12.5 Common Source Amplifiers

Figure 12.22 Common-source amplifier.

Common-Source Amplifiers

•C₁ and C₂ are coupling capacitors and C_s is the bypass capacitor. The capacitors are intended to have large impedances for the dc signal and very small impedances for the ac signal.

$$Zc = \frac{1}{j2\pi fC}$$

$$\begin{cases} Zc \to \infty, f = 0 \\ Zc \to 0, f >> 0, \text{ or } C \text{ is large} \end{cases}$$

Common-Source Amplifiers

- •For DC analysis, the capacitors are replaced by open circuits to determine the quiescent operation point (Q point). The **transconductance** g_m for the small-signal equivalent circuit is also determined.
- •For AC analysis, the capacitor are replaced by short circuits to determine the ac voltage gain $A_v = v_o/v_{in}$.

The Small-Signal Equivalent Circuit

- •In small-signal midband analysis of FET amplifiers, the coupling capacitors, bypass capacitors, and dc voltage sources are replaced by short circuits.
- •The FET is replaced with its small-signal equivalent circuit. Then, we write circuit equations and derive useful expressions for gains, input impedance, and output impedance.

AC Analysis

DC voltage sources Coupling capacitors V_{DD} V_{DD} R v(t) v_{in}

Figure 12.22 Common-source amplifier.

Figure 12.22 Common-source amplifier.

Bypass capacitors

SMALL-SIGNAL EQUIVALENT CIRCUITS (12.4)

Figure 12.21 Determination of g_m and r_d . See Example 12.3.

$$i_d(t) = g_m v_{gs}(t)$$

Figure 12.19 Small-signal equivalent circuit for FETs.

A more complex equivalent circuit consider drain resistance r_d

Common Source Amplifiers: FET source 端接ground

Figure 12.22 Common-source amplifier.

Figure 12.23 Small-signal equivalent circuit for the common-source amplifier.

Common Source Amplifiers:

Figure 12.23 Small-signal equivalent circuit for the common-source amplifier.

Equivalent load resistance

$$R'_{L} = \frac{1}{1/r_{d} + 1/R_{D} + 1/R_{L}}$$

Input voltage & output voltage

$$\begin{cases} v_o = -g_m v_{gs} R_L' \\ v_{in} = v_{gs} \end{cases}$$

$$A_{v} = \frac{v_{o}}{v_{in}} = -g_{m}R_{I}$$

Common Source Amplifiers:

Input Resistance

$$v(t) \stackrel{P}{\longleftarrow} v_{\text{in}}(t) = R_1 + R_2 + R_3 + R_4 + R_5 +$$

$$R_{\rm in} = \frac{v_{\rm in}}{i_{\rm in}} = R_G = R_1 || R_2$$

Figure 12.23 Small-signal equivalent circuit for the common-source amplifier.

Output resistance

- •disconnect the load,
- •replace the signal source by the internal resistance,
- find the resistance by looking into the output terminals.

Figure 12.24 Circuit used to find R_o .

$$R_o = \frac{1}{1/R_D + 1/r_d}$$

Analyze the following circuit. $KP=50uA/V^2$, $V_{to}=2$ V, L=10um, W=400um (identical to example 12.2).

Assume

$$\begin{cases} v(t) = 100 \sin(2000\pi t) \text{mV} \\ r_d = \infty \end{cases}$$
 Find

•midband voltage gain

- •input resistance
- output resistance
- output voltage

Figure 12.25 Common-source amplifier.

Analyze the following circuit. $KP=50uA/V^2$, $V_{to}=2$ V, L=10um, W=400um (identical to example 12.2).

Analyze the following circuit. $KP=50uA/V^2$, $V_{to}=2$ V, L=10um, W=400um (identical to example 12.2).

AC Analysis

Fine g_m (see Ch 12.4)

Figure 12.23 Small-signal equivalent circuit for the common-source amplifier.

$$g_m = 2K(V_{GSQ} - V_{to}) = \sqrt{2KP}\sqrt{W/L}\sqrt{I_{DQ}} = 1.77mS$$

Equivalent load resistance

$$R'_{L} = \frac{1}{1/R_{L} + 1/R_{D} + 1/R_{L}} = 3197\Omega$$
 ($r_{d} = \infty$)

Voltage Gain

$$A_{v} = \frac{v_{o}}{v_{in}} = -g_{m}R'_{L} = -5.66$$

Analyze the following circuit. $KP=50uA/V^2$, $V_{to}=2V$, L=10 μ m, W=400 μ m (identical to example 12.2).

