

$$x:.5 \rightarrow .6$$
, $dx=.1$,
 $\Delta Y = Y(.6) - Y(.5) = 0.091$,
 $Y^{1} = 3x^{2}$ and
 $dY = Y^{1}(.5) \cdot dx = 0.075$.

$$X: 9 \to 7$$
, $dx = -2$,
 $Y = \sqrt{X}$ $dY = Y(7) - Y(9) = -0.354$,
 $Y = \frac{1}{2\sqrt{X}}$ so

$$dY = Y'(9) \cdot dx = -0.333$$

[232:7] $X:100 \rightarrow 98$, dX=-2, $Y=\sqrt{X}$, $Y=\frac{1}{2\sqrt{X}} \rightarrow \Delta Y=Y(98)-Y(100)=\sqrt{98}-10$ and dY= Y'(100). dx = -0.1 → AY ≈ dY so $\sqrt{98} - 10 \approx -0.1 \rightarrow \sqrt{98} \approx 9.9$

232: 12 $X: 27 \rightarrow 28$ $d_{X=+1}, Y=X^{3}, Y=\frac{1}{3X^{3/3}} \rightarrow$ DY= Y(28)-Y(27)= 2813-3 and $dY = Y'(27) \cdot dx = \frac{1}{27} \rightarrow \Delta Y \approx dY$ so 283-3≈ = 3 → 283 ≈ 3=

232:13 X: = -0.01 , dx = -0.01 Y= tanx , Y = sec2x ΔY= Y(\(\frac{\pi}{4}-0.01\) - Y(\(\frac{\pi}{4}\)) = tan (\(\frac{\pi}{4}-0.01\)) - 1 $dY = Y'(\Xi) \cdot dX = \Delta ec^{2}(\Xi) \cdot (-0.01)$ $= (\sqrt{2})^{2}(-0.01) = -0.02 \quad \text{and} \quad \Delta Y \approx dY \text{ so}$ $\tan (\Xi - 0.01) - 1 \approx -0.02 \rightarrow \tan (\Xi - 0.01) \approx 0.98$

232: 18 $X: 0 \to 0.3$, dx = +0.3 $Y = \sin X$, $Y' = \cos X \to \Delta Y = Y(0.3) - Y(0) = \sin (0.3)$ and dY = Y'(0). $dx = +0.3 \to \Delta Y \approx dY$ so $\sin (0.3) \approx 0.3$.

232:25 Let $f(x) = \frac{1}{x}$ and $x: 1 \rightarrow 1+h$ then $f'(x) = \frac{-1}{x^2} \text{ and } \Delta f \approx df \rightarrow$ $f(1+h) - f(1) \approx f'(1) \cdot \Delta x \rightarrow \frac{1}{1+h} - 1 \approx -h \rightarrow$ $\frac{1}{1+h} \approx 1-h .$

[232:28] Let $f(x) = x^{1/3}$ and $x: 1 \rightarrow 1+h$ then $f'(x) = \frac{1}{3}x^{-2/3} \text{ and } \Delta f \approx df \rightarrow$ $f(1+h) - f(1) \approx f'(1) \cdot \Delta x \rightarrow (1+h)^{1/3} - 1 \approx \frac{1}{3}h \rightarrow$ $(1+h)^{1/3} \approx 1 + \frac{1}{3}h .$

232:42 X $A = X^{2}$ $= \frac{|\Delta A|}{A} \approx \frac{|\Delta A|}{A} = \frac{|A' \Delta x|}{A}$ $= \frac{|2x \Delta x|}{x^{2}} = 2 \frac{|\Delta x|}{x} = 10\%$

