МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Исследование самовозбуждающихся режимов работы схемы Чуа.

Автор: Шахматов Андрей Юрьевич Б02-304 Надо написать.

Введение

В современном мире проблема обеспечения безопасности информации становится все более актуальной. Одним из перспективных решений данной задачи является использование хаотических сигналов в качестве несущей волны. Такой подход значительно повышает уровень защиты данных, так как злоумышленник сталкивается с практически неразрешимой задачей расшифровки хаотического сигнала.

Для генерации хаотических сигналов широко применяется схема Чуа, включающая два конденсатора, индуктивность, сопротивление и нелинейный элемент — диод Чуа. Простота конструкции делает эту схему привлекательной для различных отраслей промышленности. Однако, несмотря на наличие теоретической модели, описывающей поведение схемы Чуа, её практическое применение сталкивается с рядом сложностей, такими как высокая чувствительность контура и ограниченная область хаотического поведения.

Целью данной работы является детальное исследование хаотических режимов работы схемы Чуа, а также устойчивых нехаотических режимов, сосуществующих с хаотическими.

Теоретическая часть

Хаотические системы

Предметом изучения теории хаоса являются ситемы, описываемые дифференциальными уравнениями вида

$$\ddot{x} = v(x,t)$$

Стоит отметить, что левая часть должна быть нелинейной (линейные системы никогда не являются хаотическими). Давайте поймем, какую систему стоит считать хаотической:

1. Она обладает свойством сильной зависимости от начальных условий. Кванторно это можно записать так: $\forall \varepsilon > 0 \exists \delta > 0 : \forall x, y : \rho(x, y) < \varepsilon \Rightarrow \rho(g^{\tau}(x), g^{\tau}(y)) > \delta$. Геометрически это можно интерпретировать следующим образом:

Рис. 1: Демонстрация сильной зависимости поведения системы от начальных условий

- 2. Динамическая система должна обладать свойством топологического смешивания (быть транзитивной): то есть для любых двух множеств нашего фазового пространства системы поток от одного рано или поздно должен пересечься со вторым выбранным множеством.
- 3. Периодические орбиты системы должны быть всюду плотными в нашем фазовом портрете.

Важным объектом в вопросе изучения хаотических систем являются аттракторы: подмножества нашего фазового пространства к которому стремятся все наши решения, т.е: $g^{\tau}(A) = A \& \forall U_{\varepsilon}(A) : g^{\tau}(U_{\varepsilon}(A)) \to A$

Устройство схемы Чуа

Рис. 2: Электрическая схема цепи Чуа и вольт-амперная характеристика диода Чуа N_R .

Классическая схема Чуа состоит из двух конденсаторов, сопротивления, индуктивности и диода Чуа. Диод Чуа возможно реализовать при помощи использования двух операционных усилителей и шести резисторов (Рис. 3). Также в реальности использование физической индуктивности может приводить к плохим результатам из-за наличия большого внутреннего сопротивления. По этой причине в нашей работе индуктивность была заменена схемой на основе операционных усилителей — гиратором (Рис. 3). Эквивалентную индуктивность полученной схемы можно расчитать

$$L = \frac{R_7 R_9 R_{10} C}{R_8},\tag{1}$$

где R пронумерованы в порядке от врехнего к нижнему на схеме.

Рис. 3: Реализация диода Чуа на основе операционных усилителей и эквивалентная индуктивности схема гиратора.

Применяя полученные модификации получим исходную вариацию схемы с использованием только операционных усилителей, конденсаторов и сопротивлений (Рис. 4).

Рис. 4: Итоговая электрическая схема цепи Чуа, использующаяся в данной работе.

Резисторы R и R_{10} являются переменными ползунковыми резисторами. Точные характеристики элементов приведены в приложении (Таблица 1).

