RWorksheet_Olivo#4c

Mel Adry Olivo

2023-11-22

1. Use the dataset mpg Download and open the mpg file. Upload it to your OWN environment 1a. Show your solutions on how to import a csv file into the environment.

```
library(readr)

mpg_file <- read.csv("mpg.csv")</pre>
```

1b. Which variables from mpg dataset are categorical?

```
str(mpg_file)
```

```
## 'data.frame':
                  234 obs. of 12 variables:
                : int 1 2 3 4 5 6 7 8 9 10 ...
## $ X
                      "audi" "audi" "audi" "audi" ...
##
   $ manufacturer: chr
           : chr "a4" "a4" "a4" "a4" ...
  $ model
  $ displ
                : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
                : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
##
   $ year
## $ cyl
                : int 4444666444 ...
                       "auto(15)" "manual(m5)" "manual(m6)" "auto(av)" ...
## $ trans
                : chr
                       "f" "f" "f" "f" ...
                : chr
## $ drv
## $ cty
                : int
                       18 21 20 21 16 18 18 18 16 20 ...
## $ hwy
                : int
                       29 29 31 30 26 26 27 26 25 28 ...
                       "p" "p" "p" "p" ...
## $ fl
                : chr
                       "compact" "compact" "compact" ...
## $ class
                : chr
# manufacturer, model, trans, drv, fl, class variables are categorical
```

1c. Which are continuous variables?

str(mpg_file)

```
## 'data.frame':
                  234 obs. of 12 variables:
                : int 1 2 3 4 5 6 7 8 9 10 ...
   $ manufacturer: chr "audi" "audi" "audi" "audi" ...
             : chr "a4" "a4" "a4" "a4" ...
##
   $ model
##
  $ displ
                : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
                : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
##
   $ year
                : int 4444666444 ...
##
   $ cyl
##
                : chr "auto(15)" "manual(m5)" "manual(m6)" "auto(av)" ...
   $ trans
                : chr "f" "f" "f" "f" ...
##
  $ drv
  $ cty
##
                : int 18 21 20 21 16 18 18 18 16 20 ...
                       29 29 31 30 26 26 27 26 25 28 ...
##
   $ hwy
                : int
## $ fl
                : chr "p" "p" "p" "p" ...
## $ class
               : chr "compact" "compact" "compact" ...
```

```
# X, displ, year, cyl, cty, hwy are continuous variables
```

2. Which manufacturer has the most models in this data set? Which model has the most variations? Show your answer.

```
manufacturer_asTable <- table(mpg_file$manufacturer)</pre>
manufacturer most models <- names(manufacturer asTable)[which.max(manufacturer asTable)]
manufacturer most models
## [1] "dodge"
# dodge manufacturer has the most models
model_asTable <- table(mpg_file$model)</pre>
model_most_vars <- names(model_asTable)[which.max(model_asTable)]</pre>
model_most_vars
## [1] "caravan 2wd"
# caravan 2wd has the most variations
2a. Group the manufacturers and find the unique models. Show your codes and result.
#install.packages("dplyr")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
manufacturers_models <- data.frame(Manufacturer = mpg_file$manufacturer, Model = mpg_file$model)
manufacturers_models
##
       Manufacturer
                                       Model
## 1
               audi
                                          a4
## 2
               audi
                                          a4
## 3
               audi
                                          a4
## 4
                audi
                                          a4
## 5
               audi
                                          a4
## 6
               audi
                                          a4
## 7
               audi
                                          a4
## 8
               audi
                                 a4 quattro
## 9
               audi
                                 a4 quattro
## 10
               audi
                                 a4 quattro
## 11
                audi
                                 a4 quattro
## 12
               audi
                                  a4 quattro
## 13
               audi
                                 a4 quattro
## 14
                                  a4 quattro
               audi
## 15
                audi
                                 a4 quattro
```

