#### COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

This material has been reproduced and communicated to you by or on behalf of Monash University pursuant to Part VB of the Copyright Act 1968 (the Act). The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act. Do not remove this notice

Prepared by: [Arun Konagurthu]

# FIT3155 S2/2020: Advanced Algorithms and Data Structures

Week 9: Data compression related algorithms

Faculty of Information Technology, Monash University

### What is covered in this lecture?

This week's lecture deals with...

- Introduction to lossless data compression.
- Fixed and variable length codes.
- Prefix-free code words for encoding/decoding
  - character streams
  - integer streams
- A simple dictionary-based compression algorithm on text.

## Source material and recommended reading

- MacKay, Information theory, inference and learning algorithms (chapter 1) [Link]
- Sayood, Introduction to Data compression (chapters 3&5)

#### Introduction

- Human data streams generate ≈2.5 quintillion bytes of data each day.
- This data is of various descriptions (text, images, movies, structured-tables, etc.)
- Compression of data saves space and time (in storage/retrieval/transmission etc).

## Modern applications

#### For general files

- zip/gzip/7zip
- bzip
- pkzip
- etc.

#### For multimedia

- GIF, JPEG
- MPEG, DivX,
- etc.

#### Others

- Fax, modem
- skype, zoom
- large databases:
   Google, Amazon,
   Twitter etc.

# Compression is a really old idea/technology

- Natural language (as old as humanity) internalizes compression:
  - Often, commonly articulated words
    - ★ 'yes'/'no'
    - ★ 'go'/'come',
    - \* 'ma'/'pa')

are shorter...

- ...than words that are **uncommon**.
  - ★ 'piscatorial'
  - \* 'abstemious'
  - 'floccinaucinihilipilification'
- Mathematics embodies compression.
- Some old technologies (circa 1800s) for communicating textual information (where short codes are assigned to common characters, and long codes for uncommon ones):
  - Braille (tactile) code for visually impaired
  - Morse code for telegraph
  - Baudot code for teletype
  - etc.

## A simple ('compressed') view of data

```
Data = redundant parts + random parts
= compressible parts + uncompressible parts
= model + deviations
= signal + noise
```

## Lossless compression - encoding and decoding



#### Lossless compression

Lossless data compression algorithms allow encoding the original data into a compact (encoded) form, and which in turn can be perfectly reconstructed (decoded) to get back the original data.

# Outcomes and Probability of outcomes



#### Random variable and outcomes

- A random variable x is a variable...
- ...that can take a set of *possible* values,  $o_1, o_2, \cdots, o_n$ .
- Each such possible value is an outcomes of some (random) event/phenomenon. Examples:
  - Throw of dice
  - Coin tosses
  - Occurrence of a character in text.
  - etc.
- Associated with each outcome  $x = o_i$ , there is a **probability** of that outcome, denoted by  $Pr(x = o_i)$ .

## How do we measure information content of an outcome

$$x = o_i$$
?

Among the outstanding contributions of Claude E. Shannon is his work on Mathematical theory of communication

#### Shannon's **information content** of an outcome

The measure of the information content of an **outcome**  $x = o_i$  of a random variable x is given by:

$$I(o_i) = -\log(\Pr(x = o_i))$$

If the base of the log is 2, I(.) is measured in **bits**.

### Shannon's **entropy** over all outcomes

Shannon's **entropy** gives the measure of the **average** information content across all outcomes of the random variable x:

$$H(x) = \sum_{i=1}^{n} \Pr(x = o_i) I(o_i)$$

## Example: Coin with a bias

- Assume we have coin with a bias p.
- That is,  $Pr(x = \mathbf{Heads}) = p$ ;  $Pr(x = \mathbf{Tails}) = 1 p$ .
- Shannon's information content:
  - $I(\text{Heads}) = -\log_2(p)$
  - $I(Tails) = -\log_2(1-p)$
- Shannon's Entropy:  $H(x) = p \log_2(1/p) + (1-p) \log_2(1/(1-p))$ .

#### Information content plot



#### Entropy plot





#### Puzzle statement

We have 12 identically looking balls. All have equal weight, except one. In addition, we do not know if this defective ball is **heavier** or **lighter** than the rest.

At your disposal is a simple two-pan balance you can use to weigh the balls (putting any number of balls in each pan, per weighing). The **outcome** of each such weighing is: **heavy**, **equal**, or **light**.

What is the **optimal weighing strategy** to determine the defective ball **and also** whether it is heavier or lighter, **in as few weighings** of the balance as possible?

## Detour: Optimal weighing solution for the puzzle



## Fixed length code words

### Fixed length code words

- Each symbol's code word takes the same number of bits to state
- Convenient to encode and decode each symbol.
- With fixed-length code words, we do **not** care about the underlying probability/frequency of each symbol's occurrence.
  - Underlying assumption is that the distribution is uniform.

