

Giovanni Pellegrini 1,2,3

SML¹ Lab, University of Trento, Italy

 TIM^2

EIT DIGITAL³

Recurrent VS Convolutional

01 **GNNs** so far **Recurrent VS** 02 **Convolutional** The Graph Neural 03 **Network Model**

TABLE OF CONTENTS

06 PyG Tutorial

03 Graph Neural Network Model¹

- Pioneer work on Graph Neural Network
- Diffusion mechanism (convolution)
- General framework for graph processing

¹Scarselli, et al., *The graph neural network model*, IEEE Transactions on Neural Networks, 2009

$$oldsymbol{x}_v = {
m I\!R}^d$$

$$oldsymbol{x}_v = {
m I\!R}^d \ oldsymbol{l}_{v,u} = {
m I\!R}^{l_E}$$

$$egin{aligned} oldsymbol{x}_v &= {
m I\!R}^d \ oldsymbol{l}_{v,u} &= {
m I\!R}^{l_E} \ oldsymbol{l}_v &= {
m I\!R}^{l_N} \end{aligned}$$

$$m{x}_v = \mathbb{R}^d$$
 $co(v)$ = edges connected to v $m{l}_{v,u} = \mathbb{R}^{l_E}$ $ne(v)$ = neighbours of v $m{l}_v = \mathbb{R}^{l_N}$

$$oldsymbol{x}_v = \mathbb{R}^d$$

 $oldsymbol{x}_v = {
m I\!R}^d \qquad co(v)$ = edges connected to v

 $m{l}_{v,u} = {
m I\!R}^{l_E} \qquad ne(v)$ = neighbours of v $m{l}_v = {
m I\!R}^{l_N}$

$$oldsymbol{l}_v = {
m I\!R}^{\iota_N}$$

$$\boldsymbol{x}_v^{t+1} = f_{\boldsymbol{w}}(\boldsymbol{l}_v, \boldsymbol{l}_{co(v)}, \boldsymbol{x}_{ne(v)}^t, \boldsymbol{l}_{ne(v)})$$

$oldsymbol{x}_v = oldsymbol{l}_{v,u}$

Graph Neural Network Model

$$oldsymbol{x}_v = {
m I\!R}^d \ oldsymbol{l}_{v,u} = {
m I\!R}^{l_E}$$

co(v) = edges connected to v

 $oldsymbol{l}_{v,u} = {
m I\!R}^{l_E} \qquad ne(v)$ = neighbours of v

$$oldsymbol{l}_v = {
m I\!R}^{l_N}$$

$$\boldsymbol{x}_v^{t+1} = f_{\boldsymbol{w}}(\boldsymbol{l}_v, \boldsymbol{l}_{co(v)}, \boldsymbol{x}_{ne(v)}^t, \boldsymbol{l}_{ne(v)})$$

$$\boldsymbol{o}_v^t = g_{\boldsymbol{w}}(\boldsymbol{x}_v^t, \boldsymbol{l}_v)$$

$$m{x}_v = {
m I\!R}^d$$
 $co(v)$ = edges connected $m{l}_{v,u} = {
m I\!R}^{l_E}$ $ne(v)$ = neighbours of v $m{l}_v = {
m I\!R}^{l_N}$

$$oldsymbol{x}_v = {
m I\!R}^d \qquad co(v)$$
 = edges connected to v

$$ne(v)$$
 = neighbours of

$$m{x}_v^{t+1} = f_{m{w}}(m{l}_v, m{l}_{co(v)}, m{x}_{ne(v)}^t, m{l}_{ne(v)})$$
 learnable parameters $m{o}_v^t = g_{m{w}}(m{x}_v^t, m{l}_v)$

$$oldsymbol{o}_v^t = g_{oldsymbol{w}}(oldsymbol{x}_v^t, oldsymbol{l}_v)$$

03

Graph Neural Network Model

$$m{x}_v =
m I\!R^d$$
 $co(v)$ = edges connected to v $m{l}_{v,u} =
m I\!R^{l_E}$ $ne(v)$ = neighbours of v $m{l}_v =
m I\!R^{l_N}$

$$m{x}_v^{t+1} = f_{m{w}}(m{l}_v, m{l}_{co(v)}, m{x}_{ne(v)}^t, m{l}_{ne(v)})$$
 learnable parameters $m{o}_v^t = g_{m{w}}(m{x}_v^t, m{l}_v)$

