RECT MICROSTRIP PATCH ANTENNA COAXIAL FEED

Problem Statement 1

To design a rectangular patch antenna on a ROGERS CUSTOMIZED substrate. The frequency is 2.4 GHz and thickness is 1.6 mm, dielectric constant = 2.32

USAGE: S BAND (WIFI/ BLUETOOTH)

Parameter	Dimension(mm)	Description	
W	47	Width of Patch	
L	39	Length of Patch	
Wg	W + 12*Hs	Width of Ground	
Lg	L + 12*Hs	Length of Ground	
Υ	7	Coaxial Feed (Discrete Port)	
Hs	1.6	Height of Substrate	
Ht	0.035	Height of Copper	

DESIGN STEPS:

STEP1 Modelling of **Ground** Plane **>** Brick **>** Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-Wg/2	Wg/2	-Lg/2	Lg/2	0	Ht

Material: Copper Annealed

STEP2 Modelling of **Substrate** Plane → Brick → Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-Wg/2	Wg/2	-Lg/2	Lg/2	Ht	Ht+Hs

Material: ROGERS ($\xi r = 2.32$)

STEP3 Modelling of **Patch** Plane **Brick Esc.**

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-W/2	W/2	-L/2	L/2	Ht+Hs	2*Ht+Hs

Material: Copper Annealed

STEP6 Excitation of Square Patch Antenna

SIMULATION DISCRETE PORT

Impedance = 50 Ohms ve life at high frequency...

X1 = 0.0; X2 = 0.0; Y1 = Y; Y2 = Y; Z1 = 0.0; Z2 = 2*Ht + Hs;

STEP7 Simulate