

Cours

ELECTRONIQUE

Circuits électroniques à base de l'amplificateur opérationnel

email: nasser_baghdad @ yahoo.fr

ELECTRONIQUE

Contenu du programme

Chapitre I : Généralités sur l'amplificateur opérationnel

Chapitre II : Montages à régime linéaire indépendants de la fréquence

Chapitre III: Montages à régime linéaire dépendants de la fréquence

Chapitre IV : Montages à régime non linéaire

Chapitre V : Oscillateurs sinusoïdaux

Chapitre VI: Multivibrateurs

Chapitre VII: Convertisseurs A/N et NA

ELECTRONIQUE

Chapitre III

Montages à régime linéaire dépendants de la fréquence

Fonction filtrage

- I. Généralités sur les filtres
- II. Filtre passe bas de 1er ordre
- III. Filtre passe haut de 1er ordre
- IV. Filtre actif passe tout (ou déphaseur)
- V. Filtre passe bande
- VI. Filtre coupe bande

I. Généralités sur les filtres

1. Exemple d'une chaine de réception FM

2. Différents filtres

- ► Il existe plusieurs types de filtres, dont les plus connus sont :
 - **Filtre passe bas**
 - Filtre passe haut
 - **■** Filtre passe bande
 - Filtre coupe bande ou réjecteur de bande
 - Filtre passe tout ou déphaseur

Passe-bas

Passe-haut

Passe bande

Coupe bande ou

Réjecteur de bande

Passe tout Déphaseur

Remarque:

- Les filtres les plus rencontrés en pratique sont :
 - **Filtre passe bas**
 - **■** Filtre passe bande

a°) Filtre passe bas (F.P.B.)

- ► Ce filtre ne laisse passer que les basses fréquences du signal d'entrée.
- ► Les hautes fréquences sont donc atténuées.
- ► La limite entre BF et HF est appelée fréquence de coupure f_C.

b°) Filtre passe haut (F.P.H.)

- Ce filtre ne laisse passer que les <u>hautes</u> fréquences du signal d'entrée.
- ► Les basses fréquences sont donc atténuées.
- ► La limite entre BF et HF est appelée fréquence de coupure f_C.

c°) Filtre passe bande

- Ce filtre ne laisse passer qu'une bande de fréquences.
- ► Il possède deux fréquences de coupure appelées fréquences quadrantales :
 - la fréquence de coupure basse f_{CB}
 - la fréquence de coupure haute f_{CH}

d°) Filtre réjecteur bande (ou coupe de bande)

► Aussi appelé filtre trappe ou cloche, il est le complémentaire du passe-bande. Il atténue une plage de fréquences.

- Ce filtre atténue les signaux de fréquences f appartenant à [f_{CB}, f_{CH}]
- ► II transmet les signaux de fréquences f < f_{CB} et f > f_{CH}

e°) Filtre passe tout : déphaseur

- ▶ un filtre <u>passe tout</u> laisse passer toutes les fréquences sans atténuation.
- ightharpoonup son seul effet est d'introduire un déphasage φ = f(ω) entre $V_e(t)$ et $V_s(t)$.
- ➤ On l'appelle déphaseur.

f) Récapitulation : bande passante

► Le filtre est passant Ssi :

Passe-bas

$$BP = [0, f_C]$$

Passe-haut

$$\mathsf{BP} = [\mathsf{f}_\mathsf{C} \;,\, \infty[$$

Passe bande

$$BP = [f_{CB}, f_{CH}]$$

Réjecteur de bande

$$\mathsf{BP} = [\mathsf{0} \;,\, \mathsf{f}_\mathsf{CB}\,] \;\mathsf{et} \;[\mathsf{f}_\mathsf{CH},\, \infty[$$

Passe tout déphaseur BP = infinie

g) Schéma d'un filtre

► Celui d'un quadripôle.

$$v_e(t) = E \cos(\omega t + \varphi_e)$$

$$v_s(t) = S\cos\left(\omega t + \varphi_s\right)$$

h) Cas particulier : Régime alternatif sinusoïdal

► On utilise la représentation symbolique complexe.

$$NC: \quad \underline{v}_e = Ee^{j\varphi_e}$$
 $NC: \quad \underline{v}_s = Se^{j\varphi_s}$

3. Fonction de transfert complexe (ou transmittance complexe)

- a) Fonction de transfert
- La fonction de transfert <u>complex</u>e est une caractéristique particulière d'un quadripôle inséré entre une source alternative sinusoïdale et une charge.
- ► Elle exprime dans le cas d'un filtre l'amplification en tension complexe.
- ► La fonction de transfert d'un filtre linéaire en régime alternatif sinusoïdal est notée :

$$\underline{\underline{H}(j\omega)} = \underline{\underline{V_s}}_{\underline{V_e}} = |\underline{\underline{H}}(j\omega)| e^{j\varphi(\omega)} = \underline{G}(\omega) e^{j\varphi(\omega)}$$

$$|\underline{H} = |\underline{H}| e^{j\varphi} = G e^{j\varphi}$$

- G: module ou gain en tension.
- φ : argument ou déphasage
 - G > 1 dans le cas des filtres actifs et G < 1 pour les filtres passifs

