Boston Housing Data 데이터 분석 리포트

1. 개발 환경

언어: Python (anaconda)

개발툴 : Spyder

사용패키지: numpy, pandas, seaborn, sklearn, xgboost, fuctools

소스 파일 : boston housing data.py, analysis.py

실행 방법 :

IDE Spyder 사용시: boston housing data.py 불러들여 실행 python.exe 사용시: python boston housing data.py <엔터>

2. 분석 개요

해당 데이터 셋에 대하여, 먼저 탐색적 데이터 분석을 수행하여 기초 통계 및 변수 간의 상관 관계 또는 비/선형성을 확인하고 수행할 후보 모델링 알고리즘 별로 성능테스트를 수행 후 가장 성능이 좋게 나오는 알고리즘을 선정 한 다음 해당 알고리즘에 대하여 최적화 작업을 수행

변수 리스트 : 'CRIM','ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE','DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'

타켓 변수 : 'MEDV'

- 1) 탐색적 데이터 분석
- 2) 모델링 알고리즘 테스트 (일반 선형 회귀, PLS(PCA+Regression), 결정트리 ,그라디언트 부스팅)
- 3) 모델링 최적화 선정 및 모델 선정 분석 결과 도출

3. 탐색적 데이터 분석

1) 기초통계

이미 해당 데이터셋은 목적을 두고 전처리 과정을 거치고 생성된 공개 데이터 이기에 결측치 나 특별히 분산이 0 에 가까운 특별한 변수는 없었으나 'CHAS' 와 같은 경우에는 0/1 의 데이터로 일반 회귀모형보다는 결정트리 계열의 알고리즘에서 유효할 것으로 보임

- 기초통계 요약

Housing_data summary										
row counts=506 col counts=14										
	CRIM	ZN		CHAS	NOX	RM	\			
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000				
mean	1.716290	11.363636	11.136779	0.069170	0.554695	6.284634				
std	2.653510	23.322453	6.860353	0.253994	0.115878	0.702617				
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000				
25%	0.081900	0.000000	5.190000	0.000000	0.449000	5.885500				
50%	0.250895	0.000000	9.690000	0.000000	0.538000	6.208500				
75%	2.326718	12.500000	18.100000	0.000000	0.624000	6.623500				
max	9.966540	100.000000	27.740000	1.000000	0.871000	8.780000				
	AGE	DIS	RAD	TAX	PTRATIO	В	١			
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000				
mean	68.574901	3.696228	4.332016	408.237154	18.455534	356.674032				
std	28.148861	1.999689	1.417166	168.537116	2.164946	91.294864				
min	2.900000	0.585700	1.000000	187.000000	12.600000	0.320000				
25%	45.025000	2.073700	4.000000	279.000000	17.400000	375.377500				
50%	77.500000	3.107300	4.000000	330.000000	19.050000	391.440000				
75%	94.075000	5.112625	5.000000	666.000000	20.200000	396.225000				
max	100.000000	9.222900	8.000000	711.000000	22.000000	396.900000				
	LSTAT	MEDV								
count	506.000000	506.000000								
mean	12.653063	22.532806								
	7.141062	9.197104								
min		5.000000								
25%	6.950000	17.025000								
50%	11.360000	21.200000								
75%	16.955000	25.000000								
max	37.970000	50.000000								