## Fixed-length code words example – ASCII

#### Decimal - Binary - Octal - Hex - ASCII Conversion Chart

| Decimal | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII |
|---------|----------|-------|-----|-------|---------|----------|-------|-----|-------|---------|----------|-------|-----|-------|---------|----------|-------|-----|-------|
| 0       | 00000000 | 000   | 00  | NUL   | 32      | 00100000 | 040   | 20  | SP    | 64      | 01000000 | 100   | 40  | @     | 96      | 01100000 | 140   | 60  |       |
| 1       | 00000001 | 001   | 01  | SOH   | 33      | 00100001 | 041   | 21  | 1     | 65      | 01000001 | 101   | 41  | A     | 97      | 01100001 | 141   | 61  | a     |
| 2       | 00000010 | 002   | 02  | STX   | 34      | 00100010 | 042   | 22  |       | 66      | 01000010 | 102   | 42  | В     | 98      | 01100010 | 142   | 62  | b     |
| 3       | 00000011 | 003   | 03  | ETX   | 35      | 00100011 | 043   | 23  | #     | 67      | 01000011 | 103   | 43  | С     | 99      | 01100011 | 143   | 63  | c     |
| 4       | 00000100 | 004   | 04  | EOT   | 36      | 00100100 | 044   | 24  | \$    | 68      | 01000100 | 104   | 44  | D     | 100     | 01100100 | 144   | 64  | d     |
| 5       | 00000101 | 005   | 05  | ENQ   | 37      | 00100101 | 045   | 25  | %     | 69      | 01000101 | 105   | 45  | E     | 101     | 01100101 | 145   | 65  | е     |
| 6       | 00000110 | 006   | 06  | ACK   | 38      | 00100110 | 046   | 26  | &     | 70      | 01000110 | 106   | 46  | F     | 102     | 01100110 | 146   | 66  | f     |
| 7       | 00000111 | 007   | 07  | BEL   | 39      | 00100111 | 047   | 27  |       | 71      | 01000111 | 107   | 47  | G     | 103     | 01100111 | 147   | 67  | g     |
| 8       | 00001000 | 010   | 80  | BS    | 40      | 00101000 | 050   | 28  | (     | 72      | 01001000 | 110   | 48  | H     | 104     | 01101000 | 150   | 68  | h     |
| 9       | 00001001 | 011   | 09  | HT    | 41      | 00101001 | 051   | 29  | )     | 73      | 01001001 | 111   | 49  | 1     | 105     | 01101001 | 151   | 69  | i .   |
| 10      | 00001010 | 012   | 0A  | LF    | 42      | 00101010 | 052   | 2A  |       | 74      | 01001010 | 112   | 4A  | J     | 106     | 01101010 | 152   | 6A  | j     |
| 11      | 00001011 | 013   | 0B  | VT    | 43      | 00101011 | 053   | 2B  | +     | 75      | 01001011 | 113   | 4B  | K     | 107     | 01101011 | 153   | 6B  | k     |
| 12      | 00001100 | 014   | 0C  | FF    | 44      | 00101100 | 054   | 2C  | ,     | 76      | 01001100 | 114   | 4C  | L     | 108     | 01101100 | 154   | 6C  | 1     |
| 13      | 00001101 | 015   | 0D  | CR    | 45      | 00101101 | 055   | 2D  | -     | 77      | 01001101 | 115   | 4D  | М     | 109     | 01101101 | 155   | 6D  | m     |
| 14      | 00001110 | 016   | 0E  | SO    | 46      | 00101110 | 056   | 2E  |       | 78      | 01001110 | 116   | 4E  | N     | 110     | 01101110 | 156   | 6E  | n     |
| 15      | 00001111 | 017   | 0F  | SI    | 47      | 00101111 | 057   | 2F  | 1     | 79      | 01001111 | 117   | 4F  | 0     | 111     | 01101111 | 157   | 6F  | 0     |
| 16      | 00010000 | 020   | 10  | DLE   | 48      | 00110000 | 060   | 30  | 0     | 80      | 01010000 | 120   | 50  | P     | 112     | 01110000 | 160   | 70  | p     |
| 17      | 00010001 | 021   | 11  | DC1   | 49      | 00110001 | 061   | 31  | 1     | 81      | 01010001 | 121   | 51  | Q     | 113     | 01110001 | 161   | 71  | q     |
| 18      | 00010010 | 022   | 12  | DC2   | 50      | 00110010 | 062   | 32  | 2     | 82      | 01010010 | 122   | 52  | R     | 114     | 01110010 | 162   | 72  | r     |
| 19      | 00010011 | 023   | 13  | DC3   | 51      | 00110011 | 063   | 33  | 3     | 83      | 01010011 | 123   | 53  | S     | 115     | 01110011 | 163   | 73  | S     |
| 20      | 00010100 | 024   | 14  | DC4   | 52      | 00110100 | 064   | 34  | 4     | 84      | 01010100 | 124   | 54  | T     | 116     | 01110100 | 164   | 74  | t     |
| 21      | 00010101 | 025   | 15  | NAK   | 53      | 00110101 | 065   | 35  | 5     | 85      | 01010101 | 125   | 55  | U     | 117     | 01110101 | 165   | 75  | u     |
| 22      | 00010110 | 026   | 16  | SYN   | 54      | 00110110 | 066   | 36  | 6     | 86      | 01010110 | 126   | 56  | V     | 118     | 01110110 | 166   | 76  | V     |
| 23      | 00010111 | 027   | 17  | ETB   | 55      | 00110111 | 067   | 37  | 7     | 87      | 01010111 | 127   | 57  | W     | 119     | 01110111 | 167   | 77  | W     |
| 24      | 00011000 | 030   | 18  | CAN   | 56      | 00111000 | 070   | 38  | 8     | 88      | 01011000 | 130   | 58  | X     | 120     | 01111000 | 170   | 78  | x     |
| 25      | 00011001 | 031   | 19  | EM    | 57      | 00111001 | 071   | 39  | 9     | 89      | 01011001 | 131   | 59  | Υ     | 121     | 01111001 | 171   | 79  | у     |
| 26      | 00011010 | 032   | 1A  | SUB   | 58      | 00111010 | 072   | 3A  |       | 90      | 01011010 | 132   | 5A  | Z     | 122     | 01111010 | 172   | 7A  | Z     |
| 27      | 00011011 | 033   | 1B  | ESC   | 59      | 00111011 | 073   | 3B  | ;     | 91      | 01011011 | 133   | 5B  | 1     | 123     | 01111011 | 173   | 7B  | {     |
| 28      | 00011100 | 034   | 1C  | FS    | 60      | 00111100 | 074   | 3C  | <     | 92      | 01011100 | 134   | 5C  | 1     | 124     | 01111100 | 174   | 7C  | 1     |
| 29      | 00011101 | 035   | 1D  | GS    | 61      | 00111101 | 075   | 3D  | =     | 93      | 01011101 | 135   | 5D  | 1     | 125     | 01111101 | 175   | 7D  | }     |
| 30      | 00011110 | 036   | 1E  | RS    | 62      | 00111110 | 076   | 3E  | >     | 94      | 01011110 | 136   | 5E  |       | 126     | 01111110 | 176   | 7E  | ~     |
| 31      | 00011111 | 037   | 1F  | US    | 63      | 00111111 | 077   | 3F  | ?     | 95      | 01011111 | 137   | 5F  | _     | 127     | 01111111 | 177   | 7F  | DEL   |

