Lecture 2 Linear Regression

Sung Kim <hunkim+ml@gmail.com>

Acknowledgement

- Andrew Ng's ML class
 - https://class.coursera.org/ml-003/lecture
 - http://www.holehouse.org/mlclass/ (note)
- Convolutional Neural Networks for Visual Recognition.
 - http://cs23 I n.github.io/
- Tensorflow
 - https://www.tensorflow.org
 - https://github.com/aymericdamien/TensorFlow-Examples

Predicting exam score: regression

training data

Regression (data)

예측을 해야할 값

X	У
1	1
2	2
3	3

Regression (presentation)

X	Y
1	1
2	2
3	3

(Linear) Hypothesis

데이터를 설명할 수 있는 선을 찾는 게 학습을 하는 것

(Linear) Hypothesis

(Linear) Hypothesis

Which hypothesis is better?

Which hypothesis is better?

실제 데이터와 가설이 나타내는 데이터 점들 간의 거리를 계산해서 멀면 안 좋고 가까우면 좋고

Cost function

거리를 측정하는 것을 Cost function이라고 부른다

• How fit the line to our (training) data

Cost function

• How fit the line to our (training) data

$$\frac{(H(x^{(1)})-y^{(1)})^2+(H(x^{(2)})-y^{(2)})^2+(H(x^{(3)})-y^{(3)})^2}{3}$$
 값이 세 개 있어서

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

Cost function

$$cost=rac{1}{m}\sum_{i=1}^m(H(x^{(i)})-y^{(i)})^2$$
 $H(x)=Wx+b$
$$cost(W,b)=rac{1}{m}\sum_{i=1}^m(H(x^{(i)})-y^{(i)})^2$$
 그러면 W와 b의 function이 된다

Goal: Minimize cost

$$\underset{W,b}{\operatorname{minimize}} \operatorname{cost}(W,b)$$

cost를 최소화하는 W와 b를 구하는 것이 학습의 목표