Взвешенное паросочетание. Задача о назначениях. Венгерский алгоритм

 Π одготовил Cивухин Hикита. Π о вопросам nишите на nочту sivukhin.work+teach@gmail.com

Рассмотрим расширение задачи о максимальном паросочетании:

Определение 1. Задача о паросочетании максимального веса во взвешенном графе G = (V, E, c), где $c : E \mapsto \mathbb{R}^+$ заключается в нахождении множества рёбер $M \subseteq E$ такого, что никакая пара рёбер $e_1, e_2 \in M$ не имеет общих вершин, и при этом вес паросочетания $\sum_{e \in M} c(e)$ — максимален.

Так как рёбра могут иметь произвольный вес, то имеет смысл рассматривать задачу только для случая полного графа, потому что в противном случае можно добавить в граф недостающих рёбер с нулевым весом

Аналогичным образом сформулируем расширение задачи о минимальном вершинном покрытии:

Определение 2. Задача о вершинном покрытии минимального веса во взвешенном графе G = (V, E, c), где $c : E \mapsto \mathbb{R}^+$ заключается в назначении весов вершинам $\phi : V \mapsto \mathbb{R}^+$ таким образом, что $\forall \{u, v\} \in E : \phi(u) + \phi(v) \ge c(\{u, v\})$, и при этом вес вершинного покрытия $\sum_{v \in V} \phi(v)$ — минимален.

Так как формулировка задачи 2 является непрерывной, необходимо дополнительно показать что постановка задачи имеет смысл и для любого графа существует минимальное взвешенное вершинной покрытие.

Лемма 1. Для любого взвешенного графа $G = (V, E, c), c : E \mapsto \mathbb{R}^+$ существует минимальное взвешенное вершинное покрытие $\phi : V \mapsto \mathbb{R}^+$

Доказательство. Заметим, что для конкретно графа нет смысла использовать веса ϕ больше, чем $c_{max} = \max_{e \in E} \{c(e)\}$. Таким образом можно дополнительно ограничить сверху веса вершин и искать решение $\phi: V \mapsto [0 \dots c_{max}]$.

Заметим также, что если пронумеровать вершины в некотором порядке, то функция ϕ будет задаваться n = |V| размерным вектором $\phi \in [0 \dots c_{max}]^n \subset \mathbb{R}^n$.

Тогда обозначим за C пространство всех корректных взвешенных вершинных покрытий $C \subseteq [0 \dots c_{max}]^n$ для графа G = (V, E, c).

Покажем, что C — замкнутое множество. Действительно, если ϕ' — предельная точка C, то существует последовательность $\phi_1, \phi_2, \ldots \in C$ такая, что $\lim \{\phi_i\} = \phi'$, однако так как ограничение $\phi_i(v) + \phi_i(u) \ge c(\{u,v\})$ верно для любого i, то из свойств предела следует $\phi'(v) + \phi'(u) \ge c(\{u,v\})$, а значит $\phi' \in C$.

Таким образом, множество C образует компакт (замкнуто и ограничено), а значит по теореме Вейерштрасса, непрерывная линейная функция $\sum_{v \in V} \phi(v)$, определенная на C, достигает минимума в некоторой точке C.

Обозначим максимальный вес взвешенного паросочетания как $\nu_c(G)$, а минимальный вес взвешенного вершинного покрытия как $\tau_c(G)$.

Замечание 1. Для любого графа верно, что $\nu_c(G) \le \tau_c(G)$.

Задача о назначениях. Венгерский алгоритм.

Задача о назначениях является частным случаев задачи взвешенного паросочетания для двудольного графа. Обычно, задача формулирвется для случая равных размеров долей (например, нужно распределить n работников по n задачам максимизируя суммарную производительность труда).

Для начала, докажем обощение теоремы Кёнига-Эгервари на случай взвешенного двудольного графа:

Теорема 1. Для взвешенного двудольного графа G = (X, Y, E, c), верно что $\nu_c(G) = \tau_c(G)$.

Доказательство. Пусть ϕ — одно из оптимальных вершинных покрытий. Тогда для ребра $e=uv\in E$ определим $\delta(e)=\phi(u)+\phi(v)-c(e)\geq 0$. Будем называть ребро $e\in E$ жёстким, если $\delta(e)=0$, а множество жёстких рёбер обозначим как E_{ϕ} . Покажем теперь, что в графе $G_{\phi}=(X,Y,E_{\phi})$ состоящем из жёстких рёбер относительно ϕ существует совершенное паросочетание.

