Χ1	χ2	λ3	λ4	y
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes fair		yes
>40	low	yes	excellent	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Info(D) = 1(8,4) = _	$\frac{8}{12}\log_2\left(\frac{8}{12}\right)$	$\frac{4}{12} \log_2\left(\frac{4}{12}\right)$	0.918
----------------------	---	--	-------

age	pi	Ni	l(Pi, ni)
<= 30	2	2	1
3140	3	0	0
740	3	2	0.971

$$1(2,2) = -\frac{\varrho}{4}\log_2(\frac{\varrho}{4}) - \frac{\varrho}{4}\log_2(\frac{\varrho}{4}) = 1$$

$$1(3,0) = -\frac{3}{5}\log_2(\frac{3}{3}) - \frac{0}{3}\log_2(\frac{0}{3}) = 0$$

$$1(3,2) : \frac{3}{5} \log_2(\frac{3}{5}) - \frac{2}{5} \log_2(\frac{2}{5}) : 0.971$$

In fo age (D) =
$$\frac{4}{12}$$
 I(2,2) + $\frac{3}{12}$ I(3,0) + $\frac{5}{12}$ I(3,2)

$$\frac{4}{12}(1) + \frac{3}{12}(0) + \frac{5}{12}(0.991)$$

- 09379

income	Pi	Ni	l (Pi, ni)
Hight	2	2	1
Medium	4	1	0.7219
low	2	1	0.9183

$$\begin{array}{rcl}
1 & (5,1) & = & -\frac{5}{6} & \log_2\left(\frac{5}{6}\right) - \frac{1}{6} & \log_2\left(\frac{1}{6}\right) & = & 0.6500 \\
1 & (3,3) & = & -\frac{3}{6} & \log_2\left(\frac{3}{6}\right) - \frac{3}{6} & \log_2\left(\frac{3}{6}\right) & = & 1
\end{array}$$

In form (D) =
$$\frac{4}{12}$$
 I(2,2) + $\frac{5}{12}$ I(4,1) + $\frac{3}{12}$ I(2,1)
= 4(1) + 5(0.7219) + 3(0.9183)

$$= \frac{4}{12}(1) + \frac{5}{12}(0.7219) + \frac{3}{12}(0.9183)$$

= 0.8637

Info student (D) =
$$\frac{6}{12}$$
1(5,1) + $\frac{6}{12}$ 1(3,3)
= $\frac{6}{12}$ (0.65) + $\frac{6}{12}$ (1)
= 0.825

$$I(6,1) = -\frac{6}{7} \log_2(\frac{6}{7}) - \frac{1}{7} \log_2(\frac{1}{7}) = 0.5917$$

$$1(2,3) = \frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = 0.9710$$

$$\frac{\ln f_0(D)}{\int_{Cledit-valling}^{Cledit-valling}} = \frac{1}{12} I(6,1) + \frac{5}{12} I(2,3)$$

$$= \frac{1}{12} (0.5917) + \frac{5}{12} (0.9710)$$

= 0.7499

Gain(Credit_rating) = 0.1686

Gain(student) = 0.0933

Gain(income) = 0.0546

Gain (credit_rating) =
$$\ln 60 (D) - \ln 60 (D) = 0.9183 - 0.7497 = 0.1686$$

income	Pi	hi	I(Pi, ni)	$1(0,2) = -\frac{0}{2}\log_2(\frac{0}{2}) - \frac{2}{2}\log_2(\frac{0}{2}) = 0$
high	0	2	0	$\frac{1}{2}$ $\frac{1}{2}$ $\left(\frac{1}{2}\right)$ $-\frac{1}{2}$ $\left(\frac{1}{2}\right)$
medium	1	0	0	$1 (1,0) = -\frac{1}{1} \log_2(\frac{1}{1}) - \frac{0}{1} \log_2(\frac{0}{1}) = 0$
low	1	0	0	7 7 (1) 7 7 (7)
				7(40) - 41 (4) 01 (4)

$$1 (1,0) = -\frac{1}{1} \log_2(\frac{1}{1}) - \frac{0}{1} \log_2(\frac{0}{1}) = 0$$

