Notas de Aula de MATEMÁTICA FINITA

INTRODUÇÃO À TEORIA DOS GRAFOS

		PAGINA
À.	Grafos	01
2.	Exemplos de grafos	04
3.	Tipos de grafos	07
4.	Grafos como modelos	08
5.	Conceitos elementares	11
6.	Grafos conexos	14
₹.	Grafos eulerianos	17
	Isomorfismo de grafos	26
	Exercícios extras	28

Teoría dos Grafos

\$1. GRAFOS

Um grafo G=(V, E) é um conjunto finito e não vaxio V e um conjunto E de pares não ordenados de elementos distintos de V.

Por exemplo, um grafo G pode ser dado por: $V(G) = \{ \vartheta_1, \vartheta_2, \vartheta_3, \vartheta_4 \}$ $E(G) = \{ \{\vartheta_1, \vartheta_2\}, \{\vartheta_1, \vartheta_3\}, \{\vartheta_2, \vartheta_3\}, \{\vartheta_3, \vartheta_4\} \}$

Em um grafo G=(V,E), V é o conjunto de vértices de G e cada elemento de V é chamado de <u>vértice</u>. O número de vértices de um grafo é chamado de <u>ordem</u> de G, logo a ordem de G é IVI. No exemplo acima, a ordem de G é 4.

Cada elemento do conjunto E é chamado de <u>aresta</u> e E é o <u>conjunto</u> de arestas do grafo. [E de "edge"].

Em geral, é conveniente denotar uma aresta lu, o's simplesmente por uo ou, equivalentemente, por ou.

Trabalhando com grafos é em geral conveniente representatá-los por meio de diagramas. Em tal representação, indicamos os vértices por pequenos círculos e as arestas por segmentos de reta ou curvas ligando os círculos apropriados. As arestas devem ser desenhadas de forma a não passar por nenhum outro círculo que não sejam os seus extremos. Diagramas do grafo dado acima são mostrados abaixo. Embora os diagramas pareçam ser diferentes, eles representam o mesmo grafo pois contêm exatamente o mesmo conjunto de vértices e de arestas.

Observe que o primeiro diagrama usa somente linhas retas enquanto que no segundo há linhas curvas. E no segundo diagrama, as linhas que representam as arestas 0,02 e 0304 se intersectam. Isto é permitido (de fato, as vezes é inevitável), mas não devemos confundir este ponto de intersecção com um vértice.

Dado que um diagrama (também chamado de representação gráfica) de um grafo descreve completamente o grafo, é costumeiro e conveniente referir-se ao diagrama do grafo como sendo o grafo.

Mais definições:

Se $e=uv \in E(G)$, isto é, se uv é uma aresta do grafo, então dixemos que $e=\frac{liga}{liga}$ u e v, que u e v são os <u>extremos</u> de e, que u e v são <u>adjacentes</u> ou <u>vixinhos</u>. Dixemos ainda que u é <u>incidente</u> em e e e <u>e</u> incidente em u (e em v).

Se uv & E(G) dixemos que u e v são não-adjacentes.

Se uv e vu são arestas distintas de G, dizemos que uv e vu são <u>adjacentes</u> (porque têm extremo em comum).

No exemplo, v_1 e v_2 são adjacentes mas v_4 e v_4 são não-adjacentes. As arestas v_1v_2 e v_2v_3 são adjacentes enquanto que v_2v_3 é incidente em v_3 .

Seja G=(V,E) um grafo e $v\in V$. O <u>grav</u> de v é o número de arestas incidentes em v, ou, dito de outra maneira, é o número de vértices vizinhos α v em G. O grav de um vértice v é denotado por g(v) ou por g(v) quando o grafo está subentendido.

No exemplo, temos:

$$g(\vartheta_1) = 2$$
 $g(\vartheta_2) = 2$
 $g(\vartheta_3) = 3$
 $g(\vartheta_4) = 1$

O conjunto Adjle) é o conjunto formado por todos os vertices adjacentes a v. Gem G.

