

Chapitre 1 – Signaux déterministes continus

- 1. Classification des signaux
- 2. Représentation temps-fréquence
- 3. Transformation de Fourier
- Distribution de Dirac
- 5. Séries de Fourier
- 6. Produit de convolution
- 7. Approche du filtrage
- 8. Exemples de traitements
- 9. Conclusion

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Classification phénoménologique

Signal déterministe (ou certain)

Signal dont les états futurs peuvent être déterminés

Signal qui peut être décrit par un modèle mathématique

Ex : Note de musique, fréquence porteuse d'un téléphone.

Signal aléatoire (ou stochastique)

Signal imprévisible à l'avance

Signal qui ne peut être décrit par une expression analytique

Signal susceptible de porter une information

=> un signal déterministe ne porte pas d'information.

Ex : Signal de parole d'une transmission téléphonique, tirage du loto.

Classification phénoménologique

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

3

Classification morphologique

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

valeur discrètes

QUANTIFICATION

4

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Classification énergétique

Energie

$$E_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt$$

Puissance

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{T} |x(t)|^{2} dt$$

- Signal à énergie finie $E_x < +\infty$
 - Englobe les signaux de durée finie (rencontrés en pratique)
 - Signal de puissance nulle

Etude de ces signaux par analyse de Fourier

- Signal à puissance finie $P_x < +\infty$
 - Englobe les signaux périodiques
 - Signal d'énergie infinie
 - Pour les signaux périodiques, le calcul de P se fait sur une période

5

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Classification énergétique

Exemple

Soit le signal x(t) défini par x(t) = $a \cdot cos(2\pi f_0 t)$, $a \in \mathbb{R}$

Démontrer que l'énergie de ce signal est infinie et que sa puissance moyenne est finie et égale à $a^2/2$,

Soit le signal x(t) défini par x(t) = 1 pour $t \in [-\mathcal{E}/2, +\mathcal{E}/2]$

Démontrer que l'énergie de ce signal est finie et que sa puissance moyenne est nulle,

Classification énergétique

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Analogie avec l'électricité

Soit un dipôle électrique quelconque

Par définition, la puissance instantanée : $p(t) = u(t) \cdot i(t)$

Dans le cas d'une résistance : $p(t) = R \cdot i^2(t) = u^2(t)/R$

L'énergie $E(t_1, t_2)$ (J) est donnée par : $E(t_1, t_2) = R \int_{t_1}^{t_2} i^2(t) dt = \frac{1}{R} \int_{t_1}^{t_2} v^2(t) dt$

La puissance $P(t_1,t_2)$ (W) est :

$$P(t_1, t_2) = \frac{R}{t_2 - t_1} \int_{t_1}^{t_2} i^2(t) dt = \frac{1}{R(t_2 - t_1)} \int_{t_1}^{t_2} v^2(t) dt t dt$$

Par analogie, le signal x(t) du slide 5 peut donc être associé à une tension aux bornes ou un courant traversant une résistance normalisée (R = 1 Ω).

7

Représentation temps/fréquence

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

- Représentation temporelle (forme d'onde)
 - Variation de l'amplitude du signal en fonction du temps
 - Renferme toutes les informations contenues dans le signal
 - Permet de montrer l'instant d'émission ou la durée des évènements

- Représentation fréquentielle (spectre)
 - Variation de l'amplitude du signal en fonction de la fréquence
 - Renferme toutes les informations contenues dans le signal
 - Permet de montrer les composantes fréquentielles du signal.

8

Représentation temps/fréquence

I. Signaux déterministes continus

Exemple

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

x(t) est une sinusoïde de période T_0 défini sur $\pm \infty$ Son spectre X(f) montre explicitement la présence d'une composante fréquentielle en f = f_0 .

