

Trabajo Práctico N°3: Comportamiento térmico de capacitores y resistencias

Cátedra: Tecnología Electrónica

Profesor: Ing. Centeno Carlos

Curso: 5R2

Integrantes: Sosa Javier, 65337

Sueldo Enrique, 62508

Fecha: 18/06/17

Integrantes: Sosa, Sueldo. Curso: 5R2

Introducción

El siguiente trabajo consiste en observar las variaciones de la capacidad y la resistencia a diferentes valores de temperatura, para lograr esto, nos basamos en las propuestas realizadas por la cátedra: es decir, medir la frecuencia mientras sometíamos el dispositivo a saltos térmicos controlados, esto lo logramos rodeando los dispositivos a ensayar con 2 resistencias de potencia, las cuales al aplicarle un voltaje elevado, disipan calor.

Año: 2017

Desarrollo

Medición de la variación de la capacidad y la resistencia debido a cambios de temperatura de operación.

Capacitores: se utilizó el circuito propuesto por la cátedra, el cual se basa en el 4047 en modo astable. La resistencia utilizada es de $1M\Omega$, en el último caso se empleó una de $100K\Omega$.

• Capacitor Mica-Plate 3,9 nF

Temperatura[ºC]	Frecuencia [Hz]	Valor del capacitor [F]	
21	111,1	4,09132E-09	
25	111,6	4,07299E-09	
29	111,6	4,07299E-09	
33	111,6	4,07299E-09	
35	112,1	4,05482E-09	
37	112,1	4,05482E-09	
40	112,1	4,05482E-09	
44	112,1	4,05482E-09	
47	113,6	4,00128E-09	
49	114,7	3,96291E-09	
53	115,2	3,94571E-09	
57	115,2	3,94571E-09	
62	116,3 3,90839E-09		

Integrantes: Sosa, Sueldo.

Curso: 5R2

Año: 2017

Capacitor Cerámico 4,7 nF

Temperatura[ºC]	Frecuencia [Hz]	Valor del capacitor [F]	
21	96,9	4,69087E-09	
31	97,9	4,64296E-09	
35	98,04	4,63633E-09	
39	98,43	4,61796E-09	
41	98,43	4,61796E-09	
43	99,2	4,58211E-09	
44	100	4,54545E-09	
47	101,6	4,47387E-09	
50	103,3	4,40025E-09	
51	105	4,329E-09	
53	105,9	4,29221E-09	
55	107,3	4,23621E-09	
58	110,1	4,12848E-09	
60	112,1	4,05482E-09	
62	114,7	3,96291E-09	
64	119	3,81971E-09	
66	120,2	3,78158E-09	
68	123,2	3,68949E-09	

Integrantes: Sosa, Sueldo. Curso: 5R2

Capacitor Poliester 223nF

Temperatura[ºC]	Frecuencia [Hz]	Valor del capacitor [F]		
21	30,12	1,50912E-07		
27	30,21	1,50462E-07		
31	30,21	1,50462E-07		
38	30,4	1,49522E-07		
45	30,4	1,49522E-07		
47	30,6	1,48544E-07		
52	30,6	1,48544E-07		
55	30,6	1,48544E-07		
59	30,8	1,4758E-07		
61	31	1,46628E-07		

Valores genéricos

			Coeficiente
Tipo de	Valor nominal	Rango de	de
capacitor	[Ω]	Temp [ºC]	temperatur
			a [ppm/ºC]
Mica Plate	1p a 1u	0 a 70	±500
Ceramico	0,5u a 22u	(-30) a 85	
Poliester	1n a 10 u	(-60) a 150	500 a 1000

Integrantes: Sosa, Sueldo. Curso: 5R2

Año: 2017

Resistencias: para las mediciones se utilizó el circuito propuesto por la cátedra, el cual se basa en el 4047 en modo astable, el capacitor utilizado es de tecnología Mika-Plate 3,9 nF, en el último caso se midió la resistencia directamente a medida que aumentaba la temperatura.

Resistencia Carbón 1,2MΩ

Temperatura[ºC]	Frecuencia [Hz]	Valor de la resistencia[Ω]
21	111,1	1363772,741
27	111,1	1363772,741
30	111,6	1357662,648
34	112,1	1351607,061
37	112,6	1345605,253
41	112,6	1345605,253
45	113,1	1339656,512
49	113,1	1339656,512
52	113,6	1333760,137
55	114,2	1326752,64
57	114,2	1326752,64
59	114,7	1320969,063
62	114,7	1320969,063

<u>Trabajo Practico N°3: Comportamiento térmico.</u> do. Curso: 5R2

Integrantes: Sosa, Sueldo.

