Q-1. Max Posteriori Hypothesis

When a test for steroids is given to soccer players, 98% of the players taking steroids test positive and 12% of the players are not taking steroids test positive. Suppose that 5% of soccer players take steroids. What is the maximum posteriori hypothesis for a soccer player who tests positive? What are the exact posterior probabilities?

Solution:

P(+ | ¬steroids)=0.12(False Positive), P(-|¬ Steroids)=0.88(True Positive)

P(+ | Steroids) = 0.98 (True Positive), P(-| Steroids)=0.02 (False Negative)

P(+| Steroids) * P(Steroids)=(0.98) * (0.05) = 0.049
$$\approx$$
 5%

P(+|¬ Steroids) * P(¬ Steroids)= (0.12) *(0.95) = 0.114 \approx 11%

So, hmap = argmaxhieH {5%, 11%} = 11%

 \Rightarrow hmap = ¬ Steroids

Q-2. Naive Bayes Classifier

- **2.1** Consider the hypothesis space defined over these instances (Table 1), in which each hypothesis is represented by a pair of 4-tuples. Using the native Bayes classifier to predict the target value PlayTennis = Yes/No to the following instance.
 - a) Compute <Sunny, Mild, Normal, Weak>
 - b) Compute <Rain, Cool, High, Strong>

Table 1: Training examples for the target concept PlayTennis

D	0.4.1	т	TT	7771 4	Di
Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	Normal	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	Normal	Strong	Yes
D5	Rain	Coo1	Normal	Weak	Yes
D6	Rain	Mild	Normal	Strong	No
D7	Overcast	Coo1	Normal	Strong	Yes
D8	Rain	Mild	High	Weak	No
D9	Sunny	Coo1	Norma1	Strong	Yes
D10	Rain	Hot	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Sunny	Mild	Normal	Weak	No
D13	Overcast	Hot	Normal	Weak	Yes
D14	Sunny	Coo1	High	Weak	No

Solution:

(A) Overall Distribution Table

Outlook	Temperature	Humidity	Wind	Play
Sunny (6/14)	Hot (5/14)	Normal (10/14)	Weak (7/14)	Yes (8/14)
Overcast (3/14)	Mild (5/14)	High (4/14)	Strong (7/14)	No (6/14)
Rain (5/14)	Cool (4/14)			

(B) Play/ No Play Distribution Table

Outlook	Temperature	Humidity	Wind
Sunny / Yes (2/8)	Hot / Yes (3/8)	Normal / Yes (7/8)	Weak / Yes (3/8)
Sunny / No (4/6)	Hot /No (2/6)	Normal /No (3/6)	Weak /No (4/6)
Overeast / Ves (2/0)	Mild / Dlay (2/0)	High / Voc /4/0)	Ctrong / Voc (F/0)
Overcast / Yes (2/8)	Mild / Play (2/8)	High / Yes (1/8)	Strong / Yes (5/8)
Overcast / No (1/6)	Mild /No (3/6)	High / No (3/6)	Strong /No (2/6)
D : /// (0/0)	0 1/1/ (0/0)		
Rain / Yes (3/8)	Cool / Yes (3/8)		
Rain / No (2/6)	Cool / No (1/6)		

We know, Naive Bayes Classifier [P(c|x)]

```
CSC6850: Machine Learning
Homework – 1:
Mokter Hossain
```

$$P(c \mid x) = (P(x \mid c) * P(c)) / P(x)$$

Where, C = Play | ¬Play

Here, P(Play) = 8/14, and P(No) 6/14

P(Play | X)=(Play | <Sunny, Mild, Normal, Weak>)
= P(Sunny | Play) *P (Mild | Play) *P (Normal | Play) *P (Weak | Play) *P(Play)
= (2/8) * (2/8) * (7/8) * (3/8) * (8/14)
= 0.0117
≈ 1.17%

P(Not Play | X)=(No Play| <Sunny, Mild, Normal, Weak>)
= P(Sunny | No) *P (Mild | No) *P (Normal | No) *P (Weak | No) *P(No)
= (4/6) * (3/6) * (3/6) * (6/6) * (6/14)
= 0.0476
≈ 4.76%

Then, (Play | Yes) =
$$0.0117 / (0.0117 + 0.0476) = 0.0117 / 0.0593$$

 $\approx 0.1973 \approx 20 \%$

Then, (Play | No) =
$$0.047 / (0.0117 + 0.0476) = 0.0476 / 0.0593$$

 $\approx 0.8026 \approx 80 \%$

Since (Play | Yes) < (Play | No) => No Play with this condition.

