- Linear/undetermined systems
 - Matrix multiplication is $\rightarrow \downarrow$.
 - Row echelon form is the result of Gaussian elimination.
 - Pivots are first nonzero value in a row. Free variables are those columns without pivots. Dependent variables are columns with pivots.
 - Specific (particular) solutions are solutions x_s , and vectors in the null space are solutions x_n
 - Ax = b for multiple solutions is the **general (total) solution**: $A(x_s + \beta x_n) = b$ where x_s is s.t. $Ax_s = b$ and x_n s.t. $Ax_n = 0$
 - Vectors form a basis for a column space of A if they're columns in A and linearly independent. $C(A) = \operatorname{Span}(a_0, \ldots, a_n 1)$. So just the columns in which the pivots appear. Maybe more.
 - Vectors in a row space are column vectors. The rows in which the pivots appear (both in row echelon and initial, though we usually use row echelon) transversed.
 - To find vectors in the null space set the first free variable to 1 and the second to 0 for the first vector, then flip for the second.
 - General solution is Specific solution $+\beta_k * k$ th vector in the null space for all vectors in the null space.
- QR factorization:
 - Normal equation: $A^T A \hat{x} = A^T b$ or $(A^T A)^{-1} A^T b = \hat{x}$ Plug in A and b to find $\hat{x} = \text{best approximate solution (linear least-squares solution)}$
 - Compute projection of b onto A, call it \hat{b} : $A(A^TA)^{-1}A^Tb = \hat{b}$. Note that this is just the \hat{x} from the normal equation multiplied by A, so $\hat{b} = A\hat{x}$.
 - Orthonormal vectors:

$$q_k = \frac{a_k^{\perp}}{\rho_{k,k}} = \frac{a_k^{\perp}}{\parallel a_k^{\perp} \parallel_2}$$

where

$$a_k^{\perp} = a_k - \rho_{0,k} q_0 - \dots - \rho_{k-1,k} q_{k-1}$$

 $a_k^{\perp} = a_k - q_0^T a_k q_0 - \dots - q_{k-1}^T a_k q_{k-1}$

$$-A = QR \text{ where } Q = (q_0|\dots|q_{n-1})$$

$$\text{and } R = \begin{pmatrix} \|a_0\|_2 & q_0^T a_1 & \dots & q_0^T a_{n-1} \\ & \|a_1^{\perp}\|_2 & \ddots & \vdots \\ & & \ddots & q_{n-2}^T a_{n-1} \\ 0 & & \|a_{n-1}^{\perp}\|_2 \end{pmatrix}. \text{ Basically any } \rho_{k,k} = \|a_k^{\perp}\|_2, \, \rho_{(i < k),k} = q_i^T a_k, \, \text{and } \rho_{(i > k),k} = 0.$$

- Space spanned by vectors: $A = \{a_0 | ... | a_{n-1}\}$ where A is the space and a_k is a vector.
- Eigenvalues are scalars λ . λ is an eigenvalue of $A \iff Ax = \lambda x$ for some non-zero vector x. So:

For
$$2x2$$
 $M = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$, and for $3x3$ $M = \begin{pmatrix} a - \lambda & b & c \\ d & e - \lambda & f \\ g & h & i - \lambda \end{pmatrix}$, and $det(A - \lambda I) = 0$.

- Eigenvectors
- Determinants:

- For 2x2 matrices
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $\det(M) = ad - bc$
- For 3x3 matrices $M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$, $\det(M) = a(ei - hf) - b(di - fg) + c(dh - eg)$, or $\det(M) = aei + bfg + cdh - (afh + bdi + ceg)$

- Equivalent to "A is nonsingular"
 - A is invertible.
 - $-A^{-1}$ exists.

- $-AA^{-1} = A^{-1}A = I.$
- A represents a linear transformation that is a bijection.
- -Ax = b has a unique solution for all $b \in \mathbb{R}^n$.
- -Ax = 0 implies that x=0.
- $Ax = e_j$ has a solution for all $j \in \{0, \dots, n-1\}$
- The determinant of A is nonzero: $det(A) \neq 0$.
- LU with partial pivoting does not break down.
- $\mathcal{N}(A) = 0.$
- $\mathcal{C}(A) = \mathbb{R}^n.$
- $\mathcal{R}(A) = \mathbb{R}^n.$
- A has linearly independent columns.
- A has linearly independent rows.