Statistik

Mengen

A ∩ B -> Schnittmenge

A U B -> Vereinigungsmenge

Wahrscheinlichkeitsrechnung

LAPLACE - Wahrscheinlichkeit

$$P(A) = \frac{|A|}{|\Omega|} = \frac{Anzahl \ der \ f\"{u}r \ A \ g\"{u}nstigen \ F\"{a}lle}{Anzahl \ aller \ m\"{o}glichen \ F\"{a}lle}$$

Bedingung: gleiche Wahrscheinlichkeit aller mögl. Fälle

1

Urnenmodell

$$\binom{n}{k} = \frac{n!}{k! * (n-k)!}$$

	ohne Wiederholung	mit Wiederholung	
Kombination k-ter Ordnung	$C(n;k) = \binom{n}{k}$	$C_W(n;k) = \binom{n+k-1}{n-1}$	ungeordnete Stichprobe
Variation k-ter Ordnung	$V(n;k) = \frac{n!}{(n-k)!}$	$V_w(n;k) = n^k$	geordnete Stichprobe
	Ziehung ohne Zurücklegen	Ziehung mit Zurücklegen	

Bedingte Wahrscheinlichkeit

B hängt von A ab:
$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

Zufallsvariablen

Diskrete Zufallsvariablen

$$f(x) = P(X=x)$$

Verteilungsfunktion
$$F(x) = \sum_{i=1}^{n} f(x_i)$$
 \rightarrow kumulierte Wahrscheinlichkeit \rightarrow Treppe

Stetige Zufallsvariablen

Dichtefunktion
$$F(x) = \int_{-\infty}^{+\infty} f(t)dt$$

Diskrete Verteilungen

Binomialverteilung

n-faches Ziehen mit Zurücklegen, p = Erfolgschance pro Ziehen

$$X \sim B(n,p)$$
 $f(x) = {n \choose x} * p^x * (1-p)^{n-x}$ $f(x) = F(x) - F(x-1)$

$$p > 0.5$$
: $P(X \le x) = 1 - F(n - x - 1)$

Hypergeometrische Verteilung

n-faches Ziehen ohne Zurücklegen aus N Objekten, davon M markiert.

$$\mathsf{X} \sim \mathsf{Hyp}\left(\mathsf{N},\mathsf{M},\mathsf{n}\right) \qquad f(x) = \frac{\binom{M}{x} * \binom{N-M}{n-x}}{\binom{N}{n}} \qquad \mathsf{Wenn} \ n < \frac{N}{20} \to Hyp(N,M,n) \approx B(n,\frac{M}{N})$$

Poisson Verteilung ("Verteilung seltener Ereignisse")

Approximation für B(n,p) und Hyp (N,M,n) für n -> ∞ und p -> 0

Nur geeignet wenn n * p < 10 und n > 1500 * p

$$f(x) = \frac{\mu^x}{x!} * e^{-\mu}$$

$$f(x) = \frac{\mu^{x}}{x!} * e^{-\mu} \qquad \qquad Hyp(N, M, n) \xrightarrow{p = \frac{M}{N}} B(n, p) \xrightarrow{\mu = n \cdot p = n \cdot \frac{M}{N}} P(\mu)$$

Stetige Verteilungen

Gleichverteilung

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & sonst \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & sonst \end{cases} \qquad F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{x-b} & a \le x \le b \\ 1 & x > b \end{cases}$$

Exponentialverteilung

$$X \sim Exp(\lambda)$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & falls \ x \ge 0 \\ 0 & sonst \end{cases} \quad F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & sonst \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & sonst \end{cases}$$

Normalverteilung

$$X \sim N(\mu, \sigma)$$

$$f(x) = \frac{1}{\sqrt{2*\Pi}*\sigma} e^{\frac{-(x-\mu)^2}{2*\sigma^2}}$$

Dichte ist symmetrisch zu μ : $f(\mu-x) = f(\mu+x)$

Verteilungsfkt. $F(x) = \Phi(\frac{x-\mu}{\sigma}) = \Phi(z)$

In Tabelle: $\Phi(-x) = 1 - \Phi(x)$

Maximum bei $x = \mu$, Wendepunkte bei $x = \mu - \sigma$ und $x = \mu + \sigma$

Vergleich stetig / diskret

	diskret	stetig
f(x)	Wahrscheinlichkeitsfunktion	Dichtefunktion ($\int = 1$)
	$(\Sigma = 1)$	
$f \to F$	$F(x) = \sum_{i} f(x_i)$	$E(x) = \int_{-\infty}^{x} f(t)dt$
	$x_i \le x$	$F(x) = \int_{-\infty}^{\infty} f(t)dt$
$F \to f$	f(x) = F(x) - F(x - 1)	f(x) = F'(x)

