

#9

SEQUENCE LISTING

<110> WARMAN, Matthew L.
GONG, Yaoqin
OLSEN, Bjorn R.
RAWADI, Georges
ROMAN-ROMAN, Sergio

<120> REGULATOR GENE AND SYSTEM USEFUL FOR THE DIAGNOSIS AND THERAPY OF STEOPOROSIS

<130> 38464-0004

<140> US 09/931,375
<141> 2001-08-17

<150> US 60/304,851
<151> 2001-07-13

<150> US 60/234,337
<151> 2000-09-22

<150> US 60/226,119
<151> 2000-08-18

<160> 89

<170> PatentIn version 3.0

<210> 1
<211> 5063
<212> DNA
<213> Homo sapiens

<400> 1	
gccccatggagc ccgagtggagc gcggcgccgg cccgtccggc cgccggacaa catggaggca	60
gcgcgcgcgg ggccgcgcgtg gcccgcgtg ctgcgtgtgc tgctgtgtgc ggcgcgtgtgc	120
ggctgcccgg ccccccgcgc ggcctcgccg ctccgtctat ttgccaaccg ccgggacgta	180
cggctggtgg acgccccgg agtcaagctg gagtccacca tcgtggtcag cggcctggag	240
gatgcggccg cagtggactt ccagtttcc aaggagccg tgtactggac agacgtgagc	300
gaggaggcca tcaaggcagac ctacctgaac cagacggggg ccgcgcgtgca gaacgtggc	360
atctccggcc tggctctcc cgacggcctc gcctgcgtact gggtgccaa gaagctgtac	420
tggacggact cagagaccaa ccgcacgtgag gtggccaaacc tcaatggcac atcccgaaag	480
gtgctttct ggcaggacct tgaccagcct agggccatcg cttggacccc cgctcacggg	540
tacatgtact ggacagactg gggtgagacg ccccggtattg agcgggcagg gatggatggc	600
agcacccgga agatcattgt ggactcgac attactggc ccaatggact gaccatcgac	660
ctggaggagc agaagctcta ctgggctgac gccaaagctca gttcatcca ccgtgccaac	720
ctggacggct cgttccggca gaaggtggtg gagggcagcc tgacgcaccc cttcgccctg	780