Chapitre II: Les filtres

b) Le gain en décibel

► La fonction de transfert :

$$\underline{H} = \frac{\underline{v}_s}{\underline{v}_e} = G e^{j\varphi}$$

► Le gain en dB :

$$G_{dB} = 20 \log_{10} |\underline{H}| = 20 \log_{10} (G)$$

$$G > 1 \Leftrightarrow G_{dB} > 0$$
: amplification (actif)
 $G < 1 \Leftrightarrow G_{dB} < 0$: atténuation (passif)
 $G = 1 \Leftrightarrow G_{dB} = 0$

4. Fréquence de coupure

a°) Détermination mathématique

La fréquence particulière pour laquelle le gain de la fonction de transfert est égal à $1/\sqrt{2}$ est la fréquence de coupure.

$$G(f_c) = \frac{1}{\sqrt{2}}$$
 ou $G(\omega_c) = \frac{1}{\sqrt{2}}$

- ► Une fréquence de coupure définit la limite entre deux bandes de fréquences
- La fréquence de coupure est une caractéristique d'un filtre car elle se calcul en fonction des éléments de celui-ci.

 $H_0 = 1$

6. Filtre linéaire et non linéaire

- a) Filtre linéaire
- ► Un filtre est dit <u>linéaire</u> si sa réponse est une fonction linéaire de l'entrée.

$$Si V_e(t) = E\cos(\omega t)$$
 on aura $V_s(t) = S(\omega)\cos(\omega t + \varphi(\omega))$

- Dans ce cas :
 - Le filtre agit sur l'amplitude et sur la phase
 - V_s(t) a la même fréquence que V_e(t)

$$\underbrace{f = \frac{1}{T} = \frac{\omega}{2\pi}}_{\text{même fréquence}} \qquad S(\omega) = 2E \qquad \text{et} \qquad \varphi(\omega) = \pi$$

Conservation de la forme du signal source

b°) Détermination graphique

Prenons l'exemple d'un filtre passe-bande :

■ Ce sont les fréquences qui correspondent au gain maximum divisée par $\sqrt{2}$.

$$G(f_c) = \frac{G_0}{\sqrt{2}}$$

Tracé de Bode ou diagramme de Bode

■ Les fréquences de coupure « à – 3 dB» sont définies graphiquement de la manière suivante :

$$G(f_c)_{(dB)} = G_{0(dB)} - 3dB$$

■ Le diagramme de Bode donne le gain en fonction de la fréquence (ou de la pulsation).

■ L'échelle des fréquences est logarithmique

b) Filtre non linéaire

- Un filtre est dit non linéaire dans le cas contraire.
- Dans ce cas:

$$si V_e(t) = E\cos(\omega t)$$

$$si$$
 $V_e(t) = E\cos(\omega t)$ on aura $V_s(t) = a_0 + a_1 \cdot V_e(t) + a_2 \cdot V_e^2(t) + ...$

■ V_s(t) ne sera pas sinusoïdale mais la somme de fonctions sinusoïdales; 0, f, 2f,...

■ Le signal V_s(t) est un signal <u>créneau périodique</u>, que l'on peut décomposer en

Filtre Passe Bas de 1er ordre

II. Filtre passe bas de 1er ordre

1. FPB passif

a°) Fonction de transfert universelle d'un FPB du 1er ordre (ou forme canonique)

$$\underline{F.P.B}: \qquad \underline{H} = \frac{H_0}{1+j\frac{\omega}{\omega_C}} = \frac{H_0}{1+jx} \qquad avec \qquad \begin{cases} H_0 : gain \ statique \ (\omega = 0) \\ \omega_c : pulsation \ de \ coupure \end{cases}$$

b°) Circuit R C: FPB du 1er ordre

Hypothèse:

La source est alternative sinusoïdale La charge est infinie

Représentation symbolique complexe

c°) Fonction de transfert du circuit

$$\underline{\underline{v}_{s}} = \underline{\underline{v}_{e}} \frac{\underline{z_{2}}}{\underline{z_{1}} + \underline{z_{2}}} = \underline{\underline{v}_{e}} \frac{\frac{1}{jC\omega}}{R + \frac{1}{jC\omega}} \implies \underline{\underline{H}} = \frac{\underline{\underline{v}_{s}}}{\underline{\underline{v}_{e}}} = \frac{1}{1 + jRC\omega} = G e^{j\varphi}$$

d°) Caractéristiques du filtre

Par identification à la fonction de transfert universelle on en déduit que :

$$\underline{H} = \frac{\underline{v}_s}{\underline{v}_e} = \frac{1}{1 + jRC\omega} = \frac{1}{1 + j\frac{\omega}{1/RC}} = \frac{H_0}{1 + j\frac{\omega}{\omega_C}}$$

