- · First, is the problem convex? No.
- $\nabla_{x}g_{3}=\begin{bmatrix}3(x_{1}-1)^{2}\end{bmatrix} \rightarrow \nabla_{x}^{2}g_{3}=\begin{bmatrix}6(x_{1}-1) & 0\\ 0 & 0\end{bmatrix}$ Is this a PSD matrix? No. Let $x_{1}=0$, gives eigends $\{-6,0\}\neq 0 \Rightarrow \nabla_{x}^{2}g_{3}$ if not PSD \Rightarrow They constraint $g_{3}(x)$: $x_{2}+(x_{1}-1)^{3}=0$ B not convex \Rightarrow this problem as a whole is not convex.
- · Since this isn't a CP we can't make guarantees on candidate points being global optima or not.
- · Let's some the problem without using the FJ conditions to make sure we get the right answer when we do so:
- · In general, to minimize -x, we must make x, a positive value as large as possible, relative to the given constraints.
- * g,(x): -x, =0 This fits into the desire to make -x, as small (x, as large) as possible. But may leave x, unbounded? (Taken care of in constraint g3(x).)
- $g_2(x)$: $-x_2 \leq 0$ We know that $x_2 \geq 0$.
- $g_3(x)$: $X_2 + (X_1-1)^3 \le 0 \implies (X_1-1)^3 \le -X_2$ and $g_2(x)$ stipulates $-X_2 \le 0$ $\implies (X_1-1)^3 \le 0$ How do we satisfy this? With some $X_1 \le 1$. But, our means of minimizing $-X_1$ is to make X_1 as large as possible. Therefore, if it must be that $X_1 \le 1$ we'd choose $X_1 = 1$ to minimize $-X_1$.
- So using a rough approach (that won't work in many cases, but does here) we see $(x_1^*=1, x_2^*=0)$ which we'll verify using FJ-conditions. (Technically, we may only be showing that $(x_1=1, x_2=0)$ is the best conditate that comes from applying the FJ conditions. Since the program is non-convex, we can't mathematically guarantee it's the global optimum. Rother, our deductive method helps us with this.)

$$L(x) = -\lambda_0 x_1 - \lambda_1 x_1 - \lambda_2 x_2 + \lambda_3 (x_2 + (x_{1-1})^3)$$

$$\partial L/\partial x_1 = -\lambda_0 - \lambda_1 + 3\lambda_3 (x_{1-1})^2 \stackrel{\text{set}}{=} 0 \quad \boxed{\text{eq 1}}$$

$$\partial L/\partial x_2 = -\lambda_2 + \lambda_3 = 0 \quad \boxed{\text{eq 2}} \implies \lambda_3 = \lambda_2$$

· Complimentanty conditions:

$$[c1]: -\lambda_1 \times_{1} = 0 \longrightarrow either \lambda_1 = 0 \text{ or } \times_{1} = 0$$

$$\begin{array}{c} (3): \lambda_3 (x_2 + (x_1 - 1)^3) = 0 \rightarrow \text{either } \lambda_3 = 0 \text{ or } (x_1 - 1)^3 = -x_2 \end{array}$$

- Since [eg2] requires that $\lambda_3 = \lambda_2$ we need only check cases where $\lambda_3 = \lambda_2$.
- CASE 1: $\lambda_0 = 0$, $\lambda_1 \neq 0$, $\lambda_2 = \lambda_3 = 0$
- * Eq1: $-\lambda_1 + 0 + 0 (\chi_1 1)^2 = 0 \Rightarrow \lambda_1 = 0 \Rightarrow \lambda_0 = 0$ and $\lambda_0 = 0$ which violates the non-triviality condition. Therefore, this case is not feasible.
- · CASE 2: \(\lambda_0 = 0, \) \(\lambda_1 = 0, \) \(\lambda_2 \neq 0, \) \(\lambda_3 \neq 0 \)
- Eq1: $3\lambda_3(x_1-1)^2=0$, λ_3 must be $\pm 0 \Rightarrow (x_1-1)=0 \Rightarrow x_1=0$
- · $|\overline{c2}|$: since $\lambda_2 \neq 0$ here $\Rightarrow \lambda_2 \times_2 = 0$ iff $x_2 = 0$
- $\boxed{c3}$: Since $\lambda_3 \neq 0$ we have $\lambda_3 (D + (1-1)^3) = 0 \rightarrow \lambda_3 (D) = 0 \Rightarrow \lambda_3 \in \mathbb{R}$ and $\lambda_3 = \lambda_2 \Rightarrow \lambda_1 \in \mathbb{R}$

