Liczby szczególne

dr inż. Bartłomiej Pawlik

19 czerwca 2024

Potęgi kroczące

Definicja

Niech $m \geqslant 0$ będzie liczbą całkowitą.

• Dolną silnią nazywamy wyrażenie

$$x^{\underline{m}} = x(x-1)(x-2)\cdots(x-m+1).$$

• Górną silnią nazywamy wyrażenie

$$x^{\overline{m}} = x(x+1)(x+2)\cdots(x+m-1).$$

Wyrażenie $x^{\underline{m}}$ czytamy "x do m-tej ubywającej", a $x^{\overline{m}}$ — "x do m-tej przybywającej".

- $5^{\underline{3}} = 5 \cdot 4 \cdot 3 = 60$
- $5^{\overline{3}} = 5 \cdot 6 \cdot 7 = 210$
- $4^{\underline{5}} = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 = 0$

$$n! = n^{\underline{n}} = 1^{\overline{n}}$$

Przykład

- $x^{3} = x(x-1)(x-2) = x^{3} 3x^{2} + 2x$
- $x^{\overline{3}} = x(x+1)(x+2) = x^3 + 3x^2 + 2x$

Liczby Stirlinga drugiego rodzaju

Definicja

Podziałem skończonego zbioru S nazywamy rodzinę parami rozłącznych podzbiorów $\{S_1,S_2,\ldots,S_k\}$ zbioru S taką, że

$$S_1 \cup S_2 \cup \ldots \cup S_k = S$$
.

Definicja (liczby Stirlinga drugiego rodzaju)

Symbol $\binom{n}{k}$ (czyt. k podzbiorów n) oznacza liczbę sposobów podziału zbioru n-elementowego na k niepustych podzbiorów.

Liczby Stirlinga drugiego rodzaju występują częściej niż liczby Stirlinga pierwszego rodzaju, więc zaczynamy od nich — tak jak James Stirling w swojej książce *Methodus Differentialis* (1730).

Wyznacz wartość $\binom{4}{2}$.

Wyznaczymy liczbę podziałów zbioru czterolementowego $\{a,b,c,d\}$ na dwa niepuste zbiory. Zauważmy, że 4=1+3=2+2, więc dany zbiór możemy zapisać jako sumę zbiórów trój- oraz jednoelementowego lub dwóch dwuelementowych:

$$1+3: \quad \{a\} \cup \{b,c,d\}, \quad \{b\} \cup \{c,d,e\}, \quad \{c\} \cup \{a,b,d\}, \quad \{d\} \cup \{a,b,c\}, \\ 2+2: \quad \{a,b\} \cup \{c,d\}, \quad \{a,c\} \cup \{b,d\}, \quad \{a,d\} \cup \{b,c\}.$$

Zatem
$$\binom{4}{2} = 7$$
.

Wartości $\binom{n}{k}$ dla małych wartości k:

- k=0. Przyjmujemy, że $egin{cases} 0 \\ 0 \end{pmatrix} = 1$. Jeżeli n>0 to, oczywiście, $\genfrac{\{}{\}}{0}{0} = 0$.
- k=1. Mamy $\begin{cases} 0 \\ 1 \end{cases} = 0$. Dla n>0 istnieje dokładnie jeden n-elementowy podział n-elementowego zbioru, więc

$$\binom{n}{1} = 1.$$

• k=2. Oczywiście $\binom{0}{2}=0$. Załóżmy, że n>0. Chcemy rozbić zbiór $S=\{a_1,a_2,\ldots,a_n\}$ na dwa podzbiory S_1 i S_2 . Bez straty ogólności możemy przyjąć, że $a_1\in S_1$. Pozostałe a_i możemy przypisać do zbioru S_1 na 2^{n-1} sposobów, ale musimy pamiętać, że nie możemy do niego przypisać wszystkich elementów zbioru S. Zatem

$$\begin{Bmatrix} n \\ 2 \end{Bmatrix} = 2^{n-1} - 1.$$

40 + 40 + 43 + 43 + 3 + 990

Wartości $\binom{n}{k}$ dla małych n i k:

n	0	1	2	3	4	5	6	7	8	9
0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0	0
3	0	1	3	1	0	0	0	0	0	0
4	0	1	7	6	1	0	0	0	0	0
5	0	1	15	25	10	1	0	0	0	0
6	0	1	31	90	65	15	1	0	0	0
7	0	1	63	301	350	140	21	1	0	0
8	0	1	127	966	1701	1050	266	28	1	0
9	0	1	255	3025	7770	6951	2646	462	36	1

Uwaga!

