Fiona Skerman (Uppsala University)

joint work with Robert Hancock, Adam Kabela, Dan Kráľ, Taísa Martins, Roberto Parente and Jan Volec

May 14, 2020

We recall tournaments

Definitions

A tournament is a directed graph having precisely one arc between each pair of its nodes.

Definitions

A *tournament* is a directed graph having precisely one arc between each pair of its nodes.

d(H,G) = probability that |H| randomly chosen vertices of G induce H

$$d(H, G) = \frac{n(H, G)}{\binom{|G|}{|H|}} = \frac{8}{\binom{5}{3}}$$

Definitions

A *tournament* is a directed graph having precisely one arc between each pair of its nodes.

d(H,G) = probability that |H| randomly chosen vertices of G induce H $d^*(H,G)$ = probability that an ordered set of |H| randomly chosen vertices of G induces a labelled copy of H

$$d(H,G) = \frac{n(H,G)}{\binom{|G|}{|H|}} = \frac{8}{\binom{5}{3}}$$

$$d^*(H,G) = \frac{n^*(H,G)}{|G|_{|H|}} = \frac{8}{5.4.3}$$

$$d^*(H,G) = \frac{|\operatorname{Aut}(H)|}{|H|!}d(H,G)$$

Definitions Chung-Graham '91 (Chung-Graph-Wilson '89, Thomason 87') Let (G_n) be sequence of tournaments (such that $|G_n| \to \infty$ as $n \to \infty$). We say that (G_n) is *quasirandom* if

$$d^*(T, G_n) \to 2^{-\binom{|T|}{2}}$$
 for every tournament T .

Definitions Chung-Graham '91 (Chung-Graph-Wilson '89, Thomason 87') Let (G_n) be sequence of tournaments (such that $|G_n| \to \infty$ as $n \to \infty$). We say that (G_n) is *quasirandom* if

$$d^*(T, G_n) o 2^{-\binom{|T|}{2}}$$
 for every tournament T .

We say a set of tournaments ${\mathcal H}$ is quasirandom-forcing if

$$d^*(H, G_n) o 2^{-\binom{|H|}{2}}$$
 for every tournament $H \in \mathcal{H}$

implies that $(G_n)_n$ is quasirandom.

Definitions Chung-Graham '91 (Chung-Graph-Wilson '89, Thomason 87') Let (G_n) be sequence of tournaments (such that $|G_n| \to \infty$ as $n \to \infty$). We say that (G_n) is quasirandom if

$$d^*(T, G_n) \to 2^{-\binom{|T|}{2}}$$
 for every tournament T .

We say a set of tournaments \mathcal{H} is *quasirandom-forcing* if

$$d^*(H, G_n) \to 2^{-\binom{|H|}{2}}$$
 for every tournament $H \in \mathcal{H}$

implies that $(G_n)_n$ is quasirandom.

Thm (Chung-Graham '91)

Let $h \geq 4$ and define \mathcal{H}_h to be the set of tournaments on h nodes. Then \mathcal{H}_h is quasirandom-forcing.

Chung-Graham '91

Definitions Chung-Graham '91 (Chung-Graph-Wilson '89, Thomason 87') Let (G_n) be sequence of tournaments (such that $|G_n| \to \infty$ as $n \to \infty$). We say that (G_n) is *quasirandom* if

$$d^*(T, G_n) \to 2^{-\binom{|T|}{2}}$$
 for every tournament T .

We say a set of tournaments ${\mathcal H}$ is quasirandom-forcing if

$$d^*(H,G_n) o 2^{-\binom{|H|}{2}}$$
 for every tournament $H \in \mathcal{H}$

implies that $(G_n)_n$ is quasirandom.

A tournament H is quasirandom-forcing if

$$d^*(H, G_n) \to 2^{-\binom{|H|}{2}}$$
 implies that $(G_n)_n$ is quasirandom.

- For h ≥ 4, every transitive tournament is quasirandom-forcing (Coregliano-Razborov '17, Lovasz '93)
- For h = 5, F_5 is quasirandom-forcing, others not except perhaps H_5 . (Coregliano, Parente and Sato '19).
- For $h \ge 7$, the only quasirandom-forcing is the transitive (Bucić, Long, Shapira and Sudakov, '20+). Also local-forcing.
- For h = 6, the only quasirandom-forcing is the transitive. H_5 not. (Hancock, K., Kráľ, Martins, Parente, Skerman and Volec, '20+).

