POLARIZING PLATE AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME

Publication number: JP2002040255
Publication date: 2002-02-06

Inventor: HAMAMOTO EIJI:

HAMAMOTO EIJI; MIHARA HISAFUMI; KUSUMOTO SEIICHI; SAIKI YUJI;

SUGINO YOICHIRO; YOSHIKAWA SENRI

Applicant: NITTO DENKO CORP

Classification:

- international: G02B5/30; G02F1/1335; G09F9/00; G02B5/30; G02F1/13; G09F9/00;

(IPC1-7): G02B5/30; G02F1/1335; G09F9/00

- european:

Application number: JP20000231876 20000731 Priority number(s): JP20000231876 20000731

Report a data error here

Abstract of JP2002040255

PROBLEM TO BE SOLVED: To provide a polarizing plate excellent in optical characteristics and a liquid crystal display device using the same. SOLUTION: The polarizing plate is constituted by sticking a protective film a polarizer formed by subjecting a synthetic resin film to dyeing, crosslinking, stretching and drying. When width of the synthetic resin film at the time of being dipped into a first bath is A, stretching magnification of the film at that time from an original film is B, width of the polarizer at the time of sticking the protective film thereto is C and stretching magnification of the film at that time from the original film is D, the polarizing plate satisfies a relation described below. (A/B)/(C/D)>11.

Data supplied from the esp@cenet database - Worldwide

Partial Translation of JP 2002-40255 A

Publication Date: February 6, 2002

Application No.: 2000-231876
Application Date: July 31, 2000

Applicant: NITTO DENKO CORPORATION

Title of the Invention: POLARIZING PLATE AND LIQUID CRYSTAL

DISPLAY USING THE SAME

Translation of Claims

What is claimed is:

1. A polarizing plate comprising:

a polarizer formed by dyeing, crosslinking, stretching and drying a synthetic resin film; and

a protective film bonded to the polarizer, wherein a relationship below is satisfied:

where A is a width of the synthetic resin film and B is a stretch ratio of the synthetic resin film with respect to a raw film at a time of immersing the synthetic resin film in an initial bath, and C is a width of the polarizer and D is a stretch ratio of the synthetic resin film with respect to the raw film at a time of bonding the protective film to the polarizer.

- 2. The polarizing plate according to claim 1, wherein the relationship is (A/B) / (C/D) > 12.
- 3. The polarizing plate according to claim 1 or 2, which has a single transmittance of 42% to 45% and a polarization degree of 99% or more.
- 4. The polarizing plate according to any one of claims 1 to 3, wherein the synthetic resin film is a polyvinyl alcohol film and the protective film is a

triacetyl cellulose film.

- 5. A polarizing plate comprising the polarizing plate according to any one of claims 1 to 4 and a reflection plate or a semitransparent reflection plate bonded to the polarizing plate.
- 6. A polarizing plate comprising the polarizing plate according to any one of claims 1 to 4 and a retardation plate or a λ plate bonded to the polarizing plate.
- 7. A polarizing plate comprising the polarizing plate according to any one of claims 1 to 4 and a viewing angle compensating film bonded to the polarizing plate.
- 8. A polarizing plate comprising the polarizing plate according to any one of claims 1 to 4 and a brightness enhancement film bonded to the polarizing plate.
- 9. A liquid crystal display using the polarizing plate according to any one of claims 1 to 8 for at least one side of a liquid crystal cell.