Verteilungsparameter

Modalwert: $f(x_{mod}) \ge f(x)$

Median: $f(x_{med}) = \frac{1}{2}$ oder kleinstes x mit $F(x) = \frac{1}{2}$

Erwartungswert

$$E(X) = \begin{cases} \sum_{i=1}^{n} x_i * f(x_i), & falls X diskret \\ +\infty & \int_{-\infty}^{\infty} x * f(x) dx, & falls X stetig \end{cases}$$

$$E(a+b*X) = a+b*E(x)$$

$$E(X * Y) = E(X) * E(Y)$$

$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$$

Verteilung von X	E(X)	Var(X)
B(n,p)	n*p	n * p(1-p)
Hyp(N,M,n)	$n*\frac{M}{N}$	$n * \frac{M}{N} * \left(\frac{N-M}{N}\right) * \left(\frac{N-n}{N-1}\right)$
Ρ(μ)	μ	μ
Gleichverteilung	a+b	$(b-a)^2$
in [a,b] a <b< td=""><td>2</td><td>12</td></b<>	2	12
Exp(λ)	1	1
	$\overline{\lambda}$	$\overline{\lambda^2}$
Ν(μ,σ)	μ	σ^2

Wenn f(x) symmetrisch: E(X) = x' x' = Symmetriestelle

Varianz

$$Var(X) = E(X - E(X))^{2} = E(X^{2}) - (E(X))^{2} = \begin{cases} \sum_{i=1}^{n} (x_{i} - E(X))^{2} * f(x_{i}), & \text{wenn diskret} \\ +\infty \\ \int_{-\infty}^{\infty} (x - E(X))^{2} * f(x) dx, & \text{wenn stetig} \end{cases}$$

Standardabweichung

$$Sta(X) = \sqrt{Var(X)}$$

Ungleichung von Tschebyscheff

$$P(|X - E(X)| \ge c) \le \frac{Var(X)}{c^2}$$

Kovarianz

$$Cov(X,Y) = E[(X - E(X)) * (Y - E(Y))] = E(X * Y) - E(X) * E(Y)$$

$$Cov(X,X) = Var(X)$$

$$Cov(X,Y) = Cov(Y,X)$$

$$Cov(a + bX, c + dY) = b * d * Cov(X, Y)$$

$$Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)$$

Summe zweier Zufallsvariablen: Var(X + Y) = Var(X) + Var(Y) + 2 * Cov(X, Y)

Differenz zweier Zufallsvariablen: Var(X - Y) = Var(X) + Var(Y) - 2 * Cov(X, Y)

Korrelationskoeffizient

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)*Var(Y)}}$$

wenn X,Y unabhängig gilt: E(X * Y) = E(X) * E(Y)

$$\Rightarrow$$
 Cov(X,Y) = 0

$$\Rightarrow \rho(X,Y) = 0$$

⇒ Unkorreliertheit

Zentraler Grenzwertsatz

Summen von i.i.d Zufallsvariablen sind für große n näherungsweise normalverteilt.