Математическая модель схемы Чуа

Обозначив за U_{C_1}, U_{C_2}, I_L напряжения на конденсаторах и ток через катушку соответственно можно записать систему уравнений, описывающую цепь Чуа:

$$\begin{cases}
C_1 \frac{dU_{C_1}}{dt} = \frac{U_{C_2} - U_{C_1}}{R} - g(U_{C_1}), \\
C_2 \frac{dU_{C_2}}{dt} = \frac{U_{C_1} - U_{C_2}}{R} + I_L, \\
L \frac{dI_L}{dt} = -U_{C_2},
\end{cases} \tag{2}$$

где R — сопротивление резистора, L — индуктивность катушки, C_1, C_2 — ёмкости конденсаторов, а g — функция зависимости тока от напряжения на диоде Чуа:

$$g(U_{C_1}) = G_b U_{C_1} + \frac{1}{2} (G_a - G_b) (|U_{C_1} + E| - |U_{C_1} - E|),$$

где G_b, G_a, E — проводимости соответствующих участков и точки излома на рисунке 2. Введя новые обозначения можно привести систему к новым безразмерным переменным:

$$\begin{cases}
\frac{dx}{d\tau} = \alpha(y - x - h(x)), \\
\frac{dy}{d\tau} = x - y + z, \\
\frac{dz}{d\tau} = -\beta y,
\end{cases}$$
(3)

где $m_0=RG_a,\ m_1=RG_b,\ \alpha=\frac{C_2}{C_1},\ \beta=\frac{R^2C_2}{L},\ \tau=\frac{t}{RC_2},\ x=\frac{U_{C_1}}{E},\ y=\frac{U_{C_2}}{E},\ z=\frac{I_LR}{E},\$ и функция h(x) равна

 $h(x) = m_1 x + \frac{1}{2} (m_0 - m_1)(|x+1| - |x-1|).$

В реальности, однако, вольт-амперная характеристика диода Чуа несколько отличается (Рис. 5), это связано с тем, что операционный усислитель не является идеальным и после некторого напряжения появляются возрастающие участки. В таком случае удобно определять положения равновесия графически, нужно провести нагрузочную прямую $I=-\frac{U}{R}$ и рассмотреть её точки пересечения с вольт-амперной характеристикой диода.

Рис. 5: Вольт-амперная характеристика диода Чуа, реализованного на операционных усилителях.

Результаты и их анализ

Численное моделирование бифуркационной диаграммы

Проведёно численное моделирование схемы Чуа с указанными в приложении параметрами, согласно дифференциальным уравнениям 2. Моделирование проводилось с шагом $\Delta R = 50$ Ом и $\Delta R_L = 150$ Ом. После моделирования получен набор изображений фазовых портретов системы при различных её параметрах 6.

Рис. 6: Пример результата симуляции, полученной при $\Delta R = 110$ Ом и $\Delta R_L = 350$ Ом.

На полученной диаграмме можно выделить несколько областей с принципиально различными состояниями. По диаграмме определены пограничные кривые между различными состояниями системы и построен график 7. У системы можно выделить 5 основных состояний: большой предельный цикл, двухпетлевой аттрактор, аттрактор Рёсслера, устойчивый фокус и малый предельный цикл. Отдельно рассмотрим систему при R > 2.25 KOм, в данной области у системы существует три положения равновесия, и нагрузочная прямая -R пересекает график диода Чуа (Рис. 5) в точка, которые лежат на крайних правой и левой прямой после второго излома. В данной области система может находится только лишь в этих положениях равновесия и на фазовой диаграмме наблюдается точка, изредка перескакивающая между положениями равновесия. Интересующая нас область хаотического поведения наблюдается при $R < 2.25 \; \mathrm{KOm}$. При больших R_L система переходит в большой предельный цикл, который возникает из-за существования второго излома на графке вольт-амперной характеристики диода Чуа. При понижении R_L в системе начинает наблюдаться двухпетелевой аттрактор, понижая R_L далее, в системе последовательно наблюдается переход сначала в аттрактор Рёсслера, затем в малый предельный цикл, далее в устойчивый фокус и затем снова в предельный цикл. При понижении R далее, кривые перехода между состояниями стремяться в одну точку, соответственно при R_{crit} область существования аттракторов заканчивается. Это связано с тем, что нагрузочная кривая R совпадает с прямой G_a до первого излома (Рис. 5). В такой конфигурации в системе существует бесконечное число положений равновесия и система дрейфует между ними. После дальнейшего понижения R в системе существует только одно положение равновесия — точка (0,0,0). В зависимости от его устойчивости фазовая диаграмма системы представляет собой либо большой предельный цикл, либо в малый предельный цикл, либо в точку.

Рис. 7: Диаграмма состояний системы при различных R и R_L . Цифрами обозначены граничные кривые для состояний: 0 — большой предельный цикл и двухпетлевой аттрактор, 1 — двухпетлевой аттрактор Рёсслера, 2 — аттрактор Рёсслера и малый предельный цикл, 3 — малый предельный цикл и фокус, 4 — фокус и малый предельный цикл, 5 — большой предельный цикл и малый предельный цикл.

