MATH H104: Homework 1

William Guss 26793499 wguss@berkeley.edu

September 1, 2015

1 Real Numbers

- 3. Recast the following English sentences in mathematics, using correct mathematical grammar. Preserve their meaning.
 - (a) 2 is the smallest prime number. Let $P \subset \mathbb{N}$ denote the set of prime numbers. Consider that t = 2 is clearly a member of P. Then for all $p \in P$, $t \leq P$.
 - (b) The area of any bounded plane region is bisected by some line parallel to x-axis. Before we claim the above we must first rigorize the notion of a bounded plane region. The following uses a notion of open and closed sets in \mathbb{R}^2 .

Definition 1. We say that $B_r(x_0)$ is an open ball of radius r > 0 if and only if

$$B_r(x_0) = \{ x \in \mathbb{R}^2 \mid ||x - x_0|| < r \}.$$

Furthermore $\bar{B}_r(x_0)$ is a closed ball of radius r > 0 if and only if

$$\bar{B}_r(x_0) = \{ x \in \mathbb{R}^2 \mid ||x - x_0|| \leqslant r \}.$$

Using the above definition we now give our notion of a bounded plane reigon.

Definition 2. If A is a subset of \mathbb{R}^2 we will say that A is the area of a bounded plane region if and only if for every $x \in A$, there is an open or closed ball centered at x which is a subset of A.

Lastly, we give the notion of a parallel line to the x-axis

Definition 3. We say that $L_r \subset \mathbb{R}^2$ is a line parallel to the x-axis at radius r if and only if

$$L_r = \{(x, y) \in \mathbb{R} \mid y = r\}.$$

Now it is simple to propose the theorem of symantic equivalence to the question.

Theorem 1. Let A be the area of a bounded plane region in \mathbb{R}^2 . Then, there exists some line parallel to the x-axis of height r, L_r , such that $L_r \cap A \neq \emptyset$ and both

$$A_L = \{(x, y) \in A \mid y < r\} \text{ and } A_U = \{(x, y) \in A \mid y \geqslant r\}$$
 (1)

are areas of bounded plane regions.

(c) "All that glitters is mot gold." Let G be the set of all object which glitter. Then let A be the set of all gold objects. $A \neq G$.

12. Prove the following.

Theorem 2. There exists no smallest positive real number.

Proof. Suppose that there exists a smallest real number, say $a \in \mathbb{R}$. Clearly a > 0 and so is $\frac{a}{2}$. Furthermore $\frac{a}{2} < a$, and hence we reach a contradiction. Therefore does not exist a smallest postivie real number.

Theorem 3. There exist no smallest positive rational number.

Proof. Suppose that there exists a smallest rational number, say $q \in \mathbb{Q}$. Clearly q > 0 and so is $\frac{q}{2}$. Furthermore $\frac{q}{2} < q$, and hence we reach a contradiction. Therefore does not exist a smallest postivie rational number.

Theorem 4. Let $x \in \mathbb{R}$. Then there does not exist a smallest real number y such that y > x.

Proof. Suppose that such a y exists. Now consider $\frac{x+y}{2} = b$. Clearly b > x, and remarkably b < y. Hence y is not the smallest real number such that y > x. This leads to a contradiction, and therefore there is no smallest y satisfying the conditions.

22. Show the following.

(a) Fixed points:

Theorem 5. The function $f: A \to A$ has a fixed point if and only if the graph of f interesects the diagonal.

Proof. We first show the right implication. If f has a fixed point, then there is some $a \in A$ such that f(a) = a. Now consider the graph of f,

$$f(A) = \{(a, f(a) \in A\}.$$

Since f has a fixed point, f(A) contains (a, a). Hence the intersection of f(A) with the diagonal of $A \times A, D$, must contain (a, a) at the least and hence is nonempty.

On the other hand if the graph of f intersects the diagonal, then there exists some $(a,a) \in D$ such that $(a,a) \in f(A)$. Then by definition of the graph of f, (a,a) = (a,f(a)), which implies that f(a) = a. This completes the proof. \square

(b) Intermediate fixed point

Theorem 6. Every continuous function $f:[0,1] \to [0,1]$ has at least one fixed-point.

