10-716: Advanced Machine Learning

Spring 2019

Lecture 11: February 26

Lecturer: Pradeep Ravikumar Scribes: Jing Mao, Zhaojie Gong, Junyan Jiang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

11.1 Sparse linear models in high dimensions

Linear model is largely used in machine learning and statistics. Typically in low-dimensional instantiation, the number of predictors d is substantially less than the sample size n. In contrast, we are going to explore the high-dimensional regime, which allows scaling that $d \approx n$ or even $d \gg n$.

11.1.1 Problem formulation

Suppose that we observe $y_i \in \mathbb{R}, x_i \in \mathbb{R}^d$ for i = 1, 2, ..., n. Then the linear model is of the form

$$y_i = \theta^{*^T} x_i + w_i$$

, where $w_i \sim \mathcal{N}(0, \sigma^2)$ are i.i.d. noise variables and $\theta^* \in \mathbb{R}^d$. In fixed design, $\{x_i\}_{i=1}^n$ are fixed whereas in random design, each $x_i \sim P_x$ i.i.d.

When the number of samples n < d, the linear system is under-determined and we need to equip the model with some form of low-dimensional structure.

Definition 11.1 The hard sparsity assumption states that the support set of θ^* ,

$$S(\theta^*) := \{ j \in \{1, 2, \dots d\} \mid \theta_j^* \neq 0 \}$$

has cardinality $|S(\theta^*)| < n$.

Definition 11.2 The p-norm of vector θ is

$$\|\theta\|_p = \left(\sum_{i=1}^d |\theta_i|^p\right)^{1/p}$$

When p = 0, $\|\theta\|_0 = \sum_{i=1}^d \mathbb{I}(\theta_i \neq 0)$, which corresponds to hard sparsity. For weak sparsity, $\|\theta\|_p \leq C$ which gives a set of θ .

Figure 11.1: Illustration of ℓ_p for parameter $p \in [0, 1]$. (a) with p < 1 (b) p = 1 (convex) (c) p = 0

Example 1 (Gaussian Sequence Model) In this model, we make observations of the form

$$y_i = \sqrt{n}\theta_i^* + w_i \qquad i = 1, 2, \dots, n$$

where n = d and $\mathbf{y} = (\sqrt{n}\mathbf{I}_n)\theta^* + \mathbf{w}$.

Example 2 (Lifting and non-linear functions) Consider polynomial functions of the form

$$f_{\theta}(t) = \theta_0 + \theta_1 t + \theta_2 t^2 + \ldots + \theta_q t^q$$

Where we observe n samples $\{(t_i, y_i)\}_{i=1}^n$. We could then define the matrix **X** as

$$\mathbf{X} = \begin{bmatrix} 1 & t_1 & t_1^2 & \dots & t_1^q \\ 1 & t_2 & t_2^2 & \dots & t_2^q \\ \dots & \dots & \dots & \dots & \dots \\ 1 & t_n & t_n^2 & \dots & t_n^q \end{bmatrix}$$

More generally, we formulate

$$f_{\theta}(t) = \sum_{j=1}^{d} \theta_{j} \phi_{j}(t)$$

where $\{\phi_1, \dots, \phi_d\}$ are known basis functions. Then we have $y = \mathbf{X}\theta + w$, where $X_{ij} = \phi_j(t_i)$.

11.1.2 Recovery in noiseless setting

Consider $\mathbf{X} \in \mathbb{R}^{n \times d}$ where n < d. In noiseless setting, we assume that $\exists \theta^*$ s.t. $y = \mathbf{X}\theta^*$ and $\|\theta^*\|_0 = s^* \ll d$. In this case, we consider the following optimization problem

$$\min_{\theta} \|\theta\|_0$$
 s.t. $y = \mathbf{X}\theta$

The approach to solve the above problem works as following:

for
$$s = 1, ..., d$$
,
for all $S \subseteq \{1, ..., d\}$ s.t. $|S| = s$
check if $\exists \theta_s$ s.t. $y = \mathbf{X}_s \theta_s$

The complexity of this approach is then $\sum_{j=1}^{s^*} {d \choose j} \approx d^{s^*}$, which would be computationally expensive if s^* is large.

