Бинарная классификация движения цен по новостному потоку

Родионов Валентин

1. Сравнение классификаторов на разных признаках 2. Сравнение гиперпараметров классификаторов

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.7811	0.7181		
	Unigrams	2	0.8061	0.4973	0.8093	0.5565
	Unigrams	3	0.8408	0.4541		
	NMF 50	1	0.7397	0.6080		
	NMF 50	2	0.8087	0.5000	0.7647	0.5394
	NMF 50	3	0.7458	0.5102		
	NMF 100	1	0.7602	0.5841		
RF	NMF 100	2	0.8061	0.4973	0.7984	0.5487
	NMF 100	3	0.8288	0.5648		
	NMF 200	1	0.7720	0.7235		
	NMF 200	2	0.8087	0.5000	0.7996	0.5838
	NMF 200	3	0.8180	0.5278		
	Ensemble	1	0.7907	0.7198		
	Ensemble	2	0.8018	0.5006	0.8045	0.5617
	Ensemble	3	0.821	0.4648		

Таблица 1: RandomForestClassifier on 3 data sets

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.8371	0.7623		
	$\operatorname{Unigrams}$	2	0.8035	0.4946	0.835	0.5805
	Unigrams	3	0.8643	0.4846		
	NMF 50	1	0.8239	0.7508		
	NMF 50	2	0.8035	0.4946	0.8284	0.5716
	NMF 50	3	0.8577	0.4693		
	NMF 100	1	0.7989	0.7054		
XGB	NMF 100	2	0.8035	0.4946	0.8257	0.5586
	NMF 100	3	0.8747	0.4759		
	NMF 200	1	0.7923	0.6815		
	NMF 200	2	0.8061	0.4973	0.8221	0.5617
	NMF 200	3	0.8679	0.5063		
	Ensemble	1	0.8046	0.7314		
	Ensemble	2	0.8035	0.4946	0.8217	0.5680
	Ensemble	3	0.8571	0.4780		
	Unigrams	1	0.8217	0.6873		
	Unigrams	2	0.8087	0.5000	0.8464	0.5624
	Unigrams	3	0.9087	0.5000		
	NMF 50	1	0.8235	0.6831		
	NMF 50	2	0.8087	0.5000	0.8470	0.5610
	NMF 50	3	0.9087	0.5000		
	NMF 100	1	0.8154	0.6724		
LR	NMF 100	2	0.8087	0.5000	0.8443	0.5575
	NMF 100	3	0.9087	0.5000		
	NMF 200	1	0.8244	0.6811		
	NMF 200	2	0.8087	0.5000	0.8473	0.5604
	NMF 200	3	0.9087	0.5000		
	Ensemble	1	0.8214	0.6782		
	Ensemble	2	0.8087	0.5000	0.8463	0.5594
	Ensemble	3	0.9087	0.5000		

Таблица 2: XGBClassifier & Logistic Regression on 3 data sets

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.7952	0.5957		
	Unigrams	2	0.8087	0.5000	0.8309	0.5406
	Unigrams	3	0.8889	0.5260		
	NMF 50	1	0.8049	0.6204		
	NMF 50	2	0.8087	0.5000	0.8349	0.5495
	NMF 50	3	0.8912	0.5281		
	NMF 100	1	0.7933	0.5907		
LSVC	NMF 100	2	0.8087	0.5000	0.8310	0.5396
	NMF 100	3	0.8912	0.5281		
	NMF 200	1	0.7962	0.5936		
	NMF 200	2	0.8087	0.5000	0.8312	0.5399
	NMF 200	3	0.8889	0.5260		
	Ensemble	1	0.8029	0.6155		
	Ensemble	2	0.8087	0.5000	0.8343	0.5479
	Ensemble	3	0.8912	0.5281		

