SRN							

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE14CS311 (Class of CB)

END SEMESTER ASSESSMENT (ESA) B.Tech. V SEMESTER- Dec. 2016

UE14CS311- Advanced Algorithms

		UE14CS311- Advanced Algorithms								
Tim	e: 3 l	Hrs Answer All Questions Max Marks: 1	00							
1.	a)	Compare Big-O, Ω and θ-notations with generic graphs of the asymptotic behavior.	06							
'•	b)	Sort the following functions in the increasing order of asymptotic growth rate. $n\sqrt{n}$, 1.01^n , $n^{1.3}$, 2^n , n^2 , $\log n$, $n \log n$, \sqrt{n} , 10^{10} .	06							
	c)	How does accounting method work to find the amortized cost of an operation? Using accounting method find the amortized cost of the following operation on a data structure. A sequence of n operations is performed on a data structure. The i^{th} operation costs i if i is an exact power of 2, and 1 otherwise.	08							
2.	a)	What is a suffix tree? Write a suffix tree of the string "abaaba" and explain the method searching substrings "baa" and "baabb" in the string.	06							
	b)	Construct a generalized (compact) suffix tree of two strings "nonsense" and "offense" with unique end markers \$1 and \$2.								
	c)	Explain the core principle used in the Robin-Karp algorithm. As an example, in a text "TTATAGATCTCGTATTCTTTTATAGATCTCCTATTCTT", search for the pattern "TCCTATTCTT" using the Robin-Karp algorithm.	08							
	b)	insert a node with value 21 into the following Fibonacci Heap. Dark shaded nodes are "marked". H.min 23-7 39 41) Explain the method of decreasing the value of a node from the Fibonacci Heap with an appropriate example. Write the Ford-Fulkerson algorithm to find the maximum flow in a flow network. Using Ford-Fulkerson method, find the maximum flow for the flow network shown below.								
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								

SRN							

4.	а)	Find the point-value representation of the polynomial $A(x) = 51 + 2x + 10x^2 + 3x^3$ using 4^{th} roots of unity as the distinct points.					
	b)	ots of unity as the distinct points. de a proof for the Halving lemma: If n > 0 is even, then the squares of the n lex nth roots of unity are the n/2 complex (n/2)th roots of unity. the reasoning behind the recursive FFT algorithm to find convert a polynomial coefficient representation to point-value representation and write the algorithm. x₁, y₁ in gcd(210, 90) = 210x₁ + 90y₁, and x₂, y₂ in gcd(8400, 4620) = 8400x₂ + 0/2 using Extended Euclid's Algorithm. de a proof for the theorem: If a and b are any integers, not both zero, then gcd(a, the smallest positive element of the set {ax + by : x, y ∈ Z} of linear combinations and b. ss the high-level working of Digital signatures in a public-key system with a 0	06				
	c)	Build the reasoning behind the recursive FFT algorithm to find convert a polynomial from coefficient representation to point-value representation and write the algorithm.	08				
5.	a)	Find x_1 , y_1 in gcd(210, 90) = 210 x_1 + 90 y_1 , and x_2 , y_2 in gcd(8400, 4620) = 8400 x_2 + 4620 y_2 using Extended Euclid's Algorithm.	06				
	b)	Provide a proof for the theorem: If a and b are any integers, not both zero, then gcd(a, b) is the smallest positive element of the set {ax + by : x, y ∈ Z} of linear combinations of a and b.	06				
	c)	Discuss the high-level working of Digital signatures in a public-key system with a simple diagram of sender Seeta sending a message M to receiver Rama.	08				