Thus, $(x_1=1, x_2=0)$ with $X=[\lambda_1=0, \lambda_2\geq 0, \lambda_3\geq 0]$ with $\lambda_2=\lambda_3$ is a condidate according to the FJ conditions. Strictly speaking, we com't declare this to be a global minimizer, but from our procedural reasoning above (at problems outset) we know that this is a best solution (there may exist others, we'll continue checking other cases).

- CASE 3: $\lambda_0 = 1$, $\lambda_1 = 0$ e.g. $\lambda_1 = \lambda_2 = \lambda_3 = 0$
- · Eq1: -1-0+0=0 ⇒ -1=0 which isn't true. Therefore, having these

 > ralues fails to Satisfy FJ coorditions ("FJ infeasible").
- CASE 4: $\lambda_0=1$, $\lambda_1\neq 0$, $\lambda_2=\lambda_3=0$
- Eq1: $-1 \lambda_1 + 0 = 0 \implies \lambda_1 = -1$ which can't be, since all elements of $\lambda_1 = -1 + \lambda_1 + 0 = 0 \implies \lambda_1 = -1$ which can't be, since all elements of $\lambda_1 = -1 + \lambda_1 + 0 = 0 \implies \lambda_1 = -1$ which can't be, since all elements of $\lambda_1 = -1 + \lambda_1 + 0 = 0 \implies \lambda_1 = -1$ which can't be, since all elements of $\lambda_1 = -1 + \lambda_1 + 0 = 0 \implies \lambda_1 = -1$ which can't be, since all elements of $\lambda_1 = -1 + \lambda_1 + 0 = 0 \implies \lambda_1 = -1 + \lambda_1 + \lambda_1$
- · CASE 5: $\lambda_0 = 1$, $\lambda_1 = 0$, $\lambda_2 \neq 0$, $\lambda_3 \neq 0$, $(\lambda_2 = \lambda_3 \text{ still required by } [eq 2])$
- Eq1: $-1 0 + 3\lambda_3 (x_1 1)^2 = 0 \longrightarrow 3\lambda_3 (x_1 1)^2 = 1$
- · c2: Since we're said 12 =0, for 12x2=0 => X2=0
- · <u>c3</u>: Since we're said $\lambda_3 \neq 0$, $\lambda_3 (x_1 1)^2 = 0 \Rightarrow x_1 1 = 0 \Rightarrow x_1 = 1$
- · Back to Eq1: if $3\lambda_3(X_1-1)^2=1 \rightarrow 3\lambda_3(1-1)^2=1 \Rightarrow 3\lambda_3(0)=0=1$ which isn't possible \Rightarrow to feasible solution under FJ conditions for $\lambda_0=1$, $\lambda_1=0$, $[\lambda_2=\lambda_3]\neq 0$.

CONCLUSION: we have demonstrated the existence of one viable candidate, $(X_1=1, X_2=0)$ with $\lambda_0=0$ and $\lambda^T=[\lambda_1=0, \lambda_2=0, \lambda_3=0]$ and $\lambda_2=\lambda_3$. Since the program TSWH convex, we can't declare this to be a global minimizer based on the FT conditions being satisfied. However, based on the procedural explanation at the problem's outset, we concluded the best solution TS $(X_1=1, X_2=0)$. (Done via some logiz and combination of constraints $g_2(x)$ and $g_3(x)$.) This T3 substantiated by our findings The CASE2, showing this conditate has a satisfactory formulation for the FT conditions. Thus, based on some not-typical reasoning, we can conclude $\chi^*=(\chi_1^*=1, \chi_2^*=0)$ achieving $f(\chi^*)=-1$.