wenn n > 30 & Spezialfall Binomialverteilung: $n * p \ge 5$ und $n * (1 - p) \ge p$ gilt:

$$\sum_{i=1}^n X_i {\sim} N(n*\mu,\sigma*\sqrt{n})$$

Induktive Statistik

Stichprobenfunktion	Bezeichnung	Erwartungswert	Varianz	Verteilung
$\sum_{i=1}^{n} X_{i}$	Merkmalssumme	<i>n</i> * μ	$n * \sigma^2$	$N(n*\sigma,\sigma*\sqrt{n})$
$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	Stichprobenmittel	μ	$\frac{\sigma^2}{n}$	$N(\mu, \frac{\sigma}{\sqrt{n}})$
$\frac{X-\mu}{\sigma}\sqrt{n}$	Gauß-Statistik	0	1	N(0,1)
$\frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2$	mittlere quadratische Abweichung bzgl. μ	σ^2	::•	
$\frac{1}{n}\sum_{i=1}^n (X_i - \bar{X})^2$	mittlere quad. Abweichung	$\frac{n-1}{n} * \sigma^2$	(2)	
$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$	Stichprobenvarianz	σ^2	5 8 .	
$S=\sqrt{S^2}$	Stichprobenstandardabweic hung	S=.	: e	
$\frac{\tilde{X} - \mu}{S} \sqrt{n}$	t-Statistik	:=	N.E.	t(n-1)

Punktschätzung

Schätzwert: $\hat{\vartheta}$

Schätzfunktion: $\hat{\theta} = g(X_1, ..., X_n)$

Schätzfunktion heißt erwartungstreu wenn: $E(\widehat{\theta}) = \vartheta$

Schätzfunktion heißt asymptotisch erwartungstreu wenn $\lim_{n \to \infty} E(\widehat{\theta}) = \vartheta$

Wirksamkeit

 $\hat{\theta}_1 \ wirksamer \ \hat{\theta}_2 \ \leftrightarrow Var\big(\hat{\theta}_1\big) < Var(\hat{\theta}_2)$

Verteilung von G	ð	wirksamste erwartungstreue Schätzfunktion	
unbekannt	μ	\overline{X}	
B(1,p)	p (=µ)	\overline{X}	
$N(\mu,\sigma)$, σ bekannt / unbekannt	μ	\overline{X}	
N(μ,σ), μ bekannt	σ^2	$\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2$	
N(μ,σ), μ unbekannt	σ^2	s ²	

Konsistente Schätzfunktionen

Hinreichende Konsistenzbedingung: $E(\hat{\theta}_n) = \vartheta \ und \ \lim_{n \to \infty} Var(\hat{\theta}_n) = 0$

Maximum Likelihood Prinzip

Likelihoodfunktion: $f(x_1, ..., x_n | \theta)$

Wähle $\hat{\vartheta}$ so, dass für alle möglichen ϑ – Werte gilt:

$$f(x_1, \dots, x_n | \hat{\vartheta}) \ge (x_1, \dots, x_n | \vartheta)$$

Vorgehensweise ML-Schätzung:

1.	Likelihoo	dfunktion	aufstellen
----	-----------	-----------	------------

$$f(x_1, \dots, x_n | \vartheta)$$

$$\ln(f(x_1,...,x_n|\vartheta))$$

$$\frac{\delta}{\delta\vartheta}[ln]f(x_1,\ldots,x_n|\vartheta) = 0 !$$

$$\frac{\delta^2}{\delta \theta^2}[\ln]f(x_1,\ldots,x_n|\theta) < 0 ?$$

Verteilung von G	3	MI-Schätzfunktion
B(1,p)	p (=µ)	\overline{X}
Exp(λ)	μ	\overline{X}
Εχρ(λ)	σ^2	\overline{X}^2
Ρ(μ)	μ	\overline{X}
N(μ,σ), σ bekannt / unbekannt	μ	\overline{X}
N(μ,σ), μ bekannt	σ^2	$\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2$
N(μ,σ), μ unbekannt	σ^2	$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$

Intervallschätzung

Konfidenzintervall für μ bei Normalverteilung und σ^2 bekannt

- 1. Konfidenzniveau: 1α bestimmen.
- 2. $c = 1 \frac{\alpha}{2}$ Fraktil der N(0,1) Verteilung bestimmen.
- 3. \overline{x} berechnen.
- 4. $\frac{\sigma * c}{\sqrt{n}}$ berechnen.
- 5. Intervall angeben: $[\overline{x} \frac{\sigma * c}{\sqrt{n}}; \overline{x} + \frac{\sigma * c}{\sqrt{n}}]$

Intervalllänge: $L = \frac{2*\sigma*c}{\sqrt{n}}$

Konfidenzintervall für μ bei Normalverteilung und σ^2 unbekannt

- 1. Konfidenzniveau: 1α bestimmen.
- 2. $c = 1 \frac{\alpha}{2}$ Fraktil der t(n-1) Verteilung bestimmen.