acgctctccg	gggacactct	gtactggaca	gactggcaga	cccgcctccat	ccatgcctgc	840
aacaagcgca	ctggggggaa	gaggaaggag	atcctgagtg	ccctctactc	accatggac	900
atccaggtgc	tgagccagga	gcggcagcct	ttcttccaca	ctcgctgtga	ggaggacaat	960
ggcggctgct	cccacctgtg	cctgctgtcc	ccaagcgagc	ctttctacac	atgcgcctgc	1020
cccacgggtg	tgcagctgca	ggacaacggc	aggacgtgta	aggcaggagc	cgaggagtg	1080
ctgctgctgg	cccggcggac	ggacctacgg	aggatctcgc	tggacacgcc	ggacttcacc	1140
gacatcggtgc	tgcaggtgga	cgacatccgg	cacgcattg	ccatcgacta	cgaccggcta	1200
gagggctatg	tctactggac	agatgacgag	gtgcgggcca	tccgcagggc	gtacctggac	1260
gggtctgggg	cgcagacgct	ggtcaacacc	gagatcaacg	accccgatgg	catgcgggtc	1320
gactgggtgg	cccgaaacct	ctactggacc	gacacggca	cggaccgcat	cgaggtgacg	1380
cgcctcaacg	gcacccccc	caagatcctg	gtgtcgagg	acctggacga	gccccgagcc	1440
atgcactgc	accccgatgat	gggcctcatg	tactggacag	actggggaga	gaaccctaaa	1500
atcgagtg	ccaacttgga	tgggcaggag	cggcgtgtgc	tggtaatgc	ctccctcg	1560
tggcccaacg	gcctggccct	ggacctgcag	gaggggaagc	tctactgggg	agacgccaag	1620
acagacaaga	tcgaggtgat	aatgttgc	gggacgaaga	ggcggaccct	cctggaggac	1680
aagctccgc	acatttcgg	gttcacgctg	ctggggact	tcatctactg	gactgactgg	1740
cagcgccgca	gcatcgagcg	ggtgcacaag	gtcaaggcca	gccgggacgt	catcattgac	1800
cagctgccc	acctgatggg	gctcaaagct	gtgaatgtgg	ccaaggcgt	cggaaccaac	1860
ccgtgtcg	acaggaacgg	gggtgcagc	cacctgtgct	tctcacacc	ccacgcaacc	1920
cggtgtggct	gccccatcg	cctggagctg	ctgagtgaca	tgaagacctg	catcgtgc	1980
gaggccttct	tggtcttcac	cagcagagcc	gccatccaca	ggatctccct	cgagaccaat	2040
aacaacgacg	tggccatccc	gctcacgggc	gtcaaggagg	cctcagccct	ggactttgat	2100
gtgtccaaca	accacatcta	ctggacagac	gtcagcctga	agaccatcag	ccgcgccttc	2160
atgaacggga	gctcggtgga	gcacgtgg	gagttggcc	ttgactaccc	cgagggcatg	2220
gccgttgact	ggatggcaa	gaacctctac	tggccgaca	ctgggaccaa	cagaatcgaa	2280
gtggcgcggc	tggacggca	gttccggcaa	gtcctcgtgt	ggagggactt	ggacaacccg	2340
aggtcgctgg	ccctggatcc	caccaagggc	tacatctact	ggaccgagtg	ggcggcaag	2400
ccgaggatcg	tgcggccctt	catggacggg	accaactgca	tgacgctggt	ggacaagg	2460
ggccggggcca	acgacccac	cattgactac	gctgaccagc	gcctctactg	gaccgacctg	2520
gacaccaaca	tgatcgagtc	gtccaacatg	ctgggtcagg	agcgggtcgt	gattgccgac	2580

gatctcccgcc acccgttcgg tctgacgcag tacagcgatt atatctactg gacagactgg 2640
aatctgcaca gcattgagcg ggccgacaag actagcggcc ggaaccgcac cctcatccag 2700
ggccacctgg acttcgtat ggacatcctg gtgttccact cctccgcca ggatggcctc 2760
aatgactgta tgcacaacaa cgggcagtgt gggcagctgt gccttgccat ccccgccggc 2820
caccgctgcg gctgcgcctc acactacacc ctggacccca gcagccgcaa ctgcagcccg 2880
cccaccacct tcttgctgtt cagccagaaa tctgccatca gtcggatgtat cccggacgac 2940
cagcacagcc cgatctcat cctgcccctg catggactga ggaacgtcaa agccatcgac 3000
tatgacccac tggacaagtt catctactgg gtggatgggc gccagaacat caagcgagcc 3060
aaggacgacg ggacccagcc ctttgtttt acctctctga gccaaggcca aaacccagac 3120
aggcagcccc acgacccatcg catcgacatc tacagccgga cactgttctg gacgtgcgag 3180
gccaccaata ccatcaacgt ccacaggctg agcggggaaag ccatgggggt ggtgctgcgt 3240
ggggaccgcg acaagcccag ggccatcg tcacacccatc gtcaacgcgg agcgaggta cctgtacttc 3300
accaacatgc aggaccgggc agccaagatc gaacgcgcag ccctggacgg caccgagcgc 3360
gaggtcctct tcaccacccgg cctcatccgc cctgtggccc tggtggtgga caacacactg 3420
ggcaagctgt tctgggtgga cgcggacctg aagcgatttg agagctgtga cctgtcaggg 3480
gccaaccgccc tgaccctgga ggacgccaac atcgtgcagc ctctggcct gaccatcctt 3540
ggcaagcattc tctactggat cgaccgcccag cagcagatga tcgagcgtgt ggagaagacc 3600
accggggaca agcggactcg catccaggggc cgtgtcgccc acctcaactgg catccatgca 3660
gtggaggaag tcacccctgga ggagttctca gcccacccat gtgcccgtga caatggtgcc 3720
tgctcccaca tctgtattgc caagggtat gggacaccac ggtgctcatg cccagtccac 3780
ctcgtgtcc tgcagaacct gctgacctgt ggagagccgc ccacctgctc cccggaccag 3840
tttgcattgtg ccacaggggc gatcgactgt atccccgggg cctggcgctg tgacggctt 3900
cccgagtgcg atgaccagag cgacgaggag ggctgccccg tgtgctccgc cgcccaacttc 3960
ccctgcgcgc ggggtcagtg tgtggacctg cgccctgcgt gcgacggcga ggcagactgt 4020
caggaccgct cagacgaggc ggactgtgac gccatctgcc tgcccaaccca gttccggtgt 4080
gcgagcggcc agtgtgtcct catcaaacag cagtgcgact cttccccga ctgtatcgac 4140
ggctccgacg agctcatgtg tgaaatcacc aagccgcctc cagacgacag cccggccac 4200
agcagtgcac tcgggcccgt cattggcatc atcctctctc tcttcgtat gggtggtgtc 4260
tattttgtgt gccagcgcgt ggtgtgcag cgctatgcgg gggccaaacgg gcccctcccg 4320
cacgagtatg tcagcggac cccgcacgtg cccctcaatt tcatagcccc gggcggttcc 4380
cagcatggcc cttcacagg catcgatgc ggaaagtcca tgcgtgagctc cgtgagccctg 4440

