Scilab Textbook Companion for Trigonometry by M. Corral¹

Created by
S Sai Ashrith Reddy
B.Tech
Electrical Engineering
NITK
College Teacher
None
Cross-Checked by
Chaitanya Potti

July 16, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Trigonometry

Author: M. Corral

Publisher: Createspace Independent Publishing North Charlestn

Edition: 2

Year: 2010

ISBN: 9781475074574

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Right Triangle Trigonometry	11
2	General Triangles	55
3	Identities	7 6
4	Radian Measure	77
5	Graphing and inverse functions	91
6	Additional Topics	116
8	Appendix B	125

List of Scilab Codes

Exa 1.1	To determine unknown angle in 3 given triangles	11
Exa 1.3	To determine length of unknown side in 3 given right	
	triangles	12
Exa 1.4	To determine height of the top of ladder touching the	
	wall	13
Exa 1.5	To find values of all trigonometric functions for angles	
	A and B	15
Exa 1.6	To find values of all trigonometric functions for 45 degree	18
Exa 1.7	To find values of all trigonometric functions for 60 degree	19
Exa 1.8	To find all trigonometric functions when sine functions	
	is given	21
Exa 1.9	To convert given function into function of angle less than	
	45	23
Exa 1.10	To find sine cosine and tangent functions for 75 degree	24
Exa 1.11	To find the height of the flagpole	27
Exa 1.12	To find the height of mountain	28
Exa 1.13	To find the horizontal distance from blimp to house	29
Exa 1.14	To estimate radius of earth when angle of depression is	
	known	30
Exa 1.15	To find the distance from centre of earth to sun	32
Exa 1.16	To determine the radius of sun	34
Exa 1.17	To determine the diameter of larger roller	35
Exa 1.19	To solve the right triangle with given information	37
Exa 1.20	To find values of all trigonometric values of given angle	
	of 120	39
Exa 1.21	To find values of all trigonometric values of given angle	
	of 225	41

Exa 1.22	To find values of all trigonometric values of given angle of 330	4
Exa 1.23	To find trigonometric ratios of 0 90 180 and 270 degrees	4
Exa 1.24	To determine reference angle and angle between 0 to 360 with same terminal side as given angle	4
Exa 1.25	To find sin theta and tan theta when cos theta is given	5
Exa 1.27	To find all the angles with a given sine function value	5
Exa 2.1	To solve the triangle when one side and 2 angles are given	5
Exa 2.2	To solve the triangle when 2 sides and one opposite angle is given	5
Exa 2.3	To solve the triangle when 2 sides and opposite angle is given	5
Exa 2.4	To solve the triangle when 2 sides and angle between	
Exa 2.5	them is given	5
Exa 2.5	them is given	6
Exa 2.6	To solve the triangle when 3 sides are given	6
Exa 2.0 Exa 2.7	To determine solution of a triangle when 3 sides are given	6
Exa 2.8	To solve the triangle when 2 sides and opposite angle is	6
Exa 2.10	given	6
Exa 2.11	given To check the solution of triangle using Mollweide equation	6
Exa 2.12	To determine if a triangle can be formed with given dimension	6
Exa 2.13	To determine area of triangle when 2 sides and an angle is given	6
Exa 2.14	To determine area of triangle when 3 angles and a side is given	6
Exa 2.15	To determine area of triangle when 3 sides are given .	6
Exa 2.16	To determine area of triangle when 3 sides are given .	7
Exa 2.17	To find radius of circumscribed circle for triangle ABC	7
Exa 2.18	To find the radius of circumscribed circle for triangle ABC	7
Exa 2.19	To determine radius of inscribed circle ABC	7
Exa 3.8	To determine values of functions of sum of 2 angles when	'
LAW 0.0	functions of 2 angles are given	7

Exa 4.1	To convert a degree measure to radians	77
Exa 4.2	To convert a radian measure to degree	77
Exa 4.3	To determine length of the intercepted arc	78
Exa 4.4	To determine length of the arc intercepted	78
Exa 4.5	To determine angle in radians and degrees	78
Exa 4.6	To determine the length of the rope	79
Exa 4.7	To determine the length of the belt around the pulleys	81
Exa 4.8	To find the area of sector of circle	82
Exa 4.9	To determine area of sector of a circle	82
Exa 4.10	To determine area of sector of circle	83
Exa 4.11	To determine area insude belt pulley system	84
Exa 4.12	To determine area of segment formed by a chord in circle	85
Exa 4.13	To determine area of intersection of 2 circles	86
Exa 4.14	To find linear and angular speed of a moving object .	87
Exa 4.15	To find linear and angular speed of a moving object .	88
Exa 4.16	To find the central angle swept by a moving object	88
Exa 4.17	To find the angular speed of larger gear interlocked with	
	smaller gear	89
Exa 5.1	To sketch the graph of minus sinx in a given interval .	91
Exa 5.2	To sketch the graph of given function of in given interval	93
Exa 5.4	To determine the period of given sinusoidal function .	94
Exa 5.5	To determine the period of 2 given cosine functions	95
Exa 5.6	To determine the amplitude and period of given function	97
Exa 5.7	To find amplitude and period of given composite func-	
	tion	99
Exa 5.8	To find the amplitude and period of given function	102
Exa 5.9	To find the amplitude and period of given function	104
Exa 5.10	To find the period of given function	107
Exa 5.11	To find the amplitude phase shift and period of given	
	function	108
Exa 5.12	To find the amplitude phase shift and period of given	
	function	110
Exa 5.13	To determine inverse sine function of a given value	113
Exa 5.14	To determine inverse sine function of a given value	113
Exa 5.15	To determine inverse cosine function of a given value .	113
Exa 5.16	To determine inverse cosine function of a given value.	114
Exa 5.17	To determine inverse tan function of a given value	114
Exa 5.18	To determine inverse tan function of a given value	115
		-

Exa 5.19	To determine exact value of given expression involving	
	inverse trigonometric functions	115
Exa 6.3	To solve the given equation	116
Exa 6.4	To solve the given equation	116
Exa 6.9	To find the result of basic operations on 2 given complex	
	numbers	117
Exa 6.10	To represent given complex number in trigonometric form	118
Exa 6.11	To determine product and ratio of complex numbers	
	using formula	119
Exa 6.12	To find higher powers of complex number using demoivre	
	theorem	120
Exa 6.13	To determine the cube roots of i	120
Exa 6.15	To convert from polar to cartesian coordinates	121
Exa 6.16	To convert from cartesian to polar coordinates	122
Exa 6.17	To express an equation in polar coordinates	123
Exa 6.19	To express an equation in polar coordinates	123
Exa 8.1	To plot the function of $\sin x \dots \dots \dots$	125

List of Figures

1.1	To determine unknown angle in 3 given triangles	11
1.2	To determine length of unknown side in 3 given right triangles	12
1.3	To determine height of the top of ladder touching the wall .	14
1.4	To find values of all trigonometric functions for angles A and	
	B	15
1.5	To find values of all trigonometric functions for 45 degree	17
1.6	To find values of all trigonometric functions for 60 degree	20
1.7	To find all trigonometric functions when sine functions is given	22
1.8	To convert given function into function of angle less than 45	23
1.9	To find sine cosine and tangent functions for 75 degree	25
1.10	To find the height of the flagpole	27
1.11	To find the height of mountain	28
1.12	To find the horizontal distance from blimp to house	30
1.13	To estimate radius of earth when angle of depression is known	31
1.14	To find the distance from centre of earth to sun	33
1.15	To determine the radius of sun	34
1.16	To determine the diameter of larger roller	36
1.17	To solve the right triangle with given information	38
1.18	To find values of all trigonometric values of given angle of 120	40
1.19	To find values of all trigonometric values of given angle of 225	42
1.20	To find values of all trigonometric values of given angle of 330	44
1.21	To find trigonometric ratios of 0 90 180 and 270 degrees	46
1.22	To determine reference angle and angle between 0 to 360 with	
	same terminal side as given angle	50
1.23	To find sin theta and tan theta when cos theta is given	51
1.24	To find all the angles with a given sine function value	53
2.1	To solve the triangle when one side and 2 angles are given .	56
$\angle . \bot$	to solve the triangle when one side and 2 angles are given .	50

2.2	To solve the triangle when 2 sides and one opposite angle is	T.C
2.3	given	56
2.0	given	58
2.4	To solve the triangle when 2 sides and angle between them is	00
	given	59
2.5	To solve the triangle when 3 sides are given	61
2.6	To determine solution of a triangle when 3 sides are given	62
2.7	To solve the triangle when 2 sides and included angle is given	65
2.8	To determine area of triangle when 2 sides and an angle is given	67
2.9	To determine area of triangle when 3 angles and a side is given	68
2.10	To determine area of triangle when 3 sides are given	69
2.11	To find radius of circumscribed circle for triangle ABC	71
2.12	To find the radius of circumscribed circle for triangle ABC .	72
2.13	To determine radius of inscribed circle ABC	74
4.1	To determine the length of the rope	80
4.2	To determine the length of the belt around the pulleys	81
4.3	To determine area insude belt pulley system	83
4.4	To determine area of segment formed by a chord in circle	85
4.5	To determine area of intersection of 2 circles	86
4.6	To find the angular speed of larger gear interlocked with smaller	
	gear	89
5.1	To sketch the graph of minus sinx in a given interval	92
5.2	To sketch the graph of minus sinx in a given interval	92
5.3	To sketch the graph of given function of in given interval	93
5.4	To sketch the graph of given function of in given interval	94
5.5	To determine the period of given sinusoidal function	94
5.6	To determine the period of given sinusoidal function	96
5.7	To determine the period of 2 given cosine functions	96
5.8	To determine the period of 2 given cosine functions	98
5.9	To determine the amplitude and period of given function	98
5.10	To determine the amplitude and period of given function	100
5.11	To find amplitude and period of given composite function .	100
5.12	To find amplitude and period of given composite function .	102
5.13	To find the amplitude and period of given function	103
5.14	To find the amplitude and period of given function	104

5.15	To find the amplitude and period of given function	105
5.16	To find the amplitude and period of given function	106
5.17	To find the period of given function	107
5.18	To find the period of given function	109
5.19	To find the amplitude phase shift and period of given function	109
5.20	To find the amplitude phase shift and period of given function	111
5.21	To find the amplitude phase shift and period of given function	111
5.22	To find the amplitude phase shift and period of given function	112
0.1		100
8.1	To plot the function of sin x	126
8.2	To plot the function of sin x	127

Chapter 1

Right Triangle Trigonometry

Scilab code Exa 1.1 To determine unknown angle in 3 given triangles

```
1 clc,clear
2 //example 1.1
3 //To determine unknown angle in 3 given triangles
4
5 //Triangle ABC
6 A = 35//angle at vertex A in degrees
7 C = 20//angle at vertex C in degrees
8 B=180- (A+C) //unknown angle
9 printf('Triangle ABC: B = %.0 f degree\n',B)
10
11 //Triangle DEF
```


Figure 1.1: To determine unknown angle in 3 given triangles

Figure 1.2: To determine length of unknown side in 3 given right triangles

```
12 E = 53//angle at vertex E in degree
13 //F = 90, DEF is right triangle
14 //So angles E and D are complimentary
15 D = 90- E //unknown angle
16 printf(' Triangle DEF: D = %.0 f degree\n',D)
17
18 //Triangle XYZ
19 sum_multiple= 1+3+1 //for solvong for alpha
20 alpha = 180/ sum_multiple
21 X= alpha //unknown angle
22 Y= 3* alpha //unknown angle
23 Z= alpha //unknown angle
24 printf(' Triangle XYZ: X=%.0 f degree Y=%.0 f degree Z=%.0 f degree',X,Y,Z)
```

