

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
16. Januar 2003 (16.01.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/004020 A1

(51) Internationale Patentklassifikation⁷: **A61K 31/4025**, 31/427, C07D 207/34, 405/12, 401/12, 403/12, 233/90, 417/12, 277/46, 213/82, 491/10, A61K 31/4178

(74) Gemeinsamer Vertreter: **BOEHRINGER INGELHEIM PHARMA KG**; Binger Strasse 173, 55216 Ingelheim am Rhein (DE).

(21) Internationales Aktenzeichen: PCT/EP02/07215

(22) Internationales Anmeldedatum:
29. Juni 2002 (29.06.2002)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
101 32 686.6 5. Juli 2001 (05.07.2001) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **BOEHRINGER INGELHEIM PHARMA KG** [DE/DE]; Binger Strasse 173, 55216 Ingelheim am Rhein (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): **PRIEPKE, Henning** [DE/DE]; Birkenharder Strasse 11, 88447 Warthausen (DE). **HAUEL, Norbert** [DE/DE]; Marderweg 12, 88433 Schemmerhofen (DE). **DAHMANN, Georg** [DE/DE]; Bahnhofstrasse 14, 88448 Attenweiler (DE). **THOMAS, Leo** [DE/DE]; Georg-Schinbein-Strasse 221, 88400 Biberach (DE). **MARK, Michael** [DE/DE]; Hugo-Häring-Strasse 50, 88400 Biberach (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), curasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: HETEROARYL CARBOXYLIC ACID AMIDES, THE PRODUCTION THEREOF AND THE USE OF THE SAME AS INHIBITORS OF THE MICROSOMAL TRIGLYCERIDE TRANSFER PROTEIN (MTP)

(54) Bezeichnung: HETEROARYLCARBONSÄUREAMIDE, IHRE HERSTELLUNG UND IHRE VERWENDUNG ALS INHIBITOREN DES MIKROSMALEN TRIGLYCERID-TRANSFERPROTEINS (MTP)

(I)

(57) Abstract: The invention relates to heteroaryl carboxylic acid amides of general formula (I) wherein A^a, R^a, X₁ to X₄, Het and R⁵ to R⁷ are as defined in patent claim 1, and the isomers and salts of the same, especially the physiologically compatible salts thereof, representing valuable inhibitors of the microsomal triglyceride transfer protein (MTP). The invention also relates to pharmaceuticals containing said compounds, the use thereof and the production of the same.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Heteroarylcarbonsäureamide der allgemeinen

Formel (I), in der A^a, R^a, X₁ bis X₄, Het und R⁵ bis R⁷ wie im Anspruch 1 definiert sind, deren Isomere und deren Salze, insbesondere deren physiologisch verträgliche Salze, welche wertvolle Inhibitoren des mikrosomalen Triglycerid-Transferproteins (MTP) darstellen, diese Verbindungen enthaltende Arzneimittel und deren Verwendung sowie deren Herstellung.

HETEROARYLCARBONSÄUREAMIDE, IHRE HERSTELLUNG UND IHRE VERWENDUNG ALS INHIBITOREN DES MIKROSMALEN TRIGLYCERID-TRANSFERPROTEINS (MTP)

Gegenstand der vorliegenden Erfindung sind Heteroarylcabsonsäureamide der

5 allgemeinen Formel

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und
10 deren Salze, insbesondere deren physiologisch verträgliche Salze, welche wertvolle
pharmakologische Eigenschaften aufweisen, diese Verbindungen enthaltende Arznei-
mittel, deren Verwendung und Verfahren zu ihrer Herstellung.

Die Verbindungen der obigen allgemeinen Formel I stellen wertvolle Inhibitoren des
mikrosomalen Triglycerid-Transferproteins (MTP) dar und eignen sich daher zur Sen-
kung der Plasmaspiegel der atherogenen Lipoproteine.

15

In der obigen allgemeinen Formel I bedeutet

X₁ die Gruppe CR¹,

20 X₂ die Gruppe CR²,

X₃ die Gruppe CR³ und

X₄ die Gruppe CR⁴ oder

25

eine oder zwei der Gruppen X₁ bis X₄ jeweils ein Stickstoffatom und die restlichen
der Gruppen X₁ bis X₄ drei oder zwei der Gruppen CR¹ bis CR⁴,

- 2 -

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R¹ bis R⁴ unabhängig voneinander jeweils ein Fluor-,
5 Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe, eine Trifluormethyl-, Hydroxy-,
C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-
aminogruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ jeweils ein
Wasserstoffatom bedeuten,

10 wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer -(CH₂)_n-Brücke
annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

A^a eine Bindung, ein Sauerstoff- oder Schwefelatom, eine -NH-, -N(C₁₋₃-Alkyl)-,
Sulfinyl-, Sulfonyl- oder Carbonylgruppe,

15 eine der Gruppen -CH₂-, -(CH₂)₂-, -CH=CH-, -C≡C-, -OCH₂-, -CH₂O-, -NH-CH₂-,
-CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂- oder -SO₂-NH-,

20 in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und
ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine
C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe
A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der
Gruppe R^a verknüpft ist,

25 R^a eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige
Heteroarylgruppe, die

30 eine gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₁₋₄-Alkylcarbonylgruppe
substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

- 3 -

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

5 eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

10 eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

15 wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können und

20 wobei die vorstehend genannten Phenyl- und Naphthylgruppen sowie die mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluor-methyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino-, Propionyl-amino-, N-(C₁₋₃-Alkyl)-propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Hetero-atome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

25 eine C₃₋₇-Cycloalkylgruppe, wobei

30 jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkyl-rests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfo-nylgruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-,

- 4 -

C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder
Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

5

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein
können oder/und

10

jeweils die Methylengruppe in Position 4 einer 6- oder 7-gliedrigen Cycloalkylen-
iminogruppe durch eine Hydroxycarbonyl-, C₁₋₃-Alkoxy carbonyl-, Amino-, C₁₋₃-Al-
kylamino-, Di-(C₁₋₃-alkyl)amino-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-,
Di-(C₁₋₃-alkyl)-aminocarbonyl- oder Phenyl-C₁₋₃-alkylaminogruppe substituiert
oder

15

durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonyl-
gruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-, C₁₋₄-Al-
kyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-al-
kyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

20

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Imino-
stickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein
kann oder

25

eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine
-CO-NR⁸- Gruppe ersetzt sein kann oder

eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₃- Gruppe durch eine
-CO-NR⁸-CO- Gruppe ersetzt sein kann,

30

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

R⁵ ein Wasserstoffatom oder eine C₁₋₅-Alkylgruppe,

- 5 -

Het eine über zwei Kohlenstoffatome oder, sofern Het eine 2-bindige Pyrrolgruppe bedeutet, auch über ein Kohlenstoff- und das Imino-Stickstoffatom, wobei letzteres mit der benachbarten Carbonylgruppe in Formel (I) verknüpft ist, gebundene 5-gliedrige Heteroarylengruppe, die

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

10 eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom,

wobei R⁹ ein Wasserstoffatom, eine C₁₋₅-Alkylgruppe, eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder C₁₋₅-Alkoxy-carbonyl-aminogruppe substituierte C₂₋₃-Alkylgruppe, eine Carboxy-C₁₋₃-alkyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl-, Phenyl-, Phenyl-C₁₋₃-alkyl-, C₁₋₅-Alkylcarbonyl- oder Phenylcarbonylgruppe bedeutet oder R⁹ zusammen mit R⁶ eine -(CH₂)_p- Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

20 oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

25 oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält, wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₅-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino-, Propionylamino-, N-(C₁₋₃-Alkyl)-propionylamino-, Acetyl-, Propionyl-, Benzoyl-,

- 6 -

C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- Di-(C₁₋₃-alkyl)-amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als ein Heteroatom enthaltenden 5-gliedrigen monocyclischen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

5

R⁶ ein Wasserstoffatom oder eine C₁₋₆-Alkylgruppe,

R⁷ eine C₁₋₉-Alkylgruppe,

10

eine geradkettige oder verzweigte, einfach, zweifach oder dreifach ungesättigte C₃₋₉-Alkenyl- oder C₃₋₉-Alkinylgruppe, wobei die Mehrfachbindungen von der Stickstoff-Kohlenstoff-Bindung isoliert sind,

15

eine geradkettige C₂₋₆-Alkylgruppe, die terminal durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

eine durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₆-Alkylgruppe, wobei

20

ein Wasserstoffatom in 3-Stellung des Cyclopentylrestes und in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes jeweils durch eine Hydroxy-, Hydroxy-C₁₋₃-alkyl, C₁₋₅-Alkoxy-, C₁₋₅-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-C₁₋₃-alkyl, Amino-, C₁₋₅-Alkylamino-, Di-(C₁₋₅-alkyl)amino-, Phenyl-C₁₋₃-alkylamino-, C₁₋₅-Alkyl-carbonylamino-, Benzoylamino-, Amino-C₁₋₃-alkyl, C₁₋₃-Alkylamino-C₁₋₃-alkyl,

25

Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkylamino-C₁₋₃-alkyl-, C₁₋₃-Alkyl-carbonylamino-C₁₋₃-alkyl-, Benzoylamino-C₁₋₃-alkyl-, Phenylamino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

30

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₆-Alkyl-, Phenyl-, C₁₋₆-Alkyl-carbonyl-, Benzoyl-, Phenyl-(C₁₋₃-al-

- 7 -

kyl)-carbonyl-, C₁₋₆-Alkyl-aminocarbonyl-, Di-(C₁₋₅-alkyl)-aminocarbonyl-, Phenyl-aminocarbonyl-, N-(C₁₋₃-Alkyl)-phenylaminocarbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl- oder N-(C₁₋₃-Alkyl)-phenyl-C₁₋₃-alkylamino-carbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

5

in einem 5- oder 6-gliedrigen Cycloalkylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₅-Alkylamino-carbonyl-, Di-(C₁₋₅-alkyl)amino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl- oder C₁₋₅-Alkoxy-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

10

15 eine gegebenenfalls durch eine C₃₋₇-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe,

20

durch eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

durch eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

25

eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, Phenyl-C₁₋₃-alkyl-, C₁₋₃-Alkylcarbonyl-, Phenylcarbonyl- oder Phenyl-C₁₋₃-alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

30

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

- 8 -

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

5

durch eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

10 wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

15 wobei die vorstehend genannten Phenyl- und Naphthylgruppen sowie die mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₅-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Ami-
no-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylami-
no-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, C₁₋₅-Alkoxy-carbonylamino-
20 C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, N-(C₁₋₃-Alkyl)-benzoylamino-,
Acetyl-, Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-
C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-
carbonyl-, oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr
als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die
25 vorstehend genannten Substituenten auch disubstituiert sein können, wobei
die Substituenten gleich oder verschieden sein können,

substituiert ist,

30 eine durch einen Phenylrest und eine Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte C₁₋₆-Alkylgruppe,

- 9 -

- eine Phenyl-C₂₋₅-alkenylen-CH₂-, Phenyl-C₂₋₅-alkinylen-CH₂-, Heteroaryl-C₂₋₅-alkenylen-CH₂- oder Heteroaryl-C₂₋₅-alkinylen-CH₂-Gruppe, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine C₁₋₃-Alkylgruppe ersetzt sein kann und
5 davon unabhängig der Phenylteil sowie der Heteroarylteil durch Fluor-, Chlor- oder Bromatome, durch C₁₋₆-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl-, Heteroaryl- oder Cyanogruppen mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und die Disubstitution durch zwei aromatische Gruppen ausgeschlossen ist,
- 10 wobei Heteroaryl eine über ein Kohlenstoff-oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die
- 15 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,
- 20 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder
- 25 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,
- 30 oder eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält, wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

- 10 -

die im C₁₋₃-Alkylteil gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₃₋₅-Cycloalkylgruppe substituierte Gruppe R^b-A^b-E^b-C₁₋₃-alkyl-, in der

R^b eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Iodatome, durch C₁₋₄-Alkyl-, C₂₋₄-Alkenyl-, C₂₋₄-Alkinyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, Acetyl-, Propi-
10 onyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyano-
gruppen mono- oder disubstituierte Phenylgruppe, wobei die Substituenten
gleich oder verschieden sein können,

eine 5-gliedrige Heteroarylgruppe, die

15 über ein Kohlenstoffatom oder, sofern A^b eine Bindung, eine -CH₂-, -(CH₂)₂-, Sulfonyl- oder Carbonylgruppe darstellt, auch über ein Stickstoffatom gebun-
den sein kann und die

20 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe,
ein Sauerstoff- oder Schwefelatom,

25 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom
oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
und zwei Stickstoffatome oder

30 ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

5 wobei die vorstehend genannten mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₂₋₄-Alkenyl-, C₂₋₄-Alkinyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, 10 durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

15

eine C₃₋₇-Cycloalkylgruppe, in der

20 ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

30 die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexyl- oder Cycloheptylgruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxy- oder 1,3-Propylendioxygruppe ersetzt sein können und in den so gebildeten

- 12 -

Ringen ein oder zwei Wasserstoffatome durch C₁₋₃-Alkylgruppen ersetzt sein können,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

5

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

10

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine Hydroxy-C₁₋₃-alkyl-, C₁₋₆-Alkoxy-C₁₋₃-alkyl-, Hydroxycarbonyl-, C₁₋₆-Alkoxycarbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)-aminocarbonyl-, 4- bis 7-gliedrige Cycloalkylenimino-, Phenyl-, 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-yl-, Phenyl-C₁₋₃-alkylamino- oder N-(C₁₋₃-Alkyl)-phenyl-C₁₋₃-alkylaminogruppe substituiert oder

15

durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-, C₁₋₃-Alkyl-carbonyl-, Benzoyl-, Phenyl-C₁₋₃-alkyl-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl-, Di-(C₁₋₃-alkyl)-aminocarbonyl-, Phenylaminocarbonyl- oder N-(C₁₋₃-Alkyl)-phenylaminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

20

25 die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxy- oder 1,3-Propylendioxygruppe ersetzt sein können und in den so gebildeten Ringen ein oder zwei Wasserstoffatome durch C₁₋₃-Alkylgruppen ersetzt sein
30 können oder

- 13 -

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder

- 5 eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder
eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

- 10 A^b eine Bindung, ein Sauerstoff- oder Schwefelatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfinyl-, Sulfonyl- oder eine Carbonylgruppe,

- 15 eine der Gruppen -CH₂-, -(CH₂)₂-, -O-CH₂-, -CH₂-O-, NH-CH₂-, -CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂-, -SO₂-NH-, -CH=CH- oder -C≡C-,

- 20 in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^b nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^b verknüpft ist,

- 25 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluor-methoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder 30 Cyanogruppe substituierte Phenylengruppe,

- 14 -

die im C₁₋₃-Alkylteil gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₃₋₅-Cycloalkylgruppe substituierte Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

R^c die vorstehend für R^b erwähnten Bedeutungen annimmt, wobei eine
5 Bezugnahme auf A^b durch eine Bezugnahme auf A^c zu ersetzen ist,

A^c die vorstehend für A^b erwähnten Bedeutungen annimmt, wobei eine
Bezugnahme auf R^b durch eine Bezugnahme auf R^c zu ersetzen ist,

10 E^c eine über zwei Kohlenstoffatome oder über ein Kohlenstoffatom und ein
Imino-Stickstoffatom gebundene 5-gliedrige Heteroarylengruppe, wobei das
Iminostickstoffatom der Heteroarylengruppe nicht mit einem Heteroatom der
Gruppe A^c verknüpft ist und wobei die Heteroarylengruppe

15 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe,
ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom
20 oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
und zwei Stickstoffatome oder

25 ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome
enthält,

30 wobei an die vorstehend erwähnten 5-gliedrigen, ein oder zwei Heteroatome
enthaltenden Heteroarylengruppen sowie an die vorstehend erwähnten
6-gliedrigen Heteroarylengruppen über zwei benachbarte Kohlenstoffatome

- 15 -

ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylengruppen über den heteroaromatischen oder/und den carbocyclischen Teil gebunden sein können,

5 und wobei die vorstehend genannten mono- und bicyclischen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können,

10 oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 3 bis 6 Kohlenstoffatomen, in der

15 ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

20 eine –CH₂-CH₂-Gruppe durch eine 1,2-verknüpfte Phenylengruppe ersetzt sein kann, die durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Cyano-, Phenoxy- oder Phenyl-C₁₋₃-alkylgruppen mono- oder disubstituiert sein kann, wobei eine Disubstitution mit der letztgenannten Gruppe ausgeschlossen ist,

25 wobei die vorstehend genannten Phenoxy- und Phenyl-C₁₋₃-alkylgruppe im Phenylteil ihrerseits durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, oder Cyanogruppe substituiert sein können,

- 16 -

oder jeweils das Kohlenstoffatom in Position 3 einer n-Pentylen- oder n-Hexylengruppe durch eine terminal durch eine Phenyl-, Cyano-, Hydroxy-, C₁₋₃-Alkoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe, durch eine Carboxy-, C₁₋₃-Alkoxycarbonyl-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, N-C₁₋₃-Alkyl-N-(C₁₋₃-alkyl-carbonyl)-amino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)-amino-C₁₋₃-alkyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyano-, Hydroxy- oder C₁₋₃-Alkoxygruppe disubstituiert sein kann oder

10

die Methylengruppe in Position 3 einer n-Pentylen- oder n-Hexylengruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-C₁₋₃-alkyl-, C₁₋₃-Alkyl-carbonyl-, Benzoyl-, C₁₋₃-Alkyl-aminocarbonyl-, Di-(C₁₋₃-alkyl)-aminocarbonyl-, Phenylaminocarbonyl- oder N-(C₁₋₃-Alkyl)-phenylaminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

15

eine Methylengruppe in Position 1 in einer n-Butylen-, n-Pentylen- oder n-Hexylengruppe durch eine Carbonylgruppe ersetzt sein kann,

20

wobei die bei der Definition der vorstehend genannten Reste als unsubstituiert oder monosubstituiert erwähnten Phenylgruppen sowie aromatischen oder heteroaromatischen Molekülteile, sofern nichts anderes erwähnt wurde, im Kohlenstoffgerüst gegebenenfalls zusätzlich durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkylgruppen, durch Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppen substituiert sein können, wobei die Substituenten gleich oder verschieden sein können und die resultierenden aromatischen Gruppen und Molekülteile maximal disubstituiert sind,

25

30

- 17 -

die Wasserstoffatome in den bei der Definition der vorstehend genannten Reste erwähnten C₁₋₃-Alkyl- und Alkoxygruppen teilweise oder ganz durch Fluoratome ersetzt sein können und

- 5 die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde.
- 10 Die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen können durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein, des Weiteren können die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein und somit in Form eines Prodrug-Restes vorliegen. Derartige Gruppen werden beispielsweise in der WO 98/46576 und von N.M. Nielsen et al. in International Journal of Pharmaceutics 39, 75-85 (1987) beschrieben.
- 15
- 20 Unter einer in-vivo in eine Carboxygruppe überführbare Gruppe ist beispielsweise eine Hydroxymethylgruppe, eine mit einem Alkohol veresterte Carboxygruppe, in der der alkoholische Teil vorzugsweise ein C₁₋₆-Alkanol, ein Phenyl-C₁₋₃-alkanol, ein C₃₋₉-Cycloalkanol, wobei ein C₅₋₈-Cycloalkanol zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₅₋₈-Cycloalkanol, in dem eine Methylengruppe
- 25 in 3- oder 4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-C₁₋₃-alkyl-, Phenyl-C₁₋₃-alkoxycarbonyl- oder C₂₋₆-Alkanoylgruppe substituierte Iminogruppe ersetzt ist und der Cycloalkanolteil zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₄₋₇-Cycloalkenol, ein C₃₋₅-Alkenol, ein Phenyl-C₃₋₅-alkenol, ein C₃₋₅-Alkinol oder Phenyl-
- 30 C₃₋₅-alkinol mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt, ein C₃₋₈-Cycloalkyl-C₁₋₃-alkanol, ein Bicycloalkanol mit insgesamt 8 bis 10 Kohlenstoff-

- 18 -

atomen, das im Bicycloalkylteil zusätzlich durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein 1,3-Dihydro-3-oxo-1-isobenzfuranol oder ein Alkohol der Formel

5 R_p-CO-O-(R_qCR_r)-OH,

in dem

R_p eine C₁₋₈-Alkyl-, C₅₋₇-Cycloalkyl-, C₁₋₈-Alkyloxy-, C₅₋₇-Cycloalkyloxy-, Phenyl- oder Phenyl- C₁₋₃-alkylgruppe,

10

R_q ein Wasserstoffatom, eine C₁₋₃-Alkyl-, C₅₋₇-Cycloalkyl- oder Phenylgruppe und

R_r ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellen,

15

unter einer unter physiologischen Bedingungen negativ geladenen Gruppe beispielsweise eine Tetrazol-5-yl-, Phenylcarbonylaminocarbonyl-, Trifluormethylcarbonylaminocarbonyl-, C₁₋₆-Alkylsulfonylamino-, Phenylsulfonylamino-, Benzylsulfonylamino-, Trifluormethylsulfonylamino-, C₁₋₆-Alkylsulfonylaminocarbonyl-, Phenylsulfonylaminocarbonyl-, Benzylsulfonylaminocarbonyl- oder Perfluor-C₁₋₆-alkylsulfonylaminocarbonylgruppe

20

und unter einem von einer Imino- oder Aminogruppe in-vivo abspaltbaren Rest beispielsweise eine Hydroxygruppe, eine Acylgruppe wie eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppen

25

mono- oder disubstituierte Phenylcarbonylgruppe, wobei die Substituenten gleich oder verschieden sein können, eine Pyridinoylgruppe oder eine C₁₋₁₆-Alkanoylgruppe wie die Formyl-, Acetyl-, Propionyl-, Butanoyl-, Pentanoyl- oder Hexanoylgruppe, eine 3,3,3-Trichlorpropionyl- oder Allyloxycarbonylgruppe, eine C₁₋₁₆-Alkoxycarbonyl- oder C₁₋₁₆-Alkylcarbonyloxygruppe, in denen Wasserstoffatome ganz oder teilweise

30

durch Fluor- oder Chloratome ersetzt sein können, wie die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopropoxycarbonyl-, Butoxycarbonyl-, tert.-Butoxycarbonyl-, Pentoxy carbonyl-, Hexoxycarbonyl-, Octyloxycarbonyl-, Nonyloxy-

