INGENIERÍA MECATRÓNICA

DIEGO CERVANTES RODRÍGUEZ

ELECTRÓNICA DIGITAL: CIRCUITOS LÓGICOS, LENGUAJE VHDL Y VERILOG
XILINX (64-BIT PROJECT NAVIGATOR) & ADEPT

Display de 7 Segmentos

Contenido

Display de 7 segmentos	2
Configuraciones de Ánodo y Cátodo Común	3
Displays de 7 Segmentos en la Placa de Desarrollo NEXYS 2	4
Código de Ejemplo en Verilog y VHDL:	7
Código Verilog:	7
Código UCF:	8
Código VHDL:	9
Código UCF:	. 10

Display de 7 segmentos

El nombre completo del display de 7 segmentos es decodificador BCD de 7 segmentos y son simplemente varios leds ordenados en una forma que muestren números del cero al nueve y un punto.

Cada uno de sus 7 segmentos tiene nombre y con segmento nos referimos a cada led que enciende una parte del display.

Se nombran con letras y su orden va en sentido horario, para mostrar el número 1 debemos prender el segmento B y C, para mostrar el número 2 debemos encender los segmentos A, B, G, E y D y así respectivamente para mostrar todos los demás números.

Dentro del display hay 7 leds, todos están conectados a un mismo punto y recordemos que solo puede conducir corriente y prenderse el led si el voltaje positivo entra en el cátodo y el negativo (osea tierra) está conectado al cátodo.

Configuraciones de Ánodo y Cátodo Común

Hay 2 configuraciones en los displays de 7 segmentos, una llamada ánodo común y otra llamada cátodo común.

- En los displays de cátodo común, todos los cátodos están conectados a tierra: Para prender los leds a, b, c, d, e, f, g o el punto debo meter alimentación de 5 o 3.3 Volts en cada patita del display.
- En los displays de ánodo común, todos los ánodos están conectados a alimentación: Para prender los leds a, b, c, d, e, f, g o el punto debo meter un voltaje de 0 Volts en cada patita del display.

En electrónica digital esto significa que:

- Para prender un led en la configuración C.C. (cátodo común) debo mandar un 1 lógico al display.
- Para prender un led en la configuración A.C. (ánodo común) debo mandar un 0 lógico al display.

En los displays de 7 segmentos que estén incluidos en la NEXYS 2 no es necesario poner resistencias de protección porque ya las tiene incluidas la tarjeta de desarrollo, pero si uso un display de 7 segmentos externo como el siguiente, si es necesario que ponga una resistencia de protección ya que si los leds del display reciben 5 o 3.3 Volts directamente, hay posibilidad de que se quemen, ya que los leds solo aguantan aproximadamente 2 Volts, por lo que se debe reducir el voltaje por medio de una resistencia.

Para saber exactamente cuales leds corresponden a cada patita debo ver el datasheet del display, pero usualmente están acomodadas así:

Displays de 7 Segmentos en la Placa de Desarrollo NEXYS 2

En el manual de la NEXYS 2 se nos muestra que estos son los nombres y códigos para que enviemos nuestras salidas a los displays de 7 segmentos a través del archivo .ucf con el programa Adept:

Las salidas para los ánodos comunes de los displays de 7 segmentos son de 1 bit:

- ✓ El 0 lógico prende cada uno de los displays.
- ✓ El 1 lógico apaga cada display.
- Los nombres de los ánodos comunes de los 4 displays de 7 segmentos en la NEXYS 2 que se programan en el archivo .ucf para prender cada uno de los 4 displays de 7 segmentos disponibles en la placa de desarrollo son los siguientes:
 - Salidas de 1 bit:

```
ANO (nombre) - F17 (código).
AN1 (nombre) - H17 (código).
AN2 (nombre) - C18(código).
AN3 (nombre) - F15 (código).
```

Otro punto importante de los 4 ánodos comunes de los displays de 7 segmentos es que, si creo un vector en el código y quiero prender en ese orden los diferentes displays de 7 segmentos, cuando asigne cada salida a los códigos de los displays en el archivo UCF, debo ponerlos en un orden que vaya del bit menos significativo al más significativo.

