Package 'NetAct'

August 29, 2022

Type Pac	ekage
	Act a computational platform to construct core transcription factor regulatory networks us- gene activity
Version	1.0.5
Author I	Kenong Su, Vivek Kohar, Danya Gordin, Mingyang Lu
	er Danya Gordin <danya.gordin@gmail.com></danya.gordin@gmail.com>
	on NetAct R package for gene network construction and modeling.
_	MIT + file LICENSE
Encoding	
LazyData	a true
Vignettel	Builder knitr
NeedsCo	mpilation yes
LinkingT	To Rcpp
org Suggests	lust, entropy, circlize, visNetwork, limma, DESeq2, methods, .Mm.eg.db, org.Hs.eg.db, AnnotationDbi, ComplexHeatmap R.utils, knitr, sRACIPE Note 7.1.2
Koxygen	Note 7.1.2
R topi	cs documented:
	Activity_heatmap
	allNet
	applyDPI
	calculateMI
	cal_activity
	DEG_Analysis_Micro
	getAdjacencyMat
	GSEA_permut_R
	GSEA_permut_R_revised
	GSEA_proc_R
	GSEA_proc_RC

2 Activity_heatmap

	Hill	9
	$mDB\dots$	10
	MicroDegs	10
	plot_network	11
	Preprocess_counts	11
	rem_data	12
	Reselect_TFs	12
	RNAseqDegs_DESeq	13
	RNAseqDegs_limma	13
	row_norm	14
	TF_Activity	14
	TF_Filter	15
	TF_Filter_addgene	16
	TF_GSEA	18
	TF_Selection	18
	toCPM	19
Index		20

Activity_heatmap

Plotting TF gene expresion & activity heatmap

Description

Plotting TF gene expresion & activity heatmap

Usage

Activity_heatmap(new_activity, eset)

Arguments

new_activity Matrix. TF activity matrix

eset ExpressionSet of gene expression data

Value

Heatmap plotting object

allNet 3

_	1	٦	N	\sim	+
а	1	_	I۷	ᆫ	L

Compile a GSDB to a matrix with 2 columns

Description

Compile a GSDB to a matrix with 2 columns

Usage

```
allNet(GSDB)
```

Arguments

GSDB

List of list. Gene set database of interactions

Value

matrix. Matrix, each row containing regulators ("from"), targets ("to")

applyDPI

Apply data processing inequality

Description

Remove the interactions from a triangle which have lowest interaction score.

Usage

```
applyDPI(tfLinks = tfLinks, miMat = miMat, miDiff = 0, minMiTh = 0.5)
```

Arguments

tfLinks	Data.frame. containing the interactions as source (character), target (character), type (integer).
miMat	numeric matrix. Interaction scores based on mutual information or correlation.
miDiff	numeric (0-1). Default 0.0 (optional) Minimum difference between mutual information of a traingle for the edge to be removed.
minMiTh	numeric (0-1). Default 0.5. Minimum value of MI for an interaction which will not be removed.

Value

data.frame. containing the filtered interactions.

4 cal_activity

calculateMI

Calculate mutual information

Description

Mutual information between all pairs based on entropy package.

Usage

```
calculateMI(actMat = actMat, nbins = 16)
```

Arguments

actMat numeric matrix.

nbins integer (optional). Number of bins Default 16

Value

numeric matrix (0-1). Matrix containing mutual information values

cal_activity

The core function to compute the activity profile of an TF

Description

The core function to compute the activity profile of an TF

Usage

```
cal_activity(
   gs_remain,
   tmp_data,
   tmp_sign,
   ind,
   with_weight,
   DE_weights,
   tf_exprs,
   useCorSign = useCorSign
)
```

Arguments

gs_remain a vector of target genes after filtering tmp_data gene expression of target genes

tmp_sign sign of target genes (+1 for one group, -1 for the other)

ind Hill coefficient parameter used in the weighting factors (default: 1/5, recom-

mend to use 0 < ind < 1/4)

DEG_Analysis_Micro 5

with_weight whether weighting factors (based on DEG p-values) are used to compute TF

activity (default: TRUE)

DE_weights a vector of the input for computing DE weighting factors (typically, adjusted

p-values from DEG analysis)

tf_exprs a vector of gene expression of the TF

useCorSign allow the option to use the TF gene expression correlation to flip signs (default:

TRUE)

Value

a list of results: activity: matrix of TF activity. sign: grouping scheme of all TF gene sets.

