Lecture 22

EECS 483: COMPILER CONSTRUCTION

Announcements

- HW5: OAT v. 2.0
 - Fully released now
 - Due on Friday, April 12
- HW6: Analysis and Optimization
 - Introduce in discussion
 - Due on Thursday, May 2
- Guest lectures
 - Lectures on Optimization and Dataflow analysis Eric
 - Next lectures: Cyrus (4/15), Steven (4/17), Max (last two lectures)

AVAILABLE EXPRESSIONS

Available Expressions

Idea: want to perform common subexpression elimination:

$$- a = x + 1$$
 $a = x + 1$... $b = x + 1$ $b = a$

- This transformation is safe if x+1 means computes the same value at both places (i.e. x hasn't been assigned).
 - "x+1" is an available expression
- Dataflow values:
 - in[n] = set of nodes whose values are available on entry to n
 - out[n] = set of nodes whose values are available on exit of n

Available Expressions Step 1

- Define the sets of values
- Define gen[n] and kill[n] as follows:

 Quadruple forms n: 	gen[n]	kill[n]
a = b op c	{n} - kill[n]	uses[a]
a = load b	{n} - kill[n]	uses[a]
store b, a	Ø	uses[[x]]
		(for all x that may equal a)
br L	Ø	Note the need for "may
br a L1 L2	Ø	alias" information
$a = f(b_1, \dots, b_n)$	Ø	uses[a]U uses[[x]]
		(for all x)
$f(b_1,\ldots,b_n)$	Ø	uses[$[x]$] (for all x)
return a	Ø	Note that functions are assumed to be impure

Available Expressions Step 2

- Define the constraints that an available expressions solution must satisfy.
- out[n] ⊇ gen[n]
 "The expressions made available by n that reach the end of the node"
- in[n] ⊆ out[n'] if n' is in pred[n]
 "The expressions available at the beginning of a node include those that reach the exit of every predecessor"
- out[n] ∪ kill[n] ⊇ in[n]
 "The expressions available on entry either reach the end of the node or are killed by it."
 - Equivalently: $out[n] \supseteq in[n] kill[n]$

Note similarities and differences with constraints for "reaching definitions".

Available Expressions Step 3

- Convert constraints to iterated update equations:
- $in[n] := \bigcap_{n' \in pred[n]} out[n']$
- out[n] := $gen[n] \cup (in[n] kill[n])$
- Algorithm: initialize in[n] and out[n] to {set of all nodes}
 - Iterate the update equations until a fixed point is reached
- The algorithm terminates because in[n] and out[n] decrease only monotonically
 - At most to a minimum of the empty set
- The algorithm is precise because it finds the *largest* sets that satisfy the constraints.

GENERAL DATAFLOW ANALYSIS

Comparing Dataflow Analyses

- Look at the update equations in the inner loop of the analyses
- Liveness: (backward)
 - Let gen[n] = use[n] and kill[n] = def[n]
 - out[n] := $U_{n' \in succ[n]}in[n']$
 - in[n] := gen[n] \cup (out[n] kill[n])
- Reaching Definitions:

(forward)

- $in[n] := U_{n' \in pred[n]}out[n']$
- $\text{ out}[n] := \text{gen}[n] \cup (\text{in}[n] \text{kill}[n])$
- Available Expressions:

(forward)

- $in[n] := \bigcap_{n' \in pred[n]} out[n']$
- $\text{ out}[n] := \text{gen}[n] \cup (\text{in}[n] \text{kill}[n])$

Common Features

- All of these analyses have a domain over which they solve constraints.
 - Liveness, the domain is sets of variables
 - Reaching defns., Available exprs. the domain is sets of nodes
- Each analysis has a notion of gen[n] and kill[n]
 - Used to explain how information propagates across a node.
- Each analysis is propagates information either forward or backward
 - Forward: in[n] defined in terms of predecessor nodes' out[]
 - Backward: out[n] defined in terms of successor nodes' in[]
- Each analysis has a way of aggregating information
 - Liveness & reaching definitions take union (∪)
 - Available expressions uses intersection (∩)
 - Union expresses a property that holds for some path (existential)
 - Intersection expresses a property that holds for all paths (universal)

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

- 1. A domain of dataflow values \mathcal{L}
 - e.g. \mathcal{L} = the powerset of all variables
 - Think of $\ell \in \mathcal{L}$ as a property, then " $x \in \ell$ " means "x has the property"

- So far we've seen $F_n(\ell) = gen[n] \cup (\ell kill[n])$
- So: out[n] = $F_n(in[n])$
- "If ℓ is a property that holds before the node n, then $F_n(\ell)$ holds after n"
- 3. A combining operator Π
 - "If we know either ℓ_1 or ℓ_2 holds on entry to node n, we know at most $\ell_1 \sqcap \ell_2$ "
 - $\quad in[n] := \prod_{n' \in pred[n]} out[n']$