Ya que **AN3 es el 1er display, AN2 es el 2do, AN1 es el 3ro y AN0 es el último** si los veo todos de izquierda a derecha, aunque en el manual no lo parece.

Las salidas para los diferentes leds de los displays de 7 segmentos son de 1 bit:

- ✓ El 0 lógico prende cada led A, B, C, D, E, F, G o DP.
- ✓ El 1 lógico apaga cada led A, B, C, D, E, F, G o DP.

Las salidas CA, CB, ..., CG y DP son de 1 bit y prenden cada led A, B, C, D, E, F, G o los Puntos de todos los displays de la tarjeta, los 4 displays de la NEXYS 2 muestran siempre la misma figura o número.

• Leds de los displays de 7 segmentos en la NEXYS 2:

Salidas de 1 bit:

CA (nombre) L18 (código). CB (nombre) J15 (código). CC (nombre) K15 (código). CD (nombre) K14 (código). CE (nombre) E17 (código). CF (nombre) P15 (código). CG (nombre) F4 (código). DP (nombre) R4 (código).

Código de Ejemplo en Verilog y VHDL:

Implementar un comparador de dos vectores A y B de 4 bits (cada bit del número binario debe estar conectado a interruptores y/o botones de la tarjeta de desarrollo NEXYS 2), las comparaciones serán:

- A > B, en VHDL o Verilog, se realiza esta operación relacional con el signo >
- A < B, en VHDL o Verilog, se realiza esta operación relacional con el signo <
- A = B, en VHDL o Verilog, se realiza esta operación relacional con el signo ==
- A ≥ B, en VHDL o Verilog, se realiza esta operación relacional con el signo >=
- A ≤ B, en VHDL o Verilog, se realiza esta operación relacional con el signo <=
- A ≠ B, en VHDL o Verilog, se realiza esta operación relacional con el signo /=

Como todavía no se está usando una señal de reloj en el programa, solamente se verá un display encendido a la vez.

