Lógica Matemática e Computacional

Lógica Matemática e Computacional

Implicação e Equivalência

Rubens Rodrigues

Definição:

Dadas as proposições compostas P e Q, diz-se que ocorre uma implicação lógica (ou relação de implicação) entre P e Q quando a proposição condicional $P \rightarrow Q$ é uma tautologia.

Notação: P ⇒ Q

Portanto, dizemos que P ⇒ Q quando nas respectivas tabelas-verdade dessas duas proposições não aparece V na última coluna de P e F na última coluna de Q, com V e F em uma mesma linha, isto é, não ocorre P e Q com valores lógicos simultâneos respectivamente V e F.

Em particular, toda proposição implica uma tautologia e somente uma contradição implica outra contradição.

Exemplos:

a)
$$3 = 2 + 1 \Rightarrow 3^2 = (2 + 1)^2$$
.

Podemos usar o símbolo \Rightarrow , pois a proposição condicional: $3 = 2 + 1 \rightarrow 3^2 = (2 + 1)^2$ é verdadeira.

b) Não podemos escrever que $3 > 2 \Rightarrow 3 > 4$, pois a proposição condicional: $3 > 2 \rightarrow 3 > 4$ é falsa.

 Observação: Os símbolos ⇒ e → têm significados diferentes: O símbolo > entre duas proposições dadas indica uma relação, isto é, que a proposição condicional associada é uma tautologia, enquanto -> realiza uma operação entre proposições dando origem a uma nova proposição p -> q (que pode conter valores lógicos V ou F.

Implicação - Propriedades

Propriedade Reflexiva:

$$P(p,q,r,...) \Rightarrow P(p,q,r,...)$$

Propriedade Transitiva:

Se P(p,q,r,...)
$$\Rightarrow$$
 Q(p,q,r,...) E
Q(p,q,r,...) \Rightarrow R(p,q,r,...), ENTÃO
P(p,q,r,...) \Rightarrow R(p,q,r,...)

 $p \land q, p \lor q, p \leftrightarrow q$

p	q	p ^ q	pvq	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

 $p \land q, p \lor q, p \leftrightarrow q$

p	q	p ^ q	pvq	$p \leftrightarrow q$
V	V	V	V	V

Assim, diz-se que p $^{\wedge}$ q \Rightarrow p $^{\vee}$ q \Rightarrow e p $^{\wedge}$ q \Rightarrow p \leftrightarrow q

Implicação

$$p \leftrightarrow q \Rightarrow p \rightarrow q$$

$$p \leftrightarrow q \Rightarrow q \rightarrow p$$

Implicação

$$(p v q) \land \sim p \Rightarrow q$$

$$(p \vee q) \wedge \neg q \Rightarrow p$$

REGRA DE INFERENCIA: SILOGISMO DISJUNTIVO

Implicação

$$(p \rightarrow q) \land p \Rightarrow q$$

REGRA MODUS ponens

$$(p \rightarrow q) \land \sim q \Rightarrow \sim p$$

REGRA MODUS tollens

TAUTOLOGIA e IMPLICAÇÃO LÓGICA

Teorema: A proposição P(p,q,r,...) IMPLICA a proposição Q(p,q,r,...) se e somente se a condicional P \rightarrow Q é tautológica.

$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$
 se e somente se:
 $V(P \rightarrow Q) = V$ (tautológica).

Exemplo de Implicação e Tautologia

$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$
 se e somente se: $V(P \rightarrow Q) = V$ (tautológica).

A condicional:

$$(p \rightarrow q) \land (q \land r) \rightarrow (p \rightarrow r) \text{ \'e Tautologia}.$$

Logo, deduz-se a implicação lógica:

$$(p \rightarrow q) \land (q \land r) \Rightarrow p \rightarrow r$$

(Regra do SILOGISMO HIPOTÉTICO)

Exemplo: Mostrar que $(p \land q) \Rightarrow p$

р	q	p ^ q	(p ^ q) → p
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

Como (p ^ q) → p é uma tautologia, então (p ^ q) ⇒ p, isto é, ocorre a implicação lógica.

