивість 1.</u> Функція розподілу знаходиться в межах $0 \le F(x, y) \le 1$.

<u>Властивість 2.</u> Функція F(x,y) є неспадною функцією своїх аргументів, тобто при $x_2 > x_1$ $F(x_2,y) \ge F(x_1,y)$, а при $y_2 > y_1$ $F(x,y_2) \ge F(x,y_1)$.

Властивість 3. Для функції F(x, y) мають місце граничні співвідношення

$$F(x,-\infty) = 0; F(-\infty,y) = 0; F(-\infty,\infty) = 0; F(\infty,\infty) = 1.$$

<u>Властивість 4.</u> При $y \to \infty$ функція F(x, y) перетворюється в функцію розподілу складової X, а при $x \to \infty$ — в функцію розподілу складової Y:

$$F(x,\infty) = F_1(x), \quad F(\infty, y) = F_2(y).$$

За допомогою функції розподілу F(x,y) обчислюється ймовірність потрапляння випадкової точки (X,Y) в прямокутник, вершини якого мають абсциси x_1 і x_2 , а ординати y_1 і y_2 (рис.2.22):

$$P\{x_1 < X < x_2, y_1 < Y < y_2\} = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1)$$
 (2.109)

Рис.2.22

Функція розподілу дає також можливість обчислити ймовірність потрапляння випадкової точки (X,Y) в нескінченну напівсмугу з вершинами (x_1,y_2) і (x_2,y_2) , заштриховану на рис.2.22:

$$P\{x_1 < X < x_2, Y < y_2\} = F(x_2, y_2) - F(x_1, y_2).$$

2.7.3. Щільність розподілу системи двох неперервних випадкових величин та її властивості

<u>Означення 2.21.</u> *Щільністю ймовірності* або *щільністю розподілу* системи (X,Y) неперервних випадкових величин називається функція f(x,y), рівна другій мішаній частинній похідній функції розподілу F(x,y):

$$f(x,y) = F''_{xy}(x,y) = \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \frac{P\{x < X < x + \Delta x, y < Y < y + \Delta y\}}{\Delta x \Delta y}. \tag{2.111}$$

Відношення в правій частині рівності (2.111) виражає величину ймовірності, яка припадає на одиницю площі прямокутника з сторонами Δx і Δy або, інакше, щільність імовірності в цьому прямокутнику. Тому функція f(x,y) називається щільністю ймовірності або щільністю розподілу системи (X,Y).

3 формули (2.111) одержуємо:

$$P\{x < X < x + \Delta x, y < Y < y + \Delta y\} = f(x, y)\Delta x \Delta y = f(x, y) dx dy.$$

Величина f(x,y)dxdy називається *елементом імовірності системи* (X,Y), оскільки ця величина виражає ймовірність потрапляння можливих значень системи в елементарний прямокутник зі сторонами Δx і Δy .

Щоб одержати ймовірність потрапляння системи в заданий прямокутник (рис.2.22), потрібно проінтегрувати елемент імовірності при змінюванні x від x_1 до x_2 і y від y_1 до y_2 :

$$P\{x_1 < X < x_2, y_1 < Y < y_2\} = \int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) dx dy.$$
 (2.112)

Розглянемо властивості щільності ймовірності f(x, y).

Властивість 1. Функція f(x, y) невід'ємна:

$$f(x,y) \ge 0$$
.

<u>Властивість</u> 2. Щільність імовірності f(x, y) зв'язана з функцією розподілу F(x, y) формулою:

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) dx dy.$$

<u>Властивість 3.</u> $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$

<u>Властивість 4.</u> Інтегрування щільності ймовірності f(x,y) системи за змінною y приводить до щільності ймовірності $f_1(x)$ складової X, а за змінною x — до щільності ймовірності $f_2(y)$ складової Y:

$$\int_{-\infty}^{\infty} f(x, y) dy = f_1(x), \qquad \int_{-\infty}^{\infty} f(x, y) dx = f_2(y). \tag{2.113}$$

2.7.4. Умови незалежності випадкових складових системи

Розглянемо умови незалежності випадкових складових X і Y, які утворюють систему.

