# LaPIS Diagnostic Test Workbook - Mathematics

Name : Monesh G

Class: 7

Section : B

School : AKV Public School

Login ID : AKV142

# Monesh G's Performance Report



Score: 17/40 Percentage: 42.5%

# Monesh G's Study Planner

| Date | Topics Planned  | Q. Numbers    | Teacher Remark    | Teacher Sign  | Parent Sig |
|------|-----------------|---------------|-------------------|---------------|------------|
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 | Teacher's Fe  | edback to Student |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      | Class Teacher S | <br>Signature | Princi            | pal Signature |            |

# Basic arithmetic

|                 | Topics to be Improved             |
|-----------------|-----------------------------------|
| Types of angles | Identification of types of angles |

Hi, here in this video you will learn Types of Angles



Question: 1

Find the angles.



# Answer:

The angle ranges from  $\_\__{\circ}$  to  $\_\__{\circ}$ .

The angle perpendicular to  $0^{\circ}$  is  $\_\_\_^{\circ}$ .

The straight line measures  $\_\_\_^{\circ}$ .

Question: 2



The angle formed between the directions

(i) West and East is \_\_\_\_\_ angle.

| (ii) North and East is angle.                                       |
|---------------------------------------------------------------------|
| (iii) East and South is angle.                                      |
| Answer:                                                             |
| The angle formed between West and East is° and it is called angle.  |
| The angle formed between North and East is° and it is called angle. |
| The angle formed between East and South is° and it is called angle. |
| $\underline{\textit{Question: 3}}$                                  |
| The addition of straight angle and right angle is angle.            |
| Answer:                                                             |
| The measurement of straight angle is°                               |
| The measurement of right angle is°.                                 |
| Straight angle + Right angle =  +  =  =                             |
| It is called as angle.                                              |

# Mensuration

|      | Topics to be Improved |
|------|-----------------------|
| Area | Area of rectangle     |

Hi, here in this video you will learn Area



Question: 4

Find which of the shaded portion in the given shape represent it's area.







.....

......



Answer:

Given figure is \_\_\_\_\_\_ in shape.

Area is the \_\_\_\_\_ ( inside/ outside/ boundary ) of a shape.

Question: 5

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:



The garden is in \_\_\_\_\_ shape.

Length of garden is \_\_\_\_\_ and breadth of garden is \_\_\_\_\_.

Formula for area of the shape = \_\_\_\_\_.

The area of garden = \_\_\_\_ x \_\_\_ = \_\_\_  $cm^2$ 

 $\underline{Question \colon \ 6}$ 

Shade the possible dimension of the door whose area is 500  $m^2$ 

$$50 \ m \ imes \ 10 \ m$$

$$\left| 25 \ m \ \times \ 20 \ m \right|$$

.....

| Answer: | A | ns | w | er | • |
|---------|---|----|---|----|---|
|---------|---|----|---|----|---|

Door is \_\_\_\_\_ in shape. Area of the \_\_\_\_ shaped door is \_\_\_\_.

| Dimensions                       | Length | Breadth | Area |
|----------------------------------|--------|---------|------|
| $50 \text{m} \times 10 \text{m}$ |        |         |      |
| $25\text{m} \times 25\text{m}$   |        |         |      |
| $25m \times 20m$                 |        |         |      |
| $30 \text{m} \times 20 \text{m}$ |        |         |      |

Therefore, possible dimension of the door whose area is 500  $m^2$  is/are \_\_\_\_\_

# Data handling

|                                  | Topics to be Improved                             |
|----------------------------------|---------------------------------------------------|
| Arithmetic mean, mode and median | Mean, Median and Mode                             |
| Chance of probability            | Basis of probability, Sample space in probability |
| Range                            | Finding the range                                 |

Hi, here in this video you will learn Mean, Median, Mode



| Question: 7                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------|
| Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.                        |
| $\underline{Answer:}$                                                                                                         |
| Mode is the number that occurs (frequently / rarely) in a given list of observations.  Arranging the data in ascending order: |
| occurs most number of times. Then, mode of the given data is                                                                  |

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1







.....

.....



#### Answer:

Question: 8

Median is the \_\_\_\_\_\_(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: \_\_\_\_\_ and it is the \_\_\_\_\_ of a data.

