C15 - Calcul matriciel

Soit $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, et $n, p, q, r \in \mathbb{N}^*$,

I. Espaces de matrices

Définition

Une matrice à n lignes et p colones à coefficient dans \mathbb{K} est une famille d'éléments de \mathbb{K} indexé par $[1, n] \times [1, p]$.

Autrement dit un élément de $\mathbb{K}^{[1,n]\times[1,p]}$

$$A = egin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \ a_{2,1} & a_{2,2} & \dots & a_{2,p} \ \dots & \dots & \dots \ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} = (a_{i,j}) = (a_{i,j})_{i,j} = (a_{i,j})_{\substack{1 \leq i \leq n \ 1 \leq j \leq p}} \ = (a_{i,j})_{(i,j) \in [1,n] imes [1,p]}$$

Rappel

En tant que famille c'est simplement un application

$$egin{cases} \left[\left[1,n
ight] imes \left[1,p
ight]
ightarrow \mathbb{K} \ (i,j) \mapsto a_{i,j} \end{cases}$$

Python

 $A[i,j]=a_{i,j}$

j la colonne et i la ligne

A[:,j]: Matrice colonne

A[i,:]: Matrice ligne

Pour une matrice colonne X

On note X[i] l'unique élément de sa $i^{\it eme}$ ligne i.e. X[i] = X[i,1]

Ensemble des matrices

On a n lignes et p colonnes On note $\mathcal{M}_{n,p}(\mathbb{K})$

Exemple

$$\mathcal{M}_{2,3}(\mathbb{C}) = \left\{ egin{pmatrix} a & b & c \ d & e & f \end{pmatrix}; a,b,c,d,e,f \in \mathbb{C}
ight\}$$

Par sa definition sous forme \mathbb{K}^X

Remarque

 $\mathcal{M}_{n,p}(\mathbb{K})$ est naturellement muni d'une structure de groupe abélien.

Propriété

$$(\mathcal{M}_{n,p}(\mathbb{K}),+)$$
 est un groupe abelien

Rappel

L'addition sur \mathbb{K}^X se fait élément par élément et ici cela donne pour $A=(a_{i,j})$ et $B=(b_{i,j})\in \mathcal{M}_{n,p}(\mathbb{K})$

$$A+B=(a_{i,j}+b_{i,j})$$

On ajoute a cette structure de groupe la loi externe de multiplication par un scalaire se fait coef par coef

$$egin{cases} \mathbb{K} imes\mathcal{M}_{n,p}(\mathbb{K}) o\mathcal{M}_{n,p} \ (\lambda,(a_{i,j}))\mapsto\lambda(a_{i,j})=(\lambda a_{i,j}) \end{cases}$$

On a alors les propriétés suivantes qui découlent immédiatement de ces définitions, des opérations de $\mathcal{M}_{n,p}(\mathbb{K})$ et des propriétés

Propriété: 4 propriétés d'espaces vectoriels

Propriété des flemmards :

$$orall A \in \mathcal{M}_{n,p}(\mathbb{K}), 1 \cdot A = A$$

Associativité mixte :

$$orall \lambda, \mu \in \mathbb{K}, orall A \in \mathcal{M}_{n,p}(\mathbb{K}), (\lambda \mu) A = \lambda(\mu A)$$

Distributivité mixte à gauche :

$$orall \lambda \in \mathbb{K}, orall A, B \in \mathcal{M}_{n,p}, \lambda(A+B) = \lambda A + \lambda B$$

Distributivité mixte à droite :

$$orall \lambda, \mu \in \mathbb{K}, orall A \in \mathcal{M}_{n,p}(\mathbb{K}), (\lambda + \mu)A = \lambda A + \mu A$$

On dit que $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} espace vectoriel

Remarque importante

Pour l'instant les lois qu'on a n'utilisent pas la structure de la forme géométrique rectangulaire des matrices : En fait on voit facilement que $(\mathbb{K},+,\times)$ alors un \mathbb{K} -espace vectoriel et que $\mathbb{K}^{[1,n]\times[1,p]}$ hérite naturellement d'une structure d'espace vectoriel.

L'intérêt de cette forme rectangulaire réside dans le produit matriciel.

Définition

Pour $(k,n) \in \llbracket 1,n
rbracket \times \llbracket 1,p
rbracket$, On note

$$E_{k,l} = \left(\delta_{(i,j)(k,l)}
ight)_{\substack{1 \leq i \leq n \ 1 \leq j \leq p}} = (\delta_{i,k}\delta_{j,l})_{i,j}$$

On appelle matrice élémentaires ces matrices.

