Exercise 11.2

• For fixed y we know $-g(x) := e^x - y \cdot x$ is differentiable with $-g'(x) = e^x - y$, which is trivially non-decreasing, hence convex. This says $g(x) := y \cdot x - e^x$ is concave and so its maximum is achieved and occurs when g'(x) = 0, i.e. when $x = \ln y$. This tells us for $f(x) = e^x$

$$f^*(y) := \sup_{x \in \mathbb{R}} \{ y \cdot x - e^x \} = y \ln y - 1$$

For fixed y

$$g(x) := y \cdot x - |x| = \begin{cases} x(y-1) & x \ge 0 \\ x(y+1) & x < 0 \end{cases}$$

When y>1 so y-1>0 and thus $\sup_x g(x)=+\infty$ by the first case. When y<-1 y+1<0 so that $\sup_x g(x)=+\infty$ by the second case. When $y\in[-1,0]$ $y-1\leq0$ so that sup over the first case is 0. On the other hand, $y+1\geq0$ so that sup of the second case is also 0. A similar argument is made for $y\in[0,1]$ so that for f(x)=|x|

$$f^*(y) = \sup_{x} g(x) = \begin{cases} 0 & y \in [-1, 1] \\ +\infty & \text{otherwise} \end{cases}$$

• Using the alternate characterization of the dual, for $f(x) = x^3$ we have

$$-f^*(y) = \sup(b \in \mathbb{R} \mid x^3 \ge y \cdot x + b \ \forall x \in \mathbb{R})$$

Notably $x^3 \to -\infty$ as $x \to -\infty$ so that for every finite fixed b it is not true that $x^3 \ge y \cdot x + b$, i.e. $-f^*(y) = -\infty \implies f^*(y) = +\infty$.

Exercise 11.7 Taking the hint, we can leverage proposition 7.36. Take the V, γ that it gives you and square both quantities so that, because both are non-negative we have

$$V^2(g) \le \gamma^2 V^2(x)$$

Notably $\gamma \in (0,1)$ so $\gamma^2 \in (0,1)$ and it's very easy to see that V^2 is positively homogeneous of degree 2 (since positive scalars can be pulled out of both the norm and the sup). Finally if x = 0 it's clear $V^2(x) = 0$. On the other hand if $V^2(x) = 0$ then, since $e^k j > 0$ we must have the contents of the norm vanish, which only occurs if x = 0.

I thought this was the end of the problem, but now that I'm typing it up I'm realizing there might be a flaw with the last statement: what if product of the matrices result in the 0 matrix? As far as I can tell there aren't any restrictions on the matrices.. but maybe (probably) I'm missing why this is a "trivial" case where V can be taken as the 0 function, or something?

Exercise 11.8

(a) Let $s \ge 0$ then

$$f^*(sy) = \sup_{x} \{ sy \cdot x - f(x) \} = \sup_{sx} \{ sy \cdot x - f(x) \}$$
$$= \sup_{x} \{ s^2 y \cdot x - f(sx) \} = \sup_{x} \{ s^2 (y \cdot x - f(x)) \}$$
$$= s^2 \sup_{x} \{ y \cdot x - f(x) \} = s^2 f^*(y)$$

(b) Suppose f is positive definite then by 11.4 f^* is proper. If $f^*(y) = +\infty$ then $\exists x_k$ so that $y \cdot x_k - f(x_k) \nearrow +\infty$. Because f is positive definite this means $y \cdot x_k \nearrow +\infty$ so that $||x_k|| \to \infty$. Because f is positively homogeneous of degree 2 we know

$$f(x_k) = f\left(\|x_k\| \frac{x_k}{\|x_k\|}\right) = \|x_k\|^2 f\left(\frac{x_k}{\|x_k\|}\right)$$

and so

$$y \cdot x_k - f(x_k) = y \cdot x_k - \|x_k\|^2 f\left(\frac{x_k}{\|x_k\|}\right) \le \|y\| \|x_k\| - \|x_k\|^2 f\left(\frac{x_k}{\|x_k\|}\right) = \|x_k\| \left(\|y\| - \|x_k\| f\left(\frac{x_k}{\|x_k\|}\right)\right)$$