$$H_0 = 1$$
 $\omega_C = \frac{1}{RC}$ $f_C = \frac{1}{2\pi RC}$

e°) Détermination mathématique de f_C

$$\underline{H} = \frac{1}{1 + jRC\omega} \implies G(\omega) = \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

$$G(\omega_C) = \frac{1}{\sqrt{2}} \iff \frac{1}{\sqrt{1 + (RC\omega_C)^2}} = \frac{1}{\sqrt{2}}$$

$$\sqrt{1 + (RC\omega_C)^2} = \sqrt{2} \iff 1 + (RC\omega_C)^2 = 2$$

$$(RC\omega_C)^2 = 1 \iff (\omega_C)^2 = \frac{1}{(RC)^2}$$

$$\omega_C = \frac{1}{RC} \implies f_C = \frac{1}{2\pi RC}$$

f°) Diagramme asymptotique (ou étude asymptotique)

Etude asymptotique	$\omega \ll \omega_{c}$	$\omega >> \omega_{c}$
$\underline{H} = \frac{1}{1 + jRC\omega} = \frac{1}{1 + j\frac{\omega}{\omega_C}}$	<u>H</u> ≈ 1	$\underline{H} \approx \frac{1}{jRC\omega} = -j\frac{\omega_C}{\omega} = \frac{1}{j\frac{\omega}{\omega_C}}$
$G = \frac{1}{\sqrt{1 + (RC\omega)^2}} = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$	<i>G</i> ≈ 1	$G \approx \frac{1}{RC\omega} = \frac{\omega_C}{\omega}$
$\varphi = -arctg(RC\omega) = -arctg\left(\frac{\omega}{\omega_C}\right)$	$\varphi = 0$	$\varphi = -\frac{\pi}{2}$
$G_{dB} = 20 \log \left(\frac{1}{\sqrt{1 + (RC\omega)^2}} \right) = 20 \log \left(\frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_C} \right)^2}} \right)$	$G_{dB} = 0dB$	$\begin{cases} G_{dB} = 20 \log \left(\frac{1}{RC\omega} \right) = 20 \log \left(\frac{\omega_C}{\omega} \right) \\ pente \ de \ (-1) \end{cases}$

g°) Diagramme de Bode (ou Tracé de Bode)

Pour connaître l'allure de la courbe réelle, on utilise trois points particuliers : le départ (0), l'arrivée (∞) et la valeur intermédiaire (ω_c).

Tracé de Bode	0	ω_{c}	$+\infty$
$\underline{H} = \frac{\underline{v}_s}{\underline{v}_e} = \frac{1}{1 + jRC\omega} = \frac{1}{1 + j\frac{\omega}{\omega_C}}$	\otimes	8	⊗
$G = \frac{1}{\sqrt{1 + (RC\omega)^2}} = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$. 1	$\frac{1}{\sqrt{2}}$	О
$\varphi = -arctg(RC\omega) = -arctg\left(\frac{\omega}{\omega_C}\right)$	О	$-\frac{\pi}{4}$	$-\frac{\pi}{2}$
$G_{dB} = 20 \log \left(\frac{1}{\sqrt{1 + (RC\omega)^2}} \right) = 20 \log \left(\frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}} \right)$	0 <i>dB</i>	-3dB	$-\infty dB$

i°) Variante

En remplaçant la résistance R par une inductance L, le condensateur C par une résistance R et en posant $\omega_C = R/L$, on obtient la même fonction de transfert.

Ecriture universelle de la fonction de transfert d'un FPB du 1^{er} ordre

$$\underline{F.P.B}: \qquad \underline{H} = \frac{R}{R + jL\omega} = \frac{1}{1 + j\frac{\omega}{\langle R/L \rangle}} = \frac{H_0}{1 + j\frac{\omega}{\omega_C}}$$

 H_0 : Fonction de transfert statique = cte

j°) Démarche astucieuse pour identifier le type de filtre

On considère deux cas particuliers extrêmes : $\omega \to 0$ (TBF) et $\omega \to \infty$ (THF)

 \rightarrow Gain d'un amplificateur inverseur :

$$H_0 = A = -\frac{R_2}{R_1}$$

→ Fréquence de coupure :

$$f_C = \frac{1}{2 \pi R_2 C}$$

- ightarrow Gain d'un amplificateur non inverseur : $H_0=A=1+rac{R_2}{R_2}$
- → Fréquence de coupure :