Generic Iterative (Forward) Analysis

```
for all n, in[n] := T, out[n] := T
repeat until no change
for all n

in[n] := \prod_{n' \in pred[n]} out[n']
out[n] := F_n(in[n])
end
end
```

- Here, $T \in \mathcal{L}$ ("top") represents having the "maximum" amount of information.
 - Having "more" information enables more optimizations
 - "Maximum" amount could be inconsistent with the constraints.
 - Iteration refines the answer, eliminating inconsistencies

Structure of \mathcal{L}

- The domain has structure that reflects the "amount" of information contained in each dataflow value.
- Some dataflow values are more informative than others:
 - Write $\ell_1 \sqsubseteq \ell_2$ whenever ℓ_2 provides at least as much information as ℓ_1 .
 - The dataflow value ℓ_2 is "better" for enabling optimizations.
- Example 1: for liveness analysis, smaller sets of variables are more informative.
 - Having smaller sets of variables live across an edge means that there are fewer conflicts for register allocation assignments.
 - So: $\ell_1 \sqsubseteq \ell_2$ if and only if $\ell_1 \supseteq \ell_2$
- Example 2: for available expressions analysis, larger sets of nodes are more informative.
 - Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for common subexpression elimination.
 - So: $\ell_1 \sqsubseteq \ell_2$ if and only if $\ell_1 \subseteq \ell_2$

L as a Partial Order

- \mathcal{L} is a partial order defined by the ordering relation \sqsubseteq .
- A partial order is an ordered set.
- Some of the elements might be *incomparable*.
 - That is, there might be ℓ_1 , $\ell_2 \in \mathcal{L}$ such that neither $\ell_1 \sqsubseteq \ell_2$ nor $\ell_2 \sqsubseteq \ell_1$
- Properties of a partial order:
 - Reflexivity: $\ell \sqsubseteq \ell$
 - Transitivity: $\ell_1 \sqsubseteq \ell_2$ and $\ell_2 \sqsubseteq \ell_3$ implies $\ell_1 \sqsubseteq \ell_2$
 - Anti-symmetry: $\ell_1 \sqsubseteq \ell_2$ and $\ell_2 \sqsubseteq \ell_1$ implies $\ell_1 = \ell_2$
- Examples:
 - Integers ordered by ≤
 - Types ordered by <:
 - Sets ordered by \subseteq or \supseteq

Subsets of $\{a,b,c\}$ ordered by \subseteq

Partial order presented as a Hasse diagram.

Meets and Joins

- The combining operator □ is called the "meet" operation.
- It constructs the *greatest lower bound*:
 - $-\ell_1 \sqcap \ell_2 \sqsubseteq \ell_1$ and $\ell_1 \sqcap \ell_2 \sqsubseteq \ell_2$ "the meet is a lower bound"
 - If $\ell \sqsubseteq \ell_1$ and $\ell \sqsubseteq \ell_2$ then $\ell \sqsubseteq \ell_1 \sqcap \ell_2$ "there is no greater lower bound"
- Dually, the

 □ operator is called the "join" operation.
- It constructs the least upper bound:
 - $-\ell_1 \sqsubseteq \ell_1 \sqcup \ell_2$ and $\ell_2 \sqsubseteq \ell_1 \sqcup \ell_2$ "the join is an upper bound"
 - If $\ell_1 \sqsubseteq \ell$ and $\ell_2 \sqsubseteq \ell$ then $\ell_1 \sqcup \ell_2 \sqsubseteq \ell$ "there is no smaller upper bound"
- A partial order that has all meets and joins is called a lattice.
 - If it has just meets, it's called a meet semi-lattice.

Another Way to Describe the Algorithm

- Algorithm repeatedly computes (for each node n):
- out[n] := $F_n(in[n])$
- Equivalently: $out[n] := F_n(\prod_{n' \in pred[n]} out[n'])$
 - By definition of in[n]
- We can write this as a simultaneous update of the vector of out[n] values:
 - let $x_n = out[n]$
 - Let $\mathbf{X} = (x_1, x_2, \dots, x_n)$ it's a vector of points in \mathcal{L}
 - $\mathbf{F}(\mathbf{X}) = (F_1(\prod_{j \in pred[1]}out[j]), F_2(\prod_{j \in pred[2]}out[j]), ..., F_n(\prod_{j \in pred[n]}out[j]))$
- Any solution to the constraints is a fixpoint X of F
 - i.e. F(X) = X

