Теорема Штольца 1

 y_n строго возрастают, $\lim(y_n) = +\infty$

Тогда если есть
$$\lim \frac{x_{n+1}-x_n}{y_{n+1}-y_n}=:l\in\overline{\mathbb{R}},$$
 то $\lim \frac{x_n}{y_n}=l$

Доказательство

случай
$$l=0.$$
 $c_n\coloneqq \frac{x_{n+1}-x_n}{y_{n+1}-y_n}\lim c_n=0$

Зафиксируем $\varepsilon>0$

Найдется N, такое что если $k \geq N : |c_k| < \varepsilon$

Возьмем
$$N \leq m < n$$
 и рассмотрим $x_n - x_m = (x_n - x_{n-1}) + (x_{n-1} - x_*n - 2) + \dots + x_n + x_n$

$$(x_{m+1}-x_m) = c_{n-1}(y_n-y_{n-1}) + c_{n-2}(y_{n-1}+y_{n-2}) + \ldots + c_m(y_{m+1}-y_m)$$

$$|x_n-x_m| \leq |c_{n-1}|(y_n-y_{n-1}) + |c_{n-2}|(y_{n-1}+y_{n-2}) + \ldots + |c_m|\big(y_{m+1}-y_m\big) < \varepsilon\big((y_n-y_{n-1}) + |c_{n-2}|(y_{n-1}+y_{n-2}) + \ldots + |c_m|\big(y_{m+1}-y_m\big) < \varepsilon\big((y_n-y_{n-1}) + |c_{n-2}|(y_n-y_{n-1}) + \ldots + |c_m|\big(y_{m+1}-y_m\big) < \varepsilon\big((y_n-y_{n-1}) + |c_{n-2}|(y_n-y_{n-1}) + \ldots + |c_m|\big(y_{m+1}-y_m\big) < \varepsilon\big((y_n-y_{n-1}) + |c_{n-2}|(y_n-y_{n-1}) + \ldots + |c_m|\big(y_m-y_{n-1}) + |c$$

$$y_{n-1})+\ldots+\left(y_{m+1}-y_m)\right)=y_n-y_m\Rightarrow |x_n-x_m|<\varepsilon(y_n-y_m)$$

$$\begin{aligned} &|x_n| = |(x_n-x_m)+x_m| \leq |x_n-x_m|+|x_m| < \varepsilon(y_n-y_m)+|x_m| \\ &\frac{|x_n|}{y_n} < \varepsilon \frac{y_n-y_m}{y_n} + \frac{|x_m|}{y_n} < \varepsilon + \frac{|x_m|}{y_n} < 2\varepsilon \end{aligned}$$
 Зафиксируем m . Выберем N_1 так, что при $n \geq N_1$ $y_n > \frac{|x_m|}{2\varepsilon}$

$$\frac{1}{y_n} < \varepsilon \frac{1}{y_n} + \frac{1}{y_n} < \varepsilon + \frac{1}{y_n} < 2\varepsilon$$

$$\Rightarrow$$
 если $n>\max\{N_1,N\}$, то $\frac{|x_n|}{y_n}<2arepsilon\Rightarrow\lim \frac{x_n}{y_n}=0$

Случай
$$l\in\mathbb{R}$$
, рассмотрим последовательность $\overline{x_n}:=x_n-ly_n$
$$\frac{\overline{x_n+1}-\overline{x_n}}{y_{n+1}-y_n}=\frac{x_{n+1}-ly_{n+1}-x_n+ly_n}{y_{n+1}-y_n}=\frac{x_{n+1}-x_n}{y_{n+1}-y_n}-l\to 0 \Rightarrow \lim\frac{\overline{x_n}}{y_n}=0 \Rightarrow \lim\frac{\overline{x_n}}{y_n}=\lim\frac{\overline{x_n}+ly_n}{y_n}=l+\lim\frac{\overline{x_n}-ly_n}{y_n}=l$$

