AE 737: Mechanics of Damage Tolerance

Lecture 6 - Plastic Zone

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

February 7, 2019

schedule

- 7 Feb Plastic Zone, Homework 2 Due
- 12 Feb Fracture Toughness
- 14 Feb Fracture Toughness, Homework 3 Due
- 19 Feb Residual Strength

outline

- plastic zone
- plastic stress intensity ratio
- plastic zone shape
- group problems

plastic zone

plastic zone

- Previous developments assumed perfectly elastic materials
- Most common materials have some plasticity
- Any stress above the yield stress will undergo plastic deformation (no stress higher than $\ddot{I}f_y$ will be present in the material)

plastic zone

- Plasticity helps retard crack propagation due to residual stresses
- After an overload, elastic regions will contract back to their undeformed shape
- The region which has undergone plastic deformation, however, holds its deformed shape
- This introduces a region of residual compressive stress near the crack tip
- Before the crack can propagate, a stress needs to overcome this residual stress

2D problems

- We often simplify the full 3D elasticity equations for planar problems
- For very thin panels, we assume that all out-of-plane stresses are o
- This is called plane stress

plane stress

$$egin{aligned} \sigma_z &= au_{xz} = au_{zy} = 0 \ \epsilon_x &= rac{\sigma_x}{E} -
u rac{\sigma_y}{E} \ \epsilon_y &= -
u rac{\sigma_x}{E} + rac{\sigma_y}{E} \ \epsilon_z &= -
u rac{\sigma_x}{E} -
u rac{\sigma_y}{E} \ \gamma_{xy} &= rac{ au_{xy}}{G} \ \gamma_{xz} &= \gamma_{yz} = 0 \end{aligned}$$

2D problems

- When instead a panel is very thick, we assume that any strains through the thickness are small relative to other strains
- $\epsilon_z = \gamma_{xz} = \gamma_{yz} = 0$
- This is known as plane strain

plane strain

$$egin{aligned} \epsilon_x &= rac{\sigma_x}{E} -
u rac{\sigma_y}{E} -
u rac{\sigma_z}{E} \ \epsilon_y &= -
u rac{\sigma_x}{E} + rac{\sigma_y}{E} -
u rac{\sigma_z}{E} \ 0 &= -
u rac{\sigma_x}{E} -
u rac{\sigma_y}{E} + rac{\sigma_z}{E} \ \gamma_{xy} &= rac{ au_{xy}}{G} \ \gamma_{xz} &= \gamma_{yz} = 0 \end{aligned}$$

Irwin's first approximation

• If we recall the equation for opening stress (σ_y) near the crack tip

$$\sigma_y = rac{K_I}{\sqrt{2\pi r}} \cosrac{ heta}{2} \left(1 + \sinrac{ heta}{2} \sinrac{3 heta}{2}
ight) \qquad (1.2)$$

• In the plane of the crack, when $\theta = 0$ we find

$$\sigma_y = rac{K_I}{\sqrt{2\pi r}}$$

Irwin's first approximation

Irwin's first approximation

- We use *C*, the *Plastic Constraint Factor* to convert between Plane Strain and Plane Stress solutions
- The plastic zone size can now be approximated

$$egin{aligned} \sigma_{yy}(r=r_p) &= C\sigma_{YS} \ rac{K_I}{\sqrt{2\pi r_p}} &= C\sigma_{YS} \ r_p &= rac{1}{2\pi}igg(rac{K_I}{C\sigma_{YS}}igg)^2 \end{aligned}$$

Irwin's first approximation

ullet For plane stress (thin panels) we let C=1 and find r_p as

$$r_p = rac{1}{2\pi}igg(rac{K_I}{\sigma_{YS}}igg)^2$$

• And for plane strain (thick panels) we let $C=\sqrt{3}$ and find

$$r_p = rac{1}{6\pi} igg(rac{K_I}{\sigma_{YS}}igg)^2$$

Intermediate panels

• For panels which lie between plane strain and plane stress states, we use the following expression to estimate the plastic zone size

$$r_p = rac{1}{I\pi}igg(rac{K_I}{\sigma_{YS}}igg)^2$$

• Where *I* is defined as

$$I=6.7-rac{1.5}{t}igg(rac{K_I}{\sigma_{YS}}igg)^2$$

• And $2 \le I \le 6$

- If our material is perfectly elastic-plastic, no stresses above $C\sigma_{ys}$ will exist in the material
- This ignores the strain energy (represented by the area under the curve) in the plastic zone

