Introduction to Programming

Lab Session 5

(With material from the ETH Zurich course "Introduction to Programming")

September 20, 2016

News

News

▶ Representatives meeting (week 8).

In this Lab

- ► Some logic.
- Object creation.
- ► Loops (variant and invariant)
- Exercises

Some logic¹

 $^{^{1}\}mbox{detailed}$ description of the logics for this course will be taught in the Discrete Math course

Propositional Logic

- ► Constants: True, False
- ► Atomic formulae (propositional variables): *P*, *Q*, . . .
- Logical connectives: not, and, or, implies, =
- Formulae: ϕ , χ , ... are of the form:
 - ► True | False
 - **▶** |
 - ▶ not $\phi \mid (\phi \text{ and } \chi) \mid (\phi \text{ or } \chi) \mid (\phi \text{ implies } \chi) \mid (\phi = \chi)$

To facilitate the reading of a formulae, parentheses can be omitted whenever there is not ambiguity.

Propositional Logic

Truth assignment and truth table

Assigning a truth value to each propositional variable

Tautology

- ► *True* for all truth assignments
 - \triangleright (P or not P) ²
 - ▶ not (P and not P)
 - $((P \text{ and } Q) \text{ or } (\text{not } P \text{ or not } Q))^3$

Contradiction

- ► *False* for all truth assignments
 - ► (*P* and not *P*)

²can also be rewritten as *P* or not *P*

 $^{^{3}}$ can also be rewritten as (P and Q) or (not P or not Q)

Propositional Logic

Satisfiable

► *True* for at least one truth assignment.

Equivalent

• ϕ and χ are equivalent if they are satisfied under exactly the same truth assignments, or if $\phi=\chi$ is a tautology

► *P* or *Q*

P or Q satisfiable

► *P* or *Q* satisfiable (give an example)

- ► *P* or *Q* satisfiable (give an example)
- ► *P* and *Q*

- ► P or Q satisfiable (give an example)
- ► P and Q satisfiable

- ► *P* or *Q* satisfiable (give an example)
- ► P and Q satisfiable (give an example)

- ► P or Q satisfiable (give an example)
- ► P and Q satisfiable (give an example)
- ▶ P or not P

- P or Q satisfiable (give an example)
- ► *P* and *Q* satisfiable (give an example)
- ► P or not P tautology

- ► *P* or *Q* satisfiable (give an example)
- ► *P* and *Q* satisfiable (give an example)
- ► P or not P tautology
- \triangleright *P* and not *P*

- ► *P* or *Q* satisfiable (give an example)
- ► P and Q satisfiable (give an example)
- ► P or not P tautology
- ► *P* and not *P* contradiction

- ► P or Q satisfiable (give an example)
- ► P and Q satisfiable (give an example)
- ► P or not P tautology
- ▶ *P* and not *P* contradiction
- ► *Q* implies (*P* and not *P*)

- ► P or Q satisfiable (give an example)
- ► P and Q satisfiable (give an example)
- ► P or not P tautology
- ▶ *P* and not *P* contradiction
- ► *Q* implies (*P* and not *P*) satisfiable

- ► P or Q satisfiable (give an example)
- ► *P* and *Q* satisfiable (give an example)
- ► P or not P tautology
- ▶ P and not P contradiction
- ► *Q* implies (*P* and not *P*) satisfiable (give an example)

Do the following equivalences hold?

- ▶ (P implies Q) = (not P implies not Q)
- ▶ (P implies Q) = (not Q implies not P)

Do the following equivalences hold?

- ▶ (P implies Q) = (not P implies not Q)
- ▶ (P implies Q) = (not Q implies not P)

_ <i>P</i> _	Q	P implies Q	not P implies not Q	not Q implies not P
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

Do the following equivalences hold?

- ▶ (P implies Q) = (not P implies not Q)
- ▶ (P implies Q) = (not Q implies not P)

<u>P</u>	Q	P implies Q	not P implies not Q	not Q implies not P
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

▶ P implies Q = (not P implies not Q)

Do the following equivalences hold?

- ▶ (P implies Q) = (not P implies not Q)
- ▶ (P implies Q) = (not Q implies not P)

<u>P</u>	Q	P implies Q	not P implies not Q	not Q implies not P
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

▶ P implies Q = (not P implies not Q) False

Do the following equivalences hold?

