

Introdução à Ciência da Computação - 113913

Lista de Revisão Prova 1

Observações:

- As provas também serão corrigidas por um **corretor automático**, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entradas". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- Serão testadas várias entradas além das que foram dadas como exemplo, assim como as listas.
- Assim como as listas, as provas devem ser feitas na versão Python 3 ou superior.
- Leia com atenção e faça **exatamente** o que está sendo pedido.

Questão A - Impressão de Sequência

Escreva um programa que leia dois valores inteiros \boldsymbol{X} e \boldsymbol{Y} . A seguir, mostre uma sequência de 1 até \boldsymbol{Y} , passando para a próxima linha a cada \boldsymbol{X} números e a soma de todos os números dessa sequência.

Entrada

A entrada contém duas linhas. A primeira linha será o \boldsymbol{X} e a segunda o \boldsymbol{Y} , onde \boldsymbol{X} e \boldsymbol{Y} são maiores que $\boldsymbol{0}$.

Saída

Cada sequência deve ser impressa em uma linha apenas, com 1 espaço em branco entre cada número, conforme exemplo abaixo. **Não deve haver espaço em branco após o último valor de cada linha**. No final, deverá ser impresso em uma nova linha a soma de todos os números mostrados na tela.

Exemplo de Entrada	Exemplo de Saída
	1 2 3
	4 5 6
3	7 8 9
	10 11 12
99	
	97 98 99
	4950
	1 2
	3 4
2	5 6
9	7 8
	9
	45
4	1 2 3
3	6

Tabela 1: Questão A

Questão B - Sequência de Inteiros

Faça um programa que leia uma sequência de triplas de números inteiros \boldsymbol{A} , \boldsymbol{B} e \boldsymbol{C} do teclado. A quantidade de triplas da sequência é desconhecida, mas ela termina quando \boldsymbol{A} for igual a -1. A tripla que contém $\boldsymbol{A} = -1$ não faz parte da sequência.

Entrada

A entrada consiste de várias triplas de números inteiros \boldsymbol{A} , \boldsymbol{B} e \boldsymbol{C} . Sendo que o programa continua lendo conjuntos de 3 inteiros indefinidamente, até que receba um conjunto em que \boldsymbol{A} seja igual a -1, devendo desconsiderar este último conjunto. Considere que pelo menos uma tripla válida será lida.

Saída

Para cada tripla que faz parte da sequência de triplas, o programa deve imprimir a média da tripla. No final, o programa deve imprimir:

- N, onde N é a média de todos os pares encontrados na sequência;
- M, onde M é a maior média da sequência de triplas;
- \mathbf{X} , onde \mathbf{X} é a média das médias das triplas que \mathbf{A} é diferente de -1;

Todas as médias devem ser impressas com 2 casas decimais após a vírgula.

Exemplo de Entrada	Exemplo de Saída
	3.00
3 3 3	1.67
5 0 0	3.67
1 3 7	0.00
-1 2 2	3.67
	2.78
	1.00
1 1 1	6.00
5 6 7	2.00
402	3.00
-1 7 8	6.00
	3.00
	1.00
1 -1 3	-1.00
-3 5 -5	0.00
-1 0 0	1.00
	0.00

Tabela 2: Questão B

Questão C - Função Sigma e Tal

A função sigma denotada por $\sigma(n)$ é a função que soma os divisores distintos de n, incluindo 1 e n. A função tal denotada por $\tau(n)$ é a função que retorna a quantidade de divisores distintos de n, incluindo 1 e n.

Entrada

A entrada consiste de um inteiro n, onde $n \ge 1$.

Saída

A saída será composta de 3 linhas: a primeira linha conterá todos os divisores de n separados por espaço, em uma única linha, conforme exemplo abaixo. Não deve haver espaços em branco após o último valor da linha. A segunda linha será o valor $\sigma(n)$, e a terceira $\tau(n)$.

Nota

No primeiro exemplo, o número 4 tem três divisores: 1, 2 e 4. $\sigma(4) = 1 + 2 + 4 = 7$ e $\tau(4) = 3$.

