The Impact of Air Pollution on Attention Deficit Hyperactivity Disorder

Jia-Yi Lin

Department of Applied Mathematics National Dong Hwa University

September 4, 2024

Overview

- Objective
- Introduction
- Data
- Method
- Results
- Conclusion

Objective

Exploring the potential cause of air pollution in the development of ADHD

Attention Deficit Hyperactivity Disorder (ADHD)

Attention deficit hyperactivity disorder (ADHD) affects school-aged children about 3-12% and adults approximately 3-5%

- Inattention
- Hyperactivity
- Impulsiveness

National Health Insurance Research Database (NHIRD)

- H_NHI_OPDTE : Id, Sex, Age, Disease
- H_NHI_OPDTO : Drug
- H_NHI_ ENROLENROL : Id, Birth, City

Air Pollution

- Ministry of Environment
- 78 sites
- CO, NO2, PM10, PM2.5, etc.
- Health impact
- Enviroment effect

Data

Data

2009 - 2018 year

We using the variables as described below

- COUNT is the number of doctor visits.
- **CITY** is place of residence
- **SEX** is gender
- AGE is age, age less than or equal to 24
- CO. NO2. PM10. PM2.5 are air pollutants
- DD, DLD, BDD, Adjust, Anxiety, ASD are comorbidity

Zero-inflated Poisson Model (ZIP)

$$Y_i \sim egin{cases} 0 & \textit{with probability} & lpha_i \ Poisson(\lambda_i) & \textit{with probability} & (1-lpha_i) \end{cases}$$

Zero-inflated Poisson Model (ZIP)

- α_i is the probability of excessive zeros
- Y_i is the number of occurrences
- λ_i is the average frequency of occurrences

The probability mass function of zero-inflated Poisson model

$$P_r(Y_i = y_i) = \begin{cases} \alpha_i + (1 - \alpha_i) \exp^{-\lambda_i} & \text{if } y_i = 0\\ (1 - \alpha_i) \frac{\lambda_i^{y_i} \exp^{-\lambda_i}}{y_i!} & \text{if } y_i \neq 0 \end{cases}$$

The link functions are

$$logit(\alpha_i) = \log\left(\frac{\alpha_i}{1 - \alpha_i}\right) = x_i\beta_1$$

$$\Rightarrow \frac{\alpha_i}{1 - \alpha_i} = \exp(x_i\beta_1)$$

$$\Rightarrow \alpha = \exp(x_i\beta_1)(1 - \alpha_i)$$

$$\Rightarrow \alpha_i + \alpha_i \exp(x_i\beta_1) = \exp(x_i\beta_1)$$

$$\Rightarrow \alpha_i = \exp(x_i\beta_1)/1 + \exp(x_i\beta_1)$$

$$\log(\lambda_i) = x_i\beta_2 \Rightarrow \lambda_i = \exp(x_i\beta_2)$$

Zero-inflated Poisson Model (ZIP)

$$f(Y_i = y_i) = \prod_{i=1}^n f_{Y_i}(y_i) = \prod_{i=1}^n \left[\alpha_i + (1 - \alpha_i) \exp^{-\lambda_i} I\{y_i = 0\} + (1 - \alpha_i) \frac{\lambda_i^{y_i} \exp^{-\lambda_i}}{y_i!} I\{y_i \neq 0\} \right]$$

$$\log f(Y_{i} = y_{i}) = \log \left[\prod_{i=1}^{n} \left[\alpha_{i} + (1 - \alpha_{i}) \exp^{-\lambda_{i}} I\{y_{i} = 0\} + (1 - \alpha_{i}) \frac{\lambda_{i}^{y_{i}} \exp^{-\lambda_{i}}}{y_{i}!} I\{y_{i} \neq 0\} \right] \right]$$

$$= \sum_{y_{i}=0} \left[\log \left[\alpha_{i} + (1 - \alpha_{i}) \exp^{-\lambda_{i}} \right] \right] + \sum_{y_{i} \neq 0} \left[\log(1 - \alpha_{i}) + y_{i} \log \lambda_{i} - \lambda_{i} - \log y_{i}! \right]$$

Distribution of Patients

	N (%) ¹			
Variables	ADHD	Non-ADHD		
	(N = 82,587)	(N = 7,019,304)		
Sex				
Male	65,512 (79.325%)	3,545,035 (50.504%)		
Female	17,075 (20.675%)	3,474,269 (49.496%)		
Area				
Northern	50,698 (61.387%)	3,250,348 (46.306%)		
Central	12,772 (15.465%)	1,754,087 (24.989%)		
Southern	17,123 (20.733%)	1,834,337 (26.133%)		
Easthern	1,797(2.176%)	147,837 (2.106%)		
Outlying Islands	197 (0.239%)	32,695 (0.466%)		
Medication				
No	19,821 (24.000%)	7,007,845 (99.837%)		
Yes	62,766 (76.000%)	11,459 (0.163%)		
Age (Mean \pm SD)	13.414 ± 3.680	15.709 ± 6.525		

