Composantes fortement connexes

 ${\sf Algorithmique-L3}$

François Laroussinie

15 novembre 2010

Plan

① Définitions

2 La définition des coefficients

Calcul des coefficients

Plan

① Définitions

2 La définition des coefficients

Calcul des coefficients

Composantes fortement connexes

G = (S, A): un graphe orienté.

Définition : Une composante fortement connexe (CFC) \mathcal{C} de G est un **sous-ensemble maximal** de sommets de G tel que : si $u, v \in \mathcal{C}$, alors $u \to_G^* v$ et $v \to_G^* u$.

Composantes fortement connexes

G = (S, A): un graphe orienté.

Définition : Une composante fortement connexe (CFC) \mathcal{C} de G est un **sous-ensemble maximal** de sommets de G tel que : si $u, v \in \mathcal{C}$, alors $u \to_G^* v$ et $v \to_G^* u$.

Algorithme de Tarjan (SIAM Journal of Computing, Vol. 1, No. 2, June 1972)

Exemple : le graphe G

Exemple : les CFC de $\it G$

Idée de l'algorithme

L'algorithme de recherche des CFC est basé sur les dates d[-] et la forêt G_{Π} calculées lors d'un parcours en profondeur.

Idée de l'algorithme

L'algorithme de recherche des CFC est basé sur les dates d[-] et la forêt G_{Π} calculées lors d'un parcours en profondeur.

exemple...

Exemple : un parcours en profondeur de G

Observations

Les sommets d'une même CFC n'apparaissent pas n'importe comment dans la forêt $G_{\Pi}\dots$

Est-ce un hasard?

Observations

Les sommets d'une même CFC n'apparaissent pas n'importe comment dans la forêt G_{Π} . . .

Est-ce un hasard?

Autre essai...

Autre parcours

Propriétés - 1

- Propriété 21 Soient $v, w \in S$ tels que $v \leftrightarrow_G^* w$,
 - ① alors v et w ont un ancêtre commun dans G_{Π} ; et
 - 2 soit u le sommet tel que (1) $u \to_{G_{\Pi}}^* v$, (2) $u \to_{G_{\Pi}}^* w$ et (3) d[u] est maximal, alors on a : $v \leftrightarrow_{G}^* u$ et $u \leftrightarrow_{G}^* w$.

Place des CFC dans la forêt G_{Π}

Place des CFC dans la forêt G_{Π}

Corollaire:

Soit C une CFC de G.

Alors l'arborescence G_{Π} restreinte aux sommets de \mathcal{C} est un arbre (couvrant \mathcal{C}).

Idée générale de l'algorithme

 \Rightarrow calculer un coefficient r[x] pour chaque $x \in S$ à partir des dates d[-] de manière à ce que $\forall x \in S$, on ait : r[x] = d[x] ssi x est la racine de sa CFC

Def : la racine d'une CFC $\mathcal C$ est le premier sommet de $\mathcal C$ à être découvert dans le parcours en profondeur.

Idée générale de l'algorithme

 \Rightarrow calculer un coefficient r[x] pour chaque $x \in S$ à partir des dates d[-] de manière à ce que $\forall x \in S$, on ait : r[x] = d[x] ssi x est la racine de sa CFC

Def : la racine d'une CFC $\mathcal C$ est le premier sommet de $\mathcal C$ à être découvert dans le parcours en profondeur.

Les coefficients r[-] vous nous permettre de trouver les racines des CFC, puis de trouver les autres sommets de ces CFC.

Plan

Définitions

2 La définition des coefficients

3 Calcul des coefficients

Définition des coefficients r

 $\forall x \in S$, on définit le coefficient r[x] par :

$$r[x] \stackrel{\text{def}}{=} \min \left(\{ d[x] \} \cup \{ d[w] \mid (1) \times \to_{G_{\Pi}}^* \xrightarrow{T/R} w \land (2) \exists u \in S.u \to_{G_{\Pi}}^* x \land u \to_{G_{\Pi}}^* w \land (3)u \leftrightarrow_G^* w \} \right)$$

Définition des coefficients r

 $\forall x \in S$, on définit le coefficient r[x] par :

$$r[x] \stackrel{\text{def}}{=} \min \left(\{ d[x] \} \cup \{ d[w] \mid (1) \times \to_{G_{\Pi}}^* \xrightarrow{T/R} w \land (2) \exists u \in S.u \to_{G_{\Pi}}^* x \land u \to_{G_{\Pi}}^* w \land (3)u \leftrightarrow_G^* w \} \right)$$

r[x] est le minimum entre d[x] et les dates de découverte des sommets w qui :

- **1** sont accessibles depuis x par un chemin de G_{Π} prolongé par **un** arc "retour" ou un arc "transverse", et tels que
- 2 x et w ont un ancêtre commun dans G_{Π} , et
- 3 u et w sont dans la même CFC.

