

Multiple View Geometry: Exercise Sheet 10

Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang Computer Vision Group, TU Munich

http://vision.in.tum.de/teaching/ss2017/mvg2017

Exercise: July 20th, 2017

Part I: Theory

This part of the exercises should be solved at home.

1. Variational Calculus and Euler-Lagrange

Let $u: \mathbb{R}^n \to \mathbb{R}$ be a smooth scalar function and E(u) an energy functional given by

$$E(u) = \int_{\Omega} \mathcal{L}(u(x), \nabla u(x)) \, \mathrm{d}x.$$

The Gâteaux derivative of E in h is given by

$$\left. \frac{\delta E(u)}{\delta u} \right|_{h} := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[E(u + \epsilon h) - E(u) \right] = \int_{\Omega} \frac{\mathrm{d} E(u)}{\mathrm{d} u} \cdot h(x) dx \ .$$

(a) Under the assumption that h vanishes at the boundary of Ω , prove that

$$\frac{\mathrm{d}E(u)}{\mathrm{d}u} = \frac{\partial \mathcal{L}(u,\nabla u)}{\partial u} - \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial \mathcal{L}(u,\nabla u)}{\partial (\nabla u)} \;.$$

- (b) Which condition must hold true for a minimizer u_0 of E(u) ...
 - ... in general?
 - ... if $\mathcal{L}(u, \nabla u) = \mathcal{L}(u)$?
 - ... if $\mathcal{L}(u, \nabla u) = \mathcal{L}(\nabla u)$?

2. Multiview Reconstruction as Shape Optimization

You saw in the lecture that 3D reconstruction from multiple views can be posed as a variational problem. Let $\rho: V \to [0,1]$ be the photoconsistency function, and $u: V \to \{0,1\}$ the indicator function of the object to be reconstructed. We want to minimize (see lecture, slide 10)

$$E(u) = \int_{V} \rho(x) |\nabla u(x)| dx$$

under the constraints

$$\begin{cases} \int_{R_{ij}} u(x) \mathrm{d}R_{ij} \geq 1 & \text{if} \quad j \in S_i \ , \\ \int_{R_{ii}} u(x) \mathrm{d}R_{ij} = 0 & \text{else} \ . \end{cases}$$

(a) Write down the Euler-Lagrange equation for the given energy E(u).

Gradient descent for energy functionals is performed in analogy to gradient descent on multivariate functions: from an estimate $u^{(k)}(x)$, the estimate in iteration k+1 is obtained by going in negative gradient direction:

$$u^{(k+1)} = u^{(k)} - \tau \frac{\mathrm{d}E(u)}{\mathrm{d}u}$$

with step size τ . This is a discretization of the differential equation from the lecture.

(b) Write down one gradient descent iteration for E(u).

Part II: Questions

During the tutorial, there will be time for questions about earlier exercise sheets or things from the lecture. Please send us your questions in advance via email (mvg-ss17@vision.in.tum.de).