書誌

(19)【発行国】日本国特許庁(JP) (12)【公報種別】公開特許公報(A) (11)【公開番号】特開2002-40255(P2002-40255A) (43)【公開日】平成14年2月6日(2002.2.6) (54)【発明の名称】偏光板及びそれを用いた液晶表示装置 (51)【国際特許分類第7版】 G02B 5/30 GO2F 1/1335 510 G09F 9/00 313 [FI] GO2B 5/30 GO2F 1/1335 510 G09F 9/00 313 【審査請求】未請求 【請求項の数】9 【出願形態】OL 【全頁数】7 (21)【出願番号】特願2000-231876(P2000-231876) (22)【出願日】平成12年7月31日(2000.7.31) (71)【出願人】 【識別番号】000003964 【氏名又は名称】日東電工株式会社 【住所又は居所】大阪府茨木市下穂積1丁目1番2号 (72)【発明者】 【氏名】濱本 英二 【住所又は居所】大阪府茨木市下穂積1丁目1番2号 日東電工株式会社内 (72)【発明者】 【氏名】三原 尚史 【住所又は居所】大阪府茨木市下穂積1丁目1番2号 日東電工株式会社内 (72)【発明者】 【氏名】楠本 誠一 【住所又は居所】大阪府茨木市下穂積1丁目1番2号 日東電工株式会社内 (72)【発明者】 【氏名】済木 雄二 【住所又は居所】大阪府茨木市下穂積1丁目1番2号 日東電工株式会社内 (72)【発明者】 【氏名】杉野 洋一郎 【住所又は居所】大阪府茨木市下穂積1丁目1番2号 日東電工株式会社内 [72]【発明者】 【氏名】吉川 せんり 【住所又は居所】大阪府茨木市下穂積1丁目1番2号 日東電工株式会社内 [74]【代理人】 【識別番号】100095555 弁理士】

【氏名又は名称】池内 寛幸 (外1名)

【テーマコード(参考)】

2H049

2H091

5G435

【Fターム(参考)】

2H049 BA02 BA03 BA04 BA06 BB03 BB33 BB43 BB51 BB63 BB65 BC03 BC14 BC22 2H091 FA08X FA08Z FA11X FA11Z FA14Z FA16Z FB02 FC05 FC07 FD15 GA16 LA16

5G435 AA00 BB12 BB15 FF05 HH02 KK05

要約

(57)【要約】

【課題】光学特性に優れた偏光板及びそれを用いた液晶表示装置を提供する。

【解決手段】合成樹脂フィルムを染色、架橋、延伸、乾燥して形成した偏光子と、保護フィルムとを貼り合わせて構成した偏光板であって、最初の浴に入れる時の前記合成樹脂フィルムの幅をA、その時の原反からの延伸倍率をB、前記保護フィルムを貼り合わせる時の偏光子の幅をC、その時の原反からの延伸倍率をDとした場合、以下の関係を有する偏光板とする。

(A/B)/(C/D) > 11

請求の範囲

【特許請求の範囲】

【請求項1】合成樹脂フィルムを染色、架橋、延伸、乾燥して形成した偏光子と、保護フィルムとを貼り合わせて構成した偏光板であって、最初の浴に入れる時の前記合成樹脂フィルムの幅をA、その時の原反からの延伸倍率をB、前記保護フィルムを貼り合わせる時の偏光子の幅をC、その時の原反からの延伸倍率をDとした場合、以下の関係を有することを特徴とする偏光板。

(A/B)/(C/D)>11【請求項2】前記関係が、(A/B)/(C/D)>12である請求項1に記載の偏光板。

【請求項3】単体透過率が42%~45%であり、偏光度が99%以上である請求項1又は2に記載の偏光 板。

【請求項4】前記合成樹脂フィルムがポリビニルアルコールフィルムであり、前記保護フィルムがトリアセチルセルロースフィルムである請求項1~3のいずれかに記載の偏光板。

【請求項5】請求項1~4のいずれかに記載の偏光板に、反射板又は半透過反射板を貼り合わせた偏光板。

【請求項6】請求項1~4のいずれかに記載の偏光板に、位相差板又はλ板を貼り合わせた偏光板。

【請求項7】請求項1~4のいずれかに記載の偏光板に、視角補償フィルムを貼り合わせた偏光板。

【請求項8】請求項1~4のいずれかに記載の偏光板に、輝度向上フィルムを貼り合わせた偏光板。

【請求項9】液晶セルの少なくとも片側に、請求項1~8のいずれかに記載の偏光板を使用した液晶表示装置。

詳細な説明

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶表示装置(以下、LCDと略称することがある。)に使用される偏光のスプイスを用いた液晶表示装置に関する。

