PAF	COLLEGE OF COMPUTING AND INFORMATION SCIENCES			
	MIDTERM Assessment Spring 2021 Semester			
Class Id	106397/106398/ 106399 / 106600	Course Title	Design and Analysis of Algorithms	
Program	BSCS / MCS	Campus / Shift	North Campus / Morning	
Date	11 th March 2021	Total Points	30	
Duration	02 + 01 hours	Faculty Name	Dr. Salman Khan & Shah Emaduddin	
Student Id	62952	Student Name	SYED RAZA AHMED	

INSTRUCTIONS:

- Students are expected to complete the exam within 02 hours.
- To accommodate electricity or internet failures, students will be given 01 extra hour for uploading and downloading.
- The exam will be from **6:30 PM to 8:30 PM**. Submission will be due by **9:30 PM**.
- Answers submitted after 9:30 pm may be penalized or even rejected.
- Similar copies or material taken from the internet will be marked zero and plagiarism policy will be applied in accordance with the institutional regulations.
- Students are advised to upload their answer scripts as PDF file only on LMS as soon as they finish the exam. A copy of the answer script should also be submitted to Google classroom.
- The answer script should be named in the following format: ID_FirstName_CourseID.pdf
- E.g. 12345_FirstName_105123.pdf, where 12345 is std id, and 105123 is replaced with your course id.
- Answers should be solved on this given question paper. No change should be made to the cover page of this exam paper.
- A recorded viva session may be conducted with students to ascertain the quality of answer scripts where deemed necessary.
- The answer should preferably be typed. Hand written answers should bear the name and ID number of the student on the page, and clear image of the page should be pasted in this exam sheet just below the concerned question.
- Any non-compliance with the given instructions may result in deduction of marks as penalty.

UNDERTAKING:

By attempting this exam, I declare that all answers in this examination have been given solely by me while using books, notes, internet and other sources of information, and I have not taken any help from any person or student in solving any part of this examination.

Question	Q1	Q2	Q3	Q4	Q5	Q6	Total
Max. marks	5	5	5	5	5	5	30
Marks obtained							

Q1: WARM UP [5 MARKS]

For each of the following questions, provide your answer in a SINGLE word. Answers longer than one word will be considered invalid.

a. Which approach for algorithm description is not concerned with software engineering issues?

Ans: Formal Description.

b. This term defines the number of primitive operations

Ans: Asymptotic Notation

c. The time requirements of an algorithm depend on two things. One of them is the nature of the problem being studied, while the other one is concerned with ______

Ans: Input Size

d. Insertion sort uses this approach in sorting a given array

Ans: Incremental Approach

e. This notation gives the upper bound on the growth rate of a function

Ans: Big-O

Q2: ASYMPTOTIC ANALYSIS

[5 MARKS]

An algorithm A_1 has a runtime $T_1(n)$ defined (in seconds) by the following function:-

$$T_1(n) = n^2 + n + 50$$

For n = 9, the runtime of algorithm A₁ is **140** seconds.

Runtime of another algorithm A_2 is represented by the following equation:-

$$T_2(n) = 2n^3 + 14n + 230$$

For n = 2, the runtime of algorithm A₂ is **274** seconds.

Algorithm A₃ with runtime represented by the following equation.

$$T_3(n) = 3n^2 + 33n + 333$$

Identify all values of n (if such values exist) for which the runtime of A_3 exceeds the given runtime of 140 sec of A_1 but is less than the runtime of 274 seconds of A_2 .

0#2

Solution:

Algorithm As in $T_2(n) = n^2 + n + 50$, n = 9, sun time = 1405 Algorithm Az in $T_2(n) = 2n^3 + 14n + 230$, n = 2, sun time = 2745

for Algorithm A3 in T3(n)=3n2+33n + 333

Let, n=-3, $\sqrt{3(-3)}=3(-3)+33(-3)+333=27-99+333$

 $\frac{\text{let. } n = -4, 7_3(-4) = 3(-4)^2 + 33(-4) + 333 = 48 - 132 + 333}{5(7_3(-4) = 249)}$

let, n=-5, \(\begin{aligned} & \left(\frac{1}{3} \left(-5 \right) = 3(-5)^2 + 33(-5) + 333 = 75 - 165 + 333 \\ \frac{1}{3} \left(-5 \right) = 243 \end{aligned}

Let, n = -6, $\overline{13(-6)} = 3(-6)^2 + 33(-6) + 333 = 108 - 198 + 333$ $\sqrt[3]{7_3(-6)} = 243$