##	16	audi	a6 quattro
##	17	audi	a6 quattro
##	18	audi	a6 quattro
##	19	chevrolet	c1500 suburban 2wd
##	20	chevrolet	c1500 suburban 2wd
##	21	chevrolet	c1500 suburban 2wd
##	22	chevrolet	c1500 suburban 2wd
##	23	chevrolet	c1500 suburban 2wd
##	24	chevrolet	corvette
##	25	chevrolet	corvette
##	26	chevrolet	corvette
##	27	chevrolet	corvette
##	28	chevrolet	corvette
##	29	chevrolet	k1500 tahoe 4wd
##	30	chevrolet	k1500 tahoe 4wd
##	31	chevrolet	k1500 tahoe 4wd
##	32	chevrolet	k1500 tahoe 4wd
##	33	chevrolet	malibu
##	34	chevrolet	malibu
##	35	chevrolet	malibu
##	36	chevrolet	malibu
##	37	chevrolet	malibu
##	38	dodge	caravan 2wd
##	39	dodge	caravan 2wd
##	40	dodge	caravan 2wd
##	41	dodge	caravan 2wd
##	42	dodge	caravan 2wd
##	43	dodge	caravan 2wd
##	44	dodge	caravan 2wd
##	45	dodge	caravan 2wd
##	46	dodge	caravan 2wd
##	47	dodge	caravan 2wd
##	48	dodge	caravan 2wd
##	49	dodge	dakota pickup 4wd
##	50	dodge	dakota pickup 4wd
##	51	dodge	dakota pickup 4wd
##	52	dodge	dakota pickup 4wd
##	53	dodge	dakota pickup 4wd
##	54	dodge	dakota pickup 4wd
##	55	dodge	dakota pickup 4wd
##	56	dodge	dakota pickup 4wd
##	57	dodge	dakota pickup 4wd
##	58	dodge	durango 4wd
##	59	dodge	durango 4wd
##	60	dodge	durango 4wd
##	61	dodge	durango 4wd
##	62	dodge	durango 4wd
##	63	dodge	durango 4wd
##	64	dodge	durango 4wd
##	65	dodge	ram 1500 pickup 4wd
##	66	dodge	ram 1500 pickup 4wd
##	67	dodge	ram 1500 pickup 4wd
##	68	dodge	ram 1500 pickup 4wd
##	69	dodge	ram 1500 pickup 4wd
##	03	aoage	ram 1000 pickup 4wa

##	70	dodge	ram 1500 pickup 4wd
##	71	dodge	ram 1500 pickup 4wd
##	72	dodge	ram 1500 pickup 4wd
##	73	dodge	ram 1500 pickup 4wd
##	74	dodge	ram 1500 pickup 4wd
##	75	ford	expedition 2wd
##	76	ford	expedition 2wd
##	77	ford	expedition 2wd
##	78	ford	explorer 4wd
##	79	ford	explorer 4wd
##	80	ford	explorer 4wd
##	81	ford	explorer 4wd
##	82	ford	explorer 4wd
##	83	ford	explorer 4wd
##	84	ford	f150 pickup 4wd
##	85	ford	f150 pickup 4wd
##	86	ford	f150 pickup 4wd
##	87	ford	f150 pickup 4wd
##	88	ford	f150 pickup 4wd
##	89	ford	f150 pickup 4wd
##	90 91	ford ford	f150 pickup 4wd
##	91	ford	mustang
##	93	ford	mustang
##	93 94	ford	mustang
##	9 4 95	ford	mustang
##	96	ford	mustang mustang
##	97	ford	mustang
##	98	ford	mustang
##	99	ford	mustang
##	100	honda	civic
##	101	honda	civic
##	102	honda	civic
##	103	honda	civic
##	104	honda	civic
##	105	honda	civic
##	106	honda	civic
##	107	honda	civic
##	108	honda	civic
##	109	hyundai	sonata
##	110	hyundai	sonata
##	111	hyundai	sonata
##	112	hyundai	sonata
##	113	hyundai	sonata
##	114	hyundai	sonata
##	115	hyundai	sonata
##	116	hyundai	tiburon
##	117	hyundai	tiburon
##	118	hyundai	tiburon
##	119	hyundai	tiburon
##	120	hyundai	tiburon
##	121	hyundai	tiburon
##	122	hyundai	tiburon
##	123	jeep	grand cherokee 4wd

