Lecture 7 (Thermodynamic Processes)

Physics 161-01 Spring 2012
Douglas Fields

Thermodynamic Processes

- Any thermodynamic process is possible, however, for the purposes of our study, we will look at four specific processes: p
 - Adiabatic = no heat transfer.
 - Isochoric = constant volume.
 - Isobaric = constant pressure.
 - Isothermal = constant temperature.

Adiabatic Processes

 No heat is transferred into or out of the system, so Q = 0.

$$\Delta U = Q - W \Rightarrow$$

$$\Delta U = -W = nC_V \Delta T$$
for an ideal gas

Isochoric Processes

• The volume remains constant, so W = 0.

$$\Delta U = Q - W \Rightarrow$$
$$\Delta U = Q$$

Isobaric Processes

The pressure remains constant, so

Isothermal Processes

- The temperature remains constant.
- For an ideal gas, the internal energy only depends upon temperature, so:

$$\Delta U = Q - W = 0 \Longrightarrow$$

$$Q = W$$

Each curve represents pressure as a function of volume for an ideal gas at a single temperature.

Internal Energy of an Ideal Gas

• Because an ideal gas has no interactions between the particles, the internal energy of an ideal gas depends only on its temperature, not on its pressure or volume.

In an isothermal expansion of an ideal gas, the amount of heat that flows into the gas

- A. is greater than the amount of work done by the gas.
- B. equals the amount of work done by the gas.
- C. is less than the amount of work done by the gas, but greater than zero.
- D. is zero.
- E. is negative (heat flows *out of* the gas).

In an isothermal expansion of an ideal gas, the amount of heat that flows into the gas

A. is greater than the amount of work done by the gas.

B. equals the amount of work done by the gas.

C. is less than the amount of work done by the gas, but greater than zero.

D. is zero.

E. is negative (heat flows *out of* the gas).

An ideal gas is taken around the cycle shown in this p-V diagram, from a to b to c and back to a. Process $b \rightarrow c$ is isothermal.

For process $a \rightarrow b$,

- A. Q > 0 and $\Delta U > 0$.
- B. Q > 0 and $\Delta U = 0$.
- C. Q = 0 and $\Delta U > 0$.
- D. Q = 0 and ΔU < 0.
- E. Q < 0 and ΔU < 0.

An ideal gas is taken around the cycle shown in this p-V diagram, from a to b to c and back to a. Process $b \rightarrow c$ is isothermal.

For process $a \rightarrow b$,

A. Q > 0 and $\Delta U > 0$.

B. Q > 0 and $\Delta U = 0$.

C. Q = 0 and $\Delta U > 0$.

D. Q = 0 and ΔU < 0.

E. Q < 0 and $\Delta U < 0$.

An ideal gas is taken around the cycle shown in this p-V diagram, from a to b to c and back to a. Process $b \rightarrow c$ is isothermal.

For process $b \rightarrow c$,

B.
$$Q > 0$$
 and $\Delta U = 0$.

C.
$$Q = 0$$
 and $\Delta U > 0$.

D. Q = 0 and
$$\Delta U$$
 < 0.

E. Q < 0 and
$$\Delta U$$
 < 0.

An ideal gas is taken around the cycle shown in this p-V diagram, from a to b to c and back to a. Process $b \rightarrow c$ is isothermal.

For process $b \rightarrow c$,

A. Q > 0 and $\Delta U > 0$.

B. Q > 0 and $\Delta U = 0$.

C. Q = 0 and $\Delta U > 0$.

D. Q = 0 and $\Delta U < 0$.

E. Q < 0 and ΔU < 0.

An ideal gas is taken around the cycle shown in this p-V diagram, from a to b to c and back to a. Process $b \rightarrow c$ is isothermal.

For process $c \rightarrow a$,

B.
$$Q > 0$$
 and $\Delta U = 0$.

C. Q = 0 and
$$\Delta U > 0$$
.

D.
$$Q = 0$$
 and $\Delta U < 0$.

E. Q < 0 and
$$\Delta U$$
 < 0.

An ideal gas is taken around the cycle shown in this p-V diagram, from a to b to c and back to a. Process $b \rightarrow c$ is isothermal.

