

## E72-2G4M05S1A

CC2630 ZigBee 6LoWPAN SMD Wireless Module





# 目录

| 1 Introduction                              | 2  |
|---------------------------------------------|----|
| 1.1 Brief Introduction                      | 2  |
| 1.2 Features                                | 2  |
| 1.3 Application                             | 2  |
| 2 Specification and parameter               | 3  |
| 2.1 Limit parameter                         | 3  |
| 2.2 Operating parameter                     | 3  |
| 3 Size and pin definition                   | Δ  |
| 4 Basic operation                           | 6  |
| 4.1 Hardware design                         | 6  |
| 4.2 Programming                             | 6  |
| 4.3 Connection instructions to the emulator | 7  |
| 5 FA Q                                      | 8  |
| 5.1 Communication range is too short        | 8  |
| 5.2 Module is easy to damage                | 8  |
| 5.3 BER(Bit Error Rate) is high             |    |
| 6 Production guidance                       |    |
| 6.1 Reflow soldering temperature            | Ç  |
| 6.2 Reflow soldering curve                  | Ç  |
| 7 E72 series                                |    |
| 8 Antenna recommendation                    | 10 |
| 8.1 Recommendation                          | 10 |
| 8.1 Antenna switch                          | 11 |
| Revision history                            | 11 |
| A hout us                                   | 11 |



#### 1 Introduction

#### 1.1 Brief Introduction

E72-2G4M05S1A is a self-developed, small-size, SMD, ZigBee 6LoWPAN wireless module based on CC2630 of Texas Instruments.

The CC2630 integrates 128KB of in-system programmable flash memory, 8KB of buffered static RAM (SRAM) and ZigBee, 6LoWPAN wireless communication protocol. Because of its unique ultra-low power sensor controller, it is ideal for connecting external sensors. The analog and digital data are collected autonomously while the rest of the system is in sleep



mode. Thanks to its built-in dual-core low-power processor, users can build a complete systembased on their own modules. We used a 24MHz industrial grade high precision low temperature drift active crystal.

Since this module is a SoC module, it needs to be programmed by user before it can be used.

#### 1.2 Features

- The measured communication distance can reach 150m/500m;
- Maximum transmission power of 3.2 mW, software multi-level adjustable;
- Built-in ZigBee, 6LoWPAN protocolstack;
- Built-in 32.768kHz clock crystal oscillator;
- Support the global license-free ISM 2.4 GHz band;
- Built-in high performance low power consumption Cortex-M3 and Cortex-M0 dual core processor;
- Rich resources, 128KB FLASH, 28KB RAM;
- Support 1.8V~3.6V power supply, power supply over 3.3 V can guarantee the best performance;
- Industrial grade standard design, support -40 ~ 85 °C for working over a long time;
- IPEX and stamp hole optional, good for secondary development and integration.

### 1.3 Application

- Home security alarm and remote keyless entry;
- Wireless alarm security system;
- Building automation solutions;
- Wireless industrial-grade remote control;
- Health care products;
- Advanced Meter Reading Architecture(AMI);
- Automotive industry applications.



## 2 Specification and parameter

## 2.1 Limit parameter

| M ain parameter            | Performance        |     | Remark                                 |  |
|----------------------------|--------------------|-----|----------------------------------------|--|
| w am parameter             | Min Max            |     | Kemark                                 |  |
| Power supply (V)           | 0                  | 3.6 | Voltage over 3.6V will cause permanent |  |
| Tower suppry (V)           | ver supply (V) 5.0 |     | damage to module                       |  |
| Blocking power (dBm)       | - 10               |     | Chances of burn is slim when modules   |  |
| Blocking power (dbin)      | -                  | 10  | are used in short distance             |  |
| Operating temperature (°C) | -40                | 85  | -                                      |  |