(La justification du calcul du spectre sera faite dans la partie suivante)

9

Représentation temps/fréquence

I. Signaux déterministes continus

Exemple

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

y(t) est une sinusoïde de période T_0 défini sur un support fini : $\pm 1.5T_0$ Son spectre X(f) montre l'apparition de nouvelle fréquence. Il est composé de deux sinus cardinal en $\pm f_0$

(La justification du calcul du spectre sera faite dans la partie suivante)

10

Transformée de Fourier - TF

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Définition

Soit x(t) une fonction de $\mathbb{R} \to \mathbb{C}$. La transformée de Fourier de x(t) est définie lorsqu'elle existe par :

$$X(f) = \text{TF}[x(t)] = \int_{\mathbb{R}} x(t)e^{-2\pi i ft}dt$$
$$X(f) = A(f) + iB(f) = |X(f)|e^{i\varphi(f)}$$

Condition d'existence : x(t) sommable, c'est-à-dire, fonction à énergie finie (elle tend vers 0 en $\pm \infty$ et possède une amplitude bornée.

Toute fonction existant physiquement admet une transformée de Fourier.

11

Transformée de Fourier - TF

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Définition

Soit x(t) une fonction de $\mathbb{R} \to \mathbb{C}$. La transformée de Fourier de x(t) est définie lorsqu'elle existe par :

$$X(f) = \text{TF}[x(t)] = \int_{\mathbb{R}} x(t)e^{-2\pi i ft}dt$$
$$X(f) = A(f) + iB(f) = |X(f)|e^{i\varphi(f)}$$

Condition d'existence : x(t) sommable, c'est-à-dire, fonction à énergie finie (elle tend vers 0 en $\pm \infty$ et possède une amplitude bornée.

Toute fonction existant physiquement admet une transformée de Fourier.

12

Exemple de TF

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Transformation de Fourier d'une fonction rectangulaire

Soit x(t) une fonction rectangle définie par :

$$x(t) = rectT(t/T) = 1, \forall t \in [-T/2, T/2]$$

0, ailleurs.

Sa transformée de Fourier existe et s'écrit :

$$X(f) = \frac{\sin(\pi fT)}{\pi f} = T \operatorname{sinc}(\pi fT)$$

Où la fonction sinc est définie par : sinc(x) = sin(x)/x

Démonstration :

Exemple de TF

Transformation de Fourier d'une fonction rectangulaire

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

14

Transformée de Fourier inverse

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Définition

La transformée de Fourier inverse est définie par :

$$x(t) = \overline{TF}[X(f)] = \int_{\mathbb{R}} X(f)e^{2\pi i ft} df$$

Remarques

- La transformée de Fourier est un opérateur **dual** : $\nabla(t) \leftrightarrow \vartheta(f) \mid \vartheta(t) \leftrightarrow \nabla(f)$ Par exemple la TF inverse d'un rectangle est un sinus cardinal dans l'espace temps.
- Signal de support étroit -> Spectre de support large et inversement.
 L'exemple précédent illustre ce phénomène (si T est petit, le spectre devient plus large),
- L'unité de X(f) est celle de x(t) que multiplie le temps : si x(t) en V alors X(f) est en V.s

Fréquences négatives

Des fréquences négatives apparaissent dans la représentation spectrale car la TF parcours les espaces de $+\infty$ à $-\infty$

Physiquement seul les fréquences positives ont un sens mais il est important de représenter les fréquences négatives (voir chapitre analyse spectrale),

15

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Linéarité

$$\forall \alpha_1 \ et \ \alpha_2 \ \in \mathbb{C}, TF[\alpha_1 x_1(t) + \alpha_2 x_2(t)] = \alpha_1 TF[x_1(t)] + \alpha_2 TF[x_2(t)]$$

Démonstration

Linéarité de l'opérateur intégration

16

Propriétés de la transformée de Fourier

300

Linéarité

 $f_1 = 200 \text{ Hz}$

I. Signaux déterministes continus

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

17

Propriétés de la transformée de Fourier

I. Signaux déterministes continus

Linéarité

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

18

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

$$TF[x(-t)] = X(-f)$$

Démonstration

Transposition

19

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

$$TF[x^*(t)] = X^*(-f)$$

Symétrie hermitienne :

Conjugaison

Dans le cas d'un signal réel, $X(f) = X^*(-f)$ car $TF[x(t)] = TF[x^*(t)]$

Démonstration

• Translation (théorème du retard)

$$TF[x(t-t_0)] = e^{-2\pi j f t_0} X(f)$$

Un décalage dans le temps du signal ne modifie pas le module de son spectre. Il engendre un déphasage fréquentiel.

