UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

ESCUELA DE POSGRADO MAESTRÍA EN ESTADÍSTICA APLICADA

"MODELOS ESTADÍSTICOS EN PROCESOS PUNTUALES ESPACIALES POISSON PARA EVALUAR LA DISTRIBUCIÓN ESPACIAL DE LOS HECHOS DELICTIVOS EN LIMA, PERÚ"

Presentada por:

BRAULIO QUISPE QUISPE

TESIS PARA OPTAR EL GRADO DE MAGISTER SCIENTIAE EN ESTADÍSTICA APLICADA

> Lima – Perú 2016

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

ESCUELA DE POSGRADO MAESTRÍA EN ESTADÍSTICA APLICADA

"MODELOS ESTADÍSTICOS EN PROCESOS PUNTUALES ESPACIALES POISSON PARA EVALUAR LA DISTRIBUCIÓN ESPACIAL DE LOS HECHOS DELICTIVOS EN LIMA, PERÚ"

TESIS PARA OPTAR EL GRADO DE MAGISTER SCIENTIAE EN ESTADÍSTICA APLICADA

Presentada por:

BRAULIO QUISPE QUISPE

Sustentada y aprobada ante el siguiente jurado:

Mg.Sc. Jesús Walter Salinas Flores
PRESIDENTE

Mg.Sc. Carlos López de Castilla Vásquez PATROCINADOR

Mg.Sc. Jaime Carlos Porras Cerrón MIEMBRO

Mg.Sc. Raphael Félix Valencia Chacón MIEMBRO

Dedicado a Dios, a mi esposa y a mis dos hijos, de igual forma a mis padres y hermanos.

AGRADECIMIENTOS

Mi más sincero agradecimiento a cada uno de los docentes de la maestría de Estadística Aplicada de la Universidad Nacional Agraria La Molina y en especial a mi asesor de tesis, M. Sc. Carlos López de Castilla Vásquez, un buen guía y maestro, por su apoyo inmensurable en el desarrollo de esta tesis, siendo siempre muy acucioso en sus críticas, así mismo por darme la confianza de estar desarrollando un buen trabajo.

Al equipo de "Sistemas de Información Geográfica" de la Unidad de Estadística del Ministerio de Educación, por haberme permitido conocer y aplicar la Estadística Espacial y en general las técnicas del Análisis Espacial al mundo real.

A Dios, a mi esposa, mis hijos y a mis padres por su invalorable apoyo y comprensión en el transcurso de todo el desarrollo de la presente tesis y a todas las personas que indirectamente apoyaron a la conclusión de la misma.

¡Muchas gracias a todos!

RESUMEN

La presente tesis plantea una aplicación de los modelos estadísticos de procesos puntuales espaciales Poisson así como de los modelos Clúster del tipo Neyman - Scott. Particularmente, se enfoca en evaluar la distribución espacial de hechos delictivos y su relación con algunas covariables espaciales. De esta forma se permitirá orientar y/o establecer políticas referidas a seguridad ciudadana de índole nacional y/o local. El área de estudio corresponde a los distritos de Lima Centro y Residencial, para lo cual se toma en cuenta la información de ubicaciones georreferenciadas de los hechos delictivos reportados por las víctimas a finales del año 2013 hasta inicios del 2014. Las ubicaciones de los delitos son representadas por puntos, y el conjunto de estos se consideran un patrón puntual, el cual representa una realización de un proceso puntual espacial subyacente en el espacio de estudio. El modelamiento estadístico se realiza a través de la intensidad de puntos, la cual puede ser estimada para cualquier ubicación específica del área de estudio y son los modelos log-lineales los más usados para representar su relación con un conjunto de covariables espaciales cuyos efectos podemos representar en un conjunto de parámetros; a estos modelos se les conocen como modelos paramétricos de procesos puntuales espaciales. Las estadísticas de resumen, conocidas también como propiedades de primer y segundo orden de un proceso puntual así como los métodos basados en distancia entre puntos, han sido aplicados con fines de realizar el análisis exploratorio y determinar: el tipo de distribución espacial (regular, aleatorio o clústeres) que siguen los hechos delictivos (patrón puntual), la distribución de la distancia de un punto arbitrario a un lugar de ocurrencia de un delito y de la distancia de un hecho delictivo a otro, entre otras. Finalmente, se concluye que la distribución espacial de los hechos delictivos en Lima, no es homogénea, existiendo clustering o agregación de puntos, los cuales se traducen en zonas con mayor incidencia de hechos delictivos y su intensidad guarda relación con la ubicación de los límites distritales, la inversión destinada al orden interno y la densidad poblacional.

Palabras clave: Procesos puntuales espaciales, covariables espaciales, intensidad, seguridad ciudadana, distribución espacial, modelos paramétricos.

ABSTRACT

The present thesis raises an application of the statistical models of Poisson spatial point processes as well as the Cluster models of the Neyman - Scott type. Particularly, it focuses on evaluating the spatial distribution of criminal acts and its relation to some spatial covariates. In this way, it will be possible to orient and/or establish policies related to citizen security of a national and /or local nature. The study area corresponds to the districts of Lima Centro and Residencial, which takes into account the information of georeferenced locations of the criminal events reported by the victims at the end of the year 2013 until the beginning of 2014. The locations of the crimes are represented by points, and the set of these are considered as a spatial point pattern, which represents a realization of a spatial point process underlying the space of study. Statistical modeling is performed through the intensity of points, which can be estimated for any specific location in the study area and are the loglinear models most commonly used to represent their relationship with a set of spatial covariables whose effects can be represented in a set of parameters; these models are known as parametric models of spatial point processes. The summary statistics, also known as first and second order properties of a point process as well as methods based on distance between points, have been applied for the purpose of developing the exploratory analysis and determining: the type of spatial distribution (regular, random or clusters) that follow the criminal acts (point pattern), the distribution of the distance from an arbitrary point to a place of occurrence of a crime and the distance from one criminal act to another, among others. Finally, it is concluded that the spatial distribution of criminal acts in Lima is not homogeneous, there are clustering or aggregation of points, which are translated into areas with a higher incidence of criminal acts and their intensity is related to the location of the district boundaries, the investment destined to the internal order and the population density.

Keywords: Spatial point processes, spatial covariables, intensity, citizen security, spatial distribution, parametric models.

ÍNDICE GENERAL

I.	INTR	ODUCCION	1
	1.1 P	PROBLEMA DE INVESTIGACIÓN	1
	1.2 J	USTIFICACIÓN DE LA INVESTIGACIÓN	3
	1.3	OBJETIVOS DE LA INVESTIGACIÓN	3
		OBJETIVO GENERAL	
		OBJETIVOS ESPECÍFICOS	
II.	REVI	SIÓN DE LITERATURA	5
	2.1 N	NOTACIÓN	6
	2.2	CONCEPTOS BÁSICOS	6
	2.2.1	VENTANA DE OBSERVACIÓN	6
	2.2.2		
	2.2.3	INTENSIDAD Y DENSIDAD	7
	2.2.4	EFECTOS DE BORDE	8
	2.2.5	INTERACCIÓN	8
	2.2.6	EFECTO DE COVARIABLES	
	2.3 P	PROCESOS PUNTUALES EN Rd	9
	2.4 P	PROCESOS PUNTUALES POISSON	11
	2.4.1	PROPIEDADES	13
	2.4.2		
	2.4.3	DENSIDADES PARA LOS PROCESOS DE POISSON	15
		ESTADÍSTICAS DE RESUMEN	
	2.5.1	PROPIEDADES DE PRIMER Y SEGUNDO ORDEN	
	2.5.2	ESTIMACIÓN NO PARAMÉTRICA	
	2.5.3	ESTADÍSTICAS DE RESUMEN BASADA EN LAS DISTANCIAS ENT	
		TOS	
	2.5.4	ESTIMACIÓN NO PARAMÉTRICA DE LAS FUNCIONES - F, G, y J	
	2.5.5		
		PRUEBAS KOLMOGOROV-SMIRNOV PARA CSR	
	2.6 N	MÁXIMA VEROSIMILITUD	
	2.6.1		
		CASO NO HOMOGÉNEO	
	2.6.3	MODELO LOG-LINEAL	
	2.6.4		
	2.6.5		
	2.6.6		
	2.6.7	MODELO NO LOGLINEALES	41
		PROCESOS PUNTUALES COX	
		PROPIEDADES BÁSICAS	
	2.7.2		
		PROCESOS NEYMAN-SCOTT NO HOMOGENEOS	
	2.7.4	ESTIMACION DE PARÁMETROS	47

2.7.5 PROPIEDADES ASINTÓTICAS	48
2.8 DIAGNÓSTICOS DE RESIDUALES	49
2.8.1 RESIDUALES	
2.8.2 PROPIEDADES DE RESIDUALES	
2.8.3 DIAGNÓSTICO BASADO EN GRÁFICOS	53
III. MATERIALES Y MÉTODOS	56
3.1 MATERIALES	
3.1.1 INSUMOS DE DATOS	
3.1.2 MATERIAL DE ESCRITORIO	57
3.2 POBLACIÓN Y MUESTRA	57
3.3 IDENTIFICACIÓN DE VARIABLES	58
3.3.1 VARIABLE DEPENDIENTE	
3.3.2 VARIABLES INDEPENDIENTES – ESPACIALES	58
3.4 FORMULACIÓN DE HIPÓTESIS	59
3.4.1 HIPÓTESIS GENERAL	
3.4.2 HIPÓTESIS ESPECÍFICA	59
3.5 ESPECIFICACIÓN DEL MODELO	
3.5.1 PROCESO PUNTUAL ESPACIAL POISSON NO HOMOGÉNEO	
3.5.2 PAQUETES DE "R" UTILIZADOS	60
3.6 METODOLOGÍA DE ANÁLISIS ESTADÍSTICO	60
IV. RESULTADOS Y DISCUSIÓN	61
4.1 ANÁLISIS EXPLORATORIO ESPACIAL DE LOS DATOS	61
4.1.1 MAPEO DE PUNTOS	
4.1.2 ESTIMACIÓN DE LA INTENSIDAD	
4.1.3 ESTADÍSTICAS DE RESUMEN DE SEGUNDO ORDEN	
4.1.4 PRUEBAS DE ALEATORIEDAD ESPACIAL (CSR)	
4.2 ESTIMACIÓN DE MODELOS	72
4.3 SELECCIÓN DEL MODELO	77
4.4 DIAGNÓSTICO DE RESIDUALES	78
V. CONCLUSIONES	79
VI. RECOMENDACIONES	81
VII. REFERENCIAS BIBLIOGRÁFICAS	82
VIII.ANEXOS	86

ÍNDICE DE CUADROS

Cuadro 1. Funciones K y L teóricas para el proceso Poisson homogéneo	20
Cuadro 2. Funciones de kernel univariado	22
Cuadro 3. Funciones de kernel bivariado	22
Cuadro 4. Funciones F, G y J teóricas para el proceso Poisson homogéneo	27
Cuadro 5. Residuales para procesos puntuales espaciales Poisson	51
Cuadro 6. Estadísticas de resumen del patrón puntual bidimensional homogéneo	63
Cuadro 7. Pruebas de aleatoriedad espacial completa, basado en conteo de cuadrantes	70
Cuadro 8. Prueba de Kolmogorov - Smirnov, correspondiente a la abscisa (longitud)	72
Cuadro 9. Coeficientes del modelo log - lineal univariado para el caso de un proceso espacial Poisson no homogéneo	. 74
Cuadro 10. Coeficientes del modelo log - lineal múltiple para el caso de un proceso espacial Poisson no homogéneo	. 75
Cuadro 11. Coeficientes del modelo log – lineal, para el caso de un proceso espacial clús Neyman - Scott (no homogéneo)	
Cuadro 12. Pruebas de razón de verosimilitud	77

ÍNDICE DE FIGURAS

Fig. 1. Patrón puntual espacial en dos dimensiones observados al interior de W (cu forma es irregular	-
Fig. 2. Proceso puntual bidimensional Poisson homogéneo (lado izquierdo) y homogéneo (lado derecho)	
Fig. 3. Esquemas de cuadratura para datos de patrones puntuales	39
Fig. 4. Ventana de observación	58
Fig. 5. Patrón puntual bidimensional ($d = 2$) de hechos delictivos, donde la ventana de observación W representa las zonas de Lima centro y Residencial coloreadas en color colores.	62
celeste	
Fig. 6. Intensidad de hechos delictivos (Puntos / km^2) para $h = 0.4 km$	64
Fig. 7. Mapa de la Intensidad de hechos delictivos con fondo de imagen satélite Google.	65
Fig. 8. Mapa de la Intensidad de hechos delictivos de las zonas con mayores incidencias	66
Fig. 9. La función K y L, para los datos de hechos delictivos	67
Fig. 10. La función - g, de correlación por pares, para los datos de hechos delictivos	68
Fig. 11. La función – F,G y J, basado en distancia entre puntos	69
Fig. 12. Mapa de la intensidad basado en cuadrantes	71
Fig. 13. Gráfica de Kolmogorov-Smirnov para evaluar la tendencia espacial en la coordenada (x)	72
Fig. 14. Mapa de covariables espaciales donde se superpone el patrón puntual de hechos delictivos	73
Fig. 15. Función K no homogénea	76
Fig. 16. Clúster ajustado (lado izquierdo) e intensidad predicha (lado derecho)	77
Fig. 17. Gráfico de diagnóstico de residuales (raw).	78

ÍNDICE DE ANEXOS

ANEXO 1. Ubicación de los hechos delictivos	86
ANEXO 2. Función - K de Ripley	88
ANEXO 3. Modelos log-lineales simples	90
ANEXO 4. Código del programa R	92

I. INTRODUCCIÓN

1.1 PROBLEMA DE INVESTIGACIÓN

En los últimos años el volumen de datos georreferenciados y por tanto el uso de estos, ha presentado un incremento sustancial gracias al desarrollo de los Sistemas de Información Geográficas (SIG). Algunas aplicaciones se dan por ejemplo en materias de seguridad ciudadana para construir los denominados mapas del delito, el cual consiste en una representación gráfica de los lugares de ocurrencia de los hechos delictivos en un mapa de puntos. A estos puntos se les denominan eventos y su posición en el espacio puede expresarse por sus coordenadas de ubicación (longitud, latitud) para el caso bidimensional¹. El análisis de los eventos observados en forma de puntos dentro de un espacio determinado, donde el interés radica en determinar el tipo de distribución espacial y/o las causas que generan la aparición de estas, son tratados en el análisis espacial de Patrones Puntuales Espaciales², que se basa en la teoría de procesos puntuales espaciales. Por la forma como los puntos se encuentran distribuidas en el espacio, se pueden distinguir entre patrones (completamente) aleatorios, agrupados (espacialmente agregados), y regulares. La distinción anterior no debe conducir a la falsa impresión de que los dos últimos tipos de patrones no contienen ningún tipo de aleatoriedad (Schabenberger y Gotway, 2005).

Uno de los modelos estadísticos más conocidos para el análisis de patrones puntuales espaciales es el proceso puntual espacial Poisson. A partir de estos se construyen modelos más complejos para agregados de puntos (tales como el proceso Clúster) y modelos para interacción entre puntos como son los procesos puntuales de Markov (Baddeley et al., 2000; Moller y Waagepetersen, 2004). Específicamente en esta tesis se hace énfasis a los Modelos de Procesos Poisson No Homogéneos y los Procesos Neyman-Scott que son un caso especial de los procesos clústers que son útiles cuando los puntos se encuentran formando agregados espaciales. Los *modelos paramétricos* de procesos puntuales Poisson

¹ De manera general, los puntos pueden estar situados en una región de dos dimensiones o más dimensiones, en la superficie de la Tierra o en un volumen *d* dimensional, etc.

² El análisis espacial de patrones puntuales espaciales, es una rama de la Estadística Espacial (Bivand, 2013) donde los eventos son registrados en forma de puntos.

y de Neyman - Scott, se plantean en el término *intensidad* (los más usados se expresan en la forma log-lineal) con el fin de analizar el efecto de las covariables espaciales, y la existencia o no de tendencia espacial. A estos modelos también se les conoce como *procesos puntuales Poisson no homogéneo* y *Proceso Neyman - Scott no homogéneo* dado que la intensidad es no homogénea y dependientes de covariables espaciales. El modelo nulo por lo general es el proceso puntual Poisson homogéneo conocido también como Aleatoriedad Espacial Completa (CSR, por sus siglas en inglés), en la cual la intensidad se asume homogénea a lo largo de todo el espacio de estudio.

Por otra parte, uno de los problemas en temas de seguridad ciudadana que afronta el país, es sin lugar a duda la delincuencia. Actualmente una de las herramientas más utilizadas por las municipalidades distritales de Lima, son los mapas del delito (MLM, 2016), donde los hechos delictivos se representan en forma de puntos. Analizar la distribución espacial de los hechos delictivos (eventos), involucra considerar su localización o ubicación espacial y a partir de éstas evaluar su distribución en el espacio, es decir, los puntos (eventos) pueden estar distribuidos homogéneamente en todo el espacio (territorio) de estudio o en el caso no homogéneo pueden existir zonas con mayor incidencia de hechos delictivos pudiendo encontrarse también formando agregados espaciales. En caso de las técnicas estadísticas clásicas suponen que al estudiar un fenómeno se toman observaciones bajo circunstancias idénticas e independientes entre sí y por ello no son convenientes para analizar fenómenos que varían en tiempo o espacio. Un aspecto metodológico importante para los procesos puntuales espaciales, es el hecho de que la información observada, i.e., el patrón puntual no solo consiste en un conjunto de ubicaciones de los puntos, sino también la ausencia de puntos en otras ubicaciones es también informativo (Baddeley et al., 2005). Esto es útil para entender las relaciones de la ausencia de puntos con las covariables espaciales.

Ante dichos planteamientos surgen una serie de interrogantes, principalmente: ¿Existe algún modelo Estadístico de Patrones puntuales que permita describir la distribución espacial de los hechos delictivos en la ciudad de Lima? y específicamente: ¿Los hechos delictivos, ocurren de manera homogénea a lo largo de la ciudad?, ¿En los lugares con mayor densidad poblacional, existe mayor ocurrencia de hechos delictivos?, ¿La inversión en orden interno efectuado por los Municipios, favorece a la reducción de la delincuencia?, ¿Los límites jurisdiccionales (distritales) favorecen al incremento de los hechos delictivos?, ¿La distribución espacial de las comisarías y serenazgos, tiene efecto reductor en los hechos delictivos? y ¿Existe tendencia espacial de los hechos delictivos?

1.2 JUSTIFICACIÓN DE LA INVESTIGACIÓN

Las ubicaciones de los puntos en un mapa de delitos, no son estáticas, al contrario supóngase que presentan una dinámica muy variada. Así, el número de hechos delictivos ocurridos en la ciudad de Lima, en un periodo de estudio puede considerarse variable y lo mismo ocurre con los lugares de ocurrencia. Estos dos aspectos hacen posible modelar el comportamiento de los hechos delictivos como un proceso puntual espacial pudiendo ser de Poisson y una realización de este (el conjunto de todos los hechos delictivos observados y representado por puntos) en un periodo o momento dado, es un patrón puntual de hechos delictivos.

De esta forma, el análisis espacial de patrones puntuales espaciales surgió como una herramienta que fue utilizada para determinar qué tipo de distribución espacial tienen los hechos delictivos en la ciudad de Lima y para modelar dichos fenómenos, tomando en cuenta la información de su ubicación y su relación con la densidad poblacional, la inversión en orden interno efectuado por los municipios, la ubicación de las comisarías y la ubicación de los límites jurisdiccionales. Así, el presente trabajo de investigación tiene un alcance principalmente del *tipo correlacional* y en menor parte será del *tipo explicativo*.

Aplicar el análisis de patrones puntuales en temas de seguridad ciudadana, ayudará principalmente al gobierno Nacional, Regional y/o local a orientar las políticas referidas a seguridad ciudadana, localizar las zonas de mayor incidencia delictiva tomando en cuenta su localización, visualización y cuantificación del problema desde el punto de vista espacial y/o territorial.

1.3 OBJETIVOS DE LA INVESTIGACIÓN

1.3.1 OBJETIVO GENERAL

Estimar el mejor modelo estadístico de procesos puntuales espaciales que se ajuste al patrón puntual de hechos delictivos

1.3.2 OBJETIVOS ESPECÍFICOS

Los objetivos específicos, consisten en determinar:

1. El tipo de patrón puntual espacial que caracteriza a la distribución los hechos delictivos en la ciudad de Lima. Es decir, determinar si los hechos delictivos se

encuentran distribuidos de forma aleatoria, o regular, o se encuentran formando agregados a lo largo de la ciudad de Lima.

- 2. Si en los lugares con mayor densidad poblacional, existe mayor ocurrencia de hechos delictivos.
- 3. Si la inversión en orden interno efectuado por los Municipios, favorece a la reducción de la delincuencia.
- 4. Si los límites jurisdiccionales (distritales) favorecen al incremento de los hechos delictivos.
- 5. Si la distribución espacial de las comisarías y serenazgos, tiene efecto reductor en los hechos delictivos y finalmente determinar si existe tendencia espacial de los hechos delictivos.

El procedimiento consistió primero en la estimación de las estadísticas de resumen (basadas en la medida de la intensidad, la función de correlación por pares y los métodos basados en distancias desde un enfoque principalmente no paramétrico) del patrón puntual de hechos delictivos (ocurridos a finales del año 2013 hasta inicios del 2014, en los distritos de Lima Centro y Residencial) y las pruebas aleatoriedad espacial completa (CSR), para determinar el tipo de distribución espacial que siguen los puntos. Seguidamente se aplicaron los modelos estadísticos de procesos puntuales espaciales Poisson y el Proceso Neyman – Scott, ambos no homogéneos, para evaluar la dependencia espacial de la intensidad de los hechos delictivos con las covariables: densidad poblacional, inversión en orden interno efectuado por los municipios, distancia a límites distritales y la ubicación de los puestos de serenazgos y/o de seguridad ciudadana.

II. REVISIÓN DE LITERATURA

El análisis Estadístico de Patrones Puntuales junto a la Geoestadística y el Análisis de datos Lattices constituyen las tres áreas más importantes de la Estadística Espacial. Un patrón puntual, constituye una realización de un proceso puntual³, que consiste en un arreglo (patrón) de puntos denominados eventos⁴. Por ejemplo, la ubicación de los árboles en un área de bosque, partículas de sangre en una placa de vidrio, las galaxias en el universo. Estos objetos se representan de una manera natural por puntos y marcas. Los puntos describen las ubicaciones de los objetos, y las marcas proporcionan información adicional, caracterizando los objetos a través de su tipo, tamaño o de forma. Así se diferencian entre patrones puntuales propiamente dichos y los patrones puntuales marcados.

Usualmente el análisis de patrones puntuales comienza con una simple representación gráfica usando un mapa de puntos. Los puntos pueden estar dispersos aleatoriamente a lo largo del espacio, mostrando regularidad o puede darse el caso en el que se muestra inhibición entre puntos o formando una estructura de clúster resultante de una interacción negativa y positiva respectivamente. Así una inspección visual suministra una caracterización cualitativa del tipo de patrón, aunque en términos bastante vagos se utilizan en la descripción inicial (agrupados, agregados, irregular, regular, inhibido, uniforme). También puede indicar las correlaciones entre los mismos o entre la intensidad de puntos y covariables espaciales, es decir, otras estructuras aleatorias que influyen en la distribución espacial de puntos tales como propiedad del suelo o influencias físicas.

Las estadísticas de resumen para procesos puntuales espaciales difieren fundamentalmente de la estadística clásica⁵. Se enfrenta a varios tipos de correlaciones en los patrones. Las distancias entre puntos relativos están correlacionadas, así como el número de puntos en

³Un proceso puntual espacial (*spatial point process*) es un mecanismo estocástico que genera un conjunto contable de eventos x_i en el espacio. (Diggle, 2014).

⁴ Un punto se refiere a cualquier lugar arbitrario en la región de estudio mientras que un evento se refiere a una observación.

⁵ La estadística clásica típicamente analiza observaciones independientes y supone una distribución gaussiana como consecuencia del teorema del límite central.

las regiones adyacentes. Además, las características de los objetos representados por los puntos pueden ser (espacialmente) correlacionados. De ahí el análisis estadístico está muy preocupado con la detección y descripción de estas correlaciones. Muchos aspectos diferentes de la naturaleza de un patrón puntual espacial específico, pueden ser descritos con el uso de las estadísticas de resumen adecuadas. La más sencilla de ellas es la intensidad de puntos⁶, que en el caso pueda considerarse constante a través del espacio, se asemeja al uso de la media muestral \bar{x} en la estadística clásica. Si la intensidad de puntos no es homogénea, a menudo se sospecha de la influencia de las covariables espaciales⁷. Sin embargo, las características que son más propias de las estadísticas de procesos puntuales describen correlaciones entre los puntos en el patrón con respecto a sus distancias, por ejemplo, distancias a los vecinos más cercanos o el número de vecinos a ciertas distancias dadas. Además de la descripción estadística de patrones de puntos y a menudo en combinación con ello, los modelos de procesos puntuales adecuados pueden ser definidos y ajustarse a los datos.

2.1 NOTACIÓN

La notación usada en el presente trabajo se presenta a continuación:

X: Representa un proceso puntual definido en una región $S \subseteq \mathbb{R}^d$.

 $W \subset S$: Es una ventana de observación acotada.

 $x = \{x_1, \dots, x_n\}$: Un patrón puntual o una realización finita del proceso puntual X, conformado por n puntos.

 u, v, \dots : Para denotar puntos en S

 $\rho(u)$: Denota la intensidad en la región que contiene al punto u.

f: Para denotar una función de densidad de probabilidad.

A continuación se detalla los conceptos relacionados en la notación anterior.

2.2 CONCEPTOS BÁSICOS

2.2.1 VENTANA DE OBSERVACIÓN

La ventana de observación W constituye la región en la cual se observa un patrón puntual y se asume que es conocida. No es correcto analizar un conjunto de datos de patrones

⁶ La intensidad de puntos se refiere al número medio de objetos por unidad de área o volumen.

Algunos ejemplos de covariables espaciales son: la elevación, precipitación.

puntuales para encontrar la ventana de observación adecuada (Cressie, 1991). La estimación de las estadísticas de resumen (por ejemplo la intensidad de puntos) depende de la ventana de observación.

2.2.2 PATRONES PUNTUALES ESPACIALES

La realización de un *proceso puntual*⁸ en el caso de un espacio bidimensional, consiste en un arreglo (patrón) de puntos $x = \{x_1, ..., x_n\}$ contenidos en un conjunto aleatorio x. Estos puntos se denominan los eventos del proceso x0 cuando todos los eventos de la realización se registran, se dice que es un patrón puntual, en caso contrario si los eventos son observados solo parcialmente, el patrón se llama un patrón muestreado (*Sampled point mapped*). Los puntos x_i , x_i = 1; 2; ...; x_i con coordenadas espaciales (long_i, lat_i) en las aplicaciones son solo observados dentro de una ventana de observación (área de estudio) x_i 0 tal como se muestra en la Figura 1 (Schabenberger y Gotway, 2005).

Fig. 1: Patrón puntual espacial en dos dimensiones observados al interior de *W* (cuya forma es irregular).

2.2.3 INTENSIDAD Y DENSIDAD

El análogo del valor medio o esperado de una variable aleatoria es la intensidad 10 de un proceso puntual. La intensidad ρ se interpreta como la densidad media de puntos (número esperado de puntos por unidad de área). Dicha medida puede ser constante (uniforme u homogénea) o puede variar de un lugar a otro (no homogénea). De manera formal se define de la siguiente forma:

⁸ Un proceso puntual espacial (*spatial point process*) es un mecanismo estocástico que genera un conjunto numerable de eventos x_i en el espacio (Diggle, 2014).

De manera general un punto u se refiere a cualquier lugar arbitrario en la región de estudio mientras que un *evento* se refiere a una observación.

¹⁰ Investigar la intensidad constituye uno de los primeros pasos en el análisis de un patrón puntual.

$$\rho(u) = \lim_{|du| \to 0} \left\{ \frac{\mathbb{E}[N(du)]}{|du|} \right\}$$
 (2.1)

 $\mathbb{E}[.]$ denota el esperado de una variable aleatoria; N(du) denota el número de eventos en la región infinitesimal du que contiene el punto u y |du| es el área de du (Diggle, 2014).

La función de *densidad espacial* f tiene las mismas propiedades de la densidad univariada, pero su dominio es el área de estudio en el que se lleva a cabo el proceso puntual. Como una función alternativa para medir la distribución espacial de los eventos, es posible utilizar a la intensidad $\rho(u)$ del proceso puntual, que es proporcional a su densidad espacial. La constante de proporcionalidad es el número esperado de eventos del proceso puntual en la región observada.

La intensidad y la densidad espacial son parte de las propiedades de primer orden porque miden la distribución de los acontecimientos en la región de estudio.

2.2.4 EFECTOS DE BORDE

Los efectos de borde (*Edge -Effects*) se presentan en el análisis del patrón puntual espacial por ejemplo cuando la región W en la que se observa el patrón puntual forma parte de una región más grande en el cual opera el proceso subyacente. La dificultad esencial es que no se observan los eventos fuera de W que pueden interactuar con eventos observados dentro de W pero, precisamente porque no se observan los acontecimientos en cuestión, es difícil tomar en cuenta de forma adecuada (Diggle, 2014).

Para algunas estadísticas de resumen, los efectos de borde pueden ser ignorados dependiendo si la ventana de observación coincide con el espacio donde se define el proceso puntual espacial. Algunas alternativas para sobrellevar los efectos de borde han sido descritas por Baddeley et al. (2016).

2.2.5 INTERACCIÓN

La interacción entre puntos, es la dependencia estocástica entre puntos en un patrón puntual. Usualmente, se espera que la dependencia sea más fuerte entre puntos que están cerca uno del otro y débil en caso contrario. Estos se miden a través de las propiedades de

segundo orden¹¹, que reflejan toda tendencia de los eventos que aparezcan agrupadas, espaciadas de forma independiente o regularmente. Las propiedades de segundo orden son descritas en detalle por Ripley (1976), Moller y Waagepetersen (2004) y Diggle (2014).

2.2.6 EFECTO DE COVARIABLES

Las covariables pueden servir para eliminar la tendencia espuria, explicar la variación en la intensidad, o hacer inferencias condicionadas a otro patrón espacial. Cualquier tipo de datos puede ser tratado como variable explicativa (covariable). Una "función espacial", "covariable espacial" o "covariable geoestadística", es una función Z(u) observable (potencialmente) en cada localización espacial $u \in W$.

Los valores de las covariables no solo deben ser observados en los puntos de datos, ya que para investigar la dependencia del proceso puntual con respecto a la covariable, necesitamos tener por lo menos algunas observaciones de la covariable en los otros puntos de la región de estudio. Alternativamente, la información de la covariable puede consistir en otro patrón espacial, tal como un patrón puntual o un patrón de segmento de línea. La forma en que esta información de la covariable entra en el análisis o modelo estadístico depende en gran medida del contexto y de la elección del modelo. Típicamente, el patrón en las covariables se utiliza para definir una función espacial sustituta Z, por ejemplo, Z(u) puede ser la distancia de u al segmento de línea más cercano. El conjunto de covariables para un patrón puntual nos permiten, investigar si la intensidad depende de las covariables y/o estudiar la interacción entre puntos, antes de analizar los efectos de las covariables en la intensidad.

2.3 PROCESOS PUNTUALES EN \mathbb{R}^d

El desarrollo de la teoría de procesos puntuales, han sido descrito a detalle en Moller y Waagepetersen (2004) y Daley y Vere - Jones (2008).

Formalmente, se define un proceso puntual espacial X, como un subconjunto aleatorio numerable de un espacio $S \subseteq \mathbb{R}^d$ (el caso más simple es cuando d=2). Una realización de tal proceso es un patrón puntual espacial $x=\{x_1,...,x_n\}$ de $n\geq 0$ puntos contenidos

_

¹¹ La separación entre las propiedades de primer y segundo orden, puede ser difícil sin más suposiciones. Por ejemplo, ¿los grupos de eventos que aparecen en un lugar específico es porque la intensidad es mayor allí o porque los eventos se agrupan? En general, se supone que la interacción entre los puntos se produce a pequeña escala, mientras que la variación a gran escala se refleja en la intensidad.

en S. En muchas aplicaciones S es un rectángulo d-dimensional o la totalidad de \mathbb{R}^d , sin embargo también podría ser, por ejemplo, una esfera (d-1) – dimensional.

Para especificar la distribución de X, puede definirse la distribución del número de puntos n(X) y para cada $n \ge 1$ condicionado a n(X) = n, la distribución conjunta de los n puntos en X. Un enfoque equivalente es especificar la distribución de las variables $N(B) = n(X_B)$ para subconjuntos $B \subseteq S$, donde $X_B = X \cap B$.

En la práctica observamos sólo los puntos contenidos en una ventana de observación limitada $W \subseteq S$. En general la ventana W se asume fija y conocida. Como $X \setminus W$ no es observado, nos enfrentamos a un problema al problema de efectos de borde. En la figura 2.1, d=2 y W es de forma irregular. En el caso donde no se conoce la región en la cual el proceso puntual espacial se encuentra definido o si la región es muy grande o si se imponen ciertas condiciones tales como estacionariedad 12 , entonces podría ser apropiado considerar un proceso puntual infinito en $S \subseteq \mathbb{R}^d$.

Nos centraremos principalmente en procesos puntuales X cuyas realizaciones son subconjuntos de S localmente finitos. Formalmente, para cualquier subconjunto $x \subseteq S$, denotaremos n(x) a la cardinalidad de x, asumiremos $n(x) = \infty$ si x no es finito. Por tanto se dice x puede ser localmente finito, si $n(x_B) < \infty$ siempre que $B \subseteq S$ está acotado, donde

$$x_B = x \cap B$$

es la restricción de una configuración puntual x a B (similarmente X_B es la restricción de X a B). Por lo tanto X toma valores en el espacio definido por:

$$N_{lf} = \{x \subseteq S : n(x_B) < \infty \text{ para todo } B \subseteq S\}.$$

Los elementos de N_{lf} se llaman configuraciones puntuales localmente finitos, y se denotan por x,y,..., mientras u,v,... denotan puntos en S. La configuración puntual vacía se denota por \emptyset . En los sucesivo usaremos de la notación para referirnos a $x \cup u$ para $x \cup \{u\}$, $x \setminus v$ para $x \setminus \{v\}$, etc, cuando $x \in N_{lf}$ y $u,v \in S$.

¹² Un proceso puntual X sobre \mathbb{R}^d es estacionaria si su distribución es invariante por traslaciones, es decir, la distribución de $X + s = \{u + s : u \in X\}$ es el mismo que el de X para cualquier $s \in \mathbb{R}^d$. Es isotrópica si su distribución es invariante bajo rotaciones sobre el origen de \mathbb{R}^d , es decir, la distribución de $OX = \{Ou : u \in X\}$ es la misma que la de X para cualquier rotación O alrededor del origen.

Muchas veces los puntos llevan información extra unidos a ellos, conocida como marcas, pudiendo ser éstas variables aleatorias o no, pero no serán descritos en este trabajo. Para más detalle consulte Moller y Waagepetersen (2004).

2.4 PROCESOS PUNTUALES POISSON

Los procesos puntuales Poisson juegan un papel fundamental y sirven como una clase de modelos "Sin Interacción" o "Aleatoriedad Espacial Completa" en patrones puntuales espaciales. También sirven como procesos de referencia cuando se estudian estadísticas de resumen y cuando se construyen modelos más avanzados de procesos puntuales. Para más detalle consulte (Cox y Isham, 1980; Kingman, 1993). Así, un proceso puntual X en S, con función de intensidad $\rho: S \to [0, \infty)$ integrable localmente 3 y medida de intensidad $\mu(B) = \int_{B} \rho(u) du$ localmente finita¹⁴, es de Poisson si para cada región acotada $B \subseteq S$ con $\mu(B) > 0$:

- a) $N(B) \sim Po(\mu(B))$, la distribución Poisson con media $\mu(B)$;
- b) Teniendo en cuenta N(B), los puntos en X_B son i.i.d. con densidad proporcional a $\rho(u)$, es decir $f(u) = \rho(u)/\mu(B)$, donde $u \in B$.

y se escribe $X \sim Poisson(S, \rho)$.

Para cualquier $B \subseteq S$ acotado, μ determina el número esperado de puntos en B, es decir, $\mathbb{E}[N(B)] = \mu(B).$

De la condición b) se tiene que la densidad condicional de n tuplas ordenadas artificialmente $(x_1, ..., x_n)$ dado N(B) = n es $f(x_1, ..., x_n) = \prod_{i=1}^n \rho(x_i) / \mu(B)^n$. Mientras que de la condición a) $f(N(B) = n) = (e^{-\mu(B)}(\mu(B))^n)/n!$. Así de los postulados a) y b) la densidad conjunta de n y $(x_1, ..., x_n)$ está dado por:

$$f\{(x_1, ..., x_n), n\} = f(x_1, ..., x_n) f(n)$$

$$f\{(x_1, ..., x_n), n\} = \left\{ \frac{\prod_{i=1}^n \rho(x_i)}{\mu(B)^n} \right\} \left\{ \frac{e^{-\mu(B)} (\mu(B))^n}{n!} \right\}$$

$$f\{(x_1, ..., x_n), n\} = \left\{ \frac{e^{-\mu(B)} \prod_{i=1}^n \rho(x_i)}{n!} \right\}$$
(2.2)

¹³ Esto es, $\int_{B} \rho(u) du < \infty$ para todo $B \subseteq S$ ¹⁴ Esto es, $\mu(B) < \infty$ para todo $B \subseteq S$

Para más detalle consulte Cressie (1991).

Si ρ es constante, el proceso Poisson (S, ρ) se denomina proceso de Poisson homogéneo en S con ratio o intensidad ρ , de lo contrario se dice un proceso de Poisson no homogéneo sobre S. Por otra parte, el proceso Poisson (S, 1) se llama proceso puntual de Poisson estándar o proceso Poisson de tasa unitaria sobre S.

Un proceso puntual Poisson homogéneo en \mathbb{R}^d es isotrópico y estacionario 15 y $\rho^{-1/d}$ es un parámetro de escala, desde que $X \sim Poisson$ (\mathbb{R}^d , 1) implica que $\{\rho^{-1/d}u: u \in X\} \sim Poisson$ (\mathbb{R}^d , ρ).

Un proceso Poisson homogéneo, es conocido también como Aleatoriedad Espacial Completa (CSR, por sus siglas en ingles) y representa el tipo de proceso puntual en el que todos los eventos se distribuyen de forma independiente y de manera uniforme en la región S en la que se produce el proceso puntual. Esto significa que la ubicación de un punto no afecta las probabilidades de otros puntos que aparecen en las inmediaciones y que no hay regiones donde es más probable que aparezcan los eventos. Más formalmente Diggle (2014) describe un Proceso Poisson homogéneo como el cumplimiento de:

- a) Para algún $\rho > 0$ y una región plana finita B, el número de puntos N(B) siguen una distribución Poisson con media $\mu = \rho |B|$.
- b) Dado que existen n puntos dentro de la región B, es decir, N(B) = n, las ubicaciones de estos puntos son i.i.d. de manera uniforme en el interior de A.
- c) El número de puntos N(A) y N(B) de dos regiones disjuntas A y B son variables aleatorias independientes.

De la condición b) se tiene que la densidad condicional de n tuplas ordenadas artificialmente $(x_1, ..., x_n)$ dado N(B) = n es, $f(x_1, ..., x_n) = 1/|B|^n$. Mientras que de la condición a) $f(N(B) = n) = (e^{-\mu}\mu^n)/n!$. Así de los postulados a) y b) la densidad conjunta de n y $(x_1, ..., x_n)$ está dado por:

$$f\{(x_1, ..., x_n), n\} = f(x_1, ..., x_n)f(n)$$

$$f\{(x_1, ..., x_n), n\} = (1/|B|^n) (e^{-\mu}\mu^n)/n!$$

-

¹⁵ Bivand *et. al.* (2013) comenta, es estacionaria porque la intensidad es constante y la intensidad de segundo orden depende sólo de la relación de las posiciones de dos puntos (es decir, dirección y distancia). Es isotrópica porque la intensidad de segundo orden es invariante a la rotación. Por lo tanto, el proceso puntual tiene intensidad constante y su intensidad de segundo orden sólo depende la distancia entre dos puntos, independientemente de las posiciones relativas de los puntos.

$$f\{(x_1, ..., x_n), n\} = (1/|B|^n) \left(e^{-(\rho|B|)}(\rho|B|)^n\right)/n!$$

$$f\{(x_1, ..., x_n), n\} = \frac{\rho^n e^{-\rho|B|}}{n!}$$
(2.3)

Para más detalle consulte Cressie (1991).

