Hausdorff measure

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

October 29, 2014

1 Outer measures and metric outer measures

Suppose that X is a set. A function $\nu: \mathscr{P}(X) \to [0, \infty]$ is said to be an **outer measure** if (i) $\nu(\emptyset) = 0$, (ii) $\nu(A) \leq \nu(B)$ when $A \subset B$, and, (iii) for any countable collection $\{A_j\} \subset \mathscr{P}(X)$,

$$\nu\left(\bigcup_{j=1}^{\infty} A_j\right) \le \sum_{j=1}^{\infty} \nu(A_j).$$

We say that a subset A of X is ν -measurable if

$$\nu(E) = \nu(E \cap A) + \nu(E \cap A^c), \qquad E \in \mathscr{P}(X). \tag{1}$$

Here, instead of taking a σ -algebra as given and then defining a measure on this σ -algebra (namely, on the measurable sets), we take an outer measure as given and then define measurable sets using this outer measure. **Carathéodory's theorem**¹ states that the collection \mathcal{M} of ν -measurable sets is a σ -algebra and that the restriction of ν to \mathcal{M} is a complete measure.

Suppose that (X, ρ) is a metric space. An outer measure ν on X is said to be a **metric outer measure** if

$$\rho(A, B) = \inf \{ \rho(a, b) : a \in A, b \in B \} > 0$$

implies that

$$\nu(A \cup B) = \nu(A) + \nu(B).$$

We prove that the Borel sets are ν -measurable.² That is, we prove that the Borel σ -algebra is contained in the σ -algebra of ν -measurable sets.

Theorem 1. If ν is a metric outer measure on a metric space (X, ρ) , then every Borel set is ν -measurable.

¹Gerald B. Folland, *Real Analysis*, second ed., p. 29, Theorem 1.11.

²Gerald B. Folland, *Real Analysis*, second ed., p. 349, Proposition 11.16.

Proof. Because ν is an outer measure, by Carathéodory's theorem the collection \mathcal{M} of ν -measurable sets is a σ -algebra, and hence to prove that \mathcal{M} contains the Borel σ -algebra it suffices to prove that \mathcal{M} contains all the closed sets. Let F be a closed set in X, and let E be a subset of X. Because ν is an outer measure,

$$\nu(E) = \nu((E \cap F) \cup (E \cap F^c)) \le \nu(E \cap F) + \nu(E \cap F^c).$$

In the case $\nu(E) = \infty$, certainly $\nu(E) \ge \nu(E \cap F) + \nu(E \cap F^c)$. In the case $\nu(E) < \infty$, for each n let

$$E_n = \{ x \in E \setminus F : \rho(x, F) \ge n^{-1} \},$$

which satisfies $\rho(E_n, F) \ge n^{-1}$. Because $\rho(E_n, E \cap F) \ge \rho(E_n, F) \ge n^{-1}$, the fact that ν is a metric outer measure tells us that

$$\nu((E \cap F) \cup E_n) = \nu(E \cap F) + \nu(E_n). \tag{2}$$

Because F is closed, for any $x \in E \setminus F$ we have $\rho(x, F) > 0$, and hence

$$E \setminus F = \bigcup_{n=1}^{\infty} E_n. \tag{3}$$

Therefore

$$E = (E \cap F) \cup (E \cap F^c) = (E \cap F) \cup \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} ((E \cap F) \cup E_n),$$

hence for each n, using this and (2) we have

$$\nu(E) \ge \nu((E \cap F) \cup E_n) = \nu(E \cap F) + \nu(E_n).$$

To prove that $\nu(E) \geq \nu(E \cap F) + \nu(E \cap F^c)$, it now suffices to prove that

$$\lim_{n \to \infty} \nu(E_n) = \nu(E \cap F^c).$$

Let $D_n = E_{n+1} \setminus E_n$. For $x \in D_{n+1}$ and $y \in X$ satisfying $\rho(x,y) < ((n+1)n)^{-1}$, we have

$$\rho(y,F) \le \rho(x,y) + \rho(x,F) < \frac{1}{n(n+1)} + \frac{1}{n+1} = \frac{1}{n},$$

