

对话・交流・合作



### 基于软件无线电的 短程无线攻击分析与防护对策

安天实验室微电子与嵌入式研发中心 赵世平 (TBsoft)

## 提纲

- 短程无线通信
- 软件无线电简介
- 基于软件无线电增强对短程无线的攻击
- 软件无线电增强短程无线攻击的防范
- 4束语



# 短程无线通信



## 短程无线通信

· 已成为除3G、Wi-Fi之外的重要工业和物联网通信手段



- 遥控汽车钥匙
- 315MHz
- 433MHz



# ISM频段

- ISM频段(工业、科学和医用频段)
  - 433MHz
  - 915MHz
  - 2.4GHz
  - 5.8GHz
- ITU-R(国际通信联盟无线电通信局)定义,免费使用。



### 短程无线通信特点

- 技术门槛和成本低
  - 315MHz(非ITU-R标准但国内应用广泛)和433MHz短程无线数字通信射频设计难度比收音机 还低
    - 单管振荡器发射(国内上世纪80年代技术水平)
    - 单管超再生接收(国内上世纪70年代技术水平)
    - ASK(幅移键控)调制(类似电报)
  - 2.4GHz通信模块5.00元一个



### 短程无线通信特点

- 通信数据量小
  - 几字节、几十字节到几百字节
- 通信时间短(1s以下)
  - 尽管某些短程无线通信速率很低,但数据量小。
- 通信频点多、调制方式各异
  - ASK、FSK、GFSK......



# 软件无线电简介



# 矿石收音机



最古老的收音机



上世纪50—60年代中国最流行的DIY



# 矿石收音机的原理





### 现代超外差接收机的原理





### 软件无线电的出现

#### 现代超外差接收机存在的问题

- 射频、中频和解调部分仍然依靠模拟电路
- 选频和抗干扰仍然依靠模拟滤波器——LC回路、陶瓷滤 波器、石英晶体滤波器等
- 性能难于进一步提升
- 紹外差接收机,白身存在的问题——组合频率干扰等

#### 如何彻底解决这些问题?

• 软件无线电——将射频信号数字化后处理



### 理想的软件无线电接收机实现



超高速A/D对于300MHz频段以上的 射频信号不容易实现,目前不现实。



## 目前实际的软件无线电接收机实现





### 软件无线电核心技术

#### 硬件技术

- •高速A / D
- •DSP处理器
- •可编程逻辑器件(FPGA等)

#### 软件技术

- •数字滤波(FFT、 小波等)
- •数字变频
- •数字调制与解调



# 基于软件无线电增强对短程无线的攻击



# 针对无线通信的攻击存在的难点





# 针对短程无线通信的攻击存在的难点





### 使用软件无线电克服这些难点





## 使用软件无线电处理ISM频段射频和中







### 再配合数字化基带信号处理

可编程逻辑器件

基带信号边沿检测 和二次采样

→ 缓冲 →

协议检测、传输速率 检测和数据报解码

可编程逻辑器件和DSP



# "不从轮子做起"的方法

- GNU Radio
  - <a href="http://gnuradio.org">http://gnuradio.org</a>
  - 硬件
  - 软件



## "从轮子做起"的方法(433MHz ISM)



# 软件无线电增强短程无线攻击的防范



### 软件无线电增强短程无线攻击的防范

猝发通信、跳频通信等传统手段对软件无线电无效

单一设备监听混杂短程无线通信信号成为可能

智能天线和空分多址(SDMA)手段抗监听仍然有效

单向通信、明码通信等不应再应用于短程无线通信



# 结束语



### 新技术使得短程无线通信安全性面临挑战

软件无线电应用的推广和廉价化

不要认为"一瞬间"的短程无线通信是安全的

明码通信和无法会话验证的单向通信是安全大敌

通信信道安全中的"桶板效应",99%信道安全,1%信道不安全,安全性就由1%决定。





# 谢谢大家! tbsoft@antiy.com