Algunos ejemplos simulados de procesos puntuales de Poisson homogéneo y no homogéneo se muestran en la Figura 2.

Fig. 2: Proceso puntual bidimensional Poisson homogéneo en el lado izquierdo y no homogéneo en el lado derecho (Moller y Waagepetersen, 2004).

2.4.1 PROPIEDADES

Las propiedades de existencia y dispersión independientes más importantes que cumple el proceso de Poisson se mencionan a continuación:

(i) $X \sim Poisson(S, \rho)$ si y sólo si para todo $B \subseteq S$ $con \mu(B) = \int_B \rho(u) du < \infty$ y todos los $F \subseteq N_{lf}$,

$$P(X_{B} \in F) = \sum_{n=0}^{n} P(N(B) = n) P(x \in F)$$

$$P(X_{B} \in F) = \sum_{n=0}^{\infty} \frac{e^{-\mu(B)}}{n!} \int_{B} \dots \int_{B} \mathbf{1}[x \in F] \rho(x_{1}) \dots \rho(x_{n}) dx_{1} \dots dx_{n}$$
(2.4)

Donde $x = \{x_1, ..., x_n\}$, y la integral para n = 0 se lee como $\mathbf{1}[\emptyset \in F]$.

(ii) Si $X \sim Poisson(S, \rho)$, entonces para funciones $h: N_{lf} \to [0, \infty)$ y $B \subseteq S$ con $\mu(B) < \infty$,

$$\mathbb{E}[h(X_B)] = \sum_{n=0}^{\infty} \frac{e^{-\mu(B)}}{n!} \int_B \dots \int_B h(\{x_1, \dots, x_n\}) \, \rho(x_1) \dots \rho(x_n) dx_1 \dots dx_n$$

Muchas veces en la literatura esta propiedad es reemplazada por la condición que $N(B_1),...,N(B_n)$ son independientes para conjuntos disjuntos $B_1,...,B_n \subseteq S$ y $n \ge 2$. Esta propiedad es llamada dispersión independiente (independent scattering).

- (iii) $X \sim Poisson(S, \rho)$ existe y está determinada únicamente por sus probabilidades nulas $v(B) = P(N(B) = 0) = \frac{\exp(-\mu(B))\mu(B)^0}{0!} = \exp(-\mu(B))$, acotado $B \subseteq S$. Esta es la probabilidad nula para un proceso de Poisson con la medida de intensidad μ .
- (iv) Si X es un proceso de Poisson en S, entonces $X_{B_1}, X_{B_2}, ...$ son independientes para conjuntos disjuntos $B_1, B_2, ... \subseteq S$. Esto explica la terminología de *no interacción y aleatoriedad espacial completa* en el proceso de Poisson. Por otro lado

$$\rho^{(n)}(u_1,\ldots,u_n)=\rho(u_1)\ldots\rho(u_n)$$

refleja la no interacción. Estacionariedad significa que $\rho(u)$ es constante e implica isotropía de X.

Para verificar las pruebas de las propiedades anteriores consulte Moller y Waagepetersen (2004).

2.4.2 OPERACIONES ENTRE PROCESOS PUNTUALES

La Superposición y Adelgazamiento (*Superpositioning and Thinning*) constituyen las dos operaciones básicas para procesos puntuales.

Una superposición se define como la unión disjunta $\bigcup_{i=1}^{\infty} X_i$ de procesos puntuales X_1, X_2, \dots ,

Si $X_i \sim Poisson\ (S, \rho_i)$, i=1,2,... son independientes entre sí y $\rho=\sum \rho_i$ es localmente integrable, entonces con probabilidad uno, $X=\bigcup_{i=1}^{\infty} X_i$ es una unión disjunta, y $X\sim Poisson\ (S,\rho)$.

Sea la función $p: S \to [0,1]$ y X un proceso puntual en S. El proceso puntual $X_{thin} \subseteq X$ obtenido por inclusión $u \in X$ en X_{thin} con probabilidad p(u), donde los puntos son incluidos/excluidos de forma independiente el uno del otro, se dice que es un adelgazamiento independiente de X con probabilidades de retención p(u), $u \in S$. Formalmente, podemos establecer

$$X_{thin} = \{u \in X : R(u) \le p(u)\}$$

donde R(u)~Uniforme[0,1], $u \in S$, son mutuamente independientes e independiente de X.

Los procesos de Poisson son cerrados tanto bajo superposición y adelgazamiento independiente, es decir, supóngase que $X \sim Poisson(S, \rho)$ está sujeto a un *adelgazamiento independiente* con probabilidades de retención p(u), $u \in S$, y $\rho_{thin}(u) = p(u)\rho(u)$, $u \in S$. Entonces X_{thin} y $X \setminus X_{thin}$ son procesos Poisson independientes con funciones de intensidad ρ_{thin} y $\rho - \rho_{thin}$, respectivamente. Para más detalle consulte la sección 3.2.2 de Moller y Waagepetersen (2004).

2.4.3 DENSIDADES PARA LOS PROCESOS DE POISSON

Si X_1 y X_2 son dos procesos puntuales definidos sobre un mismo espacio S, entonces X_1 es absolutamente continua con respecto a X_2 (o más precisamente la distribución de X_1 es absolutamente continua con respecto a la distribución de X_2) si y sólo si $P(X_2 \in F) = 0$ implica que $P(X_1 \in F) = 0$ para $F \subseteq N_{lf}$. De manera equivalente, por el teorema de Radon-Nikodym (Billingsley, 1995), existe una función $f: N_{lf} \to [0, \infty]$ de modo que

$$P(X_1 \in F) = \mathbb{E}[\mathbf{1}[X_2 \in F]f(X_2)], F \subseteq N_{lf}$$

llamaremos f a la densidad para X_1 con respecto a X_2 .

Las siguientes proposiciones muestran que los procesos de Poisson no son siempre absolutamente continuos con respecto a cualquier otro; pero son siempre absolutamente continuas con respecto al *proceso de Poisson estándar* si consideramos S acotada.

- (i) Para cualquier número $\rho_1 > 0$ y $\rho_2 > 0$, Poisson (\mathbb{R}^d, ρ_1) es absolutamente continua con respecto a Poisson (\mathbb{R}^d, ρ_2) si y sólo si $\rho_1 = \rho_2$.
- (ii) Para i = 1, 2, supóngase que ρ_i : $S \to [0, \infty)$ tal que $\mu_i(S) = \int_S \rho_i(u) du$ es finito, y que $\rho_2(u) > 0$ siempre que $\rho_1(u) > 0$. Entonces Poisson (S, ρ_1) es absolutamente continua con respecto a Poisson (S, ρ_2) , con densidad

$$f(x) = \exp(\mu_2(S) - \mu_1(S)) \prod_{u \in x} \rho_1(u) / \rho_2(u)$$
(2.5)

para configuraciones puntuales finitas $x \subset S$ (teniendo en cuenta que 0/0 = 0). Para más detalle consulte la sección 3.2.4 de Moller y Waagepetersen (2004).

2.5 ESTADÍSTICAS DE RESUMEN

Las estadísticas de resumen más utilizadas en el caso homogéneo y no homogéneo están basadas principalmente en las características que describen las propiedades de primer y segundo orden de un proceso puntual, en particular la intensidad y las funciones de correlación por pares y las medidas de momentos de segundo orden reducidas. Además las propiedades de segundo orden (como la llamada funciones - L y K, pasando por el caso anisotrópico¹⁶) y estadísticas de resumen basadas en las distancias entre puntos (como las funciones F, G y I).

Las estadísticas de resumen de primer orden para un proceso puntual, son análogos a la media comúnmente conocida, en el caso no espacial, en el sentido de que estos describen la densidad o intensidad en términos del número promedio de puntos por unidad de área. En cambio las características de segundo orden se relacionan con la posición relativa de los puntos o la interacción entre estos. Más material sobre estadísticas de resumen se puede encontrar en Stoyan y Stoyan (1994), Moller y Waagepetersen (2004) y las referencias en estas.

2.5.1 PROPIEDADES DE PRIMER Y SEGUNDO ORDEN

Si el número de puntos en alguna región se considera como una variable aleatoria, entonces la medida momento factorial de esta región es el momento factorial de esta variable aleatoria. De manera general, para un proceso puntual X en $S \subseteq \mathbb{R}^2$ los *momentos de primer orden y segundo orden* para las variables de conteos N(B), $B \subseteq S$, pueden ser expresados por las siguientes medidas:

a) La medida de la intensidad

La medida del momento factorial de primer orden de un proceso puntual coincide con la medida de su primer momento o medida de intensidad, que da el número esperado o promedio de puntos del proceso puntual situado en alguna región del espacio. Así la medida de intensidad μ en \mathbb{R}^d está dada por:

¹⁶ Hace referencia a lo opuesto de isotrópico, es decir, cuando la intensidad de segundo orden varía ante rotaciones.

$$\mu(B) = \mathbb{E}[N(B)], \qquad B \subseteq \mathbb{R}^2$$

En la práctica la estructura de la media es modelada en términos de una función de intensidad no negativa ρ

$$\mu(B) = \int_{B} \rho(u) du , B \subseteq \mathbb{R}^{2}$$
 (2.6)

Si ρ es constante, entonces X se dice que es homogénea o estacionaria de primer orden con intensidad ρ , de lo contrario X se dice que es no homogénea. $\rho(u)du$ es la probabilidad de la ocurrencia de un punto en una región infinitesimalmente pequeña que contiene la ubicación u y de área du. Para un proceso puntual homogéneo, ρ es el número medio de puntos por unidad de área o volumen para un espacio de más de 2 dimensiones.

b) Medida del momento factorial de segundo orden

La medida del momento factorial de segundo orden $\mu^{(2)}$ en $\mathbb{R}^2 \times \mathbb{R}^2$, está dado por:

$$\mu^{(2)}(A) = \mathbb{E} \sum_{u,v \in X}^{\neq} \mathbf{1}[(u,v) \in A], \qquad A \subseteq \mathbb{R}^2 \times \mathbb{R}^2$$
 (2.7)

donde el signo \neq encima de la sumatoria significa que los puntos u, v en X son pares distintos y $\mathbf{1}[.]$ es la función indicadora¹⁷.

De esta forma, el momento de segundo orden (la estructura de covarianza¹⁸) de las variables de conteo N(B) y N(C) para dos regiones acotadas $B, C \subseteq \mathbb{R}^2$, se define a partir de (2.7) y de la medida de intensidad, así:

$$\mathbb{E}[N(B)N(C)] = \mu^{(2)}(B \times C) + \mu(B \cap C) \tag{2.8}$$

Para muchas clases de modelos importantes, $\mu^{(2)}$ definida en (2.7) es dada en términos de una función no negativa llamada la *densidad producto de segundo orden* $\rho^{(2)}$:

¹⁷ Toma valores de 1: cuando el elemento es parte del conjunto y 0: cuando es parte del complemento de un conjunto

La varianza de una variable de conteo N(B) está dada por: $varN(B) = \mathbb{E}[N(B)^2] - [\mathbb{E}N(B)]^2$ y la covarianza de dos conteos: $cov[N(B_1), N(B_2)] = \mathbb{E}[N(B_1)N(B_2)] - \mathbb{E}[N(B_1)]\mathbb{E}[N(B_2)]$. Una observación clave es que el producto $N(B_1)N(B_2)$ es igual al número de pares ordenados (u, v) de puntos en el proceso X tal que $u \in B_1$ y $v \in B_2$.

$$\mu^{(2)}(A) = \int \mathbf{1}[(u, v) \in A] \, \rho^{(2)}(u, v) du dv \tag{2.9}$$

donde $\rho^{(2)}(u,v)dudv$ es la probabilidad de observar un par de puntos de X que ocurren de forma conjunta en dos regiones de áreas infinitesimalmente pequeñas du y dv que contienen los puntos u y v respectivamente.

Las *medidas de momento factorial* de cualquier orden son descritas en el Apéndice C de Moller y Waagepetersen (2004).

c) Función de correlación por pares

Con el fin de estudiar, si un proceso puntual se desvía de un proceso Poisson, es útil normalizar la densidad producto de segundo orden $\rho^{(2)}(u, v)$ dividiendo por $\rho(u)$ $\rho(v)$.

Si ρ y ρ (2) existen, entonces la función de correlación par es definida por:

$$g(u,v) = \frac{\rho^{(2)}(u,v)}{\rho(u)\rho(v)}$$
 (2.10)

siempre y cuando $\rho(u) > 0$, $\rho(v) > 0$. Si los puntos son independientes unos de otros $\rho^{(2)}(u,v) = \rho(u)\rho(v)$ de modo que g(u,v) = 1 (este es el caso del proceso Poisson). Si g(u,v) > 1, podemos interpretar esto como atracción entre puntos del proceso en lugares u y v (clústeres), mientras que si g(u,v) < 1 tenemos repulsión en los dos lugares (regularidad).

Si X es estacionario, g se convierte en traslación invariante, es decir, g(u,v)=g(u-v)Pero existen casos en los que g es traslación invariante pero ρ es no homogénea. La traslación invariante g(u,v)=g(u-v) de g implica que X es un proceso puntual con intensidad de segundo orden estacionario reponderado y en aplicaciones a menudo se supone que $g(u,v)=g(\|u-v\|)$, es decir, que g depende sólo de la distancia $\|u-v\|$. Tenga en cuenta que diferentes modelos de procesos puntuales pueden compartir la misma función g. Para más detalle consulte Moller y Waagepetersen (2007).

d) La medida de segundo orden reducido

Supóngase que X tiene función de intensidad ρ . Las propiedades de segundo orden se describen por la función g de correlación por pares.

En el caso que la función de correlación par g existe y g(u,v) = g(u-v) es invariante a traslaciones, entonces la medida del momento de segundo orden reducido no homogénea (Baddeley et al., 2000)

$$\mathcal{K}(B) = \int_{B} g(u)du, B \subseteq \mathbb{R}^{d}$$
 (2.11)

Mas generalmente, supóngase que g no existe (es decir, no se asume traslación invariante), podemos definir la medida del momento factorial de segundo orden expresado en términos de la función de intensidad y la siguiente medida \mathcal{K} en \mathbb{R}^d :

$$\mathcal{K}(B) = \frac{1}{|A|} \mathbb{E} \left[\sum_{u,v \in X}^{\neq} \frac{\mathbf{1} \left[u \in A, v - u \in B \right]}{\rho(u) \, \rho(v)} \right], B \subseteq \mathbb{R}^d$$
 (2.12)

y no depende de la elección de $A \subseteq \mathbb{R}^d$ con $0 < |A| < \infty$, considerando a/0 = 0 para $a \ge 0$. Entonces X se dice que es un proceso puntual con intensidad-reponderada de segundo- orden estacionario y \mathcal{K} se llama la medida del momento de segundo orden reducido.

En el caso estacionario $\rho \mathcal{K}(B)$ puede interpretarse como la esperanza condicional del número de puntos adicionales en B dado que X tiene un punto en el origen.

e) Funciones - K, L

En las aplicaciones se consideran las estimaciones de $\mathcal{K}(B)$ para una clase de conjuntos B tales como bolas. Una bola cerrada en S con centro $u \in S$ y radio $r \geq 0$, cuando $S \subseteq \mathbb{R}^d$ y $d(u,v) = \|u-v\|$ es la distancia euclidiana habitual, está dada por:

$$b(u,r) = \{v \in S: d(u,v) \le r\}$$

Así una definición más general de la función - *K* de Ripley¹⁹ (para el caso estacionario) ha sido propuesto por Baddeley et al. (2000) para el caso no homogéneo.

Para un proceso puntual de segundo orden reponderada estacionaria 20 , las funciones K y L no homogéneo, han sido definido por:

-

¹⁹ Para más detalle consulte el anexo 2.

²⁰ Cuando la intensidad de segundo - orden reponderado-estacionaria.

$$K(r) = \mathcal{K}(b(0,r)) = \frac{1}{|A|} \mathbb{E}\left[\sum_{u,v \in X}^{\neq} \frac{\mathbf{1}\left[\|u-v\| \le r\right]}{\rho(u)\,\rho(v)}\right], B \subseteq \mathbb{R}^d$$
 (2.13)

y

$$L(r) = (K(r) / \omega_d)^{1/d}$$
 (2.14)

donde r > 0 y $\omega_d = (\pi^{d/2})/\Gamma(1 + d/2)$: representan el radio y el volumen de una bola unitaria d-dimensional, respectivamente. Así para el caso bidimensional (d = 2):

$$L(r) = \sqrt{K(r)/\pi} \tag{2.15}$$

En el caso estacionario, $\rho K(r)$, es el número esperado de otros puntos dentro de la distancia r desde el origen dado que X tiene un punto en el origen.

La función - K y la función - L están en correspondencia uno-a-uno, y en aplicaciones la función - L se utiliza a menudo en lugar de la función - K. Una razón es que L es la identidad de un proceso de Poisson. Los valores teóricos para las funciones K, L y g de un proceso Poisson homogéneo, son descritos en el Cuadro 1. Para más detalle consulte el Anexo 2, Illian et al. (2008) y Baddeley et al. (2016).

Cuadro 1: Funciones K y L teóricas para el proceso Poisson homogéneo

Función	Fórmula teórica (d)	Fórmula teórica ($d = 2$)
Función - $K(r)$	$K(r) = \omega_d r^d$	$K(r) = \pi r^2$
Función - $L(r)$	L(r) = r	L(r) = r
Función de correlación par $g(r)$	g(r) = 1	g(r) = 1

Fuente: Illian et al. (2008). r es la distancia interpuntos y $\omega_d = (\pi^{d/2})/\Gamma(1+d/2)$.

En general, al menos para valores pequeños de r, L(r) - r > 0 indica agregación o clustering en distancias menores de r, y L(r) - r < 0 indica regularidad a distancias inferiores a r.

Si \mathcal{K} es invariante bajo rotaciones, entonces \mathcal{K} está determinado por K. Este es el caso si X es isotrópico, o si $g(u,v)=g(\|u-v\|)$ es isotrópico. Si g es isotrópico, entonces por (2.11), $K(r)=\sigma_d\int_0^r t^{d-1}g(t)dt$, i.e., g también es una función que describe como la función de correlación par depende de la distancia interpuntos. Esto demuestra la estrecha relación entre K y g. A menudo son más usados la función - L o K en lugar de g,

posiblemente debido a que es más simple para estimar K que g. Sin embargo, desde que K es una función acumulativa, por lo general es más fácil interpretar un gráfico de g que un gráfico de K.

En general, al menos para pequeños valores de r, g(r) > 1 indica agregación o clustering a distancias r, y g(r) < 1 regularidad a tales distancias. Hay que hacer notar que muchos modelos diferentes de procesos puntuales pueden compartir la misma función K. Para más detalle consulte Baddeley y Silverman (1984), Baddeley et al. (2000) y Moller y Waagepetersen (2004).

2.5.2 ESTIMACIÓN NO PARAMÉTRICA

Considere un proceso puntual espacial X en \mathbb{R}^d con función de intensidad ρ y supóngase que ha sido posible observar un único patrón puntual $X_W = x$ en una ventana acotada $W \subset \mathbb{R}^d$ con |W| > 0.

a) Intensidad

En el caso homogéneo, una estimación insesgada natural de la intensidad y que coincide con la estimación de máxima verosimilitud²¹, si *X* es un Proceso Poisson homogéneo, es:

$$\hat{\rho} = n(x)/|W| \tag{2.16}$$

En el caso no homogéneo, un estimado kernel (no paramétrico) de la función de intensidad es:

$$\hat{\rho}_b(u) = \sum_{v \in x} k_b(u - v) / c_{W,b(v)} , u \in W$$
(2.17)

donde k_b es un kernel con un ancho de banda b>0, es decir $k_b(u)=k\ (u/b)/b^d$ donde k es una función de densidad dada, y $c_{W,b(v)}=\int_W k_b(u-v)\ du$ es un factor de corrección de borde. Esta estimación es generalmente sensible a la elección de b (ancho de la banda o radio). Cabe mencionar también que el estimado kernel de la intensidad es la misma que el estimador de la función de densidad kernel multivariado exceptuando en el denominador la cantidad de puntos observados (n)

•

²¹ Consulte la sección 2.6.1

Moller y Waagepetersen (2004) cuando $d \ge 2$, utilizaron un kernel producto dado por $k(u) = \prod_{i=1}^d k(u/b)_i$, así cuando d=2 el kernel es: $k(u) = e(u_1)e(u_2)$, para $u=(u_1,u_2) \in \mathbb{R}^2$ y e(t) es el kernel Epanecnikov univariado. Demuestran también que $\int_W \hat{\rho}_b(u) du$ es una estimación insesgada de $\mu(W)$.

Otras alternativas para las funciones kernel univariadas se muestran en el Cuadro 2 y son descritas en Silverman (1986) y Hardle et al. (2004).

Cuadro 2: Funciones de kernel univariado

Kernel	k(t)
Epanechnikov	$(3/4)(1-t^2)1[t \le 1]$
Cuártico (Biweight)	$(15/16)(1-t^2)^21[t \le 1]$
Triweight	$(35/32)(1-t^2)^31[t \le 1]$
Triangular	$(1- t)1[t \le 1]$
Gaussiano	$(1/\sqrt{2\pi})\exp(-t^2/2)$
Uniforme	$(1/2)1[t \le 1]$
Coseno	$\frac{\pi}{4}\cos\left(\frac{\pi}{2}t\right)1[t \le 1]$

Fuente: Hardle et al. (2004).

El kernel multivariado cuando $d \ge 2$, tiene contornos que son por lo general simétricos, lo cual no ocurre con el kernel producto, para más detalle consulte Hardle et al. (2004). Las funciones de kernel multivariadas más conocidas para el caso bidimensional (d = 2), han sido descritas en Silverman (1986) y se muestran en el Cuadro 3, donde $\boldsymbol{u} = [u_1, u_2]^T$ representa un vector bidimensional.

Cuadro 3: Funciones de kernel bivariado

Culturo 5: 1 diferences de Remer orvandado		
Kernel	k(u)	
Normal estándar	$k(\boldsymbol{u}) = \frac{1}{2\pi} e^{-0.5 \boldsymbol{u}^T \boldsymbol{u}}$	
Cuártico (Biweight)	$k(\boldsymbol{u}) = \frac{3}{\pi} (1 - \boldsymbol{u}^T \boldsymbol{u})^2 1 [\boldsymbol{u}^T \boldsymbol{u} < 1]$	
Epanechnikov	$k(\boldsymbol{u}) = \frac{2}{\pi} (1 - \boldsymbol{u}^T \boldsymbol{u}) 1 [\boldsymbol{u}^T \boldsymbol{u} < 1]$	

Fuente: Silverman (1986).

En el caso del kernel Normal estándar bivariado, el kernel producto coincide con el kernel multivariado, ya que $\mathbf{u}^T\mathbf{u} = \mathbf{u}_1^2 + \mathbf{u}_2^2$, este puede ser expresado como un *kernel producto* de caso univariado, Así:

$$k(\mathbf{u}) = \left(\frac{1}{\sqrt{2\pi}} e^{-0.5u_1^2}\right) \left(\frac{1}{\sqrt{2\pi}} e^{-0.5u_2^2}\right)$$

Se menciona a continuación una expresión matricial para el cálculo de la función de intensidad a través del kernel producto para el caso bidimensional. Considere el caso más simple donde W es de forma rectangular y sin considerar los efectos de borde, es decir, se asume que el proceso puntual X se da solo en W. Supóngase que $\mathbf{X} = [x_1^T, ..., x_n^T]^T$ es la matriz de dimensión $\mathbf{n} \times \mathbf{d}$ de todas las coordenadas de los puntos del patrón puntual observado y un *grid rectangular* de puntos $U = \{u_1, ..., u_N\}$ en W, igual al producto cartesiano de: $\mathbf{U}^{(1)} = \{\log_1, ..., \log_k\}$ y $\mathbf{U}^{(2)} = \{\operatorname{lat}_1, ..., \operatorname{lat}_m\}$, cuyos elementos están ordenados e igualmente espaciados y $N = \mathbf{k} \times \mathbf{m}$. La representación vectorial de $\mathbf{U}^{(1)}$ y $\mathbf{U}^{(2)}$ lo denotaremos por: $\mathbf{U}^{(1)} = [\log_1, ..., \log_k]^T$ y $\mathbf{U}^{(2)} = [\operatorname{lat}_1, ..., \operatorname{lat}_m]^T$, entonces una expresión matricial para la intensidad kernel producto, es:

$$\hat{\rho}_b(\mathbf{U}) = \mathbf{K}_1 \mathbf{K}_2^T / b^2 \tag{2.18}$$

donde:
$$\mathbf{K}_1 = k \left(\left(\mathbf{U}^{(1)} \mathbf{1}_{1n} - \mathbf{1}_{k1} (\mathbf{X}^{(1)})^T \right) / b \right)$$
 y $\mathbf{K}_2 = k \left(\left(\mathbf{U}^{(2)} \mathbf{1}_{1n} - \mathbf{1}_{m1} (\mathbf{X}^{(2)})^T \right) / b \right)$, $\mathbf{1}_{1n}$ es una matriz de unos de dimensión $(1 \times n)$ de la misma forma para k y m, n es la cantidad de puntos del patrón puntual, N es la cantidad de puntos para los cuales se estimará la intensidad, $\mathbf{X}^{(1)}$ representa la primera columna de la matriz \mathbf{X} , $k(\mathbf{U}_0)$ es la función kernel univariado aplicada a cada elemento de la matriz \mathbf{U}_0 y b es el tamaño de la banda de suavizado. Note que la intensidad estimada es una matriz de dimensión $\mathbf{k} \times \mathbf{m}$ y puede ser representada computacionalmente en forma de imagen de $\mathbf{k} \times \mathbf{m}$ pixeles.

Por otro lado, en el caso de las intensidades obtenidas a partir de los kernel con radio de búsqueda limitado, por ejemplo el kernel de Epanenickov y cuártico, son descritos a detalle en Silverman (1986).

b) Funciones K y L

Para la estimación no paramétrica de K, considere $W_u = \{v + u : v \in W\}$ una traslación de W por $u \in \mathbb{R}^d$.

Supóngase que $|W \cap W_u| > 0$ para todo $u \in B$, y que X es un proceso puntual con intensidad de segundo orden reponderado estacionaria. Entonces una estimación insesgada de K(B) es:

$$\widehat{K}(B) = \sum_{u,v \in x}^{\neq} \frac{\mathbf{1} [v - u \in B]}{\rho(u)\rho(v)|W \cap W_{v-u}|}$$
(2.19)

En la práctica no se conoce ρ , por lo que $\rho(u)\rho(v)$ debe ser reemplazado por un estimado $\rho(\widehat{u})\rho(v)$ en (2.19). Entonces:

$$\widehat{K}(B) = \sum_{u,v \in \mathbf{x}}^{\neq} \frac{\mathbf{1} \left[v - u \in B \right]}{\rho(\widehat{u})\rho(v) \left| W \cap W_{v-u} \right|}$$
 (2.20)

es sesgada.

La condición de B implica que si por ejemplo, B=b(0,r) y W es rectangular, se requiere que r sea menor que el lado más pequeño en W. La condición puede ser debilitada por ejemplo, si existe la correlación par, ya que basta con suponer que $|\{u \in B: |W \cap W_u| = 0\}| = 0$. La estimación de L(r) se obtiene a partir de la transformación de K(r) y es en general también sesgada, así $\hat{L}(r) = \sqrt{\hat{K}(r)/\pi}$.

El insesgamiento es generalmente imposible de obtener para muchos estimadores en estadística espacial, pero en su lugar se usan a menudo ratios insesgados de la forma $\hat{\theta} = Y/Z$ donde $\theta = \mathbb{E}Y/\mathbb{E}Z$. Por ejemplo, en el caso homogéneo, si $\rho(\widehat{u})\rho(v) = \widehat{\rho}^2$ es insesgado, entonces (2.20) es un ratio insesgado. Stoyan y Stoyan (2000) discuten diversas posibilidades para el caso homogéneo: una posibilidad es transformar la estimación de la intensidad para obtener $n(x)^2/|W|^2$ como una estimación de ρ^2 ; una alternativa es:

$$\widehat{\rho^2} = n(x)(n(x) - 1) / |W|^2 \tag{2.21}$$

que es insesgado para un proceso de Poisson. Para el caso no homogéneo, Baddeley et al. (2000) proponen utilizar $\rho(\widehat{u})\rho(v) = \bar{\rho}_b(u) \bar{\rho}_b(v)$ donde:

$$\bar{\rho}_b(u) = \sum_{v \in x \setminus u} k_b(u - v) / c_{W,b(v)}, u \in W$$
(2.22)

es una ligera modificación de (2.17). Baddeley et al. (2000) muestran que para un proceso de Poisson no homogéneo, $\bar{\rho}_b(u)$ es menos sesgada que $\hat{\rho}_b(u)$ cuando $u \in x$ es un punto

de datos. Ellos argumentan que es también el caso de un proceso puntual con función de correlación par $g \ge 1$, mientras que el panorama es menos claro si $g \le 1$.

El peso de $1/|W \cap W_{v-u}|$ en (2.19) y (2.20) es un factor de corrección de borde. Otros numerosos factores de corrección de borde y el cálculo de intervalos de confianza para la estadística de resumen L(r) para cada valor de r han sido descritos en las secciones 4.3.3 y 4.3.4 de Moller y Waagepetersen (2004).

c) Función - g

Para la estimación de la función de correlación par, asuma por conveniencia que $g(u, v) = g(\|u - v\|)$ es isotrópica. Podemos expresar g en términos de la derivada K' de K, pero ya que \widehat{K} suele ser una función escalonada, no es fácil estimar K' de \widehat{K} .

Una forma popular de estimar la función de correlación par, es a través del método kernel suavizado con corrección de borde (Stoyan y Stoyan, 1994; Baddeley et al., 2000), dada por :

$$\widehat{g}(r) = \frac{1}{\sigma_d r^{d-1} |W|} \sum_{u,v \in x}^{\neq} \frac{k_b(r - ||v - u||)}{\rho(\widehat{u)}\rho(v) |W \cap W_{v-u}|}$$
(2.23)

Para el caso bidimensional

$$\widehat{g}(r) = \frac{1}{2\pi r |W|} \sum_{u,v \in \mathbf{x}}^{\neq} \frac{k_b(r - ||v - u||)}{\rho(\widehat{u})\rho(v)|W \cap W_{v-u}|}$$
(2.24)

donde $\sigma_d = 2\pi^{\frac{d}{2}}/\Gamma(d/2)$, $k_b(x) = k(x/b)/b$, $x \in \mathbb{R}$, para un kernel $k(\cdot)$ y el ancho de banda b > 0, y se asume que $|W \cap W_u| > 0$ para $||u|| \le r$ (en efecto de nuevo se puede utilizar la condición más débil con B = b(0,r)). El kernel $k(\cdot)$ puede ser el kernel uniforme k(x) = 1[|x| < 1/2] o el kernel Epanecnikov, descritos en el Cuadro 2. Los estudios de simulación y cálculos aproximados de la varianza del estimador (Stoyan y Stoyan, 2000) muestran que con el kernel uniforme se obtiene la varianza más pequeña para un determinado b. La estimación de \hat{g} es sensible a la elección del ancho de banda b > 0, y es sesgado hacia arriba para distancias pequeñas de r, véase la discusión en Stoyan y Stoyan (1994).

En el caso homogéneo, tomando cualquier estimador de corrección de borde para la función–K de la forma general, suponga que se reemplaza el indicador $\mathbf{1}[d_{ij} \leq r]$ por un término kernel $k(d_{ij}-r)$ para obtener un estimado suavizado de K'(r), entonces para un ancho de banda fijo el estimador kernel:

$$\hat{g}(r) = \frac{|W|}{2\pi r n(n-1)} \sum_{\substack{i=1 \ j \neq i}}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} k_h(r - d_{ij}) e_{ij}(r)$$

donde $d_{ij} = ||x_i - x_j||$ es la distancia del punto i y j del patrón puntual, $e_{ij}(r)$ es un ponderador de corrección de borde y k_h es el kernel suavizado, con ventana de suavizado h > 0. El kernel $k_h(x) = (1/h)k(x/h)$. La elección usual del kernel suavizado para la función de correlación par es el kernel Epanechnikov. Una forma para elegir h, es a través de la regla de thumb $h = c/\sqrt{\rho}$, donde $0.1 \le c \le 0.2$. Particularmente Stoyan y Stoyan (1994) usaron c = 0.15 basándose en simulaciones y experiencia práctica cuando d = 2 y 0.15 y 0.15 (Baddeley et al., 2016).

2.5.3 ESTADÍSTICAS DE RESUMEN BASADA EN LAS DISTANCIAS ENTRE PUNTOS

Muchos tipos de distancias entre pares de puntos pueden ser medidos en un patrón puntual. Supóngase que *X* es estacionario y en base a las distancias entre puntos, se construyen tres estadísticas de resumen:

a) La función – F de espacio vacío, conocida también como "Función de distribución de contacto esférico". Es la función de distribución de la distancia desde el origen (u otro punto fijo en \mathbb{R}^d) hasta el punto más cercano en X, es decir,

$$F(r) = P(X \cap b(0, r) \neq \emptyset), r > 0$$
 (2.25)

b) La función – G, conocida también como "Función al vecino más cercano", es:

$$G(r) = \frac{1}{\rho \mid A \mid} \mathbb{E} \sum_{u \in X \cap A} \mathbf{1} \left[(X \setminus u) \cap b \left(u, r \right) \neq \emptyset \right], \ r > 0$$
 (2.26)

para un conjunto arbitrario $A \subset \mathbb{R}^d$ con $0 < |A| < \infty$. Como su nombre lo indica, G puede ser interpretado como la función de distribución de la distancia desde un punto típico en X hasta el vecino más cercano en X y

c) *La función*—*J*, propuesta por Lieshout y Baddeley (1996), se define por:

$$J(r) = (1 - G(r)) / (1 - F(r)) para F(r) < 1$$
(2.27)

Para un proceso Poisson estacionario en \mathbb{R}^d con intensidad $\rho < \infty$, las expresiones teóricas para las funciones F,G y J están dadas en forma explícita²² en el Cuadro 4. Para más detalle consulte Moller y Waagepetersen (2004) y Illian et al. (2008).

Cuadro 4: Funciones F, G y J teóricas para el proceso Poisson homogéneo

Función	Fórmula teórica (d)	Fórmula teórica ($d = 2$)
Función - $F(r)$	$F(r) = 1 - exp(-\rho\omega_d r^d)$	$F(r) = 1 - \exp\{-\rho \pi r^2\}$
Función - $G(r)$	G(r) = F(r)	$G(r) = 1 - \exp\{-\rho \pi r^2\}$
Función - $J(r)$	J(r) = 1	J(r) = 1

Fuente: Illian et al. (2008). r es la distancia interpuntos y $\omega_d = (\pi^{d/2})/\Gamma(1+d/2)$

En general, al menos para valores pequeños de r > 0, F(r) < G(r) (o J(r) < 1) indica agregación o clustering, y F(r) > G(r) (o J(r) > 1) regularidad. Bedford y Berg (1997) muestran que J = 1 no implica que X es un proceso de Poisson estacionario. No es obvio cómo ampliar las definiciones de F, G, y J para la caso no estacionario.

2.5.4 ESTIMACIÓN NO PARAMÉTRICA DE LAS FUNCIONES - F, G, y J

Los estimadores de Muestras Reducidas (RS, por sus siglas en ingles) de F y G se obtienen fácilmente utilizando minus sampling. Sea $d(u,B) = \inf\{\|u-v\|: v \in B\}$ la distancia más corta desde un punto $u \in \mathbb{R}^d$ a un conjunto $B \subset \mathbb{R}^d$. Sea $I \subset W$ que denota un grid regular finito de puntos (elegido de forma independiente de X), y sea $\#I_r$ la cardinalidad del conjunto $I_r = I \cap W_{\Theta r}$ para r > 0. Entonces la estimación insesgada:

$$\hat{F}_{RS}(r) = \sum_{u \in I_r} \mathbf{1}[d(u, x) \le r] / \#I_r$$
(2.28)

para $\#I_r > 0$, y el ratio - insesgado estimado

$$\widehat{G}_{RS}(r) = \sum_{u \in x \cap W_{\Theta r}} \frac{\mathbf{1}[d(u, x \setminus u) \le r]}{(\widehat{\rho}|W_{\Theta r}|)}$$
(2.29)

 $^{^{22}}$ Para otro tipo de modelos, las expresiones de forma explícita de F, G, J son poco conocido.

$$\widehat{G}_{RS}(r) = \sum_{u \in x \cap W_{\Theta r}} \frac{\mathbf{1}[d(u, x \setminus u) \le r]}{(\widehat{\rho}|W_{\Theta r}|)}$$
(2.29)

para $|W_{\ominus r}| > 0$.

La compatibilidad con un patrón puntual CRS puede ser evaluada por el trazado de la función empírica $\hat{G}(r)$ en contra del esperado teórico.

Otras estimaciones más eficientes de las funciones F y G son los llamados estimados de Kaplan-Meier, propuestos por Baddeley y Gill (1997):

$$\hat{F}_{KM}(r) = 1 - \prod_{s \le r} \left(1 - \frac{\# \{u \in I : d(u, x) = s , d(u, x) \le d(u, \partial W)\}}{\# \{u \in I : d(u, x) \ge s , d(u, \partial W) \ge s\}}\right)$$
(2.30)

y

$$\widehat{G}_{KM}(r) = 1 - \prod_{s \le r} (1 - \frac{\# \{u \in x : d(u, x \setminus u) = s, \ d(u, x \setminus u) \le d(u, \partial W)\}}{\# \{u \in x : d(u, x \setminus u) \ge s, \ d(u, \partial W) \ge s\}})$$
(2.31)

para r > 0, considerando 0/0 = 0. Baddeley y Gill (1997) también consideran un estimador Kaplan-Meier para K(r), y concluyen que es mejor que la estimación de la *muestra - reducida*, pero que las estimaciones utilizando los factores de corrección de borde son incluso mejores.

Dado los estimados $\hat{F}(r)$ y $\hat{G}(r)$, se obtiene:

$$\hat{J}(r) = (1 - \hat{G}(r))/(1 - \hat{F}(r)) \tag{2.32}$$

para $\hat{F}(r) < 1$. La varianza de $\hat{f}(r)$ aumenta considerablemente a medida que aumenta r.

2.5.5 PRUEBAS DE CONTEO POR CUADRANTE PARA CSR

Si se sospecha que la intensidad no es homogénea, otra alternativa no paramétrica a la estimación kernel, es el método de conteo por cuadrantes. En un proceso puntual Poisson homogéneo se esperaría que las regiones de igual área tengan aproximadamente igual número de puntos. El método consiste en dividir la ventana de observación W en subregiones denominadas cuadrantes, $B_1, ..., B_m$ de área $a_1, ..., a_m$ (por simplicidad suponga que son de la misma área) respectivamente tal que $B_1 \cup ... \cup B_m = W$. Contamos el número de puntos que caen en cada cuadrado, $n_i = n(X \cap B_i)$ para i = 1, ..., m. Desde

que los conteos son estimadores insesgados de los correspondientes valores esperados $\mathbb{E}[n(X \cap B_j)]$, estos podrían ser iguales en promedio si la intensidad es homogénea. Cualquier tendencia espacial aparente en los conteos n_j sugiere que la intensidad es no homogénea. Si los conteos n_j son divididos por su correspondiente área, obtenemos la intensidad promedio en cada cuadrante, la cual es un simple estimado de la función de intensidad.

Una prueba estadística para homogeneidad (dejando de asumir que las áreas son iguales), basada en los conteos de los cuadrantes, asumiendo que el proceso puntual es Poisson, consiste en considerar, las siguientes hipótesis:

 H_0 : La intensidad es homogénea (CSR) y como H_1 : Es un proceso Poisson no homogéneo. Si la hipótesis nula es verdadera, entonces los n_j son realizaciones de variables aleatorias Poisson independientes, con valores esperado $\mu_i = \rho a_i$.

