ALC计算开销上界下界都不友好

EL表达力比ALC弱,生物医学本体都用表达力很弱的EL

role之间的包含关系称为 role inclusion,用字母 H 表示 EL中加入 role inclusion称为 ELH; 同样ALC称为 ALCH。

ALC = **EL** + negation

Tableau算法不再适用, 因为不能取反

表面上ALC比EL多了 negation、disjunction、forall、bottom concept 四个构造元素,实际上只多了 negation,因为 disjunction = negation + conjunction, forall = negation + exists, bottom concept = negation + top concept, 所以我们只需要考虑 negation, conjunction, exists, top。

EL 语言下的 concept 都是 satisfiable 的, ontology 都是 consistent的

一、定义

1、基础符号

 $\mathcal{E}\mathcal{L}$ concepts are defined inductively as follows:

- ullet all concept names are \mathcal{EL} concepts
- \top is a \mathcal{EL} concept
- ullet if C and D are \mathcal{EL} concepts and r is a role name, then

 $C \sqcap D$, $\exists r.C$

are \mathcal{EL} concepts.

• nothing else is a \mathcal{EL} concept.

举例

- ∃hasChild. T (somebody who has a child),
- Human □ ∃hasChild. □ (a human who has a child),
- Human □ ∃hasChild.Human (a human who has a child that is human),
- Human □ ∃gender.Female (a woman),
- Human □ ∃hasChild. □ ∃hasParent. □ (a human who has a child and has a parent),
- Human □ ∃hasChild.∃gender.Female (a human who has a daughter),
- Human □ ∃hasChild.∃hasChild. □ (a human who has a grandchild).

2. Concept definition

Let A be a concept name and C a \mathcal{EL} concept. Then

- $A\equiv C$ is called a **concept definition**. C describes necessary and sufficient conditions for being an A. We sometimes read this as "A is equivalent to C".
- $A \sqsubseteq C$ is a **primitive concept definition**. C describes necessary conditions for being an A. We sometimes read this as "A is subsumed by C".
- 要求左边必须是concept name, 同一概念只能定义一次(很难矛盾)
- 但可以循环定义 (没有循环定义题目会特殊说明是acyclic)

However, we can have cyclic definitions such as

Human_being ≡ ∃has_parent.Human_being

A **acyclic** \mathcal{EL} **terminology** \mathcal{T} is a \mathcal{EL} terminology that does not contain (even indirect) cyclic definitions.

3. Concept inclusion&equation

We generalise \mathcal{EL} concept definitions and primitive \mathcal{EL} concept definitions. Let C and D be \mathcal{EL} concepts. Then

- $C \sqsubseteq D$ is called a \mathcal{EL} concept inclusion. It states that every C is-a D. We also say that C is subsumed by D or that D subsumes C. Sometimes we also say that C is included in D.
- $C \equiv D$ is is called a \mathcal{EL} concept equation. We regard this as an abbreviation for the two concept inclusions $C \sqsubseteq D$ and $D \sqsubseteq C$. We sometimes read this as "C and D are equivalent".

Examples:

- Disease □ ∃has_location.Heart □ NeedsTreatment
- ∃student_of.ComputerScience

 Human_being□∃knows.Programming_Language
- 更宽泛,不要求左面一定是单个concept

除了concept name 就是乱七八糟的EL concepts

区别

- Every \mathcal{EL} concept definition is a \mathcal{EL} concept equation, but not every \mathcal{EL} concept equation is a \mathcal{EL} concept definition.
- Every primitive \mathcal{EL} concept definition is a \mathcal{EL} concept inclusion, but not every \mathcal{EL} concept inclusion is a primitive \mathcal{EL} concept definition.

二、EL Tbox

```
A & C TBox is a finite set T of & C concept inclusions and & C concept equations.
Observe:

• Every acyclic & C terminology is a & C terminology;
• every & C terminology is a & C TBox.

Example:

Pericardium □ Tissue □ ∃cont_in.Heart

Pericarditis □ Inflammation □ ∃has_loc.Pericardium

Inflammation □ Disease □ ∃acts_on.Tissue

Disease □ ∃has_loc.∃cont_in.Heart □ Heartdisease □ NeedsTreatment

Interpretation就像每个人对一件事物(式子)的不同认知(例子)
```

• 不能有环

1. concept hierarchy

The **concept hierarchy** induced by a TBox ${\mathcal T}$ is defined as $\{A\sqsubseteq B\mid A, B \text{ concept names in }{\mathcal T} \text{ and }{\mathcal T} \text{ implies } A\sqsubseteq B\}$

2, concept inclusion true in I

Let $\mathcal I$ be an interpretation, $C \sqsubseteq D$ a concept inclusion, and $\mathcal T$ a TBox.

- ullet We write $\mathcal{I}\models C\sqsubseteq D$ if $C^\mathcal{I}\subseteq D^\mathcal{I}$. If this is the case, then we say that
 - $\mathcal I$ satisfies $C \sqsubseteq D$ or, equivalently,
 - $C \sqsubseteq D$ is true in \mathcal{I} or, equivalently,
 - \mathcal{I} is a model of $C \sqsubseteq D$.
- ullet We write $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$
- ullet We write $\mathcal{I}\models\mathcal{T}$ if $\mathcal{I}\models E\sqsubseteq F$ for all $E\sqsubseteq F$ in \mathcal{T} . If this is the case, then we say that
 - ${\cal I}$ satisfies ${\cal T}$ or, equivalently,
 - \mathcal{I} is a model of \mathcal{T} .

3. concept inclusion follow from a TBox

Let $\mathcal T$ be a TBox and $C \sqsubseteq D$ a concept inclusion. We say that $C \sqsubseteq D$ follows from $\mathcal T$ if, and only if, every model of $\mathcal T$ is a model of $C \sqsubseteq D$.

