Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system

Alexandra Palacio-Morales¹*, Eric Mascot², Sagen Cocklin², Howon Kim^{1†}, Stephan Rachel³, Dirk K. Morr^{2†}, Roland Wiesendanger^{1†}

Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor

Stevan Nadj-Perge^{1,*}, Ilya K. Drozdov^{1,*}, Jian Li^{1,*}, Hua Chen^{2,*}, Sangjun Jeon¹, Jungpil Seo¹, Allan H. MacDonald², B. Andrei Bernevig¹, Ali Yazdani^{1,†}

Ben Safvati

Magnet-Superconductor Hybrid (MSH) Systems

2D magnetic impurities on SC Theory

TB hopping parameter On-site chemical potential Rashba SO coupling: (i.e. H = k * σ)

Spin Exchange Coupling $+J\sum_{\mathbf{R},\sigma,\sigma'} c^{\dagger}_{\mathbf{r},\sigma} c_{\mathbf{r},\sigma} + \text{H.c.}$) $+i\alpha\sum_{\mathbf{r},\sigma,\sigma'} (c^{\dagger}_{\mathbf{r},\sigma} \sigma^{2}_{\sigma\sigma'} c_{\mathbf{r}+\hat{\mathbf{x}},\sigma'} - c^{\dagger}_{\mathbf{r},\sigma} \sigma^{1}_{\sigma\sigma'} c_{\mathbf{r}+\hat{\mathbf{y}},\sigma'} + \text{H.c.})$ $+J\sum_{\mathbf{R},\sigma,\sigma'} c^{\dagger}_{\mathbf{R},\sigma} \sigma^{3}_{\sigma\sigma'} c_{\mathbf{R},\sigma'} + \Delta_{s} \sum_{\mathbf{r}} (c^{\dagger}_{\mathbf{r},\uparrow} c^{\dagger}_{\mathbf{r},\downarrow} + \text{H.c.})$ $-t_{tip} \sum_{\sigma} (c^{\dagger}_{\mathbf{r},\sigma} d_{\sigma} + \text{H.c.}), \qquad (1)$

Essential Signatures of Topological Superconductivity

- 1. Ferromagnetic adatoms (Fe, Co) with large exchange interaction.
- 2. SO coupling on the surface of the host s-wave superconductor.
- 3. Proximity-induced superconducting gap in the magnetic bulk.
- 4. Localized zero-bias peak on the boundary that disappears with loss of superconductivity.

Majorana Fermions in Atomic Spin Chains

2D Chiral Majorana Modes

- Signatures of Majorana Edge Modes
 - Spatial localization at edges that narrows with decreasing energy.
 - Topological protection against edge disorder.
 - Dispersive edge modes that cross the superconducting gap.

Localization of Edge Modes with Increasing Energy

Localization of Edge Modes with Increasing Energy

Topologically Trivial Phase LDOS

- Topological phase is dependent on Fe-surface interaction, on-site potential.
- Approximate phase diagram shows varying Chern number, various topo. phases.

2D Majorana Zero Modes with Flux Insertion

- Spatial separation of Majorana modes suppresses coupling between MFs, modes brought to zero energy.
- Majorana Fermion pairs are non-locally protected by fermion parity symmetry, can be built into topologically protected quantum processors.

Other Causes of Zero-Bias Edge Modes

- Kondo effect: in a superconductor, pairing of electrons into pairs competes with Kondo coupling to magnetic impurity.
 - Experimentally, addition of small (0.1 T) magnetic field disrupts superconductivity and in-gap zero mode disappears (Kondo effect would increase w/ loss of SC).
- Edge disorder: topological nature of the gapless edge modes means they will survive even with irregular boundaries.
- Finite size effects: Majorana quasiparticle modes are strongly suppressed when chain length is smaller, suggests coupling of the ends disrupts the gapless excitation.

 In conclusion: magnetic adatom STM with superconducting substrate yields a promising platform for topological superconducting physics, Majorana manipulation, etc...