```
1. 用能量积分以证明下列问题解的唯一性:
               ut - a2/1x = fort), 0<x<1, +70,
              Ux(t,0)=A(t), (Ux+64)(t,1)= M(t), $$ 670,
              u(0,x) = (x).
爾: ) Ut- 02Uxx=0, 0<x<1, t>0,
               ux(t,0)=0, (Ux+6u)(t,l)=0,其+670, =) ?種解
             u(0,x)=0.
           \int_{0}^{l} (u_{t} - u_{x}^{2} u_{xx}) u dx = 0 \Rightarrow \int_{0}^{l} (uu_{t} - u_{x}^{2} u_{xx} u) dx = 0 \Rightarrow \int_{0}^{l} uu_{t} dx - u_{x}^{2} \int_{0}^{l} u_{xx} u dx = 0
         \int_{0}^{L} uu_{t} dx = \frac{1}{2} \frac{d}{dt} \int_{0}^{L} u^{2} dx = \frac{d}{dt} \int_{0}^{L} \frac{u^{2}}{2} dx \qquad u_{x}(t, l) + \varepsilon u(t, l) = 0
\int_{0}^{L} u_{xx} u dx = \int_{0}^{L} u du = uu_{x} \Big|_{0}^{L} - \int_{0}^{L} u_{x} du \qquad u_{x}(t, l) = -\varepsilon u(t, l)
                                                      = u(t,l) ux(t,l) - u(t,0) ux(t,0) - 10 uxdx
                                                      = u(t,1) Ux(t,1) - 50 ux dx
                                                      = -6 u(t,1) - 10 ux dx
             \int_0^L (u_t - \alpha^2 u_{xx}) u dx = \frac{d}{dt} \int_0^L \frac{u^2}{2} dx + \alpha^2 \sigma^2 u(t, L) + \alpha^2 \int_0^L u_x^2 dx
                                             = \frac{d}{dt} \int_0^1 \frac{u^2}{2} dx = \frac{d}{dt} \int_0^1 \frac{u^2}{2} dx + \frac{d}{dt} \int_0^1 \frac{u^2}{2} dx + \frac{d}{dt} \int_0^1 \frac{u^2}{2} dx
                                             = \frac{d}{dt} \int_0^L \frac{u(t,x)}{2} dx + \alpha^2 \sigma^2 u(t,L) + \alpha^2 \sigma^2 \int_0^L u^2(t,x) dx
               \leq \frac{d}{dt} \int_{0}^{l} \frac{u'tt.X)}{2} dX + \frac{d}{dt} \int_{0}^{l} \frac{\alpha^{2} \sigma^{2} t}{2} u(t,l) dX + \frac{d}{dt} \int_{0}^{l} tu^{2} tt.X) dX
\text{Evt'} \leq \int_{0}^{l} \left[ \frac{u'tt.X)}{2} + \frac{\alpha^{2} \sigma^{2} t}{l} u(t,l) + tu'rt.X) dX \qquad u(0,X) = 0, \quad u(0,l) = 0
                E(t) = E(0) = 0
                 E(t)=0 =) u(t,X)=0 =) %原解
```

2. 设u(X,t)为热传导为程ut-a²ux-(u=0在矩形R={(X,t) o≤X≤l, o≤t≤T}中的解,其中CXD扩散,
女中 u(0.t) : M1, u(1.t) : M1, te[0.T], u(x,0) : M2, x [0.1], 证明: u(x,t) : max [M,ect, Mect].
解:对VOSt,ST,记lRt,={OSXSL,OSTSt,}, It,为其抛物边界。可以断言,若以(X.t)在Rt,上有正最大值,为 此最大值还在正上达到。
事実上,1 (Xo, ta) ERti,満足 O< Xo< l, O< to < ti, 且 O< U(Xo, to) = max u(X,t), 定
所以假设不成立,即以的正极大值只能在工上达到。
"It,= 1t=0,0≤x≤l} U x=0,0≤t≤t,] U x=1,0≤t≤t,}, 若以的正最大值在t=0上达到,则有 U(X,t)≤ 國 max u(X,0) ≤ (u(x,0))≤ Mz ≤ Mz e ^{ct}
若 u的正最大值在 X=0上达到,到有
$ u(x,t) \leq \max_{0 \leq t \leq t} e^{ct} u(0,t) \leq e^{ct} u(0,t) \leq M_1 e^{ct}$
若以的正最大值在X=1, t= to 点达到,则有 Ux(1.to)>0,由边界条件知:
$u(x,t) \le u(l,t_0) \le e^{ct_0} u(l,t_0) \le \max_{0 \le t \le t_1} u(l,t_t) e^{ct} \le e^{ct} u(l,t_t) \le M_1 e^{ct}$
从而有:
u(x,t) < mox fo, Megt Miect}
" M1 >0, M1 >0, M2 ect 70
: u(x,t) & max { M,ect, Mzect}
· u(x,t) & max { Miect, Miect}