# Compiler Design

Department of software Engineering
Woldia University
Chapter Two

# Lexical Analyzer

### Lexical Analyzer

- The function of the lexical analyzer is to read the source program, one character at a time, and to translate it into a sequence of primitive units called "tokens".
- how tokens are expressed using Regular Expression?
- regular grammars for generating languages.
- how Deterministic Finite State Automata recognize tokens?

### **Tokens**

- Token represents a set of strings described by a pattern.
  - Identifier represents a set of strings which start with a letter continues with letters and digits
  - The actual string is called as *lexeme*.
  - Tokens: identifier, number, operations, delimiter, ...
- Since a token can represent more than one lexeme, additional information should be held for that specific lexeme. This additional information is called as the attribute of the token.
- For simplicity, a token may have a single attribute which holds the required information for that token.
  - For identifiers, this attribute a pointer to the symbol table, and the symbol table holds the actual attributes for that token.
- Some attributes:
  - <id, attr> where attr is pointer to the symbol table
  - <assg, op, \_> no attribute is needed (if there is only one assignment operator)
  - <num, val> where val is the actual value of the number.
- Token type and its attribute uniquely identifies a lexeme.
- Regular expressions are widely used to specify patterns.

#### Alphabets:

- An alphabet is a finite, nonempty set of symbols.
- Conventionally, we use the symbol  $\sum$  for an alphabet.
- Common alphabet include:
  - $\Sigma = \{0, 1\}$ , the *binary* alphabet.
  - $\Sigma = \{a, b, ..., z\}$ , the set of all lower-case letters.

#### • Strings:

- A string (or sometimes word) is a finite sequence of symbols chosen from some alphabet.
- Example: 01101, 111, 0001, 111 ... are strings from the binary alphabet  $\Sigma = \{0, 1\}$ .

### • Empty string:

– The empty string is the string with zero occurrences of symbols and is denoted by  $\varepsilon$ . (i.e. the string consisting of no symbols)

#### • Length of Strings:

- Let X be a string, the notation |X| denotes the *length* of X
   (i.e. the number of symbols contained in the string).
- Example: |aba|=3, |a|=1,  $|\epsilon|=0$ , etc.

#### Power of an alphabet:

- If  $\Sigma$  is an alphabet, we can express the set of all strings of a certain length from that alphabet by using an *exponential* notation. We define  $\Sigma^k$  to be the set of strings of length k, each of whose symbol is in  $\Sigma$ .
  - $\Sigma^0 = \{\epsilon\}$ , regardless of what alphabet  $\Sigma$  is.
  - If  $\Sigma = \{0,1\}$ , then  $\Sigma^1 = \{0,1\}$ ,  $\Sigma^2 = \{00, 01, 10, 11\}$ ,  $\Sigma^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- The set of all strings over an alphabet  $\Sigma$  is conventionally denoted  $\Sigma^*$ .
  - Example:  $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}$
  - $-\sum^* = \sum^0 U \sum^1 U \sum^2 U \sum^3 U \cdots$

• The set of non empty strings from alphabet  $\Sigma$  is denoted  $\Sigma^+$  (excluding the empty string from the set of strings)

$$-\sum^{+}=\sum^{1}U\sum^{2}U\sum^{3}U\cdots$$

$$-\sum^* = \sum^+ U \{\epsilon\}.$$

- Operation on strings
  - concatenation (product):
    - Let x and y be strings. Then xy denotes the concatenation of x and y is, the string formed by making a copy of x and followed it by a copy of y.
    - Example: Let x=01101 and y=110, then xy=01101110 (yx=11001101)
- Note: For any string w,  $\varepsilon w = w \varepsilon = w$  (i.e.  $\varepsilon$  is the identity for concatenation)

- Languages: A set of strings all of which are chosen from some  $\Sigma^*$ , where  $\Sigma$  is a particular alphabet, is called a language.
- If  $\sum$  is an alphabet, and  $L \subseteq \sum^*$ , then L is a Language over  $\sum$ .
- Example: A language L over an alphabet V is a subset of  $V^*$ . For instance, if  $V = \{a, b, c\}$ , the following are languages on V.
  - $L_1 = \emptyset$  (the empty language; i.e. the empty subset of V)
  - $L_2 = \{ \epsilon \}$  (The language containing just the empty string; notice that  $L_1 \neq L_2$ )
  - $L_3 = \{a, b, c\} = V$  (the language whose elements are just the strings of length 1)
  - $L_4 = \{aa, ba, ab\}$

