Работа 2.1.3 Определение показателя адиабаты по скорости звука в газе

Иван Сладков

18 февраля 2022 г.

1 Аннотация

В данной работе производится измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу, а также определение показателя адиабаты с помощью уравнения состояния идеального газа.

2 Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . Скорость звука в газах определяется формулой

$$c = \sqrt{\gamma \frac{RT}{\mu}}. (1)$$

Преобразуя эту формулу найдём

$$\gamma = \frac{\mu}{RT}c^2. \tag{2}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Если длина трубы равна целому числу полуволн, то

$$L = n\lambda/2,\tag{3}$$

где L — длина трубы, λ — длина волны, и $n \in \mathbb{N}$.

В данном опыте длина трубы постоянна, поэтому для последовательных резонансов применимы следующие формулы:

$$L = \frac{\lambda_{k+1}}{2}(n+k) \tag{4}$$

$$f_{k+1} = f_1 + \frac{c}{2L}k\tag{5}$$

3 Оборудование и инструментальные погрешности

Установка, использованная в данном опыте, изображена на рисунке 1. Для определения показателя адиабаты γ применялась установка с нерегулируемой длиной трубы. В ходе опыта, с помощью звукового генератора (ГЗ) регулировалась частота производимого звука с целью получения резонанса.

Длина трубы: $l=79.5\pm0.5$ см Температура газов: $T=297.6\pm0.1$ К Погр. звукового генератора: $\Delta=\pm10$ Γ ц

4 Результаты измерений и обработка данных

Результаты измерений представим в виде таблицы 1. Проверена повторяемость результатов при возрастании и убывании частот. 10-й резонанс при измерениях для воздуха получить не удалось. Это может быть связано с высокой чувствительностью ручки «Частота» звукового генератора.

Построим график 2, отображающий зависимость между k и $f_{k+1}-f_1$. В таком графике, согласно формуле (5), угловой коэффициент равен $\frac{c}{2L}$, откуда получим скорость звука: c=2Lk, зная её, можем определить показатель адиабаты из формулы (2); посчитаем погрешности. Занесём результаты в таблицу 2.

Рис. 1: Установка для определения показателя адиабаты

Рис. 2: Зависимость разности частот от номера резонанса

n	1	2	3	4	5	6	7	8	9	10	11
$\nu(O_2)$, Гц	220	586	655	867	1082	1284	1506	1718	1928	_	2361
$\nu(\mathrm{CO}_2)$, Γ ц	175	380	510	645	834	1002	1175	1338	1510	1676	1830

Таблица 1: Результаты измерений

	k	Скорость звука, см/с	Молярная масса, г/моль	Показатель адиабаты
Воздух	210 ± 2	33430 ± 350	29	1.30 ± 0.03
CO_2	165 ± 2	26230 ± 340	48	1.33 ± 0.03

Таблица 2: Расчёт показателя адиабаты

5 Вывод

Произвели измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу при её постоянной длине. На основе этих данных расчитали скорости звука в воздухе и углекислом газе; они оказались близки к табличным значениям. Это говорит о неплохой точности метода. С помощью уравнения состояния идеального газа определили показатели адиабаты каждого газа.