GNN IS A COUNTER? REVISITING GNN FOR QUESTION ANSWERING

ICLR 2022

00

Introduction

Questions about Today's QA Systems

- Are current GNN-based modules under- or overcomplicated for QA?
- What is the essential role they play in reasoning over knowledge?

Introduction

Analysis + Proposed Model: "GSC"

- Analysis of existing GNN modules: SparseVD as a diagnostic tool to analyze the importance of various parts of SOTA knowledge-aware
 GNN modules → GNN modules are over-complicated!
- Importance of edge counting: counting of edges in the graph plays a crucial role in knowledge-aware reasoning
- Design of GSC module:
 - proposing Graph Soft Counter (GSC), less than 1% trainable parameters compared to existing GNN modules
 - outperforms complex GNN modules on two benchmark

Analysis

Preliminaries

- LM: pool embedding of the start token as the sentence embedding + MLP to map the sentence embedding to the score for the choice
- KG subgraph of triplets of concepts from QA (same as Lin and Yasunaga)
- Node embeddings: existing works initialize node embedding with external embeddings
- Relevance score: extra embedding of relevance score in the input node feature to estimate the importance of KG nodes relative to QA context
- Adj matrix: typically converted to be symmetric before feeding into the GNN module
- Edge embeddings: concatenated one-hot vector to encode edge triplets $[u_s, e_{st}, u_t]$

Analysis

Dissection

- SparseVD
 - A neural model pruning method
 - Use to investigate which parts of GNN can be pruned out (sparse ratio to zero) without loss of accuracy → meaning that part of the model is redundant

	w/o SparseVD		w/ Spa	rseVD
Methods	IHdev-Acc. (%)	IHtest-Acc. (%)	IHdev-Acc. (%)	IHtest-Acc. (%)
KagNet (Lin et al., 2019)	$73.47\ (\pm0.22)$	69.01 (±0.76)	75.18 (± 1.05)	$70.48~(\pm 0.77)$
MHGRN (Feng et al., 2020)	74.45 (± 0.10)	71.11 (±0.81)	77.15 (± 0.32)	$72.66\ (\pm0.61)$
QAGNN (Yasunaga et al., 2021)	76.54 (± 0.21)	73.41 (±0.92)	77.64 (± 0.50)	73.57 (±0.48)

Table 1: To preserve the reasoning ability for analysis, our SparseVD tool prunes the GNN-based models without loss of accuracy on *Commonsense QA* dataset. As the official test is hidden, here we report the in-house dev (IHdev) and test (IHtest) accuracy, following the data split of Lin et al. (2019).

Analysis

Obsercation and Hypothesis

- Edge encoder that encodes edge triplets preserves a relatively higher sparse ratio, Node embedding can be fully pruned as well as relevance score
- 2) Layers inside GNN: all sparse ratios are low, while the value layer has relatively higher sparse ratio than key/query layers
- 3) Initial node embeddings can be completely discared

- 1) Node embeddings and relevance score are dispensable
- 2) Edge encoder layers are hard to prune → edge/node type info are essential to reasoning
- 3) Message passing layers can be pruned to a very low sparse ratio → GNN may be over parameterized, we only need fewer params for these layers
- 4) Graph pooler: key/query layers inside the pooler can be pruned out; graph pooler reduced to a linear transformation

GSC Architecture

- Only TWO basic components in GSC
 - Edge encoder
 - GSC layers
 - Get QA choice score by simply summing up the graph score and context score

Algorithm 1 PyTorch-style code of GSC

```
# qa_context: question answer pair context
# adj: edge index with shape 2 x N_edge
# edge_type: edge type with shape 1 x N_edge
# node_type: node type with shape 1 x N_node
edge_emb = edge_encoder(adj, edge_type, node_type)
node_emb = torch.zeros(N_node)
for i_layer in range(num_gsc_layers):
    # propagate from node to edge
    edge_emb += node_emb[adj[1]]
    # aggregate from edge to node
    node_emb = scatter(edge_emb, adj[0])
graph_score = node_emb[0]
context_score = fc(roberta(qa_context))
qa_score = context_score + graph_score
```