In former (0, <=30) =
$$\frac{2}{4}$$
 1(0,2) + $\frac{1}{4}$ 1(1,0) + $\frac{1}{4}$ 1(1,0) = $\frac{2}{4}$ (0) + $\frac{1}{4}$ (0) = 0

Gain (income) = Info (D <=30) - Info (D <=30) = 1-0=1

student	Pi	Ni	1 (Pi, ni)
Yes	2	0	0
No	0	2	0

$$I(2,0) = -\frac{2}{2} \log_2(\frac{2}{2}) - \frac{0}{2} \log_2(\frac{0}{2}) = 0$$

$$I(0,2) = -\frac{0}{2} \log_2 \left(\frac{0}{2}\right) - \frac{2}{2} \log_2 \left(\frac{2}{2}\right) = 0$$

Info student (0, <=30) =
$$\frac{\varrho}{4}$$
 I(2,0) + $\frac{\varrho}{4}$ I(0,2) = $\frac{\varrho}{4}$ (0) + $\frac{\varrho}{4}$ (0) = 0

	Credit_rating	Pi	Ni	1 (Pi, ni)	I (1.1) =	_ 1	1000 (1)) - 1 1092	.(1) :	1
	fair	1	1	1	,	2	12/2	1 2 1	(2)	·
	excellent	1	1	1	I (1.1) =	_ 1	log - (1)	- 1 1092	(1) -	1
ľ		ĺ				2	10 92 (2	- 9 10 J2	$\left(\frac{1}{2}\right)$	•

$$1 (1,1) = -\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) = 1$$

$$Info(0, \frac{1}{4}, \frac{2}{30}) = \frac{2}{4}I(1, 1) + \frac{2}{4}I(1, 1) = \frac{2}{4} + \frac{2}{4} = 1$$

		÷ 30		31	40	> 40	
	Χ1	<u>y</u> ´	Χ1		<u>y</u>	K.	y
<	= 30	N o	311	10	Yes	740	Yes
<	= 30	Ŋο	31 4	0	yes	>40	no
<	= 30	Yes	311	10	yes	740	Yes
<	= 30	yes	10	0.1.		740	Yes
	50°l.					740	No

X2	X 3	× 4	y
income	student	credit_rating	buys_computer
medium	no	fair	yes
low	yes	fair	yes
low	yes	excellent	no
medium	yes	fair	yes
medium	no	excellent	no

Info(D	740)=	1(3,2) =	- 3 100	213	_ 2 log.	(2)	= (0.971	١
	'	· ·	5	12(5)	5	151			

0.l.	income	Pi	hi	I(Pi,ni)
	medium	2	1	0.9 11
	low	1	1	1

$$\frac{1(2,1)}{3} : -\frac{2}{3} \log_2\left(\frac{2}{3}\right) - \frac{1}{3} \log_2\left(\frac{1}{3}\right) : 0.9183$$

$$\frac{1(1,1)}{3} = -\frac{1}{2} \log_2\left(\frac{1}{2}\right) - \frac{1}{2} \log_2\left(\frac{1}{2}\right) : 1$$

In
$$f_{0 \text{ income}} (0,740) = \frac{3}{5} 1(2,1) + \frac{9}{5} 1(1,1) = \frac{3}{5} (0.971) + \frac{9}{5} (1) = 0.9826$$

student	Pi	Ni	(Pi, ni)
Yes	2	1	0.971
No	1	1	1

In for (0,740) =
$$\frac{3}{5}$$
 1(2,1) + $\frac{9}{5}$ 1(1,1) = $\frac{3}{5}$ (0.971) + $\frac{9}{5}$ (1) = 0.9826

Credit _ rating	Pi	Ni	(Pi, ni)
fair	3	0	0
excellent	0	2	0

$$1(3,0) = -\frac{3}{3}\log_2\left(\frac{5}{3}\right) - \frac{0}{3}\log_2\left(\frac{0}{3}\right) = 0$$

$$1 (0,2) = -\frac{0}{2} \log_2 \left(\frac{0}{2}\right) - \frac{2}{2} \log_2 \left(\frac{2}{2}\right) = 0$$

$$Inf_{0}(0, 0, 0) = \frac{3}{5}I(3, 0) + \frac{9}{5}I(0, 2) : \frac{3}{5}(0) + \frac{9}{5}I(0) = 0$$

