Introduction – Descriptive Statistics for Lung Capacity Dataset

This data is shows lungs capacity of smokers and non-smokers differ by age, gender and height

The dataset has six attributes:

- 1. LungCap(cc): Lung capacity in cubic centimeters
- 2. Age(years): Age of person in years
- 3. Height(inches): Height of person in years
- 4. Smoke: Does the person smoke
- 5. Gender: Gender of person.
- 6. Caesarean: the person's birth was normal or Caesarean.

Steps to be performed:

- 1. Import the dataset into R
- 2. Understand the structure of dataset
- 3. Graphical exploration of dataset
- 4. Descriptive statistics about the dataset
- 5. Insights from the dataset.

Import data into R:

library(readxl)

Dataset <- read_excel("LungCap Dataset.xls")</pre>

Understand the structure of dataset

- LungCap and height are numerical.
- Age is integer, but it should be considered as categorical.
- Smoke, Gender and Caesarean are categorical with two factors Yes and No.

Graphical exploration of dataset

Out of six attributes lungCap and Height are numerical, and rest are categorical.

This data is showing lungs capacity of smokers and non-smokers by age, gender and height.

```
> names(Dataset)
[1] "LungCap.cc." "Age..years." "Height.inches." "Smoke"
[5] "Gender" "Caesarean"
> table(Dataset$Gender) # Male:Female ratio

female male
    358    367
```

greatlearning

> prop.table(table(Dataset\$Gender)) #proporations

female male 0.4937931 0.5062069

- > count = table(Dataset\$Gender)
- > barplot(count)

Inference: bar plot showing the percentage ratio between male and female in Gender variable (almost equal in proportions)

Histograms of Lungs Capacity:

Histograms is used for summarizing the distribution of a numeric variable.

> hist(Dataset\$LungCap.cc.)


```
> hist(Dataset$LungCap.cc., ylim=c(0, 0.2), col=4, breaks=seq(from=0, to=16, by=2), las=1, labels = TRUE )
> lines(density(Dataset$LungCap.cc.), col=2, lwd=3)
> box()
```

Histogram of Dataset\$LungCap.cc.

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Inference: red line showing the Density for the variable Lung capacity

Scattered plot: which is shows lung capacity by age and abline showing the ratio of lung capacity by age

```
> plot(Age..years.,Height.inches.,main="Scatterplot",xlab="Age",ylab="Height"
,las=1,xlim=c(3,20),ylim=c(40,85),col=2,pch=5)
> abline(lm(Height.inches.~Age..years.),col=7)
> lines(smooth.spline(Age..years.,Height.inches.),lty=2,col=1)
```

Scatterplot

Inference: There is a linear increase with respect to age and height of the person

Boxplot for lungs capacity

- > attach(Dataset)
- > boxplot(LungCap.cc.)

greatlearning

difference between lungs capacity between male and female.

> boxplot(LungCap.cc. ~ Gender)

Boxplot to examine the relationship between smoker and non-smoker and lung capacity

> boxplot(LungCap.cc. ~ Smoke)

To examine relationship between Lung Capacity Vs. Smoker and non-smoker by Age Groups

```
> AgeGroups <- cut(Age..years., breaks=c(0,13,15,17,25), labels=c(13, 14/15, 16/17, 18)) > boxplot(LungCap.cc. ~ Smoke*AgeGroups, las=2, col=c(4,2))
```


Inference: the difference between the lung's capacity of the smokers and non-smokers by age groups. Red color showing smokers by age and blue color showing non-smoker by age. There is a clear cut trend between age and smoking

greatlearning

Descriptive statistics about the dataset

> summary(Dataset)

```
LungCap.cc. Age..years. Height.inches. Smoke Gender Caesarean Min. : 0.507 Min. : 3.00 Min. :45.30 no :648 female:358 no :561 1st Qu.: 6.150 1st Qu.: 9.00 1st Qu.:59.90 yes: 77 male :367 yes:164 Median : 8.000 Median :13.00 Median :65.40 Mean : 7.863 Mean :12.33 Mean :64.84 3rd Qu.: 9.800 3rd Qu.:15.00 3rd Qu.:70.30 Max. :14.675 Max. :19.00 Max. :81.80
```

Inference:

- Lungs capacity distribution is identical to normal distribution with mean = 7.863
- > Records with age 12 & 13 have highest number of observations
- Lungs capacity and Age are highly correlated.
- ➤ People with age 17 -19 have highest average lung capacity.