Démonstration

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

21

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

$$TF[x(t)e^{2\pi jf_0t}] = X(f - f_0)$$

La multiplication d'un signal par une harmonique pure de fréquence f_0 translate le spectre du signal de f_0 : principe de la modulation d'amplitude.

Démonstration

Modulation

22

Modulation : exemple

$$x_1(t) = \sin(2\pi f_0 t) \text{ avec } f_0 = 10 \text{ Hz}$$

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Convolution

Filtrage

Exemples

Conclusion

23

Propriétés de la transformée de Fourier

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

 $x_1(t) * e^{-2\pi j f_1 t} = \sin(2\pi f_0 t) * e^{-2\pi j f_1 t}$ avec $f_1 = 100$ Hz

$$TF[x_1(t) * e^{-2\pi j f_1 t}] = X_1(f + f_1)$$

Modulation : exemple

24

Propriétés de la transformée de Fourier

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

 $x_1(t) * e^{-2\pi j f_1 t} = \sin(2\pi f_0 t) * e^{-2\pi j f_1 t}$ avec $f_1 = 100$ Hz

Modulation : exemple

$$TF[x_1(t) * e^{-2\pi j f_1 t}] = X_1(f + f_1)$$

25

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

$$TF[x(at)] = \frac{1}{|a|} X\left(\frac{f}{a}\right)$$

Une dilatation dans le domaine des temps « ralentit » le signal et entraine donc une diminution des fréquences.

Exemple: un disque 45T écouté à 33T paraît plus grave et à 78T, plus aigu.

Démonstration

Dilatation - contraction

26

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

 $TF[x'(t)] = (2\pi j f)X(f)$ $TF[x^{(n)}(t)] = (2\pi j f)^n X(f)$

Dérivation par rapport aux fréquences

Dérivation par rapport au temps

$$X'(f) = TF[(-2\pi jt)x(t)]$$

$$X^{(n)}(f) = TF[(-2\pi jt)^n x(t)]$$

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Propriétés de parité

Remarque:

Pour un signal **réel** x(t), le module du spectre |X(f)| est une fonction paire et la phase arg(X(f)) est une fonction impaire.

28

Résumé sur la TF

 $X(f) = \operatorname{TF}[x(t)] = \int_{\mathbb{R}} x(t)e^{-2\pi i ft}dt \mid x(t) = \overline{\operatorname{TF}}[X(f)] = \int_{\mathbb{R}} X(f)e^{2\pi i ft}df$

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

$$\forall \alpha_1 \ et \ \alpha_2 \in \mathbb{C}$$
,

Transposition

Linéarité

Conjugaison

Translation

Modulation

Dilatation/ Contraction

Dérivation / t

Dérivation /f

$$TF[\alpha_1 x_1(t) + \alpha_2 x_2(t)] = \alpha_1 TF[x_1(t)] + \alpha_2 TF[x_2(t)]$$

TF[x(-t)] = X(-f)

 $TF[x^*(t)] = X^*(-f)$

 $TF[x(t-t_0)] = e^{-2\pi i ft_0}X(f)$

 $TF[x(t)e^{2\pi jf_0t}] = X(f - f_0)$

 $TF[x(at)] = \frac{1}{|a|} X\left(\frac{f}{a}\right)$

 $TF[x'(t)] = (2\pi j f)X(f)$

 $X'(f) = TF[(-2\pi jt)x(t)]$

29

Distribution de Dirac

- I. Signaux déterministes continus
- Classification
- Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

