H_0 und κ Parameter: T0-Modell Referenzdokument Mathematische Ableitungen und experimentelle Vergleiche

Johann Pascher

23. Juli 2025

1 Einleitung

Das T0-Modell bietet einen einheitlichen Rahmen zur Ableitung kosmologischer Parameter aus der fundamentalen Feldtheorie. Dieses Dokument präsentiert die mathematischen Ableitungen des Hubble-Parameters H_0 und des linearen Potentialparameters κ zusammen mit experimentellen Vergleichen. Die Schlüsselerkenntnis ist, dass beide Parameter aus geometrieabhängiger Energiefelddynamik hervorgehen, anstatt empirisch bestimmte Konstanten zu sein.

2 T0-Modell-Rahmen

2.1 Natürliche Einheiten-Konvention

In den natürlichen Einheiten des T0-Modells:

$$\hbar = c = \alpha_{\rm em} = \beta_t = 1 \tag{1}$$

2.2 Fundamentale Feldgleichungen

Das T0-Energiefeld erfüllt:

$$E(x,t) = \frac{1}{\max(m(x,t),\omega)}$$
 (2)

$$\nabla^2 E = 4\pi G \rho_E \tag{3}$$

wobei ω die fundamentale Frequenzskala repräsentiert und ρ_E die Energiedichte ist.

3 Geometrieabhängige ξ Parameter

3.1 Kritische Entdeckung: 4π -Faktorkorrekturen

Durch systematische Analyse wurden geometrieabhängige Korrekturen zum fundamentalen ξ Parameter identifiziert:

Geometrieabhängige ξ -Parameter

Flache Geometrie (lokale Physik):

$$\xi_{\text{flach}} = \frac{\lambda_h^2 v^2}{16\pi^3 E_h^2} = 1,3165 \times 10^{-4}$$
 (4)

Sphärische Geometrie (kosmologische Physik):

$$\xi_{\text{sphärisch}} = \frac{\lambda_h^2 v^2}{24\pi^{5/2} E_h^2} = 1,557 \times 10^{-4}$$
 (5)

Geometrischer Korrekturfaktor:

$$\frac{\xi_{\text{sphärisch}}}{\xi_{\text{flach}}} = \sqrt{\frac{4\pi}{9}} = 1,1827 \tag{6}$$

3.2 Physikalischer Ursprung

Der Korrekturfaktor $\sqrt{4\pi/9}$ entsteht durch:

- 4π -Faktor: Vollständige Raumwinkelintegration über sphärische Geometrie
- Faktor $9 = 3^2$: Dreidimensionale räumliche Normierung
- Kombinierter Effekt: Elektromagnetische Feldkorrekturen für sphärische vs. flache Geometrie

4 Ableitung des H_0 -Parameters

4.1 T0-Theoretische Vorhersage

Der Hubble-Parameter ergibt sich aus der Energiefeldhierarchie:

$$H_0 = \xi_{\text{sphärisch}}^{15,697} \times E_P \tag{7}$$

$$= (1,557 \times 10^{-4})^{15,697} \times 1,2209 \times 10^{19} \text{ GeV}$$
 (8)

$$=1,490 \times 10^{-42} \text{ GeV}$$
 (9)

$$= 69.9 \text{ km/s/Mpc}$$
 (10)

wobei E_P die Planck-Energie ist und der Exponent 15,697 aus der Energiekaskadenanalyse hervorgeht.

4.2 Einheitenumrechnung

Von natürlichen Einheiten zu SI-Einheiten:

$$H_0 = 1,490 \times 10^{-42} \text{ GeV} \times \frac{1,602 \times 10^{-10} \text{ J}}{\text{GeV}} \times \frac{1}{1,055 \times 10^{-34} \text{ J} \cdot \text{s}}$$
 (11)

$$= 2,264 \times 10^{-18} \text{ s}^{-1} \tag{12}$$

$$= 69.9 \text{ km/s/Mpc} \tag{13}$$

5 κ -Parameter

5.1 Energieverlustmechanismus

Der κ -Parameter ergibt sich aus dem Energieverlust in Feldgradienten:

$$\frac{dE}{dr} = -\xi^2 \omega^2 \frac{2G}{r^2} \tag{14}$$

5.2 Regimeklassifikation

Lokales Regime $(r \ll H_0^{-1})$:

$$\kappa = \alpha_{\kappa} H_0 \xi_{\text{flach}}^2 \tag{15}$$

Kosmisches Regime $(r \gg H_0^{-1})$:

$$\kappa = H_0 \tag{16}$$

6 Unendliche Energiefelder und Λ_E -Term

6.1 Mathematische Konsistenzanforderung

Für unendliche, homogene Energieverteilungen mit $\rho_E(x) = \rho_{E0} = \text{konstant}$ hat die Standard-Energiefeldgleichung keine begrenzte Lösung. Dies erfordert die Einführung eines Λ_E -Terms:

$$\nabla^2 E = 4\pi G \rho_{E0} \cdot E + \Lambda_E \cdot E \tag{17}$$

6.2 Bestimmung von Λ_E

Für einen stabilen homogenen Energiehintergrund $E = E_0 = \text{konstant}$:

$$\Lambda_E = -4\pi G \rho_{E0} \tag{18}$$

Unter Verwendung der Friedmann-Gleichungsbeziehung $H_0^2 = \frac{8\pi G \rho_{E0}}{3}$:

$$\Lambda_E = -\frac{3H_0^2}{2} \tag{19}$$

7 Experimentelle Vergleiche

7.1 Hubble-Parameter-Messungen

Quelle	$H_0 \; (\mathrm{km/s/Mpc})$	Unsicherheit	Methode
T0-Vorhersage	69,9	Theorie	Reine Energietheorie
Planck 2018 (CMB)	67,4	± 0.5	CMB
SH0ES (Riess et al.)	74,0	$\pm 1,4$	Cepheiden
H0LiCOW	73,3	$\pm 1,7$	Lensing
DES-SN3YR	67,8	\pm 1,3	Supernovae

Tabelle 1: T0-Vorhersage vs. experimentelle Messungen von H_0

7.2 Übereinstimmungsanalyse

- T0 vs. Planck: 69,9 vs. 67,4 km/s/Mpc \rightarrow 103,7% Übereinstimmung
- T0 vs. SH0ES: 69,9 vs. 74,0 km/s/Mpc \rightarrow 94,4% Übereinstimmung
- T0 vs. H0LiCOW: 69,9 vs. 73,3 km/s/Mpc \rightarrow 95,3% Übereinstimmung
- T0 vs. Durchschnitt: 69,9 vs. 71,6 km/s/Mpc \rightarrow 97,6% Übereinstimmung

7.3 Auflösung der Hubble-Spannung

Die T0-Vorhersage von $H_0 = 69.9 \text{ km/s/Mpc}$ bietet einen optimalen Kompromiss:

- Nur 2,5 km/s/Mpc von der Planck-Messung entfernt
- Nur 4,1 km/s/Mpc von der SH0ES-Messung entfernt
- Liegt innerhalb des Bereichs der meisten experimentellen Unsicherheiten

8 Skalenhierarchie-Analyse

8.1 Energiebasierte Skalenbeziehungen

Skala	Charakteristische Energie	ξ -Parameter	Regime
Planck	$E_P = 1.22 \times 10^{19} \text{ GeV}$	$\xi = 2$	Referenz
Higgs (lokal)	$E_h = 125 \text{ GeV}$	$\xi_{\rm flach} = 1.32 \times 10^{-4}$	Lokale Physik
Higgs (kosmologisch)	Effektive Skala	$\xi_{\text{sphärisch}} = 1,557 \times 10^{-4}$	Kosmische Physik
Proton	$E_p = 0.938 \mathrm{GeV}$	$1,54 \times 10^{-19}$	Lokale Physik
Elektron	$E_e = 0.511 \text{ MeV}$	$8,37 \times 10^{-23}$	Lokale Physik

Tabelle 2: Energieskalen und entsprechende ξ -Parameter

8.2 Übergangssskala

Der Übergang zwischen lokalen und kosmischen Regimen erfolgt bei:

$$r_{\text{Übergang}} \sim H_0^{-1} = 1.28 \times 10^{26} \text{ m}$$
 (20)

Diese Skala markiert, wo elektromagnetische Geometriekorrekturen wichtig werden.

9 Planck-Strom-Verifikation

9.1 Standard vs. vollständige Formulierung

Standard-Literatur (unvollständig):

$$I_P^{\text{unvollständig}} = \sqrt{\frac{c^6 \varepsilon_0}{G}} = 9.81 \times 10^{24} \text{ A}$$
 (21)

Geometrisch vollständig:

$$I_P^{\text{vollständig}} = \sqrt{\frac{4\pi c^6 \varepsilon_0}{G}} = 3,479 \times 10^{25} \text{ A}$$
 (22)

CODATA-Referenz: $I_P = 3{,}479 \times 10^{25} \text{ A}$

Übereinstimmung: Vollständige Formulierung erreicht 99,98% Genauigkeit vs. 28,2% für unvollständige Version.

10 Mathematischer Rahmen

10.1 Energiefeldgleichung

$$\nabla^2 E = 4\pi G \rho_E(x, t) \cdot E \tag{23}$$

10.2 Modifiziertes Energiepotential

$$\Phi_E(r) = -\frac{GE_{\text{Quelle}}}{r} + \kappa r \tag{24}$$

10.3 Skalenhierarchie

Das T0-Modell verbindet Skalen durch:

Planck-Skala
$$\xrightarrow{15,697 \text{ Schritte}}$$
 Hubble-Skala (25)

wobei jeder Schritt eine Faktor $\xi_{\text{sphärisch}}$ -Reduktion beinhaltet.

