

Nuclear Data Sheets

Nuclear Data Sheets 108 (2007) 773-882

www.elsevier.com/locate/nds

Nuclear Data Sheets for A = 52

HUO JUNDE

Department of Physics, Jilin University Changchun 130023, China

HUO SU

LIBRARY, Jilin University Changchun 130012, China

MA CHUNHUI

Department of Physics, Jilin University Changchun 130023, China

(Received February 28, 2006; Revised February 1, 2007)

Cutoff Date: March 1, 2006; all references entered into the Nuclear Structure Reference file by this date were considered.

General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.

NUCLEAR DATA SHEETS

Index:	for	Α	=	52
--------	-----	---	---	----

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	852 853 853 854 855 856 857
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	853 853 854 855 856 857
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	853 854 855 856 857
52 Ca Adopted Levels, Gammas 779 52 Cr(p,nγ) 52 K β Decay 779 52 Cr(3 He,t) 52 Sc Adopted Levels, Gammas 780 54 Fe(p, 3 He) 52 Ca β Decay 781 54 Fe(d,α) 54 Fe(d,αγ)	854 855 856 857
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	855 856 857
^{52}Sc Adopted Levels, Gammas 780 $^{54}Fe(p,^3He)$ ^{52}Ca β^- Decay 781 $^{54}Fe(d,\alpha)$ ^{52}Ti Adopted Levels, Gammas 782 $^{54}Fe(d,\alpha)$	856 857
52 Ca β^- Decay 781 54 Fe(d, $\alpha)$ 52 Ti Adopted Levels, Gammas 782 54 Fe(d, $\alpha\gamma)$	857
$^{52}\mathrm{Ti}$ Adopted Levels, Gammas 782 $^{54}\mathrm{Fe}(\mathrm{d},\alpha\gamma)$	
1.1.	898
$^{-5}$ c p Decay (H1,xn γ)	0.50
	858
⁴⁸ Ca(⁷ Li,p2nγ) 785 ⁵² Co ε Decay	865
⁴⁸ Ca(¹² C, ⁸ Be) 786 ⁵³ Co P Decay (247)	
⁴⁸ Ca(¹⁶ O, ¹² C) 786 ⁵³ Ni ερ Decay	866
$^{50}\text{Ti}(t,p)$ 786 $^{9}\text{Be}(^{55}\text{Ni},X\gamma)$	867
$^{50}\text{Ti}(t,p\gamma)$ 787 $^{28}\text{Si}(^{28}\text{Si},2p2n\gamma)$	867
Coulomb Excitation 788 50Cr(³ He,n)	868
$^{208}\text{Pb}(^{48}\text{Ca},\text{X}\gamma)$ 788 $^{50}\text{Cr}(^{3}\text{He},\text{n}\gamma)$	869
⁵² V Adopted Levels, Gammas 789 $^{50}\mathrm{Cr}(\alpha,2n\gamma)$	870
⁵² Ti β- Decay (1.7 min) 794 Coulomb Excitation	
$^{48}\text{Ca}(^{7}\text{Li}, 3\text{n}\gamma), (^{11}\text{B}, \alpha 3\text{n}\gamma)$ 795 $^{54}\text{Fe}(\text{p,t})$	871
⁵⁰ Ti(³ He,p) 796 ⁵² Co Adopted Levels	873
$^{50}\mathrm{Ti}(\alpha,\mathrm{d})$ 797 $^{52}\mathrm{Ni}~\epsilon~\mathrm{Decay}$	873
$^{51}\mathrm{V}(\mathrm{n},\gamma)$ E=thermal 797 $^{52}\mathrm{Ni}$ Adopted Levels	874
$^{51}{ m V}(n,\gamma)$ E=0.75-11.3 MeV 802 $^{54}{ m Zn}$ 2p Decay: 3.	
$^{51}{ m V(d,p)}$ 802 $^{52}{ m Cu}$ Adopted Levels	874
⁵¹ V(t,d) 803	
⁵² Cr Adopted Levels, Gammas 804	
⁵² V β ⁻ Decay (3.743 min) 815	
⁵² Mn ε Decay (5.591 d) 816	
⁵² Mn ε Decay (21.1 min) 818	
$^{50}{ m Ti}(^{3}{ m He,n})$ 819	
50 Ti(16 O, 14 C) 820	
$^{50}V(\alpha,d)$ 820	
$^{50}{ m Cr}({ m t,p})$ 820	
$^{50}\mathrm{Cr}(\alpha,^{2}\mathrm{He})$ 821	
$^{51}V(p,\gamma)$ E=res: IAR 821	
$^{51}V(^{3}\mathrm{He,d})$ 824	
$^{51}{ m V}(^{3}{ m He},{ m d}\gamma)$ 825	
$^{51}V(\alpha,t)$ 825	
$^{52}\mathrm{Cr}(\gamma,\gamma'),(\mathrm{pol}\ \gamma,\gamma')$ 826	
52 Cr(e,e') 827	
$^{52}\mathrm{Cr}(\pi^+,\pi^+),(\pi^+,\pi^{+'})$ 829	
$^{52}\mathrm{Cr}(\mathbf{n},\mathbf{n}'\gamma)$ 830	
$^{52}{\rm Cr}({\rm n,n'})$ 830	
$^{52}{ m Cr}({ m p,p'})$ 831	
$^{52}\mathrm{Cr}(\mathbf{p},\mathbf{p'}\gamma)$ 833	
52 Cr(d,d') 834	
52 Cr(3 He, 3 He') 834	
$^{52}\mathrm{Cr}(\alpha, \alpha')$ 835	
52 Cr(7 Li, 7 Li') 835	
52 Cr(12 C, 12 C'),(13 C, 13 C')	
⁵² Cr(¹⁶ O, ¹⁶ O'), (¹⁸ O, ¹⁸ O') 836	
Coulomb Excitation 836	
53 Cr(p,d) 837	
⁵³ Cr(d,t),(pol d,t) 837	
$^{53}\text{Cr}(^{3}\text{He}, \alpha)$ 838	
$^{54}{ m Cr}({ m p,t})$ 838	
$^{55}\mathrm{Mn}(^{-3}\mathrm{n\gamma})$ 839	
$^{55}\mathrm{Mn}(\mathbf{p},\alpha)$ 839	
56 Fe(d, 6 Li) 840	
$Ni(K^-, X\gamma), (\pi^+, X\gamma), (\pi^-, X\gamma)$ 840	
$(HI, xn\gamma) $ $(840$	
52 Mn Adopted Levels, Gammas 843	
52Mn IT Decay (21.1 min) 847	
**	
$^{50}\mathrm{Cr}(\alpha,\mathrm{pn}\gamma),^{51}\mathrm{V}(\alpha,3\mathrm{n}\gamma)$ 852	

Skeleton Scheme for A=52

 $S(p) \hspace{1cm} 23786^{SY}$ $S(\alpha) \qquad 18624^{SY}$

 $S(\alpha) \qquad \ \, 9354.1^{10}$

Ground-State and Isomeric-Level Properties						
Nuclide	e <u>Level</u>	Jπ	T _{1/2}	Decay Modes		
$^{52}\mathrm{Ar}$	0.0	0+	10 ms	%β ⁻ =?		
$^{52}\mathrm{K}$	0.0	(2-)	105 ms 5	$\%\beta^{-}=100; \%\beta^{-}n\approx64; \%\beta^{-}2n\approx21$		
$^{52}\mathrm{Ca}$	0.0	0+	4.6 s 3	$\%\beta^{-}=100; \%\beta^{-}n\leq 2$		
$^{52}\mathrm{Sc}$	0.0	3(+)	8.2 s 2	$\%\beta^{-}=100$		
$^{52}{ m Ti}$	0.0	0+	1.7 min 1	$\%\beta^{-}=100$		
^{52}V	0.0	3+	3.743 min 5	$\%\beta^{-}=100$		
$^{52}\mathrm{Cr}$	0.0	0+	stable			
$^{52}{ m Mn}$	0.0	6+	5.591 d 3	$\%\epsilon + \%\beta^{+} = 100$		
	377.749	2+	21.1 min 2	%ε+%β+=98.25 5; %IT=1.75 5		
$^{52}{ m Fe}$	0.0	0+	8.275 h 8	$\%\epsilon + \%\beta^+ = 100$		
	6958.0	12+	45.9 s 6	%ε+%β+=100; %IT<0.004		
$^{52}{ m Co}$	0.0	(6+)	115 ms 23	$\%\epsilon + \%\beta^+ = 100$		
$^{52}{ m Ni}$	0.0	0+	38 ms 5	$\%\epsilon + \%\beta^{+} = 100; \%\beta^{+}p = 17.0 14$		
$^{52}\mathrm{Cu}$	0.0	(3+)		%p=?		
⁵³ Co	3190	(19/2-)	247 ms 12	%p=?;		
$^{53}\mathrm{Ni}$	0.0	(7/2-)	45 ms 15	%ep≈45.0;		
$^{54}{ m Zn}$	0.0	0+	3.2 ms +18-8	%2p=84 13;		

Adopted Levels

 $Q(\beta^-) = 13200 \ SY; \ S(n) = 3274 \ SY; \ S(p) = 23786 \ SY; \ Q(\alpha) = -18624 \ SY \ \ 2003 Au 03.$

⁵²Ar Levels

 $^{52}_{19}\mathrm{K}_{33}$

 $^{52}_{19}\mathrm{K}_{33}$

Adopted Levels

 $Q(\beta^-) = 16310 \ SY; \ S(n) = 2268 \ SY; \ S(p) = 15691 \ SY; \ Q(\alpha) = -13920 \ SY \ 2003 Au 03.$

 $^{52}\mathrm{K}$ Levels

E(level) $J\pi$ $T_{1/2}$ Comments

0.0 (2-) 105 ms 5 %β=100; %β-n≈64; %β-2n≈21.
%β-n,%β-2n: from 1997Au04. %β-n≈64, %β-2n≈21 estimated from P_n (%)=%β-n+2*%β-2n=107 20 in 1985Hu03. $T_{1/2}$: from decay of the β-coincident neutron counting following 52 K (1983La23). Other: 110 ms 30 (1985Hu03). $J\pi$: estimated from systematic trends in neighboring nuclides with the same Z or N (2003Au02).

Adopted Levels, Gammas

 $Q(\beta^-) = 7.8 \times 10^3 \ 7; \ S(n) = 4.7 \times 10^3 \ 7; \ S(p) = 17796 \ SY; \ Q(\alpha) = -11218 \ SY \ 2003 Au 03.$

⁵²Ca Levels

$E(level)^{\dagger}$	Jπ	T _{1/2}	Comments
0.0	0+	4.6 s 3	$\%\beta^{-}=100; \ \%\beta^{-}n \le 2 \ (1983La23).$
			$T_{1/9}$: from $n-\beta(t)$ (1985Hu03).
2563.1 10	(2+)		$J\pi$: from systematics of even-even nuclides.
5590			% n = 100.
5820			% n = 100.
7030			% n = 100.
8230			% n = 100.
9210			% n = 100.

 $^{^{\}dagger}$ From ^{52}K β^- decay.

 $\gamma(^{52}Ca)$

 $\frac{E(level)}{2563.1} \qquad \frac{E\gamma}{2563.1} \qquad 2$

⁵²K β⁻ Decay 1985Hu03

Parent 52 K: E=0.0; J $_{\pi=(2-)}$; T $_{1/2}$ =105 ms 5; Q(g.s.)=16310 syst; $\%\beta^-$ decay=100. Sources: produced by the fragmentation of a U target with 600-MeV proton beam, on-line mass separation, measured E $_{\gamma}$ and $_{\gamma}$ -coin with Ge(Li) detectors, $_{\beta}$ coin with Ge(Li) and $_{\beta}$ telescope (0.5 mm scintillator sheet), E(n) with NE110 plastic scintillator sheet.

⁵²Ca Levels

$\frac{E(level)^{\dagger}}{}$	$J\pi^{\S}$	${\color{red}{T_{1/2}}}^{\S}$
0.0	0+	4.6 s 3
2563.1 † 10	(2+)	
5590		
5820		
7030		
8230		
9210		

- $\label{eq:from En} \dot{}^{\dagger} \ \ From \ E(n)(c.m) + S(n), \ except \ as \ noted, \ assuming \ S(n) = 4720 \ 700.$
- ‡ From Eγ.
- § From adopted levels.

 β^- radiations

$\underline{\hspace{1.5cm} E\beta^-}$	E(level)	Ιβ-†	Log ft
(7100)	9210	14.5 17	4.16 7
(8080)	8230	23.3 18	4.13 4
(9280)	7030	41.9 24	4.21 4
(10490)	5820	17.1 10	4.89 4
(10720)	5590	3.2 3	5.67 5
$(\;13750\;)$	2563 . 1	< 20	< 5.9

 $^{^{\}dagger}$ From measurement of delayed neutron- $\!\beta$ coin.

⁵²K β⁻ Decay 1985Hu03 (continued)

 $\gamma(^{52}Ca)$

Eγ E(level) $I\dot{\gamma}^{\dagger}$ Comments

2563.1 10 2563.1 <20 Iγ: authors estimate $I\beta(2563)<20$ relative to $\Sigma I\beta^-$ (to unbound states)=100.

 $^{^{\}dagger}$ Absolute intensity per 100 decays.

 $^{52}_{21}\mathrm{Sc}_{31}$ –1 $^{52}_{21}\mathrm{Sc}_{31}$ –1

Adopted Levels, Gammas

 $Q(\beta^-) = 9110 \ 190; \ S(n) = 5210 \ 190; \ S(p) = 11780 \ 210; \ Q(\alpha) = -1.066 \times 10^4 \ 19 \ 2003 Au 03.$

⁵²Sc Levels

$\underline{\hspace{1.5cm}E(level)^{\dagger}}$	Jπ [‡]	T _{1/2}	Comments
0.0	3 (+)	8.2 s 2	$\%\beta^{-}=100.$
			J π : from the observed feedings with log $f^{Iu}t$ <8.5 to the 2+ and the 4+ states in 52 Ti.
			$T_{1/2}$: inferred from the $^{52}Sc-^{52}Ti$ β^- decay rate of 1050, 1214, 1268, and 1382 keV transitions in ^{52}Ti (1985Hu03).
$675.21\ 23$			
1636.43 18	1+		
2745.7 7	1+		
3458.1 10	0,1		
4265.7 15	1+		

- † From least squares fit for Ey.
- ‡ From the log ft values in 52 Ca β^- decay.

 $\gamma(^{52}{
m Sc})$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ‡
675.21	675.2 3	100
1636.43	961.2 3	100
	1636.4 2	$71 \ 2$
2745.7	2070.4 6	100
3458.1	3458.0 10	100
4265 . 7	4265 . 5 15	100

- † From ⁵²Ca β⁻ decay.
- $\dot{\ddagger}$ Relative photon branching for each level.

⁵²Ca β- Decay 1985Hu03

Parent $^{52}Ca:~E=0.0;~J\pi=0+;~T_{1/2}=4.6~s~3;~Q(g.s.)=7850~720;~\%\beta^-~decay=100.$

Sources: produced by the fragmentation of a U target with 600-MeV proton beam, on-line mass separation, measured Ey, Iy, $\beta\gamma$ coin, Ge(Li) and β telescope (0.5 mm scintillator sheet).

$^{52}\mathrm{Sc}$ Levels

E(level)	$J\pi^{\dagger}$	T _{1/2}	†
0.0 $675.21.23$	3 (+)	8.2 s 2	
1636.43 <i>18</i> 2745.7 <i>7</i>	1+ 1+		
3458.1 <i>10</i> 4265.7 <i>15</i>	0 , 1 1+		

† From adopted levels.

β^- radiations

Εβ-	E(level)	$ 1\beta^{-\dagger \ddagger}$	Log ft	Comments
(3600 80	0) 4265.7	1.4 4	5.8 4	
4060 20	0 1636.43	86.8 13	5.07 18	Eβ-: from Fermi-Kurie plot analysis of the data (1985Hu03).
(4400 80	0) 3458.1	0.6 3	6.5 4	
(5100 80	0) 2745.7	11.2 12	5.5722	
(7200 80	0) 675.21	< 5	>6.6	

 $[\]dot{\dagger}$ From $\gamma(+ce)$ intensity balance at each level.

$$\gamma(^{52}\mathrm{Sc})$$

Iy normalization: calculated by assuming that the intensity of the β transition to the ground state of ^{52}Sc ($\Delta J=3$) negligible and that the sum of the transition intensities of γ 's feeding the g.s. is 100%.:

Εγ		Eγ E(level)	
675.2	3	675.21	100 2
961.2	3	1636.43	80 2
1636.4	2	1636.43	57 1
2070 . 4	6	2745.7	18 2
3458 . 0	10	3458.1	1.0 5
4265.5	15	4265.7	2.2 3

 $[\]dagger$ Photon intensity relative to I γ =100 for the strongest transition. Uncertainties deduced from authors' quoted uncertainties on I β 's.

[÷] For absolute intensity per 100 decays, multiply by 0.624 9.

 $[\]ensuremath{^{\ddagger}}$ Absolute intensity per 100 decays.

Adopted Levels, Gammas

 $Q(\beta^-) = 1976 \ 7; \ S(n) = 7808 \ 7; \ S(p) = 13536 \ 22; \ Q(\alpha) = -7676 \ 8 \quad 2003 Au 03.$

⁵²Ti Levels

Cross Reference (XREF) Flags

A ⁵² Sc β ⁻ Decay B ⁴⁸ Ca(⁶ Li,d) C ⁴⁸ Ca(⁷ Li,p2nγ) D ⁴⁸ Ca(¹² C, ⁸ Be) E ⁴⁸ Ca(¹⁶ O, ¹² C)				F ⁵⁰ Ti(t,p) G ⁵⁰ Ti(t,pγ) H ²⁰⁸ Pb(⁴⁸ Ca,Xγ) I Coulomb Excitation			
E(level) [†]	Jπ§	XREF	${ m T}_{1/2}^{\ \ \dot{\ddagger}}$	Comments			
0.0@	0+	ABCDEFGHI	1.7 min <i>1</i>	$\%\beta^{-}=100.$			
1049.73 [@] 10	2+	ABCDEFGHI	3.9 ps 4	T _{1/2} : from 1967Mo11. B(E2)↑=0.0567 51.			
			·	$T_{1/2}$: from B(E2) in Coulomb excitation. Other: 3.3 ps +56-15 DSAM in $^{50}\text{Ti}(t,p\gamma).$ Jp: L(t,p)=2. XREF: D(1045)E(1045).			
2264.2 3	2+	AB eFG I	35 fs +20-13	J π : L(t,p)=2. XREF: B(2260)e(2350).			
2317.65 [@] 14	4+	A CD F H		XREF: $D(2300)$. $J\pi$: $L(t,p)=4$.			
2431.62 15	2+	A eFG	≤70 fs	JR: $L(t,p)=2$. XREF: $e(2350)F(2429)$.			
3028.75 [@] 25	(6+)	С Н	25 ps 4	Jr.: based on y [E2] to 4+. T _{1/2} : RDM in ⁴⁸ Ca(⁷ Li,p2ny).			
3143.2 7		A		1/2. 10011 11 04 01,921/.			
3349.9 3	4+	A F		$J\pi$: $L(t,p)=4$.			
3343.3 3	4.7	А Г		XREF: F(3346).			
3452.7 3	3 –	A F		$J\pi$: L(t,p)=3.			
0402.7 0	0	11 1		XREF: F(3447).			
3588.8 10	2+	FG	<62 fs	$J\pi$: L(t,p)=2.			
5500.0 10	21	1 0	V02 15	XREF: F(3583).			
				$E(level)$: from $(t,p\gamma)$.			
3872 8	3-	F		$J\pi$: $L(t,p)=3$.			
3922.2 4	2+	A FG		$J\pi$: $L(t,p)=2$.			
				XREF: F(3916)G(3900).			
4022.3 4		A					
4058 8	(4+)	F		$J\pi$: $L(t,p)=(4)$.			
4077.6 7		A					
4098 8	0+,1-	F		$J\pi$: $L(t,p)=0,1$.			
4212 6	1-	FG		Jp: L(t,p)=0,1. Anisotropic $\gamma(\theta)$ in (t,p γ). XREF: G(4230).			
4286.1 10		A					
$4287.8^{\scriptsize @}4$	(8+)#	H					
4324 8	1-,0+	FG		J π : L(t,p)=1,0. XREF: G(4300).			
4477.9 4		A					
4691 8	1-,0+	F		$J\pi: L(t,p)=1,0.$			
4786.6 4	(2+)	A F		$J\pi$: $L(t,p)=(2)$.			
				XREF: F(4772).			
4823 8		F					
4909 8		F					
5010 8		F					
6691.2 [@] 11	(10+)#	H					
8855.2 12		H					
9086.2 12		Н					

 $[\]begin{tabular}{lll} \dot{T} Energies for levels connected by gammas are from least-squares fit to E\gamma, others are from $^{50}{\rm Ti}(t,p)$. \\ $\dot{\bar{T}}$ From DSAM in $^{50}{\rm Ti}(t,p\gamma)$, except as noted. \\ \end{tabular}$

 $[\]mbox{\S}$ From L(t,p) values, except as noted.

[#] From assumption of preferential yrast feeding and the close correspondence between established and calculated levels.

^{@ (}A): Yrast band.

 $\gamma(^{52}Ti)$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$		Mult.#	δ#	Comments
1049.73	1049.7 1	100	[E2]		$B(E2)\downarrow(W.u.)=9.9\ 11.$
2264 . 2	1214.5 3	100 8	D(+Q)	+0.03 10	$B(M1)\downarrow(W.u.)=0.31 +23-14.$
	2265.2 13	13 3	[E2]		Iy: <5 in (t,py) .
					$B(E2)\downarrow(W.u.)=2.7 +12-17.$
2317 . 65	1267.9 1	100			
2431 . 62	1381.9 2	100 9	M1+E2	-0.398	$B(M1) \downarrow (W.u.) > 0.090; B(E2) \downarrow (W.u.) > 11.$
					Mult.: from $p-\gamma(\theta)$ in $(t,p\gamma)$ and RUL.
	2431.6 † 2	< 18 ‡			
3028.75	711.1§ 2	100	[E2]		$B(E2)\downarrow(W.u.)=10.9 \ 18.$
3143 . 2	2093.4 7	100			
3349.9	1032.3 3	100			
3452.7	1135.0 3	100			
3588.8	1157.2 ‡ 20	≤22 [‡]			
	1324.5 ± 20	100 † 12			
	2539.0 ± 20	$45 ^{\ddagger} 12$			
	3588.8 [‡] 20	≤14 [‡]			
3922.2	1491.0 5	77 15			$I\gamma$: ≤ 18 in $(t,p\gamma)$.
	1658.0 ‡ 5	82 ‡ 9	D+Q	-0.3122	
	2872.0 5	100 18	Q(+D)	≤ -0.46	
	3923 3	23 8			$I\gamma$: ≤ 9 in $(t,p\gamma)$.
4022.3	1758.2 3	100 17			
	2972.2 5	63 12			
4077.6	1646.0 6	100			
4212	3162 ‡ 8		D(+Q)	+0.12 13	
	4212 † 8				
4286.1	1968.4 9	100			
4287.8	1259.0 \$ 2				
4477.9	1025.05	64 13			
	$1128.1 \ 3$	100 14			
4786.6	2468.8 4	100 12			
	3737.2 11	26 6			
6691.2	2405.08 6				
8855.2	2164.0 8 6				
9086.2	231.0 8 6				
	2395.0 \ 6				

(A) Yrast band

 $^{^{\}dagger}$ From $^{52}Sc~\beta^-$ decay, except as noted. ‡ From $^{50}Ti(t,p\gamma).$ Ey recalculated from level energy differences by evaluator using adopted level energies. $^{\$}$ From $^{208}Pb(^{48}Ca,X\gamma).$

[#] From $p\gamma(\theta)$ in $(t,p\gamma)$.

[@] Relative photon branching from each level.

⁵²Sc β- Decay 1985Hu03

 $Parent~^{52}Sc:~E=0.0;~J\pi=3(+);~T_{1/2}=8.2~s~2;~Q(g.s.)=9110~190;~\%\beta^-~decay=100.$

Sources: produced by the fragmentation of a U target with 600 MeV proton beam, on-line mass separation, measured Ey, Iy, $\beta\gamma$ -coin, Ge(Li).

⁵²Ti Levels

E(level)	$J\pi^{\dagger}$	$\underline{\hspace{1cm}}^{\dagger}_{1/2}^{\dagger}$	E(level)	$J\pi^{\dagger}$	E(level)	$J\pi^{\dagger}$
0.0	0+	1.7 min 1	3143.2 7		4077.6 7	
1049.72 10	2+		3349.9 3	4+	4286.1 10	
2264.2 3	2+		3452.7 3	3 –	4477.9 4	
2317.64 14	4+		3922.2 4	2+	4785.9 4	(2+)
2431.58 22	2+		4022.3 4			

 $^{^{\}dagger}$ From adopted levels.

β^- radiations

Εβ-	E(level)	$\underline{\hspace{1.5cm} \hspace{1.5cm} \hspace{1.5cm}$	Log ft	Εβ-	<u>E(level)</u>	$-$ I $\beta^{-\dagger \ddagger}$	Log ft
(4320 190)	4785.9	9.7 13	5.56 11	(5660 190)	3452.7	3.0 12	6.60 19
4590 160	3349.9	7.8 16	6.22 12	(5970 190)	3143.2	3.2 7	6.68 12
(4630 190)	4477.9	8.9 12	5.73 11	(6680 190)	2431.58	5.8 14	6.65 12
(4820 190)	4286.1	1.6 5	6.56 16	(6790 190)	2317.64	10.3 33	6.43 15
(5030 190)	4077.6	1.8 6	6.59 17	(6850 190)	2264 . 2	9.5 16	6.48 10
(5090 190)	4022.3	6.5 10	6.05 11	7040 170	1049.72	24.2 35	6.40 5
(5190 190)	3922.2	7.6 11	6.02 10				

 $[\]dot{\dagger}$ Calculated from the $\gamma-intensity$ balance at each level.

$\gamma(^{52}Ti)$

Iy normalization: calculated by assuming that the intensity of the $\Delta J=3$ β transition to the ground state of ^{52}Ti is negligible and that the sum of the γ -intensity feeding the g.s. is 100%.

Εγ	<u>E(level)</u>	Ιγ‡	Mult.†	δ [†]	Εγ	<u>E(level)</u>	Ιγ‡	Mult.†	$\underline{\hspace{1cm}\delta^{\dagger}}$
1025.0 5	4477.9	3.5 7			1758.2 3	4022.3	4.1 7		
1032.3 3	3349.9	14 1			1968.4 9	4286.1	1.7 5		
1049.7 1	1049.72	100	[E2]		2093.4 7	3143.2	3.3 6		
1128.1 3	4477.9	5.5 8			2265.2 13	2264.2	1.6 4	[E2]	
1135.0 3	3452.7	7 1			2468.8 4	4785.9	8 1		
1214.5 3	2264 . 2	12 1	D+(Q)	+0.03 10	2872.0 5	3922.2	3.9 7	Q+(D)	<-0.46
1267.9 1	2317.64	40 3			2972.2 5	4022.3	2.6 5		
1381.9 2	2431.58	11 1	M1+E2	-0.39 8	3737.2 11	4785.9	2.1 5		
1491.0 5	3922.2	3.0 6			3923.0 28	3922.2	0.9 3		
1646.0 6	4077.6	1.9 6							

 $^{^{\}dagger}$ From adopted levels, gammas.

[‡] Absolute intensity per 100 decays.

[÷] For absolute intensity per 100 decays, multiply by 0.976 5.

$^{52}\mathrm{Sc}$ β^- Decay 1985Hu03 (continued)

⁴⁸Ca(⁶Li,d) 1977Fu03

 $E=32~MeV,~FWHM=50-125~keV,~measured~d\sigma/d\Omega,~the~reaction~products~were~analyzed~with~a~magnetic~spectrometer,~DWBA$ analysis.

$^{52}\mathrm{Ti}$ Levels

E(level)	$J\pi^{\frac{1}{2}}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Comments
0.0	0 +	0.17	
1050 20	2+	0.13	σ : from $\sigma(2+)/\sigma(g.s) = 0.76$.
2260 20			

 $^{^{\}dagger}$ Reduced cross section s defined S=Ds(exp)/Ds(DWBA). ‡ From DWBA analysis of $\sigma(\theta).$

$^{48}Ca(^{7}Li,p2n\gamma)$ 1976Br29

E=28 MeV, measured $\gamma\text{--spectra}$ and recoil distance with a Ge(Li).

$^{52}\mathrm{Ti}$ Levels

E(level)	$J\pi^{\dagger}$	T _{1/2}	Comments
0.0	0+		
1050	2+		
2317	4+		
3027	(6+)	25 ps 5	$ m T_{1/2}$: based on RSM using the 1267-keV $ m \gamma$. The lifetime of the 2317-keV level was assumed too short
			to affect the result. The decay data obtained are consistent with this assumption.

[†] From adopted levels.

⁴⁸Ca(⁷Li,p2nγ) 1976Br29 (continued)

 $\gamma(^{52}Ti)$

Approximate E γ given only for those transitions relevant to $T_{1/2}$ measurement. No I γ or uncertainties on E γ reported.

E(level)	
1050	1050
2317	1267
3027	710

⁴⁸Ca(¹²C, ⁸Be) 1976Ma12

1976Ma12: E=56 MeV, measured $\sigma(E(^8Be,\theta))$, Be was recorded by detecting two α particles in coincidence in a detection system consisted with eight rectangular, closely adjacent detectors, DWBA analysis.

1977Mo06: E=45 MeV, measured $\sigma(\theta)$, Be was recorded by detecting two α particles in coincidence in a closely spaced pair of large rectangular Si(Li) detectors, DWBA analysis.

All data are from 1976Ma12.

⁵²Ti Levels

E(level)	$J\pi$	$\underline{\mathbf{L}}$	S	Comments
0.0	0+	0	0.90	
1040	2+	2	0.061	E(level): E=1045 (1977Mo06).
2300	4+	4	0.032	

⁴⁸Ca(¹⁶O, ¹²C) 1978Ko01

E=56 MeV, Δ E-E tof telescope (time resolution 75-95 ps, energy resolution 200-300 keV (FWHM)). The energy spectrum was measured at $\theta(lab)$ =25 .

⁵²Ti Levels

E(level)	Comments
0.0	

pprox 2350 This level is a doublet. Assumed to be composed of 2+ at 2264 and 2+ at 2431.

⁵⁰Ti(t,p) 1981Ma12,1971Ca19,1966Wi11

1981Ma12: E=15 MeV, FWHM \approx 25 keV, measured $\sigma(\theta,E(p))$, the reaction products were momentum analyzed with a multi-angle spectrograph over a laboratory angular range from 3.75 to 86.25 in 7.5 intervals, DWBA analysis.

1966Will: E=7.5 MeV, resolution 50 keV, measured $\sigma(\theta)$, E- ΔE solid-state detector system.

1971Ca19: E=13 MeV, measured $\sigma(\theta)$, Elbek-type magnetic spectrograph and photographic plate, studied L=0 transition to g.s. only.

⁵²Ti Levels

$\frac{E(level)^{\dagger}}{}$	<u>_</u>	s	Comments
0.0	0	2.4 4	S: DS/DW (mb/sr) at 12.5 (1971Ca19).
1050 4	2		
2262 8	2		
2316 8	4		
2429 8	2		
3346 8	4		
3447 8	3		
3583 8	2		

⁵⁰Ti(t,p) 1981Ma12,1971Ca19,1966Wi11 (continued)

⁵²Ti Levels (continued)

E(level) [†]	_L [‡] _	E(level)†	<u>L</u> ‡	E(level) †
3872 8	3	4212 8	0,1	4823 8
3916 8	2	4324 8	1,0	4909 8
4058 8	(4)	4691 8	1,0	5010 8
4098 8	0,1	4772 8	(2)	

 $^{^{\}dagger}$ From 1981Ma12.

$^{50}\mathrm{Ti}(t,p\gamma)$ 1974Pr04

E=2.9 MeV, measured $p\gamma(\theta)$ with an angular correlation spectrometer which consisted of five 10*10 cm NaI(Tl) detectors positioned at angles 5 , 35 , 45 , 60 , and 90 with respect to the beam axis, measured $p\gamma$ -coin and DSA, γ -ray detected with a 20 cm³ Ge(Li), proton detected with 1000 m annular silicon counter. γ -data for levels \geq 3900 keV were obtained with NaI detectors.

⁵²Ti Levels

E(level)	$J\pi^{\dagger}$	T _{1/2}
0.0	0+	
1049.8 6	2+	3.3 ps +56-15
2264.5 10	2	35 fs + 20 - 13
2431.7 12	2+	≤70 fs
3588.8 20	≥1	≤62 fs
3900 15	1, 2, 3	
4230 15		
$4300 \ 20$		

 $^{^{\}dagger}$ From $p\gamma(\theta)$ and χ^2 analysis.

 $\gamma(^{52}Ti)$

E(level)	Εγ	$\underline{\hspace{1.5cm}}^{} I \gamma^{\dagger} \underline{\hspace{1.5cm}}$	Mult.‡	δ‡	E(level)	Εγ	$\underline{\hspace{1.5cm}}^{\hspace{1.5cm}\dagger}$	Mult.‡	δ‡
1049.8	1050	100			3900	1472	≤10		
2264 . 5	1215	≥95	D(+Q)	+0.03 10		1641	45 5	D+Q	-0.3122
	2265	≤5				2853	55 5	Q(+D)	≤ -0.46
2431.7	1382	≥85	M1+E2	-0.39 8		3900	≤5		
	2432	≤ 15			4230	3180		D(+Q)	+0.12 13
3588.8	1157	≤ 15				4230			
	1324	69 8			4300	3250			
	2539	31 8				4300			
	3589	≤10							

 $^{^{\}dagger}$ Branching ratio for each level.

[‡] From a comparison between the experimental angular distributions and those calculated using the DWBA (see 1981Ma12).

 $^{^{\}ddagger} \ From \ p\gamma(\theta).$

Coulomb Excitation 2005Di05

Studied $^{52}\mathrm{Ti}$ with intermediate-energy Coulomb excitation, $^{52}\mathrm{Ti}$ produced $^{197}\mathrm{Au}(^{76}\mathrm{Ge},\mathrm{X}\gamma)$, $\mathrm{E}(^{76}\mathrm{Ge})=130$ MeV/nucleon, A1900 fragment separator; 380 mg/cm² ⁹Be fragmentation target.

⁵²Ti Levels

E(level)	$J\pi^{\dagger}$	$T_{1/2}$	Comments
0.0	0 +		
1050	2+	3.9 ps 4	B(E2)↑=0.0567 51.
2264	2+		$T_{1/2}$: from $B(E2)$.

[†] From adopted levels.

 $\gamma(^{52}Ti)$

E(level)	Εγ
1050	1050
2264	1214

$^{208}\mathrm{Pb}(^{48}\mathrm{Ca},\mathrm{X\gamma})$ 2002Ja16

Includes ${}^{9}\text{Be}({}^{86}\text{Kr}, X\gamma)$.

 $E(^{48}Ca) = 305~MeV,~measured~E\gamma~using~101~Compton-suppressed~Ge~detectors~of~the~Gammasphere~multi-detector~array.$ $^9Be(^{86}Kr, X\gamma), \ E=140 \ MeV, \ measured \ E\gamma \ using \ a \ double-sided \ Si \ strip \ detector(DSSD), \ two \ Si \ PIN \ detectors \ for \ an approximate of the strip of the strip$ β -particles, a Si PIN particle veto detector, six Ge detectors in a circular geometry, and a large volume Ge

⁵²Ti Levels

E(level)	$J\pi^{\dagger}$	E(level)	$J\pi^{\dagger}$
0.0‡	0+	4288.0‡ 4	(8+)
1050.01 20	2+	6693.1	(10+)
2318.0 ‡ 3	4+	8857.2 9	
3029 0‡ 4	6+	9088 2 9	

 $[\]dagger$ From assumption of preferential yrast feeding and the close correspondence between established and calculated levels. \ddagger (A): Yrast band.

 $\gamma(^{52}Ti)$

E(level)	Εγ	E(level)	Εγ
1050.01	1050.0 2	6693.1	2405.0 6
2318.0	1268.0 2	8857.2	2164.0 6
3029.0	711.0 2	9088.2	231.0 6
4288.0	1259.0 2		2395.0 6

Adopted Levels, Gammas

 $Q(\beta^-) = 3975.6 \ \textit{10}; \ S(n) = 7311.24 \ \textit{13}; \ S(p) = 9002.4 \ \textit{11}; \ Q(\alpha) = -9370 \ \textit{5} \quad 2003 Au 03.$

⁵²V Levels

Cross Reference (XREF) Flags

E(level) [†]	$J\pi^{\rm b}$	XREF	T _{1/2}	Comments
0.0	3+	ABC EF	3.743 min 5	$\begin{split} T_{1/2}: & \text{ from 1989Ab05. Others: 1953Sa11, 1954Ko07, 1963Ma41, 1965Bo42,} \\ & 1965Ko09, 1968Re04, 1969Wy01. \\ & J\pi: \ L(d,p) = 1 \ \text{ from } 7/2-, \ L(^3He,p) = 2. \end{split}$
				$\%\beta^{-}=100.$
17.156 6	2+,3+	A C Efg	1.08 ns 22	$T_{1/2}$: from $\gamma\gamma(t)$ in (n,γ) E=thermal (1972Bo59). $J\pi$: $\gamma\gamma(\theta)$ in (n,γ) , M1 γ to 3+. XREF: $C(19)f(20)g(20)$.
22.764 3	(4)+d	BCDE f g		J π : $\gamma\gamma(\theta)$ in (n,γ) , E2(+M1) γ to 3+. XREF: C(19)D(20)f(20)g(20).
141.611 6	1+	A C Efg		$J\pi$: log $ft=4.04$ from 0+.
147.845 3	4+	Εfg		J π : from γ (circ pol), $\gamma\gamma(\theta)$ in (n,γ) , $L(t,d)=1$ from 7/2 XREF: $f(145)g(150)$.
436.635 9	2+	C EFG		Jp: from $\gamma\gamma(\theta),$ y(circ pol) in (n,y), $L(t,d) = 1$ from 7/2 XREF: $C(442)F(431).$
793.545 13	3+	EF		Jp: from $\gamma\gamma(\theta),$ y(circ pol) in (n,y), $L(d,p){=}1$ from 7/2 XREF: F(787).
845.943 <i>12</i> 881& <i>14</i>	4 + c	C EFG F		XREF: C(853)F(838)G(830).
1289.847 22	(1)+	C EFG		J π : L(³ He,p)=(0+2). L(t,d)=1+3.
1410 010 14	3 + c	C FFC		XREF: C(1297)F(1277)G(1305).
1418.812 14	7 + d	C EFG	1 0 10	XREF: C(1423)F(1417)G(1436).
1493.06 20		B F	1.8 ps 10	$T_{1/2}$: from 0.7 ps to 2.8 ps in (7 Li, 3 n γ) (1977Na12).
1558.846 16	4 + c	EFG		XREF: F(1557)G(1569).
1579.16 4		EF		T 7 (277) 0 0
1664‡ 6	1+	C FG		$J\pi: L(^{3}He,p)=0+2.$
	(0.4.)			XREF: C(1665)F(1660)G(1665).
1732.572 17	(3-,4-)	EF		J π : J \neq 2 from γ (circ pol) in (n,γ) , $L(d,p)=(0)$ on 7/2 XREF: F(1729).
1759.623 20	3+	C EFg		J π : γ (circ pol) in (n, γ). L(3 He, p)=2. XREF: C(1766)F(1756)g(1775).
$1770.173 \ 20$		E g		
1795.118 16	2 + c	C EFg		XREF: $C(1802)F(1792)g(1775)$.
1843# 12	+	FG		$J\pi$: $L(d,p)=3$ from $7/2-$.
2100.828 13	3 + c	C EFG		XREF: $C(2108)F(2097)G(2104)$.
2152‡ 10	1+	C FG		J π : L(3 He,p)=0+2. XREF: F(2143)G(2155).
2168.637 17	4 + c	EF		XREF: F(2166).
2318.03 3 2347&	3 + c	C EFG F		XREF: C(2325)F(2321).
2396 10	0+,(1+)	C		$J\pi: L(^{3}He,p)=0+(2).$
2427.656 19	2 + , 3 + c	C EFG		XREF: C(2435)F(2432)G(2438).
2473& 13		F		
2538.821 24	(3,4,5)+c	EFG		XREF: F(2541)G(2533).
2543.0 3	(9+)d	В	5.5 ps 4	T _{1/2} : RDM, weighted average of 5.3 ps 4 (1976Br29) and 6.1 ps 7 (1977Na12) in (⁷ Li,3nγ).
2559.38 5		EF		
2591 10	1+	C		$J\pi: L(^{3}He,p)=0+2.$
2697 10	0+,(1+)	C		$J\pi$: $L(^{3}He,p)=0+(2)$.
2743.05 5		E		
2775.88 4	+	C EFG		J π : L(t,d)=1 from 7/2 XREF: C(2785)F(2781)G(2768).
2824.58 3		EF		
2024.00 0				
2858.876 25	(2,3,4)+c	Εfg		XREF: $f(2865)g(2848)$.

⁵²V Levels (continued)

E(level) [†]	$J\pi^{b}$	XREF	Comments
2910.38 5	+	EF	$J\pi$: $L(d,p)=1$ from $7/2-$.
2987.29 3		E	
3009.15 6	+	EF	$J\pi$: $L(d,p)=1$ from $7/2-$.
3059.54 4	(2,3)+	C EFG	$J\pi$: $L(^{3}He,p)=(2)$, $L(d,p)=1$ from 7/2 XREF: $C(3066)F(3063)G(3058)$.
3149		C	
3184.31 4		E	
3194.269 17	4 + ^c	EFG	
3198.91 6 3243 [@] 10		E C F	In. I (J n) 1:9 from 7/9
	+		$J\pi$: $L(d,p)=1+3$ from $7/2-$. XREF: $C(3249)F(3238)$.
3315.20 6	+	EFG	$J\pi$: $L(d,p)=1$ from 7/2 XREF: $F(3314)G(3287)$.
3333.19 5		CE	
3450 . 04 5	_	EF	J π : L(d,p)=2 from 7/2
3473.79 6	+	EFG	J π : L(t,d)=1+3 from 7/2
3509 13	_	F	J π : L(d,p)=2 from 7/2
3538.51 5	(1,2)-	C EFG	J π : L(t,d)=4, probable L(3 He,p)=1, and probable configuration (π f7/2)(ν g9/2). XREF: C(3550)F(3548)G(3549).
3575.97 4	3+	C EF	$J\pi$: L(3 He,p)=2+4. XREF: C(3 579)F(3 586).
3644.97 6	+	EF	$J\pi$: $L(d,p)=1$ from $7/2-$.
3687 8	-	C G	$J\pi$: $L(t,d)=4$ from $7/2-$.
		- 9	XREF: C(3693)G(3684).
3729.61 5	3 + c	CEf	XREF: C(3726)f(3740).
3733.15 3	+	Εf	$J\pi$: $L(d,p)=1$ from 7/2 XREF: f(3740).
3777.09 3	-	C E G	$J\pi$: L(t,d)=4 from 7/2 XREF: C(3781)G(3769).
3808.51 3	1+,2+,3+	C E	$J\pi$: $L(^3He,p)=2$.
3875 12	+	C G	XREF: $C(3822)$. $J\pi$: $L(t,d)=3$ from $7/2-$.
			XREF: C(3894)G(3867).
3940 10	_	G	J π : L(t,d)=4 from 7/2
3960 4 10	+	F	$J\pi$: $L(d,p)=1$ from $7/2-$.
4034 10	_	G	J π : L(t,d)=4 from 7/2
4108.70 5		CE	
4120 10	_	G	J π : L(t,d)=4 from 7/2
4278.70 4	-	C E G	$J\pi$: L(t,d)=4 from 7/2 XREF: C(4276)G(4307).
4285.26 6		E	
4327 15	(8)-	CD FG	$J\pi$: $L(\alpha,d)=7$. Strongest (t,d) level with L=4. XREF: $D(4320)F(4320)G(4307)$.
4419.58 6		C EfG	$J\pi$: $L(d,p)=2$ from 7/2-, $L(t,d)=1+3$ from 7/2 XREF: $f(4430)G(4429)$.
4455 15	-	C f	$J\pi$: L(d,p)=2 from 7/2 XREF: f(4430).
4483.00 11		СЕ	XREF: C(4496).
4518.90 12		E	ARDI. O(TTOU).
4518.90 12	_	G	$J\pi$: $L(t,d)=4$ from $7/2-$.
4557 15	1+,2+,3+	С	$J\pi$: L(3He,p)=2.
4609.44 13	1+,2+,3+	CEG	$J\pi$: L(He, p)=2. $J\pi$: L($^{3}He, p$)=0+2.
			XREF: C(4622).
4717§ 8	+	C G	$J\pi$: L(t,d)=3 from 7/2 XREF: C(4721)G(4715).
4755.02 14		E	
4772 10	+	G	$J\pi$: $L(t,d)=1$ from $7/2-$.
4904 \$ 8	+	C G	Jπ: L(t,d)=3 from 7/2 XREF: C(4910)G(4902).
4951 15		C	
4986 \$ 9	(1,2,3) +	\mathbf{C}	$J\pi$: L(3 He,p)=(2), L(t,d)=1+3. XREF: C(5 000)G(4 980).

⁵²V Levels (continued)

E(level) [†]	J_{π}^{b}	XREF	T _{1/2}	Comments
5038.88 13		E		
5080 \$ 8	_	C G		$J\pi$: $L(t,d)=4$ from $7/2-$.
				XREF: C(5070)G(5085).
5096 15		\mathbf{c}		
5187 10	_	G		$J\pi: L(t,d)=4 \text{ from } 7/2$
5233 15		C		
5276§ 8	+	C G		$J\pi$: $L(t,d)=1$ from 7/2
				XREF: C(5273)G(5277).
5344 \$ 11	+	C G		$J\pi$: $L(t,d)=1$ from $7/2-$.
				XREF: C(5360)G(5337).
5410 15	(1+,2+,3+)	C		$J\pi: L(^{3}He,p)=(2).$
5488 12	+	C G		$J\pi$: $L(t,d)=1$ from $7/2-$.
				XREF: C(5506)G(5480).
5548 8	_	C G		$J\pi$: $L(t,d)=4$ from $7/2-$.
5600 15		C		
5646 8	+	C G		$J\pi: L(t,d)=1 \text{ from } 7/2$
5711 15		C		
5744 8 8	(1, 2, 3) +	C G		$J\pi$: $L(^{3}He,p)=(2)$, $L(t,d)=3$ from 7/2
5813 15		C		
5851§ 8	+	C G		$J\pi$: $L(t,d)=3$ from 7/2
				XREF: G(5845).
5946 8	+	C G		$J\pi$: $L(t,d)=3$ from $7/2-$.
				XREF: C(5936)G(5951).
6021 15		\mathbf{c}		
6086§ 8	+	C G		$J\pi$: $L(t,d)=3$ from $7/2-$.
				XREF: C(6084)G(6087).
6167§ 8	+	C = G		$J\pi$: $L(t,d)=1+3$ from $7/2-$.
				XREF: G(6166).
6225 15		C		
6277 \$ 10	+	C G		$J\pi$: $L(t,d)=1$ from 7/2
				XREF: C(6292)G(6270).
6326 15		\mathbf{c}		
6374 15		C		
6406 8	+	C G		$J\pi$: $L(t,d)=1+3$ from 7/2
	•			XREF: C(6414)G(6403).
6472 15		C		11121. 0(0111) d(0100).
6519 [§] 8	+	C G		$J\pi$: $L(t,d)=3$ from $7/2-$.
0010	•	0 4		XREF: C(6524)G(6517).
6557 15		\mathbf{c}		
6590 15		C		
6640 15	1+,2+,3+	C		$J\pi: L(^{3}He,p)=2.$
6675 15	, ,	C		
6744 15		c		
6809 15		C		
6844 15		C		
6887 [§] 12		C g		XREF: C(6886)g(6890).
6919 15		C g		XREF: g(6890).
7110 25		G		- ·
7311.22 3		DE G		XREF: G(7320).
7540 25		G		
7850 25		G		
8050 25		G		
8250 ^a 25		GH	3.7 keV ^a 4	XREF: H(8200).
8400 25		G		
8620 ^a		H	3.3 keV ^a 4	
8760 25			-	
8838 15	0+	C		$J\pi: L(^{3}He,p)=0.$
				Identified as IAS ⁵² Ti g.s. in ⁵⁰ Ti(³ He,p).
				T=4.
9060 25		G		
9310 25		G		
9510 25		G		
9600a		Н	11.7 keVa <i>12</i>	
				

52V Levels (continued)

E(l	evel) [†]	XREF		
10080	25	G		
10650	25	G		

- Levels connected by gammas are from least squares fit, Levels not connected by gammas are from $^{51}V(t,d)$, except as noted. From weighted average of values in $^{50}Ti(^{3}He,p)$, $^{51}V(d,p)$, and $^{51}V(t,d)$.
- § From weighted average of values in $^{50}\text{Ti}(^{3}\text{He},p)$ and $^{51}\text{V}(t,d).$
- From weighted average of values in $^{51}V(d,p)$ and $^{51}V(t,d)$.
- @ From weighted average of values in 50 Ti(3 He,p) and 51 V(d,p).
- & From 51V(d,p).
- $^{a} \ \ \text{From} \ ^{51}V(n,\gamma) \ E \text{=} 0.75 \text{-} 11.3 \ MeV.$
- b L values from ⁵¹V(d,p) do not impose many restrictions on the range of J values. Allowed spins are, therefore, not listed when only L from (d,p) is available. Refer to (d,p) data set. Parities, when given alone, are based on L in (d,p), except as noted.
- c J is from $\gamma(\text{circ pol})$ in $(n,\gamma).$ π is from L(d,p)=1.
- d On the basis of comparison of yield with a fusion-evaporation calculation and of the level structure predicted by a shell-model calculation (1984De15), in ($^7\text{Li},3n\gamma$), propose J π =5+,7+, and 9+, respectively, for levels at 22, 1493, and 2543.

