Projet de mathématiques financières

Mars 2025

1 Description

Un investisseur a la possibilité de placer un capital sur une période de temps $T=\llbracket 0,n \rrbracket$. Il dispose de m placements possibles, $P_k, 1 \leq k \leq m$, caractérisés par une date de dépôt d_k , une date de disponibilité f_k et un taux τ_k applicable sur l'intervalle $[d_k,f_k]\subseteq [0,n]$. Un taux de base τ_0 , valable sur tous les intervalles $[t,t+1], 0 \leq t \leq n-1$ est aussi donné. L'objectif est de déterminer la meilleure politique de placements sur la période T.

2 Modélisation

Un graphe orienté D=(V,A) est associé à la situation précédente. L'ensemble des sommets V est l'ensemble des n+1 dates $0,1\dots n$ et l'ensemble des arcs A comprend les arcs de la forme $(t,t+1),0\le t\le n-1$, de coefficient $c(t,t+1)=1+\tau_0$, et les arcs de la forme (d_k,f_k) de coefficient $c(d_k,f_k)=1+\tau_k$ correspondants aux m placements disponibles.

Notons $\mathcal{P}(t',t)$ l'ensemble des chemins de t' à t sur le sous-graphe de D engendré par les sommets $[\![t',t]\!]\subseteq [0,n]$. Un chemin P de $\mathcal{P}(0,n)^1$ est associé à une politique d'investissements sur la période T. Le capital initial est en effet multiplié par $C(P)=\prod_{a\in P}c(a)$. L'objectif est donc de trouver $P^*\in\mathcal{P}(0,n)$ tel que

$$C(P^*) = \max_{P \in \mathcal{P}(0,n)} C(P).$$

On pose $\operatorname{Coef}(t) = \max_{P \in \mathcal{P}(0,t)} C(P)$ pour tout $t \in [1, n]$ avec $\operatorname{Coef}(0) = 1$.

3 Exemple

A la date 0, un capital C peut être placé pendant n=7 périodes au taux de $\tau_0=0.9\%$ par période. Les opportunités de le placer à diverses échéances sont indiquées dans la table suivante :

Taux d'intérêt en	% 1.9	2.0	3.0	3.0	2.8
date début	0	1	2	3	4
date fin	2	3	5	6	7

Question 3.1.

- **3.1.1.** Tracer le graphe D.
- **3.1.2.** Énumérer les chemins de $\mathcal{P}(0,7)$.
- **3.1.3.** Trouver la meilleure politique de placement.
 - 1. P est une suite d'arcs de A, le premier arc de P a pour origine 0 et le dernier arc de P est d'extrémité n.

L'énumération de tous les chemins de $\mathcal{P}(0,n)$ n'est pas un algorithme efficace. En effet, si le graphe D contient tous les arcs $(t',t), 0 \leq t' < t \leq n$, le nombre de chemins de $\mathcal{P}(0,n)$ dépend exponentiellement de n.

Question 3.2. Déterminer la cardinalité de $\mathcal{P}(0,n)$ dans ce dernier cas.

4 Recherche de la solution optimale

```
Soit N^-(t) = \{k \in [1, m], f_k = t\} pour t \ge 2.
```

Question 4.1. Écrire une équation qui relie $\operatorname{Coef}(t)$ et, pour $k \in N^-(t)$, $\operatorname{Coef}(d_k)$, $c(d_k, f_k)$, τ_0 et $\operatorname{Coef}(t-1)$. Quelle est la propriété de D qui assure qu'elle a toujours une solution?

5 Algorithmique

Les données numériques à utiliser dans cette partie sont dans le fichier associé à votre groupe.

Le travail demandé consiste à programmer la recherche du meilleur $\operatorname{Coef}(n)$, à partir d'un tableau décrivant les différentes possibilités d'investissement. La meilleure politique de placements sera aussi donnée. Le langage préconisé est python, ou VBA (pour ceux qui manipulent EXCEL). On propose, à titre indicatif, les schémas algorithmiques ci-dessous.

Le fichier rapport, au format pdf, nommé *groupe_num_XX*, contiendra la partie théorique, la description algorithmique des procédures programmées et le résultat obtenu sur les données.

Algorithm 1 Procédure lecture_donnees

Require: un fichier où se trouvent la description de toutes les caractéristiques des placements

Ensure: n, l'horizon de l'étude, le taux de base τ_0 , le tableau des (τ_k, d_k, f_k) , pour $k = 1, \dots m$.

⊳ A écrire!

Algorithm 2 Fonction optimiz coef

Require: n, les (τ_k, d_k, f_k) , pour $k = 1, \dots m$, $t \ge 1$, une date t, tous les $Coef(t'), 0 \le t' < t$.

Ensure: la valeur de Coef(t).

⊳ A écrire!

Algorithm 3 Procédure principale

Ensure: Détermination de Coef(n)

Initialisation

Lecture des données

Optimisation séquentielle : calcul des Coef(t), $2 \le t \le n$, avec Coef(0) = 1 et $Coef(1) = 1 + \tau_0$

Affichage des résultats

⊳ A écrire!