which implies that $y \notin E_n$. Thus,

$$\rho(D_{n+1}, E_n) \ge \frac{1}{n(n+1)}. (4)$$

For any n, using (4) and the fact that ν is a metric outer measure,

$$\nu(E_{2n+1}) = \nu(D_{2n} \cup E_{2n})
\geq \nu(D_{2n} \cup E_{2n-1})
= \nu(D_{2n}) + \nu(E_{2n-1})
\geq \cdots
= \nu(D_{2n}) + \nu(D_{2n-2}) + \cdots + \nu(D_2) + \nu(E_1)
\geq \sum_{j=1}^{n} \nu(D_{2j}),$$

and

$$\nu(E_{2n}) = \nu(D_{2n-1} \cup E_{2n-1})
\geq \nu(D_{2n-1} \cup E_{2n-2})
= \nu(D_{2n-1}) + \nu(E_{2n-2})
\geq \cdots
= \nu(D_{2n-1}) + \nu(D_{2n-3}) + \cdots + \nu(D_3) + \nu(D_1) + \nu(E_0)
= \sum_{j=1}^{n} \nu(D_{2j-1}).$$

But $E_n \subset E$ so $\nu(E_n) \leq \nu(E)$, and hence each of the series $\sum_{j=1}^{\infty} \nu(D_{2j})$ and $\sum_{j=1}^{\infty} \nu(D_{2j-1})$ converges to a value $\leq \nu(E)$. Thus the series $\sum_{j=1}^{\infty} \nu(D_j)$ converges to a value $\leq 2\nu(E)$. But for any n,

$$\nu(E \setminus F) = \nu\left(E_n \cup \bigcup_{j=n}^{\infty} D_j\right) \le \nu(E_n) + \sum_{j=n}^{\infty} \nu(D_j).$$

Because the series $\sum_{j=1}^{\infty} \nu(D_j)$ converges, the sum on the right-hand side of the above tends to 0 as $n \to \infty$, so

$$\nu(E \setminus F) \le \liminf_{n \to \infty} \nu(E_n) \le \limsup_{n \to \infty} \nu(E_n) \le \nu(E \setminus F);$$

the last inequality is due to (3), which tells us $\nu(E_n) \leq \nu(E \setminus F)$. Therefore,

$$\lim_{n \to \infty} \nu(E_n) = \nu(E \setminus F) = \nu(E \cap F^c),$$

which completes the proof.

We shall use the following.³

³Gerald B. Folland, *Real Analysis*, second ed., p. 29, Proposition 1.10.

Lemma 2. Let (X, ρ) be a metric space. Suppose that $\mathscr{E} \subset \mathscr{P}(X)$ satisfies $\emptyset, X \in \mathscr{E}$ and that $d : \mathscr{E} \to [0, \infty]$ satisfies $d(\emptyset) = 0$. Then the function $\nu : \mathscr{P}(X) \to [0, \infty]$ defined by

$$\nu(A) = \inf \left\{ \sum_{j=1}^{\infty} d(E_j) : E_j \in \mathscr{E} \text{ and } A \subset \bigcup_{j=1}^{\infty} E_j \right\}, \qquad A \in \mathscr{P}(X)$$

is an outer measure.

We remark that if there is no covering of a set A by countably many elements of \mathscr{E} then $\nu(A)$ is an infinimum of an empty set and is thus equal to ∞ .

2 Hausdorff measure

Suppose that (X, ρ) is a metric space and let $p \geq 0$, $\delta > 0$. Let \mathscr{E} be the collection of those subsets of X with diameter $\leq \delta$ together with the set X, and define $d(A) = (\operatorname{diam} A)^p$. By Lemma 2, the function $H_{p,\delta} : \mathscr{P}(X) \to [0,\infty]$ defined by

$$H_{p,\delta}(A) = \inf \left\{ \sum_{j=1}^{\infty} d(E_j) : E_j \in \mathscr{E} \text{ and } A \subset \bigcup_{j=1}^{\infty} E_j \right\}, \qquad A \in \mathscr{P}(X)$$

is an outer measure. If $\delta_1 \leq \delta_2$ then $H_{p,\delta_1}(A) \geq H_{p,\delta_2}(A)$, from which it follows that for each $A \in \mathscr{P}(X)$, as δ tends to 0, $H_{p,\delta}(A)$ tends to some element of $[0,\infty]$. We define $H_p = \lim_{\delta \to 0} H_{p,\delta}$ and show that this is a metric outer measure.