Remarque

Si il y a ambiguïté sur les dimensions sur les dimensions on les notera : $E_{k,l}^{n,p}$

Rappel: Symbol de Kronetier

$$\delta_{x,y} = 1 \text{ si } x = y$$
 et 0 sinon

Exemple

Pour n=2 et p=3,

$$E_{2,1}=egin{pmatrix} 0 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix}$$

Propriété

Toute matrice $A=(a_{i,j})\in \mathcal{M}_{n,p}(\mathbb{K})$ s'écrit comme combinaison linéaire a coefficient dans \mathbb{K} des matrices élémentaires, de manière unique :

$$A = \sum_{(k,l) \in [1,n] imes [1,p]} a_{k,l} E_{k,l}$$

On dira que la famille $(E_{k,l})_{k,l}$ est une base de $\mathcal{M}_{n,p}(\mathbb{K})$

Demonstration:

L'égalité est "évidente" :

Les deux membres sont bien des éléments de $\mathcal{M}_{n,p}(\mathbb{K})$ et pour $(i,j)\in \llbracket 1,n
rbracket \times \llbracket 1,p
rbracket,$

$$\left(\sum_{(k,l)} a_{k,l_0 E_{k,l}}
ight)[i,j] = \sum_{(k,l)} ig(a_{k,l_0 E_{k,l}}ig)[i,j] = \sum_{(k,l)} a_{k,l} E_{k,l}[i,j]$$

$$\left(\sum_{(k,l)} a_{k,l_0 E_{k,l}}
ight) [i,j] = \sum_{(k,l)} a_{k,l} \delta_{(i,j)(k,l)} = a_{i,j}$$

Unicité:

Soit $b_{k,l}$ pour $(k,l) \in \llbracket 1,n
rbracket \times \llbracket 1,p
rbracket,$ que vérifient

$$B = \sum_{(k,l)} b_{k,l} E_{k,l} =$$

En posant

$$B = (b_{i,j})_{i,j}$$

Définition

 $(E_{k,l})_{\substack{1 \leq k \leq n \ 1 < l < p}}$ est appelée la "base canonique" de $\mathcal{M}_{n,p}(\mathbb{K})$

II. Produit matriciel

Rappel

Si $A\in\mathcal{M}_{n,p}(\mathbb{K})$ et $B\in\mathcal{M}_{p,q}(\mathbb{K})$ On obtiens $AB\in\mathcal{M}_{n,q}(\mathbb{K})$,

Ainsi:

Son coefficient d'indices (i,k) est obtenu en sommant les produits suivants : le produit des premiers coefficients de la formule de A de la i^{eme} ligne de A et de la k^{eme} colonne de B, le produit des seconds coefs de ----- etc..., le prduit des derniers coefs -----.

Définition

Pour $A=(a_{j,k})\in \mathcal{M}_{n,p}(\mathbb{K})$ et $B=(b_{j,k})\in \mathcal{M}_{p,q}(\mathbb{K})$, $AB\in \mathcal{M}_{n,q}(\mathbb{K})$ est définie par :

$$orall (i,k) \in \llbracket 1,n
rbracket imes \llbracket 1,q
rbracket, (AB)[i,k] = \sum_{j=1}^p a_{i,j} b_{j,k}$$

Exemple

$$egin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{pmatrix} egin{pmatrix} 2 & 1 & -1 & 0 \ 1 & 0 & 1 & -1 \ 0 & -1 & 0 & 1 \end{pmatrix} = egin{pmatrix} 4 & -2 & 1 & 1 \ 13 & -2 & 1 & 1 \end{pmatrix}$$

Remarque

Les produits sont prioritaires par rapport a l'addition

Proposition

Le produit matriciel est bilinéaire ie linéaire à gauche :

$$orall A, A' \in \mathcal{M}_{n,p}(\mathbb{K}), orall \lambda \in \mathbb{K}, orall B \in \mathcal{M}_{p,q}(\mathbb{K}), (\lambda A + A')B = \lambda (AB) + A'B$$

et à droite :

$$orall A \in \mathcal{M}_{n,p}(\mathbb{K}), orall \lambda \in \mathbb{K}, orall B, B' \in \mathcal{M}_{p,q}(\mathbb{K}), A(\lambda B + B') = \lambda(AB) + AB'$$

Remarque

En particulier

$$(\lambda A)B = \lambda(AB)$$

$$A(\lambda B) = \lambda(AB)$$

On écrit plus les parenthèses :

$$\lambda AB$$

Démonstration:

Soient
$$A=(a_{i,j}), A'=(a'_{i,j})\in \mathcal{M}_{n,p}(\mathbb{K}),$$
 $B=(b_{i,j}), A*B'=(b'_{i,j})\in \mathcal{M}_{p,q}(\mathbb{K})$ et $\lambda\in\mathbb{K}$

Tous les membres des deux égalités à montrer sont bien des éléments de $\mathcal{M}_{n,q}(\mathbb{K})$

(Le vérifier)

Soient $(i,k) \in \llbracket 1,n
rbracket \times \llbracket 1,q
rbracket$ Alors

$$((\lambda A + A')B)[i,j] = \sum_{j=1}^p (\lambda A + A')[i,j] b_{jk} = \sum_{j=1}^p (\lambda a_{ij} + a'_{ij}) b_{jk}$$

$$=\sum_{j=1}^p (\lambda a_{ij}b_{jk} + a'_{ij}b_{jk}) = \lambda \sum_{j=1}^p a_{ij}b_{jk} + \sum_{j=1}^p a'_{ij}b_{jk} = \lambda (AB)[i,k] + (A'B)[i]$$

Donc:

$$((\lambda A + A')B)[i,j] = (\lambda(AB) + A'B)[i,k]$$

Exo: Faire l'autre égalité

Attention elle ne peut pas se déduire de la première car en général le produit n'est pas commutatif

Lemme : Produit d'un élément de la base canonique avec matrice

Soit $(i_0, j_0) \in \llbracket 1, n \rrbracket \times \llbracket 1, p \rrbracket$ et E_{i_0, j_0} l'élément correspondant de la base canonique de $\mathcal{M}_{n,q}(\mathbb{K})$.

Alors pour tout $B=(b_{ij})\in \mathcal{M}_{p,q}(\mathbb{K})$,

 $E_{i_0,j_0}B$ est l'élément de $\mathcal{M}_{n,q}(\mathbb{K})$

Donc la seule ligne non nulle est celle d'indice i_0 , qui de plus est égal a la ligne d'indice j_0 de B, ce qui s'écrit

$$E_{i_0,j_0}B=(\delta_{i,i_0}b_{j_0k})_{ik}$$

De même pour $C=(c_{li})\in \mathcal{M}_{r,n}(\mathbb{K})$

$$CE_{i_0,j_0} = (\delta_{j,j_0}c_{l,i_0})_{l,j}$$

est la matrice dont la seule colonne non nulle est celle d'indice j_0 qui de plus est égal à la colonne de C d'indice i_0

Démonstration :

Soit
$$(i_0,j_0)\in\llbracket 1,n
rbracket ext{\times} \llbracket 1,p
rbracket$$

On a

$$egin{cases} E_{i_0,j_0} \in \mathcal{M}_{n,p}(\mathbb{K}) \ B \in \mathcal{M}_{p,q}(\mathbb{K}) \end{cases}$$

On voit que

$$E_{i_0,j_0}B=(\delta_{i,i_0}b_{j_0,k})_{i,k}$$

Alors

$$E_{i_0,j_0}B\in \mathcal{M}_{n,q}(\mathbb{K})$$

et pour $(i,k) \in \llbracket 1,n
rbracket imes \llbracket 1,q
rbracket$

$$(E_{i_0,j_0}B)[i,k] = \sum_{j=1}^p E_{i_0,j_0}[i,j]b_{jk} = \sum_{j=1}^p \delta_{i,i_0}\delta_{j,j_0}b_{jk}$$

Corollaire

$$orall (i,j) \in \llbracket 1,n
rbracket imes \llbracket 1,p
rbracket, orall (j',k) \in \llbracket 1,p
rbracket imes \llbracket 1,q
rbracket, E_{i,j}^{n,p} E_{j',k}^{p,q} = \delta_{j,j'} E_{i,k}^{n,q}$$

Démonstration

Soit (i, j), (j', k) comme dans l'énoncé.

$$E_{i,j}^{n,p}E_{j',k}^{p,q}=(\delta_{i'',i}E_{j',k}^{pq}[j,k''])_{i'',k''}=(\delta_{i'',i}\delta_{j,j'}\delta_{k,k''})_{i'',k''}=\delta_{j,j'}(\delta_{i'',i}\delta_{k,k''})_{i'',k''}$$