##	124	jeep	grand cherokee 4wd
##	125	jeep	grand cherokee 4wd
##	126	jeep	grand cherokee 4wd
##	127	jeep	grand cherokee 4wd
##	128	jeep	grand cherokee 4wd
##	129	jeep	grand cherokee 4wd
##	130	jeep	grand cherokee 4wd
##	131	land rover	range rover
##	132	land rover	range rover
##	133	land rover	range rover
##	134	land rover	range rover
##	135	lincoln	navigator 2wd
##	136	lincoln	navigator 2wd
##	137	lincoln	navigator 2wd
##	138	mercury	mountaineer 4wd
##	139	mercury	mountaineer 4wd
##	140	mercury	mountaineer 4wd
##	141	mercury	mountaineer 4wd
##	142	nissan	altima
##	143	nissan	altima
##	144	nissan	altima
##	145	nissan	altima
##	146	nissan	altima
##	147	nissan	altima
##	148	nissan	maxima
##	149	nissan	maxima
##	150	nissan	maxima
##	151	nissan	pathfinder 4wd
##	152	nissan	pathfinder 4wd
##	153	nissan	pathfinder 4wd
##	154	nissan	pathfinder 4wd
##	155	pontiac	grand prix
##	156	pontiac	grand prix
##	157	pontiac	grand prix
##	158	pontiac	grand prix
##	159	pontiac	grand prix
##	160	subaru	forester awd
##	161	subaru	forester awd
##	162	subaru	forester awd
##	163	subaru	forester awd
##	164	subaru	forester awd
##	165	subaru	forester awd
##	166	subaru	impreza awd
##	167	subaru	impreza awd
##	168	subaru	impreza awd
##	169	subaru	impreza awd
##	170	subaru	impreza awd
##	171	subaru	impreza awd
##	172	subaru	impreza awd
##	173	subaru	impreza awd
##	174	toyota	4runner 4wd
##	175	toyota	4runner 4wd
##	176	toyota	4runner 4wd
##	177	toyota	4runner 4wd

##	178	toyota		4runner 4wd
##	179	toyota		4runner 4wd
##	180	toyota		camry
##	181	toyota		camry
##	182	toyota		camry
##	183	toyota		camry
##	184	toyota		camry
##	185	toyota		camry
##	186	toyota		camry
##	187	toyota		camry solara
##	188	toyota		camry solara
##	189	toyota		camry solara
##	190	toyota		camry solara
##	191	toyota		camry solara
##	192	toyota		camry solara
##	193	toyota		camry solara
##	194	toyota		corolla
##	195	toyota		corolla
##	196	toyota		corolla
##	197	toyota		corolla
##	198	toyota		corolla
##	199	toyota	land	cruiser wagon 4wd
##	200	toyota	land	cruiser wagon 4wd
##	201	toyota		toyota tacoma 4wd
##	202	toyota		toyota tacoma 4wd
##	203	toyota		toyota tacoma 4wd
##	204	toyota		toyota tacoma 4wd
##	205	toyota		toyota tacoma 4wd
##	206	toyota		toyota tacoma 4wd
##	207	toyota		toyota tacoma 4wd
##	208	volkswagen		gti
##	209	volkswagen		gti
##	210	volkswagen		gti
##	211	volkswagen		gti
##	212	volkswagen		gti
##	213	volkswagen		jetta
##	214	volkswagen		jetta
##	215	volkswagen		jetta
##	216	volkswagen		jetta
##	217	volkswagen		jetta
##	218	volkswagen		jetta
##	219	volkswagen		jetta
##	220	volkswagen		jetta
##	221	volkswagen		jetta
##	222	volkswagen		new beetle
##	223	volkswagen		new beetle
##	224	volkswagen		new beetle
##	225	volkswagen		new beetle
##	226	volkswagen		new beetle
##	227	volkswagen		new beetle
##	228	volkswagen		passat
##	229	volkswagen		passat
##	230	volkswagen		passat
##	231	volkswagen		passat

```
## 232
         volkswagen
                                      passat
## 233
         volkswagen
                                      passat
## 234
         volkswagen
                                      passat
unique_mods <- unique(manufacturers_models)</pre>
unique_mods
##
       Manufacturer
                                       Model
## 1
                audi
                                           a4
## 8
                audi
                                  a4 quattro
## 16
                audi
                                  a6 quattro
## 19
          chevrolet
                         c1500 suburban 2wd
## 24
          chevrolet
                                    corvette
## 29
          chevrolet
                             k1500 tahoe 4wd
## 33
          chevrolet
                                      malibu
## 38
                                 caravan 2wd
               dodge
## 49
               dodge
                          dakota pickup 4wd
## 58
               dodge
                                 durango 4wd
## 65
               dodge
                        ram 1500 pickup 4wd
## 75
                ford
                              expedition 2wd
## 78
                ford
                                explorer 4wd
## 84
                ford
                             f150 pickup 4wd
## 91
                ford
                                     mustang
## 100
              honda
                                       civic
## 109
            hyundai
                                      sonata
## 116
            hyundai
                                     tiburon
## 123
                jeep
                         grand cherokee 4wd
## 131
         land rover
                                 range rover
## 135
            lincoln
                               navigator 2wd
## 138
            mercury
                             mountaineer 4wd
## 142
             nissan
                                      altima
## 148
             nissan
                                      maxima
## 151
                              pathfinder 4wd
             nissan
## 155
            pontiac
                                  grand prix
## 160
             subaru
                                forester awd
## 166
              subaru
                                 impreza awd
## 174
              toyota
                                 4runner 4wd
## 180
              toyota
                                       camry
## 187
             toyota
                                camry solara
## 194
                                     corolla
              toyota
## 199
              toyota land cruiser wagon 4wd
## 201
              toyota
                          toyota tacoma 4wd
## 208
         volkswagen
                                         gti
## 213
         volkswagen
                                       jetta
## 222
                                  new beetle
         volkswagen
## 228
         volkswagen
                                      passat
unique_mods_factor <- factoredManufacturer <- as.factor(unique_mods$Manufacturer)
2b. Graph the result by using plot() and ggplot(). Write the codes and its result.
#install.packages("ggplot2")
```