Theorem 3. Suppose that (X, ρ) is a metric space and let $p \geq 0$. Then $H_p : \mathscr{P}(X) \to [0, \infty]$ defined by

$$H_p(A) = \lim_{\delta \to 0} H_{p,\delta}(A), \qquad A \in \mathscr{P}(X).$$

is a metric outer measure.

Proof. First we establish that H_p is an outer measure. It is apparent that $H_p(\emptyset) = 0$. If $A \subset B$, then, using that $H_{p,\delta}$ is a metric outer measure,

$$H_p(A) = \lim_{\delta \to 0} H_{p,\delta}(A) \le \lim_{\delta \to 0} H_{p,\delta}(B) = H_p(B).$$

⁴Gerald B. Folland, *Real Analysis*, second ed., p. 350, Proposition 11.17.

If $\{A_j\}\subset \mathscr{P}(X)$ is countable then, using that $H_{p,\delta}$ is a metric outer measure,

$$H_p\left(\bigcup_{j=1}^{\infty} A_j\right) = \lim_{\delta \to 0} H_{p,\delta}\left(\bigcup_{j=1}^{\infty} A_j\right)$$

$$\leq \lim_{\delta \to 0} \sum_{j=1}^{\infty} H_{p,\delta}(A_j)$$

$$= \sum_{j=1}^{\infty} \lim_{\delta \to 0} H_{p,\delta}(A_j)$$

$$= \sum_{j=1}^{\infty} H_p(A_j).$$

Hence H_p is an outer measure.

To obtain that H_p is a metric outer measure, we must show that if $\rho(A, B) > 0$ then $H_p(A \cup B) \ge H_p(A) + H_p(B)$. Let $0 < \delta < \rho(A, B)$ and let $\mathscr E$ be the collection of those subsets of X with diameter $\le \delta$ together with the set X. If there is no covering of $A \cup B$ by countably many elements of $\mathscr E$, then $H_p(A \cup B) \ge H_{p,\delta}(A \cup B) = \infty$. Otherwise, let $\{E_j\} \subset \mathscr E$ be a covering of $A \cup B$. For each j, because diam $E_j \le \delta < \rho(A, B)$, it follows that E_j does not intersect both A and B. Write

$$\mathscr{E} = \{E_{a_j}\} \cup \{E_{b_j}\},\$$

where $E_{a_j} \cap B = \emptyset$ and $E_{b_j} \cap A = \emptyset$. Then $A \subset \bigcup E_{a_j}$ and $B \subset \bigcup E_{b_j}$, so

$$\sum_{j=1}^{\infty} (\operatorname{diam} E_j)^p = \sum_{j=1}^{\infty} (\operatorname{diam} E_{a_j})^p + \sum_{j=1}^{\infty} (\operatorname{diam} E_{j_b})^p \ge H_{p,\delta}(A) + H_{p,\delta}(B).$$

This is true for any covering of $A \cup B$ by countably many element of \mathscr{E} , so

$$H_{p,\delta}(A \cup B) \ge H_{p,\delta}(A) + H_{p,\delta}(B).$$

The above inequality is true for any $0 < \delta < \rho(A, B)$, and taking $\delta \to 0$ yields

$$H_p(A \cup B) \ge H_p(A) + H_p(B),$$

completing the proof.

We call the metric outer measure $H_p: \mathscr{P}(X) \to [0,\infty]$ in the above theorem the *p*-dimensional Hausdorff outer measure. From Theorem 1 it follows that the restriction of H_p to the Borel σ -algebra \mathscr{B}_X of a metric space is a measure. We call this restriction the *p*-dimensional Hausdorff measure, and denote it also by H_p .

It is straightforward to verify that if $T: X \to X$ is an isometric isomorphism then $H_p \circ T = H_p$. In particular, for $X = \mathbb{R}^n$, H_p is invariant under translations.