- For h ≥ 4, every transitive tournament is quasirandom-forcing (Coregliano-Razborov '17, Lovasz '93)
- For h = 5, F_5 is quasirandom-forcing, others not except perhaps H_5 . (Coregliano, Parente and Sato '19).
- For $h \ge 7$, the only quasirandom-forcing is the transitive (Bucić, Long, Shapira and Sudakov, '20+). Also local-forcing.
- For h = 6, the only quasirandom-forcing is the transitive. H_5 not. (Hancock, K., Kráľ, Martins, Parente, Skerman and Volec, '20+).

Summary: H is quasirandom-forcing iff H is F_5 or H is the transitive tournament on h > 4 nodes.

cf. Goodman '59, Beineke, Harary '65.

Proposition (Bucić, Long, Shapira and Sudakov '20+)

Let H be a non-transitive tournament on $h \ge 7$ nodes. Then H is not quasirandom-forcing.

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec '20+)

Let H be a non-transitive tournament on 6 nodes. If H contains twins or has a non-trivial automorphism group or is not strongly connected then H is is not quasirandom-forcing.

A tournamenton is measurable function W

$$W: [0,1]^2 \to [0,1]$$
 with $W(x,y) = 1 - W(y,x), \ \forall x,y$.

A tournamenton is measurable function W $W: [0,1]^2 \rightarrow [0,1]$ with $W(x,y) = 1 - W(y,x), \forall x,y$.

W-random graph
$$S = \mathbb{G}(h, W)$$
.
sample $x_1, \dots, x_h \in [0, 1]$, for $i < j$:
 $\overrightarrow{ij} \in E(S)$ with probability $W(x_i, x_j)$
 $\overrightarrow{ji} \in E(S)$ otherwise.

A tournamenton is measurable function W

$$W: [0,1]^2 \to [0,1] \text{ with } W(x,y) = 1 - W(y,x), \ \forall x,y.$$

W-random graph $S = \mathbb{G}(h, W)$. sample $x_1, \dots, x_h \in [0, 1]$, for i < j: $\overrightarrow{ij} \in E(S)$ with probability $W(x_i, x_j)$ $\overrightarrow{ji} \in E(S)$ otherwise.

 $W(x_1, x_2) = \frac{1}{2}$ $W(x_1, x_3) = \frac{1}{2}$ $W(x_2, x_3) = 1$

 $W(x_1, x_2) = \frac{1}{2}$ $W(x_1, x_3) = \frac{1}{2}$

 $W(x_2, x_3) = \bar{1}$

A tournamenton is measurable function W

$$W:[0,1]^2 \to [0,1] \text{ with } W(x,y) = 1 - W(y,x), \ \forall x,y.$$

W-random graph $S = \mathbb{G}(h, W)$. sample $x_1, \dots, x_h \in [0, 1]$, for i < j: $\overrightarrow{ij} \in E(S)$ with probability $W(x_i, x_j)$ $\overrightarrow{ji} \in E(S)$ otherwise.

$$W: [0,1]^2 \to [0,1] \text{ with } W(x,y) = 1 - W(y,x), \ \forall x,y.$$

W-random graph
$$S = \mathbb{G}(h, W)$$
.
sample $x_1, \dots, x_h \in [0, 1]$, for $i < j$:
 $\overrightarrow{ij} \in E(S)$ with probability $W(x_i, x_j)$
 $\overrightarrow{ji} \in E(S)$ otherwise.

labelled density
$$d^*(H, W) = \mathbb{P}(S = \text{labelled } H)$$

$$= \int_{[0,1]^h} \prod_{ij' \in E(H)} W(x_i, x_j) dx_1 \cdots dx_h.$$

$$W: [0,1]^2 \to [0,1] \text{ with } W(x,y) = 1 - W(y,x), \ \forall x,y.$$

W-random graph $S = \mathbb{G}(h, W)$. sample $x_1, \dots, x_h \in [0, 1]$, for i < j: $\overrightarrow{ij} \in E(S)$ with probability $W(x_i, x_j)$ $\overrightarrow{ji} \in E(S)$ otherwise.

H is quasirandom-forcing if $d^*(H, W) = 2^{-\binom{h}{2}}$ implies W = 1/2 almost everywhere.

Proposition (BLSS, HKKMPSV):

Non-transitive H is not quasirandom-forcing if $\exists W$ with $d^*(H, W) > 2^{-\binom{h}{2}}$.

Proposition (Bucić, Long, Shapira and Sudakov, 2020+)

Let H be a non-transitive tournament on $h \ge 7$ nodes. Then H is not quasirandom-forcing.

