

Universidade de Brasília Departamento de Estatística

Modelos mistos aplicados à recomendação de cultivares no contexto da ambientômica

César Augusto Galvão

Relatório apresentado para o Departamento de Estatística da Universidade de Brasília como parte dos requisitos necessários para obtenção do grau de Bacharel em Estatística.

César Augusto Galvão

Modelos mistos aplicados à recomendação de cultivares no contexto da ambientômica

Orientador: Prof. Dr. Leandro T. Correia Coorientador(a): Prof(a). Dr. Rafael T. Tassinari

Relatório apresentado para o Departamento de Estatística da Universidade de Brasília como parte dos requisitos necessários para obtenção do grau de Bacharel em Estatística.

Agradecimentos

Resumo

 asdf

Palavras-chave: asdf

Lista de Tabelas

5.1	Dicionário de variáveis do ERBD relacionadas aos ensaios	23
5.2	Dicionário de variáveis do ERBD das unidades experimentais	24
5.3	Dicionário de variáveis ambientais	25

Lista de Figuras

Sumário

1 Introdução	8
1.1 Motivação	 8
1.2 Objetivos	 9
2 Referencial Teórico	10
2.1 Análise de Agrupamentos	 10
2.2 Redução de dimensionalidade	 10
2.3 Modelos Lineares	 12
2.3.1 Modelos Lineares Hierárquicos	 13
3 Metodologia	16
3.1 Conjuntos de dados	 16
3.2 Software	 17
3.3 Análise Exploratória	 17
3.4 Análise de Agrupamentos	 18
3.4.1 Redução de dimensionalidade	 18
3.5 Modelagem	 18
3.5.1 Modelos Mistos	 18
3.5.2 Montagem dos Marcadores Ambientômicos	 18
4 Resultados	19
4.1 Análise Exploratória	 19
4.2 Agrupamentos	19

4.3 Redução de Dimensionalidade	19
4.4 Composição dos Marcadores Ambientômicos	19
4.5 Modelo Misto	19
5 Conclusões	20
Referências	21

Introdução

1.1 Motivação

A domesticação de espécies silvestres de plantas para a agricultura é uma prática antiga e passou por diversas revoluções até os dias atuais, em que a genética biométrica e o melhoramento de precisão protagonizam a criação de cultivares e seleção de características de interesse Resende et al. (2023). Além disso, pressões como crescimento populacional (Hickey et al., 2019), redução de recursos naturais disponíveis, aquecimento global e uma variedade de consequências desses fatores (Jorasch, 2019) aumentam a necessidade de se produzir alimentos e outros recursos vegetais de forma incrementalmente eficiente. Uma das soluções para isso é justamente o melhoramento de precisão.

Neste contexto, o desenvolvimento e seleção de cultivares é associado a identificação de grupos ambientais ($Target\ Population\ of\ Environments$ ou TPE), permitindo que se aproveite ao máximo a característica de interesse Chenu (2015). De fato, em posse da informação de que o ambiente em que a planta se desenvolve interfere em seu fenótipo (a característica de interesse, que é uma expressão gênica), cabe estudar a interação genótipos \times ambientes ($G \times E$).

O estudo desse tipo de relação é potencializado com o uso de técnicas de Sistemas de Informações Geográficas – SIG, como sensoriamento remoto, entre outros Resende et al. (2023). A disponibilização pública de dados coletados via satélite com diversos graus de granularidade permite a inclusão de mais covariáveis ambientais como área cultivada, cobertura vegetal, temperatura, entre outros dados geofísicos¹.

A proposta de (Resende et al., 2021), que será usada de estudo de caso, é expandir

 $^{^1{\}rm Por}$ exemplo, o serviço Google Earth Engine disponibiliza seu catálogo em https://developers.google.com/earth-engine/datasets/

Objetivos 9

o uso de TPE para um estudo ômico do ambiente, daí *ambientômica*. Os autores propõem o uso de modelos hierárquicos, e o conceito de ambientipagem, resultante de agrupamentos ambientais, para predição de performance de genótipos não observados. Isto permite, por exemplo, recomendar o melhor genótipo de um determinado cultivar para uma região em que jamais foi cultivado e assim tornar a região produtiva.

1.2 Objetivos

O objetivo geral deste trabalho de conclusão de curso é estudar o uso de modelos lineares hierárquicos (ou mistos) para recomendação de genótipos de um determinado cultivar em uma região delimitada e ambientipada, isto é, com dados sobre a maior quantidade de características ambientais possível. Pretende-se revisar metodologicamente o estudo de (Resende et al., 2021), detalhando o processo de modelagem e sua adequação, bem como comparar computacionalmente variações do modelo utilizado.

Os objetivos específicos são:

- Explorar a técnica de modelagem estatística via modelos lineares hierárquicos incluindo efeitos aleatórios;
- Explorar os conceitos necessários para aplicação do modelo ao contexto de melhoramento de plantas e ambientômica;
- Comparar a adequação do modelo original dos autores com um modelo que faça composição de marcadores ambientômicos utilizando técnicas de redução de dimensionalidade.

Referencial Teórico

2.1 Análise de Agrupamentos

2.2 Redução de dimensionalidade

De acordo com Morettin e Singer (2022), técnicas de redução de dimensionalidade são utilizadas quando há um grande número de covariáveis e se deseja estudar as unidades observadas com base em sua estrutura de dependência multivariada. Dentre as técnicas disponíveis, foi escolhida a Análise de Componentes Principais (PCA - Principal Component Analysis), que busca expressar as covariáveis originais em termos de outras variáveis não correlacionadas e que resumam as informações contidas em um conjunto de variáveis. Em outras palavras, "as p covariáveis originais (X_1, \ldots, X_p) são transformadas em p componentes princiais não correlacionadas (Y_1, \ldots, Y_p) de modo que Y_1 é aquela que explica a maior parcela da variabilidade total dos dados originais, Y_2 explica a segunda maior parcila e assim por diante" (Artes e Barroso, 2023).

Considerando \mathbf{x} o vertor de covariáveis originais $\mathbf{x}^{\top} = (X_1, \dots, X_p)$ e $\operatorname{Cov}(x) = \mathbf{\Sigma}$, as componentes principais são obtidas pela decomposição espectral da matriz de covariâncias: $\mathbf{\Sigma} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Gamma}^{\top}$. Dessa forma $\mathbf{\Lambda}$ é uma matriz diagonal dos autovalores e $\mathbf{\Gamma}$ é uma matriz ortogonal (portanto $\mathbf{\Gamma} \mathbf{\Gamma}^{\top} = \mathbf{I}$) dos autovetores de $\mathbf{\Sigma}$. Obtém-se daí os pares de autovalores e autovetores ortogonais normalizados $(\lambda_i, \alpha_i), i = 1, \dots, p$,, ordenados de modo que $\lambda_1 \geq \dots \geq \lambda_p \geq 0$. Dessa forma, pode-se expressar a i-ésima componente principal por

$$Y_i = \boldsymbol{\alpha}_i^{\top} \mathbf{x} = \alpha_{i1} X_1 + \dots + \alpha_{ip} X_p, \quad i = 1, \dots, p.$$
 (2.2.0.1)

Caso as covariáveis tenham variância ou valores em escalas muito discrepantes, é possível normalizá-las e obter as componentes principais a partir da matriz de correlações ρ e seus pares de autovalores e autovetores (γ_i, ϵ_i) . As covariáveis são padronizadas utilizando

$$\mathbf{z} = \left(\mathbf{V}^{1/2}\right)^{-1} (\mathbf{x} - \boldsymbol{\mu}), \tag{2.2.0.2}$$

em que $\mathbf{V}^{1/2} = \mathrm{diag}(\sigma_1, \dots, \sigma_p)$ e $\boldsymbol{\mu}$ é o vetor de médias. Agora tem-se $\mathrm{Cov}(\mathbf{z}) = \rho$, a matriz de correlações para as covariáveis padronizadas. Finalmente, as componentes são dadas por

$$Y_i = \boldsymbol{\epsilon}_i^{\top} \left(\boldsymbol{V}^{1/2} \right)^{-1} (\boldsymbol{x} - \boldsymbol{\mu}). \tag{2.2.0.3}$$

A obtenção de componentes principais para o sistema garante algumas propriedades interessantes como

$$\sum_{j=1}^{p} \operatorname{Var}(X_{j}) = \operatorname{tr}(\mathbf{\Sigma}) = \operatorname{tr}(\mathbf{\Gamma}\mathbf{\Lambda}\mathbf{\Gamma}^{\top}) = \operatorname{tr}(\mathbf{\Lambda}) = \sum_{j=1}^{p} \operatorname{Var}(Y_{j}).$$
 (2.2.0.4)

Ou seja, a variância total do sistema é mantida após obtenção das componentes principais, o que também vale quando se utiliza a matriz de correlações.

Efetivamente o que será utilizado serão os estimadores amostrais para as as componentes principais, para as matrizes de covariância e correlação e seus pares de autovalores e autovetores; \hat{Y}_i , \mathbf{S} , \mathbf{R} e $(\hat{\gamma}_i, \hat{\boldsymbol{\epsilon}}_i)$ respectivamente.

Quando o intuito da obtenção das componentes principais é reduzir a dimensionalidade do sistema e assim manter uma quantidade menor de variáveis que explique uma parcela razoável da variância do sistema, deve-se adotar um critério de determinação do número de componentes principais a serem retidas. Artes e Barroso (2023) apresentam:

 Critério de Kaiser, segundo a qual se mantém as componentes com autovalores superiores a 1 — ou seja, componentes que explicariam mais variância do que uma covariável original individual;

 Reter componentes que acumulem ao menos uma certa percentagem de variância explicada do total;

 Reter componentes que acumulem ao menos uma certa percentagem da variância explicada de cada variável original.

Morettin e Singer (2022) apresentam ainda a seleção baseada no fator de aceleração do teste do cotovelo (utilização do screeplot). Considerando af(i) = f''(i) = f(i+1) - 2f(i) - f(i-1), i = 1, ..., p-1 o fator de aceleração, o número de fatores retidos corresponde à posição anterior em que af(i) é máximo.

