Maß- und Integrationstheorie

1. Hausaufgabenblatt

Abgabe bis Dienstag, 28. April, 23:59 Uhr

Aufgabe 1: 6 Punkte

Beweise die beiden folgenden Aussagen:

- i) Es sei (X, \mathcal{A}, μ) ein Maßraum. Dann ist $\mathcal{B} := \{A \in \mathcal{A} \mid \mu(A) = 0 \text{ or } \mu(A^c) = 0\}$ eine σ -Algebra über X.
- ii) Es sei (X, \mathcal{A}) ein messbarer Raum und $X_0 \subset X$ eine nichtleere Teilmenge, die nicht notwendigerweise zu \mathcal{A} gehört. Dann ist $\mathcal{B} := \{A \cap X_0 \mid A \in \mathcal{A}\}$ eine σ -Algebra über X_0 (die sogenannte Spur- σ -Algebra auf X_0).

Aufgabe 2: 4 Punkte

Es sei (X, \mathcal{A}, μ) ein Maßraum mit einem endlichen Maß μ . Zeige, dass für jede Folge $(A_n) \subset \mathcal{A}$ die Ungleichungen

$$\mu(\liminf_{n\to\infty} A_n) \le \liminf_{n\to\infty} \mu(A_n) \le \limsup_{n\to\infty} \mu(A_n) \le \mu(\limsup_{n\to\infty} A_n)$$

gelten. Gib außerdem ein Beispiel für eine Folge $(A_n) \subset \mathcal{A}$ an, so dass die Ungleichung

$$\mu(\liminf_{n\to\infty} A_n) < \liminf_{n\to\infty} \mu(A_n)$$

gilt.

Hinweis: Nutze die Darstellungen

$$\liminf_{n \to \infty} A_n = \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} A_k, \quad \limsup_{n \to \infty} A_n = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k.$$