Formal Methods DPIR Hilary 2021

Raymond Duch raymond.duch@nuffield.ox.ac.uk

Nuffield College, Oxford University

18 January 2022

Transitive Preferences

Definition 2.1 A state has rational preferences, \geq , over the outcomes in set X if they are:

- complete, that is, for all $x_i, x_j \in X$, we have either $x_i \ge x_j$, or $x_j \ge x_i$, or both:
- transitive, that is, for all x_i , x_j , and $x_k \in X$, if $x_i \ge x_j$ and $x_j \ge x_k$, then $x_i \ge x_k$.

Utility

Definition 2.2 A function $u: X \to \mathbb{R}$ is a utility function representing the preferences \geq if, for all $x_i, x_j \in X$, $u(x_i) \geq u(x_j) \Leftrightarrow x_i \geq x_j$.

Lottery

Definition 2.3 A lottery associated with a finite set of outcomes, X, with number of elements equal to |X| = n is a vector $L = (p_1, \ldots, p_n)$, where $p_i \in [0, 1]$ is interpreted as the probability that outcome i occurs, so that $\sum_{i \neq j} p_i = 1$.

Expected Utility

Definition 2.4 The expected utility of a lottery L based on a finite outcome set X is defined as the expected value of the utilities of the outcomes

$$EU(L) \equiv \sum_{i=1}^{n} p_i u(x_i)$$

Theorem 2.2 Given a preference ordering \geq over the set of lotteries L defined on an outcome space X, a utility function over the outcomes u(x) exists such that the expected utility of any lottery, EU(L), reflects the preference ordering, that is, $L_1 \geq L_2 \Leftrightarrow EU(L_1) \geq EU(L_2)$ if the following conditions hold:

- The preference ordering ≥ is complete and transitive.
- 2. Different lotteries that assign the same value to the outcomes are equivalent.
- 3. If $L_1 > L_2$, then all lotteries sufficiently close to L_1 are also preferred to L_2 .
- If L₁ > L₂, then adding an equal chance of obtaining L₃ to both sides does not alter the preference.

Efficiency

Definition 2.5 Given a set of actors with utility functions u_i defined over an outcome space X, an outcome $x' \in X$ is efficient if for any other outcome $x'' \in X$ that makes some player i better off, $u_i(x'') > u_i(x')$, there must be some other actor j that is worse off, $u_j(x') > u_j(x'')$.

Zero Sum

Definition 2.6 A set of outcomes X and utility functions u_i defined over it is zero sum if every $x \in X$ is efficient

Utility Functions

Figure 2.1 Utility functions

Multi-Dimensions

Figure 2.2 The Edgeworth Box

Risk Attitudes

Definition 2.7 An actor is:

- risk neutral if pu(x') + (1 p)u(x'') = u(px' + (1 p)x''),
- risk averse if pu(x') + (1 p)u(x'') < u(px' + (1 p)x''),
- risk acceptant if pu(x') + (1 p)u(x'') > u(px' + (1 p)x'').

Risk Attitudes

Figure 2.3 Risk attitudes

Prospect Theory

Figure 2.4 Prospect theory utility function