Swift for TensorFlow

First-Class Machine Learning in Swift

莲叔(aaaron7)

About me

- 莲叔 / aaaron7
- SwiftGG 成员,目前没有参与翻译工作,主要负责在群里灌水;
- 目前供职于 UC 短视频组;
- 兴趣: Swift, 函数式编程, 机器学习;
- 自我要求: 争取不坑

Roadmap

Intro

- Why
- Swift for TensorFlow

How

Magic behind

Graph Program Extraction

Example

- Linear Classification
- Collaborative Filtering

Why

Why Swift

As we know

Swift has a few problems

swift 1.2 到swift 2.0 升级之路上的坑

原 Swift3.0的坑

升级到Swift 4.0可能遇到的坑总结

An internal error occurred. Source editor functionality is limited. Attempting to restore...

Why Swift

但对我们来说这是问题吗?

不是。

Why Swift for Machine Learning

Server-side Swift get increasing attention.

Swift do a better job.

- High performance
- Open source with active community
- Productive & Safety

Next Big Thing on Server

ML based server apps booms

Recommender Audio/Video Text Super Chatbot Resolution Understanding Analysis System Main-stream Language Swift Easy to write Safe & Performand Also easy to write rubbish code C++ **Python** Less productive No safety

If Swift has built-in support for machine learning

Swift for TensorFlow

Intro

- First released on TFDevSummit 2018
- Open source
- TensorFlow Ecosystem
- First-class Machine Learning, Not just a TensorFlow API wrapper
- Support CPU / GPU / Cloud TPU
- Still in early stage, active developing
- Combine usability & performance
- Work nicely with Xcode Playground, support macOS & Ubuntu currently

Playground

```
import TensorFlow
                                                                       "[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
3 let m : Tensor<Float> = [[1,2,3],[4,5,6]]
                                                                       "[[2.0, 3.0, 4.0], [5.0, 6.0, 7.0]]
4 m + 1
                                                                       "[[2.0, 4.0, 6.0], [8.0, 10.0, 12...
5 m * 2
                                                                       "[[1.0, 4.0, 9.0], [16.0, 25.0, 36.
  m * m
                                                                       "[[14.0, 32.0], [32.0, 77.0]]"
   m • m.transposed()
8
                                                                       "[[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, ... 🔳
   let bm = Tensor < Float > (ones : [1024, 1024])
                                                                       "[[1024.0, 1024.0, 1024.0, 1...
  bm • bm
```

"Script Language Feeling" is very important for usability.

WTF it is ???

Core Ideas

Two TF Modes

Graph

```
import tensorflow as tf

x = tf.constant([[1,2,3], [4,5,6]])
xt = tf.transpose(x)
y = tf.matmul(x, xt)

with tf.Session() as sess:
    print sess.run(y)
```

Operations just build the graph structure, will not be executed until session.run.

Pros:

- High performance.
- Strongly optimized.

Cons:

- Hardly debug. (can't print intermediate value)
- Poor usability.

Eager Execution

```
import tensorflow as tf
tf.enable_eager_execution()

x = tf.constant([[1,2,3],[4,5,6]])
y = tf.matmul(x, tf.transpose(x))
print(y)
```

Each operation will be executed intermediately

Pros

- Define-by-run, capable of natrual control flow
- Debug friendly, capable of value printing step by step.

Cons:

No optimization, poor performance

Now, we have the Third mode

TFIWS Mode

- Eager-style code, but run as graph.
- With full optimization from Graph mode.
- Generate graph in compiling stage, then intelligently coordinate it with program during execution.
- Transparent graph logic to engineer.
- Capable of putting the *print* to anywhere you like. TFiwS will take care of everything.

"Swift 的东西不都这样吗?"

"意思是这玩意儿又快又好用呗?"

Magic Behind

Magic Behind

Build graph from code

Can we directly bridge Swift Tensor class to TensorFlow graph node?

Co-executing code & graph, feeling like eager execution.

- This is the key to enable natural control flow and debug usability
- Therefore, we can't. Direct bridging is exactly traditional graph mode. Not TFiwS mode.

TFiwS use program slicing technology to extract Tensor operation from code by compiler transformation

WTF are you talking about?

