

MODEL NO :	TM080TDHG01
MODEL VERSION:	40
SPEC VERSION:	1.1
ISSUED DATE:	2016-04-28
	Specification

Customer :

Approved by	Notes

TIANMA Confirmed:

Prepared by	Checked by	Approved by		
Junwen Du	Longping Deng	Feng Qin		

This technical specification is subjected to change without notice

Table of Contents

Tab	ble of Contentsble	2
Red	ecord of Revision	3
	General Specifications	
	Input/Output Terminals	
	Absolute Maximum Ratings	
	Electrical Characteristics	
	Timing Chart	
	Optical Characteristics	
7	Environmental / Reliability Test	20
8	Mechanical Drawing	
9		
	Precautions for Use of LCD Modules	

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2016-01-08	Preliminary Specification Release	Junwen Du
1.1	2016-04-28	Update Uniformity and NTSC	Junwen Du
			>
	111		

1 General Specifications

	Feature	Spec	
	Size	8 inch	
	Resolution	1024RGB×768	
	Technology Type	a-Si	
	Pixel Configuration	R.G.B. Stripe	
Display Spec.	Pixel pitch(mm)	0.158(H) ×0.158(V)	
	Display Mode	TM with Normally White	
	Surface Treatment	Clear	
	Viewing Direction	10:30 o'clock	
	Gray Scale Inversion Direction	4:30 o'clock	
	LCM (W x H x D) (mm)	183.0×141.0×3.40	
	Active Area(mm)	162.05 × 121.54	
Mechanical	With /Without TSP	Without TSP	
Characteristics	Matching Connection Type	FH12A-40S-0.5SH	
	LED Numbers	27 LEDS	
	Weight (g)	TBD	
Flactainal	Interface	LVDS	
Electrical Characteristics	Color Depth	16.7M	
Onaracteristics	Driver IC	HX8282A+HX8684B	

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: ± 5%

2 Input/Output Terminals

Matched connector:FH12A-40S-0.5SH

			Matched connector:FH12A-40S-	
Pin No.	Symbol	I/O	Function	Remark
1	VCOM	P	Common Voltage	
2	VDD	P	Power Voltage for digital circuit	
3	VDD	P	Power Voltage for digital circuit	
4	NC		No connection	
5	Reset	I	Global reset pin	
			Standby mode, Normally pulled high	
	CEDAD	_	STBYB = "1", normal operation	
6	STBYB	I	STBYB = "0", timing controller, source	
			driver will turn off, all output are GND	
7	GND	P	Ground	
8	RXIN0-	I	- LVDS differential data input	
9	RXIN0+	I	+ LVDS differential data input	R[0]~G[0]
10	GND	P	Ground	
11	RXIN1-	I	- LVDS differential data input	
12	RXIN1+	I	+ LVDS differential data input	G[1]~B[1]
13	GND	P	Ground	-1.7
14	RXIN2-	I	- LVDS differential data input	
15	RXIN2+	I	+ LVDS differential data input	DE/VS/HS/ B[2]~B[5]
16	GND	P	Ground	
17	RXCLKIN-	I	- LVDS differential clock input	
18	RXCLKIN +	I	+ LVDS differential clock input	
19	GND	P	Ground	
20	RXIN3-	I	- LVDS differential data input	
21	RXIN3+	I	+ LVDS differential data input	R[6]/R[7]/G[6]/G[7]/B[6]/ B[7]
22	GND	P	Ground	
23	NC		No connection	
24	NC		No connection	
25	GND	P	Ground	
26	NC		No connection	
27	DIMO	О	Backlight CABC controller signal output	Note1
28	SELB	I	6bit/8bit mode select No	Note2
29	AVDD	P	Power for Analog Circuit	
30	GND	P	Ground	
31	LED-	P	LED Cathode	
32	LED-	P	LED Cathode	
33	L/R	I	Horizontal inversion	Note3
34	U/D	I	Vertical inversion N	Note3
35	VGL	P	Gate OFF Voltage	
36	CABCEN1	I	CABC H/W enable pin	Note4
37	CABCEN0		CABC H/W enable pin	Note4

Model No.TM080TDHG01

38	VGH	P	Gate ON Voltage	
39	LED+	P	LED Anode	
40	LED+	P	LED Anode	

I/O----definition, I----Input, O----Output, P----Power, No used I/O pin please fix to GND level

Note1: PWM output after CABC function;

Note2: LVDS mode 6bits/8bits input select pin,If LVDS input data in 6 bits,SELB must be set To high,If LVDS input data in 8 bits,SELB must be set to low,

Note3: When L/R="0",set right to left scan direction, L/R="1" set left to right scan direction When U/D="0",set top to bottom scan direction, U/D="1" set bottom to top scan direction Note4:

CABC H/W enable pin. Normally pull low. When CABC_EN="00", CABC off. (Default mode) When CABC_EN="01", user interface Image. When CABC_EN="10", still Picture. When CABC_EN="11", moving Image.	