- 19 -

- carbonyl-, Decyloxycarbonyl-, Undecyloxycarbonyl-, Dodecyloxycarbonyl-, Hexadecyloxycarbonyl-, Methylcarbonyloxy-, Ethylcarbonyloxy-, 2,2,2-Trichlorethylcarbonyloxy-, Propylcarbonyloxy-, Isopropylcarbonyloxy-, Butylcarbonyloxy-,
5 tert.Butylcarbonyloxy-, Pentylcarbonyloxy-, Hexylcarbonyloxy-, Octylcarbonyloxy-, Nonylcarbonyloxy-, Decylcarbonyloxy-, Undecylcarbonyloxy-, Dodecylcarbonyloxy- oder Hexadecylcarbonyloxygruppe, eine Phenyl-C₁₋₆-alkoxycarbonylgruppe wie die Benzyloxycarbonyl-, Phenylethoxycarbonyl- oder Phenylpropoxycarbonylgruppe, eine 3-Amino-propionylgruppe, in der die Aminogruppe durch C₁₋₆-Alkyl- oder C₃₋₇-Cycloalkylgruppen mono- oder disubstituiert und die Substituenten gleich oder
10 verschieden sein können, eine C₁₋₃-Alkylsulfonyl-C₂₋₄-alkoxycarbonyl-, C₁₋₃-Alkoxy-C₂₋₄-alkoxycarbonyl-, R_p-CO-O-(R_qCR_r)-O-CO-, C₁₋₆-Alkyl-CO-NH-(R_sCR_t)-O-CO- oder C₁₋₆-Alkyl-CO-O-(R_sCR_t)-(R_sCR_t)-O-CO-Gruppe, in denen R_p bis R_r wie vorstehend erwähnt definiert sind,
- 15 R_s und R_t, die gleich oder verschieden sein können, Wasserstoffatome oder C₁₋₃-Alkylgruppen darstellen,
zu verstehen.
- 20 Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen X₁ bis X₄ wie vorstehend erwähnt definiert sind,
A^a eine Bindung, ein Sauerstoffatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder
25 Carbonylgruppe,
eine der Gruppen -CH₂-, -(CH₂)₂-, -NH-CH₂-, -CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂- oder -SO₂-NH-,
30 in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe

- 20 -

A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenylgruppe,

5

eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

10 eine gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₁₋₄-Alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

15 eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Phenyl und Heteroarylgruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, 20 Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino-, Acetyl- oder Cyanogruppe substituiert sein können,

eine C₃₋₇-Cycloalkylgruppe, wobei

25 die Methylengruppe in 4-Stellung eines 6-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl- oder C₁₋₄-Alkoxy-carbonylgruppe substituierte Iminogruppe ersetzt sein kann,

30 eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

- 21 -

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

5 jeweils die Methylengruppe in Position 4 einer 6- oder 7-gliedrigen Cycloalkylen-iminogruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

10 in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder

eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder

15 eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

20 R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

Het eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

25 eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom,

30 wobei R⁹ ein Wasserstoffatom, eine C₁₋₅-Alkylgruppe, eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder C₁₋₅-Alkoxy-carbonyl-aminogruppe substituierte -C₂₋₃-Alkylgruppe, eine

- 22 -

Carboxy-C₁₋₃-alkyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl-, Phenyl-, Phenyl-C₁₋₃-alkyl-, C₁₋₅-Alkylcarbonyl- oder Phenylcarbonylgruppe bedeutet oder R⁹ zusammen mit R⁶ eine -(CH₂)_p- Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

5

oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

10

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Cyclopropyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino, Acetyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)amino-carbonylgruppe substituiert sein können,

20 R⁶ ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe,

R⁷ eine C₁₋₆-Alkylgruppe,

eine geradkettige C₂₋₆-Alkylgruppe, die terminal durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

eine durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₆-Alkylgruppe, wobei

30 ein Wasserstoffatom in 3-Stellung des Cyclopentylrestes und in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes jeweils durch eine C₁₋₅-Alkoxy-, Phenyl-C₁₋₃-alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkylamino-, C₁₋₅-Alkyl-carbonylamino-, Benzoyl-amino-, Phenyl-C₁₋₃-alkylamino-C₁₋₃-alkyl-, Benzoylamino-C₁₋₃-alkyl-, Phenyl-

- 23 -

amino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes durch eine gegebenenfalls durch eine Phenyl-, C₁₋₆-Alkyl-carbonyl-, Benzoyl-, Phenyl-(C₁₋₃-alkyl)-carbonyl-, Phenylaminocarbonyl-, N-(C₁₋₃-Alkyl)-phenylamino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl- oder N-(C₁₋₃-Alkyl)-phenyl-C₁₋₃-alkyl-amino-carbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

10 In einem 5- oder 6-gliedrigen Cycloalkylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder C₁₋₅-Alkoxy-carbonylgruppe, in denen
15 terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C₃₋₇-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe,
20 die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe,

durch eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

25 durch eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

30 eine gegebenenfalls durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

- 24 -

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

- 5 durch eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Phenylgruppen sowie die Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine
10 C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-,
Trifluormethoxy-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-,
Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl-,
C₁₋₅-Alkoxy-carbonylamino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-carbonyl- oder
Di-(C₁₋₃-alkyl)amino-carbonylgruppe monosubstituiert oder durch die
15 vorstehend genannten Substituenten auch disubstituiert sein können, wobei
die Substituenten gleich oder verschieden sein können,

substituiert ist,

- 20 eine durch einen Phenylrest und eine Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte C₁₋₆-Alkylgruppe,

25 eine Phenyl-C₂₋₃-alkenylen-CH₂- oder Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl-, Pyridyl-, Pyrimidinyl-, Pyrazinyl-, Thienyl-, Pyrrolyl-, Pyrazolyl- oder Thiazolylgruppe substituiert sein kann,

- 30 die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe R^b-A^b-E^b-C₁₋₃-alkyl-, in der

- 25 -

R^b eine gegebenenfalls durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkyl-, Cyclopropyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Acetyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkyl-amino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppen mono- oder disubstituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können,

10 eine 5-gliedrige Heteroarylgruppe, die

über ein Kohlenstoffatom oder, sofern A^b eine Bindung, eine -CH₂-, -(CH₂)₂-, Sulfonyl- oder Carbonylgruppe darstellt, auch über ein Stickstoffatom gebunden sein kann und die

15 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

20 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

25 ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

30 wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-,

- 26 -

C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

eine C₃₋₇-Cycloalkylgruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

die Methylengruppe in 4-Stellung eines Cyclohexylrests durch ein Sauerstoffatom, durch eine Sulfonylgruppe- oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexyl- oder Cycloheptylgruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxy- oder 1,3-Propylendioxygruppe ersetzt sein können,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

30

- 27 -

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyl- oder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert oder

- 5 durch ein Sauerstoffatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder
- 10 die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylen-dioxy- oder 1,3-Propylendioxygruppe ersetzt sein können oder
- 15 in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann
- 20 A^b eine Bindung, ein Sauerstoffatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder eine Carbonylgruppe,
- eine der Gruppen -CH₂-, -(CH₂)₂-, -C≡C-, -O-CH₂-, -CH₂-O-, NH-CH₂-, -CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂-, -SO₂-NH-,
- 25 in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^b nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^b verknüpft ist, und
- 30 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluor-

- 28 -

methoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-,
Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Acetyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-,
C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-,
Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe substituierte Phenylengruppe
5 bedeuten, oder

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

10 R^c die vorstehend für R^b erwähnten Bedeutungen annimmt, wobei eine
Bezugnahme auf A^b durch eine Bezugnahme auf A^c zu ersetzen ist,

A^c eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -N(C₁₋₃-Alkyl)-, -NH-CO-,
-CO-NH- oder Carbonylgruppe,

15 wobei ein Heteroatom der Gruppe A^c nicht mit einem Stickstoffatom einer
5-gliedrigen Heteroarylgruppe der Gruppe R^c verknüpft ist, und

20 E^c eine über zwei Kohlenstoffatome oder über ein Kohlenstoffatom und ein
Imino-Stickstoffatom gebundene 5-gliedrige Heteroarylengruppe, wobei das
Iminostickstoffatom der Heteroarylengruppe nicht mit einem Heteroatom der
Gruppe A^c verknüpft ist und wobei die Heteroarylengruppe

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe,
ein Sauerstoff- oder Schwefelatom,

25 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom
oder

30 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
und zwei Stickstoffatome oder

- 29 -

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

5

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können, bedeuten,

10

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen darstellen, in der

15

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und eine -CH₂-CH₂-Gruppe durch eine 1,2-verknüpfte Phenylengruppe ersetzt sein kann, die durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe oder durch eine im Phenylteil gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino- oder Cyanogruppe substituierte Phenoxy- oder Phenyl-C₁₋₃-alkylgruppe substituiert sein kann,

20

25

30

oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe, durch eine Phenyl-, C₁₋₃-Alkoxycarbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann oder

- 30 -

die Methylengruppe in Position 3 einer n-Pentylengruppe durch ein Sauerstoffatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkyl-carbonylgruppe substituierte Iminogruppe ersetzt sein kann,

5

bedeuten, wobei die bei der Definition der vorstehend genannten Reste als unsubstituiert oder monosubstituiert erwähnten Phenylgruppen sowie aromatischen oder heteroaromatischen Molekülteile, sofern nichts anderes erwähnt wurde, im Kohlenstoffgerüst gegebenenfalls zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können,

15

die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

20

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

25

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und

30 deren Salze.

- 31 -

Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

X₁ die Gruppe CR¹,

5

X₂ die Gruppe CR²,

X₃ die Gruppe CR³ und

10 X₄ die Gruppe CR⁴ oder

eine der Gruppen X₁ bis X₄ ein Stickstoffatom und die restlichen der Gruppen X₁ bis X₄ drei der Gruppen CR¹ bis CR⁴,

15 wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R¹ bis R⁴ unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe, eine Trifluormethyl-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe darstellen und die restlichen 20 der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer -(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

25 A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe oder eine über das Kohlenstoff- bzw. Schwefelatom mit der Gruppe R^a in Formel (I) verknüpfte -NH-CH₂-, -NH-CO-, -NH-SO₂-Gruppe,

30 wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl- oder Pyridinylgruppe,

- 32 -

eine über ein Kohlenstoff- oder Stickstoffatom gebundene Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl- oder Thiazolylgruppe,

5 wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-
10 oder Cyanogruppe substituiert sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

15 die Methylenegruppe in Position 4 einer 6-gliedrigen Cycloalkyleniminogruppe durch eine Methylgruppe substituiert oder durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe ersetzt sein kann oder

20 in einer Piperidinogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂-Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

25 wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

30 **Het** eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heterarylengruppe, die

- 33 -

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

5 eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

10 wobei R⁹ ein Wasserstoffatom, eine C₁₋₃-Alkylgruppe, eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder C₁₋₄-Alkoxy-carbonyl-aminogruppe substituierte -C₂₋₃-Alkylgruppe, eine Carboxy-C₁₋₃-alkyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl- oder C₁₋₃-Alkylcarbonylgruppe bedeutet oder R⁹ zusammen mit R⁶ eine -(CH₂)_p-Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

15 oder eine Pyridinylen- oder Pyrimidinylengruppe,

20 wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetyl-amino- oder Cyanogruppe substituiert sein können,

25 R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

R⁷ eine C₁₋₆-Alkylgruppe,

30 eine geradkettige C₂₋₆-Alkylgruppe, die terminal durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

eine terminal durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₄-Alkylgruppe, wobei

ein Wasserstoffatom in 4-Stellung eines Cyclohexylrestes durch eine C₁₋₅-Alkoxy-, C₁₋₃-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-methyl-, Phenyl-C₁₋₃-alkylamino-, Phenyl-C₁₋₂-alkyl-carbonylamino-, Benzoylamino-, Phenylaminocarbonyl-, Phe-

- 34 -

nyl-C₁₋₃-alkyl-aminocarbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

in einem Cyclopentylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,
10

eine gegebenenfalls durch eine C₃₋₅-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

15 durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe oder

durch eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinyl-, Pyrimidinyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isooxazolyl-, Thiazolyl- oder Isothiazolylgruppe,

20 wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₄-Alkoxy-carbonylamino-C₁₋₃-alkyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,
25

30 substituiert ist,

- 35 -

eine durch einen Phenylrest und eine Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte C₁₋₆-Alkylgruppe,

eine Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in der ein Wasserstoffatom der Methylen-

5 gruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl- oder Cyanogruppe substituiert sein kann,

die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe

10 R^b-A^b-E^b-C₁₋₃-alkyl-, in der

R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluor-

methoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe

15 substituierte Phenylgruppe,

eine 5-gliedrige Heteroarylgruppe, die

über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über

20 ein Stickstoffatom gebunden sein kann und die

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe

25 oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom

oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe

und zwei Stickstoffatome oder

30

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

- 36 -

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch
ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-,
5 Phenyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-
(C₁₋₃-alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Aus-
nahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroaryl-
resten, durch eine C₁₋₄-Alkylgruppe und einen Substituenten ausgewählt aus
Fluor, Chlor, Brom, C₁₋₃-Alkyl, Trifluormethyl, Phenyl, C₁₋₃-Alkoxy und
10 Trifluormethoxy auch disubstituiert sein können,

eine C₃₋₆-Cycloalkylgruppe, wobei

15 die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclo-
pentylgruppe oder in 3- oder 4-Stellung einer Cyclohexylgruppe durch eine
n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

20 der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cyclo-
25 alkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyl-
oder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert sein kann oder

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-glied-
rigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkylenimino-
30 gruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe
ersetzt sein können,

- 37 -

A^b eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -O-CH₂-, Carbonyl-, -NH-CO- oder -CO-NH-Gruppe,

5 in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein kann,

E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino- oder C₁₋₃-Alkoxy- carbonylgruppe substituierte Phenylengruppe bedeuten, oder

10 die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

15 R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe oder

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

20 der Cycloalkylenteil mit einem Phenyrring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

25 die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5- gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkylen iminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

A^c eine Bindung,

30

E^c eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

- eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe,
ein Sauerstoff- oder Schwefelatom,
- 5 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom
oder
- 10 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
und zwei Stickstoffatome oder
- ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,
- 15 oder eine Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,
wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im
Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine
C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-,
C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe
20 substituiert sein können, bedeutet,
- oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen
darstellen, in der
- 25 ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und
 eine –CH₂–CH₂-Gruppe durch eine gegebenenfalls durch eine Phenoxy- oder
Benzylgruppe substituierte 1,2-verknüpfte Phenylengruppe ersetzt sein kann,
wobei
- 30 die Phenoxy- oder Benzylgruppe im aromatischen Teil und die
Phenylengruppe unabhängig voneinander durch ein Fluor-, Chlor- oder

- 39 -

Bromatöm, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

5

oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino- oder N-(Methyl)-acetylaminogruppe oder eine 5- bis 7-gliedrige Cycloalkylenimino-gruppe substituierte C₁₋₃-Alkylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann,

10

bedeuten, wobei die bei der Definition der vorstehend genannten Reste erwähnten Phenylgruppen, sofern nichts anderes erwähnt wurde, durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, C₁₋₃-Alkoxy-,

15

Trifluormethoxy-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

20

die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

25

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

30

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze,

- 40 -

insbesondere jedoch die Verbindungen der obigen allgemeinen Formel I, in denen

X₁ die Gruppe CR¹,

5

X₂ die Gruppe CR²,

X₃ die Gruppe CR³ und

10 X₄ die Gruppe CR⁴ oder

eine der Gruppen X₁ bis X₄ ein Stickstoffatom und die restlichen der Gruppen X₁ bis X₄ drei der Gruppen CR¹ bis CR⁴,

15 wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R¹ bis R⁴ unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe, eine Trifluormethyl-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe darstellen und die restlichen
20 der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer -(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

25 A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe oder eine über das Kohlenstoff- bzw. Schwefelatom mit der Gruppe R^a in Formel (I) verknüpfte -NH-CH₂-, -NH-CO-, -NH-SO₂-Gruppe,

30 wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl- oder Pyridinylgruppe,

- 41 -

eine über ein Kohlenstoff- oder Stickstoffatom gebundene Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl- oder Thiazolylgruppe,

5 wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,
10

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

15 die Methylengruppe in Position 4 einer 6-gliedrigen Cycloalkyleniminogruppe durch eine Methylgruppe substituiert oder durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe ersetzt sein kann oder

20 in einer Piperidinogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,
25

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

30 **Het** eine 2,4-verknüpfte Pyrrolylen- oder Imidazolylengruppe, die jeweils über die Position 2 an die benachbarte Carbonylgruppe der Formel I gebunden sind und die

an einem Stickstoffatom durch eine C₁₋₃-Alkylgruppe substituiert sind und im Kohlenstoffgerüst durch eine C₁₋₃-Alkylgruppe oder eine Trifluormethylgruppe substituiert sein können,

5 R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

R⁷ eine terminal durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₄-Alkylgruppe, wobei

10 ein Wasserstoffatom in 4-Stellung eines Cyclohexylrestes durch eine C₁₋₅-Alkoxy-, C₁₋₃-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-methyl-, Phenyl-C₁₋₃-alkylamino-, Phenyl-C₁₋₂-alkyl-carbonylamino-, Benzoylamino-, Phenylaminocarbonyl-, Phenyl-C₁₋₃-alkyl-aminocarbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

15 in einem Cyclopentylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C₃₋₅-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

25 durch eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinyl-, Pyrimidinyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl- oder Isothiazolylgruppe,

30 wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen

- 43 -

im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₄-Alkoxy-carbonylamino-C₁₋₃-alkyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein
5 können,

substituiert ist,

eine durch einen Phenylrest und eine Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe
10 substituierte C₁₋₆-Alkylgruppe,

eine Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in der ein Wasserstoffatom der Methylen-
gruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhän-
gig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-,
15 Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl- oder Cyanogruppe substituiert sein kann,

die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe
R^b-A^b-E^b-C₁₋₃-alkyl-, in der

20 R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluor-
methoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe
substituierte Phenylgruppe,

25 eine 5-gliedrige Heteroarylgruppe, die

über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über
ein Stickstoffatom gebunden sein kann und die
eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe,
30 ein Sauerstoff- oder Schwefelatom,

- 44 -

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

5 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

10 eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C₁₋₄-Alkylgruppe und einen Substituenten ausgewählt aus Fluor, Chlor, Brom, C₁₋₃-Alkyl, Trifluormethyl, Phenyl, C₁₋₃-Alkoxy und Trifluormethoxy auch disubstituiert sein können,

20 eine C₃₋₆-Cycloalkylgruppe, wobei

25 die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenyrring kondensiert sein kann oder

30 ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

- 45 -

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyl- oder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert sein kann oder

5 die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

10 A^b eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -O-CH₂-, Carbonyl-, -NH-CO- oder -CO-NH-Gruppe,

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein kann,

15 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylengruppe bedeuten, oder

20 die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe oder

25 eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

30 ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

- 46 -

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkylen-iminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

5

A^c eine Bindung,

E^c eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

10

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

15

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

20

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

25

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können, bedeutet,

30

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen, in der

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

5 eine –CH₂–CH₂–Gruppe durch eine gegebenenfalls durch eine Phenoxy- oder Benzylgruppe substituierte 1,2-verknüpfte Phenylengruppe ersetzt sein kann, wobei

10 die Phenoxy- oder Benzylgruppe im aromatischen Teil und die Phenylengruppe unabhängig voneinander durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

15 oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino- oder N-(Methyl)-acetylaminogruppe oder eine 5- bis 7-gliedrige Cycloalkylenimino-gruppe substituierte C₁₋₃-Alkylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann,

20 bedeuten, wobei die bei der Definition der vorstehend genannten Reste erwähnten Phenylgruppen, sofern nichts anderes erwähnt wurde, durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

25 die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

- 48 -

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können
oder/und

5

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

10 deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

Ganz besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

15

X_1 die Gruppe CR^1 ,

X_2 die Gruppe CR^2 ,

20 X_3 die Gruppe CR^3 und

X_4 die Gruppe CR^4 ,

wobei R^1 , R^2 , R^3 und R^4 jeweils ein Wasserstoffatom oder

25

eine der Gruppen R^1 bis R^4 ein Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkylgruppe oder eine Trifluormethylgruppe darstellen und die restlichen der Gruppen R^1 bis R^4 jeweils ein Wasserstoffatom bedeuten,

30 A^a eine Bindung, ein Sauerstoffatom, eine $-CH_2-$, $-(CH_2)_2-$, $-NH-$, oder $-N(C_{1-3}\text{-Alkyl})$ -Gruppe,

- 49 -

wobei ein Stickstoffatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl-, 2-Pyridinyl-, 3-Pyridinyl- oder 4-Pyridinylgruppe,

5

eine 1-Pyrrolyl-, 2-Pyrrolyl-, 3-Pyrrolyl-, 2-Thienyl- oder 3-Thienylgruppe,

10

wobei das Stickstoffatom der Pyrrolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein können,

15

eine Pyrrolidino-, Piperidino- oder Morphinogruppe

R⁵ ein Wasserstoffatom,

20

Het eine 2,4-verknüpfte Pyrrolylen- oder Imidazolylengruppe, die jeweils über die Position 2 an die benachbarte Carbonylgruppe der Formel I gebunden sind und die

25

an einem Stickstoffatom durch eine C₁₋₃-Alkylgruppe substituiert sind und im Kohlenstoffgerüst durch eine C₁₋₃-Alkylgruppe oder eine Trifluormethylgruppe substituiert sein können,

25

R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

R⁷ die Gruppe R^d-CH₂- oder R^d-CH₂-CH₂-, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine C₁₋₃-Alkylgruppe oder eine Cyclopropylgruppe ersetzt sein kann und in denen

30

R^d eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, 2-Pyridinyl-, 3-Pyridinyl-, 4-Pyridinyl-, 2-Pyrimidinyl- oder 5-Pyrimidinylgruppe,

- 50 -

wobei die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy- oder Fluormethoxygruppe substituiert sein können,

5

bedeutet,

eine Phenyl-C≡C-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in
10 Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl- oder Phenylgruppe substituiert sein kann,

15 die Gruppe R^b-A^b-E^b-CH₂-, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und in der

20 R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, Methoxy-, Carboxy- oder Methoxy-carbonylgruppe substituierte Phenylgruppe,

25

eine über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über ein Stickstoffatom gebundene Pyrrolyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl-, Isothiazolyl-, Oxadiazol- oder Thiadiazolylgruppe, in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann,

25

eine 2-Pyridyl-, 3-Pyridyl-, 4-Pyridyl-, Pyrazinyl-, 2-Pyrimidinyl-, 4-Pyrimidinyl-, 5-Pyrimidinyl-, 3-Pyridazinyl- oder 4-Pyridazinylgruppe,

30

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-

- 51 -

amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C₁₋₃-Alkylgruppe und einen Substituenten ausgewählt aus Fluor, Chlor, Brom, C₁₋₃-Alkyl, Trifluormethyl, Phenyl, auch disubstituiert sein können,

5

eine C₅₋₆-Cycloalkylgruppe, wobei

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung der Cyclopentylgruppe oder in 4-Stellung der Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

10

oder eine 5- bis 6-gliedrige Cycloalkyleniminogruppe, in der

15

der Cycloalkylenteil mit einem gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl- oder C₁₋₃-Alkoxygruppe substituierten Phenyrring kondensiert sein kann oder

20

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und die beiden Wasserstoffatome der Methylengruppe in Position 3 der 5-gliedrigen oder in Position 4 der 6-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

25

A^b eine Bindung, eine -CH₂-, -NH-, -O-CH₂-, -NH-CO- oder -CO-NH-Gruppe,

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine Methylgruppe ersetzt sein kann,

30

E^b eine 1,4-verknüpfte, gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy- oder Trifluormethoxygruppe substituierte Phenylengruppe bedeuten, oder

- 52 -

die Gruppe $R^c-A^c-E^c-C_{1-3}\text{-alkyl-}$, in der

R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine
5 $C_{1-3}\text{-Alkyl-}$, Trifluormethyl-, Methoxy-, Carboxy- oder Methoxycarbonylgruppe
substituierte Phenylgruppe,

A^c eine Bindung,

10 E^c eine über zwei Kohlenstoffatome in den relativen Positionen 1,3 gebundene
Pyrrolylen-, Pyrazolylen-, Imidazolylen-, Oxazolylen-, Isoxazolylen-, Thiazolylen-,
Isothiazolylen-, [1,3,4]-Oxadiazolen- oder [1,3,4]-Thiadiazolengruppe, in denen
ein an ein Stickstoffatom gebundenes Wasserstoffatom durch eine $C_{1-3}\text{-Alkyl-}$
gruppe ersetzt sein kann,

15 oder eine 1,4-verknüpfte Pyridinylen-, Pyridazinyl- oder Pyrimidinylengruppe,

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im
Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine
20 $C_{1-3}\text{-Alkyl-}$, Trifluormethyl- oder Methoxygruppe substituiert sein können,
bedeutet,

darstellen, wobei die bei der Definition der vorstehend genannten Reste erwähnten
Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I
25 enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder ver-
zweigt sein können, soweit nichts anderes erwähnt wurde,

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen
durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter
30 physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können
oder/und

- 53 -

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

5 deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

Als besonders bevorzugte Verbindungen seien beispielsweise folgende erwähnt:

(a) N-[3-(Biphenyl-4-yl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

(b) N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

(c) N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 54 -

(d) N-[4-(6-Methylpyridazin-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

5

(e) N-(4'-Hydroxybiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

10

(f) N-[4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

15

- 55 -

(g) N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

5

(h) N-[3-(4-Isopropylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

10

(i) N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

15

- 56 -

und

(j) N-[3-(4-Trifluormethylphenyl)-prop-2-inyl]-4-(4'-trifluoromethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

5

sowie deren Salze.