Scilab code Exa 1.3 To determine length of unknown side in 3 given right triangles

```
6 AB=5 //given
7 AC=4 //given
8 a=sqrt(AB^2- AC^2) //by pythagoras theorem
9 printf('Triangle ABC: a=%f units \n',a)
10
11 //Triangle DEF
12 DE=2 //given
13 EF=1 //given
14 e=sqrt(DE^2- EF^2) //by pythagoras theorem
15 printf ('Triangle DEF: e=%f units = sqrt(%f) units\n
      ',e,e^2)
16
17 // Triangle XYZ
18 XZ=1 //given
19 YZ=1 //given
20 z=sqrt(XZ^2+YZ^2)//by pythagoras theorem
21 printf ('Triangle XYZ: z=%f units = sqrt (%f) units \n
     ',z,z^2)
```

Scilab code Exa 1.4 To determine height of the top of ladder touching the wall

Figure 1.3: To determine height of the top of ladder touching the wall

Figure 1.4: To find values of all trigonometric functions for angles A and B

```
with wall = \%.0 \, f \, ft, h)
```

Scilab code Exa 1.5 To find values of all trigonometric functions for angles A and B

```
1 clc,clear
2 //example 1.5
3 //To find values of all trigonometric functions for angles A and B
```

```
4
5 //Angle at vertex A
6 opposite = 3;
7 \text{ adjacent} = 4;
8 hypotenuse=5;
10 sin_A = opposite / hypotenuse;
11 cos_A = adjacent / hypotenuse;
12 tan_A = opposite / adjacent;
13 csc_A = hypotenuse/opposite;
14 sec_A = hypotenuse/adjacent;
15 cot_A = adjacent / opposite;
16 printf('ANGLE A')
17 printf ('\nsin(A)= \%.1 f ; \cos(A)=\%.2 f; \tan(A)=
     \%.2\:f\:; \backslash\:n ',sin_A ,cos_A ,tan_A)
18 printf ('\csc(A)= %.3 f; \sec(A)= %.2 f; \cot(A)= %.2 f
      ; ',csc_A,sec_A,cot_A)
19
20 //Angle at vertex B
21 opposite = 4;
22 adjacent = 3;
23 hypotenuse=5;
24
25 sin_B = opposite / hypotenuse;
26 cos_B = adjacent / hypotenuse;
27 tan_B = opposite / adjacent;
28 csc_B = hypotenuse/opposite;
29 sec_B = hypotenuse/adjacent;
30 cot_B = adjacent / opposite;
31 printf('\n\nANGLE B')
32 printf ('\nsin(B)= \%.1 f ; \cos(B)=\%.2 f;
                                                   tan(B) =
     \%.2 f; \ n', sin_B, cos_B, tan_B)
33 printf ('\csc (B)= %.2 f; \sec (B)= %.2 f;
                                                \cot (B) = \%.2
      f; ',csc_B,sec_B,cot_B)
```


Figure 1.5: To find values of all trigonometric functions for $45~\mathrm{degree}$

Scilab code Exa 1.6 To find values of all trigonometric functions for 45 degree

```
1 clc, clear
2 //example 1.6
3 //To find values of all trigonometric functions for
     45 degree
  //Consider a square of side 1 and divide it half
      diagonally
  //ABC is now an isosceles triangle
  //angle A and B are now equal and = 45 degree
9 AC=1;
10 BC=1;
11 AB=sqrt(AC^2+BC^2) //by pythagoras theorem
12 c=AB //we denote AB by c as its opposite to C
13
14 //conside angle BAC=45 degree
15 opposite = BC;
16 adjacent = AC;
17 hypotenuse = c;
18 sin_45 = opposite / hypotenuse;
19 cos_45 = adjacent / hypotenuse;
20 tan_45 = opposite / adjacent;
21 csc_45 = hypotenuse/opposite;
22 sec_45 = hypotenuse/adjacent;
23 cot_45 = adjacent / opposite;
24
25 printf('ANGLE = 45 degree')
26 printf ('\nsin (45) = \%.4 f; \cos (45) = \%.4 f; \tan (45) =
     \%.2 f; \ n', sin_45, cos_45, tan_45)
27 printf ('\csc(45)) = %.4 f; \sec(45) = %.4 f; \cot(45) = %
      .2 f; ',csc_45,sec_45,cot_45)
```

Scilab code Exa 1.7 To find values of all trigonometric functions for 60 degree

```
1 clc, clear
2 //example 1.7
3 //To find values of all trigonometric functions for
     60 degree
 //take an equilateral triangle of side 2 and divide
     it by half
6 // all 3 angles of equilateral triangle are same as
     60 degree
7 //the bisector of angle is also the perepndicual
     bisector of oppsoite side
  // Thus, A=60 B=30 C=90 in new triangle as shown in
     figure
10 AB = 2; c=AB;
11 AC = AB/2; b=AC;
12 a=sqrt(c^2-b^2)//pythagoras theorem
13
14 //For angle A=60 degree
15 opposite = a;
16 adjacent = b;
17 hypotenuse = c;
18 sin_60 = opposite / hypotenuse;
19 cos_60 = adjacent / hypotenuse;
20 tan_60 = opposite / adjacent;
21 csc_60 = hypotenuse/opposite;
22 sec_60 = hypotenuse/adjacent;
23 cot_60 = adjacent / opposite;
24 printf('ANGLE = 60 degree')
```


Figure 1.6: To find values of all trigonometric functions for 60 degree

```
25 printf ('\nsin(60)= \%.4 f; \cos(60)= \%.4 f;
                                                     \tan (60) =
       \%.4 f; \ n', sin_60, cos_60, tan_60)
26 printf('\csc(60)= %.4 f; \sec(60)= %.4 f;
                                                   \cot (60) = \%
      .4 f; ',csc_60,sec_60,cot_60)
27
28 //For angle ABC=30 degree
29 opposite = b;
30 adjacent = a;
31 hypotenuse = c;
32 sin_30 = opposite / hypotenuse;
33 cos_30 = adjacent / hypotenuse;
34 tan_30 = opposite / adjacent;
35 csc_30 = hypotenuse/opposite;
36 sec_30 = hypotenuse/adjacent;
37 cot_30 = adjacent / opposite;
38 printf('\n\nANGLE = 30 degree')
39 printf('\nsin(30)= \%.4f; \cos(30)= \%.4f;
                                                     \tan (30) =
       \%.4 f; n', sin_30, cos_30, tan_30
40 printf ('csc(30) = \%.4 \, \text{f}; sec(30) = \%.4 \, \text{f};
                                                   \cot (30) = \%
      .4 f; ',csc_30,sec_30,cot_30)
```

Scilab code Exa 1.8 To find all trigonometric functions when sine functions is given

```
1 clc,clear
2 //example 1.8
3 //To find all trigonometric functions when sine
    functions is given
4
5 sin_A=2/3 //given
6 //since sine function is opposite/hypotenuse and
7 //T-ratios are defined interms of ratio of sided of right triangle
```


Figure 1.7: To find all trigonometric functions when sine functions is given

Figure 1.8: To convert given function into function of angle less than 45

```
8 opposite=2;
9 hypotenuse=3;
10 BC = opposite;
11 AB = hypotenuse;
12 b = sqrt(hypotenuse^2- opposite^2) //by pythagoras
      theorem
13 adjacent = b;
14
15 cos_A = adjacent / hypotenuse;
16 tan_A = opposite / adjacent;
17 csc_A = hypotenuse/opposite;
18 sec_A = hypotenuse/adjacent;
19 cot_A = adjacent / opposite;
20
21 printf('for ANGLE A')
22 printf('\nsin(A)= %.4f; \cos(A)=%.4f; \tan(A)=%
      .4 f; \ n', sin_A, cos_A, tan_A)
23 printf ('\csc(A) = \%.4 f; \sec(A) = \%.4 f; \cot(A) = \%.4 f
      ; ', csc_A , sec_A , cot_A)
```

Scilab code Exa 1.9 To convert given function into function of angle less than 45

```
1 clc, clear
\frac{2}{\sqrt{\text{example } 1.9}}
3 //To convert given function into function of angle
      less than 45
5 //(a) \sin 65
6 \text{ angle} = 65;
7 complement_angle = 90- 65;
8 //cofuction of sine is cosine
9 printf('(a) \sin (\%f) = \cos (\%f) \setminus n', angle,
      complement_angle)
10
11 //(b) \cos 78
12 \text{ angle} = 78;
13 complement_angle = 90- 78;
14 //cofuction of cosine is sine
15 printf('(b) \cos(\%f) = \sin(\%f) \setminus n', angle,
      complement_angle)
16
17 / (c) \tan 59
18 \text{ angle} = 59;
19 complement_angle = 90- 59;
20 //cofuction of tan is cot
21 printf('(c) tan(\%f)= cot (\%f)\n',angle,
      complement_angle)
```

Scilab code Exa 1.10 To find sine cosine and tangent functions for 75 degree

```
1 clc, clear
```


Figure 1.9: To find sine cosine and tangent functions for $75~\mathrm{degree}$

```
2 //example 1.10
3 //To find sine, cosine and tangent functions for 75
      degree
5 // triangle\_ADB, angle_BAD = 30
6 \quad AB = sqrt(3); BD = 1;
7 AD=sqrt(AB^2+BD^2); //pythagoras theorem
9 //angle_DAB + angle_CAB = 75
10 / triangle\_ABC, angle_BAC = 45
11 //pythagoras theorem and 45 degrees
12 AC=AB/sqrt(2); BC=AC;
13
14 \text{ angle\_BAC} = 45 ; \text{ angle\_DAB} = 30 ;
15 angle_DAE = angle_BAC + angle_DAB ; //required angle
16 angle_ADE = 90 - angle_DAE ; //complement of DAE
17 angle_ADB = 90 - angle_DAB ; //complement of DAB
18
19 //Draw BF perpendicular to DE
20 angle_BDF = angle_ADB - angle_ADE;
21 angle_DBF = 90 - angle_BDF; //complement of BDF
22 //By pythagoras theorem and 45 degree
23 DF = sqrt(BD/2); FB = DF;
24
25 EC=FB; // parallel sides of rectangle
26 FE= BC; //parallel sides of rectangle
27 DE=DF+FE; //from the figure
28 AE=AC-EC; //from the figure
29
30 \sin_DAE = DE/AD;
31 \cos_DAE = AE/AD;
32 \tan_DAE = DE/AE;
33 \text{ csc\_DAE} = AD/DE;
34 \text{ sec\_DAE} = AD/AE;
35 \text{ cot}_DAE = AE/DE;
36
37 printf('\sin (\%d) = \%f \setminus n',angle_DAE,sin_DAE);
38 printf ('\cos (\%d) = \%f \setminus n', angle_DAE, cos_DAE);
```


Figure 1.10: To find the height of the flagpole

```
39 printf ('tan (%d)=%f\n', angle_DAE, tan_DAE);
40 printf ('csc (%d)=%f\n', angle_DAE, csc_DAE);
41 printf ('sec (%d)=%f\n', angle_DAE, sec_DAE);
42 printf ('cot (%d)=%f\n', angle_DAE, cot_DAE);
```

Scilab code Exa 1.11 To find the height of the flagpole

```
1 clc,clear
2 //example 1.11
3 //To find the height of the flagpole
4
5 //conside the attached figure
6 d=150 //distance of person from flagpole in feet
```