 $\gamma(^{52}V)$ $E\gamma^{\dagger}$ $I\gamma^{\dagger}$ E(level)Mult. α Comments17.156 17.153 6 100 Μ1 $\delta, Mult.:$ Mult from $\alpha(K) exp$ in $(n,\gamma).$ $\delta {=}\, 0.066$ +34-66 from $\alpha(exp)$ in (n,γ) . From RUL one expects $\delta < 0.0064$. $B(M1)\downarrow(W.u.)=0.97\ 20.$ 22.764 22.764 3 100 E2(+M1) >0.63 70 40 $\delta, Mult.: \ from \ (n,\gamma).$ 141.611 124.453 3 100 125.082 3 100 20 147.845 147.845 4 17 4 436.635 295.004 9 49 $I\gamma^{\dagger}$ $E \gamma^{\dagger}$ 419.468 23 7.0 E(level) 436.61 3 100 21 793.545 356.87 5 1.2 1770.173 1333.60 5 100 19 645.69 3 100 23 1622.42 5 84 18 776.41 4 1.2 2 1747.33 4 40 8 28 5 505.27 3 793.54 3 1795.118 6.1 12 845.943 1001.62 4 698.13 3 13 3 35 7 823.19 3 100 20 1358.50 3 94 18 845.98 3 80 17 1647.30 10 0.73 15 $1\,2\,8\,9$. $8\,4\,7$ 1148.28# 5 35# 7 1653.46 4 3.7 7 $1\,2\,7\,2$. $6\,4$ 4 100 18 1777.91 6100 21 572.89 5 6.6 13 7.9 15 1418.812 1795.05 3 981.98 8 29 6 2100.828 541.79 18 1.9 4 1270.91 4 17 4 682.02 3 23 41401.65 3 100 21 1254.87 3 33 6 1418 78 3 100 21 1307.28 3 54 11 1493.06 $1\,4\,7\,0$. $2\,7^{\,\ddagger}$ 20 100‡ 1664.18 3 77 16 1558.846 $712.90 \ 3$ 16 3 1952.92 4 100 21 1410.97 3 2.7 6 2083.64 3 55 6 1536.17 9 0.93 18 2100.83 4 42 4 1541.77 8 0.51 10 2168.637 1325 1 15 100 19 1558 79 3 1375 06 3 6 1 12 1579.16 1579.12 4 100 2020.76 4 15.5 15 1732.572886.66 3 100 21 2145.84 3 100 9 1584.70 5 23 5 2151.41 6 2.48 24 1591.6 3 4.5 9 2168.59 5 7.5 8 1709.78 3 79 15 899.02 9 67 13 2318.03 1732.53 4 100 21 1472.05 6 51 10 1759.623 965.6 4 2.3 4 1524.56 5 53 11 1322.92 3 92 19 2170.24 6 96 10 1611.77 4 100 21 $2\,3\,0\,0$. $7\,6$ 6 42 4 5.2 10 2317.79 8 1618.05 9 100 10 1742.50 4 29 6

$\gamma(^{52}V) \ (\text{continued})$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.	E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm} I\gamma^{\dagger}}$
2427.656	1634.04 3	82 17		3198.91	2352.76 16	23 3
	1991.44 15	2.3 5			3051.05 8	64 3
	2286.03 4	32 3			3176.07 11	100 4
	2410 . 44 5	100 9			3198 . 29 25	13.0 14
	2427.59 4	40 5		3315.20	2469.05 8	100 9
2538.821	806.45 8	15 3			3292.42 10	71 3
	979.94 12	15 3			3315.34 14	41 3
	1120.04 14	8.7 17		3333.19	1537.6 3	12 3
	1692.96 4	28 5			1573.54 14	21 4
	1744.92 22	6.1 12			1914.27 8	40 9
0540 0	2515.98 7 1049.98 [‡] § 18	100 10 100 [‡]	(EO)		2896.37 13	16.1 18
2543.0 2559.38	2122.66 7	100 +	[E2]		3310.48 <i>10</i> 3333.12 <i>10</i>	19.69 1005
2009.00	2417.83# 9	47# 4		3450.04	1131.99 11	44 9
	2559.36 9	50 4		3430.04	1891.38 21	12.9 22
2743.05	972.6 3	9.7 16			2656.46 9	100 10
2140.00	1897.58 25	9.7 16			3427.15 7	99 5
	2601.43 10	20.2 24			3432.46# 18	10.8# 11
	2725.83 9	52 6		3473.79	1894.11# 23	23# 4
	2742.96 6	100 10			2054.98 15	40 4
2775.88	1486.20 15	8.8 16			2627.70 8	100 9
	1930.04 10	31 6			3326.3 3	15.1 19
	2758.61 4	100 10			3473.75 8	94 6
2824.58	2030.75 9	23.4 21		3538.51	2692.74 17	14.7 15
	2387.93 4	100 10			2744.8 5	10.3 7
	2807.35 4	81 8			3101.71 6	100 5
2858.876	758.43 23	1.6 3			3390.61 7	71 4
	2065 . 27 5	7.1 7		3575.97	1148.28# 5	67# 14
	2420 1	100			1996.78# 14	14# 3
	2710.974	34 3			3139.266	100 5
	2841.64 4	59 6			3558.69 6	97 5
	2858.62 13	2.9 3		3644.97	2799.00 23	26 3
2910.38	2472.73 6	100 11			2851.24 11	63 6
0007 00	2911.64 9	43 5			3622.06 8	100 6
2987.29	2550.60 19 2839.24# 20	8.6 7 19# 2		3729.61	3645.00 <i>13</i> 1301.95 <i>9</i>	46 3 55 10
	2970.15 5	59 6		5729.61	1996.78# 14	28 [#] 6
	2970.13 3	100 10			2439.27 24	16.4 15
3009.15	2163.20 6	100 10			2883.73 10	73 7
5005.15	2216.3 4	15.6 11			3706.71 7	100 4
	2860.59 24	30 3		3733.15	1564.55 5	25 5
	3008.96 13	20.0 11		0.00.10	1973.48 6	20 4
3059.54	1641.6 3	10.8 22			2313.69# 23	4.8# 4
	1769.70 4	100 20			2442.86 19	4.8 4
	2266.06 9	34 3			2939.54 6	25 3
	2622.73 7	91 10			3296.54 11	26.0 15
	3059.33 7	87 4			3584.9 3	4.0 4
3184.31	1765.42 6	48 10			3593.5 7	2.6 4
	1894.11# 23	12.9# 22			3715.80 6	100 5
	2338.16 9	37 3		3777.09	2006.956	97 10
	2390 . 82 5	100 10			2218 . 2 3	10.8 8
	2747.42 21	16.1 21			2931.07 4	100 10
	3184.14 25	7.5 11			3340.8 5	3.1 8
3194.269	655.41 4	$12.5 \ 25$			3629.06 7	50.8 23
	1093.38 5	13 3			3754.05 7	97 5
	1399.44 11	4.6 9			3760.03 12	13.8 8
	1424.11 3	32 6			3776.78 20	9.2 8
	1635.42 4	26 5				
	1775.42 3	100 20				
	2348.21 8	12.8 12				
	3046.30 5	32.0 16				
	3171.35 7	5.31 25	,			

 $\gamma(^{52}V)$ (continued)

P(I I)	- ÷	- ÷	1	- ÷	. +
E(level)	$ E\gamma^{\dagger}$	Ιγ [†]	E(level)	$\mathbf{E}\gamma^{\dagger}$	Ιγ [†]
3808.51	1065.77 18	12 3	4483.00	1571.54 19	25 6
	2038.29 5	80 8		1740.0 3	12 3
	2076.00 7	28 3		2382.67 14	25 3
	2249.39 9	18.5 16		2724.14# 20	36# 4
	2962.46 5	100.0 16		2904.14 18	15.2 14
	3014.96 7	73 4		4046.2 6	5.6 14
	3785.48 8	22.8 11		4341.49 10	38.9 14
4108.70	2313.69# 23	10.1#8		4466.00 8	100 6
	2529.66 24	7.8 8	4518.90	1979.96 5	$100 \ 20$
	2818.56 18	11.7 16		2417.83#9	53# 5
	3671.83 6	100 5		2724.14# 20	43# 5
	3967.06 12	14.1 8		2786.63 14	$25 \ 3$
	$4091.70\ 15$	10.1 8		3725.39 10	46.7 17
	4108.59 15	14.1 8		4370.86 13	28.3 17
4278 . 70	1739.95 3	13 3	4609.44	1749.9 4	13 3
	2109.81 11	100 10		1833.75 7	53 11
	2546.09 20	16.9 14		2070.486	100 10
	3432.46# 18	14.1# 14		2839.24# 20	44# 5
	3484.64 10	35.2 14		2876.4 3	11.3 16
	4129.82 18	76 4		$3815.21\ 22$	12.9 16
	4255.08 15	29.6 14		4461.18 19	17.7 16
4285 . 26	1726.14 16	29 6		4586.63 10	41.9 16
	2706.0 5	$10.2\ 20$	4755.02	1695.74 14	$100 \ 21$
	3491.43 9	53.1 20		2586.54 19	74 5
	4137.30 16	28.6 20		3022.76 22	63 5
	4267.8 3	$12.2\ 20$		4317.9 4	26 5
	4285.11 8	100 4		4606.74 20	47 5
4419.58	1508.49 10	18 3	5038.88	1853.8 5	4.0 10
	1643.77 16	15 3		2213.96 21	8.5 10
	1860.8 5	2.8 7		3479.85 21	7.0 5
	2319.08 9	100 10		4192.79 7	100 5
	2649.13 24	6.3 7		5015.81 12	23.5 10
	2660.6 4	3.5 7		5038.80 16	8.0 5
	3983.01 12	14.0 7	I		

 $[\]label{eq:continuity} \begin{array}{ll} \mbox{$\stackrel{.}{\tau}$} & From \ ^{51}V(n,\gamma), \ except \ as \ noted. \\ \\ \mbox{$\stackrel{.}{\tau}$} & From \ ^{48}Ca(^{7}Li,3n\gamma),(^{11}B,\alpha 3n\gamma). \end{array}$

⁵²Ti β⁻ Decay (1.7 min) 1967Mo11

 $Parent~^{52}Ti:~E=0.0;~J\pi=0+;~T_{1/2}=1.7~min~1;~Q(g.s.)=1976~7;~\%\beta^-~decay=100.$

Source from $^{50}\text{Ti(t,p)}$ reaction, measured a low energy γ -ray spectrum with a thin NaI crystal with barylium window, measured γ -ray spectrum around the energy of 125 keV with a 2 cm³ Ge(Li) detector, $\gamma\gamma$ -coin.

 $^{52}\mathrm{V}$ Levels

E(level)	_Jπ [†]
0.0	3+
17.1536	2 + , 3 +
141.606 7	1+

[†] From adopted levels.

[§] $B(E2)(W.u.) \downarrow = 7.0 5$.

 $^{^{\#}}$ Multiply placed; undivided intensity given.

^{52}Ti $\beta^{\text{-}}$ Decay (1.7 min) $$ 1967Mol1 (continued)

β^- radiations

Εβ-	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1834 7)	141.606	100	4.04 3	Iβ-: no feeding to g.s., 17-keV level.

 † Absolute intensity per 100 decays.

$$\gamma(^{52}V)$$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ ^{‡§}	Mult.	Comments
17.1536 124.4533	17.153 141.606	18 <i>6</i> 100	M1	Mult.: from adopted γ 's.

Decay Scheme

- $^{\dagger} \ From \ ^{51}V(n,\gamma).$
- $\ensuremath{^{\ddagger}}$ From $I(\gamma\text{+ce})$ and $\alpha.$
- § Absolute intensity per 100 decays.

48 Ca(7 Li, 3 n γ),(11 B, $^{\alpha}$ 3n γ) 1977Na12,1976Br29

 $^{5\,2}_{2\,3}V_{2\,9}$

1977Na12: E=25-50 MeV, RDM, $\gamma(\theta)$, $\gamma\gamma$ -coin, Ge(Li) detectors, 2.5 keV FWHM for 1.33 MeV. 1976Br29: E=28 MeV, measured γ -spectra with a Ge(Li), Lifetime with RDM.

$^{52}\mathrm{V}$ Levels

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	T _{1/2}	Comments
0.0 23.0 10	3+ (5+)		
1493.3 <i>11</i> 2543.3 <i>11</i>	(7+)	5.5 ps 4	$T_{1/2}$: 0.7 ps to 2.8 ps, RDM (1977Na12). $T_{1/2}$: from weighted average of 5.3 ps 4 (1976Br29) and 6.1 ps 7 (1977Na12), RDM.

 † From 1976Br29, based on a comparison of results of the experiment with stripping and β decay information, and with shell-model calculation of 1973Ho44.

$$\gamma(^{52}V)$$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\overline{1\gamma^{\ddagger}}$	Mult.
23.0	(23)		
1493.3	$1470.27\ 20$	100	[E2]
2543.3	1049.98 18	100	

- † From 1977Na12.
- ‡ Branching ratio for each level, from 1977Na12.

⁵⁰Ti(³He,p) 1975Ca07

E=15 MeV, measured $\sigma(E(p),\theta)$, the reaction protons were momentum analyzed in a multi-angle magnetic spectrograph at angles ranging from 3.75 to 86.25 in steps of 7.7, overall energy solution for the experiment was 25 keV FWHM. DWBA analysis.

Others: 1974Ha55, 1972Ha31, 1971Ha55.

$^{52}\mathrm{V}$ Levels

E(level)	J π		$d\sigma/d\Omega(-b/sr)$	Comments
0.0	1+,2+,3+	2	54	
19 10	,,	(2+4)	109	
142 10	1+	0 + 2	279	
442 10			9	
853 10	(3+,4+,5+)	(4)	17	
1297 10	(1+)	(0+2)	157	
1423 10			18	
1665 10	1+	0+2	580	
1766 10	1+,2+,3+	2	115	
1802 10			19	
2108 10	1.	0 . 0	21	
2152 10 $2325 10$	1+	0+2	129	
2396 ‡ 10	0+,(1+)	0+(2)	11 233	Identified as possible fragment of AAS. See footnote.
2435 10	1+,2+,3+	2	42	identified as possible fragment of AAS. See foothole.
2591 10	1+	0+2	913	
2697 ‡ 10	0+,(1+)	0+(2)	68	Identified as possible fragment of AAS. See footnote.
2785 10			28	
2881 10	1+,2+,3+	2	82	
3066 15	(1+,2+,3+)	(2)	22	
3149 15	(1+,2+,3+)	(2)	68	
3249 15			17	
3342 15			21	
3550 15			79	L: L=1 or L=0+2 with L=2 dominant.
3579 15	3+	2+4	21	L: data can be fit by either L=3 or L=4 dominated 2+4. Exclusion of L=3, and hence assignment of $J\pi$ =3+, are based on consideration of (d,p) results.
3693 15			53	
3726 15			33	
3781 15		_	23	
3822 15	1+,2+,3+	2	65	
3894 15			13	
4107 15 4276^{\dagger} 15			46 80	
4327 15			62	
4419 15			41	
4455 15			19	
4496 15			61	
4557 15	1+,2+,3+	2	156	
4622 15	1+	0 + 2	147	
4721 15			93	
4910 15			29	
4951 15			62	
5000 15	(1+,2+,3+)	(2)	27	
5070 15			8	
5096 15			108	
5233 15			22	
$5273 ext{ } 15$ $5360 ext{ } 15$			30 32	
5410 15	(1+,2+,3+)	(2)	57	
5506 15	(11,27,07)	(2)	39	
5549 15			56	
5600 15			78	
5646 15			106	
5711 15			65	
5745 15	(1+,2+,3+)	(2)	142	
5813 15			76	
5863 15			39	
5936 [†] 15			162	

⁵⁰Ti(³He,p) 1975Ca07 (continued)

⁵²V Levels (continued)

E(level)	$\frac{-d\sigma/d\Omega(-b/sr)}{-}$	E(level)	Jπ	L§	$\frac{-d\sigma/d\Omega(-b/sr)}{-}$
6021 15	89	6557 15			174
6084 15	185	6590 15			60
6169 15	98	6640 15	1+,2+,3+	2	63
6225 15	119	6675 15			74
6292 15	64	6744 [†] 15			248
6326 15	29	6809 15			4 5
6374 15	53	6844 15			90
6414 15	23	6886 15			81
6472 15	23	6919 15			63
6524 15	61	8838# 15	0 +	0	615

- † Probable doublet
- $\dot{\bar{z}}$ The pairing-vibration model predicts a T=3, J π =0+ anti-analog state (AAS), as well as the T=4 IAS, based on the 52 Ti g.s. as parent. These two are the only candidates for L=0 states in the right region to be fragments of AAS. However, the combined yield accounts for only \approx 18% of that expected from the theoretical ratio $\sigma(AAS)/\sigma(IAS)=3$.
- § Assignments made by comparing observed angular distributions to DWBA calculations. Empirical criterion employed for distinguishing L=0 from L=0+2. See 1975Ca07 for details.
- $^{\#}$ T=4. Identified as IAS $^{52}\mathrm{Ti}$ g.s.

⁵⁰Ti(α,d) 1980Ok03

E=23.9 MeV, resolution ≈ 80 keV FWHM, measured $\sigma(\theta)$, $\Delta E-E$ counter telescope.

$^{52}\mathrm{V}$ Levels

E(level)	Jπ	L	Comments
		_	
20		4	E(level): authors suggest population mainly of 23-keV state, since L=4 and DWBA calculation for
			population of g.s. and 17 level, if configuration is $(\pi f7/2)(v p3/2)$, gives $\approx 20\%$ of σ .
4320 30	(8-)	7	Jπ: $\sigma(DWBA)$ and $\sigma(\theta)$ give best agreement for configuration (π f7/2)(ν g9/2) coupled to J=8 with L=7.
			$\sigma(\alpha, d)/\sigma(^3He, p)$ suggests large spin.

$^{51}V(n,\gamma)$ E=thermal 1991Mi08

 $J\pi(^{51}V)=7/2-$

 $1965 Wh06:\ measured\ E\gamma,\ I\gamma,\ \gamma\gamma-coin,\ \gamma\gamma\ angular\ correlation,\ rent\ crystal\ spectrometer.$

1966Va03: measured Ey, Iy, curved crystal spectrometer.

1967Ar08: measured Ey, Iy, Ge(Li) detector.

1967Ca03: measured $\gamma\gamma$ angular correlation, NaI(Tl) detectors.

1969Ra10: measured E γ , I γ .

1972Bo59: measured Iy, $T_{1/2}$, and $\alpha(exp)$ for 17-keV level, fast-slow delayed coincidence system.

 $1984 De15: \ polarized \ neutrons, \ measured \ E\gamma, \ \gamma (circ \ pol), \ I\gamma (\theta,H,t). \ Ge(Li) \ detectors.$

1991Mi08: measured Ey, Iy, Ge(Li) detector (FWHM: 2.2 keV at 1.33 MeV), pair spectrometer (FWHM: 2.3 keV at 2 MeV and 5.1 kev at 8 MeV).

Polarized (n, γ): see also 1965Ko10.

Resonance (n,γ) : see 1970Ra47, 1966Go30.

 $Construction \ of \ level \ scheme \ takes \ into \ account \ \gamma\gamma \ coin \ work \ of \ 1965Wh06, \ 1967Ar08, \ 1967Ca03.$

Energy, intensity and placement of Gamma-ray are from 1991Mi08, except as noted.

$^{52}\mathrm{V}$ Levels

E(level)	$J\pi^{\dagger}$	T _{1/2}
0.0		3+	
17.155	6	2+,3+	1.08 ns § 22
22 . 764	3	(4, 5) +	
141.610	6		

$^{51}V(n, \gamma) \ E = thermal \qquad 1991 \underline{Mi08} \ (continued)$

 $^{52}\mathrm{V}$ Levels (continued)

E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	E(level)	Jπ [†]	E(level)	$J\pi^{\dagger}$
147.845 3	4+‡	2559.38 5		3575.97 4	
436.6359	2+‡	2743.05 5		3644.97 6	
793.543 12	3+‡	2775.88 4		3729.61 5	
845.943 12	4+‡	2824.58 3		3733.15 3	
1289.846 22		2858.875 25	$(2,3,4)$ + ‡	3777.09 3	
1418.812 14	3+‡	2910.39 5		3808.51 3	
1558.846 16	4+‡	2987.29 3		4108.70 5	
1579.15 4		3009.15 6		4278.70 4	
1732.572 17	not 2‡	3059.55 4		4285.26 6	
1759.617 20	3+‡	3184.31 4		4419.59 6	
1770.173 20		3194.270 17	4+‡	4483.23 9	
1795.118 16	2+‡	3198.91 6		4518.89 12	
2100.829 13	3+‡	3315.20 6		4609.44 12	
2168.636 17	4+‡	3333.19 5		4755.02 14	
2318.03 3	3+‡	3450.04 5		5038.88 13	
2427.655 19	2+,3+‡	3473.79 6		7311.24# 13	3-,4-@
2538.821 24	$(3,4,5)$ + ‡	3538.52 5			

- $^{\dot{\uparrow}}$ Based on $\gamma\gamma(\theta)$ work of 1965Wh06, 1968BoZY, and 1967Ca03, except as noted.
- $\ddot{\ddagger}$ J: $\gamma (circ\ pol)$ (1984De15). $\pi :$ from L values in (d,p).
- § From $\gamma\gamma(t)$, see 1972Bo59.
- # Neutron capture state, from 2003Au03.
- $\ensuremath{\text{@}}$ From s-wave neutron capture on 7/2- target nucleus.

 $\gamma(^{52}V)$

E(level)	Εγ	Ιγ	E(level)	Εγ	Ιγ
	x137.50 [‡] 4	0.025 ‡ #		x3334.55 10	0.107
	x139.74 4			x3419.6 [†] 10	0.15@
	x663.7‡ 4	0.20 ‡ #		x3442 § 3	0.28
	x749.5 [‡] 10	<0.15 ^{‡#}		x3915.0 [†] 10	$0.17^{@}$
	×754.2‡ 10	<0.15 ‡ #&		×4076.9 [†] 10	0.16@
	x771.2 [‡] 10	<0.15 ^{‡#}		x4282.3 [†] 10	0.18@
	×780.6‡ 10	<0.15 ‡ #		×4503.0 [†] 10	0.15@
	x934.48 5	0.28 6		x4693.1 [†] 10	$0.22^{@}$
	×1097.2 [†] 10	1.2†@		x4990.18 10	0.111
	x1166.64 5	0.16 3		x5267.8 [†] 10	0.22
	x1181.71 4	0.18 4		×5297.6 [†] 10	$0.16^{@}$
	x1405.45 4	0.111 22		×5445.7 [†] 10	0.11@
	x1438.18 4	0.17 4		*5562\\$ 3	0.508
	x1526.93 3	0.25 5		×5944.5 [†] 10	$0.09^{@}$
	x1530.66 4	0.106 21		^x 6037.1 [†] 10	$0.09^{@}$
	x1693.9 [†] 10	1.08@		×6084.7 [†] 10	0.13@
	x1772.73 4	0.18 4		x6253.9 [†] 10	$0.09^{@}$
	x1820.66 4	0.103 21		x6278.4 [†] 10	0.16@
	x1960.1 [†] 10	0.75@		x6319.7 [†] 10	0.25@
	^x 2002.0 [†] 10	0.82@		x6342.5 [†] 10	0.15@
	x2004.83 4	0.35 4		x6372.6 [†] 10	0.12@
	x2051.0 [†] 10	0.54@		x6555.6 [†] 10	0.12@
	x2397.18 13	0.020 2		×6599.7 [†] 10	0.17@
	$^{x}2401$. 08 5	0.100 10		x6625.9 [†] 10	0.16@
	x2499.53 4	0.136 14		x6642.1 † 10	0.12@
	x2523.68 5	0.113 11		x6676.0 [†] 10	0.12@
	x2681.30 7	0.145 15		x6706.2 [†] 10	0.16@
	x2762.8 [†] 10	0.35@		x6956.6 [†] 10	0.16@
	x2887.48 4	0.33 3		×7069.1 [†] 10	$0.27^{@}$

$^{51}V(n,\gamma)$ E=thermal 1991Mi08 (continued)

$\gamma(^{52}V) \ (continued)$

<u>E(level)</u>	Εγ	Ιγ	Mult.	δ	α	I(γ+ce)	Comments
17.155	17.153 6	3.0 10	M1		7 3		α(exp)=4.6 18 (1972Bo59). Εγ: from 1989Du03. δ: from α(exp) one gets δ=0.066 +34-66.
22.764	22.764^{\ddagger} 3		E2(+M1)	>0.63	70 40	24 4	From RUL one expects δ<0.0064. α(exp)=65 +63-33 (1966Va03). δ: from α(exp). [(γ+ce): from Σ[(γ+ce) (feeding 22 level). [γ: 1967Ar08 report 0.19<1γ<0.45.
141.610	124 . 453 ‡ 3	2.5‡#					,
147.845	125 . 082^{\ddagger} 3	17.2 ^{‡#}					
	147.845‡ 4	3.0 ‡ #					
436.635	295.004	2.6 ‡ #					
	419.468 ‡ 23	3.7‡#					
500 540	436.61 3	5.3 11					
793.543	356.87‡ 5	0.15‡#					
	645.69 3 $776.41 4$	13 3 0.16 3					
	793.54 3	3.7 7					
845.943	698.13 3	0.80 16					
010.010	823.19 3	6.0 12					
	845.98 3	4.8 10					
1289.846	1148.28a 5	0.094a 19					
	1272 . 64 4	0.27 5					
1418.812	572.89 5	0.092 18					
	981.98 8	0.41 8					
	1270.91 4	0.24 5					
	1401.65 3	1.4 3					
1550 046	1418.78 3	1.4 3					
1558.846	712.90 3 $1410.97 3$	1.06 21 0.18 4					
	1536.17 9	0.18 4					
	1541.77 8	0.034 7					
	1558.79 3	6.7 13					
1579.15	1579.124	0.104 21					
1732.572	886.66 3	0.33 7					
	1584.705	0.076 15					
	1591.6 3	0.015 3					
	1709.78 3	0.26 5					
1759.617	1732.53 4	0.33 7					
1759.617	965.6 4 $1322.92 3$	$0.011 2 \\ 0.44 9$					
	1611.77 4	0.48 10					
	1618.05 9	0.025 5					
	1742.50 4	0.14 3					
1770.173	1333.60 5	0.62 12					
	$1622 \;.\; 42 5$	0.52 11					
	1747.33 4	0.25 5					
1795.118	505.27 3	0.20 4					
	1001.62 4	1.16 23					
	1358.50 3 1647.30 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	1653.46 4	0.024 5					
	1777.91 6	3.3 7					
	1795.05 3	0.26 5					
2100.829	541.79 18	0.026 5					
	682.02 3	0.32 6					
	$1254\;.\;87 3$	0.46 9					
	1307.28 3	0.75 15					
	1664.18 3	1.08 22					
	1952.92 4	1.4 3					
	2083.64 3 $2100.83 4$	$0.77 8 \\ 0.59 6$					
	2100.83 4	0.096					

 $^{51}V(n,\gamma)$ E=thermal 1991Mi08 (continued)

 $\gamma(^{52}V) \ (continued)$

E(level)	Εγ	Ιγ	E(level)	Εγ	Ιγ
2168.636	1325 † 1	0.5 ^{†@}	3184.31	3184.14 25	0.007 1
	1375 . 06 3	0.20 4	3194.270	655 . 41 4	$0.101\ 20$
	2020.764	0.51 5		1093.38 5	$0.108\ 22$
	2145 . 84 3	3.3 3		1399.44 11	0.037 7
	2151 . 41 6	0.082 8		1424.11 3	$0.26\ 5$
	2168.59 5	0.248 25		1635.42 4	0.214
2318.03	899.02 9	0.110 22		1775.42 3	0.81 16
	1472.05 6	0.084 17		2348.21 8	0.104 10
	1524.56 5	0.088 18		3046.30 5	0.259 13
	2170.24 6	0.159 16	0100 01	3171.35 7	0.043 2
	2300.766 2317.798	0.070 7	3198.91	2352.76 <i>16</i> 3051.05 8	0.016 2 0.044 2
2427.655	1634.04 3	0.165 <i>17</i> 0.53 <i>11</i>		3176.07 11	0.044 2
2427.655	1991.44 15	0.33 11		3198.29 25	0.009 1
	2286.03 4	0.013 3	3315.20	2469.05 8	0.034 3
	2410.44 5	0.65 6	5515.20	3292.42 10	0.034 3
	2427.59 4	0.05 0		3315.34 14	0.014 1
2538.821	806.45 8	0.20 3	3333.19	1537.6 3	0.014 3
2000.021	979.94 12	0.051 10	0000.10	1573.54 14	0.024 5
	1120.04 14	0.030 6		1914.27 8	0.045 9
	1692.96 4	0.096 19		2896.37 13	0.018 2
	1744.92 22	0.021 4		3310.48 10	0.022 1
	2515.98 7	0.346 35		3333.12 10	0.112 6
2559.38	2122.66 7	0.068 7	3450.04	1131.99 11	0.041 8
	2417.83 ^a 9	0.032 ^a 3		1891.38 21	$0.012\ 2$
	2559.36 9	0.034 3		2656.46 9	0.093 9
2743 . 05	972.6 3	0.012 2		3427.15 7	0.0925
	$1897.58\ 25$	0.012 2		3432 . 46^{a} 18	0.010 ^a 1
	2601.43 10	0.025 3	3473.79	1894.11 ^a 23	0.012a 2
	2725.83 9	0.065 7		2054.98 15	$0.021\ 2$
	2742.96 6	0.124 12		2627.70 8	0.053 5
2775.88	1486.20 15	0.016 3		3326.3 3	0.008 1
	1930.04 10	0.056 11	0.500.50	3473.75 8	0.050 3
2024 50	2758.61 4	0.181 18	3538.52	2692.74 17	0.020 2
2824.58	2030.759 2387.934	0.044 <i>4</i> 0.188 <i>19</i>		2744.8 5 3101.71 6	0.014 <i>1</i> 0.136 <i>7</i>
	2807.35 4	0.152 15		3390.61 7	0.136 7
2858.875	758.43 23	0.132 13	3575.97	1148.28 ^a 5	0.094a 19
2000.0.0	2065.27 5	0.085 9	00.0.0.	1996.78 ^a 14	0.019 ^a 4
	2420† 1	1.2†@		3139.26 6	0.140 7
	2710.97 4	0.41 4		3558.69 6	0.136 7
	2841.64 4	0.71 7	3644.97	2799.00 23	0.009 1
	2858.62 13	0.035 4		2851.24 11	0.022 2
2910.39	2472.73 6	0.065 7		3622.06 8	0.035 2
	2911.64 9	0.028 3		3645.00 13	0.016 1
2987.29	2550.60 19	0.012 1	3729.61	1301.95 9	0.037 7
	2839.24a 20	0.027a 3		1996.78ª 14	0.019a 4
	2970.155	0.083 8		2439 . 27 24	0.011 1
	2987.13 4	0.141 14		2883.73 10	0.049 5
3009.15	2163 . 20 6	0.090 9		3706.71 7	0.067 3
	2216 . 3 4	0.014 1	3733.15	1564.55 5	0.068 14
	2860.59 24	0.027 3		1973.48 6	0.054 11
	3008.96 13	0.018 1		2313.69 ^a 23	0.013ª 1
3059.55	1641.6 3	0.010 2		2442.86 19	0.013 1
	1769.70 4	0.093 19		2939.54 6	0.067 7
	2266.06 9	0.032 3		3296.54 11	0.071 4
	2622.73 7	0.085 9		3584.9 3	0.011 1
2104 21	3059.33 7	0.081 4		3593.5 7	0.007 1
3184.31	1765.426 $1894.11^{a}23$	0.045 9 0.012a 2	2777 00	3715.806 2006.956	0.273 14
	2338.16 9	0.0124 2	3777.09	2006.95 6	0.126 <i>13</i> 0.014 <i>1</i>
	2338.16 9	0.034 3		2931.07 4	0.130 13
	2747.42 21	0.095 9		3340.8 5	0.130 13
	#1 T1 . T4 41	0.010 2		3010.0	0.004 1

$^{51}V(n,\gamma)$ E=thermal 1991Mi08 (continued)

 $\gamma(^{52}V) \ (continued)$

E(level)	Εγ	Ιγ	E(level)	Εγ	Ιγ
3777.09	3629.06 7	0.066 3	4755.02	4317.9 4	0.005 1
	3754.05 7	0.126 6		4606.74 20	0.009 1
	3760.03 12	0.018 1	5038.88	1853.8 5	0.008 2
	3776.78 20	0.012 1		2213 . 96 21	$0.017\ 2$
3808.51	1065.77 18	0.023 5		3479.85 21	0.014 1
	2038.29 5	0.148 15		4192.79 7	0.200 10
	2076.00 7	0.052 5		5015.81 12	0.047 2
	2249.39 9	0.034 3 0.184 3	7311.24	5038.80 16 2272.33 6	0.016 <i>1</i> 0.26 <i>3</i>
	2962.46 5 3014.96 7	0.184 3	7511.24	2556.22 7	0.26 3
	3785.48 8	0.133 7		2701.76 6	0.047 3
4108.70	2313.69 ^a 23	0.013 ^a 1		2792.31 5	0.111 11
	2529.66 24	0.010 1		2827.89 6	0.171 17
	2818.56 18	0.015 2		2891.23 4	0.202 20
	3671.83 6	0.128 6		3025.83 7	0.138 7
	3967.06 12	0.018 1		3032.996	0.266 13
	4091.70 15	0.013 1		3202 . 37 6	0.161 8
	4108.59 15	0.018 1		3502.68 7	0.69 4
4278.70	1739.95 3	0.009 2		3534.13 6	0.54 3
	2109.81 11	0.071 7		3578.05 6	0.76 4
	2546.09 20	0.012 1		3581.53 6	0.192 10
	3432.46 ^a 18 3484.64 10	0.010 ^a 1 0.025 1		3666.17 8	0.035 2
	4129.82 18	0.025 1		3735.277 3772.717	0.313 <i>16</i> 0.299 <i>15</i>
	4255.08 15	0.034 3		3837.33 6	0.192 10
4285.26	1726.14 16	0.021 1		3861.22 7	0.197 10
1200.20	2706.0 5	0.005 1		3977.69 7	0.197 10
	3491.43 9	0.026 1		3995.91 8	0.040 2
	4137.30 16	0.014 1		4112.03 8	0.069 3
	4267.8 3	0.006 1		4116.92 8	1.88 9
	4285 . 11 8	0.049 2		4126.657	0.133 7
4419.59	1508.49 10	0.026 5		4251.56 7	0.182 9
	1643.77 16	0.022 4		4301.87 8	0.138 7
	1860.8 5	0.004 1		4323.70 7	0.179 9
	2319.08 9 2649.13 24	0.143 <i>14</i> 0.009 <i>1</i>		4399.4 3 $4452.19 7$	0.018 <i>1</i> 1.13 <i>6</i>
	2660.6 4	0.009 1		4486.48 7	0.350 18
	3983.01 12	0.003 1		4535.29 7	0.164 8
4483.23	1571.54 19	0.018 4		4567.95 7	0.219 11
	1740.0 3	0.009 2		4751.67 8	0.077 4
	2382.67 14	0.018 2		4771.94 8	0.333 17
	2724.14a 20	0.026a 3		4883.30 8	1.41 7
	2904.14 18	0.011 1		4992.91 8	0.734
	4046.26	0.004 1		5142.28 8	3.86 19
	4341.49 10	0.028 1		5210.07 8	4.81 24
4510 00	4466.00 8	0.072 4		5515.76 9	7.9 4
4518.89	1979.96 5	0.060 12 0.032 ^a 3		5540.74 16	0.048 2
	2417.83 ^a 9 2724.14 ^a 20	0.032 3 0.026a 3		5551.219 5578.319	$egin{array}{cccc} 0.55 & 3 \ 0.428 & 21 \end{array}$
	2786.63 14	0.020 3		5731.70 9	0.115 6
	3725.39 10	0.028 1		5752.03 9	7.5 4
	4370.86 13	0.017 1		5892.05 9	2.45 12
4609.44	1749.9 4	0.008 2		6464.84 10	8.96 45
	1833.75 7	0.033 7		$6517.26\ 10$	16.5 8
	2070 . 48 6	0.062 6		6874.12 11	10.4 5
	2839.24a 20	0.027a 3		7162.84 11	12.7 6
	2876.4 3	0.007 1		7287.89 11	1.26 6
	3815.21 22	0.008 1		7293.54 11	2.07 10
	4461.18 19	0.011 1		7310.66 11	5.02 25
4755 00	4586.63 10	0.026 1			
4755.02	1695.74 <i>14</i> 2586.54 <i>19</i>	0.019 <i>4</i> 0.014 <i>1</i>			
	3022.76 22	0.014 1			
		'			

Footnotes continued on next page

⁵¹V(n,γ) E=thermal 1991Mi08 (continued)

 $\gamma(^{52}V) \ (\text{continued})$

- † From 1969Ra10
- ‡ From 1966Va03.
- § From 1967Ar08.
- # Photons per 100 n-captures in 51 V, obtained by normalizing to the I γ =100 for the 1434 γ in 52 Cr (I γ (1434)=100% of 52 V g.s. decays). Uncertainties=15-20%.
- & 1967Ar08 report Iy=0.6 1 for Ey=756.0 5.
- a Multiply placed; undivided intensity given.
- $^{\boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

$^{51}V(n,\gamma)$ E=0.75-11.3 MeV 2000Ab40

E=0.75-11.3 MeV. White neutron source and standard tof.

 $^{52}\mathrm{V}$ Levels

E(level)		Γ	
8200	3.7	keV	4
8620	3.3	keV	4
9600	11.7	k e V	12

⁵¹V(d,p) 1965Ca09,1960En07,1960Da02

Target Jπ=7/2-.

1965Ca09: E=10.1 MeV, magnetic spectrograph, 5 to 175 .

 $1960 En 07 \colon\thinspace E{=}7.5$ MeV, multiple-gap spectrograph, 10~ to 130 .

1960Da02: E=8.9 MeV, energy spectra of the proton recorded by photographic emulsions, 5 and 70, magnetic spectrograph.

Others: 1964Bj01, 1958El42, 1953Sc56. All data are from 1965Ca09, except as noted.

⁵²V Levels

E(level)	_L#	(2J+1)S [@]	E(level)		(2J+1)S [@]	<u>E(level)</u>		(2J+1)S@
0.0	1	100	1792 12	1	14	3011 13	1	9
209	1	325	1843 12	3	14.5	3063 13	1	31
145 9	1	90	2097 12	1	34	3194 14	1	33
431 11	1	13	2143 13	3	77	3238 13	1 + 3	1.5+22
787 12	1	60	2166 13	1	22	3314 13	1	17
838 12	1	99	2321 12	1	21	3436 14	2	2.6
881 14			2347 †			3480 13	1	5
1277 18			2432 13	1	19	3509 13	2	6.5
1417 10	1	21	2473 13			3548 14		
1492 10	1 + 3	0.5+14.3	2541 12	1	19	3586 15	1	4.7
1557 † 10	1	≈ 100	2563 †			3657 15	1	3
1580 ‡ 10	1	≈ 10	2781 12	1	7	3740 \$ 10	1	
1660 12			2823 †			3960 \$ 10	1	
1729 12	(0)	1.5	2865 13	1	15	4320\$		
1756 12	1+3	2.5 + 17.5	2913 11	1	1.7	4430 \$ 20	2	

 $^{^\}dagger$ Level reported by 1960En07 only. Level energies given by 1960En07 are consistently 10-20 keV less than those of 1965Ca09 in this excitation region.

Footnotes continued on next page

[†] Not resolved at forward angles.

⁵¹V(d,p) 1965Ca09,1960En07,1960Da02 (continued)

 $^{52}\mathrm{V}$ Levels (continued)

$^{51}V(t,d)$ 1987Ka40

Target $J\pi=7/2-$.

E=33 MeV, total energy resolution 65 keV, measured E(d), $\sigma(\theta),$ DWBA analysis.

$^{52}\mathrm{V}$ Levels

E(level)	_L_	$C^2S' = C^2S(2J_f+1)/(2J_i+1)$	E(level)	_L_	$C^2S'=C^2S(2J_f+1)/(2J_i+1)$
20 10	1	1.60	4772 10	1	0.10
150 10	1	0.42	4902 10	3	0.24
437 10	1	0.10	4980 10	1+3	0.26+0.14
830 10	1	0.64	5085 10	4	0.20
1305 10	1 + 3	0.016+0.03 2	5187 10	4	0.38
1436 10	1	0.11	5277 10	1	0.40
1569 10	1	0.27	5337 10	1	0.22
1665 10	3	0.11	5480 10	1	0.29
1775 † 10	1 + 3	0.16+0.61	5548 10	4	0.26
1844 10	1	0.056	5646 10	1	0.18
2104 10	1 + 3	0.23+0.26	5744 10	3	0.22
2155 10	3	0.91	5845 10	3	0.33
2317 10	1 + 3	0.10+0.12	5951 10	3	0.18
2438 10	1 + 3	0.08+0.22	6087 10	3	0.17
2533 10	1 + 3	0.072+0.18	6166 10	1 + 3	0.05+0.05
2768 10	1	0.05	6270 10	1	0.13
2848 10	3	0.11	6403 10	1 + 3	0.04+0.032
3058 10	1	0.11	6517 10	3	0.12
3194 10	1 + 3	0.16+0.24	6890 25		
3287 10	1	0.12	7110 25		
3479 10	1 + 3	0.072+0.16	7320 25		
3549 10	4	0.42	7540 25		
3684 10	4	0.29	7850 25		
3769 10	4	0.90	8050 25		
3867 10	3	0.30	8250 25		
3940 10	4	0.20	8400 25		
4034 10	4	0.32	8760 25		
4120 10	4	0.34	9060 25		
4307 10	4	1.18	9310 25		
4429 10	1 + 3	0.22+0.18	9510 25		
4533 10	4	0.33	10080 25		
4609 10	3	0.11	10650 25		
4715 10	3	0.33			

 $^{^{\}dagger}$ Authors' value of 1755 in their table is a misprint, see authors' text.

Level reported by 1960Da02.
 From DWBA analysis (1965Ca09).
 Relative (2J+1)S. See 1965Ca09 for details.

Adopted Levels, Gammas

⁵²Cr Levels

			Cross Reference (XRE)	F) Flags
B 52 C 52 D (F E 50 F 52 G 52 H 55 I 51 J 51 K 51	2V β - Decay (3 2Mn ε Decay (5 2Mn ε Decay (5 2Mn ε Decay (5 2Mn ε Decay (5 2Mn ε Decay (7 2Mn	5.591 d) 21.1 min)	$\begin{array}{ll} M & ^{52}Cr(\gamma,\gamma'), (pol \ \gamma,\gamma') \\ N & ^{52}Cr(e,e') \\ O & Others: \\ \hline & ^{52}Cr(\pi^+,\pi^+), (\pi^+,\pi^{+'}) \\ & ^{52}Cr(n,n') \\ & ^{52}Cr(n,n') \\ & ^{50}V(\alpha,d) \\ & ^{50}Ti(^{16}O,^{14}C) \\ & ^{52}Cr(d,d') \\ & ^{52}Cr(^3He,^3He') \\ & ^{52}Cr(^7Li,^7Li') \end{array}$	$ \begin{array}{l} ^{52}{\rm Cr}(^{12}{\rm C},^{12}{\rm C'}), ^{(13}{\rm C},^{13}{\rm C'}) \\ ^{52}{\rm Cr}(^{16}{\rm O},^{16}{\rm O'}), ^{(18}{\rm O},^{18}{\rm O'}) \\ {\rm Coulomb~Excitation} \\ ^{50}{\rm Cr}(\alpha,^2{\rm He}) \\ ^{53}{\rm Cr}(\alpha,^2{\rm He}) \\ ^{53}{\rm Cr}({\rm d},{\rm t}), ({\rm pol~d},{\rm t}) \\ ^{53}{\rm Cr}(^3{\rm He},\alpha) \\ ^{54}{\rm Cr}({\rm p},{\rm t}) \\ ^{55}{\rm Mn}(^{-},{\rm 3n}\gamma) \\ ^{51}{\rm V}(\alpha,{\rm t}) \\ ^{56}{\rm Fe}({\rm d},^6{\rm Li}) \\ {\rm Ni}({\rm K}^-,{\rm X}\gamma), (\pi^+,{\rm X}\gamma), (\pi^-,{\rm X}\gamma) \end{array} $
E(level) [†]	Jπ	XREF	$T_{1/2}^{l}$	Comments
0.0	0+	ABCDEFGHI JKLMNO	stable	rms charge radius=3.6424 fm 21 (2004An14). others: rms charge radius=3.61 fm 8, muonic x-ray (1962Jo05), rms charge radius=3.674 fm 15 (1976Li19) (e,e').
1434.094 14	2+	ABCDEFGH I JKLMNO	0.793 ps 2	Jπ: E2 γ to 0+. T _{1/2} : from 2000Er01. Other: 0.71 ps 3 (1987Ra01). =+3.0 5 (1989Ra17); Q=-0.14 8 (1975To06). Q=-0.082 16 (1989Ra17); g=1.206 64 (2000Er01).
2369.633 18	4+	ABCD FG IJKL NO	1.04 ps ^m +35-17	J π : L(α,α')=4. B(E4) \uparrow =0.00066 8. B(E4) \uparrow : from weighted average of 0.00067 12 in (e,e') and 0.00066 10 in (π^+,π^+),(π^+,π^{++}). T _{1/2} : other: 9.4 ps +24-16, DSAM (HI,xn γ). XREF: K(2368)L(2371)O(2372)O(2380).
2646.9 6	0 +	A FGH L NO		$J\pi \colon L(e,e') = 0.$ XREF: $H(2660)L(2650)N(2650)O(2650)O(2640)O(2650)O(2640)O(2650)$
2767.770 21	4+	ABCD FG IJKL NO	1.9 ps 5	JT: $L(\alpha,\alpha')=4$. $T_{1/2}$: DSAM, from weighted average of values 1.4 ps +5-3 (3 He,d γ) and 2.5 ps 6 (HI,xn γ). XREF: N(2770)O(2770)O(2770)O(2770)O(2780)O(2770).
2964.790 17	2+	A C FGHIJKL NO	0.42 ps 8	$J\pi$: E2 γ to 0+. $T_{1/2}$: from (p,p' γ). Others: 0.47 ps +22-13, DSAM (3 He,d γ), 31 fs 4 (n,n' γ). XREF: H(2974)N(2970)O(2960).
3113.865 21	6+	B D G IJKL NO	41.4 ps <i>14</i>	J π : L(p,p')=6, E2 γ to 4+. T _{1/2} : DSAM. Other: >1.8 ps (3 He,d γ), DSAM. XREF: N(3110)O(3110)O(3110)O(3110)O(3110).
3161.74 6	2+	A C FGHI KLMNO	0.066 ps <i>14</i>	Jπ: $L(\alpha,\alpha')=2$. $T_{1/2}$: from adopted B(E2). Others: 0.08 ps +4-3 (3 He,d 7), 33 fs 5 (p,p' 7). B(E2) 4 =0.00124 23. B(E2) 4 : (e,e'). XREF: H(3175)O(3168).
3415.32 3	4+	AB D FG IJKL O	0.26 ps 7	J π : L(p,p')=4. $T_{1/2}$: from weighted average of values 0.22 ps +8-5 (3 He,d γ) and 0.33 ps 9 (HI,xn γ). XREF: J(3420)O(3420)O(3432)O(3418).

⁵²Cr Levels (continued)

E(level) [†]	<u></u> Jπ	XREF	$T_{1/2}$ l	Comments
3472.25 <i>14</i>	3+	A CD FG I KL O	7.2 ps 8	J π : 1968Mo19 propose the existence of two levels in this vicinity separated by 3.0 keV, one decaying by 703 γ and having a spin of 3, 5 (from p,p' $\gamma(\theta)$), and another with spin 2 decaying by 2038 γ . Subsequent work (1977Ya08, 1974Br04) shows that a single level at 3472.2 emits two γ 's (704.6 (78%) and 2038.0 (22%)) and suggests that the two-level hypothesis was a result of an error in the energy assigned to the 704 γ by 1968Mo19. Furthermore, the p,p' $\gamma(\theta)$ data on the 2038 γ (1968Mo19) were found to be consistent with 3. $T_{1/2}$, together with L in transfer, suggest π =+. One further complication is the assignment of L=4 to the level by 1970Pr08 in (p,p'). $L(p,p')$ =2+3. Thus existence of a J π =4+ level at 3472 is tentatively ruled out. $T_{1/2}$: RDM. Other: >1.9 ps (3 He,d γ), DSAM. XREF: 0(3440)0(3450)0(3494)0(3460)0(3440).
3615.929 22	5+	B D G IJKL O	2.6 ps 12	JR: $\log ft = 6.15$ from $6+$, $\gamma(\theta)$ in (HI,xn γ); π from $L(^3He,d) = 1$. XREF: J(3620)L(3619). $T_{1/2}$: from 1.4 ps< $T_{1/2} < 3.8$ ps, lower limit, DSAM; upper,
3739.6&	1+,1-,2+	М		RDM. Other: >0.76 ps in (3 He,d $^{\gamma}$). J π : From ($^{\gamma}$, $^{\gamma}$) (1998En05), based on values of reduced transition strengths(UP). B(M1) $^{-}$ =0.008 $_{1}$; B(E1) $^{+}$ =0.0000009 $_{1}$; B(E2) $^{+}$ =0.0015 $_{2}$
3771.72 <i>14</i>	2+	A C EFGH JKLMNO	10.9 fs <i>13</i>	(1998En05). Jπ: L(α,α')=2, L(³ He,d)=1. B(E2) [↑] =0.0076 11 (1998En05). XREF: E(3700)H(3781)O(3780)O(3780)O(3767)O(3800)O(3800) T _{1/2} : from weighted average of values 11.1 fs 14 (n,n'γ) and 9 fs 4 (p,p'γ). Other: 7.7 fs 17 from B(E2)=0.0099 4. The B(E2) from weighted average of 0.0101 5 (e,e') and 0.0095 7 in (π ⁺ ,π ⁺),(π ⁺ ,π ⁺⁺). Other: 0.14 ps 1 (e,e').
3948.5d 6	2+	C Gh JKL O	33 fs ⁿ 6	XREF: $h(3957)O(3926)$. $J\pi$: $L(p,p')=2$, $T_{1/2}$: other: 0.10 ps +4-3 (3 He,d 7).
4015.51 3	5+	B D G IJKL O	0.61 ps +27-19	T _{1/2} : log ft=6.625 from 6+, π from L(³ He,d)=1. T _{1/2} : from weighted average of values 0.58 ps +32-19 (³ He,dγ) and 0.7 ps 5 (HI,xnγ). XREF: J(4020)O(4017).
1039.2 6	4+	D G IJKL NO	26 fs ⁿ 4	Jπ: $L(p,p')=L(\alpha,\alpha')=4$. $T_{1/2}$: other: 0.51 ps +25-14 (3 He,dγ). XREF: J(4033)O(4010)O(4030).
1100 ^b 100	3 –	0		XREF: O(4200)O(4090). Jπ: L(n,n')=3.
1470	3-	0	40 C D 0	E(level): from $({}^{3}\text{He}, {}^{3}\text{He}')$. $J\pi$: $L({}^{3}\text{He}, {}^{3}\text{He}') = 3$.
4563.0 8	3 –	C GH JKL NO	40 fs ⁿ 6	Jπ: L(α,α')=3. T _{1/2} : other: 0.27 ps +12-6 (³ He,dγ). XREF: H(4572)O(4600)O(4560). B(E3)↑=0.0066 3. B(E3) from weighted average of values 0.0065 4 in (e,e') and 0.0068 5 in (π^+,π^+),(π^+,π^{++}).
1611	(3,4)+	I O		$J\pi$: L(3He , α)=3 on 3/2 XREF: O(4605).
4627.32 19	4+	B G J L O		Jπ: L(p,p')=4. XREF: G(4630)L(4630)O(4630)O(4680).
4702 5	2+	E G J L O		$J\pi$: L(³ He,n)=2. XREF: E(4710)L(4706)O(4710).
4730 4742.3 <i>11</i>	4+ 2+	J O GHI L O		J π : L(α,α')=4. L(3 He,d)=1. J π : L(t,p)=0.