DEG_Analysis_Micro Helper Function For DEG Analysis of microArray Data (for a single

comparison)

Description

Helper Function For DEG Analysis of microArray Data (for a single comparison)

Usage

```
DEG_Analysis_Micro(eset, qval = 0.05)
```

Arguments

eset Processed gene expression data in the ExpressionSet format batch & experimen-

tal conditions are provided in pData.

q-value cutoff for DEG analysis (default: 0.05)

Value

DEG result in the format of a list containing: table: table of DEG results. rank_vector: a vector of t-statistics for every gene. degs: a vector of gene symbols for DEGs.

filterDB Filtered gene set database based on minimum sizes

Description

Filtered gene set database based on minimum sizes

```
filterDB(GSDB, geneList, minSize = 5)
```

6 GSEA_permut_R

Arguments

GSDB list of list. gene set database geneList a vector of available genes

minSize minimum number of genes of a gene set (default: 5)

Value

DB: list of list. filtered gene set database

getAdjacencyMat

Obtain the adjacency matrix from a matrix of tf-target relationships

Description

Obtain the adjacency matrix from a matrix of tf-target relationships

Usage

```
getAdjacencyMat(tfLinks = tfLinks)
```

Arguments

tfLinks matrix. Matrix of tf-target relationships

Value

adjMat, matrix. adjacency matrix

GSEA_permut_R

Compute ES scores for Gene Set Enrichment Analysis (GSEA) with a new permutation method (using the original GSEA algorithm)

Description

The function uses the original GSEA enrichment score calculation but using the new permutation method. Here, the gene symbols/names are permutated without changing the ranking vector (stats_vector).

Usage

```
GSEA_permut_R(sim_all, gs, stats_vector)
```

Arguments

sim_all a matrix of permutated gene lists gs a vector of genes in the gene set

stats_vector a vector of DEG statistics for every gene in gene_list (rank_vector in the DEG

results)

Value

tmp_sim_sgeas: a vector of ES values for all permutated gene lists

GSEA_permut_R_revised Compute ES scores for Gene Set Enrichment Analysis (GSEA) with a new permutation method (using a revised algorithm)

Description

To improve computational efficiency, we devised a new permutation approach by swapping stats_vector. Here, the gene symbols/names are permutated without changing the ranking vector (stats_vector). This function becomes unused in NetAct, as a much faster c++ implementation (GSEA_permute) is provided.

Usage

```
GSEA_permut_R_revised(sim_all, gene_set, stats_vector, N)
```

Arguments

sim_all a vector of genes in the expression data gene_set a vector of genes in the gene set

stats_vector a vector of DEG statistics for every gene in gene_list (rank_vector in the DEG

results)

N total number of genes (size of sim_all)

Value

ES: enrichment score

GSEA_proc_R	Gene Set Enrichment Analysis (GSEA) with a new permutation method
	– implementation in R

Description

To improve computational efficiency, we devised a new permutation approach by swapping stats_vector. Here, the gene symbols/names are permutated without changing the ranking vector (stats_vector).

