PROGRAMME D'ETUDE DE LA CLASSE DE 1ière A&B

SA N°1: ORGANISATIONS DES DONNÉES

- 1. Équations et Inéquations du second degré
- 2. Systèmes d'inéquations linéaires à deux inconnues
- 3. Systèmes d'inéquations linéaires dans $\mathbb{R} \times \mathbb{R}$
- 4. Suite arithmétique
- 5. Suite géométrique
- 6. Statistiques
- 7. Dénombrement

SA N°2: LIEUX GÉOMÉTRIQUES

- 1. Fonctions Applications
- 2. Notion de limite
- 3. Continuité
- 4. Dérivation

Auteur :

Adekoulé £mmanuel ILEDI

Professeur Adjoint

Professeur permanent au CSP ACADEMIA/Parakou

Tel: (+229) 67 39 92 89/ 95371389 E-mail: iledi.emmanuel@yahoo.fr

Version: Septembre 2021

SA N°1: ORGANISATION DES DONNÉES

Situation de départ

Texte: Projet « habitat sûr »

Un soir, Mimi une élève en classe de 1^{ere} surprend une conversation entre son père et sa mère :

- Ma chérie il est tant que nous épargnons un peu de nos revenus pour construire notre propre maison; l'entrepreneur m'a dit qu'il nous faut prévoir 8.000.000 de francs CFA alors que je ne gagne que 280.000 FCFA par mois.
- Tu as raison mon chéri; moi je sais que mon commerce peut me rapporter par mois 320.000 FCFA mais compte tenu du marché je ne peux le faire que pour un an. Comment allons-nous procéder? Prenons peut être conseil chez notre fille pendant qu'elle est là.

Mimi leur propose de définir chacun une somme à épargner tous les mois pendant un an et de faire en suite des placements sur un certain nombre d'année. Son père trouve la proposition intéressante mais souhaite placer son argent dans une banque qui pratique un taux d'intérêt tel qu'en deux ans il aurait au moins les $\frac{30}{27}$ de ce qu'il a déposé. Sa mère très contente dit à son mari : « Moi j'épargnerai chaque mois le triple de mon épargne mensuelle habituelle pour que déjà à la fin de l'année nous dépassions ensemble 1.800.000 FCFA; de plus je n'irai pas vers une banque mais je passerai mon argent à mes amies commerçantes à qui je demanderai un intérêt annuel fixe ».

Mimi est alors chargée de faire une enquête sur les taux d'intérêt pratiqués par les banques de la sous-région et de planifier le projet de ses parents ; mais elle se demande comment s'y prendre.

Tâche: Tu vas te construire de nouvelles connaissances en mathématique; pour cela, tu auras, tout au long de la S.A., à:

- Exprimer ta perception de chacun des problèmes posés;
- Analyser chacun des problèmes ;
- Opérer sur l'objet mathématique que tu as identifié pour chaque problème;
- Améliorer au besoin ta production.

Séquence n°1 : Equations et inéquations du second degré

1.1 Equation du second degré dans $\mathbb R$

Activité 1.1

Mimi désire écrire une expression traduisant le montant de l'épargne de son papa. Elle désire aussi écrire une relation mathématique lui permettant de déterminer son gain journalier. Si on désignait par X son gain journalier.

1.1.1 Polynômes du second degré – Equation du second degré dans \mathbb{R}

Consigne 1.1

- 1. Précise le carré de son gain.
- 2. Donne le double du gain.
- 3. On considère les expressions suivantes : -800; 20X et X^2
- 4. Donne l'expression traduisant l'épargne (E) de ce papa sachant qu'elle fait la somme des expressions citées ci-dessus puis nomme l'expression obtenue.
- 5. Ecrire une expression mathématique permettant de calculer le montant du gain X sachant que l'épargne du papa de Mimi est 500 puis nomme l'expression obtenue.

Stratégies et durées : TI : 4min TC : 5min

Définition

x est une variable réelle et a, b et c sont des réels tel que $a \neq 0$.

Un polynôme de forme réduite $P(x) = ax^2 + bx + c$ est appelé **polynôme du second degré**.

Vocabulaire

- Le coefficient du monôme de degré 2 est a ;
- Le coefficient du monôme de degré 1 est b;
- Le coefficient du monôme de degré 0 est *c*.

1.1.2 Identification des coefficients d'un polynôme

Consigne 1.2

P(x) est un polynôme du second degré tel que $P(x) = ax^2 + bx + c$.

Remplir le tableau suivant :

P(x)	$-3x^2 + 1$	$2x^2 + x$	$5x^2 + x + 1$	$4x^2 - x\sqrt{3} + 1$
а				
b				

С

Stratégies et durée : TI : 3min

TC:5min

1.1.3 Forme canonique d'un polynôme du second degré

Consigne 1.3

On considère le polynôme du second degré définit par $P(x) = ax^2 + bx + c$ avec $a \neq 0$

L'expression
$$P(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right]$$
 est appelée **forme canonique de** $P(x)$.

Tu vas retrouver la forme canonique de P(x) en suivant les consignes ci-dessous.

- 1. Mets en facteur le réel a dans l'expression $P(x) = ax^2 + bx + c$ sachant que $a \ne 0$.
- 2. Développe l'expression $\left(x + \frac{b}{2a}\right)^2$.
- 3. A partir du développement de $\left(x + \frac{b}{2a}\right)^2$, tire l'expression $x^2 + \frac{b}{a}x$.
- 4. Remplace $x^2 + \frac{b}{a}x$ par son expression dans P(x) puis retrouve la forme canonique de P(x).

Stratégies et durée: TI: 4min TC: 7min

Retenons

Tout polynôme du second degré $P(x) = ax^2 + bx + c$ peut s'écrire sous la forme :

$$P(x) = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right]$$

On dit qu'on a écrit la **forme canonique** de P(x).

Application 1.1

Détermine la forme canonique de chacun des polynômes ci-après

- a) $E(x) = x^2 + 20x 800$
- b) $Q(x) = -3x^2 + 5x + 3$
- c) $K(x) = 2x^2 + 2x + 1$
- d) $G(x) = -x^2 x + 2$

Stratégies et durée : TI : 4min TC : 10min

1.1.4 Discriminant d'un polynôme du second degré

Consigne 1.4

- 1. Mets P(x) sous la forme canonique $P(x) = a \left[\left(x + \frac{b}{2a} \right)^2 \beta \right].$
- 2. Extrais l'expression du numérateur de β . Cette expression est appelée « discriminant de P(x)» et on note Δ .

Stratégies: TI: 4min TC: 5min

Retenons: Discriminant d'un polynôme

Pour écrire un polynôme du second degré $P(x) = ax^2 + bx + c$ sous forme canonique, on également utiliser la formule suivante :

$$P(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] \text{ avec } \Delta = b^2 - 4ac$$

Le nombre Δ est appelé **discriminant** de P(x).

Application 1.2

Calculer le discriminant de chacun des polynômes suivants :

- (a) $A(x) = x^2 12x 28$
- (b) $B(y) = -2y^2 + 2y 5$
- (c) $C(z) = z^2 10z$

Stratégies et durée : TI : 4min TC : 5min

1.1.5 Racines d'un polynôme du second degré

Consigne 1.5

Soit G(x) un polynôme du second degré définit

par
$$G(x) = x^2 - x - 2$$
 et $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

- 1. Calcule le discriminant Δ de G(x).
- 2. Détermine les réels x_1 et x_2 .
- 3. Calcule $G(x_1)$ et $G(x_2)$ et dis ce que tu constates.

Information

On dit que x_1 et x_2 sont des racines de G(x).

Stratégies et durée : TI : 4min TC : 5min

Retenons

Pour déterminer les racines d'un polynôme du second degré $P(x) = ax^2 + bx + c$ on peut :

- calculer son discriminant $\Delta = b^2 4ac$
- utiliser le tableau suivant :

• utiliser le tableau survailt :								
Discriminant	Δ< 0	$\Delta = 0$	Δ> 0					
Racines	P(x) n'a pas de racine réelle	P(x) a une racine double	P(x) a deux racine distincts:					
	recine	$x_0 = \frac{b}{2a}$	$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$					
			$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$					

Remarque

Si les coefficients a et c sont de signe contraire, alors $\Delta > 0$ donc P(x) admet deux racine distinctes.

Application 1.3

Soit les polynômes du second degré suivants :

$$F(x) = 2x^2 + 2x - 4$$
; $Q(x) = x^2 + x + 1$ et

$$Z(x) = 2x^2 - 4x + 2$$

- 1. Calcule si possibles les racines de chacun de ces polynômes.
- 2. Que constates-tu par rapport à la valeur du discriminant et des racines de ces polynômes ?

Stratégies: TI: 4min TC: 5min

1.1.6 Factorisation d'un polynôme du second degré à l'aide de ses racines

Consigne 1.6

On considère le polynôme du second degré $P(x) = ax^2 + bx + c$ avec $a \ne 0$ et soient x_1 et x_2 les racines évidents de ce polynôme.

Information

L'expression $P(x) = a(x - x_1)(x - x_2)$ est appelée la forme factorisée de P(x).

Factorise alors si possible les polynômes suivants :

(a)
$$P(x) = x^2 - x + 1$$

(b)
$$Q(x) = x^2 + x - 3$$

(c)
$$R(x) = -\frac{1}{2}x^2 + 4x - 8$$

Stratégies : TI : 4min TC : 5min

Retenons : Factorisation d'un polynôme du second degré

Pour factoriser un polynôme du second degré $P(x) = ax^2 + bx + c = 0$, on peut :

- calculer son discriminant $\Delta = b^2 4ac$;
- utiliser le tableau ci-dessous :

Discriminant	Δ< 0	$\Delta = 0$	$\Delta > 0$
Forme	P(x) n'est	P(x)=	P(x)=
factorisée	pas	$P(x) = a(x - x_0)^2$	$a(x-x_1)$
	factorisable	avec	$P(x) = a(x - x_1)$ $(x - x_2)$
		$x_0 = -\frac{b}{2a}$	avec
			$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$
			$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Application 1.4

Dans chacun des cas suivants, factorise si possible le polynôme du second degré P(x)

(a)
$$P(x) = x^2 + 6x - 7$$

(b)
$$P(x) = x^2 - 8x + 17$$

(c)
$$P(x) = 2x^2 + 4x + 6$$

(d)
$$P(x) = 9x^2 + 6x + 1$$

Stratégies : TI : 4min TC : 5min

1.1.7 Résolution d'une équation du second degré à l'aide du discriminant

Retenons : Résolution d'une équation du second degré

Pour résoudre une équation du second degré (E): $ax^2 + bx + c = 0$, on peut :

- calculer son discriminant $\Delta = b^2 4ac$;
- utiliser le tableau suivant :

Consigne 1.7

A l'aide du discriminant, résous dans \mathbb{R} chacune des équations suivantes : (E_1) : $x^2 - 2x + 2 = -1$; (E_2) : $2x^2 - 5x + 3 = 0$ et (E_3) : $2x^2 - 4\sqrt{3}x = -6$

1.1.8 Problème conduisant à une équation du second degré à une inconnue dans $\mathbb R$

Consigne 1.8

Un champ rectangulaire est tel que sa longueur vaut 5m de plus que sa largeur et l'aire de sa surface est 1800m2.

