TEST REPORT

Reference No	:	WTS17S0989759E
FCC ID	:	2ALR9-KDL-BT1703

Applicant: SHENZHEN G-KINDLY ELECTRONIC CO., LTD

Manufacturer: The same as aboveAddress: The same as aboveProduct: Wireless speaker

Model(s)...... : KDL-BT1703, BB783, BB784, BB484, BB496, BB300, BB303

Standards : FCC CFR47 Part 15 Section 15.247: 2016

Date of Receipt sample : 2017-09-05

Date of Test : 2017-09-06 to 2017-10-25

Date of Issue : 2017-10-25

Test Result : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Test site/Test location:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by:

Approved by:

Jack Wen / Test Engineer

Philo Zhong / Manager

2 Contents

		Page
1	COVER PAGE	1
2	CONTENTS	
3	REVISION HISTORY	4
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T	5
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
6	TEST SUMMARY	9
7	CONDUCTED EMISSION	
	7.1 E.U.T. OPERATION	
8	RADIATED EMISSIONS	13
	8.1 EUT OPERATION	
9	CONDUCTED SPURIOUS EMISSIONS	20
	9.1 TEST PROCEDURE	
10	BAND EDGE MEASUREMENT	
	10.1 TEST PROCEDURE	
11	BANDWIDTH MEASUREMENT	
	11.1 TEST PROCEDURE: 11.2 TEST RESULT:	
12	MAXIMUM PEAK OUTPUT POWER	
	12.1 TEST PROCEDURE: 12.2 TEST RESULT:	42
13	HOPPING CHANNEL SEPARATION	
1.	13.1 TEST PROCEDURE:	48
14	NUMBER OF HOPPING FREQUENCY	54 54
	14.1 LEST ERUCEUURE	1 /

	14.2	TEST RESULT:	54
15	DWE	LL TIME	50
	15.1 15.2	TEST PROCEDURE:TEST RESULT:	56
16	ANTE	ENNA REQUIREMENT	62
17	RF E	XPOSURE	65
18	PHO	TOGRAPHS -TEST SETUP PHOTOS	64
	18.1 18.2	PHOTOGRAPH-CONDUCTED EMISSIONS TEST SETUPPHOTOGRAPH-RADIATED EMISSIONS	
19	PHO	TOGRAPHS – CONSTRUCTIONAL DETAILS	68
	19.1 19.2	MODEL KDL-BT1703–EXTERNAL PHOTOS	

Reference No.: WTS17S0989759E Page 4 of 74

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS17S0989759E	2017-09-05	2017-09-06 to 2017-10-25	2017-10-25	original	-	Valid

Reference No.: WTS17S0989759E Page 5 of 74

4 General Information

4.1 General Description of E.U.T

Product :Wireless speaker

Model(s) : KDL-BT1703, BB783, BB784, BB484, BB496, BB300, BB303

Model difference : Only the model names and colors are different, the KDL-BT1703

is the tested sample.

Operation Frequency: 2402-2480MHz, 79(EDR) Channels in total

Bluetooth Version : 4.1

RF out Power :-2.86dBm
The Lowest Oscillator : 26MHz
Antenna Gain : 0dBi

Type of Modulation : GFSK, Pi/4DQPSK, 8DPSK

Antenna installation : PCB Printed Antenna

4.2 Details of E.U.T.

Ratings DC 3.7V, 1200mAh, power by battery Charging by USB port DC 5V, 1A

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

Reference No.: WTS17S0989759E Page 6 of 74

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

Table 2 Tests Carried Out Under FCC part 15.207 and 15.209

топост — топост от				
Test Item	Test Mode			
Radiated Emissions	Transmitting			
Conducted Emissions	Transmitting			

