MT-1004 Linear Algebra

Fall 2023

Week # 4

National University of Computer and Emerging Sciences

September 14, 2023

Section 1.8

Introduction to Linear Transformations

Let A be an $m \times n$ matrix.

Let A be an $m \times n$ matrix. For the matrix equation Ax = b we have learned to describe

Let A be an $m \times n$ matrix. For the matrix equation Ax = b we have learned to describe

 \triangleright the solution set: all x in \mathbb{R}^n making the equation true.

Let A be an $m \times n$ matrix. For the matrix equation Ax = b we have learned to describe

- ightharpoonup the solution set: all x in \mathbb{R}^n making the equation true.
- \triangleright the column span: the set of all b in \mathbb{R}^m making the equation consistent.

Let A be an $m \times n$ matrix. For the matrix equation Ax = b we have learned to describe

- ightharpoonup the solution set: all x in \mathbb{R}^n making the equation true.
- \triangleright the column span: the set of all b in \mathbb{R}^m making the equation consistent.

It turns out these two sets are very closely related to each other.

Let A be an $m \times n$ matrix. For the matrix equation Ax = b we have learned to describe

- ightharpoonup the solution set: all x in \mathbb{R}^n making the equation true.
- \triangleright the column span: the set of all b in \mathbb{R}^m making the equation consistent.

It turns out these two sets are very closely related to each other.

In order to understand this relationship, it helps to think of the matrix A as a transformation from \mathbb{R}^n to \mathbb{R}^m .

Let A be an $m \times n$ matrix. For the matrix equation Ax = b we have learned to describe

- ightharpoonup the solution set: all x in R^n making the equation true.
- \triangleright the column span: the set of all b in \mathbb{R}^m making the equation consistent.

It turns out these two sets are very closely related to each other.

In order to understand this relationship, it helps to think of the matrix A as a transformation from \mathbb{R}^n to \mathbb{R}^m .

It's a special kind of transformation called a linear transformation.

Let A be an $m \times n$ matrix. For the matrix equation Ax = b we have learned to describe

- ightharpoonup the solution set: all x in R^n making the equation true.
- \triangleright the column span: the set of all b in \mathbb{R}^m making the equation consistent.

It turns out these two sets are very closely related to each other.

In order to understand this relationship, it helps to think of the matrix A as a transformation from \mathbb{R}^n to \mathbb{R}^m .

It's a special kind of transformation called a linear transformation.

This is also a way to understand the geometry of matrices.

Definition

A **transformation** (or **function** or **map**) from R^n to R^m is a rule T that assigns to each vector x in R^n a vector T(x) in R^m .

Definition

A transformation (or function or map) from R^n to R^m is a rule T that assigns to each vector x in R^n a vector T(x) in R^m .

 $ightharpoonup R^n$ is called the **domain** of T (the inputs).

Rⁿ domain

Definition

A transformation (or function or map) from R^n to R^m is a rule T that assigns to each vector x in R^n a vector T(x) in R^m .

- $ightharpoonup R^n$ is called the **domain** of T (the inputs).
- $ightharpoonup R^m$ is called the **codomain** of T (the outputs).

Rⁿ domain

R^m codomain

Definition

A transformation (or function or map) from R^n to R^m is a rule T that assigns to each vector x in R^n a vector T(x) in R^m .

- $ightharpoonup R^n$ is called the **domain** of T (the inputs).
- $ightharpoonup R^m$ is called the **codomain** of T (the outputs).
- ► For x in \mathbb{R}^n , the vector T(x) in \mathbb{R}^m is the **image** of x under T. Notation: $x \mapsto T(x)$.

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 14

Definition

A transformation (or function or map) from R^n to R^m is a rule T that assigns to each vector x in R^n a vector T(x) in R^m .

- $ightharpoonup R^n$ is called the **domain** of T (the inputs).
- $ightharpoonup R^m$ is called the **codomain** of T (the outputs).
- For x in \mathbb{R}^n , the vector T(x) in \mathbb{R}^m is the **image** of x under T. Notation: $x \mapsto T(x)$.
- ▶ The set of all images $\{T(x) \mid x \text{ in } R^n\}$ is the range of T.

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 15

Definition

A transformation (or function or map) from R^n to R^m is a rule T that assigns to each vector x in R^n a vector T(x) in R^m .

- $ightharpoonup R^n$ is called the **domain** of T (the inputs).
- $ightharpoonup R^m$ is called the **codomain** of T (the outputs).
- For x in \mathbb{R}^n , the vector T(x) in \mathbb{R}^m is the **image** of x under T. Notation: $x \mapsto T(x)$.
- ▶ The set of all images $\{T(x) \mid x \text{ in } \mathbb{R}^n\}$ is the range of T.

