META-HEURISTICS IN BANK LENDING DECISION

By Rishav Dugar, 19IM3FP30

TABLE OF CONTENTS

01

Problem

Bank lending decisions and Optimisation

03

Comparison

Analysis of different approaches

02

Approaches

Observations and Remarks

Bank Lending

A simple game of maximising the bank's profits during times of capital constraints.

- Choosing customers
- > Regulatory compliance

Genetic Algorithm

- Population Size = 60
- Generations = 60
- Reproduction Probability = 0.194
- Crossover Probability = 0.8
- Mutation Probability = 0.006

Limitations of Genetic Algorithm

- Choosing the best keeps reducing the chances of variance in future generations
- High density of intermediate solutions
- Probability of stucking in local optima

Simulated Annealing

- Initial Temperature = ~ 1 to 2
- Max Runs = 60
- Boltzmann Constant = 1
- Minimum Temperature = 0.0001
- Alpha = 0.9
- Initial Search = 60
- Maximum rejections = 20

Limitations of Simulated Annealing

- Binary Nature of chromosomes makes the child generation futile in long run
- Large Variance
- Probability of stucking in local solutions

Genetic Algorithm with Particle Swarm Optimisation

- Population Size = 60
- Generations = 60
- Reproduction Probability = 0.194
- **—** W <u>= 5</u>
- ─ C1 = O #No effect of local best
- C2 = 1

How PSO overcomes the Limitations of GA and SA

- Higher Randomised children generation
- Higher density of near optimal solutions
- Every time a parent is again chosen the child is closer to the parent than its elder (Allows local search)

Average of 0.34 s

Average of 0.007 s

Average of 0.55 s

Very High Variance

Lower Variance ~ 90% optimal

THANKS!

