Laboratório de Física – Cursos de Ciências Exactas e Engenharia Folha de Resultados

Nome:	Bernardo Filipe Cardeira Cozac	N°: 90242	Classificação
Nome:	Diogo Alexandre Botas Carvalho	N°: 90247	
Nome:	Diogo Coelho De Freitas	N°: 90147	
Curso:	<u>LEI</u> Turma: <u>P L 5</u> Grupo: <u>2</u> Data of	de Realização: <u>29 /04 /2025</u>	

Pêndulo Elástico

1. Objetivo da Experiência

O principal objetivo desta experiência foi determinar a constante elástica de uma mola, utilizando dois métodos diferentes: um método estático, baseado no alongamento da mola em repouso, e um método dinâmico, com base no seu movimento de oscilação. Através desta comparação, procurou-se compreender melhor o comportamento de sistemas massa-mola e avaliar a precisão dos dois métodos.

2. Dados Experimentais

Incerteza da régua: 0,5 (mm)
Incerteza da balança: 0,00005 (kg)
Incerteza do cronómetro: 0,0001 (s)

2.1 Método estático

$$l_0 = 0.185$$
 (m)

m (kg)	l (m)	l - l_{θ} (m)
0,02	0,195	0,01
0,04	0,205	0,02
0,06	0,215	0,03
0,08	0,225	0,04
0,10	0,237	0,052
0,12	0,248	0,063
0,14	0,259	0,074
0,16	0,270	0,085

2.2 Método dinâmico

m(kg)	T1 (s)	T2 (s)	T3 (s)	T4 (s)	T5 (s)	T6 (s)	T7 (s)	T8 (s)	T9 (s)	T10 (s)
0,02	0,3454	0,3333	0,3457	0,3434	0,3407	0,3532	0,3494	0,3494	0,3455	0,3499
0,04	0,405	0,3959	0,3959	0,4037	0,4003	0,3987	0,4033	0,3976	0,404	0,3974
0,06	0,4544	0,4446	0,4539	0,4528	0,4513	0,4469	0,4495	0,446	0,4487	0,4562
0,08	0,4911	0,4908	0,4999	0,499	0,497	0,4948	0,4868	0,4951	0,4999	0,4965
0,10	0,5375	0,5425	0,543	0,5357	0,5398	0,5421	0,5356	0,5325	0,5408	0,5279

3. Cálculos 3.1 Método estático

Gráfico no computador

Cálculos

Reta:
$$\Delta l = a * m + b$$
 $\Delta l = 0.5393x - 0.0018$

Declive: $a = 0.5393 \, \text{m/kg}$ Ordenada na origem: b = -0.0018

$$u(a) = 0.00595 \, m/kg$$
 $u(b) = 0.00060 \, m$ $g = 9.79907 \, m/s^2$

Equação da constante elástica

$$k_e = \frac{g}{a}$$
 $k_e = \frac{9,79907}{0,5393} \approx 18,17 \, N/m$

Estimativa da incerteza $\mathbf{u}(k_e)$

$$u(k_e) = g * \frac{u(a)}{a^2}$$
 $u(k_e) = 9,79907 * \frac{0,00595}{(0,5393)^2} \approx 0,201 N/m$

$$k_e = (18, 17 \pm 0, 20) N/m$$
 $\frac{u(k_e)}{k_e} * 100\% \approx \frac{0,20}{18,17} * 100\% \approx 1,1\%$

O gráfico obtido mostrou uma relação bastante linear entre o alongamento da mola e a massa aplicada, como previsto pela Lei de Hooke.

O valor da ordenada na origem ficou muito próximo de zero, o que indica que a mola se comporta de forma bastante ideal dentro da gama de massas utilizada. A incerteza relativa de cerca de 1,1% mostra que as medições foram consistentes e que o procedimento experimental foi bem conduzido.

3.1 Método dinâmico

$\overline{T}(\mathbf{s})$	m_t (kg)	$\sqrt{m_t}$	$u(\overline{T})$ (s)	$u\left(\sqrt{m_{t}}\right)$
0,34559	0,053	0,23021729	0,00178054	0,002048926
0,40018	0,073	0,27018512	0,001121388	0,001267523
0,45043	0,093	0,30495901	0,001235588	0,000881486
0,49509	0,113	0,33615473	0,001375698	0,000658146
0,53774	0,133	0,36469165	0,001549279	0,000515422

Cálculos

Cálculo do Periodo Médio T

$$\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$$
 $n = 10$ Por exemplo $m = 0.02 \, kg \, \bar{T} = 0.34559s$

Cálculo da Massa Total

$$m_f = 0.027kg$$
 $m_m = 0.018kg$ $m_t = m + m_f + \frac{m_m}{3}$ $m_t = 0.02 + 0.027 + \frac{0.018}{3} = 0.053$ $\sqrt{m_t} = 0.23021729$

Desvio Padrão Amostral s

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (T_i - \bar{T})^2}$$
 Calcular (exmplo m = 0,02 m): $s = 0,00563 s$

$\underline{Incerteza\ do\ Periodo\ M\'edio\ u(\overline{T})}$

$$u(\bar{T}) = \frac{s}{\sqrt{n}} = \frac{0,00563}{\sqrt{10}} = 0,00178054 \text{ s}$$

Incerteza da Raiz da Massa Total u $(\sqrt{m_t})$

$$u(\sqrt{m_t}) = \frac{u(m)}{2\sqrt{(m_t)^3}}$$
 $u(\sqrt{m_t}) = \frac{0,00005}{2\sqrt{(0,053)^3}} = 0,002048926$

$$\overline{T} = a * \sqrt{m_t} + b \qquad \overline{T} = 1,4294x + 0,0152$$

Declive: $a = 1,4294 \text{ s/kg}^{-1/2}$ *Ordenada na origem*: b = 0,0152

$$u(a) = 0.01432 \, \text{s/kg}^{-1/2}$$
 $u(b) = 0.00436 \, \text{s}$

Constante elástica pelo método dinâmico
$$k_d = \frac{4\pi^2}{a^2} = \frac{4\pi^2}{(1,4294)^2} \approx 19,32 \, N/m$$

Incerteza de k_d

$$u(k_d) = \frac{8\pi^2 * u(a)}{a^3} = \frac{8\pi^2 * u(a0,014321)}{(1,4294)^3} \approx 0.39 \, N/m$$

Erro relativo entre k_d e k_e

$$k_d = (19, 32 \pm 0, 39) N/m$$
 $\epsilon = \frac{|k_d - k_e|}{k_e} * 100\% = \frac{|19, 32 - 18, 17|}{18, 17} * 100\% \approx 6,33\%$

Gráfico no computador

4. Comentários e Conclusões

A constante elástica da mola foi determinada por dois métodos distintos: o **método estático**, que resultou em $k_e = (18, 17 \pm 0, 20) \, N/m$, e o **método dinâmico**, que forneceu $k_d = (19, 32 \pm 0, 39) \, N/m$.

Apesar das diferenças nos procedimentos, um baseado em equilíbrio estático e o outro em oscilações os resultados obtidos são bastante próximos.

O erro relativo entre os dois métodos foi de apenas **6,33**%, o que demonstra uma boa concordância e valida a consistência do modelo físico adotado. Essa pequena discrepância pode ser atribuída a fatores como amortecimento não considerado, pequenas imprecisões na medição dos períodos ou aproximações teóricas.

De forma geral, a experiência foi bem sucedida e permitiu não só calcular a constante elástica da mola com precisão, mas também comparar dois métodos laboratoriais complementares, reforçando a compreensão do comportamento de sistemas massa — mola.