1 无关属性

- 1.1 无关属性的定义
- 1.2 无关属性的判定

2 正则覆盖

来自《数据库系统概念(第六版)》8.4.3节,自己看书的时候不是很理解,经过老师的讲解茅塞顿开,记录于此。

1 无关属性

1.1 无关属性的定义

如果去除函数依赖中的一个属性不改变该函数依赖集的闭包,则称该属性是无关的。**无关属性**的形式化 定义如下:

考虑函数依赖集 F, α , β 是属性集并且 $\alpha \to \beta$, A 是一个属性, 则

- 如果 $A\in\alpha$ 并且 F 逻辑蕴含 $(F-\{\alpha\to\beta\})\cup\{(\alpha-\{A\})\to\beta\}$,则属性 A 在 α 中是无关的。
- 如果 $A\in\beta$ 并且函数依赖集 $(F-\{\alpha\to\beta\})\cup\{\alpha\to(\beta-\{A\})\}$ 逻辑蕴含 F ,则属性 A 在 β 中是无关的。

在函数依赖 $\alpha \to \beta$ 中, α 决定 β , β 受到 α 的限制,左右两个属性集的地位是不同的。在此基础上讨论上述定义。

如果在 α 中去掉属性 A,则 $\alpha \to \beta$ 变成 $(\alpha - \{A\}) \to \beta$ 。 α 中少了一个条件,此时 $\alpha - \{A\}$ 不一定能决定 β ,也即 $(\alpha - \{A\}) \to \beta$ 不一定成立。在 F 中将原来的 $\alpha \to \beta$ 去掉,换成 $(\alpha - \{A\}) \to \beta$,就得到了 $(F - \{\alpha \to \beta\}) \cup \{(\alpha - \{A\}) \to \beta\}$,那么从 F 未必能推出 $(F - \{\alpha \to \beta\}) \cup \{(\alpha - \{A\}) \to \beta\}$,如果在去掉属性 A 后仍然能推出 $(F - \{\alpha \to \beta\}) \cup \{(\alpha - \{A\}) \to \beta\}$,就说明 A 是多余的。

如果在 β 中去掉属性 A,则 $\alpha \to \beta$ 变成 $\alpha \to (\beta - \{A\})$ 。在已知 $\alpha \to (\beta - \{A\})$ 的条件下不一定能推出 $\alpha \to \beta$ 。在 F 中将原来的 $\alpha \to \beta$ 去掉,换成 $\alpha \to (\beta - \{A\})$,就得到了 $(F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - \{A\})\}$,那么从 $(F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - \{A\})\}$ 不一定能推出 F。如果在去掉属性 A 后仍然能推出 F,就说明 A 是多余的。

1.2 无关属性的判定

令 R 为一关系模式,F 是在 R 上成立的函数依赖集。考虑 $\alpha \to \beta$ 中的一个属性 A。

- 如果 $A \in \alpha$,考虑属性集 $\gamma = \alpha \{A\}$,检查 $\gamma \to \beta$ 是否可以由 F 推出。为此,计算在 F 下的 γ^+ (γ 的闭包),如果 γ^+ 包含 β 中的所有属性,则 A 在 α 中是无关的。
- 如果 $A \in \beta$,考虑函数依赖集 $F' = (F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta \{A\})\}$,检查 $\alpha \to A$ 是 否能够由 F' 推出。为此,计算 F' 下的 α^+ (α 的闭包),如果 α^+ 包含 A,则 A 在 β 中是无 关的。

2 正则覆盖

F 的**正则覆盖** F_c 是一个依赖集,它具有如下性质:

- F 逻辑蕴含 F_c 中的所有依赖, 并且 F_c 逻辑蕴含 F 中的所有依赖。
- Fc 中任何函数依赖都不含无关属性。

• F_c 中函数依赖的左半部分都是唯一的。即, F_c 中不存在两个依赖 $\alpha_1 \to \beta_1$ 和 $\alpha_2 \to \beta_2$,满足 $\alpha_1 = \alpha_2$ 。

可以证明, F_c 与 F 具有相同的闭包。也就是说, F_c 是与 F 等价的最小的函数依赖集,因为它不含无关属性,并且它合并了具有相同左半部的函数依赖。

在对数据库进行更新时,数据库系统需要检查数据库的函数依赖,保证函数依赖不被破坏。正则覆盖的 用途在于,它是当前数据库表的最小函数依赖集合,用它可以缩短数据库系统检查函数依赖的时间,提 高效率。

计算函数依赖 F 的正则覆盖的算法如下:

$$F_c = F$$

repeat

使用合并律将 F_c 中所有形如 $\alpha \to \beta_1$ 和 $\alpha \to \beta_2$ 的依赖替换为 $\alpha \to \beta_1\beta_2$;

在 F_c 中寻找一个函数依赖 $\alpha \to \beta$,它在 α 或 β 中具有一个属性;

如果找到一个无关属性,则将它从 F_c 中的 $\alpha \to \beta$ 中删除.

until (F_c 不变)