An algorithm for two-cost budgeted matrix completion

Dong Hu

Rensselaer Polytechnic Institute, Troy, NY

Problem

 $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a low-rank (rank-r) matrix from which we have noisily observed only a few entries \mathbf{A}_{obs} , with indices Ω_e .

Recover a good approximation \overline{A} of A.

Applications

Ubiquitous in statistics, applied math, electrical engineering.

- Recommender systems
- Genomics
- ► Multi-task learning
- Computer vision
- ... many, many more

Classical Approach: Nuclear Norm Completion

$$\begin{split} \overline{\pmb{\mathcal{A}}} &= \mathop{\mathrm{arg\,min}}_{\pmb{\mathcal{Z}}} \mathop{\mathrm{rank}}(\pmb{\mathcal{Z}}) \\ &\quad \mathrm{s.t.} \, \|\mathcal{P}_{\Omega_e}(\pmb{\mathcal{Z}}) - \mathcal{P}_{\Omega_e}(\pmb{\mathcal{A}}_{\mathsf{obs}})\|_{\pmb{F}} \leq \delta \end{split}$$

- $\mathcal{P}_{\Omega_e}(\cdot)$ zeroes out all unobserved entries.
- The parameter δ is chosen to correspond to the noise level
- ► This problem is nonconvex, and NP-hard

```
\begin{split} \overline{\boldsymbol{A}} &= \arg\min_{\boldsymbol{Z}} \|\boldsymbol{Z}\|_{\star} \\ &\text{s.t.} \ \|\mathcal{P}_{\Omega_{e}}(\boldsymbol{Z}) - \mathcal{P}_{\Omega_{e}}(\boldsymbol{A}_{\text{obs}})\|_{F} \leq \delta \end{split}
```

- $\|\cdot\|_{\star}$ is the nuclear norm, a convex proxy for the rank
- ► This problem is convex
- If Ω_e are sampled i.i.d. uniformly at random, solution has approximation guarantees

Drawbacks of Nuclear Norm MC

The classical uniform sampling model is restrictive:

- ▶ It requires incoherence: all the entries of the matrix are equally important.
- ▶ It cannot take advantage of multiple sampling modalities with different cost-vs-accuracy tradeoffs.
- It requires that $O((n+m)r\log(n+m))$ entries of the matrix can be observed with high precision to obtain approximation guarantees. Cannot handle budgets for observations.

Contributions

This project:

- ► Investigate a two-cost budgeted matrix completion framework.
- ► Test a regression-based algorithm for this budgeted MC problem. It allows A to be row-incoherent, and exploits the cost-vs-accuracy tradeoffs of the two sampling modalities.
- ► Empirically validate the superior performance of this algorithm for two-cost budgeted MC.

Two-cost budgeted completion

An idealized model corresponding to two sampling models with different cost-vs-accuracy tradeoffs. The experimentalist:

- ▶ Has a finite budget B > 0.
- ightharpoonup At cost p_e can draw a single low-noise entry observation,

$$(m{A}_{ ext{obs}})_{ij} \sim \mathcal{N}(m{A}_{ij}, \sigma_e^2)$$
 σ_e

ightharpoonup At cost p_c can observe an entire column with higher noise,

- $p_c \ll p_e m$: the amortized cost of column sampling is much lower than entry sampling.
- $ightharpoonup \sigma_c^2 > \sigma_e^2$: column noise is higher than entrywise noise.

How to allocate the budget between entry and column observations to obtain an accurate $\overline{\mathbf{A}}$?

- Let *d* be the number of column observations.
- ▶ Classical MC model chooses d = 0 and spends all of the budget on high-fidelity entry observations.
- ▶ In the low-budget case, $B \le (n+m)r\log(n+m)p_e$, this is not enough to sample the entries needed to get recovery guarantees.
- ► Hypothesis: one can use a mix of low-fidelity column observations with high-fidelity entrywise observations to get recovery guarantees even in the low-budget case.

Algorithm

Sample d noisy columns $\tilde{\boldsymbol{C}}$ to capture the column span of \boldsymbol{A} .

Algorithm

Sample s noisy rows (entrywise) \tilde{R} from all columns of A.

Algorithm

Regress observations against $\tilde{\boldsymbol{C}}$, so $\bar{\boldsymbol{a}}_j = \tilde{\boldsymbol{C}} (\boldsymbol{S}_{\text{row}}^T \tilde{\boldsymbol{C}})^{\dagger} \tilde{\boldsymbol{r}}_j$.

