Отбор признаков

Feature Selection

- Отбор признаков процесс определения подмножества релевантных признаков для построения модели
- Причины использования отбора признаков:
 - упрощение модели для интерпретации
 - сокращение времени обучения
 - избегание проклятия размерности (curse of dimensionality)
 - улучшение совместимости данных с классом моделей
- Основная гипотеза: данные содержат *избыточные* (redundant) и *нерелевантные* (irrelevant) признаки
 - релевантный признак может стать избыточным при наличии другого релевантного признака (корреляция)

Curse of dimensionality

Dimensionality reduction

• Снижение размерности (dimensionality reduction) — преобразование данных из высокоразмерного пространства в низкоразмерное с сохранением свойств, важных для решаемой задачи

• Подходы:

- *отбор признаков* (feature selection) процесс определения подмножества релевантных признаков для построения модели
- извлечение признаков или выделение признаков (feature extraction или feature projection) переход из исходного пространства признаков в новое пространство меньшей размерности

Feature extraction vs. Feature selection

Feature extraction

Методы feature extraction:

- Principal Component Analysis (PCA)
- Kernel Principal Component Analysis (KPCA)
- Linear Discriminant Analysis (LDA)
- Non-negative Matrix Factorization (NMF)
- Autoencoders
- t-distributed Stochastic Neighbor Embedding (t-SNE)
- Uniform Manifold Approximation and Projection (UMAP)

Feature extraction

Связанные термины:

- Feature engineering:
 - создание признаков на основе «сырых» данных:
 - feature creation
 - feature transformation
 - feature extraction
 - feature selection
 - иногда как синоним feature extraction
- Feature construction создание признаков вручную
- Feature learning создание признаков в процессе обучения

Feature selection

- Алгоритм feature selection включает:
 - способ формирования подмножества признаков
 - способ оценки качества сформированного множества
- Подходы:
 - методы-фильтры (filter methods)
 - методы-обертки (wrapper methods)
 - встроенные методы (embedded methods)

Filter methods

- *Методы-фильтры* используют информацию, извлеченную из обучающей выборки (без привлечения алгоритмов машинного обучения)
- Примеры: Chi-Square Score, Mutual Information, Pointwise Mutual Information (PMI), ReliefF, Information Gain и др.
- Ранжируют признаки требуется способ определения оптимального количества признаков
- Преимущества:
 - высокая скорость
 - независимость от конкретного алгоритма машинного обучения
 - в большей степени отражают связи между признаками
- Недостаток:
 - качество предсказания ниже, чем для других методов
- Часто используются перед методами-обертками

Wrapper methods

- *Методы-обертки* используют алгоритм машинного обучения для оценки качества текущего подмножества признаков
- На каждом шаге требуется обучать модель
- Качество оценивается на отложенной выборке
- Примеры: Genetic algorithm, Ant colony, Simulated annealing, Recursive Feature Elimination (RFE)
- Преимущество: высокое качество предсказания
- Недостаток: низкая скорость

Embedded methods

- *Встроенные методы* являются частью процесса построения модели машинного обучения
- Примеры: LASSO, Decision trees
- Преимущество: менее вычислительно сложные, чем методы-обертки
- Недостаток: связаны с алгоритмом машинного обучения

Feature selection

Методы-фильтры

Variance Threshold

- Исключаем признаки с дисперсией меньше заданного порога
- Пример: бинарные признаки, D[X] = p(1-p), где p вероятность единиц (или нулей)
- Пусть p = 0.8, тогда D[X] = 0.16
- sklearn.feature_selection.VarianceThreshold
- Cm. feature_selection.ipynb

N	X1	X2	Х3
1	0	0	1
2	1	0	1
3	0	1	1
4	1	0	1
5	1	0	1
Дисперсия	0.24	0.16	0.00

Univariate feature selection

- SelectKBest удаляет все признаки, кроме k признаков с наивысшими оценками
 - score_func=f_classif функция для оценки признаков
 - k=10 количество наилучших признаков
- SelectPercentile удаляет все признаки, кроме заданного процента признаков с наивысшими оценками
 - score_func=f_classif функция для оценки признаков
 - percentile=10 процент наилучших признаков

Univariate feature selection

Функции оценки признаков:

- классификация:
 - chi2
 - f_classif
 - mutual_info_classif
- регрессия:
 - r_regression
 - f_regression
 - mutual_info_regression

Pearson correlation coefficient

• Коэффициент корреляции Пирсона:

$$\rho_{xy} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

• sklearn.feature_selection.r_regression — вычисляет коэффициент корреляции между каждым признаком и целевой переменной

chi2

- Вычисление статистики χ^2 между каждым неотрицательным признаком и классом
 - Признак частота, количество или бинарный
- Нулевая гипотеза: признак и класс независимы (признак не релевантен)
- Для таблицы сопряженности (contingency table) с r строками и c столбцами:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{\left(O_{i,j} - E_{i,j}\right)^2}{E_{i,j}},$$

где $O_{i,j}$ — наблюдаемое (observed) значение в ячейке i,j, $E_{i,j}$ — ожидаемое (expected) значение в ячейке i,j

chi2: пример про «Титаник»

Sex/Survived	Observed	Expected	О-Е	(O-E)^2	(O-E)^2/E
Female Survived	233	120.5	112.47	12650.57	104.96
Female not Survived	81	193.5	-112.47	12650.57	65.39
Male Survived	109	221.5	-112.47	12650.57	57.12
Male not Survived	468	355.5	112.47	12650.57	35.58
					263.05
	Survived	Not survived			
Female	233	81	314	35.2%	
Male	109	468	577	64.8%	
	342	549	891		
Chi2 (probability)	9.8E-57				

chi2: пример про «Титаник»

Sex/Survived	Observed	Expected	О-Е	(O-E)^2	(O-E)^2/E
Female Survived	110	120.5	-10.53	110.78	0.92
Female not Survived	204	193.5	10.53	110.78	0.57
Male Survived	232	221.5	10.53	110.78	0.50
Male not Survived	345	355.5	-10.53	110.78	0.31
					2.30
	Survived	Not survived			
Female	110	204	314	35.2%	
Male	232	345	577	64.8%	
	342	549	891		
Chi2 (probability)	0.5118				

- scikit-learn:
 - sklearn.feature_selection.f_classif
 - sklearn.feature_selection.f_regression
- ANOVA (ANalysis Of VAriance) применяется для определения значимости различий средних значений
 - Используется F-тест (критерий Фишера)
- Нулевая гипотеза: средние значения всех выборок равны
- Альтернативная гипотеза: среднее значение хотя бы одной выборки отличается от остальных

- Насколько хорошо признаки x_1 и x_2 разделяют классы?
- Критерии:
 - 1. Классы далеко друг от друга (расстояние между средними велико)
 - 2. Классы компактны (дисперсия классов невелика)

 $score = \frac{\text{расстояние между классами}}{\text{компактность классов}}$

• Расстояние между классами (числитель):

$$MSB = \frac{1}{df_G}SSB = \frac{1}{df_G}\sum_{i=1}^{k} n_i(\bar{x}_i - \bar{x})^2$$
,

где MSB — Mean Square Between groups, SSB — Sum of Squares Between groups, df_G — Degree of freedom for groups: $df_G = k - 1$, k — number of groups, \bar{x}_i — ith group mean, \bar{x} — grand mean, n_i — number of observations in ith group

• Компактность классов (знаменатель):

$$MSW = \frac{1}{df_w} SSW = \frac{1}{df_w} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$
,

где MSW — Mean Square Within groups, SSW — Sum of Squared Within groups, df_w — Degrees of freedom within groups: $df_w = n - k$, n — total number of observations, n_i — number of observations in ith group

• F-тест (критерий Фишера):

$$F = \frac{MSB}{MSW}$$

- Чем ближе MSB к MSW, тем более вероятна нулевая гипотеза о равенстве средних
- Если $F > F_{critical}$, то нулевая гипотеза отвергается

$$MSB = \frac{1}{df_G} \sum_{i=1}^{\kappa} n_i (\bar{x}_i - \bar{x})^2$$

ANOVA F-value
$$MSB = \frac{1}{df_G} \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2$$
 $MSW = \frac{1}{df_W} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$