Случай $l=+\infty$

Знаем, что
$$\lim \frac{x_{n+1}-x_n}{y_{n+1}-y_n} = +\infty$$

$$\Rightarrow$$
 найдется N , такое что при $n \geq N$ $\frac{x_{n+1}-x_n}{y_{n+1}-y_n} > 1 \Rightarrow x_{n+1}-x_n > y_{n+1}-y_n > 0 \Rightarrow x_n$ строго

возрастает при $n \geq N$

$$x_n-x_N>y_n-y_N\Rightarrow x_n>y_n+(x_N-y_N)\Rightarrow \lim x_n=+\infty$$

 $x_n-x_N>y_n-y_N\Rightarrow x_n>y_n+(x_N-y_N)\Rightarrow \lim x_n=+\infty$ $\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$ - бесконечно большая, значит перевернутая бесконечно малая. $\lim \frac{y_{n+1}-y_n}{x_{n+1}-x_n}=0\Rightarrow$ $\frac{1}{y_{n+1}-y_n}$ - оесконечно обльшая, значит перевернутая оесконечно малая. $\lim \frac{1}{x_{n+1}} = \lim \frac{y_n}{x_n} = 0 \Rightarrow \frac{y_n}{x_n}$ - бесконечно малая $\Rightarrow \frac{x_n}{y_n}$ - бесконечно большая $\lim \frac{x_n}{y_n} = +\infty$

Случай $l=-\infty$

$$\begin{array}{l} \overline{x_n} \coloneqq -x_n \\ \lim \frac{\overline{x_{n+1}} - x_n}{\overline{y_{n+1}} - y_n} = +\infty \Rightarrow \lim \frac{\overline{x_n}}{\overline{y_n}} = +\infty \Rightarrow \lim \frac{x_n}{\overline{y_n}} = -\infty \end{array}$$

Следствие

Если
$$\lim a_n=l, l\in\overline{\mathbb{R}}$$
, то $\lim \frac{a_1+a_2+\ldots+a_n}{n}=l$

Доказательство
$$x_n \coloneqq a_1 + a_2 + \ldots + a_n, \, y_n \coloneqq n$$

Доказательство
$$x_n:=a_1+a_2+...+a_n, y_n:=n$$
 $\lim \frac{x_{n+1}-x_n}{y_{n+1}-y_n}=\lim \frac{a_{n+1}}{n+1-n}=\lim a_{n+1}=l\Rightarrow \lim \frac{x_n}{y_n}=l$ Пример: $S_n:=1^k+2^k+...+n^k< n\cdot n^k=n^{k+1}$ оценка снизу: $\frac{n}{2}\cdot\left(\frac{n}{2}\right)^k=\frac{n^{k+1}}{2^{k+1}}$

$$y_{n+1}-y_n$$
 Пример: $S_n := 1^k + 2^k + ... + n^k < n \cdot n^k = n^{k+1}$

Цель посчитать предел
$$\lim \frac{S_n}{n^{k+1}} = \lim \frac{S_n - S_{n-1}}{n^{k+1} - (n-1)^{k+1}} = \lim \frac{n^k}{n^{k+1} - (n-1)^{k+1}}$$

$$(n-1)^{k+1} = n^{k+1} - (k+1)n^k + \dots n^{k-1} + \dots n^{k-2} + \dots$$

$$\lim \frac{n^k}{n^{k+1} - (n-1)^{k+1}} = \lim \frac{n^k}{(k+1)n^k + \dots + \dots} = \lim \frac{1}{(k+1) + \dots + \frac{1}{n} + \dots + \frac{1}{n} + \dots} = \frac{1}{k+1}$$

$$1^k + 2^k + \dots + n^k \approx \frac{n^{k+1}}{k+1}$$

Теорема Штольца 2

$$y_n$$
 строго возрастают, $\lim(x_n) = \lim(y_n) = 0$

Тогда если есть
$$\lim \frac{x_{n+1}-x_n}{y_{n+1}-y_n}=:l\in\overline{\mathbb{R}},$$
 то $\lim \frac{x_n}{y_n}=l$