[0002]

【従来の技術】LCDは、パソコン等に使用されており、近年、急激にその需要が増加している。LCDの用途 は広がってきており、近年はモニター用途にも使用されるようになってきている。

、OOO3】LCDに使用する偏光板は、例えば、ポリビニルアルコール(以下、PVAと略称することがある。)

フィルムを、二色性を有するヨウ素又は二色性染料で染色する染色工程、ホウ酸やホウ砂等で架橋する 架橋工程、及び一軸延伸する延伸工程の後に乾燥し、トリアセチルセルロース(以下、TACと略称すること がある。)フィルム等の保護層と貼り合わせて製造されている。なお、染色、架橋、延伸の各工程は、別々 に行なう必要はなく同時に行なってもよく、また、各工程の順番も任意でよい。 【0004】

【発明が解決しようとする課題】ところで近年、LCDはモニター用途等の高性能機器に用いられるに伴い、 LCDに使用される偏光板自体も高性能のものが求められている。

【0005】しかし、従来の偏光板は必ずしも上記要求に十分に応え得るものではないという問題があった。 【0006】そこで、本発明は、前記従来の問題を解決するため、より光学特性に優れた偏光板及びそれを 用いた液晶表示装置を提供することを目的とする。 【0007】

【課題を解決するための手段】前記目的を達成するため本発明の偏光板は、合成樹脂フィルムを染色、架橋、延伸、乾燥して形成した偏光子と、保護フィルムとを貼り合わせて構成した偏光板であって、最初の浴に入れる時の前記合成樹脂フィルムの幅をA、その時の原反からの延伸倍率をB、前記保護フィルムを貼り合わせる時の偏光子の幅をC、その時の原反からの延伸倍率をDとした場合、以下の関係を有することを特徴とする。

【0008】(A/B)/(C/D)>11本発明の偏光板は、前記関係が、(A/B)/(C/D)>12であることが好ましい。

【0009】また、本発明の偏光板は、単体透過率が42%~45%であり、偏光度が99%以上であることが好ましい。

【0010】また、本発明の偏光板は、前記合成樹脂フィルムがポリビニルアルコールフィルムであり、前記保護フィルムがトリアセチルセルロースフィルムであることが好ましい。

【0011】また、本発明の偏光板は、反射板又は半透過反射板を貼り合わせることが好ましい。

【0012】また、本発明の偏光板は、位相差板又はλ板を貼り合わせることが好ましい。

【0013】また、本発明の偏光板は、視角補償フィルムを貼り合わせることが好ましい。

【0014】また、本発明の偏光板は、輝度向上フィルムを貼り合わせることが好ましい。

【0015】次に、本発明の液晶表示装置は、液晶セルの少なくとも片側に上記偏光板を使用したことを特徴とする。

[0016]

【発明の実施の形態】本発明は、合成樹脂フィルムを最初の浴に入れる時の幅及びその時の原反からの延伸倍率と、保護フィルムを貼り合わせる時の偏光子の幅及びその時の原反からの延伸倍率とを一定の関係を満たす範囲に限定することにより、光学特性に優れた偏光板を得ることができ、その結果、より高性能な液晶表示装置を提供するものである。

【0017】即ち、合成樹脂フィルムを主成分が水である最初の浴に入れる時の合成樹脂フィルムの幅をA、その時の原反からの延伸倍率をB、保護フィルムを貼り合わせる時の偏光子の幅をC、その時の原反からの延伸倍率をDとしたとき、(A/B)/(C/D)>11の関係、好ましくは(A/B)/(C/D)>12の関係を有すると、光学特性に優れた偏光板が得られることを確認した。

【0018】合成樹脂フィルムを主成分が水である最初の浴に入れる時の原反から延伸倍率Bとは、合成樹脂フィルムを製膜後、乾式状態でロール延伸や圧延等により延伸している場合、その時の延伸倍率がそれに相当する。無延伸の場合は、延伸倍率は1倍となる。

