# Sistemas Inteligentes

Escuela Técnica Superior de Informática Universitat Politècnica de València

Tema B2T7: Estimación de modelos de Markov.

#### **indice**

- 1 Aprendizaje: estimación de probabilidades en modelos de Markov ⊳ 1
  - 2 Inicialización de la re-estimación por Viterbi ⊳ 9

#### Estimación de probabilidades de un modelo de Markov

Estimar las probabilidades de un modelo de Markov, M, mediante una secuencia de cadenas de entrenamiento  $Y = \{y_1, \dots, y_n\}$ .

#### Idea básica:

- 1. Inicializar modelo de Markov inicial  $M_0$  y i=0 (ver traspa 10)
- 2. Analizar en  $M_i$  cada cadena de Y por Viterbi para obtener la secuencia de estados
- 3. A partir de esta secuencia de estados, contabilizar las frecuencias de uso de transiciones y símbolos.
- 4. Normalizar frecuencias para obtener nuevas probabilidades del modelo  $M_{i+1}$
- 5. Repetir pasos 2-4 hasta convergencia ( $M_i = M_{i+1}$ ).

## Estimación mediante el algoritmo de Viterbi: ejemplo

Se dispone de tres cadenas para re-estimar las probabilidades de un modelo de Markov. Utilizando el algoritmo de Viterbi se han obtenido las siguientes *secuencias óptimas de estados* para cada *cadena*:

Cadena: aaaaaddcdcdcdcdcbabaababccccb

Secuencia óptima de estados: 111112222222222333333333344444F

Cadena: aaaaaddcdcdcdcdcbababababcccdcbb

Secuencia óptima de estados: 11111222222222233333333334444444F

Cadena: aaaadcdcdcdcdcbabababccdccbaab

Secuencia óptima de estados: 111122222222223333333334444444444

DSIC – UPV Página B2T7.3

## Estimación mediante el algoritmo de Viterbi: ejemplo (cont.)

$$\pi_1 = 3/3 = 1$$
  $\pi_2 = \pi_3 = \pi_4 = 0$ 

| A | 1         | 2            | 3         | 4         | F         |               | A | 1               | 2               | 3               | 4               | F              |
|---|-----------|--------------|-----------|-----------|-----------|---------------|---|-----------------|-----------------|-----------------|-----------------|----------------|
| 1 | 4 + 4 + 3 | 1 + 1 + 1    | 0         | 0         | 0         |               | 1 | $\frac{11}{14}$ | $\frac{3}{14}$  | 0               | 0               | 0              |
| 2 | 0         | 11 + 11 + 11 | 1 + 1 + 1 | 0         | 0         | $\Rightarrow$ | 2 | 0               | $\frac{33}{36}$ | $\frac{3}{36}$  | 0               | 0              |
| 3 | 0         | 0            | 9 + 9 + 8 | 1 + 1 + 1 | 0         |               | 3 | 0               | 0               | $\frac{26}{29}$ | $\frac{3}{29}$  | 0              |
| 4 | 0         | 0            | 0         | 4 + 6 + 8 | 1 + 1 + 1 |               | 4 | 0               | 0               | 0               | $\frac{18}{21}$ | $\frac{3}{21}$ |

| $oxed{B}$ | a         | b         | c         | d         |
|-----------|-----------|-----------|-----------|-----------|
| 1         | 5 + 5 + 4 | 0         | 0         | 0         |
| 2         | 0         | 0         | 6 + 6 + 6 | 6 + 6 + 6 |
| 3         | 5 + 5 + 4 | 5 + 5 + 5 | 0         | 0         |
| 4         | 0 + 0 + 2 | 1 + 2 + 2 | 4 + 4 + 4 | 0 + 1 + 1 |

| _           |   |                 |                 |                 |                 |
|-------------|---|-----------------|-----------------|-----------------|-----------------|
|             | B | a               | b               | c               | d               |
|             | 1 | 14<br>14        | 0               | 0               | 0               |
| <b>&gt;</b> | 2 | 0               | 0               | $\frac{18}{36}$ | $\frac{18}{36}$ |
|             | 3 | $\frac{14}{29}$ | $\frac{15}{29}$ | 0               | 0               |
|             | 4 | $\frac{2}{21}$  | $\frac{5}{21}$  | $\frac{12}{21}$ | $\frac{2}{21}$  |

#### Algoritmo de reestimación por Viterbi

```
Input: M_0 = (Q_0, \Sigma_0, \pi_0, A_0, B_0)
                                                                            /* Modelo inicial */
         Y = \{y_1, \dots, y_n\}
                                                               /* cadenas de entrenamiento */
Output: M = (Q, \Sigma, \pi, A, B)
                                                                      /* Modelo optimizado */
M=M_0
repeat M' = M; \pi = 0; A = 0; B = 0
    for k=1 to n do
                    /* secuencia de estados más probable para y_k, */
        m = |y_k|
        \tilde{q}_1, \dots, \tilde{q}_m = \operatorname{argmax}_{q_1, \dots, q_m} P(y_k, q_1, \dots, q_m \mid M') /* por Viterbi */
                                                            /* actualización de contadores */
        \pi_{\tilde{q}_1}++; B_{\tilde{q}_1,y_{k-1}}++
        for t=2 to m do A_{\tilde{q}_{t-1},\tilde{q}_t}++; B_{\tilde{q}_t,y_{k,t}}++ done; A_{\tilde{q}_m,F}++
    done
    s = \sum_{q \in Q} \pi_q
    forall q \in Q do
                                                           /* normalización de contadores */
        \pi_a = \pi_a/s
        a = \sum_{q' \in Q} A_{q,q'}; forall q' \in Q do A_{q,q'} = A_{q,q'}/a
        b = \sum_{\sigma \in \Sigma} B_{q,\sigma}; forall \sigma \in \Sigma do B_{q,\sigma} = B_{q,\sigma}/b
    done
until M=M'
```