- 1. En désignant par x la longueur du terrain, exprime sa largeur en fonction de x.
- 2. Montre que x(x + 5) = 1800.
- 3. Détermine les dimensions de ce champ.

Stratégies : TI : 4min TC : 5min

1.1.9 Résolution d'une équation du troisième degré

Consigne 1.9

On donne le polynôme suivant : $P(x) = x^3 + x^2 - 10x + 8$

1. (a) Calcule P(1) et P(0).

Information

Soit α un réel.

Si $P(\alpha) = 0$ alors α est une racine de P(x).

- (b) Que représente 1 pour P(x)?
- 2. Vérifie que pour tout réel x, $x^3 + x^2 10x + 8 = (x 1)(x^2 + 2x 8)$
- 3. Résous dans \mathbb{R} l'équation $x^2 + 2x 8 = 0$.
- 4. Factorise $x^2 + 2x 8$.
- 5. Résous dans \mathbb{R} l'équation P(x) = 0.

Stratégies : TI : 5min TC : 10min

Retenons

Soit P(x) un polynôme du troisième degré tel que $P(x) = ax^3 + bx^2 + cx + d$ et α un réel

- α est une racine de P(x) si et seulement si $P(\alpha) = 0$
- Si α est une racine de P(x), alors $P(x) = (x \alpha)Q(x)$ où Q(x) est un polynôme du second degré. On détermine Q(x) par les méthodes d'identification des coefficients de P(x) ou de division euclidienne.

Application 1.5

Soit $h(x) = x^3 - 5x^2 - 3x + 9$

- 1. Calcule h(3) puis h(1).
- 2. Ecrire h(x) sous la forme de produit de facteur premier 1^{er} degré.
- 3. Résoudre dans \mathbb{R} l'équation h(x) = 0.

Stratégies : TI : 4min TC : 5min

Application 1.6

Soit l'équation $(E): x^3 + 2x + 3 = 0$,

- 1. Vérifie que -1 est une solution de (E).
- 2. Vérifie l'égalité :

- $x^3 + 2x + 3 = (x + 1)(x^2 x + 3).$
- 3. Résoudre alors (E).

Stratégies : TI : 4min TC : 5min

1.1.10 Somme et produit des solutions d'un polynôme du second degré

Consigne 1.10

On considère l'équation $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \neq 0$ et dont le discriminant Δ est supérieur ou égal à 0. On désigne par x_1 et x_2 les solutions de cette équation.

- 1. Justifie que $x_1 + x_2 = -\frac{b}{a}$.
- 2. Justifie que $x_1 \times x_2 = \frac{c}{a}$.

Stratégies : TI : 4min TC : 5min

Propriété

Si l'équation du second degré $ax^2 + bx + c = 0$ a deux solutions x_1 et x_2 , alors $x_1 + x_2 = -\frac{b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$.

Consigne 1.11 : Conséquence de la propriété

Soit $P(x) = ax^2 + bx + c$ avec a, b et c des réels tels que $a \neq 0$.

Démontre que pour $\Delta > 0$, P(x) = 0 équivaut à : $x^2 - Sx + P = 0$ où S et P sont respectivement somme et produit des solutions de P(x) = 0.

Stratégies : TI : 4min TC : 5min

Propriété

Soit l'équation du second degré (E): $ax^2 + bx + c = 0$; x_1 et x_2 deux réel tels que $P = x_1 \times x_2$ et $S = x_1 + x_2$ x_1 et x_2 sont deux solutions de (E) si et seulement si $x^2 - Sx + P = 0$.

Application 1.7

Ayomidé dispose d'un terrain rectangulaire de $300 m^2$ de superficie et de 70 m de périmètre. Détermine les dimensions de ce terrain.

Stratégies : TI : 4min TC : 5min

1.1.11 Equations bicarrées

Définition

On appelle **équation bicarrée**, une équation de la forme $ax^4 + bx^2 + c = 0$ avec $a \ne 0$

Consigne 1.12

On considère les équations suivantes : (E_1) : $4t^2 - 8t + 3 = 0$; (E_2) : $4x^4 - 8x^2 + 3 = 0$ et

 $(E_3): 3x^4 - 27x^2 = 0.$

1. Résous dans \mathbb{R} , l'équation : (E_1) .

- 2. (a) En posant $t = x^2$, justifie que l'équation (E_2) devient $4t^2 8t + 3 = 0$.(b) Déduis-en la résolution de l'équation (E_2) dans \mathbb{R} .
- 3. Résous dans \mathbb{R} l'équation (E_3) .

Stratégies: TI: 4min TC: 5min

1.2 Inéquation du second degré à une inconnue dans \mathbb{R}

1.2.1 Etude de signe d'un polynôme du second degré

Retenons

Soit le polynôme du second degré $P(x) = ax^2 + bx + c$.

Le discriminant de P(x) est le nombre $\Delta = b^2 - 4ac$.

On a:
$$P(x) = a \left[(x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2} \right]$$

L'expression de la forme canonique de montre que l'étude de signe d'un polynôme du second degré dépend du signe de son discriminant. Examinons quelques cas dans les consignes suivantes:

Consigne 1.13 : Le discriminant est négatif

 $Soit P(x) = x^2 - 2x + 3$

- 1. Calcule le discriminant de P(x).
- 2. Ecris sous forme canonique P(x).
- 3. Justifie que pour tout nombre réel x, P(x) > 0.

Stratégies : TI : 4min TC : 5min

Retenons

Soit le polynôme du second degré $P(x) = ax^2 + bx + c$

Lorsque le discriminant Δ est inférieure à zéro, alors le signe de P(x) est celui de a

Consigne 1.14: Le discriminant est nul

On considère le polynôme $Q(x) = 4x^2 - 20x + 25$.

- 1. Calcule le discriminant de Q(x).
- 2. Justifie que $Q(x) = 4\left(x \frac{5}{2}\right)^2$.
- 3. Etudie le signe Q(x).

Stratégies : TI : 4min TC : 5min

Retenons

Soit le polynôme du second degré

$$P(x) = ax^2 + bx + c$$

Lorsque le discriminant Δ est égal à zéro, alors le signe de P(x) est celui de a

Consigne 1.15: Le discriminant est positif

Soit le polynôme $S(x) = 2x^2 + 5x - 3$

- 1. Calcule le discriminant de S(x).
- 2. Justifie que pour $x \in \mathbb{R}$, $S(x) = 2(x+3)(x-\frac{1}{2})$.
- 3. Etudie le signe de S(x).

Stratégies: TI: 4min TC: 5min

Retenons

Soit le polynôme du second degré $P(x) = ax^2 + bx + c$

Pour étudier le signe de P(x), on peut calculer son discriminant et utiliser l'un des tableaux suivants :

Δ< 0							
P(x) n'a pas de racine							
x	-∞	-∞ +∞					
Signe de $P(x)$	signe de a						

Δ = 0							
$P(x)$ a une racine double $x_0 = -\frac{b}{2a}$							
x	-∞	_	<u>b</u> 2a	+∞			
Signe de $P(x)$	sign	ie de a	9	signe de <i>a</i>			

		Δ> 0		
P(x) a deux r	acines d	istinctes x_1	$=\frac{-b-\sqrt{\Delta}}{2a}$ et x	$r_2 = \frac{-b + \sqrt{\Delta}}{2a}$
x	-∞	x_1	x_2	+∞
Signe de $P(x)$	signe	de a sign	ne de $-a$	signe de <i>a</i>

Application 1.8

Etudie, suivant les valeurs de x, le signe du polynôme P(x) dans les cas suivants :

(a)
$$P(x) = 4x^2 - x + 1$$

(b)
$$P(x) = -2x^2 + 7x - 3$$

(c)
$$P(x) = -9x^2 + 6x - 1$$

(d)
$$P(x) = x^2 - 5x + 6$$

Stratégies: TI: 4min TC: 8min

1.2.2 Résolution d'une inéquation du second degré

Consigne 1.15

Résous dans $\mathbb R$ les inéquations suivantes :

$$(I_1): 9-x^2 \ge 0$$

$$(I_2): 2x^2 - x - 3 > 0$$

$$(I_3): -x^2 - x - 5 < 0$$

$$(I_4): 4x^2 - 12x + 9 \le 0$$

Stratégies: TI: 4min TC: 10min

1.2.3 Résolution graphique d'une inéquation du second du second degré

Consigne 1.16

On considère l'inéquation du second degré $(I): x^2 - x - 2 \le 0$. On désigne par (\mathscr{C}) la parabole d'équation $y = x^2$ et par (\mathscr{D}) la droite d'équation

$$y = x + 2$$
.

- 1. Trace (②) et (②) dans un même repère orthonormé.
- 2. (a) justifie que (*I*) ⇔ x² ≤ x + 2.
 (b) Déduis alors graphiquement l'ensemble *F* des solutions de (*I*).

Stratégies et durées : TI : 4min TC : 5min

1.2.4 Résolution d'une inéquation bicarrée

Définition

On appelle **inéquation bicarrée**, une inéquation ayant l'une des forme : $ax^4 + bx^2 + c \le 0$; $ax^4 + bx^2 + c \le 0$ et $ax^4 + bx^2 + c > 0$

Consigne 1.17

Résous dans \mathbb{R} l'inéquation (*I*): $x^4 + x^2 - 2 \le 0$. **Stratégies et durées : TI : 4min TC : 5min**

Séquence 2 : Système d'équation et d'inéquation à deux inconnues dans \mathbb{R}^2

2.1 Système d'équations dans $\mathbb{R}\times\mathbb{R}$

Activité 1.2

Dans le souci de réaliser leur projet, la maman de Mimi désire prendre du sable et de gravier. Elle constate que ce que son commerce lui rapporte par mois peut acheter exactement 6 voyages de sable et 4 voyages de gravier. De plus ce bénéfice mensuel permet d'acheter un voyage de sable et 6 voyages de gravier.