Usage

```
GSEA_proc_R(GSDB, DElist, minSize = 5, nperm = 1000)
```

Arguments

GSDB	gene set database (a list of gene sets, each of which is comprised of a vector genes)
DElist	a vector of DEG statistics for every gene in gene_list (rank_vector in the DEG results)
minSize	the minimum number of overlapping genes required for each gene set (a gene set filtering parameter, default: 5)
nperm	the number of gene list permutations (default: 1000)

SEA_score

Value

data.frame(rslt_mat): a table of GSEA results: tf: TF (gene set name). es: ES score. lens: number of overlapping genes in each gene set. pvals: p-value by counting. z: z-score. qvals: q-value from pvals.

GSEA_proc_RC	Gene Set Enrichment Analysis (GSEA) with a new permutation method – implementation in R/c++
--------------	---

Description

To improve computational efficiency, we devised a new permutation approach by swapping stats_vector. Here, the gene symbols/names are permutated without changing the ranking vector (stats_vector). A much faster c++ implementation (GSEA_permute) is used.

Usage

```
GSEA_proc_RC(GSDB, DElist, minSize = 5, nperm = 1000)
```

Arguments

GSDB	gene set database (a list of gene sets, each of which is comprised of a vector genes)
DElist	a vector of DEG statistics for every gene in gene_list (rank_vector in the DEG results)
minSize	the minimum number of overlapping genes required for each gene set (a gene set filtering parameter, default: 5)
nperm	the number of gene list permutations (default: 1000)

Value

data.frame(rslt_mat): a table of GSEA results: tf: TF (gene set name). es: ES score. lens: number of overlapping genes in each gene set. pvals: p-value by counting. z: z-score. qvals: q-value from pvals.

GSEA_score	Compute the enrichment score (ES) from Gene Set Enrichment Analysis

Description

Compute the enrichment score (ES) from Gene Set Enrichment Analysis

```
GSEA_score(gene_list, gene_set, stats_vector)
```

hDB 9

Arguments

gene_list a vector of genes in the expression data

gene_set a vector of genes in the gene set

stats_vector a vector of DEG statistics for every gene in gene_list (rank_vector in the DEG

results)

Value

ES: enrichment score

hDB

Human transcription factor target regulatory database

Description

This data contains the literature-derived target genes of transcription factors for human genome. For further details, see the bioRxiv preprint https://doi.org/10.1101/2022.05.06.487898

Usage

hDB

Format

A list of 875 TFs, each element is an array of gene symbols of target genes.

Hill

Hill function for the gene weight

Description

Hill function for the gene weight

Usage

Hill(x, ind)

Arguments

x value (adj p-value)ind Hill coefficient

Value

Hill function of x

10 MicroDegs

mDB	Mouse transcription factor target regulatory database

Description

This data contains the literature-derived target genes of transcription factors for mouse genome. For further details, see the bioRxiv preprint https://doi.org/10.1101/2022.05.06.487898

Usage

mDB

Format

A list of 895 TFs, each element is an array of gene symbols of target genes.

MicroDegs	Helper Function For DEG Analysis of microArray Data (for all cases, including single and multiple comparisons)

Description

Helper Function For DEG Analysis of microArray Data (for all cases, including single and multiple comparisons)

Usage

```
MicroDegs(eset, compList, qval = 0.05)
```

Arguments

eset	Processed gene expression data in the ExpressionSet format batch & experimental conditions are provided in pData.
compList	a vector of multiple comparisons in the format of contrasts in limma (e.g. $c("A-B", "A-C", "B-C"))$
qval	q-value cutoff for DEG analysis (default: 0.05)

Value

DEresult: a list of DEG results, including those for each single comparison and those for the overall comparison. Each DEG result is in the format of A list containing: table: table of DEG results. rank_vector: a vector of t-statistics for every gene. degs: a vector of gene symbols for DEGs.

plot_network 11

Description

Plotting gene network

Usage

```
plot_network(tf_links = tf_links)
```

Arguments

tf_links a data frame of networ interactions

Value

visNetwork object

Preprocess_counts RNA-seq data pre processing

Description

NetAct uses edgeR to load the count data and the group information for experimental conditions, It also coverts gene symbols and remove duplicates.

