Slido: #ADA2021

CSIE 2136 Algorithm Design and Analysis, Fall 2021

Amortized Analysis

Hsu-Chun Hsiao

Agenda

- Why amortized analysis (均攤分析)
- Aggregate method (聚集方法)
- △ Accounting method (記帳方法) or banker's method
- Potential method (位能方法) or physicist's method

Why amortized analysis?

- <u>Example</u>: stack supports Push, Pop, Multipop operations
 - $\rho \quad \text{push}(S, x) = O(1)$
 - pop(S) = O(1)
 - $\rho \quad \text{multipop}(S, k) = O(\min\{|S|, k\})$
- What is the worst-case time of a sequence of n operations on an initially empty stack?

Worst-case analysis on individual operations may be loose

- What is the worst-case time of a sequence of n operations on an initially empty stack?
 - P Worst-case time of the n^{th} operation = multipop(S,n) = O(n)
 - ρ => Worst-case time of a sequence of n operations = $O(n^2)$
- Powever, this worst-case bound is not tight. Why?
 - The expensive multipop operation won't occur frequently!

Worst-case analysis on individual operations may be loose

- Given a sequence of n operations, their occurrences and costs may depend on others.
- Often happens when operating on the same data structure
- P Thus, they should be analyzed together, not individually.

Goal of amortized analysis

 \circ Obtain an asymptotic worst-case bound for a sequence of n operations

All of the valid operation sequences on stack when n = 3:

```
push, push, pop
push, push, multipop(1)
push, push, multipop(2)
push, pop, push
push, multipop(1), push
```

Goal of amortized analysis

• Obtain an asymptotic worst-case bound for a sequence of n operations

Amortized analysis: 3 common techniques

Aggregate method (聚集方法)

- Determine an upper bound on the cost over any sequence of n operations, T(n)
- The average cost per operation is then T(n)/n
- All operations have the same amortized cost

Accounting method (記帳方法)

- Each operation is assigned an amortized cost (may differ from the actual cost)
- Each object of the data structure is associated with a credit
- Need to ensure that every object has sufficient credit at any time

Potential method (位能方法)

- Similar to accounting method; each operation is assigned an amortized cost
- The data structure as a whole maintains a credit (i.e., potential)
- Need to ensure that the potential level is nonnegative at any time

Note: these are for analysis purpose only, not for implementation!

Example #1: stack

A stack is empty initially and supports three types of operations Implemented using an array or linked list


```
MULTIPOP(S,k):
    while not STACK-EMPTY(S) and k > 0
        POP(S)
        k = k - 1
```

Operation type	Cost
Push(S,x)	0(1)
Pop(S)	0(1)
Multipop (S, k): pop top k objects at once	$O(\min\{ S ,k\})$

Example #2: k-bit counter

- Counts up from 0 by an operation, INCREMENT
- Implemented using a k-bit array
- If flipping one bit costs O(1), INCREMENT costs O(k)


```
INCREMENT(A):
    i = 0
    while i < A.length and A[i] == 1
        A[i] = 0
        i = i + 1
    if i < A.length
        A[i] = 1</pre>
```

More examples

- Dynamic table (insertion only, insertion and deletion)
- Dynamic binary search [Problem 17.2]
- Queue with two stacks
- Disjoint-set implementation (linked list with weighted union, forest with union-by-rank and path compression) [Ch. 21.4]
- Splay tree
- Cuckoo hashing [1]

Aggregate Method (聚集方法)

Chapter 17.1

Aggregate method

Idea: 直接觀察 n 次操作的總花費的上限

Approach:

- 1. Determine an upper bound T(n) on the cost of any sequence of n operations
- 2. Calculate the amortized cost per operation as T(n)/n
 - All operations have the same amortized cost

Aggregate method for stack

Observations:

- 1. Total cost = # of popped objects + # of pushed objects
- 2. For a sequence of n operations, maximum # of pushed objects is n
- 3. # of popped objects \leq # of pushed objects
 - 。 出來的不可能比進去的多
- => Total cost for an entire sequence is O(n)
- => Amortized cost per operation is O(n)/n = O(1)

Consider a variant of the stack data structure supporting mutlipush (S, X), where X is a set of objects. Does this stack variant also have O(1) amortized cost per operation? No.

