独立于算法的机器学习

山世光 中国科学院计算技术研究所 sgshan@ict.ac.cn

课前思考

- 你们学过的模型中哪个最好? 为什么? 如 何比较两个不同模型的优劣?
- Bias和variance分别描述了算法的什么性质?
- 如果有很多可选算法,怎么集成它们?
- 数据多样、规模极大,如何利用好它们?
- ■特征维度特别高,如何利用好它们?

参考文献

■ 第九章R. Duda, P. Hart, D. Stork, Pattern Classification (Second edition), John Wiley & Sons, New York, USA, 2000

What's in This Chapter?

- Algorithm-Independent by definition
 - to those mathematical foundations that do not depend upon the particular classifier or learning algorithm used.
 - □ techniques that can be used in conjunction with different learning algorithms, or provide guidance in their use.

Problems to Answer

- Many algorithms/techniques in hand
 - Which is the "best"?
 - □ Are there any reasons to favor one algorithm over another?
 - Can we even find an algorithm that is overall superior to (or inferior to) random guessing?
 - Which one to choose given one problem?

斜院计算的

Outline of This Chapter

- □ No Free Lunch Theorem
- □ Ugly Duckling Theorem
- Minimum Description Length principle
- Occam's razor
- Resampling for classifier design
 - Bagging
 - Boosting
 - □ AdaBoost
 - □ Active Learning
- Estimating and comparing classifiers
 - Cross validation
- Self-paced learning and curriculum learning

No Free Lunch Theorem

- [Wolpert, 1996] shows that
 - □ In a noise-free scenario where the loss function is the misclassification rate, if one is interested in off-training-set error, there are no a priori distinctions between learning algorithms.

No Free Lunch Theorem

- All algorithms are equivalent, on average, by any of the following measures of error: E(L/D), E(L/n), E(L/f,D), or E(L/f,n), where
 - $\square D = \text{training set};$
 - \square *n* = number of elements in training set;
 - $\Box f$ = 'target' input-output relationships;
 - \square h = hypothesis (the algorithm's guess for f made in response to D); and
 - \Box L = off-training-set 'loss' associated with f and h ('generalization error')

Implications of NFL

■ There are no i and j such that, for all F,

$$E_i(E/F, n) < E_j(E/F, n)$$

if all target functions $F(\mathbf{x})$ are equally likely.

- Furthermore, even if we know *D*, averaged over all target functions, no learning algorithm yields an off-training set error that is superior to any other.
- All statements of the form "learning/recognition algorithm 1 is better than algorithm 2" are ultimately statements about the relevant target functions.
- It is the assumptions about the learning domains that are relevant.

Ugly Duckling Theorem

- Problem to answer
 - □ In the absence of prior information, is there a principled reason to judge any two distinct patterns as more or less similar than two other distinct patterns?
- Ugly Duckling Theorem [Watanabe, 1969]

Ugly Duckling Theorem

- Problem to answer
 - □ In the absence of prior information, is there a principled reason to judge any two distinct patterns as more or less similar than two other distinct patterns?
- Ugly Duckling Theorem [Watanabe, 1969]
 - All things being equal. An ugly duckling is just as similar to a swan as two swans are to each other.
 - □ 丑小鸭与白天鹅之间的区别和两只白天鹅之间的区 别一样大(依赖于分类标准或依据)

Watanabe, Satosi (1969). *Knowing and Guessing: A Quantitative Study of Inference and Information*. New York: Wiley. pp. 376–377.

Ugly Duckling Theorem

Implications

- □ In the absence of assumptions there is no privileged or "best" feature representation.
 - There is no problem-independent or privileged or "best" set of features or feature attributes.
- □ Even the apparently simple notion of similarity between patterns is fundamentally based on implicit assumptions about the problem domain

12

MDL Principle

- Aims at finding some irreducible, smallest representation
- We should minimize the sum of the model's algorithmic complexity and the description of the training data with respect to that model, i.e.,

$$K(h,D) = K(h) + K(D \text{ using } h).$$

with K(.) the Kolmogorov complexity, a measure of the incompressibility.

MDL Principle

- Example: decision tree classifiers
 - ☐ The algorithmic complexity of the model is proportional to the number of nodes.
 - □ The complexity of the data given the model can be expressed in terms of the weighted sum of the entropies of the data at the leaf nodes.
 - ☐ Thus, if the tree is pruned based on an entropy criterion, it is using MDL.
- Example: Neural Network
 - Deep network compression by pruning
 - Removal of some connections between neurons

MDL Principle

- Theoretically classifiers designed with an MDL principle are guaranteed to converge to the ideal or true model in the limit of more and more data.
- The MDL principle states that simple models (smaller K(h)) are to be preferred, and thus amounts to a bias to simplicity.