- To account for the additional strain energy, Irwin considered a plastic zone size increased by some δ
- He also needed to adjust the stress function, and considered an equivalent crack tip in these calculations

Irwin's second approximation

We need A=B, so we set them equivalent and solve for δ .

$$egin{aligned} A &= \int_{0}^{r_{p}} \sigma_{yy} dr - r_{p} \sigma_{YS} \ &= \int_{0}^{r_{p}} rac{K_{I}}{\sqrt{2\pi r}} dr - r_{p} \sigma_{YS} \ &= rac{K_{I}}{\sqrt{2\pi}} \int_{0}^{r_{p}} r^{-1/2} dr - r_{p} \sigma_{YS} \ &= rac{2K_{I} \sqrt{r_{p}}}{\sqrt{2\pi}} - r_{p} \sigma_{YS} \end{aligned}$$

Irwin's second approximation

• We have already found r_p as

$$r_p = rac{1}{2\pi} igg(rac{K_I}{\sigma_{YS}}igg)^2$$

• If we solve this for K_I we find

$$K_I = \sqrt{2\pi r_p} \sigma_{YS}$$

Irwin's second approximation

• We can now substitute back into the strain energy of A

$$egin{aligned} A &= rac{2\sqrt{2\pi r_p}\,\sigma_{YS}\,\sqrt{r_p}}{\sqrt{2\pi}} - r_p\,\sigma_{YS} \ &= 2\sigma_{YS}r_p - r_p\,\sigma_{YS} \ &= r_p\,\sigma_{YS} \end{aligned}$$

Irwin's second approximation

• B is given simply as $B=\delta\sigma_{ys}$ so we equate A and B to find δ

$$egin{aligned} A &= B \ r_p \, \sigma_{YS} &= \delta \sigma_{YS} \ r_p &= \delta \end{aligned}$$

- This means the plastic zone size is simply $2r_p$
- ullet However, it also means that the effective crack length is a+ r_p
- Since r_p depends on K_I , we must iterate a bit to find the "real" r_p and K_I

Example

equations

$$eta = \left[1.122 - 0.231rac{a}{W} + 10.55 \left(rac{a}{W}
ight)^2 - 21.71 \left(rac{a}{W}
ight)^3 + 30.82 \left(rac{a}{W}
ight)^4
ight]
onumber \ I = 6.7 - rac{1.5}{t} \left(rac{K_I}{\sigma_{YS}}
ight)^2
onumber \ r_p = rac{1}{I\pi} \left(rac{K_I}{\sigma_{YS}}
ight)^2$$

plastic stress intensity ratio

plastic stress intensity ratio

- Engineers often use stress intensity to decide which material to use for a certain application
- The ratio of plastic stress intensity to elastic stress intensity, as a function of yield stress over applied stress, can help illustrate the effects of plasticity for different materials.

plastic stress intensity ratio

For an infinitely wide centercracked panel, we can solve for K_{Ie}/K_I symbolically, in plane stress

$$egin{aligned} K_{Ie} &= \sigma \sqrt{\pi a} \ K_{Ie} &= \sigma \sqrt{\pi (a + r_p)} \ \end{aligned} \ r_p &= rac{1}{2\pi} igg(rac{K_{Ie}}{\sigma_{YS}}igg)^2 \ K_{Ie} &= \sigma \sqrt{\pi \left(a + rac{1}{2\pi} igg(rac{K_{Ie}}{\sigma_{YS}}igg)^2igg)} \end{aligned}$$

stress intensity ratio

$$K_{Ie}^2 = \sigma^2\pi \left(a + rac{1}{2\pi} \left(rac{K_{Ie}}{\sigma_{YS}}
ight)^2
ight)
onumber$$
 $K_{Ie}^2 = \sigma^2\pi a + rac{\sigma^2}{2} \left(rac{K_{Ie}}{\sigma_{YS}}
ight)^2
onumber$
 $K_{Ie}^2 - rac{\sigma^2}{2} \left(rac{K_{Ie}}{\sigma_{YS}}
ight)^2 = \sigma^2\pi a$
 $K_{Ie}^2 \left(1 - rac{\sigma^2}{2\sigma_{YS}^2}
ight) = \sigma^2\pi a$

