Corrigé de l'Examen d'Algèbre Linéaire du mardi 22 mars 2016

Exercice I- [12 points]

- b) La ligne 5 est nulle, donc $|\det M = 0|$ [0,5pt].
- c) $M \in \mathcal{M}_6(\mathbb{R})$ et $M \notin GL_6(\mathbb{R})$, donc $\operatorname{rg}(M) < 6$, soit $|\operatorname{rg}(M)| \leq 5 |[0,5pt]|$.
- d) On a im $(f) = \text{vect}(f(e_k), 1 \le k \le 6)$. Comme $f(e_k) = e_k \text{ si } k \ne 5$, on a $e_k \in \text{im}(f)$. Comme $E_5 = \text{vect}(e_k, k \neq 5)$, il vient $|E_5 \subset \text{im}(f)| [0.5pt]$.
- e) $(e_q)_{1\leq q\leq 6, q\neq k}$ est libre, en tant que sous-famille d'une famille libre, donc $|\dim \overline{E_k}=5|$ cette famille étant une base de E_k [0,5pt].
- f) On a $E_5 \subset \text{im}(f)$ et $5 = \text{dim}(E_5) \leq \text{rg}(f) \leq 5$, donc rg(f) = 5 et $|E_5 = \text{im}(f)|$ par inclusion et égalité des dimensions.

Par la formule du rang, $\dim(\mathbb{R}^6) = \operatorname{rg}(f) + \dim(\ker(f))$, donc $|\dim(\ker f)| = 1$ [1pt].

2.
$$MX = 0$$
 équivant à
$$\begin{cases} x_1 + x_5 = 0 \\ x_2 - x_5 = 0 \\ x_3 = x_4 = 0 \\ x_5 + x_6 = 0 \end{cases}$$
, soit à
$$\begin{cases} x_1 = -x_5 \\ x_2 = x_5 \\ x_3 = x_4 = 0 \\ x_6 = -x_5 \end{cases}$$
.

3. a) On a, par blocs,

$$\chi_M(\lambda) \ = \ \begin{vmatrix} \lambda - 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & \lambda - 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & \lambda - 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda - 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & 0 & -1 & \lambda - 1 \end{vmatrix}$$

$$= \ \begin{vmatrix} \lambda - 1 & 0 & 0 & 0 \\ 0 & \lambda - 1 & 0 & 0 \\ 0 & 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 1 & 0 \end{vmatrix} \times \begin{vmatrix} \lambda & 0 \\ -1 & \lambda - 1 \end{vmatrix}$$

$$= \ (\lambda - 1)^4 [\lambda(\lambda - 1)] = \lambda(\lambda - 1)^5 [1pt]$$

- b) Donc, $\boxed{\operatorname{sp}(M) = \{0,1\}}$ avec $\boxed{m_1(M) = 5}$ et $\boxed{m_0(M) = 1}$ [0,5pt]. c) On a $f(e_q) = e_q$ si $q \neq 5$, donc $E_5 \subset E_1(M)$. Comme $\dim(E_1(M)) \leq m_1(M) = 5$, et dim $(E_5) = 5$, il vient (comme avec im(M)), $E_1(M) = E_5$. On a $E_0(M) = \ker(f)$ par définition [0,5pt].
- d) Ainsi, $6 = \dim(E_1(M)) + \dim(E_0(M))$, donc M est diagonalisable et f est diagonalisable [0,5pt].

Dans la base $C = (e_1, e_2, e_3, e_4, e_6, u)$, on a $Mat_C(f) = diag(1, 1, 1, 1, 1, 0) = D [0.5pt]$.

- **4.** a) $D^2 = D$, donc $f^2 = f$ et f est le projecteur sur $\operatorname{im}(f) = E_5 = E_1(f)$ parallèlement à $\ker(f) = \operatorname{vect}(u) [1pt]$.
 - b) $(u|e_1) = -1 \neq 0$, donc f n'est pas un projecteur orthogonal [0,5pt].
 - c) On a donc $M^2 = M = [0,5pt]$.
- **5.** a) $b \in \text{vect}(e_1, e_2, e_3, e_4, e_6) = E_5 = E_1(f), \text{ donc } \boxed{f(b) = b} \boxed{[0, 5pt]}.$
- b) f(x) = b équivaut à f(x) = f(b), donc à $f(x-\overline{b}) = 0$, c'est-à-dire $x-b \in \ker(f) = \operatorname{vect}(u)$. Donc, $x = b + \lambda u$, où $\lambda \in \mathbb{R}$ est quelconque [0,5pt].
- c) On a $b + \lambda u = (4 + \lambda, 4 \lambda, 4, 1, -\lambda, 3 + \lambda)$ donc les coordonnées sont toutes positives ou nulles si, et seulement si, $\lambda \in [-3, 0]$. Si le vecteur est différent de b, $\lambda \in [-3, 0]$ et seule $\lambda = -3$ donne une coordonnée nulle, avec alors b 3u = c [1pt].

