Prova tipo D

P4 de Álgebra Linear I – 2003.2 Gabarito

1) Considere o ponto P = (2, 1, 0), a reta r de equação paramétrica

$$r: (3-2t, 5+t, 2+2t), t \in \mathbb{R}.$$

- a) Escreva r como intereseção de dois planos (equação cartesiana) ρ e α , ρ paralelo ao eixo \mathbb{X} e α paralelo ao eixo \mathbb{Y} .
- b) Determine a equação cartesiana do plano τ que contém a reta r e o ponto P.
- c) Encontre, caso exista, o ponto R de interseção da reta r acima e da reta

$$r': (1+2t, 2+t, 2-t), t \in \mathbb{R}.$$

Caso o ponto não exista escreva as retas são reversas.

d) Calcule a distância d entre o ponto P e a reta r.

Respostas:

a)
$$\rho$$
: $-2y + z = -8$, α : $x + z = 5$.

b)
$$\tau$$
: $2x - 2y + 3z = 2$.

c)
$$R = (5, 4, 0).$$

d)
$$d = \sqrt{17}$$
.

- **2)** Considere a base $\beta = \{u_1 = (1,0,1); u_2 = (1,1,0); u_3 = (1,1,1)\}$ de \mathbb{R}^3 e a transformação linear $T, T \colon \mathbb{R}^3 \to \mathbb{R}^3$, definida como segue: dado um vetor w da forma $w = a u_1 + b u_2 + c u_3$ temos $T(w) = (3a + b + 2c) u_2$.
- a) Determine (explicitamente) a matriz $[T]_{\beta}$ de T na base β .
- b) Determine (explicitamente) a matriz $[T]_{\epsilon}$ de T na base canônica.
- c) Determine (explicitamente) as matriz [M] de mudança de base da base β à base canônica..
- d) Considere agora o plano π : x + y + z = 0 e a base ξ do plano π , $\xi = \{(1, -2, 1); (2, -1, -1)\}$. Determine as coordenadas $(w)_{\xi}$ do vetor w = (7, -8, 1) na base ξ .

Respostas:

a)

$$[T]_{\beta} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 3 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right)$$

b)

$$[T]_{\epsilon} = \left(\begin{array}{ccc} 2 & -1 & 1\\ 2 & -1 & 1\\ 0 & 0 & 0 \end{array}\right)$$

c)

$$[M] = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right)$$

d) $(w)_{\xi} = (3,2).$

3) Considere a projeção P no plano π

$$\pi \colon x - 2y + 2z = 0$$

na direção do vetor v

$$v = (1, 0, 1).$$

- a) Determine a matriz [P] da projeção P na base canônica.
- b) Encontre uma base β de \mathbb{R}^3 tal que a matriz $[P]_\beta$ na base β seja

$$[P]_{\beta} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Respostas:

a)

$$[P] = \begin{pmatrix} 2/3 & 2/3 & -2/3 \\ 0 & 1 & 0 \\ -1/3 & 2/3 & 1/3 \end{pmatrix}$$

b)
$$\beta = \{(2,1,0); (1,0,1); (2,0,-1)\}$$

4) Considere a matriz

$$M = \left(\begin{array}{ccc} 1 & 0 & 0 \\ a & 3 & 0 \\ 0 & 0 & b \end{array}\right).$$

Escolha qual das afirmações a seguir é verdadeira para que a matriz M não seja diagonalizável.

h=2 or $a=1$	
b=3 e $a=1$	
b = 1 e a = 1	
b = 3 e a = 2	
b=0 e a qualquer número real	
nenhuma, M é sempre diagonalizável	X
todas as afirmações anteriores são falsas	
não sei	

5) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear tal que a matriz $[T]_\epsilon$ de T na base canônica é simétrica. Sabendo que

•
$$T(1,0,1) = (2,0,2),$$

- todo vetor não nulo do plano x + z = 0 é um autovetor,
- o determinante de $[T]_{\epsilon}$ é 32, e
- o traço de $[T]_{\epsilon}$ é negativo.

Determine os autovalores de T com suas multiplicidades.

Resposta:

autovalores 2 e -4, 2 simples e -4 duplo ou de multiplicidade dois.

6) Considere a transformação linear T cuja matriz [T] na base canônica é o produto das matrizes

$$[T] = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

A transformação linear T é:

(e) A projeção ortogonal no plano x+y=0 seguida do espelhamento no plano x-y-2z=0.

a	b	c	d	e	f	g	h	i	j	k	1	m	n	N
				X										