

# 성적 및 통계 처리

C 언어

### 학습목표

- ▶ 구조체를 이해하고 구조체 변수와 배열을 활용할 수 있다
- ▶ 성적 처리 프로그램을 작성할 수 있다.

# EBS tip -

### 구조체

### (1) 구조체의 개요

① 구조체는 서로 다른 자료형의 자료들을 하나의 묶음으로 처리하고자 할 때 사 용하는 자료 형태이다. 일반적으로 레코드 단위로 자료를 처리할 때 많이 사용 한다.

| 번호      | 이름      | 나이      | 전화번호          |      |
|---------|---------|---------|---------------|------|
| 1101    | 김철수     | 18      | 011-1234-2345 | ←레코드 |
| 1202    | 이영희     | 18      | 010-987-8765  |      |
| ↑<br>필드 | ↑<br>필드 | ↑<br>필드 | <br>필드        | •    |

▲ 레코드의 구성

- ② 구조체를 사용하기 위해서는 다음과 같은 과정을 거친다.
  - 구조체 형식을 정의하고 구조체 변수를 선언한다.
  - 구조체 변수를 참조한다.

### (2) 구조체 단순 변수

① 구조체의 형식 정의

```
struct 구조체 이름 {
     구조체 구성원 1;
      구조체 구성원 2;
      구조체 구성원 n;};
```

struct sinsang { int num; char name[10]; int age; char tp[15]; };

② 구조체 변수의 선언

struct 구조체 이름 변수1[, 변수2, ··· 변수n];

- d struct sinsang ps;
- ③ 구조체에서는 형식 정의와 동시에 변수를 선언할 수도 있다.
  - struct sinsang { int num; char name[10]; int age; char tp[15]; } ps;

### ◎ 구조체 단순 변수

배열과 구분하기 위해서 단순 변 수라 지칭한다.

구조체의 형식 정의에서 struct 구조체 이름 다음에 나오는 { } 안에 들어있는 구조체를 구성하 는 구조체 구성원명을 멤버 변수 라고 한다

■ 구조체 형식 정의와 동시에 변 수를 선언하는 경우에는 변수 앞에 구조체 이름을 쓰지 않아 도 된다.

④ 구조체 변수를 선언한 후, 구조체 변수의 초기값을 선언할 수 있다.

```
struct sinsang
{ int num;
  char name[10];
  int age;
  char tp[15];
} ps={1, "홍길동", 19, "02-123-4567"};
```

⑤ 구조체 변수의 참조

구조체 변수명.구조체 구성원명=값;

⑥ 구조체 변수의 사용

변수=구조체 변수명.구조체 구성원명;

### (3) 구조체 배열

① 구조체 배열의 선언

struct 구조체 이름 배열명[원소의 개수];

- d struct sinsang ps[10];
- ② 구조체 배열의 참조: 구조체 형식 정의와 구조체 배열 선언이 끝난 후 구조체 배 열에 들어있는 각각의 구성원을 다음과 같은 방법으로 참조한다.

구조체 배열명[첨자].구조체 구성원명;

### 2 성적 처리

- (1) 답안지와 정답지 비교 채점하기
  - ① 정답 배열에 있는 값과 답안 배열에 있는 값을 차례로 비교하여 같으면 맞는 답으 로 하다.
  - ② 맞은 개수에 각 문항에 배정된 점수의 합계를 구하여 총점을 구한다.

| 프로그램 소스 코드                                                                                                                                                                                                                                                                                                                                                                                                               | 실행 결과               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| #include <stdio.h> void main() {     int a, cnt, score;     int jungdap[] = {1, 5, 3, 4, 2};     int dap[] = {1, 5, 1, 4, 3};     int jumsu[] = {2, 2, 3, 3, 3};     cnt = 0;     score = 0;     for(a = 0; a &lt; 5; a++){         if (dap[a] == jungdap[a]){             cnt = cnt + 1;             score = score + jumsu[a];         }     }     printf("맞은 개수: %d\n", cnt);     printf("점수: %d", score); }</stdio.h> | 맞은 개수 : 3<br>점수 : 7 |



- 에 구조체 변수의 참조 ps.num = 1;
- 에 구조체 변수의 사용 k=ps.num;
- 구조체 배열도 1차워뿐만 아니 라 다차원 배열로 사용할 수 있다.
- 에 구조체 배열의 참조 ps[2].num = 1;