Теорема 2.1. Нехай система дискретних випадкових величин (X,Y) задана матрицею розподілу (2.105). Якщо складові X і Y незалежні, то ймовірності p_{ij} з

матриці розподілу дорівнюють добутку ймовірностей p_i і q_j з рядів розподілу (2.107) складових X і Y:

$$p_{ij} = p_i q_j = \sum_{i=1}^m p_{ij} \cdot \sum_{i=1}^k p_{ij} .$$
 (2.114)

Теорема 2.2. Нехай система випадкових величин задана функцією розподілу F(x,y). Якщо випадкові складові X і Y системи незалежні, то її функція розподілу F(x,y) дорівнює добутку функцій розподілу $F_1(x)$ і $F_2(y)$ складових:

$$F(x, y) = F_1(x) \cdot F_2(y). \tag{2.115}$$

<u>Теорема 2.3.</u> Нехай система неперервних випадкових величин задана щільністю розподілу f(x,y). Якщо неперервні випадкові складові X і Y системи незалежні, то її щільність розподілу f(x,y) дорівнює добутку щільностей $f_1(x)$ і $f_2(y)$ її складових:

$$f(x, y) = f_1(x) \cdot f_2(y)$$
. (2.116)

Умови (2.114) – (2.116) ϵ також і достатніми для незалежних складових системи. Якщо ж вони не виконуються, то складові X і Y системи – залежні.

Так в прикладі 2.37 складові X і Y залежні, оскільки не виконується умова (2.114): наприклад, $p_{21} = \frac{1}{8}$, а $p_2 \cdot g_1 = \frac{1}{4} \cdot \frac{25}{48} = \frac{25}{192}$.

2.7.5. Основні числові характеристики складових системи

Розглянемо систему (X,Y) дискретних випадкових величин, задану матрицею розподілу (2.105). Якщо побудовані ряди розподілу (2.107) складових X і Y, то їх математичні сподівання M(X) і M(Y) обчислюються за формулою (2.21):

$$M(X) = x_1 \sum_{j=1}^{m} p_{1j} + x_2 \sum_{j=1}^{m} p_{2j} + \dots + x_k \sum_{j=1}^{m} p_{kj} = \sum_{i=1}^{k} x_i \sum_{j=1}^{m} p_{ij};$$

$$M(Y) = y_1 \sum_{i=1}^{k} p_{i1} + y_2 \sum_{i=1}^{k} p_{i2} + \dots + y_m \sum_{i=1}^{k} p_{im} = \sum_{j=1}^{m} y_j \sum_{i=1}^{k} p_{ij}.$$
(2.117)

Одержані формули показують, що для обчислення математичних сподівань складових немає потреби попередньо складати ряди їх розподілів, оскільки M(X) є сумою добутків можливих значень x_i складової X на суму ймовірностей відповідних цим значенням рядків матриці розподілу, а M(Y) - значень y_j на суму ймовірностей відповідних стовпців матриці.

Дисперсії D(X) і D(Y) за формулою (2.32) складових системи обчислюються так:

$$D(X) = \sum_{i=1}^{k} x_i^2 \sum_{j=1}^{m} p_{ij} - [M(X)]^2;$$

$$D(Y) = \sum_{i=1}^{m} y_j^2 \sum_{i=1}^{k} p_{ij} - [M(Y)]^2.$$
(2.118)

Приклад 2.40.

Для знаходження числових характеристик складових системи <u>неперервних</u> випадкових величин (X,Y), заданої щільністю ймовірності f(x,y), можна за властивістю 4 щільності знайти щільності ймовірності $f_1(x)$ і $f_2(y)$ складових X і Y системи і обчислити математичні сподівання за формулою (2.23):

$$M(X) = \int_{-\infty}^{\infty} x f_1(x) dx;$$
 $M(Y) = \int_{-\infty}^{\infty} y f_2(y) dy,$

а дисперсії – за формулою (2.34)

$$D(X) = \int_{-\infty}^{\infty} x^2 f_1(x) dx - [M(X)]^2; \qquad D(Y) = \int_{-\infty}^{\infty} y^2 f_2(y) dy - [M(Y)]^2.$$

або застосувати до обчислення вказаних характеристик подвійне інтегрування і безпосередньо щільність імовірності f(x, y) системи:

$$M(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x, y) dx dy; \qquad M(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) dx dy; \tag{2.119}$$

$$M(X) = \int_{-\infty - \infty}^{\infty} \int_{-\infty}^{\infty} xf(x, y)dxdy; \qquad M(Y) = \int_{-\infty - \infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y)dxdy; \qquad (2.119)$$

$$D(X) = \int_{-\infty - \infty}^{\infty} \int_{-\infty}^{\infty} x^2 f(x, y)dxdy - [M(X)]^2; \quad D(Y) = \int_{-\infty - \infty}^{\infty} \int_{-\infty}^{\infty} y^2 f(x, y)dxdy - [M(Y)]^2. \qquad (2.120)$$

Приклад 2.41.

