Attention via $\log \sum \exp \text{ energy}$

Alexander Tschantz

January 21, 2025

1 General Framework

Setup. We consider a single set of nodes $v = \{v_a : a \in \{1, 2, ..., A\}\}$, where each node $v_a \in \mathbb{R}^d$. The relationships between these nodes are defined by a set of M energy functions $\{E_m : m \in \{1, 2, ..., M\}\}$. Each energy function E_m defines a subset of nodes acting as *children* $C_m \subseteq \{1, 2, ..., A\}$ and a subset acting as *parents* $P_m \subseteq \{1, 2, ..., A\}$, which may overlap.

Energy. Each energy function E_m defines a similarity function:

$$sim(\mathbf{v}_c, \mathbf{v}_p) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R},$$
 (1)

which produces a scalar similarity between a child v_c and a parent v_p . Using $\{v_c\} = \{v_c : c \in C_m\}$ and $\{v_p\} = \{v_p : p \in P_m\}$, the energy for E_m is defined as:

$$E_m(\lbrace \boldsymbol{v}_c \rbrace, \lbrace \boldsymbol{v}_p \rbrace) = -\sum_{c \in C_m} \ln \left(\sum_{p \in P_m} \exp(\operatorname{sim}(\boldsymbol{v}_c, \boldsymbol{v}_p)) \right). \tag{2}$$

The global energy sums over all energy functions:

$$E(\{v\}) = \sum_{m=1}^{M} E_m(\{v_c\}, \{v_p\}).$$
 (3)

Gradient Updates. For a single node v_a , the gradient of the global energy E w.r.t. v_a decomposes into two terms. Let $\mathcal{M}_c(a) = \{m : a \in C_m\}$ denote the energy functions where v_a acts as a *child*, and $\mathcal{M}_p(a) = \{m : a \in P_m\}$ the energy functions where v_a acts as a *parent*. Then:

$$-\frac{\partial E}{\partial \boldsymbol{v}_{a}} = \underbrace{\sum_{m \in \mathcal{M}_{c}(a)} \sum_{p \in P_{m}} \operatorname{softmax}_{p} \left(\operatorname{sim}(\boldsymbol{v}_{a}, \boldsymbol{v}_{p}) \right) \frac{\partial}{\partial \boldsymbol{v}_{a}} \operatorname{sim}(\boldsymbol{v}_{a}, \boldsymbol{v}_{p})}_{\boldsymbol{v}_{a} \text{ acting as a child}} + \underbrace{\sum_{m \in \mathcal{M}_{p}(a)} \sum_{c \in C_{m}} \operatorname{softmax}_{a} \left(\operatorname{sim}(\boldsymbol{v}_{c}, \boldsymbol{v}_{a}) \right) \frac{\partial}{\partial \boldsymbol{v}_{a}} \operatorname{sim}(\boldsymbol{v}_{c}, \boldsymbol{v}_{a})}_{\boldsymbol{v}_{a} \text{ acting as a parent}}$$

$$(4)$$

The first term captures contributions from v_a being explained by its parents, while the second term captures contributions from v_a explaining its children.

2 Gaussian Mixture Models

Setup. We have N data points (children) $\mathbf{x}_i \in \mathbb{R}^d$, $i \in C = \{1, ..., N\}$, and K mixture components (parents), each with mean $\boldsymbol{\mu}_k \in \mathbb{R}^d$ and covariance $\boldsymbol{\Sigma}_k$, $k \in P = \{1, ..., K\}$. Let π_k be the mixing proportion.

Similarity function. We define

$$\operatorname{sim}ig(oldsymbol{x}_i,oldsymbol{\mu}_kig) \ = \ \ln\pi_k \ - \ frac{1}{2}ig(oldsymbol{x}_i-oldsymbol{\mu}_kig)^ opoldsymbol{\Sigma}_k^{-1}ig(oldsymbol{x}_i-oldsymbol{\mu}_kig).$$

Energy.

$$E^{\text{GMM}}(\{\boldsymbol{x}_i\}, \{\boldsymbol{\mu}_k\}) = -\sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \exp(\operatorname{sim}(\boldsymbol{x}_i, \boldsymbol{\mu}_k)) \right).$$
 (5)

Gradients. If we differentiate w.r.t. μ_k , then

$$-rac{\partial E^{ ext{GMM}}}{\partial oldsymbol{\mu}_k} \ = \ \sum_{i=1}^N ext{softmax}_kig(oldsymbol{A}_{ik}ig) \ oldsymbol{\Sigma}_k^{-1}ig(oldsymbol{x}_i - oldsymbol{\mu}_kig).$$