Notation:

 $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ means T is a transformation from \mathbb{R}^n to \mathbb{R}^m .

Definition

A transformation (or function or map) from R^n to R^m is a rule T that assigns to each vector x in R^n a vector T(x) in R^m .

- $ightharpoonup R^n$ is called the **domain** of T (the inputs).
- $ightharpoonup R^m$ is called the **codomain** of T (the outputs).
- ► For x in \mathbb{R}^n , the vector T(x) in \mathbb{R}^m is the **image** of x under T. Notation: $x \mapsto T(x)$.
- ▶ The set of all images $\{T(x) \mid x \text{ in } \mathbb{R}^n\}$ is the range of T.

Notation:

 $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ means T is a transformation from \mathbb{R}^n to \mathbb{R}^m .

It may help to think of T as a "machine" that takes x as an input, and gives you T(x) as the output.

Many of the functions you know and love have domain and codomain R.

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the \ length \ of \ the \ opposite \ edge \ over \ the \\ hypotenuse \ of \ a \ right \ triangle \ with \ angle \\ x \ in \ radians \end{array}\right)$

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the \ length \ of \ the \ opposite \ edge \ over \ the \\ hypotenuse \ of \ a \ right \ triangle \ with \ angle \\ x \ in \ radians \end{array}\right)$

Note how I've written down the rule that defines the function sin.

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the \ length \ of \ the \ opposite \ edge \ over \ the \\ hypotenuse \ of \ a \ right \ triangle \ with \ angle \\ x \ in \ radians \end{array}\right)$

Note how I've written down the rule that defines the function sin.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = x^2$

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the \ length \ of \ the \ opposite \ edge \ over \ the \\ hypotenuse \ of \ a \ right \ triangle \ with \ angle \\ x \ in \ radians \end{array}\right)$

Note how I've written down the rule that defines the function sin.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = x^2$

Note that " x^2 " is sloppy (but common) notation for a function: it doesn't have a name!

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the \ length \ of \ the \ opposite \ edge \ over \ the \\ hypotenuse \ of \ a \ right \ triangle \ with \ angle \\ x \ in \ radians \end{array}\right)$

Note how I've written down the rule that defines the function sin.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = x^2$

Note that " x^2 " is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.

$$(x, \sin x)$$

•

•

х

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the length of the opposite edge over the \\ hypotenuse of a right triangle with angle \\ x in radians \end{array}\right)$

Note how I've written down the rule that defines the function sin.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = x^2$

Note that " x^2 " is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.

$$(x, \sin x)$$

•

The horizontal axis is the domain, and the vertical axis is the codomain.

• X

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the \ length \ of \ the \ opposite \ edge \ over \ the \\ hypotenuse \ of \ a \ right \ triangle \ with \ angle \\ x \ in \ radians \end{array}\right)$

Note how I've written down the rule that defines the function sin.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = x^2$

Note that " x^2 " is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.

$$(x, \sin x)$$

•

The horizontal axis is the domain, and the vertical axis is the codomain.

• X This is fine when the domain and codomain are R, but it's hard to do when they're R^2 and R^3 !

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the \ length \ of \ the \ opposite \ edge \ over \ the \\ hypotenuse \ of \ a \ right \ triangle \ with \ angle \\ x \ in \ radians \end{array}\right)$

Note how I've written down the rule that defines the function sin.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = x^2$

Note that " x^2 " is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.

The horizontal axis is the domain, and the vertical axis is the codomain.

• X This is fine when the domain and codomain are R, but it's hard to do when they're R² and R³! You need ____ dimensions to draw that graph.

Many of the functions you know and love have domain and codomain R.

$$sin: R \longrightarrow R$$
 $sin(x) = \left(\begin{array}{c} the \ length \ of \ the \ opposite \ edge \ over \ the \\ hypotenuse \ of \ a \ right \ triangle \ with \ angle \\ x \ in \ radians \end{array}\right)$

Note how I've written down the rule that defines the function sin.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = x^2$

Note that " x^2 " is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.

$$(x, \sin x)$$

The horizontal axis is the domain, and the vertical axis is the codomain.

• X This is fine when the domain and codomain are R, but it's hard to do when they're R^2 and R^3 ! You need five dimensions to draw that graph.

Most of the transformations we encounter in this class will come from (surprise) matrices!

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{m\times n}X_{n\times 1}$$

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{m\times n}X_{n\times 1}$$

In other words, T takes the vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m .

► The domain of T is

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{m\times n}X_{n\times 1}$$

In other words, T takes the vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m .

▶ The *domain* of T is R^n , which is the number of of A.

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{m\times n}X_{n\times 1}$$

In other words, T takes the vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m .

ightharpoonup The domain of T is \mathbb{R}^n , which is the number of columns of A.