Définition des coefficients r

$$r[x] \stackrel{\text{def}}{=} \min \left(\{ d[x] \} \cup \{ d[w] \mid (1) \times \to_{G_{\Pi}}^* \xrightarrow{T/R} w \land (2) \exists u \in S.u \to_{G_{\Pi}}^* x \land u \to_{G_{\Pi}}^* w \land (3)u \leftrightarrow_G^* w \} \right)$$

Autre définition

r[x] est le minimum entre d[x] et les d[w] tel que w est un sommet de la CFC de x accessible depuis x par un chemin de la forme $x \to_{G_{\Pi}}^* \xrightarrow{T/R} w$.

Propriétés des coefficients r

Comme w, u et x sont dans la même CFC, on a :

Propriété 22

Pour tout sommet x d'une CFC $\mathcal C$ de racine $u_{\mathcal C}$, on a :

$$\mathsf{d}[\mathit{u}_{\mathcal{C}}] \ \leq \ \mathsf{r}[x] \ \leq \ \mathsf{d}[x]$$

Propriétés des coefficients r

Comme w, u et x sont dans la même CFC, on a :

Propriété 22

Pour tout sommet x d'une CFC C de racine u_C , on a :

$$\mathsf{d}[u_{\mathcal{C}}] \ \leq \ \mathsf{r}[x] \ \leq \ \mathsf{d}[x]$$

Propriété 23

Un sommet x est la racine d'une composante fortement connexe si et seulement si r(x) = d[x].

Plan

Définitions

2 La définition des coefficients

Calcul des coefficients

Algorithme de Tarjan

On modifie l'algorithme de parcours en profondeur...

Les nouvelles variables utilisées sont :

- nbcfc : pour compter le nombre de CFC trouvées ;
- NumCFC[-]: un tableau donnant pour chaque sommet le numéro de sa CFC;
- r_A[-]: un tableau pour stocker les coefficients r;
- *P* est une pile pour stocker des sommets de *G*.

Algorithme de Tarjan

```
Procédure Tarjan-CFC(G)
temps := 0;
nbcfc := 0:
P := Pile vide;
pour chaque x \in S faire
   Couleur[x] := blanc;
   NumCFC[x] := undef;
pour chaque x \in S faire
 si Couleur[x] = blanc alors CFC(x);
retourner NumCFC[]
```

```
1 Procédure CFC(x)
2 temps++; d[x] := temps; Couleur[x] := gris;
 r_A[x] := d[x];
 4 P.Empiler(x):
 5 pour chaque (x, y) \in A faire
       si\ Couleur[y] = blanc\ alors
     | CFC(y); 
 r_A[x] := min(r_A[x], r_A[y]); 
9
        si d[y] < d[x] \land y \in P alors

r_A[x] := \min(r_A[x], d[y]);
10
11
12 temps++; f[x] := temps; Couleur[x] := noir;
13 si r_A[x] = d[x] alors
       nbcfc + +:
14
      tant que P \neq \emptyset \land d[P.Tete()] \geq d[x] faire
15
      y := r..c;
P.Depiler();
NumCFC[y] := nbcfc;
           y := P.Tete();
16
17
18
```

Il faut montrer que les coefficients $r_A[-]$ calculés par l'algorithme sont égaux aux r[-] définis précédemment.

Quelques éléments...

Il faut montrer que les coefficients $r_A[-]$ calculés par l'algorithme sont égaux aux r[-] définis précédemment.

Quelques éléments. . .

 P contient les sommets dont la racine de leur CFC est encore grise. Ils ont des ancêtres communs dans G_П.
 Les sommets de C ne sont extraits de P que lorsque u_C est coloriée en noir et que les instructions 14-18 de CFC sont exécutées.

Il faut montrer que les coefficients $r_A[-]$ calculés par l'algorithme sont égaux aux r[-] définis précédemment.

Quelques éléments. . .

- P contient les sommets dont la racine de leur CFC est encore grise. Ils ont des ancêtres communs dans G_{Π} . Les sommets de $\mathcal C$ ne sont extraits de P que lorsque $u_{\mathcal C}$ est coloriée en noir et que les instructions 14-18 de CFC sont exécutées.
- l'instruction 8 permet de faire "remonter" les valeurs de r_A[y]
 à son père x dans G_□.

