

ACCORD DE CREATION N°12/0366/MINESUP DU 16 AUG 2012 / AUTORISATION D'OUVERTURE N°12/0370/MINESUP DU 16 AUG 2012

COMPOSITION DU SECOND SEMESTRE

Matière: MATHEMATIQUES

Durée: 3 H

Spécialité: TC INDUSTRIEL

Niveau: 1

EXERCICE 1 Calcul des intégrales

/8points

Enseignant:

A- Calculer les nombres suivants

2pts

A=
$$\int_{0}^{1} (x+2)e^{x} dx$$
; B= $\int_{0}^{1} \frac{x^{3}}{\sqrt{x+1}} dx$ en posant u= $\sqrt{x+1}$

B- On considère la fonction f donnée par $f(x) = \int_{0}^{4\pi} e^{-t^2} dt$

1. Déterminer l'ensemble de définition de f .

0,5pt

2. Montrer que f est impaire.

1pt

3. Déterminer la dérivée de F

1pt

4. En déduire ses variations. 5. Déterminer les limites de f aux bornes de son domaine.

1pt 1pt

C- Calculer l'intégrale suivante

1,5pt
$$I = \iint_{D} \sin(x + y) dx dy$$
 où $D = \{(x, y) \in \mathbb{R}^2 / x \ge 0, y \ge 0 \text{ et } x + y \le \pi\}$

EXERCICE 2 Equations différentielles

/6points

a) Résoudre les équations différentielles de premier ordre suivantes

3pts

$$y'(x) - 2xy(x) = shx - 2xchx avec y(0) = 2$$

$$y'(x) - y(x) = (x + 1)e^{x} \ avec \ y(0) = 1$$

b) Soit $m \in \mathbb{R}$. Résoudre l'équation différentielle (solutions réelles) :

 $my''(x) - (1+m^2)y'(x) + my(x) = xe^x$

NB : On suppose m≠0.

- 1^{er} cas résoudre l'équation pour m = 1

1,5pt

2º cas résoudre l'équation pour m≠1

1,5pt

EXERCICE 3

/6points

On se propose de résoudre l'équation différentielle : (E) : $y'' + \frac{1}{2x^2}y = 0$.

- 1. Soit y une solution du problème. On pose pour tout $t \in \mathbb{R}$: $z(t) = y(e^t) e^{-\frac{t}{2}}$.
 - 1.1 Exprimer y(x) en fonction de $z(\ln(x))$ pour tout x > 0.

1pt

1.2 En déduire que la fonction $t \rightarrow z(t)$ vérifie sur R une équation (E') d'ordre 2 à coefficients constants.

1pt

2. Résoudre (E).

1.3 Résoudre E'.

2pts 2pts