W przypadku, gdy $n\geqslant 0$ i k<0 zakładamy, że $\displaystyle {n\choose k}=0.$

Twierdzenie

Dla n > 0 zachodzi zależność rekurencyjna

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}.$$

Dowód. (1/2)

Niech $S=\{a_1,a_2,\ldots,a_n\}$. Określimy liczbę podziałów S na k niepustych podzbiorów S_1,S_2,\ldots,S_k . Zauważmy, że w każdym takim podziale elementy a_1,a_2,\ldots,a_{n-1} można przydzielić <u>albo</u> do zbiorów S_1,S_2,\ldots,S_{k-1} <u>albo</u> do zbiorów $S_1,S_2,\ldots,S_{k-1},S_k$ (w obu przypadkach każdy z wymienionych zbiorów posiada co najmniej jeden z elementów a_1,\ldots,a_{n-1}).

W pierwszym przypadku mamy $\binom{n-1}{k-1}$ możliwości. Zauważmy, że dla każdego takiego podziału element a_n tworzy jednoznaczenie jednoelementowy ostatni zbiór $S_k\colon S_k=\{a_n\}.$

Dowód. (2/2)

W drugim przypadku mamy ${n-1 \brace k}$ możliwości podziału zbioru $\{a_1,a_2,\ldots,a_{k-1}\}$ na S_1,S_2,\ldots,S_k . Zauważmy, że w przypadku każdego takiego podziału element a_n może trafić do jednego z k zbiorów S_1,S_2,\ldots,S_k . Zatem w tym przypadku mamy $k \cdot {n-1 \brace k}$ możliwości.

Ostatecznie

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}.$$

Trójkąt Stirlinga dla podzbiorów:

Trójkąt Stirlinga dla podzbiorów:

Oblicz wartości wyrażeń

a)
$$x^{1} + x^{2}$$
,

b)
$$x^{1} + 3x^{2} + x^{3}$$
,

c)
$$x^{1} + 7x^{2} + 6x^{3} + x^{4}$$
.

d)
$$x^{1} + 15x^{2} + 25x^{3} + 10x^{4} + x^{5}$$
.

Powyższy przykład pokazuje, że dla małych wartości n wyrażenie x^n można zapisać jako sumę potęg zstępujących ze współczynnikami wynikającymi z tabeli liczb Stirlinga drugiego rodzaju:

$$\begin{split} x^0 &= x^{\underline{0}}, \\ x^1 &= x^{\underline{1}}, \\ x^2 &= x^{\underline{1}} + x^{\underline{2}}, \\ x^3 &= x^{\underline{1}} + 3x^{\underline{2}} + x^{\underline{3}}, \\ x^4 &= x^{\underline{1}} + 7x^{\underline{2}} + 6x^{\underline{3}} + x^{\underline{4}}, \\ x^5 &= x^{\underline{1}} + 15x^{\underline{2}} + 25x^{\underline{3}} + 10x^{\underline{4}} + x^{\underline{5}}. \end{split}$$

Czy prawdziwa jest ogólna zależność?

Twierdzenie

Wzór

$$x^n = \sum_{k=0}^n \binom{n}{k} x^{\underline{k}}$$

zachodzi dla każdej liczby całkowitej dodatniej n.

Dowód. (1/2)

Zauważmy, że z

$$x^{\underline{k+1}} = x^{\underline{k}}(x-k)$$

wynika, że

$$x^{\underline{k}} \cdot x = x^{\underline{k+1}} + kx^{\underline{k}}.$$

Przeprowadzimy dowód indukcyjny. Wiemy, że wzór jest prawdziwy dla małych wartości n. Załóżmy (ZI), że zachodzi on dla (n-1), czyli

