Computational Economics Lecture 10: Heterogeneous Firm Models with Aggregate Uncertainty

Min Fang

University of Florida

Spring 2025

Outline

- 1. Motivation
- 2. The Khan-Thomas Model
- 3. Distribution Dynamics
- 4. Computation
- 5. Applications

Motivation

- · We have learned how to solve the heterogeneous firm models w/o aggregate uncertainty
- · How about aggregate uncertainty?
 - · Just like (Krusell and Smith, 1998), aggregate uncertainty makes the solution really hard
 - · But it brings benefits: We can now study GE effects of shocks and policies
- We would like to start with a canonical model: (Khan and Thomas, 2008)
- "Idiosyncratic shocks and the role of nonconvexities in plant and aggregate investment dynamics," Econometrica (2008)
- This model is often used as a benchmark for new solution methods
- · I follow largely Hanbaek Lee's notation

Model Overview

- · IT studies heterogeneous establishments under aggregate productivity fluctuations
- Establishment-level nonlinear investment dynamics: (S, s) cycle
- · Macro-level log-linear investment dynamics: strong general equilibrium effect
- · Basic ingredients:
 - Heterogeneous idiosyncratic productivity process under the incomplete market
 - · Aggregate TFP fluctuations
 - The fixed cost, $\xi \sim_{\it iid}$ Unif $[0, \bar{\xi}]$: smoothing the kink of the value function
 - · A small-scale investment is allowed, which is not subject to a fixed cost
 - · Value function normalization steps
 - · Non-trivial market clearing condition
 - · Representative household and competitive factor market

Production

- At the beginning of period t, a firm i is given with $(k_{it}, z_{it}; S_t)$:
- k_{it}: Pre-determined establishment-level capital stock.
 -z_{it}: Establishment-level idiosyncratic productivity (AR(1) process).
- S_t = {A_t, Φ_t} : A_t is aggregate productivity (AR(1) process);
 Φ_t is the distribution of individual establishments.
- Cobb-Douglas production function with DRS ($lpha+\gamma<1$):

$$f(k_{it}, z_{it}; S_t) = A_t z_{it} (k_{it})^{\alpha} n_{it}^{\gamma}$$

- Operating profit due to DRS: $\pi\left(k_{it}, z_{it}; S_{t}\right) = \max_{n_{it}} f\left(k_{it}, z_{it}; S_{t}\right) w_{t}n_{it}$
- Operating profit = Dividends (D_{it}) + Investment (I_{it})
- · The objective function is maximizing the firm value:

$$J_{it} = \max_{\{D_{it}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \frac{1}{R_t} D_{it}$$

Investment

• A firm needs to decide k_{it+1} by choosing l_{it} :

$$k_{it+1} = (1 - \delta)k_{it} + l_{it}$$

- · Two options in the investment scale: large/small
- If $I_{it} \in \Omega\left(k_{it}\right) := \left[\nu k_{it}, \nu k_{it}\right]$, then there is no fixed cost. $\left(\nu < \delta\right)$
- If $I_{it} \notin \Omega(k_{it}) := [\nu k_{it}, \nu k_{it}]$, then a fixed cost $\xi_{it} \sim_{iid} \text{Unif}([0, \bar{\xi}])$: Why?
- · Role of fixed adjustment cost:
- (1) Inaction period: no lumpy investment inside the (S, s) cycle.
- (2) Large adjustment: Jumping from s to S

Household

· A representative household consumes, supplies labor and saves.

$$\begin{split} V(a;S) &= \max_{c,a',l_H} \log(c) - \eta I_H + \beta \mathbb{E} V\left(a';S'\right) \\ \text{s.t. } c &+ \int \Gamma_{S,S'} q\left(S,S'\right) a\left(S'\right) dS' = w(S)I_H + \int a(S)dS \\ G_{\phi}(S) &= \Phi', \quad G_A(A) = A', \quad S = \{\Phi,A\} \end{split}$$

- a: an equity portfolio, Φ: distribution of firms
 A: aggregate productivity, c: consumption
 a': a state-contingent future saving portfolio, I_H: labor supply (indivisible)
 q: state-contingent bond price, w: wage
- · Households hold the equity of firms as their wealth
- · Stochastic discount factor:

$$q(S,S') = \beta \frac{C(S)}{C(S')}$$

defines $p(S) := \frac{1}{C(S)}$, which will be extensively used after the normalization.

