作品名稱:波士頓房價預測

一、說明

本專題透過 Kaggle 用波士頓房價預測比賽,用監督使學習方式訓練資料集與測試集 之線性迴歸、PCA 降維訓練出模型個關係定義,並把這個關係用測試的資料做驗 證,確認我們找出的房子特徵是否能夠準確預測房價。

二、實作(請使用 python3.6 版做執行)

首先透過 Kaggle 資料競賽網站,下載波士頓房價資料集。使用 pandas 匯入訓練集與測試集資料,並利用線性迴歸、PCA 降維訓練出模型。以下是預測房價中文資料集。

欄位名稱 說明

114 IX IX 1177	H/U-1/J									
CRIM	按城鎮劃分的人均犯罪率									
ZN	超過25,000平方英尺的土地劃為住宅用地的比例									
INDUS	城鎮非零售商用土地的比例									
CHAS	Charles River虛擬變數(如果靠近河流,則為1;否則為0)									
NOX	一氧化氮濃度 (以百萬分之幾為單位)									
RM	每個住宅的平均房間數									
AGE	1940年之前建造自有單位的比例									
DIS	到五個波士頓就業中心的加權距離									
RAD	徑向公路的可達性指數									
TAX	每10,000美元的全值財產稅率									
PTRATIO	城鎮的師生比例									
В	1000(Bk-0.63)^ 2, 其中Bk是按城鎮劃分的黑人比例									
LSTAT	低階人口狀況百分比									
MEDV	自有住房的中位數價格(單位為1000美元)									

1. 讀取資料合併:

使用 sklearn 提供的數據,來做分析,如此一來就不用再引入 csv 檔,而我們用來舉例的是 load_boston(),接下來就讓我們一步步的來瞭解資料,使用分析的結果,獲得資訊吧。

程式碼:

合併 train 及 test 的資料

df_data = df_train.append(df_test)

df_data

執行結果:

	ID	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
3	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
4	7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9
168	496	0.17899	0.0	9.69	0	0.585	5.670	28.8	2.7986	6	391	19.2	393.29	17.60	NaN
169	497	0.28960	0.0	9.69	0	0.585	5.390	72.9	2.7986	6	391	19.2	396.90	21.14	NaN
170	499	0.23912	0.0	9.69	0	0.585	6.019	65.3	2.4091	6	391	19.2	396.90	12.92	NaN
171	501	0.22438	0.0	9.69	0	0.585	6.027	79.7	2.4982	6	391	19.2	396.90	14.33	NaN
172	505	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	NaN

506 rows × 15 columns

合併後訓練測試集總共有 506 筆資料、15 個特徵欄位,做出一致性的預測分析及模型訓練就會比較快速好理解。

2. 線性迴歸:

首先,要使用簡單的資料視覺來看一下細部資料之間的關係,用 MEDV 房價變數做分佈的線性迴歸常態預測。

程式碼:

boston = pd.DataFrame(boston_dataset.data,

columns=boston_dataset.feature_names)

boston['MEDV'] = boston dataset.target

sns.distplot(boston['MEDV'], bins=30)

執行結果:

<matplotlib.axes._subplots.AxesSubplot at 0x1450cc176d8>

接者我們可以看每個變數之間的關係,透過相關係數觀察特徵變數和目標變數有較高的關聯性。

程式碼:

#使用熱度圖產生模型圖

correlation matrix = boston.corr().round(2)

plt.figure(figsize=(15,9))

sns.heatmap(correlation matrix, annot=True)

執行結果:

<matplotlib.axes._subplots.AxesSubplot at 0x145321843c8>

使用 LSTAT 和 RM 來做出預測 MEDV 的模型。用下列的算數及預測圖將關係數值給分析出來,可以明顯看到兩者之間的關係會是怎麼樣。

程式碼:

```
X = boston.loc[:,"RM":"LSTAT"].values
```

Y = boston.MEDV

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=9487)

regr = LinearRegression()

regr.fit(x_train, y_train)

y pred = regr.predict(x test)

mse = metrics.mean_squared_error(y_test, y_pred)

mae = metrics.mean absolute error(y test, y pred)

r2 = metrics.r2 score(y test, y pred)

print("MAE =","%.4f" % mae)

print("MSE =","%.4f" % mse)

print("R2 =","%.4f" % r2)

執行結果:

列印出來的模型的平均絕對物誤差 3.5028、均方誤差 26.4660、判定係數為得到的平均於 71%,代表它的分析程度是相當好的。

程式碼:

```
# 設定整張圖的長寬
plt.figure(figsize=(20, 5))
features = ["RM","LSTAT"]
target = boston['MEDV']
for i, col in enumerate(features):
# 排版 1 row, 2 columns, nth plot: 在 jupyter notebook 上兩張並排
plt.subplot(1, len(features), i+1)
# add data column into plot
x = boston[col]
y = target
plt.scatter(x, y, marker='o')
plt.title(col)
plt.xlabel(col)
plt.ylabel('MEDV')
```