Figure 1.11: To find the height of mountain

```
7 angle_ele = 32 //angle of elevation in degree
8 height_eyes =6 //height of man's eyes
9 h= d*tand(angle_ele)
10 height_flagpole = height_eyes + h
11 printf('Required height of flagpole = %.0 f ft', height_flagpole)
```

Scilab code Exa 1.12 To find the height of mountain

```
1 clc,clear
2 //Example 1.12
3 //To find the height of mountain
4
5 //from the figure
```

```
6 //h is height of mountain in degree
7 //x is distance from base of mountain to the point
     under top of mountain
9 d1=400 //initial ditance from base of mountain in
10 d2=500 //final ditance from base of mountain in feet
11 theta1=25 //initial angle of elevation in degrees
12 theta2=20 //final angle of elevation in degrees
13
14 //from the figure
15 / h = (x+d1) * tand(theta1)
16 / h = (x+d2) * tand(theta2)
17 //eliminating h and solving for x
18 x=((d1+d2)*tand(theta2) - d1*tand(theta1))/(tand(
     theta1)-tand(theta2))
19 //substituting x in expression for h
20 h = (x+d1) *tand(theta1)
21 printf('Height of mountain = \%.0 f feet',h)
```

Scilab code Exa 1.13 To find the horizontal distance from blimp to house

```
1 clc,clear
2 //Example 1.13
3 //To find the horizontal distance from blimp to house
4 
5 //consider the figure attached
6 angle_dep = 24 //angle of depression in degrees
7 theta = angle_dep //angle of elevation
8 height_blimp = 4280 //height of blimp from ground in feet
9 x = height_blimp / tand(theta) //required distance
```


Figure 1.12: To find the horizontal distance from blimp to house

Scilab code Exa 1.14 To estimate radius of earth when angle of depression is known

```
1 clc,clear
2 //Example 1.14
3 //To estimate radius of earth when angle of
    depression is known
4
5 angle_dep = 2.23 //angle of depression in degrees
```


Figure 1.13: To estimate radius of earth when angle of depression is known

```
6 //In the figure,
7 //r is the radius of earth
8 //A represent the top of the mountain
9 //H be the ocean horizon in the line of sight from A
10 //O be the center of the earth
11 //B is a point on the horizontal line of sight from
     Α
12
13 \text{ angle\_OAH} = 90 - \text{angle\_dep};
14 theta = 180 - 90 - angle_OAH ;
15 height=3 //height of mountain
16 //r is radius of earth to be determined
17
18 //distance from top of mountain from centre = r +
      height
19 // \cos d (theta) = r/r + height ... solving further
20 r = height*cosd(theta)/(1-cosd(theta));
21 printf ('Radius of earth as calculated = \%.1 f miles\n
      ',r)
```

Scilab code Exa 1.15 To find the distance from centre of earth to sun

```
1 clc,clear
2 //Example 1.15
3 // To find the distance from centre of earth to sun
4
5 alpha = 0.00244; // equitorial paralalx in degree
6 OA = 3956.6; //radius of earth
7 angle_OAB = 90;
8
9 OB = OA / sind(alpha);
10 printf('Distance is obtained as %.0f miles = %.0f million miles',OB,OB/10^6)
```


Figure 1.14: To find the distance from centre of earth to sun $\overset{}{33}$

Figure 1.15: To determine the radius of sun

Scilab code Exa 1.16 To determine the radius of sun

```
1 clc,clear
2 //Example 1.16
3 // To determine the radius of sun
4
5 angle_AEB =0 +(32/60)+ (4/60)/60//converting to degrees
6
7 //Triangle BES and AES are similar
8 //BS=AS as they are radius
9 //ES is common to both triangles
10 //angle_EBS=angle_ABS =90 as tangents are perpendicualar to radius
11 // angle_AES = angle_BES
12 angle_AES = angle_AEB /2;
```

```
13 angle_BES= angle_AEB /2;
14
15 //to find ditance from sun to centre of earth
16 //obtained from previous example
17 alpha = 0.00244; // equitorial paralalx in degree
18 OA = 3956.6; // radius of earth
19 angle_OAB = 90 ; //radius perpendicular to tangent
20 	ext{ OB} = 	ext{OA} / 	ext{sind(alpha)};
21
22 //ES is from earth surface to sun centre
23 //centre of earth to sun is OB
24 //we initially treated sun as point
25 //that ditance is distance between their centres
26 radius_earth=3956.6 ;//in miles
27 ES = OB - radius_earth; // in miles
28 AS=ES * sind(angle_AES) ;//in miles
29 printf ('Required radius of sun = \%.0 f miles n', AS)
30 printf ('Answer might vary due to approximations in
      book and scilab precision')
```

Scilab code Exa 1.17 To determine the diameter of larger roller

```
1 clc,clear
2 //Example 1.17
3 //To find the diameter of larger roller
4 
5 //since radius perpendicular to tangent
6 angle_ODA=90;
7 angle_PEC=90
8 angle_OAD=37 ;//by symmetry
9 ED=1.38 ;//given
10 //since DOA is right triangle, DOA and OAD are complementary angles
```


Figure 1.16: To determine the diameter of larger roller

```
11 angle_DOA=90 - angle_OAD ;
12
13 //since radius perpendicular to tangent
14 angle_OBC=90;
15 angle_PBC=90;
16
17 //since ODA and ODC are right triangle,
18 //OD = OB as radius and BC=DC by pythagoras
19 //OBC and ODC are now congruent
20 / \text{angle\_BOC} = \text{angle\_DOC}
21 / \text{angle\_BOC} + \text{angle\_DOC} = (90 - \text{angle\_OAD})
22 angle_BOC= (90-angle_OAD)/2;
23 angle_DOC= (90-angle_OAD)/2;
24
25 //BP=EP as radius
26 //since radius perpendicular to tangent
27 angle_PBC=90;
28 angle_PEC=90;
29 //Thus, BPC and EPC are congruent triangles
30 //Therefore,BC=DC and BC+DC = ED
31 BC = ED /2;
32 DC = ED /2;
33 OB = BC / tand(angle_BOC); //radius of large roller
34 diameter= 2* OB;
35 printf ('Diameter of larger roller = \%.3 f units',
      diameter)
```

Scilab code Exa 1.19 To solve the right triangle with given information

```
1 clc,clear
2 //Example 1.19
3 //To solve the right triangle with given information
4
```


Figure 1.17: To solve the right triangle with given information ${\bf r}$

```
5 //part(a)
6 c=10; //side opposite to vertex C
7 A=22; //Angle at vertex A
8 a=c*sind(A);
9 b=c*cosd(A);
10 B=90 - A; //since C is 90, A and B are complimentary
11 printf ('(a) a= \%.2 \text{ f} units; b= \%.2 \text{ f} units; B = \%.0 \text{ f}
      degree \ n', a, b, B)
12
13 //part(b)
14 b=8; // side opposite to vertex B
15 A=40; //Angle at vertex A
16 = b*tand(A);
17 c=b/cosd(A);
18 B=90 - A; //since C is 90, A and B are complimentary
19 printf(' (b) a = \%.2 f units; c = \%.2 f units; B = \%.0 f
      degree \ n', a, c, B)
20
21 //part(c)
22 a=3; //side opposite to vertex A
23 b=4 ;//side opposite to vertex B
24 c=sqrt(a^2+b^2);//by pythagoras theorem
25 A = atand(a/b); //angle at vertex A
26 B=90 - A; //since C is 90, A and B are complimentary
27 printf('(c)c=\%.0 \text{ f units}; A= \% \text{f degree}; B = \% \text{f}
       degree',c,A,B)
```

Scilab code Exa 1.20 To find values of all trigonometric values of given angle of 120

```
1 clc,clear
2 //Example 1.20
3 //To find values of all trigonometric values of
```


Figure 1.18: To find values of all trigonometric values of given angle of 120

```
given angle of 120
4
5 theta=120; //given angle in degree
6 //Consider a point (-1, sqrt(3)) in 2nd quadrant
7 //This point can be used on terminal side of 120
8 //Thus for a basic right angled triangle formed in
      second quadrant
9 adjacent = 1;
10 \text{ opposite} = \text{sqrt}(3);
11 //by pythagoras theorem
12 hypotenuse = sqrt(adjacent^2 + opposite^2);
13
14 //since its third quadrant
15 \text{ x=-adjacent};
16 \text{ y= opposite;}
17 r=hypotenuse;
18
19 \sin_{120} = y/r;
20 \cos_{120} = x/r;
21 tan_120 = y/x;
22 csc_120 = r/y ;
23 \text{ sec}_120 = r/x ;
24 \cot_{120} = x/y;
25
26 printf ('\nsin (%d)= %f; \cos (%d)= %f; \tan (%d)= %f;
      ,theta,sin_120,theta,cos_120,theta,tan_120)
27 printf('\ncsc(%d)= %f; sec(%d)= %f; cot(%d)= %f;'
      ,theta,csc_120,theta,sec_120,theta,cot_120)
```

Scilab code Exa 1.21 To find values of all trigonometric values of given angle of 225

```
1 clc, clear
```


Figure 1.19: To find values of all trigonometric values of given angle of 225

```
2 //Example 1.21
3 //To find values of all trigonometric values of
      given angle of 225
5 theta=225;//given angle in degree
6 //Consider a point (-1,-1) in 3rd quadrant
7 //This point can be used on terminal side of 225
8 //Thus for a basic right angled triangle formed in 3
      rd quadrant
9 \text{ adjacent} = 1;
10 opposite = 1;
11 //by pythagoras theorem
12 hypotenuse = sqrt(adjacent^2 + opposite^2);
13
14 //since its third quadrant
15 \text{ x=-adjacent};
16 \text{ y=-opposite};
17 r=hypotenuse;
18
19 \sin_{225} = y/r;
20 \cos_2 25 = x/r;
21 \tan_2 25 = y/x;
22 \ csc_225 = r/y ;
23 \text{ sec}_225 = r/x ;
24 \cot_{225} = x/y;
25
26 printf ('\nsin(\%d)= \%f; \cos(\%d)= \%f; \tan(\%d)= \%f;'
       ,theta,sin_225,theta,cos_225,theta,tan_225)
27 \operatorname{printf}(\ '\setminus \operatorname{ncsc}(\%d) = \%f \ ; \ \operatorname{sec}(\%d) = \%f \ ; \ \operatorname{cot}(\%d) = \%f \ ; '
       ,theta,csc_225,theta,sec_225,theta,cot_225)
```

Scilab code Exa 1.22 To find values of all trigonometric values of given angle of 330

Figure 1.20: To find values of all trigonometric values of given angle of 330

```
1 clc, clear
2 //Example 1.22
3 //To find values of all trigonometric values of
      given angle of 330
5 theta=330; //given angle in degree
6 //Consider a point (\operatorname{sqrt}(3), -1) in 4th quadrant
7 //This point can be used on terminal side of 330
8 //Thus for a basic right angled triangle formed in 4
      th quadrant
9 adjacent = sqrt(3);
10 opposite = 1;
11 hypotenuse = sqrt(adjacent^2 + opposite^2);
12 //by pythagoras theorem
13
14 //since its 4th quadrant
15 \text{ x=adjacent};
16 \text{ y=-opposite};
17 r=hypotenuse;
18
19 \sin_330 = y/r;
20 \cos_3 30 = x/r;
21 \tan_330 = y/x;
22 csc_330 = r/y ;
23 \text{ sec}_330 = r/x ;
24 \cot_330 = x/y;
25
26 printf('\nsin(%d)= %f; \cos(%d)= %f; \tan(%d)= %f;
      , theta , \sin_330 , theta , \cos_330 , theta , \tan_330)
27 printf('\ncsc(%d)= %f; sec(%d)= %f; cot(%d)= %f;'
      ,theta,csc_330,theta,sec_330,theta,cot_330)
```