2.7.7. Кореляційний момент і коефіцієнт кореляції системи випадкових величин

Після встановлення умов залежності або незалежності складових X і Y системи випадкових величин розглянемо характеристики системи, які визначають міру (тісноту) лінійної залежності її складових. До таких характеристик відносяться кореляційний момент і коефіцієнт кореляції.

<u>Означення 2.23.</u> Кореляційним моментом K_{xy} системи випадкових величин (X,Y) називається математичне сподівання добутку відхилень цих величин від їх математичних сподівань:

$$K_{xy} = M[(X - M(X)) \cdot (Y - M(Y))]. \tag{2.123}$$

Застосовуючи властивості математичного сподівання, вираз (2.123) можна подати у вигляді:

$$K_{xy} = M(XY) - M(X)M(Y).$$
 (2.124)

Тому для системи дискретних випадкових величин, заданої матрицею розподілу (2.105), кореляційний момент обчислюють за формулою:

$$K_{xy} = \sum_{i=1}^{k} \sum_{j=1}^{m} x_i y_j p_{ij} - M(X)M(Y).$$
 (2.126)

Для системи неперервних випадкових величин, заданої щільністю ймовірності f(x, y), формула для обчислення K_{xy} має вигляд:

$$K_{xy} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y) dx dy - M(X)M(Y).$$
 (2.127)

Кореляційний момент K_{xy} називають ще коваріацією системи (X,Y). Він характеризує міру залежності випадкових величин X і Y в системі.

Теорема 2.4. Якщо випадкові величини X і Y незалежні, то кореляційний момент K_{rv} дорівнює нулю.

При $K_{xy}=0$ величини X і Y називаються некорельованими, а при $K_{xy}\neq 0$ корельованими.

З формули (2.123) випливає, що кореляційний момент характеризує не лише міру залежності випадкових величин, а й їх відхилення від математичних сподівань. Так, наприклад, якщо відхилення X-M(X) достатньо мале, то і K_{xy} буде малим навіть при значній залежності випадкових величин X і Y. Тому для характеристики міри залежності випадкових величин застосовується нормований кореляційний момент або коефіцієнт кореляції r_{xy} , який обчислюється за формулою

$$r_{xy} = \frac{K_{xy}}{\sigma(X)\sigma(Y)},\tag{2.129}$$

де $\sigma(X)$ і $\sigma(Y)$ — середні квадратичні відхилення величин X і Y.

Для незалежних випадкових величин $r_{xy} = 0$.

<u>Приклад 2.43.</u> ! <u>Приклад 2.44.</u> !

2.7.6. Умовні закони розподілу складових системи

Нехай система (X,Y) дискретних випадкових величин задана матрицею розподілу (2.105), і складені ряди розподілу (2.107) її складових X і Y.

<u>Означення 2.22.</u> Умовним розподілом складової X за умови, що складова Y прийняла значення y_j , називається ряд розподілу, в якому ймовірності прийняття складовою X можливого значення x_i (i=1, $2 \ k$. ϵ умовними ймовірностями $p(x_i \mid y_i)$ і обчислюються за формулами

$$p(x_i \mid y_j) = \frac{p_{ij}}{g_j}$$
 $(i = 1, 2, 3, ...k).$ (2.121)

де ймовірності g_j вибираються з ряду розподілу складової Y .

Для умовного розподілу складової Y при $X = x_i$ умовні ймовірності $p(y_j \mid x_i)$ обчислюються за формулами

$$p(y_j | x_i) = \frac{p_{ij}}{p_i}$$
 $(j = 1, 2, ..., m),$ (2.122)

де ймовірності p_i вибираються з ряду розподілу складової X (2.107).