Question: 9

| Marks scored       | 100    | 90 | 80 | 70 |
|--------------------|--------|----|----|----|
| Number of students | igg  4 | 5  | 2  | 1  |

| $Mean = \underline{\hspace{1cm}}$ , $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$ .                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Answer:                                                                                                                                                                                                                                                                                    |
| $Mean = \frac{\text{of all observation}}{\text{number of observation}}.$                                                                                                                                                                                                                   |
| Here s sum of all observation =, number of observation =<br>Therefore, mean =<br>Arrange the data in ascending order :<br>Here, median =, mode =                                                                                                                                           |
|                                                                                                                                                                                                                                                                                            |
| Hi, here in this video you will learn Basics of probability                                                                                                                                                                                                                                |
| Question: 10                                                                                                                                                                                                                                                                               |
| Identify the sure events and impossible events                                                                                                                                                                                                                                             |
| (i) The sun rises in the west.                                                                                                                                                                                                                                                             |
| (ii) Water is colourless.                                                                                                                                                                                                                                                                  |
| (iii) Clock rotates in clock wise direction.                                                                                                                                                                                                                                               |
| (iv) Ball is square in shape.                                                                                                                                                                                                                                                              |
| Answer:                                                                                                                                                                                                                                                                                    |
| Events that always occur are called (sure/ impossible) events.  Events that cannot occur are called (sure/ impossible) events.  Here, The sun rises in the west is event. Water is colourless is event.  Clock rotates in clock wise direction is event. Ball is square in shape is event. |
| Question: 11                                                                                                                                                                                                                                                                               |
| Probability of sure events is (greater / smaller) than probability of impossible event                                                                                                                                                                                                     |
| Answer:                                                                                                                                                                                                                                                                                    |
| Probability of sure event = $\_\_\_(0/1/\text{ any number})$ .<br>Probability of impossible event = $\_\_\_(0/1/\text{ any number})$ .<br>Therefore, Probability of sure event $\_\_\_$ Probability of impossible event.                                                                   |
| Question: 12                                                                                                                                                                                                                                                                               |
| Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.                                                                                                                                            |
| Answer:                                                                                                                                                                                                                                                                                    |
| Things Raju have                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                            |

| Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hi, here in this video you will learn Basics of probability                                                                                                                                                                                                                |
| Question: 13                                                                                                                                                                                                                                                               |
| Which of the following contains list of all possible outcomes.                                                                                                                                                                                                             |
| Probability  Sample space  Sure events  Impossible events                                                                                                                                                                                                                  |
| Answer:                                                                                                                                                                                                                                                                    |
| Probability is the measure of ( chance /number) of an events happenings.  Sample space consists of ( possible/ impossible) outcomes.  Sure events always (occurs/don't occurs).  Impossible events (occurs/ don't occurs).  Therefore, contains list of possible outcomes. |
| Question: 14                                                                                                                                                                                                                                                               |
| Write the possible outcomes while spinning the given wheel.                                                                                                                                                                                                                |
| 0 10<br>250 100<br>5 25<br>1 500                                                                                                                                                                                                                                           |
| Answer: Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are ₹0, ₹10,                                                                                                                                               |
| Question: 15                                                                                                                                                                                                                                                               |
| A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.                                                                                                                                                          |

A bag contains \_\_ \_\_\_\_\_ and \_\_\_\_\_ balls. If one of the ball is blue in colour, then other ball can be \_\_\_\_\_ or \_\_\_\_ If one of the ball is green in colour, then other ball can be \_\_\_\_\_\_ or \_\_\_\_\_. If one of the ball is red in colour, then other ball can be \_\_\_\_\_\_ or \_\_\_\_\_. Therefore, if two balls are taken out then possible outcomes are blue + \_\_\_\_\_\_, \_\_\_\_\_\_+ \_\_\_\_\_\_, \_\_\_\_\_\_+ \_\_\_\_\_\_,

Hi, here in this video you will learn Range



# Question: 16

#### Answer:

The difference between highest value and lowest value is \_\_\_\_\_.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}$ ,  $Lowest value = \underline{\hspace{1cm}}$ .

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$ 

# Question: 17

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20+51$$
  $\frac{-38-51}{2}$   $51+38$ 

$$\frac{-38-51}{2}$$

$$51 + 38$$

......

.....

......

$$\frac{51+20}{2}$$

## Answer:

Arranging the data in ascending order, \_\_\_\_\_

In the given data,

 $Highest value = \underline{\hspace{1cm}}$ ,  $Lowest value = \underline{\hspace{1cm}}$ ,  $Range = \underline{\hspace{1cm}}$ 

# Question: 18

Find the range of first 10 multiple of 5.

# Answer:

First 10 multiple of 5 =

Therefore,

 $Highest\ value = \underline{\hspace{1cm}},\ Lowest\ value = \underline{\hspace{1cm}},\ Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ 

# Geometry

| Topics to be Improved                        |                                     |  |  |  |
|----------------------------------------------|-------------------------------------|--|--|--|
| Types of triangle                            | Basics of types of triangle (sides) |  |  |  |
| Faces vertex and edges                       |                                     |  |  |  |
| Lines of symmetry for<br>regular polygons    | Identification of lines of symmetry |  |  |  |
| Right angle triangle and pythagoras property | Basics of Pythagoras property       |  |  |  |
| Sum of lengths of two sides of a triangle    | Sum of two sides of a triangle      |  |  |  |

Hi, here in this video you will learn **Types of triangle** 



Question: 19

Polygon with three sides is called as \_\_\_\_\_\_.

