Languages and Machines

Ex Chap 4 (pp 140-142): 1, 7, 14, 23, 26, and optionally 32

```
1.
      elimination of recursive start symbol:
       S \rightarrow S'
      S' \ \rightarrow \ aS' \ | \ bS' \ | \ B
       B \rightarrow bb \mid C \mid . \setminus
      C \rightarrow cC | . 
       the set of nullable variables: {B, C, S', S}
       elimination of lambda rules:
       S \rightarrow S' | . 
       S' \rightarrow aS' \mid bS' \mid a \mid b \mid B
       B \rightarrow bb \mid C
       C \rightarrow cC \mid c
       [ab]*(bb|c*)
7.
       C(S) = \{S, A, C, B\}
       C(A) = \{A, C, B\}
       C(B) = \{B\}
       C(C) = \{C, B\}
       S \rightarrow AS \mid A \mid aA \mid bB \mid C \mid b \mid cC \mid B
       A \rightarrow aA \mid bB \mid C \mid cC \mid B \mid b
       B \rightarrow bB \mid b
       C \rightarrow cC | B | bB | b
       (a*c*b+)+
14.
       TERM = \{A, D, S\}
       S \rightarrow AA
       A \rightarrow aA \mid a
       D \rightarrow dD \mid d
       REACH = \{S, A\}
       S \rightarrow AA
       A \rightarrow aA \mid a
23.
       nullable variables: {A, S}
```

lambda rules and start recursion eliminated:

J Bolton Set 7

```
S \rightarrow S' | . 
S' \rightarrow A \mid ABa \mid Ba \mid AbA \mid bA \mid Ab \mid b
A \rightarrow Aa \mid a
B \rightarrow Bb \mid BC
C \rightarrow CB \mid CA \mid C \mid bB
elimination of chain rules:
C(S) = \{S\}
C(S') = \{S, A\}
C(A) = \{A\}
C(B) = \{B\}
C(C) = \{C\}
S \rightarrow S' | . 
S' \rightarrow ABa \mid Ba \mid AbA \mid bA \mid Ab \mid b \mid Aa \mid a
A \rightarrow Aa \mid a
B \rightarrow Bb \mid BC
C \rightarrow CB \mid CA \mid bB
elimination of non-terminating variables:
TERM = \{S', A, S\}
S \rightarrow S' \mid . \setminus
S' \rightarrow AbA \mid bA \mid Ab \mid b \mid Aa \mid a
A \rightarrow Aa \mid a
elimination of unreachable variables:
REACH = \{S, S', A\}
separation of terminals:
S \rightarrow S' | . \setminus
S' \rightarrow AB'A \mid B'A \mid AB' \mid b \mid AA' \mid a
A \rightarrow AA' \mid a
B' \ \to \ b
A' \ \rightarrow \ a
distribution of rules that produce greater than three variables or letters (final form):
S \rightarrow S' \mid . \setminus
S' \rightarrow AF \mid B'A \mid AB' \mid b \mid AA' \mid a
A \rightarrow AA' \mid a
F \rightarrow B'A
B' \rightarrow b
A' \ \rightarrow \ a
```

26.

baaa

	1	2	3	4
1	{B}	{Y}	{S}	0
2		{A, X, Y, S}	{S, X}	{S, X}
3			{A, X, Y, S}	{S, X}
4				{A, X, Y, S}

abaaa

aoutu								
	1	2	3	4	5			
1	{A, X, Y, S}	{Y}	{S}	0	0			
2		{B}	{Y}	{S}	0			
3			$\{A, X, Y, S\}$	{S, X}	{S}			
4				$\{A, X, Y, S\}$	{S, X}			
5					{A, X, Y, S}			

32.

G:

 $S \rightarrow AB \mid BC$

 $A \rightarrow AB \mid a$

 $B \rightarrow AA \mid CB \mid b$

 $C \rightarrow a \mid b$

elimination of left-recursive variables:

 $S \rightarrow AB \mid BC$

 $A \rightarrow a \mid aD$

 $B \,\, \rightarrow \,\, AA \mid CB \mid b$

 $C \rightarrow a \mid b$

 $D \,\to\, AD \mid A$

replacement of out-of-order variables:

 $S \rightarrow AB \mid BC$

 $A \rightarrow a \mid aD$

 $B \,\rightarrow\, a \overset{\cdot}{A} \,|\, a D A \,|\, a B \,|\, b B \,|\, b$

 $C \rightarrow a \mid b$

 $D \rightarrow AD \mid A$

J Bolton Set 7

replacement of starting variables with terminals:

$$S \rightarrow aB \mid aDB \mid aAC \mid aDAC \mid aBC \mid bBC \mid bC$$

 $A \to a \mid aD$

 $B \rightarrow a\dot{A} \mid aDA \mid aB \mid bB \mid b$

 $C \,\to\, a \mid b$

 $D \rightarrow aD \mid aDD \mid a \mid aD$