Designs and estimation for clinical trials with subpopulation selection

Yi-Da Chiu, Thomas Jaki and Franz Koenig, Martin Posch

Lancaster University, UK and Medical University of Vienna, Austria

Adaptive designs and multiple testing workshop, Padova

April 29, 2016

Introduction

What is subgroup effect? Why to investigate that?

Subgroup effect: Variability in treatment responses between distinct, clearly identifiable groups within a patient population.

Common assumption underlying clinical trials:

• The trial population is homogeneous.

Potential errors: (Chen & Beckman, 2009)

- Missed treatment effect.
- Masked treatment effect.

Introduction Motivation and Aims

Motivation: Rather limited literature addresses estimation problem for treatment effect in clinical trials with subgroup selection

(eg. Kimani *et al.*, 2015, Magnusson & Turnbull 2013)

Primary Aim: assess impacts on maximal likelihood estimate of subgroup treatment effects under various design features after the process of population selection.

Context: Cases with multiple distinct, pre-defined subgroups, attempt to select a subgroup and further confirm its efficacy of treatment effect.

The basic design set-up:

- λ_j : the known prevalence of subgroup S_j , j = 1, ..., J.
- subgroup sample sizes are fixedly decided by λ_j .
- total sample size keeps constant across K stages.
- randomly allocate patients to treatment and control group with ratio 1:1.
- Normally distributed observations are considered for all subpopulations with a common variance

Let S is the index set corresponding to any target population for selection. If $S = \{1, f\}$, it indicates to select S_1 or F.

Given family-wise error rate α , the designs we consider is to control α in the strong sense and the testing hypotheses are

$$H_0: \bigcap_s H_{0s}, \quad s \in \mathcal{S},$$

where the individual null hypothesis

$$H_{0s}:\theta_s\leq 0, \quad s\in\mathcal{S}.$$

Here we consider the best effect size selection rule

$$Z_s^{(1)} = \max_{i \in \mathcal{S}} Z_i^{(1)},\tag{1}$$

where

 $\begin{array}{lcl} Z_i^{(1)} &=& (\bar{Y}_{i,T}^{(1)} - \bar{Y}_{i,C}^{(1)}) \cdot I_i^{(1)}, \text{ a test statistic of } \theta_i \\ \bar{Y}_{i,T}^{(k)} &=& \text{sample mean of treatment group at stage k for } S_i, \\ I_i^{(k)} &=& \text{information level at stage k for testing } H_{0i}, \end{array}$

Designs: Procedures

Figure: Design Procedures for two-stage designs with two subgroups and considering $S = \{1, f\}$

The iterative search of stopping boundaries is conducted based on

$$\alpha \ge \sum_{s \in \mathcal{S}} \left\{ \sum_{k=1}^{K} \left[\int \dots \int_{A_k} p_s^0 \left(\prod_{m=1}^k q_{sm}^0 dZ_s^{(1)} \dots dZ_s^{1:m} \right) \right] \right\},$$
 (2)

where

```
\begin{array}{lll} A_k &=& \text{the integration region}[C_{l_1},C_{u_1}]\times [C_{l_2},C_{u_2}]\times\ldots\times [C_{l_k},\infty)\\ && \text{on }(Z_s^{(1)},Z_s^{1:2}\ldots,Z_s^{1:k}),\\ p_s^0 &=& \text{The joint density of }(Z_s^{(1)},s)\,\text{under }H_0,\\ q_{sm}^0 &=& \text{The conditional density of }Z_s^{1:k}\,\,\text{given its precursor}\\ && Z_s^{1:(k-1)}\,\,\text{at stage }k-1,\text{under }H_0 \end{array}
```

The stagewise total sample size for the full population $n_f^{(k)}$ can be searched iteratively upon

$$1 - \beta \le \sum_{k=1}^{K} \left[\int \dots \int_{A_k} p_s^a \left(\prod_{m=1}^k q_{sm}^a dZ_s^{(1)} \dots dZ_s^{1:m} \right) \right], \quad (3)$$

where

 $egin{array}{lll} A_k &=& ext{the integral region found based on } (2), \\ p_s^a &=& ext{The joint density of } (Z_s^{(1)},s) ext{ under } H_a, \\ q_{sm}^a &=& ext{The conditional density of } Z_s^{1:k} ext{ given its precursor } Z_s^{1:(k-1)} ext{ at stage } k-1, ext{ under } H_a \end{array}$

Designs: Alternatives

Figure: The total sample sizes for $F(n_f^{(1)})$ across prevalence of $S_1(\lambda_1)$ for two different definitions of power. The single-stage design with two subpopulations where the underlying treatment effects $\theta_1=0.5$ and $\theta_2=0$ for S_1 and S_2 , respectively. $\alpha=0.025$ and $1-\beta=80\%$.

In each simulation study, baseline set-ups are that

- sample sizes and stopping boundaries used are searched by (2) and (3) under $\alpha=0.025$ and $1-\beta=0.80$,
- power is set to detect the treatment effect of S_1 , $\theta_1 = 0.5$,
- The total simulation runs are 100,0000

For treatment effect θ_s , $s \in \mathcal{S}$, estimation assessment are based on,

$$\begin{array}{rcl} \hat{\theta}_s & = & Z_s^{1:M}/I_s^{1:M}, \\ Bias(\hat{\theta}_s) & = & E(\hat{\theta}_s) - \theta_s, \\ MSE(\hat{\theta}_s) & = & E((\hat{\theta}_s - \theta_s)^2). \end{array}$$

Single-Stage designs with two subpopulations: results 1

Consider $S = \{1, f\}$

Figure: ($\theta_1 = 0.5$ and $\theta_2 = 0$) the standardized bias of MLE $\hat{\theta}_1$ and the simulation proportions for different circumstances against the prevalence of S_1 , λ_1 .