# Answer:

A polygon is a simple  $\_\_\_$  (open / closed ) curve made up of only line segments.

Polygon with three sides is called \_\_\_\_\_\_.

Draw a diagram of polygon with three sides :

# Question: 20

Identify the types of triangles.









# Answer:

Triangle has \_\_\_\_\_ sides.

| • Irlangle with all sides at                                                                           | re equal is called1                                  | rriangie.                           |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|
| • Triangle with two sides                                                                              | of equal length is called                            | triangle.                           |
| • Triangle with three sides                                                                            | s of different length is called                      | triangle.                           |
| Question: 21                                                                                           |                                                      |                                     |
|                                                                                                        | sosceles triangle. If side length of the park can be | the park is 30ft and 60ft. then the |
| $\underline{Answer:}$                                                                                  |                                                      |                                     |
| The shape of the park is The shapes has Given: length of sides of park The possible length of third si | _ sides and this shape has<br>is                     | sides of equal length.              |
| Hi, here in this video yo                                                                              | ou will learn Basics of 3D r                         | nodel A                             |
| Question: 22                                                                                           |                                                      |                                     |
| A point at which two or more                                                                           | lines segments meet is called                        | (Vertex/ edges/ faces).             |
| $\underline{Answer:}$                                                                                  |                                                      |                                     |
| A has two end p A is a point w Mark the vertices in the diagr                                          | here two or more line segments me                    | eet(Vertex/ edges/ faces).          |
| $Question: 23 \cdots$                                                                                  |                                                      |                                     |
| Mark and find the number of                                                                            | vertices, edges and faces in a cube                  | <del>)</del> .                      |



# Answer:

Mark the vertex, edges and faces in a cube.



|              | of vertex, edges and faces in a cube. vertices, edges and faces. |
|--------------|------------------------------------------------------------------|
| Question: 24 |                                                                  |
| TT           | 1 16 1 1 1 2                                                     |

How many vertices, edges and faces does dices have?



# Answer: The shape of dice is \_\_\_\_\_\_. Dices have \_\_\_\_\_ vertices, \_\_\_\_\_ edges and \_\_\_\_\_\_ faces. Hi, here in this video you will learn Symmerty Question: 25

| Line of symmetry is identical) halves. | divides any shape into _                                      | (one / tw           | 7O)              | (identical / non                |
|----------------------------------------|---------------------------------------------------------------|---------------------|------------------|---------------------------------|
| Answer:                                |                                                               |                     |                  |                                 |
| Symmetrical image l                    | s a line that divides any shave (idemmetry is dividing the sh | entical / non iden  | ntical) parts.   |                                 |
| Question: 26                           |                                                               |                     |                  |                                 |
| How many lines of s                    | ymmetry does square hav                                       | ve?                 |                  |                                 |
| Answer:                                |                                                               |                     |                  |                                 |
| Square have                            | sides.                                                        |                     |                  |                                 |
| -                                      | re and al                                                     | ll angles are       |                  |                                 |
| •                                      |                                                               | ines of symmetry    |                  |                                 |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  |                                 |
| Therefore, square ha                   | s lines of symme                                              | etry.               |                  |                                 |
|                                        | v                                                             | ·                   |                  |                                 |
| Question:~27                           |                                                               |                     |                  |                                 |
|                                        | g based on the symmetry                                       |                     |                  |                                 |
| v                                      | g based on the symmetry, scalene triangle, Letter             |                     | umber 8 and circ | cle                             |
|                                        | , searche diangle, Ledder                                     | ir, idioilibus, ive | aniber o, and en |                                 |
| $\underline{Answer:}$                  |                                                               |                     |                  |                                 |
|                                        | s a line that divides the s (symmetrical                      |                     |                  |                                 |
| symmetry.                              | ,                                                             |                     |                  |                                 |
| _                                      | (symmetric                                                    | cal / asymmetric    | cal) and have    | lines of                        |
| symmetry.                              | (                                                             | /1`                 | ) d l            | 1: f                            |
|                                        | (symmetrical                                                  | / asymmetrical      | ) and nave       | lines of                        |
| symmetry.<br>Rhombus is                | (symmetrical / as                                             | symmetrical) and    | d have           | lines of                        |
| symmetry.                              | (Symmetrical / as                                             | symmetricar) and    | a nave           | mics or                         |
|                                        | (symmetrical / asymm                                          | netrical) and hav   | /e               | _ lines of symmetry.            |
|                                        | (symmetrical / asym                                           | ,                   |                  | v v                             |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  | <b>四次%</b> (20円<br>4 編(2007) 第4 |
| Hi, here in this                       | video you will learn l                                        | Pythagoras          | property         |                                 |
|                                        |                                                               |                     |                  |                                 |
|                                        |                                                               |                     |                  |                                 |

Question: 28 .....