3 Absolute Maximum Ratings

GND=0V

Item	Symbol	MIN	MAX	Unit	Remark
Power Voltage	VCC	-0.3	7.0	V	Note1
Power Supply Voltage 2	AVDD	-0.5	15	V	Base on IC Spec
Power Supply Voltage 3	VGH	-0.3	+42	V	Base on IC Spec
Power Supply Voltage 4	VGL	VGH-42	+0.3	V	Base on IC Spec
Power Supply Voltage 4	VCOM	2.75	4.75	V	Base on Test
Operating Temperature	Тор	-20	70	$^{\circ}$ C	
Storage Temperature	Tst	-30	80	$^{\circ}$ C	
			≤95	%	Ta≶40°C
			≤85	%	40°C < Ta ≤ 50°C
Relative Humidity Note2	RH		≤55	%	50°C < Ta ≤ 60°C
NOIGZ			≤36	%	60°C < Ta ≤ 70°C
			≤24	%	70℃ <ta≤80℃< td=""></ta≤80℃<>
Absolute Humidity	AH		≤70	g/m³	Ta>70℃

Table 3 Absolute Maximum Ratings

Note1: Input voltage include RxIN0±,RxIN1±,RxIN2±, RxCLKI±.

Note2: Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range.

Condensation on the module is not allowed.

4 Electrical Characteristics

4.1 Recommended Operating Condition

AGND=GND=0V, Ta = 25° C

Item	Symbol	Min	Тур.	Max	Unit	Remark
Digital Supply Voltage	DVDD	2.7	3.3	3.6	٧	-
Analog Supply Voltage	AVDD	11.3	11.5	11.7	٧	-
Gate On Voltage	VGH	19.5	20.0	20.5	٧	-
Gate Off Voltage	VGL	-7.5	-7.0	-6.5	٧	<u> </u>
Common Electrode Driving Signal	VCOM	3.87	3.97	4.07	V	

4.2 Power Consumption

AGND=GND=0V, Ta = 25°C

Item	Symbol	Condition	Min	Тур.	Max	Unit	Remark
Digital Supply Current	I _{vcc}	DVDD=3.3V	-	42.181		mA	-
Analog Supply Current	I _{AVDD}	AVDD=11.5V	-	52.33		mA	-
Gate On Current	I_{VGH}	VGH=20.0V	_	0.804		mA	-
Gate Off Current	I _{VGL}	VGL=-7.0V	-	0.832		mA	-
Power Consumption	Pane I& Gamma		-	753		mW	-

Note1: Checkered Black pattern for Typ.

4.3 Recommended Driving Condition for Backlight

Ta=25°C

Item	Symbol	Min	Тур	Max	Unit	Remark
Forward Current	I _F	-	180	225	mA	27LEDs
Forward Voltage	V_{F}	9.0	9.9	10.5	V	(3 LED Serial, 9
Backlight Power Consumption	W _{BL}	-	1.782		W	LED Parallel)
Operating Life Time	-	20,000	30,000	-	Hrs	I _F =20mA

Note1: The LED driving condition is defined for each LED module (3 LED Serial, 9 LED Parallel). For each LED: I_F (1/9) =20mA, V_F (1/3) =3.3V.

Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.

Note3: I_F is defined for one channel LED.Optical performance should be evaluated at Ta=25 $^{\circ}$ C only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced.Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

Note4: The LED driving condition is defined for each LED module

4.4 Block Diagram

LCD module diagram

5 Timing Chart

5.1 LVDS mode DC electrical characteristics

Parameter	Symbol	Min.	Spec. Typ.	Max.	Unit	Condition
Differential input high Threshold voltage	R _{XVTH}	-	-	+0.1	٧	R _{XVCM} =1.2V
Differential input low threshold voltage	R _{XVTL}	-0.1	•	-	٧	
Input voltage range (singled-end)	R _{XVIN}	0	-	VDD-1.2+ V _{ID} /2	٧	-
Differential input common Mode voltage	R _{XVCM}	V _{ID} /2	-	VDD-1.2	٧	
Differential input voltage	V _{ID}	0.2	-	0.6	X	(O^\ -
Differential input leakage Current	RV _{Xliz}	-10	-	+10	¥	
LVDS Digital Operating Current	IddIvds	-	15	30	mΑ	Fclk=65MHz, VDD=3.3V
LVDS Digital Stand-by Current	Istlvds	•	10	50	μA	Clock & all Functions are stopped