La prueba χ^2 podría ser usada en dos formas diferentes: como una prueba de bondad de ajuste para la distribución Poisson asumiendo homogeneidad o como una prueba de homogeneidad asumiendo independencia. Enfocándose en la prueba de homogeneidad, se aplica la prueba χ^2 de uniformidad. Dado que el número de puntos $n = \sum_j n_j$ y el área total de la ventana $a = \sum_j a_j$, entonces la intensidad estimada es $\hat{\rho} = n/a$ y el conteo esperado en el cuadrante B_j es $e_j = \hat{\rho}a_j = na_j/a$. La prueba estadística es:

$$\chi^{2} = \sum_{j} \frac{(n_{j} - e_{j})^{2}}{e_{j}} = \sum_{j} \frac{(n_{j} - \hat{\rho}a_{j})^{2}}{\hat{\rho}a_{j}} \sim \chi^{2}_{(m-1)}$$
 (2.33)

Si los cuadrantes tienen igual área, entonces los n_j son independientes con igual valor esperado bajo la hipótesis nula. La prueba estadística se reduce a:

$$\chi^2 = \sum_{j} \frac{(n_j - n/m)^2}{n/m} \sim \chi^2_{(m-1)}$$

Bajo la hipótesis nula, la distribución del test estadístico es aproximadamente una χ^2 con m-1 grados de libertad y los residuales Pearson son $r_j=(n_j-e_j)/\sqrt{e_j}$. La aproximación es tradicionalmente aceptable cuando los conteos esperados e_j son mayores que 5 para todos los cuadrantes.

La principal crítica de la prueba estadística basada en cuadrantes, es la falta de información. Esta prueba de bondad del ajuste en la que la hipótesis alternativa H_1 , es simplemente la negación de H_0 , es decir, la hipótesis alternativa es "el proceso no es un proceso de Poisson homogéneo". Un proceso puntual puede no dar cumplimiento a las propiedades de CSR ya sea porque por tener intensidad no uniforme, o porque no existe independencia entre los puntos. Es decir, son demasiados tipos de salida para H_0 . La justificación habitual para la clásica prueba de bondad de ajuste χ^2 , es asumir que los recuentos son independientes y así obtener una prueba para la hipótesis nula de que todos los cuadrados tienen el mismo valor esperado. Aceptar esto es poco ingenuo, ya que la independencia de los recuentos es también cuestionable aquí.

De hecho, también se puede cambiar las cosas y ver la prueba χ^2 como una prueba de las propiedades de independencia del proceso Poisson suponiendo que la intensidad es homogénea. El estadístico de prueba χ^2 de Pearson (2.33) coincide, hasta un factor constante, con el ratio varianza/media muestral (simple variance-to-mean) de los recuentos de n_j , conocido como el coeficiente de dispersión, que es interpretado como una medida de más/menos dispersión de los conteos n_i suponiendo que tienen media constante.

La potencia de la prueba por cuadrante depende del tamaño de los mismos ya que tiende a cero para cuadrantes que son ya sean muy grandes o muy pequeñas. También depende de la hipótesis alternativa, en particular sobre la "escala espacial" para cualquier punto de partida de los supuestos de intensidad constante o independencia entre puntos. La elección del tamaño de cuadrante lleva una suposición implícita de la escala espacial, sin embargo en muchos trabajos aplicados se acostumbra realizar la prueba para distintos tamaños de cuadrantes. Para más detalle consulte Schabenberger y Gotway (2005), Lloyd (2007), Baddeley (2008) y Diggle (2014).

La prueba χ^2 de homogeneidad basada en conteo de cuadrantes puede también ser aplicado para ajustar un modelo de proceso Poisson no homogéneo. Para más detalle consulte Baddeley (2008).

2.5.6 PRUEBAS KOLMOGOROV-SMIRNOV PARA CSR

Una prueba de CSR más poderosa, es la prueba de Kolmogorov-Smirnov, en el que se compara la distribución observada de los valores de la covariable en los puntos $x_1, ..., x_n$

(del patrón puntual o datos de puntos) con los valores de la covariable en todas las ubicaciones espaciales u de W. El principio es que, si el proceso puntual es completamente aleatorio, entonces los datos de puntos son efectivamente una muestra aleatoria de ubicaciones espaciales en W, de esta manera los valores de la covariable en datos de puntos $z_i = Z(x_i)$ podría ser una muestra aleatoria de los valores de la covariable en todas las ubicaciones espaciales de W. La prueba en general consiste en una medida de discrepancia entre funciones de distribución acumulada de una covariable (Baddeley et al., 2016).

Una prueba de bondad de ajuste de un modelo estadístico, es una prueba en la cual H_0 es que el modelo es verdadero y H_1 no lo es. De esta forma asumiendo que las observaciones son independientes y siguen una distribución común cdf (por sus siglas en ingles) F. La hipótesis nula es H_0 : $F_0 \equiv F$ y la hipótesis alternativa es H_1 : $F_0 \not\equiv F$. La cdf empírica de los datos es:

$$\hat{F}(z) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[z_i \le z]$$
 (2.34)

tal que $\hat{F}(z)$ es la fracción de observaciones menores o iguales a z.

El test se basa en la discrepancia entre la función \hat{F} y F_0 . Así la prueba estadística de Kolmogorov – Smirnov es la máxima separación vertical entre \hat{F} y F_0 :

$$D = \max_{Z} \left| \hat{F}(z) - F_0(z) \right| \tag{2.35}$$

Para el caso de intensidad homogénea, cualquier función espacial puede ser usada, incluyendo datos observados y funciones construidas artificialmente. Diferentes elecciones de Z cambian la sensitividad de los diferentes tipos de partida de las hipótesis nulas. La covariable Z es evaluada en cada punto de los datos $z_i = Z(x_i)$ y la función de distribución acumulada $\hat{F}(z)$ de estos valores es calculada. Seguidamente Z es evaluado en cada ubicación espacial u en W (en la práctica se evalúa en cada centro de pixel en un grid) y la función de distribución acumulada de estos valores es formado:

$$F_0(z) = \frac{\sum \mathbf{1}[u \in W : Z(u) \le z]}{|W|} = \frac{\#\{pixels \ u : Z(u) \le z\}}{\#pixels}$$
(2.36)

La discrepancia entre $\hat{F}(z)$ y $F_0(z)$ es entonces medida usando la estadística Kolmogorov – Smirnov.

La cdf de valores de covariables puede también ser usada para una prueba de bondad de ajuste de un modelo de proceso Poisson no homogéneo. La hipótesis nula es que se tiene un proceso Poisson con intensidad $\rho_0(u)$ en la ventana W. Se inicia extrayendo el valor de la covariable $z_i = Z(x_i)$ en los datos de puntos observados y la forma empírica cdf $\hat{F}(z)$ de los valores observados z_i . Si la hipótesis nula es verdadera, entonces $z_1, z_2, ...$ constituye un proceso puntual sobre la recta lineal. Los valores individuales z_i son independientes e idénticamente distribuidas con cdf:

$$F_0(z) = \frac{\int_W \mathbf{1}[Z(u) \le z] \rho_0(u) du}{\int_W \rho_0(u) du}$$
(2.37)

Para más detalle consulte Baddeley et al. (2016) y las referencias en él.

2.6 MÁXIMA VEROSIMILITUD

Los modelos estadísticos para procesos puntuales pueden ser formulados desde dos enfoques, el primero basado en las estadísticas de resumen descritas en Diggle (2014) y Baddeley et al. (2011) y el segundo basado en la función de verosimilitud para el caso del proceso Poisson. En este último enfoque resulta sencilla la incorporación de los efectos de covariables y tendencias en la función de intensidad de forma semejante al procedimiento para modelos lineales generalizados. Para esta tesis nos abocamos en el segundo enfoque y en procesos puntuales finitos²³ (acotados).

El método de máxima verosimilitud, ha sido aplicado a los modelos de procesos puntuales Poisson espaciales tanto al caso homogéneo y no homogéneo, debido a las expresiones simples de su función de verosimilitud.

Siguiendo lo descrito en Diggle (2014), considere $x = \{x_1, ..., x_n\}$ una realización (llamada también patrón puntual) del proceso puntual Poisson espacial X, observada sobre

-

²³ En temas aplicados son más frecuentes definir un proceso puntual para un espacio acotado (la ventana de observación).

la región²⁴ W. La densidad conjunta para n y x ha sido dada en (2.2), Asumiendo B=W, entonces:

$$f\{(x_1,...,x_n),n\} = \left\{\frac{e^{-\mu} \prod_{i=1}^n \rho(x_i)}{n!}\right\}$$

donde $\mu = \mu(W) = \int_W \rho(u) du$, por tanto la función de log-verosimilitud, basada sobre los datos x e ignorando la constante n!, se obtiene:

$$\log L(\rho) = \sum_{i=1}^{n} \log \rho(x_i) - \int_{W} \rho(u) du$$
 (2.38)

Otra forma equivalente utilizada en Baddeley y Turner (2000) y Baddeley *et. al.* (2016), es considerar a la densidad de probabilidad del proceso puntual Poisson no homogéneo X con respecto al proceso Poisson Estándar (*i.e.*, $\rho = 1$ en W).

Considere $x = \{x_1, ..., x_n\}$ un patrón puntual espacial $(n \ge 0$, no fijo), es decir, una realización del Proceso de Poisson no homogéneo en W con función intensidad $\rho: W \to \mathbb{R}_0^+$, y la densidad con respecto al proceso de Poisson estándar, según (2.5) es de la siguiente forma:

$$f(x) = \exp(|W| - \mu(W)) \prod_{u \in Y} \rho(u)$$

donde $\mu(W) = \int_W \rho_\theta(u) du$, es el número esperado de casos del proceso Poisson no homogéneo con intensidad $\rho(u)$ en la región W de área $|W| = \int_W 1 du$. Entonces, podemos reescribir la expresión anterior como:

$$f(x) = \exp(-\int_{W} [\rho(u) - 1] du) \prod_{u \in x} \rho(u)$$
 (2.39)

2.6.1 CASO HOMOGÉNEO

En el caso del proceso puntual espacial Poisson homogéneo, la intensidad es constante, por tanto la densidad (2.37) queda reducida a:

$$f(x,\rho) = \exp\{-(\rho - 1)|W|\}\rho^n \tag{2.40}$$

El log-verosimilitud, omitiendo la constante |W|, queda expresado de la siguiente forma:

 $^{^{24}}$ La región W conocida, es un subconjunto acotado d-dimensional del espacio \mathbb{R}^d , donde $d \geq 1$

$$\log L(\rho; x) = n \log \rho - \rho |W|$$

Resolviendo la ecuación normal, de primera derivada parcial con respecto a ρ , se obtiene el estimador de máxima verosimilitud (MLE):

$$\hat{\rho} = n/|W| \tag{2.41}$$

que también es un estimador insesgado. Esto asegura que el número esperado de puntos es el número observado de puntos. La varianza de $\hat{\rho}$ es $Var[\hat{\rho}] = \hat{\rho}/|W|$.

CASO NO HOMOGÉNEO 2.6.2

El proceso puntual Poisson espacial no homogéneo, es muy utilizado para modelos estadísticos, aquí la intensidad $\rho_{\theta}(u)$ dependerá de θ , un vector de parámetros donde $\boldsymbol{\theta}=(\theta_1,...,\theta_p)$ está definida sobre un conjunto $\Theta\subseteq\mathbb{R}^p$. Así de esta forma se puede reflejar tendencia espacial²⁵ o dependencia sobre una covariable. La densidad (2.39), será:

$$f(x, \boldsymbol{\theta}) = exp\left\{-\int_{\boldsymbol{W}} [\rho_{\boldsymbol{\theta}}(u) - 1] du\right\} \prod_{i=1}^{n} \rho_{\boldsymbol{\theta}}(x_i)$$
 (2.42)

Entonces el log – verosimilitud para $\boldsymbol{\theta}$, omitiendo la constante $\int_W 1 du = |W|$, es:

$$\log L(\boldsymbol{\theta}; x; W) = \sum_{i=1}^{n} \log \rho_{\boldsymbol{\theta}}(x_i) - \int_{W} \rho_{\boldsymbol{\theta}}(u) du$$
 (2.43)

Si $\log \rho_{\theta}(u)$ es lineal en θ , entonces el \log – verosimilitud es cóncava, por lo que existe un MLE único. Sin embargo, el MLE $\hat{\theta}$ no es tratable analíticamente, por lo que debe ser calculado utilizando algoritmos numéricos tales como el método de Newton. El cálculo de la función log-verosimilitud resulta complicado además por la presencia de la integral $\int_{W} \rho_{\theta}(u) du$. Una alternativa para la aproximación del MLE para el proceso puntual Poisson no homogéneo fue propuesto por Baddeley y Turner (2000), conocido como el dispositivo de Berman-Turner (*Berman-Turner device*).

2.6.3 MODELO LOG-LINEAL

Un modelo muy utilizado, es el modelo log-lineal general descrito a detalle en Baddeley et

²⁵ Es decir, un cambio en la intensidad a través de la región de observación

al. (2015) donde la intensidad, es de la siguiente forma:

$$\rho_{\theta}(u) = \exp\{B(u) + \boldsymbol{\theta}^T \mathbf{Z}(u)\}$$
 (2.44)

donde $B(u), Z_1(u), ..., Z_p(u)$ son funciones conocidas (en específico B(u) es conocida como la *línea base*), $\boldsymbol{\theta}^T = [\theta_1, ..., \theta_P]$ es el vector de parámetros a ser estimado, $\boldsymbol{Z}(u) = [Z_1(u), ..., Z_p(u)]^T$ es el vector de los valores de las funciones (covariables) y $\boldsymbol{\theta}^T \boldsymbol{Z}(u) = \theta_1 Z_1(u) + \cdots + \theta_p Z_p(u)$. Cox (1972), lo denominó el *proceso Poisson modulado*.

Equivalentemente la intensidad se puede expresar en forma lineal, tomando logaritmo:

$$\log \rho_{\theta}(u) = B(u) + \theta^{T} \mathbf{Z}(u)$$
 (2.45)

donde $\boldsymbol{\theta}^T \boldsymbol{Z}(u) = \theta_1 Z_1(u) + \dots + \theta_p Z_p(u)$. Las funciones B y Z_1, \dots, Z_p podría variar espacialmente en cualquier sentido, por lo que esta es una clase muy amplia y flexible de modelos.

El modelo de intensidad log-lineal tiene varias ventajas. La intensidad de un proceso puntual debe ser mayor o igual a cero, y esto siempre se satisface con el modelo log-lineal, independientemente del valor de θ y los valores de las funciones B y Z_1, \ldots, Z_p , debido al exponente en (2.44). En teoría estadística el logaritmo es la transformación 'canónica' de la media para un modelo de Poisson, y esto confiere muchas ventajas en la teoría y la práctica.

Reemplazando (2.45) en (2.43), el log-verosimilitud para la intensidad log-lineal, es:

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left\{ B(x_i) + \boldsymbol{\theta}^T \boldsymbol{Z}(x_i) \right\} - \int_{W} \exp\left\{ B(u) + \boldsymbol{\theta}^T \boldsymbol{Z}(u) \right\} du$$

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} B(x_i) + \boldsymbol{\theta}^T \sum_{i=1}^{n} \boldsymbol{Z}(x_i) - \int_{W} \exp\left\{ B(u) + \boldsymbol{\theta}^T \boldsymbol{Z}(u) \right\} du$$
(2.46)

Este modelo es miembro de la familia exponencial parametrizada canónicamente Barndorff-Nielsen (1978), Lehmann (1983). El log-verosimilitud (2.46) es una función cóncava del parámetro θ , y es diferenciable con respecto de θ , incluso si las funciones B y Z_j no son continuas. Si la matriz $M = \int_W \mathbf{Z}(u)\mathbf{Z}(u)^T du$ es definida positiva, entonces el modelo es identificable. Si los datos son tales que $\sum_i Z_j(x_i) \neq 0$ para todo j, el Estimador de Máxima Verosimilitud (MLE) existe y es único. A menos que haya restricciones

adicionales sobre θ , el MLE es la solución de las ecuaciones de score $U(\theta) = 0$, donde la función de score es:

$$U(\theta) = U(\theta; x) = \sum_{i=1}^{n} Z(x_i) - \int_{W} Z(u) \rho_{\theta}(u) du$$
 (2.47)

El score es un vector $\boldsymbol{U}(\boldsymbol{\theta}) = \left(U_1(\boldsymbol{\theta}; x), \dots, U_p(\boldsymbol{\theta}; x)\right)$ con componentes

$$U_j(\boldsymbol{\theta}; x) = \sum_{i=1}^n Z_j(x_i) - \int_W Z_j(u) \rho_{\theta}(u) du$$

para j = 1, ..., p. La integral en (2.47) es la transformada de Laplace de \mathbf{Z} , de modo que en general, las ecuaciones de puntuación no se pueden resolver analíticamente.

2.6.4 PROPIEDADES ASINTÓTICAS

Para el modelo de proceso puntual Poisson log-lineal, la teoría de la distribución asintótica está disponible en Rathbun y Cressie (1994) y Kutoyants (1998). En condiciones adecuadas cuando $n \to \infty$, el MLE de $\hat{\theta}$ es consistente, asintóticamente normal, asintóticamente eficiente con varianza asintótica I_{θ}^{-1} , asumiendo las restricciones dadas en Rathbun y Cressie (1994). El Hessiano para el modelo de *proceso puntual Poisson log-lineal* es igual a la información de Fisher $I_{\theta} = \mathbb{E}_{\theta} \left[-\frac{\partial}{\partial \theta} U(\theta; X) \right]$, desde que la matriz Hessiana no depende de los datos x:

$$H(\theta;X) = -\frac{\partial}{\partial \boldsymbol{\theta}} \boldsymbol{U}(\boldsymbol{\theta};X) = \int_{W} \boldsymbol{Z}(u) \boldsymbol{Z}(u)^{T} \rho_{\theta}(u) du$$
 (2.48)

Así los elementos de la matriz de información de Fisher son:

$$(\boldsymbol{I}_{\theta})_{ij} = \int_{W} Z_{i}(u) Z_{j}(u)^{T} \rho_{\theta}(u) du$$

Esta es la base de cálculo de intervalos de confianza y error estándar para los modelos de Poisson.

La prueba de razón de verosimilitud de H_0 : $\theta = 0$ (CSR) en contra de H_1 : $\theta \neq 0$ en un modelo estadístico con parámetros θ está basado en el estadístico de prueba:

$$R = 2\log\frac{L_1}{L_0} = 2(\log L_1 - \log L_0)$$

donde L_0 y L_1 son los valores máximos de la verosimilitud estimada bajo H_0 y H_1 , respectivamente. Para un modelo de proceso puntual Poisson loglineal con intensidad $\rho_{\theta}(u)$ bajo la hipótesis nula, R es una \mathcal{X}^2 con p grados de libertad, donde p es la dimensión de θ (Baddeley et al., 2016).

La integral en el log-verosimilitud del proceso de Poisson log-lineal (2.46) es la transformada de Laplace de la función de covariable **Z**, que generalmente no está disponible en forma explícita. En consecuencia, no suele ser posible encontrar una solución analítica exacta para la estimación de máxima verosimilitud. Se requiere algún tipo de aproximación numérica. Las estrategias se presentan en la siguiente sección.

2.6.5 DISPOSITIVO BERMAN -TURNER

La función de verosimilitud (2.43) de un proceso puntual de Poisson implica una integral sobre la ventana de observación espacial W. Excepto en casos especiales, esto significa que la verosimilitud no se puede calcular exactamente, pero debe ser aproximada numéricamente.

La cuadratura numérica es una estrategia computacional simple y eficiente para la integración numérica, en la cual una integral $\int_W f(u)du$ de alguna función f es aproximada por una suma ponderada $\sum_j w_j f(u_j)$ de los valores de la función en una lista finita de *puntos de cuadratura* u_i que tienen *pesos de cuadratura* w_i .

Berman y Turner (1992) desarrollaron un método de cuadratura numérica para la estimación de máxima verosimilitud aproximada para un proceso puntual Poisson no homogéneo. Así una aproximación de la integral en (2.43) por una suma finita usando cualquier regla de cuadratura es:

$$\int_{W} \rho_{\theta}(u) du \approx \sum_{j=1}^{m} \rho_{\theta}(u_{j}) w_{j}$$

donde u_j , j=1,...,m son puntos en W y $w_j>0$ son pesos de cuadratura cuya suma es |W|. Esto conduce a una aproximación para la verosimilitud (2.43):

$$\log L(\boldsymbol{\theta}) \approx \sum_{i=1}^{n(x)} \log \rho_{\theta}(x_i) - \sum_{j=1}^{m} \rho_{\theta}(u_j) w_j$$

Berman y Turner (1992) observaron también que si la lista de puntos $\{u_j, j = 1, ..., m\}$ incluye todos los puntos de datos (patrón puntual observado), entonces podemos reescribir (2.43) como una suma sobre los puntos de cuadratura:

$$\log L(\boldsymbol{\theta}) \approx \sum_{j=1}^{m} (\log \rho_{\theta}(u_j) \mathbf{1}[u_j \in x] - \rho_{\theta}(u_j) w_j)$$
 (2.49)

donde $\mathbf{1}[u_j \in x]$ es la función indicador, que toma el valor de 1 cuando u_j cae dentro de la cuadratura de un punto del patrón puntual y toma el valor de 0 cuando cae en una cuadratura donde no se observó ningún punto del patrón puntual.

La expresión (2.49) puede escribirse también de la siguiente forma:

$$\log L(\boldsymbol{\theta}) \approx \sum_{j=1}^{m} \left(y_j \log \rho_{\theta}(u_j) - \rho_{\theta}(u_j) \right) w_j \tag{2.50}$$

donde $y_j = \mathbf{1}[u_j \in x]/w_j$. El lado derecho de (2.50), para un x fijo, es formalmente equivalente a la log-verosimilitud ponderada de variables aleatorias Poisson $Y_j \sim Poisson$ (ρ_j) tomando como pesos w_j . La expresión (2.50) puede por lo tanto ser maximizada como en el caso de modelos lineales generalizados. Además la devianza D del modelo ajustado; está relacionada con el log-verosimilitud del modelo ajustado por:

$$-\log L(\widehat{\boldsymbol{\theta}}, x) = \frac{D}{2} + \sum_{j=1}^{m} \mathbf{1}[u_j \in x] \log w_j + n(x)$$
 (2.51)

donde la suma es efectivamente sobre los puntos de datos. Convenientemente, el modelo nulo $\rho_j \equiv \rho$ en la regresión Poisson log-lineal corresponde al proceso puntual Poisson uniforme con intensidad ρ . El MLE es $\hat{\rho} = n/\sum_j w_j = n/|w|$ con la correspondiente log-verosimilitud $\log L(\hat{\rho}) = n(\log n - \log|W| - 1)$.

Note que esta formulación asume que $\hat{\rho}(u)$ casi siempre es positiva. Los valores ceros son también admisibles, siempre y cuando el conjunto de ceros no dependa de θ . Así formalmente consentimos valores infinitos negativos para Z(u).

En la aproximación (2.50) todos los puntos u_j con $\hat{\rho}(u_j) = 0$ serán puntos dummys. Su contribución es cero y así ellos podrían ser omitidos en todos los contextos. Para más detalle consulte Baddeley et al. (2016).

Los diseños de los esquemas de cuadratura se muestran en la Figura 3 y son descritos en Baddeley et al. (2016), estos incluyen la teselación de Dirichlet (o diagrama de varoni) con el fin de generar los pesos de cuadratura. Estos son generados a partir de un grid de puntos (puntos dummy) más los puntos de patrón observado. Los pesos de cuadratura w_j asociado con un punto u_j (dato o dummy) es el área de la correspondiente baldosa (tile) de Dirichlet.

Computacionalmente es menos costoso usar los pesos de conteo. En su forma simple asignamos igual peso a cada punto de cuadratura, $w_j = |W|/m$. En general dividimos la ventana W en baldosas y todos los puntos de cuadratura que caen dentro de una baldosa T reciben el mismo peso $w_i = |T|/k$, donde k es el número de puntos de cuadratura en T.

Fig. 3: Esquemas de cuadratura para datos de patrones puntuales. (.) es una dato de punto y (+) es un punto dummy. En el lado izquierdo se muestra la teselación de Dirichlet para pesos, mientras que el lado derecho son áreas rectangulares, para pesos de conteo.

Fuente: Baddeley et al. (2016).

2.6.6 APROXIMACIÓN POR UN FINO PIXEL

Otra estrategia de cuadratura para aproximar la función de log-verosimilitud del proceso Poisson es dividir la ventana W en pequeños pixeles de igual área a. La integral sobre la ventana W es entonces aproximada por la suma sobre estos pixeles:

$$\int_{W} \rho_{\theta}(u) du \approx \sum_{j=1}^{m} \rho_{\theta}(u_{j}) a$$

donde u_j es el centro del j-ésimo pixel. También descartamos las posiciones exactas de los puntos de datos, y eficazmente movemos cada punto de datos al centro del pixel que lo contiene. Así aproximamos la suma sobre los datos por una suma sobre los pixeles:

$$\sum_{i=1}^{n} \log \rho_{\theta}(x_i) = \sum_{j=1}^{m} n_j \log \rho_{\theta}(u_j)$$

donde n_j es el número de datos de puntos que caen en el *j*-ésimo pixel. Con los resultados anteriores la función log-verosimilitud (2.43) queda expresada como:

$$\log L(\boldsymbol{\theta}) = \sum_{j=1}^{m} n_j \log \rho_{\boldsymbol{\theta}}(u_j) - \sum_{j=1}^{m} \rho_{\boldsymbol{\theta}}(u_j) a$$

$$\log L(\boldsymbol{\theta}) = \sum_{j=1}^{m} \{ n_j \log \rho_{\boldsymbol{\theta}}(u_j) - \rho_{\boldsymbol{\theta}}(u_j) a \}$$

$$\log L(\boldsymbol{\theta}) = \sum_{j=1}^{m} \{ n_j \log \rho_j - \rho_j a \}$$
(2.52)

donde $\rho_j = \rho_{\theta}(u_j)$. Así la expresión $\log L(\theta)$ tiene la misma forma como la logverosimilitud de una variable aleatoria N_j con media $a\rho_{\theta}(u_j)$. Esto debió esperarse, porque los conteos en los pixeles N_j son variables aleatorias Poisson independientes y $a\rho_{\theta}(u_j)$ es una aproximación de la media verdadera de N_j .

En el caso de un modelo log-lineal de un proceso puntual Poisson (2.44), la intensidad $\rho_{\theta}(u_j) = \exp\{B(u_j) + \theta^T \mathbf{Z}(u_j)\}$ puede escribirse de la siguiente forma:

$$\rho_j = \exp\{b_j + \boldsymbol{\theta}^T \boldsymbol{z_j}\}$$

donde $\rho_j = \rho_{\theta}(u_j)$, $b_j = B(u_j)$ y $\mathbf{z}_j = \mathbf{Z}(u_j)$. El lado derecho de (2.52) es el log-verosimilitud de un variable aleatoria independiente Poisson N_j con media:

$$\mu_{j} = a\rho_{j}$$

$$= a \exp\{b_{j} + \boldsymbol{\theta}^{T} \mathbf{z}_{j}\}$$

$$= \exp\{\log a + b_{j} + \boldsymbol{\theta}^{T} \mathbf{z}_{j}\}$$

$$= \exp\{c + \boldsymbol{\theta}^{T} \mathbf{z}_{i}\}$$
(2.53)

donde $c = \log a + b_j$. Esta expresión corresponde a una regresión Poisson log-lineal con covariables \mathbf{z}_j y offset $c = b_j + \log a$. Así los coeficientes estimados $\widehat{\boldsymbol{\theta}}$ para la regresión Poisson log-lineal son los estimadores aproximados de máxima verosimilitud $\widehat{\boldsymbol{\theta}}$ para el modelos proceso puntual Poisson loglineal.

2.6.7 MODELO NO LOGLINEALES

En muchos modelos de intensidad, algunos de los parámetros aparecen en la forma loglineal, mientras que otros parámetros no. Así un modelo de la forma:

$$\rho_{\theta}(u) = \exp\{\varphi^T \mathbf{Z}(u, \psi)\} \tag{2.54}$$

donde $\boldsymbol{\theta} = (\varphi, \psi)$ es una partición de las entradas de los parámetros del vector $\boldsymbol{\theta}$ en parámetros regulares φ los cuales aparecen en la forma loglineal en (2.54) y parámetros irregulares ψ los cuales no aparecen en la forma log-lineal. Si fijamos los valores de los parámetros irregulares ψ , entonces la ecuación (2.54) es loglineal en los parámetros restantes φ , este es un modelo de proceso puntual Poisson loglineal el cual puede ser estimado usando los métodos descritos anteriormente. Así, para cualquier elección de ψ , la verosimilitud $L(\boldsymbol{\theta}) = L(\varphi, \psi)$ puede ser fácilmente maximizada sobre todos los posibles valores de φ , obteniéndose el estimado del perfil (profile) de máxima verosimilitud.

$$\hat{\varphi}(\psi) = \arg\max_{\varphi} L(\varphi, \psi) \tag{2.55}$$

y el valor estimado máximo de la verosimilitud para un valor dado de ψ es llamado el perfil de verosimilitud:

$$pL(\psi) = \max_{\omega} L(\varphi, \psi) \tag{2.56}$$

El estimado de máxima verosimilitud de $\boldsymbol{\theta}$ puede ser obtenido por maximización del perfil de verosimilitud sobre ψ . Es decir, si $\hat{\psi} = \arg\max_{\psi} \mathrm{p}L(\psi)$ es el valor de los parámetros irregulares que maximiza el perfil de verosimilitud, entonces $\hat{\boldsymbol{\theta}} = (\hat{\varphi}(\hat{\psi}), \hat{\psi})$ es el estimado de máxima verosimilitud de $\boldsymbol{\theta}$.

Una alternativa para maximizar el perfil de verosimilitud es por "fuerza bruta". Se evalúa $pL(\hat{\psi})$ sobre un grid de valores de prueba de ψ el cual conduce al máximo.

Otra alternativa para encontrar la raíz que maximiza el perfil de verosimilitud, es el método de Newton aplicado al score, siempre que la función de intensidad sea diferenciable con respecto al parámetro irregular. Si $\rho_{\theta}(u)$ es diferenciable con respecto a todos los componentes de θ , el score es:

$$U(\theta;x) = \sum_{i=1}^{n} z_{\theta}(x_i) - \int_{W} z_{\theta}(u) \rho_{\theta}(u) du$$
 (2.56)

donde $z_{\theta}(u) = \frac{\partial}{\partial \theta} \log \rho_{\theta}(u)$ y la información observada es:

$$H(\widehat{\boldsymbol{\theta}};x) = -\sum_{i=1}^{n} k_{\widehat{\boldsymbol{\theta}}}(x_i) + \int_{W} k_{\widehat{\boldsymbol{\theta}}}(u)\rho_{\widehat{\boldsymbol{\theta}}}(u)du + \int_{W} k_{\widehat{\boldsymbol{\theta}}}(u)k_{\widehat{\boldsymbol{\theta}}}(u)^T \rho_{\widehat{\boldsymbol{\theta}}}(u)du$$
 (2.57)

donde $k_{\theta}(u) = \frac{\partial}{\partial \theta} z_{\theta}(u) = \frac{\partial^2}{\partial^2 \theta} \log \rho_{\theta}(u)$. En el método de Newton – Rhapson actualizamos repetidamente nuestro estimado actual de θ por:

$$\boldsymbol{\theta}_{m+1} = \boldsymbol{\theta}_m - \boldsymbol{H}(\boldsymbol{\theta}_m; \boldsymbol{x})^{-1} \boldsymbol{U}(\boldsymbol{\theta}_m; \boldsymbol{x})$$
 (2.58)

Para más detalle consulte Baddeley et al. (2016).

2.7 PROCESOS PUNTUALES COX

La clase de los procesos de Poisson es por lo general un modelo de clase demasiado simplista para datos reales, pero puede ser utilizado para construir modelos más flexibles. Un caso importante son los procesos de Cox y los procesos puntuales de Markov. Los procesos Cox son modelos para agregados o clustering de patrones puntuales. Ciertos procesos Cox se obtienen por la agrupación de los puntos alrededor de otro proceso puntual, y son por lo tanto casos especiales de los llamados *procesos clúster*.

Un proceso Cox es una extensión natural de un proceso de Poisson, obtenido al considerar la función de intensidad del proceso de Poisson como una realización de un campo aleatorio. Tales procesos fueron estudiados en un artículo seminal de Cox (1955) bajo el nombre de procesos de Poisson doblemente estocásticos, pero son hoy usualmente llamados procesos Cox.

Supóngase que $Z = \{Z(u) : u \in S\}$ es un *campo aleatorio* no negativo, donde $S \subseteq \mathbb{R}^d$, de modo que con probabilidad uno, $u \to Z(u)$ es una función localmente integrable. Si la distribución condicional de X dado Z es un proceso de Poisson en S con función de intensidad Z, entonces X se dice que es un proceso Cox generado por Z.

Que Z sea un campo aleatorio significa que Z(u) es una variable aleatoria para todo $u \in S$ (Adler, 1981). Si existe $\rho(u) = \mathbb{E}[Z(u)]$ y es localmente integrable, entonces con probabilidad uno, Z(u) es una función localmente integrable. La medida de intensidad del proceso de Poisson X|Z es:

$$M(B) = \int_{B} Z(u) du, B \subseteq S$$
 (2.59)

Esta es una medida aleatoria, y podemos definir el proceso Cox en términos de M en lugar de Z. En el caso especial en el que Z es determinista, X simplemente se convierte en un Proceso de Poisson con función de intensidad $\rho = Z$.

Los procesos Cox son semejantes a los modelos de procesos Poisson no homogéneos para patrones puntuales agregados. Usualmente en las aplicaciones Z es no observado, por lo que no se puede distinguir un proceso Cox X de su correspondiente proceso Poisson X|Z cuando sólo una realización de X_W está disponible (donde W denota la ventana de observación). Cuál de los dos modelos puede ser más apropiado, es decir, si Z debe ser aleatoria o "sistemática"/ determinista, depende de:

- Las cuestiones científicas a investigar: Si por ejemplo, queremos investigar la dependencia de ciertas covariables asociadas a Z, estas pueden ser tratadas como términos sistemáticos, mientras que los efectos no observados pueden ser tratados como términos aleatorios (Benes et al., 2002).
- La aplicación en particular: Si parece difícil de modelar un patrón agregado de puntos con una clase paramétrica de procesos Poisson no homogéneos (por ejemplo, una clase de funciones polinómicas de intensidad), los modelos de proceso Cox permiten una mayor flexibilidad y/o una parametrización más parsimoniosa.
- Conocimiento previo: En un enfoque bayesiano, la incorporación de conocimiento previo de la función de intensidad de un proceso de Poisson conduce a un modelo

de proceso Cox; el suavizamiento no paramétrico bayesiano de la función de intensidad es tratado por Heikkinen y Arjas (1998).

2.7.1 PROPIEDADES BÁSICAS

Las propiedades de la distribución de un proceso Cox X son descritas en Lawson y Denison (2002) y en la sección 5.2 de Moller y Waapetersen (2004). Estas se obtienen inmediatamente por el condicionamiento en Z y de las propiedades del proceso de Poisson X|Z. Así, la función de intensidad es:

$$\rho(u) = \mathbb{E}Z(u) \tag{2.60}$$

y la función de correlación par está dada por:

$$g(u,v) = \mathbb{E}[Z(u)Z(v)]/[\rho(u)\rho(v)] \tag{2.61}$$

Siempre Z(u) tiene una varianza finita para todo $u \in S$. Esto ilustra que la medida momento y la medida de momento factorial reducido puede fácilmente ser expresada en términos de los momentos de Z. Para los modelos más específicos, tales como en los procesos clúster, $g \ge 1$, aunque existen algunas excepciones a esta. La intensidad de segundo orden reponderado estacionario está garantizada por la traslación de invariancia de g(u,v) = g(u-v), en cuyo caso \mathcal{K} o K puede calcularse a partir de (2.11).

Para $A, B \subseteq S \operatorname{con} \operatorname{Var} N(A) < \infty \operatorname{y} \operatorname{Var} N(B) < \infty$:

$$Cov (N(A), N(B)) = \int_{A} \int_{B} Cov (Z(u), Z(v)) du dv + \mu (A \cap B)$$
 (2.62)

donde $\mu(B) = \mathbb{E}N(B)$ es la medida de intensidad. Tenga en cuenta que $\text{Var}N(A) \ge \mathbb{E}N(A)$ son iguales sólo cuando X es un proceso de Poisson. En otras palabras, un proceso de Cox exhibe exceso de dispersión en comparación con un proceso de Poisson.

Si $S = \mathbb{R}^d$ y Z es estacionaria y/o isotrópico (lo que significa que el distribución de Z es invariante por traslaciones/rotaciones), entonces X es estacionaria y/o isotrópico. Las expresiones explícitas de las funciones F, G y J para un proceso Cox estacionario son en general difíciles de obtener.

Considere un proceso Cox X restringido a un conjunto $B \subseteq S$ con $|B| < \infty$. Por (2.5), la densidad de X_B con respecto al proceso de Poisson estándar viene dado por:

$$f(x) = \mathbb{E}[\exp(|B| - \int_{B} Z(u) du) \prod_{u \in x} Z(u)]$$
(2.63)

para configuraciones puntuales finito $x \subset B$. Una expresión explícita de la media en (2.63) es generalmente desconocida.

2.7.2 PROCESOS NEYMAN-SCOTT

Un proceso Neyman-Scott (Neyman y Scott, 1958), es un caso particular de un proceso clúster Poisson (Lawson y Denison, 2002) y por tanto de un proceso Cox. Estos procesos son casos especiales de los *procesos Cox de ruido blanco (shot noise Cox processes)* (Moller y Waagepetersen, 2004).

Sea C un proceso de Poisson estacionario en \mathbb{R}^d con intensidad $\kappa > 0$. Condicionado en C, considere X_c , $c \in C$, sea un proceso Poisson independiente en \mathbb{R}^d donde X_c tiene función de intensidad:

$$\rho_c(u) = ak(u-c)$$

donde $\alpha > 0$ es un parámetro y k es un kernel (es decir, para todos $c \in \mathbb{R}^d$, $u \to k(u-c)$ es una función de densidad). Entonces $X = \bigcup_{c \in C} X_c$ es un caso especial de un proceso de *Neyman-Scott* con centro del *clúster C* y clústeres X_c , $c \in C$ (en la definición general de un proceso de Neyman-Scott, $n(X_c)$ dado C no se limita a ser una variable aleatoria Poisson (Stoyan et al., 1995).

Por las propiedades de superposición de procesos Poisson, X es también un proceso de Cox en \mathbb{R}^d generado por:

$$Z(u) = \sum_{c \in \mathcal{C}} ak(u - c) \tag{2.64}$$

claramente, Z en (2.64) es estacionaria y localmente integrable, y es también isotrópico si k(u) = k(||u||) es isotrópico. La intensidad es $\rho = \alpha \kappa$, y la función de correlación par es dado por:

$$g(u) = 1 + h(u)/\kappa \tag{2.65}$$

donde $h(u) = \int k(v)k(u+v) dv$, es la densidad para la diferencia entre dos puntos independientes donde cada uno tiene su densidad k.

Además:

$$J(r) = \int k(u) \exp\left(-\alpha \int_{\|v\| \le r} K(u+v) dv\right) du$$
 (2.66)

de modo que J(r) es no creciente para r > 0 con rango (exp $(-\alpha)$, 1). Así F(r) < G(r) para r > 0. Para más detalle consulte la sección 5.3 de Moller y Waagepetersen (2004).

2.7.3 PROCESOS NEYMAN-SCOTT NO HOMOGENEOS

Sea $S \subset \mathbb{R}^2$. Para $u \in \mathbb{R}^2$, $\mathbf{z}(u)$ denota un vector de covariables espaciales de dimensión $1 \times p$, con $p \ge 1$. Los procesos Newman-Scott no homogéneos son descritos en Waagepetersen (2007).

Suponemos que observamos un patrón puntual, es decir, una realización de un proceso puntual espacial $X \cap S$ donde $X = X_{c \in C}$ es una superposición de clústeres X_c de grupos de "descendencias" asociados con su punto "madre" c en un proceso puntual Poisson estacionario de intensidad k > 0. Dado C, los clústeres X_c son procesos Poisson independientes con función de intensidad:

$$\rho_c(u) = \alpha k(u - c; w) \exp(\mathbf{z}(u)\boldsymbol{\beta}^T)$$
 (2.67)

donde $\alpha > 0$, $\boldsymbol{\beta}^T$ es el vector de dimensión $1 \times p$ de parámetros de regresión y k es una densidad de probabilidad que depende de un parámetro w > 0 determinando la diseminación de los puntos de descendientes alrededor de c. Los parámetros de interés son los de regresión $\boldsymbol{\beta}$ mientras k, α y w son considerados como parámetros de perturbación.

