NSR Search Results Page 1 of 7

Visit the **Isotope Explorer** home page!

43 reference(s) found:

Keynumber: 1997VE03

Reference: Appl.Radiat.Isot. 48, 493 (1997) **Authors:** L.Venturini, B.R.S.Pecequilo

Title: Thermal Neutron Capture Cross-Section of ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr and ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr, ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n, γ),E=thermal;

measured E γ ,I γ ; deduced capture σ .

Keynumber: 1993SE13

Reference: Nucl.Instrum.Methods Phys.Res. A336, 171 (1993)

Authors: R.Semmler, L.P.Geraldo

Title: A New Experimental Apparatus for Production and Utilization of Capture Gamma Rays

Keyword abstract: NUCLEAR REACTIONS ⁶⁰, ⁵⁸, ⁶²Ni, ¹⁴N(n, γ),E=reactor; measured capture γ -ray

flux density; deduced device low energy fission usage suitability.

Keynumber: 1993HAZV

Reference: Proc.6th Intern.Conf.on Nuclei Far from Stability + 9th Intern.Conf.on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R.Neugart, A.Wohr, Eds., p.69 (1993)

Authors: A.Harder, S.Michaelsen, A.Jungclaus, K.P.Lieb, A.P.Williams, H.G.Borner

Title: Precision Neutron Binding Energies of ⁵⁹, ⁶¹, ⁶³, ⁶⁴Ni and ⁹⁰Y Obtained from Thermal Neutron

Capture Reactions

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶²Ni, ⁸⁹Y(n,γ),E=thermal; measured capture γ spectra. ⁵⁹, ⁶¹, ⁶³, ⁶⁴Ni, ⁹⁰Y deduced neutron binding energy,transition Iγ. Double neutron capture on ⁶²Ni.

Keynumber: 1993HA05

Reference: Z.Phys. A345, 143 (1993)

Authors: A.Harder, S.Michaelsen, K.P.Lieb, A.P.Williams

Title: Thermal Neutron Capture γ -Ray Spectroscopy of ^{59}Ni and ^{61}Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰Ni(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁹, ⁶¹Ni

deduced levels, J, π, γ -transitions, neutron binding energies.

Keyword abstract: NUCLEAR STRUCTURE A=30-80; compiled level density parameters; deduced

shell structure effects.

Keynumber: 1992KU17

Reference: Nucl. Phys. A549, 59 (1992)

Authors: A.Kuronen, J.Keinonen, H.G.Borner, J.Jolie, S.Ulbig

Title: Molecular Dynamics Simulations Applied to the Determination of Nuclear Lifetimes from

Dopler-Broadened γ-Ray Line Shapes Produced in Thermal Neutron Capture Reactions

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁴⁸Ti, ⁵³Cr, ⁵⁶Fe, ⁶⁰, ⁵⁸Ni(n, γ),E=thermal; analyzed

Doppler broadened γ -ray line shapes. ³⁶Cl levels deduced $T_{1/2}$,M1,E2 transition matrix

elements, branching ratio. 49 Ti, 54 Cr, 57 Fe, 61 , 59 Ni levels deduced $T_{1/2}$. Molecular dynamics simulations.

http://128.3.5.61:6023/NSR?HTML&KEYR=60Ni(N,G)

NSR Search Results Page 2 of 7

Keynumber: 1991UL01

Reference: Z.Phys. A338, 397 (1991)

Authors: S.Ulbig, K.P.Lieb, H.G.Borner, B.Krusche, S.J.Robinson, J.G.L.Booten **Title:** GRID Lifetime Measurements in ⁵⁹, ⁶¹, ⁶³Ni following Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶²Ni(n, γ),E=thermal; measured γ -spectra Doppler

shifts,line shapes. ⁵⁹Ni levels deduced $T_{1/2}$, $B(\lambda)$. ⁶¹, ⁶³Ni levels deduced $T_{1/2}$. GRID technique.

Keynumber: 1987HW02

Reference: Nucl.Sci.Eng. 96, 192 (1987)

Authors: R.N.Hwang

Title: A Rigorous Pole Representation of Multilevel Cross Sections and Its Practical Applications

Keyword abstract: NUCLEAR REACTIONS ⁶⁰Ni(n,n), (n,γ),E=174-190 KeV; calculated

capture, scattering σ . ²³⁹Pu(n,n), (n,F),E=1-600 eV; calculated scattering, capture, fission σ ; deduced

model parameters. Pole representation.

Keynumber: 1986MAYZ

Reference: Proc.Intern.Nuclear Physics Conference, Harrogate, U.K., p.341 (1986)

Authors: J.P.Mason

Title: Gamma-Ray Spectra following Resonance Neutron Capture in ⁵⁸Ni and ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, 60 Ni(n,γ),E ≈ resonance; measured capture γ-spectra.