 $7 \frac{\text{let}, n = -7}{7_3(-7)} = 3(-7)^2 + 33(-7) + 333 = 147 - 231 + 333$ $7 \frac{7_3(-7)}{249} = 249$

 $\frac{1}{2} \int_{-2}^{2} \frac{1}{3} (-8)^{2} = 3(-8)^{2} + 33(-8) + 333 = 192 - 264 + 333$ $\frac{1}{2} \int_{-2}^{2} \frac{1}{3} (-8)^{2} = 261$

The Value of n will be greater then 140,2 len then 2745

Let us assume that we have two algorithms A and B. Algorithm A has run time given by $(10n)^2$ and algorithm B has run time given by $(\sin^2 n + \cos^2 n + 1)^n$ where n is the input size. Also assume that both algorithms are run on the same computer. Find the smallest value of n for which the runtime of algorithm A is less than the run time of algorithm B.

· RAZA (62952)		
	0#3	
E		
Solution:		
		M°tt B
	Algorithm A	Algorith B
	•	$\left(\operatorname{Sin}^2 n + \operatorname{los}^2 n + 1\right)^n$
· N	$(10n)^2$	(Jun n + los n + 1)
1	10	1024
10	10000	1.267 # 1030
100	100000	1.264
Lough Work	6 .	n=1
	n=2	$Sin^{2}n + con^{2}n = 1$
	10(1)2=10	(1+1)' = 2
	n 210	
	10(10) 2 10,000	N = 10
	n= 100	(1+1)10=1024
	10 (100) = 100,000	(1+1)100= 1.267*

Consider the pseudo-code below:

a. Is the time efficiency of the code greater than, equal to, or less than O(n)? **Explain your answer**.

			T 100
J. Raza (62952)		Date —	
		20 au	
·	0#4(a)		
Solution:			
Soution:			
(1)		•	20
f(n)		<i>t</i>	
int Jum = 0			
for (int ; = D	; 14n; i++)		
Jun ++			
return n	* .	1	
run time 1+ n+1+	n+1 = 2n+3		i .
runtine of this pse			
. 0			
n=0 then its a	esticiony will be	lever than o	o(n), o(1) so
one is n in gran	ter than O then	essiciency is a	neater than
ord if n in great	I sur instinctly.		× 1
4 000			
CS Scanned with CamScanner			

b. What is the expected runtime of the code (in Big-O notation?) **Explain your answer**.

Ans: The algorithm run infinite time not more than 1 time and then terminate the program considering on the value of n.

Q5: DYNAMIC PROGRAMMING

[5 MARKS]

Wireless sensor networks (WSNs) refer to a domain of communication networks. In a WSN, small devices called *sensor nodes* are used for data transfer among each other and a base station. One limitation of a sensor node is that it has a very limited processing capability and very small memory. Consider a scenario in which you have an algorithm that can be subdivided into smaller problems. If you have to run these sub-problems in different sensor nodes, would you prefer to use divide & conquer approach or dynamic programming approach? Write briefly and precisely.

Ans: I will go for dynamic programming for this scenario because it will not recheck the nodes instead it will solve it in a bottom-up fashion although in divide and conquer it will recheck the already checked nodes and it will cause time efficiency.

Q6: GROWTH OF FUNCTIONS

[5 MARKS]

The following figure shows the plots of runtime versus input size for two algorithms. Asymptotic efficiency of algorithm RED is defined by $0.6n^2$ while of algorithm BLUE is defined by 1000n + 3000. The x-axis represents the input size (shown from 0 to 5000) while the y-axis shows the runtime in seconds.

- (a) Find the value of input size n at which the two plots intersect each other.
- (b) What is the importance of this intersection point?

U. Raza (62952)	Date
0-#	6(a)
Solution:	
By using Ouadra	ti equation, -6= 162-40c
0 /	201
(i) 0.6 n ² - (i)	$0.6n^2 = 1000n + 3000$
(ii) 1000n + 3000 (ii)	0.6n² - 1000n - 3000
» + 1000 ± √(-100	00)2-4(0.6)(-3000)
260	
23 1000 ± 10000	00 + 7200
1.2	
6v	
2) 1000 + 1000	7200
1000 1 Y 1000060 7	7200 , 1000 - 1000000 + 7200
1.2	1. 2
» n. = 1669.66	$n_2 = -2.994$
» [n= 1669.66]	

6(b) Ans: The intersection point of both curves are same in this scenario and considering this value the behavior of both algorithms is similar, the running time is increasing when 0.6n^2 is taken as compare to 1000n + 3000.