2.1.1 Système d'équations linéaires à deux inconnues

Consigne 2.1

On désigne par x le prix d'un voyage de gravier et par y celui d'un voyage de sable.

Traduis sous forme de système d'équations linéaires les informations données.

Stratégies : TI : 4min TC : 5min

Définition

Un système d'équations linéaires à deux inconnues est un système comprenant deux équations linéaires à deux inconnues.

2.1.2 Résolution graphique d'un système de deux équations linéaire dans $\mathbb{R} \times \mathbb{R}$

Consigne 2.2

On suppose que les x et y exprimés en dizaine de milliers de francs vérifient le système :

(S):
$$\begin{cases} 2x + 3y = 16 \\ 6x + y = 32 \end{cases}$$
 et on désigne par (D_1) et (D_2)

les droites d'équations respectives 2x + 3y = 16 et 2x + 3y = 16

- 1. Trace dans un repère orthonormé $(0; \vec{i}; \vec{j})$ les droites (D_1) et (D_2) .
- 2. (a) Détermine graphiquement les coordonnées du point d'intersection A des droites (D_1) et (D_2) . (Tu viens de résoudre graphiquement le système (S))
 - (b) Déduis en le prix d'un voyage de gravier et de sable.

Stratégies : TI : 4min TC : 7min

2.1.3 Résolution d'un système de deux équations linéaire par la méthode de substitution et de combinaison

Consigne 2.3

Résous dans $\mathbb{R} \times \mathbb{R}$ le système de la consigne 2.2 par :

- (a) la méthode de combinaison ou d'addition.
- (b) la méthode de substitution.

Stratégies et durées : TI : 4min TC : 5min

2.1.4 Résolution d'un système de deux équations linéaire par changement de variable

Consigne 2.4

On considère le système (S'): $\begin{cases} 4x + 3\sqrt{y} = 16 \\ 12x + \sqrt{y} = 32 \end{cases}$

- 1. En posant a = 2x et $b = \sqrt{y}$, donne un système équivalent à (S') et dont les inconnues sont a et b.
- 2. Déduis-en le couple (x, y) solution de (S').

Stratégies et durées : TI : 4min TC : 7min

Application 1.9

Résous les systèmes d'équations suivants :

$$(S_1): \begin{cases} 2x + 5y = 3 \\ -x + 3y = -2 \end{cases}; (S_2): \begin{cases} x - 3y = 5 \\ 2x + y = 2 \end{cases} \text{ et}$$
$$(S_3): \begin{cases} \frac{2}{x+2} + \frac{5}{y-1} = 3 \\ -\frac{1}{x+2} + \frac{3}{y-1} = -2 \end{cases}$$

Stratégies et durées TC: 9min

2.2 Système d'inéquation dans $\mathbb{R} \times \mathbb{R}$

Activité 1.3

Le plan est muni d'un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$. (27) est la droite d'équation x + y - 1 = 0; (P_1) et (P_2) les demi – plans définit par (P_1) : x + y - 1 > 0 et (P_2) : x + y - 1 < 0; A(2; 1) est un point du plan.

2.2.1 Découpage du plan

Consigne 2.5

- 1. Trace la droite (\mathcal{D}) dans le repère ($0; \vec{i}; \vec{j}$) puis place le point A.
- 2. (a) justifie que $A \in (P_1)$. (b) Justifie que $A \notin (P_2)$.
- 3. En te servant du point A, identifie les demi plans (P_1) et (P_2) .

Définition

Un système d'inéquations linéaires à deux inconnues est un système comprenant deux inéquations à deux inconnues.

Propriété

Le plan est muni d'un repère (0; I; J). Soit (\mathcal{D}) la droite d'équation ax + by + c = 0.

La droite (D) partage le plan en trois parties :

- La droite (*②*)
- Les deux demi-plans ouverts (P₁) et (P₂)
 de frontières (D)
- Les couples de coordonnées (x; y) des points de (\mathcal{D}) vérifient ax + by + c = 0
- Les couples de coordonnées (x; y) des points d'un demi-plan vérifient ax + by + c > 0
- Les couples de coordonnées (x; y) des points de l'autre demi – plan vérifient ax + by + c < 0

2.2.2 Résolution d'un système de deux inéquations linéaires à deux inconnues

Consigne 2.6

On considère le système d'inéquations

(S):
$$\begin{cases} x+y-1 \le 0 \\ -2x+y \ge 0 \end{cases}$$
 et désigne par (\mathscr{D}) et (Δ) les droites d'équations respectives $x+y-1=0$ et $-2x+y=0$

- 1. Trace dans le repère orthonormé $(0; \vec{\iota}; \vec{j})$ les droites (\mathcal{D}) et (Δ) .
- 2. Déduis en la partie des solutions du système (S).

Stratégies et durées : TI : 4min TC : 5min

Application 1.10

Résous les systèmes d'inéquations suivants :

$$(S_1)$$
: $\begin{cases} 3x - 2y \le 0 \\ x - 2y \ge -1 \end{cases}$ et (S_2) : $\begin{cases} x - 3y - 5 \ge 0 \\ 2x + y < 2 \end{cases}$

Stratégies et durées : TC : 8min

2.2.3 Programmation linéaire

Activité 1.4

Un fournisseur de produits de quincaillerie est sollicité pour vendre à la famille deux types de gons de sécurisation. Le 1^{er} type est à un pincé et le second à deux pincés. Il vend au plus 100 gons par jour et dans son approvisionnement journalier on note 150 pincés

Un gon à pincé rapporte 50F et celui à deux pincés rapporte 70F.

On désigne par x et y les nombres respectifs de gons à un pincé et à deux pincés vendus par jour.

Consigne 2.7

1. Donne l'ensemble auquel appartiennent x et y.

2. Justifie que *x* et *y* vérifient le système

d'inéquations : (S) :
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x + y \le 100 \\ x + 2y \le 150 \end{cases}$$

- 3. Résous graphiquement le système (*S*). (hachure la région ne contenant pas les solutions)
- 4. (a) Exprime en fonction de *x* et *y*, le bénéfice journalier B réalisé par ce fournisseur.
 - (b) Détermine le bénéfice journalier maximal.

Stratégies et durées : TI : 5min TC : 8min

Application 1.11

Pour mettre en œuvre une bonne politique d'épargne, les parents de Mimi décident de créer une petite affaire. Ils décident de fabriquer deux types de biscuits A et B à l'aide de deux machines M₁ et M₂. Chaque carton de biscuit en cours de fabrication doit passer successivement ans les deux machines.

Informations : La machine M_1 est disponible 3000 min/mois et la machine M_2 2000 min/mois

Durée de passage d'un carton de biscuit A:

- Dans la machine M_1 cette durée est égale à 30 min.
- Dans la machine M₂ cette durée est égale à 40 min.

Durée de passage d'un carton de biscuit B :

- Dans la machine M₁ cette durée est égale à 20 min.
- Dans la machine M_2 cette durée est égale à 10 min.
- 1. Traduis les informations de l'activité dans un tableau.
- 2. Traduis ces informations sous forme d'un système d'inéquation.
- 3. Détermine l'ensemble solution de ce système ;
- 4. Détermine la production qui assure un profit maximal sachant que le carton A est vendu à 400F et le carton B vendu à 200F.

Stratégies et durées : TC : 10min

Séquence 3 : Suites arithmétiques—Suites géométriques

3.1 Suite numérique

Définition

On appelle suite numérique, toute fonction de $\mathbb N$ (ou d'une partie de $\mathbb N$) vers $\mathbb R$

Notation et vocabulaire

Soit E l'ensemble de définition d'une suite numérique $\it U$.

Notation fonctionnelle

$$U: \frac{E \to \mathbb{R}}{n \mapsto U(n)}$$

Notation indicielle

 $(U_n)_{n\in\mathbb{N}}$ ou plus simplement U(n) est appelé terme d'indice n ou terme général.

Le $n^{i\`{e}me}$ terme est appelé terme de rang n**Exemple**: Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique définit par $U_n=2n+5$

3.1.1 Suite définie par une formule explicite

Définition

Une suite définie par une formule explicite est une suite dont son terme général est fonction du rang n.

Exemple: Soit $(U_n)_{n\in\mathbb{N}^*}$ la suite définie par

$$U_n = \frac{4n-1}{n}$$

Consigne 3.1

Soit $(U_n)_{n\in\mathbb{N}}$ une suite définit par $U_n=4-2n$

- (a) Détermine les cinq termes de la suite (U_n) .
- (b) Détermine le dixième terme de cette suite.

3.1.2 Suite définie par une formule de récurrence

Définition

Une suite est définie par une formule de récurrence lorsque le terme initial est connu et chaque terme est fonction du terme précédent.

Exemple: Soit $(U_n)_{n\in\mathbb{N}}$ une suite définie par son premier terme $U_0=\frac{1}{2}$ et la formule $U_{n+1}=\frac{1+U_n}{2}$ et

on écrit :
$$\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{1+U_n}{2} \end{cases}$$

Consigne 3.2

Soit
$$(V_n)_{n\in\mathbb{N}}$$
 une suite définit par $\begin{cases} V_0=6\\ V_{n+1}=\frac{1}{4}V_n+2 \end{cases}$

- (a) Détermine les cinq termes de la suite (V_n) .
- (b) Détermine le dixième terme de cette suite.

Stratégies et durées : TI : 4min TC : 5min

Remarque

Pour une suite définie par une formule de récurrence, le premier terme est connu et chaque terme est fonction du précédent.

3.2 Suites arithmétiques

Activité 1.5

La mère de Mimi à épargné 1.200.000F qu'elle décide de prêter à une collègue commerçante le 1^{er} janvier 2000. Cette somme doit lui rapporter à la fin de chaque année un intérêt fixe de 800.000F.

La maman de Mimi se demandait si ce qu'elle va retirer à la fin de l'année 2005 peut dépasser 5.000.000F.

On désigne par S_n la somme que la maman de Mimi doit retirer (capital plus intérêt) le 1^{er} janvier de l'an 2000 + n et on pose $S_0 = 1.200.000$ F.

3.2.1 Connaissance ; définition et propriété d'une suite arithmétique

Consigne 3.3

- 1. Détermine S_1 et S_2 .
- 2. Exprime S_{n+1} en fonction de S_n .
- 3. (a) exprime S_1 et S_2 en fonction de S_0 et r avec r = 800.000.
 - (b) Conjecture S_n en fonction de n et S_0 .
- 4. (a) Calcule S_5 .
 - (b) La mère de Mimi a-t-elle atteint son objectif?