atgggggggc ggggccccgt gcccctgtac gaccggaaacc acgtcacagg ggccctcggtcc	4500
agcagctcgt ccagcacgaa ggccacgctg taccggccga tcctgaaccc gccgcctcc	4560
ccggccacgg acccctccct gtacaacatg gacatgttct actttcaaa cattccggcc	4620
actgcgagac cgtacaggcc ctacatcatt cgaggaatgg cgcccccac gacgcctgc	4680
agcaccgacg tgtgtgacag cgactacagc gccagccgct ggaaggccag caagtactac	4740
ctggatttga actcggactc agacccctat ccaccccccac ccacgccccca cagccagtac	4800
ctgtcgccgg aggacagctg cccgcctcg cccgccaccg agaggagcta cttccatctc	4860
ttcccccccc ctccgtcccc ctgcacggac tcatacctgac ctggccggg ccactctggc	4920
ttctctgtgc ccctgtaaat agtttaaat atgaacaaag aaaaaaatat attttatgtat	4980
ttaaaaaata aatataattt ggattttaaa aacatgagaa atgtgaactg tgatgggttg	5040
ggcagggctg ggagaacttt gta	5063

<210> 2

<211> 1615

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu Leu Leu Leu			
1	5	10	15

Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala Ala Ser		
20	25	30

Pro Leu Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu Val Asp Ala		
35	40	45

Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly Leu Glu Asp		
50	55	60

Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val Tyr Trp Thr			
65	70	75	80

Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn Gln Thr Gly		
85	90	95

Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser Pro Asp Gly		
100	105	110

Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr Asp Ser Glu		
115	120	125

Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser Arg Lys Val		
130	135	140

Leu Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala Leu Asp Pro			
145	150	155	160

Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Gly Glu Thr Pro Arg Ile
165 170 175

Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile Val Asp Ser
180 185 190

Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu Glu Gln Lys
195 200 205

Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg Ala Asn Leu
210 215 220

Asp Gly Ser Phe Arg Gln Lys Val Val Glu Gly Ser Leu Thr His Pro
225 230 235 240

Phe Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr Trp Thr Asp Trp Gln
245 250 255

Thr Arg Ser Ile His Ala Cys Asn Lys Arg Thr Gly Gly Lys Arg Lys
260 265 270

Glu Ile Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln Val Leu Ser
275 280 285