2.3 Modelos Lineares

Modelos Lineares apresentam uma relação estocástica entre duas ou mais variáveis. Sua forma simples com efeitos fixos pode ser representada da forma

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{2.3.0.1}$$

em que \mathbf{Y} é o vetor da variável resposta, $\boldsymbol{\beta}$ é o vetor de coeficientes associados às covariáveis $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_p)^{\top}$ e $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}\sigma^2)$ é o vetor de erros estocásticos associado às observações. Ao final do processo de modelagem obtém-se um modelo da forma

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}},\tag{2.3.0.2}$$

em que $\hat{\beta}$ são estimadores obtidos pelo método de mínimos quadrados ordinários ou máxima verossimilhança para β (Kutner et al., 2005).

Este modelo de regressão, que também pode ser chamado de modelo de efeitos fixos, exige uma série de suposições a respeito da componente aleatória que são avaliadas na etapa diagnóstica da modelagem como heteroscedasticidade, independência e distribuição Normal. Caso uma ou mais suposições não possam ser verificadas, se observe colinearidade entre as covariáveis do modelo, pontos de alavancagem ruins, ou outros comprometimentos do modelo, recorre-se a transformações, redução de dimensionalidade, entre outros. Essas medidas, assim como variáveis que indiquem grupos aos quais as observações pertencem, dados categóricos, entre outros, comumente aumentam a com-

plexidade da interpretação do modelo e exigem tratamentos inferenciais diferentes (Hox et al., 2017).

2.3.1 Modelos Lineares Hierárquicos

Frequentemente pesquisas em domínios variados do conhecimento estudam fenômenos em que as unidades de análise são agregadas em categorias (Adewale et al., 2007; McMahon e Diez, 2007). Esses diferentes níveis de análise, indivíduos ou grupos, e suas características requerem diferentes formas de representação e técnicas de inferência que comportem adequadamente as estruturas de covariância envolvidas.

Modelos hierarquizados, ou mistos, substituem duas práticas comuns na utilização de regressões lineares: transformação de variáveis categóricas em variáveis binárias (dummy) e planificação do nível de análise, ou seja, utilização de medidas de grupos e indivíduos como descritores diretos da unidade de análise. A utilização de um modelo misto permite a construção de estimadores que contornam essas estratégias e representam melhor indivíduos em seus agrupamentos no contexto de suas características (Hox et al., 2017; Gelman e Hill, 2006). Esse tipo de modelo linear pode ser representado da forma

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{u} + \boldsymbol{\varepsilon},\tag{2.3.1.1}$$

em que \mathbf{y} é o vetor de observações, \mathbf{X} é a matriz de incidência de efeitos fixos conhecida, $\boldsymbol{\beta}$ é o vetor de efeitos fixos, \mathbf{Z} é a matriz de incidência de efeitos aleatórios conhecida, \boldsymbol{u} é o vetor de efeitos aleatórios e $\boldsymbol{\varepsilon}$ é o vetor de efeitos aleatórios (Martins et al., 1993b).

Pressupõe-se as seguintes distribuições para $\mathbf{y},\, \boldsymbol{u}$ e $\boldsymbol{\varepsilon}$:

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \boldsymbol{\varepsilon} \end{bmatrix} \sim \mathcal{N} \left\{ \begin{bmatrix} \mathbf{X}\boldsymbol{\beta} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Z}\mathbf{U}\mathbf{Z}^{\top} + \mathbf{R} & \mathbf{Z}\mathbf{U} & \mathbf{R} \\ \mathbf{U}\mathbf{Z}^{\top} & \mathbf{U} & \mathbf{0} \\ \mathbf{R} & \mathbf{0} & \mathbf{R} \end{bmatrix} \right\}, \tag{2.3.1.2}$$

em que $\mathbf{0}$ são matrizes nulas, \mathbf{U} é a matriz de covariâncias dos efeitos aleatórios \mathbf{u} e \mathbf{R} é a matriz de covariâncias residual.

A matriz U pode ser ainda decomposta em termos da matriz de correlação $n \times n$

entre os efeitos aleatórios \mathbf{A} e a matriz \mathbf{U}_0 , a matriz de covariância $q \times q$ entre os efeitos aleatórios das q covariáveis de efeito aleatório (Martins et al., 1993a). A matriz portanto pode ser expressa como $\mathbf{U} = \mathbf{A} \otimes \mathbf{U}_0$. Da mesma forma, a matriz de \mathbf{R} é decomposta em $\mathbf{R} = \mathbf{I}_n \otimes \mathbf{R}_0$.

Soluções de estimação para o modelo 2.3.1.2 podem ser obtidas a partir da função densidade de probabilidade conjunta

$$f(\mathbf{y}, \mathbf{u}) = \frac{1}{(2\pi)^{n/2} |\mathbf{R}|^{1/2}} \exp\left\{ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\mathbf{u})^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\mathbf{u}) \right\}$$
(2.3.1.3)

e tomando as soluções homogêneas para as derivadas $\frac{\partial \ell}{\partial \beta}$ e $\frac{\partial \ell}{\partial \mathbf{u}}$ da log-verossimilhança ℓ . Obtém-se assim o sistema de Equações de Modelos Mistos, dadas por

$$\begin{bmatrix} \mathbf{X}^{\top} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\top} \mathbf{R}^{-1} \mathbf{Z} \\ \mathbf{Z}^{\top} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\top} \mathbf{R}^{-1} \mathbf{Z} + \mathbf{U}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{\top} \mathbf{R}^{-1} \mathbf{y} \\ \mathbf{Z}^{\top} \mathbf{R}^{-1} \mathbf{y} \end{bmatrix}.$$
 (2.3.1.4)

A solução para $\boldsymbol{\beta}$ é obtida via Mínimos Quadrados Generalizados (GLS) ignorando $\mathbf{u},$ obtendo-se

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{y}$$
 (2.3.1.5)

sendo \mathbf{X}^- a inversa generalizada de \mathbf{X} . A variância dos estimadores de efeitos fixos é dada por

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \left(\mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{X}\right)^{-}, \tag{2.3.1.6}$$

que depende de $\text{Var}(\mathbf{y}) = \mathbf{V} = \mathbf{Z}\mathbf{U}\mathbf{Z}^{\top} + \mathbf{R}$, que é uma matriz particionada, de modo que sua inversa é dada por

$$\mathbf{V}^{-1} = \mathbf{R}^{-1} - \mathbf{R}^{-1} \mathbf{Z} \left(\mathbf{Z}^{\top} \mathbf{R}^{-1} \mathbf{Z} + \mathbf{U}^{-1} \right)^{-1} \mathbf{Z}^{\top} \mathbf{R}^{-1}.$$
 (2.3.1.7)

Como consequência de 2.3.1.5,

$$\hat{\mathbf{u}} = \left(\mathbf{Z}^{\top} \mathbf{R}^{-1} \mathbf{Z} + \mathbf{U}^{-1}\right)^{-1} \mathbf{Z}^{\top} \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}}\right)
= \mathbf{U} \mathbf{Z}^{\top} \mathbf{V}^{-1} \left(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}}\right),$$
(2.3.1.8)

que é o melhor preditor linear linear não-viesado (BLUP) para os efeitos aleatórios. A variância desse preditor é dada por

$$Var(\hat{\mathbf{u}}) = Var\left[\mathbf{U}\mathbf{Z}^{\top}\mathbf{V}^{-1}\left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\right)\right]$$

$$= \mathbf{U}\mathbf{Z}^{\top}\mathbf{V}^{-1}\left[Var(\mathbf{y}) - 2Cov\left(\mathbf{y}, \hat{\boldsymbol{\beta}}^{\top}\mathbf{X}^{\top}\right) + Var(\mathbf{X}\hat{\boldsymbol{\beta}})\right]\mathbf{V}^{-1}\mathbf{Z}\mathbf{U}^{\top}$$

$$= \mathbf{U}\mathbf{Z}^{\top}\left[\mathbf{V}^{-1} - \mathbf{V}^{-1}\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{V}^{-1}\mathbf{X}\right)^{\top}\mathbf{X}^{\top}\mathbf{V}^{-1}\right]\mathbf{Z}\mathbf{U}^{\top}.$$
(2.3.1.9)

Dessa forma temos quase todos as componentes do modelo definidas, exceto \mathbf{U}_0 e \mathbf{R}_0 .

Restricted Maximum Likelihood? Qual algoritmo o pacote usa? Qual pacote?

Metodologia

COLOCAR CLUSTER REGIONAL NO MODELO HIERARQUICO INCLUIR AQUI QUE ui é o critério de seleção + referência

3.1 Conjuntos de dados

O conjunto de dados experimentais utilizado foi o Embrapa Rice Breeding Dataset (ERBD), desenvolvido e cedido pela Empresa Brasileira de Pesquisa Agropecuária (Embrapa) para pesquisas com cultivares de arroz (Oryza sativa L.). A base de dados cedida compreende coleta de dados desde 1982, mas os dados utilizados neste trabalho compreendem apenas os anos de 1995 a 2021 por recomendação dos pesquisadores da Empresa. A base é extensamente documentada em Breseghello et al. (2011) e Breseghello et al. (2021) e os dicionários desses dados estão disponíveis no Apêndice, tabelas 5.1 e 5.2.

Para o conjunto de dados ambientais foram coletados dados de 393 covariáveis, das quais 19 são oriundas do repositório WorldClim, 130 do NasaPower e 244 do SoilGrids. Todos os dados ambientais advém de medições via satélite e foram obtidos mediante consulta às API (Application Programming Interface) disponibilizadas pelas organizações. O dicionário de dados contendo a fonte e definição de todas as 393 covariaveis está disponível no Apêndice, tabela 5.3. As três fontes são descritas a seguir:

A SoilGrids ¹ é um projeto da International Soil Reference and Information Centre é um sistema para mapeamento digital do solo e faz predições para as suas distribuições de forma global. Suas variáveis são dadas em termos de distribuições para seis horizontes de profundidade no solo e alguns de seus quantis.

¹https://www.isric.org/explore/soilgrids

NASAPOWER (Prediction Of Worldwide Energy Resources)² é um projeto que foi desenvolvido para melhorar ou criar dados de sistemas de satélites e tem três comunidades-alov: energia renovável, construções sustentáveis e agroclimatologia. Os dados utilizados são aqueles destinados ao último público.

Finalmente, WorldClim³ é uma base de dados com dados de tempo e clima de alta resolução. As variáveis são derivadas de de valores mensais de precipitação e temperatura, seja uma tendência anual ou de fatores ambientais limitantes ou extremos (em termos de temperatura, por exemplo).