5 Equipment Used during Test

5.1 Equipments List

Condu	Conducted Emissions Test Site 1#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	2017-09-12	2018-09-11
2.	LISN	R&S	ENV216	101215	2017-09-12	2018-09-11
3.	Cable	Тор	TYPE16(3.5M)	-	2017-09-12	2018-09-11
Condu	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-12	2018-09-11
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-12	2018-09-11
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-12	2018-09-11
4.	Cable	LARGE	RF300	-	2017-09-12	2018-09-11
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP	100091	2017-09-14	2018-09-13
2	Amplifier	Agilent	8447D	2944A10178	2016-10-17	2017-10-16
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	2017-04-09	2018-04-08
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-04-09	2018-04-08
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2017-09-14	2018-09-13
6	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2017-04-13	2018-04-12
7	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2017-04-13	2018-04-12
10m Se	emi-anechoic Chambe	er for Radiation Em	issions(Above18	BGHz)		
1	Spectrum Analyzer	R&S	FSV-40	101544	2017-02-17	2018-02-16
2	Antenna- Horn (18-40 GHz)	A-INFO	LB-180400KF	J211060273	2017-01-07	2018-01-06
3	Amplifier	COM-MV	ZLNA-18-40G- 021	1608001	2017-02-17	2018-02-16
4	Cable	Тор	18-40GHz	-	2017-02-17	2018-02-16
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration	Calibration Due Date

					Date	
1	Test Receiver	R&S	ESCI	101296	2017-04-13	2018-04-12
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09, 2016	Apr.08, 2017
3	Amplifier	ANRITSU	MH648A	M43381	2017-04-13	2018-04-12
4	Cable	HUBER+SUHNER	CBL2	525178	2017-04-13	2018-04-12
5	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2017-09-12	2018-09-11

RF Conducted Testing

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2017-09-14	2018-09-13
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2017-09-12	2018-09-11

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., L TD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

5.4 Subcontracted

⊠ Yes □ No

If Yes, list the related test items and lab information:

Test Lab: Shenzhen Balun Technology Co.,Ltd.

Lab address: Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, ShenZhen, GuangDong Province, P. R. China

Test items: Radiated Spurious Emission(18GHz to 25GHz), Conducted Spurious Emission

Reference No.: WTS17S0989759E Page 9 of 74

6 Test Summary

Test Items	Test Requirement	Result				
Conduct Emission	15.207	С				
	15.205(a)					
Spurious Radiated Emissions	15.209	С				
	15.247(d)					
Conducted Spurious Emissions	15.247(d)	С				
Dand adea	15.247(d)	6				
Band edge	15.205(a)	С				
Bandwidth	15.247(a)(1)	С				
Maximum Peak Output Power	15.247(b)(1)	С				
Frequency Separation	15.247(a)(1)	С				
Number of Hopping Frequency	15.247(a)(1)(iii)	С				
Dwell time	15.247(a)(1)(iii)	С				
RF exposure	1.1307(b)(1)	С				
Antenna Requirement	15.203	С				
Note: C=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.						

Reference No.: WTS17S0989759E Page 10 of 74

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013;ANSI C63.4:2014

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

,

Frequency (MHz)	Conducted Limit (dBµV)					
Frequency (MHZ)	Qsi-peak	Average				
0.15 to 0.5	66 to 56*	56 to 46*				
0.5 to 5.0	56	46				
5.0 to 30	60	50				
*Decreases with the logarithm of the frequency.						

7.1 E.U.T. Operation

Limit:

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation : Refer to Section 4.4.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS17S0989759E Page 13 of 74

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013;ANSI C63.4:2014

Test Result: PASS
Measurement Distance: 3m

Limit:

LIIIII.				
_	Field Strei	ngth	Field Strength Limit at	3m Measurement Dist
Frequency Distance (MHz) uV/m (m)		uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation : Refer to Section 4.4.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS17S0989759E Page 15 of 74

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS17S0989759E Page 16 of 74

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

Reference No.: WTS17S0989759E Page 17 of 74

8.5 Summary of Test Results

Only the worst case GFSK mode were record in the report.

Test Frequency: 26MHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Only the worst case GFSK mode were record in the report.

Fraguency Receiver	Detector	Turn	RX An	tenna	Corrected	Composto d	FCC Part 15.247/209/205		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Lo	ow Chanr	nel 2402	MHz			
252.69	36.29	QP	293	1.3	Н	-13.35	22.94	46.00	-23.06
252.06	40.12	QP	130	1.4	V	-13.35	26.77	46.00	-19.23
4804.00	45.26	PK	134	2.0	V	-1.06	44.20	74.00	-29.80
4804.00	43.02	Ave	134	2.0	V	-1.06	41.96	54.00	-12.04
7206.00	40.19	PK	103	1.4	Н	1.33	41.52	74.00	-32.48
7206.00	37.15	Ave	103	1.4	Н	1.33	38.48	54.00	-15.52
2327.26	45.21	PK	154	1.3	V	-13.19	32.02	74.00	-41.98
2327.26	38.43	Ave	154	1.3	V	-13.19	25.24	54.00	-28.76
2363.64	43.65	PK	25	1.6	Н	-13.14	30.51	74.00	-43.49
2363.64	36.82	Ave	25	1.6	Н	-13.14	23.68	54.00	-30.32
2483.81	42.82	PK	323	1.7	V	-13.08	29.74	74.00	-44.26
2483.81	38.58	Ave	323	1.7	V	-13.08	25.50	54.00	-28.50

