Computabilità 30 giugno 2021

Esercizio 1

Può esistere una funzione $f: \mathbb{N} \to \mathbb{N}$ totale non calcolabile tale che la funzione $g(x) = \Sigma_{y < x} f(y)$ sia calcolabile? Motivare le risposta fornendo un esempio di tale funzione oppure dimostrando che non esiste.

Soluzione: Non può esistere. Infatti, si supponga che $g(x) = \sum_{y < x} f(y)$ sia calcolabile. Allora possiamo esprime f come f(x) = g(x+1) - g(x), e pertanto f è calcolabile in quanto composizione di funzioni calcolabili.

Esercizio 2

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid \mathbb{P} \cap W_x = \emptyset\}$, dove \mathbb{P} è l'insieme dei numeri pari, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Si osserva che A è saturato, dato che $A = \{x \in \mathbb{N} \mid \varphi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \mid |dom(f) \cap \mathbb{P} = \emptyset\}$.

Indicato con id la funzione identità, vale che $id \notin \mathcal{A}$, dato che $dom(id) \cap \mathbb{P} = \mathbb{P} \neq \emptyset$. Inoltre la funzione sempre indefinita, $\theta = \emptyset$ chiaramente soddisfa $dom(\theta) \cap \mathbb{P} = \emptyset \cap \mathbb{P} = \emptyset$, quindi $\theta \in \mathcal{A}$.

Quindi, dato che A è non banale e saturato, per il teorema di Rice si conclude che A e \bar{a} non sono ricorsivi.

Inoltre \bar{A} è r.e. Infatti, si ha che $x \in \bar{A}$ sse esiste y pari tale che $y \in W_x$. Dunque la funzione semicaratteristica di A si può scrivere come:

$$sc_A(x) = \mu w.H(x, 2 * (w)_1, (w)_2)$$

Dunque \bar{A} r.e., e non ricorsivo, quindi A non r.e. (altrimenti sarebbe ricorsivo).

Esercizio 3

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} \mid \exists y, z \in W_x. \ x = y * z\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme B non è ricorsivo dato che $K \leq_m B$. Per mostrarlo si può considerare la funzione g(x,y)=1 se $x\in K$ e indefinita altrimenti. Tale funzione è calcolabile, dato che $g(x,y)=sc_k(x)$. Quindi per il teorema smn, esiste una funzione calcolabile totale $s: \mathbb{N} \to \mathbb{N}$ tale che $\varphi_{s(x)}(y)=g(x,y)$ per ogni $x,y\in \mathbb{N}$. Si vede dunque che s è funzione di riduzione di K a B. Infatti

- Se $x \in K$ allora $g(x,y) = \varphi_{s(x)}(y) = 1$ per ogni $y \in \mathbb{N}$. Quindi $W_{s(x)} = \mathbb{N}$ e pertanto s(x) = s(x) * 1, con s(x), $1 \in W_{s(x)}$. Quindi $s(x) \in B$.
- Se $x \notin K$ allora $g(x,y) = \varphi_{s(x)}(y) \uparrow$ per ogni $y \in \mathbb{N}$. Quindi $W_{s(x)} = \emptyset$ e pertanto certamente non possono esistere y, z tali che $s(x) = y * z e y, z \in W_{s(x)}$. Quindi $s(x) \notin B$.

L'insieme B è r.e., infatti la sua funzione semi-caratteristica

$$sc_B(x) = \mathbf{1}(\mu w.(H(x,(w)_1,(w)_3) \wedge H(x,(w)_2,(w)_3) \wedge x = (w)_2 * (w)_3)$$

è calcolabile.

Dato che B è r.e., ma non ricorsivo, il suo complementare \bar{B} non r.e. (altrimenti entrambi sarebbero ricorsivi), e quindi \bar{B} non è neppure ricorsivo.