Os dados de satélite dessas três fontes foram coletados em 87.155 pontos em todo o país, mas não correspondem exatamente aos 149 pontos de experimento. Embora existam métodos apropriados para estimar toda a superfície do país e, em seguida, utilizar a estimação para os pontos de experimento (Journel e Journel, 1989), este não é o foco do estudo, nem se pretende seguir essa metodologia específica. Consequentemente, o erro de estimação das covariáveis para os pontos de experimento será ignorado. Para a interpolação das covariáveis para os pontos de experimento, optou-se por calcular a média das covariáveis dos três pontos mais próximos.

3.2 Software

Para todas as análises e construção de gráficos foi utilizada a linguagem R VER-SAO no ambiente de desenvolvimento RStudio VERSAO e os seguintes pacotes:

- pacote1 versao
- pacote2 versao

3.3 Análise Exploratória

Não há dados de parentalidade, então não conseguimos usar dados de pedigree. a variável de agrupamento utilizada será o próprio genótipo

Podemos analisar:

Ambiente Genótipos Marcadores ambientômicos

²https://power.larc.nasa.gov/

³https://www.worldclim.org/data/index.html

18 Modelagem

3.4 Análise de Agrupamentos

MONTAR CLUSTERS DE REGIÕES DO BRASIL DE ACORDO COM AS VARIÁVEIS AMBIENTAIS

3.4.1 Redução de dimensionalidade

Descrição da redução de dimensionalidade

3.5 Modelagem

3.5.1 Modelos Mistos

Motivo do uso de modelos mistos Descrição do que é o modelo linear misto, suas características, método de estimação, forma de aproximação numérica no R,

3.5.2 Montagem dos Marcadores Ambientômicos

MONTAR OS INDICADORES AMBIENTOMICOS, MAS INCLUINDO TAMBÉMA CLUSTERIZAÇÃO DAS REGIÕES DO BRASIL DE ACORDO COM AS VARIÁVEIS AMBIENTAIS

falar das simulações

O modelo do Tassinari e a probabilidade de selecionar cada uma das covariáveis para o modelo.

Resultados

análise exploratória, ambiente, genótipos, marcadores ambientômicos, modelo e desempenho

- 4.1 Análise Exploratória
- 4.2 Agrupamentos
- 4.3 Redução de Dimensionalidade
- 4.4 Composição dos Marcadores Ambientômicos
- 4.5 Modelo Misto

Conclusões

Referências Bibliográficas

- Adewale, A. J., Hayduk, L., Estabrooks, C. A., Cummings, G. G., Midodzi, W. K., & Derksen, L. (2007). Understanding hierarchical linear models: applications in nursing research. Nursing Research, 56(4):S40–S46.
- Artes, R. & Barroso, L. P. (2023). Métodos Multivariados de Análise Estatística. Blucher.
- Breseghello, F., de Mello, R. N., Pinheiro, P., Soares, D., Lopes Júnior, S., Nakano Rangel,
 P. H., Guimarães, E., de Castro, A. P., Colombari Filho, J., de Magalhães Júnior, A. M.,
 Fagundes, P. R. R., de Carvalho Ferreira Neves, P., Furtini, I. V., Utumi, M. M.,
 Pereira, J., Cordeiro, A., Filho, A. S., Abreu, G. B., de Moura Neto, F. P., Pietragalla,
 J., Hernández, M. V., & Crossa, J. (2021). Building the embrapa rice breeding dataset
 for efficient data reuse. Crop Science, 61(5):3445–3457.
- Breseghello, F., de Morais, O. P., Pinheiro, P. V., Silva, A. C. S., da Maia de Castro, E., Guimarães, É. P., de Castro, A. P., Pereira, J. A., de Matos Lopes, A., Utumi, M. M., et al. (2011). Results of 25 years of upland rice breeding in brazil. *Crop Science*, 51(3):914–923.
- Chenu, K. (2015). Characterizing the crop environment nature, significance and applications. *Crop physiology*, pages 321–348.
- Gelman, A. & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Analytical Methods for Social Research. Cambridge University Press.
- Hickey, L. T., N. Hafeez, A., Robinson, H., Jackson, S. A., Leal-Bertioli, S. C., Tester, M., Gao, C., Godwin, I. D., Hayes, B. J., & Wulff, B. B. (2019). Breeding crops to feed 10 billion. *Nature biotechnology*, 37(7):744–754.
- Hox, J., Moerbeek, M., & Van de Schoot, R. (2017). *Multilevel analysis: Techniques and applications*. Routledge.
- Jorasch, P. (2019). The global need for plant breeding innovation. *Transgenic Research*, 28(Suppl 2):81–86.

- Journel, A. G. & Journel, A. G. (1989). Fundamentals of geostatistics in five lessons, volume 8. American Geophysical Union Washington, DC.
- Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models. McGraw-hill.
- Martins, E. N., Lopes, P. S., Almeida e Silva, M., & Regazzi, A. J. (1993a). *Estimação de Componentes de Variância*, volume 39 of *Cadernos Didáticos*. Editora UFV.
- Martins, E. N., Lopes, P. S., Almeida e Silva, M., & Regazzi, A. J. (1993b). *Modelo Linear Misto*, volume 38 of *Cadernos Didáticos*. Editora UFV.
- McMahon, S. M. & Diez, J. M. (2007). Scales of association: hierarchical linear models and the measurement of ecological systems. *Ecology letters*, 10(6):437–452.
- Morettin, P. A. & Singer, J. d. M. (2022). Estatística e Ciência de Dados. LTC.
- Resende, R. T., Brondani, C., & Chaves, L. J. (2023). O melhoramento na era de agricultura de precisão. In: *Melhoramento de Precisão*, R. T. Resende & C. Brondani, ed., chapter 1, pages 13–40. Embrapa Arroz e Feijão.
- Resende, R. T., Piepho, H.-P., Rosa, G. J., Silva-Junior, O. B., e Silva, F. F., de Resende, M. D. V., & Grattapaglia, D. (2021). Environics in breeding: applications and perspectives on envirotypic-assisted selection. *Theoretical and Applied Genetics*, 134:95–112.

Apêndice

Tabela 5.1: Dicionário de variáveis do ERBD relacionadas aos ensaios

Variável	Nome	Detalhes
TRIAL	Código do ensaio	String único que identifica o ensaio
SYST	Sistema de cultivo	Indica tanto o subprograma de melhoramento quanto o ambiente do ensaio. Níveis: Irrigado ou de Sequeiro
YEAR	Ano do ensaio	Ano de preparação do ensaio. Ex: 2005: temporada 2005/2006
DATE	Data de plantio	Dia de plantio de sementes secas. Formato DD/MM/AAAA
ST	Estado do Brasil	Estado do Brasil onde o ensaio foi conduzido
LOCATION	Local de plantio	Nome do município onde o ensaio foi conduzido
LOC	Local de plantio	Termo abreviado que indica o município
TYPE	Tipo de ensaio	Tipo de ensaio. ER: Ensaios Regionais de Rendimento; VCU: Valor de Cultivo e Uso (Ensaios Avançados de Rendimento)
DESIGN	Desenho Experimental	O desenho estatístico do ensaio. RCB: delineamento de blocos completos ao acaso; LAT: delineamento em látice
MEAN	Média de rendimento de grãos	Média geral do ensaio do rendimento de grãos (kg $\mathrm{ha^{-1}})$

H^2	Hereditariedade	Hereditariedade de sentido amplo do rendimento de grãos
CV	Coeficiente de Vari- ação	Coeficiente de variação experimental para rendimento de grãos (%)

Fonte: Breseghello et al. (2021)

Tabela 5.2: Dicionário de variáveis do ERBD das unidades experimentais

Nome na base	Nome da variável	Tipo	Detalhes
TRIAL	Código do ensaio	Link para Metadados	String único que identifica o ensaio
REP	Número da Repetição	Fator de Design	Inteiro que indica a repetição dentro do ensaio
BLO	Número do Bloco	Fator de Design	Inteiro que indica o bloco dentro da repetição (apenas em delineamento em látice)
GEN	Nome do Genótipo	Fator Experimental	Identificação do germoplasma (linhagem pura, variedade local ou cultivar)
GY	Rendimento de grãos	Numérico	Peso do arroz em casca com 13% de umidade, em k g $\rm ha^{-1}$
PHT	Altura da Planta	Numérico	Altura da planta do solo até a ponta da panícula primária, no estágio pré-colheita, em cm
DTF	Dias até a Floração	Numérico	Número de dias desde o plantio de sementes secas até 50% das plantas estarem floridas
LOD	Tombamento	Escores de 1 a 9^1	Nível de tombamento da copa da parcela, avali- ado no estágio pré-colheita
LBL	Blast na Folha	Escores de 1 a 9	Severidade da doença de brusone do arroz, avaliada em folhas no estágio vegetativo

 $^{^1\}mathrm{Escores}$ mais altos indicam níveis crescentes de tombamento ou doença.