Proof. To show this we recall the intermediate value theorem. More specifically we want to find a function whose 0 exists on [0,1] which implies the theorem. Consider that f(x) = x implies that 0 = f(x) - x, so let's simply let q(x) = f(x) - x. By definition of the bound on the codomain, $g(0) \ge 0$ and $g(1) \le 0$. Then application of the intermediate value theorem yields that there exists at $c \in [0,1]$ with g(c) = 0. Hence, f(a) = a. This completes the proof.

- (c) No, consider the case of some function for which f(x) > x on (0,1). Such a function need not attain the value f(0) = 0, f(1) = 1 because such values could not possiblt exist on its graph. Hence, $f(x) \neq x$ for all x.
- (d) No, consider the function f(x) = x + 0.5 when $0 \le x < 0.5$, and f(x) = x 0.5 when $0.5 \le x \le 1$. This function never is equivalent to g(x) = x.

23. Show the following.

(a) Dyadic squares:

Theorem 7. If x and y are two dyadic squares, then they are either identical, intersect along a common edge, intersect at a common vertex, or do not intersect at all.

Proof. Since we must show all cases, let us consider them with respect to the general definition of a planar dyadic cube. In particular, $x, y \in \mathbb{Q}_2^2$. Let us fix x such that

$$x = \left[\frac{p}{2^k}, \frac{p+1}{2^k}\right]^2 \text{ and } y = \left[\frac{q}{2^k}, \frac{q+1}{2^k}\right]^2$$

for some $p, k, q \in \mathbb{Z}$.

If q = p, then y = x naturaly. In the case that q > p + 1 or q + 1 < p, we have that $x \cap y = \emptyset$. Next consider intersections along different edges. If

$$y = \left\lceil \frac{p}{2^k}, \frac{p+1}{2^k} \right\rceil \times \left\lceil \frac{p+1}{2^k}, \frac{p+2}{2^k} \right\rceil,$$

then $y \cap x = \left[\left(\frac{p}{2^k} \frac{p+1}{2^k} \right), \left(\frac{p+1}{2^k}, \frac{p+1}{2^k} \right) \right]$. In general,

$$y = \left[\frac{p+r}{2^k}, \frac{p+r+1}{2^k}\right] \times \left[\frac{p+s}{2^k}, \frac{p+s+1}{2^k}\right]$$

implies the following intersections.

If r=1, s=0, then $x \cap y = \left[(\frac{p+1}{2^k}, \frac{p}{2^k}), (\frac{p+1}{2^k}, \frac{p+1}{2^k}) \right]$. If r=-1, s=0, then $x \cap y = \left[(\frac{p}{2^k}, \frac{p}{2^k}), (\frac{p}{2^k}, \frac{p+1}{2^k}) \right]$. If r=0, s=1, then $x \cap y = \left[(\frac{p}{2^k}, \frac{p+1}{2^k}), (\frac{p+1}{2^k}, \frac{p+1}{2^k}) \right]$. If r=0, s=-1, then $x \cap y = \left[(\frac{p}{2^k}, \frac{p}{2^k}), (\frac{p+1}{2^k}, \frac{p}{2^k}) \right]$.

Lastly we need to consider the vertex edge cases. If r=1, s=1, then $x \cap y = \{(\frac{p+1}{2^k}, \frac{p+1}{2^k})\}$. If r=-1, s=1, then $x \cap y = \{(\frac{p}{2^k}, \frac{p+1}{2^k})\}$. If r=-1, s=-1, then $x \cap y = \{(\frac{p}{2^k}, \frac{p}{2^k})\}$. If r=1, s=-1, then $x \cap y = \{(\frac{p+1}{2^k}, \frac{p}{2^k})\}$.

Furthermore if r and s attain other values, we have those cases previously considered. Hence the proof is complete.

(b) For the following problem we adopt the following notation.