Instead of saying that $C \sqsubseteq D$ follows from $\mathcal T$ we often write

- ullet $\mathcal{T} \models C \sqsubseteq D$ or
- $C \sqsubseteq_{\mathcal{T}} D$.

三、预处理pre-processing

polynomial time算法 (tractable便宜解决性)

相当于把乱七八糟的EL concept变成全是concept name的个体(但还不是definition)

normal form转换 (不再转为NNF)

都可以转换成这四个

- 不能有equal
- 右侧不能有conjuction
- r.后面只能是concept name
- 左侧的conjuction两边如果复杂就用X替换
- 三连conjuction, 一层一层用X替换
- 两边都复杂,插一个X在中间

(sform) $A \sqsubseteq B$, where A and B are concept names;

(cform) $A_1 \sqcap A_2 \sqsubseteq B$, where A_1, A_2, B are concept names;

(rform) $A \sqsubseteq \exists r.B$, where A, B are concept names;

(Iform) $\exists r.A \sqsubseteq B$, where A, B are concept names.

6个方法

1: 《==》拆成两个

3: 非原子的先用原子X代替, 然后再加上X《==》非原子

- Replace each $C_1 \equiv C_2$ by $C_1 \sqsubseteq C_2$ and $C_2 \sqsubseteq C_1$;
- Replace each $C \sqsubseteq C_1 \sqcap C_2$ by $C \sqsubseteq C_1$ and $C \sqsubseteq C_2$;
- If $C \sqsubseteq D$ in \mathcal{T} and $\exists r.B$ occurs in C (but $C \neq \exists r.B$), then remove $C \sqsubseteq D$, take a fresh concept name X, and add

$$X \sqsubseteq \exists r.B, \quad \exists r.B \sqsubseteq X, \quad C' \sqsubseteq D$$

to \mathcal{T} , where C' is the concept obtained from C by replacing $\exists r.B$ by X.

• If $A_1 \sqcap \cdots \sqcap A_n \sqsubseteq D$ in $\mathcal T$ and n>2, then remove it, take a fresh concept name X, and add

$$A_2 \sqcap \cdots \sqcap A_n \sqsubseteq X$$
, $X \sqsubseteq A_2 \sqcap \cdots \sqcap A_n$, $A_1 \sqcap X \sqsubseteq D$

to \mathcal{T} .

ullet If $\exists r.B \sqsubseteq \exists s.E$ in \mathcal{T} , then remove it, take a fresh concept name X, and add

$$\exists r.B \sqsubseteq X, \quad X \sqsubseteq \exists s.E$$

to \mathcal{T} .

预处理例题

本例只用了规则2,4

四、判断intuition的算法

1、S函数 (针对concept)

找出与每一个conceptA满足subsumption关系的集合B

每个都是A的父类

每走一轮就添加一次,直到添完

2、R函数 (针对role name)

算出所有pair: (B1, B2) 满足r关系

辅助计算S用的

Given $\mathcal T$ in normal form, we compute functions S and R:

- S maps every concept name A from \mathcal{T} to a set of concept names B;
- R maps every role name r from \mathcal{T} to a set of pairs (B_1,B_2) of concept names.

We will have $A \sqsubseteq_{\mathcal{T}} B$ if, and only if, $B \in S(A)$.

3、初始化

• concept初始化为自身,role初始化为空集

A永远是自己的父类

一开始不知道谁满足r关系

Input: \mathcal{T} in normal form. Initialise: $S(A) = \{A\}$ and $R(r) = \emptyset$ for A and r in \mathcal{T} .

4、添加规则

• 把应有的关系加进去,直到exhaustively(闭包,饱和)

1: 最简单的sform直接添加

2: cform, 交集非空时, 把B加到交集的S中

3: rform, 唯一对R (r) 升级

4: Iform, 利用R的升级再升级S

(simpleR) If $A' \in S(A)$ and $A' \sqsubseteq B \in \mathcal{T}$ and $B \not \in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(conjR) If $A_1,A_2\in S(A)$ and $A_1\sqcap A_2\sqsubseteq B\in \mathcal{T}$ and $B\not\in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(rightR) If $A' \in S(A)$ and $A' \sqsubseteq \exists r.B \in \mathcal{T}$ and $(A,B) \not \in R(r)$, then

$$R(r) := R(r) \cup \{(A,B)\}.$$

(leftR) If $(A,B)\in R(r)$ and $B'\in S(B)$ and $\exists r.B'\sqsubseteq A'\in \mathcal{T}$ and $A'\not\in S(A)$, then

$$S(A) := S(A) \cup \{A'\}.$$

5, example

Example

$$A_0 \sqsubseteq \exists r.B$$

$$B \sqsubseteq E$$

$$\exists r.E \sqsubseteq A_1$$

 $\text{Initialise: } S(A_0) = \{A_0\}, S(A_1) = \{A_1\}, S(B) = \{B\}, S(E) = \{E\}, R(r) = \emptyset.$

- ullet Application of (rightR) and axiom 1 gives: $R(r)=\{(A_0,B)\}$;
- ullet Application of (simpleR) and axiom 2 gives: $S(B)=\{B,E\};$
- ullet Application of (leftR) and axiom 3 gives: $S(A_0)=\{A_0,A_1\}$;
- No more rules are applicable.

Thus, $R(r)=\{(A_0,B)\}$, $S(B)=\{B,E\}$, $S(A_0)=\{A_0,A_1\}$ and no changes for the remaining values. We obtain $A_0\sqsubseteq_{\mathcal{T}}A_1$.

1: rightR

2: simpleR

3: leftR

• 算法目的: 得到闭包后可以用于查阅是否存在包含关系