## 2.2 Operating parameter

| M ain parameter             |                     |       | Performance |        | Remark                                   |  |
|-----------------------------|---------------------|-------|-------------|--------|------------------------------------------|--|
| 1V1                         | am parameter        | Min   | Type        | Max    | Kenak                                    |  |
| Operat                      | ing voltage (V)     | 1.8   | 3.3         | 3.6    | ≥3.3 V ensures output power              |  |
| Commun                      | nication level (V)  |       | 3.3         |        | For 5V TTL, it may be at risk of burning |  |
| Collinui                    | ilication level (v) | -     | 3.3         | -      | down                                     |  |
| Operating temperature (°C)  |                     | -40   | -           | 85     | Industrial grade                         |  |
| Operating                   | frequency (MHz)     | 2.402 | -           | 2.480  | Support ISM band                         |  |
| Power                       | TX current (mA)     | -     | 9.1         | -      | Instant power consumption                |  |
| Consump-                    | RX current (mA)     | -     | 6.1         | -      | -                                        |  |
| tion                        | Sleep current (µA)  | -     | 1.2         | -      | Shut down by software                    |  |
| Max TX power (dBm)          |                     | 4.6   | 5.0         | 5.5    | -                                        |  |
| Receiving sensitivity (dBm) |                     | -98.5 | -99         | -100.5 | Air data rate is 250 kbps                |  |
| Air d                       | ata rate (bps)      | 250k  | -           | 1M     | Controlled via user's programming        |  |

| M ain parameter     | Description     | Remark                                                   |
|---------------------|-----------------|----------------------------------------------------------|
| Reference distance  | 150m/500m       | Test condition: clear and open area, antenna gain: 5dBi, |
|                     |                 | antenna height: 2.5m, air data rate: 250 kbps            |
| Cry stal Oscillator | 24MHz/32.768KHz | -                                                        |
| Protocol            | ZigBee          | -                                                        |
| Package             | SMD             | -                                                        |
| Interface           | 1.27mm          | -                                                        |
| IC                  | CC2630F128RGZR  | -                                                        |
| FLASH               | 128 KB          | -                                                        |



| RAM     | 28 KB                 | -                |
|---------|-----------------------|------------------|
| Core    | Cortex-M3 + Cortex-M0 | -                |
| Size    | 17.5 * 28.7 mm        | -                |
| Antenna | PCB / IPEX            | 50 ohm impedance |

## 3 Size and pin definition



Pad quantity: 42 Unit: mm

| Pin No. | Item  | Direction    | Description                                                        |
|---------|-------|--------------|--------------------------------------------------------------------|
| 1, 2, 3 | GND   |              | Ground                                                             |
| 4       | DIO_0 | Input/Output | General IO port, sensor controller (see CC26xx manual for details) |
| 5       | DIO_1 | Input/Output | General IO port, sensor controller (see CC26xx manual for details) |
| 6       | DIO_2 | Input/Output | General IO port, sensor controller (see CC26xx manual for details) |
| 7       | DIO_3 | Input/Output | General IO port, sensor controller (see CC26xx manual for details) |



