WO 2005/052588 PCT/GB2004/004928

44

1	Clair	ms .
2		
3	1.	A protein interaction system comprising
4		
5		a plurality of bait fusion proteins, each
6		fusion protein comprising (i) a first fragment
7		of fluorescent protein, a first peptide of
8		interest and a linker portion interposed
9		between the first peptide and first fluorescent
10		fragment; wherein the linker portions of each
11		bait fusion protein are of different lengths,
12		and the first peptide of interest of each bait
13		fusion protein is identical to the first
14		peptide of interest in each of the other bait
15		fusion proteins,
16		
17		and (ii) at least one prey fusion protein
18		comprising a fragment of fluorescent protein
19		complementary to said first fragment of
20		fluorescent protein, a second peptide of
21		interest and a second linker portion interposed
22		between the complementary fragment and the
23		second peptide;
24		
25	wl	nerein, on interaction of a first peptide of
26		interest with a second peptide of interest,
27		the fragments of the fluorescent protein
28		functionally associate to promote
29		fluorescence.
30		
31	2.	The protein interaction system as claimed in
32		claim 1 or claim 2 wherein the linker

45

WO 2005/052588 PCT/GB2004/004928

1		portions comprise in the range 5 to 100
2		amino acid residues.
3		
4	3.	The protein interaction system as claimed in
5		claim 2 wherein at least one linker portion
6		comprises at least 20 amino acids.
7		
8	4.	The protein interaction system according to
9		any one of claims 1 to 3, wherein the
10		fragments of fluorescent protein are
11		generatable through the introduction of a
12		split point between the amino acids at
13		positions 157 and 158, or (in a second
14		embodiment) between the amino acids at
15		positions 172 and 173 of the humanised form
16		of Green Fluorescent Protein (SEQ ID NO 2).
17		
18	5.	The protein interaction system as claimed in
19		any one of the preceding claims, wherein the
20		system comprises a plurality of prey fusion
21		proteins.
22		
23	6.	The protein interaction system as claimed in
24		claim 5 wherein the linker portions of at
25		least two prey fusion proteins are of
26		different lengths.
27		
28	7.	The protein interaction system as claimed in
29		claim 5 or 6 wherein at least two of the
30		second peptides of interest of the prey
31		fusion proteins are provided by different

PCT/GB2004/004928

1		amino acid sequences.
2		
3	8.	The protein interaction system as claimed in
4	٠	any one of the preceding claims wherein the
5		first peptide is linked to the N terminus of
6		the first fragment of fluorescent protein.
7		
8	9.	The protein interaction system as claimed in
9		any one of claims 1 to 7 wherein the first
10		peptide is linked to the C terminus of the
11		first fragment of fluorescent protein.
12		
<u>1</u> 3	10.	The protein interaction system as claimed in
14		any one of the preceding claims wherein the
15		second peptide is linked to the N terminus
16		of the complementary fragment of fluorescent
17		protein.
18		
19	11.	The protein interaction system as claimed in
20		any one of claims 1 to 9 wherein the second
21		peptide is linked to the C terminus of the
22		complementary fragment of fluorescent
23		protein.
24		
25	12.	The protein interaction system as claimed in
26		any one of the preceding claims further
27		comprising at least a third fusion protein
28		comprising at least a third fragment of
29		fluorescent protein complementary to a first
30		and / or second complementary fragment of
31		fluorescent protein;
32		wherein said at least third fragment is

1		linked to at least a third peptide of
2		interest and at least a third linker is
3		interposed between the at least third
4		fragment and at least third peptide of
5		interest wherein the at least third fragment
6		of fluorescent protein is capable of
7		functional association with a first and / or
8		complementary fragment of fluorescent
9		protein such that on functional association
10	• •	of said fragments fluorescence is enabled
11		and on interaction of the first, second and
12		third peptides of interest the fragments
13 [.]		functionally complement each other to
14		promote fluorescence.
15		•
16	13.	A protein interaction system as claimed in
17		any one of the preceding claims wherein the
18		system is a cell based system.
19		
20	14.	A library of nucleic acid constructs
21		comprising a plurality of nucleic acid
22		constructs, each construct encoding
23		(i) a first fragment of fluorescent protein
24		capable of functional association with a
25		complementary fragment of fluorescent
26		protein such that on functional association
27		of said first and complementary fragments
28		fluorescence is enabled,
29		(ii) a peptide of interest and
30		(iii) a linker portion interposed between
31		the peptide and first fragment of
32		fluorescent protein; wherein the peptide of

