ACH2076 – Segurança da Informação

Aula 02: Criptografia Clássica

Valdinei Freire

valdinei.freire@usp.br

http://www.each.usp.br/valdinei

Escola de Artes, Ciências e Humanidades - USP

2025

Livros Textos

- William Stallings. Criptografia e Segurança de redes: princípios e práticas, 4^a edição. Capítulo 2
- 2. Marcio Moretto Ribeiro. Segurança da Informação (apostila).
- Criptografia
- Cifras de Substituição
- Cifras de Transposição

Criptologia

kryptós: secreto, escondido

logia: estudo

Criptologia: Compreende a criptografia e a criptoanálise

 Criptografia: Processo de converter texto claro em texto cifrado e vice-versa

 Criptoanálise: Processo de decifrar uma mensagem cifrada sem conhecimento COMPLETO da criptografia

Confidencialidade: Criptografia Simétrica

- ightharpoonup m Texto claro: mensagem inteligível
- ▶ E Algoritmo de criptografia: substituições, inserções e transposições no texto claro
- K Chave secreta: parâmetro que indica como deve ocorrer substituições, inserções e transposições

V. Freire (EACH-USP) ACH2076 2025 4/37

Confidencialidade: Criptografia Simétrica

 \triangleright c - Texto cifrado: mensagem IDEALMENTE ininteligível e depende de m, Enc e K

$$c = E_K(m)$$

D - Algoritmo de decriptografia: o inverso do algoritmo de criptografia, isto é, dado a chave K e o texto cifrado c produz o texto claro original m

$$m = D_K(c) = D_K(E_K(m))$$

V. Freire (EACH-USP)

Criptografia: Propriedades

- Tipo de operações utilizadas
 - substituição: elemento do texto claro (bit, letra, grupo) mapeado em outro elemento
 - transposição: reorganização dos elementos no texto claro
 - inserção: preenchimento de dados não contidos no texto claro
- Número de Chaves utilizadas
 - Criptografia simétrica: emissor e receptor utilizam a mesma chave
 - Criptografia assimétrica: emissor e receptor utilizam chaves diferentes
- Modo como o texto claro é processado
 - Cifra de bloco: dado um bloco de elementos gera um bloco de saída
 - ► Cifra de fluxo: processa um elemento por vez

V. Freire (EACH-USP) ACH2076 2025 6 / 37

Cifras Clássicas

- Técnicas de Substituição
 - Cifra Monoalfabética (fluxo)
 - Cifra de César (fluxo)
 - Cifra Polialfabética (fluxo)
 - Cifra de Vigenère (fluxo)
 - Cifra de Hill (bloco)
- Técnicas de Transposição

Cifra Monoalfabética

- Cifra de Substituição: troca caractere por caractere
- Permite que a linha cifra seja qualquer permutação entre os 26

Caracte	1 (3							
claro	a	b	С	d	 w	Х	У	Z
cifra	Х	Υ	Н	Α	 G	С	D	R

- Qual é a chave nesse caso?
- Quantas chaves possíveis?
- Quantos bits são necessário para representar a chave?

Cifra Monoalfabética

- Qual é a chave nesse caso? K = XYHA...GCD(R)
- Quantas chaves possíveis? $26! \approx 4 \times 10^{26}$
- Quantos bits são necessário para representar a chave?
 - ▶ 5 bits por letra $5 \times 26 = 130$ bits ($5 \times 26 = 125$ bits)
 - ▶ 5 bits para 10 letras, 4 bits para 8 letras, 3 bits para 4 letras, 2 bits para 2 letras, 1 bit para 1 letra $5 \times 10 + 4 \times 8 + 3 \times 4 + 2 \times 2 + 1 \times 1 = 99$ bits
 - representando as chaves de forma enumerada $\lceil \log(26!) \rceil = 89$ bits

Cifra de César

 Cifra de César: substitui cada letra do alfabeto pela letra que fica três posições adiante

. ,								
claro	а	b	С	d	 W	Х	У	Z
cifra	D	Е	F	G	 Z	Α	В	С

▶ Cifra de César Afim: considera uma chave $K = (\alpha, \beta)$ (na cifra de César k = (1,3)) e a atribuição abaixo

	. /	,,			,				
texto	a	b	С	d		W	Х	у	Z
número	0	1	2	3		22	23	24	25

$$c_i = E_{K=(\alpha,\beta)}(m_i) = (\alpha m_i + \beta) \mod 26$$

Cifra de César: Perguntas?