Figure 1.21: To find trigonometric ratios of 0 90 180 and 270 degrees

Scilab code Exa 1.23 To find trigonometric ratios of 0 90 180 and 270 degrees

```
1 clc, clear
2 //Example 1.23
3 //To find trigonometric functions of various angles
4 // Note: Undefined ratios are commented to avoid
      divide by zero error
6 //zero degrees
7 //consider a point (1,0)
8 //Line segment joining (0,0) and (1,0) can be
      treated as triangle
9
10 \text{ x=1}/\text{base}
11 y=0//height
12 r=1 //hypotenuse
13 \sin_0 = y/r;
14 \cos_0 = x/r;
15 \tan_0 = y/x;
16 / \cos c_0 = r/y;
17 \text{ sec\_0} = r/x;
18 / \cot_{-0} = x/y;
19 printf('\nZERO DEGREES:\n')
20 printf('\sin(0) = \%f; \n', \sin_0)
21 printf('\cos(0) = \%f; \ n', \cos_0)
22 printf('\tan(0) = \%f; \ln', \tan_0)
23 printf('csc(0)= undefined = (1/0);\n')
24 printf('sec(0)= \%f;\n',sec_0)
25 printf('cot(0) = undefined = (1/0);\n')
26
\frac{27}{90} degrees
\frac{28}{\cos 2} //consider a point (0,1)
29 //Line segment joining (0,0) and (0,1) can be
      treated as triangle
30
31 \text{ x=0}//\text{base}
32 y=1//height
```

```
33 \text{ r=1} //\text{hypotenuse}
34 \sin_90 = y/r;
35 \cos_90 = x/r;
36 / \tan_{90} = y/x;
37 \ csc_{90} = r/y;
38 / \sec_{2} 90 = r/x;
39 \cot_{90}=x/y;
40 printf('\n90 DEGREES:\n')
41 printf ('\sin (90) = \%f; \ n', \sin_90)
42 printf ('\cos(90) = \%f; \n', \cos_90)
43 printf('tan(90)= undefined = (1/0);\n')
44 printf (' \csc (90) = \%f; \ n', \csc_90)
45 printf('sec(90)= undefined = (1/0);\n')
46 printf ('\cot (90) = \%f; \n', \cot_90)
47
48 //180 \text{ degrees}
49 // consider a point (-1,0)
50 //Line segment joining (0,0) and (-1,0) can be
      treated as triangle
51
52 x = -1 // base
53 y=0//height
54 r=1 //hypotenuse
55 \sin_1 180 = y/r;
56 \cos_180 = x/r;
57 \tan_180 = y/x;
58 / \cos 180 = r/y;
59 \text{ sec}_180 = r/x;
60 / \cot_{-1} 80 = x/y;
61 printf('\n180 DEGREES:\n')
62 printf ('sin (180) = \%f;\n',sin_180)
63 printf ('\cos (180) = \%f; \ n', \cos_180)
64 printf ('tan (180) = \%f;\n',tan_180)
65 printf ('csc(180) = undefined = (1/0);\n')
66 printf ('sec (180) = \%f;\n',sec_180)
67 printf ('cot (180) = undefined = (-1/0);\n')
68
69
```

```
70 //270 \text{ degrees}
71 //consider a point (0,-1)
72 //Line segment joining (0,0) and (0,-1) can be
      treated as triangle
73
74 \text{ x=0}//\text{base}
75 y = -1 // height
76 r=1 //hypotenuse
77 \sin_2 270 = y/r;
78 \cos_2 70 = x/r
79 / \tan_{-}90 = y/x;
80 \ csc_270 = r/y;
81 / \sec_{-}90 = r/x;
82 \cot_2 70 = x/y;
83 printf('\n270 DEGREES:\n')
84 printf ('\sin (270) = \%f; \ n', \sin_2 70)
85 printf ('\cos(270) = \%f; \ln', \cos_270)
86 printf('tan(270) = undefined = (-1/0);\n')
87 printf (' \csc (270) = \%f; \ n', \csc 270)
88 printf ('sec (270) = undefined = (1/0); \n')
89 printf ('cot (270) = \%f; \ n', \cot_270)
```

Scilab code Exa 1.24 To determine reference angle and angle between 0 to 360 with same terminal side as given angle

```
1 clc,clear
2 //Example 1.24
3 //To determine reference angle and angle ( 0 to 360
     ) with same terminal side as given angle
4
5 theta = 928 ;//given angle in degrees
6
7 //The while loop works for ALL VALUES OF theta
```


Figure 1.22: To determine reference angle and angle between 0 to 360 with same terminal side as given angle

Figure 1.23: To find sin theta and tan theta when cos theta is given

```
8 //It keeps subtracting 360 till a value in (0 to
      360) is obtained
    result = theta ;
  while 1==1,
11
       if result <360 then
           printf('(a) Required angel between 0 and 360
12
              is %.0f degree', result);
           break
13
14
       end
15
       result = result - 360;
16 \text{ end}
17
18 //928 and 208 has same terminal side in 3rd quadrant
19 //so their reference angle is same
20 ref_angle_928 = result - 180 ; //required reference
21 printf('\n(b) Reference angel for %.0f is %.0f degree
      ',theta,ref_angle_928)
```

Scilab code Exa 1.25 To find sin theta and tan theta when cos theta is given

```
1 clc, clear
2 //Example 1.25
3 //To find sin_theta and tan_theta when cos_theta is
      given
5 cos_{theta} = -4/5;
6 adjacent =4; hypotenuse =5;
7 opposite = sqrt(hypotenuse ^2 - adjacent ^2) //by
      pythagoras theorem
8
  //minus sign of cos_theta implies 2nd or 3rd
      quadrant
10 // Possibility 1 : 2nd quadrant
11 x = -adjacent;
12 y= opposite;
13 r= hypotenuse;
14 \sin_{\text{theta}} = y/r;
15 tan_{theta} = y/x;
16 printf ('POSSIBILITY 1: Theta in 2nd quadrant \n')
17 printf ('sin (theta) = \%.2 \,\mathrm{f}; tan (theta) = \%.2 \,\mathrm{f}; \ln \
      ,sin_theta,tan_theta)
18
19 // Possibility 2 : 3rd quadrant
20 \text{ x=-adjacent};
21 y=-opposite;
22 r=hypotenuse;
23 \sin_{\text{theta}} = y/r;
24 tan_theta = y/x;
25 printf('POSSIBILITY 2: Theta in 3rd quadrant\n')
26 printf('sin(theta)= \%.2 f; tan(theta) = \%.2 f; ',
      sin_theta, tan_theta)
```


Figure 1.24: To find all the angles with a given sine function value

Scilab code Exa 1.27 To find all the angles with a given sine function value

```
1 clc, clear
2 //Example 1.27
3 //To find all the angles with a given sine function value
4 
5 sin_theta = -0.682;
6 theta=asind(sin_theta);
7 //This results -43 degree which isnt in 0 to 360 range
8 //And theta exists in 4th quadrant
9 //Angles in 1st and 2nd quadrant have +ve sine values
10
11 theta1 = 180 - theta ;//reflection of theta in 3rd quadrant
```

```
12 theta2 = 360 + theta ;//both theta n theta 2 have same trigonometric values
```

13 printf('Required angles are $\%.0\,\mathrm{f}$ and $\%.0\,\mathrm{f}$ degrees', theta1,theta2)

Chapter 2

General Triangles

Scilab code Exa 2.1 To solve the triangle when one side and 2 angles are given

```
//Example 2.1
//To solve the triangle when one side and 2 angles
are given
clc,clear

a=10 //side opposite to vertex A
A=41 //angle at vertex A
C=75 //angle at vertex C

B=180- (A+C)
b=a*sind(B)/sind(A) //law of sines
c=a*sind(C)/sind(A) //law of sines
printf('Angle B is %.0f degrees\n length of side b
is %.1f units\n length of side c is %.1f units',B
,b,c)
```


Figure 2.1: To solve the triangle when one side and 2 angles are given

Figure 2.2: To solve the triangle when 2 sides and one opposite angle is given

Scilab code Exa 2.2 To solve the triangle when 2 sides and one opposite angle is given

```
1 / Example 2.2
2 //To solve the triangle when 2 sides and one
      opposite angle is given
3 clc, clear
5 a=18 //side oposite to vertex A
6 A=25 //angle at vertex A
7 b=30 //side opposite to vertex B
  \sin_B = (b/a) * sind(A) / law of sines
10
11 // case 1
12 B=asind(sin_B)
                     //law of sines
13 C = 180 - (A + B)
14 c=a*sind(C)/sind(A) //law of sines
15 printf('1st possible solution set\nAngle at B =\%.1 f
      degree \nAngle at C=\%.1f degree \nlength of side c=
     \%.0 f units \ ', B, C, c)
16
17 // case 2
18 B=180 - asind(sin_B) //law of sines
19 C = 180 - (A + B)
20 c=a*sind(C)/sind(A) //law of sines
21 printf('\n\n2nd possible solution set\nAngle at B =%
      .1f degree\nAngle at C=\%.1f degree\nlength of
      side c=\%.1 f units\n',B,C,c)
```

Scilab code Exa 2.3 To solve the triangle when 2 sides and opposite angle is given

Figure 2.3: To solve the triangle when 2 sides and angle between them is given

```
//Example 2.3
//To solve the triangle when 2 sides and opposite
angle is given

clc,clear

a=5 //side oposite to vertex A
A=30 //angle at vertex A
b=12 //side opposite to vertex B

sin_B=(b/a)*sind(A) //law of sines
printf("sin(B)=%f. But magnitude of sin(B) should
be less than 1\nHence, there is no solution", sin_B
)
```

Scilab code Exa 2.4 To solve the triangle when 2 sides and angle between them is given

Figure 2.4: To solve the triangle when 2 sides and angle between them is given

```
1 / Example 2.4
2 //To solve the triangle when 2 sides and angle
     between them is given
3 clc,clear
5 c=5 //side oposite to vertex C
6 A=30 //angle at vertex A
7 b=4 //side opposite to vertex B
8
9 printf('By law of sines:\n')
10 printf('a/sin(30) = 4/\sin(B) = 5 / sin(C)\n')
11 printf('\nEach of the equations has 2 unknowns.')
12 printf('\nFor eg: To obtain a , we can use 4/\sin(B)
     =5/sin(C). Next we obtain B interms of C and put
     back.\n')
13 printf ('Now we have a in terms of C which is unknown
14 printf ('Hence it is IMPOSSIBLE to solve this by law
     of sines')
```

Scilab code Exa 2.5 To solve the triangle when 2 sides and angle between them is given

```
//Example 2.5
//To solve the triangle when 2 sides and angle
    between them is given

clc,clear

c=5 //side oposite to vertex C

A=30 //angle at vertex A

b=4 //side opposite to vertex B

a = sqrt( b^2 + c^2 -2*b*c*cosd(A) ) //from law of cosines

printf('Length of a= %.2 f units\n',a)

cos_B = (c^2+a^2-b^2)/(2*c*a) //from law of cosines

B=acosd(cos_B)

printf('Angle B=%.1 f degrees\n',B)

C=180-(A+B)

printf('Angle C=%.1 f degrees\n',C)
```

