Reinforcement Learning

5. Function approximation

Freek Stulp and Michèle Sebag

Université Paris-Saclay

Jan. 4th, 2016 Credit: Richard Sutton's slides (NIPS 2015) Damien Ernst slides (Busuniu et al., 2010)

Overview

- Position of the problem
- Principle
 - Learning the value
 - A first example: TD-gammon
- Representation of the state space
- Approximating the Q-value
 - Gradient-based approaches
 - Decision tree-based approaches
- Summary

Position of the problem

Notations

- State space S
- Action space A
- Transition model $p(s, a, s') \mapsto [0, 1]$
- Reward r(s)

bounded

Build

$$V^{\pi}(s) = r(s) + \gamma \sum_{s'} p(s, \pi(s), s') V^{\pi}(s')$$

$$V^{*}(s) = \max_{\pi} V^{\pi}(s')$$

$$\pi^{*}(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left\{ \sum_{s'} p(s, a, s') V^{*}(s') \right\}$$

Context

- S: finite (small or large) or infinite
- \mathcal{A} : finite (small or large) or infinite

Why function approximation?

Exploration needed: in each state, try every action. **Impossible**

In continuous state space

Why function approximation?

Exploration needed: in each state, try every action. **Impossible**

• In large finite state space

Why function approximation?

Exploration needed: in each state, try every action. **Impossible**

• In large finite state space

More Playing Atari with Deep Reinforcement Learning, Mnih et al., 2015. https://www.cs.toronto.edu/ vmnih/docs/dqn.pdf

- **Principle**
 - Learning the value
 - A first example: TD-gammon
- - Gradient-based approaches
 - Decision tree-based approaches

A standard learning problem ? 1

Assume

$$S \subset \mathbb{R}^d$$

Goal

Build
$$V: S \mapsto \mathbb{R}$$

Remind: Supervised Machine Learning

$$\mathcal{E} = \{(\boldsymbol{x}_i, y_i), \boldsymbol{x}_i \in \mathcal{X} \text{ (instance space) , } y_i \in \mathcal{Y} \text{ (label space) , } i = 1 \dots n\}$$

- Classification: $\mathcal{Y} = \{-1, 1\}$ or $\{1, \dots k\}$
- Regression $\mathcal{Y} = \mathbb{R}$

Assume we have the training set

$$\mathcal{E} = \{(s_i, V^*(s_i)), i = 1 \dots n\}$$

Then

- Find a hypothesis space H
- Find an optimization criterion \mathcal{L} (data fitting + regularization)
- Solve the optimization problem

$$\hat{V}^* = \underset{V \in \mathcal{H}}{arg \ opt}[\mathcal{L}(V)]$$

A standard learning problem? NO, 1

Standard supervised ML criteria

$$\mathcal{L}(V) = \sum_{i=1}^{n} \left(V^*(s_i) - V(s_i)\right)^2 + \mathcal{R}(V)$$

Minimize the average error.

But

In RL, one error is enough to lose the game... to fall down from the cliff... to kill the robot...

A standard learning problem ? NO, 2

Standard supervised ML criteria

$$\mathcal{L}(V) = \sum_{i} (V^*(s_i) - V(s_i))^2 + \mathcal{R}(V)$$

Minimize the average error with respect to independent identically distributed s_i .

But

A wrong move, or the transition error can send you off the road... and then the error might be cumulative.

- **Principle**
 - Learning the value
 - A first example: TD-gammon
- - Gradient-based approaches
 - Decision tree-based approaches

TD-Gammon, 1

The game of Backgammon

Gerald Tesauro, 89-95

- State: vector of handcrafted features (e.g., number of White or Black $S \subset \mathbb{R}^D$ checkers at each location)
- Data: set of games
- A game: sequence of states x₁,...x_T

TD-Gammon, 2. Where does the value come from?

Assumptions

$$y_0 = .5$$
 value of initial state $y_T = \begin{cases} 1 & \text{if } x_T \text{ is a winning state} \\ 0 & \text{if } x_T \text{ is a losing state} \end{cases}$

And for other states?