DSIC - UPV

#### Algoritmo mediante el algoritmo de Viterbi: ejercicio

Sea M un modelo de Markov de conjunto de estados  $Q = \{0, 1, F\}$ ; alfabeto  $\Sigma = \{a, b\}$ ; probabilidades iniciales  $\pi_0(0) = 0.7, \pi_0(1) = 0.3$ ; y probabilidades de transición entre estados y de emisión de símbolos:

| A | 0   | 1   | F   |
|---|-----|-----|-----|
| 0 | 0.5 | 0.4 | 0.1 |
| 1 | 0.3 | 0.5 | 0.2 |

| B | a   | b   |
|---|-----|-----|
| 0 | 0.6 | 0.4 |
| 1 | 0.4 | 0.6 |

Reestima los parámetros de M mediante una iteración de reestimación por Viterbi, a partir de las cadenas de entrenamiento "a a a" y "b b a".

#### Ejercicio: secuencias de estados mas probables



Los pares cadena-secuencia óptima de estados obtenidos son:

aaa bba 001F 011F

## Ejercicio: parámetros reestimados

$$\hat{\pi}_0(0) = \frac{2}{2} = 1$$

$$\hat{\pi}_0(1) = \frac{0}{2} = 0$$

$$\hat{\pi}_0(1) = \frac{0}{2} = 0$$

| $oxed{A}$ | 0             | 1             | F             |
|-----------|---------------|---------------|---------------|
| 0         | $\frac{1}{3}$ | $\frac{2}{3}$ | 0             |
| 1         | 0             | $\frac{1}{3}$ | $\frac{2}{3}$ |

| B | a             | b             |
|---|---------------|---------------|
| 0 | $\frac{2}{3}$ | $\frac{1}{3}$ |
| 1 | 2 3<br>2 3    | $\frac{1}{3}$ |

#### **indice**

- 1 Aprendizaje: estimación de probabilidades en modelos de Markov ⊳ 1
- 2 Inicialización de la re-estimación por Viterbi > 9

#### Inicialización de la re-estimación por Viterbi

Una idea elemental: Inicializar todas las probabilidades según distribuciones equiprobables.

Problema: Suele producir problemas de convergencia o convergencia a máximos locales inadecuados.

#### Una idea útil para modelos lineales:

- Segmentar cada cadena de Y en tantos segmentos de (aproximadamente) la misma longitud como estados tenga el modelo de Markov.
- Asignar los símbolos de cada segmento a su correspondiente estado
- Contabilizar las frecuencias de generación y transición
- Normalizar las frecuencias para obtener probabilidades iniciales requeridas

DSIC – UPV Página B2T7.10

## Inicialización por segmentación lineal: Ejemplo

Obtener un modelo de Markov de  ${\cal N}=3$  estados mediante segmentación lineal a partir de las cadenas

$$y_1 = \mathsf{aabbbcc}$$
  $y_2 = \mathsf{aaabbccc}$ 

$$Q = \{1, 2, 3, F\} \qquad \Sigma = \{a, b, c\}$$

$$q = \left\lfloor \frac{t \cdot N}{\mid y \mid +1} \right\rfloor + 1 : \begin{array}{c} \text{aabbbcc} \\ \text{1122233} \end{array} \begin{array}{c} \text{aaabbccc} \\ \text{11222333} \end{array}$$

$$\pi_1 = \frac{2}{2}, \quad \pi_2 = \pi_3 = 0$$

| A | 1             | 2             | 3             | F             |
|---|---------------|---------------|---------------|---------------|
| 1 | $\frac{2}{4}$ | $\frac{2}{4}$ | 0             | 0             |
| 2 | 0             | $\frac{4}{6}$ | $\frac{2}{6}$ | 0             |
| 3 | 0             | 0             | $\frac{3}{5}$ | $\frac{2}{5}$ |

| B | a                           | b             | c        |
|---|-----------------------------|---------------|----------|
| 1 | $\frac{4}{4}$               | 0             | 0        |
| 2 | $\frac{4}{4}$ $\frac{1}{6}$ | $\frac{5}{6}$ | 0        |
| 3 | 0                           | 0             | <u>5</u> |

## Inicialización por segmentación lineal

```
Input: Y = \{y_1, \dots, y_n\}, N /* cadenas de entrenamiento, número de estados */
Output: M = (Q, \Sigma, \pi, A, B)
                                                                                   /* modelo */
Q = \{1, 2, \dots, N, F\}; \Sigma = \{y \in y_k \in Y\}
                                                                     /* estados y símbolos */
                                                           /* inicialización de contadores */
\pi = 0; A = 0; B = 0
for k=1 to n do
                                                       /* actualización de contadores por */
                                           /* alineamiento lineal de y_k con los estados */
q = 1; \pi_q + +; B_{q,y_{k,1}} + +
for t=2 to |y_k| do q'=q; q=\left|\frac{t}{|y_k|+1}N\right|+1; A_{q',q}++; B_{q,y_{k,t}}++ done
A_{q,F} ++
done
s = \sum_{q \in Q} \pi_q
forall q \in Q do
                                                          /* normalización de contadores */
\pi_q = \pi_q / s
a = \sum_{q' \in Q} A_{q,q'}; forall q' \in Q do A_{q,q'} = A_{q,q'} / a
b = \sum_{\sigma \in \Sigma} B_{q,\sigma}; forall \sigma \in \Sigma do B_{q,\sigma} = B_{q,\sigma} / b
done
```