 As tabelas-verdade das proposições p ^ q, p v q, p ↔ q são:

A proposição "p ^ q" é verdadeira (V) somente na linha 1 e, nesta linha, as proposições "p v q" e "p ↔ q" também são verdadeiras (V). Logo, a primeira posição implica cada uma das outras posições, isto é:

р	q	p ^ q	pvq	p ↔ q
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

$$p \land q \Rightarrow p \lor q e p \land q \Rightarrow p \leftrightarrow q$$

As mesmas tabelas-verdade também demonstram as importantes Regras de Inferência:

р	q	p ^ q	pvq	p ↔ q
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

- (i) $p \Rightarrow p \vee q e q \Rightarrow p \vee q$ (Adição)
- (ii) $p \land q \Rightarrow p e p \land q \Rightarrow q$ (Simplificação)

Regras de Inferência	
Adição disjuntiva (AD)	$p \Rightarrow p \lor q$
Simplificação conjuntiva(SIM)	$p \land q \Rightarrow p \text{ ou } p \land q \Rightarrow q$
Modus Ponens(MP)	$(p \rightarrow q) \land p \Rightarrow q$
Modus Tollens(MT)	$(p \rightarrow q) \land \sim q \Rightarrow \sim p$
Silogismo Disjuntivo(SD)	(p ∨ q) ∧ ~q ⇒ p
Silogismo Hipotético(SH)	$(p \rightarrow q) \land (q \rightarrow r) \Rightarrow p \rightarrow r$
Dilema Construtivo(DC)	$(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r) \Rightarrow q \lor s$
Dilema Destrutivo(DD)	$(p \rightarrow q) \land (r \rightarrow s) \land (\sim q \lor \sim s) \Rightarrow \sim p \lor \sim r$
Absorção(ABS)	$p \rightarrow q \Rightarrow p \rightarrow (p \rightarrow q)$

2. As tabelas-verdade das proposições p ↔ q, p → q, q → p são:

A proposição " $p \leftrightarrow q$ " é verdadeira (V) nas linhas 1 e 4 e, nestas linhas, as proposições " $p \rightarrow q$ " e " $q \rightarrow p$ " também são verdadeiras (V). Logo, a primeira posição **implica** cada uma das outras duas posições, isto é:

р	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$
V	V	V	V	V
V	F	F	F	V
F	V	F	V	F
F	F	V	V	V

$$p \leftrightarrow q \Rightarrow p \rightarrow q e p \leftrightarrow q \Rightarrow q \rightarrow p$$

3. A tabela-verdade da proposição "(p v q) ^ ~p" é:

Esta proposição é verdadeira (V) somente na linha 3 e, nesta linha, a proposição "q" também é verdadeira. Logo, subsiste a implicação lógica:

 $(p \lor q) \land \sim p \Rightarrow q,$

			7	
р	q	pvq	~p	(p v q) ^ ~p
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

4. A tabela-verdade da proposição "(p → q) ^ p" são:

Esta proposição é verdadeira (V) somente na linha 1 e, nesta linha, a proposição "q" também é verdadeira. Logo, subsiste a implicação lógica:

$$(p \rightarrow q) \land p \Rightarrow q$$

denominada Regra Modus ponens.

р	q	$p \rightarrow q$	$(p \rightarrow q) \land p$
٧	V	V	V
٧	F	F	F
F	V	V	F
F	F	V	F

5. As tabelas-verdade das proposições "(p → q) ^ ~q" e "~p" são:

Esta proposição é verdadeira (V) somente na linha 4 e, nesta linha, a proposição " \sim p" também é verdadeira Logo, subsiste a implicação lógica: $(p \rightarrow q) \wedge \sim q \Rightarrow \sim p$.

Ų	р	q	$p \rightarrow q$	~q	(p→q) ^ ~q	~p
	V	V	V	F	F	F
1.	V	F	F	V	F	F
	F	V	V	F	F	V
	F	F	V	V	V	V

denominada Regra do Modus tollens.