Usage

```
Preprocess_counts(counts, groups, mouse = FALSE)
```

Arguments

counts raw count matrix

groups group information for experimental conditions mouse use mouse genome or not (default: FALSE)

Value

x\$counts: processed count matrix

12 Reselect_TFs

rem_data

Remove Non-informative genes

Description

Remove Non-informative genes

Usage

```
rem_data(x)
```

Arguments

Χ

gene expression matrix

Value

x: gene expression matrix without containing non-informative genes

Reselect_TFs

Reselecting TFs using gene set enrichement analysis (GSEA) using an adjusted set of parameters (work together with TF_Selection)

Description

Reselecting TFs using gene set enrichement analysis (GSEA) using an adjusted set of parameters (work together with TF_Selection)

Usage

```
Reselect_TFs(GSEArslt, qval = 0.05, combine_TFs = TRUE, ntop = NULL)
```

Arguments

GSEArslt GSEA results from TF_Selection qval q-value cutoff (default: 0.05)

combine_TFs whether combine selected TFs from multiple comparisons or not (default: TRUE) ntop the number of top genes (selection by the top genes) (default: NULL, no selec-

tion by the top genes)

Value

tfs: a vector of selected TFs

RNAseqDegs_DESeq 13

RNAseqDegs_DESeq Helper Function For DEG Analysis of RNA-seq Data using DES

Description

Helper Function For DEG Analysis of RNA-seq Data using DESeq

Usage

```
RNAseqDegs_DESeq(counts, phenodata, complist, qval = 0.05)
```

Arguments

counts Processed gene expression count data

phenodata pData that provides batch & experimental conditions

complist a vector of multiple comparisons in the format of contrasts in limma (e.g. c("A-

B", "A-C", "B-C"))

q-value cutoff for DEG analysis (default: 0.05)

Value

DEresult: a list of DEG results, including those for each single comparison and those for the overall comparison. Each DEG result is in the format of A list containing: table: table of DEG results. rank_vector: a vector of t-statistics for every gene. degs: a vector of gene symbols for DEGs. e: expression data (CPM).

RNAseqDegs_limma	Helper Function For DEG Analysis of RNA-seq Data using limma +
	Voom

Description

Helper Function For DEG Analysis of RNA-seq Data using limma + Voom

Usage

```
RNAseqDegs_limma(counts, phenodata, complist, lfc, qval = 0.05)
```

Arguments

counts	Processed	gene	expression	count data
--------	-----------	------	------------	------------

phenodata pData that provides batch & experimental conditions

complist a vector of multiple comparisons in the format of contrasts in limma (e.g. c("A-

B", "A-C", "B-C"))

lfc (optional) log fold change constraints for DEGs qval q-value cutoff for DEG analysis (default: 0.05) TF_Activity

Value

DEresult: a list of DEG results, including those for each single comparison and those for the overall comparison. Each DEG result is in the format of A list containing: table: table of DEG results. rank_vector: a vector of t-statistics for every gene. degs: a vector of gene symbols for DEGs. e: expression data (CPM). e_batch: batch corrected expression.

row_norm

Row normalization (standardization)

Description

Row normalization (standardization)

Usage

```
row_norm(data)
```

Arguments

data

gene expression matrix

Value

norm_data: standardized gene expression matrix

TF_Activity

Inference of TF activity

Description

Inference of TF activity

```
TF_Activity(
   tfs,
   GSDB,
   eset,
   DErslt,
   with_weight = TRUE,
   if_module = FALSE,
   ind = 1/5,
   useCorSign = TRUE
```

TF_Filter 15

Arguments

tfs	a vector of selected tfs
GSDB	gene set database (a list of gene sets, each of which is comprised of a vector genes)
eset	expression set of gene expression data
DErslt	DEG results
with_weight	whether weighting factors (based on DEG p-values) are used to compute TF activity (default: TRUE)
if_module	whether the grouping scheme (activation or inhibition) depends on module detection algorithm (default: FALSE, no need to change)
ind	Hill coefficient parameter used in the weighting factors (default: $1/5$, recommend to use $0 < \text{ind} < 1/4$)
useCorSign	allow the option to use the TF gene expression correlation to flip signs (default: TRUE)

Value

a list of results: all_list: grouping scheme of all TF gene sets. all_activity: matrix of TF activity.