Stratégies et durées : TI : 4min TC : 8min

Définition : Suite arithmétique

Soit $(U_n)_{n\in E}$ une suite numérique. La suite (U_n) est arithmétique si et seulement s'il existe une constante réelle r telle que $\forall n\in E$,

 $U_{n+1} = U_n + r \quad \text{ou} \quad U_{n+1} - U_n = r.$

Le nombre r est appelé raison de la suite (U_n) .

Exemple:
$$\begin{cases} u_0 = 2 \\ u_{n+1} = u_n - 4 \end{cases}$$

La suite $(u_n)_{n\in\mathbb{N}}$ ainsi définie est une suite arithmétique de raison r=-4 et de premier terme $u_0=2$.

Propriétés

- Soit $(U_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme U_0 et de raison r, on a : $U_n=U_0+nr$
- Soit $(U_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r, on a : \forall $n,k\in\mathbb{N}$ (n>k), $U_n=U_k+(n-k)r$

Exemple: (u_n) est une suite arithmétique de raison r = 2 alors on a :

$$u_4 = u_3 + (4-3)2$$

 $u_{10} = u_6 + (10-6)2$
 $u_{100} = u_7 + (100-7)2$

3.2.2 Méthode de démonstration

Pour démontrer qu'une suite (u_n) est arithmétique, on détermine d'abord u_{n+1} et ensuite on détermine $u_{n+1}-u_n$. La valeur trouver au calcule de $u_{n+1}-u_n$ est la raison de la suite (u_n)

Application 1.12

Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique de terme général $U_n=2n+5$

- 1. Détermine les cinq premiers termes de la suite (U_n) .
- 2. Démontre que la suite (U_n) est arithmétique dont tu préciseras sa raison et son premier terme.

Stratégies et durées : TI : 5min TC : 7min

3.2.3 Somme des termes consécutifs d'une suite arithmétique

Définition

La somme S de n termes consécutifs d'une suite arithmétique (u_n) est égale au produit par n de la demi – somme des termes extrêmes.

$$S = u_a + u_{a+1} + u_{a+2} + \dots + u_n$$
$$S = \frac{(n-a+1)(u_a+u_n)}{2}$$

- (n-a+1) est le nombre de terme de la somme S avec n l'indice du premier dernier terme et a l'indice du premier terme;
- u_a est le 1^{er} terme de la somme S et u_n son dernier terme.

Application 1.13

On considère la suite arithmétique $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=-5n+2$ et on pose $S=u_0+u_1+\cdots u_{30}$ et $S'=u_5+u_1+\cdots u_{15}$ Détermine S et S'

Stratégies et durées : TI : 4min TC : 5min

3.2.4 Détermination d'une suite arithmétique

Consigne 3.4

 $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique telle que $u_8=-5$ et $u_{15}=37$.

Détermine la raison et le 1^{er} terme de cette suite. **Stratégies et durées : TI : 4min TC : 5min**

3.2.5 Résolution de problème conduisant à une suite arithmétique

Consigne 3.5

En 2005, 3000 contrôles radar ont été effectués sur une autoroute de Dakar. Il a été prévu d'augmenter le nombre de ces contrôles de 100 tous les ans.

- 1. Calcule le nombre de contrôles effectués en 2006.
- 2. On désigne par C_n le nombre de contrôles effectués au bout de n années.
 - (a) Quelle est la nature de la suite (C_n) ?
 - (b) Exprime C_n en fonction de n.
 - (c) Quel est le nombre de contrôles effectués en l'an 2010 ?
 - (d) Au combien d'années le nombre de contrôles atteindra t il 5000 ?
- 3. Quel est le nombre total de contrôles de l'année 2005 à l'année 2014 ?

Stratégies et durées : TI : 5min TC : 7min

3.3 Suites géométriques

Activité 1.6

Le père de Mimi a économisé sur une année une somme de 820.000F et veut qu'après 5 ans de placement, son avoir soit au moins 1.500.000F. Il décide alors de placer cette somme en premier janvier 2000 dans une banque qui pratique un taux d'intérêt annuel de 6%. On désigne par A_n l'avoir du papa de Mimi à la fin de la $n^{i\`{e}me}$ année si ce dernier a fait un placement compte bloqué et on pose $A_0=820.000$ F.

3.3.1 Connaissance ; définition et propriété d'une suite géométrique

Consigne 3.6

- 1. (a) Calcule A_1 ; A_2 et A_3 .
 - (b) Exprime A_n en fonction de A_{n-1} .
- 2. Exprime A_1 ; A_2 et A_3 en fonction de A_0 .
- 3. (a) En observant A₁; A₂ et A₃, donne
 l'expression de A_n en fonction de A₀ et de n.
 (b) Déduis en A₅.
- 4. L'objectif du père de Mimi est il atteint?

Stratégies et durées : TI : 5min TC : 7min

Définition: Suite géométrique

Soit $(U_n)_{n\in E}$ une suite numérique. La suite (U_n) est géométrique si et seulement s'il existe une constante réelle q telle que $\forall n \in E$,

$$U_{n+1} = q \times U_n$$
 ou $\frac{U_{n+1}}{U_n} = q$.

Le nombre q est appelé **raison** de la suite (U_n) .

Exemple:
$$\begin{cases} v_0 = \frac{2}{3} \\ v_{n+1} = 2u_n \end{cases}$$

La suite $(v_n)_{n\in\mathbb{N}}$ ainsi définie est une suite géométrique de raison q=2 et de premier terme

$$v_0 = \frac{2}{3}.$$

Propriétés

- Soit $(U_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme U_0 et de raison q, on a : $U_n = U_0 \times q^n$
- Soit $(U_n)_{n \in \mathbb{N}}$ une suite géométrique de raison q, on a : $\forall n, k \in \mathbb{N} \ (n > k), U_n = U_k \times q^{n-k}$

Exemple: (u_n) est une suite géométrique de raison q = 2 alors on a :

$$u_3 = u_0 \times (2)^3$$

 $u_5 = u_3 \times (2)^{5-3}$

$$u_{10} = u_7 \times (2)^{10-7}$$

$$u_{50} = u_{13} \times (2)^{50-13}$$

3.3.2 Méthode de démonstration

Pour démontrer qu'une suite (u_n) est géométrique, on détermine d'abord u_{n+1} et ensuite on détermine $\frac{u_{n+1}}{u_n}$.

La valeur trouver au calcule de $\frac{u_{n+1}}{u_n}$ est la raison de la suite (u_n)

Application 1.13

On considère la suite numérique $(v_n)_{n\in\mathbb{N}}$ définit par $v_n=10^n$

- 1. Détermine les cinq premiers termes de la suite (v_n) .
- 2. Démontre que la suite (v_n) est géométrique et précise sa raison et son premier terme.

Stratégies et durées : TI : 4min TC : 5min

3.3.3 Somme des termes consécutifs d'une suite géométrique

Définition

Soit (u_n) une suite géométrique de raison q et de premier terme u_a .

La somme S de n termes consécutifs de la suite la suite (u_n) est :

- Si $q \neq 1$ alors $S = u_a \times \frac{1-q^n}{1-q}$
- Si q = 1 alors $S = n \times u_a$

3.3.4 Détermination d'une suite géométrique

Consigne 3.7

 $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique telle que $u_3=-5$ et $u_6=40$

Détermine la raison et le premier terme de cette suite.

Stratégies et durées : TI : 4min TC : 5min

3.3.5 Résolution de problème conduisant à une suite arithmétique

Consigne 3.8

Une population de bactéries double toutes les heures.

- 1. Au bout de combien d'heures la population sera-t-elle multipliée par 128 ?
- 2. Par combien sera t elle multipliée au bout de 8 heures ?

Stratégies et durées : TI : 4min TC : 5min

Application 1.14

On considère les suites (u_n) et (v_n) définies par :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{1}{2}u_n - (n+1) \text{ et } v_n = u_n + 2n - 2 \end{cases}$$

$$(n \in \mathbb{N})$$

1. Démontre que la suite (v_n) est une suite géométrique et précise sa raison et son premier terme.

- 2. Exprime v_n en fonction de n puis u_n en fonction de n.
- 3. Soit (w_n) une suite géométrique de raison 3 tel que $v_2 = 2$.

Détermine le terme général de la suite (w_n) .

Stratégies et durées : TC : 10min

Séquence 4 : Statistiques

4.1 Caractéristiques d'une série statistique
4.1.1 Caractéristiques de position : Mode –
Médiane – Moyenne d'une série
statistique

Activité 1.7

Mimi veut connaître le taux d'intérêt le plus avantageux appliqué par les banques de la sous-région à ses clients. Pour cela elle collecte le taux d'intérêt suivants en pourcentage.

Elle se demande comment organiser ses données en vue d'opérer le meilleur choix.

8	10	9	10	9	9	9	11	8	9
12	11	8	10	12	11	9	10	9	11
12	9	10	11	8	10	8	8	10	12

Consigne 4.1

- 1. Dresse le tableau des effectifs de cette série statistique.
- 2. Calcule la moyenne \bar{x} de cette série statistique.
- 3. Dresse le tableau des effectifs cumulés croissants et décroissants de cette série statistique.
- 4. Quelle est la modalité ayant le plus grand l'effectif?
- 5. Quelle est la modalité pour laquelle le cumule des effectifs croissant et décroissant atteint 15 ?

Stratégies et durées : TI : 5min TC : 8min

Définitions

Soit une série statistique de modalité (x_i) $1 \le i \le n$ d'effectifs (n_i) $1 \le i \le n$ et d'effectif total N

- 1. On appelle mode d'une série statistique, toute modalité ayant le plus grand effectif. On note M_0 .
- 2. On appelle **médiane** d'une série statistique, le nombre noté M_e , tel que 50% des modalités sont inférieures ou égales à M_e et 50% supérieures ou égales à M_e .

3. On appelle moyenne d'une série statistique, le nombre réel \bar{x} tel que :

$$\bar{x} = \frac{1}{N} \sum n_i x_i$$

4. On appelle fréquence d'une série statistique le nombre réel

$$f = \frac{n_i \times 100}{N}$$

Remarque

La médiane d'une série statistique n'est pas toujours une modalité de cette série.

