# MTIA: Meta's First Generation of In-House Al Accelerator

Meta Platforms Inc. ISCA 2023

Presentation: Constant Park (sonicstage12@naver.com)

### **Contents**

#### Introduction

Recommendation System and Motivation

#### Accelerator Architecture

Specification, Chip Overview, Processing Element (PE), Prototype

#### Result

Dense/Spare Computation, DLRMs

## Recommendation System: Overview

- Personalized recommendation for contests
  - Sparse embedding layers are a bottleneck



# Recommendation System: Embedding

- Words are mapped to vectors of real numbers
  - Word embedding, Neural item embedding for Collaborative filtering





Male-Female

Verb tense

Country-Capital

Goal: Predicting preference of user-item pair (Movie)

Movie\_0

Movie\_1

Movie\_2

Movie\_3

Movie\_4

Movie\_5

Movie\_6

Movie\_7



User\_A





Prediction

Goal: Predicting preference of user-item pair (Movie)



**Harry Porter** 



Batman



Ironman



Movie\_3

Movie\_4

Movie\_5

Movie\_6

Movie\_7



User\_A





Prediction

Goal: Predicting preference of user-item pair (Movie)



Goal: Predicting preference of user-item pair (Movie)



Goal: Predicting preference of user-item pair (Movie)



Gather: Copying embeddings into contiguous address space



Reduction: Multiple embeddings, element-wise ADD/MUL



- Gather/Reduction operation in embedding layer
  - This is memory-bandwidth sensitive operation



## **Motivation: Inference Workloads**

- Trends of inference models at Meta's service workload
  - Significant growths in model size (GB) and complexity (GFLOPS)



## **Motivation: Inference Server Demand**

- Accelerator to meet model demands and efficiency requirements
  - GPUs are not designed for inference (Low efficiency w/ SW optimizations)



## **Motivation: Inference Server Demand**

- Accelerator to meet model demands and efficiency requirements
  - GPUs are not designed for inference (Low efficiency w/ SW optimizations)

Architecture should also provide enough generality and programmability, to support future versions of these workloads and potentially other types of NN models.



## **Architecture: Specification**

MITA features and parameters



| Technology        | TSMC 7nm                       |  |  |
|-------------------|--------------------------------|--|--|
| Frequency         | 800MHz (Up to 1.1GHz)          |  |  |
| Dimensions        | 19.34*19.1mm (~2,800 Pins)     |  |  |
| TDP               | 25W                            |  |  |
| Peak Perf. (GEMM) | 102.4TOPS (INT8), 51.2 (FP16)  |  |  |
| Memory Bandwidth  | 800GB/s (SRAM), 176GB/s (DRAM) |  |  |
| Memory Capacity   | 128MB (SRAM), LPDDR5 (64GB)    |  |  |

## **Architecture: Chip Overview**

- 8×8 Grid of processing elements (PEs)
  - 128MB SRAM residing on edges of mesh
  - 16 channels of LPDDR5 (Up to 64GB)
  - Control subsystem & Host interface



# Architecture: Processing Element (PE)

RISC-V cores and Fixed-function units

• Command Processor (Coordinating execution on fixed-functions) To/From Noc

• Fixed-function units (GEMM, Non-Linear, Movement)

Two RISC-V cores (One with vector)

• 128KB of local memory



# **Architecture: Prototype Board**

- Dual M.2 form factor
  - Board TDP of 35W, PCIe 4 x8 (12.8GB/s)
  - 4\*LPDDR5 (4ch, 64b, 32GB), Yosemite v3 server (12 MTIAs)





# Architecture: SW Stack (Compiler)

- Providing developer efficiency and high performance
  - FX-based mode (Model-level transformations/optimization)

 LLVM-based mode (Low-level optimization) PyTorch Framework (Host) **KNYFE (DSL) PyTorch** Precompiled subgraphs **FX MTIA** AFG (FX Compiled **Eager MTIA** operators MTIA Kernels **PyTorch Operators** Compiler Subgraph Executor Library Compiled executable MTIATensor, Compiler PvTorch Accelerator Runtime **Device Mem Allocator,** (Host) Stream Interface Firmware Interface **MTIA Streaming API** MTIA Firmware Driver (Host) **Firmware MTIA Firmware** 

(Device)

# Result: Experimental Setup

#### Operator-based benchmarks as well as full DRLM models

- Evaluation of Dense/Sparse Computation and DLRM models
- Breakdown of important operators and kernels

#### < DLRM models used for evaluation >

| DLRM Model                | Size (GB) | Complexity (GFLOPS/batch) |
|---------------------------|-----------|---------------------------|
| Low Complexity 1 (LC1)    | 53.2      | 0.032                     |
| Low Complexity 2 (LC2)    | 4.5       | 0.014                     |
| Medium Complexity 1 (MC1) | 120       | 0.140                     |
| Medium Complexity 2 (MC2) | 200       | 0.220                     |
| High Complexity (HC)      | 725       | 0.450                     |

#### < Operator breakdown, MC2 >

| Operator             | Batch size 64 | Batch size 256 |
|----------------------|---------------|----------------|
| FC (Fully Connected) | 42.10 %       | 32.4%          |
| EB (Embedding Bag)   | 31.19 %       | 30.0%          |
| Concat               | 2.86 %        | 11.5%          |
| Transpose            | 8.47 %        | 5.9%           |
| Quantize             | 1.55 %        | 5.3%           |
| Dequantize           | 2.94 %        | 3.3%           |
| BatchMatMul          | 3.30 %        | 1.7%           |
| Others               | 7. 59 %       | 11.0%          |

# Result: Dense GEMM Computation

- Comparison across inference accelerators
  - Most efficient when tensors can be streamed directly from SRAM
  - Effective for low batch sizes when serving requests under stringent latency



## Result: Sparse Computation

- DLRM include hundreds of EmbeddingBag (EB) operators
  - Embedding operation is mostly **memory bound** (GB/s metric)
  - MTIA (10~20% of its memory BW), GPU (60% of its HBM BW)



## **Result: Model Performance**

- Comparison across inference accelerators
  - Low complexity model (FC layers with small input shapes)
  - High complexity model (FC layers are less dominant)



## Thank You