7 / 10

Proposition (Bucić, Long, Shapira and Sudakov, 2020+)

Let H be a non-transitive tournament on $h \ge 7$ nodes. Then H is not quasirandom-forcing.

Proposition (Bucić, Long, Shapira and Sudakov, 2020+)

Let H be a non-transitive tournament on $h \ge 7$ nodes. Then H is not quasirandom-forcing.

Pf (BLSS):
$$d^*(H, W_H) \ge h^{-h}$$
. For $h \ge 7$, $h^{-h} \ge 2^{-\binom{h}{2}} \square$.
 $6^{-6} < 2^{-15} < 2 \times 6^{-6}$

55 + 1

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on h = 6 nodes. If H contains twins then H is not quasirandom-forcing.

Let $N^+(x)$ denote out-neighbours of x.

Nodes u and v are twins if $N^+(x)\setminus\{y\}=N^+(y)\setminus\{x\}$.

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on h = 6 nodes. If H contains twins then H is not quasirandom-forcing.

Pf:
$$d^*(H, W_H) \ge h^{-h}(1 +$$

55 + 1

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on h = 6 nodes. If H contains twins then H is not quasirandom-forcing.

Pf:
$$d^*(H, W_H) \ge h^{-h}(1 + \frac{1}{2} + \frac{1}{2})$$
. For $h = 6$, $2h^{-h} \ge 2^{-\binom{h}{2}} \square$.

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on h = 6 nodes. If H contains twins then H is not quasirandom-forcing.

Pf:
$$d^*(H, W_H) \ge h^{-h}(1 + \frac{1}{2} + \frac{1}{2})$$
. For $h = 6$, $2h^{-h} \ge 2^{-\binom{h}{2}} \square$.

7/10

26 + **1**

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on h = 6 nodes. If H has a **non-trivial automorphism** then H is not quasirandom-forcing.

Pf: $d^*(H, W_H) \ge$

26 + **1**

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on h = 6 nodes. If H has a **non-trivial automorphism** then H is not quasirandom-forcing.

Pf: $d^*(H, W_H) \ge$

26 + **1**

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on h=6 nodes. If H has a non-trivial automorphism then H is not quasirandom-forcing.

Pf:
$$d^*(H, W_H) \ge h^{-h} |\text{Aut}(H)|$$
. For $h = 6$, $2h^{-h} \ge 2^{-\binom{h}{2}} \square$.

18 + 1

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on $h \ge 4$ nodes. If H is **not strongly connected** then H is not quasirandom-forcing.

H W_{α} h_1 h_2 X_1 X_2

18 + **1**

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on $h \ge 4$ nodes. If H is **not strongly connected** then H is not quasirandom-forcing.

 W_{α} $\frac{\alpha}{\alpha}$ $\frac{1-\alpha}{\alpha}$

18 + 1

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on h > 4 nodes. If H is **not strongly connected** then H is not quasirandom-forcing.

Pf:
$$d^*(H, W_\alpha) \ge \alpha^{h_1} (1-\alpha)^{h_2} 2^{-\binom{h_1}{2} - \binom{h_2}{2}} + \alpha^{h_2} 2^{-\binom{h}{2}} + (1-\alpha)^{h_2} 2^{-\binom{h}{2}}.$$

Н

 W_{α}

14 + **1**

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec, 2020+)

Let H be a non-transitive tournament on $h \ge 4$ nodes. If H is **not strongly connected** then H is not quasirandom-forcing.

Pf:
$$d^*(H, W_\alpha) \ge \alpha^{h_1} (1-\alpha)^{h_2} 2^{-\binom{h_1}{2} - \binom{h_2}{2}} + \alpha^h 2^{-\binom{h}{2}} + (1-\alpha)^h 2^{-\binom{h}{2}}.$$

 $\Rightarrow \exists \alpha, d^*(H, W_{\alpha}) > 2^{-\binom{h}{2}} \square.$

Н

 W_{α}

14 + 1

Lemma (Hancock, Kabela, Kráľ, Martins, Parente, S. and Volec '20+)

Let H be a non-transitive tournament on 6 nodes. If H contains twins or has a non-trivial automorphism group or is **not strongly connected** then H is is not quasirandom-forcing.