Asumiendo que $\exp(\mathbf{z}(u)\boldsymbol{\beta}^T)$ es acotada por alguna constante M. Un clúster X_c puede entonces ser considerado como un adelgazamiento (*thinning*) independiente de un cluster Y_c con función de intensidad $M\alpha k(.-c;w)$ donde la probabilidad de adelgazamiento que varía espacialmente es $\exp(\mathbf{z}(u)\boldsymbol{\beta}^T)/M$. Desde este punto de vista ecológico, las variables del entorno ambiental controlan la supervivencia de las descendencias en Y_c . La perspectiva de adelgazamiento es además útil para fines de simulación: es sencillo para simular el proceso Neyman-Scott homogéneo $Y = \bigcup_{c \in C} Y_c$ y en segundo lugar aplicar adelgazamiento para obtener una realización de X. Para la simulación de $X \cap S$, basta que $M = \max_{u \in C} \exp(\mathbf{z}(u)\boldsymbol{\beta}^T)$.

La función de intensidad de X es:

$$\rho(u) = \kappa \alpha \exp(\mathbf{z}(u)\boldsymbol{\beta}^T) = \exp(\mathbf{z}(u)\boldsymbol{\theta}^T), u \in \mathbb{R}^2$$
 (2.68)

donde $\mathbf{Z}(u) = (1, \mathbf{z}(u))$ y $\boldsymbol{\theta} = (\beta_0, \boldsymbol{\beta}) = (\log(\kappa\alpha), \boldsymbol{\beta})$. La conocida función – K no homogénea (Baddeley et al., 2000) para X coincide con la función- K para el proceso estacionario Y (ajustando $\rho_Y = \kappa M\alpha$ denota la intensidad constante de Y y $\rho_Y K(t)$ es el número esperado de puntos dentro de una distancia t de un punto típico de Y).

El clustering en la realidad son resultados de una iteración de eventos madredescendientes a lo largo de varias generaciones.

2.7.4 ESTIMACION DE PARÁMETROS

Intuitivamente uno puede esperar obtener un estimado útil del parámetro θ usando una función de estimación basado en la función de intensidad. Por lo tanto consideramos:

$$l(\beta) = \sum_{u \in X \cap S} \mathbf{Z}(u)\boldsymbol{\theta}^{T} - \int_{S} \exp(\mathbf{Z}(u)\boldsymbol{\theta}^{T}) du$$
 (2.69)

con la correspondencia simple a la función de log verosimilitud bajo la suposición que *X* es un proceso Poisson con función de intensidad (2.68). La función de estimación insesgada es la derivada:

$$U(\boldsymbol{\theta}) = \frac{d}{d\boldsymbol{\theta}}l(\boldsymbol{\theta}) = \sum_{u \in X \cap S} \boldsymbol{Z}(u) - \int_{S} \boldsymbol{Z}(u) \exp(\boldsymbol{Z}(u)\boldsymbol{\theta}^{T}) du$$
 (2.70)

con sensitividad:

$$j(\boldsymbol{\theta}) = \frac{d}{d\boldsymbol{\theta}^T} U(\boldsymbol{\theta}) = \int_{S} \boldsymbol{Z}(u)^T \boldsymbol{Z}(u) \exp(\boldsymbol{Z}(u)\boldsymbol{\theta}^T) du$$
 (2.71)

La ecuación de estimación $U(\theta) = 0$ tiene una solución única $\widehat{\theta}$ que maximiza $l(\theta)$ si la sensibilidad j es definida positiva. Este es el caso siempre que exista una región $A \subseteq S$ de área positiva |A| > 0 tal que $\mathbf{Z}(u)^T \mathbf{Z}(u)$ es definida positiva para $u \in A$. La función objetivo $l(\theta)$ se puede maximizar fácilmente mediante el procedimiento descrito en la sección (2.6.5), es decir utilizando el dispositivo Berman - Turner para aproximar la integral en (2.69). Para más detalle consulte Berman y Turner (1992). La definición

positiva de j es, además, suficiente para establecer la normalidad asintótica de la estimación $\hat{\beta}$ de β .

Una estimación (Baddeley et al., 2000; Moller y Waagepetersen, 2004) de la función-K de X se puede obtener sustituyendo la función de intensidad (2.68) por el estimado $\exp(\mathbf{Z}(.)\widehat{\boldsymbol{\theta}}^T)$. Más específicamente:

$$\widehat{K}(t) = \sum_{u,v \in X \cap S} \frac{\mathbf{1}[0 < ||u - v|| < t]}{\exp\left(\left(\mathbf{Z}(u) + \mathbf{Z}(v)\right)\widehat{\boldsymbol{\theta}}^T\right)} e_{u,v}$$
(2.72)

donde $e_{u,v}$ es un factor de corrección de borde.

En las aplicaciones normalmente se usan un kernel k para el cual la función-K tiene una forma explícita en función de κ y w. El estimador de mínimo contraste $\hat{\kappa}$ y \hat{w} son entonces obtenidos por minimización de:

$$\int_0^a \left(\widehat{K}(t)^{1/4} - K(t; \kappa, w)^{1/4}\right)^2 dt \tag{2.73}$$

con respecto a (κ, w) para algún valor de α especificado por el usuario. La elección de α introduce un cierto grado de arbitrariedad en el procedimiento de estimación, ver Diggle (2003), que recomienda que la elección debe ser considerablemente menor que las dimensiones de la ventana de observación. Finalmente $\hat{\alpha} = \exp(\hat{\beta}_0)/\hat{\kappa}$.

2.7.5 PROPIEDADES ASINTÓTICAS.

Denotamos por κ^* , α^* , w^* y $\boldsymbol{\beta}^*$ los valores de los parámetros desconocidos para los cuales se asumen que los datos serán generados. Suponga por un momento que κ^* es conocido en cuyo caso se obtiene la estimación $\hat{\beta}_0 - \log \kappa^*$ de $\log \alpha$. Para valores grandes de κ^* , $(\hat{\beta}_0 - \log \kappa^*; \hat{\boldsymbol{\beta}})$ es aproximadamente normal con media $(\log \alpha^*; \boldsymbol{\beta}^*)$ y matriz de covarianza $\Sigma^* = \Sigma(\kappa^*, \alpha^*, w^*, \boldsymbol{\beta}^*)$, donde:

$$\Sigma(\kappa, \alpha, w, \boldsymbol{\beta}) = (\kappa \alpha J(\boldsymbol{\beta}))^{-1} + J^{-1}(\boldsymbol{\beta})G(\boldsymbol{\beta}, w)J^{-1}(\boldsymbol{\beta})/k$$
 (2.74)

y además: $J^{-1}(\boldsymbol{\beta}) = \int_{S} \mathbf{Z}(u)^{T} \mathbf{Z}(u) \exp(\mathbf{z}(u)\boldsymbol{\beta}^{T}) du$

$$G(\boldsymbol{\beta}, w) = \int_{\mathbb{R}^2} H(\boldsymbol{\beta}, w, c)^T H(\boldsymbol{\beta}, w, c) dc$$

$$H(\boldsymbol{\beta}, w, c) = \int_{S} \mathbf{Z}(u) \exp(\mathbf{z}(u)\boldsymbol{\beta}^{T}) k(u - c; w) du$$

En la práctica estimamos la varianza de $\hat{\beta}$ usando un enfoque plug-in donde los parámetros desconocidos en Σ^* son reemplazados por sus estimados. Considerando \widehat{sd}_j a la raíz cuadrada del j-ésimo elemento de la diagonal de $\widehat{\Sigma} = \Sigma(\hat{\kappa}, \widehat{\alpha}, \widehat{w}, \widehat{\beta})$, $[\hat{\beta}_j - 1.96 \ \widehat{sd}_j, \hat{\beta}_j + 1.96 \ \widehat{sd}_j]$ es un intervalo de confianza aproximadamente al 95% para $\hat{\beta}_j, j = 1, ..., p$.

La propiedad asintótica donde κ tiende a infinito no justifica el enfoque *plug-in* y la incertidumbre de las estimaciones de los parámetros *plugged-in* no se tienen en cuenta. Por lo tanto, se debe evaluar la utilidad de los errores estándar y los intervalos de confianza aproximados obtenidos a partir $\hat{\Sigma}$ a través de estudios de simulación (Waagepetersen, 2007). Tenga en cuenta que el primer término en el lado derecho de (2.74) es la matriz asintótica de covarianza para la estimación de máxima verosimilitud de (log α , β) cuando los datos se generan bajo un proceso Poisson con función de intensidad (2.68).

Las integrales J, G, y H se evalúan usando las sumas de Riemann donde k(u-c;w) es aproximado por $\mathbf{1}[u \in D_c]k(u-c;w)$ para un disco D_c alrededor c. Para más detalle consulte Waagepetersen (2007).

2.8 DIAGNÓSTICOS DE RESIDUALES

Baddeley et al. (2005) definieron los residuales para modelos de procesos puntuales, de manera general para los llamados procesos puntuales espaciales de Markov o Gibbs. Los procesos puntuales Poisson son un caso especial de los procesos puntuales de Markov, donde la intensidad condicional de Papangelou coincide con la función de intensidad. Por tanto en este trabajo nos limitaremos estrictamente a los residuales de los procesos puntuales Poisson.

Las innovaciones de un modelo paramétrico para un modelo del proceso puntual espacial Poisson X con densidad f_{θ} , está dada por:

$$I_{\theta}(B) = n(X \cap B) - \int_{B} \rho_{\theta}(u, X) du$$
 (2.75)

Para cualquier $B \subseteq W$, donde $n(X \cap B)$ denota el número de puntos que caen en B, donde ρ es la intensidad. Las innovaciones I_{θ} constituyen una medida aleatoria (al azar), con una masa de 1 de cada punto x_i del proceso puntual espacial y un valor negativo $-\rho(u, X)$ para toda ubicación $u \in W$. Satisfaciendo:

$$\mathbb{E}_{\theta}[I_{\theta}(B)] = 0 \tag{2.76}$$

Baddeley et al. (2005), demostraron además que las innovaciones I_{θ} están relacionadas directamente con el score (derivada del log-verosimilitud), mediante la siguiente relación:

$$\frac{\partial}{\partial \theta} \log\{L(\theta, x)\} = \int_{W} \frac{\partial}{\partial \theta} \log\{\rho_{\theta}(u, x)\} dI_{\theta} u \tag{2.77}$$

Aplicando la fórmula de GNZ (Nguyen y Zessin, 1976) a $h(u,x) = \frac{\partial}{\partial \theta} \log \{\rho_{\theta}(u,x)\}$ mostraron que el score tiene media 0 bajo el modelo.

2.8.1 **RESIDUALES**

Baddeley et al. (2005) definieron los residuales Raw para procesos puntuales espaciales y sus respectivos residuales escalados, tales como, los residuales inversa ρ , residuales Pearson²⁶ y residuales Pseudoscore²⁷.

Dado un conjunto de datos x y usando el estimado del parámetro general $\hat{\theta} = \hat{\theta}(x)$ teniendo en cuenta que $\hat{
ho}=
ho_{\widehat{ heta}}$ los residuales para el caso del proceso Poisson son descritos en el Cuadro 5. Para que los residuales Inversa ρ y Pearson estén bien definidos, el estimador $\hat{\theta}$ debe tener la siguiente propiedad $\rho_{\hat{\theta}(x)}(x_i, x) > 0$ para todo $x_i \in x$ y para cualquier patrón x. Los valores cero para $\rho_{\widehat{\theta}(x)}(u, x)$ se permiten para $u \notin x$.

Los residuales son también atribuidos a lugares $u \in W$ que no son puntos del patrón. Esto está relacionado con un problema metodológico importante para procesos puntuales. En un conjunto de datos del patrón puntual, la información observada no consiste únicamente en las ubicaciones de los puntos observados del patrón. La ausencia de puntos en otros lugares también es informativa.

 $^{^{\}rm 26}$ En analogía con los residuales Pearson para la regresión log-lineal de Poisson

Estos residuos son incrementos del score y así corresponden a los residuales score en un GLM.

Cuadro 5: Residuales para procesos puntuales espaciales Poisson.

Residuales	Fórmula
Raw	$R_{\widehat{\theta}}(B) = n(x \cap B) - \int_{B} \widehat{\rho}(u, x) du$
Inversa ρ	$R\left(B, \frac{1}{\hat{\rho}}, \hat{\theta}\right) = \sum_{x_i \in x \cap B} \frac{1}{\hat{\rho}(x_i, x)} - \int_B 1\{\hat{\rho}(u, x) > 0\} du$
Pearson	$\left(B, \frac{1}{\sqrt{\hat{\rho}}}, \hat{\theta}\right) = \sum_{x_i \in x \cap B} \frac{1}{\sqrt{\hat{\rho}(x_i, x)}} - \int_B \sqrt{\hat{\rho}(u, x)} du$
Pseudo – score	$R\left(B, \frac{\partial}{\partial \theta} \log(\hat{\rho}), \hat{\rho}\right) = \sum_{x_i \in x \cap B} \left[\frac{\partial}{\partial \theta} \log\{\rho_{\theta}(x_i, x)\}\right]_{\theta = \hat{\theta}} - \int_{B} \left[\frac{\partial}{\partial \theta} \rho_{\theta}(u, x)\right]_{\theta = \hat{\theta}} du$

Fuente: Baddeley et al. (2005).

2.8.2 PROPIEDADES DE RESIDUALES

Las propiedades de los residuales para modelos de procesos puntuales espaciales son descritas en detalle en Baddeley *et al.* (2005) y Baddeley *et al.* (2007). Nos limitaremos también al caso Poisson.

a. La suma de residuales es igual a 0

Al igual como ocurre en la regresión lineal simple, en el modelo de proceso Poisson homogéneo, estimado por máxima verosimilitud, los residuales Raw son $R_{\widehat{\theta}}(B) = n(x \cap B) - n(x)|B|/|W|$. En particular la suma de residuales para la ventana entera W es $R_{\widehat{\theta}}(W) = 0$ para cualquier conjunto de datos de patrón puntual x.

De forma más general para un modelo de proceso puntual con tendencia no espacial e intensidad de la forma "log-lineal", si el modelo es estimado por máxima pseudoverosimilitud²⁸, con B = W, implica que $R_{\hat{\theta}}(W) = 0$. Los residuales pseudoscore (para cualquier modelo con parámetro k-dimensional) suma 0 sobre W.

b. La Media Residual

Supóngase que ajustamos un modelo de proceso puntual con parámetro θ a un patrón puntual x usando una estimación del parámetro $\hat{\theta} = \hat{\theta}(x)$. Considere que x es en realidad una realización de algún otro proceso puntual X (cuya densidad de probabilidad satisface

_

²⁸ Para el caso de los modelos de procesos Poisson, la función de pseudoverosimilitud coincide con la verosimilitud. Sin embargo esta no ocurre para procesos con interacción entre puntos tales como los procesos de Markov, en las cual se usa ampliamente el método de Máxima Pseudoverosimilitud en lugar de Máxima Verosimilitud para la estimación de parámetros.

el análogo de la siguiente condición: si $f_{\theta}(x) > 0$ y $y \subset x$ entonces $f_{\theta}(y) > 0$). Entonces los residuales esperados raw, inversa y Pearson son:

$$\mathbb{E}[R(B,1,\hat{\theta})] = \mathbb{E}\left[\int_{R} \{\rho(u,X) - \rho_{\hat{\theta}}(u,X)\} du\right]$$
 (2.78)

$$\mathbb{E}[R(B, \frac{1}{\widehat{\rho}}, \widehat{\theta})] = \int_{B} \mathbb{E}\left[\frac{\rho(u, X)}{\rho_{\widehat{\theta}(X) \setminus \{u\}}(u, X)} - \mathbf{1}\{\rho_{\widehat{\theta}(X)}(u, X) > 0\}\right] du \tag{2.79}$$

$$\mathbb{E}[R(B, \frac{1}{\sqrt{\widehat{\rho}}}, \widehat{\theta})] = \int_{B} \mathbb{E}\left[\frac{\rho(u, X)}{\rho_{\widehat{\theta}(X)\setminus\{u\}}(u, X)} - \sqrt{\rho_{\widehat{\theta}(X)}(u, X)}\right] du \tag{2.80}$$

respectivamente (siempre que $\rho_{\widehat{\theta}(X)}(x_i, X) > 0$ para todo $x_i \in X$).

Desde que la verdadera intensidad del proceso es $\rho(u) = \mathbb{E}[\rho(u, x)]$, una interpretación es que los *residuales raw* son estimaciones de sesgo (negativo) en el modelado de la intensidad. En el caso del residual inverso este tiene una interpretación más compleja relacionada con el sesgo relativo en la intensidad condicional estimada. Para más detalle consulte Baddeley et al. (2005) y Baddeley et al. (2007)

c. La varianza de los residuales

En un proceso Poisson no homogéneo con intensidad $\rho(u)$, la varianza de las innovaciones raw, inversa o Pearson respectivamente, se reducen a:

$$var\{I(B,1,\rho)\} = \int_{B} \rho(u)du \tag{2.81}$$

$$var\left\{I\left(B, \frac{1}{\rho}, \rho\right)\right\} = \int_{B} \frac{1}{\rho(u)} du \tag{2.82}$$

$$var\left\{I\left(B, \frac{1}{\sqrt{\lambda}}, \theta\right)\right\} = |B| \tag{2.83}$$

La primera ecuación es, por supuesto, la varianza y la media de n(X). La última ecuación es análoga al hecho de que los residuales de Pearson clásicos están estandarizados, ignorando el efecto de la estimación de parámetros.

Para la varianza de los residuales, las fórmulas son más engorrosas, involucrando características tanto del modelo ajustado y del proceso puntual subyacente. En un modelo de proceso Poisson con intensidad $\rho_{\theta}(u)$ es ajustada a una realización de un proceso Poisson con intensidad verdadera $\rho(u)$. Entonces los *residuales raw* tienen varianza:

$$\operatorname{var}\{R(B)\} = \int_{B} \rho(u) du + \int_{B} \int_{B} \operatorname{cov}\{\rho_{\widehat{\theta}(X)}(u), \rho_{\widehat{\theta}(X)}(v)\} du dv$$

$$-2 \int_{B} \int_{B} \mathbb{E}\left[\rho_{\widehat{\theta}(X \cup \{u\})}(v) - \rho_{\widehat{\theta}(X)}(v)\right] \rho(u) dv du$$
(2.84)

En el caso especial donde un proceso Poisson homogéneo es ajustado a una realización de un proceso Poisson homogéneo con intensidad θ , la varianza de los residuales son:

$$var\{R(B,1,\hat{\theta})\} = \theta|B|(1-|B|/|W|) \tag{2.85}$$

$$var\left\{R(B, \frac{1}{\hat{\lambda}}, \hat{\theta})\right\} = |B|(|W| - |B|)\mathbb{E}\left[\frac{\mathbf{1}\{n(X) > 0\}}{n(X)}\right]$$
(2.86)

$$var\left\{R(B, \frac{1}{\sqrt{\hat{\rho}}}, \hat{\rho})\right\} = |B|(1 - |B|/|W|) \tag{2.87}$$

Tenga en cuenta que las varianzas de los residuales son más pequeñas que las varianzas de las innovaciones correspondientes $var\{I(B,1,\theta)\}=\theta|B|$, $var\{I(B,\frac{1}{\theta},\theta)\}=|B|/\theta$ y $var\{I(B,\frac{1}{\sqrt{\theta}},\theta)\}=|B|$. Esto es análogo a la deflación de la varianza residual en un modelo lineal. Para más de detalle consulte Baddeley et al. (2005) y Baddeley et al. (2007).

d. Errores no correlacionados

Los residuales espaciales no tienen incrementos independientes. Esto abarca también a los procesos de Poisson y muchos otros ejemplos. Baddeley et al. (2005) sospechan que las innovaciones y residuales satisfacen la ley de los grandes números y el teorema del límite central, cuando la ventana de muestreo W se expande.

2.8.3 DIAGNÓSTICO BASADO EN GRÁFICOS

El análisis gráfico de los residuales para modelos de procesos puntuales espaciales, ha sido propuesto en Baddeley et al. (2005) de forma similar a lo que ocurre para otros modelos estadísticos, especialmente la regresión logística. Un gráfico se utiliza para evaluar cada componente en el modelo estimado, tendencia espacial, dependencia de covariables, interacción interpuntos y otros efectos.

a. Gráfico de los residuales espaciales.

Baddeley et al. (2005), plantean un gráfico de la medida de los residuales en $x_i \in x$ que son representados por círculos con radios proporcionales a la medida del residual del modelo, como si se tratase de un patrón puntual marcado. Para el caso de otras ubicaciones $u \in W$ los residuales representan una densidad negativa, por tanto en el gráfico además se agrega como base una imagen pixel del componente de densidad. Los gráficos de marcas algunas veces identifican datos de puntos extremos, sin embargo la interpretación de los residuales se basa primordialmente en la suma sobre una subregión B.

Otra alternativa aún mejor es suavizar la medida del residual, tomando un kernel suavizado (una densidad de probabilidad sobre \mathbb{R}^2). El *campo residual suavizado* en la ubicación u es: $s(u) = e(u) \int_W k(u-v) dR(v, \hat{h}, \hat{\theta})$, donde \hat{h} representa una función de escalamiento de los residuales Raw y e(u) es una corrección para efectos de borde. Por su la cantidad análoga a las innovaciones tiene media cero.

Si el modelo estimado es el correcto, se espera que $s(u) \approx 0$. En el caso de los residuales raw, $s(u) = e(u) \left[\sum_{x_i \in x} k(u - x_i) - \int_W k(u - v) \hat{\rho}(v, x) dv \right] = \rho^*(u) - \rho^+(u)$, donde $\rho^*(u)$ es un estimador kernel suavizado no paramétrico de la función de intensidad del proceso puntual y $\rho^+(u)$ es una versión kernel suavizada del estimador paramétrico de la intensidad condicional. Estos dos estimados de intensidad podrían ser aproximadamente iguales si el modelo ajustado es el correcto. Los valores positivos de s(u) sugieren que el modelo subestima la intensidad. Para más detalle consulte Baddeley et al. (2005).

b. Gráficos de variables no incluidas en el modelo

Para un modelo de proceso puntual, por analogía a lo que ocurre en modelos lineales, un gráfico de los residuales contra una covariable espacial, o una de las coordenadas espaciales ayudan a investigar la presencia de tendencia espacial.

Para una covariable espacial Z(u) definida en cada ubicación $u \in W$, evaluamos la medida de residual en cada conjunto subnivel $W(z) = \{u \in W : Z(u) \leq z\}$, conduciendo a una función de residual acumulada $A(z) = R\{W(z), \hat{h}, \hat{\theta}\}$, la cual podría ser aproximadamente cero si el modelo estimado es el correcto. En el caso de los residuales

raw, $A(z)=n\{x\cap W(z)\}-\int_{W(z)}\hat{\rho}(u,x)du$. La función A(z) tiene aproximadamente media cero bajo el modelo estimado.

Los gráficos a su vez pueden ser dotados de límites $\pm 2\sigma$ basados en la varianza de las innovaciones bajo un proceso Poisson no homogéneo. Para más detalle consulte Baddeley et al. (2005).

III. MATERIALES Y MÉTODOS

3.1 MATERIALES

3.1.1 INSUMOS DE DATOS

Los insumos para el desarrollo de la presente tesis la constituyen los siguientes conjuntos de datos:

- La población de la ciudad de Lima, según el Censo de Población y Vivienda 2007, agregado a nivel de manzanas con las respectivas ubicaciones geográficas (long. y lat. del centro), proporcionada por el INEI.
- Conjunto de datos espaciales de los límites distritales de la ciudad de Lima.
- Conjunto de datos de los hechos delictivos registrados en el 2013 y 2014, con sus respectivas coordenadas geográficas. Los datos fueron obtenidas por Giancarlo Díaz Pardo, policía en actividad, junto a la plataforma Datea, para crear el mapa del delito de Lima, con el objetivo de que las comisarías utilicen la información y refuercen la seguridad en estos puntos. En este aplicativo, los propios ciudadanos de Lima que han sido víctimas de robo²⁹ podían ubicar en un mapa web, el lugar del incidente. Los datos fueron descargados con ayuda del Sotfware Tableau Public de la web: http://elcomercio.pe/lima/seguridad/cercado-y-surco-registran-mas-delitos-segun-sondeo-web-noticia-1740950.
- Conjunto de datos de las comisarias obtenidas del portal Web del Ministerio de Interior a fines del 2015. Posteriormente fueron georreferenciadas utilizando el aplicativo web Google Maps y se añadió además las ubicaciones de las Serenazgos y centros de seguridad ciudadana existente en Google Maps.

²⁹ divididos en sus diferentes modalidades: arrebato, bujiazo, cogoteo, raqueteo, etc.

 Conjunto de datos del Presupuesto Institucional de Apertura (PIA) 2014, orientadas al Orden público, detallada para cada Municipalidad. Los datos fueron descargados del aplicativo web, Consulta Amigable del Ministerio de Economía y Finanzas.

3.1.2 MATERIAL DE ESCRITORIO

- Laptop portátil Core i5 Toshiba
- Programa Estadístico: R Project versión 3.2.5.

3.2 POBLACIÓN Y MUESTRA

La población bajo estudio está constituida por el conjunto de todos los puntos (ubicaciones) en donde se registró un hecho delictivo durante los años 2013 y 2014 en la ciudad de Lima Centro y Residencial. Específicamente, el área de estudio o ventana de observación W se muestra en la Figura 4 y constituye la región conformada por los distritos de Lima Centro (La Victoria, Lima, Lince, Breña, Rímac) y Lima residencial (Barranco, Jesús María, La Molina, Magdalena, Miraflores, Pueblo Libre, San Borja, San Isidro, San Luis, San Miguel, Santiago de Surco, Surquillo).

El lugar de ocurrencia de un hecho delictivo en W, corresponde a un punto y constituye un vector aleatorio representado por sus coordenadas geográficas (Longitud, Latitud). Se asume que el tamaño de la población N, es grande y desconocido por distintos motivos, por ejemplo, no todas las víctimas se atreven a denunciarlo y/o reportarlo.

Por tanto, si se toma todos los n = 1082 puntos recolectados en los años 2013 y 2014 se puede considerar a estos como una muestra aleatoria de toda la población. Este mismo criterio es utilizado en la aplicación de Minería de Datos.

Así en esta tesis, se considera como unidad de análisis un punto en los cuales se registró un hecho delictivo durante los años 2013 y 2014 y que fueron reportados y ubicadas por las víctimas a través del aplicativo web Datea al interior de W. Cabe recalcar que esto no debe confundirse con la metodología de procesos puntuales espaciales, para el cual este conjunto de puntos en si representa una única realización del proceso puntual espacial

bidimensional, lo cual difiere notablemente de los estudios clásicos donde cada dato se considera una observación y el conjunto la muestra.

Fig. 4: Ventana de observación. Constituye la región situada al interior del borde Gris (*W*).

3.3 IDENTIFICACIÓN DE VARIABLES

Las covariables espaciales utilizadas para el presente trabajo de investigación, son observadas y registradas para cada celda (pixel) de forma cuadrada de 20 metros de lado para todos los lugares del espacio de estudio W.

3.3.1 VARIABLE DEPENDIENTE

 ρ_i = Intensidad de delitos, es decir, el número de delitos por km² registrado en un punto cualesquiera.

3.3.2 VARIABLES INDEPENDIENTES – ESPACIALES

 Z_1 = Distancia (km) de un punto cualesquiera a un puesto de seguridad más cercano.

 Z_2 = Distancia (km) de un punto cualesquiera a un límite distrital.

 Z_3 = Presupuesto Institucional per-cápita (nuevos soles) destinada al orden interno.

 Z_4 = Densidad poblacional existente en un punto cualesquiera

3.4 FORMULACIÓN DE HIPÓTESIS

3.4.1 HIPÓTESIS GENERAL

El patrón puntual de hechos delictivos, se ajusta de mejor forma a un modelo de un proceso puntual espacial Poisson no homogéneo.

3.4.2 HIPÓTESIS ESPECÍFICA

- 1. Los hechos delictivos se encuentran distribuidos de forma no homogénea a lo largo de la ciudad de Lima.
- 2. En los lugares con mayor densidad poblacional, existe mayor ocurrencia de hechos delictivos.
- 3. La inversión en orden interno efectuado por los Municipios, favorece a la reducción de la delincuencia.
- 4. Los límites jurisdiccionales (distritales) favorecen al incremento de los hechos delictivos.
- 5. La distribución espacial de las comisarías y serenazgos, tiene efecto reductor en los hechos delictivos.
- 6. Existe tendencia espacial de los hechos delictivos.

3.5 ESPECIFICACIÓN DEL MODELO

3.5.1 PROCESO PUNTUAL ESPACIAL POISSON NO HOMOGÉNEO

El modelo planteado en este trabajo de investigación corresponde al proceso puntual Poisson no homogéneo, donde la dependencia de covariables espaciales, se expresó a partir del término de la intensidad que fue modelada en su forma loglineal, así:

$$\rho(u) = \exp(\beta_0 + \beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_3 + \beta_4 Z_4)$$

donde u representa cualquier punto de la ventana de observación W. $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4$ representan los coeficientes del modelo asociados al intersecto y a las covariables espaciales respectivamente.

3.5.2 PAQUETES DE "R" UTILIZADOS

Los principales paquetes del programa estadístico R, utilizados en la presente tesis fueron los siguientes:

- 1. rgdal y maptools para la lectura de datos espaciales en formato .shp
- 2. raster: Para el manejo y grafico de datos en forma de imágenes raster.
- 3. ggplot2: Para el mapeo de datos y gráficos en alta calidad incluidas imágenes satélite.
- 4. spatstat: Para análisis estadísticos de patrones puntuales espaciales.
- 5. sp:Para el manejo de datos espaciales.

3.6 METODOLOGÍA DE ANÁLISIS ESTADÍSTICO

- 1. Análisis Exploratorio Espacial de Datos
- 2. Mapeo de puntos
- 3. Estimación de la intensidad de hechos delictivos
- 4. Pruebas de Aleatoriedad Espacial Completa
- 5. Estimación de las estadísticas de resumen de segundo orden
- 6. Estimación de Modelos
- 7. Selección de los modelos.
- 8. Diagnósticos de residuales

IV. RESULTADOS Y DISCUSIÓN

4.1 ANÁLISIS EXPLORATORIO ESPACIAL DE LOS DATOS

En primer lugar se asumió que existe un proceso puntual espacial que determina los lugares en donde ocurren los hechos delictivos y su distribución en la ciudad de Lima. Una realización de tal proceso puntual o patrón puntual fue observada³⁰ entre los años 2013 y 2014. Bajo esta perspectiva, cabe mencionar que el número de delitos, y a su vez su ubicación, puede variar si se observa en otro momento del tiempo (otros años), obteniéndose así otro patrón puntual.

El patrón puntual espacial bidimensional en estudio, estuvo conformada por el conjunto $x = \{x_1, ..., x_n\}$, donde cada punto x_i representa la ubicación de un hecho delictivo con coordenadas geográficas (long_i, lat_i) en el sistema WGS 1984, posteriormente estas fueron transformadas a un Sistema de Coordenada Proyectadas (en el plano y en metros), WGS 1984 UTM zona 18S. La cardinalidad de x, es decir, el total de hechos delictivos fueron n = 1082 cuyas coordenadas de ubicación geográficas para cada punto se detalla en el Anexo 1.

El análisis exploratorio de patrones puntuales espaciales y la validación de los modelos ajustados se basan a menudo en estimaciones no paramétricas de diversas estadísticas de resumen. Así, el análisis exploratorio de los datos espaciales empieza con una representación gráfica del patrón puntual a través de un mapa de puntos con el fin de obtener una descripción vaga sobre el tipo de patrón puntual (aleatorio, regular o si existen clústeres), seguidamente se enfoca en buscar discrepancias con un modelo de Poisson utilizando estimaciones no paramétricas de las estadísticas de resumen.

4.1.1 MAPEO DE PUNTOS

Constituye uno de los primeros pasos en el análisis de patrones puntuales espaciales. Para nuestro caso de estudio los hechos delictivos (eventos observados) están representados en

³⁰ Bajo esta perspectiva, cabe mencionar que el número de delitos, y a su vez su ubicación, puede variar si se observa en otro momento del tiempo (otros años), obteniéndose así otro patrón puntual.

forma de puntos tal cual se muestra en la Figura 5. La ventana de observación W, es todo el espacio territorial ocupado por los distritos de Lima Centro y Residencial delimitada por una línea de color gris.

Fig. 5: Patrón puntual bidimensional (d = 2) de hechos delictivos, donde la ventana de observación W representa las zonas de Lima Centro y Residencial coloreadas en color celeste.

A simple vista, se observan zonas con mayor concentración de puntos, por ejemplo, en los distritos de Lima Cercado y Lince. En el caso opuesto, es decir, las zonas con menor concentración de puntos son los distritos de La Molina y Santiago de Surco. Estos hechos dan una impresión que el Proceso Puntual Espacial de hechos delictivos no sería completamente aleatorio, es decir falta homogeneidad en la distribución espacial de puntos. Sospechamos que sus causas podrían atribuirse a una alta densidad poblacional, pocas comisarias, poca inversión de parte del municipio para establecer el orden interno entre otras. Este tema será abordado con detalle en las siguientes secciones.

4.1.2 ESTIMACIÓN DE LA INTENSIDAD

Para cuantificar la ocurrencia de los hechos delictivos a través del espacio de estudio, es común utilizar la intensidad de puntos, es decir, el número de puntos por unidad de área. Previamente fue necesario transformar tanto la ventana de observación W y los elementos del patrón puntual al Sistema Proyectado de coordenadas WGS 1984 UTM zona 18S, lo cual nos permitió obtener la intensidad en unidades conocidas tales como: número de puntos por metro² y/o por km². Estos conjuntos de datos fueron utilizados para el desarrollo de las siguientes secciones.

En un primer instante, asumiendo que el proceso puntual espacial es *Completamente Aleatorio*, la estimación de la intensidad según la expresión (2.41), es de 6.56 hechos delictivos por km², esto se detalla en el siguiente Cuadro 6:

Cuadro 6: Estadísticas de resumen del patrón puntual bidimensional homogéneo.

Tipo	Frecuencia de puntos	Área de W (Km²)	Intensidad (puntos por Km²)
Hechos delictivos	1082	164.98	6.56

Fuente: Elaboración propia.

En segundo lugar, dado que los puntos parecieran no estar distribuidos homogéneamente en el espacio de estudio (pareciera existir zonas con mayor concentración de hechos delictivos), se realizó la estimación de la intensidad de forma no paramétrica³¹ a través de un kernel Gaussiano estándar (para una ancho de ventana, h = 400 m). Los resultados se muestran en la Figura 6. En esta imagen se observa que las zonas con mayor incidencia de hechos delictivos, fueron los distritos de Lima Cercado y Lince. Por otra parte en la barra de colores, se observa que la intensidad fluctúa desde cero (en color azul) hasta un poco más de 30 hechos delictivos/km² (en color rojo). Así las zonas con mayor incidencia en el espacio de estudio, son representadas en colores cercanos a rojo.

³¹ La intensidad no paramétrica por el método kernel, es calculada para un fino y regular grid de puntos, que son los centros de los píxeles de 20 metros de lado. Estos en conjunto son visualmente representados en la forma de una imágen raster.

Fig. 6: Intensidad de hechos delictivos (Puntos/km 2) para h=0.4 km.

Con fines de identificar y tener una mirada más real de las zonas con mayores ocurrencias de hechos delictivos, se superpuso la intensidad por encima de la imagen satelital tal cual se muestra en la Figura 7. A su vez, las zonas con mayor incidencia fueron etiquetadas con los nombres A, B y C.

Fig. 7: Mapa de la Intensidad de hechos delictivos con fondo de imagen satélite Google. Los puntos A, B y C representan las zonas con mayores influencias.

Una mirada más detallada aún de los puntos A, B y C, se muestra en la Figura 8. En la parte superior, se observa la zona A, identificándose que los hechos delictivos principalmente han ocurrido a lo largo de la Av. Arequipa hasta llegar al cruce con la Av. Juan de Zela, cuya intensidad fluctuan en el rango de 25 a 30 hechos delictivos / km², aproximadamente. En la parte inferior izquierda, se observa la zona B, identificándose que los hechos delictivos principalmente han ocurrido en la zona conocida como el Trebol de Javier Prado con intensidades similares al caso A y finalmente la figura del lado derecho muestra la zona de Lima Cercado.

De esta forma, la intensidad de un proceso puntual estimada por la forma no paramétrica y el uso de las imágenes satelites nos ayudaron en gran medida a identificar las zonas específicas con mayores incidencias de hechos delictivos. Por otro lado el valor que toma

esta nos ayuda a tener una idea de la magnitud del problema en cada una de las zonas identificadas.

Fig. 8: Mapa de la Intensidad de hechos delictivos de las zonas con mayores incidencias. La figura superior es del punto A, inferior izquierda es del punto B y el último corresponde al punto C.

4.1.3 ESTADÍSTICAS DE RESUMEN DE SEGUNDO ORDEN

El análisis exploratorio de patrones puntuales espaciales y la validación de los modelos ajustados se basan en estimaciones no paramétricas de diversas estadísticas de resumen.

Por ejemplo, el punto de partida en el análisis de un proceso puntual consiste en buscar la discrepancia con un modelo de Poisson utilizando estimaciones no paramétricas de estadísticas de resumen. Entre las estadísticas de resumen de segundo orden más utilizadas para procesos puntuales se encuentran las funciones de correlación por pares y las llamadas funciones - K y L, las cuales se muestran en la Figura 10 y la Figura 9, respectivamente para nuestro caso de estudio. Por otra parte las estadísticas de resumen basadas en las distancias entre puntos como las llamadas funciones - F, G, F0, F1, se muestran en la Figura 11.

Fig. 9: La función K y L, para los datos de hechos delictivos. Al lado izquierdo para el caso homogéneo y el lado derecho para el caso no homogéneo.

La función K y la función -L están en correspondencia uno-a-uno debido a que L es una transformación³² de K. Para el caso homogéneo se muestran en el lado izquierdo de la Figura 9 y en el lado derecho para el caso no homogéneo. En el caso homogéneo, $\rho K(r)$, es el número esperado de otros puntos dentro de la distancia r desde el origen dado que X tiene un punto en el origen. En general, los valores para valores $\hat{L}(r) - L_{pois} > 0$ indican agregación o clustering en distancias menores de r. Para nuestro caso de estudio los valores estimados de L son superiores a los valores teóricos, la cual corrobora nuestra sospecha de la existencia de agregación o clustering de hechos delictivos hasta una distancia menor a 1.5 km, sin embargo esta clusterización es más notoria en distancias cercanas a 500 m.

El hecho, que existan agregación de puntos en ciertos lugares, indica que existen zonas específicas que son las más preferidas por los delincuentes para llevar a cabo sus hechos delictivos. Esta preferencia puede deberse a diversos factores, entre ellas se asumen que son los lugares con: poca seguridad, poca inversión en orden interno, cercanas a un límite distrital, bastante aglomeración de personas (densidad poblacional) entre otras.

La *función* – g *de correlación par*, es otra estadística de resumen usada a menudo en lugar de la función - L o K, debido a que es más fácil de interpretar ya que la función - K, es una función acumulada. En general, al menos para pequeños valores de r, g(r) > 1 indica agregación o clustering a distancias r, y g(r) < 1 regularidad a tales distancias.

Fig. 10: La función - *g*, de correlación por pares, para los datos de hechos delictivos. Al lado izquierdo para el caso homogéneo y el lado derecho para el caso no homogéneo.

-

³² Consulte la ecuación (2.15)

Los valores estimados de la función - g, en nuestro caso de estudio para distintos valores de r se muestran en la Figura 10. En lado derecho para el caso no homogéneo, se observa que para valores cercanos a 0.4 km (es decir 400 metros), $\hat{g}(r=0.4) > 1$, lo cual corrobora la presunción de la existencia de clústeres o agregación de hechos delictivos.

Otras estadísticas de resumen son aquellas que están *basadas en las distancias entre puntos*, para nuestro caso de estudio se muestran en la Figura 11.

La función - G de distancia al vecino más cercano, para nuestro caso de estudio, se muestra en la parte superior-derecha de la Figura 11. En esta se observa que la función teórica G_{pois} , se encuentra alejada de los valores estimados de G, lo cual indica que no existe Aleatoriedad Espacial Completa (CSR) en el patrón puntual de hechos delictivos. Por otra parte, se determinó que a menos de 250 metros, en el 80% de los casos ocurrió otro hecho delictivo, lo cual indica que los hechos delictivos se dan en distancias cercanas unas de otras.

Fig. 11: La función – F, G y J, basado en distancia entre puntos.

