Sistemi Operativi

Laurea in Ingegneria Informatica Università Roma Tre

Docente: Romolo Marotta

Gestione della memoria

Requisiti fondamentali

Protezione

 Necessaria per impedire a processi di interferire con altri processi e con il sistema operativo

Condivisione

 Può essere vantaggioso per ridurre la memoria richiesta e/o abilitare cooperazione/comunicazione tra processi

Partizionamento

 Mantenere più processi attivi in memoria al fine di massimizzare l'utilizzo delle risorse hardware

Partizioni fisse a taglia fissa

- Pros
 - Semplice da implementare e basso overhead per il SO
- Cons
 - Frammentazione interna
 - Livello di multiprogrammazione limitato dal numero di partizioni

Processo A Processo B Processo C Processo D 3 4 6

Memoria

Partizioni fisse a taglia variabile

- Pros
 - Semplice da implementare e basso overhead per il SO
- Cons
 - Frammentazione interna
 - Livello di multiprogrammazione limitato dal numero di partizioni

Memoria

0	Processo C
1	Processo D
2	Processo A
3	Processo B
4	
5	
6	
7	

Partizioni dinamiche

- Pros
 - Frammentazione interna ridotta o assente
- Cons
 - Frammentazione esterna
 - Schema più complesso

0	Processo A
1	Processo B
2	Processo C
3	Processo D
4	

Memoria

Partizioni dinamiche

- Pros
 - Frammentazione interna ridotta o assente
- Cons
 - Frammentazione esterna
 - Schema più complesso

Processo A 0 Processo B Processo D

Memoria

Partizioni dinamiche

- Pros
 - Frammentazione interna ridotta o assente
- Cons
 - Frammentazione esterna
 - Schema più complesso

Processo A 0 Processo B 3 Processo D Processo E

Memoria

Partizioni dinamiche

- Pros
 - Frammentazione interna ridotta o assente
- Cons
 - Frammentazione esterna
 - Schema più complesso
 - Algoritmi per l'allocazione:
 - Best fit

Memoria

0	Processo A
1	
2	Processo C
3	Processo D
4	Processo E
5	Processo F
6	Processo G
7	Processo M
8	Processo I
9	Processo L
10	

Partizioni dinamiche

- Pros
 - Frammentazione interna ridotta o assente
- Cons
 - Frammentazione esterna
 - Schema più complesso
 - Algoritmi per l'allocazione:
 - Best fit
 - First fit

Memoria

0	Processo A
1	Processo M
2	Processo C
3	Processo D
4	Processo E
5	Processo F
6	Processo G
7	
8	Processo I
9	Processo L
10	

Partizioni dinamiche

- Pros
 - Frammentazione interna ridotta o assente
- Cons
 - Frammentazione esterna
 - Schema più complesso
 - Algoritmi per l'allocazione:
 - Best fit
 - First fit
 - Next fit

0 Processo A Processo C 3 Processo D Processo E 4 Processo F Processo G 8 Processo I Processo L Processo M 10

Memoria

ultima allocazione

Partizioni dinamiche

- Pros
 - Frammentazione interna ridotta o assente
- Cons
 - Frammentazione esterna
 - Schema più complesso
 - Algoritmi per l'allocazione:
 - Best fit
 - First fit
 - Next fit
 - Deframmentazione periodica

Memoria

0	Processo A
1	Processo C
2	Processo D
3	Processo E
4	Processo F
5	Processo G
6	Processo I
7	Processo L
8	

- Partizioni fisse e dinamica hanno limitazioni comuni:
 - Frammentazione interna
 - Frammentazione esterna e gestione complessa
- Buddy system
 - Compromesso tra frammentazione interna e gestione
 - Taglia minima fissata a $L=2^L$
 - Taglia massima fissata a $R = 2^U$
 - Una partizione di taglia pari a K occupa uno slot di dimensione L^{i+1} tale che $L^i < K \le L^{i+1}$

Maximum allocable memory segment

Maximum allocable memory segment

Maximum allocable memory segment

- Partizioni fisse e dinamiche hanno limitazioni comuni:
 - Frammentazione interna
 - Frammentazione esterna e gestione complessa
- Buddy system
 - Compromesso tra frammentazione interna e gestione
- Assegnazione delle partizioni a processi
 - Statica: una volta assegnata una partizione ad un processo, l'associazione non viene riconsiderata
 - Dinamica: l'assegnazione delle partizioni ai relativi processi viene rivalutata ad ogni swap in

Binding di indirizzi

- L'operazione di mappare indirizzi da uno spazio A ad uno spazio B è denominata binding
- L'immagine di programma contiene riferimenti all'interno dell'immagine stessa (tipicamente tramite indirizzi simbolici)
- Indirizzi delle celle di memoria identificati
 - a tempo di compilazione
 - compatibile solo con approcci di (pre)assegnazione statica delle partizioni
 - a tempo di caricamento
 - generazione di codice rilocabile, ogni indirizzo è risolto tramite spiazzamento dalla base
 - a tempo di esecuzione
 - gli effettivi indirizzi vengono individuati ad ogni accesso

Requisiti fondamentali

Protezione

 Necessaria per impedire a processi di interferire con altri processi e con il sistema operativo

Condivisione

 Può essere vantaggioso per ridurre la memoria richiesta e/o abilitare cooperazione/comunicazione tra processi

Partizionamento

 Mantenere più processi attivi in memoria al fine di massimizzare l'utilizzo delle risorse hardware

Rilocazione

Supporto ad immagini rilocabili

Supporti alla rilocazione

Ancora sul memory partitioning

- Partizioni fisse e dinamiche hanno limitazioni comuni:
 - Frammentazione interna (partizioni fisse)
 - Frammentazione esterna (partizioni dinamiche)
- La criticità è strettamente legata alla necessità di mantenere lo spazio degli indirizzi fisici contiguo in memoria
- Ammettendo un spazio di indirizzi fisici non contigui è possibile:
 - Eliminare frammentazione esterna
 - Ridurre frammentazione interna

Paging

Paging

Paging

