

- Introducción
- Fundamentos
- Método Bagging (Bootstrap aggregating)

- Inspiración. El aprendizaje conjunto se basa en la segunda naturaleza de las personas para buscar diversas opiniones antes de tomar una decisión importante.
- Idea básica. Combinar varios clasificadores de patrones individuales para obtener un clasificador que los supere a cada uno de ellos.

Antecedentes:

- Teorema del jurado de Condorcet en 1785 en el ensayo sobre la aplicación del análisis a la probabilidad de decisiones mayoritarias.
- El concurso sobre estimación del peso de un hacha en la visita de Sir Francis Galton (1822-1911) a la feria ganadera.
- El estudio de James M. Surowiecki en su libro de 2004, "The wisdom of the Crowds". Donde se indican los criterios para que una multitud sea "sabia":
 - Diversidad de opinión
 - Independencia
 - Decentralización
 - Agregación

Idea gráfica

residents offer their **individual** diagnostic opinions on the case **independently** of each other

different models offer their **individual** diagnostic opinions on the case **independently** of each other

Conceptos:

- Aprendiz fuerte. Es un método de aprendizaje que produce un clasificador que puede ser arbitrariamente exacto.
- Aprendiz débil. Es un método de aprendizaje que produce un clasificador el cual es ligeramente más exacto que una clasificación aleatoria.

- Es un método homogéneo simple pero efectivo para generar un ensamble de clasificadores.
- El clasificador conjunto generado consolida las salidas de varios clasificadores (homogéneos) entrenados en una sola clasificación.
- Cada clasificador en el conjunto es entrenado con una muestra con reemplazo de las instancias del conjunto de entrenamiento.

- Es un método homogéneo simple pero efectivo para generar un ensamble de clasificadores.
- El clasificador conjunto generado consolida las salidas de varios clasificadores (homogéneos) entrenados en una sola clasificación.
- Cada clasificador en el conjunto es entrenado con una muestra con reemplazo de las instancias del conjunto de entrenamiento.

Método Bagging: Entrenamiento

Bagging Training

Require: I (a base inducer), T (number of iterations), S (the original training set), μ (the sample size).

- 1: $t \leftarrow 1$
- 2: repeat
- 3: $S_t \leftarrow$ a sample of μ instances from S with replacement.
- 4: Construct classifier M_t using I with S_t as the training set
- 5: $t \leftarrow t + 1$
- 6: until t > T

Método Bagging: Clasificación

Bagging Classification

Require: x (an instance to be classified)

Ensure: C (predicted class)

- 1: $Counter_1, \ldots, Counter_{|dom(y)|} \leftarrow 0$ {initializes class votes counters}
- 2: for i = 1 to T do
- 3: $vote_i \leftarrow M_i(x)$ {get predicted class from member i}
- 4: $Counter_{vote_i} \leftarrow Counter_{vote_i} + 1$ {increase by 1 the counter of the corresponding class}
- 5: end for
- 6: $C \leftarrow$ the class with the largest number votes
- 7: Return C

Método Bagging: Resumen gráfico

bootstrap sampling generates diverse subsets for training base learners diverse base learners are trained on sampled subsets of the data final prediction of the ensemble by model aggregation

Método Bagging: Comparación gráfica