Заметим, что если в G_{ϕ} нет совершенного паросочетания, то из теоремы Кёнига следует, что существует множество $S \subseteq X$ такое, что |S| > |N(S)| (см. практические задачи к лекции 3). Обозначим за Δ минимальную величину $\delta(e)$ для **нежёстких** рёбер между S и $Y \setminus N(S)$. Заметим, что веса ϕ' такие, что

$$\phi'(v) = egin{cases} \phi(v) - \Delta &, v \in S \\ \phi(v) + \Delta &, v \in N(S) \\ \phi(v) &, ext{ иначе} \end{cases}$$

является корректным вершинным покрытием, а так как |S| > |N(S)|, то вес ϕ' строго меньше ϕ , а значит изначальное вершинное покрытие не являлось минимальным.

	3	3	1	2
1	4	4	2	1
3	1	5	4	5
3	1	5	4	1
4	5	1	5	3

	3	3	2 (+1)	2
1	4	4	2	1
3	1	5	4	5
2 (-1)	1	5	4	1
3(-1)	5	1	5	3

	3	3	$2_{(+1)}$	2
1	4	4	2	1
3	1	5	4	5
2 (-1)	1	5	4	1
3(-1)	5	1	5	3

Рис. 1: Табличное представление задачи о назначениях. Серым закрашены **жёсткие рёбра**, а жирным выделены рёбра текущего паросочетания.

Рис. 2: Граф G_{ϕ} для той же задачи. Оранжевым выделены вершины множеств S и N(S).

Замечание 2. Доказательство теоремы Эгервари для взвешенного графа содержит в себе алгоритм построения оптимального решения — пока граф G_{ϕ} не будет содержать совершенного паросочетания достаточно находить множество S такое, что |N(S)| < |S| и производить обновления весов вершин из S и $Y \setminus N(S)$ на величину $\pm \Delta$ из доказательства.

Oднако, произвольный выбор множества S может привести к алгоритму, время работы которого не является полиномиальным от размера графа, а в случае вещественных весов, алгоритм может никогда не завершиться.

Тем не менее, если правильным образом выбирать множество S можно получить эффективный полиномиальный алгоритм. Для этого достаточно в качестве множества S выбрать множество вершин, достижимых из всех ненасыщенных вершин левой доли по **ориентированным** ребрам графа G_{ϕ} относительно текущего паросочетания (т.е. множество X^+ из декомпозиции вершин описанной в лекции 3).

Рассмотрим аналогичную декомпозицию вершин в графе G'_{ϕ} после обновления весов вершин из множеств Y^- и X^+ на $\pm \Delta$. Заметим, что $X'^+ \supseteq X^+$ и $Y'^+ \supset Y^+$, так как все жесткие рёбра между X^+ и Y^+ сохранились, а значит множество достижимых вершин из ненасыщенных вершин левой доли могло только расшириться. Важно, что множество Y'^+ строго больше чем Y^+ так как хотя бы одно нежёсткое ребро стало жёстким из определения величины Δ , а также X'^+ строго больше X^+ в случае если в графе G'_{ϕ} не существует M-чередующейся цепи относительно оптимального паросочетания M в графе G_{ϕ} .

Таким образом, изменение весов вершин может либо привести к увеличение размера паросочетания на жёстких ребрах, либо увеличит размер достижимых вершин X^+ в графе G_ϕ . Из данного наблюдения следует оценка $O(|X|^2)$ на количество обновлений весов вершин графа в случае алгоритма выбора множества S описанного выше. Так как для построения X^+ необходимо осуществить обход ориентированного графа, то общая асимптотика алгоритма выражается как $O(|X|^3|Y|)$ или $O(n^4)$ для случая равных размеров компонент графа.

Построенный алгоритм был предолжен Гарольдом Куном в 1955 году и основывался на работах Кёнига и Эгервари. Чуть поздее, в 1957 году, Джеймс Мункрес доказал асимптотическую оценку времени работы алгоритма. В описанном виде алгоритм обычно именуется как «алгоритм Куна-Мункреса» или же как «Венгерский алгоритм», потому что опирается на работы венгерских математиков — Эгервари и Кёнига (однако также алгоритм был независимо разработан ещё в XIX веке в статье математика Якоби (Jacobi)).

Полученный алгоритм можно улучшить до асимптотики $O(n^3)$ если воспользоваться тем фактом, что множества X^+ и Y^+ не могут уменьшиться до тех пор, пока алгоритм не найдет дополняющую цепь и не увеличит паросочетание. Для ускорения алгоритма достаточно поддерживать текущее множество достижимых вершин V^+ , а для всех остальных вершин $V^- = X \cup Y \setminus V^+$ поддерживать величину $\delta(v) = \min\{c(u,v) \mid u \in V^+\}$. Тогда на очередном шаге расширения множества V^+ необходимо выбрать вершину из V^- с минимальным $\delta(v)$ и обновить соответствующим образом величины $\delta(v)$ оставщихся вершин, а также веса вершин в текущем взвешенном вершинном покрытии.