Fraguency Receiver	eceiver Detector	Turn	-	tenna Corrected		Commonto d	FCC Part 15.247/209/205		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Mid	ddle Char	nnel 244	1MHz			
252.69	37.09	QP	197	1.7	Н	-13.35	23.74	46.00	-22.26
252.06	42.45	QP	297	1.9	V	-13.35	29.10	46.00	-16.90
4882.00	46.20	PK	335	1.6	V	-0.62	45.58	74.00	-28.42
4882.00	42.23	Ave	335	1.6	V	-0.62	41.61	54.00	-12.39
7323.00	38.90	PK	144	1.7	Н	2.21	41.11	74.00	-32.89
7323.00	34.56	Ave	144	1.7	Н	2.21	36.77	54.00	-17.23
2336.58	46.66	PK	70	1.7	V	-13.19	33.47	74.00	-40.53
2336.58	37.86	Ave	70	1.7	V	-13.19	24.67	54.00	-29.33
2362.06	44.61	PK	86	1.2	Н	-13.14	31.47	74.00	-42.53
2362.06	36.29	Ave	86	1.2	Н	-13.14	23.15	54.00	-30.85
2486.69	42.76	PK	72	1.6	V	-13.08	29.68	74.00	-44.32
2486.69	37.41	Ave	72	1.6	V	-13.08	24.33	54.00	-29.67

_	Receiver	er i	Turn	RX Antenna		Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor Corrected Amplitude		Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK H	igh Chan	nel 2480)MHz			
252.69	38.22	QP	278	1.2	Н	-13.35	24.87	46.00	-21.13
252.06	42.56	QP	133	1.4	V	-13.35	29.21	46.00	-16.79
4960.00	43.89	PK	61	1.4	V	-0.24	43.65	74.00	-30.35
4960.00	40.39	Ave	61	1.4	V	-0.24	40.15	54.00	-13.85
7440.00	39.26	PK	307	1.4	Н	2.84	42.10	74.00	-31.90
7440.00	36.23	Ave	307	1.4	Н	2.84	39.07	54.00	-14.93
2311.48	45.00	PK	245	1.2	V	-13.19	31.81	74.00	-42.19
2311.48	37.56	Ave	245	1.2	V	-13.19	24.37	54.00	-29.63
2369.98	42.82	PK	343	1.6	Н	-13.14	29.68	74.00	-44.32
2369.98	36.77	Ave	343	1.6	Н	-13.14	23.63	54.00	-30.37
2497.40	42.05	PK	85	1.8	V	-13.08	28.97	74.00	-45.03
2497.40	36.32	Ave	85	1.8	V	-13.08	23.24	54.00	-30.76

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS17S0989759E Page 20 of 74

9 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.1 Test Procedure

- Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

Above 30MHz:

RBW = 1MHz, VBW = 3MHz, Sweep = auto

Detector function = peak, Trace = max hold

9.2 Test Result

GFSK Low Channel

Middle Channel

High Channel

GFSK Low Channel

Pi/4DQPSK Low Channel

Middle Channel

High Channel

Pi/4DQPSK Low Channel

Middle Channel

High Channel

8DPSK Low Channel

Middle Channel

High Channel

8DPSK Low Channel

Middle Channel

High Channel

Reference No.: WTS17S0989759E Page 30 of 74

10 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

10.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

10.2 Test Result:

Test plots

Pi/4 DQPSK Transmitting Band edge-left side

Pi/4 DQPSK Hopping Band edge-left side

Pi/4 DQPSK Hopping Band edge-right side

8DPSK Transmitting Band edge-left side

8DPSK Hopping Band edge-left side

8DPSK Transmitting Band edge-right side

8DPSK Hopping Band edge-right side

Reference No.: WTS17S0989759E Page 37 of 74

11 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10: 2013

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

11.2 Test Result:

Modulation	Test Channel	20 dB Bandwidth	99% Bandwidth
GFSK	Low	1.114MHz	0.994MHz
GFSK	Middle	1.114MHz	1.000MHz
GFSK	High	1.102MHz	1.000MHz
Pi/4 DQPSK	Low	1.377MHz	1.246MHz
Pi/4 DQPSK	Middle	1.383MHz	1.251MHz
Pi/4 DQPSK	High	1.383MHz	1.263MHz
8DPSK	Low	1.365MHz	1.251MHz
8DPSK	Middle	1.317MHz	1.257MHz
8DPSK	High	1.371MHz	1.281MHz

