Applied Microeconometrics - Assignment $4\,$

 $483670,\,630516$

September 21, 2022

1

Table 1 contains the results of a multinomial logit model of school choice on gender and test scores.

Table 1

choice	Coefficient	Std. err.	z	P> z	[95% conf.	interval]	
High_school_1	(base alternative)						
Outside_Utrecht							
gender	4690375	.4415235	-1.06	0.288	-1.334408	.3963327	
testscore	0506644	.0545106	-0.93	0.353	1575032	.0561744	
_cons	29.04348	29.6866	0.98	0.328	-29.1412	87.22815	
Gymnasium_1							
gender	419388	.4363943	-0.96	0.337	-1.274705	.435929	
testscore	.1200623	.0566682	2.12	0.034	.0089948	.2311299	
_cons	-63.95478	30.89643	-2.07	0.038	-124.5107	-3.398893	
High_school_2							
gender	2547803	1.468061	-0.17	0.862	-3.132128	2.622567	
testscore	.2180528	.2512237	0.87	0.385	2743366	.7104423	
_cons	-121.5995	137.5185	-0.88	0.377	-391.1309	147.9319	
High_school_3							
gender	2168744	.4658658	-0.47	0.642	-1.129955	.6962058	
testscore	0206016	.0578131	-0.36	0.722	1339133	.0927101	
_cons	12.13533	31.48937	0.39	0.700	-49.5827	73.85335	
High_school_4							
gender	0134729	.5383483	-0.03	0.980	-1.068616	1.04167	
testscore	0068987	.0669302	-0.10	0.918	1380795	.1242822	
_cons	3.837665	36.45847	0.11	0.916	-67.61962	75.29495	
High_school_5							
gender	1953817	1.468223	-0.13	0.894	-3.073045	2.682282	
testscore	0806672	.1717818	-0.47	0.639	4173533	.256019	
_cons	41.40126	93.35539	0.44	0.657	-141.5719	224.3745	
High_school_6							
gender	2324838	.4710565	-0.49	0.622	-1.155738	.6907699	
testscore	.0354673	.0596902	0.59	0.552	0815233	.1524579	
_cons	-18.48359	32.52928	-0.57	0.570	-82.23981	45.27262	
High_school_7							
gender	.4913499	.6720051	0.73	0.465	8257559	1.808456	
testscore	0639538	.0781985	-0.82	0.413	21722	.0893124	
_cons	33.92765	42.54658	0.80	0.425	-49.46212	117.3174	
Gymnasium_2							
gender	3593733	.5188671	-0.69	0.489	-1.376334	.6575876	
testscore	.0798507	.0679752	1.17	0.240	0533782	.2130796	
restatore							

Table 2 contains the results of a multinomial logit model of school choice on the distance to a given school and whether the deciding student has a sibling at this school. The results suggest that if your sibling is at the school your probability of choosing it increases (positive and significant coefficient). The negative significant coefficient for the distance suggests that the greater the distance to the school, the lower the probability of choosing that school. If we convert them to odds ratio, having a sibling at a school makes you just over 5 times more likely to choose that school - all else equal. For each kilometre a school is further away than another, it is 20% (not percentage points-careful) less likely to be chosen.

Table 2

		140					
choice	Coefficient	Std. err.	z	P> z	[95% conf.	interval]	
school sibling distance	1.689151 245953	.1895964 .0298558	8.91 -8.24	0.000 0.000	1.317549 3044694	2.060753 1874367	
High_school_1	(base alternative)						
Outside_Utrecht _cons	1.42745	.2385271	5.98	0.000	. 9599457	1.894955	
Gymnasium_1 _cons	1.236214	. 2324322	5.32	0.000	.7806554	1.691773	
High_school_2 _cons	-2.142987	.743227	-2.88	0.004	-3.599686	6862892	
High_school_3 _cons	.9008862	. 2558284	3.52	0.000	.3994717	1.402301	
High_school_4 _cons	152363	.2778213	-0.55	0.583	6968827	.3921566	
High_school_5 _cons	-2.614989	.7388643	-3.54	0.000	-4.063136	-1.166841	
High_school_6 _cons	. 8443403	. 2568296	3.29	0.001	.3409635	1.347717	
High_school_7 _cons	590173	.3341246	-1.77	0.077	-1.245045	.0646992	
Gymnasium_2 _cons	.2806044	. 2787649	1.01	0.314	2657647	.8269735	

3

Table 3 combines the regressions of table 1 and table 2. This results in a rank-ordered logit model. The siblings' school and the distance to a given school

remain similarly important in determining future students' preferences.

