UNIVERSIDADE ABERTA

IMPACTO DA VOLATILIDADE NA OTIMIZAÇÃO DE PORTFOLIOS FINANCEIROS

Leonel da Silva Baptista

Mestrado em Estatística, Matemática e Computação Ramo Estatística Computacional

UNIVERSIDADE ABERTA

IMPACTO DA VOLATILIDADE NA OTIMIZAÇÃO DE PORTFOLIOS FINANCEIROS

Leonel da Silva Baptista

Mestrado em Estatística, Matemática e Computação Ramo Estatística Computacional

Dissertação orientada pelo Professor Doutor Amílcar Manuel do Rosário Oliveira

2020

Resumo

O problema a ser tratado nesta dissertação será o impacto dos vários métodos de cálculo da volatilidade no cálculo da rentabilidade ótima do portfolio para um determinado nível de risco. Desta forma, ao definir o portfolio de ativos financeiros, será analisado o método da média variância na construção dos portfolios, assim como o impacto do número de ativos no valor da volatilidade final do portfolio. O cálculo da variância dos ativos será calculado com base nos dados históricos, na volatilidade implícita, no modelo GARCH e ARCH noutros métodos que possam ser de interesse ao longo do estudo teórico.

historical volatility, EWMA and GARCH. Será realizada uma análise do VaR (Value at Risk) e do ES (Expected Shortfal) para cada um dos ativos e portfolios obtidos, utilizando diferentes métodos para cálculo do VaR e ES, classificando-se estes em métodos paramétricos e não paramétricos. Desta forma, a análise da otimização dos portfolios será enquadrada com a gestão de risco, VaR e ES, sendo que esta métrica combina duas características, a suposição do tipo de distribuição dos retornos e a previsão da variância. A análise dos valores obtidos nos portfolios será realizado comparando a rentabilidade obtida nos diferentes portfolios com a rentabilidade obtida no benchmark — ou índice de referência - sendo este um ponto de referência para identificar e comparar o desempenho dos investimentos realizados. Este trabalho será realizado tendo como ferramenta de apoio a linguagem de programação R.

Este trabalho demonstra que os modelos da família GARCH são mais apropriados para se modelar a variância condicional (volatilidade) de séries de retornos financeiros que apresentam variância condicional evoluindo no tempo em comparação com os modelos ARIMA tradicionais. ARIMA-GARCH

Abstract

Dedicado a minha esposa

Agradecimentos

Índice

ln [·]	trodu	ıção	1
1	Mod	delação Estatística na Otimização de Portfólios	3
2	Pac	otes do R para análise	5
3	Apli	cação a dados do modelo	7
	3.1	Example one	8
	3.2	Example two	8
Co	onclu	são	9

Lista de Tabelas

Here is a nice table!		2
-----------------------	--	---

Lista de Figuras

1	Here is a nice figure!													1

Simbologia e notações

Introdução

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter. If you do not manually label them, there will be automatic labels anyway, e.g., Chapter ??.

Figures and tables(Cryer & Chan, 2008) with captions will be placed in figure and table environments, respectively(Rankovic et al., 2016)

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```


Figura 1: Here is a nice figure!

Reference a figure by its code chunk(Bertsimasa et al., 1965) label with the fig: prefix, e.g., see Figure 1. Similarly, you can reference tables(Salgado, 2011) generated from knitr::kable(), e.g., see Table 1.

Tabela 1: Here is a nice table!

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations,(Engle & Patton, 2001) too. For example, we are using the **bookdown** package (Xie, 2020) in this sample book,(Markowitz, 1952) which was built on top of R Markdown and **knitr** (Rockafellar & Uryasev, 2000).

Capítulo 1

Modelação Estatística na Otimização de Portfólios

Here is a review of existing methods.

Capítulo 2 Pacotes do R para análise

We describe our methods in this chapter.

Capítulo 3

Aplicação a dados do modelo

Some *significant* applications are demonstrated in this chapter.

- 3.1 Example one
- 3.2 Example two

Conclusão

We have finished a nice book.

Bibliografia

- Bertsimasa, D., Lauprete, G. J. & Samarovc, A. (1965). Shortfall as a risk measure: properties, optimization and applications. *Journal of Economic Dynamics & Control*, 28(7), 1353–1381. DOI:10.1016/S0165-1889(03)00109-X
- Cryer, J. D. & Chan, K. S. (2008). *Time Series Analysis With Applications in R* (2nd). Springer.
- Engle, R. F. & Patton, A. J. (2001). What good is a volatility model? *Quantitative Finance*, *1*(2), 237–245. DOI:10.1088/1469-7688/1/2/305
- Markowitz, H. (1952). Portfolio Selection. *The Journal of Finance*, 7(1), 77–91. DOI: 10.2307/2975974
- Rankovic, V., Drenovak, M., Urosevic, B. & Jelic, R. (2016). Mean-univariate GARCH VaR portfolio optimization: Actual portfolio approach. *Computer and Optimization Research*, 72, 83–92. DOI:10.1016/j.cor.2016.01.014
- Rockafellar, R. T. & Uryasev, S. (2000). Optimization of conditional value-at-risk. *Journal of Risk*, 2(3), 21–41. DOI:10.21314/JOR.2000.038
- Salgado, J. (2011). What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? (Master's thesis, ISCTE-IUL). Retrieved from https://repositorio.iscte-iul.pt/bitstream/10071/4070/1/Tese_JoseSalgado.pdf.
- Xie, Y. (2020). bookdown: Authoring Books and Technical Documents with R Mark-down [R package version 0.19]. https://CRAN.R-project.org/package=bookdown