Lecture Summary: Linear Transformations and Ordered Bases

Source: Lec41.pdf

Key Points

- Linear Transformations: Recap and Basis Dependency:
 - A linear transformation $f: V \to W$ satisfies:

$$f(u+v) = f(u) + f(v), \quad f(c \cdot u) = c \cdot f(u),$$

for $u, v \in V$ and scalar $c \in \mathbb{R}$.

- The action of f is fully determined by its values on the basis vectors of V.
- Isomorphism Using Basis:
 - If V is an n-dimensional vector space with basis $\{v_1, v_2, \dots, v_n\}$:
 - 1. Define $f(v_i) = e_i$ (the standard basis for \mathbb{R}^n).
 - 2. Extend this mapping linearly to V by:

$$f\left(\sum_{i=1}^{n} c_i v_i\right) = \sum_{i=1}^{n} c_i e_i.$$

- -f is an isomorphism, meaning it is both one-to-one and onto.
- Matrix Representation of Linear Transformations:
 - For $f: V \to W$, let $\beta = \{v_1, v_2, \dots, v_n\}$ be an ordered basis for V and $\gamma = \{w_1, w_2, \dots, w_m\}$ for W.
 - Represent $f(v_j)$ as a linear combination of $\{w_1, w_2, \dots, w_m\}$:

$$f(v_j) = \sum_{i=1}^m a_{ij} w_i.$$

- The coefficients a_{ij} form the *i*th row and *j*th column of the matrix representation of f.
- Example: Linear Transformation on \mathbb{R}^2 :
 - Define f(x, y) = (2x, y).
 - With standard basis $\{(1,0),(0,1)\}$, compute:

$$f(1,0) = (2,0), \quad f(0,1) = (0,1).$$

- Matrix representation:

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}.$$

• Changing Ordered Basis:

- Changing the basis changes the matrix representation.
- Example: If $\beta = \{(1,0), (1,1)\}$, then:

$$f(1,0) = (2,0), \quad f(1,1) = (2,1).$$

- Matrix representation becomes:

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}.$$

- The same linear transformation yields different matrices for different bases.
- Bijection Between Linear Transformations and Matrices:
 - For fixed ordered bases β and γ , there is a bijection between linear transformations $f: V \to W$ and $m \times n$ matrices.
 - The matrix A encodes the coefficients of $f(v_j)$ expressed in terms of γ .

Simplified Explanation

Example 1: Linear Transformation on \mathbb{R}^3 Let $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ and $V = \mathbb{R}^2$:

- Basis for $W: \{(-1,1,0), (-1,0,1)\}.$
- Define f(-1,1,0) = (1,0), f(-1,0,1) = (0,1).
- Matrix representation (standard basis for V):

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Conclusion

In this lecture, we:

- Explored linear transformations and their dependency on ordered bases.
- Developed matrix representations and analyzed their changes with basis choice.
- Highlighted the bijection between linear transformations and matrices for fixed bases.

This framework unifies the concepts of linear algebra, emphasizing the interplay between transformations, bases, and matrix representations.