No exemplo, temos:

 $Adj(\theta_1) = \{\theta_2, \theta_3\} \qquad Adj(\theta_2) = \{\theta_3, \theta_3\} \qquad Adj(\theta_3) = \{\theta_3, \theta_2, \theta_4\} \quad e \quad Adj(\theta_4) = \{\theta_3\}$

Exercícios:

- 1) Desenhe o diagrama dos seguintes grafos:
 - V(G) = { 1,2,3,4,5}
 - ELG) = { 12, 14, 15, 23, 35, 45}
 - $V(H) = \{a, b, c, d, e, 1, 2, 3, 4, 5\}$
 - E(H) = { a1, b2, c3, d4, e5, 12, 23, 34, 45, 51, ac, ce, eb, bd, da }
- 2) Se um grafo tem ordem 3, quantas arestas ele tem? Dê todas as possibilidades de grafos com ordem 3.
- 3) Existe um grafo de ordem 4 tal que cada dois vértices são adjacentes e cada duas arestas são adjacentes? E se o grafo tiver ordem igual a 3?
- 4) Se G é um grafo com n vértices, quantas arestas, no máximo, G pode ter?
- 5) Se G è um grafo de ordem n $(n \ge 2)$, qual è o menor número de arestas que G deve ter de modo a ter um vértice adjacente a todos os outros?
- 6) Se G é um grafo de ordem n (n>2), qual é o menor número de arestas que G deve ter de modo a todo vértice ter um vixinho?
- 7) Dê exemplo de um grafo de ordem n e a seguinte propriedade: - todo vértice tem grau 2.
- 8) Prove que, em todo grafo com n vértices (n>1), existem dois vértices com o mesmo grau.

{2. EXEMPLOS DE GRAFOS:

Nesta seção examinaremos alguns tipos importantes de grafos. Aconselhamos o leitor a familiarizar-se com seus nomes e formas, dado que eles abarecem frequentemente em exemplos e exercícios.

GRAFO TRIVIAL

O grafo G=(V,E) tal que |V|=1 e $E=\phi$ é cha mado de grafo trivial.

Nı

GRAFO TOTALMENTE DESCONEXO

Um grafo G=(V,E) tal que $E=\emptyset$ é chamado de <u>to-talmente desconexo</u>. Tal grafo com n vértices é deno tado por N_n . A figura ao lado ilustra. Ny

, v

GRAFO COMPLETO

Um grafo G=(V, E) tal que quaisquer dois de seus vértices são adjacentes é um grafo <u>completo</u>. Tal grafo com n vértices é denotado por Kn. A figura ao lado ilustra Ky.

TETRAEDRO

 K_t

GRAFOS REGULARES

Um grafo G=V,E) é <u>k-regular</u> se todos os vértices de G têm grau igual a k. Se o grafo for k-regular para algum k, dixemos que ele é <u>regular</u>. Se o grafo for 3-regular, ele também é chamado de <u>cúbico</u>. Por exemplo, o grafo ky é cúbico. A figura ao lado ilustra um grafo 3-regular também conhecido como <u>grafo de Petersen</u>.

PETERSEN

Cuso

CicLos

Um grafo G=(V,E) é um <u>n-ciclo</u> se seu conjunto de vértices pode ser rotulado de 1 a n de forma que suas únicas arestas sejam 12,23,..., In-In, n1.
Tal grafo com n vértices é denotado por Cn. A figura ao lado ilustra CG.

CAMINHOS

Um grafo G=(V,E) è um <u>n-caminho</u> se seu conjunto de vértices pode ser rotulado de 1 a n de forma que suas únicas arestas sejam 12,23,..., (n-1)n. Tal grafo com n vértices è denotado por Pn. A figura ao lado ilustra Ps. [P de "path"].

GRAFOS PLATÔNICOS

Entre os grafos regulares têm interesse especial os grafos platônicos, que são os grafos formados pelos vértices e arestas dos cinco sólidos regulares (poliedros de Platão), a saber: o tetraedro, o cubo, o octaedro, o dodecaedro e o icosaedro. O tetraedro e o cubo já foram ilustrados na página anterior. O octaedro é ilustrado ao lado. Fica como exercício ilustrar o dodecaedro e o icosaedro. (ex. 7)

OCTAEDRO

GRAFOS BIPARTIDOS

Dado um grafo G=(V,E) em que V pode ser particionado em dois conjuntos V1 e V2 (isto é, V1UVz = V, V1NV2 = Ø, MAN & MAN) de forma que não exista aresta entre dois vértices de V1 e nem entre dois vértices de V2, então dixemos que G é bipartido, com bipartição (V1, V2). A figura ao lado ilustra um grafo bipartido com V1 consistindo de dois vértices e Ve consistindo de três vértices.

Observe que os grafos Pn, n>1 são bipartidos.

Um grafo <u>bipartido completo</u> é um grafo bipartido com bipartição (V1, V2) em que todo vértice de V1 é adjacente a todo vértice de V2. Se |V1|=r c |V2|=5, tal grafo bipartido completo é denotado por Kr.s.

Um grafo bipartido completo da forma K1, & é denominado k-estrela. Na figura ao lado temos K1,5.

