The group G is isomorphic to the group labelled by [720, 765] in the Small Groups library. Ordinary character table of $G \cong A6$. C2:

	1a	2a	3a	4a	4b	5a	8a	8b
χ_1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	1	-1	-1
χ_3	9	1	0	1	-1	-1	1	1
χ_4	9	1	0	1	1	-1	-1	-1
χ_5	10	2	1	-2	0	0	0	0
χ_6	10	-2	1	0	0	0	$E(8) + E(8)^{} 3$	$-E(8) - E(8)^3$
χ_7	10	-2	1	0	0	0	$-E(8) - E(8)^{} 3$	$E(8) + E(8)^{} 3$
χ_8	16	0	-2	0	0	1	0	0

Trivial source character table of $G\cong A6$. C2 at p=5

$Normalisers N_i$			N_1							N_2			
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$						P_1				P_2			
Representatives $n_j \in N_i$	1 <i>a</i>	2a	3a	4a	4b	8a	8b	1 <i>a</i>	2a	4b	4b		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	2	1	2	2	0	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	2	1	2	-2	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	25	1	-2	1	1	-1	-1	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	25	1	-2	1	-1	1	1	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	2	1	-2	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	10	-2	1	0	0	$-E(8) - E(8)^{} 3$	$E(8) + E(8)^{} 3$	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	-2	1	0	0	$E(8) + E(8)^{} 3$	$-E(8) - E(8)^3$	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	-1	-1	-1	1	1	-1	-1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	16	0	-2	0	0	0	0	1	-1	E(4)	-E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	16	0	-2	0	0	0	0	1	-1	-E(4)	E(4)		

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 7, 3, 2, 5)(4, 6, 9, 10, 8)]) \cong C5$

 $N_1=Group([(2,3)(4,6)(5,7)(8,9),(1,2)(3,4,7,9,10,8,6,5)])\cong A6$. C2 $N_2=Group([(1,7,3,2,5)(4,6,9,10,8),(2,7,3,5)(4,9,6,8)])\cong C5$: C4