A. PACCANARO – FGV INTERNAL LISE ONLY – DO NOT DISTRIBLY

Definition and a taxonomy of Machine Learning

Alberto Paccanaro

EMAp - FGV

www.paccanarolab.org

Some material and images are from (or adapted from):

C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

A. Geron, Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow, O'Reilly, 2020

Patterns

There are patterns in data!

Pattern recognition: the automatic discovery of regularities (patterns) in data through the use of algorithms

Example: Handwritten Digit Recognition

Each digit corresponds to a 28×28 pixel image. It can be represented by a vector **x** of 784 real numbers.

GOAL: build a machine that will take a vector x as input and that will produce the identity of the digit $0, \ldots, 9$ as the output.

Handcrafted rules for distinguishing the digits based on the shapes of the strokes won't work...

The ML approach

A dataset is used to tune the parameters of an **adaptive model** (a function with parameters).

GENERALIZATION

We need:

- 1. A set of digits $\{x_1, \ldots, x_N\}$ called a *training set*.
- 2. For each digit in the training set, its category is known and represented by a *target vector* **t**

The **result** of the machine learning algorithm is:

a function f(x) which takes a new digit image x as input and that generates an output vector y, encoded in the same way as t

- thus indicating the predicted class of x

Д
H
ON O
Z
$\overline{}$
\simeq
\Box
١
≻
ž
ڃ
0
Щ
S
~
ᆜ
⋖
z
쏦
巴
5
⋍
>
S
竏
-1
0
≊
⋖
Ż
7
Ũ
Ŭ
á
ဌ
⋖
ര്
_

Image	label
\boldsymbol{x}_1	"6"
x_2	"8"
\pmb{x}_N	"3"

$$f_p(x) \to y$$

- f depends on a set of parameters p
- the precise form of f is determined on the basis of the training data (*training* or *learning phase*)

So given the dataset:

- (1) we choose a model
- (2) we **learn** the parameters of the model
- (3) we use the learned model $y(x, \mathbf{w}^*)$ to make predictions

A. PACCANARO – FGV INTERNAL, USF ONLY – DO NOT DISTRIBU

Learning from data

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

Tom Mitchell, 1997

©A.PACCANARO – FGV INTERNAL USE ONLY – DO NOT DISTRIBUTE

Terminology/concepts

- Training set
- Training or learning phase
- Generalization
- Test set
- Pre-processing
- Feature extraction
- Pattern recognition ←→ machine learning

©A.PACCANARO – FGV INTERNAL USE ONLY – DO NOT DISTRIBUTE

Types of machine learning algorithms/systems

- 1. based on the type of data
- 2. based on how the data is processed
- 3. based on how the learned functions generalize

Types of machine learning algorithms 1. Based on the type of data

A. Supervised Learning

Input	Output (target)
\boldsymbol{x}_1	t_1
x_2	t_2
	•••
\pmb{x}_N	$t_{\scriptscriptstyle N'}$

Two types of problems:

- a) classification
- b) regression

 \boldsymbol{x} is a vector of features $\boldsymbol{x} = (feature_1, feature_2, \dots feature_n)$ t could also be a vector

A.PACCANARO – FGV INTERNAL USE ONLY – DO NOT DISTRIBUTE

B. Unsupervised Learning

Examples:

- a) clustering
- b) density estimation (e.g. for anomaly detection)

x is a vector of features $x = (feature_1, feature_2, ... feature_n)$

C. Semi-supervised Learning

Input	Output (target)
\boldsymbol{x}_1	t_1
x_2	t_2
x_3	
x_4	
x_5	t_5
	•••
\pmb{x}_N	$t_{N'}$

x is a vector of features $x = (feature_1, feature_2, ... feature_n)$ t could also be a vector

D. Reinforcement Learning

- Agent
- sequence of states and actions in which the learning algorithm interacts with the environment
- <u>only at the end a reward is</u> <u>achieved.</u>
- *credit assignment* problem: the reward must then be attributed appropriately to all of the moves that led to it (good ones and bad ones)
- Exploration vs exploitation

Types of machine learning algorithms 2. Based on based on how the learned functions generalize

A. Instance based learning:

generalization achieved using a similarity measure to compare new instances to existing (learned) datapoints.

B. Model-based learning:

use the dataset to build a model and then use that model to make predictions.

3A.PACCANARO – FGV INTERNAL USE ONLY – DO NOT DISTRIBUTE

Types of machine learning systems 3. Based on how the data is processed

- **A. Batch learning:** the system is trained using existing data. Typically done offline (offline learning)
- **B. Online learning:** you train the system incrementally by feeding it data instances sequentially. For systems that receive data as a continuous flow (e.g., stock prices)