PBL	Blast na Panícula	Escores de 1 a 9	Severidade da doença de brusone do arroz, avaliada em panículas no estágio pré-colheita
BSP	Mancha Parda	Escores de 1 a 9	Severidade da doença causada por <i>Bipolaris</i> oryzae, avaliada em folhas no estágio précolheita
LSC	Escaldadura da Folha	Escores de 1 a 9	Severidade da doença causada por <i>Monographella albescens</i> , avaliada em folhas no estágio pré-colheita
GDS	Descoloração do Grão	Escores de 1 a 9	Severidade do escurecimento ou manchas nos grãos, causada por vários fungos, avaliada nas glumas no estágio pré-colheita

 $Fonte:\ Breseghello\ et\ al.\ (2021)$

Tabela 5.3: Dicionário de variáveis ambientais

Nome na base	Nome da variável	Descrição
WorldClim	bio_1	Temperatura Média Anual
WorldClim	bio_2	Amplitude Diurna Média (Média das diferenças mensais (temp máx - temp mín))
WorldClim	bio_3	Isotermia (BIO2/BIO7) (Œ100)
WorldClim	bio_4	Sazonalidade da Temperatura (desvio padrão Œ100)
WorldClim	bio_5	Temperatura Máxima do Mês Mais Quente
WorldClim	bio_6	Temperatura Mínima do Mês Mais Frio
WorldClim	bio_7	Amplitude Térmica Anual (BIO5-BIO6)
WorldClim	bio_8	Temperatura Média do Trimestre Mais Chuvoso
WorldClim	bio_9	Temperatura Média do Trimestre Mais Seco

WorldClim	bio_10	Temperatura Média do Trimestre Mais Quente
WorldClim	bio_11	Temperatura Média do Trimestre Mais Frio
WorldClim	bio_12	Precipitação Anual
WorldClim	bio_13	Precipitação do Mês Mais Chuvoso
WorldClim	bio_14	Precipitação do Mês Mais Seco
WorldClim	bio_15	Sazonalidade da Precipitação (Coeficiente de Variação)
WorldClim	bio_16	Precipitação do Trimestre Mais Chuvoso
WorldClim	bio_17	Precipitação do Trimestre Mais Seco
WorldClim	bio_18	Precipitação do Trimestre Mais Quente
WorldClim	bio_19	Precipitação do Trimestre Mais Frio
SoilGrids	bdod_0-5cm_mean	Densidade aparente da fração fina do solo em cg/cmş para centímetros 0 a 5 da superfície média
SoilGrids	bdod_0-5cm_Q0p05	Densidade aparente da fração fina do solo em cg/cmş para centímetros 0 a 5 da superfície predição para quantil 0,05
SoilGrids	bdod_0-5cm_Q0p5	Densidade aparente da fração fina do solo em cg/cmş para centímetros 0 a 5 da superfície predição para quantil 0,5
SoilGrids	bdod_0-5cm_Q0p95	Densidade aparente da fração fina do solo em cg/cmş para centímetros 0 a 5 da superfície predição para quantil 0,95
SoilGrids	bdod_5-15cm_mean	Densidade aparente da fração fina do solo em cg/cmş para centímetros 5 a 15 da superfície média
SoilGrids	bdod_5-15cm_Q0p05	Densidade aparente da fração fina do solo em cg/cmş para centímetros 5 a 15 da superfície predição para quantil 0,05

SoilGrids	bdod_5-15cm_Q0p5	Densidade aparente da fração fina do solo em cg/cmş para centímetros 5 a 15 da superfície predição para quantil 0,5
SoilGrids	bdod_5-15cm_Q0p95	Densidade aparente da fração fina do solo em cg/cmş para centímetros 5 a 15 da superfície predição para quantil 0,95
SoilGrids	bdod_15-30cm_mean	Densidade aparente da fração fina do solo em cg/cmş para centímetros 15 a 30 da superfície média
SoilGrids	bdod_15- 30cm_Q0p05	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 15 a 30 da superfície predição para quantil 0,05
SoilGrids	bdod_15-30cm_Q0p5	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 15 a 30 da superfície predição para quantil 0,5
SoilGrids	bdod_15- 30cm_Q0p95	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 15 a 30 da superfície predição para quantil 0,95
SoilGrids	bdod_30-60cm_mean	Densidade aparente da fração fina do solo em cg/cmş para centímetros 15 a 30 da superfície média
SoilGrids	bdod_30- 60cm_Q0p05	Densidade aparente da fração fina do solo em cg/cmş para centímetros 30 a 60 da superfície predição para quantil 0,05
SoilGrids	bdod_30-60cm_Q0p5	Densidade aparente da fração fina do solo em cg/cmş para centímetros 30 a 60 da superfície predição para quantil 0,5
SoilGrids	bdod_30- 60cm_Q0p95	Densidade aparente da fração fina do solo em cg/cmş para centímetros 30 a 60 da superfície predição para quantil 0,95
SoilGrids	bdod_60- 100cm_mean	Densidade aparente da fração fina do solo em cg/cmş para centímetros 60 a 100 da superfície média

SoilGrids	bdod_60- 100cm_Q0p05	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 60 a 100 da superfície predição para quantil 0,05
SoilGrids	bdod_60- 100cm_Q0p5	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 60 a 100 da superfície predição para quantil 0,5
SoilGrids	bdod_60- 100cm_Q0p95	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	bdod_100- 200cm_mean	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 100 a 200 da superfície média
SoilGrids	bdod_100- 200cm_Q0p05	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 100 a 200 da superfície predição para quantil 0,05
SoilGrids	bdod_100- 200cm_Q0p5	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	bdod_100- 200cm_Q0p95	Densidade aparente da fração fina do solo em cg/cm $\$$ para centímetros 100 a 200 da superfície predição para quantil 0,95
SoilGrids	cec_0-5cm_mean	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 0 a 5 da superfície média
SoilGrids	cec_0-5cm_Q0p05	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 0 a 5 da superfície predição para quantil 0,05
SoilGrids	cec_0-5cm_Q0p5	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 0 a 5 da superfície predição para quantil 0,5
SoilGrids	cec_0-5cm_Q0p95	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 0 a 5 da superfície predição para quantil 0,95

SoilGrids	cec_5-15cm_mean	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 5 a 15 da superfície média
SoilGrids	cec_5-15cm_Q0p05	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 5 a 15 da superfície predição para quantil 0,05
SoilGrids	cec_5-15cm_Q0p5	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 5 a 15 da superfície predição para quantil 0,5
SoilGrids	cec_5-15cm_Q0p95	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 5 a 15 da superfície predição para quantil 0,95
SoilGrids	cec_15-30cm_mean	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 15 a 30 da superfície média
SoilGrids	cec_15-30cm_Q0p05	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 15 a 30 da superfície predição para quantil 0,05
SoilGrids	cec_15-30cm_Q0p5	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 15 a 30 da superfície predição para quantil 0,5
SoilGrids	cec_15-30cm_Q0p95	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 15 a 30 da superfície predição para quantil 0,95
SoilGrids	cec_30-60cm_mean	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 15 a 30 da superfície média
SoilGrids	cec_30-60cm_Q0p05	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 30 a 60 da superfície predição para quantil 0,05
SoilGrids	cec_30-60cm_Q0p5	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 30 a 60 da superfície predição para quantil 0,5

SoilGrids	cec_30-60cm_Q0p95	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 30 a 60 da superfície predição para quantil 0,95
SoilGrids	cec_60-100cm_mean	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 60 a 100 da superfície média
SoilGrids	cec_60- 100cm_Q0p05	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 60 a 100 da superfície predição para quantil 0,05
SoilGrids	cec_60-100cm_Q0p5	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 60 a 100 da superfície predição para quantil 0,5
SoilGrids	cec_60- 100cm_Q0p95	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	cec_100- 200cm_mean	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 100 a 200 da superfície média
SoilGrids	cec_100- 200cm_Q0p05	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 100 a 200 da superfície predição para quantil 0,05
SoilGrids	cec_100- 200cm_Q0p5	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	cec_100- 200cm_Q0p95	Capacidade de Troca de Cátions do solo em mmol(c)/kg para centímetros 100 a 200 da superfície predição para quantil 0,95
SoilGrids	cfvo_0-5cm_mean	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 0 a 5 da superfície - média

SoilGrids	cfvo_0-5cm_Q0p05	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 0 a 5 da superfície predição para quantil 0.05
SoilGrids	cfvo_0-5cm_Q0p5	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 0 a 5 da superfície predição para quantil 0.5
SoilGrids	cfvo_0-5cm_Q0p95	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 0 a 5 da superfície predição para quantil 0.95
SoilGrids	cfvo_5-15cm_mean	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 5 a 15 da superfície média
SoilGrids	cfvo_5-15cm_Q0p05	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 5 a 15 da superfície predição para quantil 0.05
SoilGrids	cfvo_5-15cm_Q0p5	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 5 a 15 da superfície predição para quantil 0.5
SoilGrids	cfvo_5-15cm_Q0p95	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 5 a 15 da superfície predição para quantil 0.95
SoilGrids	cfvo_15-30cm_mean	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 15 a 30 da superfície média
SoilGrids	cfvo_15- 30cm_Q0p05	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 15 a 30 da superfície predição para quantil 0.05

SoilGrids	cfvo_15-30cm_Q0p5	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 15 a 30 da superfície predição para quantil 0.5
SoilGrids	cfvo_15- 30cm_Q0p95	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 15 a 30 da superfície predição para quantil 0.95
SoilGrids	cfvo_30-60cm_mean	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 15 a 30 da superfície média
SoilGrids	cfvo_30- 60cm_Q0p05	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 30 a 60 da superfície predição para quantil 0.05
SoilGrids	cfvo_30-60cm_Q0p5	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 30 a 60 da superfície predição para quantil 0.5
SoilGrids	cfvo_30- 60cm_Q0p95	Fração volumétrica de fragmentos grosseiros $(>2 \text{ mm})$ em cm3/dm3 (vol) para centímetros 30 a 60 da superfície predição para quantil 0.95
SoilGrids	cfvo_60- 100cm_mean	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 60 a 100 da superfície média
SoilGrids	cfvo_60- 100cm_Q0p05	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 60 a 100 da superfície predição para quantil 0,05
SoilGrids	cfvo_60- 100cm_Q0p5	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 60 a 100 da superfície predição para quantil 0,5

SoilGrids	cfvo_60- 100cm_Q0p95	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	cfvo_100- 200cm_mean	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 100 a 200 da superfície média
SoilGrids	cfvo_100- 200cm_Q0p05	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 100 a 200 da superfície predição para quantil 0,05
SoilGrids	cfvo_100- 200cm_Q0p5	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	cfvo_100- 200cm_Q0p95	Fração volumétrica de fragmentos grosseiros (>2 mm) em cm3/dm3 (vol) para centímetros 100 a 200 da superfície predição para quantil 0,95
SoilGrids	clay_0-5cm_mean	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 0 a 5 da superfície - média
SoilGrids	clay_0-5cm_Q0p05	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 0 a 5 da superfície predição para quantil 0,05
SoilGrids	clay_0-5cm_Q0p5	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 0 a 5 da superfície predição para quantil 0,5
SoilGrids	clay_0-5cm_Q0p95	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 0 a 5 da superfície predição para quantil 0,95

