Mnogoruki pljačkaš (bandit)

- Konceptualno slot mašina. Ne postoji konkretan budžet koji ulažemo, no imamo pri povlačenju ručice povratnu vrijednost, svaki put (realna vrijednost).
- Opisujemo bandita uređenim parom (m, s), gdje je m srednja povratna vrijednost pljačkaša, a s standardna devijacija.
- Poredajmo n takvih pljačkaša.
- Cilj maksimizovati dobit ne znajući srednje povratne vrijednosti pljačkaša, odlučiti koja mašina daje najviše dobiti.
- Faze u pronalaženju:
 - Test faza veliki broj iteracija (reda 10000) eksploracija
 - Nasumično biramo mašine
 - Povlačimo poteze
 - Računamo m
 - Igranje najbolje mašine eksploatacija
- Potrebno je napraviti balans između eksploracije i eksploatacije, jer sistem može da bude varijantan u vremenu.
- Pravimo politiku odlučivanja:
 - Pohlepna (greedy) politika
 - ϵ pohlepna politika ($\epsilon \in (0,1)$)
 - Biraj mašine nasumično vjerovatnoćom ϵ
 - Biraj najbolju mašinu vjerovatnoćom $1-\epsilon$
 - Softmax politika
- Neka je q trenutna srednja vrijednost mašine. Definišemo $q^+ = p \cdot q + (1-p) \cdot q$ kao narednu srednju vrijednost mašine. Ako uvedemo smjenu $\alpha = 1-p$, naredna vrijednost postaje $q^+ = q + \alpha(1-q)$. Suštinski, ova estimacija trenutne vrijednosti bolja je nego računanje prave srednje vrijednosti jer ne pamtimo broj iteracija.
- Idealno bi bilo pogoditi $q \approx m$, odnosno da naša procijenjena vrijednost bude što bliža sredini.

Domaći 1

- Probati sa manjim ϵ (mijenjamo "intenzitet" *greedy* politike)
- Naučeno q q nakon iteracija
- Varijabilne karakteristike bandita
- Napraviti konkretne bandite i konkretno okruženje. Prikazati konvergenciju q ka m za svakog bandita