- Utilizando a cifra de César qual é a cifra para "valdinei"?
- ▶ Utilizando a cifra de César Afim com a chave K=(3,5), qual é a cifra para "valdinei"?
- Algoritmo de Decriptografia?
- Quantas chaves de César Afim existem?

V. Freire (EACH-USP) ACH2076 2025 11/37

Cifra de César: Perguntas?

- Utilizando a cifra de César qual é a cifra para "valdinei"? YDOGLQHL
- ▶ Utilizando a cifra de César Afim com a chave K=(3,5), qual é a cifra para "valdinei"? QFMODSRD
- Algoritmo de Decriptografia?

$$m_i = D_{K=(\alpha,\beta)}(c_i) = ((c_i - \beta) \times \alpha^{-1}) \mod 26$$

Quantas chaves de César Afim existem?

$$12 \times 26 = 312$$

V. Freire (EACH-USP) ACH2076 2025

12 / 37

*Inverso Multiplicativo e Aditivo com Módulo

- Capítulo 5 Corpos Finitos
- Álgebra Abstrata
 - Operações básicas: adição e multiplicação
 - Operações derivadas: subtração e divisão
 - Elementos identidade: 0 (adição) e 1 (multiplicação)
- Inverso Aditivo
 - ightharpoonup y é inverso aditivo de x, se y+x=0
 - Subtração é equivalente à adição por inverso aditivo
- Inverso Multiplicativo
 - ightharpoonup y é inverso multiplicativo de x, se $y \times x = 1$
 - Divisão é equivalente à multiplicação por inverso multiplicativo

13 / 37

*Inverso Multiplicativo e Aditivo com Módulo

Exemplos: multiplicação $\mod 8$ (não é corpo) e $\mod 7$ (é um corpo)

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Propriedade Interessante: em um corpo finito, a tabela de multiplicação é uniforme.

*Inverso Multiplicativo e Aditivo com Módulo

Exercícios:

- 1. Se x está entre 0 e 25 inclusive, quanto vale x nos casos abaixo:
 - $(25+x) \equiv 0 \mod 26$
 - $(13+x) \equiv 0 \mod 26$
 - $(-7) \equiv x \mod 26$
 - $ightharpoonup (3x) \equiv 1 \mod 26$
 - $ightharpoonup (7x) \equiv 1 \mod 26$
 - \triangleright $(2x) \equiv 1 \mod 26$
 - $(13x+12) \equiv (2x+4) \mod 26$
- 2. Construa as tabelas de adição e multiplicação do corpo \mathbb{Z}_5 (multiplicação $\mod 5$).

- Considera um conjunto ordenado de regras monoalfabéticas
- A chave determina qual regra utilizar em cada substituição de caracteres no texto claro
- Exemplo: cifra de Vegenère
 - ightharpoonup considera as 26 cifras César Afim com $\alpha=1$
 - chave: qualquer palavra
 - lacktriangle cada letra da palavra-chave determina o valor de eta
 - repete-se a chave para obter uma substituição infinita

Exemplo: cifra de Vigenère

Qual é a cifra para "valdinei" utilizando a chave "drn"?

Exemplo: cifra de Vigenère

Qual é a cifra para "valdinei" utilizando a chave "drn"?

Quai C c	CIII	a pa	ıı u	vaiu	IIICI	utii	ızaıı	uo a
claro	V	а		d	i	n	е	i
chave	d	r	n	d	r	n	d	r
cifra	Υ	R	Υ	G	Z	Α	Н	Z

Exemplo: cifra de Vigenère Incrementada

- Ideia: Vegenère com chave infinita construída on-line
 - ▶ Chave Inicial (semente): $K_1 = K$
 - Próximas chaves: $K_i = C_{i-1}$
- Exemplo: "valdinei" com semente 'a'

