Econ 204 – Problem Set 5¹

Due Friday August 14, 2020

1. Let $f_n : \mathbb{R} \to \mathbb{R}$ be differentiable for each $n \in \mathbb{N}$ with $|f'_n(x)| \leq 1$ for all n and x. Assume,

$$\lim_{n \to \infty} f_n(x) = g(x) \tag{1}$$

for all x. Prove that $g: \mathbb{R} \to \mathbb{R}$ is Lipschitz-continuous.

Let a < b be real numbers and $\varepsilon > 0$. Take n large enough such that:

$$|f_n(a) - g(a)| < \varepsilon \quad |f_n(b) - g(b)| < \varepsilon$$
 (2)

Since f_n is differentiable on \mathbb{R} , by the mean value theorem there exists $c \in (a, b)$ such that

$$f_n(b) - f_n(a) = f'_n(c)(b-a).$$
 (3)

Thus,

$$|f_n(b) - f_n(a)| = |f_n'(c)| |b - a| \le |b - a|.$$
(4)

Then, using the triangle inequality:

$$|g(a) - g(b)| \le |g(a) - f_n(a)| + |f_n(a) - f_n(b)| + |f_n(b) - g(b)|$$

$$< 2\varepsilon + |f_n(a) - f_n(b)|$$

$$\le 2\varepsilon + |b - a|.$$
(5)

This result implies that $|g(a) - g(b)| < 2\varepsilon + |b - a|$ for all $\varepsilon > 0$, hence $|g(a) - g(b)| \le |b - a|$; concluding the Lipschitz continuity of g.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be a C^2 (twice continuously differentiable) function. The function and its second derivative are bounded, namely there exist M, N > 0 such that $\sup_{x \in \mathbb{R}} |f(x)| \leq M$ and $\sup_{x \in \mathbb{R}} |f''(x)| \leq N$. Show that $\sup_{x \in \mathbb{R}} |f'(x)| \leq 2\sqrt{MN}$.

Fix an arbitrary $x \in \mathbb{R}$. Then, using Taylor's theorem for every $y \in \mathbb{R}$ there exists ξ between x and y such that

$$f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(\xi)(y - x)^{2}$$

$$\leq f(x) + f'(x)(y - x) + \frac{1}{2}N(y - x)^{2}.$$
(6)

Since $f(x) - f(y) \le 2M$, then $\frac{1}{2}N(y-x)^2 + f'(x)(y-x) + 2M \ge 0$ for every $y \in \mathbb{R}$. Therefore, the quadratic polynomial

$$g(t) = \frac{1}{2}Nt^2 + f'(x)t + 2M \tag{7}$$

¹In case of any problems with the solution to the exercises please email farzad@berkeley.edu

is nonnegative for all $t \in \mathbb{R}$. Consequently, its $\Delta = (f'(x))^2 - 4MN$ must be less than or equal to zero, that implies $|f'(x)| \leq 2\sqrt{MN}$. Since x was arbitrarily chosen this bound holds for every $x \in \mathbb{R}$ that concludes the proof.

3. The oscillation of an arbitrary function $f:[a,b]\to\mathbb{R}$ at $x\in[a,b]$ is ²

$$\operatorname{osc}_{x} f := \lim_{r \downarrow 0} \operatorname{diam} \left(f \left([x - r, x + r] \right) \right), \tag{8}$$

where for every $x_1, x_2 \in [a, b]$, $f([x_1, x_2]) := \{y : y = f(x) \text{ for some } x \in [x_1, x_2]\}$. For k > 0, let D_k be the set of points with oscillation greater than or equal to k, i.e $D_k := \{x \in [a, b] : \operatorname{osc}_x f \geq k\}$. Prove that D_k is closed.³

We show that every convergent sequence in D_k converges to a point in D_k , thus we conclude D_k is closed. Take an arbitrary sequence $\{x_n\} \subset D_k$ such that $x_n \to x$. For every $\varepsilon > 0$, one can find $N \in \mathbb{N}$ such that $\forall n \geq N : |x_n - x| \leq \varepsilon/2$. This implies that $[x_n - \varepsilon/2, x_n + \varepsilon/2] \subset [x - \varepsilon, x + \varepsilon]$, because for every $y \in [x_n - \varepsilon/2, x_n + \varepsilon/2]$:

$$|y - x| \le |y - x_n| + |x_n - x| \le \varepsilon/2 + \varepsilon/2 = \varepsilon \tag{9}$$