UIC : Cycle Ingénieur - TC - S5

c) Diagramme asymptotique (ou étude asymptotique)

$$\underline{H} = \frac{H_0}{1 + j \frac{\omega}{\omega_C}}$$

Filtre actif:
$$|H_0| > 1$$

$\omega << \omega_{c}$	$\omega >> \omega_{C}$
$\underline{H} \approx H_0$	$\underline{H} \approx \frac{H_0}{j\frac{\omega}{\omega_C}} = -j \cdot H_0 \cdot \frac{\omega_C}{\omega}$
$Gpprox \left H_{0} ight $	$G pprox \left H_0 \right \cdot \frac{\omega_C}{\omega}$
$\begin{array}{ccc} H_0 > 0 & \Rightarrow & \varphi = 0 \\ H_0 < 0 & \Rightarrow & \varphi = \pm \pi \end{array}$	$H_0 > 0 \Rightarrow \varphi = -\frac{\pi}{2}$ $H_0 < 0 \Rightarrow \varphi = +\frac{\pi}{2}$
$G_0(dB) = 20\log_{10} H_0 $	$\begin{cases} G_{dB} = G_0(dB) + 20\log\left(\frac{\omega_C}{\omega}\right) \\ pente \ de \ (-1) \end{cases}$
	$H \approx H_0$ $G \approx H_0 $ $H_0 > 0 \Rightarrow \varphi = 0$ $H_0 < 0 \Rightarrow \varphi = \pm \pi$

UIC : Cycle Ingénieur - TC - S5

Électronique

Pr . A. BAGHDAD

d) Diagramme de Bode (ou Tracé de Bode)

Filtre actif: $|H_0| > 1$

Tracé de Bode	0	ω_{c}	+∞
$\underline{H} = \frac{\underline{v}_s}{\underline{v}_e} = \frac{H_0}{1 + j\frac{\omega}{\omega}}$	⊗	⊗	\otimes
$G = \frac{ H_0 }{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$	$ H_0 $	$\frac{ H_0 }{\sqrt{2}}$	0
$H_{0} > 0 \implies \varphi = -arctg\left(\frac{\omega}{\omega_{c}}\right)$ $H_{0} < 0 \implies \varphi = \pm \pi - arctg\left(\frac{\omega}{\omega_{c}}\right)$	$\begin{array}{ccc} H_0 > 0 & \Rightarrow & \varphi = 0 \\ H_0 < 0 & \Rightarrow & \varphi = \pm \pi \end{array}$	$H_0 > 0 \Rightarrow \varphi = -\frac{\pi}{4}$ $H_0 < 0 \Rightarrow \varphi = \begin{vmatrix} \frac{3\pi}{4} \\ \frac{4}{5\pi} \end{vmatrix}$	$H_0 > 0 \Rightarrow \varphi = -\frac{\pi}{2}$ $H_0 < 0 \Rightarrow \varphi = \begin{vmatrix} +\frac{\pi}{2} \\ -\frac{3\pi}{2} \end{vmatrix}$
$G_{dB} = 20 \log \frac{ H_0 }{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$	$G_0(dB) = 20\log_{10} H_0 $	$-\frac{3\pi}{4}$ $G_0(dB) - 3dB$	$-\infty dB$

e) Filtre passe bas actif de 1er ordre : courbe de phase

Filtre Passe Haut de 1^{er} ordre

III. Filtre actif passe haut de 1er ordre

1. FPH passif

a°) Fonction de transfert universelle d'un FPH du 1er ordre (ou forme canonique)

$$\underline{F.P.B}: \qquad \underline{H} = H_0 \frac{j \frac{\omega}{\omega_C}}{1 + j \frac{\omega}{\omega_C}} = H_0 \frac{jx}{1 + jx} \qquad avec \qquad \begin{cases} H_0 : gain \ statique \ (\omega = 0) \\ \omega_c : pulsation \ de \ coupure \end{cases}$$

b°) Circuit C R : FPH du 1er ordre

Hypothèse:

La source est alternative sinusoïdale La charge est infinie

Représentation symbolique complexe

c°) Fonction de transfert du circuit

$$\underline{\underline{v}}_{s} = \underline{\underline{v}}_{e} \frac{\underline{z}_{2}}{\underline{z}_{1} + \underline{z}_{2}} = \underline{\underline{v}}_{e} \frac{R}{R + \frac{1}{jC\omega}} \implies \underline{\underline{H}} = \frac{\underline{\underline{v}}_{s}}{\underline{\underline{v}}_{e}} = \frac{jRC\omega}{1 + jRC\omega} = G e^{j\varphi}$$

d°) Caractéristiques du filtre

Par identification à la fonction de transfert universelle on en déduit que :

$$\underline{H} = \frac{\underline{v}_{s}}{\underline{v}_{e}} = \frac{jRC\omega}{1 + jRC\omega} = \frac{j\frac{\omega}{1/RC}}{1 + j\frac{\omega}{1/RC}} = H_{0}\frac{j\frac{\omega}{\omega_{C}}}{1 + j\frac{\omega}{\omega_{C}}}$$

$$H_0 = 1$$
 $\omega_C = \frac{1}{RC}$ $f_C = \frac{1}{2\pi RC}$

e°) Détermination mathématique de f_C

$$\underline{H} = \frac{jRC\omega}{1 + jRC\omega} \implies G(\omega) = \frac{RC\omega}{\sqrt{1 + (RC\omega)^2}}$$

$$G(\omega_{C}) = \frac{1}{\sqrt{2}} \iff \frac{RC\omega_{C}}{\sqrt{1 + (RC\omega_{C})^{2}}} = \frac{1}{\sqrt{2}}$$

$$\frac{\sqrt{1 + (RC\omega_{C})^{2}}}{RC\omega_{C}} = \sqrt{2} \iff 1 + (RC\omega_{C})^{2} = 2(RC\omega_{C})^{2}$$

$$(RC\omega_{C})^{2} = 1 \iff (\omega_{C})^{2} = \frac{1}{(RC)^{2}}$$

$$\omega_{C} = \frac{1}{RC} \implies f_{C} = \frac{1}{2\pi RC}$$

UIC : Cycle Ingénieur - TC - S5

Électronique

Pr . A. BAGHDAD

f°) Diagramme asymptotique (ou étude asymptotique)