Donc

$$E_{i,j}^{n,p}E_{j',k}^{p,q}=\delta_{j,j'}E_{i,k}^{n,q}$$

Théorème : Associativité du produit matriciel

$$orall (A,B,C) \in \mathcal{M}_{n,p}(\mathbb{K}) imes \mathcal{M}_{p,q}(\mathbb{K}) imes \mathcal{M}_{q,r}(\mathbb{K}), (AB)C = A(BC)$$

On peut donc noter ABC (sans parenthèses)et on a de plus, pour $(i,l)\in [\![1,n]\!] \times [\![1,r]\!]$,

En notant $A = (a_{ij}), B = (b_{jk})$ et $C = (c_{kl}),$

$$(ABC)[i,l] = \sum_{\substack{a \leq j \leq p \ 1 < k < q}} a_{ij} b_{jk} c_{kl}$$

Démonstration :

Soient:

$$egin{cases} A \in \mathcal{M}_{n,p}(\mathbb{K}) \ B \in \mathcal{M}_{p,q}(\mathbb{K}) \ C \in \mathcal{M}_{q,r}(\mathbb{K}) \end{cases}$$

Alors les produits sont bien définis et de même dimension : Comme $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$ Alors $AB \in \mathcal{M}_{n,q}(\mathbb{K})$. puis $C \in \mathcal{M}_{q,r}(\mathbb{K})$ Alors $(AB)C \in \mathcal{M}_{n,r}(\mathbb{K})$. De même $BC \in \mathcal{M}_{p,r}(\mathbb{K})$ Donc $A(BC) \in \mathcal{M}_{n,r}(\mathbb{K})$.

Soit
$$(i,l) \in \llbracket 1,n
rbracket \times \llbracket 1,r
rbracket$$

Alors

$$((AB)C)[i,l] = \sum_{k=1}^q (AB)[i,k] c_{kl} = \sum_{k=1}^q \left(\sum_{j=1}^p a_{ij} b_{jk}
ight) c_{kl} = \sum_{\substack{a \leq j \leq p \ a < k < q}} a_{ij} b_{jk} c_{kl}$$

Faire l'autre en exo.

Remarque

Cette formule se généralise "Naturellement" à un produit $A_1A_2 \dots A_n$

Exercice

$$A = (1 \quad -1) \left(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 & 0 \\ 1 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix} \right)$$

$$A = \left(\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \right) \begin{pmatrix} 2 & 1 & -1 & 0 \\ 1 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

C'est plus rapide

$$\begin{pmatrix} -3 & -3 & -3 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 & 0 \\ 1 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

II. Matrices carrées

Définition

Une matrice carré d'ordre n est un élément de $\mathcal{M}_{nn}(\mathbb{K})$, qu'on note pour alléger $\mathcal{M}_n(\mathbb{K})$

Exemple

 $0_{\mathcal{M}_n(\mathbb{K})} = 0$ quand il n'y a pas d'ambiguïté

$$H=\left(rac{1}{1+j-1}
ight)_{1\leq i,\,j\leq n}$$

Matrice de Hilbert

$$H = egin{pmatrix} 1 & rac{1}{2} & rac{1}{3} & \dots & rac{1}{n} \ rac{1}{2} & rac{1}{3} & \dots & rac{1}{n+1} \ \dots & \dots & \dots & rac{1}{n+1} \ rac{1}{n} & rac{1}{n+1} & \dots & rac{1}{2n-1} \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 0 & \dots & \dots \\ 1 & 1 & \dots & \dots \\ 1 & 2 & 1 & \dots \end{pmatrix}$$

Définition matrice identité

La matrice identité d'ordre n est :

$$I_n = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = (\delta_{i,j})_{\leq i,j \leq n}$$

Propriété

$$orall A \in \mathcal{M}_{n,p}(\mathbb{K}), I_n A = A I_p = A$$

Démonstration:

 $I_nA\in\mathcal{M}_{n,p}(\mathbb{K})$ et pour $(i,k)\in\llbracket 1,n
rbracket \times \llbracket 1,p
rbracket$

$$(I_nA)[i,k] = \sum_{j=1}^n \delta_{ij} a_{jk} = a_{ik}$$

De même dans l'autre sens.

Remarque

La multiplication de matrices induit une LCI \times sur $\mathcal{M}_n(\mathbb{K})$ (\times pour distinguer de la multiplication externe \cdot)

Théorème

$$(\mathcal{M}_n(\mathbb{K}), +, \times)$$
 est un anneau

Qui est non commutatif pour $n \geq 2$

Démonstration :

On sait déjà que $(\mathcal{M}_n(\mathbb{K}),+)$ est un groupe abélien.

