Estatística aplicada à epidemiologia II Modelos para desfecho binário

Leo Bastos – leonardo.bastos@fiocruz.br

PROCC - Fundação Oswaldo Cruz

https://github.com/lsbastos/eae2

Titanic

- Vamos explorar o exemplo do famoso naufrágio de Titanic em 1912.
- O dado original consiste em um array com 4 dimensões dos 2201 passageiros contendo as seguintes informações:
 - Suvived: {Yes, No}Sex: {Male, Female}
 - Age: {Child, Adult}
 - Class: {1st, 2nd, 3rd, Crew}
- "Mulheres e crianças primeiro!", será que isso aconteceu no naufrágio do Titanic?
- Como podemos verificar isso?

Via probabilidades

- Podemos explicar a probabilidade de sobreviver segundo sexo e idade
- Podemos comparar as probabilidades (ou avaliar as ORs) associadas a sobrevivência entre os sexos, e entre os dois grupos de idade.
- Então, basta calcularmos as ORs

$$OR_{Sex} = \frac{Odds(Female)}{Odds(Male)}$$

е

$$OR_{Sex} = \frac{Odds(Child)}{Odds(Adult)}$$

Lendo os dados no R

- Chamando o banco
 - > data(Titanic)
- O dado é um data.frame de 4 dimensões, podemos transforma lo em uma tabela (tibble)
 - > library(tidyverse)
 - > Titanic2 <- as_tibble(Titanic) %>%
 - + spread(Survived, n)
 - > head(Titanic2)
 - # A tibble: 6×5

	${\tt Class}$	Sex	Age	No	Yes
	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	1st	${\tt Female}$	Adult	4	140
2	1st	${\tt Female}$	${\tt Child}$	0	1
3	1st	Male	Adult	118	57
4	1st	Male	${\tt Child}$	0	5
5	2nd	${\tt Female}$	Adult	13	80
6	2nd	Female	Child	0	13

Visualizando: Sobrevivência por sexo

Visualizando: Sobrevivência por idade

Tabelas para Sexo e Idade

Tabela para Sexo

	No	Yes
Male	1364	367
Female	126	344

Tabela para idade

	No	Yes
Child	52	57
Adult	1438	654

ORs? Existe associação significativa?

Interpretação

- Ambas associações são significativas, via teste chi-quadrado (p-value < 0.001)
- As chances de uma mulher sobreviver ao naufrágio são 10.14 vezes as chances de um homem sobreviver.
- As chances de uma criança sobreviver ao naufrágio são 2.41 vezes as chances de um adulto sobreviver.

Verificando via modelo

O modelo logistico tem a forma

$$Y_i \sim Ber(\theta_i)$$

onde $Y_i = 1$ se o indivíduo sobreviveu, $g(\theta_i) = \alpha + \beta X_i$

- Se o dado estiver agregado, cada linha representa um conjunto de categorias, podemos escrever o modelo da seguinte forma
- O modelo logistico tem a forma

$$Z_k \sim Bin(n_k, \theta_k)$$

onde onde Z_k é o número de sobreviventes na linha k, n_k o numero de passageiros na linha k, e $g(\theta_k) = \alpha + \beta X_k$

Olhando o dado agregado

- O dado em sua forma agregada
 - > head(Titanic2)

```
# A tibble: 6 \times 5
 Class Sex Age
                      No
                           Yes
  <chr> <chr> <chr> <dbl> <dbl>
1 1st Female Adult
                       4
                           140
2 1st Female Child
                       0
3 1st
       Male
             Adult
                            57
                     118
       Male
              Child
                             5
4 1st
                       0
5 2nd
     Female Adult 13 80
       Female Child
                            13
6 2nd
                       0
```


Saída via modelo

Y ~ Sex

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.3128	0.0588	-22.33	0.0000
SexFemale	2.3172	0.1196	19.38	0.0000

• $Y \sim Age$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.7879	0.0472	-16.71	0.0000
${\sf AgeChild}$	0.8797	0.1975	4.45	0.0000

• $OR_{Sex} = 10.15 \text{ e } OR_{Age} = 2.41$

ORs ajustadas

- Podemos encontrar as ORs ajustadas, i.e. a OR do sexo ajustada por idade, e a OR da idade ajustada pelo sexo.
- Y ~ Age + Sex

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.3365	0.0599	-22.32	0.0000
SexFemale	2.2940	0.1199	19.13	0.0000
${\sf AgeChild}$	0.5564	0.2276	2.44	0.0145

- $OR_{Sex} = 9.91 \text{ e } OR_{Age} = 1.74$
- O efeito da idade mudou pouco, já o efeito do sexo sofreu uma mudança considerável.

