-,	填空题(本题共10小题,满分30分) . 1、填上适当的数字,使 7264351 为奇排列.
	2、 n 阶矩阵 A 可逆的充分必要条件是 A 的秩 $r(A) =$
	3、设 M_{ij} , A_{ij} 分别是行列式 D 中元素 a_{ij} 的余子式和代数余子式,则 $M_{i,i+1}$ + $A_{i,i+1}$ =
	4、已知四元非齐次线性方程组 $AX=b$ 的系数矩阵 A 的秩为 3,又 η_1,η_2,η_3
	是它的三个解向量,其中 $\eta_1 + \eta_2 = \begin{pmatrix} 1 & 1 & 0 & 2 \end{pmatrix}^T$, $\eta_2 + \eta_3 = \begin{pmatrix} 1 & 0 & 1 & 3 \end{pmatrix}^T$,则 $AX = b$ 的通解为
	5、设 A,B 都是可逆矩阵, $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$,则 $C^{-1} = $
	6、设二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + ax_3^2 + 4x_1x_2 + 6x_2x_3$ 的秩为 2,则 $a = $
	7、设 A 是 4×3 矩阵,且 $r(A)=2$,而 $B=\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$,则 AB 的秩 $r(AB)=$
	8、设三阶方阵 A 的三个特征值为 1 , 1 , 2 ,则 $\left(2A\right)^{-1}$ 的特征值
	9、当 $a = _$
	10、设三级矩阵 A 相似于 $\begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$, $ A = $
	单项选择题(本题共10小题,满分30分).
1、该	发向量组 $\alpha_1 = (a+1, 2, -6), \alpha_2 = (1, a, -3), \alpha_3 = (1, 1, a-4)$ 线性无关,则 a 的取值为 ().
	(A) $a = 0$; (B) $a \neq 0$; (C) $a = 1$; (D) $a \neq 1$.
2,	一个三元线性方程组 $Ax=0$ 的基础解系中含有一个解向量,则这个线性方程组的系数矩阵
A $\dot{\mathbb{f}}$	为秩等于().
	(A) 0; $(B) 1;$ $(C) 3;$ $(D) 2.$
3, =	关于矩阵的等价和相似关系,下列结论正确的是().
	(A) 若两个矩阵等价,则这两个矩阵一定相似;
	(B) 若两个矩阵相似,则这两个矩阵一定等价;

	(D)以上结论都不正确.
4.	设线性方程组的系数矩阵与增广矩阵分别是 A 与 \overline{A} ,则该线性方程组有解的充分必要条件是(
	(A) 秩 $A = $ 秩 \overline{A} ; (B) 秩 $A > $ 秩 \overline{A} ; (C) 秩 $A <$ 秩 \overline{A} ; (D) 秩 $A \neq$ 秩 \overline{A} .
	5、设向量组 α_1 , Λ , α_r 与 β_1 , Λ , β_s 等价,则它们的秩的大小关系是(). (A) 相等; (B) 不相等; (C) 不能确定大小关系; (D) 以上结论都不正确.
	6、设 P,Q 都是 n 阶可逆矩阵, E 为 n 阶单位矩阵,则下列矩阵中一定可逆的是().
	$(A) P+Q;$ $(B) P-Q;$ $(C) P^{-1}Q^{T};$ $(D) E-PQ.$ 7、设 A 为三阶矩阵,满足 $A\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, 则 A = ().$
	$(A)\begin{pmatrix} 1 & 2 & 1 \\ 4 & 5 & 1 \\ 7 & 8 & 1 \end{pmatrix}; \qquad (B)\begin{pmatrix} 1 & 2 & 3 \\ -3 & -3 & -3 \\ 7 & 8 & 9 \end{pmatrix};$
	$(C)\begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{pmatrix}; \qquad (D)\begin{pmatrix} 1 & 2 & 3 \\ -2 & -2 & -2 \\ 7 & 8 & 9 \end{pmatrix}.$
	8、设 4 级矩阵 A 与 B 相似, B 的特征值是 1, 2, 3, 4, 则 $ A+E $ 的值().
	(A) 24; $(B) 10;$ $(C) 120;$ $(D) 14.$
	9、向量组 $lpha_1$, Λ , $lpha_r$ 的秩小于 r 的充分必要条件是().
	(A) 向量组必含有零向量; (B) 向量组中任何一个向量都能由其余向量线性表出;
	(C) 向量组线性相关; (D) 向量组中任何一个向量都不能由其余向量线性表出.
	10、设 A 为 n 阶正交矩阵,则下列说法错误的是().
	(A) $ A \ge 1$; (B) $r(A) = n$;
	(C) $A^{T} = A^{-1}$; (D) A 的列向量组为规范正交的向量组.
≕,	、解答题(本题共 4 小题, 满分 40 分).

).

(C)两个矩阵等价当且仅当这两个矩阵相似;

1、(10 分) 计算行列式
$$D = \begin{vmatrix} 5 & 2 & 3 & 4 \\ 2 & 0 & 3 & -2 \\ 4 & -2 & 5 & 0 \\ 3 & 0 & 2 & 4 \end{vmatrix}$$
.

2、(10 分) 求矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix}$$
的逆矩阵.

3、(10 分)求方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 3, \\ x_1 + 3x_2 + 2x_3 + 4x_4 = 6, \text{的通解}. \\ 2x_1 + x_3 - x_4 = 3. \end{cases}$$

4、(10 分) 设矩阵
$$A = \begin{pmatrix} -1 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,求可逆矩阵 P ,使 $P^{-1}AP$ 为对角矩阵.