I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 29.04.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 26

Wyznaczanie ciepła właściwego ciał stałych przy użyciu kalorymetru

Spis treści

1	Wstęp teoretyczny	2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów 3.1 Tabele pomiarowe	3
4	Tabele Pomiarowe 4.1 Wyznaczenie temperatury początkowej i końcowej	
5	Ocena niepewności pomiaru5.1 Niepewność pomiaru masy5.2 Niepewność pomiaru temperatury5.3 Niepewność pomiaru ciepła właściwego	
6	Wnioski	6
7	Wykresy	9

1 Wstęp teoretyczny

Ciepło właściwe substancji c określa ilość energii potrzebnej do podwyższenia temperatury jednostkowej masy ciała o jednostke temperatury. Jest ono definiowane jako:

$$c = \frac{Q}{m \cdot \Delta T} \tag{1}$$

gdzie Q to dostarczona energia cieplna, m to masa ciała, a ΔT to zmiana temperatury.

W doświadczeniu wykorzystujemy kalorymetr, który pozwala na pomiar ciepła właściwego ciał stałych. Metoda opiera się na zasadzie bilansu cieplnego, zgodnie z którą suma ciepła oddanego i pobranego w układzie izolowanym jest równa zeru:

$$Q_1 + Q_2 = 0 \tag{2}$$

gdzie Q_1 to ciepło oddane przez ciało o wyższej temperaturze (wartość ujemna), a Q_2 to ciepło pobrane przez ciało o niższej temperaturze (wartość dodatnia).

Dla badanego ciała stałego o masie m_c , temperaturze początkowej T_c i cieple właściwym c_p , które zostaje umieszczone w wodzie o masie m_w , temperaturze początkowej T_p i cieple właściwym c_w , przy uwzględnieniu pojemności cieplnej naczynka kalorymetrycznego $K_n = m_n \cdot c_n$, bilans cieplny przyjmuje postać:

$$m_c \cdot c_p \cdot (T_k - T_c) + [m_w \cdot c_w + m_n \cdot c_n] \cdot (T_k - T_p) = 0 \tag{3}$$

gdzie T_k to temperatura końcowa układu.

Przekształcając powyższe równanie, otrzymujemy wzór na ciepło właściwe badanego ciała:

$$c_p = \frac{[m_w \cdot c_w + m_n \cdot c_n] \cdot (T_p - T_k)}{m_c \cdot (T_k - T_c)} \tag{4}$$

Prawo Dulonga-Petita stanowi, że molowe ciepło właściwe pierwiastków stałych w temperaturze pokojowej jest w przybliżeniu stałe i wynosi około $3R\approx 25\,\frac{\rm J}{\rm mol\cdot K}$, gdzie R to stała gazowa. Prawo to jest przybliżeniem i sprawdza się głównie dla metali i prostych substancji krystalicznych w temperaturze pokojowej.

W rzeczywistym przebiegu doświadczenia występuje wymiana ciepła z otoczeniem, co wprowadza błąd systematyczny. Aby go zminimalizować, stosuje się metodę interpolacji do wyznaczenia rzeczywistych temperatur początkowej i końcowej, analizując zmiany temperatury w czasie przed i po osiągnięciu stanu równowagi.

Wstęp teoretyczny został opracowany na podstawie podręcznika Fizyka dla szkół wyższych, Tom 2, Dział Temodynamika, rozdział 1 - Temperatura i Ciepło [2].

2 Opis doświadczenia

- 1. Zważenie badanych ciał oraz naczyńka kalorymetrycznego z mieszadełkiem.
- 2. Napełnienie naczyńka wodą (do 2/3 objętości) i określenie jej masy.
- 3. Ogrzanie badanego ciała w ogrzewaczu elektrycznym z termoparą do temperatury 100-105°C.
- 4. Rejestracja temperatury początkowej wody w kalorymetrze przez 5 minut (pomiar co 30 sekund).
- 5. Przeniesienie ogrzanego ciała do kalorymetru i pomiar zmian temperatury:

• pierwsze 5 minut: pomiar co 30 sekund

• następnie: pomiar co minutę

6. Powtórzenie procedury dla pozostałych badanych ciał.

Doświadczenie pozwala wyznaczyć pojemność cieplną badanych ciał poprzez analizę wymiany ciepła między ogrzanym ciałem a wodą w kalorymetrze.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

4 Tabele Pomiarowe

t [min:sec]	T1 [°C]	T2 [°C]	T3 [°C]
00:00:00	25,3	24,9	25,1
00:00:30	25,3	24,9	25,1
00:01:00	25,3	24,9	25,1
00:01:30	25,3	24,9	25,1
00:02:00	25,3	24,9	25,1
00:02:30	25,3	24,9	25,1
00:03:00	25,3	24,9	25,1
00:03:30	25,3	24,9	25,1
00:04:00	25,3	24,9	25,1
00:04:30	25,3	24,9	25,1
00:05:00	25,2	24,9	25,1
00:05:30	27,6	25,0	27,5
00:06:00	29,8	27,9	27,6
00:06:30	30,3	29,0	27,6
00:07:00	30,4	29,4	27,7
00:07:30	30,5	31,0	27,6
00:08:00	30,4	30,0	27,6
00:08:30	30,3	29,9	27,6
00:09:00	30,3	29,8	27,6
00:09:30	30,2	29,7	27,6
00:10:00	30,1	29,7	27,5
00:11:00	30,0	29,6	27,4
00:12:00	29,9	29,4	27,4
00:13:00	29,8	29,3	27,3
00:14:00	29,7	29,0	27,3
00:15:00	29,5	28,8	27,3

Tabela 1: Pomiary temperatury ciał.

