1 Lezione del 15-10-24

1.1 Relazioni tra LP e ILP

Vediamo di approfondire il legame fra un problema ILP e i problemi LP che possiamo ricavarne. Avevamo posto un problema ILP in forma:

$$\begin{cases} \max(c^T x) \\ Ax \le b \\ x \in \mathbb{Z}^n \end{cases}$$

E avevamo visto che si può trovare un limite inferiore V_I e un limite superiore V_S a partire dagli algoritmi dei rendimenti, quindi prendendo il rilassato continuo del problema, cioè l'associato che rimuove il vincolo $x \in \mathbb{Z}^n$:

$$\begin{cases} \max(c^T x) \\ Ax \le b \end{cases}$$

Chiamiamo P il poliedro del rilassato continuo. Si ha, in generale, che la soluzione di un problema di ILP è uno dei punti $\in \Omega = P \cap \mathbb{Z}^n$, cioè dei punti $\in \mathbb{Z}^n$ che stanno all'interno del poliedro del rilassato continuo. Poniamo ad esempio il problema:

$$\begin{cases} \max(0.3x_1 + 0.4x_2) \\ 3x_1 + 5x_2 \le 15 \\ 4x_1 + 4x_2 \le 16 \\ x \in \mathbb{Z}^2 \end{cases}$$

Graficamente, si ha:

dove si è riportata la soluzione ottima del rilassato x_{V_S} .

Notiamo quindi che esiste un'insieme:

$$\operatorname{conv}(\Omega) = \{ x \in \mathbb{R}^n : \exists x_1, ..., x_p \in \Omega, \quad \lambda_1, ..., \lambda_p \ge 0 \quad \text{t.c.} \ \ x = \sum_{i=1}^p \lambda_i x_i, \quad \sum_{i=1}^p \lambda_i x_i = 1 \}$$

cioè l'involucro convesso di Ω . Visto che i punti di Ω hanno componenti intere, si può dimostrare il seguente teorema:

Teorema 1.1: Caratterizzazione della regione ammissibile di un problema ILP

Dato un problema ILP con regione ammissibile Ω , esiste un insieme finito di punti $\{q_l\}_{l\in L}=\{q_1,...,q_{|L|}\}$ di Ω , e un insieme finito di direzioni di recessione $\{r_j\}_{j\in J}=\{r_1,...,r_|J|\}$ di P, tali che:

$$\Omega = \{ x \in R_+^n : x = \sum_{l \in L} \alpha_l q_l + \sum_{j \in J} \beta_j q_j, \quad \sum_{l \in L} \alpha_l = 1, \quad \alpha \in \mathbb{Z}_+^{|L|}, \quad \beta \in \mathbb{Z}_+^{|J|} \}$$

cioè si puo ricavare Ω attraverso una forma simile alla $P=\operatorname{conv}(V)+\operatorname{cono}(E)$ del teorema di Minkowski-Weyl, sugli insiemi $\{q_l\}_{l\in L}$ di vertici a componenti intere e $\{r_j\}_{j\in J}$ di direzioni di recessione.

A partire da questa caratterizzazione di Ω , vogliamo caratterizzare $conv(\Omega)$:

Teorema 1.2: Caratterizzazione dell'involucro convesso della regione ammissibile di un problema ILP

Dato un problema ILP con regione ammissibile Ω , si ha che $\operatorname{conv}(\Omega)$ è un **poliedro razionale**, cioè esistono due insiemi finiti di vettori, $\{q_l\}_{l\in L}$ e $\{r_j\}_{j\in J}$, a **componenti razionali**, tali che:

$$\operatorname{conv}(\Omega) = \operatorname{conv}\{q_l\}_{l \in L} + \operatorname{cono}\{r_j\}_{j \in J}$$