Etude asymptotique	$\omega << \omega_{C}$	
$\underline{H} = \frac{jRC\omega}{1 + jRC\omega} = \frac{j\frac{\omega}{\omega_C}}{1 + j\frac{\omega}{\omega_C}}$ $\underline{H} \approx j\frac{\omega}{\omega_C}$		<u>H</u> ≈1
$G = \frac{RC\omega}{\sqrt{1 + (RC\omega)^2}} = \frac{\frac{\omega}{\omega_C}}{\sqrt{1 + (\frac{\omega}{\omega_C})^2}}$	$G \approx RC\omega = \frac{\omega}{\omega_C}$	<i>G</i> ≈ 1
$\varphi = \frac{\pi}{2} - arctg(RC\omega) = \frac{\pi}{2} - arctg\left(\frac{\omega}{\omega_C}\right)$	$\varphi = \frac{\pi}{2}$	$\varphi = 0$
$G_{dB} = 20 \log \left(\frac{RC\omega}{\sqrt{1 + (RC\omega)^2}} \right) = 20 \log \left(\frac{\frac{\omega}{\omega_C}}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}} \right)$	$\begin{cases} G_{dB} = 20\log(RC\omega) = 20\log\left(\frac{\omega}{\omega_C}\right) \\ pente \ de \ (+1) \end{cases}$	$G_{dB} = 0dB$

g°) Diagramme de Bode (ou Tracé de Bode)

Pour connaître l'allure de la courbe réelle, on utilise trois points particuliers : le départ (0), l'arrivée (∞) et la valeur intermédiaire (ω_c).

Tracé de Bode	0	ω_{c}	$+\infty$
$\underline{H} = \frac{\underline{v}_s}{\underline{v}_e} = \frac{jRC\omega}{1 + jRC\omega} = \frac{j\frac{\omega}{\omega_C}}{1 + j\frac{\omega}{\omega_C}}$	⊗	⊗	⊗
$G = \frac{RC\omega}{\sqrt{1 + (RC\omega)^2}} = \frac{\frac{\omega}{\omega_C}}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$	О	$\frac{1}{\sqrt{2}}$	1
$\varphi = \frac{\pi}{2} - arctg(RC\omega) = \frac{\pi}{2} - arctg\left(\frac{\omega}{\omega_C}\right)$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	О
$G_{dB} = 20 \log \left(\frac{RC\omega}{\sqrt{1 + (RC\omega)^2}} \right) = 20 \log \left(\frac{\frac{\omega}{\omega_C}}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}} \right)$	$-\infty dB$	-3dB	0 <i>dB</i>

i°) Variante

En remplaçant la résistance R par une inductance L, le condensateur C par une résistance R et en posant $\omega_c = R/L$, on obtient la même fonction de transfert.

Ecriture universelle de la fonction de transfert d'un FPH du 1er ordre

$$\underline{F.P.H}: \qquad \underline{H} = \frac{H_0}{1 + \frac{\omega_C}{j \omega}} = \frac{jL\omega}{R + jL\omega} = \frac{j\frac{L}{R}\omega}{1 + j\frac{L}{R}\omega} = H_0 \frac{j\frac{\omega}{\omega_C}}{1 + j\frac{\omega}{\omega_C}}$$

 H_0 : Fonction de transfert statique = cte

j°) Démarche astucieuse pour identifier le type de filtre

On considère deux cas particuliers extrêmes : $\omega \rightarrow 0$ (TBF) et $\omega \rightarrow \infty$ (THF)

Rappel:
$$\begin{cases} \omega \to 0 & \Rightarrow \quad \left(L\omega \to 0 \, (CC) \quad et \quad \frac{1}{C\omega} \to \infty \, (CO) \right) \\ \omega \to \infty & \Rightarrow \quad \left(L\omega \to \infty \, (CO) \quad et \quad \frac{1}{C\omega} \to 0 \, (CC) \right) \end{cases}$$

ightarrow Gain d'un amplificateur inverseur :

$$H_0 = -\frac{R_2}{R_1}$$

$$\underline{H} = -\frac{R_2}{R_1} \cdot \frac{j R_1 C \omega}{1 + j R_1 C \omega}$$

