Índice general

1.	Extensiones sucio Extensiones de grupos						
2.							
	2.1.	Extensiones separables	5				
		2.1.1. Clasificación de las escisiones	6				
	2.2.	Extensiones con núcleo abeliano	6				
		2.2.1. Extensiones centrales	.0				

Capítulo 1

Extensiones sucio

Definición 1.0.1. Sea A un Q-módulo dado por una acción $\varphi \colon Q \to A$ y $n \in \mathbb{N}$. Un n-cociclo es una función $f \colon Q^n \to A$ tal que $\forall q_1, \dots, q_{n+1} \in Q$ se verifica

$$q_1 \cdot f(q_2, \dots, q_{n+1}) + \left[\sum_{i=1}^n (-1)^i f(q_1, \dots, q_i q_{i+1}, \dots, q_{n+1}) \right] + (-1)^{n+1} f(q_1, \dots, q_n) = 0$$

Un n-coborde es una función $f\colon Q^n\to A$ tal que existe una función $\phi\colon Q^{n-1}\to A$ tal que

$$f(q_1, \dots, q_n) = q_1 \cdot \phi(q_2, \dots, q_{n+1}) + \left[\sum_{i=1}^n (-1)^i \phi(q_1, \dots, q_i q_{i+1}, \dots, q_{n+1}) \right] + (-1)^{n+1} \phi(q_1, \dots, q_n)$$

Los cociclos y cobordes heredan de A una estructura de grupo abeliano. A estos grupos los denotamos $Z^n_{\varphi}(Q,A)$ y $B^n_{\varphi}(Q,A)$ respectivamente.

Proposición 1.0.1. Demostración. A partir de las extensiones E_1 y E_2 se construye la extensión del producto directo tomando la inclusión y proyección coordenada a coordenada. El objetivo será utilizar los cociclos c_1 y c_2 para construir una sucesión exacta $1 \to A \xrightarrow{i_3} E_3 \xrightarrow{\pi_3} Q \to 1$ cuyo cociclo asociado sea $c_3 = c_1 + c_2$.

$$1 \to A \times A \xrightarrow{i_1 \times i_2} E_1 \times E_2 \xrightarrow{\pi_1 \times \pi_2} Q \times Q \to 1 \tag{1.1}$$

La sección $s_1 \times s_2$ de $\pi_1 \times \pi_2$ tiene como cociclo asociado

$$(c_1 \times c_2) \colon (Q \times Q) \times (Q \times Q) \to A \times A$$
 (1.2)

$$((q_{11}, q_{12}), (q_{21}, q_{22})) \mapsto (c_1(q_{11}, q_{12}), c_2(q_{21}, q_{22}))$$
 (1.3)

Proyectando $A \times A$ sobre A y haciendo la suma de componentes en A movemos $(c_1 \times c_2)((q_{11}, q_{12}), (q_{21}, q_{22}))$ a $c_1(q_{11}, q_{12}) + c_2(q_{21}, q_{22})$. Basta identificar

 q_{11} con q_{21} y q_{12} con q_{22} mediante $\Delta \colon Q \to Q \times Q$ definido por $\Delta(q) = (q, q)$. Notese que el morfismo diagonal está definido para las secciones s_1 y s_2 , por tanto, para los cociclos estará definido de $Q \times Q$ en $(Q \times Q) \times (Q \times Q)$.

$$Q \times Q \xrightarrow{\Delta} (Q \times Q) \times (Q \times Q) \xrightarrow{c_1 \times c_2} A \times A \xrightarrow{+} A$$
 (1.4)

El cociclo que buscamos es $c_3 = + \circ (c_1 \times c_2) \circ \Delta = c_1 + c_2$

Completando el diagrama de Δ y $\pi_1 \times \pi_2$ con $i : \tilde{E} \to E_1 \times E_2$ y $\tilde{\pi} : E \to Q$, para $x \in \tilde{E}$ $(\pi_1(i(x)), \pi_2(i(x))) = (\tilde{\pi}(x), \tilde{\pi}(x))$ lo que implica que $\pi_1(i(x)) = \pi_2(i(x))$ y por tanto $i(x) \in E_1 \times_Q E_2$. Lo natural es tomar $\tilde{E} = E_1 \times_Q E_2$, i la inclusión y $\tilde{\pi}(e_1, e_2) = \pi_1(e_1) = \pi_2(e_2)$.

