Inhaltsverzeichnis

Komplexe Zahlen	2
Polarkoordinaten	 3
Lineare Gleichungssysteme	4
Vereinfachte Schreibweise als Matrix:	4
Umformen in ZNF:	4
Rang einer Matrix	4
110010 00101 11001111 11111111111111111	_
Matrix	4
Besondere Matrizen	 5
Rechenoperationen	6
Elementarmartizen	8
Rechenregeln Matrizen	8
Gruppen	10
Untergruppen	10
Von Elementen erzeugten Untergruppen	10
Ordnung eines Elements	11
Sätze von Lagrange und Euler	11
Die Restklassen modulo n:	11
Ringe	12
Einheitengruppe (= Gruppe der invertierbaren Eler	12
Prime Restklassengruppen	12
Euklidischer Algorithmus	12
Erweiterte Euklidischer Algorithmus	13
Berechnung	 13
Eulersche φ -Funktion:	 13
kleiner Satz von Fermat	13
Das Pohlig Hellman Verfahren	13
RSA-Verfahren:	14
Vektorräume	 14
Körper	 14
Sprechweisen und Regeln	 14
Untervektorräume	 15
Linearkombinationen	 15
Das Erzeugnis von X	 15
Lineare Unabhängigkeit:	15
Basen von Vektorräumen	16
Merkregeln	 16
Anwendung in Linearen Gleichungssystemen	16
Spaltenraum	17
Lineare codes	 ١7
Wie läuft das Dekodieren ab?	 18
Hamming Gewicht und Abstand	 18
Lineare Codes (Fortsetzung)	18
Die Kontrollmatrix (Parity Check Matrix)	18
Vorbereitung auf Determinante	19
Die Determinante berechnen:	19
Laplace'scher Entwicklungssatz:	 20
Determinante und elementare Zeilenumformungen	 20
Blockdiagonalmatrizen	20
Skalarprodukt	21
Wichtige Skalarprodukte	21
Orthogonalität	22
Normieren:	22
Orthogonale Zerlegung von Vektoren:	22
Linearkombinationen bezüglich Orthonormalbasen:	22
Orthogonale Matrizen:	22
Gram-Schmidt'sches Orthonormalisierungsverfahrer	23

Vektorprodukt	23
Orthogonale Projektion	23
Orthogonales Komplement	23
Bestimmung des orthogonalen Komplement	23
Orthogonale Projektion	24
Ausrechnen:	24
Das Lineare Ausgleichsproblem	24
Anwendungen	24
Orthogonale Projektion bestimmen	24
Lösen Überbestimmter linearer Gleichungssysteme	25
Methode der kleinsten Quadrate	25
lineare Abbildung	25
Bild und Kern	26
Dimensionsformel	26
Koordinatenvektoren	26
Darstellungsmatrizen	26
Basistransformation	27
Basistransformationsformel	27
Eigentwerte, Eigenvektoren	27
Diagonalisieren von Matrizen	27
Charakteristisches Polynom	28
Vorgehen	
orthogonales Diagonalisieren	28
Singulärwertzerlegung	29
Σ bestimmen	
V bestimmen	29
U bestimmen	29
Definitheit von Matrizen	29
Matrixnormen	30

Komplexe Zahlen

Konstellation von \mathbb{C} :

$$R^2 = \{(a,b)|a,b \in \mathbb{R}\}$$

$$(0,1)^2 = -1$$

"imaginäre Einheit:"

$$(0,1) = i$$

Andere Notation:

$$(a,b) \in R^2 = (a,0) + (0,b) = (a,0) + (0,1) \cdot (b,0) = a + i \cdot b$$

 $\mathbb{C} = \{a + ib | a, b \in \mathbb{R}\}$

Addition:

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

Multiplikation:

$$(a+ib)\cdot(c+id)=ac+i^2bd+i(ad+bc)=ac-bd+i(ad+bc)$$

Begriffe:

$$Z = a + ib \in \mathbb{C}, a, b \in \mathbb{R}$$

$$a = Re(\mathbb{Z})$$

$$b = Im(\mathbb{Z})$$

wenn
$$a=0 \to Z$$
 rein imaginär

$$Z = a + ib \rightarrow \overline{Z} = a - ib$$

 \overline{Z} ist die zu Z konjugierte komplexe Zahl

Nützliches:

$$Z \cdot \overline{Z} = (a+ib) \cdot (a-ib) = a^2 + b^2$$

$$|Z| = \sqrt[2]{a^2 + b^2}$$

$$\overline{Z+W} = \overline{Z} + \overline{W}$$

$$\overline{Z \cdot W} = \overline{Z} \cdot \overline{W}$$

$$Re(Z) = \frac{1}{2}(Z + \overline{Z})$$

$$Im(Z) = \frac{1}{2i}(Z - \overline{Z})$$

Dreiecksgleichung:

$$Z, W \in \mathbb{C} \Rightarrow |Z + W| \le |Z| + |W|$$

Invertieren: (komplexe Zahl aus Nenner raus bekommen)

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac+bd+i(cb-ad)}{c^2+d^2}$$

Polarkoordinaten

Form:
$$Z = r(\cos \varphi + i \sin \varphi)$$

mit Radius $r \in \mathbb{R}$ und Winkel $\varphi \in [-\pi, \pi]$

Umrechnung:

•
$$Z = a + ib$$

1.
$$r = \sqrt{a^2 + b^2}$$

2.
$$\varphi = \begin{cases} \arccos \frac{a}{r}, b \ge 0 \\ -\arccos \frac{a}{r}, b < 0 \end{cases}$$

3.
$$Z = r \cdot (\cos \varphi + i \sin \varphi)$$

•
$$cos\varphi = \frac{a}{r}$$

•
$$sin\varphi = \frac{b}{r}$$

Multiplikation:

$$Z_1 = r_1(\cos(\varphi_1) + i\sin(\varphi_1))$$

$$Z_2 = r_2(\cos(\varphi_2) + i\sin(\varphi_2))$$

$$Z_1 \cdot Z_2 = r_1 \cdot r_2 \cdot (\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

Potenzen:

$$Z = r \cdot (\cos(\varphi) + i\sin(\varphi))$$

$$Z^n = r^n \cdot (\cos(n \cdot \varphi) + i\sin(n \cdot \varphi))$$

Wurzeln:

 $\sqrt[n]{Z}$ hat genau n Lösungen

$$\begin{split} Z_k &= \sqrt[n]{r} \cdot (\cos \frac{\varphi + 2\pi \cdot k}{n} + i \sin \frac{\varphi + 2\pi \cdot k}{n}) \\ \text{mit } n &= \text{``Wurzelexponent''}, \\ r &= \text{``Radius''}, \\ k &= \text{``k-te L\"osung der Wurzel von 0 bis } n-1 \end{split}$$

Lineare Gleichungssysteme

Vereinfachte Schreibweise als Matrix:

 $\overbrace{a_{11}x_1 + \cdots + a_{1n}x_1 = b_1}_{a_{m1}x_n + \cdots + a_{mn}x_n = b_m} \Rightarrow \underbrace{\begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & + & \ddots & + & \vdots & = & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix}}_{(A|b)} \Rightarrow \cdots$

$$\cdots \Rightarrow \begin{pmatrix} * & \cdots & * & * \\ 0 & * & \cdots & * & \vdots \\ \vdots & 0 & * & * & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & * \end{pmatrix} \Rightarrow \cdots \Rightarrow \begin{pmatrix} 1 & * & \cdots & * & * \\ 0 & 1 & * & * & * \\ 0 & 0 & 1 & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