Value is supposed to be continuous

Learning the value

Search space \mathcal{H} Neural Nets

W, weight vector in \mathbb{R}^d

Learning criterion

Minimize
$$(V(x_T) - y_T)^2 + \sum_{\ell} (V(x_{\ell}) - V(x_{\ell+1})^2)^2$$

Learning procedure: weight update

$$\Delta w = \alpha \left(V(x_{\ell+1}) - V(x_{\ell}) \right) \sum_{k=1}^{\ell} \lambda^{\ell-k} \nabla_w V(x_k)$$

Learning by Self-play: Iteratively,

200,000 games

- Play using V_i as value function
- Use games to retrain weight vector W_i
- Increment i

Tesauro, 1992-1995

estimated state value (≈ prob of winning)

Action selection by a shallow search

Start with a random Network

Play millions of games against itself

Learn a value function from this simulated experience

Six weeks later it's the best player of backgammon in the world Originally used expert handcrafted features, later repeated with raw board positions

Overview

- Position of the problem
- Principle
 - Learning the value
 - A first example: TD-gammon
- Representation of the state space
- Approximating the Q-value
 - Gradient-based approaches
 - Decision tree-based approaches
- Summary

General priorities

- Finding good data
- Finding good representation
- Finding good algorithm

Beware

- Big Data Motto (Data beat algorithms)...
- ... does not hold in RL

Finding a representation

Using basis functions

$$\phi_1 \dots \phi_K : \mathcal{S} \mapsto \mathbb{R}$$

• Usually ϕ are normalized,

$$\sum_{i=1}^K \phi(s) = 1$$

Fuzzy memberships

Radius-basis functions

And then, back to Dynamic Programming.

RoboCup soccer keepaway

Stone, Sutton & Kuhlmann, 2005

Random

Hand-coded

Hold

Stone, Sutton & Kuhlmann, 2005

How is the state encoded? In 13 continuous state variables

11 distances among the players, ball, and the center of the field

2 angles to takers along passing lanes

The Feature-Construction Pipeline

- - Learning the value
 - A first example: TD-gammon
- Approximating the Q-value
 - Gradient-based approaches
 - Decision tree-based approaches

Parametric action-value function

Find

$$v(s,\theta) \approx V^*(s)$$

 $q(s,a,\theta) \approx Q^*(s,a)$

Search spaces

- Linear approximation: (many) handcrafted features, and then find linear weights
- NN approximation

Deep Reinforcement Learning

What matters

- Linear Learning complexity required to scale up to large problems
- Self-play to acquire examples in critical regions
- Online learning; dealing with non-stationary target value function

Optimization problem

$$\mathcal{L}(\theta) = \sum_{s \in \mathcal{S}} (v(s, \theta) - V^*(s))^2$$

Any difficulties with this formulation?

Optimization problem

$$\mathcal{L}(\theta) = \sum_{s \in S} \mathsf{P}(\mathsf{s}) \left(v(s, \theta) - V^*(s) \right)^2$$

Why using distribution P?

- $v(s, \theta)$ is an approximation: it has to make errors
- Not all errors are equally harmful: harmful errors must weight more.
- P might reflect a uniform distribution; or the distribution associated to the current policy π (on-policy learning); or to another policy used to acquire data (off-policy learning)
- Most generally, a new point $(s_t, V_t(s_t))$ is drawn and θ_t is updated using stochastic gradient.

$$\theta_{t+1} = \theta_t - \frac{1}{2}\alpha \nabla_{\theta_t} (V_t(s_t) - V(s, \theta_t))^2$$

= $\theta_t + \alpha (V_t(s_t) - V(s, \theta_t)) \cdot \nabla_{\theta_t} V(s, \theta_t)$

Requirements

- $v(s, \theta_t)$ must be an unbiased estimate of the desired $V_t(s_t)$.
- not the case in general (except for Monte-Carlo); but practical.
- The approximation of the value function must allow for optimization, to define the policy by greedification:

$$\hat{\pi}(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} (\hat{q}(s, a, \theta^*))$$

Learning Criteria

Notations

For state s, push value toward backed-up value v

$s\mapsto v$

Backed-up value **Dynamic programming**

$$s \mapsto \mathbb{E}[r(s) + \gamma V(s')]$$

Monte-Carlo

$$s \mapsto r(s) + \sum_{t=1}^{T} \gamma^t r_t$$

TD(0)

$$s_t \mapsto r(s_t) + \gamma V(s_{t+1})$$

Semi-gradient SARSA

Loss function

Sutton 89, Rummery 94 Bellman expectation equation

$$\mathcal{L}(\theta) = \mathbf{E}\left[\left(\underbrace{R_{t+1} + \gamma q(S_{t+1}, A_{t+1}, \theta)}_{\textit{target value}} - q(S_t, A_t, \theta)\right)^2\right]$$

- again target depends on θ and we ignore this,
- taking the derivative wrt $q(S_t, A_t, \theta)$:

$$\Delta\theta_t = \left(R_{t+1} + \gamma q(S_{t+1}, A_{t+1}, \theta_t) - q(S_t, A_t, \theta_t)\right) \cdot \frac{\partial q(S_t, A_t, \theta_t)}{\partial \theta_t}$$

Remark

- This is an on-policy algorithm: it approximates q^{π} not Q^* .
- Therefore π should incorporate some exploration (be ϵ -greedy)

Cliff-walking example (on-policy vs off-policy)