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{m\times n}X_{n\times 1}$$

- ightharpoonup The domain of T is \mathbb{R}^n , which is the number of columns of A.
- ► The *codomain* of *T* is

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{m\times n}X_{n\times 1}$$

- \triangleright The domain of T is \mathbb{R}^n , which is the number of columns of A.
- ▶ The *codomain* of T is R^m , which is the number of ____ of A.

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{m\times n}X_{n\times 1}$$

- ightharpoonup The domain of T is \mathbb{R}^n , which is the number of columns of A.
- ▶ The *codomain* of T is R^m , which is the number of *rows* of A.

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{av}X_{av}$$

In other words, T takes the vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m .

- \triangleright The domain of T is \mathbb{R}^n , which is the number of columns of A.
- ▶ The *codomain* of T is R^m , which is the number of *rows* of A.
- ▶ The range of T is the set of all images of T:

$$T(x) = Ax = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.$$

This is the

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{av}X_{av}$$

In other words, T takes the vector x in R^n to the vector Ax in R^m .

- ▶ The *domain* of T is R^n , which is the number of *columns* of A.
- ▶ The *codomain* of T is R^m , which is the number of *rows* of A.
- ▶ The range of T is the set of all images of T:

$$T(x) = Ax = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.$$

This is the *column span* of A. It is a span of vectors in the codomain.

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 38

Most of the transformations we encounter in this class will come from (surprise) matrices!

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$.

$$A_{m\times n}X_{n\times 1}$$

In other words, T takes the vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m .

▶ The domain of T is R^n , which is the number of columns of A.

▶ The *codomain* of T is R^m , which is the number of *rows* of A.

▶ The range of T is the set of all images of T:

$$T(x) = Ax = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.$$

This is the *column span* of A. It is a span of vectors in the codomain.

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 39

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: R \rightarrow R$.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^2 \to \mathbb{R}^-$.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

▶ If
$$u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 then $T(u) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 7 \end{pmatrix}$.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^3$.

▶ If
$$u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 then $T(u) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 7 \end{pmatrix}$.

Let
$$b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$$
. Find v in R- such that $T(v) = b$.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^3$.

▶ If
$$u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 then $T(u) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 7 \end{pmatrix}$.

Let
$$b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$$
. Find v in \mathbb{R}^2 such that $T(v) = b$.

Example

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

If
$$u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 then $T(u) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 7 \end{pmatrix}$.

Let $b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$. Find v in \mathbb{R}^2 such that T(v) = b. Is there more than one?

We want to find v such that T(v) = Av = b. We know how to do that:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} v = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix} \xrightarrow{\text{augmented matrix}} \begin{pmatrix} 1 & 1 & 7 \\ 0 & 1 & 5 \\ 1 & 1 & 7 \end{pmatrix} \xrightarrow{\text{row reduce reduce}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{pmatrix}$$

This gives x = 2 and y = 5, or $v = {2 \choose 5}$ (unique). In other words,

$$T(v) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$$

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 46

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^2 \to \mathbb{R}^3$.

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in R^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has ____ vector in it.

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it.

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector.

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector. So no!

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector. So no!

Find c such that there is no v with T(v) = c.

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector. So no!

Find c such that there is no v with T(v) = c.

Translation: Find c such that Ax = c is inconsistent.

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector. So no!

Find c such that there is no v with T(v) = c.

Translation: Find c such that Ax = c is inconsistent.

Translation: Find c not in the column span of A (i.e., the range of T).

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector. So no!

Find c such that there is no v with T(v) = c.

Translation: Find c such that Ax = c is inconsistent.

Translation: Find c not in the column span of A (i.e., the range of T).

We could draw a picture, or notice: $a \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a+b \\ b \\ a+b \end{pmatrix}$.

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector. So no!

Find c such that there is no v with T(v) = c.

Translation: Find c such that Ax = c is inconsistent.

Translation: Find c not in the column span of A (i.e., the range of T).

We could draw a picture, or notice: $a \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a+b \\ b \\ a+b \end{pmatrix}$. So anything in the column span has the same first and last coordinate.

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.

Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v)=c?

Translation: is there any c in \mathbb{R}^3 such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector. So no!

Find c such that there is no v with T(v) = c.

Translation: Find c such that Ax = c is inconsistent.

Translation: Find c not in the column span of A (i.e., the range of T).

We could draw a picture, or notice: $a \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a+b \\ b \\ a+b \end{pmatrix}$. So anything in the column span has the same first and last coordinate. So

anything in the column span has the same first and last coordinate. So $c = \binom{1}{2}$ is not in the column span (for example).

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon R^- \to R^-$.

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^3 \to \mathbb{R}^3$.

