Lab 5 A

- Counter, 8 Bit Register and BCD Circuit
 - ≽i. Counter
 - ➤ Design a 3 Bit Up Counter with Reset.
 - ➤ ii. 8 Bit Register
 - ➤ Design a 8 Bit Register which stores and outputs a 8 bit binary input on clock rising edge with 'High' on Load Input.
 - iii. Design a ckt to decode a 8 bit binary to BCD.

Counter Design Example

 Design a 3 bit up counter which counts 0,1,2,3 and 4 once reset, it goes back to zero.

Counter Design Example

PS	NS						
CBA	$R=0$ $C^+B^+A^+$	$R=1$ $C^+B^+A^+$					
000	001	000					
001	010	000					
010	011	000					
011	100	000					
100	100	000					

BA	00	01	11	10
CR 00	1	0	0	1
01	0	0	0	0
11	0	х	х	х
10	0	х	х	х

$$A^+ = \bar{A} \; \bar{C} \bar{R}$$

BA CD	00	01	11	10
CR 00	0	1	0	1
01	0	0	0	0
11	0	х	х	х
10	0	х	х	х

$$C^+$$
 :

Counter Block Diagram

A 8 bit Register Using Dff

- A register is a storage or memory component in a digital ckt.
 - If (clock rising edge and Load = '1')
 - Output = input;
 - Else
 - Output = Prev_Output;
 - End if;

D Flip Flop

D	Clk	Q+
X	0	No change
1	Rising Edge	1
0	Rising Edge	0

Modified D Flip Flop

Modify D FF with an extra input: Load.

D	Clk	Load	Q+
X	0	0	No change
X	Rising Edge	0	No Change
1	Rising Edge	1	1
0	Rising Edge	1	0

Register Block Diagram

8 Bit Register

Modify Display Ckt

 First, modify your 7 segment display ckt to 4 inputs - 7 outputs. (Just Delete the Display output (D10-D16).

BCD

- A BCD is a binary system which represents one decimal number with 4 binary number.
 - $-15 \rightarrow 1111$ (in Binary)
 - $-15 \rightarrow 0001 0101 (in BCD)$
- Implement a ckt that convert a 8 bit binary input to two BCD.
- Maximum binary the ckt can decode is 99.
- When the input is higher than 99, overflow = '1'.

BCD: Binary Coded Decimal

Binary Number	BCD Ou $U_3U_2U_1U_0$		OverFlow
0000 0001	0000	0001	0
•			•
•			•
•			•
0000 1001	0000	1001	0
0000 1010	0001	0000	0
0000 1011	0001	0001	0
0000 1100	0001	0010	0
•			•
•			10
0110 0011	1001	1001	0
0110 0100	XXXX	xxxx	1

Shift Add 3 Alg

- Do 8 times (for 8 bin binary input).
- 1. Shift left one to the binary input.
- 2. Add 3 to BCD if its greater than 5.
- 3. Go to 1.

Example

$$(99)_{10} = (01100011)_2 = (1001\ 1001)_{BCD}$$

					В	CD						Bina	rv				
	OF		U3U2U1U0 L3L2L1L0														
		2^3	2^2	2^1	2^0	2^3	2^2	2^1	2^0	0	1	1	0	0	0	1	1
Shift 1		0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	
Shift 2		0	0	0	0	0	0	0	1	1	0	0	0	1	1		
Shift 3		0	0	0	0	0	0	1	1	0	0	0	1	1			
Shift 4		0	0	0	0	0	1	1	0	0	0	1	1				
Add- 3						0	0	1	1								
		0	0	0	0	1	0	0	1	0	0	1	1				
Shift 5		0	0	0	1	0	0	1	0	0	1	1					
Shift 6		0	0	1	0	0	1	0	0	1	1						
Shift 7		0	1	0	0	1	0	0	1	1							
Add 3						0	0	1	1								
		0	1	0	0	1	1	0	0	1							
Shift 8		1	0	0	1	1	0	0	1								
							Y										

9

Example

 $(100)_{10} = (01100100)_2 = (0000\ 0000)_{BCD}$ and OF = 1 (overflow)

		BCD											Bina	rv.			
	OF		U3U2	U1U0			L3L2	L1L0					Dilla	у			
		0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
Shift 1		0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	
Shift 2		0	0	0			0	0	1	1	0	0	1	0	0		
Shift 3		0	0	0	0	0	0	1	1	0	0	1	0	0			
Shift 4		0	0	0	0	0	1	1	0	0	1	0	0				
Add- 3						0	0	1	1								
		0	0	0	0	1	0	0	1	0	1	0	0				
Shift 5		0	0	0	1	0	0	1	0	1	0	0					
Shift 6		0	0	1	0	0	1	0	1	0	0						
Add 3						0	0	1	1								
		0	0	1	0	1	0	0	0	0	0						
Shift 7		0	1	0	1	0	0	0	0								
		0	0	1	1												
		1	0	0	0	0	0	0	0								
Shift 8	1	0	0	0	0	0	0	0									

Add 3 Ckt

```
• If Input > 5
```

- Output = Input +3;
- Else
- Output = Input;
- End

Input = 0101 (which is greater than 4) Output = 0101 + 0011 = 1000

	Input DCBA	Output QDQCQBQA
→	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001	0000 0001 0010 0011 0100 1000
	1010 1111	XXXX · · XXXX

When $input \leq 4$.

Fill these outputs

When input > 9, don't care.

Add 3 Ckt

- Complete the Truth Table from prev slide
- Find the Boolean expression for QD,QC,QB and QA.
- Implement the Ckt.

		BCD											Dinar	.,			
	OF	ι	J3U2U	1U0			L3L2L1L0			Binary							
		0	0	0	0	0	0	0	0	Н	G	F	Е	D	С	В	Α
Shift 1		0	0	0	0	0	0	0	Н	G	F	Е	D	С	В	Α	
Shift 2		0	0	0	0	0	0	Н	G	F	Е	D	С	В	Α		
Shift 3		0	0	0	0	0	Н	G	F	Ε	D	С	В	Α			
		lf	0HGF	> 5, 1 }	11 G1	F1= 0H	GF + (0011									
		0	0	0	0	1	H1	G1	F1	E	D	С	В	Α			
Shift 4		0	0	0	1	H1	G1	F1	Е	D	С	В	Α				
		If H1 G1	F1 E >	5, H2 (G2 F2	E1 = H	1 G1 F	1 E +	0011								
		0	0	0	- 1	H2	G2	F2	E1	D	С	В	Α				
Shift 5		0	0	- 1	H2	G2	F2	E1	D	С	В	Α					
		If G2 F2	E1 D>	5, G3	F3 E2	D1= G2	2 F2 E	1 D + 0	011								
		0	0	- 1	H2	G3	G3	E2	D1	С	В	Α					
Shift 6		0	- 1	H2	G3	F3	E2	D1	С	В	Α						
			lf I H2 G	i3 > 5, J	11 H3 G	i4 =l H2	G3 + 0	011									
		If F3				C1= F3											
		J	I1	Н3	G4	F4	E3	D2	C1	В	Α						
Shift 7		l1	Н3	G4	F4	E3	D2	C1	В	Α							
						F5 = I1 F											
						B1 = E3											
ci ici o		12		G5	F5	E4	D3	C2	B1	Α							
Shift 8	12	H4	G5	F5	E4	D3	C2	B1	Α								

BCD Alg

Ignore QD here!!!

BCD Circuit Block Diagram

BCD TopLevel

Simulation and Downloading

- Simulation Waveform for Counter and 8 bit Shift Register.
- Download BCD Ckt to DE 2 Board.