### (2) 석차 구하기

① 방법1: 석차를 기억할 배열 변수를 1로 초기화한 후, 비교할 대상이 크면 1씩 증 가시켜 구한다.

| 프로그램 소스 코드                                                                                                                                                                                                                                                                                                                                                                    | 실행 결과          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| #include <stdio,h> void main() {   int a, b;   int dat[7]={98, 86, 74, 88, 69, 54, 61};   int rank[7]={1, 1, 1, 1, 1, 1};   for(a=0; a&lt;=6; a++)       for(b=0; b&lt;=6; b++)       if (dat[a] &lt; dat[b])       rank[a] = rank[a] + 1;   printf("일런번호 점수 석차\n");   printf("\n");   for(a=0; a&lt;7; a++)       printf("%6d%6d%4d\n", a+1, dat[a], rank[a]);   }</stdio,h> | 일련번호 점수 석차<br> |



| #include 〈stdio,h〉 void main() {     struct se { int nu; char na[10]; int s; int r; };     int a, b;     struct se t;     struct se dat[5]={         [1101, "김철수", 374},         [1102, "o]영희", 381},         [1103, "박미경", 287},         [1104, "장길동", 310},         [1105, "김도령", 330});     printf ("하번\to]름\textra{k*}점\textra{k*}\n");     printf ("하반\to]름\textra{k*}점\textra{k*}\n");     printf ("ho———————————————————————————————————— | 프로그램 소스 코드                                 | 실행 결과          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|--|--|--|--|
| struct sc { int nu; char na[10]; int s; int r; }; int a, b; struct sc t; struct sc dat[5]={                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·      | 학번 이름 총점 석차    |  |  |  |  |
| int a, b; struct sc t; struct sc dat[5]={     [1101, "김철수", 374,     [1102, "이영희", 381,     [1104, "장길동", 310,     [1105, "김도령", 330)}; printf ("학번\t'o)름\t-k총점\t-석차\n"); printf ("\n———\n"); for(a=0; a<=3; a++)     if (datlbl,s < dat[b+1]=t; } for(a=0; a<=4; a++)     dat[a].r=a+1; for(a=0; a<=4; a++)     printf("%d\t-%s\t-%d\t-%d\n",                                                                                                   | (, (                                       | 010171         |  |  |  |  |
| struct sc t; struct sc dat[5]={   [1101, "김철수", 374],   [1102, "이영희", 381],   [1104, "장길동", 310],   [1105, "김도령", 330];   printf ("하번\t'o\ 름\t-**   for(a=0; a<=3; a++)     if (dat[b],s < dat[b+1],s)     { t=dat[b];     dat[b]=dat[b+1];     dat[a].r=a+1;   for(a=0; a<=4; a++)   printf("%d\t%s\t%d\t%d\n",                                                                                                                                 |                                            | 1101 김철수 374 2 |  |  |  |  |
| Struct Sc dat(5)={                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 1104 장길통 310 4 |  |  |  |  |
| [1102, "이영희", 381], [1103, "박미경", 287], [1104, "장길동", 310], [1105, "김도령", 330]); printf ("하번\t'이름\t*총점\t석차\n"); printf ("\n\n"); for(a=0; a<=3; a++) for(b=0; b<=3-a; b++) if (dat[b],s < dat[b+1],s) { t=dat[b];  dat[b]=dat[b+1];  dat[b]=dat[b+1];  dat[a],r=a+1; for(a=0; a<=4; a++) printf("%d\t%s\t%d\t%d\n",                                                                                                                              |                                            | 1103 막미중 287 5 |  |  |  |  |
| [1103, "박미경", 287), [1104, "장길동", 310), [1105, "김도령", 330)]; printf ("하번\t'이름\t-총점\t-석자\n"); printf ("\n\n"); for(a=0; a<=3; a++)     for(b=0; b<=3-a; b++)         if (dat[b],s < dat[b+1],s)         { t=dat[b];             dat[b]=dat[b+1];             dat[b]=dat[b+1];             dat[a],r=a+1; for(a=0; a<=4; a++)         printf("%d\t-%s\t-%d\t-%d\n",                                                                                 |                                            |                |  |  |  |  |
| [1104, "장길동", 310], [1105, "김도령", 330]; printf ("학번\t이름\t총점\t석차\n"); printf ("\n\n"); for(a=0; a<=3; a++) for(b=0; b<=3-a; b++)     if (dat[b],s < dat[b+1],s)     { t=dat[b];         dat[b]=dat[b+1];         dat[b]=t; } for(a=0; a<=4; a++)     dat[a].r=a+1; for(a=0; a<=4; a++)     printf("%d\t%s\t%d\t%d\n",                                                                                                                             |                                            |                |  |  |  |  |
