

VSR | EDU

XML

Prof. Dr.-Ing. Martin Gaedke

Technische Universität Chemnitz

Fakultät für Informatik

Professur Verteilte und Selbstorganisierende Rechnersysteme

http://vsr.informatik.tu-chemnitz.de

Chapter 18 SPARQL

SPARQL

- SPARQL Query Language for RDF
 - W3C Recommendation 15 January 2008 http://www.w3.org/TR/rdf-sparql-query/
 - Sparql 1.1 (W3C Recommendation): <u>http://www.w3.org/TR/sparql11-query/</u>
 - "SQL for Semantic Web"
- Sample intial situation

```
StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
    st = iter.next();
    p = st.getProperty();
    o = st.getObject();
    now_do_something(p,o);
}
```

- This is not very exciting, right?
 - What about more complex expressions?
 - And, especially: What if the data is distributed over the Web?

SPARQL Idea

- Idea Queries correspond to graph patterns
 - (subject,?p,?o) is a pattern for a question:
 I'm looking for all triples with a subject subject
- SPARQL creates a subgraph for the query

 Statements of the subgraph constitute the answer to the question

SPARQL and SQL

- SPARQL notation mimics SQL
- Jena example in SPARQL
 - SELECT ?p ?oWHERE {subject ?p ?o}

SPARQL Example

RDF Data (Example in Turtle)

```
• @prefix foaf: <http://xmlns.com/foaf/o.1/> .
```

```
_:a foaf:name "Johnny Lee Outlaw" .
```

```
_:a foaf:mbox <mailto:jlow@example.com> .
```

```
_:b foaf:name "Peter Goodguy".
```

```
_:b foaf:mbox <mailto:peter@example.org>.
```

_:c foaf:mbox <mailto:carol@example.org>.

Query

- PREFIX foaf: http://xmlns.com/foaf/o.1/
- SELECT ?name ?mbox
- WHERE {

```
• ?x foaf:name ?name.
```

• ?x foaf:mbox ?mbox

"Johnny Lee Outlaw" "Peter Goodguy"

<mailto:jlow@example.com>
<mailto:peter@example.org>

SPARQL Outlook

- SPARQL is already supported by many tools
- SPARQL Protocol for RDF
 - http://www.w3.org/TR/rdf-sparql-protocol/
 - W3C Recommendation 15 January 2008
 - W3C Candidate Recommendation 6 April 2006
 - SPARQL Protocol describes the use of SPARQL (data requests) in a distributed context – defines the basis for use of distributed data sets
 - Use of WSDL for description of SPARQL-capable endpoints

Chapter 19 ONTOLOGIES (OWL)

Introduction

- RDFS very useful, but not very powerful
- Examples:
 - Consider:
 - <A> <isLeftOf> ,
 - <isLeftOf> <C>
 - Is <A> <isLeftOf> <C>?
 - There exist two vocabularies
 - {A, B, C} {D, E, F} are they the same?
- One needs something powerful to describe concepts and relationships, which describe and represent domain knowledge

OWL

OWL Web Ontology Language

- W3C Recommendation 10 February 2004
- http://www.w3.org/TR/owl-features/
- Sidenote [Duden Dictionary, translation]: Science of being, of regulatory, conceptual and natural rules of existence.

OWL

- Enables (by means of additional vocabulary bound to formal semantics) stronger interpretation possibilities of Web contents such as XML, RDF and RDFS
- OWL consists of three sub-languages with increasing expressive power: OWL Lite, OWL DL, OWL Full.

OWL: Short Overview

OWL Lite

- Easy to implement and made for simple taxonomies
- equivalence, i.e. owl:sameAs
- Property characteristics, i.e. owl:InverseOf
- Many further aspects: property restrictions, cardinality, intersections

OWL DL

Allows a decidable set of first-order logic

OWL Full

 Same constructs as in OWL DL, but without restrictions; not decidable statements can also be described. Ontology is undecidable, but it, thus, enables higher order predicate logic.

Chapter 20 RDF AND HTML

Introduction

Initial situation

- RDF use in XML applications is simple if schemas can be used
- HTML (Hypertext Markup Language) is an application of SGML
- Questions
 - How can metadata be encoded in HTML?
 - Better: how can RDF be combined with HTML?

HTML and Metadata/RDF — Ideas#1

HTML 1.X

- Metadata: Title, Author, etc. → different discussions
- Different conventions
- Further problem in this case: title and DC.title seen and unseen metadata of a document (extremely hard to maintain, see ex. "WSDL Description vs. Definition")
- <head><title>Some Page Title Metadata</title>
 <meta name="DC.title" content="SomeValue">
 <link rel=Schema.dc href="http://purl.org/metadat/dublin_core">
 </head>

HTML <link>

- Metadata/RDF in an external resource (weak connection to an HTML resource)
- <head>
 <link rel="meta" type="application/rdf+xml" href="meta.rdf"/>
 </head>
- HTML <a>
 - Metadata/RDF in an external resource (weak connection to an HTML resource)
 - <body>
 Text...

