1. 확률, 확률분포

표본공간 (Sample space): 가능한 실험결과 집합 ex) 주사위 $S = \{1,2,3,4,5,6\}$ 확률: 특정 결과의 표본 공간내 점유도 ex) $P(X = 3) = 1/6$	<i>P</i> (<i>C₃</i>) <i>A</i> (관찰 표본)
$[I, \bot \Box T, F(D A) - F(A ID A) - [I, \bot \Box T, D(A)] \rightarrow F(A ID A) - F(D A) F(A)$	$P(C_2 A)$
2 Raves (C는 상호 배반=disjoint SO partition)	$P(C_4 A)$
확률 1) 전확률 법칙(LTP): $P(A) = \sum P(A \cap C_i) = \sum P(A \mid C_i) P(C_i)$	P(C ₄)
2) 베이즈 저리: $P(C \mid A) = P(A \cap C_i) / P(A \cap C_i) / P(A \mid C_i) P(C_i) /$	1 (-41)
독립성 $P(C_i A) = P(C_i A) = P(A) = P$	
② <i>P</i> (<i>C_i</i>). <i>C_i</i> 사후확률 (posterior) ← 표본 A에서 관찰된 <i>C_i</i>	
3) 독립성: $P(A \cap B \cap C) = P(A)P(B)P(C)$ 이면 A,B,C는 statistically independent	
확률변수 : 표본공간의 특정 사건 에 할당된 수치값 ex) 베르누이 $S = \{H, T\}$ → $X \in \{0, 1\}$	
1. Prob Mass Function; PMF (discrete) \rightarrow CDF of PMF: $F(x) = P((-\infty, x]) = \sum_{(-\infty, x]} p(x)$	
*변환: $p_y(y) = p_X(w(y))$; 1-on-1 function $x = w(y)$	
2. Prob Density Function; PDF (continuous) >0	
확률 1) $F(x) = \int_{-\infty}^{x} f(t)dt \Leftrightarrow 2) \frac{d}{dx} F(x) = f(x)$ (F는 f의 CDF)	
변수 3) $P[(a,b)] = \int_a^b f(x)dx = F(b) - F(a)$	
*변환: X가 pdf f_X on S_X & Y가 pdf f_Y on S_Y ; 1-on-1 $w(y) = x$	
$ \Rightarrow f_Y(y) = f_x(w(y)) dx/dy \Leftrightarrow f_Y(y) = f_x(w(y)) \text{ abs}(J) \text{ (Jacobian: J= w'(y) / J=} \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial x_2} & \frac{\partial x_2}{\partial x_2} \\ \frac{\partial x_2}{\partial x_2} & \frac{\partial x_2}{\partial x_2} \end{vmatrix}) \text{ 1년 행렬} $	1식
* Support(받침): PDF ≠ 0인 space // * CDF는 유일 for PDF, PMF	
1. 조건: $E(X)$ 존재 \Leftrightarrow ① 연속 pdf 존재 ② $\int_{-\infty}^{\infty} x f(x) dx < \infty$ (이산 pmf 존재 \rightarrow $\sum x_i p_i(x) < \infty$)	
2. 기대값: 1) 연속 $E(X) = \int_{-\infty}^{\infty} x f(x) dx$ 2) 이산 $E(X) = \sum x_i p(x_i)$	
3. $y = g(x)$: 1) $E(g(x)) = \int_{-\infty}^{\infty} g(x)f(x)dx$ & $E(g(x)) = \sum g(x_i)p(x_i)$	
2) $E(k_1g_1(x) + k_2g_2(x)) = k_1E(g_1(x)) + k_2E(g_2(x))$	
1. 평균: $\mu = \boldsymbol{E}(\boldsymbol{X})$	
2. 분산: $\sigma^2 = Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2 = M''(0) - M'(0)^2$ *Var $(aX + b) = a^2 Var(X)$	
3. 적률생성함수 (MGF) *조건: $t \in (-h, h)$ for $\forall h > 0 \leftarrow 0$ 을 포함하는 개구간에서 mgf 존재	
1) $M(t) = E(e^{tX}) \rightarrow M_X(0)^{(r)} = E(X^r)$ *분포의 r차 moment	
① $M(0)^{(r)} = \frac{d^r}{dt^r} \int_{-\infty}^{\infty} e^{tx} f(x) dx \big _{t=0} = \int_{-\infty}^{\infty} \frac{d^r}{dt^r} e^{tx} f(x) dx \big _{t=0} = \int_{-\infty}^{\infty} x^r e^{tx} f(x) dx \big _{t=0} = \int_{-\infty}^{\infty} x^r f(x) dx = E(X^r)$)
$ (2) M(0)^{(r)} = \frac{d^r}{dt^r} \sum e^{tx_i} p(x_i) _{t=0} = \sum \frac{d^r}{dt^r} e^{tx_i} p(x_i) = \sum x_i^r e^{tx_i} p(x_i) _{t=0} = \sum x_i^r p(x_i) = E(X^r) $	
2) 성질 ① MGF의 유일성: $M_x(t) = M_y(t) \Leftrightarrow X = Y$ (pdf 동일)	
$ ② M_{X+\alpha}(t) = e^{\alpha t} M_X(t) \qquad $	
$ \exists M_{\alpha X}(t) = M_X(\alpha t) \qquad \qquad :: M_{\alpha X}(t) = E\left(e^{t(\alpha X)}\right) = E\left(e^{(\alpha t)X}\right) = M_X(\alpha t) $	
⑤ $M_Y(t) = \prod M_{X_i}(k_i t)$, $t < \min(h_i) $ (for $Y = \sum k_i X_i$, X _i 는 모두 <u>독립</u>)	3))
⑥ $M_Y(t) = [M(t)^n]$ (for $Y = \sum X_i$; X_i 는 iid 확률변수))
1. $E(X^m)$ 이 존재하면 $ ightharpoonup E(X^k)$ 존재 for $k \le m$	
*증명: $E(X^k) = \int_{-\infty}^{\infty} x ^k f(x) dx = \int_{ x \le 1} x ^k f(x) dx + \int_{ x \ge 1} x ^k f(x) dx \le \int_{ x \le 1} f(x) dx + \int_{ x \ge 1} x ^m f(x) dx$	
$\leq \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} x ^m f(x) dx \leq 1 + E(X^m)$. 유한함	
중요한 2. Markov: $P[u(X) \ge c] \le E[u(X)]/c$ (for $u(X) \ge 0$, $c > 0$; $E[u(X)]$ 존재)	
부등식 *증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x)dx \ge \int_{u(x)\ge c} u(x)f(x)dx \ge c \int_{u(x)\ge c} f(x)dx = c P[u(x)\ge c]$	
*직관: 평균 나이의 5배보다 나이 많은 사람의 확률 한계 \rightarrow $P[X \geq 5\mu] \leq \frac{1}{5}$	
3. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 μ,σ^2 (유한) 가짐)	
*증명: Markov에서 $u(X)=(X-\mu)^2,\ c=k^2\sigma^2$	

2-1. 이변량분포

이번수		1) Joint CDF: $F(x,y) = P[\{X \le x\} \cap \{Y \le y\}]$ * $\mathbf{X} = (X,Y)^T \in D$; Random vector \mathbf{X}
3) Joint PDF: $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{x} f(x,y) dydx$ $\left(\int_{-\infty}^{x} \int_{-\infty}^{x} f(x,y) dxdy = 1\right)$ $\Leftrightarrow \partial^{2}(F) / \partial x \partial y = f(x,y)$ 4) Marginal dist: XSI 효과만 등 YE 전체 범위 포활 * $F_{x}(x) = P(\{X \le x\}) = P(\{X \le x\}) \cap \{-\infty < Y < \infty\}$ ①PMF of $x \in F_{x}(x) = \sum_{i=0}^{x} \int_{-\infty}^{x} f(x,y) dy dx \Rightarrow f_{x}(x) = \sum_{j=0}^{x} f(x,y) dy$ ** $F_{x}(x) = \int_{-\infty}^{x} \int_{-\infty}^{x} f(x,y) dy dx \Rightarrow f_{x}(x) = \int_{-\infty}^{x} f(x,y) dy$ ** $F_{x}(x) = \int_{-\infty}^{x} \int_{-\infty}^{x} f(x,y) dy dx \Rightarrow f_{x}(x) = \int_{-\infty}^{x} f(x,y) dy$ ** $F_{x}(x) = \int_{-\infty}^{x} \int_{-\infty}^{x} f(x,y) dy dx \Rightarrow f_{x}(x) = \int_{-\infty}^{x} f(x,y) dy$ ** $F_{x}(x) = \int_{-\infty}^{x} \int_{-\infty}^{x} f(x,y) dx dy$ **Unital Equation of the following of the followin		${}^{*}P((a_1,a_2]\times(b_1,b_2]) = F(a_2,b_2) - F(a_1,b_2) - F(a_2,b_1) + F(a_1,b_1) = \int_{b_1}^{b_2} \int_{a_1}^{a_2} f(x,y) dx dy$
(이번수 (**) *** (**) ** (**) *** (**) *		2) Joint PMF: $\sum_{y} \sum_{x} p(x, y) = 1$
4) Marginal dist. X의 효과만 봄, Y는 전체 범위 포함 * F ₂ (x) = P((X ≤ X)) = P((X ≤ X)) = P((X ≤ X)) (-∞ < Y < ∞) ②PMF of x F ₂ (x) = ∑ _(-∞x) (∑ _(xy) (-∞,w) p(x,y)) → p _x (x) = ∑ _(xy) (-∞,w) p(x,y) ②PMF of x F ₂ (x) = ∫ _(-∞x) [∞] (F _(xy) (xy) dx → f _x (x) = ∫ _{(-∞x} [∞] (F _(xy)) dy *E(g(X,Y)) 존재 조건 ⇔ E(g(X,Y)) < ∞ □PHF of x F ₂ (x) = ∫ _(-∞x) [∞] (F _(xy) (xy) dx → f _x (x) = ∫ _(-∞x) [∞] (F _(xy) (xy)) □PHF of x F ₂ (x) = ∫ _(-∞x) [∞] (F _(xy) (xy) dx → f _x (x) = (F _(xy) (xy)) dx □PHF of x F ₂ (x) = ∫ _(-∞x) [∞] (F _(xy) (xy)) dx → f _x (x) dx ∫ _(-∞x) [∞] (F _(xy) (xy)) □PHF of x F ₂ (x) = E(exp(t;X + t;Y)) → t = (t ₁ , t ₂) of Hid M(t) = E(exp(t*X)) □PHF of x F ₂ (x) = E(exp(t;X + t;Y)) → t = (t ₁ , t ₂) of Hid M(t) = E(exp(t*X)) □PHF of x F ₂ (x) = E(exp(t;X + t;Y)) → t = (t ₁ , t ₂) of Hid M(t) = E(exp(t*X)) □PHF of x F ₂ (x) = E(exp(t;X + t;Y)) → t = (t ₁ , t ₂) of Hid M(t) = E(exp(t*X)) □PHF of x F ₂ (x) = E(x;X;X;X;X;X;X;X;X;X;X;X;X;X;X;X;X;X;X;X		3) Joint PDF: $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) dy dx$ $\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1 \right)$
# F _X (x) = P((X ≤ x)) = P((X ≤ x) ∩ {-∞ < Y < ∞}) ①PMF of x: F _x (x) = ∑ _{x-∞x/1} [∑ _{y∈(-∞,∞)} p(x,y)] → p _x (x) = ∑ _{y∈(-∞,∞)} p(x,y) ②PDF of x: F _x (x) = ∫ _{x-∞} ^x ∫ _{x-∞} ^x f(x,y)dy dx → f _x (x) = ∫ _{x-∞} ^x f(x,y)dy *E(g(X,Y)) 존제 조건 ⇔ E(lg(X,Y)] < ∞ 11 E(k₁g₁, k₂g₂) = k₁E(g₂) + k₂E(g₂) 2) E(X) = [E(X)E(Y)] ^T = [∫ _{x-∞} [∞] x f _x (x)dx ∫ _{x-∞} [∞] y f _y (y)dy] ^T 3) M(t₁, t₂) = E(exp (t∠X + t₂Y)) → t = (t₁, t₂) ^T off tid M(t) = E(exp(t*X)) E(X*Y****) = ∂ _{x+∞} ^{x+∞} m(x) f _{x-∞} ^x y f _x exp(t₂*** t₂y) f(x,y) dxdy *Uễ 조건: 1) X = (X₁, X₂) 의 만집 S 2) S-T N-V-Shè 의 대용 의 x₁ = u₁(x₁, x₂) & y₂ = u₂(x₁, x₂) 3) T→S N-V-Shè N H 대용 의 x₁ = u₁(y₁, y₂) & x₂ = w₂(y₁, y₂) 1. ○시산형 변환: p _x (y₁, y₂) = p _x [w₁(y₁, y₂), w₂(y₂, y₂)] fror (y₁, y₂) ∈ T & \text{ \text{-} t\pi\To\To\To\To\To\To\To\To\To\To\To\To\To\	이변수	$\Leftrightarrow \frac{\partial^2(F)}{\partial x \partial y} = f(x, y)$
(①PMF of x: F _X (x) = ∑ _(-∞x) [∑ _{(x(-∞∞)} p(x,y)] → p _X (x) = ∑ _{(x(-∞∞)} p(x,y)) ②PDF of x: F _x (x) = ∫ _(x) ^x f(x,y)dy dx → f _x (x) = ∫ _(x) ^x f(x,y)dy **E _{(x} (x,Y)) ∈ Ma		4) Marginal dist: X의 효과만 봄; Y는 전체 범위 포괄
(②PDF of x F _x (x) = ∫ _∞ [∞] f(x,y)dy] dx → f _x (x) = ∫ _∞ [∞] f(x,y)dy *E(g(X,Y)) = ⋈ 조건 ⇔ E(g(X,Y)) < ∞ 기대값: E(g(X,Y)) = ∫ _∞ [∞] g(x,y) f(x,y) dxdy (○PÖS: E(g(X,Y)) = ∑xg(x,y)p(x,y) 1) E(k1g1 + k2g2) = k1E(g1) + k2E(g2) 2) E(X) = [E(X) E(Y)] ^T = [∫ _∞ [∞] x f _x (x)dx ∫ _∞ [∞] y f _y (y)dy] ^T 3) M(t1,12) = E(exp(t1X + t2Y)) → t = (t1, t2) ^T 01 min M(t) = E(exp(t1X)) E(X ^k Y ^m) = (x1 + y2) → x + (x1 + x1 + y2) f(x,y) dxdy *UPE 조건: 1) X = (X1, X2) 의 받장 S 2) S→T 사상하는 일대일대용: y1 = u1(x1, x2) & y2 = u2(x1, x2) 3) T→S 사상하는 위 대용 역: x1 = w1(y1, y2) & x2 = w2(y1, y2) 1. ○사장 변환: py(y1, y2) = px[w1(y1, y2), w2(y1, y2)] for (y1, y2) ∈ T & 나다지 pmf 0 *X1, X2 → Y로만 변환 시, dummy 변수를 하나 더 만들어 Y2 A 지정해주고 marginal Y dist를 구함 2. 연속형 변환: E(exp(tY)) = E(exp(t(X1 + x2)) → MGF 유일성으로 Y2) PMF/PDF 구항 1. 조건부 PMF: P211(x2 X1) = P(x1, X2)/p ₁ (x1) 2. 조건부 PMF: P211(x2 X1) = P(x1, X2)/p ₁ (x1) 2. 조건부 PMF: P211(x2 X1) = x(x1, x1) x(x1, x1) x(x1, x2) x		* $F_X(x) = P(\{X \le x\}) = P(\{X \le x\} \cap \{-\infty < Y < \infty\})$
비변수 기대값: $E(g(X,Y)) 존께 조건 ⇔ E([g(X,Y)]) < ∞$ 기대값: $E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dxdy$ (이산형: $E(g(X,Y)) = \sum g(x,y)p(x,y)$ 1) $E(k,g_1+k,g_2) = k_1E(g_1) + k_1E(g_2)$ 2) $E(X) = [E(X)E(Y)]^T = [\int_{-\infty}^{\infty} x f_x(x) dx \int_{-\infty}^{\infty} y f_y(y) dy]^T$ 3) $M(t_1,t_2) = E(\exp(t_1X+t_2Y)) \rightarrow t = (t_1,t_2)^T \cap t = M(t) = E(\exp(t^2X))$ $E(X^2)^T = \frac{1}{2t^2} \frac{1}{2t^2} M(0,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^k y^m \exp(t_1x+t_2y) f(x,y) dxdy$ *UP $X = X^2 + 1 = X = X = X = X = X = X = X = X = X =$		① PMF of x: $F_X(x) = \sum_{(-\infty,x]} \{ \sum_{y \in (-\infty,\infty)} p(x,y) \} \Rightarrow p_X(x) = \sum_{y \in (-\infty,\infty)} p(x,y)$
이번수 기대값: $E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy$ (이산형: $E(g(X,Y)) = \sum g(x,y)p(x,y)$ 1) $E(k_1g_1 + k_2g_2) = k_1E(g_1) + k_2E(g_2)$ 2) $E(X) = [E(X) E(Y)]^T = [\int_{-\infty}^{\infty} x f_x(x) dx \int_{-\infty}^{\infty} y f_y(y) dy]^T$ 3) $M(t_1, t_2) = E(\exp(t, X + t_2Y)) \rightarrow t = (t_1, t_2)^T 01$ 대해 $M(t) = E(\exp(t^TX))$ $E(X^*Y^*) = \frac{g^{k+m}}{o^{\frac{1}{2}o_3^*}} M(0,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^k y^m \exp(t_1x + t_2y) f(x,y) dx dy$ *변환 조건: 1) $X = (X_1, X_2)$ 의 발점 S 2) S→T 사상하는 일 대일대응: $y_1 = u_1(x_1, x_2) \otimes y_2 = u_2(x_1, x_2)$ 3) $T \rightarrow S$ 사상하는 위 대응 역: $x_1 = u_1(y_1, y_2) \otimes x_2 = u_2(y_1, y_2)$ 2. $Y \rightarrow Y$ 으만 변환 $Y \rightarrow Y$ ($Y \rightarrow Y$) $Y \rightarrow Y$ ($Y \rightarrow Y$		②PDF of x: $F_x(x) = \int_{-\infty}^x \{ \int_{-\infty}^\infty f(x, y) dy \} dx \implies f_X(x) = \int_{-\infty}^\infty f(x, y) dy$
비한수 기대값 1) $E(k_1g_1 + k_2g_2) = k_1E(g_1) + k_2E(g_2)$ 2) $E(X) = [E(X)E(Y)]^T = \left[\int_{-\infty}^{\infty} x f_x(x) dx \int_{-\infty}^{\infty} y f_y(y) dy\right]^T$ 3) $M(t_1, t_2) = E(\exp(t_1X + t_2Y))$ 1) $E(X^*Y''') = \frac{g^{k+m}}{g^{k+m}}M(0.0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^k y^m \exp(t_1x + t_2y) f(x, y) dxdy$ *변환 조건: 1) $X = (X_1, X_2)$ 의 받침 S 2) S→T 사상하는 일대일대응: $y_1 = u_1(x_1, x_2)$ & $y_2 = u_2(x_1, x_2)$ 3) T→S 사상하는 위 대응 역: $x_1 = w_1(y_1, y_2)$ & $x_2 = w_2(y_1, y_2)$ 1. 이산형 변환: $p_1(y_1, y_2) = p_2(w_1(y_1, y_2), w_2(y_1, y_2))$ for $(y_1, y_2) \in T$ & 나머지 pmf 0 * $X_1, X_2 \rightarrow V$ 로만 변환 시, dummy 변수를 하나 더 만들어 V, \mathbb{Z} 지정해주교 marginal V dist를 구함 2. 연속형 변환: $f_1(y_1, y_2) = f_1(w_1(y_1, y_2), w_2(y_1, y_2))$ $f_1(x_1)$ (Marginal $f_1(x_1)$)는 스케일러 * X^*U 호교, Y^*U 특정 값 고정 1. 조건부 PDF: $f_{111}(x_2 x_1) = P(X_1, x_2) / P_1(x_1)$ 2. 조건부 PDF: $f_{211}(x_2 x_1) = F(X_1, x_2) / P_1(x_1)$ 2. 조건부 PDF: $f_{211}(x_2 x_1) = f(X_1, x_2) / P_1(x_1)$ (Marginal $f_1(x_1)$)는 스케일러 * X^*U 호교, Y^*U 특정 값 고정 1) $P(a < Y < b X = x) = \int_{a_0}^{b_1} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{a_0}^{c_1} f_{X Y}(x y) dx$ 2) $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{b_1} f_{Y X}(y x) dy$ 2) $P(-\infty < Y < \infty X = x) = \int_{a_0}^{b_1} f_{Y X}(y x) dy$ 3) 조건부 기대값: $E(u(Y) x] = \int_{a_0}^{b_1} f_{Y X}(y x) dy$ 4) $P(x_1, y_1) = P(x_1, y_2)$ 4 장리: $P(x_1, y_1) = P(x_1, y_2) = P(x_1, y_2)$ 5 $P(x_1, y_1) = P(x_1, y_2) = P(x_1, y_2)$ 5 $P(x_1, y_1) = P(x_1, y_2) = P(x_1, y_2)$ 7 $P(x_1, y_2) = P(x_1, y_2) = P(x_1, y_2)$ 7 $P(x_1, y_2) = P(x_1, y_2) = P(x_1, y_2)$ 8 $P(x_1, y_2) = P(x_1, y_2) = P(x_1, y_2) = P(x_1, y_2)$ 8 $P(x_1, y_2) = P(x_1, y_2) = P(x_1, y_2)$ 8 $P(x_1, y_2) = P(x_1, y_2) = P(x_1, y_2)$ 8 $P(x_1, y_2) = P(x_1, y_2)$ 8 $P(x_1, y_2) = P(x_1, y_2)$ 9 $P(x_1, y_2) = $		$^*E(g(X,Y))$ 존재 조건 \Leftrightarrow $E(g(X,Y))<\infty$
기대값 1) $E(k_1g_1 + k_2g_2) = k_1E(g_1) + k_2E(g_2)$	Л <mark>Ш</mark> Д	
*변환 (T(x, x)) = E(Exp (Ex + Exp) → E (Exp(x)) → T = (Exp(x)) → T		1) $E(k_1g_1 + k_2g_2) = k_1E(g_1) + k_2E(g_2)$ 2) $E(\mathbf{X}) = [E(X)E(Y)]^{\mathrm{T}} = \left[\int_{-\infty}^{\infty} x f_x(x)dx \int_{-\infty}^{\infty} y f_y(y)dy\right]^{\mathrm{T}}$
*변환 조건: 1) X = (X ₁ , X ₂)의 발침 S 2) S→T 사상하는 일대일대응: y ₁ = u ₁ (x ₁ , x ₂) & y ₂ = u ₂ (x ₁ , x ₂) 3) T→S 사상하는 위 대응 역: x ₁ = w ₁ (y ₁ , y ₂) & x ₂ = w ₂ (y ₁ , y ₂) 1. 이산형 변환: p _Y (y ₁ , y ₂) = p _X [w ₁ (y ₁ , y ₂), w ₂ (y ₁ , y ₂)] for (y ₁ , y ₂) ∈ T & 나머지 pmf 0 * X ₁ , X ₂ * Y = P DE	八二版	h.i.v.
이번수 변환: $p_Y(y_1, y_2) = p_X[w_1(y_1, y_2), w_2(y_1, y_2)]$ for $(y_1, y_2) \in T$ & 나머지 pmf 0 * $X_1, X_2 \rightarrow Y$ 로만 변환 시, dummy 변수를 하나 더 만들어 Y_2 로 지정해주고 marginal Y dist를 구함 2. 연속형 변환: $f_Y(y_1, y_2) = f_X[w_1(y_1, y_2), w_2(y_1, y_2)]$ for $(y_1, y_2) \in T$ & 나머지 pmf 0 * MGF 이용 변환: $E(\exp(tY)) = E(\exp(t(X_1 + X_2))) \rightarrow MGF 유일성으로 Y의 PMF/PDF 구함$ 1. 조건부 PMF: $p_{2 1}(x_2 x_1) = \frac{f(X_1, X_2)}{p_1(x_1)}$ 2. 조건부 PDF: $f_{2 1}(x_2 x_1) = \frac{f(X_1, X_2)}{p_1(x_1)}$ 2. 조건부 PDF: $f_{2 1}(x_2 x_1) = \frac{f(X_1, X_2)}{p_1(x_1)}$ 3. 조건부 기대값: $E[u(Y) x] = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{d} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ & $P(c < X < d Y = y) = \int_{c}^{\infty} f_{X Y}(x y) dx$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ 2. $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy$ 2. $P(-\infty < $		$E(X^kY^m) = \frac{\partial^{k+m}}{\partial t_1^k \partial t_2^m} M(0,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^k y^m \exp(t_1 x + t_2 y) f(x,y) dxdy$
이번수 변환 P _Y (y ₁ , y ₂) = P _X [w ₁ (y ₁ , y ₂), w ₂ (y ₁ , y ₂)] for (y ₁ , y ₂) ∈ T & 나머지 pmf 0		*변환 조건: 1) $\mathbf{X} = (X_1, X_2)$ 의 받침 S 2) S \rightarrow T 사상하는 일대일대응: $y_1 = u_1(x_1, x_2)$ & $y_2 = u_2(x_1, x_2)$
# X ₁ , X ₂ → Y로만 변환 시, dummy 변수를 하나 더 만들어 Y ₂ 로 지정해주고 marginal Y dist를 구함 2. 연속형 변환: f _Y (y ₁ , y ₂) = f _X [w ₁ (y ₁ , y ₂), w ₂ (y ₁ , y ₂)] f for (y ₁ , y ₂) ∈ T & 나머지 pdf 0 * MGF 이용 변환: E(exp(tY)) = E(exp(t(X ₁ + X ₂)) → MGF 유일성으로 Y의 PMF/PDF 구함 1. 조건부 PMF: p _{2 1} (x ₂ x ₁) = p ^(X₁, X₂) /p ₁ (x ₁) 2. 조건부 PDF: f _{2 1} (x ₂ x ₁) = f ^(X₁, X₂) /f ₁ (x ₁) (Marginal f ₁ (x ₁)는 스케일러) *X의 효과, Y는 특정 값 고정 1) P(a < Y < b X = x) = f ^b _a f _{Y X} (y x) dy & P(c < X < d Y = y) = f ^c _c f _{X Y} (x y) dx 2) P(-∞ < Y < ∞ X = x) = f [∞] _o f _{Y X} (y x) dy → f [∞] _o f _{X X} dy = 1/f _x (x) f [∞] _o f(x, y) dy=1 3) 조건부 기대값: E[u(Y) x] = f [∞] _o u(y) f _{Y X} (y x) dy → x의 함수 ① 조건부 평균: E(Y x) = f [∞] _o y f _{Y X} (y x) dy → x의 함수 ② 조건부 분산: Var(Y x) = E(Y ² x) - [E(Y x)] ² * 정리: µ _Y 추정 ← E(Y X) 0 Y보다 더 신뢰도 높음 (Rao & Blackwell) 1) E[E(Y X)] = E(Y) * * 증명: E(Y) = f [∞] _o y f(x, y) dydx = f [∞] _o f [∞] _o y f _{Y X} (y x) dy] f _X (x) dx = f [∞] _o E(Y X) f _X (x) dx = E(E(Y X)) 3. 건청조건부 평균: E(Y X) = a + bx → E(Y X) = E(XY) - E(X)E(Y) *목립이면 Cov(X,Y) = 0 ⇔ E(XY) = E(X)E(Y) 4·관 계수 4·전형결합: T = Cov(X,Y) / σ _X σ _Y = σ _{XY} / σ _X σ _Y (-1 ≤ ρ ≤ 1)→ y = a + bx (b > 0)에 ρ의 강도로 집중 (0 < ρ ≤ 1) * 천형결합: T = S [∞] _{l=1} a _l X _l , W = S [∞] _{l=1} b _l Y _l 1) E(T) = S [∞] _{l=1} a _l E(X _l) (*E[X _l < ∞) *E(X ₁ + X ₂) = ∫ ∫ (x ₁ + x ₂) f(x ₁ , x ₂) dx ₁ dx ₂ = E(X ₁) + E(X ₂) 7/대값/ 2) Cov(T, W) = Σ a _l b _l Cov(X _l , Y _l) (*E[X ² _l < ∞, E[Y ² _l < ∞) ② Var(T) = Cov(T, T) = S [∞] _{l=1} a ² Var(X _l) + 2 S _{l=2} a _l b _l Cov(X _l , Y _l) (*E[X ² _l < ∞)		3) T \rightarrow S 사상하는 위 대응 역: $x_1 = w_1(y_1, y_2)$ & $x_2 = w_2(y_1, y_2)$
2. 연속형 변환: f(y ₁ , y ₂) = f _X [w ₁ (y ₁ , y ₂), w ₂ (y ₁ , y ₂)] f for (y ₁ , y ₂) ∈ T & 나머지 pdf 0 * MGF 이용 변환: E(exp(tY)) = E(exp(t(X ₁ + X ₂)) → MGF 유일성으로 Y의 PMF/PDF 구함 1. 조건부 PMF: p _{2 1} (x ₂ x ₁) = p ^(X₁, X₂) /p ₁ (x ₁) 2. 조건부 PDF: f _{2 1} (x ₂ x ₁) = f ^(X₁, X₂) /f ₁ (x ₁) (Marginal f ₁ (x ₁)는 스케일러) *X의 효과, Y는 특정 값 고정 1) P(a < Y < b X = x) = ∫ _a ^b f _{Y X} (y x) dy & P(c < X < d Y = y) = ∫ _c ^d f _{X Y} (x y) dx 2) P(-∞ < Y < ∞ X = x) = ∫ _∞ [∞] f _{Y X} (y x) dy = ∫ _∞ f _{X Y} (x ₂) dy = f _{X Y} (x ₂) f _∞ f _X (x ₂) dy = 1 3) 조건부 기대값: E[u(Y) x] = ∫ _∞ u(y) f _{Y X} (y x) dy → x의 함수 ① 조건부 평균: E(Y x) = ∫ _∞ y f _{Y X} (y x) dy → x의 함수 ② 조건부 평균: E(Y x) = ∫ _∞ y f _{Y X} (y x) dy → x의 함수 * 장리: μ _Y 추정 ★ E(Y X) O Y 보다 더 신뢰도 높음 (Rao & Blackwell) 1) E[E(Y X)] = E(Y) 2) Var(E(Y X)) ≤ Var(Y) *Y 분산 유한 * 증명: E(Y) = ∫ _∞ f _∞ y f _Y (x,y) dydx = ∫ _∞ [∫ _∞ y f _{Y X} (y x) dy] f _X (x) dx = f _∞ E(Y X) f _X (x) dx = E(E(Y X)) 3. 전형조건부 평균: E(Y x) = a + bx → E(Y X) = E(XY) - E(X)E(Y) *독립이면 Cov(X,Y) = 0 ↔ E(XY) = E(X)E(Y) 2. 상관계수: ρ = Cov(X,Y)/σ _X σ _Y = σxY/σ _X σ _Y (-1 ≤ ρ ≤ 1)→y = a + bx (b > 0)에 ρ의 강도로 집중 (0 < ρ ≤ 1) * 전형결함: T = ∑ _{i=1} a _i E(X _i) (*E[X _i] < ∞	이변수	1. 이산형 변환: $p_{\mathbf{Y}}(y_1,y_2)=p_{\mathbf{X}}[w_1(y_1,y_2),w_2(y_1,y_2)]$ for $(y_1,y_2)\in T$ & 나머지 pmf 0
* MGF 이용 변환: $E(\exp(tY)) = E(\exp(t(X_1 + X_2))$ → MGF 유일성으로 Y의 PMF/PDF 구함 1. 조건부 PMF: $p_{2 1}(x_2 x_1) = \frac{p(x_1, x_2)}{p_1(x_1)}$ 2. 조건부 PDF: $f_{2 1}(x_2 x_1) = \frac{f(x_1, x_2)}{f_1(x_1)} (Marginal f_1(x_1) \vdash \triangle 케일러) *X의 효과, Y는 특정 값 고정 1) P(a < Y < b \mid X = x) = \int_a^b f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_c^d f_{X\mid Y}(x\mid Y) dx 2) P(-\infty < Y < \infty \mid X = x) = \int_{-\infty}^\infty f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_c^d f_{X\mid Y}(x\mid Y) dx 2) P(-\infty < Y < \infty \mid X = x) = \int_{-\infty}^\infty f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_c^d f_{X\mid Y}(x\mid Y) dx 2) P(-\infty < Y < \infty \mid X = x) = \int_{-\infty}^\infty f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_c^d f_{X\mid Y}(x\mid Y) dx 2) P(-\infty < Y < \infty \mid X = x) = \int_{-\infty}^\infty f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_c^d f_{X\mid Y}(x\mid Y) dx 3) 조건부 기대값: E[u(Y) x] = \int_{-\infty}^\infty u(y) f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_c^\infty f(x, y) dy = 1 4 정리: E[Y x] = \int_{-\infty}^\infty f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_c^\infty f(x, y) dy = 1 5 장권: E[Y x] = E(Y x) = \int_{-\infty}^\infty f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_{-\infty}^\infty f(x, y) dy = 1 7 장관: E[Y x] = E(Y x) = \int_{-\infty}^\infty f_{Y\mid X}(y\mid X) dy & P(c < X < d\mid Y = y) = \int_c^\infty f(x, y) dy = 1 7 대값/ 2) E[X x] = \int_{-\infty}^\infty f(x, y) dy = \int_{-\infty}^\infty f(x, y) dy = 1 7 대값/ 3 E[X x] = \int_{-\infty}^\infty f(x, y) dy = \int_{-\infty}^\infty f(x, y) dy = 1 7 E[X x] = \int_{-\infty}^\infty f(x, y) dy = \int_{-\infty}^\infty f(x, y) dy = 1 8 E[X x] = \int_{-\infty}^\infty f(x, y) dy = \int_{-\infty}^\infty f(x, y) dy = 1 9 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 9 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dy = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dx = \int_{-\infty}^\infty E(Y x) dx = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dx = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dx = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dx = 1 1 E[X x] = \int_{-\infty}^\infty f(x, y) dx = 1 2 E[X x] = \int_{-\infty}^\infty f(x, y) dx = 1 2 E[X x] = \int_{-\infty}^\infty f(x, y) dx = 1 2 E[X x] = \int_{-\infty}^\infty f(x, y) dx = 1 2 E$	변환	* X_1 , X_2 \longrightarrow Y로만 변환 시, dummy 변수를 하나 더 만들어 Y_2 로 지정해주고 marginal Y dist를 구함
1. 조건부 PMF: $p_{2 1}(x_2 x_1) = \frac{p(x_1, x_2)}{p_1(x_1)}$ 2. 조건부 PDF: $f_{2 1}(x_2 x_1) = \frac{f(x_1, x_2)}{f_1(x_1)}$ (Marginal $f_1(x_1)$ 는 스케일러) *X의 효과, Y는 특정 값 고정 1) $P(a < Y < b \mid X = x) = \int_a^b f_{Y X}(y x) dy$ & $P(c < X < d \mid Y = y) = \int_c^d f_{X Y}(x y) dx$ 2) $P(-\infty < Y < \infty \mid X = x) = \int_{-\infty}^\infty f_{Y X}(y x) dy = \int_{-\infty}^\infty \frac{f(x,y)}{f_{X}(x)} dy = \frac{1}{f_{X}(x)} \int_{-\infty}^\infty f(x,y) dy = 1$ 3) 조건부 기대값: $E[u(Y) x] = \int_{-\infty}^\infty u(y) f_{Y X}(y x) dy$ ◆ x의 함수 ① 조건부 평균: $E(Y x) = \int_{-\infty}^\infty y f_{Y X}(y x) dy$ ② 조건부 분산: $Var(Y x) = E(Y^2 x) - [E(Y x)]^2$ * 정리: μ_Y 추정 ← $E(Y X)$ 이 Y보다 더 신뢰도 높음 (Rao & Blackwell) 1) $E[E(Y X)] = E(Y)$ 2) $Var(E(Y X)) \le Var(Y)$ *Y 분산 유한 * 증명: $E(Y) = \int_{-\infty}^\infty \int_{-\infty}^\infty y f_{Y X}(Y) - \mu_Y$] = $E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y)$ as $E(E(Y X))$ 3. 전형조건부 평균: $E(Y X) = E(X) - \mu_X$ (−1 ≤ ρ ≤ 1) → y = a + bx (b > 0)에 ρ 의 강도로 집중 (0 < ρ ≤ 1) 3. 전형조건부 평균: $E(Y X) = a + bx$ → $E(Y X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(X - \mu_X)$ & $E(Var(Y X)) = \sigma_Y^2(1 - \rho^2)$ * 최귀분석 모회귀계수 $\beta = \rho(\sigma_Y/\sigma_X) = Cov(X,Y)/Var(X)$; *X,Y 분산 유한 * 선형결합: $T = \sum_{i=1}^n a_i E(X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i] < ∞ : $E(X_i = X_i)$ (*E[X _i]		2. 연속형 변환: $f_{\mathbf{Y}}(y_1,y_2)=f_{\mathbf{X}}[w_1(y_1,y_2),w_2(y_1,y_2)]$ for $(y_1,y_2)\in T$ & 나머지 pdf 0
2. 조건부 PDF: $f_{2 1}(x_2 x_1) = f(x_1, x_2) / f_{1}(x_1)$ (Marginal $f_1(x_1)$ 는 스케일러) *X의 효과, Y는 특정 값 고정 1) $P(a < Y < b \mid X = x) = \int_a^b f_{Y X}(y x) dy$ & $P(c < X < d\mid Y = y) = \int_c^d f_{X Y}(x y) dx$ 2) $P(-\infty < Y < \infty \mid X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_X(x)} dy = \frac{1}{f_X(x)} \int_{-\infty}^{\infty} f(x,y) dy = 1$ 3) 조건부 기대값: $E[u(Y) x] = \int_{-\infty}^{\infty} u(y) f_{Y X}(y x) dy$ ② 조건부 분산: Var(Y x) = $E(Y^2 x) - [E(Y x)]^2$ * 정리: μ_Y 추정 ← $E(Y X)$ 이 Y보다 더 신뢰도 높음 (Rao & Blackwell) 1) $E[E(Y X)] = E(Y)$ 2) $Var(E(Y X)) \le Var(Y)$ *Y 분산 유한 * 증명: $E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) dy dx = \int_{-\infty}^{\infty} [\int_{-\infty}^{\infty} yf_{Y X}(y x) dy] f_X(x) dx = \int_{-\infty}^{\infty} E(Y X) f_X(x) dx = E(E(Y X))$ 공분산 1. 공분산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ 3. 산형조건부평균: $E(Y X) = a + bx \Rightarrow E(Y X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(X - \mu_X) & E(Var(Y X)) = \sigma_Y^2(1 - \rho^2)$ *회귀분석 모회귀계수 $\beta = \rho(\sigma_y/\sigma_X) = Cov(X,Y)/Var(X)$; *X,Y 분산 유한 * 선형결합: $T = \sum_{i=1}^n a_i X_i$, $W = \sum_{i=1}^n b_i Y_i$ 1) $E(T) = \sum_{i=1}^n a_i E(X_i)$ (*E[X _i] (*E[X _i]] < ∞, $E(Y_i^2]$ < ∞, $E(Y_i^2]$ < ∞ ① $Var(T) = Cov(T, T) = \sum_{i=1}^n a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (*E[X _i] (*E[X _i]] < ∞)		* MGF 이용 변환: $E\left(\exp\left(tY\right)\right) = E\left(\exp\left(t(X_1 + X_2)\right)$ > MGF 유일성으로 Y 의 PMF/PDF 구함
2. 조건부 PDF: $f_{2 1}(x_2 x_1) = f(x_1, x_2) / f_{1}(x_1)$ (Marginal $f_1(x_1)$ 는 스케일러) *X의 효과, Y는 특정 값 고정 1) $P(a < Y < b \mid X = x) = \int_a^b f_{Y X}(y x) dy$ & $P(c < X < d\mid Y = y) = \int_c^d f_{X Y}(x y) dx$ 2) $P(-\infty < Y < \infty \mid X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_X(x)} dy = \frac{1}{f_X(x)} \int_{-\infty}^{\infty} f(x,y) dy = 1$ 3) 조건부 기대값: $E[u(Y) x] = \int_{-\infty}^{\infty} u(y) f_{Y X}(y x) dy$ ② 조건부 분산: Var(Y x) = $E(Y^2 x) - [E(Y x)]^2$ * 정리: μ_Y 추정 ← $E(Y X)$ 이 Y보다 더 신뢰도 높음 (Rao & Blackwell) 1) $E[E(Y X)] = E(Y)$ 2) $Var(E(Y X)) \le Var(Y)$ *Y 분산 유한 * 증명: $E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) dy dx = \int_{-\infty}^{\infty} [\int_{-\infty}^{\infty} yf_{Y X}(y x) dy] f_X(x) dx = \int_{-\infty}^{\infty} E(Y X) f_X(x) dx = E(E(Y X))$ 공분산 1. 공분산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ 3. 산형조건부평균: $E(Y X) = a + bx \Rightarrow E(Y X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(X - \mu_X) & E(Var(Y X)) = \sigma_Y^2(1 - \rho^2)$ *회귀분석 모회귀계수 $\beta = \rho(\sigma_y/\sigma_X) = Cov(X,Y)/Var(X)$; *X,Y 분산 유한 * 선형결합: $T = \sum_{i=1}^n a_i X_i$, $W = \sum_{i=1}^n b_i Y_i$ 1) $E(T) = \sum_{i=1}^n a_i E(X_i)$ (*E[X _i] (*E[X _i]] < ∞, $E(Y_i^2]$ < ∞, $E(Y_i^2]$ < ∞ ① $Var(T) = Cov(T, T) = \sum_{i=1}^n a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (*E[X _i] (*E[X _i]] < ∞)		1. 조건부 PMF: $p_{2 1}(x_2 x_1) = \frac{p(x_1, x_2)}{p_1(x_1)}$
조건부 1) $P(a < Y < b \mid X = x) = \int_a^b f_{Y\mid X}(y\mid x) dy$ & $P(c < X < d\mid Y = y) = \int_c^d f_{X\mid Y}(x\mid y) dx$ 2) $P(-\infty < Y < \infty \mid X = x) = \int_{-\infty}^\infty f_{Y\mid X}(y\mid x) dy = \int_{-\infty}^\infty \frac{f(x,y)}{f(x)} dy = \frac{1}{f(x,y)} \int_{-\infty}^\infty f(x,y) dy = 1$ 3) 조건부 기대값: $E[u(Y)\mid x] = \int_{-\infty}^\infty u(y) f_{Y\mid X}(y\mid x) dy$ ★ x의 함수 ① 조건부 평균: $E(Y\mid x) = \int_{-\infty}^\infty y f_{Y\mid X}(y\mid x) dy$ ② 조건부 분산: $Var(Y\mid x) = E(Y^2\mid x) - [E(Y\mid x)]^2$ * 정리: μ_Y 추정 ← $E(Y\mid X)$ 0 Y보다 더 신뢰도 높음 (Rao & Blackwell) 1) $E[E(Y\mid X)] = E(Y)$ 2) $Var(E(Y\mid X)) \le Var(Y)$ * Y 분산 유한 * 증명: $E(Y) = \int_{-\infty}^\infty \int_{-\infty}^\infty y f(x,y) dy dx = \int_{-\infty}^\infty [f_{-\infty}^\infty y f_{Y\mid X}(y\mid x) dy] f_X(x) dx = \int_{-\infty}^\infty E(Y\mid X) f_X(x) dx = E(E(Y\mid X))$ 공분산 1. 공분산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ 2. 상관계수: $\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} (-1 \le \rho \le 1)$ → y = a + bx (b > 0)에 ρ의 강도로 집중 (0 < ρ ≤ 1) 3. 선형조건부평균: $E(Y\mid X) = a + bx$ → $E(Y\mid X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (X - \mu_X) \& E(Var(Y\mid X)) = \sigma_Y^2 (1 - \rho^2)$ * 최귀분석 모회귀계수 β = $\rho(\sigma_Y/\sigma_X) = Cov(X,Y)/Var(X)$; * X,Y 분산 유한 * 선형결합: $T = \sum_{i=1}^n a_i X_i$, W = $\sum_{i=1}^m b_i Y_i$ 1) $E(T) = \sum_{i=1}^n a_i E(X_i)$ (*E[X _i] < ∞) : $E(X_1 + X_2) = \int \int (x_1 + x_2) F(x_1, x_2) dx_1 dx_2 = E(X_1) + E(X_2)$ 3. ① $Var(T) = Cov(T, T) = \sum_{i=1}^n a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_j, X_j)$ (*E[X _i ²] < ∞)		2. 조건부 PDF: $f_{2 1}(x_2 x_1) = \frac{f(x_1,x_2)}{f_1(x_1)}$ (Marginal $f_1(x_1)$ 는 스케일러) *X의 효과, Y는 특정 값 고정
조건부 3) 조건부 기대값: $E[u(Y) x] = \int_{-\infty}^{\infty} u(y) f_{Y X}(y x) dy$ → x의 함수 ① 조건부 평균: $E(Y x) = \int_{-\infty}^{\infty} y f_{Y X}(y x) dy$ ② 조건부 분산: $Var(Y x) = E(Y^2 x) - [E(Y x)]^2$ * 정리: μ_Y 추정 ← $E(Y X)$ 이 Y보다 더 신뢰도 높음 (Rao & Blackwell) 1) $E[E(Y X)] = E(Y)$ 2) $Var(E(Y X)) \le Var(Y)$ *Y 분산 유한 * 증명: $E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x,y) dy dx = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} y f_{Y X}(y x) dy \right] f_X(x) dx = \int_{-\infty}^{\infty} E(Y X) f_X(x) dx = E(E(Y X))$ 공분산 / 1. 공분산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ 2. 상관계수: $\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} - \frac{\sigma_X \sigma_Y}{\sigma_X \sigma_Y} - \frac{\sigma_X \sigma_Y}{\sigma_X \sigma_Y} - \frac{\sigma_X \sigma_Y}{\sigma_X \sigma_X} - \frac{\sigma_X \sigma_X \sigma_Y}{\sigma_X \sigma_X} - \frac{\sigma_X \sigma_X \sigma_X}{\sigma_X \sigma_X} - \frac{\sigma_X \sigma_X \sigma_X}{\sigma_X \sigma_X} - $		
① 조건부 평균: $E(Y x) = \int_{-\infty}^{\infty} y f_{Y X}(y x) dy$ ② 조건부 분산: $Var(Y x) = E(Y^2 x) - [E(Y x)]^2$ * 정리: μ_Y 추정 ← $E(Y X)$ 이 Y보다 더 신뢰도 높음 (Rao & Blackwell) 1) $E[E(Y X)] = E(Y)$ ② $Var(E(Y X)) \le Var(Y)$ *Y 분산 유한 * 증명: $E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x,y) dy dx = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} y f_{Y X}(y x) dy\right] f_X(x) dx = \int_{-\infty}^{\infty} E(Y X) f_X(x) dx = E(E(Y X))$ 3. 군산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ 2. 상관계수: $\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} (-1 \le \rho \le 1) \Rightarrow y = a + bx (b > 0)$ 에 ρ 의 강도로 집중 (0 < ρ ≤ 1) 3. 산형조건부평균: $E(Y X) = a + bx \Rightarrow E(Y X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(X - \mu_X) & E(Var(Y X)) = \sigma_Y^2(1 - \rho^2)$ *회귀분석 모회귀계수 $\beta = \rho(\sigma_Y/\sigma_X) = Cov(X,Y)/Var(X)$; *XY 분산 유한 * 선형결합: $T = \sum_{i=1}^{n} a_i E(X_i)$ (* $E[X_i] < \infty$) : $E(X_1 + X_2) = \int \int (x_1 + x_2) F(x_1, x_2) dx_1 dx_2 = E(X_1) + E(X_2)$ 기대값/ ② $Cov(T, W) = \sum a_i b_j Cov(X_i, Y_j)$ (* $E[X_i^2] < \infty$, $E[Y_{ij}^2] < \infty$) ③ 분산 ① $Var(T) = Cov(T, T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2\sum_{i < j} a_i b_j Cov(X_i, X_j)$ (* $E[X_i^2] < \infty$)		2) $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_X(x)} dy = \frac{1}{f_X(x)} \int_{-\infty}^{\infty} f(x,y) dy = 1$
* 정리: μ _Y 추정 ← E(Y X)이 Y보다 더 신뢰도 높음 (Rao & Blackwell) 1) E[E(Y X)] = E(Y) 2) Var(E(Y X)) ≤ Var(Y) *Y 분산 유한 * 증명: E(Y) = ∫ _{-∞} [∞] ∫ _{-∞} [∞] yf(x,y) dydx = ∫ _{-∞} [∞] [∫ _{-∞} [∞] yf _{Y X} (y x)dy] f _X (x)dx = ∫ _{-∞} [∞] E(Y X) f _X (x)dx = E(E(Y X)) 3. 군분산: Cov(X,Y) = E[(X − μ _X)(Y − μ _Y)] = E(XY) − E(X)E(Y) *독립이면 Cov(X,Y) = 0 ⇔ E(XY) = E(X)E(Y) 2. 상관계수: ρ = Cov(X,Y)/σ _X σ _Y = σ _{XY} /σ _X σ _Y (−1 ≤ ρ ≤ 1) → y = a + bx (b > 0)에 ρ의 강도로 집중 (0 < ρ ≤ 1) 3. 건형조건부평균: E(Y X) = a + bx → E(Y X) = μ _y + ρ σ _x (X − μ _x) & E(Var(Y X)) = σ _y ² (1 − ρ ²) *회귀분석 모회귀계수 β = ρ(σ _y /σ _x) = Cov(X,Y)/Var(X) ; *X,Y 분산 유한 * 건형결합: T = ∑ _{i=1} ⁿ a _i E(X _i) (*E[X _i] < ∞) : E(X ₁ + X ₂) = ∫∫(x ₁ + x ₂)F(x ₁ ,x ₂)dx ₁ dx ₂ = E(X ₁) + E(X ₂) 기대값/ 2) Cov(T, W) = ∑∑ a _i b _j Cov(X _i ,Y _j) (*E[X _i ²] < ∞, E[Y _{ij} ²] < ∞) ① Var(T) = Cov(T, T) = ∑ _{i=1} ⁿ a _i ² Var(X _i) + 2∑ _{i<j< sub=""> a_ib_j Cov(X_i,X_j) (*E[X_i²] < ∞)</j<>}	조건부	3) 조건부 기대값: $E[u(Y) x] = \int_{-\infty}^{\infty} u(y) f_{Y X}(y x) dy \rightarrow x$ 의 함수
1) $E[E(Y X)] = E(Y)$ 2) $Var(E(Y X)) \le Var(Y)$ *Y 분산 유한 * 증명: $E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) dy dx = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} yf_{Y X}(y x) dy \right] f_X(x) dx = \int_{-\infty}^{\infty} E(Y X) f_X(x) dx = E(E(Y X))$ 공분산 / 1.공분산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ 2.상관계수: $\rho = \frac{Cov(X,Y)}{\sigma_X\sigma_Y} = \frac{\sigma_{XY}}{\sigma_X\sigma_Y} (-1 \le \rho \le 1) \Rightarrow y = a + bx \ (b > 0)$ 에 ρ 의 강도로 집중 $(0 < \rho \le 1)$ 3.선형조건부평균: $E(Y X) = a + bx \Rightarrow E(Y X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (X - \mu_X) \otimes E(Var(Y X)) = \sigma_Y^2 (1 - \rho^2)$ *회귀분석 모회귀계수 $\beta = \rho(\sigma_Y/\sigma_X) = Cov(X,Y)/Var(X)$; *X,Y 분산 유한 * 선형결합: $T = \sum_{i=1}^n a_i X_i, \ W = \sum_{i=1}^m b_i Y_i$ 1) $E(T) = \sum_{i=1}^n a_i E(X_i)$ (*E[X _i] < ∞ , $E[Y_{ij}^2] < \infty$ 3.건향조건부평균: $E(Y X) = \mu_X + \rho \frac{\sigma_X}{\sigma_X} (X - \mu_X) \otimes E(Var(Y X)) = \sigma_Y^2 (1 - \rho^2)$ * 기대값/ 2) $E(X_i = X_i) = E(X_i) = E(X_i$		① 조건부 평균: $E(Y x) = \int_{-\infty}^{\infty} y f_{Y X}(y x) dy$ ② 조건부 분산: $Var(Y x) = E(Y^2 x) - [E(Y x)]^2$
* 증명: $E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) dy dx = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} yf_{Y X}(y x) dy \right] f_X(x) dx = \int_{-\infty}^{\infty} E(Y X) f_X(x) dx = E(E(Y X))$ 공분산 / 1.공분산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ 2.상관계수: $\rho = \frac{Cov(X,Y)}{\sigma_X\sigma_Y} = \frac{\sigma_{XY}}{\sigma_X\sigma_Y}$ (-1 ≤ ρ ≤ 1) → $y = a + bx$ ($b > 0$)에 ρ 의 강도로 집중 (0 < ρ ≤ 1) 장관 계수 *최귀분석 모회귀계수 $\beta = \rho(\sigma_y/\sigma_x) = Cov(X,Y)/Var(X)$; * X,Y 분산 유한 * 선형결합: $T = \sum_{i=1}^{n} a_i X_i$, $W = \sum_{i=1}^{m} b_i Y_i$ 1) $E(T) = \sum_{i=1}^{n} a_i E(X_i)$ (* $E[X_i] < \infty$) $E(X_1 + X_2) = \int \int (x_1 + x_2) F(x_1, x_2) dx_1 dx_2 = E(X_1) + E(X_2)$ 기대값/ 공분산 ① $Var(T) = Cov(T,T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (* $E[X_i] < \infty$)		* 정리: μ_Y 추정 \longleftarrow $E(Y X)$ 이 Y 보다 더 신뢰도 높음 (Rao & Blackwell)
공분산 / 기대값/ 공분산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ * 기사 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$ *무리 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E$		
/ 상관 $2.$ 상관계수: $\rho = \frac{\text{Cov}(X,Y)}{\sigma_X\sigma_Y} = \frac{\sigma_{XY}}{\sigma_X\sigma_Y}$ $(-1 \le \rho \le 1)$ $\Rightarrow y = a + bx \ (b > 0)$ 에 ρ 의 강도로 집중 $(0 < \rho \le 1)$ 3.선형조건부평균: $E(Y X) = a + bx \Rightarrow E(Y X) = \mu_y + \rho \frac{\sigma_y}{\sigma_x} (X - \mu_x) \otimes E(\text{Var}(Y X)) = \sigma_y^2 (1 - \rho^2)$ *회귀분석 모회귀계수 $\beta = \rho(\sigma_y/\sigma_x) = \text{Cov}(X,Y)/Var(X)$; *X,Y 분산 유한* 선형결합: $T = \sum_{i=1}^n a_i X_i, \ W = \sum_{i=1}^m b_i Y_i$ 1) $E(T) = \sum_{i=1}^n a_i E(X_i)$ (* $E[X_i] < \infty$) $E(X_1 + X_2) = \int \int (x_1 + x_2) F(x_1, x_2) dx_1 dx_2 = E(X_1) + E(X_2)$ 기대값/ 공분산① $Var(T) = \text{Cov}(T,T) = \sum_{i=1}^n a_i^2 \text{Var}(X_i) + 2 \sum_{i < j} a_i b_j \text{Cov}(X_i, X_j)$ (* $E[X_i^2] < \infty$)		
상관 3.선형조건부평균: $E(Y X) = a + bx$ → $E(Y X) = \mu_y + \rho \frac{\sigma_y}{\sigma_x}(X - \mu_x)$ & $E(\text{Var}(Y X)) = \sigma_y^2(1 - \rho^2)$ *회귀분석 모회귀계수 $\beta = \rho(\sigma_y/\sigma_x) = \text{Cov}(X,Y)/Var(X)$; *X,Y 분산 유한 * 선형결합: $T = \sum_{i=1}^n a_i X_i$, $W = \sum_{i=1}^m b_i Y_i$ 1) $E(T) = \sum_{i=1}^n a_i E(X_i)$ (*E[X _i] < ∞) :: $E(X_1 + X_2) = \int \int (x_1 + x_2) F(x_1, x_2) dx_1 dx_2 = E(X_1) + E(X_2)$ 기대값/ 2) $Cov(T, W) = \sum \sum a_i b_j Cov(X_i, Y_j)$ (*E[X _i ²] < ∞, $E[Y_{ij}^2] < \infty$) ③ $Var(T) = Cov(T, T) = \sum_{i=1}^n a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (*E[X _i ²] < ∞)	공분산	
제수 *회귀분석 모회귀계수 $\beta = \rho(\sigma_y/\sigma_x) = \text{Cov}(X,Y)/Var(X)$; *X,Y 분산 유한 * 선형결합: $T = \sum_{i=1}^n a_i X_i$, $W = \sum_{i=1}^m b_i Y_i$ 선형결합 1) $E(T) = \sum_{i=1}^n a_i E(X_i)$ (* $E[X_i] < \infty$) $E(X_1 + X_2) = \int \int (x_1 + x_2) F(x_1, x_2) dx_1 dx_2 = E(X_1) + E(X_2)$ 기대값/ 2) $Cov(T, W) = \sum \sum a_i b_j Cov(X_i, Y_j)$ (* $E[X_i^2] < \infty$, $E[Y_{ij}^2] < \infty$) ③ $Var(T) = Cov(T, T) = \sum_{i=1}^n a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (* $E[X_i^2] < \infty$)	/	
* 선형결합: $T = \sum_{i=1}^{n} a_i X_i$, $W = \sum_{i=1}^{m} b_i Y_i$ 선형결합 1) $E(T) = \sum_{i=1}^{n} a_i E(X_i)$ (* $E[X_i] < \infty$) $E(X_1 + X_2) = \int \int (x_1 + x_2) F(x_1, x_2) dx_1 dx_2 = E(X_1) + E(X_2)$ 기대값/ 2) $Cov(T, W) = \sum \sum a_i b_j Cov(X_i, Y_j)$ (* $E[X_i^2] < \infty$, $E[Y_{ij}^2] < \infty$) 공분산 ① $Var(T) = Cov(T, T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (* $E[X_i^2] < \infty$)		3.선형조건부평균: $E(Y X) = a + bx$ \Rightarrow $E(Y X) = \mu_y + \rho \frac{\sigma_y}{\sigma_x} (X - \mu_x) & E(Var(Y X)) = \sigma_y^2 (1 - \rho^2)$
선형결합 1) $E(T) = \sum_{i=1}^{n} a_i E(X_i)$ (* $E[X_i] < \infty$) $E(X_1 + X_2) = \int \int (x_1 + x_2) F(x_1, x_2) dx_1 dx_2 = E(X_1) + E(X_2)$ 기대값/ 2) $Cov(T, W) = \sum \sum a_i b_j Cov(X_i, Y_j)$ (* $E[X_i^2] < \infty$, $E[Y_{ij}^2] < \infty$ ① $Var(T) = Cov(T, T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (* $E[X_i^2] < \infty$)	계수	*회귀분석 모회귀계수 $\beta= hoig(\sigma_y/\sigma_xig)=\mathrm{Cov}(X,Y)/Var(X)$; * X,Y 분산 유한
기대값/ 2) $Cov(T, W) = \sum \sum a_i b_j Cov(X_i, Y_j)$ (* $E[X_i^2] < \infty$, $E[Y_{ij}^2] < \infty$) ③ $Var(T) = Cov(T, T) = \sum_{i=1}^n a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (* $E[X_i^2] < \infty$)		* 선형결합: $T=\sum_{i=1}^n a_i X_i$, $W=\sum_{i=1}^m b_i Y_i$
공분산 ① $Var(T) = Cov(T,T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (* $E[X_i^2] < \infty$)	선형결합	
② $Var(T) = Cov(T,T) = \sum_{i=1}^{n} a_i^2 Var(X_i)$ (* X_1, \dots, X_n 이 유한 분산, 독립)	공분산	
		② $Var(T) = Cov(T,T) = \sum_{i=1}^{n} a_i^2 Var(X_i)$ (* X_1, \dots, X_n 이 유한 분산, 독립)

