AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Linear models & estimation by least squares – Part 3 of 3 (WMS Ch. 11.5 & Wooldridge pp. 113-136)

December 5, 2017

Nicole Mason Michigan State University Fall 2017

GAME PLAN

- Housekeeping issues:
 - · Office hours this week are Wednesday, 11 AM-1 PM
 - · Friday optional review session this week will be 4-5 PM
 - I will hold extra office hours next Tuesday (Dec. 12) from 3-5 PM in the Cook Hall basement
- Return take-home graded exercise (see answer key in 2014 final exam on D2L)
- Collect Thursday's additional practice problem
- · Distribute new additional practice problem
- Review

- Linear models & estimation by least squares Part 3 of 3
 - · Classical linear model assumptions
 - Inference
 - Hypothesis testing & p-values
 - · Confidence intervals

Review: Total, explained, & residual SS, R²

Total sum of squares:
$$SST \equiv \sum_{i=1}^{N} (y_i - \overline{y})^2$$

Explained sum of squares: $\left| SSE \equiv \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2 \right|$

$$SSE = \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2$$

Residual sum of squares: $SSR = \sum_{i=1}^{N} \hat{u}_{i}^{2}$

$$SSR \equiv \sum_{i=1}^{N} \hat{u}_i^2$$

$$SST = SSE + SSR$$

Coefficient of determination or
$$R^2$$
: Interpretation? The proportion of the sample variation in y that is explained by x

Review: Simple linear regression assumptions & implications

SLR.1-SLR.4 → OLS estimators unbiased

SLR.1. Linear in parameters:

SLR.2. Random sampling

**SLR.3. Zero conditional mean (exogeneity):

$$E(u \mid x) = E(u) = 0$$

SLR.4. Sample variation in x

SLR.5. Homoskedasticity (constant variance):

$$V(u \mid x) = V(u) = \sigma^2$$

→ Formulas for variances of OLS estimators are:

$$V(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}} V(\hat{\beta}_{0}) = \frac{\sigma^{2} N^{-1} \sum_{i=1}^{N} x_{i}^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$

→ SLR.1-SLR.5 → OLS is **BLUE** (Gauss-Markov Theorem)

Unbiased & consistent estimator of $V(u) = \sigma^2$

$$\hat{\sigma}^2 = \frac{1}{N - 2} \sum_{i=1}^{N} \hat{u}_i^2 = \frac{SSR}{N - 2}$$

Use in formulas to estimate variances and obtain standard errors of our OLS estimators:

$$\hat{V}(\hat{\beta}_{I}) = \frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$

$$\hat{V}(\hat{\beta}_{I}) = \frac{\hat{\sigma}^{2}}{\sum_{i=I}^{N} (x_{i} - \overline{x})^{2}} \qquad \hat{V}(\hat{\beta}_{0}) = \frac{\hat{\sigma}^{2} N^{-I} \sum_{i=I}^{N} x_{i}^{2}}{\sum_{i=I}^{N} (x_{i} - \overline{x})^{2}}$$

$$\hat{\sigma}_{\hat{\beta}_{j}} = \sqrt{\hat{V}(\hat{\beta}_{j})} \text{ for } j = 0, I$$

$$\hat{\sigma}_{\hat{\beta}_j} = \sqrt{\hat{V}(\hat{\beta}_j)} \text{ for } j = 0, 1$$

What we know about the sampling distributions of the OLS estimators so far

$$y = \beta_0 + \beta_1 x + u$$

OLS estimators for β_0 and β_1 :

$$\hat{\beta}_{I} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}} \hat{\beta}_{0} = \overline{y} - \hat{\beta}_{I} \overline{x}$$

Expected values (under SLR.1-SLR.4):

$$E(\hat{\boldsymbol{\beta}}_I) = \boldsymbol{\beta}_I \text{ and } E(\hat{\boldsymbol{\beta}}_0) = \boldsymbol{\beta}_0$$