$^{52}\mathrm{Cr}$ Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2} l	Comments
4750.32 20	8+	D O	0.64 ps +20-17	$J\pi$: $\gamma(\theta)$ in (HI,xn γ), E2 γ to 6+. XREF: O(4770).
800.1	1+, 1-, 2+	M		$J\pi\text{: From }(\gamma,\gamma') \ (1998\text{E}n05), \ based on values of reduced}$
				transition strengths(UP).
				$B(M1)\uparrow=0.009$ 2; $B(E1)\uparrow=0.0000010$ 2; $B(E2)\uparrow=0.00105$ 20 (1998En05).
1806.19 23	(6+)	D G I L O	0.49 ps +28-14	J π : L(α , ² He)=4,6, γ (θ) in (HI,xn γ), M1+E2 γ to 5+.
				XREF: I(4808)L(4808)O(4770).
1815.70 9	1+,2+	C o		J π : log ft =5.55 from 2+, γ to 0+.
1841.3& 11	1+,1-,2+	G IJ LM o		XREF: o(4830). XREF: G(4832)o(4830).
1041.5 11	1+,1-,2+	G 15 LM 0		B(M1) \uparrow =0.011 2; B(E1) \uparrow =0.00000126 23; B(E2) \uparrow =0.00131 24
				(1998En05).
				$J\pi \colon From~(\gamma,\gamma')~(1998En05),~based~on~values~of~reduced$
				transition strengths(UP).
951 4	4+	G L O		Jπ: L(p,p')=4.
054.3 11	4+	I O		XREF: $L(4950)O(4980)$. $J\pi$: $L(\alpha,\alpha')=4$.
1.0 11		1 0		XREF: $O(5070)$.
097.4 11	2+	G IJ LM O		$J\pi$: $L(^3He,d)=1$, excitation in (γ,γ') .
				XREF: J(5101)O(5070)O(5120).
139 5	(6+)	GJL		$J\pi: L(p,p')=5,6, L(^3He,d)=(3) \text{ from } 7/2$
211 <i>4</i> 285 <i>5</i>	(4)-	G L O G J L		$J\pi$: L(³ He,d)=0 from 7/2
200 0	(4)-	ч оп		XREF: L(5281).
346 4	4+,6+	G L O		$J\pi$: $L(\alpha,^2He)=4,6$.
				XREF: O(5320).
397.0 3	(7+)	D	0.14 ps + 12 - 9	J π : L(³ He, α)=(1), M1+E2 γ to (6+).
410 4	(2+)	GH j L O		J π : L(t,p)=(2). L(3 He,d)=1 for E=5420.
				$L(^{5}\text{He}, 0) = 1$ for $E = 5420$. XREF: $H(5423)j(5420)O(5400)$.
425 5	4+	G j L		$J\pi$: $L(p,p')=4$.
				XREF: j(5420)L(5422).
432 6		G		
446.4 5	4+	HIJ L O		J π : L(α , α')=4.
490.8&	1+,1-,2+	g LM		XREF: H(5443)J(5450)L(5450)O(5450)O(5450). XREF: g(5494).
400.0	11,1 ,21	g 1111		$B(M1)\uparrow=0.008\ 2;\ B(E1)\uparrow=0.0000009\ 3;\ B(E2)\uparrow=0.00074\ 20$
				(1998En05).
				$J\pi \colon \mbox{ From } (\gamma,\gamma') \mbox{ (1998En05)}, \mbox{ based on values of reduced}$
F009		. -		transition strengths(UP).
500 ^a	3 –	g N		XREF: $g(5494)$. B(E3) \uparrow =0.0013 3 (1964Be32).
				$J\pi$: L(e,e')=3.
541 5	4+	G L		$J\pi$: $L(p,p')=4$.
6				XREF: L(5538).
544.4&	(1+)	G LM O		$B(M1)\uparrow=0.19$ 4.
				Jπ: $L(^3He, α)=(1)$. XREF: $O(5560)$.
563.5 8	+	G I L		JET: $U(5560)$. JET: $U(p,p')=5,6$, $U(^3He,d)=1$ from $7/2-$.
		-		XREF: G(5569)L(5571).
584 6	+	G J L		$J\pi$: $L(^3He,d)=1$.
2008				XREF: J(5594).
600§ 15	0 +	е Н		$J\pi$: $L(t,p)=0$. XREF: $e(5650)$.
664.4 11	(2)+	e G IJ L O		$J\pi$: $L(p,p')=2$. $L(^{3}He,d)=1+3$ from $7/2-$.
	\ - / ·	10 2 0		XREF: G(5661)J(5660)O(5640)O(5670).
725.3 12	+	G IJ L O		$J\pi$: $L(^{3}He,\alpha)=3$ from $3/2-$. $L(p,p')=5,6$.
		a -		XREF: G(5727)J(5720)O(5700)O(5710).
737.5 <i>11</i> 755§ <i>15</i>	(4+) 2+ to 5+	G I e H j		$J\pi$: $L(p,p')=(4)$. $J\pi$: $L(t,p)=0$. But $L(^3He,d)=1$ from $7/2-$.

⁵²Cr Levels (continued)

E(level) [†]	Jπ	XREF	l	Comments
5796.0&	1+,2+	G J LM		J π : from (γ, γ') ,pol (γ, γ') , $L(^3He, d)=1+3$ from 7/2 XREF: J(5790).
5811 5	5,6+	G		$J\pi$: $L(p,p')=5,6$.
5818 6	0,01	G		5 N. E(P,P) = 5,0.
5824.8 <i>4</i>	(8+)	D	1.0 ps +6-4	$J\pi$: $\gamma(\theta)$ in $(HI,xn\gamma)$, $M1+E2$ γ to $(7+)$.
	(0+)	G IJ O	1.0 ps +0-4	XREF: G(5853)J(5828)O(5830).
5860.5 11				AREF: G(0803)J(0828)O(0830).
5865 <i>6</i>		G		T T/ D 0
5873 5	3 –	G		$J\pi$: $L(p,p')=3$.
5891 [@]	3-,4-	1 O		$J\pi$: $L(^3He,d)=0$ from $7/2-$.
				XREF: O(5910).
5919 5	5,6+	G		$J\pi: L(p,p')=5,6.$
5953 5	2+	G J O		$J\pi$: $L(p,p')=2$.
				XREF: J(5945).
5960 5		G		
5996 5	3 –	G J L O		$J\pi$: $L(p,p')=3$.
				XREF: J(5992)O(5990).
6026 6	+	GH J		$J\pi$: L(³ He,d)=1 from 7/2
6035.3 <i>12</i>	•	G I		···· = \ 110,u/=1 110m 1/2 1
6055 5	2+	G I		In: I (n n')-9
	4+			$J\pi$: $L(p,p')=2$.
6065 7		GH		XREF: H(6069).
6106 6	0+	E G J O		$J\pi: L(^{3}He,n)=0.$
0				XREF: E(6100)J(6089)O(6130).
6136.7&	2+	G M		B(E2)↑≤0.0030 11.
				$J\pi$: $L(p,p')=2$. Excitation in (γ,γ') .
6153 8	2+	GH		$J\pi$: $L(t,p)=2$.
6164 12	3 –	G O		$J\pi$: $L(\alpha,\alpha')=3$.
				XREF: O(6160).
6175 7	2+	G O		$J\pi$: $L(p,p')=2$.
				XREF: O(6180).
6193 6	+	G J		$J\pi$: L(³ He,d)=1.
6205.4 12	•	G I		5. 2\ 110,u/-1.
6210 10		G		
6220 6		G		7 7 (277 1) 4 0
6233 10	+	G J		$J\pi$: L(³ He,d)=1 from 7/2
6243 5	3 –	G		$J\pi$: $L(p,p')=3$.
6252 6		G		
6272 6		G		
6293 7		G		
6324 10		G O		XREF: O(6330).
6349 5	+	G J		$J\pi$: L(³ He,d)=1.
				XREF: J(6364).
6365.3 11	≥8+	D		$J\pi$: $\gamma(\theta)$ in (HI,xn γ).
6375.4 12	-01	G I		XREF: G(6372).
6389.5 11	+	IJ		$J\pi$: L(³ He,d)=1 from 7/2
6392 10	3 –	G		$J\pi$: $L(p,p')=3$.
6426 5		G		
6437 10		G		
6453.4 4	9+	D	0.14 ps + 9 - 8	J π : $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to (8+).
6459.6&	1+,1-,2+	G M		$B(M1)\uparrow=0.044$ 25; $B(E1)\uparrow=0.0000049$ 28; $B(E2)\uparrow=0.0029$ 16 (1998En05).
				J π : From 52 Cr(γ,γ'), based on values of reduced transition
				strengths(UP).
6482 5	5,6+	G		$J\pi$: $L(p,p')=5,6$.
6493.8&	2+	G J M O	0.678 ps 13	$J\pi$: $L(p,p')=3,0$. $J\pi$: $L(p,p')=2$. $L(^{3}He,\alpha)=0$.
0.100.0	41	G 0 M O	5.010 ps 10	
				$T_{1/2}$: from (γ, γ') .
				$B(E2)\uparrow=0.0687 \ 13.$
				$B(E2)\uparrow$: From (γ,γ') .
				XREF: J(6500)O(6490).
6541 10		G		
6568 10		G		
	3 –	G J NO		$J\pi$: $L(\alpha,\alpha')=3$.
$6580 \ 5$				
6580 <i>5</i>				XREF: J(6610)N(6600)O(6540).
6580 5				$B(E3)\uparrow=0.0022$ 3 (1964Be32).

⁵²Cr Levels (continued)

E(level) [†]	Jπ	XREF		T _{1/2} l	Comments
6637 5		G d	Г		XREF: J(6625).
3678 <i>5</i>	+	E G			Jπ: $L(^3He,n)=0$, $L(^3He,d)=1$ from 7/2 XREF: E(6670).
3700 f 20	_		О		$J\pi$: L(³ He, α)=2 from 3/2
704 5	5,6+	G .			$J\pi$: L(p,p')=5.
.01	0,01		•		XREF: J(6720).
6760e	+		0		$J\pi$: L(³ He,d)=1+3 from 7/2
					XREF: O(6740).
6795.4 12	3 –	G I	О		$J\pi$: $L(p,p')=3$.
					XREF: G(6786).
8810 30	2+	G .	0		$J\pi$: $L(p,p')=2$.
					XREF: J(6814)O(6800)O(6790).
3871 <i>5</i>	5 –	G			$J\pi: L(p,p')=5.$
894@	+	ė	ſ		$J\pi$: L(³ He,d)=1 from 7/2
928@	+				$J\pi$: L(3He,d)=1 from 7/2
956 5	5,6+	G			$J\pi: L(p,p')=5,6.$
993 5	3 –	G .	0		$J\pi$: $L(p,p')=3$.
030a 10	1+				$J\pi$: M1, (E1) excitation in (e,e'). $L(^3He,d)=1$.
					XREF: J(6993).
080 10	+	G d	г		$J\pi$: L(³ He,d)=1.
100	3 –		NO		$J\pi$: $L(\alpha,\alpha')=3$.
					$B(E3)\uparrow=0.0028 \ 3 \ (1964Be32).$
140 ^h 7	+	G	N		J π : M1 excitation in (e,e'). L(p,p')=4.
170 ^a 10	+				XREF: J(7165).
					$J\pi$: M1 excitation in (e,e'). $L(^3He,d)=1$.
217 10	2+	G .	ſ		$J\pi$: $L(p,p')=2$.
					XREF: J(7210).
223@	+		ſ		$J\pi$: L(³ He,d)=1 from 7/2
237.9 7	10+	D		0.16 ps +15-8	Jπ: From M1+E2 γ to 9+.
7260 ^a 10	+		I N		J π : L(³ He,d)=1+3 from 7/2-, but M1, (M2) excitation in
					(e,e').
278 10	4+	G .	0		$J\pi$: $L(p,p')=4$.
					XREF: J(7273)O(7290).
7310 [@]	+		ſ		$J\pi$: L(³ He,d)=1+3 from 7/2
7322@	+	ė	ī		$J\pi$: L(³ He,d)=1 from 7/2
7342h 7	1+	G .	I N		$J\pi$: M1 excitation in (e,e'). $L(p,p')=2$.
					XREF: J(7350)N(7340).
7359	+		Ī		$J\pi$: L(³ He,d)=1 from 7/2
7376 10	5 –	G			$J\pi$: $L(p,p')=5$.
395 10	+		0		$J\pi$: $L(\alpha, {}^{2}He)=5,7$, $L({}^{3}He,d)=1$.
					XREF: J(7400)O(7390).
					E(level): From average of values in $({}^{3}\text{He,d})$ and $(\alpha, {}^{2}\text{He})$.
409 10	3 –	G	O		$J\pi$: $L(p,p')=3$.
450 ^{‡g} 50	0 + , 2 +	E			$J\pi: L(^{3}He, n)=0+2.$
458 10	5,6+	G			$J\pi: L(p,p')=5,6.$
482 10	3 –	G			$J\pi$: $L(p,p')=3$.
487	+		Г		$J\pi$: L(³ He,d)=1 from 7/2
7524 ^h 3	1+ ⁱ	g j	MN	0.47 fs 11	$T_{1/2}\colon$ from $\Gamma_{\gamma 0}^2/\Gamma$ in (γ,γ') and assumption that $\Gamma_{\gamma 0}/\Gamma{=}1.$ Value should thus be considered as an upper limit. XREF: N(7520).
					$J\pi \colon \ L(^3He,d) {=} 1 \ \text{from} \ 7/2 -, \ L(p,p') {=} 0.$
7560ª 20	+	g j	NO		$J\pi\colon$ from M1, M2 excitation in (e,e'). $L(^3He,d)\text{=}1$ from $7/2\text{-}.$
					XREF: g(7540)j(7536)O(7570).
585 10	3 –	G			$J\pi$: $L(p,p')=3$.
590	+	ė	Г		$J\pi$: $L(^{3}He,d)=1+3$ from 7/2
679 10	5 , 6+	G d	Г		J π : L(p,p')=5,6, L(3 He,d)=1+3 from 7/2 XREF: J(7686).
700a 10	1+		N		Jπ: M1 excitation in (e,e').
730& 2	1 + i	ė			$J\pi$: PI from $L(^3He,d)=1$ from $7/2-$.
738 10	3 –	G			$J\pi$: $L(p,p')=3$.
750	+		0		$J\pi$: L(³ He,d)=1 from 7/2-, L(α , ² He)=5,7.
					XREF: J(7729).

⁵²Cr Levels (continued)

E(level) [†]	Jπ	XRI	F	$\mathrm{T}_{1/2}^{1}$	Comments
7810 ^b	_		О		$J\pi$: $L(\alpha,t)=4$.
7820 10	1+	G			$J\pi$: M1 excitation in (e,e').
1020 10	1.	d			XREF: J(7815).
7823 ^h 10	3-	G			$J\pi$: L(p,p')=3.
7854 ^h 7	ə- +	G	J NO		$J\pi$: L(p,p')=3. $J\pi$: L(p,p')=4. M1, (M2) excitation in (e,e'), L(3 He,d)=1.
1004 7	+	G	J NO		
7000 10	4.	a	т.		XREF: G(7848)N(7860)O(7870).
7893 10	4+	G	J		$J\pi$: $L(p,p')=4$. $L(^{3}He,d)=1$ from $7/2-$.
= 0 0 0 kg 0	1 ⁱ		3.5		XREF: J(7905).
7896& 2			M		T T (D 0
7900 ^a	3 –		NO		$J\pi$: $L(e,e')=3$.
@					$B(E3)\uparrow=0.0028 \ 3 \ (1964Be32).$
7920 [@]	+	_	J		$J\pi$: L(³ He,d)=1 from 7/2
7930‡ <i>50</i>	+	E	J		$J\pi$: $L(^{3}He,n)=0$, $L(^{3}He,d)=1$ from 7/2
					XREF: J(7967).
7967 10	3 –	G			$J\pi$: $L(p,p')=3$.
8010	+	G	J O		$J\pi$: $L(^{3}He,d)=1$ from 7/2-, $L(\alpha,t)=4$ from 7/2
					XREF: J(7967).
8022 10	2+	G	J		$J\pi$: $L(p,p')=2$ and $L(^3He,d)=1$.
8083	+		J MN		$J\pi$: L(³ He,d)=1 from 7/2
					XREF: N(8080).
8087 ^h 9	3 –	G			$J\pi: L(p,p')=3.$
8100& 20	8-		N		Jπ: M8 excitation in (e.e').
8121 10	+	G	J		$J\pi$: $L(^{3}He,d)=1$, $L(p,p')=0$.
					XREF: J(8130).
8181 10	+	G	J O		$J\pi$: $L(^{3}He,d)=1$, $L(p,p')=0$.
					XREF: J(8183).
8190b	_		О		$J\pi$: $L(\alpha,t)=4$.
8213 10	0+	G			$J\pi$: $L(p,p')=0$.
8216.5 9	(11)	D	J	0.24 ps +17-9	$J\pi$: from (HI,xn γ).
5210.5 5	(11)	Ь	0	0.24 ps +17-3	XREF: J(8234).
8234			J		AREF. 9(0204).
8250 [@]					I=. I (3H a J) 1.2 from 7/9
	+		J		$J\pi$: L(³ He,d)=1+3 from 7/2
8281 ^d 10	3 –	G			$J\pi: L(p,p')=3.$
8283	+		J		$J\pi$: L(³ He,d)=1 from 7/2
8337 ^d 10	(4+)	G	J		J π : L(p,p')=4,5, L(³ He,d)=1+3 from 7/2
@					XREF: J(8330).
8350@	+	_	J		$J\pi$: $L(^{3}He,d)=1$ from $7/2-$.
8374d 10	3 –	G			$J\pi$: $L(p,p')=3$.
8390ª 10	+		J N		$J\pi$: L(³ He,d)=1 from 7/2 M1 excitation in (e,e').
_					XREF: J(8371).
8412 ^d 10	+	G	J O		$J\pi$: $L(^{3}He,d)=1$. $L(p,p')=0$.
					XREF: J(8400).
8420b	6 –		NO		$J\pi$: $L(\alpha,t)=4$, M6 excitation in (e,e').
					XREF: N(8450).
8451@	+		J		$J\pi: L(^{3}He,d)=1.$
8457 10	3 –	G			$J\pi$: $L(p,p')=3$.
8505 10	3 –	G			$J\pi: L(p,p')=3.$
8569 10	0+	G	J O		$J\pi$: $L(p,p')=0$.
		_			XREF: J(8579)O(8580).
8600 ^a 10	3-		N		$J\pi$: L(e,e')=3.
	-				$B(E3)\uparrow=0.0022$ 3 (1964Be32).
8617 10		G	J		$J\pi$: $L(p,p')=2,3,4$. $L(^3He,d)=1+3$.
		J	~		XREF: J(8614).
8679d 10	3 –	G			$J\pi$: $L(p,p')=3$.
8710 ^{‡g} 50			I M		$J\pi$: L(3 He,n)=0+2. L(3 He,d)=1+3 from 7/2-, D, E2 excitation
0110.0 90	+	E	J N		
					in (e,e').
0.500 10	0	-			XREF: J(8700)N(8690).
8728 10	3 –	G			$J\pi$: $L(p,p')=3$.
8778 10	3 –	G			$J\pi$: $L(p,p')=3$.
8790 10	2		N		$J\pi$: Q excitation in (e,e').
8827 10		G			
8860 10	1+, 2-		N		$J\pi$: M1,(M2) excitation in (e,e').
8890 20	1 + , 2 -		NO		$J\pi$: M1,(M2) excitation in (e,e').

⁵²Cr Levels (continued)

E(level) [†]	Jπ	XREF		Comments
8940 20	(8-,6-)		N	$J\pi$: (M8,M6) excitation in (e,e').
9004h 9	1+	G	N	$J\pi$: M1 excitation in (e,e'). $L(p,p')=0$.
3004 3	1 +	ď	-11	XREF: G(9020).
9050@ 10	1+,2-		N	$J\pi$: M1,(M2) excitation in (e,e').
9080 20	(8-)		N	$J\pi$: (M8) excitation in (e,e').
9142.7 6	1 + i	G	MN	J π : M1 excitation in (e,e'). L(p,p')=0, 1+ in (γ , γ ').
				XREF: N(9140).
9200#	5 –		0	$J\pi$: $L(\alpha, ^2He)=5$.
9214 & 2	1+	G	MN	Jπ: M1 excitation in (e,e').
				XREF: G(9221)N(9210).
9245d 10	0 +	G		$J\pi$: $L(p,p')=0$.
9320h 9	1 + j	G	N	$J\pi$: M1 excitation in (e,e').
9370 20	1,2		N	$J\pi$: M1,M2 excitation in (e,e').
9420 10	1+		N	$J\pi$: M1 excitation in (e,e').
9440h 7	3 –	G	N	$J\pi$: $L(p,p')=3$.
9450 20	8 –		NO	$J\pi$: M8 excitation in (e,e').
				XREF: O(9480).
9470 20	+	-	N	J π : M1, E2 excitation in (e,e').
9580 <i>10</i>	0+	E	N	J π : L(3 He,n)=0. But M1,(E1) excitation in (e,e').
9612h 9	1+ ^j	G	N	XREF: G(9620).
9660 20	8 –		NO	Jπ: M8 excitation in (e,e'). XREF: O(9630).
9724 ^h 9	1+j	G	MN	XREF: G(9740)M(9736)N(9720).
3124 3	1+3	ď	IVIIN	J π : M1 excitation in (e,e').
9787& 3	1 ⁱ		M	on. MI exclusion in (e,e).
9830 10	1+		N	$J\pi$: M1 excitation in (e,e') .
9878h 9	1+ j	E G	N	$J\pi$: M1 excitation in (e,e') .
				XREF: E(9870)G(9870)N(9880).
9910 20	8-		N	Jπ: M8 excitation in (e,e').
9981 & 3	(-)		M	$J\pi$: π : based on asymmetrics for different g.s. dipole transition, see
				$(\gamma, \gamma'), (\text{pol } \gamma, \gamma').$
10008h 9	1 + j	G	N	XREF: G(10000)N(10010).
10110 20	(8-)		NO	$J\pi$: (M8) excitation in (e,e').
				XREF: O(10130).
10130 20	1,2-		NO	Jπ: D,M2 excitation in (e,e').
10180 10	2 –		N	$J\pi$: M2 excitation in (e,e').
10240 20	1		N	J π : E1, (M1) excitation in (e,e').
10270 20	1,(2-)		N	$J\pi$: D, (M2) excitation in (e,e').
10300 20 10330 20	6 –		N NO	$J\pi$: M2, M3,E3 excitation in (e,e'). $J\pi$: M6 excitation in (e,e').
10330 20	0-		110	XREF: O(10280).
10340 20	1		N	$J\pi$: D excitation in (e,e') .
10380h 14	1 + j	G	N	$J\pi$: D excitation in (e,e').
10433& 4	1+		MN	Jπ: M1 excitation in (e,e').
10464 9	1+j	G	N	Jπ: M1 excitation in (e,e').
				XREF: G(10480)N(10460).
10500 20	1		N	$J\pi$: D excitation in (e,e').
10510 20	(–)		N	$J\pi$: (M8, M6) excitation in (e,e').
10604 ^h 12	1 + ^j	G	N	XREF: G(10580)N(10610).
10710 10	1		N	$J\pi$: D excitation in (e,e') .
10760 10	6+,8+		NO	$J\pi$: $L(\alpha, {}^{2}He)=6.8$.
10500 0		~	**	XREF: O(10750).
10790 9	1+ ^j	G	N	$J\pi$: M1 excitation in (e,e').
10800 20 $10820 10$	(-) 1+,(2-)		N	Jπ: (M8,M6) excitation in (e,e').
10820 10 10927& 3	1+,(2-) 1+,2-		N MN	Jπ: M1, (M2) excitation in (e,e'). Jπ: M1, M2 excitation in (e,e').
10021 " 0	11,2-		11114	XREF: N(10920).
10970 20	0 + j	G		$J\pi$: $L(p,p')=0$.
11000 20	8-	-	N	$J\pi$: M8 excitation in (e,e').
11070 10	1		N	$J\pi$: D excitation in (e,e') .
11140 10	0 + j	G	N	$J\pi$: $L(p,p')=0$.
				XREF: G(11120).
11160 20	(1+), 2		N	$J\pi$: (M1), Q excitation in (e,e').
			_	
			Continu	ed on next page (footnotes at end of table)

⁵²Cr Levels (continued)

E(level) [†]	Jπ	XREF	Comments
11170 20	8-	NO	J π : M8 excitation in (e,e'). $L(\alpha,t)=4$.
11229 3		I	
11256.5 7		e I	XREF: e(11280).
11264.9 4	3+k	e I O	XREF: e(11280)O(11260).
			T=3.
			IAS (52 V g.s.). Some authors identify 11256.5 state as g.s. IAS. However, from a comparison of relative M1 transition rates from 11264.9 state with Gamow-Teller β decay matrix elements for 52 V g.s. 1973Fa12 concluded that most of the IAS strength lies in the 11265 state. The 11256 state might still be a fragment of the g.s. IAS.
11270 20	8 –	NO	$J\pi$: M8 excitation in (e,e') .
11274 . $6^{{}^{{}^{\!{}^{}}}}}}}}$	(5+)k	e I	XREF: e(11280).
			T=3.
			Identified as fragment of IAS (52V 23 keV).
11291.1° 10		I O	
11330 20	(1+), 2-	N	Jπ: (M1), M2 excitation in (e,e').
11370 20	8 –	NO	J π : M8 excitation in (e,e'). $L(\alpha,t)=4$. XREF: O(11350).
11400.0° 4	4+	I	T=3.
11400.0.4	***	1	Identified by $1974\text{Ro}44$ as IAS (^{52}V 148 keV).
11402h 9	0+,1+	G N	J π : M1 excitation in (e,e'). L(p,p')=0.
11402 3	0+,1+	G N	XREF: $G(11410)N(11400)$.
11510 10	2 –	N	
11510 10	8-	N N	J π : M2 excitation in (e,e'). J π : M8 excitation in (e,e').
		N N	
11570 20	(1+),2		$J\pi$: (M1),Q excitation in (e,e').
11610 10	2	N	Jπ: Q excitation in (e,e').
11656° 3	1+,2-	I N	Jπ: M1, M2 excitation in (e,e'). XREF: N(11650).
11660 20	8-	NO	$J\pi$: M8 excitation in (e,e').
11691.8° 4	2 + k	I N	T=3.
11001.0 4	21	1 1,	IAS $(^{52}\text{V} \ 437 \ \text{keV})$.
11713° 3		I	IAD (V 401 ACV).
11715 3 11725 c 3		I	
11745° 3		I	
11765& 3		M	
11770 20	8-	NO	Jπ: M8 excitation in (e,e').
11110 20	o .	110	XREF: O(11790).
11780 20	(1+),2-	N	$J\pi$: (M1),M2 excitation in (e,e').
11837& 3	(11),2	M	ow. (M1), M2 excludion in (e,e).
11880 20	8-	N	Jπ: M8 excitation in (e,e').
11960 20	8-	N	$J\pi$: M8 excitation in (e,e').
12034.8° 4	(8)-	I NO	$J\pi$: (M8) excitation in (e,e'). $L(\alpha,t)=4$.
12001.U. 1	(0)	1 110	SR (No) excitation in (e,e). $L(0,t)=4$. SR SR SR SR SR SR SR SR
12041.8° 4	3+k	I	T=3.
-2011.0 1	J.		IAS $(^{52}\text{V} 794 \text{ keV})$.
12050	_	0	$J\pi$: $L(\alpha,t)=4$.
12099.9 4	4 + k	I	T=3.
		-	IAS (52 V 846 keV).
12130 20	(8-,6-)	N	$J\pi$: (M8,M6) excitation in (e,e').
12240 20	6-	N	$J\pi$: M6 excitation in (e,e').
12240 20	6+,8+	0	$J\pi$: $L(\alpha, {}^{2}He)=6,8$.
12500b	-	0	$J\pi$: $L(\alpha, t)=4$.
12560 20	1 + j	0	The state of the s
12665° 6	3+	I	T=3.
-	-	-	IAS $(^{52}\text{V } 1419 \text{ keV})$?
12730 20	8 –	NO	$J\pi$: M8 excitation in (e,e'). $L(\alpha,t)=4$.
			XREF: O(12700).
12734° 6	7 + k	I	T=3.
	1.		IAS $(^{52}\text{V} \ 1493 \ \text{keV})$?
12794.8 7	4 + k	I	T=3.
	1+ ^j	G	IAS (⁵² V 1559 keV)?
12900 20			

⁵²Cr Levels (continued)

E(level) [†]	Jπ	XREF		Comments
12977° 6	_ k	I	O	J π : L(α ,t)=4. XREF: O(13010). T=3.
12994° 6	₊ k	I		IAS (52 V 1733 keV)? IAS (52 V 1760 keV)?
13038° 6	+ k	I		IAS $(^{52}\text{V } 1843 \text{ keV})$?
13220 20	8-		N	$J\pi$: M8 excitation in (e,e').
13319 ^c		I		· · · · · · · · · · · · · · · · · · ·
13393 c	6 –	I	N	$J\pi$: M6 excitation in (e,e').
13419 ^c	0+	E I		$J\pi: L(^{3}He, n)=0.$
				T=3.
13570 20	6 –		N	$J\pi$: M6 excitation in (e,e').
13580f 20	(1,2)-		О	J π : L(3 He, α)=0 from 3 /2
13630 ‡ 10	0+	E		$J\pi: L(^{3}He,n)=0.$
				T=3.
				IAS $(^{52}\text{V}\ 2396\ \text{keV})$?
13710 20	6 –		N	$J\pi$: M6 excitation in (e,e').
13950 ‡ 50		E		
14030 20	6 –		N	$J\pi$: M6 excitation in (e,e').
14110 ‡ 20	2+	E		$J\pi$: $L(^3He,n)=2$.
				T=3.
				IAS $(^{52}V\ 2881\ keV)$?
14340 20	6 –		N	$J\pi$: M6 excitation in (e,e').
14430 20	8 –		NO	$J\pi$: M8 excitation in (e,e').
				XREF: O(11470).
15270 20	6 –		NO	$J\pi$: M6 excitation in (e,e'). $L(\alpha,t)=4$.
				XREF: O(15280).
15482 ^b 7	8 –		NO	Jπ: M8 excitation in (e,e').
				T=3.
16400 20	6 –		N	$J\pi$: M6 excitation in (e,e').
16690 20	(8-)		N	$J\pi$: (M8) excitation in (e,e').

- † Levels connected by gammas are from least squares fit, others from $^{52}Cr(p,p')$ for E(level)<8830 keV and from $^{52}Cr(e,e')$ for E(level)>8830 keV, except as noted.
- $^{\ddagger} \quad From \quad ^{50}Ti(^{3}He,n).$
- § From ⁵⁰Cr(t,p).
- # From $^{50}Cr(\alpha,^{2}He)$.
- @ From ⁵¹V(³He,d).
- & From $^{52}Cr(\gamma,\gamma'), (pol~\gamma,\gamma').$
- $^{a}\ From\ ^{52}Cr(e,e').$
- $^{b} \ From \ ^{51}V(\alpha,t).$
- c From $^{51}V(p,\gamma)$.
- d From ⁵²Cr(p,p').
- e From $^{52}Cr(\alpha,\alpha')$.
- $f \quad From \quad ^{53}Cr(^{3}He,\alpha).$
- $^{\mathrm{g}}$ Close doublet; not resolved in $(^{3}\mathrm{He,n})$ tof spectra, but separated in angular distribution procedure.
- h From weighted average of values in $^{52}Cr(e,e^{\prime})$ and $^{52}Cr(p,p^{\prime}).$
- i Dipole transition in $^{52}\mathrm{Cr}(\gamma,\gamma'),(\text{pol }\gamma,\gamma').$
- j -Based on $\sigma(\theta),$ DWIA calculations in $^{52}Cr(p,p').$
- k IAS in $^{51}V(p,\gamma)$ E=res.
- 1 From $(HI,xn\gamma)$, DSAM, except as noted.
- m From (3 He, $d\gamma$), DSAM.
- $^{n}\ \text{From}\ (n,n'\gamma).$

 $\gamma(^{52}Cr)$

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.b	Comments
1434.094	1434.068& 14	100	E 2	$B(E2)\downarrow(W.u.)=10.21\ 3.$
2369.633	935.538	100	E 2	$B(E2)\downarrow(W.u.)=66 +11-23.$
2646.9	1212.8 6	100	E 2	Ey: from $(p,p'\gamma)$.
2767.770	398.08 9	1.76 14		Iy: other: 1.36 17 in 52 V β^- decay.

$\gamma(^{52}Cr) \ (\text{continued})$

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$	Mult.b	$\underline{\hspace{1cm}}^{\delta b}$	Comments
2767.770	1333.649 17	100.0 10	E2		$B(E2)\downarrow(W.u.)=6.0 \ 16.$
2964.790	1530.67 ‡ 1	100 ‡ 4	M1+E2	-6.25 15	$B(M1)\downarrow(W.u.)=0.00036$ 8; $B(E2)\downarrow(W.u.)=13$ 3.
	2965 ‡ 1	0.9 † 6	E2 §		$B(E2)\downarrow(W.u.)=0.005$ 4.
3113.865	346.024	1.09 1	E2@		$B(E2)\downarrow(W.u.)=2.58 9.$
	744.233 13	100.0 4	E2@		$B(E2)\downarrow(W.u.)=5.14\ 18.$
3161 . 74	1727.53 7	100 ‡ 5	M1+E2	-0.18 7	$B(M1)\downarrow(W.u.)=0.057$ 13; $B(E2)\downarrow(W.u.)=1.4$ 11.
	3161.8 [‡] 1	10.0 † 14	E 2		$B(E2)\downarrow(W.u.)=0.21$ 6.
3415.32	647.47 6	100 5	M1+E2	0.22 8	$B(M1)\downarrow(W.u.)=(0.24\ 7);\ B(E2)\downarrow(W.u.)=(60\ 50).$ $\delta\colon$ From (HI,xn\gamma) (1979St13).
	766.0 ^{§ c} 10				
	1045.73 4	17 5			
	1981.12 4	8.5 8			Iγ: other: 21 4 in 52 Mn ϵ decay.
3472.25	704.6‡ 2	100 ‡ 31	M1+E2	-0.146	$B(M1)\downarrow(W.u.)=0.007$ 3; $B(E2)\downarrow(W.u.)=0.6$ +6-4.
	2038.0 ‡ 2	28 ‡ 3			
3615.929	200.584	1.80 5			
	502.06 5	5.0 5			
	848.18 5	78.9 7			
	1246.278 15	100.0 14			
3771.72	2337.44 ^a 19	100 ‡ 14	M1+E2	-0.20 8	$B(M1)\downarrow(W.u.)=0.12\ 3;\ B(E2)\downarrow(W.u.)=2.0\ 16.$
	3771.7# 2	26‡# 6	[E2]		$B(E2)\downarrow(W.u.)=1.2$ 4.
3948.5	1578@	4			
	3951‡ 1	100‡			T (1 000 T) (TTT)
4015.51	399.57 5	46.9 18			Iy: other: 33.3 5 in (HI, xny).
	600.16 5	100 3			
	901.89 18	11.3 11			
	1247.88 9	97 10			
4000 0	1645.82 <i>4</i> 566.8 [#]	12.1 8 100#			
4039.2 4563.0	566.8" 791 [@]	100"			
4000.0	3129 [‡] 1				
4627.32	2257.42 19	100			
4750.32	1636.4# 2	100#	E2#		$B(E2)\downarrow(W.u.)=6.5 +18-21.$
4806.19	790.0# 3	100# 8	(M1+E2)#	-0.16# 5	$B(B1)\downarrow(W.u.)=(0.0613\ 10);\ B(E2)\downarrow(W.u.)=(6\ 4).$
4000.10	1189.7#	22# 4	(MI (112)	0.10 0	B(M1)*(**.u.)=(0.0010 10); B(B2)*(**.u.)=(0 4).
	1693.9# 6	23# 3			
4815.70	3381.5‡ 1	100 ‡ 20			
	4815.4 ‡ 2	100 ‡ 16			
5097.4	3664.3		D, Q		Iy: 0.27 11 for $J\pi = 2+$.
					Mult.: from W(130)/W(90)=0.94 19.
5397.0	590.9# 3	100# 6	M1+E2#	-0.27# 6	$B(M1)\downarrow(W.u.)=0.617$ 19; $B(E2)\downarrow(W.u.)=290$ 120.
	1381.5# 5	15.2# 16			
5544.4	5544.4		D		Mult.: from W(130)/W(90)=1.89 41.
5824.8	427.9# 3	100#	M1+E2#	-0.03# 4	$B(M1)\downarrow(W.u.)=0.2808\ 7;\ B(E2)\downarrow(W.u.)=3\ +9-3.$
6136.7	6136.6		Q		Mult.: from W(130)/W(90)=0.34 14.
6365.3	1615.0# 10	100#			
6453.4	628.9 # 5	35# 18	M1+E2 $^{\#}$	+0.22# +15-8	${\rm B(M1)} \downarrow ({\rm W.u.}) = 0.131\ 9;\ {\rm B(E2)} \downarrow ({\rm W.u.}) = 40\ + 50 - 40.$
	1056.0# 10	26# 2			
	1702.9# 5	100# 5	M1+E2#	-0.04# +7-3	$B(M1) \!\!\downarrow\!\! (W.u.) = \! 0.01975 \ 11; \ B(E2) \!\!\downarrow\!\! (W.u.) = \! 0.024 \ +85-24.$
7237.9	784.5#5	100#	M1+E2#	-0.06# +3-5	
8216.5	978.5# 5	100#	$D+Q^{\#}$	+0.10# +5-8	
1256.5	8291	100			
	8488	85			
1264.9	7648	< 9			
	7792	< 5	(M1 . E0.)	. 0 . 0 . 0	
	7850	39 7	(M1+E2)	+0.06 9	
	8150	25 9			
	8299	< 5			
	8496	11 7	(M1 , E9)	.0 0 .10 5	
	8895 9830	$ \begin{array}{r} 100 & 16 \\ 34 & 5 \end{array} $	(M1+E2) (M1+E2)	+0.9 + 10-5 -0.30 6	
1274.6	4479	34 5 72 12	(W11+E2)	-0.30 0	
1414.0	4899	24 8			
	5069	36 12			
	3003	00 12			

$\gamma(^{52}Cr)$ (continued)

E(level)	$ E \gamma^\dagger$	Ιγ [†]	Mult.b	$\delta^{\rm b}$	Comments
11274.6	5239	20 8			
	5549	100 12			
	7258	60 12			
	7326	24 8			
	7859	8 4	(M1 + E2)	+0.47 10	
	8904	56 8	(M1 + E2)	+0.19 10	
11291.1	9856	100			
11400.0	5836	61 5			
	5953	29 5			
	7360				
	7384				
	7783	26 3			
	7985	21 3			
	8285	5 3			
	9030	100 5	(M1 + E2)	0.5 2	δ : from (p,γ) , see 1974Ro44.
11691.8	5302	33 3			
	6027	23 3			
	6245	53 3			
	6637	13 7			
	6854				
	6883				
	6949	37 3			
	7652				
	7676				
	8219	30 7			
	8277	7 3			
	8529	13 3			
	8726	27 7			
	8923	10 3			
	9322	27 3			
	10257	100 7			
12034 . 8	6471	22 4			
	6588	22 4	E(level)	$\underline{}$	Ιγ [†]
	7404	48 4			
	8562	17 9	12099.9	6239	39 9
	8620	100 9		6362	39 9
	9069	17 9		6653	30 9
	9266	74 4		7002	13 4
	9665	78 4		7469	30 4
	10600	48 4		8060	30 4
12041.8	6595	42 4		8084	13 2
	7233	19 4		8152	22 4
	8569	46 4		8483	26 4
	8627	19 4		8627	17 3
	8879	62 4		8685	52 9
	9076	7 4		9331	35 4
	9273	31 4		9730	100 9
	9672	100 4	12794.8	9178	81
	10607	54 4		10424	100

 $^{^{\}dagger}$ Ey<4 MeV from ^{52}Mn ϵ decay (5.591 d), Ey>4 MeV from $^{51}V(p,\gamma),$ except as noted. ‡ From ^{52}Mn ϵ decay (21.1 min). § From ^{52}V β^- decay.

[#] From $(HI,xn\gamma)$.

 $[\]begin{tabular}{ll} @ From $^{51}V(^3He,d\gamma). \end{tabular} \label{table_form}$

[&]amp; From weighted average of values in $^{52}{\rm Mn}$ ϵ decay (5.591 d) and $^{52}{\rm V}$ β^- decay. a From weighted average of values in $^{52}{\rm Mn}$ ϵ decay (21.1 min) and $^{52}{\rm V}$ β^- decay.

b From $\gamma\gamma(\theta)$ in $^{52}{\rm Cr}(p,p'\gamma),$ except as noted.

 $^{^{\}mathtt{c}}$ Placement of transition in the level scheme is uncertain.

^{52}V β^- Decay (3.743 min) ~ 1977Ya08

Parent 52 V: E=0.0; J π =3+; T $_{1/2}$ =3.743 min 5; Q(g.s.)=3975.6 10; % β ⁻ decay=100. 52 V-J: $\beta\gamma$ -circular polarization rules out J(52 V)=2 and is consistent with J=3 (1967Bl10). 1977Ya08: chemically separated sources from 51 V(n, γ), measured E γ , I γ , a Compton suppression spectrometer system,

several large volume Ge(Li). 1976Ar13: measured Ey, Iy, Ge(Li).

1971Ok03: measured Εγ, Ιγ, γγ-coin, Ge(Li).

Decay scheme from 1977Ya08.

 $^{52}\mathrm{Cr}\ \mathrm{L}\underline{\mathrm{evels}}$

E(level)	$\frac{J\pi^{\dagger}}{}$	E(level)	$J\pi^{\dagger}$
0.0	0+	2964.775 15	2+
1434.081 10	2+	3161.65 14	2+
2369.596 22	4+	3415.22 4	4+
2647.1?	0 +	3472.4 3	3+
2767.75 3	4+	3771.9 5	2+

[†] From adopted levels.

 β^- radiations

Εβ-	E(level)	Ιβ-†	Log ft
(203.7 12)	3771.9	0.0025 14	5.52 25
(503.2 11)	3472.4	0.002 1	6.95 22
(560.4 10)	3415 . 22	0.03 1	5.94 15
(814.0 10)	3161.65	0.008 1	7.11 6
(1010.8 10)	2964.775	0.116 2	6.305 9
(1207.9 10)	2767.75	0.570 13	5.914 11
(1606.0 10)	2369.596	0.052 10	7.45 9
$(\; 2\; 5\; 4\; 1\; .\; 5 1\; 0\;)$	1434 . 081	$99.22\ 5$	5.0002 15

 $^{^{\}dagger}$ Absolute intensity per 100 decays.

 $\gamma(^{52}Cr)$

γ, Iγ from 1977Ya08, except as noted. Iγ normalization: from Σ Iγ(g.s.)=100.

Εγ	E(level)	Ιγ‡	Mult.†	δ†	Comments
398.08 9	2767.75	0.008 1			Iy: authors give Iy=0.088 in their table iv and Iy=0.008 in their drawing. From adopted branching from 2768 level, one expects Iy=0.010.
647.47 2	3415 . 22	0.0242	M1+E2	0.22 8	
704.6 3	3472.4	0.0018 9	M1+E2	-0.146	
766.0 [§] 10	3415.22				1976Ar13 claim to have observed the 766 γ with an intensity ≈ 1.3 times that of the 647.5. The Compton suppressed Ge(Li) spectra of 1977Ya08 demonstrate this is in error. 1978Be32 consider no evidence for 766 γ in these spectra, and estimate I γ (766)/I γ (647) can not be greater than 0.05.
935.52 2	2369.596	0.061 3	E2		
1045.72 5	3415.22	< 0.01			
1212.9\$	2647.1?				1976Ar13 reported this γ with a relative intensity of 0.22 5. There is no evidence for a 1213-keV γ in the Compton suppressed Ge(Li) spectra of 1977Ya08. This, and the apparent absence of a 766-keV γ, claimed by 1976Ar13 to feed a level at 2647 keV, lead evaluators to doubt that the 2647-keV level is detectably populated.
1333.62 3	2767.75	0.588 10	E2		Eγ: authors' value of 1332.62 given in table iv is a misprint.
1434.06 1	1434.081	100 1	E 2		
1530.67 1	2964.775	0.116 2	M1+E2	-6.25 15	
1727.52 15	3161.65	0.007 1	M1+E2	-0.18 7	
1981.1 4	3415 . 22	0.005 1			
2337.7 5	3771.9	0.0015 9	M1+E2	-0.20 8	
			Continue	d on next page	(footnotes at end of table)

^{52}V β^- Decay (3.743 min) 1977Ya08 (continued)

$\gamma(^{52}Cr)$ (continued)

Εγ	E(level)	Ιγ‡	Mult.†
2965 1	2964.775	0.0005 2	E2
3161.7 4	3161.65	0.0009 2	E2
3772 1	3771.9	0.0010 5	

- † From adopted gammas.
- ‡ For absolute intensity per 100 decays, multiply by 1.00 1.
- § Placement of transition in the level scheme is uncertain.

Decay Scheme

⁵²Mn ε Decay (5.591 d) 1978MeZK,1977Ya08

Parent 52 Mn: E=0.0; J π =6+; T $_{1/2}$ =5.591 d 3; Q(g.s.)=4711.5 19 ; % ϵ +% β + decay=100. Others: 1996La20, 1990Me15, 1980Iw03, 1979ArZT, 1975BaXO, 1972GeZF, 1967Pa22, 1966Fr05, 1962Wi08.

1977Ya08: chemically separated sources from $^{51}V(\alpha,3n)$, measured Ey, Iy, a Compton suppression spectrometer system, several large volume Ge(Li) detectors.

Decay scheme from 1977Ya08.

⁵²Cr Levels

E(level)	$\frac{J\pi^{\dagger}}{}$
0.0	0+
1434.111 17	2+
2369.654 21	4+
2767.786 23	4+
3113.883 24	6+
3415.33 3	4+
3615.946 24	5+
4015.52 4	5+
4627.13 20	4+

[†] From adopted levels.

^{52}Mn & Decay (5.591 d) $\,$ 1978MeZK,1977Ya08 (continued)

β+,ε Data

Εε	E(level)	<u>Ιβ*†‡</u>	Iε ^{†‡}	Log ft	$I(\epsilon\!+\!\beta^+)^{\dagger\!$
(84.4 20)	4627.13		0.0027 6	7.33 10	0.0027 6
(696.0 19)	4015.52		1.04 5	6.626 21	1.04 5
(1095.6 19)	3615.946		7.69 6	6.153 4	7.69 6
(1597.6 19)	3113.883	29.6 4	61.8 5	5.578 4	91.4 5

- $\dot{^{\intercal}}$ Values deduced from intensity balance at each level, assuming no $\epsilon + \beta^+$ feeding of the g.s.
- ‡ Absolute intensity per 100 decays.

$\gamma(^{52}Cr)$

Experimental conversion information see 1966Fr05, 1962Wi08, 1960Ka20. $\gamma\gamma$ -coin: from 1967Pa22 and 1962Wi08. Iy normalization: from $\Sigma I\gamma(g.s.)=100$.

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ†#	Mult.‡	δ‡	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ†#	Mult.‡
200.58 4	3615.946	0.076 2			1045.75 8	3415.33	0.07 2	
346.02 4	3113.883	0.98 1	E2		1246.278 15	3615.946	4.21 6	
398.09 9	2767.786	0.089 7			1247.88 9	4015.52	0.38 4	
399.57 5	4015.52	0.183 7			1333.649 17	2767.786	5.07 5	E2
502.06 5	3615.946	0.212			1434.092 17	1434.111	100.0 5	E2
600.16 5	4015.52	0.39 1			x 1 4 4 1 § 1		0.003 \$ 2	
647.47 6	3415.33	0.40 2	M1+E2	0.22 8	1645.82 4	4015.52	0.047 3	
744.233 13	3113.883	90.0 8	E2		x1839.14 17		0.005 1	
848.18 5	3615.946	3.32 3			1981.12 4	3415.33	0.034 3	
901.89 18	4015.52	0.044 4			2257.42 19	4627.13	0.0027 6	
935.544 12	2369.654	94.5.9	E2					

- † From 1978MeZK, except as noted.
- ‡ From adopted gammas.
- § From 1977Ya08.
- $^{\#}$ For absolute intensity per 100 decays, multiply by 1.000 3.
- x γ ray not placed in level scheme.

Decay Scheme

⁵²Mn ε Decay (21.1 min) 1977Ya08

Parent $^{52}{\rm Mn}$: E=377.749 5; J π =2+; $T_{1/2}$ =21.1 min 2; Q(g.s.)=4711.5 19; % ϵ +% β + decay=98.25 5. $\%\epsilon + \%\beta^{+} = 98.25$ 5.

 $1977Ya08: chemically \ separated \ sources \ from \ ^{52}Fe \ \epsilon \ decay, \ measured \ E\gamma, \ I\gamma, \ a \ Compton \ suppression \ spectrometer$ system, several large volume Ge(Li). See also $^{52}\mbox{Mn}$ IT decay (21.1 min).