| 8        | DIO_4    | Input/Output | General IO port, sensor controller (see CC26xx manual for details)            |
|----------|----------|--------------|-------------------------------------------------------------------------------|
| 9        | DIO_5    | Input/Output | High drive General IO port, sensor controller (see CC26xx manual for details) |
| 10       | DIO_6    | Input/Output | High drive General IO port, sensor controller (see CC26xx manual for details) |
| 11       | DIO_7    | Input/Output | High drive General IO port, sensor controller (see CC26xx manual for details) |
| 12       | DIO_8    | Input/Output | General IO port (see CC26xx manual for details)                               |
| 13       | DIO_9    | Input/Output | General IO port (see CC26xx manual for details)                               |
| 14       | DIO_10   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 15       | DIO_11   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 16       | DIO_12   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 17       | DIO_13   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 18       | DIO_14   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 19       | DIO_15   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 20       | JTAG_TMS | Input/Output | JTAG_TMSC, High drive (see CC26xx manual for details)                         |
| 21       | JTAG_TCK | Input/Output | JTAG_TCKC, High drive (see CC26xx manual for details)                         |
| 22       | DIO_16   | Input/Output | High drive General IO port, JTAG_TDO (see CC26xx manual for details)          |
| 23       | DIO_17   | Input/Output | High drive General IO port, JTAG_TDI (see CC26xx manual for details)          |
| 24       | DIO_18   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 25       | DIO_19   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 26       | DIO_20   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 27       | GND      |              | Ground                                                                        |
| 28       | DIO_21   | Input/Output | General IO port (see CC26xx manual for details)                               |
| 29       | VDD      |              | Power supply, 1.8V - 3.6V                                                     |
| 30       | DIO_22   | Input/Output | General IO port (see CC26xx manual for details)                               |
| -        | 575.44   | ·            | General IO port, sensor controller, Digital and analog (see CC26xx manual for |
| 31       | DIO_23   | Input/Output | details)                                                                      |
| 32       | nRESET   | Input        | Reset, low level (see CC26xx manual for details)                              |
| 22       | DIO 24   | In and 10    | General IO port, sensor controller, Digital and analog (see CC26xx manual for |
| 33       | DIO_24   | Input/Output | details)                                                                      |
| 24       | DIO 25   | Innut/Ord    | General IO port, sensor controller, Digital and analog (see CC26xx manual for |
| 34       | DIO_25   | Input/Output | details)                                                                      |
| 25       | DIO 26   | Inn 114 / O  | General IO port, sensor controller, Digital and analog (see CC26xx manual for |
| 35       | DIO_26   | Input/Output | details)                                                                      |
| 26       | DIO 27   | Innut/Outaut | General IO port, sensor controller, Digital and analog (see CC26xx manual for |
| 36       | DIO_27   | Input/Output | details)                                                                      |
| 27       | DIO 20   | Inn 114 / O  | General IO port, sensor controller, Digital and analog (see CC26xx manual for |
| 37       | DIO_28   | Input/Output | details)                                                                      |
| 20       | DIO 20   | Innut/Outaut | General IO port, sensor controller, Digital and analog (see CC26xx manual for |
| 38       | DIO_29   | Input/Output | details)                                                                      |
| 39       | DIO_30   | Input/Output | General IO port, sensor controller, Digital and analog (see CC26xx manual for |
| 37       | סות_אַ   | ութաւ/Ծաւթան | details)                                                                      |
| 40、41、42 | GND      |              | Ground                                                                        |
|          |          |              |                                                                               |



### 4 Basic operation

#### 4.1 Hardware design

- It is recommended to use a DC stabilized power supply. The power supply ripple factor is as small as possible and the module needs to be reliably grounded;
- Please pay attention to the correct connection of the positive and negative poles of the power supply, reverse connection may cause permanent damage to the module;
- Please check the power supply to ensure that between the recommended supply voltage, if exceeding the maximum, the module will be permanently damaged;
- Please check the stability of the power supply. Voltage can not fluctuate greatly and frequently;
- When designing the power supply circuit for the module, it is often recommended to reserve more than 30% of the margin, so the whole machine is beneficial for long-term stable operation;
- The module should be as far away as possible from the power supply, transformers, high-frequency wiring and other parts with large electromagnetic interference;
- Bottom LayerHigh-frequency digital routing, high-frequency analog routing, and power routing must be avoided
  under the module. If it is necessary to pass through the module, assume that the module is soldered to the Top
  Layer, and the copper is spread on the Top Layer of the module contact part(well grounded), it must be close to the
  digital part of the module and routed in the Bottom Layer;
- Assuming the module is soldered or placed over the Top Layer, it is wrong to randomly route over the Bottom Layer or other layers, which will affect the module's spurs and receiving sensitivity to varying degrees;
- It is assumed that there are devices with large electromagnetic interference around the module that will greatly affect the performance. It is recommended to keep them away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done;
- Assume that there are traces with large electromagnetic interference (high-frequency digital, high-frequency analog, power traces) around the module that will greatly affect the performance of the module. It is recommended to stay away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done;
- If the communication line uses a 5V level, a 1k-5.1k resistor must be connected in series (not recommended, there is still a risk of damage);
- Try to stay away from some physical layers such as TTL protocol at 2.4GHz , for example: USB3.0;
- The mounting structure of antenna has a great influence on the performance of the module. It is necessary to ensure that the antenna is exposed, preferably vertically upward. When the module is mounted inside the case, use a good antenna extension cable to extend the antenna to the outside:
- The antenna must not be installed inside the metal case, which will cause the transmission distance to be greatly weakened.