Operation type	Cost
Push(S,x)	0(1)
Pop(S)	0(1)
Multipop (S, k): pop top k objects at once	$O(\min\{ S ,k\})$
Multipush (S, X): X is a set of objects	O(X)

Aggregate method for k-bit counter

Counter value	A[3]	A[2]	A[1]	A[0]	Total cost of first n operations
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11
8	1	0	0	0	15

Total cost = # of bit flips = # of RED in the table

Aggregate method for k-bit counter

Counter value	A[3]	A[2]	A[1]	A[0]	Total cost of first n operations
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11
8	1	0	0	0	15

Flip every increment Flip every 2 increments Flip every 4 increments Tlip every 8 increments

Aggregate method for k-bit counter

Observation: Total # of bit flips in n increment operations $= n + \lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{4} \rfloor + \dots + \lfloor \frac{n}{2^{k-1}} \rfloor$

$$\rho$$
 => Total cost of the sequence is $O(n)$

 ρ => Amortized cost per operation is O(n)/n = O(1)

Consider a variant of the k-bit counter data structure where flipping the ith bit costs 2^{i} instead of O(1).

Does this variant also have O(1) amortized cost per operation? If not, what is its amortized cost?

No.

Total # of bit flips in n increment operations

$$= n * 2^{0} + \left\lfloor \frac{n}{2} \right\rfloor * 2^{1} + \left\lfloor \frac{n}{4} \right\rfloor * 2^{2} + \dots + \left\lfloor \frac{n}{2^{k-1}} \right\rfloor * 2^{k-1} \\ \leq kn$$

Amortized cost per operation is O(k)

Accounting Method (記帳方法)

Chapter 17.2

Accounting method: idea

- 猜測每種操作的均攤費用
- p 想像資料結構中每個物件有一個帳戶,初始金額為零
- p 對某個物件進行操作時,
 - 若實際費用比均攤費用低,就存錢到其帳戶
 - 若實際費用比均攤費用高,從其帳戶裡拿錢補貼
- ρ 若進行任意 n 個操作的過程不會造成任何帳戶透支,則為合理的均攤費用
- 跟 aggregate method 的主要差別
 - 不同操作可以有不同的均攤費用
 - ρ 先猜測每種操作的均攤費用,再推算 T(n)

Accounting method: approach

- 1. Guess each operation type's amortized cost
- 2. Validity check: Check if the per-op amortized costs are valid
 - Assume every object initially has credit = 0
 - P Let c_i and $\widehat{c_i}$ be the actual and amortized costs of the i^{th} op, respectively
 - P Check if it has sufficient credit (≥ 0) for any sequence of n ops
 - ho If actual cost < amortized cost ($c_i < \hat{c_i}$), the difference becomes credit
 - ρ If actual cost > amortized cost $(c_i > \widehat{c_i})$, then withdraw stored credit
 - If the check fails, go back to Step 1
- 3. Calculate the total cost $T(n) = \sum_{i=1}^{n} \widehat{c_i}$

Following the accounting method, show that $T(n) = \sum_{i=1}^{n} \widehat{c_i}$ is an upper bound for the actual cost $\sum_{i=1}^{n} c_i$.

<u>Hint</u>: Show that for any sequence of n operations, if every object has sufficient credit (≥ 0) throughout the execution, then $\sum_{i=1}^{n} (\hat{c_i} - c_i) \geq 0$.

Accounting method for stack

Operation	Actual cost	Amortized cost	Credit change
push(S,x)	1	2	存1元在x的帳戶裡
pop(S)	1	0	從 popped object 的帳戶領1元
multipop(S,k)	$min\{ S ,k\}$	0	從每個 popped object 的帳戶領1元

Accounting method for stack

Operation	Actual cost	Amortized cost	Credit change
push(S,x)	1	2	存1元在×的帳戶裡
pop(S)	1	0	從 popped object 的帳戶領1元
multipop(S,k)	$min\{ S ,k\}$	0	從每個 popped object 的帳戶領1テ

- 2. Validity check: Show that every object has credit ≥ 0
 - push: the pushed object is deposited \$1 credit
 - pop and multipop: use the credit stored with the popped object
 - P There is always enough credit to pay for each operation

Accounting method for stack

Operation	Actual cost	Amortized cost	Credit change
push(S,x)	1	2	存1元在x的帳戶裡
pop(S)	1	0	從 popped object 的帳戶領1元
multipop(S,k)	$min\{ S ,k\}$	0	從每個 popped object 的帳戶領1元

- 2. Show that every object has credit ≥ 0
 - push: the pushed object is deposited \$1 credit
 - pop and multipop: use the credit stored with the popped object
 - There is always enough credit to pay for each operation
- 3. Per-op amortized costs are all O(1), so total cost is T(n) = O(n)

Accounting method for k-bit counter

Operation	Actual cost	Amortized cost	Credit change
INCREMENT	# of bits flipped	?	
i^{th} bit 0 -> 1	1	\$2 存	1元在 ith bit 裡
i th bit 1 -> 0	1	\$0 用	I掉存在 i th bit 的 1 元