| (1105, "김도령", 330); printf ("학번\t이름\t총점\t석차\n"); printf ("\n\n"); for(a=0; a<=3; a++) for(b=0; b<=3-a; b++)     if (dat[b],s < dat[b+1],s)     { t=dat[b];         dat[b]=dat[b+1];         dat[b]=t; } for(a=0; a<=4; a++)     dat[a].r=a+1; for(a=0; a<=4; a++)     printf("%d\t%s\t%d\t%d\n",                                                                                                                                                 |                                            |                |  |  |  |  |
| printf ("\n\n"); for(a=0; a <=3; a++) for(b=0; b <=3-a; b++)     if (dat[b], s < dat[b+1],s)     { t=dat[b];         dat[b]=dat[b+1];         dat[b]=t; } for(a=0; a <=4; a++)     dat[a],r=a+1; for(a=0; a <=4; a++)     printf("%d\t%s\t%d\t%d\n",                                                                                                                                                                                             |                                            |                |  |  |  |  |
| for(a=0; a<=3; a++) for(b=0; b<=3-a; b++) if (dat[b].s < dat[b+1].s) { t=dat[b];     dat[b]=dat[b+1];     dat[b+1]=t; } for(a=0; a<=4; a++)     dat[a].r=a+1; for(a=0; a<=4; a++)     printf("%d\t%s\t%d\t%d\n",                                                                                                                                                                                                                                 |                                            |                |  |  |  |  |
| for(b=0; b<=3-a; b++)  if (dat[b].s < dat[b+1].s) { t=dat[b];     dat[b]=dat[b+1];     dat[b+1]=t; }  for(a=0; a<=4; a++)    dat[a].r=a+1; for(a=0; a<=4; a++)    printf("%d\t%s\t%d\t%d\n",                                                                                                                                                                                                                                                     | -                                          |                |  |  |  |  |
| if (dat[b],s < dat[b+1],s) { t=dat[b];     dat[b]=dat[b+1];     dat[b+1]=t; }  for(a=0; a <= 4; a++)     dat[a],r=a+1;  for(a=0; a <= 4; a++)     printf("%d\t%s\t%d\t%d\n",                                                                                                                                                                                                                                                                     |                                            |                |  |  |  |  |
| { t=dat[b];                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ` = =                                      |                |  |  |  |  |
| dat[a],r=a+1;<br>for(a=0; a<=4; a++)<br>printf("%d\t%s\t%d\n",                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                |  |  |  |  |
| for(a=0; a<=4; a++)<br>printf("%d\t%s\t%d\n",                                                                                                                                                                                                                                                                                                                                                                                                    | for(a=0; a<=4; a++)                        |                |  |  |  |  |
| printf("%d\t%s\t%d\n",                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( ,                                        |                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                |  |  |  |  |
| oatiaj.nu, datiaj.na, datiaj.s, datiaj.r), printf ("\n\n");                                                                                                                                                                                                                                                                                                                                                                                      | dat[a].nu, dat[a].na, dat[a].s, dat[a].r); |                |  |  |  |  |
| γιτιω ( μι                                                                                                                                                                                                                                                                                                                                                                                                                                       | print ( \( \( \text{\fit} \) \)            |                |  |  |  |  |

