AI1103-Assignment 3

Shambhu Prasad Kavir CS20BTECH11045

Download all python codes from

https://github.com/Shambu-K/Assignment-3/blob/ main/Assignment-3.py

and latex-tikz codes from

https://github.com/Shambu-K/Assignment-3/blob/ main/Assignment-3.tex

QUESTION

(GATE 2010 MA Q-26)

Let X have a binomial distribution with parameters, n and p, n=3. For testing the hypothesis H_0 : p = $\frac{2}{3}$ against H_1 : $p = \frac{1}{3}$, let a test be: "Reject H_0 if $X \ge 2$ and accept H_0 if $X \leq 1$."

Then the probabilities of Type-1 and Type-2 errors respectively are

1)
$$\frac{20}{27}$$
 and $\frac{20}{27}$

1)
$$\frac{20}{27}$$
 and $\frac{20}{27}$ 3) $\frac{20}{27}$ and $\frac{7}{27}$

2)
$$\frac{7}{27}$$
 and $\frac{20}{27}$ 4) $\frac{7}{27}$ and $\frac{7}{27}$

4)
$$\frac{7}{27}$$
 and $\frac{7}{27}$

SOLUTION

0.1 Type-1 Error

A type-1 error occurs when the null hypothesis(H_0) is true, but is rejected. For this reason, it is also called a false alarm.

$$P(X \ge 2) = P(X = 2) + P(X = 3)$$

$$= {}^{3}C_{2} \times \left(\frac{2}{3}\right)^{2} \times \left(\frac{1}{3}\right)^{1} + {}^{3}C_{3} \times \left(\frac{2}{3}\right)^{3} \times \left(\frac{1}{3}\right)^{0}$$

$$= \frac{12}{27} + \frac{8}{27}$$

$$= \frac{20}{27}$$

$$(0.1.3)$$

0.2 Type-2 Error

A type-2 error occurs when the null hypothesis(H_0) is false, but it is accepted as true. Therefore, it is called a miss alarm. Alternatively, it can also be defined as the error which occurs when the alternate hypothesis(H_1) is true, but is rejected

$$P(X \le 1) = P(X = 1) + P(X = 0)$$

$$= {}^{3}C_{1} \times \left(\frac{1}{3}\right)^{1} \times \left(\frac{2}{3}\right)^{2} + {}^{3}C_{0} \times \left(\frac{1}{3}\right)^{0} \times \left(\frac{2}{3}\right)^{3}$$

$$= \frac{12}{27} + \frac{8}{27}$$

$$= \frac{20}{27}$$

$$(0.2.4)$$

.. Option-1 is correct