Exercice II- [5 points]

- 1. a) On a $f(\alpha X + Y) = \alpha X + Y 2\operatorname{tr}(\alpha X + Y)A = \alpha X + Y 2(\alpha \operatorname{tr}(X) + \operatorname{tr}(Y))A = \alpha f(X) + f(Y)$ par linéarité de la trace. Donc f est linéaire [0,5pt]. On a $f(A) = A 2\operatorname{tr}(A)A = (1 2\operatorname{tr}(A))A$ donc f(A) = 0 si et seulement si A = 0 ou $\operatorname{tr}(A) = 1/2$ [0,5pt].
- b) Si f(X) = 0, $X 2(\operatorname{tr}(X))A = 0$, donc, par la trace, $\operatorname{tr}(X)(1 2\operatorname{tr}(A)) = 0$ et, comme $\operatorname{tr}(A) \neq 0$, $\operatorname{tr}(X) = 0$, puis X = 0. Ainsi, si $\operatorname{tr}(A) \neq 1/2$, alors $\ker(f) = \{0\}$ [0,5pt].
- **2.** On est en dimension finie $(E = \mathcal{M}_n(\mathbb{R}), \text{ de dimension } n^2) \text{ donc } f \text{ est bijective si, et seulement si, } \ker(f) = \{0\}.$ On a vu au 1.b) que, si $\operatorname{tr}(A) \neq 1/2$, alors $\ker(f) = \{0\}$. Réciproquement, si $\ker(f) = \{0\}$, $f(A) \neq 0$ car $A \neq 0$, et donc, d'après 1.a) $\operatorname{tr}(A) \neq 1/2$ si $\ker(f) = \{0\}$ [0,5pt].
- 3. Analyse. Si $X = M + \alpha A$ avec $\operatorname{tr}(M) = 0$, on a $\operatorname{tr}(X) = \operatorname{tr}(M) + \alpha \operatorname{tr}(A) = \alpha/2$, donc $\alpha = 2\operatorname{tr}(X)$, puis $M = X 2\operatorname{tr}(X)A$. Si elle existe, la décomposition est unique, donc la somme $\ker(\operatorname{tr}) + \mathbb{R}A$ est directe. Synthèse. Soit, pour $X \in \mathcal{M}_n(\mathbb{R})$, $M = X 2\operatorname{tr}(X)A$. On a $\operatorname{tr}(M) = \operatorname{tr}(X) 2\operatorname{tr}(X)\operatorname{tr}(A) = 0$ et $X = M + 2\operatorname{tr}(X)A$, donc $\mathcal{M}_n(\mathbb{R}) \subset \ker(\operatorname{tr}) \oplus \mathbb{R}A \subset \mathcal{M}_n(\mathbb{R})$, soit $\mathcal{M}_n(\mathbb{R}) = \ker(\operatorname{tr}) \oplus \mathbb{R}A$. La composante de X sur $\ker(\operatorname{tr})$ est f(X) donc f est la projection sur $\ker(\operatorname{tr})$ parallèlement à $\mathbb{R}A$ [1pt].
- **4.** On a $\operatorname{tr}(f(X)) = \operatorname{tr}(X) 2\operatorname{tr}(X)\operatorname{tr}(A) = -\operatorname{tr}(X)$, donc $f(f(X)) = f(X) 2\operatorname{tr}(f(X))A = X 2(\operatorname{tr}(X))A + 2(\operatorname{tr}(X))A = X$, soit $f \circ f = \operatorname{id}$. Donc, f est une symétrie.
 - f(X) = X équivaut à $0 = -2(\operatorname{tr}(X))A$, donc $E_1(f) = H$.
- f(X) = -X équivaut à $X = (\operatorname{tr}(X))A$. Si c'est le cas, $X = \alpha A$ et, réciproquement, $f(\alpha A) = \alpha A 2\alpha(\operatorname{tr}(A))A = -\alpha A$, donc $E_{-1}(f) = \mathbb{R}A$ [1pt].
- 5. Notons que f(X) = X équivaut encore à $-2(\operatorname{tr}(X))A = 0$, donc $1 \in \operatorname{sp}(f)$ et $E_1(f) = H$. Si $\lambda \in \mathbb{R} \setminus \{1\}$, alors $f(X) = \lambda X$ équivaut à $(\lambda - 1)X = 2(\operatorname{tr}(X))A$, donc cela implique $X = \alpha A$. Réciproquement, $f(\alpha A) = \alpha A - 2\alpha(\operatorname{tr}(A))A = (1 - 2\operatorname{tr}(A))(\alpha A)$ donc $\lambda = 1 - 2\operatorname{tr}(A)$.
- Si $\operatorname{tr}(A) \neq 0$, f a deux valeurs propres qui sont 1 et $1 2\operatorname{tr}(A)$, avec $E_{1-2\operatorname{tr}(A)}(f) = \mathbb{R}A$. Comme en 3., on a $\mathcal{M}_n(\mathbb{R}) = H \oplus \mathbb{R}A$, la décomposition unique étant $X = \left(X - \frac{\operatorname{tr}(X)}{\operatorname{tr}(A)}A\right) + \frac{\operatorname{tr}(X)}{\operatorname{tr}(A)}A$ avec la même démarche d'analyse synthèse. Donc, $\mathcal{M}_n(\mathbb{R}) = E_1(f) \oplus E_{1-\operatorname{tr}(A)}(f)$ et f est diagonalisable.
- Si $\operatorname{tr}(A) = 0$, $\operatorname{sp}(f) = \{1\}$, mais $E_1(f) \neq \mathcal{M}_n(\mathbb{R})$ (par exemple, $\operatorname{tr}(I_n) \neq 0$), donc f n'est pas diagonalisable.