- *: unbekannter Wert
- *****: 0
- \star : wenn $\neq 0$ gibt es keine Lösung

Umformen in ZNF:

Elementare Zeilenumformungen $\left\{ \begin{array}{l} \text{Vertauschen zweier Zeilen} \\ \text{Multiplikation einer Zeile mit } \lambda \neq 0 \\ \text{Addition des λ-fachen eines Zeile zu einer anderen} \end{array} \right.$

Rang einer Matrix

Matrix M auf ZSF bringen

 \Rightarrow Anzahl an nicht null Zeilen = Rang von M = rg(M)

Das Kriterium für Lösbarkeit:

- Das System ist genau dann lösbar, wenn: rg(A) = rg(A|b)
- $\bullet\,$ ist das LGS lösbar, so gilt: Anzahl frei wählbaren Vraiablen = n-r

n = Anzahl der variablen und r = rg(A)

• ist das System (A|b) lösbar, so gilt: $\exists_1 \lg \Leftrightarrow n = r$

Matrix

$$A = \left(\underbrace{\begin{array}{ccc} a_{11} & \cdots & a_1 a \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{ma} \end{array}}_{n \text{ Spalten}} \right) \right\} m \text{ Zeilen}$$

Stelle (i, j): i-te Zeile | j-te Spalte

$$\mathbb{R}^{m \times n} = \{(a_{ij})_{m,n} | a_{ij} \in \mathbb{R}\} \Rightarrow \text{"reelle Matrix"}$$

$$\mathbb{C}^{m \times n} = \{(a_{ij})_{m,n} | a_{ij} \in \mathbb{C}\} \Rightarrow \text{"komplexe Matrix"}$$

$$\Rightarrow K(k\ddot{o}rper)^{m \times n} = \{(a_{ij})_{m,n} | a_{ij} \in K\}$$

 $A=B\Leftrightarrow$ gleich viele Spalten UND gleich viele Zeilen UND gleiche Einträge an den gleichen Stellen

Besondere Matrizen

•
$$m \times 1 : S = \begin{pmatrix} S1 \\ \vdots \\ S_m \end{pmatrix}$$
 Spaltenvektor

• $1 \times n : Z = (Z1 \cdots Z_n)$ Zeilenvektor

•
$$m \times n : 0 = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$
 Nullmatrix

• m = n: quadratische Matrix

Diagonal matrix:
$$diag(\lambda_1 \dots \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Einheitsmatrix:
$$E_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Obere
$$\Delta$$
-Matrix: $O = \begin{pmatrix} * & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & * \end{pmatrix}$

Untere
$$\Delta$$
-Matrix: $U = \begin{pmatrix} * & 0 & \cdots & 0 \\ * & * & \ddots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ * & * & \cdots & * \end{pmatrix}$

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in K^{m \times n} = \left(\overrightarrow{S_1}, \quad \cdots \quad \overrightarrow{S_n} \right) = \begin{pmatrix} Z_1 \\ \vdots \\ Z_m \end{pmatrix}$$

Rechenoperationen

Transponieren:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix}$$

Symmetrische Matrix: $A^T = A$

Addieren:

$$A = (a_{ij})_{m,n} , B = (b_{ij})_{m,n}$$

$$A + B = (a_{ij} + b_{ij})_{m,n}$$

$$A = (a_{ij}) = -(-a_{ij}) = -(-A)$$

Skalare Multiplikation (Vervielfachen:)

$$A = (a_{ij})_{m,n} \in \mathbb{K}^{m \times n}$$

$$\lambda \in \mathbb{K}$$

$$\Rightarrow \lambda A = (\lambda a_{ij})$$

Multiplikation:

$$Z = (Z_1, \cdots, Z_n)$$
 , $S = \begin{pmatrix} S_1 \\ \vdots \\ S_n \end{pmatrix}$

$$Z \cdot S = \sum_{i=1}^{n} Z_i S_i$$

 \Downarrow

$$A = \begin{pmatrix} Z_1 \\ \vdots \\ Z_m \end{pmatrix} \in \mathbb{K}^{m \times n} \quad , \quad B = \begin{pmatrix} S_1 & \cdots & S_p \end{pmatrix} \in \mathbb{K}^{n \times p}$$

$$A \cdot B := \begin{pmatrix} Z_1 \cdot S_1 & Z_1 \cdot S_2 & \cdots & Z_1 S_p \\ Z_2 \cdot S_1 & Z_2 \cdot S_2 & \cdots & Z_2 S_p \\ \vdots & \vdots & \ddots & \vdots \\ Z_m \cdot S_1 & Z_m \cdot S_2 & \cdots & Z_m \cdot S_p \end{pmatrix} \in K^{m \times p}$$

 $A \cdot B \neq B \cdot A \leftarrow$ keine Kommutativität

$$A^k = \underbrace{A \cdot A \cdots A}_{k}$$

$$A^0 := E_n$$

Invertieren:

$$A \in K^{n \times n} \quad , \quad B = A^{-1}$$

$$A \cdot B = E_n = B \cdot A$$

Nicht jede Matrix invertierbar!

$$B = \begin{pmatrix} \overrightarrow{S_1} & \dots & \overrightarrow{S_n} \end{pmatrix} , e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$A \cdot B = A \cdot \begin{pmatrix} \overrightarrow{S_1} & \dots & \overrightarrow{S_n} \end{pmatrix} = \begin{pmatrix} A\overrightarrow{S_1} & A\overrightarrow{S_n} & B \end{pmatrix} = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix} = E_n$$
löse so:
$$(A|E_n) \Rightarrow \dots \text{ el. ZUF} \dots \Rightarrow (E_n|A^{-1})$$

Elementarmartizen

Permutationsmatrizen (Vertauschen von Zeilen):

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$

$$P \cdot A = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \\ 2 & 2 & 2 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Multiplikation einer Zeile mit $\lambda \neq 0$:

$$D_k(\lambda) = \begin{pmatrix} 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 1 & 0 & 0 & \ddots & 0 \\ 0 & \ddots & 0 & \lambda & 0 & \ddots & 0 \\ 0 & \ddots & 0 & 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \leftarrow k$$

Addition des λ -fachen der l-ten Zeile zur k-ten Zeile:

$$N_{kl}(\lambda) = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \lambda & \vdots \\ 0 & \ddots & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \leftarrow \lambda \text{ an der } k\text{-ten Zeile und } l\text{-ten Spalte}$$

Rechenregeln Matrizen

Addition:

Transposition:

$$\begin{array}{c|c} (A+B)^T = A^T + B^T \\ (\lambda A)^T = \lambda A^T \\ (A^T)^T = A \\ (AB)^T = B^T A^T \\ (A^{-1})^T = (A^T)^{-1} \end{array} \left| \begin{array}{c} \text{Summe} \\ \text{Skalarmultiplikation} \\ \text{Zweifache Transposition} \\ \text{Produkt} \\ \text{Inverses} \end{array} \right.$$

Multiplikation:

$\exists A, B : AB \neq BA \mid$	nicht kommutativ!
(AB)C = A(BC) $\exists E \in E_n : EA = A$	Assoziativität
$\exists E \in E_n : EA = A$	Neutrales Element
A(B+C) = AB + AC	Distributivität
(B+C)A = BA + CA	
A(B+C) = AB + AC (B+C)A = BA + CA $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$	Inverses
	1

Gruppen

Gnichtleere Menge mit innerer Verknüpfung \cdot

$$\cdot:G\times G\to G$$

 (G,\cdot) heißt Gruppe, wenn:

$$\begin{array}{l} \forall a,b,c \in G: (a \cdot b) \cdot c = a \cdot (b \cdot c) \\ \exists e \in G: e \cdot a = a = a \cdot e \quad \forall a \in G \\ \forall a \in G \exists b \in G: a \cdot b = e = b \cdot a \end{array} \right| \begin{array}{l} \text{Assoziativgesetz} \\ \text{neutrales Element} \\ \text{inverses Element} \end{array}$$

