Disclaimer I wrote this to my best knowledge, however, no guarantees are given whatsoever.
Sources If not noted differently, the source is the lecture slides and/or the accompanying book.

1 Approximate Retrieval

Nearest-Neighbor Find $x^* = \operatorname{argmin}_{x \in X} d(x, y)$ given $S, y \in$ $S, X \subseteq S$.

Near-Duplicate detection Find all $x, x' \in X$ with $d(x, x') \le \epsilon$.

1.1 k-Shingling

Documents (or videos) as set of k-shingles (a. k. a. k-grams). kshingle is consecutive appearance of k chars/words. Binary shingle matrix $M \in \{0,1\}^{CxN}$ where $M_{i,j} = 1$ iff document j contains shingle i, N documents, C k-shingles.

1.2 Distance functions

Def. $d: S \times S \to \mathbb{R}$ is distance function iff pos. definite except d(x,x) = 0 $(d(x,x') > 0 \iff x \neq x')$, symmetric (d(x,x') = d(x',x))and triangle inequality holds $(d(x,x'') \le d(x,x') + d(x',x''))$.

 L_r -norm $d_r(x,y) = ||x-y||_r = (\sum_i |x_i - y_i|^r)^{1/r}$. L_2 is Euclidean.

$$\textbf{Cosine} \quad \operatorname{Sim}_c(A,B) = \frac{A \cdot B}{||A|| \cdot ||B||}, \ d_c(A,B) = \frac{\arccos(\operatorname{Sim}_c(A,B))}{\pi}.$$

Jaccard sim., d. $\operatorname{Sim}_J(A,B) = \frac{|A \cap B|}{|A \cup B|}, d_J(A,B) = 1 - \operatorname{Sim}_J(A,B).$

1.3 LSH – local sensitive hashing

Key Idea: Similiar documents have similiar hash.

Note: Trivial for exact duplicates (hash-collision \rightarrow candidate pair).

Min-hash $h_{\pi}(C)$ Hash is the min (i.e. first) non-zero permutated row index: $h_{\pi}(C) = \min_{i,C(i)=1} \pi(i)$, bin. vec. C, rand. perm. π . Note: $\Pr_{\pi}[h_{\pi}(C_1) = h_{\pi}(C_2)] = \operatorname{Sim}_J(C_1, C_2)$ if $\pi \in_{\text{u.a.r.}} S_{|C|}$.

Min-hash signature matrix $M_S \in [N]^{n \times C}$ with $M_S(i,c) = h_i(C_c)$ given n hash-fns h_i drawn randomly from a universal hash family.

Pseudo permutation h_{π} with $\pi(i) = (a \cdot i + b) \mod p \mod N$, Nnumber of shingles, $p \ge N$ prime and $a,b \in_{\text{u.a.r.}} [p]$ with $a \ne 0$. Use as universal hash family. Only store a and b. Much more efficient.

Compute Min-hash signature matrix M_S For column $c \in [C]$, row $r \in [N]$ with $C_c(r) = 1$, $M_S(i,c) \leftarrow \min\{h_i(C_c), M_S(i,c)\}$ for all h_i .

r-way AND

b-way OR

Banding as boosting Reduce FP/FN by b-way OR after r-way AND. Group signature matrix into b bands of r rows. Candidate pairs match in at least one band (check by hashing).

Tradeoff FP/FN Favor FP (work) over FN (wrong). Filter FP by checking signature matrix, shingles or even whole documents.

2 Supervised Learning

Linear classifier $y_i = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}_i)$ assuming \boldsymbol{w} goes through origin. **Homogeneous transform** $\tilde{x} = [x,1]; \tilde{w} = [w,b], \text{ now } w \text{ passes origin.}$ Kernels

Convex function $f: S \to \mathbb{R}$ is convex iff $\forall x, x' \in S, \lambda \in [0,1], \lambda f(x) +$ $(1-\lambda)f(x') \ge f(\lambda x + (1-\lambda)x')$, i. e. every segment lies above function. Equiv. bounded by linear fn. at every point.

H-strongly convex f H-strongly convex iff $f(x') \ge f(x) + \nabla f(x)^T (x' - x')$ $|x| + \frac{H}{2}||x' - x||_2^2$, i. e. bounded by quadratic fin (at every point).

2.1 Support vector machine (SVM)

SVM primal

Quadratic $\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i} \xi_i$, s. t. $\forall i : \boldsymbol{y}_i \boldsymbol{w}^T x_i \ge 1 - \xi_i$, slack C. Hinge loss $\min_{\boldsymbol{w}} \lambda \boldsymbol{w}^T \boldsymbol{w} + \sum_{i} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i)$ with $\lambda = \frac{1}{C}$.

