BRAC UNIVERSITY Department of Computer Science and Engineering

Examination: Mock Final Semester: Fall24
Duration: 90 minutes Full Marks: 40

CSE 340: Computer Architecture

Name:		ID: Section:					
1	a.	a. Convert -111011.11011 x 2^{12} in 26-bit IEEE-754 format where,					
		i. Size of the fraction field is 13 bits.					
		ii. Size of the fraction field is 17 bits.					
		Show the equivalent Hex representation of your conversions.					
		iii. Suppose you plan to use the converted number in a subsequent calculat					
		where precision is crucial. Given a choice between the two IEEE formats (w					
		13-bit and 17-bit fraction fields), which format would provide a more accurate					
		conversion for your calculation? Justify.					
CO1							
	b.	i. Multiply 0.082 and 0.198 using IEEE-754 single precision floating point					
		representation.					
		ii. Show the status of the result (overflow or underflow or none).					
		Consider 7 decimal digits when you are converting from decimal to binary.					
	c.	Subtract -6.55 from 15.21 using IEEE-754 single-precision floating-point					
		representation. Consider 5 decimal digits when you are converting from decimal to hinery					
		Consider 5 decimal digits when you are converting from decimal to binary.					
2	a.	add x_{21}, x_{22}, x_{23}					
		slli x_{21} , x_{21} , x_{21} addi x_{21} , x_{21} , 4804_{Hex}					
		addi $x_{21}, x_{21}, 4004_{Hex}$ addi $x_{22}, x_{21}, 15$					
		Answer the following questions based on the above-mentioned code snippet: i. Identify the error(s) present in the provided code snippet by specifying the					
CO2		instruction. ii. Write the necessary code(s) to rectify the instructions(s)					
CO2	1.	Civan a machina anda					
	b.	Given a machine code 0x00CB1A93					
		i. Find the RISC-V assembly code of the given machine code.					
		ii. Draw the datapath for the instruction you found in the previous question. You must mention the necessary control signals and proper labeling for all the components.					

Format	Instruction	Opcode	Funct3	Funct7/Funct
	ADD	0110011	001	0000000
	SUB	0110011	110	0000001
R	AND	0110011	010	0000001
	OR	0110011	011	0000100
	SLL	0110011	101	0000100
	LD	0000011	000	N/A
	LW	0000011	010	N/A
	LH	0000011	011	N/A
	LB	0000011	001	N/A
I	ADDI	0010011	000	N/A
	SLLI	0010011	001	000000
	SRLI	0010011	010	000000
	ORI	0010011	011	N/A
	SD	0100011	000	N/A
	SW	0100011	001	N/A
S	SH	0100011	010	N/A
	SB	0100011	011	N/A

Explain why the Immediate Generation Unit requires the entire instruction for 3 processing, rather than just the 12 bits of the immediate field?

Consider the code sequence given below.

ld
$$x_{10}$$
, 32(x_{11})
add x_5 , x_{10} , x_7
addi x_5 , x_5 , 3
ld x_{13} , 48(x_5)
sd x_{13} , 32(x_5)

CO3

3

i. Considering a single cycle datapath, find out how many clock cycles are 1+1 required for the above code sequence and calculate the average CPI? ii. How many data hazards are there in the given code sequence? iii. Apply only stall to overcome the data hazards.

1

2.5

2.5

2

iii. Apply only **stall + forwarding** to overcome the data hazards.

iv. Calculate the total clock cycles and average CPI required after applying the method mention in the previous question(iii).