Vocabulaire

La médiane, le mode et la moyenne sont appelés caractéristiques de position

4.1.2 Caractéristiques de dispersion : Variance – Ecart type d'une série statistique

Consigne 4.2

Pour la série des taux d'intérêt, on donne le tableau suivant :

Modalité(x_i)	8	9	10	11	12	Total
Effectifs (n_i)						
$x_i - \bar{x}$						
$(x_i - \bar{x})^2$						
$n_i(x_i-\bar{x})^2$						

- 1. Reproduis et complète le tableau ci dessus.
- 2. Calcule le nombre réel $=\frac{1}{N}\sum n_i(x_i-\bar{x})^2$.
- 3. Calcule le nombre réel $\sigma = \sqrt{V}$.

 $Stratégies\ et\ durées: TI: 7min \qquad TC: 10min$

Définitions

• La variance d'une série statistique, notée V, est la moyenne des carrés des écarts à la moyenne.

On a:

$$V = \frac{1}{N} \sum n_i (x_i - \bar{x})^2$$
 ou $V = (\frac{1}{N} \sum n_i x_i^2) - (\bar{x})^2$

• L'écart type, noté σ , est la racine carrée de la variance : $\sigma = \sqrt{V}$

Vocabulaire

La variance et l'écart type sont appelés caractéristiques de dispersion.

Application 1.15

A l'issu d'un devoir, les élèves d'une classe de 1^{ère} ont obtenu les notes suivantes :

Note	7	8	9	1	1	1	1	1	1	1
(x_i)				0	1	2	3	4	5	6
Effecti	1	2	3	7	1	8	6	5	4	3
$f(n_i)$					1					

- 1. Détermine le mode et l'effectif total de cette série statistique.
- 2. Calcule la moyenne et l'écart type de cette série statistique.
- 3. Détermine la médiane de cette série statistique.

Stratégies et durées : TC : 10min

4.2 Séries à modalité regroupées en classes

Note : Lorsque dans une population les caractères étudiés sont trop nombreux, on peut procéder à un regroupement en classe. Une classe étant un intervalle de la forme [a, b[avec a et b des réels.

Définitions

On considère une série statistique, à modalités regroupées en classes.

- On appelle effectif cumulé croissant (ECC)
 relatif à une classe, la somme des effectifs de
 cette classe et de celles qui la précèdent;
- On appelle effectif cumulé décroissant (ECD) relatif à une classe, la somme des effectifs de cette classe et de celles qui lui succèdent ;
- On appelle fréquence cumulée croissante (FCC) relative à une classe, la somme des effectifs de cette classe et de celles qui la précèdent;
- On appelle fréquence cumulée décroissante (FCD) relative à une classe, la somme des effectifs de cette classe et de celles qui lui succèdent;
- La fréquence cumulée est égale au quotient de l'effectif cumulé par l'effectif total ;
- On appelle classe modale d'une série statistique à modalités regroupées en classes, toute classe dont l'effectif est le plus grand.
- Le centre de la classe $[a_i; b_i]$ est le nombre c tel que $c = \frac{a_i + b_i}{2}$

Remarque

Une série statistique à modalités groupées en classes peut avoir plusieurs classes modales

Retenons

- 1. Pour représenter graphiquement dans un repère orthogonal, les effectifs cumulés croissants, on peut :
 - (a) placer le premier point, d'abscisses la bonne inférieure de la première classe et d'ordonnées 0;
 - (b) placer les autres points, d'abscisses les bornes les bornes supérieures des classes et d'ordonnées les effectifs cumulés correspondants;
 - (c) joindre ces points par des segments.
- 2. Pour représenter graphiquement dans un repère orthogonal, les effectifs cumulés décroissants, on peut construire les points dont les abscisses sont les bornes inférieures des classes (sauf le dernier point) et dont les ordonnées sont les effectifs cumulés décroissants correspondants. On joint ces points par des segments.
- 3. Le polygone des effectifs cumulés croissants et décroissants se coupent au point d'ordonnée $\frac{N}{2}$ avec N l'effectif total de la série.
- 4. Par analogie on construire le polygone des fréquences cumulés croissants et décroissants.
- 5. La médiane d'une série groupée en classes, est l'abscisse du point d'intersection du polygone des effectifs cumulés croissant et décroissant.

Activité 1.8

Mimi regroupe le taux d'intérêt pratiqués par les banques dans le tableau suivant :

par les bariques dans le tableau survaire.								
Classes	[7;9[[9;11[[11;13[Total				
Effectifs (n_i)								
ECC								
ECD								
FCC								
FCD								
Centre c_i								
$n_i c_i$								
$c_i - \bar{x}$								
$n_i(c_i-\bar{x})^2$								

Consigne 4.3

- 1. Reproduis et complète le tableau ci dessus.
- 2. Calcule le nombre réel = $\frac{1}{N} \sum n_i (c_i \bar{x})^2$.
- 3. Calcule le nombre réel $\sigma = \sqrt{V}$.
- 4. Représente:

- (a) l'histogramme de cette série statistique.
- (b) le polygone des effectifs cumulés croissants et décroissants de cette série statistique.

Définition

Dans une série statistique groupée en classes,

- 1. la variance est le nombre réel V tel que $V = \frac{1}{N} \sum n_i (c_i \bar{x})^2 \text{ ou } V = \left(\frac{1}{N} \sum n_i c_i^2\right) (\bar{x})^2$
- 2. L'écart type, noté σ , est la racine carrée de la variance : $\sigma = \sqrt{V}$

Application 1.16

Les tableaux A et B ci-dessous donnent respectivement la répartition de certains candidats à un concours organisé par la mairie de Parakou, selon leurs notes en mathématique et la distribution des primes de déplacement aux élèves participants.

Tableau A

Notes	[0, 2[[2, 3[[3, 4[[4, 6[[6, 8[Total			
Effectifs	6	9		15	7				
ECC					40				

Tableau B

Prime	[300,	[600;700[[700,	[800;900[Total
(CFA)	600[]008		
Effectifs	3	21	6	10	40
II	1	I	1		

- 1. Calcule la moyenne, la variance, le mode du tableau A après l'avoir complété.
- 2. Pour le tableau B:
 - (a) Calcule l'écart-type et le mode.
 - (b) Construit l'histogramme et polygone des effectifs.
 - (c) Calcule la médiane.
 - (d) Construis sur le même graphe, le polygone des effectifs cumulés croissants et des effectifs cumulés décroissantes.

Stratégies et durées : TC : 10min

Séquence 5 : Dénombrement

5.1 Compléments sur les ensembles

Activité 1.9

A la suite de ses enquêtes, Mimi décide d'étudier les différents taux d'intérêts pratiqués par les banques dans deux différents pays A et B de la sous-région. Elle obtient la représentation suivante:

5.1.1 Réunion et intersection de deux ensembles

Consigne 5.1

- 1. Dresse les éléments des ensembles A; B et E.
- 2. Quels sont les éléments de E appartenant à la fois à A et à B?
- 3. Quels sont les éléments de E appartenant à l'un au moins des ensembles A et B?
- 4. Quels sont les éléments de E n'appartenant ni à A ni à B?

Stratégies et durées : TI : 4min TC:5min

Définitions

Soit A et B deux parties d'un ensemble E.

- 1. Un ensemble est dit fini s'il est vide ou si on peut compter tous ses éléments.
- 2. On appelle intersection de A et B, l'ensemble des éléments de E appartenant à A et à B. On note $A \cap B$ et on lit « A inter B ». $x \in A \cap B$ signifie que $x \in A$ et $x \in B$
- 3. On appelle réunion de A et B, l'ensemble des éléments de E appartenant à A ou à B. On note $A \cup B$ et on lit « A union B ». $x \in A \cup B$ signifie que $x \in A$ ou $x \in B$.

Propriété

Soit E un ensemble non vide de \mathbb{R} . Le nombre d'éléments de E est appelé "cardinal de **E**". Si *n* est le nombre d'éléments de E alors $Card(E) = n; n \in \mathbb{N}^*$ Soit A et B deux parties d'un ensemble fini E. On a:

 $Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$

Remarque

Si $A \cap B = \phi$ alors $Card(A \cup B) = Card(A) +$ Card(B)

Application 1.17

Chacun des 40 élèves d'une classe étudie l'arabe ou le français. 15 élèves étudient les deux langues. Combien d'élèves étudient une seule des deux langues?

Stratégies et durées : TI : 4min TC:5min

Application 1.18

Dans un club sportif, tous les membres pratiquent au moins un des deux sports proposés : le basket et le handball. 850 membres pratiquent le basket, 600 pratique le handball et 250 pratiquent les deux sports.

Combien de membres compte ce club sportif? Stratégies et durées : TI : 4min

5.1.2 Complémentaire d'un ensemble

Consigne 5.2

On désigne par \bar{A} l'ensemble des éléments de E n'appartenant pas à A.

- 1. Dresse les éléments de \bar{A} .
- 2. Détermine $Card(\bar{A})$ en fonction de Card(E)et de Card(A).

Stratégies et durées : TI : 4min TC:5min

Définition : Complémentaire d'un ensemble

On appelle complémentaire de A dans E, l'ensemble des éléments de E n'appartenant pas à

On note C_E^A ou \bar{A} ; on lit « complémentaire de Adans E.

Propriété: Cardinal du complémentaire d'un ensemble

Soit *A* une partie d'un ensemble fini *E*. On a : $Card(\bar{A}) = Card(E) - Card(A)$.

5.1.3 Produit cartésien

Consigne 5.3

On choisit successivement une banque x de Aet une autre banque y de B; on obtient un couple (x; y) et on désigne par G l'ensemble des couples possibles.

- 1. Détermine l'ensemble G.
- 2. (a) Détermine Card(G).
 - (b) Compare Card(G) et $Card(A) \times Card(B)$.

Stratégies et durées : TI : 4min TC:5min

Définition : Produit cartésien

Soit A et B deux ensembles.

On appelle produit cartésien de A par B l'ensemble des couples (a;b) tels que $a \in A$ et $b \in B$.

On note $A \times B$; on lit « A croix B »

Propriété: Cardinal du produit cartésien

Soit A et B deux ensembles finis.

On a : $Card(A \times B) = Card(A) \times Card(B)$

Application 1.21

Combien de nombres de deux chiffres peut-on écrire si le premier chiffre doit être choisi parmi les chiffres 3, 4 et 7?

Stratégies et durées : TI : 4min TC : 5min

Application 1.20

Dans une épreuve d'examen, on propose 3 sujets de mathématiques et 5 sujets de français. Un candidat doit choisir un sujet de chaque discipline.

Combien a – t – il de choix possibles?