$oldsymbol{S}_{ ext{row}}^T ilde{C}$	$ ilde{r}_j \hspace{1cm} ilde{m{R}}$
$ ilde{C}$	\cdots unobserved \cdots

Algorithm: the details

- The number of column samples *d* depends on the rank, noise level, and conditioning of the matrix **A**.
- ▶ The number of rows $s = \tilde{O}(d)$.
- Use ridge regression to better handle noise, so this Algorithm's estimate is

$$\overline{A} = \widetilde{C}X$$

where

$$\mathbf{X} = \operatorname{arg\,min}_{\mathbf{Z}} \|\tilde{\mathbf{R}} - (\mathbf{S}_{row}^T \tilde{\mathbf{C}}) \mathbf{Z}\|_F^2 + \lambda \|\mathbf{Z}\|_F^2.$$

Empirical results: Baselines

The performance of this Algorithm is compared against that of four baselines: CUR+, a regression-based baseline, and three nuclear norm-based baselines

1) $\underline{\text{CUR}+}$: a regression algorithm originally designed for noiseless matrix completion, is adapted to the two-cost budgeted noisy setting in a straightfoward manner. Given a value of d, low-precision observations of d/2 noisy columns $\tilde{\pmb{C}}$ and d/2 noisy rows $\tilde{\pmb{R}}$ are sampled uniformly with replacement from \pmb{A} , and the remaining budget is used to sample entries to form Ω_e and \pmb{A}_{obs} . The approximation is $\overline{\pmb{A}} = \tilde{\pmb{C}} \, \pmb{U} \, \tilde{\pmb{R}}$, where

$$extbf{ extit{U}} = \mathop{\mathrm{arg\,min}}_{ extbf{ extit{Z}}} \| \mathcal{P}_{\Omega_e}(extbf{ extit{A}}_{\mathrm{obs}}) - \mathcal{P}_{\Omega_e}(ilde{ extbf{ extit{C}}} ilde{ extbf{Z}} ilde{ extbf{ extit{R}}}) \|_F^2.$$

2) NNa: Nuclear norm minimization for all uniform samples.

$$\begin{split} \overline{\pmb{A}} &= \arg\min_{\pmb{Z}} \|\pmb{Z}\|_{\star} \\ &\text{s.t.} \, \|\mathcal{P}_{\Omega_e}(\pmb{Z}) - \mathcal{P}_{\Omega_e}(\pmb{A}_{\text{obs}})\|_{F} \leq \delta \end{split}$$

All the budget is spent to sample entries Ω_e and form \boldsymbol{A}_{obs} .

3) NNs: Nuclear norm minimization with separate penalizations.

$$\begin{split} \overline{\mathbf{\textit{A}}} &= \arg\min_{\mathbf{\textit{Z}}} \|\mathbf{\textit{Z}}\|_{\star} \\ & \text{s.t.} \ \|\mathcal{P}_{\Omega_{e}}(\mathbf{\textit{Z}}) - \mathcal{P}_{\Omega_{e}}(\mathbf{\textit{A}}_{\text{obs}})\|_{F} \leq \delta_{e}^{2} \\ & \text{s.t.} \ \|\mathcal{P}_{\Omega_{c}}(\mathbf{\textit{Z}}) - \mathcal{P}_{\Omega_{c}}(\mathbf{\textit{A}}_{\text{obs}})\|_{F} \leq \delta_{c}^{2} \end{split}$$

Noisy observations of d columns are uniformly sampled to form Ω_c , the corresponding indices, and placed in \boldsymbol{A}_{obs} , then the remaining budget is spent to uniformly sample entries Ω_e , which are added to \boldsymbol{A}_{obs} .

4) <u>Chen</u>: An adaptation of a two-phase nuclear norm minimization method. A portion of the budget is sampled to sample entries uniformly at random with low noise, which are used to estimate the leverage scores of the rows of \boldsymbol{A} . The remaining budget is used to sample low-noise entries Ω_e according to the entrywise leverage scores, rather than uniformly at random, to form $\boldsymbol{A}_{\text{obs}}$. The NNa formulation is used with these samples.

$$\begin{split} \overline{\mathbf{\textit{A}}} &= \operatorname{arg\,min}_{\mathbf{\textit{Z}}} \|\mathbf{\textit{Z}}\|_{\star} \\ & \operatorname{s.t.} \|\mathcal{P}_{\Omega_{e}}(\mathbf{\textit{Z}}) - \mathcal{P}_{\Omega_{e}}(\mathbf{\textit{A}}_{\operatorname{obs}})\|_{F} \leq \delta \end{split}$$

For all of these methods, cross-validation is used to select the hyperparameters. ADMM is used to obtain the nuclear norm estimators.

Jester dataset

 ${m A} \in \mathbb{R}^{7200 \times 100}$, joke ratings dataset. Budget chosen so that only 11% of the entries can be observed if all the budget is used. Noise levels: $\sigma_e^2 = 0.04$ and $\sigma_c^2 = 2$. Ratio of costs: $p_c/(mp_e) = 0.2$.

MovieLens dataset

 ${m A} \in \mathbb{R}^{1682 \times 943}$, movie ratings dataset. Budget chosen so that only 10.6% of the entries can be observed if all the budget is used. Noise levels: $\sigma_e^2 = 0.003$ and $\sigma_c^2 = 0.06$. Ratio of costs: $p_c/(mp_e) = 0.2$. NNs is not shown as it has orders of magnitude higher error.

Conclusion

- Investigated the two-cost budgeted matrix completion problem
- ▶ Tested the algorithm, which is a ridge-regression based algorithm for this problem
- Empirically demonstrated its superior performance to nuclear norm baselines for this problem
- ► Future question: how to determine an optimal *d* for a given budget?

Thank you!