Sección 0.4 Ecuaciones

Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias Departamento de Ciencias Matemáticas

Contenido

- Repaso
- Ecuaciones lineales
- Ecuaciones cuadráticas
- 4 Otros tipos de ecuaciones
 - Ecuaciones con variable en el denominador
 - Ecuaciones con radicales
 - Ecuaciones con valor absoluto

Repaso

Ecuaciones

¿Para qué sirven las ecuaciones?

Las ecuaciones permiten pasar del mundo real donde se observa un fenómeno al mundo simbólico de las matemáticas.

Ecuación

Una *ecuación* es una igualdad de dos expresiones matemáticas que incluye por lo menos una variable que representa una cantidad desconocida.

Ejemplos: Las siguientes son ecuaciones en la variable x.

a.
$$6x + 8 = 9$$

b.
$$x + 5 = 3x + 6$$

c.
$$x^2 + 2 = 6 - \frac{1}{x}$$

d.
$$x^2 + 3x + 8 = 0$$

e.
$$\sqrt{x} + 2 = 0$$

f.
$$|x| - 7 = 0$$

Soluciones de una ecuación

Las soluciones o raíces de una ecuación son los valores (números) que deben tomar las variables (letras) para que la igualdad se cumpla.

Ejemplo: $\frac{1}{6}$ es una solución de la ecuación 6x + 8 = 9.

Resolver una ecuación

Resolver una ecuación es el proceso de encontrar todas las soluciones de esa ecuación.

Ejemplo: Las soluciones de $x^2 = 25$ son x = -5 y x = 5.

Ecuaciones equivalentes

Dos o más ecuaciones son *equivalentes* si tienen exactamente las mismas soluciones.

Ejemplos:

a. $x^2 = 9$ y |x| = 3 son ecuaciones equivalentes.

b. $x^2 = 9$ y x = 3 no son ecuaciones equivalentes.

Propiedades de la igualdad

Las siguientes propiedades llevan a ecuaciones equivalentes y serán útiles para resolver ecuaciones:

1.
$$A = B \Leftrightarrow A + C = B + C$$

2.
$$A = B \Leftrightarrow CA = CB \ (C \neq 0)$$

Ecuaciones lineales

Una ecuación lineal en una variable x es una ecuación definida para todos los valores de x, que usando las propiedades de igualdad se puede expresar de la forma:

$$ax + b = 0$$

donde a y b son números reales con $a \neq 0$.

Determine cuáles de las siguientes ecuaciones son lineales.

a.
$$3x + 1 = 5(2 - x)$$

b.
$$\frac{2}{x} - 5 = 3x$$

Resuelva la ecuación 8(2x-3) - 16 = 18 - 2(x+2).

$$\label{eq:definition} \mathsf{Dado} \ \mathsf{que} \ B = \frac{F}{S-V} \text{, resolver para } S.$$

Ecuaciones cuadráticas

Una ecuación cuadrática en la variable \boldsymbol{x} es una ecuación que se puede expresar de la forma

$$ax^2 + bx + c = 0$$

 $\mbox{donde } a,b \mbox{ y } c \mbox{ son n\'umeros reales con } a \neq 0.$

Expresar las siguientes ecuaciones cuadráticas en la forma $ax^2+bx+c=0$.

a.
$$x^2 + 3x = 2(7 - x)$$

b.
$$(x+2)(2-5x) = x(3x-1)$$

Propiedad del producto cero

Algunas ecuaciones cuadráticas se pueden resolver por factorización y usando la siguiente propiedad de los números reales.

Si el producto dos cantidades es igual a cero, entonces alguna de ellas (o ambas) debe ser cero:

$$AB=0$$
 si y solo si $A=0$ o $B=0$

Resuelva la ecuación $x^2 - 10x = -21$.

Ecuación cuadrática simple

Las soluciones de la ecuación cuadrática $x^2=c$, donde $c\geq 0$, son:

$$x = \sqrt{c}$$
 y $x = -\sqrt{c}$.

Resuelva la ecuación cuadrática simple $3x^2 - 21 = 0$.

Completar el cuadrado

Para convertir x^2+bx en un cuadrado perfecto, se debe sumar $\left(\frac{b}{2}\right)^2$. Esto resulta en un cuadrado perfecto:

$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

Resuelva la siguiente ecuación cuadrática usando la técnica de completar el cuadrado:

$$x^2 - 8x + 3 = 12$$

Cuando la ecuación cuadrática tiene la forma $ax^2+bx+c=0$, con $a\neq 1$, se divide todo entre a para obtener:

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

la cual está en la forma del caso anterior.

Resuelva la siguiente ecuación cuadrática usando la técnica de completar el cuadrado:

$$2x^2 + 5x + 1 = 2$$

Fórmula cuadrática

Las soluciones o raíces de la ecuación $ax^2 + bx + c = 0$, donde $a \neq 0$, son:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Resuelva la ecuación $3x^2 - 2x = 1$ haciendo uso de la fórmula cuadrática.

El discriminante de la ecuación cuadrática $ax^2 + bx + c = 0$ (con $a \neq 0$) es $D = b^2 - 4ac$.

- 1. Si D>0, entonces la ecuación tiene dos soluciones reales y distintas.
- 2. Si D=0, entonces la ecuación tiene exactamente una solución real.
- 3. Si D < 0, entonces la ecuación no tiene solución real.

Determine cuántas soluciones reales tiene $5x^2 - 2x + 3 = 0$.

Ecuaciones con variable en el denominador

Pasos para resolver:

- Hallar el mínimo común denominador (MCD).
- Multiplicar a ambos lados de la ecuación por el MCD.
- Resolver la ecuación resultante.
- Verificar que las soluciones conseguidas en el paso anterior no hagan cero el denominador.

Resuelva la ecuación:

$$\frac{3}{x-3} + \frac{5}{x-7} = \frac{x^2 - 20}{x^2 - 10x + 21}$$

Repaso Ecuaciones lineales Ecuaciones cuadráticas Otros tipos de ecuaciones

Ecuaciones con variable en el denominador Ecuaciones con radicales Ecuaciones con valor absoluto

Ecuaciones con radicales

Pasos para resolver:

- Reescribir con el radical solo a un lado de la ecuación.
- Elevar ambos lados de la ecuación al índice del radical.
- Resolver la ecuación resultante.
- Verificar las soluciones conseguidas en el paso anterior. Pueden surgir soluciones extrañas (que no son solución de la ecuación original).

Resuelva la ecuación:

$$\sqrt{3x - 2} + 2 = x$$

Repaso Ecuaciones lineales Ecuaciones cuadráticas Otros tipos de ecuaciones

Ecuaciones con variable en el denominado Ecuaciones con radicales Ecuaciones con valor absoluto

Ecuaciones con valor absoluto

Pasos para resolver:

- Aislar la expresión que tenga el valor absoluto.
- Verificar si la ecuación tiene sentido. Por ejemplo |x| = -3, sabemos que esto no es posible y, por ende, no tiene solución.
- Usar la definición de valor absoluto para reescribir la ecuación con dos ecuaciones sin valor absoluto.

(Si
$$|x| = a$$
, entonces $x = a$ o $x = -a$).

- Resolver ambas ecuaciones independientemente.
- Verificar las respuestas.

Resuelva la ecuación:

$$2\left|4 - \frac{5}{2}x\right| + 6 = 18$$

Repaso Ecuaciones lineales Ecuaciones cuadráticas Otros tipos de ecuaciones

Ecuaciones con variable en el denominad Ecuaciones con radicales Ecuaciones con valor absoluto