- $L_5 = \{a, aaa, aaaaa, bc\}$
- $L_6 = \{ab, aab, aaab, aaaab, ...\}$  (the infinite language whose strings consists of any number of a's followed by a single b;  $L_6$  can also be defined in the more compact way  $L_6 = \{a^nb|n\ge 1\}$ )
- $L_7 = \{(ab)^n c^m | n \ge 1, m \ge 2\}$
- $L_8 = \{\{(a^nb^n|n\geq 1\} = \{ab, aabb, aaabbb, ...\}$
- Note: It's common to describe a language using a "set former" {w| something about w} this expression is read "the set of words w such that (whatever is said about w to the right of the vertical bar)"

### Operations on languages

| Operation                    | Definition                                          |
|------------------------------|-----------------------------------------------------|
| union of $L$ and $M$         | $L \cup M = \{s \mid s \in L \text{ or } s \in M\}$ |
| written $L \cup M$           |                                                     |
| concatenation of $L$ and $M$ | $LM = \{st \mid s \in L \text{ and } t \in M\}$     |
| written <i>LM</i>            |                                                     |
| Kleene closure of L          | $L^* = \bigcup_{i=0}^{\infty} L^i$                  |
| written $L^*$                | _                                                   |
| positive closure of L        | $L^+ = \bigcup_{i=1}^{\infty} L^i$                  |
| written $L^+$                |                                                     |

### Regular Expression (RE)

- A regular expression is a "user-friendly," declarative way of describing a regular language.
- We use regular expressions to describe tokens of programming language.
- A RE is built up of simpler regular expressions (using defining rules)
- Each RE denotes a language.
- A language denoted by a RE is called as a regular set.
- Regular expressions are used in e.g.
  - 1. UNIX grep command
  - 2. UNIX Lex (Lexical analyzer generator) and Flex (Fast Lex) tools.

### Definition: Regular Expressions

- **Regular Expressions** (RE) (over an alphabet  $\Sigma$  ):
  - $\varepsilon$  is a RE denoting the set  $\{\varepsilon\}$
  - If  $a \in \Sigma$ , then a is RE denoting  $\{a\}$
  - If r and s are Res, denoting L® and L(s), then
    - 1. (r) is a RE denoting L(r)
    - 2. (r)|(s) is RE denoting  $L(r) \cup L(s)$
    - 3. (r)(s) is a RE denoting L(r)L(s)
    - 4.  $(r)^*$  is RE denoting  $L(r)^*$

## Regular Expression Operators

| X Y concatenation  | X followed by Y                                 |
|--------------------|-------------------------------------------------|
| X   Y alternation  | X or Y (alternatives)                           |
| X * Kleene closure | Zero or more occurrences of X                   |
| X +                | One or more occurrence of X                     |
| (X) grouping       | Used for grouping (as in programming languages) |

# Algebraic properties of REs

| Axiom                     | Description                          |  |
|---------------------------|--------------------------------------|--|
| r s=s r                   | is commutative                       |  |
| r (s t) = (r s) t         | is associative                       |  |
| (rs)t = r(st)             | concatenation is associative         |  |
| r(s t) = rs rt            | concatenation distributes over       |  |
| (s t)r = sr tr            |                                      |  |
| $\varepsilon r = r$       | ε is the identity for concatenation  |  |
| $r\varepsilon = r$        |                                      |  |
| $r^* = (r \varepsilon)^*$ | relation between $^*$ and $\epsilon$ |  |
| $r^{**} = r^*$            | * is idempotent                      |  |