In a right angled triangle, square of the \_\_\_\_\_ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for \_\_\_\_\_\_ triangle.

Longest side of the triangle is \_\_\_\_\_\_ (hypotenuse/ legs) and other two sides are called \_\_\_\_\_ (hypotenuse/ legs).

Pythagoras theorem states that \_\_\_\_\_

.....

Question: 29

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:



Pythagoras theorem states that square of the \_\_\_\_\_ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$ 

Base and altitude are \_\_\_\_\_ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is \_\_\_\_\_.

Question: 30 .....

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:



Pythagoras theorem states that square on the \_\_\_\_\_ = sum of the squares on Is Pythagoras theorem applicable in rectangle? \_\_\_\_ ( yes/ no). Given: breadth = \_\_\_\_\_, length of diagonal = \_\_\_\_\_ By Pythagoras theorem,  $(_{)}^{2} = (_{)}^{2} + (_{)}^{2}$ Therefore, diagonal of the rectangle is \_\_\_\_\_ Hi, here in this video you will learn Sum of the length of sides of the triangle ..... Question: 31 Find the greatest distance to reach C from A in the given diagram. 70m30mВ 60m Answer: The sides of the given triangle are \_\_\_\_\_ The possible way to reach point C from point A are \_\_\_\_\_ and AB then to  $Side AC = \underline{\hspace{1cm}}$ Side AB + BC = \_\_\_\_\_ + \_\_\_\_ = \_\_\_\_

Therefore, the greatest distance to reach C from A in the given diagram is \_\_\_\_\_.

Question: 32

\_\_\_ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

#### Answer:

There are \_\_\_\_\_\_ sides in a triangle.

The sum of the two sides of a triangle is \_\_\_\_\_\_ than the other side of the triangle.

The difference of the two sides of a triangle is \_\_\_\_\_\_ than the other side of the triangle.

Example: In triangle XYZ,



| $Question: \ {\it 3}$ | 33 |  |  |  |  |  |  |
|-----------------------|----|--|--|--|--|--|--|
|-----------------------|----|--|--|--|--|--|--|

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

#### Answer:

- 1. The sum of the two sides of a triangle is \_\_\_\_\_\_ than the third side of the triangle. Therefore, the third side should be \_\_\_\_\_ (less/ greater) than sum of other two sides. Here, sum of the two sides = \_\_\_\_ + \_\_\_ = \_\_\_ Therefore, the length of the third side is less than \_\_\_\_\_
- 2. The difference of the two sides of a triangle is \_\_\_\_\_\_ than the third side of the triangle.

  Therefore, the third side should be \_\_\_\_\_\_(less/ greater) than sum of other two sides.

  Here, difference of the two sides = \_\_\_\_\_ \_\_\_ = \_\_\_\_

  Therefore, the length of the third side is greater than \_\_\_\_\_\_

Therefore, length of the third side is greater than \_\_\_\_\_\_ but less than \_\_\_\_\_.

# Number system

| Topics to be Improved                  |                                                               |  |  |  |
|----------------------------------------|---------------------------------------------------------------|--|--|--|
| Positive and negative rational numbers | Identification of positive rational numbers                   |  |  |  |
| Operations on rational numbers         | Division of rational numbers, Subtraction of rational numbers |  |  |  |
| Decimals                               | Multiplication and division of decimals                       |  |  |  |
| Exponents                              | Solving exponents                                             |  |  |  |
| Integers                               | Basics of integers                                            |  |  |  |

Hi, here in this video you will learn Positive and Negative rational numbers



Question: 34

Segregate positive and negative rational number.



......

#### Answer:

- If either the numerator and the denominator of a rational number are negative, then it is \_\_\_\_\_ (positive/negative) rational number.