Occam's Razor

- Philosophy Principle Occam's Razor
 - □ "Entities" (or explanations) should not be multiplied beyond necessity. 如无必要,勿增实体
 - □ Among competing hypotheses, the one with the fewest assumptions should be selected.
 - □ For PR/ML, NOT use machines that are more complicated than necessary
 - "Necessary" can be determined by the quality of fitting to the training data.

Occam's Razor

- Techniques to avoid overfitting
 - Simplicity
 - □ Pruning
 - Regularization
 - □ Inclusion of penalty terms
 - Minimizing a description length...
- Seems conflict with NFL?
 - □ For a given training error, why do we generally prefer simple classifiers with fewer features and parameters?

Occam's Razor

- Not conflict with NFL, but imply that problems addressed so far favor simpler classifiers. Why?
- Evolution bias: strong selection pressure on our pattern recognition apparatuses to be computationally simple
 - □ Fewer neurons
 - □ Less time
 - □ Less energy cost

Bias and Variance Dilemma

- Two ways measuring the "match" or "alignment" of the model to the problem
 - □ Bias: accuracy/quality of the match
 - □ Variance: precision/specificity of the match

Overfitting-Classification

Overfitting-Regression

Bias and Variance Dilemma

- Bias: model fits training data well,
 - □ Low bias: favor complex models
- Variance: model has capacity to accommodate different testing data
 - Low variance: favor simpler models

Discussion

- □ How about deep learning?
- Why can network be compressed but with accuracy preserved?
- Why not train the simpler network directly?

Outline of This Chapter

- Some philosophy in PR/ML
 - □ No Free Lunch Theorem
 - □ Ugly Duckling Theorem
 - ☐ Minimum Description Length principle
 - □ Occam's razor
- Resampling for classifier design
 - □ Bagging
 - □ Boosting
 - □ AdaBoost
 - □ Active Learning
- Estimating and comparing classifiers
 - Cross validation

Resampling

- What?
 - □ Sample a (sub)set from original training set
 - Jackknife (leave one out)
 - Bootstrap: randomly selecting n points from the training set D, with replacement
 - □ Reweighting each points
- Why?
 - □ Yield a more informative estimate of a general statistic.
 - □ Good for improve classifiers.

斜院计算的

Arcing methods

- Arcing: <u>a</u>daptive <u>r</u>eweighting and <u>c</u>ombining
 - □ Techniques by reusing or selecting data in order to improve classification
 - Bagging: bootstrap aggregating
 - Independently bootstrap data sets
 - Boosting
 - Dependently bootstrap data sets
 - □ AdaBoost

Bagging

- Bagging: bootstrap aggregating
 - □ Proposed by [Breiman, 1996]
 - □ Derived from bootstrap [Efron, 1993]
- Basic idea
 - Create classifiers using training sets bootstrapped independently (drawn with replacement)
 - Average results of each component classifiers

Bagging

Algorithm

Given a training set

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

- □ 1. Sample m sets $D_1, D_2, ..., D_m$ of n elements from D (with replacement)
- \square 2. Train a component classifier/regression f_i from each D_i
- □ 3. The final classifiers is $f(x) = sum/vote(f_1(x), f_2(x), ..., f_m(x))$

Bagging Example (Opitz, 1999)

- Bootstrap data sets
 - With replacement
 - □ Independently resampled

Original training set	1	2	3	4	5	6	7	8
Training set 1	2	7	8	3	7	6	3	1
Training set 2	7	8	5	6	4	2	7	1
Training set 3	3	6	2	7	5	6	2	2
Training set 4	4	5	1	4	6	4	3	8

Bagging

- 中斜院计算的
- Discussion
 - □Why?