### Example

• Let  $\Sigma = \{a,b\}$ 

- 1. a|b| denotes  $\{a, b\}$
- 2. (a|b)(a|b) denotes {aa, ab, ba, bb}i.e., (a|b)(a|b) = aa|ab|ba|bb
- 3.  $a^*$  denotes  $\{\varepsilon, a, aa, aaa, ...\}$
- 4. (a|b)\* denotes the set of all strings of a's and b's (including ε)

i.e., 
$$(a|b)^* = (a^*b^*)^*$$

5. a|a\*b denotes {a, b, ab, aab, aaab, aaaab, ...}

### Describing Tokens by RE

- **digit** =  $0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$
- unsigned\_integer = digit digit\*
- **signed\_integer** = (+ | | e) unsigned\_integer
- Letters = A|B|C|...|Y|Z
- Keywords = BEGIN|END|IF|THEN|ELSE
- **Identifier** = letter (letter|digit)\*
- Given two strings:
  - $L = \{ a, b, c, ..., z \}$
  - $-D = \{0, 1, 2, ..., 9\}$ 
    - $L((L|D)^*)$  = "Set of strings that start with a letter, followed by zero or more letters and digits."

### RE Examples

- Given an Alphabet  $\Sigma = \{a,b\}$ , construct a RE for:
  - a) All strings beginning with a:

$$a(a \mid b)$$
\*

b) All strings containing aba:

$$(a \mid b)*aba(a \mid b)*$$

c) All strings of even length:

$$((a \mid b)(a \mid b))^* = (aa \mid ba \mid ab \mid bb)^* = ((a \mid b)^2)^*$$

d) All strings of *odd length*:

$$(a|b)((a|b)^2)^* = (a|b) (aa|ba|ab|bb)^*$$

### RE exercise

- Given an Alphabet  $\Sigma = \{0,1\}$ , construct a RE for:
  - Q1. The set of all strings which have at least one occurrence of the substring 001.
  - Q2. The set of all strings that contain an even number of 0s or an even number of 1s.
  - Q3. the set of all strings with an even number of 0's followed by an odd number of 1's.
  - Q4. The set of all strings whose fifth symbol from right is 0.
  - Q5. The set of all strings that start with 0 and end with 1.

### Regular Grammars

- A grammar is a list of rules which can be used to produce or generate all the strings of a language, and which does not generate any strings which are not in the language.
- Grammar: generative description of a language
- Automaton: analytical description.
- A *grammar* is a quadruple

$$G = (V, T, S, P)$$
 where

- V is a finite set of variables
- T is a finite set of symbols, called terminals
- -S is in V and is called the *start symbol*
- P is a finite set of productions, which are rules.

### Regular Grammars

#### Notation:

- *Terminals* (lower-case letters, operator symbols, digits, keywords, Punctuation symbols, etc...)
- *Non-Terminals* (Upper-case letters, special symbols such as statement, expression, A, B, C and etc...)
- In a regular grammar, all *productions* have one of two forms:
  - 1.  $A \rightarrow aA$
  - 2.  $A \rightarrow a$

Where A is any *non-terminal* and a is any *terminal* symbol.

### Example

- 1.  $S \rightarrow abS \mid a$ 
  - Can you figure out what language it generates?
  - $-L = \{w \in \{a,b\}^* \mid w \text{ contains alternating } a' \text{s and } b' \text{s , begins }$  with an a, and ends with a  $b\} \cup \{a\}$
  - -L((ab)\*a)
- 2.  $S \rightarrow aaA$ 
  - $A \rightarrow abA \mid aB$
  - $B \rightarrow b$

Can you figure out what language it generates?

- $-L = \{w \in \{a,b\}^* \mid w \text{ is } aa \text{ followed by at least one set of alternating } ab's\}$
- -L(aaab(ab)\*)

### Finite Automata/Machine (FA)

- A *recognizer* for a language is a program that takes a string x, and answers "yes" if x is a sentence of that language, and "no" otherwise.
- We call the recognizer of the tokens as a finite automata.
- A finite automata can be:
  - Deterministic FA (DFA) or
  - Non-deterministic FA (NFA)
- This means that we may use a deterministic or nondeterministic automata as lexical analyzer.
- Both deterministic and non-deterministic automata recognize regular sets.