$$n-1>30 \rightarrow N(0,1)$$
 (erst ab n >100

3. \overline{x} und s berechnen. $s^2 = \frac{1}{n-1} * \sum_{i=1}^n x_i^2 - \frac{n}{n-1} * \overline{x}^2$

- 4. $\frac{s*c}{\sqrt{n}}$ berechnen.
- 5. Intervall angeben: $[\overline{x} \frac{s*c}{\sqrt{n}}; \overline{x} + \frac{s*c}{\sqrt{n}}]$

Konfidenzintervall für μ bei beliebiger / dichotomer Verteilung

Voraussetzung: n > 30 oder $5 \le \sum_{i=1}^{n} x_i \le n - 5$ falls G dichotom

1. Konfidenzniveau: $1 - \alpha$ bestimmen.

2.
$$c = 1 - \frac{\alpha}{2}$$
 Fraktil der N(0,1)- Verteilung bestimmen.

3.
$$\overline{x}$$
 und einen Schätzwert $\hat{\sigma}$ für σ bestimmen: $\hat{\sigma} = \begin{cases} \sigma & falls \ \sigma \ bekannt. \\ \sqrt{\overline{x}*(1-\overline{x})} & falls \ G \ dichotom \\ s & sonst \end{cases}$

4. $\frac{\hat{\sigma}*c}{\sqrt{n}}$ berechnen.

5. Intervall angeben:
$$[\overline{x} - \frac{\widehat{\sigma} * c}{\sqrt{n}}; \overline{x} + \frac{\widehat{\sigma} * c}{\sqrt{n}}]$$

Intervalllänge: a) σ bekannt: siehe oben.

b)
$$\sigma$$
 unbekannt: $L = \frac{2*\widehat{\sigma}*c}{\sqrt{n}}$

Konfidenzintervall für σ^2 bei Normalverteilung

a) µ bekannt:

1. Konfidenzniveau: $1 - \alpha$ bestimmen.

2.
$$c_1 = \frac{\alpha}{2} und \ c_2 = 1 - \frac{\alpha}{2}$$
 Fraktil der $\chi^2(n)$ - Verteilung bestimmen.

3. $\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} x_i^2 - n * \mu^2$ berechnen.

4.
$$\vartheta_u = \frac{\sum_{i=1}^n (x_i - \mu)^2}{c_2} \text{ und } \vartheta_o = \frac{\sum_{i=1}^n (x_i - \mu)^2}{c_1} \text{ bestimmen.}$$

5. Intervall angeben: $[\vartheta_u; \vartheta_o]$

b) µ unbekannt:

1. Konfidenzniveau: $1 - \alpha$ bestimmen.

2.
$$c_1 = \frac{\alpha}{2} und \ c_2 = 1 - \frac{\alpha}{2}$$
 Fraktil der $\chi^2(n-1)$ - Verteilung bestimmen.

3.
$$(n-1)*s^2 = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - n*\overline{x}^2$$
 berechnen.

4.
$$\vartheta_u = \frac{(n-1)*s^2}{c_2}$$
 und $\vartheta_o = \frac{(n-1)*s^2}{c_1}$ bestimmen.

5. Intervall angeben: $[\vartheta_u; \vartheta_o]$

Signifikanztests

Einstichproben-Gaußtest

- Gegeben: Einfache Stichprobe $X_1, ..., X_n$ i. i. d. mit $G \sim N(\mu, \sigma)$
- Hypothesenpaar:

$$H_0$$
: $\mu = \mu_0$

- · Vorgehensweise:
 - 1. Signifikanzniveau α festlegen.
 - 2. $v = \frac{\overline{x} \mu_0}{\sigma} * \sqrt{n}$ berechnen
 - 3. Verwerfungsbereich B festlegen:

a)
$$B = \left(-\infty, -x_{1-\frac{\alpha}{2}}\right) \cup \left(x_{1-\frac{\alpha}{2}}, \infty\right)$$

b)
$$B = (-\infty, -x_{1-\alpha})$$

Verteilung: N(0,1)

c)
$$B = (x_{1-\alpha,\infty})$$

4. H_0 verwerfen, wenn $v \in B$.

Einstichproben-t-Test und approximativer Gaußtest

- Gegeben: Einfache Stichprobe $X_1, ..., X_n$ i.i.d. mit $E(X_i) = \mu \ und \ Var(X_i) = \sigma^2$
- Hypothesenpaare:
 - H_1 : $\mu \neq \mu_0$ a) H_0 : $\mu = \mu_0$

