Madhav Sankaranarayanan

Curriculum Vitae

321 Franklin St., Cambridge - 02139, MA, USA

📞 +1 (857) 867 2727 · 🔀 Email · 🗞 LinkedIn · 🗞 GitHub

Education

Program	Institution	Year
Doctor of Philosophy	Harvard T.H. Chan School of Public Health	September 2021-present
Biostatistics	Boston, MA, USA	1
Advisor: Rajarshi Mukherjee		
Masters of Statistics	Indian Statistical Institute	July 2019-May 2021
Specialization: Theoretical Statistics	Kolkata, WB, India	
Bachelors of Statistics (Honours)	Indian Statistical Institute	July 2016-May 2019
Major: Statistics	Kolkata, WB, India	

Research Interests

High Dimensional Inference • Random Matrix Theory • Causal Inference • Statistical Genetics

Current Projects

• Asymptotic Inference in Genetic Association Studies using Genetic Correlations of Glycemic Traits (in preparation)

Madhav Sankaranarayanan, Rajarshi Mukherjee, Tamar Sofer, Yana Hrtsenko

- Study the association of genetic determinants of proteins with glycemic traits
- Improve the estimation of these associations using the estimated genetic correlation between proteins and traits
- Construct provably optimal estimators and algorithms, and study polygenic risk scores for these traits
- **Detection of Spikes** (in preparation)

Madhav Sankaranarayanan, Rajarshi Mukherjee, Soumendu Sundar Mukherjee

- Test presence of spikes in a spiked Gaussian Orthogonal Ensemble model
- Deal with the bounded and unbounded dimensionality of spike sparsity and strength
- Investigate asymptotic properties of various tests
- Emulated Trials in linked Registry-Claims data (in preparation)

Madhav Sankaranarayanan, Lidia Moura, Mila Sun, Julianne Brooks, Victor Lomachinsky Torres, Sebastien Haneuse, Mamoon Habib

- Investigate the effect of benzodiazepines on post-stroke mortality in the elderly on a nationwide scale
- Extend methodology from studies on local hospital cohorts to Medicate dataset, linked with insurance registry claims
- Implement an emulated trial design to account for semi-competing risks and overlapping observation times
- A Distribution-free Mixed-Integer Optimization approach to Hierarchical Modelling of Clustered and Longitudinal data [arXiv]

Madhav Sankaranarayanan, Intekhab Hossain, Tom Chen

- Implement a mixed-integer optimization (MIO) approach for doing cluster-aware regression
- Compare to linear mixed effects regression (LMEM) in terms of causal recovery and prediction
- Establish framework for generalization to new data points using classification trees

Other Projects

- o Middle Meningeal Artery Embolization in adjunction to Surgical Evacuation for treatment of Subdural Hematomas: a Nationwide comparison of outcomes with Isolated Surgical Evacuation [Neurosurgery] Mirhojjat Khorasanizadeh, Seyed Farzad Maroufi, Rajarshi Mukherjee, Madhav Sankaranarayanan, Justin M. Moore, Christopher S. Ogilvy
 - Investigate risk of surgical evacuation for chronic subdural hematomas
 - Investigate middle meningeal artery embolization (MMAE) as a novel treatment approach
 - Perform meta-analysis on multiple small sample studies from hospitals across the country
- Perfect Transformation Based Markov Chain Monte Carlo

M.Stat Dissertation Project, advised by Sourabh Bhattacharya

- Construct computationally efficienct Transformational MCMC procedures to construct valid and effective algorithms
- Constrast efficacy of these TMCMC procedures with other MCMC procedures
- Leverage the dimension-reduction property of TMCMC to create a "perfect" sampling methodology for high-dimensional target distributions
- o Quantitative Analysis of Polygenic Risk Scores in the Genes for Good Cohort

Summer Project as part of Genomics group in BDSI 2019, advised by Matthew Zawistowski and Brooke Wolford

- Calculate polygenic risk scores for individuals in the GfG dataset, crowdsourced by the School of Public Health
- Test for traits such as hypertension, rheumatoid arthritis, schizophrenia and left-handedness
- Elucidate shortcomings of polygenic risk scores, and investigate potential improvements
- An MCMC-free approach to Post-selective Inference

Project advised by Snigdha Panigrahi

- Provide an approximation algorithm for selective inference, without using an MCMC sampling method
- Construct confidence intervals which match the inferential power of previous methodologies
- Extend to general models in randomized settings

Presentations

- Asymptotic Inference in Genetic Association Studies using Genetic Correlations of Glycemic Traits
 Presentation at Joint Statistical Meetings 2023
- Quantitative Analysis of Polygenic Risk Scores in the Genes for Good Cohort Poster at Symposium on Big Data, Human Health and Statistics 2019

Work Experience

Advised by Gautam Menon

Center for Value-Based Health Care and Sciences, Mass General HospitalBoston, MA, USAResearch AssistantJuly 2023 - PresentCo-advised by Sebastien Haneuse and Lidia Moura

University of Michigan School of Public Health
Summer Research Student
Part of the Big Data Science Initiative

Ann Arbor, MI, USA
June 2019 - July 2019

Institute of Mathematical Sciences

Visiting Researcher

Chennai, TN, India

May 2018 - July 2018

Teaching and Mentoring Experience

- StatStart (July 2023)
 - A one month summer intensive program intended for high school students from underrepresented backgrounds interested in data science and computing
 - Organized by the Department of Biostatistics, Harvard T.H. Chan School of Public Health
 - Instructed the Intro to Statistics and Probability classes
- Summer Program in Biostatistics and Computational Biology (June 2023 July 2023)
 - A 6 week summer program, offering diverse undergraduate students a unique opportunity to learn about the use of quantitative methods for biological, environmental, and medical research alongside Harvard faculty, researchers, and graduate students.
 - Organizaed by the Department of Biostatistics, Harvard T.H. Chan School of Public Health
 - Mentored students as the Student Research Mentor for the research group advised by Rafael Irizarry
- Qualifying Examination Preparation (July 2023)
 - Taught classes on probability (BIOSTAT 230) to Ph.D. students taking their qualifying exam
- Teaching Assistant (January 2023 May 2023)
 - Statistical Inference 2 (BIOSTAT 241)
 - Instructed by Rajarshi Mukherjee

Technical Skills

- o Programming Language: R, Python, Julia
- o Operating Systems: MacOS, Windows, Linux
- o Tools: L⁴TEX, Microsoft Excel, Microsoft Office, Photoshop

Achievements

- Recipient of Robert Balentine Reed Prize for Excellence in Biostatistical Science (2022)
- Secured Distinction in the B.Stat (Hons.) program (2019)
- Awarded the Kishore Vaigyanik Protsahan Yojana scholarship (2017)

Others

Hobbies: Puzzles, Quizzing, Badminton, Table Tennis,
 Languages: English, Tamil, Hindi, Bengali (working knowledge), Konkani (working knowledge)