### 4.2 Programming

• The core of this module is CC2630, its driving method is completely equivalent to CC2630, the user can operate according to the CC2630 chip manual (see CC2630 manual for details);



- It is recommended to use the Code Composer Studio (CCS) Integrated Development Environment (IDE).
- Code Composer Studio is an integrated development environment (IDE) that supports TI's microcontroller and embedded processor products. Code Composer Studio includes a complete set of tools for developing and debugging embedded applications. It includes the C/C++ compiler, source editor, project build environment, debugger, descriptor, and many other features. The IDE provides a single user interface to help you through every step of the application development process. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the benefits of the Eclipse software framework with TI's advanced embedded debugging capabilities to provide embedded developers with a compelling, feature-rich development environment.
  - ★ When transmitting, set DIO\_7 pin to high level and DIO\_13, DIO\_14 pins to low level;
  - ★ When receiving, set DIO\_7 pin to low level and DIO\_13, DIO\_14 pins to high level;
  - ★ Before turning off, set DIO\_7, DIO\_13, DIO\_14 pins to low;
- The register configuration can be reinitialized when the chip is idle for greater stability.

#### 4.3 Connection instructions to the emulator



- TMS, TCK, reset, and ground need to be connected between the emulator and the module, and an additional 3.3V power supply is required for the emulator;
- Use USB to UART module to connect with module, module serial port and IO port are multiplexed, users can set according to their own needs;
- Please note that good grounding is required. When there is a large area of grounding, the power supply ripple is small. Increase the filter capacitor and try to be close to the VCC and GND pins of the module.



### 5 FAQ

#### 5.1 Communication range is too short

- The communication distance will be affected when obstacle exists;
- Data lose rate will be affected by temperature, humidity and co-channel interference;
- The ground will absorb and reflect wireless radio wave, so the performance will be poor when testing near ground;
- Sea water has great ability in absorbing wireless radio wave, so performance will be poor when testing near the sea;
- The signal will be affected when the antenna is near metal object or put in a metal case;
- Power register was set incorrectly, air data rate is set as too high (the higher the air data rate, the shorter the distance);
- The power supply low voltage underroom temperature is lower than 2.5V, the lower the voltage, the lower the transmitting power;
- Due to antenna quality or poor matching between antenna and module.

#### 5.2 Module is easy to damage

- Please check the power supply source, ensure it is 2.0V~3.6V, voltage higher than 3.6V will damage the module;
- Please check the stability of power source, the voltage cannot fluctuate too much;
- Please make sure antistatic measure are taken when installing and using, high frequency devices have electrostatic susceptibility;
- Please ensure the humidity is within limited range, some parts are sensitive to humidity;
- Please avoid using modules under too high or too low temperature.

### 5.3 BER(Bit Error Rate) is high

- There are co-channel signal interference nearby, please be away from interference sources or modify frequency and channel to avoid interference;
- Poor power supply may cause messy code. Make sure that the power supply is reliable;
- The extension line and feeder quality are poor or too long, so the bit error rate is high.



