Họ và tên sinh viên:

Lớp:

Ngày - tháng - năm sinh:

Đề 1 - Kiểm tra giữa kỳ: Nhập môn Tối ưu - HK20201 (Thời qian làm bài: 60 phút)

(Không sử dung tài liêu và điện thoại di động trong phòng thi)

Kí hiệu: $\beta := nqày sinh và \alpha := tháng sinh của em.$

1. Xét bài toán

$$\min f(u) == 2u_1u_2 + u_2^2 + 3u_1^2 - 8u_2 + 4u_1 + \beta \text{ v.d.k. } u \in \mathbb{R}^2.$$
 (P₁)

- i) Hàm f(u) có phải là hàm lồi trên \mathbb{R}^2 không?
- ii) Phát biểu điều kiện cần bậc nhất của nghiệm tối ưu địa phương của bài toán (P_1) . Đó có phải điều kiện đủ không? Vì sao?
- iii) Cho $u^0 = (0, \alpha)^T$. Xác định u^1 bằng thuật toán Newton thuần túy. Điểm u^1 có phải là nghiệm tối ưu của bài toán (P_1) không?

2. Xét bài toán

$$\min h(x) = \langle d, x \rangle + \beta : x \in M\}, \tag{P_2}$$

trong đó véc tơ $d \in \mathbb{R}^n \setminus \{0\}$ và $M \subset \mathbb{R}^n$ là đa diện khác rỗng.

- i) Nếu $x^1, x^2 \in \text{Argmin}(P_2)$ và x^* là tổ hợp lồi của x^1, x^2 thì x^* có là nghiệm của bài toán (P_2) không? Vì sao?.
- ii) Cho u^0 là đỉnh của đa diện M. Giả sử có đúng h đỉnh kề với u^0 là $u^1, u^2, ..., u^h$ và

$$\langle d, u^0 \rangle \le \langle d, u^i \rangle \ \forall i = 1, 2, \dots, h.$$

Chứng minh u^0 là nghiệm tối ưu của bài toán (P_2) .

3. Giải bài toán

$$\max\{k(x) = \langle \omega, x \rangle + \beta : x \in D\}$$

bằng thuật toán hình học với $\omega = (10, 20)^T$ và

$$D = \{ x \in \mathbb{R}^2 : 2x_1 + x_2 \ge 4, \ x_1 - x_2 \le 3, x_1 \ge 1, \ x_2 \ge 0 \ \}.$$

Họ và tên sinh viên:

Lớp:

Ngày - tháng - năm sinh:

Đề 2 - Kiểm tra giữa kỳ: Nhập môn Tối ưu - HK20201

(Thời gian làm bài: 60 phút)

(Không sử dụng tài liệu và điện thoại di động trong phòng thi)

Kí hiệu: $\beta := nqày sinh và \alpha := tháng sinh của em.$

1. Cho $v = (20, 10)^T$ và tập

$$Q = \{x \in \mathbb{R}^2 : -x_1 + x_2 \le 3, \ x_1 + 2x_2 \ge 4, x_2 \ge 1, \ x_1 \ge 0 \ \}.$$

Giải bài toán sau bằng thuật toán hình học:

$$\min\{\varphi(x) = \langle v, x \rangle + \beta : x \in Q\}.$$

2. Cho hàm số $f: \mathbb{R}^n \to \mathbb{R}$ và xét bài toán

$$\min \ f(x) \text{ v.đ.k.} \ x \in \mathbb{R}^n. \tag{P_1}$$

- i) Giả sử $f(x) = \frac{1}{2}x^TQx \langle b, x \rangle + \alpha$, trong đó Q là ma trận cấp $n \times n$ đối xứng, xác định dương và véc to $b \in \mathbb{R}^n \setminus \{0\}$. Chứng minh rằng, việc giải bài toán (P_1) tương đương với việc giải hệ phương trình tuyến tính Qx = b.
- ii) Nếu f(x) là hàm afin thì có cần xây dựng thuật toán giải bài toán (P_1) không? Vì sao?
- 3. Xét bài toán

$$\min k(u) = 3(u_1 - 6)^2 + (u_2 - \alpha)^2 + u_1(u_2 - \alpha) \text{ v.d.k. } u \in \mathbb{R}^2.$$
 (P₂)

- i) Hàm k(u) có phải là hàm lồi trên \mathbb{R}^2 không?
- ii) Phát biểu điều kiện cần bậc nhất của nghiệm tối ưu địa phương của bài toán (P_2) . Đó có phải điều kiện đủ không? Vì sao?
- iii) Cho $u^0 = (6, \alpha)^T$. Xác định u^1 bằng thuật toán Gradient với thủ tục tìm chính xác theo tia. Điểm u^1 có phải là nghiệm tối ưu của bài toán (P_2) không?

