

Computer Science Fundamentals

Source Coding – Arithmetic Coding

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Overview

- some notes on data compression
- arithmetic coding

Data Compression Methods

- Large variety of methods for data compression available
- Split into two groups
 - Lossless data compression
 - Lossy data compression

Data Compression Methods

Lossless data compression

- Objective of encoding
 - Redundancy reduction to zero if possible (Transfer time and storage space \downarrow)
- Essential requirement
 - The information contained in the data is retained without modification
 - This means that decoded data do not differ from the original data
- Application examples
 - Encoding of texts or tables

Data Compression Methods

Lossy data compression

- Objective of encoding
 - Reduction of amount of data beyond lossless data compression
- Information is essentially preserved, but some loss of information is accepted
 - This means that part of the information is lost
 - thus, the decoded data differ from the original data
- (substantially) higher compression rates can be achieved
- a lossless compression (like Huffman or arithmetic coding + run-length encoding) is typically part of the compression method
- Application examples
 - images, audio, or video files (perceptual psychological characteristics of the eyes/ears are taken into account)

Arithmetic Coding – Idea

- Principle: The entire message is assigned a floating-point number x in the interval $0 \le x < 1$
- Single symbols can implicitly carry a non-integer information content
 - with Huffman, each symbol receives a code word with an integer length
- Arithmetic coding can usually reduce redundancy a little further
- Example

Source		Encoding		
ESSEN	\longrightarrow	0.24704		
		Encoding		Decoding
		0.24704	\longrightarrow	ESSEN

Arithmetic Coding – Principle

- ullet Before the actual encoding of a message with n symbols, their relative frequencies are determined
- Starting from the interval [0,1] this is partitioned into n adjacent intervals
 - Each interval is assigned a symbol
 - The length of the intervals corresponds to the relative frequencies of the symbols
- the partitioning is applied recursively for each symbol of the message, resulting in nested partitionings

Arithmetic Coding – Example

- Message ESSEN is to be encoded arithmetically
- Necessary preparation steps
 - Determine relative frequencies (probabilities) p_i of the individual symbols
 - Assign an interval [l(c), u(c)] to each symbol, where the length is proportional to the respective probability of occurrence

Symbol	probability	Interval
$\boldsymbol{\mathcal{C}}$	p_{i}	[l(c), u(c)[
Е	$^{2}/_{5}$	[0.0, 0.4[
S	$^{2}/_{5}$	[0.4, 0.8[
N	$^{1}/_{5}$	[0.8, 1.0[

Arithmetic Coding – Encoding

Initialize lower and upper boundaries

$$L:=0.0$$
 $U:=1.0$

Read next input symbol c and calculate

```
S := U - L
U := L + s \cdot u(c)
L := L + s \cdot l(c)
```

... current length of the interval

... new upper bound, u(c) from the table

... new lower bound, l(c) from the table

until the end of the message is reached

Result x (encoded input data)

$$x := \frac{L+U}{2}$$

(or x := L or anything in the interval...)

Arithmetic Coding – Encoding Example

Compression of the message ESSEN

<u>C</u>	S	U	L	_
	-	1.0	0.0	Initialization
Ε	1.0	0.4	0.0	
S	0.4	0.32	0.16	
S	0.16	0.288	0.224	
Е	0.064	0.2496	0.224	
N	0.0256	0.2496	0.24448	

Symbol c	Probability p_i	Interval $[l(c), u(c)[$
Е	² / ₅	[0.0, 0.4[
S	$^{2}/_{5}$	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

$$s := U - L$$

$$U := L + s \cdot u(c)$$

$$L := L + s \cdot l(c)$$

• The result is x = 0.24704

$$x := \frac{L + U}{2}$$

Arithmetic Coding – Decoding

- Read code word x
- Repeat until all symbols are decoded (number of symbols must be known)

Output the symbol c that corresponds to the interval where x is located

$$s = u(c) - l(c)$$

$$x := \frac{x - l(c)}{s}$$

... Length of the interval

... New code word, where c has been removed

Arithmetic Coding – Decoding Example

We can gradually recover the original message from the encoded floating-point number x = 0.24704)

$\underline{\mathcal{X}}$	c (output)	<i>u(c)</i>	l(c)	S	
0.24704	E	0.4	0.0	0.4	
0.6176	S	0.8	0.4	0.4	
0.544	S	0.8	0.4	0.4	
0.36	Е	0.4	0.0	0.4	

0.9

Symbol c	Probability p_i	Interval $[l(c), u(c)[$
E	² / ₅	[0.0, 0.4[
S	² / ₅	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

Output the symbol *c* that corresponds to the interval where *x* is located

$$s = u(c) - l(c)$$
$$x := \frac{x - l(c)}{s}$$

0.2

0.8

1.0

Arithmetic Coding – Exercise

- Encode the message IBIS arithmetically
 - sort the characters as they appear in the message for constructing the table (I, B, S)
 - this is arbitrary, but for reasons of comparison we'll all want to use the same order
- Decode the result

Encoding

$$s := U - L$$

$$U := L + s \cdot u(c)$$

$$L := L + s \cdot l(c)$$

$$x := \frac{L + U}{2}$$

Decoding

Output the symbol c that corresponds to the interval where x is located

$$s = u(c) - l(c)$$
$$x := \frac{x - l(c)}{s}$$

Arithmetic Coding – Issues

- The floating-point number must not be rounded during the coding process!
- Intervals are getting smaller and smaller with each symbol be encoded
 - However, CPUs have limited accuracy for floating-point numbers
 - From a certain limit, the "code number" can no longer be represented
 - But we require arbitrary (but finite) accuracy → needs to be implemented
- Probabilities of occurrence of the symbols must be known before encoding
 - Use pre-defined probabilities
 - Use of semi-adaptive/adaptive method of algorithm
- Much more computationally intensive than Huffman

Arithmetic Coding – Applications

- H.264/MPEG 4 AVC
 - (lossy) video encoding
 - z.B. Blu-ray or DVB-S2
 - Arithmetic encoding can optionally be used instead of Huffman for entropy encoding

HEVC

- also called: H.265/MPEG-H Part 2
- Successor format of H.264
- e.g., UHD-Bluy-ray (4k), DVB-T2, Streaming
- arithmetic encoding mandatory, no Huffman