Introduction to Natural Language Processing

Assignment 4

ELMO

Hardik Sharma

Introduction

In this detailed report, I meticulously document my journey implementing the ELMO model, a cutting-edge technique in natural language processing. Exploring its complex architecture and contextual word embeddings, I navigate through the training process, sharing the methodologies used and challenges faced. Through evaluating its performance across diverse NLP tasks, I highlight both strengths and limitations.

We also train the model on a downstream classification task, combining the embeddings in several possible ways.

For the learnable function, I use a single hidden layer with relu sigmoid activation.

Results

Below is the graph for the model accuracy on the test data, plotted vs the time taken for training the model. From the raw data itself.

Model Accuracies:

Frozen Lambdas : $\lambda_0 = 0.5203, \lambda_1 = 0.0315, \lambda_2 = 0.8535$ Learned Lambdas : $\lambda_0 = 1.6256, \lambda_1 = 0.0126, \lambda_2 0.6851$

Aggregation	Accuracy
Trainable	88.88%
Frozen	87.24%
General Function	89.65%

Conclusion

Overall, the learable parameter performs better than when the model has fixed parameter, a learnable function also performs well, but isn't as good as the learnable parameter one, and also takes some more time to train due to a larget increase in the number of parameters.

ELMO architecture, therefore, does outperform previous architectures with similar setting, however, it takes a longer time to train. Therefore, the choice of the underlying model depends on the tasks aat hand.