We could also approximate this non-convex optimization problem with a convex program by changing $\|\theta\|_0$ to $\|\theta\|_1$. This gives the following optimization problem

$$\min_{\theta} \|\theta\|_1$$
 s.t. $y = \mathbf{X}\theta$

which is known as the basis pursuit linear program.

11.2 Exact recovery and restricted nullspace

We define the set

$$T(\theta^*) = \{ \Delta \mid \|\theta^* + \Delta\|_1 \leq \|\theta^*\|_1 \}$$

and note that the null space of X is defined as

$$null(\mathbf{X}) = \{ \Delta \mid \mathbf{X}\Delta = 0 \}$$

We have the following theorem.

Theorem 11.3 θ^* is the unique solution to the above problem iff $T(\theta^*) \cap null(\mathbf{X}) = \{\mathbf{0}\}.$

Proof: If $T(\theta^*) \cap \text{null}(\mathbf{X}) \neq \{\mathbf{0}\}$ then

$$\exists \bar{\Delta} \in T(\theta^*) \cap \text{null}(\mathbf{X})$$

We have

$$\|\theta^* + \bar{\Delta}\|_1 \leqslant \|\theta^*\|_1$$

and

$$\mathbf{X}(\theta^* + \bar{\Delta}) = \mathbf{X}\theta^* + \mathbf{X}\bar{\Delta} = y$$

Then θ^* is not the unique solution.

The other direction is similar. For more details, please refer to theorem 7.1 in the textbook.

We define the set

$$C(S) = \{ \Delta \in \mathbb{R}^d \mid ||\Delta_{S^c}||_1 \leqslant ||\Delta_S||_1 \}$$

corresponding to a cone of vectors.

In the two dimensional case, when S has only one element, the cone can be shown as follows.

The shade area corresponds to $|\Delta_1| \ge |\Delta_2|$

Proposition 11.4

$$T(\theta^*) \subset C(S)$$

where S is the support of θ^* .

Proof: In this proof we define $\Delta_S \in \mathbb{R}^d$ as

$$(\Delta_S)_j = \begin{cases} \Delta_j & j \in S \\ 0 & \text{otherwise} \end{cases}$$

 $\forall \Delta \in T(\theta^*),$

$$\begin{aligned} \|\theta^*\|_1 &\ge \|\theta^* + \Delta\|_1 \\ &= \|\theta_S^* + \Delta_S + \theta_{S^c}^* + \Delta_{S^c}\|_1 \\ &= \|\theta_S^* + \Delta_S + \Delta_{S^c}\|_1 \\ &= \|\theta_S^* + \Delta_S\|_1 + \|\Delta_{S^c}\|_1 \\ &\ge \|\theta_S^*\|_1 - \|\Delta_S\|_1 + \|\Delta_{S^c}\|_1 \end{aligned}$$

Then

$$\|\Delta_{S^c}\|_1 \leqslant \|\Delta_S\|_1$$
$$\Delta \in C(S)$$

Proposition 11.5 Given the above definition, we have

$$C(S) \subset \bigcup_{\theta:\theta_{S^c}=0} T(\theta)$$

Proof: Say $\Delta \in C(S)$.

In this case, $\Delta \in C(S) \Rightarrow \|\Delta_{S^c}\|_1 \leq \|\Delta_S\|_1$. We want to show: $\exists \theta^*$ such that $\theta_{S^c}^* = 0$ and $\Delta \in T(\theta^*)$. By setting $\delta_s^* = -2\Delta_s$, we have:

$$\begin{aligned} \|\theta^* + \Delta\|_1 &= \|\theta_s^* + \Delta_s\|_1 + \|\Delta_{S^c}\|_1 \\ &= \|\theta_s^*\|_1 - \|\Delta_s\|_1 + \|\Delta_{S^c}\|_1 \\ &\leq \|\theta_s^*\|_1 \end{aligned}$$

Theorem 11.6 The following two statements are equivalent:

- (a) For any θ^* with support S, θ^* is the unique solution of the basis pursuit.
- (b) X satisfies the restricted nullspace property with respect to S.

