Relatório da implementação do Robo

Gustavo José Neves da Silva¹ Wilton Jaciel Loch¹

¹Departamento de Ciência da Computação Universidade do Estado de Santa Catarina (UDESC) – Joinville, SC – Brasil

gustavo.neves@yandex.com, wilton.loch@hotmail.com.br

Resumo. O presente trabalho realizado como parte da disciplina de Inteligência Artificial propõe uma implementação de um sistema de navegação automática de um robô responsável por diferentes manutenções em unidades fabris, utilizando o algoritmo A^* para calcular o custo da rota.

1. Introdução

Esse trabalho propõe uma implementação de um sistema de navegação automática de um robô responsável por diferentes manutenções em unidades fabris. As únicas informações que o robô possui são a informações da posição das fábricas, quantas e quais ferramentas cada uma delas necessita. As ferramentas estão espalhadas no ambiente e o robô não possui informação quanto a localização. Tipos de ferramentas existentes no sistema:

- Bateria de carga elétrica
- Braço de solda;
- Bomba de sucção;
- Dispositivo de refrigeração;
- Braço pneumático;

O robô possui um alcance máximo de 4 regiões adjacentes em todas as direções com o qual analisa o ambiente a fim de obter as informações do terreno e do que está sobre ele. O robô somente se desloca na vertical e na horizontal O ambiente é representado por uma matriz 42 x 42 O ambiente é configurável por arquivo de entrada A posição inicial do robô e das fábricas são configuráveis por um arquivo de entrada O robô identifica o tipo de ferramenta quando ela entra no alcance do radar e se ele já possui tal ferramenta Caso mais de uma ferramenta apareça no radar, o robô deve calcular o caminho até cada uma delas e se desloca até a mais próxima As ferramentas apesar de serem dispostas de forma aleatória, estão sempre localizadas em terrenos de custo 1. O programa exibe o custo do caminho percorrido pelo agente enquanto ele se movimenta pelo mapa e também o custo final ao terminar a execução Obstáculos podem ser inseridos ou removidos durante a configuração do ambiente.

Total de cada tipo de ferramenta:

- 20 baterias de carga elétrica;
- 10 braços de solda;
- 8 bombas de sucção;
- 6 dispositivos de refrigeração;
- 4 braços pneumáticos;

Tipos de fábricas e suas necessidades:

- Indústria de melhoramento genético de grãos, necessita de 8 baterias de carga elétrica;
- Empresa de manutenção de cascos de embarcações, necessita de 5 braços de solda;
- Indústria petrolífera com dutos entupidos, necessita de 2 bombas de sucção;
- Fábrica de fundição, necessita de 5 dispositivos de refrigeração;
- Indústria de vigas de aço, necessita de 2 braços pneumáticos;

Os tipos de terrenos que compõem o ambiente, suas respectivas cores e custos:

• Sólido e plano (verde) – Custo: 1 • Montanhoso (marrom) – Custo: 5

• Pântano (azul) – Custo: 10 • Árido (vermelho) – Custo: 15

• Obstáculo (preto) – Intransponível

2. Metodologia de Desenvolvimento

Tem a classe robô, lá que acontece tudo. A função seguir caminho é a que faz ele propriamente caminhar e é lá também que são chamados outros funções pra verificar se na nova posição dele(a que ele acabou de se mexer) é possível pegar uma ferramenta ou atender uma fábrica.

Dentro de seguir caminho também é que é chamado a função escolherDestino que é como se fosse o cérebro do robô pra tomar as decisões sobre pra onde ir.

O caminho do robô é representado por uma pilha de direções (0 a 3 no sentido horário) que são desempilhadas uma a uma pra que o robô possa realizar um movimento. Toda vez que é definido que o robô deve ir para uma fábrica, ferramenta ou qualquer outro destino ele executa o aEstrela da posição atual até naquele ponto.

As ferramentas encontradas são subtraídas da quantidade faltando até que chegue em zero.

O cérebro do robô em si funciona assim: Se não há ferramentas escaneadas e ainda nenhuma fábrica pode ser atendida, vá para a fábrica mais próxima. Se uma ferramenta for escaneada e ainda não há ferramentas suficientes daquele tipo, vá até a ferramenta e pegue-a. Se estiver muito próximo (2 de distância) de uma fábrica que ainda não pode ser atendida e não houver ferramentas escaneadas, vá para a fábrica mais distante. Se muito próximo do destino do passo anterior(fábrica mais distante) e não houver ferramentas escaneadas, vá para um ponto de interesse. Pontos de interesse são basicamente pontos próximos da borda do mapa em posições distintas.

3. Descrição de Experimentos/Simulações e Resultados Obtidos

Realizadas 20 execuções consecutivas, cujos resultados foram armazenados em arquivos para posterior análise.

4. Análise dos resultados obtidos

5. Conclusões e Trabalhos Futuros

	Custo total
Min.	322.0
1º quartil	393.8
Mediana	458.0
Media	475.4
3º quartil	531.5
Máx.	750.0

Tabela 1. Analise custo total

	Destinos escolhidos
Min.	27.00
1º quartil	28.75
Mediana	30.00
Media	30.65
3º quartil	32.25
Máx.	37.00

Tabela 2. Analise destinos escolhidos

	Num. movimentos realizados
Min.	297.0
1^o quartil	340.5
Mediana	410.0
Media	419.9
3º quartil	459.0
Máx.	651.0

Tabela 3. Analise movimentos realizados

	Num. nós expandidos
Min.	6219
1º quartil	8916
Mediana	11220
Media	12006
3º quartil	14764
Máx.	21126

Tabela 4. Analise nós expandidos