# Relatório: Algoritmos de Desenho de Linhas

Autor: Kaio Guilherme Ferraz de Sousa Silva

# 1. Introdução

Este relatório apresenta e compara três algoritmos usados para desenhar linhas em sistemas gráficos: o **Algoritmo Analítico**, o **Algoritmo DDA (Digital Differential Analyzer)** e o **Algoritmo de Bresenham**. Cada um desses algoritmos tem suas próprias características, vantagens e desvantagens, e são utilizados dependendo das exigências de precisão e eficiência de diferentes sistemas de renderização de gráficos.

#### **Algoritmos Analisados**

 Algoritmo Analítico: Método simples para desenhar linhas utilizando a equação da reta .

$$y=mx+by=mx+b$$

- Algoritmo DDA (Digital Differential Analyzer): Algoritmo baseado em interpolação para calcular e desenhar linhas.
- 3. **Algoritmo de Bresenham**: Algoritmo eficiente que evita o uso de ponto flutuante, baseando-se em decisões de erro acumulado.

# 2. Descrição do Funcionamento

## 2.1 Algoritmo Analítico

O algoritmo **Analítico** baseia-se na equação da reta:

$$y = m * x + b$$

onde:

• **m** é a inclinação da reta, calculada como:

$$m = (y2 - y1) / (x2 - x1)$$

• **b** é o intercepto no eixo Y, obtido por:

$$b = y1 - (m * x1)$$

O algoritmo percorre os valores de  $\mathbf{x}$  entre  $\mathbf{x1}$  e  $\mathbf{x2}$ , calculando os respectivos valores de  $\mathbf{y}$  e desenhando cada pixel correspondente.

#### Processo:

- 1. Calcular a inclinação m da reta.
- 2. Determinar o intercepto b.
- 3. Percorrer os pontos entre x1 e x2, calculando y para cada x usando a equação da reta.
- 4. Se a linha for vertical  $(x_1 = x_2)$ , variar apenas y, mantendo x fixo.

### 2.2 Algoritmo DDA (Digital Differential Analyzer)

O **DDA** utiliza a interpolação digital para calcular os pontos da linha. O algoritmo começa a partir de um dos pontos e, para cada incremento de xx ou yy, calcula o valor da outra coordenada, garantindo que os pontos formem uma linha reta. O DDA é mais eficiente que o método analítico para linhas de inclinação variável, mas pode sofrer de imprecisões devido ao arredondamento.

#### Processo:

1. Calcula-se as diferenças e.

$$dx=x2-x1dx = x_2 - x_1$$
  
 $dy=y2-y1dy = y_2 - y_1$ 

- 2. Determina-se qual coordenada (horizontal ou vertical) tem a maior diferença e, com isso, decide-se qual coordenada será interpolada.
- 3. A linha é desenhada ao atualizar a coordenada dominante, e a coordenada não dominante é calculada a partir da interpolação.

# 3. Diferenças Entre os Algoritmos

| Característica       | Algoritmo Analítico | Algoritmo DDA        | Algoritmo de<br>Bresenham         |
|----------------------|---------------------|----------------------|-----------------------------------|
| Tipo de<br>Algoritmo | Baseado em equações | Interpolação digital | Decisão baseada em erro acumulado |

|            | matemáticas                                                     |                                                   |                                                                                  |
|------------|-----------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------|
| Velocidade | Pode ser mais lento<br>em linhas verticais                      | Eficiente para linhas inclinadas                  | Muito eficiente,<br>especialmente para<br>sistemas com<br>limitações de hardware |
| Precisão   | Boa, mas com<br>possíveis<br>imprecisões em<br>linhas verticais | Boa, mas imprecisa<br>devido ao<br>arredondamento | Excelente, sem imprecisões de arredondamento                                     |

# 4. Análise de Desempenho

Os algoritmos **Analítico**, **DDA** e **Bresenham** são executados simultaneamente, cada um em uma thread separada para evitar interferências de desempenho entre si. O algoritmo Analítico utiliza a equação da reta para calcular diretamente os pixels, enquanto o DDA realiza a interpolação dos valores com maior precisão, porém com custo computacional adicional. Já o algoritmo de Bresenham, conhecido por sua eficiência, utiliza operações inteiras para determinar os pixels rapidamente. A execução independente de cada algoritmo pode ser observada no GIF abaixo, permitindo uma análise clara de seus desempenhos e características visuais.



Foram usadas matrizes de 400×400 pixel em escala 1:1

## 5. Conclusão

Cada um dos algoritmos analisados tem suas vantagens e limitações. O **Algoritmo Analítico** é simples de implementar, mas pode ser menos eficiente para linhas verticais. O **DDA** é mais flexível e pode lidar bem com diferentes

inclinações, mas sofre com imprecisões de arredondamento. O **Algoritmo de Bresenham** é o mais eficiente em termos de desempenho e precisão, tornando-se a melhor opção para sistemas gráficos com restrições de hardware ou onde a velocidade de execução é crucial. A escolha do algoritmo depende das necessidades específicas da aplicação, como a eficiência computacional e a precisão exigida para o desenho da linha.