• Resistencia Metal-Film 1MΩ

Temperatura[ºC]	Frecuencia [Hz]	Valor de la resistencia $[\Omega]$	
21	135,9	1114901,777	
27	135,9	1114901,777	
30	135,9	1114901,777	
35	136,1	1113263,42	
39	136,6	1109188,518	
43	136,6	1109188,518	
46	136,6	1109188,518	
50	136,6	1109188,518	
55	136,6	1109188,518	
59	136,9	1106757,864	
62	136,9	1106757,864	
65	136,9	1106757,864	
68	136,9	1106757,864	

• Resistencia de potencia 22 Ω a 5W

Temperatura[ºC]	Valor de la resistencia $[\Omega]$
33	22,7
35	22,8
40	22,8
45	22,8
50	22,9
55	22,9
58	23

Integrantes: Sosa, Sueldo.

Curso: 5R2

Valores genéricos

Tipo de	Valor nominal	Tolerancia	Potencia	T Max	Coeficiente de
resistor	[Ω]	[%]	[W]	[ºC]	temperatura [ppm/ºC]
Carbon	1 a 22 M	0,5 a 10	0,1 a 2	150	> ±250
Metal Film	1 a 10 M	0,1 a 5	0,125 a 1	175	< 200
Potencia	1 a 220K	5 a 10	hasta 500	400	±130

Año: 2017

Efectos en circuitos a causa de los cambios de valores de los componentes

Amplificador Operacional: A partir del siguiente circuito se determina la tensión de salida a 100 °C.

En primera instancia, se obtienen los nuevos valores de las resistencias para la temperatura especificada:

- R1: 1Ω a 200ppm/°C = 1,0165 Ω
- R2:498 Ω a 100ppm/°C = 501,735 Ω
- R3: 99Ω a 300ppm/°C = $101,22 \Omega$
- R4: 2Ω a 400ppm/°C = $2,06\Omega$

Para calcular la tensión de salida se usa la siguiente fórmula:

$$V_{out} = \frac{V.(R_3 + R_1).R_4}{(R_4 + R_2).R_1}$$

Reemplazando las resistencias obtenidas con la variación de temperatura en la ecuación anterior, tenemos:

$$V_{out} = 2,056v$$

Si además consideramos la tolerancia de +10%, tenemos que:

- R1: 1,0165 Ω +10% = 1,118 Ω
- R2: $501,735\Omega + 10\% = 551,9085 \Omega$
- R3: $101,22\Omega + 10\% = 111,342 \Omega$
- R4: $2,06\Omega + 10\% = 2,266\Omega$

Volviendo a reemplazar en la fórmula:

$$V_{out} = 2,068v$$

Si tomamos el porcentaje de V inicial, tenemos que

$$V_{out}=2v\pm3,\!4\%$$

Integrantes: Sosa, Sueldo.

Curso: 5R2

Año: 2017

Oscilador

Se tiene un oscilador RC como el de la siguiente figura:

La banda de frecuencia de oscilación teniendo en cuenta que el capacitor tiene una tolerancia de 10% y la resistencia de 5% es:

- C: $1\mu F 10\% = 0.9\mu F$
- R:1000 Ω -5% = 950 Ω

Calculando la frecuencia:

$$F_h = \frac{1}{RC} = \frac{1}{0.9 \mu \text{F}.950 \Omega} = 1169,6Hz$$

Para el límite inferior:

- C: $1\mu F + 10\% = 1,1\mu F$
- R: $1000\Omega + 5\% = 1050\Omega$

$$F_L = \frac{1}{RC} = \frac{1}{1,1\mu\text{F}.1050\Omega} = 865,8Hz$$

Por lo tanto la banda de frecuencia va desde los 865,8 Hz hasta los 1169,6 Hz.

Para calcular la frecuencia de oscilación hay que obtener los valores de los componentes a 75°C despreciando las tolerancias anteriores:

- C:-0,05%. 50°C = -2,5%; C=0,975μF
- R: 0,02% .50°C = 1%; R=1010 Ω

$$F_o = \frac{1}{RC} = \frac{1}{0.975 \mu \text{F}.1010\Omega} = 1015,48 Hz$$

Integrantes: Sosa, Sueldo. Curso: 5R2

Conclusión

Al finalizar el presente trabajo se obtuvieron conclusiones acerca de la influencia de la temperatura en los diferentes componentes. A partir de un marco teórico se pudo realizar el cálculo y poder medir de manera indirecta las diversas resistencias y capacitores en base a la frecuencia de un oscilador RC. Los componentes fueron sometidos a diferentes saltos térmicos para poder trazar así las curvas de variación de los mismos.

Por otra parte, se realizaron distintos cálculos teóricos, los cuales nos ayudaron a comprender como la tolerancia de los elementos afecta la salida de un amplificador operacional y la frecuencia de trabajo de un oscilador.