- ▶ (P implies Q) = (not P implies not Q)
- ▶ (P implies Q) = (not Q implies not P)

P	Q	P implies Q	not P implies not Q	not Q implies not P
Т	Т	Т	Т	T
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

- ▶ P implies Q = (not P implies not Q) False
- ▶ P implies Q = (not Q implies not P)

Do the following equivalences hold?

- ▶ (P implies Q) = (not P implies not Q)
- ▶ (P implies Q) = (not Q implies not P)

<u>P</u>	Q	P implies Q	not P implies not Q	not Q implies not P
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

- ▶ P implies Q = (not P implies not Q) False
- ▶ P implies Q = (not Q implies not P) True

Useful equivalence

De Morgan laws

- ▶ not (P or Q) = not P and not Q
- ▶ not (P and Q) = not P or not Q

Implications

- ▶ P implies Q = not P or Q
- ▶ P implies Q = not Q implies not P

Equality on Boolean expressions

▶
$$(P = Q) = (P \text{ implies } Q) \text{ and } (Q \text{ implies } P)$$

Predicate Logic

- Domain of discourse: D
- ► Variables: x : D
- ▶ Functions: $f: D^n \to D$
- ▶ Predicates: $P: D^n \rightarrow \{True, False\}$
- Logical connectives: not, and, or, implies, =
- Formulae: ϕ , χ , ... are of the form:
 - $\triangleright P(x, \dots)$
 - ▶ not $\phi \mid (\phi \text{ and } \chi) \mid (\phi \text{ or } \chi) \mid (\phi \text{ implies } \chi) \mid (\phi = \chi)$
 - $\rightarrow \forall x | \phi$
 - $\rightarrow \exists x | \phi$

To facilitate the reading of a formulae, parentheses can be omitted whenever there is not ambiguity.

Existential and universal quantification

There exists a human whose name is Bill Gates

$$\exists h : Human \mid h.name = "BillGates"$$

All persons have a name

$$\forall p : Person \mid p.name / = Void$$

Some people are students

$$\exists p : Person \mid p.is_student$$

The age of any person is at least 0

$$\forall p : Person \mid p.age >= 0$$

Nobody likes Rivella

$$\forall p : Person \mid not \ p.likes(Rivella)$$

or

$$not \exists p : Person \mid p.likes(Rivella)$$

Semi-strict operations

Semi-strict operators (and then, or else)

▶ a and then b has same value as a and b if a and b are defined, and has value False whenever a has value False.

a or else b
 has same value as a or b if a and b are defined, and has value
 True whenever a has value True.

list = **Void or else** *list.is_empty*

Creation procedures

- ► Instruction **create** *x* will initialise all the fields of the new object attached to *x* with default values
- ▶ What if we want some specific initialisation? E.g., to make object consistent with its class invariant?

Creation procedures

- ► Instruction **create** *x* will initialise all the fields of the new object attached to *x* with default values
- ▶ What if we want some specific initialisation? E.g., to make object consistent with its class invariant?

```
Class CUSTOMER

...
id: STRING
invariant
id: /= Void
```

Creation procedures

- ▶ Instruction **create** *x* will initialise all the fields of the new object attached to *x* with default values
- ▶ What if we want some specific initialisation? E.g., to make object consistent with its class invariant?

```
Class CUSTOMER

...
id: STRING
invariant
id /= Void
```

Use creation procedure: **create** a_customer.set_id ("13400002")


```
class CUSTOMER
create set_id
feature
    id · STRING
            -- Unique identifier for Current.
    set_id (a_id : STRING)
            -- Associate this customer with 'a_id'.
       require
           id_exists : a_id /= Void
       do
           id := a id
        ensure
           id\_set: id = a\_id
        end
invariant
    id_{exists}: id /= Void
end
```

end


```
class CUSTOMER
create set_id
                             List one or more creation procedures
feature
   id: STRING
            -- Unique identifier for Current.
                                       May be used as a regular command and
   set_id (a_id : STRING)
                                           as a creation procedure.
            -- Associate this customer with 'a id'
       require
           id_exists : a_id /= Void
       do
           id := a_id
       ensure
           id set : id = a id
       end
invariant
   id_exists : id /= Void
                                          Is established by set_id
```

end


```
class CUSTOMER
create set_id
                             List one or more creation procedures
feature
   id: STRING
            -- Unique identifier for Current.
                                       May be used as a regular command and
   set_id (a_id : STRING)
                                           as a creation procedure.
            -- Associate this customer with 'a id'
       require
           id_exists : a_id /= Void
       do
           id := a_id
       ensure
           id set : id = a id
       end
invariant
   id_exists : id /= Void
                                          Is established by set_id
```

