

1. Arrhenius

 acid – molecular compounds which ionize and release H+ ions

$$HCI \rightarrow H^+ + CI^-$$

 base – ionic compounds which dissociate and release OH- ions

$$KOH \rightarrow K^+ + OH^-$$

2. Bronsted-Lowry

 acid – compounds donate a proton to water to form H₃O⁺

$$CH_3COOH + H_2O <===> CH_3COO^- + H_3O^+$$

 base – compounds receive a proton from water to form OH⁻

$$NH_3 + H_2O <===> NH_4^+ + OH^-$$

Strong Acids and Bases

Acids and bases are considered strong when they almost fully ionize or dissociate in water (essentially 100%).

$$HNO_3 \rightarrow H^+ + NO_3^-$$

Weak Acids and Bases

Acids and bases are considered weak when they poorly ionize or dissociate in water (much lower than 100%).

$$CH_3COOH + H_2O <===> CH_3COO^- + H_3O^+$$

Conjugate Acids and Bases

HCN_(aq) + H₂O <===>
$$H_3O^+_{(aq)}$$
 + CN⁻_(aq)

Conjugate acid-base pair

Conjugate Acids and Bases

1. What are the conjugate bases of HNO₃ and HSO₄-?

 NO_3^- and SO_4^{2-}

2. What are the formulas of the conjugate acids of OH⁻ and PO₄³⁻?

H₂O and HPO₄²⁻