## Variable length code words

## Variable length code words

- Each symbol's code word takes varying number of bits
- Takes more effort to encode and decode each symbol.
- Here, we have to consider the underlying probability of each symbol's occurrence, when designing the code words.

# Variable-length code words example – Morse code



## Variable length codes are central to compression

- If frequent symbols in some text are assigned shorter code words...
- ...and infrequent symbols are assigned longer code words...
- ...then the total number of bits to encode the source text/data will be smaller...
- ...i.e., compressed, compared to encoding using fixed-length code words.
- These variable-length code words provide the building blocks for data compression.

# Frequency of letters in the English alphabet:



## Example of ambiguous variable-length code words

Assume we are using these code words: A = 0, B = 1, C = 10, D = 101

Encoding of BABA using this code is: 1010

## Example of ambiguous variable-length code words

Assume we are using these code words: A = 0, B = 1, C = 10, D = 101

Encoding of BABA using this code is: 1010

Decoding of this encoded message is **not** unique, since we don't know where each code word starts and ends. In the above example, the message can be decoded as:

 $\bullet$  1 0 1 0 = B A B A, or

## Example of ambiguous variable-length code words

Assume we are using these code words: A = 0, B = 1, C = 10, D = 101

Encoding of BABA using this code is: 1010

Decoding of this encoded message is **not** unique, since we don't know where each code word starts and ends. In the above example, the message can be decoded as:

- $\bullet$  1 0 1 0 = B A B A, or
- 10 10 = C C, or

## Example of ambiguous variable-length code words

Assume we are using these code words: A = 0, B = 1, C = 10, D = 101

Encoding of BABA using this code is: 1010

Decoding of this encoded message is **not** unique, since we don't know where each code word starts and ends. In the above example, the message can be decoded as:

- $\bullet$  1 0 1 0 = B A B A, or
- 10 10 = C C, or
- 101 0 = D A

(spaces between code words added above for convenience in parsing)

# Prefix-free (variable-length) codes provide unique decodability

### Now consider these variable-length code words

Assume we are using these code words: A = 0, B = 10, C = 110, D = 111

Encoding of BABA using this code is: 100100

Indeed this encoded message is uniquely decodable. Why?

Prefix-free codes are sometimes shorthanded to 'prefix codes', without
explicitly adding '-free'. They are also called instantaneous codes

# Prefix-free (variable-length) codes provide unique decodability

### Now consider these variable-length code words

Assume we are using these code words: A = 0, B = 10, C = 110, D = 111

Encoding of BABA using this code is: 100100

Indeed this encoded message is uniquely decodable. Why?

**Answer:** No letter's code word is a **prefix** of another letter's code word. Such code words are called **prefix-free** codes.

Prefix-free codes are sometimes shorthanded to 'prefix codes', without
explicitly adding '-free'. They are also called instantaneous codes

 Huffman coding is a method of generating reliable prefix-free code words.

- Huffman coding is a method of generating reliable prefix-free code words.
- It requires as input, the **frequencies** of characters.