10 Erfindungsgemäß erhält man die neuen Verbindungen nach literaturbekannten Verfahren, beispielsweise nach folgenden Verfahren:

a. Umsetzung einer Verbindung der allgemeinen Formel

15

in der

- 57 -

X₁ bis X₄, R^a, A^a, R⁵ und Het wie eingangs erwähnt definiert sind und Z eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt,

mit einem Amin der allgemeinen Formel

5

in der

R⁶ und R⁷ wie eingangs erwähnt definiert sind.

10

Die Umsetzung wird zweckmäßigerweise mit einem entsprechenden Halogenid oder Anhydrid der allgemeinen Formel II in einem Lösungsmittel wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Ether, Tetrahydrofuran, Dioxan, Benzol, Toluol, Acetonitril oder Sulfolan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt. Diese kann jedoch auch mit der freien Säure gegebenenfalls in Gegenwart eines die Säure aktivierenden Mittels, z. B.

Propanphosphonsäurecycloanhydrid oder 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluoroborat (TBTU), oder eines wasserentziehenden Mittels, z.B.

20 in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Chlorwasserstoff, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclo-hexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder N,N'-Thionyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt werden.

b. Umsetzung einer Verbindung der allgemeinen Formel

- 58 -

in der

X₁ bis X₄, R^a und A^a wie eingangs erwähnt definiert sind und Z eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt,

5

mit einem Amin der allgemeinen Formel

in der

10 R⁵ bis R⁷ und Het wie eingangs erwähnt definiert sind.

Die Umsetzung kann entsprechend den vorstehend bei Verfahren (a) genannten Bedingungen erfolgen.

- 15 Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, so kann diese mittels Acylierung oder Sulfonylierung in eine entsprechende Acyl- oder Sulfonylverbindung der allgemeinen Formel I übergeführt werden oder
- 20 eine Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, so kann diese mittels Alkylierung oder reduktiver Alkylierung in eine entsprechende Alkylverbindung der allgemeinen Formel I übergeführt werden oder

- 59 -

eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, so kann diese mittels Veresterung in einen entsprechenden Ester der allgemeinen Formel I übergeführt werden oder

- 5 eine Verbindung der allgemeinen Formel I, die eine Carboxy- oder Estergruppe enthält, so kann diese mittels Amidierung in ein entsprechendes Amid der allgemeinen Formel I übergeführt werden oder
- 10 eine Verbindung der allgemeinen Formel I, die eine olefinische Doppelbindung oder eine C-C-Dreifachbindung enthält, so kann diese mittels katalytischer Hydrierung in eine entsprechende Alkyl- oder Alkylenverbindung der allgemeinen Formel I übergeführt werden.

Die nachträgliche Acylierung oder Sulfonylierung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan mit einem entsprechenden Acyl- oder Sulfonylderivat gegebenenfalls in Gegenwart einer tertiären organischen Base oder in Gegenwart einer anorganischen Base oder in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Schwefelsäure, Menthansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol und gegebenenfalls zusätzlich in Gegenwart von 4-Dimethylaminopyridin, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Die nachträgliche Alkylierung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan mit einem Alkylierungsmittel wie einem entsprechenden Halogenid oder Sulfonsäureester, z.B. mit Methyljodid, Ethylbromid, Dimethylsulfat oder Benzylchlorid, gegebenenfalls in

- 60 -

Gegenwart einer tertiären organischen Base oder in Gegenwart einer anorganischen Base zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 100°C, durchgeführt.

- 5 Die nachträgliche reduktive Alkylierung wird mit einer entsprechenden Carbonylverbindung wie Formaldehyd, Acetaldehyd, Propionaldehyd, Aceton oder Butyraldehyd in Gegenwart eines komplexen Metallhydrids wie Natriumborhydrid, Lithiumborhydrid oder Natriumcyanoborhydrid zweckmäßigerweise bei einem pH-Wert von 6-7 und bei Raumtemperatur oder in Gegenwart eines Hydrierungskatalysators, z.B. mit Wasserstoff in Gegenwart von Palladium/Kohle, bei einem Wasserstoffdruck von 1 bis 5 bar durchgeführt. Die Methylierung wird jedoch vorzugsweise in Gegenwart von Ameisensäure als Reduktionsmittel bei erhöhten Temperaturen, z.B. bei Temperaturen zwischen 60 und 120°C, durchgeführt.
- 10
- 15 Die nachträgliche Veresterung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan oder besonders vorteilhaft in einem entsprechenden Alkohol gegebenenfalls in Gegenwart einer Säure wie Salzsäure oder in Gegenwart eines wasserentziehenden Mittels, z.B. in
- 20 Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol und gegebenenfalls zusätzlich in Gegenwart von 4-Dimethylaminopyridin, N,N'-Carbonyldiimidazol oder Triphenyl-
- 25 phosphin/Tetrachlorkohlenstoff, zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

- Die nachträgliche Amidierung wird durch Umsetzung eines entsprechenden reaktionsfähigen Carbonsäurederivates mit einem entsprechenden Amin gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan, wobei das eingesetzte Amin gleichzeitig als Lösungsmittel dienen kann,

- 61 -

gegebenenfalls in Gegenwart einer tertiären organischen Base oder in Gegenwart einer anorganischen Base oder mit einer entsprechenden Carbonsäure in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisen-
säureisobutylester, Thionylchlorid, Trimethylchlorsilan, Schwefelsäure, Methansul-
5 fonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, O-(Benzotri-
zol-1-yl)-N,N,N',N'-tetramethyluronium-tetrafluoroborat, N,N'-Dicyclohexylcarbodiimid,
N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol und
gegebenenfalls zusätzlich in Gegenwart von 4-Dimethylamino-pyridin, N,N'-Car-
bonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, zweckmäßigerweise
10 bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen
0 und 80°C, durchgeführt.

Die nachträgliche katalytische Hydrierung wird mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle oder Platin in einem Lösungsmittel wie Methanol,
15 Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar, durchgeführt.
20 Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.
25 Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, tert.Butyl-dimethylsilyl-, Acetyl-, Benzoyl-, Methyl-, Ethyl-, tert.Butyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe,
als Schutzreste für eine Carboxygruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.Butyl-,
30 Benzyl- oder Tetrahydropyranylgruppe und

- 62 -

als Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe Betracht.

5

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C. - Die Abspaltung einer Silylgruppe kann jedoch auch mittels Tetrabutylammoniumfluorid wie vorstehend beschrieben erfolgen.

10

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer

20

Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

25

Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenechlorid, Dioxan, Methanol oder Diethylether.

30

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie

- 63 -

Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran bei Temperaturen zwischen 0 und 50°C.

- 5 Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C.
- 10 Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise cis-/trans-Gemische in ihre cis- und trans-Isomere, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.
- 15 So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre cis- und trans-Isomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen

- 64 -

Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Äpfelsäure, Mandelsäure,

- 5 Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise (+)-oder (-)-Mentyloxycarbonyl in Betracht.

Des Weiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

15 Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine saure Gruppe wie eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, 20 überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Arginin, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis V 25 sind entweder literaturbekannt oder man erhält diese nach literaturbekannten Verfahren bzw. werden in den Beispielen beschrieben.

Eine Verbindung der allgemeinen Formel II erhält man beispielsweise durch Umsetzung einer Verbindung der allgemeinen Formel

- 65 -

in der X_1 bis X_4 , A^a und R^a wie eingangs erwähnt definiert sind und Z^1 eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt, mit einem Amin der

5 allgemeinen Formel

in der R^5 und Het wie eingangs erwähnt definiert sind und Z^2 ein Schutzgruppe für
10 eine Carboxygruppe darstellt, und anschließender Abspaltung der Schutzgruppe.

Die Amine der allgemeinen Formel III sind literaturbekannt oder nach
literaturbekannten Verfahren zugänglich.

15 Die aromatischen oder heteroaromatischen Carbonsäuren gemäß der allgemeinen Formel IV sind literaturbekannt oder lassen sich mittels literaturbekannter Verfahren aus entsprechenden Aryl- oder Heteraryl-Edukten herstellen.

20 Die Amino-heteroarylcarbonsäureamide gemäß der allgemeinen Formel V sind ebenfalls literaturbekannt oder lassen sich in einfacher Weise aus gegebenenfalls substituierten Amino-heteroarylcarbonsäuren durch Umsetzung mit den entsprechenden Aminen oder aus Nitro-heteroarylcarbonsäuren durch Umsetzung mit den entsprechenden Aminen und anschließender Reduktion der Nitrogruppe herstellen.

25 Ausgangsverbindungen der Formel V', in denen Het eine 5-gliedrige Heteroarylengruppe bedeutet, die eine durch die Gruppe R^9 substituierte Iminogruppe enthält,

- 66 -

wobei R⁹ zusammen mit R⁶ eine -(CH₂)_p- Brücke darstellt, erhält man beispielsweise analog dem folgenden Syntheseschema:

5

Wie bereits eingangs erwähnt, weisen die Verbindungen der allgemeinen Formel I und deren physiologisch verträgliche Salze wertvolle pharmakologische Eigenschaften auf. Diese stellen insbesondere wertvolle Inhibitoren des mikrosomalen Triglycerid-Transferproteins (MTP) dar und eignen sich daher zur Senkung der Plasmaspiegel der atherogenen Lipoproteine.

10

Beispielsweise wurden die erfindungsgemäßen Verbindungen auf ihre biologischen Wirkungen wie folgt untersucht:

Inhibitoren von MTP wurden durch einen zellfreien MTP-Aktivitätstest identifiziert.

Solubilisierte Lebermikrosomen aus verschiedenen Spezies (z.B. Ratte, Schwein)

können als MTP-Quelle benutzt werden. Zur Herstellung von Donor- und Akzeptor-
vesikeln wurden in organischen Lösungsmitteln gelöste Lipide in einem geeigneten

5 Verhältnis gemischt und durch Verblasen des Lösungsmittels im Stickstoffstrom als
dünne Schicht auf eine Glasgefäßwand aufgebracht. Die zur Herstellung von Donor-
vesikeln verwendete Lösung enthielt 400 µM Phosphatidylcholin, 75 µM Cardiolipin
und 10 µM [¹⁴C]-Triolein (68,8 µCi/mg). Zur Herstellung von Akzeptorvesikeln wurde
eine Lösung aus 1,2 mM Phosphatidylcholin, 5 µM Triolein und 15 µM [³H]-Dipalmi-
10 toylphosphatidylcholin (108 mCi/mg) verwendet. Vesikel entstehen durch Benetzung
der getrockneten Lipide mit Testpuffer und anschließende Ultrabeschallung. Vesikel-
populationen einheitlicher Größe wurden durch Gelfiltration der ultrabeschallten
Lipide erhalten. Der MTP-Aktivitätstest enthält Donorvesikel, Akzeptorvesikel sowie
die MTP-Quelle in Testpuffer. Substanzen wurden aus konzentrierten DMSO-hal-
15 tigen Stammlösungen zugegeben, die Endkonzentration an DMSO im Test betrug
0,1%. Die Reaktion wurde durch Zugabe von MTP gestartet. Nach entsprechender
Inkubationszeit wurde der Transferprozeß durch Zugabe von 500 µl einer SOURCE
30Q Anionenaustauscher-Suspension (Pharmacia Biotech) gestoppt. Die Mischung
wurde für 5 Minuten geschüttelt und die an das Anionenaustauschermaterial gebun-
20 denen Donorvesikel durch Zentrifugation abgetrennt. Die sich im Überstand befin-
dende Radioaktivität von [³H] und [¹⁴C] wurde durch Flüssigkeits-Szintillations-
Messung bestimmt und daraus die Wiederfindung der Akzeptorvesikel und die
Triglycerid-Transfer-Geschwindigkeit berechnet. Die Verbindungen der allgemeinen
Formel I zeigen in dem beschriebenen Test IC₅₀-Werte ≤ 100µM.

25

Auf Grund der vorstehend erwähnten biologischen Eigenschaften eignen sich die
Verbindungen der allgemeinen Formel I und deren physiologisch verträgliche Salze
insbesondere zur Senkung der Plasmakonzentration von atherogenen Apolipoprotein
B (apoB)-haltigen Lipoproteinen wie Chylomikronen und/oder Lipoproteinen sehr
30 niedriger Dichte (VLDL) sowie deren Überreste wie Lipoproteine niedriger Dichte
(LDL) und/oder Lipoprotein(a) (Lp(a)), zur Behandlung von Hyperlipidämien, zur Vor-
beugung und Behandlung der Atherosklerose und ihrer klinischen Folgen, und zur

- 68 -

Vorbeugung und Behandlung verwandter Erkrankungen wie Diabetes mellitus, Adipositas und Pankreatitis, wobei die orale Applikation bevorzugt ist.

Die zur Erzielung einer entsprechenden Wirkung erforderliche Tagesdosis liegt beim

- 5 Erwachsenen zwischen 0,5 und 500 mg, zweckmäßigerweise zwischen 1 und 350 mg, vorzugsweise jedoch zwischen 5 und 200 mg.

Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen wie anderen Lipidsen-

- 10 ker, beispielsweise mit HMG-CoA-Reduktase-Inhibitoren, Cholesterolsynthetase-Inhibitoren wie Squalensynthase-Inhibitoren und Squalenzyklase-Inhibitoren, Gallensäure-bindende Harze, Fibrate, Cholesterol-Resorptions-Inhibitoren, Niacin, Probu-
- 15 col, CETP Inhibitoren und ACAT Inhibitoren zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten,
- 20 Dragées, Kapseln, Pulver, Suspensionen oder Zäpfchen einarbeiten.

Die nachfolgenden Beispiele dienen der näheren Erläuterung der Erfindung:

Beispiel 1

N-[4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethyl]-2-(biphenyl-2-carbonylamino)-
thiazol-4-carbonsäureamid

5

a. 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzonitril

Eine Lösung aus 20.0 g (0.118 mol) 4-Cyanophenylhydrazin und 19.1 g (0.118 mol) Benzoylaceton in 600 ml Methanol wird mit 16.7 mg Triethylamin versetzt und zwei Tage gerührt. Das Lösungsmittel wird abdestilliert, der Rückstand in Dichlormethan aufgenommen, mit Wasser gewaschen und mit Natriumsulfat getrocknet. Anschließend wird über eine Kieselgelsäule chromatographiert, wobei mit Dichlormethan eluiert wird.

Ausbeute: 22.2 g (73 % der Theorie),

R_f-Wert: 0.9 (Kieselgel; Dichlormethan/Methanol= 19:1)

15 C₁₇H₁₃N₃ (259.31)

Massenspektrum: (M+H)⁺ = 260

b. 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethylamin

22.2 g (0.086 mol) 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzonitril werden in 660 ml methanolischem Ammoniak gelöst und nach Zugabe von Raney-Nickel bei Raumtemperatur mit Wasserstoff (3 bar) hydriert. Der Katalysator wird abfiltriert und die Lösung eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Dichlormethan/Methanol = 4:1 eluiert wird.

Ausbeute: 22 g (97 % der Theorie),

25 R_f-Wert: 0.2 (Kieselgel; Dichlormethan/Methanol= 9:1)

C₁₇H₁₇N₃ (263.35)

Massenspektrum: (M+H)⁺ = 264

M⁺ = 263

30 c. 2-Amino-thiazol-4-carbonsäureethylester

7.2 g (0.094 mol) Thioharnstoff werden in 100 ml Ethanol gelöst, bei Raumtemperatur mit 12.0 g (0.086 mol) Brombrenztraubensäureethylester versetzt und danach

- 70 -

1.5 Stunden zum Rückfluß erhitzt. Nach dem Abkühlen wird mit 50 ml Wasser verdünnt, mit konz. Ammoniak alkalisch gestellt und der Niederschlag abgesaugt.
Ausbeute: 12.5 g (84 % der Theorie),

R_f-Wert: 0.5 (Kieselgel; Dichlormethan/Ethanol= 19:1)

5 C₆H₈N₂O₂S (172.21)

Massenspektrum: (M-H)⁻ = 171
(M+H)⁺ = 173
(M+Na)⁺ = 195

10 d. 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbonsäureethylester

1.0 g (5.0 mmol) 2-Biphenylcarbonsäure werden in 15 ml Dimethylformamid vorgelegt und nach Zugabe von 0.9 g (5.45 mmol) 2-Amino-thiazol-4-carbonsäureethyl-ester, 1.8 g (5.60 mmol) O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluoroborat (TBTU) und 2.9 ml (15.4 mmol) N-Ethyl-diisopropyl-amin 12 Stunden gerührt. Die Lösung wird eingedampft und an Kieselgel chromatographiert, wobei mit Petrolether/Essigester (10-30%) eluiert wird.

Ausbeute: 0.5 g (28 % der Theorie),

R_f-Wert: 0.3 (Kieselgel; Petrolether/Essigester= 7:3)

C₁₉H₁₆N₂O₃S (352.41)

20 Massenspektrum: (M+H)⁻ = 351
(M+Na)⁺ = 375

e. 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbonsäure

0.5 g (1.4 mmol) 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbonsäureethylester werden in 30 ml Ethanol und 1.6 ml 2 molarer Natronlauge 18 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird abdestilliert, der Rückstand mit Wasser versetzt und mit 2 molarer Salzsäure angesäuert. Das ausgefallene Produkt wird abgesaugt.

Ausbeute: 0.3 g (72 % der Theorie),

30 R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol= 4:1)

C₁₇H₁₂N₂O₃S (324.36)

Massenspektrum: (M-H)⁻ = 323

- 71 -

f. N-[4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethyl]-2-(biphenyl-2-carbonylamino)-thiazol-4-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(Biphenyl-2-carbonylamino)-thiazol-4-car-

- 5 bongsäure, 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 23 % der Theorie,

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₃₄H₂₇N₅O₂S (569.69)

- 10 Massenspektrum: (M-H)⁻ = 568
 (M+Na)⁺ = 592

Beispiel 2

15 N-(Biphenyl-4-yl)methyl-2-(biphenyl-2-carbonylamino)-thiazol-4-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbon-säure, 4-Phenylbenzylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 86 % der Theorie,

- 20 R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol= 19:1)

C₃₀H₂₃N₃O₂S (489.60)

Massenspektrum: (M-H)⁻ = 488

Beispiel 3

25

N-(4-Benzoylamino-phenylmethyl)-2-(biphenyl-2-carbonylamino)-thiazol-4-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbon-säure, 4-Benzoylaminobenzylamin, TBTU und N-Ethyldiisopropylamin in Dimethyl-

- 30 formamid.

Ausbeute: 25 % der Theorie,

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol= 9:1)

- 72 -

Massenspektrum: $(\text{M}-\text{H})^- = 531$
 $(\text{M}+\text{H})^+ = 533$
 $(\text{M}+\text{Na})^+ = 555$

5

Beispiel 4

N-(Biphenyl-4-yl)methyl-5-(4'-trifluormethylbiphenyl-2-carbonylamino)-thiophen-2-carbonsäureamid

10

a. N-(Biphenyl-4-yl)methyl-5-nitro-thiophen-2-carbonsäureamid

Ein Gemisch aus 766 mg (4.0 mmol) 5-Nitrothiophen-2-carbon-säurechlorid, 733 mg (4.0 mmol) 4-Phenylbenzylamin und 1 ml Triethylamin werden in 45 ml Tetrahydrofuran 18 Stunden gerührt. Das Lösungsmittel wird abdestilliert und an Kieselgel

15 chromatographiert, wobei mit Dichlormethan eluiert wird.

Ausbeute: 540 mg (40 % der Theorie),

R_f-Wert: 0.30 (Kieselgel; Dichlormethan)

Massenspektrum: $(\text{M}-\text{H})^- = 337$

20

b. N-(Biphenyl-4-yl)methyl-5-aminothiophen-2-carbonsäureamid

500 mg (1.47 mmol) N-(Biphenyl-4-yl)methyl-5-nitrothiophen-2-carbonsäureamid werden in 35 ml Methanol und 15 ml Dichlormethan gelöst und nach Zugabe von 300 mg Raney-Nickel bei Raumtemperatur mit Wasserstoff (3 bar) hydriert. Der Katalysator wird abfiltriert und die Lösung eingedampft.

Ausbeute: 400 mg (88 % der Theorie),

R_f-Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 50:1)

c. N-(Biphenyl-4-yl)methyl-5-(4'-trifluormethylbiphenyl-2-carbonylamino)-thiophen-2-carbonsäureamid

- 73 -

Hergestellt analog Beispiel 4a aus N-(Biphenyl-4-yl)methyl-5-aminothiophen-2-carbonsäureamid, 4'-Trifluormethylbiphenyl-2-carbonsäurechlorid und Triethylamin in Tetrahydrofuran.