$^{52}\mathrm{Cr}$ Levels

E(level)	$-J\pi^{\dagger}$	E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	E(level)	$-J\pi^{\dagger}$
0.0	0+	2964.777 15	2+	3951.2 10	1,2(+)
1434.083 10	2+	3161.73 6	2+	4563.2 10	3 –
2369.6 10	4+	3472.10 20	3+	4815.69 9	1+,2+
2767.5 3	4+	3771.69 15	2+		

 $^{^{\}dagger}$ From adopted levels.

β⁺,ε Data

Εε	E(level)	$\underline{\hspace{1.5cm} \hspace{1.5cm} \hspace{1.5cm}$	$\underline{\hspace{1cm} I\epsilon^{\dagger\ddagger}}$	Log ft	$-\frac{I(\epsilon\!+\!\beta^+)^{\dagger\!\ddagger\!}}{}$
(273.6 19)	4815.69		0.0049 7	5.55 7	0.0049 7
$(526.0\ 22)$	4563.2		≤ 0.00008	≥7.9	≤ 0.00008
(1138.0 22)	3951.2	$8. \times 10^{-7}$ 3	0.0007 3	7.65 19	0.0007 3
(1317.6 19)	3771.69	0.00036 5	0.0082 11	6.70 6	0.0086 11
(1617.1 20)	3472.10	0.013 3	0.023 6	6.43 11	0.036 9
(1927.5 19)	3161.73	0.164 8	0.074 3	6.079 21	0.238 11
(2124.5 19)	2964.777	0.038 2	0.0091 4	7.077 20	$0.047\ 2$
(3655.219)	1434.083	96.5 20	1.55 4	5.317 10	98.0 20

 $^{^{\}dagger}$ Values deduced from intensity balance at each level, assuming no $\epsilon+\beta^+$ feeding of the g.s.

$\gamma(^{52}Cr)$

Εγ	E(level)	Ιγ§	Mult.‡	δ‡	Εγ	E(level)	Ιγ§	Mult.‡
704.6 2	3472.10	0.029 9	M1+E2	-0.14 6	×2847.7 [†] 7		0.0006 5	
935.52	2369.6	0.02 1	E2		2965 1	2964.777	0.0004 3	E2
1332.62	2767.5	0.03 1	E2		3129 1	4563.2	≤ 0.00015	
1434.06 1	1434.083	100 2	E2		3161.8 1	3161.73	0.022 3	E2
1530.67 1	2964.777	0.047 2	M1 + E2	-6.25 15	3381.5 1	4815.69	0.0025 5	
1727.53 7	3161.73	0.22 1	M1+E2	-0.18 7	3771.7 2	3771.69	0.0018 4	[E2]
2038.0 2	3472.10	0.008 1			3951 1	3951.2	0.0007 3	
2337.4 2	3771.69	0.007 1	M1+E2	-0.20 8	4815.4 2	4815.69	0.0025 4	

 $^{^{\}dagger}$ Assignment to 21.1-min $^{52}\mathrm{Mn}$ tentative.

[‡] Absolute intensity per 100 decays.

[‡] From adopted gammas.

 $[\]$ For absolute intensity per 100 decays, multiply by 0.965 20.

x γ ray not placed in level scheme.

^{52}Mn & Decay (21.1 min) 1977Ya08 (continued)

⁵⁰Ti(³He,n) 1975Bo14

1974Ev02: E=15, 18, 21 MeV, measured $\sigma(E(n),\theta)$, detectors consisting of a 1 m* 8 cm (diameter) NE 213 liquid scintillator viewed from both ends by XP 1041 photomultipliers.

1975Bo14: E=13.0 MeV, measures $\sigma(E(n),\theta)$, tof, 12 detectors placed between 0 and 55 at intervals of 5.0 , flight path of 17.5 M, energy resolution of 200 keV for the transition to the ground state of 56 Ni.

1975Al05: E=15 MeV, measured $\sigma(E(n),\theta)$, 10.2 cm (diameter) NE 213 liquid scintillators of thickness 2.5 cm or 3.8 cm mounted on 12.7 cm photomultipliers, flight path of 4 m.

All data are from 1975Bo14, except as noted.

$^{52}\mathrm{Cr}$ Levels

E(level)	‡_	σ^{\dagger}	Comments
0.0	0	410 30	
1400 30	2	54 7	
3700 50	(2)	30 7	
4710 30	2	70 10	
5650 20	0	133 15	Doublet. σ consistent with composite of 5600 and 5755 0+ levels.
6100 30	0	38 4	
6670 20	0	47 7	
7450 \$ 50	0 + 2		
7930 50	0		Seen only by 1975Al05. Probably 7450+8710.
			L: from 1975Al05, 0=0.
8710 \$ 50	0 + 2	96 5	
9580 20	0	67 7	
9870 50			
11280 20		86 7	T=3.
			σ: θ at 35.
			Identified as unresolved triplet of IAS of the three states in 52 V at 0.0, 17 and 23 keV with spins 2+, 3+ and 4+. Angular distribution can be well fit by L=2+4 (can also be fit with L=3, but existence of an additional state with J π =3- seems unlikely).
13420 10	0	230 20	T=3.
			Identified as IAS $(^{52} ext{V}\ 2170\ ext{keV})$?
13630 10	0	220 20	T=3.
			Identified as IAS $(^{52}\text{V}\ 2390\ \text{keV})$?
13950 50			
14110 20	2	102 15	T=3.
			Identified as IAS (52V 2880 keV)?

Footnotes continued on next page

⁵⁰Ti(³He,n) 1975Bo14 (continued)

⁵²Cr Levels (continued)

- † Cross section (b/sr c.m.) at $\theta{=}0$ for L=0, at $\theta{=}20$ for L=2. From 1975Bo14.
- ‡ From DWBA analysis, 1975Bo14, except as noted.
- § Pair of close-lying levels, unresolved in energy spectra but contributions separated in DWBA fits due to different angular distributions.

⁵⁰Ti(¹⁶O, ¹⁴C) 1989Og01,1971Le07

1971Le07: E=48 MeV, measures ¹⁴C spectra, a two counter telescopes using solid-state detectors, overall resolution≈200 keV.

1989Og01: E=150 MeV, measured d $\sigma/d\Omega$, QMG/2 spectrometer, a hybrid focal-plane detector consisting of two multiwire position detectors and a series of ionization chambers, overall energy resolution of ^{14}C : 100 keV.

Other works: 1972SiYD, 1971FaZM, 1972FaZX.

 $^{52}\mathrm{Cr}$ Levels

$\underline{ E(level)^{\dagger}}$	<u>_</u>	E(level)		
0.0	≈ 190	4560‡	≈ 1 4 0	6740
1434	$\approx 1\ 1\ 0$	4740		6990
2370	≈ 7.0	4980‡	≈ 6 0	7290
2640^{\ddagger}	≈ 7.0	5210		7570
2768		5700		7870
2965	≈ 6 0	5950		8580
3114		6130		8890
3440		6330		
3780‡	≈ 7 O	6490		

- † From 1989Og01, except as noted.
- $\mbox{$\stackrel{\div}{\scriptscriptstyle{\perp}}$}$ From 1971Le07.
- § Cross section in $\,$ b/sr at $\theta{=}40$, from 1971Le07.

⁵⁰V(α,d) 1978Ca12

Target Jπ=6+.

E=14 MeV, measured deuteron spectrum with $\Delta E-E$ telescope of surface barrier detectors from 90 to 140 .

 $^{52}\mathrm{Cr}$ Levels

 $\frac{\text{E(level)}}{4750} \qquad \frac{\text{J}\pi}{\text{J}\pi} \qquad \frac{\text{Comments}}{\text{J}\pi: \text{ compared integrated cross sections with Hauser-Feshbach integrated cross sections in the same angular interval (90 to 140).}$

⁵⁰Cr(t,p) 1968Ch20,1971Ca19

 $1968Ch20: \ E = 12.15 \ MeV, \ \sigma(\theta, E(p)), \ multi-angle \ magnetic \ spectrograph.$

1971Ca19: E=13 MeV, $\sigma(\theta)$, a solid-state counter telescope.

All data are from 1968Ch20, except as noted.

⁵²Cr Levels

E(level)		$d\sigma/d\Omega~(peak) \S$
0.0	0	550
1442 20	2	7
2660 † 10	0	646

$^{50}\mathrm{Cr}(t,p)$ 1968Ch20,1971Ca19 (continued)

$^{52}\mathrm{Cr}$ Levels (continued)

E(level)	<u>L</u> ‡	$-d\sigma/d\Omega~(peak)^{\c k}$	E(level)	<u>L</u> ‡	$d\sigma/d\Omega~(peak)^{\mbox{\S}}$	E(level)	<u>L</u> ‡	$-d\sigma/d\Omega~(peak)^{\mbox{\Large \S}}$
2974 20		6	4745 † 10	0	150	5869 20	(2)	8
3175 15	2	117	5423 15	(2)	97	5973 15	(2)	49
3781 20	2	15	5443 20		14	6028 20		22
3957 20		4	5600 15	0	43	6069 20		12
4572 20	(3, 4)	11	5755 <i>15</i>	0	82	6154 20	2	44

- † From 1971Ca19.
- ‡ Deduced by 1968Ch20 by comparison of $\sigma(\theta)$ with those for states of known J π in 52 Cr, 54 Cr, 56 Cr.
- § Peak differential cross section (arbitrary units).

50 Cr(α , 2 He) 1990Fi07

E=56 MeV, measured $\sigma(\theta)$, the detection of unbound reaction product 2He is achieved by measuring the two breakup protons in coincidence, two protons detected with detector telescopes which were consist of a 300 m position-sensitive Si ΔE counter and a 5 mm Si(Li) E counter, DWBA analysis.

$^{52}\mathrm{Cr}$ Levels

E(level)	L	E(level)	L	E(level)	L
0.0	0	5990	4,5,6	10750	6,8
2770	4	6800	5,7	11260	6,8
3110	6	7390	5,7	12260	6,8
4770	4,6	7750	5,7		
5320	4,6	9200	5		

$^{51}V(p,\gamma)$ E=res: IAR 1978Pr04,1974Ro44,1973Fa12

Target Jπ=7/2-.

1966Te01: $E \approx 0.7-2.5$ MeV, $\gamma(\theta)$, 11*10 cm NaI detector.

1967Ar19: $E \approx 0.7 - 2.5$ MeV, $\sigma(\theta)$.

1971De25: $E{\approx}1.2{-}2.4$ MeV, $\gamma(\theta),$ a Ge(Li) detector.

1971Ah02, 1972Ah08: E<3.2 MeV, $\gamma(\theta),~5$ in * 6 in NaI(Tl) detector.

1972 Pr15: E=1.567, 1.629 MeV, $\gamma(\theta),\ 30\ cm^3\ Ge(Li)$ detectors.

1973Fa12: E=0.74-0.82 MeV, $\gamma(\theta),~60~cm^3$ coaxial Ge(Li) detector.

 $1974 Ro44 \colon \ E=0.72-1.30 \ \ MeV, \ \gamma(\theta), \ two \ \ NaI(Tl) \ \ detector, \ 10.2*10.2 \ cm \ \ 10.2*12.7 \ cm, \ respectively.$

1978Pr04: E=0.7-2.0 MeV, $\gamma(\theta)$, 94 cm³ Ge(Li) detector with resolution 5.5 keV at 1.33 MeV.

A number of weak resonances reported by 1974Ro44 are not included here. See this reference for details.

 $Assignment \ of \ resonances \ as \ analogs \ of \ states \ in \ ^{52}V \ were \ made \ by \ all \ authors. \ Cases \ of \ disagreement \ are \ noted.$

Others: 1977AwZY, 1976AwZZ, 1977RaZK, 1975RaYK.

$^{52}\mathrm{Cr}$ Levels

E(level) [†]	Jπ [‡]
0.0	
0.0	0 +
1434	2+
2369	4+
2768	4+
2965	2+
3114	6+
3162	2+
3414	4+
3472	3+
3616	5+
3947	
4015	5+

$^{51}V(p,\gamma)$ E=res: IAR 1978Pr04,1974Ro44,1973Fa12 (continued)

 $^{52}\mathrm{Cr}$ Levels (continued)

E(level) [†]	_Jπ [‡]	S§	Comments
4039	4+		
4611	3,4+		
4630?			
4742			
4808			
4837			
5054			
5097 5446			
5563			
5664			
5724			
5737			
5860			
6034			
6204			
6374 6389			
6794			
S(p)+739 2		0.03 1	E(p)=739 2 (1974Ro44).
S(p)+766 2		0.05 2	E(p)=766 2 (1974Ro44). Other: 763 6 (1966Te01).
S(p)+773 2	(3+)	0.06 1	E(p)=773 2 (1974Ro44).
			IAS (⁵² V g.s.). Some authors identify resonance at 766 keV as g.s. IAS. However, from a comparison of relative M1 transition rates from S(p)+774 state with Gamow-Teller β decay matrix elements for ⁵² V g.s. 1973Fa12 concluded that most of the IAS strength lies in the
			$E(p)=774$ keV resonance. The 766 keV resonance might still be a fragment of the g.s. IAS. $T_{1/2}$: from $\gamma(\theta)$ (1973Fa12).
S(p)+784 2	(5+)	0.13 3	E(p)=784 2 (1974Ro44). Others: 781 10 (1967Ar19), 781 6 (1966Te01).
			Identified as fragment of IAS $(^{52}{ m V}$ 23 keV).
			Jπ: from γ(θ) (1973Fa12).
S(p)+800 2		0.06 2	E(p)=800 2 (1974Ro44). Other: 795 10 (1967Ar19).
S(p)+912 2	4+	0.58 10	E(p)=912 2 (1974Ro44). Others: 915 (1972Ah08), 915 10 (1967Ar19), 910 6 (1966Te01).
			Identified by 1974Ro44 as IAS (52 V 148 keV). J π : from $\gamma(\theta)$ (1978Pr04).
S(p)+1174 2		0.84 24	$E(p)=1174 \ 2 \ (1974Ro44).$
S(p)+1210 2	2+	3.0 8	E(p)=1210 2(1974Ro44). Others: 1210 (1972Ah08), 1217 (1971De25), 1202 10 (1967Ar19), 1210 6
			(1966Te01).
			IAS $(^{52}V + 37 \text{ keV})$.
			Jπ: from γ(θ) (1978Pr04).
S(p)+1232 2		0.56 16	E(p)=1232 2 (1974Ro44).
S(p)+1244 2		1.2 3	$E(p)=1244 \ 2 \ (1974Ro44)$.
S(p)+1265 2 S(p)+1558 6		1.5 4	E(p)=1265 2 (1974Ro44). E(p)=1558 6 (1966Te01). Others: 1559 (1972Ah08), 1559 (1971De25). There is some confusion in
5(p)+1000 0			the literature concerning the existence of a resonance at this energy and the
			correspondence of resonances observed by various authors. 1972Ah08 associated the resonance which they reported at $E(p)=1559$ keV with the resonances of 1966Te01 and 1967Ar19 (1565 and 1562 keV, respectively) which we associate with the $S(p)+1566$ keV level. See 1971De25 for information on γ decay.
S(p)+1564 5	3+	0.65# 15	The state of a factor of a factor of the fac
			$J\pi$: IAS $(^{52}V$ 793 keV $(3+)$) and this resonance state has a total branch of about 35% to the first two 4+ states, 1978Pr04 assigned 3+ to the level.
S(p)+1628 5	4+	5.4 # 11	E(p)=1628 5. E(p) is from weighted average of 1626 10 (1967Ar19) and 1629 6 (1966Te01). Others: 1620 (1972Ah08), 1629 (1971De25), 1629 (1972Pr15).
			IAS (52 V 846 keV).
			$J\pi$: this resonant state does not decay to any level whose spin is known to be less than 3. it
			has 23% branch to the first 4+ level and 6% branch to the 5+ state at 3.616 MeV, see
S(p)+2203 6			1978Pr04 for detail. E(p)=2203 6 (1966Te01). Other: 2205 (1972Ah08).
5(p)+2203 b			E(p)=2203 6 (1966Te01). Other: 2205 (1972Ah08). IAS (52V 1418 keV)?
S(p)+2273 6			$E(p)=2273 \ 6 \ (1966TeO1).$
			IAS (⁵² V 1492 keV)?
			Continued on next page (footnotes at end of table)

$^{51}V(p,\gamma)$ E=res: IAR 1978Pr04,1974Ro44,1973Fa12 (continued)

⁵²Cr Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	Comments
S(p)+2333 6	4+	$E(p)=2333$ 6 (1966Te01). Others: 2329 (1977AwZY,1972Ah08), 2333 (1971De25). IAS (52 V 1559 keV)?
		$J\pi$: from $\gamma(\theta)$ (1971De25).
S(p)+2521 6		E(p)=2521 6 (1966Te01). Other: 2514 (1972Ah08).
		IAS $(^{52}\text{V }1733\text{ keV})$?
S(p)+2538 6		E(p)=2538 6 (1966Te01). Other: 2537 (1972Ah08).
		IAS $(^{52}\text{V }1759 \text{ keV})$?
S(p)+2583 6		E(p)=2583 6 (1966Te01). Other: 2576 (1972Ah08).
		IAS (52V 1842 keV)?
S(p)+2870		E(p)=2870 (1972Ah08).
S(p)+2945		E(p) = 2945 (1972Ah08).
S(p)+2972		E(p)=2972 (1972Ah08).

- $^{\dagger} \ \ For \ resonance \ states, \ E(level) \ is \ given \ as \ S(p) + E(p), \ where \ E(p) \ is \ the \ lab \ energy \ and \ S(p) = 10504.5 \ \textit{10} \ (2003Au03).$
- $\dot{\bar{\tau}}$ Spins shown for levels were assumed in $\gamma(\theta)$ analyses, see 1978Pr04, except as noted.
- \$ Resonance strength $S=(2J+1)\Gamma(\gamma)\Gamma(p)/\Gamma(eV)$. From 1974Ro44, except as noted. # From 1972Pr15.

 $\gamma(^{52}Cr)$

E(level)	$_{\rm E\gamma^{\dagger}}$	Ιγ‡	Mult.e	δ	E(level)	$ E\gamma^{\dagger}$	Ιγ‡
S(p)+766	8291	54			S(p)+1210	8529	4 1
	8488	46			-	8726#	8@ 2
(p)+773	7648	<4				8923	3 1
	7792	< 2				9322	8 1
	7850	17 3	M1+E2	+0.06 9		10257	30 2
	8150	11 4			S(p)+1558	6471	5 1
	8299	< 2				6588	5 1
	8496	5 3				7404	11 <i>1</i>
	8895	44 7	M1+E2	+0.9 +10-5		8562	4 2
	9830	15 2	M1+E2	-0.30 6		8620	23 2
(p)+784	4479	18 3				9069	4 2
	4899	6 2				9266	17 1
	5069	9 3				9665	18 1
	5239	5 2				10600	11 <i>1</i>
	5549	25 3			S(p)+1564	6595	11 1
	7258	15 3				7233	5 1
	7326	6 2				8569	12 1
	7859	2 1	M1+E2	+0.47 10		8627	5 1
	8904	$14 \ 2$	M1+E2	+0.19 10		8879	16 1
(p)+800	9856	100				9076	2 1
(p)+912	5836	23 2				9273	8 1
	5953	11 2				9672	26 1
	7360	a				10607	14 1
	7384	a			S(p)+1628	6239	9 2
	7783	10 1				6362	9 2
	7985	8 1				6653	7 2
	8285	2 1				7002	3 1
	9030	$38 \ 2$	M1+E2	0.5 f 2		7469	7 1
(p) + 1210	5302	10 1				8060d	7 c d 1
	6027	7 1				8084^{d}	3.0 cd 5
	6245	16 1				8152	5 1
	6637#	4@ 2				8483	6 1
	6854	&				$8627 \mathrm{d}$	4.0d 6
	6883	&				8685	12 2
	6949	11 1				9331	8 1
	7652	b				9730	23 2
	7676	b			S(p)+2333	9178	25 \$
	8219#	9@ 2				10424	31 §
	8277	2 1					

Footnotes continued on next page

⁵¹V(p,γ) E=res: IAR 1978Pr04,1974Ro44,1973Fa12 (continued)

$\gamma(^{52}\mathrm{Cr})$ (continued)

- † Only primary $\gamma ^{\prime}s$ are given.
- ‡ Photon branching ratio (%). Values are from 1973Fa12 (E(p)<900 keV) and 1978Pr04 (E(p)>900 keV), except as noted.
- § Branching ratio from 1977AwZY.
- # From 1974Ro44.
- $^{@}$ From 1974Ro44. Not reported by 1978Pr04. If branch exists, the % branches of 1978Pr04 should be lowered.
- & $I\gamma{=}3$ 1 for the 6854, 6883 doublet.
- a $I\gamma=8$ 1 for the 7360, 7384 doublet.
- b Iy=5 1 for the 7652, 7676 doublet.
- $^{\rm c}$ 1978Pr04 reported a branching of 12% 1 for the 8060, 8084 doublet.
- d From 1972Pr15.
- e From $\gamma(\theta)$ in 1973Fa12, except as noted. D+Q transitions assigned (M1+E2) from level scheme.
- $f \quad From \ 1974 Ro44.$

⁵¹V(³He,d) 1992Ba16,1978Wa04

JPI(51V)=7/2-.

1992Ba16: E=15 MeV, multichannel magnetic spectrograph, 20 keV FWHM, measured $\sigma(\theta)$, 3.75 -71.25 , DWBA analyses.

 $1978Wa04:\ E=15\ MeV,\ multigap\ magnetic\ spectrograph,\ 19\ keV\ FWHM,\ measured\ \sigma(E(d),\theta),\ DWBA\ analyses.$

1965Ar06: E=22 MeV, E- ΔE identification system, 100-120 keV FWHM.

1973Pe12: E=10.48 MeV, FWHM=50 keV, measured $\sigma(\theta),$ counter telescope.

All data are from 1992Ba16, except as noted.

⁵²Cr Levels

E(level)	_L	$-\!$	E(level)	_L_	$-\!$
0.0	3	0.50	6388	1	0.074
1434 †	3	0 . 641	6500	1	0.020
2370‡	3 ‡	0.490‡	6610‡		
2766^{\dagger}	3	0.692	6625		
2965			6676	1	0.012
3112^{\dagger}	3	1.810	6720‡	1+3‡	0.009+0.020‡
3420‡	3 ‡	0.101‡	6760‡	1+3‡	0.004+0.022‡
3620‡	1 ‡	0.020‡	6814	1	0.031
3770	1	0.054	6894	1	0.051
3950‡	1 [‡]	0.013 [‡]	6928	1	0.10
4020‡	1‡	0.014‡	6993	1	0.085
4033	1	0.0085	7079	1	0.13
4565	1	0.0082	7165	1	0.085
4628	1	0.060	7210‡	1+3‡	0.023+0.057‡
4701	1	0.090	7223	1	0.036
4740‡	1‡	0.104‡	7260‡	1+3‡	0.034+0.150‡
4835	1	0.040	7273	1	0.067
5101	1	0.39	7310‡	1+3‡	0.077+0.117‡
5140^{\ddagger}	(3) ‡	0.052 [‡]	7322	1	0.096
5285	0	0.0072	7350‡	1+3‡	0.038+0.073‡
5420^{\div}	1 ‡	0.195 [‡]	7359	1	0.060
5450^{\ddagger}	1 ‡	0 . 1 4 0 [‡]	7400	1	0.30
5594	1	0.12	7487	1	0.071
5660 [‡]	$1 + 3^{\ddagger}$	0.003+0.026‡	7536	1	0.025
5720 [‡]	1 ‡	0.061‡	7590‡	1+3‡	0.072+0.110‡
5751	1	0.040	7686	1 + 3	0.016+0.25
5790‡	1+3‡	$0.050+0.124$ ‡	7729	1	0.047
5828	1	0.054	7760	1	0.046
5891	0	0.0052	7815	1	0.068
5945	1	0.0082	7853	1	0.073
5992	1	0.026	7905	1	0.086
6026	1	0.048	7920‡	1 ‡	0.060‡
6089			7967	1	0.043
6192	1	0.040	8020	1	0.068
6232	1	0.12	8040‡		
6364	1	0.074	8083	1	0.047

⁵¹V(³He,d) 1992Ba16,1978Wa04 (continued)

⁵²Cr Levels (continued)

E(level)	L	$-(2J_f\!\!+\!\!1)C^2S/(2J_i\!\!+\!\!1)$	E(level)	L	$-(2J_f\!+\!1)C^2S/(2J_i\!+\!1)$
8130 ‡	$1 + 3^{\frac{1}{7}}$	0.020+0.056‡	8371	1	0.043
8183	1	0.144	8400‡	1 ‡	0.041‡
8234	1	0.106	8451	1	0.106
8250^{\ddagger}	1+3 ‡	0.048+0.092	8579	1	0.038
8283	1	0.080	8614	1 + 3	0.021+0.29
8330‡	1+3 ‡	0.034+0.068 ‡	8700 †	1 + 3	
8350‡	1‡	0.030‡			

[†] From 1965Ar06.

$^{51}V(^{3}He,d\gamma)$ 1971Sp12

E=11.0 MeV, measured lifetime of levels by DSAM, a 37.5 cm³ Ge(Li) of FWHM: 3.5 keV for 1.33 MeV.

$^{52}\mathrm{Cr}$ Levels

E(level)	$J\pi^{\dagger}$	T _{1/2}	E(level)	$\frac{J\pi^{\dagger}}{}$	T _{1/2}	E(level)	$\frac{J\pi^{\dagger}}{}$	T _{1/2}
0.0	0+		3114	6+	>1.8 ps	3772	2+	
1434	2+	0.69 ps +31-17	3162	2+	0.08 ps + 4 - 3	3947		0.10 ps + 4 - 3
2369	4+	1.04 ps + 35 - 17	3414	4+	0.22 ps + 8 - 5	4015	5+	0.58 ps +32-19
2766	4+	1.4 ps $+5-3$	3472	3+	>1.9 ps	4040	4+	0.51 ps +25-14
2965	2+	0.47 ps +22-13	3617	5+	>0.76 ps	4563	3 –	0.27 ps + 12 - 6

[†] From adopted levels.

 $\gamma(^{52}Cr)$

E(level)	$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	Ιγ‡	E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ιγ‡	E(level)	$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$
1434	1434	100	3162	3162	12 1	3947	1578
2369	934	100	3414	648	94.5 15	4015	399
2766	398	6 3		1979	5.5 15		601
	1332	94 3	3472	703			1645
2965	1531			2038		4040	571
3114	346	1.2 2	3617	503	10 3	4563	791
	744	98.8 2		851	37 4		
3162	1728	88 1		1248	53 3		

 $^{^{\}dagger}$ From level energy differences.

$^{51}V(\alpha,t) \\ \phantom{^{12}}1989Pe06, \\ 1968Ma37, \\ 1978Le08$

[‡] From 1978Wa04.

 $^{^\}ddagger$ From 1967Pa22.

Target $J\pi=7/2-$.

¹⁹⁶⁸Ma37: E=29 MeV, FWHM \approx 110 keV, $\sigma(E(t),\theta)$, E- ΔE semiconductor detector assembly, 1000 m thick stopping detector, 3 MM diam ΔE detector, DWBA analysis.

¹⁹⁷⁸Le08: E=25 MeV, $\sigma(E,\theta)$, E- ΔE silicon semiconductor detector telescope, E-detectors were about 1 mm thick, ΔE detectors were from 60 to 140 m thick, DWBA analysis.

¹⁹⁸⁹Pe06: E=80.9 MeV, $\sigma(E,\theta),$ QDDM spectrometer, DWBA analysis.

Others: 1976ToZK.

Data for E(level) < 6000 are from 1968Ma37; others are from 1989Pe06, except as noted.

$^{51}V(\alpha,t) \qquad 1989 Pe 06, 1968 Ma 37, 1978 Le 08 \ (continued)$

$^{52}\mathrm{Cr}$ Levels

E(level)	<u> Jπ</u>	L	$ m C^2S$	Comments
0.0	0 +	3	0.50	$C^2S: S=0.57 (1978Le08).$
1430	2+	3	0.68 10	$C^2S: S=0.82 \ (1978Le08).$
2370	4+	3	0.53 10	5 S. 5-3.52 (19162605).
2770	4+	3	0.81 10	
3110 40	6+	3	1.72 20	
3440 40	3 –	3,(1)	0.05 5	
3800 40	0	3,(1)	0.05 5	
4100 100		0,(1)	0.00	
4680 100		1		
5120 100		1		
5450 100		1		
5830 100		1		
7810		4	0.88†	
8010		4	0.46	
8190		4	0.69†	
8420	6 –	4	0.015	
9480	8-	4	0.010	
9630	8-	4	0.012	
10130	8-	4	0.012	
10280	6-	4	0.019	
11170	8-	4	0.047	
11350	8-	4	0.051	
11660	8-	4	0.011	
11790	8-	4	0.038	
12050	8-	4	0.045	
12500	O	4	0.67	
12700	8 –	4	0.011	
13010	0-	4	0.36 [†]	
14470	8-	4	0.020	
15280	6-	4	0.020	T=3.
15482 7	8-	4	0.000	T=3.
19402 /	0-	**	0.121	1-5.

 $^{^{\}dagger}$ $C^2S^{\prime},$ from 1989Pe06.

$^{52}{\rm Cr}(\gamma,\gamma'), ({\rm pol}\ \gamma,\gamma')$ 1981Be32,1979Ku14,1983Sm02

1979Ku14: E=14 MeV, bremsstrahlung, Ey, Iy(θ) θ =125 , 150 , a 40 cm³ Ge(Li) detector (overall energy resolution of the detector system was 8 keV (FWHM) for 9 MeV.

 $1983Sm02: (pol \ \gamma,\gamma'), \ E=9.14 \ MeV \ \sigma(total), \ \sigma(E,\theta), \ two \ high-energy \ window \ 7.5*12.5 \ cm^2 \ NaI \ scintillation \ detectors.$

 $1981Be32: (pol\ \gamma,\gamma'),\ E=7-9\ MeV,\ bremsstrahlung,\ spectra\ and\ asymmetry\ of\ photon\ scattering,\ Ge(Li)\ detectors.$

1998En05: electron beam of 7 MeV, HPGE detectors surrounded by a BGO suppression shield, measured E γ , I γ and $\gamma\gamma(\theta)$.

 $Resonance\ fluorescence\ self-absorption\ experiment\ for\ the\ 1434\ keV\ first\ excited\ state,\ see\ 1981Ah02.$

Others: 1959Of14, 1964Bo22, 1982NoZW.

⁵²Cr Levels

E(level) [†]	$J\pi^{@}$	T _{1/2}	Comments
0.0	0+		
1434.1#	2+	0.679 ps 13	$T_{1/2}$: from $\Gamma_{\gamma 0}$ =673×10 ⁻⁶ eV 13. Others: resonance fluorescence: 0.55 ps 14 (1959Of14), 0.76 ps 21 (1964Bo22).
3161.7#	2+		
3739.6#	1+,1-,2+&		$B(M1)\uparrow=0.008\ 1;\ B(E1)\uparrow=0.0000009\ 1;\ B(E2)\uparrow=0.0015\ 2\ (1998En05).$
3770.5#	2+&		$B(E2)\uparrow=0.0076$ 11 (1998En05).
4800.1#	1+,1-,2+&		$B(M1)\uparrow=0.009\ 2$; $B(E1)\uparrow=0.0000010\ 2$; $B(E2)\uparrow=0.00105\ 20\ (1998En05)$. $J\pi=1+,\ 1-,\ 2+$ for $B(M1),\ B(E1),\ B(E2),$ respectively.
4841.3#	1+,1-,2+&		$B(M1)\uparrow=0.011$ 2; $B(E1)\uparrow=0.00000126$ 23; $B(E2)\uparrow=0.00131$ 24 (1998En05).
5098.4#	1+,1-,2+&		$B(M1)\uparrow=0.085$ 13; $B(E1)\uparrow=0.0000094$ 14; $B(E2)\uparrow=0.0071$ 12 (1998En05).
			$J\pi=1+$, 1-, 2+ for $B(M1)$, $B(E1)$, $B(E2)$, respectively.
5490.8##	1+ , $1-$, $2+$ &		$B(\texttt{M1}) \uparrow = 0.008 \ 2; \ B(\texttt{E1}) \uparrow = 0.0000009 \ 3; \ B(\texttt{E2}) \uparrow = 0.00074 \ 20 \ (1998 \texttt{En05}).$

$^{52}Cr(\gamma\!,\!\gamma'),\!(pol~\gamma\!,\!\gamma')\qquad 1981Be32,\!1979Ku14,\!1983Sm02~(continued)$

⁵²Cr Levels (continued)

E(level) [†]	Jπ [@]	Comments
5544.4#	1+,1-&	$B(M1)\uparrow=0.19$ 4; $B(E1)\uparrow=0.000021$ 4 (1998En05).
	1+,1-,2+&	$B(M1)\uparrow=0.017\ 5$; $B(E1)\uparrow=0.0000019\ 5$; $B(E2)\uparrow=0.0014\ 4\ (1998En05)$.
		$J\pi=1+$, 1-, 2+ for $B(M1)$, $B(E1)$, $B(E2)$, respectively.
6136.7#	2+&	$B(E2)^{\uparrow} \le 0.0030 \ 11 \ (1998En05).$
6459.6#	1+,1-,2+&	$B(M1)\uparrow = 0.044 \ 25$; $B(E1)\uparrow = 0.0000049 \ 28$; $B(E2)\uparrow = 0.0029 \ 16 \ (1998 En 05)$.
6493.8#	2+&	$B(E2)\uparrow=0.0687$ 13 (1981Ah02) Other: $B(E2)\uparrow=0.0061$ 36 (1998En05).
7524 [‡] 3	1+	$\Gamma_{\gamma 0}^2 / \Gamma = 0.97 \text{ eV } 23 \text{ (1979 Ku14)}.$
7730 2	1-	$\Gamma_{\gamma 0}^{f}/\Gamma = 1.75 \text{ eV } 32 \text{ (1979Ku14)}.$
7896 2	1-	$\Gamma_{\gamma 0}^{2}/\Gamma = 5.7 \text{ eV } 8 \text{ (1979Ku14)}.$
8091 ‡ 3	1	$\Gamma_{\gamma 0}^2/\Gamma = 1.60 \text{ eV } 35 \text{ (1979Ku14)}.$
9142.7 \$ 6	1+	$\Gamma_{\gamma 0}^2/\Gamma = 2.68 \text{ eV } 16 \text{ (1983Sm02)}. \ \Gamma_{\gamma 0}^2/\Gamma = 2.9 \text{ eV } 5 \text{ (1979Ku14)}.$
9214 2	1+	$\Gamma_{\gamma 0}^2/\Gamma = 2.8 \text{ eV } 6 \text{ (1979Ku14)}.$
9736	(+)	
9787 3	1-	
9981 3	(-)	$\Gamma_{\gamma 0}^2 / \Gamma = 4.0 \text{ eV } 6 \text{ (1979Ku14)}.$
10433 4		
10927 3		
11765 3		
11837 3		

- † From 1981Be32, except as noted.
- ‡ From 1979Ku14.
- § From 1983Sm02.
- $^{\text{\#}}$ From 1998En05, $\Delta E {<} 1$ keV.
- @ J based on comparison of intensity ratios for the observed ground state transitions at scattering angles of 150 and 125 with theoretically calculated values, see 1979Ku14 for details. π based on asymmetries for different g.s. dipole transition (1981Be32), except as noted.
- & From 1998En05, based on values of reduced transition strengths (UP).

$\gamma(^{52}Cr)$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Mult.	Comments
3161.7	1727.6		
3770.5	2336.4		
5098.4	3664.3	D, Q	Iy: 0.42 15 for $J\pi=1+$ and 1-, 0.27 11 for $J\pi=2+$.
			Mult.: from W(130)/W(90)=0.94 19.
5544.4	5544.4	D	Mult.: from W(130)/W(90)=1.89 41.
6136.7	6136.6	Q	Mult.: from W(130)/W(90)=0.34 14.

[†] From E(level)-1434.1.

⁵²Cr(e,e') 1985So05,1973Ph02,1964Be32

1985So05: E=29.6-57.3 MeV, excitation energy spectra, $\sigma(\theta)$. enriched (99.9%) targets, the multichannel detector system of the energy-loss electron facility consisted 36 overlapping scintillators backed up by a large Cerenkov counter.

 $1988S007: E=170-260 \ MeV, \ excitation \ energy \ spectra, \ natural \ Cr \ and \ enriched \ (99.87\%) \ separated \ ^{52}Cr \ targets, \ quadrupole-dipole \ -dipole \ (QDD) \ spectrometer.$

 $1964Be32: \ E=150, \ 180 \ MeV, \ \sigma(\theta). \ natural \ target, \ double \ focusing \ spectrometer \ (over-all \ energy \ resolution \ of \ 0.35\%).$ $1973Ph02: \ E=209 \ MeV, \ \sigma(\theta) \ for \ 2+,3-,4+ \ levels, \ double \ focusing \ magnetic \ spectrometer \ (intrinsic \ resolution \ of \ 0.11\%).$

⁵²Cr Levels

 $E(level)^{\dagger}$ Comments

0.0 Ground-state rms charge radius from elastic scattering: 3.674 fm 15 (1976Li19), 3.655 fm (1971Pell).

$^{52}Cr(e,e') \qquad 1985So05, 1973Ph02, 1964Be32 \ (continued)$

⁵²Cr Levels (continued)

$E(level)^{\dagger}$	L#	Comments
1430	2	B(E2)↑=0.067 4.
		$B(E2)^{\uparrow}$: from weighted average of 0.0634 39 (1976Li19), 0.080 8 (1978Po04), 0.071 9 (1971Pe11), 0.0761 30 (1975DeXW), and 0.052 4 (1964Be32). Other: 0.0632 (1983Li02).
2370	4	$B(E4)^{\uparrow}=0.00151$ 5 (1975DeXW). $B(E4)^{\uparrow}$: Others: 0.00067 12 (1975DeXW), 0.00101 (1983Li02).
2650	0	
2770	4	$B(E4)\uparrow=0.000482$ (1983Li02).
2970	2	1964Be32 report L=4 and B(E4)=0.00050 7; however, the 2970 level has $J\pi$ =2+.
3110	6	$B(E6)=0.143\times10^{-4} (1983Li02).$
3160	2	B(E2)↑=0.00124 23 (1976Li19). B(E2)↑: Others: 0.00155 20 (1975DeXW), 0.0016 (1983Li02).
3770	2	B(E2)↑=0.0101 5 (1975DeXW). B(E2)↑: Other: 0.0112 (1983Li02).
4040		
4560	3	B(E3)î=0.0065 4 (1964Be32). B(E3)î: Other: 0.0076 11 (1975DeXW).
5500 [‡]	3	$B(E3)\uparrow=0.0013$ 3 (1964Be32).
6600‡	3	$B(E3)\uparrow=0.0022$ 3 (1964Be32).
7030 10	M1,(E1)	
7100‡	3	$B(E3)\uparrow=0.0028$ 3 (1964Be32).
7140 10	M1	
7170 10	M1	
7260 10	M1, (M2)	
7340 10	M1	
7520 10	M1, (M2)	
7560 20	M1, (M2)	
7700 10	M1	
7820 10	M1	
7860 10	M1, (M2)	
7900‡	3	$B(E3)\uparrow=0.0028$ 3 (1964Be32).
8080 20	M1, M2	
8100 \$ 20	M8 §	
8390 10	M1	
8450 \$ 20	M6 §	
8600 10	3	$B(E3)\uparrow=0.0022\ 3\ (1964Be32)$.
8690 20	M1,M2,E2	
8790 10	M2, (E2)	
8860 10	M1, (M2)	
8890 20	M1,M2	
8940 \$ 20	(M8,M6)§	
9000 10	M1	
9050 10	M1, (M2)	
9080 \$ 20	(M8)§	
9140 10	M1	
9210 10	M1	
9320 10	M1	
9370 20	M1, M2	
9420 10	M1	
9440 20	M1,E2	
9450 \$ 20	M8 §	
9470 20	M1,E2	
9580 10	M1,(E1)	
9610 10	M1	
9660 \$ 20	M8 §	
9720 10	M1	
9830 10	M1	
9880 10	M1	
	M8 §	
99108 20	354 (350)	
9910 \$ 20 0010 10	M1, (M2)	
0010 10 0 10 0110	M1, (M2) (M8)§	
0010 10		
0010 10 0 10 0110	(M8)§	

⁵²Cr(e,e') 1985So05,1973Ph02,1964Be32 (continued)

⁵²Cr Levels (continued)

E(level)	L#	E(level)	L#	E(level)	L#
10270 20	D, (M2)	11070 10	M1,(E1)	11880 \$ 20	M8 §
10300 20	M2,M3,E3	11140 10	M1,(E1)	11960 \$ 20	M8 §
10330 \$ 20	M6 §	11160 20	(M1), Q	12030 \$ 20	(M8)§
10340 20	M1, E1	11170 \$ 20	M8 §	12130 \$ 20	(M8, M6)§
10380 20	M1, E1	11270 \$ 20	M8 §	12240 \$ 20	M6 §
10430 10	M1	11330 20	(M1), M2	12730 \$ 20	M8 §
10460 10	M1	11370 \$ 20	M8 §	13220 \$ 20	M8 §
10500 20	M1, E1	11400 10	M1	13390 \$ 20	M6 §
10510 \$ 20	(M8, M6)§	11510 10	M2	13570 \$ 20	M6 §
10610 10	M1,Q	11550 \$ 20	M8 §	13710 \$ 20	M6 §
10710 10	M1,(E1)	11570 20	(M1), Q	14030 \$ 20	M6 §
10760 10	M1	11610 10	M2,(E2)	14340 \$ 20	M6 §
10790 10	M1	11650 10	M1, (M2)	14430 \$ 20	M8 §
10800 \$ 20	(M8, M6)§	11660 \$ 20	M8 §	15270 \$ 20	M6 §
10820 10	M1, (M2)	11690 20	(M1), Q	15470 \$ 20	M8 §
10920 20	M1, M2	11770 \$ 20	M8 §	16400 \$ 20	M6 §
11000 \$ 20	M8 §	11780 20	(M1),M2	16690 § 20	(M8)§

 $[\]label{eq:continuous} \dot{^{\dagger}}~E\mbox{e}\mbox{ Form 1970Ra47. E>7 MeV from 1985So05, except as noted.}$

$^{52}\mathrm{Cr}(\pi^+,\pi^+),(\pi^+,\pi^{+})$ 1987Oa01,1988Oa01

Includes: ${}^{52}\mathrm{Cr}(\pi^-,\pi^-),(\pi^-,\pi^{-1}).$

1987Oa01,1988Oa01: E=180 MeV, FWHM=150 keV, measured $\sigma(\theta)$, energetic pion channel and spectrometer (EPICS) consisted a momentum dispersing channel and a high resolution spectrometer. analyzed using the distorted-wave impulse approximation (DWIA) calculations with collective-model transition densities.

1996Oa01: E=180 MeV, FWHM: 135 keV, measured $\sigma(\theta)$, energetic pion channel and spectrometer (EPICS).

$^{52}\mathrm{Cr}$ Levels

E(level) [†]	$J\pi^{\ddagger}$	<u>L</u>	Comments
0.0	0+		
1430	2+		$B(E2) \uparrow = 0.0588 \ 23 \ (1987Oa01).$
2370	4+		$B(E4)\uparrow=0.00066$ 10 (1987Oa01).
2650 \$	0 + §		
2770	4+		
2960	2+		
3160	2+		
3420	(4+)		
3770	2+		$B(E2) \cap = 0.0095 \ 8 \ (1987Oa01).$
4040	4+		
4560	3 –		$B(E3) \uparrow = 0.0068 \ 5 \ (1987Oa01).$
4630	4+		
4710 \$	2+8	2	L: from 1988Oa01.

 $^{^{\}dagger}$ From 1987Oa01, except as noted.

[‡] From 1964Be32.

[§] From 1988So07.

[#] The L values for the levels below 7140 are from the adopted $J\pi$'s and those for above 7100 are from 1985So05, except as noted.

 $[\]dot{\bar{\tau}}$ DWIA analysis of $\sigma(\theta),$ from 1987Oa01, except as noted.

[§] From 1988Oa01.

52 Cr(n,n' γ) 1978Ka21,1962Va24,1989Ge09

 $1962 Va 24 \colon \ E=0.98-3.31 \ \ MeV, \ measured \ \gamma-spectrum, \ d\sigma/d\Omega(E\gamma,\theta) \ \ NaI \ scintillation \ detector.$

 $1978Ka21:~E=0.84-3.97~MeV,~measured~\gamma-spectrum,~d\sigma/d\Omega(E\gamma,\theta)~a~40~cm^3~Ge(Li)~detector,~plastic~scintillation~detector.$

1989Ge09: fast neutrons, measured lifetimes of excited levels, DSAM. three Ge(Li) detectors with different volumes and energy resolution of the γ -ray of 60 Co of energy 1.33 MeV: 28 cm 3 (2.6 keV), 52 cm 3 (2.8 keV), 75 cm 3 (3.0 keV).

Others: see earlier evaluation (1978Be37).

$^{52}\mathrm{Cr}$ Levels

E(level)	$\frac{J\pi^{\S}}{}$	$\underline{\hspace{1cm}}^{\ddagger}$	E(level)	$\frac{J\pi^{\S}}{}$	${ m T}_{1/2}^{\ddagger}$	E(level)	$J\pi^{\S}$	$T_{1/2}^{\ddagger}$
0.0	0+		2965	2+#	31 fs 4	3771	2+	11.1 fs <i>14</i>
1434	2+#		3114	6+		3948 †		33 fs 6
2370	4+#		3162	2+#		4040 †		26 fs 5
2647	0 + #		3415	4+		4563 †		40 fs 6
2768	4 + #		3479					

- † From 1989Ge09.
- ‡ From 1989Ge09, DSAM.
- $\$ From adopted $J\pi$ values.
- # 1962Va24, on the basis of their own $(n,n'\gamma)$ work, and (p,p') work of other authors, deduce several $J\pi$ values that are consistent with the adopted values.

 $\gamma(^{52}Cr)$

From 1978Ka21.

E(level)	Εγ	Ιγ	Comments
1434	1434 1	100	
2370	936 1	100	
2647	1213 1	100	
2768	1334 1	100	
2965	1531 1	100	
3114	744 1	100	
3162	1728 1	88.6 11	
	3162 1	11.4 11	
3415	647 1	100	
3472	703 1	60 7	
	2038 1	40 7	
3771	2337 1	84	$I\gamma$: assuming an 84% branching ratio for 2337γ (1978Ka21).
	(3771 1)	16	Eγ: 3771γ was not seen in 1978Ka21.

$^{52}{ m Cr}(n,n')$ 1965St16,1973HoYG,1974KiZY

1965St16: E=14 MeV, tof, $\sigma(E(n),\theta),$ plastic scintillation detector.

1973HoYG: E=3.2 MeV, tof, $\sigma(\theta)$.

1974KiZY: E=6.44-8.56 MeV, tof, $\sigma(\theta),$ liquid scintillation detector.

1997Sm01: E=4.5-10 MeV, $\sigma(\theta),$ tof method and ten-angle detection system.

⁵²Cr Levels

E(level) [†]	$J\pi^{\dagger}$	$\overline{\Gamma^{\ddagger}}$	$\{\beta_L}$	Comments
1434 2370§	2+	2	0.21 2	$\beta_{\rm L}{:}$ 1973HoYG found $\beta_2{=}0.16$ from DWBA and Hauser-Feshbach analysis of low-energy scattering.
4200	3 –	3	0.18 3	From 1965St16.

- † From adopted levels.
- ‡ From known $J\pi$.
- § Seen only by 1974KiZY.

$^{52}Cr(p,\!p') \qquad 1985Fu10,\!1967Ka11,\!1969Pe02$

1985Ful0: E=65 MeV, $\Delta E-E$ counter, energy resolution 15-22 keV FWHM, measured $\sigma(\theta).$

 $1967 Ka11:\ E=12\ MeV,\ single-gap\ magnetic\ spectrograph,\ 6-8\ keV\ FWHM,\ measured\ spectrum\ of\ p'.$

 $1966 Ma 42: \ E=11,12 \ MeV, \ FWHM=8, \ 12 \ keV \ single-channel \ spectrograph, \ measured \ Q \ values.$

1969Pe02: E=17.5 MeV, energy resolution 20 keV, surface barrier silicon detector, measured $\sigma(\theta)$.

1970Pr08: E=40 MeV, Ge(Li), 40 keV FWHM, measured $\sigma(\theta)$.

1983Dj05: E=201 MeV, overall energy resolution 60-70 keV, measured $\sigma(\theta)$, DWIA calculations, deduced 1+ states.

See 1970Pe09 for a study of relative contributions of direct and compound nucleus mechanisms at E(p)=11 MeV for

excitation of 1.44 MeV 2+ state and 4.56 MeV 3- state.

 $Others:\ 1978 An 08,\ 1979 An ZT,\ 1979 KIZZ,\ 1980 Pr ZV,\ 1980 An 35,\ 1983 Og 03,\ 1984 Ko ZK,\ 1985 Oz 01,\ 1985 Ko 07.$

All data are from 1985Fu10, except as noted.

