LinearRegression_v3

February 3, 2019

1 Linear Regression

- Regression analysis helps us to understand how much the dependent variable changes with a change in one or more independent variables
- Forecast or impact of chages. Identify the strength of the effect that the independent variable(s) have on a dependent variable.
- Predict trends and future values.

1.0.1 Simple Linear Regression

Equation of line: $y = w_1x_1 + w_2$ where, slope: w_1 y-intercept: w_2

Error Functions The two most common error functions for linear regression are: - Mean Absolute Error (MAE) 2. Mean Squared Error (MSE)

Mean Absolute Error:

• The vertical distance from the point to the line is the $y - \hat{y}$.

Mean Absolute Error is the sum of all the absolute errors divided by the number of points: $Error = \frac{1}{m} \sum_{i=1}^{m} |y - \hat{y}|$

Using gradient descent we get the best possible fit line with the smallest possible MAE.

Mean Squared Error: Mean Squared Error is the sum of all the squared errors divided by the number of points:

$$Error = \frac{1}{2m} \sum_{i=1}^{m} (y - \hat{y})^2$$

By minimizing the average sum of squared errors, MSE is minimized and we get the best possible fit line.