Zero-inflated Poisson (ZIP)

		Count Model		Zero-inflation Model	
Area	Variable	Estimate (Std. Error)	$\exp \beta$	Estimate (Std. Error)	$\exp \beta$
	Age	-0.015 (0.000)***	0.986	0.045 (0.000)***	1.047
	Female	0.110 (0.001)***	1.116	1.280 (0.008)***	3.597
Northern	CO	-0.119 (0.004)***	0.888	-0.591 (0.021)***	0.554
	PM10	0.010 (0.002)***	1.011	-0.023 (0.011)*	0.978
	DD	1.134 (0.002)***	3.108	-1.595 (0.021)***	0.203
	Age	-0.029 (0.000)***	0.971	0.052 (0.001)***	1.053
	Female	0.106 (0.003)***	1.112	1.517 (0.018)***	4.559
Central	CO	0.170 (0.004)***	1.185	-0.383 (0.022)***	0.682
	PM10	0.221 (0.003)***	1.247	-0.191 (0.018)***	0.826
	DD	0.530 (0.005)***	1.699	-1.385 (0.046)***	0.250
	Age	0.015 (0.000)***	1.015	0.071 (0.001)***	1.074
	Female	0.043 (0.003)***	1.044	1.501 (0.015)***	4.486
Southern	CO	0.105 (0.003)***	1.111	-0.289 (0.015)***	0.749
	PM10	0.173 (0.005)***	1.189	-0.219 (0.024)***	0.803
	DD	1.020 (0.004)***	2.773	-1.550 (0.043)***	0.212
	Age	0.030 (0.001)***	1.030	0.066 (0.003)***	1.068
	Female	0.075 (0.010)***	1.078	1.349 (0.047)***	3.854
Eastern	CO	0.216 (0.051)***	1.241	-2.885 (0.262)***	0.056
	PM10	-0.056 (0.011)***	0.946	-0.438 (0.052)***	0.645
	DD	0.925 (0.017)***	2.522	-0.706 (0.156)***	0.494

Table: Zero-inflated Poisson (ZIP)

Conclusion

- The probability of health increases in female compared to male (Huss et al. (2008); C.L.-C.Huang et al. (2016))
- With increasing age, the probability of health increases
- PM10 and CO have impact on zero part (Riediker et al. (2004); Yorifuji et al. (2016))
- With ADHD, the overall probability of health decreases because of these comorbid conditions

A.Zeileis, C.Kleiber, S.Jackman (2008)

Regression Models for Count Data in R

J.Stat.Softw 27, 1–25.

Alain F. Zuur , Elena N. Ieno , Neil Walker , Anatoly A. Saveliev , Graham M. Smith (2009)

Mixed Effects Models and Extensions in Ecology with R

New York: Springer.

Faraone, S. V., Sergeant, J., Gillberg, C., Biederman, J. (2003)

The worldwide prevalence of ADHD: is it an American condition?

World psychiatry: official journal of the World Psychiatric Association (WPA)

Polanczyk, Guilherme and de Lima, Maurício Silva and Horta, Bernardo Lessa and Biederman, Joseph and Rohde, Luis Augusto (2007)

The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis American Journal of Psychiatry

Erik G. Willcutt (2012)

The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review Neurotherapeutics

Huss et al. (2008)

How often are German children and adolescents diagnosed with ADHD? Prevalence based on the judgment of health care professionals: results of the German health and examination survey (KiGGS)

European child & adolescent psychiatry

C.L.-C.Huang et al. (2016)

Gender ratios of administrative prevalence and incidence of attention-deficit/hyperactivity disorder (ADHD) across the lifespan: A nationwide population-based study in Taiwan

Psychiatry Research

Riediker et al (2004)

Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men American journal of respiratory and critical care medicine

Yorifuji et al (2016)

Prenatal exposure to outdoor air pollution and child behavioral problems at school age in Japan Environment international

Shephard, E., Bedford, R., Milosavljevic, B., Gliga, T., Jones, E. J., Pickles, A., ... & Volein, A. (2019) Early developmental pathways to childhood symptoms of attention-deficit hyperactivity disorder, anxiety and autism spectrum disorder across the lifespan: A nationwide population-based study in Taiwan Journal of Child Psychology and Psychiatr

Rowles, B. M., & Findling, R. L. (2010)

Review of pharmacotherapy options for the treatment of attention-deficit/hyperactivity disorder (ADHD) and ADHD-like symptoms in children and adolescents with developmental disorders