In the given circle, positive rational numbers are \_\_\_\_\_ and negative rational numbers are

<u>Question: 35</u>

| $\frac{-3}{-4}$ is a                                        | _ (positive /negative / neither positive nor negative) rational number                                | er.       |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|
| $\underline{Answer:}$                                       |                                                                                                       |           |
| -3 is a                                                     | $_{\rm number, -4 is a}$ number.                                                                      |           |
| Division of $\frac{-3}{-4} = \square$                       | number, -4 is a number.  and this rational number.                                                    |           |
| (Positive / N                                               | Negative / Neither positive nor negative rational number)                                             |           |
| Question: 36                                                |                                                                                                       |           |
|                                                             | tive rational number and a negative rational number isitive/ Negative/ neither positive nor negative) |           |
| $\underline{Answer:}$                                       |                                                                                                       |           |
| Examples for negative 1                                     | rational numbers: rational numbers:  per × Negative rational number = × = and all number              | d this is |
| Hi, here in this vid bers                                   | deo you will learn <b>Operation on rational num-</b>                                                  |           |
| $\overline{Question: 37} \dots$                             |                                                                                                       |           |
| Fill in the boxes to mal                                    | ake the given expression correct.                                                                     |           |
|                                                             | $\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \frac{\square}{\square}$                   |           |
| $\underline{Answer:}$                                       |                                                                                                       |           |
| When any fraction is disconnection (same/reciprocal) of the | divided by a fraction, we multiply the dividend by thehe divisor.                                     |           |
| Here, dividend =                                            | and divisor =                                                                                         |           |
|                                                             | $\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$                         |           |
| Question: 38                                                |                                                                                                       |           |
| Solve: $\frac{18}{7} \div 0.6$                              |                                                                                                       |           |
| Answer:                                                     |                                                                                                       |           |
| *                                                           | ivided by a fraction, we multiply the dividend by thehe divisor. Here, dividend = and divisor =       |           |

| 18 |   |        | = | 18 | × | = |  |
|----|---|--------|---|----|---|---|--|
| 7  | • | $\Box$ |   | 7  |   |   |  |

| Question: | 39 |
|-----------|----|
| Q account | 00 |

Find the missing number in the expression  $\frac{8}{3} \div \frac{16}{\square} = 2$ 

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is \_\_\_\_\_

Hi, here in this video you will learn Basics of decimals



Question: 40

Shade 0.4 part of the given shape.



Answer:

There are \_\_\_\_\_ boxes.

0.4 can be expressed as \_\_\_\_\_ in fraction

This fraction represents \_\_\_\_\_ parts out of \_\_\_\_equal parts.

So, we need to shade \_\_\_\_\_\_boxes out of \_\_\_\_\_boxes.

Question: 41

Solve the following.

- (i)  $0.4 \times 1.2$
- (ii)  $0.48 \times 1.2$

# Answer:

|       | here in this video you will learn Exponents and power                                                                                                                                                                                                                                                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | the cost of one chocolate is  cost of 15 chocolates = cost of one chocolate × = x =                                                                                                                                                                                                                                            |
| (iii) | $\frac{2010}{15} = \underline{\hspace{1cm}}$ Place the decimal point after digits counting from the right in the quotient after division.                                                                                                                                                                                      |
| (11)  | ·                                                                                                                                                                                                                                                                                                                              |
| ( )   | Divide the two numbers assuming there is no decimal point.                                                                                                                                                                                                                                                                     |
| (i)   |                                                                                                                                                                                                                                                                                                                                |
| One   | box contains chocolates. The cost of one box is<br>1 cost of one chocolate = ÷ =                                                                                                                                                                                                                                               |
|       | olates?  wer:                                                                                                                                                                                                                                                                                                                  |
|       | box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10                                                                                                                                                                                                                                       |
| Que   | estion: 42                                                                                                                                                                                                                                                                                                                     |
| (ii)  | $0.48 \times 1.2$ : Multiplication of $0.48 \times 1.2$ assuming there is no decimal point is  The number of digits after decimal point in $0.48$ is and $1.2$ is  Total digits after decimal point in the product of two numbers is  Count that digits from the right towards left and place the decimal point, the result is |
| (i)   | $0.4 \times 1.2$ : Multiplication of $0.4 \times 1.2$ assuming there is no decimal point is  The number of digits after decimal point in $0.4$ is and $1.2$ is  Total digits after decimal point in the product of two numbers is  Count that digits from the right towards left and place the decimal point, the result is    |
|       |                                                                                                                                                                                                                                                                                                                                |

Find the exponential form of 1000.

\_\_\_\_\_ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as \_\_\_\_\_ (Base / Power).

1000 can be written as =  $10 \times$  \_\_\_\_  $\times$  \_\_\_\_  $\times$  \_\_\_\_ 10 is raised to the power of \_\_\_\_ = (10) \_\_\_

......

......

# Question: 44

Find the value of  $(-2)^3$ .

#### Answer:

\_\_\_\_\_ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form  $(-2)^3$ , base = \_\_\_\_, power = \_\_\_\_.  $(-2)^3$  = \_\_\_\_ × \_\_\_ = \_\_\_.

# Question: 45

- (i) Tenth power of 100 is  $((10)^{100})$  or  $(100)^{10}$ ).
- (ii) k is raised to the power of 5 is  $((k)^5)$  or  $(5)^k$ .

# Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = \_\_\_\_, Power/Exponents = \_\_\_\_, exponential form = \_\_\_\_.
- (ii) k is raised to the power of 5: Base = \_\_\_\_, Power/Exponent = \_\_\_\_, exponential form = \_\_\_\_.

# Hi, here in this video you will learn **Operation on rational numbers**



Question: 46

Solve:  $\frac{-3}{3} + \frac{1}{3}$ 

#### Answer:

Fractions with same denominators are called \_\_\_\_\_\_ (like/ unlike) fractions. Fraction can be added only if they are \_\_\_\_\_\_ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{\phantom{-3}}{\phantom{-3}} =$$

# Question: 47

Find the addition of shaded part of box A and shaded part of box B.





# Answer:

Total number of square in box  $A = \underline{\hspace{1cm}}$ .

Number of shaded square in box  $A = \underline{\hspace{1cm}}$ 

Shaded part of box A in fraction = \_\_\_\_\_

Total number of square in box  $B = \underline{\hspace{1cm}}$ .

Number of shaded square in box  $B = \underline{\hspace{1cm}}$ .

Shaded part of box B in fraction = \_\_\_\_\_.

Shaded part of box A + Shaded part of box B =  $\_\_$  +  $\_\_$  =  $\_$ 

# Question: 48

Find the missing values in the given figure.

# Answer:

One litre =  $\underline{\hspace{1cm}}$  ml  $\frac{7}{10}$  of one liter =  $\frac{7}{10}$  x  $\underline{\hspace{1cm}}$  ml =  $\underline{\hspace{1cm}}$  ml

Given:  $1 = \frac{7}{10} +$ \_\_\_\_\_ Transposing  $\frac{7}{10}$  to other sides,  $1 = \frac{7}{10} =$ \_\_\_\_\_

Therefore, result is \_

Hi, here in this video you will learn Basics of integers



| Question: | 49 |
|-----------|----|
| Q account | 40 |

Highlight the ring that contains whole numbers.



# Answer:

| 1110 Hallibers Histare the Hiller Hills (1, 2, 5,) are Hallibers | The | numbers | inside t | he inner | ring | $(1, 2, 3, \ldots)$ | are | $_{\rm }$ numbers |
|------------------------------------------------------------------|-----|---------|----------|----------|------|---------------------|-----|-------------------|
|------------------------------------------------------------------|-----|---------|----------|----------|------|---------------------|-----|-------------------|

The numbers inside the middle ring are \_\_\_\_\_ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as \_\_\_\_\_\_.

Question: 50

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

Naturals numbers

#### Answer:

Whole number consists of 0,1,2,3,4,.... Negative number consists of \_\_\_\_\_\_. Natural numbers consists of \_\_\_\_\_\_.

Now, 1, 4, -10 are in \_\_\_\_\_.

# Question: 51

State whether the statement is true or false.

Every positive number is an integer.

# Answer:

Positive numbers are \_\_\_\_\_\_. Integers consists of \_\_\_\_\_\_.

Therefore, positive numbers are \_\_\_\_\_ (in/not in) integers.

# Comparing Quantities

| Topics to be Improved |                                |  |  |
|-----------------------|--------------------------------|--|--|
| Percentage            | Basic of percentage            |  |  |
| Simple interest       | Calculation of simple interest |  |  |

| Hi, | here i | in th | is vid | eo you | will | $\operatorname{learn}$ | Basics | of | percentage |
|-----|--------|-------|--------|--------|------|------------------------|--------|----|------------|
|-----|--------|-------|--------|--------|------|------------------------|--------|----|------------|



Question: 52

2% can be written as

## Answer:

Percentages are numerators of fractions with denominator\_\_\_\_\_

$$2\% = \frac{\square}{\square}$$

.....

Question: 53

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

# Answer:

Arun attended LaPIS test for \_\_\_\_\_ marks. He got \_\_\_\_ marks.

75 % can be written in fraction form

Then the mark scored by Arun = Total mark  $\times$  75% = \_\_\_\_  $\times$  \_\_\_ = \_\_\_\_

# Question: 54

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

.....

#### Answer:

There are \_\_\_\_\_ apples in a basket.