Bagging

- Component classifiers selection
 - Generally of the same general form
 - SVM, NN, ANN, tree...
- Effects
 - Improves recognition for unstable classifiers since it effectively averages over such discontinuities
 - Unstable (related to high variance)

$$f(D) \approx (D + \Delta D)$$

- "small" changes in the training data lead to significantly different classifiers and relatively "large" changes in accuracy.
- 鲁棒性差:易被攻击, $f(x) \approx f(x + \Delta x)$

Arcing methods

- Arcing: <u>a</u>daptive <u>r</u>eweighting and <u>c</u>ombining
 - □ Techniques by reusing or selecting data in order to improve classification
 - □ Bagging: bootstrap aggregating
 - Independently bootstrap data sets
 - □ Boosting
 - Dependently bootstrap data sets
 - □ AdaBoost

Boosting

- Powerful technique for combining multiple weak "base" learners to form a committee whose performance can be significantly better than any of the base classifiers
 - Originated from [Schapire, 1989]
- Basic idea
 - Sequential production of classifiers: each classifier dependent on the previous one, and focuses on the previous one's failures
 - □ Examples incorrectly predicted in previous classifiers say louder in the next round

A Formal Description of Boosting

- Given training set $X = \{(x_1, y_1), ..., (x_n, y_n)\}$ $y_i \in \{+1, -1\}$ is the label of instance x_i
- for t = 1,...,T:
 - Construct a **new** distribution D_t from X
 - Find weak classifier

$$h_t: X \to \{+1, -1\}$$

with small error ε_t on D_t :

$$\varepsilon_t = Pi_{\sim D_t}[h_t(x_i) \neq y_i]$$

Output final classifier H_{final}=weighted sum(h_t)

Example Boosting Setting

- lacksquare $D_1 = randomly select a subset of <math>X$
- D_2 = select from X/D_1 , {half correctly classified by h_1 } + {half incorrectly classified by h_1 }
- $D_3 = \{x_i \in (X/D_1 \cup D_2) \text{ and } h_1(x_i) \neq h_2(x_i)\}$
- The final classifier:

$$h_{\text{final}}(\mathbf{x}) = \begin{cases} h_1(x); & \text{if } h_1(x) == h_2(x) \\ h_3(x); & \text{otherwise} \end{cases}$$

Example Boosting Setting

- Component classifiers: LMS
- Sampling: basic boosting procedure

Many Variations

AdaBoost.M1, AdaBoost.MR, FilterBoost, GentleBoost, GradientBoost, MadaBoost, LogitBoost, LPBoost, MultiBoost, RealBoost, RobustBoost, ...

From Bagging to Boosting

- Base classifiers are trained in sequence
- Each base classifier trained using a weighted form of the dataset
 - Weighting coefficient depends on the performance of the previous classifiers
 - Points misclassified by previous classifiers are given more weights in training next classifier
- Decisions are combined using a weighted majority voting scheme

Arcing methods

- Arcing: <u>a</u>daptive <u>r</u>eweighting and <u>c</u>ombining
 - □ Techniques by reusing or selecting data in order to improve classification
 - □ Bagging: bootstrap aggregating
 - Independently bootstrap data sets
 - □Boosting
 - Dependently bootstrap data sets
 - □ AdaBoost

能計算的

AdaBoost

- Proposed by [Freund & Schapire'95]:
 - Strong practical advantages over previous boosting algorithms
 - □ With amazing generalization ability
- Answer the open problem
 - □ An open problem [Kearns & Valiant, STOC'89]: "weakly learnable" ?= "strongly learnable"
 - □ In intuitive words, whether a "weak" learning algorithm that works just slightly better than random guess can be "boosted" into an arbitrarily accurate "strong" learning algorithm!

The Born of AdaBoost

- Amazingly, in 1990 Schapire proves that the answer is "yes". More importantly, the proof is a construction! This is the first Boosting algorithm
- In 1993, Freund presents a scheme of combining weak learners by majority voting in PhD thesis at UC Santa Cruz

However, these algorithms are not practical!

Later, at AT&T Bell Labs, Freund & Schapire published the 1997 journal paper (the work was reported in EuroCOLT'95), which proposed the AdaBoost algorithm, a practical algorithm.