Sample variances (under SLR.1-SLR.5):

$$\hat{V}(\hat{\beta}_I) = \frac{\hat{\sigma}^2}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

$$\hat{V}(\hat{\beta}_{I}) = \frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}} \hat{V}(\hat{\beta}_{0}) = \frac{\hat{\sigma}^{2} N^{-I} \sum_{i=1}^{N} x_{i}^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$
where $\hat{\sigma}^{2} = \frac{I}{N-2} \sum_{i=1}^{N} \hat{u}_{i}^{2} = \frac{SSR}{N-2}$

$$\hat{\sigma} \text{ is the standard error}$$
of the regression

where
$$\hat{\sigma}^2 = \frac{1}{N-2} \sum_{i=1}^{N} \hat{u}_i^2 = \frac{SSR}{N-2}$$

of the regression

The sampling distributions of the OLS estimators

- By CLT, Under assumptions SLR.1-SLR.5, the OLS estimators are **asymptotically** (i.e., as $N \rightarrow \infty$) **normally distributed** with the means & variances on the previous slides
- If we add one more assumption, then we can obtain the sampling distribution of the OLS estimators in finite samples

SLR.6. Normality: The population error, *u*, is independent of x and is normally distributed with E(u)=0 and $V(u)=\sigma^2$, i.e.:

 $u \sim Normal(0, \sigma^2)$

SLR.1-SLR.6 = "classical linear model assumptions"

- CLM = Gauss-Markov + SLR.6 (normality)
- CLM assumptions imply $y \mid x \sim Normal(\beta_0 + \beta_I x, \sigma^2)$

Source: Wooldridge (2003)

MICHIGAN STATI

$$y = \beta_0 + \beta_1 x + u$$

The sampling distributions of the OLS estimators under the CLM assumptions (SLR.1-SLR.6):

$$\hat{\boldsymbol{\beta}}_{j} \sim Normal\left(\boldsymbol{\beta}_{j}, V(\hat{\boldsymbol{\beta}}_{j})\right) \quad \text{where } V(\hat{\boldsymbol{\beta}}_{l}) = \frac{\sigma^{2}}{\sum\limits_{i=1}^{N} (x_{i} - \overline{x})^{2}}, \\
V(\hat{\boldsymbol{\beta}}_{0}) = \frac{\sigma^{2} N^{-l} \sum\limits_{i=1}^{N} x_{i}^{2}}{\sum\limits_{i=1}^{N} (x_{i} - \overline{x})^{2}} \qquad \hat{\sigma}^{2} = \frac{1}{N-2} \sum\limits_{i=1}^{N} \hat{u}_{i}^{2} = \frac{SSR}{N-2}$$

If we **know** σ^2 , then we can standardize beta-hat_j to a **Z-statistic**; otherwise, we can **estimate** σ^2 and compute a **T-statistic** – i.e.:

$$Z = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{V(\hat{\beta}_{j})}} \sim Normal(0, 1)$$

$$T = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\hat{V}(\hat{\beta}_{j})}} \sim t \text{ with } N - 2 \text{ d.f.}$$

$$\hat{\sigma}_{\hat{\beta}_{j}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\hat{V}(\hat{\beta}_{j})}} \sim t \text{ with } N - 2 \text{ d.f.}$$

Testing hypotheses about β_0 or β_1 $y = \beta_0 + \beta_1 x + u$

- 1. State the <u>null & alternative hypotheses</u>: e.g., $H_0: \beta_i = 0, H_I: \beta_i \neq 0$
- 2. Define an appropriate <u>test statistic</u>: $\hat{\beta}_i$
- 3. Determine the distribution of the test statistic under the null hypothesis $\hat{\boldsymbol{\beta}}_{i} \sim Normal(0, V(\hat{\boldsymbol{\beta}}_{i}))$
- 4. Standardize the test statistic to something with known/tabled probabilities for its sampling distribution (e.g., Z, t, chi-square, F)

$$Z = \frac{\hat{\beta}_{j} - 0}{\sigma_{\hat{\beta}_{j}}} \sim Normal(0, 1)$$

$$Z = \frac{\hat{\beta}_j - 0}{\sigma_{\hat{\beta}_j}} \sim Normal(0, 1)$$

$$T = \frac{\hat{\beta}_j - 0}{\hat{\sigma}_{\hat{\beta}_j}} \sim t \text{ with } N - 2 \text{ d.f.}$$

- 5. Choose a <u>significance level</u> (α , the P(Type | error) = P(reject thenull when it is true), typically 0.01, 0.05, or 0.10) & a rejection **region OR** compute the **p-value** for the test statistic.
- 6. Reject the null hypothesis if the standardized statistic lies in the rejection region (or if p-value≤α); fail to reject otherwise

