Lecture 5

- Read: Chapter 3.5-3.8.
- Multiple Discrete RVs
 - Conditioning
 - Conditioning a Joint PMF by an Event
 - Conditional PMF
 - Independent Random Variables
 - More Than Two Discrete Random Variables

Conditioning

 <u>Definition:</u>(Conditioning Joint PMF by an Event) The conditional joint PMF of (X, Y) given some event B, a set on the x-y plane, is defined as

$$\begin{split} p_{X,Y|B}(x,y) &= P[X=x,Y=y|B] \\ &= \frac{P[\{X=x\} \cap \{Y=y\} \cap B]}{P[B]} \\ &= \begin{cases} \frac{p_{X,Y}(x,y)}{P[B]} & \text{, } (x,y) \in B \\ 0 & \text{, otherwise} \end{cases} \end{split}$$

 <u>Definition:</u>(Conditioning an RV Based on Another) The conditional PMF of X given Y is

$$p_{X|Y}(x|y) = P[X = x|Y = y]$$

$$= \frac{P[\{X = x\} \cap \{Y = y\}]}{P[Y = y]} = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Conditional Expectation

<u>Definition</u>:(Conditional Expectation of a Function)
 Conditional expectation of g(X, Y) given B

$$E[g(X,Y)|B] = \sum_{x} \sum_{y} g(x,y) \cdot p_{X,Y|B}(x,y)$$

 <u>Definition:</u>(Conditional Expectation) Conditional expectation of X given Y = y

$$E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)$$

Visualizing Conditioning

Summary

Joint PMF:
$$p_{X,Y}(x,y) = P[X = x, Y = y]$$

If independent

marginal PMF

 $p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y)$
 $p_{Y|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$
 $p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_{X}(x)}$

Summary: Visualizing Conditioning

 If independent, then given the value of X, the distribution of Y would not change.

Conditional Expected Values

• <u>Idea:</u> Given Y = y, the PMF of X is $p_{X|Y}(x|y)$, so the average of X is now given by

$$E[X|Y=y] = \sum_{x \in S_X} x p_{X|Y}(x|y)$$

We can generalize this definition and define the conditional expectation of a function of the random variable X...

Conditional Expected Value of a Function

• <u>Definition</u>:(Conditional Expected Value of a Function) For any $y \in S_Y$, the conditional expected value of g(X) given Y = y is

$$E[g(X)|Y = y] = \sum_{x \in S_X} g(x)p_{X|Y}(x|y)$$

Special Cases:

- 1. E[X|Y=y]
- 2. Conditional Variance

$$Var[X|Y = y] = E[(X - E[X|Y = y])^{2}|Y = y]$$

$$= \sum_{x \in S_{X}} (x - E[X|Y = y])^{2} p_{X|Y}(x|y)$$

Conditional Expectation: Example (I)

• Let X = outcome of roll of die

$$Y = \begin{cases} 1 & \text{, if } X \text{ was even} \\ 0 & \text{, if } X \text{ was odd} \end{cases}$$

• What are $p_{X,Y}(x,y)$, $p_{X|Y}(x|1)$?

Conditional Expectation: Example (II)

• Let X = outcome of roll of die

$$Y = \begin{cases} 1 & \text{, if } X \text{ was even} \\ 0 & \text{, if } X \text{ was odd} \end{cases}$$

• What are E[X|Y=1] and Var[X]?