 \times est associative en tant que LCI de $\mathcal{M}_n(\mathbb{K})$ car le produit matriciel est associatif de manière générale I_n est le neutre pour \times et

$$I_n \neq (0)$$

Les distributivités à gauche et à droite son conséquences directes de la bilinéarité du produit matriciel.

(prendre $\lambda = 1$ dans les formules)

Ainsi $(M_n(\mathbb{K}), +, \times)$ est un anneau.

On remarque, pour $n \geq 2$,

$$E_{1,1} = E_{1,1}E_{2,1} = 0 \neq E_{2,1} = E_{2,1}E_{1,1}$$

Donc $\mathcal{M}_n(\mathbb{K})$ n'est pas un anneau commutatif.

Remarque

$$E_{1,1}E_{2,1}=0 ext{ avec } egin{cases} E_{1,1}
eq 0 \ E_{2,1}
eq 0 \end{cases}$$

Remarque

On dit que

$$(\mathcal{M}_n(\mathbb{K}),+,\cdot,\times)$$

est **K** algèbre

ie

$$egin{cases} (\mathcal{M}_n(\mathbb{K}),+,\cdot) \ \mathbb{K} ext{ espace vectoriel} \ (\mathcal{M}_n(\mathbb{K}),+, imes) ext{ anneau} \ orall A, B \in \mathcal{M}_n(\mathbb{K}), orall \lambda \in \mathbb{K}, \lambda(AB) = (\lambda A)B = A(\lambda B) \end{cases}$$

Remarque

$$(\mathcal{M}_n(\mathbb{K}), +, \times)$$
 n'est pas un corp

Pour deux raisons :

- Pas commutatif
- Admet des non nuls inversibles

Remarque

On peut avoir plus:

$$(E_{2,1})^2=0$$
 avec $E_{2,1}
eq 0$

Définition

 $N\in\mathcal{M}_n(\mathbb{K})$ est dite nilpotente

s'il existe $k \in \mathbb{N}^*$ tq $N^k = 0$

Le plus petit k est appelé l'indice de nilpotence r. On a alors :

$$orall k \geq r, N^k = 0$$

Exemple

0 est nilpotente d'ordre 1 (0 la matrice)

Les $E_{i,j}$ avec $i \neq j$ sont nilpotentes d'indice 2

Rappel:

$$orall A \in \mathcal{M}_n(\mathbb{K}), A^0 = I_n$$

Formule du binôme

Pour tout, $A,B\in\mathcal{M}_m(\mathbb{K})$ telles que AB=BA et $n\in\mathbb{N}$,

$$(A+B)^n = \sum_{k=0}^n inom{n}{k} A^k B^{n-k}$$

Formule de Bernoulli

Pour tout, $A,B\in\mathcal{M}_m(\mathbb{K})$ telles que AB=BA et $n\in\mathbb{N}$,

$$A^{n+1} - B^{n+1} = (A-B) \sum_{k=0}^{n} A^k B^{n-k}$$

Cas particuliers

Comme I_n commute avec toute matrice carré d'ordre n,

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \forall n \in \mathbb{N},$$

$$(I_n+A)^n=\sum_{k=0}^minom{m}{k}A^k=I_n+mA+m(m-1)A^2+\cdots+A^m$$

Comme dans tout anneau A, on a le groupe des inversibles (A^X, \times) lci on le note différemment :

Définition

Le groupe des inversibles de $\mathcal{M}_n(\mathbb{K})$ est appelé le groupe linéaire d'ordre n sur \mathbb{K} et noté $GL_n(\mathbb{K})$ (groupe pour \times)

Rappel

Soit $A\in\mathcal{M}_n(\mathbb{K})$,

$$A \in GL_n(\mathbb{K}) \Leftrightarrow \exists A' \in \mathcal{M}_n(\mathbb{K}), AA' = A'A = I_n$$

(A est inversible)

Théorème

Soit $A \in \mathcal{M}_n(\mathbb{K})$,

Alors $A \in GL_n(\mathbb{K})$ ssi

elle est inversible à gauche (ie $\exists A' \in \mathcal{M}_n(\mathbb{K}), A'A = I_n$)

ssi elle est inversible à droite (ie $\exists A'' \in \mathcal{M}_n(\mathbb{K}), AA'' = I_n$)

Dans ce cas les matrices inversibles sont égales.

