Notes on Metric and Normed Spaces

Mathew Calkins mathewpcalkins@gmail.com

November 19, 2018

1 Metrics and norms

Claim The unit ball in any normed linear space is convex.

Proof Let X be a linear space with norm $\|\cdot\|$. As usual, denote by \overline{B} the unit ball

$$\overline{B} = \{ x \in X : ||x|| \le 1 \}.$$

To demonstrate convexity, fix arbitrary $x,y\in \overline{B}$ and $t\in [0,1].$ We claim that

$$tx + (1-t)y \in \overline{B}$$

or equivalently that

$$||tx + (1-t)y|| \le 1.$$

Indeed,

$$||tx + (1 - t)y|| \le ||tx|| + ||(1 - t)y||$$

$$= t ||x|| + (1 - t) ||y||$$

$$\le t \cdot 1 + (1 - t) \cdot 1$$
1.

QED

Claim If $(X, \|\cdot\|)$ is a normed linear space, then

$$d(x,y) = \frac{\|x - y\|}{1 + \|x - y\|}$$

defined a nonhomogenous, translation-invariant metric on X.

Proof We proof that $d: X \times X \to \mathbb{R}$ is a metric one property at a time. Since the top and bottom of our fraction are always nonnegative, we have that $d(x,y) \geq 0$ for all $x,y \in X$. And the only time d(x,y) = 0 is when ||x-y|| = 0, which occurs only when x = y, so $d(x,y) = 0 \iff x = y$. Symmetry (d(x,y) = d(y,x)) is clear by inspection.

The triangle inequality is harder. Fix $x, y, z \in X$. We wish to show that

$$\frac{\|x-y\|}{1+\|x-y\|} + \frac{\|y-z\|}{1+\|y-z\|} \ge \frac{\|x-z\|}{1+\|x-z\|}.$$

2 Convergence

Definition 1.12 A sequence (x_n) in a metric space (X, d) is Cauchy if $\forall \epsilon > 0, \exists N \text{ such that } m, n \geq N \in \mathbb{N} \implies d(x_n, x_m) < \epsilon$.

Definition 1.16 (Usual definition of convergence in a metric space)

Claim In a general metric space, every convergent sequence in is Cauchy.

Proof Let $(X, \|\cdot\|)$ be a metric space and let $\{x_n\}$ be a sequence in X converging to $x \in X$. Fix $\epsilon > 0$. So there exists N such that $n \geq N \implies d(x, x_n) < \epsilon/2$. Then for all $m, n \geq N$ the triangle inequality implies

$$d(x_n, x_m) \le d(x, x_n) + d(x, x_m)$$

$$< \epsilon/2 + \epsilon/2$$

$$= \epsilon.$$

QED

Definition 1.17 A metric space (X, d) is *complete* if every Cauchy sequence in X converges to a limit in X. A subset Y is *complete* if the metric subspace $(Y, d|_Y)$ is complete. A *Banach space* is a normed linear space which is complete with respect to the norm-induced metric.

3 Upper and lower bounds

Definition 1.20 (defitions of upper bound, lower bound, bounded from above, bounded from below for subsets of \mathbb{R})

Definition 1.121 (definitions of supremum / least upper bound and infimum / greatest lower bound)

Note that Hunter uses monotone increasing to mean non-decreasing $(n > m \implies x_n \ge x_m)$ and likewise for monotone decreasing.

Given a sequence (x_n) in \mathbb{R} , we define

$$\lim \sup x_n = \lim_{n \to \infty} \left[\sup \{ x_k \mid k \ge n \} \right].$$

Notice that the sequence (y_n) on the inside of the RHS given by

$$y_n = \sup\{x_k \mid k \ge n\}$$

is monotone increasing (i.e., never decreasing). We similarly define

$$\lim \inf x_n = \lim_{n \to \infty} \left[\inf \{ x_k \mid k \ge n \} \right].$$

Both of these values always exist, as long as we allow $\pm \infty$ in addition to real values. Observe that

$$\sup\{x_k \mid k \ge n\} \ge \inf\{x_k \mid k \ge n\}$$

and that the LHS is a monotone Notice that (x_n) is convergent if and only if $\lim \inf x_n = \lim \sup x_n$, in which case it converges to their common value.