Il faut montrer que les coefficients $r_A[-]$ calculés par l'algorithme sont égaux aux r[-] définis précédemment.

Quelques éléments. . .

- P contient les sommets dont la racine de leur CFC est encore grise. Ils ont des ancêtres communs dans G_{Π} . Les sommets de $\mathcal C$ ne sont extraits de P que lorsque $u_{\mathcal C}$ est coloriée en noir et que les instructions 14-18 de CFC sont exécutées.
- l'instruction 8 permet de faire "remonter" les valeurs de r_A[y]
 à son père x dans G_□.
- le test de la ligne 10 (" $\operatorname{d}[y] < \operatorname{d}[x] \land y \in P$ ") caractérise bien les arcs (x,y) de type "retour" ou "transverse" t.q. y a des ancêtres communs avec x dans G_{Π} et $x \leftrightarrow_G^* y$? . . .

le test "d[y] < d[x] \land $y \in P$ " caractérise bien les arcs (x,y) de type "retour" ou "transverse" t.q. y a des ancêtres communs avec x dans G_{Π} et $x \leftrightarrow_G^* y$.

le test " $d[y] < d[x] \land y \in P$ " caractérise bien les arcs (x, y) de

type "retour" ou "transverse" t.q. y a des ancêtres communs avec x dans G_{Π} et $x \leftrightarrow_G^* y$.

```
• (x,y) : \notin G_{\Pi} (y \text{ n'est pas blanc}) et pas arc avant
  (d[y] < d[x]);
```

le test " $d[y] < d[x] \land y \in P$ " caractérise bien les arcs (x, y) de type "retour" ou "transverse" t.q. y a des ancêtres communs avec

• (x, y): $\notin G_{\square}$ (y n'est pas blanc) et pas arc avant (d[y] < d[x]);

x dans G_{Π} et $x \leftrightarrow_G^* y$.

- $x, y \in P \Rightarrow$ ils ont des ancêtres communs dans G_{Π} ;

le test " $d[y] < d[x] \land y \in P$ " caractérise bien les arcs (x, y) de type "retour" ou "transverse" t.q. y a des ancêtres communs avec

- (x, y): $\notin G_{\square}$ (y n'est pas blanc) et pas arc avant (d[v] < d[x]):

x dans G_{Π} et $x \leftrightarrow_G^* y$.

- $x, y \in P \implies \text{ils ont des ancêtres communs dans } G_{\Pi}$;
- $x \leftrightarrow_{c}^{*} y$:

le test " $d[y] < d[x] \land y \in P$ " caractérise bien les arcs (x, y) de type "retour" ou "transverse" t.q. y a des ancêtres communs avec x dans G_{Π} et $x \leftrightarrow_{G}^{*} y$.

- (x, y): $\notin G_{\square}$ (y n'est pas blanc) et pas arc avant (d[v] < d[x]): • $x, y \in P \implies \text{ils ont des ancêtres communs dans } G_{\Pi}$;
- $x \leftrightarrow_{c}^{*} y$:
 - direct si (x, y) est un arc retour...

le test " $\mathbf{d}[y] < \mathbf{d}[x] \land y \in P$ " caractérise bien les arcs (x,y) de type "retour" ou "transverse" t.q. y a des ancêtres communs avec x dans G_{Π} et $x \leftrightarrow_G^* y$.

- $(x,y): \not\in G_{\Pi}$ (y n'est pas blanc) et pas arc avant (d[y] < d[x]);
- $x, y \in P \Rightarrow$ ils ont des ancêtres communs dans G_{Π} ;
- $x \leftrightarrow_G^* y$:
 - direct si (x, y) est un arc retour...
 - si (x, y) est un arc transverse, soient u_x et u_y les racines (en gris car dans P) de leurs CFC...

Correction de l'algorithme de Tarjan

Théorème

L'algorithme de Tarjan, vérifie les propriétés suivantes :

- 1) à la date f[x], on a : $r_A[x] = r[x]$,
- ② à la fin du traitement $CFC(u_C)$, tous les sommets y de C sont retirés de la pile P et vérifient : $NumCFC[y] = NumCFC[u_C]$,
- 3 à la fin de Tarjan-CFC(G), chaque CFC a reçu un numéro différent : pour deux CFC distinctes C et C', on a $NumCFC[u_C] \neq NumCFC[u_{C'}]$.