$$x^{n-1} = \sum_{k=0}^{n-1} {n-1 \brace k} x^{\underline{k}}.$$

Mamy

$$\begin{split} x^n &= x \cdot x^{n-1} \overset{(ZI)}{=} x \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} x^{\underline{k}} = \sum_{k=0}^{n-1} \binom{n-1}{k} x^{\underline{k}} \cdot x = \\ &= \sum_{k=0}^{n-1} \binom{n-1}{k} (x^{\underline{k+1}} + kx^{\underline{k}}) = \sum_{k=0}^{n-1} \binom{n-1}{k} x^{\underline{k+1}} + \sum_{k=0}^{n-1} \binom{n-1}{k} kx^{\underline{k}} = \\ &= 0 + \sum_{k=1}^{n} \binom{n-1}{k-1} x^{\underline{k}} + \sum_{k=0}^{n-1} \binom{n-1}{k} kx^{\underline{k}} + 0 = \\ &= \binom{n-1}{-1} x^{\underline{0}} + \sum_{k=1}^{n} \binom{n-1}{k-1} x^{\underline{k}} + \sum_{k=0}^{n-1} \binom{n-1}{k} kx^{\underline{k}} + \binom{n-1}{n} nx^{\underline{n}} = \\ &= \sum_{k=0}^{n} \binom{n-1}{k-1} x^{\underline{k}} + \sum_{k=0}^{n} \binom{n-1}{k} kx^{\underline{k}} = \sum_{k=0}^{n} \left(\binom{n-1}{k-1} + \binom{n-1}{k} k \right) \cdot x^{\underline{k}} = \\ &= \sum_{k=0}^{n} \binom{n}{k} \cdot x^{\underline{k}}. \end{split}$$

Liczby Stirlinga pierwszego rodzaju

Definicja

Cyklem nazywamy cykliczne ustawienia elementów danego zbioru.

Przykładowo jednym z cykli zbioru $\{A,B,C,D\}$ jest cykl w którym A przechodzi na $D,\ D$ na $B,\ B$ na $C,\$ a C na A. Ten cykl zapisujemy w postaci [A,D,B,C]. Oczywiście

$$[A, D, B, C] = [D, B, C, A] = [B, C, A, D] = [C, A, D, B].$$

Definicja (liczby Stirlinga pierwszego rodzaju)

Symbol $\binom{n}{k}$ (czyt. k cykli n) oznacza liczbę sposobów na rozmieszczenie n elementów w k rozłącznych cyklach.

Wyznacz wartość $\begin{bmatrix} 4\\2 \end{bmatrix}$.

Wyznaczymy liczbę podziału elementów czterolementowego zbioru $\{a,b,c,d\}$ na dwa niepuste cykle:

$$\begin{array}{llll} [a] \, [b,c,d], & [b] \, [a,c,d], & [c] \, [a,b,d], & [d] \, [a,b,c], \\ [a] \, [b,d,c], & [b] \, [a,d,c], & [c] \, [a,d,b], & [d] \, [a,c,b], \\ [a,b] \, [c,d], & [a,c] \, [b,d], & [a,d] \, [b,c]. \end{array}$$

Zatem $\begin{bmatrix} 4 \\ 2 \end{bmatrix} = 11$.

Wartości $\begin{bmatrix} n \\ k \end{bmatrix}$ dla małych wartości k:

• k = 0.

Podobnie jak w przypadku liczb Stirlinga drugiego rodzaju mamy $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$

 $\operatorname{oraz} \begin{bmatrix} n \\ 0 \end{bmatrix} = 0 \operatorname{dla} \ n > 0.$

• k = 1

Oczywiście $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$. Pamiętamy, że zbiór n-elementowy ma dokładnie n! permutacji. Każdemu cyklowi odpowiada dokładnie n permutacji (każda rozpoczyna się od innego elementu danego zbioru), zatem

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = \frac{n!}{n} = (n-1)!$$

Wartości $\begin{bmatrix} n \\ k \end{bmatrix}$ dla małych n i k:

n	0	1	2	3	4	5	6	7	8
0	1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0
3	0	2	3	1	0	0	0	0	0
4	0	6	11	6	1	0	0	0	0
5	0	24	50	35	10	1	0	0	0
6	0	120	274	225	85	15	1	0	0
7	0	720	1764	1624	735	175	21	1	0
8	0	5040	13 068	13 132	6769	1960	322	28	1
9	0	40 320	109 584	118 124	67 284	22 449	4536	546	36

Uwaga!

W przypadku, gdy $n\geqslant 0$ i k<0 zakładamy, że ${n\brack k}=0$.

Twierdzenie

Dla n > 0 zachodzi zależność rekurencyjna

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \cdot \begin{bmatrix} n-1 \\ k \end{bmatrix}.$$

Poniższy dowód jest modyfikacją wcześniej przedstawionego dowodu zależności rekurencyjnej dla liczb Stirlinga drugiego rodzaju.