 - b) H_0 : $\mu \ge \mu_0$ H_1 : $\mu < \mu_0$ c) H_0 : $\mu \le \mu_0$ H_1 : $\mu > \mu_0$
- Voraussetzung:
 - 1. $G \sim N(\mu, \sigma), \sigma unbekannt$
 - → Einstichproben-t-Test
 - 2. Beliebige Verteilung mit n > 30 oder $5 \le \sum_{i=1}^{n} x_i \le n 5$ falls $G \sim B(1, p)$
 - → approximativer Gaußtest
- Vorgehensweise:

$$s = \sqrt{\frac{1}{n-1} * \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- 1. Signifikanzniveau α festlegen.
- 2. v berechnen. $v = \begin{cases} \frac{\overline{x} \mu_o}{s} * \sqrt{n} & \text{unter Voraussetzung 1} \\ \frac{\overline{x} \mu_o}{\sigma} * \sqrt{n} & \text{unter Voraussetzung 2 und } \sigma \text{ bekannt} \\ \frac{\overline{x} \mu_o}{s} * \sqrt{n} & \text{unter Voraussetzung 2 und } \sigma \text{ unbekannt} \\ \frac{\overline{x} p_o}{\sqrt{p_o * (1 p_o)}} * \sqrt{n} & \text{unter Voraussetzung 2 und } G \sim B(1, p) \end{cases}$
- 3. Verwerfungsbereich B festlegen:
 - a) $B = \left(-\infty, -x_{1-\frac{\alpha}{2}}\right) \cup \left(x_{1-\frac{\alpha}{2}}, \infty\right)$

Verteilung:

b) $B = (-\infty, -x_{1-\alpha})$

Voraussetzung 1 und $n-1 \le 30 \rightarrow t(n-1)$

c) $B = (x_{1-\alpha,\infty})$

Voraussetzung 2 oder $n-1 > 30 \rightarrow N(0,1)$

4. H_0 verwerfen, wenn $v \in B$.

Differenztests

- Gegeben: Zwei verbundene Stichproben $X_1, ..., X_n$ und $Y_1, ..., Y_n$ mit $E(X_i) = \mu_1 und$ $E(Y_i) = \mu_2$
- Hypothesenpaare:
- a)
 - H_1 : $\mu_1 \neq \mu_2$ H_0 : $\mu_1 = \mu_2$
 - b) H_0 : $\mu_1 = \mu_2 \ (oder \ \mu_1 \ge \mu_2)$ H_1 : $\mu_1 < \mu_2$
 - c) H_0 : $\mu_1 = \mu_2 (oder \, \mu_1 \leq \mu_2)$ H_1 : $\mu_1 > \mu_2$
- Trick:

Übergang zu $Z_i = X_i - Y_i$ mit $E(Z_i) = \mu = \mu_1 - \mu_2$ Einstichprobentests mit $\mu_0 = 0$:

a) H_0 : $\mu = 0$

- b) H_0 : $\mu = 0 \ (oder \ \mu \ge 0)$ H_1 : $\mu < 0$
- c) H_0 : $\mu = 0 \ (oder \ \mu \le 0)$
- H_1 : $\mu > 0$

- Vorgehensweise:
 - 1. Signifikanzniveau α festlegen.
 - 2. v berechnen.