As a result of this inclusion, we deduce that

$$\operatorname{diam}\left(f\left(\left[x_{n}-\varepsilon/2,x_{n}+\varepsilon/2\right]\right)\right) \leq \operatorname{diam}\left(f\left(\left[x-\varepsilon,x+\varepsilon\right]\right)\right). \tag{10}$$

Since $x_n \in D_k$, the *lhs* to the above inequality is greater than or equal to k, therefore, diam $(f([x-\varepsilon,x+\varepsilon])) \ge k$. Since this result holds for every ε , then

$$\lim_{\varepsilon \downarrow 0} \operatorname{diam} \left(f\left([x - \varepsilon, x + \varepsilon] \right) \right) \ge k, \tag{11}$$

proving $x \in D_k$.

4. The goal of this exercise is to verify the **Banach-Steinhaus** theorem. Let $\{T_n\}$ be a sequence of bounded linear functions $T_n: X \to Y$ from a Banach (complete normed vector) space X into a normed vector space Y, such that $\{T_n(x)\}$ is bounded for every $x \in X$, that is for all $x \in X$ there exists $c_x \in \mathbb{R}_+$ such that:

$$||T_n(x)|| \le c_x \quad \forall n \in \mathbb{N} \tag{12}$$

Then, we want to show that the sequence of norms $\{||T_n||\}$ is bounded, that is there exists c > 0 such that $||T_n|| \le c$ for all $n \in \mathbb{N}$.

(a) For every $k \in \mathbb{N}$ let $A_k \subseteq X$ be the set of all $x \in X$ such that $||T_n(x)|| \leq k$ for all

²The symbol ' \downarrow ' means that r decreases to 0 along the limit.

³This question is part of the exercise 19 in chapter 3 of the second edition of *Real Mathematical Analysis*, Charles Chapman Pugh.

n. Show that A_k is closed under the X-norm.

Suppose $\{x_j\}$ is a sequence in A_k converging to some point $x \in X$. Then:

$$||T_n(x) - T_n(x_j)|| = ||T_n(x - x_j)|| \le ||T_n|| ||x - x_j||$$
(13)

The last inequality holds because $T_n \in B(X,Y)$, namely is a bounded linear function. Now one can send $j \to \infty$ and because $||x - x_j|| \to 0$, then $\lim_{j \to \infty} T_n(x_j) = T_n(x)$. We have seen in exercise 1 of ps.3 that the metric and in particular the norm operator is a continuous mapping, hence $\lim_{j \to \infty} ||T_n(x_j)|| = ||T_n(x)||$, thereby $T_n(x) \le c_x$ and $x \in A_k$, which verifies that A_k is closed.

- (b) Use equation (12) to show that $X = \bigcup_{k \in \mathbb{N}} A_k$. Note that for each k, $A_k \subseteq X$ hence $\bigcup_{k \in \mathbb{N}} A_k \subseteq X$. Further, for every $x \in X$ the sequence $\{T_n(x)\}$ is bounded by c_x , hence there has to be some $k \in \mathbb{N}$ such that $k \geq c_x$ and $x \in A_k$, which implies $\bigcup_{k \in \mathbb{N}} A_k \supseteq X$.
- (c) The **Baire's** theorem states that in this case since X is complete, there exists some A_{k_0} that contains an open ball, say $B_{\varepsilon}(x_0) \subseteq A_{k_0}$. Take this result as given, and prove there exists some constant c > 0 such that

$$||T_n|| \le c \quad \forall n \in \mathbb{N}. \tag{14}$$

Hint: For every nonzero $x \in X$ there exists $\gamma > 0$ such that $x = \frac{1}{\gamma}(z - x_0)$, where $x_0, z \in B_{\varepsilon}(x_0)$ and $\gamma > 0$.

Let $x \neq 0$ be arbitrary and set $z = x_0 + \gamma x$, where $\gamma = \varepsilon/2||x||$. Therefore, $||z - x_0|| < \varepsilon$, hence $z \in_{\varepsilon} (x_0) \subseteq A_{k_0}$. This implies that for all $n \in \mathbb{N}$: $||T_n(x_0)|| \le k_0$ and $||T_n(z)|| \le k_0$. Therefore,

$$||T_{n}(x)|| = ||T_{n}\left(\frac{1}{\gamma}(z - x_{0})\right)|| = \frac{1}{\gamma}||T_{n}(z) - T_{n}(x_{0})||$$

$$\leq \frac{1}{\gamma}\left(||T_{n}(z)|| + ||T_{n}(x_{0})||\right) \leq \frac{2k_{0}}{\gamma} = \frac{4k_{0}||x||}{\varepsilon},$$
(15)

which holds for all $x \neq 0$. This implies that $||T_n|| \leq 4k_0/\varepsilon$ for all n (why?).

