Випадкові події. Основні теореми теорії ймовірностей

Теорія ймовірностей, ймовірнісні процеси і математична статистика

Інші означення ймовірності

Означення

Відносною частотою події A називається відношення числа m^* випробувань, в яких дана подія відбулася, до числа n^* всіх проведених випробувань, тобто

$$W(A) = \frac{m^*}{n^*}.$$

Означення (Статистичне означення ймовірності)

Статистичною ймовірністю події A називається число, навколо якого групуються відносні частоти цієї події

$$P(A) = \lim_{n \to \infty} W_n(A).$$

Інші означення ймовірності

З класичного означення ймовірності випливають наступні властивості:

- 1° . Якщо подія $A=\Omega$ достовірна, то $P(\Omega)=1$ (m=n).
- 2^{o} . Якщо подія $A=\emptyset$ неможлива, то $P(\emptyset)=0$ (m=0).
- 3^o . Якщо подія A випадкова, то її ймовірність задовольняє нерівності 0 < P(A) < 1(0 < m < n).
- 4° . Якщо подія A є наслідком події B ($B \subset A$), то $P(B) \leq P(A)$.

Теореми додавання ймовірностей для несумісних подій

Теорема

Якщо випадкові події A і B несумісні, то ймовірність появи однієї з них дорівнює сумі ймовірностей цих подій:

$$P(A+B) = P(A) + P(B).$$

Наслідок

Якщо випадкові події $A_1,\ A_2,\ \dots,\ A_n$ попарно несумісні, то ймовірність появи хоча б однієї з них дорівнює сумі ймовірностей цих подій

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

або
$$P\left(\sum_{k=1}^n A_k\right) = \sum_{k=1}^n P(A_k).$$

Теореми додавання ймовірностей для несумісних подій

Зауваження

У випадку нескінченної кількості несумісних подій $A_1, A_2, \ldots, A_n, \ldots$ маємо

$$P\left(\sum_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k)$$

Теорема

Сума ймовірностей попарно несумісних подій, що утворюють повну групу, дорівнює одиниці:

$$P(A_1) + P(A_2) + \ldots + P(A_n) = 1$$
 abo $\sum_{k=1}^{n} P(A_k) = 1$.

Теореми додавання ймовірностей для несумісних подій

Наслідок

Сума ймовірностей протилежних подій A і \overline{A} дорівнює одиниці:

$$P(A) + P(\overline{A}) = 1. \tag{1.1}$$

Зауваження

Якщо ймовірність появи події A позначити через p, а ймовірність появи протилежної події \overline{A} — через q, то з формули (1.1) випливає рівність:

$$p + q = 1$$
.

Звідси знаходимо ймовірність p через ймовірність q протилежної події:

$$p = 1 - q.$$

Означення

Подія A називається **незалежною** від події B, якщо ймовірність появи події A не залежить від появи чи непояви події B.

Означення

Події A і B називаються **залежними**, якщо ймовірність появи однієї з них залежить від появи або непояви іншої.

Означення

Умовною ймовірністю P(B|A) або $P_A(B)$ називається ймовірність події B за умови, що подія A відбулася.

Зауваження

Якщо події A і B незалежні, то умовна ймовірність дорівнює безумовній ймовірності, тобто

$$P_A(B) = P(B) \quad (P(A) > 0), \qquad P_B(A) = P(A) \quad (P(B) > 0).$$

Залежні та незалежні випадкові події. Умовна ймовірність. Теорема множення ймовірностей

Теорема

Ймовірність сумісної появи двох випадкових подій A і B дорівнює добутку ймовірності однієї з них на умовну ймовірність другої за умови, що перша подія відбулася

$$P(AB) = P(A)P_A(B) = P(B)P_B(A).$$

Наслідок

Умовна ймовірність появи події B за умови, що подія A відбулася, визначається рівністю

$$P_A(B) = \frac{P(AB)}{P(A)} \qquad (P(A) \neq 0).$$

Залежні та незалежні випадкові події. Умовна ймовірність. Теорема множення ймовірностей

Теорема

Ймовірність добутку незалежних подій A і B дорівнює добутку їх ймовірностей

$$P(AB) = P(A)P(B).$$

Теорема

Якщо $A_1,\ A_2,\ \ldots,\ A_n$ — довільні випадкові події, то

$$P(A_1A_2...A_n) = P(A_1)P_{A_1}(A_2)P_{A_1A_2}(A_3)...P_{A_1A_2...A_{n-1}}(A_n).$$

Залежні та незалежні випадкові події. Умовна ймовірність. Теорема множення ймовірностей

Означення

Події $A_1,\ A_2,\ \dots,\ A_n$ називаються **незалежними у сукупності**, якщо при будь-яких $1 \le i_1 < i_2 < \dots < i_r \le n$ $(2 \le r \le n)$

$$P(A_{i_1}A_{i_2}\dots A_{i_r}) = P(A_{i_1})P(A_{i_2})\dots P(A_{i_r}).$$
 (1.2)

Якщо рівність (1.2) виконується лише при r=2, то події називаються **попарно незалежними**. Зокрема, для подій, незалежних у сукупності, має місце наступний наслідок.

Наслідок

Ймовірність сумісної появи подій A_1, A_2, \ldots, A_n , незалежних у сукупності, дорівнює добутку ймовірностей цих подій:

$$P(A_1A_2...A_n) = P(A_1)P(A_2)...P(A_n).$$

Ймовірність появи хоча б однієї випадкової події

Теорема

Ймовірність появи хоча б однієї з подій $A_1,\ A_2,\ \dots,\ A_n$, незалежних у сукупності, дорівнює

$$P(A) = 1 - P(\overline{A_1})P(\overline{A_2})\dots P(\overline{A_n}),$$

де $P(\overline{A_1}),\ P(\overline{A_2}),\ \dots,\ P(\overline{A_n})$ — ймовірності протилежних подій.

Теорема додавання сумісних подій

Теорема

Якщо випадкові події A і B сумісні, то

$$P(A+B) = P(A) + P(B) - P(AB).$$

Повна ймовірність

Теорема

Ймовірність події A, яка може настати за умови появи однієї з незалежних подій H_1, H_2, \ldots, H_n , що складають повну групу, дорівнює:

$$P(A) = \sum_{k=1}^{n} P(H_k) P_{H_k}(A).$$
 (1.3)

Зауваження

Події H_1,H_2,\dots,H_n називають **гіпотезами**, а ймовірності $P(H_1),P(H_2),\dots,P(H_n)$ — **ймовірностями гіпотез**. Очевидно, що $\sum\limits_{k=1}^n P(H_k)=1.$

Зауваження

Формула (1.3) справедлива і для зліченної групи попарно несумісних гіпотез $H_k,\ k=1,2,\ldots,n,\ldots$

Формули Байєса

Нехай проведено випробування, в результаті якого подія A настала. Як оцінити ймовірності гіпотез $H_k,\ k=\overline{1,n}$, тобто $P_A(H_k)\ (k=\overline{1,n})$?

Теорема

Нехай $H_1,\ H_2,\ \dots,\ H_n$ — події, що складають повну групу. Тоді для будь-якої випадкової події A, що може з'явитися лише за умови появи однієї з подій $H_1,\ H_2,\ \dots,\ H_n$, і такої, що $P(A)\neq 0$, виконуються рівності:

$$P_A(H_k) = \frac{P(H_k)P_{H_k}(A)}{\sum_{i=1}^{n} P(H_i)P_{H_i}(A)}, \qquad k = \overline{1, n}.$$
 (1.4)

Формули (1.4) називаються формулами Байєса для ймовірностей гіпотез.