As mesmas tabelas-verdade também mostram que "~p" implica "p \rightarrow q", isto é: ~p \Rightarrow p \rightarrow q

Equivalência Lógica

Definição: Dadas as proposições compostas P e Q, diz-se que ocorre uma equivalência lógica entre P e Q quando suas tabelas-verdade forem idênticas.

Notação: P ≡ Q ou P ⇔ Q

(Lê-se: "P é equivalente a Q")

Equivalência Lógica

Notação:

 $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$

P é equivalente a Q

Se as proposições P(p,q,r,...) e Q(p,q,r,...) são ambas TAUTOLOGIAS, ou então, são CONTRADIÇÕES, então são EQUIVALENTES.

Equivalência - Propriedades

Propriedade Reflexiva:

 $P(p,q,r,...) \Leftrightarrow P(p,q,r,...)$

Propriedade Simétrica:

Se P(p,q,r,...) \Leftrightarrow Q(p,q,r,...) ENTÃO Q(p,q,r,...) \Leftrightarrow P(p,q,r,...)

Equivalência - Propriedades

Propriedade Transitiva:

Se P(p,q,r,...)
$$\Leftrightarrow$$
 Q(p,q,r,...) E
Q(p,q,r,...) \Leftrightarrow R(p,q,r,...) ENTÃO
P(p,q,r,...) \Leftrightarrow R(p,q,r,...) .

Exemplo - Equivalência Lógica

~~p ⇔ p (Regra da dupla negação)

p	~p	~~p
V	F	V
F	V	F

Exemplo - Equivalência Lógica

~p → p ⇔ p (Regra de Clavius)

p	~p	~p →p
V	F	V
H.	V	F

Exemplo - Equivalência Lógica

p → p ^ q ⇔ p → q (Regra da absorção)

p	q	p ^ q	b → b v d	$p \rightarrow q$
V	V	V	V	V
V	F	F	F	F
F	V	F	V	V
F	F	F	V	V

Equivalência Lógica

$$p \rightarrow q \Leftrightarrow \sim p \vee q$$

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$$

Tautologia Equivalência Lógica

Teorema: P(p,q,r,...) é EQUIVALENTE à Q(p,q,r,...) se e somente se a bicondicional $P \leftrightarrow Q$ é tautológica.

 $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$ se e somente se: $V(P \leftrightarrow Q) = V$ (tautológica).

Tautologia e Equivalência Lógica

 $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$ se e somente se: $V(P \leftrightarrow Q) = V$ (tautológica).

DEMONSTRAÇÃO:

Se P(p,q,r,...) e Q(p,q,r,...) SÃO

EQUIVALENTES então têm tabelas-verdade

idênticas, e por conseguinte o

valor lógico da bicondicional é sempre Verdade

Ex. Tautologia e Equivalência Lógica

$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$
 se e somente se:
 $V(P \leftrightarrow Q) = V$ (tautológica).

A bicondicional:

$$(p \land \neg q \rightarrow r) \leftrightarrow (p \rightarrow q)$$
 e sendo $V(r) = F$ é Tautologia.

Logo, deduz-se a equivalência lógica:

$$(p \land \neg q \rightarrow r) \Leftrightarrow (p \rightarrow q)$$

(Demonstração por Absurdo)

Definição: Dada a condicional p \rightarrow q, chamam-se PROPOSIÇÕES ASSOCIADAS a p \rightarrow q, as 3 seguintes proposições condicionais que contêm p e q:

- Proposição RECÍPROCA de p → q: q → p
- Proposição CONTRÁRIA de p → q: ~p → ~q
- Proposição CONTRAPOSITIVA de p → q: ~q → ~p

As tabelas-verdade dessas 4 proposições:

p	q	$p \rightarrow q$	q→p	~p → ~q	~q →~p
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V

As tabelas-verdade dessas 4 proposições:

p	q	$p \rightarrow q$	q→p	~p → ~q	~q→~p
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V

Equivalentes

As tabelas-verdade dessas 4 proposições:

p	q	$p \rightarrow q$	d→b	~p → ~q	~q → ~p
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V

