Tugas 3 Metode Numerik Kuliah

Nama: Antonius Aditya Rizky Wijaya

NIM: G5902221003

(a)
$$y = x_1 + x_2 + b$$

 $11.60 = x_1 + 10x_2 \dots (1)$
 $11.85 = x_1 + 15x_2 \dots (2)$
 $12.25 = x_1 + 20x_2 \dots (3)$

$$\begin{bmatrix} 1 & 10 \\ 1 & 15 \\ 1 & 20 \end{bmatrix} \times \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 11.60 \\ 11.85 \\ 12.25 \end{bmatrix}$$

(b)	1	10	11,50	E31(-1)	1	lo	11,60	E22(-1)	ſι	10	11,60	
	1	15	11,85	\sim "	0	5	0,25	~32(-21)	ರಿ	ς	0125	
	-	20	12,25	F21(-1)	O	lo	o(e2]		٥ ـ	0	0,15	
*	Dar	; (I) dan (2)				ľ	$\gamma(A)$	≥ 2	+ r (A	(B)=3

* Dari (1) dan (2)

$$X_1 = 11, (2)$$
 error di (3) = \emptyset_1 15

: Spl tidak Konsisten

* Dari (1) dan (3)

$$x_1 = 10.95$$
 certor di $(2) = 0.675$
 $x_2 = 0.065$

: Schingga dapat dipilih

X2 = 0,065

$$x_1 = 10.65$$
 g error $4i(1) = 0.15$
 $x_2 = 0.08$

Karena memiliki error terkecii

$$F = \sum_{i=1}^{3} (y_i - x_1 - x_2 + i)^2$$

$$\frac{\partial F}{\partial x_1} = 0 \implies \sum_{i=1}^{3} 2(y_i - x_1 - x_2 \epsilon_i)(-1) = 0$$

$$x_1 \sum_{i} + x_2 \sum_{i} = \sum_{j}$$

$$3x_1 + 4s x_2 = 35.7 - ... (4)$$

$$\frac{2F}{2x_2} = 0 \implies \sum_{i=1}^{3} 2(y_i^2 - x_1 - x_2 + i)(-t_1) = 0$$

 $x_1 \sum_{i} + x_2 \sum_{i} \sum_{j} = \sum_{i} \sum_{j}$ $45 \times_{1} + 725 \times_{2} = 538, 75 \dots (5)$

:. Dari (4) dan (5) didapat :

X, =10,925

X 2 = 0,065

Jika dibandingkan dengan hasil (b), didapan Nilai (x, x2) yang tidak jauh

3.2 Pata titin: (0,1), (1,2), (3,3)

persamaan garis lurus ; y = ax+b

(a) y = ax + b

1 = b		o	1		<u></u>	1		
2 = a + b	<i>→</i> 7	l	i	×	4 - -	=	2	
3 = 3 a + b		3					3	

Ax = B

$$\begin{bmatrix} 0 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 4 & 4 & 4 \\ 4 & 3 & 6 \end{bmatrix} = \begin{bmatrix} 11 \\ 6 \end{bmatrix}$

C) jika dimisalkan [10 4] = C, maka dengan Faktorisasi Cholesky

C bisa ditulis C = RTR, dimana dalum kasus ini R adalah matriks segitiga atas berukuran 2×2. Dengan menyelesaikannya kita dapat:

$$R = \begin{bmatrix} \sqrt{10} & \sqrt{8}/5 \\ 0 & \sqrt{7}/5 \end{bmatrix}$$

Kemudian Menyelesaikan RTy = [6] dengan substitusi maju didapat:

Selanjuenya menyeresaikan R[b] = y dengan substitusi mundur didapat:

(3.3)	Buat	sistem	persamaar	linear	kuadrat	terke cil	Ax	≈ deng	an Menyel	esaikan
	model	Fungsi	persumuar f(tix) =	XIF + X	(zet unt	uk Eiga	EIEIK	data: ((1,2)(2,3),	(315).
			Fik digabat			J				

f (t,x) = X1+ + X2et

$$2 = x_1 + ex_2$$

$$3 = 2x_1 + e^2x_2$$

$$5 = 3x_1 + e^3x_2$$

$$\Rightarrow \begin{bmatrix} 1 & e^1 \\ 2 & e^2 \\ 3 & e^3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$