Voraussetzung	anzuwendender Test	Testfunktion v
Z_i normalverteilt	Einstichproben-t-Test	$\frac{\overline{z}}{\sqrt{\frac{1}{n-1} * \sum_{i=1}^{n} (z_i - \overline{z})^2}} * \sqrt{n}$
$X_i, Y_i \ dichotom$ mind. 5 $z_i > 0$ und 5 $z_i < 0$	approximativer Gaußtest	$\frac{\sum_{i=1}^{n} z_i}{\sqrt{\sum_{i=1}^{n} z_i^2}}$
Z_i beliebig verteilt $n>30$	approximativer Gaußtest	$\frac{\overline{z}}{\sqrt{\frac{1}{n-1} * \sum_{i=1}^{n} (z_i - \overline{z})^2}} * \sqrt{n}$

Alternativ wenn
$$X_i$$
, Y_i dichotom:
$$v = \frac{h_{10} - h_{01}}{\sqrt{h_{10} + h_{01}}} \quad \text{mit}$$

,	Y=0	Y=1	
X=0	h ₀₀	h ₀₁	
X=1	h ₁₀	h ₁₁	

Bedingung: $h_{01} \ge 5$ und $h_{10} \ge 5$

- 3. Verwerfungsbereich B festlegen:
 - a) $B = \left(-\infty, -x_{1-\frac{\alpha}{2}}\right) \cup \left(x_{1-\frac{\alpha}{2}}, \infty\right)$

Verteilung: siehe jew. Test

- b) $B = (-\infty, -x_{1-\alpha})$
- c) $B = (x_{1-\alpha \infty})$

4. H_0 verwerfen, wenn $v \in B$.

X² Test für die Varianz

- Gegeben: Einfache Stichprobe $X_1, ..., X_n$ $X \sim N(\mu, \sigma)$
- Hypothesenpaare:

a)
$$H_0$$
: $\sigma^2 = {\sigma_0}^2$

$$H_1$$
: $\sigma^2 \neq \sigma_0^2$

b)
$$H_0$$
: $\sigma^2 = \sigma_0^2$ (oder $\sigma^2 > \sigma_0$

$$H_1: \sigma^2 < \sigma_0^2$$

a)
$$H_0$$
: $\sigma^2 = \sigma_0^2$ H_1 : $\sigma^2 \neq \sigma_0^2$
b) H_0 : $\sigma^2 = \sigma_0^2 (oder \, \sigma^2 \geq \sigma_0^2)$ H_1 : $\sigma^2 < \sigma_0^2$
c) H_0 : $\sigma^2 = \sigma_0^2 (oder \, \sigma^2 \leq \sigma_0^2)$ H_1 : $\sigma^2 > \sigma_0^2$

$$H_1: \ \sigma^2 > \sigma_0^2$$

- Vorgehensweise:
 - 1. Signifikanzniveau α festlegen.

2. v berechnen. $v = \begin{cases} \frac{1}{\sigma_0^2} * \sum_{i=1}^n (x_i - \mu)^2 & falls \ \mu \ bekannt. \\ \frac{(n-1)*s^2}{\sigma_0^2} = \frac{1}{\sigma_0^2} * \sum_{i=1}^n (x_i - \overline{x})^2 & falls \ \mu \ unbekannt. \end{cases}$

- 3. Verwerfungsbereich B festlegen:
 - a) $B = [0, x_{\frac{\alpha}{2}}) \cup (x_{1-\frac{\alpha}{2}}, \infty)$ Verteilung: μ bekannt: $\chi^2(n)$

b) $B = [0, x_{\alpha})$

 μ unbekannt: $\chi^2(n-1)$

c) $B = (x_{1-\alpha,\infty})$

4. H_0 verwerfen, wenn $v \in B$.

Zweistichprobentests

- Gegeben: 2 unabhängige einfache Stichproben $X_1, ..., X_{n1}$ und $Y_1, ..., Y_{n2}$ mit $E(X_i) = \mu_1$ und $E(Y_i) = \mu_2$
- Gesucht: Aussagen über Vergleich der Erwartungswerte μ₁ und μ₂.
- Hypothesenpaare:
 - a) H_0 : $\mu_1 = \mu_2$

- H_1 : $\mu_1 \neq \mu_2$
- b) H_0 : $\mu_1 = \mu_2 (oder \, \mu_1 \ge \mu_2)$ H_1 : $\mu_1 < \mu_2$
- c) H_0 : $\mu_1 = \mu_2 (oder \, \mu_1 \leq \mu_2)$ H_1 : $\mu_1 > \mu_2$

- Vorgehensweise:
 - 1. Signifikanzniveau α festlegen.
 - 2. *v* berechnen.