Example #1: Testing hypotheses about β_0 or β_1

reg bwght cigs

Source	SS	df	MS
Model Residual	13060.4194 561551.3	1 1386	13060.4194 405.159668
Total	574611.72	1387	414.283864

Number of obs	=	1388
F(1, 1386)	=	32.24
Prob > F	=	0.0000
R-squared	=	0.0227
Adj R-squared	=	0.0220
Root MSE	=	20.129

bwght	Coef.	Std. Err.
cigs	5137721	.0904909
_cons	119.7719	.5723407

Test the following hypotheses at the a = 0.05 *level. Also find the p-values.*

$$H_0: \beta_{cigs} = 0 \text{ vs. } H_1: \beta_{cigs} \neq 0$$

and
 $H_0: \beta_{cigs} = 0 \text{ vs. } H_1: \beta_{cigs} < 0$

$$T = \frac{\hat{\beta}_j - 0}{\hat{\sigma}_{\hat{\beta}_j}} \sim t \text{ with } N - 2 \text{ d.f.}$$

T-stats and p-values in Stata output

. reg bwght cigs

Source	SS	df	MS
Model Residual	13060.4194 561551.3	1 1386	13060.4194 405.159668
Total	574611.72	1387	414.283864

=	1388
=	32.24
=	0.000
=	0.022
=	0.022
=	20.129
	= = =

bwght	Coef.	Std. Err.	t	P> t
cigs	5137721	.0904909	-5.68	0.000
_cons	119.7719	.5723407	209.27	0.000

The p-values reported by Stata are for $H_0: \beta_j = 0$ vs. $H_1: \beta_j \neq 0$

12

MICHIGAN STATE

Example #2: Testing hypotheses about β_0 or β_1

$$\log(crime) = \beta_0 + \beta_1 \log(enroll) + u$$

$$\log(\hat{c}rime) = -6.63 + 1.27 \log(enroll)$$

$$(1.03) \quad (0.11)$$

$$n = 97, R^2 = .585.$$

Aside on interpreting results in log-log models

crime is the annual number of crimes on college campuses and *enroll* is student enrollment. The numbers in parentheses are standard errors.

Use the regression output above to test the following hypotheses at the α =0.05 level. Also find the associated p-values.

$$\begin{aligned} & H_0: \beta_I = 1 \quad \text{vs.} \quad H_I: \beta_I \neq 1 \\ & \text{and} \\ & H_0: \beta_I = 1 \quad \text{vs.} \quad H_I: \beta_I > 1 \end{aligned}$$

Summary of Functional Forms Involving Logarithms

$$y = \beta_0 + \beta_1 x + u$$

Model	Dependent Variable	Independent Variable	Interpretation of $oldsymbol{eta}_1$
level-level	у	$X \qquad \beta_I = \frac{\Delta}{\Delta}$	$\Delta y = \beta_1 \Delta x$
level-log	у	102111 ====	$\frac{\Delta y}{\Delta x} \Delta y = (\beta_1/100)\% \Delta x$
log-level	$\log(y)$	$X = 100\beta_1 = -$	$\frac{\%\Delta y}{\Delta x} \% \Delta y = (100\beta_1) \Delta x$
log-log	$\log(y)$	$ \log(x) B_i = -$	$\frac{\partial \Delta y}{\partial \Delta x} \% \Delta y = \beta_1 \% \Delta x$

Source: Wooldridge (2003)

[back]

14

MICHIGAN STATE

Confidence intervals for β_0 or β_1

Recall from earlier in the course:

Two-sided, large-sample (1- α)% confidence interval for θ : $\hat{\theta} \pm z_{\alpha/2}\sigma_{\hat{\theta}}$ Two-sided, small-sample (1- α)% confidence interval for μ : $\overline{Y} \pm t_{\alpha/2}\hat{\sigma}_{\overline{Y}}$,

