CLAIMS

What is claimed is:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1. A poly(α -olefin) copolymer obtained from the polymerization of at least one α-olefin having from 2 to about 20 carbon atoms and at least one bulky olefin, the process comprising polymerizing the monomers in the presence of hydrogen and a catalytically effective amount of a catalyst comprising the product obtained by combining a metallocene procatalyst with a cocatalyst, the metallocene procatalyst being at least one compound of general formula: $(Cp^{1}R_{m}^{1})R^{3}(Cp^{2}R_{p}^{2})MX_{a}$ wherein Cp1 of ligand (Cp1R1 m) and Cp2 of ligand (Cp2R2 n) are the same or different cyclopentadienyl rings, R1 and R2 each is, independently, hydrogen or a hydrocarbyl, halocarbyl, hydrocarbyl-substituted organometalloid or halocarbyl-substituted organometalloid group containing up to about 20 carbon atoms, m is 0 to 5, p is 0 to 5 and two R1 and/or R2 substituents on adjacent carbon atoms of the cyclopentadienyl ring associated therewith can be joined together to form a ring fused to the cyclopentadienyl ring. the fused ring containing from 4 to about 20 carbon atoms, R³ is a bridging group bridging Cp¹ and Cp², M is a transition metal having a valence of from 3 to 6, each X is a noncyclopentadienyl ligand and is, independently, halogen or a hydrocarbyl, oxyhydrocarbyl, halocarbyl, hydrocarbyl-substituted organometalloid, oxyhydrocarbyl-substituted organometalloid or halocarbyl-substituted organometalloid group containing up to about 20 carbon atoms, q is equal to the valence of M minus 2, the cocatalyst being an aluminoxane

and it being provided that ligand (Cp¹R¹_m) is different from ligand (Cp²R²_n) and bridging

- 1 group R³ contains at least two bulky groups.
- The poly(α-olefin) of claim 1 wherein in the metallocene procatalyst, bridging
 group R³ possesses the structure

- in which groups R⁴ and R⁵ each, independently, is, or contains, a cyclic group of from 6 to about 20 carbon atoms, from 0 to 3 heteroatoms and hydrogen as the remaining atoms.
- 3. The poly(α-olefin) of claim 2 wherein in the metallocene procatalyst, the
 cyclic group is a cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl,
 heteroaryl, alkaryl, alkylheteroaryl, aralkyl or heteroaralkyl group.
 - 4. The poly(α -olefin) of Claim 3 wherein in the metallocene procatalyst, ligand $(Cp^1R_m^1)$ is unsubstituted cyclopentadienyl, ligand $(Cp^2R_p^2)$ is substituted or unsubstituted indenyl or fluorenyl, M^1 is zirconium, R^4 and R^5 each is phenyl and each ligand X is chlorine.
 - 5. The poly(α-olefin) of Claim 1 wherein the metallocene procatalyst is combined with hydrogen and the cocatalyst in any order thereof in the presence or absence of

3 monomer.

- 6. The poly(α -olefin) of claim 2 wherein the metallocene procatalyst is combined with hydrogen and the cocatalyst in any order thereof in the presence or absence of monomer.
- 7. The poly(α-olefin) of claim 3 wherein the metallocene procatalyst is combined with hydrogen and the cocatalyst in any order thereof in the presence or absence of monomer.
 - 8. The poly(α -olefin) of claim 4 wherein the metallocene procatalyst is combined with hydrogen and the cocatalyst in any order thereof in the presence or absence of monomer.
 - 9. The poly(α -olefin) of claim 1 wherein the bulky olefin is selected from the group consisting of cyclic and polycyclic olefins of the structural formulae:

9.

26 ·

$$R_3$$
 R_4 R_5 R_6 R_1 III

$$R_3$$
 R_4 R_5 R_6 R_7 R_8 R_1 IV

$$R_3$$
 R_4
 R_5
 R_1
 R_6
 R_2

34

35

36

37

38

39

40

41

42

1

2

- wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇, and R₈ are identical or different and are selected from the
- group consisting of hydrogen, C₆-C₁₆ aryl moieties, and C₁-C₈ alkyl moieties, it being possible

VI

- for identical radicals in the different formulae to have different meanings.
- 1 10. The poly(α-olefin) of claim 1 wherein the α-olefin is 1-decene and the bulky
 2 olefin is norbornene.
 - 11. The poly(α -olefin) of claim 1 wherein polymerization is carried out under solution polymerization conditions.
- 1 12. The poly(α-olefin) of claim 1 wherein polymerization is carried out under
 2 slurry polymerization conditions.