Exemplo de Entrada	Exemplo de Saída
4	1 2 4
	7
	3
	1 5
5	6
	2
12	1 2 3 4 6 12
	28
	6
100	1 2 4 5 10 20 25 50 100
	217
	9
50	1 2 5 10 25 50
	93
	6

Tabela 3: Questão C

Questão D - The Winter is Coming

Os Starks sempre avisaram: "The Winter is Coming" e o inverno finalmente chegou em Westeros. O Rei do Norte, Jon Snow, decidiu igualar o ouro entre todas as casas do Norte, dando ouro para algumas. Para isso, ele pediu para você, o Mestre da Moeda, considerar o ouro (em kg) que cada uma possui e calcular o custo mínimo do presente do rei, sabendo que: no Norte existem \boldsymbol{n} casas, o ouro que cada uma possui é estimado em um inteiro a_i e que o rei apenas dará ouro, não tirará de ninguém.

Entrada

A primeira linha contém um inteiro n ($1 \le n \le 100$) - o número de casas no Norte. As próximas n linhas contém os inteiros $a_1, a_2, a_3, \ldots, a_n$, onde $a_i \ge 0$ corresponde ao ouro, em kg, que cada casa possui. Considere que o primeiro inteiro a_i sempre será o ouro correspondente da casa que **possui mais ouro**.

Saída

Um único inteiro que corresponde a quantidade mínima de ouro (em kg) que Winterfell irá gastar para que todas as casas tenham a mesma quantidade de ouro.

Nota

No primeiro exemplo se adicionarmos para a segunda casa 4 kg, para a terceira 3 e para a quarta 2, então todas elas terão 4 kg.

No quarto exemplo não é possível dar nada para ninguém, porque todas as casas possuem 12 kg.

Exemplo de Entrada	Exemplo de Saída
4	
4	
0	9
1	
2	
3	
1	1
1	
0	
2	
3	2
1	
1	0
12	U

Tabela 4: Questão D

Questão E - Fibonacci

Leia uma sequência de inteiros positivos do teclado, um por linha. A sequência termina quando for lido um inteiro menor ou igual a 0 (que não fará parte da sequência de números lidos). Para cada número $\mathbf{k} > \mathbf{0}$ lido, calcule o \mathbf{k} -ésimo (F_k) elemento da sequência de Fibonacci, conforme definição dada abaixo:

$$F_n = \begin{cases} 1; \ n = 1 \text{ ou } n = 2\\ F_{n-1} + F_{n-2}; \ n > 2 \end{cases}$$

Entrada

Cada linha de entrada conterá um inteiro k, quando a linha conter $k \leq 0$ o programa deve parar. Considere que pelo menos um k > 0 será lido.

Saída

Considerando o valor de F_k :

- \bullet Caso F_k seja par e k
 seja par, imprima a soma dos dois.
- $\bullet\,$ Caso F_k seja par e k
 seja ímpar, imprima a diferença de F_k com k.
- $\bullet\,$ Caso F_k seja ímpar e k
 par, imprima a multiplicação.
- \bullet Caso F_k seja ímpar e k
 seja ímpar, imprima a divisão inteira de F_k por k.

Ao final, informa a média aritmética dos números lidos da sequência com duas casas decimais e o maior F_k calculado, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
1	1
	2
$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	-1
3	2.00
-1	2
1	1
1	1
1	12
4	2.00
0	3
4	12
4	1
5	4.50
0	5
6	14
7	1
	6.50
-6	13
10	550
	25
$\frac{9}{9}$	168
8	1
7	8.50
-185	55

Tabela 5: Questão E

Questão F - Duplas de Inteiros

Faça um programa que leia uma sequência de duplas de números inteiros do teclado: \boldsymbol{A} e \boldsymbol{N} . A quantidade de duplas da sequência é desconhecida, mas ela termina quando \boldsymbol{A} for igual a -1. A dupla que contém $\boldsymbol{A}=-1$ não faz parte da sequência, devendo ser desconsiderada.

Entrada

A entrada consiste de várias duplas de inteiros \boldsymbol{A} e \boldsymbol{N} , separados por espaço. Considere que pelo menos uma dupla válida será lida.

Saída

Ao final da leitura o programa deve imprimir, nessa ordem, a soma de todos os \mathbf{N} que fazem dupla com \mathbf{A} múltiplos de 8; a média de todos os \mathbf{N} maiores que 3 (com duas casas decimais após a vírgula) e a soma da maior dupla da sequência, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
1 -1	2
8 2 5 3	0.00
-1 4	10
0 4	5
8 5	$\frac{3}{4.50}$
-8 -4 -1 0	13
8 -1	
16 1	$\begin{bmatrix} 0 \\ 0.00 \end{bmatrix}$
0 0	17
-1 25	
0 4	$\begin{vmatrix} 4 \\ 4.00 \end{vmatrix}$
-1 5	4.00
8 2	2
4 3	0.00
-1 12	10

Tabela 6: Questão F