 $(N-1 \text{ d.f. for } t_{\alpha/2})$

Two-sided, finite sample (1- α)% confidence interval for β_j (in the case of simple linear regression):

$$\hat{\beta}_{j} \pm t_{\alpha/2} \hat{\sigma}_{\hat{\beta}_{j}}$$

$$(N-2 \text{ d.f. for } t_{\alpha/2})$$

MICHIGAN STATE Example #1: Confidence intervals for β_0 or β_1 reg bwght cigs SS Number of obs =Source d f MS F(1, 1386) = 32.24Model 13060.4194 1 13060.4194 Prob > F Residual 561551.3 1386 405.159668 R-squared = 0.0227 Adj R-squared = 0.0220 574611.72 1387 414.283864 Total Root MSE 20.129 bwght Coef. Std. Err. P>|t| $\hat{\beta}_{j} \pm t_{\alpha/2} \hat{\sigma}_{\hat{\beta}_{i}}$ -.5137721 -5.68 0.000 cigs .0904909 $(N-2 \text{ d.f. for } t_{\alpha/2})$ 119.7719 .5723407 209.27 0.000 _cons a. Find the 95% (two-sided) confidence interval for β_{cigs} . Relate this to H_0 : $\beta_{cigs} = 0$ vs. H_1 : $\beta_{cigs} \neq 0$ at $\alpha = 0.05$. b. Find the 95% upper confidence interval for β_{cigs} . Relate this $\overline{\text{to } H_0}$: $\beta_{cigs} = 0$ vs. H_1 : $\beta_{cigs} < 0$ at $\alpha = 0.05$.

MICHIGAN STATE UNIVERSITY

95% confidence intervals in Stata output

reg bwght cigs

Source	SS	df	MS
Model Residual	13060.4194 561551.3	1 1386	13060.4194 405.159668
Total	574611.72	1387	414.283864

Number of obs = 1388 F(1, 1386) = 32.24 Prob > F = 0.0000 R-squared = 0.0227 Adj R-squared = 0.0220 Root MSE = 20.129

bwght	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
cigs _cons		.0904909 .5723407			6912861 118.6492	3362581 120.8946

18

MICHIGAN STATE

Example #2: Confidence intervals for β_0 or β_1

$$\log(crime) = \beta_0 + \beta_1 \log(enroll) + u$$

$$\log(\hat{c}rime) = -6.63 + 1.27 \log(enroll)$$

(1.03) (0.11)
 $n = 97, R^2 = .585.$

crime is the annual number of crimes on college campuses and *enroll* is student enrollment. The numbers in parentheses are standard errors.

a. Find the 95% (two-sided) confidence interval for β_1 . Relate this to H_0 : β_1 =1 vs. H_1 : $\beta_1 \sim$ = 1 at α =0.05. b. Find the 95% <u>lower</u> confidence interval for β_1 . Relate this to H_0 : β_1 =1 vs. H_1 : $\beta_1 > 1$ at α =0.05.

$$\hat{\beta}_{j} \pm t_{\alpha/2} \hat{\sigma}_{\hat{\beta}_{j}}$$

$$(N-2 \text{ d.f. for } t_{\alpha/2})$$

Homework: Ch. 11 (cont'd)

- 1. Finish the other parts of Thursday's HW
- 2. Using the data in WMS 11.3, test H_0 : β_1 =0 vs. H_1 : $\beta_1 \sim$ = 0, and H_0 : β_1 =0 vs. H_1 : $\beta_1 <$ 0, both at the at α =0.05 level. Also find the 95% two-sided and upper CIs, and relate the results to your hypothesis tests above.
- 3. Using the data in tourism.dta (on D2L) and Stata, regress household tourism expenditure (*tourismexp*) on household income (*income*). Interpret the estimate for β_1 , and construct 99% two-sided and lower CIs for β_1 . Use the CI results to test H₀: β_1 =0.05 vs. H₁: β_1 ~= 0.05, and H: β_1 =0.05 vs. H₁: β_1 >0.05 at α =0.01 level.
- Please try to complete all Ch. 11 HW before class on Thursday so that we can go over it then (you won't turn in Ch. 11)

MICHIGAN STATE

Game plan for Thursday (last day of class)

- Finish any material on today's slides that we didn't get to
- Go over answers to additional practice problem
- Go over any questions you have on the Ch. 11 HW, past final exams, or other HWs/course material

Final exam details

- · Cumulative but with emphasis on Ch. 7-Ch. 11
- Please bring paper, pencil, calculator, and cheat sheets (two 8.5x11" sheets, front and back). Please write last 4 digits of your PID on paper in advance to save time.
- Exam is closed book/notes except for cheat sheets
- Exam is in this room from 12:45-2:45 PM (hard stop) next Thursday, December 14