Proof: We first prove $(a) \Longrightarrow (b)$. For a given $\theta^* \in \text{null}(\mathbf{X}) \setminus \{\mathbf{0}\}$, consider the basis pursuit problem

$$\min_{\beta \in \mathbb{R}^d} \|\beta\|_1 \ s.t. \ \mathbf{X}\beta = \mathbf{X} [\theta_S^* \ 0]^T$$

By assumption, the unique optimal solution will be $\beta' = [\theta_S^* \ 0]^T$. Since $\mathbf{X}\theta^* = 0$, the vector $[0 - \theta_{S^c}^*]^T$ is also a solution. By uniqueness, we have $\|\beta'\|_1 > \|\beta\|_1$. This gives us $\|\theta_S^*\|_1 < \|\theta_{S^c}^*\|_1$ and therefore $\theta^* \notin C(S)$.

Then we prove $(b) \Longrightarrow (a)$. If θ^* is not a unique solution of the basis pursuit, we have $T(\theta^*) \cap \text{null}(\mathbf{X}) \neq \{\mathbf{0}\}$. Since $T(\theta^*) \subset C(S)$, $C(S) \cap \text{null}(\mathbf{X}) \neq \{\mathbf{0}\}$. Thus, **X** does not satisfies the restricted nullspace property.

11.3 Sufficient conditions for restricted nullspace

In this section, we discuss about the ways to check $C(s) \cap \text{null}(\mathbf{X}) = \{\mathbf{0}\}$. Remember that $\mathbf{X} \in \mathbb{R}^{n \times d}$.

Definition 11.7 The pairwise incoherence $\delta_{PW}(\mathbf{X})$ is defined as

$$\delta_{PW}(\mathbf{X}) := \max_{j \neq k} \left| \frac{\langle X_j, X_k \rangle}{n} \right|$$

We hope that $\delta_{PW}(\mathbf{X})$ is small. For an orthogonal \mathbf{X} , $\delta_{PW}(\mathbf{X})$ achieve its smallest value 0 for $j \neq k$. On the other hand, if there are two columns X_j and X_k that are really close to each other, it is difficult to say which one is more important. For example, if $X_j = X_k$, we will have $\theta_j X_j + \theta_k X_k = (\theta_j + \theta_k) X_j$, and $\delta_{PW}(\mathbf{X})$ will be large in this case.

Theorem 11.8 If the pairwise incoherence satisfies the bound

$$\delta_{PW}(\mathbf{X}) \leqslant \frac{1}{3s}$$

then **X** satisfies RNP for all S such that $|S| \leq s$.

The definition of pairwise incoherence property can be further extended to the restricted isometric property.

Definition 11.9 X satisfies the restricted isometric property (RIP) of order s with constant $\delta_s(\mathbf{X})$ if

$$|||\mathbf{X}_{S}^{T}\mathbf{X}_{S}/n - \mathbf{I}_{s}|||_{2} \leq \delta_{s}(\mathbf{X})$$

for all S such that $|S| \leq s$.

Here, \mathbf{X}_S is defined as the sub-matrix formed by a set of columns in \mathbf{X} , where the indices of the columns are defined by S.

The l_2 -operation norm of a matrix is defined as its maximum singular value:

$$|||\mathbf{A}|||_2 := \sup_{u \neq 0} \frac{||\mathbf{A}u||}{||u||}$$

When s = 1, the restricted isometric property can be rewritten as:

$$\left| \frac{\left\| X_j \right\|_2^2}{n} - 1 \right| \leqslant \delta_1(\mathbf{X})$$

When s = 2, the left hand side can be rewritten as:

$$\frac{\mathbf{X}_{S}^{T}\mathbf{X}_{S}}{n} - \mathbf{I}_{s} = \begin{bmatrix} \|X_{j}\|_{2}^{2} & \frac{\langle X_{j}, X_{k} \rangle}{n} \\ \frac{\langle X_{j}, X_{k} \rangle}{n} & \|X_{k}\|_{2}^{2} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(11.1)

If we assume that all columns of **X** are normalized to $\|X_j\|_2^2 = n$, we have

$$\frac{\mathbf{X}_S^T \mathbf{X}_S}{n} - \mathbf{I}_s = \begin{bmatrix} 0 & \frac{\langle X_j, X_k \rangle}{n} \\ \frac{\langle X_j, X_k \rangle}{n} & 0 \end{bmatrix}$$
 (11.2)

whose l_2 -norm is exactly $\max_{j\neq k}\left|\frac{\langle X_j,X_k\rangle}{n}\right|$, the same as the form of pairwise incoherence $\delta_{PW}(\mathbf{X})$.