We will use the following inequality when talking about Hausdorff measure on $\mathbb{R}^n.^5$

Lemma 4. Let Y be a set and (X, ρ) be a metric space. If $f, g: Y \to X$ satisfy

$$\rho(f(y),f(z)) \leq C \rho(g(y),g(z)), \qquad y,z \in Y,$$

then for any $A \in \mathcal{P}(Y)$,

$$H_p(f(A)) \le C^p H_p(g(A)).$$

Proof. Take $\delta > 0$ and $\epsilon > 0$. There are countably many sets E_j that cover g(A) each with diameter $\leq C^{-1}\delta$ and such that

$$\sum (\operatorname{diam} E_j)^p \le H_p(g(A)) + \epsilon.$$

Let $a \in A$. There is some j with $g(a) \in E_j$, so $a \in g^{-1}(E_j)$ and then $f(a) \in f(g^{-1}(E_j))$. Therefore the sets $f(g^{-1}(E_j))$ cover f(A). For $u, v \in f(g^{-1}(E_j))$, there are $y, z \in g^{-1}(E_j)$ with u = f(y), v = f(z). Because $g(y), g(z) \in E_j$,

$$\rho(u,v) = \rho(f(y), f(z)) \le C\rho(g(y), g(z)) \le C \operatorname{diam} E_j,$$

hence

$$\operatorname{diam} f(g^{-1}(E_j)) \le C \operatorname{diam} E_j.$$

Since the sets $f(g^{-1}(E_j))$ cover f(A) and each has diameter $\leq C \operatorname{diam} E_j \leq \delta$,

$$H_{p,\delta}(f(A)) \le \sum (\operatorname{diam} f(g^{-1}(E_j)))^p \le \sum C^p(\operatorname{diam} E_j)^p \le C^p(H_p(g(A)) + \epsilon).$$

This is true for all $\delta > 0$, so taking $\delta \to 0$,

$$H_p(f(A)) \le C^p(H_p(g(A)) + \epsilon).$$

This is true for all $\epsilon > 0$, so taking $\epsilon \to 0$,

$$H_p(f(A)) \le C^p H_p(g(A)).$$

3 Hausdorff dimension

Theorem 5. If $H_p(A) < \infty$ then $H_q(A) = 0$ for all q > p.

⁵Gerald B. Folland, *Real Analysis*, second ed., p. 350, Proposition 11.18.

Proof. Let $\delta > 0$. Then $H_{p,\delta}(A) \leq H_p(A) < \infty$ Let $\{E_j\}$ be countably many sets each with diameter $\leq \delta$ such that $A \subset \bigcup E_j$ and

$$\sum (\operatorname{diam} E_j)^p \le H_{p,\delta}(A) + 1 \le H_p(A) + 1.$$

This gives us

$$H_{q,\delta}(A) \leq \sum (\operatorname{diam} E_j)^q = \sum (\operatorname{diam} E_j)^{q-p} (\operatorname{diam} E_j)^p$$

$$\leq \delta^{q-p} \sum (\operatorname{diam} E_j)^p$$

$$\leq \delta^{q-p} (H_p(A) + 1).$$

This is true for any $\delta > 0$ and q - p > 0, so taking $\delta \to 0$ we obtain $H_q(A) = 0$.

For $A \in \mathcal{P}(X)$, we define the **Hausdorff dimension of** A to be

$$\inf\{q \ge 0 : H_q(A) = 0\}.$$

If the set whose infimum we are taking is empty, then the Hausdorff dimension of A is ∞ .

4 Radon measures and Haar measures

Before speaking about Hausdorff measure on \mathbb{R}^n , we remind ourselves of some material about Radon measures and Haar measures. Let X be a locally compact Hausdorff space. A Borel measure μ on X is said to be a **Radon measure** if (i) it is finite on each compact set, (ii) for any Borel set E,

$$\mu(E) = \inf \{ \mu(U) : U \text{ open and } E \subset U \},$$

and (iii) for any open set E,

$$\mu(E) = \sup \{ \mu(K) : K \text{ compact and } K \subset E \}.$$

It is a fact that if X is a locally compact Hausdorff space in which every open set is σ -compact, then every Borel measure on X that is finite on compact sets is a Radon measure.

