PROJECT INSTRUCTIONS

Project Instructions

- Identify the single feature of the data that is the best predictor of whether a customer will put in a claim (the "outcome" column), excluding the "id" column.
- Store as a DataFrame called best_feature_df, containing columns named
 "best_feature" and "best_accuracy" with the name of the feature with the highest accuracy, and the respective accuracy score.

DATASET

The dataset		
Column	Description	
id	Unique client identifier	
	Client's age:	
age	 0:16-25 1:26-39 2:40-64 3:65+ 	
	Client's gender:	
gender	0: Female1: Male	
	Years the client has been driving:	
driving_experience	 0:0-9 1:10-19 2:20-29 3:30+ 	
	Client's level of education:	
education	 0: No education 1: High school 2: University 	

	Client's income level:
income	 0: Poverty 1: Working class 2: Middle class 3: Upper class
credit_score	Client's credit score (between zero and one)
	Client's vehicle ownership status:
vehicle_ownership	 0: Does not own their vehilce (paying off finance) 1: Owns their vehicle
	Year of vehicle registration:
vehcile_year	0 : Before 20151 : 2015 or later
	Client's marital status:
married	0: Not married1: Married
children	Client's number of children
postal_code	Client's postal code
annual_mileage	Number of miles driven by the client each year

	Type of car:
vehicle_type	0: Sedan1: Sports car
speeding_violations	Total number of speeding violations received by the client
duis	Number of times the client has been caught driving under the influence of alcohol
past_accidents	Total number of previous accidents the client has been involved in
outcome	Whether the client made a claim on their car insurance (response variable): • 0: No claim • 1: Made a claim

SOLUTION

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 18 columns):
    Column
                         Non-Null Count
                                         Dtype
    _____
    id
                         10000 non-null int64
0
1
                         10000 non-null int64
    age
 2
    gender
                         10000 non-null int64
                         10000 non-null object
 3
    driving_experience
 4
    education
                         10000 non-null object
 5
    income
                         10000 non-null object
    credit_score
                         9018 non-null
                                         float64
 6
 7
                         10000 non-null float64
    vehicle_ownership
                         10000 non-null object
 8
    vehicle_year
 9
    married
                         10000 non-null float64
 10
    children
                         10000 non-null float64
 11
    postal_code
                         10000 non-null int64
                         9043 non-null
 12
    annual_mileage
                                         float64
 13
    vehicle_type
                         10000 non-null object
 14
    speeding_violations 10000 non-null int64
```

15 duis 10000 non-null int64

16 past_accidents 10000 non-null int64

17 outcome 10000 non-null float64

dtypes: float64(6), int64(7), object(5)

memory usage: 1.4+ MB

Optimization terminated successfully.

Current function value: 0.511794

Iterations 6

Optimization terminated successfully.

Current function value: 0.615951

Iterations 5

Optimization terminated successfully.

Current function value: 0.467092

Iterations 8

Optimization terminated successfully.

Current function value: 0.603742

Iterations 5

Optimization terminated successfully.

Current function value: 0.531499

Iterations 6

Optimization terminated successfully.

Current function value: 0.572557

Iterations 6

Optimization terminated successfully.

Current function value: 0.552412

Iterations 5

Optimization terminated successfully.

Current function value: 0.572668

Iterations 6

Optimization terminated successfully.

Current function value: 0.586659

Iterations 5

Optimization terminated successfully.

Current function value: 0.595431

Iterations 5

Optimization terminated successfully.

Current function value: 0.617345

Iterations 5

Optimization terminated successfully.

Current function value: 0.605716

Iterations 5 Optimization terminated successfully. Current function value: 0.621700 Iterations 5 Optimization terminated successfully. Current function value: 0.558922 Iterations 7 Optimization terminated successfully. Current function value: 0.598699 Iterations 6 Optimization terminated successfully. Current function value: 0.549220 Iterations 7 best_feature \(\times best_accuracy ~ 0 driving_experience 0.7771 Table Chart