$$E_1 \times E_2 \xrightarrow{\pi_1 \times \pi_2} Q \times Q$$

$$\downarrow i \qquad \qquad \Delta \uparrow \qquad \qquad \Delta \uparrow$$

$$\tilde{E} \xrightarrow{\tilde{\pi}} Q$$

 $\mathrm{Ker}(\tilde{\pi})=\{(e_1,e_2)\in E_1\times_Q E_2\colon \tilde{\pi}(e_1,e_2)=0\}=\{(e_1,e_2)\in E_1\times_Q E_2\colon \pi_1(e_1)=\pi_2(e_2)=0\}=A\times A$

Por tanto, la sucesión $1 \to A \times A \xrightarrow{\tilde{\imath}} E_1 \times_Q E_2 \xrightarrow{\tilde{\pi}} Q \to 1$ es exacta.

 $i_3(a_1+a_2)=\pi(a_1,a_2)=\pi(a_1+a_2,0)=\pi(0,a_1+a_2),$ para que esté bien definida, tenemos que cocientar $E_1\times_Q E_2$ por $Ker(+)=\{(a_1,a_2)\in A\times A\colon a_1+a_2=0\}=\{(a,-a)\colon a\in A\}$

El cociclo correspondiente a la extensión es por tanto $c_1 + c_2$ y por la proposición 2.2.4 la suma está bien definida en clases de extensiones equivalentes.

Capítulo 2

Extensiones de grupos

Definición 2.0.1. Una sucesión de grupos G_i y homomorfismos f_i

$$G_0 \xrightarrow{f_1} G_1 \xrightarrow{f_2} G_2 \xrightarrow{f_3} \cdots \xrightarrow{f_n} G_n \xrightarrow{f_{n+1}} \cdots$$

se dice que es exacta si $Ker(f_{i+1}) = Im(f_i)$. Diremos que es una sucesión exacta corta cuando es de la forma

$$1 \to G_1 \xrightarrow{f_2} G_2 \xrightarrow{f_3} G_3 \to 1 \tag{2.1}$$

Observación 2.0.1. Una sucesión exacta corta como (2.1) es equivalente a decir que f_2 es inyectiva, f_3 sobreyectiva y $G_2/f_2(G_1) \cong G_3$

Demostración. $Ker(f_2) = Im(f_1) = \{1\} \implies f_2 \text{ es inyectiva.}$

$$\operatorname{Im}(f_3) = \operatorname{Ker}(f_4) = G_3 \implies f_3 \text{ es sobreyectiva.}$$

 $\operatorname{Ker}(f_3)=\operatorname{Im}(f_2)\cong G_1\implies G_2/f_2(G_1)\cong G_3$ por el Primer Teorema de Isomorfía. \square

Definición 2.0.2. Una extensión de un grupo Q por un grupo N es una sucesión exacta corta

$$1 \to N \xrightarrow{i} E \xrightarrow{\pi} Q \to 1 \tag{2.2}$$

Decimos que otra extensión $1 \to N \xrightarrow{i'} E' \xrightarrow{\pi'} Q \to 1$ es equivalente si existe un homomorfismo $f \colon E \to E'$ tal que el siguiente diagrama conmuta:

Observación 2.0.2. Dos extensiones equivalentes son isomorfas.

Demostración. Sea $x_2 \in E$ tal que $f(x_2) = 1$, por la conmutatividad de $f, \pi(x_2) = \pi'(f(x_2)) = \pi'(1) = 1. \ x_2 \in \text{Ker}(\pi) = Im(i), \text{ por tanto existe}$ $x_1 \in N$ tal que $i(x_1) = x_2$, utilizando que $f \circ i = i'$, $i'(x_1) = f(i(x_1)) = 1$ y como i es inyectiva, x_2 es único y f es inyectiva.

Sea $x_2' \in E'$, como π es sobreyectiva existe $x_2 \in E$ tal que $\pi'(x_2') =$ $\pi(x_2) = \bar{\pi'}(f(x_2))$. Por tanto, $x_2'f(x_2)^{-1} \in \text{Ker}(\pi') = Im(i')$ y existe $x_1 \in N$ tal que $f(i(x_1)) = i'(x_1) = x_2'f(x_2)^{-1}$, $x_2' = f(i(x_1)x_2)$ y f es sobreyectiva.