### (3) 성적 처리 프로그램 작성하기

① 주어진 입력 자료를 사용하여 출력 결과와 같이 총점, 평균 및 석차를 계산하여 출력하는 간단한 성적 처리 프로그램을 작성한다.



### [프로그램 해설]

점수가 들어있는 배열 dat에서 각 첨자에 비교되는 요소 값과 전 체 요소 값을 비교하여 큰 요소 값이 있으면 석차를 저장하는 배 열 rank의 같은 위치의 요소 값 을 1씩 증가시킨다.

### [프로그램 해설]

버블 정렬 알고리즘을 사용하여 총점을 기준으로 내림차순 정렬 한 후, 석차를 저장하는 구조체 구성원명인 r에 1부터 5까지 1씩 증가시켜 석차를 저장한다.

### ② 입력 자료 및 출력 형태

| 입력 자료           | 실행 결과                                                                                                                                                               |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 학번 이름 국어 영어<br> | 학번 이름 국어영어총점 평균석차<br>1101 검찰수 100 78 178 89.0 2<br>1102 이영희 98 98 196 98.0 1<br>1103 박미경 85 57 142 71.0 5<br>1104 장김동 76 78 154 77.0 4<br>1105 김도영 67 90 157 78.5 3 |  |  |  |

### 예

• 변수 선언 및 자료의 초기화

```
#include \stdio.h\>
void main() {
 struct sc
         int bun;
         char name[8];
         int k;
         int e;
         int sum;
         float avr;
         int rnk; };
 struct sc dat[5]={{1101, "김철수", 100, 78, 0, 0, 1},
                    {1102, "이영희", 98, 98, 0, 0, 1},
                    [1103,"박미경",85,57,0,0,1},
                    {1104, "장길동", 76, 78, 0, 0, 1},
                    {1105, "김도령", 67, 90, 0, 0, 1}};
 int a. b;
 printf("-
                                                                -\n");
 printf("학번 이름 국어 영어 총점 평균 석차 \n");
 printf("-
                                                                -\n");
```

### • 개인별 총점 및 평균 구하기

```
for(a=0; a<=4; a++)
         dat[a].sum=dat[a].k+dat[a].e;
         dat[a].avr=dat[a].sum/2.0;
```

### • 석차 구하기

```
for(a=0; a<=4; a++)
   for(b=0; b<=4; b++)
       if (dat[a].sum (dat[b].sum)
         dat[a].rnk++;
```

# EBS tip -

### ● 평균을 구할 때 조심할 점

평균을 구할 때 dat[a].sum / 2.0 와 같이 2대신 2.0으로 나눈 것 은 실수형으로 처리하기 위해서 이다. 만일 2로 나누면 정수 나누 기 정수가 되어 그 처리 결과로 정수형으로 처리된다. 그런 다음 왼쪽 변수에 대입되므로 주의해 야 한다.

🐿 EBS tip -

### • 자료 출력하기

```
for(a=0; a<=4; a++)
  printf("%d %s %4d %4d %4d %.1f %d\n".
      dat[a],bun, dat[a],name, dat[a],k, dat[a],e,
      dat[a].sum, dat[a].avr, dat[a].rnk);
```

### 통계 처리

### (1) 중앙값 구하기

중앙값은 자료가 오름차순 혹은 내림차순으로 정렬되었을 때 중앙에 위치하는 값을 말한다.

| 뎨 | 프로그램 소스 코드                                                                                                                                             | 실행 결과 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|   | #include \( \stdio, h \) void main() \{ \text{int su[7]=\{34, 4, 31, -4, 0, 11, 9\}; \text{int a, b, temp;} \} \text{for \( (a=0); a \le =5; a++ \) \} | 중앙값=9 |
|   | for(b=0; b<=5-a; b++)     if (sulb]>sulb+1]){         temp = sulb];         su[b] = sulb+1];         su[b+1] = temp;                                   |       |
|   | printf("\n중앙값=%d", su[3]);<br>}                                                                                                                        |       |

#### (2) 가중 평균 구하기

가중 평균은 각각의 자료들에 대한 상대적인 중요성(가중값)을 고려하여 구한 평균 값을 말한다. 예를 들어, 어떤 학생의 성적이 다음과 같을 때

| 과목      | 국어 | 영어 | 수학 | 사회   |
|---------|----|----|----|------|
| 주당 수업시간 | 4  | 3  | 3  | 1    |
| 평어      | 우  | 수  | 미  | ्रेः |

단, 평어를 수=5, 우=4, 미=3, 양=2, 가=1로 환산한다.

i) 주당 수업시간을 고려하지 않고 평어의 산술 평균을 구하면 다음과 같다.

산술 평균 = 
$$\frac{4+5+3+2}{4}$$
 =  $\frac{14}{4}$  = 3.5

ii) 그러나 국어는 1주일에 4시간을 배우고, 사회는 1시간을 배우므로 시간에 대 한 가중치를 고려한 값을 구하면 국어는 평어×시간=4×4=16이 되고, 사회는 1×2=2가 된다. 따라서 시간을 고려한 가중 평균을 구하면 다음과 같다.

