Data Augmentation for NLP

Easy Data Augmentation Techniques (EDA)

Operation	Sentence
None	A sad, superior human comedy played out on the back roads of life.
Synonym replacement	A lamentable , superior human comedy played out on the backward road of life.
Random insertion	A sad, superior human comedy played out on funniness the back roads of life.
Random swap	A sad, superior human comedy played out on roads back the of life.
Random deletion	A sad, superior human out on the roads of life.

Wei, Jason, and Kai Zou. "EDA: Easy data augmentation techniques for boosting performance on text classification tasks." arXiv preprint arXiv:1901.11196 (2019).

Word Replacement via Language Modeling

		WMT		
	De → En	$\mathbf{Es} \to \mathbf{En}$	$He \rightarrow En$	$\mathbf{En} \to \mathbf{De}$
Base	34.79	41.58	33.64	28.40

$+LM_{sample}$	35.40	42.09	34.31	28.73
Ours	35.78	42.61	34.91	29.70

Contextual data augmentation:

when a sentence "<u>the actors are fantastic</u>" is a ugmented by replacing only <u>actors</u> with words predicted based on the context (Kobayashi, 2018)

Soft contextual data augmentation (Gao et al., 2019)

$$e_w = P(w)E = \sum_{j=0}^{|V|} p_j(w)E_j$$

Back-Translation for Data Augmentation (Edunov et al., 2018)

Previously, tea had been used primarily for Buddhist monks to stay awake during meditation.

Autrefois, le thé avait été utilisé surtout pour les moines bouddhistes pour rester éveillé pendant la méditation.

In the past, tea was used mostly for Buddhist monks to stay awake during the meditation.

Paraphrasing

Madnani, Nitin, and Bonnie J. Dorr. "Generating phrasal and sentential paraphrases: A survey of data-driven methods." Computational Linguistics 36, no. 3 (2010): 341-387.

template	paraphrase
original (SBARQ(ADVP)(,)(S)(,)(SQ)) (S(NP)(ADVP)(VP)) (S(S)(,)(CC)(S) (:)(FRAG))	with the help of captain picard, the borg will be prepared for everything. now, the borg will be prepared by picard, will it? the borg here will be prepared for everything. with the help of captain picard, the borg will be prepared, and the borg will be prepared for everything for everything.
(FRAG(INTJ)(,)(S)(,)(NP))	oh, come on captain picard, the borg line for everything.
original (S(SBAR)(,)(NP)(VP)) (S('')(UCP)('')(NP)(VP)) (SQ(MD)(SBARQ))	you seem to be an excellent burglar when the time comes. when the time comes, you'll be a great thief. "you seem to be a great burglar, when the time comes." you said. can i get a good burglar when the time comes? look at the time the thief comes.
(S(NP)(IN)(NP)(NP)(VP)	look at the time the times.

syntactically controlled paraphrase generation (lyyer et al., 2018)

Conditional Generation

Language model based data augmentation (LAMBADA) using GPT (Anaby-Tavor et al., 2019)

Class label	Sentences
Flight time	what time is the last flight from san francisco to washington dc on continental
Aircraft	show me all the types of aircraft used flying from atl to dallas
City	show me the cities served by canadian airlines

White-box Attack

HotFlip uses the model gradient to ident ify the most important letter in the text (Ebrahimi et al., 2018)

$$\max
abla_x J(\mathbf{x}, \mathbf{y})^T \cdot \ \vec{v}_{ijb} = \max_{ijb} rac{\partial J}{\partial x_{ij}}^{(b)} - rac{\partial J}{\partial x_{ij}}^{(a)}$$

Find the flip vector with biggest increase in loss

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mood of optimism. 57% **World**

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a moo**P** of optimism. 95% **Sci/Tech**

Chancellor Gordon Brown has sought to quell speculation over who should run the Labour Party and turned the attack on the opposition Conservatives. 75% **World**

Chancellor Gordon Brown has sought to quell speculation over who should run the Labour Party and turned the attack on the oBposition Conservatives. 94% Business

Adversarial examples with a single character change, which will be misclassified by a neural classifier.

Black-box Attack

40-80% accuracy drop!

Model	Adversarial	Datasets				
Wiouci	Attack	Amazon	Yelp	IMDB	MR	
	Original	88.0	85.0	82.0	81.16	
	TextFooler	31.0 (0.747)	28.0 (0.829)	20.0 (0.828)	25.49 (0.906)	
II CON	BAE-R	21.0 (0.827)	20.0 (0.885)	22.0 (0.852)	24.17 (0.914)	
wordLSTM	BAE-I	17.0 (0.924)	22.0 (0.928)	23.0 (0.933)	19.11 (0.966)	
	BAE-R/I	16.0 (0.902)	19.0 (0.924)	8.0 (0.896)	15.08 (0.949)	
	BAE-R+I	4.0 (0.848)	9.0 (0.902)	5.0 (0.871)	7.50 (0.935)	
	Original	82.0	85.0	81.0	76.66	
	TextFooler	42.0 (0.776)	36.0 (0.827)	31.0 (0.854)	21.18 (0.910)	
LOND	BAE-R	16.0 (0.821)	23.0 (0.846)	23.0 (0.856)	20.81 (0.920)	
wordCNN	BAE-I	18.0 (0.934)	26.0 (0.941)	29.0 (0.924)	19.49 (0.971)	
	BAE-R/I	13.0 (0.904)	17.0 (0.916)	20.0 (0.892)	15.56 (0.956)	
	BAE-R+I	2.0 (0.859)	9.0 (0.891)	14.0 (0.861)	7.87 (0.938)	
	Original	96.0	95.0	85.0	85.28	
	TextFooler	30.0 (0.787)	27.0 (0.833)	32.0 (0.877)	30.74 (0.902)	
DEDE	BAE-R	36.0 (0.772)	31.0 (0.856)	46.0 (0.835)	44.05 (0.871)	
BERT	BAE-I	20.0 (0.922)	25.0 (0.936)	31.0 (0.929)	32.05 (0.958)	
	BAE-R/I	11.0 (0.899)	16.0 (0.916)	22.0 (0.909)	20.34 (0.941)	
	BAE-R+I	14.0 (0.830)	12.0 (0.871)	16.0 (0.856)	19.21 (0.917)	

