Лабораторная работа 4 Решение систем линейных алгебраических уравнений итерационными методами

1. Создать СЛАУ (размерность не менее 10) с матрицей с заданным определителем и необходимыми свойствами (см. Указания)

Замечание 1. Матрица должна иметь специальные свойства (симметрия, положительная определенность и т.д.) только тогда, когда этого требует метод

2. (**+1балла**) Привести СЛАУ к виду удобному для итераций (по варианту для методов а и б), вычислить числовой коэффициент в условии выхода

$$B_k \frac{x^{(k+1)} - x^{(k)}}{\alpha_k} + Ax^{(k)} = b$$

1.
$$\alpha_k = \|D_A\|^{-1}$$
, $B_k = E$

2.
$$\alpha_k = ||A||^{-1}, B_k = E$$

- 3. С оптимальным параметром ($\alpha_k = 2(\lambda_1 + \lambda_n)^{-1}, \quad B_k = E$)
- 4. Якоби ($lpha_{\scriptscriptstyle k}=1,\quad B_{\scriptscriptstyle k}=D_{\scriptscriptstyle A}$)
- 3. (**+2балла**) Запрограммировать один из методов решения СЛАУ (по вариантам)
 - а. Метод простых итераций
 - б. Метод Зейделя
 - в. Метод релаксации

- г. Градиентный метод
- д. Метод Ричардсона (*m*>1)
- е. Метод сопряженных градиентов
- 4. Найти решение СЛАУ запрограммированным методом, вычислить
 - а. Норму фактической ошибки $||x-x^*||$
 - б. Норму невязки ||Ax-b||
 - в. Число итераций для достижения заданной точности
- 5. (**+2балла**) При проведении контрольных тестов построить зависимости
 - а. нормы фактической ошибки решения СЛАУ и нормы невязки от заданной точности
 - б. числа итераций от определителя матрицы при фиксированной точности
- 6. (+1бонус) Исследование метода
 - а. Нарушение условий применимости метода
 - б. Роль начального приближения
 - в. Влияние выбора нормы на результаты
 - г. Зависимость сходимости от параметра релаксации
 - д. Зависимость сходимости от параметра α
 - е. Проверка метода на матрице Гильберта

Указания о построении СЛАУ

Снова воспользуемся тем, что определитель диагональной матрицы D вычисляется просто $\det(D) = \Pi d_i$ (d_i так же являются собственными числами матрицы D).

Определенность матрицы A такая же как и определенность матрицы D, которая в свою очередь зависит от знаков d_i . Т.е. для положительной определенности матрицы необходимо, чтобы все d_i были положительны.

Для построения как симметричной, так и несимметричной матрицы подходят все три ранее известных способа, основанных на свойстве подобного преобразования.

	$D=diag(d_i); \lambda(A) = \lambda(D); det(A) = det(D)$		
		A=	св-ва
1	B: det(B)≠0	$B^{-1}DB$	$A \neq A^{T}$
2	$Q: Q^{-1}=Q^{\mathrm{T}}$	$Q^{-1}DQ$	$A=A^{T}$
3	U: diag(U)=D U _{ij} =0,i>j	$Q^{-1}UQ$	$A \neq A^{T}$

<u>1 способ</u>. При помощи невырожденной матрицы В. Если есть диагональная матрица D (с с.ч. на диагонали), то у матрицы $A=B^{-1}DB$ будут те же самые с.ч. Матрица A в общем случае будет **не симметричной**. Положительная определенность зависит от знаков элементов диагональной матрицы D

<u>2 способ</u>. При помощи **ортогональной матрицы** Q. Если есть диагональная матрица D (с с.ч. на диагонали), то у матрицы $A = Q^T D Q$ будут те же самые с.ч. Особенность матрицы A в том, что она будет **симметричной**.

<u>3 способ</u>. Создание **несимметричной** матрицы при помощи **ортогональной** матрицы Q. Если есть треугольная (верхняя или нижняя) матрица B (с с.ч. на диагонали), то у матрицы $A = Q^T B Q$ будут те же самые с.ч. и матрица при этом получится несимметричной

Создание ортогональной матрицы

Ортогональная матрица Q создается или ортогональным разложением любой невырожденной матрицы (в MatLab [Q, r] = qr(rand(n))) или на основе произвольного вектора w преобразованием Хаусхолдера $Q = E - 2ww^T/||w||^2$

Создание матрицы с диагональным преобладанием

Чтобы получить диагональное преобладание вышеописанными способами построения, можно задать элементы диагональной матрицы в диапазоне одного порядка, но на 2 порядка больше, чем элементы вспомогательной матрицы (B или Q). Например, d=diag(linspace(50,131,n)), если элементы B или Q в пределах 1.

Изменение определителя матрицы

Нельзя пользоваться свойством определителя $\det(\alpha A) = \alpha \det(A)$, т.к. во всех алгоритмах в том или ином виде присутствует деление одних элементов матрицы на другие элементы, множитель сократится, и зависимости от определителя не получится.

Если уменьшать только один элемент матрицы, то с уменьшением определителя во столько же раз возрастет число обусловленности и неизвестно, что повлияет на метод сильнее.

Таким образом, получается, что для изменения определителя нужно за один раз изменять только один из диагональных элементов. И делать это можно только n-1 раз, после этого придем к изначальной матрице, умноженной на число.

Создание СЛАУ по известной матрице

Задать точное решение x^* Вычислить правую часть СЛАУ $b = Ax^*$