가중 평균 = 
$$\frac{4*4+3*5+3*3+1*2}{4+3+3+1}$$
 =  $\frac{16+15+9+2}{11}$  =  $\frac{42}{11}$   $\doteq$ 3.82

### 에 평어에 단위수를 곱하여 가중 평균을 구하는 프로그램

| 프로그램 소스 코드                                                                                                                                                                 | 실행 결과     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| #include \( \stdio, h \) void main() \{ \\ int a, s, d; \\ float ave; \\ s = d = 0; \\ int su[4] = \{4, 3, 3, 1\}; \\ int pu[4] = \{4, 5, 3, 2\}; \\ for(a=0; a\le 3; a++) | 가중평균=3.82 |
| for(a=0, a<=3, a++) {                                                                                                                                                      |           |



- 배열 su는 단위 수를 저장
- 배열 pu는 평어를 저장

### (3) 돗수 분포 구하기

돗수 분포는 측정한 값이 존재할 범위를 여러 개의 구간으로 나누었을 때, 각 구간에 속하는 측정값이 나오는 횟수를 나열한 것이다.

에 다음과 같은 돗수 분포표를 구하는 프로그램

| 90점 이상 – 100점 까지 |
|------------------|
| 80점 이상 – 89점 까지  |
| 70점 이상 – 79점 까지  |
| 0점 이상 - 69점 까지   |

| 프로그램 소스 코드                                                                                                                                                                    | 실행 결과                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| #include \( \stdio, h \) #include \( \text{math, h} \) void main() \{     int n_s, n_u, n_m, n_y, k;     int m[8]=\{77, 88, 85, 100, 68, 54, 84, 93\};     n_s=n_u=n_m=n_y=0; | 90 - 100 : 2<br>80 - 89 : 3<br>70 - 79 : 1<br>0 - 69 : 2 |
| for(k=0; k<=7; k++)     switch(m[k]/10) {                                                                                                                                     |                                                          |
| printf("90 - 100 : %d\n", n_s);<br>printf("80 - 89 : %d\n", n_u);<br>printf("70 - 79 : %d\n", n_m);<br>printf("0 - 69 : %d\n", n_y);<br>}                                     |                                                          |

### [프로그램 해설]

각 배열의 요소값을 10으로 나누 어 정수를 취하면 case 문에 해 당되는 값을 구할 수 있다.



# 기출 모의고사

정답 및 해설 p. 20

2009년 9월 시행 평가원 모의평가

다음은 성적 데이터를 프로그램으로 처리한 결과 이다. 프로그램에서 점선 (가)~(다)의 명령문으 로 옳은 것을 〈보기〉에서 고른 것은? (단, 실행 결과는 학번, 영어, 수학, 총점, 평균, 석차 순으 로 출력된다.)

|   |     | 7  | 성적 데 | 이터 |    | 실행 결과 |   |                    |
|---|-----|----|------|----|----|-------|---|--------------------|
| 7 | 학번  | 영어 | 수학   | 총점 | 평균 | 석차    |   | 101 80 90 170 85 2 |
|   | 101 | 80 | 90   | 0  | 0  | 1     | _ | 102 90 70 160 80 3 |
|   | 102 | 90 | 70   | 0  | 0  | 1     | 7 | 103 90 90 180 90 1 |
|   | 103 | 90 | 90   | 0  | 0  | 1     |   | 100 00 00 100 00 1 |

```
#include (stdio.h)
void main() {
 int m, n;
 int sum=0;
 int data[]={101.80.90.0.0.1.
             102,90,70,0,0,1,
             103.90.90.0.0.1};
 for(m=0;m(18;m++))
   switch(m%6) {
    case 1:case 2
        sum = sum + data[m];
        break;
    case 3
        break;
     case 4
        sum=0;
        break;
 for(m=3; m\langle 18; m+=6 \rangle
  for(n=3; n\langle 18; n+=6 \rangle
                  (다)
 for(m=0; m(18; m++) {
    if (m%6!=5)
       printf("%d", data[m]);
    else
       printf("%d\n", data[m]);
```

```
¬. data[m]=sum;
\bot. data[m]=sum/2;
□. if(data[m]\data[n])
   data[m+2]++;
```

```
(7)
         (나)
                 (다)
                           <u>(Z})</u>
                                  (나)
                                         (다)
(1) ¬
                        (2) T
                  L
                                   L
                                          L
(3) L
                        (4) L
                  L
                                   L
(5) L
```

다음과 같은 〈출력 결과〉를 얻기 위하여 주어진 프 로그램의 . 안에 들어갈 내용으로 옳은 것은? (단, 점수는 문항당 10점)