Таблица 3: Linear
SVC on 3 data sets $\,$

							Av	Average
max_depth	max_depth min_samples_leaf min_	min_samples_split	n_{-} estimators	Data Set	F1 Score	${\rm AUC\ ROC}$	F1 Score	AUC ROC
				П	0.8677	0.7710		
None		ರ	2000	2	0.8087	0.5000	0.8615	0.5961
				3	0.9080	0.5174		
				П	0.8663	0.7751		
None	3	2	2000	2	0.8087	0.5000	0.8611	0.5946
				က	0.9084	0.5087		
					0.8661	0.7640		
10	3	2	1000	2	0.8087	0.5000	0.8611	0.5909
				က	0.9084	0.5087		
				П	0.8647	0.7681		
None	3	2	1000	2	0.8087	0.5000	0.8605	0.5952
				က	0.9080	0.5174		
					0.8640	0.7702		
50	3	20	2000	2	0.8087	0.5000	0.8604	0.5930
				ಣ	0.9084	0.5087		
				1	0.8639	0.7591		
10	3	2	2000	2	0.8087	0.5000	0.8603	0.5892
				က	0.9084	0.5087		
					0.8647	0.7681		
20	3	2	2000	2	0.8087	0.5000	0.8599	0.5915
				က	0.9062	0.5065		
					0.8624	0.7632		
50	3	2	1000	2	0.8087	0.5000	0.8597	0.5935
				က	0.9080	0.5174		
					0.8624	0.7632		
None	3	ಬ	1000	2	0.8087	0.5000	0.8597	0.5935
				3	0.9080	0.5174		

Таблица 5: XGBClassifier with Unigrams

							Av	Average
Ö	loss	max_iter	$multi_class$	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
0.1	squared_hinge	1000	OVF	2 3 3	0.8152 0.8087 0.9087	0.6633 0.5000 0.5000	0.8442	0.5544
0.1	squared_hinge	1500	OVF	2 8 3	0.8152 0.8087 0.9087	0.6633 0.5000 0.5000	0.8442	0.5544
0.1	hinge	1500	crammer_singer	2 2 3	0.7852 0.8087 0.9087	0.5982 0.5000 0.5000	0.8342	0.5327
0.1	squared_hinge	1500	crammer_singer	2 2 3	0.7852 0.8087 0.9087	0.5982 0.5000 0.5000	0.8342	0.5327
0.1	squared_hinge	1000	crammer_singer	2 3 3	0.7852 0.8087 0.9087	$\begin{array}{c} 0.5982 \\ 0.5000 \\ 0.5000 \end{array}$	0.8342	0.5327
0.1	hinge	1000	crammer_singer	2 3 3	0.7852 0.8087 0.9087	0.5982 0.5000 0.5000	0.8342	0.5327
\leftarrow	hinge	1000	OVF	2 2 3	0.7841 0.8087 0.9087	0.6002 0.5000 0.5000	0.8338	0.5334
 1	hinge	1500	OVľ	1 2 3	0.7841 0.8087 0.9087	0.6002 0.5000 0.5000	0.8338	0.5334
0.1	hinge	1000	OVF	1 2 3	0.7786 0.8087 0.9087	0.5763 0.5000 0.5000	0.832	0.5254

						i i	D .
\circ	max_iter	solver	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
				0.8235	0.6831		
\vdash	150	liblinear	2	0.8087	0.5000	0.847	0.561
			ಣ	0.9087	0.5000		
		•	-	0.8235	0.6831		
\vdash	100	liblinear	2	0.8087	0.5000	0.847	0.561
			က	0.9087	0.5000		
		•		0.8173	0.6683		
\vdash	150	newton-cg	2	0.8087	0.5000	0.8449	0.5561
			က	0.9087	0.5000		
		•	-	0.8173	0.6683		
_	100	lbfgs	2	0.8087	0.5000	0.8449	0.5561
			က	0.9087	0.5000		
		•		0.8173	0.6683		
_	100	newton-cg	2	0.8087	0.5000	0.8449	0.5561
			ဘ	0.9087	0.5000		
		•		0.8173	0.6683		
\vdash	150	lbfgs	2	0.8087	0.5000	0.8449	0.5561
			က	0.9087	0.5000		
			\vdash	0.7960	0.6208		
0.1	100	liblinear	2	0.8087	0.5000	0.8378	0.5403
			က	0.9087	0.5000		
				0.7960	0.6208		
0.1	150	liblinear	2	0.8087	0.5000	0.8378	0.5403
			က	0.9087	0.5000		
		•		0.7904	0.5878		
0.1	100	lbfgs	2	0.8087	0.5000	0.8359	0.5293
)	۲:	0 9087	0.5000		

7