## 6 Production guidance

## 6.1 Reflow soldering temperature

| Profile Feature                     | Curve characteristics             | Sn-Pb Assembly | Pb-Free Assembly |
|-------------------------------------|-----------------------------------|----------------|------------------|
| Solder Paste                        | Solder paste                      | Sn63/Pb37      | Sn96.5/Ag3/Cu0.5 |
| Preheat Temperature min (Tsmin)     | M in preheating temp.             | 100°C          | 150°C            |
| Preheat temperature max (Tsmax)     | Mx preheating temp.               | 150°C          | 200°C            |
| Preheat Time (Tsmin to Tsmax)(ts)   | Preheating time                   | 60-120 sec     | 60-120 sec       |
| Average ramp-up rate(Tsmax to Tp)   | Average ramp-up rate              | 3°C/second max | 3°C/second max   |
| Liquidous Temperature (TL)          | Liquid phase temp.                | 183℃           | 217°C            |
| Time (tL) Maintained Above (TL)     | Time below liquid phase line      | 60-90 sec      | 30-90 sec        |
| Peak temperature (Tp)               | Peak temp.                        | 220-235°C      | 230-250°C        |
| Aveage ramp-down rate (Tp to Tsmax) | Aveage ramp-down rate             | 6°C/second max | 6°C/second max   |
| Time 25°C to peak temperature       | Time to peak temperature for 25°C | 6 minutes max  | 8 minutes max    |

## 6.2 Reflow soldering curve





#### 7 E72 series

| M odel No.    | IC     | Frequency<br>Hz | Tx power<br>dBm | Distance<br>km | Protocol | Package | Size mm     | Antenna  |
|---------------|--------|-----------------|-----------------|----------------|----------|---------|-------------|----------|
| E72-2G4M23S1A | CC2630 | 2.4G            | 23              | 1.5            | -        | SMD     | 17.5 * 33.5 | PCB/IPEX |
| E72-2G4M05S1A | CC2630 | 2.4G            | 5               | 0.5            | -        | SMD     | 17.5 * 28.7 | PCB/IPEX |
| E72-2G4M02S2B | CC2640 | 2.4G            | 2               | 0.3            | BLE 4.1  | SMD     | 14 * 23     | PCB/IPEX |
| E72-2G4M05S1B | CC2640 | 2.4G            | 5               | 0.5            | BLE 4.2  | SMD     | 17.5 * 28.7 | PCB/IPEX |

#### 8 Antenna recommendation

#### 8.1 Recommendation

The antenna is an important role in the communication process. A good antenna can largely improve the communication system. Therefore, we recommend some antennas for wireless modules with excellent performance and reasonable price.

| M odel No.     | Туре                | Frequeny<br>Hz | Interfac<br>e | Gain dBi | Hright  | Cable | Function feature                 |
|----------------|---------------------|----------------|---------------|----------|---------|-------|----------------------------------|
| TX2400-NP-5010 | Flexible<br>Antenna | 2.4G           | IPEX          | 2        | 50*10mm | -     | FPC soft antenna                 |
| TX2400-XP-150  | Sucker<br>antenna   | 2.4G           | SM A-J        | 3.5      | 15cm    | 150cm | High gain                        |
| TX2400-JK-20   | Rubber<br>antenna   | 2.4G           | SM A-J        | 3        | 200mm   | -     | Flexible &omnidirectional        |
| TX2400-JK-11   | Rubber<br>antenna   | 2.4G           | SM A-J        | 2.5      | 110mm   | -     | Flexible &omnidirectional        |
| TX2400-JZ-3    | Rubber<br>antenna   | 2.4G           | SM A-J        | 2        | 30mm    | -     | Short straight &comnidirectional |



#### 8.1 Antenna switch



### **Revision history**

| Version | Date      | Description     | Issued by |
|---------|-----------|-----------------|-----------|
| 1.00    | 2018/8/30 | Initial version | huaa      |
| 1.10    | 2018/9/28 | Model No. split | huaa      |

#### About us

Technical support:support@cdebyte.com

Documents and RF Setting download link: www.ebyte.com

Thank you for using Ebyte products! Please contact us with any questions or suggestions: info@cdebyte.com

\_\_\_\_\_\_

Fax: 028-64146160 ext. 821

Web: www.ebyte.com

Address: Innovation Center D347, 4# XI-XIN Road, Chengdu, Sichuan, China