Iteration Computes Fixpoints

- Let $\mathbf{X}_0 = (T, T, ..., T)$
- Each loop through the algorithm apply F to the old vector:

$$\mathbf{X}_1 = \mathbf{F}(\mathbf{X}_0)$$
$$\mathbf{X}_2 = \mathbf{F}(\mathbf{X}_1)$$

• • •

- $\mathbf{F}^{k+1}(\mathbf{X}) = \mathbf{F}(\mathbf{F}^k(\mathbf{X}))$
- A fixpoint is reached when $\mathbf{F}^k(\mathbf{X}) = \mathbf{F}^{k+1}(\mathbf{X})$
 - That's when the algorithm stops.
- Wanted: a maximal fixpoint
 - Because that one is more informative/useful for performing optimizations

Monotonicity & Termination

- Each flow function F_n maps lattice elements to lattice elements; to be sensible is should be *monotonic*:
- $F: \mathcal{L} \to \mathcal{L}$ is monotonic iff: $\ell_1 \sqsubseteq \ell_2$ implies that $F(\ell_1) \sqsubseteq F(\ell_2)$
 - Intuitively: "If you have more information entering a node, then you have more information leaving the node."
- Monotonicity lifts point-wise to the function: $\mathbf{F}: \mathcal{L}^{n} \to \mathcal{L}^{n}$
 - vector $(x_1, x_2, ..., x_n) \sqsubseteq (y_1, y_2, ..., y_n)$ iff $x_i \sqsubseteq y_i$ for each i
- Note that **F** is consistent: $\mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
 - So each iteration moves at least one step down the lattice (for some component of the vector)
 - $\ldots \sqsubseteq \mathbf{F}(\mathbf{F}(\mathbf{X}_0)) \sqsubseteq \mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
- Therefore, # steps needed to reach a fixpoint is at most the height H of \mathcal{L} times the number of nodes: O(Hn)

Building Lattices?

- Information about individual nodes or variables can be lifted pointwise:
 - If \mathcal{L} is a lattice, then so is $\{f: X \to \mathcal{L}\}$ where $f \sqsubseteq g$ if and only if $f(x) \sqsubseteq g(x)$ for all $x \in X$.

- Like *types*, the dataflow lattices are *static approximations* to the dynamic behavior:
 - Could pick a lattice based on subtyping:

Or other information:

Points in the lattice are sometimes called dataflow "facts"

"Classic" Constant Propagation

- Constant propagation can be formulated as a dataflow analysis.
- Idea: propagate and fold integer constants in one pass:

$$x = 1;$$
 $x = 1;$ $y = 5 + x;$ $y = 6;$ $z = y * y;$ $z = 36;$

- Information about a single variable:
 - Variable is never defined.
 - Variable has a single, constant value.
 - Variable is assigned multiple values.

Domains for Constant Propagation

• We can make a constant propagation lattice \mathcal{L} for *one variable* like this:

T = multiple values
$$..., -3, -2, -1, 0, 1, 2, 3, ...$$

$$\bot = never defined$$

- To accommodate multiple variables, we take the product lattice, with one element per variable.
 - Assuming there are three variables, x, y, and z, the elements of the product lattice are of the form (ℓ_x, ℓ_y, ℓ_z) .
 - Alternatively, think of the product domain as a context that maps variable names to their "abstract interpretations"
- What are "meet" and "join" in this product lattice?
- What is the height of the product lattice?

Flow Functions

Consider the node

$$x = y op z$$

• $F(\ell_x, \ell_y, \ell_z) = ?$

•
$$F(\ell_x, T, \ell_z) = (T, T, \ell_z)$$

F(\ell_x, \pi, \ell_z) = (\pi, \pi, \ell_z)
 F(\ell_x, \ell_y, \pi) = (\pi, \ell_y, \pi)
 "If either input might have multiple values the result of the operation might too."

F(\ell_x, \perp , \ell_z) = (\perp , \perp , \ell_z)
 F(\ell_x, \ell_y, \perp) = (\perp , \perp , \perp z)
 "If either input is undefined the result of the operation is too."

• $F(\ell_x, i, j) = (i \text{ op } j, i, j)$ "If the inputs are known constants, calculate the output statically."

- Flow functions for the other nodes are easy...
- Monotonic?
- Distributes over meets?

Dataflow Analysis: Summary

- Many dataflow analyses fit into a common framework.
- Key idea: Iterative solution of a system of equations over a lattice of constraints.
 - Iteration terminates if flow functions are monotonic.
- Dataflow analyses as presented work for an "imperative" intermediate representation.
 - The values of temporary variables are updated ("mutated") during evaluation.
 - Such mutation complicates calculations
 - SSA = "Single Static Assignment" eliminates this problem, by introducing more temporaries – each one assigned to only once.
 - Next up: Converting to SSA, finding loops and dominators in CFGs