Firm's Recursive Formulation

$$J(k,z;S) = \pi(k,z;S) + (1-\delta)k + \int_0^{\bar{\xi}} \max\left\{R^*(k,z;S) - w(S)\xi, R^c(k,z;S)\right\} dG_{\xi}(\xi)$$

$$R^*(k,z;S) = \max_{k'} -k' - c\left(k,k'\right) + \mathbb{E}m\left(S,S'\right) J\left(k',z';S'\right)$$

$$R^c(k,z;S) = \max_{k'-(1-\delta)k \in \Omega(k)} -k^c - c\left(k,k^c\right) + \mathbb{E}m\left(S,S'\right) J\left(k^c,z';S'\right)$$
(Operating profit)
$$\pi(z,k;S) := \max_{n_d} zAk^{\alpha} n_d^{\gamma} - w(S)n_d \text{ (nd : labor demand)}$$
(Constrained investment)
$$I^c \in \Omega(k) := [-k\nu, k\nu] \quad (\nu < \delta)$$
(Idiosyncratic productivity)
$$z' = G_z(z)(AR(1) \text{ process})$$
(Stochastic discount factor)
$$m\left(S,S'\right) = \beta\left(C(S)/C\left(S'\right)\right)$$
(Aggregate states)
$$S = \{A,\Phi\}$$
(Aggregate law of motion)
$$\Phi' := H(S), A' = G_A(A)(AR(1) \text{ process}),$$

Aggregate Economy

National account tracking is important for efficient GE computation.

$$Y = C + I = C + (\tilde{I} + \text{Adj.Cost})$$
 $C = Y - I$

$$= (\Pi + W * L) - I$$

$$= (\Pi - I) + W * L$$

$$= \underbrace{D}_{\text{Dividend income}} + \underbrace{W * L}_{\text{Babor income}}$$

- Dividend income Labor income
- Therefore, consumption is total dividends plus total labor expenses.
- After obtaining the distribution of firms, we compute the total dividend and labor expenses. Then, we obtain the consumption.
- Why does consumption matter? It determines w(S) and q(S, S')

Market Clearing

From the intra-temporal labor supply optimality condition:

$$\eta = \lambda(\mu(S); S)w(S)
= p(S)w(S)$$

- Therefore, if p(S) is known, then w(S) is determined
- We still need to know SDF, q(S, S'), to solve the problem
- However, some normalization eases the problem: p(S) is the only price!
- Multiply p(S) = 1/C(S) on the both sides of the value function identity

•
$$\widetilde{J}(k, z; S) = p(S)J(k, z; S), \widetilde{R}^*(k, z; S) = p(S)R^*(k, z; S), \widetilde{R}^c(k, z; S) = p(S)R^c(k, z; S)$$

- There is no closed-form to determine p(S)
- · The notorious internal loop:
 - Guess p(S)
 - 2. Using distribution $\Phi(S)$ to compute aggregate consumption C(S) = D(S) + w(S)L(S)
 - 3. Compute $p^{update}(S) = 1/c(S)$, and repeat the steps until $||p(S) p^{update}(S)|| < \text{tol}$

The Extensive Margin

$$\int_0^{\bar{\xi}} \max \{ R^*(k, z; S) - w(S)\xi, R^c(k, z; S) \} dG_{\xi}(\xi)$$
 (1)

Then, there exists $\xi^*(k, z; S)$ such that

$$R^*(k, z; S) - w(S)\xi > R^c(k, z; S)$$
 if $\xi < \xi^*(k, z; S)$
 $R^*(k, z; S) - w(S)\xi \le R^c(k, z; S)$ if $\xi \ge \xi^*(k, z; S)$

Especially, $\xi^*(k, z; S) = \frac{R^*(k, z; S) - R^c(k, z; S)}{w(S)}$ is the closed-form characterization:

- In the support of ξ , $[0, \xi^*)$ corresponds to large-scale investment and $[\xi^*, \overline{\xi}]$ corresponds to small-scale investment: define $\psi(k, z; S) := \frac{\min\{\xi^*(k, z; S), \overline{\xi}\}}{\overline{\xi}}$
- With probability $\psi(k, z; S)$, a firm makes a large-scale investment.
- Eq (1) becomes a linear combination form: No Kink! (c.f., Discrete choice model)

$$\psi(k,z;S)\left(R^{*}(k,z;S)-w(S)\frac{\xi^{*}(k,z;S)}{2}\right)+(1-\psi(k,z;S))\left(R^{c}(k,z;S)\right)$$