Observación 2.0.3. Ser una equivalencia de extensiones es más débil que ser un isomorfismo, como se ve en el siguiente ejemplo.

$$1 \longrightarrow \mathbb{Z}_{3} \xrightarrow{\times 3} \mathbb{Z}_{9} \xrightarrow{\times 1} \mathbb{Z}_{3} \longrightarrow 1$$

$$\begin{vmatrix} | & f \\ | & | \\ 1 \longrightarrow \mathbb{Z}_{3} \xrightarrow{\times 3} \mathbb{Z}_{9} \xrightarrow{\times 2} \mathbb{Z}_{3} \longrightarrow 1$$

Demostración. Un automorfismo f de \mathbb{Z}_9 viene dado por f(x) = kx con $x \in \mathbb{Z}_9 \ y \ k \in \mathbb{Z}_9^{\times} = \{1, 2, 4, 5, 7, 8\}$

Para que el diagrama conmute a la derecha, $(\times 2 \circ f)(x) = 2kx = x$ $\mod 3, k \equiv 2 \mod 3 \implies k = 2, 5, 8$

Por otro lado, para que conmute a la izquierda, $(f \circ \times 3)(x) = 3kx = 3x$ $m\'{o}d 9$, por lo que k = 1, 4, 8.

Por tanto, no existe un isomorfismo f que haga al diagrama commutativo y las extensiones no son equivalentes.

Proposición 2.0.1. La equivalencia de extensiones es una relación de equivalencia.

Demostración. (i) Reflexiva: E es equivalente a sí misma tomando $f = 1_E$

- (ii) Simétrica: Si $f: E_1 \to E_2$ es una equivalencia, por la Observación $(2.0.2), f^{-1}: E_2 \to E_1$ es una equivalencia.
- (iii) Transitiva: Si $f: E_1 \to E_2$ y $g: E_2 \to E_3$ son equivalencias, $g \circ f \circ i_1 =$ $g \circ i_2 = i_3$ y $\pi_1 \circ g \circ f = \pi_2 \circ f = \pi_3$ entonces $g \circ f \colon E_1 \to E_3$ es una equivalencia.

Observación 2.0.4. Una extensión (2.2) determina, por conjugación por elementos de E, un homomorfismo $\alpha \colon E \to \operatorname{Aut}(N)$ definido por

$$\alpha(g)(n) = n^g = g^{-1}ng$$

Entonces, $\alpha(N) = \text{Inn}(N)$ y α induce un homomorfismo $\tilde{\alpha} \colon E/N \to \mathbb{R}$ $\operatorname{Out}(N)$

$$\tilde{\alpha}(gN) = \overline{\alpha(g)}$$

El homomorfismo $\tilde{\alpha}$ se conoce como el kernel abstracto de la extensión. Fijando una sección s de π , para todo $q \in Q$, la conjugación por s(q) determina un automorfismo $\varphi(s(q))$ de N definido por $\varphi(s(q))(n) = \alpha(s(q))(n)$. Notese que la función $\varphi \colon Q \to \operatorname{Aut}(N)$ no es necesariamente un homomorfismo de grupos, pero sí lo es salvo automorfismos internos. En particular, si la sección s es un homomorfismo o el grupo de automorfismos internos de N es trivial, como se estudia en las secciones s0.1 y 2.2

Observación 2.0.5. Dos extensiones E y E' equivalentes vienen dadas por una misma acción de Q en N. Por ello, para estudiar las extensiones salvo equivalencia podemos fijar una acción $\varphi \colon Q \to \operatorname{Aut}(N)$ y estudiar las extensiones que dan lugar a esa acción.

Demostración.
$$f(i(n)^{s(q)}) = f(i(n))^{f(s(q))} = i'(n)^{s'(q)}$$

Definición 2.0.3. Denotamos por $\operatorname{Ext}_{\varphi}(Q, N)$ a las clases de extensiones equivalentes que dan lugar a la acción φ de Q en N.

2.1. Extensiones separables

Definición 2.1.1. Sea $\pi: A \to B$ un homomorfismo de grupos, una sección s de π es una inversa a la derecha de π , esto es, $s: B \to A$ tal que $\pi \circ s = 1_B$.