Con respecto a la función - *F*, esta representa la distribución de un punto o lugar cualesquiera de la región de estudio hasta el lugar más cercano donde se registró un hecho delictivo. Así, a partir de la Figura 11, se observa que para un punto arbitrario dentro de la ventana de observación y hasta una distancia de 300 metros, existía una probabilidad del 60% que se registre un hecho delictivo en él, durante el periodo de estudio.

En general, los valores de las funciones - F y G son altos a distancias cortas y además dado que J(r) < 1, esto indica y corrobora la existencia de agregación o clústering en el patrón puntual de hechos delictivos.

4.1.4 PRUEBAS DE ALEATORIEDAD ESPACIAL (CSR)

Las pruebas estadísticas de Aleatoriedad Espacial Completa, se realizaron a través del método basado en tres tipos de cuadrantes tales como los polígonos distritales, cuadrantes irregulares y los diagramas de Dirichlet. Los resultados se muestran en el Cuadro 7, para los cuales las hipótesis planteadas son:

 H_0 : La intensidad es homogénea (CSR)

 H_1 : Es un proceso Poisson no homogéneo.

Cuadro 7: Pruebas de aleatoriedad espacial completa, basado en conteo de cuadrantes

Tipo	Nro. De polígonos	χ^2	Df	p-value
Polígonos dist.	17	333.27	16	2.2e-16
Cuadrados irreg.	12	232.85	11	2.2e-16
Dirichlet	9	194.62	8	2.2e-16

Fuente: Elaboración propia.

A partir de los resultados, dado que p-value<0.01, en cada uno de los tipos de cuadrantes, se rechaza la hipótesis nula. Es decir, existe suficiente evidencia estadística para afirmar que el patrón puntual de hechos delictivos es una realización de un proceso Poisson no homogéneo subyacente en la región de estudio, es decir, la intensidad es no homogénea.

Gráficamente, la falta de homogeneidad puede observarse para cada tipo de cuadrante, en la Figura 12. A su vez se observan las etiquetas de los valores observados (izquierda), esperados y los residuales correspondientes. Los polígonos son representados en color gris de acuerdo a la intensidad de hechos delictivos, lo cual permite identificar los cuadrantes

con mayor incidencia delictivas. Así en el caso de polígonos distritales, estas encuentran representadas en mayor grado en los distritos de Lima Cercado, Breña, Lince y Surquillo.

Fig. 12: Mapa de la intensidad basado en cuadrantes. En la parte superior los cuadrantes están de acuerdo a la configuración distrital, en la parte inferior - izquierda para el caso de teselación de Dirichlet y al lado derecho para el caso de cuadrantes (tiles).

Otra prueba importante de bondad de ajuste, es la prueba de Kolmogorov – Smirnov, espacial, las hipótesis son esencialmente las mismas de CSR. Esta se realizó utilizando como covariable espacial a la coordenada de longitud. Los resultados se muestran en el Cuadro 8.

Cuadro 8: Prueba de Kolmogorov – Smirnov, correspondiente a la abscisa (longitud).

Tipo	D	p-value
Spatial		
Kolmogorov-	0.157	2.2e-16
Smirnov		

Fuente: Elaboración propia

dado que el p-value<0.01, existe suficiente evidencia estadística para mencionar que existe tendencia espacial a lo largo de la coordenada de longitud, i.e., no existe aleatoriedad espacial completa (CSR).

Las distancias entre los valores observados y los teóricos, se muestran en la gráfica de Kolmogorov-Smirnov, Figura 13, donde se observa que las distancias máximas para valores de la abscisa (longitud) están situadas entre 285 – 290 km del sistema de coordenadas proyectadas UTM 18S.

Fig. 13: Gráfica de Kolmogorov-Smirnov para evaluar la tendencia espacial en la coordenada (x).

4.2 ESTIMACIÓN DE MODELOS

La covariables espaciales empleadas para la estimación de modelos, se muestran en la Figura 14. En la dirección de izquierda a derecha y de arriba hacia abajo, los gráficos representan: la distancia a un centro de seguridad (Z_1 , en km), la distancia a un límite distrital (Z_2 , en km), el presupuesto asignado a seguridad ciudadana per cápita (Z_3 , en nuevos soles) y finalmente la densidad poblacional (Z_4 , en población/km², para h=0.4

km). Las covariables espaciales llevan superpuestos los puntos del patrón puntual de hechos delictivos, con el fin de verificar su dependencia con respecto a las covariables espaciales. En el caso de las distancias hacia una comisaria, se observa que los hechos delictivos en su mayoría están un poco alejados de esta. En el caso de la distancia a un centro de seguridad, un buen número de puntos se muestran a distancias reducidas. Respecto a la variable de presupuesto para el orden interno, aquellos distritos con menor inversión, muestran una mayor concentración de puntos y finalmente los puntos parecieran estar presentes mucho más en zonas con mayor densidad poblacional.

Fig. 14: Mapas de covariables espaciales donde se superpone el patrón puntual de hechos delictivos (Fuente: Elaboración propia)

Para evaluar la dependencia espacial de los hechos delictivos con respecto a las covariables espaciales se formularon diversos modelos estadísticos los cuales fueron estimados por el método de Máxima Verosimilitud. Para el caso de la dependencia espacial de una covariable a la vez, estas se describen en el Cuadro 9, mientras para el

caso múltiple en el Cuadro 10. Las especificaciones de modelos loglineales, para procesos puntuales espaciales Poisson, se formulan a través de la intensidad.

Para el caso del proceso Poisson homogéneo (CSR), el modelo tiene la siguiente expresión:

$$\log \rho(u, x) = \beta$$

donde β es la intensidad (número esperado de puntos por unidad de área) y u es una ubicación cualesquiera del espacio de estudio o ventana de observación (W). Así el valor de la intensidad estimada para nuestro caso de estudio es, $\hat{\rho}(u,x) = e^{1.880741} = 6.558363$ y representa el número de hechos delictivos por km² para la región de estudio. Por definición de este modelo, se asume que la intensidad es homogénea y por tanto no depende de la ubicación u.

Con respecto a los modelos (1) - (4) con dependencia de una covariable espacial, el modelo de proceso Poisson no homogéneo tiene la siguiente forma:

$$\rho(u,x) = e^{\beta_0 + \beta_1 Z_i}$$

donde Z_i , es la covariable espacial observada en u, β_0 y β_1 son los parámetros del modelo. Específicamente para el modelo (2), se tiene:

$$\rho(u, x) = e^{2.366107830 - 1.051617Z_1}$$

Cuadro 9: Coeficientes del modelo log - lineal univariado para el caso de un proceso espacial Poisson no homogéneo.

Modelo	Variables	Estimate	S.E.	CI95.lo	CI95.hi	Ztest	Zval
Poisson Homogéneo (0)	(Intercept)	1.880741	0.030401	1.821157	1.940326	***	61.86467
Poisson No	(Intercept)	1.880806	0.030628	1.820776	1.940837	***	61.40768
homogéneo (1)	Z_1 (<0.11)	-0.001073	0.251869	-0.49473	0.492582		-0.00426
Poisson No	(Intercept)	2.366108	0.043981	2.279907	2.452309	***	53.79854
homogéneo (2)	Z_2	-1.051617	0.085483	-1.219161	-0.884073	***	-12.30203
Poisson No	(Intercept)	1.981458	0.044368	1.894498	2.068417	***	44.65979
homogéneo (3)	Z_3 (>60)	-0.182021	0.060915	-0.30141	-0.06263	**	-2.98810
Poisson No	(Intercept)	1.423270	0.064411	1.297026	1.549514	***	22.09657
homogéneo (4)	${Z}_4$	0.000038	0.000004	0.000029	0.000047	***	8.65450

Fuente: Elaboración propia.

Respecto a la significancia de los coeficientes de los modelos, en el Cuadro 9, estos resultaron altamente significativos para cada una de las covariables (a excepción de la distancia hacia una centro de seguridad), lo cual indica que la intensidad de hechos delictivos, dependen de estas covariables. Con respecto a los signos de la covariables espaciales que influyen significativamente al fenómeno de estudio, se concluye que cuanto más alejado este un punto de los límites distritales menor la intensidad de hechos delictivos. Es decir, los hechos delictivos ocurren en zonas cercanas a los límites distritales. Esto presumimos ocurre porque las comisarías de los distritos velan solo por la seguridad de sus ciudadanos, la cual resulta beneficioso para los delincuentes al lograr evadirse de los arrestos.

Para el caso de la dependencia espacial múltiple en un proceso Poisson no homogéneo, se formularon cuatro modelos que van de (5) - (8), y se muestran en el Cuadro 10.

Cuadro 10: Coeficientes del modelo log - lineal múltiple para el caso de un proceso espacial Poisson no homogéneo.

Modelo	Variables	Estimate	S.E.	CI95.lo	CI95.hi	Ztest	Zval
	(Intercept)	2.024665	0.091209	1.845898	2.203431	***	22.19806
D ' M	Z_1 (<0.11)	-0.092417	0.252170	-5.87E-01	4.02E-01		-0.36649
Poisson No homogéneo (5)	Z_2	-1.004802	0.087974	-1.177227	-0.832376	***	-11.4216
	Z_3 (>60)	-0.011861	0.063282	-1.36E-01	1.12E-01		-0.18743
	Z_4	0.000027	0.000005	0.000018	0.000036	***	5.672683
	(Intercept)	2.024694	0.091203	1.845941	2.203448	***	22.19998
Poisson No	Z_2	-1.004844	0.087987	-1.177295	-0.832393	***	-11.4204
homogéneo (6)	$Z_3 (>60)$	-0.012677	0.063244	-1.37E-01	1.11E-01		-0.20045
	Z_4	0.000027	0.000005	0.000018	0.000036	***	5.662029
D ' M	(Intercept)	2.419135	0.053938	2.313418	2.524852	***	44.85006
Poisson No homogéneo (7)	Z_2	-1.046305	0.085779	-1.214428	-0.878181	***	-12.1977
18111(1)	Z_3 (>60)	-0.101282	0.060959	-0.22076	0.018195		-1.66148
D . M	(Intercept)	2.014646	0.076305	1.865091	2.164201	***	26.40252
Poisson No homogéneo (8)	Z_2	-1.004815	0.087978	-1.177248	-0.832381	***	-11.4212
	Z_4	0.000027	0.000005	0.000018	0.000036	***	5.929459

Fuente: Elaboración propia.

Los coeficientes de los modelos resultaron ser, de forma individual, altamente significativos para el caso del modelo (8), en los otros casos al menos un coeficiente fue altamente significativo. Esta serie de modelos se plantearon con el fin de estimar el mejor modelo que se ajuste a los datos del patrón puntual.

Por último para el caso del modelo (8), se estimó un modelo clúster de Neyman – Scott, descrito en el Cuadro 11, donde la forma de la intensidad para este modelo es la misma que del modelo (8). La diferencia la hacen los parámetros del clúster, "kappa" y "scale", estimadas a partir de la función – K paramétrica y a través del método de Mínimo Contraste.

Cuadro 11: Coeficientes del modelo log – lineal, para el caso de un proceso espacial

clúster Neyman - Scott (no homogéneo).

Modelo	Variables	Estimate	S.E.	CI95.lo	CI95.hi	Ztest	Zval
	(Intercept)	2.014646	0.233457	1.557080	2.472213	***	8.629639
	Z_2	-1.004815	0.205377	-1.407347	-0.602283	***	-4.892532
Modelo clúster	Z_4	0.000027	0.000015	-0.000003	0.000057		1.753346
	Kappa	0.399605					
	Scale	0.203248					ļ ļ

Fuente: Elaboración propia.

La Figura 15, muestra la función -K, estimada usando la intensidad paramétrica del modelo (8) y en color rojo y verde las funciones teóricas.

Fig. 15: Función - *K* no homogénea

Los valores del modelo clúster ajustado y los valores predichos de la intensidad se muestran en la Figura 16, donde se muestra que los puntos están en su mayoría en los lugares con mayor intensidad, lo cual indica que el modelo (8) se ajusta al comportamiento de los datos.

Fig. 16: Clúster ajustado (lado izquierdo) e intensidad predicha (lado derecho).

4.3 SELECCIÓN DEL MODELO

La selección de los diversos modelos estimados, se realizó con la prueba de razón de verosimilitud, a través de comparaciones entre pares de modelo. Los resultados se muestran en el Cuadro 12.

Cuadro 12: Pruebas de razón de verosimilitud.

Cuauro 12. Fruebas de fazon de verosiminada.												
Df	Deviance	Pr(>Chi))									
1	0.13840	0.70990										
1	31.99900	0.00000	***									
1	0.04017	0.84120										
2	238.85000	0.00000	***									
1	238.85000	0.00000	***									
1	34.71200	0.00000	***									
1	229.96000	0.00000	***									
1	165.42000	0.00000	***									
	1 1 1 2 1 1 1	1 0.13840 1 31.99900 1 0.04017 2 238.85000 1 238.85000 1 34.71200 1 229.96000 1 165.42000	1 0.13840 0.70990 1 31.99900 0.00000 1 0.04017 0.84120 2 238.85000 0.00000 1 238.85000 0.00000 1 34.71200 0.00000 1 229.96000 0.00000									

0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1

Fuente: Elaboración propia.

El mejor modelo se eligió tomando en cuenta aquel que tenía una menor cantidad de parámetros y no presente una alta diferencia significativa con respecto a uno más complejo. De esta forma el modelo (8), fue el que mejor se ajustó a los datos y representa al modelo de proceso puntual espacial Poisson no homogéneo, de la siguiente forma:

$$\hat{\rho}(u) = e^{2.014646 - 1.004815Z_2 + 0.000027Z_4}$$

donde Z_2 y Z_4 representan: la distancia (km) a un límite distrital y la densidad poblacional (población/km²), respectivamente.

4.4 DIAGNÓSTICO DE RESIDUALES

Finalmente los gráficos de diagnóstico para los residuales raw, del modelo ajustado (8), se muestran en la Figura (17). En la parte superior izquierda se muestra un gráfico de marcas, al lado inferior – derecha se muestra un campo de residuales suavizados a través de una función Kernel, los otros dos gráficos representan las variables no incluidas en el modelo tanto para la coordenada de longitud y latitud. Con respecto a las coordenadas de ubicación: longitud (*x coordinate*) y latitud (*y coordinate*) no incluidas en el modelo, los residuales se encuentran alrededor de cero en la coordenada de longitud, de igual forma aunque en menor grado sucede para el coordenada de latitud, lo cual indica que los residuales raw tienen un buen comportamiento y no son necesarias incluirlas como una covariable más en el modelo elegido. En la diagonal principal, se observa un gráfico de marcas de los residuales en los puntos observados, de tamaños similares y pequeños lo cual es un buen indicador de que no existen zonas en las cuales los residuales son demasiado grandes. Finalmente se observa un campo de residuales suavizado por el método kernel.

Fig. 17: Gráfico de diagnóstico de residuales (raw).

V. CONCLUSIONES

De acuerdo a las pruebas de CSR, se determinó que el patrón puntual de hechos delictivos, se ajusta de mejor forma a un modelo de proceso puntual espacial Poisson no homogéneo. Así, el modelo elegido teniendo en cuenta la prueba de razón de verosimilitud fue el modelo log-lineal, que incluye como covariables espaciales a: la distancia al límite distrital y la densidad poblacional.

A través de los gráficos de las estadísticas de resumen, las pruebas basadas en cuadrantes en contra de CSR y el modelo elegido, se concluye que los hechos delictivos se encuentran distribuidos de forma no homogénea a lo largo de la ciudad de Lima Centro y Residencial, en la que existen zonas con mayor incidencia de hechos delictivos, tales como los distritos de Lima Cercado y Lince. Particularmente también se identificaron puntos específicos de la ciudad de Lima donde la incidencia de hechos delictivos es muy alta tales como lo ocurrido en la Av. Arequipa hasta llegar al cruce con la Av. Juan de Zela, cuya intensidad fluctua en el rango de 25 a 30 hechos delictivos / km², aproximadamente. Otra zona corresponde a la zona conocida como el Trebol de Javier Prado con intensidades similares al primer caso.

A partir de los modelos Poisson univariado, se concluyó que en los lugares con mayor densidad poblacional, existe mayor ocurrencia de hechos delictivos. Un ejemplo concreto de esto fue el Trebol de Javier Prado.

Una mayor inversión en orden interno efectuado por los Municipios, favorece a la reducción de la delincuencia. Esto involucra directamente a las autoridades locales en la forma como estos destinan el presupuesto para el control interno y seguridad ciudadana. Sin embargo, cabe notar también aquí, que gran parte de los recursos con los que cuentan los municipios provienen de los impuestos que pagan sus propios ciudadanos, con lo cual la responsabilidad recae también en ellos.

Los límites jurisdiccionales (distritales) favorecen al incremento de los hechos delictivos. Esto corrobora muchas afirmaciones periodísticas que muestran como las barreras jurisdiccionales existen y resultan beneficiosos para los delincuentes en el momento de evasión y perjudican a las víctimas al momento de reportar el hecho delictivo y su denuncia, dado que deben realizarla en una comisaria de su jurisdicción.

No se encontró evidencia estadística, para afirmar que la distribución espacial de las comisarías y serenazgos, tiene efecto reductor en los hechos delictivos.

En general, las ocurrencias de hechos delictivos no solo obedecen a un factor sino a una conjunto de estos (considerándose también aquellos que no fueron incluidos en el modelo) y que involucran la participación de diversos sectores desde los distinto niveles de gobiernos tanto locales, nacional y de los ciudadanos en general.

Desde un punto de vista metodológico, el análisis estadístico de patrones puntuales espaciales se constituye en una herramienta valiosa para combatir la delincuencia, ya que no solo permite identificar los lugares donde estos ocurren, sino también porque detecta las zonas de mayor incidencia delictivas a través de la intensidad y usa las covariables espaciales relacionadas a este problema a través de los modelos estadísticos de procesos puntuales espaciales.

Finalmente cabe recalcar la gran utilidad de los Sistemas de Información Geográfica, que existen hoy en día y que fueron utilizados no solo para proporcionar datos sino también para la identificación visual y real de los lugares donde ocurren la mayor incidencia de hechos delictivos. Un ejemplo de esto fue Google Maps a través de las imágenes satélites.

VI. RECOMENDACIONES

- 1. Se recomienda a las autoridades responsables de velar por la seguridad ciudadana, así como a las personas involucradas en la formulación de políticas referidas a estos temas, tomar conciencia que este tema involucra una suma de diversos factores y que solo acciones ejecutadas de manera conjunta (sin barreras jurisdiccionales) podrán ayudar a la reducción del número de hechos delictivos.
- 2. Dado que se identificaron que las zonas de mayor afluencia pública son sitios con mayores ocurrencias de hechos delictivos, se recomienda a las autoridades considerar a estas zonas como lugares de priorización para combatir la delincuencia.
- Algunas covariables espaciales, tales como el nivel socioeconómico de los ciudadanos del lugar, fueron obviadas en la presente tesis, por lo que para futuras investigaciones se recomienda incluirlas en el modelo.
- 4. Para los trabajos sucesivos, se recomienda comparar los resultados obtenidos en este estudio con el enfoque del modelamiento estadístico a partir de estadísticas de resumen tales como la función *K*.
- 5. Algunas covariables espaciales pueden estar disponibles solo en los lugares donde ocurrió el evento de interés, ante esto se sugiere para lo posterior utilizar los modelos estadísticos de procesos puntuales marcados. Modelos más complicados surgen cuando dos eventos de interés se registran en un mismo lugar, por ejemplo cuando una vivienda fue asaltada más de una vez. En estos casos se recomienda usar la teoría correspondiente a estos procesos, los cuales no fueron desarrolladas aquí.
- 6. Finalmente, se recomienda a cada una de las municipalidades y/o gobiernos locales del país a registrar o seguir registrando de forma georreferenciada, los hechos delictivos ocurridos en su jurisdicción no solo con el fin de realizar los mapas de delitos, sino también como una oportunidad para efectuar análisis más avanzados que ayuden a la reducción de los hechos delictivos.

VII. REFERENCIAS BIBLIOGRÁFICAS

Adler, R. 1981. The Geometry of Random Fields. Wiley. New York.

Baddeley, A. J; Silverman, B. W. 1984. A cautionary example on the use of second-order methods for analyzing point patterns. Biometrics, 40, 1089–1093.

Baddeley, A. J; Gill, R. D. 1997. Kaplan-Meier estimators of distance distributions for spatial point processes, Annals of Statistics 25: 263–292.

Baddeley, A. J; Moller, J; Waagepetersen, R. 2000. Non–an semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica (2000) Vol (54), nr 3. Pp.329-350.

Baddeley, A. J; Turner, R. 2000. Practical maximum pseudolikelihood for spatial point patterns (with discussion). Australian and New Zealand Journal of Statistics, 42(3):283–322

Baddeley, A; Turner, R; Moller J; Hazelton, M. 2005. Score, Pseudo-Score and Residual Diagnostics for Spatial Point Process Models.

Baddeley, A; Moller, J; Pakes, A. G. 2007. Properties of residuals for Spatial point processes. Ann Inst Stat Math (2008) 60:627–649.

Baddeley, A. 2008. Analysing spatial point patterns in R, CSIRO and University of Western Australia.

Baddeley, A; Rubak, E; Moller, J. 2011. Score, Pseudo-Score and Residual Diagnostics for Spatial Point Process Models.

Baddeley, A; Rubak, E; Turner, R. 2016. Spatial Point Patterns Methodology and Applications with R. CRC Press Chapman & Hall CRC BOOK.

Barndorff-Nielsen, O. E. 1978. Information and Exponential Families in Statistical Theory. Wiley, Chichester, New York, Brisbane, Toronto.

Bedford, T; Berg, J. V. D. 1997. A remark on van Lieshout and Baddeley's J-function for point processes, Advances in Applied Probability 29: 19–25.

Benes, V; Bodlak, K., Moller, J; Waagepetersen, R. P. 2002. Bayesian analysis of log Gaussian Cox process models for disease mapping, Technical Report R-02-2001, Department of Mathematical Sciences, Aalborg University. Submitted.

Berman, M; Turner, R. 1992. Approximating Point Process Likelihoods with GLIM. Wiley for the Royal Statistical Society.

Billingsley, P. 1995. Probability and Measure. 3rd Edition. Wiley, New York.

Bivand, R. S; Pebesma, E; Gómez, R. V. 2013. Applied Spatial Data Analysis with R, 2 edn, Springer.

Cox, D. R. 1955. Some statistical models related with series of events, Journal of the Royal Statistical Society Series B 17: 129–164.

Cox, D. R. 1972. The statistical analysis of dependencies in point processes. In P.A.W. Lewis, editor, Stochastic Point Processes, pages 55–66. Wiley, New York.

Cox, D. R; Isham, V. 1980. Point Processes. Chapman & Hall. London.

Cressie, N. A. C. 1991. Statistics for Spatial Data, 1 edn, John Wiley & Sons.

Daley, D. J. y Vere -Jones, D. 2008. An Introduction to the Theory of Point Processes, 2 edn, Vol. 2, Springer.

Diggle, P. J. 2003. Statistical Analysis of Spatial Point Patterns. Oxford University Press, 2nd edition.

Diggle, P. J. 2014. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, 2 edn. CRC Press A Chapman and Hall, Boca Raton.

Hardle, W; Muller, M; Sperlich, S; Werwatz, A. 2004. Nonparametric and Semiparametric Models. Springer.

Heikkinen, J; Arjas, E. 1998. Non-parametric Bayesian estimation of a spatial Poisson intensity, Scandinavian Journal of Statistics 25: 435–450.

Illian, J; Penttinen, A; Stoyan, H; Stoyan, D. 2008. Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, Ltd.

Kingman, J. F. C. 1993. Poisson Processes. Clarendon Press. Oxford.

Kutoyants, Y. A. 1998. Statistical Inference for Spatial Poisson Processes. Number 134 in Lecture Notes in Statistics. Springer, New York.

Lawson, A. B; Denison, D. G. T. 2002. Spatial Cluster Modelling. Chapman & Hall CRC.

Lehmann, E. L. 1983. Theory of Point Estimation. John Wiley and Sons, New York.

Lieshout, M. N. M; Baddeley, A. J. 1996. A nonparametric measure of spatial interaction in point patterns, Statistica Neerlandica 50, 344-361.

Lloyd, C. 2007. Local Models for Spatial Analysis, 1 edn, CRC Press.

MLM (Municipalidad de Lima Metropolitana, PE). 2016. Plan Regional de Seguridad Ciudadana de Lima Metropolitana 2016. GSGC Gerencia de Seguridad Ciudadana.

Moller, J; Waagepetersen, R. P. 2004. Statistical Inference and Simulation for Spatial Point Processes, 1 edn, Chapman & Hall CRC.

Moller, J; Waagepetersen, R. 2007. Modern Statistic for Spatial Point Processes. Board of the Foundation of the Scandinavian Journal of Statistics 2007. Published by Blackwell.

Neyman, J; Scott, E. L. 1958. Statistical approach to problems of cosmology, Journal of the Royal Statistical Society Series B 20: 1–43.

Nguyen, X. X; Zessin, H. 1976. Punktprozesse mit Wechselwirkung. Z. Wahrsch. Verw. Gebite 37, 91-126.

Rathbun, S. L; Cressie, N. 1994. Asymptotic properties of estimators of the parameters of spatial inhomogeneous Poisson point processes. Advances in Applied Probability, 26:122–154.

Ripley, B. D. 1976. The second-order analysis of stationary point processes, Journal of Applied Probability 13: 255–266.

Schabenberger, O; Gotway, C. 2005. Statistical Methods for Spatial Data Analysis, 1 edn, Chapman & Hall CRC. Boca Raton London NewYork Washington, D.C.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis, 1 edn, Chapman & Hall CRC.

Stoyan, D; Stoyan, H. 1994. Fractals, Random Shapes and Point Fields, Wiley, Chichester.

Stoyan, D; Kendall, W. S; Mecke, J. 1995. Stochastic Geometry and Its Applications, second edn, Wiley, Chichester.

Stoyan, D; Stoyan, H. 2000. Improving ratio estimators of second order point process characteristics, Scandinavian Journal of Statistics 27, 641-656.

Waagepetersen, R. P. 2007. An Estimating Function Approach to Inference for Inhomogeneous Neyman-Scott Processes. Biometrics, 63(1), 252-258.