2-2. 다변량분포

	*정의: $f(x,y) = f_x(x)f_y(y) \Leftrightarrow X,Y$ 는 독립 $[x \in (a,b) \& y \in (c,d)]$ (받침이 수평/수직선 box에 존재해야 함) 1. 조건부 증명: $f_y(y) = \int_{-\infty}^{\infty} f(x,y) dx = \int_{-\infty}^{\infty} f_{y x}(y x) f_x(x) dx = f_{y x}(y x) \int_{-\infty}^{\infty} f_x(x) dx = f_{y x}(y x)$
	2. 동치류
	1) $f(x,y) = f_x(x) f_y(y)$
	2) $F(x,y) = F_x(x) F_y(y)$ *증명: $\partial^2 F / \partial x \partial y = f_x(x) f_y(y)$
독립	3) $P(a < X < b, c < Y < d) = P(a < X < b) P(c < Y < d)$
	*증명: $P(a < X < b, c < Y < d) = F(b, d) - F(a, d) - F(b, c) + F(a, c) = [F_x(b) - F_x(a)][F_y(d) - F_y(c)]$
	4) $E[u(X)v(Y)] = E[u(X)] E[v(Y)] \Rightarrow E(XY) = E(X)E(Y) \Leftrightarrow Cov(X,Y) = 0$
	5) $M(t_1, t_2) = M(t_1, 0) M(0, t_2)$ *증명: $M(t_1, t_2) = E(e^{t_1 X} + t_2 Y) = E(e^{t_1 X}) E(e^{t_2 Y}) = M(t_1, 0) M(0, t_2)$
	* $M(t_1, 0) \succeq \text{ marginal } f_x \cong \text{ MGF} (\because M(t_1, 0) = E(e^{t_1 x}) = \int_{-\infty}^{\infty} e^{t_1 x} \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx = \int_{-\infty}^{\infty} e^{t_1 x} f_x(x) dx$
	* $\mathbf{x} = (x_1, x_2, \dots, x_p)^T = (X_1(c), X_2(c), \dots, X_p(c))^T$ for 확률 실험 $c \in C$
	1. 결합 확률 함수들
	1) Joint CDF: $F(\mathbf{x}) = P[\{X_1 \le x_1\} \cap \{X_2 \le x_2\} \cap \dots \cap \{X_p \le x_p\}]$
	2) Joint PMF $F(\mathbf{x}) = \sum_{w_1 \le x_1} \cdots \sum_{w_n \le x_n} p(w_1, \dots, w_p)$
	3) Joint PDF: $F(\mathbf{x}) = \sum_{w_1 \le x_1}^{x_1} \sum_{w_p \le x_p}^{x_p} F(w_1, \dots, w_p)$ $ (\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_p) dx_p \cdots dx_1 \qquad (\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_p) dx_p \cdots dx_1 = 1)$
	$\Leftrightarrow \frac{\partial^p \{F(\mathbf{x})\}}{\partial x_1 \cdots \partial x_p} = f(\mathbf{x})$
	2. Marginal/Conditional
	1) $f_1(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_p) dx_2 \cdots dx_p$
	$\rightarrow f_{2,\dots,p 1}(x_2,\dots,x_p x_1) = f(\mathbf{x})/f_1(x_1)$
다변수	2) $f_{2,4,5}(x_2, x_4, x_5) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{x}) dx_1 dx_3 dx_6 \leftarrow \mathbf{x} = (x_1, x_2, x_3, x_4, x_5, x_6)^T$
	$ \Rightarrow f_{1,3,6 \mid 2.4.5}(x_1, x_3, x_6 \mid x_2, x_4, x_5) = \frac{f(\mathbf{x})}{f_{2,4.5}(x_2, x_4, x_5)} $
	3. 기대값
	1) $E(u(\mathbf{x})) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} u(x_1, \cdots, x_p) dx_1 \cdots dx_p$ (존재성: ${}^{\exists}E(u(\mathbf{x}))$) *이산: $E(u(\mathbf{x})) = \sum_{x_1} \cdots \sum_{x_p} u(x_1, \cdots, x_p)$
	2) $E(\sum k_i Y_i) = \sum k_i E(Y_i)$
	3) $E[u(X_2, \dots, X_p) x_1] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} u(x_2, \dots, x_p) f_{2, \dots, p \mid 1}(x_2, \dots, x_p \mid x_1) dx_2 \dots dx_p$
	4. 독립: $E(\prod u_i(X_i)) = \prod E(u_i(X_i))$ 등 동치류 (f, F, P, E, M)
	* iid (independent and identically distributed): 여러 확률 변수가 서로 독립 & 동일한 분포
	5. 변환: X 의 받침 S에 대해, X \Leftrightarrow Y가 일대일이 되는 S_1,\cdots,S_k 의 부분 공간 상 각각의 야코비안 J_i 정의
	$g(\mathbf{y}) = \sum_{i=1}^{\kappa} J_i f[w_{1i}(\mathbf{x}), \dots, w_{pi}(\mathbf{x})]$
	L=1
	* Random matrix $\mathbf{W} = \begin{bmatrix} W_{ij} \end{bmatrix}$, W_{ij} $(1 \le i \le m, \ 1 \le j \le n)$
	1. $E(\mathbf{W}) = [E(W_{ij})]$ (일렬로 배열하여 mn x 1의 벡터로 생각)
	1) E[AW + BV] = A E[W] + B E[V] (A,B: k x m 상수 행렬, W,V: m x n 확률 행렬)
	2) $E[AWB] = AE(W)B$ (A: k x m, W: m x n, B: n x l)
D d	2. 분산-공분산 행렬 (Variance-Covariance matrix) * $\mathbf{X} = (X_1, X_2, \cdots, X_p)^{\mathrm{T}}$; 모든 VCM는 양의 반정부호(psd)
Random	1) 정의: $Cov(\mathbf{X}) = E[(\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})^T] = [\sigma_{jk}] (\mathbf{\mu} = E(\mathbf{X}))$
matrix	$ \Rightarrow \sigma_j^2 = \operatorname{Var}(X_j) \& \sigma_{jk} = \operatorname{Cov}(X_j, X_k) $
	2) 정리 ① $Cov(\mathbf{X}) = E(\mathbf{X}\mathbf{X}^T) - \mathbf{\mu}\mathbf{\mu}^T$ $(\sigma_i^2 < \infty)$ ② $Cov(\mathbf{A}\mathbf{X}) = \mathbf{A}Cov(\mathbf{X})\mathbf{A}^T$ $(\sigma_i^2 < \infty, A: m \times p)$ $\because Cov(\mathbf{A}\mathbf{X}) = \mathbf{A}E(\mathbf{X}\mathbf{X}^T)\mathbf{A}^T - \mathbf{A}E(\mathbf{X})E(\mathbf{X})^T\mathbf{A}^T$
	$(a_i) = A \operatorname{Cov}(\mathbf{A}\mathbf{X}) = A \operatorname{Cov}(\mathbf{X}) \mathbf{A}^T \qquad (a_i) = A \operatorname{E}(\mathbf{X}) \mathbf{A}^T = A \operatorname$
	3. MGF. $M(\mathbf{t}) = E[\exp(\mathbf{t}^* \mathbf{X})] = E[\prod_{i=1}^n \exp(t_i X_i)]$ (" $X_i = \mathbf{t}^* \mathbf{Y} = \mathbf{X}_i$ 사 $\mathbf{Y} = \mathbf{X}_i$ 가 $\mathbf{Y} = \mathbf{X}_i$ 가 $\mathbf{X}_i \in \mathbb{R}^n$ 은 독립)
	1) $M_{\mathbf{Y}}(\mathbf{t}) = \prod_{i} M_{\mathbf{X}_{i}}(\mathbf{t})$ $(\mathbf{Y} = \sum_{i} \mathbf{X}_{i}, \forall_{i} \in \mathbb{R}^{m} \subset \exists_{i})$ 2) $M_{\mathbf{Y}}(\mathbf{t}) = e^{\mathbf{b}^{T}t} M_{\mathbf{X}}(\mathbf{A}^{T}\mathbf{t})$ $(\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}; \mathbf{A}: m \times p; \mathbf{t} \in \mathbb{R}^{m}; \mathbf{b} \in \mathbb{R}^{m})$
	2) $m\gamma(t) - e m\chi(\mathbf{A} t) = (1 - \mathbf{A}\mathbf{A} + \mathbf{B}, \mathbf{A}, m \times p; t \in \mathbb{R}^+; \mathbf{B} \in \mathbb{R}^+)$

* Bernoulli experiment: 성공/실패로 서로 배반인 확률 실험 * Bernoulli trial: 베르누이 실험을 독립적으로 반복 (성공 확률 p 동일) * Bernoulli distribution의 유도: X(성공)=1, X(실패)=0 \Rightarrow PMF: $p(x)=p^x(1-p)^{1-x}$ * $\mu=p$, $\sigma^2=p(1-p)$ * Binomial distribution (이항분포): n회 반복한 베르누이 시행에서 성공한 총 횟수 분포 1. PMF: $p(x) = {n \choose x} p^x (1-p)^{n-x} \sim b(n,p)$ $(x = 0,1,\dots,n)$ 2. MGF: $M(t) = \sum e^{tx} p(x) = [(1-p) + (pe^t)]^n \quad (t \in \mathbb{R})$ 3. 기대값 1) $\mu = np$ $^*\mu = M'(0) = n[(1-p) + pe^t]^{n-1}(pe^t)|_{t=0} = np$ 2) $\sigma^2 = np(1-p)$ $\sigma^2 = n(n-1)p^2 + np - (np)^2 = np(1-p)$ 4. 가법성: $Y = \sum X_i$, $X_i \sim B(n_i, \mathbf{p}) \rightarrow Y \sim B(\sum n_i, \mathbf{p})$ (증명) $M_Y(t) = \prod M_{X_i}(t) = \prod [(1-p) + (pe^t)]^{n_i} = [(1-p) + (pe^t)]^{\sum n_i}$ 5. 성공 비율(Y): $Y = X/n \rightarrow E(Y) = p$, Var(Y) = p(1-p)/n6. 근사 ① 푸아송 근사: 이항분포 $b(n,p) \stackrel{D}{\rightarrow}$ 푸아송분포 $(\mu = np)$ (MGF 극한으로 분포수렴 증명 \leftarrow n ↑, p \downarrow) ② 정규 근사: $b(n,p) \approx N\left(np,np(1-p)\right) * 연속성 수정: P(a \le X \le b) = P\left(a - \frac{1}{2} < X < b + \frac{1}{2}\right)$, 후자가 더 정확 * p(x)가 성공확률(= 평균) p인 Bernoulli분포 $\leftrightarrow X \sim B(1,p)$ 이항 $\rightarrow Y = \sum_{i=1}^{20} X_i \ (iid)$ 에 대해 p(y)는 20회 시행 중 평균 20p회 성공하는 Bernoulli $\leftrightarrow Y \sim B(20,p)$ 분포 * Multinomial distribution (다항분포) 1. PMF: $p(x_1, \cdots, x_{k-1}) = \frac{n!}{(x_1)! \cdots (x_k)!} (p_1)^{x_1} \cdots (p_k)^{x_k} \implies p_k = 1 - \sum_{i=1}^{k-1} p_i \& x_k = n - \sum_{i=1}^{k-1} x_i$ 2. MGF: $M(t_1, \dots, t_{k-1}) = (p_1 e^{t_1} + \dots + p_{k-1} e^{t_{k-1}} + p_k)^n$ * R codes 1) dbinom (k,n,p): P(X=k) 2) pbinom (k,n,p): $P(X \le k)$ * Negative binomial distribution (음이항분포): X번 실패 후 r번 성공 (베르누이 시행) *r번 성공시 나감 1. PMF: $p(x) = {x+r-1 \choose r-1} p^r (1-p)^x$ 2. MGF: $M(t) = p^r [1-(1-p)e^t]^{-r}$ (e^t < 1/(1-p)) \Leftrightarrow [이항:x+(r-1)번 중 (r-1)번 성공] x [p] $*\binom{-n}{k} = (-n)(-n-1)\cdots(-n-k+1)/k! = (-1)^k \binom{n+k-1}{k}$ * Geometric distribution (기하 분포): X번 실패 후 처음 성공 (베르누이 시행) ⇔ r=1인 음이항분포 1. PMF: $p(x) = p(1-p)^x$ 2. MGF: $M(t) = p[1 - (1-p)e^t]^{-1}$ * Hypergeometric distribution (초기하분포) 1. PMF: $p(x) = \frac{\binom{K}{N}\binom{N-K}{N-X}}{\binom{N}{N}}$ *N개 중 K개가 성공 & **비복원추출:** n번 시행 \rightarrow x번 성공 확률 2. 기대값: 1) $\mu = n\left(\frac{\kappa}{N}\right)$ 2) $\sigma^2 = n\left(\frac{\kappa}{N}\right)\left(1 - \frac{\kappa}{N}\right)\left(\frac{N-n}{N-1}\right)$ N>>n이면 이항분포로 근사 가능 $X \stackrel{D}{\to} B\left(n, \frac{\kappa}{N}\right)$ * Poisson process: 일정한 구간 (시간, 공간)에서 독립적으로 발생하는 event를 생성하는 과정 (비기억성) * Poisson postulate: 짧은 구간 h (h->0)에 대해 1) $g(1,h) = \lambda h + o(h)$ * g(x,w)는 구간 길이 w 내에 x회 발생 확률 2) $\sum_{x=2}^{\infty}g(x,h)=o(h)$ (≒미소 구간 h에 둘 이상은 본질적 불가) * $\lim_{h\to 0}o(h)/h=0$ (little-o) 3) 겹치지 않는 구간 \rightarrow 확률적으로 독립 $\therefore g(x,w) = \frac{e^{-\lambda w}(\lambda w)^x}{x!}$ 1. PMF: $p(x) = \frac{e^{-\mu}\mu^x}{x!}$ $(x = 0,1,2,\cdots)$ $(*\sum p(x) = e^{-\mu}\sum \left(\frac{\mu^x}{x!}\right) = e^{-\mu}e^{\mu} = 1)$ \leftarrow 주어진 시간/공간에 x회 발생 분포 2. 기댓값: $\mu = \sigma^2 = \lambda w$ (λ : 단위 길이당 발생률, w. 주어진 영역 크기) Poisson 3. MGF: $M(t) = e^{\mu(e^t - 1)}$ $(t \in \mathbb{R})$ 분포 4. 가법성: $Y = \sum X_i$, $X_i \sim Poi(m_i)$ \rightarrow $Y \sim Poi(\sum m_i)$ (증명) $M_Y(t) = \prod M_{X_i}(t) = \prod e^{m_i(e^t - 1)} = e^{(\sum m_i)(e^t - 1)}$ * p(x)가 주어진 100초당 평균 μ 회 발생 Poisson $\leftrightarrow X \sim Poi(\mu)$ $\rightarrow Y = \sum_{i=1}^{20} X_i \ (iid)$ 에 대해 p(y)는 주어진 20×100 초당 평균 20μ 회 발생 Poisson $\leftrightarrow Y \sim \text{Poi}(20\mu)$ * 이항분포 $b(n,p) \stackrel{D}{\rightarrow}$ 푸아송분포 $(\mu = np)$ * R codes 1) dpois (k,m): P(X=k) 2) ppois (k,m): P(X≤k)

3-2. 주요 분포: 감마 연관 분포

	* 감마함수: $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy (\alpha > 0)$
	* $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$ \rightarrow $\Gamma(n) = (n - 1)!$ for 자연수 n * $\Gamma(1) = 1$, $\Gamma(1/2) = \sqrt{\pi}$
	* 스털링 근사: $\Gamma(k+1) \approx \sqrt{2\pi k} \left(\frac{k}{\rho}\right)^k$
	*Gamma distribution (감마분포): α (∈ ℝ) 번째 Poisson event 발생까지 걸리는 대기 시간
	1. PDF: $f(x) = \frac{1}{\Gamma(k)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} \sim \Gamma(\alpha, \beta) \ (0 \le x < \infty)$ (감마함수 식에 $y = x/\beta$ 대입; $\alpha > 0 & \beta > 0$)
- H	2. 기댓값: 1) $\mu = \alpha \beta$, 2) $\sigma^2 = \alpha \beta^2$
Γ 분포	3. MGF: $M(t) = 1/(1 - \beta t)^{\alpha}$ (t < 1/ β)
	4. 가법성: $Y = \sum X_i$, $X_i \sim \Gamma(\alpha_i, \beta)$ \rightarrow $Y \sim \Gamma(\sum \alpha_i, \beta)$
	(증명) $M_Y(t) = \prod M_{X_i}(t) = \prod (1-\beta t)^{-\alpha_i} = (1-\beta t)^{-\sum \alpha_i}$
	5. 스칼라배: $X \sim \Gamma(\alpha, \beta) \Rightarrow kX \sim \Gamma(\alpha, k\beta)$ (*증명: 야코비안 변수변환)
	6. 유도: k번 Poisson event 발생까지 시간을 T_i 로 분할 \Rightarrow 각 $T_i \sim \Gamma(1, \frac{1}{\lambda})$ \Rightarrow $Y = \sum_{i=1}^k T_i \sim \Gamma(k, \frac{1}{\lambda})$
	(*Erlang 분포: 자연수 k인 감마 분포)
	* R codes 1) dgamma (x,shape=a,scale=b): f(X=x) 2) pgamma (x, shape=a, scale=b): P(X≤x)
	*Exponential distribution (지수분포): 1번째 Poisson event 발생까지 대기 시간 = $\Gamma(1,\frac{1}{\lambda})$
지수	1. PDF: $f(x) = \lambda e^{-\lambda x}$ 2. 기댓값: 1) $\mu = 1/\lambda$, 2) $\sigma^2 = 1/\lambda^2$
분포	3. 유도: W가 첫 번째 Poisson event 까지 걸린 시간
	→ w시간 내 푸아송 사건 없을 확률: $P(W>w) = \frac{e^{-\lambda w}(\lambda w)^0}{0!} = e^{-\lambda w} \Leftrightarrow P(0 < W < w) = 1 - e^{-\lambda w}$
	$\therefore f(w) = \lambda e^{-\lambda w}$
	*Chi-square distribution (카이제곱 분포): 자유도 r에 대해, $\chi^2(r) = \Gamma(\frac{r}{2}, 2)$
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) \ (0 \le x < \infty)$
χ² 분포	2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2}$ (t < 1/2)
X 2-	4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2} + k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$
	5. 가법성 (corollary): $Y = \sum X_i$, $X_i \sim \chi^2(r_i)$ \rightarrow $Y \sim \chi^2(\sum r_i)$
	* R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$
	*베타함수: $B(\alpha, \beta) = \int_0^1 y^{\alpha - 1} (1 - y)^{\beta - 1} dy (\alpha > 0, \beta > 0)$
	① $B(\alpha,\beta) = B(\beta,\alpha),$ ② $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ *결합 PDF: $h(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)}x_1^{\alpha-1}x_2^{\beta-1}e^{-(x_1+x_2)}; 0 \le x_1 < \infty, 0 \le x_2 < \infty$ (X ₁ , X ₂ 독립)
β 분포	
	* $Y_1 = X_1/(X_1 + X_2)$ & $Y_2 = X_1 + X_2$ \rightarrow Y_1 에 대한 marginal distribution이 beta(α, β)
	1. PDF: $f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$ $(0 < x < 1)$
	* R codes 1) dbeta(x,a,b): $f(X=x)$ 2) pbeta (x,a,b): $P(X \le x)$
Dirichlet	*결합 PDF: $h(x_1, \dots, x_{k+1}) = \prod_{i=1}^{k+1} \frac{1}{\Gamma(\alpha_i)} x_i^{\alpha_i - 1} e^{-x_i}; 0 \le x_i < \infty (X_1, \dots, X_k 독립)$
분포	$*Y_i = \frac{X_i}{\sum_{i=1}^{k+1} X_i} (i=1,2,\cdots,k)$ & $Y_{k+1} = \sum_{i=1}^{k+1} X_i$ $\rightarrow Y_1,\cdots,Y_k$ 에 대한 marginal dist이 Dirichlet($\alpha_1,\dots,\alpha_{k+1}$)
(β 확장)	1. PDF: $g(y_1, \dots, y_{k+1}) = \frac{\Gamma(\alpha_1 + \dots + \alpha_{k+1})}{\Gamma(\alpha_1) \dots \Gamma(\alpha_{k+1})} y_i^{\alpha_i - 1} \dots y_k^{\alpha_k - 1} [1 - (y_1 + \dots + y_k)]^{\alpha_{k+1} - 1} $ $(0 \le y_k, \sum_{i=1}^k y_i < 1)$

*표준정규분포: $I = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz \rightarrow 0 < \exp\left(-\frac{z^2}{2}\right) < \exp(-|z|+1)$ 유계 $\left(\int_{-\infty}^{\infty} e^{-|z|+1} dz = 2e\right)$

*정규분포:
$$X = \sigma Z + \mu$$
 로 변수 변환 $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$

*Bell shape 분포: location 모수 (μ), scale 모수 (σ²) vs. 감마분포 등: shape 모수 (α), scale 모수 (β)

*표준 정규 분포 N(0, 12)

1. PDF:
$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right) \quad (-\infty < z < \infty)$$

2. MGF:
$$M(t) = \exp\left(\frac{1}{2}t^2\right)$$
, $t \in \mathbb{R}$

3. 기대값:
$$E(Z) = 0$$
, $Var(Z) = 1$

2. MGF:
$$M(t) = \exp\left(\frac{1}{2}t^2\right)$$
, $t \in \mathbb{R}$ 3. 기대값: $E(Z) = 0$, $Var(Z) = 1$ 4. $E(Z^k) = \frac{k!}{2^{\frac{k}{2}}\left(\frac{k}{2}\right)!}$ (k가 짝수), $E(Z^k) = 0$ (k가 홀수) * $M(t) = \exp\left(\frac{1}{2}t^2\right) = \sum_{m=0}^{\infty} \left(\frac{t^2}{2}\right)^m/m!$

1. PDF:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (-\infty < x < \infty , \sigma > 0)$$

2. MGF:
$$M(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$
, $t \in \mathbb{R}$ 3. 기대값: $E(Z) = \mu$, $Var(Z) = \sigma^2$

3. 기대값:
$$E(Z) = \mu$$
, $Var(Z) = \sigma^2$

4.
$$E(X^k) = E[(\sigma Z + \mu)^k] = \sum_{j=0}^k \binom{k}{j} \sigma^j E(Z^j) \mu^{k-j}$$

5. 가법성:
$$Y = \sum a_i X_i$$
, $X_i \sim N(\mu_i, \sigma_i^2)$ \rightarrow $Y \sim N[\sum (a_i \mu_i), \sum (a_i \sigma_i)^2]$

(증명)
$$M_Y(t) = \prod M_{a_i X_i}(t) = \prod M_{X_i}(a_i t) = \prod \exp\left(\mu_i(a_i t) + \frac{1}{2}\sigma_i^2(a_i t)^2\right) = \exp\left((\sum a_i \mu_i)t + \frac{1}{2}(\sum a_i^2 \sigma_i^2)t^2\right)$$

6. Corollary:
$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
, $X_i \sim N(\mu, \sigma^2)$ (iid) $\rightarrow \bar{X} \sim N(\mu, \sigma^2/n)$

*표본 통계량 분포

정규

분포

②
$$S^2 \sim \sigma^2 \frac{\chi_{n-1}^2}{n-1}$$
, $E(S^2) = \sigma^2$ (CI: $\sigma^2 \in \left[\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2},n-1}^2}, \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2},n-1}^2} \right]$, $Var(S^2) = \frac{2\sigma^4}{n-1}$

$$(3) \frac{s_X^2/\sigma_X^2}{s_Y^2/\sigma_Y^2} \sim F_{n-1,m-1} \qquad \frac{\sigma_X^2}{\sigma_Y^2} \in \left[\frac{1}{F_{\frac{\alpha}{2},n-1,m-1}} \frac{s_\chi^2}{s_y^2}, \quad F_{\frac{\alpha}{2},m-1,n-1} \frac{s_\chi^2}{s_y^2} \right]$$

* 정리: $Z^2 \sim \chi^2(1)$

pf)
$$W = Z^2$$
일 때, $F(x) = P(W \le x) = P(Z^2 \le x) = P(-\sqrt{x} \le Z \le \sqrt{x})$, $x \ge 0$

$$\Rightarrow y = \sqrt{w}$$
 변환 시, $F(x) = 2\int_0^{\sqrt{x}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy = \int_0^x \frac{1}{\sqrt{2\pi}\sqrt{w}} \exp\left(-\frac{w}{2}\right) dw$

⇒
$$f(x) = \frac{1}{\sqrt{2\pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}} = \frac{1}{\Gamma(\frac{1}{2}) 2^{1/2}} x^{\frac{1}{2} - 1} e^{-\frac{x}{2}} \sim \chi^2(1) \quad (0 \le x < \infty)$$