Họ và tên sinh viên:

Lớp:

Ngày - tháng - năm sinh:

Đề 3 - Kiểm tra giữa kỳ: Nhập môn Tối ưu - HK20201 (Thời qian làm bài: 60 phút)

(Không sử dụng tài liệu và điện thoại di động trong phòng thi)

Kí hiệu: $\beta := ngày sinh và \alpha := tháng sinh của em.$

1. Cho véc tơ $v \in \mathbb{R}^n \setminus \{0\}$, đa diện khác rỗng $X \subset \mathbb{R}^n$. Ký hiệu

$$T = \operatorname{Argmin} \{ g(x) = \langle v, x \rangle + \beta : x \in X \}.$$

- i) Cho x^* là tổ hợp lồi của $x^1, x^2 \in T$. Chứng minh rằng $x^* \in T$.
- ii) Giả sử đỉnh x^0 đa diện X có đúng k đỉnh kề là $x^1, x^2, ..., x^k$ và

$$\langle v, x^0 \rangle \le \langle v, x^i \rangle \ \forall i = 1, 2, \dots, k.$$

Chứng minh $x^0 \in T$.

2. Xét bài toán

$$\min k(u) = 4u_1 + 3u_1^2 + 2u_1u_2 + u_2^2 - 8u_2 + \alpha \text{ v.d.k. } u \in \mathbb{R}^2.$$
 (P₁)

- i) Hàm k(u) có phải là hàm lồi trên \mathbb{R}^2 không?
- ii) Phát biểu điều kiện cần bậc nhất của nghiệm tối ưu địa phương của bài toán (P_1) . Đó có phải điều kiện đủ không? Vì sao?
- iii) Cho $u^0 = (0, \alpha)^T$. Xác định u^1 bằng thuật toán Newton thuần túy. Điểm u^1 có phải là nghiệm tối ưu của bài toán (P_1) không?
- 3. Giải bài toán

$$\min\{k(x) = \langle \omega, x \rangle + \beta \ : \ x \in D\}$$

bằng thuật toán hình học với $\omega = (12,24)^T$ và

$$D = \{x \in \mathbb{R}^2 : x_1 - x_2 \le 5, \ 2x_1 + x_2 \ge 6, x_2 \ge 0, \ x_1 \ge 1\}.$$

Họ và tên sinh viên:

Lớp:

Ngày - tháng - năm sinh:

Đề 4 - Kiểm tra giữa kỳ: Nhập môn Tối ưu - HK20201

(Thời gian làm bài: 60 phút)

(Không sử dụng tài liệu và điện thoại di động trong phòng thi)

Kí hiệu: $\beta := ngày sinh$ và $\alpha := tháng sinh$ của em.

1. Xét bài toán

$$\min h(u) = (u_1 - \alpha)^2 + 3(u_2 - 6)^2 + (u_1 - \alpha)u_2 \text{ v.d.k. } u \in \mathbb{R}^2.$$
 (P₁)

- i) Hàm h(u) có phải là hàm lồi trên \mathbb{R}^2 không?
- ii) Phát biểu điều kiện cần bậc nhất của nghiệm tối ưu địa phương của bài toán (P_1) . Đó có phải điều kiện đủ không? Vì sao?
- ii) Cho $u^0 = (\alpha, 6)^T$. Xác định u^1 bằng thuật toán Gradient với thủ tục tìm chính xác theo tia. Điểm u^1 có phải là nghiệm tối ưu của bài toán (P_1) không?
- 2. Xét bài toán

$$\min f(x) = \frac{1}{2}x^T Q x - \langle c, x \rangle + \beta \quad \text{v.d.k.} \quad \mathbb{R}^n,$$
 (P₂)

trong đó Q là ma trận cấp $n \times n$ đối xứng, xác định dương và véc tơ $c \in \mathbb{R}^n \setminus \{0\}$. Cho điểm bất kỳ $x^0 \in \mathbb{R}^n$ có $\nabla f(x^0) \neq 0$. Chứng minh rằng, nếu x^1 được xác định bằng thuật toán Newton thuần túy thì $x^1 \in \operatorname{Argmin}(P_2)$.