VIII. ANEXOS

ANEXO 1: Ubicación de los hechos delictivos

10 177,03580 1211753 75 77,00062 12,07394 141,07335 12,1246 266 77,07391 71,07326 12,08325 12,0	1. 77.09279 12.09277 68 77.02733 12.12338 13 77.02278 12.09802 186 77.09530 12.09840 261 77.09288 12.07960 31 77.02738 12.09802 12.07960 68 77.02738 12.09802 18 77.00395 12.07960 68 77.02738 12.09802 18 77.00395 12.07960 68 77.02738 12.09802 18 77.00395 12.07960 68 77.02738 12.09802 18 77.00395 12.09802 18 77.00395 12.09802 18 77.00281 12.09803 12.09802 18 77.00398 12.09802 12.09802 18 77.00398 12.09802 12.09802 18 77.00398 12.09802 12.09802 18 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 19 77.00398 12.09802 12.09802 19 77.00398 12.09802 12.0	1			N°	Lon	Lat	Mf	Lon	Lat	l an l	Lon	Lat	R II	Lon	1 - 6
2 77.08346	2. 77.63489 12.0714 67 77.02743 12.1807 12. 77.0873 12.08840 87 77.02314 12.04360 82 77.03686 12.07646 12.077.0244 12.0766 12.0446 12.077.0244 12.0486 12.0446 12.077.0244 12.0486 12.0446 12.04740 12.0446 12.04740 12.0446 12.04740 12.0446 12.04740 12.0446 12.04740 12.0446 12.04740 12.0446	2	-77.05279								1.4		Lat	l IU	LOII	Lat
2 77.08346	2. 77.63489 12.0714 67 77.02743 12.1807 12. 77.0873 12.08840 87 77.02314 12.04360 82 77.03686 12.07646 12.077.0244 12.0766 12.0446 12.077.0244 12.0486 12.0446 12.077.0244 12.0486 12.0446 12.04740 12.0446 12.04740 12.0446 12.04740 12.0446 12.04740 12.0446 12.04740 12.0446 12.04740 12.0446	2		-12.06277 I	66	-77.02933	-12.12338	131	-77.02276	-12.08802	196	-77.05630	-12.06849	261	-77.03739	-12.06420
3 77,00995 20,07600 58 77,02452 12,1246 53 77,07329 12,05956 59 77,00940 12,0146 263 77,03944 12,02572 5 77,04098 12,05955 77,04098 12,07408	3															
4 77.00855	4	3 1														
5 77.04093	6															
6 77.03234	6 77.03234 2.07489 71 77.076751 2.06754 58 77.04270 2.04462 201 76.89947 2.10375 26 77.0338 2.05141 77.07663 77.07663 2.04475 202 78.9947 2.10375 26 77.07663 2.04475 202 77.07663 2.04675 202 77.07663 2.04675 202 77.07663 2.04675 202 77.07663 2.04675 202 77.07663 2.05675 202 77.07663 2.05675 202 77.07663 2.05675 202 77.07663 2.05675 202 77.07663 2.05675 202 77.07663 2.05675 202 77.07663 2.05675 202 77.07663 2.05675 202 77.07663 2.05675 202	_														
8 77706491 - 1206668 72 77.07676	7. 77.0441 2.09869 72 77.0761 2.08801 87 77.0488 32 77.0487 20.9717 37.70480 3.0917															
8 77.06697 - 12.09171 73 - 77.06872 - 12.07368 18 77.0328 - 12.07475 203 - 77.05693 12.0230 288 77.0565 12.08375 19 77.05696 12.0140 77.0328 12.05676 204 77.05698 12.02630 270 77.0549 12.08375 17 70.0569 12.08375 17 70.0569 12.08375 17 70.0569 12.08375 17 70.0569 12.08375 17 70.0569 12.08375 17 70.0569 12.05690 17 70.0569 12.08375 17 70.0569 12.05690 17 70.0569 12.08375 17 70.0569 12.05690 17 70.0569 12.08375 17 70.0569 12.05690 17 70.0569 12.08375 17 70.0569 12.05690 17 70.0569 12.08375 17 70.0569 12.05690 17 70.0569 12.08375 17 70.0569 12.05690 17 70.0569 12.08375 17 70.0569 12.05690 17 70.0569 12.05690 17 70.0569 12.08375 17 70.0569 12.05690 17 70.05690 12.05690 17 70.0569 12.05690 17 70.0569 1	8 77.06937 12.0917 73 77.06957 12.07368 38 77.03561 12.04176 203 77.05120 12.01200 288 77.05651 12.05941 17.703580 12.01163 75 77.05650 12.01203 77.07357 12.05971 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 12.0913 77.07351 7															
19 77.04805 12.1180	19			-12.08669												
10 177,03580 1211753 75 77,00002 12,07394 11,07335 1212402 20,0771071 12,09304 27,77,0326 12,0327 12,0317 12,0326 12,0318 12	10	- 8	-77.06097	-12.09171			-12.07368	138		-12.04175		-77.05123	-12.10290		-77.01663	-12.05045
11 77,06568 12,07215 78 77,06071 12,0730 141 77,03355 12,12406 206 77,0317 12,09024 271 77,03264 12,0814 13, 77,0018 12,0076 78 77,00400 12,1112 143 77,03186 12,10886 208 76,88871 12,07830 273 77,07262 12,0896 141,77,0318 12,10886 12,08187 12,07830 12,07197 12,09024 141,77,0318 12,10886 208 76,88871 12,07830 273 77,07262 12,0896 12,0896 141,77,0318 12,10886 12,08187	11 77,06886 12,0726 76 77,06911 12,07394 141 77,03852 12,10805 207,77,07077 12,07396 27,77,02844 12,08816 13,77,00787 12,10076 76 77,00400 12,11132 143 77,0386 12,10886 208 76,89897 12,07830 27,37,07086 12,10816 14,70,8987 12,10887 12,08897 12,08897 12,08987 12,08897 12,08897 12,08897 12,08897 12,08897 12,08897 12,08897 12,08897 12,08897 12,08897 12,08897 12,08898 12,08897 12,08897 12,08897 12,08897 12,08897 12,08898 12,08897 12,08897 12,08898 12,08897 12,08897 12,08898 12,08897 12,08897 12,08938 146 77,07087 12,08082 12,08708 12,08948 12,0897 12,08989 12	9	-77.04905	-12.11400	74	-77.06438	-12.07211	139	-77.02888	-12.05176	204	-77.04508	-12.09227	269	-77.03577	-12.08375
11 77,06586 12,07215 76 77,06011 12,07394 141 77,03355 12,12406 206 77,0317 12,09024 271 77,03264 12,08181 12,077,03181 12,07301 12,07076 12,07085	11 77,06586 12,0726 76 77,05074 12,0330 142 77,03585 12,12085 208 77,07077 12,07930 273 77,02364 12,03214 14,03215 12,03214 12,03214 14,03215 14,03	10	-77.03580	-12.11763	75	-77.06062	-12.07230	140	-77.04322	-12.09038	205	-77.02594	-12.09609	270	-77.03400	-12.08833
12 77.02311 12.04313 77 77.03449 12.02330 142 77.03582 12.10857 207 77.07070 12.07910 272 77.02844 22.08467 13 77.07451 12.08681 208 77.08587 12.08357 227 77.02828 22.08277 14 75.838975 12.0833 27 77.07451 12.08335 274 77.03588 12.08375 12.08355 12.08375 12.08355 12.08375 12.	12 77,02311 12,04313 77 77,03443 12,02380 42 77,0385 12,0857 207 77,07077 12,07310 272 77,02444 12,08475 13 77,07048 12,08475 13 77,0848 12,08487 12,0835 274 77,0385 12,08487 12,0835 274 77,0385 12,08487 12,0835 274 77,0385 12,08487 12,0835 274 77,0385 12,08487 12,0835 274 77,0385 12,08487 12,0835 274 77,0385 12,08487 12,0835 274 77,0385 12,08487 12,0835 12,08487 12,0835 12,08487 12,0835 12,08487 12,0835 12,08487 12,0835 12,08487 12,0835 12,08487 12,0835 12,08487 12,0835 12,08487 12,0835 12,08487	11	-77.06586	-12.07215	76	-77.06011	-12.07394	141		-12.12406	206	-77.01917			-77.03264	-12.08322
13 17,00191 12,0076 78 77,00490 12,11132 143 77,03185 12,10886 208 76,89871 12,07830 273 77,02829 12,03931 14 77,03175 12,03951 14 77,03175 12,03951 14 77,03175 12,03951 14 77,03175 12,03757 12,03757 15 76,538187 12,03887 10 76,539762 12,03931 14 77,03175 12,03331 14 77,03175 12,03481 12 12,0341 12 12,03331 14 77,03175 12,03331 14 77,03175 12,03475 14 14,03475 14,0347	13 77,00191 12,10076 76 77,0040 -12,11152 143 77,03181 -12,10388 208 76,98971 12,07830 273 77,026229 12,0874 17,08878 12,0887 180 77,09387 12,0887 180 77,09387 12,0887 180 77,09387 12,0887 180 78,98781 12,08887 180 78,98781 12,08887 180 78,98781 12,08887 180 78,98781 12,08887 180 78,98781 12,08887 180 78,98781 12,08887 180 78,98781 12,08887 180															
14 76.59975 12.1053 79 77.00361 12.09992 144 77.00313 12.11133 209 76.594847 12.09345 275 77.003444 12.12161 15 76.59086 12.09533 81 77.69581 12.09383 146 77.07677 12.09333 211 77.0250 12.07742 77.770476 12.0742 17.770597 12.0742 12.0742 17.770597 12.0742	14															
15	15 78,59887 12,09887 80 78,99762 12,09341 145 77,07045 12,06775 210 77,04581 12,03649 275 77,03484 12,10345 176,97587 12,0333 211 77,08586 12,07024 276 77,03255 12,10356 12,10358 13,10358 12,10358 14															
16	18 78,89088 12,09838 11 78,98981 12,09383 14 77,08777 12,08333 211 77,08260 12,07772 276, 77,03476 12,109771 17,70868 12,09783 12,109783 13 76,98973 12,109783 13 76,98973 12,109783 13 76,98973 12,109783 13 77,08673 12,09783 13 77,08673 12,09783 13 76,98973 12,109284 13 77,08673 12,10292 279 77,03076 12,10928 13 77,08673 12,10292 279 77,03076 12,10928 13 77,08678 12,08528 12,109783 12,10928 13 77,08678 12,08678 12,10978 13															
17. 76.9730	17 18,97830 12,10123 82 76,89485 12,10070 147 77,03215 12,02812 212 77,070508 12,07024 277 77,03255 12,10355 12,10355 12,10355 12,10355 12,03565 12,03575 12															
18 77.09531 12.09763 83 76.39470 12.08456 148 177.02961 12.0286 213 77.701539 12.15292 278 77.03032 12.12132 19 77.03057 12.12132 19 77.03058 12.0829 85 75.89485 12.0758 150 77.00364 12.10374 15 75.99424 12.09503 280 77.02584 12.11464 12 77.03054 12.09503 12 177.02584 12.10462 12 77.03054 12.09503 12 177.02584 12.09503 12.0950	18															
19 177,08572 12,07827 84 75,38509 12,0628 149 177,02894 12,04088 141 75,89329 12,14302 279 77,03022 12,1142 12 12,77,08177 12,03004 86 76,38294 12,09710 151 76,93829 12,1145 216 76,37825 12,11107 281 77,02564 12,1082 12,07686 12,07689 12,0768	19 17 18 18 18 18 18 18 18															
20	20															
22	22															
22	22 77.6839229 12.11318 87 76.98119 12.09668 152 77.639667 12.078751 17. 76.97112 12.08366 282 77.02781 12.08367 12.08368 12.08361 153 76.98900 12.09655 18. 76.98381 12.07301 285 77.07776 12.08391 12.08361	20	-77.08508	-12.08929	85	-76.98485	-12.10758	150		-12.10974	215	-76.98424		280	-77.02648	-12.11464
22	22 77.6839229 12.11318 87 76.98119 12.09668 152 77.639667 12.078751 17. 76.97112 12.08366 282 77.02781 12.08367 12.08368 12.08361 153 76.98900 12.09655 18. 76.98381 12.07301 285 77.07776 12.08391 12.08361	21	-77.08177	-12.09004	86	-76.98294	-12.09710	151	-76.99929	-12.11145	216	-76.97825	-12.11107	281	-77.02564	-12.13082
23 - 76.89028 -12.13412 88 77.03890 12.10423 55 -76.99000 12.09555 218 76.98348 12.10430 283 -77.0716 -12.06875 224 -76.87548 -12.10868 39 -77.03524 12.03848 155 -77.03273 12.08707 220 -76.98819 -12.07301 285 -77.06670 -12.07462 22.03484 39 -77.03524 -12.03444 36 -77.03523 -12.09707 220 -76.98819 -12.07301 285 -77.06670 -12.07462 -12.03448 39 -77.03524 -12.03444 36 -77.00455 -12.07332 221 -77.02370 -12.13915 286 -77.06670 -12.07462 -12.03403 -12.0343 -12.1314 -12.03403 -1	23 76.98028 12.13412 88 77.03890 12.0423 153 76.89000 12.08555 218 76.980314 12.10430 283 77.07716 12.0837 24 76.99781 12.10786 89 77.03767 12.09367 154 76.89879 12.08517 197.09716 12.0837 25 76.897510 12.07868 90 77.03524 12.09849 155 77.03278 12.09707 220 76.98819 12.07301 285 77.06670 12.0746 26 76.897514 12.08480 91 77.03324 12.09844 155 77.00456 12.07332 221 77.02370 12.13915 286 77.06670 12.0746 27 77.04939 12.11753 92 77.07174 12.00218 177.070456 12.07332 221 77.02370 12.13915 286 77.06678 12.07362 28 76.99559 12.11214 93 76.99352 12.09862 158 77.08658 12.07572 29 77.02561 12.11433 93 76.99352 12.09862 158 77.08658 12.07571 223 77.02162 12.15360 289 77.06188 12.07351 29 77.02561 12.11433 94 77.09946 12.07647 189 77.08323 12.08460 225 77.01634 12.14816 290 77.05979 12.0272 30 77.05436 12.06881 95 77.08122 12.08689 160 77.08329 12.08460 225 77.01634 12.14816 290 77.05990 12.02738 31 77.04441 12.05223 98 77.08159 12.08167 162 77.08508 12.0834 163 76.89351 12.08460 225 77.08344 12.05623 981 77.08467 12.02523 33 77.04441 12.05223 98 77.08169 12.08167 162 77.08509 12.08509 101 77.08509 12.08168 162 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08509 12.08509 101 77.08	22		-12.11318	87			152								-12.12163
24	24	\rightarrow														-12.06979
26	25															
26	26															
28 -77.0439 12.11735 92 -77.0174 12.10218 877 -77.0511 12.01795 222 -77.02241 12.13726 287 77.06184 12.08082 28 -77.03561 12.11333 94 -77.03561 12.06471 159 -77.03561 12.06461 223 -77.02561 12.15362 289 -77.05979 12.06726 30 -77.04561 12.06881 95 -77.09122 12.06891 150 -77.03531 12.06461 225 -77.01634 12.14316 290 77.05939 12.06726 31 -77.04747 12.05917 96 -77.08922 12.07523 161 -77.08016 12.08681 226 -77.0583 12.06223 291 -77.05400 12.05888 97 -77.08509 12.08167 162 -77.08501 12.08368 37 -77.08509 12.08167 162 -77.08501 12.08362 231 -77.04411 12.06223 98 -77.08169 12.08167 162 -77.08501 12.13236 277 -77.05226 12.05710 292 -77.05407 12.07222 33 -77.04501 12.06230 99 -77.08169 12.06164 164 -76.939127 12.18990 229 -77.04504 12.05665 293 -77.03667 12.04286 36 -77.04508 12.03456 36 -77.04508 12.03456 36 -77.04508 12.03456 37 -77.08508 12.03456 37 -77.08508 12.03456 37 -77.08508 12.03456 38 -77.04508 12.03456 38 -77.04508 12.03456 38 -77.04508 12.03456 39 -77.03951 12.04286 38 -77.03911 12.07391 12.03914 12.07391 12.03914	27.77.00439															
28	28															
23 77.05561 12.14333 34 77.0936 12.07647 159 77.08343 12.06460 225 77.01634 12.15036 289 77.05979 12.07523 13 77.04747 12.05917 36 77.09322 12.07523 16 77.08323 12.08460 225 77.01634 12.14316 230 77.05906 12.071633 17.704747 12.05917 36 77.08392 12.07523 16 77.08016 12.08018 226 77.05883 12.06223 291 77.05407 12.06655 32 77.04747 12.05938 37 77.05893 12.08167 162 77.01530 12.13236 227 77.04526 12.05710 292 77.05407 12.07225 33 77.05441 12.06223 39 77.08186 12.07614 163 76.99127 12.1939 229 77.04701 12.05871 294 77.03767 12.03210 35 77.05508 12.06423 39 77.08159 12.07614 164 76.99127 12.1939 229 77.04701 12.05871 294 77.03767 12.03210 35 77.03437 12.06391 101 77.08069 12.09266 165 76.38186 12.08458 231 77.04427 12.06242 236 77.02568 12.04223 37 77.03441 12.05742 102 77.07395 12.09308 167 77.02126 12.11326 23 77.07746 12.04973 237 77.00168 12.04232 38 76.99574 12.07442 102 77.07397 12.0915 168 77.00305 12.11326 23 77.07486 12.04650 293 76.39584 12.0858 1	29. 77.02561 12.14333 94 77.09346 12.07647 159 77.08343 12.06449 224 77.02050 12.15036 289 77.05737 12.06723 31 77.075430 12.06583 35 77.08362 12.06883 160 77.08363 12.06640 225 77.01634 12.14816 290 77.05360 12.07183 12.07184 12.05868 37 77.08509 12.08167 162 77.08508 12.0623 281 77.05430 12.06581 22 77.04474 12.05368 37 77.08509 12.08167 162 77.01530 12.13236 227 77.05262 12.05710 292 77.05407 12.0722 33 77.04441 12.02223 38 77.08168 12.0814 163 76.93917 12.16869 228 77.04854 12.05861 233 77.03455 12.0344 12.06233 39 77.08169 12.07614 164 77.03689 12.07614 164 77.05660 12.08423 39 77.08169 12.07614 164 76.93127 12.11990 229 77.04701 12.08871 294 77.03767 12.03214 163 77.03937 12.08391 101 77.08069 12.03686 165 76.38168 12.12384 231 77.04427 12.06244 295 77.02561 12.04284 163 77.03358 12.04284 163 77.03358 12.04284 163 77.03358 12.04284 163 77.03358 12.04284 164 77.03358 12.04284 164 77.03358 12.04284 165 76.38168 12.03846 231 77.04427 12.06244 295 77.02561 12.02284 164 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 12.04284 165 77.03358 165 77.03258 12.11336 123 77.04427 12.04373 12.03358 165 77.03258 12.11344 165															
30	30 -77.05436 12.06681 36 -77.09122 12.06899 160 -77.08018 12.06460 225 -77.01634 -12.1616 290 -77.05430 -12.07183 17.704747 -12.05917 36 -77.08922 12.07523 161 -77.08016 -12.08018 226 -77.05833 -12.06223 291 -77.05430 -12.0722 32 -77.04601 -12.05888 37 -77.08169 -12.08167 162 -77.01530 -12.13236 227 -77.0526 -12.05710 292 -77.05407 -12.0722 33 -77.04441 -12.06223 38 -77.08169 -12.0614 163 -76.99167 -12.16694 228 -77.04526 -12.05710 292 -77.03767 -12.04513 -12.05656 293 -77.03659 -12.04513 -12.05666 -12.08167 -1	\rightarrow														
31 77,04747 12,05917 96 77,08502 12,07522 181 77,08016 12,08018 226 77,05803 12,06223 291 77,05407 12,06585 32 77,05407 12,06585 33 77,04441 12,05223 38 77,08186 12,08141 163 76,9917 12,16694 228 77,04864 12,05665 293 77,03945 12,03216 34 77,05510 12,08429 39 77,08186 12,06914 163 76,9917 12,16694 228 77,04701 12,05871 294 77,03767 12,03210 35 77,03584 12,03454 100 77,08080 12,09266 165 76,93186 12,12384 230 77,04701 12,05871 294 77,03967 12,04288 36 77,04397 12,06391 101 77,08069 12,09186 166 76,98018 12,08458 231 77,04427 12,06234 295 77,02958 12,04288 38 77,08395 12,00737 12,03186 166 76,98186 12,08458 231 77,04427 12,06234 296 77,02958 12,04288 38 76,38635 12,08666 103 77,07971 12,0918 168 77,0210 12,11424 233 77,07488 12,04873 297 77,00188 12,08453 39 76,59724 12,07744 104 77,07871 12,09390 169 77,00305 12,11731 234 77,08893 12,08789 299 76,39954 12,08453 40 76,89744 12,08391 105 77,00277 12,13727 170 77,00187 12,12059 235 77,04443 12,07432 301 76,99564 12,08847 42 76,94555 12,06212 107 76,89890 12,15979 172 77,05766 12,06261 238 77,04413 12,07432 301 76,99564 12,08847 44 77,07971 12,08187 107 76,89203 12,13193 174 77,05766 12,06261 238 77,0413 12,07432 301 76,99564 12,08544 44 77,07971 12,08187 107 76,89890 12,13391 175 76,95575 12,07160 240 76,94133 12,07676 305 77,0488 12,09434 47,705707 12,06870 110 76,87962 12,13391 175 76,89567 12,07608 233 77,04268 12,07676 305 77,0488 12,09484 47,705707 12,06870 110 76,87962 12,13391 175 76,89567 12,07108 240 77,08803 12,07676 305 77,0488 12,09484 47,705707 12,06870 110 76,87962 12,13391 175 76,89567 12,07108 241 77,0266 12,07668 3	32 -77.04441 12.05917 86 -77.08922 12.07523 161 -77.08108 -12.08018 226 -77.05803 12.05223 291 -77.05407 -12.075407 -12.															
\$\frac{3}{3} = \frac{77.04601}{3} - \frac{12.05868}{2} = \frac{97}{77.08509} = \frac{12.08617}{12.08681} = \frac{12.06917}{12.08691} = \frac{12.1236}{163} = \frac{12.1236}{22} = \frac{77.05266}{27.704854} = \frac{12.05710}{12.05665} = \frac{29}{29} = \frac{77.05407}{77.03767} = \frac{12.03210}{12.03210} = \frac{77.04501}{25} = \frac{12.05665}{29} = \frac{77.05607}{77.0560} = \frac{12.08240}{29} = \frac{77.08580}{77.08680} = \frac{12.08681}{12.07614} = \frac{1684}{164} = \frac{78.99127}{78.99127} = \frac{12.19390}{12.9368} = \frac{229}{27.704701} = \frac{12.05665}{29} = \frac{29}{29} = \frac{77.03567}{77.02561} = \frac{29}{29} = \frac{77.03567}{77.02561} = \frac{12.03210}{29} = \frac{77.0427}{79.02561} = \frac{12.03210}{29} = \frac{77.0427}{79.02561} = \frac{12.03210}{29} = \frac{77.0427}{79.02561} = \frac{12.0328}{29} = \frac{77.0427}{70.03562} = \frac{12.0624}{29} = \frac{96}{77.02561} = \frac{12.0328}{29} = \frac{77.0427}{70.02562} = \frac{12.0254}{29} = \frac{77.02569}{29} = \frac{77.02569}{2	32 -77.04601 12.08868 97 77.08508 -12.08167 162 -77.01530 -12.13226 227 -77.04554 -12.056165 232 -77.04507 -12.0345 33 -77.05610 -12.06223 38 -77.08186 -12.06414 163 -76.98167 -12.18694 228 -77.04554 -12.05665 233 -77.0355 -77.05610 -12.06242 99 -77.08186 -12.07614 164 -76.98167 -12.1890 229 -77.04701 -12.08571 294 -77.03767 -12.03216 -77.05608 -12.06428 99 -77.08080 -12.09268 165 -76.98186 -12.18948 230 -77.04267 -12.06645 295 -77.02961 -12.0422 -77.07374 -77.03941 -77.039	\rightarrow														
33 -77.04441 -12.06223 98 -77.08186 -12.06914 163 -76.99617 -12.16694 228 -77.04854 12.05665 293 -77.03945 12.03450 34 -77.05650 12.08429 99 -77.08185 12.07641 164 -76.99127 -12.11990 229 -77.04701 12.05871 294 -77.03767 12.03210 35 -77.04508 12.08244 100 -77.08080 -12.09266 165 -76.98186 12.12984 230 -77.0450 12.05645 295 -77.02961 12.04228 36 -77.04397 12.06991 101 -77.08069 12.09168 166 -76.98186 12.12984 230 -77.0450 12.05645 295 -77.02961 12.04223 37 -77.04397 12.06991 101 -77.08069 12.09168 166 -76.98186 12.08488 231 -77.04427 12.06234 296 -77.0258 12.04227 37 -77.03941 12.07242 102 -77.07995 12.09308 167 -77.0216 12.11326 232 -77.07746 12.04973 297 -77.00168 12.10285 38 -76.96835 12.08066 103 -77.07971 12.09390 169 -77.0210 -12.11424 233 -77.04880 12.04650 298 -76.99712 12.08637 39 -76.96724 12.07744 104 -77.07871 12.09390 169 -77.00187 12.112059 235 -77.04745 12.07100 300 -76.99624 12.08637 40 -76.95744 12.08691 106 -76.99444 12.13799 171 -76.99274 12.12059 235 -77.04745 12.07100 300 -76.99624 12.0682 41 -76.95114 12.06891 106 -76.99444 12.13799 171 -76.99274 12.06461 296 -77.04419 12.07432 301 -76.99568 12.08434 12.77.04565 12.08455 12.08455 12.08456 12.0	33 -77.04441 -12.06223 98 77.08186 -12.06314 163 -76.99617 12.16584 228 -77.04854 -12.05665 293 77.03945 -12.03451 34 -77.05608 12.08249 99 -77.08189 12.07614 164 -76.99127 12.11890 229 -77.04701 12.05871 294 -77.07677 12.03271 12.04281 35 -77.05058 12.08244 100 -77.08080 12.09661 164 -76.99127 12.12984 230 -77.04520 12.06645 295 -77.02958 12.04281 36 -77.03971 12.06291 101 -77.08080 12.09186 166 -76.98018 12.08458 231 -77.04520 12.06645 295 -77.02958 12.04228 37 -77.03971 12.07622 102 -77.07995 12.09308 167 -77.0216 12.11926 232 -77.07746 12.04973 297 -77.00158 12.0228 38 -76.98623 12.04228 38 -76.98623 12.04228 39 -76.98624 12.0824 39 -76.98624 12.08451 39 -76.98624 12.0824 39 -76.98624 12.0824 39 -76.98624 12.0824 40 -76.95744 12.08329 105 -77.00297 12.13727 170 -77.00187 12.12059 235 -77.0413 12.07402 30 -76.98624 12.0684 41 -76.95114 12.08381 106 -76.98444 12.13799 171 -76.93274 12.06461 238 -77.0413 12.07402 301 -76.98686 12.0884 42 -76.94552 12.08212 107 -76.98908 12.13189 174 -77.05766 12.08641 238 -77.0413 12.07402 301 -76.98568 12.0884 44 -77.02192 12.08452 10.08532 109 -76.98967 12.13391 175 -77.05766 12.08641 238 -77.04016 12.07494 303 -76.98561 12.0854 44 -77.07577 11.020852 109 -76.98762 12.13391 175 -76.95676 12.07642 23 -76.94333 12.10154 304 -77.05808 12.09444 12.08461 108 -76.97564 12.03391 175 -76.95676 12.07602 240 -76.9416 12.0710 305 -77.05408 12.0943 14.070791 12.08079 112 -76.97564 12.123391 175 -76.95675 12.070791 12.08267 12.07676 306 -77.04679 12.08272 113 -76.97569 12.07679 14.08079 112 -76.97569 12.07679 112 -77.07576 12.08272 113 -76.97569 12.07679 14.08079 112 -76.97569 12.08541 113 -77.07576 12.08641 12.07670 305 -77.08408 12.0943 112 -77.07576 12.08678 306 12.07675 306 -77.04608 12.07679 307 -77.03885 12.09314 114 -76.97598 12.08545 12.08641 12.0868															
1.000000000000000000000000000000000000	34 77.05610 12.08429 39 77.08159 12.07614 164 76.93167 12.11930 229 77.04701 12.05671 294 77.03767 12.02216 35 77.04397 12.06391 101 77.08069 12.03266 165 76.93816 12.03848 230 77.04520 12.05645 295 77.02958 12.04228 36 77.04397 12.06391 101 77.078069 12.09168 166 76.93818 12.08458 231 77.04327 12.06234 296 77.02958 12.04228 37.703941 12.07242 102 77.07995 12.03308 167 77.0216 12.11326 232 77.07468 12.04973 297 77.00158 12.0838 37.636855 12.08627 12.087744 104 77.07977 12.0316 168 77.0210 12.11424 233 77.07488 12.04550 298 76.93954 12.08458 39.76.95674 12.07744 104 77.07871 12.03390 169 77.00395 12.11731 27.07459 12.11731 29.87974 12.07100 200 76.93644 12.07838 104 77.63794 12.08394 104 77.03874 12.06384 12.08384 12.08585 12.08262 107.08398 106 76.83964 12.11739 17.703595 12.08451 12.08344 12.08384	32	-77.04601	-12.05868	97	-77.08509	-12.08167	162	-77.01530	-12.13236	227	-77.05226			-77.05407	-12.07222
35 77.05058 12.08244 100 77.08080 12.09266 165 76.98196 12.12984 230 77.04520 12.05645 295 77.02961 12.04283 36 77.04397 12.06391 101 77.08069 12.09168 166 76.98018 12.08458 231 77.04427 12.06234 296 77.02958 12.04227 38 76.96355 12.08066 103 77.07957 12.0918 168 77.0210 12.11424 233 77.07468 12.04973 297 77.00158 12.0855 39 76.96724 12.07744 104 77.07871 12.09390 169 77.00305 12.11731 234 77.05893 12.08788 299 76.99654 12.0868 103 77.07871 12.09390 169 77.00305 12.11731 234 77.05893 12.08788 299 76.99654 12.0868 104 76.95744 12.08393 105 77.00297 12.13727 170 77.00305 12.11731 234 77.05893 12.08789 299 76.99654 12.0868 106 76.98444 12.13799 171 76.99274 12.0595 235 77.07443 12.07402 301 76.99566 12.08844 12.08581 106 76.98484 12.13799 171 76.99274 12.06461 236 77.04413 12.07432 301 76.99566 12.08844 14.77.02305 12.08166 108 76.98757 12.11474 173 77.05706 12.06261 238 77.0410 12.07492 301 76.98565 12.08544 14.77.02305 12.08186 108 76.98757 12.11474 173 77.05706 12.06261 238 77.04016 12.07494 303 76.98551 12.08544 14.77.02705 12.08186 108 76.98757 12.11474 173 77.05706 12.06261 238 77.04016 12.07494 303 76.98551 12.08544 14.77.02707 12.08186 108 76.98758 12.11329 176 76.95567 12.0706 12.07676 306 77.04881 12.08486 12.084	38 77,05058 12,08244 100 77,08069 12,09268 165 76,88196 12,12844 230 77,04520 12,05645 295 77,02956 12,04283 36 77,03941 12,07742 102 77,07955 12,08308 167 77,02126 12,11326 232 77,074427 12,06234 296 77,02958 12,04223 237 77,03941 12,07742 102 77,07955 12,08308 167 77,02126 12,11326 232 77,07488 12,04560 298 76,98912 12,08453 239 76,86853 12,08066 103 77,07971 12,09151 168 77,0210 12,11424 233 77,07488 12,04560 298 76,893712 12,08453 239 76,85744 12,03323 105 77,00237 12,13727 170 77,00187 12,12053 235 77,04748 12,07103 300 76,89564 12,10683 140 76,85744 12,06831 106 76,89444 12,13799 171 76,93274 12,06461 236 77,04443 12,07432 301 76,89566 12,08844 14,76,95144 12,08323 105 76,89858 12,115907 177,07570 12,08167 12,08513 12,08454 14,77,02305 12,08451 108 76,88757 12,11474 173 77,05706 12,06461 238 77,04413 12,07432 301 76,89566 12,08344 14,77,02305 12,08461 108 76,88757 12,11474 173 77,05706 12,06461 238 77,04413 12,07432 301 76,89566 12,08344 14,77,02305 12,08461 108 76,88757 12,11474 173 77,05706 12,06461 238 77,04413 12,07432 301 76,89566 12,09354 14,77,02305 12,08461 108 76,88757 12,11474 173 77,05506 12,06461 238 77,04413 12,07432 301 76,89561 12,08444 14,77,02305 12,08461 108 76,88757 12,11474 173 77,05506 12,06461 238 77,04413 12,07432 301 76,89561 12,08454 14,77,02707 12,06020 111 76,87962 12,13391 175 76,85642 239 76,84933 12,10154 304 77,05808 12,09434 14,77,05707 12,06020 111 76,87962 12,13391 175 76,85642 12,07062 12,07063 12,07076 12,06473 13,070777 12,06020 111 76,87962 12,13391 175 76,85642 12,07062 12,086861 12,07468 12,08464 12,08464 12,08464 12,08464 12,08464 12,08464 12,08464 12	33	-77.04441	-12.06223	98	-77.08186	-12.06914	163	-76.99617	-12.16694	228	-77.04854	-12.05665	293	-77.03945	-12.03450
6	36 77.04397 12.06391 101 77.08068 12.03188 166 76.88018 12.08458 231 77.04427 12.06234 236 77.02588 12.0422 37 77.0344 12.07242 102 77.07395 12.03308 167 77.02126 12.11326 232 77.07484 12.04373 237 77.03971 12.08157 168 77.02126 12.11326 232 77.07748 12.04873 239 77.03971 12.08453 39 76.96724 12.08744 104 77.07871 12.03390 169 77.00305 12.11731 234 77.05893 12.08783 239 76.98654 12.0868 106 76.95744 12.08451	34	-77.05610	-12.08429	99	-77.08159	-12.07614	164	-76.99127	-12.11990	229	-77.04701	-12.05871	294	-77.03767	-12.03210
6	36 77.04397 12.06391 101 77.08068 12.03188 166 76.88018 12.08458 231 77.04427 12.06234 236 77.02588 12.0422 37 77.0344 12.07242 102 77.07395 12.03308 167 77.02126 12.11326 232 77.07484 12.04373 237 77.03971 12.08157 168 77.02126 12.11326 232 77.07748 12.04873 239 77.03971 12.08453 39 76.96724 12.08744 104 77.07871 12.03390 169 77.00305 12.11731 234 77.05893 12.08783 239 76.98654 12.0868 106 76.95744 12.08451	35	-77.05058	-12.08244	100	-77.08080	-12.09266	165	-76,98196	-12.12984	230	-77.04520	-12.05645	295	-77.02961	-12.04288
77.03941 -12.07242 102 -77.07995 -12.03308 167 -77.02126 -12.11326 232 -77.07746 -12.04973 297 -77.00158 -12.10285 38 -76.98635 -12.08066 103 -77.07971 -12.09115 188 -77.02101 -12.11424 233 -77.07468 -12.04950 298 -76.99712 -12.08452 40 -76.98744 -12.08292 105 -77.03971 -12.03390 169 -77.00305 -12.11731 234 -77.05893 -12.08783 -	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	36	-77.04397		101			166								-12.04227
38 -76,96835 -12,08066 103 -77,07971 -12,09115 168 -77,02110 -12,11424 233 -77,07488 -12,04650 298 -76,99712 -12,08453 39 -76,96724 -12,07744 104 -77,07771 -12,09390 169 -77,00187 -12,11731 234 -77,05893 -12,08789 299 -76,99624 -12,08681 40 -76,95714 -12,08393 106 -76,99744 -12,13727 77 -77,00187 -12,10805 235 -77,04423 201 -76,99624 -12,10804 42 -76,94552 -12,06212 107 -76,98908 -12,15997 172 -77,02599 -12,14342 237 -77,04123 -12,07503 302 -76,99416 -12,08843 44 -77,02395 -12,08164 108 -76,98796 -12,111474 173 -77,05796 -12,06261 238 -77,0416 -12,07793 -12,10784 303 -76,98464 -12,0831 42 -77,02192 -12,08181 <td> 38 76.96835 12.08066 103 77.07971 12.09116 168 77.02110 12.11424 233 77.07488 12.04680 298 76.99712 12.08681 39 76.98724 12.08282 105 77.007871 12.09390 169 77.00387 12.11731 234 77.07874 12.08378 299 76.99544 12.08681 106 76.99444 12.13799 171 76.99274 12.086461 236 77.04413 12.07432 301 76.99566 12.08844 12.08881 106 76.99444 12.13799 171 76.99274 12.086461 236 77.04413 12.07432 301 76.99566 12.08844 12.08681 </td> <td>\rightarrow</td> <td></td>	38 76.96835 12.08066 103 77.07971 12.09116 168 77.02110 12.11424 233 77.07488 12.04680 298 76.99712 12.08681 39 76.98724 12.08282 105 77.007871 12.09390 169 77.00387 12.11731 234 77.07874 12.08378 299 76.99544 12.08681 106 76.99444 12.13799 171 76.99274 12.086461 236 77.04413 12.07432 301 76.99566 12.08844 12.08881 106 76.99444 12.13799 171 76.99274 12.086461 236 77.04413 12.07432 301 76.99566 12.08844 12.08681	\rightarrow														
39 -76.96724 -12.07744 104 -77.07871 -12.09390 169 -77.00305 -12.11731 234 -77.05893 -12.08789 299 -76.99654 -12.08687 -76.95744 -12.08329 105 -77.00297 -12.13727 170 -77.00187 -12.12059 235 -77.04745 -12.07100 300 -76.99624 -12.06828 -76.94544 -12.08381 -76.94544 -12.08381 -76.94544 -12.08481 -76.94552 -12.06212 107 -76.989308 -12.15907 -77.076399 -12.14342 237 -77.04229 -12.07509 302 -76.99664 -12.08847 -77.02595 -12.08464 -77.02595 -12.08464 -77.02595 -12.08464 -77.02595 -12.08464 -77.02595 -12.08464 -77.02595 -77.04229 -12.07599 -76.99566 -12.08542 -77.02595 -77.04229 -77	39 76.96724 12.07744 104 77.07871 12.09390 163 77.00305 12.11731 234 77.05893 12.08789 293 76.99654 12.08681 40 76.95744 12.08329 105 77.00297 12.13727 170 77.00187 12.12059 235 77.04745 12.07100 300 76.99654 12.08684 12.08681 106 76.95844 12.13799 171 76.99574 12.0661 236 77.04743 12.07732 301 76.99566 12.08644 12.08681 12.08682 12.08612 107 76.98988 12.15907 172 77.02599 12.14342 237 77.04293 12.07509 302 76.99586 12.08484 14.077.02192 12.08146 108 76.98803 12.11474 173 77.05706 12.06261 238 77.04016 12.07494 303 76.98551 12.08544 14.077.02192 12.08187 100 76.97692 12.13193 174 77.05706 12.06261 238 77.04016 12.07494 303 76.98551 12.08544 14.077.02701 12.08187 100 76.97692 12.13193 174 77.05706 12.06642 239 76.94963 12.0154 304 77.05800 12.09354 12.08707 12.08187 100 76.97952 12.13122 176 76.95667 12.07083 241 77.02877 12.06756 306 77.04681 12.09434 14.077.05707 12.06020 111 76.97925 12.13122 176 76.95667 12.07083 241 77.02877 12.06756 306 77.04681 12.09434 14.077.05805 12.06749 112 76.97694 12.14395 177 76.95472 12.07317 242 77.02868 12.08244 308 77.04681 12.09434 14.077.05895 12.06749 112 76.97695 12.08444 181 77.07579 12.06369 12.08464 13.0846 13.															
40 -76,95744 -12,08329 105 -77,00297 -12,13727 170 -77,00187 -12,12059 235 -77,04745 -12,07100 300 -76,99624 -12,10882 41 -76,95114 -12,06981 106 -76,99444 -12,13799 171 -76,99274 -12,06461 236 -77,04413 -12,07432 301 -76,99566 -12,08843 42 -76,95525 -12,08146 108 -76,98767 -12,11474 173 -77,05766 -12,06461 238 -77,04413 -12,07494 303 -76,98566 -12,08146 44 -77,02192 -12,08482 109 -76,98203 -12,113193 174 -77,05766 -12,07106 240 -76,94176 -12,07110 305 -77,05800 -12,09356 45 -77,07597 -12,06202 111 -76,97592 -12,13391 175 -76,95725 -12,07003 241 -77,02876 -12,0710 305 -77,05403 -12,09364 45 -77,075971 -12,06020<	August	\rightarrow														
41 -76.95114 -12.06981 106 -76.99444 -12.13799 171 -76.99274 -12.06461 236 -77.04413 -12.07432 301 -76.99566 -12.08847 42 -76.94552 -12.06212 107 -76.98908 -12.15907 172 -77.02599 -12.14342 237 -77.04213 -12.07509 302 -76.99416 -12.0813 43 -77.02192 -12.08164 108 -76.98507 -12.11474 173 -77.05706 -12.06621 238 -77.04016 -12.07494 303 -76.98516 -12.0813 44 -77.02192 -12.08187 10 -76.98203 -12.13391 174 -77.05968 -12.05642 239 -76.94176 -12.01154 304 -77.05808 -12.09356 45 -77.077971 -12.06020 111 -76.97952 -12.1322 176 -76.95667 -12.07083 241 -77.02877 -12.06756 306 -77.04881 -12.09364 49 -77.07595 -12.06749	41 -76.95114 -12.06981 106 -76.93444 12.13799 171 -76.99274 -12.06461 236 -77.04413 -12.07432 301 -76.93566 12.08847 42 -76.94552 -12.06212 107 -76.93690 -12.15907 172 -77.02599 -12.14342 237 -77.04016 -12.077509 302 -76.98461 -12.08138 -77.02305 -12.08552 109 -76.98263 -12.11474 173 -77.05706 -12.06261 238 -77.04016 -12.07494 303 -76.98551 -12.08542 -77.00716 -12.07494 -77.05706 -12.05642 -77.04016 -12.07494 -77.05800 -12.08551 -77.04016 -77.04706 -77.047	$\overline{}$														
42 -76.94552 -12.06212 107 -76.98908 -12.15907 172 -77.02599 -12.14342 237 -77.04229 -12.07509 302 -76.99416 -12.08138 43 -77.02305 -12.08146 108 -76.98757 -12.11474 173 -77.05706 -12.06261 238 -77.04016 -12.07494 303 -76.98551 -12.08542 44 -77.02792 -12.08387 109 -76.98203 -12.13199 174 -77.05368 -12.07106 240 -76.94933 -12.10151 304 -77.05800 -12.09366 45 -77.077971 -12.08187 110 -76.97952 -12.13122 176 -76.95667 -12.07083 241 -77.02877 -12.06756 306 -77.04881 -12.09436 47 -77.07595 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02806 -12.07267 307 -77.03885 -12.00831 49 -77.03688 -12.04874<	42 -76.94552 -12.06212 107 -76.98908 -12.15907 172 -77.02599 -12.14342 237 -77.04229 -12.07509 302 -76.99416 -12.08136 43 -77.02305 -12.08146 108 -76.98757 -12.11474 173 -77.05706 -12.06261 238 -77.04016 -12.07494 303 -76.98551 -12.0834 44 -77.02792 -12.08187 110 -76.98203 -12.13193 175 -76.95725 12.07106 240 -76.94376 -12.07110 305 -77.05408 -12.0342 45 -77.07971 -12.06020 111 -76.97525 -12.13122 176 -76.95667 -12.07033 241 -77.02876 -12.06276 306 -77.04881 -12.0942 48 -77.07597 -12.06272 113 -76.97594 -12.13122 176 -76.95472 -12.07317 242 -77.02806 -12.08224 308 -77.03885 -12.10831 49 -77.05938 -12.06272	$\overline{}$														
43 -77.02305 -12.08146 108 -76.98757 -12.11474 173 -77.05706 -12.06261 238 -77.04016 -12.07494 303 -76.98551 -12.08542 44 -77.02192 -12.08532 109 -76.98203 -12.13199 174 -77.05368 -12.05642 239 -76.94933 -12.10154 304 -77.05800 -12.09366 45 -77.070781 -12.08187 110 -76.97962 -12.13312 176 -76.95667 -12.07106 240 -76.94616 -12.07110 305 -77.04681 -12.09436 46 -77.07595 -12.06272 113 -76.97597 -12.11959 178 -77.02779 -12.06355 243 -77.02606 -12.07267 307 -77.03885 -12.10831 49 -77.05938 -12.04874 114 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03835 -12.10831 49 -77.03688 -12.04874<	43 -77.02305 -12.08146 108 -76.98757 -12.11474 173 -77.05706 -12.08661 238 -77.04016 -12.07494 303 -76.98551 -12.08545 44 -77.02192 -12.08532 109 -76.98203 -12.13193 174 -77.05368 -12.05166 239 -76.94333 -12.10154 304 -77.05800 -12.03351 -12.07106 -12.07106 -12.07107 -12.07	\rightarrow														
44 -77.02192 -12.08532 109 -76.98203 -12.13199 174 -77.05368 -12.05642 239 -76.94933 -12.10154 304 -77.05800 -12.09356 45 -77.07971 -12.08187 110 -76.97962 -12.13391 175 -76.95725 -12.07106 240 -76.94176 -12.07110 305 -77.05408 -12.09428 46 -77.07971 -12.060769 111 -76.97595 -12.13122 176 -76.95667 -12.07317 242 -77.02877 -12.06776 306 -77.04881 -12.09436 47 -77.07595 -12.06774 112 -76.97597 -12.11959 178 -77.05947 -12.06272 307 -77.03881 -12.09316 48 -77.05938 -12.04874 114 -76.97404 -12.11959 178 -77.01933 -12.07622 243 -77.02404 -12.08228 309 -77.03696 -12.09116 50 -77.03888 -12.07574 115 -76.93680 -12.08484<	44 -77.02192 -12.08532 109 -76.98203 -12.13199 174 -77.05368 -12.05642 239 -76.94933 -12.10154 304 -77.05800 -12.09350 45 -77.00781 -12.08187 110 -76.97962 -12.13391 175 -76.95725 -12.07106 240 -76.94176 -12.07110 305 -77.05408 -12.09421 46 -77.079791 -12.06020 111 -76.97954 -12.13231 176 -76.95667 -12.07317 -22.06756 306 -77.04881 -12.09317 48 -77.07595 -12.06473 112 -76.97507 -12.11959 178 -77.075979 -12.06355 243 -77.02268 -12.08224 308 -77.03399 -12.10311 49 -77.05938 -12.04874 114 -76.97696 -12.11293 179 -77.01933 -12.07627 244 -77.02264 -12.08228 309 -77.02626 -12.09116 50 -77.03888 -12.07574 115 -76.93693															
45 -77.00781 -12.08187 110 -76.97962 -12.13391 175 -76.95725 -12.07106 240 -76.94176 -12.07110 305 -77.05408 -12.09425 46 -77.07971 -12.06079 111 -76.97925 -12.13122 176 -76.95667 -12.07083 241 -77.02877 -12.06756 306 -77.04881 -12.09436 47 -77.07507 -12.06272 113 -76.97597 -12.1959 177 -76.95472 -12.07317 242 -77.02806 -12.0727 307 -77.03835 -12.00316 49 -77.05938 -12.04874 114 -76.97404 -12.11939 178 -77.01691 -12.07422 243 -77.02284 -12.08228 309 -77.03696 -12.03116 50 -77.03688 -12.07574 115 -76.97333 -12.08081 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04391 -12.0316 51 -77.034101 -12.08375 <td>45 -77.00781 -12.08187 110 -76.97962 -12.13391 175 -76.95725 -12.07106 240 -76.94176 -12.07110 305 -77.05408 -12.0942 46 -77.07971 -12.06020 111 -76.97925 -12.13122 176 -76.95667 -12.07033 241 -77.02807 -12.06726 306 -77.04881 -12.09434 47 -77.07597 -12.06774 112 -76.97597 -12.11959 178 -77.07597 12.06272 13 -76.97597 -12.11959 178 -77.07979 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.0316 49 -77.03688 -12.04874 114 -76.97694 -12.11933 179 -77.01691 -12.07627 244 -77.02264 -12.08224 308 -77.02626 -12.0316 50 -77.03688 -12.07574 115 -76.96860 -12.08444 181 -77.07727 -12.06932 245 -77.02464 -12.06843 11</td> <td>$\overline{}$</td> <td></td>	45 -77.00781 -12.08187 110 -76.97962 -12.13391 175 -76.95725 -12.07106 240 -76.94176 -12.07110 305 -77.05408 -12.0942 46 -77.07971 -12.06020 111 -76.97925 -12.13122 176 -76.95667 -12.07033 241 -77.02807 -12.06726 306 -77.04881 -12.09434 47 -77.07597 -12.06774 112 -76.97597 -12.11959 178 -77.07597 12.06272 13 -76.97597 -12.11959 178 -77.07979 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.0316 49 -77.03688 -12.04874 114 -76.97694 -12.11933 179 -77.01691 -12.07627 244 -77.02264 -12.08224 308 -77.02626 -12.0316 50 -77.03688 -12.07574 115 -76.96860 -12.08444 181 -77.07727 -12.06932 245 -77.02464 -12.06843 11	$\overline{}$														
46 -77.07971 -12.06020 111 -76.97925 -12.13122 176 -76.95667 -12.07083 241 -77.02877 -12.06756 306 -77.04681 -12.09436 47 -77.07595 -12.06749 112 -76.97594 -12.12435 177 -76.95472 -12.07317 242 -77.02608 -12.07267 307 -77.03885 -12.10831 48 -77.05938 -12.04874 114 -76.97607 -12.10831 -77.02635 243 -77.02628 -12.08228 309 -77.0369 -12.03116 50 -77.03688 -12.07574 115 -76.97693 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.08228 309 -77.04391 -12.0316 50 -77.03592 -12.07562 116 -76.96969 -12.08444 181 -77.07727 -12.05993 246 -77.02275 -12.06784 311 -77.04391 -12.0325 51 -77.04410 -12.08375 117 -76.96860	46 -77.07971 -12.06020 111 -76.97925 -12.13122 176 -76.95667 -12.07083 241 -77.02877 -12.06756 306 -77.04681 -12.09434 47 -77.07595 -12.06274 112 -76.97594 -12.12435 177 -76.95472 -12.07317 242 -77.02806 -12.07267 307 -77.03885 -12.10831 48 -77.07507 -12.06272 113 -76.97607 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03309 -12.10311 49 -77.03888 -12.04874 114 -76.97607 -12.11933 179 -77.01933 -12.06627 244 -77.02628 -12.08224 308 -77.03309 -12.0311 50 -77.03688 12.07574 115 -76.93698 -12.08481 181 -77.07727 -12.05933 246 -77.02275 -12.06784 311 -77.04345 -12.0368 51 -77.04404 -12.08375	_														
47 -77.07595 -12.06749 112 -76.97594 -12.12435 177 -76.95472 -12.07317 242 -77.02806 -12.07267 307 -77.03885 -12.10831 48 -77.07507 -12.06272 113 -76.97597 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.0311 49 -77.05938 -12.04874 114 -76.97384 -12.10893 177.01933 -12.07627 244 -77.02524 -12.08228 309 -77.02626 -12.0311 50 -77.03588 -12.07574 115 -76.97383 -12.08848 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04391 -12.03268 51 -77.04410 -12.08375 117 -76.96860 -12.10379 182 -77.04248 -12.04818 247 -77.02259 -12.06702 312 -77.04393 -12.03647 52 -77.04104 -12.08358 118 <td>47 -77.07595 -12.06749 112 -76.97594 -12.12435 177 -76.95472 -12.07317 242 -77.02806 -12.07267 307 -77.03885 -12.1083 48 -77.07507 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.0311 49 -77.03888 -12.07574 115 -76.97383 12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04341 -12.03221 51 -77.03592 12.07562 116 -76.96869 -12.03444 181 -77.05934 -12.03933 246 -77.02259 -12.06984 311 -77.04345 -12.0368 52 -77.04104 -12.08375 117 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.02259 -12.07028 312 -77.04339 -12.0383 53 -77.04104 -12.08985</td> <td>45</td> <td>-77.00781</td> <td></td> <td></td> <td></td> <td>-12.13391</td> <td>175</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-12.09429</td>	47 -77.07595 -12.06749 112 -76.97594 -12.12435 177 -76.95472 -12.07317 242 -77.02806 -12.07267 307 -77.03885 -12.1083 48 -77.07507 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.0311 49 -77.03888 -12.07574 115 -76.97383 12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04341 -12.03221 51 -77.03592 12.07562 116 -76.96869 -12.03444 181 -77.05934 -12.03933 246 -77.02259 -12.06984 311 -77.04345 -12.0368 52 -77.04104 -12.08375 117 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.02259 -12.07028 312 -77.04339 -12.0383 53 -77.04104 -12.08985	45	-77.00781				-12.13391	175								-12.09429
48 -77.07507 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.0311 49 -77.05938 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02524 -12.08228 309 -77.02626 -12.0916 50 -77.03688 -12.07574 115 -76.93639 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06361 310 -77.04391 -12.03225 51 -77.04404 -12.08375 117 -76.96869 -12.08444 181 -77.07727 -12.05993 246 -77.02494 -12.07684 311 -77.04339 -12.03647 52 -77.04104 -12.08158 118 -76.96860 -12.10280 183 -77.04248 -12.04815 248 -77.02259 -12.06937 312 -77.04339 -12.07978 54 -77.03944 -12.08985 <td>48 -77.07507 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.01311 49 -77.05938 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02524 -12.08228 309 -77.02626 -12.0916 50 -77.03688 -12.07572 116 -76.93693 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 30 -77.04391 -12.03261 51 -77.034410 -12.08375 117 -76.96860 -12.10379 182 -77.05498 -12.07028 -12.07028 312 -77.04339 -12.0364 52 -77.04410 -12.08158 118 -76.96860 -12.10379 182 -77.04248 -12.04851 248 -77.02232 -12.06937 313 -77.10443 -12.0769 54 -77.03755 -12.08885 119 -77.01179</td> <td>46</td> <td>-77.07971</td> <td>-12.06020</td> <td>111</td> <td>-76.97925</td> <td>-12.13122</td> <td>176</td> <td>-76.95667</td> <td>-12.07083</td> <td>241</td> <td>-77.02877</td> <td>-12.06756</td> <td>306</td> <td>-77.04681</td> <td>-12.09436</td>	48 -77.07507 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.01311 49 -77.05938 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02524 -12.08228 309 -77.02626 -12.0916 50 -77.03688 -12.07572 116 -76.93693 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 30 -77.04391 -12.03261 51 -77.034410 -12.08375 117 -76.96860 -12.10379 182 -77.05498 -12.07028 -12.07028 312 -77.04339 -12.0364 52 -77.04410 -12.08158 118 -76.96860 -12.10379 182 -77.04248 -12.04851 248 -77.02232 -12.06937 313 -77.10443 -12.0769 54 -77.03755 -12.08885 119 -77.01179	46	-77.07971	-12.06020	111	-76.97925	-12.13122	176	-76.95667	-12.07083	241	-77.02877	-12.06756	306	-77.04681	-12.09436
48 -77.07507 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.0311 49 -77.05338 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02524 -12.08228 309 -77.02666 -12.0316 50 -77.03688 -12.07574 115 -76.93693 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.08361 310 -77.04391 -12.03225 51 -77.04400 -12.08375 117 -76.98680 -12.01844 181 -77.07727 -12.05993 246 -77.02404 -12.08378 312 -77.04339 -12.03647 52 -77.04404 -12.08185 118 -76.96803 -12.10280 183 -77.04248 -12.04815 248 -77.02293 -12.08337 312 -77.04343 -12.07978 54 -77.03755 -12.08046 <td>48 -77.07507 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.01311 49 -77.05388 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02404 -12.08228 309 -77.02626 -12.0916 50 -77.03688 -12.07574 115 -76.97383 -12.08058 180 -77.01631 -12.07922 245 -77.02404 -12.06961 30 -77.04331 -12.03221 51 -77.03410 -12.08375 117 -76.96860 -12.10379 182 -77.07248 -12.04818 247 -77.02259 -12.06937 312 -77.04339 -12.0364 52 -77.04104 -12.08985 118 -76.96303 -12.10280 183 -77.04248 -12.04851 248 -77.02232 -12.06937 313 -77.10443 -12.07693 54 -77.03755 -12.08985</td> <td>47</td> <td>-77.07595</td> <td>-12.06749</td> <td>112</td> <td>-76.97594</td> <td>-12.12435</td> <td>177</td> <td>-76.95472</td> <td>-12.07317</td> <td>242</td> <td>-77.02806</td> <td>-12.07267</td> <td>307</td> <td>-77.03885</td> <td>-12.10831</td>	48 -77.07507 -12.06272 113 -76.97507 -12.11959 178 -77.02779 -12.06355 243 -77.02628 -12.08224 308 -77.03039 -12.01311 49 -77.05388 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02404 -12.08228 309 -77.02626 -12.0916 50 -77.03688 -12.07574 115 -76.97383 -12.08058 180 -77.01631 -12.07922 245 -77.02404 -12.06961 30 -77.04331 -12.03221 51 -77.03410 -12.08375 117 -76.96860 -12.10379 182 -77.07248 -12.04818 247 -77.02259 -12.06937 312 -77.04339 -12.0364 52 -77.04104 -12.08985 118 -76.96303 -12.10280 183 -77.04248 -12.04851 248 -77.02232 -12.06937 313 -77.10443 -12.07693 54 -77.03755 -12.08985	47	-77.07595	-12.06749	112	-76.97594	-12.12435	177	-76.95472	-12.07317	242	-77.02806	-12.07267	307	-77.03885	-12.10831
49 -77.05938 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02524 -12.08228 309 -77.02626 -12.09166 50 -77.03688 -12.07574 115 -76.97383 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04391 -12.03255 51 -77.03592 -12.07562 116 -76.96860 -12.03797 182 -77.05938 -12.04818 247 -77.02275 -12.06784 311 -77.04345 -12.03684 52 -77.04104 -12.08188 118 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.02275 -12.06708 312 -77.04339 -12.03797 54 -77.03904 -12.08895 119 -77.01903 -12.1087 184 -77.04223 -12.07162 -12.08334 314 -77.01446 -12.07978 55 -77.03755 -12.08046 120 -77.01179 <td>49 -77.05938 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02524 -12.08228 309 -77.02626 -12.09116 50 -77.03688 -12.07562 115 -76.93733 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04391 -12.0322 51 -77.04410 -12.08375 117 -76.96869 -12.00444 181 -77.07727 -12.05993 246 -77.02259 -12.06784 311 -77.04349 -12.0364 52 -77.04410 -12.08375 117 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.02259 -12.067028 312 -77.04339 -12.0364 53 -77.04104 -12.08378 118 -76.96303 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08337 313 -77.10743 -12.0797 54 -77.03755 -12.08046</td> <td></td> <td></td> <td>-12.06272</td> <td></td>	49 -77.05938 -12.04874 114 -76.97404 -12.11293 179 -77.01933 -12.07627 244 -77.02524 -12.08228 309 -77.02626 -12.09116 50 -77.03688 -12.07562 115 -76.93733 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04391 -12.0322 51 -77.04410 -12.08375 117 -76.96869 -12.00444 181 -77.07727 -12.05993 246 -77.02259 -12.06784 311 -77.04349 -12.0364 52 -77.04410 -12.08375 117 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.02259 -12.067028 312 -77.04339 -12.0364 53 -77.04104 -12.08378 118 -76.96303 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08337 313 -77.10743 -12.0797 54 -77.03755 -12.08046			-12.06272												
50 -77.03688 -12.07574 115 -76.97383 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04391 -12.03225 51 -77.03592 -12.07562 116 -76.96869 -12.08444 181 -77.0727 -12.05933 246 -77.02259 -12.06784 311 -77.04345 -12.03684 52 -77.04104 -12.08158 118 -76.96800 -12.10379 182 -77.05948 -12.04818 247 -77.02259 -12.06337 311 -77.04339 -12.03684 53 -77.04104 -12.08158 118 -76.96800 -12.1087 183 -77.04248 -12.04851 248 -77.0373 -12.06937 313 -77.10743 -12.07975 54 -77.03944 -12.08985 119 -77.01903 -12.11087 184 -77.04284 -12.05080 249 -77.01407 -12.03334 314 -77.04466 -12.07075 55 -77.03755 -12.08046	50 -77.03688 -12.07574 115 -76.97383 -12.08058 180 -77.01691 -12.07422 245 -77.02404 -12.06961 310 -77.04391 -12.0322 51 -77.03592 -12.07562 116 -76.96869 -12.08444 181 -77.07727 -12.05993 246 -77.02275 -12.06784 311 -77.04345 -12.0368 52 -77.04104 -12.08158 118 -76.96805 -12.10879 182 -77.05948 -12.04818 247 -77.02259 -12.07028 312 -77.04343 -12.0368 53 -77.04104 -12.08895 118 -76.96303 -12.1087 184 -77.04284 -12.04851 248 -77.02428 -12.06337 313 -77.10743 -12.0797 54 -77.03755 -12.08046 120 -77.01179 -12.11171 185 -77.04188 -12.05082 250 -77.01407 -12.07169 315 -77.09852 -12.07177 56 -77.03753 -12.08046	_														
51 -77.03592 -12.07562 116 -76.96969 -12.08444 181 -77.07727 -12.05993 246 -77.02275 -12.06784 311 -77.04345 -12.03684 52 -77.04410 -12.08158 118 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.02255 -12.07028 312 -77.04339 -12.03647 53 -77.04104 -12.08158 118 -76.96303 -12.1087 183 -77.04248 -12.04881 248 -77.02232 -12.0337 312 -77.10446 -12.0797 54 -77.03904 -12.08985 119 -77.01903 -12.11087 184 -77.04248 -12.05802 249 -77.01426 -12.08334 314 -77.0446 -12.07075 55 -77.03755 -12.08046 120 -77.0179 -12.11171 185 -77.04483 -12.05020 251 -77.01607 -12.07869 315 -77.09852 -12.07173 56 -77.03753 -12.08393	51 -77,03592 -12,07562 116 -76,96969 -12,08444 181 -77,07727 -12,05993 246 -77,02275 -12,06784 311 -77,04345 -12,0368-12,0368-12,0368-12,0368-12,0378 52 -77,04410 -12,08375 117 -76,96860 -12,10379 182 -77,05348 -12,04818 247 -77,02259 -12,07028 312 -77,04339 -12,0364* 53 -77,04104 -12,08185 118 -76,96303 -12,10280 183 -77,04248 -12,04851 248 -77,02239 -12,06937 313 -77,10743 -12,0797* 54 -77,03764 -12,08985 119 -77,01179 -12,11087 184 -77,04223 -12,04851 248 -77,01426 -12,08334 314 -77,10446 -12,0777* 55 -77,03753 -12,08048 120 -77,01179 -12,11782 186 -77,03877 -12,05022 251 -77,01407 -12,068579 316 -77,09792 -12,0834 57 -77,034	_														
52 -77.04410 -12.08375 117 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.0259 -12.07028 312 -77.04339 -12.03647 53 -77.04104 -12.08158 118 -76.96303 -12.10280 183 -77.04248 -12.04851 248 -77.02232 -12.06337 313 -77.10743 -12.07978 54 -77.03904 -12.08985 119 -77.01903 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08334 314 -77.10446 -12.07075 55 -77.03755 -12.08046 120 -77.01179 -12.11171 185 -77.04188 -12.04682 250 -77.01407 -12.07169 315 -77.09852 -12.07173 56 -77.03753 -12.08393 121 -77.00879 -12.11171 185 -77.04188 -12.04682 250 -77.01407 -12.07169 315 -77.07992 -12.08346 57 -77.03441 -12.08880 <td>52 -77.04410 -12.08375 117 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.0259 -12.07028 312 -77.04339 -12.0364 53 -77.04104 -12.08158 118 -76.96303 -12.10280 183 -77.04248 -12.04851 248 -77.02232 -12.06337 313 -77.10743 -12.07979 54 -77.03904 -12.08948 19 -77.01903 -12.11087 184 -77.04223 -12.06802 250 -77.01407 -12.07169 315 -77.09426 -12.07079 56 -77.03753 -12.08046 120 -77.01789 -12.11782 186 -77.03741 -12.05022 251 -77.01462 -12.08579 316 -77.09792 -12.08341 57 -77.03441 +12.08880 122 -77.00583 -12.11987 188 -77.03545 -12.05022 251 -77.01646 +12.06225 317 -77.09345 -12.08341 59 -77.07354 +12.09189</td> <td></td>	52 -77.04410 -12.08375 117 -76.96860 -12.10379 182 -77.05948 -12.04818 247 -77.0259 -12.07028 312 -77.04339 -12.0364 53 -77.04104 -12.08158 118 -76.96303 -12.10280 183 -77.04248 -12.04851 248 -77.02232 -12.06337 313 -77.10743 -12.07979 54 -77.03904 -12.08948 19 -77.01903 -12.11087 184 -77.04223 -12.06802 250 -77.01407 -12.07169 315 -77.09426 -12.07079 56 -77.03753 -12.08046 120 -77.01789 -12.11782 186 -77.03741 -12.05022 251 -77.01462 -12.08579 316 -77.09792 -12.08341 57 -77.03441 +12.08880 122 -77.00583 -12.11987 188 -77.03545 -12.05022 251 -77.01646 +12.06225 317 -77.09345 -12.08341 59 -77.07354 +12.09189															
53 -77.04104 -12.08158 118 -76.96303 -12.10280 183 -77.04248 -12.04851 248 -77.02232 -12.06937 313 -77.10743 -12.07978 54 -77.03904 -12.08985 119 -77.01903 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08334 314 -77.10446 -12.07078 55 -77.03755 -12.08046 120 -77.0179 -12.11171 185 -77.04183 -12.04682 250 -77.01407 -12.07169 315 -77.03852 -12.07173 56 -77.03753 -12.08890 122 -77.00879 -12.11171 185 -77.03877 -12.05022 251 -77.01407 -12.07397 -12.08346 57 -77.03441 -12.08880 122 -77.00583 -12.11210 187 -77.03845 -12.05022 251 -77.01164 -12.06225 317 -77.09345 -12.07397 58 -77.03544 -12.03183 124 -76.99679 <td>53 -77.04104 -12.08158 118 -76.96303 -12.10280 183 -77.04248 -12.04851 248 -77.02222 -12.06937 313 -77.10743 -12.07975 54 -77.03904 -12.08985 119 -77.01903 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08334 314 -77.10446 -12.07075 55 -77.03755 -12.08046 120 -77.0179 -12.11171 185 -77.04818 -12.05080 250 -77.01407 -12.07169 315 -77.03872 -12.07169 315 -77.03872 -12.07169 316 -77.03872 -12.0716 -77.03763 -12.08579 316 -77.03872 -12.08341 -77.03763 -12.08341 -77.03845 -12.05022 251 -77.01646 +12.085279 316 -77.09345 -12.08341 -77.03845 -12.05022 251 -77.01644 +12.06225 317 -77.09345 -12.08718 -12.07569 253 -77.01644 +12.06225 317</td> <td>_</td> <td></td>	53 -77.04104 -12.08158 118 -76.96303 -12.10280 183 -77.04248 -12.04851 248 -77.02222 -12.06937 313 -77.10743 -12.07975 54 -77.03904 -12.08985 119 -77.01903 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08334 314 -77.10446 -12.07075 55 -77.03755 -12.08046 120 -77.0179 -12.11171 185 -77.04818 -12.05080 250 -77.01407 -12.07169 315 -77.03872 -12.07169 315 -77.03872 -12.07169 316 -77.03872 -12.0716 -77.03763 -12.08579 316 -77.03872 -12.08341 -77.03763 -12.08341 -77.03845 -12.05022 251 -77.01646 +12.085279 316 -77.09345 -12.08341 -77.03845 -12.05022 251 -77.01644 +12.06225 317 -77.09345 -12.08718 -12.07569 253 -77.01644 +12.06225 317	_														
54 -77.03904 -12.08985 119 -77.01903 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08334 314 -77.10446 -12.07075 55 -77.03755 -12.08046 120 -77.01179 -12.11171 185 -77.04188 -12.04682 250 -77.01407 -12.07169 315 -77.03852 -12.07173 56 -77.03753 -12.08393 121 -77.00879 -12.11782 186 -77.03877 -12.05022 251 -77.0162 -12.08579 316 -77.09392 -12.08346 57 -77.03441 -12.08880 122 -77.00583 -12.1210 187 -77.03845 -12.05022 251 -77.01164 -12.08579 316 -77.09392 -12.07384 58 -77.02944 -12.07947 123 -76.99851 -12.11221 188 -77.03549 -12.05022 253 -77.00804 -12.06329 318 -77.09215 -12.07363 59 -77.07354 -12.09189 <td>54 -77.03904 -12.08985 119 -77.01903 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08334 314 -77.10446 -12.07075 55 -77.03755 -12.08046 120 -77.0179 -12.11171 185 -77.04188 -12.04682 250 -77.01407 -12.07169 315 -77.09852 -12.07177 56 -77.03753 -12.08393 121 -77.00839 -12.11782 186 -77.03877 -12.05002 251 -77.01407 -12.08579 316 -77.09395 -12.08379 -12.08379 316 -77.09379 -12.08379 -12.08379 316 -77.09379 -12.08379 -12.08379 -12.08379 -12.08379 -12.08379 317 -77.09345 -12.07369 -12.07369 -12.11221 187 -77.03845 -12.07569 253 -77.00804 -12.06225 317 -77.09345 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369</td> <td>\rightarrow</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	54 -77.03904 -12.08985 119 -77.01903 -12.11087 184 -77.04223 -12.05080 249 -77.01426 -12.08334 314 -77.10446 -12.07075 55 -77.03755 -12.08046 120 -77.0179 -12.11171 185 -77.04188 -12.04682 250 -77.01407 -12.07169 315 -77.09852 -12.07177 56 -77.03753 -12.08393 121 -77.00839 -12.11782 186 -77.03877 -12.05002 251 -77.01407 -12.08579 316 -77.09395 -12.08379 -12.08379 316 -77.09379 -12.08379 -12.08379 316 -77.09379 -12.08379 -12.08379 -12.08379 -12.08379 -12.08379 317 -77.09345 -12.07369 -12.07369 -12.11221 187 -77.03845 -12.07569 253 -77.00804 -12.06225 317 -77.09345 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369 -12.07369	\rightarrow		-	-			-						_		
55 -77.03755 -12.08046 120 -77.01179 -12.11171 185 -77.04188 -12.04682 250 -77.01407 -12.07169 315 -77.09852 -12.07173 56 -77.03753 -12.08393 121 -77.00879 -12.11782 186 -77.03877 -12.05022 251 -77.01262 -12.08579 316 -77.03792 -12.08346 57 -77.03441 -12.08880 122 -77.00583 -12.1210 187 -77.03845 -12.05047 252 -77.01464 -12.06225 317 -77.03345 -12.07707 58 -77.02384 -12.07947 123 -76.99851 -12.11287 188 -77.03569 253 -77.00804 -12.06329 318 -77.09215 -12.07367 59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.04871 254 -77.00443 -12.08423 319 -77.03524 -12.04871 -254 -77.07950 -12.05864 320 -77.0895	55 -77.03755 -12.08046 120 -77.01179 -12.11171 185 -77.04188 -12.04682 250 -77.01407 -12.07169 315 -77.09852 -12.07177 56 -77.03753 -12.08393 121 -77.09879 -12.11782 186 -77.03877 -12.05022 251 -77.01262 -12.08579 316 -77.09792 -12.0834 57 -77.03441 -12.08880 122 -77.09893 -12.11210 187 -77.03845 -12.07569 252 -77.01164 -12.08529 316 -77.09395 -12.07172 58 -77.02984 -12.07947 123 -76.99851 -12.11987 188 -77.03855 -12.07569 253 -77.00804 +12.06329 318 -77.09318 -12.0736 59 -77.07313 -12.09982 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 +12.05864 320 -77.08957 +12.0777 61 -77.06845 -12.09327															
56 -77.03753 -12.08393 121 -77.00879 -12.11782 186 -77.03877 -12.05022 251 -77.01262 -12.08579 316 -77.07972 -12.08346 57 -77.03441 -12.08880 122 -77.00583 -12.12210 187 -77.03845 -12.05407 252 -77.01164 -12.06225 317 -77.09345 -12.07719 58 -77.02984 -12.07947 123 -76.99851 -12.11987 188 -77.03585 -12.07569 253 -77.00804 -12.06929 318 -77.09218 -12.07367 59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.07775 60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.07777	56 -77.03753 -12.08393 121 -77.00879 -12.11782 186 -77.03877 -12.05022 251 -77.01262 -12.08579 316 -77.09792 -12.08341 57 -77.03441 -12.08880 122 -77.00583 -12.12210 187 -77.03845 -12.05407 252 -77.01164 -12.06225 317 -77.09345 -12.07716 58 -77.07384 -12.09947 123 -76.99879 -12.11987 188 -77.03585 -12.07569 253 -77.00844 -12.08423 319 -77.09218 -12.0736 59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.0736 60 -77.07313 -12.09902 125 -77.05775 -12.066437 190 -77.0317 -12.05883 256 -77.07808 -12.06439 321 -77.08903 -12.0777 62 -77.06151 -12.09426															
57 -77.03441 -12.08880 122 -77.0583 -12.12210 187 -77.03845 -12.05407 252 -77.01164 -12.06225 317 -77.09345 -12.07719 58 -77.02984 -12.07947 123 -76.99851 -12.11987 188 -77.03585 -12.07569 253 -77.00804 -12.06929 318 -77.09218 -12.07367 59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.07358 60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.07777	57 -77.03441 -12.08880 122 -77.00583 -12.12210 187 -77.03845 -12.05407 252 -77.01164 -12.06225 317 -77.09345 -12.07715 58 -77.02984 -12.07947 123 -76.99851 -12.11987 188 -77.03585 -12.07569 253 -77.00804 -12.06929 318 -77.09218 -12.0736 59 -77.07354 -12.09199 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.0735 60 -77.07313 -12.09992 125 -77.05817 -12.06437 190 -77.0317 -12.04871 255 -77.07900 -12.05864 320 -77.08907 -12.0777 62 -77.06151 -12.09327 126 -77.03720 -12.06730 12.06730 256 -77.07712 -12.06230 322 -77.08442 -12.0777 62 -77.03703 -12.010733 128 -77.03220															
58 -77.02984 -12.07947 123 -76.99851 -12.11987 188 -77.03585 -12.07569 253 -77.00804 -12.06929 318 -77.09218 -12.07367 59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.07358 60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.07777	58 -77.02984 -12.07947 123 -76.99851 -12.11987 188 -77.03585 -12.07569 253 -77.00804 -12.06929 318 -77.09218 -12.0736 59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.0735 60 -77.07313 -12.09902 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.0777 61 -77.06845 -12.09327 126 -77.07775 -12.05652 191 -77.01485 -12.05868 256 -77.07808 -12.06430 321 -77.08937 -12.0777 62 -77.03703 -12.0527 127 -77.04720 -12.06633 193 -77.03139 -12.08433 257 -77.07712 -12.06230 322 -77.08442 -12.0779 63 -77.03703 -12.010733							-								
59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.07358 60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.07777	59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.07356 60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.07777 61 -77.06151 -12.09327 126 -77.04720 -12.06740 192 -77.03714 -12.05868 256 -77.077808 -12.06439 321 -77.08943 -12.0779 62 -77.06151 -12.09327 127 -77.04720 -12.06740 192 -77.03714 -12.08583 257 -77.07712 -12.06230 322 -77.08403 -12.0779 63 -77.03703 -12.1053 128 -77.03212 -12.06633 193 -77.03743 -12.08423 257 -77.06730 -12.06761 323 -77.08399 -12.09666 64 -77.03510 -12.10793 <td></td>															
59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.07358 60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.07777	59 -77.07354 -12.09189 124 -76.99679 -12.11223 189 -77.03417 -12.05177 254 -77.00443 -12.08423 319 -77.09215 -12.07356 60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.0777 61 -77.06151 -12.09327 126 -77.04720 -12.06740 192 -77.03714 -12.05868 256 -77.07708 -12.06230 321 -77.08403 -12.0779 62 -77.03703 -12.1053 128 -77.0321 -12.06633 193 -77.03714 -12.08532 257 -77.07712 -12.06230 322 -77.08493 -12.0779 63 -77.03703 -12.1053 128 -77.03221 -12.06633 193 -77.03393 -12.08423 258 -77.06330 -12.05791 323 -77.08399 -12.09666 64 -77.03510 -12.10793	58	-77.02984	-12.07947	123	-76.99851	-12.11987	188	-77.03585	-12.07569	253	-77.00804	-12.06929	318	-77.09218	-12.07367
60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.07777	60 -77.07313 -12.09092 125 -77.05817 -12.06437 190 -77.03317 -12.04871 255 -77.07950 -12.05864 320 -77.08957 -12.0777 61 -77.06845 -12.08927 126 -77.05775 -12.05652 191 -77.01485 -12.05688 256 -77.07808 -12.06439 321 -77.08903 -12.0777 62 -77.06151 -12.09327 127 -77.04720 -12.06740 192 -77.03714 -12.08593 257 -77.07712 -12.06230 322 -77.08442 -12.0779 63 -77.03703 -12.11053 128 -77.0321 -12.06633 193 -77.03139 -12.08421 258 -77.06731 -12.06761 323 -77.08399 -12.0966 64 -77.03510 -12.10793 129 -77.0220 -12.06498 194 -77.05838 -12.09485 259 -77.06330 -12.05910 324 -77.08208 -12.07831				124	-76.99679		189	-77.03417	-12.05177	254	-77.00443	-12.08423	319	-77.09215	-12.07358
	61 -77.06845 -12.08927 126 -77.05775 -12.05652 191 -77.01485 -12.05688 256 -77.07808 -12.06439 321 -77.08903 -12.0777 -12.06761 -12.09327 127 -77.04720 -12.06740 192 -77.03714 -12.08593 257 -77.07712 -12.06230 322 -77.08442 -12.0779 -12.															
61 -77,06845 -12,08927 126 -77,05775 -12,05652 131 -77,01485 -12,05688 256 -77,07808 -12,06439 321 -77,08903 -12,07777	62 -77.06151 -12.09327 127 -77.04720 -12.06740 192 -77.03714 -12.08593 257 -77.07712 -12.06230 322 -77.08442 -12.07791 63 -77.03703 -12.11053 128 -77.03321 -12.06633 193 -77.03139 -12.08421 258 -77.06731 -12.06761 323 -77.08399 -12.09061 64 -77.03510 -12.10793 129 -77.02920 -12.06498 194 -77.05838 -12.09485 259 -77.06330 -12.05910 324 -77.08208 -12.07831															
	63 -77.03703 -12.11053 128 -77.0321 -12.06633 193 -77.03139 -12.08421 258 -77.06731 -12.06761 323 -77.08399 -12.09063															
	64 -77.03510 -12.10793 129 -77.02920 -12.06498 194 -77.05838 -12.09485 259 -77.06330 -12.05910 324 -77.08208 -12.07839															
	AE 33 0000E 40 4004 400 33 00300 40 03400 40E 33 00030 40 4400 500 33 00000 40 0404 60E 33 00300 40 4004 60E 33 00030 40 4004 60E 33 00300 40 4004 60E 33 00300 40 4004 60E 33 00030 40 4004 60E 33 00030 40 4004 60E															
OF 177 0000F 40 4004 400 77 00700 40 07400 40F 77 00070 40 4400 1000 77 00070 40 00404 100F 77 0700 40 0000	65 -77.03295 -12.11661 130 -77.02706 -12.07420 195 -77.02970 -12.11192 260 -77.03852 -12.05194 325 -77.07913 -12.0822	65	-77.03295	-12.11661	130	-77.02706	-12.07420	195	-77.02970	-12.11192	260	-77.03852	-12.05194	325	-77.07913	-12.08221