SoilGrids	clay_5-15cm_mean	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 5 a 15 da superfície média
SoilGrids	clay_5-15cm_Q0p05	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 5 a 15 da superfície predição para quantil 0,05
SoilGrids	clay_5-15cm_Q0p5	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 5 a 15 da superfície predição para quantil 0,5
SoilGrids	clay_5-15cm_Q0p95	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 5 a 15 da superfície predição para quantil 0,95
SoilGrids	clay_15-30cm_mean	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 15 a 30 da superfície média
SoilGrids	clay_15-30cm_Q0p05	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 15 a 30 da superfície predição para quantil 0,05
SoilGrids	clay_15-30cm_Q0p5	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 15 a 30 da superfície predição para quantil 0,5
SoilGrids	clay_15-30cm_Q0p95	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 15 a 30 da superfície predição para quantil 0,95
SoilGrids	clay_30-60cm_mean	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 15 a 30 da superfície média

SoilGrids	clay_30-60cm_Q0p05	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 30 a 60 da superfície predição para quantil 0,05
SoilGrids	clay_30-60cm_Q0p5	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 30 a 60 da superfície predição para quantil 0,5
SoilGrids	clay_30-60cm_Q0p95	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 30 a 60 da superfície predição para quantil 0,95
SoilGrids	clay_60-100cm_mean	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 60 a 100 da superfície média
SoilGrids	clay_60- 100cm_Q0p05	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 60 a 100 da superfície predição para quantil 0,05
SoilGrids	clay_60-100cm_Q0p5	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 60 a 100 da superfície predição para quantil 0,5
SoilGrids	clay_60- 100cm_Q0p95	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	clay_100- 200cm_mean	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 100 a 200 da superfície média
SoilGrids	clay_100- 200cm_Q0p05	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 100 a 200 da superfície predição para quantil 0,05

SoilGrids	clay_100- 200cm_Q0p5	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	clay_100- 200cm_Q0p95	Proporção de partículas de argila (<0,002 mm) na fração fina do solo em g/kg para centímetros 100 a 200 da superfície predição para quantil 0,95
SoilGrids	nitrogen_0- 5cm_mean	Nitrogênio Total (N) cg/kg para centímetros 0 a 5 da superfície - média
SoilGrids	nitrogen_0- 5cm_Q0p05	Nitrogênio Total (N) cg/kg para centímetros 0 a 5 da superfície predição para quantil 0,05
SoilGrids	nitrogen_0- 5cm_Q0p5	Nitrogênio Total (N) cg/kg para centímetros 0 a 5 da superfície predição para quantil 0,5
SoilGrids	nitrogen_0- 5cm_Q0p95	Nitrogênio Total (N) cg/kg para centímetros 0 a 5 da superfície predição para quantil 0,95
SoilGrids	nitrogen_5- 15cm_mean	Nitrogênio Total (N) cg/kg para centímetros 5 a 15 da superfície média
SoilGrids	nitrogen_5- 15cm_Q0p05	Nitrogênio Total (N) cg/kg para centímetros 5 a 15 da superfície predição para quantil 0,05
SoilGrids	nitrogen_5- 15cm_Q0p5	Nitrogênio Total (N) cg/kg para centímetros 5 a 15 da superfície predição para quantil 0,5
SoilGrids	nitrogen_5- 15cm_Q0p95	Nitrogênio Total (N) cg/kg para centímetros 5 a 15 da superfície predição para quantil 0,95
SoilGrids	nitrogen_15- 30cm_mean	Nitrogênio Total (N) cg/kg para centímetros 15 a 30 da superfície média
SoilGrids	nitrogen_15- 30cm_Q0p05	Nitrogênio Total (N) cg/kg para centímetros 15 a 30 da superfície predição para quantil 0,05

SoilGrids	nitrogen_15- 30cm_Q0p5	Nitrogênio Total (N) cg/kg para centímetros 15 a 30 da superfície predição para quantil 0,5
SoilGrids	nitrogen_15- 30cm_Q0p95	Nitrogênio Total (N) cg/kg para centímetros 15 a 30 da superfície predição para quantil 0,95
SoilGrids	nitrogen_30- 60cm_mean	Nitrogênio Total (N) cg/kg para centímetros 15 a 30 da superfície média
SoilGrids	nitrogen_30- 60cm_Q0p05	Nitrogênio Total (N) cg/kg para centímetros 30 a 60 da superfície predição para quantil 0,05
SoilGrids	nitrogen_30- 60cm_Q0p5	Nitrogênio Total (N) cg/kg para centímetros 30 a 60 da superfície predição para quantil 0,5
SoilGrids	nitrogen_30- 60cm_Q0p95	Nitrogênio Total (N) cg/kg para centímetros 30 a 60 da superfície predição para quantil 0.95
SoilGrids	nitrogen_60- 100cm_mean	Nitrogênio Total (N) cg/kg para centímetros 60 a 100 da superfície média
SoilGrids	nitrogen_60- 100cm_Q0p05	Nitrogênio Total (N) cg/kg para centímetros 60 a 100 da superfície predição para quantil 0,05
SoilGrids	nitrogen_60- 100cm_Q0p5	Nitrogênio Total (N) cg/kg para centímetros 60 a 100 da superfície predição para quantil 0,5
SoilGrids	nitrogen_60- 100cm_Q0p95	Nitrogênio Total (N) cg/kg para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	nitrogen_100- 200cm_mean	Nitrogênio Total (N) cg/kg para centímetros 100 a 200 da superfície média

SoilGrids	nitrogen_100- 200cm_Q0p05	Nitrogênio Total (N) cg/kg para centímetros 100 a 200 da superfície predição para quantil 0.05
SoilGrids	nitrogen_100- 200cm_Q0p5	Nitrogênio Total (N) cg/kg para centímetros 100 a 200 da superfície predição para quantil 0.5
SoilGrids	nitrogen_100- 200cm_Q0p95	Nitrogênio Total (N) cg/kg para centímetros 100 a 200 da superfície predição para quantil 0.95
SoilGrids	ocd_0-5cm_mean	Densidade de carbono orgânico em hg/mş para centímetros 0 a 5 da superfície - média
SoilGrids	ocd_0-5cm_Q0p05	Densidade de carbono orgânico em hg/mş para centímetros 0 a 5 da superfície predição para quantil 0.05
SoilGrids	ocd_0-5cm_Q0p5	Densidade de carbono orgânico em hg/m ş para centímetros 0 a 5 da superfície predição para quantil 0.5
SoilGrids	ocd_0-5cm_Q0p95	Densidade de carbono orgânico em hg/mş para centímetros 0 a 5 da superfície predição para quantil 0.95
SoilGrids	ocd_5-15cm_mean	Densidade de carbono orgânico em hg/mş para centímetros 5 a 15 da superfície média
SoilGrids	ocd_5-15cm_Q0p05	Densidade de carbono orgânico em hg/mş para centímetros 5 a 15 da superfície predição para quantil 0,05
SoilGrids	ocd_5-15cm_Q0p5	Densidade de carbono orgânico em hg/mş para centímetros 5 a 15 da superfície predição para quantil 0,5
SoilGrids	ocd_5-15cm_Q0p95	Densidade de carbono orgânico em hg/mş para centímetros 5 a 15 da superfície predição para quantil 0,95

SoilGrids	ocd_15-30cm_mean	Densidade de carbono orgânico em hg/mş para centímetros 15 a 30 da superfície média
SoilGrids	ocd_15-30cm_Q0p05	Densidade de carbono orgânico em hg/mş para centímetros 15 a 30 da superfície predição para quantil 0,05
SoilGrids	ocd_15-30cm_Q0p5	Densidade de carbono orgânico em hg/mş para centímetros 15 a 30 da superfície predição para quantil 0,5
SoilGrids	ocd_15-30cm_Q0p95	Densidade de carbono orgânico em hg/mş para centímetros 15 a 30 da superfície predição para quantil 0,95
SoilGrids	ocd_30-60cm_mean	Densidade de carbono orgânico em hg/mş para centímetros 15 a 30 da superfície média
SoilGrids	ocd_30-60cm_Q0p05	Densidade de carbono orgânico em hg/mş para centímetros 30 a 60 da superfície predição para quantil 0,05
SoilGrids	ocd_30-60cm_Q0p5	Densidade de carbono orgânico em hg/mş para centímetros 30 a 60 da superfície predição para quantil 0,5
SoilGrids	ocd_30-60cm_Q0p95	Densidade de carbono orgânico em hg/mş para centímetros 30 a 60 da superfície predição para quantil 0,95
SoilGrids	ocd_60-100cm_mean	Densidade de carbono orgânico em hg/mş para centímetros 60 a 100 da superfície média
SoilGrids	ocd_60- 100cm_Q0p05	Densidade de carbono orgânico em hg/mş para centímetros 60 a 100 da superfície predição para quantil 0,05
SoilGrids	ocd_60-100cm_Q0p5	Densidade de carbono orgânico em hg/mş para centímetros 60 a 100 da superfície predição para quantil 0,5

SoilGrids	ocd_60- 100cm_Q0p95	Densidade de carbono orgânico em hg/mş para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	ocd_100- 200cm_mean	Densidade de carbono orgânico em hg/mş para centímetros 100 a 200 da superfície média
SoilGrids	ocd_100- 200cm_Q0p05	Densidade de carbono orgânico em hg/mş para centímetros 100 a 200 da superfície predição para quantil 0,05
SoilGrids	ocd_100- 200cm_Q0p5	Densidade de carbono orgânico em hg/mş para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	ocd_100- 200cm_Q0p95	Densidade de carbono orgânico em hg/mş para centímetros 100 a 200 da superfície predição para quantil 0,95
SoilGrids	ocs_0-30cm_mean	Estoques de carbono orgânico em t/ha para centímetros 0 a 30 da superfície - média
SoilGrids	ocs_0-30cm_Q0p05	Estoques de carbono orgânico em t/ha para centímetros 0 a 30 da superfície predição para quantil 0,05
SoilGrids	ocs_0-30cm_Q0p5	Estoques de carbono orgânico em t/ha para centímetros 0 a 30 da superfície predição para quantil 0,5
SoilGrids	ocs_0-30cm_Q0p95	Estoques de carbono orgânico em t/ha para centímetros 0 a 30 da superfície predição para quantil 0,95
SoilGrids	phh2o_0-5cm_mean	pH do solo em pHx10 para centímetros 0 a 5 da superfície - média
SoilGrids	phh2o_0-5cm_Q0p05	pH do solo em pHx10 para centímetros 0 a 5 da superfície predição para quantil 0,05
SoilGrids	phh2o_0-5cm_Q0p5	pH do solo em pHx10 para centímetros 0 a 5 da superfície predição para quantil 0,5