⁵⁹, ⁶⁰Ni levels deduced relative transition strengths. Valence model.

Keynumber: 1985KI09

Reference: J.Nucl.Sci.Technol.(Tokyo) 22, 337 (1985)

Authors: Y.Kikuchi, N.Sekine

Title: Evaluation of Neutron Nuclear Data of Natural Nickel and Its Isotopes

Keyword abstract: NUCLEAR REACTIONS Ni, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n,n), (n,n'), (n, γ), (n,2n), (n,3n), (n,p), (n, α), (n,n'p), (n,n' α), E <20 MeV; calculated σ (E); deduced average capture σ (E). Spherical

optical, statistical models.

Keynumber: 1984REZT

Reference: Proc.Conf.Neutron Physics, Kiev, Vol.1, p.157 (1984)

Authors: G.Reffo, F.Fabbri

Title: Role of E1 and M1 Transitions in the γ -Decay following the Neutron Capture in 58,60 Ni and 56 Fe

Keyword abstract: NUCLEAR STRUCTURE ⁵⁷Fe, ⁵⁹, ⁶¹Ni; calculated resonances, Γγ, Γn, average

E1,M1 Γγ. Axel-Brink model.

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰Ni(n,γ),E ≈ 15 keV; calculated total γ-spectra;

deduced E1,M1 transitions contributions.

Keynumber: 1983WIZL

Reference: NEANDC(E)-242U, Vol.V, p.3 (1983) **Authors:** K.Wisshak, F.Kappeler, G.Reffo, F.Fabbri

Title: Neutron Capture in s-Wave Resonances of ⁵⁶Fe, ⁵⁸Ni, ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰Ni(n, γ),E=resonance; measured capture γ -

spectra. ⁵⁷Fe, ⁵⁹, ⁶¹Ni deduced s-wave resonance capture Γγ.

NSR Search Results Page 3 of 7

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1978BE04

Reference: Z.Phys. A284, 173 (1978) **Authors:** H.Beer, R.R.Spencer, F.Kappeler

Title: Measurement of Partial Radiation Widths of High Energy Transitions from keV Capture

Resonances in ⁵⁶Fe and ⁵⁸, ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰Ni(n, γ),E=7-70 keV; measured σ(E γ). ⁵⁷Fe, ⁵⁹, ⁶¹Ni deduced resonances, partial radiation Γ ,M1 strength.

Kevnumber: 1977IS01

Reference: Z.Phys. A281, 365 (1977)

Authors: A.F.M.Ishaq, A.Robertson, W.V.Prestwich, T.J.Kennett

Title: Thermal Neutron Capture in Isotopes of Nickel

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n,γ),E=th; measured Eγ,Iγ. ⁵⁹, ⁶¹, ⁶³, ⁶⁵Ni

deduced levels.

Keynumber: 1975WI06

Reference: Phys.Rev. C11, 1477 (1975)

Authors: W.M.Wilson, G.E.Thomas, H.E.Jackson

Title: Thermal Neutron Capture Gamma Rays from Neutron Capture in ⁵⁹Ni and ⁶³Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶³Ni(n, γ),E=thermal; measured E γ ,I γ . ⁵⁹,

⁶⁰, ⁶¹, ⁶², ⁶⁴Ni deduced levels, binding energies.

Keynumber: 1975FRZV

Coden: JOUR BAPSA 20 174 IB21

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰, ⁶¹Ni(n, γ); calculated σ .

Kevnumber: 1975BEYM

Coden: CONF Petten(Neutron Capture γ-ray Spect), Proc P285

NSR Search Results Page 4 of 7

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, 60 Ni(n, γ),E=7-70 keV; measured σ (E,E γ). ⁵⁹, 61 Ni

deduced resonances.

Keynumber: 1974LU04

Reference: Nucl.Phys. A230, 83 (1974) **Authors:** M.Lubert, N.C.Francis, R.C.Block

Title: Correlations between Reduced Neutron and Radiative Widths in Neutron Resonances

Keyword abstract: NUCLEAR REACTIONS ⁶¹Ni, ⁵⁷Fe, ⁵³Cr(γ,n), ⁶⁰Ni, ⁵⁶Fe, ⁵²Cr(n,γ),E=thermal;

calculated σ. ⁶¹Ni, ⁵⁷Fe, ⁵³Cr resonances deduced γ-width.

Keynumber: 1974BRYX

Coden: THESIS DABBB 34B 6150

Keyword abstract: NUCLEAR REACTIONS ⁶⁰Ni,Fe(n, γ),E=thermal to low keV; measured σ (E,E γ).