- Huffman coding is a method of generating reliable prefix-free code words.
- It requires as input, the **frequencies** of characters.
- It yields:

- Huffman coding is a method of generating reliable prefix-free code words.
- It requires as input, the **frequencies** of characters.
- It yields:
  - the shortest code word for the most frequent character.

- Huffman coding is a method of generating reliable prefix-free code words.
- It requires as input, the **frequencies** of characters.
- It yields:
  - ▶ the shortest code word for the most frequent character.
  - ▶ the second shortest code word for the second most frequent character.

- Huffman coding is a method of generating reliable prefix-free code words.
- It requires as input, the **frequencies** of characters.
- It yields:
  - the shortest code word for the most frequent character.
  - the second shortest code word for the second most frequent character.
  - ...and so on.

- Huffman coding is a method of generating reliable prefix-free code words.
- It requires as input, the **frequencies** of characters.
- It yields:
  - the shortest code word for the most frequent character.
  - the second shortest code word for the second most frequent character.
  - ...and so on.
- the coding algorithm falls in the class of greedy algorithm.

- 1. "A\_DEAD\_DAD\_CEDED\_A\_BAD\_BABE\_A\_BEADED\_ABACA\_BED"
- **2. C**: 2
  - **B**: 6
    - **E**: 7
    - \_:10 **D**:10
    - **D**:10 **A**:11

(FIT3155 S1/2020, Monash University)

```
2. C: 2
B: 6
E: 7
:10
D:10
A:11
```

```
2. C: 2
B: 6
E: 7
:10
C: 2
B: 6
O/ \1
C: 2
B: 6
```

```
2. C: 2
B: 6
E: 7
:10 C: 2 B: 6
D:10
A:11
```

1. "A\_DEAD\_DAD\_CEDED\_A\_BAD\_BABE\_A\_BEADED\_ABACA\_BED"

1. "A\_DEAD\_DAD\_CEDED\_A\_BAD\_BABE\_A\_BEADED\_ABACA\_BED"

1. "A\_DEAD\_DAD\_CEDED\_A\_BAD\_BABE\_A\_BEADED\_ABACA\_BED"

B: 1111

1. "A DEAD DAD CEDED A BAD BABE A BEADED ABACA BED"

```
C: 2
B: 6
CB: 8
E: 7
C: 2
B: 6
D:10
C: 2
B: 6
CB: 15
AECB: 26
D: 20
A: 11
A: 11
A: 11
C: 2
B: 6
                                                                                o/ \1
E: 7 CB: 8
```

C: 1110 B: 1111

#### Huffman coding algorithm summary

- Compute frequencies of each unique character in the given text/data.
- Imagine each character as a leaf node in a binary tree you are constructing.
- Repeatedly join two characters/nodes with the smallest frequencies to form a new node.
  - this new node represents the sum of frequencies of nodes that were joined.
  - ► Assign a bit symbol **0** to the left branch...
  - ... and the bit symbol 1 to the right branch.
- Stop repeating step 3 when all nodes are joined into a rooted binary tree.
- Each character's code word is then the sequence of 0s and 1s generated from root-to-leaf traversal on that binary tree.

#### Huffman coding algorithm summary

- Compute frequencies of each unique character in the given text/data.
- Imagine each character as a leaf node in a binary tree you are constructing.
- Repeatedly join two characters/nodes with the smallest frequencies to form a new node.
  - this new node represents the sum of frequencies of nodes that were joined.
  - ► Assign a bit symbol **0** to the left branch...
  - ... and the bit symbol 1 to the right branch.
- Stop repeating step 3 when all nodes are joined into a rooted binary tree.
- Each character's code word is then the sequence of 0s and 1s generated from root-to-leaf traversal on that binary tree.

#### Decoding

Decoding Huffmann encoded bitstream back into text is simple. Why?

#### What about prefix-free codes for **integers**?

- Assume we have a data stream of integers coming from the set of natural numbers.
- Huffman coding is not effective for such data...
- ...especially when integers are spread over large ranges, and each integer in the data stream is nearly unique.
- This motivates designing variable-length, prefix-free codes for integers.

#### Definition: minimal binary code of a number

The minimal binary code of a number is the binary representation of that number such that the most significant digit is always 1 (that is, there are no 0's padded on the most-significant side).

#### Elias (Omega) code for universal integers

By universal integers, we are considering positive integers from  $1, 2, \dots, \infty$ .

#### Overarching strategy

The strategy to design a code word for an integer N is:

- $\bullet$  Encode N
- Encode  $L_1 = \text{length}(N)-1$
- Encode  $L_2 = \text{length}(L_1)$ -1
- Encode  $L_3 = \text{length}(L_2)$ -1
- ...
- .. and so on until the final encoded length is 1.

We will call the encodings of  $L_1, L_2, \cdots$  as the **length component**, and the encoding of N as the **code component**.

#### Decoding can be problematic

Encoding  $N, L_1, L_2, \ldots$  integers using directly their minimal binary codes poses a problem.

ullet During decoding, we cannot differentiate between the **length components** and the actual **code component** of N.

#### Decoding can be problematic

Encoding  $N, L_1, L_2, \ldots$  integers using directly their minimal binary codes poses a problem.

ullet During decoding, we cannot differentiate between the **length components** and the actual **code component** of N.