Š

1	13. The poly(α -olefin) of claim 1 possessing a M_w of from about 500 to about
2	80,000, a M_w/M_n of from about 1.0 to about 10, a Kv_{100} of from about 10 to about 10,000, an
3	Iodine Number of from about 0.0 to about 10 and a T _g of below about -20° C and wherein the
4	poly(α -olefin) is substantially amorphous.

- 14. The poly(α -olefin) of claim 13 possessing a M_w of from about 750 to about 60,000, a M_w/M_n of from about 1.5 to about 5, a Kv_{100} of from about 20 to about 7,500, an Iodine Number of from about 0.1 to about 5 and a T_g of below about -30° C and wherein the polyalphaolefin is substantially amorphous.
- 15. The poly(α -olefin) of claim 14 possessing a M_w of from about 1,000 to about 40,000, a M_w/M_n of from about 1.75 to about 4, a Kv_{100} of from about 25 to about 5,000, an Iodine Number of from about 0.2 to about 3 and a T_g of below about -40° C and wherein the poly(α -olefin) is substantially amorphous.
- 16. A lubricant composition comprising a lubricant and a viscosity-modifying amount of a poly(α -olefin) copolymer obtained from the polymerization of at least one α -olefin having from 2 to about 20 carbon atoms and at least one bulky olefin, the process comprising polymerizing the monomers in the presence of hydrogen and a catalytically effective amount of a catalyst comprising the product obtained by combining a metallocene

procatalyst with a cocatalyst, the metallocene procatalyst being at least one compound of
 general formula:

 $(Cp^1R_m^1)R^3(Cp^2R_n^2)MX_0$

wherein Cp¹ of ligand (Cp¹R¹_m) and Cp² of ligand (Cp²R²_p) are the same or different cyclopentadienyl rings, R¹ and R² each is, independently, hydrogen or a hydrocarbyl, halocarbyl, hydrocarbyl-substituted organometalloid or halocarbyl-substituted organometalloid group containing up to about 20 carbon atoms, m is 0 to 5, p is 0 to 5 and two R¹ and/or R² substituents on adjacent carbon atoms of the cyclopentadienyl ring associated therewith can be joined together to form a ring fused to the cyclopentadienyl ring, the fused ring containing from 4 to about 20 carbon atoms, R³ is a bridging group bridging Cp¹ and Cp², M is a transition metal having a valence of from 3 to 6, each X is a non-cyclopentadienyl ligand and is, independently, halogen or a hydrocarbyl, oxyhydrocarbyl, halocarbyl, hydrocarbyl-substituted organometalloid, oxyhydrocarbyl-substituted organometalloid group containing up to about 20 carbon atoms, q is equal to the valence of M minus 2, the cocatalyst being an aluminoxane and it being provided that ligand (Cp¹R¹_m) is different from ligand (Cp²R²_p) and bridging group R³ contains at least two bulky groups.

- 17. The lubricant composition of claim 16 wherein in the metallocene procatalyst, ligand (Cp¹R_m¹) is unsubstituted cyclopentadienyl, ligand (Cp²R_p²) is substituted or insubstituted indepvel or fluorenyl. M¹ is girospium, R⁴ and R⁵ and is should and each ligand
 - unsubstituted indenyl or fluorenyl, M1 is zirconium, R4 and R5 each is phenyl and each ligand

4 X is chlorine.

18. The lubricant composition of claim 16 wherein the bulky olefin is selected

from the group consisting of cyclic and polycyclic olefins of the structural formulae:

$$R_3$$
 R_4 R_1 I R_2

$$R_3$$
 R_4 II

$$R_3$$
 R_4 R_5 R_6 R_1 III

$$R_3$$
 R_4 R_5 R_1 R_2

$$R_3$$
 R_4
 R_7
 R_8
 R_1
 R_1
 R_6
 R_2
 R_1

$$R_3$$
 R_4 R_5 R_6 R_7 R_8 R_1 IV

1

2

3

4

1

2

3

- wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇, and R₈ are identical or different and are selected from the group consisting of hydrogen, C₆-C₁₆ aryl moieties, and C₁-C₈ alkyl moieties, it being possible for identical radicals in the different formulae to have different meanings.
- 1 19. The lubricant composition of claim 16 wherein the α-olefin is 1-decene and
 2 the bulky olefin is norbornene.
- 1 20. The lubricant composition of claim 16 wherein polymerization is carried out 2 under slurry polymerization conditions.
 - 21. The lubricant composition of claim 16 wherein the poly(α -olefin) possesses a M_w of from about 500 to about 80,000, a M_w/M_n of from about 1.0 to about 10, a Kv_{100} of from about 10 to about 10,000, an Iodine Number of from about 0.0 to about 10 and a T_g of below about -20° C and wherein the poly(α -olefin) is substantially amorphous.
 - 22. The lubricant composition of claim 16 wherein the poly(α -olefin) possesses a M_w of from about 750 to about 60,000, a M_w/M_n of from about 1.5 to about 5, a Kv_{100} of from about 20 to about 7,500, an Iodine Number of from about 0.1 to about 5 and a T_g of below about -30° C and wherein the poly(α -olefin) is substantially amorphous.
 - 23. A method for improving the viscosity index of a lubricant composition