G nennt man <u>abelsch</u> (=kommutativ) falls:

•
$$ab = ba \quad \forall a, b \in G$$

Untergruppen

 (G,\cdot) sei eine Gruppe mit neutralem Element e

 $U \subseteq G$ mit:

$$\left. \begin{array}{c} e \in U \\ u,v \in U \Rightarrow u \cdot v \in U \\ u \in U \Rightarrow u^{-1} \in U \end{array} \right| \begin{array}{c} \text{neutrales Element} \\ \text{abgeschlossen} \\ \text{inverses Element} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} U \text{ ist Untergruppe} \\ U \leq G \end{array} \right.$$

Von Elementen erzeugten Untergruppen

$$\langle a \rangle = \{ a^k \mid a \in G, \, k \in \mathbb{Z} \}$$

- $e \in \langle a \rangle$
- $a^k, a^l \in \langle a \rangle \Rightarrow a^k \cdot a^l = a^{k+l} \in \langle a \rangle$
- $\bullet \quad a^k a^{-k} = a^0 = e$

Ordnung eines Elements

 (G,\cdot) Gruppe $\to a \in G$

$$\to O(a) = |\langle a \rangle| = \left\{ \begin{array}{ll} n \in \mathbb{N}, & \# \left\{ a^k \, | \, k \in \mathbb{Z} \right\} \\ \infty, & sonst. \end{array} \right.$$

O(a) = kleinste Zahl n mit $a^n = e$

$$\langle a \rangle = \{e, a, \dots, a^{n-1}\}$$

$$O(a) = n$$

Satz über die Ordnung von Gruppenelementen:

Es sei G eine Gruppe mit neutralem Element e, und es sei $a \in G$:

- (a) Falls $O(a) = \infty$, dann: $a^i \neq a^j$, $i \neq j$.
- (b) Falls $O(a) \in \mathbb{N}$, so gilt: O(a) = u = kleinste natürliche Zahl, für die $a^n = e$ gilt.

$$a^s = e \Leftrightarrow O(a) | s$$

Sätze von Lagrange und Euler

Satz von Lagrange:

G sei eine endliche Gruppe, $U \leq G$

Dann:

Satz von Euler:

$$a^{|G|} = e \quad \forall a \in G$$

Die Restklassen modulo n:

Gegeben: $n \in \mathbb{N}$

Betrachte: wähle $a \in \mathbb{Z}$

$$\overline{a} = \{a + nz \mid z \in \mathbb{Z}\}\$$

Wir schließen $a, b \in \mathbb{Z}$:

 $a \equiv b \pmod{n}$, falls a, b den gleichen Rest bei Div durch n haben:

Es gilt.

$$\begin{array}{c} a = qn + r \\ b = \tilde{q}n + r \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{ccc} a - b & = (q - \tilde{q})n \\ & \Leftrightarrow n | (a - b) \\ & \Leftrightarrow a + n\mathbb{Z} = b + n\mathbb{Z} \\ & \Leftrightarrow \overline{a} = \overline{b} \end{array} \right.$$

Menge der Restklassen $\to \mathbb{Z} \Big| n\mathbb{Z} = \mathbb{Z} \Big| n = \mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$

$$|\mathbb{Z}_n| = n$$

Addition:

$$\overline{k}, \overline{l} \in \mathbb{Z}$$

$$\rightarrow \overline{k} = \overline{l} = \overline{k+l}$$

Ringe

Eine Menge R mit zwei Verknüpfungen + und \cdot heißt ein Ring falls gilt:

- (R, +) ist abelsche Gruppe
- \bullet · ist assoziativ
- Distributivgesätze a(b+c)=ab+ac und $(a+b)c=ac+bc \forall a,b,c \in R$
- \exists Einselement: $1 \in R$: $1 \cdot a = a = a \cdot 1 \quad \forall a \in R$

Einheitengruppe (= Gruppe der invertierbaren Elemente)

Gegeben: Ring $(R, +, \cdot)$

$$R^{\times} = \{a \in R \mid a \text{ ist invertierbar}\} = \{a \in R \mid \exists b \in R : ab = 1 = ba\}$$

 R^\times ist die Einheitengruppe von R

Prime Restklassengruppen

$$n \in \mathbb{N} \to \mathbb{Z}_n^{\times} = \{ \overline{a} \text{ ist invertierbar} \}$$

= $\{ \overline{a} \in \mathbb{Z}_n \mid \exists j \in \mathbb{Z}_n : \overline{a}j = 1 \}$
= $\{ \overline{a} \in \mathbb{Z}_n \mid ggt(a, n) = 1 \}$

a, b sind relativ prim/teilerfremd $\Leftrightarrow ggT(a, b) = 1$

 $(\mathbb{Z}_n, +, \cdot)$ ist körper $\Leftrightarrow n \in (\mathbb{P})$

$$\overline{a} \text{ invertierbar } \Leftrightarrow \exists \overline{b} \in \mathbb{Z}_n \\ \Leftrightarrow \exists b \in \mathbb{Z} \exists x \in \mathbb{Z} : ab - 1 = nx \\ \Leftrightarrow \exists b \in \mathbb{Z} \exists x \in \mathbb{Z} : ab - nx = 1 \\ \Rightarrow ggT(a, n) = 1$$

Euklidischer Algorithmus

$$a_1 = a, \ a_2 = b \mid b > 0$$

Sukzessive Division mit Rest:

 $\exists r, s \in \mathbb{Z} : ra + sb = a_n \quad \Leftarrow \text{ erweiterter euklidischer Algorithmus}$

Erweiterte Euklidischer Algorithmus

Der Erweiterte Euklidischer Algorithmus findet zwei weitere Zahlen $s, t \in R$ die eine Linearkombination bilden, die folgende Gleichung erfüllt:

$$s \cdot a + t \cdot b = ggT(a, b)$$

Berechnung

Bei dem Erweiterten Euklidischen Algorithmus wird die bisherige Folge r_x um drei weitere (q_x, s_x, t_x) erweitert, welche mit der folgenden Formeln bestimmt werden

$$q_{x+1} := \left[\frac{r_{x-1}}{r_x} \right]$$

$$r_{x+1} := \left\{ \begin{array}{ccc} a & \text{wenn } x = 0, \\ b & \text{wenn } x = 1 \\ r_{x-1} - q_x \cdot r_x \end{array} \right. \longrightarrow \left. \begin{array}{c} \text{ggT}(a,b) = r_n \\ = s_n \cdot a + t_n \cdot b \end{array} \right. \text{mit } r_{n+1} = 0$$

$$s_{x+1} := \left\{ \begin{array}{ccc} 1 & \text{wenn } x = 0, \\ 0 & \text{wenn } x = 1 \\ s_{x-1} - q_x \cdot s_x \end{array} \right. \longrightarrow \left. \begin{array}{c} \text{ggT}(a,b) = r_n \\ = s_n \cdot a + t_n \cdot b \end{array} \right. \text{mit } r_{n+1} = 0$$

$$t_{x+1} := \left\{ \begin{array}{ccc} 0 & \text{wenn } x = 0, \\ 1 & \text{wenn } x = 1 \\ t_{x-1} - q_x \cdot t_x \end{array} \right.$$

Eulersche φ -Funktion:

Man nennt
$$\varphi(n) = \#\{a \in \{1, \dots, n\} \mid ggT(a, n) = 1\}$$

$$\varphi(n) = |\mathbb{Z}_n^{\times}|$$

$$\varphi(p) = p - 1 \quad \forall p \in \mathbb{P}$$

kleiner Satz von Fermat

Es sei $p \in \mathbb{P}$ dann gilt: $\forall a \in \mathbb{Z} : a^p \equiv a \pmod{p}$

Das Pohlig Hellman Verfahren

$$p = (\text{große})$$
 Primzahl $\parallel \mathcal{N} = \text{Klartext} \mid \mathcal{N} \in \mathbb{Z}_p^{\times} \parallel e, d = \text{Schlüssel}$

Wähle $e \in \mathbb{N}$ mit ggT(e, p - 1) = 1

Bestimme d mit:

$$ed \equiv 1 \pmod{p-1}$$

 $ed = 1 + r(p-1)$
 $1 = ed - r(p-1)$

 \Rightarrow euklidischer Algorithmus

Verschlüsseln:

$$C = \mathcal{N}^e$$

Entschlüsseln:

$$\mathcal{C}^d = (\mathcal{N}^e)^d = \mathcal{N}^{ed} = \mathcal{N}^{1+r(p-1)} = \mathcal{N}^1 \cdot (\mathcal{N}^{(p-1)})^r \overset{\text{Satz von Euler - Fermat}}{=} N$$

Wähle pam besten mit $\frac{p-1}{2}$ auch prim \leftarrow sichere Primzahl

RSA-Verfahren:

Vorbereitung des Empfängers (Erzeugers der Schlüssel):

- 1. wähle große $p,q\in\mathbb{P}\ :\ p\neq q$ und $p\pm 1,q\pm 1$ müssen große Primteiler haben
- 2. setze $n = p \cdot q$
- 3. $\left| \mathbb{Z}_n^{\times} \right| = \left| \{ a \in \{1, \dots, n\} \mid ggT(a, n) = 1 \} \right| = \varphi(n) = \varphi(p \cdot q) = (p 1)(q 1)$
- 4. wähle $e \in \{1, \dots, n\}$: $ggT(e, \varphi(n)) = 1$
- 5. berechne $d: e \cdot d \equiv 1 \pmod{\varphi(n)}$
- 6. veröffentliche Schlüssel (n, e)

Verschlüsselung des Senders:

$$\mathcal{C} \equiv \mathcal{N}^e \ (mod \ n)$$

Entschlüsselung des Empfängers:

$$\mathcal{N} \equiv \mathcal{C}^d \; (mod \; n)$$

Vektorräume

Körper

Ein Ring K $(K, +, \cdot)$ mit:

- 1. K ist kommutativ
- 2. \exists Einselement 1 : $1 \cdot \lambda = \lambda = \lambda \cdot 1 \quad \forall \lambda \in K$
- 3. Jedes $\lambda \neq 0$ ist invertierbar $\Leftrightarrow K^{\times} = K \setminus \{0\}$

V heißt ein K-<u>Vektorraum</u> falls $\forall \lambda, \mu \in K$, $\forall u, v, w \in V$:

$$\begin{cases} 1. \ v + w \in V \ , \ \lambda \cdot v \in V \\ 2. \ u + (v + w) = (u + v) + w \\ 3. \ \exists 0 \in V \ : \ 0 + v = v \\ 4. \ \exists v' \in V \ : \ v + v' = 0 \\ 5. \ u + v = v + u \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \\ (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \ : \ \text{abelsche Gruppe} \end{cases}$$

$$\begin{cases} (V, +) \$$

Sprechweisen und Regeln

Vektor: Element eines Vektorraumes

Nullvektor: 0-Element des Vektorraumes

Entgegengesetzte Vektoren (Negative): $-v \rightarrow w + (-v) = w - v$

 $K = \mathbb{R}$: reeller Vektorraum

 $K = \mathbb{C}$: komplexer Vektorraum

 $\lambda \in K$: Skalare

3 Regeln:

$$0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \mid -(0v)$$

$$0 = 0 \cdot v$$

$$\lambda \cdot 0 = \lambda(0+0) = \lambda \cdot 0 + \lambda \cdot 0$$

$$0 = \lambda \cdot 0$$

$$\lambda \cdot v = 0 \iff \lambda = 0 \lor v = 0$$

Untervektorräume

V sei ein K-Vektorraum

 $U \subseteq$ heißt Untervektorraum, falls U wieder ein K-Vektorraum ist d.h.

- $0 \in U$
- $u, v \in U \Rightarrow u + v \in U$
- $\lambda \in K, u \in U \Rightarrow \lambda u \in U$

Linearkombinationen

$$v_1, \ldots, v_n \in V, \lambda_1, \ldots, \lambda_n \in K$$

wenn gilt:

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n = \sum_{i=1}^n \lambda_i v_i \in V$$

ist v eine Linearkombination von v_1, \ldots, v_n

Das Erzeugnis von X

Geg.: V: K-Vektorraum $x \subseteq V$

$$\begin{array}{lll} Setze: \, \langle X \rangle & = & lin(X) = span(X) \\ & = & \left\{ \sum_{i=1}^n \lambda_i v_i \; \middle|\; \lambda_i \in K, \; v_i \in X, \; n \in \mathbb{N} \right\} \\ & = & Kv_1 + \ldots + Kv_n \\ & = & \text{Menge aller endlichen Linearkombinationen von Elementen aus } X \\ & = & \text{Erzeugnis von } X \\ & = & \text{lineare Hülle von } X \end{array}$$

• $\langle X \rangle \leq V \leftrightarrow \langle X \rangle$ ist ein Untervektorraum von V

Definition:

$$X = \emptyset \rightarrow \langle \emptyset \rangle = \{0\}$$

Lineare Unabhängigkeit:

Geg.: K-Vektorraum V

 $v_1, \ldots, v_n \in V$ heißen linear unabhängig, falls:

$$\forall T \subsetneq \{v_1, \dots, v_n\} \Rightarrow \langle T \rangle \subsetneq \langle v_1, \dots, v_n \rangle \leftarrow \text{"keins unn\"otig"}$$

Das Kriterium für lineare Unabhängigkeit:

Gegeben:
$$v_1, \ldots, v_n \in V$$
, $0_v \in V$

Ansatz:

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = 0_v$$

Falls:

$$\exists_1 \text{Lsg.} \Rightarrow v_1, \dots, v_n \text{ linear unabhängig}$$

Basen von Vektorräumen

Ist V ein K-Vektorraum, so nennt man $B \leq V$ eine Basis von V, falls:

- B linear unabhängig
- B erzeugt V

Merkregeln

- Jeder K-Vektorraum hat eine Basis
- $B \le V$ ist eine Basis von V $\Leftrightarrow B$ ist eine maixmal-linear-unabhängige Teilmenge von V $\Leftrightarrow B$ ist minimales Erzeugendensystem von V
- $\bullet\,$ Jede linear unabhängige Menge von V kann man zu einer Basis ergänzen
- ullet Jedes Erzeugendensystem von V kann zu einer Basis verkürzt werden
- Ist B eine Basis von V, so kann jedes $v \in V$ als genau eine Weise bzgl. B dargestellt werden:

$$v = \lambda_1 b_1 + \ldots + \lambda_n b_n$$

- Je zwei Basen von V haben die gleiche Mächtigkeit : B_1, B_2 Basen von $V \Rightarrow |B_1| = |B_2|$
- Die Dimension eines Vektorraumes V:

Wähle Basis B von V

$$dim(V) = |B| = \begin{cases} n \\ \infty \end{cases}$$

• Ist V ein Vektorraum der Dimension n: dim(V) = n:

Dann:

- \bullet Jede linear unabhängige Menge mit n Elementen ist eine Basis
- $\bullet\,$ Jedes Erzeugendensystem mit n Elementen ist eine Basis
- Mehr als n Vektoren sind immer linear abhängig
- $U < V \Rightarrow dim(U) < dim(V)$
- $U \le V \land dim(U) = dim(V) \Rightarrow U = V$
- $dim(\mathbb{R}[x]_n) = n+1$

Anwendung in Linearen Gleichungssystemen

$$A \in K^{m \times n} = (a(ij)) = \begin{pmatrix} s_1 & \dots & s_n \end{pmatrix} = \begin{pmatrix} z_1 \\ \vdots \\ z_m \end{pmatrix}$$

$$S_A = \langle s_1, \dots, s_n \rangle$$
 = Spaltenraum von $A \mid Z_A = \langle z_1, \dots, z_m \rangle$ = Zeilenraum von $A \mid dim(S_A)$ = Spaltenrang von $A \mid dim(Z_A)$ = Zeilenrang von A

$$rg(A) = \text{Zeilenrang} = \text{Spaltenrang } \forall A \in K^{m \times n}$$

Spaltenraum

$$A = (s_1 \ldots s_n) \in K^{m \times n}$$

$$\langle s_1, \dots, s_n \rangle = \left\{ \sum_{i=1}^n \lambda_i s_i \mid \lambda_i \in K \right\}$$

$$= \left\{ \left(s_1 \dots s_n \right) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \mid \lambda_1, \dots, \lambda_n \in K \right\}$$

$$= \left\{ A \cdot x \mid x \in K^n \right\}$$

$$Ax = 0: (A|0) \rightarrow ZSF$$

Lösungsraum von
$$A \cdot x = 0$$

 $Kern(A)$
 $ker(A)$ $\} \leq K^n$

$$dim(Kern(A)) = n - rg(A)$$

Lineare codes

datenübertragung: Bits $\rightarrow x_1, x_2, x_3, \dots$

Strom von Bits über gestörten Kanal

 $p \approx 10^{-6}$ falsches Bit wird übertragen

G = Generator matrix

$$G = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
 Wiederholungsmatrix
$$G = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
 Parity-Check Matrix

Die Menge
$$C := \left\{ \begin{array}{c} G \cdot \left(\begin{array}{c} x_1 \\ \vdots \\ x_k \end{array} \right) \middle| \left(\begin{array}{c} x_1 \\ \vdots \\ x_k \end{array} \right) \in K^k \end{array} \right\} \leq K$$

heißt (n, k)-Code:

$$n = \text{Länge}$$

 $n - k = \text{Redundanz}$

$$\begin{array}{rcl} dim(C) & = & k \\ \frac{k}{n} & = & \text{Informations rate} \\ rg(G) & = & k \end{array}$$

Wie läuft das Dekodieren ab?

1. Fall $c' \in C$:

Dekodiere :
$$G \cdot x = c' \implies x \in k^k$$

2. Fall: $c' \notin C$:

Suche c'', das sich von c' möglichst wenig unterscheidet:

$$\exists_1 c'' \\ \text{nächstes } c' \text{ an } c'' \text{wählen und wie in Fall 1 dekodieren} \\ \begin{vmatrix} \exists c''_1, \dots c''_n : c''_1, \dots, c''_n \text{ paarweise disjunkt} \\ \text{Nachricht neu senden lassen} \end{vmatrix}$$

Hamming Gewicht und Abstand

Für
$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in K^n$$
 ist das Hamming-Gewicht:

$$w(c) = \left| \left\{ i \in \left\{ 1, \dots, n \right\} \middle| c_i \neq 0 \right\} \right|$$

Für $c, c' \in K^n$ ist der Hamming-Abstand:

$$d(c,c') = w(c-c') = \left| \left\{ i \in \left\{ a, \dots, n \right\} \middle| c_i \neq c'_i \right\} \right|$$

Für $C \subseteq K^n$ gilt:

$$d(C) = min \Big\{ d(c, c') \middle| c, c' \in C, c \neq c' \Big\}$$

$$d(C) = min \Big\{ w(c) \middle| c \in C \setminus \{0\} \Big\}$$

Lineare Codes (Fortsetzung)

$$d(c,c^{\prime\prime}) \le d(c,c^\prime) + d(c^\prime,c^{\prime\prime})$$

Es sei $C \in K^n$ ein Code:

$$d(C) = 2e+1 \quad | \quad d(C) = 2e+2$$

$$C \text{ ist } e\text{-fehlerkorrigierend} \quad C \text{ ist } e\text{-fehlerkorrigierend} \quad C \text{ ist } (e+1)\text{-fehlererkennend}$$

Die Kontrollmatrix (Parity Check Matrix)

$$G = \begin{pmatrix} E_k \\ A \end{pmatrix} \in K^{n \times k}$$

$$P = \begin{pmatrix} -A & E_{n-k} \end{pmatrix} \in K^{(n-1) \times n}$$
Es gilt:

$$P \cdot G = 0$$

Damit:

- $Pc = 0 \forall c \in C$
- dim(C) = dim(Lösungsraum Px = 0) = n (n k) = k

C = "Lösungsmenge Px = 0"

Vorbereitung auf Determinante

Die symmetrische Gruppe:

Menge aller Permutationen (=Bijektionen) von $\{1, 2, ..., n\} = I_n$

$$S_n = \left\{ \sigma : I_n \to I_n \middle| \sigma \text{ bijektiv} \right\}$$

 $|S_n| = n!$

Verknüpfung: Komposition (Hintereinanderausführung):

$$f \circ g = f(g(x))$$

Das Signum (Vorzeichen) einer Permutation:

Wir nennen (j, i) einen <u>Fehlstand</u> der Permutation σ , falls

$$i < j$$
, aber $\sigma(i) > \sigma(j)$

Hat σ f Fehlstände, so setze $sgm(\sigma) = (-1)^f$

Es gilt:

f = #Fehlstände von $\sigma \leftarrow$ ist ein Homomorphismus:

$$sgm(\sigma \circ \tau) = sgm(\sigma) \cdot sgm(\tau) \quad \forall \sigma, \tau \in S_n$$

$$sgm(\sigma \circ \tau) = \prod_{i < j} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{j - i}$$

$$= \prod_{i < j} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} \cdot \prod_{i < j} \frac{\tau(j) - \tau(i)}{j - i}$$

$$sgm(\sigma) \cdot \prod_{sgm(\sigma)} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{sgm(\tau)}$$

Die Determinante berechnen:

Für jede quadratische Matrix $A \in K^{n \times n}, Kk\"{o}rper$, heißt

$$|A| = det(A) = \sum_{\sigma \in S_n} sgm(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

die Determinante von A (Leibniz'sche Formel).