Stratégies et durées : TI : 4min TC : 5min

5.2 p – uplets, arrangements et permutation 5.2.1 p – uplets d'un ensemble

Définition

Soit E un ensemble à n éléments et p un entier naturel non nul On appelle p-uplet de E tout élément de l'ensemble E^p

Propriété

- 1. Le nombre de p-uplet d'un ensemble à n éléments est n^p .
- 2. Le nombre d'applications d'un ensemble à p éléments vers un ensemble à n éléments est égal à n^p .

Application 1.21

Un questionnaire à choix multiples, autorisant une seule réponse par question, comprend 15 questions. Pour chaque question, on propose 4 réponses possibles.

De combien de façons peut-on répondre à ce questionnaire ?

Stratégies et durées : TI : 4min TC : 5min

5.2.2 Arrangements

Définition

Soit E un ensemble à n éléments et p un entier naturel non nul tel que $p \le n$. On appelle **arrangement** de p éléments de E, tout p-uplet d'éléments de E deux à deux distincts.

Propriété

Le nombre d'arrangements de p éléments d'un ensemble à n éléments, noté A_n^p , est tel que :

$$A_n^p = n(n-1)(n-2) \dots (n-p+1)$$

$$A_n^p \text{ est lu "arrangement de } p \text{ dans } n\text{"}.$$

Exemple:
$$A_{10}^4 = 10 \times 9 \times 8 \times 7 = 5040$$

Remarque

- 1. Le nombre de facteurs du produit $(n-1)(n-2) \dots (n-p+1)$ est égal à p.
- 2. Si p > n il est impossible de trouver p éléments deux à deux distincts

Consigne 5.4

Au siège d'une banque de la sous – région se trouve un parking de 7 places. Mimi se demande combien y-t-il de façons d'y garer 4 voitures si deux ne peuvent occuper la même place.

- 1. Que représente l'état d'occupation des 7 places par les 4 voitures?
- 2. Combien y a-t-il de façons de garer la 1^{ère} voiture venue dans le parking?
- 3. Combien y a-t-il de façons de garer la 2^{ème} voiture venue dans le parking?
- 4. Combien y a-t-il de façons de garer la $3^{\grave{e}me}$ voiture venue dans le parking?
- 5. Combien y a-t-il de façons de garer la $4^{\grave{e}me}$ voiture venue dans le parking?
- 6. Détermine donc le nombre de façons qu'il y a de garer les 4 voitures dans le parking.

Stratégies et durées : TI : 4min TC : 5min

Définition

Soit *n* un nombre entier naturel.

1. On appelle factorielle n le nombre entier n! tel que :

$$n! = n(n-1) \times ... \times 3 \times 2 \times 1$$

Exemples

$$9! = 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 362.880$$

$$8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40.320$$

$$7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5.040$$

$$6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$$

2. Par convention, 0!=1

Propriété

- 1. Soit n et p deux entiers naturels non nuls tels que $p \le n$, on a : $A_n^p = \frac{n!}{(n-p)!}$
- 2. Par convention $A_n^0 = 1$

Consigne 5.5

1. Détermine le nombre de façons différentes de faire asseoir dix personnes sur quinze chaises

numérotées de 1 à 15, sachant que deux personnes ne peuvent occuper la même chaise.

2. A l'occasion d'une compétition sportive groupant 18 athlètes, on attribue une médaille d'or, une d'argent, une de bronze. Combien y-a-t-il de distributions possibles (avant la compétition, bien sûr...)?

Stratégies et durées : TI : 4min TC:5min

5.2.3 Permutation

Définition

Soit *E* un ensemble à *n* éléments.

On appelle permutation de *E*, tout arrangement des n éléments de E.

Propriété

Le nombre de permutations d'un ensemble à *n* éléments est n!.

Consigne 5.6

De combien de manières peut-on disposer 6 drapeaux de 6 pays différents sur 6 mâts?

Stratégies et durées : TI : 4min TC:5min

Anagramme d'un mot

On appelle anagramme d'un mot, tout mot formé avec les lettres qui le composent.

Le nombre d'anagrammes de mots de n lettres comportant *k* groupes lettres se répétant

 $p_1, p_2, p_3, ..., p_k$ fois est donc égal à : $\frac{n!}{p_1! p_2! p_3! ... p_k!}$

Application 1.24

Détermine le nombre d'anagrammes de chacun des nombres suivants : MATH, CONSONNES, PATRICE.

Stratégies et durées : TI : 4min TC: 5min

5.3 Combinaison

Définition

Soit *E* un ensemble à *n* éléments et *p* un entier naturel

non nul tel que $p \leq n$.

On appelle **combinaison** de *p* éléments de *E*, tout sous-ensemble de *E* ayant *p* éléments.

Propriété

Le nombre de combinaisons de p éléments d'un ensemble à n éléments noté C_n^p est tel que : $C_n^p = \frac{A_n^p}{p!} = \frac{n!}{p! (n-p)!}$

$$C_n^p = \frac{A_n^p}{p!} = \frac{n!}{p! (n-p)!}$$

 C_n^p est lu " combinaison de p dans n"

Exemple:

$$C_5^3 = \frac{A_5^3}{3!} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10$$
 ou

$$C_5^3 = \frac{5!}{3!(5-3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(2 \times 1)} = 10$$

Consigne 5.6

De combien de façons peut-on choisir 3 femmes et 2 hommes parmi 10 femmes et 5 hommes?

Stratégies et durées : TI : 4min TC:5min Remarque

Une combinaison de p éléments d'un ensemble à n éléments ne peut exister que si $p \le n$.

$$C_n^0 = 1$$
 ; $C_n^1 = n$

Retenons

Pour déterminer le nombre de tirages de p éléments d'un ensemble E à n éléments ($p \le n$), on nout utilisar la tablacu suivant :

on peut uun	on peut utiliser le tableau sulvant :			
Modélisatio	Les p	Les p	Outil	Nbre
n	élément	élément		de
	s sont	s sont		tirag
	ordonné	distinct		e
	S	S		
Tirages	Oui	non	p-uplet	n^p
successifs				
avec remise				
Tirages	Oui	oui	Arrangemen	A_n^p
successifs			ts de <i>p</i>	
sans remise			éléments de	
			E	
Tirages	Non	oui	Combinaison	\mathcal{C}_n^p
simultané			s de p	,,,
			éléments de	
			E	

Evaluation formative 1.1

Une urne contient 6 boules noires, 2 boules blanches et 4 boules vertes.

- 1. On tire simultanément trois boules de l'urne.
 - (a) Détermine le nombre N1 de tirage possible.
 - (b) Détermine le nombre N2 de tirage comportant 3 boules noires.
 - (c) Détermine le nombre N3 de tirage comportant 3 boules de trois couleurs différente (Une boule de chaque couleur).
 - (d) Détermine le nombre N4 de tirage comportant trois boules de même couleur.
- 2. Reprend les questions 1) en supposant que les tirages sont successifs et avec remise.
- 3. Reprend les questions 1) en supposant que les tirages sont successifs et sans remise.

Stratégies et durées : TC : 10min

Evaluation formative 1.2

Une urne contient 3 boules noires; 2 boules blanches; 3 boules rouges

1. On tire simultanément trois boules de l'urne trois boules de l'urne.

- (a) Détermine le nombre N_1 de tirage possible.
- (b) Détermine le nombre N_2 de tirage comportant exactement deux boules noires.
- (c) Détermine le nombre N_3 de tirage comportant au moins une boule noire.
- 2. On tire successivement et sans remise trois boules de l'urne. Détermine le nombre N_4 de tirage comportant trois boules de même couleur.

Stratégies et durées : TC : 10min

Retour et projection

- 1. Qu'as-tu découvert sur la SA1?
- 2. Qu'as-tu appris de nouveau sur la SA1?
- 3. Qu'as-tu trouvé difficile, voire facile sur la SA1?
- 4. Qu'est-ce que tu as réussi?
- 5. Qu'est-ce que tu n'as pas réussi?
- 6. Qu'est-ce que tu vas faire pour améliorer ta production ?

Fin de la SA Nº1

SA N°2: LIEUX GEOMETRIQUE

Situation de départ

Texte: Construction d'un centre commercial.

Nahum a reçu une autorisation de sa mairie pour installer un petit centre de commerce sur un domaine publique. Il ne doit cependant pas dépasser une superficie de $2dam^2$. Il pense à un espace rectangulaire dans lequel il réservera un carré de côté égal à la largeur du rectangle ; ce carré lui servira de hall pour la vente de ses articles. Il pense également réserver pour le bloc administratif un petit rectangle de largeur a comme l'indique le schéma ci-dessous :

Un des amis de Nahum lui conseil de prévoir tout autour du centre un parterre fleuri de largeur 2m. Nahum se demande comment choisir les différentes dimensions pour rester dans la légalité ; il est aussi préoccupé par la gestion des différentes surfaces.

Tu vas te construire de nouvelles connaissances en mathématique; pour cela, tu auras, tout au long de la S.A., à:

- 1. Exprimer ta perception de chacun des problèmes posés.
- 2. Analyser chacun des problèmes.
- 3. Opérer sur l'objet mathématique que tu as identifié pour chaque problème
- 4. Améliorer au besoin ta production

1.1 Fonctions - Applications

1.1.1 Domaine de définition(Rappels)

Définition : Ensemble de définition

f est une fonction définie d'un ensemble A vers un ensemble B.

On appelle ensemble de définition de *f* l'ensemble des éléments de A ayant une image par f. On note souvent D_f l'ensemble de définition de f.

Définition: Application

Une application est une fonction de A vers B qui à chaque élément de A associe un et un seul élément de B Ou bien

Une application est une fonction dont son ensemble de départ est égale à son ensemble de définition.

