Polytomous Responses

Three response scales:

- Nominal response:
 - red, green, blue;
- Ordinal response:
 - young, middle aged, old
 - dislike very much, dislike, no opinion, like, like very much
- Interval response (scores attached):

$$< 200, 200 - 300, 300 - 400, > 400$$
 (scores: 100, 250, 350, 500)

When J = 2, degenerate to binary response model; when J > 2, different models for different response types.

Multinomial Distribution

If the response variable is categorical, with more than two categories, then the response is polytomous. The J possible response values are called the response categories.

Consider a r.v. Y with the potential outcome in J categories. Let π_1, \ldots, π_I denote the respective probabilities, with

$$\pi_1+\ldots+\pi_J=1.$$

Y follows a categorical distribution.

If we group <u>n</u> independent observations, and use $\underline{y_i}$ to denote the number of observations in category i. Then, $\underline{y} = (y_1, \dots, y_J)$ follows a multinomial distribution with pmf $y_1, \dots, y_T = N$

multinomial distribution with pmi
$$y_1 + \dots + y_j =$$

$$f(\mathbf{y}) = \frac{n!}{y_1! \dots y_j!} \frac{x_j^{y_1} \dots x_j^{y_j}}{x_j! \dots x_j^{y_j}} \longrightarrow bloomial if J=2$$

$$= \frac{n!}{y_1! \dots y_j!} \frac{x_j^{y_1} \dots x_j^{y_j}}{x_j! \dots x_j^{y_j}} = \frac{\sum_{i=1}^{n} Z_i - 1}{\sum_{i=1}^{n} Z_i - 1} = \frac{\sum_{i=1}^{n} Z_i - 1}{\sum_{i=1}^{n}$$

▶ It is in the **exponential family** with J-1 canonical parameters

$$\theta_j = \log \frac{\pi_j}{\pi_1}, \ j = 2, \cdots, J$$

$$b(\theta_2 - \theta_j) = -n \log(-\lambda_2 - \lambda_j) = \cdots$$

$$Y = (y_1, \dots, y_j) \sim multi(y_1, z_1, \dots, z_j)$$

▶ The Binomial distribution is a special case with J = 2.

- $Y_{j} \sim \underline{Binomial(n, \pi_{j})},$ $Cov(Y_{j}, Y_{k}) = -n\pi_{j}\pi_{k}, (j \neq k)$ $Faz: Y_{n} Bin(n, \pi_{j})$ $Cov(Y_{j}, N-Y_{j}) = -cov(Y_{n}, Y_{j})$ $= -vor(Y_{n} Y_{n}) = -cov(Y_{n} Y_{n})$
- ▶ The joint dist of $(Y_1, Y_2, n Y_1 Y_2)$ is multinomial with three parameters π_1 , π_2 and $1 \pi_1 \pi_2$.
- The dist of (Y_1, \ldots, Y_J) conditional on $Y_j = y_j$ is again multionomial on the reduced set of categories with parameters $n y_j$ and $\pi_i/(1 \pi_j)$.

Nominal Logistic Regression

Consider the nominal polytomous response.

Data:
$$(y_i) = (y_{i1}, \dots, y_{iJ}), \sum_j y_{ij} = (m_i)(x_i), i = 1, \dots, n$$

Goal: study how $\pi_i = (\pi_{i1}, \cdots, \pi_{iJ})$ is related to x_i

- Random component: $\mathbf{y}_i \sim \underline{\mathit{Multi}(m_i, \pi_i)}$
- One category is chosen as the reference category. Suppose this is the first category.
- ▶ Fit J-1 models, one for each remaining category.

$$\begin{cases} \beta_{ij} = \log \frac{x_{ij}}{x_{i1}} = \chi_i^T \beta_z \\ \vdots \\ \beta_{ij} = \log \frac{x_{ij}}{x_{i1}} = \chi_i^T \beta_j \end{cases}$$

$$\Rightarrow \text{ Canonical link: } \theta_{ij} = \log \frac{\pi_{ij}}{\pi_{i1}} = \eta_{ij} = x_i^T \beta_j \qquad \hat{J} = 2 \dots \hat{J}$$

$$\begin{cases} \pi_{ij} &= \frac{\exp(\eta_{ij})}{1 + \sum_{j=2}^{J} \exp(\eta_{ij})}, \ j = 2, \cdots, J \\ \\ \pi_{i1} &= \frac{1}{1 + \sum_{j=2}^{J} \exp(\eta_{ij})} \end{cases}$$

▶ Parameter interpretation: $\underline{\theta_{ii}}$ is the log odds for response category j vs 1. Thus, β_{ic} is the log odds ratio with one unit change in x_c .