Exemplo: cifra de Vigenère Incrementada

- ▶ Ideia: Vegenère com chave infinita construída on-line
 - ▶ Chave Inicial (semente): $K_1 = K$
 - Próximas chaves: $K_i = C_{i-1}$
- Exemplo: "valdinei" com semente 'a'

claro	٧	а	I	d	i	n	е	i
chave	a	٧	٧	g	j	r	е	i
cifra	V	V	G	J	R	Е	Т	Q

- Substitui n letras de texto claro por n letras de texto cifrado
- Combinação linear entre os caracteres considerados
- ightharpoonup Exemplo: n=3

$$c_1 = (K_{11}m_1 + K_{12}m_2 + K_{13}m_3) \mod 26$$

$$c_2 = (K_{21}m_1 + K_{22}m_2 + K_{23}m_3) \mod 26$$

$$c_3 = (K_{31}m_1 + K_{32}m_2 + K_{33}m_3) \mod 26$$

ightharpoonup chave: matriz K inversivel $n \times n$

$$c = E_K(m) = Km_{1,n} |Km_{n+1,2n}| Km_{2n+1,3n}| \cdots \mod 26$$

$$m = D_K(c) = K^{-1}c_{1,n} |K^{-1}c_{n+1,2n}| K^{-1}c_{2n+1,3n}| \cdots \mod 26$$

Exemplo:

$$K = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{bmatrix} \quad K^{-1} = \begin{bmatrix} 4 & 9 & 15 \\ 15 & 17 & 6 \\ 24 & 0 & 17 \end{bmatrix}$$

- ▶ Verique se $KK^{-1} = I$ (matriz identidade)
- Qual é a cifra para "valdineiz"?

Exemplo:

$$K = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{bmatrix} \quad K^{-1} = \begin{bmatrix} 4 & 9 & 15 \\ 15 & 17 & 6 \\ 24 & 0 & 17 \end{bmatrix}$$

- ▶ Verique se $KK^{-1} = I$ (matriz identidade)
- Qual é a cifra para "valdineiz"?

c = WWRSMJRZF

Como calcular a inversa de uma matriz?

$$K = \begin{bmatrix} 0 & 2 & 1 \\ 3 & 1 & 3 \\ 1 & 2 & 3 \end{bmatrix} \quad K^{-1} = \frac{1}{det(K)} Adj(K)$$

- ▶ Os elementos x_{ij} da matriz X adjunta de K, isto é, X = Adj(K) é obtido da seguinte forma:
 - Monte as matrizes X_{ij} removendo a linha i e a coluna j da matriz K
 - ► Então: $x_{ij} = (-1)^{i+j} det(X_{ji})$

$$K^{-1} = \left[\begin{array}{rrr} 19 & 8 & 3 \\ 12 & 15 & 7 \\ 3 & 22 & 12 \end{array} \right]$$

- ▶ Permutações entre elementos do texto claro
- Exemplo 1:
 - Escreva mensagem original em um retângulo, linha por linha. Se m= "valdineiz", temos:

٧	а	ı
d	i	n
е	i	z

lacktriangle Reconstrua a mensagem cifrada lendo coluna por coluna, para obter c= "VDEAIILNZ"

- Exemplo 2:
 - Escreva mensagem original em um retângulo, linha por linha. Se m= "valdineiz", temos:

1	2	3
٧	а	
d	i	n
е	i	Z

Reconstrua a mensagem cifrada lendo coluna por coluna na ordem [2,3,1], para obter c = ``AIILNZVDE''

- Exemplo 3:
 - Escreva mensagem original em um retângulo, linha por linha. Se m= "valdineiz", temos:

1	2	3
V	а	ı
d	i	n
е	i	Z

- Reconstrua a mensagem cifrada lendo coluna por coluna na ordem [2,3,1], para obter c= "AILNZVDE"
- \blacktriangleright Repita os passos anteriores a partir do c obtido N=2 vezes, para obter c=``INDIZEALV''

- ▶ Qual é a chave no exemplo 1?
- Qual é a chave no exemplo 2?
- Qual é a chave no exemplo 3?

- Qual é a chave no exemplo 1? 3 (número de colunas)
- Qual é a chave no exemplo 2? [2 3 1] (sequência das colunas)
- Qual é a chave no exemplo 3? [2 3 1] e N=2

Melhorias na Cifra de Vegenère

- lacktriangle considere uma chave do tamanho do texto aberto, isto é, |m|=|K|
- ightharpoonup sorteie K aleatoriamente
- tamanho da chave? Pode-se utilizar a chave mais de uma vez?

Melhorias na Cifra Monoalfabética × Cifra de Hill

- ► Cifra Monoalfabética mantém a frequência das letras no texto cifrado, pois uma letra é sempre mapeada na mesma letra
- Cifra de Hill possui uma relação linear entre texto aberto e cifrado
- Considere a cifra monoalfabética aplicada em bloco
- Quantas permutações existem para blocos de 2 letras? 3 letras?
- Quantos bits são necessários para a chave?