Addirittura, normalizzando si può supporre che gli r_j siano a componenti intere. Nell'esempio precedente, $\operatorname{conv}(\Omega)$ sarebbe rappresentato dagli insiemi:

$$\{q_l\}_{l\in L} = \{(0,0), (0,3), (3,1), (4,0)\}, \quad \{r_i\}_{i\in J} = \emptyset$$

quindi:

$$conv(\Omega) = conv\{q_l\}_{l \in L} + cono\{r_j\}_{j \in J} = (x_1, x_2) \in \mathbb{R}^2 \quad \text{t.c.} \quad \begin{cases} \frac{2}{3}x_1 + x_2 \le 3\\ x_1 + x_2 \le 4 \end{cases}$$

cioè sul grafico:

dove è stata evidenziata la soluzione del primale sull'insieme $\operatorname{conv}(\Omega)$, $x_{\operatorname{conv}(\Omega)}$. Possiamo quindi dire, visto che $\Omega \subset \operatorname{conv}(\Omega)$ e che P è un'estensione di Ω in quanto poliedro del rilassato continuo, che è vera la catena di diseguaglianze:

$$\max_{x \in \Omega} c^T x \le \max_{x \in \text{conv}(\Omega)} c^T x \le \max_{x \in P} c^T x$$

e non solo: si può stringere la diseguaglianza sul lato sinistro, per affermare che:

Teorema 1.3: Equivalenza fra problemi LP e ILP

Si prenda un problema di ILP, e il problema di LP associato costruito su:

$$conv(\Omega) = conv\{q_l\}_{l \in L} + cono\{r_j\}_{j \in J}$$

con, posto P come il poliedro del rilassato continuo, q ricavato dai vertici $P \cap \mathbb{Z}^n$, e r ricavato dalle direzioni di recessione di P. Se si prendono le soluzioni:

$$v_{\Omega} = \max_{x \in \Omega} c^T x, \quad v_{\text{conv}(\Omega)} \max_{x \in \text{conv}(\Omega)} c^T x$$

si ha che $v_{\Omega}=v_{\mathrm{conv}(\Omega)}$, e che se $v_{\mathrm{conv}(\Omega)}$ è finito, allora esiste $x_{\Omega}\in\Omega$ tale che $c^Tx_{\Omega}=v_{\Omega}=v_{\mathrm{conv}(\Omega)}$

Siamo quindi arrivati a formulare il teorema secondo cui, per ogni problema ILP, possamo costruire un problema LP associato che ha la stessa soluzione, semplicemente riformulando i vincoli in modo che descrivano l'involucro convesso dei punti in $\Omega = P \cap \mathbb{Z}^n$, ed eventuali direzioni di recessione di P, dove P è il poliedro del rilassato continuo. Il problema sorge dal fatto che è *difficile* ricavare questo problema associato. Esistono però alcuni casi particolari dove pouò essere conveniente applicare questo teorema, cioè quando si è in presenza di **matrici unimodulari**.

1.1.1 Matrici unimodulari

Definiamo innanzitutto:

Definizione 1.1: Matrice unimodulare

Si chiama **modulare** ogni matrice quadrata intera con determinante $\det A_m \in \{1, -1\}$.

e, sulla base di questo:

Definizione 1.2: Matrice totalmente unimodulare

Si chiama **totalmente unimodulare** ogni matrice per cui ogni sottomatrice quadrata invertibile è unimodulare, cioè ogni sottomatrice quadrata ha determinante $\det(A_m) \in \{0,1,-1\}$.

Si ha che se una matrice è unimodulare, allora i vertici della regione ammissibile appartengono a \mathbb{Z}^n , infatti:

Teorema 1.4: Soluzioni di base di matrici unimodulari

Dato $Ax \leq b$, se A e b sono a componenti intere, e A è totalmente unimodulare, allora tutte le soluzioni di base del poliedro P:

$$P = \{x \in \mathbb{R}^n : Ax \le b\}$$

sono a componenti intere.

dove per componenti intere intendiamo anche razionali sotto normalizzazione.

Abbiamo che le matrici A dei problemi di **trasporto** e **assegnamento di costo minimo** sono totalmente unimodulari, ergo possiamo risolvere le versioni ILP di quei problemi semplicemente rimuovendo il vincolo di interezza $x \in \mathbb{Z}^n$.