PHYS 240 homework #7 – due Feb 19 2013, 5:25pm, upload to Canvas

Wilberforce pendulum

1. The Wilberforce pendulum, a popular demonstration device, is illustrated in Figure 1. The pendulum has two modes of oscillation: vertical and torsional motion. The Lagrangian for this system is

$$L = \frac{1}{2}m\left(\frac{dz}{dt}\right)^2 + \frac{1}{2}I\left(\frac{d\theta}{dt}\right)^2 - \frac{1}{2}kz^2 - \frac{1}{2}\delta\theta^2 - \frac{1}{2}\epsilon z\theta$$

where m and I are the mass and rotational inertia of the bob, k and δ are the longitudinal and torsional spring constants, and ϵ is the coupling constant between the modes. Some typical values are m=0.5 kg, $I=10^{-4}$ kg ·m², k=5 N/m, $\delta=10^{-3}$ N·m, and $\epsilon=10^{-2}$ N. (a) Find the equations of motion. (b) Write a program to compute z(t) and $\theta(t)$ using fourth-order Runge-Kutta. Try the initial conditions z(0)=10 cm, $\theta(0)=0$ and z(0)=0, $\theta(0)=2\pi$. Show that when the longitudinal frequency, $f_z=(2\pi)^{-1}\sqrt{k/m}$, equals the torsional frequency, $f_\theta=(2\pi)^{-1}\sqrt{\delta/I}$, the motion periodically alternates between being purely longitudinal and purely torsional.

2. Include any discussions and plots in a report generated in IATEX. Also submit your Python code separately.

Figure 1: Wilberforce pendulum.