Permanente von
$$A = per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

- $\left| diag(\lambda_1, \dots, \lambda_n) \right| = \prod_{i=1}^n \lambda_i \leftarrow \text{ gilt auch für obere- und untere-} \Delta$ -Matrizen
- $det(A) = det(A^T) \ \forall A \in K^{n \times n}$

• Determinantenmultiplikationssatz:

$$det(A \cdot B) = det(A) \cdot det(B) \ \forall A, B \in K^{n \times n}$$

- $det(A^{-1}) = \frac{1}{det(A)}$
- $det(A^k) = det(A)^k$

Laplace'scher Entwicklungssatz:

Vorab:

Streichungsmatrix:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,m} & a_{2,m} & \cdots & a_{n,m} \end{pmatrix} \rightarrow A_{1,1} = \begin{pmatrix} a_{2,2} & \cdots & a_{2,n} \\ \vdots & \ddots & \vdots \\ a_{2,m} & \cdots & a_{n,m} \end{pmatrix}$$

$$A_{i,j} \rightarrow \text{Zeile } i \text{ und Spalte } j \text{ weglassen}$$

$$A = (a_{i,j}) \to det(A) = \begin{cases} \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{i,j} \cdot det(A_{i,j}) \\ \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{i,j} \cdot det(A_{i,j}) \end{cases}$$
Entwicklung nach *i*-ter Zeile Entwicklung nach *j*-ter Spalte

Determinante und elementare Zeilenumformungen

 $P_{i,j} = Permutationsmatrix$

$$det(P_{i,j} \cdot A) = det(P_{i,j}) \cdot det(A) = -det(A)$$

 $D_i(\lambda) = \text{Multiplikation einez Zeile mit } \lambda$

$$det(D_i(\lambda) \cdot A) = det(D_i(\lambda)) \cdot det(A) = \lambda \cdot det(A)$$

 $N_{i,j}(\lambda) = \text{Addition des } \lambda\text{-fachen der } j\text{-ten Zeile zur } i\text{-ten Zeile}$

$$det(N_{i,j}(\lambda) \cdot A) = det(N_{i,j}(\lambda)) \cdot det(A) = det(A)$$

$$det(\lambda \cdot A) = \lambda^n \cdot det(A) \ \forall A \in K^{n \times n}$$

Blockdiagonalmatrizen

$$A, B \text{ quadratisch} \rightarrow \begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = \begin{vmatrix} A & 0 \\ C & B \end{vmatrix} = |A| \cdot |B|$$

$$det(A) \neq 0 \Leftrightarrow A \text{ invertierbar } \forall A \in K^{n \times n}$$

Skalarprodukt

 $V \times V \to \mathbb{R}$, V ist ein \mathbb{R} -Vektorraum

 $\langle \cdot, \cdot \rangle$ heißt Skalarprodukt wenn:

• Bilinearität: $\forall v, w, v', w' \in V$, $\forall \lambda \in \mathbb{R}$

$$\langle \lambda v + v', w \rangle = \lambda \langle v, w \rangle + \langle v', w \rangle$$

$$\langle v, \lambda w + w' \rangle = \lambda \langle v, w \rangle + \langle v, w' \rangle$$

• Symmetrie: $\forall v, w \in V$

$$\langle v, w \rangle = \langle w, v \rangle$$

• Positive Definitheit: $\forall v \in V$

$$\langle v, v \rangle \ge 0$$

 $\langle v, v \rangle = 0 \Leftrightarrow v = 0$

Wichtige Skalarprodukte

• kanonisches/standard Skalarprodukt:

$$V = \mathbb{R}^n, v, w \in V$$

$$\langle v,w\rangle := v^Tw$$

• Skalar
produkt mit Matrix: $A = \mathbb{R}^{n \times n}$, $v, w \in \mathbb{R}^n$

$$\langle v, w \rangle_A := v^T A w$$

$$n = 2 \Rightarrow A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\langle v, w \rangle_A = a \cdot v_1^2 + (b+c) \cdot v_1 \cdot v_2 + d \cdot v_2^2$$

• Polynom Skalar
produkt: $p,q\in\mathbb{R}[x]$

$$\langle p, q \rangle := \int_{a}^{b} p(x) \cdot q(x) dx$$

Begriffe:

- Euklidescher Vektorraum: \mathbb{R} -Vektorraum mit Skalarprodukt
- Länge/Betrag/Norm eines Vektors: $v \in V$

$$||v|| := \sqrt{\langle v,v\rangle}$$

• Distanz/Abstand: $v, w \in V$

$$d(v, w) := ||v - w||$$

• Winkel $\forall v,w \in V$, $v,w \neq 0$ mit Cauchy-Schwarzschen Ungleichung:

$$\sphericalangle(v,w) := \arccos \frac{\langle v,w \rangle}{||v|| \cdot ||w||} \in [0,\pi]$$

21

Orthogonalität

$$v \perp w \mid v, w \in V$$
 falls:

$$\langle v, w \rangle = 0$$

$$B\subseteq V$$

$$\underbrace{b_i \bot b_j \ \forall i \neq j \ \land \ b_i, b_j \in B}_{\text{Ortholonormal system}} \ \land \ ||b_i|| = 1 \ \forall b_i \in B$$

Falls B eine Basis von V ist: Orthogonalbasis/Orthonormalbasis

Normieren:

$$v \in V \setminus \{0\}$$

$$\hat{v} = \frac{1}{||v||} \cdot v$$

Orthogonale Zerlegung von Vektoren:

$$v, a \neq 0 | v, a \in V$$

gesucht:
$$v_a, v_{a^{\perp}}|v = v_a + v_{a^{\perp}} \wedge v_a \perp v_{a^{\perp}}$$

$$v_a = \frac{\langle v, a \rangle}{\langle a, a \rangle} \cdot a$$

$$v_{a^{\perp}} = v - v_a$$

Linearkombinationen bezüglich Orthonormalbasen:

$$B = \{b_1, \dots, b_n\}$$
 ist ONB von V

Linearkombination zu $v \in V$ finden:

$$\lambda_i = \langle b_i, v \rangle \ \forall i \in \{1, \dots, n\}$$

Orthogonale Matrizen:

 $A \in \mathbb{R}^{n \times n}$ heißt orthogonal falls: $A^T A = E_n$

A sei orthogonal:

•
$$A^{-1} = A^T$$

•
$$A^T A = A A^T = E_n$$

•
$$det(A) = \pm 1$$

- Zeilen bzw. Spalten von A bilden eine ONB des \mathbb{R}^n

•
$$||Av|| = ||v||$$

Gram-Schmidt'sches Orthonormalisierungsverfahren

Basis $A = \{a_1, a_2, \dots, a_n\}$ eines euklidischen Vektorraumes V

$$b_1 = \frac{1}{||a_1||} \cdot a_1$$

$$b_2 = \frac{1}{||c_2||} \cdot c_2 \text{ mit } c_2 = a_2 - \langle a_2, b_1 \rangle \cdot b_1$$

$$b_3 = \frac{1}{||c_3||} \cdot c_3$$
 mit $c_3 = a_3 - \langle a_3, b_2 \rangle \cdot b_2 - \langle a_3, b_1 \rangle \cdot b_1$

$$b_n = \frac{1}{||c_n||} \cdot c_n$$
 mit $c_n = a_n - \langle a_n, b_1 \rangle \cdot b_1 - \ldots - \langle a_n, b_{n-1} \rangle \cdot b_{n-1}$

allgemein:

$$b_{k+1} = \frac{1}{||c_{k+1}||} \cdot c_{k+1} \text{ mit } c_{k+1} = a_{k+1} - \sum_{i=1}^{k} \langle a_{k+1}, b_i \rangle \cdot b_i$$

Vektorprodukt

nur im \mathbb{R}^3

$$a = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right) , b = \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right)$$

$$a \times b = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \Rightarrow a, b \perp a \times b$$

Orthogonale Projektion

Orthogonales Komplement

V ist ein euklidischer Vektorraum über \mathbb{R} mit Skalarprodukt $\langle \cdot, \cdot \rangle$

$$U \leq V$$

orthogonales Komplement zu U:

$$U^{\perp} = \{ v \in V \mid v \bot u \ \forall u \in U \}$$

- $U^{\perp} < V$
- $U \cap U^{\perp} = \{0\}$
- \exists_1 Darstellung der Form $v = u + u^{\perp} \ \forall v \in V \mid u \in U, \ u^{\perp} \in U^{\perp}$