2) 상관관계분석

타겟변수인 'MEDV' 와 LSTAT, RM, PTRATIO, INDUS, TAX 가 5개의 변수가 최상위 5 위로 큰 관계성을 보였으나, 'MEDV' 제외한 나머지 독립변수들 간의 상관관계가 크게 존재하여 일반적인 회귀분석으로는 적정 모델을 도출하기 힘들 것으로 보임

```
Housing data Correlations
            CRTM
                       7N
                              INDUS
                                         CHAS
                                                   NOX
                                                              RM
                                                                      AGE
        1.000000 -0.300774 0.590822 0.013922 0.634679 -0.190197 0.482013
7N
       -0.300774 1.000000 -0.533828 -0.042697 -0.516604 0.311991 -0.569537
INDUS
        0.590822 -0.533828 1.000000 0.062938 0.763651 -0.391676 0.644779
CHAS
        0.013922 -0.042697  0.062938  1.000000  0.091203  0.091251  0.086518
        0.634679 -0.516604 0.763651 0.091203 1.000000 -0.302188 0.731470
NOX
RΜ
        -0.190197 0.311991 -0.391676
                                     0.091251 -0.302188
                                                       1.000000 -0.240265
        0.482013 -0.569537 0.644779
                                    0.086518 0.731470 -0.240265 1.000000
AGE
DTS
       -0.495148 0.566660 -0.678498 -0.090950 -0.748872 0.225052 -0.713313
RAD
        -0.088451 -0.119290 -0.087615
                                     0.079105
                                              0.009217
                                                        0.088753
                                                                 0.019658
        0.793392 -0.314563 0.720760 -0.035587
TAX
                                              0.668023 -0.292048
                                                                 0.506456
PTRATIO
       0.362615 -0.391679 0.383248 -0.121515 0.188933 -0.355501 0.261515
        -0.377013 0.175520 -0.356977 0.048788 -0.380051 0.128069 -0.273534
        0.481907 -0.412995 0.603800 -0.053929 0.590879 -0.613808 0.602339
LSTAT
       MEDV
             DTS
                       RAD
                                TAX
                                     PTRATIO
                                                     В
                                                           LSTAT
                                                                     MEDV
CRIM
        -0.495148 -0.088451 0.793392 0.362615 -0.377013 0.481907 -0.362077
ΖN
        0.566660 -0.119290 -0.314563 -0.391679 0.175520 -0.412995 0.360445
INDUS
       -0.678498 -0.087615 0.720760 0.383248 -0.356977 0.603800 -0.483725
       -0.090950 0.079105 -0.035587 -0.121515 0.048788 -0.053929 0.175260
CHAS
NOX
       -0.748872 0.009217 0.668023 0.188933 -0.380051 0.590879 -0.427321
RM
                  0.088753 -0.292048 -0.355501 0.128069 -0.613808
        0.225052
       -0.713313 0.019658 0.506456 0.261515 -0.273534 0.602339 -0.376955
AGE
DTS
        1.000000 0.003030 -0.541369 -0.269140 0.293621 -0.479158 0.264325
RAD
        0.003030 1.000000 -0.049221 -0.116969 0.040705 -0.069828
                                                                0.113519
       -0.541369 -0.049221 1.000000 0.460853 -0.441808
TAX
                                                       0.543993 -0.468536
PTRATIO -0.269140 -0.116969 0.460853 1.000000 -0.177383
                                                       0.374044 -0.507787
В
        0.293621 0.040705 -0.441808 -0.177383 1.000000 -0.366087
                                                                0.333461
LSTAT
       -0.479158 -0.069828 0.543993 0.374044 -0.366087 1.000000 -0.737663
        0.264325   0.113519   -0.468536   -0.507787   0.333461   -0.737663   1.000000
```

- 상관관계 히트맵 표시

해당 히트맵에서 볼 수 있듯이 타켓 변수인 'MDEV'와의 상관관계 외에도 독립변수간의 상관관계도 함께 두드러짐

	orrelations	Imp	Important Correlations between Figures			
RM	0.695360		attribute pair			
ZN	0.360445	15	(CRIM, TAX)			
В	0.333461	3	(INDUS, NOX)	0.763651		
DIS	0.264325	1	(AGE, NOX)	0.731470		
CHAS	0.175260	7	(INDUS, TAX)	0.720760		
RAD	0.113519	20	(NOX, TAX)	0.668023		
CRIM	-0.362077	18	(AGE, INDUS)	0.644779		
AGE	-0.376955	5	(CRIM, NOX)	0.634679		
NOX	-0.427321	14	(INDUS, LSTAT)	0.603800		
TAX	-0.468536	21	(AGE, LSTAT)	0.602339		
INDUS	-0.483725	11	(LSTAT, NOX)	0.590879		
PTRATIO	-0.507787	12	(CRIM, INDUS)	0.590822		
LSTAT	-0.737663	6	(DIS, ZN)	0.566660		
Name: ME	DV, dtype: float64	0	(LSTAT, TAX)	0.543993		
		19	(AGE, TAX)	0.506456		
		4	(NOX, ZN)	-0.516604		
		8	(INDUS, ZN)	-0.533828		
		17	(DIS, TAX)	-0.541369		
		16	(AGE, ZN)	-0.569537		
		9	(LSTAT, RM)	-0.613808		
		13	(DIS, INDUS)	-0.678498		
		10	(AGE, DIS)	-0.713313		
		2	(DIS, NOX)			
			•			