$^{52}\mathrm{Cr}$ Levels

E(level)	$J\pi^{\ddagger}$	L	$\beta_L R\ (fm)$	Comments
0.0	0+			
1434# 3	2+	$_2$ b	0.87° 4	
2369 5	4+	4	0.33	
2647 5	0+	0	0.095	
2768 5	4+	4	0.30	
2965 5	2+	2	(0.08)	
3114 5	6+	6	0.35° 10	
3162 5	2+	2	0.27	
3415 5	4+	4	0.13	
3472 5	3+	2+3		L: 1970Pr08 assign L=4 with βR=0.13 2.
3617# 3				
3772 5	2+	2	0.28	
3949 5	1+	2	0.20	
4015 5	5+	4+6		
4040 5	4+	4	0.16	
4563 5	3 –	3	0.61	
4630 5	4+	4	0.36	
4702 5				
4738 5	0+	0	0.145	L: 1969Pe02 assign L=2 with βR=0.22 2.
4802 5	5,6+	5,6		
4832 5	(3+)†	-,-		
4951 8 4	4+	$_4\mathrm{b}$	0.20° 5	
5095 5	4+	4	0.15	
5139 5	5,6+	5,6		
52118 4	- , -	. , .		
5285 5	5,6+	5,6		1969Pe02 report L=(2) for a level at 5289.
5346 \$ 4	*	,		•
5410 8 4				
5425 5	4+	4	0.32	1969Pe02 report L=4 for E=5450.
5432 \$ 6				
5450 8 6				
5494 \$ 5				
5541 5	4+	4	0.074	$\beta_4 R = 0.07 \ (1989 Fu 07).$
5546§ 6				
5569 5	5,6+	5,6		1969Pe02 report L=3 for a level at 5571.
5584 § 6				
5661 5	2+	2	0.095	
5727 5	5,6+	5,6		
5737? 4 10	(4+)	(4) ^b	0.25^{c} 8	
5798\\$ 5				
5811 5	5,6+	5,6		
5818§ 6				1969Pe02 report L=(3) and βR =0.24 6 for E=5830.
5853\\$ 5				$1969Pe02$ report L=(3) and $\beta R{=}0.24$ 6 for E=5830.
5865§ 6				
5873 5	3 –	3	0.082	
5919 5		5,6		
5953 \$ 5				$1985Fu10$ report L=2 and $\beta R {=} 0.17$ for E=5957.
5960 \$ 5				$1985Fu10$ report L=2 and $\beta R{=}0.17$ for E=5957.
5996 5	3 –	3	0.087	
6026 8 6				
6035 [@] 10				
6055 5		2	0.13	

$^{52}Cr(p,p') \qquad 1985Fu10, 1967Ka11, 1969Pe02 \ (continued)$

⁵²Cr Levels (continued)

E(level)	_Jπ [‡]	L	$\beta_L R\ (fm)$	Comments
6065 \$ 10				
6106 \$ 6	(0)			
$6143 \ 5$ $6153 \ 8$	(2+)	2	0.07	
6164 [@] 12				
6164° 12 6175§ 7	2+	$_2$ b	0.21° 3	
6193 8 6	2+	2 ~	0.21- 5	
6205 \$ 5		3		L=3 is reported by 1985Fu10 for E=6201, by 1969Pe02 for E=6220, and by 1970Pr08 for
		5		E=6210.
6210 [@] 10 6220 [§] 6				L: L=3 is reported by 1985Fu10 for E=6201, by 1969Pe02 for E=6220, and by 1970Pr08 for E=6210.
6233 \$ 10				
6243 5		3	0.074	Probably a composite of the 6233 and 6252.
6252 \$ 6		Э	0.074	Fromany a composite of the 6255 and 6252.
6272 \$ 6				
6282 [@] 10				Probably a composite of the 6979 and 6909
6282° 10 6293§ 7				Probably a composite of the 6272 and 6293.
6324 10				
6349 5				1970Pr08 report L=4 for E=6350.
6372 10				10.01.00 Topole B-1 lot B-0000.
6392& 10				1985Ful0 report L=3 and $\beta R=0.048$ for E=6382, and 1969Pe02 report L=(3) and $\beta R=0.28$ for E=6380.
6426 5				
6437				
6458 5				
6482 5	5,6+	5,6		
6493 10	2+	$_2\mathrm{b}$	0.21^{c} 5	
6541 20				
6568 ^{&} 10				
6580 5	3 –	3	0.34	
6637 5				
6678 5				
6704 5	5,6+	5,6		
6786 5	3 –	3	0.26	
6810§ 30	(2+)	2 b	0.22° 3	
6871 5	5 –	5	0.16	
6956 5	5,6+	5,6		
6993 5	3 –	3	0.18	
7080 10	3 –	3	0.34	
7140 10	4+	4	0.14	
7217 10	2+	2	0.10	
7278 10	4+	4	0.13	
7344 10 7376 10	2 + 5 -	2 5	0.074	
7409 10	5 – 3 –	о 3	0.11 0.091	
7458 10	5 , 6+	5 5,6	0.031	
7482 10	3-	3	0.13	
7540a 20	1+ ^a	0	0.10	
7585 10	3-	3	0.074	
7679 10	5,6+	5,6		
7738 10	3-	3	0.26	
7823 10	3 –	3	0.12	
7848 10	4+	4	0.11	
7893 10	4+	4	0.12	
7967 10	3 –	3	0.095	
8022 10	2+	2	0.10	
8089 10	3 –	3	0.091	
8121 10	1+	0		
8181 10	1+	0		
8213 10	1+	0		
8281 10	3 –	3	0.15	
8337 10	4+,5-	4, 5		

$^{52}Cr(p,p') \qquad 1985Fu10, 1967Ka11, 1969Pe02 \ (continued)$

 $^{52}\mathrm{Cr}$ Levels (continued)

E(level)	_Jπ [‡]	L	$\underline{ \beta_L R \ (fm) }$	Comments
8374 10	3 –	3	(0.06)	
8412 10	1+	0		
8457 10	3 –	3	0.13	
8505 10	3 –	3	0.10	
8569 10	1+	0		
8617 10		2, 3, 4		
8679 10	3 –	3	0.10	
8728 10	3 –	3	0.10	
8778 10	3 –	3	0.13	
8827 10				
9020a 20	1 + a	0		
9143 10	1+	0		
9221 10	1+	0		
9245 10	1+	0		
9320a 20	1 + a	0		
9440 10	3 –	3	0.095	J π : 1983Dj05 reported J π =1+.
9620 ^a 20	1 + a	0		
9740a 20	1 + a	0		
9870 ^a 20	1 + a	0		
10000a 20	1 + a	0		
10380 ^a 20	1 + a	0		
10480a 20	1+a	0		
10580 ^a 20	1 + a	0		
10790 ^a 20	1 + a	0		
10970 ^a 20	1 + a	0		
11120ª 20	1 + a	0		
11410a 20	1+a	0		
12560ª 20	1 + a	0		
12900a 20	1+a	0		

- † $J\pi$ assigned by 1985Fu10 but no angular distribution or discussion is given by the authors.
- $^{\frac{1}{2}}$ Based on $\sigma(\theta)$ and DWBA analysis (1985Fu10).
- $\$ From weighted average of values from 1966Ma42 and 1967Ka11.
- # From weighted average of values from 1966Ma42, 1967Ka11, 1968Ra17.
- @ From 1967Ka11.
- & From 1966Ma42.
- a From 1983Dj05.
- b From 1969Pe02.
- c From 1969Pe02. Uncertainties given for βR do not include 10% uncertainty due to normalization.

$^{52}Cr(p,p'\gamma) \\ 1968Mo19,1971As01,1965Ka12$

1971As01: E=7 MeV, measured Doppler-shift attenuation, $Ge(\mathrm{Li}).$

1968Mo19: E=6.54 MeV, measured p' γ coin, p' γ (0), an annular silicon surface-barrier detector at 180 to the beam direction and 30 cm³ Ge(Li) detector at 90 .

1965Ka12: E=2.5-7.5 MeV, measured $p'\gamma\gamma(\theta)$, two 12.7 cm diam, 15.2 cm thick NaI crystals.

For studies devoted to reaction mechanisms see 1978Be37.

All data are from 1968Mo19, except as noted.

⁵²Cr Levels

E(level)	$J\pi^{\dagger}$	$\underline{\hspace{1cm} T_{1/2}^{\; \ddagger}}$
0.0	0+	
$1434.2\ 5$	2+	
2368.6 8	4+	
2647.0 8	0+	
2766.2 8	4+	
2965.8 8	2+	0.42 ps 8
3162.5 7	2+	33 fs 5

$^{52}Cr(p,p'\gamma) \\ \hspace{0.5cm} 1968Mo19, 1971As01, 1965Ka12 \ (continued) \\$

⁵²Cr Levels (continued)

E(level)	$J\pi^{\dagger}$	$\underline{\hspace{1cm}}^{\ddagger}$	Comments
3413.3 10	(4+)		
3469.6 10	3+		More recent work suggests that this is the same level as the 3472.
3472.7 8	3 +		
3771.0 6	2+	9 fs 4	

[†] From $p'\gamma(\theta)$ (1968Mo19), $p'\gamma\gamma(\theta)$ (1965Ka12).

 $\gamma(^{52}Cr)$

E(level)	Εγ	Ιγ‡	Mult.	δ†	Comments
1434.2	1434.1 6		E2		
2368.6	934.5 6		E2		
2647.0	1212.8 6		E2		
2766.2	1332.0 6		E2		
2965.8	1531.5 6		M1+E2	-6.25 15	
3162.5	1728.4 6	88 1	M1+E2	-0.18 7	
	3162.8 6	12 1	E2		
3413.3	647.1 6		M1+E2	+0.12	δ: From 1968Mo19.
3469.6	703.4 6		M1+E2	-0.14 6	More recent work suggests that the energy of the 703γ is incorrect and should be 704.6 .
3472.7	2038.4 6				
3771.0	2336.9 6	84 4	M1+E2	-0.208	δ: Other: -0.07 +0.38-0.46 (1968Mo19).
	3771.0 6	16 4			

 $^{^{\}dagger}$ From p' $\gamma\gamma(\theta)$ (1965Ka12), except as noted.

⁵²Cr(d,d') 1968Ha31

E=7.5 MeV, measured $\sigma(E(d),\theta)$, a multi-angle spectrograph in the angular interval from 22.5 to 157.5 with an energy resolution of 8 keV.

Elastic scattering of deuterons and polarized deuterons, see 1977ChYO, 1973BaWF, 1977GoZX, 1979GoO6, 1982MaZL.

⁵²Cr Levels

E(level)	<u>L</u>	$_{\rm B_L}$		
1427 4	2	0.2		
23726				
2766 6				
2965 6				

52 Cr(3 He, 3 He') 1971Mo39,1969Ar10

1969Ar10: E=35.7 MeV, measured $\sigma(E(^3He),\theta).$

1971Mo39: E=29 MeV, measured $\sigma(E(^3He,\theta))$, a 90 cm scattering chamber and 10 surface barrier counter telescopes, =70 keV FWHM. DWBA analysis.

⁵²Cr Levels

[‡] From DSAM, 1971As01.

[‡] Percent photon branching from each level.

$^{52}Cr(\alpha,\alpha')$ 1970Br07,1966Me07,1978Ro12

1970Br07: E=44 MeV, measured $\sigma(E\alpha',\theta)$, rectangular solid-state detectors were used. They were lithium-drifted E-detectors with or without surface-barrier ΔE multi-detectors, between 80 and 400 keV FWHM, DWBA analysis.

1966Me07: E=50 MeV, measured $\sigma(\theta)$, α -particle detected in a unit consisting of four Si(Li) counters fixed at 2 intervals.

1978Ro12: E=15, 18, 19 MeV, measured $\sigma(\theta)$, two solid-state detector telescopes mounted in a 38 cm vertical scattering chamber DWBA analysis.

1990Ba23: E=25 MeV, FWHM: 150-250 keV, measured $\sigma(\theta)$, silicon surface-barriers detectors placed at five equi-spaced positions on each of the two moveable arms of scattering chamber.

1966Pe16: E=42 MeV, FWHM: 105 keV or 60 keV, measured $\sigma(\theta)$. Also quoted in 1996Oa01.

 $Others:\ 1965 Ta06,\ 1980 PiZS,\ 1983 Co02,\ 1983 Pe10.$

All data are from 1970Br07, except as noted.

⁵²Cr Levels

E(level)	L§	$\beta_L R \ (fm)^{\#}$	Comments
0.0			
1434†	2	0.62	$\beta_0 R = 0.731 \ (1978 Ro 12).$
2370 †	4	0.17	. 2
2650 †			
2770	4	0.15	E(level): from 1990Ba23.
2960‡			
3160‡	(2,6)	0.16	1966 Me07 and $1996 Oa01$ report L=2 for E=3160.
3450 †	4		
3780 †	2	0.33	
4010†	4		
4560	3	0.38	
4730 †	4		
5070†	4		
5450	4	0.17	
5640 †			
5910			
6160†	3		
6540 †	3	0.12	From 1966Me07.
6760†			From 1966Pe16.
7100†	3		From DWBA analysis.
7900	(3)	1	From DWBA analysis of 1970Br07.

⁵²Cr(⁷Li, ⁷Li') 1973FoXW

 $E\!=\!22.1~MeV,~resolution\!\approx\!30~keV~FWHM.$

 $^{52}\mathrm{Cr}$ Levels

E(level)
0.0
1434
2370
2768
3114^{\dagger}
3162 †

[†] Not resolved.

$^{52}\mathrm{Cr}(^{12}\mathrm{C},^{12}\mathrm{C'}), (^{13}\mathrm{C},^{13}\mathrm{C'}) \qquad 1979\mathrm{Fu}01, 1979\mathrm{Po}16, 1976\mathrm{Le}12$

1979Fu01: $(^{13}C, ^{13}C')$, E=105 MeV, measured $\sigma(\theta)$, a triple detector telescope comprising two ΔE detectors of thickness 28.7 m and 27.8 m, and a stopping detector (E) of thickness 900 m, an anticoincidence detector mounted behind the E-detector, DWBA analysis.

1979Po16 and 1976Le12: $(^{12}C,^{12}C'), (^{13}C,^{13}C')$, E=16-32 MeV, 18-35 MeV, respectively, measured $\sigma(\theta)$, a double focusing magnetic spectrometer with a silicon position at the focal plane, DWBA analysis.

All data are from 1979Fu01, except as noted.

⁵²Cr Levels

E(level) Comments

0.0

1430 β₂=0.18 4 (1979Fu01) with B(E2) taken as 0.063 (insensitive to actual value within 20%). β₂=0.25 (ion-ion nuclear potential) (1979Po16) with B(E2)=0.061 5.

⁵²Cr(¹⁶O, ¹⁶O'), (¹⁸O, ¹⁸O') 1979Po08

1979Es04: $(^{16}O,^{16}O')$, E=56 MeV, $\sigma(\theta)$, 80 cm diam scattering chamber maintained at a vacuum of better than 10×10^{-6} Torr and essentially free of organic contaminants, nine couled Si surface-barrier detectors. 1979Po08: $(^{16}O,^{16}O'),(^{18}O,^{18}O')$, E=30-42 MeV, $\sigma(E)$, a double focusing magnetic spectrometer with a silicon position sensitive detector at the focal plane, DWBA analysis.

 $^{52}\mathrm{Cr}$ Levels

<u>E(level)</u> Comments

0.0 1434

 β_2 =0.17 for ¹⁶O bombardment, β_2 =0.12 for ¹⁸O bombardment (1979Po08).

Coulomb Excitation

1961Mc18: E(A)=6 MeV.

1978Ro12: E(A)=15, 18 MeV.

1979Po16: $E(^{12}C)=16-32$ MeV, $E(^{13}C)=16-32$ MeV.

 $1976 \\ \text{Le12: } E(^{12}\text{C}) \\ = \\ 18 - 35 \text{ MeV, } E(^{13}\text{C}) \\ = \\ 18 - 35 \text{ MeV.}$

1960Ad01: E(16O)=30.6 MeV.

1979 Po
08: E($^{16}{\rm O})$ =30–42 MeV, E($^{18}{\rm O})$ =30–42 MeV. 1987 St
07: E($^{16}{\rm O})$ =36 MeV, E($^{81}{\rm Br}$)=220,230,240 MeV.

1972WaYZ: E(16O)=21-30 MeV, E(35Cl)=60-79 MeV, also DSAM.

1975To06: E(32S)=60 MeV, reorientation effect.

⁵²Cr Levels

⁵³Cr(p,d) 1967Wh02

Target $J\pi=3/2-$.

Other references: 1971Ma58, 1966Fr05, 1962Ma20.

 $1967Wh02 \colon\thinspace E = 17.5\ MeV,\ dE/dx - E\ solid\ state\ detector\ telescope,\ 50 - 75\ keV\ FWHM,\ \sigma(\theta).$

1971Ma58: E=20 MeV, polarized beam, measured $\sigma(\theta)$, sixteen $\Delta E-E$ telescopes, ΔE detectors: silicon surface-barrier junction of 150 to 250 m thickness, E-detectors: lithium-drifted silicon junction of 3.5 to 4 mm thickness, overall energy resolution: 80 keV for protons, 80-150 keV for deuterons, DWBA analysis.

$^{52}\mathrm{Cr}$ Levels

$\underline{\hspace{1.5cm}E(level)^{\dagger}}$	L [‡]	$C^{2}S^{\ddagger \S}$	Comments
0.0	1	0.51	C^2S : other: 0.56 (1971Ma58).
1434	1	0.18	An upper limit of $S<\approx0.27$ is assigned for L=3 contribution.
2370	3	0.07	
2648	1	0.018	
2769	3	0.10	
2965			C^2S : <0.008 for p3/2, <0.08 for f7/2.
3115			
3161			C^2S : <0.015 for p3/2, <0.1 for f7/2.
3432#	@	@	
3494#	@	@	
3614	(3)	< 0 . 04	
3767	3	0.36	
3926			Very weak.
4030	3	1.14	

- † From 1966Fr05 and 1962Ma20.
- $\dot{\ddot{z}}$ From 1967Wh02, based DWBA analysis.
- $\mbox{\S}$ Authors assume that L=1 corresponds to 2p3/2 and L=3 corresponds to 1f7/2.
- # Unresolved doublet.
- @ L=3, $C^2S=2.3$ for the 3432-3494 doublet.

⁵³Cr(d,t),(pol d,t) 1967Fi06,1981Bi04

Target $J\pi=3/2-$.

 $1967Fi06:\ ^{53}Cr(d,t),\ E=11.8\ MeV,\ dE/dx-E\ counter\ telescopes,\ DWBA\ analysis.$

1981Bi04: $^{53}\text{Cr}(\text{pol d,t})$, E=11.0 MeV, measured vector analyzing power and $\sigma(E(t),\theta)$ with four solid-state counter telescopes, $\approx \! 100$ keV FWHM.

$^{52}\mathrm{Cr}$ Levels

E(level) [†]	L§	C^2S^{\ddagger}	Comments
0.0	1	0.39	
1430	1 + 3		L=1 S=0.15, L=3 S≈0.13.
2370	3	0.1	
2640	1	0.01	
2770	3	0.12	
3460			Doublet. 1981Bi04 report L=3, $C^2S=1.45$.
3800	3	0.31	
4090	3	0.79	

- † From 1967Fi06.
- ÷ See 1967Fi06 for details.
- § From DWBA analysis, 1967Fi06.

⁵³Cr(³He,α) 1978Fo34,1969Da02

Target Jπ=3/2-.

1978Fo34: E=25 MeV FWHM=20-25 keV, measured $\sigma(\text{E}\alpha,\theta)$, silicon position-sensitive detectors, 700 m or 1000 m thick, placed in the focal plane of a split-pole spectrometer, DWBA, coupled reaction channel analyses.

1969Da02: E=18 MeV, FWHM≈60 keV, σ(Eα,θ), Photographic emulsion planes placed in focal plane of a Browne-Buechner broad-range magnetic spectrograph at reaction angle from 5 to 35, DWBA analysis.

All data are from 1969Da02, except as noted.

Other: 1985Po17.

⁵²Cr Levels

E(level)	L	$\mathbb{C}^2 S$	Comments
0.0	1		
1430 20	1+3	0.12 + 0.09	
2380 20	(3)	0.11	
2780 20	(3)	0.085	
3418 7 20	3 †	1.39†	
3474 7 20	3 †	1.08†	
3774 7 20	3 †	0.31 †	
4017 7 20	3 †	1.03†	
4605 † 20	3 †	0.19 [†]	
4830 20	(3)	0.12	
5400 20	(1)	0.09	
5560 20	(1)	0.25	
5670 20	(1+3)	0.075+0.054	
5710 † 20	3 †	0.70†	
6180 † 20	3 †	0.48 †	
6490 20	0	0.41	
6700 20	2	0.38	
6790 20	(1+3)	0.10+0.09	
11290 20	(3)	1.8	Broad peak interpreted by 1969Da02 as analog of state in $^{52}\mathrm{V}.$
13580 20	0	0.57†	Broad peak interpreted by $1969Da02$ as analog of state in ^{52}V . $E(level)$: from weighted average of values from $1978Fo34$ and $1969Da02$.

[†] From 1978Fo34.

⁵⁴Cr(p,t) 1967Wh02

 $E{=}17.5~MeV,~dE/dx{-}E~solid{-}state~detector~telescope,~50{-}75{-}keV~FWHM,~measured~\sigma(\theta).$

⁵²Cr Levels

<u>E(level)</u>	$\frac{L^{\dagger}}{}$	Comments
0.0	0	
1434	2	
2370		Weakly excited.
2648	0	
2769		Weakly excited.
3168	2	

 $^{^{\}dot{\uparrow}}$ Values assigned by comparison of $\sigma(\theta)$ with those to states of known $J\pi.$

⁵⁵Mn(-,3nγ) 1971Ba10

Target Jπ=5/2-.

 $E{\approx}0,\ Ge(Li),\ measured\ E\gamma,\ I\gamma,\ two\ Ge(Li)\ detectors.$

⁵²Cr Levels

† From adopted levels.

 $\gamma(^{52}Cr)$

† Photons per 100 captures.

⁵⁵Mn(p,α) 1967Ka11

Target $J\pi=5/2-$.

 $1964 Ve 02 \colon\thinspace E=11-12.5\ \text{MeV},\ \text{measured}\ \sigma(E,\theta),\ \text{solid-state detectors with energy resolutions of $\approx \!50$ keV}.$

1967Ka11: E=12 MeV, measured A particles by a broad-range single-gap magnetic spectrograph, half-widths: 10-15 keV.

1967Br13: E=12 MeV, measured $\sigma(E,\theta)$ by a multi-gap spectrograph.

Others: 1957Ma25, 1960Og03, 1962Sh29, 1985Hs01.

⁵²Cr Levels

$\underline{\hspace{1.5cm}E(level)^{\dagger}}$	E(level)	$\underline{\hspace{1.5cm}E(level)^{\dagger}}$
0.0	4040 5	5422 8
1434 5	4563 5	5432 8
2371 5	4630 5	5450 6
2650 5	4706 5	5494 5
2767 5	4743 5	5538 5
2965 5	4808 5	5546 8
3114 5	4837 5	5571 5
3163 5	4950 5	5585 7
3416 5	5097 5	5664 5
3472 5	5141 5	5725 5
3619 5	5211 5	5798 5
3772 5	5281 5	5996 6
3947 5	5346 5	
4016 5	5410 5	

 $^{^{\}dot{\intercal}}$ From 1967Kall. The energies are an average of values from (p,p') and $(p,\alpha).$

⁵⁶Fe(d, ⁶Li) 1973Ma46

1973Ma46: E=28, 36 MeV, measured $\sigma(\theta)$, 20-135 m and 30-100 m $\Delta E-E$ detectors, overall energy resolution: 80-250 keV FWHM

1974Ce02: E=27.25 MeV, measured $\sigma(\theta)$, 20-135 m and 30-100 m $\Delta E-E$ detectors, overall energy resolution: 400 keV FWHM.

All data are from 1973Ma46, except as noted. A detailed microscopic analysis of transitions to g.s. and 1430-keV state is presented by 1974Ce02.

Other: 1972LeXX.

$^{52}\mathrm{Cr}$ Levels

E(level)	Jπ [†]	S‡	Comments
0.0	0+	0.088	
1430	2+	0.027	
2370	4+	0.040	
2650	0+	0.027	
3110?	6+	< 0 . 10	From the forward rise in $\sigma(\theta)$ typical of a J=2 state, the authors conclude that this peak probably
			contains the 3160 level; known to have J=2+. The evaluators note that 2964 level, also with J π =2+,
			could also be contributing to this peak.

- † Assumed in DWBA analysis.
- \ddagger Relative spectroscopic factor.
- § Not resolved.

$Ni(K^{-},X\gamma),(\pi^{+},X\gamma),(\pi^{-},X\gamma)$ 1972Ba55

 $Includes \colon \ Cu(K^-, X\gamma).$

 $1978 Ja 19: \ Ni(\pi^+, X\gamma), (\pi^-, X\gamma), \ E = 100, \ 120, \ 160 \ MeV, \ prompt \ and \ \beta^- \ delayed \ \gamma-spectra.$

1972Ba55: $Ni(K^-, X\gamma)$, $Cu(K^-, X\gamma)$, separated 800 MeV/C K- beam was stopped in targets of Ni and Cu, measured $E\gamma$ and $I\gamma$ with Ge(Li).

All data are from 1972Ba55.

 $^{52}\mathrm{Cr}$ Levels

E(level)

0.0

 $1\,4\,3\,3\,\,.\,\,6\quad 1\,0$

 $\gamma(^{52}Cr)$

 \dagger Photon intensity relative to I=100 for N=6 to N=5 x-ray transition (where n is principal quantum number) for Ni target. Iy=20 10 for Cu target.

(HI,xnγ)

Includes: (HI,xp\gamma), ($\alpha,xn\gamma),$ ($\alpha,2p\gamma).$

 $1984 Ko 31 \colon \ ^7\text{Li}(^{51}V,\alpha 2n\gamma) \ E \text{=} 180 \ MeV, \ E\gamma, \ \alpha\gamma\text{-coin}.$

 $2000Er01:\ ^{12}C(^{48}Ti,3\alpha\gamma)\ E=110-120\ MeV,\ measured\ \gamma-ray\ in\ coincidence\ with\ carbon\ ions\ using\ 12.7\ cm\ ^*12.7\ cm\ ^*12$

as well as 9 cm *9 cm BAF2.

 $1978 Me19 \colon \ ^{27}Al(^{28}Si, 3p\gamma) \ E = 65 - 81 \ MeV, \ \sigma(E\gamma, E).$

 $1979 Me 03 \colon \ ^{28}{\rm Si}(^{28}{\rm Si}, 4p\gamma) \ \ E = 65 - 90 \ \ MeV, \ \ \sigma(E\gamma, \theta).$

 $2000 ApZX;~^{48}Ca(^{9}Be,5n\gamma)~E=50~MeV,~E\gamma,~I\gamma,\gamma\gamma,~and~\gamma\gamma(\theta)(DCO)~using~8\pi~spectrometer.$

1974Br04: 49 Ti(α ,n γ) E=14.5 MeV, RDM.

1979St13: $^{50}\text{Ti}(\alpha,2n\gamma)$ E=24-33 MeV, $\gamma(\theta)$, $p(E\gamma)$, $\gamma\gamma$ -coin.

1977Be22: $^{50}\text{Ti}(\alpha,2n\gamma)$ E=18-25 MeV, $\gamma(\theta)$, $\gamma\gamma$ -coin, DSAM.

 $1977 Ev03 \colon {}^{50}Cr(\alpha, 2p\gamma) \ E = 23.5, \ 27.2 \ MeV, \ \gamma\gamma - coin. \ two \ 60 \ cm^3 \ Ge(Li) \ counters.$

(HI,xnγ) (continued)

 $1987Ba72:~^{51}V(\alpha,p2n\gamma)~E=30-45~MeV,~RDM,~DSAM,~\gamma(\theta),~\gamma\gamma-coin.~Ge(Li)~detector:~2.7~keV~at~1333.6~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~at~1333.6~keV~at~1333.6~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~at~1333.6~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~at~1333.6~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~at~1333.6~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~at~1333.6~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~at~1333.6~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~(FWHM),~HPGE(Li)~detector:~2.7~keV~(FWHM),~2$

detector: 2.4 keV at 1333.6 keV (FWHM). 1974Po15: 51 V(7 Li, α 2n γ), (6 Li, α n γ) E=25 MeV, RDM, DSA, γ (9). 1985Io02: 51 V(7 Li, α 2n γ), (6 Li, α n γ) E=28 MeV, $\alpha\gamma$ -coin, studied reaction mechanism.

Others: 1978BeZC, 1978Ha17, 1978TaZO.

$^{52}\mathrm{Cr}$ Levels

E(level)	$J\pi^{\dagger}$	[‡]	Comments
0.0@	0+		
1434.22@ 10	2+	0.793 ps 2	g=1.206 64 (2000Er01).
		•	T _{1/2} : From 2000Er01, DSAM. Other: 2.3 ps +6-5 (1977Be22).
2369.73 [@] 14	4+	9.4 ps +24-16	$T_{1/2}^{1/2}$: from RDM, 1974Br04. Inconsistent with $T_{1/2}$ =2.7 ps +8-7 (DSAM) from 1977Be22. 1974Br04 explicitly take feeding into account, 1977Be22 make no correction. Other: 6.7 ps +35-17 (2000Er01).
2767.95 20	4+	2.5 ps 6	$T_{1/2}$: other: 1.4 ps - 8.7 ps, lower limit from DSAM, upper limit from RDM, see 1974Po15.
3113.94 [@] 17	6+	41.4 ps § 14	$T_{1/2}$: others: 45 ps 6 (1987Ba72) RDM, 2.5 ps 6 (1977Be22) DSAM. The DSAM result appears to be incorrect.
3415.4 3	4+	0.33 ps 9	T _{1/2} : from 1974Po15. Others: 0.10 ps +8-6 (1987Ba72), 0.44 ps 10 (1977Be22). Value of 1977Be22 not corrected for cascade feedings.
3471.8 8	3,5	7.2 ps 8	$T_{1/2}$: from 1974Br04 (RDM). Other: 1.9 ps +7-5 (1977Be22). Value of 1977Be22 not corrected for cascade feedings.
3615.9 3	5+		T _{1/9} : <3.8 ps (1974Br04) RDM, >1.4 ps (1974Po15) DSAM.
4015.6 4	5+	0.7 ps 5	$T_{1/2}$: other: <1.2 ps (1987Ba72).
4038.6 13	4+		112
4583.8 10	(6+)		
4750.4@3	(8+)	0.64 ps $+20-17$	T _{1/2} : other: 0.7 to 4.2 ps, lower limit from DSAM, upper limit from RDM, see 1974Po15. 0.30 ps +17-12 (1987Ba72).
4805.7& 4	(6+)	0.49 ps# +28-14	$T_{1/2}$: 0.5 ps +12-3 (1977Be22).
5396.7 ^{&} 4	(7+)	0.14 ps +12-9	1/2
5632.6 12	(8+)	•	
5824.7 ^{&} 5	(8+)	1.0 ps $+6-4$	$T_{1/9}$: 0.29 ps +17-10 (1987Ba72).
6365.4 11	≥8		1/2
6452.4&	9+	0.14 ps# +9-8	$T_{1/2}$: 0.29 ps +12-10 (1977Be22).
7237.9 % 7	10(+)	0.16 ps +15-8	T _{1/2} : from 1987Ba72. Jπ: from 2000ApZX.
8216.5 9	(11)	0.24 ps +17-9	T _{1/2} , Jπ: from 1987Ba72.
9439.8	12(+)	-	II B.
10161.3 4 12	13(+)		

 $^{^{\}dagger}$ From $\gamma(\theta)$ analysis of 1977Be22.

 $\gamma(^{52}Cr)$

E(level)	$\underline{\hspace{1cm}}^{}$	Iγ ^a	Mult.c	$\underline{\hspace{1cm}\delta^c}$	Comments	
1434.22	1434.2 † 1	100.0 51	E2		DCO=0.96 4 (2000ApZX).	
2369.73	935.5 ‡ 1	57.3 20	E2		DCO=1.13 5 (2000ApZX).	
2767.95	397.7# 5	0.41 ^b 3			DCO=1.30 25 (2000ApZX).	
	1333.7 ‡ 2	23.4 10	E2		DCO=0.87 9 (2000ApZX).	
3113.94	744.2 † 1	39.6 12	E2		DCO=1.08 4 (2000ApZX).	
3415 . 4	647.4 7 2	8.4 # 5	M1+E2	-0.22# 8	DCO=1.27 15 (2000ApZX).	
3471.8	$703.9^{@}$	$2.61^{@}42$				
	2037.4@	$1.07^{@}26$				
3615.9	501.5	0.35 & 11				
	847.5# 5	4.8# 3				
	1246.4 \$ 3	4.4b 13				
4015.6	400.4 # 6	2.5 3			Iy: based on Iy(398y) and Iy for the sum.	
	600.5 % 6	11.1& 4	$^{\mathrm{Dd}}$		DCO=0.58 11 (2000ApZX).	

 $[\]dot{\mbox{\tiny $\frac{1}{4}$}}$ From DSAM measurements of 1977Be22, except as noted.

 $[\]$ Weighted average of values from 1974Br04 and 1974Po15.

[#] From 1987Ba72, DSAM.

^{@ (}A): γ cascade based on g.s.

[&]amp; (B): γ cascade based on 5+.

(HI,xnγ) (continued)

$\gamma(^{52}Cr)$ (continued)

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	Iγ ^a	Mult.c	$_{}$ δ^{c}	Comments
4015.6	902.4 ^{&e} 9	1.13& 13			
	1247.5 6	9.5& 4	$\mathbf{D}\mathbf{q}$		DCO=0.57 10 (2000ApZX).
4038.6	566.8	1.61 21			
4583.8	1470.1 7	2.2 & 3			
4750.4	1636.4^{\ddagger} 2	12.23 53	E 2		DCO=1.02 7 (2000ApZX).
4805.7	790.0 3	11.17 90	M1+E2	-0.16 [#] 5	DCO=1.02 17 (dipole gated) (2000ApZX).
	1189.7@	$2.24^{@}57$			
	1693.0# 6	2.53 36			
5396.7	590.9 3	12.5#8	M1+E2	-0.276	δ: from 1977Be22.
					DCO=0.77 8 (2000ApZX).
	1381.5# 5	1.9# 2			
5632.6	1049.4 8	1.98			
5824.7	427.9 3	11.24	M1+E2	-0.034	DCO=0.63 6 (2000ApZX).
	1018.4	0.95& 16			
6365.4	725.5&e 12	0.23& 11			
	1615.0# 10	2.0# 10			
6452 . 4	628.9 # 5	2.7# 14	M1+E2	+0.22 +15-8	DCO=0.78 7 (dipole gated) (2000ApZX).
	784.7& 6	31.2 2 10	$\mathbf{D}\mathbf{q}$		DCO=0.55 6 (2000ApZX).
	1056.0 4 10	2.03& 19			
	1702.95	7.74	M1+E2	-0.04 + 7 - 3	DCO=0.61 6 (2000ApZX).
7237 . 9	784.5 [#] 5	4.2 # 5	M1+E2	-0.06 + 3 - 5	Iγ: from γγ-coin spectra.
	883.7&e 10	1.17& 16			
	1413.6 ^{&e} 10	0.34 & 16			
	1606.0 ^{&e} 20	0.63& 16			
8216 . 5	978.5 # 5	2.1#2	M1+E2	+0.10 +5-8	DCO=0.54 6 (2000ApZX).
	1763.3 4 10	2.16 23			
9439.8	1222.4 8	6.6 % 3			
	2200.0 & 10	1.11& 11			
10161.3	721.3 4 10	0.83& 11			
	1943.6 % 7	17.6 3	$Q^{\mathbf{d}}$		DCO=1.10 27 (2000ApZX).

 $^{^{\}dagger}$ From weighted average of values from 1979St13 and 1977Ev03, except as noted.

 $^{^{\}ddagger}$ From weighted average of values from 1979St13, 1977Ev03, and 1974Po15.

[§] From weighted average of values from 1979St13 and 1974Po15.

[#] From 1979St13.

[@] From 1977Be22.

[&]amp; From 2000ApZX.

a Relative photon intensity, θ =125 , see 1977Be22.

 $[^]b$ Calculated by evaluator from the branching (\epsilon decay) and measured doublet Iy (1977Be22).

c The χ^2 analysis of $\gamma(\theta)$, see 1987Ba72, except as noted.

d From DCO ratios. Mult=Q for ΔJ =2 and mult=D for ΔJ =1 or 0, See 2000ApZX.

e Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $Q(\beta^-) = -2374 \ 6; \ S(n) = 10535.4 \ 20; \ S(p) = 6545.6 \ 21; \ Q(\alpha) = -8655 \ 3 \quad 2003 Au 03.$

Other reactions:

 $^{51}V(^{3}\mathrm{He,}2n)\mathrm{:}\ \ 1984\mathrm{Ha}10.$

 $^{51}V(^{12}\mathrm{C},4p7n)\colon\, 1984\mathrm{Ha}10,\,\, 1984\mathrm{Pa}13.$

 $^{52}Cr(d,2n);\ E=6-27\ MeV\ 1987We05;\ E=8-20\ MeV\ calculated\ \sigma(E),\ 1987Mu08.$

 $^{54} Fe(\alpha, \alpha'pn\gamma)$: 1975DrZU. $^{55}Mn(\gamma,3n\gamma);\ 1974Di13.$ ⁵⁵Mn(p,3np): 1979MiZT.

 $\begin{aligned} &Fe(a,3pxn),\ Ni(5p,xn);\ 1983Mi18.\\ &^{59}Co(d,3p6n);\ E=9-85\ MeV,\ 1983Mi21. \end{aligned}$

⁵⁹Co(³He,4p6n): E=14-130 MeV, 1983Mi11; E=5-50 MeV, 1986Ja09.

 $^{59}{\rm Co(a,3n2a)}{\rm :}\ E{\rm =}10{\rm -}120\ MeV,\ 1987Ra08.$

Other reaction: $^{55}Mn(\gamma,3n)$.

 $^{52}\mathrm{Mn}$ Levels

 $K^{-52}Cr(^3He,t)$

 L^{54} Fe(p, 3 He)

 $M^{54}Fe(d,\alpha)$

 $N^{54}Fe(d,\alpha\gamma)$

Cross Reference (XREF) Flags

A $^{52}\mathrm{Mn}$ IT Decay (21.1 min) $F^{-50}Cr(\alpha,pn\gamma),^{51}V(\alpha,3n\gamma)$ B ⁵²Fe ε Decay (8.275 h) $G^{-50}Cr(\alpha,d)$ C 52 Fe ϵ Decay (45.9 s) $H^{-51}V(^3He,2n\gamma)$ $I^{52}Cr(p,n)$ D (HI,xnγ) $J^{-52}Cr(p,n\gamma)$ $\mathrm{E}^{-50}\mathrm{Cr}(^{3}\mathrm{He},p)$

E(level) [†]	Jπ	XREF	$T_{1/2}^{e}$	Comments
0.0	6+	ABCD F HIJKLMN	5.591 d 3	 %ε+%β⁺=100. =+3.063 1; Q=+0.50 7 (1989Ra17). : Weighted average of values 3.0622 12 (atomic beam) and 3.0632 13 (N/RD) given in 1989Ra17 with an uncertainty arising from that in the ⁵⁵Mn calibration value. T_{1/2}: from 1977Ya08. Jπ: paramagnetic resonance (1976Fu06), allowed ε decay
377.749 5	2+	AB EF IJKLM	21.1 min 2	to 6+. =+0.00768 8 (1989Ra17). %ε+%β+=98.25 5; %IT=1.75 5. T _{1/2} : from 1959Ju40. Others: 21.3 min (1940He01), 20.1 min 8 (1956Ru45); 22.1 min 3 (1965Ka12). T _{1/2} : stripped atom T _{1/2} (⁵² Mn ²⁵⁺)=22.7 min 30 (1995Ir01). Jπ: atomic beams (1976Fu06) and E4 γ to 6+.
546.438 6	1+	B DE G IJKLM	1.85 ns 7	J π : log $ft=4.7$ from 0+. T _{1/2} : from 1961Na06. Other: 12 ns 2 (1959Ju40).
731.66 25	4+	D F JKLMN	3.6 ps 14	$J\pi$: $\gamma(\theta)$ in $(p,n\gamma)$, and $L(p,^3He)=4$.
825.2 4	3+	DEF JKLMN	0.17 ps +4-3	XREF: $E(828)L(820)$. J π : $L(d,\alpha)=2+(4)$ and $L(p,^3He)=2+4$.
869.89 18	7+	CDEFG JKLMN	0.12 ps +6-8	XREF: E(850)L(867). $T_{1/2}$: others: <0.38 ps (HI,xn γ), 0.05 ps +6-3 ($^{51}V(\alpha,3n\gamma)$). $J\pi$: $\gamma(\theta)$ in (HI,xn γ) and $L(p,^3He)=6$.
884.2 3	3,4	e JK N	1.4 ps	$J\pi$: $\gamma(\theta)$ in $(p,n\gamma)$. $D+Q$ γ to $4+$.
886.9 3	2	e J N	0.06 ps +3-4	$J\pi$: $\gamma(\theta)$ in $(p,n\gamma)$. $D+Q$ γ to $q+1$. $J\pi$: $\gamma(\theta)$ in $(p,n\gamma)$.
1232.3 3	2	J N	0.14 ps +19-8	σπ. ₁ (0) in (p,n ₁).
1253.7 4	5+	e g JKLMN	0.018 ps 55	$J\pi$: L(d, α)=4+6.
1279.0 4	5 + a	DeFg J N	0.25 ps +17-8	on: <u>D(a,w)=110</u> .
1417.688? 18		В		
1646.9 5		J MN	0.37 ps +24-17	
1683.8 4	5 + a	EFG JKLMN	0.25 ps +17-8	J π : agrees with 3+,4+,5+ assignment from (d, α) and L=4 in (p, 3 He) and (α ,d), but disagrees with 1+,2+ 3+ assignment from L=2 in (3 He,p) for level at 1680 keV 30. Perhaps level seen in (3 He,p) is 1647 keV.
1956.0 20	(6+)	JKLM		$J\pi$: $L(p,^3He)=6$. Consistent with $5+,6+,7+$ from (d,α) .
2044.2 7	3+,4+,5+	JKLM		$J\pi$: $L(p,^3He)=4$.
2130.0 20	3+,4+,5+	E G JKLM		$J\pi$: $L(\alpha,d)=4$ and $L(p,^3He)=4$.
2252.6 5	3+, 4+, 5+	JKLM		$J\pi$: $L(p,^3He)=4$.

$^{52}\mathrm{Mn}$ Levels (continued)

E(level) [†]	<u></u> Jπ	XRE	F	T _{1/2} e	Comments
2285.94 22	8 + a b	CD F	M	<0.069 ps ^f	$T_{1/2}$: From $(\alpha, 3n\gamma)$ (1987Ba72). Other: <0.69 ps in (HI,xn γ) (1976Av06).
2337.2 5	(3+)	E G	JKLMN	0.05 ps + 2 - 4	XREF: E(2345)G(2350). $ J\pi: \; (1+,2+,3+) \; \; from \; \; L(p,^3He) = (2) \; \; and \; \; 3+,4+,5+ \; \; from \; \;$
2473.6 6	0+,1+	E	J LMN	0.32 ps +16-4	$L(\alpha,d)=4$. XREF: $E(2471)L(2476)$.
2631.2 5	1+	E G	JKLM		$\begin{array}{lll} J\pi \colon \ L(^3He,p){=}0. \\ XREF \colon \ E(2634)G(2640)K(2629)L(2629)M(2629). \\ J\pi \colon \ L{=}0{+}2 \ \ in \ \ (d,\alpha), \ \ (p,^3He) \ \ and \ \ (^3He,p). \end{array}$
2645 5			K		on. 2-012 in (a,w), (p, 110) and (110,p).
2677 10		E	K		XREF: K(2667).
2710.2 6	7 + d	DE	LM		XREF: E(2714).
2771 3		-	K		WDDD - D/0=00)
2785 [@] 4	(4+)	E	KL		XREF: E(2788).
2796 [@] 3	+	E G	КМ		$J\pi$: $L(p,^3He)=(4)$. XREF: $E(2803)G(2800)$.
2190- 5	+	E G	IX IVI		J π : L(d, α)=2, L(α ,d)=(0).
2815 4			K		$\delta \pi$. $\mathbf{L}(\mathbf{u},\mathbf{u})=2$, $\mathbf{L}(\mathbf{u},\mathbf{u})=(0)$.
2848 3		g	KLM		XREF: L(2850).
2858 5		e g	K M		XREF: g(2860).
2872 [@] 4		E g	K		
2903 5	1+	E G	K M		XREF: G(2900).
					$J\pi: L(\alpha,d)=2, L(^{3}He,p)=0.$
2907.6 3	9 + b	CD F		0.08 psg 6	$T_{1/2} \colon$ other: <0.4 ps in (HI,xn\gamma) (1976Av06).
2926.0 5	0+	Е	I JKL		XREF: E(2929)I(2912)L(2923). T=2.
					J π : IAS (52 Cr g.s.). Identified in (p,n), (3 He,t), (p, 3 He), (3 He,p). L(3 He,p)=0.
2955 5		_	K M		
2973 4	(5+,6+,7+)	E g	KLM		XREF: L(2968). $J\pi$: from L(3 He,p)=6, but L=(1) reported for level at 2968 keV in (p, 3 He). Perhaps two distinct states are involved.
2982 3		g	к м		XREF: g(2990).
3022	3+,4+,5+		L		$J\pi: L(p, {}^{3}He)=4.$
3077 4			K		
3097	3+ , $4+$, $5+$		L		$J\pi$: $L(p, ^3He)=4$.
3106 4			K M		
3130 20		G			
3199 3	5+,6+,7+		KLM		XREF: L(3196).
2012 10	0+,1+	T.			$J\pi: L(p,^{3}He)=6.$ $J\pi: L(^{3}He,p)=0.$
3213 <i>10</i> 3226 <i>4</i>	3+,4+,5+	E	KLM		XREF: L(3228).
0220 1	01,41,01		111111		$J\pi$: L(p, 3 He)=4.
3245 \$ 10	(1+)	E G			XREF: G(3260).
					$J\pi$: $L(^3He,p)=(0+2)$.
3297 5	(1+,2+,3+)	E	K M		$J\pi: L(^{3}He,p)=(2).$
3333 3	(2-,3-,4-)	E	KLM		XREF: E(3337)L(3330).
					$J\pi: L(p, {}^{3}He)=(3).$
3351 5	4-		K		
3386 3	(3+)		KLM		XREF: L(3380).
9499 9		173	171 34		J π : L=(2+4) in (d, α) and (p, 3 He).
3423 3		Е	KLM		XREF: E(3418)L(3420). J π : L(d, α)=3, L(p, 3 He)=4, L(3 He,p)=2 for contradictory
3476‡ 9	(3+,4+,5+)	E G	K		assignments. Could be more than one level. XREF: E(3480)G(3460)K(3490). E(level): weighted average of (3 He,p) and (α ,d).
3506 3	(3+,4+,5+)		KLM		J π : L(α ,d)=(4). XREF: L(3500). J π : L(p , 3 He)=4.
3573 5	1+	E	KLM		XREF: E(3575)L(3567). Jπ: L(p,³He)=0+2.
3602.2 6	8 + d	D G			οπ. Δ(p, 110/-012.

⁵²Mn Levels (continued)

	Jπ	XREF		T _{1/2} e	Comments
620 6			M		
640 6			KLM		XREF: L(3635).
655 6			KLM		XREF: L(3660).
706 <i>6</i>	(2-,3-,4-)		LM		XREF: L(3711).
					$J\pi: L(p, {}^{3}He)=(3).$
738 4	3+,4+,5+		LM		XREF: L(3742).
					$J\pi$: $L(d,\alpha)=4$.
776 \$ 10	1+,2+,3+	E	K		XREF: K(3773).
	1.,2.,0.	-			$J\pi$: L(3 He,p)=2.
797.6 11	(9+)	D			
837.2 4	11+d	CD F		15.1 ps 10	T _{1/2} : RDM, weighted average of values 15.0 ps 14 in
				•	$^{51}V(\alpha,3n\gamma)$ (1987Ba72) and 15.2 ps 14 in (HI,xn γ) (1976Av06).
884@ 6		E g	K		
891.4 5	8+	D			
898 4	0.		M		XREF: g(3900).
		g			AREF. g(3500).
936 4		-	M		1 1/311) 0 0
974‡ 8	1+	E	M		$J\pi: L(^{3}He,p)=0+2.$
987 6			M		
040 20		G			E(level): may be same as 4061 level.
061 4			M		
129 8			M		$J\pi{:}\ L(d,\alpha){=}4.$ May be same as 4136. If so, one gets
					$J\pi=3+.$
136 10		E			J π : L(³ He,p)=2. May be same as 4129. If so, J π =3+.
					E(level): same as 4129 keV level?
163.6 4	10+d	DF		0.14 psg +24-11	, , , , , , , , , , , , , , , , , , ,
163.6 4 236‡ 6	10+		M	U.14 ps0 +24-11	In: I (d a)=6.5
		Е	M		$J\pi$: $L(d,\alpha)=6,5$.
281 [‡] 6	1+,2+,3+	E	M		$J\pi$: L(3 He,p)=2.
314 10		E G			XREF: G(4340).
376‡ 6	1+	E G	M		XREF: G(4340).
					$J\pi: L(^{3}He,p)=0+2.$
390 30	(2+)c		K		· ·
439 [‡] 10	3+	E	M		XREF: M(4450).
130 10	0.1	12	141		JT: $L(^{3}He,p)=2$. $L(d,\alpha)=4$.
461 10		P			он. ы пе,p/=2. ы(u,u)=4.
461 10		E	77. 3.5		1 1/311) 0 0 1/1) 0 2
500 [‡] 7		E	КМ		$J\pi$: $L(^3He,p)=0+2$, $L(d,\alpha)=3$ for contradictory J assignments. (2)+ in (3He,t) from $\sigma(\theta)$ compared with $\sigma(\theta)$ for states for known J .
540 10			M		
620 10	2-,3-,4-		M		$J\pi$: $L(d,\alpha)=3$.
		DE	IVI		$\sigma n. \ \mathbf{D}(\mathbf{u}, \mathbf{u}) = 0.$
679.5 5	9 _ d	DE			
697 [‡] 7		E	M		XREF: E(4704)M(4690).
837 10	0+,1+	E			$J\pi$: $L(^3He,p)=0$.
953 10	1+	E			$J\pi: L(^{3}He,p)=0+2.$
043 10		E			
069 \$ 10	(2+) ^c		K		
313 10	. /	E			
403 10		Е			
466 10		E			
491 10	0+,1+	E			T=(2).
					Possible IAS (52 Cr 2647 keV) in (3 He,p). J π : L(3 He,p)=0.
520 30	8-	G			From configuration= $(f_{7/2}, g_{9/2})8-$.
751 § 10	J	E G			110 50111641441011-(17/2,69/2)0
782 10		E			
809 10		E			
840 10		E			
857.5 6	11+	D			
	1+,2+,3+	E			$J\pi: L(^{3}He,p)=2.$
874 10	11-	D			
					From configuration= $(g_{9/2}, p_{3/2})6-$.
874 10 061.0 8	6_	(1)			C 1 O DE CONTENTA LA DESCRIPCIÓ DE LA CONTENTA DEL CONTENTA DEL CONTENTA DE LA CONTENTA DEL CONTENTA DEL CONTENTA DE LA CONTENTA DE LA CONTENTA DE LA CONTENTA DEL CONTENTA DE LA CONTENTA DE LA CONTENTA DE LA CONTENTA DE LA CONTENTA DEL CONTENTA DE LA CONTENTA D
061.0 8 260 30	6 –	G			
061.0 8	6 – 6 – 1 2 + ^d	G G D G			From configuration=(g _{9/2} ,p _{3/2})6 XREF: G(7480).