GSC Architecture

- Only TWO basic components in GSC
 - Edge encoder
 - two-layer MLP followed by a Sigmoid function. The triplets is represented as a concatenated one-hot vector $[u_s\,,e_{st},\;u_t]$
 - **GSC layers**
 - Get QA choice score by simply summing up the graph score and context score

GSC Architecture

- Only TWO basic components in GSC
 - Edge encoder
 - **GSC layers**
 - GSC layers are parameter-free, only keep basic graph operations; propagation and aggregation (2 layers):
 - Update each edge embedding with incoming node(in-node) embeddings
 - 2) Update each node embedding by aggregating the edge embeddings.
 - Get QA choice score by simply summing up the graph score and context score

GSC Architecture

- Only TWO basic components in GSC
 - Edge encoder
 - **GSC layers**
 - GSC layers are parameter-free, only keep basic graph operations; propagation and aggregation (2 layers):
 - Update each edge embedding with incoming node(in-node) embeddings
 - 2) Update each node embedding by aggregating the edge embeddings.
 - Get QA choice score by simply summing up the graph score and context score

	KagNet	MHGRN	QAGNN	GSC (Ours)
Adj-matrix	√	✓	✓	√
Edge-type	\checkmark	\checkmark	\checkmark	✓
Node-type	×	\checkmark	\checkmark	✓
Node-embedding	\checkmark	\checkmark	\checkmark	×
Relevance-score	×	×	✓	×
#Learnable Param	700k	547k	2845k	3k
Model size	819M	819M	821M	3k

Model	Time	Space	
G is a dense graph			
L-hop KagNet L-hop MHGRN	$\mathcal{O}\left(\mathcal{R} ^L \mathcal{V} ^{L+1}L\right)$ $\mathcal{O}\left(\mathcal{R} ^2 \mathcal{V} ^2L\right)$	$\frac{\mathcal{O}\left(\mathcal{R} ^{L} \mathcal{V} ^{L+1}L\cdot D\right)}{\mathcal{O}\left(\mathcal{R} \mathcal{V} L\cdot D\right)}$	
L-layer QAGNN L -layer GSC	$\mathcal{O}\left(\mathcal{V} ^2L ight) \ \mathcal{O}\left(\mathcal{V} L ight)$	$\mathcal{O}\left(\mathcal{R} \mathcal{V} L\cdot D ight) \ \mathcal{O}\left(\mathcal{R} \mathcal{V} L\cdot D ight)$	
${\cal G}$ is a sparse graph with maximum node degree $\Delta \ll {\cal V} $			
L-hop KagNet L -hop MHGRN L -layer QAGNN L -layer GSC	$\mathcal{O}\left(\mathcal{R} ^L \mathcal{V} L\Delta^L ight) \ \mathcal{O}\left(\mathcal{R} ^2 \mathcal{V} L\Delta ight) \ \mathcal{O}\left(\mathcal{V} L\Delta ight) \ \mathcal{O}\left(\mathcal{V} L\Delta ight)$	$ \begin{array}{c c} \mathcal{O}\left(\mathcal{R} ^L \mathcal{V} L\Delta^L\cdot D\right) \\ \mathcal{O}\left(\mathcal{R} \mathcal{V} L\cdot D\right) \\ \mathcal{O}\left(\mathcal{R} \mathcal{V} L\cdot D\right) \\ \mathcal{O}\left(\mathcal{R} \mathcal{V} L\cdot D\right) \\ \mathcal{O}\left(\mathcal{R} \mathcal{V} L\right) \end{array} $	

Experiment

Setup

- CommonsenseQA, OpenBookQA
- LM: CommonsenseQA(RoBERTa-Large), OpenBookQA(RoBERTa-Large, AristoRoBERTa)
- KG : ConceptNet

Results

Commonsense QA

Methods	IHdev-Acc. (%)	IHtest-Acc. (%)
RoBERTa-large (w/o KG)	73.07 (±0.45)	68.69 (±0.56)
+ RGCN (Schlichtkrull et al., 2018)	72.69 (±0.19)	68.41 (±0.66)
+ GconAttn (Wang et al., 2019)	$72.61(\pm 0.39)$	$68.59 (\pm 0.96)$
+ KagNet (Lin et al., 2019)	$73.47 (\pm 0.22)$	69.01 (± 0.76)
+ RN (Santoro et al., 2017)	$74.57 (\pm 0.91)$	$69.08 (\pm 0.21)$
+ MHGRN (Feng et al., 2020)	$74.45 \ (\pm 0.10)$	$71.11 (\pm 0.81)$
+ QAGNN (Yasunaga et al., 2021)	$76.54 (\pm 0.21)$	$73.41 (\pm 0.92)$
+ GSC (Ours)	79.11 (±0.22)	74.48 (±0.41)