Voraussetzung	anzuwendender Test	Testfunktion v	Verteilung
$X_i \sim N(\mu_1, \sigma_1)$ $Y_i \sim N(\mu_2, \sigma_2)$ $\sigma_1, \sigma_2 \ bekannt$	Zweistichproben Gaußtest	$\frac{\overline{x} - \overline{y}}{\sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}}$	N(0,1)
$X_i \sim N(\mu_1, \sigma_1)$ $Y_i \sim N(\mu_2, \sigma_2)$ $\sigma_1, \sigma_2 \ unbekannt$ $aber \ \sigma_1 = \sigma_2$	Zweistichproben- t-Test	$\frac{\overline{x} - \overline{y}}{\sqrt{\frac{(n_1 - 1) * s_1^2 + (n_2 - 1) * s_2^2}{n_1 + n_2 - 2} * \frac{n_1 + n_2}{n_1 * n_2}}}$	$t(n_1 + n_2 - 2)$ für n ₁ +n ₂ > 32 → N(0,1)
$X_i \sim B(1, p_1)$ $Y_i \sim B(1, p_2)$ $5 \le \sum x_i \le n_1 - 5$ $5 \le \sum y_i \le n_2 - 5$	approximativer Zweistichproben Gaußtest	$\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{(\sum X_i + \sum Y_i) \cdot (n_1 + n_2 - \sum X_i - \sum Y_i)}{(n_1 + n_2) \cdot n_1 \cdot n_2}}}$	approximativ N(0,1)
X_i, Y_i beliebig verteilt $n_1 > 30, n_2 > 30$	approximativer Zweistichproben Gaußtest	$\frac{\overline{x} - \overline{y}}{\sqrt{\frac{{S_1}^2}{n_1} + \frac{{S_2}^2}{n_2}}}$	approximativ N(0,1)

- 3. Verwerfungsbereich B festlegen:
 - a) $B = \left(-\infty, -x_{1-\frac{\alpha}{2}}\right) \cup \left(x_{1-\frac{\alpha}{2}}, \infty\right)$
 - b) $B = (-\infty, -x_{1-\alpha})$
 - c) $B = (x_{1-\alpha}, \infty)$
- 4. H_0 verwerfen, wenn $v \in B$.

X² Anpassungstest

- Gegeben: Einfache Stichprobe $X_1, ..., X_n$ mit Verteilungsfunktion F
- Hypothesenpaar: H_0 : $F = F_0$ H_1 : $F \neq F_0$
- Voraussetzungen:

 $n*p_j \ge 5$ bzw. $h_j \ge 5$, $f\ddot{u}r$ alle j=1...k \Rightarrow Wenn nicht erfüllt: Intervalle zusammenlegen!

- Vorgehensweise:
- 1. Signifikanzniveau α festlegen.
- 2. X-Achse in $k \ge 2$ disjunkte, aneinander angrenzende Intervalle unterteilen
 - 2.1. $A_1 = (-\infty, z_1], A_2 = (z_1, z_2], \dots, A_k = (z_k, \infty)$
 - 2.2. Anzahl h_i der in A_i liegenden Stichproben notieren (j = 1 ... k)
 - 2.3. Wahrscheinlichkeit $p_i = P(X \in A_i | F_0)$ berechnen (j = 1 ... k)
 - 2.4. $v = \sum_{j=1}^{k} \frac{(h_j n * p_j)^2}{n * p_j} = \frac{1}{n} \sum_{j=1}^{k} \frac{h_j^2}{p_j} n$
- 3. Verwerfungsbereich $B = (x_{1-\alpha}, \infty)$ festlegen.
- Verteilung: χ²(k-1)

Verteilung: Tabelle

4. H_0 verwerfen, wenn $v \in B$.

Kontingenztest

- Gegeben: Zwei verbundene einfache Stichproben $X_1, ..., X_n$ und $Y_1, ..., Y_n$
- Hypothesenpaar:

H₀: Die Merkmale X und Y sind in G unabhängig.

H₁: Die Merkmale X und Y sind in G abhängig.

