Stochastic Processes II: Homework 8

Chris Hayduk

April 28, 2021

Problem I. LPW 8.9

Let us assume we are working with a 3 card deck. We will consider the distribution when T=3.

- a) Since both cards are marked on every transposition and each selection is uniform and independent, we have that each card has a 2/3 chance of being marked. At T=3, there are 2 cards already marked and 1 card that is unmarked.
- b) Since the right-hand card is marked on every transposition and each right-hand card is chosen uniformly, we have that each card has a 1/3 chance of being marked. At T=3, there are 2 cards already marked and 1 card that is unmarked. Hence, we have a 2/3 chance of marking a marked card again, and a 1/3 chance of marking the unmarked card.

Problem II. LPW 12.1

a) By the hint, we will let $||f||_{\infty} = \max_{x \in \mathcal{X}} |f(x)|$. We have that,

$$||Pf||_{\infty} = \max_{x \in \mathcal{X}} |P(x, y)f(y)|$$

Since $0 \le P(x, y) \le 1$ for all $x, y \in \mathcal{X}$, we have that |P(x, y)f(y)| < |f(y)| for all x, y. Hence,

$$||Pf||_{\infty} = \max_{x \in \mathcal{X}} |P(x, y)f(y)|$$

$$\leq \max_{x \in \mathcal{X}} |f(x)|$$

$$= ||f||_{\infty}$$

Now suppose f is an eigenfunction with corresponding eigenvalue λ . The,

$$||Pf||_{\infty} = ||\lambda f||_{\infty}$$

$$= \max_{x \in \mathcal{X}} |\lambda f(x)|$$

$$= |\lambda| \max_{x \in \mathcal{X}} |f(x)|$$

$$= |\lambda|||f||_{\infty}$$

From the first part of our proof, we have that,

$$||Pf||_{\infty} = |\lambda|||f||_{\infty}$$

$$\leq ||f||_{\infty}$$

This final inequality implies that $|\lambda| \leq 1$.

b) Assume that $\mathcal{T}(x) \subset 2\mathbb{Z}$. Then every time t such that $P^t(x,x) > 0$ is a multiple of 2.

c)

Problem III. LPW 12.2

Let P be irreducible and let A be a matrix with $0 \le A(i,j) \le P(i,j)$ and $A \ne P$. Since $A \ne P$, we must have A(i,j) < P(i,j) for some i,j. By 12.1(a), we have that every eigenvalue λ of P satisfies $|\lambda| \le 1$. Now suppose f is an eigenfunction of A with eigenvalue λ_1 of A and λ_2 of P. We have,

$$||Af||_{\infty} = |\lambda_1|||f||_{\infty}$$

$$< ||Pf||_{\infty}$$

$$= |\lambda_2|||f||_{\infty}$$

Dividing through by $||f||_{\infty}$ yields $|\lambda_1| < |\lambda_2| \le 1$, and so $|\lambda_1| < 1$.