Bestimmung des orthogonalen Komplement

$$U \leq V$$
, $dim(V) = n$, $dim(U) = r$

$$U = \langle a_1, \dots, a_r \rangle$$

ergänze basis $B_u = \{a_1, \dots, a_n\}$ zu Basis von V:

$$B_V = \{a_1 \dots, a_r, a_{r+1}, \dots, a_n\}$$

Bilde ONB $B = \{b_1, \dots, b_r, b_{r+1}, \dots, b_n\}$ von V wobei $\{b_1, \dots, b_r\}$ ONB von U

$$U^{\perp} = \{b_{r+1}, \dots, b_n\}$$

Orthogonale Projektion

$$P_U: \left\{ \begin{array}{ccc} V & \to & U \\ v = u + u^{\perp} & \to & u \end{array} \right.$$

Veuklidischer Vektorraum mit Untervektorraum $U \leq V$

$$dim(V) = n$$

$$dim(U) = v$$

Bestimme $u = P_u(v)$

$$||v - w||^{2} = ||\widehat{v - u} + u - w||^{2}$$

$$= \langle u^{\perp} + (u - w), u^{\perp} + (u - w) \rangle$$

$$= ||u^{\perp}||^{2} + ||u - w||^{2} + 2\langle u^{\perp}, u - w \rangle$$

$$\geq ||u^{\perp}||^{2} = ||v - u||^{2}$$

$$u = \min_{w \in U} ||v - w||$$

Ausrechnen:

$$V = \mathbb{R}^n , U \leq V , U = \langle b_1, \dots, b_r \rangle \mid b_i \in \mathbb{R}^n$$

$$u = \lambda_1 b_1 + \ldots + \lambda_r b_r$$

Bilde Matrix $A = (b_1, \dots, b_r) \in \mathbb{R}^{n \times r}$

$$u = (b_1, \dots, b_r) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = A \cdot \underbrace{\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix}}_{=:r}$$

$$\rightarrow ||v - u|| = ||v - Ax|| = min$$

Das Lineare Ausgleichsproblem

Gegeben: $A \in \mathbb{R}^{n \times r}, \ r \leq n, \ b \in \mathbb{R}^n$

Gesucht: $x \in \mathbb{R}^r : ||b - Ax|| = min$

Lösung: Finde x als Lösung des LGS $A^TAx = A^Tb =$ "Normalgleichung"

Anwendungen

Orthogonale Projektion bestimmen

Bestimme orthogonale Projektion von $u = P_U(v)$

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^{n \times 1}, \quad U = \langle b_1, b_2, \cdots, b_r \rangle, \quad A = (b_1, b_2, \dots, b_r) \in \mathbb{R}^{n \times r}$$

$$x = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_r \end{pmatrix} \in \mathbb{R}^{r \times 1}$$

$$A^{T}Ax = A^{T}v$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} A^{T}A \mid A^{T}v \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} E_r \mid x \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$u = A \cdot x$$

$$u = \lambda_1 \cdot b_1 + \lambda_2 + b_2 + \dots + \lambda_r \cdot b_r$$

$$d = ||v - u||$$

Lösen Überbestimmter linearer Gleichungssysteme

 $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ nicht lösbar mit mehr Gleichungen als Unbekannten

Ersatzlösung: ||b - Ax|| = min

$$\begin{array}{cccc} ||b-Ax|| & = & \min \\ & & \Downarrow \\ A^TAx & = & A^Tb \\ & \vdots \end{array}$$

Methode der kleinsten Quadrate

Gegeben: "Punktwolke"

Gesucht: besste Aproximation durch Ausgleichsfuntion

Basisfunktionen: f_1, f_2, \ldots, f_r bestimmt durch Anwender

Bsp.:

$$y = \beta_1 + \beta_2 x + \beta_3 x^2$$
 \rightarrow $f_1(x) = 1, f_2(x) = x, f_3(x) = x^2$

$$f = f_1 + f_2 + \ldots + f_r$$

Dann minimiere:

$$(y_1 - f(t_1))^2 + \ldots + (y_n - f(t_n))^2 = min$$

$$A = \begin{pmatrix} f_1(t_1) & \cdots & f_r(t_1) \\ \vdots & \ddots & \vdots \\ f_1(t_n) & \cdots & f_r(t_n) \end{pmatrix}, b = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, x = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_r \end{pmatrix}$$
$$f = \lambda_1 f_1 + \dots + \lambda_r f_r$$
$$||b - Ax|| = min$$
$$A^T Ax = A^T b$$

lineare Abbildung

V, W K-Vektorräume

Eine Abbildung $f: v \to w$ heißt Homomorphismus

falls gilt: $\forall \lambda \in K \ \forall v, w \in V$:

$$\begin{cases} f(\lambda v) &= \lambda f(v) \\ f(v+w) &= f(v) + f(w) \end{cases} \Leftrightarrow f(\lambda v + w) = \lambda f(v) + f(w)$$

- $f: v \to w$ linear, $g: w \to u$ linear $\Rightarrow g \circ f$ linear
- $f: v \to w \text{ linear } \Rightarrow f(0) = 0$
- $f: v \to w$ linear und bijektiv $\Rightarrow f^{-1}: w \to v$

Bild und Kern

 $f: V \to W$ linear.

$$\begin{array}{llll} ker(f) & = & \{v \in V \mid f(v) = 0\} & \leq V & | & dim(ker(f)) & = & def(f) \\ \\ Bild(f) & = & \{f(v) \mid v \in V\} & \leq W & | & dim(Bild(f)) & = & rg(f) \end{array}$$

Dimensionsformel

 $f: v \to w \text{ linear}$

$$dim(V) = def(f) + rg(f)$$

$$f$$
 injektiv $\Leftrightarrow ker(f) = \{0\}$

f injektiv $\Leftrightarrow f$ surjektiv $\Leftrightarrow f$ bijektiv

Koordinatenvektoren

V endlich dimensionaler K-Vektorraum mit geordneter Basis $B=(v_1,\ldots,v_n)$ $v\in V\Rightarrow \exists_1$ Darstellung

$$v = \underbrace{\lambda_1 v_1 + \ldots + \lambda_n v_n}_{v_1, \ldots, v_n} \to_B v = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Ist $B = (v_1, \dots, v_n)$ eine geordnete Basis von V Dann:

$$B^{-} := \left\{ \begin{array}{ccc} V & \longrightarrow & K^{n} \\ & & & \\ \underbrace{v}_{v=\lambda_{1}v_{1}+\ldots+\lambda_{n}v_{n}} & \longrightarrow & \left(\begin{array}{c} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{array}\right) \right.$$

ist linear.