5.2 LVDS mode AC electrical characteristics

Parameter	Symbol	Min.	Spec. Typ.	Max.	Unit	Condition
Clock frequency	R _{XFCLK}	_20	1110	71	MHz	-
Input data skew margin	Trskm	500	B	-	pS	V _{ID} =400mV R _{XVCM} =1.2V R _{XFCLK} =71MHz
Clock high time	T _{LVCH}	-/6	4/(7* R _{XFCLK})	-	ns	-
Clock low time	T _{LVCL}	7	3/(7* R _{XFCLK})	-	ns	-
PLL wake-up time	TemPLL	110	-	150	μs	-

Parameter	Symbol	Spec. Min. Typ. Max.		Unit	Condition	
Modulation Frequency	SSC _{MF}	23	-	93	KHz	-
Modulation Rate	SSC _{MR}	•	-	±3	%	LVDS clock =71MHz center spread

5.3 Data input format 5.3.1 LVDS data mapping

Figure 10.5: 8-bit LVDS Input

5.3.2 Parallel RGB input timing table

DE mode

Parameter	Symbol		Unit		
Farameter	Symbol	Min.	Min. Typ.		Offic
DCLK Frequency	fclk	52	65	71	MHz
Horizontal Display Area	thd		1024		DCLK
HSD Period	th	1114	1344	1400	DCLK
HSD Blanking	thb+ thfp	90	320	376	DCLK
Vertical Display Area	tvd		768		T _H
VSD Period	tv	778	806	845	TH
VSD Blanking	tvbp+ tvfp	10	38	Z77 (S//)∑″T _H

Table 10.7: DE mode (1024x768)

HV mode

Horizontal timing

Parameter	Symbol		Spec.				
Faranietei	Symbol	Min.	Typ.	Max.	Unit		
DCLK Frequency	fclk	57	65	70.5	MHz		
Horizontal Display Area	thd	5.	1024		DCLK		
HSD Period	th	1200	1344	1400	DCLK		
HSD Pulse Width	thpw	$\mathcal{C}(\mathcal{N})$		// 140	DCLK		
HSD Back Porch	thbp		160		DCLK		
HSD Front Porch	thfp	16	160	216	DCLK		

Table 10.8: HV mode horizontal timing (1024x768)

Vertical timing

		// \			
Parameter	Symbol		Unit		
Farameter	Symbol	Min.	Тур.	Max.	Oilit
Vertical Display Area	tvd)	768		T _H
VSD Period	tv	792	806	840	T _H
VSD Pulse Width	tvpw	1	-	20	T _H
VSD Back Porch	tybp		23		T _H
VSD Front Porch	tvfp	1	15	49	T _H

Table 10.9: HV mode vertical timing (1024x768)

5.4 Power ON/OFF Sequence

5.4.1 Back Light power ON/OFF sequence

Power supply Normal Back Light OFF Display OFF OFF Operation Power OFF Squence

Back Light Power ON/OFF sequence

5.4.2 System power ON/OFF sequence

Figure 8.2: Power off timing sequence

Note: Low level=3FH, when NBW=L (Normally white) Low level=00H, when NBW=H (Normally black)

6 Optical Characteristics

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark	
		θТ		70	80	-			
View Angles		θВ	CR≧10	70	80	-	Dograd	Note2,3	
view Aligies		θL	ON = 10	70	80	-	Degree	NOIEZ,3	
		θR		70	80	-			
Contrast Ratio)	CR	θ=0°	600	700	-		Note 3	
Response Tim	0	T _{ON}	25 ℃		20	20	me	Note 4	
Response IIII	E	T _{OFF}	250	-	20	30	ms	Note 4	
	White	х		0.258	0.308	0.358		Note 1,5	
	Wille	У		0.275	0.325	0.375			
	Red	х		0.530	0.580	0.630			
Chromaticity	Red	У	Backlight is	0.291	0.341	0.391			
Cilioniaticity	Green	х	on	0.302	0.352	0.402			
	Green	У		0.533	0.583	0.633		Note 1,5	
	Blue	х		0.107	0.157	0.207		Note 1,5	
	Diue	У		0.048	0.098	0.148			
Uniformity		U		70	75		%	Note 6	
NTSC				45	50		%	Note 5	
Luminance		٦		350	400		cd/m ²	Note 7	

Test Conditions:

- 1. IF= 180 mA, and the ambient temperature is 25° C.
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Item	Photo detector	Field
Contrast Ratio		
Luminance	SR-3A	1°
Chromaticity	SR-SA	1
Lum Uniformity		
Response Time	BM-7A	2°

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

 $Contrast\ ratio\ (CR) = \frac{Luminance\ measured\ when\ LCD\ is\ on\ the\ "White"\ state}{Luminance\ measured\ when\ LCD\ is\ on\ the\ "Black"\ state}$

"White state ": The state is that the LCD should drive by Vwhite.