(ie la matrice inverse a gauche est la matrice inverse a droite)

Exemple

$$egin{pmatrix} 1 & -1 \ 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix} = I_2$$

Donc les deux matrices sont inversibles et inverses l'unes de l'autre

Théorème

Soit,

$$A=egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

Alors

$$A \in GL_2(\mathbb{K}) \Leftrightarrow \det(A) = ad - bc
eq 0$$

et si c'est le cas :

$$A^{-1} = rac{1}{\det A} igg(egin{matrix} d & -b \ -c & a \end{matrix}igg)$$

Démonstration en exo

(Si $\det A \neq 0$, on fait le produit un sens suffit par le théorème précédent si $\det A = 0$, il faut montrer qu'elle n'est pas inversible)

Exercice

Retrouver le résultat de l'exemple précédent

Propriété

Soient $A,B\in GL_n(\mathbb{K})$, Alors $AB\in GL_n(\mathbb{K})$ et $(AB)^{-1}=B^{-1}A^{-1}$

Définition

 $D \in \mathcal{M}_n(\mathbb{K})$ est dite diagonale ssi tout ses coefficients non-diagonaux sont nuls ie

$$orall (i,j) \in \llbracket 1,n
rbracket^2, (i
eq j \Rightarrow D[i,j] = 0)$$

Notation pratique

Si $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$,

$$diag(\lambda_1,\ldots,\lambda_n) = egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_n \end{pmatrix}$$

 $(D[i,i]=\lambda_i ext{ pour tout } i\in \llbracket 1,n
rbracket)$

Exemple

Les matrices $\lambda I_n = diag(\lambda, \dots, \lambda)$

Pour $\lambda \in \mathbb{K}$ s'appellent les matrices d'homothétie et des <u>matrices</u> <u>scalaires</u>.

Propriété

- Toute combinaison linéaire de matrices diagonales est diagonale
- Tout produit de matrices diagonales est diagonal. Et le produit est fait coefficient par coefficient,

$$orall (\lambda_i)_{i=1}^n, (\mu_i)_{i=1}^n \in \mathbb{K}^n, diag(\lambda_i)_{i=1}^n diag(\mu_i)_{i=1}^n = diag(\lambda_i\mu_i)_{i=1}^n$$

• Un matrice diagonale est inversible ssi tous ses coefficients sont diagonaux $\lambda_i, i \in \llbracket 1, b
rbracket$ sont non nuls et alors

$$(diag(\lambda_i)_{i=1}^n)^{-1} = diag(\lambda_i^{-1})_{i=1}^n$$

Notation

 $D_n(\mathbb{K})$ est l'ensemble des matrices diagonales d'ordre n

On a alors:

Propriété

$$D_n \subset_{s.q.} \mathcal{M}_n(\mathbb{K}) ext{ (pour +)}$$

et mieux:

 $(D_n(\mathbb{K}),+,\cdot)$ est un sous anneau de $(D_n,+,\cdot)$ (et mieux $D_n(\mathbb{K})$ est une sous algèbre de $(\mathcal{M}_n(\mathbb{K}),+,\cdot,\times)$.

Définition

 $T \in \mathcal{M}_n(\mathbb{K})$ est triangulaire supérieure ssi tous ses coefficients strictement sous-diagonaux sont nuls ie

$$orall (i,j) \in \llbracket 1,n
rbracket^2, (i>j) \Rightarrow T[i,j] = 0$$

Notation

 $\mathcal{T}_n^{sup}(\mathbb{K})$ est l'ensemble des matrices supérieures $\mathcal{T}_n^{inf}(\mathbb{K})$ est l'ensemble des matrices supérieures

Propriété

- Toute combinaison linéaire de matrices triangulaires supérieurs est triangulaire supérieure.
- Tout produit de matrices triangulaires supérieurs est triangulaire supérieure, et sa diagonale est le produit "coefficients par coefficients" des diagonales de ses facteurs (cela ne s'étend pas au reste)

Remarque

De même l'ensemble des matrices triangulaire supérieur (resp. inférieur) forme un sous anneau de $\mathcal{M}_n(\mathbb{K})$ (en fait une sousalgèbre) non commutatif des que $n \geq 2$

IV. Transposition

1. Cas général

Symétrie par rapport a la diagonale

Définition

Soit $A \in \mathcal{M}_{np}(\mathbb{K})$,

Sa transposé A^T est définie par :

$$egin{cases} A^T \in \mathcal{M}_n(\mathbb{K}) \ orall (i,j) \in \llbracket 1,p
rbracket \times \llbracket 1,n
rbracket, A^T[i,j] = A[j,i] \end{cases}$$

ie:

$$A^T = (a_{ji})_{(i,j) \in [1,p] imes [1,n]}$$

Les variables sont muettes on peut donc les inverser (i et j)