K3,4 ou K4,3

5-ESTRELA

EXERCÍCIOS:

- 1) Quantas arestas possui o grafo completo Kn?
- 2) Desenhar todos os grafos cúbicos com 8 ou menos vértices.
- 3) Citar exemplo (se existir) de:
 - (i) um grafo bipartido regular,
 - (ii) um grafo cúbico com 9 vértices;
 - (iii) um grafo platônico bipartido.
 - (iv) quatro grafos 4-regulares.
- 4) Quantos vértices e arestas tem um grafo bipartido completo Kr,s?
- 5) O k-cubo Qk é o grafo cujos vértices correspondem às sequências binárias de k elementos e existe uma aresta entre dois vértices se e somente se as sequências diferem em exatamente uma posição.

 Desenhe Q1, Q2, Q3, Q4,

 Quantos vértices e arestas tem Qk?

 Mostre que Qk é regular.

 Q3 é bipartido? E Q4? E Qk, k>5?
 - 6) O grafo de Petersen é bipartido?
 - 7) Desenhe o grafo dodecaedro e o grafo icosaedro.
 - 8) Para que valores de le cada um dos grafos platônicos é regular?
 - 9) Para que valores de n os grafos Un são bipartidos? Un é regular?
 - 10) Os grafos kn são regulares? São bipartidos?

\$3. TIPOS DE GRAFOS (ALGUNS)

Um grafo simples G é um conjunto finito e não vazio V e um conjunto E de pares não ordenados de elementos distintos de V. G=(V,E)

Um grafo com laços G é um conjunto finito e não vazio V e um conjunto E de pares não ordenados de elementos de V. G=(V,E)

Ex: G1 è grafo com laços
e
$$G_2 = (V_2, E_2)$$
 tal que $V_2 = V_1$ e $E_2 = E_1 \cup \{c, c'\}$ a também è grafo com laços

Um <u>multigrafo</u> G è um conjunto finito e não vazio V e multiconjunto E de pares não ordenados de elementos de V.

Ex:
$$G_1$$
 e G_2 são multigrafos.
e $G_3 = (V_3, E_3)$ tal que $V_3 = V_2$ e $E_3 = E_2 \cup \{1a, b\}\}$ and também è um multigrafo.

Um <u>digrafo</u> (simples) D é um conjunto finito e não vazio V e um conjunto E de pares prdenados de elementos distintos de V. D=lV,E). Um digrafo também é chamado de grafo direcionado ou, aínda, de grafo orientado.

Ex:
$$V(b) = \{a, b, c, d\}$$

 $E(b) = \{\{a, b\}, \{a, c\}, \{c, b\}, \{c, d\}\}$

De forma análoga definem-se <u>digrafo com laços</u> e <u>multidigrafo</u>.

94. Grafos como modelos matemáticos.

A construção de modelos matemáticos pode tomar várias formas e envolver muitas áreas da matemática. Uma área da matemática que com se mostrado muito proveitosa para construir tais modelos é a teoría dos grafos.

Nesta seção apresentamos exemplos de situações e descrevemos os grafos apropriados que servem como modelos matemáticos.

1) Un professor deseja separar em grupos de 4 alunos todos os alunos de uma sala, mas ele deseja que em cada grupo os alunos sejam mutuamente amigos.

A classe pode ser vista como um grafo (simples) em que os alunos são os vértices e as arestas representam a relação de amixade entre os amigos.

O professor deseja uma partição em subgrafos Ky do grafo dado.

2) Algumas ilhas estão localizadas na costa do Rio de Janeiro. Suponna que uma linha de ferry boats opera da costa até certas ilhas. Suponha ainda que os barcos viajam também entre as ilhas.

Esta situação pode ser representada por meio de um grafo once os vértices representam as ilhas e a costa e dois vértices são adjacentes se e somente se existe um barco que viaja de um lugar a outro.

3) Uma sidade em ruas de mão única e mão dupla. O tráfego da cidade pode ser indicado por meio de um digrafo. Por exempio, podenios representar as esquinas por vértices e uma aresta de u para o se e somente se é possível trafegar legalmente da esquina u até o esquina o, não passando por nenhuma outra esquina.

4) Em um grupo de n pessoas (n>2), sempre existem pelo menos duas pessoas que têm o mesmo número de amigos neste grupo.

O grafo referente a este problema tem um vértice para cada pessoa e dois vértices são adjacentes se e somente se as pessoas correspondentes são amigas.

Duas pessoas terem o mesmo número de amigos no grupo é equivalente a, no grafo, pelo menos dois vértices terem o mesmo grau.

5) Considere o tabuleiro de xadrez nxn, n > 3

Suponha que um cavalo foi colocado em um dos nº quadrados. De acordo com as regras do
xadrez, um cavalo move-se primeiro dois quadrados verticalmente ou horixontalmente e, depois, mais um quadrado na direção
perpendicular.