Definition 4. We say that say that some $X \subset \mathbb{R}^n$ is a dyadic hyper-interval of partition $2^{-\gamma}$ if and only if

$$X \in \overline{\Delta_n^k} = \left\{ Y \subset \mathbb{R}^n \mid Y = \underset{i \in \delta_k}{\times} 2^{-\gamma} \left[m_i, m_i + 1 \right] \right\},$$

where δ_k is the index set of dimensions in which the interval is non-empty and non-singular. Furthermore, $|\delta_k| = k$.

So now we need to operationalize this proof. If x and y are two dyadic hypercubes of \mathbb{R}^n , then they are either identical, intersect along a common hyperedge, intersect at a common vertex, or do not intersect at all.

Theorem 8. In other words, if $X, Y \in \overline{\Delta_n^n}$ are of the same partition, $2^{-\gamma}$, let

$$Y = \sum_{i=1}^{k} 2^{-\gamma} [m_i + r_i, m_i + 1 + r_i],$$

where the m_j are those which define X, and $r_j \in \mathbb{Z}$. Then, if $|r_j| \leq 1$ for all j, the following two results hold. If $k = n - \sum_i |r_i| > 0$, $X \cap Y \in \overline{\Delta_n^k}$. If k = 0, $X \cap Y \subset \mathbb{Q}_2^n$ with $|X \cap Y| = 1$. Otherwise if there exists some j such that $|r_j| > 1$, then $X \cap Y = \emptyset$.

Proof. We denote X_j, Y_j as the j^{th} interval composing X and Y. In the above definition of Y we wish to explore a multitude of different r_j values so as to express the theorem.

In the simplest case, $|r_i| > 1$ for some j then

$$y_i = 2^{-k} [m_i + r_i, m_i + r_i + 1].$$

Clearly $m_j + 1 < m_j + r$ or $m_j > m_j + r_j + 1$, and thus $y_j \cap x_j = \emptyset$, we have that the whole cartesian product,

$$X \cap Y = \emptyset \times \left(\underset{i \neq j}{\overset{n}{\times}} x_j \cap y_j \right) = \emptyset,$$

because $\emptyset \times B$ cannot form any pair (a, b) as there is no $a \in \emptyset$.

We claim that when $|r_i| \leq 1$, $X \cap Y \in \overline{\Delta_n^k}$ for $k = n - \sum_{i=1}^n |r_i| > 0$. Let (n_p) denote the finite (possibly empty) list of indices for which $|r_j| = 1$. In other words, for all p, $|r_{n_p}| = 1$, else $|r_j| = 0$. The intersection as aforementioned is the cartesian product of all x_j, y_j . Hence for $j \notin \{n_p\}$, $x_j \cap y_j \in \overline{\Delta_n^1}$ with $\delta_1 = j$. The cartesian product of all such j is $X^* \cap Y^* \in \overline{\Delta_n^c}$ with $\delta_c = \{j \neq n_p \forall p\}$, and $c = n - |\{n_p\}| = k$. We claim that $X \cap Y$ cannot exist in any higher dimenisonality than $X^* \cap Y^*$.

Suppose $X \cap Y \in \overline{\Delta_n^d}$, with $n \ge d > c$. This implies that there exists a $q \in \{n_p\}$ such that $x_q \cap y_q = z_q$ is non-singular and non-empty. We have that

$$z_q = 2^{-\gamma} [m_q, m_q + 1] \cap 2^{-\gamma} [m_q \pm 1, m_q + 1 \pm 1]$$
$$= 2^{-\gamma} \left\{ m_q + \frac{1 \pm 1}{2} \right\}$$

is singular. Hence we reach a contradiction and $X \cap Y \in \overline{\Delta_n^k}$.

Lastly in the case that $|r_j|=1$ for all j if and only if k=0, the intersection is a cartesian product of n singular points as in z_q . Thus $X\cap Y\in \mathbb{Q}_2^m$. This completes the proof.

32. Suppose that E is a convex region in the plane bounded by a curve C.

(a) Show the following

Theorem 9. The curve C has a tangent line except at a countable number of points.

Proof. By definition if E is a convex region, then for any two points $x,y\in E$, all points on the line $L(x,y)=\{z\in E\ :\ tx+sy=z,t+s=1,0\leqslant t,s\leqslant 1\}.$

Let a, b_t be two points on the curve C.