Cliff-walking example (on-policy vs off-policy)

both algorithms are ϵ -greedy $\epsilon = 0.1$

- - Learning the value
 - A first example: TD-gammon
- Approximating the Q-value
 - Gradient-based approaches
 - Decision tree-based approaches

Fitted Q iteration

Ernst et al. 2005 iterating over the time horizon

Principle

- Given a set of four-tuples (s, a, r, s')
- · First iteration:

$$\hat{q}_1(s,a) \approx r(s,a)$$

iteration N:

$$\hat{q}_n(s_t, a_t) \approx r(s_t, a_t) + \gamma \max_{a \in \mathcal{A}} \hat{q}_{n-1}(s_{t+1}, a)$$

 Successive calls to the supervised learning algorithm are independent: possible to adapt the resolution/complexity depending on the iteration and the available sample.

Search space: Decision trees

- Non parametric; flexible
- Scalability wrt high-dimensional spaces
- Robustness wrt irrelevant features, noise, outliers.

Position of the problem Principle Representation of the state space Approx Gradient-based approaches Decision tree-based approaches

Trees in Fitted Q iteration

Decision tree

Quinlan 89; Breiman 86

- Select cutting feature and cutting threshold to maximize the average variance reduction of the output variable
- Select hyper-parameter (min number of examples in a leaf) by cross-validation

Bagged trees

Breiman 96

M times

M hyper-parameter

- Bootstrap the training set
- Grow a decision tree from the bootstrapped data

KD-tree

- In each node at depth d: cutting feature is i-th feature if d < # features
- cutting threshold: median of the f_i value in the training set
- (does it change among iterations ?)

Random Forests

Breiman 01; Geurts 04

- Like Bagged trees, except
- Sample a number K of (cutting feature, cutting threshold), return the best one

Trees in Fitted Q iteration, 2

Note I a leaf in a tree

$$q(s,a) = \sum_{trees} \sum_{l} k(s,a,l) v(l)$$

with

$$k(s, a, l) = \frac{1_{(s,a)\in l}}{\sum_{i} 1_{(s_i,a_i)\in l}}$$

Property

$$\|\hat{q}_{n}(s,a)\|_{\infty} \leq B + \gamma \|\hat{q}_{n-1}(s,a)\|_{\infty}$$

with $\hat{q}_0(s, a) = 0$. Therefore

$$\|\hat{q}_n(s,a)\|_{\infty} \leq \frac{B}{1-\gamma}$$

with B a bound on the reward.

The RiverSwim

Ernst et al, 05

The problem

11 states (0, 1, ... 10) 2 actions, right or left rewards on terminal states 0 or 10.

The results

1. Bellman residuals wrt number $\#\mathcal{F}$ of 4-tuples.

Tree-based	# <i>F</i>		
method	720	2010	6251
Pruned CART Tree	2.62	1.96	1.29
Pruned Kd-Tree	1.94	1.31	0.76
Pruned Tree Bagging	1.61	0.79	0.67
Pruned Extra-Trees	1.29	0.60	0.49
Pruned Tot. Rand. Trees	1.55	0.72	0.59

The Acrobot

Ernst et al. 05

The problem

state in \mathbb{R}^4 : $(\theta_1, \theta_2, \dot{\theta_1}, \dot{\theta_2})$ action: torque u = -5 or 5

reward: distance to up-equilibrium position, if < 1 (then terminates)

The Acrobot

The results

 $\#\mathcal{F}\approx$ 150,000 tuples

1. The return

2. Comparative performances

Tree-based	Policy which generates	
method	ε-greedy	Random
Pruned CART Tree	0.0006	0.
Kd-Tree (Best nmin)	0.0004	0.
Tree Bagging	0.0417	0.0047
Extra-Trees	0.0447	0.0107
Totally Rand. Trees	0.0371	0.0071

Overview

- Position of the problem
- Principle
 - Learning the value
 - A first example: TD-gammon
- Representation of the state space
- Approximating the Q-value
 - Gradient-based approaches
 - Decision tree-based approaches
- Summary

Function approximation for RL: Summary

Goal

Learn an approximation $\hat{\mathbf{v}}$ of the value function; define $\hat{\pi}$ from $\hat{\mathbf{v}}$

Ingredients

- Data off-line; online
- Learning criterion data fitting; Bellman residual
- Learning procedure knn; decision trees; gradient (linear or NN)

Function approximation for RL: Summary, 2

Comments

- Required to scale up
- Pitfalls:
 - Sufficient representation needed (if large representation, robust learning required, e.g. decision trees)
 - Self-play / replay mandatory
 - A further stage of optimization is required to define $\hat{\pi}$
 - Pathologies: gradient can blow up (see Fig. 8.13, Sutton Barto)

After all

- Value is a means for building a policy
- Can we build the policy directly? next course