4. Základní algebraické metody (podalgebry, homomorfismy, přímé součiny, kongruence a faktorové algebry, normální podgrupy a ideály okruhů)

Podalgebry

Buď A množina, pak $\omega:A^n \to A$ je n-ární operace na A ($n \in \mathbb{N}_0$) , $T \subseteq A$. Potom množina T **je uzavřená vzhledem k operaci** $\omega \Leftrightarrow \omega$ $T_n \subseteq T$ tj. $t_1,...,t_n \in T \Rightarrow \omega t_1 ...t_n \in T$.

Buď $\mathfrak{A} = (A, (\omega_i)_{i \in I})$ je algebra typu $(n_i)_{i \in I}$, $T \subseteq A$. Potom se množina T nazývá uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vzhledem k $(\omega_i)_{i \in I} \Leftrightarrow T$ je uzavřená vz

Pokud je (A,Ω) a $(T_j)_{j\in J}$ je soubor podalgeber, pak jejich průnik $\bigcap_{j\in J} T_j$ je rovněž podalgebra. Nejmenší podalgebra < S > algebry (A,Ω) a $S\subseteq A$, která S obsahuje, je definována jako:

$$\langle S \rangle = \bigcap \{T | T \supseteq S, T \text{ je podalgebrou algebry } (A, \Omega) \}$$

<S> se nazývá **podalgebra algebry** (A, Ω) **generovaná množinou** S. Množina S se nazývá **systém generátorů podalgebry** <S> .

Grupa $(G, \cdot, e, \cdot^{-1})$ je **cyklická** ⇔∃ $x \in G$: $G = \langle x \rangle$. Prvek x se pak nazývá **generátor**.

Relace ekvivalence a rozklad na třídy ekvivalence

Je-li M množina, potom se podmnožina R množiny $M \times M$ nazývá **binární relace** nad M. Místo $(x,y) \in R$ obvykle píšeme xRy. Relace všech možných dvojic R se nazývá **univerzální relace** $\alpha_M = M \times M$. **Relace rovnosti** nebo také **identická relace** je relace mezi stejným prvkem $\iota_M = x, x \ x \in M$. Relace $R \subseteq M \times M$ se nazývá:

- \square symetrická $\Leftrightarrow \forall x,y \in M: xRy \Rightarrow yRx;$
- \square antisymetrická $\Leftrightarrow \forall x,y \in M: xRy \land yRx \Rightarrow x = y;$

Relace ekvivalence je reflexivní, symetrická a tranzitivní. **Relace (částečného) uspořádání** je reflexivní, antisymetrická a tranzitivní.

Buď M množina. Pak $\mathcal{P} \subseteq \mathfrak{P}(M) = 2^M$ se nazývá **rozklad na třídy ekvivalence**: ⇔

 $M = \bigcup_{C \in \mathcal{P}C}$:

② Ø∈*P*:

 \square $A,B \in \mathcal{P}$: $A = B \lor A \cap B = \emptyset$ tj. každé dvě různé množiny \mathcal{P} jsou vůči sobě disjunktní.

Buď π relace ekvivalence na M, $a \in M$, $[a]_{\pi} \coloneqq \{b \in M | b\pi a\}$ je tzv. **třída ekvivalence prvku** a. Pak $M/\pi \coloneqq \{[a]_{\pi} | a \in M\}$ je tzv. **faktorová množina množiny** M **podle ekvivalence** π .

Homomorfismy

Při bijekci jsou zobrazením pokryty všechny prvky oboru hodnot (surjekce) a obrazy dvou různých vzoru nejsou stejné (injekce). Z toho rovněž vyplývá stejná mohutnost množin. **Bijekce = injekce + surjekce**.

Buďte $\mathfrak{A} = (A, (\omega_i)_{i \in I})$ a $\mathfrak{A}_* = (A^*, (\omega_i^*)_{i \in I})$ algebry téhož typu $n_{i \in I}$. Zobrazení $f: A \to A^*$ se nazývá **homomorfismem** algebry \mathfrak{A} do algebry \mathfrak{A}^* :

 \square pro $i \in I$, kde $n_i = 0$, platí $f(\omega_i) = \omega_i^*$.

Homomorfismus zachovává každou operaci, tzn. zobrazení operace $ω_i$ nad prvky z A je to samé, co provedení operace $ω_i$ nad zobrazením jednotlivých prvků. Klasický příkladem je zobrazení logaritmu z algebry $(R,\cdot,1,^{-1})$ do algebry (R,+,0,-).

Uvažujme homomorfismus z předchozí definice, pak existují následující typy homomorfismů:

- \square izomorfismus pokud je f bijektivní (říkáme, že $\mathfrak A$ je izomorfní obraz $\mathfrak A^*$: $\mathfrak A \cong \mathfrak A^*$);
- 2 **endomorfismus** zobrazení z algebry do téže algebry $\mathfrak{A}=\mathfrak{A}^*$;
- ☑ automorfismus pokud je endomorfní a navíc f je izomorfní;
- ☑ **epimorfismus** pokud *f* je surjektivní;
- ☑ monomorfismus pokud f je injektivní.