Доказательсвто

Случай
$$l=0$$
 $c_n=rac{x_{n+1}-x_n}{y_{n+1}-y_n}$

Выберем N как в предыдущем доказательстве и $N \leq m < n \Rightarrow |x_n - x_m| < \varepsilon(y_n - y_m) \Rightarrow \lim_{n \to \infty} |x_n - x_m| \leq \varepsilon \cdot \lim_{n \to \infty} (y_n - y_m) = \varepsilon(-y_m) = \varepsilon|y_m| \Rightarrow |x_m| \leq \varepsilon|y_m|$ при $m \geq N \Rightarrow \left|\frac{x_m}{y_m}\right| \leq \varepsilon$ при $m \geq N \Rightarrow \lim \frac{x_n}{y_n} = 0$

Случай $l \in \mathbb{R}$ просто копируем доказательство

Случай $l=+\infty$ найдется N, такой, что $\frac{x_{n+1}-x_n}{y_{n+1}-y_n}>1$ при $n\geq N\Rightarrow x_{n+1}-x_n>y_{n+1}-y_n>1$

 $0 \Rightarrow x_n$ строго возрастает

Случай $l=-\infty$ аналогичный

Параграф 4

Определение

 x_1,x_2,\dots - последовательность Рассмотрим строго возрастающую последовательность индексов $n_1 < n_2 < n_3 < \dots$ подпоследовательность x_{n_1},x_{n_2},\dots

Пример 1, 2, 3, 4, 5

2, 4, 6, 8 - подпоследовательность

Или квадраты тоже будет подпоследоваельностью

1, 1, 2, 3, 4, 5 - не подпоследовательность

2, 1, 3, 4, 5 тож не подпоследовательность

Замечание $n_k \geq k$ индукция База $n_1 \geq 1$, переход $k \to k+1: n_{k+1} > n_k \geq k \Rightarrow n_{k+1} \geq k+1$

Свойства

- 1. Подпоследовательность последовательности имеющей предел имеет тот же предел
- 2. Если индексы $\{n_k\}$ и $\{m_l\}$ две последовательности, дающие все натуральные числа в объединении и $\lim x_{n_k} = \lim x_{m_l} =: a \in \overline{\mathbb{R}}$, то исходная последовательность имеет предел a

Доказательство: Вне окрестности точчки a находится лишь конечное число членов последовательностей x_{n_k} и x_{m_l} , а значит льш конечное число членов x_n

Теорема о стагивающихся отрезках.

Пусть $[a_1,b_1]\supset [a_2,b_2]\supset\dots$ и $\lim(b_n-a_n)=0.$ Тогда существует единсвтенная точка c, принадлежащая всем отрезками и $\lim a_n=\lim b_n=c$

Доказательство: Существование по теореме о вложенных отрезков

Единственность. Пусть точки c < d, лежат во всех отрезках, тогда $0 < c - d \le b_n - a_n$, но $b_n - a_n \to 0$, тогда предельный переход в неравенстве даст $0 < d - c \le 0$, противоречие

Доказательство $\lim a_n = \lim b_n = c$

 $0 \leq b_n - c \leq b_n - a_n \Rightarrow \lim(b_n - c) = 0 \Rightarrow \lim b_n = c$, аналогично для a_n

Теорема Больцано-Вейерштрасса

Из любой ограниченной последовательности можно выбрать подпоследовательность, имеющую конечный предел.

Доказательство Последовательность x_n - ограниченная. Тогда $a \leq x_n \leq b, a$ - нижняя граница, b - верхняя.

Вспомогательная конструкция

Рассмотрим отрезок от a до b, разделим пополам, тогда хотя бы в одной из половинок бесконечное число членов последовательности, обозначим этот отрезок за $[a_1,b_1]$. Далее разрезаем пополам уже отрезок $[a_1,b_1]$, тогда хотя бы в одной из половинок бесконечное число членов последовательности, обозначим эту половинку $[a_2,b_2]$ и т.д.

Получившиеся отрезки явно вложенные, в каждом из них бесконечное число членов

последовательности, $b_n-a_n=\frac{b-a}{2^n}\to 0$, то есть получились стягивающиеся отрезки. Тогда по теореме выше найдется $c\in [a_n,b_n]$, такая что $\lim a_n=\lim b_n=c$

Построение подпоследовательности

В $[a_1,b_1]$ бесконечное число членов последовательности, возьмем какой-то, пусть \mathbf{n}_1 - это его номер. В $[a_2,b_2]$ бесконечное число членов последовательности, значит найдется член с номером $>n_1$, возьмем какой-то и пусть n_2 - это его номер. Аналогичные рассуждения для n_3 и так далее.