 $f_{oldsymbol{w}}$ = transition function $g_{oldsymbol{w}}$ = output function

Repeated forward of the transition function create an $\mathbf{encoding\ network}\ \varphi_{\boldsymbol{w}}$

Goal: converge to a unique solution for $\mathbf{x}_{_{\mathrm{V}}}$ and $\mathbf{o}_{_{\mathrm{V}}}$

If the transition function $f_{m{w}}$ is a **contraction mapping**, there exists a fixed point solution

$$\|oldsymbol{x}_v^{t+1} - oldsymbol{x}_v^t\| < \epsilon$$

If the transition function $f_{m{w}}$ is a **contraction mapping**, there exists a fixed point solution

$$\|oldsymbol{x}_v^{t+1} - oldsymbol{x}_v^t\| < \epsilon$$

If $f_{m{w}}$ is a NN, to ensure the contraction mapping a penalty based on the norm of the Jacobian is added to the loss function

```
MAIN
      initialize w;
      x = Forward(w);
      repeat
             \frac{\partial e_{w}}{\partial w} = BACKWARD(x, w);
             \mathbf{w} = \mathbf{w} - \lambda \cdot \frac{\partial e_{\mathbf{w}}}{\partial \mathbf{w}};
             x = FORWARD(w);
      until (a stopping criterion);
      return w;
end
```

```
MAIN
      initialize w;
      x = Forward(w);
      repeat
             \frac{\partial e_{w}}{\partial w} = BACKWARD(x, w);
             \mathbf{w} = \mathbf{w} - \lambda \cdot \frac{\partial e_{\mathbf{w}}}{\partial \mathbf{w}};
             x = FORWARD(w);
      until (a stopping criterion);
      return w;
end
```

```
\begin{aligned} & \text{FORWARD}(\boldsymbol{w}) \\ & \text{initialize } \boldsymbol{x}(0), \ t = 0; \\ & \boldsymbol{repeat} \\ & \boldsymbol{x}(t+1) = F_{\boldsymbol{w}}(\boldsymbol{x}(t), \boldsymbol{l}); \\ & t = t+1; \\ & \textbf{until } \|\boldsymbol{x}(t) - \boldsymbol{x}(t-1)\| \leq \varepsilon_f \\ & \textbf{return } \boldsymbol{x}(t); \\ & \textbf{end} \end{aligned}
```

```
MAIN
      initialize w:
      x = Forward(w);
      repeat
             \frac{\partial e_{w}}{\partial w} = BACKWARD(x, w);
            \mathbf{w} = \mathbf{w} - \lambda \cdot \frac{\partial e_{\mathbf{w}}}{\partial \mathbf{w}};
             x = FORWARD(w);
      until (a stopping criterion);
      return w;
end
```

```
FORWARD(w)
        initialize x(0), t = 0;
        repeat
               \boldsymbol{x}(t+1) = F_{\boldsymbol{w}}(\boldsymbol{x}(t), \boldsymbol{l});
               t=t+1;
        until \|\boldsymbol{x}(t) - \boldsymbol{x}(t-1)\| \leq \varepsilon_f
       return x(t);
end
BACKWARD(x, w)
     o = G_{\boldsymbol{w}}(\boldsymbol{x}, \boldsymbol{l}_{\boldsymbol{N}});
```

 $A = rac{\partial F_{m{w}}}{\partial m{x}}(m{x},m{l});$

t = t - 1;

 $\frac{\partial e_{w}}{\partial w} = c + d;$ return $\frac{\partial e_{w}}{\partial a_{n}}$;

repeat

end

```
MAIN
      initialize w:
      x = Forward(w);
      repeat
             \frac{\partial e_{w}}{\partial w} = BACKWARD(x, w);
             \mathbf{w} = \mathbf{w} - \lambda \cdot \frac{\partial e_{\mathbf{w}}}{\partial \mathbf{w}};
             x = FORWARD(w);
      until (a stopping criterion);
      return w;
end
```

```
FORWARD(w)
      initialize x(0), t=0;
      repeat
            \boldsymbol{x}(t+1) = F_{\boldsymbol{w}}(\boldsymbol{x}(t), \boldsymbol{l});
            t=t+1;
      until \|\boldsymbol{x}(t) - \boldsymbol{x}(t-1)\| \leq \varepsilon_f
      return x(t);
end
BACKWARD(x, w)
```