 \rightarrow Fréquence de coupure si :

$$f_C = \frac{1}{2 \pi R_1 C}$$

→ Gain d'un amplificateur non inverseur :

$$A = H_0 = 1 + \frac{R_2}{R_1}$$

→ Fréquence de coupure :

$$f_C = \frac{1}{2 \pi R C}$$

c) Diagramme asymptotique (ou étude asymptotique)

Filtre actif : $|H_0| > 1$

$$\underline{H} = H_0 \cdot \frac{j \frac{\omega}{\omega_C}}{1 + j \frac{\omega}{\omega_C}}$$

Etude asymptotique	$\omega << \omega_C$	$\omega >> \omega_C$
$\underline{\underline{H}} = H_0 \cdot \frac{j \frac{\omega}{\omega_C}}{1 + j \frac{\omega}{\omega_C}}$	$\underline{H} \approx H_0 \cdot j \frac{\omega}{\omega_C}$	$\underline{H} \approx H_0$
$G = H_0 \cdot \frac{\frac{\omega}{\omega_C}}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$	$Gpprox \left H_0 ight \cdotrac{\omega}{\omega_C}$	$G pprox \left H_0 \right $
$H_{0} > 0 \implies \varphi = \frac{\pi}{2} - arctg\left(\frac{\omega}{\omega_{c}}\right)$ $H_{0} < 0 \implies \varphi = \pm \pi + \frac{\pi}{2} - arctg\left(\frac{\omega}{\omega_{c}}\right)$	$H_0 > 0 \implies \varphi = +\frac{\pi}{2}$ $H_0 < 0 \implies \varphi = -\frac{\pi}{2}$	$ \begin{array}{ccc} H_0 > 0 & \Rightarrow & \varphi = 0 \\ H_0 < 0 & \Rightarrow & \varphi = \pm \pi \end{array} $
$G_{dB} = 20\log H_0 \cdot \frac{\frac{\omega}{\omega_C}}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$	$\begin{cases} G_{dB} = 20 \log H_0 + 20 \log \left(\frac{\omega}{\omega_C}\right) \\ pente \ de \ (+1) \end{cases}$	$G_0(dB) = 20\log H_0 $

UIC : Cycle Ingénieur - TC - S5

Électronique

Pr . A. BAGHDAD

LAUREAT INTERNATIONAL UNIVERSITIES - UNIVERSITE INTERNATIONALE DE CASABLANCA

Chapitre III : Montages à régime linéaire dépendants de la fréquence

d) Diagramme de Bode (ou Tracé de Bode)

Filtre actif : $|H_0| > 1$

Tracé de Bode	0	$\omega_{\scriptscriptstyle C}$	+∞
$\underline{H} = \frac{\underline{v}_s}{\underline{v}_e} = H_0 \cdot \frac{j \frac{\omega}{\omega_C}}{1 + j \frac{\omega}{\omega_C}}$	\otimes	⊗	8
$G = H_0 \cdot \frac{\frac{\omega}{\omega_C}}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$	0	$\frac{ H_0 }{\sqrt{2}}$	$ H_0 $
$H_{0} > 0 \implies \varphi = \frac{\pi}{2} - arctg\left(\frac{\omega}{\omega_{C}}\right)$ $H_{0} < 0 \implies \varphi = \pm \pi + \frac{\pi}{2} - arctg\left(\frac{\omega}{\omega_{C}}\right)$	$H_0 > 0 \Rightarrow \varphi = +\frac{\pi}{2}$ $H_0 < 0 \Rightarrow \varphi = \begin{vmatrix} +\frac{3\pi}{2} \\ -\frac{\pi}{2} \end{vmatrix}$	$H_0 > 0 \Rightarrow \varphi = +\frac{\pi}{4}$ $H_0 < 0 \Rightarrow \varphi = \begin{vmatrix} +\frac{5\pi}{4} \\ -\frac{3\pi}{4} \end{vmatrix}$	$\begin{array}{ccc} H_0 > 0 & \Rightarrow & \varphi = 0 \\ H_0 < 0 & \Rightarrow & \varphi = \pm \pi \end{array}$
$G_{dB} = 20 \log_{10} \left(H_0 \cdot \frac{\frac{\omega}{\omega_C}}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}} \right)$	$-\infty dB$	$G_0(dB)-3dB$	$G_0(dB)$

UIC : Cycle Ingénieur – TC – S5

Électronique

Pr . A. BAGHDAD

f) Filtre passe haut actif de 1er ordre : courbe de phase

Filtre Passe Tout: « FPT »

Filtre Déphaseur

IV. Filtre actif passe tout (déphaseur)

1. FPT passif

La fonction de transfert d'un filtre passe tout : version n°1

$$\underline{F.P.T}: \qquad \underline{H} = H_0 \frac{1 - j\frac{\omega}{\omega_C}}{1 + j\frac{\omega}{\omega_C}} = G e^{j\varphi}$$

$$\begin{aligned} H_0 &= +1 & ou & H_0 &= -1 & \Rightarrow & G &= \left| H_0 \right| = 1 \\ \varphi &= -2arctg \left(\frac{\omega}{\omega_C} \right) = \varphi(\omega) & si & H_0 &= +1 \\ \varphi &= \pi - 2arctg \left(\frac{\omega}{\omega_C} \right) = \varphi(\omega) & si & H_0 &= -1 \end{aligned}$$

