Singular Moduli

Alex J. Best

WIMP 2014

29/11/2014

In this talk:

- Introduction
- 2 Background
- The Hilbert class field
- 4 Singular moduli
- Modern work
- 6 Conclusion

$$e^{\pi\sqrt{43}}\approx 884736743.999777466$$

$$e^{\pi\sqrt{43}} \approx 884736743.999777466$$

$$e^{\pi\sqrt{67}} \approx 147197952743.999998662454$$

$$e^{\pi\sqrt{43}} \approx 884736743.999777466$$

$$e^{\pi\sqrt{67}} \approx 147197952743.999998662454$$

$$e^{\pi\sqrt{163}} \approx 262537412640768743.999999999999925007$$

$$\begin{split} e^{\pi\sqrt{43}} &\approx 884736743.999777466 \\ &\approx 12^3 (9^2-1)^3 + 744 - 10^{-4} \cdot 2.225 \dots \\ e^{\pi\sqrt{67}} &\approx 147197952743.999998662454 \\ &\approx 12^3 (21^2-1)^3 + 744 - 10^{-6} \cdot 1.337 \dots \\ e^{\pi\sqrt{163}} &\approx 262537412640768743.9999999999999955007 \\ &\approx 12^3 (231^2-1)^3 + 744 - 10^{-13} \cdot 7.499 \dots \end{split}$$

Some definitions

Definition

A finite Galois extension L|K is **abelian** extension if Gal(L|K) is abelian.

Some definitions

Definition

A finite Galois extension L|K is **abelian** extension if Gal(L|K) is abelian.

Some definitions

Definition

A finite Galois extension L|K is **abelian** extension if Gal(L|K) is abelian.

Examples:

Non-examples:

Given a number field K we let

$$I(\mathbf{Z}_K) = \{\}$$

be the set of fractional ideals of Z_K .

The ideal class group

Given a number field K we let

$$I(\mathbf{Z}_K) = \{\}$$

be the set of fractional ideals of Z_K . This is an (abelian) group!

Given a number field K we let

$$I(\mathbf{Z}_K) = \{\}$$

be the set of fractional ideals of Z_K . This is an (abelian) group! The set

$$P(\mathbf{Z}_K) = \{a\mathbf{Z}_K : a \in K\}$$

of **principal** ideals is a subgroup.

The ideal class group

Given a number field K we let

$$I(\mathbf{Z}_K) = \{\}$$

be the set of **fractional** ideals of $\mathbf{Z}_{\mathcal{K}}$. This is an (abelian) group! The set

$$P(\mathbf{Z}_K) = \{a\mathbf{Z}_K : a \in K\}$$

of principal ideals is a subgroup.

Definition

The **ideal class group** of a number field K is the quotient

$$cl(\mathbf{Z}_K) = I(\mathbf{Z}_K)/P(\mathbf{Z}_K).$$

The ideal class group

Given a number field K we let

$$I(\mathbf{Z}_K) = \{\}$$

The Hilbert class field

be the set of fractional ideals of Z_K . This is an (abelian) group! The set

$$P(\mathbf{Z}_K) = \{a\mathbf{Z}_K : a \in K\}$$

of **principal** ideals is a subgroup.

Definition

The ideal class group of a number field K is the quotient

$$cl(\mathbf{Z}_K) = I(\mathbf{Z}_K)/P(\mathbf{Z}_K).$$

 $cl(\mathbf{Z}_K)$ measures how far \mathbf{Z}_K is from having unique factorisation.

Let K be an imaginary quadratic number field, i.e. $K = \mathbb{Q}(\sqrt{-n})$ for some $n \in \mathbb{Z}_{>1}$.

Let K be an **imaginary quadratic** number field, i.e. $K = \mathbb{Q}(\sqrt{-n})$ for some $n \in \mathbb{Z}_{\geq 1}$.

Definition

Introduction

An extension L|K is **unramified** if for all prime ideals \mathfrak{p} of \mathbf{Z}_K we have a factorisation

$$\mathfrak{p}\,\mathsf{Z}_L=\mathfrak{P}_1\,\mathfrak{P}_2\cdots\mathfrak{P}_n$$

into **distinct** prime ideals \mathfrak{P}_i of \mathbf{Z}_L .

Let K be an imaginary quadratic number field, i.e. $K = \mathbb{Q}(\sqrt{-n})$ for some $n \in \mathbb{Z}_{>1}$.

Definition

Introduction

An extension L|K is unramified if for all prime ideals \mathfrak{p} of \mathbf{Z}_K we have a factorisation

$$\mathfrak{p}\,\mathsf{Z}_L=\mathfrak{P}_1\,\mathfrak{P}_2\cdots\mathfrak{P}_n$$

into **distinct** prime ideals \mathfrak{P}_i of \mathbf{Z}_I .

Definition

The **Hilbert class field** of K is the maximal unramified abelian extension of K.

Definition

The **Hilbert class field** of K is the maximal unramified abelian extension of K.

