CS 183: Fundamentals of Machine Learning

Lectures by Yaron Singer Notes by Maggie Wang

Harvard University, Spring 2020

Course textbook:

Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz and Shai Ben-David.

Contents

Lecture 1: Prelude - 1/30	2
The Statistical Learning Framework	
Empirical Risk Minimization	4
Overfitting	2
Empirical Risk Minimization with Inductive Bias	2
Finite hypothesis classes	2
Lecture 2: PAC Learnability - 2/6	3
PAC learnability	;
Agnostic PAC learnability	
Prove learnability via uniform convergence	;

Lecture 1: Prelude - 1/30

The Statistical Learning Framework

Learner's input:

- **Domain set**: Set \mathcal{X} that we wish to label. Represented by a vector of features. Domain points: instances, \mathcal{X} : instance space.
- Label set: Set \mathcal{Y} of possible labels
- Training data: $S = ((x_1, y_1) \dots (x_m, y_m))$, finite sequence of pairs in $\mathcal{X} \times \mathcal{Y}$. Training examples / training set.
- The learner's output: prediction rule, $h: \mathcal{X} \to \mathcal{Y}$. Predictor, hypothesis, classifier.
- A simple data-generation model: each pair in the training data S is generated by sampling a point x_i according to \mathcal{D} (probability distribution over \mathcal{X} by \mathcal{D}) and then labeling it by f.
- Measure of success: error of a prediction rule, $h: \mathcal{X} \to \mathcal{Y}$ is the probability of randomly choosing an ex. x for which $h(x) \neq f(x)$:

$$L_{\mathcal{D},f}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)] = \mathcal{D}(\{x : h(x) \neq f(x)\})$$

Generalization error, the risk, the true error of h.

Empirical Risk Minimization

Training error / empirical error / empircal risk - error the classifier incurs over the training sample:

$$L_S(h) = \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

Empirical Risk Minimization (ERM): coming up with a predictor h that minimizes $L_S(h)$

Overfitting

Overfitting: h fits training data "too well"

$$h_S(x) = \begin{cases} y_i & \text{if } \exists i \in [m] \text{ s.t. } x_i = x \\ 0 & \text{otherwise.} \end{cases}$$

Empirical Risk Minimization with Inductive Bias

Apply ERM over a restricted search space (hypothesis class \mathcal{H}), thus biasing it towards a particular set of predictors. Such restrictions are called an inductive bias.

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname*{arg\,min}_{h \in \mathcal{H}} L_s(h)$$

Finite hypothesis classes

$$h_S \in \operatorname*{arg\,min}_{h \in \mathcal{H}} L_S(h)$$

Definition 2.1: The Realizability Assumption

There exists $h^* \in \mathcal{H}$ s.t. $L_{(\mathcal{D},f)}(h^*) = 0$.

This assumption implies that with probability 1 over random samples, S, where the instances are sampled according to D and are labeled by f, we have $L_S(h^*) = 0$.

The i.i.d. assumption: $S \sim \mathcal{D}^m$, where m is the size of S, and \mathcal{D}^m denotes the probability over m-tuples induced by applying \mathcal{D} to pick each element of the tuple independently of the other members of the tuple.

Theorem 2.3:

Let \mathcal{H} be a finite hypothesis class. Let $\delta \in (0,1)$ and $\epsilon > 0$ and let m be an integer that satisfies $m \geq \frac{\log(|\mathcal{H}|\delta)}{\epsilon}$.

Then, for any labeling function, f, and for any distribution, \mathcal{D} , for which the realizability assumption holds (that is, for some $h \in \mathcal{H}, L_{(\mathcal{D},f)}(h)=0$) with probability of at least $1-\delta$ over the choice of an i.i.d. sample S of size m, we have that for every ERM hypothesis, h_S , it holds that

$$L_{(\mathcal{D},f)}(h_S) \leq \epsilon$$

For a sufficiently large m, the ERM_{\mathcal{H}} rule over a finite hypothesis will be *probably* (with confidence $1-\delta$) approximately (up to an error of ϵ) correct.

Proof:

 δ is probability of getting a nonrepresentative sample, and $(1 - \delta)$ is the confidence parameter of our prediction.

 ϵ is the accuracy parameter. Event $L_{(\mathcal{D},f)}(h_S) > \epsilon$ is failure of the learner, while if $L_{(\mathcal{D},f)}(h_S) \leq \epsilon$ the output of the algorithm is an approximately correct predictor.

Let $S|_x = (x_1, \ldots, x_m)$ be the instances of the training set.

We would like to upper bound $\mathcal{D}^m(S|_x:L_{(\mathcal{D},f)}(h_S)>\epsilon)$.

Set of "bad" hypotheses: $\mathcal{H}_B = \{h \in \mathcal{H} : L_{(\mathcal{D},f)}(h) > \epsilon\}.$

Set of misleading examples: $M = \{S|_x : \exists h \in \mathcal{H}_B, L_S(h) = 0\}.$

For every $S|_x \in M$, there is a "bad" hypothesis, $h \in \mathcal{H}_B$ that looks like a "good" hypothesis on $S|_x$.

The event $L_{(\mathcal{D},f)}(h_S) > \epsilon$ can only happen if our sample is in the set of misleading samples, M:

$${S|_x : L_{(\mathcal{D}, f)}(h_S) > \epsilon} \subseteq M$$

We can rewrite M as $M = \bigcup_{h \in \mathcal{H}_B} \{S|_x : L_S(h) = 0\}$. $\mathcal{D}^m(\{S|_x : L_{(\mathcal{D},f)}(h_S) > \epsilon\}) \leq \mathcal{D}^m(M) = \mathcal{D}^m(\bigcup_{h \in \mathcal{H}_B} \{S|_x : L_S(h) = 0\})$

Upper bound right-hand side using union bound.

Lemma 2.2: Union Bound

For any two sets A, B and a distribution \mathcal{D} we have

$$\mathcal{D}(A \cup B) \le \mathcal{D}(A) + \mathcal{D}(B)$$

$$\mathcal{D}^{m}(\{S|_{x}: L_{(\mathcal{D},f)}(h_{S}) > \epsilon) \leq \sum_{h \in \mathcal{H}_{B}} \mathcal{D}^{m}(\{S|_{x}: L_{S}(h) = 0\})$$

$$\mathcal{D}^{m}(\{S|_{x}: L_{S}(h) = 0\}) = \mathcal{D}^{m}(\{S|_{x}: \forall i, h(x_{i}) = f(x_{i})\})$$

$$= \prod_{i=1}^{m} \mathcal{D}(\{x_{i}: h(x_{i}) = f(x_{i})\})$$

etc.

Lecture 2: PAC Learnability - 2/6

PAC learnability

Agnostic PAC learnability

Prove learnability via uniform convergence