Example

```
typealias FloatTensor = Tensor<Float>
func linear(x : FloatTensor, w : FloatTensor, b : FloatTensor) -> FloatTensor
{
    let tmp = w • x
    let tmp2 = tmp + b
    return tmp2
}
```

How to build the corresponding graph for above code automatically?

Since there is no runtime shit in Swift

Can directly deduct by AST traverse

```
(import_decl range=[atswift.swift:8:1 - line:8:8] 'Foundation')
  (import_decl range=[atswift.swift:9:1 - line:9:8] 'TensorFlow')
  (typealias range=[atswift.swift:11:1 - line:11:37] "FloatTensor" interface type='FloatTensor.Type' access=internal type='Tensor<Fl
  (func_decl range=[atswift.swift:13:1 - line:18:1] "linear(x:w:b:)" interface type='(FloatTensor, FloatTensor, FloatTensor) -> FloatTensor
    (parameter_list
      (parameter "x" apiName=x type='FloatTensor' interface type='FloatTensor')
      (parameter "w" apiName=w type='FloatTensor' interface type='FloatTensor')
      (parameter "b" apiName=b type='FloatTensor' interface type='FloatTensor') range=[atswift.swift:13:12 - line:13:62])
    (result
      (type_ident
        (component id='FloatTensor' bind=atswift.(file).FloatTensor@atswift.swift:11:11)))
    (brace_stmt range=[atswift.swift:14:1 - line:18:1]
      (pattern_binding_decl range=[atswift.swift:15:5 - line:15:26]
         pattern_named type='Tensor<Float>' 'tmp')
         (call_expr type='FloatTensor' location=atswift.swift:1<mark>5:15 range=[atswift.swift:15:15 - line:15:26] nothrow arg_labels=_:_:</mark>
          (declref_expr type='(Tensor<Float>, Tensor<Float>) - Tensor<Float>' location=atswift.swift:15:15 range=[atswift.swift:15:15
map generic_signature=<Scalar where Scalar : Numeric, Scalar : AccelerableByTensorFlow> (substitution Scalar -> Float))] function_re
          (tuple_expr type='(FloatTensor, FloatTensor)' locatibn=atswift.swift:15:21 range=[atswift.swift:15:21 - line:15:26] names=
             (declref_expr type='FloatTensor' location=atswift.swift:15:22 range=[atswift.swift:15:22 - line:15:22] decl=atswift.(file
             (declref_expr type='FloatTensor' location=atswift.swift:15:25 range=[atswift.swift:15:25 - line:15:25] decl=atswift.(fil
       (var_aeci range=[atswift.swift:15:9 - line:15:9] "tmp" type='Tensor<Float>' interface type='Tensor<Float>' access=private let
       pattern_binding_decl range=[atswift.swift:16:5 - line:16:22]
        (pattern_named type='Tensor<Float>' 'tmp2')
        (binary_expr type='Tensor<Float>' location=atswift.swift:16:20 range=[atswift.swift:16:16 - line:16:22] nothrow
```

Generate graph in compiling stage

- Compiler will generate TF graph based on static analysis result.
- Static type system of Swift enable the compiler knowing every Tensor operation.
- This is why Swift is a good choice for the approach rather than Python.

After Compiling

```
func linear(x : FloatTensor, w : FloatTensor, b : FloatTensor) -> FloatTensor
    let tmp = w • x
    let tmp2 = tmp + b
    return tmp2
func linear(x : FloatTensor, w : FloatTensor, b : FloatTensor) -> FloatTensor
    let result = execTensorFlowGraph("graph_generate_before")
   return result
```

A little more complicated

```
func linear(x : FloatTensor, w : FloatTensor, b : FloatTensor) -> FloatTensor
    let tmp = matmul(x, w)
    let tmp2 = tmp + b
    print(tmp2)
    let tmp3 = tmp2 * magicNumberGenerateFromTensor(x: tmp2)
    return tmp3
func magicNumberGenerateFromTensor(x : FloatTensor) ->
    return 3.0
                                                         Debug tensor
```

Mix tensor operation with host logic. Host & graph is replying on each other.