New Resampling Mechanism

- Given training set $X = \{(x_1, y_1), ..., (x_m, y_m)\}$ $y_i \in \{+1, -1\}$ is the label of instance x_i
- $D_1(i) = \frac{1}{m}; \text{ given } D_t \text{ and } h_t, \text{ then }$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t}, & \text{if } yi = ht(xi) \\ e^{\alpha_t}, & \text{if } yi \neq h_t(xi) \end{cases} = \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(xi))$$

where z_t is a normalization factor, and

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0$$
, with $\varepsilon_t = Pi_{\sim D_t} [h_t(x_i) \neq y_i] < 0.5$

Final classifier

$$H_{final}(x) = sign\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$$

AdaBoost Algorithm

- Weights of misclassified samples are increase in (t+1)th iteration.
 - given training set $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X$, $y_i \in \{-1, +1\}$
 - initialize $D_1(i) = 1/m \ (\forall i)$
 - for t = 1, ..., T:
 - train weak classifier $h_t: X \to \{-1, +1\}$ with error $\epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right]$
 - $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
 - update $\forall i$:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where Z_t = normalization factor

•
$$H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Initialize

Round 1

$$\alpha_1\!\!=\!\!0.42$$

Round 1

 $\alpha_1 = 0.42$

Round 2

$$\epsilon_1 = 0.30$$

$$\alpha_1 = 0.42$$

$$\epsilon_{2} = 0.21$$
 $\alpha_{2} = 0.65$

斜院计算的

Round 3

下斜院计算的

Final Strong Classifier

AdaBoost Training Error

- Theorem:
 - write ϵ_t as $\frac{1}{2} \gamma_t$ [$\gamma_t =$ "edge"]
 - then

training error(
$$H_{\text{final}}$$
) $\leq \prod_{t} \left[2\sqrt{\epsilon_{t}(1 - \epsilon_{t})} \right]$
 $= \prod_{t} \sqrt{1 - 4\gamma_{t}^{2}}$
 $\leq \exp\left(-2\sum_{t} \gamma_{t}^{2}\right)$

- so: if $\forall t : \gamma_t \ge \gamma > 0$ then training error(H_{final}) $\le e^{-2\gamma^2 T}$
- AdaBoost is adaptive:
 - ullet does not need to know γ or T a priori

 $e^{-2\gamma^2T}$

Decrease with increase of T

How Will Test Error Behave??

- 中科院计算的
- Expect (a first guess)
 - □ Training error to continue to drop(or reach 0)
 - □ Test error increases when H_{final} becomes "too complex"
 - Occam's razor
 - Overfitting: hard to know when to stop training

Theoretically...

With high probability

generalization error
$$\leq$$
 training error $+ \tilde{O}\left(\sqrt{\frac{dT}{m}}\right)$

- bound depends on
 - \square m = # training examples
 - □ d = "complexity" of weak classifiers, VC-dimension
 - \Box T = # rounds
- Generalization error = E[test error]
- Should overfit with T increase...

Actually

- Test error does not increase, even after 1000 rounds
 - □ Total size > 2,000,000 nodes
- Test error continues to drop even after training error is zero!

	# rounds			
	5	100	1000	
train error	0.0	0.0	0.0	
test error	8.4	3.3	3.1	

Occam's razor wrongly predicts "simpler" rule is better?

Margin Theory Explanation

Based on the concept of margin, Schapire et al. [1998] proved that, given any threshold $\theta > 0$ of margin over the training data D, with probability at least $1 - \delta$, the generalization error of the ensemble $\epsilon_{\mathcal{D}} = P_{\boldsymbol{x} \sim \mathcal{D}}(f(\boldsymbol{x}) \neq H(\boldsymbol{x}))$ is bounded by

$$\epsilon_{\mathcal{D}} \leq P_{\boldsymbol{x} \sim D}(f(\boldsymbol{x})H(\boldsymbol{x}) \leq \theta) + \tilde{O}\left(\sqrt{\frac{d}{m\theta^2} + \ln\frac{1}{\delta}}\right)$$

$$\leq 2^T \prod_{t=1}^T \sqrt{\epsilon_t^{1-\theta}(1-\epsilon_t)^{1+\theta}} + \tilde{O}\left(\sqrt{\frac{d}{m\theta^2} + \ln\frac{1}{\delta}}\right)$$

This bound implies that, when other variables are fixed, the larger the margin over the training data, the smaller the generalization error

Margin Theory Explanation

- Why AdaBoost tends to be resistant to overfitting? the margin theory answers:
 - □ It can increase the **ensemble margin** even after the training error reaches zero!