b) Compute <Rain, Cool, High, Strong>

P(Play | X)=(Play | <Rain, Cool, High, Strong>)
= P(Rain | Play) *P (Cool | Play) *P (High | Play) *P (Strong | Play) *P(Play)
= (3/8) * (3/8) * (1/8) * (5/8) * (8/14)
= (3*3*1*5*8)/(8*8*8**814)

```
CSC6850: Machine Learning
Homework – 1:
Mokter Hossain
```

$$= 360 / 7168 = 0.006277$$

 $\approx 0.63\%$

P(Not Play | X)=(No Play|)
$$= P(Rain | No) *P (Cool | No) *P (High | No) *P (Strong | No) *P(No)$$

$$= (2/6) * (1/6) * (3/6) * (2/6) * (6/14)$$

$$= (2*1*3*2*6)/ (6*6*6*6*14)$$

$$= 72 / 18144$$

$$= 0.00396$$

$$\approx 0.4%$$

Then, (Play | No) =
$$0.00627$$
 / $(0.00627 + 0.00396)$ = 0.00627 / 0.01023 $\approx 0.61290 \approx 61$ %

Then, (Not Play | No) =
$$0.00396$$
 / $(0.00627 + 0.00396)$ = 0.00396 / 0.01023 $\approx 0.38709 \approx 39$ %

Since (Play | No) > (Not Play | No) => Play with this condition.

Q-2.2: Consider the following example and calculate the accuracy of the classifier with precision, recall, F1-score, specificity and ROC curve using Python.

[Please see Program codes in the attached file]

Output in Brief:

	precision	recall	f1-score	support
0	0.00	0.00	0.00	0
1	1.00	0.33	0.50	3
accuracy			0.33	3
macro avg	0.50	0.17	0.25	3
weighted avg	1.00	0.33	0.50	3

Q-3. KNN (20 Points + 10 Points)

3.1 Table 2 is a gene expression microarray data, where each row represents a sample for a person, each column represents a gene, and each entry represents gene expression value of a gene over a sample. The output of each sample indicates whether a specific disease exists in this sample. Please use Euclidean Distance-Weighted KNN (K=3) to predict the output of the sample 11 and sample 12.

Homework – 1: Mokter Hossain

Sample	G1	G2	G3	G4	G5	G6	G7	Output
1	1.0	2.3	5.2	1.2	5.3	2.6	2.3	Yes
2	2.0	3.6	1.8	2.3	1.6	2.1	1.5	No
3	1.5	1.5	4.1	1.3	1.2	3.1	1.6	Yes
4	2.2	1.9	9.5	1.5	1.5	4.2	1.4	No
5	3.9	2.4	5.3	1.7	1.6	2.5	2.9	Yes
6	5.1	3.6	2.7	2.6	1.7	2.8	3.4	Yes
7	1.8	4.2	3.6	3.5	1.6	3.4	1.3	No
8	2.3	1.5	7.2	4.1	7.1	3.1	1.8	No
9	4.2	2.4	6.2	2.9	2.5	3.3	2.5	Yes
10	3.6	5.6	1.9	3.2	2.6	5.2	2.7	No

Table 2: Gene expression data

Sample	G1	G2	G3	G4	G5	G6	G7	Output
11	2.1	2.2	3.2	1.4	5.1	2.4	1.4	?
12	2.4	2.3	3.4	3.8	2.3	5.7	5.2	?

Solution:

We know that the Euclidean Distance [D(x,y)D(x,y)]

$$D(x,y) = \sqrt{[(x_1-y_1)^2 + (x_2-y_2)^2 + ... + (x_n-y_n)^2]}$$

Let's suppose:

x = sample <G1, G2, G3, G4, G5, G6, G7>

y1 = sample₁₁<2.1, 2.1, 3.2, 1.4, 5.1, 2.4, 1.4>

 $y2 = sample_{12} < 2.4, 2.3, 3.4, 3.8, 2.3, 5.7, 5.2 >$

For the KNN Distance: K =

D(1, 11) =
$$\sqrt{[(<1,G1>-<11,G1>)^2+(<1,G2>-<11,G2>)^2+...+(<1,G7>-<11,G7>)^2]}$$
 ≈ 2.489

$$D(2, 11) = \sqrt{(<2, G1>-<11,G1>)^2 + (<2,G2>-<11,G2>)^2 + ... + (<2,G7>-<11,G7>)^2} \approx 4.134$$

Homework – 1: Mokter Hossain

Similarly,

 $D(3, 11) \approx 4.172$

 $D(4, 11) \approx 7.476$

 $D(5, 11) \approx 4.723$

 $D(6, 11) \approx 5.33$

 $D(7, 11) \approx 4.681$

 $D(8, 11) \approx 5.336$

 $D(9, 11) \approx 4.958$

 $D(10, 11) \approx 5.875$

For K = 3,

3 Nearest Neighbors of sample-11 = <sample1, sample2, sample3>

Which as Yes, No, and Yes, respectively.