#### Example

Decoding...

11110011000110001

#### Decoding can be problematic

Encoding  $N, L_1, L_2, \ldots$  integers using directly their minimal binary codes poses a problem.

ullet During decoding, we cannot differentiate between the **length components** and the actual **code component** of N.

#### Example

Decoding...

11110011000110001

....requires its interpretation as the following length and code components  $\underbrace{1}_{L_3}\underbrace{11}_{L_2}\underbrace{1001}_{L_1}\underbrace{1000110001}_{N}$  is problematic.

#### Decoding can be problematic

Encoding  $N, L_1, L_2, \ldots$  integers using directly their minimal binary codes poses a problem.

ullet During decoding, we cannot differentiate between the **length components** and the actual **code component** of N.

#### Example

Decoding...

11110011000110001

....requires its interpretation as the following length and code components  $\underbrace{1}_{L_3}\underbrace{11}_{L_2}\underbrace{1001}_{L_1}\underbrace{1000110001}_{N}$  is problematic.

Elias (omega) encoding of integers addresses this problem by changing the most-significant 1 in the minimal binary code of each **length component** to 0. Let's see how the encoding and decoding works.

• Let  $N = (561)_{dec}$ .

- Let  $N = (561)_{dec}$ .
- $\bullet$  The minimal binary code of N is  $\overset{9}{1}$  0 0 0 1 1 0 0 0 1

- Let  $N = (561)_{dec}$ .
- The minimal binary code of N is 1 0 0 0 1 1 0 0 0 1
- The **length** of minimal binary code of N is  $(10)_{dec}$ .

- Let  $N = (561)_{dec}$ .
- The minimal binary code of N is 1 0 0 0 1 1 0 0 0 1
- The **length** of minimal binary code of N is  $(10)_{dec}$ .
- Therefore, the **length component** to encode is  $L_1 = (10 1 = 9)_{dec}$

- Let  $N = (561)_{dec}$ .
- The minimal binary code of N is 1 0 0 0 1 1 0 0 0 1
- The **length** of minimal binary code of N is  $(10)_{dec}$ .
- Therefore, the **length component** to encode is  $L_1=(10-1=9)_{dec}$
- ullet The minimal binary code for  $L_1$  is therefore 1 0 0 1 .

- Let  $N = (561)_{dec}$ .
- The minimal binary code of N is 1 0 0 0 1 1 0 0 0 1
- The **length** of minimal binary code of N is  $(10)_{dec}$ .
- Therefore, the **length component** to encode is  $L_1=(10-1=9)_{dec}$
- ullet The minimal binary code for  $L_1$  is therefore 1 0 0 1 .
- IMPORTANT RULE: When coding any **length component**, change the leading 1 of its minimal binary code to 0.

- Let  $N = (561)_{dec}$ .
- The minimal binary code of N is 1 0 0 0 1 1 0 0 0 1
- The **length** of minimal binary code of N is  $(10)_{dec}$ .
- Therefore, the **length component** to encode is  $L_1=(10-1=9)_{dec}$
- ullet The minimal binary code for  $L_1$  is therefore 1 0 0 1 .
- IMPORTANT RULE: When coding any **length component**, change the leading 1 of its minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_1$  is now 0 0 1 .

- Let  $N = (561)_{dec}$ .
- The minimal binary code of N is 1 0 0 0 1 1 0 0 0 1
- The **length** of minimal binary code of N is  $(10)_{dec}$ .
- Therefore, the **length component** to encode is  $L_1=(10-1=9)_{dec}$
- ullet The minimal binary code for  $L_1$  is therefore 1 0 0 1 .
- IMPORTANT RULE: When coding any **length component**, change the leading 1 of its minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_1$  is now 0 0 1 .

- Let  $N = (561)_{dec}$ .
- The minimal binary code of N is 1 0 0 0 1 1 0 0 0 1
- The **length** of minimal binary code of N is  $(10)_{dec}$ .
- Therefore, the **length component** to encode is  $L_1 = (10 1 = 9)_{dec}$
- ullet The minimal binary code for  $L_1$  is therefore 1 0 0 1 .
- IMPORTANT RULE: When coding any **length component**, change the leading 1 of its minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_1$  is now 0 0 0 1 .

```
Encoded string so far \underbrace{0001}_{L_1} \underbrace{1000110001}_{N}
```

• From previous slide, (modified)  $L_1$  is now 0 0 0 1.

- From previous slide, (modified)  $L_1$  is now 0 0 0 1.
- The length of (modified)  $L_1$  is 4.

- From previous slide, (modified)  $L_1$  is now 0 0 0 1 .
- The length of (modified)  $L_1$  is 4.
- The next **length component** to encode is therefore  $L_2 = (4 1 = 3)_{dec}$ .

- From previous slide, (modified)  $L_1$  is now 0 0 0 1 .
- The length of (modified)  $L_1$  is 4.
- The next **length component** to encode is therefore  $L_2 = (4-1=3)_{dec}$ .
- ullet The minimal binary code for  $L_2$  is therefore 1 1 .