'LSTAT'-저소득 계층이 몰려 있으면 집값이 낮게 형성되며, 'RM'-방의 개수가 많으면 집값이 높게 형성되는 등 큰 상관관계를 보인 변수들에 대해서는 합리적인 설명이 됨

추가적으로 'NOX'-산화 질소 공기오염도와 관련된 부분에서 공장과 가까우면 공기오염도가 함께 올라가 거나 'DIS'-업무지역과 멀어지면 공기오염도가 낮아지는 등의 부분들이 다양하게 보임

3) 매트릭스 차팅

매트릭스 차트를 통해 한번 더 변수 간의 관계성을 확인하고 상위의 상관관계를 보인 주요인자와 타겟 변수와의 선형성을 확인 함

일반적인 선형성을 보이는 변수도 있었으나 의외로 로그,지수 곡선을 그리는 변수들 존재하였음. 회귀모 형을 주로 한다면 해당 변수들에 대해 별도의 식을 세워 파생 변수로 선형성을 확보하는 작업을 진행하 면 더 좋을 것 같았으나 이미 앞서 독립변수 간에 상관관계가 큰 것을 확인했으므로 결정트리를 주로 사용할 것이기에 해당 부분은 생략함

- 'MEDV' 와 주요 독립 변수(RM, LSTAT, PTRATIO) 분포

4. 모델링 알고리즘 테스트

모든 알고리즘은 트레인셋과 테스트셋을 나누어 크로스벨리데이션 과정을 적용하였고 스코어는 R2 설정하여 해당 성능을 비교하기 쉽게 차트로 표현하였음

일반회귀: 성능이 좋지 하겠지만 기준을 세우기 위해 일반 회귀 모형에서의 상태 확인 차 확인 PLS(PCA+Regression): 상관관계가 독립변수간에 존재하기에 데이터 압축하여 회귀 모형 적용 Descision Tress: 독립변수간의 상관관계가 존재할 뿐아니라 선형적이지 않은 부분도 존재하기에 결정트리 사용

GBoost: 부스팅 기법을 적용하여 좀 더 결정트리의 성능을 높인 모델을 찾도록 함

- 일반 회귀 결과 차트

-PLS 결과 차트

일반 회귀 모형 보다 PLS 가 안정적인 성능을 보여줌, 주성분 개수 3개 이상 부터는 큰 변동 폭이 없었음

- 결정트리

트리 깊이를 5 이상 부터는 비슷한 성능을 보이며, 트레이닝 셋에서는 일반 회귀보나 훨씬 좋은 성능을 보이나 오버피팅이 많이 일어남. 해당 부분은 샘플링 다시 하거나하여 어느정도 조정 가능함

-그라디언트 부스팅

일반 회귀 모형 또는 일반 결정 트리 보다 훨씬 더 좋은 성능을 테스트 셋과 트레인셋 양쪽다 보두 보이며 본 분석에서는 그라디언트 부스팅 알고리즘을 통해 모델 최적화를 수행하기로 함

5. 모델링 최적화 선정 및 분석 결과 도출

크로스벨리데이션을 적용함과 동시에 sklearn 패키지에서 제공하는 RandomizedSearchCV 를 활용하여, 각 모델의 파라메타 (max_depth, learning_rate, gamma, reg_lambda) 을 주어진 범위안에서 무작위로 탐 색하여 최적의 모델을 찾도록 함

코드상에서는 보다 좋은 모델을 찾기 위해 옵션을 조절하여 찾을 가능성이 있음

Code:

def get_optimal_GBModel(X, y): 상기 함수에 구현 됨

- 최적 모델 탐색 결과

테스트 셋으로 남겨둔 데이터로 최적 모델 탐색 결과 R2 : 0.84 로 앞서 테스트한 모델들에 비워 좋은 성능의 모델을 찾음

그라디언트 부스팅을 사용하여 해당 집값을 예측하는 최적의 모델을 찾을 수 있었으며, 변수간의 관계를 결정트리를 확인하는 과정을 통해 다시한번 확인이 가능하였음

결정트리를 확인하게 되면 타겟 변수와 관계성이 높았던 독립변수에 의해 트리가 생성됨