Developmental disabilities research reviews

Northern

	Count Model		Zero-inflation Model	
Variable	Estimate (Std. Error)	$\exp\beta$	Estimate (Std. Error)	$\exp\beta$
(Intercept)	3.170 (0.002)***	23.806	3.877 (0.008)***	48.269
Age	-0.015 (0.000)***	0.986	0.045 (0.000)***	1.047
Female	0.110 (0.001)***	1.116	1.280 (0.008)***	3.597
PM2.5	0.066 (0.002)***	1.068	0.022 (0.010)*	1.022
CO	-0.119 (0.004)***	0.888	-0.591 (0.021)***	0.554
NO2	0.084 (0.004)***	1.087	0.491 (0.019)***	1.633
PM10	0.010 (0.002)***	1.011	-0.023 (0.011)*	0.978
DD	1.134 (0.002)***	3.108	-1.595 (0.021)***	0.203
DLD	0.621 (0.002)***	1.860	-0.643 (0.025)***	0.526
Adjustment Disorder	0.047 (0.005)***	1.048	-1.148 (0.031)***	0.317
Anxiety	-0.144 (0.002)***	0.866	-3.198 (0.011)***	0.041
BDD	-0.172 (0.008)***	0.842	-3.021 (0.047)***	0.049
ASD	0.291 (0.002)***	1.338	-3.383 (0.014)***	0.034

Table: Northern

Central

	Count Model		Zero-inflation Model	
Variable	Estimate (Std. Error)	$\exp \beta$	Estimate (Std. Error)	$\exp \beta$
(Intercept)	3.290 (0.005)***	26.843	4.359 (0.016)***	78.179
Age	-0.029 (0.000)***	0.971	0.052 (0.001)***	1.053
Female	0.106 (0.003)***	1.112	1.517 (0.018)***	4.559
PM2.5	-0.158 (0.005)***	0.854	0.091 (0.026)***	1.095
CO	0.170 (0.004)***	1.185	-0.383 (0.022)***	0.682
NO2	-0.317 (0.004)***	0.728	0.447 (0.022)***	1.564
PM10	0.221 (0.003)***	1.247	-0.191 (0.018)***	0.826
DD	0.530 (0.005)***	1.699	-1.385 (0.046)***	0.250
DLD	1.088 (0.005)***	2.968	-0.956 (0.051)***	0.384
Adjustment Disorder	0.211 (0.010)***	1.235	-1.833 (0.056)***	0.160
Anxiety	0.089 (0.006)***	1.093	-2.247 (0.034)***	0.106
BDD	-0.310 (0.037)***	0.733	-1.242 (0.175)***	0.289
ASD	0.303 (0.004)***	1.354	-3.356 (0.033)***	0.035

Table: Central

Southern

	Count Model		Zero-inflation Model	
Variable	Estimate (Std. Error)	$\exp \beta$	Estimate (Std. Error)	$\exp \beta$
(Intercept)	2.822 (0.005)***	16.810	4.080 (0.035)***	59.145
Age	0.015 (0.000)***	1.015	0.071 (0.001)***	1.074
Female	0.043 (0.003)***	1.044	1.501 (0.015)***	4.486
PM2.5	-0.205 (0.005)***	0.815	0.263 (0.026)***	1.301
CO	0.105 (0.003)***	1.111	-0.289 (0.015)***	0.749
NO2	-0.129 (0.003)***	0.879	0.106 (0.013)***	1.112
PM10	0.173 (0.005)***	1.189	-0.219 (0.024)***	0.803
DD	1.020 (0.004)***	2.773	-1.550 (0.043)***	0.212
DLD	0.483 (0.005)***	1.621	-0.207 (0.052)***	0.813
Adjustment Disorder	-0.099 (0.007)***	0.905	-1.536 (0.043)***	0.215
Anxiety	0.037 (0.003)***	1.038	-4.033 (0.017)***	0.018
BDD	-0.290 (0.046)***	0.748	0.457 (0.215)*	1.579
ASD	0.385 (0.003)***	1.470	-3.470 (0.030)***	0.031

Table: Southern

Eastern

	Count Model		Zero-inflation Model	
Variable	Estimate (Std. Error)	$\exp \beta$	Estimate (Std. Error)	$\exp\beta$
(Intercept)	2.501 (0.018)***	12.195	3.796 (0.045)***	44.523
Age	0.030 (0.001)***	1.030	0.066 (0.003)***	1.068
Female	0.075 (0.010)***	1.078	1.349 (0.047)***	3.854
PM2.5	0.108 (0.016)***	1.114	0.604 (0.076)***	1.829
CO	0.216 (0.051)***	1.241	-2.885 (0.262)***	0.056
NO2	-0.323 (0.050)***	0.724	2.362 (0.252)***	10.612
PM10	-0.056 (0.011)***	0.946	-0.438 (0.052)***	0.645
DD	0.925 (0.017)***	2.522	-0.706 (0.156)***	0.494
DLD	0.194 (0.025)***	1.214	-0.723 (0.197)***	0.485
Adjustment Disorder	-0.001 (0.028)	0.999	-1.017 (0.168)***	0.362
Anxiety	-0.157 (0.011)***	0.855	-3.781 (0.057)***	0.023
BDD	-0.451 (0.094)***	0.637	-2.037 (0.467)***	0.130
ASD	0.387 (0.011)***	1.473	-4.090 (0.085)***	0.017

Table: Eastern

Thanks for your listening