Таким образом, до очередного увеличения паросочетания алгоритм сделает не более O(n) увеличений множества V^+ каждое за время O(n), и результате время работы алгоритма будет $O(n^3)$.

Сведение к задаче поиска кратчайшего пути

Рассмотрим очередную итерацию Венгерского алгоритма с весами вершин ϕ и паросочетанием M на жёстких ребрах. Обозначим как G_{δ} взвешенный ориентированный граф, где рёбра из паросочетания направлены в сторону $Y \to X$, рёбра не из паросочетание — в обратную сторону $X \to Y$, а вес ребра $e = xy \in E$ определяется как $\delta(xy)$.

Докажем следующее утверждение:

Лемма 2. Венгерский алгоритм производит увеличение паросочетания вдоль пути минимальной суммарной стоимости в графе G_{δ} между ненасыщенными вершинами левой и правой долей.

Доказательство. Обозначим за G'_{δ} взвешенный граф, полученный из G_{δ} в результате одного шага обновления весов ϕ на величину $\pm \Delta$. Покажем, что любой кратчайший путь между ненасыщенными вершинами левой и правой долей в G_{δ} является кратчайшим в G'_{δ} .

Для этого заметим, что кратчайший путь в G_{δ} имеет ненулевую стоимость, потому что иначе данный путь был бы M-чередующейся цепью по жёстким рёбрам, а значит алгоритм закончил бы фазу нахождения чередующейся цепи.

Так как кратчайший путь имеет ненулевую стоимость, то он содержит ребро между долями в направлении $X^+ \to Y^-$ в **ориентированном** графе G_δ . Таким образом любой кратчайший путь в G_δ стоимостью c соответствует пути стоимостью $c-\Delta$ в графе G'_δ . Несложно показать, что такой путь всегда будет кратчайшим в G'_δ , потому что в противном случае, если в G'_δ есть путь стоимости $c' < c - \Delta$, то тогда в G_δ должен быть путь стоимости $c' + \Delta < c$, либо путь нулевой стоимости, откуда получается противоречие.

Так как на последнем шаге каждой итерации увеличения паросочетания Венгерский алгоритм находит M-чередующуюся цепь по жёстким рёбрам стоимости ноль $\delta(e)=0$, то утверждение леммы верно для графа G_{δ} на последнем шаге. Используя доказанный ранее факт о кратчайших путях в G_{δ} и G'_{δ} как индуктивный шаг, получаем доказательство исходного утверждения леммы.

)	0	0	0		0	1(+1)	0	0		1(+1)	2(+2)
1	Ŀ	3	4	3	4	4	3	4	3	3(-1)	4	3
1		5	3	2	4(-1)	4	5	3	2	3(-2)	4	5
}		5	5	2	5	3	5	5	2	4(-1)	3	5
L		5	2	1	4(-1)	1	5	2	1	3(-2)	1	5

Рис. 3: Кратчайший путь в первом графе соответствует финальной M-чередующейся цепи. Заметим также, что после первого изменения весов из графа пропало жёсткое ребро $\{3,2\}$.

Обозначим как d(v) — минимально-возможную стоимость пути от ненасыщенной вершины левой доли и вершиной v в графе G_w , а d_{opt} — минимально-возможную стоимость пути между ненасыщенными вершинами левой и правой долей в графе G_w . Тогда из доказательствы леммы несложно заметить, что обновление весов вершин можно произвести следующим образом:

$$change(v) = \begin{cases} d(v) - d_{opt} &, \text{ если } v \in X \land d(v) \leq d_{opt} \\ d_{opt} - d(v) &, \text{ если } v \in Y \land d(v) \leq d_{opt} \\ 0 &, \text{ иначе} \end{cases}$$

Данное сведение полезно, если в изначальном графе мало рёбер с ненулевым весом. Так, например, если в графе m рёбер ненулевого веса, то применив алгоритм Дейкстры с бинарной кучей к задаче поиска кратчайшего пути, решение задачи о назначениях будет иметь асимптотику $O(n^2 + nm \log n)$. Если же использовать фибоначчиеву кучу, то алгоритм будет иметь асимптотику $O(n^2 \log n + nm)$.

Ссылки

- On Kuhn's Hungarian Method A tribute from Hungary: https://egres.elte.hu/tr/egres-04-14.pdf
- On the efficiency of Egerváry's perfect matching algorithm: https://egres.elte.hu/tr/egres-04-13.pdf
- Hungarian algorithm in $\tilde{O}(nm)$ or $O(n^3)$: https://codeforces.com/blog/entry/128703