* 따름 정리: $Y = \sum_{i=1}^{n} Z_i^2 \sim \chi^2(n)$ (가법성 of χ^2 using MGF; for iid $Z \sim N(0,1^2)$)

* Contaminated normal distribution: 대부분 $Z \sim N(0,1^2)$, 일부 outlier $\sim N(0,\sigma_c^2)$ (오염 비율: ϵ)

1)
$$W = KZ + (1 - K) \sigma_c Z$$
 for $K = \begin{cases} 1 & \stackrel{\text{확률 } 1 - \varepsilon}{0} \\ 0 & \stackrel{\text{ 확률 } \varepsilon}{\varepsilon} \end{cases}$ (Z, K는 독립)

$$F_W(w) = P(W \le w) = P(W \le w, I = 1) + P(W \le w, I = 0) = P(Z \le w)(1 - \varepsilon) + P\left(Z \le \frac{w}{\varepsilon}\right)\varepsilon = (1 - \varepsilon)\Phi(w) + \varepsilon\Phi(\frac{w}{\varepsilon})$$

① PDF:
$$f_W(w) = (1 - \varepsilon)\phi(w) + \frac{\varepsilon}{\sigma_c}\phi\left(\frac{w}{\sigma_c}\right)$$
 ② $E(W) = 0$, $Var(W) = 1 + \varepsilon(\sigma_c^2 - 1)$

②
$$E(W) = 0$$
, $Var(W) = 1 + \varepsilon(\sigma_c^2 - 1)$

2)
$$X = a + bW \ (b > 0)$$

① PDF:
$$f_X(x) = (1 - \varepsilon)\phi\left(\frac{x-a}{b}\right) + \frac{\varepsilon}{\sigma_c}\phi\left(\frac{x-a}{b\sigma_c}\right)$$
 ② $E(W) = a$, $Var(W) = b^2[1 + \varepsilon(\sigma_c^2 - 1)]$

②
$$E(W) = a$$
, $Var(W) = b^{2}[1 + \varepsilon(\sigma_{c}^{2} - 1)]$

2) pnorm
$$(x,a,b)$$
: $P(X \le x)$

3-3. 주요 분포: 정규 분포

```
1) PDF: f_{\mathbf{Z}}(\mathbf{z}) = \left(\frac{1}{2\pi}\right)^{p/2} \exp\left(-\frac{1}{2}\mathbf{z}^T\mathbf{z}\right) pf) f_{\mathbf{Z}}(\mathbf{z}) = \prod_{1/2\pi} \exp\left(-\frac{1}{2}z_j^2\right) = \left(\frac{1}{2\pi}\right)^{n/2} \exp\left(-\frac{1}{2}\sum_{j}z_j^2\right)
                         2)MGF: M_{\mathbf{Z}}(\mathbf{t}) = \exp\left(\frac{1}{2}\mathbf{t}^T\mathbf{t}\right) (\mathbf{t} \in \mathbb{R}^p) pf) M_{\mathbf{Z}}(\mathbf{t}) = E\{\exp(\mathbf{t}^T\mathbf{Z})\} = E\{\prod \exp(t_jZ_j)\} = \prod E\{\exp(t_jZ_j)\} = \exp\left(\frac{1}{2}\sum t_j^2\right)
                         3) 기대값: E[\mathbf{Z}] = \mathbf{0}, Cov[\mathbf{Z}] = \mathbf{I}_p
                         * \mathbf{X} \sim N_n(\mathbf{\mu}, \mathbf{\Sigma}) / Cov[\mathbf{X}] = \mathbf{\Sigma}가 psd (양반정치)
                                                                                                                                                                                <유도> ∑가 psd & 대칭 → EVD 가능
                         ⇔ p개의 의존관계인 정규분포 확률변수의 결합 분포
                                                                                                                                                                               \Sigma = \Gamma^T \Lambda \Gamma (\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p); \lambda_1 \ge \dots \ge \lambda_p)
                                                                                                                                                                               \Sigma^{1/2} = \Gamma^T \Lambda^{1/2} \Gamma. \Sigma^{-1/2} = \Gamma^T \Lambda^{-1/2} \Gamma (if \Sigma is pd)
                         0) 변환: X = \Sigma^{1/2} Z + \mu \ \& \ Z = \Sigma^{-1/2} (X - \mu)
                         1) PDF: f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T (\mathbf{\Sigma}^{-1}) (\mathbf{x} - \mathbf{\mu})\right\}
                                                                                                                                                                               \mathit{E}\left[X\right] = \mathit{E}\left[\Sigma^{1/2}\,Z\right] + \mu = \Sigma^{1/2}\,\mathit{E}\left[Z\right] + \mu = \mu
                                                                                                                                                                               Cov[\mathbf{X}] = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = E[(\boldsymbol{\Sigma}^{1/2}\boldsymbol{Z})(\boldsymbol{\Sigma}^{1/2}\boldsymbol{Z})^T]
                                                                                                                                                                               = \left(\Sigma^{\frac{1}{2}}\right) E(\mathbf{Z}\mathbf{Z}^T) \left(\Sigma^{\frac{1}{2}}\right) = \Sigma \quad *E[\mathbf{Z}\mathbf{Z}^T] = \text{Cov}(\mathbf{Z}) + \mathbf{0} = \mathbf{I}_p
                        2) MGF: M_{\mathbf{X}}(\mathbf{t}) = \exp\left\{\mathbf{t}^{T}\boldsymbol{\mu} + \frac{1}{2}\mathbf{t}^{T}(\boldsymbol{\Sigma})\mathbf{t}\right\}, (\mathbf{t} \in \mathbb{R}^{p})
                         3) 기대값: E[X] = \mu, Cov[X] = \Sigma
                                                                         * \mathbf{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}); \mathbf{A}: \mathbf{m} \times \mathbf{p}, \mathbf{b} \in \mathbb{R}^{\mathbf{m}}
                         1-1. Theorem
                                                                                                                                                                                <MGF 유도>
                                                                                                                                                                               M_{\mathbf{X}}(t) = \exp(\mathbf{t}^T \mathbf{\mu}) M_{\mathbf{Z}} \{ (\mathbf{\Sigma}^{\frac{1}{2}})^T \mathbf{t} \}
                              Y = AX + b \rightarrow Y \sim N_m (A\mu + b, A\Sigma A^T) (MGF로 증명)
                                                                                                                                                                                = \exp(\mathbf{t}^T \mathbf{\mu}) \exp\{(1/2)[(\mathbf{\Sigma}^{1/2})^T \mathbf{t}]^T [(\mathbf{\Sigma}^{1/2})^T \mathbf{t}]\}
                         1-2. Corollary (m개 변수에 대한 주변 분포)
                                                                                                                                                                               = \exp(\mathbf{t}^T \boldsymbol{\mu}) \exp[(1/2)\mathbf{t}^T (\boldsymbol{\Sigma}^{1/2})^T (\boldsymbol{\Sigma}^{1/2}) \mathbf{t}] = e^{\mathbf{t}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{t}^T (\boldsymbol{\Sigma}) \mathbf{t}}
                              *\mathbf{X} \to \mathbf{X_1} \in \mathbb{R}^m, \mathbf{X_2} \in \mathbb{R}^q (\mathbf{p} = \mathbf{m} + \mathbf{q}) 분할
                              - X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \ \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \ \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}
다변량
                               - \mathbf{A} = [\mathbf{I}_m \quad \mathbf{0}_{mq}] \rightarrow \mathbf{X}_1 = \mathbf{A}\mathbf{X}
                        정규
  분포
                         2. 주변분포 독립성: X_1, X_2 독립 \Leftrightarrow \Sigma_{12} = \Sigma_{21} =
                          pf) M_{X_1,X_2}(\mathbf{t}_1,\mathbf{t}_2) = \exp\left\{ \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\mu}_1 \\ \mathbf{\mu}_2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \end{bmatrix} \right\}
                         M_{X_1}(\mathbf{t}_1)M_{X_2}(\mathbf{t}_2) = \exp\{\mathbf{t}_1\mu_1 + \mathbf{t}_2\mu_2 + \frac{1}{2}(\mathbf{t}_1^T\Sigma_{11}\mathbf{t}_1 + \mathbf{t}_2^T\Sigma_{22}\mathbf{t}_2)\} \quad \therefore M_{X_1,X_2}(\mathbf{t}_1,\mathbf{t}_2) = M_{X_1}(\mathbf{t}_1)M_{X_2}(\mathbf{t}_2) \iff \Sigma_{12} = \Sigma_{21} = \mathbf{0}
                         3. 조건부 분포: X_1|X_2 \sim N_m(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}) (Σ는 양정치)
                          \mathbf{W} | \mathbf{X}_{2} = \mathbf{W} \sim N_{m} \left( \mathbf{\mu}_{1} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\mu}_{1}, \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} \right) \rightarrow \mathcal{X}_{1} | \mathbf{X}_{2} \sim N_{m} (\mathbf{\mu}_{1} + \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} (\mathbf{X}_{2} - \mathbf{\mu}_{2}), \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21}) 
                         4. 카이 제곱: W = (\mathbf{X} - \mathbf{\mu})^T (\mathbf{\Sigma}^{-1}) (\mathbf{X} - \mathbf{\mu}) = \mathbf{Z}^T \mathbf{Z} \sim \chi^2(p) (Σ는 양정치)
                          pf) W = \mathbf{Z}^T \mathbf{Z} = \sum_{i=1}^p Z_i^2 \sim \chi^2(p) * 가법성 of \chi^2 using MGF; for iid Z \sim N(0,1^2) \Rightarrow \sum_{i=1}^p [(X_i - \mu_i)/\sigma_i]^2 \sim \chi^2(p)
                         * Bivariate normal distribution (이변량 정규 분포)
                         1) 기댓값: \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}, \sigma_{12} = \rho \sigma_1 \sigma_2
                         2) PDF: f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[ \left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) \right] \right\}
                         3) 조건부 분포: Y|X \sim N[\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2)]
                        \mathbf{Y} = \mathbf{\Gamma}\mathbf{X} = (\mathbf{PC_1}, \mathbf{PC_2}, \cdots, \mathbf{PC_p})^T \Rightarrow \mathbf{PC_1} = \mathbf{v_1}^T\mathbf{X} \quad (\mathbf{v_1}: Cov(\mathbf{X}) = \mathbf{\Sigma} = \lambda_1 \text{ 대응 고유벡터})
                           pf)\mathbf{Y} \sim N_p(\mathbf{\Gamma} \mathbf{\mu}, \mathbf{\Gamma} \mathbf{\Sigma} \mathbf{\Gamma}^T) = N_p(\mathbf{\Gamma} \mathbf{\mu}, \mathbf{\Lambda}) \rightarrow \text{TV}(\mathbf{X}) = \sum \sigma_i^2 = tr(\mathbf{\Sigma}) = tr(\mathbf{\Lambda}) = \sum \lambda_i = \text{TV}(\mathbf{Y})
                                  어떤 \|\mathbf{a}\|^2 = 1, \mathbf{a} = \sum_{i=1}^p a_i \mathbf{v}_i 에 대해 \mathbf{a}^T \mathbf{v}_1 = a_i
  PCA
  기본
                                 \rightarrow \text{Var}(\mathbf{a}^T\mathbf{X}) = \text{Cov}(\mathbf{a}^T\mathbf{X}) = \mathbf{a}^T \Sigma \mathbf{a} = (\mathbf{\Gamma}\mathbf{a})^T \mathbf{\Lambda}(\mathbf{\Gamma}\mathbf{a}) = \sum_i^p \lambda_i (\mathbf{a}^T\mathbf{v}_i)^2 = \sum_i^p \lambda_i a_i^2 \le \lambda_1 = \text{Var}(Y_1), \ \exists \ \mathbf{v} \in \mathbf{v}_1
                              \therefore Y_1 = \mathbf{v}_1^T \mathbf{X} (고유벡터 \mathbf{v}_1으로 총 데이터 X 사영): 총분산 \sum \lambda_i 중 최대 분산 \lambda_1 을 설명하는 \mathbf{PC_1}
                                 \rightarrow \mathbf{X} = \mathbf{\Gamma}^{\mathsf{T}}\mathbf{Y} 에서 X_k = (v_{1k})\mathbf{PC_1} + (v_{2k})\mathbf{PC_2} + \cdots (각 \mathbf{v_{ik}}는 \mathbf{X_k}의 \mathbf{PC_i}에 대한 \mathbf{PC} score)
```

3-4. 표본통계량의 분포

	* $X_1, \dots, X_n \stackrel{iid}{\sim}$								
	1) 표본평균: 1	$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \text{(1)} E(\overline{X}) = \sum_{i=1}^{n} E(X_i) / n$	2						
평균 <i>X</i>		(2) $\operatorname{Var}(X) = \sum_{i=1}^{n} \left(\frac{1}{n}\right) V_i$	$\operatorname{ar}(X_i) = n \left(\frac{1}{n}\right)^2 \sigma^2 = \sigma^2/n$ $= p (\sigma^2)$						
	$\therefore \overline{X} \stackrel{D}{\to} N\left(\mu, \frac{\sigma^2}{n}\right) \text{ by CLT}$								
		$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{\sum X_{i}^{2} - n\overline{X}^{2}}{n}$	-						
표본		$= \sum E(X_i^2) - nE(\bar{X}^2) / n - 1 = \frac{n(\mu^2 + \sigma^2) - nE(\bar{X}^2)}{n - 1}$							
분산 S ²	② Var(S ²)	$ = \frac{2\sigma^4}{n-1} $ (\bar{X} , S^2 는 독립 by Stu	dent's 정리)						
3		$3 S^2 \sim 6$	2						
		2\	n-1						
표본	`	- /							
통계량	$ (2) S^2 \sim \sigma^2 \frac{\chi_{n-1}^2}{n-1} $	$\frac{-1}{1}, E(S^2) = \sigma^2 \text{ (CI: } \sigma^2 \in \left[\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{n}, n-1}}, \frac{(n-1)s^2}{\chi^2_{n$	$\frac{-1)s^2}{2}$, $Var(S^2) = \frac{2\sigma^4}{n-1}$						
분포	$ \underbrace{\frac{s_X^2/\sigma_X^2}{s_Y^2/\sigma_Y^2}}_{3} \sim F_{n-1,m-1} \frac{\sigma_X^2}{\sigma_Y^2} \in \left[\frac{1}{F_{\underline{\alpha}_{n-1,m-1}}} \frac{s_X^2}{s_Y^2}, F_{\underline{\alpha}_{m-1,n-1}} \frac{s_X^2}{s_Y^2} \right] $								
		$\sigma_{Y}^{-1,m-1} = \frac{\sigma_{X}^{2}}{\sigma_{Y}^{2}} \in \left \frac{1}{F_{\frac{\alpha}{2},m-1,m-1}} \frac{s_{X}}{s_{y}^{2}}, F_{\frac{\alpha}{2},m-1,n-1} \right $	$1\frac{s_x}{s_y^2}$						
	$* \{\mathbf{X}_i\} = [X_{i1},$	$X_{i2}, \cdots, X_{ij}, \cdots, X_{ip}$ $^{\mathrm{T}} \in \mathbb{R}^{p} \stackrel{iid}{\sim} dist(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	$\Leftrightarrow X_{ij} \sim dist(\mu_j, \sigma_j^2)$						
		모집단	표본 :1 등 n						
	평균벡터	$\mathbf{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_j \\ \vdots \\ \mu_p \end{bmatrix} = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_j) \\ \vdots \\ E(X_p) \end{bmatrix} = E(\mathbf{X})$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
다변량 표본 분포	공분산행렬	$= E\{(\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})^{\mathrm{T}}\} = \mathrm{Cov}(\mathbf{X})$	$ \begin{vmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pj} & \cdots & s_{pp} \end{vmatrix} $ $ = \frac{1}{n-1} \sum_{i=1}^{n} \begin{bmatrix} X_{i1} - \bar{X}_{1} \\ \vdots \\ X_{ip} - \bar{X}_{p} \end{bmatrix} [X_{i1} - \bar{X}_{1} & \cdots & X_{ip} - \bar{X}_{p}] $ $ = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}}) (\mathbf{X}_{i} - \bar{\mathbf{X}})^{T} $						
	상관행렬	$ \rho = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1j} & \cdots & \rho_{1p} \\ \rho_{21} & 1 & \cdots & \rho_{2j} & \cdots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ \rho_{j1} & \rho_{j2} & \cdots & 1 & \cdots & \rho_{jp} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{p1} & \rho_{p2} & \cdots & \rho_{pj} & \cdots & 1 \end{bmatrix} $ $ \rho_{jk} = \frac{\sigma_{jk}}{\sqrt{\sigma_{it}} \sqrt{\sigma_{kk}}} $	$\mathbf{R} = \begin{bmatrix} 1 & r_{12} & \cdots & r_{1j} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2j} & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ r_{j1} & r_{j2} & \cdots & 1 & \cdots & r_{jp} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & r_{pj} & \cdots & 1 \end{bmatrix}$ $r_{jk} = \frac{S_{jk}}{\sqrt{S_{ij}}\sqrt{S_{kk}}}$						
	$X \sim dist(\mu, \Sigma)$	$\Rightarrow E(\mathbf{X}^T \mathbf{A} \mathbf{X}) = tr(\mathbf{A} \mathbf{\Sigma}) + \mathbf{\mu}^T \mathbf{A} \mathbf{\mu} \qquad (\mathbf{A}^{\perp} \mathbf{L})$	- 대칭행렬)						
			$\left(\mathbf{A}E(\mathbf{X}\mathbf{X}^T)\right) = tr\left(\mathbf{A}(\mathbf{\Sigma} + \mathbf{\mu}\mathbf{\mu}^T)\right)$ (*tr은 선형연산자)						
	$\therefore X_i \overset{iid}{\sim} dist(\mu,$	σ^2) & X = $[X_1, \dots, X_n]^T \Rightarrow (n-1)S^2 =$	$\mathbf{X}^{T} \left(\mathbf{I} - \frac{1}{n} \mathbf{J} \right) \mathbf{X}, \ E(S^{2}) = \sigma^{2}$						

3-5. 주요 분포: t-분포, F-분포

4. 일치성 / 극한분포 ("통계학적 수렴")