Propriété

$$orall A \in \mathcal{M}_{n,p}(\mathbb{K}), (A^T)^T = A$$

Propriété

L'application de transposition est linéaire

$$t_{n,p}: egin{cases} {\mathcal{M}}_{n,p}(\mathbb{K})
ightarrow {\mathcal{M}}_{p,n}(\mathbb{K}) \ A \mapsto A^T \end{cases}$$

est bijective et "linéaire" ie elle preserve les combinaisons linéaires

$$orall \lambda, \mu \in \mathbb{K}, orall A, B \in \mathcal{M}_{n,p}(\mathbb{K}), (\lambda A + \mu B)^T = \lambda A^T + \mu B^T$$

Démonstration:

La linéarité simple

La bijectivité s'obtient en exhibant l'application réciproque $t_{p,n}$

Remarque

 $t_{n,p}$ est un isomorphisme d'espaces vectoriel.

Propriété

$$orall A \in \mathcal{M}_{n,p}(\mathbb{K}), orall B \in \mathcal{M}_{p,q}(\mathbb{K}), (AB)^T = B^TA^T$$

Démonstration :

Soient A et B comme dans l'énoncé,

On a:

$$AB\in \mathcal{M}_{n,q}(\mathbb{K})$$

Donc
$$(AB)^T \in \mathcal{M}_{q,n}(\mathbb{K})$$

et
$$B^T \in \mathcal{M}_{q,p}(\mathbb{K})$$

et
$$A^T \in \mathcal{M}_{p,n}(\mathbb{K})$$

Donc
$$B^TA^T\in\mathcal{M}_{p,n}(\mathbb{K})$$

Et pour
$$(i,k) \in \llbracket 1,q
rbracket imes \llbracket 1,n
rbracket$$
,

$$(AB)^T[i,k] = (AB)[k,i] = \sum_{i=1}^p a_{kj} b_{ji}$$

$$\sum_{j=1}^p a_{kj} b_{ji} = \sum_{j=1}^p B^T[i,j] A^T[j,k] = (B^T A^T)[i,k]$$

2. Cas des matrices carrés

Proposition

La Transposition

$$t_{n,p}: egin{cases} {\mathcal{M}}_n(\mathbb{K})
ightarrow {\mathcal{M}}_n(\mathbb{K}) \ A \mapsto A^T \end{cases}$$

est un automorphisme du groupe :

$$(M_n,+)$$

Qui préserve la multiplication du groupe externe ("C'est un automorphisme d'espace vectoriel") Mais ce n'est pas un morphisme d'anneau

Démonstration :

On a vu que $t_n = t_{n,n}$ est bijective (ici $t_n^{-1} = t_n$) et qu'elle preserve les CL (elle est "linéaire") donc elle preserve + et la multiplication externe.

$$(orall A, B \in M_n(\mathbb{K}), (A+B)^T = A^T + B^T ext{ et} \ orall A \in \mathcal{M}_n(\mathbb{K}), orall \lambda \in \mathbb{K}, (\lambda A)^T = \lambda A^T)$$

Pour A,B qui ne commutent pas (cas $n\geq 2$) $AB\neq BA$ Donc $(AB)^T\neq (BA)^T=A^TB^T$ Par injectivité de t_n

Proposition

Si
$$A \in GL_n(\mathbb{K})$$

Alors $A^T \in GL_n(\mathbb{K})$ et $(A^T)^{-1} = (A^{-1})^T$

Démonstration :

$$A^T(A^{-1})^T = (A^{-1}A)^T = I_n^T = I_n$$

Ainsi

 A^T est inversible a gauche et a droite et comme c'est une matrice carré elle est inversible et son inverse est son inverse a droite. $(A^{-1})^T$

Définition

On dit que A est symétrique (resp. antisymétrique) ssi

$$A^T = A$$
 (resp. $A^T = -A$)

On note $S_n(\mathbb{K})$ (resp. $A_n(\mathbb{K})$) l'ensemble des matrices d'ordre n symétriques (resp. antisymétriques)

Exemples

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$

est symétrique

$$\begin{pmatrix} 1 & 2 & 3 \\ -2 & 4 & 5 \\ -3 & -5 & 6 \end{pmatrix}$$

n'est ni antisymétrique ni symétrique

Proposition

$$orall A \in \mathcal{A}_n(\mathbb{K}), orall i \in \llbracket 1, n
rbracket, a_{i,i} = 0$$

("Les coefficients diagonaux d'une matrice antisymétrique sont forcément nuls")