end


```
class CUSTOMER
create set_id
                             List one or more creation procedures
feature
   id: STRING
            -- Unique identifier for Current.
                                       May be used as a regular command and
   set_id (a_id : STRING)←
                                           as a creation procedure.
            -- Associate this customer with 'a id'
       require
           id_exists : a_id /= Void
       do
           id := a_id
       ensure
           id set : id = a id
       end
invariant
   id_exists : id /= Void
                                          Is established by set_id
```



```
class CUSTOMER
create set_id
                              List one or more creation procedures
feature
    id: STRING
            -- Unique identifier for Current.
                                        May be used as a regular command and
    set_id (a_id : STRING)←
                                            as a creation procedure.
            -- Associate this customer with 'a id'
        require
            id_exists : a_id /= Void
        do
            id := a_id
        ensure
            id set : id = a id
        end
invariant
    id_exists : id /= Void<sup>←</sup>
                                           Is established by set_id
end
```



```
from
initialisation
until
exit_condition
loop
body
end
```



```
from
initialisation Compound.
until
exit_condition
loop
body
end
```



```
from
initialisation
until
exit_condition
loop
body
end
Compound.
Boolean Expression.
```



```
from
initialisation
until
Expression.

exit_condition

loop
body
end

Compound.

Compound.

Compound.
```



```
from
initialisation
invariant
inv
until
exit_condition
loop
body
variant
var
end
```



```
from
initialisation
invariant
inv
until
exit_condition
loop
body
variant
var
end
```



```
from
initialisation
invariant
inv
until
exit_condition
loop
body
variant
var
end
Compound.

(optional).

(optional).
```



```
from
initialisation
invariant
until
exit_condition
loop
body
variant
var
end
Compound.
Goptional
Boolean Expression
Expression.
```



```
from
                                        Compound.
    initialisation 4
invariant
                                        Boolean Expression
    inv
                                        (optional).
until
                                        Boolean Expression.
    exit_condition 
loop
                                        Compound.
   body
variant
    var
end
```


from	
initialisation←	Compound.
invariant	Boolean Expression
inv until	(optional).
exit_condition (Boolean Expression
body body	Compound.
variant	Integer Expression
var	(optional).
end	(optional).

Loop invariant (do not confuse with class invariant)

Loop invariant (do not confuse with class invariant)

holds before and after the execution of loop body;

Loop invariant (do not confuse with class invariant)

- holds before and after the execution of loop body;
- ightharpoonup captures how the loop iteratively solves the problem: e.g. "to calculate the sum of all n elements in a list, on each iteration i (i=1..n) the sum of first i elements is obtained".

Loop invariant (do not confuse with class invariant)

- holds before and after the execution of loop body;
- ightharpoonup captures how the loop iteratively solves the problem: e.g. "to calculate the sum of all n elements in a list, on each iteration i (i=1..n) the sum of first i elements is obtained".

Loop variant

Loop invariant (do not confuse with class invariant)

- holds before and after the execution of loop body;
- ▶ captures how the loop iteratively solves the problem: e.g. "to calculate the sum of all n elements in a list, on each iteration i (i = 1..n) the sum of first i elements is obtained".

Loop variant

 integer expression that is non-negative after execution of from clause and after each execution of loop clause and strictly decreases with each iteration;

Loop invariant (do not confuse with class invariant)

- holds before and after the execution of loop body;
- riangleright captures how the loop iteratively solves the problem: e.g. "to calculate the sum of all n elements in a list, on each iteration i (i = 1..n) the sum of first i elements is obtained".

Loop variant

- integer expression that is non-negative after execution of from clause and after each execution of loop clause and strictly decreases with each iteration;
- a loop with a correct variant can not be infinite

Loop invariant (do not confuse with class invariant)

- holds before and after the execution of loop body;
- riangleright captures how the loop iteratively solves the problem: e.g. "to calculate the sum of all n elements in a list, on each iteration i (i = 1..n) the sum of first i elements is obtained".