Для системи неперервних випадкових величини, заданої щільністю ймовірності f(x,y) аналогом розглянутих умовних законів розподілу є умовні щільності ймовірностей $f_1(x|y)$ і $f_2(y|x)$ складових X і Y, які знаходяться за формулами

$$f_1(x|y) = \frac{f(x,y)}{f_2(y)}; \quad f_2(y|x) = \frac{f(x,y)}{f_1(x)},$$

де $f_1(x)$ і $f_2(y)$ одержуються за формулами (2.113).

<u>Приклад 2.37.</u> Число X вибирається навмання із множини $\{1, 2, 3, 4\}$, після чого з тієї ж множини навмання вибирається число $Y \le X$. Побудувати матрицю розподілу системи (X,Y) і ряди розподілу її складових.

Розв'язання. За умовою задачі складова X може приймати будь-яке значення із заданої множини з імовірністю $\frac{1}{4}$. При X=1 складова Y не приймає значень 2, 3 і 4, більших за одиницю, тому ймовірності $p_{12}=p_{13}=p_{14}=0$. Вона приймає лише значення 1 з імовірністю, рівною 1. Тому за теоремою 1.6 множення ймовірностей залежних подій

$$p_{11} = P\{X = 1\} \cdot P\{Y = 1 \mid X = 1\} = \frac{1}{4} \cdot 1 = \frac{1}{4}.$$

При X = 2 складова Y може приймати значення 1 і 2 з імовірностями $\frac{1}{2}$, тому за теоремою 1.6

$$p_{21} = p_{22} = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$$
, a $p_{23} = p_{24} = 0$.

При X = 3 складова Y може приймати значення 1, 2 і 3 з імовірностями $\frac{1}{3}$ і не приймає значення 4, тому

$$p_{31} = p_{32} = p_{33} = \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12}, \quad p_{34} = 0.$$

Нарешті при X=4 складова Y може прийняти будь-яке з чотирьох значень множини з імовірністю $\frac{1}{4}$, тому

$$p_{41} = p_{42} = p_{43} = p_{44} = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}.$$

3 одержаних результатів складемо матрицю розподілу системи (X,Y)

YX	1	2	3	4
1	$\frac{1}{4}$	0	0	0
2	$\frac{1}{8}$	$\frac{1}{8}$	0	0
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0
4	1 16	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

Умова нормування (2.106) виконана.

Ряди розподілу складових X і Y одержуємо, взявши суми ймовірностей відповідно по рядках і стовпцях матриці

X 1 2 3 4	Y 1	2 3	4
-----------	-----	-----	---

-	1	1	1	1
P	$\frac{-}{4}$	$\frac{-}{4}$	$\frac{-}{4}$	$\frac{-}{4}$

~	25	13	7	3
G	48	48	48	48

<u>Приклад 2.40.</u> Знайти математичне сподівання, дисперсію та середнє квадратичне відхилення складових X і Y системи за матрицею розподілу, складеною в прикладі 2.37.

Розв'язання. За формулами (2.117)

$$M(X) = 1 \cdot \frac{1}{4} + 2\left(\frac{1}{8} + \frac{1}{8}\right) + 3\left(\frac{1}{12} + \frac{1}{12} + \frac{1}{12}\right) + 4\left(\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}\right) = 2.25;$$

$$M(Y) = 1 \cdot \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{12} + \frac{1}{16}\right) + 2\left(\frac{1}{8} + \frac{1}{12} + \frac{1}{16}\right) + 3\left(\frac{1}{12} + \frac{1}{16}\right) + 4 \cdot \frac{1}{16} = 1,75,$$

а за формулами (2.118)

$$D(X) = 1 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} + 9 \cdot \frac{1}{4} + 16 \cdot \frac{1}{4} - (2.25)^2 = 2.4375;$$

$$D(Y) = 1 \cdot \frac{25}{48} + 4 \cdot \frac{13}{48} + 9 \cdot \frac{7}{48} + 16 \cdot \frac{3}{48} - (1.75)^2 = 0.854$$

і відповідно $\sigma(X) = 1,561$; $\sigma(Y) = 0,924$.

<u>Приклад 2.41.</u> Знайти математичне сподівання, дисперсію та середнє квадратичне відхилення складових X і Y системи неперервних випадкових величин, заданої щільністю ймовірності

$$f(x,y) = 4e^{-(x+4y)}$$
 при $x \ge 0, y \ge 0$ (див. приклад 2.39).