### FA

- Which one?
  - Deterministic faster recognizer, but it may take more space
  - Non-deterministic slower, but it may take less space.
  - Deterministic automatons are widely used lexical analyzers.
- First, we define regular expressions for tokens; Then we convert them into a DFA to get a lexical analyzer for our tokens.

## Conti...

| Language                  | Machine            | Grammar                                   |
|---------------------------|--------------------|-------------------------------------------|
| Regular                   | Finite Automaton   | Regular Expression,<br>Regular Grammar    |
| Context-Free              | Pushdown Automaton | Context-Free Grammar                      |
| Recursively<br>Enumerable | Turing Machine     | Unrestricted Phrase-<br>Structure Grammar |

### FA Representation

• A finite state automata is a model of behavior composed of finite number of states, transitions between those states and actions.

#### • FA components:



### Formal Definition of FA

An finite automaton is a 5-tuple =  $(\Sigma, Q, q_0, F, \delta)$ 

- $\sum$  is a finite set called the **alphabet**,
- Q is a finite set called states,
- $q_0 \in Q$  is the start state,
- $F \subseteq Q$  is the set of **final states** (Accept states)
- A transition function:

$$\delta: Q \times \Sigma \to Q$$

### How Machine M operates.

• M "reads" one letter at a time from the input string (going from left to right)

- M starts in state q<sub>0</sub>.
- If M is in state  $q_i$  reads the letter a then
  - If  $\delta(q_i, a)$  is undefined then CRASH.
  - Otherwise M moves to state  $\delta(q_i,a)$
- The output of a finite automaton is "accepted" if the automaton is now in an accept state (double circle) and reject if it is not.



### Con't

• We can describe the given FA (M1) formally by writing M 1 =  $(Q, \Sigma, \delta, ql, F)$ , where



- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{0,1\}$
- start state = q<sub>0</sub>
- $F = \{q_2\}$
- Transition table

# FA for recognizing Tokens



#### Keywords:



#### Constant:



#### Relops:



### DFA Vs NFA

- When the machine is in a given state and reads the next input symbol, we know what the next state will be it is determined.
- In nondeterministic machine, several choices may exist for the next state at any point.
- Non-determinism is a generalization of determinism, so every deterministic finite automaton is automatically a non-deterministic finite automaton.
- DFAs are clearly a subset of NFAs.

### **DFA**

- Every state of a DFA always has exactly one existing transition arrow for each symbol in the alphabet. (one transition per input per state)
- No **\varepsilon**-moves.
- Example: The DFA to recognize the language (a|b)\* ab is as follows:



### **NFA**

- In any NFA a state may have zero, one, or many existing arrows for each alphabet symbol.
- Can have  $\varepsilon$ -moves. (in other words, we can move from one state to another one without consuming any symbol.)
- A NFA accepts a string x, if and only if there is a path from the starting state to one of accepting states that edge labels along this path spell out x.
- Example: The NFA to recognize the language (a|b)\* ab is as follows:



## How does an NFA computes?



### Computation



# From Regular Expression to DFA

| Regular Exp. | DFA         | Regular Exp.                                                                                       | DFA     |
|--------------|-------------|----------------------------------------------------------------------------------------------------|---------|
| e            | start _     | a≒                                                                                                 | start a |
| a            | start →     | a+                                                                                                 | start a |
| a   b        | start about | $\equiv$ $\xrightarrow{\text{start}}$ $\bigcirc$ $\xrightarrow{\text{a} \mid \text{b}}$ $\bigcirc$ |         |

### RE to NFA (Thomson Construction)

1. To recognize an empty string **\varepsilon**:



2. To recognize a symbol  $\frac{a}{i}$  in the alphabet  $\sum : \frac{a}{i} = \frac{a}{i}$ 





### RE to NFA (Thomson Construction)

4. For regular expression r1r2:



5. For regular expression **r\***:



# RE to NFA: Example

• For a RE (a|b)\* a, the NFA construction is shown below.



#### NFA to DFA

- The conversion from NFA to DFA:
  - Create a new state for each equivalent class in NFA.
  - The max number of states in DFA is 2<sup>N</sup>, where N is the number of states in NFA.
- Steps to construct DFA that is an equivalent a given NFA:
  - a. First determine DFA's states.
  - b. Then, Determine the start and accept states of the DFA.
  - c. Finally, determine DFA's transition function.