- From previous slide, (modified)  $L_1$  is now 0 0 0 1 .
- The length of (modified)  $L_1$  is 4.
- The next **length component** to encode is therefore  $L_2 = (4 1 = 3)_{dec}$ .
- ullet The minimal binary code for  $L_2$  is therefore 1 1 .
- Again, since this is a **length** component, as per the rule stated earlier, change the leading 1 of its minimal binary code to 0.

- From previous slide, (modified)  $L_1$  is now 0 0 0 1 .
- The length of (modified)  $L_1$  is 4.
- The next **length component** to encode is therefore  $L_2 = (4 1 = 3)_{dec}$ .
- ullet The minimal binary code for  $L_2$  is therefore 1 1 .
- Again, since this is a **length** component, as per the rule stated earlier, change the leading 1 of its minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_2$  is now 0 1 .

- From previous slide, (modified)  $L_1$  is now 0 0 0 1 .
- The length of (modified)  $L_1$  is 4.
- The next **length component** to encode is therefore  $L_2 = (4 1 = 3)_{dec}$ .
- ullet The minimal binary code for  $L_2$  is therefore 1 1 .
- Again, since this is a **length** component, as per the rule stated earlier, change the leading 1 of its minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_2$  is now 0 1 .

- From previous slide, (modified)  $L_1$  is now 0 0 0 1 .
- The length of (modified)  $L_1$  is 4.
- The next **length component** to encode is therefore  $L_2 = (4 1 = 3)_{dec}$ .
- ullet The minimal binary code for  $L_2$  is therefore 1 1 .
- Again, since this is a **length** component, as per the rule stated earlier, change the leading 1 of its minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_2$  is now 0 1 .

# Encoded string so far 01 0001 1000110001

ullet From previous slide, (modified)  $L_2$  is now ullet 1 .

- ullet From previous slide, (modified)  $L_2$  is now ullet 1 .
- The length of (modified)  $L_2$  is 2.

- ullet From previous slide, (modified)  $L_2$  is now ullet 1 .
- The length of (modified)  $L_2$  is 2.
- The next **length component** to encode is therefore  $L_3 = (2 1 = 1)_{dec}$ .

- ullet From previous slide, (modified)  $L_2$  is now ullet 1 .
- The length of (modified)  $L_2$  is 2.
- The next **length component** to encode is therefore  $L_3 = (2 1 = 1)_{dec}$ .
- ullet The minimal binary code for  $L_3$  is therefore  $oldsymbol{1}$  .

- ullet From previous slide, (modified)  $L_2$  is now ullet 1 .
- The length of (modified)  $L_2$  is 2.
- The next **length component** to encode is therefore  $L_3 = (2 1 = 1)_{dec}$ .
- ullet The minimal binary code for  $L_3$  is therefore  $oldsymbol{1}$  .
- Since this is a **length component**, as per the rule stated above, change the leading 1 of the minimal binary code to 0.

- ullet From previous slide, (modified)  $L_2$  is now 0 1 .
- The length of (modified)  $L_2$  is 2.
- The next **length component** to encode is therefore  $L_3 = (2 1 = 1)_{dec}$ .
- ullet The minimal binary code for  $L_3$  is therefore  $oldsymbol{1}$  .
- Since this is a **length component**, as per the rule stated above, **change** the leading 1 of the minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_3$  is now ullet .

# Elias (omega) code for universal integers – Encoding via an example

- ullet From previous slide, (modified)  $L_2$  is now 0 1 .
- The length of (modified)  $L_2$  is 2.
- The next **length component** to encode is therefore  $L_3 = (2 1 = 1)_{dec}$ .
- ullet The minimal binary code for  $L_3$  is therefore  $oldsymbol{1}$  .
- Since this is a **length component**, as per the rule stated above, change the leading 1 of the minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_3$  is now  ${oldsymbol 0}$  .
- ullet Since the length of (modified)  $L_3$  has reached 1, STOP encoding!

# Elias (omega) code for universal integers – Encoding via an example

- ullet From previous slide, (modified)  $L_2$  is now 0 1 .
- The length of (modified)  $L_2$  is 2.
- The next **length component** to encode is therefore  $L_3 = (2 1 = 1)_{dec}$ .
- ullet The minimal binary code for  $L_3$  is therefore  $oldsymbol{1}$  .
- Since this is a **length component**, as per the rule stated above, change the leading 1 of the minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_3$  is now  ${oldsymbol 0}$  .
- ullet Since the length of (modified)  $L_3$  has reached 1, STOP encoding!

# Elias (omega) code for universal integers – Encoding via an example

- ullet From previous slide, (modified)  $L_2$  is now ullet 1 .
- The length of (modified)  $L_2$  is 2.
- The next **length component** to encode is therefore  $L_3 = (2 1 = 1)_{dec}$ .
- ullet The minimal binary code for  $L_3$  is therefore  $oldsymbol{1}$  .
- Since this is a **length component**, as per the rule stated above, change the leading 1 of the minimal binary code to 0.
- ullet That is, the code to encode (modified)  $L_3$  is now  ${\bf 0}$  .
- ullet Since the length of (modified)  $L_3$  has reached 1, STOP encoding!