$^{52}\mathrm{Mn}$ Levels (continued)

E(level) [†]	Jπ	XREF	E(level)	Jπ	XREF
7701.8 7	(12+)	D	9372.3 9	13-	D
8152.5 6	13+	D	9906.4 11	13+	D
8384.4 9	(13+)	D	10178.4 9		D
8582.3 8	(13-)	D	11204.3 13		D
8787.4 13		D	12066.5 15	(16+)	D
8894 4 9	14+	D			

- † Levels connected by gammas are from least squares fits, others from $(d,\alpha),$ except as noted.
- $\mbox{$\overset{1}{\overline{}}$}$ Weighted average values of $(^3He,p)$ and $(d,\alpha).$
- § From (3He,p).
- @ From (3He,t).
- a From (a,pn\gamma), based on evaporation-model analysis.
- $b \quad From \ (HI,xn\gamma), \ based \ on \ excitation \ function \ and \ \gamma(\theta) \ interpreted \ in \ context \ of \ evaporation \ model.$
- c From (3He,t), based on empirical comparison of angular distribution with those for transitions to states of known spin.
- d From $(HI,xn\gamma)$ (2003Ax01) based on angular distribution and Compton polarization measurements.
- e From $(d,\alpha\gamma)$ (1978DoZM) DSAM, except as noted.
- $f \quad From \ (HI,xn\gamma) \ (1976Av06) \ DSAM.$
- g From $^{51}V(\alpha,3n\gamma)$ (1987Ba72) DSAM.

$\gamma(^{52}Mn)$

E(level)	$\underline{\hspace{1cm}}$ $\mathrm{E}\gamma^{\dagger}$	$\underline{\hspace{1cm}}^{\dagger}$	Mult.	δ&	α	Comments
377.749	377.748 \$ 5	100	E4		7.0×10 ⁻⁴ 11	$B(E4)\downarrow(W.u.)=0.146\ 5.$
546.438	168.688 § 2	100	M1+E2			δ : $-5.5 < \delta < +0.03$ in $(p,n\gamma)$.
731.66	353.7 5	8.6	E2			Mult.: from $\gamma(\theta)$ in $(p,n\gamma)$ and RUL. B(E2) \downarrow (W.u.)=200 80.
	731.5 5	100	E2			$B(E2)\downarrow(W.u.)=60$ 24. Mult.: from $\gamma(\theta)$ in $(p,n\gamma)$ and RUL.
825.2	447.4 5	100	(M1 + E2)			δ : -0.038 10 or -0.005 10 in (p,n γ).
869.89	869.9‡ 2	100	M1+E2	-0.10 5		δ: other: $+0.04 +2-3$ in $(\alpha, pn\gamma)$. $B(M1) \downarrow (W.u.) = 0.276 \ 3$; $B(E2) \downarrow (W.u.) = 8 \ 8$.
884.2	152.2 5	2.9	D+Q			δ =-0.56 10 if J(884)=4. Mult.: D+Q in (α,pnγ) for J=4.
	506.6 5	100				
886.9	340.4 5	11	D(+Q)	< 0 . 03		
	508.8 5	100				
232.3	345.1 5	19				
	500.8 5	47				
	854.6 5	100				
253.7	521.8 5708	2 4				
	1253.7 5	100				
279.0	394.6 5	66				
	453.6 5	100				
417.688?	1039.928	100				
646.9	414.7 5	100				
	762.7 5	36				
683.8	$404.4\ 5$	15				
	952 . 1 5	31				
	1684.1 5	100				
956.0	1956 2	100				
044 . 2	1218.9 5	100				
130.0	2130 2	100				
252.6	2252.5 5	100				
285.94	1416.1‡ 2	100 ‡ 6	(M1+E2)	-0.30 10		δ: other: +0.03 +3-5 in $(\alpha, pn\gamma)$, $(\alpha, 3n\gamma)$. $B(M1) \downarrow (W.u.) > 0.0088$?; $B(E2) \downarrow (W.u.) > 0.36$?
	2285.9‡ 4	10.4 ‡ 21	(E2)			Iy: other: 61 17 in (HI,xny), 40 11 in (α,pny) . B(E2) \downarrow (W.u.)>0.11.
337.2	1450.2 5	81				
	1512.0 5	100				

$\gamma(^{52}Mn) \ (continued)$

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	Ιγ [†]	Mult.	δ&	Comments
2473.6	1586.7 5	100			
2631.2	2084.7 5	100			
2710.2	1840@				
	$2710^{@}$				
2907.6	621.7 ‡ 2	100 † 6	(M1+E2)	-0.08 7	$B(M1)\downarrow(W.u.)=(0.6\ 5);\ B(E2)\downarrow(W.u.)=(21\ +41-21).$
	2037.6 ‡ 4	98 ‡ 6	(E2)		Iy: other: 61 17 in (HI,xny), 40 11 in $(\alpha,pn\gamma)$.
					$B(E2)\downarrow(W.u.)=9$ 7.
2926.0	2379.5 5	100			
3602.2	892@				
	2732@				
	3602@				
3797.6	890@				
3837.2	929.5 ‡ 2	100	(E2)		$B(E2)\downarrow(W.u.)=4.7$ 4.
3891.4	984@				
	1181@				
	1606@				
	3021@				
4163.6	325@				
	1256.5# 3	100#			
	1876@				
4679.5	788@				
	$1077^{@}$				
	$1772^{@}$				
	2394@				
	3809@	E(level)	$E\gamma^{\dagger}$	_	
	4679 [@]				
5857.5	1695 [@]	8582.3	2521@		
	2020@		4745@		
	2949 [@]	8787.4	1320@		
6061.0	1381@	8894.4	510@		
7467 . 4	1610@		742@		
	3630@	9372.3	3311@		
7701.8	3539@		5535 [@]		
	3864@	9906.4	1012@		
8152.5	451@		1522@		
	685@	10178.4	1596@		
	2295@		2026@		
	4315@	11204.3	1832@		
8384.4	4547@	12066 . 5	$2160^{@}$		

 $^{^{\}dagger}$ From (p,n\gamma), except as noted.

⁵²Mn IT Decay (21.1 min) 1977Ya08

Parent $^{52}\mathrm{Mn}$: E=377.749 5; J π =2+; $T_{1/2}$ =21.1 min 2; %IT decay=1.75 5. 1977Ya08: chemically separated sources from $^{52}\mathrm{Fe}$ ϵ decay, measured Ey, Iy, a Compton suppression spectrometer system, several large volume Ge(Li) detectors. See also $^{52}{\rm Mn}~\epsilon$ decay (21.1 min). Feeding of 21.1-min $^{52}{\rm Mn}$ in $^{52}{\rm Fe}~\epsilon$ decay (8.275 h)=100%.

 $[\]stackrel{:}{\div}$ From 52 Fe ϵ decay (45.9 s).

[§] From 52 Fe ϵ decay (8.275 h).

 $^{^{\#}\} From\ (\alpha,pn\gamma).$

[@] From (HI,xnγ).

[&]amp; From (HI,xn γ), except as noted.

⁵²Mn IT Decay (21.1 min) 1977Ya08 (continued)

⁵²Mn Levels

 $\underline{T_{1/2}}$ E(level) $J\pi$ Comments0.0 5.591 d 3 6+ 377.739 5 $\%\epsilon + \%\beta^{+} = 98.25$ 5; %IT=1.75 5. 2+ 21.1 min 2 $\gamma(^{52}Mn)$ $\mathbf{E}\gamma$ E(level) $I\gamma^{\dagger}$ Mult. 377.738 5 7.0×10⁻⁴ 11 377.739 100 E4

$\frac{\text{Decay Scheme}}{\text{Intensities: I}(\gamma\text{+ce})}$

per 100 parent decays
%IT=1.75 5

⁵²Fe ε Decay (8.275 h) 1990Me15

 $Parent~^{52}Fe:~E=0.0;~J\pi=0+;~T_{1/2}=8.275~h~8;~Q(g.s.)=2374~6;~\%\epsilon+\%\beta^+~decay=100.$

Source from mass separation and/or chemical purification, measured E γ , I γ with the automated multi-spectrometer γ -ray counting facility. Sources were counted individually and in combination on several different calibrated spectrometer systems utilized various detectors ranging from small (X-ray) detectors to large volume high-purity Ge detectors.

See also $^{52}\mathrm{Mn}$ IT decay (21.1 min).

See also ^{52}Mn ϵ decay (21.1 min).

See also 1977Ya08.

⁵²Mn Levels

E(level)	$J\pi^{\dagger}$	$_\{1/2}$	Comments
0.0	6+	5.591 d 3	$T_{1/2}$: From adopted levels.
377.749 5	2+	21.1 min 2	T _{1/2} : From adopted levels. %ε+%β ⁺ =98.25 5; %IT=1.75 5.
546.438 6	1+		
1417.688 18			

[†] From adopted levels.

 $^{^{\}dagger}~$ For absolute intensity per 100 decays, multiply by 0.000306 $\emph{13}.$

52 Fe ϵ Decay (8.275 h) 1990Me15 (continued)

β⁺,ε Data

Εε	E(level)	Ιβ+†	_1ε [†]	Log ft	$- I(\epsilon \! + \! \beta^+)^{\dagger}$
(956 6)	1417.688		0.96	5 . 8	0.96
1825 12	546.438	55.49	43.61	4.7	99.1

 $^{^{\}dagger}$ Absolute intensity per 100 decays.

$\gamma(^{52}Mn)$

Iy normalization: from $I(\epsilon+\beta^+)=I(\gamma+c\epsilon)(169\gamma)+I(1040\gamma)=100$. Based on log ft>11.0 for a second-forbidden transition, $I(\epsilon+\beta^+)$ feeding to the g.s. is <0.00005%.

Εγ	E(level)	Ιㆇ	Mult.	α
168.688 2	546.438	1032 20	[M1]	8×10 ⁻³ 8
377.748 5	377.749	$17.1\ 2$	E4	7.0 \times 10 $^{-4}$ 11
x704.6 2		0.3 1		
1039.928 17	1417.688	0.99 4		
x1530.709 19		0.472		
x1727.57 8		2.2 1		

- † I(1434 $\gamma) = 1000$ in $^{52}Cr.$
- ‡ For absolute intensity per 100 decays, multiply by 0.0961 19.
- x γ ray not placed in level scheme.

⁵²Fe ε Decay (45.9 s) 1979Ge02

Parent 52 Fe: E=6958.0 4; J π =12+; $T_{1/2}$ =45.9 s 6; Q(g.s.)=2374 6; % ϵ +% β + decay=100.

 $^{52}{\rm Fe-T}_{1/2}{\rm :\ From\ 1979Ge02}.$

1979Ge02: source produced in $^{40}\text{Ca}(^{14}\text{N},\text{pn})$, measured γ -ray singles and $\gamma\gamma$ -coin, Ge(Li) detectors. An upper limit on the direct γ -decay branch of the ^{52}Fe isomer is 0.004.

Others: 1977KaZV, 1975Ge01, 1978GeZZ.

⁵²Mn Levels

E(level)	$J\pi^{\dagger}$	$T_{1/2}$	Comments
0.0	6+	5.591 d 3	T _{1/2} : From adopted levels.
869.90 19	7+		
2285.98 23	8+		
2907.7 3	(9+)		
3837.24	11+		

[†] From adopted levels.

52 Fe ϵ Decay (45.9 s) 1979Ge02 (continued)

β+,ε Data

Εε	<u>E(level)</u>	$I\beta^{+\dagger}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Log ft	$-\frac{I(\epsilon\!+\!\beta^+)^{\dagger}}{}$	Comments
5350 130	3837.2	99.58	0.42	4.8	100	E&: from E(β^+)=4330 130 as quoted by 1979Ge02. The authors estimate direct $\epsilon+\beta^+$ feeding to other excited levels to be <5%.

 $^{^{\}dagger}$ Absolute intensity per 100 decays.

 $\gamma(^{52}Mn)$

Εγ	E(level)	$-\frac{I\gamma^{\dagger}}{}$
621.7	2907.7	51 3
869.9 2	869.90	93 5
929.5 2	3837.2	100
1416.1 2	2285.98	48 3
2037.6	2907.7	50 3
2285.9	2285.98	5 1

 $^{^\}dagger$ Absolute intensity per 100 decays.

$^{50}{\rm Cr}(^3{\rm He},p) \qquad 1971{\rm Ha}24, 1973{\rm Gu}14, 1968{\rm Ra}05$

1971Ha24: E=16.5 MeV, measured $\sigma(E(p), \theta)$, multiangle spectrograph, nuclear emulsions, overall energy resolution=15 keV FWHM.

1973Gu14: E=35 MeV, measured $\sigma(E(p),\theta)$, $\Delta E-E$ telescope, ΔE : surface barrier detector, E: Ge(Li), Si(Li), resolution=80 keV FWHM.

 $1968 Ra05 \colon E = 12 \ MeV, \ measured \ \sigma(E(p), \theta), \ multiple-gap \ spectrograph, \ nuclear \ emulsions, \ 35 \ keV \ FWHM.$

 $Others:\ 1971Ha55,\ 1977DrZM.$

⁵²Mn Levels

E(level) [†]	$_{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	L@	$d\sigma/d\Omega^{\#}$
381 10			52
554 10			122
828 10			60
850 ‡ 30		2,(6)b	
881 10			95
1240 ‡ 30		6 b	
1680 ‡ 30		$_{2}\mathrm{b}$	
2130 ‡ 30			
2345 10	(1+,2+,3+)	(2) ^a	74
2471 10	0+,(1+)	0	1149

Continued on next page (footnotes at end of table)

⁵⁰Cr(³He,p) 1971Ha24,1973Gu14,1968Ra05 (continued)

⁵²Mn Levels (continued)

E(level) [†]	$_{\mathrm{J}\pi^{\mathrm{d}}}$		$d\sigma/d\Omega^{\#}$	Comments
2634 10	1+	0+2	3663	L: from 1971Ha24, but 1968Ra05 report L=0, 1973Gu14 report L=2.
2677 10			69	,
2714 10			39	
2788 10		c		
2803 10		c		
2859 10			180	
2873 10			180	
2903 10	0+,1+	0 a	218	
2929 10	0+,1+	0	1520	T=2.
		_		IAS (52 Cr g.s.) (1968Ra05,1971Ha24).
2972 10	6+, (5+,7+)e	6 b	47	
3213 10	0+,1+	0 a	228	
3245 10		(0+2)&	312	
3296 10		(2)a	74	
3337 10			70	
3418 10	1+,2+,3+	2 a	184	
3480 10			244	
3575 10	0+,1+	0	497	
3776 10	1+,2+,3+	2	315	107111-04 1 (4) 10720-14 1 0.0
3885 10	1+ ^e	0+2 ^b	85 169	1971Ha24 report L=(4), 1973Gu14 report L=0+2.
3975 10 4136 10	(3+)e	2 b	135	
4237 10	(3+)	2	258	
4281 10	1+,2+,3+	2 a	245	
4314 \$ 10	11,21,01	-	146	
4375 10	1+	0+2	1224	
4439 10	1+,2+,3+	2 a	204	
4461 10	, , , -		51	
4500 10	1+	0 + 2a	418	
4679 10			109	
4704 10			185	
4837 10	0+,1+	0	250	
4953 \$ 10	1 + ^e	$0 + 2^{b}$	259	
5043 10			175	
5069 10			172	
5313 10			149	
5403 10			268	$1968 Ra05 \ report \ L=(0+2), \ 1973 Gu14 \ report \ L=2.$
5466 10			463	
5491 10	0+,1+	0	2169	$T=(2)$. IAS(^{52}Cr 2647 keV level) (1971Ha24)?.
5751 10			650	
5782 10			783	
5809 10			345	
5840 10			746	
5874 10	1+ , $2+$, $3+$	2	311	

 $^{^{\}dagger}$ From 1971Ha24, except as noted.

[‡] Level reported by 1973Gu14 only.

[§] Doublet.

[#] Peak differential cross section (arbitrary units) (1971Ha24).

[@] From DWBA analyses. Values reported in more than one work without contradiction are given without comment.

 $^{\&}amp;\ Reported$ by 1968Ra05 only.

a Reported by 1971Ha24 only.

b Reported by 1973Gu14 only.

[°] Combined 2788+2803 line reported L=2, $d\sigma/d\Omega$ =543 (1971Ha24), 2800 line L=2 (1968Ra05), L=2 for E=2800 (1973Gu14).

d Based on the L value and $(^3\mathrm{He},p)$ selection rule for a 0+ target by 1971Ha24, except as noted.

e From 1973Gu14 based on L value.

$^{50}{\rm Cr}(\alpha, pn\gamma), ^{51}{\rm V}(\alpha, 3n\gamma)$ 1977Ev03,1987Ba72

 $1977 Ev03: \ ^{50}Cr(\alpha,pn\gamma) \ E=23.5, \ 27.2 \ MeV, \ \gamma\gamma \ coin, \ n\gamma \ coin. \ two \ 60 \ cm^3 \ Ge(Li) \ counter, \ two \ conical \ NE \ 213/RCA \ 8854 \ counters.$

 $1987Ba72: \ ^{51}V(\alpha,3n\gamma) \ E=30-45 \ MeV, \ RDM, \ DSAM, \ \gamma(\theta), \ \gamma\gamma-coin. \ Ge(Li) \ detector: \ 2.7 \ keV \ at \ 1333.6 \ keV \ (FWHM), \ HPGE \ detector: \ 2.4 \ keV \ at \ 1333.6 \ keV \ (FWHM).$

All data are from 1977Ev03, except as noted.

⁵²Mn Levels

E(level)	$J\pi^{\dagger}$	$\mathrm{T}_{1/2}^{ \dot{\ddagger}}$	Comments
0.0	6+		
378.0 10	2+		
732.0 10	4+		
825.4 11	3+		
869.61 20	7+	0.05 ps +6-3	
1279.0 12	5+		
1683.6 3	5+		
2285.6 3	8+	<0.069 ps	
2907.2 3	9+	0.08 ps 6	
3836.9 5	11+	15.0 ps 14	T _{1/2} ; RDM.
4163 . 7 5	10+	0.14 ps + 24 - 11	

 $^{^{\}dagger}$ From 1976St19, based on $\gamma(\theta)$ in (33 S,3pn γ), evaporation-model analysis of two-point excitation function and shell-model calculations.

$\gamma(^{52}Mn)$

E(level)	Εγ		Mult.†	δ [†]	Comments
378.0	(378)				
732 . 0	732				
825 . 4	447.4 4				
869.61	869.6 2	591 73	D+Q	+0.04 +2-3	
1279 . 0	453.6 4				
1683.6	1683.6 3				
2285 . 6	1416.02	188 35	D+Q	+0.13 +5-3	
	2285.6	5	Q		Ιγ: from 1987Ba72.
2907.2	621.6 2	100	D+Q	+0.03 +3-5	
	2037.5 3	40 11	Q		
3836.9	929.7 3	55 12			
4163.7	1256.5 3	31 9			

[†] From $\gamma(\theta)$, 1987Ba72.

⁵⁰Cr(α,d) 1974Ga16,1994Fi01

1974Ga16: E=31.2 MeV, measured $\sigma(E(d),\theta)$, $\Delta E-E$ telescope, surface barrier detector, FWHM=45 keV. 1994Fi01: E=55.4 MeV, measured $\sigma(E(d),\theta)$. FWHM=120 keV, $\theta(lab)=15-25$ (2.5 steps), 30 - 70 (5 steps), a $\Delta E-E$ silicon detector telescope, a 300 m ΔE counter, three 2 mm E counters, DWBA analysis. All data are from 1974Ga16, except as noted.

⁵²Mn Levels

E(level)	$J\pi^{\ddagger}$	L	Comments
550 20			
880 20	7+	(6)	configuration= $((f_{7/2})^2)$ 7+ (1994Fi01).
$1260 \ 20$		4	
1680 20		4	
2130 20		4	
2350 20		4	
			Continued on next page (footnotes at end of table)

 $^{^{\}ddagger}$ From 1987Ba72, DSAM, except as noted.

 $[\]dot{\bar{\tau}}$ Iy relative to Iy(622)=100. Only intensities of yrast cascade gammas are given. Intensities are from singles for E(α)=23.5 MeV.

$^{50}\mathrm{Cr}(\alpha, \mathbf{d})$ 1974Ga16,1994Fi01 (continued)

 $^{52}\mathrm{Mn}$ Levels (continued)

E(level)	$J\pi^{\ddagger}$	_L	Comments
2640 20		2	
2800 20		(0)	
2860 20		2, 4	
2900 20		2	
2990 20			
3130 20			
3260 20			
3460 20		(4)	
3600 20			
3900 20			
4040 20			
$4340^{\dagger} 30$			
5520 [†] 30	8 –		configuration= $(f_{7/2}, g_{9/2})8-(1994Fi01)$.
5790 [†] 30			***
6260 [†] 30	6 –		configuration= $(g_{9/2}, p_{3/2})^6 - (1994Fi01)$.
6990 [†] 30	6 –		configuration= $(g_{9/2}, p_{3/2})6-(1994Fi01)$.
7480 [†] 30			

 $^{^{\}dagger}$ From 1994Fi01.

$^{51}\mathrm{V}(^{3}\mathrm{He,2n\gamma})$ 1976St19

 $E=6-26~MeV,~measured~G-ray~excitation~function,~G-spectra,~\gamma\gamma~coin~with~Ge(Li)~detectors.$

All data are from 1976ST19, except as noted.

Other: 1984Ha10.

$^{52}{\rm Cr}(p,n) \\ \phantom{^{1966}{\rm Ri}09,1988Wa07,1967Co13}$

1966Ri09: E=3.2-9.5 MeV, measured $\sigma(E)$, BF3 counters, the "counter ratio" technique. 1988Wa07: E=120 MeV, overall energy resolution: =300 keV, measured $\sigma(\theta)$, large volume neutron detectors, tof, 130 m, DWBA analysis.

1967Co13: E=13 MeV, measured $\sigma(\theta)$, NE 213 liquid scintillators, tof technique.

 $Others:\ 1979Bi08,\ 1980AnYW,\ 1982Bi04,\ 1984Zh02,\ 1985Bl12,\ 1967Go17.$

⁵²Mn Levels

E(level)	Comments							
0.0								
383 10								
544 10								
2912 20	T=2.							
	Identified by 1967Co13, 1967Go14 as IAS (⁵² Cr g.s.).							
	E(level): from 1967Co13.							
$3.6 \times 10^{3 \ddagger}$ 1								
$4.4 \times 10^{3 \ddagger}$ 1								
$5.0 \times 10^{3 \ddagger}$ 1								
† From 1966Ri0 ‡ From 1988Wa	19, except as noted. 07.							

 $^{^{\}frac{1}{\tau}}$ From 1994Fi01, based on angular distributions and DWBA analysis.

⁵²Cr(p,nγ) 1973De03,1976Ta14

 $1973 De 03: E=8.0-10.0 \ MeV; \ measured \ E\gamma, \ I\gamma, \ n\gamma \ coin, \ 40 \ cm^3 \ coaxial \ Ge(Li) \ detector \ (FWHM=3 \ keV), \ 5-in \ diam*3-in \ cylindrical \ NE \ 213 \ liquid \ scintillator.$

1976Ta14: E=6.3-7.3 MeV; measured $\gamma(\theta)$, 42 cm³ Ge(Li) detector rotated to 0 , 31 , 55 , 70 and 90 with respect to the proton beam direction.

Level scheme from 1973De03.

⁵²Mn Levels

E(level)	$-J\pi^{\dagger}$	Comments
0.0	6+	
378.1 5	2+	
546.4 6	1+	
731.8 4	4	$J\pi$: $\gamma(\theta)$ for g.s. transition implies $J=4-8$, $354-keV$ transition implies $J=0-4$.
825.5 6	2,3	
869.7 5		Jπ: high spin (based on excitation function) (1976Ta14).
884.4 5	3,4	
887.1 6	2	
1232.5 5	2 to 4	
1253.7 4	4 to 6	
1279.2 5		
1647.2 6		
1683.9 4		
1956.0 20		
2044.4 8		
2130.0 20		
2252.6 5		
2337.4 6		
2473.8 8		
2631.2 8		
2926.0 8		

 $^{^{\}dagger}$ From 1976Ta14, based on $\gamma(\theta)$ and compared with the predictions of compound nuclear statistical model. J π of g.s. and first two excited states taken from adopted levels.

$\gamma(^{52}Mn)$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ‡	Mult.	Comments
546.4	168.1 5	70.6	D+Q	-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<\dagger*-5.4<
731.8	353.7 5	5.6	Q	δ: authors assumed negligible L=3 admixture.
	731.5 5	64.9	Q	δ: authors assumed negligible L=3 admixture.
825.5	447.4 5	100	D+Q	$\delta{=}-0.038$ 10 from E(p)=6.85 MeV data, $\delta{=}-0.005$ 10 from E(p)=6.50 MeV data, if $J(826){=}3$ (1976Ta14).
869.7	869.7 5	9.7		
884.4	$152.2\ 5$	3.1	D+Q	$\delta = -0.56$ 10 if J(884)=4 (1976Ta14).
	506.6 5	(108)		Iγ: partially obscured by annihilation radiation.
887.1	340.4 5	9.4	D(+Q)	δ: 0.03<(1976Ta14).
	508.8 5	(86)		Iγ: partially obscured by annihilation radiation.
1232 . 5	345.1 5	7.6		
	500.8 5	18.4		
	854.6 5	39.5		
1253 . 7	521.8 5	4.2		
	1253.7 5	17.7		
1279 . 2	394.6 5	19.3		
	453.6 5	29.3		
1647.2	414.7 5	18.0		
	762.7 5	6.4		
1683.9	404.4 5	2.0		
	952.1 5	4.2		
	1684.1 5	13.6		
1956.0	1956 \$ 2	8.7		
2044.4	1218.9 5	6.2		
2130.0	2130 \$ 2	14.1		
2252.6	2252 . 5 5	14.5		
2337 . 4	1450 . 2 5	6.0		
			Co	ontinued on next page (footnotes at end of table)

⁵²Cr(p,nγ) 1973De03,1976Ta14 (continued)

γ(⁵²Mn) (continued)

E(level)	$ E\gamma^{\dagger}$	Ιγ‡
2337.4	1512.0	5 7.4
2473.8	1586.7	5 12.8
2631.2	2084.7	5 6.1
2926.0	2379.5	3.1

- † From 1973De03.
- $\dot{\bar{\tau}}$ Intensity relative to I γ (447)=100 at E(p)=10 MeV from 1973De03. Uncertainties $\approx 25\%$ for strong transitions and 50% to 100% for the weaker ones.
- § Possible doublet.

⁵²Cr(³He,t) 1973De03,1969Br04

1973De03: E=19 MeV, measured $\sigma(E(t),\theta)$, θ =40 , sensitive plates placed in the focal plane of the Enge split-pole spectrograph, FWHM: 15 keV.

1969Br04: E=30.2 MeV, measured $\sigma(E(t),\theta)$, solid state counter telescopes (ΔE : 250 m, Δ : 3 mm), the final resolution in the triton spectra: 100 KeV.

All data are from 1973De03, except as noted.

⁵²Mn Levels

E(level)#	_Jπ§	σ (40) [†]	E(level)#	_Jπ§_	σ (40) [†]	E(level)#	Jπ§	$\sigma \ (40 \)^{\dagger}$
0.0	6+	7.2	2667 10	2+	$\approx 2 \cdot 0$	3226 4	(5+)	1.6
378 1	2+	9.3	2771 3		6.0	3297 5		2.0
546 1	1+	8.8	2785 4		3.8	3333 3		2.0
732 1	4+	6.3	2796 3	+	8.3	3351 5		3.7
826 1	7+	32	2815 4		8.3	3386 3	(3+)	5.0
870 1	7+	36	2848 3		11	3423 3		12
884 2		18	2858 5		14	3490 10		3.8
1252 1	5+	12	2872 4		4.9	3506 3	+	4.3
1683 1	+	2.6	2903		5.1	3573 5	1+	4.2
1954 2	+	5.0	2926 5	0 +	95 17	3640 6		
20464		5.0	2955 5		2.4	3655 6		
2130 5	+	1.5	2973 4			3773 4	+	5.4
2252 2	+	3.8	2982 3			3884 6		3.3
2338 2		2.7	3077 4		3.2	4390@ 30	(2+)	31 ‡ 9
2629 3	1+	20	3106 4	+	2.8	4500@ 30	(2+)	21 † 6
2645 5		≈8.0	3199 3	+	1.1	5070 [@] 30	(2+)	11 ‡ 4

 $[\]dot{\dagger}$ Cross sections (40) in $\,$ b. The cross section uncertainties are estimated to be 25%.

 $^{^{\}ddagger}$ From 1969Br04 (cross section, 12.5 to 69).

[§] Spin assignments based on comparison of angular distributions with those to states of known spin. Parity assumed by authors on the basis of shell-model arguments.

[#] From 1973De03, except as noted. 1973De03 also include excitation energies from the (d,α) reaction.

[@] From 1969Br04.

[&]amp; T=2. Identified as IAS $(^{52}\mathrm{Cr}\ \mathrm{g.s.}).$

⁵⁴Fe(p, ³He) 1975Gu05,1978Ko27

1975Gu05: E=40.2 MeV, FWHM=35 keV, measured $\sigma(\theta)$, from 6 to 60 with 4 steps in general, the particles detected with a single wire charge-division gas proportional counter placed in the focal plane of an Enge split-pole spectrograph.

 $1978Ko27: \ E=42-46 \ MeV; \ measured \ particle \ spectra, \ QDDD \ spectrograph, \ a \ detector \ consisting \ of \ a \ 60 \ cm \ resistive-wire proportional counter \ backed \ by \ a \ plastic \ scintillator \ provided \ position \ and \ particle \ identification \ in \ the \ QDDD.$

Others: 1981YaZU, 1982Ha35.

All data are from 1975Gu05, except as noted.

⁵²Mn Levels

T_{1/2}: from 1978Ko27, except as noted.

E(level)	$J\pi^{\ddagger}$	t [†]	$d\sigma/d\Omega^{\c \S}$	Comments
0.0	6+	6	3	T=1.
0.0	0+	U	3	IAS $(^{52}\text{Fe }5659\text{-keV level})$.
374	2+	2	31	T=1.
				IAS (52 Fe 6047 -keV level).
541	1+	0 + 2	9.5	
728	4+	4	9	T=1.
				IAS $(^{52}$ Fe 6422 -keV level).
820	3+	2 + 4	14.5	
867	7+	6	25	
1252	5+	4	11.5	
1680		4	1.4	
1953	6+	6	1.2	
2047	4+	4	1.3	
2130		4	1.9	
2248		4	2.2	
2337		(2)	1	
2476			29	
2629		0 + 2	34	
2712		6	5.5	
2787		(4)	20	
2850			33	
2923		0	80	T=2.
				IAS (⁵² Cr g.s.) (1975Gu05).
2968		(1)	36	
3022		4	50	
3097		4	3	
3196		6	3.3	
3228		4	1.8	
3330 3380		(3) (2+4)	22	
3420			8.8 27	
		4		
3500		4	11	
3567 3635		0+2	10 4.7	
3660 3711		(3)	6.5	
3742		(0)	3 . 2 3 . 2	
5 / 4 Z			3.Z	

 $^{^{\}dagger}$ Based on DWBA calculations.

 $^{^{\}ddagger}$ Identified by 1975Gu05 as having wavefunction dominated by configuration= $(1f_{7/2})^{-4}$.

[§] Peak cross section, b/sr. Δσ≈±20%.

⁵⁴Fe(d,α) 1973De03,1973Ga07

1973Ga07: E=15 MeV, <20 keV (FWHM), measured $\sigma(\theta)$, Buechner-type magnet and α sensitive plates, DWBA analysis.

1973De03: E=17 MeV, \approx 15 keV (FWHM), measured $\sigma(\theta)$, α sensitive plates placed in the focal plane of the Enge split-pole spectrograph, DWBA analysis.

1972Ke04: E=15 MeV, measured $\sigma(E\alpha,\theta),$ Si detector, $\approx\!25$ keV (FWHM), DWBA analysis. .

1971Gu03: E=28 MeV, $\approx \! 80$ keV (FWHM), measured $\sigma(E\alpha,\theta),$ DWBA analysis.

Others: 1964Bj01, 1968Ra05.

Low-lying states are expected to have strong configuration= $(^{1}f_{7/2})^{-4}$ components in their wavefunctions, and predominantly seniority=2. The direct (d,α) reaction should excite strongly odd-J states, but excitation of even-J, seniority=2 states is forbidden. Configuration assignments have been made by most authors on this basis.

$^{52}\mathrm{Mn}$ Levels

E(level)†	Jπ ^a	L#	dσ/dΩ§	Comments	
0.0	(6+)	(6)@	3.0		
378 <i>1</i>	(2+)	(2)@	1.6		
546 1	(1+)	(2)@	10	L: 1972Ke04 reported L=0+2.	
732 1	4+	4	2.3		
826 1	3+	2(+4)	27	L: 1973De03 reported L=2. 1973Ga07 and 1972Ke04 reported L=2+4.	
870 1	7+	6	250	·	
1252 1	5+	4+6	82	L: from 1973De03 and 1972Ke04. 1973Ga07 and 1971Gu03 reported L=4.	
1646 2			≈ 1 . 3		
1683 1	3+,4+,5+	4	8.5	L: from 1973De03, 1973Ga07 and 1971Gu03. 1972Ke04 reported L=2+4.	
1954 2	5+,6+,7+	6	3.4		
20464			≈ 2 . 5		
2130 5			11	L: 1973De03 assigned L=4. 1973Ga07 assigned L=0+2, 1971Gu03 assigned L=(2).	
2252 2	3+,4+,5+	4	9.8		
2285 5			≈ 2 . 5		
2338 2			5.0	L: 1973De03 assigned L=2,3. 1973Ga07 assigned L=0+2.	
2475 2			22	L: 1973De03 assigned L=0+2 or L=1. 1973Ga07 assigned L=3. 1971Gu03 assigned L=0, 1972Ke04 assigned L=1+3.	
2629 3	1+	0 + 2	40		
2711 3		(5)	56	L: 1973Ga07 and 1972Ke04 assigned L=5, 1971Gu03 assigned L=(3).	
2796 3	1+,2+,3+	2	21		
2848 3				1 (10 town) and 1 1 1 1 Daylow of (VD)(D)	
2858 5				dσ/dΩ: 1973De03 reported combined DS/DW=97 (UB/SR)for unresolved 2848+2858 pair.	
2903 5			21	1973Ga07 assigned L=5. 1972Ke04 assigned L=(2).	
$2955 5 \\ 2973 4$			2.5		
2982 3				$d\sigma/d\Omega$: 1973De03 reported DS/DW=4.4 for unresolved 2973+2982 pair.	
3106 4			5.0	1973De03 reported L=(2) and 1973Ga07 report L=(5) for E=3080.	
3199 3			11	L: 1973De03 assigned L=4. 1972Ke04 assigned L=0.	
3226 4		4(+6)@	12	Z. 1010Zeoo abbigued Z=1. 1012Zeo abbigued Z=0.	
3297 5		(2)	≈3.0	L: from 1972Ke04.	
3333 3			26	L: 1973De03 assigned L=(2+4). 1973Ga07 assigned L=3.	
3386 3		(2+4)	11		
3423 3		3	110	L: from 1973Ga07.	
3506 3		4 , 5 ‡	46	L: 1973De07 assigned L=4.	
3573 5	1+	0	17	L: from 1973De03, 1972Ke04. 1973Ga07 assigned L=0+2. 1971Gu03 assigned L=(3).	
3620 6			3.9		
3640 6		&	15		
3655 6		&	15		
3706 6			5.6		
3738 4		4	16	L: from 1973De03, 1971Gu03. 1973Ga07 assigned L=2.	
3898 4			12	L: 1973De03 assigned L=(2). 1973Ga07 assigned L=5.	
3936 4			3.7		
3973 6					
3987 6				dσ/d Ω : 1973De03 reported DS/DW=10 (UB/SR) for unresolved pair and L=(4). L: 1973Ga07 assigned L=0+2 to level at 3984 $\it 10$.	
4061 4					
4129 8	3+,4+,5+	4 0 5 †	1.0		
4235 8		6,5 [‡]	19	10000 00 ' 11 (0) 10000 00 ' 11 7	
4281 8	1.	0.0	18	1973De03 assigned L=(2). 1973Ga07 assigned L=5.	
43778 $4450 \ddagger 10$	1+	0 + 2 4 ‡	20		
4500 + 10		4 ÷ 3 ‡			
4540 ÷ 10		3 , 4 ‡			
1010. 10		J, 2.			

Continued on next page (footnotes at end of table)

⁵⁴Fe(d,α) 1973De03,1973Ga07 (continued)

⁵²Mn Levels (continued)

E(lev	L#		
4620 [‡] 4690 [‡]		3 [‡]	

- † From 1973De03, except as noted. The energies of 1973De03 are averages of values from (d,α) and $(^3He,t)$.
- ‡ From 1973Ga07.
- § Cross section (30) in b/sr, from 1973De03. $\Delta S \approx 25\%$.
- # L-assignments reported by two or more authors are given. except as noted. L-value assignments are from DWBA analysis.
- @ From 1973De03.
- & $1973\,\mathrm{Ga}$ 07 report L=5,6 for E=3647.
- ^a Empirical consideration of spin-dependent effects applied. Also see comments above on even-odd effects in configuration= $(^{16}7_{7/2})^{-4}$, seniority=2 states (1973De03,1973Ga07).

⁵⁴Fe(d,αγ) 1978DoZM

E=4.8-5.0 MeV, DSAM, a 45 cm 3 Ge(Li) detector, $\alpha\gamma$ -coin with the Ge(Li) and 300 micron thick silicon surface barrier detector.

Others: 1977BhZH, 1984Pi07.

⁵²Mn Levels

E(level)	$\underline{\hspace{1cm}}^{\dagger}$	E(level)	${\color{red}{T_{1/2}}^{\dagger}}$	E(level)	${\color{red}T_{1/2}}^{\dagger}$
731.5	3.6 ps 14	886.5	0.06 ps +3-4	1647.1	0.37 ps +24-17
825.3	0.17 ps +4-3	1232.4	0.14 ps +19-8	1683.7	0.25 ps +17-8
869.7	0.12 ps +6-8	1253.5	0.018 ps 55	2337.0	0.05 ps +2-4
884.4	1.4 ps	1278.9	0.25 ps +17-8	2473.2	0.32 ps + 16 - 4

 $^{^{\}dagger}$ Doppler shift attenuation method.

(HI,xnγ) 1976St19,1976Av06,1978Me19

 $1976St19 \colon \, ^{24}Mg(^{32}S,3pn\gamma), \ E = 70 - 120 \ MeV, \ \gamma\gamma - coin, \ \gamma(\theta), \ Ge(Li) \ detectors.$

 $1976 Av06: \ ^{39}K(^{16}O,2pn\gamma), \ E=37-52 \ MeV, \ p\gamma \ coin, \ \gamma\gamma \ coin, \ \gamma(\theta), \ a \ 40 \ cm^3 \ coaxial \ Ge(Li) \ detector \ of \ 3.7 \ keV \ resolution \ (FWHM) \ at \ 1.33 \ MeV. \ p\gamma-coin \ with \ the \ Ge(Li) \ and \ an annular \ silicon \ detector \ at \ 180 \ , \ \gamma\gamma-coin \ with \ two \ Ge(Li) \ detectors.$

1978Me19: 27 Al(28 Si,2pn γ), E=65-81 MeV, $\sigma(E\gamma,\theta)$, $\gamma\gamma$ -coin. a Ge(Li) detector of \approx 2.8 keV resolution (FWHM) at 1332 keV. $\gamma\gamma$ -coin with two Ge(Li) detectors.

1979Me03: ${}^{28}\mathrm{Si}({}^{28}\mathrm{Si}({}^{28}\mathrm{Si}({}^{3}\mathrm{pn}\gamma),~E=65-90~MeV,~\sigma(E\gamma,\theta),~\gamma\gamma-coin.~a~Ge(Li)~detector~of$ =2.3 keV resolution (FWHM) at 1332 keV, a Si(Li) detector used to look for low-energy photons, $\gamma\gamma-coin$ with two Ge(Li) detectors.

 $1980 \text{DeZA: } ^{27}\text{Al}(^{32}\text{S},\alpha2\text{pn}\gamma), \text{ E=130 MeV, } \gamma\gamma-\text{coin.}$

1983Th05: 27 Al(28 Si,2pn γ), 28 Si(28 Si,3pn γ), E=65-90 MeV, deduced relative σ .

2003Ax01: 24 Mg(32 S,3pn γ) E=130 MeV, Gasp spectrometer plus the ISIS array, 28 Si(28 Si,3pn γ) E=110 MeV, 4 π γ -array Euroball III with ISIS and Neutron-Wall. E=115 MeV, Gasp spectrometer plus the ISIS array.

⁵²Mn Levels

E(level) [†]	Jπ [‡]	T _{1/2} #	Comments
0.0	6+		
(377.17)			
546.0 8			
731.5 5	4+		$J\pi$: from adopted levels.
824.4 8	3+\$		
869.4 3	7+	<0.38 ps	
883.7 10			
886.1 13			
1254.0 13	5+8		
1201.0 10	01*		

1976St19,1976Av06,1978Me19 (continued) $(HI,xn\gamma)$

⁵²Mn Levels (continued)

E(level) [†]	$-J\pi^{\ddagger}$	T _{1/2} #	Comments
1278.3 9	(5+)§		
1682.4 9	(5+)§		
2043.4 13			
2285 . 1 4	8+	<0.69 ps	
2709.8 6	7 + §		
2906.9 4	9+	<0.4 ps	
3601.9 6	8 + §		
3796.9 11	(9+)§		
3836.0 5	11+§	15.2 ps 14	T _{1/2} : RDM (1976Av06).
3890.9 6	8+8		
4161.0 6	10+§		
4679.05	9 – §		
5856.1 7	11+§		
6060.1 8	11-8		
7466.1 8	12+§		
7700.1 8	(12+)§		
8151.1 7	13+§		
8383.2 10	(13+)§		
8581.2 9	(13-)§		
8786.1 13			
8893.2 10	14+§		
9371.3 9	13-8		
9905.2 12	13+§		
10177.2 10			
11203.3 14			
12065.2 15	(16+) [§]		

- † From a least-squares fix to the Ey values.
- From excitation functions and $\gamma(\theta)$ analyses, 1976St19, 1976Av06, except as noted. From 2003Ax01 based on angular distribution and Compton polarization measurements. From DSAM results of 1976Av06, except as noted.

$\gamma(^{52}Mn)$

E(level)	$\mathrm{E}\gamma^{\dagger}$	1γ@	Mult.#	δ#	E(level)	${f E} \gamma^{\dagger}$
						
(377.1)	377.7				3890.9	984a
546.0	168.9 ‡ 3	0.041				1181 ^a
731.5	355					1606a
	731.3 5	< 20				3021 ^a
824.4	447.2 ‡ 4	0.044			4161.0	325a
869.4	869.3 3	100	D+Q	$-0.10\ 5$		1254a
883.7	507 ^a					1876 ^a
886.1	509a				4679.0	788a
1254 . 0	708 ^a					1077 ^a
1278.3	395a					1772a
	453.8 6	0.015&				2394 ^a
1682.4	404 ^a					3809 ^a
	951 ^a					4679a
2043.4	1219 ^a				5856.1	1695 ^a
2285 . 1	1415.5 3	58 15	D+Q	$-0.30\ 10$		2020a
	2285.8 10	< 7	Q			2949 ^a
2709.8	1840a				6060.1	1381 ^a
	2710 ^a				7466.1	1610 ^a
2906.9	$621.7\ 3$	98 13	D+Q	-0.087		3630a
	695a				7700.1	3539a
	2037.7 5	60 17	Q			3864 ^a
3601.9	892a				8151.1	451 ^a
	2732 ^a					685 ^a
	3602a					2295a
3796.9	890 ^a					4315 ^a
3836.0	929.1 3	106 14	Q		8383.2	4547a
			Contin	ued on next pag	e (footnotes at en	d of table)

(HI,xnγ) 1976St19,1976Av06,1978Me19 (continued)

$\gamma(^{52}Mn) \ (continued)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	_ E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$
8581.2	2521 ^a	9371.3	3311 ^a	10177.2	2026a
	4745a		5535a	11203.3	1832 ^a
8786.1	1320 ^a	9905.2	1012 ^a	12065.2	2160 ^a
8893.2	510 ^a		1522 ^a		
	742 ^a	10177.2	1596 ^a		

 $^{^{\}dagger}$ Weighted average of 1976St19, 1976Av06 and 1978Me19, except as noted.

 $^{^{\}ddagger}$ Weighted average of 1976Av06 and 1978Me19.

[§] From 1976St19.

 $^{^{\#}}$ From model-dependent $\gamma(\theta)$ analysis of 1976Av06.

[@] Relative to $I\gamma(869)=100$, from 1976St19.

[&]amp; From 1978Me19.

a From 2003Ax01.

Adopted Levels, Gammas

 $Q(\beta^-) = -14420 \ SY; \ S(n) = 16181 \ 16; \ S(p) = 7379 \ 7; \ Q(\alpha) = -7937 \ 10 \quad 2003 Au 03.$

52 Fe <u>Levels</u>

Ispin and analog state assignments taken from $^{54}{\rm Fe}(p,t)$ and $^{50}{\rm Cr}(^3{\rm He},n).$ Analogs identified in both reactions are given.

$\underline{Cross\ Reference\ (XREF)\ Flags}$

A ⁵³ Co P Decay (247 ms)	F ⁵² Co ε Decay
$B^{50}Cr(^3He,n)$	G ⁵³ Ni εp Decay
$C^{-50}Cr(^3He,n\gamma)$	$H^{28}Si(^{28}Si, 2p2n\gamma)$
$D^{-50}Cr(\alpha,2n\gamma)$	$I^{9}Be(^{55}Ni,X\gamma)$
$E^{54}Fe(p,t)$	J Coulomb Excitation

0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E(level) [†]	Jπ‡	XREF	§	Comments
Tight stripped atom Tight Specific Tight stripped atom Tight stripped a	0.0@	0+	ABCDEF HIJ	8.275 h 8	T _{1.00} ; from 1974Ro18. Others: 8.23 h 4 (1967Pa22).
Ref					$T_{1/2}$: stripped atom $T_{1/2}(^{52}{\rm Fe}^{26+})=12.5~{\rm h}~+15-12~(1995{\rm Ir}01).$
B(E2) E-0.082 10 (2004Ya07). Tight from B(E2) (Coulomb excitation). Other: >0.7 ps DSAM 50°Cr(He.n.r). Jn: from B(E2) (Coulomb excitation). Other: >0.7 ps DSAM 50°Cr(He.n.r). Jn: from B(E2) (Coulomb excitation). Other: >0.7 ps DSAM 50°Cr(He.n.r). XREF: B(2360). XREF: B(2360). Mark for E2) to 2+. XREF: B(2360). Mark for E2) to 3+. XREF: B(2360). Mark for E2) to 3+. XREF: B(3360). Mark for E2) to 3+. XREF: B(3360). Mark for E2) to 3+. Mark fo	849.45@ 10	2+	ABCDEFGHI J	7.8 ps 10	
## Second Company of the company of				-	$B(E2)\uparrow=0.082$ 10 (2004Yu07).
2384.55 17					
XREF: B(2360) JR: from E2 γ to 2+.					$J\pi$: from B(E2) (Coulomb excitation).
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2384.55 [@] 17	4+	BCDEF	0.22 ps 5	$T_{1/2}$: other: 0.28 ps +14-21 DSAM $^{50}Cr(^{3}He,n\gamma)$.
2758.8 7					XREF: B(2360).
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$J\pi$: from E2 γ to 2+.
XREF: B(2750)E(2762). XREF: B(3590)E(3782). 3585.0 & 3	2758.8 7	2+	BC E	0.17 ps 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					$T_{1/2}$: other: 0.14 ps +9-5 DSAM $^{50}{\rm Cr}(^{3}{\rm He},n\gamma)$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					XREF: B(2750)E(2762).
4145.6	3585.0& 3	4+	BC E H	0.28 ps# +21-7	XREF: B(3590)E(3583).
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$J\pi$: from E2 γ to 2+.
Jπ: from E2 γ to 4+.		0+	BC E		XREF: B(4160)E(4142).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4325.5 [@] 3	6+	C EF H		XREF: E(4326).
4456 8 2+ B E					
4850.6 11 (5-,6+) C E 0.5 ps# +23-2 XREF: E(4869). 4872.2 8 3 6+ H 0.21 ps 8 5137.4 3 5- C E H XREF: E(5134).					
4872 2 8 3 6+				"	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					XREF: E(4869).
Signature Sig		6+		0.21 ps 8	
Sa28 8		_			
5328 8 4+ E 5363 5 0+ B E 5439 15 E 5483 20 4+ E 5529 20 4+ E 5563 8 (3-) E 5654.5 4 6+ EF IAS (52Mn g.s.). T=1. T=1. 5718 8 0+ b E 5792 10 b E XREF: b(760). 5792 10 b E 5829 5 2+ B E 5965 15 4+ E 6034 5 2+ b E 6044 5 2+ b E IAS (52Mn 378 keV)? see 54Fe(p,t). XREF: b(6070). T=1. XREF: b(6070). T=1.	5137.4 3	5 –	СЕН		
5363 5 0+ B E 5489 15 5483 20 4+ E 5529 20 4+ E 5654 5 4 6+ E 5718 8 0+ B E 5718 8 0+ B E 5718 8 10+ B E 5718 10+ B E	5000				$J\pi$: from E2 γ to 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					VDEE D/5060)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0+			AREF: B(0300).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					IAS (52Mp g c)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3034.3 4	0+	Lir		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5718 8	0+	h E		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.10 0	0.1	~ 1		
5792 10 b E 5829 5 2+ B E 5829 5 4+ E 6034 5 2+ b E 1AS (52Mn 378 keV)? see 54Fe(p,t). XREF: b(6070). T=1. 1AS (52Mn 378 keV)? see 54Fe(p,t). XREF: b(6070). T=1. T=1. T=1.					
5829 5 2+ B E XREF: B(5820). 5965 15 4+ E 6034 5 2+ b E IAS (52Mn 378 keV)? see 54Fe(p,t). XREF: b(6070). T=1. 1AS (52Mn 378 keV)? see 54Fe(p,t). XREF: b(6070). T=1. T=1.	5792 10		b E		, ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2+			XREF: B(5820).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$T=1. \\ 6044 \ 5 \\ 2+ \\ b \ E \\ IAS \ (^{52}Mn \ 378 \ keV)? \ see \ ^{54}Fe(p,t). \\ XREF: \ b(6070). \\ T=1.$	6034 5	2+	b E		IAS (52 Mn 378 keV)? see 54 Fe(p,t).
6044 5 2+ b E IAS $(^{52}\text{Mn }378 \text{ keV})$? see $^{54}\text{Fe}(p,t)$. XREF: b(6070). T=1.					XREF: b(6070).
XREF: b(6070). T=1.					T=1.
T=1.	6044 5	2+	b E		IAS (52 Mn 378 keV)? see 54 Fe(p,t).
					XREF: b(6070).
6174 15 (6+) E					T=1.
	6174 15	(6+)			
6231 <i>15</i> E	6231 15		E		

Continued on next page (footnotes at end of table)

⁵²Fe Levels (continued)

$\underline{\hspace{1.5cm}E(level)^{\dagger}}$	Jπ [‡]	XREF	T _{1/2} §	Comments
6360.7 [@] 4	8+	Н	0.15 ps 5	$T_{1/2}$: 1998Ur05 determined the lifetime of this level from the best fit of the experimental spectrum with that obtained after summing the calculated line shape of the 2035 γ -ray and the experimental line shape of the 2045 contaminant line from $^{49}{\rm Cr.}$
6416 5	4+	E		IAS $(^{52}\text{Mn} 732 \text{ keV})$? see $^{54}\text{Fe}(p,t)$. T=1.
6454 15		E		
6483 5	2+	E		
6493.1 4	8+	H	0.18 ps 4	
6531 10	3 –	В Е		$J\pi$: L(3 He,n)=3. XREF: B(6520).
6564 8		E		
6634 10	(0+)	E		
6714 8	2+	В Е		XREF: B(6700). $J\pi$: L(${}^{3}He,n$)=2.
6744 15		E		
6772 8	(2+)	E		
6882 5	1-	E		
6927 15	0 +	E		
6958.0 4	12+	Н	45.9 s 6	$\%\epsilon + \%\beta^{+} = 100; \%IT < 0.004 (2003Au02).$
				1979Ge02 searched for γ decay branch cascading through 2385-keV 4+ level and 850-keV 2+ level, found upper limit for γ decay
				branch of isomer relative to β^* decay to be <0.004 (2 σ limit). E(level): from 2005Ga20; others: 6957.3 keV 5 (2003Ax01,2004Ur02)
				and 6820 keV 130 (1998Ur05).
				$T_{1/2}$: from 1979Ge02. J π : from E4 γ to 8+.
7013 5	3 –	E		WDDD - D/#400)
7124 10	(4+)	ВЕ		XREF: B(7120).
7261 15	(6+)	b E		XREF: b(7280).
7289 8		b E		XREF: b(7280).
7338 <i>10</i> 7381.9 [@] 4	10.	b E		XREF: b(7280).
7381.90 4	10+ 2+	H B E		XREF: B(7470).
7510 <i>15</i>	2 +	E		AREF. D(7470).
7611 10	6+	b E		T=1.
7636 15	4+	b E		T=1.
1000 10	41	ь ц		XREF: b(7640).
7787 10		b E		
7817 15		b E		XREF: b(7820).
7935 10	2+	E		
8037 12	0 +	B E		XREF: B(8050).
				T=1. IAS $(^{52}$ Mn 2474 keV) in 50 Cr $(^{3}$ He,n).
8067 8		E		
8097 10		E		
8122 15		E		
8146 10	3 –	E		
8184 10		E		
8207 8	(3-)	E		
8240 10		E		
8327 10	(3-)	E		70 0 71
8354 5	2+	В Е		IAS $(^{52}$ Mn 2796 keV) in 50 Cr(3 He,n) and 54 Fe(p,t). XREF: B(8360). T=(1).
8401 8	2+	E		
8425 15		E		
8461 10		E		
8511 8	4+	E		

Continued on next page (footnotes at end of table)

$^{52} \mathrm{Fe}$ Levels (continued)

E(level) [†]	$\underline{\hspace{1cm} J\pi^{\ddagger}}$	XREF	Comments
8561 <i>5</i>	0+	В Е	A doublet with energy splitting of 4 keV in (p,t). IAS (52 Cr g.s., 52 Mn 2926 keV) in 54 Fe(p,t) and 50 Cr(3 He,n). XREF: B(8570). T=2.
8618 8		E	1-2.
8661 15	(4+)	E	
8677 10		E	
8727 15		E	
8748 10	4+	E	T=(1).
8770 10	(3-)	E	
8832 10		E	
8872 10		E	
8900 8	(2+)	E	
8936 10		E	
8962 10	(6+)	E	
8985 10		b E	XREF: b(9010).
9044 15		b E	XREF: b(9010).
9059 15		E	
9130 50		В	
9213 8		b E	XREF: b(9250).
9279 8	4+	b E	XREF: b(9250).
9311 8		E	
9338 10		E	
9357 15		E	
9458 10		b E	XREF: b(9470).
9497 8		b E	XREF: b(9470).
9770 50		В	
10006 5	(2+)	В Е	IAS (52 Mn 4390 keV) in 54 Fe(p,t) and 50 Cr(3 He,n). XREF: B(10060).
		-	T=(2).
10049 10		E	WHAT PAGES
10332 5	0+	ВЕ	XREF: B(10310).
10810 50		В	1 1/311 \) 0
10990 20	0+	В	Jπ: L(³ He,n)=0. IAS (⁵² Cr 2647 keV, ⁵² Mn 5491 keV) in ⁵⁰ Cr(³ He,n). T=2.
11440 50		В	
11640 50		В	
11780 30	2+	В	Jπ: L(³ He,n)=2. IAS (⁵² Cr 3162 keV) in ⁵⁰ Cr(³ He,n). T=2.