3. Giải bài toán

$$\max\{\varphi(x) = \langle c, x \rangle + \beta : x \in P\}$$

bằng thuật toán hình học với $\boldsymbol{c} = (12,6)^T$ và

$$P = \{x \in \mathbb{R}^2 : -x_1 + x_2 \le 5, \ 2x_1 + 5x_2 \ge 10, \ x_2 \ge 1, \ x_1 \ge 0\}.$$

Họ và tên sinh viên:

Lớp:

Ngày - tháng - năm sinh:

Đề 5 - Kiểm tra giữa kỳ: Nhập môn Tối ưu - HK20201

(Thời gian làm bài: 60 phút)

(Không sử dụng tài liệu và điện thoại di động trong phòng thi)

Kí hiệu: $\beta := ngày sinh$ và $\alpha := tháng sinh$ của em.

1. Xét bài toán

$$\min f(x) = 2x_1x_2 + 3x_2^2 + x_1^2 - 8x_1 + 4x_2 + \alpha \text{ v.d.k. } u \in \mathbb{R}^2.$$
 (P₁)

- i) f(x) có phải làm hàm lồi trên \mathbb{R}^2 không?
- ii) Phát biểu điều kiện cần bậc nhất của nghiệm tối ưu địa phương của bài toán (P_1) . Đó có phải điều kiện đủ không? Vì sao?
- iii) Cho $x^0 = (\alpha, 0)^T$. Xác định x^1 bằng thuật toán Newton thuần túy. Điểm x^1 có phải là nghiệm tối ưu của bài toán (P_1) không?
- 2. Giải bài toán

$$\min\{k(x) = \langle \omega, x \rangle + \beta : x \in D\}$$

bằng thuật toán hình học với $\omega = (6,12)^T$ và

$$D = \{ x \in \mathbb{R}^2 : x_1 - x_2 \le 3, 6x_1 + 3x_2 \ge 12, x_1 \ge 1, x_2 \ge 0 \}.$$

3. Xét bài toán

$$\min g(x) = \langle v, x \rangle \text{ v.đ.k. } x \in X, \tag{P_2}$$

trong đó véc tơ $v \in \mathbb{R}^n \setminus \{0\}$ và $X \subset \mathbb{R}^n$ là tập lồi đa diện khác rỗng. Chứng minh rằng bài toán (P_2) không có nghiệm tối ưu khi và chỉ khi tồn tại một hướng lùi xa d^* của X thỏa mãn

$$\langle v, d^* \rangle < 0.$$

Họ và tên sinh viên:

Lớp:

Ngày - tháng - năm sinh:

Đề 6 - Kiểm tra giữa kỳ: Nhập môn Tối ưu - HK20201

(Thời gian làm bài: 60 phút)

(Không sử dụng tài liệu và điện thoại di động trong phòng thi)

Kí hiệu: $\beta := ngày sinh$ và $\alpha := tháng sinh$ của em.

1. Xét bài toán

$$\min h(x) = (x_1 - \alpha)x_2 + (x_1 - \alpha)^2 + 3(x_2 - 6)^2 \text{ v.d.k. } x \in \mathbb{R}^2.$$
 (P₁)

- i) Hàm h(x) có phải là hàm lồi trên \mathbb{R}^2 không?
- ii) Phát biểu điều kiện cần bậc nhất của nghiệm tối ưu địa phương của bài toán (P_1) . Đó có phải điều kiện đủ không? Vì sao?
- iii) Cho $x^0 = (\alpha, 6)^T$. Xác định x^1 bằng thuật toán Gradient với thủ tục tìm chính xác theo tia. Điểm x^1 có phải là nghiệm tối ưu của bài toán (P_1) không?
- 2. Giải bài toán

$$\min\{\varphi(x) = \langle c, x \rangle + \beta : x \in Q\}$$

bằng thuật toán hình học với $c = (16, 8)^T$ và

$$Q = \{x \in \mathbb{R}^2 : -x_1 + x_2 \le 3, 3x_1 + 6x_2 \ge 12, x_2 \ge 1, x_1 \ge 0\}.$$

3. Cho điểm bất kỳ $u^0 \in I\!\!R^n$ có $\nabla f(u^0) \neq 0$. Xét bài toán

min
$$g(u) = \frac{1}{2}u^T M u - \langle d, u \rangle + \beta$$
 v.đ.k. \mathbb{R}^n , (P₂)

trong đó M là ma trận cấp $n \times n$ đối xứng, xác định dương và véc tơ $d \in \mathbb{R}^n \setminus \{0\}$. Giả sử u^1 được xác định bằng thuật toán Newton thuần túy. Chứng minh rằng $u^1 \in \operatorname{Argmin}(P_2)$.

