

Description:

This element implements a semiconductor resistor based on the p subtype of the Cadence physical resistor model.

Form: resistorPhyP:<instance name> n₀ n₁ n₂<parameter list>

 n_0 is the positive element terminal,

 n_1 is the negative element terminal,

 n_2 is the substrate terminal.

Parameters:

D		D C 1, 1	D : 10
Parameter	Type	Default value	Required?
r: Resistance (ohms)	DOUBLE	1E+9	no
coeff0: Constant term of conductance	DOUBLE	1	no
polynomial			
coeff1: First order coefficient of	DOUBLE	0	no
conductance polynomial			
coeff2: Second order coefficient of	DOUBLE	0	no
conductance polynomial			
coeff3: Third order coefficient of	DOUBLE	0	no
conductance polynomial			
coeff4: Fourth order coefficient of	DOUBLE	0	no
conductance polynomial			
coeff5: Fifth order coefficient of	DOUBLE	0	no
conductance polynomial			
polyarg: Polynomial model argument type	BOOLEAN	1 (TRUE)	no
tc1: Linear temperature coefficient of	DOUBLE	0	no
resistor (1/C)			
tc2: Quadratic temperature coefficient of	DOUBLE	0	no
resistor (1/C^2)			
tnom: Parameter measurement	DOUBLE	300	no

temperature (K)			
tdev: Device operating temperature (K)	DOUBLE	300	no
is: Saturation current (A)	DOUBLE	1E-14	no
n: Emission coefficient	DOUBLE	1	no
ibv: Current magnitude at the reverse	DOUBLE	1E-10	no
breakdown voltage (A)			
bv: Junction reverse breakdown voltage	DOUBLE	0	no
(V)			
fc: Coefficient for forward-bias depletion	DOUBLE	0.5	no
capacitance			
cj0: Zero-bias junction capacitance (F)	DOUBLE	0	no
vj: Junction built-in potential (V)	DOUBLE	1.0	no
m: Junction grading coefficient	DOUBLE	0.5	no
tt: Transit time (s)	DOUBLE	0	no
area: Diode area multiplier	DOUBLE	1	no
rs: Diode series resistance (ohms)	DOUBLE	0	no

Example:

resistorPhyP:r2 2 3 0 r=1000.0 coeff0=1.0 coeff1=0.1 coeff2=0.0 coeff3=0.002 coeff4=0.0

+ coeff5=0.00004 polyarg=0 tc1=0.0 tc2=0.0 tnom=300.0 tdev=300.0 is=1E-14 n=1.0

+ ibv=1.0E-10 bv=0.0 fc=0.5 cj0=1.0E-10 vj=1.0 m=0.5 tt=0.0 area=1.0 rs=0.0

Model Documentation:

For polyarg=true:

The controlling voltage for the resistance is:

$$V = ((V(t0) - V(t2)) + (V(t1)-V(t2)))/2$$

and the resistance is:

$$R(V) = r \, / \, (coeff0 + coeff1*V + coeff2*V^2 + coeff3*V^3 + coeff4*V^4 + coeff5*V^5)$$

For polyarg=false:

The controlling voltage for the resistance is:

$$V = V(t0) - V(t1)$$

and the resistance is:

$$R(V) = r / (coeff0 + 1/2*coeff1*V + 1/3*coeff2*V^2 + 1/4*coeff3*V^3 + 1/5*coeff4*V^4 + 1/6*coeff5*V^5)$$

Note that the code does not prevent a negative resistance value; care should be taken in selecting coefficients to ensure that the resulting resistance is positive for all anticipated values of the controlling voltage. See physren for more documentation.

Resistance as a function of temperature is:

```
R(tdev) = R(tnom) * (1 + tc1*(tdev-tnom) + tc2*(tdev-tnom)^{2})
```

References:

This model is based on a description of the Cadence Spectre physical resistor model found at http://www.uta.edu/ronc/cadence/ResistorModels.pdf. Code for diodes was taken from SPDiode model written by Carlos E. Christoffersen.

```
Sample Netlist:
```

```
**** resistorPhyP transient characteristic ****
```

```
.tran2 tstop=4E-6 tstep=2E-8
```

```
res:r1 1 2 r = 1000.0
```

resistorPhyP:r2 2 3 0 r=1000.0 coeff0=1.0 coeff1=0.1 coeff2=0.0 coeff3=0.002 coeff4=0.0

+ coeff5=0.00004 polyarg=0 tc1=0.0 tc2=0.0 tnom=300.0 tdev=300.0 is=1E-14 n=1.0

+ ibv=1.0E-10 bv=0.0 fc=0.5 cj0=1.0E-10 vj=1.0 m=0.5 tt=0.0 area=1.0 rs=0.0

res:r3 3 0 r = 1000.0

vpulse:vbias 1 0 v1=0 v2=3.0 td=0 tr=0 tf=0 pw=1E-6 per=2E-6

```
.out write term 1 vt in "p tran vt1.out"
```

.out write term 2 vt in "p_tran_vt2.out"

.out write term 3 vt in "p_tran_vt3.out"

.end

Known Bugs:

None.

Credits:

Name Affiliation Date Links ECE718 Student NC State University May 2003 www.ncsu.edu

^{*} This choice of conductance coefficients should result in positive resistor

^{*} values for Vctrl down to about -5V for polyarg = true or false.