塩化ピニルと N-n-アルキルマレイミドとの共重合*1

(昭和44年5月21日受理)

1 緒 言

ポリ塩化ビニルの改質の一方法として、塩化ビニル (VC) の共 重合につき検討してきたが、今回は相手モノマーとしてマレイミ ド誘導体, すなわち, N-メチルマレイミド (MMI), N-エチルマ レイミド (EMI), N-n-プロピルマレイミド (PMI), N-n-ブチル マレイミド (BMI), N-n-ヘキシルマレイミド (HMI), N-n-オ クチルマレイミド (OMI) を採りあげた。VC とこれらの N-ア ルキルマレイミドとの共重合を行ない、反応性比および性質に関 して若干の知見を得たので報告する。 なお著者らが採りあげた N-アルキルマレイミドの重合および共重合に関しては、BMI と スチレンおよびメタクリル酸メチルとの反応性比を求めた報告1), EMI, BMI および OMI のラジカルおよびアニオン重合と生成重 合体の構造についての報告²⁾, BMI のラジカルおよびアニオン重 合における動力学的研究8)、MMI および BMI の重合速度と生成 物の極限粘度や分子量についての報告4 があるほか、VC との共 重合については N-tert-ブチルマレイミドとの共重合体に関する 特許ががあるが、反応性についての報告は見当らない。

2 実 験 方 法

N-アルキルマレイミドは常法 6,7 により合成し精製して使用した。重合反応は前報 8 にしたがって行なった。

3 実験結果および考察

VC と N-n-アルキルマレイミドとの共重合において 単量体仕 込み組成の変化が共重合体組成におよぼす影響を検討した結果, 共重合体中の VC は単量体中のそれよりも常に低い値を示した。

- *1 本報を「ビニル重合(第249報)」とする. 前報は井本 稔, 竹本喜一、須藤浩孝、奥野利文、高分子化学、投稿準備中.
- *2 Michio OTSUKA, Kimiaki MATSUOKA, Kiichi TAKE-MOTO, Minoru IMOTO 大阪市立大学工学部応用化学科: 大阪市住吉区杉本町.
- L. E. Coleman, Jr., J. A. Conrady, J. Polymer Sci., 38, 241 (1959).
- 2) R. C. P. Cubbon, Polymer, 6, 419 (1965).
- Y. Nakayama, G. Smets, J. Polymer Sci., A-1, 5, 1619 (1967).
- T. V. Sheremeteva, G. N. Larina, V. N. Tsvetokov, I. N. Shtennikova, J. Polymer Sci., C, 22, 185 (1968).
- Farbwerke Hoechst A.-G., Neth. Appl. 6611986(1967);
 Chem. Abst., 67, 54589 a (1967).
- N. B. Mahta, A. P. Phillips, F. F. Lui, R. E. Brooks, J. Org. Chem., 25, 1012 (1960).
- L. E. Coleman, Jr., J. F. Bork, H. Dunn, Jr., J. Org. Chem., 24, 135 (1959).
- 8) 松岡, 大塚, 竹本, 井本, 工化, 69, 137 (1966).

そのうち PMI の実験結果を表1 に例示した。また Fineman-Ross 法により各アルキルマレイミドの相対反応性比を求め、さらに VC の Q=0.044, e=0.2 としてそれぞれのマレイミドのQ, e 値を計算し表2にまとめて示した。

表 1 VC と N-n-プロピルマレイミドとの共重合 ([AIBN]=0.14 mmol, ペンゼン 10 ml, 60℃)

単量体		重合時間	重合収率	塩 素	共 重 合 体			
VC (mmol)	PMI (mmol)	(min)	(%)	(%)	VC (mol%)	[7] (dl/g)	外観	
30.3	3.5	25	6.4	18.7	52.3	0.16	無色粉末	
27.0	6.6	25	8.9	14.5	43.2	0.19	"	
23.6	10.1	20	7.4	11.9	37.2	0.19	"	
20.2	13.6	20	9.3	9.5	30.9	0.25	"	
16.8	17.0	20	9.8	7.6	25.5	0.32	"	
13.5	20.1	20	8.2	5.4	19.0	0.38	"	
10.1	23.6	20	3.6	3.5	12.7	0.53	"	
0	33.7	20	17.2	0	0	0.67	"	

表 2 VC と N-アルキルマレイミドとの共重合における単量体反応性比と Q, e 値 $((M_2)=VC)$

(M_1)	r_1	r ₂	Q	e
MMI	3.12	0.01	6.36	2.06
EMI	2.41	0.02	3.11	1.94
PMI	2.02	0.04	1.51	1.79
BMI	2.08	0.04	1.50*	1.78*
HMI	2.03	0.06	0.98	1.65
OMI	1.84	0.06	0.99	1.68

* BMI とメタクリル酸メチルの共重合においては Q=0.96, e=1.76 である 11 .

表 3 VC と BMI との共重合

水 300 ml, ポリピニルアルコール 0.25g, アゾピス 2,4-ジメチルパレロニトリル 0.05g, ラウリル酸モノソルビタンエステル 0.25g, 60C, 6 hr

単 量 体		重合収率	共 重 合 体			
VC (mol)	BMI (mol)	(%)	VC (mol%)	[η] (dl/g)	溶融流出速度 (ml/sec)	
2.21	0	55.7	100	0.89	1.4×10-3a)	
2.21	0.03	47.4	97.5	0.83	3.6×10^{-38}	
2.21	0.07	52.5	95.8	0.81	4.8×10^{-3a}	
2.21	0.16	58.6	88.4	0.83	2.8×10-3b)	

a) $1 \text{ mm} \psi$, 190°C , 150 kg/cm^2 b) $1 \text{ mm} \psi$, 180°C , 150 kg/cm^2

共重合体は無色の粉末として 得られ、 その溶解性は例えば、 VC-PMI 共重合体 (VC 37.2 mol% 含有) はシクロヘキサノン、ジメチルホルムアミド、テトラヒドロフラン、ベンゼン、アセトンに可溶で、エチルエーテル、メタノール、石油エーテル、nーヘキサンに不溶である。また共重合体の赤外吸収スペクトルでは、ポリ塩化ビニルの吸収のほかに 1770、1700、1400 cm⁻¹ のマレイミド特有の吸収がみとめられた。

また懸濁重合により VC-BMI 共重合体を合成し、種々の物性を検討し表3に示した。 VC-BMI 共重合体は実験範囲内の組成では硬度、引張り強さ、衝撃強さの値はポリ塩化ビニルの値にほとんど近いが、溶融流出速度は BMI のモル組成の増加につれて増加することがみとめられた。