【0019】また、保護フィルムを貼り合わせる時の原反からの延伸倍率Dとは、主成分が水である最初の浴に入れる前に乾式延伸等を行なっている場合は、その延伸倍率も含めた全延伸倍率である。

【0020】なお、保護フィルム又は偏光子の幅を調整する方法に関しては、特に限定するものではなく、ロール延伸や圧延等の通常の方法を用いることができる。

【0021】本発明で用いる偏光板の基本的な構成は、二色性物質含有のポリビニルアルコール系偏光フィルム等からなる偏光子の片側又は両側に、適宜の接着層、例えばビニルアルコール系ポリマー等からなる接着層を介して保護層となる透明保護フィルムを接着したものからなる。

【0022】偏光子(偏光フイルム)としては、例えばポリビニルアルコールや部分ホルマール化ポリビニルアルコールなどの従来に準じた適宜なビニルアルコール系ポリマーよりなるフィルムにヨウ素や二色性染料等よりなる二色性物質による染色処理や延伸処理や架橋処理等の適宜な処理を適宜な順序や方式で施

してなり、自然光を入射させると直線偏光を透過する適宜なものを用いうる。特に、光透過率や偏光度に 優れるものが好ましい。

【0023】偏光子(偏光フィルム)の片側又は両側に設ける透明保護層となる保護フィルム素材としては、適宜な透明フィルムを用いうる。そのポリマーの例としてトリアセチルセルロースの如きアセテート系樹脂が一般的に用いられるが、これに限定されるものではない。

【0024】偏光特性や耐久性などの点より、特に好ましく用いうる透明保護フィルムは、表面をアルカリなどでケン化処理したトリアセチルセルロースフィルムである。なお、偏光フィルムの両側に透明保護フィルムを設ける場合、その表裏で異なるポリマー等からなる透明保護フィルムを用いてもよい。

【0025】保護層に用いられる透明保護フイルムは、本発明の目的を損なわない限り、ハードコート処理や反射防止処理、スティッキングの防止や拡散ないしアンチグレア等を目的とした処理などを施したものであってもよい。ハードコート処理は、偏光板表面の傷付き防止などを目的に施されるものであり、例えばシリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成することができる。

【0026】一方、反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止は隣接層との密着防止を目的に、アンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止などを目的に施されるものであり、例えばサンドブラスト方式やエンボス加工方式等による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。

【0027】前記の透明微粒子には、例えば平均粒径が0.5~20μmのシリカやアルミナ、チタニアやジルコニア、酸化錫や酸化インジウム、酸化カドミウムや酸化アンチモン等が挙げられ、導電性を有する無機系微粒子を用いてもよく、また、架橋又は未架橋のポリマー粒状物等からなる有機系微粒子などを用いうる。透明微粒子の使用量は、透明樹脂100質量部あたり2~70質量部、とくに5~50質量部が一般的である。

【OO28】透明微粒子配合のアンチグレア層は、透明保護層そのものとして、あるいは透明保護層表面への塗工層などとして設けることができる。アンチグレア層は、偏光板透過光を拡散して視角を拡大するための拡散層(視角補償機能など)を兼ねるものであってもよい。なお、上記した反射防止層やスティッキング防止層、拡散層やアンチグレア層等は、それらの層を設けたシートなどからなる光学層として透明保護層とは別体のものとして設けることもできる。

【0029】前記偏光子(偏光フィルム)と保護層である透明保護フィルムとの接着処理は、特に限定されるものではないが、例えば、ビニルアルコール系ポリマーからなる接着剤、あるいは、ホウ酸やホウ砂、グルタルアルデヒドやメラミン、シュウ酸などのビニルアルコール系ポリマーの水溶性架橋剤から少なくともなる接着剤などを介して行なうことができる。かかる接着層は、水溶液の塗布乾燥層などとして形成しうるが、その水溶液の調製に際しては必要に応じて、他の添加剤や、酸等の触媒も配合することができる。