232:43 a.)
$$\times$$
 Changes to $x + dx$ so $\Delta f = f(x + dx) - f(x) = (x + dx)^2 - x^2$
 $= (x^2 + 2x dx + (dx))^2 - x^2$
 $= 2x dx + (dx)^2$; $f'(x) = 2x$ so $df = f'(x) dx = 2x dx$

$$\frac{f(1.6) - f(1.5)}{1.6 - 1.5} \approx f'(1.5) \rightarrow f(1.6) \approx (0.1)(0.4) + f(1.5) = 3.25$$

$$\frac{f(1.5) - f(1.4)}{1.5 - 1.4} \approx f'(1.4) \rightarrow f(1.5) \approx (0.1)(0.3) + f(1.4) = 3.21$$

$$\frac{f(1.4) - f(1.3)}{1.4 - 1.3} \approx f'(1.3) \rightarrow f(1.4) \approx (0.1)(0.2) + f(1.3) = 3.18$$

$$\frac{f(1.3) - f(1.2)}{1.3 - 1.2} \approx f'(1.2) \rightarrow f(1.3) \approx (0.1)(0.4) + f(1.2) = 3.16$$

$$\frac{f(1.2) - f(1.1)}{1.2 - 1.1} \approx f'(1.1) \rightarrow f(1.2) \approx (0.1)(0.5) + f(1.1) = 3.12$$

$$\frac{f(1.1) - f(1)}{1.1 - 1} \approx f'(1) \rightarrow f(1.1) \approx (0.1)(0.7) + f(1) = 3.07$$

232:41
$$T = kTl$$
 $\frac{|\Delta l|}{l} \leq P\%$
estimate $\frac{|\Delta T|}{T}$.

 $\frac{|\Delta T|}{T} \approx \frac{|\Delta T|}{T} = \frac{|X = \frac{1}{2} + \Delta l|}{|X = \frac{1}{2} \cdot \frac{|\Delta l|}{l}} = \frac{|X = \frac{1}{2} \cdot \frac{1}{2} \cdot \Delta l|}{|X = \frac{1}{2} \cdot \frac{|\Delta l|}{l}} \leq \frac{1}{2} P\% = \frac{P}{2}\%$.

Review Section

[244:34] b.) Let f(x) = x $x: 1 \rightarrow 1 + h^2 \Delta x = h^2$ and $\Delta f = f(1 + h^2) - f(1) = 3\sqrt{1 + h^2} - 1$, $df = f'(1) \cdot \Delta x = \frac{1}{3}(1)^{-2/3} \cdot h^2 = \frac{1}{3}h^2$; since $\Delta f \approx df \rightarrow 3\sqrt{1 + h^2} - 1 \approx \frac{1}{3}h^2$ or $3\sqrt{1 + h^2} \approx 1 + \frac{1}{3}h^2$

c.) Let $f(x) = \frac{1}{x^2}$, $x: 1 \rightarrow 1 - h$, $\Delta x = -h$, $f(x) = \frac{-2}{x^3}$, and $\Delta f = f(1-h) - f(1)$ $= \frac{1}{(1-h)^2} - 1$, $df = f'(1) \cdot \Delta x = -2 \cdot (-h) = 2h$; since $\Delta f \approx df \rightarrow \frac{1}{(1-h)^2} - 1 \approx 2h$ or $\frac{1}{(1-h)^2} \approx 1 + 2h$.

244: 42 Let $f(x) = \sin x$, $x : \frac{\pi}{6} \rightarrow \frac{\pi}{6} + h$, $\Delta x = h$, $f(x) = \cos x$, and $\Delta f = f(\frac{\pi}{6} + h) - f(\frac{\pi}{6})$ $= \sin(\frac{\pi}{6} + h) - \sin \frac{\pi}{6} = \sin(\frac{\pi}{6} + h) - \frac{1}{2}$, $\Delta f = f'(\frac{\pi}{6}) \cdot \Delta x = \cos \frac{\pi}{6} \cdot h = \frac{\pi}{2}h$; since $\Delta f \approx \Delta f$ $\rightarrow \sin(\frac{\pi}{6} + h) - \frac{1}{2} \approx \frac{\sqrt{3}}{2}h$ on $\sin(\frac{\pi}{6} + h) \approx \frac{1}{2} + \frac{\sqrt{3}}{2}h$.