Scilab code Exa 2.6 To solve the triangle when 3 sides are given

```
1 //Example 2.6
2 //To solve the triangle when 3 sides are given
3 clc,clear
4
5 c=4 //side oposite to vertex C
6 a=2 //side opposite to vertex A
7 b=3 //side opposite to vertex B
```


Figure 2.5: To solve the triangle when 3 sides are given

```
8
9 cos_B = (c^2+a^2-b^2)/(2*c*a) //from law of cosines
10 B=acosd(cos_B)
11 printf('Angle B=%.1 f degrees\n',B)
12 cos_C = (b^2+a^2-c^2)/(2*b*a) //from law of cosines
13 C=acosd(cos_C)
14 printf('Angle C=%.1 f degrees\n',C)
15
16 A=180-(C+B)
17 printf('Angle A=%f degrees',A)
```

Scilab code Exa 2.7 To determine solution of a triangle when 3 sides are given

Figure 2.6: To determine solution of a triangle when 3 sides are given

```
//Example 2.7
//To determine solution of a triangle when 3 sides
are given
clc,clear

c=6 //side oposite to vertex C
a=2 //side opposite to vertex A
b=3 //side opposite to vertex B

cos_A = (b^2+c^2-a^2)/(2*c*b) //from law of cosines
printf('cos(A)=%.3 f as calculated\n',cos_A)
printf('But magnitude of cos(A) should always be
less than 1. Hence NO SOLUTION exists\n\n')

printf('Note: We observe that a+b < c. But sum of
any 2 sides should always exceed third side.')
printf('\nHence this triangle is impossible.')</pre>
```

Scilab code Exa 2.8 To solve the triangle when 2 sides and opposite angle is given

```
//Example 2.8
//To solve the triangle when 2 sides and opposite
angle is given

clc,clear

a=18 //side oposite to vertex A

A=25 //angle at vertex A

b=30 //side opposite to vertex B

//using law of cosines solving for c

c_polynomial=[1 -54.38 576]

root_c=roots(c_polynomial)

// case 1
```

```
14 c=root_c(1)
15 \cos_B = (c^2+a^2-b^2)/(2*c*a) / from law of cosines
16 B = (180/\%pi)*acos (cos_B)
17 C = 180 - (A + B)
18 printf('1st possible answer set\nAngle B=\%.1f degree
      \nAngle C=\%.1f degree\nlength of c=\%.0f units\n\n
      ',B,C,c)
19
20 // case 2
21 c=root_c(2)
22 \cos_B = (c^2+a^2-b^2)/(2*c*a) //from law of cosines
23 B=(180/\%pi)*acos(cos_B)
24 C = 180 - (A + B)
25 printf('2nd possible answer set(which is not solved
      in book)\nAngle B=\%.1f degree\nAngle C=\%.1f
      degree \ n length of c=\%.0 f units \ n', B, C, c)
```

Scilab code Exa 2.10 To solve the triangle when 2 sides and included angle is given

```
//Example 2.10
//To solve the triangle when 2 sides and included angle is given
clc,clear

self a=5 //side oposite to vertex a
b=3 //side opposite to vertex b
C=96 //angle at vertex C

ApB=180-C //A + B
//using law of tangents
AmB =2* atand( tand(ApB/2)*(a-b)/(a+b) ) //A-B
```


Figure 2.7: To solve the triangle when 2 sides and included angle is given

Scilab code Exa 2.11 To check the solution of triangle using Mollweide equation

```
5 c=6.09 //side oposite to vertex C
6 a=5 //side opposite to vertex A
7 b=3 //side opposite to vertex B
8
9 A=54.7 //angle at vertex A
10 B=29.3 //angle at vertex B
11 C=96 //angle at vertex C
12
13 LHS = (a-b)/c
14 RHS = sind((A-B)/2)/cosd(C/2)
15 printf(' LHS = (a-b)/c
                                            = \%.4 \text{ f} \text{ n}, LHS)
16 printf(' RHS = \sin((A-B)/2)/\cos(C/2) = \%.4 \text{ f} \ln ',
      RHS)
17
18 printf ('Small difference in LHS and RHS is due to
      rounding off.\ni.e. Mollweides equation is holding
       true.\n')
19 printf('THE SOLUTION OF TRIANGLE IS CORRECT')
```

Scilab code Exa 2.12 To determine if a triangle can be formed with given dimension

```
//Example 2.12
//To determine if a triangle can be formed with given dimension
clc, clear

c=9 //side oposite to vertex C
a=6 //side opposite to vertex A
b=7 //side opposite to vertex B

A=55 //angle at vertex A
B=60 //angle at vertex B

C=65 //angle at vertex C
printf('Sum of angles=180\n')
```


Figure 2.8: To determine area of triangle when 2 sides and an angle is given

```
printf('Smallest and largest sides are opposite to
    smallest and largest angle respectively\n\n')

LHS = (a+b)/c

RHS = cosd((A-B)/2)/sind(C/2)

printf('LHS = (a+b)/c = %.2 f\n', LHS)

printf('RHS = cos((A-B)/2)/sin(C/2) = %.2 f\n\n',
    RHS)

printf('As we can see, LHS is not equal to RHS.\ni.e
    . Mollweides equation is not holding true.\n')

printf('THE TRIANGLE IS NOT POSSIBLE WITH GIVEN
    DIMENSIONS')
```

Scilab code Exa 2.13 To determine area of triangle when 2 sides and an angle is given

```
1 //Example 2.13
```


Figure 2.9: To determine area of triangle when 3 angles and a side is given

```
//To determine area of triangle when 2 sides and an
angle is given

clc,clear

c=7 //side oposite to vertex C
A=33 //angle at vertex A
b=5 //side opposite to vertex B

area_K = b*c*sind(A)/2
printf('Area of triangle ABC = %.2f square units',
area_K)
```

Scilab code Exa 2.14 To determine area of triangle when 3 angles and a side is given

Figure 2.10: To determine area of triangle when 3 sides are given

```
//Example 2.14
//To determine area of triangle when 3 angles and a side is given

clc,clear

A=115 //angle at vertex A
a=12 //side opposite to vertex A
B=25 //angle at vertex B
C=40 //angle at vertex C

area_K = a^2*sind(B)*sind(C)/(2*sind(A))
printf('Area of triangle ABC = %.2f square units', area_K)
```

Scilab code Exa 2.15 To determine area of triangle when 3 sides are given

```
//Example 2.15
//To determine area of triangle when 3 sides are given
clc,clear

c=7 //side oposite to vertex C
a=5 //side opposite to vertex A
b=4 //side opposite to vertex B

s= (a+b+c)/2 //semi perimeter
area_K = sqrt(s*(s-a)*(s-b)*(s-c)) //using herons formula
printf('Area of triangle ABC = %.2f square units', area_K)
```

Scilab code Exa 2.16 To determine area of triangle when 3 sides are given

```
//Example 2.16
//To determine area of triangle when 3 sides are
given
clc,clear

c=0.0000029 //side oposite to vertex C
a=1000000 //side opposite to vertex A
b=999999.9999979 //side opposite to vertex B

s= (a+b+c)/2 //semi perimeter
area_K = sqrt(s*(s-a)*(s-b)*(s-c)) //using herons
formula
printf('Area of triangle ABC = %.3 f square units\n\n
',area_K)

printf('Note:\n')
```


Figure 2.11: To find radius of circumscribed circle for triangle ABC

- 14 printf('In calculators like TI-83 plus, due to
 rounding off etc s will be 1000000\n')
 15 printf('Therefore (s-a) is zero. And area will be
 zero according to herons formula\n')
- 16 printf('Due to large number of digits in scilab ,(s-a) is not zero. Thus, area is non-zero above.')

Figure 2.12: To find the radius of circumscribed circle for triangle ABC

Scilab code Exa 2.17 To find radius of circumscribed circle for triangle ABC

```
//Example 2.17
//To find radius of circumscribed circle for triangle ABC
clc,clear

c=5//side oposite to vertex C
a=3//side opposite to vertex A
b=4//side opposite to vertex B

cos_A = (c^2+b^2-a^2)/(2*c*b) //from law of cosines
A=acosd(cos_A)
diameter=(a/sind(A))
radius = diameter/2
printf('Radius of circumscribed circle = %.1f units \n',radius)
printf('\nNote:\n Diameter is same as AB i.e. c...
So centre of circle is mipoint of AB')
```

Scilab code Exa 2.18 To find the radius of circumscribed circle for triangle ABC

```
1 //Example 2.18
2 //To find the radius of circumscribed circle for
      triangle ABC
3 clc, clear
5 c=4 //side oposite to vertex C
6 a=2 //side opposite to vertex A
7 b=3 //side opposite to vertex B
9 \cos_A = (c^2+b^2-a^2)/(2*c*b) //from law of cosines
10 A= acosd(cos_A)
11 diameter=(a/sind(A))
12 radius = diameter/2
13 printf ('Radius of circumscribed circle = \%.2 f units
     \n\n', radius)
14
15 //To draw the triangle
16 printf ('NOTE:\nPROCEDURE TO DRAW THE TRIANGLE ABC\n'
17 printf('Use a ruler to draw the longest side AB of
     length c = 4. n'
18 printf ('Use a compass to draw arcs of radius 3 and 2
       centered at A and B respectively.\n')
19 printf ('The intersection of the arcs is the vertex C
      . \ n \ n'
20
21 //To draw the circumscribed circle
22 printf ('PROCEDURE TO DRAW CIRCUMSCRIBED CIRCLE\n')
23 printf ('Draw the perpendicular bisectors of AB and
     AC. \setminus n'
24 printf ('Their intersection is the center O of the
```


Figure 2.13: To determine radius of inscribed circle ABC

```
circle.\n')
25 printf('Use a compass to draw the circle centered at
O which passes through A.')
```

Scilab code Exa 2.19 To determine radius of inscribed circle ABC

```
//Example 2.19
//To determine radius of inscribed circle ABC
clc,clear

c=4 //side oposite to vertex C
a=2 //side opposite to vertex A
b=3 //side opposite to vertex B

s= (a+b+c)/2 //semi perimeter
radius_r = sqrt((s-a)*(s-b)*(s-c)/s)
```

- 11 printf('Radius of inscribed circle is $\%.3 \, f$ units= sqrt(5/12) units', radius_r)
- 12 printf(' $\n\$ nNote:To obtain inscribed circle: $\n(1)$ Intersect perpendicular bisectors of A and B \n')
- 13 **printf**('(2) Point of intersection is the centre of circle\n')
- 14 printf('(3) The radius is 0.645 as caculated above\n'
- 15 printf('(4)) Using a compass draw a circle with this $centre \setminus n'$)

Chapter 3

Identities

Scilab code Exa 3.8 To determine values of functions of sum of 2 angles when functions of 2 angles are given

```
1 clc, clear
\frac{2}{\text{Example }} 3.8
3 //To determine values of functions of sum of 2
      angles when functions of 2 angles are given
4
5 \sin_A = 4/5;
6 cos_A = 3/5 ;
8 \sin_B = 12/13;
9 \cos_B = 5/13;
10
11 //Apb refers to A plus B
12 \sin_ApB = \sin_A*\cos_B + \cos_A*\sin_B;
13 \cos_A pB = \cos_A * \cos_B -
                               sin_A*sin_B ;
14 tan_ApB = sin_ApB / cos_ApB ;
15
16 printf('\sin(A+B) = \%f \cdot n', \sin_ApB);
17 printf ('\cos(A+B) = \%f \setminus n', \cos_ApB);
18 printf ('tan (A+B) = \%f\n', tan_ApB);
```