Gln Glu Arg Gln Pro Phe Phe His Thr Arg Cys Glu Glu Asp Asn Gly
290 295 300

Gly Cys Ser His Leu Cys Leu Leu Ser Pro Ser Glu Pro Phe Tyr Thr
305 310 315 320

Cys Ala Cys Pro Thr Gly Val Gln Leu Gln Asp Asn Gly Arg Thr Cys
325 330 335

Lys Ala Gly Ala Glu Glu Val Leu Leu Ala Arg Arg Thr Asp Leu
340 345 350

Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr Asp Ile Val Leu Gln
355 360 365

Val Asp Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp Pro Leu Glu
370 375 380

Gly Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg Arg Ala
385 390 395 400

Tyr Leu Asp Gly Ser Gly Ala Gln Thr Leu Val Asn Thr Glu Ile Asn
405 410 415

Asp Pro Asp Gly Ile Ala Val Asp Trp Val Ala Arg Asn Leu Tyr Trp
420 425 430

Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu Asn Gly Thr
435 440 445

Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro Arg Ala Ile
450 455 460

Ala Leu His Pro Val Met Gly Leu Met Tyr Trp Thr Asp Trp Gly Glu
465 470 475 480

Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly Gln Glu Arg Arg Val
485 490 495

Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala Leu Asp Leu
500 505 510

Gln Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp Lys Ile Glu
515 520 525

Val Ile Asn Val Asp Gly Thr Lys Arg Arg Thr Leu Leu Glu Asp Lys
530 535 540

Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Phe Ile Tyr Trp
545 550 555 560

Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Val Lys Ala
565 570 575

Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys
580 585 590

Ala Val Asn Val Ala Lys Val Val Gly Thr Asn Pro Cys Ala Asp Arg
595 600 605

Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro His Ala Thr Arg
610 615 620

Cys Gly Cys Pro Ile Gly Leu Glu Leu Leu Ser Asp Met Lys Thr Cys
625 630 635 640

Ile Val Pro Glu Ala Phe Leu Val Phe Thr Ser Arg Ala Ala Ile His
645 650 655

Arg Ile Ser Leu Glu Thr Asn Asn Asp Val Ala Ile Pro Leu Thr
660 665 670

Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser Asn Asn His
675 680 685

Ile Tyr Trp Thr Asp Val Ser Leu Lys Thr Ile Ser Arg Ala Phe Met
690 695 700

Asn Gly Ser Ser Val Glu His Val Val Glu Phe Gly Leu Asp Tyr Pro
705 710 715 720

Glu Gly Met Ala Val Asp Trp Met Gly Lys Asn Leu Tyr Trp Ala Asp
725 730 735

Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly Gln Phe Arg
740 745 750

Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Ala Leu
755 760 765

Asp Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro
770 775 780

Arg Ile Val Arg Ala Phe Met Asp Gly Thr Asn Cys Met Thr Leu Val
785 790 795 800

Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr Ala Asp Gln
 805 810 815

 Arg Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu Ser Ser Asn
 820 825 830

 Met Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Pro His Pro
 835 840 845

 Phe Gly Leu Thr Gln Tyr Ser Asp Tyr Ile Tyr Trp Thr Asp Trp Asn
 850 855 860

 Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg Asn Arg Thr
 865 870 875 880

 Leu Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu Val Phe His
 885 890 895

 Ser Ser Arg Gln Asp Gly Leu Asn Asp Cys Met His Asn Asn Gly Gln
 900 905 910

 Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg Cys Gly Cys
 915 920 925

 Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys Ser Pro Pro
 930 935 940

 Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser Arg Met Ile
 945 950 955 960

 Pro Asp Asp Gln His Ser Pro Asp Leu Ile Leu Pro Leu His Gly Leu
 965 970 975

 Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro Leu Asp Lys Phe Ile Tyr
 980 985 990

 Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp Gly Thr
 995 1000 1005

 Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn Pro Asp
 1010 1015 1020

 Arg Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu
 1025 1030 1035

 Phe Trp Thr Cys Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu
 1040 1045 1050

 Ser Gly Glu Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys
 1055 1060 1065

