We claim:

1	1.	An apparatus, comprising:
2		an integrated circuit including
3		a first processor with a first dedicated cache;
4		a second processor with a second dedicated cache; and
5		control logic coupled to the first and second dedicated caches to transfer
6		first data from the first dedicated cache to the second dedicated
7		cache entirely within the integrated circuit.
1	2.	The apparatus of claim 1, wherein:
2		the control logic is to transfer the first data if the first data is a cache line in the
3		first dedicated cache and not in the second dedicated cache.
1	3.	The apparatus of claim 1, wherein:
2		the control logic is to transfer the first data if the first data is a modified version
3		of a particular cache line and the second dedicated cache contains an
4		unmodified version of the particular cache line.
1	4.	The apparatus of claim 1, further comprising:
2		a coherency unit to perform snoop operations on the first and second dedicated
3		caches.

1	<i>5.</i>	The apparatus of claim 1, wherein:
2		the control logic is further to transfer second data from the second dedicated
. 3		cache to the first dedicated cache entirely within the integrated circuit.
1	6.	The apparatus of claim 1, wherein the integrated circuit further includes:
2		a shared cache coupled to the control logic and to the second dedicated cache to
3		provide the first data to the second dedicated cache;
4		wherein the control logic includes a write buffer to receive the first data from
5		the first dedicated cache and to provide the first data to the shared cache
1	7.	The apparatus of claim 1, wherein the integrated circuit further includes:
2		a shared cache coupled to the control logic, to the first dedicated cache, and to
3		the second dedicated cache;
4		wherein the control logic is further to transfer second data from the second
5		dedicated cache to the first dedicated cache;
6		wherein the control logic includes a first write buffer to receive the first data
7		from the first dedicated cache and to provide the first data to the shared
8		cache, and further includes a second write buffer to receive the second
9		data from the second dedicated cache and provide the second data to the
10		shared cache;
11		wherein the shared cache is to provide the first data to the second dedicated
12		cache and to provide the second data to the first dedicated cache.

1	8.	The apparatus of claim 1, wherein:
2		the control logic includes a fill buffer coupled to first and second dedicated
3		caches to receive the first data from the first dedicated cache and to
4		provide the first data to the second dedicated cache.
1	9.	The apparatus of claim 1, wherein:
2		the control logic includes a first fill buffer coupled to the first and second
3		dedicated caches to receive the first data from the first dedicated cache
4		and to provide the first data to the second dedicated cache; and
5		the control logic includes a second fill buffer coupled to the first and second
6		dedicated caches to receive second data from the second dedicated cache
7		and to provide the second data to the first dedicated cache
1	10.	The apparatus of claim 1, wherein the control logic includes:
2		a multiplexer coupled to the first and second caches to receive the first data
3		from the first dedicated cache and to provide the first data to the second
4		dedicated cache.
1.	11.	The apparatus of claim 1, wherein the control logic includes:
2		a first multiplexer coupled to the first and second caches to receive the first data
3		from the first dedicated cache and to provide the first data to the second
4		dedicated cache; and
5		a second multiplexer coupled to the first and second caches to receive second
6		data from the second dedicated cache and to provide the second data to

the first dedicated cache.

1	12.	A method, comprising:
2		transferring first data from a first dedicated cache of a chip multi-processor to
3		control logic in the chip multi-processor, entirely within the chip multi-
4		processor; and
5		subsequently transferring the first data from the control logic to a second
6		dedicated cache of the chip multi-processor, entirely within the chip
7	*	multi-processor.
1	13.	The method of claim 12, further comprising:
2		transferring second data from the second dedicated cache to the control logic,
3		entirely within the chip multi-processor; and
4		subsequently transferring the second data from the control logic to the first
5		dedicated cache, entirely within the chip multi-processor.
1	14.	The method of claim 12, wherein:
2		the transferring the first data from the first dedicated cache includes transferring
3		the first data from the first dedicated cache to a write buffer;
4		the transferring the first data from the control logic includes transferring the first
5		data from the write buffer to a shared cache.
		.
1	15.	The method of claim 14, wherein:
2		the transferring the first data from the control logic further includes transferring
3		the first data from the shared cache to the second dedicated cache.

1	16.	The method of claim 12, wherein:
2		the transferring the first data from the first dedicated cache includes transferring
3		the first data from the first dedicated cache to a fill buffer;
4		the transferring the first data from the control logic includes transferring the first
5		data from the fill buffer to the second dedicated cache.
1	17.	The method of claim 12, wherein:
2		the transferring the first data from the first dedicated cache includes transferring
3		the first data from the first dedicated cache to a multiplexer; and
4		the transferring the first data from the control logic includes transferring the first
5		data from the multiplexer to the second dedicated cache.
1	18.	A system, comprising:
2		a main memory,
3		a chip multiprocessor coupled to the main memory and including:
4		a first processor with a first dedicated cache;
5.		a second processor with a second dedicated cache; and
6		control logic coupled to the first and second dedicated caches to transfer
7		first data from the first dedicated cache to the second dedicated
8		cache entirely within the chip multiprocessor.

1	19.	The system of claim 18, wherein:
2		the control logic is further to transfer second data from the second
3		dedicated cache to the first dedicated cache entirely within the
4		chip multiprocessor.
1	20.	The system of claim 18, wherein the chip multiprocessor further includes:
2		a shared cache coupled to the control logic and to the second dedicated cache to
3		provide the first data to the second dedicated cache;
4		wherein the control logic includes a write buffer to receive the first data from
5		the first dedicated cache and to provide the first data to the shared cache
1	21.	The system of claim 18, wherein:
2	•	the control logic includes a fill buffer coupled to first and second dedicated
3		caches to receive the first data from the first dedicated cache and to
4		provide the first data to the second dedicated cache.
1	22.	The system of claim 18, wherein the control logic includes:
2.		a multiplexer coupled to the first and second dedicated caches to receive the
3		first data from the first dedicated cache and to provide the first data to
4		the second dedicated cache.
1	23.	A machine-readable medium that provides instructions, which when executed
2	by a s	et of one or more processors, cause said set of processors to perform operations
3	comprising:	

5

		Attorney Docket No. 42390P1248
4		transferring data from a first dedicated cache in an integrated circuit to control
5		logic in the integrated circuit, entirely within the integrated circuit; and
6		subsequently transferring the data from the control logic to a second dedicated
7		cache of the integrated circuit, entirely within the integrated circuit.
1	24.	The medium of claim 23, wherein:
2		the transferring the data from the first dedicated cache includes transferring the
3		data from the first dedicated cache to a write buffer; and
4		the transferring the data from the control logic includes transferring the data
5		from the write buffer to a shared cache and subsequently transferring the
6		data from the shared cache to the second dedicated cache.
1	25.	The medium of claim 23, wherein:
2	-	the transferring the data from the first dedicated cache includes transferring the
3		data from the first dedicated cache to a fill buffer; and
4		the transferring the data from the control logic includes transferring the data
5		from the fill buffer to the second dedicated cache.
1	26.	The medium of claim 23, wherein:
2		the transferring the data from the first dedicated cache includes transferring the
3		data from the first dedicated cache to a multiplexer; and
4		the transferring the data from the control logic includes transferring the data

from the multiplexer to the second dedicated cache.