 $E[X|Y=1] = \sum_{x \in S_X} x p_{X|Y}(x|1) = 2 \cdot \frac{1}{3} + 4 \cdot \frac{1}{3} + 6 \cdot \frac{1}{3} = 4$ $Var[X] = E[(X - E[X])^2] = E[(X - 3.5)^2] = E[X^2] - (E[X])^2$ $= \frac{1}{6}[(1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2$ $+ (5 - 3.5)^2 + (6 - 3.5)^2]$

Conditional Expectation: Example (III)

• Let X = outcome of roll of die

$$Y = \begin{cases} 1 & \text{, if } X \text{ was even} \\ 0 & \text{, if } X \text{ was odd} \end{cases}$$

• What is Var[X|Y=1]?

$$Var[X|Y = y] = E[(X - E[X|Y = y])^{2}|Y = y]$$

$$= \sum_{x \in S_{X}} (x - E[X]|Y = y)^{2} p_{X|Y}(x|y)$$

$$Var[X|Y = 1] = E[X^{2}|Y = 1] - (E[X|Y = 1])^{2}$$

$$= 4 \cdot \frac{1}{3} + 16 \cdot \frac{1}{3} + 36 \cdot \frac{1}{3} - 16$$

Conditional Expectation

- <u>Definition:</u>(Conditional Expectation) Let g(y) = E[X|Y = y]. Then, g(Y) is called the conditional expectation of X given Y and is written as E[X|Y].
- Warning: E[X|Y] = g(Y) is a function of an RV, Y, so it is also an RV, i.e., necessarily just a number.

Since E[X|Y] is an RV, we should be able to take its average!

- Theorem: (Iterated Expectation) E[E[X|Y]] = E[X]
 - The significance of the iterated expectation is that there are problems in which calculating E[X] directly is much more difficult than first calculating E[X|Y] and then using the iterated expectation to find E[X].

Iterated Expectation: Proof of Theorem

- Theorem: E[E[X|Y]] = E[X]
- Proof: E[E[X|Y]] = E[g(Y)]

$$= \sum_{y} g(y)p_{Y}(y)$$

$$= \sum_{y} E[X|Y = y]p_{Y}(y)$$

$$= \sum_{y} \left(\sum_{x} xp_{X|Y}(x|y)\right) p_{Y}(y)$$

$$\sum_{y}\sum_{x}xp_{X|Y}(x|y)p_{Y}(y)=\sum_{y}\sum_{x}xp_{X,Y}(x,y)$$

$$=\sum_{x}x\sum_{y}p_{X,Y}(x,y)$$

$$= \sum x p_X(x) = E[X]$$

Iterated Expectation: Example

- Suppose
 - $Y = 0 \Rightarrow Male, P[Y = 0] = 1/2$ $Y = 1 \Rightarrow Female$
- Let X = age of person E[X|Y = 0] = average age of males Var[X|Y = 1] = variance of ages of females

.....

$$E[X|Y] = g(Y) = \begin{cases} E[X|Y=0] & \text{, with probability } 1/2\\ E[X|Y=1] & \text{, with probability } 1/2 \end{cases}$$

$$g(Y) = E[X|Y=y]$$

$$E[E[X|Y]] = E[X|Y=0]P[Y=0] + E[X|Y=1]P[Y=1]$$

$$= E[X]$$

Independent Random Variables

• **Definition:** X and Y are independent if $\{X = x\}$ and $\{Y = y\}$ are independent events for all x, y.

$$P[\{X = x\} \cap \{Y = y\}] = P[X = x] \cdot P[Y = y]$$

$$\Rightarrow p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

Equivalently, since for all x, y such that $p_Y(y) > 0$ $p_{X,Y}(x,y) = p_{X|Y}(x|y) \cdot p_Y(y)$ $= p_X(x)p_Y(y)$

we have independence when $p_{X|Y}(x|y) = p_X(x)$.

Interpretation: knowledge of the experimental value of Y does not affect PMF of X.

independent

- Given two functions g and h, if X and Y are independent, so are g(X) and h(Y).
- **Remark:** Independence iff can factorize the joint PMFs into functions of *x* and *y* alone.

Summary: Independent RVs

Independent RVs:
$$p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

Alternatively,
$$p_{X|Y}(x|y) = p_X(x)$$

 $p_{Y|X}(y|x) = p_Y(y)$

Independent RVs: Example

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} = \frac{1/16}{1/4} = p_X(x)$$

independent RVs

Support (Range) of Independent RVs

• Note: Independent RVs will have a range (support) $S_{X,Y} = S_X \times S_Y$, i.e., rectangular.