[†] Levels connected by gammas are from least squares fit, others from $^{54}\text{Fe}(p,t)$, except where seen only in $(^3\text{He},n)$. ‡ From L value in $^{54}\text{Fe}(p,t)$, with S=0 neutron pair transfer assumed, except as noted.

§ DSAM, from $^{28}\text{Si}(^{28}\text{Si}, 2p2n\gamma)$, except as noted.

DSAM, from $^{50}\text{Cr}(^3\text{He},n\gamma)$.

 $\gamma(^{52}Fe)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ ^{†#}	Mult.@	Comments
849.45	849.43 \$ 10	100	E2	$B(E2)\downarrow(W.u.)=14.2\ 19.$
2384 . 55	1535.27 \$ 15	100	E2	$B(E2)\downarrow(W.u.)=26$ 6.
2758.8	1910 2	32 11		
	2760 1	100 11		
3585.0	2735.0 ‡ 3	100 ‡ 11	E2	Mult.: Angular distribution analysis could not be performed for the 2735 and 2753 transitions in 1998Ur05 since their broadened lineshapes were overlapping.
				$B(E2)\downarrow(W.u.)=1.1 +3-9.$
4145.6	3296 2	100		
			Continu	ed on next page (footnotes at end of table)

^{@ (}A): g.s. band. & (B): 4+ band (2004Ur02).

$\gamma(^{52}Fe) \ (continued)$

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	Ιγ ^{†#}	Mult.@	α	Comments
4325.5	1941.0 ‡ 3	100 [‡] 5	E2		
4396.3	3546.3 3	100 ‡ 21			
4850.6	2466 1	100			
4872.2	1286.7 ‡ 3	23 ‡ 5			
	2488.0 ‡ 3	100 [‡] 7			
5137.4	740.6 ‡ 3	28 [‡] 3	E2		
	1553‡ 1	5 ‡ 2			Eγ: Uncertainty assigned to transition by evaluators.
					Mult.: ΔJ=1 transition (implied by spin assignment made in 1998Ur05).
	2380 1	40 20			(
	2753.0 ‡ 3	75 ‡ 8			Ιγ: Intensity of transition has been corrected for the angular distribution by 1998Ur05, as specified in literature.
					Mult.: Angular distribution analysis could not be performed for the 2735 and 2753 transitions by ²⁸ Si(²⁸ Si,2p2nγ) 1998Ur05 since their
					broadened lineshapes were overlapping; the authors assume this
					γ -ray to be of ΔJ =1 character.
	4286 4	100 40			
5654.5	1328.95 \$ 25	100			
6360.7	2035.3 ‡ 3	100 † 14			
6493.1	1620.8 ‡ 3	68 [‡] 14			
	2167.6 ‡ 3	100 † 10			
6958.0	465.0 ‡ 3	$75^{\div} 25$	E4	0.0167	$B(E4)\downarrow(W.u.)=0.0003$ 3.
	597.1 ‡ 3	100 ‡ 33	E4	0.0057	$B(E4)\downarrow(W.u.)=4.\times10^{-5}+5-4.$
7381.9	888.5 ‡ 3	88 [‡] 6			
	1021.4 ‡ 3	100 † 19			

 $^{^{\}dagger}$ From $^{50}Cr(^{3}He,n\gamma),$ except as noted.

(A) g.s. band (B) 4+ band (2004Ur02)

10+	7381.9	_	
(B)8+ v	V	8+	6493.1
8+	6360.7	_	
		6+	4872.2
6+	4325.5	(A)6+	<u></u>
		4+	3585.0
4+	v 2384.55	(A)4+ v	
		,	
2+	v 849.45	(A)2+ v	
0+	0.0	_	

 $^{5\,2}_{2\,6}\mathrm{Fe}_{26}$

[‡] From $^{28}\text{Si}(^{28}\text{Si}, 2\text{p}2\text{n}\gamma)$.

 $[\]$ From $^{52}\mathrm{Co}\ \epsilon$ decay.

[#] Relative photon branching for each level.
© Typical values of R(ado), in $^{28}Si(^{28}Si,2p2n\gamma)$, for $\theta=60$ in the gasp geometry are ≈1.17 for a stretched $\Delta J=2$ transition and ${\approx}0.85$ for a stretched $\Delta J{=}1$ transition. See 1998Ur05 and 2005Ga20.

⁵²Co ε Decay 1997Ha04

 $Parent~^{52}Co:~E=0;~J\pi=(6+);~T_{1/2}=115~ms~23;~Q(g.s.)=14420~syst;~\%\epsilon+\%\beta^+~decay=100.$

 $^{52}\text{Co-T}_{1/2}$: From 1997Ha04. Source produced by $^{40}\text{Ca}(^{14}\text{N},2\text{n})$ E=62 MeV. HPGe detectors and scin; measured Ey, Iy. See also 1990MiZK, 1995HaZS.

⁵²Fe Levels

E(level)	$J\pi^{\dagger}$	${\color{red}{T_{1/2}}^{\dagger}}$
0.0	0 +	8.275 h 8
849.44 10	2+	
2384.73 18	4+	
4326.4 4	(6+)	
5655.4 5	6+	

 $^{^{\}dagger}$ From adopted levels.

β+,ε Data

 $\gamma(^{52}Fe)$

Iy normalization: from assuming mult=[E2] for 849y, $\alpha{=}0.00012$ 22.

Εγ	E(level)	Ιγ [†]	Comments
849.43 10	849.44	100	$I\gamma$: possibly overestimated; source may contain an expected but yet unobserved 2+ isomer of 52 Co (1997Ha04).
$1328.95 \ 25$	5655.4	63 7	
$1535.27 \ 15$	2384.73	69 <i>6</i>	
1941.7 4	4326 . 4	46 10	$ ext{I}\gamma$: connected for contribution from $ ext{}^{50} ext{Mn}$ decay γ.

 $^{^{\}dagger}$ For absolute intensity per 100 decays, multiply by 0.9998.

[†] Absolute intensity per 100 decays.

⁵³Co P Decay (247 ms) 1970Ce04,1972Ce01,1976Vi02

Parent $^{53}\text{Co:}$ E=3190; J π =(19/2-); T $_{1/2}$ =247 ms 12; Q(g.s.)=1602 19; %p decay=?

 $^{53}\text{Co-T}_{1/2}\text{: From 1972Ce01. Others: 260 ms }20\text{ (1976Vi02), 242 ms }15\text{ (1970Ce04), 218 ms (1993Xu04)}.$

⁵³Co-E: From 1972Ce01.

 $1970Ce04, 1972Ce01: \ ^{53}Co \ produced \ by \ ^{54}Fe(p,2n), \ E=35 \ MeV, \ measured \ E(p), \ I(p), \ a \ counter \ telescope, \ 14 \ m \ \Delta E \ detectors, \ 50 \ m \ E \ detector.$

1976ViO2: 53 Co produced by 40 Ca(16 O,p2n), E=65 MeV, measured: E(p), $T_{1/2}$, a semiconductor counter telescope, 14-19 m for the ΔE detectors, 107-250 m for the E detectors.

1993Xu04: ^{53}Co produced by $^{28}Si(^{28}Si,p2n)$, E=104, 115.5, and 127.2 MeV, measured: E(p), $T_{1/2}$, three particle telescopes, each consisting of three semiconductor detectors: 20 m for the ΔE detector, 250 m for the E detector, 250 m for the E_{rej} detector which was used as a rejection detector to eliminate positron interference.

 $^{52}{
m Fe}$ Levels

 $\begin{array}{ccc}
E(level) & J\pi^{\dagger} \\
\hline
0.0 & 0+\\
(849) & 2+
\end{array}$

† From adopted levels.

Protons

Particle normalization: from comparison of measured and calculated σ for $^{54}Fe(p,2n)$ (1972CeO1).

E(p)	E(⁵² Fe)	I(p)	Comments
≈ 7 5 O	(849)	<0.006	F(a), From 1079Ca01
≈ 750	(049)	<0.006	E(p): From 1972Ce01. Ip: p decay to 2+ 849-keV state in ⁵² Fe was not observed, other: <0.05 (1976Vi02).
1590 30	0.0	≈ 1.5	E(p): From 1972Ce01. Others: 1570 30 (1970Ce04), 1540 (1993Xu04), and 1590 (1976Vi02).

⁵³Ni εp Decay 1976Vi02

 $Parent\ ^{53}Ni:\ E=0.0;\ J\pi=(7/2-);\ T_{1/2}=45\ ms\ 15;\ Q(g.s.)=10279\ syst;\ \%\epsilon p\ decay\approx 45.0.$

 53 Ni- $T_{1/2}$: From 1976Vi02. Other: < 85 ms (1993Xu04).

1976ViO2: 53 Ni produced by 40 Ca(16 O,3n), E=65 MeV, measured: E(p), $T_{1/2}$, a semiconductor counter telescope, 14-19 m for the ΔE detectors, 107-250 m for the E detectors. Other: 1979ViZY.

1993Xu04: 53 Ni produced by 28 Si(28 Si(28 Si(3 N), E=104, 115.5, and 127.2 MeV, measured: E(p), $T_{1/2}$, three particle telescopes, each consisting of three semiconductor detectors: 20 m for the ΔE detector, 250 m for the E detector, 250 m for the E_{rej} detector which was used as a rejection detector to eliminate positron interference.

⁵²Fe Levels

 $\frac{E(level)}{849} \qquad \frac{J\pi^{\dagger}}{2}$

† From adopted levels.

Delayed protons

† For intensity per 100 decays, multiply by ≈0.45.

⁹Be(⁵⁵Ni,Xγ) 2005Wo01

 $E=171\ MeV/nucleon,\ Measured\ E\gamma,\ I\gamma,\ (particle)\gamma-coin,\ EUROBALL\ Ge-Cluster\ detectors,\ MINIBALL\ Ge\ detectors,\ BaF2-HECTOR\ detectors,\ fragment\ separator.$

⁵²Fe Levels

 $\begin{array}{ccc}
E(level) & J\pi^{\dagger} \\
0.0 & 0+\\
849 & 2+
\end{array}$

† From adopted levels.

 $\gamma(^{52}Fe)$

 $\frac{E(level)}{849} \qquad \frac{E\gamma}{849}$

²⁸Si(²⁸Si,2p2nγ) 1998Ur05,2004Ur02,2005Ga20

Includes $\mathrm{Si}(^{36}\mathrm{Ar},\!X\gamma)$ from 2003Ax01 and 2005Ga20.

1998Ur05,2004Ur02: E=115 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, (charged particle) γ (coin), and lifetimes with the GASP array of 40 Compton-suppressed large volume HPGe detectors, an inner ball of 80 BGO crystals and the ancillary charged-particle detector ISIS, of 40 E- Δ E Si telescopes. see also 1998Le43.

2005Ga20, 2003Ax01: $Si(^{36}Ar,X\gamma)$ at E=170 MeV (2005Ga20), 209 MeV (2003Ax01), measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ coin, $\gamma\gamma(\theta)$ using two composite Ge detectors (a Cluster and a large Clover), a 60% single Ge crystal, a second single crystal low-energy Ge detector and a plastic scintillator.

All data are from 1998Ur05, unless otherwise stated.

⁵²Fe Levels

E(level)‡	$\frac{J\pi^{\dagger}}{}$	§	Comments
0.0#	0+		
849.57# 24	2+		
2383.9# 3	4+	0.22 ps 5	
3584.8@3	4+		$J\pi$: from 52 Fe adopted levels.
4324.9# 3	6+	0.17 ps 5	
4396.1 4	3 –		
4871.7@3	6+	0.21 ps 8	
5136.9 4	5 –		$J\pi$: from adopted levels.
6360.21# 24	8+	0.15 ps 5	$T_{1/2}$: 1998Ur05 determined the lifetime of this level from the best fit of the experimental spectrum with that obtained after summing the calculated line shape of the 2035 γ -ray and the experimental line shape of the 2045 contaminant line from 49 Cr.
6492.63@ 22	8+	0.18 ps 4	
6957.5 4	12+	45.9 s 6	%IT<0.004 (1979Ge02).
			E(level): from 2005Ga20; Others: 6957.3 keV 5 (2003Ax01,2004Ur02) and 6820 keV 130 (1998Ur05). Τ _{1/2} : from ^{52m} Fe ε decay (1979Ge02).
7381.4# 3	10+		1 _{1/2} . Hom Fe & decay (1979de02).

 $^{^{\}dagger}$ Assignments are based on the R(ADO) analysis of $\gamma\!\!-\!\!\mathrm{rays}$ by 1998Ur05, unless otherwise stated.

 $[\]dot{\bar{\tau}}$ From least-squares fit to Ey's; $\Delta E \gamma = 0.3$ keV assumed for each transition, unless otherwise stated.

[§] From DSAM in 1998Ur05.

^{# (}A): g.s. band.

^{@ (}B): 4+ band (2004Ur02).

$^{28}{\rm Si}(^{28}{\rm Si},2p2n\gamma) \\ \phantom{^{28}{\rm Si}(^{28}{\rm Si},2p2n\gamma)} \\ \phantom{^{28}{\rm Si}(^{28}{\rm Si},2p2n\gamma$

$\gamma(^{52}{ m Fe})$

 $R(ADO) = [[I\gamma(\theta) + I\gamma(180~-\theta)]/2]/I\gamma(90~).~Values~given~for~R(ADO)~were~measured~by~1998Ur05~at~\theta=60~.$

E(level)	Εγ	Ιγ†	Mult.‡	Comments
849.57	849.5 3			
2383.9	1534.5 3	100.0 6		R(ADO)=1.16 4.
3584.8	2735.03	15.0 17		
4324.9	1941.0 3	55 3		R(ADO)=1.15 6.
4396.1	3546.3 3	7.0 15		R(ADO)=0.92 8.
4871.7	1286.7 3	5.0 10		
	2488.0 3	21.9 15		$R(ADO)=1.34 \ 19.$
5136.9	740.6 3	5.5 6	E 2	$R(ADO)=1.27 \ 11.$
	1553 1	1.0 5		Eγ: Uncertainty assigned to transition by evaluators.
				Mult.: ΔJ=1 transition (implied by spin assignment made in 1998Ur05).
	2753.0 3	10.0 20		Iγ: Intensity of transition has been corrected for the angular distribution by 1998Ur05.
6360.21	2035.3 3	21 3		$R(ADO)=1.46 \ 18.$
6492.63	1620.8 3	14 3		
	2167.6 3	20.7 20		R(ADO)=1.24 11.
6957.5	465.0 \$ 3	0.009 \$ 3	E4 §	$B(E4)\downarrow(W.u.)=0.0035$ 13.
	597.1 8 3	0.012 \$ 4	E4 §	$B(E4)\downarrow(W.u.)=0.00046$ 17.
7381.4	888.5 3	11.5 8		$R(ADO)=1.20 \ 8.$
	$1021.4\ 3$	13.1 25		

- † Extracted from the 90 spectrum in coincidence with the 850 keV 2+ to 0+ transition in 1998Ur05, so as to avoid the uncertainties introduced by the line shape broadening.
- $\dot{\bar{\tau}}$ Typical values of R(ADO), in 1998Ur05, for θ =60 in the gasp geometry are \approx 1.17 for a stretched ΔJ =2 transition and \approx 0.85 for a stretched ΔJ =1 transition.
- \S From 2005Ga20. Intensities based on combined information of $\gamma\gamma$ coin matrices with and without β -detector veto. For details on methods used to evaluate the intensity, refer to 2005Ga20. Intensity is in photons/100 decays.

$^{50}{\rm Cr}(^{3}{\rm He,n}) \quad 1975Bo14, 1975Al05, 1972Ev02$

- 1975Bo14: E=13 MeV, measured $\sigma(\theta,E(n))$, tof (time resolution: 1.3-2 ns FWHM, 17.5-meter path). The neutrons were detected in 12 detectors placed between 0 and 55 at intervals of 5. DWBA analysis.
- 1975Al05: E=15 MeV, measured $\sigma(\theta,E(n))$, tof (time resolution: ≈ 0.75 ns FWHM, 4-meter path). The neutrons were detected in 10.2 cm diameter NE 213 liquid scintillators of thickness 2.5 cm or 3.8 cm mounted on 12.7 cm photomultipliers. DWBA analysis.
- 1972Ev02: E=18,21 MeV, measured $\sigma(\theta,E(n))$, tof (energy resolution: 220-500 keV at 28 MeV, 8.7-meter path), The neutrons were detected in 12.7 cm diameter NE 213 liquid scintillator of thickness 2.54 cm coupled to an XP 1041 photomultipliers. DWBA analysis. See also 1974Ev02.
- 1975Al05 concentrate on 0+ pairing-vibrational states. Discussion and classification of 0+ states in terms of pairing-vibration model also undertaken by 1972Ev02. See these works for details.
- All data are from 1975Bo14, except as noted.

⁵²Fe Levels

E(lev	el)	_L_	dσ/d	ΙΩ [†]
0	. 0	0	620	20
840	30	2	70	10
2360	50	4	14	3
2750	30	2	28	5
3590	30	4	40	5
4160	20	0	230	15
4430	30	2	54	15
5360	30	0	19	5
5760	20	0	180	20
5820	30	2	28	10
6070	30	(2)	30	7
6520	30	3	52	7
6700	30	2	75	10
7120	50			

Continued on next page (footnotes at end of table)

⁵⁰Cr(³He,n) 1975Bo14,1975Al05,1972Ev02 (continued)

⁵²Fe Levels (continued)

E(lev	el)	L	dσ/d	lΩ [†]	Comments
7280		_		_	
7470		2	25	5	
7640					
7820					
8050	20	0	690	40	T=1.
					Identified as IAS $(^{52}\mathrm{Mn}$ 2474 keV), see 1975Bo14 and 1975Al05.
8360	20	2	140	15	T=1.
					Identified as IAS $(^{52}\mathrm{Mn}$ 2796 keV).
8570	20	0	420	50	T=2.
					Identified as IAS $(^{52}\mathrm{Mn}\ 2926\ \mathrm{keV},\ ^{52}\mathrm{Cr}\ \mathrm{g.s.}).$
9010	30	2	68	10	
9130	50				
9250	50				
9470	50				
9770	50				
10060	30	2	55	7	T=2.
					Identified as IAS (⁵² Mn 4439 keV, ⁵² Cr 1434 keV).
10310	20	0	95	7	
10810					
10990		0	185	15	T=2.
					Identified as IAS (52 Mn 5491 keV, 52 Cr 2647 keV).
11440	50				140101101 to 110 (111 0101 101), 01 2011 101).
11640					
11780		2	60	10	T=2.
11100	50	4	00	10	I = 2. Identified as IAS ($^{52}\mathrm{Cr}$ 3162 keV).
					identified as IAD (Of 5102 KeV).

 $[\]label{eq:continuous} \dot{\dagger} \ d\sigma/d\Omega \ (\ b/sr\ c.m.)\ at\ \theta=0 \quad for\ L=0,\ \theta=20 \quad for\ L=2,\ \theta=25 \quad for\ L=3,\ \theta=35 \quad for\ L=4.$

$^{50}\mathrm{Cr}(^{3}\mathrm{He,n}\gamma)$ 1977Ir02

 $E=8~MeV,~measured~n\gamma-coin,~\gamma\gamma-coin,~DSAM.~a~vertical-type~55~cm^3~Ge(Li)~detector,~a~horizontal-type~55~cm^3~Ge(Li)~detector,~liquid~scintillotos~NE-213~neutron~detector.$

Other: 1976GeZZ.

$^{52}{ m Fe}$ Levels

E(level)	$-J\pi^{\dagger}$	${\color{red}{T_{1/2}}^{\ddagger}}$	Comments
0.0	0+		
849.6 7	2+	>0.7 ps	
2385.7 10	4+	0.28 ps + 14 - 21	
2759.8 9	2+	0.14 ps + 9 - 5	
3586.7 12	4+	0.28 ps + 21 - 7	
4145.8 21	0+		
4329.7 23	6+		J π : 1944 γ is very weak as the yrast 6+ to 4+ transition.
4397 3	3 –		
4851.7 14	(5-,6+)	0.5 ps + 23 - 2	
5139.6 13			

 $^{^{\}dagger}$ From adopted levels, except as noted.

 $\gamma(^{52}Fe)$

E(level)	Εγ	Ιγ	i —
849.6	849.5	7 100	
2385.7	1536.0	7 26	2
2759.8	1910 2	6	2

Continued on next page (footnotes at end of table)

[‡] DSAM measurements.

⁵⁰Cr(³He,nγ) 1977Ir02 (continued)

 $\gamma(^{52}Fe)\ (continued)$

E(level)	Εγ	$I\gamma^{\dagger}$
2759.8	2760 1	19 2
3586.7	2737 1	12 2
4145.8	3296 2	5 2
4329.7	1944 2	2 1
4397	3547 3	6 2
4851.7	2466 1	12 2
5139.6	2380 1	2 1
	4286 4	5 2

[†] Relative photon intensity.

$^{50}Cr(\alpha,2n\gamma) \qquad 1977Ev03$

 $E=23.5,\ 27.2\ MeV,\ measured\ \sigma(90\ ,E\gamma),\ \gamma\gamma\ coin,\ nn\gamma\ coin.\ two\ 60\ cm^3\ Ge(Li)\ counters,\ two\ conical\ NE\ 213/RCA\ 8854\ counters.$

$^{52}{ m Fe}$	Levels
----------------	--------

E(leve	1)	$J\pi^{\dagger}$
0.0		0+
848.3	9	2+
2383.3	13	4+

[†] From adopted levels.

$$\gamma(^{52}Fe)$$

E(level)	Εγ	$I\gamma^{\dagger}$	
848.3	848.3 9	4 1	
2383.3	1535.0 9		

[†] Photon intensity normalized to I γ =100 for 870-keV (7+) to g.s. (6+) transition in 52 Mn produced in the experiment via 50 Cr(α ,pn). The small relative yield of 52 Fe is discussed (1977Ev03).

Coulomb Excitation 2004Yu07

Measured Ey, γ (scattered 52 Fe) coin, cross section with segmented germanium array of 18 detectors, the intrinsic energy resolution of the detectors is approximately 2.5-2.8 keV at 1332 keV, a total of 13 segmented HPGe detectors were mounted in the array for the present experiment, six detectors in the ring at 37 to the beam direction, and seven in the 90 ring.

See also 2004Mu09 and 2005Ga15.

 $^{52}{
m Fe}$ Levels

E(level)	$J\pi$	T _{1/2}	Comments	
0.0 849.1 5	0 + 2 +	7.8 ps 10	$T_{1/2}$: from B(E2). B(E2)\frac{1}{2} = 0.082 10.	

 $^{^{197}}Au(^{52}Fe,^{52}Fe'\gamma)$ at $E(^{52}Fe){=}65.2$ MeV/nucleon.

⁵²Fe produced by impinging the primary beam of ⁵⁸Ni at 140 MeV/nucleon on a 376 mg/cm2 ⁹Be target, and selecting in the large-acceptance a 1900 fragment separator. A ¹⁹⁷Au (257.7 mg/cm2) target used for Coulomb excitation.

Coulomb Excitation 2004Yu07 (continued)

 $\gamma(^{52}Fe)$

E(level) Εγ
849.1 849.1 5

$^{54}{\rm Fe}(p,t) \\ \phantom{^{54}{\rm Fe}(p,t)} 197\underline{8}\underline{{\rm De}18,1977}\underline{{\rm Su}01,1971}\underline{{\rm Vi}03}$

1977Su01: E=51.9 MeV, magnetic spectrograph, $\approx\!80$ keV FWHM, measured $\sigma(E(t),\theta)$. 1978De18: E=45 MeV, magnetic spectrograph, $\approx\!15$ keV FWHM, measured $\sigma(E(t),\theta)$. 1971Vi03: E=40 MeV, $\Delta E-E$ silicon counter telescope, $\approx\!100$ keV FWHM, measured $\sigma(\theta)$.

Others: 1978Ko27, 1978ShZK, 1979Sh09, 1981Ku11.

⁵²Fe Levels

E(level)†	L&	(σ/2π)(b)	Comments
0.0	0	13.4	
850 5	2	6.0	
2385 5	4	1.5	
2762 5	(2)	0.27	
3583 <i>5</i>	4	1.3	L: from 1978De18 and 1977Su01. 1971Vi03 assigned L=2.
4142 10	0	0.57	
4326 8		0.55	
4400 5	3	6.7	L: from 1978De18 and 1977Su01. 1971Vi03 assigned L=4.
4456 8	2	0.44	
4869 15	(5,6)	0.44	1971Vi03 assigned L=(5), 1977Su01 assigned L=(5,6).
4896 15	(0,0)	0.11	1011100 designed 2-(0), 10116de1 assigned 2-(0)0).
5134 8	5	2.7	L: from 1978De18. 1971Vi03 assigned L=(3).
5328 8	4	0.92	2 10.02-010. 1011.100 dbb.g.net 2-(0).
5363 5	0	3.1	
5439 15	3	0.32	
5483 20	4	0.32	
5529 20	4	0.11	
5563 8	(3)	0.10	
5652 8	6	1.6	T=1 (1978De18).
0002 0	U	1.0	Identified as IAS (⁵² Mn g.s.), see 1978De18, 1977Su01, 1971Vi03.
5718 <i>8</i>	0	0.66	ruenomed as IAB (Mil g.s.), see 1970De10, 1977Bu01, 1977V100.
5792 10	U	0.48	
5829 5	2	0.48	
5965 <i>15</i>	4	0.88	
6034# 5	2		T 1 (1079D-19)
6044# 5	2	3.9 2.6	T=1 (1978De18).
6174 15	(6)	0.23	T=1 (1978De18).
	(0)	0.25	
6231 <i>15</i> 6416 <i>5</i>	4	4.7	T=1 (1978De18,1977Su01,1978Ko27).
0410 5	*	4.7	This level appears to correspond to 6390 keV 20 level of 1977Su01 and 6380 keV 30 level of 1971Vi03. 1977Su01 and 1978De18 assigned L=4. 1971Vi03 assigned L=5.
6454 15		0.49	
6483 5	2	0.85	
6531 10		0.27	
6564 8		0.39	
6634 10	(0)	0.25	
6714 8		0.65	L: L=2 for E=6670 (1971Vi03).
6744 15			
6772 8	2	0.19	
6882 5	1	0.25	
6927 15	0	2.0	
7013 5	3	0.95	
7124 10	(4)	0.31	
7261 15	(6)	0.32	
7289 8	(0)	0.61	
7338 10		0.13	
7463 8	2	0.13	
			Continued on next page (footnotes at end of table)

$^{54} Fe(p,t) \\ \hspace*{0.2in} 1978 De18, \\ 1977 Su01, \\ 1971 Vi03 \ (continued)$

 $^{52}\mathrm{Fe}$ Levels (continued)

E(level) [†]	L&	$(\sigma/2\pi)(-b)$	Comments
7510 <i>15</i>		0.20	
7611 10	6	0.84	T=1 (1978De18).
7636 15	4	0.73	T=1 (1978De18).
7787 10	4	0.26	1-1 (1976De16).
7817 15		0.16	
7935 10	2	0.60	
8037 15	0	0.17	
8067 8	O	0.23	
8097 10		0.32	
8122 15		0.13	
8146 10	3	0.18	
8184 10	9	0.18	
8207 8	(3)	0.54	
8240 10	(3)	0.72	
8327 10	(3)	0.64	
8354 5	2	1.6	T=(1) (1978De18).
8401 8	2	0.55	1-(1) (1316De16).
8425 15	2	0.35	
8461 10		0.25	
8511 8	4	0.76	
8535 5	4	2.7	
8561‡ 5	0	7.3	T=2 (1978De18).
0001. 0	Ü		Identified as IAS (52 Cr g.s., 52 Mn 2926 level). See 1978De18, 1971Vi03, 1978Ko27.
8618 8		0.55	
8661 15	(4)	0.27	
8677 10		0.34	
8727 15			
8748 10	4	1.3	T=(1) (1978De18).
8770 10	(3)	0.87	
8832 10		0.31	
8872 10			
8900 8	(2)	0.44	
8936 10		0.35	
8962 \$ 10	(6)	2.2	T=(1) (1978De18).
8985 10			
9044 15		0.29	
9059 15		0.46	
9213 8		0.56	
9279 8	4	1.3	
9311 8			
9338 10		0.76	
9357 15			
9458 10		0.36	
9497 8		0.57	
10006 5	(2)	1.4	$T=(2)~(1978De18).$ Identified as IAS ($^{52}Cr~1434~keV$, $^{52}Mn~4390~keV$), see 1978De18 and 1971Vi03.
10049 10		0.56	
10332 5	0	1.5	
-0002	•	1.0	

 $^{^{\}dagger}$ From 1978De18, except as noted. Level energies of 1978De18 are systematically pprox 25 keV higher than those of 1977Su01.

 $^{^{\}frac{1}{4}}$ Doublet of 0+ states separated by ${\approx}4$ keV (1978De18).

 $[\]$ Level with probable multiplet structure (1978De18).

^{# 1971}Vi03 and 1977Su01 reported a single state at 6020 keV, which is probably an unresolved combination of these states.

1971Vi03 assigned L=2 to the 6020 level, in agreement with the values quoted here from 1978De18. 1977Su01 assign L=4. L=2 is favored by the evaluators.

[&]amp; Assignments based on analysis of angular distribution data of 1977Su01 and 1978De18. Both works also include DWBA fits with assumed shell-model configurations.

Adopted Levels

⁵²Co Levels

Cross Reference (XREF) Flags

A $^{52}\mathrm{Ni}\ \epsilon\ \mathrm{Decay}$

E(level)	Jπ	XREF	T _{1/2}	Comments
0.0	(6+)	A	115 ms 23	T _{1/2} : from 1997Ha04. %ε+%β ⁺ =100.
				J π : based on apparently allowed ϵ to 6+ state in 52 Fe and analogy to 44 V (4 particles in f7/2 shell, 4 holes in f7/2 shell for 52 Co).
≈ 2320	(0)+	A		Jπ: probable superallowed decay with log ft $pprox 3.7$ from 0+ 52 Ni.

⁵²Ni ε Decay 1994Fa06

 $Parent~^{52}Ni;~E=0;~J\pi=0+;~T_{1/2}=38~ms~5;~Q(g.s.)=11260~syst;~\%\epsilon+\%\beta^+~decay=100.$

Source produced by $\mathrm{Ni}(^{58}\mathrm{Ni},X)$, E=68 MeV/nucleon, thick natural nickel target, mass separation at GANIL. Implanted the $^{52}\mathrm{Ni}$ in a silicon detector (150 m) in a microstrip gas counter.

Measured the half-life of $^{52}\mathrm{Ni}$ and the energies of β -delayed protons emitted during the decay of $^{52}\mathrm{Ni}$. Two Proton lines have been observed at EP=1060 50 and 1340 60 keV with branching ratios of 0.06 I and 0.11 I, respectively. Analyzed origin of the two proton peaks: The proton line at 1340 keV is attributed to two decays from an IAS (0+, ispin=2, DM=-31516 keV) and a 1+ level (22 kev below the IAS) of $^{52}\mathrm{Co}$ to the ground state of $^{51}\mathrm{Fe}$, respectively. The proton line at 1060 keV is also explained by two decays from the IAS to the first excited state in $^{51}\mathrm{Fe}$ and other 1+ level (294 kev below the IAS) in $^{52}\mathrm{Co}$ to the ground state of $^{51}\mathrm{Fe}$, respectively. The IAS and two 1+ levels in $^{52}\mathrm{Co}$ are populated from the ground state of $^{52}\mathrm{Ni}$.

Partial decay scheme is proposed by 1994Fa06.

⁵²Co Levels

E(level)	$J\pi^{\dagger}$	${\rm T}_{1/2}^{\dagger}$	Comments
0.0 ≈2320	(6)+	115 ms 23	E(level): from measured En=1340 60 (1994Fa06) to 51 Fe(σ s.) and adopted Sn(52 Co)=980 syst

[†] From adopted levels.

β+,ε Data

<u>Εε</u>	E(level)	Ιβ+	ε	Log ft	$I(\epsilon+\beta^+)$	Comments
(8940)	≈ 2 3 2 0	17.0 14	0.016 2	3.72 8	17 2	$I(\epsilon+\beta^+)$: from % $I(p)=11$ I for Ep=1340 60 and % $I(p)=6$ I for Ep=1060 50 (1994Fa06), assuming these are transitions from the 52 Co IAS to the ground and first excited states of 51 Fe, respectively. However, the 1340 p could include a small component from a postulated 1+ state ≈ 22 keV below the IAS and the 1060 p could alternatively feed the 51 Fe g.s. from a postulated 1+ level ≈ 294 keV below the IAS, Also γ deexcitation of the IAS cannot be ruled out.

Adopted Levels

 $Q(\beta^-) = -20030 \ SY; \ S(n) = 19287 \ SY; \ S(p) = 2669 \ SY; \ Q(\alpha) = -6918 \ SY \ \ 2003 Au 03.$

Produced by $\mathrm{Ni(^{58}Ni,X)}$, 1987PoO4, 1994FaO6. Projectile fragments isotope separation. Ions identified by time-of-flight and energy loss in Si detector.

$^{52}\mathrm{Ni}$ Levels

Cross Reference (XREF) Flags

A $^{54}\mathrm{Zn}$ 2p Decay: 3.2 ms

E(level)	$\frac{J\pi}{}$	$\frac{XREF}{}$	T _{1/2}	Comments
0.0	0+	A	38 ms 5	$%\epsilon + \%\beta^{+} = 100; \%\beta^{+}p = 17.0 \ 14 \ (1994Fa06).$
				$\%\beta^+p$: A low energy (<500 keV)p group may have gone undetected in 1994Fa06's experiment.
				$ m T_{1/2}$: from 1994Fa06, $ m T_{1/2}$ was determined on the basis of the proton-peak intensities as a
				function of the elapsed after implantation.
1480 20		Α		E(level): Decay energy of two proton emission from 54 Zn from seven events.

⁵⁴Zn 2p Decay: 3.2 ms 2005Bl15

Parent $^{54}{\rm Zn}$: E=0.0; J π =0+; T $_{1/2}$ =3.2 ms +18-8; Q(g.s.)=1480 20; %2p decay=84 13.

First Identification of ⁵⁴Zn nuclide.

Measured E(fragments), E β , fragment energy loss, time of flight with four Si detectors and a double-sided Si-strip detector (DSSSD). The detector setup of 2005B115 yielded eight fragment identification parameters to unambiguously identify the different fragments and reject any background. All eight parameters of an event had to lie within three σ 's of the predefined values in order to be accepted. σ =100fb. β -delayed proton decay of 52 Ni with energies comparable to those in ENSDF were also observed, indicating the occurrence of 2p radioactivity.

⁵²Ni Levels

E(level)	$J\pi$	Comments
0.0	0+	
1480 20		E(level): Decay energy of two proton emission from ⁵⁴ Zn from seven events.

 $^{52}_{29}{
m Cu}_{23}$

 $_{29}^{52}Cu_{23}$

Adopted Levels

 $S(p)=-1523 SY; Q(\alpha)=-6691 SY 2003Au03.$

⁵²Cu Levels

E(level)	Jπ	Comments
0.0?	(3+)	%p=? (2003Au02). Jπ: estimated from systematic trends in neighboring nuclides with the same Z or N (2003Au02).

⁵⁴Zn-T_{1/2}: From decay-time distribution of first decay events after ⁵⁴Zn implantation; total of seven events.

 $^{^{54}}$ Zn-Q(g.s.): S(2p)=1510 410 (sys,2003Au03).

⁵⁴Zn: Mass excess=-6.58 MeV 4; deduced from 2p decay energy and mass excess of -22.64 MeV 4 for ⁵²Ni (from C. Dossat, Ph.D. thesis (University Bordeaux I, 2004)).

 $^{^{54}{\}rm Zn} - \%2p \ decay; \ \%2p = 87 \ + 10 - 17 \ (2005Bl15).$

 $^{^{54}\}mathrm{Zn}$ isotope produced by the Ni($^{58}\mathrm{Ni^{26+}}$,X) quasifragmentation reaction at E=74.5 MeV/nucleon. Fragments mass-separated by the α -LISE3 separator and identified on event-by-event basis with two micro-channel plate (MCP) detectors and four Si detectors.

REFERENCES FOR A=52

```
1940He01
             A.Hemmendinger - Phys.Rev. 58, 929 (1940)
1953Sa11
             B.W.Sargent, L.Yaffe, A.P.Grav - Can.J.Phys. 31, 235 (1953)
1953Sc56
             J.E.Schwager, L.A.Cox - Phys.Rev. 92, 102 (1953)
1954Ko07
             L.Koester\ -\ Z.Naturforsch.\ 9a,\ 104\ (1954)
1956Ru45
             G.Rudstam - Thesis, University of Uppsala (1956)
1957Ma25
             M.Mazari, W.W.Buechner, A.Sperduto - Phys.Rev. 107, 1383 (1957)
1958E142
             F.A.El Bedewi, S.Tadros - Nuclear Phys. 8, 71 (1958)
1959Ju40
             J.O.Juliano, C.W.Kocher, T.D.Nainan, A.C.G.Mitchell - Phys.Rev. 113, 602 (1959)
1959Of14
             S.Ofer, A.Schwarzschild - Phys.Rev.Letters 3, 384 (1959)
1960Ad01
             B.M.Adams, D.Eccleshall, M.J.L.Yates - Proc.Conf.Reactions between Complex Nuclei, 2nd, Gatlinbrug, A.Zucker,
              E.C.Halbert, F.T.Howard, Eds., John Wiley and Sons, Inc., New York, p.95 (1960)
             D.S.Andreev, A.P.Grinberg, G.M.Gusinskii, K.I.Erokhina, I.Kh.Lemberg - Izvest.Akad.Nauk SSSR, Ser.Fiz. 24, 1474
1960An09
              (1960); Columbia Tech. Transl.24, 1466 (1961)
1960Da02
             A.W.Dalton, A.Kirk, G.Parry, H.D.Scott - Proc.Phys.Soc.(London) 75, 95 (1960)
1960En07
             H.A.Enge - MIT-LNS Progr. Report, p.98 (May 1960); TID-11592 (1960)
1960Ka20
             T.Katoh, M.Nozawa, Y.Yoshizawa, Y.Koh - J.Phys.Soc. Japan 15, 2140 (1960)
1960Le07
             I.Kh.Lemberg - Proc. Conf. Reactions between Complex Nuclei, 2nd, Gatlinburg, A.Zucker, E.C.Halbert, F.T.Howard,
              Eds., John Wiley and Sons, Inc., New York, p.112 (1960)
1960Og03
             H.Ogata, H.Itoh, Y.Masuda, K.Takamatsu, M.Kawashima, A.Masaike, I.Kumabe - J.Phys.Soc.Japan 15, 1726 (1960)
1961Mc18
             F.K.McGowan, P.H.Stelson, R.L.Robinson - Proc.Conf.Electromagnetic Lifetimes and Properties Nuclear States,
              Gatlinburg, Tennessee (October 1961); NAS-NRC Publ.974, p.119 (1962)
1961Na06
             T.D.Nainan - Phys.Rev. 123, 1751 (1961)
             R.K.Jolly, E.K.Lin, B.L.Cohen - Phys.Rev. 128, 2292 (1962)
1962Jo05
1962Ma20
             K.Matsuda - Nuclear Phys. 33, 536 (1962)
1962Sh29
             R.Sherr - Proc.Conf.Direct Interactions and Nucl.Reaction Mechanisms, Padua, Italy, E.Clementel, C.Villi, Eds.,
              Gordon and Breach, New York, p.1025 (1962)
1962Va24
             D.M.Van Patter, N.Nath, S.M.Shafroth, S.S.Malik, M.A.Rothman - Phys.Rev. 128, 1246 (1962)
1962Wi08
             R.R.Wilson, A.A.Bartlett, J.J.Kraushaar, J.D.McCullen, R.A.Ristinen - Phys.Rev. 125, 1655 (1962)
1963Ma41
             S.Malmskog - Nucl. Phys. 49, 239 (1963)
1964Be32
             J.Bellicard, P.Barreau, D.Blum - Nucl. Phys. 60, 319 (1964)
1964Bi01
             J.H.Bjerregaard, P.F.Dahl, O.Hansen, G.Sidenius - Nucl. Phys. 51, 641 (1964)
1964Bo22
             E.C.Booth, B.Chasan, K.A.Wright - Nucl. Phys. 57, 403 (1964)
1964Ve02
             E.Veje, C.Droste, O.Hansen, S.Holm - Nucl. Phys. 57, 451 (1964)
1965Ar06
             D.D.Armstrong, A.G.Blair - Phys.Rev. 140, B1226 (1965)
1965Bo42
             M.Bormann, E.Fretwurst, P.Schehka, G.Wrege, H.Buttner, A.Lindner, H.Meldner - Nucl. Phys. 63, 438 (1965)
1965Ca09
             J.Catala, A.Garcia, J.M.Bolta, S.Hinds, H.Marchant, A.E.Forest - Nucl. Phys. 74, 1 (1965)
1965Ka12
             G.Kaye,\ J.C.Willmott\ -\ Nucl.Phys.\ 71,\ 561(1965)
1965Ko09
             W.Kohler, K.Knopf - Z.Naturforsch. 20a, 969 (1965)
1965Ko10
             J.Kopecky, J.Kajfosz, B.Chalupa - Nucl.Phys. 68, 449 (1965)
1965Si02
             J.J.Simpson, J.A.Cookson, D.Eccleshall, M.J.L.Yates - Nucl. Phys. 62, 385 (1965)
1965St16
             P.H.Stelson, R.L.Robinson, H.J.Kim, J.Rapaport, G.R.Satchler - Nucl. Phys. 68, 97 (1965)
             N.Takahashi, S.Kato, M.Takeda, T.Yamazaki, S.Yasukawa - J.Phys.Soc.Japan 20, 1544 (1965)
1965Ta06
             D.H.White,\ B.G.Saunders,\ W.John,\ R.W.Jewell,\ Jr.\ -\ Nucl.Phys.\ 72,\ 241\ (1965)
1965Wh06
1966Fr05
             M.S.Freedman, F.Wagner, Jr., F.T.Porter, H.H.Bolotin - Phys.Rev. 146, 791 (1966)
1966Go30
             M.D.Goldberg, S.F.Mughabghab, B.A.Magurno, V.M.May - BNL-325, 2nd Ed., Suppl.No.2, Vol.IIA (1966)
1966Ma42
             A.Macgregor, G.Brown - Nucl.Phys. 88, 385 (1966)
             F.K.McGowan, P.H.Stelson, R.L.Robinson, W.T.Milner, J.L.C.Ford, Jr. - Proc.Conf.Bases for Nucl.Spin-Parity
1966Mc18
              Assignments, Gatlinburg, Tenn. (1966), N.B.Gove, R.L.Robinson, Eds., Academic Press, New York, p.222 (1966)
1\,9\,6\,6\mathrm{Me}\,0\,7
             J.R.Meriwether, I.Gabrielli, D.L.Hendrie, J.Mahoney, B.G.Harvey - Phys.Rev. 146, 804 (1966)
1966Pe16
             R.J.Peterson - Thesis, Univ.Washington (1966)
1966Ri09
             G.Rickards, B.E.Bonner, G.C.Phillips - Nucl. Phys. 86, 167 (1966)
1966Te01
             E.Teranishi, B.Furubayashi - Phys.Letters 20, 511 (1966)
1966Va03
             P.Van Assche, U.Gruber, B.P.Maier, H.R.Koch, O.W.B.Schult, J.Vervier - Nucl. Phys. 79, 565(1966)
1966Wi11
             D.C.Williams, J.D.Knight, W.T.Leland - Phys.Letters 22, 162 (1966)
1967Af03
             O.F.Afonin, A.P.Grinberg, I.K.Lemberg, I.N.Chugunov - Yadern.Fiz. 6, 219 (1967); Soviet J.Nucl.Phys. 6, 160 (1968)
1967Ar08
             N.P.Archer, T.J.Kennett - Can.J.Phys. 45, 2683 (1967)
1967Ar19
             E.Arai, H.Miessner - KFK-704 (1967)
1967B110
             S.D.Bloom,\ L.G.Mann\ -\ Nucl.Phys.\ A93,\ 252(1967)
1967Br13
             G. Brown,\ J.G.B. Haigh,\ A.E. Macgregor\ -\ Nucl. Phys.\ A97,\ 353\ (1967)
1967Ca03
             P.Carlos, R.Samama, A.Audias - Nucl. Phys. A93, 631 (1967)
1967Co13
             J.A.Cookson, D.Dandy - Nucl. Phys. A97, 232 (1967)
1967Fi06
             W.Fitz, J.Heger, R.Jahr, R.Santo - Z.Physik 202, 109 (1967)
1967Go14
             C.D.Goodman,\ J.D.Anderson,\ C.Wong\ -\ Phys.Rev.\ 156,\ 1249\ (1967)
             L.I.Govor, V.A.Ivanov - Izv.Akad.Nauk SSSR, Ser.Fiz. 31, 277 (1967); Bull.Acad.Sci.USSR, Phys.Ser. 31, 261 (1968)
1967Go17
1967Ka11
             A.A.Katsanos, J.R.Huizenga - Phys.Rev. 159, 931 (1967)
1967Mo11
             H.Morinaga, K.Miyano, K.Fujikawa, R.Chiba, K.Ebisawa, N.Kawai - Phys.Letters 25B, 22 (1967)
             A.Pakkanen - Ann.Acad.Sci.Fennicae, Ser.A VI, No.253 (1967)
1967Pa22
             C.A.Whitten, Jr. - Phys.Rev. 156, 1228 (1967)
1967Wh02
```