Number of rotten apples are \_\_\_\_\_.

| Convert it into a percent= x% =  Hi, here in this video you will learn Simple Interest  Question: 55  Match the following.  Column A  i Principle(P)  ii Amount (A)  iii Rate (R)  Column B  a Interest calculated based on this b Total sum you borrow c Number of years |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Match the following.  Column A  i Principle(P)  ii Amount (A)  iii Rate (R)  Column B  a Interest calculated based on this  b Total sum you borrow  c Number of years                                                                                                     |       |
| Match the following.    Column A                                                                                                                                                                                                                                          |       |
| Column A  i Principle(P)  ii Amount (A)  iii Rate (R)  Column B  a Interest calculated based on this  b Total sum you borrow  c Number of years                                                                                                                           |       |
| i Principle(P)  ii Amount (A)  iii Rate (R)  a Interest calculated based on this b Total sum you borrow c Number of years                                                                                                                                                 |       |
| ii Amount (A) b Total sum you borrow c Number of years                                                                                                                                                                                                                    |       |
| iii Rate (R) c Number of years                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                           |       |
|                                                                                                                                                                                                                                                                           |       |
| iv Time period (T) d Total sum with interest                                                                                                                                                                                                                              |       |
| Total sum you borrow is known as  Number of years is Total sum with interest is  Question: 56  Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest shearned.                                                                     | <br>e |
| $\underline{Answer:}$                                                                                                                                                                                                                                                     |       |
| Given:  Amount =, Principle =, Time period =  If Amount and principle is given, then formula for calculating interest is  Interest =, =                                                                                                                                   |       |
| Question:~57                                                                                                                                                                                                                                                              |       |
| The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.                                                                                                                                                                                         |       |
| Answer:                                                                                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                           |       |
| Rate of interest $= \frac{\underline{\qquad} \times 100}{\text{Principal x} \underline{\qquad}}$ Substituting values in the formula,                                                                                                                                      |       |

# Algebra

|                                                   | Topics to be Improved                |
|---------------------------------------------------|--------------------------------------|
| Basics of simple equation                         | Solving of simple equation           |
| Monomials, binomials, trinomials and polynomials  | Types of algebraic expression        |
| Addition and subtraction of algebraic expressions | Like terms and Unlike terms          |
| subtraction of algebraic expressions              | subtraction of algebraic expressions |

Hi, here in this video you will learn Solving an equation



Question: 58

If ©=5, then 5 © +5 =

#### Answer:

The value of the given smiley  $\odot$  is \_\_\_\_\_.

Substituting the value in the expression  $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ 

# Question: 59

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

$$7 + 3 = -4$$

#### Answer:

The given equation is  $7 \pm 3 = -4$  Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times \_\_+3 = \_\_$$

Therefore, \_\_\_\_\_ is the number that can be placed in a box to make the equation correct.

#### Question: 60

Arrange the terms in the descending order when the value of x is 2.

$$2x \qquad 5x \times 1 \qquad x+3 \qquad 2x-4 \qquad \frac{1}{2}x$$

# Answer:

| The given expression are                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The value of x is                                                                                                                                                                     |
| substituting value of x                                                                                                                                                               |
| $2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$                                         |
| $x + 3 = \underline{\qquad} = \underline{\qquad} = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$                                                                        |
| $5x \times 1 = 5 \times \underline{\qquad} \times 1 = \underline{\qquad}$                                                                                                             |
| Arranging in descending order:,,,  Their respective algebraic terms are,,                                                                                                             |
| Hi, here in this video you will learn <b>Types of expression</b>                                                                                                                      |
| Question: 61                                                                                                                                                                          |
| There are terms in the expression $7x + 3y + m + 5$ .                                                                                                                                 |
| Answer:                                                                                                                                                                               |
| In algebraic expression, (variables/ terms) are connected together with operations of addition.  The terms in the expression are,, and  Therefore, there are terms in the expression. |
| Question: 62                                                                                                                                                                          |
| Classify the following expression into monomial, binomial and polynomial.                                                                                                             |
| 1. $7m + n + 2$                                                                                                                                                                       |
| 2. $8x^2 + 0$                                                                                                                                                                         |
| 3. 7xy + 4m                                                                                                                                                                           |
| Answer:                                                                                                                                                                               |
| 1. The terms in expression $8x^2 + 0$ are<br>Here, expression has term and it is a                                                                                                    |
| 2. The terms in expression $7xy + 4m$ are<br>Here, expression has term and it is a                                                                                                    |
| 3. The terms in expression $7m + n + 2$ are<br>Here, expression has term and it is a                                                                                                  |
| <i>Question:</i> 63                                                                                                                                                                   |