4.1 Wyznaczenie temperatury początkowej i końcowej

Temperatury początkowe i końcowe wyznaczone zostały przy użyciu interpolacji liniowej. Do 10 pierwszych pomiarów temperatury wody (zanim wrzucono ciało do kalorymetru) dopasowano

Badane ciała Temperatura początkowa badanych ciał [°C	
1 - Miedziane	100,2
2 - Mosiężne	100,4
3 - Aluminiowe	102,4

Tabela 2: Temperatury początkowe badanych ciał

Masa [g]							
m_1	m_2	m_3	m_n	$m_w + m_n$	m_{w1}	m_{w2}	m_{w3}
73	70,8	15,2	126,1	192,9	66,8	61,2	75,6

Tabela 3: Masy

linię prostą, następnie do 10 ostatnich pomiarów temperatury wody (po wrzuceniu ciała do kalorymetru) dopasowano drugą linię prostą. Dla czasu t=330 lub t=300 sekund wykonano interpolację temperatury wody, odczytując temperatury początkowe i końcowe.

Otrzymane wyniki interpolacji temperatury wody przedstawiono na wykresach 1a, 1b i 1c. Wartości temperatur początkowych i końcowych odczytano z wykresów i przedstawiono w tabeli 4.

Ciało	Temperatura początkowa	Temperatura końcowa
Miedziane	25,30	30,75
Mosiężne	24,90	30,40
Aluminiowe	25,10	27,78

Tabela 4: Temperatury początkowe i końcowe

4.2 Ciepło właściwe poszczególnych ciał

Korzystając z wyprowadzonego wzoru 4 obliczono ciepło właściwe poszczególnych ciał. Przykładowe obliczenia dla ciała miedzianego:

$$c_p = \frac{[0,0668 \cdot 4186 + 0,1261 \cdot 377] \cdot (25,30 - 30,75)}{0,073 \cdot (30,75 - 100,2)} = 351,70 \frac{J}{\text{kg} \cdot \text{K}}$$

$$c_p = \frac{[0,0612 \cdot 4186 + 0,1261 \cdot 377] \cdot (24,90 - 30,40)}{0,0708 \cdot (30,40 - 100,4)} = 337,06 \frac{J}{\text{kg} \cdot \text{K}}$$

$$c_p = \frac{[0,0756 \cdot 4186 + 0,1261 \cdot 377] \cdot (25,10 - 27,78)}{0,0152 \cdot (27,78 - 102,4)} = 860,08 \frac{J}{\text{kg} \cdot \text{K}}$$

Wyniki obliczeń ciepła właściwego dla wszystkich badanych ciał przedstawiono w tabeli 5.

Ciało	Ciepło właściwe [J/kgK]
Miedziane	351,70
Mosiężne	337,06
Aluminium	860,08

Tabela 5: Ciepło właściwe poszczególnych ciał

Tabela rzeczywistych ciepł właściwych poszczególnych ciał przedstawiona jest w tabeli 6.

Ciało	Ciepło właściwe [J/kgK]
Miedź	385,00
Mosiądz	375,00
Aluminium	900,00

Tabela 6: Ciepło właściwe poszczególnych ciał (źródło: [1])

5 Ocena niepewności pomiaru

5.1 Niepewność pomiaru masy

Masa została zmierzona za pomocą wagi laboratoryjnej, której niepewność maksymalna wynosi $\Delta m = 0{,}0001\,\mathrm{kg}.$

5.2 Niepewność pomiaru temperatury

Temperatura została zmierzona za pomocą termometru laboratoryjnego, którego niepewność wynosi $\Delta T=0.01\,\mathrm{K}.$

5.3 Niepewność pomiaru ciepła właściwego

Niepewność pomiaru ciepła właściwego obliczono zgodnie z zasadami propagacji niepewności.

$$\Delta c_p = \sum_{i=1}^n \left| \frac{\partial c_p}{\partial x_i} \right| \cdot \Delta x_i \tag{5}$$

Obliczając poszczególne pochodne cząstkowe, otrzymano:

$$\begin{split} \frac{\partial c_i}{\partial m_w} &= \frac{c_w \Delta T}{m_i \Delta T_i} \\ \frac{\partial c_i}{\partial m_n} &= \frac{c_n \Delta T}{m_i \Delta T_i} \\ \frac{\partial c_i}{\partial \Delta T} &= \frac{m_w c_w + m_n c_n}{m_i \Delta T_i} \\ \frac{\partial c_i}{\partial m_i} &= -\frac{(m_w c_w + m_n c_n) \Delta T}{m_i^2 \Delta T_i} \\ \frac{\partial c_i}{\partial \Delta T_i} &= -\frac{(m_w c_w + m_n c_n) \Delta T}{m_i \Delta T_i^2} \end{split}$$