Setting this gradient to zero yields the usual GMM M-step:

$$m{\mu}_k \ = \ rac{\sum_{i=1}^N \operatorname{softmax}_k(m{A}_{ik}) \ m{x}_i}{\sum_{i=1}^N \operatorname{softmax}_k(m{A}_{ik})}.$$

3 Cross Attention

Setup. We have a set of child vectors (queries) $Q \in \mathbb{R}^{d \times N_Q}$ and a set of parent vectors (keys) $K \in \mathbb{R}^{d \times N_K}$. Let

$$C = \{1, \dots, N_Q\}, \quad P = \{1, \dots, N_K\},$$

so $v_c = q_c$ is the c-th query, and $v_p = k_p$ is the p-th key. Suppose we have learnable weight matrices $W^Q, W^K \in \mathbb{R}^{d \times d}$. Then

$$\boldsymbol{q}_c = \boldsymbol{W}^Q \boldsymbol{x}_c^Q, \quad \boldsymbol{k}_p = \boldsymbol{W}^K \boldsymbol{x}_p^K,$$

where \boldsymbol{x}_{c}^{Q} is the raw c-th query token and \boldsymbol{x}_{p}^{K} the raw p-th key token.

Similarity function.

$$sim(\boldsymbol{q}_c, \boldsymbol{k}_p) = \boldsymbol{q}_c^{\top} \boldsymbol{k}_p.$$

Energy.

$$E^{\text{Cross}}\left(\{\boldsymbol{q}_c\}, \{\boldsymbol{k}_p\}\right) = -\sum_{c=1}^{N_Q} \ln\left(\sum_{p=1}^{N_K} \exp\left(\boldsymbol{q}_c^{\top} \boldsymbol{k}_p\right)\right).$$
 (6)

Gradients.

$$-\frac{\partial E^{\text{Cross}}}{\partial \boldsymbol{q}_c} = \sum_{p=1}^{N_K} \operatorname{softmax}_p \left(\boldsymbol{q}_c^{\top} \boldsymbol{k}_p \right) \boldsymbol{k}_p.$$
 (7)

$$-\frac{\partial E^{\text{Cross}}}{\partial \boldsymbol{k}_p} = \sum_{c=1}^{N_Q} \operatorname{softmax}_p (\boldsymbol{q}_c^{\top} \boldsymbol{k}_p) \, \boldsymbol{q}_c.$$
 (8)

When mapping back to the raw tokens \boldsymbol{x}_c^Q or \boldsymbol{x}_p^K , chain-rule multiplies by \boldsymbol{W}^Q or \boldsymbol{W}^K , respectively.

4 Hopfield Networks

Setup. We have a set of *children* data vectors $\mathbf{x}_i \in \mathbb{R}^d$, $i \in C = \{1, ..., N\}$, and a set of *parent* memory vectors $\mathbf{m}_{\mu} \in \mathbb{R}^d$, $\mu \in P = \{1, ..., K\}$.

Similarity function.

$$\operatorname{sim}(\boldsymbol{x}_i, \boldsymbol{m}_{\mu}) = \boldsymbol{x}_i^{\top} \boldsymbol{m}_{\mu}.$$

Energy.

$$E^{\text{Hopfield}}\Big(\{\boldsymbol{x}_i\}, \{\boldsymbol{m}_{\mu}\}\Big) = -\sum_{i=1}^{N} \ln \Big(\sum_{\mu=1}^{K} \exp(\boldsymbol{x}_i^{\top} \boldsymbol{m}_{\mu})\Big). \tag{9}$$

Gradients.

$$-\frac{\partial E^{\text{Hopfield}}}{\partial \boldsymbol{x}_i} = \sum_{\mu=1}^K \operatorname{softmax}_{\mu}(\boldsymbol{x}_i^{\top} \boldsymbol{m}_{\mu}) \, \boldsymbol{m}_{\mu}. \tag{10}$$

$$-\frac{\partial E^{\text{Hopfield}}}{\partial \boldsymbol{m}_{\mu}} = \sum_{i=1}^{N} \operatorname{softmax}_{\mu} (\boldsymbol{x}_{i}^{\top} \boldsymbol{m}_{\mu}) \boldsymbol{x}_{i}. \tag{11}$$

5 Slot Attention

Setup. Let $x_j \in \mathbb{R}^d$, $j \in C = \{1, ..., N\}$ be the children (tokens), and $\mu_i \in \mathbb{R}^d$, $i \in P = \{1, ..., S\}$ be the parents (slots). We typically apply linear transforms $W_K, W_Q \in \mathbb{R}^{d \times d}$ to form

$$\operatorname{sim}(\boldsymbol{x}_j, \boldsymbol{\mu}_i) = (\boldsymbol{W}_K \, \boldsymbol{x}_j)^{\top} (\boldsymbol{W}_Q \, \boldsymbol{\mu}_i).$$