- (A) not strongly connected
- (B) non-trivial automorphism group
- (C) contains twins

Α	В	С	D	Е	Tournament	
•	•	•			00000,0000,000,01,0	
•		•			00010,0000,000,00,0	
		•			00011,0000,000,00,0	
		•			00010,0001,000,00,0	
				•	00010,0000,001,00,0	H_6^1
		•			00010,0000,000,01,0	
		•			00010,0000,000,00,1	
•		•			00000,0010,000,00,0	
		•			00001,0010,000,00,0	
•		•			00000,0011,000,00,0	
•					00000,0010,001,00,0	
•					00000,0010,000,01,0	
•		•			00000,0010,000,00,1	
•	•				00000,0011,001,00,0	
•	•	•			00000,0000,010,00,0	
	•				00001,0000,010,00,0	
•	•				00000,0001,010,00,0	
•		•			00000,0000,011,00,0	
•		•			00100,0000,000,00,0	
•		•			00110,0000,000,00,0	
		•			00111,0000,000,00,0	
		•			00110,0001,000,00,0	
		•			00110,0000,001,00,0	
		•			00110,0000,000,01,0	
		•			00110,0000,000,00,1	
		•			00111,0000,001,00,0	
	•	•			00110,0001,001,00,0	
	•	•			00111,0000,000,01,0	
					,,.	

Α	В	С	D	Ε	Tournament	
			•		00110,0001,000,01,0	H_6^2
•					00100,0010,000,00,0	
			•		00101,0010,000,00,0	H_6^3
		•			00100,0011,000,00,0	
			•		00100,0010,001,00,0	H_6^4
			•		00100,0010,000,01,0	H_6^5
				•	00100,0010,000,00,1	H_6^6
	•				00101,0010,001,00,0	
				•	00100,0011,001,00,0	H_6^7
			•		00100,0011,000,01,0	H_6^8
•	•				00110,0010,000,00,0	
				•	00111,0010,000,00,0	H_6^9
		•			00111,0011,000,00,0	
			•		00111,0010,001,00,0	H_6^{10}
•	•	•			00000,0100,000,00,0	
•	•				00010,0100,000,00,0	
	•	•			00011,0100,000,00,0	
			•		00010,0101,000,00,0	H_6^{11}
	•				00010,0100,000,00,1	
•	•	•			01000,0000,000,00,0	
•	•				01000,0000,000,01,0	
•					01010,0000,000,00,0	
		•			01011,0000,000,00,0	
			•		01010,0001,000,00,0	H_6^{12}
			•		01010,0000,001,00,0	H_{6}^{13}
				•	01010,0000,000,01,0	H_{6}^{14}
		•			01010,0000,000,00,1	

Excluding the rest

14 + 1

We readily check the properties from the previous slide and consider the 14 remaining tournaments on 6 nodes plus 1 tournament on 5 nodes.

To show tournament H on h nodes is not quasirandom-forcing

- find tournament T with many copies of H. $n(H,T) > |T|^h 2^{-\binom{h}{2}} \Rightarrow d^*(H,W_T) > 2^{-\binom{h}{2}}$
- find a step tournament by perturbing about 1/2. $d^*(H, A_x) = f(x)$ and find x such that $f(x) > 2^{-\binom{h}{2}}$.

$$\begin{split} A_x &= \begin{pmatrix} 1/2 & 1/2 - x \\ 1/2 + x & 1/2 \end{pmatrix}, \\ B_x &= \begin{pmatrix} 1/2 & 1/2 - x & 1/2 + x \\ 1/2 + x & 1/2 & 1/2 - x \\ 1/2 - x & 1/2 + x & 1/2 \end{pmatrix}, \\ C_x &= \begin{pmatrix} 1/2 & 1/2 - x & 1/2 + x & 1/2 - x \\ 1/2 + x & 1/2 & 1/2 - x & 1/2 - x \\ 1/2 - x & 1/2 + x & 1/2 & 1/2 - x \\ 1/2 + x & 1/2 + x & 1/2 + x & 1/2 \end{pmatrix}. \end{split}$$

We readily check the properties from the previous slide and consider the 14 remaining tournaments on 6 nodes plus 1 tournament on 5 nodes.

To show tournament H on h nodes is not quasirandom-forcing

• find tournament T with many copies of H. $n(H, T) > |T|^h 2^{-\binom{h}{2}} \Rightarrow d^*(H, W_T) > 2^{-\binom{h}{2}}$

$$h_5$$
 h_5 h_6 h_7 h_7 h_8 h_8 h_9 h_9

 $H(H_5, I) = 21$

Excluding the rest

9

We readily check the properties from the previous slide and consider the 14 remaining tournaments on 6 nodes plus 1 tournament on 5 nodes.

To show tournament H on h nodes is not quasirandom-forcing

find tournament T with many copies of H.

$$n(H,T) > |T|^h 2^{-\binom{h}{2}} \Rightarrow d^*(H,W_T) > 2^{-\binom{h}{2}}$$

