

Dirección Financiera II

Universidad de León. Curso 2013-2014

Isabel Feito Ruiz (ifeir@unileon.es)

Índice de Contenidos

- **Bloque I:** La Decisión de Inversión en Ambiente de Racionamiento y de Riesgo
 - Tema 1: Decisión de Inversión con Racionamiento de Capital
 - Tema 2: Decisión de Inversión en Ambiente de Riesgo
 - ☐ Tema 3: El Análisis Rendimiento-Riesgo
- **Bloque II:** La Decisión de Financiación y la Política de Dividendos
 - Tema 4: Política de Dividendos y Estrategia Financiera
 - ☐ Tema 5: El Entorno de las Decisiones Financieras
 - ☐ Tema 6: Estructura de Capital de la Empresa

3.1. La Rentabilidad y Riesgo

- 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
- 3.1.2. Rentabilidad y Riesgo de una Cartera.
- 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
- 3.1.4. Efecto Diversificación.
- 3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.
 - 3.2.1. El modelo de Markowitz.
 - 3.2.2. La Frontera de Carteras Eficientes.
 - 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelo de Mercado.
- 3.5. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.6. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

3.1. La Rentabilidad y Riesgo

- 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
- 3.1.2. Rentabilidad y Riesgo de una Cartera.
- 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
- 3.1.4. Efecto Diversificación.

3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.

- 3.2.1. El modelo de Markowitz.
- 3.2.2. La Frontera de Carteras Eficientes.
- 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelo de Mercado.
- 3.5. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.6. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

3.2.1. Modelo Markowitz

ORIGEN DE LA TEORÍA DE CARTERAS

Modelo de Markowitz (1952). El inversor racional persigue maximizar las expectativas de ganancia y minimizar el riesgo (**Modelo Media-Varianza**).

Relevante sólo 2 características:

- -Rentabilidad
- -Riesgo

La teoría de carteras analiza el comportamiento del inversor que desea optimizar sus decisiones de inversión en los mercados de capitales (Fernández y García).

3.2.1. Modelo Markowitz

La combinación de "N" títulos da lugar a infinitas posibilidades de inversión. **Markowitz** reduce este número de alternativas al conjunto de carteras que denomina "**eficientes**".

3.2.1. Modelo Markowitz

Rentabilidad Esperada (%)

Desviación Típica

3.1. La Rentabilidad y Riesgo

- 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
- 3.1.2. Rentabilidad y Riesgo de una Cartera.
- 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
- 3.1.4. Efecto Diversificación.

3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.

- 3.2.1. El modelo de Markowitz.
- 3.2.2. La Frontera de Carteras Eficientes.
- 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelo de Mercado.
- 3.5. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.6. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

3.2.2. La Frontera de Carteras Eficientes

Una cartera es eficiente cuando proporciona el máximo rendimiento para un riesgo determinado, o el mínimo riesgo para un nivel de rendimiento establecido. El conjunto de carteras que cumplen esta condición constituyen la "frontera eficiente".

3.2.2. La Frontera de Carteras Eficientes

REPRESENTACIÓN GRÁFICA

Rentabilidad Esperada (%)

Desviación Típica

3.2.2. La Frontera de Carteras Eficientes

Markowitz Modelo de Programación Cuadrática

$$Min\sigma_{p}^{2} = \sum_{i=1}^{n} x_{i}^{2} \sigma_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} cov(r_{i}, r_{j})$$

sujeto a las siguientes restricciones:

$$E(R_p) = R^*_p$$

$$\sum_{i=1}^n X_i = 1$$

$$X_i >= 0$$

3.1. La Rentabilidad y Riesgo

- 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
- 3.1.2. Rentabilidad y Riesgo de una Cartera.
- 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
- 3.1.4. Efecto Diversificación.

3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.

- 3.2.1. El modelo de Markowitz.
- 3.2.2. La Frontera de Carteras Eficientes.
- 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelo de Mercado.
- 3.5. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.6. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

La determinación de la **cartera óptima** depende del grado de **aversión al riesgo** del inversor medido a partir de su función de utilidad. Binomio Rentabilidad-Riesgo.

La **cartera óptima** es el **punto de tangencia** entre la **frontera eficiente** y una **curva de indiferencia** del **inversor**.

