```
1 import pandas as pd
2 import seaborn as sns
3 import matplotlib.pyplot as plt
5 fonte = "https://github.com/alura-cursos/imersao-dados-2-2020/blob/master/MICRO
7 dados = pd.read csv(fonte)
1 provas = ["NU_NOTA_CN", "NU_NOTA_CH", "NU_NOTA_MT", "NU_NOTA_LC", "NU_NOTA_REDAC
2 dados["NU NOTA TOTAL"] = dados[provas].sum(axis = 1)
3 provas = ["NU_NOTA_CN", "NU_NOTA_CH", "NU_NOTA_MT", "NU_NOTA_LC", "NU_NOTA_REDAC
4 dados sem notas zero = dados.query("NU NOTA TOTAL != 0")
5 dados sem notas NaN = dados sem notas zero[provas].dropna()
1 provas_entrada = ["NU_NOTA_CH", "NU_NOTA_LC", "NU_NOTA_CN", "NU_NOTA_REDACAO"]
2 provas saida = "NU NOTA MT"
3 notas entrada = dados sem notas NaN[provas entrada]
4 notas saida = dados sem notas NaN[provas saida]
1 x = notas entrada
2 y = notas saida
1 from sklearn.model selection import train test split
2 \text{ SEED} = 4321
3 \times \text{treino}, \times \text{teste}, y treino, y teste = train test split(x,y, test size = 0.25, r
1 x teste.shape
   (23135, 4)
1 from sklearn.svm import LinearSVR
3 modelo = LinearSVR(random state = SEED)
4 modelo.fit(x treino, y treino)
   /usr/local/lib/python3.6/dist-packages/sklearn/svm/ base.py:947: ConvergenceWa
     "the number of iterations.", ConvergenceWarning)
   LinearSVR(C=1.0, dual=True, epsilon=0.0, fit intercept=True,
              intercept scaling=1.0, loss='epsilon insensitive', max iter=1000,
              random state=4321, tol=0.0001, verbose=0)
1 predicoes MT = modelo.predict(x teste)
1 y_teste[:5]
```



```
1 plt.figure(figsize=(8,8))
2 sns.scatterplot(x=y_teste, y = y_teste-predicoes_MT)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f60793a1cf8>


```
1 plt.figure(figsize=(8,8))
2 sns.scatterplot(x=y_teste, y = x_teste.mean(axis=1))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f60776d5ba8>


```
1 resultados = pd.DataFrame()
2 resultados["Real"] = y teste
3 resultados["Previsao"]= predicoes_MT
4 resultados["diferenca"] = resultados["Real"] - resultados["Previsao"]
5 resultados["quadrado_diferenca"] = (resultados["Real"] - resultados["Previsao"])
6
```

1 resultados

		Real	Previsao	diferenca	quadrado_diferenca		
	114991	459.7	564.486105	-104.786105	10980.127878		
	104685	617.2	628.305027	-11.105027	123.321625		
	91028	520.0	509.980986	10.019014	100.380650		
	115802	703.8	593.681144	110.118856	12126.162420		
	93303	627.1	579.784588	47.315412	2238.748252		
	81393	688.6	626.291851	62.308149	3882.305380		
	40159	479.1	652.313922	-173.213922	30003.062777		
	64083	501.4	607.787172	-106.387172	11318.230438		
	84661	772.5	734.227663	38.272337	1464.771772		
<pre>1 resultados["quadrado_diferenca"].mean()**(1/2)</pre>							
	81.26755383435341						
1 f:	1 from sklearn.dummy import DummyRegressor						
	<pre>3 modelo_dummy = DummyRegressor()</pre>						
	<pre>4 modelo_dummy.fit(x_treino, y_treino) 5 dummy_predicoes = modelo_dummy.predict(x_teste)</pre>						
6 7 f	6						
8	7 from sklearn.metrics import mean_squared_error 8						
9 m	9 mean_squared_error(y_teste, dummy_predicoes) #12063.645588509502						
	12063.645588509502						
1 m	<pre>1 mean_squared_error(y_teste, predicoes_MT)#6604.41530621957</pre>						
	6604.41	530621	957				