Přímé součiny

Zavádí pravidla pro násobení celých algeber.

Buďte $\mathfrak{A}_k = (A_k, (\omega_i^k)_{i \in I}), k \in K(\text{pole}),$ algebry téhož typu $(n_i)_{i \in I}$ a $A := \prod_{k \in K} A_k = \{(a_k)_{k \in K} | a_k \in A_k\}$ je kartézský součin všech množin A_k . Pro všechna $i \in I$ buď operace ω_i na A definována vztahem:

$$\omega_i(a_{k^1}) k \in K...(a_{k^{ni}}) k \in K := (\omega_i a_{k^1}...a_{k^{ni}}) k \in K$$

U součinu algeber odpovídá nosná množina, kartézskému součinu nosných množin jednotlivých součinitelů a operace jsou definovány pro všechny operace jednotlivých součinitelů.

Algebra $(Ak, (\omega i)_{i \in I})$ se nazývá **přímý součin** algeber $\mathfrak{A}k$ a značí se $\Pi k \in K \mathfrak{A}k$.

Přímé součiny pologrup (grup, vektorových prostorů, okruhů, Booleových algeber) jsou opět pologrupy (grupy, vektorové prostory, okruhy, Booleovy algebry).

Kongruence a faktorové algebry

Buď te $\mathfrak{A} = (A, (\omega_i) i \in I)$ algebra typu $(n_i) i \in I$ a π relace ekvivalence na A. π se nazývá **relace kongruence** na $\mathfrak{A} \Leftrightarrow \forall i \in I$, kde $n_i > 0: a_1, ..., a_{n_i}, b_1, ..., b_{n_i} \in A$ platí:

$$a_1\pi b_1\wedge...\wedge a_{ni}\pi b_{ni}\Rightarrow \omega_i a_1...a_{ni}\pi \omega_i b_1...b_{ni}$$

Nad oborem integrity $\mathfrak{A}=(\mathbb{Z},+,0,\cdot,1)$ mějme pevný **modul** $n\in\mathbb{N}$ 0 a pro $r,s\in\mathbb{Z}$ je $r\equiv s \mod n$ (říkáme, že "r **kongruentní s** s **modulo** n") $\Leftrightarrow n|(r-s)$ (n dělí r-s), pak platí:

- 1. $r \equiv s \mod n \Leftrightarrow r = s + kn, k \in \mathbb{Z} \Leftrightarrow r, s \mod s$ tejný zbytek při dělení číslem n;
- 2. \equiv mod *n* je relace ekvivalence.

Algebru $\mathfrak{A}/\pi := (A/\pi, (\omega_i^*)_{i \in I})$ se nazývá **faktorová algebra** algebry \mathfrak{A} podle kongruence π . Často klademe $\omega_i = \omega_i^*$.

Normální podgrupy (upralgfin-esf.pdf str.25)

Bud' (G, \cdot , e, $^{-1}$) grupa typu (2, 0, 1). T \subseteq G je **podalgebra** \Leftrightarrow

- $x, y \in T \Rightarrow xy \in T$
- ② e ∈ T

 \Leftrightarrow

- $T \neq \emptyset$
- $x, y \in T \Rightarrow xy^{-1} \in T$

Protože zákony grupy typu (2, 0, 1) plati v G, a tedy také v T, je podalgebra (T, \cdot , e, $^{-1}$) opět grupou a nazývá se **podgrupa** grupy (G, \cdot , e, $^{-1}$).

Podgrupa N grupy (G, ·, e, -1) se nazývá N **normální podgrupa** grupy G (fromalně: $N \triangleleft G$) : $\Leftrightarrow xNx^{-1} \subseteq N$ pro všechna $x \in G$.

Pro podgrupu N grupy G jsou následující tvrzení ekvivalentní:

- 2 N je normální podgrupa grupy G.
- \Box $\forall x \in G : \phi_x(N) = N$. (kde ϕ_x je vnitřní automorfismus grupy)
- \Box $\forall x \in G : xNx^{-1} = N.$
- \Box \forall x \in G : Nx = xN, tj. pravá třída rozkladu = levá třída rozkladu.

Ideály okruhů (upralgfin-esf.pdf str.26)

Buď (R,+, 0,−, ·) okruh a I podokruh okruhu R. Potom se I nazývá

- \square levý ideál okruhu $R : \Leftrightarrow \forall r \in R : rI := \{ri \mid i \in I\} \subseteq I$,
- **Pravý ideál** okruhu $R : \Leftrightarrow \forall r \in R : Ir := \{ir \mid i \in I\} \subseteq I$,
- ☑ **ideál okruhu** R (formálně: $I \triangleleft R$) : $\Leftrightarrow \forall r \in R : rI \subseteq I \land Ir \subseteq I$.

 $\{0\}$ a R jsou vždy ideály okruhu R, tak zvané **triviálni ideály**. V (Z,+, 0,-, ·) je $\{nk \mid k \in Z\}$, $n \in Z$, ideálem. Tím jsou vyčerpány všechny ideály v Z.