Table 3								
choice	Coefficient	Std. err.	z	P> z	[95% conf.	interval]		
school								
sibling	1.674634	.1934232	8.66	0.000	1.295531	2.053737		
distance	2605671	.0306829	-8.49	0.000	3207045	2004297		
High_school_1	(base alter	native)						
Outside_Utrecht								
gender	6169134	.4638332	-1.33	0.184	-1.52601	.292183		
testscore	0255972	.0567346	-0.45	0.652	136795	.0856006		
_cons	15.67982	30.88092	0.51	0.612	-44.84567	76.20531		
Gymnasium_1								
gender	5939652	.4680242	-1.27	0.204	-1.511276	.3233455		
testscore	.1496682	.0600876	2.49	0.013	.0318987	.2674378		
_cons	-80.1084	32.74004	-2.45	0.014	-144.2777	-15.93909		
High_school_2								
gender	4408758	1.487665	-0.30	0.767	-3.356645	2.474894		
testscore	.2503491	.2510607	1.00	0.319	2417208	.742419		
_cons	-138.6169	137.4542	-1.01	0.313	-408.0222	130.7884		
High_school_3								
gender	6193152	.5079289	-1.22	0.223	-1.614837	.3762071		
testscore	.0266032	.0628187	0.42	0.672	0965193	.1497257		
_cons	-13.27733	34.20047	-0.39	0.698	-80.30901	53.75436		
High_school_4								
gender	0016342	.5597209	-0.00	0.998	-1.098667	1.095399		
testscore	.0127403	.0700957	0.18	0.856	1246446	.1501253		
_cons	-7.089617	38.17082	-0.19	0.853	-81.90304	67.72381		
High_school_5								
gender	3748867	1.480941	-0.25	0.800	-3.277477	2.527704		
testscore	0264712	.1755886	-0.15	0.880	3706186	.3176761		
_cons	11.94192	95.41748	0.13	0.900	-175.0729	198.9567		
High_school_6								
gender	4506662	.5073866	-0.89	0.374	-1.445126	.5437932		
testscore	.0923924	.0641304	1.44	0.150	0333009	.2180857		
_cons	-49.27242	34.93046	-1.41	0.158	-117.7349	19.19003		
High_school_7								
gender	.4013687	.691612	0.58	0.562	9541659	1.756903		
testscore	031933	.0797927	-0.40	0.689	1883238	.1244578		
_cons	16.53	43.40518	0.38	0.703	-68.5426	101.6026		
Gymnasium_2								
gender	6693524	.5540754	-1.21	0.227	-1.75532	.4166153		
testscore	.1390897	.0726138	1.92	0.055	0032307	.2814101		
_cons	-75.21529	39.58453	-1.90	0.057	-152.7995	2.368956		

4

The theory of independence of irrelevant alternatives means that the coefficients and effects that we have predicted would remain the same if we remove one of the options. This is likely to be the case when all options are substitutes. Schools in our case are all substitutes for education. They may differ, but primarily on observables (type of school, rating, distance from decision maker). However, the regression we have run has not included all those observed. In the analysis we have run not all are very good alternatives so not all other options are irrelevant. For example, gymnasiums are more similar to another gymnasium and no-gymnasium school. In this situation removing one gymnasium school

could shift demand not by the factors that we suggested, but primarily on whether replacement scools $\,$

Code - Stata

```
use "/Users/julian/Documents/Current/Applied Microeconometrics/GitHub/Assignment 4/HighSchooData.dta"
#Table 1
asclogit choice, case(id) alternatives(school) casevars(gender testscore)
#Table 2
asclogit choice sibling distance, case(id) alternatives(school)
#Table 3
asclogit choice sibling distance, case(id) alternatives(school) casevars(gender testscore)
```