Chapter 4

Radian Measure

Scilab code Exa 4.1 To convert a degree measure to radians

```
1 clc,clear
2 //Example 4.1
3 //To convert a degree measure to radians
4
5 deg=18 //degree measure
6 radian=deg*(%pi/180) //radian measure
7 printf('Radian measure is %f rad\n(or)\n',radian)
8 printf('Radian measure is (pi/%.0f)rad',1/(radian/%pi))
```

Scilab code Exa 4.2 To convert a radian measure to degree

```
1 clc,clear
2 //Example 4.2
3 //To convert a radian meeasure to degree
4
5 radian=%pi/9 //radian measure
6 deg=radian/(%pi/180) //degree measure
7 printf('Degree measure is %.0f degree',deg)
```

Scilab code Exa 4.3 To determine length of the intercepted arc

```
1 clc,clear
2 //Example 4.3
3 //To determine length of the intercepted arc
4 
5 r=2 //radius of circle
6 theta=1.2 //central angle in radian
7 
8 s=r*theta //length of arc
9 printf('Length of arc intercepted = %.1f cm',s)
```

Scilab code Exa 4.4 To determine length of the arc intercepted

```
clc,clear
//Example 4.4
//To determine length of the arc intercepted

r=10 //radius of circle
theta=41*(%pi/180) //central angle in radian

s=r*theta //length of arc
printf('Length of arc intercepted = %.2 f ft',s)
```

Scilab code Exa 4.5 To determine angle in radians and degrees

```
1 clc,clear
2 //Example 4.5
3 //To determine angle in radians and degrees
```

Scilab code Exa 4.6 To determine the length of the rope

```
1 clc, clear
2 //Example 4.6
3 //To determine the length of the rope
5 d=8 //distance between places in feet
6 r=2 //radius of cylinder in feet
7 //from the figure
8 \text{ DA=d/2, BE=r}
9 DE=3 //distance from centre of container to wall
10
11 AE=sqrt(DE^2 + DA^2) //pythagoras theorem
12 AB=sqrt(AE^2 - BE^2) //pythagoras theorem
13
14 // all angles below are in radians
15 angle_AED = atan((d/2)/DE)
16 \text{ angle\_AEB} = \frac{acos}{BE/AE}
17 angle_BEC = %pi - (angle_AED + angle_AEB)
18 arc_BC = BE*angle_BEC //length of arc BC
19 L = 2*(AB + arc_BC) //length of rope
20 printf('Length of the rope = \%.1 f ft', L)
```


Figure 4.1: To determine the length of the rope

Figure 4.2: To determine the length of the belt around the pulleys

Scilab code Exa 4.7 To determine the length of the belt around the pulleys

```
clc,clear
//Example 4.7
//To determine the length of the belt around the pulleys

AE= 5 //radius of first pulley in cm
BF= 8 //radius of second pulley in cm
AB=15 //distance between centre of pulleys in cm

//from the figure
CF=AE //parallel side of rectangle ACFE
BC= BF- CF
AC = sqrt(AB^2 - BC^2) //by pythagoras theorem
```

```
13 EF=AC// parallel side of rectangle ACFE
14
15 angle_EAC = %pi/2
16 angle_BAC = asin(BC/AB)
17 angle_DAE = %pi - angle_EAC - angle_BAC
18 angle_ABC = angle_DAE //AE and BF are parallel
19 angle_GBF = %pi - angle_ABC
20
21 arc_DE=AE*angle_ABC //length of arc DE
22 arc_FG=BF*angle_GBF //length of arc FG
23 L=2*(arc_DE + EF + arc_FG) //length of belt
24 printf('Length of belt around pulley = %f cm',L)
```

Scilab code Exa 4.8 To find the area of sector of circle

```
1 clc,clear
2 //Example 4.8
3 //To find the area of sector of circle
4
5 theta= %pi/5 //angle in radian
6 r=4 //radius in cm
7 A=r*r*theta/2 //Area of sector
8 printf('Area of sector = %.1f*pi cm^2\n(or)\n',A/%pi
)
9 printf('Area of sector = %f cm^2',A)
```

Scilab code Exa 4.9 To determine area of sector of a circle

```
1 clc,clear
2 //Example 4.9
3 //To determine area of sector of a circle
4
5 theta= 117*(%pi/180) //angle in radian
```


Figure 4.3: To determine area insude belt pulley system

```
6 r=3.5 //radius in m
7 A=r*r*theta/2 //Area of sector
8 printf('Area of sector = %.2 f m^2',A)
```

Scilab code Exa 4.10 To determine area of sector of circle

```
1 clc,clear
2 //Example 4.10
3 //To determine area of sector of circle
4
5 s=6 //arc length in cm
6 r=9 //radius in cm
7 A=r*s/2 //Area of sector
8 printf('Area of sector = %.0 f cm^2\n\n',A)
9 printf('Note: Angle subtended by arc = %f rad',s/r)
```

Scilab code Exa 4.11 To determine area insude belt pulley system

```
1 clc, clear
2 //Example 4.11
3 //To determine area insude belt pulley system
5 AE= 5 //radius of first pulley
6 BF= 8 //radius of second pulley
7 AB=15 //distance between centre of pulleys
9 //from the figure
10 \text{ CF} = AE
11 BC= BF- CF
12 AC = sqrt(AB^2 - BC^2)
13 //from the figure
14 \text{ angle\_EAC} = \% \text{pi/2}
15 \text{ angle\_BAC} = \frac{\text{asin}}{\text{(BC/AB)}}
16 angle_DAE = %pi - angle_EAC - angle_BAC
17 angle_ABC = angle_DAE //AE and BF are parallel
18 angle_GBF= %pi - angle_ABC
19
20 area_DAE = AE^2*angle_DAE/2 //area of sector DAE
21 area_GBF = BF^2*angle_GBF/2 //area of sector GBF
22 area_AEFC = AE*AC //area of rectangle AEFC
23 area_ABC = AC*BC/2 //area of triangle ABC
24
25 area_K=2*(area_DAE + area_AEFC + area_ABC + +
      area_GBF )
26 printf ('Area enclosed by belt pulley system = \%.2 \,\mathrm{f}
      cm^2, area_K)
27 printf('\n\nNote: answer differs from book due to
      approximations by them')
```


Figure 4.4: To determine area of segment formed by a chord in circle

Scilab code Exa 4.12 To determine area of segment formed by a chord in circle

```
1 clc,clear
2 //Example 4.12
```


Figure 4.5: To determine area of intersection of 2 circles

Scilab code Exa 4.13 To determine area of intersection of 2 circles

```
1 clc,clear
2 //Example 4.13
3 //To determine area of intersection of 2 circles
```

```
4
5 d=7 //distance between centres in cm
6 r1= 5 //radius of first circle in cm
7 r2= 4 //radius of second circle in cm
9 //use law of cosines
10 \cos_{alpha}=(d^2+ r1^2 - r2^2) /(2*d*r1)
11 \cos \beta = (d^2 + r^2^2 - r^1^2) / (2*d*r^2)
12
13 //from the geometry of the figure
14 // all the angles below are in radians
15 alpha= acos(cos_alpha)
16 beeta= acos(cos_beeta)
17 \text{ angle\_BAC} = \text{alpha}
18 angle_ABC = beeta
19 angle_CAD =2* angle_BAC
20 angle_CBD =2* angle_ABC
21
22 //required area = area at segment CD in circle at A
      and at B
23 area_K = r1^2*(angle_CAD-sin(angle_CAD))/2
      ^2*(angle_CBD-sin(angle_CBD))/2
24 printf ('Area of intersection of 2 circles = \%.2 f cm
      ^{\hat{}}2',area_K)
```

Scilab code Exa 4.14 To find linear and angular speed of a moving object

```
1 clc,clear
2 //Example 4.14
3 //To find linear and angular speed of a moving object
4
5 t=0.5 //time in second
6 r= 3 //radius in m of the circle
7 theta = %pi/3 // central angle in radian
```

```
8 w = theta/t //angular speed in rad /sec
9 v=w*r//linear speed in m/sec
10
11 printf('Angular speed= %f radian/sec\n',w)
12 printf('Linear speed = %f m/sec',v)
13
14 printf('\n\n(or)\n\nAngular speed= %f*pi radian/sec\n',w/%pi)
15 printf('Linear speed = %f*pi m/sec',v/%pi)
```

Scilab code Exa 4.15 To find linear and angular speed of a moving object

```
clc, clear
//Example 4.15
//To find linear and angular speed of a moving
object

t=2.7 //time in second
r= 2 //radius in ft of the circle
r= 35 //distance in feet

v=s/t //linear speed in ft/sec
w=v/r //angular speed in rad /sec

printf('Linear speed = %.2 f ft/sec\n',v)
printf('Angular speed= %.2 f radian/sec\n',w)
```

Scilab code Exa 4.16 To find the central angle swept by a moving object

```
1 clc,clear
2 //Example 4.16
3 //To find the central angle swept by a moving object
4
```


Figure 4.6: To find the angular speed of larger gear interlocked with smaller gear

```
5 t=3.1 //time in second
6 v= 10 //linear speed in m/sec
7 r= 4 //radius in m of the circle
8 s=v*t //distance in m
9
10 theta = s/r //central angle swept
11 printf('central angle swept = %.2 f radian', theta)
```

Scilab code Exa 4.17 To find the angular speed of larger gear interlocked with smaller gear

Chapter 5

Graphing and inverse functions

Scilab code Exa 5.1 To sketch the graph of minus sinx in a given interval

```
1 //Example 5.1
2 //To sketch the graph of minus sinx in a given
        interval
3 clear, clc;
4
5 x = linspace(-0,2*%pi,50);
6 y = -sin(x);
7 set(gca(), "grid",[5 5]);
8 plot(x,y);
9 xlabel("$0\le x\le 2*pi$", "fontsize",4,"color", "red");
10 ylabel("$y(x)=-sin(x)$", "fontsize",4,"color", "red");
11 title("Example 5.1", "color", "blue", "fontsize",9);
```


Figure 5.1: To sketch the graph of minus sinx in a given interval

Figure 5.2: To sketch the graph of minus sinx in a given interval

Figure 5.3: To sketch the graph of given function of in given interval

Scilab code \mathbf{Exa} 5.2 To sketch the graph of given function of in given interval

```
1 //Example 5.2
2 //To sketch the graph of function of 1+cos(x) in given interval
3 clear, clc;
4
5 x = linspace(-0,2*%pi,50);
6 y = 1+cos(x);
7 set(gca(), "grid",[5 5]);
8 plot(x,y);
9 xlabel("$0\le x\le 2*pi$", "fontsize",4,"color", "red");
10 ylabel("$y(x)=1+cos(x)$", "fontsize",4,"color", "red");
11 title("Example 5.2", "color", "blue", "fontsize",9);
```