5. Suppose $\Psi: X \to 2^X$ is a non-empty and compact-valued upper-hemicontinuous correspondence. The metric space X is compact. Show that there exists a non-empty compact set $C \subset X$ such that $\Psi(C) = C$ (you can use the exercises that are proved in the sections).

First recall that we have shown in section 7 that the image of every compact subset under such a correspondence is compact. Therefore, $\Psi(X)$ is compact and $\Psi(X) \subset X$. Hence, $\Psi^2(X) := \Psi(\Psi(X)) \subset \Psi(X)$ is also compact. Consequently, we can construct a decreasing sequence of compact subsets $\{\Psi^n(X)\}$ such that $\Psi^{n+1}(X) := \Psi(\Psi^n(X))$

and $\Psi^n(X) \supset \Psi^{n+1}(X) \supset \ldots$ Let $C = \bigcap_{n \in \mathbb{N}} \Psi^n(X)$, which is non-empty because of Cantor theorem (section notes 6), and is closed because it is the intersection of closed subsets. So, C is compact as it is a closed subset of a compact set X. Since $C \subset \Psi^n(X)$ for every n, then $\Psi(C) \subset \Psi(\Psi^n(X)) = \Psi^{n+1}(X)$, and hence $\Psi(C) \subset \bigcap_{n \in \mathbb{N}} \Psi^n(X) = C$. Thus it is enough to show $C \subset \Psi(C)$. For this we offer two proofs; the first one is based on the sequential characterization of uhc and the second one uses the open set definition.

First proof: Let $y \in C$. By definition $y \in \Psi^n(X)$ for every n, so for every n there exists $z_n \in \Psi^{n-1}(X)$ such that $y \in \Psi(z_n)$. Then $\{z_n\} \subseteq X$ and X is compact, so there is a convergent subsequence $z_{n_k} \to z \in X$. Since $y \in \Psi(z_{n_k})$ for each n_k and Ψ has closed graph (because Ψ is uhc and closed-valued), must have $y \in \Psi(z)$ as well. Now claim $z \in C$. If not, then there exists N such that for all $n \geq N$, $z \notin \Psi^n(X)$. In particular, $z \notin \Psi^N(X)$. Then there exists $\varepsilon > 0$ such that $B_{\varepsilon}(z) \cap \Psi^N(X) = \emptyset$. But this is a contradiction, as $z_{n_k} \in \Psi^N(X)$ for all $n_k > N$, and $z_{n_k} \to z$. Therefore $z \in C$. Thus $y \in \Psi(C)$. So $C \subset \Psi(C)$.

Second proof: Assume to the contrary, $\exists z \in C \setminus \Psi(C)$. Therefore, $\{z\}$ and $\Psi(C)$ are disjoint. Since $\Psi(C)$ is closed one can find an open ball $B(z, \varepsilon_z)$ around z such that $B(z, \varepsilon_z) \cap \Psi(C) = \emptyset$. Let $\bar{B}(z, \varepsilon_z/2) = \{y \in X : d(y, z) \leq \varepsilon/2\}$ be the closed ball with radius $\varepsilon_z/2$ around z, then $\bar{B}(z, \varepsilon_z/2) \subset B(z, \varepsilon_z)$. Now for every point $x \in \Psi(C)$ one can find an open ball $B(x, \varepsilon_x)$ such that $B(x, \varepsilon_x) \cap \bar{B}(z, \varepsilon_z/2) = \emptyset$. Let G be the union of all these balls, i.e $G = \bigcup_{x \in \Psi(C)} B(x, \varepsilon_x)$, then G is an open set containing $\Psi(C)$ that is disjoint from $B(z, \varepsilon_z/2)$ containing z. Because of uhc the upper-inverse $\Psi^u(G)$ is open and covers C. There must be some $N \in \mathbb{N}$ such that for all $n \geq N$, $\Psi^n(X) \subset \Psi^u(G)$, because otherwise one could employ an elementary compactness argument to reach a contradiction. This implies $\Psi^{N+1}(X) = \Psi(\Psi^N(X)) \subset G$, so $C \subset G$, that violates the disjointness of $z \in C$ from G. Therefore, $C \subset \Psi(C)$.