The following pages contain references for use during the exam: tables containing the x86 instruction set (covered so far) and condition codes. You do not need to submit these pages when you finish your exam.

Remember that:

- Most instructions can have at most one memory operand.
- Brackets [] around a register name, immediate, or combination of the two indicates an effective address.
 - o Example: MOV AX, [10H] \rightarrow contents of address 10H moved to AX
- Parentheses around a logical address mean "the contents of memory at this address".
 - o Example: $(10H) \rightarrow$ the contents of memory at address 10H

Category	Instruction	Example	Meaning
Data	Move	MOV AX, BX	AX = BX
	Move & sign-extend	MOVSX EAX, DL	EAX = DL, sign-extended
			to 32 bits
	Move and zero-extend	MOVZX EAX, DL	EAX = DL, zero-extended
			to 32 bits
transfer	Exchange	XCHG AX, BX	Swap contents of AX, BX
	Load effective	LEA AX, [BX+SI+10H]	AX = BX + SI + 10H
	address		
	Conditional move	CMOVcc AL, BL	AL = BL if condition
			true, unchanged otherwise
	Add	ADD AX, BX	AX = AX + BX
	Add with carry	ADC AX, BX	AX = AX + BX + CF
	Increment	INC [EDI]	(EDI) = (EDI) + 1
	Subtract	SUB AX, [10H]	AX = AX - (10H)
	Subtract with borrow	SBB AX, [10H]	AX = AX - (10H) - CF
	Decrement	DEC CX	CX = CX - 1
	Negate (2's	NEG CX	CX = -CX
	complement)		
	Multiply	IMUL BH	AX = BH * AL
	Unsigned: MUL		
	(all operands are non-	IMUL CX	(DX,AX) = CX * AX
Arithmetic	negative)		
74141111040	Signed: IMUL	MUL DWORD PTR [10H]	(EDX, EAX) = (10H) * EAX
	(all operands are		
	signed integers in 2's		
	complement form)		
	Divide	DIV BH	AL = AX / BH (quotient)
	Unsigned: DIV		AH = AX % BH (remainder)
	(all operands are non-		
	negative)	IDIV CX	AX = EAX / CX (quotient)
	Signed: IDIV		DX = EAX % CX (remainder)
	(all operands are	DIV EDV	
	signed integers in 2's	DIV EBX	EAX = (EDX, EAX) / EBX (Q)
	complement form)		EDX = (EDX, EAX) % EBX (R)

Category	Instruction	Example	Meaning
Logical	Logical AND	AND AX, BX	AX = AX & BX
	Logical inclusive OR	OR AX, BX	AX = AX BX
	Logical exclusive OR	XOR AX, BX	$AX = AX ^ BX$
	Logical NOT (bit flip)	NOT AX	$AX = \sim AX$
	Shift left	SHL AX, 7	AX = AX << 7
		SAL AX, CX	$AX = AX \ll CX$
	Logical shift right	SHR AX, 7	AX = AX >> 7
	(treat value as		(upper 7 bits = 0)
	unsigned, shift in 0s)		
	Arithmetic shift right	SAR AX, 7	AX = AX >> 7
Shift/rotate	(treat value as signed;		(upper 7 bits = MSB of
(NOTE: for	maintain sign)		original value)
all	Rotate left	ROL AX, 7	AX = AX rotated left by 7
instructions			(lower 7 bits of AX =
except			upper 7 bits of original
RCL/RCR,			value)
CF = last	Rotate right	ROR AX, 7	AX=AX rotated right by 7
bit shifted			(upper 7 bits of AX =
out)			lower 7 bits of original
	5		value)
	Rotate left through	RCL AX, 7	(CF, AX) rotated left by 7
	carry		(Treat CF & AX as 17-bit
	Detete sight through	DCD AV 7	value with CF as MSB)
	Rotate right through	RCR AX, 7	(AX,CX) rotated right 7 (Treat CF & AX as 17-b8t
	carry		value with CF as LSB)
	Bit test	BT AX, 7	CF = Value of bit 7 of AX
	Bit test and reset	BTR AX, 7	CF = Value of bit 7 of AX
	Bit test and reset	BIR AX, /	Bit 7 of AX = 0
	Bit test and set	BTS AX, 7	CF = Value of bit 7 of AX
	Dit test and set	DIS AA, /	Bit 7 of AX = 1
	Bit test and	BTC AX, 7	CF = Value of bit 7 of AX
	complement		Bit 7 of AX is flipped
5	Bit scan forward	BSF DX, AX	DX = index of first non-
Bit test/	Dit oddir forward		zero bit of AX, starting
scan			with bit 0
			ZF = 0 if AX = 0, 1
			otherwise
	Bit scan reverse	BSR DX, AX	DX = index of first non-
			zero bit of AX, starting
			with MSB
			ZF = 0 if AX = 0, 1
			otherwise
Conditional tests	Compare	CMP AX, BX	Subtract AX - BX
			Updates flags
	Byte set on condition	SETCC AH	AH = 01h if cond. true
			AH = 00h if cond. false

Condition code	Meaning	Flags	
0	Overflow	OF = 1	
NO	No overflow	OF = 0	
В	Below		
NAE	Not above or equal	CF = 1	
С	Carry		
NB	Not below		
AE	Above or equal	CF = 0	
NC	No carry		
S	Sign set	SF = 1	
NS	Sign not set	SF = 0	
Р	Parity	PF = 1	
PE	Parity even	FF = I	
NP	No parity	PF = 0	
PO	Parity odd		
E	Equal	ZF = 1	
Z	Zero	Z1 - 1	
NE	Not equal	ZF = 0	
NZ	Not zero		
BE	Below or equal	CF OR ZF = 1	
NA	Not above		
NBE	Not below or equal	CF OR ZF = 0	
Α	Above		
L	Less than	SF XOR OF = 1	
NGE	Not greater than or equal		
NL	Not less than	SF XOR OF = 0	
GE	Greater than or equal		
LE	Less than or equal	(SF XOR OF) OR ZF = 1	
NG	Not greater than		
NLE	Not less than or equal	(SF XOR OF) OR ZF = 0	
G	Greater than		