

Computational Logic Module II – Set theory and knowledge graphs

Set theory in a nutshell: defining sets

We can define sets in two ways

Listing: The set is described by listing all its elements (for instance, $A = \{a, e, i, o, u\}$).

Abstraction: The set is described through a property of its elements (for instance, $A = \{x | x \text{ is a vowel of the Latin alphabet}\}$).

Set theory in a nutshell: basic notions

- Empty Set. Ø is the set containing no elements.
- Membership. $a \in A$, element a belongs to the set A.
- Non-membership. $a \notin A$, element a doesn't belong to the set A.
- Equality. A = B, if and only if A and B contain the same elements.
- Inequality. $A \neq B$, if and only if it is not true that A = B.
- Subset. $A \subseteq B$, if and only if all elements in A also belong to B.
- Proper Subset. $A \subset B$, if and only if $A \subseteq B$ and $A \neq B$.
- Universal Set. The universal set is the set of all elements or members of all related sets and is denoted by the letter U.

Set theory in a nutshell: Venn Diagrams

Sets are typically represented with **Venn Diagrams**

EXAMPLE:

 $a \in A$,

 $a \notin B$

 $A \neq B$,

 $C \subseteq A$,

 $C \subset A$

Set theory in a nutshell: operations

Union. Given two sets A and B, the union of A and B is the set containing the elements belonging to A or to B or to both, and is denoted with $A \cup B$.

Difference. Given two sets A and B, the difference of A and B is the set containing all the elements which are members of A, but not members of B, and is denoted with $A \setminus B$.

Intersection. Given two sets A and B, the intersection of A and B is the set containing the elements that belong both to A and B, and is denoted with $A \cap B$.

Complement. Given a universal set U and a set A, the complement of A in U is the set containing all the elements in U that do not belong to A, and is denoted with $U \setminus A$.

Set theory in a nutshell: cartesian product and relations

Cartesian product. Given two sets A and B, the Cartesian product of A and B is the set of ordered couples (a, b) where $a \in A$ and $b \in B$, formally:

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

Relation. A relation R from the set A to the set B is a subset of the Cartesian product of A and B, formally:

$$R \subseteq A \times B$$

If $(x, y) \in R$, then we will write xRy and we say 'x is R-related to y'.

Set theory in a nutshell: porperties of relations

Let R be a binary relation. R is:

- reflexive iff aRa for all $a \in A$
- **symmetric** iff aRb implies bRa for all $a, b \in A$
- transitive iff aRb and bRc imply aRc for all $a, b, c \in A$
- anti-symmetric iff aRb and bRa imply a = b for all $a, b \in A$

EXAMPLES

- reflexive: equalTo
- symmetric: friendOf, roommateOf, siblingsOf
- transitive: ancestorOf, kindOf, partOf
- anti-symmetric: isDivisibleBy, subsetOf

Graph theory in a nutshell: defining graphs (I)

A **graph** G is an ordered pair $G = \langle V, E \rangle$, where V is the set of vertices (or nodes) and E is the set of edges (or links). Edges are pairs of vertices.

A **directed graph** is a graph where edges are ordered pairs of distinct vertices (x, y). x and y are called the end points, where x is the tail and y is the head.

Graph theory in a nutshell: defining graphs (II)

A **cycle** is a path in which only the first and last vertices are equal. A **cyclic graph** is a graph which contains a cycle.

A **labeled graph** is a graph where each vertex and edge is assigned a label.

A directed acyclic graph (DAG) is a directed graph that does not contain any cycles.

Knowledge graphs

A **knowledge graph** is a labelled graph representing real world knowledge.

Vertexes belong to two disjoint sets:

- Entity types: the set of (named) entities in the world, such as a person, location, artifact...
- **Data types**: the set of values of the data properties of the entities, such as dates, numbers, texts...

Edges are relations of two types:

- Object properties: relations between two entities, such as createdBy, friendOf
- Data properties: relations between and entity and a values, such as bornOn

Examples of a knowledge graph and corresponding sets

Etype graphs

An **Etype Graph**, or **schema**, is a knowledge graph that focuses only on Entity types, Data types, Object properties and Data properties. It provides constraints on knowledge graphs with corresponding instances.

NOTICE: an ER diagram is a schema