Single-Stage designs with two subpopulations: results 2

Consider $S = \{1, f\}$

Figure: ($\theta_1 = 0.5$ and $\theta_2 = 0$) the standardized bias of MLE $\hat{\theta}_f$ and the simulation proportions for different circumstances against the prevalence of S_1 , λ_1 .

Single-Stage designs with two subpopulations: results 3

Consider $S = \{1, f\}$

Figure: $(\theta_1=0 \text{ and } \theta_2=0)$ the standardized biases of MLE $\hat{\theta}_1$ and the simulation proportions for different circumstances against the prevalence of S_1 , λ_1 .

Single-Stage designs with two subpopulations: results 4

Consider $S = \{1, f\}$

Figure: $(\theta_1 = 0 \text{ and } \theta_2 = 0)$ the standardized biases of MLE $\hat{\theta}_f$ and the simulation proportions for different circumstances against the prevalence of S_1 , λ_1 .

Single-Stage designs with two subpopulations: results 5

Consider $S = \{1, f\}$

Figure: $(\theta_1=0.5 \text{ and } \theta_2=0.5)$ the standardized biases of MLE $\hat{\theta}_1$ and the simulation proportions for different circumstances against the prevalence of S_1, λ_1 .

Single-Stage designs with two subpopulations: results 6

Consider $S = \{1, f\}$

Figure: $(\theta_1=0.5 \text{ and } \theta_2=0.5)$ the standardized biases of MLE $\hat{\theta}_f$ and the simulation proportions for different circumstances against the prevalence of S_1, λ_1 .

Single-Stage designs with three subpopulations: selection rule

Consider $S = \{1, 1 + 2, f\}$, that means to select

The selection rule is:

$$\begin{cases} \text{ select } S_1 & \text{ if } \ Z_1^{(1)} > \max(Z_f^{(1)}, Z_{1+2}^{(1)}) \\ \text{ select } S_{1+2} & \text{ if } \ Z_1^{(1)} \not> \max(Z_f^{(1)}, Z_{1+2}^{(1)}), \text{ and } \ Z_{1+2}^{(1)} > Z_f^{(1)} \\ \text{ select } F & \text{ if } \ Z_1^{(k)} \not> \max(Z_f^{(1)}, Z_{1+2}^{(1)}), \text{ and } \ Z_{1+2}^{(1)} < Z_f^{(1)}, \end{cases}$$

Single-Stage designs with three subpopulations: results 1

Table: $(\theta_1=0.5,\theta_2=0 \text{ and } \theta_3=0)$ the standardized biases of the MLEs $(\hat{\theta}_1,\hat{\theta}_{1+2} \text{ and } \hat{\theta}_f)$ for different circumstances, where the prevalences of three subgroups are 1/3; proportion (Prop.) stands for how often the corresponding circumstance occurs.

	Prop.(%)	Bias/SE
$\hat{ heta}_f$ (Select None)		-0.00186
$\hat{ heta_f}$ (Select F)	3.74	0.96546
$\hat{\theta_f}$ (Select F + Reject H_0)	2.91	1.31217
$\hat{ heta}_1$ (Select None)		-0.00151
$\hat{ heta}_1$ (Select S_1)	88.58	0.09094
$\hat{\theta}_1$ (Select S_1 + Reject H_0)	80.20	0.27068
$\hat{ heta}_{1+2}$ (Select None)		-0.00118
$\hat{ heta}_{1+2}$ (Select S_{1+2})	7.68	0.76128
$\hat{\theta}_{1+2}$ (Select S_{1+2} + Reject H_0)	6.47	1.02579

Two-Stage designs with two subpopulations: results 1

Consider
$$S = \{1, f\}$$

Figure: ($\theta_1 = 0.5$ and $\theta_2 = 0$) the overall biases of $\hat{\theta}_1$ and the overall simulation proportions for different circumstances while the design stops, against the prevalence of S_1 , λ_1 .

Two-Stage designs with two subpopulations: results 2

Consider
$$S = \{1, f\}$$

Figure: ($\theta_1 = 0.5$ and $\theta_2 = 0$) the overall biases of $\hat{\theta}_f$ and the overall simulation proportions for different circumstances while the design stops, against the prevalence of S_1 , λ_1 .

Summary and Future work

Summary: bias is always observed in the ML estimate of treatment effect under various design features with population selection.

Future work: develop a unbiased estimator with less MSE.

References

Kimani P et al. (2015) Estimation after subpopulation selection in adaptive seamless trials. *Statistics in Medicine*; 34(18): 2581–2601.

Magnusson B, Turnbull B (2013) Group sequential enrichment design incorporating subgroup selection. *Statistics in Medicine*; 32(16):2695–2754.

Chen & Beckman (2009) Hypothesis testing in a confirmatory phase III trial with a possible subset effect. *Statistics in Biopharmaceutical Research*; 1(4):431–440.

Thank you!:)