Plan of the Tutorial

- Plan of the Tutoria
- Introduction to NLP
- 3 Overview of Distributional Representation Learning for NLP
- 4 Overview of Transformer based Language Model
- 5 Overview of Large Language Models
- 6 Concept of in-context learning and its application
- Conclusion

(IACS, Kolkata) FIRE 2023 December 27, 2023 36 / 93

Sparse Vector Representations

One Hot

Term-document matrix

The cat sat on the mat

The: [0100000] cat: [0010000] sat: [0001000] on: [0000100] the: [0000010] mat: [0000001] Documents

Vector-space representation

	D1	D2	D3	D4	D5
mplexity	2		3	2	3
orithm	3			4	4
tropy	1			2	
ffic		2	3		
twork		1	4		

Term-document matrix

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first pineapple well suited to programming on the digital computer. for the purpose of gathering data and information necessary for the study authorized in the

preserve or jam, a pinch each of,

alg eni tra

and another fruit whose taste she likened In finding the optimal R-stage policy from

apricot
pineapple
digital
information

aardvark	computer	data	pinch	result	sugar
0	0	0	1	0	1
0	0	0	1	0	1
0	2	1	0	1	0
0	1	6	0	4	0

Word-word matrix

Sparse Vector Representations (PMI)

```
Raw word frequency is skewed and non-discriminative PMI(word_1, word_2) = log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)} where word_1 \neq word_2
```

Positive Pointwise Mutual Information (PPMI) is preferred for its informative context-target word association

Positive PMI (PPMI) between $word_1$ and $word_2$ $PPMI(word_1, word_2) = max(log_2 \frac{p(word_1, word_2)}{p(word_1)p(word_2)}, 0)$

Sparse Vector Representations (PMI) Cont'd...

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0	1	0	1
pineapple	0	0	0	1	0	1
digital	0	2	1	0	1	0
information	0	1	6	0	4	0

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \qquad p_{i^*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \qquad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \qquad pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i^*} p_{*_j}}$$

$$p_{ij} = \sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij} \qquad ppmi_{ij} = \begin{cases} pmi_{ij} & \text{if } pmi_{ij} > 0 \\ 0 & \text{otherwise} \end{cases}$$

(IACS, Kolkata) FIRE 2023 December 27, 2023 39 / 93

Sparse Vector Representations (PMI) Cont'd...

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$p(w_i) = \frac{\sum_{j=1}^{C} f_{ij}}{N}$$
 $p(c_j) = \frac{\sum_{i=1}^{W} f_{ij}}{N}$

p(w=information,c=data) = 6/19 = .32 p(w=information) = 11/19 = .58 p(c=data) = 7/19 = .37

Count(w,context)

	computer	data	pinch	result	sugar
apricot	0	0	1	0	1
pineapple	0	0	1	0	1
digital	2	1	0	1	0
information	1	6	0	4	0

	p(w,context)						
	computer	data	pinch	result	sugar		
apricot	0.00	0.00	0.05	0.00	0.05	0.11	
pineapple	0.00	0.00	0.05	0.00	0.05	0.11	
digital	0.11	0.05	0.00	0.05	0.00	0.21	
information	0.05	0.32	0.00	0.21	0.00	0.58	
p(context)	0.16	0.37	0.11	0.26	0.11		

(IACS, Kolkata) FIRE 2023 December 27, 2023 40 / 93

Sparse Vector Representations (PMI) Cont'd..

		p(w,context)				p(w)	
		computer	data	pinch	result	sugar	
p_{ii}	apricot	0.00	0.00	0.05	0.00	0.05	0.11
$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}}$	pineapple	0.00	0.00	0.05	0.00	0.05	0.11
	digital	0.11	0.05	0.00	0.05	0.00	0.21
	information	0.05	0.32	0.00	0.21	0.00	0.58
	p(context)	0.16	0.37	0.11	0.26	0.11	
pmi(ir	nformation,	data) = log	2 (.32 /	(.37*	.58)) =	.58	

PPMI(w,context)

	computer	data	pinch	result	sugar
apricot	-	-	2.25	-	2.25
pineapple	-	-	2.25	-	2.25
digital	1.66	0.00	-	0.00	-
information	0.00	0.57	-	0.47	-

(IACS, Kolkata) FIRE 2023 December 27, 2023 41/93

Distributional Representation - Knowing Words by their Context

C1: A bottle of ____ is on the table.

C2: Everybody likes ____.

C3: Don't have ____ before you drive.

C4: We make ____ out of corn.

	C1	C2	С3	C4
tejuino	1	1	1	1
loud	О	o	О	o
motor-oil	1	o	О	o
tortillas	О	1	О	1
choices	О	1	О	o
wine	1	1	1	o

(IACS, Kolkata) FIRE 2023 December 27, 2023 42 / 93

[&]quot;words that occur in similar contexts tend to have similar meanings"

Dense Vector Representations

- Dense vectors, being shorter and requiring fewer adjustments in machine learning, offer ease in feature utilization.
- Additionally, they excel in capturing nuanced relationships between words like synonyms, unlike sparse representations, allowing better generalization and similarity capture in language models.

Word Embedding - Overview of Word2Vec

(IACS, Kolkata) FIRE 2023 December 27, 2023 44 / 93

Overall Skipgram Architecture

Dense Vector Representations - Skipgram

Continuous Bag of Words (CBOW)

Dense Vector Representations - Language Modeling

(IACS, Kolkata) FIRE 2023 December 27, 2023 47 / 93

Dense Vector Representations - Language Modeling Cont'd

(IACS, Kolkata) FIRE 2023 December 27, 2023 48 / 93

Language Modeling - Training Dataset Generation with CBOW

(IACS, Kolkata) FIRE 2023 December 27, 2023 49 / 93

Language Modeling - Training Skipgram

input word	target word
not	thou
not	shalt
not	make
not	a
make	shalt
make	not
make	a
make	machine
a	not
a	make
a	machine
a	in
machine	make
machine	a
machine	in
machine	the
in	a
in	machine
in	the
in	likeness

Language Modeling - Training Skipgram Cont'd

(IACS, Kolkata) FIRE 2023 December 27, 2023 51 / 93

Language Modeling - Training Skipgram Cont'd

Word2Vec Training - Skipgram with Negative Sampling

Embedding

Context

Initialized with random values

dataset

input word	output word	target
not	thou	1
not	aaron	0
not	taco	0
not	shalt	1
not	mango	0
not	finglonger	0
not	make	1
not	plumbus	0

Word2Vec Training - Skipgram with Negative Sampling Cont'd

(IACS, Kolkata) FIRE 2023 December 27, 2023 54 / 93

Analogy

 $vector('king') - vector('man') + vector('woman') \approx vector('queen')$ $vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')$

(IACS, Kolkata) FIRE 2023 December 27, 2023 55 / 93