Keynumber: 1974BR39

Reference: Nucl. Phys. A236, 45 (1974)

Authors: P.H.Brown, R.C.Block, J.R.Tatarczuk

Title: An Experimental Study of Neutron Radiative Capture in ⁶⁰Ni and Fe in the Thermal to Low keV

Range

Keyword abstract: NUCLEAR REACTIONS Fe, 60 Ni(n, γ),E=thermal-17 keV; measured σ (E,E γ).

⁶¹Ni, ⁵⁷Fe deduced transitions. ⁶¹Ni resonance deduced J. Enriched ⁶⁰Ni,natural Fe target.

Keynumber: 1974BEYD

Coden: CONF Petten(Neutron Capture Gamma Ray Spectroscopy),P53

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, 60 Ni(n, γ),E=7-70 keV; measured σ (E,E γ). ⁵⁹, 61 Ni

resonances deduced J, π, γ -width.

Keynumber: 1973LUZI

Coden: REPT COO-3058-39 P34 mf

Keyword abstract: NUCLEAR REACTIONS ⁵²Cr, ⁶⁰Ni(n,γ),E=thermal; calculated σ. ⁵³Cr, ⁶¹Ni

resonances deduced γ-width.

Keynumber: 1973BRZL

Coden: REPT COO-3058-34 P4 (CRL)

Keyword abstract: NUCLEAR REACTIONS ⁶⁰Ni(n,γ),E=70 MeV; measured Eγ,Iγ. ⁶¹Ni deduced

levels.

Keynumber: 1973BRWS

Coden: REPT USNDC-7 P203

Keyword abstract: NUCLEAR REACTIONS 60 Ni(n, γ); measured σ (E γ). 61 Ni levels deduced

transitions.

Keynumber: 1973BRWK

Coden: REPT COO-3058-39 P20 mf

Keyword abstract: NUCLEAR REACTIONS ⁶⁰Ni,Fe(n,γ); measured σ (En,E γ).

Kevnumber: 1972ST06

Reference: Nucl.Phys. A181, 250 (1972)

NSR Search Results Page 5 of 7

Authors: F.Stecher-Rasmussen, J.Kopecky, K.Abrahams, W.Ratynski

Title: Circular Polarization of Neutron Capture γ-Rays from Mn, Ni, Ga and W

Keyword abstract: NUCLEAR REACTIONS ⁵⁵Mn, ⁵⁸, ⁶⁰, ⁶²Ni, ⁶⁹, ⁷¹Ga, ¹⁸², ¹⁸³, ¹⁸⁶W(polarized n,γ),E=thermal; measured γ-CP. ⁵⁶Mn, ⁵⁹, ⁶¹, ⁶³Ni, ⁷⁰, ⁷²Ga, ¹⁸³, ¹⁸⁴, ¹⁸⁷W levels deduced J,π. Natural targets.

Keynumber: 1972KOZJ

Coden: CONF Budapest, Contributions, P234, J Kopecky, 10/13/72

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵²Cr, ⁵⁴Fe, ⁶⁰, ⁶²Ni(n, γ); measured γ -CP. ⁵¹, ⁵³Cr,

⁵⁵Fe, ⁶¹, ⁶³Ni levels deduced L(n),J.

Keynumber: 1972KO15

Reference: Nucl.Phys. A188, 535 (1972)

Authors: J.Kopecky, K.Abrahams, F.Stecher-Rasmussen

Title: Study of the (n,γ) Reaction in the Mass Region A = 50 - 63

Keyword abstract: NUCLEAR REACTIONS ⁵⁰Cr, ⁵²Cr, ⁵⁴Fe, ⁶⁰Ni, ⁶²Ni(polarized n,γ);E= thermal; measured Eγ.Ιγ.γ-CP: deduced O. ⁵¹Cr. ⁵³Cr. ⁵⁵Fe. ⁶¹Ni. ⁶³Ni levels deduced J. Enriched targets.

Keynumber: 1971STZR

Coden: REPT RPI-328-218,P33,9/10/71

Keyword abstract: NUCLEAR REACTIONS 50 , 52 , 53 , 54 Cr, 60 Ni,V(n, γ),E <200 keV; measured σ

(Eγ). ⁵¹, ⁵³, ⁵⁴, ⁵⁵Cr, ⁶¹Ni, ⁵²V deduced resonance parameters.

