MIDTERM EXAM

- You have 80 minutes
- You are permitted to have one letter-sized sheet of hand-written notes
- No other references or electronic devices are permitted
- 1. Quantum cantilever (20 points). In recent years, it has become possible to cool a mechanical cantilever to such low temperature that it is well described as a quantized harmonic oscillator, with energy levels

$$\varepsilon_n = n\hbar\omega. \tag{1}$$

(We have taken the zero-point energy to be zero.)

- a. The cantilever is placed into a dilution refrigerator and allowed to equilibrate to a temperature τ_c . To precisely calibrate the temperature τ_c , you measure the ratio $\rho \equiv P_0/P_1$ of probabilities of finding the cantilever in its ground and first excited states. Express the following quantities in terms of the ratio ρ :
 - i. . . . the temperature τ_c
 - ii. ... the free energy F
 - iii. ... the average energy E
- b. If the cantilever in part a. is twice as likely to be in the ground state as in the first excited state $(\rho = 2)$, what is its entropy?
- c. Three cantilevers. Now consider a system of three cantilevers, each of frequency ω . Suppose that I give you only one of the following pieces of information:
 - i. The cantilevers are in thermal equilibrium at the temperature τ_c that you found in part a., with $\rho=2$.

 —or—
 - ii. The total energy of the three cantilevers is $E = 3\hbar\omega$.

In which case have I given you more information about the microstate (n_1, n_2, n_3) ? Explain. Quantify the difference in information content, if any.

- 2. Electron vs proton spins (25 points). Consider two paramagnetic solids: solid \mathcal{A}_e has N_e unpaired electron spins of magnetic moment μ_e , whereas solid \mathcal{B}_p has N_p unpaired nuclear spins of magnetic moment μ_p . The ratio of the magnetic moments is $\mu_e/\mu_p = 662$. The solids are placed in a magnetic field B, where each spin has two states of energies 0 and $2\mu_i B$, measured relative to the ground state.

 Answer the following questions using physical arguments, bolstered by simple equations and/or approximations.
 - a. The two solids are in a magnetic field B and are in thermal equilibrium at a temperature $\tau = \mu_p B$.
 - i. Which solid has a higher energy per spin? Explain.
 - ii. Which solid has a higher entropy per spin (or are both entropies the same)? Explain.
 - b. Now suppose that the two solids are prepared at different temperatures to achieve the same average energy per particle, $E_e/N_e = E_p/N_p = \mu_p B$. The solids are then isolated from their environments and brought into thermal contact with one another.
 - i. On average, does energy flow from \mathcal{A}_e to \mathcal{B}_p , from \mathcal{A}_e to \mathcal{B}_p , or neither?
 - ii. Does the entropy of solid A_e increase, decrease or remain the same?
 - iii. Does the entropy of solid \mathcal{B}_p increase, decrease or remain the same?
 - iv. Are your results consistent with the 2nd Law of Thermodynamics? Why or why not?
- 3. Non-ideal gas (10 points). For certain dense gases, a good approximation to the equation of state is

$$p = \frac{N\tau}{V - Nb} - \frac{a}{\sqrt{\tau}V(V + b)},\tag{2}$$

where the coefficients a and b account for interactions among the gas molecules and the volume occupied by each molecule. Let's examine how the heat capacity of such a gas depends on volume V at fixed temperature τ .

- a. Express the heat capacity in terms of a derivative of the entropy σ .
- b. Derive a useful thermodynamic relation of the form:

$$\left(\frac{\partial \sigma}{\partial V}\right)_{\tau} = \left(\frac{\partial A}{\partial B}\right)_{V} \tag{3}$$

What are A and B?

- c. Combine your results from above to find:
 - i. ... a general expression for $(\partial C_V/\partial V)_{\tau}$ in terms of state functions appearing in Eq. 2
 - ii. ... the derivative $(\partial C_V/\partial V)_{\tau}$ of the heat capacity with respect to volume for the gas of Eq. 2.

- 4. Multi-species gas (25 points). A dilute mixture of several monatomic gases is contained in a volume $V = L^3$. There are N_{α} molecules of species α , each of molecular mass m_{α} . The mixture is in thermal equilibrium at temperature τ .
 - a. What is the total energy E of the mixture?
 - b. Express the following in terms of the temperature τ :
 - i. The rms momentum of a single molecule of species α
 - ii. The rms velocity of a single molecule of species α
 - c. Find the rms momentum $\wp_{\rm rms} \equiv \sqrt{\langle \wp^2 \rangle}$ and rms velocity $v_{\rm rms} = \sqrt{\langle v^2 \rangle}$ for the mixture.
 - d. Simplify your results from c. for the case where there are two species with equal numbers of particles $N_1 = N_2 = N_{\rm tot}/2$ and with very unequal masses $m_1 \ll m_2$. Express $\wp_{\rm rms}$ and $v_{\rm rms}$ in terms of the temperature τ .
 - e. Suppose that you perform an experiment to measure the velocity v_x of each molecule in the x direction. Sketch the distribution $P(v_x)$ that you would expect to measure in such an experiment for the case of $N_{\rm He} = N_{\rm Ar} \gg 1$ molecules of $^4{\rm He}$ ($m_{\rm He} = 4$ amu) and $^{40}{\rm Ar}$ ($m_{\rm Ar} = 40$ amu).
 - f. Now suppose that you performed many such experiments and, from each one, extracted the average velocity $\overline{v_x}$. Consider the probability distribution $P(\overline{v_x})$ for the average velocity $\overline{v_x}$.
 - i. Is the functional form of $P(\overline{v_x})$ the same or different from that of $P(v_x)$? Explain.
 - ii. Extra credit. Find the standard deviation $\Delta \overline{v_x}$ in terms of τ , $N_{\rm He}$, $N_{\rm Ar}$, $m_{\rm He}$ and/or $m_{\rm Ar}$. Then simplify your result using the approximation $m_{\rm He} \ll m_{\rm Ar}$.