Loop variant

- integer expression that is non-negative after execution of from clause and after each execution of loop clause and strictly decreases with each iteration;
- a loop with a correct variant can not be infinite (why?)


```
sum (n: INTEGER): INTEGER
            -- Compute the sum of the numbers from 0 to 'n'
   require 0 <= n
   local i: INTEGER
   do
       from
           Result := 0
           i := 1
       invariant
           777
           777
       until
           i > n
       loop
           Result := Result + i
           i := i + 1
       variant
           777
       end
   ensure Result = (n * (n + 1)) // 2
   end
```



```
sum (n: INTEGER): INTEGER
            -- Compute the sum of the numbers from 0 to 'n'
   require 0 <= n
   local i: INTEGER
   do
       from
           Result := 0
           i := 1
       invariant
           1 <= i \text{ and } i <= n+1
           777
       until
           i > n
       loop
           Result := Result + i
           i := i + 1
       variant
           777
       end
   ensure Result = (n * (n + 1)) // 2
   end
```



```
sum (n: INTEGER): INTEGER
            -- Compute the sum of the numbers from 0 to 'n'
   require 0 \le n
   local i: INTEGER
   do
       from
           Result := 0
           i := 1
       invariant
           1 <= i \text{ and } i <= n+1
           Result = (i * (i - 1)) // 2
       until
           i > n
       loop
           Result := Result + i
           i := i + 1
       variant
            777
       end
   ensure Result = (n * (n + 1)) // 2
   end
```



```
sum (n: INTEGER): INTEGER
            -- Compute the sum of the numbers from 0 to 'n'
   require 0 \le n
   local i: INTEGER
   do
       from
           Result := 0
           i := 1
       invariant
           1 <= i \text{ and } i <= n+1
           Result = (i * (i - 1)) // 2
       until
           i > n
       loop
           Result := Result + i
           i := i + 1
       variant
           n-i+1
       end
   ensure Result = (n * (n + 1)) // 2
   end
```

What does this function do? (hands-on)


```
??? (n: INTEGER): INTEGER
           -- ?????????
   require n >= 0
   local i: INTEGER
   do
       from
          Result := 1
          i := 2
       until
          i > n
       loop
          Result := Result * i
          i := i + 1
       end
   end
```

What does this function do? (hands-on)


```
??? (n: INTEGER): INTEGER
           -- ????????
   require n >= 0
   local i: INTEGER
   do
      from
          Result := 1
          i := 2
      until
          i > n
      loop
          Result := Result * i
          i := i + 1
       end
   end
It calculates the factorial number of n.
```

Invariant and variant (hands-on)

What are the invariant and variant of the factorial loop?

```
\begin{aligned} & \text{from} \\ & & \text{Result} := 1 \\ & i := 2 \\ & \text{invariant} \\ & ??? \\ & \text{until} \\ & i > n \\ & \text{loop} \\ & & \text{Result} := \text{Result} * i \\ & i := i + 1 \\ & \text{variant} \\ & ??? \\ & \text{end} \end{aligned}
```

Invariant and variant (hands-on)

What are the invariant and variant of the factorial loop?

```
\begin{array}{l} \textbf{from} & \textbf{Result} := 1 \\ & i := 2 \\ \textbf{invariant} & \textbf{Result} = \textit{factorial (i-1)} \\ \textbf{until} & i > n \\ \textbf{loop} & \textbf{Result} := \textbf{Result *} i \\ & i := i+1 \\ \textbf{variant} & ??? \\ \textbf{end} & \end{array}
```

Invariant and variant (hands-on)

What are the invariant and variant of the factorial loop?

```
\begin{aligned} & \textbf{from} & & \textbf{Result} := 1 \\ & i := 2 \\ & \textbf{invariant} & & \textbf{Result} = factorial \ (i-1) \\ & \textbf{until} & & i > n \\ & \textbf{loop} & & \textbf{Result} := \textbf{Result} \ *i \\ & i := i+1 \\ & \textbf{variant} & & n-i+2 \\ & \textbf{end} & \end{aligned}
```

Writing loops (hands-on)

Implement a function that calculates Fibonacci numbers, using a loop

18

Writing loops (solution)


```
do
   if n <= 1 then
       Result := n
   else
       from
           a := 0
           b := 1
           i := 1
       invariant
           a = fibonacci (i - 1)
           b = fibonacci(i)
       until i = n loop
           Result := a + b
           a := b
           b := Result
           i := i + 1
       variant
           n - i
       end
   end
end
```


Exercises can be found in: https://drive.google.com/open?id=OB1GMHm59JFjqMlBrWUVBUmg3YjA.

Thank you!