#### Final encoded bit string



# Elias (omega) code words for the first few integers

| $ \  \   \hbox{integer}  N \\$ | Components (incl. $N$ ) | code word      |
|--------------------------------|-------------------------|----------------|
| 1                              | 1                       | 1              |
| 2                              | 1,2                     | 0 10           |
| 3                              | 1,3                     | 0 11           |
| 4                              | 1,2,4                   | 0 00 100       |
| 5                              | 1,2,5                   | 0 00 101       |
| 6                              | 1,2,6                   | 0 00 110       |
| 7                              | 1,2,7                   | 0 00 111       |
| 8                              | 1,3,8                   | 0 01 1000      |
| 9                              | 1,3,9                   | 0 01 1001      |
| 10                             | 1,3,10                  | 0 01 1010      |
|                                |                         |                |
| 15                             | 1,3,15                  | 0 01 1111      |
| 16                             | 1,2,4,16                | 0 00 000 10000 |
|                                |                         |                |

## Elias code for universal integers – Decoding example

- When decoding a variable-length encoded integer, we do not know a priori:
  - ightharpoonup how many length components,  $L_k, L_{k-1}, \ldots L_1$ , the code word has...
  - ightharpoonup ...and what N is.
- We also know is that the very last length component,  $L_k$ , in the code word has length  $=(1)_{dec}$ , and it is encoded with 0 bit. (See slide 30.).

# Elias code for universal integers - Decoding example

- When decoding a variable-length encoded integer, we do not know a priori:
  - b how many length components,  $L_k, L_{k-1}, \dots L_1$ , the code word has...
  - $\triangleright$  and what N is
- ullet We also know is that the very last length component,  $L_k$ , in the code word has length  $=(1)_{dec}$ , and it is encoded with 0 bit. (See slide 30.).

#### Decoding method: Input variable-length $\operatorname{\mathbf{codeword}}$ of N

• Input: codeword[1...]

# Elias code for universal integers – Decoding example

- When decoding a variable-length encoded integer, we do not know a priori:
  - b how many length components,  $L_k, L_{k-1}, \dots L_1$ , the code word has...
  - $\triangleright$  and what N is
- ullet We also know is that the very last length component,  $L_k$ , in the code word has length  $=(1)_{dec}$ , and it is encoded with 0 bit. (See slide 30.).

#### Decoding method: Input variable-length $\operatorname{\mathbf{codeword}}$ of N

- 1 Input: codeword[1...]
- ② Initialize: readlen =  $(1)_{dec}$ , component = <EMPTY>, pos = 1

# Elias code for universal integers – Decoding example

- When decoding a variable-length encoded integer, we do not know a priori:
  - b how many length components,  $L_k, L_{k-1}, \dots L_1$ , the code word has...
  - ightharpoonup ...and what N is.
- ullet We also know is that the very last length component,  $L_k$ , in the code word has length  $=(1)_{dec}$ , and it is encoded with 0 bit. (See slide 30.).

#### Decoding method: Input variable-length $\operatorname{\mathbf{codeword}}$ of N

- 1 Input: codeword[1...]
- ② Initialize: readlen =  $(1)_{dec}$ , component = <EMPTY>, pos = 1
- component = codeword[pos...pos + readlen 1].

# Elias code for universal integers - Decoding example

- When decoding a variable-length encoded integer, we do not know a priori:
  - how many length components,  $L_k, L_{k-1}, \dots L_1$ , the code word has...
  - ightharpoonup ...and what N is.
- ullet We also know is that the very last length component,  $L_k$ , in the code word has length  $=(1)_{dec}$ , and it is encoded with 0 bit. (See slide 30.).

### Decoding method: Input variable-length $\operatorname{\mathbf{codeword}}$ of N

- Input: codeword[1...]
- ② Initialize: readlen =  $(1)_{dec}$ , component = <EMPTY>, pos = 1
- **3** component = codeword[pos...pos + readlen 1].
- If the most-significant bit of component is 1, then  $N = (\text{component})_{dec}$ . STOP.

# Elias code for universal integers – Decoding example

- When decoding a variable-length encoded integer, we do not know a priori:
  - b how many length components,  $L_k, L_{k-1}, \dots L_1$ , the code word has...
  - ightharpoonup ...and what N is.
- We also know is that the very last length component,  $L_k$ , in the code word has length  $=(1)_{dec}$ , and it is encoded with 0 bit. (See slide 30.).

### Decoding method: Input variable-length $\operatorname{\mathbf{codeword}}$ of N

- Input: codeword[1...]
- ② Initialize: readlen =  $(1)_{dec}$ , component = <EMPTY>, pos = 1
- **3** component = codeword[pos...pos + readlen 1].
- If the most-significant bit of component is 1, then  $N = (\text{component})_{dec}$ . STOP.
- Else, if the **most-significant** bit of component is 0, then flip  $0 \to 1$  and reset pos = pos + readlen, readlen =  $(component)_{dec} + 1$ .

#### Example worked out during the lecture.

# Elias code for universal integers – Decoding example

- When decoding a variable-length encoded integer, we do not know a priori:
  - b how many length components,  $L_k, L_{k-1}, \ldots L_1$ , the code word has...
  - ightharpoonup ...and what N is.
- We also know is that the very last length component,  $L_k$ , in the code word has length  $=(1)_{dec}$ , and it is encoded with 0 bit. (See slide 30.).