Equivalentes

As tabelas-verdade dessas 4 proposições:

p	q	$p \rightarrow q$	q→p	~p → ~q	~q → ~p	
V	V	V	V	V	V	
V	F	F	V	V	F	
F	V	V	F	F	V	
F	F	V	V/	V	V	

NÃO Equivalentes

As tabelas-verdade dessas 4 proposições:

p	q	$p \rightarrow q$	q→p	~p → ~q	~q → ~p
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	/ V	V

NÃO Equivalentes

Outras Denominações

- Proposição CONTRÁRIA de p → q: ~p → ~q
 Também chamada de INVERSA de p → q
- Proposição CONTRAPOSITIVA de p → q: ~q → ~p
 Também chamada de CONTRA-RECÍPROCA,
 já que é a contrária da recíproca.
 - p → q também é chamada de DIRETA.

Exemplo

Achar a contrapositiva da condicional:

"Se x é menor que 0, então x não é positivo".

p: x é menor que 0.

q: x é positivo.

Condicional: $p \rightarrow \sim q$

Contrapositiva: ~~q → ~p

Porém: $\sim q \rightarrow p \Leftrightarrow q \rightarrow p$

Ling.corrente: "Se x é positivo, então x não é < que 0".

Negação conjunta de 2 proposições

Definição:

A proposição "não p e não q" (~p ^ ~q)

Notação: p ↓ q

p	q	~p	~ q	p↓q
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Negação disjuntas de 2 proposições

Definição:

A proposição "não p ou não q" (~p v ~q)

Notação: p ↑ q

p	q	~p	~ q	p↑q
V	V	F	F	F
V	F	F	V	V
F	V	V	F	V
IL.	F	V	V	V

Teoremas

A proposição P é **logicamente equivalente** à proposição Q, ou seja, (P \Leftrightarrow Q), sempre que o bicondicional (P \leftrightarrow Q) é uma tautologia.

Exemplo:

Mostrar que $(p \rightarrow q) \land (q \rightarrow p) e (p \leftrightarrow q)$ são equivalentes.

р	q	$p \rightarrow q$	q → p	$(p \rightarrow q) \land (q \rightarrow p)$	p ↔ q
V	V	V	V	V	V
V	F	F	V	F	F
F	V	V	F	F	F
F	F	V	V	V	V

Tabelas-verdade idênticas

Logo,
$$(p \rightarrow q) \land (q \rightarrow p) \Leftrightarrow (p \leftrightarrow q)$$

Exemplo:

Mostrar que $(p \land q) \Leftrightarrow \sim (\sim p \lor \sim q)$

р	q	p ^ q	~ p	~q	~p v ~q	~(~p v~q)	A↔B
٧	>	V	ш	F	F	V	V
V	F	П	F	V	V	F	V
F	٧	Т	V	F	V	F	V
F	F	F	V	V	V	F	V

Como ($p \land q$) $\rightarrow \sim (\sim p \ v \sim q)$ é uma tautologia, então ($p \land q$) $\Leftrightarrow \sim (\sim p \ v \sim q)$, isto é, ocorre a equivalência lógica.

Equivalências Notáveis							
Nome	Propriedade	Dual					
Dupla Negação (DN)	~~p ⇔ p						
Idempotente (IP)	$p \vee p \Leftrightarrow p$	$p \wedge p \Leftrightarrow p$					
Comutativa (COM)	$p \lor q \Leftrightarrow q \lor p$	$p \wedge q \Leftrightarrow q \wedge p$					
Associativa (ASS)	$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$	$p \land (q \land r) \Leftrightarrow (p \land q) \land r$					
De Morgan (DM)	\sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q	~(p ∧ q) ⇔ ~p ∨ ~q					
Distributiva (DIS)	$p \wedge (q \vee r \) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$	$b \wedge (d \vee L) \Leftrightarrow (b \wedge d) \vee (b \wedge L)$					
Absorção (ABS)	$p \wedge (p \vee q \) \Leftrightarrow p$	$p \lor (p \land q) \Leftrightarrow p$					
Reescrita da Condicional (COND)	$p \to q \Leftrightarrow {^\sim}p \vee q$						
Reescrita da Bicondicional (BI)	$b \leftrightarrow d \Leftrightarrow (b \to d) \lor (d \to b)$						
Elemento Neutro (EN)	$p \vee F \Leftrightarrow p$	$p \wedge V \Leftrightarrow p$					
Elemento Absorvedor (EA)	$p \vee V \Leftrightarrow V$	$p \wedge F \Leftrightarrow F$					
Complementares (COMPLE)	$p \vee {^\sim}p \Leftrightarrow V$	p ∧ ~p ⇔ F					
F =	contradição V = tautolog	ria .					