⇒ Sample11 Output should be Yes

Similarly, for the given Sample12,

$$D(1, 12) = \sqrt{[(<1,G1>-<11,G1>)^2+(<1,G2>-<11,G2>)^2+...+(<1,G7>-<11,G7>)^2]} \approx 6.2436$$

D(2, 12)=
$$\sqrt{(<2, G1>-<11,G1>)^2 + (<2,G2>-<11,G2>)^2 + ... + (<2,G7>-<11,G7>)^2}$$
 ≈ 5.8129

Similarly,

 $D(3, 12) \approx 5.395$

 $D(4, 12) \approx 7.747$

 $D(5, 12) \approx 5.129$

 $D(6, 12) \approx 4.789$

 $D(7, 12) \approx 4.008$

 $D(8, 12) \approx 5.518$

 $D(9, 12) \approx 4.998$

 $D(10, 12) \approx 4.604$

For K = 3,

3 Nearest Neighbors of the Sample-12 = < Sample-6, Sample-7, sample-10>

Which as Yes, No, and No, respectively.

⇒ Sample12 Output should be No

I found same output using program. Please see in the attached program file.

Q-3.2: Consider the following example and calculate the accuracy of the classifier with precision, recall, F1-score, specificity and ROC curve using Python.

[Please see Program codes in the attached file]

Output in Brief:

Train Accuracy Score: 0.91

Accuracy Score 0.3333333333333333

Precision Score 1.0

F1 Score 0.5

Q-4.1. Consider the hypothesis space defined over these instances (Table 3), in which each hypothesis is represented by a pair of 5-tuples. Please provide a hand trace of the ID3 algorithm to build a Decision Tree Classifier.

Homework – 1: Mokter Hossain

Table 3: Training examples for the target concept PlayTennis

D	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	Yes
D3	Rain	Hot	High	Weak	Yes
D4	Rain	Mild	Normal	Strong	No
D5	Rain	Coo1	High	Weak	No
D6	Rain	Mild	Norma1	Strong	No
D7	Overcast	Coo1	Norma1	Strong	Yes
D8	Sunny	Coo1	High	Weak	No
D9	Sunny	Coo1	High	Strong	Yes
D10	Rain	Mild	High	Strong	Yes

Solution:

(A) Overall Distribution Table

Outlook	Temperature	Humidity	Wind	Play
Sunny (4/10)	Hot (3/10)	Normal (3/10)	Weak (4/10)	Yes (5/10)
Overcast (1/10)	Mild (3/10)	High (7/10)	Strong (6/10)	No (5/10)
Rain (5/10)	Cool (4/10)			

(B) Play/ No Play Distribution Table

Temperature	Humidity	Wind
Hot / Yes (2/5)	Normal / Yes (1/5)	Weak / Yes (1/5)
Hot /No (1/5)	Normal /No (2/5)	Weak /No (3/5)
Mild / Play (1/5)	High / Yes (4/5)	Strong / Yes (4/5)
Mild /No (2/5)	High / No (3/5)	Strong /No (2/5)
Cool / Yes (2/5)		
Cool / No (2/5)		
, ,		
	Hot / Yes (2/5) Hot /No (1/5) Mild / Play (1/5) Mild /No (2/5)	Hot / Yes (2/5) Hot /No (1/5) Normal / Yes (1/5) Normal /No (2/5) Mild / Play (1/5) Mild /No (2/5) High / Yes (4/5) High / No (3/5) Cool / Yes (2/5)

Entropy (Single Attribute):

 $E(S) = -\sum p_i log_p_i$

Entropy (Multi Attributes):

 $E(T,X) = \sum_{c \in X} P(c)E(c) = P(X_1) \cdot c_1 \log_2 c_1 + P(X_2) \cdot c_2 \log_2 c_2 + ... + P(X_n) \cdot c_n \log_2 c_n$

Information Gain

Homework – 1: Mokter Hossain

$$G(T,X)=E(T)-E(T,X)$$

Best Split Point:

 $SplitInfoA(D) = \sum |D_{i}| / |D| \cdot log_{2}(|D_{i}| / |D|)$

Gain Ratio:

GainRatio(A)=Gain(A)/SplitInfo(A)

Outlook	Temperature	Humidity	Wind	Play
Sunny (4/10)	Hot (3/10)	Normal (3/10)	Weak (4/10)	Yes (5/10)
Overcast (1/10)	Mild (3/10)	High (7/10)	Strong (6/10)	No (5/10)
Rain (5/10)	Cool (4/10)			

Outlook	Temperature	Humidity	Wind
Sunny / Yes (2/5)	Hot / Yes (2/5)	Normal / Yes (1/5)	Weak / Yes (1/5)
Sunny / No (2/5)	Hot /No (1/5)	Normal /No (2/5)	Weak /No (3/5)
Overcast / Yes (1/5)	Mild / Play (1/5)	High / Yes (4/5)	Strong / Yes (4/5)
Overcast / No (0/5)	Mild /No (2/5)	High / No (3/5)	Strong /No (2/5)
Rain / Yes (2/5) Rain / No (3/5)	Cool / Yes (2/5) Cool / No (2/5)		

Now, Let's draw the ID3 Algorithm

Play, Outlook

E(Play, Outlook)=P(Outlook)*E(Outlook,¬p)

=P(Sunny) * E(Sunny_p, Sunny_p) + P(Overcast) * E(Overcast_p, Overcast_p) + P(Rain)* E(Rain_p, Rain_p)

$$=(4/10) * E(2/5, 2/5) + (1/10) * E(1/5, 0/5) + (5/10) * E(2/5, 3/5)$$

$$=(0.4)*(1) + (0.1)*0 + (.5)*(0.97095) \approx 0.8855$$

$$= E(5/10, 5/10) - 0.8855$$

$$= 1-0.8855 \approx 0.1145 \approx 11\%$$

Play, Temperature

E(Play, Temperature)=P(Temperature)*E(Temperature,-p)

$$=P(Hot) * E(Hot_p, Hot_p) + P(Mild) * E(Mild_p, Mild_p) + P(Cool) * E(Cool_p, Cool_p)$$

$$=(3/10) * E(2/5, 1/5) + (3/10) * E(1/5, 2/5) + (4/10) * E(2/5, 2/5)$$

$$=(0.3)(0.9932)+(0.3)(0.9932)+(.4)(1) \approx 0.8$$

= E (5/10, 5/10) - 0.8

 $= 1-0.8 \approx 0.2 \approx 20\%$

Play, Humidity

E(Play, Humidity)=P(Humidity)*E(Humidity,¬p)

=
$$P(Normal) * E(Normal_p, Normal_p) + P(High) * E(High_p, High_p)$$

$$=(3/10) * E(1/5, 2/5) + (7/10) * E(4/5, 3/5)$$

$$=(0.3)(0.9932)+(0.7)(0.6997)$$

$$= 0.2979 + 0.4898 \approx 0.7877$$

G(Play, Temperature) = E(Play)–E (Play, Humidity)

= E(5/10, 5/10) - 0.7877

 $= 1-0.8 \approx 0.2123 \approx 21\%$

Play, Wind

E(Play, Wind)=P(Wind)*E(Wind,¬p)

$$=(4/10) * E(1/5, 3/5) + (6/10) * E(4/5, 2/5)$$

$$=(0.4)(0.9066)+(0.6)(0.7863)$$

 $= 0.3626 + 0.4718 \approx 0.8344$

Homework – 1: Mokter Hossain

G(Play, Wind) = E(Play)-E (Play, Wind)
= E
$$(5/10, 5/10) - 0.8344$$

= $1-0.8344 \approx 0.1655 \approx 17\%$

Thus, the largestInfoGain is for the Wind attribute. So Wind will be the root node.

For Wind = Strong

Outlook	Temperature	Humidity	Play
Sunny	Hot	High	Yes
Sunny	Cool	High	Yes
Rain	Mild	High	Yes
Rain	Mild	Normal	No
Rain	Mild	Normal	No
Overcast	Cool	Normal	Yes

Play, Outlook

E(Play, Outlook)=P(Outlook)*E(Outlook,¬p)

=P(Sunny) * E(Sunnyp, Sunnypp) + P(Overcast) * E(Overcastp, Overcastpp) + P(Rain)* E(Rainpp, Rainpp)

$$=(2/6) * E(2/4, 0/2) + (1/6) * E(1/4, 0/2) + (3/6) * E(1/3, 2/3)$$

$$= (0.3333)^*(0) + (0.1667)^*0 + (.5)^*(0.9193) \approx 0.46$$

= E(4/6, 2/6) - 0.46

 $= 0.9193 \ 1 - 0.46 \approx 0.4593 \approx 46\%$

Play, Temperature

E(Play, Temperature)=P(Temperature)*E(Temperature,¬p)

```
CSC6850: Machine Learning
Homework – 1:
Mokter Hossain
```