^{*}Skip the RCE definition here

Computation

- 1. Set the parametric law of motion: assumption
- 2. Guess the parameters: $\#(S) \times 2 \times 2$
- 3. Solution (optimization)
 - · VFI/PFI/EGM/Projection method
 - · Interpolation
- 4. Simulation and internal loop for price *p*
 - · Simulation
 - · Aggregation
 - · Update p until convergence
- 5. Update the parameters with (Krusell and Smith, 1998)'s method!
- 6. After convergence, verify the assumption

Parametric Law of Motion

There are two layers of choices:

- First, we need to set what are sufficient statistics to characterize the dynamics of the individual state distribution
 - · A good candidate is the first moment of the endogenous individual state
 - As in Krusell and Smith (1998), by tracking only K_t, the aggregate prices are also characterized
 - · Then, we need to decide the parametric form of the law of motion
 - So start from the following parameter guesses $\left(\alpha_S^K, \beta_S^K; \alpha_S^p, \beta_S^p\right)$ $\log\left(K_{t+1}\right) = \alpha_S^K + \beta_S^K \log\left(K_t\right) \text{ when } S_t = S$ $\log\left(\rho_t\right) = \alpha_S^p + \beta_S^p \log\left(K_t\right) \text{ when } S_t = S$
- K_t does not immediately give p_t . But it should give some inference on p_t !

Value Function Iteration

Now we know p(S) if we are given with K. The pseudo-code is as follows:

- 1. Guess $J^{(n)}: \mathcal{K} \times \mathcal{Z} \times \mathcal{A} \times \mathcal{K}^{Agg} \rightarrow \mathbb{R}$
- 2. Solve for the policy function, $g_k^{(n)}$ (using monotonicity: $g_k^{(n)} \geq g_{\widetilde{k}}^{(n)}$ for $k \geq \widetilde{k}$).
 - We have K, so we know (p, K') from the law of motion.
 - Interpolate the value functions over K' to have $J^{(n)}\left(\cdot,z';A',K'\right)$
 - · Then, the problem becomes a typical VFI.
- 3. Update $J^{(n+1)}$ using the policy function, $g_k^{(n)}$.
- 4. Update $J^{(n+2)}$ using the policy function, $g_k^{(n)}$.
- 5. Update $J^{(n+m)}$ using the policy function, $g_k^{(n)}$.
- 6. Check if $\|J^{(n+m)} J^{(n+m-1)}\|_p < ToI$
 - · If yes, the solution converged.
 - If no, go back to step 1.

Simulation of the Aggregate Economy

- Simulate a long enough aggregate shock path using Γ_S . (Not idiosyncratic shocks)
 - Start from an initial guess \mathcal{H}_0 . Compute the corresponding K_0 . And then the internal loop.
 - Guess p_0 , and solve the problem to get g_{d0} and g_{l0} .
 - Compute c_0 using $(\mathcal{H}_0, g_{d0}, g_{l0}, w_0)$.
 - Compute $p_0^{ ext{update}} = 1/c_0$, and repeat the steps until $\left\| p_0 p_0^{ ext{update}} \, \right\| < ext{tol.}$
 - So, we have $(K_0, p_0^{converged})$.
- Let \mathcal{H}_0 evolve to \mathcal{H}_1 using $g_{a0}^{converged}$, and compute the corresponding \mathcal{K}_1 .
 - Guess p_1 , and solve the problem to get g_{d1} and $g_{/1}$.
 - Compute c₁ using (H₁, g_{d1}, g₁₁, w₁).
 - Compute $p_1^{ ext{update}} = 1/c_1$, and repeat the steps until $\left\|p_1 p_1^{ ext{update}} \, \right\| <$ tol.
 - So, we have $(K_1, p_1^{\text{converged}})$.
- By repeating this process, we obtain $\left\{K_t, p_t^{\text{converged}}\right\}_{t=0}^T$.

Updating the Parameters

- We have $\left\{K_t, p_t^{\text{converged}}\right\}_{t=\text{burnIn}}^T$ and $\left\{S_t\right\}_{t=\text{burnIn}}^T$.
- Fit the time series into the parametric form of the law of motion to estimate the parameters: (α^K_S, β^K_S; α^P_S, β^P_S)

$$\begin{split} \log \left(\mathcal{K}_{t+1} \right) &= \alpha_S^K + \beta_S^K \log \left(\mathcal{K}_t \right) \text{ when } S_t = S \\ \log \left(\rho_t^{\text{converged}} \right) &= \alpha_S^p + \beta_S^p \log \left(\mathcal{K}_t \right) \text{ when } S_t = S \end{split}$$

- If the parameter estimates are not close to the guess, return to the initial step.
- · Otherwise, the solution is converged.
- Check R^2 as the first check for the validity of the parametric form.