SoilGrids	phh2o_0-5cm_Q0p95	pH do solo em pHx10 para centímetros 0 a 5 da superfície predição para quantil 0,95
SoilGrids	phh2o_5-15cm_mean	pH do solo em pHx10 para centímetros 5 a 15 da superfície média
SoilGrids	phh2o_5- 15cm_Q0p05	pH do solo em pHx10 para centímetros 5 a 15 da superfície predição para quantil 0,05
SoilGrids	phh2o_5-15cm_Q0p5	pH do solo em pHx10 para centímetros 5 a 15 da superfície predição para quantil 0,5
SoilGrids	phh2o_5- 15cm_Q0p95	pH do solo em pHx10 para centímetros 5 a 15 da superfície predição para quantil 0,95
SoilGrids	phh2o_15- 30cm_mean	pH do solo em pHx10 para centímetros 15 a 30 da superfície média
SoilGrids	phh2o_15- 30cm_Q0p05	pH do solo em pHx10 para centímetros 15 a 30 da superfície predição para quantil 0,05
SoilGrids	phh2o_15- 30cm_Q0p5	pH do solo em pHx10 para centímetros 15 a 30 da superfície predição para quantil 0,5
SoilGrids	phh2o_15- 30cm_Q0p95	pH do solo em pHx10 para centímetros 15 a 30 da superfície predição para quantil 0,95
SoilGrids	phh2o_30- 60cm_mean	pH do solo em pHx10 para centímetros 15 a 30 da superfície média
SoilGrids	phh2o_30- 60cm_Q0p05	pH do solo em pHx10 para centímetros 30 a 60 da superfície predição para quantil 0,05
SoilGrids	phh2o_30- 60cm_Q0p5	pH do solo em pHx10 para centímetros 30 a 60 da superfície predição para quantil 0,5
SoilGrids	phh2o_30- 60cm_Q0p95	pH do solo em pHx10 para centímetros 30 a 60 da superfície predição para quantil 0,95
SoilGrids	phh2o_60- 100cm_mean	pH do solo em pHx10 para centímetros 60 a 100 da superfície média
SoilGrids	phh2o_60- 100cm_Q0p05	pH do solo em pHx10 para centímetros 60 a 100 da superfície predição para quantil 0,05

SoilGrids	phh2o_60- 100cm_Q0p5	pH do solo em pHx10 para centímetros 60 a 100 da superfície predição para quantil 0,5
SoilGrids	phh2o_60- 100cm_Q0p95	pH do solo em pHx10 para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	phh2o_100- 200cm_mean	pH do solo em pHx10 para centímetros 100 a 200 da superfície média
SoilGrids	phh2o_100- 200cm_Q0p05	pH do solo em pHx10 para centímetros 100 a 200 da superfície predição para quantil 0,05
SoilGrids	phh2o_100- 200cm_Q0p5	pH do solo em pHx10 para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	phh2o_100- 200cm_Q0p95	pH do solo em pHx10 para centímetros 100 a 200 da superfície predição para quantil 0,95
SoilGrids	sand_0-5cm_mean	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 0 a 5 da superfície - média
SoilGrids	$sand_0\text{-}5cm_Q0p05$	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 0 a 5 da superfície predição para quantil 0,05
SoilGrids	$sand_0\text{-}5cm_Q0p5$	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 0 a 5 da superfície predição para quantil 0,5
SoilGrids	sand_0-5cm_Q0p95	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 0 a 5 da superfície predição para quantil 0,95
SoilGrids	sand_5-15cm_mean	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 5 a 15 da superfície média
SoilGrids	sand_5-15cm_Q0p05	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 5 a 15 da superfície predição para quantil 0,05

SoilGrids	sand_5-15cm_Q0p5	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 5 a 15 da superfície predição para quantil 0,5
SoilGrids	sand_5-15cm_Q0p95	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 5 a 15 da superfície predição para quantil 0,95
SoilGrids	sand_15-30cm_mean	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 15 a 30 da superfície média
SoilGrids	sand_15- 30cm_Q0p05	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 15 a 30 da superfície predição para quantil 0,05
SoilGrids	sand_15-30cm_Q0p5	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 15 a 30 da superfície predição para quantil 0,5
SoilGrids	sand_15- 30cm_Q0p95	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 15 a 30 da superfície predição para quantil 0,95
SoilGrids	sand_30-60cm_mean	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 15 a 30 da superfície média
SoilGrids	sand_30- 60cm_Q0p05	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 30 a 60 da superfície predição para quantil 0,05
SoilGrids	sand_30-60cm_Q0p5	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 30 a 60 da superfície predição para quantil 0,5

SoilGrids	sand_30- 60cm_Q0p95	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 30 a 60 da superfície predição para quantil 0,95
SoilGrids	sand_60- 100cm_mean	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 60 a 100 da superfície média
SoilGrids	sand_60- 100cm_Q0p05	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 60 a 100 da superfície predição para quantil 0,05
SoilGrids	sand_60- 100cm_Q0p5	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 60 a 100 da superfície predição para quantil 0,5
SoilGrids	sand_60- 100cm_Q0p95	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	sand_100- 200cm_mean	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 100 a 200 da superfície média
SoilGrids	sand_100- 200cm_Q0p05	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 100 a 200 da superfície predição para quantil 0,05
SoilGrids	sand_100- 200cm_Q0p5	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	sand_100- 200cm_Q0p95	Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg para centímetros 100 a 200 da superfície predição para quantil 0,95

SoilGrids	silt_0-5cm_mean	Proporção de partículas de areia $(>0.05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 0 a 5 da superfície - média
SoilGrids	silt_0-5cm_Q0p05	Proporção de partículas de areia $(>0.05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 0 a 5 da superfície predição para quantil 0.05
SoilGrids	$silt_0\text{-}5cm_Q0p5$	Proporção de partículas de areia $(>0.05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 0 a 5 da superfície predição para quantil 0.5
SoilGrids	silt_0-5cm_Q0p95	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 0 a 5 da superfície predição para quantil 0,95
SoilGrids	silt_5-15cm_mean	Proporção de partículas de areia $(>0,05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 5 a 15 da superfície média
SoilGrids	silt_5-15cm_Q0p05	Proporção de partículas de areia $(>0.05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 5 a 15 da superfície predição para quantil 0.05
SoilGrids	silt_5-15cm_Q0p5	Proporção de partículas de areia $(>0.05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 5 a 15 da superfície predição para quantil 0.5
SoilGrids	silt_5-15cm_Q0p95	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 5 a 15 da superfície predição para quantil 0,95
SoilGrids	silt_15-30cm_mean	Proporção de partículas de areia $(>0,05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 15 a 30 da superfície média

SoilGrids	silt_15-30cm_Q0p05	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 15 a 30 da superfície predição para quantil $0,05$
SoilGrids	silt_15-30cm_Q0p5	Proporção de partículas de areia (>0.05 mm) na fração fina do solo em g/kg para centímetros 15 a 30 da superfície predição para quantil 0.5
SoilGrids	silt_15-30cm_Q0p95	Proporção de partículas de areia $(>0.05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 15 a 30 da superfície predição para quantil 0.95
SoilGrids	silt_30-60cm_mean	Proporção de partículas de areia $(>0.05 \text{ mm})$ na fração fina do solo em g/kg para centímetros 15 a 30 da superfície média
SoilGrids	silt_30-60cm_Q0p05	Proporção de partículas de areia (>0.05 mm) na fração fina do solo em g/kg para centímetros 30 a 60 da superfície predição para quantil 0.05
SoilGrids	silt_30-60cm_Q0p5	Proporção de partículas de areia (>0.05 mm) na fração fina do solo em g/kg para centímetros 30 a 60 da superfície predição para quantil 0.5
SoilGrids	silt_30-60cm_Q0p95	Proporção de partículas de areia (>0.05 mm) na fração fina do solo em g/kg para centímetros 30 a 60 da superfície predição para quantil 0.95
SoilGrids	silt_60-100cm_mean	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 60 a 100 da superfície média
SoilGrids	silt_60- 100cm_Q0p05	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 60 a 100 da superfície predição para quantil 0,05

SoilGrids	silt_60-100cm_Q0p5	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 60 a 100 da superfície predição para quantil 0,5
SoilGrids	silt_60- 100cm_Q0p95	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	silt_100- 200cm_mean	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 100 a 200 da superfície média
SoilGrids	silt_100- 200cm_Q0p05	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 100 a 200 da superfície predição para quantil 0,05
SoilGrids	silt_100- 200cm_Q0p5	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	silt_100- 200cm_Q0p95	Proporção de partículas de areia (>0,05 mm) na fração fina do solo em g/kg para centímetros 100 a 200 da superfície predição para quantil 0,95
SoilGrids	soc_0-5cm_mean	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 0 a 5 da superfície - média
SoilGrids	soc_0-5cm_Q0p05	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 0 a 5 da superfície predição para quantil 0,05
SoilGrids	soc_0-5cm_Q0p5	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 0 a 5 da superfície predição para quantil 0,5

SoilGrids	soc_0-5cm_Q0p95	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 0 a 5 da superfície predição para quantil 0,95
SoilGrids	soc_5-15cm_mean	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 5 a 15 da superfície média
SoilGrids	soc_5-15cm_Q0p05	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 5 a 15 da superfície predição para quantil 0.05
SoilGrids	soc_5-15cm_Q0p5	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 5 a 15 da superfície predição para quantil 0,5
SoilGrids	soc_5-15cm_Q0p95	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 5 a 15 da superfície predição para quantil 0,95
SoilGrids	soc_15-30cm_mean	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 15 a 30 da superfície média
SoilGrids	soc_15-30cm_Q0p05	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 15 a 30 da superfície predição para quantil 0,05
SoilGrids	soc_15-30cm_Q0p5	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 15 a 30 da superfície predição para quantil 0,5
SoilGrids	soc_15-30cm_Q0p95	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 15 a 30 da superfície predição para quantil 0,95

SoilGrids	soc_30-60cm_mean	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 15 a 30 da superfície média
SoilGrids	soc_30-60cm_Q0p05	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 30 a 60 da superfície predição para quantil 0,05
SoilGrids	soc_30-60cm_Q0p5	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 30 a 60 da superfície predição para quantil 0,5
SoilGrids	soc_30-60cm_Q0p95	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 30 a 60 da superfície predição para quantil 0,95
SoilGrids	soc_60-100cm_mean	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 60 a 100 da superfície média
SoilGrids	soc_60- 100cm_Q0p05	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 60 a 100 da superfície predição para quantil 0,05
SoilGrids	soc_60-100cm_Q0p5	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 60 a 100 da superfície predição para quantil 0,5
SoilGrids	soc_60- 100cm_Q0p95	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 60 a 100 da superfície predição para quantil 0,95
SoilGrids	soc_100- 200cm_mean	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 100 a 200 da superfície média

