Application No.: 10/028,439 2 Docket No.: H16 25543 US

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1. (Currently Amended) An integrated vertical cavity surface emitting laser and power monitor assembly, comprising:
 - a vertical cavity surface emitting laser for producing a light beam along a light path;
 - a semiconductive substrate having an etched cavity in said light path; and
 - a light sensor on said semiconductive substrate and along said light path;
- wherein said vertical cavity surface emitting laser is attached to said <u>semiconductive</u> substrate.
- 2. (Currently Amended) An assembly according to claim 1, wherein said <u>semiconductive</u> substrate includes a thin membrane between said etched cavity and said vertical cavity surface emitting laser.
- 3. (Original) An assembly according to claim 2 wherein said light sensor is on said thin membrane.
- 4. (Original) An assembly according to claim 1, wherein said light sensor is a metal-semiconductor-metal light sensor.
- 5. (Currently Amended) An assembly according to claim 1, wherein said <u>semiconductive</u> substrate includes an aperture in said light path, wherein said aperture extends from said light sensor to said etched cavity.
- 6. (Currently Amended) An assembly according to claim 1, further including a metal contact on said <u>semiconductive</u> substrate, wherein said vertical cavity surface emitting laser is attached to said semiconductive substrate via said metal contact.

Application No.: 10/028,439 3 Docket No.: H16 25543 US

7. (Original) An assembly according to claim 6, wherein said vertical cavity surface emitting laser receives electrical power via said metal contact.

- 8. (Original) An integrated vertical cavity surface emitting laser and power monitor assembly, comprising:
 - a vertical cavity surface emitting laser for producing a light beam along a light path;
 - a substrate having an etched cavity in said light path;
 - a light sensor on said substrate and along said light path;
 - an optical fiber in said etched cavity and aligned in said light path
 - wherein said vertical cavity surface emitting laser is attached to said substrate.
- 9. (Original) An assembly according to claim 8, further comprising an optical element between said optical fiber and said vertical cavity surface emitting laser.
- 10. (Original) An assembly according to claim 9, wherein said optical element couples light from said vertical cavity surface emitting laser into said optical fiber.
- 11. (Original) An assembly according to claim 10, wherein said optical element is in said etched cavity, and wherein said optical element and said optical fiber are held in said etched cavity using an adhesive.
 - 12. (Original) An assembly according to claim 11, wherein said adhesive includes epoxy.
- 13. (Original) An assembly according to claim 8, further including a controller for controlling said light beam based on a signal from said light sensor.
- 14. (Currently Amended) A method of fabricating a semiconductor assembly, comprising:

etching a semiconductive substrate to form a cavity;

forming a photodetector on the semiconductive substrate; and

Application No.: 10/028,439 4 Docket No.: H16 25543 US

mounting a vertical cavity surface emitting laser on the <u>semiconductive</u> substrate such that light emitted from the vertical cavity surface emitting laser travels along a light path that irradiates the photodetector.

- 15. (Original) A method according to claim 14, wherein the cavity is formed by anisotropic etching.
- 16. (Currently Amended) A method according to claim 15, wherein the anisotropic etching results in a thin membrane between the cavity and a top of the silicon wafer semiconductive substrate, and wherein the photodetector is formed on the thin membrane.
- 17. (Original) A method according to claim 16, wherein at least part of the thin membrane is removed.
 - 18. (Currently Amended) A method according to claim 14, further including: forming a metal contact on the <u>semiconductive</u> substrate; and attaching the vertical cavity surface emitting laser to the metal contact.
 - 19. (Original) A method according to claim 14, further including; disposing an optical element in the etched cavity;

locating an end of an optical fiber in the etched cavity such that the end of the optical fiber is optically aligned with the disposed optical element; and

sealing the disposed optical element and the end of the optical fiber in the etched cavity.

- 20. (Original) A method according to claim 14, further including making electrical connections between a controller and the photodetector and the vertical cavity surface emitting laser.
- 21. (Currently Amended) A assembly according to claim 1, wherein the <u>semiconductive</u> substrate includes a silicon substrate.

Application No.: 10/028,439 5 Docket No.: H16 25543 US

22. (Original) A assembly according to claim 8, wherein the substrate includes a silicon substrate.

23. (Currently Amended) A method according to claim 14, wherein the <u>semiconductive</u> substrate includes a silicon substrate.