Uma diferença importantíssima entre a implicação e equivalência reside no fato de que, na implicação, só há o caminho de ida, não existe o de volta. Ou melhor, toda equivalência é uma implicação lógica por natureza. Diferentemente, a implicação não se trata necessariamente de uma equivalência lógica. Podemos então dizer que toda equivalência é uma implicação lógica, mas nem toda implicação é uma equivalência lógica.

Assim: $p \wedge q \Rightarrow p$ (certo)

O caminho de volta pode estar errado se desejado:

$$p \Rightarrow p \land q (errado)$$

Na equivalência, pode-se ir e vir entre duas proposições. Temos:

$$(\sim p \vee q) \Leftrightarrow (p \rightarrow q)$$

O caminho de volta seria perfeitamente válido:

$$(p \rightarrow q) \Leftrightarrow (\sim p \vee q)$$

Em outras palavras:

Dizer que p ^ q \Leftrightarrow p é a mesma coisa que afirmar que p ^ q \Rightarrow p

Porém, p ^ q ⇒ p não é a mesma coisa de dizer que p ⇔ p ^ q

As proposições P e Q são equivalentes quando apresentam tabelas verdades idênticas.

Indicamos que p é equivalente a q do seguinte modo: p \Leftrightarrow q.

Exemplos:

$$(p \rightarrow q) \land (q \rightarrow p) \Leftrightarrow p \leftrightarrow q$$

 $p \rightarrow q \Leftrightarrow \sim (p \land \sim q) \Leftrightarrow \sim p \lor q$

Exercício:

Dizer que "André é artista ou Bernardo não é engenheiro" é logicamente equivalente a dizer que:

- a) André é artista se e somente Bernardo não é engenheiro.
- b) Se André é artista, então Bernardo não é engenheiro.
- c) Se André não é artista, então Bernardo é engenheiro.
- d) Se Bernardo é engenheiro, então André é artista.
- e) André não é artista e Bernardo é engenheiro.

Resolução: Na expressão temos ~p v q \Leftrightarrow p \to q \Leftrightarrow ~q \to ~p Temos duas possibilidades de equivalência p \to q: Se André não é artista , então Bernardo não é engenheiro. Porém não temos essa opção.

~q → ~p: Se Bernardo é engenheiro, então André é artista. Logo reposta letra d).

Exercício:

Dizer que "Pedro não é pedreiro ou Paulo é paulista," é do ponto de vista lógico, o mesmo que dizer que::

- a) Se Pedro é pedreiro, então Paulo é paulista.
- b) Se Paulo é paulista, então Pedro é pedreiro.
- c) Se Pedro não é pedreiro, então Paulo é paulista.
- d) Se Pedro é pedreiro, então Paulo não é paulista.
- e) Se Pedro não é pedreiro, então Paulo não é paulista.

Resolução: Na expressão temos ~p v q ⇔ p → q

p → q: Se Pedro é pedreiro, então Paulo é paulista. Letra a).

Exercício:

Dizer que não é verdade que Pedro é pobre e Alberto é alto, é logicamente equivalente a dizer que é verdade que:

- a) Pedro não é pobre ou Alberto não é alto.
- b) Pedro não é pobre e Alberto não é alto.
- c) Pedro é pobre ou Alberto não é alto.
- d) se Pedro não é pobre, então Alberto é alto.
- e) se Pedro não é pobre, então Alberto não é alto.
- p: Pedro é pobre q: Alberto é alto

A proposição é Pedro é pobre e Alberto é alto.