Keynumber: 1971ST07

Reference: Nucl.Phys. A163, 592 (1971)

Authors: R.G.Stieglitz, R.W.Hockenbury, R.C.Block

Title: keV Neutron Capture and Transmission Measurements on 50 Cr, 52 Cr, 53 Cr, 54 Cr, 60 Ni and V **Keyword abstract:** NUCLEAR REACTIONS V, 50 Cr, 52 Cr, 53 Cr, 54 Cr, 60 Ni(n,γ),En=0.1 to 200 keV,, (n,t),En=0.1 to 350 keV; measured capture yield, transmission versus En; deduced σ (nγ), σ (nT),n-width,level spacing, R'. 51 , 53 , 54 , 55 Cr, 61 Ni deduced resonances J,L,n-width,γ-width,Αγ. Enriched

targets.

Keynumber: 1971KOZI

Coden: JOUR NTNAA 37 396,J Kopecky

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵²Cr, ⁵⁴, ⁵⁷Fe, ⁶⁰, ⁶²Ni(n,γ),E=thermal; measured γ-

CP,Q,E γ ,I γ . ⁵¹, ⁵³Cr, ⁵⁵, ⁵⁸Fe, ⁶¹, ⁶³Ni deduced levels,J, π .

Keynumber: 1971GIZL **Reference:** ZfK-215 (1971)

Authors: P.Gippner, H.-U.Jager, W.Rudolph

Title: Verleich von (d,p)- und (n,γ)-Reaktionen an den Nukliden ⁵⁸Ni, ⁶⁰Ni, ⁶²Ni und ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁹, ⁶¹,

⁶³, ⁶⁵Ni deduced levels.

Keynumber: 1971BLZS

Coden: CONF CONF-710301(Knoxville), Vol2, P889, 11/2/71

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, V, ⁶⁰Ni(n,γ),E=resonance; analyzed

NSR Search Results Page 6 of 7

available data. ⁵¹, ⁵³, ⁵⁴, ⁵⁵Cr, ⁵²V, ⁶¹Ni deduced resonance parameters.

Keynumber: 1971BIZV

Coden: REPT ORNL-TM-3379, J R Bird,9/14/71

Keyword abstract: NUCLEAR REACTIONS F,Na,Mg,Al,S, ³⁵Cl,K,Ca, ⁴⁰, ⁴², ⁴⁴Ca,Ti,V,Fe, ⁵⁴,

 56 Fe,Ni, 58 , 60 Ni, 63 Cu,Zn(n, γ),E=10-100 keV; measured E γ ,I γ . 9 inx 12 in NaI detector.

Keynumber: 1970STZY

Coden: THESIS R G Stieglitz, RPI, DABBB 31B 6822

Keyword abstract: NUCLEAR REACTIONS V, 60 Ni, 50 , 52 , 53 , 54 Cr(n,X), (n, γ),E <300 keV;

measured transmission, $\sigma(E; E\gamma)$. ⁶¹Ni, ⁵¹, ⁵³, ⁵⁴, ⁵⁵Cr deduced resonance parameters.

Keynumber: 1970GAZQ

Reference: Thesis, Univ.Paris (1970); FRNC-TH-37 (1970)

Authors: J.-J.Gardien

Title: Spectroscopie de Paires et Anti-Compton sur les Isotopes 60 Ni $(n,\gamma)^{61}$ Ni et 62 Ni $(n,\gamma)^{63}$ Ni **Keyword abstract:** NUCLEAR REACTIONS 60 , 62 Ni (n,γ) ,E=thermal; measured E γ ,I γ . 61 , 63 Ni

deduced levels, J, π .

Keynumber: 1970GAZN

Coden: REPT FRNC-TH-37,10/30/72

Keyword abstract: NUCLEAR REACTIONS ⁶⁰, ⁶²Ni(n,γ),E=thermal; measured Eγ,Ιγ,γγ-coin. ⁶¹,

 63 Ni deduced levels,J, π .

Keynumber: 1970BLZS

Coden: REPT RPI-328-222, R C Block,10/13/71

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,V, ⁶⁰Ni(n,X), (n,γ),E=resonance;

measured $\sigma(E)$, $\sigma(E,E\gamma)$. 51, 53, 54, 55Cr deduced resonances, level-width.

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal;

measured average γ multiplicity.

Keynumber: 1969HO12

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n, γ), E=0.1-200 keV; measured σ (E). ²⁴Na, ²⁸Al, ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹Fe, ⁵⁹, ⁶¹, ⁶², ⁶³, ⁶⁵Ni deduced resonance

parameters.

Keynumber: 1968AL18

Reference: Nucl.Phys. A122, 220 (1968)

NSR Search Results Page 7 of 7

Authors: B.J.Allen, M.J.Kenny, R.J.Sparks

Title: keV Neutron Capture in Nickel

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶²Ni(n, γ), E=10-90 keV; measured σ(E; E γ). ⁵⁹, ⁶¹. ⁶³Ni deduced γ transition strengths. Ge(Li) detector, natural target.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.