Ausbeute: 43 % der Theorie

5 R_f-Wert: 0.50 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₃₂H₂₃F₃N₂O₂S (556.61)

Massenspektrum: (M-H)⁻ = 555

Beispiel 5

10

N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-(4'-trifluormethylbiphenyl-2-carbonylamino)-pyrimidin-4-carbonsäureamid

a. 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzonitril

15 5.3 g (0.04 mol) 1,2,3,4-Tetrahydrochinolin werden in 60 ml Dimethylsulfoxid gelöst, 7.1 g (0.064 mol) Kalium-tert.butylat zugesetzt und 20 Minuten gerührt. Anschließend werden 7.7 g (0.064 mol) 4-Fluorbenzonitril in Dimethylsulfoxid zugetropft und drei Tage bei 90°C gerührt. Das Reaktionsgemisch wird auf gesättigte Natriumchloridlösung gegossen und mit Essigester extrahiert. Die vereinigten organischen Extrakte

20 werden an Aluminiumoxid chromatographiert, wobei mit Petrolether/Dichlormethan 1:1 eluiert wird.

Ausbeute: 4.5 g (48 % der Theorie),

R_f-Wert: 0.30 (Kieselgel; Dichlormethan/Petrolether = 1:1)

C₁₆H₁₄N₂ (234.30)

25 Massenspektrum: (M-H)⁻ = 233

b. 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzylamin

Hergestellt analog Beispiel 1b aus 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzonitril, Raney-Nickel und methanolischem Ammoniak unter Zusatz von Wasserstoff.

30 Ausbeute: 88 % der Theorie

R_f-Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₁₆H₁₆N₂ (238.34)

- 74 -

Massenspektrum: $(M+H)^+$ = 239

c. N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-chlor-pyrimidin-4-carbonsäureamid

5 Hergestellt analog Beispiel 4a aus 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzylamin, 6-Chlorpyrimidin-4-carbonsäurechlorid und Triethylamin in Tetrahydrofuran.

Ausbeute: 69 % der Theorie

R_f -Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 50:1)

$C_{12}H_{19}ClN_4O$ (378.86)

10 Massenspektrum: $(M-H)^-$ = 377/79 (Chlorisotope)

d. N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-(2,3-dimethoxy-phenylmethylamino)-pyrimidin-4-carbonsäureamid

15 300 mg (0.79 mmol) N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-chlor-pyrimidin-4-carbonsäureamid und 500 mg (3.0 mmol) 2,4-Dimethoxybenzylamin werden zwei Stunden bei 160°C gerührt. Nach dem Abkühlen wird an Kieselgel chromatographiert, wobei mit Dichlormethan eluiert wird.

Ausbeute: 380 mg (94 % der Theorie),

R_f -Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 19:1)

20 $C_{30}H_{31}N_5O_3$ (509.61)

Massenspektrum: $(M-H)^-$ = 508

$(M+Na)^+$ = 532

e. N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-amino-pyrimidin-4-carbonsäureamid

25 350 mg (0.68 mmol) N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-(2,3-dimethoxy-benzylamino)-pyrimidin-4-carbonsäureamid werden in 30 ml Dichlormethan gelöst und nach Zugabe von 7 ml Trifluoressigsäure zwei Tage gerührt. Das Lösungsmittel wird abdestilliert, mit methanolischem Ammoniak alkalisch gestellt und 30 an Kieselgel chromatographiert, wobei mit Dichlormethan/Ethanol = 99:1 eluiert wird.

Ausbeute: 130 mg (53 % der Theorie),

R_f -Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 75 -

Massenspektrum: $(\text{M}-\text{H})^- = 358$

f. N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-(4'-trifluormethylbiphenyl-2-carbonylamino)-pyrimidin-4-carbonsäureamid

Hergestellt analog Beispiel 4a aus N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-amino-pyrimidin-4-carbonsäureamid, 4'-Trifluormethylbiphenyl-2-carbonsäurechlorid und Triethylamin in Tetrahydrofuran.

Ausbeute: 17 % der Theorie

10 R_f -Wert: 0.40 (Kieselgel; Petrolether/Essigester = 2:1)

Massenspektrum: $\text{M}^+ = 607$
 $(\text{M}+\text{Na})^+ = 630$

15 Beispiel 6

N-[4-(3,4-Dihydro-1H-isochinolin-2-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-20 1-methyl-pyrrol-2-carbonsäure, 4-(3,4-Dihydro-1H-isochinolin-2-yl)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 100 % der Theorie

R_f -Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

25 Massenspektrum: $(\text{M}-\text{H})^+ = 609$
 $(\text{M}-\text{H})^- = 607$
 $(\text{M}-\text{HCOO})^- = 653$

- 76 -

Beispiel 7

N-(4'-Methylbiphenyl-4-yl)methyl-5-(4'-trifluormethylbiphenyl-2-carbonylamino)-nicotinsäureamid

- 5 Hergestellt analog Beispiel 1d aus 5-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-nicotinsäure, 4'-Methylbiphenyl-4-methylamin, TBTU und N-Ethyldiisopropylamin in Dimethyl-formamid.

Ausbeute: 26 % der Theorie

R_f-Wert: 0.49 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₃₄H₂₆F₃N₃O₂ (565.60)

Massenspektrum: (M-H)⁻ = 564
(M+Na)⁺ = 588

Beispiel 8

15

N-(4-Phenylaminocarbonyl-phenylmethyl)-5-(4'-trifluormethylbiphenyl-2-carbonylamino)-nicotinsäureamid

- 20 Hergestellt analog Beispiel 1d aus 4-Phenylaminocarbonyl-benzylamin, 5-(4'-Trifluor-methylbiphenyl-2-carbonyl-amino)-nicotinsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 21 % der Theorie

R_f-Wert: 0.41 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₂₅F₃N₄O₃ (594.59)

Massenspektrum: M⁺ = 594

25

Beispiel 9

N-[4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethyl]- 5-(4'-trifluormethylbiphenyl-2-carbonylamino)-nicotinsäureamid

- 30 Hergestellt analog Beispiel 1d aus 5-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-nicotinsäure, 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzylamin, TBTU und N-Ethyldi-isopropylamin in Dimethylformamid.

- 77 -

Ausbeute: 32 % der Theorie

R_f-Wert: 0.48 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₇H₂₈F₃N₅O₂ (631.66)

Massenspektrum: (M+Na)⁺ = 654

5

Beispiel 10

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

10 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure, 4'-Methylbiphenyl-4-methylamin, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 10 % der Theorie

R_f-Wert: 0.95 (Kieselgel; Dichlormethan/Ethanol = 4:1)

15 C₃₃H₂₇F₃N₄O₂ (568.60)

Massenspektrum: (M-H)⁻ = 567
(M+Na)⁺ = 591

Beispiel 11

20

N-(Biphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Eine Lösung aus 100 mg (0.25 mmol) 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure, 48 mg (0.25 mmol) 4-Phenylbenzylamin und 0.2 ml (1.5 mmol) N-Methylmorpholin in 6 ml Dichlormethan wird bei -10°C mit 0.3 ml (0.5 mmol) Propanphosphonsäurecycloanhydrid (50 Gewichts-% in Essigester) versetzt und 2 Stunden unter Kühlung gerührt. Anschließend wird mit 2 molarer Salzsäure und 2 molarer Natronlauge gewaschen, die vereinigten organischen Extrakte getrocknet und eingedampft.

30 Ausbeute: 0.12 g (84 % der Theorie),

R_f-Wert: 0.59 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₃₂H₂₅F₃N₄O₂ (554.57)

- 78 -

Massenspektrum: $(M-H)^{-}$ = 553
 $(M+H)^{+}$ = 555
 $(M+Na)^{+}$ = 577

5 Beispiel 12

N-[4-(Piperidino)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-(Piperidino)-benzylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methylimidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 88 % der Theorie

R_f-Wert: 0.53 (Kieselgel; Dichlormethan/Ethanol= 9:1)

15 C₃₁H₃₀F₃N₅O₂ (561.61)

Massenspektrum: $(M-H)^{-}$ = 560

Beispiel 13

20 N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-4-(4'-tri-fluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 85 % der Theorie

R_f-Wert: 0.71 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₃₅H₃₀F₃N₅O₂ (609.65)

Massenspektrum: $(M-H)^{-}$ = 608

- 79 -

Beispiel 14

N-(4'-Trifluormethylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonyl-

5 amino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4'-Trifluormethylbiphenyl-4-methylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

10 Ausbeute: 83 % der Theorie

R_f-Wert: 0.52 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₃₃H₂₄F₆N₄O₂ (622.57)

Massenspektrum: (M-H)⁻ = 621

15 Beispiel 15

N-(4'-Chlorbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-

1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4'-Chlorbiphenyl-4-methylamin und 4-(4'-

20 Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in
Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 88 % der Theorie

R_f-Wert: 0.54 (Kieselgel; Dichlormethan/Ethanol= 9:1)

25 C₃₂H₂₄ClF₃N₄O₂ (589.02)

Massenspektrum: (M-H)⁻ = 587/89 (Chlorisotope)

- 80 -

Beispiel 16

N-[4-(Pyridin-4-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 11 aus 4-(Pyridin-4-yl)-benzylamin und 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 94 % der Theorie

R_f-Wert: 0.41 (Kieselgel; Dichlormethan/Ethanol= 9:1)

10 C₃₁H₂₄F₃N₅O₂ (555.56)

Massenspektrum: (M-H)⁻ = 554

Beispiel 17

15 N-[4-([1,2,3]-Thiadiazol-4-yl)-phenylmethyl]-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

- Hergestellt analog Beispiel 11 aus 4-([1,2,3]-Thiadiazol-4-yl)-benzylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Di-chlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methyl-morpholin.

20 Ausbeute: 88 % der Theorie

R_f-Wert: 0.52 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₂₈H₂₁F₃N₆O₂S (562.57)

Massenspektrum: (M-H)⁻ = 561

25

Beispiel 18

N-[4-(6-Methyl-pyridazin-3-yl)-phenylmethyl]-4-(4'-trifluor-methylbiphenyl-

30 2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

a. 4-(6-Methyl-pyridazin-3-yl)-benzonitril

- 81 -

875 mg (6.8 mmol) 3-Chlor-6-methylpyridazin und 237 mg (0.2 mmol) Tetrakis-triphenylphosphin-palladium(0) werden in 40 ml Toluol vorgelegt, eine Lösung von 1.0 g (6.8 mmol) 4-Cyano-phenylboronsäure in 20 ml Methanol und 1.4 g (13.6 mmol) Natriumcarbonat in 20 ml Wasser zugegeben und 7 Stunden zum Rückfluß

5 erhitzt. Das Reaktionsgemisch wird zwei Tage bei Raumtemperatur gerührt und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Dichlormethan/Ethanol = 9:1 eluiert wird.

Ausbeute: 340 mg (26 % der Theorie),

R_f-Wert: 0.53 (Kieselgel; Dichlormethan/Ethanol= 9:1)

10 C₁₂H₉N₃ (195.23)

Massenspektrum: (M+H)⁺ = 196

b. 4-(6-Methyl-pyridazin-3-yl)-benzylamin

Hergestellt analog Beispiel 1b aus 4-(6-Methyl-pyridazin-3-yl)-benzonitril und Raney-Nickel in methanolischem Ammoniak unter Zusatz von Wasserstoff (3 bar).

Ausbeute: 73 % der Theorie,

R_f-Wert: 0.13 (Kieselgel; Dichlormethan/Ethanol= 75:25)

C₁₂H₁₃N₃ (199.26)

Massenspektrum: (M+H)⁺ = 200

20

c. N-[4-(6-Methyl-pyridazin-3-yl)-phenylmethyl]-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-(6-Methyl-pyridazin-3-yl)-benzylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 96 % der Theorie

R_f-Wert: 0.51 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₃₁H₂₅F₃N₆O₂ (570.57)

30 Massenspektrum: (M-H)⁻ = 569

(M+H)⁺ = 571

(M+Na)⁺ = 593

Beispiel 19

5 N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

a. N-tert.-Butoxycarbonyl-prop-2-inylamin

10 6.9 g (0.12 mol) Propargyamin wird in 50 ml Dichlormethan vorgelegt, bei 0°C wird eine Lösung aus 27.3 g (0.12 mol) Di-tert.butylcarbonat in 50 ml Dichlormethan zugetropft und drei Stunden bei Raumtemperatur gerührt. Anschließend wird auf -20°C abgekühlt und das ausgefallene Produkt wird abgesaugt.

Ausbeute: 18.2 g (94 % der Theorie),

b. N-tert.-Butoxycarbonyl-3-(4-biphenyl)prop-2-inylamin

15 Ein Gemisch aus 1.3 g (5.3 mmol) 4-Brombiphenyl, 0.1 g (0.53 mmol) Kupfer-(I)-iodid, 0.6 g (0.53 mmol) Tetrakis-triphenylphosphin-palladium(0) und 2.2 ml (16.1 mmol) Triethylamin werden in 30 ml Tetrahydrofuran 10 Minuten zum Rückfluß erhitzt, danach wird mit 1.0 g (6.4 mmol) N-tert.-Butoxycarbonyl-prop-2-inylamin versetzt und weitere 10 Stunden zum Rückfluß erhitzt. Der Niederschlag wird abfiltriert und das Filtrat eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Petrolether/Essigester 96:4 eluiert wird.

20 Ausbeute: 370 mg (22 % der Theorie),

R_f-Wert: 0.62 (Kieselgel; Petrolether/Essigester = 7:3)

C₂₀H₂₁NO₂ (307.4)

25 Massenspektrum: (M+Na)⁺ = 330

c. 3-(4-Biphenyl)-prop-2-inylamin-trifluoracetat

30 365 mg (1.1 mmol) N-tert.-Butoxycarbonyl-3-(4-biphenyl)prop-2-inylamin werden in 20 ml Dichlormethan und 2 ml Tri-fluoressigsäure 2 Stunden gerührt. Anschließend wird eingedampft und der Rückstand direkt weiter umgesetzt.

Ausbeute: 381 mg (quantitativ),

R_f-Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 9:1)

d. N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-
1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 3-Biphenyl-4-yl-prop-2-inylamin-trifluoracetat und

- 5 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in
Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 58 % der Theorie

R_f-Wert: 0.59 (Kieselgel; Dichlormethan/Ethanol= 9:1)

10 C₃₄H₂₅F₃N₄O₂ (578.59)

Massenspektrum: (M-H)⁻ = 577
(M+H)⁺ = 579
(M+Na)⁺ = 601

15 Beispiel 20

N-(4'-Hydroxybiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-
1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4'-Hydroxybiphenyl-4-methylamin und 4-(4'-Tri-

- 20 fluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlor-
methan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpho-
lin.

Ausbeute: 30 % der Theorie

R_f-Wert: 0.45 (Kieselgel; Dichlormethan/Ethanol= 9:1)

25 C₃₂H₂₅F₃N₄O₃ (570.57)

Massenspektrum: (M-H)⁻ = 569

Beispiel 21

- 30 N-[3-(4-Trifluormethylphenyl)-prop-2-inyl]-4-(4'-trifluor-methylbiphenyl-2-carbonyl-
amino)-1-methyl-imidazol-2-carbonsäureamid
-

- 84 -

Hergestellt analog Beispiel 11 aus 3-(4-Trifluormethylphenyl)-prop-2-inylamin und 4-(4'-Trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

5 Ausbeute: 71 % der Theorie

R_f-Wert: 0.49 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₂₉H₂₀F₆N₄O₂ (570.49)

Massenspektrum: (M-H)⁻ = 569
(M+Na)⁺ = 593

10

Beispiel 22

N-[4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

15 Hergestellt analog Beispiel 11 aus 4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-benzylamin und 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 67 % der Theorie

20 R_f-Wert: 0.62 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₃₄H₃₃F₃N₄O₄ (618.66)

Massenspektrum: (M-H)⁻ = 617

Beispiel 23

25

N-[3-(4-tert.Butylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 3-(4-tert.Butylphenyl)-prop-2-inylamin und 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in

30 Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 33 % der Theorie

- 85 -

R_f -Wert: 0.52 (Kieselgel; Dichlormethan/Ethanol = 9:1)

$C_{32}H_{29}F_3N_4O_2$ (558.60)

Massenspektrum: $(M-H)^{-} = 557$

$(M+Na)^{+} = 581$

5

Beispiel 24

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 10 Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methyl-amin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f -Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 19:1)

15 $C_{34}H_{28}F_3N_3O_2$ (567.61)

Massenspektrum: $(M-H)^{-} = 566$

$(M+Na)^{+} = 590$

Beispiel 25

20

N-(4-Phenylcarbonylamino-phenylmethyl)-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-Phenylcarbonylamino-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und

25 N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 62 % der Theorie

R_f -Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

$C_{34}H_{27}F_3N_4O_3$ (596.61)

Massenspektrum: $(M-H)^{-} = 595$

30 $(M+Na)^{+} = 619$

157

- 86 -

Beispiel 26

N-[4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethyl]-4-(4'-tri-fluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säureamid

- 5 Hergestellt analog Beispiel 1d aus 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 19:1)

10 C₃₇H₃₀F₃N₅O₂ (633.67)

Massenspektrum: (M-H)⁻ = 632
(M+Na)⁺ = 656

Beispiel 27

15

N-(4'-Methylbiphenyl-4-yl)methyl-4-(biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 20 Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methyl-amin, 4-(Biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 99 % der Theorie

R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₃₃H₂₉N₃O₂ (499.61)

Massenspektrum: M⁺ = 499

25

Beispiel 28

N-Benzyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 30 Hergestellt analog Beispiel 1d aus Benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

- 87 -

Ausbeute: quantitativ

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₇H₂₂F₃N₃O₂ (477.49)

Massenspektrum: (M-H)⁻ = 476

5 (M+Na)⁺ = 490

Beispiel 29

N-Pyridin-2-ylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-
10 2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(Aminomethyl)-pyridin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

15 R_f-Wert: 0.50 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₆H₂₁F₃N₄O₂ (478.47)

Massenspektrum: (M-H)⁻ = 477

Beispiel 30

20

N-Pyridin-3-ylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 3-(Aminomethyl)-pyridin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₆H₂₁F₃N₄O₂ (478.47)

Massenspektrum: (M-H)⁻ = 477

30 (M+Na)⁺ = 501

- 88 -

Beispiel 31

N-Pyridin-4-ylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

5 Hergestellt analog Beispiel 1d aus 4-(Aminomethyl)-pyridin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₂₆H₂₁F₃N₄O₂ (478.47)

Massenspektrum: (M-H)⁻ = 477

(M+Na)⁺ = 501

Beispiel 32

15

N-Methoxycarbonylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus Glycinmethylester-hydrochlorid, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₃H₂₀F₃N₃O₄ (459.42)

Massenspektrum: (M-H)⁻ = 458

25 (M+Na)⁺ = 482

Beispiel 33

N-(2-Methoxycarbonylethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 89 -

Hergestellt analog Beispiel 1d aus β -Alaninmethylester-hydrochlorid, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

5 R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₄H₂₂F₃N₃O₄ (473.45)

Massenspektrum: (M-H)⁻ = 472
(M+Na)⁺ = 496

10 Beispiel 34

N-(4-[1,2,3]-Thiadiazol-4-yl-phenylmethyl)-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

15 Hergestellt analog Beispiel 1d aus 4-[1,2,3]-Thiadiazol-4-yl-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₉H₂₂F₃N₅O₂S (561.59)

20 Massenspektrum: (M-H)⁻ = 560

Beispiel 35

N-[2-(4-Methylphenyl)pyridin-5-ylmethyl]-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

25 Hergestellt analog Beispiel 1d aus (2-(4-Methylphenyl)pyridin-5-yl)-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

30 R_f-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₃H₂₇F₃N₄O₂ (568.60)

- 90 -

Massenspektrum: $(M-H)^{-}$ = 567
 $(M+Na)^{+}$ = 591

Beispiel 36

5

N-[4-(Pyridin-4-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(Pyridin-4-yl)-benzylamin, 4-(4'-Trifluormethylbi-
phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopro-
10 pylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.45 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₂H₂₅F₃N₄O₂ (554.57)

Massenspektrum: $(M-H)^{-}$ = 553

15

Beispiel 37

N-[4-(N-Methyl-N-cyclohexylaminocarbonyl)-phenylmethyl]-4-(4'-trifluormethyl-
biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

20 Hergestellt analog Beispiel 1d aus 4-(N-Methyl-N-cyclohexyl-aminocarbonyl)-
benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-
carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 98 % der Theorie

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

25 C₃₅H₃₅F₃N₄O₃ (616.68)

Massenspektrum: $(M-H)^{-}$ = 615

Beispiel 38

30 N-(4-Bromphenylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-
pyrrol-2-carbonsäureamid

- 91 -

Hergestellt analog Beispiel 1d aus 4-Brombenzylamin-hydro-chlorid, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

5 R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₇H₂₁BrF₃N₃O₂ (556.38)

Massenspektrum: (M-H)⁻ = 554/56 (Bromisotope)

Beispiel 39

10

N-(4'-Trifluormethylbiphenyl-4-yl)methyl-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Trifluormethylbiphenyl-4-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und

15 N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₂₅F₆N₃O₂ (621.58)

Massenspektrum: (M-H)⁻ = 620

20

Beispiel 40

N-(4'-Chlorbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

25 Hergestellt analog Beispiel 1d aus 4'-Chlorbiphenyl-4-methyl-amin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

30 C₃₃H₂₅ClF₃N₃O₂ (588.03)

Massenspektrum: (M-H)⁻ = 586/88 (Chlorisotope)

- 92 -

Beispiel 41

N-[3-(4-Methylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 3-(4-Methyl-phenyl)-prop-2-inylamin, 4-(4'-Tri-
fluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und
N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 57 % der Theorie

R_f-Wert: 0.6 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₃₀H₂₄F₃N₃O₂ (515.54)

Massenspektrum: (M-H)⁻ = 514

Beispiel 42

15 N-[3-(4-Isopropylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 3-(4-Isopropylphenyl)-prop-2-inylamin, 4-(4'-Tri-
fluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und
N-Ethyldiisopropylamin in Dimethylformamid.

20 Ausbeute: 82 % der Theorie

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₂H₂₈F₃N₃O₂ (543.59)

Massenspektrum: (M-H)⁻ = 542

Beispiel 43

N-Hydroxycarbonylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-
pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1e aus N-Methoxycarbonylmethyl-4-(4'-trifluormethylbi-

30 phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid und 2 molarer Natron-
lauge in Methanol.

Ausbeute: 77 % der Theorie

- 93 -

R_f-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 4:1)

C₂₂H₁₈F₃N₃O₄ (445.40)

Massenspektrum: (M-H)⁻ = 444
(M+Na)⁺ = 468

5

Beispiel 44

N-(2-Hydroxycarbonylethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

10 Hergestellt analog Beispiel 1e aus N-(2-Methoxycarbonylethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid und 2 molarer Natronlauge in Methanol.