執行結果:

左圖:(RM與MEDV)住宅的平均房間數與房子的中位數價格產生了正向關係,也就是 說平數越多價錢就會變高,看個人需求而自行決定。 右圖:(LSTAT與MEDV)人口數 量與房子的中位數價格產生了負向關係,人口大於房子數量就會影響了遮風避雨無 家可歸的現象發生。

3. 產生模型的重要性:

使用 13 個特徵產生出多張的模型,此模型會跟上述熱度圖很類似,因為執行要一點時間就挑選前幾個特徵做執行,再讀取前 8 筆的資料訓練出來的模型去預測。程式碼:

```
sns.set()
cols = ['crim','zn','indus','chas','nox','rm','age','dis']
sns.pairplot(df_data[cols], size = 2.5)
plt.show()
```

執行結果為特徵圖與直條圖,與上述熱度圖的範疇。

程式碼:

boston = load boston()

df = pd.DataFrame(data=boston.data,

columns=boston.feature names)

df['MEDV'] = boston.target

#MEDV 即預測目標向量

X = df.iloc[:, :-1]

y = df['MEDV']

X.head(5)

執行結果:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

將13特徵合併成一張斜線圖與點點圖。

程式碼:

x = data.data # 13 個特徵的數據

y = data.target # 房價數據

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 1) # 將數據分成 73 比

Inregr = LinearRegression()

Inregr.fit(x_train, y_train) # 將資料拿去訓練

y predict = Inregr.predict(x test) # 北 test 的資料用訓練出來的模型去預測

plt.xlabel("actual price") # x 軸的標題

plt.ylabel("predict pcice") # y 軸的標題

plt.plot([0,50], [0,50]) # 劃一條基準線

plt.scatter(y_test, y_predict) # 比對預測跟實際的差別

plt.show()# 察看結果

Inregr.score(x_train, y_train)

執行結果:為 0.7103879080674731

執行後訓練出來的特徵數值維 71%,預測值機率只有 7 成,難以預測房價的特性狀況,換個其他資料做預測依然還是大同小異。

4. PCA 降維:

訓練測試集總共有 506 筆資料、15 個特徵欄位,使用的數據量會不足,因此我們使用降維方式做出線性圖模型。

from sklearn.preprocessing import StandardScaler from sklearn import decomposition

x = data.data # pca 降維後的數據

y = data.target # 房價數據

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 1) # 將數據分成 73 比

Standarize our training data

std_tool = StandardScaler()

std_tool.fit(x_train)

x_train = std_tool.transform(x_train)

#PC 降維

pca = decomposition.PCA(n_components=0.95)

pca.fit(x_train)

x_train = pca.transform(x_train)

Inregr = LinearRegression()

Inregr.fit(x_train, y_train) # 將資料拿去訓練

Standarize x_test

x_test = std_tool.transform(x_test)

Dimension reduction usng PCA

x test = pca.transform(x test)

y_predict = Inregr.predict(x_test) # 將 test 的資料用訓練出來的模型去預測

plt.xlabel("actual price") # x 軸的標題 plt.ylabel("predict pcice") # y 軸的標題 plt.plot([0,50], [0,50]) # 劃一條基準線 plt.scatter(y_test, y_predict) # 比對預測跟實際的差別 plt.show() # 察看結果

執行結果:為 0.6649582793264731

PCA 降維所訓練出來得到的為 67%,由此可知低,於了上述的訓練出的模型,解釋程度能說是相當好的。

程式碼:

submit.to_csv('New_SampleSubmission1.csv', index=False) print(f'預測結果:')

submit.head(20)

產生後儲存為資料表後上傳至 Kaggle 的 Submit Predictions, 然後按 Submit 就完成了此競賽項目。

三、結論

使用 Kaggle 上波士頓房價預測比賽,使用了房子數量、人口數量做出相關關資料的分析及處理技巧,也用線性迴歸預測、產生模型的重要性及降維來預測、觀察及嘗試。畢竟房價不像用斤兩來秤有絕對的標準,更何況房價還要依賣方的心情,當前的通膨,人均所得,根本就沒有標準。人量不出來的,更別想叫電腦算的準。不過,我們自已調整及建立的模型,將 score 調到最高,雖說還是不準確,但絕對是值得參考的依據。

四、參考

Hahow 學習 AI 一把抓:點亮人工智慧技能樹

Hahow Python 資料分析:AI 機器學習入門到應用

巨匠電腦 Python 機器學習應用開發 TQC+ Python3. x 機器學習基礎與應用特訓教材