CIÊNCIA DA COMPUTAÇÃO Algoritmos de Alta Performance

Divisão e Conquista (Convex Hull)

Sobre Mim

alexandraraibolt@unifeso.edu.br

whoisraibolt.com.br

@ whoisraibolt

Referências Bibliografias Obrigatórias

• CORMEN, T.H. et al. Algoritmos: Teoria e Prática. 3ª ed. Rio de Janeiro: Elsevier, 2012.

Referências Bibliografias Complementares

• SZWACTFITER, J.L. et al. Estruturas de Dados e Seus Algoritmos. 2ª ed. Editora LTC, 1997.

- Convex Hull (Em português, Envoltória Convexa, ou Fecho Convexo).
- •É um problema importante da área da Geometria Computacional.
- •O objetivo é encontrar o Fecho Convexo (exterior ou a forma) que englobe uma forma, ou um conjunto de pontos no plano cartesiano.

Envoltória:

•[GEOMETRIA] Curva que toca determinado ponto de cada uma das curvas de uma família que possui apenas um parâmetro de curvas.

• Convexo:

• [GEOMETRIA] Curvo ou arredondado, como o exterior de uma forma esférica.

•Um objeto convexo é aquele sem ângulos internos maiores que 180 graus.

•Um objeto que não é convexo é chamado nãoconvexo ou côncavo.

•O Convex Hull de uma forma, ou de um conjunto de pontos é um limite convexo bem ajustado em torno dos pontos ou da forma.

•O Convex Hull de um objeto convexo é simplesmente seu limite.

•Já o Convex Hull de uma forma côncava é um limite convexo que o envolve mais firmemente.

Algoritmo de Graham (ou Varredura de Graham)

• Aplicações: Detecção de Pontos de Referências Faciais (Facial Landmarks).

• Aplicações: Detecção de Pontos de Referências Faciais (Facial Landmarks).

• Aplicações: Prevenção de Colisão de plataformas robóticas autonômas.

• Aplicações: Prevenção de Colisão de plataformas robóticas autonômas.

• Aplicações: Física de colisão em Jogos.

• Aplicações: Física de colisão em Jogos.

• Aplicações: Física de colisão em Jogos.

• Aplicações: Física de colisão em Jogos.

Aplicações: Modelagem 3D.

Aplicações: Modelagem 3D.

Aplicações: Modelagem 3D.

Aplicações: Geoprocessamento.

Aplicações: Geoprocessamento.

Aplicações: Geoprocessamento.

Algoritmos:

• Algoritmo Embrulho para Presente ou Algoritmo de Jarvis March — O(nh).

Algoritmo de Graham ou Varredura de Graham —
O(n log n).

Algoritmo Quickhull — O(n log n).

- Algoritmos:
 - Algoritmo Mergehull O(n log n).
 - Algoritmo de Cadeia Monótona O(n log n).
 - Algoritmo Incremental $O(n \log n)$.

- Algoritmos:
 - Algoritmo de Kirkpatrick-Seidel O(n log h).
 - Algoritmo de Chan $O(n \log h)$.
- •A complexidade de tempo de cada algoritmo apresentado é expressa em termos do número de pontos de entrada n e do número de pontos no envoltório h.

• Estamos interessados nos algoritmos de Divisão e Conquista para encontrar a Envoltória Convexa:

Algoritmo Quickhull;

Algoritmo Mergehull.

Algoritmo Convex Hull

- Recomendação de Leitura:
 - https://tinyurl.com/C-HULL-2D
 - https://tinyurl.com/C-HULL-3D
 - https://tinyurl.com/C-HULL-PY-CV-2

CIÊNCIA DA COMPUTAÇÃO Algoritmos de Alta Performance

Divisão e Conquista (Convex Hull)

Até a próxima!