【0030】偏光板は、実用に際して他の光学層と積層した光学部材として用いることができる。その光学層については特に限定はないが、例えば反射板や半透過反射板、位相差板(1/2波長板、1/4波長板などの)、視角補償フィルムや輝度向上フィルムなどの、液晶表示装置等の形成に用いられことのある適宜な光学層の1層又は2層以上を用いることができ、特に、前述した本発明の偏光子と保護層からなる偏光板に、更に反射板または、半透過反射板が積層されてなる反射型偏光板または半透過反射板型偏光板、前述した偏光子と保護層からなる偏光板に、更に位相差板が積層されている楕円偏光板または円偏光板、前述した偏光子と保護層からなる偏光板に、更に視角補償フィルムが積層されている偏光板、あるいは、前述した偏光子と保護層からなる偏光板に、更に輝度向上フィルムが積層されている偏光板が好ましい。

【0031】前記の反射板について説明すると、反射板は、それを偏光板に設けて反射型偏光板を形成するためのものであり、反射型偏光板は、通常液晶セルの裏側に設けられ、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成でき、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。

【0032】反射型偏光板の形成は、必要に応じ上記した透明保護フィルム等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行なうことができる。その具体例としては、必要こ応じマット処理した透明保護フィルムの片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付

設して反射層を形成したものなどが挙げられる。

【0033】また、微粒子を含有させて表面を微細凹凸構造とした上記の透明保護フィルムの上に、その微細凹凸構造を反映させた反射層を有する反射型偏光板なども挙げられる。表面微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性やギラギラした見栄えを防止し、明暗のムラを抑制しうる利点などを有する。透明保護フィルムの表面微細凹凸構造を反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレーティング方式、スパッタリング方式等の蒸着方式やメッキ方式などの適宜な方式で金属を透明保護フィルムの表面に直接付設する方法などにより行なうことができる。

【0034】また、反射板は、上記した偏光板の透明保護フィルムに直接付設する方式に代えて、その透明保護フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。反射板の反射層は、通常、金属からなるので、その反射面がフィルムや偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の点などから好ましい。

【0035】なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。

【0036】次に、前述した偏光子と保護層からなる偏光板に、更に位相差板が積層されている楕円偏光板または円偏光板について説明する。

【0037】直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが用いられ、特に、直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変える位相差板としては、いわゆる1/4波長板 $(\lambda/4$ 板とも言う)が用いられる。1/2波長板 $(\lambda/2$ 板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。

【0038】楕円偏光板は、スーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈折によって生じた着色(青又は黄)を補償(防止)して、前記着色のない白黒表示にする場合などに有効に用いられる。更に、3次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償(防止)することができ好ましい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。

【0039】前記位相差板の具体例としては、ポリカーボネートやポリビニルアルコール、ポリスチレンやポリメチルメタクリレート、ポリプロピレンやその他のポリオレフィン、ポリアリレートやポリアミドの如き適宜なポリマーからなるフィルムを延伸処理してなる複屈折性フィルムや液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどが挙げられる。また、傾斜配向フィルムとしては、例えばポリマーフィルムに熱収縮性フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又は/及び収縮処理したものや液晶ポリマーを斜め配向させたものなどが挙げられる。

【0040】次に、前述した偏光子と保護層からなる偏光板に、更に視角補償フィルムが積層されている偏光板について説明する。

【0041】視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向から見た場合でも、画像が比較的鮮明に見えるように視角を広げるためのフィルムである。

【0042】このような視角補償フィルムとしては、トリアセチルセルロースフィルムなどにディスコティック液晶を塗工したものや、位相差板が用いられる。通常の位相差板には、その面方向に一軸に延伸された複屈所を有するポリマーフィルムが用いられるのに対し、視角補償フィルムとして用いられる位相差板には、面方向に二軸に延伸された複屈折を有するポリマーフィルムとか、面方向に一軸に延伸され厚さ方向にも延申された厚さ方向の屈折率を制御した傾斜配向ポリマーフィルムのような2方向延伸フィルムなどが用いられる。傾斜配向フィルムとしては、前述したように、例えばポリマーフィルムに熱収縮性フィルムを接着して加熱によるその収縮力の作用下にポリマーフイルムを延伸処理又は/及び収縮処理したものや、液晶ポリマーを斜め配向させたものなどが挙げられる。位相差板の素材原料ポリマーは、先の位相差板で説明したポリマーと同様のものが用いられる。