Markowitz Modelo de Programación Cuadrática

$$Min\sigma_{p}^{2} = \sum_{i=1}^{n} x_{i}^{2} \sigma_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} cov(r_{i}, r_{j})$$

sujeto a las siguientes restricciones:

$$E(R_p) = R^*_p$$

$$\sum_{i=1}^n X_i = 1$$

$$X_i >= 0$$

REPRESENTACIÓN GRÁFICA

Desviación Típica

CURVAS DE INDIFERENCIA

Características:

- 1. Su **pendiente** es **positiva**. Un incremento en el riesgo debe ser compensado con un incremento en la rentabilidad esperada.
- 2. Son **cóncavas** respecto al eje de ordenadas (tasa marginal de sustitución entre el riesgo y rentabilidad esperada).
- 3. Nunca se cortan. Una misma cartera no puede proporcionar más de un grado de utilidad.
- 4. Las **curvas más altas** (más alejadas del origen) tiene un grado de utilidad mayor.

CARTERA DE MERCADO

Hasta ahora hemos supuesto que los activos de la cartera son activos con riesgo.

Si ahora se considera que pueden existir **activos libres de riesgo**, unas carteras pueden ser mejores que otras.

Si además el mercado es eficiente:

- i) Los inversores son diversificadores eficientes.
- ii)Se puede prestar, o pedir prestado, al **mismo tipo interés de los** activos libre riesgo.
- iii) No existen costes de transacción.
- iv) El mercado de capitales está en equilibrio.

La elección de una cartera óptima es una decisión que puede desdoblarse en dos ("Teorema de Separación" [James Tobin])

- a) Encontrar cartera de mercado.
- b) Elegir entre la cartera de mercado y los títulos sin riesgo.

REPRESENTACIÓN GRÁFICA (Prestar y tomar prestado al tipo de interés libre de riesgo, Rf)

Rentabilidad Esperada (%)

Desviación Típica

3.1. La Rentabilidad y Riesgo

- 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
- 3.1.2. Rentabilidad y Riesgo de una Cartera.
- 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
- 3.1.4. Efecto Diversificación.
- 3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.
 - 3.2.1. El modelo de Markowitz.
 - 3.2.2. La Frontera de Carteras Eficientes.
 - 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelo Mercado.
- 3.5. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.6. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

REPRESENTACIÓN GRÁFICA (Cartera de Mercado)

Rentabilidad Esperada (%)

Desviación Típica

REPRESENTACIÓN GRÁFICA (Cartera de Mercado)

Rentabilidad Esperada (%)

No se necesitan conocer las preferencias individuales de los inversores.

M es la CARTERA DE MERCADO

Desviación Típica

LÍNEA MERCADO CAPITALES (CML)

La frontera de Markowitz se ha transformado en una recta, la **línea del mercado de capitales (CML).**

En condiciones de equilibrio **TODOS LOS INVERSORES** elegirán la misma cartera de activos con riesgo, la **CARTERA DEL MERCADO**.

LÍNEA MERCADO CAPITALES (CML)

Relación entre Rentabilidad y Riesgo para carteras eficientes compuestas por la cartera del mercado y el préstamo o endeudamiento.

Características:

- •La ordenada en el origen (Rf) es el tipo interés libre de riesgo.
- •La pendiente de la CML representa la relación entre la rentabilidad esperada y el riesgo asociado (precio del riesgo).

3.1. La Rentabilidad y Riesgo

- 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
- 3.1.2. Rentabilidad y Riesgo de una Cartera.
- 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
- 3.1.4. Efecto Diversificación.
- 3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.
 - 3.2.1. El modelo de Markowitz.
 - 3.2.2. La Frontera de Carteras Eficientes.
 - 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelo Mercado.
- 3.5. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.6. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

3.4. Modelo de Mercado

$$R_t = \alpha + \beta x R_m + \epsilon$$

$$\sigma_{Rt}^2 = \beta_x \sigma_{Rm}^2 + \sigma_{\epsilon}^2$$

3.4. Modelo de Mercado

$$R_t = \alpha + \beta x R_m + \epsilon$$

$$\sigma^2_{Rt} = \beta^2 x \sigma^2_{Rm} + \sigma^2_{\epsilon}$$

Riesgo total Riesgo sistemático

Riesgo específico

3.4. Modelo de Mercado (Línea Característica)

$$R_t - R_f = \alpha + \beta x (R_m - R_f) + \varepsilon$$

3.1. La Rentabilidad y Riesgo

- 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
- 3.1.2. Rentabilidad y Riesgo de una Cartera.
- 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
- 3.1.4. Efecto Diversificación.
- 3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.
 - 3.2.1. El modelo de Markowitz.
 - 3.2.2. La Frontera de Carteras Eficientes.
 - 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.5. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