3. Markov: $P[u(X) \geq c] \leq E[u(X)]/c$ (for $u(X) \geq 0, c > 0$; $E[u(X)] \in \mathbb{R}$) *증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x)dx \geq \int_{u(x) \geq c} u(x)f(x)dx \geq c \int_{u(x) \geq c} f(x)dx = c P[u(x) \geq c]$ 2. Chevyshev: $P(X - \mu \geq k\sigma) \leq 1/k^2$ (for $k > 0$; $X^1 + \mu_0 c^2(\mathbb{R}^{\frac{1}{2}})$ 가짐) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2 \sigma^2$ 1. 점일: $X_n \overset{p}{\rightarrow} X \Leftrightarrow \forall e > 0$, $\lim_{n \to \infty} P[X_n - X \geq e] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < e] = 1$) "함수열의 수렴" $(X_n \overset{p}{\rightarrow} a)$, if X^1 상수 $a \overset{p}{\rightarrow} 1$ 화확률변수, $p(a) = 1$, $t t t t t t T t t T t T t T t T t T t $	통요한 부등식 : 주명: $E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x)dx \ge \int_{u(x)>c} u(x)f(x)dx \ge c \int_{u(x)>c} f(x)dx = c P[u(x) \ge c]$ 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for $k > 0$; $X \uparrow \mu, \sigma^2(\cap D) \uparrow D$) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \stackrel{\rightarrow}{\rightarrow} X \iff \forall v > 0$, $\lim_{n \to 0} P[X_n - X \ge c] = 0 \iff \lim_{n \to 0} P[X_n - X < c] = 1$) "함수염의 수렴' $(X_n \stackrel{\rightarrow}{\rightarrow} a, \text{ if } X \uparrow) \text{ by } + a \Rightarrow \text{ spanse} \exists \theta \uparrow, \rho(a) = 1, \text{ then } O$ " 2. 대수의 약법칙: $\inf \{X_n\} \sim \{0\}$ ($\lim_{n \to 0} P(X_n - \mu \ge c) \le \sigma^2/(nc^2) \to 0 \pmod{n}$ (when $n \to \infty$) 3. 정리 $ \nabla G = \nabla G $	*증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x)dx \ge \int_{n(x)>c} u(x)f(x)dx \ge c \int_{n(x)>c} f(x)dx = c P[u(x) \ge c]$ 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; $X \ne \mu, \sigma^2(\cap \mathbb{R}^2)$ 가집) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \xrightarrow{P} X \Leftrightarrow \forall k > 0$, $\lim_{n \to \infty} P[X_n - X \ge c] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < c] = 1$) *항수열의 수렴* $(X_n \xrightarrow{P} a_n \text{ if } X \nearrow b \land c \Rightarrow \bullet \text{ if } x \nearrow b \land c \Rightarrow $	통요한 부동식 ** 증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x) f(x) dx \ge \int_{u(x) \in \mathcal{C}} u(x) f(x) dx \ge c \int_{u(x) \in \mathcal{C}} f(x) dx = c P[u(x) \ge c]$ 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for $k > 0$; $X > \mu, \sigma^2(\Re D)$ 가장) ** 증명: Markov에서 $u(X) = (X - \mu)^2$; $c = k^2\sigma^2$ 1. 정의: $X_n^{-\frac{1}{2}} X \Leftrightarrow \forall e > 0$, $\lim_{n \to \infty} P[X_n - X \ge e] = 0$ ($\lim_{n \to \infty} P[X_n - X < e] = 1$) **항수열의 수령* $(X_n^{-\frac{1}{2}} - \alpha, if XY) & d > \frac{1}{2} * if $	중요한 부등식 *증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x) f(x) dx \geq \int_{u(x) > c} u(x) f(x) dx \geq c \int_{u(x) > c} f(x) dx = c P[u(x) \geq c]$ 2. Chevyshev: $P(X - \mu \geq k\sigma) \leq 1/k^2$ (for k > 0; X7 μ , $\sigma^2(\Re D)$ 가장) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n^{\frac{1}{2}} X \Leftrightarrow \forall e > 0$, $\lim_{n \to \infty} P[X_n - X \geq e] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < e] = 1$) *함수열의 수령* $(X_n^{\frac{1}{2}} - \alpha, if X7)$ 성수 $a \Rightarrow$ *퇴회활출변수, $p(a) = 1$, $i = 1$ 0 (when $n \to \infty$) 3. 정리	중요한 부등식 *증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x) f(x) dx \geq \int_{u(x) > c} u(x) f(x) dx \geq c \int_{u(x) > c} f(x) dx = c P[u(x) \geq c]$ 2. Chevyshev: $P(X - \mu \geq k\sigma) \leq 1/k^2$ (for k > 0; X7 μ , $\sigma^2(\Re D)$ 가장) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n^{\frac{1}{2}} X \Leftrightarrow \forall e > 0$, $\lim_{n \to \infty} P[X_n - X \geq e] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < e] = 1$) *함수열의 수령* $(X_n^{\frac{1}{2}} - \alpha, if X7)$ 성수 $a \Rightarrow$ *퇴회활출변수, $p(a) = 1$, $i = 1$ 0 (when $n \to \infty$) 3. 정리	중요한 부등식 *증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x) f(x) dx \geq \int_{u(x) > c} u(x) f(x) dx \geq c \int_{u(x) > c} f(x) dx = c P[u(x) \geq c]$ 2. Chevyshev: $P(X - \mu \geq k\sigma) \leq 1/k^2$ (for k > 0; X7 μ , $\sigma^2(\Re D)$ 가장) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n^{\frac{1}{2}} X \Leftrightarrow \forall e > 0$, $\lim_{n \to \infty} P[X_n - X \geq e] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < e] = 1$) *함수열의 수령* $(X_n^{\frac{1}{2}} - \alpha, if X7)$ 성수 $a \Rightarrow$ *퇴회활출변수, $p(a) = 1$, $i = 1$ 0 (when $n \to \infty$) 3. 정리	무용의 *증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x) f(x) dx \ge \int_{u(x)>c} u(x) f(x) dx \ge c \int_{u(x)>c} f(x) dx = c P[u(x) \ge c]$ 2. Cheryshev: $P(X - \mu) \ge k\sigma) \le 1/k^2$ (for $k > 0$): $X \vdash \mu_0 \circ (e P[v) \land P[d])$ *증명: Markov 이에서 $u(X) = (X - \mu)^2$, $c = k^2 \sigma^2$ 1. 정임: $X_n \vdash X \leftarrow \forall e > 0$, $\lim_{n \to \infty} P[X_n - X \ge e] = 0$ ($\omega \lim_{n \to \infty} P[X_n - X < e] = 1$) "함수일의 수렴* $(X_n \vdash \alpha_n - i X) \land i \Rightarrow \alpha \Rightarrow \text{ "siph will $de }, p(a) = 1$, $\text{ th PIN } O$ " 2. 대수의 약법적: $\inf(X_n) = (\exists B \exists v, \mu_0) = 1$, $\text{ th PIN } O$ " 3. 정리	4. 일	!지성 / 국안문포 ("동계악석 수렴") -						
부등식 2. Chevyshev: $P(X-\mu \ge k\sigma) \le 1/k^2$ (for k>0; X7 μ , $\sigma^2(\Omega)$ 가짐) *중명: Markov에서 $u(X) = (X-\mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \xrightarrow{P} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P(X_n - X \ge \epsilon] = 0$ ($\Rightarrow \lim_{n \to \infty} P(X_n - X < \epsilon] = 1$) *함수열의 수렴" $(X_n \xrightarrow{P} a, \text{ if } X7) \text{ dy } \epsilon \Rightarrow \text{*sl} 화확률 \dot{\theta} + \text{p(a)} = 1, \text{ UHD } 0"$) 2. 대수의 약법칙: $\inf (X_n) \sim (\overline{\aleph} \overline{L}, \mu) = \epsilon \ge \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 정리	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; $X \ne \mu, \sigma^2(\cap \mathbb{R}^n)$ 가짐) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \xrightarrow{\rho} X \Leftrightarrow \forall v > 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) "한수열의 수렴" $(X_n \xrightarrow{\rho} a, \text{ if } X \nearrow)$ 성수 $a \xrightarrow{\rho}$ "퇴화확률 변수, $p(a) = 1$, 나머지 0") 2. 대수의 약법칙: $\operatorname{id}(X_n) \sim (\overline{\aleph a} : \mu, \overline{\aleph} \text{ td} : \sigma^2 < \infty)$, $\overline{X}_n \xrightarrow{\rho} \mu$ *증명: By Chevyshev's $\operatorname{ineq}_{\bullet} P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 $ \overline{\aleph} = \frac{\overline{\aleph}}{2} = \overline$	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k > 0; $X \ne \mu, o^2(\text{Re})$ 가진) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \xrightarrow{\sim} X \iff v < 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ ($\lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) *함수열의 수렴* $(X_n \xrightarrow{\sim} a, \ X \nearrow b \le a \Rightarrow \ n \ n \ n \ n \ n \ n \ n \ n \ n \ $	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu,\sigma^2(\text{RPD})$ 가짐) *증망: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \overset{r}{\to} X \Leftrightarrow \forall x > 0$, $\lim_{n \to 0} P(X_n - X \ge \epsilon] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) *함수열의 수렴* $(X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow "El N N N El N El N El N El N El N N El $	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu, \sigma^2(\text{Reb})$ 가짐) *중망: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 점임: $X_n \to X \Leftrightarrow \forall v > 0$. $\lim_{n \to \infty} P[X_n - X \ge c] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < c] = 1$) *함수열의 수렴* $(X_n \to A \to \text{*if})$ *함수 $a \to \text{*if}$ *되화를 변수, $p(a) = 1$, 나이지 0°) 2. 대수의 약법칙: $\inf X_1 \to (X_n \to A \to \text{*if})$ *중망: By Chevyshev's ineq, $P(X_n - \mu \ge c) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu, \sigma^2(\text{Reb})$ 가짐) *중망: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 점임: $X_n \to X \Leftrightarrow \forall v > 0$. $\lim_{n \to \infty} P[X_n - X \ge c] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < c] = 1$) *함수열의 수렴* $(X_n \to A \to \text{*if})$ *함수 $a \to \text{*if}$ *되화를 변수, $p(a) = 1$, 나이지 0°) 2. 대수의 약법칙: $\inf X_1 \to (X_n \to A \to \text{*if})$ *중망: By Chevyshev's ineq, $P(X_n - \mu \ge c) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu, \sigma^2(\text{Reb})$ 가짐) *중망: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 점임: $X_n \to X \Leftrightarrow \forall v > 0$. $\lim_{n \to \infty} P[X_n - X \ge c] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < c] = 1$) *함수열의 수렴* $(X_n \to A \to \text{*if})$ *함수 $a \to \text{*if}$ *되화를 변수, $p(a) = 1$, 나이지 0°) 2. 대수의 약법칙: $\inf X_1 \to (X_n \to A \to \text{*if})$ *중망: By Chevyshev's ineq, $P(X_n - \mu \ge c) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for $k > 0$): $X \uparrow \mu_0 \sigma^2(\Re \Theta)$ 가장)		1. Mar	kov: <i>P</i> [a	$u(X) \ge c] \le E[u(X)]$	/c (for u(X)≥0, c>0; E[u(X)]존재)			
부등식 2. Chevyshev: $P(X-\mu \ge k\sigma) \le 1/k^2$ (for k>0; X7 μ , $\sigma^2(\Omega)$ 가짐) *중명: Markov에서 $u(X) = (X-\mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \xrightarrow{P} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P(X_n - X \ge \epsilon] = 0$ ($\Rightarrow \lim_{n \to \infty} P(X_n - X < \epsilon] = 1$) *함수열의 수렴" $(X_n \xrightarrow{P} a, \text{ if } X7) \text{ dy } \epsilon \Rightarrow \text{*sl} 화확률 \dot{\theta} + \text{p(a)} = 1, \text{ UHD } 0"$) 2. 대수의 약법칙: $\inf (X_n) \sim (\overline{\aleph} \overline{L}, \mu) = \epsilon \ge \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 정리	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; $X \ne \mu, \sigma^2(\cap \mathbb{R}^n)$ 가짐) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \xrightarrow{\rho} X \Leftrightarrow \forall v > 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) "한수열의 수렴" $(X_n \xrightarrow{\rho} a, \text{ if } X \nearrow)$ 성수 $a \xrightarrow{\rho}$ "퇴화확률 변수, $p(a) = 1$, 나머지 0") 2. 대수의 약법칙: $\operatorname{id}(X_n) \sim (\overline{\aleph a} : \mu, \overline{\aleph} \text{ td} : \sigma^2 < \infty)$, $\overline{X}_n \xrightarrow{\rho} \mu$ *증명: By Chevyshev's $\operatorname{ineq}_{\bullet} P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 $ \overline{\aleph} = \frac{\overline{\aleph}}{2} = \overline$	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k > 0; $X \ne \mu, o^2(\text{Re})$ 가진) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \xrightarrow{\sim} X \iff v < 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ ($\lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) *함수열의 수렴* $(X_n \xrightarrow{\sim} a, \ X \nearrow b \le a \Rightarrow \ n \ n \ n \ n \ n \ n \ n \ n \ n \ $	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu,\sigma^2(\text{RPD})$ 가짐) *증망: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 정의: $X_n \overset{r}{\to} X \Leftrightarrow \forall x > 0$, $\lim_{n \to 0} P(X_n - X \ge \epsilon] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) *함수열의 수렴* $(X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow \text{ "El N N N El Rel P}$ ($X_n \overset{r}{\to} a, \text{ if } Xr) \text{ Ce} \Rightarrow "El N N N El N El N El N El N El N N El $	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu, \sigma^2(\text{Reb})$ 가짐) *중망: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 점임: $X_n \to X \Leftrightarrow \forall v > 0$. $\lim_{n \to \infty} P[X_n - X \ge c] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < c] = 1$) *함수열의 수렴* $(X_n \to A \to \text{*if})$ *함수 $a \to \text{*if}$ *되화를 변수, $p(a) = 1$, 나이지 0°) 2. 대수의 약법칙: $\inf X_1 \to (X_n \to A \to \text{*if})$ *중망: By Chevyshev's ineq, $P(X_n - \mu \ge c) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu, \sigma^2(\text{Reb})$ 가짐) *중망: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 점임: $X_n \to X \Leftrightarrow \forall v > 0$. $\lim_{n \to \infty} P[X_n - X \ge c] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < c] = 1$) *함수열의 수렴* $(X_n \to A \to \text{*if})$ *함수 $a \to \text{*if}$ *되화를 변수, $p(a) = 1$, 나이지 0°) 2. 대수의 약법칙: $\inf X_1 \to (X_n \to A \to \text{*if})$ *중망: By Chevyshev's ineq, $P(X_n - \mu \ge c) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu, \sigma^2(\text{Reb})$ 가짐) *중망: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2\sigma^2$ 1. 점임: $X_n \to X \Leftrightarrow \forall v > 0$. $\lim_{n \to \infty} P[X_n - X \ge c] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < c] = 1$) *함수열의 수렴* $(X_n \to A \to \text{*if})$ *함수 $a \to \text{*if}$ *되화를 변수, $p(a) = 1$, 나이지 0°) 2. 대수의 약법칙: $\inf X_1 \to (X_n \to A \to \text{*if})$ *중망: By Chevyshev's ineq, $P(X_n - \mu \ge c) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	부동식 2. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for $k > 0$): $X \uparrow \mu_0 \sigma^2(\Re \Theta)$ 가장)	중요한	*증	명: E[u($[x)] = \int_{-\infty}^{\infty} u(x) f(x) dx$	$x \ge \int_{u(x) \ge c} u(x) f(x) dx \ge c \int_{u(x) \ge c} f(x) dx = c P[u(x) \ge c]$			
1. 정의: $X_n \xrightarrow{P} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) "함수열의 수렴" ($X_n \xrightarrow{P} a$, if $X \nearrow V \Leftrightarrow a \Rightarrow$ "퇴화확률변수, $p(a) = 1$, $V \rightarrow V \rightarrow$	1. 정의: $X_n \stackrel{P}{\rightarrow} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) "함수열의 수렴" $(X_n \to a_n)$ if XY 가 상수 $a \to *$ "퇴화확률 변수, $p(a) = 1$, 나미지 0") 2. 대수의 약법칙: $\inf(X_n) \sim (\exists \exists \exists \mu, \exists t \exists $	확률 수렴 $ \begin{array}{c} 1. \ \mbox{Ng}: \ X_n \xrightarrow{P} X \ \Leftrightarrow \mbox{Ve} > 0, \ \lim_{n \to \infty} P[X_n - X \geq \epsilon] = 0 \ \left($ \ \ \ \ \ \ \ \ $	1. 정의: $X_n \stackrel{P}{\to} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to 0} P X_n - X \ge \epsilon = 0$ ($\Leftrightarrow \lim_{n \to 0} P X_n - X < \epsilon = 1$) "참수열의 수렴" $(X_n \stackrel{P}{\to} a_1, \text{ if } X \cap A) \Leftrightarrow a \Rightarrow$ "퇴화확률변수, $p(a)=1, \text{ then } n \cap 0$ " 2. 대수의 약법칙: $\inf(X_n) \sim (\boxtimes a : \mu, \boxtimes b : \sigma^2 < \infty), \ \bar{X}_n \stackrel{P}{\to} \mu$ "증명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	1. 정의: $X_n \xrightarrow{P} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ $\left(\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1 \right)$ "함수열의 수렴" $\left(X_n \xrightarrow{P} a, \text{ if } XY \Rightarrow C \Rightarrow a \Rightarrow \text{ "sipsis add } P(n_0) = 1, \text{ LPD N O"} \right)$ 2. 대수의 약법칙: $\operatorname{iid}(X_n) \sim \left(\overline{\partial} B : \mu, E \Delta t, \sigma^2 < \infty \right), \ X_n \xrightarrow{P} \mu$ "증명: By Chevyshev's $\operatorname{ineq}, P(X_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0 (\text{when } n \to \infty)$ 3. 정리 $ S = \frac{S}{2} = \frac{S}{2$	1. 정의: $X_n \xrightarrow{P} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ $\left(\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1 \right)$ "함수열의 수렴" $\left(X_n \xrightarrow{P} a, \text{ if } XY \Rightarrow C \Rightarrow a \Rightarrow \text{ "sipsis add } P(n_0) = 1, \text{ LPD N O"} \right)$ 2. 대수의 약법칙: $\operatorname{iid}(X_n) \sim \left(\overline{\partial} B : \mu, E \Delta t, \sigma^2 < \infty \right), \ X_n \xrightarrow{P} \mu$ "증명: By Chevyshev's $\operatorname{ineq}, P(X_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0 (\text{when } n \to \infty)$ 3. 정리 $ S = \frac{S}{2} = \frac{S}{2$	1. 정의: $X_n \xrightarrow{P} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ $\left(\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1 \right)$ "함수열의 수렴" $\left(X_n \xrightarrow{P} a, \text{ if } XY \Rightarrow C \Rightarrow a \Rightarrow \text{ "sipsis add } P(n_0) = 1, \text{ LPD N O"} \right)$ 2. 대수의 약법칙: $\operatorname{iid}(X_n) \sim \left(\overline{\partial} B : \mu, E \Delta t, \sigma^2 < \infty \right), \ X_n \xrightarrow{P} \mu$ "증명: By Chevyshev's $\operatorname{ineq}, P(X_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0 (\text{when } n \to \infty)$ 3. 정리 $ S = \frac{S}{2} = \frac{S}{2$	1. 정의: $X_n \xrightarrow{P} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P[X_n - X \ge \epsilon] = 0$ ($\Leftrightarrow \lim_{n \to \infty} P[X_n - X < \epsilon] = 1$) "함수열의 수편" ($X_n \xrightarrow{P} a$, if $XY \Rightarrow A \Rightarrow \text{"El화학를 번수}$, $p(a) = 1$, $+ \text{UP}(X = 0)$? 2. 대수의 약법칙: $\inf(X_n) \sim (\overline{\textit{Wa}} = \mu, E \text{\'et} : \sigma^2 < \infty)$, $X_n \xrightarrow{P} \mu$ "증명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 전	부등식							
후 대 ($X_n \xrightarrow{P} a$, if X 가 성수 $a \xrightarrow{\bullet} *$ 퇴화확률 변수, $p(a)=1$, 나머지 0*) 2. 대수의 약법식: $iid \{X_n\} \sim \left(\overrightarrow{Ba}: \mu, \not E \cdot \& \cdot \sigma^2 < \infty \right), \ \overrightarrow{X_n} \xrightarrow{P} \mu$ *증명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0 \pmod{n} \to \infty$ 3. 정리 정리	확률 수점 $ (X_n \xrightarrow{P} a, \text{ if } XY) \text{ 성수 } a \Rightarrow \text{*s} = \text{ਬ화확률 변수, p(a)=1, 나미지 0"}) $ 2. 대수의 약법칙: $iid\{X_n\} \sim (\ \exists z: \mu, \ \exists t \ t: \sigma^2 < \infty), \ X_n \xrightarrow{P} \mu$ *중명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0 \pmod{n} \to \infty) $ 3. 정리 $ X_n \xrightarrow{P} X, Y_n \xrightarrow{P} Y \pmod{n} = X_n \xrightarrow{P}$	작물 수 경	*** 보고 *** *** *** *** *** *** *** *** *				환문 수렴		*증	명: Mark	u(X) = (X - x)	$(\mu)^2, \ c = k^2 \sigma^2$			
후 전 ($X_n \overset{P}{\to} a$, if X7가 성수 $a \Rightarrow$ *퇴화확률변수, $p(a)=1$, 나머지 0") 2. 대수의 약법칙: $iid \{X_n\} \sim \left(\overrightarrow{B}\overline{a}: \mu, \overrightarrow{E} \& t \cdot \sigma^2 < \infty \right), \ \overline{X_n} \overset{P}{\to} \mu$ *증명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2/\left(n\epsilon^2 \right) \to 0 (\text{when } n \to \infty)$ 3. 정리 정리	확률 ($X_n \stackrel{P}{\rightarrow} a$, if X가 상수 $a \Rightarrow$ "퇴화확률변수, $p(a)=1$, 나미지 0") 2. 대수의 약법칙: $iid\{X_n\} \sim (\exists \exists z: \mu, \not \exists t \ t : \sigma^2 < \infty), \ X_n \stackrel{P}{\rightarrow} \mu$ "증명: By Chevyshev's ineq, $P(X_n - \mu \ge \varepsilon) \le \sigma^2/(n\varepsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 정리	확률 ($X_n \xrightarrow{P} a$, if X가 상수 a \Rightarrow "퇴화확률변수, $P(a)=1$, 나머지 0") 2. 대수의 약법칙: $iid(X_n) \sim (\overline{ Baz}: \mu, \overline{ E} t : \sigma^2 < \infty), \ \overline{X_n} \xrightarrow{P} \mu$	*** 보고 *** *** *** *** *** *** *** *** *	화물 수렴 $ (X_n \xrightarrow{P} a, \text{ if } X \text{ if } \forall A \text{ a} \Rightarrow \text{ 's } \text{ sa } \text{ sa } \text{ be } \text{ det } \text{ choice}, \text{ paje 1}, \text{ List N o''}) $ 2. 대수의 약법칙: $\text{ iid } (X_n) \sim \left(\textbf{Baz} : \mu, \frac{1}{2} \text{ ev} : \sigma^2 < \infty \right), \ \overline{X}_n \xrightarrow{F} \mu$ *중명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0 (\text{when } n \to \infty) $ 3. 정리 $ \overline{\partial} \text{ id } \overline{\partial} \text{ even } \overline{\partial} $	화물 수렴 $ (X_n \xrightarrow{P} a, \text{ if } X \text{ if } \forall A \text{ a} \Rightarrow \text{ 's } \text{ sa } \text{ sa } \text{ be } \text{ det } \text{ choice}, \text{ paje 1}, \text{ List N o''}) $ 2. 대수의 약법칙: $\text{ iid } (X_n) \sim \left(\textbf{Baz} : \mu, \frac{1}{2} \text{ ev} : \sigma^2 < \infty \right), \ \overline{X}_n \xrightarrow{F} \mu$ *중명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0 (\text{when } n \to \infty) $ 3. 정리 $ \overline{\partial} \text{ id } \overline{\partial} \text{ even } \overline{\partial} $	화물 수렴 $ (X_n \xrightarrow{P} a, \text{ if } X \text{ if } \forall A \text{ a} \Rightarrow \text{ 's } \text{ sa } \text{ sa } \text{ be } \text{ det } \text{ choice}, \text{ paje 1}, \text{ List N o''}) $ 2. 대수의 약법칙: $\text{ iid } (X_n) \sim \left(\textbf{Baz} : \mu, \frac{1}{2} \text{ ev} : \sigma^2 < \infty \right), \ \overline{X}_n \xrightarrow{F} \mu$ *중명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0 (\text{when } n \to \infty) $ 3. 정리 $ \overline{\partial} \text{ id } \overline{\partial} \text{ even } \overline{\partial} $	환문 수렴		1. 정으	$: X_n \stackrel{P}{\to} $	$X \Leftrightarrow \forall \epsilon > 0, \lim_{n \to \infty} P$	$P[X_n - X \ge \epsilon] = 0 \iff \lim_{n \to \infty} P[X_n - X < \epsilon] = 1$ "함수열의 수렴"			
후 명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 전리 정리 (장근) (장ー(ヤー)) $\ge \epsilon \le P[X_n - X + Y_n - Y \ge \epsilon]$ (장근) (장ー(スーソー) $\ge \epsilon \le P[X_n - X + Y_n - Y \ge \epsilon]$ (③ $(X_n + Y_n) \to (X + Y)$ (③ $(X_n + Y_n) \to (X + Y_n)$ (③ $(X_n + Y$	확률 : lid $\{X_n\} \sim (\ $	2. 대수의 약법칙: $\operatorname{iid}(X_n) \sim \left(\overline{\operatorname{Pd}} \mathbb{E} : \mu, \overline{\operatorname{Ed}} : \sigma^2 < \infty \right), \ \overline{X}_n \overset{P}{\to} \mu$ *증명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2 / (n\epsilon^2) \to 0 (\text{when } n \to \infty)$ 3. 정리	확률 수렴 약법적: $iid \{X_n\} \sim \left(\overrightarrow{\otimes} \overrightarrow{\partial} : \mu, \overrightarrow{E} \dot{C} : \sigma^2 < \infty \right), \ \overline{X}_n \overset{P}{\rightarrow} \mu$ *증명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 전리 **X_n \overset{P}{\rightarrow} X, Y_n \overset{P}{\rightarrow} Y ① $(X_n + Y_n) \overset{P}{\rightarrow} (X + Y)$ ② $aX_n \overset{P}{\rightarrow} aX$	2. 대수의 약법칙: $iid\{X_n\} \sim \left(\overrightarrow{\otimes a} : \mu, \overrightarrow{E} \cdot L, \varepsilon^2 < \infty \right), \ \overline{X}_n \overset{P}{\rightarrow} \mu$ *중명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	2. 대수의 약법칙: $iid\{X_n\} \sim \left(\overrightarrow{\otimes a} : \mu, \overrightarrow{E} \cdot L, \varepsilon^2 < \infty \right), \ \overline{X}_n \overset{P}{\rightarrow} \mu$ *중명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	2. 대수의 약법칙: $iid\{X_n\} \sim \left(\overrightarrow{\otimes a} : \mu, \overrightarrow{E} \cdot L, \varepsilon^2 < \infty \right), \ \overline{X}_n \overset{P}{\rightarrow} \mu$ *중명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리	2. 대수의 약법칙: $\operatorname{iid}(X_n) \sim (\mathbb{R} \frac{1}{D}: \mu. \mathbb{R} \frac{h}{U} \cdot \sigma^2 < \infty), \ \overline{X}_n \overset{P}{\to} \mu$ *증명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 정리			n	n /00	11 /00			
*증명: By Chevyshev's ineq, $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0 \text{(when } n \to \infty)$ 3. 정리 정리	*증명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 정리	*증명: By Chevyshev's ineq, $P(X_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0 \pmod{n \to \infty}$ 3. 정리 정리 중명 * $X_n \stackrel{P}{\to} X_r Y_n \stackrel{P}{\to} Y$ ① $(X_n + Y_n) \stackrel{P}{\to} (X + Y)$ ② $(X_n - X_n) \stackrel{P}{\to} (X_n - X)$ $= P[(X_n + X_n) - (X - Y) \ge \epsilon] \le P[X_n - X + Y_n - Y \ge \epsilon]$ $= P[X_n - X \ge \epsilon/2] + P[Y_n - Y \ge \epsilon/2]$ * 받침 상 연속 $g(x)$ ③ $(X_n \stackrel{P}{\to} A) \Rightarrow g(X_n) \stackrel{P}{\to} g(a)$ ② $(X_n \stackrel{P}{\to} A) \Rightarrow g(X_n) \stackrel{P}{\to} g(a)$ ② $(X_n - X_n) = (X_n - X_$	*증명: By Chevyshev's ineq. $P(\overline{X}_n - \mu \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0 \text{(when } n \to \infty)$ 3. 정리 전리 $X_n \to X_n \to X_n \to X_n \to Y_n \to Y_n$ ① 아는 집합오염에 단조 (=공간 커지면 확률 커집); 삼각부등식 $P[(X_n + Y_n) - (X + Y) \ge \epsilon] \le P[X_n - X + Y_n - Y \ge \epsilon]$ ② $P[X_n - X \ge \epsilon/2] + P Y_n - Y \ge \epsilon] \le P[X_n - X + Y_n - Y \ge \epsilon]$ ② $P[X_n - X \ge \epsilon/2] + P Y_n - Y \ge \epsilon] \le P[X_n - x \ge \delta]$ ② $P[X_n - X \ge \epsilon/2] + P Y_n - Y \ge \epsilon] \le P[X_n - x \ge \delta]$ ② $P[X_n - X \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ② $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - Y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ③ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2]$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/2$ ④ $P[X_n - x \ge \epsilon/2] + P Y_n - y \ge \epsilon/$	확률 수점 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	확률 수점 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	확률 수점 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	확률 수렴 $ \begin{array}{ c c c } \hline * \overline{\ominus} \overline{\ominus} : \text{By Chevyshev's ineq, } P(X_n - \mu \geq \epsilon) \leq \sigma^2/(n\epsilon^2) \to 0 \text{ (when } n \to \infty) \\ \hline 3. \ \ \overline{\partial} $					n.			
화를 수렴	확률 수렴	확률 수렴	화를 수염	화물 수렴	화물 수렴	화물 수렴	확률 수점				`	,			
확률 수렴	확률 수렴 $ \frac{*X_n \overset{P}{\rightarrow} X, Y_n \overset{P}{\rightarrow} Y}{@(X_n + Y_n) \to (X + Y)} \qquad \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in X_n \to AX}} \bigoplus_{\substack{P \in \mathbb{Z} \\ Q \in X_n \to AX}} \bigoplus_{\substack{P \in \mathbb{Z} \\ Q \in X_n \to AX}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in X_n \to AX}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in X_n \to AX}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z}}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z}}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z}}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z}}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z}}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z} \\ Q \in \mathbb{Z}}} \bigoplus_{\substack{Q \in \mathbb{Z} \\ Q \in \mathbb$	확률 수렴 $ \frac{*X_n \overset{P}{\rightarrow} X_{N_n} \overset{P}{\rightarrow} Y}{(3)(X_n + Y_n) \to (X + Y)} \qquad \underbrace{ \text{ (3)} \text{ P} \vdash \text{ 집합 오염에 단조 } (= ₹간 커지면 확률 커침), 삼각부등식 } _{P[(X_n + Y_n) \to (X + Y) \ge \epsilon] \le P[X_n - X + Y_n - Y \ge \epsilon]} _{\le P[X_n - X + Y_n - Y \ge \epsilon]} _{\le P[X_n - X + Y_n - Y \ge \epsilon]} _{\le P[X_n - X \ge \epsilon/2]} $ $ \frac{*P}{2} \underbrace{ \text{ at } X_n \overset{P}{\rightarrow} aX} \qquad \underbrace{ \text{ (3)} [g(x) - g(a)] \ge \epsilon } _{\ge P[X_n - X \ge \delta]} _{\ge P[X_n -$	확률 수점 $ \begin{array}{c} *X_n \overset{P}{\rightarrow} X, Y_n \overset{P}{\rightarrow} Y \\ 0 (X_n + Y_n) \overset{P}{\rightarrow} (X + Y) \\ 0 (x_n + Y_n) \overset{P}{\rightarrow} (X + Y) \\ 0 (x_n + Y_n) \overset{P}{\rightarrow} (X + Y) \\ 0 (x_n + Y_n) \overset{P}{\rightarrow} (X + Y) \\ 0 (x_n + Y_n) \overset{P}{\rightarrow} (X + Y) \\ 0 (x_n + Y_n) \overset{P}{\rightarrow} (X + Y) \\ 0 (x_n + Y_n) \overset{P}{\rightarrow} (X + Y_n) \\ 0 (x_n + Y_n) \overset{P}{\rightarrow} (X + Y_n) \\ 0 (x_n + Y_n) \overset{P}{\rightarrow} (X_n) \overset{P}{\rightarrow} g(x) \\ 0 (x_n + Y_n) $	확률 $\frac{\$Z_n \stackrel{P}{\to} X_1 Y_n \stackrel{P}{\to} Y}{\otimes} (X_n + Y_n) \stackrel{P}{\to} (X + Y)}{\otimes} (X_n + Y_n) \stackrel{P}{\to} (X + Y)} \qquad (\text{①} P \vdash \Delta \text{TS } 2 \text{TS } 1 \text{TND } 2 \text{TS } 2 \text{TND } 2 \text{TS } 2 \text{TND } 2 \text{TS } 2 \text{TND } 2 T$	확률 $\frac{\$Z_n \stackrel{P}{\to} X_1 Y_n \stackrel{P}{\to} Y}{\otimes} (X_n + Y_n) \stackrel{P}{\to} (X + Y)}{\otimes} (X_n + Y_n) \stackrel{P}{\to} (X + Y)} \stackrel{P}{\to} (X + Y) \\ \otimes (3X_n \stackrel{P}{\to} aX) & (2 + (2 + Y_n) - (X - Y)) \ge \epsilon] \le P[X_n - X + Y_n - Y \ge \epsilon] \\ & * \text{ 받침 상 연속 } g(x) \\ \otimes (3X_n \stackrel{P}{\to} a) \Rightarrow g(X_n) \stackrel{P}{\to} g(x) \\ \otimes (3X_n \stackrel{P}{\to} X) \Rightarrow g(X_n) \stackrel{P}{\to} g(x) \\ \otimes (3X_n - X \Rightarrow g(X_n - X \Rightarrow g(X_n) \stackrel{P}{\to} g(x) \\ \otimes (3X_n - X \Rightarrow g(X_n - X \Rightarrow g(X_n $	확률 $\frac{\$Z_n \stackrel{P}{\to} X_1 Y_n \stackrel{P}{\to} Y}{\otimes} (X_n + Y_n) \stackrel{P}{\to} (X + Y)}{\otimes} (X_n + Y_n) \stackrel{P}{\to} (X + Y)} \stackrel{P}{\to} (X + Y) \\ \otimes (3X_n \stackrel{P}{\to} aX) & (2 + (2 + Y_n) - (X - Y)) \ge \epsilon] \le P[X_n - X + Y_n - Y \ge \epsilon] \\ & * \text{ 받침 상 연속 } g(x) \\ \otimes (3X_n \stackrel{P}{\to} a) \Rightarrow g(X_n) \stackrel{P}{\to} g(x) \\ \otimes (3X_n \stackrel{P}{\to} X) \Rightarrow g(X_n) \stackrel{P}{\to} g(x) \\ \otimes (3X_n - X \Rightarrow g(X_n - X \Rightarrow g(X_n) \stackrel{P}{\to} g(x) \\ \otimes (3X_n - X \Rightarrow g(X_n - X \Rightarrow g(X_n $	확률 수점 $ \frac{*x_n \overset{p}{\rightarrow} x, y_n \overset{p}{\rightarrow} Y}{\partial x} = \frac{(\square P - 2)}{(\square R + Y_n)} = \frac{(\square P - 2)}{(\square R + Y_n)} = \frac{(\square P - 2)}{(\square R + Y_n)} = \frac{(\square P - 2)}{(\square R - X)} = \frac{(\square P - 2)}{(\square P - X)} = \frac{(\square P - 2)}{(\square R - X)} = \frac{(\square P - 2)}{(\square P - X)} = \frac{(\square P - 2)}{($				<u> </u>				
확률 수렴 $ \begin{array}{ c c c } \hline \textbf{4DB} & \textbf{1} & (X_n + Y_n) \overset{P}{\rightarrow} (X + Y) \\ \hline \textbf{2} & aX_n \overset{P}{\rightarrow} aX \\ \hline \\ \textbf{* 받침 상 연속} & g(x) \\ \hline \textbf{**} & \textbf{*} & \textbf{!} & !$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \begin{array}{ c c c } \hline & \forall \otimes & () & (X_n + Y_n) \overset{P}{\rightarrow} (X+Y) \\ & () & a X_n \overset{P}{\rightarrow} a X \\ \hline & * \ \ \forall \forall \Delta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	확률 수렴 $ \begin{array}{ c c c } \hline & \forall \otimes & () & (X_n + Y_n) \overset{P}{\rightarrow} (X+Y) \\ & () & a X_n \overset{P}{\rightarrow} a X \\ \hline & * \ \ \forall \forall \Delta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	확률 수렴 $ \begin{array}{ c c c } \hline & \forall \otimes & () & (X_n + Y_n) \overset{P}{\rightarrow} (X+Y) \\ & () & a X_n \overset{P}{\rightarrow} a X \\ \hline & * \ \ \forall \forall \Delta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	확률 수렴 $ \frac{d \partial_{0} \left($			정리		증명			
확률 수렴 $ \begin{array}{ c c c } \hline \textbf{4DB} & \textbf{1} & (X_n + Y_n) \overset{P}{\rightarrow} (X + Y) \\ \hline \textbf{2} & aX_n \overset{P}{\rightarrow} aX \\ \hline \\ \textbf{* 받침 상 연속} & g(x) \\ \hline \textbf{**} & \textbf{*} & \textbf{!} & !$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \begin{array}{ c c c } \hline & \forall \otimes & () & (X_n + Y_n) \overset{P}{\rightarrow} (X+Y) \\ & () & a X_n \overset{P}{\rightarrow} a X \\ \hline & * \ \ \forall \forall \Delta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	확률 수렴 $ \begin{array}{ c c c } \hline & \forall \otimes & () & (X_n + Y_n) \overset{P}{\rightarrow} (X+Y) \\ & () & a X_n \overset{P}{\rightarrow} a X \\ \hline & * \ \ \forall \forall \Delta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	확률 수렴 $ \begin{array}{ c c c } \hline & \forall \otimes & () & (X_n + Y_n) \overset{P}{\rightarrow} (X+Y) \\ & () & a X_n \overset{P}{\rightarrow} a X \\ \hline & * \ \ \forall \forall \Delta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	확률 수렴 $ \frac{d \partial_{0} \left($			$*X_n \xrightarrow{P}$	$X, Y_n \stackrel{P}{\to} Y$	①P는 집합오염에 단조 (=공간 커지면 확률 커짐); 삼각부등식			
확률 수렴 $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	확률 수렴	확률 수렴	확률 수렴	확률 수렴	확률 수렴	확률 수렴	확률 수렴		선형	-	_	$P[(X_n + Y_n) - (X - Y) \ge \epsilon] \le P[X_n - X + Y_n - Y \ge \epsilon]$			
확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴	확 수 함 수 함 수 함 수 함	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확출 수렴 $ { $				_	$\leq P[X_n - X \geq \epsilon/2] + P[Y_n - Y \geq \epsilon/2]$			
확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확률 수렴 $ \frac{1}{2} \frac{1}$	확 수 함 수 함 수 함 수 함	확는 수립	확는 수립	확는 수립 $\frac{1}{2} \frac{1}{2} \frac{1}{$	확출 수렴 $ { $			* 받침	상 연속 <i>g(x)</i>	$ (1) g(x) - g(a) \ge \epsilon \Rightarrow x - a \ge \delta \ (\epsilon > 0, \delta > 0) $			
$ \frac{\mathbf{\Phi}(X_n \to X \Rightarrow g(X_n) \to g(X))}{\mathbf{\Phi}(X_n \to X \to g(X_n) \to g(X))} $	구함	구함 $ \frac{(\textcircled{0}X_{n} \overset{P}{\to} X \Rightarrow g(X_{n}) \overset{P}{\to} g(X)}{(\textcircled{0}X_{n}Y_{n} \overset{P}{\to} Y)} \times X \Rightarrow g(X_{n}) \overset{P}{\to} g(X)}{(\textcircled{0}X_{n}Y_{n} \overset{P}{\to} XY)} $ $ * X_{n}Y_{n} = \frac{1}{2}X_{n}^{2} + \frac{1}{2}Y_{n}^{2} - \frac{1}{2}(X_{n} - Y_{n})^{2} \overset{P}{\to} \frac{1}{2}X^{2} + \frac{1}{2}Y^{2} - \frac{1}{2}(X - Y)^{2} = XY $ $ * X_{n}Y_{n} = \frac{1}{2}X_{n}^{2} + \frac{1}{2}Y_{n}^{2} - \frac{1}{2}(X_{n} - Y_{n})^{2} \overset{P}{\to} \frac{1}{2}X^{2} + \frac{1}{2}Y^{2} - \frac{1}{2}(X - Y)^{2} = XY $ $ * X_{n}Y_{n} = \frac{1}{2}X_{n}^{2} + \frac{1}{2}Y_{n}^{2} - \frac{1}{2}(X_{n} - Y_{n})^{2} \overset{P}{\to} \frac{1}{2}X^{2} + \frac{1}{2}Y^{2} - \frac{1}{2}(X - Y)^{2} = XY $ $ * X_{n}Y_{n} = \frac{1}{2}X_{n}^{2} + \frac{1}{2}Y_{n}^{2} - \frac{1}{2}(X_{n} - Y_{n})^{2} \overset{P}{\to} \frac{1}{2}X^{2} + \frac{1}{2}Y^{2} - \frac{1}{2}(X - Y)^{2} = XY $ $ * X_{n}Y_{n} = \frac{1}{2}X_{n}^{2} + \frac{1}{2}Y_{n}^{2} - \frac{1}{2}(X_{n} - Y_{n})^{2} \overset{P}{\to} \frac{1}{2}X^{2} + \frac{1}{2}Y^{2} - \frac{1}{2}(X - Y)^{2} = XY $ $ * X_{n}Y_{n} = \frac{1}{n}X_{n}^{2} & \text{if } X_{n}Y_{n} = \frac{1}{n}X_{n}^{2} & \text{if } X_{n}Y_{n} = \frac{1}{n}X_{n}^{2} & \text{if } X_{n}^{2} & \text{if } X_{n}^{$	$\frac{(\Im X_n \overset{P}{\to} X \Rightarrow g(X_n) \overset{P}{\to} g(X))}{\exists a} \frac{(\Im X_n \overset{P}{\to} X, Y_n \overset{P}{\to} Y)}{(\Im X_n Y_n \overset{P}{\to} XY)}}{(\Im X_n Y_n \overset{P}{\to} XY)} \\ *X_n \overset{P}{\to} X, Y_n \overset{P}{\to} Y) \\ *X_n Y_n & \Rightarrow XY \end{aligned} *X_n Y_n & = \frac{1}{2} X_n^2 + \frac{1}{2} Y_n^2 - \frac{1}{2} (X_n - Y_n)^2 \overset{P}{\to} \frac{1}{2} X^2 + \frac{1}{2} Y^2 - \frac{1}{2} (X - Y)^2 = XY \end{aligned}$ $\frac{4. \ Q \ A \ B \ C \ T_n \overset{P}{\to} \theta \ C \ C \ C \ C \ C \ C \ C \ C \ C \$	$\frac{P}{\Theta(X_n \xrightarrow{P} X) \Rightarrow g(X_n) \xrightarrow{P} g(X)}{B} = \frac{P}{\Theta(X_n \xrightarrow{P} X) + \frac{P}{P}} (S(X_n + X_n) \xrightarrow{P} X_n) + \frac{P}{P} (S(X_n + X_n) \xrightarrow{P} X_n) + \frac{P}{$	$\frac{P}{\Theta(X_n \xrightarrow{P} X) \Rightarrow g(X_n) \xrightarrow{P} g(X)}{B} = \frac{P}{\Theta(X_n \xrightarrow{P} X) + \frac{P}{P}} (S(X_n + X_n) \xrightarrow{P} X_n) + \frac{P}{P} (S(X_n + X_n) \xrightarrow{P} X_n) + \frac{P}{$	$\frac{P}{2} = \frac{P}{2} \frac$	$\frac{\partial X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)}{\partial X_n \xrightarrow{P} X \Rightarrow y_n \xrightarrow{P} X_n $		함수			$\therefore P[g(X_n) - g(a) \ge \epsilon] \le P[X_n - a \ge \delta]$			
	$ \begin{array}{c} (\textbf{S} X_n Y_n \rightarrow XY) \\ \hline 4. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{c} (\underline{s}) X_n Y_n \to XY \\ \hline 4. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{\left[\left(\mathbf{S} X_n Y_n \to XY \right) \right] }{ 4. \ \mathbf{Q} \mathbf{N} \mathbf{d} \mathbf{S} \mathbf{T}_n \overset{P}{\to} \boldsymbol{\theta} \ \mathbf{G} \Leftrightarrow T_n \overset{P}{\subset} \boldsymbol{\theta} \overset{Q}{\to} \mathbf{Q} \mathbf{S}^3 \mathbf{d} \mathbf{S} } \\ \mathbf{E} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} L$	$ \frac{\left[\left(\mathbf{S} X_n Y_n \to XY \right) \right] }{ 4. \ \mathbf{Q} \mathbf{N} \mathbf{d} \mathbf{S} \mathbf{T}_n \overset{P}{\to} \boldsymbol{\theta} \ \mathbf{G} \Leftrightarrow T_n \overset{P}{\subset} \boldsymbol{\theta} \overset{Q}{\to} \mathbf{Q} \mathbf{S}^3 \mathbf{d} \mathbf{S} } \\ \mathbf{E} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} L$	$ \frac{\left[\left(\mathbf{S} X_n Y_n \to XY \right) \right] }{ 4. \ \mathbf{Q} \mathbf{N} \mathbf{S} : \ T_n^{\rightarrow} \boldsymbol{\theta} \ \mathbf{C} \Leftrightarrow T_n \in \ \boldsymbol{\theta} \mathbf{Q} \ \mathbf{Q} \mathbf{N} \ \mathbf{A} \mathbf{S} \mathbf{S} \mathbf{S} }{ \mathbf{E} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$	$ \frac{(s) X_n Y_n \to XY}{4. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	수덤		$(4)X_{m} \stackrel{P}{\rightarrow}$	$X \Rightarrow a(X_n) \xrightarrow{P} a(X)$				
	$ \begin{array}{c} (\textbf{S} X_n Y_n \rightarrow XY) \\ \hline 4. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{c} (\underline{s}) X_n Y_n \to XY \\ \hline 4. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{\left[\left(\mathbf{S} X_n Y_n \to XY \right) \right] }{ 4. \ \mathbf{Q} \mathbf{N} \mathbf{d} \mathbf{S} \mathbf{T}_n \overset{P}{\to} \boldsymbol{\theta} \ \mathbf{G} \Leftrightarrow T_n \overset{P}{\subset} \boldsymbol{\theta} \overset{Q}{\to} \mathbf{Q} \mathbf{S}^3 \mathbf{d} \mathbf{S} } \\ \mathbf{E} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} L$	$ \frac{\left[\left(\mathbf{S} X_n Y_n \to XY \right) \right] }{ 4. \ \mathbf{Q} \mathbf{N} \mathbf{d} \mathbf{S} \mathbf{T}_n \overset{P}{\to} \boldsymbol{\theta} \ \mathbf{G} \Leftrightarrow T_n \overset{P}{\subset} \boldsymbol{\theta} \overset{Q}{\to} \mathbf{Q} \mathbf{S}^3 \mathbf{d} \mathbf{S} } \\ \mathbf{E} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} L$	$ \frac{\left[\left(\mathbf{S} X_n Y_n \to XY \right) \right] }{ 4. \ \mathbf{Q} \mathbf{N} \mathbf{S} : \ T_n^{\rightarrow} \boldsymbol{\theta} \ \mathbf{C} \Leftrightarrow T_n \in \ \boldsymbol{\theta} \mathbf{Q} \ \mathbf{Q} \mathbf{N} \ \mathbf{A} \mathbf{S} \mathbf{S} \mathbf{S} }{ \mathbf{E} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$	$ \frac{(s) X_n Y_n \to XY}{4. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			* X →	$X. Y. \xrightarrow{P} Y$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
4. 일치성: $T_n \overset{P}{\to} \theta$ 면 $\Leftrightarrow T_n$ 은 θ 의 일치 추정량 $*F(x;\theta)$ 에서 추출한 $iid \{X_1, \cdots, X_n\}$ 의 통계량 T_n 분산 추정량 ① $S_n^2 \overset{P}{\to} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \overset{P}{\to} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif } (0,\theta), \qquad Y_n = \max \{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} (1-F(Y_n))^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n} \right) dt = \frac{n}{n+1} \theta \qquad \therefore \text{ 최대값 } Y_n \in \theta$ 의 일치 추정량 $\overline{X}_n \in \theta/2$ 의 일치 추정량 $\Rightarrow 2\overline{X}_n \in \theta$ 의 일치 추정량 $\overline{X}_n \overset{P}{\to} X \iff \forall x \in \{F_X \ \text{연} \triangleq \text{AB}\}, \ \lim_{n \to \infty} F_n(x) = F(x) \ , \ \left(F: X \text{의 cdf}, \ F_n: X_n \text{의 cdf} \right) \qquad \text{"극한분포"}$	4. 일치성: $T_n \stackrel{P}{\rightarrow} \theta$ 면 $\Leftrightarrow T_n \stackrel{Q}{\leftarrow} \theta$ 의 일치 추정량 $*F(x;\theta)$ 에서 추출한 $iid \{X_1, \cdots, X_n\}$ 의 통계량 T_n 문산 추정량 ① $S_n^2 \stackrel{P}{\rightarrow} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \stackrel{P}{\rightarrow} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif } (0,\theta), Y_n = \max\{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \therefore \text{ ATI } \vec{u} Y_n \stackrel{Q}{\leftarrow} \theta$ 의 일치 추정량 $\bar{X}_n \stackrel{Q}{\leftarrow} \theta/2 \text{의 } \text{일치 } \text{ 추정량} \Rightarrow 2\bar{X}_n \stackrel{Q}{\leftarrow} \theta \text{의 } \text{일치 } \text{ 추정량}$ 1. 정의: $X_n \stackrel{D}{\rightarrow} X \Leftrightarrow \forall x \in \{F_X \text{ 연} \triangleq \text{ AB}\}, \lim_{n \to \infty} F_n(x) = F(x), (F: X \text{의 } \text{cdf}, F_n: X_n \text{의 } \text{cdf}) "¬····································$	4. 일치성: $T_n \stackrel{P}{\rightarrow} \theta$ 면 \Leftrightarrow $T_n \stackrel{Q}{\leftarrow} \theta$ 의 일치 추정량 * $F(x;\theta)$ 에서 추출한 iid $\{X_1, \cdots, X_n\}$ 의 통계량 T_n 분산 추정량 ① $S_n^2 \stackrel{P}{\rightarrow} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \stackrel{P}{\rightarrow} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif} (0,\theta), Y_n = \max\{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! \cdot 0! \cdot 1!} F(Y_n)^{n-1} (1-F(Y_n))^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ 모수 추정량 $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta$ \therefore 최대값 $Y_n \stackrel{Q}{\leftarrow} \theta$ 의 일치 추정량 $\bar{X}_n \stackrel{Q}{\leftarrow} \theta/2$ 의 일치 추정량 $\Rightarrow 2\bar{X}_n \stackrel{Q}{\leftarrow} \theta$ 의 일치 추정량 $\bar{X}_n \stackrel{D}{\leftarrow} \theta/2$ 의 일치 추정량 $\Rightarrow 2\bar{X}_n \stackrel{Q}{\leftarrow} \theta$ 의 일치 추정량 $2\bar{X}_n \stackrel{D}{\leftarrow} \theta/2$ $\Rightarrow 2\bar{X}_n \stackrel{Q}{\leftarrow} \theta$ $\Rightarrow 2\bar{X}_n \stackrel{Q}{\rightarrow} \theta$	4. 일치성: $T_n \stackrel{P}{\rightarrow} \theta$ 면 $\Leftrightarrow T_n \stackrel{Q}{\circ} \theta$ 의 일치 추정량 * $F(x;\theta)$ 에서 추출한 $iid \{X_1, \cdots, X_n\}$ 의 통계량 T_n 분산 추정량 ① $S_n^2 \stackrel{P}{\rightarrow} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \stackrel{P}{\rightarrow} \sigma^2$ (일치 & MLE) $ X_1, \cdots, X_n \sim \text{unif} (0,\theta), Y_n = \max \{X_1, \cdots, X_n\} $ $ g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta) $ $ E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \therefore \text{ All Ill } Y_n \stackrel{Q}{\circ} \theta$ 의 일치 추정량 $ \overline{X}_n \stackrel{Q}{\circ} \theta/2 \stackrel{Q}{\circ} \theta $	4. 일치성: $T_n \overset{P}{\rightarrow} \theta$ 면 $\Leftrightarrow T_n \overset{P}{\subset} \theta$ 의 일치 추정량 * $F(x;\theta)$ 에서 추출한 $iid \{X_1, \cdots, X_n\}$ 의 통계량 T_n 분산 추정량 ① $S_n^2 \overset{P}{\rightarrow} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \overset{P}{\rightarrow} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif } (0,\theta), \qquad Y_n = \max\{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\overline{X_n} \overset{P}{\subset} \theta/2$ X_n	4. 일치성: $T_n \overset{P}{\rightarrow} \theta$ 면 $\Leftrightarrow T_n \overset{P}{\subset} \theta$ 의 일치 추정량 * $F(x;\theta)$ 에서 추출한 $iid \{X_1, \cdots, X_n\}$ 의 통계량 T_n 분산 추정량 ① $S_n^2 \overset{P}{\rightarrow} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \overset{P}{\rightarrow} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif } (0,\theta), \qquad Y_n = \max\{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\overline{X_n} \overset{P}{\subset} \theta/2$ X_n	4. 일치성: $T_n \overset{P}{\rightarrow} \theta$ 면 $\Leftrightarrow T_n \overset{P}{\subset} \theta$ 의 일치 추정량 * $F(x;\theta)$ 에서 추출한 $iid \{X_1, \cdots, X_n\}$ 의 통계량 T_n	4. 일치성: $T_n \xrightarrow{P} \theta$ 면 $\Leftrightarrow T_n \in \theta$ 의 일치 추정량 * $F(x;\theta)$ 에서 추출한 $iid \{X_1, \cdots, X_n\}$ 의 통계량 T_n 분산 추정량 ① $S_n^2 \xrightarrow{P} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \xrightarrow{P} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{uniff}(0,\theta), Y_n = \max\{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} (1-F(Y_n))^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \qquad \therefore \text{ AUT CL } Y_n \in \theta$ 의 일치 추정량 $\overline{X}_n \in \theta/2$ 의 일치 추정량 $\Rightarrow 2\overline{X}_n \in \theta$ 의 일치 추정량 1. 정의: $X_n \xrightarrow{D} X \Leftrightarrow \forall x \in \{F_X \text{ 연속 점}\}, \lim_{n \to \infty} F_n(x) = F(x), (F:X) \text{ odd}, F_n: X_n \text{ odd} \Rightarrow \text{ "한번-모"}$ 2. $t \text{ 분포} \Rightarrow z \text{ 분포} (n \to \infty)$ ① $f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{(n+1)}{2}}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \text{ (} $		곱	$\bigcirc X_n Y$	$P \rightarrow XY$	$ \begin{array}{c} {}^{\star}\Lambda_{n}I_{n} - \frac{1}{2}\Lambda_{n} + \frac{1}{2}I_{n} - \frac{1}{2}(\Lambda_{n} - I_{n}) \end{array} \rightarrow \begin{array}{c} {}^{\star}\Lambda_{n} + \frac{1}{2}I_{n} - \frac{1}{2}(\Lambda_{n} - I_{n}) - \frac{1}{2}I_{n} \end{array} $			
분산 추정량 ① $S_n^2 \stackrel{P}{\to} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \stackrel{P}{\to} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif } (0, \theta), \qquad Y_n = \max \{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} (1 - F(Y_n))^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} \ (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n} \right) dt = \frac{n}{n+1} \theta \therefore \text{ 최대값 } Y_n \in \theta \text{의 } \text{일치 추정량}$ $\bar{X}_n \in \theta/2 \text{의 } \text{일치 추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 } \text{일치 추정량}$ $1. \text{ 정의: } X_n \stackrel{D}{\to} X \Leftrightarrow \forall x \in \{F_X \text{ 연속 점}\}, \lim_{n \to \infty} F_n(x) = F(x), \ \left(F: X \text{의 } \text{cdf}, \ F_n: X_n \text{의 } \text{cdf} \right) \text{"¬한분포}$	보산 추정량 ① $S_n^2 \xrightarrow{P} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \xrightarrow{P} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif } (0, \theta), \qquad Y_n = \max\{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \qquad \therefore \text{최대값 } Y_n \in \theta \text{의 } \text{일치 } \text{추정량}$ $\bar{X}_n \in \theta/2 \text{의 } \text{일치 } \text{추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 } \text{일치 } \text{추정량}$ $1. \text{정의: } X_n \xrightarrow{D} X \iff \forall x \in \{F_X \text{ 연속 } A\}, \lim_{n \to \infty} F_n(x) = F(x), (F: X \text{의 } \text{cdf}, F_n: X_n \text{의 } \text{cdf}) \qquad \text{"¬한분포"}$ $2. t \not \in \mathbf{Z} \Rightarrow \mathbf{Z} \not \in \mathbf{Z} (1 + \frac{x^2}{2}) \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \text{ (} \vec{e} \vec{u} \text{DCT})$	보산 추정량 ① $S_n^2 \xrightarrow{P} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \xrightarrow{P} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif } (0, \theta), \qquad Y_n = \max\{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \therefore \text{ A IT LY } Y_n \in \theta \text{의 } \text{일치 } \text{ 추정량}$ $\bar{X}_n \in \theta/2 \text{의 } \text{일치 } \text{ 추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 } \text{일치 } \text{ 추정량}$ $1. \text{ 정의: } X_n \xrightarrow{D} X \Leftrightarrow \forall x \in \{F_X \text{ 연속 } A\}, \lim_{n \to \infty} F_n(x) = F(x), (F: X \text{의 } \text{cdf}, F_n: X_n \text{의 } \text{cdf}) \qquad \text{"¬한분포"}$ $2. \text{ t 분포} \Rightarrow z$ 분포 (n \to \infty)$ $0. f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \text{ (} \text{e} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } $	분산 추정량 ① $S_n^2 \stackrel{P}{\rightarrow} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \stackrel{P}{\rightarrow} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif} (0, \theta), \qquad Y_n = \max \{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} (1 - F(Y_n))^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n} \right) dt = \frac{n}{n+1} \theta \qquad \therefore \text{최대값 } Y_n \in \theta \text{의 } \text{일치 } \stackrel{+}{\rightarrow} \text{정량}$ $\bar{X}_n \in \theta/2 \text{의 } \text{일치 } \stackrel{+}{\rightarrow} \text{정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 } \text{일치 } \stackrel{+}{\rightarrow} \text{ Si}$ $1. \text{정의: } X_n \stackrel{D}{\rightarrow} X \Leftrightarrow \forall x \in \{F_x \text{ 연} \triangleq \text{AB}\}, \lim_{n \to \infty} F_n(x) = F(x), (F: X \text{의 } \text{cdf}, F_n: X_n \text{의 } \text{cdf}) \qquad \text{"¬한분포"}$ $2. t \not = \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$	분산 추정량 ① $S_n^{\frac{P}{\rho}} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^{\frac{P}{\rho}} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif} (0, \theta), Y_n = \max \{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} (1 - F(Y_n))^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n} \right) dt = \frac{n}{n+1} \theta \qquad \therefore \text{ 최대값 } Y_n \in \theta \text{의 일치 추정량}$ $\bar{X}_n \in \theta/2 \text{의 일치 추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 일치 추정량}$ $1. \text{ 정의: } X_n^{\frac{D}{\rho}} X \iff \forall x \in \{F_X \text{ 연속 AB}\}, \lim_{n \to \infty} F_n(x) = F(x), (F: X \text{의 cdf}, F_n: X_n \text{의 cdf}) \qquad \text{"¬한분포"}$ $2. \text{ t 분포 } \Rightarrow z \text{ 분ହ} (n \to \infty)$ $0. \text{ $f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{(n+1)}{2}}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \text{ (} = \text{ \forall DCT)}$ $2. \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{(n+1)}{2}} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ $3. \text{ Sd}$	분산 추정량 ① $S_n^{\frac{P}{\rho}} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^{\frac{P}{\rho}} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif} (0, \theta), Y_n = \max \{X_1, \cdots, X_n\}$ $g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} (1 - F(Y_n))^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n} \right) dt = \frac{n}{n+1} \theta \qquad \therefore \text{ 최대값 } Y_n \in \theta \text{의 일치 추정량}$ $\bar{X}_n \in \theta/2 \text{의 일치 추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 일치 추정량}$ $1. \text{ 정의: } X_n^{\frac{D}{\rho}} X \iff \forall x \in \{F_X \text{ 연속 AB}\}, \lim_{n \to \infty} F_n(x) = F(x), (F: X \text{의 cdf}, F_n: X_n \text{의 cdf}) \qquad \text{"¬한분포"}$ $2. \text{ t 분포 } \Rightarrow z \text{ 분ହ} (n \to \infty)$ $0. \text{ $f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{(n+1)}{2}}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \text{ (} = \text{ \forall DCT)}$ $2. \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{(n+1)}{2}} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ $3. \text{ Sd}$	분산 추정량 ① $S_n^{\frac{P}{\rho}} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^{\frac{P}{\rho}} \sigma^2$ (일치 & MLE) $X_1, \cdots, X_n \sim \text{unif} (0, \theta), Y_n = \max\{X_1, \cdots, X_n\} $ $g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} (1 - F(Y_n))^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n} \right) dt = \frac{n}{n+1} \theta \qquad \therefore \text{ 최대값 } Y_n \in \theta \text{의 일치 추정량}$ $\bar{X}_n \in \theta/2 \text{의 일치 추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 일치 추정량}$ $1. \text{ 정의: } X_n^{\frac{D}{\rho}} X \iff \forall x \in \{F_x \text{ 연속 A}\}, \lim_{n \to \infty} F_n(x) = F(x), (F: X \text{의 cdf}, F_n: X_n \text{의 cdf}) \qquad \text{"¬한분포"}$ $2. \text{ t 분포 \Rightarrow z$ 분포 } (n \to \infty)$ $0. f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{(n+1)}{2}}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \text{ (} = \text$	분산 추정량 ① $S_n^2 \stackrel{\rightarrow}{\rightarrow} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \stackrel{\rightarrow}{\rightarrow} \sigma^2$ (일치 & MLE) $ X_1, \cdots, X_n \sim \text{unif} (0, \theta), \qquad Y_n = \max\{X_1, \cdots, X_n\} $ $ g_n(Y_n) = \frac{n!}{(n-1)! \ 0! \ 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta) $ $ E(Y_n) = \int_0^\theta t \left(\frac{t^{n-1}}{\theta^n} \right) dt = \frac{n}{n+1} \theta \qquad \therefore \text{ A} \text{ 대 if } Y_n \in \theta \text{ 의 } \text{ 일치 } \text{ 추정량} $ $ \overline{X}_n \in \theta/2 \text{ 의 } \text{ 일시 } \text{ 추정량} \Rightarrow 2\overline{X}_n \in \theta \text{ 의 } \text{ 일치 } \text{ 추정량} $ $ 1. \text{ 정의: } X_n \stackrel{\rightarrow}{\rightarrow} X \iff \forall x \in \{F_X \text{ 연속 A}\}, \lim_{n \to \infty} F_n(x) = F(x), (F:X \text{ 의 } \text{cdf}, F_n: X_n \text{ 의 } \text{cdf}) \qquad "$								
교등분포 $\mathbf{Z}_{n}^{1},\cdots,X_{n}\sim\mathrm{unif}\left(0,\theta\right),\qquad Y_{n}=\max\left\{X_{1},\cdots,X_{n}\right]$ $g_{n}(Y_{n})=\frac{n!}{(n-1)!0!1!}F(Y_{n})^{n-1}\left(1-F(Y_{n})\right)^{0}f(y_{n})=n\frac{t^{n-1}}{\theta^{n}}(0< t\leq\theta)$ $E(Y_{n})=\int_{0}^{\theta}t\left(n\frac{t^{n-1}}{\theta^{n}}\right)dt=\frac{n}{n+1}\theta\therefore\text{ 최대값 }Y_{n}\in\theta\text{의 일치 추정량}$ $\bar{X}_{n}\in\theta/2\text{의 일치 추정량}\Rightarrow2\bar{X}_{n}\in\theta\text{의 일치 추정량}$ 1. 정의 : $X_{n}\overset{D}{\to}X$ \Leftrightarrow $\forall x\in\{F_{X}\text{ 연속 점}\},\lim_{n\to\infty}F_{n}(x)=F(x),\left(F:X\text{의 cdf},F_{n}:X_{n}\text{의 cdf}\right)$ "극한분포"	교등분포	교등분포 $\mathbf{Z} \leftarrow \mathbf{Z} \leftarrow \mathbf$	교등분포 모수 추정량	교등분포 $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n}$	교등분포 $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n}$	교등분포 $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{P} = \frac{n!}{(n-1)! 0!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n}$	교등분포 모수 추정량		부사	추정량	\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}	불편) $2\mathbf{S}^2 \cdot -\frac{n-1}{2}\mathbf{S}^2 \cdot \mathbf{\sigma}^2$ (일치용MIF)			
교등분포 $\mathbf{Z} = \frac{n!}{(n-1)!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta)$ $\mathbf{Z} + \mathbf{Z} $	교등분포 $\mathbf{P}_{n}(Y_{n}) = \frac{n!}{(n-1)! 0! 1!} F(Y_{n})^{n-1} \left(1 - F(Y_{n})\right)^{0} f(y_{n}) = n \frac{t^{n-1}}{\theta^{n}} (0 < t \le \theta)$ $\mathbf{P}_{n}(Y_{n}) = \int_{0}^{\theta} t \left(n \frac{t^{n-1}}{\theta^{n}}\right) dt = \frac{n}{n+1} \theta \therefore \text{ ACM IT } Y_{n} \in \theta \text{ and } y_$	교등분포 $\mathbf{P}_{n}(Y_{n}) = \frac{n!}{(n-1)!0!1!}F(Y_{n})^{n-1}\left(1-F(Y_{n})\right)^{0}f(y_{n}) = n\frac{t^{n-1}}{\theta^{n}} (0 < t \leq \theta)$ $\mathbf{P}_{n}(Y_{n}) = \int_{0}^{\theta} t\left(n\frac{t^{n-1}}{\theta^{n}}\right)dt = \frac{n}{n+1}\theta \therefore \text{ ALTLY } Y_{n} \in \theta \text{ Plank } $	교등분포 $ g_n(Y_n) = \frac{n!}{(n-1)! 0! 1!} F(Y_n)^{n-1} \left(1 - F(Y_n)\right)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta) $ $ E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \therefore \text{ ALTLY } Y_n \in \theta \text{ all } \text{ all } Y_n \in \theta \text{ all } Y_$	교등분포 모수 추정량 $ g_n(Y_n) = \frac{n!}{(n-1)!0!1!} F(Y_n)^{n-1} \big(1 - F(Y_n)\big)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta) $ $ E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \therefore \text{ 최대값 } Y_n \in \theta \text{의 일치 추정량} $ $ \bar{X}_n \in \theta/2 \text{의 일치 추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 일치 추정량} $ $ 1. \ $	교등분포 모수 추정량 $ g_n(Y_n) = \frac{n!}{(n-1)!0!1!} F(Y_n)^{n-1} \big(1 - F(Y_n)\big)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta) $ $ E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \therefore \text{ 최대값 } Y_n \in \theta \text{의 일치 추정량} $ $ \bar{X}_n \in \theta/2 \text{의 일치 추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 일치 추정량} $ $ 1. \ $	교등분포 모수 추정량 $ g_n(Y_n) = \frac{n!}{(n-1)!0!1!} F(Y_n)^{n-1} \big(1 - F(Y_n)\big)^0 f(y_n) = n \frac{t^{n-1}}{\theta^n} (0 < t \le \theta) $ $ E(Y_n) = \int_0^\theta t \left(n \frac{t^{n-1}}{\theta^n}\right) dt = \frac{n}{n+1} \theta \therefore \text{ 최대값 } Y_n \in \theta \text{의 일치 추정량} $ $ \bar{X}_n \in \theta/2 \text{의 일치 추정량} \Rightarrow 2\bar{X}_n \in \theta \text{의 일치 추정량} $ $ 1. \ $	문포 수렴		$X \dots X \sim \text{unif}(0)$			$V = \max\{X, \dots, X\}$			
		$\bar{X}_n \in \theta/2 $ 일치 추정량 $\Rightarrow 2\bar{X}_n \in \theta$ 일치 추정량 $1. \ \mathbf{SO}: \ X_n \overset{D}{\to} X \ \Leftrightarrow \forall x \in \{F_X \text{ 연속 점}\}, \ \lim_{n \to \infty} F_n(x) = F(x) , \ \left(F: X \text{의 cdf}, \ F_n: X_n \text{의 cdf}\right) \text{"극한분포"}$ $2. \ \mathbf{tEx} \Rightarrow \mathbf{zEx} (n \to \infty)$ $0. \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} , \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty (\text{르벡 DCT})$	$\bar{X}_n \in \theta/2 \circ 2 \circ \bar{X}_n \in \theta \circ 2 \circ \bar$				보포 수렴		$g_n(Y_n) = \frac{n!}{(1-x)!}$		$a_n(Y_n) = \frac{n!}{n!}$	$\frac{1}{-F(Y_n)^{n-1}(1-F(Y_n))^0}f(Y_n) = n\frac{t^{n-1}}{-F(Y_n)^{n-1}(1-F(Y_n))^0}f(Y_n) = n\frac{t^{n-1}}{-F(Y_n)^{n-1}(1-F(Y_n)^{n-1}(1-F(Y_n))^0}f(Y_n) = n\frac{t^{n-1}}{-F(Y_n)^{n-1}(1-F(Y_n))^0}f(Y_n) = n\frac{t^{n-1}}{-F($			
		$\bar{X}_n \in \theta/2 $ 일치 추정량 $\Rightarrow 2\bar{X}_n \in \theta$ 일치 추정량 $1. \ \mathbf{SO}: \ X_n \overset{D}{\to} X \ \Leftrightarrow \forall x \in \{F_X \text{ 연속 점}\}, \ \lim_{n \to \infty} F_n(x) = F(x) , \ \left(F: X \text{의 cdf}, \ F_n: X_n \text{의 cdf}\right) \text{"극한분포"}$ $2. \ \mathbf{tEx} \Rightarrow \mathbf{zEx} (n \to \infty)$ $0. \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} , \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty (\text{르벡 DCT})$	$\bar{X}_n \in \theta/2 \circ 2 \circ \bar{X}_n \in \theta \circ 2 \circ \bar$				보포 수렴		균등분	본포	(n-1)! 0!	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		$\bar{X}_n \in \theta/2 $ 일치 추정량 $\Rightarrow 2\bar{X}_n \in \theta$ 일치 추정량 $1. \ \mathbf{\overline{SO}}: \ X_n \overset{D}{\to} X \ \Leftrightarrow \forall x \in \{F_X \text{ 연속 점}\}, \ \lim_{n \to \infty} F_n(x) = F(x) , \ \left(F: X \text{ 의 cdf}, \ F_n: X_n \text{ 의 cdf}\right) \text{"극한분포"}$ $2. \ \mathbf{t} \overset{E}{=} \mathbf{E} \Rightarrow \mathbf{z} \overset{E}{=} \mathbf{E} (n \to \infty)$ $0. \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \leq \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty (\text{르벡 DCT})$	$\bar{X}_n \in \theta/2 \circ 2 \circ \bar{X}_n \in \theta \circ 2 \circ \bar$				보포 수렴		모수 	추정량	$E(Y_n) = \int_0^{\infty} t \left(n \frac{e^{-t}}{\theta^n} \right)^n$	$- dt = \frac{n}{n+1} \theta$: 최대값 $Y_n \in \theta$ 의 일치 추정량			
"	$2. \ \mathbf{t} \stackrel{\mathbf{\Xi}}{\mathbf{\Xi}} \Rightarrow \mathbf{z} \stackrel{\mathbf{\Xi}}{\mathbf{\Xi}} (n \to \infty)$ $1. \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \ (\stackrel{\mathbf{\Xi}}{=} \stackrel{\mathbf{\Pi}}{=} 1)$	$2. \mathbf{t} \stackrel{\mathbf{\Xi}}{\mathbf{\Xi}} \Rightarrow \mathbf{z} \stackrel{\mathbf{\Xi}}{\mathbf{\Xi}} \mathbf{\Sigma} (n \to \infty)$ $1. \mathbf{f}_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^{t} f_n(y) dy \le \int_{-\infty}^{t} 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \text{ (} \stackrel{\mathbf{\Xi}}{=} \stackrel{\mathbf{\Pi}}{=} 1)$	$2. \ t \stackrel{\square}{=} x \Rightarrow z \stackrel{\square}{=} x (n \to \infty)$ $1. \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \ (\stackrel{\square}{=} \stackrel{\square}{=} \text{DCT})$ $2. \ \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$	$2. t 분포 \Rightarrow z 분포 (n \to \infty)$ $1. f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^{t} f_n(y) dy \le \int_{-\infty}^{t} 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty (르벡 DCT)$ $2. \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^{t} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ $3. $	$2. t 분포 \Rightarrow z 분포 (n \to \infty)$ $1. f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^{t} f_n(y) dy \le \int_{-\infty}^{t} 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty (르벡 DCT)$ $2. \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^{t} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ $3. $	$2. t분포 \Rightarrow z분포 (n \to \infty)$ $1. f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \ (\ge \ \square \ \square \ F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ $3. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ 2. \ t 분포 \Rightarrow z 분포 \ (n \to \infty) $ $ (1) \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \ \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \ (= \text{ lm DCT}) $ $ (2) \ \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \ \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t) $ $ 3. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				$ar{X}_n$ 은 $ heta/2$ 의 일치 추	정량 $\Rightarrow 2\bar{X}_n$ 은 θ 의 일치 추정량			
"	$2. \mathbf{t} \stackrel{\mathbf{E}}{=} \mathbf{x} \Rightarrow \mathbf{z} \stackrel{\mathbf{E}}{=} \mathbf{x} (n \to \infty)$ $1. \mathbf{f}_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \ (\stackrel{\mathbf{E}}{=} \stackrel{\mathbf{H}}{=} 1)$	$2. \ \mathbf{t} \stackrel{\mathbf{\Xi}}{\mathbf{\Xi}} \Rightarrow \mathbf{z} \stackrel{\mathbf{\Xi}}{\mathbf{\Xi}} \mathbf{\Sigma} (n \to \infty)$ $1. \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^{t} f_n(y) dy \le \int_{-\infty}^{t} 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \ (\stackrel{\mathbf{\Xi}}{=} \stackrel{\mathbf{\Pi}}{=} 1)$	$2. \ t \stackrel{\square}{=} x \Rightarrow z \stackrel{\square}{=} x (n \to \infty)$ $1. \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \ (\stackrel{\square}{=} \stackrel{\square}{=} \text{DCT})$ $2. \ \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$	$2. t 분포 \Rightarrow z 분포 (n \to \infty)$ $1. f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^{t} f_n(y) dy \le \int_{-\infty}^{t} 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty (르벡 DCT)$ $2. \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^{t} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ $3. $	$2. t 분포 \Rightarrow z 분포 (n \to \infty)$ $1. f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^{t} f_n(y) dy \le \int_{-\infty}^{t} 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty (르벡 DCT)$ $2. \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^{t} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ $3. $	$2. t 분포 \Rightarrow z 분포 (n \to \infty)$ $1. f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^{t} f_n(y) dy \le \int_{-\infty}^{t} 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty (르벡 DCT)$ $2. \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^{t} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^{t} \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ $3. $	$ 2. \ t 분포 \Rightarrow z 분포 \ (n \to \infty) $ $ (1) \ f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \ \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}, \int_{-\infty}^t f_n(y) dy \le \int_{-\infty}^t 10 f_1(y) dy = \frac{10}{\pi} \tan^{-1} t < \infty \ (= \text{ lm DCT}) $ $ (2) \ \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \ \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t) $ $ 3. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		1. 정으	$: X_n \stackrel{D}{\to}$	$X \Leftrightarrow \forall x \in \{F_X $ 연속	점}, $\lim_{n\to\infty} F_n(x) = F(x)$, $\left(F: X \supseteq \operatorname{cdf}, F_n: X_n \supseteq \operatorname{cdf}\right)$ "극한분포"			
$ 2. t = 2 \Rightarrow 2 = 2 = (n \rightarrow \infty)$	(m 1)	m 1) m+1)	$ 2 \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t) $	② $\lim_{n\to\infty} F_n(t) = \lim_{n\to\infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n\to\infty} f_n(x) dx = \int_{-\infty}^t \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ 3. 정리	② $\lim_{n\to\infty} F_n(t) = \lim_{n\to\infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n\to\infty} f_n(x) dx = \int_{-\infty}^t \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ 3. 정리	② $\lim_{n\to\infty} F_n(t) = \lim_{n\to\infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n\to\infty} f_n(x) dx = \int_{-\infty}^t \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ 3. 정리	문포 수렴 $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$								
$\Gamma\left(\frac{n+1}{2}\right)\left(1-x^2\right)^{-\left(\frac{n+1}{2}\right)} \qquad \qquad$	(m 1)	m 1) m+1)	$ 2 \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t) $	② $\lim_{n\to\infty} F_n(t) = \lim_{n\to\infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n\to\infty} f_n(x) dx = \int_{-\infty}^t \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ 3. 정리	② $\lim_{n\to\infty} F_n(t) = \lim_{n\to\infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n\to\infty} f_n(x) dx = \int_{-\infty}^t \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ 3. 정리	② $\lim_{n\to\infty} F_n(t) = \lim_{n\to\infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n\to\infty} f_n(x) dx = \int_{-\infty}^t \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ 3. 정리	문포 수렴 $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$			$\Gamma\left(\frac{n}{n}\right)$	$\left(\frac{+1}{2}\right)\left(1-x^2\right)^{-\left(\frac{n+1}{2}\right)}$	$\int_{0}^{t} dt dt dt = \int_{0}^{t} dt dt dt = \int_{0}^{t} dt dt dt = \int_{0}^{t} dt dt dt dt = \int_{0}^{t} dt dt dt dt = \int_{0}^{t} dt $			
$\int_{-\infty}^{\infty} f_n(y) dy \le \int_{-\infty}^{\infty} 10 f_1(y) dy = \frac{1}{\pi} \tan^{-1} t < \infty \text{ (} \exists \exists \text{ DCT)}$	$\mathbb{P}(n+1) = \mathbb{P}(n+1)$	$ 2 \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t) $	\(\frac{1}{2}\)	3. 정리	3. 정리	3. 정리	분포 수렴		$(1) f_n(x)$	$=\frac{1}{\sqrt{n\pi}}$	$\frac{2}{\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{1}{n}\right)$,	$\int_{-\infty} f_n(y) dy \le \int_{-\infty} 10 f_1(y) dy = \frac{1}{\pi} \tan^{-1} t < \infty \ (= 9 DCT)$			
$\int_{0}^{t} \int_{0}^{t} \int_{0$	$\int_{0}^{t} \int_{0}^{t} \int_{0$	$(2) \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{n\pi}} \left(\frac{n}{2} \right) \left(1 + \frac{1}{n} \right) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \right) dx = \Phi(t)$	\(\frac{1}{2}\)	<u> </u>	<u> </u>	<u> </u>	분포 수렴		o 1.	- () · · ·	$\int_{t}^{t} dt dt$	$\int_{-\infty}^{t} \Gamma\left(\frac{n+1}{2}\right) \left(-x^2\right)^{-\left(\frac{n+1}{2}\right)} \int_{-\infty}^{t} \Gamma\left(-x^2\right) \left(-x^2\right)$			
$(2) \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} \lim_{n \to \infty} \frac{1}{\sqrt{n\pi}} \frac{1}{\Gamma(\frac{n}{2})} \left(1 + \frac{1}{n}\right) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\right) dx = \Phi(t)$	$(2) \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{n\pi}} \frac{1}{\Gamma(\frac{n}{2})} \left(1 + \frac{1}{n}\right) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\right) dx = \Phi(t)$	· (2)	3. 정리	<u> </u> =	<u> </u> =	<u> </u> =	부모 수렴		$(2) \lim_{n \to \infty} I$	$F_n(t) = \lim_{n \to \infty} \frac{1}{n}$	$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} $	$\lim_{n \to \infty} f_n(x) dx = \int_{-\infty} \lim_{n \to \infty} \frac{1}{\sqrt{n\pi}} \frac{1}{\Gamma(\frac{n}{2})} \left(1 + \frac{1}{n}\right) \qquad dx = \int_{-\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\right) dx = \Phi(t)$			
급 3. 정리		급 3. 정리		$ \begin{array}{ccc} & \xrightarrow{P} & \xrightarrow{D} & \\ & \xrightarrow{1} & X_{m} \to X & \Rightarrow X_{m} \to X \end{array} $ https://freshrimpsushi.tistorv.com/175?categorv=696570	수렴	수렴	수렴	н	3. 정리			\ 2 /			
문포 P D D D D D D D D D D D D D D D D D D	□ □ □ □ 3. 정리		$ \begin{array}{c c} & \xrightarrow{P} & & \\ \hline \text{(1)} & X_n \to X & \Rightarrow X_n \xrightarrow{D} X \\ \end{array} $ https://freshrimpsushi.tistory.com/175?category=696570		$ \begin{array}{c c} P & D \\ \hline (2) X_n \to b \Leftrightarrow X_n \to b \end{array} $ $if 분포수렴 \to \lim P[X_n - b < \epsilon] = \lim F_v (b + \epsilon) - F_v (b - \epsilon) = 1 - 0 = 0$				$ (1) X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{D}{\to} X $			https://freshrimpsushi.tistory.com/175?category=696570			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u> =	$\begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} P \\ & \\ \end{array} \begin{array}{c} D \\ & \\ \end{array} X \\ & \Rightarrow X \\ & \\ \end{array} \begin{array}{c} D \\ & \\ \end{array} X \\ & \\ \end{array} \begin{array}{c} D \\ & \\$	<u> </u>	$ \begin{array}{c c} P & D \\ \hline O & X \rightarrow h \Leftrightarrow X \rightarrow h \end{array} $ $if 분 무수렬 \Rightarrow \lim_{n \to \infty} P[X_n - h < \epsilon] = \lim_{n \to \infty} F_{n, \epsilon}(h + \epsilon) - F_{n, \epsilon}(h - \epsilon) = 1 - 0 = 0$		$3 \times \stackrel{D}{\rightarrow} \times \times (A \stackrel{P}{\rightarrow} a \stackrel{R}{\rightarrow} b)$ <slutsky 정리=""></slutsky>	$3X_n \xrightarrow{D} X & (A_n \xrightarrow{P} a, B_n \xrightarrow{P} b)$ < Slutsky 정리>	TB	$ 2 X_n \stackrel{P}{\to} b \Leftrightarrow X_n \stackrel{D}{\to} b $			if 분포수렴 $\Rightarrow \lim_{n \to \infty} P[X_n - b \le \epsilon] = \lim_{n \to \infty} F_{X_n}(b + \epsilon) - F_{X_n}(b - \epsilon) = 1 - 0 = 0$			
수렴	<u> </u> <u> </u>	수렴 ① $X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{D}{\to} X$ https://freshrimpsushi.tistory.com/175?category=696570 ② $X_n \stackrel{P}{\to} b \Leftrightarrow X_n \stackrel{D}{\to} b$ if 분포수렴 ⇒ $\lim_{n \to \infty} P[X_n - b \le \epsilon] = \lim_{n \to \infty} F_{X_n}(b + \epsilon) - F_{X_n}(b - \epsilon) = 1 - 0 = 0$	(2) $X_n \to b \Leftrightarrow X_n \to b$ $ if 분포수렴 \Rightarrow \lim_{n \to \infty} P[X_n - b \le \epsilon] = \lim_{n \to \infty} F_{X_n}(b + \epsilon) - F_{X_n}(b - \epsilon) = 1 - 0 = 0 $		OV D V O (A P P P P P P P P P P P P P P P P P P	San a Can a so an a so a so a so a so a so a so	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$3X_n$	$\stackrel{D}{\rightarrow} X \& $	$(A_n \stackrel{P}{\to} a, B_n \stackrel{P}{\to} b)$				
수렴 $ \begin{array}{ c c c }\hline (1) & X_n \rightarrow X & \Rightarrow & X_n \rightarrow X \\\hline (2) & X_n \rightarrow b & \Leftrightarrow & X_n \rightarrow b \\\hline (3) & X_n \rightarrow X & \otimes & (A_n \rightarrow a, B_n \rightarrow b) \\\hline \end{array} $	<u> </u> =	수렴 ① $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{D} X$ https://freshrimpsushi.tistory.com/175?category=696570 ② $X_n \xrightarrow{P} b \Leftrightarrow X_n \xrightarrow{D} b$ if 분포수렴 $\Rightarrow \lim_{n \to \infty} P[X_n - b \le \epsilon] = \lim_{n \to \infty} F_{X_n}(b + \epsilon) - F_{X_n}(b - \epsilon) = 1 - 0 = 0$ ③ $X_n \xrightarrow{D} X \& (A_n \xrightarrow{P} a, B_n \xrightarrow{P} b)$ <slutsky 정리=""></slutsky>	주	$3X_n \to X & (A_n \to a, B_n \to b)$	($\begin{vmatrix} A + B & V & D \\ P - O & P - O & P \\ P & P & P \\ P & P & P \\ P & P & P$	$ \Rightarrow A_n + B_n A_n \rightarrow u + UA $ c.y. $I_n - V_n \rightarrow 0$, $V_n \rightarrow A \rightarrow I_n - (I_n - V_n) + V_n \rightarrow A$		$\Rightarrow A_n$	$+B_nX_n$	$\stackrel{D}{\rightarrow} a + bX$	e.g. $P_n - Q_n \stackrel{P}{\rightarrow} 0$, $Q_n \stackrel{D}{\rightarrow} X \Rightarrow P_n = (P_n - Q_n) + Q_n \stackrel{D}{\rightarrow} X$			
수렴 $ \begin{array}{ c c c }\hline (1) & X_n \rightarrow X & \Rightarrow & X_n \rightarrow X \\\hline (2) & X_n \rightarrow b & \Leftrightarrow & X_n \rightarrow b \\\hline (3) & X_n \rightarrow X & \otimes & (A_n \rightarrow a, B_n \rightarrow b) \\\hline (3) & X_n \rightarrow X & \otimes & (A_n \rightarrow a, B_n \rightarrow b) \\\hline (4) & \Rightarrow & A_n + B_n X_n \rightarrow a + b X \\\hline \end{array} $ $\begin{array}{ c c c c }\hline (1) & X_n \rightarrow X & \Rightarrow & X_n \rightarrow X \\\hline \hline (2) & X_n \rightarrow X & \Rightarrow & X_n \rightarrow B \\\hline \hline (3) & X_n \rightarrow X & \otimes & (A_n \rightarrow a, B_n \rightarrow b) \\\hline \hline (3) & X_n \rightarrow X & \otimes & (A_n \rightarrow a, B_n \rightarrow b) \\\hline \hline (4) & \Rightarrow & A_n + B_n X_n \rightarrow a + b X \\\hline \end{array} $ $\begin{array}{ c c c c c }\hline (1) & X_n \rightarrow X & \Rightarrow & P_n = (P_n - Q_n) + Q_n \rightarrow X \\\hline \end{array} $ $\begin{array}{ c c c c c }\hline (1) & X_n \rightarrow X & \Rightarrow & X_n \rightarrow X \\\hline \end{array} $ $\begin{array}{ c c c c c c }\hline (2) & X_n \rightarrow X & \Rightarrow & X_n \rightarrow B \\\hline \end{array} $ $\begin{array}{ c c c c c }\hline (3) & X_n \rightarrow X & \otimes & (A_n \rightarrow a, B_n \rightarrow b) \\\hline \end{array} $ $\begin{array}{ c c c c c }\hline (3) & X_n \rightarrow X & \otimes & (A_n \rightarrow a, B_n \rightarrow b) \\\hline \end{array} $ $\begin{array}{ c c c c c }\hline (4) & X_n \rightarrow X & \Rightarrow & P_n = (P_n - Q_n) + Q_n \rightarrow X \\\hline \end{array} $	부모 수렴	수렴	(2) $X_n \stackrel{P}{\rightarrow} b \Leftrightarrow X_n \stackrel{D}{\rightarrow} b$ if 분포수렴 $\Rightarrow \lim_{n \to \infty} P[X_n - b \le \epsilon] = \lim_{n \to \infty} F_{X_n}(b + \epsilon) - F_{X_n}(b - \epsilon) = 1 - 0 = 0$ $\Rightarrow X_n \stackrel{P}{\rightarrow} X \otimes (A_n \stackrel{P}{\rightarrow} a, B_n \stackrel{P}{\rightarrow} b)$ $\Rightarrow A_n + B_n X_n \stackrel{D}{\rightarrow} a + b X$ e.g. $P_n - Q_n \stackrel{P}{\rightarrow} 0$, $Q_n \stackrel{D}{\rightarrow} X \Rightarrow P_n = (P_n - Q_n) + Q_n \stackrel{D}{\rightarrow} X$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} \exists A_n \to A & (A_n \to a, B_n \to b) \\ \Rightarrow A_n + B_n X_n \to a + bX \end{vmatrix} \Rightarrow A_n + B_n X_n \to a + bX $ e.g. $P_n = Q_n \to A \Rightarrow P_n = (P_n - Q_n) + Q_n \to A \Rightarrow P_n = (P_n - $				* 받침	남상 연속	f(x)	D = 22 D 2(4)			
$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $q(x)$	부모 수렴	수렴	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $q(x)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $q(x)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $q(x)$	* 받침 상 연속 <i>q(x)</i>	* 근심 3 연숙 $g(x)$		$4X_n$	$\stackrel{D}{\to} X \Rightarrow \varrho$	$g(X_n) \to g(X)$				
$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$	부모 수렴	수렴	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	* 받침 상 연속 $g(x)$	$\left \begin{array}{c} D & D & D \\ (4) & X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X) \end{array} \right Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$		(F) W	D	lim M (4) = 14(4)	$Y_n \sim b(n, p) \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} E(e^{tY_n}) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t-1)}$			
$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$	부모 수렴	수렴	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	* 받침 상 연속 $g(x)$	$\left \begin{array}{c} D & D & D \\ (4) & X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X) \end{array} \right Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$		X_n	<i>→ X</i> ⇔	$\lim_{n\to\infty} M_n(t) = M(t)$	\therefore 이항분포 $oldsymbol{b}(n,p)\stackrel{D}{ ightarrow}$ 푸아송분포 $(\mu=np)$			
$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX \qquad \text{e.g. } P_n - Q_n \xrightarrow{D} 0, \ Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$	부모 수렴	수렴	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX \qquad \text{e.g. } P_n - Q_n \xrightarrow{D} 0, \ Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX \qquad \text{e.g. } P_n - Q_n \xrightarrow{D} 0, \ Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX \qquad \text{e.g. } P_n - Q_n \xrightarrow{D} 0, \ Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$				* 긛수 	a 경 연극 D	$\frac{\partial}{\partial x} g(x)$	$Z_n \stackrel{D}{\rightarrow} Z \Rightarrow Z_n^2 \stackrel{D}{\rightarrow} \chi^2(1)$			
$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $q(x)$	부모 수렴	수렴	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $q(x)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $q(x)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $q(x)$	* 받침 상 연속 <i>q(x)</i>	$\begin{bmatrix} * 건엄영 연극 g(x) \\ D & D \\ C & P \end{bmatrix} \xrightarrow{D} Z(Y) $ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\rightarrow X \Rightarrow \varrho$	$g(X_n) \to g(X)$	$Y_n \sim b(n, p) \Rightarrow \lim M_n(t) = \lim E(e^{tY_n}) = \lim [(1-p) + (pe^t)]^n = e^{\mu(e^t-1)}$			
$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$	부모 수렴	수렴	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ $* 받침 상 연속 g(x)$ $A_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$	* 받침 상 연속 $g(x)$ $ (4) X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X) $ $ Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1) $	$\left \begin{array}{c} D & D & D \\ (4) & X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X) \end{array} \right Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$		$\bigcirc X_n$	$\stackrel{D}{\rightarrow} X \Leftrightarrow$	$\lim_{n\to\infty}M_n(t)=M(t)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX $ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $g(x)$ $(4) X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$ $Y_n \sim b(n, p) \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} E(e^{tY_n}) = \lim_{n \to \infty} [(1 - p) + (pe^t)]^n = e^{\mu(e^t - 1)}$	수렴	수렴	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX$ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $g(x)$ $(4) X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$ $Y_n \sim b(n, p) \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} E(e^{tY_n}) = \lim_{n \to \infty} [(1 - p) + (pe^t)]^n = e^{\mu(e^t - 1)}$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX $ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $g(x)$ $(4) X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$ $Y_n \sim b(n, p) \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} E(e^{tY_n}) = \lim_{n \to \infty} [(1 - p) + (pe^t)]^n = e^{\mu(e^t - 1)}$	$\Rightarrow A_n + B_n X_n \xrightarrow{D} a + bX $ e.g. $P_n - Q_n \xrightarrow{D} 0$, $Q_n \xrightarrow{D} X \Rightarrow P_n = (P_n - Q_n) + Q_n \xrightarrow{D} X$ * 받침 상 연속 $g(x)$ $(4) X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$ $Y_n \sim b(n, p) \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} E(e^{tY_n}) = \lim_{n \to \infty} [(1 - p) + (pe^t)]^n = e^{\mu(e^t - 1)}$	* 받침 상 연속 $g(x)$ (4) $X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$ $Z_n \xrightarrow{D} Z \Rightarrow Z_n \xrightarrow{D} \chi^2(1)$ $Y_n \sim b(n, p) \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} E(e^{tY_n}) = \lim_{n \to \infty} [(1 - p) + (pe^t)]^n = e^{\mu(e^t - 1)}$	$ \begin{array}{ c c c }\hline (4) & X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X) \\ \hline (4) & X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X) \\ \hline (5) & Y_n \xrightarrow{D} Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} E(e^{tY_n}) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (5) & Y_n \xrightarrow{D} Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (6) & Y_n \xrightarrow{D} Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (6) & Y_n \xrightarrow{D} Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (6) & Y_n \xrightarrow{D} Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (7) & Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (7) & Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (8) & Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (9) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} [(1-p) + (pe^t)]^n = e^{\mu(e^t - 1)} \\ \hline (1-p) & Y_n \Rightarrow \lim_{n \to \infty} $					\cdots Y Sでエ $oldsymbol{v}(n,p) o $ 〒Y' 「「「「「「」「 $\mu=np$ 」			