Przykładowe obliczenia dla ciała miedzianego:

$$\begin{split} \frac{\partial c_i}{\partial m_w} &= \frac{c_w \cdot \Delta T}{m_i \cdot \Delta T_i} = 4499,876722 \, \mathrm{J/(kg \cdot K)} \\ \frac{\partial c_i}{\partial m_n} &= \frac{c_n \cdot \Delta T}{m_i \cdot \Delta T_i} = 405,268400 \, \mathrm{J/(kg \cdot K)} \\ \frac{\partial c_i}{\partial \Delta T} &= \frac{Q}{m_i \cdot \Delta T_i} = -64,531396 \, \mathrm{J/(kg \cdot K^2)} \\ \frac{\partial c_i}{\partial m_i} &= -\frac{c_i}{m_i} = -4817,754936 \, \mathrm{J/(kg^2 \cdot K)} \\ \frac{\partial c_i}{\partial \Delta T_i} &= -\frac{c_i}{\Delta T_i} = 5,064019 \, \mathrm{J/(kg \cdot K^2)} \end{split}$$

$$\Delta c_{1} = \left| \frac{\partial c_{i}}{\partial m_{w}} \right| \cdot \Delta m_{w} + \left| \frac{\partial c_{i}}{\partial m_{n}} \right| \cdot \Delta m_{n} + \left| \frac{\partial c_{i}}{\partial \Delta T} \right| \cdot \Delta T_{p} + \left| \frac{\partial c_{i}}{\partial \Delta T} \right| \cdot \Delta T_{k}$$

$$+ \left| \frac{\partial c_{i}}{\partial \Delta T_{i}} \right| \cdot \Delta T_{k} + \left| \frac{\partial c_{i}}{\partial \Delta T_{i}} \right| \cdot \Delta T_{c} + \left| \frac{\partial c_{i}}{\partial m_{i}} \right| \cdot \Delta m_{i}$$

$$= 4499,876722 \cdot 0,0001 + 405,268400 \cdot 0,0001 + 64,531396 \cdot 0,01 + 64,531396 \cdot 0,01$$

$$+ 5,064019 \cdot 0,01 + 5,064019 \cdot 0,01 + 4817,754936 \cdot 0,0001$$

$$= 0,450 + 0,041 + 0,645 + 0,645 + 0,051 + 0,051 + 0,482$$

$$= 2,365 \text{ J/(kg·K)}$$

Ciało	Niepewność pomiaru ciepła właściwego $[J/(kg\cdot K)]$
Miedź	2,4
Mosiądz	2,3
Aluminium	13

Tabela 7: Niepewności pomiaru ciepła właściwego

6 Wnioski

- 1. Wyznaczone wartości ciepła właściwego dla badanych ciał wynoszą:
 - Dla ciała miedzianego: $(351.7 \pm 2.4) \text{ J/(kg·K)}$
 - Dla ciała mosiężnego: $(337.1 \pm 2.3) \text{ J/(kg·K)}$
 - Dla ciała aluminiowego: $(860 \pm 13) \text{ J/(kg·K)}$
- 2. **Porównanie z wartościami tablicowymi:** Wszystkie wyznaczone wartości ciepła właściwego są niższe od wartości tablicowych, co może wskazywać na systematyczne błędy pomiarowe.
- 3. Dokładność pomiarów dla poszczególnych materiałów:
 - Najlepszą zgodność z wartościami tablicowymi uzyskano dla aluminium (różnica 4,44%).
 - Największe rozbieżności wystąpiły dla mosiądzu (różnica 10,12%).
- 4. Potencjalne źródła błędów systematycznych:

- Straty ciepła do otoczenia podczas przenoszenia ogrzanego ciała do kalorymetru.
- Wymiana ciepła kalorymetru z otoczeniem w trakcie pomiarów.
- Niedoskonała izolacja termiczna kalorymetru.
- 5. **Identyfikacja materiałów:** Na podstawie uzyskanych wyników ciepła właściwego możemy z dużą pewnością potwierdzić, że badane ciała były wykonane z miedzi, mosiądzu i aluminium, zgodnie z przewidywaniami.

7 Wykresy

(a) Interpolacja temperatury dla ciała miedzianego

(b) Interpolacja temperatury dla ciała mosiężnego

(c) Interpolacja temperatury dla ciała aluminiowego

Rysunek 1: Wykresy interpolacji temperatury dla badanych ciał

Literatura

- [1] Calculla. Tabela ciepła właściwego. https://calculla.pl/tabela_ciepla_wlasciwego, 2024. Dostęp: 14.04.2024.
- [2] William Moebs, Samuel J. Ling, and Jeff Sanny. Fizyka dla szkół wyższych, Tom 2. Open-Stax, 2018. Dostęp: 14.04.2024.