Seguindo as regras do xadrez, é possível que este cavalo visite todo o tabuleiro, visitando cada quadrado exatamente uma vez?

Como representar por grafos este problema?

6) Em um torneio de basquete em que todos os times jogam entre si, vence o que tiver vencido o maior número de vezes.

Os times correspondem aos vértices de um diaraço e, se o timo u venceu o time v, existe uma aresta de u para v no digraço.

O time vencedor é representado pelo vértice que sossui o maior número de urestas saindo dele.

Exercícios:

- Li) No exemplo 1 (da página 08), que observação pode ser feita em linguagem de grafos, com a pessoa mais popular da classe? E o que pode ser dito sobre am aluno que acabou de ser matriculado?
- 2) Suponha que associamos um grafo G com um curso da seguinte maneira: 05 vértices conespondem aos alunos e dois vértices são adjacentes se e somente se os alunos conespondentes têm o mesmo orientador. O que pode ser dito sobre este grafo? Suponha que todos os alunos lêm um orientador.
- 3) Qual seria uma questão importante a ser perguntada sobre a situação do exemplo 2? Esta questão poderia ser respondida com a ajuda do grafo correspondente?
- 4) Dê uma situação da vida real que pode ser representada por meio de um grafo.
- 5) Compare o exemplo 4 (pg 09) com o exercício 8 (pg 03).
- 6) Como seria um grafo que modela o exemplo 5?

 Desenhe os tabuleiros 3x3, 4x4 e 5x5 e seus grafos equivalentes.

 Em algum deles é possível o passeio do cavalo?
- 7) No modelo do torneio de basquete do exemplo 6, o que acontece quando os times embatam em uma partida? Dê uma sugestão para modelar este caso.
- 8) No modelo do tomeio de basquete do exemplo 6, pade acontecer de dois times empatarem no final do torneio?

35. Conceitos Elementares de teoria dos grafos.

TEOREMA1: Para todo grafo G, a soma dos gravs de seus vértices é duas vexes o número de suas arestas.

Em símbolos:

prova: por indução em IEl.

(base:) Se |E|=0, então o grafo é totalmente desconexo e $\mathbb{Z}g(0)=0$ e portanto $\mathbb{Z}g(0)=2|E|$.

(hipólese:) Se IEI=m, então o grafo G é tal que ¿glo) = 2m.

(passo:) Seja G=(V,E) um grafo tal que |E|=m+1, $m \geqslant 0$, e seja e E sendo u e o os extremos de e.

Considere o grafo $G'=\{V,E'\}$ onde $E'=E\setminus \{e\}$. Logo G' é um grafo com m arestas e, pela H.I. $\sum_{V} g(0) = 2|E'|$ (*).

Mas $\sum_{G'} g(0) = \sum_{V \mid 1 \mid u_1 \mid v_2 \mid G'} g(0) + g(u) + g(0) = \sum_{V \mid 1 \mid u_1 \mid v_2 \mid G} g(0) + (g(u) - 1) + (g(0) - 1) = 0$

 $= \sum_{v} q(v) - 2$, e |E'| = |E| - 1.

E, substituindo em (*), temos:

$$\sum_{V} g(0) - 2 = 2(|E|-1) = 2|E|-2 \qquad \sum_{V} g(0) = 2|E|.$$

TEOREMA 2: Todo grafo contém um número par de vértices de grau impar.

prova:

Seja G um grafo. Se G não contém vértices de grau ímpar, então o resultado segue imediatamente.

Caso contrario, suponha que G tem le vértices de grau impar (k>0),

denote-os por $\theta_1, \theta_2, ..., \theta_k$, sendo $\{\theta_3, \theta_2, ..., \theta_n\} = V_j$, $k \le n$.

Pelo teorema 1,

g(01) + g(02) + ... + g(0x) + g(0x+1) + ... + g(0) = 2 |E|.

Como cada um dos números glori), ..., glol é par, (glori) + ... + glol) também é par. E portanto,

 $g(01) + \dots + g(0K) = 2|E| - (g(0K+1) + \dots + g(0))$ também é par.

No entanto, cada um dos números gloi),..., glox) é ímpar, o que implica em que le deve ser par, isto é, G tem um número par de vértices de grau ímpar.

Exercícios:

Determine g(0i), 16i68.

Quantos vértices e
quantas arestas tem o grafo?

Mostre que o teorema 1

Vale neste caso.