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^3 \to \mathbb{R}^3$. Then

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

Geometric example

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^3 \to \mathbb{R}^3$. Then

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

This is

Geometric example

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^3 \to \mathbb{R}^3$. Then

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

This is projection onto the xy-axis. Picture:

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathsf{R}\text{-} \to \mathsf{R}\text{-}$.

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^2 \to \mathbb{R}^2$.

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^2$. Then
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.$$

Geometric example

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^2$. Then
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.$$

This is

Geometric example

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^2$. Then
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.$$

This is reflection over the y-axis. Picture:

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 6

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: R \rightarrow R -$.

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^2 \to \mathbb{R}^2$.

Geometric example

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^2$. Then
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}.$$

Then

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}.$$

Then

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}.$$

Matrix Transformations

Geometric example

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^2$. Then

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}.$$

This is

Then

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}.$$

This is

Then

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}.$$

This is

Matrix Transformations

Geometric example

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^2$. Then
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}.$$

This is reflection over the x-axis.

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^2$. Then

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}.$$

This is reflection about origin.

Let
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^2$. Then

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}.$$

This is reflection about the line y = x.

Poll

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^2$. (T is called a **shear**.)

Poll

What does T do to this sheep?

Hint: first draw a picture what it does to the box *around* the sheep.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^2 \to \mathbb{R}^2$. (T is called a **shear**.)

Poll

What does T do to this sheep?

Hint: first draw a picture what it does to the box *around* the sheep.

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then $A(u+v) = Au + Av \qquad A(cv) = cAv.$

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
 $A(cv) = cAv$.

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
 $T(cv) = cT(v)$.

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
 $A(cv) = cAv$.

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
 $T(cv) = cT(v)$.

This property is so special that it has its own name.

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
 $A(cv) = cAv$.

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
 $T(cv) = cT(v)$.

This property is so special that it has its own name.

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if it satisfies the above equations for all vectors u, v in \mathbb{R}^n and all scalars c.

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
 $A(cv) = cAv$.

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
 $T(cv) = cT(v)$.

This property is so special that it has its own name.

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if it satisfies the above equations for all vectors u, v in \mathbb{R}^n and all scalars c.

In other words, T "respects" addition and scalar multiplication.

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
 $A(cv) = cAv$.

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
 $T(cv) = cT(v)$.

This property is so special that it has its own name.

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if it satisfies the above equations for all vectors u, v in \mathbb{R}^n and all scalars c.

In other words, T "respects" addition and scalar multiplication.

Check: if T is linear, then

$$T(0) = 0 T(cu + dv) = cT(u) + dT(v)$$

for all vectors u, v and scalars c, d.

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
 $A(cv) = cAv$.

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
 $T(cv) = cT(v)$.

This property is so special that it has its own name.

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if it satisfies the above equations for all vectors u, v in \mathbb{R}^n and all scalars c.

In other words, T "respects" addition and scalar multiplication.

Check: if T is linear, then

$$T(0) = 0 T(cu + dv) = cT(u) + dT(v)$$

for all vectors u, v and scalars c, d. More generally,

$$T(c_1v_1+c_2v_2+\cdots+c_nv_n)=c_1T(v_1)+c_2T(v_2)+\cdots+c_nT(v_n).$$

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
 $A(cv) = cAv$.

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
 $T(cv) = cT(v)$.

This property is so special that it has its own name.

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if it satisfies the above equations for all vectors u, v in \mathbb{R}^n and all scalars c.

In other words, T "respects" addition and scalar multiplication.

Check: if T is linear, then

$$T(0) = 0 T(cu + dv) = cT(u) + dT(v)$$

for all vectors u, v and scalars c, d. More generally,

$$T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1T(v_1) + c_2T(v_2) + \cdots + c_nT(v_n).$$

In engineering this is called superposition.

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. Is T linear? Check:

Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T(x)=1.5x$. Is T linear? Check:
$$T(u+v)=1.5(u+v)=1.5u+1.5v=T(u)+T(v)$$

$$T(cv)=1.5(cv)=c(1.5v)=c(Tv).$$

Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T(x)=1.5x$. Is T linear? Check:
$$T(u+v)=1.5(u+v)=1.5u+1.5v=T(u)+T(v)$$

$$T(cv)=1.5(cv)=c(1.5v)=c(Tv).$$

So T satisfies the two equations, hence T is linear.

Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T(x)=1.5x$. Is T linear? Check:
$$T(u+v)=1.5(u+v)=1.5u+1.5v=T(u)+T(v)$$

$$T(cv)=1.5(cv)=c(1.5v)=c(Tv).$$

So T satisfies the two equations, hence T is linear.