Idee:

$$\begin{array}{ccc} V & \longrightarrow & {}_{B}V \\ f & \longrightarrow & M(f) \end{array} \right\} \begin{array}{ccc} V & \longrightarrow & f(v) \\ {}_{B}V & \longrightarrow & M(f)_{{}_{B}V} \end{array}$$

Darstellungsmatrizen

 $f: V \to W$ linear

Basen:
$$B = (b_1, ..., b_n)$$
 $C = (c_1, ..., c_m)$

Man nennt man

$$_{C}M(f)_{B} = \left(f(b_{1}) \dots f(b_{n}) \right) \in K^{m \times n}$$

die Darstellungsmatrix von f bezüglich B und C

$${}_{B}V = \left(\begin{array}{c} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{array}\right)$$
 \Rightarrow

$${}_{C}M(f)_{B} \cdot_{B} V = \lambda_{1} \cdot {}_{C}f(b_{1}) + \ldots + \lambda_{n} \cdot {}_{C}f(b_{n})$$

$$= {}_{C}(\lambda_{1}f(b_{1}) + \ldots + \lambda_{n}(b_{n}))$$

$$= {}_{C}f(v)$$

Basistransformation

Vektorräume V, W, U

Basen
$$B = (b_1 \dots b_n), C = (c_1 \dots c_m), D = (d_1 \dots d_r)$$

lineare Abbildungen $f, g, g \circ f$

Darstellungsmatrizen zu den linearen Abbildungen: $_{C}M(f)_{B},_{D}M(g\circ f)_{B},_{D}M(g)_{C}$

$$_DM(g \circ f)_B = _DM(g)_C \cdot _CM(f)_B$$

Basistransformationsformel

 $f: V \to W$ linear

$$B = (b_1 \dots b_n), C = (c_1 \dots c_n)$$

 $_{C}M(f)_{B}$

$$B' = (b_1' \dots b_n''), C' = (c_1' \dots c_n')$$

$$C'M(f)_{B'} = C'M(id)_C \cdot CM(f)_B \cdot BM(f)_{B'}$$

Spezialfall:

$$f: K^n \to K^n, \ f(v) = A \cdot v$$

$$_BM(f)_B = B^{-1}AB$$

Eigentwerte, Eigenvektoren

$$Av = \lambda v$$

 $\Rightarrow v \in V \setminus \{0\}$ ist ein Eigenvektor von A zum Eigenwert $\lambda \in \mathbb{R}$

$$Eig_A(\lambda) = \{v \in \mathbb{R}^n \mid Av = \lambda v\} \leq V$$

$$geo(\lambda) = dim(Eig_A(\lambda)) = \text{geometrische Vielfachheit}$$

Diagonalisieren von Matrizen

Sei $B = (b_1, b_2, \dots, b_n)$ eine geordnete Basis.

$$Ab_1 = \lambda_1 b_1 , \dots, Ab_n = \lambda_n b_n$$

 $\Rightarrow D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ ist Diagonalform zu A

 $\Rightarrow B = (b_1, b_2, \dots, b_n)$ ist A diagonalisierende Matrix

Charakteristisches Polynom

$$\chi_A = \det(A - xE_n) = (\lambda_1 - x)^{\nu_1} \cdots (\lambda_r - x)^{\nu_r}$$

- $\lambda_1, \lambda_r = \text{sind alle Eigenwerte von } A$
- $alg(\lambda_i) = \nu_i$ = algebraische Vielfachheit des Eigenwertes λ_i

$$1 \le geo(\lambda_i) \le alg(\lambda_i)$$

Vorgehen

bestimme das charakteristische Polynom zu A und dessen Linearfaktoren

$$\chi_A = (\lambda_1 - x)^{\nu_1} \cdots (\lambda_r - x)^{\nu_r}$$

Es muss gelten: $\sum_{i=1}^{r} \nu_i = n$

1. bestimme das charakteristische Polynom zu A und dessen Linearfaktoren

$$\chi_A = (\lambda_1 - x)^{\nu_1} \cdots (\lambda_r - x)^{\nu_r}$$

Es muss gelten: $\sum_{i=1}^{r} \nu_i = n$

2. bestimme zu jedem Eigenwert den Eigenraum

$$Eig_A(\lambda_i) = ker(A - \lambda_i E_n) = \langle B_i \rangle$$

 $geo(\lambda_i) = |B_i|$

Es muss gelten: $alg(\lambda_i) = geo(\lambda_i)$

3.
$$B = B_1 \cup B_2 \cup ... \cup B_r \Rightarrow B = (b_1, b_2, ..., b_n)$$

$$diag(\lambda_1, \lambda_2, \lambda_n) = B^{-1}AB$$

Diagonal matrix A

$$det(A) = \prod_{i=1}^{n} \lambda_i \quad Spur(A) = \sum_{i=1}^{n} \lambda_i$$

orthogonales Diagonalisieren

 $A \in \mathbb{R}^{n \times n}$ symmetrisch $(A^T = A)$

- $\Rightarrow A$ ist Diagonalisierbar
- $\Rightarrow B$ kann orthogonal gewählt werden $(B^{-1} = B^T)$

Vorgehen:

- 1. $\chi_A = (\lambda_1 x)^{\nu_1} \cdots (\lambda_r x)^{\nu_r}$ Eigenwerte $\lambda_1, \dots, \lambda_r$ bestimmen
- 2. $\forall i : Eig_A(\lambda_i) = ker(A \lambda_i E_n) = \langle B_i \rangle$ $\tilde{B}_i = \text{Orthonormalbasen von } Eig_A(\lambda_i)$
- 3. $B = \tilde{B_1} \cup \cdots \cup \tilde{B_r}$

$$diag(\lambda_1, \lambda_2, \cdots, \lambda_n) = B^{-1}AB$$

Singulärwertzerlegung

$$A = U\Sigma V^T$$

 $A \in \mathbb{R}^{m \times n}, \ U \in \mathbb{R}^{m \times m}, \ \Sigma \in \mathbb{R}^{m \times n}, \ V^T \in \mathbb{R}^{n \times n}$

 $U^T=U^{-1},\;V^T=V^{-1},\;\Sigma=$ Diagonal matrix mit 0 aufgefüllt

$$\Sigma = \begin{cases} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \sigma_m & 0 & \cdots & 0 \end{pmatrix} & m \le n \\ \\ \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} & n \le m \end{cases}$$

 $\sigma_i = \text{Singulärwerte}$

$$\Sigma = {}_{U}M(f_A)_{V} = U^T A V \quad | \quad f_A(v) = A v$$

$$Av_i = \sigma_i u_i \quad | \quad i = 1, \dots, r$$

$$A^T u_i = \sigma_i v_i \quad | \quad i = 1, \dots, r$$

$$\Rightarrow A^T A v_i = \sigma_i^2 v_i$$

Σ bestimmen

- 1. Bestimme Eigenwerte $\lambda_1, \ldots, \lambda_n$ von $A^T A$
- 2. Sortiere $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r$
- 3. Bestimme $\sigma_i = \sqrt{\lambda_i} \to \Sigma$

V bestimmen

$$Eig_A(\lambda_i) \to V = (v_1 \dots v_n)$$

U bestimmen

 $\forall i$ soweit möglich $u_i=\frac{1}{\sigma_i}Av_i\to \text{Erg\"{a}}\text{nze}$ Gram Schmidt $\to U=(u_1,\dots,u_m)$

Definitheit von Matrizen

 $A \in \mathbb{R}^{n \times m}$, $A = A^T$ heißt

- positiv definit, falls $v^T A v > 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- negativ definit, falls $v^T A v < 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- positiv semidefinit, falls $v^T A v > 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- negativ semidefinit, falls $v^T A v \leq 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- indefinit, falls $\exists v : v^T A v > 0 \land \exists w : w^T A w < 0$

Für Matrizen: Eigenwerte betrachten

Matrixnormen

V ist ein K-Vektorraum

Norm ist eine Abbildung $||\cdot||:V\to\mathbb{R}$ mit

$$1. \ ||v|| \geq 0 \wedge ||v|| = 0 \Leftrightarrow v = 0$$

$$2. \ ||\lambda v|| = \lambda ||v||$$

3.
$$||v + w|| \le ||v|| + ||w||$$

Frobeniusnorm:

$$A \in \mathbb{R}^{m \times n}$$

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2}$$

Induzierte Matrixnorm:

$$A \in \mathbb{R}^{n \times n} \rightarrow ||A|| := \sup_{||v||=1} ||Av||_V$$