► Categories are exchangeable. Reference category can be changed for different comparison.

∂ ∈ exchangeable. Reference category can be changed for different comparison.

$$\log \frac{\pi_{ij}}{\pi_{ir}} = \log \frac{\pi_{ij}}{\pi_{i1}} - \log \frac{\pi_{ir}}{\pi_{i1}} = \eta_{ij} - \eta_{ir}$$

$$= \mathbf{x}_{i}^{T} (\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{r})$$

$$\log \frac{\pi_{i1}}{\pi_{ir}} = -\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{r}$$

▶ When J = 2, this reduces to the standard logistic model.

Goodness-of-Fit

$$\int \mathbb{T}^{\frac{1}{2}} = \int_{i=1}^{n} \frac{\left(y_i - m_i \widehat{\chi}_i \right)^2}{m_i \widehat{\chi}_i \left(i \widehat{\chi}_i \right)}$$

▶ Generalized Pearson χ^2 statistic

$$G = \sum_{i=1}^{g_i e e e} \sum_{j=1}^{J} \underbrace{\frac{(y_{ij} - \underline{m}_i \hat{\pi}_{ij})^2}{m_i \hat{\pi}_{ij}}} = \sum_{i=1}^{n} \sum_{j=1}^{J} R_{\rho_i}^2$$

Deviance statistic

$$D = 2 \sum_{i=1}^{n} \sum_{j=1}^{t=i,j+1} \sqrt{y_{ij} \log \frac{y_{ij}}{m_i \hat{\pi}_{ij}}} = \sum_{i=1}^{n} \sum_{j=1}^{J} R_{d_{ij}}^2$$

When model is correct and $m_i\pi_{ij}$ are large for all $i=1,\cdots,n; j=1,\cdots,J$, both statistics are approximately $\chi^2((n-p)(J-1))$

Example: Car Preferences

In a study of motor vehicle safety, 150 men and 150 women were interviewed to rate how important air conditioning and power steering were to them when they were buying a car.

		\sim	Response		
Sex	Age	Unimportant	Import	Very Import	Total
Women	18-23	26 (58%)	12 (27%)	7 (16%)	45
Men	24-40	9 (20%)	21 (47%)	15 (33%)	45
	> 40	5 (8%)	14 (23%)	41 (68%)	60
	18-23	40 (62%)	17 (26%)	8 (12%)	65
	24-40	17 (39%)	15 (34%)	12 (27%)	44
	> 40	8 (20%)	15 (37%)	18 (44%)	41
Total		105	94	101	300

- sex and age group are covariates
- ▶ 6 covariate patterns in total
- ➤ 3 response categories (conceptually ordinal, but treated as nominal temporarily)

To fit a nominal logistic regression, we first choose the category "unimportant" as the reference category.

Define the following three dummy variables,

- ▶ x_1 : the indicator of men; $x_1 = 1$ male $x_1 = 0$ female
- x₂: the indicator of age 24-40 years;
- \triangleright x_3 : the indicator of age > 40 years.

The model is

$$\frac{\log(\frac{\pi_2}{\pi_1})}{\log(\frac{\pi_3}{\pi_1})} = \underbrace{\beta_{02} + \beta_{12}x_1 + \beta_{22}x_2 + \beta_{32}x_3}_{\beta_{03} + \beta_{13}x_1 + \beta_{23}x_2 + \beta_{33}x_3}$$

X (6-4)-13-13

Question: how to compare with a reduced model where $\beta_{3j} = 2\beta_{2j}$ (j = 2, 3)?