Tema 4.3 Proceso de entrenamiento

Miguel Ángel Martínez del Amor Deep Learning

Departamento Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla

Contenido

- El proceso de aprendizaje
- Optimización de hiperparámetros

El proceso de aprendizaje

El proceso de aprendizaje

1. Primera configuración

- Preprocesamiento de datos, aumentado de datos
- Elección de una arquitectura, funciones de activación, inicialización de pesos
- Elección de método de regularización
- Elección de función de coste y método de optimización

2. Dinámica de entrenamiento

- Monitorización del entrenamiento (lo trabajaremos en las prácticas)
- Optimización de parámetros
- Optimización de hiperparámetros

3. Evaluación

Ensamblado de modelos

Optimización de hiperparámetros

Model Design

Weight init.: Random Uniform

Act.: ReLULoss: CEE

- # Hidden Layers: 3

Units per layer {p, p+1, p+1, p+3, 10}

Optimizer: SGDDropout layer: L_x

Hyperparameters

- Learning rate
- Dropout Rate
- Batch size

Model Parameters

- $W^{(1)} => W^{(4)}$

Optimización de hiperparámetros

- Hiperparámetros con los que jugar:
 - La **arquitectura** de la red
 - El **learning** rate, su decaimiento y tipo de actualización
 - El momentum (si se escoge este método con SGD)
 - Regularización (L2/Dropout)
 - Tamaño del batch
- Métodos:
 - Manual: Babysitting o "prueba y error"
 - Búsqueda paralela: Grid Search, Random Search, Bayesian Optimization

Optimización de hiperparámetros: babysitting

- Comenzar observando la pérdida obtenida del modelo:
 - Al comienzo, desactivar la regularización
 - Observar que la pérdida incrementa al introducir regularización
 - Comprobar que podemos hacer sobreajuste sobre unos cuantos datos
- Comenzar con un factor pequeño de regularización y encontrar el learning rate que decrementa la pérdida:
 - Si la pérdida no decrece: learning rate muy bajo
 - Si la pérdida explota: learning rate demasiado alto
 - Probar valores entre 10⁻³ y 10⁻⁵.

Optimización de hiperparámetros: babysitting

- Hacer validación cruzada:
 - Primero con pocas épocas para ver rápidamente los valores que funcionan bien.
 - Probar valores en escala logarítmica! Es decir: lr= 10⁻³, 10⁻⁴, 10⁻⁵
 - Después de elegir
 - Probar más épocas.
 - Afinar los valores de los hiperparámetros (esta vez no logarítmicamente)

Optimización de hiperparámetros: Grid search

- Probar configuraciones en paralelo mediante un grid:
 - Definir un grid de n dimensiones, donde cada dimensión es un hiperparámetro.
 - Para cada dimensión, definir un rango de posibles valores. Por ejemplo, batch size = 4, 6, 8, 16, 32, 64, 128; learning rate = 0,01; 0,001; 0,0001
 - Busca para todas las posibles configuraciones y espera los resultados para encontrar la mejor combinación.

Optimización de hiperparámetros: random search

- Introducido en [Bergstra y Begio, 2012]:
- La diferencia real está en el primer paso, random search escoge los puntos aleatoriamente del espacio de configuración

Recapitulación

- Hemos repasado de nuevo el **proceso** a seguir para entrenar un modelo desde cero.
- Hemos visto algunos métodos para optimizar los hiperparámetros:
 - Prueba y error, o babysitting
 - Paralelos: en **grid** o **random**.