Công thức biến đổi biểu thức asinx + bcosx

1. Lý thuyết

$$y = asinx + bcosx = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} sin x + \frac{b}{\sqrt{a^2 + b^2}} cos x \right) \text{ (Diều kiện:}$$

$$a^2 + b^2 \neq 0$$

Đặt
$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$
; $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

Khi đó:
$$y = \sqrt{a^2 + b^2} \cdot (\sin x \cos \alpha + \cos x \sin \alpha)$$

$$\Leftrightarrow y = \sqrt{a^2 + b^2} . \sin(x + \alpha)$$

Công thức đặc biệt:

$$\sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$$

$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = -\sqrt{2} \cos \left(x + \frac{\pi}{4} \right)$$

2. Công thức

a) Giải phương trình asinx + bcosx = c. Phương trình có nghiệm khi $a^2 + b^2 \ge c^2$.

Ta có:
$$\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}}$$

$$\Rightarrow \boxed{\sin(x+\alpha) = \frac{c}{\sqrt{a^2 + b^2}}} \text{ v\'oi } \cos\alpha = \frac{a}{\sqrt{a^2 + b^2}}; \sin\alpha = \frac{b}{\sqrt{a^2 + b^2}}$$

(Bấm máy tính để tìm góc α).

Sau đó, đưa về phương trình lượng giác cơ bản để giải.

b) Tìm giá trị lớn nhất nhỏ nhất của hàm số có dạng $y = a\sin x + b\cos x + c$

Ta có:
$$-\sqrt{a^2 + b^2} + c \le y \le \sqrt{a^2 + b^2} + c$$

Hàm số có giá trị nhỏ nhất là $-\sqrt{a^2+b^2}+c$ và giá trị lớn nhất là $\sqrt{a^2+b^2}+c$.

3. Ví dụ minh họa

Ví dụ 1: Giải phương trình sau:

a)
$$\sin 2x + \sqrt{3}\cos 2x = \sqrt{2}$$

b)
$$\cos x - \sin x = 1$$

a)
$$\sin 2x + \sqrt{3}\cos 2x = \sqrt{2}$$

$$\Leftrightarrow \frac{1}{2}\sin 2x + \frac{\sqrt{3}}{2}\cos 2x = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \sin 2x \cos \frac{\pi}{3} + \cos 2x \sin \frac{\pi}{3} = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \sin\left(2x + \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \begin{bmatrix} 2x + \frac{\pi}{3} = \frac{\pi}{4} + k2\pi \\ 2x + \frac{\pi}{3} = \frac{3\pi}{4} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} 2x = -\frac{\pi}{12} + k2\pi \\ 2x = \frac{5\pi}{12} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{24} + k\pi \\ x = \frac{5\pi}{24} + k\pi \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = -\frac{\pi}{24} + k\pi; x = \frac{5\pi}{24} + k\pi; k \in \mathbb{Z}$.

b)
$$\cos x - \sin x = 1$$

$$\Leftrightarrow \sqrt{2}\cos\left(x + \frac{\pi}{4}\right) = 1$$
 (Áp dụng công thức)

$$\Leftrightarrow \cos\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$\Leftrightarrow \begin{bmatrix} x + \frac{\pi}{4} = \frac{\pi}{4} + k2\pi \\ x + \frac{\pi}{4} = -\frac{\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k2\pi \\ x = -\frac{\pi}{2} + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x=k2\pi; x=-\frac{\pi}{2}+k2\pi; k\in\mathbb{Z}$.

Ví dụ 2: Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau: $y = \sqrt{3}\sin 5x + \cos 5x + 1$

Lời giải

Cách 1: Áp dụng công thức ta có:

$$-\sqrt{\left(\sqrt{3}\right)^2+1^2}+1 \le y \le \sqrt{\left(\sqrt{3}\right)^2+1^2}+1 \Leftrightarrow -1 \le y \le 3.$$

Cách 2: Giải chi tiết

Ta có:
$$y = \sqrt{3}\sin 5x + \cos 5x + 1$$

$$\Leftrightarrow y = 2\left(\frac{\sqrt{3}}{2}\sin 5x + \frac{1}{2}\cos 5x\right) + 1$$

$$\Leftrightarrow y = 2\left(\sin 5x \cos \frac{\pi}{6} + \cos 5x \sin \frac{\pi}{6}\right) + 1$$

$$\Leftrightarrow$$
 y = 2sin $\left(5x + \frac{\pi}{6}\right) + 1$

Ta có
$$-1 \le \sin\left(5x + \frac{\pi}{6}\right) \le 1 \forall x \in \mathbb{R}$$

$$\Leftrightarrow -2 \le 2\sin\left(5x + \frac{\pi}{6}\right) \le 2\forall x \in \mathbb{R}$$

$$\Leftrightarrow -1 \le 2\sin\left(5x + \frac{\pi}{6}\right) + 1 \le 3 \forall x \in \mathbb{R}$$

$$\Leftrightarrow$$
 $-1 \le y \le 3$

Vậy hàm số có giá trị lớn nhất là 3 và giá trị nhỏ nhất là -1.

4. Bài tập tự luyện

Câu 1. Phương trình nào sau đây vô nghiệm:

$$\mathbf{A.} 3 \sin x + \cos x = 3$$

$$\mathbf{B.} \sqrt{3} \sin x - \cos x = -3$$

C.
$$\sqrt{3}\sin 2x - \cos 2x = 2$$

D.
$$3\sin x - 4\cos x = 5$$

Câu 2. Phương trình $\sin x + \sqrt{3}\cos x = 2$ có tập nghiệm là.

A.
$$\frac{5\pi}{6} + k\pi; k \in \mathbb{Z}$$
.

B.
$$\frac{5\pi}{6} + k2\pi; k \in \mathbb{Z}$$
.

C.
$$\frac{\pi}{6} + k2\pi; k \in \mathbb{Z}$$
.

$$\mathbf{D.} - \frac{\pi}{6} + k\pi; \mathbf{k} \in \mathbb{Z}$$

Câu 3. Giá trị lớn nhất và nhỏ nhất của hàm số $y = \sin 3x - \cos 3x + 3$ lần lượt là

A.
$$\sqrt{2} + 3va - \sqrt{2} - 3$$

B.
$$\sqrt{2} + 3 \text{ và } -\sqrt{2} + 3$$

C.
$$\sqrt{2} - 3$$
 và $-\sqrt{2} - 3$

D.
$$\sqrt{2} - 3$$
 và $-\sqrt{2} + 3$

Đáp án: 1 - B, 2 - C, 3 - B