N.	Lon	Lat	Nº I	Lon	Lat	Nº I	Lon	Lat	N°	Lon	Lat	N°	Lon	Lat
326	-77.07792	-12.06895	409	-77.04148	-12.05957	492	-77.04384	-12.03627	575	-77.08910	-12.07818	658	-77.00511	-12.12180
327	-77.07792	-12.06882	410	-77.04085	-12.04426	493	-77.04177	-12.03105	576	-77.08556	-12.08920	659	-76.99925	-12.11464
328	-77.07578	-12.07973	411	-77.03949	-12.04650	494	-77.03760	-12.03453	577	-77.08528	-12.07830	660	-76.99493	-12.11153
329	-76.99403	-12.13943	412	-77.03942	-12.06014	495	-77.03703	-12.03137	578	-77.08441	-12.07627	661	-77.05844	-12.06563
330	-76.99163 -76.99042	-12.11485 -12.12390	413 414	-77.03872 -77.03737	-12.05102 -12.06470	496 497	-77.03435 -77.03246	-12.02810 -12.02771	579 580	-77.08436 -77.08377	-12.08303 -12.07773	662 663	-77.05805 -76.95509	-12.08403 -12.07397
332	-76,98960	-12.11243	415	-77.03736	-12.06470	498	-77.03246	-12.01882	581	-77.08336	-12.06491	664	-76.95323	-12.06472
333	-76.98212	-12.08523	416	-77.03677	-12.07684	499	-77.03096	-12.02727	582	-77.08165	-12.07755	665	-76.95103	-12.06597
334	-76.98151	-12.12820	417	-77.03646	-12.04709	500	-77.02849	-12.03172	583	-77.08108	-12.07624	666	-77.02870	-12.06823
335	-76.98102	-12.08731	418	-77.03645	-12.05039	501	-77.02582	-12.04317	584	-77.08019	-12.09172	667	-77.01740	-12.06616
336	-76.98092	-12.08473	419	-77.03643	-12.05697	502	-77.02262	-12.04105	585	-77.08038	-12.09182	668	-77.01488	-12.07319
337	-76.98015	-12.08469	420	-77.03631 -77.03569	-12.07567 -12.05840	503	-77.01771	-12.03991	586	-77.08036	-12.09187	669	-77.01171	-12.07219 -12.06019
338	-76.97981 -76.97946	-12.13054 -12.10282	421 422	-77.03556	-12.05640	504 505	-77.01586 -77.01498	-12.03761 -12.03779	587 588	-77.08020 -77.07924	-12.08874 -12.09250	670 671	-77.07952 -77.07942	-12.06015
340	-76.97926	-12.11327	423	-77.03552	-12.07682	506	-77.00869	-12.09195	589	-77.07902	-12.08510	672	-77.07797	-12.05434
341	-76.97913	-12.09860	424	-77.03536	-12.06021	507	-77.00806	-12.08447	590	-77.07718	-12.08098	673	-77.07668	-12.05479
342	-76.97827	-12.11029	425	-77.03529	-12.07840	508	-77.00781	-12.08843	591	-77.07707	-12.08366	674	-77.06584	-12.03547
343	-76.97667	-12.08369	426	-77.03451	-12.05196	509	-77.00661	-12.09424	592	-77.01540	-12.13784	675	-77.06399	-12.04925
344	-76.97504	-12.12716	427	-77.03417	-12.05207	510	-77.00366	-12.08856	593	-77.01147	-12.13663	676	-77.06309	-12.06106
345 346	-76.97389 -76.97044	-12.10433 -12.08785	428 429	-77.03251 -77.03225	-12.07408 -12.05326	511 512	-77.00288 -77.00117	-12.08832 -12.10064	594 595	-77.01109 -77.00447	-12.14747 -12.14544	677 678	-77.03901 -77.03842	-12.04872 -12.05421
347	-77.01132	-12.00700	430	-77.03223	-12.05326	513	-77.00073	-12.10064	596	-76.99300	-12.12829	679	-77.03786	-12.05097
348	-77.00212	-12.11391	431	-77.02980	-12.05891	514	-76.99743	-12.10700	597	-76.99197	-12.12823	680	-77.03661	-12.05662
349	-77.00199	-12.11768	432	-77.02330	-12.05805	515	-76.99676	-12.08754	598	-76,99106	-12.14917	681	-77.03489	-12.07441
350	-77.03672	-12.04739	433	-77.01691	-12.05724	516	-76.98588	-12.08510	599	-76.98570	-12.14825	682	-77.03421	-12.06367
351	-77.02367	-12.13879	434	-77.04250	-12.08685	517	-76.98554	-12.08542	600	-76.98447	-12.14033	683	-77.03400	-12.04986
352	-77.01970	-12.14151	435	-77.03987	-12.08825	518 610	-76.98464	-12.08515	601	-76.98353 76.99310	-12.14949	684	-77.03167 -77.03072	-12.07279 12.04950
353 354	-77.01952 -77.01881	-12.13080 -12.14422	436 437	-77.03899 -77.03753	-12.08930 -12.08399	519 520	-77.03809 -77.03693	-12.10697 -12.10385	602 603	-76.98310 -76.98250	-12.14954 -12.13131	685 686	-77.03073 -77.03862	-12.04950 -12.08978
355	-77.01789	-12.14108	438	-77.03795	-12.08333	521	-77.03623	-12.09899	604	-76.98236	-12.08514	687	-77.03474	-12.08314
356	-77.01596	-12.14358	439	-77.03585	-12.08376	522	-77.03489	-12.09082	605	-76.98203	-12.08518	688	-77.06979	-12.08668
357	-77.06617	-12.06759	440	-77.03582	-12.08376	523	-77.03414	-12.09796	606	-76.98203	-12.08538	689	-77.06319	-12.09991
358	-77.05766	-12.05558	441	-77.03576	-12.08374	524	-77.03235	-12.09155	607	-76.98056	-12.08369	690	-77.06042	-12.09263
359	-77.05759	-12.05578	442	-77.03506	-12.08859	525	-77.03180	-12.10353	608	-76.98042	-12.08343	691	-77.03423	-12.12586
360 361	-77.05518 -77.04989	-12.06053 -12.06987	443 444	-77.03501 -77.03494	-12.08862 -12.08526	526 527	-77.03173 -77.03038	-12.10349 -12.09207	609 610	-76.98041 -76.98033	-12.08461 -12.08439	692 693	-77.02894 -77.05210	-12.12448 -12.06990
362	-77.04969	-12.05770	445	-77.03488	-12.08355	528	-77.03008	-12.09207	611	-76.98016	-12.08463	694	-77.03762	-12.02968
363	-77.04839	-12.05675	446	-77.03487	-12.08358	529	-77.02940	-12.09197	612	-76.97993	-12.08456	695	-77.02963	-12.04296
364	-77.04831	-12.05854	447	-77.03464	-12.08468	530	-77.02938	-12.09208	613	-76.97925	-12.13265	696	-77.01002	-12.08724
365	-77.04537	-12.05884	448	-77.03461	-12.08418	531	-77.02827	-12.09148	614	-76.97891	-12.08484	697	-76.99355	-12.08954
366	-77.04405	-12.05351	449	-77.03449	-12.08571	532	-77.02819	-12.09167	615	-76.97883	-12.11036	698	-76.98596	-12.08517
367 368	-77.05118 -77.05013	-12.08262 -12.07557	450 451	-77.03438 -77.03426	-12.08567 -12.08636	533 534	-77.02718 -77.02709	-12.09118 -12.09160	616 617	-76.97863 -76.97851	-12.11017 -12.13108	699 700	-76.98574 -77.04796	-12.08504 -12.08960
369	-77.04725	-12.07084	452	-77.03417	-12.08709	535	-77.02708	-12.09126	618	-76.97850	-12.08473	701	-76.99545	-12.06957
370	-77.04064	-12.06472	453	-77.03403	-12.08818	536	-77.02705	-12.09165	619	-76.97837	-12.11033	702	-77.09287	-12.07747
371	-77.04017	-12.07177	454	-77.03385	-12.08945	537	-77.02693	-12.09165	620	-76.97836	-12.11031	703	-77.07811	-12.07044
372	-76.97248	-12.08353	455	-77.03344	-12.08351	538	-77.02681	-12.09324	621	-76.97828	-12.11048	704	-77.07794	-12.06761
373 374	-76.96812 -76.96688	-12.08206 -12.08044	456 457	-77.03184 -77.02781	-12.08772 -12.08367	539 540	-77.02614 -77.02594	-12.09116 -12.09087	622 623	-76.97825 -76.97824	-12.11013 -12.13108	705 706	-77.00534 -76.97895	-12.12809 -12.13118
375	-76.96622	-12.07929	458	-77.02757	-12.08260	541	-77.02591	-12.03001	624	-76.97817	-12.11002	707	-76.97736	-12.10258
376	-76.95722	-12.07067	459	-77.02699	-12.08240	542	-77.02563	-12.09545	625	-76.97815	-12.08475	708	-76.97337	-12.08949
377	-76.95689	-12.07134	460	-77.02589	-12.09110	543	-77.02523	-12.09471	626	-76.97811	-12.11028	709		-12.08624
	-76.95567												-77.02111	
	-76.94912						-77.02457 -77.02436			-76.97805	-12.11027	_	-77.00712	
	-76.94561 -77.03043		464	-77.05159 -77.03329	-12.11037 -12.11485	547	-77.02436			-76.97794 -76.97737	-12.11011 -12.08634	712 713	-77.00267 -77.00255	-12.11764 -12.11463
	-77.03043		465			548	-77.02420			-76.97665		714		
383	-77.02987	-12.06389		-77.03045	-12.12146	549	-76.98339	-12.14967	632	-76.97636	-12.08639	715	-77.04521	-12.04332
	-77.02582		467	-77.03025		550				-76.97586		716	-77.06371	
	-77.02317			-77.03012	-12.11414	551	-76,99917 -70,00750			-76.97562		717	-77.03149	
386	-77.01788 -77.01731			-77.03009 -77.02988			-76.99750 -76.99723			-76.97343 -76.97337			-77.03023 -77.08046	
	-77.01731			-77.02988			-76.99373			-76.97337			-77.08046	
389							-76.98940			-76.97325		721		
390	-77.01366	-12.06376	473	-77.02939	-12.12694	556	-76.98583	-12.08504	639	-76.97265	-12.08397	722	-77.05741	-12.05589
391				-77.02913						-76.97247				
	-77.01336						-77.07800 77.07707						-77.04337	
393	-77.01139 -77.00768			-77.07779 -77.07625			-77.07787 -77.07757			-76.97083 -76.97050		726	-77.04805 -76.94160	
	-77.00760									-77.02563			-76.93867	
396	-77.07948	-12.06017	479	-77.06752	-12.08329	562			645	-77.02548	-12.11811	728		-12.07078
397	-77.07857	-12.05997	480	-77.06725	-12.08327	563	-77.04388	-12.03591	646	-77.02433	-12.10774	729	-77.02737	-12.06446
398	-77.07765	-12.03571		-77.06652			-77.04365			-77.02331	-12.11343		-77.02269	
	-77.07661						-77.09965			-77.02094 -77.01072			-77.02035	
	-77.07655 -77.07652					566 567	-77.09851 -77.09705			-77.01972 -77.01833	-12.11631 -12.11305	732	-77.01463 -77.00997	
	-77.07652					568	-77.09705			-77.01833	-12.11474		-77.00997	
	-77.07234						-77.09334	-12.07703	652	-77.01344	-12.11264	735	-77.07519	-12.06347
404	-77.06768	-12.05777	487	-77.06210	-12.07848	570	-77.09158	-12.06201	653	-77.01259	-12.11214	736	-77.07178	-12.06558
	-77.06605		488	-77.05257	-12.01187	571	-77.09105	-12.07797	654	-77.01232	-12.11262	737	-77.04046	-12.05618
	-77.06270			-77.04980			-77.09063			-77.01203	-12.11161		-77.03834	
407	-77.04271 -77.04266			-77.04932 -77.04388			-77.08997 -77.08926			-77.01195 -77.00941	-12.11184 -12.11625		-77.03777 -77.03733	
700	-11.04200	-12.04002	431	-11.04300	-12.03602	0(4	-11.00326	-12.01020	007	201.00341	112,11020	140	-11.03133	-12.00301

N°	Lon	Lat	N°	Lon	Lat									
741	-77.03726	-12.04642	810	-77.05167	-12.09020		-77.07369		948	-77.01239	-12.14430	1017	-77.05805	
742	-77.03005	-12.05663	811			880		-12.04339	949	-77.00286	-12.13274	1018	-77.05589	
	-77.03000		812		-12.11072		-77.04247		950	-76.98525	-12.13227		-77.05573	
	-77.02635	-12.04740	813			882		-12.04732	951	-76.98011	-12.08500		-76.97327	
745 746	-77.02554 -77.02975	-12.04675 -12.12894	814 815	-77.03457 -77.02942		883 884	-77.03719	-12.06320 -12.05621	952 953	-76.97890 -76.97764	-12.11017	1021 1022	-76.96770 -76.95791	
747	-77.03999		816	-77.02742			-77.03658		954	-76.97721		1023	-76.95314	
748	-77.00413	-12.09006	817			886	-77.03498		955	-76.97678		1024		
749	-77.00356	-12.08676	818	-77.01365		887		-12.05895	956	-76.97625			-76.94756	-12.07355
750	-77.03693	-12.09299	819			888	-77.03030		957	-76.96208		1026	-76.94545	
751	-77.02919	-12.09184		-76.99459		889	-77.03010		958	-77.02704			-76.94433	
752	-77.09896	-12.07178	821	-76.98486		890	-77.02996		959	-77.02611	-12.10836		-76.94200	
753 754	-77.01032 -76.99833	-12.13369 -12.13773	822 823	-77.06596 -77.09892		891 892	-77.01569 -77.01553	-12.05508	960 961	-77.02600 -77.02286	-12.10834	1029 1030	-76.94015 -76.92100	
755	-76.97913	-12.13086		-77.09474		893	-77.01525	-12.05286	962	-77.01860	-12.11265	1030	-76.91400	
756	-77.01830	-12.11321		-77.09387		894	-77.01483		963	-77.01849	-12.11292		-76.90574	
757	-77.03698	-12.05617	826	-77.09198	-12.07797	895	-77.01056		964	-77.01835	-12.11291	1033	-77.01986	-12.08302
758	-76.94595	-12.06901	827	-77.08925		896	-77.04431	-12.09101	965	-77.01583	-12.11848	1034	-77.01883	
759	-77.02241	-12.13720		-77.08602			-77.04273		966	-77.01363	-12.11695		-77.00697	
760 761	-77.05613	-12.06473		-77.08488		898 899	-77.03912 -77.03912		967	-77.01209 -77.01190	-12.11244	1036 1037	-77.07127	
762	-77.04663 -77.04564	-12.06320 -12.06442	831	-77.07769 -77.00681			-77.02661	-12.08879 -12.08897	968 969	-77.01198 -77.01183	-12.11266 -12.11187		-77.04437 -77.03222	
763			832			901			970	-77.01179	-12.11284		-77.04299	
764	-77.04449	-12.07971		-76.99308		902	-77.03845	-12.11201	971	-77.00410	-12.12115	1040	-77.03316	
765	-76.95839	-12.06758	834		-12.11669	_	-77.03748		972	-77.01919	-12.13795	1041	-77.03019	
766	-76.94486	-12.07267	835			904	-77.03197	-12.10938	973	-77.04039		1042	-77.02727	-12.08811
767	-77.03214	-12.06768		-76.98059 -70.00001		905	-77.03070 -77.03001	-12.13127	974	-77.03683	-12.11887		-77.02380	
768 769	-77.03003 -77.02837	-12.07043	837 838	-76.98001 -76.97844	-12.08496	906	-77.03061 -77.02977	-12.11902 -12.12923	975 976	-77.06046 -77.05401	-12.07801 -12.07296	1044	-77.07264 -77.07258	-12.09441 -12.09282
	-77.02340	-12.06104		-76.97842		908		-12.11220	977	-77.00187	-12.10082		-77.03592	-12.12569
771	-77.02162	-12.08131		-76.97802			-77.02823	-12.12747	978	-77.08799	-12.08812	1047	-77.02696	-12.12495
772	-77.01849	-12.05779		-76.97726	-12.12973	910	-77.06735		979	-76.99848	-12.11913		-77.02594	-12.11891
773	-77.01636	-12.07311	842			911	-77.06727	-12.08319	980	-77.02256	-12.15605			-12.07047
774	-77.01492	-12.08563	843		-12.12431	912	-77.06441	-12.08455	981	-77.04601	-12.05662	1050	-77.03118	-12.02281
775 776	-77.01458 -77.00775	-12.08928 -12.08258	845	-76.96800 -77.02410	-12.10708 -12.10780	913 914			982 983	-77.04252 -77.04254	-12.05296 -12.08028	1051 1052	-77.01126 -77.00703	-12.09867 -12.09715
777	-77.07770	-12.06406	846			915	-77.04397		984	-77.01105	-12.06169	1053	-77.00195	-12.10116
778	-77.07734	-12.05961	847	-77.01841	-12.11294	916	-77.04380		985	-77.03816	-12.05507	1054	-76.99903	
779	-77.07731	-12.05960	848	-77.01782	-12.11287	917	-77.03282	-12.03194	986	-77.03701	-12.06295	1055	-76.98186	-12.09043
780	-77.07667	-12.05953		-77.00505		918	-77.02966	-12.04311	987	-77.02572	-12.05092	1056	-76.98014	
781	-77.07411	-12.03677	850		-12.11203	919			988	-77.02476		1057		-12.10331
782 783	-77.06594 -77.06315	-12.03842 -12.06239	851 852	-76.99726 -77.02368	-12.11230 -12.13939	920 921	-77.02824 -77.02689		989	-77.06690 -77.03134	-12.08823 -12.11358	1058	-77.04796 -77.04666	-12.08951 -12.09397
784	-77.06214	-12.06748	853		-12.13333	922	-77.00749		991	-77.03014	-12.12119	1060	-77.04269	
785	-77.05366	-12.04758	854		-12.14012	923	-77.00285	-12.09187	992	-77.02476	-12.12346	1061		-12.07640
786	-77.04755	-12.04375	855			924	-77.00253		993	-77.07047	-12.06756	1062	-77.09590	-12.07921
787	-77.04058	-12.04772	856				-77.00023	-12.11193	994	-77.00476	-12.08951	1063	-77.09503	
788	-77.03223	-12.07543	857 050	-77.04214		926	-76,99395	-12.11068	995	-77.00396 -77.00194	-12.08386	1064		
789 790	-77.02877 -77.04696	-12.05207 -12.08942	858 859	-77.05700 -77.05699		927 928	-76,99345 -76,99317	-12.08153 -12.08439	996 997	-77.02194 -77.09791	-12.09153 -12.08346	1065	-77.07660 -77.01764	-12.08926 -12.13219
791	-77.04594	-12.08513		-77.04931			-76,98978		998	-77.08503		1067		-12.13213
792	-77.04571	-12.08397	861	-77.04442	-12.06941	930	-76.98480	-12.10335	999	-77.07779	-12.07032	1068	-76.99764	-12.12668
793	-77.03833	-12.08410	862	-77.04431	-12.06860	931	-77.05331	-12.09279	1000	-76.99288	-12.14143	1069	-76.99676	-12.12868
				-76.94984										
	-77.03349			-77.02968									-76.99251 -76.99207	
	-77.06567 -77.05674	-12.08981 -12.09094		-77.02756 -77.02687			-76.99618			-76.98449			-76.99207 -76.99171	
798	-77.05674	-12.03034		-77.02669			-76.99426			-77.01862	-12.10252		-76.98974	
	-77.03700	-12.11037		-77.02021			-76.99019			-76.99609			-76.98762	-12.13472
800	-77.03631	-12.10951	869	-77.01940	-12.08114	938	-77.07792	-12.03575	1007	-77.02074	-12.13889	1076	-76.98619	
	-77.02109			-77.01726			-77.04995			-76.93975			-76.98069	-12.11791
	-77.00108	-12.12858		-77.01522			-77.04364			-77.07322			-76.97598	-12.12180
	-77.07990 -77.06566			-77.01431 -77.01404			-77.10100 -77.09615			-77.07405 -77.06329			-76.97466 -77.00940	-12.10411 -12.11477
	-77.06555			-77.01404					1012				-77.00340	-12.11571
	-77.06228			-77.01027						-77.05144			-76.99586	-12.11218
	-77.00956			-76.99762						-77.02339				
808				-77.07722						-77.02323				
809	-76.99668	-12.08673	878	-77.07525	-12.05524	947	-77.07909	-12.08329	1016	-77.04795	-12.06203			

ANEXO 2: Función - k de Ripley.