This is called **dilation** or **scaling** (by a factor of 1.5). Picture:

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. Is T linear? Check:

$$T(u+v) = 1.5(u+v) = 1.5u + 1.5v = T(u) + T(v)$$

 $T(cv) = 1.5(cv) = c(1.5v) = c(Tv).$

So T satisfies the two equations, hence T is linear.

This is called **dilation** or **scaling** (by a factor of 1.5). Picture:

Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

90

Define
$$T \colon R^2 \to R^2$$
 by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

$$\begin{split} T\left(\begin{pmatrix}u_1\\u_2\end{pmatrix}+\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=\begin{pmatrix}-u_2\\u_1\end{pmatrix}+\begin{pmatrix}-v_2\\v_1\end{pmatrix}=\begin{pmatrix}-(u_2+v_2)\\(u_1+v_1)\end{pmatrix}=T\begin{pmatrix}u_1+u_2\\v_1+v_2\end{pmatrix}\\ T\left(c\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=T\begin{pmatrix}cv_1\\cv_2\end{pmatrix}=\begin{pmatrix}-cv_2\\cv_1\end{pmatrix}=c\begin{pmatrix}-v_2\\v_1\end{pmatrix}=cT\begin{pmatrix}v_1\\v_2\end{pmatrix}. \end{split}$$

Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

$$\begin{split} T\left(\begin{pmatrix}u_1\\u_2\end{pmatrix}+\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=\begin{pmatrix}-u_2\\u_1\end{pmatrix}+\begin{pmatrix}-v_2\\v_1\end{pmatrix}=\begin{pmatrix}-(u_2+v_2)\\(u_1+v_1)\end{pmatrix}=T\begin{pmatrix}u_1+u_2\\v_1+v_2\end{pmatrix}\\ T\left(c\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=T\begin{pmatrix}cv_1\\cv_2\end{pmatrix}=\begin{pmatrix}-cv_2\\cv_1\end{pmatrix}=c\begin{pmatrix}-v_2\\v_1\end{pmatrix}=cT\begin{pmatrix}v_1\\v_2\end{pmatrix}. \end{split}$$

So ${\cal T}$ satisfies the two equations, hence ${\cal T}$ is linear.

92

Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

$$\begin{split} T\left(\begin{pmatrix}u_1\\u_2\end{pmatrix}+\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=\begin{pmatrix}-u_2\\u_1\end{pmatrix}+\begin{pmatrix}-v_2\\v_1\end{pmatrix}=\begin{pmatrix}-(u_2+v_2)\\(u_1+v_1)\end{pmatrix}=T\begin{pmatrix}u_1+u_2\\v_1+v_2\end{pmatrix}\\ T\left(c\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=T\begin{pmatrix}cv_1\\cv_2\end{pmatrix}=\begin{pmatrix}-cv_2\\cv_1\end{pmatrix}=c\begin{pmatrix}-v_2\\v_1\end{pmatrix}=cT\begin{pmatrix}v_1\\v_2\end{pmatrix}. \end{split}$$

Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

$$\begin{split} T\left(\begin{pmatrix}u_1\\u_2\end{pmatrix}+\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=\begin{pmatrix}-u_2\\u_1\end{pmatrix}+\begin{pmatrix}-v_2\\v_1\end{pmatrix}=\begin{pmatrix}-(u_2+v_2)\\(u_1+v_1)\end{pmatrix}=T\begin{pmatrix}u_1+u_2\\v_1+v_2\end{pmatrix}\\ T\left(c\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=T\begin{pmatrix}cv_1\\cv_2\end{pmatrix}=\begin{pmatrix}-cv_2\\cv_1\end{pmatrix}=c\begin{pmatrix}-v_2\\v_1\end{pmatrix}=cT\begin{pmatrix}v_1\\v_2\end{pmatrix}. \end{split}$$

$$T\begin{pmatrix}1\\2\end{pmatrix}=\begin{pmatrix}-2\\1\end{pmatrix}$$

Define
$$T \colon R^2 \to R^2$$
 by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

$$\begin{split} T\left(\begin{pmatrix}u_1\\u_2\end{pmatrix}+\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=\begin{pmatrix}-u_2\\u_1\end{pmatrix}+\begin{pmatrix}-v_2\\v_1\end{pmatrix}=\begin{pmatrix}-(u_2+v_2)\\(u_1+v_1)\end{pmatrix}=T\begin{pmatrix}u_1+u_2\\v_1+v_2\end{pmatrix}\\ T\left(c\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=T\begin{pmatrix}cv_1\\cv_2\end{pmatrix}=\begin{pmatrix}-cv_2\\cv_1\end{pmatrix}=c\begin{pmatrix}-v_2\\v_1\end{pmatrix}=cT\begin{pmatrix}v_1\\v_2\end{pmatrix}. \end{split}$$