The Problem

Program Slice Stage 1

Original

```
func linear(x : FloatTensor, w :
FloatTensor, b : FloatTensor) -> FloatTensor
{
    let tmp = matmul(x, w)
    let tmp2 = tmp + b
    print(tmp2)
    let tmp3 = tmp2 *
magicNumberGenerateFromTensor(x: tmp2)
    return tmp3
}
```

Graph Partition (remove host code)

```
func linear(x : FloatTensor, w :
FloatTensor, b : FloatTensor) ->
FloatTensor
{
    let tmp = matmul(x, w)
    let tmp2 = tmp + b
    //REMOVED: print(tmp2)
    tfop("send", tmp2)
    let result = tfop("receive")
    // REMOVED:
magicNumberGenerateFromTensor(x: tmp2)
    let tmp3 = tmp2 * result
    return tmp3
}
```

send/recv is standard TensorFlow node operation, being used to distributed learning

Program Slice Stage 2

Original

Host Partition (remove tensor code)

```
func linear(x : FloatTensor, w :
FloatTensor, b : FloatTensor) -> FloatTensor
{
    let tmp = matmul(x, w)
    let tmp2 = tmp + b
    print(tmp2)
    let tmp3 = tmp2 *
magicNumberGenerateFromTensor(x: tmp2)
    return tmp3
}
```

```
func linear(x : FloatTensor, w : FloatTensor, b :
FloatTensor) -> FloatTensor
    let tensorProgram = startTensorGraph(graphName:
"GeneratedGraphName")
    //REMOVED: let tmp = matmul(x, w)
   //REMOVED: let tmp2 = tmp + b
    let tmp2 = receivedFromTensorFlow(tensorProgram)
    print(tmp2)
    let result = magicNumberGenerateFromTensor(x: tmp2)
    sendToTensorFlow(tensorProgram, result)
    let tmp3 = finishTensorGraph(handle: tensorProgram)
    //REMOVED: let tmp3 = tmp2 *
magicNumberGenerateFromTensor(x: tmp2)
    return tmp3
```

Now we have

Trivial eager-style code

No tensor operation

Pure graph

- Executed by TensorFlow Runtime
- No host operation
- Can be run on GPU/TPU/ Distributed Device.

Summary

- Based on Compiler Based Program
 Slicing and TensorFlow Distributed Infra
- All communication & transformation are transparent to developer.
- Developer only need to write the trivial eager code, and then enjoy the benefits from both graph and eager mode.
- Swift compiler(with tf support) will take care of everything for you.

Example

Linear Classification

- A part of the ocean being found be contaminated, now we have the left data after 53 times observations
- Point clean, Cube contaminated
- Given new coordinates, can we predict whether it's clean or not?

Analysis

- Firstly it's linear separable.
- To begin with we need to find a line L. Assume there is x0 which always equals 1

$$Line(X) = w_0 + w_1x_1 + w_2x_2 = W^TX$$

- Assuming we already have w0 to w3, how to determine the label of given X?
 a) find a threshold of Line(X)
 - b) map Line(X) to a static value range by some other function

Drafting the model

- Sigmoid function has a perfect shape for this job, it ranged [0,1].
- We can use 0 to represent one label and 1 for another label.
- Now we have a new model:

Classifier = sigmoid (Line(X)) =
$$\frac{1}{1 + e^{-(W^T X)}}$$

Calc W from dataset

Find best W

Classifier = sigmoid (Line(X)) =
$$\frac{1}{1 + e^{-(W^T X)}}$$

- Classifier(X') is the probability of X' labeled to 1
- Then we can get new function for W based on Maximum Likelihood Estimation

$$l(W) = \sum_{i=1}^{m} \left(label^{i} \log \left(classifier(x^{i}) \right) + \left(1 - label^{i} \right) \log \left(1 - classifier(x^{i}) \right) \right)$$

Then we can get the best W by maximize I(W), just applying gradient descent

$$w_j = w_j + a \sum_{i=1}^{m} \left(label^i - classifier(x^i) \right) x_j^{(i)} \quad (j = 0..2)$$

• Simplify to matrix form: $W = W + aX^T (label - classifier(X))$

The method above is also be called Logistic Regression

对数几率回归

Coding Time

```
typealias FloatTensor = Tensor<Float>
let matplot = Python.import("matplotlib.pyplot")
enum Label : Int{
   case Green = 0
   case Red
struct Position{
   let x0: Float = 1
   let x1 : Float
    let x2 : Float
struct ClassifierParameters : ParameterAggregate {
   var w = Tensor<Float>(randomNormal: [3,1])
struct Model
   var parameters : ClassifierParameters = ClassifierParameters()
```