Desafio1 = procurar outro modelo de ML para treinar e comparar com os modelos criados em aula

```
1 #desafio 1 com decision tree
2 from sklearn import tree
3 modelo_tree = tree.DecisionTreeRegressor()
4 modelo_tree.fit(x_treino, y_treino)
5 tree_predicoes = modelo_tree.predict(x_teste)
6 mean_squared_error(y_teste, tree_predicoes) #11365.011590231252
7
11382.14146401556
```

```
1 resultadosdt = pd.DataFrame()
```

- 2 resultadosdt["Real"] = y teste
- 3 resultadosdt["Previsao"]= tree predicoes
- 4 resultadosdt["diferenca"] = resultadosdt["Real"] resultadosdt["Previsao"]
- 5 resultadosdt["quadrado_diferenca"] = (resultadosdt["Real"] resultadosdt["Previ
- 6 resultadosdt

	Real	Previsao	diferenca	quadrado_diferenca
114991	459.7	671.0	-211.3	44647.69
104685	617.2	664.6	-47.4	2246.76
91028	520.0	480.8	39.2	1536.64
115802	703.8	553.2	150.6	22680.36
93303	627.1	509.5	117.6	13829.76
81393	688.6	529.8	158.8	25217.44
40159	479.1	633.4	-154.3	23808.49
64083	501.4	660.0	-158.6	25153.96
84661	772.5	816.3	-43.8	1918.44
79106	369.0	558.7	-189.7	35986.09

23135 rows x 4 columns

6432.6058905554355

```
1 resultadosnn = pd.DataFrame()
```

^{1 #}desafio 1 com near neighbors

² from sklearn.neighbors import KNeighborsRegressor

³ modelo neigh = KNeighborsRegressor()

⁴ modelo neigh.fit(x treino, y treino)

⁵ neigh predicoes = modelo neigh.predict(x teste)

⁶ mean squared error(y teste, neigh predicoes) #6432.6058905554355

² resultadosnn["Real"] = y_teste

³ resultadosnn["Previsao"]= neigh predicoes

⁴ resultadosnn["diferenca"] = resultadosdt["Real"] - resultadosdt["Previsao"]

⁵ resultadosnn["quadrado_diferenca"] = (resultadosdt["Real"] - resultadosdt["Previ

⁶ resultadosnn

	Real	Previsao	diferenca	quadrado_diferenca
114991	459.7	465.70	-211.3	44647.69
104685	617.2	621.74	-47.4	2246.76
91028	520.0	495.72	39.2	1536.64
115802	703.8	506.04	150.6	22680.36
93303	627.1	521.90	117.6	13829.76
81393	688.6	554.86	158.8	25217.44

```
1 plt.figure(figsize=(14,14))
2 plt.subplot(3,3,1)
3 #arvore de decisoes
4 sns.scatterplot(x=tree_predicoes, y = y_teste)
5 plt.title("Decision tree")
6 #SVM
7 plt.subplot(3,3,3)
8 sns.scatterplot(x= predicoes_MT, y = y_teste)
9 plt.title("SVM")
10 #near neighbors
11 plt.subplot(3,3,2)
12 sns.scatterplot(x= neigh_predicoes, y = y_teste)
13 plt.title("near neighbors")
14
15 plt.suptitle("Comparando os modelos")
```

Text(0.5, 0.98, 'Comparando os modelos')