TF_Filter Generate network

Description

Network calculated using activity and interaction database. Uses mutual information to find possible interactions and keeps the interactions if they are available in the database. Sign of interaction is assigned based on the correlation between the activities.

```
TF_Filter(
   actMat,
   GSDB,
   miTh = 0.4,
   maxTf = 75,
   maxInteractions = 300,
   nbins = 16,
   corMethod = "spearman",
   useCor = FALSE,
   removeSignalling = FALSE,
   DPI = FALSE,
   nameFile = NULL,
   ...
)
```

16 TF_Filter_addgene

Arguments

actMat numeric matrix. Matrix containing the activities
GSDB List of list. Gene set database of interactions
miTh numeric. Mutual information threshold

maxTf integer (optional). Default 75. Maximum number of transcription factors in the

network. If removeSignalling is TRUE the actual number will be less.

maxInteractions

integer (optional). Default 300. Maximum number of interactions in the net-

work.

nbins integer (optional). Number of bins Default 16.

corMethod character (optional). Method to compute correlation.

useCor Logical (optional). Whether to use correlation instead of mutual information to

find possible interactions.

removeSignalling

logical (optional). Whether to remove the Tfs which are not the target of any other Tfs. Default TRUE. It is not recursive and the generated network might

still contain some signalling tfs.

DPI logical (optional). Default FALSE. Whether to apply the data processing in-

equality to remove weak edges from triangles.

nameFile character (optional). Ouput file name. Default NULL (no file output).

... two additional parameters passed from applyDPI (default: miDiff = 0, minMiTh

= 0.5)

Value

data.frame. Contains the interactions in a dataframe listing. source tf, target tf and interaction type (1-activation, 2-inhibition).

TF_Filter_addgene Generate network (an extension of TF_Filter)

Description

Network calculated using activity and interaction database. Uses mutual information to find possible interactions and keeps the interactions if they are available in the database. Sign of interaction is assigned based on the correlation between the activities. An extension of TF_Filter. Add a list of genes of interest.

```
TF_Filter_addgene(
  actMat,
  GSDB,
  genes,
  DEgenes,
  exp_data,
  miTh = 0.4,
```

TF_Filter_addgene 17

```
maxTf = 75,
maxInteractions = 300,
nbins = 16,
corMethod = "spearman",
useCor = FALSE,
removeSignalling = FALSE,
DPI = FALSE,
...
)
```

Arguments

actMat numeric matrix. Matrix containing the activities

GSDB List of list. Gene set database of interactions

genes vector. a vector of gene symbols of genes of interest

DEgenes vector. a vector of gene symbols of DE genes

exp_data matrix. gene expression data

miTh numeric. Mutual information threshold

maxTf integer (optional). Default 75. Maximum number of transcription factors in the

network. If removeSignalling is TRUE the actual number will be less.

maxInteractions

integer (optional). Default 300. Maximum number of interactions in the net-

work.

nbins integer (optional). Number of bins Default 16.

corMethod character (optional). Method to compute correlation.

useCor Logical (optional). Whether to use correlation instead of mutual information to

find possible interactions. Default FALSE

removeSignalling

logical (optional). Whether to remove the Tfs which are not the target of any other Tfs. Default FALSE. It is not recursive and the generated network might

still contain some signalling tfs.

DPI logical (optional). Default FALSE. Whether to apply the data processing in-

equality to remove weak edges from triangles.