Margin Theory Explanation

- Key ideas
 - Training error only measures whether classifications are right or wrong
 - Should also consider confidence of classifications
 - □ Recall: H_{final} is weighted majority vote of weak classifiers
- Measure confidence by margin = strength of the vote = (weighted fraction voting correctly)
 –(weighted fraction voting incorrectly)

Empirical Evidence: Margin Distribution

- Margin distribution
 - Cumulative distribution of margins of training examples

	# rounds			
	5	100	1000	
train error	0.0	0.0	0.0	
test error	8.4	3.3	3.1	
$\%$ margins ≤ 0.5	7.7	0.0	0.0	
minimum margin	0.14	0.52	0.55	

斜院计算的

Theoretical Evidence

- □ Larger margins ⇒ better bound on generalization error (independent of number of rounds)
- Boosting tends to increase margins of training examples (given weak learning assumption)
- Tighter bound with margin distribution
 - Minimum margin, media margin, average margin, margin variance...

More...

- Predicts good generalization with no overfitting if:
 - weak classifiers not too complex relative to size of training set
 - □ weak classifiers have large edges (implying large margins)
- For example
 - Boosting decision trees resistant to overfitting since trees often have large edges and limited complexity
- Overfitting may occur if:
 - Overly complex weak classifiers
 - □ Small edges (underfitting)

Practical Advantages of AdaBoost

斜院计算的

- Very fast, simple and easy to program
- Few parameters to tune (except T)
- **Flexible**
 - can combine with (m)any learning algorithm
- Little prior knowledge needed about weak learner
 - Provably effective, provided can consistently find rough rules of thumb
 - ☐ Shift in mindset goal now is merely to find classifiers barely better than random guessing
- Versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

Disadvantages of AdaBoost

- Performance of AdaBoost depends on data and weak learner.
- Consistent with theory, AdaBoost can fail if
 - □ weak classifiers are too complex
 - Due to possible overfitting
 - \square weak classifiers too weak ($\gamma_t \rightarrow 0$ too quickly)
 - Due to underfitting
 - low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise

AdaBoost for Face Detection

(separate slides)

Outline of This Chapter

- Some philosophy in PR/ML
 - □ No Free Lunch Theorem
 - □ Ugly Duckling Theorem
 - ☐ Minimum Description Length principle
 - □ Occam's razor
- Resampling for classifier design
 - □ Bagging
 - □ Boosting
 - □ AdaBoost
 - Active Learning
- Estimating and comparing classifiers
 - Cross validation

Active Learning

- Problem to address
 - Semi-supervised learning
- a.k.a
 - □ Learning with query; Interactive learning
- Method
 - Human in the loop to label "self-proposed" unlabeled informative samples
 - ☐ How to self-proposed samples?
 - pattern that the current classifier is least certain
 - pattern that yields the greatest disagreement among the committee

Outline of This Chapter

- Some philosophy in PR/ML
 - □ No Free Lunch Theorem 没有最好的算法/学习器
 - □ Ugly Duckling Theorem 没有最优的特征
 - □ Minimum Description Length principle 描述越短越好
 - □ Occam's razor 越简单越好
- Resampling for classifier design
 - □ Bagging
 - □ Boosting
 - □ AdaBoost
 - □ Active Learning
- Estimating and comparing classifiers
 - □ Cross validation

- Hard if not impossible to theoretically assess and compare classifiers
- Heuristic method
 - Cross validation
 - $\rightarrow m$ -fold cross-validation
 - □ Jackknife (leave-one-out)

- Wrong!!
 - □ Turing parameters on the testing set
 - □ Validating on the training set
- Cross-validation
 - □ Randomly split the set of labeled training samples *D* into two parts
 - one as the traditional training set for adjusting model parameters in the classifier
 - The other set the *validation set* is used to estimate the generalization validation error

- Typically, the error on the validation set decreases, but then increases
 - □ Indication that the classifier may be overfitting the training data
- Training or parameter adjustment is stopped at the first minimum of the validation error.

- How to split the original training set?
 - \square heuristics for choosing the portion γ of D to be used as a validation set $(0 < \gamma < 1)$
 - Generally a small portion for validation $\gamma < 0.5$
 - If a classifier has a large number of free parameters or degrees of freedom e.g. $\gamma=0.1$
- m-fold Cross Validation
 - \Box training set is randomly divided into m disjoint sets of equal size n/m
 - \square One set for validation, the other m-1 sets for training. And repeat m times...
 - ☐ If m==n, jackknife (leave-one-out)

延伸阅读

- Boosting & Deep Learning
 - □MoE
 - Furong Huang 1 Jordan T. Ash 2 John Langford 3 Robert E. Schapire. Learning Deep ResNet Blocks Sequentially using Boosting Theory. ICML2018
 - M Moghimi, et al., Boosted Convolutional Neural Networks, BMVC2016

谢谢!