

Modeling and Analysis for HPC Systems

Computers have many interacting parts, when we run the same program repeatedly performance will vary.

Analysis of 'True' Fsize-1024_Rsize-32

Modeling and Analysis for HPC Systems

Computers have many interacting parts, when we run the same program repeatedly performance will vary.

Analysis of 'True' Fsize-1024_Rsize-32

Can we predict how a computer will perform a task based on its configuration?

Can we model and predict this stochastic behavior?

We CAN Model Systems, but...

It's a hard problem that requires new methods.

Typical machine learning would use a common algorithm like neural networks, decision trees, etc...

Enter → Math Modeling

Function approximation and specifically interpolation are well-studied problems in Mathematics.

We use deterministic methods with theoretical guarantees such as provable error bounds.

Enter → Math Modeling

Function approximation and specifically interpolation are well-studied problems in Mathematics.

We use deterministic methods with theoretical guarantees such as provable error bounds.

Linear Shepard, Delaunay Triangulation, and Box Splines are three examples of deterministic interpolants.

Overarching Research Goal

Develop (or improve upon existing) techniques for **modeling** the **stochastic behavior** of computer systems.