Retenons

Soit P et Q deux fonctions polynômes et D_f l'ensemble de définition de f. f une fonction définie d'une partie A de \mathbb{R} vers \mathbb{R} :

$$f: \frac{A \to \mathbb{R}}{x \mapsto f(x)}$$

- Si f est sous la forme f(x) = P(x), alors on a : $D_f = \{x \in A / f(x) \text{ existe dans } \mathbb{R}\}$
- Si f est sous la forme $f(x) = \frac{P(x)}{O(x)}$, alors on a : $D_f = \{ x \in A / Q(x) \neq 0 \}$
- Si *f* est sous la forme $f(x) = \sqrt{P(x)}$, alors on

$$D_f = \{ x \in A/P(x) \ge 0 \}$$

- Si f est sous la forme $f(x) = \frac{\sqrt{P(x)}}{Q(x)}$, alors on a : $D_f = \{ x \in A / P(x) \ge 0 \text{ et } Q(x) \ne 0 \}$
- Si f est sous la forme $(x) = \frac{P(x)}{\sqrt{Q(x)}}$, alors on a : $D_f = \{x \in A/Q(x) > 0\}$
- Si f est sous la forme $(x) = \sqrt{\frac{P(x)}{Q(x)}}$, alors on a :

$$D_f = \left\{ x \in A / \frac{P(x)}{Q(x)} \ge 0 \text{ et } Q(x) \ne 0 \right\}$$

Consigne 1.1 : Domaine de définition

Détermine le domaine de définition des fonctions suivantes:

$$f: \mathbb{R} \to \mathbb{R} \\ x \mapsto 3x^2 + 2x - 3 \quad ; \begin{array}{l} g: \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{x^2 - 2x - 3} \end{array}$$

$$h: \mathbb{R} \to \mathbb{R}$$
 $t: \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{2x+3}{2x+1}$; $x \mapsto \frac{2x+3}{x^2-2x-3}$ et

$$u: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{2x+3}{\sqrt{x^2-2x-3}}$$

 $x \mapsto \frac{2x+3}{\sqrt{x^2-2x-3}}$ Stratégie: TI:... min TG:...min

1.1.2 Représentation graphique des fonctions f(-x) et -f(x)

Soit $R = (0; \vec{i}; \vec{j})$ un repère orthogonal et (C_f) la représentation graphique de la fonction f dans \mathbb{R} .

1. La représentation graphique de la fonction g: $x \mapsto -f(x)$ est le symétrique de (C_f) par rapport à $(0; \vec{i}).$

2. La représentation graphique de la fonction h: $x \mapsto f(-x)$ est le symétrique de (C_f) par rapport à $(0; \vec{j})$

1.1.3 Parité d'une fonction

Consigne 1.2 Parité d'une fonction

On considère les fonctions suivantes :

$$f: \mathbb{R} \to \mathbb{R} \\ x \mapsto -x^2 + 1 \qquad \text{et} \begin{array}{c} g: \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{1}{x} \end{array}$$

- 1. Précise les ensembles de définition des fonctions f et g.
- 2. Pour tout x appartenant à \mathbb{R} , calcule f(-x) en fonction de *x* puis dis ce que tu constates.

Information

On dit que la fonction *f* est paire.

3. Pour *x* appartenant à \mathbb{R}^* , calcule g(-x) en fonction de *x* puis dis ce que tu constates.

Information

On dit que la fonction f est impaire.

Stratégie: TI:... min TG:...min TC:...min

Retenons

Soit f une fonction ayant pour domaine de définition D_f et pour courbe représentative (C_f) .

- *f* est une fonction paire si et seulement si : $\forall x \in D_f$, $(-x) \in D_f$ et f(x) = f(-x)
- Dans un repère orthonormé, la courbe représentative d'une fonction paire a un axe de symétrie qui est l'axe des ordonnées.
- *f* est une fonction impaire si et seulement si : $\forall x \in D_f$, $(-x) \in D_f$ et f(x) = -f(-x)
- L'origine du repère est un centre de symétrie de la courbe représentative de la fonction impaire.

Consigne 1.3 Application

On considère les fonctions suivantes : f(x) = $2x^4 + x^2$

$$g(x) = \frac{-x^3 - x}{x^2 - 1}$$
 et $h(x) = x - 1$

- 1. Détermine le domaine de définition des fonctions f, g et h.
- 2. Etudie la parité de chacune des fonctions suivantes.

Stratégie: TI:... min TG:...min TC:...min

1.2 Notion de limite

Activité 2.1

Luc un ami de Nahum élève de la classe de 1ère A voulait tracer la courbe qui permettra de voir l'évolution de la longueur des carrés successifs construits Pour cela il se rend il se rend compte

qu'il a besoin des notions de limite, de continuité et de dérivation afin de bien construire cette courbe

1.2.1 Limite finie d'une fonction en un nombre

Consigne 1.4

On considère la fonction suivante : $f : \mathbb{R} \to \mathbb{R}$ $x \mapsto 5x + 3$

1. Complète le tableau suivant :

x	1,999	1,9999	2,001	2,00001
f(x)				

2. Pour *x* prenant des valeurs voisines de 2, f(x)est proche de quelle valeurs?

Information

On dit que f(x) tend vers 13 quand x tend vers 2 et on écrit : $\lim_{x\to 2} f(x) = 13$ ou $\lim_{x\to 2} f = 13$ puis on lit limite de f(x) lorsque x tend vers 2 égale à 13.

Stratégie: TI:... min TG:...min TC:...min

Définition

Soit *f* une fonction numérique définie ou non en un point x_0 de $\mathbb R$ et l un nombre réel. On dit que f(x) tend vers l lorsque x tend vers x_0 ou que lest la limite de f au point x_0 ou si f(x) s'approche de *l* lorsque x prend des valeurs de plus en plus proche de x_0 .

On note $\lim_{x \to x_0} f(x) = l$ ou $\lim_{x \to x_0} f = l$

Propriété

Lorsqu'une fonction f est définie en x_0 et admet une limite en x_0 alors cette limite est égale à

$$f(x_0)$$
; c'est-à-dire $\lim_{x \to x_0} f(x) = f(x_0)$

Remarque

Toute fonction polynôme, rationnelle, racine carré, valeur absolue : toutes sommes des fonctions précédentes admet une limite en tout point de leur domaine de définition.

Consigne 1.5 : Application

Dans chacun des cas suivants, calcule la limite de f en x_0 .

 $f(x) = 2x - 4 ; x_0 = 3$ $f(x) = x^2 - 3x + 4 ; x_0 = 2$ $f(x) = \frac{-2x}{3x+2} ; x_0 = -1$ $f(x) = \sqrt{-2x+1} ; x_0 = -4$ $f(x) = 6 - \frac{1}{3x+4} ; x_0 = 0$ $f(x) = x - \frac{2x}{x+4} ; x_0 = -1$ Stratégie TI : min TC :

Stratégie: TI:...min TG:...min TC:...min

1.2.2 Limite en l'infini des fonctions élémentaires

Retenons

Soit k un nombre réel et n un entier naturel, on a

$\lim_{x \to +\infty} (k) = k$	$\lim_{x \to -\infty} (k) = k$
$\lim_{x \to +\infty} (x) = +\infty$	$\lim_{x \to -\infty} (x) = -\infty$
$\lim_{x \to +\infty} (x^2) = +\infty$	$\lim_{x \to -\infty} (x^2) = +\infty$
$\lim_{x \to +\infty} (x^3) = +\infty$	$\lim_{x \to -\infty} (x^3) = -\infty$
$\lim_{x \to +\infty} (\sqrt{x}) = +\infty$	
$\lim_{x \to +\infty} \left(\frac{1}{x}\right) = 0$	$\lim_{x \to -\infty} \left(\frac{1}{x} \right) = 0$
$\lim_{x \to +\infty} \left(\frac{1}{x^n} \right) = 0$	$\lim_{x \to -\infty} \left(\frac{1}{x^n} \right) = 0$

$$\lim_{x\to +\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ +\infty & \text{si } n \text{ est impair} \end{cases}$$

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si n est pair} \\ -\infty & \text{si n est impair} \end{cases}$$

1.1.1 Opérations sur les limites

Les tableaux ci-dessous donnent les limites en x_0 des fonctions f+g; $f\times g$ et $\frac{1}{g}$ connaissant les limites en x_0 ders fonctions f et g.

Propriété: Limite de la somme de deux fonctions

$\lim_{x \to x_0} f(x)$	l	+∞	-∞	+∞	-∞
$\lim_{x \to x_0} g(x)$	l'	l'	l'	+∞	-∞
$\lim_{x \to x_0} (f + g)(x)$	l + l'	+∞	-8	+8	-8

Propriété: limite du produit de deux fonctions

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} (f \times g)(x)$
l	l'	$l \times l'$
+∞	$l'(l' \neq 0)$	$\begin{cases} +\infty si l' > 0 \\ -\infty si l' < 0 \end{cases}$

-∞	$l'(l' \neq 0)$	$\begin{cases} -\infty \text{ si } l' > 0 \\ +\infty \text{ si } l' < 0 \end{cases}$
+∞	+∞	+∞
-∞	-∞	+∞
+∞	-∞	-∞
-∞	+∞	-∞
+∞ ou −∞	0	Pas de conclusion

Propriété: Limite de l'inverse d'une fonction

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} \left(\frac{1}{f}\right)(x)$
l	$\frac{1}{l}(l\neq 0)$
+∞ ou −∞	0
0 et f(x) > 0	+∞
$0 \operatorname{et} f(x) < 0$	-∞

NB: Ces propriétés restent vraies pour les limites en $+\infty$; en $-\infty$ et en x_0 par valeurs inférieures ou par valeurs supérieures.

Remarque

Les propriétés précédentes ne couvrent pas tous les cas.

On appelle **forme indéterminée**, les cas où les propriétés ci – dessous ne permettent pas de conclure.

- Si $\lim_{x \to x_0} f(x) = 0$ et $\lim_{x \to x_0} g(x) = 0$ alors $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ prend la forme indéterminé $\frac{0}{0}$
- Si $\lim_{x \to x_0} f(x) = 0$ et $\lim_{x \to x_0} g(x) = +\infty$ ou $(-\infty)$ alors $\lim_{x \to x_0} (f \times g)(x)$ prend la forme indéterminée $\mathbf{0} \times (+\infty)$ ou $\mathbf{0} \times (-\infty)$.
- Si $\lim_{x \to x_0} f(x) = +\infty$ ou $-\infty$ et $\lim_{x \to x_0} g(x) = +\infty$ ou $-\infty$ alors $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ prend la forme indéterminé $\frac{+\infty}{-\infty}$ ou $\frac{-\infty}{+\infty}$ ou $\frac{+\infty}{+\infty}$ ou $\frac{-\infty}{-\infty}$.
- Si $\lim_{x \to x_0} f(x) = +\infty$ et $\lim_{x \to x_0} g(x) = -\infty$ ou bien $\lim_{x \to x_0} f(x) = -\infty$ et $\lim_{x \to x_0} g(x) = +\infty$ alors $\lim_{x \to x_0} (f + g)(x)$ prend la forme indéterminée $(+\infty \infty)$

Remarque

- Pour calculer la limite en x_0 de $\frac{f}{a}$, il suffit de remarquer que $\frac{f}{g} = f \times \frac{1}{g}$ et d'utiliser les propriétés précédentes.
- Pour déterminer la limite en x_0 d'une fraction rationnelle $\frac{f}{g}$ telle que $f(x_0) = g(x_0) = 0$, on peut mettre $(x - x_0)$ en facteur au numérateur et au dénominateur puis simplifier et calculer la limite lorsque x tend vers x_0 de l'expression obtenue après simplification.