Una técnica muy popular para analizar la correlación espacial en patrones puntuales es la función - *K*, propuesta por Ripley (1976).

Supóngase que se está interesado en investigar lo concerniente a la distancia entre puntos del patrón puntual. Entonces podría ser natural considerar la distancia

 $d_{ij} = \|u_i - u_j\|$ entre todos los pares ordenados de puntos diferentes u_i y u_j pertenecientes al patrón puntual x. Estas distancias claramente capturan una gran cantidad de información acerca del patrón puntual. Si en el patrón existen clústers, muchas de las distancias serán pequeñas, si el patrón es regular pocas distancias serán pequeñas. Consideramos la función de distribución acumulada empírica de las distancia entre pares:

$$\overline{H}(r) = (1/n(n+1)) \sum_{\substack{i=1\\i\neq j}}^{n} \sum_{\substack{j=1\\i\neq j}}^{n} \mathbf{1} \left[d_{ij} \leq r \right]$$

donde n es el número de puntos del patrón puntual y n(n+1) es el número de pares de puntos distintos del patrón puntual.

La contribución de cada punto a u_i a la suma es $t_i(r) = \sum_{j \neq i} \mathbf{1}[d_{ij} \leq r]$, y representa al número de otros puntos u_j que se encuentran hasta una distancia r. Llamaremos a este, el número de r-vecinos para el punto u_i . Equivalentemente $t_i(r)$ es el número de puntos que caen dentro de un círculo de radio r centrado en u_i , sin contar u_i . Entonces:

$$\overline{H}(r) = (1/(n-1))\overline{t}(r)$$

donde $\overline{t}(r) = (1/n)\sum_i t_i(r)$, es el número promedio de *r-vecinos* para un punto de *X*.

Por otra parte el número promedio de r-vecinos de un dato puntual podría depender de la intensidad promedio de todos los puntos en el patrón puntual. En un patrón completamente aleatorio, podríamos esperar $\overline{t}(r)$ este cerca de $\rho\pi r^2$, desde que $\overline{t}(r)$ cuenta el número de puntos que caen al interior de un círculo de radio r el cual tiene área πr^2 . En principio para hacer posible la comparación de distintos patrones puntuales, se estandariza $\overline{t}(r)$ dividiendo por ρ . Desde que el máximo números de vecinos de cualquier punto es n-1, es más apropiado dividir por $\tilde{\rho}=(n-1)/|W|$, donde n es el número de puntos r0 y r1 es el área de la ventana de observación. El resultado de la estandarización es r1 r2 función r3 y r4 es el número promedio estandarizado de r3 el número promedio estandarizado de r4 es el número promedio

En principio para poder comparar patrones puntuales observados en distintas ventanas, necesitamos tomar en cuenta los *efectos de borde*. Esto conduce a una pequeña modificación de la función $|W|\overline{H}(r)$, llamada la función – K empírica:

$$\overline{K}(r) = \frac{|W|}{n(n-1)} \sum_{i=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} \mathbf{1} \left[d_{ij} \le r \right] e_{ij}(r)$$

En resumen, la función - K empírica $\overline{K}(r)$, es el número promedio acumulativo de puntos de datos que se encuentran dentro de una distancia r de un punto de datos típico, corregido por los efectos de borde, y estandarizado mediante la división por la intensidad. La normalización y la corrección de borde hacen posible la comparación de patrones de punto con diferentes números de puntos, observados en diferentes ventanas.

Si X es un proceso puntual estacionario, con intensidad homogénea $\rho > 0$, entonces para cualquier $r \ge 0$:

$$K(r) = (1/\rho)\mathbb{E}[t(u,r,X)|u \in X]$$

no depende de la ubicación de u y es llamada la función - K de X.

La fórmula explicita para la función - K ha sido derivado para el modelo de proceso puntual Poisson. En el caso del proceso puntual Poisson homogéneo, desde que los puntos son independientes, la presencia de un punto aleatorio en la ubicación u no tendría relación con la presencia de puntos en otras posiciones, así:

$$\mathbb{E}[t(u,r,X)|u\in X] = \mathbb{E}[t(u,r,X)]$$

donde t(u,r,X) es el número de puntos de X que caen en el disco b(u,r) de radio r centrado en u. El número esperado de tales puntos es $\rho\pi r^2$. Dividiendo por la intensidad ρ , en el caso del proceso Poisson homogéneo bidimensional, se tiene:

$$K_{pois}(r) = \pi r^2$$

$$L_{pois}(r) = r$$

ANEXO 3: Modelos log-lineales simples

Algunos modelos simples de la forma log-lineal, son descritos en Baddeley et al. (2016), las cuales se mencionan a continuación:

1. Modelo de intensidad proporcional a una línea de base

Un modelo fácil de analizar en el que la intensidad es un múltiplo desconocido de una conocida *línea base* (baseline). La función de verosimilitud en este caso es:

$$\rho(u) = \theta b(u)$$

donde b(u) es una función conocida (baseline) y θ es un parámetro desconocido que debe ser estimado. Si la línea de base b(u) representa la variación espacial de la intensidad de una población (densidad poblacional), y suponemos que cada miembro de la población tiene igual probabilidad de contraer una enfermedad rara, entonces los casos de la enfermedad podrían formar un proceso Poisson con intensidad (9.3), conocido como el modelo de "riesgo constante".

Reemplazando la expresión de la intensidad en la función de log-verosimilitud, se obtiene:

$$\log L(\theta; x; W) = \sum_{i=1}^{n} \log\{\theta b(x_i)\} - \int_{W} \{\theta b(u)\} du$$

$$\log L(\theta; x; W) = n \log \theta + \sum_{i=1}^{n} \log b(x_i) - \theta \int_{W} b(u) du$$

Derivando con respecto a θ para un x fijo, incluso si b(u) no es continuo, el vector score es:

$$U(\theta) = \frac{d}{d\theta} \log L$$

$$U(\theta) = \frac{n}{\theta} - \int_{W} b(u) du$$

Si no existen restricciones sobre θ , el estimado de máxima verosimilitud de θ es la solución de la ecuación del score $U(\theta) = 0$, lo que conduce:

$$\widehat{\theta} = n / \int_{W} b(u) du$$

 $\hat{\theta}$ coincide también con el estimado por el Método de Momentos, ya que bajo el modelo de línea base, el número esperado de puntos es $\mathbb{E}_{\theta}[n(X)] = \int_{W} \rho_{\theta}(u) du = \theta \int_{W} b(u) du$, tal que $\hat{\theta}$ es la solución de $n(x) = \mathbb{E}_{\theta}[n(X)]$.

2. Modelo de intensidad como función exponencial de una covariable

Un modelo muy importante, es cuando:

$$\rho(u) = \kappa e^{\beta Z(u)} = \exp(\alpha + \beta Z(u))$$

donde Z(u) es una covariable espacial y α , β , κ son parámetros a estimar. Este es el modelo que está ajustado en las aplicaciones básicas de regresión logística y de máxima

entropía. Un ejemplo importante se da en el análisis de prospectividad, donde Z(u) es la distancia desde la ubicación u a la falla geológica más cercana. El parámetro $\kappa = e^{\alpha}$ brinda la intensidad en lugares en los que $Z(u) \approx 0$ (es decir, en los alrededores de una falla geológica), mientras que la intensidad cambia en un factor de e^{β} por cada unidad de distancia de las fallas.

3. Modelo de incidencia elevada

Una combinación de los dos últimos modelos, es:

$$\rho(u) = b(u) \exp{\alpha + \beta Z(u)}$$

donde b(u) es una función de línea de base conocida y Z(u) es una covariable espacial. Este modelo expresa el efecto de covarianza en relación con la línea de base b(u). Por ejemplo, en la epidemiología espacial, b(u) podría ser la densidad de población variable espacialmente, y el término $\exp{\{\alpha + \beta Z(u)\}}$ sería entonces el riesgo de enfermedad por persona, dependiendo del valor de Z.

ANEXO 4: Código del programa R

```
## I:
## Cargar Librerias utilizadas
library(raster) ##Manejo de raster
library(rgdal)
                                ##Lectura de .shp
library (maptools) ##Para leer el shape
library(spatstat) ##Modelos de PP
                                    #Manejo de datos espaciales
library(sp)
library(ggplot2) #Para el mapeo de datos
library(fields) #Para graficar imágenes
library(ggmap) #Imagen satelite Google
library(classInt) #Intervalos de clase
##Directorio de trabajo y lectura de datos
setwd("D:/Archivo Internet/Dropbox/Tesis/Agraria/DataDelitos")
WindowObs <- readShapePoly("VentanaObsWGS84.shp")##Ventana de observacion
pointsdelitos <- readShapePoints("DelitosClip.shp")##Delitos</pre>
cuadDist <- readShapePoly("VentanaObsdistlima.shp")##Poligonos distritales
data.delitos=data.frame(x=coordinates(pointsdelitos)[,1],
 y=coordinates(pointsdelitos)[,2])
data.window=fortify(WindowObs)
#Creando las estiquetas distritales
x.lab=c(-77.03667, -77.06669, -76.99521, -77.03567, -76.98431, -77.06574, -77.04821, -77.02086,
-77.02893,-77.01299,-76.99724,-77.09007,-77.01739,-76.92573,-77.05059,-77.04887,-77.03268)
y. \\ lab=c (-12.09898, -12.09384, -12.09755, -12.08579, -12.12699, -12.07508, -12.07811, -12.14403, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.08879, -12.0887
 -12.12091,-12.11344,-12.07409,-12.07644,-12.07233,-12.08809,-12.05916,-12.05103,-12.02358)
lab=c("San Isidro", "Magdalena del Mar", "San Borja", "Lince", "Santiago de Surco"
"Pueblo Libre", "Jesus Maria", "Barranco", "Miraflores", "Surquillo", "San Luis", "San Miguel"
 ,"La Victoria","La Molina","Breña","Lima Cercado","Rimac")
df.lab=data.frame(x=x.lab,y=y.lab,lab=lab,stringsAsFactors=FALSE)
```

```
#Mapa de puntos
graf.deli=ggplot(data=data.delitos,aes(x=x,y=y))+
geom point(size=0.9,color="#3182bd")+
geom point (aes (x=-76.96, y=-12.01), size=2, color="#3182bd")+
annotate (geom="text", x = -76.96+0.02, y=-12.01, label = "Evento", size=3)+ annotate ("rect", xmin = -76.96-0.0028, xmax = -76.96+0.0028, ymin = -12.02+0.0025,
ymax = -12.02-0.002, fill="#9ecae1", colour = "gray60")+
annotate(geom="text", x = -76.96 + 0.035, y = -12.01 - 0.01, label = "Ventana de obs.(W)",
size=3) +
theme(panel.background = element_rect(fill = "#deebf7"),
panel.grid.major.y = element_blank(),panel.grid.minor.y = element blank(),
axis.text = element text(size=7))+
annotate("text", x = df.lab$x, y = df.lab$y, label = df.lab$lab,size = 2.5,
color = "gray10")
graf.deli
#### 1.2.- Lectura de puntos y patrones puntuales #############
#Puntos de hechos delictivos------
pun.deli=data.delitos; coordinates (pun.deli) = c("x", "y");
proj4string(pun.deli) = CRS("+proj=longlat +datum=WGS84 +ellps=WGS84")
#Transformando a UTM 18 Sur
points.deli=spTransform(pun.deli,
CRS("+proj=utm +zone=18 +south +ellps=WGS84 +datum=WGS84 +units=m +no defs"))
#Creando la ventana de observacion-----
proj4string(WindowObs) = CRS("+proj=longlat +datum=WGS84 +ellps=WGS84")
#Transformando a UTM 18 Sur
w.lima=spTransform(WindowObs,
CRS("+proj=utm +zone=18 +south +ellps=WGS84 +datum=WGS84 +units=m +no defs"))
w.lima <- as(w.lima, "SpatialPolygons");</pre>
W=as(w.lima,"owin") ##Ventana de observación
#Creación del patron puntual
x.deli=coordinates(points.deli)[,1];y.deli=coordinates(points.deli)[,2]
ppp.deli=ppp(x=x.deli,y=y.deli,window=W) #Patrón puntual
unitname(ppp.deli)=c("metro", "metros")#Asignamos las unidades
ppp.deli=rescale(ppp.deli, 1000) #Cambiamos a kilometros
unitname(ppp.deli) = c("km", "kms")
plot(ppp.deli,cols="Black",border="Gray80",pch=19,cex=0.5)
#### 1.3.- Estimacion de la intensidad ##########################
#Aleatoriedad Espacial Completa (CSR)
summary(ppp.deli)
#Estimacion de la intensidad kernel
h=0.4 # kms: ancho de búsqueda
d=2#bidimensional
xrang=ppp.deli$window$xrange; yrang=ppp.deli$window$yrange#Rango para el grid(x,y)
nx=1210;ny=944#Total de puntos en y donde se estimará la densidad
N=nx*ny#Número total de puntos en donde se estimará la densidad
x=as.matrix(data.frame(ppp.deli))
n=nrow(x) #Número de puntos observados delpatrón puntual
###Generamos el grid bidimensional de puntos
                                 ; delta.y=(yrang[2]-yrang[1])/ny
delta.x=(xrang[2]-xrang[1])/nx
##Especificamos la funcion kernel
k.e=function(u) \{ (1/sqrt(2*pi))*exp(-0.5*u^2) \} \#Gaussiana
#Densidades producto (Método óptimo)
unos.n=as.matrix(rep(1,n));
unos.ux=as.matrix(rep(1,nx));unos.uy=as.matrix(rep(1,ny))
U1=(grid.x%*%t(unos.n)-unos.ux%*%t(x[,1]))/h
U2=(grid.y%*%t(unos.n)-unos.uy%*%t(x[,2]))/h
K1=k.e(U1); K2=k.e(U2); rm(U1); rm(U2)
rho.kernel=(1/(h^d))*(K1%*%t(K2))
##Excluimos puntos que caen fuera del Polígono
box.grid=data.frame(x=xrang*1000,y=yrang*1000);coordinates(box.grid)=c("x","y");
```

```
proj4string(box.grid) =
 CRS("+proj=utm +zone=18 +south +ellps=WGS84 +datum=WGS84 +units=m +no defs")
box.grid=
 spTransform(box.grid,CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"))
box.df=data.frame(box.grid) #Extent en wgs84
###Obtenemos el grid bidimensional de puntos en WGS84
                                                                      ; delta.y84=(box.df$y[2]-box.df$y[1])/ny
delta.x84=(box.df$x[2]-box.df$x[1])/nx
                                                          ;y t0 84=(box.df$y[1]-delta.y84/2)#Origen (x0,y0) grid
x t0 84 = (box.df$x[1] - delta.x84/2)
grid.x84=x t0 84+(1:nx)*delta.x84
                                                          ;grid.y84=y t0 84+(1:ny)*delta.y84
#Intersectamos el grid con W
U=expand.grid(x=grid.x84,y=grid.y84);coordinates(U)=c("x","y");
proj4string(U) = CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0")
p.dent=over(U, WindowObs) #Intersección U inter W
no.na=!is.na(p.dent) #Valor logico si esta fuera de W
#Seleccionamos los puntos y su densidad en W
u=(data.frame(U)[no.na,]);rho.u=(as.vector(rho.kernel))[no.na]
df=data.frame(u,rho.u);names(df)=c("x","y","z")
#--MAPAS DE LA INTENSIDAD DE PUNTOS-----
#Mapeo de la intensidad
graf.dens=ggplot(df, aes(x, y,fill=z)) + geom raster()+
 geom_point(data=data.delitos, aes(x=x, y=y,fill=2), color="gray10", size=0.5)+
scale_fill_distiller(palette="RdBu",direction=-1,na.value=NA,guide="colourbar",name="")+
 theme(axis.title= element_blank(),axis.text= element_blank(),
  legend.position = "bottom", legend.key = element_blank(),
 legend.key.width= unit(3.1, "cm"))+
 stat\_contour(data=df, aes(x=x, y=y, z=z), colour="gray30", binwidth = 5, bins = 4) + (colour=1) + (colour=1
 annotate("text", x=df.lab$x, y=df.lab$y, label=df.lab$lab, size = 2.8, color = "gray20")
#Superponiendo imagenes satelital Google
df.label.cri=data.frame(x=c(-77.03354,-76.9806455,-77.039416)
 , y=c(-12.09065, -12.0854059, -12.048422), lab=c("A", "B", "C"))
map = qmap(location =c(extent(WindowObs)[1],extent(WindowObs)[4],
 extent(WindowObs)[2], extent(WindowObs)[3]), zoom = 12, maptype = 'hybrid',
 resolution = 800)
coord cartesian()+scale fill distiller(palette="RdBu",
 breaks=c(0,5,10,15,20,25,30,34), name="Intensidad\n")+
 theme(legend.position = "bottom", legend.key.width= unit(2.5, "cm"))+
 annotate ("text", x = -77.03354, y = -12.09065, label = "A")+
 annotate("text", x = -76.9806455, y = -12.0854059, label = "B")+ annotate("text", x = -77.039416, y = -12.048422, label = "C")+
 geom_label(mapping=aes(x=x,y=y,label=lab),data=df.label.cri,alpha=0.15)
map.den.goo
##Puntos críticos
#Punto A
map.crit1 = qmap(location = c(lon =-77.03354, lat =-12.09065), zoom = 15,
 maptype = 'hybrid', resolution=800)
mapA=map.crit1+geom raster(aes(x=x,y=y,fill=z),alpha =0.45,data=df,interpolate = FALSE)+
 coord cartesian()+geom point(data=data.delitos, aes(x=x, y=y,fill=2),
 color="gray10", size=2)+
 scale fill distiller(palette = "RdBu", breaks=c(0,5,10,15,20,25,30,34),
 name="Intensidad\n", direction=-1) +
 theme(legend.position = "bottom", legend.key.width= unit(2.7, "cm"))
manA
#Punto B
map.crit2 = qmap(location = c(lon = -76.9806455, lat = -12.0854059), zoom = 17,
maptype = 'hybrid', resolution = 800)
mapB=map.crit2+geom_raster(aes(x=x,y=y,fill=z),alpha =0.45,data=df,interpolate = FALSE)+
 coord cartesian()+
 geom point(data=data.delitos, aes(x=x, y=y,fill=2), color="gray10", size=2)+
 scale fill distiller(palette = "RdBu", breaks=c(0,5,10,15,20,25,30,34),
 name="Intensidad\n", direction=-1) +
 theme(legend.position = "bottom",legend.key.width= unit(2.7, "cm"))
mapB
#Punto C
map.crit3 = qmap(location = c(lon = -77.039416, lat = -12.048422), zoom = 16,
 maptype = 'hybrid', resolution = 800)
mapC=map.crit3+geom_raster(aes(x=x,y=y,fill=z),alpha =0.45,data=df,interpolate = FALSE)+
  coord cartesian() + geom_point(data=data.delitos, aes(x=x, y=y,fill=2), color="gray10",
    size=2)+scale fill distiller(palette = "RdBu",breaks=c(0,5,10,15,20,25,30,34),
 name="Intensidad\n", direction=-1) +
```

```
theme(legend.position = "bottom", legend.key.width= unit(2.5, "cm"))
mapC
##1.4. - Metodo basado en cuadrantes
                                                                           #############################
#-----
#1.4.1.- Basado en la configuración distrital------
##Creando los cuadrantes distritales (unidades kms)
n.pol=dim(cuadDist)[1]
for (i in 1:n.pol)
{code.pol=c("owin.pol.",i,"=rescale(as(cuadDist[",i,",],'owin'),1000)")
eval(parse(text=paste(code.pol,sep="", collapse="")))
lis.tess=paste("list(",paste("owin.pol.",1:n.pol,sep="",collapse=","),")",sep="")
pol.dist=as.tess(eval(parse(text=lis.tess)))
##Area de cada distrito en km2
areas.pol=c(); for(i in 1:n.pol){areas.pol=c(areas.pol,area(tess.dist[i]))}
##Prueba de hipotesis para poligonos distritales
test.dist=quadrat.test(ppp.deli,tess=pol.dist);test.dist
#r=seq(from=0.98, to=0.36, length.out=28)
#Mapeando la intensidad de cuadrantes poligonales
intens.cuad=round(test.dist$observed/areas.pol,2)
interv.clase=classIntervals(intens.cuad, 5, style="quantile",
intervalClosure=c("left", "right"))
color.den=c("#f7f7f7","#ccccc","#969696","#636363","Gray21")#paleta de color-cuantiles
color.cuad=as.vector(findColours(interv.clase,color.den))#color para cada poligonos
legend.cuad=names(attr(findColours(interv.clase,color.den),"table"))#nombres de leyenda
plot(as(pol.dist, "SpatialPolygons"), col=color.cuad)
plot(ppp.deli, pch=19, cols="Gray50",col.tiles="red", lwd=0.5,border=NA,cex=0.5,add=TRUE)
plot(test.dist, add=TRUE, col="black", cex=0.5, lty=1, lwd=0.5,border="Gray50")
##.- Agregamos la legenda y etiquetas
                                                                                       ,fill=color.den
legend(x=269.8284,y=8660.049,legend=legend.cuad
,box.lwd=1,border="Gray20",ncol=1,cex=0.8    ,text.font=3,text.col="Gray20"
,bty="n" ,title="Intensidad\n(Puntos/km2)",title.col ="Black")
pos.dist=coordinates(as(pol.dist, "SpatialPolygons"))
text(x=pos.dist[,1],y=pos.dist[,2], labels=cuadDist$NOMCP_CAP,cex=0.6,col="gray10")
#1.4.2.- Basado en cudrantes regulares (tiles)------
#-----
##Creamos los poligonos cuadrados
quad.prue=quadrats(ppp.deli, nx=4, ny=4)$tiles #12 tiles
#Correccion para cerrar poligonos
for (i in 1:12)
{ n.poligonos=length(quad.prue[[i]]$bdry)#Número de poligonos
   for (j in 1:n.poligonos)
   {quad.prue[[i]]$bdry[[j]]$x=c(quad.prue[[i]]$bdry[[j]]$x,quad.prue[[i]]$bdry[[j]]$x[1])
   \\ \\ \text{quad.prue[[i]]} \\ \text{$p$try[[j]]} \\ \text{$y$-c (quad.prue[[i]]} \\ \text{$b$dry[[j]]} \\ \text{$y$, quad.prue[[i]]} \\ \text{$b$dry[[j]]} \\ \text{$y$, quad.prue[[i]]} \\ \text{$b$dry[[j]]} \\ \text{$b$dry[[j]]} \\ \text{$y$, quad.prue[[i]]} \\ \text{$b$dry[[i]]} \\ \text{$b$dry[[i]]}
#Creando una teselacion ( cuadrantes)
SpP=as.tess(list(quad.prue[[1]], quad.prue[[2]], quad.prue[[3]], quad.prue[[4]],
quad.prue[[5]],quad.prue[[6]],quad.prue[[7]],quad.prue[[8]],quad.prue[[9]],
quad.prue[[10]],quad.prue[[11]],quad.prue[[12]]))
##Area de cada tile
areas.pol=c(); for(i in 1:12){areas.pol=c(areas.pol,area(SpP[i]))}
##Prueba de hipotesis
M <- quadrat.test(ppp.deli, nx = 4,ny=4);M;
(M$observed-M$expected)/sqrt(M$expected); M$residuals #Residuales
#Intensidad cuadrantes
intens.cuad=round(M$observed/areas.pol,2)
##Mapeo de la intensidad
set.seed(10);interv.clase=classIntervals(intens.cuad, 5, style = "kmeans", rtimes = 3,
intervalClosure = c("left", "right"))#Intervalos de clase
color.den=c("#f7f7f7","#cccccc","#969696","#636363","Gray21")#paleta de colores
color.cuad=as.vector(findColours(interv.clase,color.den))#color para c/cuadrado
```

```
legend.cuad=names(attr(findColours(interv.clase,color.den),"table")) #texto - leyenda
plot(as(SpP, "SpatialPolygons"), col=color.cuad)
plot(ppp.deli, pch=19, cols="Gray70",col.tiles="red", lwd=0.5,border=NA,cex=0.5,add=TRUE)
plot(M, add=TRUE, col="black", cex=0.7, lty=1, lwd=0.5,border="Gray50")
#Agregamos una legenda al mapa
legend(x=269.8284,y=8660.049,legend=legend.cuad,fill=color.den,box.lwd=1,border="Gray20"
,ncol=1,cex=0.8,text.font=3,text.col = "Gray20",bty="n",title="Intensidad\n(Puntos/km2)"
,title.col ="Black")
#1.4.3.- Basado en cuadrantes Dirichlet -----
#Diagramas de dirichlet
set.seed(2);B=dirichlet(runifpoint(9, ppp.deli$window))
#Correccion para cerrar poligonos
for (i in 1:9)
{n.poligonos=length(B$tiles[[i]]$bdry)#Número de poligonos
       for (j in 1:n.poligonos)
       B$tiles[[i]]$bdry[[j]]$x=c(B$tiles[[i]]$bdry[[j]]$x,B$tiles[[i]]$bdry[[j]]$x[1])
       B\$tiles[[i]]\$bdry[[j]]\$y=c(B\$tiles[[i]]\$bdry[[j]]\$y,B\$tiles[[i]]\$bdry[[j]]\$y[1])
#Area de los poligonos
areas.poldiri=c();for(i in 1:9){areas.poldiri=c(areas.poldiri,area(B[i]))};areas.poldiri
#Prueba de hipotesis
qB <- quadrat.test(ppp.deli, tess=B);qB</pre>
#Intensidad en tiles de dirichlet
intens.diri=round(qB$observed/areas.poldiri,2)
set.seed(10);interv.clase.diri=classIntervals(intens.diri, 5, style = "kmeans", rtimes = 3
,intervalClosure = c("left", "right"))#Intervalos de clase color.den.diri=c("#f7f7f7","#ccccc","#969696","#636363","Gray21")#Paleta de colores
color.cuad.diri=as.vector(findColours(interv.clase.diri,color.den.diri)) #Color de c/tile
legend.cuad.diri=names(attr(findColours(interv.clase.diri,color.den.diri),"table"))#leyend
#Mapeo de la intensidad
PolDiri=as(B, "SpatialPolygons");
plot(PolDiri,col=color.cuad.diri)
plot(ppp.deli, pch=19, cols="Gray65", lwd=0.3,cex=0.5,border=NA,add=TRUE)
plot(qB, add=TRUE, col="black", cex=0.7, lty=1, lwd=1,border="Gray30")
#Agregamos una legenda al mapa
legend(x=269.8284,y=8660.049,legend=legend.cuad.diri,fill=color.den.diri,box.lwd=1
,border="Gray20",ncol=1,cex=0.8,text.font=3,text.col = "Gray20",bty="n"
,title="Intensidad\n(Puntos/km2)",title.col ="Black")
#______
#--- Prueba kolmogorov - smirnov: Para la Longitud(x)------
spatstat.options(npixel=c(1210,944)) #Cantidad de pixeles
KS=cdf.test(ppp.deli, function(x,y) {x});KS
plot(KS, style="cdf", lwd=2, cex.lab=0.7, cex.axis=0.7, col="Black", ylab="Probabilidad"
,xlab="f(x,y)= x",col0="Gray50",lty0=2,cex=0.7,lwd0=1,mgp=c(1.5,0.5,0)
, do.legend=FALSE, main="")
legend(x="bottomright",legend=c("Observado","Esperado"),col =c("Black","Gray50"),
lty=c(1,2), cex=0.7, lwd=c(2,1))
##1.5. - Estadísticas de Resumen################################
####Funcion - K
       #Caso homogeneo
functionK=Kest(ppp.deli,correction="none",rmax=1.5)#;
op=par(mfrow=c(2,2),cex.lab=0.7,cex.axis=0.7,mgp=c(1.5,0.5,0),cex=0.7)
plot(functionK, col="Gray60", main="Función k- Ripley (homogeneo)")
       #Caso No Homogeneo
densidad <- density(ppp.deli, sigma=0.5,edge=FALSE)</pre>
Knohom <- Kinhom(ppp.deli,correction="none",sigma=1.5,rmax=1.5)</pre>
plot (Knohom, main="Función - K (no homogeneo)", col="Gray60", xlim=c(0,1.5))
####Funcion - L
       #Caso homogeneo
Lc <- Lest(ppp.deli,correction="none",rmax=1.5)</pre>
plot(Lc, main = "Función - L (homogéneo)", col="Gray60")
```

```
#Caso no homogeneo
Linhom <- Linhom(ppp.deli,correction="none",rmax=1.5, sigma=1.5)
plot(Linhom, main = "Función - L (no homogéneo)", col="Gray60", xlim=c(0,1.5))
par(op)
###Función de correlación par función - g
      #Caso homogeneo
g fcp=pcf(ppp.deli)
par(mfrow=c(1,2))
\verb|plot(g fcp,main="Función - g (homogéneo)",col="Gray60",ylim=c(0,4.5),xlim=c(0,1.5))|
      #Caso no homogeneo
g_inhom=pcfinhom(ppp.deli,sigma=1.5,rmax=1.5,kernel = "epanechnikov",correction = "Ripley")
plot(g_inhom,col="Gray60",main="Función - g (no homogeneo)",ylim=c(0,4.5),xlim=c(0,1.5))
##Basado en distancias entre pares de puntos###
##Funcion - F: De espacio vacío (u a x).
Fc=Fest(ppp.deli,correction=c("km"))
##Funcion -G (x a x)
Gc=Gest(ppp.deli,correction="km")
#Funcion - J
Jc=Jest(ppp.deli,correction=c("km"),r=Gc$r)
#grafico 3 en 1
par (mfrow=c(2,2));plot(Fc);plot(Gc);plot(Jc);par(op)
W=as(w.lima,"owin")
W=rescale(W,1000)
##1.6.1- COVARIABLES ESPACIALES
#--Distancia a la comisaria mas cercana----
#-----
dist.comi=raster("DistanciaComisariaSerenazgo2.tif")
m.dist=as.matrix(dist.comi)/1000;n.dist=dim(m.dist)[1];m.distOrd=m.dist[n.dist:1,]
im.dist <- as.im(X = m.distOrd, W = W,eps=c(20,20))
#-----
#--Distancia al límite distrital----
dist.lim=raster("DistanciaLimite31 3.tif")
m.lim=as.matrix(dist.lim)/1000;n.lim=dim(m.lim)[1];m.limOrd=m.lim[n.lim:1,]
im.lim \leftarrow as.im(X = m.limOrd, W = W,eps=c(20,20))
#-----
#-Presupuesto Municipal-----
#-----
dist.pres=raster("PresupuestoLimite31 2.tif")
m.pres=as.matrix(dist.pres);n.pres=dim(m.pres)[1];m.presOrd=m.pres[n.pres:1,]
im.pres \leftarrow as.im(X = m.presOrd, W = W,eps=c(20,20))
#-----
#---Densidad poblacional-----
dens=raster("DensidadPobRad1000.tif")
m.dens=as.matrix(dens);n.dens=dim(m.dens)[1];m.densOrd=m.dens[n.dens:1,]
im.dens \leftarrow as.im(X = m.densOrd, W = W,eps=c(20,20))
#####Graficando las covariables###############
library(RColorBrewer)
colorpounto=rgb(red=.30, green=.30, blue=.30, alpha=0.2, maxColorValue = 1)
pal.col=colorRampPalette(brewer.pal(9,"RdBu"))(30)
##distancia a la comisaria
par(mar=c(0.1,0.1,0.1,2))
plot(im.dist,col=pal.col[length(pal.col):1])
plot(W, add=TRUE,border="gray30")
plot(ppp.deli, add=TRUE,pch=19,col=colorpounto,cex=0.7)
##distancia a un límite distrital
plot(im.lim,col=pal.col,breaks=c(0:29/25,4))
plot(W, add=TRUE, border="gray30")
plot(ppp.deli, add=TRUE,pch=19,col=colorpounto,cex=0.7)
##presupuesto
pal.col.pre=colorRampPalette(brewer.pal(9,"RdBu"))(10)
```

```
plot(im.pres,col=pal.col.pre,breaks=c(0,10,20,30,40,60,80,100,200,400,500))
plot(W, add=TRUE, border="gray30")
plot(ppp.deli, add=TRUE,pch=19,col=colorpounto,cex=0.7)
##densidad poblacional
plot(im.dens, col=pal.col[length(pal.col):1])
plot(W, add=TRUE,border="gray30")
plot(ppp.deli, add=TRUE,pch=19,col=colorpounto,cex=0.7)
#-----
#-MODELOS ESTADÍSTICOS-----
spatstat.options(npixel=c(1210,944))
options(digits=7)
##Proceso Poisson Estacionario(homogéneo)
mod0=ppm(ppp.deli~1);summary(mod0)
#-----
#---Modelos univariados - Proceso Poisson no estacionario
##Distancia a una comisaria o serenazgo
mod1 = ppm(ppp.deli~(im.dist<0.11))##110metros</pre>
summary(mod1)
##Limite distrital
mod2 = ppm(ppp.deli~im.lim)
summary (mod2)
##Prespuesto
mod3 = ppm(ppp.deli~(im.pres>60))##Limite distrital
summary (mod3)
#Densidad poblacional
mod4 = ppm(ppp.deli~im.dens)##Limite distrital
summary(mod4)
#Modelos con multiples covariables - Proceso Poisson no estacionario---
#-----
mod5 = ppm(ppp.deli~(im.dist<0.11)+im.lim+(im.pres>60)+im.dens)
mod6 = ppm(ppp.deli~im.lim+(im.pres>60)+im.dens,eps=c(20,20))
mod7 = ppm(ppp.deli~im.lim+(im.pres>60),eps=c(20,20))
mod8 = ppm(ppp.deli~im.lim+im.dens,eps=c(20,20))
#-----
#--Selection del modelo-----
anova(mod6, mod5, test="LR")
anova(mod7, mod6, test="LR")
anova(mod8, mod6, test="LR")
anova(mod0, mod8, test="LR")
anova(mod1, mod8, test="LR")
anova(mod2, mod8, test="LR")
anova(mod3, mod8, test="LR")
anova (mod4, mod8, test="LR")
##Valores predichos en el mejor modelo
plot(mod8, how="image", se=FALSE,ngrid = c(1210,944))
#-----
##Modelo Cluster(Neyman -Scott) with Cauchy kernel-----
#-----
mod9 <- kppm(ppp.deli~im.lim+im.dens,clusters="Cauchy")</pre>
summary(mod9)
#Graficos
par(mar=c(0,0,0,1))
plot.kppm(mod9,ngrid = c(1210,944),what=c("intensity"),col=pal.col[length(pal.col):1]
,cex=0.7)
par(mar=c(0,0,0,1))
plot.kppm(mod9,what=c("cluster"),locations=ppp.deli,col=pal.col[length(pal.col):1])
plot.kppm(mod9, what=c("statistic"))
#-----
##Diagnostico de residuales-----
residuals.ppm(mod8)
```

```
par(mar=c(0,0,0,0))
diagnose.ppm(mod8,type="raw",oldstyle=TRUE,sigma=NULL)

##ANEXO 1:Método kernel para la densidad(gaussiano estandar)
##Implementado en spatstat
spatstat.options(npixel=c(1210,944))#Cantidad de pixeles
dens.deli=density.ppp(ppp.deli,sigma=0.4#Ancho de búsqueda(b=400 metros)
,edge=FALSE,at="pixel",weights = NULL,diggle=FALSE
,dimyx=c(1210,944)#Cantidad de filas y columnas
)
```