Input Resistance

Figure 12.23 Small-signal equivalent circuit for the common-source amplifier.

$$R_{\rm in} = \frac{v_{\rm in}}{i_{\rm in}} = R_G = R_1 || R_2 = 750 k\Omega$$

$$R_o = \frac{1}{1/R_D + 1/r_d} = R_D = 4.7 k\Omega$$

$$e^{\mathbf{e}} R_o = \frac{1}{1/R_D + 1/\gamma_d} = R_D = 4.7k\Omega$$

$$v_{in}(t) = v_{gs}(t) = v(t) \frac{R_{in}}{R_{in} + R} = 88.23\sin(2000\pi t) \text{mV}$$

$$v_o(t) = A_v v_{in}(t) = -500 \sin(2000\pi t) \text{mV}$$

12.7 CMOS Logic Gate

CMOS: Complementary Metal-Oxide- Semiconductor (互補 式金氧半導體是一種積體電路製程,可在矽晶圓上製作出 PMOS (P-channel MOSFET)和NMOS (N-channel MOSFET)元件,由於PMOS與NMOS在特性上為互補性

,因此稱為CMOS。

MOSFET Summary

	NMOS	PMOS	
Circuit symbol $V_{GS}=V_{SS}$ NMOS $V_{GS}=0$ NMOS	$ \begin{array}{cccc} & & & & & & & & & & \\ & & & & & & & & \\ & & & & $	$G \overset{S}{\longrightarrow} V_{GS} = -\frac{1}{2}$ $B \overset{PMOS}{\longrightarrow} V_{GS} = 0$ $D \overset{I}{\longrightarrow} V_{GS} = 0$ $D \overset{I}{\longrightarrow} V_{GS} = 0$	V _{DD} ON OFF
KP (typical value)	$50 \mu\text{A/V}^2$	$25 \mu A/V^2$	
K	(1/2) KP (W/L)	(1/2) KP (W/L)	
V_{to} (typical value)	+1 V	-1 V	
Cutoff region	$v_{GS} \le V_{to}$ $i_D = 0$	$v_{GS} \ge V_{to}$ $i_D = 0$	
Triode region	$v_{GS} \ge V_{to} \text{ and } 0 \le v_{DS} \le v_{GS} - V_{to}$ $i_D = K [2(v_{GS} - V_{to}) v_{DS} - v_{DS}^2]$	$v_{GS} \le V_{to} \text{ and } 0 \ge v_{DS} \ge v_{GS} - V_{to}$ $i_D = K [2(v_{GS} - V_{to}) v_{DS} - v_{DS}^2]$	
Saturation region	$v_{GS} \ge V_{to}$ and $v_{DS} \ge v_{GS} - V_{to}$ $i_D = K (v_{GS} - V_{to})^2$	$v_{GS} \le V_{to}$ and $v_{DS} \le v_{GS} - V_{to}$ $i_D = K (v_{GS} - V_{to})^2$	
v_{DS} and v_{GS}	Normally assume positive values	Normally assume negative values	

CMOS Inverter

$$V_{in}=V_{DD}$$
 (high)

NMOS $V_{GS}=V_{DD}$ ON,

PMOS $V_{GS}=0$ OFF,

 $V_{out}=0$ (low)

(c) Equivalent circuit with $V_{\rm in}$ high

$$V_{in}$$
=0 (low)
NMOS V_{GS} = 0 OFF
PMOS V_{GS} = - V_{DD} ON,
 V_{out} = V_{DD} (high)

(d) Equivalent circuit with V_{in} low

CMOS NAND Gate

 $X = (A \cdot B)$

Truth Table

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

1. A= high & B= high

M1 and M2 OFF

M3 and M4 ON

V_{out} low

(c) Both A and B are high

M3 and M4 OFF

V_{out} high

CMOS NAND Gate

 $X = (A \cdot B)$

A X

Truth Table

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

3. A= high & B= low
M1 OFF and M2 ON
M3 ON and M4 OFF
V_{out} high

4. A= low & B= high

M1 ON and M2 OFF

M3 OFF and M4 ON

V_{out} high

CMOS NOR Gate

Figure 12.33 Two-input CMOS NOR gate.