COMS20011 – Data-Driven Computer Science

30	3	2_2	1	0
0_2	0_2	1_{0}	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Lecture Video MM12 – Convolutions

(for feature extraction)

March 2022 Majid Mirmehdi

Next in DDCS

Feature Selection and Extraction

- Signal basics and Fourier Series
- 1D and 2D Fourier Transform
- Another look at features
- Convolutions

Spatial Filtering

We can filter signals and symbols in the spatial/time domain:

- introduce some form of enhancement
 - remove noise/outliers
 - smoothing/averaging out detail
 - sharpening/highlighting detail
- prepare for next stage of processing
 - feature extraction

Filters are also referred to as *kernels* or *masks*.

Spatial Filtering

Many spatial filters are implemented with *convolution* masks.

To do convolution, we need to know about neighbourhoods.

Symbolic Data

1D signal data

2D signal data

ATAGACATGGC

3 2 4 4 2 6

3	2	4	4	2	6
3	4	5	4	3	6
4	2	4	4	3	3
3	2	4	4	2	6
3	2	4	5	2	6

Spatial Filtering

Many spatial filters are implemented with *convolution* masks.

To do convolution, we need to know about neighbourhoods.

Convolution mask is applied to each signal sample and its neighbourhood.

2D signal data

3	2	4	4	2	6
3	4	5	4	3	6
4	2	4	4	3	3
3	2	4	4	2	6
3	2	4	5	2	6

Convolution/Correlation

Convolution

Convolution Kernel h(x)

Response g(x)

Convolution

- $\triangleright f$ is the signal, h is the convolution filter
 - ➤ h has an origin

$$\frac{1}{5}$$
 -1 3 -1 Example 3

Example 1D kernel

- Normalization factor, e.g. $\frac{1}{5}$, is also part of the filter!
- > The discrete version of convolution is defined as:

$$g(x) = \sum_{m=-s}^{s} f(x-m)h(m) \quad \text{for } s \ge 1$$

Spatial Filtering using 2D Convolution

Simple example

g

12.0 12.0 17.0

|10.0|17.0|19.0

6.0 | 14.0

Use padding for same size result

2D Convolution

> The discrete version of 2D convolution is defined as

$$g(x,y) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} f(x-m, y-n)h(m,n)$$

Shorthand form:

g=f*h

f(x+1, y+1)h(-1,-1)
+ f(x+1,y)h(-1,0)
+ f(x+1, y-1)h(-1,1)
+ f(x, y+1)h(0,-1)
+ f(x,y)h(0,0)
+ f(x, y-1)h(0,1)
+ f(x-1, y+1)h(1,-1)
+ f(x-1,y)h(1,0)
+ f(x-1, y-1)h(1,1)

2D Correlation

> The discrete version of 2D correlation is defined as

$$g(x,y) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} f(x+m, y+n)h(m, n)$$

Correlation=Convolution when kernel is symmetric under 180° rotation, e.g.

Example: Spatial Low/High Pass Filtering

1D: turning the treble/bass knob down on audio equipment!

➤ 2D: smooth/sharpen image

$\frac{1}{9}$	1	1	1
	1	1	1
	1	1	1

	-1	-1	-1
1	-1	8	-1
16	-1	-1	-1

Example: Edge Features

 Edges occur in images where there is discontinuity (or change) in the intensity function.

➢ Biggest change → derivative has maximum magnitude.

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Sobel Edge Detector

- > 2D gradient measurement in two different directions.
- ➤ Uses these 3x3 convolution masks:

Histogram of Edge Gradient Directions

Matlab: Sobel Edge Detection

```
% Sobel edge detection
A = imread('romina.gif');
fx = [-1 \ 0 \ 1; -2 \ 0 \ 2; -1 \ 0 \ 1]
fy = [1\ 2\ 1;\ 0\ 0\ 0;\ -1\ -2\ -1]
gx = conv2(double(A), double(fx))/8;
gy = conv2(double(A), double(fy))/8;
mag = sqrt((gx).^2+(gy).^2);
ang = atan(gy./gx);
figure; imagesc(mag); axis off; colormap gray
figure; imagesc(ang); axis off; colormap gray
```

See unit github page for code in Python.

Spatial/Frequency Domain Filtering

Convolution Theorem:

Convolution in the spatial domain is equivalent to multiplication in the frequency domain and vice versa

$$g(x,y) = f(x,y) * h(x,y) \iff G(u,v) = F(u,v) H(u,v)$$

$$g(x,y) = f(x,y) h(x,y) \iff G(u,v) = F(u,v) * H(u,v)$$

Example: Convolution in SD is Multiplication in FD

2D Fourier Transform (in Matlab)

```
f = imread('barbara.gif');
                       %read in image
z = fft2(double(f));
                       % do fourier transform
q = fftshift(z);
                      % puts u=0,v=0 in the centre
Magq = abs(q);
                       % magnitude spectrum
Phaseq=angle(q);
                       % phase spectrum
% Usually for viewing purposes:
imagesc(log(abs(q)+1));
colorbar;
w = ifft2(ifftshift(q));
                       % do inverse fourier transform
imagesc(w);
```

See unit github page for code in Python.

What we covered

Feature Selection and Extraction

- Signal basics and Fourier Series
- > 1D and 2D Fourier Transform
- Another look at features
- Convolutions