Use BERT-MLM to predict masked tokens in the text for generating adversarial examples. (Garg and Ramakrishnan, 2020)

Hidden-space Augmentation via Perturbation

Manipulating the hidden representations

- Through perturbations such as adding noises
- Or performing interpolations with other data points

Interpolation: mixup for text data

A Generalized View of Text Mixup: linguistically informed interpolations

Shen, Dinghan, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. "A simple but tough-to-beat data augmentation approach for natural language understanding and generation." arXiv preprint arXiv:2009.13818 (2020).

	Methods	Types	Inference		Paraphrase		Single Sentence		
		1 yes	MNLI	QNLI	RTE	QQP	MRPC	SST-2	CoLA
	None	=	35.2(0.7)	51.8(7.0)	49.8(3.1)	63.9(9.1)	61.8(21.2)	60.5(13.1)	12.9(6.32)
	SR		35.1(2.3)	51.4(7.2)	51.5(3.4)	61.3(9.7)	59.7(26.3)	62.1(17.4)	7.2(11.6)
	LM		35.3(0.8)	51.0(8.0)	49.0(1.4)	62.4(11)	61.0(24.3)	62.8(9.8)	6.8(15.8)
q	RI	Tolson	34.9(2.6)	51.5(8.4)	51.5(1.4)	60.6(10.9)	60.6(25.0)	63.3(12.2)	7.8(7.42)
ise	RD	Token	35.5(2.1)	51.1(8.4)	50.9(2.4)	62.4(11.3)	61.2(22.0)	59.7(18.4)	7.1(16.6)
Z	RS		35.1(1.1)	51.5(7.0)	50.9(5.0)	62.6(6.7)	63.2(22.5)	61.2(10.8)	5.2(17.0)
Supervised	WR		34.5(2.6)	52.0(3.8)	50.0(0.9)	60.6(10.2)	61.0(25.3)	61.8(12.5)	7.0(10.6)
S	RT	Sentence	35.3(0.5)	51.1(9.6)	50.8(4.4)	60.5(17.8)	61.8(23.7)	62.0(1.99)	8.37(8.35)
	ADV	Hidden	33.3(4.7)	49.7(1.8)	48.3(12.1)	57.5(24.7)	61.5(21.5)	53.3(13.07)	1.37(4.66)
	Cutoff		35.1(2.3)	51.4(8.3)	52.2(3.6)	62.6(8.8)	61.0(21.2)	63.5(8.45)	12.4(9.58)
	Mixup		32.6(3.5)	49.9(1.4)	49.8(9.2)	63.0(0.3)	62.1(19.8)	62.3(12.3)	4.03(8.68)

- No single augmentation works the best for every task.
- Augmentation does not always improve performance, and can so metimes hurt performances.
- Token-level augmentations work well in general for supervised learning, especially with limited labeled data

- What is semi-supervised learning?
- Self-training
- Consistency regularization
- Entropy minimization
- Finding unlabeled data
- Continued pre-training
- Pattern-exploiting training

Supervised Learning

$$x, y \sim p(x, y)$$

$$\mathbb{E}_{x,y} - y \log p_{\theta}(y|x)$$

Use a proxy-label/pseudo-label/label guess

$$x \sim p(x)$$

$$\mathbb{E}_{x} - \hat{p}_{\theta}(y|x) \log p_{\theta}(y|x)$$

Self-training

$$\mathbb{E}_{x} - \hat{p}_{\theta}(y|x) \log p_{\theta}(y|x)$$

$$\hat{p}_{\theta}(y|x) = \arg \max_{y} [p_{\theta}(y|x)]$$

Consistency regularization

LM as pseudo-labeller

Figure 1: PET for sentiment classification. (1) A number of patterns encoding some form of task description are created to convert training examples to cloze questions; for each pattern, a pretrained language model is finetuned. (2) The ensemble of trained models annotates unlabeled data. (3) A classifier is trained on the resulting soft-labeled dataset.

Pattern-exploiting training

Ex.	Method	Yelp	AG's	Yahoo	MNLI
$ \mathcal{T} = 10$	UDA MixText PET iPET	27.3 20.4 48.8 52.9	72.6 81.1 84.1 87.5	36.7 20.6 59.0 67.0	34.7 32.9 39.5 42.1
$ \mathcal{T} = 50$	UDA MixText PET iPET	46.6 31.3 55.3 56.7	83.0 84.8 86.4 87.3	60.2 61.5 63.3 66.4	40.8 34.8 55.1 56.3

Table 2: Comparison of PET with two state-of-the-art semi-supervised methods using RoBERTa (base)

Preview: DataAug for Multilinguality

Supervised (Multilingual) Translation [Johnson et al. 2016,

Firat et al. 2016]

Zero shot translation [Johnso n et al. 2016, Chen et al. 2017, Cheng et al. 2017, Al-Shedivat and Parikh 2019]

Solid lines indicate presence of parallel data

DataAug for Multilinguality

Unsupervised translation [Ravi and Knight 2011, Lample et al. 2018, Artexe et al. 2018]

Multilingual Unsupervised Translation
[Siddhant et al. 2020, Garcia et al.
2020, Li et al. 2020, Wang et al. 2021,
Garcia et al. 2021]

Solid lines indicate presence of parallel data