La fonction de transfert d'un filtre passe tout : version n°2

$$\underline{F.P.T}: \qquad \underline{H} = H_0 \frac{1 + j\frac{\omega}{\omega_C}}{1 - j\frac{\omega}{\omega_C}} = G e^{j\varphi}$$

$$\begin{aligned} H_0 &= +1 & ou & H_0 &= -1 & \Rightarrow & G &= \left| H_0 \right| = 1 \\ \varphi &= +2arctg \left(\frac{\omega}{\omega_C} \right) = \varphi(\omega) & si & H_0 &= +1 \\ \varphi &= \pi + 2arctg \left(\frac{\omega}{\omega_C} \right) = \varphi(\omega) & si & H_0 &= -1 \end{aligned}$$

LAUREAT

Chapitre III : Montages à régime linéaire dépendants de la fréquence

Matérialisation d'un filtre passe tout passif de 1er ordre

$$\underline{F.P.T}:$$

$$\underline{H} = -\frac{1 - j\frac{\omega}{\omega_C}}{1 + j\frac{\omega}{\omega_C}} = G e^{j\varphi}$$

$$\underline{H} = \frac{\underline{v}_{s}}{\underline{v}_{e}} = \frac{R - \frac{1}{jC\omega}}{R + \frac{1}{jC\omega}} = -\frac{1 - jRC\omega}{1 + jRC\omega} = -\frac{1 - j\frac{\omega}{\omega_{C}}}{1 + j\frac{\omega}{\omega_{C}}}$$

Cas n°1:

$$Z_1 = Z_2 = Z_3 = R \qquad \qquad Z_4 = \frac{1}{jC \,\omega}$$

$$ightarrow$$
 Module: $|\underline{H}| = G = 1 \qquad \forall \omega$

→ Déphasage :

$$\varphi = -2 \operatorname{arctg}(R C \omega)$$

$$\underline{H} = e^{j\varphi}$$

Cas n°3:

$$Z_1 = Z_2 = Z_4 = R \qquad Z_3 = \frac{1}{jC \,\omega}$$

$$\rightarrow$$
 Module: $|\underline{H}| = G = 1 \quad \forall \omega$

$$\rightarrow$$
 Déphasage : $\varphi = \pi - 2 \operatorname{arctg}(R C \omega)$

$$\underline{H} = e^{j\varphi}$$

Filtre Passe Bande

V. Filtre passe Bande de 2^{ème} ordre

1. Filtre Passe Bande passif

a°) Fonction de transfert universelle d'un Filtre Passe Bande du 2ème ordre

$$\underline{\underline{H}} = H_0 \frac{2 j m \left(\frac{\omega}{\omega_0}\right)}{1 + 2 j m \frac{\omega}{\omega_0} + \left(j \frac{\omega}{\omega_0}\right)^2} = H_0 \frac{j \frac{1}{Q} \left(\frac{\omega}{\omega_0}\right)}{1 + j \frac{1}{Q} \frac{\omega}{\omega_0} + \left(j \frac{\omega}{\omega_0}\right)^2} \quad avec \quad \begin{cases} \omega_0 : pulsation centrale de la bande \\ m = \frac{1}{2Q} : coefficien t d' amortissement \\ Q = \frac{1}{2m} : coefficien t de qualité \end{cases}$$

$$\underline{\underline{H}} = \frac{H_0}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \quad avec \quad \begin{cases} \omega_0 : pulsation \ centrale \\ Q : coeifficient \ de \ surtension \ ou \ (de \ qualit\'e) \end{cases}$$

b°) Circuit RC série – RC // : Filtre Passe Bande

Représentation symbolique complexe

c°) Fonction de transfert du circuit

$$\underline{\underline{v}_{s}} = \underline{\underline{v}_{e}} \frac{1}{1 + \underline{\underline{v}_{2} \cdot \underline{z}_{1}}} = \underline{\underline{v}_{e}} \frac{1}{1 + \left(\frac{1}{R} + jC\omega\right) \left(R + \frac{1}{jC\omega}\right)} \qquad \underline{\underline{H}} = \frac{\underline{\underline{v}_{s}}}{\underline{\underline{v}_{e}}} = \frac{\frac{1}{\sqrt{3}}}{1 + j\left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)} = G e^{j\varphi}$$

d°) Caractéristiques du filtre

Par identification à la fonction de transfert universelle on en déduit que :

$$\underline{\underline{H}} = \frac{\underline{v}_s}{\underline{v}_e} = \frac{\frac{1}{3}}{1 + j\left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)} = \frac{H_0}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} = H_0 \frac{2jm\frac{\omega}{\omega_0}}{1 + 2jm\frac{\omega}{\omega_0} + \left(j\frac{\omega}{\omega_0}\right)^2} = H_0 \frac{j\frac{1}{Q}\frac{\omega}{\omega_0}}{1 + j\frac{1}{Q}\frac{\omega}{\omega_0} + \left(j\frac{\omega}{\omega_0}\right)^2}$$

$$H_0 = \frac{1}{3}$$
 $Q = \frac{1}{3} < 0.5$ $m = \frac{3}{2} > 1$ $\omega_0 = \frac{1}{RC}$ $f_0 = \frac{1}{2\pi RC}$