Código Verilog:

```
//Ver el código del archivo demuxMuxComparador porque aquí se va a hacer una comparación.
module display7Segmentos(
          //El vector AN sirve para elegir cuales de los 4 displays de 7 segmentos que tiene la
           //FPGA se van a activar. Los displays se prenden mandando un 0 lógico.
   output reg CA,
   output reg CB,
   output reg CC,
   output reg CD.
   output reg CF,
   output reg CG,//En verilog cuando use una salida en un condicional, lo debo declarar como reg
           //ar{	exttt{E}}stas salidas lo que van a hacer es prender los mismos leds en todos los displays activados,
           //osea mostrar el mismo número o letra.
          //Esto va a prender el led del punto de todos los displays activados.
           //Todos los leds de los displays se prenden mandando un 0 lógico porque son de nodo común.
   input [3:0] A,
   input [3:0] B
           //Estos son los vectores con números binarios (o bits) que vamos a comparar y van a ser
          //entradas por medio de switches.
//Dentro del always (que sirve para poder usar condicionales) debo poner las entradas que vaya a usar.
always@(A or B)
         begin//always tiene su propio begin y end.
                   if(A>R)
                             CA=1'b1;//Led A del display apagado
                                           'b1;//Led B del display apagado
                                       CC=1'b0;//Led C del display ENCENDIDO CD=1'b0;//Led D del display ENCENDIDO
                                       CE=1'b1;//Led E del display apagado
CF=1'b1;//Led F del display apagado
                                       CG=1'b0;//Led G del display ENCENDIDO
```

```
//Todos estos leds prendidos están representando un signo de mayor que >. \rm DP=1://El punto del display esta apagado.
                                     end
                         else if(A<B)
                                                  AN=4'b0111;//Solo el 1er display está encendido
                                                  CA=1'b1;//Led A del display apagado
                                                  CB=1'b1;//Led B del display apagado
CC=1'b1;//Led C del display apagado
                                                  CD=1'b0;//Led D del display ENCENDIDO
                                                  CE=1'b0;//Led E del display ENCENDIDO
                                                  CF=1'b1;//Led F del display apagado
                                                  CG=1'b0;//Led G del display ENCENDIDO
                                                   /Todos estos leds prendidos están representando un signo de menor que <.
                                                  \text{DP=1'b1;}//\text{El} punto del display esta apagado.
                         else if(A==B)
                                     begin
                                                  AN=4'b1001;//El 2do y 3er display están encendidos
CA=1'b1;//Led A del display apagado
CB=1'b1;//Led B del display apagado
                                                  CC=1'b1;//Led C del display apagado CD=1'b0;//Led D del display ENCENDIDO
                                                  CE=1'b1;//Led E del display apagado
                                                  CF=1'b1;//Led F del display apagado
                                                  CG=1'b0;//Led G del display ENCENDIDO
                                                  //Todos estos leds prendidos están representando dos signos de igual ==. DP=1\,'b1;//E1 punto del display esta apagado.
                         else if(A>=B)
                                                  AN=4'b0111;//Solo el 1er display está encendido
                                                  CA=1'b0;//Led A del display ENCENDIDO
                                                  CB=1'b1;//Led B del display apagado
                                                       'b1;//Led C del display apagado
                                                  CD=1'b0;//Led D del display ENCENDIDO
                                                  CE=1'b1;//Led E del display apagado
                                                  CF=1'b0;//Led F del display ENCENDIDO
                                                  CG=1'b0://Led G del display ENCENDIDO
                                                   //Todos estos leds prendidos están representando un signo de mayor o igual que >=.
                                                  DP=1'b1;//El punto del display esta apagado.
                         else if (A!=B)
                                     begin
                                                  AN=4'b0000;//Todos los displays están encendidos
CA=1'b1;//Led A del display apagado
CB=1'b1;//Led B del display apagado
                                                  CC=1'b0;//Led C del display ENCENDIDO
                                                       'b1;//Led D del display apagado
                                                  CE=1'b1;//Led E del display apagado
CF=1'b0;//Led F del display ENCENDIDO
                                                  CG=1'b0;//Led G del display ENCENDIDO
                                                  //Todos estos leds prendidos están representando un signo de diferente que !=. \mbox{DP=1'b0;}//\mbox{El} punto del display está encendido.
                                     end
                         else//La última condición siempre debe ser un else
                                                  AN=4'b1110;//Solo el 4to display está encendido
                                                  CA=1'b0;//Led A del display ENCENDIDO
                                                  CB=1'b0;//Led B del display ENCENDIDO
                                                       'b1;//Led C del display apagado
                                                  CD=1'b0;//Led D del display ENCENDIDO
                                                       'b1;//Led E del display apagado
                                                  CF=1'b1;//Led F del display apagado
                                                  CG=1'b0;//Led G del display ENCENDIDO
                                                   //Todos estos leds prendidos están representando un signo de menor o igual que <=.
                                                  DP=1'b1;//El punto del display esta apagado.
Código UCF:
net "AN[3]" loc="F17";//Esta es la coordenada del bit menos significativo
net "AN[3]" loc="F17";//Esta es la coordenada del bit menos significativo net "AN[2]" loc="C18"; net "AN[0]" loc="F15";//Esta es la coordenada del bit más significativo
//Para prender los diferentes displays de 7 segmentos de los 4 disponibles en la NEXYS 2
net "CB" loc="F18";
net "CC" loc="D17";
net "CD" loc="D16"
net "CF" loc="J17";
net "CG" loc="H14";
//Los diferentes Leds A,B,C,D,E,F,G y el punto de los displays
net "A[3]" loc="R17";
net "A[2]" loc="N17";
net "A[1]" loc="L13";
net "A[0]" loc="L14";
```

end endmodule

net "CE" loc="G

net "DP" loc="C1

```
//Switches para los 4 bits de la entrada A
net "B[3]" loc="K17";
net "B[2]" loc="K18";
net "B[1]" loc="H18";
net "B[0]" loc="G18";
//Switches para los 4 bits de la entrada B
```

