COMP 5143 Advanced Database Management System

Fall 2015

Computer Science Department
Prairie View A&M University
Mary Heejin Kim, Ph.D.

Chapter 12

Entity-Relationship Modeling

ER diagram of Branch user views of *DreamHome*

Concepts of the ER Model

- Entity types
- Relationship types
- Attributes

Entity Type

- Entity type
 - -Group of objects with same properties, identified by enterprise as having an independent existence.
- Entity occurrence
 - -Uniquely identifiable object of an entity type.

5

Examples of Entity Types

Physical existence	
Staff	Part
Property	Supplier
Customer	Product
Conceptual existence	
Viewing	Sale
Inspection	Work experience

ER diagram of Staff and Branch entity types

7

Relationship Types

- Relationship type
 - -Set of meaningful associations among entity types.
- Relationship occurrence
 - -Uniquely identifiable association, which includes one occurrence from each participating entity type.

Semantic net of *Has* relationship type

9

ER diagram of Branch *Has* Staff relationship

Relationship Types

- Degree of a Relationship
 - -Number of participating entities in relationship.
- Relationship of degree :
 - -two is binary
 - -three is ternary
 - -four is quaternary.

11

Binary relationship called *POwns*

'Private owner owns property for rent'

PrivateOwner Powns▶ PropertyForRent

Ternary relationship called *Registers*

13

Quaternary relationship called Arranges

Relationship Types

- Recursive Relationship
 - -Relationship type where *same* entity type participates more than once in *different roles*.
- Relationships may be given role names to indicate purpose that each participating entity type plays in a relationship.

15

Recursive relationship called Supervises with role names

Entities associated through two distinct relationships with role

names

Attributes

- Attribute
 - -Property of an entity or a relationship type.
- Attribute Domain
 - -Set of allowable values for one or more attributes.

Attributes

- Simple Attribute
 - -Attribute composed of a single component with an independent existence.
- Composite Attribute
 - -Attribute composed of multiple components, each with an independent existence.

19

Attributes

- Single-valued Attribute
 - -Attribute that holds a single value for each occurrence of an entity type.
- Multi-valued Attribute
 - -Attribute that holds multiple values for each occurrence of an entity type.

Attributes

- Derived Attribute
 - -Attribute that represents a value that is derivable from value of a related attribute, or set of attributes, not necessarily in the same entity type.

21

Keys

- Candidate Key
 - -Minimal set of attributes that uniquely identifies each occurrence of an entity type.
- Primary Key
 - -Candidate key selected to uniquely identify each occurrence of an entity type.
- Composite Key
 - -A candidate key that consists of two or more attributes.

ER diagram of Staff and Branch entities and their attributes

23

Entity Type

- Strong Entity Type
 - -Entity type that is *not* existence-dependent on some other entity type.
- Weak Entity Type
 - -Entity type that is existence-dependent on some other entity type.

Strong entity type called Client and weak entity type called Preference

25

Relationship called *Advertises* with attributes

'Newspaper advertises property for rent'

26

Structural Constraints

- Main type of constraint on relationships is called *multiplicity*.
- Multiplicity number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
- Represents policies (called *business rules*) established by user or company.

27

Structural Constraints

- The most common degree for relationships is binary.
- Binary relationships are generally referred to as being:

```
–one-to-one (1:1)
```

- -one-to-many (1:*)
- -many-to-many (*:*)

Semantic net of Staff *Manages* Branch relationship type

29

Multiplicity of Staff Manages Branch (1:1) relationship

Semantic net of Staff *Oversees*PropertyForRent relationship type

Multiplicity of Staff *Oversees*PropertyForRent (1:*) relationship type

Semantic net of Newspaper Advertises PropertyForRent relationship type

Multiplicity of Newspaper Advertises PropertyForRent (*:*) relationship

Structural Constraints

Multiplicity for Complex Relationships

 Number (or range) of possible occurrences of an entity type in an n-ary relationship when other (n-1) values are fixed.

35

Semantic net of ternary *Registers* relationship with values for Staff and Branch entities fixed

Multiplicity of ternary *Registers* relationship

37

Summary of multiplicity constraints

Alternative ways to represent multiplicity constraints	Meaning
01	Zero or one entity occurrence
11 (or just 1) 0* (or just *)	Exactly one entity occurrence Zero or many entity occurrences
1*	One or many entity occurrences
510	Minimum of 5 up to a maximum of 10 entity occurrences
0, 3, 6–8	Zero or three or six, seven, or eight entity occurrences

Structural Constraints

• Multiplicity is made up of two types of restrictions on relationships: cardinality and participation.

39

Structural Constraints

- Cardinality
 - -Describes maximum number of possible relationship occurrences for an entity participating in a given relationship type.
- Participation
 - -Determines whether all or only some entity occurrences participate in a relationship.

Multiplicity as cardinality and participation constraints

41

Problems with ER Models

- Problems may arise when designing a conceptual data model called connection traps.
- Often due to a misinterpretation of the meaning of certain relationships.
- Two main types of connection traps are called *fan traps* and *chasm traps*.

Problems with ER Models

- Fan Trap
 - -Where a model represents a relationship between entity types, but pathway between certain entity occurrences is ambiguous.
- Chasm Trap
 - -Where a model suggests the existence of a relationship between entity types, but pathway does not exist between certain entity occurrences.

43

An Example of a Fan Trap

Semantic Net of ER Model with Fan Trap

 At which branch office does staff number SG37 work?

45

Restructuring ER model to remove Fan Trap

Semantic Net of Restructured ER Model with Fan Trap Removed

• SG37 works at branch B003.

47

An Example of a Chasm Trap

Semantic Net of ER Model with Chasm Trap

 At which branch office is property PA14 available?

49

ER Model restructured to remove Chasm Trap

50

Semantic Net of Restructured ER Model with Chasm Trap

Removed