- 2) Mostre que não existe grafo com vértices cujos graves são:
 - a) 2,3,3,4,4 e 5
 - b) 2, 3, 4, 4 e 5
 - c) 1, 3, 3, 3
 - d) 2,2,2,3,3
- 3) Suponha que conhecemos os gravs de todos os vértices de um grafo G. É possível determinar a ordem de G e seu número de avestas?
- 4) Suponha que conhecemos a ordem e o número de arestas de um grafo G. É possível determinar o grau de seus vértices?
- 5) Prove ou dê contra-exemplo para cada uma das seguintes afirmações:
 - (a) Não existem grafos que só tenham vértices de grau impar.

- (b) Não existem grafos que só tenham vértices de grau par.
- (c) 5e um grafo tem ordem impar, então ele tem um número impar de vértices de grau par.

COMPLEMENTO DE UM GRAFO

Dado um grafo (simples) G=(V,E), definimos o complemento do grafo G como sendo o grafo G=(V,E) onde $U\in V$!são adjacentes em G se e somente se $U\in V$ não são adjacentes em G.

Exercícios:

- 1) Se um grafo G tem n vértices, somente um não tendo grau impour, quantos vértices de grau impour existem no complemento de G?
- 2) Prove que um grafo e seu complemento não podem ser ambos desconexos.

[a definição de desconexo estará mas próximas páginas]

- 3) Se G é um grafo completo, o que pode ser dito sobre \overline{G} ?
- 4) Se G é bipartido, o que pode ser dito sobre G?
- 5) De 0 complemento do grafo de Petersen.

§ 6. Grafos Conexos

Para discutir a conceito de conexidade em grafos, vamos primeiramente discutir alguns conceitos relacionados.

Seja G=V,E) um grafo. Um grafo H é um <u>subgrafo</u> de G se $V(H)\subseteq V(G)$ e $E(H)\subseteq E(G)$.

A figura abaixo ilustra um grafo G e um subgrafo H de G.

Seja G um grafo e u e o dois vértices de G. Um <u>u-o passeio</u> em G é uma sequência alternada de vértices e arestas de G, começando em u e terminando em o, de forma que os extremos de cada aresta são exatamente os vértices que a cercam no passeio.

Por exemplo, v3, v3, v2, v2, v3, v6, v6, v6, v3, v3, v3, v4, v4, v4, v5, v5. v5, v4, v4 e um v3-v4 passeio em G, da figura acima.

Observe que a aresta v4, v5 aparece duas vezes no passeio.

Um u-v passeio também é chamado de passeio de u a v.

Observe também que, em um grafo simples, basta listarlos vértices de um passeio, porque as arestas ficam subentendidas. No exemplo acima, o passeio dado pode ser escrito simplesmente como 3,02,06,03,04,05,04.

Uma <u>u-v</u> tritha em um grafo é um u-v passeio que não repete arestas. O v_3 - v_4 passeio dado anteriormente não é uma v_3 - v_4 tritha. No entanto, v_3 , v_2 , v_6 , v_3 , v_4 é uma v_3 - v_4 tritha no grafo G.

um <u>u-o caminho</u> é um u-o passeio (ou uma u-o trilha) que não tem vértices repetidos.

No exemplo dado, 03,05,04 é um 03-04 caminho. Observe que, se não tem vértices repetidos, não pode ter arestas repetidas.

Um grafo G é <u>conexo</u> se existe um u-o caminho para todo par u,o de vértices de G. Caso contrário, G é <u>desconexo</u> O grafo da figura abaixo é desconexo pois não existe um 1-4 caminho.

3

Um subgrafo H de um grafo G é chamado de <u>componente</u> <u>conexo</u> de G se H é conexo e não é subgrafo de nenhum outro subgrafo conexo de G com mais arestas ou vértices que H.

No grafo da figura acima, existem dois componentes conexos, a saber per e 5.

Se um grafo tem somente um componente conexo, então G é conexo. E, se é conexo, tem um único componente conexo.

Uma u-o trilha em que u=o e que contém pelo menos três arestas é chamada de <u>circuito</u> ou <u>trilha fechada</u>. Um circuito que não tem vértices repetidos é chamado de <u>ciclo</u>.

Por exemplo, no grafo G_1 O_1 , O_2 , O_3 , O_5 , O_2 , O_6 , O_1 e um circuito mas não é um ciclo, enquanto que O_2 , O_4 , O_3 , O_5 , O_2 é um ciclo (e também um circuito).

O <u>comprimento</u> de um passeio (trilha, caminho) é o número de arestas que ele contém.

Os conjuntos de vértices e arestas determinados por um passeio produzem um subgrafo. É comum fazermos referência a este subgrafo como passeio. Por exemplo, 0_1 , 0_2 , 0_3 , 0_4 , 0_6 é uma triba no grafo G_1 da página anterior. Definimos o subgrafo H de G_1 por $V(H) = \{0_1, 0_2, 0_3, 0_3, 0_4, 0_6\}$ e $E(H) = \{0_1, 0_2, 0_2, 0_3, 0_3, 0_3, 0_4, 0_2, 0_6\}$. Assim, H também é chamado de triba em G_1 .

