Example 1 In Fig 11.3, if P is (2,4,5), find the coordinates of F.

Solution For the point F, the distance measured along OY is zero. Therefore, the coordinates of F are (2,0,5).

Example 2 Find the octant in which the points (-3,1,2) and (-3,1,-2) lie.

Solution From the Table 11.1, the point (-3,1,2) lies in second octant and the point (-3,1,-2) lies in octant VI.

EXERCISE 11.1

- 1. A point is on the x-axis. What are its y-coordinate and z-coordinates?
- 2. A point is in the XZ-plane. What can you say about its y-coordinate?
- 3. Name the octants in which the following points lie:

$$(1, 2, 3), (4, -2, 3), (4, -2, -5), (4, 2, -5), (-4, 2, -5), (-4, 2, 5), (-3, -1, 6), (-2, -4, -7).$$

- 4. Fill in the blanks:
 - (i) The *x*-axis and *y*-axis taken together determine a plane known as_____.
 - (ii) The coordinates of points in the XY-plane are of the form_____.
 - (iii) Coordinate planes divide the space into_____octants.

11.4 Distance between Two Points

We have studied about the distance between two points in two-dimensional coordinate system. Let us now extend this study to three-dimensional system.

Let $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ be two points referred to a system of rectangular axes OX, OY and OZ. Through the points P and Q draw planes parallel to the coordinate planes so as to form a rectangular parallelopiped with one diagonal PQ (Fig 11.4).

Now, since $\angle PAQ$ is a right angle, it follows that, in triangle PAQ,

$$PQ^2 = PA^2 + AQ^2$$

Y Fig 11.4

... (1)

Also, triangle ANQ is right angle triangle with ∠ANQ a right angle.