Tutorial of ST5215

AY2020/2021 Semester 1

27 Aug 2020

Exercise 1 (Stein's identity). Suppose the distribution of X has density in an exponential family whose support is $(-\infty, \infty)$. If g is any differentiable function such that $E|g'(X)| < \infty$, then

$$E\left\{\left[\frac{h'(X)}{h(X)} + \sum_{i=1}^{p} \eta_i T_i'(X)\right] g(X)\right\} = -Eg'(X),$$

where η_i 's are the coordinates of $\eta(\theta)$ and T_i 's are the coordinates of T(X).

When p=1 and h'(X)=0 (e.g., the normal family with fixed σ), the identity becomes

$$E\{(X - \mu)g(X)\} = \sigma^2 E g'(X),$$

- Exercise 2 Show that if two random variables X and Y are independent, then their characteristic functions ϕ_X and ϕ_Y satisfy $\phi_X(t)\phi_Y(t) = \phi_{X+Y}(t)$ for all $t \in \mathcal{R}$.
- Exercise 3 Find an example of two random variables X and Y such that X and Y are not independent but their characteristic functions ϕ_X and ϕ_Y satisfy $\phi_X(t)\phi_Y(t) = \phi_{X+Y}(t)$ for all $t \in \mathcal{R}$
- Exercise 4 Let X be an integrable random variable on the probability space (Ω, \mathcal{F}, P) , \mathcal{A} and \mathcal{A}_0 be σ -fields satisfying $\mathcal{A}_0 \subset \mathcal{A} \subset \mathcal{F}$. Show that $E[E(X \mid \mathcal{A}) \mid \mathcal{A}_0] = E(X \mid \mathcal{A}_0) = E[E(X \mid \mathcal{A}_0) \mid \mathcal{A}]$ a.s.
- Exercise 5 Let X be an integrable random variable on the probability space $(\Omega, \mathcal{F}, P), \mathcal{A}$ be a sub- σ -field of \mathcal{F} , and Y be another random variable satisfying $\sigma(Y) \subset \mathcal{A}$ and $E|XY| < \infty$. Show that

$$E(XY \mid \mathcal{A}) = YE(X \mid \mathcal{A})$$
 a.s.