Código VHDL:

```
--COMPARADOR DE 2 NÚMEROS BINARIOS CON RESULTADO MOSTRADO EN DISPLAY DE 7 SEGMENTOS
--Para hacer este comparador se usar un condicional IF
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--Las librerīas IEĒE y IEEE.STD_LOGIC_1164 sirven para que pueda solo usar el lenguaje VHDL
--ENTDIDAD: Aqu se declaran las entradas/salidas del programa
entity comparador is
    Port ( AN : out STD_LOGIC_VECTOR (3 downto 0);
                         --El vector AN sirve para elegir cuales de los 4 displays de 7 segmentos que tiene
                          --la FPGA se van a activar. Los displays se prenden mandando un 0 lógico.
            CB : out STD_LOGIC;
CC : out STD_LOGIC;
            CD : out
                       STD LOGIC:
            CE : out
                       STD_LOGIC;
STD_LOGIC;
            CF : out
            CG : out
            DΡ
                  out
                       STD LOGIC
                         --Leds individuales de todos los displays de 7 segmentos, se prende cada uno con 0 logico
            a: in STD_LOGIC_VECTOR (3 downto 0);
b: in STD_LOGIC_VECTOR (3 downto 0));
                                                                              --Numeros binarios A y B de 4 bits a comparar.
end comparador;
--ARQUITECTURA: Aqu se les dice a las entradas/salidas lo que van a hacer
architecture nombreArquitectura of comparador is--La arquitectura tiene su propio begin y end nombreArquitectura;
begin
             -process se declara siempre que vaya a usar condicionales if o case y dentro de sus parentesis van las entradas
           -- que voy a usar dentro del condicional.
           process(A, B)
           begin--process tiene sus propios begin y end process;
                      if (A>B) then
                                 AN <= "1110";--Solo el 4to display esta encendido
                                 --Para que este orden se respete en el UCF debo asignar cada display partiendo desde el bit
                                    menos significativo hasta el mas significativo.
                                 CA <= '1'; --Led A del display apagado
                                 CB <= '1'; --Led B del display apagado
                                 CC <= '0';--Led C del display ENCENDIDO
                                 CD <= '0'; -- Led D del display ENCENDIDO
                                 CE <= '1'; -- Led E del display apagado
                                 CF <= '1'; -- Led F del display apagado
                                 CG <= '0'; -- Led G del display ENCENDIDO
                                 --Todos estos leds prendidos estan representando un signo de mayor que >. DP \leftarrow '1';--El punto del display esta apagado.
                      elsif (A<B) then

AN <= "0111";--Solo el ler display esta encendido
                                  --Para que este orden se respete en el UCF debo asignar cada display partiendo desde el bit
                                  --menos significativo hasta el mas significativo
                                 CA <= '1'; -- Led A del display apagado
                                 CB <= '1';--Led B del display apagado
                                 CC <= '1'; -- Led C del display apagado
                                 CD <= '0'; --Led D del display ENCENDIDO
CE <= '0'; --Led E del display ENCENDIDO
                                 CF <= '1'; -- Led F del display apagado
                                 CG <= '0'/--Led G del display ENCENDIDO
--Todos estos leds prendidos estan representando un signo de menor que <.
                                 DP <= '1'; -- El punto del display esta apagado.
                      elsif (A=B) then
                                 AN <= "1001";--Los dos displays de en medio estan encendidos
                                 --Para que este orden se respete en el UCF debo asignar cada display partiendo desde el bit
                                  --menos significativo hasta el mas significativo.
                                 CA <= '1'; -- Led A del display apagado
                                 CB <= '1';--Led B del display apagado
                                 CC <= '1';--Led C del display apagado
CD <= '0';--Led D del display ENCENDIDO
                                 CE <= '1'; --Led E del display apagado
CF <= '1'; --Led F del display apagado
                                 CG <= '0'; -- Led G del display ENCENDIDO
                                 --Todos estos leds prendidos estan representando un signo de igual que =. DP \leftarrow '1';--El punto del display esta apagado.
                      elsif (A>=B) then
                                 AN <= "1011"; -- Solo el 2do display esta encendido
                                 --Para que este orden se respete en el UCF debo asignar cada display partiendo desde el bit
                                  --menos significativo hasta el mas significativo
                                 CA <= '0'; --Led A del display ENCENDIDO
                                 CB <= '0'; --Led B del display ENCENDIDO
                                 CC <= '1'; -- Led C del display apagado
                                 CD <= '0';--Led D del display ENCENDIDO
CE <= '1';--Led E del display apagado
                                 CF <= '1'; -- Led F del display apagado
```

```
CG <= '0';--Led G del display ENCENDIDO
                                        --Todos estos leds prendidos estan representando un signo de mayor o igual que >=.
                                       DP <= '1';--El punto del display esta apagado.
                          elsif (A<=B) then
                                       AN <= "1101";--Solo el 3er display esta encendido
                                       --Para que este orden se respete en el UCF debo asignar cada display partiendo desde el bit
                                       --menos significativo hasta el mas significativo.
                                       CA <= '0';--Led A del display ENCENDIDO CB <= '1';--Led B del display apagado
                                       CC <= '1';--Led C del display apagado
                                       CD <= '0'; -- Led D del display ENCENDIDO
                                       CE <= '1'; -- Led E del display apagado
                                       CF <= '0'; -- Led F del display ENCENDIDO
                                       CG <= '0'; --Led G del display ENCENDIDO
                                       --Todos estos leds prendidos estan representando un signo de mayor o igual que >=. DP \leftarrow '1';--El punto del display esta apagado.
                          else
                                       AN <= "1001";--Los dos displays de en medio estan encendidos
                                       --Para que este orden se respete en el UCF debo asignar cada display partiendo desde el bit
                                       --menos significativo hasta el mas significativo.
                                       CA <= '1';--Led A del display apagado
CB <= '1';--Led B del display apagado
CC <= '0';--Led C del display ENCENDIDO
                                       CD <= '1';--Led D del display apagado
CE <= '1';--Led E del display apagado
                                       CF <= '0'; -- Led F del display ENCENDIDO
                                       CG <= '0';--Led G del display ENCENDIDO
--Todos estos leds prendidos estan representando un signo de menor o igual que <=.
                                       DP <= '0';--El punto del display esta ENCENDIDO.
                          end if;
             end process;
end nombreArquitectura;
--Este cadigo no se puede hacer asi porque como los displays muestran una sola imagen todos a la vez
--Aunque se cumplan varias condiciones del if a la vez, no se veran todos, necesitara 2 displays externos
--Para que se pudieran ver todas las condiciones a la vez.
```