Figure 5.4: To sketch the graph of given function of in given interval

Scilab code Exa 5.4 To determine the period of given sinusoidal function

Figure 5.5: To determine the period of given sinusoidal function

```
1 / Example 5.4
2 //To determine the period of given sinusoidal
      function
3 clear, clc;
5 multiple = 2; //multiplicity of angle
6 period_sinx = 2*\%pi ;//period of sin(x) in radians
7 required_period = period_sinx / multiple;
8 printf('Required period is %f radians',
     required_period);
10 //Note that sin 2x goes twice as fast
                                               as sin x
11 //While sin x takes a full 2*pi radians to go
     through an entire cycle
12 //sin 2x goes through an entire cycle in just pi
      radians
13
14 x = linspace(-0,2*\%pi,100);
15 \quad y = \sin(2*x) ;
16 z = \sin(x) ;
17 set(gca(), "grid", [4 4]);
18 plot(x,y,'r-');
19 plot(x,z, 'b-');
20 xlabel("\$0\le x\le 2*pi\$", "fontsize", 4, "color", "red"
21 ylabel("y(x)=\sin(2x)", "fontsize", 4, "color", "red");
22 title("Example 5.4", "color", "blue", "fontsize", 9);
23 legend(["\sin(2x)";"\sin(x)"]);
```

Scilab code Exa 5.5 To determine the period of 2 given cosine functions

Figure 5.6: To determine the period of given sinusoidal function

Figure 5.7: To determine the period of 2 given cosine functions

```
1 / \text{Example } 5.5
2 //To determine the period of 2 given cosine
      functions
3 clear, clc;
5 //y = \cos(3*x)
6 multiple = 3; //multiplicity of angle
7 period_cosx = 2*\%pi; //period of sin(x) in radians
8 required_period = period_cosx / multiple;
9 printf('Period of \cos(3*x) is %f radians\n',
      required_period);
10
11 //y = \cos(0.5 * x)
12 multiple = 1/2; //multiplicity of angle
13 period_cosx = 2*\%pi; //period of sin(x) in radians
14 required_period = period_cosx / multiple;
15 printf('Period of cos(x/2) is %f radians',
      required_period);
16
17 x = linspace(-0,4*\%pi,200);
18 \ y = \cos(3*x);
19 z = \cos(x/2) ;
20 set(gca(), "grid", [4 4]);
21 plot(x,y,'r-');
22 plot(x,z, 'b-');
23 xlabel("\$0\le x\le 4*pi\$", "fontsize", 4, "color", "red"
      );
24 title ("Example 5.5", "color", "blue", "fontsize", 9);
25 legend(["y = \cos(3x)";"y = \cos(x/2)"]);
```


Figure 5.8: To determine the period of 2 given cosine functions

Figure 5.9: To determine the amplitude and period of given function

Scilab code Exa 5.6 To determine the amplitude and period of given function

```
1 / Example 5.6
2 //To determine the amplitude and period of given
      function
3 clear, clc;
5 x = linspace(-0,4*\%pi,200);
6 y = 3*cos(2*x); //given function
7 amplitude = y/\cos(2*x);
8 printf('Amplitude = \%f', amplitude);
10 multiple = 2; //multiplicity of angle
11 period_cosx=2*%pi; //period_od_cos(x)
12 period_required = period_cosx / multiple;
13 printf(' \cap Period = \%f radians', period_required);
14
15 x = linspace(-0, 2*\%pi, 50);
16 y = 3*\cos(2*x);
17 set(gca(), "grid", [5 5]);
18 plot(x,y);
19 xlabel("\$0 \setminus le \ x \setminus le \ 2*pi\$", "fontsize", 4, "color", "red"
20 ylabel("y(x)=3*\cos(2*x)", "fontsize", 4, "color", "red
21 title("Example 5.6", "color", "blue", "fontsize", 9);
```

Scilab code Exa 5.7 To find amplitude and period of given composite function

Figure 5.10: To determine the amplitude and period of given function

Figure 5.11: To find amplitude and period of given composite function

```
1 / \text{Example } 5.7
2 //To find amplitude and period of given composite
      function
3 clear, clc;
5 x = linspace(0,3,200);
6 y1=2; //1st part of given function
7 amplitude1=y1; //amplitude numerically same for
      constant function
8 y2 = -3*sin((2*%pi/3)*x); //second part of given
      function
9 amplitude2 = abs(y2/sin((2*\%pi/3)*x)); //amplitude
      of part 2
10 // Note: adding 2 doesnt change ampitude
11 //It just causes the upward shift of graph
12 maax =amplitude1 + amplitude2; //altered maximum due
      to adding of 2
13 minn =amplitude1 - amplitude2; // altered minimum due
      to adding of 2
14 amplitude = (maax-minn)/2;//required amplitude
15 printf('Amplitude = \%f', amplitude);
16
17 multiple=2*%pi/3;//multiplicity of angle
18 period_sinx=2*%pi;//period of sin_x
19 period_required = period_sinx/ multiple;
20 printf('\nRequired period is %f radians',
     period_required);
21
22 x = linspace(0,3,200);
23 y = 2 -3*sin((2*%pi/3)*x)
24 set(gca(), "grid", [5 5]);
25 plot(x,y);
26 xlabel("\$0\le x\le 3\$", "fontsize", 4, "color", "red");
27 ylabel("y(x) = 2 -3*\sin((2*\%pi/3)*x)", "fontsize", 4,
     "color", "red");
28 title("Example 5.7", "color", "blue", "fontsize", 9);
```


Figure 5.12: To find amplitude and period of given composite function

Scilab code Exa 5.8 To find the amplitude and period of given function

```
//Example 5.8
//To find the amplitude and period of given function
clear,clc;

//Period
printf('PERIOD:\n')
printf('This isnt a periodic function as x^2 is linearly related to x \n')
printf('and hence period doesnt exist\n')
```


Figure 5.13: To find the amplitude and period of given function

```
10 //Amplitude
11 x = linspace(0,2*\%pi,200);
12 y = 2*sin(x^2);
13 amplitude= y/sin(x^2);
14 printf('AMPLITUDE:\n')
15 printf('Amplitude exists unlike period\n')
16 printf ('Because sine component of the given function
       never exceeds 1\n')
17 printf ('Function value is always; ess than constant
      factor adjacent to sine\n')
18 printf ('Hence amplitude is the constant factor
      multiplied with sine component\n\')
19 printf('Amplitude = \%f as calculated\n', amplitude)
20
21
22 x = linspace(0,2*%pi,200);
23 y = 2*sin(x^2);
24 set(gca(), "grid", [5 5]);
```


Figure 5.14: To find the amplitude and period of given function

```
25 plot(x,y,'b');
26 xlabel("$0\le x\le 2*pi$","fontsize",4,"color","red");
27 ylabel("$y(x)= 2*sin(x^2)$","fontsize",4,"color","red");
28 title("Example 5.8","color","red","fontsize",9);
```

Scilab code Exa 5.9 To find the amplitude and period of given function

```
1 //Example 5.9
2 //To find the amplitude and period of given function
3 clear,clc;
4
```


Figure 5.15: To find the amplitude and period of given function

```
5 //amplitude
6 x = linspace(-0, 4*\%pi, 200);
7 y1=3*sin(x); //1st part of given function
8 amplitude1=y1/sin(x); //amplitude of part 1
9 y2= 4*cos(x); //second part of given function
10 amplitude2 = y2/(\cos(x)); //amplitude of part 2
11
12 //given function is a composition of 2 functions
13 //Using trigonometric identities, merge them into 1
14 //the amplitude of resultant is the required
      amplitude
15 //In this case the merged function can be sine or
16 //merging sine and cos into sine,
17 amplitude = sqrt(amplitude1^2 + amplitude2^2);
18 printf('Amplitude = \%f', amplitude);
19
20 //period
```


Figure 5.16: To find the amplitude and period of given function

```
21 period_cosx=2*%pi ;//period of cos(x) is 2 pi
22 period_sinx=2*%pi ;//period of sin(x) is 2 pi
23 locm = 2*%pi; //lcm of period_sinx and period_cosx
24 printf('\nRequired period is %f radians',locm);
25 x = linspace(0,4*%pi,200);
26 y = 3*sin(x) +4*cos(x);
27 set(gca(),"grid",[5 5]);
28 plot(x,y,'r');
29 xlabel("$0\le x\le 4*pi$","fontsize",4,"color","red");
30 ylabel("$y(x)= 3*sin(x) +4*cos(x)$","fontsize",4,"color","red");
31 title("Example 5.9","color","red","fontsize",9);
```


Figure 5.17: To find the period of given function

Scilab code Exa 5.10 To find the period of given function

```
//Example 5.10
//To find the period of given function
clear,clc;

x = linspace(-0,2*%pi,200);
y1=cos(6*x); //1st part of given function
multiple1=6; // multiplicity of angle
period_cosx=2*%pi; // period of cos(x) is 2 pi
period1= period_cosx/ multiple1;
printf('Note: Period of cos(%d*x)= %f radians\n', multiple1, period1);
y2= sin(4*x); //second part of given function
multiple2=4; // multiplicity of angle
```

```
13 period_sinx=2*%pi ;//period of sin(x) is 2 pi
14 period2= period_sinx/multiple2;
15 printf('Period of \sin (\%d*x) = \%f \text{ radians} \ ', \text{multiple2}
      ,period2);
16
17 locm = \%pi ;//LCM of period1 and period 2
18 period = locm; // final period
19 printf('\nRequired period is %f radians',period);
20 x = linspace(0,2*\%pi,200);
21 y = \cos(6*x) + \sin(4*x); //given function
22 set(gca(), "grid", [5 5]);
23 plot(x,y,'r');
24 xlabel("\$0\le x\le 2*pi\$", "fontsize", 4, "color", "red"
25 ylabel("y(x) = \sin(4*x) + \cos(6*x)", "fontsize", 4,"
      color", "red");
26 title ("Example 5.10", "color", "red", "fontsize", 9);
```

Scilab code Exa 5.11 To find the amplitude phase shift and period of given function

```
//Example 5.11
//To find the amplitude phase shift and period of given function
clear,clc;

x = linspace(-0,2*%pi,200);
deviation = %pi; //deviation from multiples of x
y = 3*cos(2*x- deviation); //given function
amplitude = y/ cos(2*x- %pi);
printf('Amplitude = %f\n',amplitude);
```


Figure 5.18: To find the period of given function

Figure 5.19: To find the amplitude phase shift and period of given function

```
10 multiple = 2; //multiplicity of angle
11 period_cosx = 2*\%pi; //period of \sin(x) in radians
12 required_period = period_cosx / multiple;
13 printf('Required period = \%f radians\n',
      required_period);
14 phase_shift = deviation / multiple;
15 printf('Phase shift = \%f radians',phase_shift);
16
17 x = linspace(-0,2*\%pi,200);
18 \ y = 3*\cos(2*x-\%pi);
19 set(gca(), "grid", [5 5]);
20 plot(x,y);
21 xlabel("\$0\le x\le 2*pi\$", "fontsize", 4, "color", "red"
22 ylabel("y(x)=3*cos(2*x-pi)", "fontsize", 4, "color",
     "red");
23 title ("Example 5.11", "color", "blue", "fontsize", 9);
```

Scilab code Exa~5.12 To find the amplitude phase shift and period of given function

```
//Example 5.12
//To find the amplitude phase shift and period of given function
clear,clc;

x = linspace(-%pi/6,4*%pi/3,200);
deviation = -%pi/2;//deviation from multiples of x
y = -2*sin(3*x- deviation);// given function
amplitude = abs(y/(sin(3*x- deviation)));
printf('Amplitude = %f\n',amplitude);
```