Load Data

```
func loadTrainingSet() -> (trainingVec : FloatTensor , labelVec : FloatTensor)
{
    let lines = try! String(contentsOf: URL(fileURLWithPath:
"test.txt")).split(separator: "\r")
    let data = lines.map{$0.split(separator: "\t")}
    let rowCount = data.count
    let trainingScalars:[[Float]] = data.map{[1.0, Float($0[0])!, Float($0[1])!]}
    let labelScalarts:[Float] = data.map{Float($0[2])!}

    let trainingVec = Tensor<Float>(shape: [Int32(rowCount), 3], scalars:
trainingScalars.flatMap{$0})
    let labelVec = Tensor<Float>(shape: [Int32(rowCount), 1], scalars:
labelScalarts)
    return (trainingVec, labelVec)
}
```

Train

```
func train(trainingVec : FloatTensor, labelVec : FloatTensor, model : inout Model){
    let learningRate:Float = 0.0005
    for epoch in 0...3000{
        let y = trainingVec • model.parameters.w
                                                          1. Calculate gradient
        let h = sigmoid(y)
        let e = labelVec - h
                                                           W = W + aX^{T}(label - classifier(X))
        let dw = trainingVec.transposed() • e
        let grad = ClassifierParameters(w: dw)
        model.parameters.update(withGradients: grad) { (p, g) in
            p += g * learningRate
                                                          2. Update weights
        let p1 = -1 * labelVec * log(h)
        let p2 = (1 - labelVec)*log(1 - h)
                                                                    3. Calculate loss
        let traditionalLogLoss = ((p1 - p2).sum() / batchSize)
        print("epoch: \(epoch), LogLoss v2: \(traditionalLogLoss)")
```

Ploting the result

```
func plot(trainVec : FloatTensor, labelVec :
FloatTensor, parameters : ClassifierParameters)
{
    //Calculate points based parameters (w0, w1, w2)
    //...

    let matplot = Python.import("matplotlib.pyplot")
    let fig = matplot.figure()
    let ax = fig.add_subplot(111)
    ax.scatter(coord1x, coord1y, 50, "red", "s")
    ax.scatter(coord2x,coord2y,50, "green")
    ax.plot(xpts, ypts)
    matplot.show()
}
```


Collaborative Filtering

Collaborative Filtering

- Collaborative Filter(CF) is the foundation of recommender system.
- Predict your rating for sth.(movie/ music/book) based on existing data, then provide recommend.

Method

- Item to Item: *Users who liked this item also like ...*
- User to Item:

 Users who are similar to you also like ...

i2i based Recommendation

Movie Recommendation

- Recommend movies based on the watch history from both you and other users
- We will use MovieLens Dataset, which is the most common dataset when implement & test recommender engine
- Including 100k movie ratings from 943 users and a selection of 1682 movies.

user_id, item_id, rating, timestamp

		,	013333333
→ TFPlo	yground	tail -n	20 ml-100k/u.data
864	685	4	888891900
750	323	3	879445877
279	64	1	875308510
646	750	3	888528902
654	370	2	887863914
617	582		883789294
913	690	3	880824288
660	229	2	891406212
421	498	4	892241344
495	1091	4	888637503
806	421	4	882388897
676	538	4	892685437
721	262	3	877137285
913	209	2	881367150
378	78	3	880056976
880	476	3	880175444
716	204	5	879795543
276	1090	1	874795795
13	225	2	882399156
12	203	3	879959583 sk.earn
TERM			

Distance Metric

- How to measure the distance between two movies?
- Cosine Similarity is a widely used metric for recommender system.
- Each movie is a vector contains 943 elements, representing ratings from all 943 users.