3.5. Modelo Valoración Activos Financieros (CAPM)

Supuestos:

- -Sólo es relevante el riesgo y la rentabilidad. Los inversores prefieren carteras eficientes.
- -El inversor puede prestar y pedir prestado a Rf.
- -Las expectativas de los inversores son homogéneas.
- -Mercados perfectos, no existen impuestos ni costes de transacción.

3.5. Modelo Valoración Activos Financieros (CAPM)

LÍNEA MERCADO TÍTULOS (SML) Sharpe, Litner y Treynor

$$R_i = Rf + (E(Rm)-Rf)* \beta i$$

3.5. Modelo Valoración Activos Financieros (CAPM)

TOMA DECISIONES INVERSIÓN

Extensiones del CAPM se emplean para estimar el <u>coste de capital</u> de los <u>proyectos de inversión</u>. De manera que en la evaluación de un proyecto de inversión se tiene en cuenta la posible diversificación de la cartera de activos de la empresa. A través de la diversificación se reduce la incertidumbre vinculada a los flujos de beneficios futuros, lo cual se refleja en un incremento del precio de las acciones.

- 3.1. La Rentabilidad y Riesgo
 - 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
 - 3.1.2. Rentabilidad y Riesgo de una Cartera.
 - 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
 - 3.1.4. Efecto Diversificación.
- 3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.
 - 3.2.1. El modelo de Markowitz.
 - 3.2.2. La Frontera de Carteras Eficientes.
 - 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelo de Mercado.
- 3.5. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.6. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

3.6. Modelo de Arbitraje (APM)

MODELO DE ARBITRAJE (APM) (1 FACTOR)

MODELO DE ARBITRAJE (APM) (2 FACTORES)

MODELO DE ARBITRAJE (APM) (MÚLTIPLES FACTORES)

3.6. Modelo de Arbitraje (APM)

MODELO DE ARBITRAJE (APM)

```
R_{i} = \alpha + b_{factor1} (R_{factor1}) + b_{factor2} (R_{factor2}) + b_{factor3} (R_{factor3}) + ... + b_{factorN} (R_{factorN})
```


3.1. La Rentabilidad y Riesgo

- 3.1.1. La Rentabilidad y Riesgo de un Activo Financiero
- 3.1.2. Rentabilidad y Riesgo de una Cartera.
- 3.1.3. Riesgo Total, Riesgo Específico y Riesgo de Mercado.
- 3.1.4. Efecto Diversificación.
- 3.2. Carteras Eficientes: Combinación de Dos Activos; Frontera Eficiente.
 - 3.2.1. El modelo de Markowitz.
 - 3.2.2. La Frontera de Carteras Eficientes.
 - 3.2.3. La determinación Cartera Óptima.
- 3.3. Línea del Mercado de Capitales y Línea del Mercado de Títulos.
- 3.4. Modelo de Mercado.
- 3.5. Modelos de Selección de Carteras (Capital Asset Pricing Model, CAPM).
- 3.6. Modelo de Arbitraje (Arbitrage Pricing Theory, APT).

Índice de Contenidos

Bibliografía:

- Brealey, R.A., Myers, S.C. y Allen, F. (2006). *Principios Finanzas Corporativas*, McGraw Hill, Madrid.
- Fanjul, J.L. (2012). *Dirección Financiera II*. Grado Finanzas (Universidad de León).
- Fernández, A.I. y García-Olalla, M. (1992). Las Decisiones Financieras de la Empresa, Ariel Economía, Barcelona.
- □ **Pindado, J. (2012).** *Finanzas Empresariales*, Paraninfo, Madrid.
- □ **Suárez, A.S. (2009).** *Decisiones Óptimas de Inversión y Financiación en la Empresa*, Pirámide, Madrid.

Dirección Financiera II

Universidad de León. Curso 2013-2014

Isabel Feito Ruiz (ifeir@unileon.es)