Clustering

Part I

Clustering

- K-means
 - o Clustering $X = \{x^1, \dots, x^n, \dots, x^N\}$ into K clusters
 - \circ Initialize cluster center c^i , i=1,2, ... K (K random x^n from X)
 - o Repeat
 - For all x^n in X:
 - Updating all c^i :

$$b_i^n \begin{cases} 1 & x^n \text{ is most "close" to } c^i \\ 0 & \text{Otherwise} \end{cases}$$

$$c^i = \sum_{x^n} b_i^n x^n / \sum_{x^n} b_i^r$$

K-Means Clustering Algorithm

- 1. Choose # of clusters desired, k
- 2. Start with a partition into k clusters
 Often based on random selection of k centroids
- 3. At each step, move each record to cluster with closest centroid
- 4. Re-compute centroids, repeat step 3
- 5. Stop when moving records increases within-cluster dispersion

K-Means: Part I

1. Ask user how many clusters they'd like. (e.g. k=5)

K-Means: Part II

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations

K-Means: Part III

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint (blue) finds out which Center it's closest to. (Thus, each Center "owns" a set of datapoints). Black lines are the ownership boundaries of each centroid

K-Means: Part IV

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

K-Means: Part V

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

K-Means: Part VI

Advance apologies: in Black and White this example will deteriorate

Example generated by Dan Pelleg's super-duper fast K-means system:

Dan Pelleg and Andrew Moore.
Accelerating Exact k-means
Algorithms with Geometric
Reasoning. Proc. Conference on
Knowledge Discovery in Databases
1999, (KDD99) (available on
www.autonlab.org/pap.html)

K-Means: Part VII

K-Means: Part VIII

K-Means: Part IX

K-Means: Part X

K-Means: Part XI

K-Means: Part XII

K-Means: Part XIII

K-Means: Part XIV

K-Means Terminates