Suppose that G is a locally compact group. A Borel measure μ on G is said to be **left-invariant** if for all $x \in G$ and $E \in \mathcal{B}_G$,

$$\mu(xE) = \mu(E).$$

A left Haar measure on G is a nonzero left-invariant Radon measure on G. It is a fact that if μ and ν are left Haar measures on G then there is some c > 0 such that $\mu = c\nu$.

⁶Gerald B. Folland, *Real Analysis*, second ed., p. 217, Theorem 7.8.

⁷Gerald B. Folland, *Real Analysis*, second ed., p. 344, Theorem 11.9.

5 Hausdorff measure in \mathbb{R}^n

Let m_n denote Lebesgue measure on \mathbb{R}^n .

Lemma 6. If E is a Borel set in \mathbb{R}^n , then

$$H_n(E) \ge 2^n m_n(E)$$
.

Proof. Let $\epsilon > 0$ and let $\{E_j\}$ be countably many closed sets that cover E and such that

$$\sum (\operatorname{diam} E_j)^n \le H_n(E) + \epsilon.$$

The **isodiametric inequality** (which one proves using the Brunn-Minkowski inequality) states that if A is a Borel set in \mathbb{R}^n , then

$$m_n(A) \le \left(\frac{\operatorname{diam} A}{2}\right)^n.$$

Using this gives

$$\sum 2^n m_n(E_j) \le H_n(E) + \epsilon.$$

But because the sets E_j cover E we have $m_n(E) \le m_n(\bigcup E_j) \le \sum m_n(E_j)$, so we get

$$m_n(E) \le \frac{H_n(E) + \epsilon}{2^n}.$$

This expression does not involve the sets E_j (which depend on ϵ), and since this expression is true for any $\epsilon > 0$, taking $\epsilon \to 0$ yields

$$m_n(E) \le \frac{H_n(E)}{2^n}.$$

Let

$$Q = \left\{ x \in \mathbb{R}^n : |x_1| \le \frac{1}{2}, \dots, |x_n| \le \frac{1}{2} \right\}.$$

Lemma 7. $0 < H_n(Q) < \infty$.

Proof. For any $m \geq 1$, the cube Q can be covered by m^n cubes q_1, \ldots, q_{m^n} of side length $\frac{1}{m}$. Let $0 < \delta < 1$ and let $m > \frac{1}{\delta}$. The distance from the center of q_j to one of the vertices of q_j is

$$r = \sqrt{\left(\frac{1}{2m}\right)^2 + \dots + \left(\frac{1}{2m}\right)^2} = \frac{\sqrt{n}}{2m}.$$

Inscribe q_j in a closed ball b_j with the same center as q_j and radius r. These balls cover Q. Hence

$$H_{p,\delta}(Q) \le \sum_{j=1}^{m^n} (\operatorname{diam} b_j)^n = \sum_{j=1}^{m^n} (2r)^n = (2r)^n \cdot m^n = n^{n/2}.$$

Taking $\delta \to 0$ gives $H_p(Q) \le n^{n/2} < \infty$. On the other hand, by Lemma 6,

$$H_n(Q) \ge 2^n m_n(Q) = 2^n > 0.$$

Theorem 8. There is some constant $c_n > 0$ such that

$$H_n = c_n m_n$$
.

Proof. \mathbb{R}^n is a locally compact Hausdorff space in which every open set in \mathbb{R}^n is σ -compact. Therefore, to show that H_n is a Radon measure it suffices to show that H_n is finite on every compact set. If K is a compact subset of \mathbb{R}^n , there is some r > 0 such that $K \subset rQ$. By Lemma 4 and Lemma 7 we get $H_n(rQ) < \infty$, so $H_n(K) < \infty$. Therefore H_n is a Radon measure.

Because $H_n(Q) > 0$, H_n is not the zero measure. Any translation is an isometric isomorphism $\mathbb{R}^n \to \mathbb{R}^n$, so H_n is invariant under translations. Thus H_n is a left Haar measure on \mathbb{R}^n . But Lebesgue measure m_n is also a left Haar measure on \mathbb{R}^n , so there is some $c_n > 0$ such that

$$H_n = c_n m_n$$

proving the claim.