### Decoding method: Input variable-length $\operatorname{\mathbf{codeword}}$ of N

- Input: codeword[1...]
- ② Initialize: readlen =  $(1)_{dec}$ , component = <EMPTY>, pos = 1
- **3** component = codeword[pos...pos + readlen 1].
- If the most-significant bit of component is 1, then  $N = (\text{component})_{dec}$ . STOP.
- **⑤** Else, if the **most-significant** bit of component is 0, then flip  $0 \rightarrow 1$  and reset pos = pos + readlen, readlen = (component)<sub>dec</sub> + 1.
- $\bullet \ \ \, \text{Repeat from step } \ \, 2 \text{, until } N \text{ is decoded (when step } \ \, 3 \text{ is true)}.$

#### Example worked out during the lecture.

Lempel Ziv algorithms

# Lempel-Ziv (LZ77) algorithm

#### **LZ77**

- LZ77 is a **sliding window** based algorithm.
- Since original publication, it inspired many variants (eg. LZSS)
- Used in many applications: gzip, PKZIP etc.

 The LZ77 encoding involves examining the input text through a sliding window.

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')
  - 2 lookahead buffer (sometimes simply called the 'buffer')

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')
  - ② lookahead buffer (sometimes simply called the 'buffer')
- To encode any char/substring in the lookahead buffer:

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')
  - ② lookahead buffer (sometimes simply called the 'buffer')
- To encode any char/substring in the lookahead buffer:
  - find the largest matched substring in the dictionary (i.e., search window).

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')
  - 2 lookahead buffer (sometimes simply called the 'buffer')
- To encode any char/substring in the lookahead buffer:
  - find the largest matched substring in the dictionary (i.e., search window).
  - ► This yields three pieces of information:

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')
  - Oliookahead buffer (sometimes simply called the 'buffer')
- To encode any char/substring in the lookahead buffer:
  - find the largest matched substring in the dictionary (i.e., search window).
  - ▶ This yields three pieces of information:
    - the offset (i.e., distance of the match from the current char/substring being encoded).

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')
  - Iookahead buffer (sometimes simply called the 'buffer')
- To encode any char/substring in the lookahead buffer:
  - find the largest matched substring in the dictionary (i.e., search window).
  - ▶ This yields three pieces of information:
    - the offset (i.e., distance of the match from the current char/substring being encoded).
    - 2 the length of the match.

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')
  - 2 lookahead buffer (sometimes simply called the 'buffer')
- To encode any char/substring in the lookahead buffer:
  - find the largest matched substring in the dictionary (i.e., search window).
  - This yields three pieces of information:
    - the offset (i.e., distance of the match from the current char/substring being encoded).
    - 2 the length of the match.
    - the next character char in the lookahead buffer, after the matched char/substring.

- The LZ77 encoding involves examining the input text through a sliding window.
- The window consists of 2 consecutive parts:
  - search window (also called the 'dictionary')
  - 2 lookahead buffer (sometimes simply called the 'buffer')
- To encode any char/substring in the lookahead buffer:
  - find the largest matched substring in the dictionary (i.e., search window).
  - ► This yields three pieces of information:
    - the offset (i.e., distance of the match from the current char/substring being encoded).
    - 2 the length of the match.
    - the next character char in the lookahead buffer, after the matched char/substring.
- Using this search, the char/substring at the current position is encoded as a triple (offset,length,char)



















Longest match







Buffer (size = 4)

Longest match





Longest match







Longest match







Longest match







Longest match







Longest match







# LZ77 decoding

- Decoding is straightforward using the triple encoding we just saw.
- Using the same sliding window size (=dictionary size + lookahead buffer size), decode the text left to right, using one triple at a time

#### Example of decoding one triple

- Assume we are in the middle of decoding, and we have already decoded the string w x y z a b c d
- Assume the triple we have at our disposal is  $\langle 2, 9, e \rangle$
- character by character, copy a substring from offset=2 of length=9.
- This further decodes 9 additional characters:
   w x y z a b c d c d c d c d c d c e
- To be discussed in detail during the lecture.

Note: Red numbers on the top indicate offsets in the dictionary.

# LZSS (Lempel-Ziv-Storer-Szymanski) variation of LZ77 algorithm

LZSS variant of LZ77, improves the original LZ77 by reducing the amount of space required to encode short substrings as triples. This is achieved by using two formats for encoding character/substrings during encoding.

- Format •: When the length of the matched substring in the dictionary ≥3, use: (0-bit, offset, length)
- ② Format 1: When the length of the matched substring in the dictionary <3, use: ⟨1-bit, char⟩</p>

### LZSS encoding example



... and so on.

#### Self-study

During self-study, explore what optimizations can be applied towards implementing an encoder and decoder for LZ77 and LZSS variant, using the variable-length codes we have studied here.

Ask yourself during this if the algorithms we have learnt so far could help optimize your implementation.

#### Next week

Linear Programming (algebraic and tableau simplex methods)

END

-=o0o=-