MATH 190A: Homework #4

Due on Feb 3, 2025 at 12:00pm

Professor McKernan

Section A02 8:00AM - 8:50AM Section Leader: Zhiyuan Jiang

 $Source\ Consulted:\ Textbook,\ Lecture,\ Discussion$

Ray Tsai

A16848188

Find all topologies on the set

$$X = \{a, b, c, d\}$$

up to homeomorphism. (This means, give a list of topologies on X, such that every other topology on X is homeomorphic to exactly one topology in your list).

Proof. bruh.

- 1. $\{\emptyset, X\}$
- 2. $\{\emptyset, X, \{a, b\}\}$
- 3. $\{\emptyset, X, \{a, b, c\}\}$
- 4. $\{\emptyset, X, \{a, b\}, \{c, d\}\}$
- 5. $\{\emptyset, X, \{a, b\}, \{a, b, c\}\}$
- 6. $\{\emptyset, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$
- 7. $\{\emptyset, X, \{a\}\}$
- 8. $\{\emptyset, X, \{a\}, \{a, b\}\}$
- 9. $\{\emptyset, X, \{a\}, \{a, b, c\}\}$
- 10. $\{\emptyset, X, \{a\}, \{b, c, d\}\}$
- 11. $\{\emptyset, X, \{a\}, \{a,b\}, \{a,b,c\}\}$
- 12. $\{\emptyset, X, \{a\}, \{a, d\}, \{a, b, c\}\}$
- 13. $\{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$
- 14. $\{\emptyset, X, \{a\}, \{a, b, c\}, \{a, c, d\}\}$
- 15. $\{\emptyset, X, \{a\}, \{b, c\}, \{a, d\}, \{a, b, c\}\}$
- 16. $\{\emptyset, X, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}\$
- 17. $\{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}\$
- 18. $\{\emptyset, X, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}\$
- 19. $\{\emptyset, X, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}\}\$
- 20. $\{\emptyset, X, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}\}$
- 21. $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$
- 22. $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$
- 23. $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$
- 24. $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}\$
- 25. $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$

- 26. $\{\emptyset, X, \{a\}, \{b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$
- 27. $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}\}$
- 28. $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}\}$
- 29. $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$
- 30. $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\}\}$
- 31. $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}\}$
- 32. $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{c,d\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\}\}$
- 33. $\wp(X)$

Let X and Y be two sets. Give both sets the topology where the closed sets are the finite sets, plus the whole set. Under what conditions are X and Y homeomorphic?

Proof. X and Y are homeomorphic if X and Y have the same cardinality. When X, Y are finite, the given topology is just the discrete topology, so they are homeomorphic if and only if |X| = |Y|. If X, Y are infinite, let $f: X \to Y$ be a bijection. Then f is continuous since the preimage of any closed set in Y is closed in X. The inverse function $f^{-1}: Y \to X$ is also continuous since the preimage of any closed set in X is closed in Y. Thus, f is a homeomorphism if |X| = |Y|.

Show that any two closed and bounded intervals in \mathbb{R} are homeomorphic.

Proof. By lemma 7.3, it suffices to show that any any closed interval [a, b] is homeomorphic to [0, 1]. Let $f: [0, 1] \to [a, b]$ be defined as

$$f(x) = a + (b - a)x.$$

A basis for the subspace topology is given by intervals (α, β) , $(\alpha, 1]$, $[0, \beta)$, and [0, 1], for $\alpha, \beta \in (0, 1)$ and $\alpha < \beta$, and f sends these to intervals $(a + (b - a)\alpha, a + (b - a)\beta)$, $(a + (b - a)\alpha, b]$, $[a, a + (b - a)\beta)$, and [a, b], respectively. The inverse of f is the function $g : [a, b] \to [0, 1]$ which is defined as

$$g(x) = \frac{x - a}{b - a}.$$

A basis for the subspace topology for [a,b] is given by intervals (r,s), (r,d], [c,s), and [c,d], for $r,s \in (a,b),$ and g sends these to intervals $(\frac{r-a}{b-a},\frac{s-a}{b-a}), (\frac{r-a}{b-a},1], [0,\frac{s-a}{b-a}),$ and [0,1], respectively. Thus, f and g are homeomorphisms by lemma 7.4.

Complete the proof of Theorem 7.2.

Proof. Let $a \in \mathbb{R}$.

Define $f:(0,\infty)\to(a,\infty)$ to be f(x)=a+x. f sends interval $(\alpha,\beta)\subseteq(0,\infty)$ to $(\alpha+a,\beta+a)\subseteq(a,\infty)$. f's inverse $f^{-1}:(a,\infty)\to(0,\infty)$ defined as $f^{-1}(x)=x-a$ sends $(\gamma,\eta)\subseteq(a,\infty)$ to $(\gamma-a,\eta-a)\subseteq(0,\infty)$. Thus, f and f^{-1} are continuous by lemma 7.4, and thus $(0,\infty),(a,\infty)$ are homeomorphic.