=P(Hot) * E(Hot_p, Hot_{¬p}) + P(Cool) * E(Cool_p, Cool_{¬p}) + P(Mild)* E(Mild_p, Mild_{¬p}) =
$$(2/6)$$
 * E($2/4$, $0/2$) + $(1/6)$ * E($1/4$, $0/2$) + $(3/6)$ * E($1/4$, $2/2$) = (0.3333) *(0) + (0.1667) *0 + (0.5) *(0.5) ≈ 0.25
G(Play, Temperature) = E(Play)–E (Play, Temperature) = E($4/6$, $2/6$) – 0.25

Play, Humidity

E(Play, Humidity)=P(Humidity)*E(Humidity,¬p)

=P(High) * E(High, High
$$\neg p$$
) + P(Normal) * E(Normal, Normal $\neg p$)
=(3/6) * E(3/4, 0/2) + (3/6) * E(1/3, 2/3)
=(0.5)*(0) + (0.5)*(0.9183) \approx 0.46
G(Play, Humidity) = E(Play)-E (Play, Humidity)

= E(4/6, 2/6) - 0.46

 $= 0.9193 \ 1 - 0.46 \approx 0.46 \approx 46\%$

 $= 0.9193 \ 1 - 0.25 \approx 0.6693 \approx 67\%$

Thus, the largestInfoGain is for the Wind = Strong attribute is the Temperature. So the Temperature will be used for the tree's second level

So, the next nodes will be Humidity => Outlook

Now for (Wind = Strong) and (Humidity = Normal)

Normal => Rain => No

Normal => Overcast => Yes

And for (Wind = Strong) and (Humidity = High) => Yes

For Wind = Weak

Homework – 1: Mokter Hossain

Wind = Weak

Outlook	Temperature	Humidity	Play
Sunny	Cool	High	No
Sunny	Hot	High	No
Rain	Hot	High	Yes
Rain	Cool	High	No

Play, Outlook

E(Play, Outlook)=P(Outlook)*E(Outlook,¬p)

$$= P(Sunny) * E(Sunny_p, Sunny_p) + P(Rain)* E(Rain_p, Rain_p)$$

$$=(2/4) * E(0/1, 2/2) + (2/4) * E(1/1, 1/3)$$

$$=(0.5)*(0) + (0.5)*0.5283 \approx 0.264$$

$$= E(1/4, 3/4) - 0.264$$

$$= 0.8112 - 0.264 \approx 0.5470 \approx 54\%$$

Play, Temperature

E(Play, Temperature)=P(Temperature)*E(Temperature,¬p)

$$=(2/4) * E(1/1, 1/3) + (2/4) * E(0/1, 2/3)$$

$$=(0.5)*(0.5283) + (0.5)*0 \approx 0.264$$

$$= E(4/6, 2/6) - 0.264$$

$$= 0.9193 \ 1 - 0.264 \approx 0.655 \approx 65\%$$

Play, Humidity

$$=P(High) * E(High, High_{\neg p})$$

$$=(4/4) * E(1/4, 3/4)$$

$$=(1)*(0.8112) \approx 0.8112$$

G(Play, Humidity) = E(Play)-E (Play, Humidity)

$$= E(1/4, 3/4) - 0.8112$$

$$= 0.8112 - 0.8112 \approx 0.0 \approx 0\%$$

Thus, the largestInfoGain is for the Wind = Weak attribute is the Temperature. So the Temperature will be used for the tree's second level

So, the next nodes will be Outlook and Temperature

Now for (Wind = Weak) and (Outlook = Sunny)

Normal => Overcast => Yes

And for (Wind = Weak) and (Outlook = Rain)

Major Output:

CSC6850: Machine Learning Homework – 1:

Mokter Hossain

4.2 Consider the following example and calculate the accuracy of the classifier with precision, recall, F1-score, sensitivity, specificity and ROC curve using Python.

[Please see Program codes in the attached file]

Output in Brief:

Train Accuracy Score: 1.0

CSC6850: Machine Learning Homework – 1:

Mokter Hossain

Test Accuracy Score: 0.5

Accuracy Score 1.0

Precision Score 1.0

Recall Score 1.0

F1 Score 1.0