Definición 2.1.2. Decimos que una extensión $1 \to N \xrightarrow{i} E \xrightarrow{\pi} Q \to 1$ es separable cuando existe una sección $s: Q \to E$ de π que es un homomorfismo.

Teorema 2.1.1. Una extensión $1 \to N \xrightarrow{i} E \xrightarrow{\pi} Q \to 1$ es separable sí y solo sí E es equivalente a $1 \to N \to Q \ltimes_{\varphi} N \to Q \to 1$, donde $\varphi \colon Q \to \operatorname{Aut}(N)$ es una acción de grupos de Q en N.

Demostración. Si E es separable, existe una sección $s\colon Q\to E$ que es homomorfismo. s es inyectiva porque es una inversa por la derecha de π y, por tanto, $Q\cong s(Q)\leq E$. $\pi(i(N))=\{1\}$ y $s(q)\in i(N)\iff q=1$, por lo que $s(Q)\cap i(N)=1_E$ y E es isomorfo a un producto semidirecto externo de Q por N.

En la otra dirección, definiendo para $n\in N,\ q\in Q\ i(n)=(1_Q,n)$ y $\pi((n,q))=qN$

Teorema 2.1.2. Una extension $1 \to N \xrightarrow{i} E \xrightarrow{\pi} Q \to 1$ separable es equivalente

2.1.1. Clasificación de las escisiones

Para clasificar las escisiones consideraremos la extensión separable canónica

$$1 \to A \xrightarrow{i} Q \ltimes A \xrightarrow{\pi} Q \to 1 \tag{2.4}$$

Proposición 2.1.3. Las escisiones de 2.4 son homomorfismos de la forma s(q) = (q, c(q)) donde $c: Q \to A$ es un 1-cociclo.

Demostración. Una sección s de π tiene la forma s(q)=(q,c(q)) donde c es una función $c\colon Q\to A$. Imponiendo que la sección sea un homomorfismo

$$s(q_1)s(q_2) = (q_1q_2, c(q_1) \cdot q_2 + c(q_2))$$

$$s(q_1q_2) = (q_1q_2, c(q_1q_2))$$

la función c tiene que verificar la ecuación de un 1-cociclo para que s sea una escisión.

$$c(q_1q_2) = c(q_1) \cdot q_2 + c(q_2) \tag{2.5}$$

Definición 2.1.3. Dos escisiones s_1 y s_2 se dice que son A-conjugadas si existe un $a \in A$ tal que $s_1(q) = s_2(q)^{i(a)}$ para todo $q \in Q$

Proposición 2.1.4. Sean s_1 y s_2 dos escisiones y c_1 y c_2 los 1-cociclos asociados. Entonces s_1 y s_2 son A-conjugadas si $c_1 - c_2$ es un 1-coborde.

Demostración. Si existe un $a \in A$ tal que $s_1(q) = s_2(q)^i(a)$ para todo $q \in Q$, $(q, c_1(q)) = (1, -a)(q, c_2(q))(1, a) = (q, -a \cdot q + c_2(q) + a)$

$$c_1(q) - c_2(q) = -a \cdot q + a \tag{2.6}$$

Teorema 2.1.5. Sea E una extensión separable de Q por A. Entonces, las clases de escisiones A-conjugadas están en correspondencia uno a uno con los elementos de $H^1(Q,A)$

2.2. Extensiones con núcleo abeliano

A continuación estudiaremos el caso en que N es un grupo abeliano que a partir de ahora denotaremos por A.

Por la Observación 2.0.4, como Inn(A) es trivial, la acción de Q en A es un homomorfismo de grupos, lo que hace a A un Q-módulo.

$$1 \to A \xrightarrow{i} E \xrightarrow{\pi} Q \to 1 \tag{2.7}$$

$$\varphi \colon Q \to Aut(A)$$
 (2.8)

Para estudiar esta extensión, consideramos una sección de π , esto es, una función $s\colon Q\to E$ tal que $\pi\circ s=id$. Como $Q\cong E/i(A)$, dados $g,h\in Q,\,\pi\left(s(g)s(h)s(gh)^{-1}\right)=1_Q$ por ser π homomorfismo. Por tanto, s(gh) y s(g)s(h) distan en un elemento de i(A) y podemos definir una función $c\colon Q\times Q\to A$ que mide cuánto dista s de ser un homomorfismo:

$$s(g)s(h) = s(gh)i(c(g,h))$$
(2.9)

