# cluster

## July 13, 2025

# [5]: import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler, LabelEncoder import seaborn as sns from sklearn.cluster import KMeans from yellowbrick.cluster import KElbowVisualizer from sklearn.metrics import silhouette\_score

| [6]: |   | Nam                    | а      | No_HP              | Kota      | Paket         | Tgl_beli    | \ |
|------|---|------------------------|--------|--------------------|-----------|---------------|-------------|---|
|      | 0 | Balidin Dongoran, S.T. | 857    | _                  | Surabaya  | Freedom Comb  | o2024-10-08 |   |
|      | 1 | Okto Jailani           | 814    |                    | Jakarta   | Freedom Comb  |             |   |
|      | 2 | R. Lantar Anggraini    | 814    |                    | Medan     | Freedom Comb  | o2024-07-22 |   |
|      | 3 | Darimin Pradipta       | 814    |                    | Semarang  | Unlimited 2GB | 2025-01-11  |   |
|      | 4 | Kanda Napitupulu       | 856    |                    | Surabaya  | Yellow        | 2025-03-30  |   |
|      |   |                        |        |                    |           |               |             |   |
|      |   | Durasi_Bulan Frekuensi | _Topup | Kuota <sub>.</sub> | _Bulan_GB |               |             |   |
|      | 0 | 9                      | 5      |                    | 16        |               |             |   |
|      | 1 | 4                      | 1      |                    | 7         |               |             |   |
|      | 2 | 12                     | 2      |                    | 20        |               |             |   |
|      | 3 | 2                      | 3      |                    | 5         |               |             |   |
|      | 4 | 12                     | 1      |                    | 1         |               |             |   |

[7]: numeric\_features = df.select\_dtypes(include='number').columns

```
fig, axes = plt.subplots(3, 2, figsize=(8, 6))
axes = axes.flatten()

for i, column in enumerate(df[numeric_features].columns):
    df[numeric_features][column].hist(ax=axes[i], bins=20, edgecolor='black')
    axes[i].set_title(column)

for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])
```

# plt.tight\_layout() plt.show()



# [8]: # scaling using standardization, karena data terdistribusi normal std\_scale = StandardScaler() df[numeric\_features] = std\_scale.fit\_transform(df[numeric\_features]) df.head()

| [8]: |   |                | Nama               | No_HP  | Kota                          | Paket                   | Tgl_beli    | \ |  |  |
|------|---|----------------|--------------------|--------|-------------------------------|-------------------------|-------------|---|--|--|
|      | 0 | Balidin Dongoi | din Dongoran, S.T. |        | Surabaya                      | Freedom Comb            | o2024-10-08 |   |  |  |
|      | 1 | Okto Jailani   |                    |        | Jakarta                       | Freedom Combo2025-03-15 |             |   |  |  |
|      | 2 | R. Lantar Aı   | nggraini           |        | Medan Freedom Combo2024-07-22 |                         |             |   |  |  |
|      | 3 | Darimin        | Pradipta           |        | Semarang                      | Unlimited 2GB           | 2025-01-11  |   |  |  |
|      | 4 | Kanda N        | lapitupulu         |        | Surabaya                      | Yellow                  | 2025-03-30  |   |  |  |
|      |   |                |                    |        |                               |                         |             |   |  |  |
|      |   | Durasi_Bulan   | Frekuensi_To       | pup Ku | ota_Bulan_(                   | GB                      |             |   |  |  |
|      | 0 | 0.692458       | 1.359              | 747    | 0.4481                        | 11                      |             |   |  |  |
|      | 1 | -0.738240      | -1.025             | 774    | -0.83017                      | 7                       |             |   |  |  |
|      | 2 | 1.550877       | -0.4293            | 394    | 1.01623                       | 39                      |             |   |  |  |
|      | 3 | -1.310520      | 0.166              | 986    | -1.11424                      | .1                      |             |   |  |  |
|      | 4 | 1.550877       | -1.025             | 774    | -1.68236                      | 9                       |             |   |  |  |

```
[9]: # ubah fitur kategori menjadi numerik dengan LabelEncoder
kategori_features = df.select_dtypes(include='object').columns
encoders = {}
df_temp = df.copy()
```

```
for feature in kategori_features:
           le = LabelEncoder()
           df_temp[feature] = le.fit_transform(df[feature])
           encoders[feature] = le
       df = df_temp
       df.head()
          Nama
                    No_HP Kota Paket Tgl_beli
                                                     Durasi_Bulan Frekuensi_Topup \
       0
            11
                               5
                                       0
                                                 44
                                                          0.692458
                                                                             1.359747
       1
           115
                               1
                                       0
                                                108
                                                         -0.738240
                                                                            -1.025774
       2
           138
                               3
                                       0
                                                                            -0.429394
                                                  2
                                                          1.550877
       3
            23 -
                               4
                                       2
                                                 86
                                                         -1.310520
                                                                             0.166986
       4
            88
                               5
                                       4
                                                114
                                                          1.550877
                                                                            -1.025774
          Kuota_Bulan_GB
       0
                 0.448111
               -0.830177
       1
       2
                 1.016239
       3
               -1.114241
       4
               -1.682369
[10]: # Melakukan Handling Outlier Data berdasarkan jumlah outlier, apakah
        emenggunakan metode drop atau mengisi nilai tersebut.
       for feature in df[numeric features].columns:
           Q1 = df[feature].quantile(0.25)
           Q3 = df[feature].quantile(0.75)
           IQR = Q3 - Q1
           lower = Q1 - 1.5 * IQR
           upper = Q3 + 1.5 * IQR
           # tangani outlier denga
           median = df[feature].rneuian()
           df.loc[:, feature] = df[feature].apply(lambda x: median if x < lower or x > ___
        gupper else x)
       # visualisasikan
       cols = 4
       fig, axes = plt.subplots(2, cols, figsize=(10, 8))
       for i, feature in enumerate(df.columns):
           baris, kolom = divmod(i, cols)
           sns.boxplot(y=df[feature], ax=axes[baris, kolom])
```