La condition de diagonalisabilité est donc $tr(A) \neq 0$ [1pt].

Exercice III- [8 points]

- 1. On remarque, de manière évidente, que x = t(1,1,1) est la solution du système [1pt].
- 2. a) La matrice A est à diagonale strictement dominante donc les méthodes de Jacobi et de Gauss-Siedel sont convergentes [0,5pt].

$$\det(\lambda D - (E + F)) = \begin{vmatrix} 3\lambda & 0 & -1 \\ 0 & 2\lambda & 0 \\ -1 & 0 & 3\lambda \end{vmatrix} = 2\lambda(9\lambda^2 - 1) = 2\lambda(3\lambda - 1)(3\lambda + 1)$$

 $\begin{aligned} & \text{donc sp}(J) = \{0; -1/3; 1/3\} \text{ et } \boxed{\rho(J) = \frac{1}{3}}. \\ & \text{On a } G = (D-E)^{-1}F \text{ et, pour déterminer } (D-E)^{-1}, \text{ on résout le système } (D-E)X = X', \\ & \text{soit } \begin{cases} 3x = x' \\ 2y = y' \\ -x + 3z = z' \end{cases}, \text{ donc } \begin{cases} x = x'/3 \\ y = y'/2 \\ z = x'/9 + z'/3 \end{cases}, \text{ d'où } G = \begin{pmatrix} 1/3 & 0 & 0 \\ 0 & 1/2 & 0 \\ 1/9 & 0 & 1/3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \end{aligned}$

soit
$$G = \begin{pmatrix} 0 & 0 & 1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 1/9 \end{pmatrix}$$
 [1pt]. De plus,

$$\det(\lambda(D-E)-F) = \begin{vmatrix} 3\lambda & 0 & -1 \\ 0 & 2\lambda & 0 \\ -\lambda & 0 & 3\lambda \end{vmatrix} = 2\lambda(9\lambda^2 - \lambda) = 2\lambda^2(9\lambda - 1)$$

donc $\operatorname{sp}(G) = \{0; 1/9\}$ et $\left| \rho(G) = \frac{1}{9} \right|$. Les deux méthodes convergent car $\rho(J) < 1$ et $\rho(G) < 1$, mais la méthode de Gauss-Siedel converge plus vite, car $\rho(G) < \rho(J)$ [0,5pt].

c) Pour la méthode de Jacobi, on a
$$\begin{cases} x_1^{(k+1)} = x_3^{(k)}/3 + 2/3 \\ x_2^{(k+1)} = 1 \\ x_3^{(k+1)} = x_1^{(k)}/3 + 2/3 \end{cases}$$
 Ainsi,
$$\boxed{x^{(1)} = {}^t(2/3,1,2/3), \, x^{(2)} = {}^t(8/9,1,8/9) \text{ et } x^{(3)} = {}^t(26/27,1,26/27)} \, \boxed{[\theta,5pt]}.$$

Ainsi, $x^{(*)} = (2/3, 1, 2/3), \dots$ Pour la méthode de Gauss-Siedel, on a $\begin{cases} x_1^{(k+1)} = x_3^{(k)}/3 + 2/3 \\ x_2^{(k+1)} = 1 \\ x_3^{(k+1)} = x_1^{(k)}/9 + 8/9 \end{cases}$ Ainsi, $x^{(1)} = {}^t(2/3, 1, 8/9), x^{(2)} = {}^t(26/27, 1, 80/81)$ et $x^{(3)} = {}^t(242/243, 1, 728/729)$ [0, 5pt].