- Impulsion centrée sur t=0 de largeur infiniment étroite et de surface unité notée $\delta(t)$ et représentée symboliquement par un vecteur.
- Mathématiquement, la définition se traduit par : $\int_{-\infty}^{+\infty} \delta(t) dt = 1$

$$\delta(t) = 1 \text{ si } t = 0$$
0, ailleurs
$$\delta(t) = 1 \text{ si } t = 0$$

$$\delta(t) = 0$$

$$\delta(t - t_0) = 1$$
 si $t = t_0$
0, ailleurs

• Prélèvement de la valeur d'une fonction en un temps donné :

$$f(t). \delta(t - t_0) = f(t_0). \delta(t - t_0)$$

30

Transformée de Fourier d'un Dirac

I. Signaux déterministes continus

Classification

Espace t-f

Space t-i

Dirac

TF

Séries de F

Convolution

Filtrage

.

Conclusion

Exemples

31

06/09/2016

 $TF[\delta(t)] = 1$ Un signal impulsionnel renferme toutes les fréquences

Un signal continue ne contient pas de fréquence, hors celle en 0

Peigne de Dirac

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Le peigne de Dirac est une suite périodique de distributions de Dirac de période T :

$$\delta_T(t) = \sum_{n \in \mathbb{Z}} \delta(t - nT)$$

La transformée de Fourier d'un peigne de Dirac est un peigne de Dirac :

$$\delta_{1/T}(f) = TF[\delta_T(t)] = \frac{1}{T} \sum_{n \in \mathbb{Z}} \delta(f - n/T) = F \sum_{n \in \mathbb{Z}} \delta(f - nF)$$

32

Transformées de Fourier usuelles

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Modulation
$$TF\left[e^{2\pi jf_0t}\right] = TF\left[1.e^{2\pi jf_0t}\right] = \delta(f - f_0)$$

cosinus
$$TF[cos(2\pi f_0 t)] = \frac{1}{2} \{\delta(f - f_0) + \delta(f + f_0)\}$$
 sinus
$$TF[sin(2\pi f_0 t)] = \frac{1}{2j} \{\delta(f - f_0) - \delta(f + f_0)\}$$

33

Séries de Fourier

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Toute fonction x(t) périodique de période T = 1/F admet un développement en série de Fourier :

$$x(t) = \sum_{n=-\infty}^{+\infty} c(2\pi nF)e^{2\pi jnFt}$$

avec
$$c(2\pi nF) = \frac{1}{T} \int_{-T/2}^{T/2} x(t)e^{-2\pi jnFt} dt = c_n$$

Pour une fonction réelle : $c(2\pi nF) = c^*(-2\pi nF)$

Le spectre de x(t) est alors donné par : $X(f) = \sum_{i=-\infty}^{\infty} c_n \delta(f - nF)$

Démonstration :

Séries de Fourier

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

De façon équivalente, il existe une autre formulation du développement en série de Fourier obtenue en groupant deux à deux les valeurs opposées de n :

$$x(t) = a_0 + \sum_{i=1}^{+\infty} \{a_n cos(2\pi nFt) + bnsin(2\pi nFt)\}$$

avec
$$a_0 = c_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$
, valeur moyenne

$$a_n = cn + c_{-n} = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos(2\pi nFt) dt$$

$$b_n = j(c_n - c_{-n}) = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \sin(2\pi nFt) dt$$

Remarques sur les séries de Fourier

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

- Si x(t) est paire, $b_n = 0$, $\forall n$.
- Si x(t) est impaire, $a_n = 0$, $\forall n$.
- Périodiser dans l'espace temps revient à échantillonner l'espace des fréquences.
- La composante à la fréquence F est appelée le fondamental.
- Les composantes aux fréquences nF sont les harmoniques
- Les séries de Fourier permettent de déterminer le spectre des signaux périodiques (donc à énergie infinie)

Exemple: signal rectangulaire

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Soit x(t), un signal rectangulaire d'amplitude ± 1 , de rapport cyclique 0,5 et de fréquences F.