REFERENCES FOR A=52 (CONTINUED)

```
A.P.Bogdanov, A.V.Soroka, V.N.Tadeush, E.T.Firsov - Program and Theses, Proc. 18th
1968BoZY
              Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Riga, p.35 (1968)
1968Ch20
             R. Chapman, \ S. Hinds, \ A. E. MacGregor - Nucl. Phys. \ A119, \ 305 \ (1968)
1968Ha31
             O.Hansen, T.A.Belote, W.E.Dorenbusch - Nucl. Phys. A118, 41 (1968)
1968Ma37
             M.Matoba - Nucl.Phys. A118, 207 (1968)
1968Mo19
             C.F.Monahan, N.Lawley, C.W.Lewis, I.G.Main, M.F.Thomas, P.J.Twin - Nucl. Phys. A120, 460 (1968)
1968Ra05
             J.Rapaport, W.E.Dorenbusch, T.A.Belote - Nucl. Phys. A109, 657 (1968)
             M.N.Rao, J.Rapaport, A.Sperduto, D.L.Smith - Nucl. Phys. A121, 1 (1968)
1968Ra17
1968Re04
             S.A.Reynolds, J.F.Emery, E.I.Wyatt - Nucl.Sci.Eng. 32, 46 (1968)
1969Ar10
             K.P.Artemov, V.Z.Goldberg, V.P.Rudakov - Yadern.Fiz. 9, 266 (1969); Soviet J.Nucl.Phys. 9, 157 (1969)
1969Br04
             G.Bruge, A.Bussiere, H.Faraggi, P.Kossanyi, J.M.Loiseaux, P.Roussel, L.Valentin - Nucl. Phys. A129, 417 (1969)
1969Da02
             P.David, H.H.Duhm, R.Bock, R.Stock - Nucl. Phys. A128, 47 (1969)
1969Pe02
             R.J. Peterson \,-\, Ann. Phys. (N.Y.) \,\, 53, \,\, 40 \,\, (1969)
             N.C.Rasmussen, Y.Hukai, T.Inouye, V.J.Orphan - AFCRL-69-0071 (MITNE-85) (1969)
1969Ra10
1969Wv01
             A. Wyttenbach, H. Dulakas - J. Radioanal, Chem. 2, 287 (1969)
1970Br07
             G.Bruge, J.C.Faivre, H.Faraggi, A.Bussiere - Nucl.Phys. A146, 597 (1970)
1970Ce04
             J.Cerny,\ J.E.Esterl,\ R.A.Gough,\ R.G.Sextro\ -\ Phys.Lett.\ 33B,\ 284\ (1970)
1970Pe09
             C.M.Perey, R.J.Silva, J.K.Dickens, F.G.Perey - Phys.Rev. C2, 468 (1970)
1970Pr08
             B.M.Preedom, C.R.Gruhn, T.Y.T.Kuo, C.J.Maggiore - Phys.Rev. C2, 166 (1970)
1970Ra47
             J.Rapaport - Nucl.Data Sheets B3 5,6-85 (1970)
1971Ah02
             N.Ahmed, M.A.Rahman, M.Rahman, H.M.Sen Gupta, M.A.S.Khan, T.Hossain - Lett.Nuovo Cim. 1, 327 (1971)
1971As01
             G.Astner - Priv.Comm. (January 1971)
1971Ba10
             G.Backenstoss, S.Charalambus, H.Daniel, W.D.Hamilton, U.Lynen, C.von der Malsburg, G.Poelz, H.P.Povel - Nucl.Phys.
              A162, 541 (1971)
1971Ca19
             R.F.Casten, E.R.Flynn, O.Hansen, T.J.Mulligan - Phys.Rev. C4, 130 (1971)
1971De25
             I.Demeter, I.Fodor, L.Keszthelyi, I.Szentpetery, J.Szucs, Z.Szokefalvi-Nagy, L.Varga, J.Zimanyi, H.U.Gersch,
              W.Rudolph - Acta Phys. 30, 1 (1971)
1971FaZM
             H.Faraggi - J.Phys.(Paris) 32, Suppl.C6, 25 (1971)
1971Gu03
             A.Guichard, M.Chevallier, P.Gaillard, J.-Y.Grossiord, M.Gusakow, J.-R.Pizzi, C.Ruhla - Nucl. Phys. A164, 56 (1971)
1971Ha24
             O.Hansen, T.J.Mulligan, D.J.Pullen - Nucl.Phys. A167, 1 (1971)
1971Ha55
             O.Hansen, O.Nathan - Phys.Rev.Lett. 27, 1810 (1971)
1971Le07
             M.-C.Lemaire, J.-M.Loiseaux, M.C.Mermaz, A.Papineau, H.Faraggi - Phys.Rev.Lett. 26, 900 (1971)
1971Ma58
             B.Mayer, J.Gosset, J.L.Escudie, H.Kamitsubo - Nucl. Phys. A177, 205 (1971)
1971Mo39
             H.P.Morsch, R.Santo - Phys.Lett. 37B, 491 (1971)
1971Ok03
             K.Okano, Y.Kawase, S.Uehara - J.Phys.Soc.Jap. 30, 1231 (1971)
1971Pe11
             R.J.Peterson - Ann.Phys.(N.Y.) 65, 125 (1971)
1971Sp12
             S.W.Sprague, R.G.Arns, B.J.Brunner, S.E.Caldwell, C.M.Rozsa - Phys.Rev. C4, 2074 (1971)
1971Vi03
             J.B. Viano, Y. Dupont, J. Menet - Phys. Lett. 34B, 397 (1971)
             N.Ahmed, M.A.Rahman, M.Rahman, H.M.Sen Gupta - Nuovo Cim. 11A, 476 (1972); Erratum Nuovo Cim. 14A, 224 (1973)
1972Ah08
1972Ba55
             P.D.Barnes, R.A.Einstein, W.C.Lam, J.Miller, R.B.Sutton, M.Eckhause, J.Kane, R.E.Welsh, D.A.Jenkins, R.J.Powers,
              R.Kunselman, R.P.Redwine, R.E.Segel, J.P.Schiffer - Phys.Rev.Lett. 29, 230 (1972)
1972Bo59
             J.F.Boulter, W.V.Prestwich - Nucl. Phys. A198, 314 (1972)
1972Ce01
             J.Cerny, R.A.Gough, R.G.Sextro, J.E.Esterl - Nucl. Phys. A188, 666 (1972)
1972Ev02
             D.Evers, W.Assmann, K.Rudolph, S.J.Skorka, P.Sperr - Nucl.Phys. A198, 268 (1972)
             H.Faraggi, M.-C.Lemaire, J.-M.Loiseaux, M.C.Mermaz, A.Papineau - CEA-N-1522, p.19 (1972)
1972FaZX
1972GeZF
             R.J.Gehrke, L.D.McIsaac - ANCR-1088, p.379 (1972)
1972Ha31
             O.Hansen, O.Nathan - Phys.Lett. 39B, 419 (1972)
             H.Kelleter, D.Bachner, B.Schmidt, W.Seliger - Nucl. Phys. A183, 509 (1972)
1972Ke04
1972LeXX
             Y.Le Chalony - Thesis, Univ.Sci.Med.Grenoble (1972)
1972Pr15
             H.G.Price - J.Phys.(London) A5, 1524 (1972)
1972SiVD
             R.H.Siemssen - Symp.Two-Nucleon Transfer and Pairing Excitations, Argonne, Ill., p.273 (1972); CONF-720309 (1972)
1972WaYZ
             D.Ward, I.M.Szoghy, J.S.Forster, W.G.Davies - AECL-4314, p.9 (1972)
1973BaWF
             F.T.Baker, S.L.Davis, C.Glashausser, A.B.Robbins - Proc.Int.Conf.Nuclear Physics, Munich, Vol.1, p.408 (1973)
1973De03
             R.M.DelVecchio - Phys.Rev. C7, 677 (1973)
1973De07
             R.M.DeVries - Phys.Rev.Lett. 30, 666 (1973); Erratum Phys.Rev.Lett. 30, 940 (1973)
1973Fa12
             G.J.Faini, R.L.Ezell, E.L.Wills, H.L.Scott, W.G.Love - Nucl. Phys. A212, 541 (1973)
1973FoXW
             J.L.C.Ford, H.V.Klapdor, S.T.Thornton, H.Reiss, G.Rosner, M.Schrader - Max-Planck-Inst.Kernphysik, Heidelberg,
              Ann.Rept., p.14 (1973)
1973Ga07
             P.Gaillard, J.-Y.Grossiord, A.Guichard - Phys.Rev. C7, 1147 (1973)
1973Gu14
             A.Guichard, P.Gaillard, J.Y.Grossiord, S.Fortier - J.Phys.(Paris) 34, 771 (1973)
1973Ho44
             H.Horie, K.Ogawa - Nucl.Phys. A216, 407 (1973)
1973HoYG
             J.Hohn, G.Kiessig - ZfK-262, p.31 (1973)
             P.Martin, J.B.Viano, J.M.Loiseaux, Y.Le Chalony - Nucl. Phys. A212, 304 (1973)
1973Ma46
1973Pe12
             F.Pellegrini, I.Filosofo, M.I.El Zaiki, I.Gabrielli - Phys.Rev. C8, 1547 (1973)
1973Ph02
             Phan\ Xuan\ Ho,\ J.Bellicard,\ P.Leconte,\ I.Sick\ -\ Nucl. Phys.\ A210,\ 189\ (1973)
1974Br04
             B.A.Brown, D.B.Fossan, J.M.McDonald, K.A.Snover - Phys.Rev. C9, 1033 (1974)
1974Ce02
             A.E.Ceballos, H.J.Erramuspe, A.M.J.Ferrero, M.J.Sametband, J.E.Testoni, D.R.Bes, E.E.Maqueda, R.P.J.Perazzo,
              S.L.Reich - Nucl.Phys. A228, 216 (1974)
```

REFERENCES FOR A=52 (CONTINUED)

1974Di13 V.di Napoli, J.B.Martins, G.Persichelli, M.L.Terranova - Lett.Nuovo Cim. 11, 179 (1974) 1974Ev02 D.Evers, W.Assmann, K.Rudolph, S.J.Skorka, P.Sperr - Nucl.Phys. A230, 109 (1974) 1974Ga16 P.Gaillard, A.Guichard, J.Y.Grossiord, M.Gusakow, J.R.Pizzi, G.Bagieu, A.J.Cole, R.de Swiniarski - J.Phys.(Paris) 35, 329 (1974) 1974Ha55 G.Hardie, D.Gloeckner, L.Meyer-Schutzmeister, T.H.Braid - Phys.Rev. C10, 1829 (1974) 1974KiZY W.E.Kinney, F.G.Perev - ORNL-4806 (1974) 1974PaZZ D.M.Parkinson, D.C.Weisser, J.R.Leigh, D.Branford, S.M.Ferguson, E.C.Pollacco, N.Shikazono - Bull.Amer.Phys.Soc. 19, No.1, 46, DF10 (1974) A.R.Poletti, B.A.Brown, D.B.Fossan, E.K.Warburton - Phys.Rev. C10, 2329 (1974) 1974Po15 1974Pr04 J.G.Pronko, T.T.Bardin, J.A.Becker, T.R.Fisher, R.E.McDonald, A.R.Poletti - Phys.Rev. C9, 1430 (1974); Erratum Phys.Rev. C10, 1249 (1974) S.J.Rothman, N.L.Peterson, W.K.Chen, J.J.Hines, R.Bastar, L.C.Robinson, L.J.Nowicki, J.B.Anderson - Phys.Rev. C9, 1974Ro18 1974Ro44 A.Roy, K.V.K.Iyengar, M.L.Jhingan, S.K.Bhattacherjee - Pramana 3, 186 (1974) 1975A105 W.P.Alford, R.A.Lindgren, D.Elmore, R.N.Boyd - Nucl. Phys. A243, 269 (1975) V.V.Babenko, I.N.Vishnevsky, V.A.Zheltonozhsky, E.E.Petrosyan, V.V.Trishin - Program and Theses, Proc.25th 1975BaXO Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.53 (1975) 1975Bo14 W.Bohne, H.Fuchs, K.Grabisch, D.Hilscher, U.Jahnke, H.Kluge, T.G.Masterson, H.Morgenstern - Nucl. Phys. A245, 107 (1975)1975Ca07 T.Caldwell, D.J.Pullen, O.Hansen - Nucl. Phys. A242, 221 (1975) 1975DeXW J.E.P.de Bie, C.W.de Jager, A.A.C.Klaasse, L.Lapikas, H.de Vries, P.K.A.de Witt Huberts - IKO Progr.Rept.1975, p.3 (1975)1975DrZU C.Droste, R.Goldworm, W.Klamra, D.G.Sarantites, Z.P.Sawa - Res.Inst.Phys., Stockholm, Ann.Rept., p.65 (1975) 1975Ge01 $D.F.Geesaman,\ R.Malmin,\ R.L.McGrath,\ J.W.Noe,\ J.Cerny-Phys.Rev.Lett.\ 34,\ 326\ (1975)$ 1975Gu05 A.Guichard, W.Benenson, H.Nann - Phys.Rev. C11, 2027 (1975) J.F.Petersen, D.A.Lewis, H.P.Morsch, D.Dehnhard, T.K.Li, B.Bayman - COO-1265-170, p.199 (1975) 1975PeZM 1975RaYK M.A.Rahman, M.A.Awal, S.K.Gupta - BARC-843, p.26 (1975) 1975To06 C.W.Towsley, D.Cline, R.N.Horoshko - Nucl. Phys. A250, 381 (1975) 1976Ar13 G.Ardisson - Radiochem.Radioanal.Lett. 27, 57 (1976) 1976Av06 V.Avrigeanu, D.Bucurescu, G.Constantinescu, E.Dragulescu, M.Ivascu, D.Pantelica, R.Teodorescu - Nucl.Phys. A272, 243 (1976) 1976AwZZM.A.Awal, M.A.Rahman, H.M.Sen Gupta, G.U.Din - AECD-MIS-6, p.4 (1976) B.A.Brown, D.B.Fossan, A.R.Poletti, E.K.Warburton - Phys.Rev. C14, 1016 (1976) 1976Br29 1976Fo04 G.S.Foote, D.Branford, D.C.Weisser, N.Shikazono, R.A.I.Bell, F.C.P.Huang - Nucl. Phys. A263, 349 (1976) 1976Fu06 G.H.Fuller - J.Phys.Chem.Ref.Data 5, 835 (1976) 1976GeZZ D.F.Geesaman, J.W.Noe, R.E.Malmin, R.L.McGrath - Bull.Amer.Phys.Soc. 21, No.1, 83, HE9 (1976) 19761.012 J.R.Leigh, E.C.Pollacco, N.Shikazono, D.C.Weisser, C.Garrett - J.Phys.(London) G2, L39 (1976) 1976Li19 J.W.Lightbody, Jr., S.Penner, S.P.Fivozinsky, P.L.Hallowell, H.Crannell - Phys.Rev. C14, 952 (1976) 1976Ma12 E.Mathiak, K.A.Eberhard, J.G.Cramer, H.H.Rossner, J.Stettmeier, A.Weidinger - Nucl.Phys. A259, 129 (1976) 1976St19 A.M.Stefanini, C.Signorini, M.Morando, R.A.Ricci - Nuovo Cim. 33A, 460 (1976) 1976Ta14 T.Taylor, J.M.Davidson, S.T.Lam, D.M.Sheppard - Nucl. Phys. A274, 53 (1976) 1976ToZK V.V.Tokarevskii, V.N.Shcherbin - Program and Theses, Proc. 25th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Baku. p.344 (1976) 1976Vi02 D.J.Vieira, D.F.Sherman, M.S.Zisman, R.A.Gough, J.Cerny - Phys.Lett. 60B, 261 (1976) 1977 AwZY $M.A.Awal,\ M.A.Rahman,\ H.M.Sen\ Gupta,\ G.U.Din\ -\ INDC(SEC)-61/LN,\ p.13\ (1977)$ 1977Be22 A.Berinde, R.O.Dumitru, M.Grecescu, I.Neamu, C.Protop, N.Scintei, C.M.Simionescu, B.Heits, H.W.Schuh, P.Von Brentano, K.O.Zell - Nucl.Phys. A284, 65 (1977) 1977BhZH K.H.Bodenmiller, S.Buhl, J.Gerner, W.D.Kampp, A.Nagel, W.P.Nikutta, R.Rippler - Max-Planck Institut fur Kernphysik (Heidelberg), Jahresbericht 1976, p.110 (1977) 1977ChYO J.D.Childs - Thesis, Univ.Pittsburg (1976); Diss.Abst.Int. 38B, 248 (1977) 1977DrZM O.Dragun, E.E.Maqueda - Proc.Intern.Conf.Nucl.Structure, Tokyo, Vol.1, p.558 (1977) 1977Ev03 D.Evers, A.Harasim, R.L.McGrath, W.Assmann - Phys.Rev. C15, 1690 (1977) 1977Fu03 H.W.Fulbright, C.L.Bennett, R.A.Lindgren, R.G.Markham, S.C.McGuire, G.C.Morrison, U.Strohbusch, J.Toke - Nucl. Phys. A284, 329 (1977) 1977GoZX R.P.Goddard - Bull.Amer.Phys.Soc. 22, No.4, 587, EM3 (1977) Y.Iritani, J.Kasagi, H.Ohnuma - J.Phys.Soc.Jap. 43, 1119 (1977) 1977Ir02 $A.P.Kabachenko,\ and\ Others\ -\ JINR-P6-10304\ (1977)$ 1977KaZV 1977Mo06 G.R.Morgan, N.R.Fletcher - Phys.Rev. C16, 167 (1977) A.M.Nathan, J.W.Olness, E.K.Warburton, J.B.McGrory - Phys.Rev. C16, 192 (1977) 1977Na12 M.A.Rahman, M.A.Awal, S.K.Gupta - BARC-897, p.17 (1977) 1977RaZK 1977Su01 T.Suehiro, K.Miura, Y.Hiratate, H.Yokomizo, K.Itonaga, H.Ohnuma - Nucl. Phys. A282, 53 (1977) 1977Ya08 R.P.Yaffe, R.A.Meyer - Phys.Rev. C16, 1581 (1977) Y.F.Andronov, O.V.Chubinskii, L.I.Vinogradov, F.I.El-Ashri, L.V.Gustova - Izv.Akad.Nauk SSSR, Ser.Fiz. 42, 169 1978An08 (1978); Bull.Acad.Sci.USSR, Phys.Ser. 42, No.1, 146 (1978) 1978Be32 K.Beckert, H.-U.Gersch, F.Herrmann, D.Hinke, P.Kleinvechter, H.Muller, H.Schobbert, I.Fodor, I.Szentpetery -Izv.Akad.Nauk SSSR, Ser.Fiz. 42, 60 (1978); Bull.Acad.Sci.USSR, Phys.Ser. 42, No.1, 48 (1978) 1978Be37 J.R.Beene - Nucl.Data Sheets 25, 235 (1978)

REFERENCES FOR A=52 (CONTINUED)

- F.A.Beck, C.Gehringer, B.Haas, J.C.Merdinger, N.Schulz, M.Toulemonde, J.P.Vivien Proc.Int.Conf. on Medium-Light 1978BeZC $Nuclei,\ Florence,\ Italy,\ 1977,\ P.Blasi,\ R.A.Ricci,\ Eds.,\ p.479\ (1978)$ 1978Ca12 G.Calvelli, I.Filosofo, F.Pellegrini, M.Pieper, I.Gabrielli, P.Guazzoni - Lett.Nuovo Cim. 22, 431 (1978) 1978De18 P.Decowski, W.Benenson, B.A.Brown, H.Nann - Nucl. Phys. A302, 186 (1978) 1978DoZM J.P.Downing - Diss.Abst.Int. 39B, 1361 (1978) 1978Fo34 S.Fortier, E.Hourani, M.N.Rao, S.Gales - Nucl. Phys. A311, 324 (1978) 1978GeZZ D.F.Geesaman, R.E.Malmin, R.L.McGrath, J.W.Noe - Proc.Int.Conf. on Medium-Light Nuclei, Florence, Italy, 1977, P.Blasi, R.A.Ricci, Eds., p.478 (1978) 1978Ha17 B. Haas, F.A. Beck, C. Gehringer, J. C. Merdinger, N. Schulz, P. Taras, M. Toulemonde, J. P. Vivien, J. Styczen, E. Bozek, $Z. Stachura, \ T. Pawlat, \ A. Muller-Arnke \ - \ Phys. Rev. Lett. \ 40, \ 1313 \ (1978)$ H.E.Jackson, S.B.Kaufman, D.G.Kovar, L.Meyer-Schutzmeister, K.E.Rehm, J.P.Schiffer, S.L.Tabor, S.E.Vigdor, 1978Ja19 T.P.Wangler, L.L.Rutledge, Jr., R.E.Segel, R.L.Burman, P.A.M.Gram, R.P.Redwine, M.A.Yates-Williams - Phys.Rev. C18, P.T.Karatzas, G.P.Couchell, B.K.Barnes, L.E.Beghian, P.Harihar, A.Mittler, D.J.Pullen, E.Sheldon, N.B.Sullivan -1978Ka21 Nucl.Sci.Eng. 67, 34 (1978) 1978Ko01 D.G.Kovar, W.Henning, B.Zeidman, Y.Eisen, J.R.Erskine, H.T.Fortune, T.R.Ophel, P.Sperr, S.E.Vigdor - Phys.Rev. C17, 83 (1978) 1978Ko27 R.T.Kouzes, P.Kutt, D.Mueller, R.Sherr - Nucl. Phys. A309, 329 (1978) V.M.Lebedev, A.V.Spassky, I.B.Teplov, L.N.Fateeva, L.Z.Ismail - Nucl.Phys. A298, 206 (1978) 1978Le08 1978Me19 L.R.Medsker, L.H.Fry, Jr., D.C.Wilson - Phys.Rev. C18, 2584 (1978) $1978 \mathrm{Me}\,\mathrm{ZK}$ R.A.Meyer - LLL-M-100 (1978) V.N.Polishchuk, N.G.Shevchenko, N.G.Afanasev, A.A.Khomich, A.Y.Buki, B.V.Mazanko - Yad.Fiz. 27, 1145 (1978); 1978Po04 Sov.J.Nucl.Phys. 27, 607 (1978) 1978Pr04 H.R.Prabhakara, S.N.Chaturvedi, G.K.Mehta - J.Phys.(London) G4, 1101 (1978) T.B.Robinson, V.R.W.Edwards - Nucl. Phys. A301, 36 (1978) 1978Ro12 1978ShZK J.R.Shepard, R.E.Anderson, J.J.Kraushaar, R.A.Ristinen, J.R.Comfort, N.S.P.King, A.Bacher, W.Jacobs - COO-535-766, p.119 (1978) 1978TaZO P.Taras, B.Haas, F.A.Beck, C.Gehringer, J.C.Merdinger, N.Schulz, M.Toulemonde, J.P.Vivien, J.Styczen, E.Bozek, $Zb.Stachura,\ T.Pawlat,\ A.Muller-Arnke\ -\ LPN-UM-117,\ p.33\ (1978)$ 1978Wa04 $D.L.Watson,\ G.Brown\ -\ Nucl.Phys.\ A296,\ 1\ (1978)$ Yu.F.Andronov, O.V.Chubinsky, L.I.Vinogradov - Program and Theses, Proc.29th $1979 An\, ZT$ Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Riga, p.264 (1979) $1979\mathrm{ArZT}$ K.P.Artamonova, E.P.Grigorev, A.V.Zolotavin, Sh.V.Kaniynov, N.K.Kuzmenko, V.O.Segreev, Yu.V.Kholnov, V.P.Chechev -Program and Theses, Proc.29th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Riga, p.543 (1979) 1979Bi08 N.S.Biryukov, B.V.Zhuravlev, A.P.Rudenko, O.A.Salnikov, V.I.Trykova - Yad.Fiz. 30, 26 (1979); Sov.J.Nucl.Phys. 30, 13 (1979) 1979Da07 A.Dauchy, A.Giorni, D.H.Koang, J.P.Longequeue, B.Chambon, D.Drain, C.Pastor - Phys.Lett. 82B, 365 (1979) 1979Es04 H.Essel, K.E.Rehm, H.Bohn, H.J.Korner, H.Spieler - Phys.Rev. C19, 2224 (1979) 1979Fu01 B.R.Fulton, N.E.Sanderson, R.Ost, B.A.England, G.C.Morrison - Nucl. Phys. A315, 477 (1979) 1979Ge02 D.F.Geesaman, R.L.McGrath, J.W.Noe, R.E.Malmin - Phys.Rev. C19, 1938 (1979) 1979Go06 R.P.Goddard, W.Haeberli - Nucl. Phys. A316, 116 (1979) 1979K1ZZ P.Kleinwachter, H.Schobbert, K.Beckert, H.U.Gersch, F.Herrmann, D.Hinke, I.Fodor, J.Sziklai - ZFK-385, p.10 (1979) 1979Ku14 N.Kumagai, T.Ishimatsu, E.Tanaka, K.Kageyama, G.Isoyama - Nucl. Phys. A329, 205 (1979) 1979Me 03 L.R.Medsker, L.V.Theisen, L.H.Fry, Jr., J.S.Clements - Phys.Rev. C19, 790 (1979) 1979MiZT R.Michel, G.Brinkmann, W.Herr - JUL-Spez-36, p.20 (1979) 1979Po08 E.C.Pollacco, C.Garrett, D.C.Weisser - Phys.Rev. C19, 2073 (1979) 1979Po16 E.C.Pollacco, D.M.Parkinson, J.R.Leigh, D.C.Weisser, N.Shikazono, G.S.Foote, D.Branford - Nucl.Phys. A330, 173 (1979)1979Sh09 J.R.Shepard, R.E.Anderson, J.J.Kraushaar, R.A.Ristinen, J.R.Comfort, N.S.P.King, A.Bacher, W.W.Jacobs - Nucl. Phys. A322, 92 (1979) 1979St13 J.Styczen, E.Bozek, T.Pawlat, Zb.Stachura, F.A.Beck, C.Gehringer, B.Haas, J.C.Merdinger, N.Schulz, P.Taras, M. Toulemonde, J.P.Vivien, A.Muller-Arnke - Nucl. Phys. A327, 295 (1979) 1979ViZY D.J.Vieira - Diss.Abst.Int. 40B, 238 (1979) 1980An35 Yu.F.Andronov, O.V.Chubinsky, L.I.Vinogradov - Yad.Fiz. 32, 16 (1980); Sov.J.Nucl.Phys. 32, 8 (1980) 1980AnYW A.E.Antropov, V.P.Gusev, P.P.Zarubin, P.D.Ioannu, V.Yu.Padalko - Program and Theses, Proc.30th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.316 (1980) 1980DeZA S.Della Negra, H.Gauvin, J.P.Husson, Y.Le Beyec - Univ.Paris, Inst.Phys.Nucl., Ann.Rept., p.R6 (1980) 1980 Iw03 Y.Iwata, Y.Yoshizawa - Nucl.Instrum.Methods 175, 525 (1980) 1980Ok03 K.Okada, J.Kawa, T.Yamagata - Nucl. Phys. A349, 125 (1980) 1980PiZS P.Picot, S.Fortier, J.M.Maison, S.Gales, E.Hourani, J.P.Schapira - Univ.Paris, Inst.Phys.Nucl., Ann.Rept., p.N43 1980PrZV V.S.Prokopenko, V.D.Sklyarenko, V.K.Chernievsky, A.V.Shustov - Program and Theses, Proc. 30th
- 1981Ah02 J.Ahlert, M.Schumacher Z.Phys. A301, 75 (1981)
- 1981Be32 U.E.P.Berg, D.Ruck, K.Ackermann, K.Bangert, C.Blasing, K.Kobras, W.Naatz, R.K.M.Schneider, R.Stock, K.Wienhard Phys.Lett. 103B, 301 (1981)
- 1981Bi04 J.A.Bieszk, S.E.Vigdor Phys.Rev. C23, 1404 (1981)
- $1981 Ku11 \qquad P.D. Kunz, \ G.N. Hassold, \ J.J. Kraushaar, \ P.A. Smith Nucl. Phys. \ A367, \ 13 \ (1981)$

Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.296 (1980)

REFERENCES FOR A=52 (CONTINUED)

1981Ma12 J.F.Mateja, L.R.Medsker, C.P.Browne, J.D.Zumbro, H.T.Fortune, R.Middleton, J.B.McGrory - Phys.Rev. C23, 2435 (1981) 1981YaZU T.Yamazaki, Y.Fujita, M.Fujiwara, S.Morinobu, S.I.Hayakawa, K.Katori, S.Imanishi, M.Nomura, H.Ikegami - RCNP (Osaka) , Ann.Rept., 1980, p.79 (1981) 1982Bi04 N.S.Biryukov, B.V.Zhuravlev, A.P.Rudenko, O.A.Salnikov, V.I.Trykova - Yad.Fiz. 35, 814 (1982) 1982Ha35 F.Hachenberg - Phys.Lett. 113B, 451 (1982) 1982MaZL N.Matsuoka, K.Hatanaka, T.Saito, K.Hosono, M.Kondo, K.Nisimura, H.Shimizu, T.Ichihara, A.Okihana - RCNP (Osaka), Ann.Rept., 1981, p.22 (1982) 1982NoZW Yu.A.Novikov - Program and Theses, 32nd Ann.Conf.Nucl.Spectrosc.Struct.Atomic Nuclei, Kiev, p.279 (1982) 1983Co02 V.Corcalciuc, H.Rebel, R.Pesl, H.J.Gils - J.Phys.(London) G9, 177 (1983) 1983Dj05 C.Djalali, N.Marty, M.Morlet, A.Willis, J.C.Jourdain, N.Anantaraman, G.M.Crawley, A.Galonsky, J.Duffy - Nucl.Phys. A410, 399 (1983); Erratum Nucl. Phys. A417, 564 (1984) M.Langevin, C.Detraz, D.Guillemaud-Mueller, A.C.Mueller, C.Thibault, F.Touchard, G.Klotz, C.Miehe, G.Walter, 1983La23 M.Epherre, C.Richard-Serre - Phys.Lett. 130B, 251 (1983) 1983Li02 J.W.Lightbody, Jr., J.B.Bellicard, J.M.Cavedon, B.Frois, D.Goutte, M.Huet, Ph.Leconte, A.Nakada, Phan Xuan Ho, S.K.Platchkov, S.Turck-Chieze, C.W.de Jager, J.J.Lapikas, P.K.A.de Witt Huberts - Phys.Rev. C27, 113 (1983) 1983Mi11 R.Michel, M.Galas - Nucl. Phys. A404, 77 (1983) 1983Mi18 R.Michel, G.Brinkmann, R.Stuck - Radiochim.Acta 32, 173 (1983) 1983Mi21 R.Michel, M.Galas - Int.J.Appl.Radiat.Isotop. 34, 1325 (1983) M.Ogawa, T.Matsuzaki, Y.Ozawa, E.Arai - Nucl.Instrum.Methods 215, 167 (1983) 1983Og03 R.Pesl, H.J.Gils, H.Rebel, E.Friedman, J.Buschmann, H.Klewe-Nebenius, S.Zagromski - Z.Phys. A313, 111 (1983) $1\,9\,8\,3\,\mathrm{Sm}0\,2$ Ph.B.Smith, W.Segeth - Nucl. Phys. A398, 397 (1983) 1983Th05 L.V.Theisen, L.R.Medsker, S.L.Tabor - Phys.Rev. C27, 2679 (1983) 1984De15 J.B.M.De Haas, K.Abrahams, T.A.A.Tielens, H.Postma, W.J.Huiskamp - Nucl. Phys. A419, 101 (1984) 1984Ha10 I.R.Haldorsen, S.Engelsen, E.Hagebo, J.Pettersen, T.Lund, C.Richard-Serre - Z.Phys. A315, 355 (1984) 1984Ko31 R.L.Kozub, C.B.Chitwood, D.J.Fields, C.J.Lister, E.K.Warburton - Phys.Rev. C30, 1324 (1984) E.V.Korbetsky, I.N.Kukhtina, A.E.Antropov, S.I.Vasilev, V.P.Gusev, P.P.Zarubin, Yu.V.Kangropol, A.A.Kolozhvari -1984KoZK Program and Theses, Proc.34th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei,Alma-Ata, p.321 (1984) 1984Pa13 D.J.Parker, J.Asher, T.W.Conlon, I.Naqib - Phys.Rev. C30, 143 (1984) 1984Pi07 A.E.Pillay, D.K.Bewley - Int.J.Appl.Radiat.Isotop. 35, 353 (1984) 1984Zh02 B.V.Zhuravlev, O.V.Grusha, S.P.Ivanova, V.I.Trykova, Yu.N.Shubin - Yad.Fiz. 39, 264 (1984) 1985Bl12 M.Blann, S.M.Grimes, L.F.Hansen, T.T.Komoto, B.A.Pohl, W.Scobel, M.Trabandt, C.Wong - Phys.Rev. C32, 411 (1985) 1985Fu10 M.Fujiwara, Y.Fujita, S.Imanishi, S.Morinobu, T.Yamazaki, H.Ikegami, K.Katori, S.I.Hayakawa - Phys.Rev. C32, 830 1985Hs01 C.C.Hsu, S.C.Yeh, J.C.Wang, V.K.C.Cheng, P.T.Wu, H.H.Lin - Phys.Rev. C31, 49 (1985) 1985Hu03 A. Huck, G. Klotz, A. Knipper, C. Miehe, C. Richard-Serre, G. Walter, A. Poves, H. L. Ravn, G. Marguier - Phys. Rev. C31, 2226 1985 Lo 02 K.Ioannides, P.Assimakopoulos, A.Pakou, S.Kossionides - Z.Phys. A321, 225 (1985) 1985Ko07 E.V.Korbetsky, I.N.Kukhtina, A.E.Antropov, S.I.Vasilev, V.P.Gusev, P.P.Zarubin, Yu.V.Kangropol, A.A.Kolozhvari -Izv. Akad. Nauk SSSR, Ser. Fiz. 49, 129 (1985); Bull. Acad. Sci. USSR, Phys. Ser. 49, No. 1, 135 (1985) 1985Oz01 Y.Ozawa, Y.Oguri, E.Arai - Nucl.Phys. A440, 13 (1985) 1985Po17 L.Potvin, R.Roy, P.Bricault, R.Larue, C.Rioux, R.J.Slobodrian - Can.J.Phys. 63, 951 (1985) 1985So05 D.I.Sober, B.C.Metsch, W.Knupfer, G.Eulenberg, G.Kuchler, A.Richter, E.Spamer, W.Steffen - Phys.Rev. C31, 2054 1986Ja09 J.Jastrzebski, P.P.Singh, T.Mroz, S.E.Vigdor, M.Fatyga, H.J.Karwowski - Phys.Rev. C34, 60 (1986) 1987Ba72 P.Banerjee, B.Sethi, J.M.Chatterjee, M.B.Chatterjee, P.Bhattacharya - Phys.Rev. C36, 2274 (1987) 1987Ka40 O.Karban, J.B.A.England, D.Barker, M.Mannion, J.M.Nelson, C.A.Ogilvie, L.Potvin, L.Zybert, R.Zybert, N.M.Clarke, K.I.Pearce, D.L.Watson, M.D.Cohler - Nucl. Phys. A472, 189 (1987) 1987Mu08 M.G.Mustafa, T.Tamura, T.Udagawa - Phys.Rev. C35, 2077 (1987) D.S.Oakley, M.J.Smithson, S.Mordechai, C.F.Moore, C.L.Morris, G.C.Idzorek, Z.F.Wang, R.Gilman, J.D.Zumbro, 1987Oa01 $H.T.Fortune,\ S.J.Seestrom-Morris,\ K.S.Dhuga,\ D.L.Watson\ -\ Phys.Rev.\ C35,\ 1392\ (1987)$ 1987Po04 F.Pougheon, J.C.Jacmart, E.Quiniou, R.Anne, D.Bazin, V.Borrel, J.Galin, D.Guerreau, D.Guillemaud-Mueller, A.C.Mueller, E.Roeckl, M.G.Saint-Laurent, C.Detraz - Z.Phys. A327, 17 (1987) 1987Ra01 S.Raman, C.H.Malarkey, W.T.Milner, C.W.Nestor, Jr., P.H.Stelson - At.Data Nucl.Data Tables 36, 1 (1987) 1987Ra08 J.Rama Rao, A.V.Mohan Rao, S.Mukherjee, R.Upadhyay, N.L.Singh, S.Agarwal, L.Chaturvedi, P.P.Singh -Nucl.Instrum.Methods Phys.Res. B24/25, 484 (1987) 1987St07 A.E.Stuchbery, C.E.Doran, A.P.Byrne, H.H.Bolotin, G.D.Dracoulis - Hyperfine Interactions 36, 75 (1987) 1987We05 H.I.West, Jr., R.G.Lanier, M.G.Mustafa - Phys.Rev. C35, 2067 (1987) 19880a01 D.S.Oakley, M.J.Smithson, S.Mordechai, C.F.Moore, P.A.Seidl, C.L.Morris, S.J.Seestrom-Morris, R.Gilman, J.D.Zumbro, H.T.Fortune, K.S.Dhuga - Phys.Rev. C37, 866 (1988) D.I.Sober, L.W.Fagg, B.Zeidman, R.D.Lawson, D.F.Geesaman, G.C.Morrison, O.Karban, X.K.Maruyama, H.de Vries, 1988So07 E.A.J.M.Offermann, C.W.de Jager, R.A.Lindgren, J.F.A.van Hienen - Phys.Rev. C38, 654 (1988) 1988Wa07 D.Wang, J.Rapaport, D.J.Horen, B.A.Brown, C.Gaarde, C.D.Goodman, E.Sugarbaker, T.N.Taddeucci - Nucl. Phys. A480, 285

Y.Fujita, M.Fujiwara, S.Morinobu, I.Katayama, T.Yamazaki, T.Itahashi, H.Ikegami, S.I.Hayakawa - Phys.Rev. C40, 1595

A.Abzouzi, M.S.Antony, V.B.Ndocko Ndongue - J.Radioanal.Nucl.Chem. 135, 1 (1989)

 $P.Durner,\ T.von\ Egidy,\ F.J. Hartmann\ -\ Nucl. Instrum. Methods\ Phys. Res.\ A278,\ 484\ (1989)$

1989Ab05

1989Fu07

(1989)

REFERENCES FOR A=52 (CONTINUED)

- 1989Ge09 M.K.Georgieva, D.V.Elenkov, D.P.Lefterov, G.H.Toumbev Fiz.Elem.Chastits At.Yadra 20, 930 (1989); Sov.J.Part.Nucl. 20, 393 (1989)
- 1989Og01 C.A.Ogilvie, J.M.Nelson, D.Barker, S.J.Bennett, B.R.Fulton, S.D.Hoath, M.C.Mannion, P.J.Woods, L.Zybert, R.Zybert Phys.Rev. C39, 139 (1989)
- 1989Pe06 R.J.Peterson, B.L.Clausen, J.J.Kraushaar Phys.Rev. C40, 553 (1989)
- 1989Ra17 P.Raghavan At.Data Nucl.Data Tables 42, 189 (1989)
- 1990Ba23 F.Ballester, E.Casal, J.B.A.England Nucl. Phys. A513, 61 (1990)
- 1990Fi07 U.Fister, R.Jahn, P.von Neumann-Cosel, P.Schenk, T.K.Trelle, D.Wenzel, U.Wienands Phys.Rev. C42, 2375 (1990)
- 1990Me15 R.A.Meyer Fizika(Zagreb) 22, 153 (1990)
- 1990MiZK H.Miyatake, T.Shimoda, Y.Fujita, N.Takahashi, S.Morinobu, S.Hatori RCNP (Osaka), Ann.Rept., 1989, p.72 (1990)
- 1991Mi08 S.Michaelsen, K.P.Lieb, S.J.Robinson Z.Phys. A338, 371 (1991)
- 1992Ba16 M.A.Basher, H.R.Siddique, A.Husain, A.K.Basak, H.M.Sen Gupta Phys.Rev. C45, 1575 (1992)
- 1993Xu04 X.Xu, J.Guo, Y.Guo, X.Ou, H.Liu, X.Lei, X.Sun, Y.Luo, J.Wang, J.Yu, T.Wang, Y.Wang, X.Zhou, L.Xu, S.Zhou Chin.J.Nucl.Phys. 15, No 1, 18 (1993)
- 1994Fa06 L.Faux, M.S.Pravikoff, S.Andriamonje, B.Blank, R.Del Moral, J.-P.Dufour, A.Fleury, C.Marchand, K.-H.Schmidt, K.Summerer, T.Brohm, H.-G.Clerc, A.Grewe, E.Hanelt, B.Voss, C.Ziegler Phys.Rev. C49, 2440 (1994)
- 1994Fi01 U.Fister, R.Jahn, P.von Neumann-Cosel, P.Schenk, T.K.Trelle, D.Wenzel, U.Wienands Nucl.Phys. A569, 421 (1994)
- 1995HaZS E.Hagberg, V.T.Koslowsky, G.Savard, J.C.Hardy, I.S.Towner Proc.Intern.Conf on Exotic Nuclei and Atomic Masses,
 Arles, France, June 19-23, 1995, p.563 (1995)
- 1995Ir01 H.Irnich, H.Geissel, F.Nolden, K.Beckert, F.Bosch, H.Eickhoff, B.Franzke, Y.Fujita, M.Hausmann, H.C.Jung, O.Klepper,
 C.Kozhuharov, G.Kraus, A.Magel, G.Munzenberg, F.Nickel, T.Radon, H.Reich, B.Schlitt, W.Schwab, M.Steck, K.Summerer,
 T.Suzuki, H.Wollnik Phys.Rev.Lett. 75, 4182 (1995)
- 1996La20 S.Lahiri, S.Banerjee, N.R.Das Appl.Radiat.Isot. 47, 413 (1996)
- 1996Oa01 D.S.Oakley, R.J.Peterson, C.L.Morris, H.T.Fortune Phys.Rev. C53, 689 (1996)
- 1997Au04 G.Audi, O.Bersillon, J.Blachot, A.H.Wapstra Nucl.Phys. A624, 1 (1997)
- 1997Ha04 E.Hagberg, I.S.Towner, J.C.Hardy, V.T.Koslowsky, G.Savard, S.Sterbenz Nucl.Phys. A613, 183 (1997)
- 1997Sm01 A.B.Smith, D.Schmidt J.Phys.(London) G23, 197 (1997)
- 1998En05 J.Enders, P.von Brentano, J.Eberth, R.-D.Herzberg, N.Huxel, H.Lenske, P.von Neumann-Cosel, N.Nicolay, N.Pietralla, H.Prade, J.Reif, A.Richter, C.Schlegel, R.Schwengner, S.Skoda, H.G.Thomas, I.Wiedenhover, G.Winter, A.Zilges Nucl.Phys. A636, 139 (1998)
- 1998Le43 S.M.Lenzi, C.A.Ur, D.R.Napoli, D.Bazzacco, F.Brandolini, J.A.Cameron, G.de Angelis, M.de Poli, E.Farnea, A.Gadea, S.Lunardi, G.Martinez-Pinedo, A.Poves, C.Rossi Alvarez, H.Somacal, C.E.Svensson Nuovo Cim. 111A, 739 (1998)
- 1998Ur05 C.A.Ur, D.Bucurescu, S.M.Lenzi, G.Martinez-Pinedo, D.R.Napoli, D.Bazzacco, F.Brandolini, D.M.Brink, J.A.Cameron, E.Caurier, G.de Angelis, M.De Poli, A.Gadea, S.Lunardi, N.Marginean, M.A.Nagarajan, P.Pavan, C.Rossi Alvarez, C.E.Svensson Phys.Rev. C58, 3163 (1998)
- 2000Ab40 W.P.Abfalterer, R.W.Finlay, S.M.Grimes Phys.Rev. C62, 064312 (2000)
- 2000ApZX D.E.Appelbe, J.Sanchez, J.A.Cameron, J.Chenkin, T.E.Drake, B.Djerroud, S.Flibotte, A.Poves, C.E.Svensson, J.C.Waddington, D.Ward Priv.Comm. (2000)
- 2000Er01 R.Ernst, K.-H.Speidel, O.Kenn, U.Nachum, J.Gerber, P.Maier-Komor, N.Benczer-Koller, G.Jakob, G.Kumbartzki, L.Zamick, F.Nowacki Phys.Rev.Lett. 84, 416 (2000)
- 2000Hu06 J.Huo Nucl.Data Sheets 90, 1 (2000)
- 2002Ja16 R.V.F.Janssens, B.Fornal, P.F.Mantica, B.A.Brown, R.Broda, P.Bhattacharyya, M.P.Carpenter, M.Cinausero, P.J.Daly,
 A.D.Davies, T.Glasmacher, Z.W.Grabowski, D.E.Groh, M.Honma, F.G.Kondev, W.Krolas, T.Lauritsen, S.N.Liddick,
 S.Lunardi, N.Marginean, T.Mizusaki, D.J.Morrissey, A.C.Morton, W.F.Mueller, T.Otsuka, T.Pawlat, D.Seweryniak,
 H.Schatz, A.Stolz, S.L.Tabor, C.A.Ur, G.Viesti, I.Wiedenhover, J.Wrzesinski Phys.Lett. 546B, 55 (2002)
- $2003 Au 02 \qquad G. Audi, \ O. Bersillon, \ J. Blachot, \ A. H. Wapstra Nucl. Phys. \ A729, \ 3 \ (2003)$
- $2003 Au 03 \qquad G. Audi, \ A.H. Wapstra, \ C. Thibault Nucl. Phys. \ A729, \ 337 \ (2003)$
- 2003Ax01 M.Axiotis, A.Gadea, N.Marginean, D.R.Napoli, G.De Angelis, M.De Poli, T.Martinez, S.M.Lenzi, C.A.Ur, F.Brandolini, D.Bazzacco, E.Farnea, C.Rossi Alvarez, S.Lunardi, C.A.Kalfas, A.Algora, D.Cano-Ott, E.Nacher, B.Rubio, J.L.Tain, R.Borcea, J.Doring, M.Gorska, H.Grawe, M.La Commara, C.Mazzocchi, E.Roeckl Acta Phys.Pol. B34, 2231 (2003)
- 2004An14 I.Angeli At.Data Nucl.Data Tables 87, 185 (2004)
- 2004Mu09 W.F.Mueller, D.Bazin, C.M.Campbell, J.A.Church, D.C.Dinca, A.Gade, T.Glasmacher, P.G.Hansen, K.L.Yurkewicz, H.Olliver, B.M.Sherrill, J.R.Terry Nucl.Phys. A734, 418 (2004)
- 2004Ur02 C.A.Ur Eur.Phys.J. A 20, 113 (2004)
- 2004Yu07 K.L.Yurkewicz, D.Bazin, B.A.Brown, C.M.Campbell, J.A.Church, D.-C.Dinca, A.Gade, T.Glasmacher, M.Honma, T.Mizusaki, W.F.Mueller, H.Olliver, T.Otsuka, L.A.Riley, J.R.Terry Phys.Rev. C 70, 034301 (2004)
- 2005B115 B.Blank, A.Bey, G.Canchel, C.Dossat, A.Fleury, J.Giovinazzo, I.Matea, N.Adimi, F.De Oliveira, I.Stefan, G.Georgiev, S.Grevy, J.C.Thomas, C.Borcea, D.Cortina, M.Caamano, M.Stanoiu, F.Aksouh, B.A.Brown, F.C.Barker, W.A.Richter Phys.Rev.Lett. 94, 232501 (2005); Erratum Phys.Rev.Lett. 94, 249901 (2005)
- 2005Di05 D.-C.Dinca, R.V.F.Janssens, A.Gade, D.Bazin, R.Broda, B.A.Brown, C.M.Campbell, M.P.Carpenter, P.Chowdhury, J.M.Cook, A.N.Deacon, B.Fornal, S.J.Freeman, T.Glasmacher, M.Honma, F.G.Kondev, J.-L.Lecouey, S.N.Liddick, P.F.Mantica, W.F.Mueller, H.Olliver, T.Otsuka, J.R.Terry, B.A.Tomlin, K.Yoneda Phys.Rev. C 71, 041302 (2005)
- 2005Ga15 A.Gade, D.Bazin, B.A.Brown, C.M.Campbell, J.A.Church, D.-C.Dinca, J.Enders, T.Glasmacher, P.G.Hansen, M.Honma, T.Mizusaki, W.F.Mueller, H.Olliver, T.Otsuka, L.A.Riley, J.R.Terry, J.A.Tostevin, K.L.Yurkewicz Acta Phys.Pol. B36, 1227 (2005)

REFERENCES FOR A=52 (CONTINUED)

2005Ga20 A.Gadea, S.M.Lenzi, D.R.Napoli, M.Axiotis, C.A.Ur, G.Martinez-Pinedo, M.Gorska, E.Roeckl, E.Caurier, F.Nowacki, G.De Angelis, L.Batist, R.Borcea, F.Brandolini, D.Cano-Ott, J.Doring, C.Fahlander, E.Farnea, H.Grawe, M.Hellstrom, Z.Janas, R.Kirchner, M.La Commara, C.Mazzocchi, E.Nacher, C.Plettner, A.Plochocki, B.Rubio, K.Schmidt, R.Schwengner, J.L.Tain, J.Zylicz - Phys.Lett. B 619, 88 (2005)

2005Wo01 H.J.Wollersheim, D.E.Appelbe, A.Banu, R.Bassini, T.Beck, F.Becker, P.Bednarczyk, K.-H.Behr, M.A.Bentley, G.Benzoni, C.Boiano, U.Bonnes, A.Bracco, S.Brambilla, A.Brunle, A.Burger, K.Burkard, P.A.Butler, F.Camera, D.Curien, J.Devin, P.Doornenbal, C.Fahlander, K.Fayz, H.Geissel, J.Gerl, M.Gorska, H.Grawe, J.Grebosz, R.Griffiths, G.Hammond, M.Hellstrom, J.Hoffmann, H.Hubel, J.Jolie, J.V.Kalben, M.Kmiecik, I.Kojouharov, R.Kulessa, N.Kurz, I.Lazarus, J.Li, J.Leske, R.Lozeva, A.Maj, S.Mandal, W.Meczynski, B.Million, G.Munzenberg, S.Muralithar, M.Mutterer, P.J.Nolan, G.Neyens, J.Nyberg, W.Prokopowicz, V.F.E.Pucknell, P.Reiter, D.Rudolph, N.Saito, T.R.Saito, D.Seddon, H.Schaffner, J.Simpson, K.-H.Speidel, J.Styczen, K.Summerer, N.Warr, H.Weick, C.Wheldon, O.Wieland, M.Winkler, M.Zieblinski - Nucl.Instrum.Methods Phys.Res. A537, 637 (2005)