WHAT IS CLAIMED IS:

1	1.	A method for actuating a perforating gun in a wellbore, comprising the steps of:	
2		(a)	providing a first downhole structure that comprises a non-acoustic
3			identification transmitter unit that stores an identification code and transmits
4			a non-acoustic signal corresponding to the identification code;
5		(b)	providing a perforating gun having a non-acoustic receiver unit that can
6			receive the signal transmitted by the identification transmitter unit, decode
7			the signal to determine the identification code corresponding thereto, and
8			compare the identification code to a preset target identification code;
9		(c)	lowering the perforating gun in close enough proximity to the first downhole
10			structure so that the non-acoustic receiver unit can receive the non-acoustic
11			signal transmitted by the non-acoustic identification transmitter unit;
12		(d)	comparing the identification code determined by the non-acoustic receiver
13			unit to the target identification code; and
14		(e)	if the determined identification code matches the target identification code,
15			the perforating gun is fired.
1	2.	The r	method of claim 1, wherein the identification code is used to determine the
2		depth	of the perforating gun in the borehole.
1	3.	The method of claim 1, wherein the perforating gun is lowered with a supporting	
2		struct	ture.
1	4.	The method of claim 1, wherein the perforating gun is lowered through free fall.	
1	5.	A method or orienting downhole equipment in a wellbore, comprising the steps of:	
2		(a)	providing a downhole conduit having at least one inlet and a plurality of
3			outlets, the downhole conduit further having a non-acoustic identification
4			transmitter unit that stores an identification code and transmits a non-acoustic
5			signal corresponding to the identification code;
6		(b)	providing a downhole structure that comprises a non-acoustic receiver unit
7			that can receive the signal transmitted by the identification transmitter unit,

8		decode the signal to determine the identification code corresponding thereto,			
9		and compare the identification code to a preset target identification code; the			
10		downhole structure moveable through the conduit;			
11		(c) moving the downhole structure in close enough proximity to the non-acoustic			
12		receiver unit to receive the non-acoustic signal transmitted by the non-			
13		acoustic identification transmitter unit; and			
14		(d) orienting the downhole structure through one of the plurality of outlets based			
15		on the determined identification code.			
1	6.	The method of claim 5, wherein the conduit is a Y-Block.			
1	7.	The method of claim 6, wherein the non-acoustic identification transmitter unit is			
2		located above the Y-Block to guide the downhole structure through one of the			
3		plurality of outlets.			
1	8.	The method of claim 6, further comprising a second non-acoustic identification			
2		transmitter unit located below the Y-Block to provide indication of correct entry into			
3		the outlets.			
1	9.	A method of providing telemetry from downhole to a surface operator, comprising:			
2		(a) providing a transmitter unit in a downhole structure;			
3		(b) providing a downhole tool having a non-acoustic receiver unit, data sensors, a			
4		microprocessor, and releasably storing a plurality of non-acoustic transmitter			
5		units;			
6		(c) moving the downhole tool in close enough proximity to the downhole			
7		structure so that the non-acoustic receiver unit can receive the non-acoustic			
8		signal transmitted by the non-acoustic transmitter unit;			
9		(d) writing data acquired from the data sensors to one of the plurality of non-			
10		acoustic transmitter units, the data written by the microprocessor;			
11		(e) releasing the one of the plurality of non-acoustic transmitter units; and			
12		(f) returning the one of the plurality of non-acoustic transmitter units to the			
13		surface.			
1	10.	The method of claim 9, wherein the data sensors provide temperature measurements.			

- 1 11. The method of claim 9, wherein the data sensors provide pressure measurements.
- 1 12. The method of claim 9, wherein the data sensors provide time measurements.
- 1 13. The method of claim 9, wherein circulating fluids provide for the return to the
- 2 surface of the one of the plurality of non-acoustic transmitter units.
- 1 14. A method of providing communication downhole from the surface of a well,
- 2 comprising:
- 3 (a) providing a downhole structure having a non-acoustic receiver unit; and
- 4 (b) moving a non-acoustic transmitter unit into close enough proximity of the
- downhole structure for the non-acoustic receiver unit to receive a signal from
- 6 the non-acoustic transmitter unit.
- 1 15. The method of claim 14, wherein the downhole structure further has a
- 2 microprocessor provided for analyzing the signal provided by the transmitter unit.
- 1 16. The method of claim 15, wherein the microprocessor actuates or installs downhole
- 2 equipment.
- 1 17. The method of claim 14, wherein the non-acoustic transmitter unit is moved by
- wellbore fluids.
- 1 18. The method of claim 14, wherein the non-acoustic transmitter unit is moved by
- 2 attachment to a drop ball.
- 1 19. A method of receiving data from a downhole well from the surface of the well,
- 2 comprising:
- 3 (a) providing non-acoustic transmitter units in the downhole well;
- 4 (b) moving at least one non-acoustic receiver units into close enough proximity
- 5 to the non-acoustic transmitter units to receive data; and
- 6 (c) return the non-acoustic transmitter units to the surface.
- 1 20. The method of claim 19, wherein the at least one receiver unit is moved by well
- 2 fluids.
- 1 21. The method of claim 19, wherein the at least one receiver unit is moved by a
- 2 conveyance tool.

2

1	22.	The method of claim 19, wherein the non-acoustic transmitter units are returned with		
2	<i></i>	well fluids.		
1	23.	The method of claim 19, wherein the non-acoustic transmitter units are returned by a		
2	25.	conveyance tool.		
	24	•		
1	24.	A method for communicating between downhole tools and equipment in a wellbore,		
2		comprising the steps of:		
3		(a) providing a first downhole structure having one or more non-acoustic		
4		transmitter units and one or more non-acoustic receiver units;		
5		(b) providing a second downhole structure having one or more non-acoustic		
6		transmitter units and one or more non-acoustic receiver units;		
7		(c) receiving a signal from the one or more non-acoustic transmitter units of the		
8		first downhole structure with the one or more non-acoustic receiver units of		
9		the second downhole structure; and		
10		(c) receiving a signal from the one or more non-acoustic transmitter units of the		
11		second downhole structure with the one or more non-acoustic receiver units		
12		of the first downhole structure.		
1	25.	The method of claim 24, further comprising actuating or installing downhole		
2		equipment.		
1	26.	The method of claim 24, further comprising returning the signal to the surface of the		
2		wellbore.		
1	27.	The method of claim 24, further comprising storing the signal with one or more non-		

acoustic receiver units of the first and second downhole structure.