Progalap - Ciklusok

1. Kérj be a felhasználótól egy egész számot, és írasd ki annyiszor egymás alá, hogy "Hello Világ!" A sorok legyenek sorszámozottak is! hello_n

Minta:

```
n: 5

1. Hello Világ!

2. Hello Világ!

3. Hello Világ!

4. Hello Világ!

5. Hello Világ!
```

2. Írasd ki a számokat 100-tól 0-ig visszafelé 5-ösével! szamok

Minta:

```
100 95 90 85 80 ... 5 0
```

- 3. Olvass be egy n egész számot, majd
 - a. írd ki az első n négyzetszámot; negyzetszam_a
 - b. írd ki n-ig a négyzetszámokat! **negyzetszam_b**

Minta1:

```
n: 6
a. 0 1 4 9 16 25
b. 0 1 4
```

Minta2:

```
n: 9
a. 0 1 4 9 16 25 36 49 64
b. 0 1 4 9
```

4. Határozd meg n! értékét! **faktorialis**

$$n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$$

Bemenet	Kimenet
2	2
3	6
5	120
8	40320
13	6227020800

5. Kérj be egy 1 és 5 közötti egész számot! Teszteld a bemenetet és addig próbálkozz újra, amíg helyeset nem ad meg a felhasználó! osztalyzat

6. Határozd meg egy n pozitív egésznél nem nagyobb (kisebb vagy egyenlő) pozitív páratlan számok összegét! paratlan_osszeg

Bemenet	Kimenet
7	16
18	81
486	59049

Megjegyzés: van rá matematikai megoldás is, de most ne használjuk!

Páratlan esetén:
$$\left(\frac{n+1}{2}\right)^2$$
 Páros esetén: $\left(\frac{n}{2}\right)^2$

7. Határozd meg egy valós szám pozitív egész kitevőjű hatványát a hatványozás (**) művelete nélkül! hatvany

$$a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_n$$

Bemenet	Kimenet
2 3	8
3 4	81
-1 4	1

8. Határozd meg egy pozitív egész szám pozitív osztóit! osztok

Minta1:

n: 6

Osztók: 1 2 3 6

Minta2:

n: 11

Osztók: 1 11

Minta3:

n: 24

Osztók: 1 2 3 4 6 8 12 24

Minta4:

n: 392

Osztók: 1 2 4 7 8 14 28 49 56 98 196 392

9. Döntsd el egy pozitív egész számról, hogy prímszám-e! primszam

Bemenet	Kimenet
2	Prím!
5	Prím!
8	Nem prím!
13	Prím!
15	Nem prím!
1	Nem prím!

10. Határozd meg két szám legkisebb közös többszörösét! **1kkt**

Bemenet	Kimenet
20 24	120
40 50	200
40 126	2520

Egyszerű algoritmus:

```
C := A
D := B
Ciklus amíg C ≠ D
Ha C > D akkor
D := D + B
különben
C := C + A
Elágazás vége
Ciklus vége
```

11. Határozd meg két szám legnagyobb közös osztóját! 1nko

Bemenet	Kimenet
20 24	4
40 50	10
504 480	24

Egyszerű algoritmus:

- Ha egyenlőek, akkor megvan az lnko.
- különben vonjuk ki a nagyobb számból a kisebbet és haladjunk tovább!

Euklideszi algoritmus:

LNKO	
$a=q_1\cdot b+r_1$	
$b=q_2\cdot r_1+r_2$	
$r_1=q_3\cdot r_2+r_3$	
• • •	
$r_{n-2}=q_n\cdot r_{n-1}+r_n$	

Ha $r_n=0$ akkor r_{n-1} a legnagyobb közös osztó.

Vagyis végezzük el maradékos osztások sorozatát, amíg a maradék 0 lesz.

12. Írjuk ki egy buszállomás menetrendjét! Az első 08:00-kor indul, majd 25 percenként jön a következő járat egészen 18:00-ig! busz

Minta:

Ciklus.md

13. Határozd meg az alábbi összeg értékét rögzített n esetén! szorzat_osszeg

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n \cdot (n+1) = ???$$

Bemenet	Kimenet
1	2
2	8
3	20
8	240
47	36848