| $5m^2 + m + 0$ is a                                          | _ expres | ssion. (Monon     | nial/Binomia    | l/ Trinomial)    |                        |
|--------------------------------------------------------------|----------|-------------------|-----------------|------------------|------------------------|
| Answer:                                                      |          |                   |                 |                  |                        |
| The terms in expression $5m^2 + r^2$                         |          |                   |                 |                  |                        |
| Here, the expression has                                     |          | terms and it      | is called a     |                  | $_{\perp}$ expression. |
| Hi, here in this video you                                   | will lea | arn <b>Additi</b> | on on exp       | ression          |                        |
| Question: 64                                                 |          |                   |                 |                  |                        |
| Shade the like terms.                                        |          |                   |                 |                  |                        |
| $3a$ $3a^2$                                                  | 3b       | 6a                | 3c              | 33a              | 9a                     |
| Answer:                                                      |          |                   |                 |                  |                        |
| Given terms are  Two or more term have  Here, like terms are |          |                   | rent) variables | s is called like | e terms.               |
| Question: 65                                                 |          |                   |                 |                  |                        |
| Complete the expression $7r^2 +$                             | r 🗆 _    | 2 =_              | $r^{2}$         |                  |                        |
| Answer:                                                      |          |                   |                 |                  |                        |
| (Like / Unlike) terms ca                                     | an be ad | ded or subtra     | cted.           |                  |                        |
| 7 <i>r</i> <sup>2</sup> + r □ -                              | - 2      | ] = (7 +          |                 | r <sup>2</sup> = |                        |
| Question: 66                                                 |          |                   |                 |                  |                        |
| Sam have 3a chocolates and 9y i                              | cecream  | . Ram have 7      | a chocolates a  | and 5y icecrea   | am.                    |
| (i) Total chocolates Ram and                                 | Sam ha   | ve :              |                 |                  |                        |
| (ii) How many icecreams Sam                                  | have mo  | ore than Ram      | :               | ·                |                        |
|                                                              |          |                   |                 |                  |                        |
| Answer:                                                      |          |                   |                 |                  |                        |
|                                                              |          | Chocolates        | Icecream        |                  |                        |
|                                                              | Sam      |                   |                 |                  |                        |

Ram

| (i)                                    | (i) Total chocolates Ram and Sam have : Ram's chocolate + Sam's chocolates = $\_\_\_\_+ \_\_\_\_= \_\_$                                                                                                                                                  |                                               |                 |                |                                          |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------|----------------|------------------------------------------|--|--|--|--|
| (ii)                                   | (ii) How many icecreams Sam have more than Ram : icecream icecream = =                                                                                                                                                                                   |                                               |                 |                |                                          |  |  |  |  |
| —————————————————————————————————————— | here in this vie                                                                                                                                                                                                                                         | deo you will learn                            | Subtraction     | on expression  | on 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |  |  |  |  |
| Que                                    | <i>stion:</i> 67                                                                                                                                                                                                                                         |                                               |                 |                |                                          |  |  |  |  |
|                                        |                                                                                                                                                                                                                                                          | xpressions a + b + c a                        | and $b + c + d$ |                |                                          |  |  |  |  |
| The s                                  | given two expressi<br>two terms will get                                                                                                                                                                                                                 | ons are and _ added only if they ar sions = + | e( Like/        | Unlike) terms. |                                          |  |  |  |  |
| Que                                    | <i>stion:</i> 68                                                                                                                                                                                                                                         |                                               |                 |                |                                          |  |  |  |  |
|                                        | School A School B                                                                                                                                                                                                                                        |                                               |                 |                |                                          |  |  |  |  |
|                                        | Number of boys 100b 250b                                                                                                                                                                                                                                 |                                               |                 |                |                                          |  |  |  |  |
|                                        | Number of girls 150g 200g                                                                                                                                                                                                                                |                                               |                 |                |                                          |  |  |  |  |
|                                        | Number of teachers 25t 45t                                                                                                                                                                                                                               |                                               |                 |                |                                          |  |  |  |  |
| (i)                                    | (i) Total number of boys in school A and B is                                                                                                                                                                                                            |                                               |                 |                |                                          |  |  |  |  |
| (ii)                                   | Total number of students in school B is                                                                                                                                                                                                                  |                                               |                 |                |                                          |  |  |  |  |
| (iii)                                  | i) How many more teachers are there in school B than school A?                                                                                                                                                                                           |                                               |                 |                |                                          |  |  |  |  |
| $\underline{Ans}$                      | <u>wer:</u>                                                                                                                                                                                                                                              |                                               |                 |                |                                          |  |  |  |  |
| (i)                                    | Number of boys in school $A = \underline{\hspace{1cm}}$ , Number of boys in school $B = \underline{\hspace{1cm}}$ .  Total number of boys in school A and school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ . |                                               |                 |                |                                          |  |  |  |  |
| (ii)                                   | ) Number of boys in school $B = \underline{\hspace{1cm}}$ , Number of girls in school $B = \underline{\hspace{1cm}}$ . Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ .        |                                               |                 |                |                                          |  |  |  |  |
| (iii)                                  |                                                                                                                                                                                                                                                          |                                               |                 |                |                                          |  |  |  |  |

Question: 69 .....

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are \_\_\_\_\_ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$