Figure 5.20: To find the amplitude phase shift and period of given function

Figure 5.21: To find the amplitude phase shift and period of given function

Figure 5.22: To find the amplitude phase shift and period of given function

Scilab code Exa 5.13 To determine inverse sine function of a given value

```
clc,clear;
//Example 5.13
//To determine inverse sine function of a given
    value

given = sin(%pi/4); //given value
answer= asin(given); //final answer

printf('Required answer is %f radians',answer);
printf('\n\nOR \n\n(pi/4)*%f radians',answer*(4/%pi));
);
```

Scilab code Exa 5.14 To determine inverse sine function of a given value

```
clc,clear;
//Example 5.14
//To determine inverse sine function of a given
    value

given = sin(5*%pi/4); //given value
answer= asin(given); //final answer

printf('Required answer is %f radians',answer);
printf('\n\nOR \n\n(pi/4)*%f radians',answer*(4/%pi));
```

Scilab code Exa 5.15 To determine inverse cosine function of a given value

Scilab code Exa 5.16 To determine inverse cosine function of a given value

```
clc,clear;
//Example 5.16
//To determine inverse cosine function of a given
    value

given = cos(4*%pi/3); //given value
answer= acos(given); //final answer

printf('Required answer is %f radians',answer);
printf('\n\nOR \n\n(pi/3)*%f radians',answer*(3/%pi)
);
```

Scilab code Exa 5.17 To determine inverse tan function of a given value

```
1 clc,clear;
2 //Example 5.17
3 //To determine inverse tan function of a given value
4
5 given = tan(%pi/4); //given value
```

```
6 answer= atan(given); // final answer
7
8 printf('Required answer is %f radians',answer);
9 printf('\n\nOR \n\n(pi/4)*%f radians',answer*(4/%pi));
```

Scilab code Exa 5.18 To determine inverse tan function of a given value

```
1 clc,clear;
2 //Example 5.18
3 //To determine inverse tan function of a given value
4 
5 given = tan(%pi); //given value
6 answer= atan(given); // final answer
7 
8 printf('Required answer is %f radians',answer);
```

Scilab code Exa 5.19 To determine exact value of given expression involving inverse trigonometric functions

```
1 clc,clear;
2 //Example 5.19
3 //To determine exact value of given expression involving inverse trigonometric functions
4 
5 expression= cos(asin(-1/4)); //given expression
6 
7 printf('Value of given expression is %f radians', expression);
```

Chapter 6

Additional Topics

Scilab code Exa 6.3 To solve the given equation

```
1 clc,clear
2 //Example 6.3
3 //To solve the given equation
4
5 sec_theta = 1/2
6 cos_theta = 1 / sec_theta
7 printf('cos(theta) = %f as calculated\n',cos_theta)
8 printf('But value of cos function can never exceed unity\n')
9 printf('Thus, NO SOLUTION exists')
```

Scilab code Exa 6.4 To solve the given equation

```
1 clc,clear
2 //Example 6.4
3 //To solve the given equation
4
5 //Given equation is cos_theta = tan_theta
```

```
6 //simplyfying given equation, we get
    7 //(\sin_{\theta} t + \sin_{\theta} t +
   8 //Solve for sin_theta as follows
   9 p = [1 1 -1]
10 sin_theta= roots(p)
11 printf ('Values of sin (theta) after simplifying and
                                   solving = \%f and \%f\n', sin_theta(1), sin_theta(2))
12 printf ('Eliminate \%f as sin_theta cant be below -1',
                                   sin_theta(1))
13
14 //Since sin_theta is +ve, 2 solutions exist. in 1st
                                 and 2nd quadrant
15 theta_1=asin(sin_theta(2)); //in 1st quadrant
16 theta_2=%pi-asin(sin_theta(2));//the reflection in 2
                                 nd quadrant
17
18 printf('\n\nSOLUTIONS:\n')
19 printf ('%f radians \n\%f radians', theta_1, theta_2)
20
21 printf('\n\nGENERAL SOLUTIONS:\n')
22 printf('\%f + integer multiples of 2pi n', theta_1)
23 printf('\%f + integer multiples of 2pi \n', theta_2)
```

Scilab code Exa 6.9 To find the result of basic operations on 2 given complex numbers

```
9 difference = z1-z2
10 \text{ product} = z1*z2
11 \text{ ratio} = z1/z2
12 mag_z1= abs(z1) //modulus of z1
13 mag_z2 = abs(z2) // modulus of z2
14 //printf('Note: Please go through complex nos scilab
       syntaxes to comprehend this example code \n\n')
15 printf('z1 + z2 = \%.0 f + \%.0 f * i \ n', real(summ), imag(
      summ))
16 printf('z1 - z2 = \%.0 f + \%.0 f*i n', real(difference),
      imag(difference))
17 printf('z1 * z2 = \%.0 f + \%.0 f*i n', real(product),
      imag(product))
18 printf('z1 / z2 = \%f + \%f*i\n', real(ratio), imag(
      ratio))
19 printf ('|z1|= sqrt (%.0 f)= %f \n', mag_z1^2, mag_z1)
20 printf('|z2| = \%.0 \, \text{f}', mag_z2)
```

Scilab code Exa 6.10 To represent given complex number in trigonometric form

```
clc,clear
//Example 6.10
//To represent given complex number in trigonometric form

z=-2 + -1*%i ;//given number

x=real(z) ;//real part

y=imag(z) ;//imaginary part

//theta is in third quadrant as x and y are -ve
theta=180 + atand(y/x);
r=sqrt(x^2+y^2) ;//modulus of z
printf('z= %f + i* %f can be written as: \n',real(z),imag(z))
```

```
13 printf ( 'z = sqrt (%.0 f) * ( \cos (%.1 f) + i * \sin (%.1 f) ) ',r^2, theta,theta)
```

Scilab code Exa 6.11 To determine product and ratio of complex numbers using formula

```
1 clc, clear
2 //Example 6.11
3 //To determine product and ratio of complex numbers
      using formula
5 //given values
6 z1 = 6*(cosd(70) + %i*sind(70));
7 z2 = 2*(cosd(31) + %i*sind(31));
9 //arguements of complex numbers
10 theta1=phasemag(z1);
11 theta2=phasemag(z2);
12 //modulus of complex numbers
13 r1 = abs(z1);
14 r2 = abs(z2);
15 theta_1p2 =theta1 + theta2 ; // theta1 + theta 2
16 theta_1m2 = theta1 - theta2 ; // theta1 - theta 2
17 //according to the formula used in book
18 product = r1*r2*(cosd(theta_1p2)+%i*sind(theta_1p2))
19 ratio = (r1/r2)*(cosd(theta_1m2)+%i*sind(theta_1m2))
20
21 printf ('z1*z2 = \%.0 f*(cos(\%.0 f)+i*sin(\%.0 f))\n',r1*
     r2, phasemag(product), phasemag(product))
22 printf ('z1/z2 = \%.0 f*(cos(\%.0 f)+i*sin(\%.0 f))\n',r1/
     r2, phasemag(ratio), phasemag(ratio))
```

Scilab code Exa 6.12 To find higher powers of complex number using demoivre theorem

Scilab code Exa 6.13 To determine the cube roots of i

```
1 clc,clear
2 //Example 6.13
3 //To determine the cube roots of i
4
5 z=%i //given complex number
6 //modulii for cuberoots
7 r1=abs(z)^(1/3)
8 r2=abs(z)^(1/3)
9 r3=abs(z)^(1/3)
```

```
10
11 //arguements for cuberoots
12 theta1= (phasemag(z)+360*0)/3
13 theta2= (phasemag(z)+360*1)/3
14 theta3 = (phasemag(z) + 360*2)/3
15
16 cube_root_1 = r1 *(cosd(theta1)+ %i*sind(theta1))
17 cube_root_2 = r2 *(cosd(theta2)+ %i*sind(theta2))
18 cube_root_3 = r3 *(cosd(theta3)+ \%i*sind(theta3))
19
20 printf('cuberoot 1: \%f + \%f*i\n',real(cube_root_1),
      imag(cube_root_1))
21 printf('cuberoot 2: \%f + \%f*i n', real(cube_root_2),
      imag(cube_root_2))
22 printf('cuberoot 3: \%f + \%f*i n', real(cube_root_3),
      imag(cube_root_3))
```

Scilab code Exa 6.15 To convert from polar to cartesian coordinates

```
1 clc, clear
2 //Example 6.15
3 //To convert from polar to cartesian coordinates
4
5 //part(a)
6 r=2;
7 theta=30;
8 x=r*cosd(theta);
9 y=r*sind(theta);
10 printf('(a)(x,y)= (%f, %f)\n',x,y);
11
12 //part(b)
13 r=3;
14 theta=3*%pi/4;
15 x=r*cos(theta);
16 y=r*sin(theta);
```

```
17 printf('(b)(x,y)= (%f,%f)\n',x,y);
18
19 //part(c)
20 r=-1;
21 theta=5*%pi/3;
22 x=r*cos(theta);
23 y=r*sin(theta);
24 printf('(c)(x,y)= (%f,%f)',x,y);
```

Scilab code Exa 6.16 To convert from cartesian to polar coordinates

```
1 clc, clear
2 //Example 6.16
3 //To convert from cartesian to polar coordinates
5 //part(a)
6 x = 3;
7 y = 4;
9 //53.13 is in same quadrant as (3,4)
10 r = sqrt(x^2+y^2);
11 theta=atand(y/x);
12 printf ('PART A\n(r, theta) = \%f, \%f', r, theta);
13 printf('\nOR\n');
14 r = -sqrt(x^2+y^2);
15 //tan theta is +ve in 3rd quadrant
16 //so 180 + 53.33 is also a permissible value
17 theta=180 + atand(y/x);
18 printf('(r, theta) = \%f, \%f', r, theta);
19
20 //part(b)
21 x = -5;
22 y = -5;
23
24 //225 is in same quadrant as (-5,-5)
```

```
25  //tan theta is +ve in 3rd quadrant
26  r=sqrt(x^2+y^2) ;
27  theta=180+ atand(y/x) ;
28  printf('\n\nPART B\n(r, theta)= %f, %f', r, theta) ;
29  printf('\nOR\n') ;
30  r=-sqrt(x^2+y^2) ;
31  theta= atand(y/x) ;
32  printf('(r, theta)= %f, %f', r, theta) ;
```

Scilab code Exa 6.17 To express an equation in polar coordinates

```
clc,clear
//Example 6.17
//to express an equation in polar coordinates

RHS=9;
//Note that LHS is basically an equation of circle
//But at any instant , it is numberically same as 9
LHS_numerically=RHS;
r=sqrt(LHS_numerically);

printf('The equation in terms of polar coordinates is : r =%.0 f',r)
```

Scilab code Exa 6.19 To express an equation in polar coordinates

```
1 clc,clear
2 //Example 6.19
3 //to express an equation in polar coordinates
4
5 //Given equation is : y=x
6 y_by_x =1; //ratio of y and x
7 tan_theta = y_by_x;
```

Chapter 8

Appendix B

Scilab code Exa 8.1 To plot the function of sin x

```
//Example 8.1
//To plot the function of sin(x)
clear,clc;

x = linspace(-0,2*%pi,50);
y = sin(x);

//For grid, uncomment below line
//set(gca(),"grid",[5 5]);

printf('NOTE:\nTo enable the grid, check the code')
plot(x,y,'r');
xlabel("$0\le x\le 2*pi$","fontsize",4,"color","red");
ylabel("$y(x)=sin(x)$","fontsize",4,"color","red");
title("Example 8.1","color","blue","fontsize",9);
legend("sin(x)");
```


Figure 8.1: To plot the function of $\sin x$

Figure 8.2: To plot the function of $\sin x$