comprising adding to the composition a viscosity-modifying amount of a poly(α -olefin) copolymer obtained from the polymerization of at least one α -olefin having from 2 to about 20 carbon atoms and at least one bulky olefin, the process comprising polymerizing the monomers in the presence of hydrogen and a catalytically effective amount of a catalyst comprising the product obtained by combining a metallocene procatalyst with a cocatalyst, the metallocene procatalyst being at least one compound of general formula: $(Cp^1R^1_{\ m})R^3(Cp^2R^2_{\ p})MX_q$ wherein Cp^1 of ligand $(Cp^1R^1_{\ m})$ and Cp^2 of ligand $(Cp^2R^2_{\ p})$ are the same or different cyclopentadienyl rings, R^1 and R^2 each is, independently, hydrogen or a hydrocarbyl, halocarbyl, hydrocarbyl-substituted organometalloid or halocarbyl-substituted organometalloid group containing up to about 20 carbon atoms, m is 0 to 5, p is 0 to 5 and two R^1 and/or R^2 substituents on adjacent carbon atoms of the cyclopentadienyl ring

cyclopentadienyl rings, R¹ and R² each is, independently, hydrogen or a hydrocarbyl, halocarbyl, hydrocarbyl-substituted organometalloid or halocarbyl-substituted organometalloid group containing up to about 20 carbon atoms, m is 0 to 5, p is 0 to 5 and two R¹ and/or R² substituents on adjacent carbon atoms of the cyclopentadienyl ring associated therewith can be joined together to form a ring fused to the cyclopentadienyl ring, the fused ring containing from 4 to about 20 carbon atoms, R³ is a bridging group bridging Cp¹ and Cp², M is a transition metal having a valence of from 3 to 6, each X is a non-cyclopentadienyl ligand and is, independently, halogen or a hydrocarbyl, oxyhydrocarbyl, halocarbyl, hydrocarbyl-substituted organometalloid, oxyhydrocarbyl-substituted organometalloid group containing up to about 20 carbon atoms, q is equal to the valence of M minus 2, the cocatalyst being an aluminoxane and it being provided that ligand (Cp¹R¹m) is different from ligand (Cp²R²p) and bridging group R³ contains at least two bulky groups.

l	24. The method of claim 23 wherein in the metallocene procatalyst, ligand
2	$(Cp^1R_m^{-1})$ is unsubstituted cyclopentadienyl, ligand $(Cp^2R_p^{-2})$ is substituted or unsubstituted
3	indenyl or fluorenyl, M ¹ is zirconium, R ⁴ and R ⁵ each is phenyl and each ligand X is chlorine

25. The method of claim 23 wherein the bulky olefin is selected from the group consisti1ng of cyclic and polycyclic olefins of the structural formulae:

3
4
R₃
5
6
7

$$R_3$$
 R_4 R_1 R_2

$$R_3$$
 R_4 R_5 R_6 R_1 III R_2

$$R_3$$
 R_4 R_5 R_6 R_7 R_8 R_1 IV

$$R_3$$
 R_4 R_5 R_1 V R_6 R_2

- - 2 .

- R_7 R_8 R_7 R_8 R_1 R_6 R_6
- wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , and R_8 are identical or different and are selected from the group consisting of hydrogen, C_6 - C_{16} aryl moieties, and C_1 - C_8 alkyl moieties, it being possible for identical radicals in the different formulae to have different meanings.
- 26. The method of claim 23 wherein the α -olefin is 1-decene and the bulky olefin is norbornene.
- 27. The method of claim 23 wherein polymerization is carried out under slurry polymerization conditions.
- 28. The method of claim 23 wherein the poly(α -olefin) possesses a M_w of from about 500 to about 80,000, a M_w/M_n of from about 1.0 to about 10, a $K_v v_{100}$ of from about 10 to about 10,000, an Iodine Number of from about 0.0 to about 10 and a T_g of below about -

- 4 20° C and wherein the poly(α -olefin) is substantially amorphous.
- 1 29. The method of claim 23 wherein the poly(α -olefin) possesses a M_w of from
- about 750 to about 60,000, a M_w/M_n of from about 1.5 to about 5, a Kv_{100} of from about 20 to

\

- 3 about 7,500, an Iodine Number of from about 0.1 to about 5 and a T_g of below about -30° C
- 4 and wherein the polyalphaolefin is substantially amorphous.