Konvolucione mreže super rezolucije Specijalistički rad

Petar Đerković

Prirodno-matematički fakultet, Podgorica

14. septembar 2018

Osnovni koncepti

- Problem super rezolucije (SR)
 - jednoulazni √
 - multiulazni
- Tehnike rijetkog kodiranja
- Kanal SR obrade
 - Dijeljenje slike na regione (segmente)
 - Pretvaranje segmenata u rječnike male rezolucije (LR)
 - Prelaz u rječnike visoke rezolucije (HR) i rekonstrukcija
- Mana: segregacija komponenti nepostojanje zajedničke optimizovane strukture

Algoritmi SR-a

- Prediktivni modeli
- Ivični modeli
- Statistički modeli
- Modeli uzorkovanja najbolji!
 - Unutrašnji modeli uzorkovanja
 - Spoljašnji modeli uzorkovanja
- Danas postoje mnogobrojni pristupi
- Jednokanalni sistemi boje
- Izdvojene ocjene: PSNR i SSIM

Konvolucione mreže

- Veoma bitne na polju mašinske vizije
- Struktura vidnog korteksa
- Konvolucioni sloj i dijeljenje težina
- Posebno 3D raspoređivanje neurona i receptivno polje RP
- Mape bitnih odlika (engl. feature maps)
- Hiperparametri i ReLU funkcija $f(x) = x^+ = \max(x, 0)$

Primjer konvolucije

RP - crveno

Konvolucione mreže super rezolucije

- Benchmark metod (Dong et. al)
- Mapiranje s kraja na kraj, između LR i HR slike
 - Preprocesiranje bikubičnom intrepolacijom (BI)
 - Izvlačenje i predstavljanje segmenata

Y - preprocesirani ulaz, W_1 - filteri 1. sloja, B_1 - bias

$$F_1(Y) = \max(0, W_1 \star Y + B_1)$$

Nelinearno mapiranje

W_2 - filteri 2. sloja, B_2 - bias

$$F_2(Y) = \max(0, W_2 \star F_1(Y) + B_2)$$

Rekonstrukcija

W_3 - filteri 3. sloja, B_3 - bias

$$F_3(Y) = W_3 \star F_3(Y) + B_3$$

Konvolucione mreže super rezolucije

Postavke hiperparametara

$$f_1 = 9, f_2 = 1, f_3 = 5, n_1 = 64 i n_2 = 32$$

- Bez dopune (padding-a) kako izlaz ne bi imao granice
- Jednostavnija struktura, brža mreža

Vizuelna reprezentacija SRCNN mreže

Analogija sa SC

- ullet Izvučeni $f_1 imes f_1$ segmenti iz početne slike
- ullet Algoritam SC daje nam rječnik male rezolucije veličine n_1
- ullet Nađi n_2 rijetki skup koeficijenata LR rječnika to je HR rječnik
- Rekonstrukcija HR segmenata od HR rječnika i postprocesiranje

SC tehnike iz ugla CNN mreže

Treniranje

- Učenje $\Theta = \{W_1, W_2, W_3, B_1, B_2, B_3\}$
- ullet Na skupu Basic: 91 slika o 24800 subslika X_i
- LR ulaz Y_i: zamućenje Gausovim filterom i Bl up i down semplovanje X_i
- Funkcija gubitka MSE minimalizovana stohastičnim gradijentnim spustom

Ažuriranje težina; $I \in \{1,2,3\}$ je indeks sloja, a i broj iteracije. η je stopa učenja i n broj uzoraka

$$L(\Theta) = \frac{1}{n} \sum_{i=1}^{n} ||F(Y_i; \Theta) - X_i||^2;$$

$$\Delta_{i+1} = 0.9 \cdot \Delta_i - \eta \cdot \frac{\partial L}{\partial W_i^l}, \quad W_{i+1}^l = W_i^l + \Delta_{i+1}$$

• Stopa učenja 10^{-4} za prva dva sloja, 10^{-5} za zadnji; težine inicijalizovane sa $\mathcal{N}(0,0.001)$, a bias na 0

Rezultati ispitivanja

Treniranje na većim bazama popravlja performanse

Razumno veći filteri 2. sloja su bolji

	$n_1 = 128$ $n_2 = 64$		$n_1 = 64$ $n_2 = 32$		$n_1 = 32$ $n_1 = 16$	
	PSNR	Vrijeme(sec)	PSNR	Vrijeme(sec)	PSNR	Vrijeme(sec)
	32.60	0.60	32.52	0.18	32.26	0.05

Rezultati treniranja mreže sa različitim brojem filtera - trade-off između brzine i kvaliteta

Rezultati ispitivanja

Dublje strukture ne vode nužno boljim rezultatima

Poređenja sa state-of-the-art tehnikama

Eksperimenti sa bojom

Strategije	PSNR vrijednost kanala					
Strategije	Y	Cb	Cr	RGB-slika		
Bikubična s.	30.39	45.44	45.42	34.57		
Y-samo s.	32.39	45.44	45.42	36.37		
YCbCr	29.25	43.30	43.39	33.47		
Y-pretreniranje	32.19	46.49	46.45	36.32		
CbCr-pretreniranje	32.14	46.38	45.84	36.25		
RGB	32.33	46.18	46.20	36.44		
KK	32.37	44.35	44.22	36.32		

Najbolje tretiranje svih kolor-kanala RGB strategije

Poboljšanje modela

Vizualizacija prelaza sa SRCNN na FSCRNN

Zaključak

- Jedan od ključnih standarda kvaliteta za SR problem
- Zajednička optimizovana struktura koja obezbjeđuje funkciju mapiranja LR-HR
- Jednostavna struktura i brzina izvršavanja
- SRCNN i SC tehnike za SR problem su dosta slični
- Istovremeno baratanje svim kolor-kanalima i pokazivanje superiornih rezultata
- Pruža temelj novim i sve bržim tehnikama
- Praktična i za druge probleme mašinskog vida, sa mnogim važnim primjenama u stvarnom životu (medicina)

Fin

Hvala na pažnji!