Podemos recuperar la extensión (2.7) a partir de la acción φ que hemos fijado y de la función c. Como $E = \bigcup_{q \in Q} s(q)i(A) = s(Q)i(A)$ es una unión disjunta, podemos expresar unívocamente cada elemento de E como un producto de elementos de s(Q) e i(A). Es decir, tenemos una biyección

un producto de elementos de s(Q) e i(A). Es decir, tenemos una biyección $Q \times A \to E$. A partir del producto en E, podemos definir una operación de grupo en $Q \times A$, que denotaremos por E_c . Dados $a_1, a_2 \in A$, $q_1, q_2 \in Q$ tenemos:

$$s(q_1)i(a_1)s(q_2)i(a_2) = s(q_1)s(q_2)i(a_1 \cdot q_2)i(a_2)$$

$$= s(q_1q_2)i(c(q_1, q_2) + a_1 \cdot q_2 + a_2)$$
(2.10)

Por tanto, la operación en E_c viene dada por:

$$(q_1, a_1)(q_2, a_2) = (q_1q_2, c(q_1, q_2) + a_1 \cdot q_2 + a_2)$$
(2.11)

Notese que este producto no depende directamente de la sección s escogida. Por ello, supondremos que la sección s es normalizada

$$s(1) = 1 (2.12)$$

de donde obtenemos que

$$c(1,q) = 0 = c(q,1) \tag{2.13}$$

De esta forma el isomorfismo $f \colon E \to E_c$ viene dado por $q \in Q$, $a \in A$ $s(q)i(a) \mapsto (q, a)$. La inclusión de A a E_c y la proyección a Q son las canónicas, haciendo a la extensión E_c equivalente a (2.7).

Proposición 2.2.1. Sea φ una acción de Q en A y c: $Q \times Q \rightarrow A$ una función que verifica la condición de normalización (2.13). Entonces, la operación (2.11) define una extensión de Q por A cuando c es un 2-cociclo.

Demostración. Para ver que la funcion define una operación de grupo comprobamos la asociatividad y la existencia de identidad e inversos.

Imponiendo que $[(q_1, a_1)(q_2, a_2)](q_3, a_3) = (q_1, a_1)[(q_2, a_2)(q_3, a_3)]$ llegamos a la siguiente condición que garantiza que la operación sea asociativa

$$c(q_1, q_2) \cdot q_3 - c(q_1, q_2q_3) + c(q_1q_2, q_3) - c(q_2, q_3) = 0$$
 (2.14)

Identidad: (1,0)

Sea $(q, a) \in Q \times A$,

$$(1,0)(q,a) = (q,c(1,q) + 0 \cdot q + a) = (q,a)$$

$$(q, a)(1, 0) = (q, c(q, 1) + a \cdot 1 + 0) = (q, a)$$

Inverso de $(q, a) \in Q \times A$: $(q^{-1}, -c(q, q^{-1}) - a \cdot q)$

A continuación, comprobamos que la inclusión de A a $A \times Q$ y la proyección a Q definen homomorfismos y hacen a la sucesión exacta.

$$i(a_1)i(a_2) = (1, a_1)(1, a_2) = (1, c(1, 1) + a_1 \cdot 1 + a_2) = (1, a_1 + a_2) = i(a_1 + a_2)$$

$$\pi((q_1, a_1)(q_2, a_2)) = \pi((q_1 q_2, -)) = q_1 q_2 = \pi((q_1, -))\pi((q_2, -))$$

$$\pi(i(a)) = \pi(1, a) = 1$$

Proposición 2.2.2. Sea E una extensión de Q por A y s, s' dos secciones de Q a E y c, c' los cociclos asociados a s y s'. Entonces, c y c' se diferencian en un 2-coborde. Esto es, la extensión E determina la clase $[c] \in H^2_{\varphi}(Q, A)$.