plastic stress intensity ratio

$$K_{Ie}^{2} = rac{\sigma^{2}\pi a}{1 - rac{\sigma^{2}}{2\sigma_{YS}^{2}}} \ K_{Ie} = rac{\sigma\sqrt{\pi a}}{\sqrt{1 - rac{\sigma^{2}}{2\sigma_{YS}^{2}}}} \ K_{Ie} = rac{K_{I}}{\sqrt{1 - rac{\sigma^{2}}{2\sigma_{YS}^{2}}}} \ rac{K_{Ie}}{\sqrt{1 - rac{\sigma^{2}}{2\sigma_{YS}^{2}}}} = rac{1}{\sqrt{1 - rac{\sigma^{2}}{2\sigma_{YS}^{2}}}}$$

plastic stress intensity ratio

- We can also find the plastic stress intensity ratio numerically for finite width panels
- Panel thickness, yield stress, panel width, crack length could all be variables in this case
- Different heat treatments of metal alloys can give a different yield stress, with most other properties remaining the same
- Typical crack lengths can vary based on inspection cycles

example

- You are to design aninspection cycle for a panel
- Consider the plastic stress intensity ratio, and the effect of varying crack lengths on it

example

online example $\underline{\mathbf{here}}$

plastic zone shape

plastic zone shape

- Although we drew a circle to give a rough idea of the plastic zone in Irwin's method, this solution was only 1D
- We considered $\theta = 0$.
- It is advantageous to model the plastic zone shape, we will do so using two different yield theories
- Von Mises and Tresca

principal stresses

- Principal stresses are often used in yield theories
- We can determine the principal stresses near the crack tip as

$$\sigma_1 = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \right)$$
 $\sigma_2 = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \right)$
 $\sigma_3 = 0$ (plane stress)
 $\sigma_3 = \frac{2\nu K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2}$ (plane strain)

Von Mises yield theory

- The Von Mises yield theory is also known as the Distortion Energy Yield Theory
- In this yield theory, we assume that failure or yielding occurs when the strain energy exceeds some threshold
- It has been observed that hydrostatic pressure does not generally cause yielding
- We separate the strain energy into two parts, volumetric and distortional
- Only the distortional strain energy is used to determine the yield strength

Von Mises yield theory

• The distortional strain energy is given by

$$W_d = rac{1}{12}G\left[\left(\sigma_1 - \sigma_2
ight)^2 + \left(\sigma_2 - \sigma_3
ight)^2 + \left(\sigma_3 - \sigma_1
ight)^2
ight]$$

• Which for a uniaxially loaded point becomes

$$W_d=rac{1}{6}G\sigma_{YS}^2$$

We can equate the two cases and solve

$$egin{aligned} rac{1}{6}G\sigma_{YS}^2 &= rac{1}{12}G\left[\left(\sigma_1 - \sigma_2
ight)^2 + \left(\sigma_2 - \sigma_3
ight)^2 + \left(\sigma_3 - \sigma_1
ight)^2
ight] \ 2\sigma_{YS}^2 &= \left(\sigma_1 - \sigma_2
ight)^2 + \left(\sigma_2 - \sigma_3
ight)^2 + \left(\sigma_3 - \sigma_1
ight)^2 \end{aligned}$$

Von Mises yield theory

- We can find the plastic zone size, r_p by substituting the principal stress relations into the distortional strain energy equation
- In plane stress we find

$$2\sigma_{VS}^2 = \left(\sigma_1 - \sigma_2
ight)^2 + \left(\sigma_2 - 0
ight)^2 + \left(0 - \sigma_1
ight)^2$$