【0043】前述した偏光子と保護層からなる偏光板に、輝度向上フィルムを貼り合わせた偏光板は、通常液 晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏 側からの反射などにより自然光が入射すると所定偏光軸の直線偏光又は所定方向の円偏光を反射し、他 の光は透過する特性を示すもので、輝度向上フィルムを前述した偏光子と保護層とからなる偏光板と積層 した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所 定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面で反射した光を更にその後ろ側 に設けられた反射層等を介し反転させて輝度向上板に再入射させ、その一部又は全部を所定偏光状態の 光として透過させて輝度向上フイルムを透過する光の増量を図ると共に、偏光子に吸収されにくい偏光を 供給して液晶画像表示等に利用しうる光量の増大を図ることにより輝度を向上させうるものである。すなわ ち、輝度向上フィルムを使用せずに、バックライトなどで液晶セルの裏側から偏光子を通して光を入射した 場合には、偏光子の偏光軸に一致していない偏光方向を有する光はほとんど偏光子に吸収されてしま い、偏光子を透過してこない。すなわち、用いた偏光子の特性によっても異なるが、およそ50%の光が偏 光子に吸収されてしまい、その分、液晶画像表示等に利用しうる光量が減少し、画像が暗くなる。輝度向 上フィルムは、偏光子に吸収されるような偏光方向を有する光を偏光子に入射させずに輝度向上フィルム で一旦反射させ、更にその後ろ側に設けられた反射層等を介して反転させて輝度向上板に再入射させる ことを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過し得るような偏光方向に なった偏光のみを、輝度向上フィルムは透過させて偏光子に供給するので、バックライトなどの光を効率的 に液晶表示装置の画像の表示に使用でき、画面を明るくすることができるのである。

【0044】前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの、コレステリック液晶層、特にコレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。

【0045】従って、前記した所定偏光軸の直線偏光を透過するタイプの輝度向上フィルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶層の如く円偏光を透過するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその透過円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板として1/4波長板を用いることにより、円偏光を直線偏光に変換することができる。

【0046】可視光域等の広い波長範囲で1/4波長板として機能する位相差板は、例えば波長550nmの光等の単色光に対して1/4波長板として機能する位相差層と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重畳する方式などにより得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、1層又は2層以上の位相差層からなるものであってよい。【0047】なお、コレステリック液晶層についても、反射波長が相違するものの組合せにして2層又は3層以

100477なる、コレステリック液晶層についても、反射波長が相違するものの組合せにして2層又は3層以上重畳した配置構造とすることにより、可視光域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。

【0048】また、偏光板は、上記した偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組合せた反射型楕円偏光板や半透過型楕円偏光板などであってもよい。2層又は3層以上の光学層を積層した光学部材は、液晶表示装置等の製造過程で順次別個に積層する方式にても形成しうるものであるが、予め積層して光学部材としたものは、品質の安定性や組立作業性等に優れて液晶表示装置などの製造効率を向上させうる利点がある。なお、積層には、粘着層等の適宜な接着手段を用いうる。

【0049】前述した偏光板や光学部材には、液晶セル等の他部材と接着するための粘着層を設けることもできる。その粘着層は、アクリル系等の従来に準じた適宜な粘着剤にて形成することができる。特に、吸湿こよる発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性などの点より、吸湿率が低くて耐熱性に優れる粘着層であることが好ましい。また、微粒子を含有して光拡散性を示す粘着層などとすることもできる。粘着層 は必要に応じて必要な面に設ければよく、例えば、偏光子と保護層からなる偏光板の保護層について言及するならば、必要に応じて、保護層の片面又は両面に粘着層を設ければよい。

