Seasonal ARIMA models

ARIMA models

- So far, we have considered the ARMA family of models, which rely on the assumption of stationarity.
- We now consider a more general family that allows the modeling of nonstationary time series through the application of differencing.
- ullet The simplest example is the random walk example we discussed previously. Recall that, we defined the random walk $\{X_t\}$ as

$$X_t = X_{t-1} + w_t$$
, where $w_t \sim WN(0, \sigma^2)$

 $\{X_t\}$ is a nonstationary AR(1) process. However, $\{\nabla X_t\}$ with

$$\nabla X_t = X_t - X_{t-1}$$

is a stationary process, being just the white noise w_t .

Simulated example

Simulate an **ARIMA**(1,1,0) with $\phi = 0.9$ and $\sigma^2 = 1$.

$$X \leftarrow arima.sim(list(order = c(1,1,0), ar = 0.9), n = 200)$$

The ARIMA model

- The need for **ARIMA** arises from the fact that the series $\{X_t\}$ is nonstationary.
- Apply **differencing** operator $\nabla = 1 B$ until the transformed series $\{Y_t = \nabla^d X_t\}$ exhibits stationarity.
- In the ARIMA equation

$$\phi^*(B)X_t \equiv \phi(B)(1-B)^d X_t = \theta(B)w_t, \quad w \sim WN(0,\sigma^2)$$
 (1)

the integer $d \ge 0$ is the number of applications of differencing.

Augmented Dickey-Fuller test

```
adfTest(X, lag=5)
  STATISTIC:Dickey-Fuller: 0.4971
  P VALUE:0.7737
```


Parameter Estimation

• Based on the original series X_t , we use p = 1, d = 1 and q = 0,

$$M1 < -arima(X, order = c(1,1,0))$$

We find $\hat{\phi}=0.89$ with $\mathrm{se}(\hat{\phi})=0.0318$ and $\hat{\sigma}^2=0.8924$.

• Based on the differenced $Y_t = \nabla X_t$, we use p = 1, d = 0 and q = 0,

$$M2 < -arima(Y, order = c(1,0,0))$$

We find $\hat{\phi} = 0.88$ with $se(\hat{\phi}) = 0.0322$ and $\hat{\sigma}^2 = 0.8906$.

 The diagnostics checks in both cases support the plausibility of the chosen model.

Diagnosis plots

General procedure: Applying differencing until the resulting series has a sample ACF that decays rapidly, and the differenced data can be fitted by a low-order ARMA process.

Seasonal Models

Time series such as quarterly earnings and temperature index typically exhibits seasonal patterns.

```
hs=read.table("m-USTot.txt",header=T)
plot(hs[,3],type="l")
da=read.table("q-earn-jnj.txt")
jnj.logearning=log(da[,1])
plot(jnj.logearning,type="l")
```


Seasonal ARMA model

Formally, the **seasonal ARMA** model is defined by $ARMA(P, Q)_s$, with

$$\Phi(B^s)X_t = \Theta(B^s)w_t$$

where

$$\Phi(z) = 1 - \Phi_1 z - \Phi_2 z^2 - \dots - \Phi_P z^P$$

and

$$\Theta(z) = 1 - \Theta_1 z - \Theta_2 z^2 - \dots - \Theta_Q z^Q$$

are respectively, the **seasonal AR** operator and the **seasonal MA** operator, with period s.

Summary of ACF and PACF behaviors for seasonal ARMA

	$AR(P)_s$	$MA(Q)_s$	$ARMA(P,Q)_s$
ACF	Tails off at lags <i>ks</i>	Cuts off after lags <i>Qs</i>	Tails off at lags <i>ks</i>
PACF	Cuts off after lags Ps	Tails off at lags <i>ks</i>	Tails off at lags ks

- The values of ACF and PACF are zero at non-seasonal lags $\tau \neq ks$.
- Here, s is the length of the period, and $k = 1, 2, \cdots$.

Mixed Seasonal ARMA Models

 The seasonal and non-seasonal ARMA models can be combined. The resulting model has equation

$$\Phi(B^s)\phi(B)X_t = \Theta(B^s)\theta(B)w_t$$

 This resulting model is called the mixed seasonal ARMA, and is denoted by

$$\mathsf{ARMA}(p,q) \times (P,Q)_s$$

 The behavior of a mixed seasonal ARMA model is a combination of the the behaviors of its seasonal and nonseasonal constituents.

Seasonal ARIMA models

- In practice, the value of *P* and *Q* are typically less than 3.
- Johnson and Johnson quarterly earning example
- Let's take a look at the ACF of J&J log earning series.

```
par(mfcol=c(2,1))
acf(jnj.logearning,lag.max=16)
jnj.return=diff(jnj.logearning)
acf(jnj.return)
```

JJ earnings

Figure: ACF of JJ log earning and returns.

Seasonal ARIMA model for JJ data

- Clearly, the original series seems to be nonstationary. So does the regular differenced series.
- The airline model (for quarterly series):

$$(1-B)(1-B^4)w_t = (1-\theta_1B)(1-\theta_4B^4)w_t.$$

After regular and seasonal differencing, this is essentially a is a multiplicative MA model.

- The left hand side can be written as $Y_t = (w_t w_{t-1}) (w_{t-4} w_{t-5})$. We call it regular and seasonal differenced series.
- Now perform seasonal differencing to the jnj.reutrn series.

Seasonal and regular differenced JJ data

```
sjnj.return=diff(jnj.return,4) ## yearly = 4 quarters
acf(sjnj.return,lag.max=16)
```

Series sjnj.return

Airline model

Apply the airline model to ini logearning. ##define the airline model: m1=arima(jnj.logearning,order=c(0,1,1) ,seasonal=list(order=c(0,1,1),period=4)) # This model has aic = -150.75# If we get rid of seasonal MA term, aic = -145.51tsdiag(m1) # Model checking f1=predict(m1,8) # prediction for 2 years

Diagnosis plots

ACF of Residuals

p values for Ljung-Box statistic

Out of sample prediction