$$T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
$$T \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

$$\begin{split} T\left(\begin{pmatrix}u_1\\u_2\end{pmatrix}+\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=\begin{pmatrix}-u_2\\u_1\end{pmatrix}+\begin{pmatrix}-v_2\\v_1\end{pmatrix}=\begin{pmatrix}-(u_2+v_2)\\(u_1+v_1)\end{pmatrix}=T\begin{pmatrix}u_1+u_2\\v_1+v_2\end{pmatrix}\\ T\left(c\begin{pmatrix}v_1\\v_2\end{pmatrix}\right)&=T\begin{pmatrix}cv_1\\cv_2\end{pmatrix}=\begin{pmatrix}-cv_2\\cv_1\end{pmatrix}=c\begin{pmatrix}-v_2\\v_1\end{pmatrix}=cT\begin{pmatrix}v_1\\v_2\end{pmatrix}. \end{split}$$

$$T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
$$T \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

Section 1.9

The Matrix of a Linear Transformation

Definition

The unit coordinate vectors in R^n are

$$e_1 = egin{pmatrix} 1 \ 0 \ dots \ 0 \ 0 \end{pmatrix}, \quad e_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = egin{pmatrix} 0 \ 0 \ dots \ 1 \ 0 \end{pmatrix}, \quad e_n = egin{pmatrix} 0 \ 0 \ dots \ 0 \ dots \ 0 \ 0 \end{pmatrix}.$$

Definition

The unit coordinate vectors in R^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$egin{pmatrix} egin{pmatrix} egin{pmatrix} 1 \ 0 \ \vdots \ 0 \ 0 \end{pmatrix}, & e_2 = egin{pmatrix} 0 \ 1 \ \vdots \ 0 \ 0 \end{pmatrix}, & \ldots, & e_{n-1} = egin{pmatrix} 0 \ 0 \ \vdots \ 1 \ 0 \end{pmatrix}, & e_n = egin{pmatrix} 0 \ 0 \ \vdots \ 0 \ 1 \end{pmatrix}. \end{pmatrix}$$

Definition

The unit coordinate vectors in R^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$e_1 = egin{pmatrix} 1 \ 0 \ dots \ 0 \ 0 \end{pmatrix}, \quad e_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = egin{pmatrix} 0 \ 0 \ dots \ 1 \ 0 \end{pmatrix}, \quad e_n = egin{pmatrix} 0 \ 0 \ dots \ 0 \ dots \ 0 \ 1 \end{pmatrix}.$$

Definition

The unit coordinate vectors in R^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$egin{pmatrix} egin{pmatrix} 1 \ 0 \ dots \ 0 \ 0 \end{pmatrix}, \quad e_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \ 0 \end{pmatrix}, \quad \ldots, \quad e_{n-1} = egin{pmatrix} 0 \ 0 \ dots \ dots \ 1 \ 0 \end{pmatrix}, \quad e_n = egin{pmatrix} 0 \ 0 \ dots \ 0 \ dots \ 0 \ 1 \end{pmatrix}. \end{pmatrix}$$

in R³

Note: if A is an $m \times n$ matrix with columns v_1, v_2, \ldots, v_n , then $Ae_i = v_i$ for $i = 1, 2, \ldots, n$:

Definition

The unit coordinate vectors in R^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

Note: if A is an $m \times n$ matrix with columns v_1, v_2, \dots, v_n , then $Ae_i = v_i$ for $i = 1, 2, \dots, n$: multiplying a matrix by e_i gives you the *i*th column.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$$

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an matrix,

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax.

The matrix A is called the **standard matrix** for T.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T.

Take-Away

Linear transformations are the same as matrix transformations.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T.

Linear transformations are the same as matrix transformations.

Dictionary

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T

Linear transformations are the same as matrix transformations.

Dictionary

Linear transformation
$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$m \times n \text{ matrix } A = \begin{pmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{pmatrix}$$

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T.

Dictionary Linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ $\longrightarrow m \times n \text{ matrix } A = \begin{pmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \\ T(x) = Ax & & & \\ T: \mathbb{R}^n \to \mathbb{R}^m & & & \\ \end{array}$ $T: \mathbb{R}^n \to \mathbb{R}^m$ $\longrightarrow \mathbb{R}^m$

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 11

Why is a linear transformation a matrix transformation?

Why is a linear transformation a matrix transformation?

Suppose for simplicity that $T: \mathbb{R}^3 \to \mathbb{R}^2$.