 Pro Arg Ala Ile Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe
 1070 1075 1080

 Thr Asn Met Gln Asp Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu
 1085 1090 1095

 Asp Gly Thr Glu Arg Glu Val Leu Phe Thr Thr Gly Leu Ile Arg
 1100 1105 1110

Pro Val Ala Leu Val Val Asp Asn Thr Leu Gly Lys Leu Phe Trp
1115 1120 1125

Val Asp Ala Asp Leu Lys Arg Ile Glu Ser Cys Asp Leu Ser Gly
1130 1135 1140

Ala Asn Arg Leu Thr Leu Glu Asp Ala Asn Ile Val Gln Pro Leu
1145 1150 1155

Gly Leu Thr Ile Leu Gly Lys His Leu Tyr Trp Ile Asp Arg Gln
1160 1165 1170

Gln Gln Met Ile Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg
1175 1180 1185

Thr Arg Ile Gln Gly Arg Val Ala His Leu Thr Gly Ile His Ala
1190 1195 1200

Val Glu Glu Val Ser Leu Glu Glu Phe Ser Ala His Pro Cys Ala
1205 1210 1215

Arg Asp Asn Gly Gly Cys Ser His Ile Cys Ile Ala Lys Gly Asp
1220 1225 1230

Gly Thr Pro Arg Cys Ser Cys Pro Val His Leu Val Leu Leu Gln
1235 1240 1245

Asn Leu Leu Thr Cys Gly Glu Pro Pro Thr Cys Ser Pro Asp Gln
1250 1255 1260

Phe Ala Cys Ala Thr Gly Glu Ile Asp Cys Ile Pro Gly Ala Trp
1265 1270 1275

Arg Cys Asp Gly Phe Pro Glu Cys Asp Asp Gln Ser Asp Glu Glu
1280 1285 1290

Gly Cys Pro Val Cys Ser Ala Ala Gln Phe Pro Cys Ala Arg Gly
1295 1300 1305

Gln Cys Val Asp Leu Arg Leu Arg Cys Asp Gly Glu Ala Asp Cys
1310 1315 1320

Gln Asp Arg Ser Asp Glu Ala Asp Cys Asp Ala Ile Cys Leu Pro
1325 1330 1335

Asn Gln Phe Arg Cys Ala Ser Gly Gln Cys Val Leu Ile Lys Gln
1340 1345 1350

Gln Cys Asp Ser Phe Pro Asp Cys Ile Asp Gly Ser Asp Glu Leu
1355 1360 1365

Met Cys Glu Ile Thr Lys Pro Pro Ser Asp Asp Ser Pro Ala His
1370 1375 1380

Ser Ser Ala Ile Gly Pro Val Ile Gly Ile Ile Leu Ser Leu Phe
1385 1390 1395

Val Met Gly Gly Val Tyr Phe Val Cys Gln Arg Val Val Cys Gln
1400 1405 1410

Arg	Tyr	Ala	Gly	Ala	Asn	Gly	Pro	Phe	Pro	His	Glu	Tyr	Val	Ser
1415							1420					1425		
Gly	Thr	Pro	His	Val	Pro	Leu	Asn	Phe	Ile	Ala	Pro	Gly	Gly	Ser
1430						1435						1440		
Gln	His	Gly	Pro	Phe	Thr	Gly	Ile	Ala	Cys	Gly	Lys	Ser	Met	Met
1445						1450						1455		
Ser	Ser	Val	Ser	Leu	Met	Gly	Gly	Arg	Gly	Gly	Val	Pro	Leu	Tyr
1460						1465						1470		
Asp	Arg	Asn	His	Val	Thr	Gly	Ala	Ser	Ser	Ser	Ser	Ser	Ser	Ser
1475						1480						1485		
Thr	Lys	Ala	Thr	Leu	Tyr	Pro	Pro	Ile	Leu	Asn	Pro	Pro	Pro	Ser
1490						1495						1500		
Pro	Ala	Thr	Asp	Pro	Ser	Leu	Tyr	Asn	Met	Asp	Met	Phe	Tyr	Ser
1505						1510						1515		
Ser	Asn	Ile	Pro	Ala	Thr	Ala	Arg	Pro	Tyr	Arg	Pro	Tyr	Ile	Ile
1520						1525						1530		
Arg	Gly	Met	Ala	Pro	Pro	Thr	Thr	Pro	Cys	Ser	Thr	Asp	Val	Cys
1535						1540						1545		
Asp	Ser	Asp	Tyr	Ser	Ala	Ser	Arg	Trp	Lys	Ala	Ser	Lys	Tyr	Tyr
1550						1555						1560		
Leu	Asp	Leu	Asn	Ser	Asp	Ser	Asp	Pro	Tyr	Pro	Pro	Pro	Pro	Thr
1565						1570						1575		
Pro	His	Ser	Gln	Tyr	Leu	Ser	Ala	Glu	Asp	Ser	Cys	Pro	Pro	Ser
1580						1585						1590		
Pro	Ala	Thr	Glu	Arg	Ser	Tyr	Phe	His	Leu	Phe	Pro	Pro	Pro	Pro
1595						1600						1605		
Ser	Pro	Cys	Thr	Asp	Ser	Ser								
1610						1615								

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 3
ttgctgccct agacttagcc

20

<210> 4
<211> 18
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 4
ccaaagtcgct tccgagac 18

<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 5
catccccagg ctgtgtatct 20

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 6
acttgggctc atgcaaattc 20

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 7
cccgatgggtg agattttagg 20

<210> 8
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 8