library(ggplot2)

library(dplyr)

#install.packages("dplyr")

Unique Models of Manufacturers


```
unique_count <- unique_mods %>%
   count(unique_mods$Manufacturer)
unique_count
```

```
##
      unique_mods$Manufacturer n
## 1
                           audi 3
## 2
                      chevrolet 4
## 3
                          dodge 4
                           ford 4
## 4
## 5
                          honda 1
## 6
                        hyundai 2
## 7
                           jeep 1
## 8
                     land rover 1
## 9
                        lincoln 1
## 10
                        mercury 1
## 11
                         nissan 3
## 12
                        pontiac 1
## 13
                         subaru 2
## 14
                         toyota 6
## 15
                     volkswagen 4
ggplot(unique_count, aes(x = `unique_mods$Manufacturer`, y = n)) +
geom_bar(stat = "identity", fill = "steelblue") +
```


2. Same dataset will be used. You are going to show the relationship of the model and the manufacturer. 2a. What does ggplot(mpg, aes(model, manufacturer)) + geom_point() show?

ggplot(mpg_file, aes(model, manufacturer)) + geom_point()

It creates ascatterplot of the mpg dataset with model on the x-axis and manufacturer on the y-axis.
In this plot, Each point on the plot represents a specific model and its corresponding manufacturer.

2b. For you, is it useful? If not, how could you modify the data to make it more informative?

```
# It is useful if you want to know how many models each manufacturer have.
```

I can make it more informative by color coding each points by the class variable and add a label to e

3. Plot the model and the year using ggplot(). Use only the top 20 observations. Write the codes and its results

```
top20 <- head(mpg_file,20)

top20Plot <- ggplot(top20, aes(x = model, y = year)) + geom_point() + labs(x = "Model", y = "Year")
top20Plot</pre>
```


4. Using the pipe (%>%), group the model and get the number of cars per model. Show codes and its result

```
library(dplyr)
model_car_count <- mpg_file %>%
  group_by(model) %>%
  summarize(number_of_cars = n())
model_car_count
## # A tibble: 38 x 2
      model
                          number_of_cars
##
##
      <chr>
                                    <int>
##
    1 4runner 4wd
                                        6
                                        7
##
    2 a4
##
    3 a4 quattro
                                        8
##
    4 a6 quattro
                                        3
##
    5 altima
                                        6
    6 c1500 suburban 2wd
                                        5
##
##
                                        7
    7 camry
                                        7
##
    8 camry solara
    9 caravan 2wd
                                       11
## 10 civic
                                        9
## # i 28 more rows
```