Energy.

$$E^{\text{Slot}}\left(\{\boldsymbol{x}_{j}\}, \{\boldsymbol{\mu}_{i}\}\right) = -\sum_{j=1}^{N} \ln\left(\sum_{i=1}^{S} \exp\left(\sin(\boldsymbol{x}_{j}, \boldsymbol{\mu}_{i})\right)\right). \tag{12}$$

Gradients.

$$-\frac{\partial E^{\text{Slot}}}{\partial \boldsymbol{x}_{j}} = \sum_{i=1}^{S} \operatorname{softmax}_{i} \left(\operatorname{sim}(\boldsymbol{x}_{j}, \boldsymbol{\mu}_{i}) \right) \boldsymbol{W}_{K}^{\top} \boldsymbol{W}_{Q} \boldsymbol{\mu}_{i}.$$
 (13)

$$-\frac{\partial E^{\text{Slot}}}{\partial \boldsymbol{\mu}_i} = \sum_{j=1}^{N} \operatorname{softmax}_i \left(\operatorname{sim}(\boldsymbol{x}_j, \boldsymbol{\mu}_i) \right) \boldsymbol{W}_Q^{\top} \boldsymbol{W}_K \boldsymbol{x}_j.$$
 (14)

6 Self-Attention

Setup. In self-attention, every node can act as both a child (query) and a parent (key). Concretely, let us have N tokens $\{x_1, \ldots, x_N\}$. We form

$$q_i = \mathbf{W}^Q \mathbf{x}_i, \quad \mathbf{k}_i = \mathbf{W}^K \mathbf{x}_i,$$

for i = 1, ..., N. Thus the set $C = \{1, ..., N\}$ and $P = \{1, ..., N\}$ coincide, with

$$\operatorname{sim}(\boldsymbol{x}_c, \boldsymbol{x}_p) = (\boldsymbol{W}^Q \boldsymbol{x}_c)^{\top} (\boldsymbol{W}^K \boldsymbol{x}_p).$$

Energy.

$$E^{\text{SA}}(\{\boldsymbol{x}_i\}) = -\sum_{c=1}^{N} \ln \left(\sum_{p=1}^{N} \exp \left((\boldsymbol{W}^Q \boldsymbol{x}_c)^{\top} (\boldsymbol{W}^K \boldsymbol{x}_p) \right) \right).$$
 (15)

Gradients. Since each x_i is *both* a child and a parent, its gradient is a sum of two terms (the child side and the parent side). Writing it out explicitly:

$$-\frac{\partial E^{\text{SA}}}{\partial \boldsymbol{x}_{i}} = \underbrace{\sum_{p=1}^{N} \operatorname{softmax}_{p} \left((\boldsymbol{W}^{Q} \boldsymbol{x}_{i})^{\top} (\boldsymbol{W}^{K} \boldsymbol{x}_{p}) \right) \boldsymbol{W}_{Q}^{\top} \boldsymbol{W}_{K} \boldsymbol{x}_{p}}_{\text{child } i \text{ being explained by parents } p} + \underbrace{\sum_{c=1}^{N} \operatorname{softmax}_{i} \left((\boldsymbol{W}^{Q} \boldsymbol{x}_{c})^{\top} (\boldsymbol{W}^{K} \boldsymbol{x}_{i}) \right) \boldsymbol{W}_{K}^{\top} \boldsymbol{W}_{Q} \boldsymbol{x}_{c}}_{\text{parent } i \text{ explaining children } c}$$

$$(16)$$

7 Coordinate ascent

Consider an energy of the form

$$E(\{\boldsymbol{x}_j\}, \{\boldsymbol{\mu}_i\}; \theta) = -\sum_{j=1}^N \ln \left(\sum_{i=1}^S \exp\left(\operatorname{sim}_{\theta}(\boldsymbol{x}_j, \boldsymbol{\mu}_i)\right)\right),$$

with θ denoting the parameters of the similarity function. In an EM procedure, we alternate:

- **E-step**: Update latent variables using fixed θ .
- M-step: Update parameters θ in closed form given fixed latent assignments.

For *slot attention*, we have:

$$eta = \{ oldsymbol{W}_K, oldsymbol{W}_Q \}, \\ \sin_{ heta}(oldsymbol{x}_j, oldsymbol{\mu}_i) \ = \ (oldsymbol{W}_K oldsymbol{x}_j)^{ op} (oldsymbol{W}_Q oldsymbol{\mu}_i). \\ oldsymbol{A} \quad \text{with entries} \quad A_{ji} \ = \ \mathrm{softmax}_i \Big((oldsymbol{W}_K oldsymbol{x}_j)^{ op} (oldsymbol{W}_Q oldsymbol{\mu}_i) \Big).$$

E-step: Update Slots

Fix W_K, W_Q . The gradient for each slot μ_i is

$$-\frac{\partial E^{\mathrm{Slot}}}{\partial \boldsymbol{\mu}_i} = \sum_{i=1}^N A_{ji} \, \boldsymbol{W}_Q^\top \boldsymbol{W}_K \boldsymbol{x}_j.$$

Use this gradient to iteratively update $\{\mu_i\}$ until convergence.