4. 일치성 / 극한분포 ("통계학적 수렴")

	$\sqrt{n}(X_n -$	θ) $\stackrel{D}{\rightarrow}$ $N(0,\sigma^2)$ 이고, $g(x)$ 가 θ 에서 미분 가능 & $g'(\theta) \neq 0$ 이면
	$\sqrt{n}(g(X_n))$	$(1-g(heta))\stackrel{D}{ ightarrow}N(0,g'(heta)^2\sigma^2$) [Δ -method를 잘 이용하면 모수에 종속되지 않는 통계량 분산 만듦]
Δ-		
방법	•	러 정리에 의해 $g(X_n)=g(\theta)+g'(\theta)(X_n-\theta)+o(X_n-\theta)$ 이므로
		$(1 - g(\theta)) = \sqrt{n}g'(\theta)(X_n - \theta) + o(\sqrt{n} X_n - \theta) \xrightarrow{P} \sqrt{n}g'(\theta)(X_n - \theta) \xrightarrow{D} N(0, g'(\theta)^2\sigma^2)$
		에 little-o를 0으로 확률수렴 시키는 전개는 확률 유계인 Y_n 에 대해 $o(Y_n) \stackrel{r}{\to} 0$ 임을 이용)
	1. 중심극	부한정리: $\mathbf{Z}_{n} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow{D} \mathbf{N}(0, 1) \leftarrow \operatorname{iid} X_{i} \sim (평균: \mu, 분산: \sigma^{2})$
	2. 대표본	부추론 통계량: $\frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{D}{\to} N(0, 1) :: S \stackrel{P}{\to} \sigma \iff \frac{S}{\sigma} \stackrel{P}{\to} 1$, CLT & Slutsky에 의해 $\left(\frac{\sigma}{S}\right) \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} N(0, 1)$
		MGF 이용 (특성함수 $\varphi(t)=E(e^{itx})$ 이용해야 더 정확함)
~ II	$m(t) \coloneqq E$	$ \left[e^{t(X-\mu)} \right] = e^{-\mu t} M(t) \Rightarrow m(0) = 1 , m'(0) = E(X-\mu) = 0 , m''(0) = E[(X-\mu)^2] + m'(0)^2 = \sigma^2 $
중심 극한		리에 의해 $m(t) = m(0) + m'(0)t + \frac{1}{2}m''(\xi)t^2 = 1 + \frac{1}{2}m''(\xi)t^2 = 1 + \frac{1}{2}\sigma^2t^2 + \frac{1}{2}(m''(\xi) - \sigma^2)t^2$, $\xi \in [-t, t]$
정리	$M(t;n) \coloneqq$	$= E(e^{tZ_n}) = E\left(\exp\left(t\frac{(1/n)\sum X_i - \mu}{\sigma/\sqrt{n}}\right)\right) = E\left(\exp\left(t\frac{\sum_{i=1}^n (X_i - \mu)}{\sigma\sqrt{n}}\right)\right) = \prod_{i=1}^n E\left(\exp\left(t\frac{X_i - \mu}{\sigma\sqrt{n}}\right)\right)$
(CLT)		$= \left[E\left(\exp\left(\frac{t(X-\mu)}{\sigma\sqrt{n}} \right) \right) \right]^n = \left[m\left(\frac{t}{\sigma\sqrt{n}} \right) \right]^n, -h < \frac{t}{\sigma\sqrt{n}} < h$
		$\left[m\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^n = \left\{1 + \frac{t^2}{2n} + \frac{[m''(\xi) - \sigma^2]t^2}{2n\sigma^2}\right\}^n, \qquad \xi \in \left[-\frac{t}{\sigma\sqrt{n}}, \frac{t}{\sigma\sqrt{n}}\right]$
		$t; n) = \lim_{n \to \infty} \left\{ 1 + \frac{t^2}{2n} + \frac{[m''(\xi) - \sigma^2]t^2}{2n\sigma^2} \right\}^n = \lim_{n \to \infty} \left(1 + \frac{t^2}{2n} \right)^n = \exp\left(\frac{1}{2}t^2\right) \because \lim_{n \to \infty} [m''(\xi) - \sigma^2] = 0 (\because \xi \to 0)$
	Z_n \cong $ $ mgf	$M(t;n)$ 의 $n \to \infty$ 극한값은 $N(0,1)$ 의 mgf $\exp\left(\frac{1}{2}t^2\right) \Rightarrow :: \mathbf{Z}_n \xrightarrow{\mathbf{D}} \mathbf{N}(0,1)$
		1) 확률수렴: $\{\mathbf{X_n}\}\in\mathbb{R}^p$ 일 때, 벡터의 각 성분이 수렴하는 경우가 전체 벡터의 수렴과 동치이다.
		즉, $\mathbf{X_n} \stackrel{P}{\to} \mathbf{X} \iff X_{nj} \stackrel{P}{\to} X_j \ (모든 j = 1, \cdots, p \text{에서 성립})$
	다변량	2) 분포수렴: $\mathbf{X_n} \xrightarrow{D} \mathbf{X} \iff \forall \mathbf{x} \in \{F(\mathbf{x}) \text{ 연속 점}\}, \lim_{\mathbf{n} \to \infty} F_n(\mathbf{x}) = F(\mathbf{x}), (F: \mathbf{X} \cap \mathrm{cdf}, F_n: \mathbf{X_n} \cap \mathrm{cdf})$
	확장	① $\mathbf{X}_n \overset{D}{\to} \mathbf{X} \Rightarrow g(\mathbf{X}_n) \overset{D}{\to} g(\mathbf{X})$ (corollary: $g(\mathbf{x}) = x_j$ 로 두면 분포수렴이 주변 (marginal) 수렴 수반
		$ (2) X_n \overset{D}{\to} X \Leftrightarrow \lim_{n \to \infty} M_n(t) = M(t) $
다변량		$\{X_n\}$ ∈ \mathbb{R}^p 인 평균 μ , 공분산행렬 Σ 인 iid 확률벡터열
분포	다변량	① 표본평균벡터: $\bar{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i = \left(\bar{X}_1, \cdots, \bar{X}_p\right)^T$
확장	표본	② 표본공분산행렬: $S_j^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{ij} - \bar{X}_j)^2$, $S_{jk} = \frac{1}{n-1} \sum_{i=1}^n (X_{ij} - \bar{X}_j)(X_{ik} - \bar{X}_k)$; $\mathbf{p} \times \mathbf{p}$ 행렬
		$:: \overline{X}_n \xrightarrow{P} \mu, \ S_n \xrightarrow{P} \Sigma$ (4차 적률 유한할 때 대수 약법칙)
	CLT	$\ddot{X}_n \stackrel{P}{\to} \mu$, $S_n \stackrel{P}{\to} \Sigma$ (4차 적률 유한할 때 대수 약법칙) $Y_n = \sqrt{n}(\overline{X}_n - \mu) \stackrel{D}{\to} N_p(0, \mathbf{\Sigma}) \iff \text{근사적으로 } \overline{X}_n \sim N_p\left(\mu, \frac{1}{n}\mathbf{\Sigma}\right)$
	Δ방법	$\sqrt{n}(\mathbf{X_n} - \mathbf{\mu_0}) \overset{D}{\to} N_p(0, \mathbf{\Sigma})$ (g는 $\mathbb{R}^p \to \mathbb{R}^k$ 로의 변환 $(k \le p)$; 미분행렬 $\mathbf{B} = \left[\frac{\partial g_i}{\partial x_j}\right]$ 이 연속, $\mathbf{B} \ne 0$ in $\mathbf{\mu_0}$ 근방
		$\sqrt{n}(\mathbf{g}(\mathbf{X}_{\mathbf{n}}) - \mathbf{g}(\mathbf{\mu}_{0})) \xrightarrow{D} N_{p}(0, \mathbf{B}_{0} \mathbf{\Sigma} \mathbf{B}_{0}^{T}) \qquad \mathbf{B}_{0} = \mathbf{B}(\mathbf{\mu}_{0})$

5. 최대가능도방법 (Maximum Likelihood Methods)

		(R0), (R1) 하에서 $\lim_{n\to\infty} P_{\theta_0}\left[L(\theta_0, \mathbf{X}) > L(\theta, \mathbf{X})\right] = 1 (\forall \theta \neq \theta_0)$
	MLE	$pf)\frac{1}{n}\sum_{i=1}^{\infty}\ln\left[\frac{f(X_i;\theta)}{f(X_i;\theta_0)}\right]^p \to E_{\theta_0}\left(\ln\left[\frac{f(X_1;\theta)}{f(X_1;\theta_0)}\right]\right) < \ln E_{\theta_0}\left[\frac{f(X_1;\theta)}{f(X_1;\theta_0)}\right] \text{by 대수의 법칙, 젠센 부등식}$
	핵심	$E_{\theta_0}\left[\frac{f(X_1;\theta)}{f(X_1;\theta_0)}\right] = \int \frac{f(x;\theta)}{f(x;\theta_0)}f(x;\theta_0)dx = 1$ (R1 공통 받침 하에서)
MLE		$\therefore \frac{1}{n} \sum_{i=1}^{n} \ln \left[\frac{f(X_i; \theta)}{f(X_i; \theta_0)} \right] < 0 \Leftrightarrow L(\theta_0, \mathbf{X}) > L(\theta, \mathbf{X})$
		\therefore 근사적으로 <u>참값 θ_0에서 우도함수 $L(\theta, \mathbf{X})$가 최대</u> 가 된다. $(\hat{\theta} = \operatorname{Argmax}[L(\theta)] \stackrel{P}{\to} \theta_0)$
(R0)~(R2)		$ \eta = g(\theta) \Leftrightarrow \widehat{\eta} = g(\widehat{\theta}) $
	불변성	$pf)$ ① $g \in 1$ 대1 함수: $\max L(\theta) = \max L(g^{-1}(\eta))$ 이므로 $\hat{\theta} = g^{-1}(\hat{\eta})$ 에서 우도 최대화
		② $g \notin 1$ 대1 함수: $g^{-1}(\eta) \coloneqq \{\theta : g(\theta) = \eta\}$ 새로 정의 $\rightarrow \hat{\theta} \in g^{-1}(\hat{\eta})$ 에서 우도최대화
	추정	*추정방정식 (estimating equation; EE): $\partial l(\theta)/\partial \theta = 0$ (R0)~(R2) 하에서 $\partial l(\theta)/\partial \theta = 0$ 는 $\hat{\theta} \stackrel{P}{\rightarrow} \theta_0$ 인 $\hat{\theta}$ 를 가짐
	방정식	(Ro)~(R2) 아에지 $\delta t(\theta)/\delta \theta = 0$ 는 $\theta \to \theta_0$ 한 $\theta = 0$ 점 (Corollary: EE가 유일해를 가지면 그 해는 $\hat{\theta} \to \theta_0$)
		① Score 함수 $s(\theta) = \frac{\partial \ln f}{\partial \theta}$
		② Fisher information $I(\theta) = \text{Var}\left(\frac{\partial \ln f}{\partial \theta}\right) = \text{E}\left[\left(\frac{\partial \ln f}{\partial \theta}\right)^2\right] = -\text{E}\left[\frac{\partial^2 \ln f}{\partial \theta^2}\right]$
	4 7 0	$1 = \int_{-\infty}^{\infty} f dx \rightarrow 양변 \theta 로 i)$ 한번 미분 ii) 두번 미분 하면
	스코어 함수	i) $0 = \int_{-\infty}^{\infty} (\partial f/\partial \theta) dx = \int_{-\infty}^{\infty} \frac{(\partial f/\partial \theta)}{f} f dx = \int_{-\infty}^{\infty} \left(\frac{\partial \ln f}{\partial \theta}\right) f dx \qquad \therefore E\left(\frac{\partial \ln f}{\partial \theta}\right) = 0$
	& 피셔정!	$ = \begin{bmatrix} \text{ii} \ 0 = \int_{-\infty}^{\infty} \frac{\partial^2 \ln f}{\partial \theta^2} f dx + \int_{-\infty}^{\infty} \left(\frac{\partial \ln f}{\partial \theta} \right) \left(\frac{\partial \ln f}{\partial \theta} \right) f dx \therefore \mathbf{E} \left[\frac{\partial^2 \ln f}{\partial \theta^2} \right] + \mathbf{E} \left[\left(\frac{\partial \ln f}{\partial \theta} \right)^2 \right] = 0 $
	1 10-	$\operatorname{iid}\left[X_{1},\cdots,X_{n}\right]$ 에 대해서
		① Score 함수 $s_n(\theta) = \frac{\partial l}{\partial \theta} = \frac{\partial \ln L}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \ln f(X_i; \theta)}{\partial \theta}$
		② Fisher 정보 $I_n(\theta) = \operatorname{Var}\left(\frac{\partial l}{\partial \theta}\right) = \operatorname{Var}\left(\frac{\partial \ln L}{\partial \theta}\right) = n I(\theta)$
		① $\operatorname{Var}(T) \ge \frac{[\partial E(T)/\partial \theta]^2}{nI(\theta)}$ for 임의의 통계량 $T = g(X_1, \dots, X_n)$
Cramér Rao	Cramér	$ \begin{array}{c} \boxed{\text{② } Var(T) \geq \frac{1}{nI(\theta)}} & \text{for 불편추정량 } T (\because E(T) = \theta) \\ \hline pf) E(T) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} [T] f(x_1; \theta) \cdots f(x_n; \theta) dx_1 \cdots dx_n \end{array} $
Bound	Rao	$pf) E(T) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} [T] f(x_1; \theta) \cdots f(x_n; \theta) dx_1 \cdots dx_n$
(R0)~(R4)	Bound (CRB)	
(110)		$\Leftrightarrow \partial E(T)/\partial \theta = E(TZ) = E(T)E(Z) + \rho \ \sigma_T \sigma_Z = \rho \sqrt{\text{Var}(T)} \sqrt{nI(\theta)} \therefore \rho^2 \le 1 \Leftrightarrow \text{Var}(T) \ge \frac{[\partial E(T)/\partial \theta]^2}{nI(\theta)}$
	+011	*효율성: 통계량 T의 효율성은 CRB(T)/Var(T)
	효율성	* ARE (근사 상대효율성) = $e(T, W) = \lim_{n \to \infty} \frac{Var(W)}{Var(T)}$ (if $T \stackrel{P}{\to} \theta_0$, $W \stackrel{P}{\to} \theta_0$ 일 때) ① 정규 근사: $\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{D}{\to} N\left(0, \frac{1}{I(\theta_0)}\right)$ for 유한 피셔정보 $I(\theta_0)$ * pf) $l'(\hat{\theta}) = \theta_0$ 테일러 전개
		① 정규 근사: $\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{D}{\rightarrow} N\left(0, \frac{1}{I(\theta_0)}\right)$ for 유한 피셔정보 $I(\theta_0)$ * pf) $l'(\hat{\theta}) = \theta_0$ 테일러 전개
	NAI E	→ MLE의 근사 정규 신뢰 구간 구할 수 있음.
	정규근시	아 Var $(\hat{\theta})$ \xrightarrow{p} $\frac{1}{nI(\theta_0)}$ $\left(\text{mle는 근사적으로 효율적 or mle의 분산은 CRB에 근사}\right)$
	(R0)~(R	5) ② Δ방법: $\sqrt{n}(g(\hat{\theta}) - g(\theta_0)) \stackrel{p}{\rightarrow} N\left(0, \frac{g'(\theta_0)^2}{I(\theta_0)}\right)$ $(g(x)$ 가 θ 에서 미분 가능 & $g'(\theta) \neq 0$ 이면)
		③ 정규 근사: $\hat{\theta} - \theta_0 = \frac{1}{nI(\theta_0)} \sum_{i=1}^n \frac{\partial \ln f(X_i; \theta_0)}{\partial \theta} + \frac{R_n}{\sqrt{n}} = -\frac{l'(\theta_0)}{l''(\theta_0)} + \frac{R_n}{\sqrt{n}} \left(R_n \stackrel{P}{\to} 0\right)$
	MLE Newton	$\theta_1 = \theta_0 - \frac{\theta_1}{16000}$ 과정 반복 * θ_0 이 일시 주정당이면 $\theta_1 \in mle \ B \ \rightarrow N \ (0, \frac{\theta_1}{16000})$

5. 최대기	능도방법 (Max	cimum Likelihood Methods)	
	전개	우도비 (LR): $\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})}$ ($\Lambda \le c$ 에서 기각) $-\frac{1}{n}l''(\theta_0) \stackrel{P}{\to} I(\theta_0), \frac{l'(\theta_0)}{\sqrt{n}} = \sqrt{n}(\hat{\theta} - \theta_0)I(\theta_0) + \frac{1}{n}l''(\theta_0) + \frac{1}{n}l'''(\theta_0) + \frac{1}{n}l'''(\theta_0) + \frac{1}{n}l'''(\theta_0) + \frac{1}{n}l'''(\theta_0) + \frac{1}{n}l''''(\theta_0) + \frac{1}{n}l''''(\theta_0) + \frac{1}{n}l'''''(\theta_0) + \frac{1}{n}l'''''''''''''''''''''''''''''''''''$	미분계수 항들에 대입해주면 $R_n^* \left(R_n^* \stackrel{P}{\to} 0\right)$
	우도비 검정	$\chi_L^2 = -2 \ln \Lambda$	
	Wald 검정	$\chi_W^2 = \left[\sqrt{nI(\hat{\theta})} (\hat{\theta} - \theta_0) \right]^2$	$\chi^2 \ge \chi^2_{\alpha}(1)$ 에서 단측 검정 기각역
	Score 검정	$\chi_R^2 = \left(\frac{l'(\theta_0)}{\sqrt{nI(\theta_0)}}\right)^2$	$(H_0: \theta = \theta_0, H_1: \theta \neq \theta_0)$
최대 가능도 검정 (ML tests)	test statistic v test statistic fi long time to r Today, for mo and we gene should never	Likelihood-Ratio Test Wald Test Will always be greater than the LR test statistic, whi rom the score test. When computing power was mun, being able to approximate the LR test using a set of the models researchers are likely to want to rally recommend running the likelihood ratio test in use the Wald or score tests. For example, the Wall endow tests on sets of dummy variables used to me	ich will, in turn, always be greater than the nuch more limited, and many models took a single model was a fairly major advantage. compare, computational time is not an issue, n most situations. This is not to say that one d test is commonly used to perform multiple

degree of freedom tests on sets of dummy variables used to model categorical predictor variables in regression (for more information see our webbooks on Regression with Stata, SPSS, and SAS, specifically Chapter 3 - Regression with Categorical Predictors.) The advantage of the score test is that it can be used to search for omitted variables when the number of candidate variables is large.