For process $c \rightarrow a$,

B.
$$Q > 0$$
 and $\Delta U = 0$.

C.
$$Q = 0$$
 and $\Delta U > 0$.

An ideal gas begins in a thermodynamic state a. When the temperature of the gas is raised from T_1 to a higher temperature T_2 at a constant *volume*, a positive amount of heat Q_{12} flows into the gas. If the same gas begins in state a and has its temperature raised from T_1 to T_2 at a constant *pressure*, the amount of heat that flows into the gas is

- A. greater than Q_{12} .
- B. equal to Q_{12} .
- C. less than Q_{12} , but greater than zero.
- D. zero.
- E. negative (heat flows *out of* the system).

An ideal gas begins in a thermodynamic state a. When the temperature of the gas is raised from T_1 to a higher temperature T_2 at a constant *volume*, a positive amount of heat Q_{12} flows into the gas. If the same gas begins in state a and has its temperature raised from T_1 to T_2 at a constant *pressure*, the amount of heat that flows into the gas is

- B. equal to Q_{12} .
- C. less than Q_{12} , but greater than zero.
- D. zero.
- E. negative (heat flows *out of* the system).

An ideal gas is taken around the cycle shown in this p-V diagram, from a to c to b and back to a. Process $c \rightarrow b$ is adiabatic.

For process $c \rightarrow b$,

A.
$$Q > 0$$
, $W > 0$, and $\Delta U = 0$.

B.
$$Q > 0$$
, $W > 0$, and $\Delta U > 0$.

C.
$$Q = 0$$
, $W > 0$, and $\Delta U < 0$.

D.
$$Q = 0$$
, $W < 0$, and $\Delta U > 0$.

E.
$$Q < 0$$
, $W < 0$, and $\Delta U = 0$.

An ideal gas is taken around the cycle shown in this p-V diagram, from a to c to b and back to a. Process $c \rightarrow b$ is adiabatic.

For process $c \rightarrow b$,

A.
$$Q > 0$$
, $W > 0$, and $\Delta U = 0$.

B.
$$Q > 0$$
, $W > 0$, and $\Delta U > 0$.

$$\mathbb{C}$$
. $Q = 0$, $W > 0$, and $\Delta U < 0$.

D.
$$Q = 0$$
, $W < 0$, and $\Delta U > 0$.

E.
$$Q < 0$$
, $W < 0$, and $\Delta U = 0$.

Heat Capacities of an Ideal Gas

- $-C_V$ is the molar heat capacity at constant volume.
- C_p is the molar heat capacity at constant pressure.

(a) Constant volume: $dQ = nC_V dT$

(b) Constant pressure: $dQ = nC_p dT$

Heat Capacities of an Ideal Gas

- Figure 19.19 at the right shows that to produce the same temperature change, more heat is required at constant pressure than at constant volume since ΔU is the same in both cases.
- This means that $C_p > C_V$.

•
$$C_p = C_V + R$$
.

monatomic: diatomic:

$$C_V = \frac{3}{2}R \qquad C_V = \frac{5}{2}R$$

Ratios of Heat Capacities of an Ideal Gas

- The ratio of heat capacities is $\gamma = C_p/C_V$. For ideal gases, $\gamma = 1.67$ (monatomic) and $\gamma = 1.40$ (diatomic).
- Table 19.1 shows that theory and experiment are in good agreement for monatomic and diatomic gases.

Table 19.1 Molar Heat Capacities of Gases at Low Pressure

T C	C	C_V	C_p	$C_p - C_V$	ala
Type of Gas	Gas	(J/mol·K)	(J/mol·K)	(J/mol·K)	$\gamma = C_p/C_V$
Monatomic	He	12.47	20.78	8.31	1.67
	Ar	12.47	20.78	8.31	1.67
Diatomic	H_2	20.42	28.74	8.32	1.41
	N_2	20.76	29.07	8.31	1.40
	O_2	20.85	29.17	8.31	1.40
	CO	20.85	29.16	8.31	1.40
Polyatomic	CO_2	28.46	36.94	8.48	1.30
	SO_2	31.39	40.37	8.98	1.29
	H_2S	25.95	34.60	8.65	1.33