Norm-constrained $\min_{\boldsymbol{w}} \sum_{i} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i) \text{ s.t. } ||\boldsymbol{w}||_2 \leq \frac{1}{\sqrt{\lambda}}.$

Lagrangian dual $\max_{\alpha} \sum_{i} \alpha_i + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^T \boldsymbol{x}_j, \ \alpha_i \in [0,C].$ Apply kernel trick: $\max_{\alpha} \sum_{i} \alpha_i + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(\boldsymbol{x}_i, \boldsymbol{x}_j), \alpha_i \in [0, C],$ prediction becomes $y = \operatorname{sgn}(\sum_{i=1}^{n} \alpha_i y_i k(x_i, x))$.

2.2 Convex Programming

Convex program $\min_{\boldsymbol{x}} f(\boldsymbol{x})$, s. t. $\boldsymbol{x} \in S$, f convex.

Online convex program (OCP) $\min_{\boldsymbol{w}} \sum_{t=1}^{T} f_t(\boldsymbol{w})$, s. t. $\boldsymbol{w} \in S$.

General regularized form $\min_{\boldsymbol{w}} \sum_{i=1}^n l(\boldsymbol{w}; \boldsymbol{x}_i, y_i) + \lambda R(\boldsymbol{w})$, where l is a (convex) loss function and R is the (convex) regularizer.

General norm-constrained form $\min_{\boldsymbol{w}} \sum_{i=1}^n l(\boldsymbol{w}; \boldsymbol{x}_i, y_i)$, s. t. $\boldsymbol{w} \in S_{\lambda}$, l is loss and S_{λ} some (norm-)constraint. Note: This is an OCP.

Solving OCP Feasible set $S \subseteq \mathbb{R}^d$ and start pt. $\mathbf{w}_0 \in S$, OCP (as above). Round $t \in [T]$: pick feasible pt. \mathbf{w}_t , get convex fn. f_t , incur $l_t = f_t(\mathbf{w}_t)$. Regret $R_T = (\sum_{t=1}^T l_t) - \min_{\mathbf{w} \in S} \sum_{t=1}^T f_t(\mathbf{w})$.

Online SVM $||\boldsymbol{w}||_2 \leq \frac{1}{\lambda}$ (norm-constr.). For new pt. \boldsymbol{x}_t classify $y_t = \operatorname{sgn}(\boldsymbol{w}_t^T \boldsymbol{x}_t)$, incur $l_t = \max(0, 1 - y_t \boldsymbol{w}_t^T \boldsymbol{x}_t)$, update \boldsymbol{w}_t (see later). Best $L^* = \min_{\boldsymbol{w}} \sum_{t=1}^T \max(0, 1 - y_t \boldsymbol{w}^T \boldsymbol{x}_t)$, regret $R_t = \sum_{t=1}^T l_t - L^*$.

Online proj. gradient descent (OPGD) Update for online SVM: $\boldsymbol{w}_{t+1} = \operatorname{Proj}_{S}(\boldsymbol{w}_{t} - \eta_{t} \nabla f_{t}(\boldsymbol{w}_{t}))$ with $\operatorname{Proj}_{S}(\boldsymbol{w}) = \operatorname{argmin}_{\boldsymbol{w}' \in S} ||\boldsymbol{w}' - \boldsymbol{w}_{t}||$ $||w||_2$, gives regret bound $\frac{R_T}{T} \le \frac{1}{\sqrt{T}} (||w_0 - w^*||_2^2 + ||\nabla f||_2^2)$.

For *H*-strongly convex faset $\eta_t = \frac{1}{Ht}$ gives $R_t \leq \frac{||\nabla f||^2}{2H}(1 + \log T)$.

Stochastic PGD (SGD) Online-to-batch. Compute $\tilde{\boldsymbol{w}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_t$. If data i. i. d.: exp. error (risk) $\mathbb{E}[L(\tilde{\boldsymbol{w}})] \leq L(\boldsymbol{w}^*) + R_T/T$, $L(\boldsymbol{w}^*)$ is best error (risk) possible.