Since $y \cdot x_k - f(x_k) \nearrow +\infty$ and $||x_k|| \to +\infty$ it must be the case that

$$f\left(\frac{x_k}{\|x_k\|}\right) \to 0$$

Notably there must be a convergent subsequence of $\frac{x_k}{\|x_k\|}$, which we'll use without relabeling going forward, and whose limit is \bar{x} . By lsc of f we know

$$0 = \liminf_{k} f\left(\frac{x_k}{\|x_k\|}\right) \ge f(\bar{x}) \ge 0$$

where the right most inequality comes from the positive-definiteness assumption. This means $\bar{x} = 0$, but by its construction we must have $\|\bar{x}\| = 1$, a contradiction so that f^* must be finite.

Now suppose f^* is finite so that there's some M where $|f^*(y)| \le M$. Suppose $\exists x \text{ s.t. } f(x) < 0$. This means for any s > 0 and fixed y where $y \cdot x \ge 0$

$$sy \cdot x - f(sx) = sy \cdot x - s^2 f(x) \nearrow +\infty \text{ as } s \nearrow +\infty \implies f^*(y) = +\infty$$

which is a contradiction with our initial assumption.

Now if f(x) = 0 then $y \cdot x - f(x) = y \cdot x$ and so for any $y \neq 0$ we must have x = 0, otherwise $f^*(y) \nearrow +\infty$. On the other hand if x = 0 but $f(x) \neq 0$ then $y \cdot x - f(0) = -s^2 f(0)$ for any positive s. This means $f^*(y) = \pm \infty$ depending on the sign of f(0), so that we get a contradiction with our assumption hence f(0) = 0.

Exercise 11.11

• We'll use the fact that $x \in \partial g(y) \iff y$ is a minimizer of a lsc convex function. For this situation we're analyzing, for a fixed x

$$g(y) := |y| + \frac{1}{2\alpha} ||x - y||^2,$$

which is easily seen as convex from properties from chapter 7. For $y \neq 0$ g is differentiable and so

$$\partial g(y) = g'(y) = \operatorname{sgn} y + \frac{1}{\alpha}(y - x)$$

Next we want to set this expression equal to 0 and solve for y (if such a y exists). First for y > 0 $y = x - \alpha$, so that a minimum occurs there as long as $x > \alpha$. Similarly for y < 0 we get $y = x + \alpha$, so that a minimum occurs there as long as $x < -\alpha$.

For $x \in [-\alpha, \alpha]$ and y < 0 $g'(y) = -1 + \frac{y}{\alpha} - \frac{x}{\alpha} < 0$ so that g is decreasing. A similar calculation can be shown for y > 0, but that g'(y) > 0 so that it's increasing. Because g is lsc this tells us g(0) is a minimum, for $x \in [-\alpha, \alpha]$.

Putting this all together we get

$$e_{\alpha}f(x) = \inf_{y} \left\{ |y| + \frac{1}{2\alpha} |x - y|^{2} \right\} = \begin{cases} \frac{x^{2}}{2\alpha} & x \in [-\alpha, \alpha] \\ x - \alpha + \frac{\alpha}{2} & x > \alpha \\ -x - \alpha + \frac{\alpha}{2} & x < \alpha \end{cases}$$

• Since f(x) is smooth and convex then $g(y) := f(y) + \frac{1}{2\alpha} ||x - y||^2$ is smooth and convex so that the minimum occurs when $\nabla g(y) = 0$, i.e. when

$$0 = \nabla g(y) = y + \frac{1}{\alpha}(y - x) \implies y = \frac{x}{\alpha + 1}$$

so that

$$e_{\alpha}f(x) = \inf_{y} \left\{ \frac{1}{2} \|y\|^{2} + \frac{1}{2\alpha} \|x - y\|^{2} \right\} = \frac{1}{2(\alpha + 1)^{2}} \|x\|^{2} + \frac{\alpha}{2(\alpha + 1)^{2}} \|x\|^{2} = \frac{1}{2(\alpha + 1)} \|x\|^{2}$$