4a. Plot using geom_bar() using the top 20 observations only. The graphs should have a title, labels and colors. Show code and results

```
obs_20 <- head(model_car_count, 20)

top_20 <- ggplot(obs_20, aes(x = model, y = number_of_cars, fill = model)) + geom_bar(stat = "identity"

top_20</pre>
```


4b. b. Plot using the geom_bar() + coord_flip() just like what is shown below. Show codes and its result.

flipped_top_20 <- ggplot(obs_20, aes(x = model, y = number_of_cars, fill = model)) + geom_bar(stat = "inflipped_top_20")

flipped_top_20

5. Plot the relationship between cyl - number of cylinders and displ - engine displacement using geom_point with aesthetic color = engine displacement. Title should be "Relationship between No. of Cylinders and Engine Displacement".

Relationship between No. of Cylinders and Engine Displacement

5a. How would you describe its relationship? Show the codes and its result.

```
# It will generate a scatter plot showing the relationship between the number of cylinders and engine d
# As the number of cylinders increases, the engine displacement tends to increase as well. This suggest
```

6. Plot the relationship between displ (engine displacement) and hwy(highway miles per gallon). Mapped it with a continuous variable you have identified in #1-c. What is its result? Why it produced such output?

Relationship between Engine Displacement and Highway MPG

This is a scatterplot with engine displacement on the x-axis and highway miles per gallon on the y-ax
Using this plot, we can understand the relationship between the displ, hwy, and cty. By mapping the c
This can provide understanding of the fuel efficiency of vehicle with different engine sizes

6. Import the traffic.csv onto your R environment.

6a. How many numbers of observation does it have? What are the variables of the traffic dataset the Show your answer.

```
library(readr)
traffic <- read.csv("traffic.csv")

num_obs <- nrow(traffic)
num_obs

## [1] 48120

num_vars <- ncol(traffic)
num_vars

## [1] 4</pre>
vars <- colnames(traffic)
vars
```

[1] "DateTime" "Junction" "Vehicles" "ID"

6b. subset the traffic dataset into junctions. What is the R codes and its output?

```
junctions_subset_1 <- subset(traffic, Junction == 1)
junctions_subset_2 <- subset(traffic, Junction == 2)
junctions_subset_3 <- subset(traffic, Junction == 3)
junctions_subset_4 <- subset(traffic, Junction == 4)</pre>
```

6c. Plot each junction in a using geom_line(). Show your solution and output.

```
junction_1_plot <- ggplot(junctions_subset_1, aes(x = as.Date(junctions_subset_1$DateTime), y = Vehicle
  geom_line() +
  scale_x_date(date_labels = "%b-%Y") + theme(legend.position = "none") +
  labs(title = "Junction 1", x = "Time", y = "Number of Vehicles")

junction_1_plot</pre>
```

Warning: Use of `junctions_subset_1\$DateTime` is discouraged.
i Use `DateTime` instead.

Junction 1


```
junction_2_plot <- ggplot(junctions_subset_2, aes(x = as.Date(junctions_subset_2$DateTime), y = Vehicle
  geom_line() +
  scale_x_date(date_labels = "%b-%Y") + theme(legend.position = "none") +
  labs(title = "Junction 2", x = "Time", y = "Number of Vehicles")

junction 2 plot</pre>
```



```
junction_3_plot <- ggplot(junctions_subset_3, aes(x = as.Date(junctions_subset_3$DateTime), y = Vehicle
  geom_line() +
  scale_x_date(date_labels = "%b-%Y") + theme(legend.position = "none") +
  labs(title = "Junction 3", x = "Time", y = "Number of Vehicles")

junction_3_plot</pre>
```

Junction 3


```
junction_4_plot <- ggplot(junctions_subset_4, aes(x = as.Date(junctions_subset_4$DateTime), y = Vehicle
  geom_line() +
  scale_x_date(date_labels = "%b-%Y") + theme(legend.position = "none") +
  labs(title = "Junction 4", x = "Time", y = "Number of Vehicles")

junction_4_plot</pre>
```