O mesmo vale para caminhos, circuitos ou ciclos.

Exercícios:

- 1) Seja G um grafo. Se existe um u-o passeio em G, então existe um u-o caminho em G?
- 2) Dê exemplo, se for possível, de um grafo com quatro componentes conexos onde cada componente é um grafo completo.
- 3) Sejamne p inteiros, tais que 1 sp s n. Dê um exemplo de um grafo de ordem n e p componentes conexos.
- 4) Seja G um grafo de ordem 13 contendo 3 componentes conexos.

 Mostre que pelo menos um componente de G tem pelo menos cinco vértices.
- 5) Seja G um grafo de ordem n $(n \ge 2)$ e suponha que para todo vértice 0 de G, $g(0) \ge \frac{n-1}{2}$. Prove que G é conexo.

No grafo ao lado, dê um exemplo de um circuito C que não é um ciclo. Descreva o subgrafo de G cujos vértices e arestas pertencem a C.

Dê um exemplo de:

- (a) Uma trilha que não é um caminho; (b) Um caminho (c) um ciclo.
- 7) Mostre que se Géum grafo tal que glot > 2 Vo e V(G), então G contém um ciclo.

97. Grafos Eulerianos

O problema mais antigo de que se tem noticia que foi modelado em teoria de grafos (ou conceitos relacionados) é o problema das sete pontes de Königsberg, de 1736.

Na cidade de Königsberg havia, no século 18, sete pontes que cruzavam o rio Pregel. Elas ligavam duas ilhas no rio entre si e com as margens. Os moradores de Königsberg preocupavam-se com o sequinte problema: E possível passear pelas sete pontes, em um passeio contínuo, sem repetir nenhuma ponte?

A figura abaixo mostra um esquema de Königsberg, com as porções de terra denotadas por A,B,C e D.

A situação em Königsberg pode ser convenientemente representada por um multigrafo, cujos vértices conespondem às áreas de terra e cujas arestas conespondem às pontes.

O problema das pontes de Königsberg é essencialmente o problema de determinar se o multigrafo M tem uma trilha li possivelmente um circuito) que contem todas as arestas de M.

Você pode tentar um método de tentativa-e-erro e, provavelmente, você concluirá que tal trilha não existe em M. No entanto, como provar que tal trilha não existe?

Leonard Euler foi o primeiro a fazer tal prova. Em sua homenagem, trilhas fechadas que contem todas as arestas e vértices de um grafo são chamadas de <u>trilhas eulerianas</u> e grafos que admitem uma trilha euleriana são chamados de <u>grafos eulerianos</u>.

O grafo da figura abaixo é eulenano, pois a trilha 3,2,1,7,6,3,7,2,6,1,3,5,4,3 é eulenana.

Observe que grafos desconexos não são eulerianos.

O

O teorema a seguir dá uma solução muito simples para o problema de determinar quais grafos (e multigrafos) são eulenianos.

TEOREMA 1: Um multigrafo Gé euleriano se e somente se Gé conexo e todo vértice de G tem grau par.

prova:

Seja G um multigrafo euleriano, e seja T uma trilha euleriana em G. Por definição, T contém todos os vértices de G. logo existe um u-o caminho para todo par de vértices de G e G é conexo. Fatta mostrar que todo vértice de G tem grau par. Vamos supor que T começa e termina em um vértice v. Primeiro considere um vértice u diferente de v. Como u não é nem o primeiro e nem o último vértice de T, cada vez que u é encontrado, alguma aresta de T incide em u entrado e outra aresta de T incide em u saindo, logo, cada ocorrência de u em T aumenta o grau de u de duas unidades. Logo u tem grau par em G.

No caso do vértice o, cada ocomência de o em T (exceto a primeira e a última) contribui com duas unidades no grau de o, enquanto que as oconências inicial e final contribuem com uma unidade cada. Portanto, todo vértice de G tem grau par.

Agora, vamos considerar a recíproca. Seja G um multigrafo conexo em que todo vértice tem grau par. Vamos mostrar que G é euleriano. Para isto, vamos mostrar que é possível particionar as arestas de G em um conjunto B de ciclos, do seguinte modo. Como cada vértice de G possui grau maior ou igual a 2, pelo ex. 7 po 16, G contém necessariamente algum ciclo C1. Se C1 contém todas as arestas de G, o particionamento B está se terminado. Caso contrário, remove-se de G as arestas do ciclo C1 E e os vértices isolados, porventura formados após esta operação. So No novo grafo assim obtido, cada vértice possui ainda grau par. Se Determina-se assim um novo ciclo e assim por diante. Ao final, as arestas de G encontram-se particionadas em ciclos.

