Practical 1

Problem 1. Determine whether the following vectors are linearly independent:

(i)
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, (ii) $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

Problem 2. Find a value for x so that the following vectors:

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

are:

- (i) linearly dependent.
- (ii) linearly independent.

Problem 3. Find two nontrivial vectors (other than e_1, e_2) that span the plane.

Problem 4. Show that the vectors:

$$\mathbf{u} = \begin{bmatrix} -1\\1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1/3\\-1/3 \end{bmatrix}$$

are linearly dependent.

Problem 5. Determine whether the vector $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is a linear combination of:

$$\mathbf{v} = \left[\begin{array}{c} 0 \\ 2 \end{array} \right], \mathbf{w} = \left[\begin{array}{c} 1 \\ 4 \end{array} \right]$$

If yes, find the scalars.