Розв'язання. За формулами (2.119)

$$M(X) = 4 \int_{0}^{\infty} \int_{0}^{\infty} x e^{-(x+4y)} dx dy = 4 \int_{0}^{\infty} x e^{-x} dx \int_{0}^{\infty} e^{-4y} dy = 4 \int_{0}^{\infty} x e^{-x} dx \left(\lim_{b \to \infty} \int_{0}^{b} e^{-4y} dy \right) = \int_{0}^{\infty} x e^{-x} dx.$$

Застосовуючи метод інтегрування частинами, одержимо:

$$M(X) = \lim_{c \to \infty} \int_{0}^{c} xe^{-x} dx = -\lim_{c \to \infty} \left(xe^{-x} + e^{-x} \right) \Big|_{0}^{c} = 1.$$

Аналогічно

$$M(Y) = 4\int_{0}^{\infty} ye^{-4y} dy \int_{0}^{\infty} e^{-x} dx = 4\int_{0}^{\infty} ye^{-4y} dy = 1.$$

Дисперсії складових обчислимо за формулами (2.120):

$$D(X) = 4 \int_{0}^{\infty} x^{2} e^{-x} dx \int_{0}^{\infty} e^{-4y} dy - 1 = \int_{0}^{\infty} x^{2} e^{-x} dx - 1 = \lim_{b \to \infty} \int_{0}^{b} x^{2} e^{-x} dx - 1 = \lim_{b \to \infty} \left(-\frac{2 + 2x + x^{2}}{e^{x}} \right) \Big|_{0}^{b} - 1 = -\lim_{b \to \infty} \frac{2 + 2b + b^{2}}{e^{b}} + \frac{2}{e^{0}} - 1 = 1,$$

оскільки границя дорівнює нулю (за правилом Лопіталя);

$$D(Y) = 4 \int_{0}^{\infty} y^{2} e^{-4y} dy \int_{0}^{\infty} e^{-x} dx - 1 = 1,$$

a, отже, i $\sigma(X) = \sigma(Y) = 1$.

<u>Приклад 2.43.</u> Авіакомпанія впродовж доби виконує 2 рейси до аеропорту N. Імовірність затримки першого рейсу за метеоумовами дорівнює 0,1, другого -0,05. Скласти закон розподілу системи (X,Y), де X — число затримок першого рейсу, а Y — сумарне число затримок по обом рейсам, і обчислити коефіцієнт кореляції r_{xy} .

Розв'язання. Випадкова величина X приймає можливі значення 0 і 1, а Y – значення 0, 1 і 2. Обчислимо ймовірності p_{ij} для матриці розподілу:

X = 0, Y = 0: $p_{11} = 0, 9 \cdot 0, 95 = 0,855$;

X = 0, Y = 1: $p_{12} = 0, 9 \cdot 0, 05 = 0,045$;

X = 0, Y = 2: $p_{13} = 0$ (неможлива подія);

X = 1, Y = 0: $p_{21} = 0$ (неможлива подія);

X = 1, Y = 1: $p_{22} = 0, 1 \cdot 0, 95 = 0, 095$;

X = 1, Y = 2: $p_{23} = 0, 1 \cdot 0, 05 = 0,005$.

Складаємо матрицю розподілу системи:

Y	0	1	2
0	0,855	0,045	0
1	0	0,095	0,005

і ряди розподілу складових X і Y:

X	0	1
P	0,9	0,1

Y	0	1	2
G	0,855	0,14	0,005

Обчислимо числові характеристики складових системи за даними з рядів розподілу:

$$M(X) = 0.1;$$
 $M(Y) = 0.15;$ $D(X) = 0.09;$ $D(Y) = 0.1375;$

$$\sigma(X) = 0.3; \quad \sigma(Y) = 0.37.$$

Кореляційний момент знайдемо за формулою (2.126):

$$K_{xy} = 1 \cdot 1 \cdot 0,095 + 1 \cdot 2 \cdot 0,005 - 0,1 \cdot 0,15 = 0,09$$

а коефіцієнт кореляції — за формулою (2.129):

$$r_{xy} = \frac{0.09}{0.3 \cdot 0.37} = 0.81.$$

Отже, складові системи мають досить тісний додатний кореляційний зв'язок.

