ارزیابی آزمایشگاه مدار های الکتریکی والکترونیکی نیم سال اول تحصیلی 1401 _ 1400 مدرس : مهندس نصر آبادی

أزمايش شماره 3 (صفحه 16): جمع أثار

نام ونام خانوادگی دانشجو : رحمت اله انصاری

شماره دانشجویی : 9912377331 ووز وساعت کلاس : جهارشنبه ساعت 16

تحلیل نظری آ زمایش (0.5 نمره):

اثر هر دو منبع	I ₁ = 402.6u	I ₂ = 342.9u	
اثر منبع 3 ولتی	I _{1'} = 328u	I _{2'} = 835u	
اثر منبع 1.5 ولتى	I _{1"} = 74.5u	I _{2"} = -492u	

تصاویر در صفحات 2 و 3 فایل PDF

درصد خطا در صفحه آخر ...

آیا درستی روابط زیر برقرار است ؟ بله - مشروح در انتهای تصویر دو (صفحه 3)

 $|_1 = |_{1'} + |_{1''}$

 $I_2 = I_{2'} + I_{2''}$

ارزیابی آزمایشگاه مدارهای الکتریکی والکترونیکی نیم سال اول تحصیلی 1401 _ 1400 مدرس : مهندس نصرآبادی

ارزیابی آزمایشگاه مدارهای الکتریکی والکترونیکی نیم سال اول تحصیلی 1401 _ 1400 مدرس: مهندس نصر آبادی

3 -5.6k 0 7.8k	22.2 × ± 1,16	3 mA
1 5.6k -5.6k	20.120 meg	
-5.6K 7.8K		
6.6k 3	16.8k = 835	uA
12 = 16.6K - 5.6K	20.120meg	
-5.6K 7.8K		+ (5.61-5.6i2)k
i, = i - i 2 =	328 uA	f (MG)
- Company	kul(I)	: $1k(i) + 5.6k(i) = 0$ 6.6k(i) - 5.6k(i) = 0
R ₂ <- \$5.6k () \$5.6k () \$1	÷) 1.5 	$i_i = 5.6 \text{K}(i_i) + 2.2 \text{K}(i_2) = -1.5$
	فلاوزهت میان	7,8 k(i2) - 5.6k(i) = -1.5
[6.62 -5.6K]		المن در نتيم :
I was a second of the second o		i, = 402.6 uA
0 -5.6k -1.5 7.8k =	-8,48 E-417.5	$uA = \begin{bmatrix} i_2 & 342.9uA \end{bmatrix}$
1 = 6.6k -5.6k	20. 120 may	i, 328 u A
-5.6k 7.8K	and wife	12. 935 411
2-5.62 -9.5	$=\frac{-9.9k}{20.120 \text{ meg}} = -4.92$	uA i, 74,5\$ uR
6.6% -5.6k	20.120 meg	uA i, = 74,5 € uR] i, = 74,5 € uR] Gy1,5 Ein
$ -5.62 - 7.8k $ $i_1 = i - i_2 = 7$	4.5\$uA R	esut
i, = 402,6 uA	1 -4 40	
$i_2 = 342,94A$. 4	1
		المناه دوس المناه ودر الم
i, - i, +		که نتیج.

ارزیابی آزمایشگاه مدارهای الکتریکی والکترونیکی نیم سال اول تحصیلی 1401 _ 1400 مدرس : مهندس نصر آبادی

تحلیل شبیه سازی (0. 5 نمره):

اثر هر دو منبع	I ₁ = 402.6u	I ₂ = 342.9u	
اثر منبع 3 ولتی	I _{1'} = 328.0u	I _{2′} = 835.0u	
اثر منبع 1.5 ولتي	I _{1"} = 74.55u	_{12"} = -492.0u	

توجه: زوم کنید

Default

تصویر شبیه سازی مربوط به نمودار:

ارزیابی آزمایشگاه مدارهای الکتریکی والکترونیکی نیم سال اول تحصیلی 1401 _ 1400 مدرس : مهندس نصر آبادی

درصد خطا ...

-	اثر	مقدار نظری	نرم افزار	درصد خطا
اثر هر دو منبع	l ₁ =	402.6u	402.6u	0%
	I ₂ =	342.9u	342.9u	0%
اثر منبع 3 ولتی	I _{1'} =	328u	328.0u	0%
	l _{2'} =	835u	835.0u	0%
اثر منبع 1.5 ولتى	I _{1"} =	74.5u	74.55u	0.07%
	12" =	-492u	-492.0u	0%

با تشكر ...