Problem Set 1

Mitchell Valdes-Bobes

March 7, 2022

1 Model

- There are 4 state variables:
 - $-e \in \{0,1\}$ employment status.
 - $-h \in \mathbb{R}_+$ human capital.
 - $-k \in \mathbb{R}_+$ assets.
 - $-S \in \mathbb{R}_+$ (accumulated) schooling.
- There are 2 firms $I \in \{L, H\}$
- Firm I = L hires all workers.
- Firm I = H hires only workers with $S \ge \underline{S}$.
- Workers con invest in schooling a fraction of time $s \leq 1$.
- Law of motion of human capital is: $h' = \exp(z)H(h,s)$ where $z \in \mathbb{R}_+$ is a random shock.

1.1 Unemployed Workers

- Search for a job with intensity γ , $(\gamma + s \leq 1)$.
- Recieve a job offer with probability $\pi(\gamma, S)$, $(\pi(0, \cdot) = 0)$.
- \bullet Dependent on S they might recieve an offer from just L or both firms.
- Recieve unemployment beneffits b.

Value Function if $S < \underline{S}$

$$U_{t}(h, k, S) = \max_{k, s} \left\{ u(c) + \beta \mathbb{E} \left[\pi(\gamma, S) W_{t+1}^{L}(h', k', S') + (1 - \pi(\gamma, S)) U_{t+1}^{L}(h', k', S') \right] \right\}$$

Value Function if $S \ge \underline{S}$