Define $g:(a,\infty)\to(-\infty,a)$ to be g(x)=-x. g sends interval $(\alpha,\beta)\subseteq(a,\infty)$ to $(-\beta,-\alpha)\subseteq(-\infty,a)$. g's inverse $g^{-1}:(-\infty,a)\to(a,\infty)$ defined as $g^{-1}(x)=-x$ sends $(\gamma,\eta)\subseteq(-\infty,a)$ to $(-\eta,\gamma)\subseteq(a,\infty)$. Thus, g and g^{-1} are continuous by lemma 7.4, and thus $(a,\infty),(-\infty,a)$ are homeomorphic.

Define $h:(0,\infty)\to\mathbb{R}$ to be $h(x)=\ln x$. h sends interval $(\alpha,\beta)\subseteq(0,\infty)$ to $(\ln\alpha,\ln\beta)\subseteq\mathbb{R}$. h's inverse $h^{-1}:\mathbb{R}\to(0,\infty)$ defined as $h^{-1}(x)=e^x$ sends $(\gamma,\eta)\subseteq\mathbb{R}$ to $(e^\gamma,e^\eta)\subseteq(0,\infty)$. Thus, h and h^{-1} are continuous by lemma 7.4, and thus $(0,\infty),\mathbb{R}$ are homeomorphic.

True or false? If true then give a proof and if false then give a counterexample.

(i) If (X, \mathcal{T}) and (Y, \mathcal{S}) are topological spaces then $X \times Y$ and $Y \times X$, both with the product topology, are homeomorphic.

Proof. True. Consider the map $f: X \times Y \to Y \times X$ that sends (x, y) to (y, x). This map is a bijection. Given any open set $U \times V \subseteq X \times Y$, we have $f(U \times V) = V \times U$ is open in $Y \times X$. Similarly, given any open set $V \times U \subseteq Y \times X$, we have $f^{-1}(V \times U) = U \times V$ is open in $X \times Y$. Thus, $X \times Y$ and $Y \times X$ are homeomorphic.

(ii) Let \mathcal{T} be the Euclidean topology on \mathbb{R} and let \mathcal{S} be the topology where the open sets are half open intervals of the form (a, ∞) . Then $(\mathbb{R}, \mathcal{T})$ and $(\mathbb{R}, \mathcal{S})$ are homeomorphic.

Proof. False. Since $S \subseteq T$ but $(0,1) \in T \setminus S$, T is strictly finer than S.

(iii) Let \mathcal{T} be the topology where the open sets are half open intervals of the form (a, ∞) and let \mathcal{S} be the topology where the open sets are half open intervals of the form $(-\infty, a)$. Then $(\mathbb{R}, \mathcal{T})$ and $(\mathbb{R}, \mathcal{S})$ are homeomorphic.

Proof. True. Consider the bijection $f: \mathbb{R} \to \mathbb{R}$ that sends x to -x. Then the induced map $F: \mathcal{T} \to \mathcal{S}$ is a bijection that sends (a, ∞) to $(-\infty, a)$. Thus, F is a homeomorphism.

(iv) If (X, \mathcal{T}) and (Y, \mathcal{S}) are homeomorphic topological spaces then (X, \mathcal{T}) is Hausdorff if and only if (Y, \mathcal{S}) is Hausdorff.

Proof. True. Let $f: X \to Y$ be a homeomorphism. Let $x_1, x_2 \in X$ be distinct points. Then $f(x_1), f(x_2) \in Y$ are distinct points. Since (X, \mathcal{T}) is Hausdorff, there exists disjoint open sets $U_1, U_2 \in \mathcal{T}$ such that $x_1 \in U_1$ and $x_2 \in U_2$. Then $f(U_1), f(U_2) \in \mathcal{S}$ are open sets such that $f(x_1) \in f(U_1), f(x_2) \in f(U_2)$. Note that $f(U_1), f(U_2)$ are disjoint, otherwise $f^{-1}(f(U_1) \cap f(U_2)) = U_1 \cap U_2$ is nonempty. By syymmetry, the converse is also true.

(v) If we are given four topological spaces, X, Y, Z and W and $X \times Y$ is homeomorphic to $Z \times W$ then X is homeomorphic to Z or X is homeomorphic to W.

Proof. False. Consider $X = Y = \mathbb{R}$, $Z = \mathbb{R}^2$, and $W = \{0\}$. Obviously $X \times Y = \mathbb{R}^2$ is homeomorphic to $Z \times W = \mathbb{R}^2 \times \{0\}$. However, X is not homeomorphic to Z or W.