Visualizando: Sobrevivência por idade e sexo

Extratificando

Y ∼ Age (para os homens)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.3691	0.0609	-22.47	0.0000
${\sf AgeChild}$	1.1811	0.2584	4.57	0.0000

Y ∼ Age (para as mulheres)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	1.0644	0.1111	9.58	0.0000
AgeChild	-0.5654	0.3269	-1.73	0.0837

Criando uma categoria única Sexo e idade

- Agora vamos criar uma categoria para sexo e idade, vamos chamala de SexAge.
- $Y \sim AgeSex$

Estimate	Std. Error	z value	Pr(> z)
-1.3691	0.0609	-22.47	0.0000
1.1811	0.2584	4.57	0.0000
1.8681	0.3134	5.96	0.0000
2.4335	0.1267	19.21	0.0000
	-1.3691 1.1811 1.8681	-1.3691 0.0609 1.1811 0.2584 1.8681 0.3134	-1.3691 0.0609 -22.47 1.1811 0.2584 4.57 1.8681 0.3134 5.96

Probabilidades

 Lembrando que podemos recuperar as probabilidades aplicando a função logit inversa,

$$\theta = logit^{-1}(\alpha + \sum_{i} AgeSex_{i}\beta_{i})$$

Resultando na tabela:

	Levels	OR	SurvProb	LI	LS
1	Adult:Male	1.000	0.203	0.184	0.223
2	Child:Male	3.258	0.453	0.336	0.575
3	Child:Female	6.476	0.622	0.474	0.751
4	Adult:Female	11.399	0.744	0.700	0.783

Comparando Modelos

• Comparando modelos via AIC

	Modelos	AIC
1	1 + Age	703.02
2	1 + Sex	288.11
3	1 + Age + Sex	284.22
4	1 + AgeSex	269.90

Conclusão?

- E aí, Mulheres e crianças primeiro?
- Mulheres adultas primeiro, depois crianças!

Visualizando: Sobrevivência por classe

Modelo adicionando a Classe

• $Y \sim AgeSex + Class$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.2461	0.1320	-17.01	0.0000
${\sf AgeSexChild:Male}$	1.7921	0.2829	6.33	0.0000
AgeSexChild:Female	2.5072	0.3332	7.52	0.0000
AgeSexAdult:Female	2.6172	0.1510	17.33	0.0000
Class2nd	0.7767	0.1777	4.37	0.0000
Class1st	1.8105	0.1759	10.29	0.0000
ClassCrew	1.0072	0.1530	6.58	0.0000

ORs

ORs por classe

	OR
Class2nd	2.17
Class1st	6.11
ClassCrew	2.74

• ORs (Idade e sexo)

	OR.crude	OR.adj
AgeSexChild:Male	3.26	6.00
AgeSexChild:Female	6.48	12.27
AgeSexAdult:Female	11.40	13.70

•
$$Y \sim AgeSex + Class$$
 (AIC = 155.2)

Incluindo a interação com a Classe

• $Y \sim AgeSex + AgeSex$: Class (AIC= 74.6)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.6409	0.1262	-13.01	0.0000
${\sf AgeSexChild:Male}$	0.6505	0.3484	1.87	0.0619
${\sf AgeSexChild:Female}$	1.4468	0.3823	3.78	0.0002
$AgeSe \times Adult:Female$	1.4830	0.2008	7.39	0.0000
AgeSexAdult:Male:Class2nd	-0.7570	0.3063	-2.47	0.0135
AgeSexChild:Male:Class2nd	27.1934	89551.9055	0.00	0.9998
AgeSexChild:Female:Class2nd	26.5477	88813.3546	0.00	0.9998
AgeSexAdult:Female:Class2nd	1.9750	0.3374	5.85	0.0000
AgeSexAdult:Male:Class1st	0.9133	0.2048	4.46	0.0000
AgeSexChild:Male:Class1st	26.5269	95180.5436	0.00	0.9998
AgeSexChild:Female:Class1st	24.7602	131010.7755	0.00	0.9998
AgeSexAdult:Female:Class1st	3.7133	0.5306	7.00	0.0000
AgeSexAdult:Male:ClassCrew	0.3912	0.1504	2.60	0.0093
AgeSexAdult:Female:ClassCrew	2.0550	0.6385	3.22	0.0013

Probabilidades de sobrevivência