Junction 4

##

1 Black

7. From alexa_file.xlsx, import it to your environment

7a. How many observations does alexa_file has? What about the number of columns? Show your solution and answer.

```
library(readxl)
alexa_data <- read_excel("/cloud/project/worksheet#4/Worksheet4c/alexa_file.xlsx")</pre>
num_obs <- nrow(alexa_data)</pre>
{\tt num\_obs}
## [1] 3150
num_cols <- ncol(alexa_data)</pre>
{\tt num\_cols}
## [1] 5
7b. group the variations and get the total of each variations. Use dplyr package. Show solution and answer
var_counts <- alexa_data %>%
  count(variation)
var_counts
## # A tibble: 16 x 2
##
       variation
                                             n
##
       <chr>
                                        <int>
```

261

```
2 Black Dot
                                     516
##
   3 Black Plus
                                     270
   4 Black Show
                                     265
  5 Black Spot
                                     241
##
##
   6 Charcoal Fabric
                                     430
   7 Configuration: Fire TV Stick
                                     350
   8 Heather Gray Fabric
                                     157
   9 Oak Finish
##
                                      14
## 10 Sandstone Fabric
                                      90
## 11 Walnut Finish
                                       9
## 12 White
                                      91
## 13 White Dot
                                     184
## 14 White Plus
                                      78
## 15 White Show
                                      85
## 16 White Spot
                                     109
```

7c. Plot the variations using the ggplot() function. What did you observe? Complete the details of the graph. Show solution and answer.

Variations

The graph shows the distribution of variations and their respective counts. Each bar represents a spe

7d. Plot a geom_line() with the date and the number of verified reviews. Complete the details of the graphs. Show your answer and solution

```
library(dplyr)
alexa_data$date <- as.Date(alexa_data$date)</pre>
alexa_data$month <- format(alexa_data$date, "%m")</pre>
countMonth <- alexa_data %>%
  count(month)
countMonth
## # A tibble: 3 x 2
##
     month
##
     <chr> <int>
## 1 05
## 2 06
             155
## 3 07
            2913
monthly_revCount <- table(countMonth)</pre>
monthly_revCount
##
        n
## month 82 155 2913
##
      05 1
              0
##
      06 0
              1
##
      07 0
              0
                    1
alexa_line <- ggplot(countMonth, aes(x = month, y = n, group = 1)) +</pre>
  geom_line(color = "blue") +
  labs(title = "Number of Verified Reviews Over Time",
       x = "Date",
       y = "Number of Verified Reviews")
alexa_line
```

Number of Verified Reviews Over Time

7e. Get the relationship of variations and ratings. Which variations got the most highest in rating? Plot a graph to show its relationship. Show your solution and answer.

```
variation_ratings <- alexa_data %>%
  group_by(variation) %>%
  summarise(avg_rating = mean(rating))
variation_ratings
```

```
## # A tibble: 16 x 2
##
      variation
                                    avg_rating
##
      <chr>
                                         <dbl>
##
   1 Black
                                          4.23
                                          4.45
##
   2 Black
            Dot
   3 Black Plus
                                          4.37
                                          4.49
##
  4 Black Show
##
   5 Black Spot
                                          4.31
                                          4.73
##
   6 Charcoal Fabric
   7 Configuration: Fire TV Stick
                                          4.59
##
   8 Heather Gray Fabric
                                          4.69
##
  9 Oak Finish
                                          4.86
##
## 10 Sandstone Fabric
                                          4.36
## 11 Walnut Finish
                                          4.89
## 12 White
                                          4.14
## 13 White Dot
                                          4.42
                                          4.36
## 14 White Plus
## 15 White Show
                                          4.28
## 16 White Spot
                                          4.31
```

```
highest_ratings <- variation_ratings %>%
  filter(avg_rating == max(avg_rating))
highest_ratings
## # A tibble: 1 x 2
##
     variation avg_rating
     <chr>
                        <dbl>
##
## 1 Walnut Finish
                         4.89
# The walnut finish variation has the highest rating
ggplot(variation_ratings, aes(x = variation, y = avg_rating)) +
  geom_bar(stat = "identity", fill = "blue") +
  labs(title = "Average Ratings by Variation",
       x = "Variation",
       y = "Average Rating")
```

Average Ratings by Variation