1.1.2 Limite d'un polynôme et d'une fonction rationnelle

Propriété

La limite en l'infini d'une fonction polynôme est égale à la limite en l'infini de son monôme du plus

Exemple:
$$\lim_{x \to -\infty} x^2 - 2x + 8 = \lim_{x \to -\infty} x^2 = +\infty$$

Propriété

La limite en l'infini d'une fonction rationnelle est égale à la limite en l'infini du quotient des monômes du plus haut degré du numérateur et du dénominateur.

Exemple:

$$\lim_{x \to +\infty} \frac{4x^3 + 2x^2 + 1}{3x^2 + x - 4} = \lim_{x \to +\infty} \frac{4x^3}{3x^2} = \lim_{x \to +\infty} \frac{4x}{3} = +\infty$$

Consigne 1.6

Calcule les limites suivantes :

(a)
$$\lim_{x \to +\infty} (x^2 + x)$$

(b)
$$\lim_{x \to -\infty} (x^3 - 2x + 7)$$

(c)
$$\lim_{x \to -\infty} \frac{x^4 - 2x + 1}{3x^5 + x^3 - 1}$$

(a)
$$\lim_{x \to +\infty} (x^2 + x)$$
 (b) $\lim_{x \to -\infty} (x^3 - 2x + 7)$ (c) $\lim_{x \to -\infty} \frac{x^4 - 2x + 1}{3x^5 + x^3 - 1}$ (d) $\lim_{x \to +\infty} \frac{x^4 - 2x + 1}{3x^5 + x^3 - 1}$

Stratégie: TI:...min TG:...min TC:...min

1.3 Dérivation

1.3.1 Dérivation en x_0 ($x_0 \in \mathbb{R}$)

Codjo un élève de la classe après le cours sur les limites se propose de calculer $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ où f est la fonction définie par $f(x) = x^2 - 4$ et a un nombre réel.

Information

La fonction $T_a(x) = \frac{f(x) - f(a)}{x - a}$ est appelé **taux de** variation de f en a

Consigne 1.7

Calcule
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
; $a = 2$

Stratégie: TI:... min TG:...min TC:...min

Définition

Soit *f* une fonction numérique de la variable réelle définie sur un intervalle ouvert *I* contenant a. On dit que la fonction f est dérivable en a lorsque la limite du taux de variation de f en a est finie c'est-à-dire $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = l, l \in \mathbb{R}$ Cette limite est appelée le nombre dérivé de *f* en a et on note f'(a) = l

Retenons

Etudier la dérivabilité d'une fonction f en un réel x_0 , revient à calculer la limite $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$.

- Si $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = l, l \in \mathbb{R}$ alors on dit que f est dérivable en x_0 .
- $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$, alors on dit que fn'est pas dérivable en x_0 .

Consigne 1.8: Application

Dans chacun des cas suivants, étudie la dérivabilité de f en x_0

(a)
$$f(x) = 3x^2 + 2$$
 ; $x_0 = -2$

(a)
$$f(x) = \frac{x}{x-3}$$
; $x_0 = 2$

Stratégie: TI:... min TG:...min TC:...min

1.3.2 Dérivation sur un ensemble

Définition

Une fonction *f* est dérivable sur un intervalle ouvert I si et seulement si elle est dérivable en tout point de I. Dans ce cas la fonction dérivée de f sur I notée f' est définie par $f: I \to \mathbb{R}$ $x \mapsto f'(x)$ où f'(x)est le nombre dérivée de f en x.

Propriété: Formule de dérivation des fonctions élémentaires

Fonction <i>f</i>	f est	f est	Fonction
	définie	dérivable	dérivée
	sur	sur	f'
$x \mapsto k(k \in \mathbb{R})$	\mathbb{R}	\mathbb{R}	0
$x \mapsto x$	\mathbb{R}	\mathbb{R}	1
$x \mapsto x^n$	\mathbb{R}	\mathbb{R}	nx^{n-1}
$(n \in \mathbb{N}, n \ge 2)$			
$x \mapsto \frac{1}{x}$	\mathbb{R}^*	\mathbb{R}^*	1
x			$-\frac{1}{x^2}$
$x \mapsto \sqrt{x}$	\mathbb{R}_+	\mathbb{R}_+^*	1
			$2\sqrt{x}$

Propriété : Formules de dérivation de la somme du produit et du quotient de deux fonctions dérivables

Fonction	Fonction dérivée
$x\mapsto kf(k\in\mathbb{R})$	kf'
$x \mapsto \sqrt{f}$	$\frac{f'}{2\sqrt{f}}$
$x \mapsto f + g$	f'+g'
$x \mapsto fg$	f'g + g'f
$x \mapsto \frac{1}{g}$	$-\frac{g'}{g^2}$
$x \mapsto \frac{f}{g}$	$\frac{f'g - g'f}{g^2}$

Remarque

- Toute fonction polynôme est dérivable sur son ensemble de définition.
- Toute fonction rationnelle est dérivable sur son ensemble de définition.

Consigne 1.9

Détermine la dérivée de chacune des fonctions suivantes après avoir précisé son ensemble de dérivabilité E.

$$f(x) = 4x^2 - 3x + 7; g(x) = (3x^3 - 3x)^4;$$

$$h(x) = \sqrt{3x^2 - 1}; u(x) = \frac{x+3}{x+1} \text{ et}$$

$$k(x) = (x+3)(x^4 + 2x - 1)$$

Stratégie: TI:...min TG:...min TC:...min

1.3.3 Tangente à une courbe en un point x_0

Propriété

Soit f une fonction, (C) sa représentation graphique et A un point de (C) d'abscisse x_0 . Lorsque f est dérivable en x_0 , une équation de la tangente en A à la courbe (C) est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Consigne 1.10

Soit (C) la représentation graphique de la fonction $f: x \mapsto -x^3 + 2x - 1$

Détermine une équation de la tangente (T) à la courbe (C) au point A d'abscisse 1.

Stratégie: TI:... min TG:...min TC:...min

1.4 Sens de variation – Extremum 1.4.1 Extremum

Propriété

Soit f une fonction dérivable sur un intervalle a; b[et x_0 un élément de a; b[.

Si f' s'annule et change de signe en x_0 , alors f admet un extremum relatif en x_0 .

f admet un minimum relatif m en x_0

f admet un maximum relatif M en x_0

1.4.2 Sens de variation

Propriété

Soit *f* une fonction dérivable sur un intervalle ouvert *K*.

- Si f' est positive sur K, alors f est croissante sur K.
- Si f' est négative sur K, alors f est décroissante sur K.
- Si f' est nulle sur K, alors f est constante sur K

Remarque

- 1. Pour étudier le sens de variation d'une fonction, il suffit d'étudier le signe de sa dérivée.
- 2. Une fonction est dite monotone sur un intervalle I si elle est soit strictement croissante ou strictement décroissante.

Consigne 1.11: Application

Soit *f* la fonction définie par :

$$f(x) = -x^3 + 6x^2 - 9x + 3$$

- 1. Etudie le sens de variation de *f* puis dresse son tableau de variation.
- 2. Précise les extrémums relatifs de *f* .

Stratégie: TI:... min TG:...min TĆ:...min

1.5 Etude de quelques fonctions

1.5.1 Etude de la fonction $x \mapsto \frac{1}{x}$

Consigne 1.12

- 1. Etudie les variations de la fonction f définie par $f(x) = \frac{1}{x}$ puis dresse son tableau de variation.
- 2. Trace la courbe représentative (C_f) de f dans un repère orthonormé (0, I, J) du plan.

Stratégie: TI:... min TG:...min TC:...min

1.5.2 Etude de la fonction $x \mapsto \frac{a}{x}$

Consigne 1.13

- 1. Etudie les variations de la fonction f définie par $f(x) = \frac{2}{x}$ puis dresse son tableau de variation.
- 2. Etudie les variations de la fonction g définie par $g(x) = \frac{-2}{x}$ puis dresse son tableau de variation.
- 3. Trace dans un même repère orthonormé (0, I, J) du plan les courbes représentatives (C_f) et (C_g) des fonctions respectives f et g.

Stratégie: TI:...min TG:...min TC:...min

1.5.3 Etude de la fonction $x \mapsto \sqrt{x}$

Consigne 1.14

- 1. Etudie les variations de la fonction f définie par $f(x) = \sqrt{x}$ puis dresse son tableau de variation.
- 2. Trace la courbe représentative (C_f) de f dans un repère orthonormé (0, I, J) du plan.

Stratégie: TI:... min TG:...min TC:...min

1.5.4 Etude de la fonction $x \mapsto x^2$

Consigne 1.15

- 1. Etudie les variations de la fonction f définie par $f(x) = x^2$ puis dresse son tableau de variation.
- 2. Trace la courbe représentative (C_f) de f dans un repère orthonormé (0, I, J) du plan.

Stratégie: TI:...min TG:...min TC:...min

1.5.5 Etude de la fonction
$$x \mapsto ax^2 + bx + c$$
 et $x \mapsto \frac{ax+b}{cx+d}$

Propriété

Soit f une fonction de représentation graphique (C_f) .

La représentation graphique (C_g) de la fonction $g: x \mapsto f(x - \alpha) + \beta$ est l'image de de (C_f) par la translation de vecteur $\vec{u}(\alpha; \beta)$

Consigne 1.16

On considère les fonctions f et g définie par $f(x) = 4x^2 + 2x - 12$ et $g(x) = \frac{x+1}{x-2}$

- 1. Etudie les variations de f puis dresse son tableau de variation.
- 2. Trace la courbe représentative de la fonction *f*
- 3. Détermine le domaine de définition de la fonction *g*.
- 4. (a) Détermine les nombres réels a et b tels que $g(x) = a + \frac{b}{x-2}$.

- (b) Etudie les variations de g puis dresse son tableau de variation.
- 5. Trace la courbe représentative de la fonction g.

Stratégie: TI:...min TG:...min TC:...min

Retour et projection

- 1. Qu'as-tu découvert sur la SA2?
- 2. Qu'as-tu appris de nouveau sur la SA2?
- 3. Qu'as-tu trouvé difficile, voire facile sur la SA2 ?
- 4. Qu'est-ce que tu as réussi?
- 5. Qu'est-ce que tu n'as pas réussi?
- 6. Qu'est-ce que tu vas faire pour améliorer ta production ?

Fin de la SA Nº2