Dowód. (1/2)

Niech $S=\{a_1,a_2,\ldots,a_n\}$. Określimy liczbę podziałów S na k cykli C_1,C_2,\ldots,C_k . Zauważmy, że w każdym takim podziale elementy a_1,a_2,\ldots,a_{n-1} można rozmieścić <u>albo</u> w cyklach C_1,C_2,\ldots,C_{k-1} <u>albo</u> w cyklach $C_1,C_2,\ldots,C_{k-1},C_k$.

W pierwszym przypadku mamy $\begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$ możliwości. Zayważmy, że dla każdego takiego podziału element a_n tworzy ostatni, jednoelementowy cykl $C_k = [a_n]$.

Dowód. (2/2)

W drugim przypadku mamy ${n-1\brack k}$ możliwości podziału zbioru $\{a_1, a_2, \dots, a_{k-1}\}$ na cykle C_1, C_2, \dots, C_k . W przypadku każdego takiego podziału element a_n może trafia do jednego z tych cykli. Nietrudno zauważyć, że można go tak umieścić na (n-1) sposobów (cykl długości L można rozszerzyć o jeden element na L sposobów). Zatem w tym przypadku mamy

$$(n-1)\cdot {n-1\brack k}$$
 możliwości.

Ostatecznie

Trójkąt Stirlinga dla cykli:

Trójkąt Stirlinga dla cykli:

Zauważmy, że $\begin{bmatrix} n \\ k \end{bmatrix}$ oznacza liczbę permutacji n obiektów, które zawierają dokładnie k cykli. Zatem aby otrzymać liczbę wszystkich permutacji n obiektów, można zsumować wartości wyrażenia $\begin{bmatrix} n \\ k \end{bmatrix}$ dla wszystkich k takich, że $0 \leqslant k \leqslant n$:

$$\sum_{k=0}^{n} {n \brack k} = n!$$

Zapisz w postaci ogólnej wielomiany $x^{\overline{s}}$ dla s=0,1,2,3,4,5.

$$\begin{split} x^{\overline{0}} &= 1 = x^0, \\ x^{\overline{1}} &= x = x^1, \\ x^{\overline{2}} &= x(x+1) = x^1 + x^2, \\ x^{\overline{3}} &= x(x+1)(x+2) = 2x^1 + 3x^2 + x^3, \\ x^{\overline{4}} &= x(x+1)(x+2)(x+3) = 6x^1 + 11x^2 + 6x^3 + x^4, \\ x^{\overline{5}} &= x(x+1)(x+2)(x+3)(x+4) = 24x^1 + 50x^2 + 35x^3 + 10x^4 + x^5. \end{split}$$

Jak powinno wygladać uogólnienie zaobserwowanych wyników?

Twierdzenie

Wzór

$$x^{\overline{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

zachodzi dla każdej liczby całkowitej dodatniej n.

- ullet Zauważmy, że jak w powyższym wzorze podstawimy x=1, to otrzymamy jeden z omawianych wcześniej wzorów.
- Dowód powyższego twierdzenia można przeprowadzić indukcyjnie podobnie do przeprowadzonego wcześniej dowodu analogicznego twierdzenia dla liczb Stirlinga drugiego rodzaju (należy pamiętać, że $x^{\overline{n}}=(x+n-1)x^{\overline{n-1}}$).

23 / 25

Zależności między liczbami Strilinga pierwszego i drugiego rodzaju

Zauważmy, że liczba cykli musi być co najmniej równa liczbie podzbiorów, więc mamy

$$\binom{n}{k} \leqslant \binom{n}{k}$$

dla całkowitych nieujemnych n i k.

Zachodzą tzw. wzory inwersji:

Jeżeli $m \neq n$, to

$$\sum_{k=0}^{n} {n \brack k} {k \brack m} (-1)^{n-k} = \sum_{k=0}^{n} {n \brack k} {k \brack m} (-1)^{n-k} = 0$$

- $\binom{n}{k}$ liczba k-elementowych podzbiorów zbioru n-elementowego
- \bullet $\left\{ _{k}^{n}\right\}$ liczba podziałów n-elementowegozbioru na k niepustych podzbiorów
- ullet ${n\brack k}$ liczba permutacji n-elementowego zbioru zawierających k cykli

Liczby Stirlinga pierwszego rodzaju nazywane są liczbami cyklicznymi Stirlinga, a drugiego rodzaju — liczbami podzbiorowymi Stirlinga.