Question 1. Let $f_n(x) = \frac{\sin nx}{n}$ for $x \in [0,1]$. Show that $(f_n)_n$ converges uniformly to a continuous function on [0,1], and that the limit function is differentiable. Moreover, show that $(f'_n)_n$ does not converge uniformly on [0,1].

Question 2. Let $f_n(x) = \frac{x^n}{n}$ for $x \in [0,1]$. Determine whether the sequence $(f_n)_n$ converges uniformly on [0,1], and if so, show that the function is differentiable. Moreover, show that $(f'_n)_n$ converges uniformly on [0,1].

Question 3. Let $f_n(x) = \frac{\cos nx}{n}$ for $x \in [0,1]$. Show that $(f_n)_n$ converges uniformly to a continuous function on [0,1] and that the limit function is differentiable. Moreover, show that $(f'_n)_n$ converges uniformly on [0,1].

Question 4. Let $f_n(x) = \frac{\ln(1+nx)}{n}$ for $x \in [0,1]$. Determine whether the sequence $(f_n)_n$ converges uniformly on [0,1], and if so, show that the limit function is differentiable. Moreover, show that $(f'_n)_n$ converges uniformly on [0,1].

Question 5. Let $f_n(x) = \frac{1}{n}\sin(nx^2)$ for $x \in [0,1]$. Show that $(f_n)_n$ converges uniformly to a continuous function on [0,1] and that the limit function is differentiable. Moreover, show that $(f'_n)_n$ converges uniformly on [0,1].