PEGASOS OPGD w/ mini-batches on strongly convex SVM form. $\min_{\boldsymbol{w}} \sum_{t=1}^{T} g_t(\boldsymbol{w}), \text{ s.t. } ||\boldsymbol{w}||_2 \leq \frac{1}{\sqrt{t}}, g_t(\boldsymbol{w}) = \frac{\lambda}{2} ||\boldsymbol{w}||_2^2 + f_t(\boldsymbol{w}).$ g_t is λ -strongly convex, $\nabla g_t(\boldsymbol{w}) = \lambda \boldsymbol{w} + \nabla f_t(\boldsymbol{w}).$

Performance ϵ -accurate sol. with prob. $\geq 1 - \delta$ in runtime $O^*(\frac{d \cdot \log \frac{1}{\delta}}{\lambda_{\epsilon}})$.

ADAGrad Adapt to geometry. *Mahalanobis norm* $||w||_G = ||Gw||_2$. $\begin{aligned} & \boldsymbol{w}_{t+1} = \operatorname{argmin}_{\boldsymbol{w} \in S} ||\boldsymbol{w} - (\boldsymbol{w}_t - \eta \boldsymbol{G}_t^{-1} \nabla f_t(\boldsymbol{w}))||_{G_t}. \text{ Min. regret with} \\ & G_t = (\sum_{\tau=1}^t \nabla f_\tau(\boldsymbol{w}_\tau) \nabla f_\tau(\boldsymbol{w}_\tau)^T)^{1/2}. \text{ Easily inv'able matrix with} \\ & G_t = \operatorname{diag}(...). R_t \in O(\frac{||\boldsymbol{w}^*||_{\infty}}{\sqrt{T}} \sqrt{d}), \text{ even better for sparse data.} \end{aligned}$

ADAM Add 'momentum' term: $\mathbf{w}_{t+1} = \mathbf{w}_t - \mu \bar{g}_t$, $g_t = \nabla f_t(\mathbf{w})$, $\bar{g}_t = (1-\beta)g_t + \beta \bar{g}_{t-1}, \ \bar{g}_0 = 0.$ Helps for dense gradients.

Parallel SGD (PSGD) Randomly partition to k (indep.) machines. Comp. $\boldsymbol{w} = \frac{1}{k} \sum_{i=1}^k \boldsymbol{w}_i$. $\mathbb{E}[\text{err}] \in O(\epsilon(\frac{1}{k\sqrt{\lambda}} + 1))$ if $T \in \Omega(\frac{\log \frac{k\lambda}{\epsilon}}{\epsilon \lambda})$. Suitable for MapReduce cluster, multi. passes possible.

Hogwild! Shared mem., no sync., sparse data. [...]

Implicit kernel trick Map $x \in \mathbb{R}^d \to \phi(x) \in \mathbb{R}^D \to z(x) \in \mathbb{R}^m, d \ll$ $D,m \ll D$. Where $\phi(x)$ corresponds to a kernel $k(x,x') = \phi(x)^T \phi(x')$.

Random fourier features !TODO!

Nyström features !TODO!

3 Pool-based active Learning (semi-supervised)

Uncertainty sampl. $U_t(x) = U(x|x_{1:t-1}, y_{1:t-1})$, request y_t for $x_t = \operatorname{argmax}_x U_t(x)$. SVM: $x_t = \operatorname{argmin}_{x_i} |\boldsymbol{w}^T \boldsymbol{x}_i|$, i.e. $U_t(\boldsymbol{x}) = \frac{1}{|\boldsymbol{w}_t^T \boldsymbol{x}|}$.

Sub-linear time w/ LSH $|w^T x_i|$ small if \angle_{w,x_i} close to π . Hash hyperplane: $h_{\boldsymbol{u},\boldsymbol{v}}(\boldsymbol{a},\boldsymbol{b}) = [h_{\boldsymbol{u}}(\boldsymbol{a}),h_{\boldsymbol{v}}(\boldsymbol{b})] = [\operatorname{sgn}(\boldsymbol{u}^T\boldsymbol{a}),\operatorname{sgn}(\boldsymbol{v}^T\boldsymbol{b})].$ LSH hash family: $h_H(z) = h_{u,v}(z,z)$ if z datapoint, $h_H(z) =$ $h_{u,v}(\boldsymbol{z},-\boldsymbol{z})$ if z query hyperplane. $\Pr[h_H(\boldsymbol{w})=h_H(\boldsymbol{x})]=\Pr[h_{\boldsymbol{u}}(\boldsymbol{w})=h_H(\boldsymbol{x})]$ $h_{\boldsymbol{u}}(\boldsymbol{x})[\Pr[h_{\boldsymbol{v}}(-\boldsymbol{w})=h_{\boldsymbol{v}}(\boldsymbol{x})]=\frac{1}{4}-\frac{1}{\pi^2}(\angle_{\boldsymbol{x},\boldsymbol{w}}-\frac{pi}{2})^2.$ Hash all unlabeled. Loop: Hash \boldsymbol{w} , req. labels for hash-coll., update.

