Construction d'un modèle de scoring

Prédire la solvabilité d'un client

Sommaire

- 1. Compréhension de la problématique métier
- 2. Description du jeu de données
- 3. Transformation du jeu de donnée
- 4. Comparaison et synthèse des résultats pour les modèles utilisés
- 5. Interprétabilité du modèle
- 6. Conclusion

Problématique métier

Objectifs du projet

Développer

un algorithme de classification

pour identifier les clients solvables ou non

Fournir

une mesure de l'importance des variables

qui ont poussé le modèle

à donner une probabilité à un client

Enjeux

Matrice de confusion

	CLIENT A RISQUE	CLIENT SOLVABLE
REFUS DE CRÉDIT	True Positive	False Positive
ACCEPTATION DE CRÉDIT	False Negative	True Negative

Description du jeu de données

Agrégation de données

application_train

- ➤ 307511 lignes
- ➤ 122 variables

bureau

- > 1 716 428 lignes
- > 17 variables

credit_card_balance

- > 3 840 312 lignes
- > 23 variables

DATASET FINAL

- > 3 912 016 lignes
- > 55 variables

> EDA: 10% => 391 202

➤ MOD: 40% => 152 285

Analyse univariée

Variable cible

Anomalies

		Feature	Correction	Solution apportée
1	Chiffres négatifs	DAYS_BIRTH DAYS_EMPLOYED	/	Conversion en chiffres positifs :diviser par 365multiplier par -1
2	Présence des nan		/	 Imputation par médiane / mode Suppression de features de plus de 60% de nan
3	Présence des inconnus	ORGANIZATION_ TYPE CODE_GENDER	/	 "XNA" Imputation par mode
4	Présence des doublons		/	Suppression
5	Présence des outliers		✓	Remplacement par médiane

Analyse bivariée

Corrélations

Transformation du jeu de données

Preprocessing

Imputation des NaN

Encodage

color	id
red	1
blue	2
green	3
blue	4

One Hot Encoding

id	color_red	color_blue	color_green
1	1	Θ	Θ
2	Θ	1	Θ
3	9	Θ	1
4	Θ	1	Θ

```
      NAME_CONTRACT_TYPE-
      2

      CODE_GENDER-
      3

      FLAG_OWN_CAR-
      2

      FLAG_OWN_REALTY-
      2

      NAME_INCOME_TYPE-
      6

      NAME_EDUCATION_TYPE-
      5

      NAME_FAMILY_STATUS-
      5

      NAME_HOUSING_TYPE-
      6

      OCCUPATION_TYPE-
      19

      ORGANIZATION_TYPE-
      58

      CREDIT_ACTIVE-
      4

      CREDIT_TYPE-
      13

      NAME_CONTRACT_STATUS-
      8
```

```
trainset.FLAG_OWN_CAR.unique(), trainset.FLAG_OWN_REALTY.unique()
(array(['Y', 'N'], dtype=object), array(['Y', 'N'], dtype=object))
```

Feature engineering

- Ratio montant emprunté vs prix du bien acheté : AMT_CREDIT / AMT_GOODS_PRICE
- Ratio annuités vs montant emprunté: AMT_ANNUITY / AMT_CREDIT
- Ratio annuités vs revenus annuels : AMT_ANNUITY / AMT_INCOME_TOTAL
- · Ratio ancienneté au travail vs âge : DAYS_EMPLOYED / DAYS_BIRTH

Feature selection

SelectFromModel

Entraîne un estimateur puis sélectionne les variables les plus importantes pour cet estimateur.

SelectKBest

Sélectionne les K variables X dont le score du test de dépendance (ici Chi2) avec y est le plus élevé

Séparation du jeu de données

Première modélisation

----- 1. Matrice de confusion -----

[[10513 131] [132 646]]

n recall	fl-score	support
9 0.99	0.99	10644
0.83	0.83	778
	0.98	11422
0.91	0.91	11422
8 0.98	0.98	11422
	99 0.99 33 0.83	09 0.99 0.99 03 0.83 0.83 0.98 01 0.91 0.91

Équilibrage des classes

Synthèse des résultats pour les modèles utilisés

Métrique : ROC

- modèle parfait AUC =1
 - 100% d'observations correctements classées
- modèle naïf AUC = 0.5
 - TP Rate = FP Rate
 - même proportion d'observations
 correctement & incorrectement classées
- modèle KNeighbors Clf AUC
 - o supérieur à 0.5
 - proportion d'observations correctement classées en TP est supérieure aux observations incorrectement classées (FP)

KPI: Precision - Recall (Sensitivity)

DummyClassifier

$$\rightarrow$$
 FP = 1

Méthodologie

Résultats

	Recall TP	Precision FP	Accuracy	AUROC
Random Forest	0.77	0.86	0.82	0.821
Logistic Regression	0.68	0.70	0.70	0.695
SVM	0.69	0.70	0.70	0.698
KNN	0.91	0.78	0.82	0.823
CatBoost	0.96	0.96	0.96	0.960
LGBM	0.83	0.91	0.88	0.876
RandomForest Tuned	0.08	1.00	0.93	0.538
Logistic Regression Tuned	0.00	0.00	0.93	0.500
SVM Tuned	0.00	0.00	0.93	0.500
KNN Tuned	0.66	0.81	0.96	0.826
CatBoost Tuned	0.87	1.00	0.99	0.934
LGBM Tuned	0.33	0.97	0.95	0.663

CatBoost Classifier

		precision	recall	f1-score	support
	0.0	0.99	1.00	0.99	28271
	1.0	1.00	0.87	0.93	2186
accur	асу			0.99	30457
macro	avg	0.99	0.93	0.96	30457
weighted		0.99	0.99	0.99	30457

1899]]

Interprétabilité du modèle

SHAP

Ajouter les valeurs des contributions des variables sur toutes les prédictions, puis les **classer** par ordre d'importance.

Expliquer chaque prédiction individuellement.

Estimer la contribution de chaque variable dans la prédiction.

Importance des variables

Identification d'un TN

- Client solvable
- ➤ Probabilité de TARGET==1 : 0.01
- > Prédiction brute : 1,82
- > Variables en bleu

Identification d'un TP

- ➤ Client à risque
- ➤ Probabilité de TARGET==1 : 0.86
- ➤ Prédiction brute : -4.55
- > Variables en rouge

Conclusion

Informations-clés

pour les conseillers de la banque

