Feature Selection from Means and Variances

- Principle
 - ► Compute the means of a feature for each class, normalized by the variances;
 - ▶ If the means are far apart, interest in a feature increases (the feature has potential in terms of distinguishing between classes);
 - ▶ If the means are indistinguishable, interest wanes in that feature.
- ▶ Two intuitive methods
 - ▶ Independent feature analysis ($\sqrt{}$)
 - Assuming the features are independent. Features are examined individually.
 - ▶ Distance-based feature selection
 - ▶ Features are examined collectively.
- Limitation: only applied to continuous features.

30

Independent Feature Analysis

- For a problem with two classes: C_1 and C_2 :
 - ▶ Compute $mean_1(f)$ and $mean_2(f)$: the means of feature f measured for C_1 and C_2
 - Compute $var_1(f)$ and $var_2(f)$: the variances of feature f measured for C_1 and C_2
 - ▶ Significance test (t-test):

$$\left| mean_1(f) - mean_2(f) \right| > sig \times \sqrt{\frac{\operatorname{var}_1(f)}{n_1} + \frac{\operatorname{var}_2(f)}{n_2}}$$

- n_1 and n_2 are the numbers of cases in C_1 and C_2
- \rightarrow sig = 2 for the 95% confidence level.
- ▶ If the comparison fails the test, the feature can be deleted.
- For k classes, k pairwise comparisons are conducted for f.
 - Each pairwise comparison compares feature means for class C_i and $\neg C_i$ (i=1, ..., k).
 - A feature is retained if it is significant for at least one of the pairwise comparisons.
- Limitation: Treat each feature independently

Feature Selection by Mutual Information

- Objective: Select features according to the mutual information between a feature and the class variable.
- ► The mutual information (also called information gain) between the class variable *y* and a discrete feature *x* :

$$MI_x = \sum_{v} \sum_{c} [P(y=c, x=v) \times \log_2 \frac{P(y=c, x=v)}{P(y=c)P(x=v)}]$$

- ▶ P(y=c) is the probability of cases in class c.
- ▶ P(x=v) is the probability that feature x takes on value v.
- ▶ *MI* measures the degree to which *x* and *y* are not independent. The bigger the value, the more dependent *y* is on *x*.
- ▶ *MI* is used to select or weight features.
 - ▶ You can select the top k features with the highest weights. Or some mining algorithms can take the feature weights and select features in the mining process.
- ▶ Suitable for nominal or discrete attributes. For continuous features, a discretization algorithm can be applied first to convert a real-valued feature to a discrete-valued feature.
- Limitation: Treat each feature independently.

32

Feature Selection by Decision Trees

Objective

- ▶ Decision tree learning methods integrates feature selection to their algorithms and decision tree is a fast learning method.
- Make use of the decision tree learning technique to select features from a data set for other learning methods, such as neural networks, that take substantially more time to search their solution space.
 - Decision tree learning is a relatively fast learning method.

Method

- Apply a decision tree learning algorithm to the data set to generate a decision tree.
- ▶ Select features that appear in the tree.

Advantage

 Context sensitive. Tree methods evaluate candidate features in the context of related features that have already been selected.

Example of Feature Selection Using Decision Tree

Initial attribute set:

{A1, A2, A3, A4, A5, A6}

Reduced attribute set: {A1, A4, A6}

34

Data Reduction Outline

- ▶ Feature Selection
- Case Reduction
- ▶ Value Reduction

Case Reduction

- ▶ Objective: reduce the number of cases, the largest dimension in the data set
- ▶ How many cases are enough?
 - ▶ Application dependent depends on the complexity of the patterns to be extracted from the data.
 - ▶ If the pattern is simple, the results are unlikely to change even with additional cases. For example, x>1 completely separates two classes.
 - ► For complex patterns, large volumes of data can supply more evidence for the correctness of the induced patterns.
- ▶ Some types of problems requiring more data than others:
 - Multiclass classification
 - Regression
 - ▶ Imbalanced data sets: almost all cases belong to the larger class, and far fewer cases to the smaller, usually more interesting class.

