2021 考研数学二模拟卷

	991201 — 20121 C		
	学校:		
	时间:180 分钟 满分:150 分 命题人:向禹		
_	、选择题:1-10 题,每题 5 分,共 50 分。在每题给出的四个选项中,只有一项是符合题	目身	更
	的。		
1.	已知数列 $\{x_n\}$, $\{y_n\}$ 满足 $\lim_{n\to\infty} x_n y_n = 1$, $\lim_{n\to\infty} \frac{x_n}{y_n} = \infty$, 则下列说法中错误的是)
	A. $\lim_{n \to \infty} x_n = \infty$ B. $\lim_{n \to \infty} y_n = 0$		
	C. $\lim_{n \to \infty} (x_n + y_n) = \infty$ D. $\lim_{n \to \infty} (x_n - y_n) = 0$		
2.	设函数 $f(x)$ 在 $(-\infty, +\infty)$ 上可导,则下列说法中正确的是)
	A. 如果 $\lim_{x \to \infty} f(x) = 0$,则 $\lim_{x \to \infty} f'(x) = 0$		
	B. 如果 $\lim_{x \to \infty} f'(x) = 0$,则 $\lim_{x \to \infty} \frac{f(x)}{x} = 0$		
	C. 如果 $\lim_{x \to \infty} f'(x) = 0$,则 $\lim_{x \to \infty} f(x)$ 存在		
	D. 如果 $\lim_{x \to \infty} \frac{f(x)}{x} = 0$,则 $\lim_{x \to \infty} f'(x) = 0$		
3.	设函数 $f(x) = x(x-1)(x-4) $,则下列说法中正确的是 ()
	A. 函数 $f(x)$ 有 5 个极值点,曲线 $y = f(x)$ 有 2 个拐点		
	B. 函数 $f(x)$ 有 3 个极值点,曲线 $y = f(x)$ 有 2 个拐点		
	C. 函数 $f(x)$ 有 5 个极值点,曲线 $y = f(x)$ 有 4 个拐点		
	D. 函数 $f(x)$ 有 3 个极值点,曲线 $y = f(x)$ 有 4 个拐点		
4.	设函数 $f(x)$ 是周期为 T 的连续函数, $F(x)$ 是 $f(x)$ 的一个原函数,则下列说法中错误	误的	的
	是 ()
	A. 如果 $\lim_{x \to +\infty} F(x) = 0$,则积分 $\int_0^{+\infty} f(x) dx$ 收敛		
	B. 如果积分 $\int_0^{+\infty} f(x) dx$ 收敛,则 $\lim_{x \to +\infty} F(x) = 0$		
	C. 如果 $\int_0^T f(x) dx = 0$,则 $F(x)$ 是周期函数		
	D. 如果 $F(x)$ 是周期函数,则积分 $\int_0^{+\infty} f(x) dx$ 收敛		
5.	已知积分 $\int_0^{+\infty} \frac{x - \ln(1+x)}{x^a} dx$ 收敛,则 a 的取值范围是		
	A. $0 < a < 1$ B. $1 < a < 2$ C. $2 < a < 3$ D. $3 < a < 4$		
6.	在下列微分方程中,以 $v = C_1 e^x + C_2 x e^x + C_3 x^2 e^x + C_4 e^{-x}$ 为通解的是)

A.
$$y^{(4)} + 2y''' - 2y' - y = 0$$

B.
$$y^{(4)} - 2y'' + y = 0$$

C.
$$y^{(4)} + 2y'' + y = 0$$

D.
$$y^{(4)} - 2y''' + 2y' - y = 0$$

7. 设函数 f(x, y) 连续,则下列是 f(x, y) 在 (0, 0) 处可微的一个充分条件的是)

A.
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{\sqrt{x^2+y^2}} = 1$$

B.
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|} = 1$$

C.
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - x^2y}{x^2 + y^2} = 1$$

C.
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-x^2y}{x^2+y^2} = 1$$
 D. $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-x-y}{\sqrt{x^2+y^2}} = 1$

8. 设函数 f(x,y) 连续,则累次积分 $\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^2}} f(x,y) dy$ 等于)

A.
$$\int_{-1}^{1} dy \int_{0}^{y+1} f(x, y) dx + \int_{0}^{\frac{1}{2}} dy \int_{0}^{\frac{1}{2} - \sqrt{\frac{1}{4} - y^{2}}} dx$$

B.
$$\int_{-1}^{1} dy \int_{0}^{y+1} f(x, y) dx + \int_{0}^{\frac{1}{2}} dy \int_{0}^{\frac{1}{2} + \sqrt{\frac{1}{4} - y^2}} dx$$

C.
$$\int_{-\frac{\pi}{2}}^{0} d\theta \int_{0}^{\frac{1}{\cos\theta - \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$$