	Xa	Xb	Υ		(Xai-Xcp0) ²	(Xai-Xcp1)^2	(Xbi-Xcp0)^2	(Xbi-Xcp1)^2
Пример 1	10	7	0		5.44		5.44	
Пример 2	12	9	0		0.11		0.11	
Пример 3	15	12	0		7.11		7.11	
Пример 4	19	14	1			21.78		9.00
Пример 5	25	18	1			1.78		1.00
Пример 6	27	19	1			11.11		4.00
				Сумма	12.67	34.67	12.67	14.00
Среднее всех объектов	18.00	13.17						
Среднее по классу 0	12.33	9.33		20				
Среднее по классу 1	23.67	17.00					•	
Количество объектов класса 0	3	3		15				
Количество объектов класса 1	3	3						
				Xb		•		
Дисперсия средних	192.67	88.17		10				
Коэффициент	0.25	0.25			•			
Дисперсия внутренняя	11.83	6.67		5				
					5 10	15	20 25	30
F-test	16.28	13.23		Xa				

$$F = \frac{MSB}{MSW}$$

Методы-обертки

SelectFromModel

- SelectFromModel выбор признаков на основе результатов обучения модели, которая умеет возвращать значимость признаков
 - coef_, feature_importances_
 - Lasso, SVC("11"), GradientBoosting, DecisionTree
- Исключаются признаки, значимость которых ниже заданного порога (по умолчанию для L1 10^{-5} , иначе mean)
- Используются эвристики:
 - mean значимость ниже среднего значения
 - median значимость ниже медианы
 - k*mean, k*median с учетом коэффициента

SelectFromModel

```
class sklearn.feature_selection.SelectFromModel(
                       # fitted or non-fitted
    estimator,
    *
    threshold=None, # mean or 1e-5
    prefit=False,
                       # fitted model?
    norm order=1, # if dimension of coef > 1
    max features=None, # only this if threshold=-np.inf
    importance getter='auto'
```

Recursive Feature Elimination (RFE)

- Рекурсивное исключение признаков метод-обертка над моделью, которая умеет возвращать значимость признаков
 - coef_, feature_importances_
 - LinearRegression, SVC, GradientBoosting, DecisionTree

• Алгоритм:

- 1. Модель обучается на исходном множестве признаков, возвращая значимость признаков
- 2. Наименее значимые step признаков исключаются
- 3. Модель заново обучается
- 4. Шаги 2—3 повторяются до тех пор, пока не получено n_features_to_select признаков

Recursive Feature Elimination (RFE)

```
class sklearn.feature_selection.RFE(
    estimator,
    *,
    n_features_to_select=None, # half of the features
    step=1,
    verbose=0,
    importance_getter='auto'
)
```

RFE: cross-validation

RFECV: поиск оптимального количества

```
class sklearn.feature_selection.RFECV(
     estimator,
    *,
     step=1,
     min features to select=1,
     cv=None,
     scoring=None,
     verbose=0,
     n_jobs=None,
     importance getter='auto'
```

Sequential Feature Selection (SFS)

- Последовательный отбор признаков жадный метод-обертка над моделью, которая не обязана возвращать важность признаков
- Forward-SFS:
 - 1. Установить количество признаков = 0
 - 2. Обучить модель с использованием каждого одного признака из m в кросс-валидации
 - 3. Выбрать признак с наилучшим качеством
 - 4. Повторять шаги 2–3, выбирая каждый раз из уменьшенного на единицу множества признаков, пока не выполнится условие останова
- Условия останова:
 - достигнуто заданное количество признаков
 - изменение качества на итерации не превышает tol

Sequential Feature Selection (SFS)

- Backward-SFS аналогичная процедура, которая начинает с количества признаков = m и последовательно исключает один признак на каждом шаге
- Forward-SFS и Backward-SFS возвращают неодинаковые результаты
- Выбор Forward-SFS или Backward-SFS может зависеть от требуемого количества признаков откуда быстрее прийти
- Отличия от SelectFromModel и RFE:
 - не требует, чтобы модель предоставляла значимость признаков
 - может быть медленнее: в Backward-SFS на первом шаге требуется обучить mk моделей для k-fold cross-validation

Sequential Feature Selection (SFS)

```
class sklearn.feature selection.SequentialFeatureSelector(
     estimator,
     *
     n features to select='warn', # 'auto', int, float
     tol=None,
     direction='forward',
                                    # 'backward'
     scoring=None,
     cv=5,
     n jobs=None
```