Comparando os modelos

Desafio2: Ler a documentacao do Dummy e alterar o metodo de regressao

```
2 modelo dummy mean = DummyRegressor(strategy="mean")
3 modelo dummy mean.fit(x treino, y treino)
4 dummy predicoes mean = modelo dummy mean.predict(x teste)
5 mean_squared_error(y_teste, dummy_predicoes mean) #12063.645588509502
    12063.645588509502
1 #desafio 2, dummy strategy =median
2 modelo dummy median = DummyRegressor(strategy="median")
3 modelo dummy median.fit(x treino, y treino)
4 dummy predicoes median = modelo dummy median.predict(x teste)
5 mean squared error(y teste, dummy predicoes median) #12599.969971795981
    12599.969971795981
1 #desafio 2, dummy strategy =quantile - 1(maximo)
2 modelo_dummy_quantile = DummyRegressor(strategy="quantile", quantile = 1.0)
3 modelo dummy quantile.fit(x treino, y treino)
 4 dummy predicoes quantile = modelo dummy quantile.predict(x teste)
5 mean squared error(y teste, dummy predicoes quantile ) #223890.15624378645
    223890.15624378645
1 #desafio 2, dummy strategy =quantile - 0(minimo)
2 modelo dummy quantile m = DummyRegressor(strategy="quantile", quantile = 0.0)
3 modelo dummy quantile m.fit(x treino, y treino)
4 dummy predicoes quantile m = modelo dummy quantile m.predict(x teste)
5 mean squared error(y teste, dummy predicoes quantile m ) #287425.98995893664
    287425.98995893664
1 plt.figure(figsize=(14,14))
2 plt.subplot(4,4,1)
4 sns.scatterplot(x=dummy predicoes mean, y = y teste)
5 plt.title("Dummy mean")
6 #median
7 plt.subplot(4,4,3)
8 sns.scatterplot(x= dummy predicoes median, y = y teste)
9 plt.title("Dummy median")
10 #minimo
11 plt.subplot(4,4,2)
12 sns.scatterplot(x= dummy predicoes quantile m, y = y teste)
13 plt.title("dummy quantile minimo")
14
15 #maximo
16 plt.subplot(4,4,4)
17 sns.scatterplot(x= dummy_predicoes_quantile, y = y_teste)
18 plt.title("dummy quantile maximo")
19
20
21 plt.suptitle("Comparando os metodos")
```

Text(0.5, 0.98, 'Comparando os metodos') Comparando os metodos

Desafio3: Busacar outra métrcia(mean squared root) para avaliar modelos de regressão

```
1 import sklearn.metrics
                          as skm
2 #Metricas para o SVM
3 n1 = skm.mean absolute error(y teste, predicoes MT )
4 n2 = mean squared error(y teste, predicoes MT)
5 n3 = skm.max error(y teste, predicoes MT)
6 n4 = skm.median absolute error(y teste, predicoes MT )
8 #metricas Near neighbors
9 in1 = skm.mean absolute error(y teste, neigh predicoes)
10 mn2 = mean squared error(y teste, neigh predicoes )
11 in3 = skm.max_error(y_teste, neigh_predicoes )
12 nn4 = skm.median absolute error(y teste, neigh predicoes)
13
14 #metricas Decision tree
15 it1 = skm.mean_absolute_error(y_teste, tree_predicoes )
16 lt2 = mean squared error(y teste, tree predicoes)
17 lt3 = skm.max error(y teste, tree predicoes )
18 lt4 = skm.median absolute error(y teste, tree predicoes )
19
20 #metricas dummy
21 du1 = skm.mean absolute error(y teste, dummy predicoes )
22 lu2 = mean squared error(y teste, dummy predicoes)
23 du3 = skm.max error(y teste, dummy predicoes)
24 lu4 = skm.median_absolute_error(y_teste, dummy_predicoes)
25
26 netri = {"modelos":["SVM", "Near Neighbors", "Decision Tree", "Dummy"], "mean abso
27 nodelos regressao = pd.DataFrame(data = metri)
28 nodelos regressao
29
```

median_absolut	max_error	mean_squared_error	mean_absolute_error	modelos	
Ę	453.506823	6604.415306	66.045554	SVM	0
Ę	701.600000	6432.605891	63.782104	Near Neighbors	1
6	792.500000	11382.141464	83.781634	Decision Tree	2