〔0050】偏光板や光学部材に設けた粘着層が表面に露出する場合には、その粘着層を実用に供するま

での間、汚染防止等を目的にセパレータにて仮着カバーすることが好ましい。セパレータは、上記の透明保護フィルム等に準じた適宜な薄葉体に、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤による剥離コートを設ける方式などにより形成することができる。

【0051】なお、上記の偏光板や光学部材を形成する偏光フィルムや透明保護フィルム、光学層や粘着層などの各層は、例えばサリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの適宜な方式により紫外線吸収能を持たせたものなどであってもよい。

【0052】前記偏光板は、液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置は、偏光板を液晶セルの片側又は両側に配置してなる透過型や反射型、あるいは透過・反射両用型等の従来に準じた適宜な構造を有するものとして形成することができる。従って、液晶表示装置を形成する液晶セルは任意であり、例えば薄膜トランジスタ型に代表されるアクティブマトリクス駆動型のもの、ツイストネマチック型やスーパーツイストネマチック型に代表される単純マトリクス駆動型のものなどの適宜なタイプの液晶セルを用いたものであってよい。

【0053】また、液晶セルの両側に偏光板や光学部材を設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えばプリズムアレイシートやレンズアレイシート、光拡散板やバックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。

[0054]

【実施例】以下、実施例及び比較例を用いて本発明を更に具体的に説明する。

【0055】(実施例1)合成樹脂フィルムとして重合度2400、原反厚75 μ m、原反幅1000 μ m、無延伸のPVAフィルムを、主成分が水である最初の浴(第1浴)にて2倍に延伸(ロール間距離0.4 μ m)した後、ヨウ素とヨウ化カリウムの水溶液からなる染色浴にて1.3倍に延伸(ロール間距離0.2 μ m)し、その後、ホウ酸とヨウ化カリウムの入った架橋浴にて1.2倍に延伸(ロール間距離0.12 μ m)した後、水の入った洗浄浴にて1.8倍に延伸(ロール間距離0.12 μ m)し、乾燥した後に偏光子として巻き取った。次に、保護フィルムとして2枚のTACフィルムでこの偏光子を挟みこむように貼り合わせて偏光板を得た。この保護フィルムを貼り合わせる時の偏光子の幅は495 μ mであり、その時の原反からの延伸倍率(全延伸倍率)は5.62倍である。

【0056】(比較例1)第1浴、染色浴、架橋浴、洗浄浴の中におけるロール間距離を、それぞれ実施例1と比較して1/2、1/2、1/3、1/4に変更した以外は、実施例1と同様にして偏光板を得た。保護フィルムを貼り合わせる時の偏光子の幅は540mmであり、その時の原反からの延伸倍率(全延伸倍率)は5.62倍である。

【0057】(実施例2)合成樹脂フィルムとして重合度2400、原反厚75 μ m、原反幅1000 μ m、無延伸のPVAフィルムを、主成分が水である最初の浴(第1浴)にて1.85倍に延伸(ロール間距離0.2 μ m)した後、ヨウ素とヨウ化カリウムの水溶液からなる染色浴にて1.1倍に延伸(ロール間距離0.1 μ m)し、その後、ホウ酸とヨウ化カリウムの入った架橋浴にて1.15倍に延伸(ロール間距離0.12 μ m)し、後、水の入った洗浄浴にて2.55倍に延伸(ロール間距離0.12 μ m)し、乾燥した後に偏光子として巻き取った。次に、保護フィルムとして2枚のTACフィルムでこの偏光子を挟みこむように貼り合わせて偏光板を得た。この保護フィルムを貼り合わせる時の偏光子の幅は457 μ mであり、その時の原反からの延伸倍率(全延伸倍率)は5.97倍である。

【0058】(比較例2)第1浴、染色浴、架橋浴、洗浄浴の中におけるロール間距離を、それぞれ実施例2と 比較して1/4、1/2、1/4、1/4に変更した以外は、実施例2と同様にして偏光板を得た。保護フィルムを貼り合わせる時の偏光子の幅は545mmであり、その時の原反からの延伸倍率(全延伸倍率)は5.37倍である。