정칙

(R0): pdf $f(x;\theta)$ 는 서로 distinct 하다. i.e. $\theta_1 \neq \theta_2 \Rightarrow f(x_i;\theta_1) \neq f(x_i;\theta_2)$

(R1): pdf $f(x;\theta)$ 는 모든 θ 에 대해 공통된 support를 갖는다. (θ 에 의존적이지 않다.)

(R2): θ_0 (참값) $\in \Omega$

(R3): pdf $f(x;\theta)$ 는 θ 로 두 번 미분 가능

(R4): $\int f(x;\theta)dx$ 는 θ 로 두 번 미분 가능

 $(\mathsf{R5}): \mathsf{pdf} \ \ f(x;\theta) \vdash \ \theta \, \mathsf{E} \ \ \mathsf{M} \ \ \mathsf{U} \ \ \mathsf$

조건

Regularity

conditions

5. 최대가능도방법 (Maximum Likelihood Methods)

	*정칙조	거 ~(R9) 까지	추가됨.(기존 정칙의 다변량 확장)
		•	,	는 벡터 $\mathbf{\theta} = \left[\theta_1, \cdots, \theta_p\right]^T \in \mathbb{R}^p$ 에 대해서도 똑같이 성립함. $\Leftrightarrow \nabla l(\mathbf{\theta}) = 0$ 의 해 구하기
		피	셔정보량	$ abla \ln f(X; \mathbf{\theta}) = \left(\frac{\partial \ln f(X; \mathbf{\theta})}{\partial \theta_1}, \cdots, \frac{\partial \ln f(X; \mathbf{\theta})}{\partial \theta_p}\right]^T $ 피셔 정보량: $\mathbf{I}(\mathbf{\theta}) = \operatorname{Cov}(\nabla \ln f(X; \mathbf{\theta})) = -E\left[\frac{\partial^2}{\partial \theta_i \partial \theta_k} \ln f\right]_{i=1}^{n} = E\left[\left(\frac{\partial \ln f}{\partial \theta_i}\right)\left(\frac{\partial \ln f}{\partial \theta_k}\right)\right]_{i=1}^{n}$
		피기	셔정보량	
	다중 모수		표본 n 확장)	피셔 정보량: $I_n(\theta) = Cov(\nabla \ln L) = nI(\theta)$
	추정			$Var(T_j) \ge \frac{1}{n}[\mathbf{I}^{-1}(\mathbf{\theta})]_{jj} (T_j \to \theta_j)$ 불편 추정량)
		정	구근사	$\sqrt{n}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \overset{\text{D}}{\to} N_p(\boldsymbol{0}, \mathbf{I}^{-1}(\boldsymbol{\theta}_0)) \Rightarrow \sqrt{n}(\widehat{\boldsymbol{\theta}}_j - \boldsymbol{\theta}_j) \overset{\text{D}}{\to} N(\boldsymbol{0}, [\mathbf{I}^{-1}(\boldsymbol{\theta}_0)]_{jj})$
				$\int \sqrt{n(\mathbf{g}(\hat{\boldsymbol{\theta}}) - \mathbf{g}(\boldsymbol{\theta}_0))} \rightarrow N_p(0, \mathbf{B}[\mathbf{I}^{-1}(\boldsymbol{\theta}_0)]\mathbf{B}^T)$
		4	∆방법	$(\mathbf{g} \vdash \mathbb{R}^p \to \mathbb{R}^k \text{ 로의 변환 } (k \leq p); 미분행렬 \mathbf{B} = \begin{bmatrix} \frac{\partial g_i}{\partial \theta_j} \end{bmatrix}$ 이 연속, $\mathbf{B} \neq 0$ in $\mathbf{\theta_0}$ 근방)
				ω , $H_1: \Theta \in (\omega^c \cap \Omega)$ *예시: 전체 자유모수 k-1 & H_0 자유모수 $O \Rightarrow q=k-1$
		기		원 전체 모수 공간; ω : p-q차원 귀무가설의 모수공간 (자유도) $L(\widehat{\omega})$ $\max_{n} L(\widehat{\theta})$
		본		$(LR): \Lambda = \frac{L(\widehat{\omega})}{L(\widehat{\Omega})} = \frac{\max_{\theta \in \omega} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$
			$\chi_L^2 = -2$	$2 \ln \Lambda \stackrel{D}{ o} \chi^2(q)$ (Wald, Score 검정통계량도 가능)
다중 모수	다중 모수			$\begin{split} &H_0: \mu = \mu_0, H_1: \mu \neq \mu_0 \{X_n\}^{\stackrel{\text{iid}}{\stackrel{\text{old}}}{\stackrel{\text{old}}}{\stackrel{\text{old}}}{\stackrel{\text{old}}}{\stackrel{\text{old}}}}{\stackrel{\text{old}}}{\stackrel{\text{old}}}}{\stackrel{\text{old}}}{\stackrel{\text{old}}}{\stackrel{\text{old}}}{\stackrel{\text{old}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
	검정	예 시	다항 p	$\hat{p}_{j} = \frac{\sum_{i=1}^{n} X_{ij}}{n} \text{for } j = 1,2 \qquad \left(\pm \mathbb{E} : \{ (X_{n1}, X_{n2}) \} \right)$ $\text{LR} \qquad \frac{1}{\Lambda} = \left(\frac{2\hat{p}_{1}}{\hat{p}_{1} + \hat{p}_{2}} \right)^{n\hat{p}_{1}} \left(\frac{2\hat{p}_{2}}{\hat{p}_{1} + \hat{p}_{2}} \right)^{n\hat{p}_{2}}, -2\ln\Lambda > \chi_{\alpha}^{2}(1) \text{에서} 7 \text{각}$ $\begin{bmatrix} \hat{p}_{1} \\ \hat{p}_{2} \end{bmatrix} \stackrel{a}{\sim} N_{2} \left(\begin{bmatrix} p_{1} \\ p_{2} \end{bmatrix}, \frac{1}{n} \begin{bmatrix} p_{1}(1 - p_{1}) & -p_{1}p_{2} \\ -p_{1}p_{2} & p_{2}(1 - p_{2}) \end{bmatrix} \right)$ $W = \hat{p}_{1} - \hat{p}_{2} = g \left(\begin{bmatrix} \hat{p}_{1} \\ \hat{p}_{2} \end{bmatrix} \right), \Delta \text{B II M M} \mathbf{B} = \begin{bmatrix} \partial g_{i} \\ \partial p_{j} \end{bmatrix} = [1, -1]$ $Var(W) = \frac{1}{n} \mathbf{B} \mathbf{I}^{-1} \mathbf{B}^{T} = \frac{p_{1} + p_{2} - (p_{1} - p_{2})^{2}}{n}$ $\therefore W \stackrel{a}{\sim} N \left(p_{1} - p_{2}, \frac{p_{1} + p_{2} - (p_{1} - p_{2})^{2}}{n} \right) \Rightarrow \Box A Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z$
			2표본 이항 p	

6. 충분성 (Sufficiency) - 통계량의 성질

0. 8	문성 (Suπiciency) — 동세당의 경찰							
	통계량	① 점추정: $\theta \in \Omega$ 에 대한 추정량 $\hat{\theta}$ *통계량 (Statistic): $T = T(X_1, \dots, X_n)$ (표본에 대한 함수)						
	5/15	② 95% CI: $0.95 = P_{\theta}[\theta \in (\hat{\theta}_L, \hat{\theta}_U)]$ * $\theta \in (\hat{\theta}_L, \hat{\theta}_U)$ 인 베르누이 사건 ~ $B(1, 0.95)$						
) 일치추정량: $T_n \stackrel{P}{ ightarrow} \theta$ 면 $\Leftrightarrow T_n$ 은 θ 의 일치 추정량						
		2) 불편추정량: $E(T) = \theta \Leftrightarrow T 는 \theta$ 의 불편 추정량 (bias = 0)						
	서지	① MVUE: 분산 최소인 불편추정량 (UE) → 유일 ② CRB: Var(T) ≥ 1/{nI(θ)}						
	성질	3) MLE: $\hat{\theta} = \operatorname{Argmax}[L(\theta)] = \operatorname{Argmax}[\prod_{i=1}^{n} f(x_i, \theta)]$						
		① MLE는 근사적으로 효율적 ② $\hat{\boldsymbol{\theta}} \stackrel{\text{a}}{\sim} \boldsymbol{N}\left(\boldsymbol{\theta}_0, \frac{1}{nI(\boldsymbol{\theta}_0)}\right) \Rightarrow Z \text{ or } \chi^2$ 화 하면 Wald statistic						
통계량 Review		4) $ARE(T_1, T_2) = \frac{Var(T_2)}{Var(T_1)}$						
Review	Bias	1) bias $(\widehat{\boldsymbol{\theta}}) = E(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}) = E(\widehat{\boldsymbol{\theta}}) - \boldsymbol{\theta}$ * bias $(g(\widehat{\boldsymbol{\theta}})) = E(g(\widehat{\boldsymbol{\theta}}) - g(\boldsymbol{\theta}))$ * bias $\stackrel{P}{\rightarrow} 0$, if $\boldsymbol{\theta}$ 가 일치 추정량						
	MSE	2) Mean square error (MSE): $mse(\hat{\theta}) = E\{(\hat{\theta} - \theta)^2\} = Var(\hat{\theta}) + \{bias(\hat{\theta})\}^2$						
		3) Mean absolute error (MAE): $mse(\hat{\theta}) = E\{ \hat{\theta} - \theta \}$						
	적률	r차 표본적률 $\stackrel{P}{\to}$ r차 모적률 (\bigstar 연립하여 모수 추정량 구함; 일반적으로 비선호) ex) $\{X_i\}_{i=0}^{iid}$ Gamma (k,θ)						
	구르 추정법	$m_{1} = \frac{\sum_{i=1}^{n} X_{i}}{n} = \hat{k}\hat{\theta}, m_{2} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n} = \hat{k}(\hat{\theta})^{2} + (\hat{k}\hat{\theta})^{2}$						
	(MoM)							
		$\hat{\theta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n\bar{X}} = \left(\frac{n-1}{n}\right) \frac{S^2}{\bar{X}} = \frac{S_{mle}^2}{\bar{X}}, \qquad \hat{k} = \frac{n(\bar{X})^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = \left(\frac{n}{n-1}\right) \frac{\bar{X}}{\bar{S}^2} = \frac{\bar{X}^2}{S_{mle}^2}$						
		$Y=u(X_1,\cdots,X_n)$ 에 대해 $X y$ 가 θ 와 무관함 \Leftrightarrow Y가 θ 에 대한 모든 정보 다 포함 $(e.g.\ Y=\Sigma_{i=1}^n X_i)$						
	정으	$\frac{\prod_{i=1}^{n} f(x_i, \theta)}{f_Y(y; \theta)} = H(x_1, \dots, x_n) (f_Y: Y \supseteq pdf)$						
	None	n						
	Neyma Fishe	$ Y \cap \theta \cap SS \Leftrightarrow Y \cap f(x_i, \theta) = f_Y(y; \theta) H(x_1, \dots, x_n) = g(y; \theta) h(x_1, \dots, x_n) (example)$						
	Rao	$ heta$ 의 충분통계량 Y_1 , 불편추정량 Y_2 에 대해, 새로운 불편추정량 $oldsymbol{arphi}(oldsymbol{y_1}) = oldsymbol{E}(oldsymbol{Y_2} oldsymbol{y_1})$						
	Blackv	$E(\varphi(Y_1)) = E[E(Y_2 Y_1)] = E(Y_2) = \theta$ 2) $Var(\varphi(Y_1)) = Var(E(Y_2 Y_1)) < Var(Y_2)$						
	Didekv	\therefore New $UE \varphi(y_1) = E(Y_2 y_1)$ 는 Old $UE Y_2$ 보다 분산이 작다. *실전: $E(\varphi(Y_1)) = \theta \cup \varphi(y_1)$ 찾기						
		① 통계량 Y는 complete (완비) if 모든 θ 에서 $E\big(h(Y)\big)=0 \Rightarrow h(t)=0$ 만 가능함						
	Lehma	ann- ② 레만-셰페: CSS인 Y_1 으로 Rao-Blackwellization $ ightarrow arphi(y_1) = E(Y_2 y_1)$ 는 유일한 $MVUE$ of $ heta$						
	Schef	ffe pf) CSS인 Y_1 에 대해 불편추정량 $\varphi(Y_1), \psi(Y_1)$ 존재 $\Rightarrow E(\varphi(Y_1) - \psi(Y_1)) = \theta - \theta = 0$						
		완비족 $\{f_{Y_1}(y;\theta):\theta\in\Omega\}$ 에 대해 위 등식은 $\varphi(Y_1)=\psi(Y_1)$ 에서만 성립 (더 이상 분산 못 줄임)						
	-1 A	$f(x;\theta) = \exp[\eta(\theta)T(x) + H(x) - A(\eta(\theta))] (x \in S) \qquad (\eta = \eta(\theta))$ 는 자연 모수)						
	지수	*정식: 1) S가 θ 에 종속 X. 2) $\eta(\theta)$ 연속. 3) (연속이면) $H(x)$ 연속 in $\{K'(x) \neq 0\}$						
충분성	Expone							
	Fami	② $Y = \sum_{i=1}^{n} T(x) \stackrel{\leftarrow}{\vdash} \theta \stackrel{\circ}{=} \mathbf{CSS}$ ③ $E(T(X)) = A'(\eta), Var(T(X)) = A''(\eta)$						
	결힙	$\mathbf{Y}=(Y_1,\cdots,Y_m)^T\in\mathbb{R}^m\ \&\ \mathbf{\theta}=\left(heta_1,\cdots, heta_p ight)\in\mathbb{R}^p$ 에 대해 (일반적으로 $\mathrm{m}=\mathrm{p}$)						
	충분통							
	(다중모							
	(-181	*순서통계량 $\mathbf{Y} = (Y_1, \cdots, Y_n)^T \; ; \; Y_1 < \cdots < Y_n \; \rightarrow \; 모든 연속분포의 결합충분통계량$						
		$A=a(X_1,\cdots,X_n)$ 가 $ heta$ 와 무관 ex) 정규분포 iid의 $ extbf{S}^2$: $m{\mu}$ 에 대해 ancillary						
	보조통	계량 1) Basu 정리: $\{Y \to \theta \ \supseteq \ CSS\} \& \{Z \to \theta \ \supseteq \ ancillary\} \Leftrightarrow \{Y \to Z \subset 독립\} \mathrm{ex}) \ \overline{X} \perp S^2, \{X_i\}^{\mathrm{iid}} N(\mu, \sigma^2)$						
	(Ancilla	2) ① 9 $\lambda \neq 0$ $\lambda \neq$						
	(Alleine	② 与도 불변: $Z = u(\theta W_1, \dots, \theta W_n) = u(W_1, \dots, W_n)$ ex) $X_1/(X_1 + X_2)$, $X_1^2/\sum_1^n X_i^2$, min $\{X_i\}/\max\{X_i\}$						
		③위치척도불변: $Z = u(\theta_1 W_1 + \theta_2, \dots, \theta_1 W_n + \theta_2) = u(W_1, \dots, W_n)$ ex) $(X_i - \bar{X})/S^2$						
		$L(\theta;x_1,\cdots,x_n)=\prod_{i=1}^n f(x_i,\theta)=f_Y(y;\theta)H(x_1,\cdots,x_n)$ → L 과 f_y 동시에 극대화 by θ						
	MLE	E ① $MLE \ \hat{\theta}$ 이 유일 $\Leftrightarrow \ \hat{\theta}$ 는 충분통계량 Y 의 함수 $:: \hat{\theta} = \operatorname{argmax} \big(L(\theta, \mathbf{x}) \big) = \operatorname{argmax} \big(f_Y(y; \theta) \big) $						
		② $MLE \ \hat{\theta}$ 가 충분통계량 \Leftrightarrow $\hat{\theta}$ 는 최소 충분통계량 (MSS) *최소충분:reduced from 다른 충분통계량						

6. 충분성 (Sufficiency) - 통계량의 성질

							1
		$f(x;\theta) = ex$	$p[\eta(\theta)T($	$f(x) + H(x) - A(\eta)$	$(\theta))] (x \in S) \qquad (\eta$	$=\eta(heta)$ 는 자연	모수)
	지수족	*정칙:	1) S가 6	9에 종속 X, 2) η((0) 연속 , 3)(연속이민	년) H(x)연속 ir	$1\{K'(x)\neq 0\}$
		① 지수족:	이산 (프	포아송, 이항, 기호	하, 음이항, 다항 등)	/ 연속 (감마,	베타, 정규 등)
		$ 2 Y = \sum_{i=1}^{n} $			$E(T(X)) = A'(\eta), V$		'(η)
		1변수 1모	1		$(\theta)T(x) + H(x) - A(\eta)$		
		1변수 다중	동모수	$f(x; \mathbf{\theta}) = \exp[\mathbf{\eta}($	$\mathbf{\theta})\cdot \mathbf{T}(x) + H(x) - A(x)$	η)]	
	다변량	다변량 다	중모수	$f(\mathbf{x}; \mathbf{\theta}) = \exp[\mathbf{\eta}($	$\mathbf{\theta})\cdot \mathbf{T}(\mathbf{x}) + H(\mathbf{x}) - A(\mathbf{x})$	η)]	
	확장			n	$H[A(\mathbf{\eta})] = Cov(\mathbf{T}(\mathbf{x}))$))	
		기대값		$\nabla A(\mathbf{\eta}_{mle}) = \frac{1}{n} \sum_{n=1}^{\infty} \mathbf{v}(\mathbf{\eta}_{mle})$	$T(\mathbf{x}_i)$		
		н =	1			TT()	44.
		분포	모수 0	자연모수 η	역모수 1	T(x)	<i>A</i> (η)
		베르누이		$\ln \frac{p}{1-p}$	$\frac{1}{1+e^{-\eta}}$		$\ln(1+e^{\mu})$
		이항	р	1 - p	* logistic function	x	$n\ln(1+e^{\mu})$
		푸아송	m	ln m	e^{η}	x	e^{η}
		음이항(r)	р	ln(1-p)	$1-e^{\eta}$	x	$-r\ln(1-e^{\mu})$
지수족 확장		다항(n)	$\begin{bmatrix} p_1 \\ \vdots \\ p_{k-1} \end{bmatrix}$	$\begin{bmatrix} \ln \frac{p_1}{p_k} \\ \vdots \\ \ln \frac{p_{k-1}}{p_k} \end{bmatrix}$	$\begin{bmatrix} \frac{\exp(\eta_1)}{1 + \sum_{j=1}^{k-1} \exp(\eta_j)} \\ \vdots \\ \exp(\eta_{k-1}) \\ 1 + \sum_{j=1}^{k-1} \exp(\eta_j) \end{bmatrix}$	$\begin{bmatrix} x_1 \\ \vdots \\ x_{k-1} \end{bmatrix}$	$n\ln(1+\sum_{j=1}^{k-1}\exp(\eta_j))$
					* softmax function		
					$p_k = 1 - \sum_{j=1}^{k-1} p_j, r_j$	$q_k = 0$, $\exp(r)$	$\eta_k) = 1$
	예시	감마	$\begin{bmatrix} lpha \\ eta \end{bmatrix}$	$\begin{bmatrix} \alpha - 1 \\ -\frac{1}{\beta} \end{bmatrix}$ $-\frac{1}{\beta}$	$\begin{bmatrix} \eta_1 + 1 \\ -\frac{1}{\eta_2} \end{bmatrix}$	$\begin{bmatrix} \ln x \\ x \end{bmatrix}$	$\ln \Gamma(\eta_1 + 1) - (\eta_1 + 1) \ln(-\eta_2)$
		지수	β	$-\frac{1}{\beta}$	$-\frac{1}{\eta}$	x	$-\ln(-\eta)$
		카이제곱	ν	$\frac{v}{2}-1$	$2(\eta + 1)$	ln x	$\ln\Gamma(\eta+1)+(\eta+1)\ln 2$
		베타	$\begin{bmatrix} lpha \\ eta \end{bmatrix}$	$\begin{bmatrix} lpha \ eta \end{bmatrix}$	$\begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}$	$\begin{bmatrix} \ln x \\ \ln(1-x) \end{bmatrix}$	$\ln B(\alpha, \beta) = \ln \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$
		정규 기지 σ^2	μ	$\frac{\mu}{\sigma^2}$	$\sigma^2\eta$	x	$rac{1}{2}\sigma^2\eta^2$
		정규 미지 σ^2	$\begin{bmatrix} \mu \\ \sigma^2 \end{bmatrix}$	$\begin{bmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{bmatrix}$	$\begin{bmatrix} -\frac{\eta_1}{2\eta_2} \\ -\frac{1}{2\eta_2} \end{bmatrix}$	$\begin{bmatrix} x \\ x^2 \end{bmatrix}$	$-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\ln(-2\eta_2)$
		다변량 정규	$egin{bmatrix} \mu \ \Sigma \end{bmatrix}$	$\begin{bmatrix} \boldsymbol{\Sigma^{-1}\boldsymbol{\mu}} \\ -\frac{1}{2}\boldsymbol{\Sigma^{-1}} \end{bmatrix}$	$\begin{bmatrix} -\frac{1}{2}\boldsymbol{\eta}_2^{-1}\boldsymbol{\eta}_1 \\ -\frac{1}{2}\boldsymbol{\eta}_2^{-1} \end{bmatrix}$	$\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \mathbf{x}^T \end{bmatrix}$	$-\frac{1}{4} \mathbf{\eta}_{1}^{T} \mathbf{\eta}_{2}^{-1} \mathbf{\eta}_{1} - \frac{1}{2} \ln -2\mathbf{\eta}_{2} $

	* 표본 → 1) 분포 f(x), p(x)의 추론 // 2) θ 추론 ← f(x), p(x)는 알고 있음 (Xi: 확률변수, xi: 실현값)									
	1. 확률 표	본 (Rando	om sample): iid	$[X_1,\cdots,X_n]$						
	2. 통계량	(Statistic):	$T=T(X_1,\cdots,X_n)$	_n) (표본	에 대한 함수)					
	→ θ ∈	Ω에 대한	추정량 이면 <i>T</i> :	점추정량 (point estimator), 실현값	t: 점추정값 (point	estimate)			
	3. 불편추정	령량 (Unbi	ased estimato	$\mathbf{r}): E(T) =$	θ $[E(\bar{X}) = \mu, E(S^2) =$	σ^2]				
	4. Maximu	ım likeliho	ood estimator	(mle)						
표본	1) 가능도	함수: L(6	$\theta) = \prod_{i=1}^n f(x_i; \theta)$	θ) ← Γ	MLE: $\hat{\theta} = \operatorname{Argmax}[L(\theta)]$					
/	2) 로그우	도 함수: l	$l(\theta) = \sum_{i=1}^{n} \ln f(t_i)$	$(x_i, \theta) \leftarrow$	MLE: $\hat{\theta} = \operatorname{Argmax}[l(\theta)] \leftarrow$	$-\partial l/\partial \theta = 0$				
통계량		n.			$= -n\left(\frac{1}{\beta}\bar{X} + \ln\beta\right) \to \frac{\partial l}{\partial\beta}$		$\hat{\beta} = \bar{X}$ (also 불편)			
		n			$(n-n\bar{X})\ln(1-p) \rightarrow \frac{\partial l}{\partial p}$					
	10	$(\sigma) = -\frac{n}{2}$	$\ln 2\pi - n \ln \sigma -$	$\frac{1}{2}\sum_{i}(x_{i}-$	$\frac{\mu}{2}$ $\rightarrow \nabla l(\mu, \sigma) = \left[\frac{1}{\sigma} \sum_{i} \left(\frac{1}{\sigma} \sum_{i} \left($	$(x_i - \mu)$ $-\frac{n}{2} + \frac{1}{2}$	$\sum_{(r_1-\mu)^2} \left[\frac{1}{r_1} \right]^T$			
	정규	_				σ)' σ $\sigma^3 \Delta$				
		$\rightarrow \hat{\mu} = \bar{X}$	$\hat{\sigma}^2 = \frac{1}{n} \sum_{n=1}^{n} (X_n)^n$	$(\bar{X}_i - \bar{X})^2 = \frac{n}{2}$	$\frac{-1}{n}S^2$					
	1) Divot 회	·류버스· <i>(</i> 초	<u> </u>	 ろのお						
CLT	•	•	, ,		$\bar{\mathbf{z}} = \mathbf{z} \cdot \mathbf{z} \cdot \mathbf{z} \cdot \mathbf{z} \cdot \mathbf{z} \cdot \mathbf{z} \cdot \mathbf{z}$)) of) V N(2\이며 저히 저그ㅂㅠ			
	2) 중심극한정리: $Z_n = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} N(0,1) \; (X_i \stackrel{iid}{\sim} \operatorname{random}(\mu, \sigma^2) \to \bar{X} \stackrel{D}{\to} N\left(\mu, \frac{\sigma^2}{n}\right)) \; \text{cf}) \; X \sim N(\mu, \sigma^2)$ 이면 정확 정규분포									
	*신뢰구간: 모수 6 가 추정량 6에서 얼마나 벗어났는가?									
	1. 신뢰구간: $1 - \alpha = P_{\theta}[\theta \in (\hat{\theta}_L, \hat{\theta}_U)]$ \rightarrow 100(1- α)% 신뢰구간 (같은 신뢰계수 \rightarrow 구간 길이 최소화)									
	*해석: 모수 θ 가 추정량 $(\hat{\theta}_L, \hat{\theta}_U)$ 구간에 있는 사건 $\sim B(1, 1-\alpha)$ (95% CI: θ 가 $(\hat{\theta}_L, \hat{\theta}_U)$ 에 평균 19회/20회)									
					$(z_{\alpha/2} = \xi_{1-\alpha/2} \leftrightarrow F(z_{\alpha/2}))$		- α/2) Ι			
			Pivot sta		μ의 100(1-α					
	Z .	평균 μ 분산 σ ²	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{D}{\to} I$	V(0,1)	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{9}{6}\right)$	$\frac{\bar{x} - \mu}{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$				
	z T $X_{i'}$	평균 μ 분산 σ² ~N(μ,σ²)	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S / \sqrt{n}} (d)$	V(0,1) $f = n - 1$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\mathbf{z}_{\alpha/2}}{\mathbf{z}_{\alpha/2}}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\mathbf{z}_{\alpha/2}}{\mathbf{z}_{\alpha/2}}\right)$	$\frac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$ $\frac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{\alpha/2, n-1}$				
	z T X _i ' * 전부 N	평균 μ 분산 σ^2 ∼ $N(\mu, \sigma^2)$ ≥30 or 정·	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z	V(0,1) f = n - 1) 는 CLT로 근	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{2}{3}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{2}{3}\right)$ 나사 가능 / T는 robustness	$\frac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$) $\frac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{\alpha/2, n-1}$) SS로 비정규 상황	•			
	Z T $X_{i'}$ * 전부 N 3. 평균 차	평균 μ 분산 σ^2 ~ $N(\mu, \sigma^2)$ ≥30 or 정· 이 $(\bar{X} - \bar{Y})$	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z) 신뢰 구간	$V(0,1)$ $f = n - 1)$ 는 CLT로 근 $E(\bar{X} - \bar{Y})$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\bar{y}}{2}\right)$ 다사 가능 / T는 robustnes $= \mu_1 - \mu_2, \ \mathrm{Var}(\bar{X} - \bar{Y}) = 0$	$\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{\alpha/2} ight)$ $\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{\alpha/2,n-1} ight)$ SS로 비정규 상황 $\displaystyle (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$	·			
신뢰	z T X _i ' * 전부 N	평균 μ 분산 σ^2 ~ $N(\mu, \sigma^2)$ ≥30 or 정· 이 $(\bar{X} - \bar{Y})$	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z+1) 신뢰 구간	$V(0,1)$ $f = n - 1$ 는 CLT로 근 $E(\bar{X} - \bar{Y})$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, $	$\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{lpha/2} igg)$ $\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{lpha/2,n-1} igg)$ SS로 비정규 상황 $\displaystyle (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$	- 411 -			
신뢰 구 <i>간</i>	Z T X _i ' * 전부 N 3. 평균 차 상황	평균 μ 분산 σ^2 ~ $N(\mu, \sigma^2)$ ≥ 30 or 정· 이 $(\bar{X} - \bar{Y})$ 평균 μ_1 -	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z+1) 신뢰 구간	$V(0,1)$ $f = n - 1$ 는 CLT로 근 $E(\bar{X} - \bar{Y})$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, $	$\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{lpha/2} igg)$ $\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{lpha/2,n-1} igg)$ SS로 비정규 상황 $\displaystyle (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$	- 411 -			
신뢰 구간	Z T $X_{i'}$ * 전부 N 3. 평균 차	평균 μ 분산 σ^2 ~ $N(\mu, \sigma^2)$ ≥ 30 or 정· 이 $(\bar{X} - \bar{Y})$ 평균 μ_1 -	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z+1) 신뢰 구간	$V(0,1)$ $f = n - 1$ 는 CLT로 근 $E(\bar{X} - \bar{Y})$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, $	$\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{lpha/2} igg)$ $\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{lpha/2,n-1} igg)$ SS로 비정규 상황 $\displaystyle (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$	- 411 -			
	Z T X _i * 전부 N 3. 평균 차 상황	평균 μ 분산 σ^2 ~ $N(\mu, \sigma^2)$ ≥ 30 or 정· 이 $(\bar{X} - \bar{Y})$ 평균 μ_1 -	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z+1) 신뢰 구간	$V(0,1)$ $f = n - 1$ 는 CLT로 근 $E(\bar{X} - \bar{Y})$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, $	$\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{lpha/2} igg)$ $\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{lpha/2,n-1} igg)$ SS로 비정규 상황 $\displaystyle (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$	- 411 -			
	z T X _i ' * 전부 N 3. 평균 차 상황 Z	평균 μ 분산 σ^2 ≥30 or 정· 이 $(\bar{X} - \bar{Y})$ 평균 μ_1 - 분산 (σ_1^2)	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z를) 신뢰 구간	$V(0,1)$ $f = n - 1$ 는 CLT로 근 $E(\bar{X} - \bar{Y})$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, $	$\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{lpha/2} igg)$ $\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{lpha/2,n-1} igg)$ SS로 비정규 상황 $\displaystyle (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$	- 411 -			
	z T X _i ' * 전부 N 3. 평균 차 상황 Z	평균 μ 분산 σ^2 ~ $N(\mu, \sigma^2)$ ≥ 30 or 정· 이 $(\bar{X} - \bar{Y})$ 평균 μ_1 -	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z를) 신뢰 구간	$V(0,1)$ $f = n - 1$ $E \subset LT \subseteq \overline{C}$ $* E(\overline{X} - \overline{Y})$ $Z = \frac{(\overline{X} - \overline{Y})}{\sqrt{(\sigma_{1}^{2})}}$ $T = \frac{(\overline{X} - \overline{Y})}{S_{p}}$ $(df = n_{1} - \overline{Y})$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $2 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $3 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $4 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < 7$	$\frac{\overline{K} - \mu}{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$) $\frac{\overline{K} - \mu}{S/\sqrt{n}} < \mathbf{t}_{\alpha/2, n-1}$) SS로 비정규 상황 $(\sigma_1^2/n_1) + (\sigma_2^2/n_2)$ \mathbf{ASS} $1) E(S_p^2) = \sigma^2$ $2) (n_1 - 1)S_1^2/\sigma^2$ $\rightarrow (n_1 + n_2 - 2)S_1^2/\sigma^2$	$\frac{2}{p^2} \sim \chi^2(n_1 - 1)$ $S_p^2 \sim \chi^2(n_1 + n_2 - 2)$			
	z T X _i ' * 전부 N 3. 평균 차 상황 Z	평균 μ 분산 σ^2 ≥30 or 정· 이 $(\bar{X} - \bar{Y})$ 평균 μ_1 - 분산 (σ_1^2)	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z를) 신뢰 구간	$V(0,1)$ $f = n - 1$ $E \subset LT \subseteq \overline{C}$ $* E(\overline{X} - \overline{Y})$ $Z = \frac{(\overline{X} - \overline{Y})}{\sqrt{(\sigma_{1}^{2})}}$ $T = \frac{(\overline{X} - \overline{Y})}{S_{p}}$ $(df = n_{1} - \overline{Y})$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\bar{y}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, $	$\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{lpha/2} igg)$ $\displaystyle rac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{t}_{lpha/2,n-1} igg)$ SS로 비정규 상황 $\displaystyle (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$	$\frac{2}{p^2} \sim \chi^2(n_1 - 1)$ $S_p^2 \sim \chi^2(n_1 + n_2 - 2)$			
	z T X _i ' * 전부 N 3. 평균 차 상황 Z	평균 μ 분산 σ^2 ≥30 or 정· 이 $(\bar{X} - \bar{Y})$ 평균 μ_1 - 분산 (σ_1^2)	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z를) 신뢰 구간	$V(0,1)$ $f = n - 1$ $E \subset LT = \frac{1}{2}$ $E(\bar{X} - \bar{Y})$ $Z = \frac{(\bar{X} - \bar{Y})}{\sqrt{(\sigma_{1}^{2})}}$ $T = \frac{(\bar{X} - \bar{Y})}{S_{p}}$ $(df = n_{1} - \bar{Y})$ $S_{p}^{2} = \frac{(n_{1} - \bar{Y})}{(n_{1} - \bar{Y})}$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \mu_1 - \mu_2, \text{Var}(\overline{X} - \overline{Y}) = P\left(-\frac{1}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/$	$\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$) $\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{t}_{\alpha/2, n-1}$) SS로 비정규 상황 $(\sigma_1^2/n_1) + (\sigma_2^2/n_2)$ $ \qquad \qquad$	$E/$ 비고 $^2 \sim \chi^2(n_1-1)$ $S_p^2 \sim \chi^2(n_1+n_2-2)$ 독립			
	Z T X _i * 전부 N 3. 평균 차 상황 Z T (등분산)	평균 μ 분산 σ^2 $\sim N(\mu, \sigma^2)$ $\geq 30 \text{ or } \overline{Q}$ 이 $(\overline{X} - \overline{Y})$ 평균 $\mu_1 - $ 분산 (σ_1^2) $X_i \sim N(\mu_1, Y_i \sim N(\mu_2, Y_i)$	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\rightarrow} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z_1^2) $\frac{\mathbf{V}}{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{V}}$	$V(0,1)$ $f = n - 1$ $E \subset LT = \frac{1}{2}$ $E(\bar{X} - \bar{Y})$ $Z = \frac{(\bar{X} - \bar{Y})}{\sqrt{(\sigma_{1}^{2})}}$ $T = \frac{(\bar{X} - \bar{Y})}{S_{p}}$ $(df = n_{1} - \bar{Y})$ $S_{p}^{2} = \frac{(n_{1} - \bar{Y})}{(n_{1} - \bar{Y})}$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \mu_1 - \mu_2, \text{Var}(\overline{X} - \overline{Y}) = P\left(-\frac{1}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/$	$\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$) $\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{t}_{\alpha/2, n-1}$) SS로 비정규 상황 $(\sigma_1^2/n_1) + (\sigma_2^2/n_2)$ $ \qquad \qquad$	$E/$ 비고 $^2 \sim \chi^2(n_1-1)$ $S_p^2 \sim \chi^2(n_1+n_2-2)$ 독립			
	Z T X _i * 전부 N 3. 평균 차 상황 Z T (등분산)	평균 μ 분산 σ^2 ≥30 or 정· 이 $(\bar{X} - \bar{Y})$ 평균 μ_1 - 분산 (σ_1^2)	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\rightarrow} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z_1^2) $\frac{\mathbf{V}}{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{V}}$	$V(0,1)$ $f = n - 1$ $E \subset LT = \frac{1}{L}$ $*E(\bar{X} - \bar{Y})$ $Z = \frac{(\bar{X} - \bar{Y})}{\sqrt{(\sigma_{1}^{2})}}$ $G(df = n_{1} - \bar{Y})$ $G(df = n_{2} - \bar{Y})$ $G(df = n_{3} - \bar{Y})$ $G(df = n_{4} - $	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \mu_1 - \mu_2, \text{Var}(\bar{X} - \bar{Y}) = 0$ Pivot statistic $\frac{\bar{Y}}{(N_1) + (\sigma_2^2/n_2)} \sim N(0, 1)$ $1 - \bar{Y} - (\mu_1 - \mu_2)$	$\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$) $\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{t}_{\alpha/2, n-1}$) SS로 비정규 상황 $(\sigma_1^2/n_1) + (\sigma_2^2/n_2)$ $ \qquad \qquad$	$E/$ 비고 $^2 \sim \chi^2(n_1-1)$ $S_p^2 \sim \chi^2(n_1+n_2-2)$ 독립			
	Z T X _i * 전부 N 3. 평균 차 상황 Z T (등분산)	평균 μ 분산 σ^2 $\sim N(\mu, \sigma^2)$ $\geq 30 \text{ or } \overline{Q}$ 이 $(\overline{X} - \overline{Y})$ 평균 $\mu_1 - $ 분산 (σ_1^2) $X_i \sim N(\mu_1, Y_i \sim N(\mu_2, Y_i)$	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\rightarrow} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z_1^2) $\frac{\mathbf{V}}{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{V}}$	$V(0,1)$ $f = n - 1$ $E \subset LT = \frac{1}{L}$ $*E(\bar{X} - \bar{Y})$ $Z = \frac{(\bar{X} - \bar{Y})}{\sqrt{(\sigma_{1}^{2})}}$ $G(df = n_{1} - \bar{Y})$ $G(df = n_{2} - \bar{Y})$ $G(df = n_{3} - \bar{Y})$ $G(df = n_{4} - $	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \mu_1 - \mu_2, \text{Var}(\overline{X} - \overline{Y}) = P\left(-\frac{1}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/$	$\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$) $\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{t}_{\alpha/2, n-1}$) SS로 비정규 상황 $(\sigma_1^2/n_1) + (\sigma_2^2/n_2)$ $ \qquad \qquad$	$\frac{2}{p^2} \sim \chi^2(n_1 - 1)$ $S_p^2 \sim \chi^2(n_1 + n_2 - 2)$			
	Z * 전부 N 3. 평균 차 상황 Z T (등분산)	평균 μ 분산 σ^2 $\geq 30 \text{ or } \overline{Q}$ 이 $(\overline{X} - \overline{Y})$ 평균 μ_1 - 분산 (σ_1^2) $X_i \sim N(\mu_1, Y_i \sim N(\mu_2, $	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\rightarrow} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z_1^2) 신뢰 구간 $ \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + (\sigma_2^2/n_2)$ $ \frac{\sigma^2}{\sigma^2} $ $ \frac{\sigma^2}{\sigma^2} $ $ \frac{\sigma^2}{\sigma^2} $	$V(0,1)$ $f = n - 1$ $\Rightarrow CLT로 = \frac{\overline{X}}{\overline{S_p}}$ $Z = \frac{(\overline{X} - \overline{Y})}{\sqrt{(\sigma_{1}^2)}}$ $CLTE = \frac{\overline{X}}{\overline{S_p}}$ $CLTE = \frac{\overline{X}}{\sqrt{(\sigma_{1}^2)}}$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{\bar{z}}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{\bar{z}}{2}\right)$ $= \mu_1 - \mu_2, \text{Var}(\bar{X} - \bar{Y}) = \frac{\bar{z}}{2}$ $ N(0,1) = \frac{\bar{z}}{2} - \frac{\bar{z}}{2} - \frac{\bar{z}}{2} - \frac{\bar{z}}{2} - \frac{\bar{z}}{2}$ $ N(0,1) = \frac{\bar{z}}{2} - $	$\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$) $\frac{ \bar{X} - \mu }{S/\sqrt{n}} < \mathbf{t}_{\alpha/2, n-1}$) SS로 비정규 상황 $(\sigma_1^2/n_1) + (\sigma_2^2/n_2)$ $ \qquad \qquad$	$E/$ 비고 $^2 \sim \chi^2(n_1-1)$ $S_p^2 \sim \chi^2(n_1+n_2-2)$ 독립			
	Z * 전부 N 3. 평균 차 상황 Z T (등분산) T (이분산) Paired	평균 μ 분산 σ^2 $\geq 30 \text{ or } \overline{\Delta}$ 이 $(\overline{X} - \overline{Y})$ 평균 μ_1	$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\rightarrow} I$ $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} (d)$ 규성 가정 (Z_1^2) 신뢰 구간 $ \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + (\sigma_2^2/n_2)$ $ \frac{\sigma^2}{\sigma^2} $ $ \frac{\sigma^2}{\sigma^2} $ $ \frac{\sigma^2}{\sigma^2} $	$V(0,1)$ $f = n - 1$ $\Rightarrow CLT로 = \frac{\overline{X}}{\overline{S_p}}$ $Z = \frac{(\overline{X} - \overline{Y})}{\sqrt{(\sigma_{1}^2)}}$ $CLTE = \frac{\overline{X}}{\overline{S_p}}$ $CLTE = \frac{\overline{X}}{\sqrt{(\sigma_{1}^2)}}$	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \alpha = P\left(-\mathbf{t}_{\alpha/2, n-1} < \frac{7}{2}\right)$ $1 - \mu_1 - \mu_2, \text{Var}(\bar{X} - \bar{Y}) = 0$ Pivot statistic $\frac{\bar{Y}}{(N_1) + (\sigma_2^2/n_2)} \sim N(0, 1)$ $1 - \bar{Y} - (\mu_1 - \mu_2)$	$\frac{\overline{X} - \mu}{S/\sqrt{n}} < \mathbf{z}_{\alpha/2}$) $\overline{X} - \mu < \mathbf{t}_{\alpha/2, n-1}$) SS로 비정규 상황 $(\sigma_1^2/n_1) + (\sigma_2^2/n_2)$ \mathbf{AFS} $1) E(S_p^2) = \sigma^2$ $2) (n_1 - 1)S_1^2/\sigma^2$ $\rightarrow (n_1 + n_2 - 2)S$ $3) S_p^2 \leftrightarrow (\overline{X} - \overline{Y})$ $df = \frac{\left(\frac{s^2}{n_3}\right)}{n_x}$	$E/$ 비고 $^2 \sim \chi^2(n_1-1)$ $S_p^2 \sim \chi^2(n_1+n_2-2)$ 독립			