cgtgggtacc taccggAAC 19

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

```

```

<220>
<223> Primer

<400> 9
taattgggtc agcagcaatg 20

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 10
gcactcacag aaaggctg 18

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 11
agtgacggtc ctcttctgga 20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 12
caagtggatc atttcgaacg 20

<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 13
tggctgagta tttcccttgc 20

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 14
ccagaatgac aggtccaggt 20

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 15
tgcttcttct ccagcctcat 20

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 16
atgtggccaa atagcagagc 20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 17
gcattgaacc cgtcttgttt 20

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 18
ggcacacctgag ctcaaacactt 20

<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 19
tgctgggctg ttgtgttta 19

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 20
ctttgaggca ggaacagagg 20

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 21
agcgaaactc cgtctcaaaa 20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 22
gctctaatca ctgagggcca 20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 23
gagggctgag ctgaagaggt 20

<210> 24
<211> 19
<212> DNA
<213> Artificial Sequence

```

```

<220>
<223> Primer

<400> 24
caggttgggg aacttgcag 19

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 25
attcatgtgg tcgctaggct 20

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 26
gaagctccctt tcagcgtag 20

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 27
ccagctccctc tgtggcttac 20

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 28
tcctccctct gctaaggaca 20

<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 29
cagagctctc cagccagtg 19

<210> 30
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 30
ctgtgagagg ctggcattc 19

<210> 31
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 31
atgtgacctg tcagcctcg 19

<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 32
tgctgccatt actgacaatg a 21

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 33
tctgtcctcc caagctgagt 20

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 34
cacacaggat cttgcactgg 20

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 35
catgagttct catttggccc 20

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 36
gccacacaggga ctgtgatttt 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 37
caacttctgc tttgaagccc 20

<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 38
cagagccccc actccctgtga 20

<210> 39
<211> 19
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 39
ccagacccttg gttgctgtg 19

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 40
cgtctccctcc cctaaactcc 20

<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 41
atgttggcca cctctttctg 20

<210> 42
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 42
ctgcctccctc cagatcattc 20

<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 43
gagtctcgta ggttagtggga 20

<210> 44
<211> 20
<212> DNA
<213> Artificial Sequence

```

```

<220>
<223> Primer

<400> 44
agaaaagcaag catgcctcag 20

<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 45
agccctctct gcaaggaaag 20

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 46
gcccaactgc acccagaata 20

<210> 47
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 47
gacaggcctt tcccgttc 18