Model Results: PE Investment Rates

FIGURE 1.—Distribution of aggregate investment rates in partial equilibrium.

Model Results: PE Asymmetry

FIGURE 2.—Partial equilibrium aggregate capital responses.

Model Results: Distribution and Adjustment Prob.

FIGURE 3.—Steady-state adjustment in the common productivity lumpy model.

Model Results: Distribution and Adjustment Prob.

FIGURE 4.—Adjustment responses in the common productivity lumpy model.

Model Results: GE Distribution

FIGURE 5.—Distribution of aggregate investment rates in general equilibrium.

Model Results: GE Aggregate Effects

TABLE IV
AGGREGATE BUSINESS CYCLE MOMENTS

	Output	TFP ^a	Hours	Consump.	Invest.	Capital
A. Standard deviatio	ns relative to	output ^b				
GE frictionless	(2.277)	0.602	0.645	0.429	3.562	0.494
GE lumpy	(2.264)	0.605	0.639	0.433	3.539	0.492
B. Contemporaneou	s correlations	with output				
GE frictionless		1.000	0.955	0.895	0.976	0.034
GE lumpy		1.000	0.956	0.900	0.976	0.034

^aTotal factor productivity.

^bThe logarithm of each series is Hodrick–Prescott-filtered using a weight of 100. The output column of panel A reports percent standard deviations of output in parentheses.

Model Results: Perfect Aggregation!

TABLE A.II
FORECASTING RULES IN FULL LUMPY MODEL

Productivity ^a	β_0	\boldsymbol{eta}_1	S.E.	Adj. R ²
A. Forecasting m' ₁				
$z_1 (119 \text{ obs})$	0.009	0.800	0.15e - 3	1.0000
z ₂ (298 obs)	0.016	0.798	0.22e - 3	0.9999
z_3 (734 obs)	0.023	0.796	0.23e - 3	0.9999
z ₄ (1,208 obs)	0.030	0.795	0.26e - 3	0.9999
z_5 (1,682 obs)	0.037	0.794	0.27e - 3	0.9999
z_6 (1,871 obs)	0.044	0.079	0.28e - 3	0.9999
z_7 (1,706 obs)	0.051	0.793	0.26e - 3	0.9999
z_8 (1,237 obs)	0.058	0.792	0.24e - 3	0.9999
z ₉ (751 obs)	0.065	0.792	0.23e - 3	0.9999
z ₁₀ (295 obs)	0.072	0.791	0.25e - 3	0.9999
z ₁₁ (99 obs)	0.079	0.791	0.19e - 3	0.9999
B. Forecasting p				
$z_1 (119 \text{ obs})$	0.994	-0.397	0.03e - 3	1.0000
z ₂ (298 obs)	0.986	-0.395	0.04e - 3	1.0000
z ₃ (734 obs)	0.977	-0.394	0.04e - 3	1.0000
z ₄ (1,208 obs)	0.968	-0.393	0.05e - 3	1.0000
z ₅ (1,682 obs)	0.958	-0.392	0.05e - 3	1.0000
z ₆ (1,871 obs)	0.949	-0.391	0.05e - 3	1.0000
z ₇ (1,706 obs)	0.940	-0.389	0.05e - 3	1.0000
z ₈ (1,237 obs)	0.931	-0.388	0.05e - 3	1.0000
z ₉ (751 obs)	0.921	-0.386	0.04e - 3	1.0000
z ₁₀ (295 obs)	0.912	-0.384	0.05e - 3	1.0000
z_{11} (99 obs)	0.903	-0.382	0.04e - 3	1.0000

^aForecasting rules are conditional on current aggregate total factor productivity z_i . Each regression takes the form $\log(y) = \beta_0 + \beta_1 \log(m_1)$, where $y = m_1'$ or p.

Conclusion

- $\bullet\,$ The KS solution method works really well because the model fits perfect aggregation!
- Is this result empirically supported?
- · Recent literature shows probably not...
- So, if not using the KS method, how can we solve the model?

Appendix

REFERENCES

Krusell, Per and Anthony A Smith Jr (1998). "Income and wealth heterogeneity in the macroeconomy". In: *Journal of political Economy* 106.5, pp. 867–896.