Ausbeute: 67 % der Theorie

R_f-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 4:1)

15 C₂₃H₂₀F₃N₃O₄ (459.42)

Massenspektrum: (M-H)⁻ = 458

Beispiel 45

20 N-(Biphenyl-3-methyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 3-Phenylbenzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

25 Ausbeute: quantitativ

R_f-Wert: 0.8 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₃H₂₆F₃N₃O₂ (553.58)

Massenspektrum: (M-H)⁻ = 552

- 94 -

Beispiel 46

N-(2'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 2'-Methylbiphenyl-4-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 10 C₃₄H₂₈F₃N₃O₂ (567.61)

Massenspektrum: (M-H)⁻ = 566

Beispiel 47

- 15 N-(4'-Methoxycarbonylbiphenyl-4-yl)methyl-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methoxycarbonylbiphenyl-4-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

- 20 Ausbeute: quantitativ

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₅H₂₈F₃N₃O₄ (611.62)

Massenspektrum: (M-H)⁻ = 610

- 25 Beispiel 48

N-[4-(Piperidino)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid

- Hergestellt analog Beispiel 1d aus 4-(Piperidino)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

- 95 -

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₂H₃₁F₃N₄O₂ (560.62)

Massenspektrum: (M-H)⁻ = 559

5 Beispiel 49

N-[4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säureamid

10 Hergestellt analog Beispiel 1d aus 4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldi-isopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₅H₃₄F₃N₃O₄ (617.67)

15 Massenspektrum: (M+Na)⁺ = 640

Beispiel 50

N-(4-tert.Butylphenylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

20 Hergestellt analog Beispiel 1d aus 4-tert.Butylbenzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

25 R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₁H₃₀F₃N₃O₂ (533.59)

Beispiel 51

30 N-(4-Chlorphenylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 96 -

Hergestellt analog Beispiel 1d aus 4-Chlorbenzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

5 R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₇H₂₁ClF₃N₃O₂ (511.93)

Massenspektrum: (M-H)⁻ = 510/12 (Chlorisotope)

Beispiel 52

10

N-(2-Phenylthiazol-4-ylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

15 Hergestellt analog Beispiel 1d aus (2-Phenylthiazol-4-yl)-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₀H₂₃F₃N₄O₂S (560.60)

Massenspektrum: (M-H)⁻ = 559

20

Beispiel 53

N-(3-Chlor-5-trifluormethylpyridin-2-yl-methyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säureamid

25 Hergestellt analog Beispiel 1d aus 3-Chlor-5-trifluormethyl-pyridin-2-yl-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

30 C₂₇H₁₉ClF₆N₄O₂ (580.92)

Massenspektrum: (M-H)⁻ = 579/81 (Chlorisotope)

- 97 -

Beispiel 54

N-(5-Phenyl-[1,3,4]oxadiazol-2-yl-methyl)-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus (5-Phenyl-[1,3,4]oxadiazol-2-yl)-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiiso-propylamin in Dimethylformamid.

Ausbeute: 76 % der Theorie

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₂₉H₂₂F₃N₅O₃ (545.52)

Massenspektrum: (M-H)⁻ = 544

Beispiel 55

15 N-[4-(Pyrimidin-4-yl-carbonylamino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(Pyrimidin-4-yl-carbonylamino)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

20 Ausbeute: 99 % der Theorie

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₂H₂₅F₃N₆O₃ (598.58)

Massenspektrum: (M-H)⁻ = 597

25 Beispiel 56

N-(Biphenyl-4-yl)methyl-N-methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus N-Methyl-4-phenylbenzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 77 % der Theorie

- 98 -

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₂₈F₃N₃O₂ (567.61)

Massenspektrum: (M-H)⁻ = 566

5 Beispiel 57

N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzylamin, 4-(4'

10 Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiiso-propylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.65 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₆H₃₁F₃N₄O₂ (608.66)

15 Massenspektrum: (M-H)⁻ = 607

Beispiel 58

N-[4-(Pyridin-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-

20 1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(Pyridin-3-yl)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 37 % der Theorie

25 R_f-Wert: 0.65 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₂H₂₅F₃N₄O₂ (554.57)

Massenspektrum: (M-H)⁻ = 553

Beispiel 59

30

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-fluorobiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 99 -

Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methyl-amin, 4-(4'-Fluorbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 82 % der Theorie

5 R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₃H₂₈FN₃O₂ (517.60)

Beispiel 60

10 N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-methylbiphenyl-2-carbonyl-amino)-1-methylpyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methyl-amin, 4-(4'-Methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

15 Ausbeute: quantitativ

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₃₁N₃O₂ (513.64)

Massenspektrum: (M-H)⁻ = 512

Beispiel 61

N-(4'-Hydroxycarbonylbiphenyl-4-yl)methyl-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

25 Hergestellt analog Beispiel 1e aus N-(4'-Methoxycarbonyl-biphenyl-4-yl)methyl-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid und 2 molarer Natronlauge in Ethanol.

Ausbeute: quantitativ

R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₂₆F₃N₃O₄ (597.59)

30 Massenspektrum: (M-H)⁻ = 596

- 100 -

Beispiel 62

N-(4'-Hydroxybiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 4-(4-Hydroxyphenyl)-benzylamin, 4-(4'-Trifluor-
 methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und
 N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 58 % der Theorie

R_f-Wert: 0.50 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₃₃H₂₆F₃N₃O₃ (569.58)

Massenspektrum: (M-H)⁻ = 568

Beispiel 63

- 15 N-(4-Methoxycarbonyl-4-phenyl-hexyl)-4-(4'-trifluormethyl-biphenyl-2-carbonyl-
amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 5-Amino-2-ethyl-2-phenyl-pentansäuremethyl-
 ester, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure,
 TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

20 Ausbeute: 21 % der Theorie

R_f-Wert: 0.40 (Kieselgel; Petrolether/Essigester = 2:3)

C₃₄H₃₄F₃N₃O₄ (605.66)

Massenspektrum: (M-H)⁻ = 604

Beispiel 64

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1H-
pyrrol-2-carbonsäureamid

- Hergestellt analog Beispiel 11 aus 4'-Methylbiphenyl-4-methylamin und 4-(4'-Tri-
 30 fluormethylbiphenyl-2-carbonylamino)-1H-pyrrol-2-carbonsäure in Dichlormethan
 unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.
 Ausbeute: 17 % der Theorie

- 101 -

R_f-Wert: 0.58 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₃₃H₂₆F₃N₃O₂ (553.58)

Massenspektrum: (M-H)⁻ = 552

5 Beispiel 65

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-ethyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-ethyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 78 % der Theorie

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₅H₃₀F₃N₃O₂ (581.64)

15 Massenspektrum: (M-H)⁻ = 580

Beispiel 66

N-[4-(6-Methylpyridazin-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-

20 2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(6-Methylpyridazin-3-yl)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 28 % der Theorie

25 R_f-Wert: 0.49 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₂H₂₆F₃N₅O₂ (569.59)

Massenspektrum: (M-H)⁻ = 568

(M+H)⁺ = 570

(M+Na)⁺ = 592

- 102 -

Beispiel 67

N-[4-(Pyridin-2-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 4-(Pyridin-2-yl)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₃₂H₂₅F₃N₄O₂ (554.57)

Massenspektrum: (M-H)⁻ = 553
(M+Na)⁺ = 577

Beispiel 68

15

N-[3-(4-Methylphenyl)-propyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 50 mg (0.097 mmol) N-[3-(4-Methyl-phenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid werden in 10 ml Ethanol gelöst
20 und nach Zugabe von 20 mg Palladium auf Aktivkohle (10%) mit Wasserstoff hydriert. Der Katalysator wird abfiltriert und die Lösung eingedampft.

Ausbeute: 40 mg (79 % der Theorie),

R_f-Wert: 0.35 (Kieselgel; Petrolether/Essigester = 1:1)

C₃₀H₂₈F₃N₃O₂ (519.57)

25 Massenspektrum: (M-H)⁻ = 518

Beispiel 69

- 30 N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(morpholin-4-yl)-phenyl-carbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

a. 2-(Morpholin-4-yl)-benzoësäureethylester

- 103 -

Ein Gemisch aus 1.7 ml (10.6 mmol) 2-Brombenzoësäureethylester, 1.0 ml (11.0 mmol) Morpholin, 5.4 g (16.5 mmol) Cäsiumcarbonat, 75 mg (0.33 mmol) Palladium-II-acetat und 270 mg (0.43 mmol) 2,2'-Bis-(diphenylphosphino)-1,1'-binaphthyl werden in 30 ml Xylo 12 Stunden bei 100 °C gerührt. Das Lösungsmittel wird abdestilliert und der Rückstand an Kieselgel chromatographiert, wobei mit Dichlormethan/Ethanol 9:1 eluiert wird.

5 Ausbeute: 0.6 g (25 % der Theorie),

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₁₃H₁₇NO₃ (235.29)

10 Massenspektrum: (M+H)⁺ = 236
(M+Na)⁺ = 258

b. 2-(Morpholin-4-yl)-benzoësäure

Hergestellt analog Beispiel 1e aus 2-(Morpholin-4-yl)-benzoësäureethylester und 15 2 molarer Natronlauge in Methanol.

Ausbeute: 90 % der Theorie,

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol/Ammoniak = 8 : 4 : 0.2)

C₁₁H₁₃NO₃ (207.23)

Massenspektrum: (M-H)⁻ = 206
20 (M+H)⁺ = 208

c. 1-Methyl-4-[2-(morpholin-4-yl)-phenylcarbonylamino]-pyrrol-2-carbonsäuremethylester

0.2 g (0.89 mmol) 2-(Morpholin-4-yl)-benzoësäure werden in 1.0 ml (13.7 mmol)

25 Thionylchlorid unter Zusatz von 2 Tropfen Dimethylformamid 90 Minuten gerührt. Die Lösung wird eingedampft, 0.2 g (0.89 mmol) 1-Methyl-4-amino-pyrrol-2-carbonsäuremethylester, 0.4 ml (2.7 mmol) Triethylamin und 20 ml Tetrahydrofuran zugesetzt und 17 Stunden gerührt. Das Lösungsmittel wird abdestilliert, der Rückstand in Dichlormethan gelöst und mit Wasser gewaschen. Die vereinigten organischen Extrakte

30 werden getrocknet und eingedampft.

Ausbeute: 0.3 g (100 % der Theorie),

R_f-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 104 -

Massenspektrum: $(M-H)^{-} = 342$
 $(M+\text{Na})^{+} = 366$

5 d. 1-Methyl-4-[2-(morpholin-4-yl)-phenylcarbonylamino]-pyrrol-2-carbonsäure

Hergestellt analog Beispiel 1e aus 1-Methyl-4-[2-(morpholin-4-yl)-phenylcarbonyl-amino]-pyrrol-2-carbonsäuremethylester und 2 molarer Natronlauge in Methanol.

Ausbeute: 75 % der Theorie

10 R_f -Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 328$
 $(M+\text{Na})^{+} = 352$

15 e. N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(morpholin-4-yl)-phenyl-carbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1e aus 1-Methyl-4-[2-(morpholin-4-yl)-phenylcarbonyl-amino]-pyrrol-2-carbonsäure, 4'-Methylbi-phenyl-4-methylamin, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

20 Ausbeute: 94 % der Theorie

R_f -Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 507$

25 Beispiel 70

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-(3-tert.butoxycarbonylaminopropyl)-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Trifluormethylbiphenyl-2-carbonsäure und N-(4'-

30 Methylbiphenyl-4-yl)methyl-4-amino-1-(3-tert.butoxycarbonylaminopropyl)-pyrrol-2-carbonsäureamid, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

- 105 -

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₄₁H₄₁F₃N₄O₄ (710.80)

Massenspektrum: (M-H)⁻ = 709
(M+Na)⁺ = 733

5

Beispiel 71

N-(4-Benzyloxy-benzyl)-N-methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

10 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, N-(4-Benzyloxy-benzyl)-methylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 79 % der Theorie

R_f-Wert: 0.54 (Kieselgel; Petrolether/Essigester = 1:2)

15 C₃₅H₃₀F₃N₃O₃ (597.64)

Massenspektrum: (M-H)⁻ = 596
(M+H)⁺ = 598

Beispiel 72

20

N-[4-(2-Methoxycarbonyl-ethyl)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

25 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(2-Methoxycarbonyl-ethyl)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 85 % der Theorie

R_f-Wert: 0.78 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₁H₂₈F₃N₃O₄ (563.58)

30 Massenspektrum: (M-H)⁻ = 562
(M+H)⁺ = 564

Beispiel 73

N-Methyl-N-benzyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, N-Methyl-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 79 % der Theorie

R_f-Wert: 0.77 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 10 $\text{C}_{28}\text{H}_{24}\text{F}_3\text{N}_3\text{O}_2$ (491.52)
 Massenspektrum: $(\text{M}-\text{H})^-$ = 490
 $(\text{M}+\text{H})^+$ = 492

Beispiel 74

- 15 N-(2-Difluormethoxy-phenylmethyl)-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid
Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-
methyl-pyrrol-2-carbonsäure, 2-Difluormethoxy-benzylamin, TBTU und Triethylamin
20 in Tetrahydrofuran.

Ausbeute: 69 % der Theorie

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 9:1)

$$\text{C}_{28}\text{H}_{22}\text{F}_5\text{N}_3\text{O}_3 \quad (543.49)$$

- | | | | |
|----|-----------------|------------|-------|
| | Massenspektrum: | $(M-H)^-$ | = 542 |
| 25 | | $(M+H)^+$ | = 544 |
| | | $(M+Na)^+$ | = 566 |

Beispiel 75

- 30 N-(2-Methyl-phenylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 107 -

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 2-Methyl-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 66 % der Theorie

5 R_f-Wert: 0.76 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₆H₂₄F₃N₃O₂ (491.52)

Massenspektrum: (M-H)⁻ = 490

(M+H)⁺ = 492

10 Beispiel 76

N-[2-(Biphenyl-4-yl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

15 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 2-(Biphenyl-4-yl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 88 % der Theorie

R_f-Wert: 0.76 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₂₈F₃N₃O₂ (567.61)

20 Massenspektrum: (M-H)⁻ = 566

(M+H)⁺ = 568

(M+Na)⁺ = 590

Beispiel 77

25

N-[4-(4-Methylpiperidino)-phenylmethyl]-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(4-Methylpiperidino)-benzylamin, TBTU und

30 Triethylamin in Tetrahydrofuran.

Ausbeute: 48 % der Theorie

R_f-Wert: 0.25 (Kieselgel; Petrolether/Essigester = 3:2)

- 108 -

Massenspektrum: $(\text{M}-\text{H})^- = 573$
 $(\text{M}+\text{H})^+ = 575$

5 Beispiel 78

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-10
1-methyl-pyrrol-2-carbonsäure, 4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-benzylamin,
TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 90 % der Theorie

R_f-Wert: 0.65 (Kieselgel; Petrolether/Essigester = 3:2)

15 Massenspektrum: $(\text{M}-\text{H})^- = 617$
 $(\text{M}+\text{H})^+ = 619$

Beispiel 79

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(3-Aza-spiro[5.5]undec-3-yl)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

25 Ausbeute: 65 % der Theorie

R_f-Wert: 0.21 (Kieselgel; Petrolether/Essigester = 3:2)

Massenspektrum: $(\text{M}+\text{H})^+ = 629$

- 109 -

Beispiel 80

N-[1-(4-Chlorphenyl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 1-(4-Chlorphenyl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 100 % der Theorie

R_f-Wert: 0.82 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 10 C₂₈H₂₃ClF₃N₃O₂ (525.96)

Massenspektrum: (M-H)⁻ = 524/26 (Chlorisotope)
(M+H)⁺ = 526/28 (Chlorisotope)

Beispiel 81

15

N-[4-(3-Methyl-[1,2,4]oxadiazol-5-yl)methyl-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(3-Methyl-[1,2,4]oxadiazol-5-yl)methyl-benzylamin,
20 TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 84 % der Theorie

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- C₃₁H₂₆F₃N₅O₃ (573.58)

Massenspektrum: (M-H)⁻ = 572
(M+H)⁺ = 574
(M+Na)⁺ = 596

Beispiel 82

- 30 N-(4-Methoxycarbonyl-cyclohexylmethyl)-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 110 -

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-Aminomethyl-cyclohexancarbonsäuremethylester, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 62 % der Theorie

5 R_f-Wert: 0.72 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₉H₃₀F₃N₃O₄ (541.57)

Massenspektrum: (M-H)⁻ = 540
(M+H)⁺ = 542

10 Beispiel 83

N-(4-Benzylxy-benzyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-

15 1-methyl-pyrrol-2-carbonsäure, 4-Benzylxy-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 83 % der Theorie

R_f-Wert: 0.73 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₂₈F₃N₃O₃ (583.61)

20 Massenspektrum: (M+H)⁺ = 584
(M+Na)⁺ = 606
(M-H)⁻ = 582
(M+HCOO)⁻ = 628

25 Beispiel 84

N-[4-(3-Methylpiperidino)-phenylmethyl]-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-

30 1-methyl-pyrrol-2-carbonsäure, 4-(3-Methylpiperidino)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 16 % der Theorie

- 111 -

R_f-Wert: 0.81 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₃H₃₃F₃N₄O₂ (574.65)

Massenspektrum: (M+H)⁺ = 575

(M+HCOO)⁻ = 619

5

Beispiel 85 I

N-[Cyclopropyl-(4-methoxy-phenyl)-methyl]-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid und

10 N-[1-(4-Methoxy-phenyl)-butyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid im Verhältnis 1:1

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, einem 1:1 Gemisch aus 1-(4-Methoxy-phenyl)-butylamin und C-Cyclopropyl-C-(4-methoxy-phenyl)-methylamin, TBTU und

15 Triethylamin in Tetrahydrofuran.

Ausbeute: 100 % der Theorie

R_f-Wert: 0.74 (Kieselgel; Dichlormethan/Ethanol = 9:1)

N-[Cyclopropyl-(4-methoxy-phenyl)-methyl]-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure-amid

20 C₃₁H₂₈F₃N₃O₃ (547.58)

Massenspektrum: (M)⁺ = 547
(M+H)⁺ = 548
(M+Na)⁺ = 570
(M-H)⁻ = 546

25 N-[1-(4-Methoxy-phenyl)-butyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

C₃₁H₃₀F₃N₃O₃ (549.59)

Massenspektrum: (M)⁺ = 549
(M+H)⁺ = 550
(M+Na)⁺ = 572
(M-H)⁻ = 548

30

- 112 -

Beispiel 86

N-[5-(4-Cyano-4-phenyl-piperidino-carbonyl)-1-methyl-pyrrol-3-yl]-4'-trifluor-methyl-biphenyl-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-Cyano-4-phenyl-piperidin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 67 % der Theorie

R_f-Wert: 0.83 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₃₂H₂₇F₃N₄O₂ (556.59)

Massenspektrum: (M-H)⁻ = 555
(M+H)⁺ = 557

Beispiel 87

15

N-[4-(9-Ethylaminocarbonyl-fluoren-9-yl)-butyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 20 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(9-Ethylaminocarbonyl-fluoren-9-yl)-butylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₄₀H₃₇F₃N₄O₃ (678.76)

25 Massenspektrum: (M-H)⁻ = 677
(M+Na)⁺ = 701

Beispiel 88

- 30 N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-(3-aminopropyl)-pyrrol-2-carbonsäureamid

- 113 -

Hergestellt analog Beispiel 19c aus N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-(3-tert.butoxycarbonylaminopropyl)-pyrrol-2-carbonsäureamid und Trifluoressigsäure in Dichlormethan.

Ausbeute: quantitativ

5 R_f-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol/Ammoniak = 50 : 45 : 5)

C₃₆H₃₃F₃N₄O₂ (610.68)

Massenspektrum: (M-H)⁻ = 609

(M+H)⁺ = 611

10 Beispiel 89

N-[4-(5-Dimethylaminopyridin-2-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-

15 1-methyl-pyrrol-2-carbonsäure, 4-(5-Dimethylamino-pyridin-2-yl)-benzylamin, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 57 % der Theorie

R_f-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₃₄H₃₀F₃N₅O₂ (597.64)

20 Massenspektrum: (M-H)⁻ = 596

(M+H)⁺ = 598

(M+Na)⁺ = 620

Beispiel 90

25

N-[3-(Biphenyl-4-yl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-

1-methyl-pyrrol-2-carbonsäure, 3-(Biphenyl-4-yl)-prop-2-inylamin-trifluoracetat, TBTU

30 und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 22 % der Theorie

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 114 -

Massenspektrum: $(\text{M}-\text{H})^- = 576$
 $(\text{M}+\text{H})^+ = 578$

5 Beispiel 91

Hergestellt analog Beispiel 11 aus 3-(4-Isopropylphenyl)-prop-2-inylamin und
 10 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in
 Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methyl-
 morpholin.

Ausbeute: 24 % der Theorie

R_f -Wert: 0.49 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(\text{M}-\text{H})^- = 543$
 $(\text{M}+\text{Na})^+ = 567$

Beispiel 92

20 N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(pyrrolidin-1-yl)phenyl-carbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-[2-(Pyrrolidin-1-yl)-phenylcarbonylamino]-1-methyl-pyrrol-2-carbonsäure, 4'-Methyl-biphenyl-4-methylamin, TBTU und
 25 N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 82 % der Theorie

R_f -Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(\text{M}-\text{H})^- = 491$
 30 $(\text{M}+\text{Na})^+ = 515$

- 115 -

Beispiel 93

N-[5-(1,2,3,4-Tetrahydroisochinolin-2-yl-carbonyl)-1-methyl-pyrrol-3-yl]-4'-trifluor-methylbiphenyl-2-carbonsäureamid

5 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 1,2,3,4-Tetrahydroisochinolin, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 70 % der Theorie

R_f-Wert: 0.72 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₂₉H₂₄F₃N₃O₂ (503.52)

Massenspektrum: (M-H)⁻ = 502
(M+H)⁺ = 504

Beispiel 94

15

N-[5-(1,3-Dihydro-isoindol-2-yl-carbonyl)-1-methyl-pyrrol-3-yl]-4'-trifluormethyl-biphenyl-2-carbonsäureamid

20 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 2,3-Dihydro-1H-isoindol, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 79 % der Theorie

R_f-Wert: 0.64 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₈H₂₂F₃N₃O₂ (489.50)

25 Massenspektrum: (M-H)⁻ = 488
(M+H)⁺ = 490
(M+Na)⁺ = 512

Beispiel 95

30 N-(4'-Methylbiphenyl-4-yl)methyl-4-[1-oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäureamid

- 116 -

a. 3-Methyl-4'-trifluormethylbiphenyl-2-carbonsäuremethylester

Ein Gemisch aus 1.1 g (4.58 mmol) 2-Brom-6-methyl-benzoësäuremethylester, 0.9 g (4.7 mmol) 4-(Trifluormethyl)-benzolboronsäure, 0.3 g (0.26 mmol) Tetrakis-triphenylphosphin-palladium(O) und 0.2 g (0.24 mmol) 2,2'-Bis-(diphenyl-phosphino)-1,1'-binaphthyl werden in 150 ml Dimethoxyethan vorgelegt, nach 10 Minuten mit 7 ml (7 mmol) 1 molarer Natriumcarbonatlösung versetzt und anschließend 5 Stunden zum Rückfluß erhitzt. Das Lösungsmittel wird abdestilliert, der Rückstand in Wasser/Dichlormethan verteilt, die vereinigten organischen Extrakte getrocknet und an Kieselgel chromatographiert, wobei mit Essigester/Petrolether 95:5 eluiert wird.