SoilGrids	soc_100- 200cm_Q0p05	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 100 a 200 da superfície predição para quantil 0,05
SoilGrids	soc_100- 200cm_Q0p5	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 100 a 200 da superfície predição para quantil 0,5
SoilGrids	soc_100- 200cm_Q0p95	Conteúdo de carbono orgânico do solo na fração fina do solo em dg/kg para centímetros 100 a 200 da superfície predição para quantil 0,95
NasaPower	T2M 2010a2019ANN	Média anual da temperatura média a 2 metros acima do solo para o período de 2010 a 2019.
NasaPower	RH2M 2010a2019ANN	Média anual da umidade relativa a 2 metros acima do solo para o período de 2010 a 2019.
NasaPower	WS2M 2010a2019ANN	Média anual da velocidade do vento a 2 metros acima do solo para o período de 2010 a 2019.
NasaPower	T2MDEW 2010a2019ANN	Média anual da temperatura do ponto de orvalho a 2 metros acima do solo para o período de 2010 a 2019.
NasaPower	T2M MAX 2010a2019ANN	Média anual da temperatura máxima a 2 metros acima do solo para o período de 2010 a 2019.
NasaPower	T2M MIN 2010a2019ANN	Média anual da temperatura mínima a 2 metros acima do solo para o período de 2010 a 2019.
NasaPower	PRECTOTCORR 2010a2019ANN	Precipitação total corrigida para o período de 2010 a 2019. O "CORR"indica que esta medição foi corrigida ou ajustada de alguma forma.

NasaPower	ALLSKY SFC LW DWN 2010a2019ANN	Radiação descendente de onda longa na superfície sob todas as condições de céu para o período de 2010 a 2019. Média ao longo da década.
NasaPower	ALLSKY SFC SW DWN 2010a2019ANN	Radiação descendente de onda curta na superfície sob todas as condições de céu para o período de 2010 a 2019. Média ao longo da década.
NasaPower	alt 2010a2019ANN	Altitude média do local para o qual os dados foram registrados durante o período de 2010 a 2019.
NasaPower	T2M 2010a2019APR	Temperatura média a 2 metros acima do solo durante o mês de abril para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019APR	Umidade relativa média a 2 metros acima do solo durante abril para os anos especificados.
NasaPower	WS2M 2010a2019APR	Velocidade média do vento a 2 metros acima do solo durante abril ao longo do período de 2010 a 2019.
NasaPower	T2MDEW 2010a2019APR	Temperatura média do ponto de orvalho a 2 metros durante abril para cada ano no intervalo especificado. O ponto de orvalho é um indicador de umidade atmosférica.
NasaPower	T2M MAX 2010a2019APR	Temperatura máxima média a 2 metros acima do solo durante abril para os anos de 2010 a 2019.
NasaPower	T2M MIN 2010a2019APR -	Temperatura mínima média a 2 metros acima do solo durante abril durante o mesmo período.
NasaPower	PRECTOTCORR 2010a2019APR	Precipitação total corrigida registrada durante abril de cada ano de 2010 a 2019. As correções normalmente ajustam diversos fatores para garantir precisão.

NasaPower	ALLSKY SFC LW DWN 2010a2019APR	Radiação descendente de onda longa na superfície sob todas as condições de céu durante abril de cada ano na década. Mede a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019APR	Radiação descendente de onda curta na superfície sob todas as condições de céu durante abril para cada ano de 2010 a 2019. Mede a radiação de onda curta (como a luz solar) que alcança a superfície.
NasaPower	alt 2010a2019APR	Representa a altitude média do(s) local(is) de onde os dados de abril foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019AUG	Temperatura média a 2 metros acima do solo durante o mês de agosto para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019AUG	Umidade relativa média a 2 metros acima do solo registrada durante agosto ao longo dos anos especificados.
NasaPower	WS2M 2010a2019AUG	Velocidade média do vento a 2 metros acima do solo medida durante agosto para os anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019AUG	Temperatura média do ponto de orvalho a 2 metros durante agosto para os anos de 2010 a 2019. O ponto de orvalho dá uma indicação do conteúdo de umidade no ar.
NasaPower	T2M MAX 2010a2019AUG	Temperatura máxima média a 2 metros acima do solo durante agosto para a década de interesse.
NasaPower	T2M MIN 2010a2019AUG	Temperatura mínima média a 2 metros acima do solo durante agosto durante o mesmo período.

NasaPower	PRECTOTCORR 2010a2019AUG	Precipitação total corrigida que ocorreu durante agosto de cada ano de 2010 a 2019. "Corrigida"implica ajustes para anomalias ou erros de medição.
NasaPower	ALLSKY SFC LW DWN 2010a2019AUG	Radiação descendente de onda longa na superfície sob todas as condições de céu durante o mês de agosto ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019AUG	Radiação descendente de onda curta na su- perfície sob todas as condições de céu du- rante agosto para a década em questão.
NasaPower	alt 2010a2019AUG	Representa a altitude média do(s) local(is) de onde os dados de agosto foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019DEC	Temperatura média a 2 metros acima do solo durante o mês de dezembro para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019DEC	Umidade relativa média a 2 metros acima do solo durante dezembro para o período especificado.
NasaPower	WS2M 2010a2019DEC	Velocidade média do vento a 2 metros acima do solo durante dezembro ao longo dos anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019DEC	Temperatura média do ponto de orvalho a 2 metros durante dezembro para os anos de 2010 a 2019. A temperatura do ponto de orvalho é uma medida de umidade atmosférica.
NasaPower	T2M MAX 2010a2019DEC	Temperatura máxima média a 2 metros acima do solo durante dezembro para a década em questão.

NasaPower	T2M MIN 2010a2019DEC -	Temperatura mínima média a 2 metros acima do solo durante dezembro durante o mesmo período.
NasaPower	PRECTOTCORR 2010a2019DEC	Precipitação total corrigida observada durante dezembro de cada ano de 2010 a 2019. As correções normalmente envolvem ajustes nos dados brutos para eliminar viéses ou erros conhecidos.
NasaPower	ALLSKY SFC LW DWN 2010a2019DEC	Radiação descendente de onda longa na superfície sob todas as condições de céu para dezembro ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019DEC	Radiação descendente de onda curta na superfície sob todas as condições de céu durante dezembro para cada um dos anos de 2010 a 2019.
NasaPower	alt 2010a2019DEC	Representa a altitude média do(s) local(is) de onde os dados de dezembro foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019FEB	Temperatura média a 2 metros acima do solo durante o mês de fevereiro para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019FEB	Umidade relativa média a 2 metros acima do solo registrada durante fevereiro ao longo dos anos especificados.
NasaPower	WS2M 2010a2019FEB	Velocidade média do vento a 2 metros acima do solo medida durante fevereiro para os anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019FEB	Temperatura média do ponto de orvalho a 2 metros durante fevereiro para os anos de 2010 a 2019. A temperatura do ponto de orvalho é um indicador importante de umidade atmosférica.

NasaPower	T2M MAX 2010a2019FEB	Temperatura máxima média a 2 metros acima do solo durante fevereiro para os anos de 2010 a 2019.
NasaPower	T2M MIN 2010a2019FEB	Temperatura mínima média a 2 metros acima do solo durante fevereiro durante o período especificado.
NasaPower	PRECTOTCORR 2010a2019FEB	Precipitação total corrigida registrada durante fevereiro de cada ano de 2010 a 2019. "Corrigida" implica que os dados foram ajustados para corrigir erros ou viéses de medição.
NasaPower	ALLSKY SFC LW DWN 2010a2019FEB	Radiação descendente de onda longa na superfície sob todas as condições de céu para o mês de fevereiro ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019FEB	Radiação descendente de onda curta na superfície sob todas as condições de céu durante fevereiro para cada um dos anos de 2010 a 2019.
NasaPower	alt 2010a2019FEB	Representa a altitude média do(s) local(is) de onde os dados de fevereiro foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019JAN	Temperatura média a 2 metros acima do solo durante o mês de janeiro para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019JAN	Umidade relativa média a 2 metros acima do solo durante janeiro para o período especificado.
NasaPower	WS2M 2010a2019JAN	Velocidade média do vento a 2 metros acima do solo medida durante janeiro para os anos de 2010 a 2019.

NasaPower	T2MDEW 2010a2019JAN	Temperatura média do ponto de orvalho a 2 metros durante janeiro para os anos de 2010 a 2019. O ponto de orvalho fornece uma medida da quantidade de umidade no ar.
NasaPower	T2M MAX 2010a2019JAN	Temperatura máxima média a 2 metros acima do solo durante janeiro para a década de interesse.
NasaPower	T2M MIN 2010a2019JAN	Temperatura mínima média a 2 metros acima do solo durante janeiro durante o período especificado.
NasaPower	PRECTOTCORR 2010a2019JAN	Precipitação total corrigida observada durante janeiro de cada ano de 2010 a 2019. O aspecto "corrigido"normalmente aborda quaisquer anomalias ou erros de medição.
NasaPower	ALLSKY SFC LW DWN 2010a2019JAN	Radiação descendente de onda longa na su- perfície sob todas as condições de céu para janeiro ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019JAN	Radiação descendente de onda curta na superfície sob todas as condições de céu durante janeiro para cada um dos anos de 2010 a 2019.
NasaPower	alt 2010a2019JAN	Representa a altitude média do(s) local(is) de onde os dados de janeiro foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019JUL	Temperatura média a 2 metros acima do solo durante o mês de julho para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019JUL	Umidade relativa média a 2 metros acima do solo durante julho para o período especificado.

