Solutions to Lab1 Intro. to SPIM

Solutions to Lab1 Intro. to SPIM						
	Psedo-	Instruction	Opcode	rs	rt	Immediate data or Offset
	Instruction					rd, shamnt, func
	li \$8,0x3210					
34083210		ori \$8, \$0 , 0x3210	001101	00000	01000	0011 0010 0001 0000
li \$09,0x76543210						
3c017654		lui \$1 , 0x7654	001111	00000	00001	0111 0110 0101 0100
34293210		ori \$9, \$1 , 0x3210	001101	00001	01001	0011 0010 0001 0000
	sge \$11, \$8, \$9					
15280003		bne \$9 , \$8 , 12	000101	01001	01000	0000 0000 0000 0011
340b0001		ori \$11 , \$0 , 1	001101	00000	01011	0000 0000 0000 0001
10000003		beq \$0 , \$0 , 12	000100	00000	00000	0000 0000 0000 0011
00000000		nop	000000	00000	00000	0000 0000 0000 0000
0128582a		slt \$11, \$9, \$8	000000	01001	01000	01011 00000 101010
mul \$12, \$11, \$10						
716a6002		mul \$12, \$11, \$10	011100	01011	01010	01100 00000 000010
bge \$11, \$0, infloop						
0160082a		slt \$1, \$11, \$0	000000	01011	00000	00001 00000 101010
10200000		beq \$1, <mark>\$0</mark> , 0	000100	00001	00000	0000 0000 0000 0000
Part 2	Psedo-	Instruction	Opcode	rs	rt	Immediate data or Offset
	Instruction					rd, shamnt, func
340a0019	li \$t2, 25	ori \$10, \$0, 25	001101	00000	01010	0000 0000 0001 1001
3c011001	lw \$t3, value	lui \$1 , 4097	001111	00000	00001	0001 0000 0000 0001
8c2b0000		lw \$11, 0(\$1)	100011	00001	01011	0000 0000 0000 0000
014b6020	add \$t4, \$t2, \$t3	add \$12, \$10, \$11	000000	01010	01011	01100 00000 100000
014b6822	sub \$t5, \$t2, \$t3	sub \$13, \$10, \$11	000000	01010	01011	01101 00000 100010
3c011001	sw \$t5, Z	lui \$1 , 4097	001111	00000	00001	0001 0000 0000 0001
ac2d0004		sw \$13, 4(\$1)	101011	00001	01101	0000 0000 0000 0100
3402000a	li \$v0, 10	ori \$2 , \$ 0, 10	001101	00000	00010	0000 0000 0000 1010

Solutions to Lab2.1 Calculate 1 + 2 + 3 + ... + N .data

prompt: .asciiz "\n Please input a value for N = "
result: .asciiz "The sum of the integers 1 to N = "

bye: .asciiz "\n Good-bye!"

.globl main

.text

main:

li \$v0, 4 # System call code for Print String
la \$a0, prompt # load address of prompt into \$a0
syscall # Print the prompt message
li \$v0, 5 # System call code for Read Integer
syscall # Read N into \$v0
blez \$v0, end # branch to end if v0 <= 0
li \$t0. 0</pre>

loop:

add \$t0, \$t0, \$v0 # Sum of integers in \$t0 addi \$v0, \$v0, -1 # Decrement N bnez \$v0, loop # branch to loop if v !=0 li \$v0, 4 # System call code for Print String la \$a0, result # load adress of message into \$a0 syscall # print the string li \$v0, 1 # System calll code for Print Integer move \$a0, \$t0 # move value to be printed to \$a0 syscall # print sum of integers b main # branch to main

end:

li \$v0, 4 # System call code for Print String
la \$a0, bye # load address of message into \$a0
syscall # print the string
li \$v0, 10 # System call code for terminate
syscall # return control to system

```
# Solutions to Lab2.2 Sum of N intergers, a[0] + a[1] +
... a[N-1]
        .data
        .word 10 \# n = 10
n:
# array of 10 intergers
        .word 9, 7, 8, 6, 4, 5, 2, 10, 1, 3
a:
        .globl main
        .text
main:
        and $50, $0, $0 # $50 (sum) = 0
        and $t0, $0, $0 # $t0 (i) = 0
        la $t4, n # address of n
        1w $t4, 0($t4) # t4 = n
        la $t2, a $t2 = address of a[i], i = 0
loop2:
        lw $t3, 0($t2) # load a[i]
        add $s0, $s0, $t3 # increment sum
        addi $t0, $t0, 1 # increment i
        addi $t2, $t2, 4 # increment address of a[i]
        slt $t5, $t0, $t4 # is $t0 < $t4 ?
        bne $t5, $0, loop2 # branch if so
# Output Sum
        li $v0, 1 # Load 1=print int into $v0
        add $a0, $s0, $zero # Load first number into $a0
        syscall # Output the prompt via syscall
        li $v0, 10 # System call code for terminate
        syscall # return control to system
```