K	Hilbert class field <i>L</i>	Gal(L K)
$Q(\sqrt{-1})$	$Q(\sqrt{-1})$	1

Definition

Introduction

The **Hilbert class field** of K is the maximal unramified abelian extension of K.

K	Hilbert class field <i>L</i>	Gal(L K)
$Q(\sqrt{-1})$	$Q(\sqrt{-1})$	1
$\mathbf{Q}(\sqrt{-31})$	$Q(\sqrt{-31})[x]/(x^3+x-1)$	<i>C</i> ₃

Definition

The **Hilbert class field** of K is the maximal unramified abelian extension of K.

K	Hilbert class field <i>L</i>	Gal(L K)
$Q(\sqrt{-1})$	$Q(\sqrt{-1})$	1
$Q(\sqrt{-31})$	$Q(\sqrt{-31})[x]/(x^3+x-1)$	<i>C</i> ₃
	$\mathbf{Q}(\sqrt{-159})[x]/(x^{10}-3x^9+6x^8)$	
$\mathbf{Q}(\sqrt{-159})$	$-6x^7 + 3x^6 + 3x^5 - 9x^4$	C_{10}
	$+13x^3-12x^2+6x-1)$	

Definition

Introduction

The **Hilbert class field** of K is the maximal unramified abelian extension of K.

K	Hilbert class field <i>L</i>	Gal(L K)
$Q(\sqrt{-1})$	$Q(\sqrt{-1})$	1
$Q(\sqrt{-31})$	$Q(\sqrt{-31})[x]/(x^3+x-1)$	<i>C</i> ₃
	$\mathbf{Q}(\sqrt{-159})[x]/(x^{10}-3x^9+6x^8)$	
$Q(\sqrt{-159})$	$-6x^7 + 3x^6 + 3x^5 - 9x^4$	C ₁₀
	$+13x^3-12x^2+6x-1$	
$Q(\sqrt{-163})$	$\mathbf{Q}(\sqrt{-163})$	1

The Artin reciprocity theorem for the Hilbert class field

Theorem

Introduction

If K is a number field and L is its Hilbert class field then

$$\operatorname{cl}(\mathbf{Z}_K)\cong\operatorname{Gal}(L|K).$$

Lattices

Definition

A lattice is an additive subgroup of C that is isomorphic to Z^2 .

Homothety

Definition

Two lattices L and L' are called **homothetic** if $L = \lambda L'$ for some $\lambda \in \mathbf{C}^*$.

Homothety

Definition

Two lattices L and L' are called **homothetic** if $L = \lambda L'$ for some $\lambda \in \mathbf{C}^*$.

Homothety

Definition

Two lattices L and L' are called **homothetic** if $L = \lambda L'$ for some $\lambda \in \mathbf{C}^*$.

Every lattice is homothetic to one of the form $\mathbf{Z} + \mathbf{Z} \tau$ for some $\tau \in \mathbf{C}$ with positive imaginary part.

The *j*-invariant

Introduction

The *j*-invariant is a function

$$j : \{ \text{lattices} \} \rightarrow \mathbf{C}$$

such that $j(L) = j(L') \iff L$ and L' are homothetic.

Introduction

The *j*-invariant is a function

$$j\colon \{\mathsf{lattices}\} o \mathsf{C}$$

such that $j(L) = j(L') \iff L$ and L' are homothetic. We can define j on the upper half plane by $j(\tau) = j(\mathbf{Z} + \mathbf{Z} \tau)$. Letting $q = e^{2\pi i \tau}$ we have

$$j(\tau) = q^{-1} + 744 + 196884q + 21493760q^{2} + 864299970q^{3} + 20245856256q^{4} + \cdots$$

The j-invariant

Singular moduli

Definition

The values $j(\tau)$ for τ imaginary quadratic are called **singular** moduli.

Singular moduli

Introduction

Definition

The values $j(\tau)$ for τ imaginary quadratic are called **singular** moduli.

$$j(i) = 1728,$$

$$j\left(\frac{1+\sqrt{-3}}{2}\right) = 0,$$

$$j\left(\frac{1+\sqrt{-15}}{2}\right) = \frac{-191025 - 85995\sqrt{5}}{2}.$$

Modern work

(A corollary of) The first main theorem of class field theory

$\mathsf{Theorem}$

If K is an imaginary quadratic field, $\mathbf{Z}_K = \mathbf{Z} + \mathbf{Z} \tau$ then:

 $\mathbf{0}$ $j(\tau)$ is an algebraic integer.

Theorem

Introduction

If K is an imaginary quadratic field, $\mathbf{Z}_K = \mathbf{Z} + \mathbf{Z} \tau$ then:

- \bullet $j(\tau)$ is an algebraic integer.
- 2 The Hilbert class field of K is $K(j(\tau))$.

Modern work

(A corollary of) The first main theorem of class field theory

$\mathsf{Theorem}$

Introduction

If K is an imaginary quadratic field, $\mathbf{Z}_K = \mathbf{Z} + \mathbf{Z} \tau$ then:

- \bullet $j(\tau)$ is an algebraic integer.
- 2 The Hilbert class field of K is $K(j(\tau))$.