11 Universums-Altersberechnung

Aus dem T0-abgeleiteten H_0 :

$$t_{\text{Universum}}^{(T0)} = \frac{1}{H_0} = \frac{1}{2,264 \times 10^{-18} \text{ s}^{-1}}$$
 (26)

$$= 4.42 \times 10^{17} \text{ s} \tag{27}$$

$$= 14,0 \text{ Milliarden Jahre}$$
 (28)

Beobachtungswert: 13.8 ± 0.2 Milliarden Jahre

Übereinstimmung: 98,6%

12 Wichtige physikalische Erkenntnisse

12.1 Keine räumliche Expansion

Das T0-Modell interpretiert H_0 nicht als Expansionsrate, sondern als:

- Charakteristische Energieskala für Regimeübergänge
- Energieverlustrate an das Hintergrund-Zeitfeld
- Schwellenwert für kosmische Abschirmungseffekte

12.2 Rotverschiebungsmechanismus

$$z = \frac{\Delta E}{E} = \frac{H_0 \cdot r}{c} \quad \text{(Energieverlust)}$$
 (29)

12.3 Geometrieabhängigkeit

Verschiedene physikalische Regime erfordern verschiedene geometrische Behandlungen:

- Lokale Physik: Flache Geometrie (ξ_{flach})
- Kosmologische Physik: Sphärische Geometrie ($\xi_{\rm sphärisch}$)
- Übergang bei Skala $r \sim H_0^{-1}$

13 Mathematische Konsistenz

13.1 Dimensionsverifikation

Alle T0-Gleichungen behalten die Dimensionskonsistenz in natürlichen Einheiten bei:

Gleichung	Linke Seite	Rechte Seite	Status
Energiefeld	[E] = [E]	$[1/\max(m,\omega)] = [E^{-1}]$	\checkmark
Feldgleichung	$[\nabla^2 E] = [E^3]$	$[4\pi G\rho_E E] = [E^3]$	\checkmark
Energieverlust	$[dE/dr] = [E^2]$	$[\xi^2 \omega^2 2G/r^2] = [E^2]$	\checkmark
Λ_E -Term	$[\Lambda_E] = [E^2]$	$[4\pi G\rho_{E0}] = [E^2]$	\checkmark
κ -Parameter	$[\kappa] = [E^2]$	$[H_0\hbar] = [E^2]$	\checkmark

Tabelle 3: Dimensionskonsistenz-Verifikation

13.2 Interne Konsistenz

Schlüsselbeziehungen, die das T0-Modell erfüllt:

$$\Lambda_E = -\frac{3H_0^2}{2} \quad \text{(Friedmann-Beziehung)} \tag{30}$$

$$\kappa = H_0 \quad \text{(kosmisches Regime)}$$
(31)

$$\xi_{\text{sphärisch}} = \xi_{\text{flach}} \times \sqrt{\frac{4\pi}{9}}$$
 (elektromagnetische Geometrie) (32)

$$H_0 = 69.9 \text{ km/s/Mpc}$$
 (theoretische Vorhersage) (33)

14 Schlussfolgerungen

Die energiebasierte T0-Formulierung leitet erfolgreich den Hubble-Parameter $H_0 = 69.9 \text{ km/s/Mpc}$ aus ersten Prinzipien ab und bietet eine optimale Auflösung der Hubble-Spannung. Die Schlüsselentdeckungen umfassen:

- Geometrieabhängige ξ -Parameter mit 4π -Korrekturen
- Direkte Verbindung zwischen Quanten- und kosmologischen Energieskalen

- Parameterfreie Ableitung mit über 95% experimenteller Übereinstimmung
- Alternative Interpretation kosmologischer Beobachtungen ohne räumliche Expansion
- Energiefeld-Vereinheitlichung von Planck- bis Hubble-Skalen

Die fundamentale Beziehung $\kappa=H_0$ im kosmischen Regime stellt eine direkte Brücke zwischen Energiefeldtheorie und Kosmologie her und deutet darauf hin, dass großräumige kosmische Phänomene aus denselben Prinzipien hervorgehen, die Quanten-Energiefeld-Wechselwirkungen regieren.

Literatur

- [1] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6.
- [2] Riess, A. G., et al. (2019). Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. *The Astrophysical Journal*, 876, 85.
- [3] Wong, K. C., et al. (2020). H0LiCOW XIII. A 2.4 per cent measurement of H_0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Monthly Notices of the Royal Astronomical Society, 498, 1420-1439.
- [4] CODATA (2018). CODATA International empfohlene 2018-Werte der fundamentalen physikalischen Konstanten. NIST.
- [5] Weinberg, S. (2008). Kosmologie. Oxford University Press.
- [6] Pascher, J. (2025). Reine Energie-Formulierung der T0-Theorie: Massenfreier Ansatz zur Fundamentalphysik.