Họ và tên sinh viên:

Lớp:

Ngày - tháng - năm sinh:

Đề 7 - Kiểm tra giữa kỳ: Nhập môn Tối ưu - HK20201

(Thời gian làm bài: 60 phút)

(Không sử dụng tài liệu và điện thoại di động trong phòng thi)

Kí hiệu: $\beta := ngày sinh$ và $\alpha := tháng sinh$ của em.

1. Xét bài toán

$$\min h(x) = \langle c, x \rangle \text{ v.đ.k. } x \in X, \tag{P_1}$$

trong đó véc tơ $c \in \mathbb{R}^n \setminus \{0\}$ và $X \subset \mathbb{R}^n$ là tập lồi đa diện khác rỗng. Chứng minh rằng bài toán (P_1) không có nghiệm tối ưu khi và chỉ khi tồn tại một hướng lùi xa \bar{d} của X thỏa mãn

$$\langle c, \bar{d} \rangle < 0.$$

2. Giải bài toán

$$\min\{k(x) = \langle \omega, x \rangle + \beta : x \in D\}$$

bằng thuật toán hình học với $\omega = (6,12)^T$ và

$$D = \{x \in \mathbb{R}^2 : x_1 - x_2 \le 3, 8x_1 + 4x_2 \ge 16, x_2 \ge 0, x_1 \ge 1\}.$$

3. Xét bài toán

$$\min g(x) = 3x_2^2 + x_1^2 - 8x_1 + 4x_2 + 2x_1x_2 + \alpha \text{ v.d.k. } x \in \mathbb{R}^2.$$
 (P₂)

- i) Hàm g(x) có phải là hàm lồi trên \mathbb{R}^2 không?
- ii) Phát biểu điều kiện cần bậc nhất của nghiệm tối ưu địa phương của bài toán (P_2) . Đó có phải điều kiện đủ không? Vì sao?
- iii) Cho $x^0 = (\alpha, 0)^T$. Xác định x^1 bằng thuật toán Newton thuần túy. Điểm x^1 có phải là nghiệm tối ưu của bài toán (P_2) không?

Họ và tên sinh viên:

Lớp:

Ngày - tháng - năm sinh:

Đề 8 - Kiểm tra giữa kỳ: Nhập môn Tối ưu - HK20201

(Thời gian làm bài: 60 phút)

(Không sử dụng tài liệu và điện thoại di động trong phòng thi)

Kí hiệu: $\beta := ngày sinh$ và $\alpha := tháng sinh$ của em.

1. Xét bài toán

$$\min h(x) = 3(x_1 - 6)^2 + (x_2 - \alpha)^2 + x_1(x_2 - \alpha) \text{ v.d.k. } x \in \mathbb{R}^2.$$
 (P₁)

- i) Hàm số h(x) có phải là hàm lồi trên \mathbb{R}^2 không?
- ii) Phát biểu điều kiện cần bậc nhất của nghiệm tối ưu địa phương của bài toán (P_1) . Đó có phải điều kiện đủ không? Vì sao?
- iii) Cho $x^0 = (6, \alpha)^T$. Xác định x^1 bằng thuật toán Gradient với thủ tục tìm chính xác theo tia. Điểm x^1 có phải là nghiệm tối ưu của bài toán (P_1) không?
- 2. Cho hàm số $f: \mathbb{R}^n \to \mathbb{R}$ và xét bài toán

$$\min \ f(x) \text{ v.đ.k.} \quad x \in \mathbb{R}^n. \tag{P_2}$$

- i) Giả sử $f(x) = \frac{1}{2}x^T M x \langle d, x \rangle + \alpha$, trong đó M là ma trận cấp $n \times n$ đối xứng, xác định dương và véc tơ $d \in \mathbb{R}^n \setminus \{0\}$. Chứng minh rằng, việc giải bài toán (P_2) tương đương với việc giải hệ phương trình tuyến tính Mx = d.
- ii) Nếu f(x) là hàm afin thì có cần xây dựng thuật toán giải bài toán (P_2) không? Vì sao?
- 3. Giải bài toán

$$\max\{k(x) = \langle \omega, x \rangle + \beta : x \in D\}$$

bằng thuật toán hình học với $\omega = (24,12)^T$ và

$$D = \{x \in \mathbb{R}^2 : 3x_1 + 6x_2 \ge 12, -x_1 + x_2 \le 3, x_2 \ge 1, x_1 \ge 0\}.$$

Nhờ các thầy cô coi thi nhắc sinh viên:

- 1. Điền đầy đủ thông tin Ngày sinh, Tháng sinh vào Đề Thi
- 2. Nộp lại đề thi cùng bài thi.
- 3. Bài nào thiếu thông tin về Ngày sinh, Tháng sinh hoặc không nộp đề thi thì bài đó không được tính điểm.