Device Simulation Laboratory

(EE5195)

Problem Sheet-8

Take cross sectional area, A=1 μm^2 , hole mobility, $\mu_P = 450$ cm² V⁻¹s⁻¹ and electron mobility, $\mu_n = 1417$ cm²V⁻¹s⁻¹.

- Q.1: Draw a simple n-type Si of dimensions 1 x 1 μ m² on the sentaurus structure editor with uniform doping of 1x10¹⁶ cm⁻³ (use proper meshing).
- Q.2: Use *****.tdr file (which is generated after meshing), in the sdevice command-
- (a) Calculate I-V characteristics for a voltage range from -1 V to 1 V
- (b) Calculate resistance, R of the given sample using I-V plot and using formula. Compare both the results.
- (c) Include doping dependent mobility in the sdevice **.cmd file and calculate resistance, R of the given sample using I-V plot and using formula. See the change in resistance.
- (d) Change the mobility, μ_n to 200 cm²V⁻¹s⁻¹ (parameter file) as discussed in the class and again do (b). See the change in resistance with respect to change in mobility (1417 cm²V⁻¹s⁻¹ to 200 cm²V⁻¹s⁻¹ i.e. approximately 7 times).
- (d) Draw energy band diagram in equilibrium (0V) and for 1V.