Accounting method for k-bit counter

1. Guess per-op amortized costs:

Operation	Actual cost	Amortized cost	Credit change
INCREMENT	# of bits flipped	\$2	
i^{th} bit 0 -> 1	1	\$2 存	1元在 ith bit 裡
i^{th} bit 1 -> 0	1	\$0 用	掉存在 i th bit 的 1 元

2. Validity check:

- Counter 起始值為 00…0
- 每次 INCREMENT 都會把一個 0 設成 1,可能把很多 1 設成 0
- 可在被設為1的 bit 存一元
- ┍ 把 1 設成 0 時 , 花掉存在這個 bit 的一元即可

Accounting method for k-bit counter

Operation	Actual cost	Amortized cost	Credit change
INCREMENT	# of bits flipped	\$2	
i^{th} bit 0 -> 1	1	\$2 存	1元在 ith bit 裡
i th bit 1 -> 0	1	\$0 用	掉存在 ith bit 的 1 元

- 2. Validity check:
 - Counter 起始值為 00…0
 - 每次 INCREMENT 都會把一個 0 設成 1,可能把很多 1 設成 0
 - 可在被設為1的 bit 存一元
 - ┍ 把 1 設成 0 時 , 花掉存在這個 bit 的 一元即可
- 3. Per-op amortized cost is $O(1) \Rightarrow total cost T(n) = O(n)$

Potential Method (位能方法)

Chapter 17.3

Potential method: idea

- 想像將資料結構的狀態對應到位能,初始值為0
- 對資料結構的狀態做操作時,
 - 若實際所需能量比均攤值低,將多餘能量的儲存成位能
 - 若實際所需能量比均攤值高,用儲存的位能補貼
- ρ 若任意 n 個操作都有足夠位能,則從位能的變化算出個別操作的均攤費用
- 跟 accounting method 的主要差異:資料結構本身有 potential/credit, 而不是每個物件都有 credit

Potential method: approach

- Guess a potential function
 Φ that takes the current data structure state
 as input and outputs a potential level
- 2. Validity check: check if the potential level is never lower than the initial value after any sequence of *n* operations
 - Let D_i be the state of data structure after i^{th} operation
 - P WLOG, check if $\Phi(D_0) = 0$ and $\forall i = 1 ... n, \Phi(D_i) \ge 0$
 - If the check fails, go back to Step 1
- 3. Calculate the per-op amortized costs based on the potential function (see next slide)
- 4. Calculate the total cost based on per-op amortized costs $T(n) = \sum_{i=1}^{n} \widehat{c}_i$

Potential function

- Potential function Φ maps a data structure state to a real number
 - ρ D_0 is the initial state of data structure
 - P D_i is the state of data structure after i^{th} operation
 - ρ c_i is the actual cost of i^{th} operation
 - ρ $\widehat{c_i}$ is the amortized cost of i^{th} operation, defined as $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$

Show that $T(n) = \sum_{i=1}^{n} \widehat{c_i}$ is an upper bound for the actual cost $\sum_{i=1}^{n} c_i$.

- P Hint: Show that for any sequence of n ops, if $\Phi(D_i) \ge \Phi(D_0)$ throughout the execution, then $\Sigma_{i=1}^n(\widehat{c_i} c_i) \ge 0$.
- Based on the definition, we have

$$\sum_{i=1}^{n} \widehat{c_i} = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

- Passing the validity check ensures $\Phi(D_n) \ge \Phi(D_0)$
- $Partial Thus, \Sigma_{i=1}^n (\widehat{c_i} c_i) \ge 0$

Potential method for stack

- 1. Guess $\Phi(D_i)$ to be the # of objects in the stack after the i-th op
- 2. Validity check:

 - $P \Phi(D_i) \ge 0$, because # of objects in stack is always ≥ 0

 $\Phi(D_i)$: the # of objects in the stack after the i-th op

 c_i : the actual cost of the *i*-th op

 $\widehat{c_i}$: the amortized cost of the *i*-th op, defined as $\widehat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$

- 3. Compute per-op amortized cost:
 - ρ For push (S, x): $\hat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 + (|S| + 1) |S| = 2$
 - $Parabox{ For pop (S): } \widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 + (|S| 1) |S| = 0$
 - For multipop (S, k): $\hat{c}_i = 0$
- 4. All operations have O(1) amortized cost, so total cost of n operations is O(n)

Q: justify why $\widehat{c}_i = 0$ for multipop (S, k)

Potential method for k-bit counter

- 1. Guess $\Phi(D_i)$ to be the # of 1's in the counter after the *i*-th op
- 2. Validity check:
 - $Partial \Phi(D_0) = 0$, because counter is initially all 0's
 - $P \Phi(D_i) \ge 0$, because # of 1's cannot be negative