Ausbeute: 1.1 g (83 % der Theorie),

R_f-Wert: 0.8 (Kieselgel; Dichlormethan/Ethanol = 99:1)

C₁₆H₁₃F₃O₂ (294.28)

Massenspektrum: (M+Na)⁺ = 317

b. 3-Brommethyl-4'-trifluormethylbiphenyl-2-carbonsäuremethylester

0.5 g (1.7 mmol) 3-Methyl-4'-trifluormethylbiphenyl-2-carbon-säuremethylester werden in 10 ml Tetrachlorkohlenstoff gelöst und nach Zugabe von 0.45 g (2.57 mmol) N-Bromsuccinimid und 10 mg (0.06 mmol) 2,2-Azoisobuttersäurenitril 7 Stunden zum Rückfluß erhitzt. Das ausgefallene Succinimid wird abgesaugt und das Filtrat eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Petrolether/Dichlormethan 8:2 eluiert wird.

Ausbeute: 0.4 g (62 % der Theorie),

R_f-Wert: 0.45 (Kieselgel; Petrolether/Essigester = 9:1)

C₁₆H₁₂BrF₃O₂ (373.17)

Massenspektrum: M⁺ = 372/74 (Bromisotope)

c. 4-[1-Oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäuremethylester

0.4 g (1.0 mmol) 3-Brommethyl-4'-trifluormethylbiphenyl-2-carbonsäuremethylester werden in 15 ml Acetonitril gelöst und nach Zugabe von 0.2 g (1.0 mmol) 4-Amino-1-methyl-pyrrol-2-carbonsäuremethylester 3.5 Stunden bei 80°C gerührt. Das

- 117 -

Lösungsmittel wird abdestilliert und der Rückstand an Kieselgel chromatographiert, wobei mit Petrolether/Essigester 85:15 und 75:25 eluiert wird.

Ausbeute: 0.2 g (43 % der Theorie),

R_f-Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 99:1)

5 C₂₂H₁₇F₃N₂O₃ (414.39)

Massenspektrum: (M-H)⁻ = 413

(M+H)⁺ = 415

(M+Na)⁺ = 437

10 d. 4-[1-Oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäure

Hergestellt analog Beispiel 1e aus 4-[1-Oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäuremethylester und Natronlauge in Methanol.

15 Ausbeute: 85 % der Theorie

R_f-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₂₁H₁₅F₃N₂O₃ (400.36)

Massenspektrum: (M-H)⁻ = 399

(M+H)⁺ = 401

20 (M+Na)⁺ = 423

e. N-(4'-Methylbiphenyl-4-yl)methyl-4-[1-oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-[1-Oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäure, C-(4'-Methyl-biphenyl-4-yl)methylamin, TBTU und N-Ethyl-diisopropylaminin Dimethylformamid.

Ausbeute: 96 % der Theorie

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₅H₂₈F₃N₃O₂ (579.62)

30 Massenspektrum: (M+H)⁺ = 580

(M+Na)⁺ = 602

- 118 -

Beispiel 96

N-(4-Dimethylaminobutyl)-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 1-Amino-4-(dimethylamino)-butan, 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethyl-amin in Dimethylformamid.

Ausbeute: 99 % der Theorie

R_f-Wert: 0.17 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

10 C₂₆H₂₉F₃N₄O₂ (486,54)

Massenspektrum: (M-H)⁻ = 485
(M+H)⁺ = 487

Beispiel 97

15

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-(2-methoxycarbonyl-ethyl)-pyrrol-2-carbonsäureamid

- 20 Hergestellt analog Beispiel 4a aus 4'-Trifluormethylbiphenyl-2-carbonsäurechlorid, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-(2-methoxycarbonyl-ethyl)-pyrrol-2-carbonsäure und Triethylamin in Tetrahydrofuran.

Ausbeute: 80 % der Theorie

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₇H₃₂F₃N₃O₄ (639.68)

Massenspektrum: (M+H)⁺ = 640

25

Beispiel 98

N-(4-Hydroxycarbonylcyclohexylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 30 Hergestellt analog Beispiel 1a aus N-(4-Methoxycarbonylcyclohexylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid und Natronlauge in Methanol.

- 119 -

Ausbeute: 88 % der Theorie

R_f-Wert: 0.91 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₈H₂₈F₃N₃O₄ (527.54)

Massenspektrum: (M-H)⁻ = 526

5 (M+H)⁺ = 528

Beispiel 99

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-

10 1-(2-hydroxycarbonylethyl)-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1e aus N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-(2-methoxycarbonylethyl)-pyrrol-2-carbonsäure-amid und Natronlauge in Methanol.

Ausbeute: 62 % der Theorie

15 R_f-Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₆H₃₀F₃N₃O₄ (625.65)

Massenspektrum: (M-H)⁻ = 624

(M+H)⁺ = 626

(M+Na)⁺ = 648

20

Beispiel 100

1-Methyl-2-[4-(piperidin-1-yl)methyl-piperidinocarbonyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-pyrrol

25 Hergestellt analog Beispiel 1d aus 4-(Piperidin-1-yl)methyl-piperidin, 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethyl-amin in Dimethylformamid.

Ausbeute: 96 % der Theorie

R_f-Wert: 0.29 (Kieselgel; Dichlormethan/Ethanol = 4:1)

30 C₃₁H₃₅F₃N₄O₂ (552.64)

Massenspektrum: (M-H)⁻ = 551

- 120 -

$$(M+H)^+ = 553$$

Beispiel 101

- 5 2-[4-(N-Acetyl-N-methyl-aminomethyl)piperidinocarbonyl]-1-methyl-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-pyrrol

Hergestellt analog Beispiel 1d aus N-Methyl-N-(piperidin-4-yl)methyl-acetamid, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

- 10 Ausbeute: quantitativ

Massenspektrum:

$(M-H)^-$	= 539
$(M+H)^+$	= 541

15

Beispiel 102

- 20 2-[7-(4-Cyano-phenoxy)-1,2,3,4-tetrahydroisochinolin-2-ylcarbonyl]-1-methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-pyrrol

Hergestellt analog Beispiel 1d aus 7-(4-Cyanophenoxy)-1,2,3,4-tetrahydroisochinolin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 96 % der Theorie

R_f-Wert: 0.85 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 25 $C_{36}H_{27}F_3N_4O_3 \text{ (620.63)}$

Massenspektrum:

$(M-H)^-$	= 619
$(M+H)^+$	= 621

Beispiel 103

30

- N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäureamid

- 121 -

a. 1-Isopropyl-4-nitro-pyrrol-2-carbonsäureethylester

0.5 g (2.7 mMol) 4-Nitpyrrol-2-carbonsäureethylester werden in 8 ml

Dimethylformamid gelöst und nach portionsweiser Zugabe von 73 mg (3 mMol)

- 5 Natirumhydrid 45 Minuten nachgerührt. Anschließend werden 0.29 ml (2.9 mMol) Isopropyliodid zugegeben und 12 Stunden nachgerührt. Das Reaktionsgemisch wird mit Wasser verdünnt und mit Dichlormethan extrahiert. Die vereinigten organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Dichlormethan eluiert wird.

10 Ausbeute: 0.32 g (49 % der Theorie)

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 99:1)

b. 4-Amino-1-isopropyl-pyrrol-2-carbonsäureethylester

0.32 g (1.4 mMol) 1-Isopropyl-4-nitro-pyrrol-2-carbonsäureethylester werden in 30 ml

- 15 Ethanol gelöst und nach Zugabe von 0.15 g Palladium auf Aktivkohle 10 % bei Raumtemperatur mit Wasserstoff hydriert. Der Katalysator wird abfiltriert und die Lösung eingedampft.

Ausbeute: 0.26 g (94 % der Theorie)

R_f-Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 99:1)

20

c. 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäureethylester

Hergestellt analog Beispiel 4a aus 4'-Trifluormethylbiphenyl-2-carbonsäurechlorid, 4-Amino-1-isopropyl-pyrrol-2-carbonsäureethylester und Triethylamin in

- 25 Tetrahydrofuran.

Ausbeute: 65 % der Theorie

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 19:1)

d. 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäure

- 30 Hergestellt analog Beispiel 1e aus 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäureethylester und Natronlauge in Methanol.

Ausbeute: 80 % der Theorie

- 122 -

R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 19:1)

e. N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus (4'-Methylbiphenyl-4-yl)-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 94 % der Theorie

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 C₃₆H₃₂F₃N₃O₂ (595.67)

Massenspektrum: (M-H)⁻ = 594
(M+H)⁺ = 596

Beispiel 104

15

N-[3-(Biphenyl-4-yl)-propyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

- 15 Hergestellt analog Beispiel 104b aus N-[3-(4-Biphenyl)-prop-2-yl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid und Palladium auf Aktivkohle 10 % in Ethanol.

Ausbeute: 99 % der Theorie

R_f-Wert: 0.5 (Kieselgel; Petrolether/Essigester = 1:1)

C₃₄H₂₉F₃N₄O₂ (582.63)

Massenspektrum: (M-H)⁻ = 581
(M+H)⁺ = 583

Beispiel 105

- 30 N-(Cyclohexylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid
-

- 123 -

Hergestellt analog Beispiel 1d aus (Aminomethyl)-cyclohexan, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 99 % der Theorie

5 R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₇H₂₈F₃N₃O₂ (483.53)

Massenspektrum: (M-H)⁻ = 482
(M+H)⁺ = 484

10 Beispiel 106

N-(4'-Methylbiphenyl-4-yl)methyl-4-(2-phenoxyphenyl-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

15 Hergestellt analog Beispiel 1d aus 2-Phenoxybenzoësäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₃₃H₂₉N₃O₃ (515.61)

20 Massenspektrum: (M+H)⁺ = 516
(M+HCOO)⁻ = 560

Beispiel 107

25 N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(2-phenylethyl)phenyl-carbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(2-Phenylethyl)benzoësäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

30 Ausbeute: quantitativ

R_f-Wert: 0.5 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₃₅H₃₃N₃O₂ (527.67)

- 124 -

Massenspektrum: (M-H)- = 526
 (M+H)+ = 528

Beispiel 108

5

N-[4-(tert.Butoxycarbonylaminomethyl)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-tert.Butoxycarbonylaminomethyl-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 96 % der Theorie

R_f-Wert: 0.67 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₃H₃₃F₃N₄O₄ (606.65)

Massenspektrum: (M-H)- = 605
 (M+Na)+ = 629

Beispiel 109

N-(4-Aminomethyl)phenylmethyl-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 19c aus N-[4-(tert.Butoxycarbonylaminomethyl)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid und Trifluoressigsäure in Dichlormethan.

Ausbeute: quantitativ

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 4:1)
C₂₈H₂₅F₃N₄O₂ (506.53)

Massenspektrum: (M-H)- = 505
 (M+H)+ = 507

- 125 -

Beispiel 110

N-(4'-Methylbiphenyl-4-yl)methyl-4-[3-methyl-2-(piperidin-1-yl)-phenyl-carbonyl-amino]-1-methyl-pyrrol-2-carbonsäureamid

- 5 Hergestellt analog Beispiel 1d aus 3-Methyl-2-(piperidin-1-yl)-benzoësäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 66 % der Theorie

R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 4:1)

10 C₃₃H₃₆N₄O₂ (520.68)

Massenspektrum: (M+H)⁺ = 521

Beispiel 111

- 15 N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(benzylamino)-phenyl-carbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus N-Benzylantranilsäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und Triethylamin in Dimethylformamid.

20 Ausbeute: 74 % der Theorie

R_f-Wert: 0.44 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₃₂N₄O₂ (528.65)

Massenspektrum: (M-H)⁻ = 527

(M+H)⁺ = 529

25

Beispiel 112

N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(4-methyl-phenylsulfonylamino)-phenylcarbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

- 30 Hergestellt analog Beispiel 1d aus 2-(4-Methyl-phenylsulfonylamino)-benzoësäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und Triethylamin in Dimethylformamid.

- 126 -

Ausbeute: 5 % der Theorie

R_f-Wert: 0.65 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₃₂N₄O₄S (592.72)

Massenspektrum: (M-H)⁻ = 591

5

Beispiel 113

N-[4-(4-Propylpiperidino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

- 10 Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(4-Propylpiperidino)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 100 % der Theorie

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

15 C₃₅H₃₇F₃N₄O₂ (602.71)

Massenspektrum: (M+H)⁺ = 603

Beispiel 114

20

N-[4-(4-(Pyrrolidin-1-yl)-piperidino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

- 127 -

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-[4-(pyrrolidin-1-yl)-piperidino]-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

5 Beispiel 115

N-[4-(4-Phenylpiperidino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

10 Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(4-Phenylpiperidino)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Beispiel 116

15

N-[4-(4-Methyl-4-H-[1,2,4]triazol-3-yl)-piperidino]-phenylmethyl]-4-(4'-trifluoromethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

20 Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-[4-(4-Methyl-4-H-[1,2,4]triazol-3-yl)-piperidino]-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

- 128 -

Beispiel 117

N-[4-(4,4-Dimethylpiperidino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

- 5 Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(4,4-Dimethylpiperidino)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Beispiel 118

- 10 N-{4-[4-(4-Methylphenyl)piperidino]-phenylmethyl}-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-[4-(4-Methylphenyl)piperidino]-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Beispiel 119

- 20 (S)-N-[1-(Naphth-2-yl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, (S)-1-(Naphth-2-yl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

25 Beispiel 120

- (R)-N-[1-(Naphth-2-yl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, (R)-1-(Naphth-2-yl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 98 % der Theorie

- 129 -

R_f-Wert: 0.79 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: (M-H)⁻ = 540

(M+H)⁺ = 542

5 (M+HCOO)⁻ = 586

Beispiel 121 (entspricht enantiomerenreinem Bsp.80)

(S)-N-[1-(4-Chlorphenyl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-
10 methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäure, (R)-1-(4-Chlorphenyl)-ethylamin, TBTU und Triethyl-
amin in Tetrahydrofuran.

Ausbeute: 77 % der Theorie

15 R_f-Wert: 0.83 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: (M-H)⁻ = 524/26 (Chlorisotope)

(M+H)⁺ = 526/28 (Chlorisotope)

20 Beispiel 122 (entspricht enantiomerenreinem Bsp.80)

(R)-N-[1-(4-Chlorphenyl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-
methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-
25 1-methyl-pyrrol-2-carbonsäure, (S)-1-(4-Chlorphenyl)-ethylamin, TBTU und
Triethylamin in Tetrahydrofuran.

Ausbeute: 56 % der Theorie

R_f-Wert: 0.82 (Kieselgel; Dichlormethan/Ethanol = 9:1)

30 Massenspektrum: (M-H)⁻ = 524/26 (Chlorisotope)

(M+H)⁺ = 526/28 (Chlorisotope)

- 130 -

Beispiel 123

Tabletten mit 5 mg Wirkstoff pro Tablette

5

Zusammensetzung:

Wirkstoff	5.0 mg
Lactose-monohydrat	70.8 mg
10 Mikrokristalline Cellulose	40.0 mg
Carboxymethylcellulose-Natrium, unlöslich quervernetzt	3.0 mg
Magnesiumstearat	1.2 mg

Herstellung:

15

Der Wirkstoff wird für 15 Minuten zusammen mit Lactose-monohydrat, mikrokristalliner Cellulose und Carboxymethylcellulose-Natrium in einem geeigneten Diffusionsmischer gemischt. Magnesiumstearat wird zugesetzt und für weitere 3 Minuten mit den übrigen Stoffen vermischt.

20

Die fertige Mischung wird auf einer Tablettenpresse zu runden, flachen Tabletten mit Facette verpreßt.

Durchmesser der Tablette: 7 mm

Gewicht einer Tablette: 120 mg

25

- 131 -

Beispiel 124

Kapseln mit 50 mg Wirkstoff pro Kapsel

5 Zusammensetzung:

Wirkstoff	50.0 mg
Lactose-monohydrat	130.0 mg
Maisstärke	65.0 mg
10 Siliciumdioxid hochdispers	2.5 mg
Magnesiumstearat	2.5 mg

Herstellung:

15 Eine Stärkepaste wird hergestellt, indem ein Teil der Maisstärke mit einer geeigneten Menge heißen Wassers angequollen wird. Die Paste lässt man danach auf Zimmertemperatur abkühlen.

20 Der Wirkstoff wird in einem geeigneten Mischer mit Lactose-monohydrat und Maisstärke für 15 Minuten vorgemischt. Die Stärkepaste wird zugefügt und die Mischung wird ausreichend mit Wasser versetzt, um eine homogene feuchte Masse zu erhalten. Die feuchte Masse wird durch ein Sieb mit einer Maschenweite von 1.6 mm gegeben. Das gesiebte Granulat wird auf Horden bei etwa 55°C für 12 Stunden getrocknet.

25

Das getrocknete Granulat wird danach durch Siebe mit den Maschenweiten 1.2 und 0.8 mm gegeben. Hochdisperses Silicium wird in einem geeigneten Mischer in 3 Minuten mit dem Granulat vermischt. Danach wird Magnesiumstearat zugesetzt und für weitere 3 Minuten gemischt.

30

Die fertige Mischung wird mit Hilfe einer Kapselfüllmaschine in leere Kapselhüllen aus Hartgelatine der Größe 1 gefüllt.

- 132 -

Beispiel 125

Tabletten mit 200 mg Wirkstoff pro Tablette

5 **Zusammensetzung:**

Wirkstoff	200.0 mg
Lactose-mMonohydrat	167.0 mg
Microkristalline Cellulose	80.0 mg
10 Hydroxypropyl-methylcellulose, Typ 2910	10.0 mg
Poly-1-vinyl-2-pyrrolidon, unlöslich quervernetzt	20.0 mg
Magnesiumstearat	3.0 mg

Herstellung:

15

HPMC wird in heißem Wasser dispergiert. Die Mischung ergibt nach dem Abkühlen eine klare Lösung.

Der Wirkstoff wird in einem geeigneten Mischer für 5 Minuten mit Lactose Mono-
20 hydrat und mikrokristalliner Cellulose vorgemischt. Die HPMC- Lösung wird hinzugefügt und das Mischen fortgesetzt bis eine homogene feuchte Masse erhalten wird. Die feuchte Masse wird durch ein Sieb mit der Maschenweite 1.6 mm gegeben. Das gesiebte Granulat wird auf Horden bei etwa 55°C für 12 Stunden getrocknet.

25 Das getrocknete Granulat wird danach durch Siebe der Maschenweite 1.2 und 0.8 mm gegeben. Poly-1-vinyl-2-pyrrolidon wird in einem geeigneten Mischer für 3 Minuten mit dem Granulat vermischt. Danach wird Magnesiumstearat zugesetzt und für weitere 3 Minuten gemischt.

30 Die fertige Mischung wird auf einer Tablettenpresse zu oblongförmigen Tabletten verpreßt (16.2 x 7.9 mm).

- 133 -

Gewicht einer Tablette: 480 mg

Patentansprüche

5

1. Heteroarylcarbonsäureamide der allgemeinen Formel

in der

10

X₁ die Gruppe CR¹,X₂ die Gruppe CR²,15 X₃ die Gruppe CR³ undX₄ die Gruppe CR⁴ oder20 eine oder zwei der Gruppen X₁ bis X₄ jeweils ein Stickstoffatom und die restlichen der Gruppen X₁ bis X₄ drei oder zwei der Gruppen CR¹ bis CR⁴,wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder25 eine oder zwei der Gruppen R¹ bis R⁴ unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe, eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-

- 135 -

aminogruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer -(CH₂)_n-Brücke
5 annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

A^a eine Bindung, ein Sauerstoff- oder Schwefelatom, eine -NH-, -N(C₁₋₃-Alkyl)-,
Sulfinyl-, Sulfonyl- oder Carbonylgruppe,

10 eine der Gruppen -CH₂-, -(CH₂)₂-, -CH=CH-, -C≡C-, -OCH₂-, -CH₂O-, -NH-CH₂-,
-CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂- oder -SO₂-NH-,

15 in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und
ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine
C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe
A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der
Gruppe R^a verknüpft ist,

R^a eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

20 eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige
Heteroarylgruppe, die

25 eine gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₁₋₄-Alkylcarbonylgruppe
substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe oder
ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

30 eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe und
zwei Stickstoffatome oder

- 136 -

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

5 wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können und

10 wobei die vorstehend genannten Phenyl- und Naphthylgruppen sowie die mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino-, Propionylamino-, N-(C₁₋₃-Alkyl)-propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten
15 gleich oder verschieden sein können,

20 eine C₃₋₇-Cycloalkylgruppe, wobei

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann,

25 30 eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylen Teil mit einem Phenylring kondensiert sein kann oder

- 137 -

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

5 jeweils die Methylengruppe in Position 4 einer 6- oder 7-gliedrigen Cycloalkylen-iminogruppe durch eine Hydroxycarbonyl-, C₁₋₃-Alkoxy carbonyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)-aminocarbonyl- oder Phenyl-C₁₋₃-alkylaminogruppe substituiert oder

10 durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

15 in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder

20 eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder

eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

25 R⁵ ein Wasserstoffatom oder eine C₁₋₅-Alkylgruppe,

Het eine über zwei Kohlenstoffatome oder, sofern Het eine 2-bindige Pyrrolgruppe bedeutet, auch über ein Kohlenstoff- und das Imino-Stickstoffatom, wobei letzteres 30 mit der benachbarten Carbonylgruppe in Formel (I) verknüpft ist, gebundene 5-gliedrige Heteroarylengruppe, die

- 138 -

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

5 eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom,

wobei R⁹ ein Wasserstoffatom, eine C₁₋₅-Alkylgruppe, eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder C₁₋₅-Alkoxy-carbonyl-aminogruppe substituierte -C₂₋₃-Alkylgruppe, eine Carboxy-C₁₋₃-alkyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl-, Phenyl-, Phenyl-C₁₋₃-alkyl-, C₁₋₅-Alkylcarbonyl- oder Phenylcarbonylgruppe bedeutet oder R⁹ zusammen mit R⁶ eine -(CH₂)_p- Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

15 oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

20 oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₅-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino, Propionylamino-, N-(C₁₋₃-Alkyl)-propionylamino-, Acetyl-, Propionyl-, Benzoyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- Di-(C₁₋₃-alkyl)-amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als ein Heteroatom enthaltenden 5-gliedrigen monocyclischen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