Exemple

$$A_3 = egin{pmatrix} 0 & 2 & 3 \ -2 & 0 & 5 \ -3 & -5 & 0 \end{pmatrix}$$

$$A_4 = egin{pmatrix} 1 & 2 & 3 \ 0 & 0 & 0 \ 1 & 2 & 3 \end{pmatrix}$$

n'est ni symétrique ni antisymétrique

Proposition

Une matrice a la fois symétrique et antisymétrique est nulle

Démonstration

Soit $A \in \mathcal{S}_n(\mathbb{K}) \cap \mathcal{A}_n(\mathbb{K})$

Alors

$$A = A^T = -A$$

Donc

$$2A = 0$$

Donc A=0

("produit nul" coefficient par coefficient et non produit matriciel nul)

Proposition

 $\mathcal{S}_n(\mathbb{K})$ et $\mathcal{A}_n(\mathbb{K})$ sont des sous groupes de $(\mathcal{M}_n(\mathbb{K}), +)$ qui sont de plus stable par multiplication externes

(ie ce sont des "sous espaces vectoriels" de $(\mathcal{M}_n(\mathbb{K}),+,\cdot)$)

Démonstration:

Par la caractérisation des sous groupes

- ullet $\mathcal{S}_n(\mathbb{K})\subset\mathcal{M}_n(\mathbb{K})$, par def de $\mathcal{S}_n(\mathbb{K})$
- $ullet \ 0_{\mathcal{M}_n(\mathbb{K})} \in \mathcal{S}_n(\mathbb{K}) \ (0^T=0)$
- Soient $A, B \in \mathcal{S}_n(\mathbb{K})$ On a

$$(A - B)^T = A^T - B^T = A - B$$

Donc $A-B\in\mathcal{S}_n(\mathbb{K})$

De plus si $A \in \mathcal{S}_n(\mathbb{K})$

Faire le cas de $\mathcal{A}_n(\mathbb{K})$ en exercice

Théorème

Toute matrice carré $M \in \mathcal{M}_n(\mathbb{K})$ s'écrit de manière unique comme somme d'une matrice symétrique S et d'une antisymétrique A

$$S = rac{1}{2}(M+M^T) ext{ et } A = rac{1}{2}(M-M^T)$$

Démonstration :

Soit $M\in\mathcal{M}_n(\mathbb{K})$,

Analyse:

Soient $S \in \mathcal{S}_n(\mathbb{K})$ et $A \in \mathcal{A}_n(\mathbb{K})$ telle que M = S + AOn a alors, par linéarité de la transposition :

$$M^T = S^T + A^T = S - A$$

Donc:

$$egin{cases} M = S + A \ M^T = S - A \end{cases}$$

Donc:

$$egin{cases} M+M^T=2S \ M-M^T=2A \end{cases}$$

Donc:

$$egin{cases} S = rac{1}{2}(M+M^T) \ A = rac{1}{2}(M-M^T) \end{cases}$$

Synthèse

On pose:

$$egin{cases} S = rac{1}{2}(M+M^T) \ A = rac{1}{2}(M-M^T) \end{cases}$$

On a alors

1.
$$S + A = \frac{1}{2}(M + M^T + M - M^T) = M$$

2. $S^T = \frac{1}{2}(M + (M^T)^T) = \frac{1}{2}(M^T + M^T) = S$
3. $A^T = \frac{1}{2}(M^T - (M^T)^T) = \frac{1}{2}(M^T - M) = -A$

Donc S et A conviennent

Remarque

Cette Démonstration est "méta-isomorphe" à celle du fait que toute fonction définie sur \mathbb{R} s'écrie de manière unique comme une fonction paire et une fonction impaire.

V. Calcul pratique de l'inverse

On décrit l'algorithme du pivot :

On applique cet algorithme a la matrice augmentée :

$$[A|I_n]$$

À la fin de la décente, on obtient [A'|B]

A est inversible ssi A' est triangulaire (sup) à coefficients diagonaux tous non nuls. (équivaut a dire qu'il y a n pivots)

Dans ce cas la remonté amène a la matrice augmenté :

$$[I_n|A^{-1}]$$

Exemple:

Montrer que

$$A = egin{pmatrix} 1 & 3 & 5 \ 0 & -1 & 4 \ 1 & 1 & 0 \end{pmatrix}$$

est inversible et on calcule A^{-1}

On applique l'algorithme du pivot a la matrice augmenté $\left[A|I_{3}
ight]$

$$\begin{bmatrix} 1 & 3 & 5 & 1 & 0 & 0 \\ 0 & -1 & 4 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$