Le génie logiciel

Qu'est-ce que c'est le génie logiciel et sa place dans les sujets d'informatique

Le contenu est basé aux transparents du 7^{ème} édition de «Software Engineering» de Ian Sommerville

Questions de l'ingénierie de logiciel

- Qu'est ce que c'est logiciel?
- Qu'est ce que c'est génie logiciel?
- Quelle est la différence entre génie logiciel et informatique?
- Quelle est la différence entre génie logiciel et génie des systèmes?
- Qu'est ce que c'est processus unifié de logiciel?
- Qu'est ce que c'est modèle du processus de logiciel

Questions de l'ingénierie de logiciel

- Combien ça coûte?
- Quelles sont les méthodes du génie logiciel?
- Qu'est ce que c'est CASE (Computer-Aided Software Engineering)
- Quelles sont les propriétés du bon logiciel?

Logiciel

- Programmes et la documentation associée cahier de charges, modèles, manuels
- Types
 - Générique
 - Individuel
 - Hérité

Génie logiciel

- Par rapport d'informatique
- Par rapport du génie des systèmes

Processus du logiciel

- Un ensemble d'activités dont l'objectif est le développement et l'évolution du logiciel.
- Activités :
 - Spécification
 - Développement
 - Validation
 - Evolution

Modèle du processus

- C'est quoi un modèle?
- Points de vue:
 - Flux d'activités
 - Flux des données
 - Rôles/activités
- Modèles génériques
 - Cascade (Waterfall)
 - Itérative
 - Composants

Les coûts

Activités

- Spécification du logiciel
- Développement
- Validation
- Evolution

Production

Méthodes de génie logiciel

- Composants des méthodes
 - Modèles graphiques (objets, flux des données, machine d'états et c.)
 - Règles contraintes
 - Recommandations bonne pratique
 - Direction et gestion la séquence des activités

CASE (Computer-Aided Software Engineering)

Upper-CASE

 Support les activités de conception et de definition des besoins

Lower-CASE

 Support les activités tards – programmer, déboguer, tester

Les propriétés du bon logiciel

- Avoir la fonctionnalité désirée.
- Facilement maintenu
- Sûr
- Efficace
- Accepté, compris par les usagers

Les défis devant le GL

- Hétérogénéité des plateformes
- Délivrance (respecter les termes et la qualité à la fois)
- Confiance des usagers
- Responsabilité professionnelles et éthiques

Les défis devant le GL

Systèmes critiques

- Système critique par rapport de sécurité
 - Perdre la vie ou la santé. Ex. Usine chimique
- Système critique par rapport de mission
 - Une activité essentielle est échouée Navire d'espace
- Système critique par rapport de commerce
 - Grand pertes d'argent système de comptabilité d'une banque

Fiabilité

- Panne du matériel
- Echec du logiciel
- Erreur opérationnel le plus souvent

Fiabilité

- Composants de la fiabilité (Dependability)
 - Disponibilité
 - Fiabilité (Reliability)
 - Sécurité
 - (Safety)De fonctionner sans échec catastrophique
 - (Security)De se protéger des attaques externes
 - Habilité de restauration après un échec
 - Habilité d'être maintenu
 - Habilité de survivre
 - Tolérance d'erreurs

Exemple - Insuline pompe

Organisation

Exemple - Insuline pompe

Flux de données

Exercice

 Quelles sont les exigences de fiabilités et les coûts de fiabilités pour l'exemple précèdent?

Exigences de fiabilité

- Le système doit être capable de livrer l'insuline quand l'organisme a besoin et en quantité qui assez de neutraliser le glucose.
- L'exigence principale de sûreté et de ne pas livrer une surdose, qui peut être mortelle.

Les coûts de fiabilité