 $o = G_{\boldsymbol{w}}(\boldsymbol{x}, \boldsymbol{l}_{\boldsymbol{N}});$ $A = rac{\partial F_{m{w}}}{\partial m{x}}(m{x},m{l});$

initialize z(0), t=0;

t = t - 1;

 $\frac{\partial e_{w}}{\partial w} = c + d;$ return $\frac{\partial e_{w}}{\partial w}$;

repeat

end

 $b = \frac{\partial e_{w}^{\alpha}}{\partial a} \cdot \frac{\partial G_{w}}{\partial x}(x, l_{N});$ $z(t) = z(t+1) \cdot A + b$: until $||z(t-1)-z(t)|| \leq \varepsilon_b$; $c = rac{\partial e_{m{w}}}{\partial m{o}} \cdot rac{\partial G_{m{w}}}{\partial m{w}}(m{x}, m{l_N});$ $d = z(t) \cdot \frac{\partial F_w}{\partial w}(x, l);$

04 Gated Graph Neural Network²

- Adaptation of the GNNM
- Uses GRU (Gated Recurrent Units) as transition function
- Iterate over T timesteps (instead of until convergence)
- Uses BTT (BackProp Through Time) to compute gradient

²⁹

¹Li et al, Gated graph sequence neural networks, ICLR, 2015.

04 Gated Graph Neural Network

Node annotations: node embeddings with additional information

(3)

Propagation Model:

$$\mathbf{h}_v^{(1)} = \left[oldsymbol{x}_v^ op, \mathbf{0}
ight]^ op$$

(1)
$$\mathbf{r}_v^t = \sigma \left(\mathbf{W}^r \mathbf{a}_v^{(t)} + \mathbf{U}^r \mathbf{h}_v^{(t-1)} \right)$$
 (4)

$$\mathbf{a}_{v}^{(t)} = \mathbf{A}_{v:}^{\top} \left[\mathbf{h}_{1}^{(t-1)\top} \dots \mathbf{h}_{|\mathcal{V}|}^{(t-1)\top} \right]^{\top} + \mathbf{b} \quad (2) \qquad \widetilde{\mathbf{h}_{v}^{(t)}} = \tanh$$

$$\widetilde{\mathbf{h}_{v}^{(t)}} = \tanh\left(\mathbf{W}\mathbf{a}_{v}^{(t)} + \mathbf{U}\left(\mathbf{r}_{v}^{t} \odot \mathbf{h}_{v}^{(t-1)}\right)\right)$$
 (5)

$$\mathbf{z}_{v}^{t} = \sigma \left(\mathbf{W}^{z} \mathbf{a}_{v}^{(t)} + \mathbf{U}^{z} \mathbf{h}_{v}^{(t-1)} \right)$$

$$\mathbf{h}_v^{(t)} = (1 - \mathbf{z}_v^t) \odot \mathbf{h}_v^{(t-1)} + \mathbf{z}_v^t \odot \widetilde{\mathbf{h}_v^{(t)}}.$$
 (6)

04 Gated Graph Neural Network

Node annotations: node embeddings with additional information

Propagation Model:

Node

Nøde

annotation

$$\mathbf{h}_{v}^{(1)} = \mathbf{\bar{x}}_{v}^{T}, \mathbf{0}]^{T}$$

$$(1) \qquad \mathbf{r}_{v}^{t} = \sigma \left(\mathbf{W}^{r} \mathbf{a}_{v}^{(t)} + \mathbf{U}^{r} \mathbf{h}_{v}^{(t-1)} \right)$$

$$(4)$$

$$\mathbf{a}_{v}^{(t)} = \mathbf{A}_{v:}^{\top} \left[\mathbf{h}_{1}^{(t-1)\top} \dots \mathbf{h}_{|\mathcal{V}|}^{(t-1)\top} \right]^{\top} + \mathbf{b} \qquad (2) \qquad \widetilde{\mathbf{h}_{v}^{(t)}} = \tanh \left(\mathbf{W} \mathbf{a}_{v}^{(t)} + \mathbf{U} \left(\mathbf{r}_{v}^{t} \odot \mathbf{h}_{v}^{(t-1)} \right) \right) \qquad (5)$$

