Model Question Paper-1 with effect from 2022-23 (CBCS Scheme)

USN					
					i

Fifth Semester B.E. Degree Examination

THEORY OF COMPUTATION

TIME: 03 Hours Max. Marks: 100

Note:

- 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.
- 02. Draw transition diagrams wherever necessary.

		Module -1	*Bloom's Taxonomy Level	COs	Marks
Q.01	a	Obtain a DFA to accept strings of a's and b's having odd number	L3	CO1	5
	of a's and even number of b's.				
	b	Draw a DFA to accept decimal strings divisible by 3.	L3	CO1	6
	c	Define the following terms with example:	L2	CO1	9
	i) Alphabet ii) Power of Alphabet iii) Languages				
	OR				
Q.02	a	Obtain an ϵ - NFA which accepts strings consisting of zero or more a's	L3	CO1	5
	1.	followed by zero or more b's followed by zero or more c's.	1.2	CO1	
	b	Define Deterministic Finite Automata. Explain the two preferred	L2	CO1	6
	С	notations for describing the Transition Function with an example. Obtain a DFA for the following NFA using lazy evaluation method.	L3	CO1	9
		Obtain a DIA for the following IVI A using fazy evaluation method.	L3	COI	9
		$\underbrace{\begin{array}{c}0\\\text{start}\\q_0\end{array}}_{0,1}\underbrace{\begin{array}{c}0\\q_1\end{array}}_{0,1}\underbrace{\begin{array}{c}0\\q_2\end{array}}_{0,2}\text{accept}$			
	· I	Module-2			
Q. 03	a	List applications of RE. What are the notations used in UNIX Operation	L2	CO2	5
		system? List few Regular expressions with its UNIX notations.			
	b	Obtain an ∈-NFA for the Regular Expression (a+b)* bb (a+b)*	L3	CO2	6
	С	Find the minimized DFA of the following. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L3	CO2	9
		OR			
Q.04	a	Define Pumping Lemma. Prove that below language is not a regular Language. $L = \{a^i b^j i > j \}$	L2	CO2	5
	b	Develop Regular expressions for the following Languages on Σ = { a, b} i) Accept strings of a's and b's whose fifth symbol from the right end is a. ii) Accept strings of a's and b's containing not more than 3 a's.	L3	CO2	6
	c	Find Regular language accepted by the following FA by eliminating states?	L3	CO2	9

		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
		M 11 2			
		Module-3			
Q. 05	a	What is ambiguous grammar? Explain the Techniques for reducing	L3	CO3	5
		ambiguity in the grammar with suitable examples.			
	b	Show that the following grammar is ambiguous by taking the string aab. $S \rightarrow aS \mid aSbS \mid \epsilon$	L3	CO3	6
	С	Design the Context Free Grammar for the following Languages.	L3	CO3	9
		i) To accept the set of all strings with no more than three a's	23	003	
		-			
		when $\Sigma = \{a, b\}$.			
		ii) To accept the set of strings with any number of a's and b's			
		with at least one a.			
		OR			
Q. 06	a	For the below Grammar obtain the corresponding PDA	L3	CO3	5
		$S \rightarrow aABC$, $A \rightarrow aB \mid a$, $B \rightarrow bA \mid b$, $C \rightarrow a$			
	b	Let G be the Grammar	L3	CO3	6
		$S \rightarrow aB \mid bA$			-
		$A \rightarrow a \mid aS \mid bAA$			
		$B \rightarrow b \mid bS \mid aBB$			
		·			
		For the string aabbabab, find			
		i) Derivation Tree ii) Leftmost Derivation iii) Rightmost Derivation		900	
	С	Define CFG. Design CFG for the following Languages:	L3	CO3	9
		i) Consisting of set of all non-palindromes over $\Sigma = \{a,b\}$			
		ii) $L = \{ 0^n 1^{n+1} \mid n \ge 0 \}$			
		iii) L = { wcw^R : $w \in \{a,b\}^*$, w^R is the reverse of w}			
		Module-4			
Q. 07	a	Define the following with suitable examples:	L2	CO4	6
Q. 07		(i) Inherently ambiguous Language (ii) Chomsky Normal Forms			Ü
		(iii) Greibach Normal Form			
	b	Remove all the ϵ -productions and Unit productions from the	L3	CO4	6
	U		LS	CO4	U
		grammar:			
		$S \rightarrow aA \mid aBB A \rightarrow aAA \mid \epsilon B \rightarrow bB \mid bbC C \rightarrow B$	T 0	00.4	0
	С	Define GNF. Convert the following grammar into GNF.	L3	CO4	8
		$S \rightarrow AB1 \mid 0$ $A \rightarrow 00A \mid B$ $B \rightarrow 1A1$			
		OR			
Q. 08	a	Write the LMD, RMD and Parse tree for the string: +*-xyxy	L3	CO4	6
		using the grammar $E \rightarrow +EE \mid *EE \mid -EE \mid x \mid y$			
	b	Obtain the following grammar in CNF:	L3	CO4	6
	٥		L3	CO4	O
		$S \to ASB \mid \epsilon A \to aAS \mid a B \to SbS \mid A \mid bb$	T 2	CO.4	0
	С	Define CNF. Convert the following grammar into CNF.	L3	CO4	8
		$S \rightarrow 0A \mid 1B$ $A \rightarrow 0AA \mid 1S \mid 1$ $B \rightarrow 1BB \mid 0S \mid 0$			
		Module-5			
Q. 09	a	Define Turing Machine. With a neat Block diagram, explain the	L2	CO5	6
		the working of basic Turing Machine.			
	b	Design a Turing Machine to accept all set of palindrome over	L3	CO5	6
			1 3		Ü
		{a,b}*. Draw the transition table and also transition diagram.			
		Show the sequence of IDs for the string: "ababa"			
	c	Write a short note on:	L2	CO5	8
		a) Multitape Turing Machine			
		b) Nondeterministic Turing Machine			
	•	OR			
Q. 10	a	Briefly explain The Techniques for Turing Machine construction. Also	L2	CO5	6
2. 10	"	write applications of Turing Machine.			Ü
	b	Design a Turing Machine to accept the Language:	L3	CO5	6
	U	Design a runnig machine to accept the Language.	LS	COS	U

BCS503

	L= $\{a^nb^n \mid n \ge 1\}$. Draw the transition diagram and show the moves made			
	by TM for the string: "aaaabbbb".			
c	Design a Turing Machine to accept strings formed on {0,1}* and	L3	CO5	8
	ending with 000. Write transition diagram and sequence of IDs for			
	w = 101000			

^{*}Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.