Case Reduction Methods

- ▶ Simple Random Sampling
 - ▶ A single sample
 - ▶ Incremental samples
 - Average samples
- ▶ Sampling by Adjusting Prevalence
- Stratified Sampling

Single Simple Random Sample

- Choose n objects randomly from a set D of N objects (n < N) so that each object has the same probability of being chosen.
- ▶ Two methods
 - Simple random sampling without replacement (SRSWOR)
 - ▶ Each object cannot be chosen more than once
 - ▶ Simple random sampling with replacement (SRSWR)
 - ▶ Each time an object is drawn, it is recorded and placed back to *D* so that it can be drawn again.

38

Problem with Single Sampling

- ▶ We don't know the suitable sample size.
- ► Too small, the model may not be accurate enough; too big, the model may be more complex

Incremental Sampling

- Objective: Spot trends in error and complexity by learning with incrementally larger random subsets of the data to help produce a single solution.
- A typical pattern of incremental subsets is:

10%, 20%, 33%, 50%, 67%, 100%

Incremental Sampling (Cont.)

- Performance measures:
 - Error rate (test error, that is error on a test data set)
 - ▶ Complexity of the solution (e.g. number of nodes in a tree)
- Plot error and complexity relative to increasing sample size.

 Error Rate ← Complexity Complexity

Example:

- ▶ Make decision on whether to do further sampling
 - ▶ Net changes in error and complexity are examined:
 - ▶ Is the error smaller?
 - ▶ Is the complexity acceptable?
 - Is complexity increasing much more than error is decreasing?

Average Sampling

- For a dataset containing a huge number of cases that exceed the maximum capacity of a learning program.
- Average sampling:
 - ightharpoonup Select k random samples of n cases
 - ▶ Solutions from different samples are combined in the prediction phase.

Averaged or voted solutions usually have less error than the single solution found on all cases in the database.

Sampling by Adjusting Prevalence

- Directly adjust the prevalence of cases over the classes.
- Suitable for classification problems with a very imbalance data set
 - In a bio-chemistry data set for predicting biological potency of chemical compounds,
 - Only 0.16% of the compounds belong to the class of highly active compounds, which is the most interesting class that can lead to discovery of new drugs.
 - ▶ Remaining 99.84% of compounds are inactive.
 - Low-prevalence class, usually the most interesting class.

Sampling by Adjusting Prevalence

- ▶ Two ways for boosting prevalence:
 - ▶ *Up-sampling*: repeat (or give higher weights to) the cases in the low-prevalence class in the sample increase the sample size.
 - ▶ *Down-sampling*: keep the low-prevalence cases intact or randomly sample a high percentage of them, while including a low percentage random subset of a larger class in the training sample.
- Result: the predictive performance on the most interesting new cases may increase, while the overall predictive performance on new data of all classes may decrease.

44

Stratified Sampling

- ▶ The data set *D* is partitioned into mutually disjoint subsets, called *strata*.
- ▶ Then randomly sample data from each stratum
- ▶ Objective: ensure a representative sample, especially when the data are skewed.

Data Reduction Outline

- ▶ Feature Selection
- Case Reduction
- ▶ Value Reduction

46

Reducing and Smoothing Values

- Objective
 - ▶ Reduce the number of distinct values of a feature so that the size of the search space for patterns is reduced.
 - ▶ Smooth out noise
- ▶ Methods for reducing values
 - ▶ Nominal attributes
 - ▶ Generalization.

Toronto → Ontario → Central Canada → Canada

Reducing and Smoothing Values (Cont'd)

- ▶ Integer or real-valued attributes
 - ▶ Rounding
 - e.g. 462.4 can be rounded to 462, 460, or 500 according to requirements
 - ▶ Binning
 - ▶ Partition the value range of an attribute into bins

▶ Smooth values by bin medians, means or boundaries

▶ Discretization: label each bin by discrete values