Table 4: Performance comparison on Commonsense QA

Methods	Test
RoBERTa (Liu et al., 2019)	72.1
RoBERTa + FreeLB (Zhu et al., 2019) (ensemble)	73.1
RoBERTa + HyKAS (Ma et al., 2019)	73.2
RoBERTa + KE (ensemble)	73.3
RoBERTa + KEDGN (ensemble)	74.4
XLNet + GraphReason (Lv et al., 2020)	75.3
RoBERTa + MHGRN (Feng et al., 2020)	75.4
ALBERT + PG (Wang et al., 2020)	75.6
RoBERTa + QA-GNN (Yasunaga et al., 2021)	76.1
ALBERT (Lan et al., 2019) (ensemble)	76.5
UnifiedQA (11B)* (Khashabi et al., 2020)	79.1
RoBERTa + GSC (Ours)	76.2

Table 5: Test accuracy on *CommonsenseQA*'s official leaderboard. The previous top system, UnifiedQA (11B params) is 30x larger than our model.

Results

OpenBook QA

Methods	RoBERTa-large	AristoRoBERTa
Fine-tuned LMs (w/o KG)	64.80 (±2.37)	78.40 (±1.64)
+ RGCN + GconAtten + RN + MHGRN + QAGNN	$62.45 (\pm 1.57)$ $64.75 (\pm 1.48)$ $65.20 (\pm 1.18)$ $66.85 (\pm 1.19)$ $67.80* (\pm 2.75)$	74.60 (\pm 2.53) 71.80 (\pm 1.21) 75.35 (\pm 1.39) 80.6 82.77 (\pm 1.56)
+ GSC (Ours)	70.33 (±0.81)	86.67 (±0.46)

Table 6: Test accuracy on *OpenBookQA*. Methods with AristoRoBERTa use the textual evidence by Clark et al. (2019) as an additional input to the QA context.

Discussion

Maximum number of retrieved node

- 1-hop retrieval is adequate for GSC methods, and this could be done super efficiently than multi-hop retrieval.
- Handcrafted hard edge counting feature feeding into two-layer MLP
 - Hard counting model with 2-hop edge feature : achieve
 comparable performance, even outperforms other GNN baselines.
 - GSC is effective + counting is an essential functionality in knowledge-aware QA system.

Methods	IHdev-Acc. (%)	IHtest-Acc. (%)
MLP + Counter (1-hop) MLP + Counter (2-hop)	$78.02 (\pm 0.05)$ $78.30 (\pm 0.09)$	$73.62 (\pm 0.12)$ $74.13 (\pm 0.08)$
GSC w/ QA nodes	79.11 (±0.22)	74.48 (±0.41)
w/ 32 nodes w/ 64 nodes w/ 128 nodes w/ 256 nodes	$78.52 (\pm 0.58)$ $78.53 (\pm 0.77)$ $78.50 (\pm 0.96)$ $78.32 (\pm 0.60)$	74.40 (± 0.25) 73.93 (± 1.09) 72.78 (± 1.15) 73.89 (± 0.63)

Discussion

17

Prediction Overlap

- Datasets are relatively noisy and there exists decent variance in the prediction
- GSC has a larger overlap for GNN-based systems
- Order of the percentage of overlap of left four exactly matches the order of the performance of each model: GSC > QA-GNN > MHGRN > RoBERTa. GSC has quite similar behaviors versus other GNN based systems, reasoning capability on par with existing GNN counter parts.

Discussion

Interpretability

- For retrieved sub-graph of each answer choice,
 - We can observe behavior of GSC by printing out output edge/node values of each layer.

Conclusion

- Current GNN-based QA systems are over-parameterized and over-complex
- Initial node embeddings and some GNN layers are dispensable
- GNN essentially works as a counter in the QA reasoning process

Thank you!

20