Теоретическое описание положений равновесия

Исследована область при $R < -\frac{1}{G_a}$. При таких параметрах в системе будет одно положение равновесия (0,0,0). Рассмотрим приведённую систему дифференциальных уравнений 3. В таком случае можно исследовать устойчивость положения равновесия по линейному приближению. В таком случае система перепишется как:

$$\begin{cases} \frac{dx}{d\tau} = \alpha(y - x - m_0 x), \\ \frac{dy}{d\tau} = x - y + z, \\ \frac{dz}{d\tau} = -\beta y. \end{cases}$$

Необходимым и достаточным условием ассимптотической устойчивости является отрицательная действительная часть всех собственных значений характеристического многочлена матрицы $f(\lambda)$:

$$f(\lambda) = \lambda^3 + \lambda^2 (1 + \alpha + \alpha m_0) + \lambda(\beta + \alpha m_0) + \alpha\beta + \alpha\beta m_0.$$

Согласно критерию Гурвица для выполнения критерия устойчивости необходимо выполнение условия $a_1a_2-a_0a_3>0$:

$$(1 + \alpha + \alpha m_0)(\beta + \alpha m_0) - \alpha \beta + \alpha \beta m_0 > 0.$$

После расскрытия скобок и приведения подобных слагаемых имеем:

$$\beta > -\alpha m_0 - \alpha^2 m_0 - \alpha^2 m_0^2$$

Вернёмся к исходным обозначениям, $\beta = \frac{C_2 R^2}{L}, m_0 = G_a R$:

$$R > -\frac{\alpha + 1}{\alpha G_a + \frac{C_2}{\alpha L G_a}},\tag{4}$$

где L для нашей схемы выражается согласно выражению 1. В таком случае зависимость критического значения R от сопротивления R_L . При стремлении $R_L \to \infty$ имеем

$$R_{\infty} = -\frac{\alpha + 1}{\alpha} \frac{1}{G_a}.$$

Однако, так как рассматриваемое рассуждение верно только при $R<-\frac{1}{G_a}$ кривая обрывается раньше, при $R=-\frac{1}{G_a}$. В таком случае точку пересечения кривых на графике 7 можно найти как решение уравнения:

$$-\frac{1}{G_a} = -\frac{\alpha + 1}{\alpha G_a + \frac{C_2}{\alpha L G_a}}$$

Из чего следует:

$$L = \frac{C_2}{\alpha G_a^2} = \frac{C_1}{G_a^2}$$

Тогда подставив используемые данные имеем точку пересечения кривых:

$$(R, R_L) = (1.32 \text{ KOm}, 5.75 \text{ KOm})$$

Для проверки теории, построена бифуркационная диаграмма, с нанесённой на неё критической кривой (Рис. 8). Теоретическая зависимость хорошо описывает переходный процесс, однако существует отклонение при приближении к критическому значению, оно вызванно малой областью устойчивости в критическом режиме $R \to -\frac{1}{G_a}$. Однако совпадение поведения при малых значениях R позволяет использовать данную модель для оценки пармаетров эксперимента.

Рис. 8: Бифуркационная диаграмма схемы Чуа, с нанесённой на неё критической кривой для устойчивости нулевого положения равновесия.

Экспериментальная бифуркационная диаграмма системы

Экспериментально была получена зависисмость состояния системы, возбуждаемое из положения равновесия. По полученным данным построена бифуркационная диаграмма (Рис. 9).

Рис. 9: Реальная диаграмма состояний системы при различных R и R_L . Цифрами обозначены граничные кривые для состояний: 0 — большой предельный цикл и двухпетлевой аттрактор, 1 — двухпетлевой аттрактор Рёсслера, 2 — аттрактор Рёсслера и малый предельный цикл, 3 — малый предельный цикл и фокус, 4 — фокус и малый предельный цикл, 5 — малый предельный цикл и большой предельный цикл, 6 — большой предельный цикл и малый предельный цикл, 7 — большой предельный цикл и малый предельный цикл.

ТУТ ТОЖЕ НУЖНО ОПИСАТЬ ГРАФИК И СРАВНИТЬ С ПРЕДЫДУЩИМ. Также сюда прикрепить картинки и фото.