... two additional parameters passed from applyDPI (default: miDiff = 0, minMiTh

= 0.5)

Value

List of data.frame. Contains the interactions in a data frame listing. source tf, target tf and interaction type (1-activation, 2-inhibition). tf_links: network interactions. new_links: new interactions associated with the genes of interest.

TF_Selection

	TF_GSEA	A unified Gene Set Enrichment Analysis (GSEA) function for three methods
--	---------	--

Description

A unified Gene Set Enrichment Analysis (GSEA) function for three methods

Usage

```
TF_GSEA(GSDB, DErslt, minSize = 5, nperm = 1000, method = "binary")
```

Arguments

GSDB	gene set database (a list of gene sets, each of which is comprised of a vector genes)
DErslt	DEG results
minSize	the minimum number of overlapping genes required for each gene set (a gene set filtering parameter, default: 5)
nperm	the number of gene list permutations (default: 1000)
method	fast: fgsea; r: R implementation of GSEA with a new permutation method; binary: R/C++ implementation for fast speed

Value

gseaRes: a table of GSEA results: tf: TF (gene set name). es: ES score. lens: number of overlapping genes in each gene set. pvals: p-value by counting. z: z-score. qvals: q-value from pvals.

TF_Selection	Identifying enriched TFs using Gene Set Enrichment Analysis (GSEA)
	– a wrapper function with many options

Description

Identifying enriched TFs using Gene Set Enrichment Analysis (GSEA) – a wrapper function with many options

```
TF_Selection(
  GSDB,
  DErslt,
  minSize = 5,
  nperm = 5000,
  method = "binary",
  qval = 0.05,
  compList = NULL,
  ntop = NULL,
  nameFile = NULL
)
```

toCPM 19

Arguments

GSDB gene set database (a list of gene sets, each of which is comprised of a vector genes)

DErslt DEG results

minSize the minimum number of overlapping genes required for each gene set (a gene

set filtering parameter, default: 5)

nperm the number of gene list permutations (default: 1000)

method fast: fgsea; R: r implementation of GSEA with a new permutation method; bi-

nary: R/C++ implementation for fast speed

q-value cutoff (default: 0.05)

compList a vector of comparisons, it needs to be consistent with DErslt from MicroDegs,

RNAseqDegs_limma, and RNAseqDegs_DESeq. GSEA is applied to each com-

parison

ntop the number of top genes (selection by the top genes) (default: NULL, no selec-

tion by the top genes)

nameFile file name to save the GSEA results (default: NULL, no output to a file). The

saved results can be reused later to adjust the TF selection parameters

Value

a list of results: GSEArslt: a dataframe of GSEA results (see TF_GSEA). tfs: a vector of selected TFs.

toCPM

convert to log10 (CPM) measurement in the RNA-Seq matrix

Description

convert to log10 (CPM) measurement in the RNA-Seq matrix

Usage

toCPM(ctMat)

Arguments

ctMat Matrix of gene expression counts

Value

mat: Matrix of CPM gene expression

Index

```
*Topic datasets
    hDB, 9
    mDB, 10
{\tt Activity\_heatmap}, \textcolor{red}{2}
allNet, 3
applyDPI, 3
cal_activity, 4
calculateMI, 4
DEG_Analysis_Micro, 5
filterDB, 5
{\tt getAdjacencyMat}, {\color{red} 6}
GSEA_permut_R, 6
GSEA_permut_R_revised, 7
GSEA_proc_R, 7
{\sf GSEA\_proc\_RC,\,8}
GSEA_score, 8
hDB, 9
Hill, 9
mDB, 10
MicroDegs, 10
plot_network, 11
Preprocess_counts, 11
rem_data, 12
Reselect_TFs, 12
RNAseqDegs_DESeq, 13
{\tt RNAseqDegs\_limma, 13}
row_norm, 14
TF_Activity, 14
TF_Filter, 15
TF_Filter_addgene, 16
TF_GSEA, 18
TF_Selection, 18
toCPM, 19
```