

Questionário 1 - Aplicação de elementos químicos na Telecomunicações

Química Geral

Arthur Cadore Matuella Barcella Gustavo Briance Mengue Mena

1 de Setembro de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1.	ntroduçãontrodução	
2.	Questões	. 3
	2.1. Quais elementos químicos da tabela periódica que são empregados em	
	Telecomunicações? Relacionar os elementos empregados em telecomunicações	
	com as suas propriedades e aplicação	. 3
	2.2. Pesquisa sobre elementos químicos aplicados em Telecomunicações	. 3
3.	Referência:	. 4

1. Introdução

A química é uma ciência que estuda as substâncias e suas transformações. Ela é fundamental para a compreensão de muitos processos que ocorrem na natureza e na indústria. No caso da Telecomunicações, a química desempenha um papel crucial na compreensão e desenvolvimento de muitos dos componentes e processos que permitem a transmissão de dados e informações.

2. Questões

2.1. Quais elementos químicos da tabela periódica que são empregados em Telecomunicações? Relacionar os elementos empregados em telecomunicações com as suas propriedades e aplicação.

Elemento	Aplicação Principal	Função
Silício Si	Chips, transistores, circuitos integrados	Semi-condutor
Fósforo P	Chips, transistores, circuitos integrados	Dopante N (N-type)
Boro B	Chips, transistores, circuitos integrados	Dopante P (P-type)
Gálio Ga	LEDs, lasers semicondutores	Base para GaAs, GaN
Arsênio As	Semicondutores (GaAs)	Aumenta mobilidade de elétrons
Germânio Ge	Fibra óptica, semicondutores	Baixa atenuação, sensibilidade IR
Ítrio Y	Amplificadores ópticos	Elemento em dopagem de fibras
Érbio Er	Fibras ópticas amplificadas (EDFA)	Amplificação em 1550nm
Neodímio Nd	Lasers de telecomunicações	Fonte de emissão coerente
Cobre Cu	Cabos metálicos, conexões elétricas	Alta condutividade
Alumínio Al	Cabos coaxiais, antenas	Condutor leve
Ouro Au	Conexões em circuitos integrados	Alta condutividade, anticorrosivo
Prata Ag	Conectores RF, revestimentos	Melhor condutor elétrico

2.2. Pesquisa sobre elementos químicos aplicados em Telecomunicações

Um exemplo interessante do uso de elementos químicos em telecomunicações vem das **baterias de íons de lítio (Li-ion)**, que são fundamentais para alimentar celulares, roteadores móveis, notebooks e até estações base menores.

Fonte 1: O artigo analisa o papel do **Silício (Si)** como substituto do **Carbono (C)** (grafite) nos anodos das baterias de lítio. A vantagem do Silício é a sua **capacidade de armazenar muito mais íons de Lítio (Li)** do que o carbono, permitindo que dispositivos móveis funcionem por mais tempo com uma única carga — algo essencial para a autonomia em redes móveis de alta demanda, como **5G** e futuras **6G**.

O grande desafio, porém, é que o Silício sofre **expansão volumétrica (inchaço)** durante o processo de carga e descarga, o que pode levar à **fragmentação do material** e à perda de eficiência da bateria. Para superar isso, os cientistas têm explorado soluções como:

- Usar **nanopartículas de silício**, que suportam melhor a expansão.
- Criar **compósitos de Silício + Carbono**, unindo a alta capacidade do Si à estabilidade do C.
- Desenvolver revestimentos e ligas especiais que diminuem a degradação.

Essa pesquisa mostra como um elemento tão presente na eletrônica (Si, base dos chips e semicondutores) também pode revolucionar o setor de **energia para telecomunicações**, aumentando a eficiência e a confiabilidade dos dispositivos que mantêm nossa sociedade conectada.

3. Referência:

[1] ASHOUR, A. S.; KHALID, M.; HAKEEM, A. S.; RAHIM, A. A. A critical review of developments on silicon anodes for lithium-ion batteries. **Journal of Power Sources**, Amsterdam, v. 258, p. 163-176, jul. 2014.