Supplementary Materials for Learning Optimal Dynamic Treatment Regimes from Longitudinal Data

A1 Simulation

We considered the following DGM:

```
\begin{split} W_1 \sim \mathcal{U}(-1,1) \\ W_2 \sim \mathcal{U}(-1,1) \\ P(A_1 = 1) &= \text{expit}(0.5 - 1.3W_1 + 0.4W_2) \\ W_3 \sim \mathcal{U}(-1,1) \times 1.25A_1 + 0.25 \\ P(A_2 = 1) &= \text{expit}(0.5 + 0.4A_1 - 1.5W_3) \\ Y \sim \mathcal{N}(0.4 - 0.4A_1 - A_2W_3 - 4A_1W_1 + 0.08A_1A_2 + A_2W_3 - 4A_1W_1 - 2A_1W_2 - 0.1A_2 + 1.5W_1, 1) \end{split}
```

We evaluated estimator performance in terms of absolute bias, absolute bias scaled by \sqrt{n} , and 95% confidence interval (CI) coverage. We conducted 1000 simulations for sample sizes $n \in \{500, 1000, 10000\}$. The true value of ψ is approximately 0.248.

Table 1: Simulation results.

n	$\hat{\psi}$	Bias	$\sqrt{n}\times \mathrm{Bias} $	95% CI Covr.
500	2.269	0.023	0.514	0.929
$1000 \\ 10000$	2.267 2.250	0.021 0.004	$0.653 \\ 0.378$	$0.925 \\ 0.875$