NasaPower	WS2M 2010a2019JUL	Velocidade média do vento a 2 metros acima do solo medida durante julho para os anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019JUL	Temperatura média do ponto de orvalho a 2 metros durante julho para os anos de 2010 a 2019. A temperatura do ponto de orvalho é uma medida de umidade atmosférica.
NasaPower	T2M MAX 2010a2019JUL	Temperatura máxima média a 2 metros acima do solo durante julho para os anos de 2010 a 2019.
NasaPower	T2M MIN 2010a2019JUL	Temperatura mínima média a 2 metros acima do solo durante julho durante o período especificado.
NasaPower	PRECTOTCORR 2010a2019JUL	Precipitação total corrigida registrada durante julho de cada ano de 2010 a 2019. O termo "corrigida" sugere que os dados foram ajustados para contabilizar erros ou viéses de medição.
NasaPower	ALLSKY SFC LW DWN 2010a2019JUL	Radiação descendente de onda longa na superfície sob todas as condições de céu para julho ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019JUL	Radiação descendente de onda curta na superfície sob todas as condições de céu durante julho para cada um dos anos de 2010 a 2019.
NasaPower	alt 2010a2019JUL	Representa a altitude média do(s) local(is) de onde os dados de julho foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019JUN	Temperatura média a 2 metros acima do solo durante o mês de junho para cada ano de 2010 a 2019.

NasaPower	RH2M 2010a2019JUN	Umidade relativa média a 2 metros acima do solo durante junho para o período especificado.
NasaPower	WS2M 2010a2019JUN	Velocidade média do vento a 2 metros acima do solo medida durante junho para os anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019JUN	Temperatura média do ponto de orvalho a 2 metros durante junho para os anos de 2010 a 2019. O ponto de orvalho é um indicador da quantidade de umidade no ar.
NasaPower	T2M MAX 2010a2019JUN	Temperatura máxima média a 2 metros acima do solo durante junho para os anos de 2010 a 2019.
NasaPower	T2M MIN 2010a2019JUN	Temperatura mínima média a 2 metros acima do solo durante junho durante o período especificado.
NasaPower	PRECTOTCORR 2010a2019JUN	Precipitação total corrigida registrada durante junho de cada ano de 2010 a 2019. O termo "corrigida" indica ajustes feitos para contabilizar possíveis erros ou viéses de medição.
NasaPower	ALLSKY SFC LW DWN 2010a2019JUN	Radiação descendente de onda longa na superfície sob todas as condições de céu para junho ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019JUN	Radiação descendente de onda curta na superfície sob todas as condições de céu durante junho para cada um dos anos de 2010 a 2019.
NasaPower	alt 2010a2019JUN	Representa a altitude média do(s) local(is) de onde os dados de junho foram coletados ao longo desses anos.

NasaPower	T2M 2010a2019MAR	Temperatura média a 2 metros acima do solo durante o mês de março para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019MAR	Umidade relativa média a 2 metros acima do solo durante março para o período especificado.
NasaPower	WS2M 2010a2019MAR	Velocidade média do vento a 2 metros acima do solo medida durante março para os anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019MAR	Temperatura média do ponto de orvalho a 2 metros durante março para os anos de 2010 a 2019. O ponto de orvalho é uma medida de quanto de umidade está no ar.
NasaPower	T2M MAX 2010a2019MAR	Temperatura máxima média a 2 metros acima do solo durante março para os anos de 2010 a 2019.
NasaPower	T2M MIN 2010a2019MAR	Temperatura mínima média a 2 metros acima do solo durante março durante o período especificado.
NasaPower	PRECTOTCORR 2010a2019MAR	Precipitação total corrigida registrada durante março de cada ano de 2010 a 2019. O termo "corrigida" geralmente se refere a ajustes feitos nos dados para corrigir imprecisões ou viéses conhecidos.
NasaPower	ALLSKY SFC LW DWN 2010a2019MAR	Radiação descendente de onda longa na superfície sob todas as condições de céu para março ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019MAR	Radiação descendente de onda curta na superfície sob todas as condições de céu durante março para cada um dos anos de 2010 a 2019.

NasaPower	alt 2010a2019MAR	Representa a altitude média do(s) local(is) de onde os dados de março foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019MAY	Temperatura média a 2 metros acima do solo durante o mês de maio para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019MAY	Umidade relativa média a 2 metros acima do solo durante maio para o período especificado.
NasaPower	WS2M 2010a2019MAY	Velocidade média do vento a 2 metros acima do solo medida durante maio para os anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019MAY	Temperatura média do ponto de orvalho a 2 metros durante maio para os anos de 2010 a 2019. A temperatura do ponto de orvalho é uma medida de umidade atmosférica.
NasaPower	T2M MAX 2010a2019MAY	Temperatura máxima média a 2 metros acima do solo durante maio para os anos de 2010 a 2019.
NasaPower	T2M MIN 2010a2019MAY	Temperatura mínima média a 2 metros acima do solo durante maio durante o período especificado.
NasaPower	PRECTOTCORR 2010a2019MAY	Precipitação total corrigida registrada durante maio de cada ano de 2010 a 2019. As correções geralmente abordam imprecisões ou viéses de medição.
NasaPower	ALLSKY SFC LW DWN 2010a2019MAY	Radiação descendente de onda longa na superfície sob todas as condições de céu para maio ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.

NasaPower	ALLSKY SFC SW DWN 2010a2019MAY	Radiação descendente de onda curta na superfície sob todas as condições de céu durante maio para cada um dos anos de 2010 a 2019.
NasaPower	alt 2010a2019MAY	Representa a altitude média do(s) local(is) de onde os dados de maio foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019NOV	Temperatura média a 2 metros acima do solo durante o mês de novembro para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019NOV	Umidade relativa média a 2 metros acima do solo durante novembro para o período especificado.
NasaPower	WS2M 2010a2019NOV	Velocidade média do vento a 2 metros acima do solo medida durante novembro para os anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019NOV	Temperatura média do ponto de orvalho a 2 metros durante novembro para os anos de 2010 a 2019. O ponto de orvalho indica a quantidade de umidade no ar.
NasaPower	T2M MAX 2010a2019NOV	Temperatura máxima média a 2 metros acima do solo durante novembro para os anos de 2010 a 2019.
NasaPower	T2M MIN 2010a2019NOV -	Temperatura mínima média a 2 metros acima do solo durante novembro durante o período especificado.
NasaPower	PRECTOTCORR 2010a2019NOV	Precipitação total corrigida registrada durante novembro de cada ano de 2010 a 2019. O termo "corrigida"geralmente se refere a ajustes feitos nos dados para corrigir imprecisões ou viéses conhecidos.

NasaPower	ALLSKY SFC LW DWN 2010a2019NOV	Radiação descendente de onda longa na su- perfície sob todas as condições de céu para novembro ao longo dos anos de 2010 a 2019. Reflete a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019NOV	Radiação descendente de onda curta na superfície sob todas as condições de céu durante novembro para cada um dos anos de 2010 a 2019.
NasaPower	alt 2010a2019NOV	Representa a altitude média do(s) local(is) de onde os dados de novembro foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019OCT	Temperatura média a 2 metros acima do solo durante o mês de outubro para cada ano de 2010 a 2019.
NasaPower	RH2M 2010a2019OCT	Umidade relativa média a 2 metros acima do solo durante outubro para o período especificado.
NasaPower	WS2M 2010a2019OCT	Velocidade média do vento a 2 metros acima do solo medida durante outubro para os anos de 2010 a 2019.
NasaPower	T2MDEW 2010a2019OCT	Temperatura média do ponto de orvalho a 2 metros durante outubro para os anos de 2010 a 2019. O ponto de orvalho é uma medida de umidade atmosférica.
NasaPower	T2M MAX 2010a2019OCT	Temperatura máxima média a 2 metros acima do solo durante outubro para os anos de 2010 a 2019.
NasaPower	T2M MIN 2010a2019OCT	Temperatura mínima média a 2 metros acima do solo durante outubro durante o período especificado.

NasaPower	PRECTOTCORR 2010a2019OCT	Precipitação total corrigida registrada durante outubro de cada ano de 2010 a 2019. Essa correção leva em conta imprecisões ou viéses de medição.
NasaPower	ALLSKY SFC LW DWN 2010a2019OCT	Radiação descendente de onda longa na superfície sob todas as condições de céu para outubro ao longo dos anos de 2010 a 2019. Isso mede a radiação de onda longa que alcança a superfície terrestre.
NasaPower	ALLSKY SFC SW DWN 2010a2019OCT	Radiação descendente de onda curta na superfície sob todas as condições de céu durante outubro para cada um dos anos de 2010 a 2019.
NasaPower	alt 2010a2019OCT	Representa a altitude média do(s) local(is) de onde os dados de outubro foram coletados ao longo desses anos.
NasaPower	T2M 2010a2019SEP	Temperatura média medida a 2 metros acima do solo durante o mês de setembro ao longo dos anos de 2010 a 2019.
NasaPower	RH2M 2010a2019SEP	Umidade relativa média a 2 metros acima do solo durante setembro ao longo do período de 2010 a 2019.
NasaPower	WS2M 2010a2019SEP	Velocidade média do vento a 2 metros acima do solo para setembro durante os anos especificados de 2010 a 2019.
NasaPower	T2MDEW 2010a2019SEP	Temperatura média do ponto de orvalho a 2 metros acima do solo em setembro para os anos de 2010 a 2019. A temperatura do ponto de orvalho é uma medida da umidade atmosférica.
NasaPower	T2M MAX 2010a2019SEP	Temperatura máxima média a 2 metros acima do solo durante setembro para cada ano de 2010 a 2019.

NasaPower	T2M MIN 2010a2019SEP	Temperatura mínima média a 2 metros acima do solo durante setembro para os anos de 2010 a 2019.
NasaPower	PRECTOTCORR 2010a2019SEP	Precipitação total registrada para setembro a cada ano de 2010 a 2019, corrigida para quaisquer viéses ou imprecisões conhecidos na medição.
NasaPower	ALLSKY SFC LW DWN 2010a2019SEP	Quantidade média de radiação descendente de onda longa na superfície sob todas as condições de céu durante setembro para os anos especificados de 2010 a 2019, indicando a radiação de onda longa que alcança a superfície da Terra.
NasaPower	ALLSKY SFC SW DWN 2010a2019SEP	Esta variável mede a média da radiação descendente de onda curta na superfície sob todas as condições de céu (como a luz solar) durante setembro para os anos de 2010 a 2019.
NasaPower	alt 2010a2019SEP	Representa a altitude média do(s) local(is) de onde os dados de setembro foram coletados ao longo desses anos.

Fonte: elaboração própria.