"Black state": The state is that the LCD should drive by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax

L----- Active area length W---- Active area width

Lmax: The measured Maximum luminance of all measurement position.

Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

7 Environmental / Reliability Test

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts = +70℃, 120 hours (Note1)	IEC60068-2-1:2007 GB2423.2-2008
2	Low Temperature Operation	Ta = -20°C, 120 hours (Note2)	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Storage	Ta = +80°C, 120 hours	IEC60068-2-1:2007 GB2423.2-2008
4	Low Temperature Storage	Ta = -30℃, 120 hours	IEC60068-2-1:2007 GB2423.1-2008
5	Storage at High Temperature and Humidity	Ta = +60°C, 90% RH max, 120hours	IEC60068-2-78 :2001 GB/T2423.3—2006
6	Thermal Shock (non-operation)	-30°C 30 min ~ +80°C 30 min, Change time:5min, 20 Cycle	Start with cold temperature, End with high temperature, IEC60068-2-14:1984,G B2423.22-2002
7	ESD	C=150pF, R=330Ω, 5point/panel Air: ±8Kv, 5times; Contact: ±4Kv, 5times (Environment: 15℃~35℃, 30%~60%. 86Kpa~106Kpa)	IEC61000-4-2:2001 GB/T17626.2-2006
8	Vibration Test	Frequency range: 10~55Hz Stroke: 1.5mm Sweep: 10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total)	IEC60068-2-6:1982 GB/T2423.10—1995
9	Mechanical Shock (Non OP)	Half Sine Wave 60G 6ms, ±X, ±Y, ±Z 3times for each direction	IEC60068-2-27:1987 GB/T2423.5—1995
10	Package Drop Test	Height: 80cm, 1corner, 3edges, 6surfaces	IEC60068-2-32:1990 GB/T2423.8—1995

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

Note3: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note 4: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

8 Mechanical Drawing

9 Packing Drawing

9.1 包装材料规格表(Packaging Material)

Per Carton

No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark		
1	LCM module	TM080TDHG01-40	183X141X3.4	0.189	48			
2	Partition_1	Corrugated paper	527X348X217	1.323	1			
3	Anti-static Bag	PE	161X253X0.05	0.001	48	Anti-static		
4	Dust-Proof Bag	PE	700X545	0.06	1			
5	Partition_2	Corrugated Paper	505X332X4.0	0.098	2			
6	Corrugated Bar	Corrugated paper	348X173	0.028	6			
7	Carton	Corrugated paper	544X365X250	1.12	1			
8	Total weight	TBD						

9.2 包装说明图示

9.2.1 天马 Module Label 帖附

Module Label请按照下图所示位置与Mark line对齐贴附。

9.2.2 单片模组包装

将模组按照下图所示方法装入静电袋中:

9.2.3 静电袋包装

静电袋按照下图方式,并用美纹胶带(2张)将静电袋的开口贴好.

注: 先弯折Main FPC平贴于下铁框, 然后再向模组背面方向弯折抗静电袋。

9.2.4 Dummy Packing 组装

A. 将压线卡_2装入防尘袋里面,如下图所示:

B. 将CORRUGATED BAR 按照下图所示放入压线卡_1下面(压线卡_1未做半圆弧的那一面)

C. 将STEP B组装好的部件放入防尘袋中,再将防尘袋放入纸箱当中:

D. 将模组的有撕离胶带的一面朝上,放入纸箱当中(显示面朝向内部,每排最后一个模组将显示面朝向里放置);再将另三块波浪栅放入压线卡_1中,并盖上压线卡_2,封上防尘袋:

9.2.5 堆栈放置 纸箱堆叠数案2*3/每层*共5层

10 Precautions for Use of LCD Modules

- 10.1 Handling Precautions
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 10.2 Storage precautions
 - 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:
- Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$
 - 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 10.3 Transportation Precautions
 - 10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.