한국은행 뉴스심리지수(NSI)

서범석·이영환·조형배 (2022 b). 기계학습을 이용한 뉴스심리지수(NSI)의 작성 과 활용. 국민계정리뷰, 2022(1), 68-90.

발제자: 조정효

데이터

- 뉴스기사 텍스트 데이터의 웹크롤링(web crawling)
 - 경제분야로 한정하여 인터넷 포털사이트(약 50여개 언론사)에서 뉴스기사 수집
 - 수집 대상기간: 2005년 이후
- 데이터 무결성(data integrity) 처리
 - 중복된 뉴스기사 또는 광고성 기사 등
 - 새로 수집한 뉴스기사 원문이 직전 30일 내에 한번이라도 동일하게 데이터베이스에 등장 하는 경우, 이 뉴스기사를 배제

작성 방법 - 개요

- 뉴스기사에 나타난 긍정문장과 부정문장을 카운트한 뒤 지수화
- 기계학습(machine learning) 사용
- 뉴스 문장($s \in S$)과 논조 ($l \in \{(p_0, p_1, p_2)|p_0 = P(Positive), p_1 = P(Negative), p_2 = P(Neutral)\}$)로 구성된 데이터쌍(data pair, $\{(s, l)_i\}_{i=1}^N$)을 이용하여 데이터에 가장 잘 부합하는 다음과 같은 감성분류 함수 f_θ 를 찾는 것

$$f_{\theta}: S \rightarrow \{(p_0, p_1, p_2) \ \mid \ p_0 = P(Positive), \ p_1 = P(Negative), \ p_2 = P(Neutral)\}$$

작성 방법 - 전처리

- 입력 데이터의 구조
 - 기사가 아닌 문장 기준으로 논조를 분류
- 토큰화(tokenizing)
 - 형태소(POS, part-of-speech) 단위 분해

- '뉴스심리지수(고유명사)' + '-를(목적격조사)' + '작성(일반명사)' + '하(동사파생접미사)' + '-었(선어말어미)' + '-다(종결어미)' + '.(마침표)'.
- 말뭉치 토큰의 수열 모임(a collection of sequences of tokens), C $g:S \to C$
- 정수 변환으로 수치화
- 최대 길이(m)=80로 제로 패딩(zero padding) 사용

 $h: C \to \mathbb{R}^m$

작성 방법 - 모형

- 감성분류(sentiment classification) 모형으로 **트랜스포머(transformer)** 사용
 - 트랜스포머 모형은 여러 개(multiple-head)의 Attention 구조를 갖는 인공신경망 모형으로 텍스트 분석을 위해 널리 이용되던 RNN및 LSTM 모형에 비해 입력 벡터 전체의 맥락 (context)을 더 잘 파악
 - 여기서 Attention 구조란 벡터를 입력데이터로 하는 예측 모형에서 입력 벡터의 값들 중 집중(attention)적으로 학습할 필요가 있는 값에 더 높은 가중치를 부여
- 감성분류모형은 뉴스문장을 입력변수로 받으며, 해당 문장의 감성이 긍정/부정/중립일 확률을 출력변수로 출력

$$\begin{split} f_{\theta}: S &\rightarrow \big\{ \big(p_0, p_1, p_2\big) \big\}, \\ \\ f_{\theta}(s_i) &= k_{\theta} \, \circ \, h \, \circ \, g(s_i) \equiv \hat{l_i} \, , \\ \\ \\ \circlearrowleft \ \, \exists \, k \in S, \quad \hat{l_i} &\in \big\{ \big(p_0, p_1, p_2\big) \big\} \end{split}$$

작성 방법 - 모형

- 뉴스문장 → (전처리 과정) → 수치형 벡터
- → (각 단어 토큰의 연관도를 학습 & 다시 다차원 공간으로 배치) Embedding 과정 (32차원) → 80×32 차원의 수치 행렬 값
- → 트랜스포머 블록 & Feed Forward 네트워크 → 비선형 함수를 찾아 뉴스문장의 감성을 긍정/부정/중립
 중 하나로 분류 → (Softmax 함수) → 0과 1사이의 확률 값
- 파라미터 θ 값은 데이터쌍($\{(s,l)_i\}_{i=1}^N$)의 관측 레이블 ($l_i=(p_0^i,p_1^i,p_2^i)$)과 모형의 예측치($\hat{l}_i=(\hat{p}_0^i,\hat{p}_1^i,\hat{p}_2^i)$) 분포가 비슷해지도록 다음의 Cross-entropy 손실함수(L)를 최소화하는 과정(optimization)을 통해 추정 (estimate or train)

$$L(\theta \mid \{s_i, l_i\}_{i=1}^N) = -\sum_{i=1}^N \sum_{c=0}^2 p_c^{(i)} \log \hat{p}_c^{(i)}$$

작성 방법 - 학습데이터 구축 및 학습

/뭐니 시 계스

- 학습데이터는 2005년 1월 ~ 2021년 6월 경제 뉴스기사의 약 44만개 문장
- 16명의 통계조사원이 직접 '긍정', '부정', '중립'으로 분류하여 각 문장별로 감성 레이블을 작성.
 - 감성 레이블은 사람이 작성함에 따라 발생할 수 있는 측정오류를 최소화하기 위해 최초 분류 이후 검토자의 검토를 거쳐 최종 레이블을 확정.
 - 약 80%가 중립, 나머지 약 20% 중 절반이 긍정, 다른 절반이 부정
 - **> 불균형** 데이터의 조정을 위해 레이블 가중치를 모형 학습에 반영
- 지리적 범위를 기준으로 '국내', '국외', '국내·국외 모두 해당' 등 세 가지로 분류하여, 국외 뉴스기사 제외