	4.	모비율 (극한	표준정규분포; CLT)	*정규 근사 시	연속성	수정	적용	가능
--	----	---------	--------------	----------	-----	----	----	----

상황	가정	Exact binomial	정규근사
단일 모비율	$X \sim B(n,p) \stackrel{d}{\to} N(np, np(1-p))$ 표본 비율 $\hat{p} = \frac{X}{n} \stackrel{d}{\to} N\left(p, \frac{p(1-p)}{n}\right)$	$\begin{split} & \textcircled{1} H_1 : p \neq p_0 \\ & \texttt{P-ZL} = 2 \min \big\{ P_{H_0}(\widehat{\boldsymbol{p}} > \boldsymbol{p_0}), P_{H_0}(\widehat{\boldsymbol{p}} < \boldsymbol{p_0}) \big\} \\ & \textcircled{2} H_1 : p > p_0 \\ & \texttt{P-ZL} = P_{H_0}(\widehat{\boldsymbol{p}} > \boldsymbol{p_0}) \end{split}$	$Z = \frac{\widehat{p} - p}{\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}}$
모비율 차이	표본 비율 차이: $\hat{p}_1 - \hat{p}_2$ ① 평균 $p_1 - p_2$ ② 분산 $\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}$		$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$

5. 이산형 모수

신뢰 구간

- 1) $F_T(T;\theta)$: 통계량 T의 cdf; θ 에 대해 단조 감소 \rightarrow 신뢰 구간: $F_T(T_{n-1};\theta)=1-\alpha_2,\ F_T(T_n;\bar{\theta})=\alpha_1$
- 2) Bisection algorithm: 순감소 $g(x) = d \in g([a, b]) \rightarrow 1)$ if $g\{(a+b)/2\} > d \rightarrow 구간 [(a+b)/2, b]$ 재설정 \rightarrow 2) if $a\{(a+b)/2\} < d \rightarrow$ 구간 [a (a+b)/2] 재설정

		ラ 2) ll y ((α + υ)/2) へ は ラ 「 と [α, (α + υ)/2] 제 ≥			
상황	조건	유도			
	$X \sim b(1, p)$	① 하한: pbinom(17, 30, 0.4)=0.9787, pbinom(17,30,0.45)=0.9286			
	$n = 30, \bar{x} = 0.60$	→ pbinom(17, 30, 0.434) ≈ 0.95			
Binomial	_	② 상한: pbinom(18, 30, 0.7)=0.1593, pbinom(18,30,0.8)=0.0094			
	$T = n\bar{X} \sim b(30, p)$	→ pbinom(18, 30, 0.747) ≈ 0.05			
	$(T_{n-1} = 17, T_n = 18)$.: p 의 90% CI: [0.434, 0.747]			
	<i>X</i> ~Poi(<i>μ</i>)	① 하한: ppois(124, 25 x 4)=0.9912, ppois(124, 25 x 4.4)=0.9145			
	$n = 25, \bar{x} = 5$	→ ppois(124, 25 x 4.287) ≈ 0.95			
Poisson	_	② 상한: ppois(125, 25 x 5.5)=0.1330, ppois(125, 25 x 6)=0.0204			
	$T = n\bar{X} \sim \text{Poi}(25\mu)$	→ ppois(125, 25 x 5.8) ≈ 0.05			
	$(T_{n-1} = 124, T_n = 125)$	∴ μ 의 90% CI: [4.287, 5.8]			

*정의: $(Y_1 < \dots < Y_n) \leftarrow [X_1, \dots, X_n]$ 재배열 *강점: 분포에 종속되지 않음.

- 1. **PDF**: $g(y_1, \dots, y_n) = n! f(y_1) \dots f(y_n)$ (on $a < y_1 < \dots < y_n < b$) pf) $g(y_1, \dots, y_n) = \sum_{i=1}^{n!} |J_i| f(y_1) \dots f(y_n)$
- 2. Marginal PDF 1) $g_k(y_k) = \frac{n!}{(k-1)!(n-k)!(1)!} [F(y_k)]^{k-1} [1 F(y_k)]^{n-k} f(y_k)$

pf)
$$g_k(y_k) = \int_a^{y_k} \cdots \int_a^{y_2} \int_{y_k}^b \cdots \int_{y_{n-1}}^b n! f(y_1) \cdots f(y_n) dy_n \cdots dy_{k+1} dy_1 \cdots dy_{k-1} \quad (y_n \to y_{k+1}; y_1 \to y_{k-1})$$

$$2) g_{ij}(y_i, y_j) = \frac{n!}{(i-1)! (j-i-1)! (n-j)! (1)! (1)!} [F(y_i)]^{i-1} [F(y_j) - F(y_i)]^{j-i-1} [1 - F(y_j)]^{n-j} f(y_i) f(y_j)$$
3. Quantile (\frac{1}{2} \text{P} \text{\$\display}\$): cdf $F(\xi_p) = p \leftrightarrow \xi_p = F^{-1}(p)$, $k = \text{floor}[p(n+1)]$

$$2) g_{ij}(y_i, y_j) = \frac{n!}{(i-1)! (i-i-1)! (n-i)! (1)! (1)!} [F(y_i)]^{i-1} [F(y_j) - F(y_i)]^{j-i-1} [1 - F(y_j)]^{n-j} f(y_i) f(y_j)$$

- 1) $F(Y_k)$ 는 $\frac{k}{n+1}$ 의 불편추정량: $E(F(Y_k)) = \int_a^b F(y_k)g_k(y_k)dy_k = \int_0^1 \frac{n!}{(k-1)!(n-k)!}z^k(1-z)^{n-k}dz = \frac{k}{n+1}$
- 2) Quartile: 1분위수 ($\mathbf{Q}_1 = Y_{[0.25(n+1)]}$) \Leftrightarrow 중위수 ($\mathbf{Q}_2 = Y_{[0.5(n+1)]}$) \Leftrightarrow 3분위수 ($\mathbf{Q}_3 = Y_{[0.75(n+1)]}$) *중위수: 홀수 \rightarrow 중간값 $Y_{(n+1)/2}$ / 짝수 \rightarrow $(Y_{(n/2)} + Y_{(n/2)+1})/2$
- → Box plot: $h = 1.5(Q_3 Q_1)$, $LF = Q_1 h$, $UF = Q_3 + h$ (LF, UF 바깥: 이상값; 정규분포상 P≤0.007)
- 3) **Q-Q plot**: 표본의 순서통계량 (Y_1,Y_2,\cdots,Y_{50}) \Leftrightarrow 이론적 분위수 $(Z_{0.02},Z_{0.04},\cdots,Z_{1.00})$ \leftarrow any 분포
- 4) 신뢰구간: $1 \alpha = P(Y_i < \xi_p < Y_j) = \sum_{w=i}^{j-1} \binom{n}{w} p^w (1-p)^{n-w} \leftarrow p = F(\xi_p)$ (중위수: p = 1/2)

순서 통계

량

- 1) 가설 정의: $H_0: \theta \in \omega_0$ (Null) vs. $H_1: \theta \in \omega_1$ (alternative) $\leftarrow X \sim f(x; \theta)$ 에 대해 $\theta \in \Omega = (\omega_0 \cup \omega_1)$, 분할
- 2) 가설 검정: 표본 $(X_1,\cdots,X_n)\in C \to H_1$ 채택 (기각역 $C\subset D=\mathrm{span}\{(X_1,\cdots,X_n)\})$ 표본 $(X_1,\cdots,X_n)\notin C \to H_0$ 유지
- 3) 유의 수준: $\alpha = \max_{\theta \in \omega_0} P_{\theta}[(X_1, \cdots, X_n) \in C]$ (복합귀무가설에 대해 모든 null 모수 \rightarrow 기각역에 속할 확률 최대) * 1종 오류: H_0 참, but 기각 \rightarrow H_1 채택 (=FP) \therefore 유의수준(α): 1종 오류 범할 최대 확률
- - ① 2종 오류: H_0 거짓, but 유지 \rightarrow H_0 유지 (=FN) \therefore β : 2종 오류 범할 확률 (under given $\theta \in \omega_1$)
 - ② 검정력: H₀ 거짓 → 알맞게 H₁ 채택 (TP)
- 5) P-값: 1) Upper tail: P-값= $P_{H_0}(X \ge x_{obs}) = 1 F_{H_0}(x_{obs})$
 - 2) Lower tail: P-값= $P_{H_0}(X \le x_{obs}) = F_{H_0}(x_{obs})$
 - 3) **2-sided**: P-값= $2 \times P_{H_0}(X \ge |x_{obs}|) = 2[1 F_{H_0}(|x_{obs}|)]$ (X=0 좌우 대칭)
 - → $X = F^{-1}(U)$ (단조 증가) 정리의 역에 의해 P-값 ~ unif(0,1) under 귀무가설 H_0

예시	분포	가설	유도
단일 이항 단측	$X_i \sim B(1, p)$	$H_0: p = p_0$ $H_1: p < p_0$	*표본통계량: $S = \sum_{i=1}^{n} X_i \sim B(n, p)$ 1) 기각역 설정: 귀무가설 하에서 $S \sim B(n, p_0) \rightarrow \alpha = P_{p_0}[S \leq k]$ \rightarrow 0.11 = $P_{p_0}[S \leq 11]$ ($n = 20$, $p_0 = 0.7$) 2) 검정력 함수: $\gamma(p) = P_p[S \leq 11]$ (단조 감소 of p) $\therefore \underline{H_0: p \geq p_0 \mathbf{Z}} \stackrel{\text{abs}}{=} \mathbf{V} \qquad \bigoplus_{\mathbf{p} \geq p_0} [S \leq k] = P_{p_0}[S \leq k]$ (단조성)
	대표본에서 $\frac{1}{\sqrt{\hat{p}}}$	$\frac{\widehat{p}-p_0}{(1-\widehat{p})/n} \approx \frac{1}{2}$	$\frac{\widehat{p}-p_0}{\sqrt{p(1-p)/n}} \stackrel{D}{\to} N(0,1)$
	대표본		* 표본통계량: $\frac{\overline{X} - \mu}{S/\sqrt{n}} \approx \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \xrightarrow{D} N(0, 1)$ 1) 기각역 설정: $\alpha = P_{\mu_0} \left[\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \ge z_{\alpha} \right] \approx 1 - \Phi(z_{\alpha})$
대표본 단측 (Upper)		$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$	1) 기각역 설정: $\alpha = P_{\mu_0} \left[\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \ge z_{\alpha} \right] \approx 1 - \Phi(z_{\alpha})$ 2) 검정력 함수: $\gamma(\mu) = P_{\mu} \left[\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha} \right] = P_{\mu} \left[\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \ge \frac{\mu_0 - \mu}{\sigma / \sqrt{n}} + z_{\alpha} \right]$ $\approx 1 - \Phi\left(\frac{\sqrt{n}(\mu_0 - \mu)}{\sigma} + z_{\alpha} \right) = \Phi\left(\frac{\sqrt{n}(\mu - \mu_0)}{\sigma} - z_{\alpha} \right) \text{ (단조 증가 of } \mu)$ * Power 증가: n↑, 효과크기 $(\mu - \mu_0)$ ↑, α ↑ & σ ↓
대표본 단측 (Lower)	$X_i \sim$ 미지 분포 1) 평균: μ 2) 분산: σ^2	$H_0: \mu = \mu_0 \ H_1: \mu < \mu_0$	1) 기각역 설정: $\alpha = P_{\mu_0} \left[\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \le -z_{\alpha} \right] \approx \Phi(z_{\alpha})$ 2) 검정력 함수: $\gamma(\mu) = P_{\mu} \left[\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \le -z_{\alpha} \right] = P_{\mu} \left[\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{\mu_0 - \mu}{\sigma/\sqrt{n}} - z_{\alpha} \right]$ $\approx \Phi\left(\frac{\sqrt{n}(\mu_0 - \mu)}{\sigma} - z_{\alpha} \right) = \Phi\left(-\frac{\sqrt{n}(\mu - \mu_0)}{\sigma} - z_{\alpha} \right) \text{ (단조 감소 of } \mu)$ * Power 증가: $\mathbf{n} \uparrow$, 효과크기 $(\mu - \mu_0) \uparrow$, $\alpha \uparrow$ & S \
대표본 양측		$H_1: \mu \neq \mu_0$	1) 기각역 설정: $\alpha = P_{\mu_0} \left[\left \frac{\bar{X} - \mu_0}{S / \sqrt{n}} \right \ge z_{\alpha/2} \right] \leftarrow ($ 양축 동일 배분) 2) 검정력 함수: $\gamma(\mu) = P_{\mu} \left[\left \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right \ge z_{\alpha/2} \right]$ $\approx \Phi \left(\frac{\sqrt{n}(\mu - \mu_0)}{\sigma} - z_{\alpha/2} \right) + \Phi \left(-\frac{\sqrt{n}(\mu - \mu_0)}{\sigma} - z_{\alpha/2} \right) \text{ (UT 함수 of } \mu \text{)}$ $ \Rightarrow (\mu_0) \text{에서 최소값})$
t-검정 정규성	$X_i \sim N(\mu, \sigma^2)$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	* 표본통계량: $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$ * t-분포는 N(0,1) 보다 누워 있음 \rightarrow "보수적" // 정규성 하 "정확"
2-표본 t-검정	$X_i \sim N(\mu_1, \sigma^2)$ $Y_i \sim N(\mu_2, \sigma^2)$ (정규,등분산)	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$*$ 표본통계량: $T=rac{(ar{X}-ar{Y})-0}{S_p\sqrt{(1/n_1)+(1/n_2)}}\sim t(n_1+n_2-2)$ $* T \geq t_{0.025,n_1+n_2-2}$ 이면 H_0 기각

가설 검정

	자유도: n(확률표본)-n(미지수 or 제약)							
	2 1. 상황: $X_1 \sim b(n, p_1)$, $X_2 = n - X_1$, $p_2 = 1 - p_1 \Rightarrow Y = \frac{X_1 - np_1}{\sqrt{np_1(1 - p_1)}} \stackrel{D}{\rightarrow} N(0, 1)$; $Q_1 = Y^2 \stackrel{D}{\rightarrow} \chi^2(1)$							
	cells		계량: $Q_1 = \frac{(X_1 - np_1)^2}{np_1(1 - p_1)} = \frac{(X_1 - np_1)^2}{np_1} + \frac{(X_1 - np_1)^2}{n(1 - p_1)} = \frac{(X_1 - np_1)^2}{np_1} + \frac{(X_2 - np_2)^2}{np_2} \xrightarrow{p} \chi^2(1)$					
			k항; n회 다항분포 $(p_k = 1 - \sum_{i=1}^{k-1} p_i \ \& \ x_k = n - \sum_{i=1}^{k-1} x_i)$					
		2. 검정통	계량: $Q_{k-1} = \sum_{i=1}^{\kappa} \frac{(X_i - np_i)^2}{np_i} \xrightarrow{D} \chi^2(k-1)$ $\iff (k-1)$ 개 알면 나머지 1개 앎					
			1) 귀무가설: H_0 : $p_1=p_{1,0},\ p_2=p_{2,0},\ \cdots,\ p_k=p_{k,0}$ ex) 분할표 검정 / 분포 검정 (구구					
		적합도	2) 검정통계량 ① 피어슨: $Q_{k-1} = \sum_{i=1}^{k} \frac{(X_i - E_i)^2}{E_i} = \sum_{i=1}^{k} \frac{\left(X_i - np_{i,0}\right)^2}{np_{i,0}} \stackrel{D}{\rightarrow} \chi^2(k-1)$ (귀무기	설 하)				
	k 	(GoF)	i=1					
	cells	검정	② 로그우도비: $G^2=2\sum_{i=1}x_i\ln\left(\frac{x_i}{e_i}\right) \to P$ 값 = $P(\chi^2_{k-1} \ge Q_{obs})$ * Upper tail					
			*로그우도비 증명: $L(\boldsymbol{\theta_0}) = \frac{n!}{\prod(x_i)!} \prod p_{i,0}^{x_i}$, $L(\widehat{\boldsymbol{\theta}}) = \frac{n!}{\prod(x_i)!} \prod \left(\frac{x_i}{n}\right)^{x_i}$ \rightarrow $-2 \ln \Lambda = 2 \sum_{i=1}^k x_i \ln \left(\frac{x_i}{e_i}\right)$	$\stackrel{a}{\rightarrow} \chi^2_{k-1}$				
		최소	<예시> 정규분포 모수 추정 $N(\mu,\sigma^2)$					
		χ²	1) 상황: 실수구간 \rightarrow k등분 (A_1, \dots, A_k) ; $\boldsymbol{p}_i = \int_{A_i} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}(y-\boldsymbol{\mu})^2/\sigma^2\right] dy$					
Pearson		추정량	2) 실제 A_i 의 도수인 $X_i \rightarrow Q_{k-1} = \sum_{i=1}^k \frac{(X_i - np_i)^2}{np_i} \stackrel{D}{\rightarrow} \chi^2(k-3)$ 최소화하는 $\hat{\mu}, \hat{\sigma}^2$					
χ ² 검정			1) 상황: 2개의 k항 다항분포 *각 모수: $(n_1, p_{11}, p_{21}, \cdots, p_{k1}), (n_2, p_{12}, p_{22}, \cdots, p_{k2})$					
<i>x</i>			$\Rightarrow \sum_{i=1}^{2} \sum_{i=1}^{k} \frac{\left(X_{ij} - n_{j} p_{ij}\right)^{2}}{n_{j} p_{ij}} \stackrel{D}{\to} \left[\chi^{2}(k-1) + \chi^{2}(k-1)\right] = \chi^{2}(2k-2)$					
		동질성 검정	J=1 t=1					
			2) 귀무가설: H_0 : $p_{11} = p_{12}$, $p_{21} = p_{22}$,, $p_{k1} = p_{k2}$ (둘은 구간 별 비율이 동일)					
			$\Rightarrow p_{m1} = p_{m2}$ 의 MLE: $\frac{X_{m1} + X_{m2}}{n_{m1} + n_{m2}}$ (총 k $- 1$ 개 점추정값 필요)					
			3) 검정통계량: $\sum_{i=1}^{2} \sum_{j=1}^{k} \frac{\left[X_{ij} - n_j \left(\frac{X_{i1} + X_{i2}}{n_{i1} + n_{i2}}\right)\right]^2}{n_i \left(\frac{X_{i1} + X_{i2}}{n_{i1}}\right)} \stackrel{D}{\rightarrow} \chi^2(k-1)$ (귀무가설 하)					
	r x c		1) 상황: 확률실험 n회 결과 > 가로 (A) a항 / 세로 (B) b항 두 종류 범주 로 구분					
	Cells		→ $p_{ij} = P(A_i \cap B_j), X_{ij} \succeq A_i \cap B_j \subseteq \uparrow$					
			$\Rightarrow Q_{ab-1} = \sum_{i=1}^{b} \sum_{j=1}^{a} \frac{\left(X_{ij} - np_{ij}\right)^2}{np_{ij}} \xrightarrow{D} \chi^2(ab-1)$					
		독립성	j=1 $i=12) 귀무가설: H_0: P(A_i \cap B_j) = P(A_i)P(B_j) for all (i,j) (속성 A, B는 독립)$					
		검정	$\Rightarrow p_{i*} = P(A_i)$ 의 MLE: $\hat{p}_{i*} = \frac{X_{i*}}{n} = \frac{\sum_{j=1}^{b} X_{ij}}{n}$ [총 $(a-1) + (b-1)$ 개 점추정값 필요]					
			n - n					
			3) 검정통계량: $\sum_{j=1}^{b} \sum_{l=1}^{a} \frac{\left[X_{ij} - n\left(\frac{X_{i*}}{n}\right)\left(\frac{X_{*j}}{n}\right)\right]^{2}}{n\left(\frac{X_{i*}}{n}\right)\left(\frac{X_{*j}}{n}\right)} \xrightarrow{D} \chi^{2}[(a-1)(b-1)] \ (귀무가설 하)$					
			(κ/κ)					
		$Y = \sum_{n=1}^{n}$	$\frac{X_i^2}{\sigma^2}$, $X_i \sim N(\mu_i, \sigma^2)$ * $\mu_i = 0$ 이면 $Y \sim \chi^2(n)$					
	비즈시		$E[\exp(tX_i^2/\sigma^2)] = \frac{1}{(1-2t)^{n/2}} \exp\left[\frac{t\sum_{i=1}^n \mu_i^2}{\sigma^2(1-2t)}\right] = \frac{1}{(1-2t)^{n/2}} \exp\left[\frac{t}{1-2t}\theta\right] \left(t < \frac{1}{2}\right)$					
W T !!	비중심 v ²	n						
비중심 분포	^	$Y = \sum_{i=1}$	$\frac{X_i^2}{\sigma^2} \sim \chi^2(n, \theta) \left(\theta = \frac{\sum_{i=1}^n \mu_i^2}{\sigma^2}\right) \qquad pf) \text{MGF 적분 활용} \rightarrow $ 치환하여 정규분포 PDF꼴로 정리					
			des 1) dchisq (x,r,a) : $f(X=x)$ 2) pchisq (x,r,a) : $P(X \le x)$					
	_		$u_1, heta$) & $V \sim \chi^2(n_2) * U, V$ 는 독립					
	F	$Y = \frac{U/V}{V/V}$	$\frac{n_1}{n_2} \sim F(n_1, n_2, \theta)$					

			nown" 표본/분포 → 관측값 생성 (Resampling, Bayesian 등에서 중요)		
	i. 世号七王 (Uniit		pution) : $unif(a,b)$; $pdf = 1/(b-a)$		
			$F(x) = 1 - e^{-x/\beta}, (x > 0)$		
		지수	$\therefore X = F^{-1}(U) = -\beta \ln(1 - U)$ 는 지수분포 생성		
			$m=\lambda w$ \rightarrow $T_i\sim \exp(1/\lambda)$ 에 대해 $[X=k]\Leftrightarrow \sum_{i=1}^k T_i\leq w$ & $\sum_{i=1}^{k+1} T_i>w$		
	unif(0,1)⇔CDF		$*$ 구간 w 동안 난수로 T_i 생성 \rightarrow 횟수 카운트 (초기 $X=0,T=0$)		
	"관측치 생성"	푸아송	1) $\Delta T = -(1/\lambda) \ln(1 - U)$ 2) $T \leftarrow T + \Delta T$		
			3) if $T \le w$: $X \leftarrow X + 1$		
			elif T > w: return X <box &="" (1958)="" muller=""></box>		
		정규	$X_1 = (-2 \ln Y_1)^{1/2} \cos(2\pi Y_2); X_2 = (-2 \ln Y_1)^{1/2} \sin(2\pi Y_2) \Leftarrow Y_1, Y_2 \sim \text{unif}(0,1)$		
		분포	$f(X_1, X_2) = J g(Y_1, Y_2) = \frac{1}{2\pi} \exp\left[-\frac{1}{2}(x_1^2 + x_2^2)\right]$		
		$X = F^{-1}($	U)를 closed form 계산 불가. $\Leftarrow g(x)$ 이용: ①Easy ② $f(x)$ 유사 ③ $\frac{f(x)}{g(x)} \le k$ (유계)		
			y) & U 생성		
		0			
		② $U \le \frac{f(Y)}{kg(Y)} \le 1$ 이면 $X = Y$, 아니면 ①로 돌아가 재 생성 \Rightarrow 조금 더 넓은 $kg(x)$ 로 근사			
		(f(x) =	$cf_1(x)$ 와 $g(x)=dg_1(x)$ 적당히 상수배 하여 k 무시 가능)		
Monte Carlo	채택-기각 (A-R)		$Y_i \sim \Gamma(1,1) \Rightarrow X = \sum_{i=1}^{\alpha} Y_i \sim \Gamma(\alpha,1)$ (α 정수: CDF 생성 쉬움)		
Carlo	알고리즘		$X \sim \Gamma(\alpha, 1) \rightarrow \beta X \sim \Gamma(\alpha, \beta) \ (\alpha \ \text{실수} \rightarrow 문제!)$		
	(어려운 CDF)	감마 CD Γ(α,β)	$ \begin{array}{c c} \text{CDF} & & & & & & & & & \\ f(x) & & & & & & & & & \\ \end{array} $		
			$(\alpha, \beta) \qquad \boxed{2 \frac{f(x)}{g(x)} = b^{-[\alpha]} x^{\alpha - [\alpha]} e^{-(1-b)x} \le b^{-[\alpha]} \left\{ \frac{\alpha - [\alpha]}{(1-b)e} \right\}^{\alpha - [\alpha]} \text{ (by } x \neq \square \neq 0)}$		
			③ 위 식을 b 로 미분 $\Rightarrow \frac{f(x)}{g(x)} \le ([\alpha]/\alpha)^{-[\alpha]} \left\{ \frac{\alpha - [\alpha]}{(1 - [\alpha]/\alpha)e} \right\}^{\alpha - [\alpha]} = M$		
		정규 CD	① Y~Cauchy (역 CDF 알려짐) → X~N(0,1)		
		N(0 , 1)			
			$\frac{g(x)}{\varepsilon} \frac{(\kappa(1+x))}{(\kappa(1+x))} \frac{g_1(x)}{\varepsilon}$ $\frac{g(x)}{\varepsilon} \frac{(\kappa(1+x))}{\varepsilon} \frac{g_1(x)}{\varepsilon} g_1(x$		
			* 추정 알고리즘 (N: 시뮬레이션 수)		
	Monte Carlo	│ │ ∗ 가설: <i>Ⅰ</i>	$I_0: \mu = 0$, $H_1: \mu > 0$ 1) $n = 20$ 표본 생성 $\leftarrow X \left(\text{오염 정규}; \mu 모름 \right) 분포$		
	t-검정 (오염된 정규)	1) n = 1	20, (S/\sqrt{n}) 계산 \rightarrow 1),2) N번 반복		
	(1000)	$(2) t_{0.05}$	$a_{19}=1.729$ 3) 유의수준 실험적 추정량: $\hat{a}=I/N$ $(I:T>t_{0.05,10}$ 도수)		
			$\mathbf{SE} = \sqrt{\widehat{\alpha}(1 - \widehat{\alpha})/\mathbf{N}}$ 예시) $\widehat{\alpha} = 0.0412 \pm 0.0039$		
			한 g(x)의 closed form 역도함수 (≈부정적분) 존재X → 수치적 적분		
	Monte Carlo	$\int_{a} g(x) dx$	$x = (b-a) \int_a^b g(x) \left(\frac{1}{b-a}\right) dx = (b-a) E[g(X)] \in X \sim \text{unif}(a,b)$		
	적분	7	$\sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{b} - \boldsymbol{a}) \boldsymbol{g}(X_i)$ 는 정적분의 unbiased estimator $\boldsymbol{\xi} \in X_i \sim \mathrm{unif}(a,b)$		

		1) 즈시그하저긔, 피브 토게랴 (ਨ̂) 이 più setal etatistic이 그하 저그ㅂㅠ따르 🔊 ㅁ스 a ᄎ저								
		1) 중심극한정리: 표본 통계량 $(\hat{\theta})$ 의 pivotal statistic이 극한 정규분포따름 \Rightarrow 모수 θ 추정 2) 몬테카를로 기법: X 의 known 분포 (CDF) \Rightarrow 균등분포 난수추출기로 관측값 $X = F^{-1}(U)$ 생성								
	비교	3) 부트스트랩: X 의 unknown 분포 \rightarrow 표본 $(X_1, \dots X_n)$ 의 EDF $(\hat{F}_n) \rightarrow$ 무작위 추출로 X_i^* 생성								
		$\hat{\theta}^*$ 의 분포 $\rightarrow \hat{\theta}$ 의 신뢰구간 추정 $\rightarrow \theta$ 의 근사적 신뢰구간								
		일반적인 통계적 추론에서는 estimator → parameter를 추정함.								
		Standard error는 estimator의 자체적인 변동성 (표준편차) (e.g. $SE(\bar{X}) = \sqrt{Var(\bar{X})} = \sigma/\sqrt{n}$)								
		Estimated SE는 SE에 unknown parameter가 들어가 있을 때, 다른 estimator를 이용 (S/√n)								
		*문제: ①일반적인 확률변수 Y에 대해 분포 (PDF, CDF)를 알기 어렵고								
		② 통계량 g(Y)의 S.E.를 σ/\sqrt{n} 처럼 정확한 수식으로 알아낼 수 있는 경우는 많지 않음.								
		② 통계량 g(Y)의 S.E.를 σ/\sqrt{n} 처럼 정확한 수식으로 알아낼 수 있는 경우는 많지 않음. In Real World Bootstrap World								
		1. Assume F is known \widehat{F} 1. F is unknown, only have a sample data set, forming a EDF \widehat{F} .								
		2. Sampling from F, and form 2. Sampling with replacement from \hat{F} , and								
		a statistic M $x_1,,x_n$ form a statistic $\widehat{M}=g(\widehat{F})$.								
		3. $M=g(F)$, the functional form $\widehat{M}=g(\widehat{F})$ 3. $\widehat{M}=g(\widehat{F})$, the plug-in functional form $\widehat{M}=g(\widehat{F})$ for estimating $M=g(F)$. But we cannot								
		\mathfrak{J} 4. Can find Var(M) by \mathfrak{J} always write down a formula for Var(\widehat{M}).								
		$Var(M) = Var(g(F))$ Traditional Theorem or Simulation $Var(\widehat{M}) = Var(\widehat{g(F)})$ 4. Can approximation $Var(\widehat{M})$ by Bootstrap Simulation, obtain a S^2 .								
		$Var(M) = Var(g(F))$ 5. S^2 can always approximate $Var(\widehat{M})$. But								
Boot-		still need to satisfy required conditions, ${\sf Var}(\widehat{m{M}})$ will approximate ${\sf Var}({\sf M})$.								
strap		$EDF \hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \le x) \iff (x \lor T) \land T \Leftrightarrow PMF \vdash \frac{1}{n} \text{ (for every } x_i)$								
기본		$\lim_{n \to \infty} f(x) = -\sum_{i=1}^{n} f(x_i \le x) \Leftrightarrow (x \ne 1) = -\sum_{i=1}^{n} f(x_i \ge x) \Leftrightarrow (x \ne 1) = -\sum_{i=1}^{n} f(x_i \ge x) \Leftrightarrow (x \ne 1) = -\sum_{i=1}^{n} f(x_i \ge x) \Leftrightarrow$								
	원리	Statistical functional (통계적 범함수): 모수가 [분포함수]의 함수로 표현됨. (평균,분산,중위수,백분위수,etc)								
		e.g. $E(X) = \int x f dx = \int x dF$, $Var(X) = \int x^2 dF - (\int x dF)^2$								
		Plug-in principle: $\hat{\theta} = g(\hat{F}) = \int r(x)d\hat{F} \leftrightarrow \theta = g(F) = \int r(x)dF$ (전자는 후자의 plug-in estimate)								
		Form an EDF Draw and calculate Statistic B times Get B Statistic Summarize								
		draw s* s* from £ 7 .								
		Original sample $x_1,, x_n$ draw $x_1^*,, x_n^*$ from \widehat{F} compute $\widehat{M}_1 = g(x_1^*,, x_n^*)$ \widehat{M}_1								
		$ \begin{array}{ c c c c c }\hline \hline & Put 1/n \text{ for each} & compute M_1 = g(x_1,, x_n) \end{bmatrix} \hline & \text{draw } x_1^*,, x_n^* \text{ from } \widehat{F} \\ \hline & \text{sampling with} & compute \widehat{M}_2 = g(x_1^*,, x_n^*) \hline \end{array} $								
		replacementn								
		drow $x^* - x^*$ from $\widehat{\mathbf{F}} = 7$								
		$\widehat{F} \qquad \qquad \widehat{M}_{B} \qquad \qquad \widehat{M}_{B} \qquad \qquad \widehat{M}_{B} \qquad \qquad \widehat{S}^{2} = \frac{1}{B} \sum_{j=1}^{B} (\widehat{M}_{j})^{2} - \left(\frac{1}{B} \sum_{j=1}^{B} \widehat{M}_{j}\right)$								
		This is estimated $Var(\widehat{M})$								
		2. Variance of \widehat{M} with EDF \widehat{F}								
		$\frac{1}{\sqrt{2}} \sum_{k=1}^{\infty} \left(\widehat{\Omega}_{k}\right)^{2} \left(\frac{1}{\sqrt{2}} \sum_{k=1}^{\infty} \widehat{\Omega}_{k}\right)^{2}$								
		$s^{2} = \frac{1}{B} \sum_{j=1}^{B} (\widehat{M}_{j})^{2} - \left(\frac{1}{B} \sum_{j=1}^{B} \widehat{M}_{j}\right)^{2} \approx \text{Var}(\widehat{M}; \widehat{F}) \approx Var(M; F)$								
		1.Bootstrap Variance Estimation 1.Simulation Error 3.Variance of M with true F								
		 1번 simulation error는 결국 큰 수의 법칙에 의해 확률 수렴하므로 B↑으로 최소화 가능								
		2번 approximation error는 \hat{F} 이 F 에 근사 $(n \uparrow)$ 하면 최소화 $(n \uparrow 면 자연스럽게 \hat{M} \rightarrow M 성질도)$								

Boot- strap	모 평균 추정	E(X̄;*) = X̄, Var(X̄;*; B회 시뮬레이션 평균 B회 시뮬레이션 평균 B회 부트스트립 - 위의 정규가정을 - 다른 모수 추정되	$ar{X}$, $ ext{Var}(X_i^*) = \sum_{j=1}^n \frac{1}{n} (X_j - ar{X})^2 = \frac{n}{n-1} S^2$	구간]			
ଚ	Boot- strap	$H_0: \mu = \mu_0$ 2. $H_1: \mu > \mu_0$ 3.	. 상황: 1) 검정통계량: \bar{X} 2) $\hat{p} = P_{H_0}[\bar{X} \geq \bar{x}]$. H_0 가정 $\Rightarrow z_i = x_i - \bar{x} + \mu_0 \left(E(z_i^*) = E(\bar{z}_j^*) = \mu_0 \right) \Rightarrow$ 복원으로 n개 부트스트랩 . Empirical P-value 산출: $\hat{p} = I/B$ $(I: \{\bar{z}_j^* > \bar{x}\})$. 상황: 1) 검정통계량: $V = \bar{Y} - \bar{X}$ 2) $\hat{p} = P_{H_0}[V \geq \bar{y} - \bar{x}]$				
	검정	$H_0: u_0 = u_1$. H_0 가정 \Rightarrow 표본 합침 $(n = n_1 + n_2)$ \Rightarrow 복원으로 $\left(X_i^*, n_1 \mathcal{H}\right), \left(Y_i^*, n_2 \mathcal{H}\right)$ 추출 b. Empirical P-value 산출: $\hat{p} = I/B$ $(I:\{\bar{y}_i^* - \bar{x}_i^* > \bar{y} - \bar{x}\})$ * 부연: H_0 가정 했기 때문에 생성값 $(\bar{y}_i^* - x_i^*)$ 은 H_0 하 통계량임.				
	Perm 2표본 perm test: 통합 표본 (n=n₁+n₂)에서 비복원으로 추출된 x,y 모든 가능한 표본→ 검정						

	귀무가설	대립가설
전제	정규성+등분산성 $X_{ij}\sim Nig(\mu_i,\sigma^2ig)\Leftrightarrow \epsilon_{ij}\sim N$	$I(0, \sigma^2) \ \left(x_{ij} = \mu_i + \epsilon_{ij}\right)$
	· · · · · · · · · · · · · · · · · · ·	$X_{ij} \overset{iid}{\sim} N(\mu_i, \sigma^2)$
표본평균	$\bar{X}_{i} = \frac{\sum_{j=1}^{k-1} x_{ij}}{n_{i}} \sim N\left(\mu, \frac{\sigma}{n_{i}}\right)$ $\bar{X}_{j} = \frac{\sum_{i=1}^{k} X_{ij}}{k} \sim N\left(\mu, \frac{\sigma^{2}}{k}\right)$	$\bar{X} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}}{n_T} \sim N\left(\frac{1}{n_T} \sum_{i=1}^{k} n_i \mu_i, \frac{\sigma^2}{n_T}\right)$ $\bar{X}_i. = \frac{\sum_{j=1}^{n_i} X_{ij}}{n_i} \sim N\left(\mu_i, \frac{\sigma^2}{n_i}\right)$
표본분산	$s^2 = rac{\sum_{i=1}^k \sum_{j=1}^{n_i}}{n_i}$	$\frac{1}{n(X_{ij} - \bar{X})^2} = MST = \frac{SST}{n_T - 1}$