Support of RVs

- Consider the joint PMF of the two RVs in the table above.
- Are they independent?
- Does a choice of X = x, e.g., 1 or 2, impact the possible values Y can take?

Do Only Independent RVs Have Rectangular Supports?

• Example:

• Warning: Ranges that are "rectangular" in this sense may or may not correspond to independent random variables!

Joint Distribution from Marginals

- Question: Given the marginal distributions of two RVs, can you reconstruct the joint distribution?
- Answer: Yes, if they are independent!

Facts About Independent RVs

If X and Y are independent

- E[XY] = E[X]E[Y], so independent ⇒ uncorrelated, i.e.,
 Cov[X, Y] = 0.
- E[X|Y=y]=E[X] for all $y \in S_Y$
- E[Y|X=x]=E[Y] for all $x \in S_X$
- E[f(X)g(Y)] = E[f(X)]E[g(Y)]
- Var[X + Y] = Var[X] + Var[Y]

Independence of Several Random Variables

• X, Y, and Z are independent if

$$p_{X,Y,Z}(x,y,z) = p_X(x)p_Y(y)p_Z(z)$$

for all x, y, and z.

- If so, f(X), g(Y), and h(Z) would also be independent.
- Typically, f(X, Y) and g(Y, Z) would not.
- Also, Var[X + Y + Z] = Var[X] + Var[Y] + Var[Z].
- Example: Suppose $X_i \sim \text{Bernoulli}(p)$, and let $Y = \sum_{i=1} X_i$. Find its variance.

More Than Two Discrete Random Variables: Joint PMF

• <u>Definition:</u>(Joint PMF of N Random Variables) The joint PMF of the discrete random variables $X_1, ..., X_n$ is

$$p_{X_1,...,X_n}(x_1,...,x_n) = P[X_1 = x_1,...,X_n = x_n]$$

More Than Two Discrete Random Variables: Probability of an Event A

• Theorem: The probability of an event A expressed in terms of the discrete random variables $X_1, ..., X_n$ is

$$P[A] = \sum_{(x_1,...,x_n) \in A} p_{X_1,...,X_n}(x_1,...,x_n)$$

More Than Two Discrete Random Variables: Marginal PMFs

• Theorem: For a joint PMF of four random variables, $p_{W,X,Y,Z}(w,x,y,z)$, some marginal PMFs are

$$p_{X,Y,Z}(x,y,z) = \sum_{w \in S_W} p_{W,X,Y,Z}(w,x,y,z)$$

$$p_{W,Z}(w,z) = \sum_{x \in S_X} \sum_{y \in S_Y} p_{W,X,Y,Z}(w,x,y,z)$$

$$p_{Y,Z}(w,z) = \sum_{w \in S_W} \sum_{x \in S_X} p_{W,X,Y,Z}(w,x,y,z)$$

$$p_{X}(x) = \sum_{w \in S_W} \sum_{y \in S_Y} \sum_{z \in S_Z} p_{W,X,Y,Z}(w,x,y,z)$$

N Independent Random Variables

• <u>Definition:</u> (N Independent Random Variables) The discrete random variables $X_1, ..., X_n$ are independent if and only if

$$p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_1}(x_1)\cdots p_{X_n}(x_n)$$

for all $x_1, ..., x_n$.

Expectations

• Theorem: The expected value of $g(X_1,...,X_n)$ satisfies

$$E[g(X_1,...,X_n)] = \sum_{x_1 \in S_{X_1}} ... \sum_{x_n \in S_{X_n}} g(x_1,...,x_n) p_{X_1,...,X_n}(x_1,...,x_n)$$

• Theorem: When $X_1, ..., X_n$ are independent discrete random variables,

$$E[g(X_1)g(X_2)\cdots g(X_n)] = E[g(X_1)]E[g(X_2)]\cdots E[g(X_n)]$$