Il peut être décomposé sous la forme d'une infinité de fonction sinusoïdales :

- D'amplitude $4/(\pi(2n+1))$
- De fréquences $F \cdot (2n + 1)$

37

Exemple: signal rectangulaire

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Série de Fourier

Spectre

38

Exemple: signal rectangulaire

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

39

Exemple: signal triangulaire

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

40

06/09/2016

Il peut être décomposé sous la forme d'une infinité de fonction cosinusoïdales :

- D'amplitude $8/(\pi(2n+1))^2$
- De fréquences $F \cdot (2n+1)$

TF et signaux périodiques

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Soit $x_p(t)$ un signal périodique de période T : $x_p(t) = xp(t+kT)$, $\forall k \in \mathbb{Z} \ et \ T \in \mathbb{R}$

En notant $x_0(t)$, le signal tel que $x_0(t)=x_{p(t)}$, $\forall\ t\in[0;T]\ et\ 0\ ailleurs$ Le signal $x_p(t)$ peut s'écrire :

$$x_p(t) = \sum_{n \in \mathbb{Z}} x_0(t) * \delta(t - nT)$$

Le spectre de $x_p(t)$ est alors :

$$X_p(f) = X_0(f)F\sum_{n\in\mathbb{Z}}\delta(f - nF) = F\sum_{n\in\mathbb{Z}}X_0(nF)\delta(f - nF)$$

Le spectre d'un signal périodique est un spectre de raie.

Produit de convolution

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Définition

Le produit de convolution de deux fonctions x(t) et y(t) réelles ou complexes est défini, lorsqu'il existe, par :

$$x(t) * y(t) = \int_{\mathbb{R}} x(\tau)y(t-\tau)d\tau$$

Conditions d'existence

- L'une des deux fonctions à un support compact
- Ou les deux fonctions ont des supports bornés du même côté

Propriétés du produit de convolution

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

- Commutativité
$$x(t) * y(t) = y(t) * x(t)$$

$$x(t) * [y(t) + z(t)] = x(t) * y(t) + x(t) * z(t)$$

$$x(t) * [y(t) * z(t)] = [x(t) * y(t)] * z(t)$$

Convolution par un dirac

$$x(t) * \delta(t) = x(t)$$

Elément neutre de la convolution

$$x(t) * \delta(t - t_0) = x(t - t_0)$$

 $x(t) * \delta(t - t_0) = x(t - t_0)$ Permet d'effectuer une translation

Exemple: convolution par un Dirac

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

 $s(t)=h(t)*\delta(t)=\int_{\mathbb{R}}\ h(\tau)\delta(t-\tau)d\tau=h(t)$

44

Exemple: convolution de deux rectangles

 $s(t) = h(t) * h(t) = \int_{\mathbb{R}} rect_T\left(\frac{\tau}{T}\right) . rect_T\left(\frac{t-\tau}{T}\right) d\tau$

•

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

 $s(t) = \int_{-T/2}^{t+T/2} d\tau = t + T$

-T

0

 $s(t) = \int_{t-T/2}^{T/2} d\tau = -t + T$

T

Exemple: convolution de deux rectangles

I. Signaux déterministes continus a. Représenter le support des deux fonctions en envisageant les différentes configurations en fonction de t.

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

46

Exemple: convolution de deux rectangles

I. Signaux déterministes continus b. Résoudre l'intégrale dans chaque cas en précisant l'intervalle de t où le calcul est valable :

Classification

Cas 1: t<-T et cas 4:t>T

Espace t-f

Supports disjoints donc produit de convolution nul.