 $\begin{aligned} \mathbf{SST} &= (n_T - 1)\mathbf{s}^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} \left(X_{ij} - \bar{X}_{...} \right)^2 = \sum_{i=1}^k n_i (\bar{X}_{i.} - \bar{X}_{...})^2 + \sum_{i=1}^k \sum_{j=1}^{n_i} \left(X_{ij} - \bar{X}_{i..} \right)^2 = \mathbf{SSA} + \mathbf{SSE} \\ &: \mathbf{SST} = \sum_{i=1}^k \sum_{j=1}^{n_i} X_{ij}^2 - n_T (\bar{X}_{...})^2, \quad \mathbf{SSA} = \sum_{i=1}^k n_i (\bar{X}_{i..})^2 - n_T (\bar{X}_{...})^2, \quad \mathbf{SSE} = \sum_{i=1}^k \sum_{j=1}^{n_i} X_{ij}^2 - \sum_{i=1}^k n_i (\bar{X}_{i..})^2 \end{aligned}$

$$\boldsymbol{Q} = \boldsymbol{Q_1} + \boldsymbol{Q_2} \iff (\boldsymbol{n_T} - \boldsymbol{1})\boldsymbol{S^2} = \sum_{i=1}^k \sum_{i=1}^{n_i} (\boldsymbol{X_{ij}} - \overline{\boldsymbol{X}_{i\cdot}})^2 + \sum_{i=1}^k n_i (\overline{\boldsymbol{X}_{i\cdot}} - \overline{\boldsymbol{X}_{\cdot\cdot}})^2$$

	i=1 $j=1$	ι=1	
	$SST (= \mathbf{Q})$	$SSE (= Q_1)$	$SSA (= Q_2)$
정의	$(n_T-1)s^2$	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2$	$\sum_{i=1}^k n_i (\bar{X}_i \bar{X})^2$
	$\frac{\text{SST}}{\sigma^2}$	$\frac{\text{SSE}}{\sigma^2}$	$\frac{SSA}{\sigma^2}$
χ²	$\boldsymbol{H_0} : \frac{\text{SST}}{\sigma^2} = \frac{(n_T - 1)s^2}{\sigma^2} \sim \chi^2(n_T - 1)$	$s_{i}^{2} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} (X_{ij} - \bar{X}_{i}.)^{2}$ $\frac{\sum_{j=1}^{n_{i}} (X_{ij} - \bar{X}_{i}.)^{2}}{\sigma^{2}} = \frac{(n_{i} - 1)s_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(n_{i} - 1)$ $\therefore \frac{SSE}{\sigma^{2}} = \sum_{i=1}^{k} \frac{(n_{i} - 1)s_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(n_{T} - k)$	$H_0: \frac{\text{SSA}}{\sigma^2} = \frac{\text{SST}}{\sigma^2} - \frac{\text{SSE}}{\sigma^2} \sim \chi^2(k-1)$
자유도	$n_T - 1$	$n_T - k$	k – 1
Mean	$MST = \frac{SST}{n_T - 1}$	$MSE = \frac{SSE}{n_T - k}$	$MSA = \frac{SSA}{k-1}$
Square	$\frac{1}{n_T-1}$	$\frac{n_{ISL}-n_{T}-k}{n_{T}-k}$	$MSA = \frac{1}{k-1}$
제곱합	총 제곱합	열(처리)-내부	열(처리) 평균간

de1-Way **ANOVA**

*핵심 질문: 요인 k개의 평균이 모두 동일 한가? $(H_0: \mu_1 = \dots = \mu_k)$

$$H_{0}:L(\omega) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{n_{T}}{2}} \exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(x_{ij} - \boldsymbol{\mu})^{2}\right] \quad \omega = \{(\mu_{1}, \mu_{2}, \dots, \mu_{k}, \sigma^{2}): -\infty < \mu_{1} = \mu_{2} = \dots = \mu_{k} = \mu < \infty, \ 0 < \sigma^{2} < \infty\}$$

$$H_{1}:L(\Omega) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{n_{T}}{2}} \exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(x_{ij} - \boldsymbol{\mu}_{i})^{2}\right] \quad \Omega = \{(\mu_{1}, \mu_{2}, \dots, \mu_{k}, \sigma^{2}): -\infty < \mu_{i} < \infty, \ 0 < \sigma^{2} < \infty\}$$

국각
$$(\mu, \sigma^2)$$
, $(\mu_1, \cdots, \mu_k, \sigma^2)$ 에 대해 편미분 후 MLE 구하면
$$\Lambda = \frac{L(\widehat{\omega})}{L(\widehat{\Omega})} = \left[\frac{1/\sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \bar{\mathbf{x}}_{..})^2}{1/\sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \bar{\mathbf{x}}_{..})^2}\right]^{\frac{n_T}{2}} = \left[\frac{\sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \bar{\mathbf{x}}_{..})^2}{\sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \bar{\mathbf{x}}_{..})^2}\right]^{\frac{n_T}{2}} = \left[\frac{\text{SSE}}{\text{SST}}\right]^{\frac{n_T}{2}} \therefore \Lambda^{2/n_T} = \frac{\text{SSE}}{\text{SSE} + \text{SSA}} = \frac{1}{1 + \text{SSA/SSE}}$$

$$\alpha = P_{H_0} \left[\frac{1}{1 + \text{SSA/SSE}} \le \lambda_0^{2/n_T}\right] = P_{H_0} \left[\mathbf{F} = \frac{\mathbf{MSA}}{\mathbf{MSE}} = \frac{\text{SSA}/(k-1)}{\text{SSE}/(n_T - k)} \ge \mathbf{c} = \frac{n_T - k}{k-1} (\lambda_o^{-2/n_T} - 1)\right]$$

$$< \mathbf{ZIII} \quad \mathbf{NT}\mathbf{S} > \quad \text{Alon III} \quad \text{Otherwise} \quad \mathbf{SSA} / \text{UHP Shown} \quad \text{Otherwise} \quad \mathbf{SSE} > \mathbf{F} - \mathbf{SAB} \in \mathbf{AB}$$

 $F = \frac{\text{MSA}}{\text{MSE}} = \frac{\text{SSA}/(k-1)}{\text{SSE}/(n_T-k)} \ge c$ 이면 H_0 기각 (pprox 처리에 의한 변동이 임계치를 넘음) k=2일 때 등분산 $T^2 = F$

$$pf) \ F = \frac{\text{MSA}}{\text{MSE}} = (n_1 + n_2 - 2) \frac{\text{SSA}}{\text{SSE}} = \frac{n_1 \bar{X}_1^2 + n_2 \bar{X}_2^2 - (n_1 + n_2) \left(\frac{n_1 \bar{X}_1 + n_2 \bar{X}_2}{n_1 + n_2}\right)^2}{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} = \frac{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) (\bar{X}_1 - \bar{X}_2)^2}{S_p^2} = \left\{\frac{\bar{X}_1 - \bar{X}_2}{S_p / \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}\right\}^2$$

< Tukey 다중비교 절차> → 개별 비교 시 100(1-a)% 동시 신뢰구간 (q: Studentized range 분포)

$$\mu_{i_1} - \mu_{i_2} \in \left(\bar{x}_{i_1.} - \bar{x}_{i_2.} - \frac{\sqrt{\text{MSE}} \ q_{\alpha,k,n_T-k}}{\sqrt{2}} \sqrt{\frac{1}{n_{i_1}} + \frac{1}{n_{i_2}}}, \ \ \bar{x}_{i_1.} - \bar{x}_{i_2.} + \frac{\sqrt{\text{MSE}} \ q_{\alpha,k,n_T-k}}{\sqrt{2}} \sqrt{\frac{1}{n_{i_1}} + \frac{1}{n_{i_2}}} \right) \quad \text{for } i_1, i_2 \in \{1,2,3,4\}$$

8. 정규모형 추론: ANOVA

1-way ANOVA: b개 처리 별 → 동일 크기 (a) 샘플 간 평균 동일성 2-way ANOVA: 요인 A (n=1, ..., a) + 요인 B (n=1, ..., b)

① $X_{ij} \stackrel{iid}{\sim} N(\mu_{ij}, \sigma^2), n = ab$

②
$$\mu_{ij} = \mu + (\bar{\mu}_i - \mu) + (\bar{\mu}_j - \mu) = \mu + \alpha_i + b_j \quad (\sum_{i=1}^a \alpha_i = \sum_{j=1}^b \beta_j = 0)$$

*Additive model $\left(\because \sum_{j=1}^b \sum_{i=1}^a \mu_{ij} = \sum_{i=1}^a b\bar{\mu}_i + \sum_{j=1}^b a\bar{\mu}_{\cdot j} - ab\mu = ab\mu\right)$

a개(i) <u>처리</u> 개수							
<i>b</i> 개(<i>j</i>) <u>처리</u> 개수	X_{11}	X_{12}	•••	X_{1j}	•••	X_{1b}	\bar{X}_1 .
b개 (j)	X_{21}	X_{22}	•••	X_{2j}	•••	X_{2b}	\bar{X}_2 .
쿼리	:	•••	•••	•••	•••	:	÷
<u> </u>	X_{i1}	X_{i2}	•••	X_{ij}	•••	X_{ib}	\overline{X}_i .
개수	:	•••	•••	•••	•••	:	÷
	X_{a1}	X_{a2}	•••	X_{aj}	•••	X_{ab}	\bar{X}_a .
	\bar{X}_{\cdot_1}	$\bar{X}_{\cdot 2}$	•••	$\overline{X}_{\cdot j}$		$\bar{X}_{\cdot b}$	X

$$\boldsymbol{Q} = \boldsymbol{Q_1} + \boldsymbol{Q_2} \iff (\boldsymbol{ab} - \boldsymbol{1})\boldsymbol{S^2} = \sum_{i=1}^a \sum_{j=1}^b (X_{ij} - \overline{X}_{i\cdot})^2 + b \sum_{i=1}^a (\overline{X}_{i\cdot} - \overline{X}_{\cdot\cdot})^2$$

$$Q = Q_3 + Q_4 \iff (ab - 1)S^2 = \sum_{i=1}^{b} \sum_{j=1}^{a} (X_{ij} - \overline{X}_{.j})^2 + a \sum_{j=1}^{b} (\overline{X}_{.j} - \overline{X}_{..})^2$$

	j=1 $i=1$ $j=1$						
		Q	Q_1	$oldsymbol{Q}_2$	Q_3	Q_4	Q_5
	정의	$(ab-1)S^2$	$\sum_{i=1}^{a} \sum_{j=1}^{b} (X_{ij} - \bar{X}_{i.})^{2}$	$b\sum_{i=1}^a (\bar{X}_i\bar{X})^2$	$\sum_{j=1}^{b} \sum_{i=1}^{a} (X_{ij} - \bar{X}_{.j})^{2}$	$a\sum_{j=1}^{b}(\bar{X}_{.j}-\bar{X}_{})^{2}$	$\sum_{i=1}^{a} \sum_{j=1}^{b} (X_{ij} - \bar{X}_{i} \bar{X}_{.j} + \bar{X}_{})^{2}$
	χ^2 작유도 Q_k/σ^2	ab-1	a(b-1)	a – 1	b(a-1)	b – 1	(a-1)(b-1)
)	데곱합	총 제곱합	열-내부	열 평균간	행-내부	행 평균간	나머지 (Q2, Q4 제외)

2-Way ANOVA

$$Q = Q_2 + Q_4 + Q_5 \iff (ab - 1)S^2 = b \sum_{i=1}^a (\bar{X}_i - \bar{X}_{..})^2 + a \sum_{i=1}^b (\bar{X}_{.j} - \bar{X}_{..})^2 + \sum_{i=1}^a \sum_{i=1}^b (X_{ij} - \bar{X}_{i} - \bar{X}_{.j} + \bar{X}_{..})^2$$

*핵심 질문: 요인 a,b의 effect ① H_{0A} : $\alpha_1=\cdots=\alpha_a=0$ (행간 차이 X)

②
$$H_{0B}$$
: $\beta_1 = \cdots = \beta_b = 0$ (열간 차이 X)

*열간 차이 모델 (H_{0B}, H_{1B})

$$H_{0B}: \hat{\sigma}_{\omega}^2 = \frac{Q_4 + Q_5}{ab} = \sum_{i=1}^a \sum_{i=1}^b \frac{(X_{ij} - \bar{X}_{i.})^2}{ab}$$

$$H_{1B}$$
: $\hat{\sigma}_{\Omega}^2 = \frac{Q_5}{ah}$

$$\Lambda = \left(\hat{\sigma}_{\Omega}^{2}/\hat{\sigma}_{\omega}^{2}\right)^{\frac{ab}{2}} \Leftrightarrow F = \frac{Q_{4}/(b-1)}{Q_{5}/[(a-1)(b-1)]} \geq c$$

* 행간 차이 모델
$$(H_{0A}, H_{1A}) \Leftrightarrow F = \frac{Q_2/(a-1)}{Q_5/[(a-1)(b-1)]} \ge c$$

2-way ANOVA 일반화: 칸당 c>1개 관측값.(위 모델은 칸 당 1개) → 총 n=abc (3차원 구조)

 $(1) X_{ijk} \stackrel{iid}{\sim} N(\boldsymbol{\mu}_{ij}, \sigma^2), \quad n = abc$

②
$$\mu_{ij} = \mu + (\bar{\mu}_i - \mu) + (\bar{\mu}_{ij} - \mu) + (\mu_{ij} - \bar{\mu}_{i} - \bar{\mu}_{ij} + \mu) = \mu + \alpha_i + \beta_j + \gamma_{ij}$$
 $\left(\sum_{i=1}^a \alpha_i = \sum_{j=1}^b \beta_j = 0, \sum_{i=1}^a \gamma_{ij} = \sum_{j=1}^b \gamma_{ij} = 0\right)$ $\left(\gamma_{ij}: 교호작용 모수, interaction parameter\right)$

*핵심 가설: 교호작용 모수=0 $H_{0AB}: \gamma_{ij} = \mathbf{0}$, for all $(i,j) \Leftrightarrow F$ 통계량 $\geq c$

9. 회귀분석

	종속변수 *모집단 $E(Y x^*) = \beta_0 + \beta_1 x^* \Leftrightarrow 점추정치 \hat{y} x^* = \hat{\beta}_0 + \hat{\beta}_1 x^*$							
	기대값	$\hat{y} x^* \sim N\left(E(Y x^*), \ \sigma^2\left(\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{XX}}\right)\right)$						
	추론							
	$E(Y x^*)$	→ 자유도 n-2인 t분포로 <i>E(Y x*</i>)의 신뢰구간 추론 가능						
	미래	$*$ 모집단 $Y x^*=oldsymbol{eta_0}+oldsymbol{eta_1}x^*+\epsilon \Leftrightarrow$ 점추정치 $\widehat{oldsymbol{y}} x^*+\epsilon^*=\widehat{eta_0}+\widehat{eta_1}x^*+\epsilon^*$						
	예측 구간	$\widehat{y} x^* + \epsilon^* \sim N\left(Y x^*, \ \sigma^2\left(1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{XX}}\right)\right)$						
	Y x*	S_{XX}						
		y SST	_	$y = \hat{\beta}_0 + \hat{\beta}_0$ $x \qquad y = \hat{\beta}_0 + \hat{\beta}_0$ $x \qquad x \qquad$		$y = \hat{\beta}_0 + \hat{\beta}_1 x$ $\Rightarrow x$ SSE		
		$\sum_{i=1}^{n} (y_i)$	$(\overline{y})^2$	$- \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$	$\sum_{i=1}^{n}$	$(y_i - \widehat{y}_i)^2$		
		변동 소스	d.f.	SS	MS	F-statistic		
단순	ANOVA	Regression	1	$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \hat{\beta}_1^2 S_{XX} = \hat{\beta}_1 S_{XY}$	MSR = SSR SSE	F = MSR/MSE		
선형	ANOVA	Error	n-2	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	$MSE = \frac{33E}{n-2}$			
회귀		Total	n-1	$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = S_{YY}$	$MSE = \frac{SSE}{n-2}$ $MST = \frac{SST}{n-1}$			
		$ \underbrace{\frac{\text{SSE}}{\sigma^2} \sim \chi^2 (n-2)}_{\text{2}} = \underbrace{\frac{1}{\sigma^2} \sum_{i=1}^n \left\{ \left(\hat{\beta}_0 + \hat{\beta}_1 x_i \right) - \left(\hat{\beta}_0 + \hat{\beta}_1 \bar{x} \right) \right\}^2 = \underbrace{\frac{\hat{\beta}_1^2}{\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2}_{\text{2}} = \underbrace{\left(\frac{\hat{\beta}_1}{\sigma / \sqrt{S_{XX}}} \right)^2 \sim \chi^2 (1)}_{\text{2}} $						
		*H_0 : $eta_1=0$ 하에서 만약 아니라면 $\frac{\mathrm{SSR}}{\sigma^2} \sim \chi^2(1,\beta_1^2)$ $F=T_1^2$						
		1						
	결정계수	$pf) F = \frac{MSR}{MSE} = (n-2) \frac{SSR}{SSE} = S_{XX} \frac{\hat{\beta}_{1}^{2}}{s^{2}} = \left(\frac{\hat{\beta}_{1}}{s/\sqrt{S_{XX}}}\right)^{2} = T_{1}^{2}$ $R^{2} = \frac{SSR}{SST} = \hat{\beta}_{1}^{2} \frac{S_{XX}}{S_{YY}} = 1 - \frac{SSE}{SST} = \frac{1}{1 + \frac{SSE}{SSR}}$						
		$\begin{aligned} & \mathbf{Pearson} \ \boldsymbol{r} = \frac{\boldsymbol{S}_{XY}}{\sqrt{\boldsymbol{S}_{XX}}\sqrt{\boldsymbol{S}_{YY}}} = \widehat{\boldsymbol{\beta}}_1 \frac{\sqrt{\boldsymbol{S}_{XX}}}{\sqrt{\boldsymbol{S}_{YY}}} & \left(\rho = \beta_1 \frac{\sigma_X}{\sigma_Y}, \begin{bmatrix} X_i \\ Y_i \end{bmatrix} \sim BVN\left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{bmatrix}\right) \right) \\ & T_1 = \frac{\widehat{\boldsymbol{\beta}}_1}{s/\sqrt{\boldsymbol{S}_{XX}}} = \frac{r\sqrt{\boldsymbol{S}_{YY}}}{s} = \frac{r\sqrt{n-2}}{\sqrt{1-\widehat{\boldsymbol{\beta}}_1^2 \frac{\boldsymbol{S}_{XX}}{\boldsymbol{S}_{YY}}}} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t(n-2) (H_0: \rho = 0) \\ & W = \frac{1}{2} \ln\left(\frac{1+R}{1-R}\right) \stackrel{D}{\rightarrow} N\left(\frac{1}{2} \ln\left(\frac{1+\rho}{1-\rho}\right), \frac{1}{n-3}\right) * \stackrel{\text{\tiny CP}}{\rightarrow} \mathbb{G} \ \text{\tiny CO} \ \text{\tiny CO}$						
$oxed{\mathbf{C}}$ 전차분석 $\hat{e}_i = y_i - \hat{y}_i \; (\sum_{i=1}^n e_i = 0)$								

9. 회귀분석

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					$(y_n, x_{1n}, \cdots, x_{kn})$	
전제		$ ② \mathbf{X} = \begin{vmatrix} 1 & \lambda \\ 1 & \lambda \end{vmatrix} $	$\begin{vmatrix} x_{12} & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix} = \begin{vmatrix} \mathbf{x_2} \\ \vdots \\ \vdots \end{vmatrix}$		$\epsilon_n]^T$		
		$\lfloor 1 \mid x$	$x_{1n} x_{2n} \cdots x_{kn} $ $\begin{bmatrix} \mathbf{x_n} \end{bmatrix}$				
OLS		n		$\left \frac{\beta_k x_{ki}}{\beta_{ki}}\right ^2 = \left(\frac{1}{2-2}\right)^{\frac{n}{2}}$	$\exp\left(-\frac{1}{2\pi^2}\sum_{i=1}^n\epsilon_i^2\right)$		
	i=1 \ i=1 \						
	· 10						
	$(\hat{y}_1, \dots, \hat{y}_n)^T = \hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{\beta}} (\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_k x_{ki} + \epsilon_i) \leftrightarrow E(\mathbf{y}) = \mathbf{X}\mathbf{\beta}$						
	$\hat{\mathbf{y}} = \mathbf{X}\widehat{\mathbf{\beta}} = {\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T}\mathbf{y} = \mathbf{H}\mathbf{y}$						
추정치	$\widehat{\mathcal{V}}_i$				$- (\mathbf{H}\mathbf{X} = \mathbf{X}); Col(\mathbf{X})^{Q}$	게 y 성사영)	
101	$ \begin{aligned} y_i - (\mathbf{x}_i) \mathbf{\beta} & (\mathbf{x}_i - [1, \mathbf{x}_{1i}, \cdots, \mathbf{x}_{ki}]) \mathbf{\beta} & E(y_i) - (\mathbf{x}_i) \mathbf{\beta} \\ \hat{\mathbf{y}} & (\mathbf{x}^* - [1, \mathbf{x}_{1i}, \cdots, \mathbf{x}_{k}]^T) \leftrightarrow E(Y \mathbf{x}^*) - (\mathbf{x}^*)^T \mathbf{\beta} \end{aligned} $						
	2) SSE = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = \mathbf{e}^T \mathbf{e} = \mathbf{v}^T (\mathbf{I}_n - \mathbf{H}) \mathbf{v}^T$ ($\mathbf{e} = [e_1, \dots, e_n]^T = (\mathbf{I}_n - \mathbf{H}) \mathbf{v}$: 잔차 벡터)						
	l=1 $l=1$						
주요 분포	$SC(p_l)$						
	$-\hat{y}_{i} \sim N(\mathbf{x}_{i}^{T}\mathbf{\beta}, \sigma^{2}\{\mathbf{x}_{i}^{T}(\mathbf{X}^{T}\mathbf{X})\mathbf{x}_{i}\})$						
	- $\hat{y} \mathbf{x}^* \sim N(((\mathbf{x}^*)^T \boldsymbol{\beta}, \sigma^2 \{(\mathbf{x}^*)^T (\mathbf{X}^T \mathbf{X}) \mathbf{x}^*\})$ ← 반응변수 기대값						
					T) 2 (2 2 (7 2 (7 2 (7 2 (7 2 (7 2 (7 2 (
						$(n - \mathbf{H})$	
				SSR	r-statistic		
ANOVA				k SSE	F = MSR/MSE		
	Error			$MSE = \frac{1}{n - k - 1}$			
	Total		$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$	$MST = \frac{331}{n-1}$			
		-k-1)					
	$2\frac{SSR}{\sigma^2} = -\chi^2(1)$	$k) * \boldsymbol{H_0}: \boldsymbol{\beta}_1$	$\beta_1 = \cdots = \beta_k = 0$				
	OLS 추정치 주요 분포	전제 $2) \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ 전제 $3) \ \exists \boldsymbol{\Xi} : \boldsymbol{\epsilon} \sim N_n(\mathbf{Q})$ $L(\boldsymbol{\beta}, \sigma) = \left(\frac{1}{2\pi\sigma^2}\right)^2$ $\therefore \boldsymbol{\varphi} \subseteq \Delta \square \square \Leftrightarrow \boldsymbol{\delta} \subseteq \boldsymbol{\epsilon}_i^2 / \boldsymbol{\delta} \boldsymbol{\beta}_0 = \boldsymbol{\delta} \square \square$	전체 $2) \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \mathbf{\hat{1}} \mathbf{y} = [y_1, y_2] \\ \mathbf{\hat{2}} \mathbf{X} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \\ \mathbf{\hat{2}} \mathbf{X} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \\ \mathbf{\hat{2}} \mathbf{X} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \\ \mathbf{\hat{2}} \mathbf{\hat{3}} \end{bmatrix} \\ \mathbf{\hat{E}} \mathbf{\hat{\Xi}} : \boldsymbol{\epsilon} \sim N_n(0, \sigma^2 \mathbf{I_n}) \Leftrightarrow \mathbf{y} \sim \mathbf{\hat{3}} \\ \mathbf{\hat{2}} \mathbf{\hat{3}} = \mathbf{\hat{3}} \mathbf{\hat{3}} \\ \mathbf{\hat{2}} \mathbf{\hat{3}} = \mathbf{\hat{3}} \mathbf{\hat{3}} \\ \mathbf{\hat{2}} \mathbf{\hat{3}} = \mathbf{\hat{3}} \mathbf{\hat{3}} \\ \mathbf{\hat{3}} \mathbf{\hat{3}} = \mathbf{\hat{3}} \mathbf{\hat{3}} \mathbf{\hat{3}} \\ \mathbf{\hat{3}} \mathbf{\hat{3}} = \mathbf{\hat{3}} \mathbf{\hat{3}} \mathbf{\hat{3}} \mathbf{\hat{3}} \\ \mathbf{\hat{3}} \mathbf{\hat{3}} = \mathbf{\hat{3}} \hat$	전체	전체 $ 2) \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \textcircled{1} \mathbf{y} = [y_1, y_2, \cdots, y_n]^T \qquad \textcircled{3} \boldsymbol{\beta} = [\beta_0, \beta_1, \beta_2, \cdots, \beta_k]^T \\ 2 \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} $	전체 2) $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ ① $\mathbf{y} = [y_1, y_2, \cdots, y_n]^T$ ② $\mathbf{g} = [\beta_0, \beta_1, \beta_2, \cdots, \beta_k]^T$ ② $\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{12} \\ \mathbf{x}_{21} \\ \mathbf{x}_{21} \end{bmatrix}$ ④ $\mathbf{e} = [\epsilon_1, \epsilon_2, \cdots, \epsilon_n]^T$ 3) $\mathbf{E}\mathbf{E}: \mathbf{e} \sim N_n(0, \sigma^2 \mathbf{I}_n) \otimes \mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$ $L(\boldsymbol{\beta}, \sigma) = \left(\frac{1}{2\pi\sigma^2}\right)^2 \exp\left\{-\frac{1}{2}\sum_{i=1}^n \left(Y_i - (\beta_0 + \beta_1 x_{1i} + \cdots + \beta_k x_{ki})\right)^2\right\} = \left(\frac{1}{2\pi\sigma^2}\right)^2 \exp\left(-\frac{1}{2}\sum_{i=1}^n \epsilon_i^2\right)$ $ \sim \mathbf{P}\mathbf{E} \text{All} \Leftrightarrow \sum_{i=1}^n \epsilon_i^2 = \mathbf{e}^T \mathbf{e} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \text{Als} \Leftrightarrow \mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^T\mathbf{y} \text{ div} \Leftrightarrow \boldsymbol{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ $ \approx \frac{\partial \Sigma \epsilon_i^2}{\partial \beta_0} = \cdots = \frac{\partial \Sigma \epsilon_i^2}{\partial \beta_0} = \frac{\partial \Sigma \epsilon_i^2}{\partial \beta_0} = 0 \text{o} \text{MLE} \left(\boldsymbol{\beta}, \mathbf{s}_{MLE}^2\right) (\mathbf{\Pi} \\ \text{By } \forall \mathbf{A} \forall \mathbf{A} \subseteq \mathbf{E}) = \mathbf{E}$ $ 1) \text{Bull } \forall \mathbf{y} = \mathbf{x}^T\boldsymbol{\beta} (\mathbf{x} = [1, \frac{1}{n}\sum_{i=1}^n x_{1i} \cdots \frac{1}{n}\sum_{i=1}^n x_{ki}} \mathbf{x})^T) \mapsto \mathbf{y} = \mathbf{x}^T\boldsymbol{\beta} + \boldsymbol{\epsilon}$ $ 2) [\mathbf{y}_1, \cdots, \beta_n]^T = \mathbf{y} = \mathbf{X}\boldsymbol{\beta} (\mathbf{y}_i = \beta_0 + \beta_1 x_{1i} + \cdots + \beta_k x_{ki} + \epsilon_i) \text{o} E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} $ $ \mathbf{y} = \mathbf{X}\boldsymbol{\beta} = \{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\}\mathbf{y} = \mathbf{H}\mathbf{y} \text{e} \mathbf{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} \mathbf{y} = \mathbf{X}^T\mathbf{y} \mathbf{y} = \mathbf{X}^T\mathbf{y} \mathbf{y} = \mathbf{y} \mathbf{y} $	

10. 비모수통계

10. 미모=	O*								
	1) Note: ①분포 무관 방법 (distribution-free) ② 모집단 가정: 연속성, 대칭성								
	③ 2개 이상 분포 함수의 집합에서도 가능함								
	2) 통계적 추론 Review								
	① 추정: 모집단 모수 추정 (점 추정, CI 추정)								
기본	② 가설 검정: H₀, H₁ 설정 → 검정통계량 분포 (under H₀) → α(유의 수준)에서 p-value (유의 확률) 이용 기각								
	3) 점근상대효율 (Asymptotic Relative Efficiency; ARE): 의 효율성								
	① 추정량/CI: $ARE(\hat{\theta}_1, \hat{\theta}_2) = \lim_{n \to \infty} \frac{Var(\hat{\theta}_2)}{Var(\hat{\theta}_1)} = \lim_{n \to \infty} \frac{l_2^2}{l_1^2} = ARE(CI_1, CI_2) $ * $l_2 = U_2 - L_2$ when $CI_2 \in (L_2, U_2)$								
	n (1)								
	② 검정: $ARE(T_1, T_2) = \lim_{\theta_1 \to \theta_0} \frac{n_2}{n_1}$ (required sample sizes under H_1) \Rightarrow 표본이 특정분포 따를 때, ARE로 효율성 결정								
	범함수를 활용하여 ECDF (추정)인 $\hat{F}(x_0)$ \rightarrow Unknown CDF $F(x_0)$ 를 점추정								
	① $\hat{F}(x_0) = \frac{\#(X_i \le x_0)}{n} \left($ 계단형 증가함수 $\right) \stackrel{P}{\to} F(x_0)$								
분포	$ (2) S(x_0) = \#(X_i \le x_0) = \sum_{i=0}^n I(X_i \le x_0) \sim B(n, F(x_0)) $								
	i=1								
	$\Leftrightarrow E\left(\widehat{F}(x_0)\right) = \frac{E\left(S(x_0)\right)}{n} = F(X_0), \ \operatorname{Var}\left(\widehat{F}(x_0)\right) = \frac{F(x_0)\left(1 - F(x_0)\right)}{n}$								
	*위치 모수 모형: $X_i = \theta + \epsilon_i$ $\left(\epsilon_i^{iid}F, \text{ which has location parameter 0}\right)$								
1 표본	1) 가설: $H_0: \theta = \theta_0 vs. H_1: \theta \neq \theta_0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								
c :	2) 검정통계량: $S(\theta_0)$ ① 이항 정확성: $2\min\{P_{H_0}(X \geq S(\theta_0), P_{H_0}(X \leq S(\theta_0))\}$								
Sign test	② 정규근사: Median 의 경우 $S(\theta_0) \sim B\left(n, F(\theta_0)\right) = B\left(n, \frac{1}{2}\right) \approx N\left(\frac{n}{2}, \frac{n}{4}\right)$								
	$*(X_i - \theta_0)$ 의 부호+상대적인 크기 모두 고려한 검정법								
	1) 가정: 대칭성 , \therefore 평균 = 중위수, $E(X) = \theta_0 = F^{-1}(1/2)$								
	2) 가설: $\mu = \mu_0$ $vs. H_1: \mu \neq \mu_0$ (>,< 가능)								
	3) 전개: $d_i = X_i - \mu_0$ 에 대해 $ d_i $ 의 순위 등수 점수 r_i (if $ d_i $ 가 3 등 \Rightarrow $r_i = 3$) *공동 6 위 2 명 \Rightarrow 6.5 위								
	$(\sum_{i=1}^n r_i = n(n+1)/2$, 만약 $d_i = 0 \Leftrightarrow X_i = \mu_0$ 인 자료 있으면 삭제 후 $n' = n-1$)								
	4) 검정통계량: $W^+ = \sum_{i=1}^n \{I(d_i)\} r_i = \sum_{d_i > 0} r_i$ $\Rightarrow W^+ > n(n+1)/4$ 이면 $\mu > \mu_0$								
	$W^+ < n(n+1)/4$ 이면 $\mu < \mu_0$								
	5) 정규 근사: $W^+ = \sum_{k=1}^n kW_k \stackrel{D}{\to} N\left(\frac{n(n+1)}{4}, \frac{n(n+1)(2n+1)}{24}\right)$, 연속성 수정 가능								
1 표본	(동점자 없을 때 k 는 각 rank, W _k 는 포함(1) or 불포함(0)의 베르누이)								
	$: W_k \sim B\left(1, \frac{1}{2}\right) \Rightarrow \text{(1)} E(W^+) = E\left(\sum_{k=1}^n kW_k\right) = \sum_{k=1}^n kE(W_k) = \sum_{k=1}^n \frac{k}{2} = \frac{n(n+1)}{4}$								
Wilcoxon	n = 1 $n = 1$								
Signed	② $Var(W^+) = \sum_{k=0}^{n} k^2 Var(W_k) = \sum_{k=0}^{n} \frac{k^2}{4} = \frac{n(n+1)(2n+1)}{24}$								
Rank	k=1 $k=1$								
	6) 정확성 검정: $W^+ = \sum_{k=1}^n kW_k = x$ 가 되는 $\{W_k\}$ 조합의 수가 m 개 $\Leftrightarrow P(W^+ = x) = m/2^n$ $W^+(\mu_0) > \frac{n(n+1)}{4} \Rightarrow \mu > \mu_0 \qquad \qquad W^+(\mu_0) < \frac{n(n+1)}{4} \Rightarrow \mu < \mu_0$								
	4								
	Data values Data values								
	μ_0								
	$d_i(\mu_0) = x_i - \mu_0 < 0 \qquad d_i(\mu_0) = x_i - \mu_0 > 0 \qquad d_i(\mu_0) = x_i - \mu_0 > 0$								
	$W^+(\mu_0) = \text{sum of ranks } (r_i)$ $W^+(\mu_0) = \text{sum of ranks } (r_i)$								
	(10)								

10. 비모수통계

<u></u>	
	$*X,Y$ 가 같은 함수 but 다른 위치모수를 가질 때 $X_i = \theta + \epsilon_i$, $Y_i = \theta + \Delta + \epsilon_i$
	1) 가정: $X_i^{iid} \mathbf{F}(\theta)$, $Y_j^{iid} \mathbf{F}(\theta + \Delta)$
	2) 가설: $H_0: \Delta = 0$, $H_1: \Delta \neq 0$ (>,< 가능)
	3) 전개: n 개의 $\{X_i\}$ 와 m 개의 $\{Y_j\} \to (n+m)$ 개의 순위 값을 매긴다.
	4) 검정통계량: $W_X = \sum_i r_i$ (혼합 표본에서 X_i 들의 순위 r_i 합) $\Rightarrow W_X$ 의 범위: $\left(\frac{n(n+1)}{2}, \left\{mn + \frac{n(n+1)}{2}\right\}\right)$
2 표본	① $E(W_X) = \frac{n}{2}(m+n+1)$ ② $Var(W_X) = \frac{mn}{12}(m+n+1)$
	5) 정규근사: $W_X \stackrel{D}{\to} N\left(\frac{n}{2}(m+n+1), \frac{mn}{12}(m+n+1)\right)$
Mann-	6) U 통계량: $U = W_X - \frac{n(n+1)}{2} \stackrel{D}{\to} N\left(\frac{mn}{2}, \frac{mn}{12}(m+n+1)\right) \Rightarrow U$ 의 범위: $(0, mn)$
Whitney- Wilcoxon	7) 정확성 검정: Specific order of X in pooled sample ex) [1,1,0,0,1,…,1]
(MWW)	위 순서가 발생할 확률 $P=rac{1}{inom{n+m}{n}} ightarrow W_X$ or U 값에 대해 이산 분포 그려서 P 값 산출
U	* n + m = N 일 때 귀무가설 하: $E(r_i) = \frac{1}{N} \sum_{i=1}^{N} k = \frac{N+1}{2}$, $E(r_i^2) = \frac{1}{N} \sum_{i=1}^{N} k^2 = \frac{(N+1)(2N+1)}{6}$
=	
Wilcoxon	$\sum_{j=1}^{N} \sum_{k=1}^{N} jk = \left(\sum_{k=1}^{N} k\right)^{2} = \frac{N^{2}(N+1)^{2}}{4} \implies \sum_{j\neq k}^{N-1} jk = \frac{N^{2}(N+1)^{2}}{4} - \frac{N(N+1)(2N+1)}{6}$
Rank-sum	$\Rightarrow E[r_i r_j]_{j \neq k} = \frac{1}{N(N-1)} \sum_{j \neq k} jk = \frac{N(N+1)^2}{4(N-1)} - \frac{(N+1)(2N+1)}{6(N-1)}$
	$Var(r_i) = E(r_i^2) - E(r_i)^2 = \frac{N^2 - 1}{12}, Cov(r_i, r_j) = E[r_i r_j] - E(r_i)E(r_j) = -\frac{N + 1}{12}$
	$\therefore E(W_X) = E\left(\sum_{i=1}^n r_i\right) = \frac{n(N+1)}{2} = \frac{n(m+n+1)}{2}$
	$\therefore Var(W_X) = \sum_{i=1}^{n} Var(r_i) + 2\sum_{i < j} Cov(r_i, r_j) = n\left(\frac{N^2 - 1}{12}\right) - n(n-1)\left(\frac{N+1}{12}\right) = \frac{mn}{12}(m+n+1)$
2 표본	2개 분포의 동등성에 대한 검정 or 1개 분포의 적합도 검정
2 11 -	1) 전개 ① $X_i \sim F$, $Y_j \sim G$ ② $\hat{F}(x) = \frac{\#(x_i \le x)}{n}$, $\hat{G}(y) = \frac{\#(y_i \le y)}{m}$
Kolmogorov	2) 가설: H_0 : $F(x) = G(x)$ *2 개 분포 (CDF)는 동등하다.
-Smirnov	3) 검정통계량: $M = \max \hat{F}(x) - \hat{G}(x) $ (두 ECDF 의 최대 수직거리) \Rightarrow Reject H_0 if $M > d_\alpha \sqrt{\frac{1}{n} + \frac{1}{m}}$
	3 개 이상 treatment 의 위치모수 동일성 검정
≥3 표본	1) 가정 $x_{ij} = \mu_j + \epsilon_{ij}$, $\epsilon_{ij} \stackrel{iid}{\sim} F$
	2) 가설: $H_0: \mu_1 = \dots = \mu_k$
Kruskal-	3) 전개: k 개 treatment 전부 합쳐서 n_T 개 sample 만듦 $ ightarrow$ 순위 매겨서 순위합 $rac{n_T(n_T+1)}{2}$
Wallis	표본평균 순위합 산출 가능 * $ar{r}_i$. $=(r_{i1}+\cdots+r_{in_i})/n_i$
test	4) 검정통계량: $H = \frac{12}{n_T(n_T+1)} \sum_{i=1}^{\kappa} n_i \bar{r_i}^2 - 3(n_T+1) \sim \chi^2(k-1)$
	5) 사후 검정: Dunnett test
	① Spearman's rank correlation (ρ): 임의의 이변량 분포, 피어슨 표본상관계수를 순위 (rank)로 재계산
	$r_S = \frac{\sum_{i=1}^{n} \left\{ R(X_i) - \frac{n+1}{2} \right\} \left\{ R(Y_i) - \frac{n+1}{2} \right\}}{\frac{n(n^2 - 1)}{12}}$
연관성	$\frac{n(n^2-1)}{12}$
측도	② Kendall's tau (τ) : 임의의 이변량 분포. $(X_i - X_j)(Y_i - Y_j)$ 부호로 concordance 정함 (두 변수가 단조적인가 ?) $\tau = P(concordance) - P(discordance) = 2P_c - 1, \because -1 \le \tau \le 1$
	$K = \binom{n}{2}^{-1} \sum_{i < j} \text{sgn}\{(X_i - X_j)(Y_i - Y_j)\}, \text{ where } E(K) = \tau, K \xrightarrow{D} N\left(0, \frac{2(2n+1)}{9n(n-1)}\right) \text{ under } H_0: \tau = 0$
	(9n(n-1))

11. 베이지안 통계학 기본

		①기본: $X_i \mid \theta \stackrel{iid}{\sim} f(x \mid \theta)$ (X는 θ 에 의존적인 확률 분포에서 추출)					
		②사전분포: Θ ~h(θ) *모수의 prior					
		③우도: $L(\mathbf{x} \theta) = f(x_1 \theta) \cdots f(x_n \theta) * 표본 \mathbf{X}^T = (X_1, \dots, X_n)$					
		④결합 PDF: $g(\mathbf{x}, \theta) = L(\mathbf{x} \theta)h(\theta)$					
	사전/사후 분포						
		<다변량 조건부/주변 분포 이용한 유도)					
		1) $h(\theta) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_n, \theta) dx_1 \cdots dx_n$					
		2) $L(\mathbf{x} \theta) = L_{\mathbf{x} \theta}(x_1, \dots, x_n \theta) = \frac{g(\mathbf{x}, \theta)}{h(\theta)}$					
		3) $g_1(\mathbf{x}) = g_1(x_1, x_2, \dots, x_n) = \int_{-\infty}^{\infty} g(\mathbf{x}, \theta) d\theta$ (초등 적분으로 해결 안됨 \rightarrow MCMC 사용)					
베이 지안 절차	베이지안	 1) 점추정: Maximum A Posteriori (MAP): 사후확률은 최대화하는 값으로 모수 추정 (ê_{MAP}) ① MLE는 모수 미지의 정해진 분포에서 iid 추출한 값들 → 샘플 기준으로 모수 추정 ∴ ê_{MLE} = argmax L(x θ) ② MAP는 모두~사전분포 + iid 추출 샘플들 → 두 가지를 혼합한 사후 분포에서 모수 추정 ∴ ê_{MAP} = argmax L(x θ)h(θ) 					
	추정	③ 균등 Prior [=Beta(1,1)] $\rightarrow h(\theta)$ 가 상수이므로 $\underset{\alpha}{\operatorname{argmax}} L(\mathbf{x} \theta)h(\theta) = \underset{\alpha}{\operatorname{argmax}} L(\mathbf{x} \theta) \Leftrightarrow \widehat{\boldsymbol{\theta}}_{MLE} = \widehat{\boldsymbol{\theta}}_{MAP}$					
		(기타 점추정 방식: 1) MAP, 2) 사후 평균, 3) 사후 중간값 등)					
		2) 구간 추정: $P[u(\mathbf{x}) < \Theta < v(\mathbf{x}) \mid \mathbf{X} = \mathbf{x}] = \int_{u(\mathbf{x})}^{v(\mathbf{x})} k(\theta \mid \mathbf{x}) d\theta = 0.95$					
		⇔ Credible interval (신용 구간) or 사후확률구간 0.95					
		① HPDI: 사후분포에서 가장 짧은 길이 / ② Equal-tail CI (양측 꼬리 넓이 동일)					
	베이지안 검정	$P(\Theta \in \omega_0 \mathbf{x}) \ vs. \ P(\Theta \in \omega_1 \mathbf{x}) \ o \ \mathbf{C}$ 검 쪽으로 가설 채택 (사후 분포 상 가설의 모수 영역 더 넓은 쪽)					
	Hierarchical	① $X \theta \sim f(x \theta)$ ② $\Theta \gamma \sim h(\theta \gamma)$ ③ $\Gamma \sim \psi(\gamma)$ (γ : 초모수)					
	Bayes	$k(\theta \mathbf{x}) = \frac{\int_{-\infty}^{\infty} L(\mathbf{x} \theta) \ h(\theta \gamma) \ \psi(\gamma) \ d\gamma}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} L(\mathbf{x} \theta) \ h(\theta \gamma) \ \psi(\gamma) \ d\gamma \ d\theta}$					
	Empirical	① $X \theta \sim f(x \theta)$ ② $\theta \gamma \sim h(\theta \gamma)$ $m(x y) = \int_0^\infty g(x \theta)y d\theta = \int_0^\infty f(x \theta)h(\theta y)d\theta$ 사로운 오도 최대하 하는 \hat{y} 구하					
	Bayes						
	•	$m(\mathbf{x} \gamma) = \int_{-\infty}^{\infty} g(\mathbf{x}, \theta \gamma) d\theta = \int_{-\infty}^{\infty} L(\mathbf{x} \theta) h(\theta \gamma) d\theta$ → 새로운 우도 최대화 하는 $\hat{\gamma}$ 구함 → 위 조건부 사전분포에 대입하여 진행					

^{*}몬테카를로 기법/깁스샘플러