0059】(比較例3)合成樹脂フィルムとして重合度2400、原反厚75μm、原反幅1000mm、無延伸の PVAフィルムを、主成分が水である最初の浴(第1浴)にて1.8倍に延伸(ロール間距離0.1m)した後、引力素とヨウ化カリウムの水溶液からなる染色浴にて1.2倍に延伸(ロール間距離0.2m)し、その後、ホウ酸とヨウ化カリウムの入った架橋浴にて1.15倍に延伸(ロール間距離0.2m)した後、水の入った洗浄谷にて2.1倍に延伸(ロール間距離0.2m)し、乾燥した後に偏光子として巻き取った。次に、保護フィルムとして2枚のTACフィルムでこの偏光子を挟みこむように貼り合わせて偏光板を得た。この保護フィルムを貼り合わせる時の偏光子の幅は515mmであり、その時の原反からの延伸倍率(全延伸倍率)は5.22

倍である。

【0060】(比較例4)合成樹脂フィルムとして重合度2400、原反厚75 μ m、原反幅1000 μ m、無延伸のPVAフィルムを、主成分が水である最初の浴(第1浴)にて1.8倍に延伸(ロール間距離0.2 μ m)した後、ヨウ素とヨウ化カリウムの水溶液からなる染色浴にて1.15倍に延伸(ロール間距離0.4 μ m)し、その後、ホウ酸とヨウ化カリウムの入った架橋浴にて1.25倍に延伸(ロール間距離0.3 μ m)し、を操した後に偏光子として巻き取った。次に、保護フィルムとして2枚のTACフィルムでこの偏光子を挟みこむように貼り合わせて偏光板を得た。この保護フィルムを貼り合わせる時の偏光子の幅は550 μ mであり、その時の原反からの延伸倍率(全延伸倍率)は4.53倍である。

【0061】(偏光板の評価)実施例1、2及び比較例1~4で得られた偏光板の光学特性を分光光度計にて測定した結果を表1に示す。なお、透過率は、JIS Z 8701の2度視野C光源により求めて視感度補正したY値で示した。

【0062】また、偏光板の基本特性である偏光板1枚の透過率である単体透過率と偏光度では、光学特性の差が分かり難いので、偏光度を算出する時に使う平行透過率(2枚の偏光板の偏光する軸を平行にした時の透過率)と直交透過率(2枚の偏光板の偏光する軸を直交にした時の透過率)の比率も表1に示した。この比率が高いほど白表示と黒表示のコントラストが高くなり、光学特性の良い偏光板ということができる。

[0063]

【表1】

	最初の潜に入 れる時のPVA フィルムの幅A (mm)/延伸倍 率B(倍)		(A/B) / (C/D)	単体 透過 率 (%)	偏光度 (%)	平元過一次過一次通路
実施例1	1000/1.00	495/5.62	11.35	43. 8	99, 94	1718
実施例2	1000/1.00	457/5.97	13.06	43.8	99, 97	3518
比較例1	1000/1.00	540/5.62	10. 41	43.8	99, 86	694
比較例2	1000/1.00	545/5.97	10, 95	43.8	99. 86	735
比較例3	1000/1.00	515/5. 22	10. 14	43.8	99, 64	279
比較例4	1000/1.00	550/4.53	8. 24	43.8	99. 27	137

【0064】表1から明らかなように、本発明の偏光板の平行透過率/直交透過率は、比較例の偏光板に比べてかなり高いことが分かる。これにより、本発明の偏光板は、比較例の偏光板に比べて光学特性が優れていることが分かる。

[0065]

【発明の効果】以上説明したとおり、本発明は、最初の浴に入れる時の合成樹脂フィルムの幅、原反からの延伸倍率と保護フィルムを貼り合わせる時の偏光子の幅、原反からの延伸倍率との間に一定の関係を成立させることで、光学特性に優れた偏光板及びそれを用いた液晶表示装置を提供でき、その工業的価値は大である。