M-step: Update Parameters

Given fixed slots $\{\mu_i\}$ and attention matrix \mathbf{A} , we aim to update the parameters $\mathbf{W}_K, \mathbf{W}_Q$. This is motivated by setting the gradient of the energy with respect to these parameters to zero:

$$-\frac{\partial E^{\mathrm{Slot}}}{\partial \boldsymbol{W}_{K}} = 0, \qquad -\frac{\partial E^{\mathrm{Slot}}}{\partial \boldsymbol{W}_{O}} = 0.$$

Under the fixed assignments provided by **A** and slots $\{\mu_i\}$, these conditions are equivalent to solving a weighted least-squares problem. Specifically, we consider minimizing the objective

$$\min_{\boldsymbol{W}_{K}, \boldsymbol{W}_{Q}} \sum_{i=1}^{N} \sum_{i=1}^{S} A_{ji} \left\| \boldsymbol{W}_{K} \boldsymbol{x}_{j} - \boldsymbol{W}_{Q} \boldsymbol{\mu}_{i} \right\|^{2},$$

since the stationary point of this quadratic form corresponds to zero gradients with respect to W_K, W_Q .

Update W_Q : Differentiate w.r.t. W_Q , set to zero:

$$\sum_{j,i} A_{ji} \left(\boldsymbol{W}_{K} \boldsymbol{x}_{j} - \boldsymbol{W}_{Q} \boldsymbol{\mu}_{i} \right) \boldsymbol{\mu}_{i}^{\top} = 0,$$

yielding

$$oldsymbol{W}_Q \; = \; \Biggl(\sum_{j,i} A_{ji} \, oldsymbol{W}_K oldsymbol{x}_j \, oldsymbol{\mu}_i^{ op} \Biggr) \Biggl(\sum_{j,i} A_{ji} \, oldsymbol{\mu}_i oldsymbol{\mu}_i^{ op} \Biggr)^{-1}.$$

Update W_K : Similarly, differentiate w.r.t. W_K , set to zero:

$$\sum_{j,i} A_{ji} \left(\boldsymbol{W}_{K} \boldsymbol{x}_{j} - \boldsymbol{W}_{Q} \boldsymbol{\mu}_{i} \right) \boldsymbol{x}_{j}^{\top} = 0,$$

yielding

$$oldsymbol{W}_K \; = \; \Biggl(\sum_{j\,i} A_{ji} \, oldsymbol{W}_Q oldsymbol{\mu}_i \, oldsymbol{x}_j^{ op} \Biggr) \Biggl(\sum_{j\,i} A_{ji} \, oldsymbol{x}_j oldsymbol{x}_j^{ op} \Biggr)^{-1}.$$

Iterate: Alternate between the E-step (updating $\{\mu_i\}$) and the M-step (updating W_K, W_Q) until convergence.

A Appendix: Derivation of Gradient Updates

Let us consider a generic term:

$$-\ln\Big(\sum_{m=1}^{M}\exp(f_m(\boldsymbol{x}))\Big),$$

where $\boldsymbol{x} \in \mathbb{R}^d$ is some variable, and each f_m is a scalar function. We compute its gradient:

$$\frac{\partial}{\partial \boldsymbol{x}} \left[-\ln \left(\sum_{m=1}^{M} \exp(f_m(\boldsymbol{x})) \right) \right] = -\frac{1}{\sum_{m'} \exp(f_{m'}(\boldsymbol{x}))} \sum_{m=1}^{M} \exp(f_m(\boldsymbol{x})) \frac{\partial f_m(\boldsymbol{x})}{\partial \boldsymbol{x}}
= -\sum_{m=1}^{M} \left[\frac{\exp(f_m(\boldsymbol{x}))}{\sum_{m'} \exp(f_{m'}(\boldsymbol{x}))} \right] \frac{\partial f_m(\boldsymbol{x})}{\partial \boldsymbol{x}}.$$

Defining softmax_m $(f(x)) = \frac{\exp(f_m(x))}{\sum_{m'} \exp(f_{m'}(x))}$, this is

$$-\sum_{m=1}^{M} \operatorname{softmax}_{m}(f(\boldsymbol{x})) \frac{\partial f_{m}(\boldsymbol{x})}{\partial \boldsymbol{x}},$$

which matches the softmax-weighted gradient structure.