Para determinar a trilha euleriana, considera-se um ciclo, por exemplo C1, do particionamento B. Se não há mais ciclos de B a serem 10

considerados, a prova está concluída. Caso contrário, como G é con nexo, existe um ciclo Co E B tal que G e Co possuem um vértice comum v. Então a trilha formada pela união das arestas de G e de Co le dos vértices de G e de Col contém cada uma dessas arestas exatamente uma vez. Repete-se o processo, considerando um novo ciclo Co E a ainda não considerado e assim por diante.

Observe que na prova do Teorema 1 temos um processo construtivo para determinar uma trilha euleriana em um multigrafo euleriano.

Vamos considerar agora um conceito análogo. Se um grafo G tem uma trilha, que não é um circuito, contendo todos os vértices e arestas de G, então dizemos que G é um grafo tracável e tal trilha é chamada de trilha <u>euleriana aberta.</u>

A figura abaixo ilustra um grafo traçável e P: 1,2,4,3,2,5,4 é uma trilha euleriana aberta.

O teorema seguinte indica precisamente quais grafos são traçáveis.

TEOREMA 2: Um multigrafo G é traçavel se e somente se G é conexo e tem exatamente dois vértices de grau ímpar. E mais, qualquer trilha euleriana aberta de G começa em um e termina em outro vértice de grau ímpar.

Podemos agora observar que o grafo M (pg. 17) não é nem eulenano e nem traçável. Este fato nos dá uma solução para o problema de Königsberg.

Uma propriedade interessante dos multigrafos eulenanos e traçáveis é que uma vez que os vértices são desenhados, é possível desenhar as arestas como uma linha contínua. Em outras palavras, as arestas podem ser desenhadas "sem hirar o lápis do papel e sem repetir traço".

Sabemos agora decidir se os desenhos abaixo podem ou não ser desenhados sem tiran o lápis do papele sem repetir traço.

EXEMPLO 1:

A figura abaixo ilustra a planta baixa de uma casa com várias salas, portas entre as salas e entre as salas e o exterior. É possível começar em algum lugar (ou em uma sala ou no exterior) e passar por cada uma das portas exatamente uma vez?

Usamos um multigrafo como o modelo matemático desta situação. Primeiro, associamos um vértice a cada sala e um vértice ao exterior. Dois vértices são adjacentes se existe uma porta ligando os dois ambientes correspondentes.

A resposta ao problema original depende do multigrafo ser euleriano,

trapável ou nenhum dos dois.

Observamos que os vértices B, D, E, F têm grau ímbar, logo, o multigrafo não é traçavel nem eulenano e, portanto, não é possível percorrer a casa passando exatamente uma vez por cada porta.

Exercícios:

1) Classifique os grafos abaixo como euleriano, traçável ou nenhum dos dois:

- 2) Dê exemplo de un grafo de orden 10 que é:
 - (a) euleriano
 - (b) tracavel
 - (c) nem euleriano nem traçavel.
- 3) Sejam G, e Gz dois grafos eulerianos sem vértices em comum. Seja $\theta_1 \in V(G_1)$ e $\theta_2 \in V(G_2)$. Construa a grafo G formada por $\theta_1 \in G_2$ mais a aresta $\theta_1 \theta_2$, isto é, $V(G) = V(G_1) \cup V(G_2)$ e E(G) = E(G1) U E(G2) U { [21, 02] } O que pode ser dito sobre G?
- 4) Mostre que se M é um multigrafo traçavel, é possível construir um multigrafo euleriano a partir de M com a adição de uma única aresta.
- 5) E se, no exercício 4, M fosse um grafo simples?
- 6) Tente determinar que propriedade especial tem um multigrafo conexo com exatamente quatro vértices de grau ímpar.
- 7) Prove o teorema 2 (página 20).

8) O grafo polièdrico bola de futebol B=(V,E) está representado na figura abaixo.

- (a) Qual é a ordem de B?
- (b) B é bipartido?
- (c) Bé regular?
- (d) B é euleriano?

Modele em teoria dos grafos e responda a seguinte per-

É possível costurar uma bola de futebol, começando e terminando no mesmo ponto e não costurando duas vezes o mesmo local?

9) O diagrama abaixo mostra a cidade de Libb. É possível faminhar pela cidade de Libb e cruzar cada ponte exatamente uma vez? Se sim, como que isso pode ser seito?

10) Suponha que existe um arquipélago com 4 ilhas ende há uma linha de barco entre cada duas ilhas. É possível dar um passeio, não necessariamente um passeio fechado, que usa cada linha de barcos exatamente uma vez? Se sim, como isto pode ser feito?