A (partial) converse (Schneider)

If τ is an algebraic number that is not imaginary quadratic then $j(\tau)$ is transcendental.

$$K = \mathbf{Q}(\sqrt{-d})$$
 with $\operatorname{cl}(\mathbf{Z}_K) = 1, \ \mathbf{Z}_K = \mathbf{Z} + \mathbf{Z} \tau$.

Explaining Hermite's observations

$$\mathcal{K} = \mathbf{Q}(\sqrt{-d}) \text{ with } \operatorname{cl}(\mathbf{Z}_{\mathcal{K}}) = 1, \ \mathbf{Z}_{\mathcal{K}} = \mathbf{Z} + \mathbf{Z} \, \tau.$$

The Hilbert class field of K is K.

Explaining Hermite's observations

$$\mathcal{K} = \mathbf{Q}(\sqrt{-d}) \text{ with } \mathsf{cl}(\mathbf{Z}_{\mathcal{K}}) = 1, \ \mathbf{Z}_{\mathcal{K}} = \mathbf{Z} + \mathbf{Z}\, au.$$

The Hilbert class field of K is K.

$$j(au) \in \mathbf{Z}_K$$
.

$$\mathcal{K} = \mathbf{Q}(\sqrt{-d}) ext{ with } \operatorname{cl}(\mathbf{Z}_{\mathcal{K}}) = 1, \ \mathbf{Z}_{\mathcal{K}} = \mathbf{Z} + \mathbf{Z}\, au.$$

The Hilbert class field of K is K.

$$j(au) \in \mathbf{Z}_{K}$$
. \Downarrow

$$e^{-2\pi i \tau} + 744 + 196884e^{2\pi i \tau} + \ldots \in \mathbf{Z}_{\kappa} \cap \mathbf{R}$$

$$\mathcal{K} = \mathbf{Q}(\sqrt{-d}) \text{ with } \operatorname{cl}(\mathbf{Z}_{\mathcal{K}}) = 1, \ \mathbf{Z}_{\mathcal{K}} = \mathbf{Z} + \mathbf{Z}\, au.$$

The Hilbert class field of K is K.

$$j(au) \in \mathbf{Z}_{K}$$
. \Downarrow

$$e^{-2\pi i \tau} + 744 + 196884 e^{2\pi i \tau} + \ldots \in \mathbf{Z}_{\kappa} \cap \mathbf{R} = \mathbf{Z}.$$

Explaining Hermite's observations

So if
$$d = 163$$
 we have $\tau = (1 + \sqrt{-163})/2$

Introduction

Explaining Hermite's observations

So if
$$d=163$$
 we have $au=(1+\sqrt{-163})/2$ and so
$$j(au)=e^{-\pi i(1+i\sqrt{163})}+744+196884e^{\pi i(1+i\sqrt{163})}+\dots$$

$$=-e^{\pi\sqrt{163}}+744-196884e^{-\pi\sqrt{163}}+\dots$$

is an integer.

Introduction

Explaining Hermite's observations

So if d=163 we have $au=(1+\sqrt{-163})/2$ and so

$$j(\tau) = e^{-\pi i(1+i\sqrt{163})} + 744 + 196884e^{\pi i(1+i\sqrt{163})} + \dots$$
$$= -e^{\pi\sqrt{163}} + 744 - 196884e^{-\pi\sqrt{163}} + \dots$$

is an integer.

The trailing terms are tiny here giving

$$e^{\pi\sqrt{163}} \approx -j(\tau) + 744.$$

The class number 1 problem

Theorem (Stark-Heegner)

The only imaginary quadratic number fields with trivial class group are $\mathbf{Q}(\sqrt{-d})$ for

$$d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}.$$

The class number 1 problem

Theorem (Stark-Heegner)

The only imaginary quadratic number fields with trivial class group are $\mathbf{Q}(\sqrt{-d})$ for

$$d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}.$$

So we expect $e^{\pi\sqrt{19}}$ to be close to an integer too:

$$e^{\pi \sqrt{19}} =$$

Theorem (Stark-Heegner)

The only imaginary quadratic number fields with trivial class group are $\mathbf{Q}(\sqrt{-d})$ for

$$d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}.$$

So we expect $e^{\pi\sqrt{19}}$ to be close to an integer too:

$$e^{\pi\sqrt{19}}=1$$

The value is not as close as $e^{-\pi\sqrt{d}}$ has larger absolute value for smaller d.

A formula of Gross-Zagier

Background

We have that j() = and j() = and so

$$j(\sqrt{})-j(\sqrt{})=.$$

A formula of Gross-Zagier

Theorem (Gross-Zagier, '84)

Closing remarks

 Singular moduli are not particularly complex objects in and of themselves.

Closing remarks

- Singular moduli are not particularly complex objects in and of themselves.
- But their relation between different areas of mathematics ensures that they are still a research topic to this day.

Sources

I used some of the following when preparing this talk, and so they are probably good places to look to learn more about the topic:

• "Primes of the form $x^2 + ny^2$ " – David A. Cox