Получили
$$n_1 < n_2 < n_3 < n_4 < \dots$$
 и $x_{n_k} \in [a_k,b_k]$. Проверим, что $\lim x_{n_k} = c$. $\overbrace{a_k}^{\to c} \le x_{n_k} \le \overbrace{b_k}^{\to c}$, тогда по теореме о двух милиционерах $\lim x_{n_k} = c$.

Теорема

- 1. Из любой неограниченной сверху последовательности можно выбрать подпоследовательность, стремящуюся к $+\infty$
- 2. Аналогично для неограниченной снизу

Доказательство. Единица не верхняя граница, значит есть член последовательности больше, чем 1, пусть его номер n_1 . Тогда $x_{n_1}+1>2$ тоже не верхняя граница, значит есть члены последовательности, которые больше $x_{n_2}>x_{n_1}+1>2$ и так далее. Построили $x_{n_k}>k$

и $x_{n_k}>x_{n_{k-1}}>\dots$ Все индексы различные, переставим в порядке возрастания индексов, предел не поменяется, получится подпоследовательность. Аналогичное доказательство для $-\infty$

Определение

Последовательность x_1, x_2, x_3, \dots фундаментальная (сходящаяся в себе, последовательность Коши) если верно следущее: $\forall \varepsilon \; \exists N \; \forall m, n \geq N \Rightarrow |x_n - x_m| < \varepsilon$ Свойства:

- 1. Сходящаяся последовательность обязательно фундаментальна.
- 2. Фундаментальная последовательность обязательно ограничена
- 3. Если у фундаментальной последовательности есть подпоследовательность, имеющая предел, то последовательность имеет тот же самый предел

Доказательство

1. Пусть $f = \lim x_n \in \mathbb{R}$, Возьмем $\varepsilon > 0$

$$\Rightarrow \exists N \ \forall n \geq N \Rightarrow |x_n - a| < \frac{\varepsilon}{2}, \forall m \geq N \Rightarrow |x_m - a| < \frac{\varepsilon}{2} \Rightarrow |x_n - x_m| \leq |x_n - a| + |x_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

- 2. Возьмем $\varepsilon=1$. Найдется N, такое что $\forall m,n\geq N,$ $|x_n-x_m|<1$. В частности $|x_n-x_N|<1$ $\forall n\geq N\Rightarrow |x_n|\leq |x_N|+|x_n-x_N|<1+|x_N|$ тогда $|x_n|\leq \max\{1+|x_n|,|x_1|,|x_2|,...,|x_{N-1}|\}$
- 3. Пусть $\lim x_{n_k}=a\in\mathbb{R}$. Докажем, что $\lim x_n=a$. Возьмем $\varepsilon>0$. Найдется N, такое что $|x_n-x_m|<\varepsilon$ при $n,m\geq N$ найдется K, такое что $\left|x_{n_k}-a\right|<\varepsilon$ при $k\geq K$ из $\lim x_{n_k}=a$ Возьмем $k=\max\{K,N\}\Rightarrow n_k\geq k\geq N\Rightarrow \left|x_n-x_{n_k}\right|<\varepsilon$, еще $\left|x_{n_k}-a\right|<\varepsilon\Rightarrow |x_n-a|\leq |x_n-x_{n_k}|+\left|x_{n_k}-a\right|<\varepsilon+\varepsilon<2\varepsilon$

Критерий Коши

Последовательность сходится ⇔ она фундаментальна Доказательство

 \Rightarrow это свойство 1

 \Leftarrow фундам. \Rightarrow ограниченность \Rightarrow существует сходящаяся подпоследовательность \Rightarrow последовательность сходящаяся

Определение

 $x_1, x_2, x_3...\ a$ - частичный предел этой последовательности, если существует такая подпоследовательность, у которой $\lim = a$