Código UCF:

```
//Después de net se pone el nombre de la variable y su coordenada si es un vector
//y luego de loc se pone el código del elemento al que va dirigido de la NEXYS 2
//ENTRADAS:
net "a[3]" loc = "R17";

net "a[2]" loc = "N17";

net "a[1]" loc = "L13";

net "a[0]" loc = "L14";
net "b[3]" loc = "K17";
net "b[2]" loc = "K18";
net "b[1]" loc = "H18";
net "b[0]" loc = "G18";
//SALTDAS:
//Leds de todos los displays de 7 segmentos
net "CA" loc = "L18";
net "CB" loc = "F18";
net "CC" loc = "D17";
net "CD" loc = "D16";
net "CB" loc = "G14";

net "CF" loc = "J17";

net "CG" loc = "H14";

net "DP" loc = "C17";
//Para encender cada uno de los 4 displays de 7 segmentos en el orden en que fueron
//declararos en los vectores del código debo ponerlos desde el bit menos significativo
//hasta el más significativo.
net "AN[0]" loc = "F17";
NEC _{\rm ANTOJ} 100 - fir; //Bit menos significativo del vector AN al display AN3 que es el primero viéndolo de izq a der. net "AN[1]" loc = "H17";
//Bit que le sigue al display AN2 que es el segundo viéndolo de izq a der
net "AN[2]" loc = "C18";
//Bit que le sigue al display AN1 que es el penúltimo viéndolo de izq a der
```