Exercise 11.12 First let g, h be functions on \mathbb{R}^n taking $\mathbb{R} \cup \{\infty\}$ values and consider

$$\left(g \underset{\text{inf}}{*} h\right)(x) := \inf_{y} g(y) + h(x - y)$$

I aim to show $\left(g \underset{\text{inf}}{*} h\right)^*(y) = g^* + h^*$. By definition

$$\left(g \underset{\inf}{*} h\right)^{*}(y) = \sup_{x} \left\{ y \cdot x - \inf_{z} \{g(z) + h(x - z)\} \right\}$$

$$= \sup_{x} \sup_{z} \{y \cdot x - g(z) - h(x - z)\}$$

$$= \sup_{x} \sup_{z} \{y \cdot z - g(z) + y \cdot (x - z) - h(x - z)\}$$

$$= \sup_{x} \sup_{z} \{y \cdot z - g(z) + y \cdot w - h(w)\}$$

$$= \sup_{w} \{g^{*}(y) + y \cdot w - h(w)\}$$

$$= g^{*}(y) + h^{*}(y)$$

The variable change in the 4th line comes by setting w := x - z, which can be done because x is unconstrained.

Now our job is to compute the dual of $\frac{1}{2\alpha}||x||^2$. Since this function is smooth and convex we can use the characterization that a the maximum of a concave function occurs when the gradient vanishes. That is, when

$$0 = \nabla_x \left(y \cdot x - \frac{1}{2\alpha} \|x\|^2 \right) = y - \frac{1}{\alpha} x \implies x = \alpha y$$

This gives us, for $h(x) := \frac{1}{2\alpha} ||x||^2$

$$h^*(y) = \sup_{x} \left\{ y \cdot x - \frac{1}{2\alpha} \|x\|^2 \right\} = \frac{\alpha}{2} \|y\|^2$$

Combining this result with the above we find

$$(e_{\alpha}f)^{*}(y) = \inf_{y} \left\{ f(y) + \frac{1}{2\alpha} \|x - y\|^{2} \right\} = \left(f \underset{\inf}{*} h \right)^{*}(y) = f^{*}(y) + \frac{\alpha}{2} \|y\|^{2}$$

Exercise 11.14

(a) Let $x \in \operatorname{argmin} f$, then $0 \in \partial_x f(x)$. Now we know (by smoothness) that

$$\partial_y \left(f(y) + \frac{\alpha}{2} \|x - y\|^2 \right) = \partial_y f(y) + \nabla_y \left(\frac{\alpha}{2} \|x - y\|^2 \right) = \partial_y f(y) + \frac{1}{\alpha} (y - x)$$

This means when y = x $0 \in \partial_y \left(f(y) + \frac{\alpha}{2} ||x - y||^2 \right)$ and so $e_{\alpha} f(x) = f(x)$ (by plugging in y = x into the definition).

Now let $z \neq x$. Because $x \in \operatorname{argmin} f$ we know for any y that

$$f(x) \le f(y) + \frac{1}{2\alpha} \|y - z\|^2 \implies e_{\alpha} f(x) = f(x) \le \inf_{y} f(y) + \frac{1}{2\alpha} \|y - z\|^2 = e_{\alpha} f(z)$$

so that $e_{\alpha}f(x)$ is a minimum, thus $x \in \operatorname{argmin} e_{\alpha}f$.

Now let $x \in \operatorname{argmin} e_{\alpha} f$. By lemma 11.13 we know the inf in the definition of $e_{\alpha} f$ is achieved, fix y where it's achieved so that

$$f(y) + \frac{1}{2\alpha} ||x - y||^2 = e_{\alpha} f(x) \le e_{\alpha} f(y) \le f(y) \implies x = y$$

This tells us $e_{\alpha}f(x)=f(x)$. Now fix an arbitrary z, then

$$f(x) = e_{\alpha}f(x) \le e_{\alpha}f(z) \le f(z)$$

so that $x \in \operatorname{argmin} f$.

(b)