# **Example:**

Construct an equivalent DFA from the given NFA.



- **Step 1**: Determine DFA's number of states:
  - NFA  $\{1, 2, 3\} \to DFA \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$
- Step 2: Determine the start and accept states of DFA:
  - Start states: the set of states that are reachable from NFA's start state (1) by traveling  $\varepsilon$  arrow, plus the start state of NFA (1). Therefore  $\{1,3\}$  are start state.
  - Accept states: The new accept states (of DFA) are those containing NFA's accept state; thus {{1}, {1,2}, {1,3}, {1,2,3}}
- Step 3: Determine DFA's transition function.

| State   | а       | b     |
|---------|---------|-------|
| Ø       | Ø       | Ø     |
| {1}     | Ø       | {2}   |
| {2}     | {2,3}   | {3}   |
| {3}     | {1,3}   | Ø     |
| {1,2}   | {2,3}   | {2,3} |
| {1,3}   | {1,3}   | {2}   |
| {2,3}   | {1,2,3} | {3}   |
| {1,2,3} | {1,2,3} | {2,3} |



# Con't



# From DFA to Regular Grammar(RG)

- We can determine a RG directly from a DFA.
- Rules:



• Example:



$$q_0 \rightarrow 1q0|0q1$$

$$q_1 \rightarrow 1q1|0q2$$

$$q_2 \rightarrow 1q2|0q1| \epsilon$$

#### FA Vs RE Vs RL Vs RG



**Regular language**: {b, ab, bb, aab, abb, ...}

**Regular expression**: a\* b<sup>+</sup>

Regular grammar: 
$$q_0 \rightarrow a q_0$$
  
 $q_0 \rightarrow b q_1$   
 $q_1 \rightarrow b q_1$   
 $q_1 \rightarrow 2$ 

#### **DFA Minimization**

- Questions of DFA size:
  - Given a DFA, can we find one with fewer states that accepts the same language?
  - What is the smallest DFA for a given language?
  - Is the smallest DFA unique, or can there be more than one "smallest" DFA for the same language?
- All these questions have neat answers...
- The task of *DFA minimization*, then, is to automatically transform a given DFA into a state-minimized DFA
  - Several algorithms and variants are known
  - Note that this also in effect can minimize an NFA (since we know algorithm to convert NFA to DFA)

# **DFA** Minimization

- Some states can be redundant:
  - The following DFA accepts (a|b)+
  - State s1 is not necessary



#### **DFA Minimization**

• So these two DFAs are *equivalent*:





# State Reduction by Partitioning

- We say two states  $\mathbf{p}$  and  $\mathbf{q}$  are  $\mathbf{equivalent}$  (or indistinguishable), if, for every string  $\mathbf{w} \in \Sigma^*$ , transition  $\delta(\mathbf{p}, \mathbf{w})$  ends in an accepting state if and only if  $\delta(\mathbf{q}, \mathbf{w})$  does. In the preceding slide states  $S_1$  and  $S_2$  are equivalent.
- There are efficient algorithms available for computing the sets of equivalent states of a given DFA.
- The following two slides show:
  - the detailed steps for computing equivalent state sets of the DFA
  - constructing the reduced DFA.

# State Reduction by Partitioning



• **Step 0**: Partition the states according to accepting/non-accepting.

$$\frac{P_1}{}$$
  $\frac{P_2}{}$  { 0, 1, 2 }

### State Reduction by Partitioning(cont'ed)

• Step 1: Get the response of each state for each input symbol. Notice that States 3 and 0 show different responses from the ones of the other states in the same set.



Record responses for each input symbol

•Step 2: Partition the sets according to the responses, and go to Step 1 until no partition occurs.



Partition the set, and record responses for each input symbol

•No further partition is possible for the sets  $P_{11}$  and  $P_{21}$ . So the final partition results are as follows.

- {4, 5}
- {3}

 $\{1, 2\}$ 

{0}

### Exercise

• Minimize the given DFA.