UIC: Cycle Ingénieur - TC - S5

Électronique

Pr . A. BAGHDAD

e°) Diagramme de Bode asymptotique (ou étude asymptotique)

Etude asymptotique	$\omega <<<\omega_0$	$\omega >>> \omega_0$
$\underline{H} = \frac{\frac{1}{3}}{1+j\left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)} = \frac{\frac{1}{3}}{1+jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$	$\underline{H} \approx \frac{\frac{1}{3}}{jQ\left(-\frac{\omega_0}{\omega}\right)}$	$\underline{H} \approx \frac{\frac{1}{3}}{jQ\left(\frac{\omega}{\omega_0}\right)}$
$G = \frac{\frac{1}{3}}{\sqrt{1 + \left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)^2}} = \frac{\frac{1}{3}}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$	$G \approx \frac{\frac{1}{3}}{Q\left(\frac{\omega_0}{\omega}\right)}$	$G = \frac{\frac{1}{3}}{Q\left(\frac{\omega}{\omega_0}\right)}$
$\varphi = -arctg\left(\left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)\right) = -arctg\left(Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right)$	$\varphi \approx + arctg \left(\frac{Q\left(\frac{\omega_0}{\omega}\right)}{0} \right) = +\frac{\pi}{2}$	$\varphi \approx -arctg \left(\frac{Q\left(\frac{\omega}{\omega_0}\right)}{0} \right) = -\frac{\pi}{2}$
$G_{dB} = 20 \log \left(\frac{\frac{1}{3}}{\sqrt{1 + \left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)^2}} \right) = 20 \log \left(\frac{\frac{1}{3}}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}} \right)$	$\begin{cases} G_{dB} = 20 \log \left(\frac{\frac{1}{3}}{Q} \left(\frac{\omega}{\omega_0} \right) \right) \\ pente \ de \ (+1) \end{cases}$	$\begin{cases} G_{dB} = 20 \log \left(\frac{1/3}{Q} \left(\frac{\omega_0}{\omega} \right) \right) \\ pente \ de \ (-1) \end{cases}$

f°) Diagramme de Bode réel (ou courbe réelle ou allure réelle)

Tracé de Bode	0	ω_0	+∞
$\underline{H} = \frac{\frac{1}{3}}{1+j\left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)} = \frac{\frac{1}{3}}{1+jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$	\otimes	8	⊗
$G = \frac{\frac{1}{3}}{\sqrt{1 + \left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)^2}} = \frac{\frac{1}{3}}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$	0	1/3	0
$\varphi = -arctg\left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right) = -arctg\left(Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right)$	$+\frac{\pi}{2}$	0	$-\frac{\pi}{2}$
$G_{dB} = 20 \log \left(\frac{\frac{1}{3}}{\sqrt{1 + \left(\frac{RC\omega}{3} - \frac{1}{3RC\omega}\right)^2}} \right) = 20 \log \left(\frac{\frac{1}{3}}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}} \right)$	$-\infty dB$	-9,54 <i>dB</i>	$-\infty dB$

Filtre Coupe Bande

$$\underline{H} = H_0 \frac{\left(1 + j\frac{\omega}{\omega_1}\right) \left(1 + j\frac{\omega}{\omega_2}\right)}{\left(1 + j\frac{\omega}{\omega_3}\right) \left(1 + j\frac{\omega}{\omega_4}\right)} \qquad \begin{aligned} H_0 &= -\frac{R_3 + R_4}{R_1 + R_2} \\ \omega_1 &= \frac{R_3 + R_4}{R_3 \cdot R_4 \cdot C_2} & \omega_2 &= \frac{R_3 \cdot R_4}{R_3 \cdot R_4 \cdot C_2} \\ \omega_3 &= \frac{1}{R_4 \cdot C_2} & \omega_4 &= \frac{R_1 \cdot R_4}{R_1 \cdot R_2} \end{aligned}$$

$$\begin{split} H_0 = & -\frac{R_3 + R_4}{R_1 + R_2} \\ \omega_1 = & \frac{R_3 + R_4}{R_3 \cdot R_4 \cdot C_2} \qquad \omega_2 = \frac{1}{R_2 \cdot C_1} \\ \omega_3 = & \frac{1}{R_4 \cdot C_2} \qquad \omega_4 = \frac{R_1 + R_2}{R_1 \cdot R_2 \cdot C_1} \end{split}$$

ELECTRONIQUE

Fin du chapitre III

Montages à régime linéaire dépendants de la fréquence