<u>Приклад 2.44.</u> Система неперервних випадкових величин задана сумісною щільністю розподілу

$$f(x,y) = \begin{cases} a\sqrt{xy} & \text{в області } D; \\ 0 & \text{за межами області } D, \end{cases}$$

де область D обмежена лініями y = x, x = 0, y = 1.

Знайти невідомий параметр a і коефіцієнт кореляції r_{xy} .

Розв'язання. Область D — трикутник, поданий на рис.2.23. Параметр a знайдемо за властивістю 3 щільності ймовірності

$$a\int_{0}^{1} \sqrt{x} dx \int_{x}^{1} \sqrt{y} dy = 1.$$

Обчислюємо послідовно двократний інтеграл

$$\frac{2}{3}a\int_{0}^{1}x^{\frac{1}{2}}(1-x^{\frac{3}{2}})dx = \frac{2}{3}a\int_{0}^{1}(x^{\frac{1}{2}}-x^{2})dx = \frac{2}{9}a = 1, \quad \text{звідки } a = \frac{9}{2}.$$

Знайдемо математичні сподівання складових X і Y за формулами (2.119):

$$M(X) = \frac{9}{2} \int_{0}^{1} x^{\frac{3}{2}} dx \int_{x}^{1} y^{\frac{1}{2}} dy = \frac{9}{2} \cdot \frac{2}{3} \int_{0}^{1} x^{\frac{3}{2}} (1 - x^{\frac{3}{2}}) dx = 3 \int_{0}^{1} (x^{\frac{3}{2}} - x^{3}) dx = 0.45;$$

$$M(Y) = \frac{9}{2} \int_{0}^{1} x^{\frac{1}{2}} dx \int_{x}^{1} y^{\frac{3}{2}} dy = \frac{9}{2} \cdot \frac{2}{5} \int_{0}^{1} x^{\frac{1}{2}} (1 - x^{\frac{5}{2}}) dx = \frac{9}{5} \int_{0}^{1} (x^{\frac{1}{2}} - x^{3}) dx = 0.75.$$

Дисперсії складових знаходимо за формулами (2.120):

$$D(X) = \frac{9}{2} \int_{0}^{1} x^{\frac{5}{2}} dx \int_{x}^{1} y^{\frac{1}{2}} dy - (0.45)^{2} = \frac{9}{2} \cdot \frac{2}{3} \int_{0}^{1} x^{\frac{5}{2}} (1 - x^{\frac{3}{2}}) dx - (0.45)^{2} =$$

$$= 3 \int_{0}^{1} (x^{\frac{5}{2}} - x^{4}) dx - (0.45)^{2} = \frac{9}{35} - (0.45)^{2} \approx 0.0546;$$

$$\sigma(X) \approx 0.234;$$

$$D(Y) = \frac{9}{2} \int_{0}^{1} x^{\frac{1}{2}} dx \int_{x}^{1} y^{\frac{5}{2}} dy - (0.75)^{2} = \frac{9}{2} \cdot \frac{2}{7} \int_{0}^{1} x^{\frac{1}{2}} (1 - x^{\frac{7}{2}}) dx - (0.75)^{2} =$$

$$= \frac{9}{7} \int_{0}^{1} (x^{\frac{1}{2}} - x^{4}) dx - (0.75)^{2} = \frac{3}{5} - (0.75)^{2} = 0.0375;$$

$$\sigma(Y) \approx 0.194$$

Кореляційний момент обчислюємо за формулою (2.127):

$$K_{xy} = \frac{9}{2} \int_{0}^{1} x^{\frac{3}{2}} dx \int_{x}^{1} y^{\frac{3}{2}} dy - 0.45 \cdot 0.75 = \frac{9}{2} \cdot \frac{2}{5} \int_{0}^{1} x^{\frac{3}{2}} (1 - x^{\frac{5}{2}}) dx - 0.3375 =$$

$$= \frac{9}{5} \int_{0}^{1} (x^{\frac{3}{2}} - x^{4}) dx - 0.3375 = 0.36 - 0.3375 = 0.0225,$$

а коефіцієнт кореляції за формулою (2.129):

$$r_{xy} = \frac{0.0225}{0.234 \cdot 0.194} = 0.496.$$