11) A figura abaixo ilustra a planta baixa de uma casa. Uma pessoa pode andar pela casa de forma a passar por todas as portas exatamente uma vez? Se sim, como isto pode ser feito?

Um carkeiro entrega cartas na região ao lado.

É possível que ele ande exatamente uma vex de cada lado de cada uma das nuas? Se sim, como?

ISOMORFISMO DE GRAFOS

Dois grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ são <u>iquais</u> se $V_1 = V_2$ e $E_1 = E_2$.

Desta forma, os grafos $\frac{a}{G_1}$ $\frac{b}{G_2}$ $\frac{a}{G_2}$ $\frac{b}{G_3}$ não são iguais, dado que $V(G_1) = \{a, b\}$ e $V(G_2) = \{a, b\}$.

Dois grafos $G_1 = (V_2, E_1)$ e $G_2 = (V_2, E_2)$ são <u>isomorfos</u> se existe uma função bijetora $f: V_1 \longrightarrow V_2$ tal que $\{u_1 o\} \in E_1$ se, e somente se, $\{f(u), f(o)\} \in E_2$. (*)

Uma função f: V1 -> Ve que é bijetora e satisfaz (*) é chamada de isomorfismo de grafos.

A existência de um isomorfismo de grafos entre os grafos G e H implica, portanto que G e H são iguais a menos dos nomes dos seus vértices.

Na figura abaixo temos que G1 e G2 são isomorfos, denotado G1 ≈ G2, mas G1 & G3 e G2 & G3.

Observe que para garantir que G1 e G3 não são isomorfos, todas as possibilidades de nomear os vértices de G3 levam a uma contradição em (*).

ISOMORFISMO DE GRAFOS - Exercícios

1) Verifique que os grafos G, e Gz abaixo são, de fato, isomorfos, e a função dada é, de fato, um isomorfismo.

$$f: V(G_1) \longrightarrow V(G_2)$$

$$f(1) = \alpha$$

$$f(2) = e$$

$$f(3) = c$$

$$f(4) = b$$

$$f(5) = d$$

$$f(6) = f$$

2) Mostre que os grafos abaixo não são isomorfos:

Liste todas as propriedades que Hy e Hz têm em comum.

3) Dos grafos abaixo determine quais são isomorfos a G1 e quais são isomorfos entre si

- 4) Dos grafos desta pagina, quais são:
 - (a) bipartidos?
 - (b) conexos?
 - (c) Eulerianos?

Exercícios extras

- 1. (Liu, Teo 6.1, pg 172) Prove que, em um grafo de ordem n, se existe um passeio entre dois vértices, então existe um passeio de comprimento no máximo n-1 entre eles.
- 2. Prove que, um grafo G é conexo se e somente se em qualquer partição de V(G) em dois subconjuntos X e Y existe uma aresta com um extremo em X e outro em Y.
- 3. Desenhe todos os grafos eulerianos de ordem 6. Quantos são? E de ordem 8? E de ordem 7?
- 4. Existe algum grafo euleriano de ordem par e um número impar de arestas?
- 5. Modele em teoria de grafos e resolva os seguinte problemas:
 - (a) É possível, com a peças de um jogo de dominó, fazer um ciclo contendo todas as peças, obedecendo as regras do jogo?
 - (b) É possível mover uma torre em um tabuleiro de xadrez 8 x 8 de forma que todo movimento possível seja executado exatamente uma vez? Um movimento entre duas casas de um tabuleiro de xadrez é completado quando ele é feito em qualquer sentido.

E se o tabuleiro fosse 4×4 ? E se fosse 5×5 ?

E se fosse um cavalo em vez de uma torre?

- 6. Para que valores de k o grafo k-cubo é euleriano?
- 7. Um grafo n-Permutaedro \(\mathcal{P}_n\) é definido da seguinte maneira: cada permutação de \(\{1,2,...,n \} \) é um vértice de \(\mathcal{P}_n\) e dois vértices são adjacentes se e somente se as permutaçõoes correspondentes diferem em exatamente uma transposição adjacente. Por exemplo: em \(\mathcal{P}_5\) os únicos vértices adjacentes a 12345 são 21345, 13245, 12435 e 12354.
 - (a) Construa os grafos n-Permutaedros, para n = 1, 2, 3, 4.
 - (b) Quantos vértices tem um n-Permutaedro?
 - (c) Qual o grau de cada vértice de um n-Permutaedro?
 - (d) Quantas arestas tem um n-Permutaedro?
 - (e) Para que valores de n os n-Permutaedros são regulares? eulerianos? bipartidos?

grafo icosaedro