First Midterm Examination, Advanced Calculus I ,Practice sheet Total 110 pts.

- 1. (10%)(i) Let S be an infinite set. State the definition that S is countable.
 - (ii) Let Z be the set of rational numbers. Show that $Z \times Z$ is countable.
- 2. (20%) (i) Let $S \subseteq R$. State the definition of $\sup S$.
- (ii) Let $S \subseteq R$ be bounded above and d be an upper bound of S. Show that $d=\sup S \Leftrightarrow$ for any $\varepsilon > 0$ there exists $x \in S$ such that $d-\varepsilon < x$.
- (iii) Let $\{a_k\}$ be a bounded above and monotone increasing sequence in R.

Show that $\lim_{k\to\infty} a_k = \sup S$, where $S = \{a_k\}$.

- 3. (10%) (i) Let $\{a_n\}$ be a sequence in R. State the definitions of $\limsup a_n$ and $\liminf a_n$.
 - (ii) Find $\limsup a_n$ and $\liminf a_n$ if a_n is given by

(a)
$$n^2 \sin(\frac{1}{2}n\pi)$$
 $(b)\frac{n}{3} - [\frac{n}{3}]$

- 4.(10%) A set S in R" is called convex if for every pair of points x and y in S and every real number θ satisfying $0 < \theta < 1$, we have $\theta x + (1 \theta)y \in S$. Interpret this statement geometrically in R^2 and R^3 . Prove
 - (i) every n-ball is convex
 - (ii) The interior of a convex set is convex.
 - (iii) The closure of a convex set is convex.
- 5.(15%) (i) Let $A \subseteq R^n$. State the definition that A is an closed set in R^n .
 - (ii) Show that $B(a,r) = \{x \in \mathbb{R}^n : ||x-a|| \le r\}$ is a closed set.
 - (iii) Show that intersection of arbitary collection of closed sets is closed.
- 6.(15%) Determine all accumulation points of the following sets and decide whether the sets are open or closed (or neither).
 - (a) Q, the set of rational numbers

(b)
$$S=\{(-1)^n + \frac{1}{m}: m, n=1,2,3,....\}$$

- (c) $S = \{(x,y): x^2 y \ge 0\}$
- 7.(10%) Let $A \subseteq R^n$. Show that if for any sequence $\{x_k\} \subseteq A, x_k \to x$ we have $x \in A$, then A is a closed set.
- 8.(10%) Let $A, B \subseteq R^n$. Show that $(i) \ Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$ $(ii) A \cap Cl(B) \subseteq Cl(A \cap B)$ if A is open
- 9.(10%) Let $A \subseteq R^n$. Show that A', the set of accumulation points of A is a closed set.