Informativeness Metric of "information" gainable; \neq uncertainty.

Version Space $V(D) = \{ \boldsymbol{w} \mid \forall (\boldsymbol{x}, y) \in D \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = y \}$

Relevant version space given unlabeled pool $U = \{x'_1, ..., x'_n\}$. $\tilde{\mathcal{V}}(D;U) = \{h: U \to \{\pm 1\} \mid \exists \boldsymbol{w} \in \mathcal{V}(D) \ \forall x \in U \ \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = h(\boldsymbol{x})\}.$

Generalized binary search Init $D \leftarrow \{\}$. While $|\tilde{\mathcal{V}}(D;U)| > 1$, comp. $v^{\pm}(x) = |\tilde{\mathcal{V}}(D \cup \{(x,\pm)\}; U)|, \text{ label of } \operatorname{argmin}_{x} \max\{v^{-}(x), v^{+}(x)\}.$

Approx. $|\mathcal{V}|$ Margins of SVM $m^{\pm}(x)$ for labels $\{+,-\}, \forall x$. Max $min \max_{x} \min\{m^{+}(x), m^{-}(x)\}\$ or $ratio \max_{x} \min\{\frac{m^{+}(x)}{m^{-}(x)}, \frac{m^{-}(x)}{m^{+}(x)}\}.$

4 Model-based clustering - Unsupervised learning

k-means problem $\min_{\mu} L(\mu)$ with $L(\mu) = \sum_{i=1}^{N} \min_{j} ||x_i - \mu_j||_2^2$ and cluster centers $\mu = \mu_1, ..., \mu_k$. Non-convex! NP-hard in general!

LLoyd's Init $\mu^{(0)}$ (somehow). Assign all x_i to closest center $z_i \leftarrow$ $\operatorname{argmin}_{j \in [k]} || \boldsymbol{x}_i - \mu_j^{(t-1)} ||_2^2$, Update to mean: $\mu_j^{(t)} \leftarrow \frac{1}{n_i} \sum_{i: z_i = j} \boldsymbol{x}_i$. Always converge to local minimum.

Online k-means Init μ somehow. For $t \in [n]$ find $z = \operatorname{argmin}_j || \mu_j - x_t ||_2$, set $\mu_c \leftarrow \mu_c + \eta_t(x_t - \mu_c)$. For local optimum: $\sum_t \eta_t = \infty \land \sum_t \eta_t^2 < \infty$ suffices, e.g. $\eta_t = \frac{c}{t}$.

Weighted rep. C $L_k(\mu;C) = \sum_{(w,x) \in C} w \cdot \min_j ||\mu_j - x||_2^2$.

 $(k,\!\epsilon)\text{-coreset}\quad \text{iff } \forall \mu\!:\!(1\!-\!\epsilon)L_k(\mu;\!D)\!\leq\!L_k(\mu;\!C)\!\leq\!(1\!+\!\epsilon)L_k(\mu;\!D).$

Step 1: D^2 -sampling Sample prob. $p(x) = \frac{d(x,B)^2}{\sum_{x' \in X} d(x',B)^2}$.

Step 2: Importance sampling $B_i = \{ \boldsymbol{x} \in D : i \in \text{argmin } d(\boldsymbol{x}, b_i) \}$?? what is i ?? Sample $q(\boldsymbol{x}) \propto \frac{\alpha d(\boldsymbol{x}, B)^2}{c_{\phi}} + \frac{2\alpha \sum_{\boldsymbol{x}' \in B_i} d(\boldsymbol{x}', B)^2}{|B_i|c_{\phi}} + \frac{4|X|}{|B_i|},$ $c_{\phi} = \frac{1}{|X|} \sum_{x \in X} d(x, B)^2, \ \alpha = \log_2 k + 1.$ Coreset size $O(\frac{dk^3}{\epsilon^2})$.

 $\mbox{\bf Merge coresets} \quad \mbox{union of } (k, \epsilon)\mbox{-coreset is also } (k, \epsilon)\mbox{-coreset}.$

Compress a (k,δ) -coreset of a (k,ϵ) -coreset is a $(k,\epsilon+\delta+\epsilon\delta)$ -coreset.

Coresets on streams Bin. tree of merge-compress. Error \propto height.

Mapreduce k-means Construct (k,ϵ) -coreset C, solve k-means (w/many restarts) on coreset. (Repeat.) Near-optimal solution.

5 Bandits