14/15(一)浙江工	业大学高等数学	A 考试试卷 A
-------------	---------	----------

	.,	/ 14/	ما ما ما	عد / ر	1-1H1.	小 然:	J 11 ~	T ED MAN THE	7
学院	:	班	级:_		姓名	·	<u>=</u>	学号:	
	き师:_							#I EI IV	
	题号		=	=	四四	五	六	总 分	
	得分	-							
	空选择题	(后山町	# o // \	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u></u>		·	
	$m(\frac{2}{x^2-1})$								
								# E	
2. 设	y = y(x) 由方和		e ^{x+y} 所确	窟,则-	$\frac{dy}{dx} = $		o	
3. 曲	线 y =	$2x + \frac{8}{x}$	(x > 0)	在区间_			是	单调增加的。	
4. 函	数 f(x)	=(x-1)	(x-2)(x-2)	c – 3),	则方程 <i>f</i>	G'(x)=0	共有	实根。	
	$1^{p} + 2$	^p + ••• +	n ^p						
5. li	$\lim_{n\to\infty}\frac{1^p+2}{n}$	n^{p+1}	=			o			
於 微	分方程,	$a^{\prime\prime} + a^2 y =$	= 0 的通	解是			。(常数 a > 0)	
	知 y = 1,	y = x, y	= x ² 是某	二阶非	齐次线性	微分方程	配三个解	解,则该方程的	涌解
					i. Li s			TO MANUAL TENDE	C 2/41
	列极限不 · ·) 1			1	sin r	
A. I	$\lim_{x\to 0} \sin x$;	В.	$\lim_{x\to 0}\sin$	\overline{x} ;	C.	$\lim_{x\to 0} x \sin$	$\frac{1}{x}$;	D. $\lim_{x\to 0} \frac{\sin x}{x}$	•
9. 设	函数 y = ,	f(x)在点	x ₀ 处可	导, dy	$=f'(x_0)$	Δx , Δ <u>j</u>	$y = f(x_0)$	$+\Delta x)-f(x_0)$,	则
	∙0时,△	y - dy 月	Δx 的	(_			
Α.	等价尤到	5小;	B. 高阶	·无穷小;	C.	低阶的无	穷小;	D. 同阶无穷	小。
10. 🕏	₹ f(x) 的	导数在。	c = a 处i	车续,又	$\lim_{r \to a} \frac{f'(r)}{r}$	$\frac{c}{a} = 1$, \bar{y}	川下列选:	项正确的是()
	x = a				В.	x = a	是 <i>f(x</i>) 的	勺极小值点;	
	(a, f(a))				01				
В.	$x = a^{7}$	ref(x))的极小	直点,(4	a, f(a)	也不是火	=f(x)	的拐点。	

二、试解下列各题 (每小题 6 分):

1. 设
$$y = \left(\frac{x}{1+x}\right)^x$$
, 求: $\frac{dy}{dx}$

3. 求函数 $y = x^3 - 6x^2 + 9x - 4$ 的极大值。

- 4. 求不定积分 $\int (\cos^3 x \cos^2 x) dx$
- 5. 求定积分 $\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx$
- 6. 求曲线 $y = x^3 5x^2 + 6x$ 与 x 轴所围成的图形的面积。

求微分方程 $xdy - ydx = x^2 e^x dx$ 的通解。

三、(8分) 求曲线 $y=2x-x^2$ 与 y=0 所围平面图形分别绕 x 轴与 y 轴旋转所得旋转体的体积。

四、(8分)设函数 f(x) 是连续的周期函数,周期为T,

(1) 证明:
$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$$
; (2) 求: $\int_{0}^{2\pi} \sqrt{1+\sin 2x} dx$.

五、(8分) 奇函数 f(x) 在 $(-\infty,+\infty)$ 上连续且单调增加,设 $F(x) = \int_0^x (x-2t) f(t) dt$,求证: (1) F(x) 为奇函数; (2) F(x) 在 $[0,+\infty)$ 上单调减少。

六、(4分) 平面上曲线段 $y=2\sqrt{x}$, $0 \le x \le 1$ (抛物线) 绕x 轴旋转得一空间曲面 (抛物面),试求该曲面 (抛物面)的面积。