

ΠΑΝΕΠΙΣΤΗΜΙΟ

ΘΕΣΣΑΛΟΝΙΚΗΣ

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

School of Electrical and Computer Engineering Aristotle University of Thessaloniki, Greece

Setup & Motivation

and estimate

 $\hat{\boldsymbol{p}}(\hat{x},\hat{y},\hat{\theta}).~\boldsymbol{p}-\hat{\boldsymbol{p}}=(\Delta\hat{\boldsymbol{l}},\Delta\hat{\theta})$

Ray (CAER) metric

 $p(x, y, \theta)$

Definition 1. The Cumulative Absolute Error per

 $S_V(\hat{p})$ scans, in the local co-

ordinate frame of each sensor

$$\operatorname{CAER}(\mathcal{S}_{R}, \mathcal{S}_{V}) \triangleq \sum_{n=0} \left| \mathcal{S}_{R}[n] - \mathcal{S}_{V}[n] \right| (1)$$

$$\stackrel{\Xi}{\underset{V}{\text{H}}} 1200$$

$$\stackrel{\Xi}{\underset{V}{\text{H}}} 300$$

$$O_{rientation} \circ 0.0 + \pi \circ 0.0 \quad 10.0 \quad 20.0 \quad 30.0$$

$$O_{rientation} \circ 0.0 \circ 10.0 \quad 20.0 \quad 30.0$$

$$O_{rientation} \circ 0.0 \circ 10.0 \quad 20.0 \quad 30.0$$

$$O_{rientation} \circ 0.0 \circ 10.0 \quad 20.0 \quad 30.0$$

$$O_{rientation} \circ 0.0 \circ 10.0 \quad 20.0 \quad 30.0$$

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
 - -environment repetitions
- -map distortions
- -sensor noise

2.0

- -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environ-
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1))

- scales with position and orientation error
- computationally cheap O(sensor rays)

Experiments with real and synthetic data

$\begin{array}{l} {\rm In} > 6000 \\ {\rm attempts} \end{array}$	Mean	Mean	Mean
	Position	Orientation	Execution
	Error [m]	Error [rad]	Time [sec]
ALS [1]	0.500	1.956	6.15
CBGL	0.041	0.011	1.61

[1] Naoki Akai, "Reliable Monte Carlo Localization for Mobile Robots", Journal of Field Robotics, 2023