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = T \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= T (xe_1 + ye_2 + ze_3)$$
$$= xT(e_1) + yT(e_2) + zT(e_3)$$
$$= \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & T(e_3) \\ | & | & | \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= A \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Before, we defined a **dilation** transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. What is its standard matrix?

$$T(e_1) = 1.5e_1 = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}$$

$$T(e_2) = 1.5e_2 = \begin{pmatrix} 0 \\ 1.5 \end{pmatrix}$$
 $\Longrightarrow A = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}.$

Before, we defined a **dilation** transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. What is its standard matrix?

$$T(e_1) = 1.5e_1 = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}$$

$$T(e_2) = 1.5e_2 = \begin{pmatrix} 0 \\ 1.5 \end{pmatrix}$$

$$\implies A = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}.$$

Check:

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

Before, we defined a **dilation** transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. What is its standard matrix?

$$T(e_1) = 1.5e_1 = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}$$

$$T(e_2) = 1.5e_2 = \begin{pmatrix} 0 \\ 1.5 \end{pmatrix} \implies A = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}.$$

Check:

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} =$$

Before, we defined a **dilation** transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. What is its standard matrix?

$$T(e_1) = 1.5e_1 = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}$$

$$T(e_2) = 1.5e_2 = \begin{pmatrix} 0 \\ 1.5 \end{pmatrix} \implies A = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}.$$

Check:

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} = 1.5 \begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix}.$$

Question

Linear Transformations are Matrix Transformations $_{\mbox{\scriptsize Example}}$

Question

Question

Linear Transformations are Matrix Transformations $_{\mbox{\scriptsize Example}}$

Question

Question

Example, continued

Question

Example, continued

Question

Example, continued

Question

Example, continued

Question

Example, continued

Question

Example, continued

Question

Example, continued

Question

Example, continued

Question

Example, continued

Question

$$T(e_1) = egin{pmatrix} 0 \ 0 \ 0 \ \end{pmatrix}$$
 $T(e_2) = egin{pmatrix} 0 \ 1 \ 0 \ \end{pmatrix} \implies A =$
 $T(e_1) = egin{pmatrix} 0 \ 0 \ -1 \ \end{pmatrix}$

Example, continued

Question

$$T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbb{R}^m (its codomain).

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbb{R}^m (its codomain). In other words, each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n :

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbb{R}^m (its codomain). In other words, each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n : every possible output has an input.

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbb{R}^m (its codomain). In other words, each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n : every possible output has an input. Note that not onto means

Definition

A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbb{R}^m (its codomain). In other words, each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n : every possible output has an input. Note that not onto means there is some b in \mathbb{R}^m which is not the image of any x in \mathbb{R}^n .

Definition

A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbb{R}^m (its codomain). In other words, each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n : every possible output has an input. Note that not onto means there is some b in \mathbb{R}^m which is not the image of any x in \mathbb{R}^n .

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbb{R}^m (its codomain). In other words, each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n : every possible output has an input. Note that not onto means there is some b in \mathbb{R}^m which is not the image of any x in \mathbb{R}^n .

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 138

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

T is onto

Theorem

- T is onto
- T(x) = b has a solution for every b in \mathbb{R}^m

Theorem

- T is onto
- T(x) = b has a solution for every b in \mathbb{R}^m
- ightharpoonup Ax = b is consistent for every b in \mathbb{R}^m

Theorem

- T is onto
- T(x) = b has a solution for every b in \mathbb{R}^m
- ightharpoonup Ax = b is consistent for every b in \mathbb{R}^m
- ightharpoonup The columns of A span \mathbb{R}^m

Theorem

- T is onto
- ightharpoonup T(x) = b has a solution for every b in \mathbb{R}^m
- \blacktriangleright Ax = b is consistent for every b in \mathbb{R}^m
- ightharpoonup The columns of A span \mathbb{R}^m
- ► A has a pivot in every ____

Theorem

- T is onto
- ightharpoonup T(x) = b has a solution for every b in \mathbb{R}^m
- \blacktriangleright Ax = b is consistent for every b in \mathbb{R}^m
- ightharpoonup The columns of A span \mathbb{R}^m
- ► A has a pivot in every row

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- T(x) = b has a solution for every b in \mathbb{R}^m
- ightharpoonup Ax = b is consistent for every b in \mathbb{R}^m
- ightharpoonup The columns of A span \mathbb{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto, what can we say about the relative sizes of n and m?

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- ightharpoonup T(x) = b has a solution for every b in \mathbb{R}^m
- \blacktriangleright Ax = b is consistent for every b in \mathbb{R}^m
- ightharpoonup The columns of A span R^m
- ► A has a pivot in every row

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto, what can we say about the relative sizes of n and m?