- Voraussetzungen:
 - 1. $h_{ij} \ge 5 \ bzw. \widetilde{h_{ij}} \le 5 \ f\ddot{u}r \ alle \ i,j$ Wenn nicht: Intervalle zusammenlegen!
 - 2. Wenn G diskret: pro Ausprägung ein Intervall (falls 1. erfüllt) -> Schritt 2.1 entfällt.
 - 3. Falls k=l=2: $\rightarrow \underline{\text{Schritt 2.3.}}$ entfällt, $\underline{\text{Schritt 2.4.}}$: $v=\frac{n*(h_{11}h_{22}-h_{12}h_{21})}{h_{A1}h_{A2}h_{B1}h_{B2}}$
 - 4. Falls Randhäufigkeiten $p_i = P(X \in A_i), q_i = P(X \in B_i)$ bekannt:
 - \rightarrow Schritt 2.3.: Ersetze $\widetilde{h_{ij}}$ durch $n * p_i q_i$
 - \rightarrow Schritt 3: Verwende $\chi^2(k*l-1)$ Verteilung.
- Vorgehensweise:
- 1. Signifikanzniveau α festlegen.
- 2. X-Achse in $k \ge 2$ und Y-Achse in $l \ge 2$ disjunkte, an einander angrenzende Intervalle unterteilen
 - 2.1. $A_1, ..., A_n \text{ und } B_1, ..., B_n$
 - 2.2. Kontingenztabelle erstellen

			Y			
		B_1	B_2		B_ℓ	
	A_1	h_{11}	h_{12}	255	hie	h_{A_1}
X	A_2	h_{21}	h_{22}	102	$h_{2\ell}$	h_{A_2}
A :	1	:	Ē		:	
	A_k	h_{k1}	h_{k2}	47676	$h_{k\ell}$	h_{A_k}
		h_{B_1}	h_{B_1}		h_{B_ℓ}	*

 h_{ij} , h_{Ai} und $h_{Bj} \triangleq$ Anzahl der beobachteten Paare (X,Y) in Ai x Bj

2.3.
$$\widetilde{h_{ij}} = \frac{h_{Ai} * h_{Bj}}{n}$$
 berechnen.

2.4.
$$v = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(h_{ij} - \widetilde{h_{ij}})^2}{\widetilde{h_{ij}}} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{h_{ij}^2}{\widetilde{h_{ij}}} - n$$

- 3. Verwerfungsbereich $B=(x_{1-\alpha},\infty)$ festlegen. Verteilung: $\chi^2((k-1)*(l-1))$
- 4. H_0 verwerfen, wenn $v \in B$

Korrelationstest

- Gegeben: Zwei verbundene einfache Stichproben X_1, \dots, X_n und Y_1, \dots, Y_n mit $X_i \sim N(\mu_1, \sigma_1), Y_i \sim N(\mu_2, \sigma_2)$
- Hypothesenpaare:

a)
$$H_0$$
: $\rho = 0$

$$H_1$$
: $\rho \neq 0$

wenn v ∉ B (H₀ beibehalten):

b)
$$H_0$$
: $\rho = 0$ (oder $\rho \ge 0$) H_1 : $\rho < 0$
c) H_0 : $\rho = 0$ (oder $\rho \le 0$) H_1 : $\rho > 0$

$$H_1: \rho < 0$$

→ kein signifikanter Zusammenhang

c)
$$H_0$$
: $\rho = 0 \ (oder \ \rho < 0)$

$$H_1: \rho > 0$$

Vorgehensweise:

- 1. Signifikanzniveau α festlegen.
- 2. $v = \sqrt{n-2} * \frac{r}{\sqrt{1-r^2}}$ berechnen.

$$r = \frac{s_{xy}}{s_x s_y} \qquad s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i y_i - n * \overline{x} * \overline{y})$$

3. Verwerfungsbereich B festlegen:

a)
$$B = \left(-\infty, -x_{1-\frac{\alpha}{2}}\right) \cup \left(x_{1-\frac{\alpha}{2}}, \infty\right)$$

b)
$$B = (-\infty, -x_{1-\alpha})$$

Verteilung: t(n-2)

- c) $B = (x_{1-\alpha,\infty})$
- 4. H_0 verwerfen, wenn $v \in B$.