TF

Cas 2:-T<t<0

Dirac

 $s(t) = \int_{-T/2}^{T+T/2} d\tau = t + T$

Séries de F

Cas 3: 0<t<T

Convolution

 $s(t) = \int_{t-T/2}^{T/2} d\tau = -t + T$

Filtrage

Conclusion:

Exemples

Conclusion

 $s(t) = \begin{cases} t + T \ pout \ t \in [-T, 0] \\ -t + T \ pour \ t \in [0, T] \\ 0 \ ailleur \end{cases}$

47

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

$$TF[x(t) * y(t)] = TF[x(t)] \cdot TF[y(t)] = X(f) \cdot Y(f)$$

$$TF[x(t) \cdot y(t)] = TF[x(t)] * TF[y(t)] = X(f) * Y(f)$$

$$\overline{TF}[X(f) * Y(f)] = \overline{TF}[X(f)] \cdot \overline{TF}[Y(f)] = x(t) \cdot y(t)$$

$$\overline{TF}[X(f) \cdot Y(f)] = \overline{TF}[X(f)] * \overline{TF}[Y(f)] = x(t) * y(t)$$

Propriétés

Formules très utiles pour simplifier les calculs !

- Exemple
 - Calculer le spectre d'un signal sinusoïdal observé à travers la fenêtre d'un oscilloscope (c'est-à-dire sur un temps fini T)

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

49

- I. Signaux déterministes continus
- Classification
- Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

- Exemple
 - Calculer le spectre d'un signal sinusoïdale observé à travers la fenêtre d'un oscilloscope (c'est-à-dire sur un temps fini T)

$$X(f) = \frac{T}{2} \{ sinc(\pi(f - f_0)T) + sinc(\pi(f + f_0)T) \}$$

50

Théorème de Parseval

L'énergie d'un signal x(t) se retrouve intégralement dans son spectre X(f)

$$\int_{\mathbb{R}} |x(t)|^2 dt = \int_{\mathbb{R}} |X(f)|^2 df$$

Démonstration :

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

51

Filtrage fréquentiel

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Système linéaire et invariant dans le temps (LIT)

Linéarité
$$\begin{aligned} \forall \alpha_1 \ et \ \alpha_2 \in \mathbb{C}, \\ LIT[\alpha_1 x_1(t) + \alpha_2 x_2(t)] &= \alpha_1 LIT[x_1(t)] + \alpha_2 LIT[x_2(t)] \end{aligned}$$

Stationnarité
$$y(t) = LIT[x(t)] \rightarrow y(t - t_0) = LIT[x(t - t_0)]$$

52

Filtrage fréquentiel

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Soit x(t), un signal d'excitation et h(t), un filtre.

L'opération de filtrage h correspond à atténuer ou extraire certaines composantes fréquentielles de x.

h(t) est appelé **réponse impulsionnelle** du filtre. Elle le caractérise complètement.

h(t) est obtenue en excitant le filtre par une distribution de Dirac,

53

Filtrage fréquentiel

Spectre idéaux des 4 principaux types de filtrage

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

54

Filtrage fréquentiel

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Pour qu'un filtre soit causale, il faut que h(t) soit causale. L'effet ne doit pas précéder la cause => $h(t) \in [0, +\infty[$ En conséquence, h(t) n'est ni paire ni impaire.

$$h(t) = \text{fpaire}(t) + \text{fimpair}(t)$$

Causalité et déphasage

$$\Rightarrow H(f) = TF[h(t)] = Re(H(f)) + j. Im(H(f))$$

Un filtre physiquement réalisable déphase obligatoirement!