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 48
caggaggact ctcatggtgg 20

<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 49
ttcgtcatgg gtgggtctta 20

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 50
ttcctcgaat gatgttagggc 20

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 51
acctggactt cgtgatggac 20

<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 52
cagaaacagtg tccggctgt 20

<210> 53
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 53
ccatggagcc cgagtgag 18

<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 54
gtcaagggtcc tgccagaaga 20

<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 55
gggcaagaag ctgtactgga 20

<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 56
tggatgtcca tgggtgagta 20

<210> 57
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 57
cagaccgcgt ccatccat 18

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 58
tcgttgatct cggtgttgac 20

<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence

```

```

<220>
<223> Primer

<400> 59
atcgactacg acccgctaga 20

<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 60
gtagatgaag tccccccagca 20

<210> 61
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 61
gccaaagacag acaagatcga g 21

<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 62
tgtgggttgg acacatca 20

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 63
cacaggatct ccctcgagac 20

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

```

```

<220>
<223> Primer

<400> 64
ctcgatcatg ttgggtgtcca                                20

<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 65
cagccctttg ttttgacacc                                20

<210> 66
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 66
tccagtagag atgcttgcc                                20

<210> 67
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 67
aagcgcattg agagctgtg                                19

<210> 68
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 68
ctcctcgtcg ctctggtc                                18

<210> 69
<211> 21
<212> DNA
<213> Artificial Sequence

```

```

<220>
<223> Primer

<400> 69
cacaggggag atcgactgtat 21

<210> 70
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 70
acatactcgt gcgggaagg 19

<210> 71
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 71
gtccagcagc tcgtccag 18

<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 72
tacaaaagttc tcccagccct 20

<210> 73
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 73
tcatggacgg gaccaact 18

<210> 74
<211> 19
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 74
ggtgttagtgt gaggcgcag 19

<210> 75
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 75
Arg Val Arg Leu Ala Ser His Leu Arg Lys Leu Arg Lys
1 5 10

<210> 76
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 76
Arg Leu Thr Arg Lys Arg Gly Leu Lys Leu Ala
1 5 10

<210> 77
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 77
Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala
1 5 10

<210> 78
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 78
Leu Lys Trp Lys Ser
1 5

<210> 79
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 79
Lys Ile Arg Val Lys Ala Gly Glu Thr Gln Lys Lys Val Ile Phe Cys
1 5 10 15

Ser Arg Glu Lys Val Ser His Leu
20

<210> 80
<211> 27
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 80
Phe Ile Pro Leu Lys Pro Thr Val Lys Met Leu Glu Arg Ser Asn His
1 5 10 15

Val Ser Arg Thr Glu Val Ser Ser Asn His Val
20 25

<210> 81
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 81
Asp Lys Gly Met Ala Pro Ala Leu Arg His Leu Tyr Lys Glu Leu Met
1 5 10 15

Gly Pro Trp Asn
20

<210> 82
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 82
Asp Ala Leu Lys Leu Ala Ile Asp Asn Ala Leu Ser Ile Thr
1 5 10

<210> 83
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide that can act as an effector of BSMR

<400> 83
Arg Val Arg Leu Ala Ser His Leu Arg Lys Leu Arg Lys Arg Leu Leu
1 5 10 15

Arg

<210> 84
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence encoding a FLAG antibody epitope

<400> 84
gactacaagg acgacgatga caag 24

<210> 85
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 85
gactacaagg acgacgatga caagaccatc gtggtcagcg gcctg 45

<210> 86
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 86
cttgtcatcg tcgtcccttgt aggactccag cttgactccg cc 42

<210> 87
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence encoding an MYC antibody epitope

<400> 87
gagcagaagc tgatatccga ggaggacctg 30

<210> 88
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 88
gagcagaagc tgatatccga ggaggacctg tgacctcgcc cgggc 45

<210> 89
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 89
caggtcctcc tcggatatca gcttctgctc ggatgagtcc gtgca 45