$$\mathbf{z}_{v}^{t} = \sigma \left(\mathbf{W}^{z} \mathbf{a}_{v}^{(t)} + \mathbf{U}^{z} \mathbf{h}_{v}^{(t-1)} \right)$$

$$\mathbf{h}_{v}^{(t)} = (1 - \mathbf{z}_{v}^{t}) \odot \mathbf{h}_{v}^{(t-1)} + \mathbf{z}_{v}^{t} \odot \widetilde{\mathbf{h}_{v}^{(t)}}.$$

$$(6)$$

04 Gated Graph Neural Network

Node annotations: node embeddings with additional information

Propagation Model:

Node

Nøde

 $\mathbf{h}_v^{(1)} = oxedsymbol{ar{x}_v}, \mathbf{0}]^ op$

annotation

(1)
$$\mathbf{r}_v^t = \sigma \left(\mathbf{W}^r \mathbf{a}_v^{(t)} + \mathbf{U}^r \mathbf{h}_v^{(t-1)} \right)$$
 (4)

$$\mathbf{a}_{v}^{(t)} = \mathbf{A}_{v:}^{\top} \left[\mathbf{h}_{1}^{(t-1)\top} \dots \mathbf{h}_{|\mathcal{V}|}^{(t-1)\top} \right]^{\top} + \mathbf{b} \qquad (2) \qquad \widetilde{\mathbf{h}_{v}^{(t)}} = \tanh \left(\mathbf{W} \mathbf{a}_{v}^{(t)} + \mathbf{U} \left(\mathbf{r}_{v}^{t} \odot \mathbf{h}_{v}^{(t-1)} \right) \right)$$
 (5)

$$\mathbf{z}_{v}^{t} = \sigma \left(\mathbf{W}^{z} \mathbf{a}_{v}^{(t)} + \mathbf{U}^{z} \mathbf{h}_{v}^{(t-1)} \right)$$

$$\mathbf{h}_{v}^{(t)} = (1 - \mathbf{z}_{v}^{t}) \odot \mathbf{h}_{v}^{(t-1)} + \mathbf{z}_{v}^{t} \odot \widetilde{\mathbf{h}_{v}^{(t)}}.$$

$$(6)$$

$$o_v = g(\mathbf{h}_v^{(T)},\!x_v)$$

What if we want to produce sequences of output values?

What if we want to produce sequences of output values?

GGSNN : multiple GGNNs operate in sequence to produce $m{o}_v^{(1)},\dots,m{o}_v^{(k)}$

What if we want to produce sequences of output values?

GGSNN : multiple GGNNs operate in sequence to produce $m{o}_v^{(1)},\ldots,m{o}_v^{(k)}$

$$\mathcal{F}_x^{(k)}$$
 Computes $\mathbf{X}^{ ext{ iny (k+1)}}$ from $\mathbf{X}^{ ext{ iny (k)}}$

$$\mathcal{F}_{0}^{(k)}$$
 Computes $\mathbf{o}^{(k)}$ from $\mathbf{X}^{(k)}$

What if we want to produce sequences of output values?

GGSNN : multiple GGNNs operate in sequence to produce $m{o}_v^{(1)},\dots,m{o}_v^{(k)}$

$$\mathcal{F}_x^{(k)}$$
 Computes $\mathbf{X}^{ ext{ iny (k+1)}}$ from $\mathbf{X}^{ ext{ iny (k)}}$

$$\mathcal{F}_{0}^{(k)}$$
 Computes $\mathbf{o}^{(k)}$ from $\mathbf{X}^{(k)}$

$$\mathcal{F}^{(k)}$$
 implements both the **transition** and **output** function!

$$oldsymbol{X}^{(k)} = [oldsymbol{x}_1^{(k)}, \dots, oldsymbol{x}_v^{(k)}] \ oldsymbol{H}^{(k,t)} = [oldsymbol{h}_1^{(k,t)}, \dots, oldsymbol{h}_v^{(k,t)}]$$

k = length of the sequencet = timesteps

06 PyG tutorial

Let's go to the Jupyter notebook....