Ainsi,
$$x^{(1)} = t(2/3, 1, 8/9), x^{(2)} = t(26/27, 1, 80/81)$$
 et $x^{(3)} = t(242/243, 1, 728/729)$ $[0, 5pt]$

3.
$$\det(A - \lambda I_3) = \begin{vmatrix} 3 - \lambda & 0 & -1 \\ 0 & 2 - \lambda & 0 \\ -1 & 0 & 3 - \lambda \end{vmatrix} = (2 - \lambda)((3 - \lambda)^2 - 1) = (2 - \lambda)^2(4 - \lambda).$$
 On a donc

 $|\operatorname{sp}(A)| = \{2, 4\}$. Les valeurs propres de A étant toutes > 0, A est définie positive [1, 5pt]. De plus, elle est aussi symétrique donc, d'après le cours, la méthode de relaxation est convergente pour $|\omega \in]0,2[|[\theta,5pt]]$.

4. a) La méthode itérative considérée ici a pour matrice $B = I_3 - rA$ dont les valeurs propres sont, d'après la question précédente, 1-2r et 1-4r. La méthode est convergente si, et seulement si $\rho(B) < 1$, c'est-à-dire $\max(|1 - 2r|, |1 - 4r|) < 1$.

- Pour r < 1/4, |1 4r| = 1 4r et $|1 2r| \le |1 4r|$ équivaut à $4r 1 \le 1 2r \le 1 4r$, soit $6r \le 2$ (vérifié ici) et $2r \le 0$, c'est-à-dire $r \le 0$ et alors $\rho(B) = 1 4r \ge 1$; sinon, pour 0 < r < 1/4, $\rho(B) = |1 2r| = 1 2r < 1$.
- Pour $r \ge 1/4$, |1 4r| = 4r 1 et $|1 2r| \le |1 4r|$ équivaut à $1 4r \le 1 2r \le 4r 1$, soit $6r \ge 2$ et $2r \ge 0$ (vérifié ici), soit $r \ge 1/3$ et alors $\rho(B) = 4r 1 < 1$ si r < 1/2; sinon, pour $1/4 \le r < 1/3$, $\rho(B) = |1 2r| = 1 2r < 1$.

Finalement, la méthode est convergente pour $r \in]0,1/2[]$ avec $\rho(B)=1-2r$ pour $0 < r \le 1/3$ et $\rho(B)=4r-1$ si $1/3 \le r < 1/2$. La fonction $r \mapsto \rho(B)$ est donc décroissante sur [0;1/3] et croissante sur [1/3;1/2[, donc le rayon spectral est minimum pour r=1/3 et donc la méthode converge le plus vite pour $r^*=1/3$ [1pt].

b) On a ici
$$I_3 - rA = \begin{pmatrix} 0 & 0 & 1/3 \\ 0 & 1/3 & 0 \\ 1/3 & 0 & 0 \end{pmatrix}$$
 et donc
$$\begin{cases} x_1^{(k+1)} = 1/3x_3^{(k)} + 2/3 \\ x_2^{(k+1)} = 1/3x_2^{(k)} + 2/3 \\ x_3^{(k+1)} = 1/3x_1^{(k)} + 2/3 \end{cases}$$
. Cette suite

est convergente puisque $1/3 \in]0, 1/2[$ et la limite de cette suite est la solution de Ax = b, soit $\lim_{k \to +\infty} x^{(k)} = {}^t(1, 1, 1) [0, 5pt].$

c) On a ici
$$I_3 - rA = \begin{pmatrix} -1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & -1/2 \end{pmatrix}$$
 et donc
$$\begin{cases} x_1^{(k+1)} = 1/2(-x_1^{(k)} + x_3^{(k)}) + 1 \\ x_2^{(k+1)} = 1 \\ x_3^{(k+1)} = 1/2(x_1^{(k)} - x_3^{(k)}) + 1 \end{cases}$$
.

Ainsi, $x^{(1)} = {}^t(1,1,1), \, x^{(2)} = {}^t(1,1,1)$ et $x^{(3)} = {}^t(1,1,1)$. On peut ainsi montrer par récurrence que, $x^{(k)} = {}^t(1,1,1)$ et on a aussi ici $\lim_{k \to +\infty} x^{(k)} = {}^t(1,1,1)$ [0,5pt].

Remarque: Ceci n'est pas contradictoire car pour que la méthode converge, il faut qu'il y ait une limite pour tout x_0 , ce qui ne serait pas le cas ici. Par exemple, avec $x^{(0)} = {}^t(2,1,0)$, on a $x^{(2k)} = {}^t(2,1,0)$ et $x^{(2k+1)} = {}^t(0,1,2)$ et la suite ne converge pas.