As A is the union of open intervals, A is an open set. Thus, $bdA \cap A = \emptyset$.

Next, show $bdA \subset [0,1]$.

- If x > 1, consider the open rectangle $R = (1, x + 1) \ni x$. Clearly, $A \cap R = A \cap (1, x + 1) = \emptyset$. Hence, $x \notin bdA$.
- If x < 0, consider the open rectangle $R = (x 1, 0) \ni x$. Clearly, $A \cap R = A \cap (x 1, 0) = \emptyset$. Hence, $x \notin \mathrm{bd}A$.

Thus, $x \in \mathrm{bd}A \implies 0 \le x \le 1 \implies \mathrm{bd}A \subset [0,1]$.

Consider $x \in \mathrm{bd}A$. $x \notin A$ because $\mathrm{bd}A \cap A = \emptyset$ and $x \in [0,1]$ because $\mathrm{bd}A \subset [0,1]$. Hence, $[0,1] \setminus A \supset \mathrm{bd}A$.

Next, show $[0,1] \setminus A \subset \mathrm{bd}A$. For any $x \in [0,1] : x \notin A$, consider every open rectangle $R = (a,b) \ni x$ where a < b.

Due to the density of $\mathbb Q$ over $\mathbb R$, there exists a rational in every open interval.

- If $0 \le a < b \le 1$, $\exists y \in \mathbb{Q} : y \in (a, b) \subset (0, 1)$.
- If a < 0 < b < 1, $(a, b) = (a, 0) \cup \{0\} \cup (0, b)$. Hence, $\exists y \in \mathbb{Q} : y \in (0, b) \subset (0, 1)$.
- If 0 < a < 1 < b, $(a, b) = (a, 1) \cup \{1\} \cup (1, b)$. Hence, $\exists y \in \mathbb{Q} : y \in (a, 1) \subset (0, 1)$.
- If a < 0 < 1 < b, $(a, b) = (a, 0) \cup \{0\} \cup (0, 1) \cup \{1\} \cup (1, b)$. Hence, $\exists y \in \mathbb{Q} : y \in (0, 1)$.

Since all rationals in (0,1) are contained in $A, y \in A$. Hence, $x \in R \cap A^C$ and $y \in R \cap A$ for every open rectangle $R \ni x$.

Hence, $x \in [0,1] \setminus A \implies x \in \mathrm{bd}A$ and $[0,1] \setminus A \subset \mathrm{bd}A$.

As it was shown that $[0,1] \setminus A \subset \mathrm{bd}A$ and $[0,1] \setminus A \supset \mathrm{bd}A$, then $[0,1] \setminus A = \mathrm{bd}A$ as desired.