Modeling

- Slice train/test data
- Build movie-user rating matrix from train data
- Calc item-item similarity

Predict unknown ratings

Compare with test data

$$r_{k,n}$$
 (k movies, n users)

$$sim\left(i_{m}, i_{b}\right) = \frac{i_{m} \cdot i_{b}}{\left|i_{m}\right| \left|i_{b}\right|} = \frac{\sum_{a} r_{m,a} r_{b,a}}{\sqrt{\sum_{a} r_{m,a}^{2} r_{b,a}^{2}}}$$

$$r_{m,k} = \frac{\sum_{i_b} sim(i_m, i_b) r_{b,k}}{\sum_{i_b} sim(i_m, i_b)}$$

$$mse = \frac{1}{N} \sum_{i} (x_i - x_i)^2$$

Load Data

```
func loadData(path : String) -> (trainMatrix : Tensor<Float>, trainData : [[Float]] , testScalar : [Float])
   let lines = try! String(contents0f: URL(fileURLWithPath: path)).split(separator: "\n")
    let data = lines.map{$0.split(separator: "\t")}
   let dataSet : [[Float]] = data.map{[Float($0[0])!, Float($0[1])!, Float($0[2])!]} 1. Load data
   let nUsers = Set(dataSet.map{$0[0]}).count
   let nMovies = Set(dataSet_map{$0[1]}).count
                                                                                    2. Some transformation
   print ("Total user is : \(nUsers), total movies are \(nMovies)")
   let rating = Array<Float>(repeating: 0, count: nMovies)
   var scalars:[[Float]] = Array<[Float]>(repeating: rating, count: nUsers)
    let ratingv2 = rating
   var testScalars:[[Float]] = Array<[Float]>(repeating: ratingv2, count: nUsers)
                                                                                    3. Slice train/test data
   let (trainData, testData) = sliceTrainSet(input: dataSet, ratio: 0.25)
    for item in trainData
       scalars[Int(item[0]) - 1][Int(item[1]) - 1] = item[2]
   for item in testData
       testScalars[Int(item[0]) - 1][Int(item[1]) - 1] = item[2]
                                                                                     4. Build tensor
   let tensor = Tensor<Float>(shape: [Int32(nUsers), Int32(nMovies)], scalars: scalars.flatMap{$0}).toAccelerator()
   return (tensor, trainData, testScalars.flatMap{$0})
```

Compute Similarity

$$sim\left(i_{m}, i_{b}\right) = \frac{i_{m} \cdot i_{b}}{\left|i_{m}\right| \left|i_{b}\right|} = \frac{\sum_{a} r_{m,a} r_{b,a}}{\sqrt{\sum_{a} r_{m,a}^{2} r_{b,a}^{2}}}$$

- Can be easily implemented by a double for-loop
- But if we staring at it for a long time.
- It can be directly finished by matrix multiplication.

```
func pairwiseSimilarity(x : Tensor<Float>) ->
Tensor<Float> {
    let sumedX = x.squared().sum(alongAxes: 1)
    return x • x.transposed() / (sqrt(sumedX •
sumedX.transposed()) + epsilon)
}
```

Make Prediction

$$r_{m,k} = \frac{\sum_{i_b} sim(i_m, i_b) r_{b,k}}{\sum_{i_b} sim(i_m, i_b)}$$

- Like previous slide, we can transform double for-loop to matrix multiplication
- Then implement it by TFiwS with a few lines of code.

Validation

$$mse = \frac{1}{N} \sum_{i} (x_i - x_i)^2$$

- We sliced 25% of the data into the test set in our first step.
- Comparing test data to corresponding ratings we predicted before will give us a reasonable measurement for the algorithm

Pred is flattened matrix which contains all data, so we just compare the indexpath which test data contains

Result

swift -O CF.swift

Total user is: 943, total movies are 1682 original mse is 10.776904

→ tfiws_snippet git:(master) X

We can do some quick optimize by applid top k selection in predict stage

Total user is: 943, total movies are 1682 original mse is 10.776904 topk mse is 9.9300585

→ tfiws_snippet git:(master) X

Resources

- Classification & Collaborative Filter code: https://github.com/aaaron7/tfiws_snippet
- Documents of TFiwS: https://github.com/tensorflow/swift
- Tutorial & Demo: <u>https://github.com/tensorflow/swift-models</u> <u>https://github.com/tensorflow/swift-tutorials</u>
- Community: swift for tensorflow google group

Summary

- Introduce the Swift for TensorFlow, aka TFiwS.
- Brand new ML mode that TFiwS uses.
- Program Slicing based graph program extraction.
- Linear Classifier Example.
- Collaborative Filtering Example.

Thanks.