 $\Phi(D_i)$: the # of 1's in the counter after the i-th op

 c_i : the actual cost of the *i*-th op

 $\widehat{c_i}$: the amortized cost of the *i*-th op, defined as $\widehat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$

- 3. Compute the amortized cost of INCREMENT:
 - Let $LSB_0(x)$ be the index of the least significant 0 bit of x
 - ho For example, $LSB_0(01011011) = 2$, and $LSB_0(01011111) = 5$
 - $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$ $= (LSB_0(i-1) + 1) + (-LSB_0(i-1) + 1) = 2$
- 4. All operations have O(1) amortized cost, so the total cost of n operations is O(n)

Amortized analysis: 3 common techniques

Aggregate method (聚集方法)

- Determine an upper bound on the cost over any sequence of n operations, T(n)
- The average cost per operation is then T(n)/n
- All operations have the same amortized cost

Accounting method (記帳方法)

- Each operation is assigned an amortized cost (may differ from the actual cost)
- Each object of the data structure is associated with a credit
- Need to ensure that every object has sufficient credit at any time

Potential method (位能方法)

- Similar to accounting method; each operation is assigned an amortized cost
- The data structure as a whole maintains a credit (i.e., potential)
- Need to ensure that the potential level is nonnegative at any time

^{*}三種方法一般都能獲得相同的分析結果,可依個人偏好採用

- A table stores objects and supports insertion
 - Initially the table T is empty
 - Each operation inserts an object to T
 - Double its size when out of slots (suppose this takes time linear to the orignial size); create a table of size 1 first if it's empty

i th operation	Table	Actual cost (add + resize)
	[]	-
1: insertion	[1]	1
2: insertion	[1,2]	1+1=2
3: insertion	[1,2,3,_]	1+2=3
4: insertion	[1,2,3,4]	1
5: insertion	[1,2,3,4,5,_,_,_]	1+4=5

Aggregate method

$$\text{The actual cost } c_i = \begin{cases} i, \text{ if } i-1 \text{ is 2's power} \\ 1, \text{ otherwise} \end{cases}$$

$$\text{Principle} > T(n) = \sum_{i=1}^n c_i \leq n + \sum_{i=1}^{\lfloor \lg(n-1) \rfloor} 2^i \leq 3n$$

$$\rho = T(n) = \sum_{i=1}^{n} c_i \le n + \sum_{i=1}^{\lfloor \lg(n-1) \rfloor} 2^i \le 3n$$

 ρ => The amortized cost of insertion is O(1)

i th operation	Table	Actual cost (add + resize)
	[]	-
1: insertion	[1]	1
2: insertion	[1,2]	1+1=2
3: insertion	[1,2,3,_]	1+2=3
4: insertion	[1,2,3,4]	1
5: insertion	[1,2,3,4,5,_,_,_]	1+4=5

Use the accounting method

Hint: choose an amortized cost of 3

i th operation	Table	Actual cost (add + resize)
	[]	-
1: insertion	[1]	1
2: insertion	[1,2]	1+1=2
3: insertion	[1,2,3,_]	1+2=3
4: insertion	[1,2,3,4]	1
5: insertion	[1,2,3,4,5,_,_,_]	1+4=5

Use the potential method

<u>Hint</u>: Consider a potential function $\Phi(T) = 2 * T.num - T.size$, where T.num is the number of inserted objects and T.size is the table size

- A table stores objects and supports insertion and deletion of objects
 - Initially the table T is empty
 - Each operation inserts or deletes an object
 - Double its size when out of slots (i.e., load factor = 1)
 - ho Halve its size when the load factor is ≤ 1/4
 - Suppose resizing takes time linear to the orignial size

i th operation	Table	Actual cost (add/delete + resize)
	[]	-
1: insertion	[1]	1
2: insertion	[1,2]	1+1=2
3: insertion	[1,2,3,_]	1+2=3
4: insertion	[1,2,3,4]	1
5: insertion	[1,2,3,4,5,_,_,_]	1+4=5
6: deletion	[1,2,3,4,_,_,_,]	1
7: deletion	[1,2,3,_,_,_,_]	1
8: deletion	[1,2,_,_,_,_,_]	1
9: deletion	[1,_,_,]	1+1=2
10: insertion	[1,2,_,_]	1

Use the aggregate method

Use the accounting method

<u>Hint</u>: insertion's amortized cost = 3, deletion's amortized cost = 2

Use the potential method

<u>Hint</u>: Consider a potential function $\Phi(T) = 2 * num - size$ when $\alpha \ge \frac{1}{2}$ and $\Phi(T) = size/2 - num$ when $\alpha < \frac{1}{2}$, where num is the number of inserted objects, size is the table size, $\alpha = \frac{num}{size}$ is the load factor.