55

Diagramme de Bode

diagramme de Bode est la représentation en gain et en phase de H(f) :

Soit H(f) la fonction de transfert d'un système quelconque. Le

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

$$|H(f)| = \sqrt{H(f) \cdot H^*(f)}$$

Gain en décibel

$$G_{dB} = 20 \cdot log(|H(f)|)$$

Argument de H(f): phase

$$arg(H(f)) = arctan\left\{\frac{Im(H(f))}{Re(H(f))}\right\}$$

$$c = a + jb$$

$$|c| = \sqrt{a^2 + b^2}$$

$$arg(c) = arctan\left(\frac{b}{a}\right)$$

56

Filtre passe-bas du 1er ordre

$$H(f) = \frac{1}{1 + j\frac{f}{f_0}}$$

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

57

Filtre passe-haut du 1^{er} ordre

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

58

Filtre passe-bas du 2ème ordre

$$H(f) = \frac{1}{1 + j2m\frac{f}{f_0} - \left(\frac{f}{f_0}\right)^2}$$

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

59

Filtre passe-haut du 2^{ème} ordre

$$H(f) = \frac{-\left(\frac{f}{f_0}\right)^2}{1 + j2m\frac{f}{f_0} - \left(\frac{f}{f_0}\right)^2}$$

Classification

Espace t-f

TF

Filtre coupe-bande du 2ème ordre

$$H(f) = \frac{1 - \left(\frac{f}{f_0}\right)^2}{1 + j2m\frac{f}{f_0} - \left(\frac{f}{f_0}\right)^2}$$

62

Notions de distorsion

- I. Signaux déterministes continus
- Classification
- Espace t-f
 - TF
 - Dirac
- Séries de F
- Convolution
- Filtrage
- Exemples
- Conclusion

Distorsion d'amplitudeGain non constant pou

Gain non constant pour toutes les fréquences

Distorsion de phase

Phase non linéaire : fréquence retardées ou avancées de façons différentes

Distorsion dans les systèmes non linéaires

Soit
$$x(t) \rightarrow y(t) = x(t) + x^2(t)$$

$$si x(t) = a_1 \cdot cos(2\pi f_1 t) + a_2 \cdot cos(2\pi f_2 t)$$

- **Distorsion harmonique** : fréquence 2f₁ et 2f₂
- **Distorsion d'intermodulation** : fréquence (f_1-f_2) et f_1+f_2

63

Apodisation (Filtrage temporel)

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Apodisation : Multiplieur temporel – convolueur fréquentiel

Remarque : il n'existe pas de filtre temporel ne modifiant pas le spectre du signal d'entrée (seul solution le Dirac en fréquence)

Application : En pratique les signaux ne sont jamais utilisés intégralement mais sur une tranche temporelle.

L'opération se traduit par une multiplication avec une fenêtre :

$$x(t,T) = x(t) \cdot rectT(t/T)$$
 $X(f,T) = X(f) * (Tsinc(\pi fT))$

Apodisation (Filtrage temporel)

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

65

Apodisation (Filtrage temporel)

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Comme nous venons de le voir, le fait de ne prendre qu'une partie du signal à un effet sur le spectre :

L'apodisation que l'on fait le plus souvent est fait avec une fenêtre rectangle mais il existe un grand nombre de fenêtre

66

Apodisation (Filtrage temporel)

Type de fenêtre	Atténuation en dB entre lobe principal et premier lobe secondaire	Largeur du lobe principal
Rectangulaire	13	$2F_e/_N$
Bartlett	26	$4F_e/_N$
Hanning	31	$4F_e/_N$
Hamming	41	$4F_e/_N$
Blackman	57	$6F_e/N$
Nuttall	95	$8F_e/_N$

Compromis à faire entre lobe secondaire et largeur du lobe principal. Le choix de la fenêtre dépend du signal à observer

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

67

Apodisation (Filtrage temporel)

Signaux des fréquences très proches

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

Apodisation (Filtrage temporel)

Signaux avec de grandes différences d'amplitude

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

I. Signaux déterministes continus

Classification

Espace t-f

TF

Dirac

Séries de F

Convolution

Filtrage

Exemples

Conclusion

A retenir

Représentations en temps : signaux Représentations en fréquence : spectre

Représentation:

- Différentes
- Complémentaires
- Sans perte d'énergie! (th. de Parseval)

Passage de l'une à l'autre représentation :

- Transformée de Fourier
- Opérateur réversible

70