Test result plot as follows:

Modulation: GFSK Low Channel

Modulation: Pi/4 DQPSK

Modulation: 8DPSK

Reference No.: WTS17S0989759E Page 42 of 74

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

12.2 Test Result:

	Data	Peak Power(dBm)			
Test Mode	Data Rate	Low Channel	Middle Channel	High Channel	Limit (dBm)
GFSK	1Mbps	-2.90	-2.86	-3.89	20.97
4*π4DQPSK	2Mbps	-4.74	-4.79	-5.82	20.97
8DPSK	3Mbps	-4.16	-4.21	-5.21	20.97

Test result plot as follows:

Modulation: GFSK
Low Channel

Middle Channel

Modulation: Pi/4 DQPSK Low Channel Low Channel

Middle Channel

Modulation: 8DPSK Low Channel Low Channel

Middle Channel

Reference No.: WTS17S0989759E Page 48 of 74

13 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result:

Test result plot as follows:

Modulation	Test Channel	Separation (MHz)	Result	
GFSK	Low	1 MHz	PASS	
GFSK	Middle	1 MHz	PASS	
GFSK	High	1 MHz	PASS	
Pi/4 DQPSK	Low	1 MHz	PASS	
Pi/4 DQPSK	Middle	1 MHz	PASS	
Pi/4 DQPSK	High	1 MHz	PASS	
8DPSK	Low	1 MHz	PASS	
8DPSK	Middle	1 MHz	PASS	
8DPSK	High	1 MHz	PASS	

Test plots

Reference No.: WTS17S0989759E Page 54 of 74

14 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

14.2 Test Result:

Total Channels are 79 Channels.

Modulation: GFSK Pi/4 DQPSK

Modulation: 8DPSK

Reference No.: WTS17S0989759E Page 56 of 74

15 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

15.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 3MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

15.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*31.6*(MkrDelta)/1000		
DH3	1600/79/4*31.6*(MkrDelta)/1000		
DH1	1600/79/2*31.6*(MkrDelta)/1000		
Remark	Mkr Delta is single pulse time.		

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.976	0.317	0.4
		middle	2.928	0.312	0.4
		High	2.984	0.318	0.4
Pi/4DQPSK	DH5	Low	2.928	0.312	0.4
		middle	2.928	0.312	0.4
		High	2.920	0.311	0.4
8DPSK	DH5	Low	2.928	0.312	0.4
		middle	2.984	0.318	0.4
		High	2.984	0.318	0.4

Modulation: GFSK

Data Packet:

DH5.Low channel

Data Packet:

DH5.Middle channel

Data Packet: DH5,High channel

Modulation: Pi/4DQPSK

Data Packet:

2DH5 Low channel

Data Packet: 2DH5.Middle channel

Data Packet: 2DH5,High channel

Modulation: 8DPSK
Data Packet:
3DH5.Low channel

Data Packet: 3DH5.Middle channel

Data Packet: 3DH5,High channel

Reference No.: WTS17S0989759E Page 62 of 74

16 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

Reference No.: WTS17S0989759E Page 63 of 74

17 RF Exposure

Please refer to RF exposure report.

18 Photographs -Test Setup Photos

18.1 Photograph-Conducted Emissions Test Setup

18.2 Photograph-Radiated Emissions

Test Frequency Below 30MHz

Test Frequency 30MHz to 1000MHz

Test Frequency Above 1GHz

For 18GHz to 25GHz

19 Photographs – Constructional Details

19.1 Model KDL-BT1703-External Photos

Reference No.: WTS17S0989759E Page 69 of 74

Reference No.: WTS17S0989759E Page 70 of 74

Reference No.: WTS17S0989759E Page 71 of 74

19.2 Model KDL-BT1703- Internal Photos

Reference No.: WTS17S0989759E Page 73 of 74

=====End of Report=====