(표 1) 감성분류모형의 성능 비교			
SVM		트랜스포머	
가중치 조정 (balanced)	가중치 미조정 (imbalanced)	가중치 조정 (balanced)	가중치 미조정 (imbalanced)
0.86	0.86	0.96	0.98
0.87	0.91	0.95	0.98
0.84	0.79	0.97	0.99
0.86	0.88	0.95	0.97
0.86	0.89	0.96	0.98
	SV 가중치 조정 (balanced) 0.86 0.87 0.84 0.86	SVM 가중치 조정 가중치 미조정 (imbalanced) 0.86 0.87 0.91 0.84 0.79 0.86 0.88	SVM 트랜스 가중치 조정 가중치 미조정 가중치 조정 (balanced) (imbalanced) (balanced) 0.86 0.86 0.96 0.87 0.91 0.95 0.84 0.79 0.97 0.86 0.88 0.95

- Random Forest, Support Vector Machine (SVM), Single-head Attention 모형 등을 함께 고려.
- 5000개 문장으로 구성한 검증 데이터(validation data) 비교 결과 **트랜스포머 모형 가장 우수**
- 가중치 조정 여부 결과 미조정이 성능이 더 높으나, 심리지수 작성 시 변동성 확대 문제로, **가중** 치를 고려하기로 함.

작성 방법 - 일별 뉴스데이터 구축

- 모든 문장에 대해 전처리, 모형 적용은 막대한 컴퓨터 비용 초래
 - 입수되는 뉴스기사의 수는 2021년 기준 일평균 약 4000개이며, 이를 문장으로 환산할 경우 약 7만 문장
- 뉴스심리지수는 입수한 뉴스기사 문장 중 일부를 표본추출(sampling)하여 작성
 - 입수한 뉴스기사를 문장 단위로 분해하여 일별 데이터 모집단을 구성, 다음 일별 모집단에서 1만 개의 표본문장을 임의로 추출

작성 방법 - 뉴스심리 지수 작성 및 표준화

- 뉴스심리지수는 일별로 입수한 뉴스기사의 표본문장들을 앞에서 설명한 과정을 거쳐 '국내 긍정문장'과 '국내 부정문장'으로 분류한 뒤, 두 분류(class)의 문장 개수를 카운트하여 작성.
 - 일별 뉴스심리지수의 경우 변동성을 고려하여 해당일 기준 직전 7일간 발간된 뉴스기사를 기준으로 작성하
 - 월별 뉴스심리지수의 경우 해당월 중 발간된 뉴스기사를 기준으로 작성
- 뉴스심리지수는 2005년부터 해당일 기준 직전 연도까지를 표준화 구간으로 설정하고 이 기간중 지수의 평균과 분산을 이용하여 평균이 100, 표준편차가 10이 되도록 표준화하여 산출
 - 표준화한 뉴스심리지수는 지수가 100보다 크면 뉴스기사에 나타난 경제심리 가 과거 평균보다 낙관적, 100보다 작으면 비관적인 것으로 해석

$$NSI_t^{(daily)} = \left(\frac{X_t - \overline{X}}{S}\right) \times 10 + 100,$$

$$\Rightarrow X_t = \frac{\sum_{\tau=1}^7 P_{t-\tau} - \sum_{\tau=1}^7 N_{t-\tau}}{\sum_{\tau=1}^7 P_{t-\tau} + \sum_{\tau=1}^7 N_{t-\tau}},$$

$$X_u = \frac{\sum_{\tau=1}^7 P_{\tau} - \sum_{\tau=1}^7 N_{\tau}}{\sum_{\tau=1}^7 P_{\tau} + \sum_{\tau=1}^7 N_{\tau}},$$

$$\overline{X} = \frac{1}{|T|} \sum_{t \in T} X_t, \quad S = \sqrt{\frac{1}{|T| - 1}} \sum_{t \in T} (X_t - \overline{X})^2.$$
 월별 뉴스심리지수

일별 뉴스심리지수

유용성 평가 - 공식 경제지표와 상관성

- 뉴스심리지수는 CCSI 및 CSI 현재 생활형편과 가장 밀접한 관계를 보이며 CSI에 대해서는 약 1개월 선행하고 BSI 전망지수 에 대해서는 약 2개월 선행하는 것으로 나타남.
- 월별 뉴스심리지수는 선행종합지수 순환변동치(2005.1~2021.12월) 에 2개월 선행하며 0.76의 상관관계를 보임.
- 분기별 뉴스심리지수는 GDP(실질 계절 조정계열 전기대비 증가율, 2005.1~2021.4분기)와 0.53의 상관관 계를 보임.

유용성 평가 - 속보성

뉴스심리지수는 특정 이슈 발생에 따른 경제심리 변화를 즉각 포착할 수 있어 설문조사 기간 이후에 발생 한 이슈가 누락될 수 있는 월 단위의 공식 경제지표들을 보완하는 역할을 할 수 있음.

유용성 평가 – 키워드 분석의 설명 가능성

- 주 : 1) 뉴스문장에 나타난 주요 키워드를 □, 주요 키워드의 연관단어를 ○로 표기한 도표. 교점(node)의 크기는 각 단어의 등장 횟수와 비례하고 연결선(edge)은 두 단어가 함께 등장하는 횟수에 비례
 - 2) 이전 4주간 집계된 키워드 순위 대비 해당주 키워드 순위의 상승폭 기준으로 작성

유용성 평가 – 활용 방안