Ax = b

Dengan metode kyadrat terkecii, kita perlu meminimumkan error dari $S(x_1, x_2) = (2 - (x_1 + ex_2))^2 + (3 - (2x_1 + e^2x_2))^2 + (5 - (3x_1 + e^3x_2))^2$ menggunakan $2 \cdot (x_1, x_2) = 0$ dan $2 \cdot (x_1, x_2) = 0$, setelah kedua burunan $2 \cdot (x_1 - x_2) = 0$

parsial tersebut diselesaikan maka diperoleh 2 persamaan dan dari 2 persamaan tersebut akan didapat (x_1, x_2) . Yang mana setelah dihitung dengan Kalkulator, didapat aproksimasi nilai $(x_1, x_2) \approx (1.594, 0.009)$.

.. Dengan demikian, persamaan yang paling cocok adalah y = 1,594 x + 0,009 ex

(3.7) A matriks mxn dan b vektor m.

a Buktikan solusi masalah Kyadrat terkecil Ax = b selalu ada.

Masalah kuadrat terkecil adalah mencari vektor x yang meminimalkan jarak kuadrat antara Ax dan b yaitu dengan mencari x sehingga 11 Ax-b11² diminimalkan.

 $\underline{\min_{X} ||Ax-b||^{2}} = \nabla ||Ax-b||^{2} = 0$ $\underline{2A^{T}(Ax-b)} = 0$ $\underline{2A^{T}Ax - 2A^{T}b} = 0$ $\underline{A^{T}Ax} = A^{T}b$

Kita memiliki persumaan ATAX = ATb , Karena matriks ATA selalu merupakan matriks positif semi definit , maka solusi X s'elalu dapat ditemukan.

Buktikan solusi unik jira dan hanya jira rank (A) = n.

Jira rank (A) = n, berarti setiap kolom matriks A independen. Dalum hal ini,

ATAX = ATB memiliki solusi unik kurena matriks ATA adalah matriks persegi

yang non singular. Oleh karena itu, X adalah satu-satunya solusi yang memenuhi.

Sebaliknya jira ran (A) < n, artinya terdapat paliny tidak satu rolom dalam

matriks A yang dapat diwakili oleh kombinasi linear dari kolom-rolom lainnya.

Ini membuat ATA singular , yang berarti tidak ada solusi unik untuk ATAX = A b.
.. Jadi solysi masalah kuadrat terkecil AX = b selalu ada ,jika dan hanyajika rank(A)=n

[A B], A dan C Kuadrat, Buktikan Kulau A dan C. Diberikan matriks harus ortogonal dan B=0. Jawah: X ortogonal liku XXT = I

CBT

AAT+BBT = I BCT = 0 CBI = 0

CCT = I -> Berarti Cortogonal, Cdan CT =0 Karena C dan CT #0, maka dari (2) dan (3) didapat B=0

selanjutnya dari (1) didapat AAT+ 0 = I , sehingga Ajuga Ortogonal.

lika vektor $V \neq 0$, buktikan $H = I - 2 VV^{\dagger}$ ortogonal dan simetrik.

xita tahu (A.B) = BTAT, (AT)T=A

HT=H -> H simetrik

:. H. HT= I'

-> H ortogonal H.HT=I

(3.17) Tentukan transformasi Householder yang menghilangkan semua kecuali entri
Tentukan transformasi Householder yang menghilangkan semua kecuali entri pertama dari vektor $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ khususnya jika $\begin{bmatrix} I - 2 & VVT \\ V^TV \end{bmatrix}$
berapa hilai dari d dan V7
Jawah:
Misulkan $a = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, kemudian ambit $V = a - \alpha e_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \alpha \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}$
$\dim \operatorname{ana} \alpha = \pm \ a\ _2 = \pm 2,$
Kurena a, positif, hindari pembatalan dengan memilih tanda negatif Untuk &
1 Hotels to a rest to relative to a re-
uneuk memastikan transformasi householder berjalan, hitung.
:. Untuk Memastikan transformasi householder berjalan, hitung: Ha = $a - 2 \frac{\sqrt{7}a}{\sqrt{7}} \sqrt{\frac{1}{2}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}$
: Sehingga didapat kesimpulan:
$V = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$
<u> </u>