HTML and Metadata/RDF — Ideas#2

- XML/RDF in XHTML
 - Obvious approach however, validation is impossible (XHTML-DTDs)

HTML and Metadata/RDF - Ideas#3

- XML/RDF in HTML comments
 - HTML comments enable people to provide other people with information about the code not made for machines

- XML/RDF in URI scheme
 - RFC 2397 defines data as a URI scheme
 - Format: data:[<MIME-type>][;base64],<data>
 - Example

 Text with metadata

HTML and Metadata/RDF – Ideas#4

Microformats

- Use existing standards, such as vCard (RFC 2426) and defined (or "standardized") representation in (X)HTML
- Further information: http://microformats.org
- Example
 - vCard notationTEL; TYPE=HOME: +49.123.456789

Example - Microformats

```
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "h
   2 = <html xmlns="http://www.w3.org/1999/xhtml" >
    3 \(\dagger\) \(\dagger\)
                               <title>Microformats Beispiel</title>
   5 </head>
   6 \( \dots \) \( \
   7 □ Mein Name ist
   8 < div class="vcard">
           <a class="url fn" href="http://gaedke.com/">Martin Gaedke</a>,
10 Sie erreichen mich an der <div class="org">TU Chemnitz</div>
           telefonisch unter <br />
11
           <span class="tel"><span class="type">Büro</span>:
            <span class="value">+49(999) 123456789</span> </span>
13
            <span class="tel"><span class="type">Private</span>:
14
             <span class="value">+49(999) 123456780</span> </span>
           ├</div>
17 - < /body>
18 </html>
```


Example - Microformats

Example - Microformats

HTML and Metadata/RDF – Ideas#5

- HyperRDF (W₃C Note by Dan Connolly)
 - Idea: RDF must be easily extractable by XSLT

 - Further developments: http://www.w3.org/2004/01/rdxh/specbg
- ... various further developments...
- Trend: Blending RDF with (X)HTML
 - Seen and unseen metadata is easier to maintain (no data duplicates → consistency)
 - Different metadata formats → Extraction from (X)HTML
 - Approaches for this approach introduce notation rules to be able to use it together with existing technologies like (X)HTML, CSS etc. (for example, Embedded RDF "."-notation in the Head Element and "-"-body for schema declarations)
 - Examples: Microformats, Embedded RDF (is replaced by RDFa), GRDDL, RDFa

GRDDL

- Gleaning Resource Descriptions from Dialects of Languages (GRDDL)
 - W3C Recommendation 11 September 2007
 - GRDDL is a mechanism of obtaining RDF data from XML documents (especially XHTML documents)
 - Thereby, authors can link their documents to a transformation algorithm (especially XSLT) by using a link element
 - GRDDL-aware agents can execute the transformation algorithm and process the retrieved RDF data
 - http://www.w3.org/TR/grddl-primer/

GRDDL – Example(1)

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"</pre>
   "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
 3
 4 □ < html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
        <head profile="http://www.w3.org/2003/g/data-view">
 5
 6
            <title>My GRDDL-Demo Page</title>
            <link rel="transformation"</pre>
 8
            href="http://www.w3.org/2002/12/cal/glean-hcal"/>
       </head>
 9
10
       <body>
11
       </body>
12
13 </html>
```


Uses HTML profile attribute

- Profile is used to describe that the document uses a certain metadata scheme
- Here, a profile URI for GRDDL is used http://www.w3.org/2003/q/data-view

GRDDL – Example(2)

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"</pre>
   "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
 3
 4 <= <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
        <head profile="http://www.w3.org/2003/g/data-view">
 5
 6
            <title>My GRDDL-Demo Page</title>
            <link rel="transformation"</pre>
 8
            href="http://www.w3.org/2002/12/cal/glean-hcal"/>
       </head>
 9
10
       <body>
11
       </body>
12
13 </html>
```


- Search for a link element with a transformation
- Load the transformation

GRDDL – Example (3)

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"</pre>
    "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
 3
 4 □ < html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
        <head profile="http://www.w3.org/2003/g/data-view">
 5
 6
             <title>My GRDDL-Demo Page</title>
             <link rel="transformation"</pre>
 8
             href="http://www.w3.org/2002/12/cal/glean-hcal"/>
 9
       </head>
10
        <body>
11
        </body>
12
13 </html>
                     XSLT
                                      1 <rdf:Description rdf:about="...">
       XHTML
                                          dc:subject>Some subject</dc:subject>
                                    RDF
       with
                                          dc:date>2006-01-02</dc:date>
                     Transform
       GRDDL
                                          df:Description>
```

RDFa

- RDFa (previously called RDF/A)
 - Collection of attributes for layering RDF on XML languages
 - W3C Recommendation 22 August 2013
 - http://www.w3.org/TR/rdfa-syntax
- Focus
 - Extension of Link and Meta elements (by changing/complementing XHTML)
 - i.e. Meta elements can have sub-elements
 - Defines generic attributes to enable metadata for all elements
 - Similar to microformats but with explicit metadata attributes

RDFa - Example

- XHTML (with unclear meaning):
- A photo of Schmitt.

RDF: <photo1.jpg> <dc:creator> <Literal:"Schmitt">.

- XHTML + RDFa:
- A photo of <span class="author"
 about="photo1.jpg"
 property="dc:creator">
 Schmitt.

RDFa – Another Example

RDFa

- Attributes rel, rev, property indicate a new statement whose name is the value of the attribute
- Subject and object are determined via subject or object resolutions accordingly

RDF:

CC-BY-NC: Prof. Dr. N <foaf:img">http://example.org><foaf:img><photo1.jpg>.

<photo1.jpg><dc:creator> <http://example.org>.

Homework

- How is Metadata implemented in HTML5?
- Homework: Find the specification, and look it up – add some Metadata to your homepage

- What are the <u>data-*</u> attributes?
 - Can we use them in HTML4 as well If yes, what do we have to take care of?

This year it might be relevant for the exam!

