Undergraduate Complexity Theory Lecture 18: NL-Completeness and Logspace Reductions

Marcythm

July 20, 2022

1 Lecture Notes

Theorem 1.1. For $f(n) \ge \log n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(2^{O(f(n))})$.

Theorem 1.2. For $f(n) \ge \log n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f(n)^2)$.

Corollary 1.3. NPSPACE ⊆ PSPACE.

Corollary 1.4. NPSPACE = PSPACE.

Claim 1.5. ST-PATH is "NL-complete".

How to define sensible reduction for logspace? \leq_m^P is a bad choice, since L is not closed under it. Ideal: $A \in NL, A \leq B, B \in L$, then $A \in L$.

idea: When using reductions, must be as weak as the weakest class you care about.

Need to define leq_m^L , "log-space reduction", want:

- 1. closure: $A \leq_m^L B, B \in L \implies A \in L$, and $B \in NL \implies A \in NL$.
- 2. transitivity: $A \leq_m^L B, B \leq_m^L C \implies A \leq_m^L C.$

Definition 1.6. $A \leq_m^L B$ if $\exists R : \{0,1\}^* \to \{0,1\}^*$ computable (write-once output tape) in $O(\log n)$ space s.t. $\forall x : x \in A \iff R(x) \in B$.

model for space-bounded computation w/ output: read-only input tape, space-bounded $(O(\log n))$ r/w work tapes, write-once output tape.

Theorem 1.7. ST-PATH is "NL-complete".

Proof. ST-PATH \in NL.

Let $A \in \mathsf{NL}$, we need to show $A \leq_m^L \mathsf{ST}\text{-}\mathsf{PATH}$. Say N is an $O(\log n)$ -space nondeterministic TM deciding A. Claim: exists a deterministic $O(\log n)$ -space-computable $R: \{0,1\}^* \to \{0,1\}^*$ that, given $x \in \Sigma^n$, outputs config graph $G_{N,x}$ and C_{start}, C_{acc} . Thus, $x \in A \iff N(x)$ acc $\iff \exists$ path $C_{start} \to C_{acc}$ in $G_{N,x} \iff R(x) \in \mathsf{ST-PATH}$.

Theorem 1.8. If $P,Q:\{0,1\}^* \to \{0,1\}^*$ are computable in $O(\log n)$ space, then so is R(x) = Q(P(x)).

core technique: recalculate P(x) every time it is acquired by Q to save space.

Corollary 1.9 (closure). $A \leq_m^L B, B \in L \implies A \in L$.

Corollary 1.10 (transitivity). $A \leq_m^L B, B \leq_m^L C \implies A \leq_m^L C.$

Exercise 1.11. $A \leq_m^L, B \in NL \implies A \in NL$.

2 Reading

2.1 sipser 8.5 (NL completeness)

definition of log space reducibility log space reducibility implies poly-time reducibility

Theorem 2.1. $A \leq_m^L B, B \in L \implies A \in L$.

Theorem 2.2. ST-PATH is NL-complete.

Corollary 2.3. $NL \subseteq P$.