Нахождение параметров расхождения

Так как хотя бифуркационные диаграммы в симуляции и в эксперименте и имеют схожий качественный вид, они расходятся в количественном смысле. Попытаемся найти какие параметры схемы отличаются от номинальных. Легко определить, как изменилось сопростивление G_a , так как R координата точки пересечения кривых равна $R = -\frac{1}{G_a}$, из чего получаем значение

$$G_e = (-8.3 \pm 0.8) \cdot 10^{-4} \text{ Om}^{-1},$$

Что отличается от предполагаемой примерно на 10%, что укладывается в заявленную погрешность резисторов и не может создавать существенного изменения в поведении системы. Следующими элементами, для которых возможны отклонения от истинных значений являются конденсаторы. Для нахождения отклонения их параметров использована полученная теоретическая зависимость критической кривой устойчивости 4. Построена зависимость в линеаризованных координатах (Рис. 10):

$$\frac{1}{R}\left(\frac{1}{R_L}\right) = -\frac{\alpha}{\alpha+1}G_a - \frac{C_1}{(\alpha+1)G_ak_L} \cdot \frac{1}{R_L},$$

где $k_L = \frac{R_7 R_9 C}{R_8}$.

Рис. 10: Линеаризованная зависимость критической кривой перехода $\frac{1}{R}$ от $\frac{1}{R}$ между большим предельным циклом и малым предельным циклом.

Полученные коэффициенты линейной зависимости составили:

$$\begin{cases} -\frac{\alpha}{\alpha+1}G_a = 0.62 \pm 0.04 \text{ KOm}^{-1}, \\ -\frac{C_1}{(\alpha+1)G_ak_L} = 1.58 \pm 0.16. \end{cases}$$

Из первого коэффициента находим параметр α , при этом используем экспериментальное значение G_a :

$$\alpha = 2.9 \pm 0.2$$
.

Нахождение остальных параметров не может оказаться точным, так как коэффициент k_L также зависит от ёмкости конденсатора и может изменяться. Однако в нашей оценке примем его неизменным и равным теоретическому, в таком случае можно найти C_1 и C_2 :

$$\begin{cases} C_1 = 17 \pm 3 \text{ н}\Phi, \\ C_2 = 53 \pm 6 \text{ н}\Phi. \end{cases}$$

Эти значения сильно отличаются от закладываемых в схему

$$\begin{cases} C_{1t} = 10 \text{ н}\Phi, \\ C_{2t} = 100 \text{ н}\Phi. \end{cases}$$

Такое поведение конденсаторов можно связать с эффектом понижения ёмкости керамических конденсаторов с повышением напряжения (Рис. 11). Таким образом, лучше использовать другие виды конденсаторов для построения схем Чуа, однако даже при таких отклонениях получается найти хаотические режимы схемы.

Рис. 11: График ёмкости керамических конденсаторов от напряжения [2].

Измерение амплитуды сигнала

Для демонстарции динамики размера системы, при фиксированном R была измерена зависимость амплитуды сигнала в зависимости от R_L (Рис. ??).

ПОСТРОИТЬ ГРАФИК И ОПИСАТЬ.

Измерение размеров аттрактора Рёсслера

Так как экспериментально было получено, что в отличие от симуляции, аттрактор Рёсслера занимает намного большую область на бифуркационной диаграмме, были измерены его размеры в зависимости от параметров R и R_L . Получены трёхмерные графики зависимости угла поворота аттрактора и его поперечного размера от R_L и R (Рис. $\ref{Puc. 27}$).

ПОСТРОИТЬ ГРАФИК И ОПИСАТЬ.

Выводы

Список литературы

- [1] https://www.chuacircuits.com
- [2] Изменение ёмкости керамических конденсаторов от температуры и напряжения https://habr.com/ru/articles/384833/

Приложения

Характеристики используемой схемы Чуа

В качестве операционных усилителей были использованы TL082CP.

R_1	220 Ом	R_6	3.3 КОм	R	4.7 КОм
R_2	220 Ом	R_7	100 Ом	C	100 нФ
R_3	2.2 КОм	R_8	3.3 КОм	C_1	10 нФ
R_4	22.0 КОм	R_9	1.0 КОм	C_2	100 нФ
R_5	22.0 КОм	R_{10}	10.0 КОм		

Таблица 1: Характеристики используемых элементов.