WO 2005/052588

31

1 interest encoded by each nucleic acid 2 construct is the same and the linker portion 3 encoded by each construct is of a different 4 length to the linker encoded by each other 5 construct. 6 7 15. The library according to claim 14, wherein 8 the linker portions comprise in the range 5 9 to 100 amino acid residues. 10 11 16. The library as claimed in claim 14 or claim 12 15 wherein at least one linker portion 13 comprises at least 20 amino acids. 14 15 17. The library according to any one of claims 16 14 to 16, wherein the fragments of fluorescent protein are generatable through 17 18 the introduction of a split point between 19 the amino acids at positions 157 and 158, or 20 (in a second embodiment) between the amino 21 acids at positions 172 and 173 of the 22 humanised form of Green Fluorescent Protein 23 (SEQ ID NO 2). 24 25 18. An expression vector comprising at least one 26 of the plurality of nucleic acid constructs 27 as defined in claims 14 to 17, wherein the 28 at least one nucleic acid construct encodes 29 a fusion protein having a linker of at least 30 20 amino acids.

48

PCT/GB2004/004928

WO 2005/052588 PCT/GB2004/004928

49

1	19.	An expression vector comprising a plurality
2		of nucleic acid constructs as defined in any
3		one of claims 14 to 17.
4		
5	20.	The expression vector according to claim 19,
6		wherein at least one nucleic acid construct
7		encodes a fusion protein having a linker of
8		at least 20 amino acids.
9		
·· 10	21.	A cell transformed with a vector as claimed
1.1		in any one of claims 18 to 20.
12		
13	22.	A cell comprising a protein interaction
14		system as claimed in any one of claims 1 to
15		13.
16		
17	23.	The cell according to claim 22, wherein the
18		cell is a cell according to claim 21.
19		
20	24.	An assay method for monitoring peptide
21		interaction comprising the steps of
22		(i) providing the protein interaction system
23		of any one of claims 1 to 13;
24		(ii) allowing the bait fusion proteins to
25		come into contact with the prey fusion
26		protein(s): and
27		(iii) measuring fluorescence produced by the
28		interaction of a first and second peptide of
29		interest causing fragments of the
30		fluorescent protein to functionally
31		interact.
32		

WO 2005/052588

50

PCT/GB2004/004928

1 25. The assay method according to claim 24, 2 wherein the assay is a cell-based assay. 3 4 26. The assay method according to claim 25, 5 wherein the cell based assay is performed 6 using one or more cells according to claim 7 22 or claim 23. 8 9 27. The method according to claim 25 or claim 10 26, wherein the assay further comprises the 11 step of determining the subcellular location 12 of the interaction of the first and second 13 peptides of interest in the at least one 14 cell. 15 16 The method according to any one of claims 24 28. 17 to 27, wherein the assay further comprises 18 the step of determining the length of the 19 linker(s) of those fusion proteins which 20 allow the first fragment and complementary 21 fragment of the fluorescent protein to 22 functionally complement each other and 23 enable fluorescence to be detected on interaction of the first and second peptide 24 25 of interest. 26 27 The method according to any one of claims 24 29. 28 to 28, wherein the assay comprises the steps 29 of: 30 providing a putative interaction modulating 31 agent; 32 measuring the fluorescence produced in the

51

WO 2005/052588

1		presence of said putative modulating agent;
2		comparing the measured fluorescence in the
3		presence of the putative modulating agent
4		with the measured fluorescence in the
5		absence of the putative modulating agent;
6		wherein a decrease in detection of
7		fluorescence in the presence of the putative
8		modulating agent relative to in the absence
9	•	of the putative modulating agent is
10		indicative that the putative modulating
11		agent prevents or is an inhibitor of peptide
12		interaction; and wherein an increase in
13		detection of fluorescence in the presence of
14		the putative modulating agent relative to in
15 .		the absence of the putative modulating agent
16		is indicative that the putative modulating
17		agent promotes or enhances peptide
18		interaction.
19		·
20	30.	A kit comprising a library of nucleic acid
21		constructs according to any one of claims 14
22		to 17 and means to express the constructs.
23		
24	31.	The kit according to claim 30 which further
25		includes at least one second nucleic acid
26		construct which encodes a complementary
27		fragment of fluorescent protein, a second
28		peptide of interest and a second linker
29		portion interposed between the complementary
30		fragment and the second peptide of interest.
31		

PCT/GB2004/004928

WO 2005/052588 PCT/GB2004/004928

52

1 32. The kit as claimed in claim 31 wherein the
2 kit comprises a plurality of second nucleic
3 acid constructs, wherein the second peptides
4 of interest encoded by the plurality of
5 second nucleic acid constructs are each of
6 different amino acid sequence.
7

9