- 139 -

R⁶ ein Wasserstoffatom oder eine C₁₋₆-Alkylgruppe,

R⁷ eine C₁₋₉-Alkylgruppe,

5 eine geradkettige oder verzweigte, einfach, zweifach oder dreifach ungesättigte
C₃₋₉-Alkenyl- oder C₃₋₉-Alkinylgruppe, wobei die Mehrfachbindungen von der
Stickstoff-Kohlenstoff-Bindung isoliert sind,

10 eine geradkettige C₂₋₆-Alkylgruppe, die terminal durch eine Amino-, C₁₋₃-Alkylamino-
oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

eine durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₆-Alkylgruppe, wobei

15 ein Wasserstoffatom in 3-Stellung des Cyclopentylrestes und in 4-Stellung eines
6- oder 7-gliedrigen Cycloalkylrestes jeweils durch eine Hydroxy-, Hydroxy-C₁₋₃-
alkyl, C₁₋₅-Alkoxy-, C₁₋₅-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-C₁₋₃-alkyl, Amino-,
C₁₋₅-Alkylamino-, Di-(C₁₋₅-alkyl)amino-, Phenyl-C₁₋₃-alkylamino-, C₁₋₅-Alkyl-
carbonylamino-, Benzoylamino-, Amino-C₁₋₃-alkyl, C₁₋₃-Alkylamino-C₁₋₃-alkyl,
Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkylamino-C₁₋₃-alkyl-, C₁₋₃-Alkyl-
20 carbonylamino-C₁₋₃-alkyl-, Benzoylamino-C₁₋₃-alkyl-, Phenylamino-carbonyl-,
Phenyl-C₁₋₃-alkylamino-carbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe
ersetzt sein kann oder

25 jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkyl-
restes durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls
durch eine C₁₋₆-Alkyl-, Phenyl-, C₁₋₆-Alkyl-carbonyl-, Benzoyl-, Phenyl-(C₁₋₃-al-
kyl)-carbonyl-, C₁₋₆-Alkyl-aminocarbonyl-, Di-(C₁₋₅-alkyl)-aminocarbonyl-, Phenyl-
aminocarbonyl-, N-(C₁₋₃-Alkyl)-phenylaminocarbonyl-, Phenyl-C₁₋₃-alkylamino-
carbonyl- oder N-(C₁₋₃-Alkyl)-phenyl-C₁₋₃-alkylamino-carbonylgruppe substituierte
30 Iminogruppe ersetzt sein kann oder

- 140 -

in einem 5- oder 6-gliedrigen Cycloalkylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₅-Alkylamino-carbonyl-, Di-(C₁₋₅-alkyl)amino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl- oder C₁₋₅-Alkoxy-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

5 10 eine gegebenenfalls durch eine C₃₋₇-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe,

15 durch eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

durch eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

20 eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, Phenyl-C₁₋₃-alkyl-, C₁₋₃-Alkylcarbonyl-, Phenylcarbonyl- oder Phenyl-C₁₋₃-alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

25 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

30 ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

- 141 -

durch eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

5 wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

10 wobei die vorstehend genannten Phenyl- und Naphthylgruppen sowie die mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₅-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, C₁₋₅-Alkoxy-carbonylamino-
15 C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, N-(C₁₋₃-Alkyl)-benzoylamino-, Acetyl-, Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl-, oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

20 substituiert ist,

25 eine durch einen Phenylrest und eine Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte C₁₋₆-Alkylgruppe,

30 eine Phenyl-C₂₋₅-alkenylen-CH₂-, Phenyl-C₂₋₅-alkinylen-CH₂-, Heteroaryl-C₂₋₅-alkenylen-CH₂- oder Heteroaryl-C₂₋₅-alkinylen-CH₂-Gruppe, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine C₁₋₃-Alkylgruppe ersetzt sein kann und davon unabhängig der Phenylteil sowie der Heteroarylteil durch Fluor-, Chlor- oder

- 142 -

Bromatome, durch C₁₋₆-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl-, Heteroaryl- oder Cyanogruppen mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und die Disubstitution durch zwei aromatische Gruppen ausgeschlossen ist,

5

wobei Heteroaryl eine über ein Kohlenstoff-oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

10 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

15

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

20

oder eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

25

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

die im C₁₋₃-Alkylteil gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₃₋₅-Cycloalkylgruppe substituierte Gruppe R^b-A^b-E^b-C₁₋₃-alkyl-, in der

30

R^b eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Iodatome, durch C₁₋₄-Alkyl-, C₂₋₄-Alkenyl-, C₂₋₄-Alkinyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-,

- 143 -

C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, Acetyl-, Propi-
5 onyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyano-
gruppen mono- oder disubstituierte Phenylgruppe, wobei die Substituenten
gleich oder verschieden sein können,

eine 5-gliedrige Heteroarylgruppe, die

10

über ein Kohlenstoffatom oder, sofern A^b eine Bindung, eine -CH₂-, -(CH₂)₂-, Sulfonyl- oder Carbonylgruppe darstellt, auch über ein Stickstoffatom gebun-
den sein kann und die

15

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe,
ein Sauerstoff- oder Schwefelatom,

20

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom
oder

25

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
und zwei Stickstoffatome oder

30

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen
über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein
kann und die so gebildeten bicyclischen Heteroarylgruppen über den hetero-
aromatischen oder carbocyclischen Teil gebunden sein können,

wobei die vorstehend genannten mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₂₋₄-Alkenyl-, C₂₋₄-Alkinyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

eine C₃₋₇-Cycloalkylgruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexyl- oder Cycloheptylgruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxy- oder 1,3-Propylendioxygruppe ersetzt sein können und in den so gebildeten Ringen ein oder zwei Wasserstoffatome durch C₁₋₃-Alkylgruppen ersetzt sein können,

30

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

- 145 -

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt
sein können oder/und

5

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine Hydroxy-C₁₋₃-alkyl-, C₁₋₆-Alkoxy-C₁₋₃-alkyl-,
Hydroxycarbonyl-, C₁₋₆-Alkoxycarbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-
carbonyl-, Di-(C₁₋₃-alkyl)-aminocarbonyl-, 4- bis 7-gliedrige Cycloalkylen-
imino-, Phenyl-, 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-yl-, Phenyl-C₁₋₃-alkylamino- oder
N-(C₁₋₃-Alkyl)-phenyl-C₁₋₃-alkylaminogruppe substituiert oder

10

durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonyl-
gruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-,
C₁₋₃-Alkyl-carbonyl-, Benzoyl-, Phenyl-C₁₋₃-alkyl-carbonyl-, C₁₋₃-Alkyl-
aminocarbonyl-, Di-(C₁₋₃-alkyl)-aminocarbonyl-, Phenylaminocarbonyl- oder
N-(C₁₋₃-Alkyl)-phenylaminocarbonylgruppe substituierte Iminogruppe ersetzt
sein kann oder

15

20

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-glied-
rigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkylenimino-
gruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxy-
oder 1,3-Propylendioxygruppe ersetzt sein können und in den so gebildeten
Ringen ein oder zwei Wasserstoffatome durch C₁₋₃-Alkylgruppen ersetzt sein
können oder

25

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem
Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe
ersetzt sein kann oder

30

eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine
-CO-NR⁸- Gruppe ersetzt sein kann oder

- 146 -

eine mit dem Iminostickstoffatom verknüpfte $-(CH_2)_3-$ Gruppe durch eine
-CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

5

A^b eine Bindung, ein Sauerstoff- oder Schwefelatom, eine -NH-, -N(C₁₋₃-Alkyl)-,
Sulfinyl-, Sulfonyl- oder eine Carbonylgruppe,

10 eine der Gruppen -CH₂-, -(CH₂)₂-, -O-CH₂-, -CH₂-O-, NH-CH₂-, -CH₂-NH-,
-NH-CO-, -CO-NH-, -NH-SO₂-, -SO₂-NH-, -CH=CH- oder -C≡C-,

15 in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und
ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine
C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe
A^b nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der
Gruppe R^b verknüpft ist,

20 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine
C₁₋₄-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluor-
methoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-,
Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-,
Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, Acetyl-,
Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl,
Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder
25 Cyanogruppe substituierte Phenylengruppe,

die im C₁₋₃-Alkylteil gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₃₋₅-Cycloalkylgruppe
substituierte Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

30 R^c die vorstehend für R^b erwähnten Bedeutungen annimmt, wobei eine
Bezugnahme auf A^b durch eine Bezugnahme auf A^c zu ersetzen ist,

- 147 -

A^c die vorstehend für A^b erwähnten Bedeutungen annimmt, wobei eine Bezugnahme auf R^b durch eine Bezugnahme auf R^c zu ersetzen ist,

5 E^c eine über zwei Kohlenstoffatome oder über ein Kohlenstoffatom und ein Imino-Stickstoffatom gebundene 5-gliedrige Heteroarylengruppe, wobei das Iminostickstoffatom der Heteroarylengruppe nicht mit einem Heteroatom der Gruppe A^c verknüpft ist und wobei die Heteroarylengruppe

10 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

15 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

20 oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

25 wobei an die vorstehend erwähnten 5-gliedrigen, ein oder zwei Heteroatome enthaltenden Heteroarylengruppen sowie an die vorstehend erwähnten 6-gliedrigen Heteroarylengruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylengruppen über den heteroaromatischen oder/und den carbocyclischen Teil gebunden sein können,

30 und wobei die vorstehend genannten mono- und bicyclischen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch

- 148 -

eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können,

5

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 3 bis 6 Kohlenstoffatomen, in der

10 ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

15 eine –CH₂-CH₂-Gruppe durch eine 1,2-verknüpfte Phenylengruppe ersetzt sein kann, die durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Cyano-, Phenoxy- oder Phenyl-C₁₋₃-alkylgruppen mono- oder disubstituiert sein kann, wobei eine Disubstitution mit der letztgenannten Gruppe ausgeschlossen ist,

20 wobei die vorstehend genannten Phenoxy- und Phenyl-C₁₋₃-alkylgruppen im Phenylteil ihrerseits durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, oder Cyanogruppe substituiert sein können,

25

oder jeweils das Kohlenstoffatom in Position 3 einer n-Pentylen- oder n-Hexylen-gruppe durch eine terminal durch eine Phenyl-, Cyano-, Hydroxy-, C₁₋₃-Alkoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe, durch eine Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, N-C₁₋₃-Alkyl-N-(C₁₋₃-alkyl-carbonyl)-amino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)-amino-C₁₋₃-alkyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonyl-

gruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyano-, Hydroxy- oder C₁₋₃-Alkoxygruppe disubstituiert sein kann oder

die Methylengruppe in Position 3 einer n-Pentylen- oder n-Hexylengruppe durch
5 ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder
durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-C₁₋₃-alkyl-, C₁₋₃-Al-
kyl-carbonyl-, Benzoyl-, C₁₋₃-Alkyl-aminocarbonyl-, Di-(C₁₋₃-alkyl)-aminocarbonyl-,
Phenylaminocarbonyl- oder N-(C₁₋₃-Alkyl)-phenylaminocarbonylgruppe
substituierte Iminogruppe ersetzt sein kann oder

10

eine Methylengruppe in Position 1 in einer n-Butylen-, n-Pentylen- oder
n-Hexylengruppe durch eine Carbonylgruppe ersetzt sein kann,

bedeuten, wobei die bei der Definition der vorstehend genannten Reste als unsubsti-
15 tuiert oder monosubstituiert erwähnten Phenylgruppen sowie aromatischen oder
heteroaromatischen Molekülteile, sofern nichts anderes erwähnt wurde, im Kohlen-
stoffgerüst gegebenenfalls zusätzlich durch Fluor-, Chlor- oder Bromatome, durch
C₁₋₃-Alkylgruppen, durch Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-,
Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Amino-
20 carbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppen substituiert sein können,
wobei die Substituenten gleich oder verschieden sein können und die resultierenden
aromatischen Gruppen und Molekülteile maximal disubstituiert sind,

25 die Wasserstoffatome in den bei der Definition der vorstehend genannten Reste
erwähnten C₁₋₃-Alkyl- und Alkoxygruppen teilweise oder ganz durch Fluoratome
ersetzt sein können,

30 die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und
Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I ent-
haltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt
sein können, soweit nichts anderes erwähnt wurde,

- 150 -

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

5

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

10 deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

2. Verbindungen der Formel I gemäß Anspruch 1, in denen

15 X_1 bis X_4 wie im Anspruch 1 erwähnt definiert sind,

A^a eine Bindung, ein Sauerstoffatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe,

20 eine der Gruppen -CH₂-, -(CH₂)₂-, -NH-CH₂-, -CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂- oder -SO₂-NH-,

25 in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenylgruppe,

30

eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

- 151 -

eine gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₁₋₄-Alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

5 eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

10 wobei die vorstehend genannten Phenyl und Heteroarylgruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino-, Acetyl- oder Cyanogruppe substituiert sein können,

15 eine C₃₋₇-Cycloalkylgruppe, wobei

die Methylengruppe in 4-Stellung eines 6-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfonylgruppe oder durch eine

20 gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl- oder C₁₋₄-Alkoxy-carbonylgruppe substituierte Iminogruppe ersetzt sein kann,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

25 ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

jeweils die Methylengruppe in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte $-\text{CH}_2-$ Gruppe durch eine Carbonylgruppe ersetzt sein kann oder

- 5 eine mit dem Iminostickstoffatom verknüpfte $-(\text{CH}_2)_2-$ Gruppe durch eine $-\text{CO-NR}^8-$ Gruppe ersetzt sein kann oder
eine mit dem Iminostickstoffatom verknüpfte $-(\text{CH}_2)_3-$ Gruppe durch eine $-\text{CO-NR}^8-\text{CO-}$ Gruppe ersetzt sein kann,

10 wobei R^8 ein Wasserstoffatom oder eine $\text{C}_{1-3}\text{-Alkylgruppe}$ darstellt,

R^5 ein Wasserstoffatom oder eine $\text{C}_{1-3}\text{-Alkylgruppe}$,

- 15 **Het** eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die
eine durch die Gruppe R^9 substituierte Iminogruppe, ein Sauerstoff- oder
Schwefelatom oder

20 eine durch die Gruppe R^9 substituierte Iminogruppe oder ein Sauerstoff- oder
Schwefelatom und zusätzlich ein Stickstoffatom,

wobei R^9 ein Wasserstoffatom, eine $\text{C}_{1-5}\text{-Alkylgruppe}$, eine terminal durch
eine Amino-, $\text{C}_{1-3}\text{-Alkylamino-}$, Di- $(\text{C}_{1-3}\text{-alkyl})$ -amino- oder $\text{C}_{1-5}\text{-Alkoxy-}$
carbonyl-aminogruppe substituierte $-\text{C}_{2-3}\text{-Alkylgruppe}$, eine
Carboxy- $\text{C}_{1-3}\text{-alkyl-}$, $\text{C}_{1-3}\text{-Alkoxy-carbonyl-C}_{1-3}\text{-alkyl-}$, Phenyl-, Phenyl-
 $\text{C}_{1-3}\text{-alkyl-}$, $\text{C}_{1-5}\text{-Alkylcarbonyl-}$ oder Phenylcarbonylgruppe bedeutet oder R^9
zusammen mit R^6 eine $-(\text{CH}_2)_p-$ Brücke darstellt, in der p die Zahl 2 oder 3
bedeutet,

30 oder eine gegebenenfalls durch eine $\text{C}_{1-3}\text{-Alkylgruppe}$ substituierte Iminogruppe
und zwei Stickstoffatome oder

- 153 -

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

5 wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch
ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Cyclo-
propyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, C₁₋₃-Alkylamino-,
Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino, Acetyl-, C₁₋₃-Al-
kylamino-carbonyl- oder Di-(C₁₋₃-alkyl)amino-carbonylgruppe substituiert sein
10 können,

R⁶ ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe,

R⁷ eine C₁₋₆-Alkylgruppe,

15 eine geradkettige C₂₋₆-Alkylgruppe, die terminal durch eine Amino-, C₁₋₃-Alkylamino-
oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

eine durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₆-Alkylgruppe, wobei

20 ein Wasserstoffatom in 3-Stellung des Cyclopentylrestes und in 4-Stellung eines
6- oder 7-gliedrigen Cycloalkylrestes jeweils durch eine C₁₋₅-Alkoxy-, Phenyl-C₁₋₃-
alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkylamino-, C₁₋₅-Alkyl-carbonylamino-, Benzoyl-
amino-, Phenyl-C₁₋₃-alkylamino-C₁₋₃-alkyl-, Benzoylamino-C₁₋₃-alkyl-, Phenyl-
25 amino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl-, Carboxy- oder C₁₋₃-Alkoxy-
carbonylgruppe ersetzt sein kann oder

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylres-
tes durch eine gegebenenfalls durch eine Phenyl-, C₁₋₆-Alkyl-carbonyl-, Benzoyl-,
30 Phenyl-(C₁₋₃-alkyl)-carbonyl-, Phenylaminocarbonyl-, N-(C₁₋₃-Alkyl)-phenylamino-
carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl- oder N-(C₁₋₃-Alkyl)-phenyl-C₁₋₃-alkyl-
amino-carbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

in einem 5- oder 6-gliedrigen Cycloalkylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder C₁₋₅-Alkoxy-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

5

eine gegebenenfalls durch eine C₃₋₇-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe,

10

durch eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

durch eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

15

eine gegebenenfalls durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

20

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

25

durch eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Phenylgruppen sowie die Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl-, C₁₋₅-Alkoxy-carbonylamino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)amino-carbonylgruppe monosubstituiert oder durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

10

substituiert ist,

eine durch einen Phenylrest und eine Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte C₁₋₆-Alkylgruppe,

eine Phenyl-C₂₋₃-alkenylen-CH₂- oder Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl-, Pyridyl-, Pyrimidinyl-, Pyrazinyl-, Thienyl-, Pyrrolyl-, Pyrazolyl- oder Thiazolylgruppe substituiert sein kann,

die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe R^b-A^b-E^b-C₁₋₃-alkyl-, in der

R^b eine gegebenenfalls durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkyl-, Cyclopropyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Acetyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppen mono- oder

disubstituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können,

eine 5-gliedrige Heteroarylgruppe, die

5

über ein Kohlenstoffatom oder, sofern A^b eine Bindung, eine -CH₂- , -(CH₂)₂- , Sulfonyl- oder Carbonylgruppe darstellt, auch über ein Stickstoffatom gebunden sein kann und die

10 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

15 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

20 ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

25 wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

30

eine C₃₋₇-Cycloalkylgruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt
5 sein können oder/und

die Methylengruppe in 4-Stellung eines Cyclohexylrests durch ein Sauerstoffatom, durch eine Sulfonylgruppe- oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe 10 ersetzt sein kann oder

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexyl- oder Cycloheptylgruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxy- 15 oder 1,3-Propylendioxygruppe ersetzt sein können,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

20 der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

25 jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyl- oder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert oder

durch ein Sauerstoffatom, durch eine Sulfonylgruppe oder durch eine 30 gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkyl-amino-carbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

- 158 -

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkylen-iminogruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylen-

5 dioxy- oder 1,3-Propylendioxygruppe ersetzt sein können oder

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Imino-stickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann

10

A^b eine Bindung, ein Sauerstoffatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder eine Carbonylgruppe,

15 eine der Gruppen -CH₂-, -(CH₂)₂-, -C≡C-, -O-CH₂-, -CH₂-O-, NH-CH₂-, -CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂-, -SO₂-NH-,

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe
20 A^b nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^b verknüpft ist, und

E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluor-methoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Acetyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe substituierte Phenylengruppe bedeuten, oder

30

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

- 159 -

R^c die vorstehend für R^b erwähnten Bedeutungen annimmt, wobei eine Bezugnahme auf A^b durch eine Bezugnahme auf A^c zu ersetzen ist,

A^c eine Bindung, ein Sauerstoffatom, eine $-CH_2-$, $-NH-$, $-N(C_{1-3}\text{-Alkyl})-$, $-NH-CO-$,
5 $-CO-NH-$ oder Carbonylgruppe,

wobei ein Heteroatom der Gruppe A^c nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^c verknüpft ist, und

10 E^c eine über zwei Kohlenstoffatome oder über ein Kohlenstoffatom und ein Imino-Stickstoffatom gebundene 5-gliedrige Heteroarylengruppe, wobei das Iminostickstoffatom der Heteroarylengruppe nicht mit einem Heteroatom der Gruppe A^c verknüpft ist und wobei die Heteroarylengruppe

15 eine gegebenenfalls durch eine $C_{1-3}\text{-Alkylgruppe}$ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine $C_{1-3}\text{-Alkylgruppe}$ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom
20 oder

eine gegebenenfalls durch eine $C_{1-3}\text{-Alkylgruppe}$ substituierte Iminogruppe und zwei Stickstoffatome oder

25 ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

30 wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine $C_{1-4}\text{-Alkylgruppe}$, durch eine $C_{3-7}\text{-Cycloalkyl-}$, Trifluormethyl-, Hydroxy-,

- 160 -

C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Acetylamino-, Acetyl-, C_{1-3} -Alkoxy-carbonyl-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können, bedeuten,

5 oder R^6 und R^7 zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen darstellen, in der

ein Wasserstoffatom durch eine C_{1-3} -Alkylgruppe ersetzt sein kann oder/und
10 eine $-CH_2-CH_2$ -Gruppe durch eine 1,2-verknüpfte Phenylengruppe ersetzt sein kann, die durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluor-methyl-, Hydroxy-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino-, Acetyl-, C_{1-3} -Alkoxy-carbonyl-, Aminocar-bonyl-, C_{1-3} -Alkylamino-carbonyl- oder Cyanogruppe oder durch eine im Phenyl-teil gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Al-kyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, 15 Di-(C_{1-3} -alkyl)amino-, Acetylamino- oder Cyanogruppe substituierte Phenyloxy- oder Phenyl- C_{1-3} -alkylgruppe substituiert sein kann,

20 oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C_{1-3} -Alkylgruppe, durch eine Phe-nyl-, C_{1-3} -Alkoxy carbonyl-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl- oder Di-(C_{1-3} -alkyl)-aminocarbonylgruppe monosubstituiert oder durch eine Phenyl-gruppe und eine Cyanogruppe disubstituiert sein kann oder

25 die Methylengruppe in Position 3 einer n-Pentylengruppe durch ein Sauerstoff-atom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkyl-carbonylgruppe substituierte Iminogruppe ersetzt sein kann,

30 bedeuten, wobei die bei der Definition der vorstehend genannten Reste als unsubsti-tuiert oder monosubstituiert erwähnten Phenylgruppen sowie aromatischen oder

- 161 -

heteroaromatischen Molekülteile, sofern nichts anderes erwähnt wurde, im Kohlenstoffgerüst gegebenenfalls zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-,

- 5 Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können,

die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxy-

gruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen

- 10 Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen

durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter

- 15 physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Imino-

gruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

- 20 deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

- 25 3. Verbindungen der Formel I gemäß Anspruch 1, in denen

X₁ die Gruppe CR¹,

X₂ die Gruppe CR²,

30

X₃ die Gruppe CR³ und

- 162 -

X₄ die Gruppe CR⁴ oder

eine der Gruppen X₁ bis X₄ ein Stickstoffatom und die restlichen der Gruppen X₁ bis X₄ drei der Gruppen CR¹ bis CR⁴,