(p ^ q)

Logo, dizer que não é verdade que Pedro é pobre e Alberto é alto é negar toda a proposição Pedro é pobre e Alberto é alto. Aí, escrevendo a nossa proposição composta em linguagem simbólica:

~(p ^ q)

Agora, vamos demonstrar na tabela-verdade...

р	q	~p	~q	p^q	~(p^q)	~pv~q	~p^~q	pv~q	~p→q	~p→~q
V	V	F	F	V	F	F	F	V	V	V
V	F	F	V	F	V	V	F	V	V	V
F	V	V	F	F	V	V	F	F	V	F
F	F	V	V	F	V	V	V	V	F	V

Resposta correta: a) ~(p ^ q) \Leftrightarrow ~p v ~q

Ou, no bom português, podemos dizer que:

Não é verdade que Pedro é pobre e Alberto é alto é logicamente equivalente a dizer que Pedro não é pobre ou Alberto não é alto

- 1. A negação da afirmação condicional "se estiver chovendo, eu levo o guarda-chuva" é:
- a) se não estiver chovendo, eu levo o guarda-chuva
- b) não está chovendo e eu levo o guarda-chuva
- c) não está chovendo e eu não levo o guarda-chuva
- d) se estiver chovendo, eu não levo o guarda-chuva
- e) está chovendo e eu não levo o guarda-chuva

- 2.Chama-se tautologia a toda proposição que é sempre verdadeira, independentemente da verdade dos termos que a compõem. Um exemplo de tautologia é:
- a) se João é alto, então João é alto ou Guilherme é gordo
- b) se João é alto, então João é alto e Guilherme é gordo
- c) se João é alto ou Guilherme é gordo, então Guilherme é gordo
- d) se João é alto ou Guilherme é gordo, então João é alto e Guilherme é gordo
- e) se João é alto ou não é alto, então Guilherme é gordo

- 3. Considere as afirmações: A) se Patrícia é uma boa amiga, Vítor diz a verdade; B) se Vítor diz a verdade, Helena não é uma boa amiga; C) se Helena não é uma boa amiga, Patrícia é uma boa amiga. A análise do encadeamento lógico dessas três afirmações permite concluir que elas:
 - a) implicam necessariamente que Patrícia é uma boa amiga
 - b) são consistentes entre si, quer Patrícia seja uma boa amiga, quer Patrícia não seja uma boa amiga
 - c) implicam necessariamente que Vítor diz a verdade e que Helena não é uma boa amiga
 - d) são equivalentes a dizer que Patrícia é uma boa amiga
 - e) são inconsistentes entre si

- 4. Se Rodrigo mentiu, então ele é culpado. Logo:
 - a) Rodrigo é culpado.
 - b) se Rodrigo não mentiu, então ele não é culpado.
 - c) Rodrigo mentiu.
 - d) se Rodrigo não é culpado, então ele não mentiu.
 - e) se Rodrigo é culpado, então ele mentiu.

- 4. Se Rodrigo mentiu, então ele é culpado. Logo:
 - a) Rodrigo é culpado.
 - b) se Rodrigo não mentiu, então ele não é culpado.
 - c) Rodrigo mentiu.
 - d) se Rodrigo não é culpado, então ele não mentiu.
 - e) se Rodrigo é culpado, então ele mentiu.

- 5. Se você se esforçar, então irá vencer. Logo:
 - a) mesmo que se esforce, você não vencerá.
 - b) seu esforço é condição necessária para vencer.
 - c) se você não se esforçar, então não irá vencer.
 - d) você vencerá só se se esforçar.
 - e) seu esforço é condição suficiente para vencer.

- 5. Se você se esforçar, então irá vencer. Logo:
 - a) mesmo que se esforce, você não vencerá.
 - b) seu esforço é condição necessária para vencer.
 - c) se você não se esforçar, então não irá vencer.
 - d) você vencerá só se se esforçar.
 - e) seu esforço é condição suficiente para vencer.