Answer: T corresponds to an matrix A.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- ightharpoonup T(x) = b has a solution for every b in \mathbb{R}^m
- \blacktriangleright Ax = b is consistent for every b in \mathbb{R}^m
- ightharpoonup The columns of A span \mathbb{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- ightharpoonup T(x) = b has a solution for every b in \mathbb{R}^m
- \blacktriangleright Ax = b is consistent for every b in \mathbb{R}^m
- \triangleright The columns of A span \mathbb{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: $m \le n$.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- T(x) = b has a solution for every b in \mathbb{R}^m
- \blacktriangleright Ax = b is consistent for every b in \mathbb{R}^m
- \triangleright The columns of A span \mathbb{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: $m \le n$.

$$\begin{pmatrix}
1 & 0 & * & 0 & * \\
0 & 1 & * & 0 & * \\
0 & 0 & 0 & 1 & *
\end{pmatrix}$$

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- T(x) = b has a solution for every b in \mathbb{R}^m
- \blacktriangleright Ax = b is consistent for every b in \mathbb{R}^m
- \triangleright The columns of A span \mathbb{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: $m \le n$.

$$\begin{pmatrix}
1 & 0 & * & 0 & * \\
0 & 1 & * & 0 & * \\
0 & 0 & 0 & 1 & *
\end{pmatrix}$$

For instance, R^2 is "too small" to map *onto* R^3 .

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m .

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m . In other words, each b in \mathbb{R}^m is the image of *at most one* x in \mathbb{R}^n :

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m . In other words, each b in \mathbb{R}^m is the image of *at most one* x in \mathbb{R}^n : different inputs have different outputs.

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m . In other words, each b in \mathbb{R}^m is the image of *at most one* x in \mathbb{R}^n : different inputs have different outputs. Note that *not* one-to-one means

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m . In other words, each b in \mathbb{R}^m is the image of *at most one* x in \mathbb{R}^n : different inputs have different outputs. Note that *not* one-to-one means different vectors in \mathbb{R}^n have the same image.

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m . In other words, each b in \mathbb{R}^m is the image of at most one x in \mathbb{R}^n : different inputs have different outputs. Note that not one-to-one means different vectors in \mathbb{R}^n have the same image.

Definition

A transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m . In other words, each b in \mathbb{R}^m is the image of *at most one* x in \mathbb{R}^n : different inputs have different outputs. Note that *not* one-to-one means different vectors in \mathbb{R}^n have the same image.

Linear Algebra Fall 2023 Muhammad Ali and Sara Aziz 157

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

T is one-to-one

Theorem

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m

Theorem

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m

Theorem

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution

Theorem

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent

Theorem

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- \blacktriangleright Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution
- ► The columns of A are linearly independent
- ► A has a pivot in every _____.

Theorem

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- \blacktriangleright Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- A has a pivot in every column.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- \blacktriangleright Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- A has a pivot in every column.

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- \blacktriangleright Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution
- ► The columns of A are linearly independent
- A has a pivot in every column.

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- \blacktriangleright Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution
- ► The columns of A are linearly independent
- A has a pivot in every column.

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: n < m.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- \blacktriangleright Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution
- ► The columns of A are linearly independent
- A has a pivot in every column.

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: $n \le m$.

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- \blacktriangleright Ax = b has a unique solution or is inconsistent for every b in \mathbb{R}^m
- ightharpoonup Ax = 0 has a unique solution
- ► The columns of A are linearly independent
- A has a pivot in every column.

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: $n \le m$.

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

For instance, R^3 is "too big" to map into R^2 .

Questions

- ▶ What matrix transforms (1,0) into (2,5) and transforms (0,1) to (1,3)?
- What matrix transforms (2,5) to (1,0) and (1,3) to (0,1)? Why does no matrix transform (2,6) to (1,0) and (1,3) to (0,1)?
- ▶ What transformation take x_1 to Ax_1 and x_2 to Ax_2 .

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow Ax_1 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$
 and $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow Ax_2 = \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix}$.

Means whenever we have transformation of two (independent) vectors in \mathbb{R}^2 we would be able to find transformation matrix.

- ► What matrix has the effect of rotating every vector through 90° and then project- ing the result onto the x -axis?
- ► What matrix represents projection onto the x-axis followed by projection onto the y-axis?

Questions

- he matrix $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ produces a stretching in the x direction. Draw the circle $x^2 + y^2 = 1$ and sketch around it the points (2x, y) that result from multiplication by A. What shape is that curve?
- ▶ What 3 × 3 matrices represent the transformations that
 - (a) project every vector onto the x-y plane?
 - (b) reflect every vector through the x-y plane?
 - (c) rotate the x-y plane through 90, leaving the z-axis alone?
 - (d) rotate the x-y plane, then x-z, then y-z, through 90?
 - (e) carry out the same three rotations, but each one through 180?
- ► Every straight line remains straight after a linear transformation. If z is halfway between x and y, show that Az is halfway between Ax and Ay.