[9]:

axes[baris, kolom].set\_title(f'{feature}')

plt.tight\_layout()

plt.show()







```
[12]: # Menggunakan algoritma K-Means Clustering
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(cluster_features)
```

[12]: KMeans(n\_clusters=3, random\_state=42)

[13]: # Menghitung dan menampilkan nilai Silhouette Score.
silhouette\_score(cluster\_features, kmeans.fit\_predict(cluster\_features))

[13]: 0.2413538505054932

```
[14]: # Membuat visualisasi hasil clustering

df['Cluster'] = kmeans.labels_
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df, x='Durasi_Bulan', y='Kuota_Bulan_GB', hue='Cluster',_
palette='viridis')
plt.title('Hasil Visualisasi K-Means Clustering')
plt.xlabel('Durasi_Bulan')
plt.ylabel('Kuota_Bulan_GB')
plt.show()
```



| [15]: # | <pre>inverse dataset df[numeric_features] = std_scale.inverse_transform(df[numeric_features])</pre>             |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         | for feature in kategori_features:<br>df[feature] = encoders[feature].inverse_transform(df[feature].astype(int)) |  |  |  |  |  |
|         | df.head()                                                                                                       |  |  |  |  |  |

| [15]: |   |                        | Nama            | No HP    | Kota                                               | Paket        | Tgl_beli    | ١ |  |
|-------|---|------------------------|-----------------|----------|----------------------------------------------------|--------------|-------------|---|--|
|       | 0 | Balidin Dongoran, S.T. |                 |          | Surabaya                                           | Freedom Comb | o2024-10-08 |   |  |
|       | 1 | Ökt                    |                 | Jakarta  | Freedom Combo2025-03-15<br>Freedom Combo2024-07-22 |              |             |   |  |
|       | 2 | R. Lantar A            |                 | Medan    |                                                    |              |             |   |  |
|       | 3 | Darimin                |                 | Semarang | Unlimited 2GB                                      | 2025-01-11   |             |   |  |
|       | 4 | Kanda N                |                 | Surabaya | Yellow                                             | 2025-03-30   |             |   |  |
|       |   | Durasi_Bulan           | Frekuensi_Topup | Kuota_   | Bulan_GB                                           | Cluster      |             |   |  |
|       | 0 | 9.0                    | 5.0             |          | 16.0                                               | 1            |             |   |  |
|       | 1 | 4.0                    | 1.0             |          | 7.0                                                | 0            |             |   |  |
|       | 2 | 12.0                   | 2.0             |          | 20.0                                               | 1            |             |   |  |

```
    3
    2.0
    3.0
    5.0
    0

    4
    12.0
    1.0
    1.0
    1
```

### [16]: # descriptive features

descriptive\_features = ['Durasi\_Bulan', 'Frekuensi\_Topup', 'Kuota\_Bulan\_GB'] descriptive\_features\_categorical = ['Kota', 'Paket']

agg\_result\_categorical = df.

groupby('Cluster')[descriptive\_features\_categorical].agg(pd.Series.mode)

display(agg\_result)

display(agg\_result\_categorical)

|         | Durasi_Bulan                         |        | Frekuensi_Topup |          |           |     |       | \     |  |  |  |
|---------|--------------------------------------|--------|-----------------|----------|-----------|-----|-------|-------|--|--|--|
|         | mean                                 | min    | max (           | count    | nt mean i |     | max ( | count |  |  |  |
| Cluster |                                      |        |                 |          |           |     |       |       |  |  |  |
| 0       | 4.441176                             | 1.0    | 10.0            | 68       | 2.176471  | 0.0 | 5.0   | 68    |  |  |  |
| 1       | 10.333333                            | 7.0    | 12.0            | 72       | 2.902778  | 0.0 | 5.0   | 72    |  |  |  |
| 2       | 4.500000                             | 1.0    | 9.0             | 60       | 3.116667  | 0.0 | 5.0   | 60    |  |  |  |
|         | Kuota_Bulan_GB<br>mean min max count |        |                 |          |           |     |       |       |  |  |  |
| Cluster | IIIe                                 | all II | 1111 111        | ax count |           |     |       |       |  |  |  |
| Ciustei |                                      |        |                 |          |           |     |       |       |  |  |  |

Cluster 0 6.705882 1.0 15.0 68 1 12.902778 1.0 24.0 72 2 19.733333 13.0 25.0 60

Kota Paket

Cluster

Yogyakarta Unlimited 2GB
 Surabaya Freedom Internet
 [Bandung, Semarang] Freedom Internet