Demostración. La diferencia de s y s' es una función $e: Q \to A$, s'(q) = s(q)i(e(q))

$$s'(gh)i(c'(g,h)) = s'(g)s'(h)$$

$$= s(g)i(e(g))s(h)i(e(h))$$

$$= s(g)s(h)i(e(g) \cdot h + e(h))$$

$$= s(gh)i(c(g,h) + e(g) \cdot h + e(h))$$
(2.15)

De donde obtenemos $c'(g,h) - c(g,h) = e(g) \cdot h + e(h) - e(gh)$.

Teorema 2.2.3. Sea A un Q-módulo dado por una acción $\varphi \colon Q \to Aut(A)$. Entonces, las extensiones equivalentes de Q por A están en correspondencia uno a uno con los elementos del segundo grupo de cohomología.

$$\operatorname{Ext}_{\varphi}(Q,A) \cong H_{\varphi}^{2}(Q,A)$$

Observación 2.2.1. El producto semidirecto se corresponde con el elemento neutro de $H^2(Q, A)$.

Demostración. Por el Teorema 2.1.1, si una sección es un homomorfismo, el 2-cociclo asociado a ésta es trivial.

Proposición 2.2.4. Sean $[E_1], [E_2] \in Ext(Q, A)$ dos extensiones $y[c_1], [c_2] \in H^2(Q, A)$ sus cociclos asociados, podemos definir la suma $[E_1]+[E_2]$ como la clase de extensiones equivalentes asociada a $[c_1+c_2] \in H^2(Q, A)$. Es decir, $Ext_{\varphi}(Q, A)$ tiene una estructura de grupo abeliano heredada de $H^2(Q, A)$.

Proposición 2.2.5. Dada una extensión $1 \to A \xrightarrow{i} E \xrightarrow{\pi} Q \to 1$ y un homomorfismo $\alpha \colon Q' \to Q$, existe una extensión $1 \to A \to E' \to Q' \to 1$ única salvo equivalencia que hace al siguiente diagrama commutativo.

$$1 \longrightarrow N \longrightarrow E \longrightarrow Q \longrightarrow 1$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \alpha \uparrow$$

$$1 \longrightarrow N \longrightarrow E' \longrightarrow Q' \longrightarrow 1$$

Proposición 2.2.6. Dada una extensión $1 \to A \xrightarrow{i} E \xrightarrow{\pi} Q \to 1$ y un homomorfismo $\beta \colon A \to A'$, existe una extensión $1 \to A' \to E' \to Q \to 1$ salvo equivalencia que hace al siguiente diagrama conmutativo.

$$1 \longrightarrow N \longrightarrow E \longrightarrow Q \longrightarrow 1$$

$$\downarrow^{\beta} \qquad \downarrow^{f} \qquad | \downarrow$$

$$1 \longrightarrow N \longrightarrow E' \longrightarrow Q \longrightarrow 1$$

Teorema 2.2.7. Podemos expresar la suma de extensiones anterior a partir de las extensiones $1 \to A \xrightarrow{i_j} E_j \xrightarrow{\pi_j} Q \to 1$, para j = 1, 2, como muestra el siguiente diagrama conmutativo. La última fila se conoce como la suma de Baer de las extensiones E_1 y E_2 .

$$1 \longrightarrow A \times A \stackrel{i_1 \times i_2}{\longrightarrow} E_1 \times E_2 \stackrel{\pi_1 \times \pi_2}{\longleftarrow} Q \times Q \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Teorema 2.2.8. Sea G un grupo finito y sea $N \leq G$ abeliano, |N| = n y |G:N| = m con mcd(n,m) = 1. Entonces G contiene subgrupos de orden m y dos cualesquiera son conjugados.

Demostración. Tomamos una sección s y su cociclo asociado c. Definimos la función $d(x) = \sum_{t \in Q} c(t,x)$ y hacemos la suma en $t \in Q$ de (2.14), de donde

obtenemos

$$mc(x,y) = d(x) \cdot y + d(y) - d(xy) \tag{2.16}$$

Como $\mathrm{mcd}(m,n)=1,$ existe un $k\in\mathbb{Z}$ tal que $km\equiv 1\mod n.$ Multiplicando (2.16) por k llegamos a

$$c(x,y) = kd(x) \cdot y + kd(y) - kd(xy)$$
(2.17)

Por tanto, c verifica la ecuación de un coborde para la función kd y $H^2(Q,A)$ es trivial.

2.2.1. Extensiones centrales

Un caso particular de (2.7) es cuando la acción de Q en A es trivial