D.
$$\int_{-\frac{\pi}{2}}^{0} d\theta \int_{0}^{\frac{1}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\sin\theta} f(r\cos\theta, r\sin\theta) r dr$$

9. 设 n 阶方阵 A 的主对角元均为 a,非对角元均为 b. 如果 A 的伴随矩阵 A^* 的秩为 1,则 必有 (

$$A. a = b$$

$$B. a = -b$$

$$C_n a = (n-1)b$$

C.
$$a = (n-1)b$$
 D. $a = -(n-1)b$

(

)

- 10. 设 *A* 是 $m \times n$ 矩阵, $x = (x_1, x_2, \dots, x_n)^T$, 则下列说法中错误的是
 - A. 如果对任意 m 维列向量 b, 方程组 Ax = b 有解,则 $m \ge n$
 - B. 如果 r(A) = m,则对任意 m 维列向量 b,方程组 Ax = b 有解
 - C. 对任意 m 维列向量 b. 方程组 $A^{T}Ax = A^{T}b$ 有解
 - D. 如果 r(A) = n,则对任意 n 维列向量 b,方程组 $A^{T}Ax = b$ 有解
- 二、填空题:11-16题,每题5分,共30分。
- 11. 曲线 $y = \ln x$ 上曲率最大的点的坐标为

12.
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin 2x} \, \mathrm{d}x = \underline{\qquad}.$$

- 13. 极坐标曲线 $r=1+\cos\theta$ 在 $\theta=\frac{\pi}{3}$ 对应的点处的法线方程为_
- 14. 已知函数 f(x) 满足 $f(x+y) = e^{y} f(x) + e^{x} f(y)$ 对任意 $x, y \in \mathbb{R}$ 成立,且 f'(0) = 1,则

$$f(x) = \underline{\hspace{1cm}}$$

- 15. 函数 f(x, y, z) = xy + yz 在条件 $x^2 + y^2 + z^2 = 2$ 下的最小值为______.
- 16. 设 A 是 3 阶矩阵, α_1 , α_2 , α_3 是三个线性无关的三维列向量, 如果

$$A\alpha_1 = \alpha_1$$
, $A\alpha_2 = 2\alpha_1 + a\alpha_2$, $A\alpha_3 = \alpha_1 + (a-2)\alpha_2 + 2\alpha_3$,

且 A 可相似对角化,则 a 的取值范围是 .

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

- 17. (本题满分 10 分) 设函数 f(x) 在 x = 0 处二阶可导,且 f(0) = f'(0) = 0, f''(0) = 1. 设 曲线 y = f(x) 在点 (x, f(x)) 处的切线在 x 轴上的截距为 u(x), 计算极限 $\lim_{x\to 0} \frac{f(u(x))}{f(x)}$.
- 18. (本题满分 10 分) 设函数 y = f(x) ($x \ge 0$) 连续可导,且 f(0) = 1. 现已知曲线 y = f(x)、x 轴、y 轴及过点 x 且垂直于 x 轴的直线所围成的图形的面积与曲线 y = f(x) 在 [0,x] 上的一段弧长值相等,求 f(x).
- 19. (本题满分 10 分)设区域平面区域 D 为

$$\begin{cases} 2 \leqslant \frac{x}{x^2 + y^2} \leqslant 4 \\ 2 \leqslant \frac{y}{x^2 + y^2} \leqslant 4 \end{cases}$$

计算二重积分
$$\iint_{D} \frac{\mathrm{d}x\,\mathrm{d}y}{(x+y)^2}$$
.

- 20. (本题满分10分)
 - (1) 证明不等式 $e < \left(1 + \frac{1}{n}\right)^{n + \frac{1}{2}}$ 对任意正整数 n 都成立.
 - (2) 求最大的实数 α ,使得 $e < \left(1 + \frac{1}{n}\right)^{n+\alpha}$ 对任意正整数 n 都成立.
- 21. (本题满分 15 分)设函数 $f_0(x) = \ln x$. 对 $n \ge 0$ 和 x > 0, 令 $f_{n+1}(x) = \int_0^x f_n(x) dx$.

(1)
$$\Leftrightarrow a_n = \sum_{k=1}^n \frac{1}{k}$$
, $\text{i}E \text{ iff } f_n(x) = \frac{(\ln x - a_n)x^n}{n!}$.

(2) 求极限 $\lim_{n\to\infty} \frac{n! f_n(1)}{\ln n}$.

22. (本题满分 15 分)已知 1 是三阶实对称矩阵 A 的一个特征值,且

$$A \begin{pmatrix} 1 & 2 \\ 2 & -2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & -4 \\ 0 & 2 \end{pmatrix}.$$

- (1) 求 A 的所有特征值和对应的特征向量.
- (2) 如果 $\beta = (-1, 1, -5)$,求 $A^n \beta$.
- (3) 设向量 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$,求方程 $\mathbf{x}^{\mathrm{T}} A \mathbf{x} = 0$ 的通解.