

Probability Distributions: Discrete

Introduction to Data Science Algorithms

Dirk Grunwald

Overview

- Refresher on random variables, permutations & combinations
- · Bernoilli distribute, binomial distribute
- Categorical distribution, Multinomial distribution

Refresher: Random variables

- Random variables take on values in a sample space.
- We first focus on discrete random variables:
 - Coin flip: {*H*, *T*}
 - Number of times a coin lands heads after N flips:
 - $\{0, 1, 2, \ldots, N\}$
 - Number of words in a document: Positive integers {1,2,...}
- Reminder: we denote the random variable with a capital letter; denote a outcome with a lower case letter.
 - ∘ E.g., *X* is a coin flip, *x* is the value (*H* or *T*) of that coin flip.

Refresher: Discrete distributions

- A discrete distribution assigns a probability to every possible outcome in the sample space
- For example, if X is a coin flip, then

$$P(X=H) = 0.5$$

$$P(X=T) = 0.5$$

 Probabilities have to be greater than or equal to 0 and probabilities over the entire sample space must sum to one

$$\sum_{x} P(X=x) = 1$$

Permutation

• There are n^k ways to select things with replacement (each draw is from n). e.g. AAA, AAB, AAC, ABA, ..., CCC – 3^3 draws

Permutation

- There are n^k ways to select things with replacement (each draw is from n). e.g. AAA, AAB, AAC, ABA, ..., CCC 3^3 draws
- Recall that n! = n × (n-1) × ... × 2 × 1. There are n! orderings of n things (e.g. ABC, ACB, BAC, BCA, CAB, CBA)
- P(n,k) is the number of **permutations** (orderings) of *n* elements taken *k* at a time *w/o replacement*.

$$P(n,k) = n \times (n-1) \times (n-2) \times ... \times (n-k+1)$$
$$= \frac{n!}{(n-k)!}$$

e.g. AB, BA, AC, CA, BC, CB or P(3,2) or 6/1 = 6 pemutations.

Combinations

- A combination is an order-insensitive collection of objects.
- I.e. ABC and CBA are different pemutations but the same combination.

Combinations

- A combination is an order-insensitive collection of objects.
- I.e. ABC and CBA are different pemutations but the same combination.
- The number of combinations of k things from n is P(n,k)/k!
 - Start with the P(n, k) unique permutations of lenth k
 - ∘ The *k* things can be ordered *k*! ways
- AB, AC, BC are the C(3,2) combinations of $\{A,B,C\}$ $6!/(2! \times 1!) = 3$

Mathematical Conventions

0 |

If $n! = n \cdot (n-1)!$ then 0! = 1 if definition holds for n > 0.

 n^0

Example for 3:

$$3^2 = 9$$
 (1)

$$3^1 = 3$$
 (2)

$$3^{-1} = \frac{1}{3} \tag{3}$$

Mathematical Conventions

0!

If $n! = n \cdot (n-1)!$ then 0! = 1 if definition holds for n > 0.

 n^0

Example for 3:

$$3^2 = 9$$
 (1)

$$3^1 = 3$$
 (2)

$$3^0 = 1$$
 (3)

$$3^{-1} = \frac{1}{3} \tag{4}$$

Today: Types of discrete distributions

- There are many different types of discrete distributions, with different definitions.
- We'll look at the most common discrete distributions.
 - And we'll introduce the concept of parameters.
- These discrete distributions (along with the continuous distributions next) are fundamental tools for regression, classification, and clustering