〈 출력 결과 〉

```
번호 정답 입력한답 결과
    5
1
         4
2
     4
          4
              0
     2
          2
10
점수=60
```

```
#include (stdio.h)
void main(void) {
 int a, tot=0;
 int tru[]={5,4,1,2,3,4,5,3,1,2}; /* 정답 */
 int ans[]={4,4,2,1,3,4,5,1,1,2}; /* 답안지 */
 char res[10];
 for(a=0;a(=9;a++))
   if (tru[a]==ans[a]){
     else
       res[a]='x';
 printf("번호 정답 입력한답 결과\n");
 for(a=0; a<=9; a++)
  printf("%2d %4d %5d %5c\n", a+1, tru[a],
  ans[a], res[a]);
 printf("점수=%d", tot);
```

```
(1) res[a]='0'; tot=tot+10;
2 res[a]='0'; tot=tot*10;
③ res[a]='0'; tot=res[a]*10;
(4) \text{ res}[a-1]='0'; \text{ tot=tot+10};
```

(5) res[a-1]='0'; tot=tot\*10;

### 2008학년도 대수능 다음은 석차를 구하는 프로그램의 일부이다. [자 료]를 입력하여 프로그램을 실행하였을 때 이름

# 을 석차순으로 바르게 배열한 것은?

| [자 | ·료] |    | 바   | [열 js] 배 | 열 tt) 바 | l열 suk |
|----|-----|----|-----|----------|---------|--------|
|    | 이름  | 국어 | 수학  | 프로그래밍    | 총점      | 석차     |
|    | 길동  | 90 | 90  | 90       | 270     |        |
|    | 순이  | 85 | 85  | 95       | 265     |        |
|    | 영수  | 95 | 95  | 80       | 270     |        |
|    | 선영  | 85 | 80  | 100      | 265     |        |
|    | 철수  | 85 | 100 | 80       | 265     |        |

```
for(a=0; a\langle 5; a++ \rangle \{
 bi = tt[a] + js[a][2] / 1000;
 suk[a] = 1;
 for(b=0; b(5;b++){}
   gyo = tt[b] + js[b][2] / 1000;
   if(bi \langle gyo)
    suk[a] = suk[a] + 1;
```

- ① 길동 영수 선영 순이 철수
- ② 길동 영수 순이 철수 선영
- ③ 길동 영수 철수 선영 순이
- ④ 영수 길동 철수 순이 선영
- ⑤ 영수 길동 선영 철수 순이
- 성적 처리 프로그램에서 [과목 정답]과 학생들이 작성한 [답안지]가 다음과 같을 때, 이 프로그램에 대한 설명으로 옳지 않은 것은?

### [과목 정답]

| 문항번호 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| 정답   | 3 | 2 | 4 | 1 | 5 | 2 | 3 | 1 | 4 | 5  |

### [답안지]

| 문항<br>번호<br>학생<br>번호 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----------------------|---|---|---|---|---|---|---|---|---|----|
| 1                    | 3 | 2 | 4 | 1 | 1 | 2 | 3 | 1 | 4 | 5  |
| 2                    | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5  |
| 3                    | 3 | 2 | 4 | 1 | 5 | 2 | 3 | 1 | 3 | 4  |

```
#include (stdio.h)
  void main() {
   int a, b;
   int jumsu[3];
    int rank[3];
    int dat[10]={3.2.4.1.5.2.3.1.4.5};
    int ans[3][11]=\{\{1,3,2,4,1,1,2,3,1,4,5\},
                     \{2,1,2,3,4,5,1,2,3,4,5\}
                     {3,3,2,4,1,5,2,3,1,3,4}};
     for(a=0; a(3;a++){}
      jumsu[a]=0;
      rank[a]=1;
    for(a=0; a\langle 3; a++ \rangle
      for(b=0; b\langle 10; b++ \rangle
        if (dat[b]==ans[a][b+1])
            jumsu[a] = jumsu[a] + 10;
       for(a=0; a\langle 3; a++ \rangle
        for(b=0; b(3; b++)
            if (jumsu[a] < jumsu[b])
              rank[a] = rank[a] + 1;
         for(a=0; a\langle3; a++\rangle
      printf("%2d %2d %2d\n", a+1, jumsu[a],
rank[a]);
```

- ① 각 문항에 대한 배점은 10점씩이다.
- ② 학생번호, 점수합계, 순위가 출력된다.
- ③ 과목 정답을 저장하기 위한 배열의 이름은 dat이다.
- ④ 학생들의 답안을 저장하기 위해 2차원 배열을 사용하였다.
- ⑤ 점수의 합계. 순위를 구하기 위해 배열은 사용 전에 ()으로 초기화하였다.