Von Mises yield theory

$$egin{aligned} 2\sigma_{YS}^2 &= \left(rac{K_I}{\sqrt{2\pi r_p}}\cosrac{ heta}{2}\left(1+\sinrac{ heta}{2}
ight) - \ &rac{K_I}{\sqrt{2\pi r_p}}\cosrac{ heta}{2}\left(1-\sinrac{ heta}{2}
ight)
ight)^2 + \ &\left(rac{K_I}{\sqrt{2\pi r_p}}\cosrac{ heta}{2}\left(1-\sinrac{ heta}{2}
ight) - 0
ight)^2 + \ &\left(0-rac{K_I}{\sqrt{2\pi r_p}}\cosrac{ heta}{2}\left(1+\sinrac{ heta}{2}
ight)
ight)^2 \end{aligned}$$

Von Mises yield theory

After solving we find

$$r_p = rac{K_I^2}{2\pi\sigma_{_{m VS}}^2} {
m cos}^2 \, rac{ heta}{2}igg(1+3\sin^2rac{ heta}{2}igg).$$

• We can similarly solve for r_p in plane strain to find

$$r_p = rac{K_I^2}{2\pi\sigma_{VS}^2} \mathrm{cos}^2\,rac{ heta}{2}igg(1-4
u+4
u^2+3\sin^2rac{ heta}{2}igg)$$

- Tresca yield theory assumes that yielding begins when the maximum shear stress reaches a critical value
- In uniaxial tension this gives

$$au_0 = au_{max} = rac{1}{2}(\sigma_{max} - \sigma_{min}) = rac{1}{2}(\sigma_{YS} - 0) = rac{\sigma_{YS}}{2}$$

Tresca yield theory

Using the results for principal stress we found previously, we see that

$$egin{aligned} \sigma_{max} &= rac{K_I}{\sqrt{2\pi r}} ext{cos} \, rac{ heta}{2} igg(1 + ext{sin} \, rac{ heta}{2}igg) \ \sigma_{min} &= 0 \end{aligned}$$

We can substitute and solve as before to find

$$r_p = rac{K_I^2}{2\pi\sigma_{VS}^2} {
m cos}^2 \, rac{ heta}{2} igg(1 + {
m sin} \, rac{ heta}{2}igg)^2$$

- In plane strain, it is not clear whether σ_2 or σ_3 will be σ_{min}
- We can solve for when σ_2 will be σ_{min}

$$egin{align} \sigma_2 < \sigma_3 \ rac{K_I}{\sqrt{2\pi r}}\cosrac{ heta}{2}igg(1-\sinrac{ heta}{2}igg) < rac{2
u K_I}{\sqrt{2\pi r}}\cosrac{ heta}{2} \ 1-\sinrac{ heta}{2} < 2
u \ heta_t > 2\sin^{-1}(1-2
u) \ \end{pmatrix}$$

- When $2\pi \theta_t < \theta < \theta_t$, σ_2 is the minimum, otherwise σ_3 is the minimum
- Note: Error(s) in text p. 101
- Once we have chosen the appropriate minimum stress (σ_2 or σ_3), we can solve for r_p as before

$$egin{align} r_p &= rac{2K_I^2}{\pi\sigma_{YS}^2} \cos^2rac{ heta}{2} \sin^2rac{ heta}{2} \ & r_p &= rac{K_I^2}{2\pi\sigma_{YS}^2} \cos^2rac{ heta}{2} \left(1-2
u+\sinrac{ heta}{2}
ight)^2 & heta < heta_t > 2\pi- heta_t \end{aligned}$$

3D plastic zone shape

example

online example $\underline{\mathbf{here}}$

group problems

group one

- Calculate the plastic zone size for an infinitely wide, center-cracked panel
- Consider a crack-length of 4 cm, and a yield strength of $\sigma_{YS}=55$ MPa, with an applied load of $\sigma=20$ MPa
- Assume the panel is very thin

group two

- Calculate the plastic zone size for an infinitely wide, center-cracked panel
- Consider a crack-length of 4 cm, and a yield strength of $\sigma_{YS}=55$ MPa, with an applied load of $\sigma=20$ MPa
- Assume the panel is very thick

group three

- Calculate the plastic zone size for an infinitely wide, center-cracked panel
- Consider a crack-length of 4 cm, and a yield strength of $\sigma_{YS}=55$ MPa, with an applied load of $\sigma=20$ MPa
- The panel thickness is t = 0.65 cm

group four

- Find the plastic stress intensity ratio for an infinitely wide, centercracked panel
- What factors will increase or decrease the plastic stress intensity ratio?