LATENT DISTANCE ESTIMATION FOR RANDOM GEOMETRIC GRAPHS

Ernesto Araya Valdivia† and Yohann De Castro‡

†Laboratoire de Mathématiques d'Orsay, Université Paris-Sud ‡Ecole Centrale de Lyon

Random Geometric Graph Model

Popular latent space model for graphs that has been used to model wireless, social and biological networks.

Angular version:

- Latent points: $\{X_i\}_{i=1}^n$ are i.i.d uniformly distributed in the unit sphere \mathbb{S}^{d-1} . The population Gram matrix is defined by $(\mathcal{G})_{ij} := \langle X_i, X_j \rangle$.
- Connection function: $f:[-1,1] \rightarrow [0,1]$ such that

$$\Theta_{ij}(n) = \rho_n f(\langle X_i, X_j \rangle)$$

where ρ_n is the sparsity parameter.

• Random geometric graph: The adjacency matrix A(n) is given by

$$\mathbb{P}(A_{ij}(n) = 1 | \{X_1, \cdots, X_n\}) = \Theta_{ij}$$

Problem statement

- We observe a simple graph G = (V, E).
- We assume it was generated using the angular RGG model (see above), but we do not know which function f was used.
- Objective: Recover the Gram matrix \mathcal{G} , with small error, only using the adjacency matrix of G.
- Error criteria: We define the error $\mathbf{E}(A,B) = \frac{1}{n^2} ||A B||_F^2$ for A,B matrices of the same size.

Strategy

• Use the theory of graph limits [1]: A(n) converges towards the compact integral operator $T_f: L^2(\mathbb{S}^{d-1}) \to L^2(\mathbb{S}^{d-1})$

$$T_f g(x) = \int_{\mathbb{S}^{d-1}} f(\langle x, y \rangle) g(y) d\mu(y)$$

with μ = the surface measure on \mathbb{S}^{d-1} . In particular, the spectrum of $\Theta(n)$ converges to the spectrum of T_f in a modified ℓ_2 metric [3].

- Use harmonic analysis on \mathbb{S}^{d-1} to derive properties of T_f :
 - Eigenfunctions do not depend on f: they are the spherical harmonics
 - Non zero eigenvalues have fixed multiplicities that depend only on the sphere dimension.
 - Reconstruction formula: we have $\forall x, y \in \mathbb{S}^{d-1}$, $P_{E_i}(x, y) \propto G_j(\langle x, y \rangle)$, where is a Gegenbauer polynomial of degree k.

Main assumptions

- Eigengap condition: $\exists \Delta^* > 0$ such that $\min_{\lambda \in \lambda(T_f), \lambda \notin \Lambda_1^*} |\lambda \lambda^*| > \Delta^*$
- Regularity: f has regularity s if the eigenvalues of T_f satisfy $\sum_k |\lambda_k|^2 k^{2s} < \infty$.

Main result

Theorem 1 (Informal statement) Let G be a graph generated with the RRG model with connection function f (unknown), which satisfies the eigengap condition. Then

- $\exists \Lambda_1 = (v_1, \dots, v_d)$ subset of the eigenvectors of A(n), such that $\mathbf{E}(\mathcal{G}, \hat{\mathcal{G}}) \xrightarrow{n \to \infty} 0$, where $\hat{\mathcal{G}} := \frac{1}{c} \sum_{i=1}^{d} v_i v_i^T$ and c is a known constant.
- Furthermore, if has regularity s, we have $\mathbf{E}(\mathcal{G}, \hat{\mathcal{G}}) = O(\Delta^{*-1}n^{-s/2s+d-1})$.

Gram matrix recovery

Harmonic Eigen-Cluster (HEiC) algorithm:

- **Input**: (A, d) adjacency matrix and dimension of the sphere.
- $\lambda^{\text{sort}}(A) \leftarrow \text{Compute } \lambda(A) = \{\lambda_0^{\text{sort}}, \cdots, \lambda_n^{\text{sort}}\}$ and order decreasingly.
- Gap₁ \leftarrow max $\Big\{ \max_{1 \le i \le n-d-1} \min \{ \text{ljump}(i), \text{rjump}(i+d) \}, \text{ljump}(n-d+1) \Big\}$, with $\operatorname{ljump}(i) := |\hat{\lambda}_i^{\text{sort}} - \hat{\lambda}_{i-1}^{\text{sort}}| \quad \text{and} \quad \operatorname{rjump}(i) := \operatorname{ljump}(i+1)$
- $i^* \leftarrow \begin{cases} n d \text{ if } \max_{1 \le i \le n d 1} \min \{ \text{ljump}(i), \text{rjump}(i + d) \} < \text{ljump}(n d + 1) \\ \arg \max_{1 \le i < n d 1} \min \{ \text{ljump}(i), \text{rjump}(i + d) \}, \text{ljump}(n d + 1) \text{ otherwise} \end{cases}$
- Return: (Gap_1, i^*)

Dimension recovery

Algorithm to recover the dimension if belongs to a candidate set \mathcal{D} :

- Input: (A, \mathcal{D}) the adjacency matrix and $\mathcal{D} = \{d_1, \cdots, d_{\max}\}$
- Score(d) \leftarrow Gap₁(d) obtained running HEiC(A, d) as subroutine.
- Return: $d^* \leftarrow \arg\max_{d \in \mathcal{D}} \operatorname{score}(d)$.

Extensions

- The algorithm can be extended, almost without modification to projective spaces [2].
- Consider the closed unit ball in \mathbb{R}^d as underlying space and probability matrix $\Theta_{ij} = f(\langle x, y \rangle)$. The harmonic analysis on the ball allows for an extension of the previous methods, with slight modifications.

References

- [1] C Borgs et al. "Convergent sequences of dense graphs II. Multiway cuts and statistical physics". In: Annals of Mathematics 176.1 (2012), pp. 151–219.
- [2] Y. De Castro, C. Lacour, and T.M Pham Ngoc. "Adaptive estimation of nonparametric geometric graphs". In: (2017). URL: https://arxiv.org/pdf/1708.02107.pdf.
- V Koltchinskii and E Giné. "Random matrix approximation of spectra of integral operators". In: Bernoulli (2000), pp. 113–167.