

CNNs FOR ELECTRON IDENTIFICATION

EHEP Group Meeting

Viraj Bagal Angira Rastogi, Sourabh Dube, Arun Thallapil

Objective

- Aim: To use CNN for classifying real and fake electrons.
- **Real:** Electrons from gauge boson decay (Z, W, new particles)
- Fake: Electrons from other sources such as jets.
- Competitor: Relative Isolation of electron
- Input: Image of calorimeter deposit around electron with dR<0.4
- Samples used:
 - Real: DYToEE at 8 TeV
 - Fake: QCD at 8 TeV
- Selection: Pt>10 GeV & $|\eta|$ <2.4 & mediumID without isolation

Real vs Fake: Invariant Mass

Basic: Pt>10 GeV & $|\eta|$ <2.4

In DYToEE, electrons have Z as mother and so, the invariant mass of leading and subleading electron peaks about 91 GeV. This is not true in case of QCD.

Real vs Fake: Relative Isolation

Track Iso: Isolation calculated at the vertex Ecal Iso: Isolation calculated at the Ecal

CaloTowers & SuperClusters

CaloTowers are the individual energy deposits recorded by calorimeters. SuperClusters are formed by combination of CaloTowers.

QCD & Zoomed CaloTowers

Size: 0.0174x0.0174. In the figure on the right hand, we have zoomed into the cluster at $(\eta, \phi) \sim (1, -1)$

CaloTowers' emEnergy

Energy deposited by Calotowers in Ecal Pass in QCD has some entries at higher energy as well

CaloTowers' hadEnergy

Energy deposited by Calotowers in Hcal Again, pass in QCD has entries at higher energy than that of pass in DYToEE

CaloTowers' outerEnergy

Energy deposited by Calotowers in Outercal Outercal is located just behind the Hcal

Total Energy One Channel Image