5

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R¹ bis R⁴ unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe, eine Trifluormethyl-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

10

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer -(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

15

A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe oder eine über das Kohlenstoff- bzw. Schwefelatom mit der Gruppe R^a in Formel (I) verknüpfte -NH-CH₂-, -NH-CO-, -NH-SO₂-Gruppe,

20

wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl- oder Pyridinylgruppe,

25

eine über ein Kohlenstoff- oder Stickstoffatom gebundene Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl- oder Thiazolylgruppe,

30

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-,

- 163 -

C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

5

die Methylengruppe in Position 4 einer 6-gliedrigen Cycloalkyleniminogruppe durch eine Methylgruppe substituiert oder durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe ersetzt sein kann oder

10

in einer Piperidinogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder

15

eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

20

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

Het eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

25

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

30

wobei R⁹ ein Wasserstoffatom, eine C₁₋₃-Alkylgruppe, eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder C₁₋₄-Alkoxy-carbonyl-aminogruppe substituierte -C₂₋₃-Alkylgruppe, eine

- 164 -

Carboxy-C₁₋₃-alkyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl- oder
C₁₋₃-Alkylcarbonylgruppe bedeutet oder R⁹ zusammen mit R⁶ eine -(CH₂)_p-
Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

5 oder eine Pyridinyl- oder Pyrimidinylengruppe,

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch
ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Al-
koxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetyl-
10 amino- oder Cyanogruppe substituiert sein können,

R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

R⁷ eine C₁₋₆-Alkylgruppe,

15 eine geradkettige C₂₋₆-Alkylgruppe, die terminal durch eine Amino-, C₁₋₃-Alkylamino-
oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

eine terminal durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₄-Alkylgruppe, wobei

20 ein Wasserstoffatom in 4-Stellung eines Cyclohexylrestes durch eine C₁₋₅-Al-
koxy-, C₁₋₃-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-methyl-, Phenyl-C₁₋₃-alkylamino-,
Phenyl-C₁₋₂-alkyl-carbonylamino-, Benzoylamino-, Phenylaminocarbonyl-, Phe-
nyl-C₁₋₃-alkyl-aminocarbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt
25 sein kann oder

30 in einem Cyclopentylrest eine oder zwei durch mindestens eine Bindung vonei-
nander und von der Position 1 getrennte Einfachbindungen jeweils mit einem
Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyc-
lischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebun-
dene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-

- 165 -

amino-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C₃₋₅-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe,

5 die

durch eine Carboxy- oder C₁₋₃-Alkoxy carbonylgruppe oder

10 durch eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinyl-, Pyrimidinyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl- oder Isothiazolylgruppe,

15 wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₄-Alkoxy-carbonylamino-C₁₋₃-alkyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein
20 können,

substituiert ist,

25 eine durch einen Phenylrest und eine Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte C₁₋₆-Alkylgruppe,

30 eine Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl- oder Cyanogruppe substituiert sein kann,

- 166 -

die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe R^b-A^b-E^b-C₁₋₃-alkyl-, in der

R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine
5 C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluor-
methoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe
substituierte Phenylgruppe,

eine 5-gliedrige Heteroarylgruppe, die

10

über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über
ein Stickstoffatom gebunden sein kann und die
eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe,
ein Sauerstoff- oder Schwefelatom,

15

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom
oder

20

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

25

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch
ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-,
Phenyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-
30 (C₁₋₃-alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Aus-
nahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroaryl-
resten, durch eine C₁₋₄-Alkylgruppe und einen Substituenten ausgewählt aus

- 167 -

Fluor, Chlor, Brom, C₁₋₃-Alkyl, Trifluormethyl, Phenyl, C₁₋₃-Alkoxy und
Trifluormethoxy auch disubstituiert sein können,

eine C₃₋₆-Cycloalkylgruppe, wobei

5

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

10

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylteil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

15

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyl- oder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert sein kann oder

20

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

25

A^b eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -O-CH₂-, Carbonyl-, -NH-CO- oder -CO-NH-Gruppe,

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein kann,

30

E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-,

- 168 -

C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylengruppe bedeuten, oder

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

5

R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe oder

10

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylen Teil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

15

die beiden Wasserstoffatome der Methylenegruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkylen-iminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

20

A^c eine Bindung,

E^c eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

25

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

30

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

- 169 -

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

5

oder eine Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können, bedeutet,

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen

15 darstellen, in der

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

eine -CH₂-CH₂-Gruppe durch eine gegebenenfalls durch eine Phenoxy- oder Benzylgruppe substituierte 1,2-verknüpfte Phenylengruppe ersetzt sein kann, wobei

die Phenoxy- oder Benzylgruppe im aromatischen Teil und die Phenylengruppe unabhängig voneinander durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

30 oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino- oder N-(Methyl)-acetylaminogruppe oder eine 5- bis 7-gliedrige Cycloalkylenimino-

- 170 -

gruppe substituierte C₁₋₃-Alkylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann,

- bedeuten, wobei die bei der Definition der vorstehend genannten Reste erwähnten
- 5 Phenylgruppen, sofern nichts anderes erwähnt wurde, durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,
- 10 die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkyleteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,
- 15 die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und
- 20 die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,
- deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.
- 25
4. Verbindungen der Formel I gemäß Anspruch 1, in denen
- X₁ die Gruppe CR¹,
- 30 X₂ die Gruppe CR²,

- 171 -

X₃ die Gruppe CR³ und

X₄ die Gruppe CR⁴ oder

- 5 eine der Gruppen X₁ bis X₄ ein Stickstoffatom und die restlichen der Gruppen X₁ bis X₄ drei der Gruppen CR¹ bis CR⁴,

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

- 10 eine oder zwei der Gruppen R¹ bis R⁴ unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe, eine Trifluormethyl-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

- 15 wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer -(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

- A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe oder eine über das Kohlenstoff- bzw. Schwefelatom 20 mit der Gruppe R^a in Formel (I) verknüpfte -NH-CH₂-, -NH-CO-, -NH-SO₂-Gruppe,

wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

- 25 R^a eine Phenyl- oder Pyridinylgruppe,

eine über ein Kohlenstoff- oder Stickstoffatom gebundene Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl- oder Thiazolylgruppe,

- 30 wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch

- 172 -

ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Älkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,

5 eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

die Methylengruppe in Position 4 einer 6-gliedrigen Cycloalkyleniminogruppe durch eine Methylgruppe substituiert oder durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe ersetzt sein kann oder

10

in einer Piperidinogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder

eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder

15

eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

20

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

Het eine 2,4-verknüpfte Pyrrolylen- oder Imidazolylengruppe, die jeweils über die Position 2 an die benachbarte Carbonylgruppe der Formel I gebunden sind und die

25

an einem Stickstoffatom durch eine C₁₋₃-Alkylgruppe substituiert sind und im Kohlenstoffgerüst durch eine C₁₋₃-Alkylgruppe oder eine Trifluormethylgruppe substituiert sein können,

30 R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

R⁷ eine terminal durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₄-Alkylgruppe, wobei

ein Wasserstoffatom in 4-Stellung eines Cyclohexylrestes durch eine C₁₋₅-Alkoxy-, C₁₋₃-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-methyl-, Phenyl-C₁₋₃-alkylamino-, Phenyl-C₁₋₂-alkyl-carbonylamino-, Benzoylarnino-, Phenylaminocarbonyl-, Phenyl-C₁₋₃-alkyl-aminocarbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

5

in einem Cyclopentylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

10

15

eine gegebenenfalls durch eine C₃₋₅-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

durch eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinyl-, Pyrimidinyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl- oder Isothiazolylgruppe,

20

25

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein kann und die

Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine

C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₄-Alkoxy-carbonylamino-C₁₋₃-alkyl-, Amino-,

C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein

30

können,

substituiert ist,

eine durch einen Phenylrest und eine Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte C₁₋₆-Alkylgruppe,

- 5 eine Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl- oder Cyanogruppe substituiert sein kann,
- 10 die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe R^b-A^b-E^b-C₁₋₃-alkyl-, in der
15 R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe,
- 20 eine 5-gliedrige Heteroarylgruppe, die
 über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über ein Stickstoffatom gebunden sein kann und die
 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,
- 25 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder
 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder
 ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,
- 30

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch
5 ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-,
Phenyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-
(C₁₋₃-alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Aus-
nahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroaryl-
resten, durch eine C₁₋₄-Alkylgruppe und einen Substituenten ausgewählt aus
10 Fluor, Chlor, Brom, C₁₋₃-Alkyl, Trifluormethyl, Phenyl, C₁₋₃-Alkoxy und
Trifluormethoxy auch disubstituiert sein können,

eine C₃₋₆-Cycloalkylgruppe, wobei

15 die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclo-
pentylgruppe oder in 3- oder 4-Stellung einer Cyclohexylgruppe durch eine
n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

20 der Cycloalkylteil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

25 jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cyclo-
alkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyl-
oder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert sein kann oder

30 die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-glied-
rigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkylenimino-
gruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe
ersetzt sein können,

- 176 -

A^b eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -O-CH₂-, Carbonyl-, -NH-CO- oder -CO-NH-Gruppe,

5 in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein kann,

E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino- oder C₁₋₃-Alkoxy- carbonylgruppe substituierte Phenylengruppe bedeuten, oder

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

15 R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe oder

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

20 der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

25 die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5- gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkylen- iminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

30 A^c eine Bindung,

- 177 -

E^c eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe,
die

5 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe,
ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom
oder

10 eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe
und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

15 oder eine Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im
Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine
20 C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-,
C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe
substituiert sein können, bedeutet,

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen, in
25 der

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

eine -CH₂-CH₂-Gruppe durch eine gegebenenfalls durch eine Phenoxy- oder
30 Benzylgruppe substituierte 1,2-verknüpfte Phenylengruppe ersetzt sein kann,
wobei

- 178 -

die Phenoxy- oder Benzylgruppe im aromatischen Teil und die Phenylengruppe unabhängig voneinander durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

5 oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino- oder N-(Methyl)-acetylaminogruppe oder eine 5- bis 7-gliedrige Cycloalkylenimino- gruppe substituierte C₁₋₃-Alkylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann,

10 15 bedeuten, wobei die bei der Definition der vorstehend genannten Reste erwähnten Phenylgruppen, sofern nichts anderes erwähnt wurde, durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy- carbonyl- oder Cyanogruppe substituiert sein können,

20 25 die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

30 die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

- 179 -

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

5 5. Verbindungen der Formel I gemäß Anspruch 1, in denen

X₁ die Gruppe CR¹,

X₂ die Gruppe CR²,

10 X₃ die Gruppe CR³ und

X₄ die Gruppe CR⁴,

15 wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine der Gruppen R¹ bis R⁴ ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe oder eine Trifluormethylgruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

20 A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, oder -N(C₁₋₃-Alkyl)-Gruppe,

25 wobei ein Stickstoffatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl-, 2-Pyridinyl-, 3-Pyridinyl- oder 4-Pyridinylgruppe,

eine 1-Pyrrolyl-, 2-Pyrrolyl-, 3-Pyrrolyl-, 2-Thienyl- oder 3-Thienylgruppe,

30 wobei das Stickstoffatom der Pyrrolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten

- 180 -

heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein können,

5 eine Pyrrolidino-, Piperidino- oder Morphinogruppe

R⁵ ein Wasserstoffatom,

10 **Het** eine 2,4-verknüpfte Pyrrolylen- oder Imidazolyengruppe, die jeweils über die Position 2 an die benachbarte Carbonylgruppe der Formel I gebunden sind und die

an einem Stickstoffatom durch eine C₁₋₃-Alkylgruppe substituiert sind und im Kohlenstoffgerüst durch eine C₁₋₃-Alkylgruppe oder eine Trifluormethylgruppe substituiert sein können,

15 R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

20 R⁷ die Gruppe R^d-CH₂- oder R^d-CH₂-CH₂-, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine C₁₋₃-Alkylgruppe oder eine Cyclopropylgruppe ersetzt sein kann und in denen

R^d eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, 2-Pyridinyl-, 3-Pyridinyl-, 4-Pyridinyl-, 2-Pyrimidinyl- oder 5-Pyrimidinylgruppe,

25 wobei die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy- oder Fluormethoxygruppe substituiert sein können,

30 bedeutet,

eine Phenyl-C≡C-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl- oder Phenylgruppe substituiert sein kann,

5

die Gruppe R^b-A^b-E^b-CH₂-, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und in der

10

R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, Methoxy-, Carboxy- oder Methoxy-carbonylgruppe substituierte Phenylgruppe,

15

eine über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über ein Stickstoffatom gebundene Pyrrolyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl-, Isothiazolyl-, Oxadiazol- oder Thiadiazolylgruppe, in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann,

20

eine 2-Pyridyl-, 3-Pyridyl-, 4-Pyridyl-, Pyrazinyl-, 2-Pyrimidinyl-, 4-Pyrimidinyl-, 5-Pyrimidinyl-, 3-Pyridazinyl- oder 4-Pyridazinylgruppe,

25

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C₁₋₃-Alkylgruppe und einen Substituenten ausgewählt aus Fluor, Chlor, Brom, C₁₋₃-Alkyl, Trifluormethyl, Phenyl, auch disubstituiert sein können,

30

eine C₅₋₆-Cycloalkylgruppe, wobei

- 182 -

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung der Cyclopentylgruppe oder in 4-Stellung der Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

5 oder eine 5- bis 6-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl- oder C₁₋₃-Alkoxygruppe substituierten Phenylring kondensiert sein kann oder

10

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

die beiden Wasserstoffatome der Methylengruppe in Position 3 der 5-gliedrigen oder in Position 4 der 6-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

15

A^b eine Bindung, eine -CH₂-, -NH-, -O-CH₂-, -NH-CO- oder -CO-NH-Gruppe,

20

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine Methylgruppe ersetzt sein kann,

E^b eine 1,4-verknüpfte, gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy- oder Trifluormethoxygruppe substituierte Phenylengruppe bedeuten, oder

25

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

30

R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Methoxy-, Carboxy- oder Methoxycarbonylgruppe substituierte Phenylgruppe,

A^c eine Bindung,

E^c eine über zwei Kohlenstoffatome in den relativen Positionen 1,3 gebundene Pyrrolylen-, Pyrazolylen-, Imidazolylen-, Oxazolylen-, Isoxazolylen-, Thiazolylen-, Isothiazolylen-, [1,3,4]-Oxadiazolen- oder [1,3,4]-Thiadiazolengruppe, in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann,

oder eine 1,4-verknüpfte Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

- 10 wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl- oder Methoxygruppe substituiert sein können, bedeutet,
- 15 darstellen, wobei die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,
- 20 die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und
- 25 die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können, deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

6. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 1:

(a) N-[3-(Biphenyl-4-yl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-

5 methyl-pyrrol-2-carbonsäureamid,

(b) N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbi-
phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,

10 (c) N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbi-
phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,

(d) N-[4-(6-Methylpyridazin-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbo-
nylamino)-1-methyl-pyrrol-2-carbonsäureamid,

15 (e) N-(4'-Hydroxybiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-
1-methyl-pyrrol-2-carbonsäureamid,

20 (f) N-[4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-tri-fluormethylbiphenyl-2-
carbonylamino)-1-methyl-pyrrol-2-carbon-säureamid,

(g) N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-
methyl-pyrrol-2-carbonsäureamid,

25 (h) N-[3-(4-Isopropylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-
carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,

(i) N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-
methyl-imidazol-2-carbonsäureamid und

30 (j) N-[3-(4-Trifluormethylphenyl)-prop-2-inyl]-4-(4'-trifluor-methylbiphenyl-2-carbo-
nylamino)-1-methyl-imidazol-2-carbonsäureamid,

sowie deren Salze.

- 5 7. Physiologisch verträgliche Salze der Verbindungen gemäß den Ansprüchen 1 bis 6.
- 10 8. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder ein Salz gemäß Anspruch 7 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- 15 9. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder eines Salzes gemäß Anspruch 7 zur Herstellung eines Arzneimittels mit einer senkenden Wirkung auf die Plasmaspiegel der atherogenen Lipoproteine.
- 20 10. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 8, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder ein Salz gemäß Anspruch 7 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
- 25 11. Verfahren zur Herstellung der Verbindungen gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß
 - a. eine Verbindung der allgemeinen Formel

- 186 -

in der

X_1 bis X_4 , R^a , A^a , R^5 und Het wie in den Ansprüchen 1 bis 6 definiert sind und Z eine

5 Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt,

mit einem Amin der allgemeinen Formel

10

in der

R^6 und R^7 wie in den Ansprüchen 1 bis 6 definiert sind, umgesetzt wird oder

b. eine Verbindung der allgemeinen Formel

15

in der

X_1 bis X_4 , R^a und A^a wie in den Ansprüchen 1 bis 6 definiert sind und Z eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt,

20

mit einem Amin der allgemeinen Formel

- 187 -

in der

R^5 bis R^7 und Het wie in den Ansprüchen 1 bis 6 definiert sind, umgesetzt wird und

5

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, mittels Acylierung oder Sulfonylierung in eine entsprechende Acyl- oder Sulfonylverbindung der allgemeinen Formel I übergeführt wird und/oder

10

eine Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, mittels Alkylierung oder reduktiver Alkylierung in eine entsprechende Alkylverbindung der allgemeinen Formel I übergeführt wird und/oder

15

eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, mittels Veresterung in einen entsprechenden Ester der allgemeinen Formel I übergeführt wird und/oder

20

eine Verbindung der allgemeinen Formel I, die eine Carboxy- oder Estergruppe enthält, mittels Amidierung in ein entsprechendes Amid der allgemeinen Formel I übergeführt wird und/oder

25

eine Verbindung der allgemeinen Formel I, die eine olefinische Doppelbindung oder eine C-C-Dreifachbindung enthält, mittels katalytischer Hydrierung in eine entsprechende Alkyl- oder Alkenylverbindung der allgemeinen Formel I übergeführt wird und/oder

erforderlichenfalls ein während den Umsetzungen zum Schutze von reaktiven Gruppen verwendet Schutzrest abgespalten wird und/oder

- 188 -

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

- 5 eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit einer anorganischen oder organischen Säure oder Base, übergeführt wird.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/07215

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 A61K31/4025 A61K31/427 C07D207/34 C07D405/12 C07D401/12
C07D403/12 C07D233/90 C07D417/12 C07D277/46 C07D213/82
C07D491/10 A61K31/4178

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data, PAJ, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 197 54 796 A (BOEHRINGER INGELHEIM PHARMA) 17 June 1999 (1999-06-17) abstract claims examples	1-11
P, A	DE 100 33 337 A (BOEHRINGER INGELHEIM PHARMA) 17 January 2002 (2002-01-17) abstract claims examples	1-11
A	DE 199 33 926 A (BOEHRINGER INGELHEIM PHARMA) 25 January 2001 (2001-01-25) abstract claims	1-11

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

27 August 2002

Date of mailing of the international search report

03/09/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Stix-Malaun, E

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/07215

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 19754796	A	17-06-1999	DE	19754796 A1	17-06-1999
			AU	1759499 A	28-06-1999
			BG	104500 A	30-03-2001
			BR	9813495 A	10-10-2000
			CA	2309388 A1	17-06-1999
			CN	1281434 T	24-01-2001
			EE	200000342 A	15-08-2001
			WO	9929669 A1	17-06-1999
			EP	1060162 A1	20-12-2000
			HR	20000377 A1	31-12-2000
			HU	0100335 A2	30-07-2001
			JP	2001525397 T	11-12-2001
			NO	20002967 A	09-08-2000
			PL	341060 A1	26-03-2001
			SK	8612000 A3	07-11-2000
			TR	200001635 T2	21-11-2000
			ZA	9811262 A	09-06-2000
DE 10033337	A	17-01-2002	DE	10033337 A1	17-01-2002
			AU	6758301 A	21-01-2002
			WO	0204403 A1	17-01-2002
			US	2002032238 A1	14-03-2002
DE 19933926	A	25-01-2001	DE	19933926 A1	25-01-2001
			AU	6434600 A	05-02-2001
			WO	0105762 A2	25-01-2001
			EP	1202969 A2	08-05-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 02/07215

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES					
IPK 7	A61K31/4025	A61K31/427	C07D207/34	C07D405/12	C07D401/12
	C07D403/12	C07D233/90	C07D417/12	C07D277/46	C07D213/82
	C07D491/10	A61K31/4178			
Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK					
B. RECHERCHIERTE GEBIETE					
Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)					
IPK 7 C07D A61K					
Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen					
Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)					
EPO-Internal, CHEM ABS Data, WPI Data, PAJ, BEILSTEIN Data					
C. ALS WESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile				Betr. Anspruch Nr.
A	DE 197 54 796 A (BOEHRINGER INGELHEIM PHARMA) 17. Juni 1999 (1999-06-17) Zusammenfassung Ansprüche Beispiele				1-11
P,A	DE 100 33 337 A (BOEHRINGER INGELHEIM PHARMA) 17. Januar 2002 (2002-01-17) Zusammenfassung Ansprüche Beispiele				1-11
A	DE 199 33 926 A (BOEHRINGER INGELHEIM PHARMA) 25. Januar 2001 (2001-01-25) Zusammenfassung Ansprüche				1-11
<input type="checkbox"/> Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen <input checked="" type="checkbox"/> Siehe Anhang Patentfamilie					
* Besondere Kategorien von angegebenen Veröffentlichungen : *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grunde angegeben ist (wie ausgeführt) *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist					
T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht werden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist					
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts				
27. August 2002	03/09/2002				
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter				
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Stix-Malaun, E				

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 02/07215

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE 19754796	A	17-06-1999	DE	19754796 A1		17-06-1999
			AU	1759499 A		28-06-1999
			BG	104500 A		30-03-2001
			BR	9813495 A		10-10-2000
			CA	2309388 A1		17-06-1999
			CN	1281434 T		24-01-2001
			EE	200000342 A		15-08-2001
			WO	9929669 A1		17-06-1999
			EP	1060162 A1		20-12-2000
			HR	20000377 A1		31-12-2000
			HU	0100335 A2		30-07-2001
			JP	2001525397 T		11-12-2001
			NO	20002967 A		09-08-2000
			PL	341060 A1		26-03-2001
			SK	8612000 A3		07-11-2000
			TR	200001635 T2		21-11-2000
			ZA	9811262 A		09-06-2000
DE 10033337	A	17-01-2002	DE	10033337 A1		17-01-2002
			AU	6758301 A		21-01-2002
			WO	0204403 A1		17-01-2002
			US	2002032238 A1		14-03-2002
DE 19933926	A	25-01-2001	DE	19933926 A1		25-01-2001
			AU	6434600 A		05-02-2001
			WO	0105762 A2		25-01-2001
			EP	1202969 A2		08-05-2002