パターン処理工学特論 レポート課題: Skin Detection

出題:酒井智弥, 2016/08/05

obama.jpg

obama pred label.png*1

obama pred skin.png

画素を識別する識別器を機械学習し、肌の領域を検出する. LACS に掲載している $skin_detection.zip$ を展開し、サンプルコード $skin_detection.py$ (仕様は本書の付録を参照) を利用して、Python コード と 報告書の PDF ファイル を提出せよ. ただし、提出物は、それ ぞれ以下の必要条件を満たすように作成すること.

● Python コード

- □ ファイル名は skin_detection_XXXXXXXX.py (XXXXXXXX は学生番号) とすること.
- □ サンプルコード skin_detection.py が実行できる環境と同じ環境で実行できること. なお, サンプルコードは numpy, PIL, sklearn, time, os のモジュールを必要とする.
- □ サンプルコード skin_detection.py よりも汎化能力が高いこと.
- □ サンプルコードと同様に, img_lbl_filenames_test で指定された下記の 4 つの画像ファイルすべての画素を用いて汎化能力を評価し、検出した肌領域を表す画像も保存すること.
 "m(01-32)_gr.jpg", "toddler_mollie_aug07_400.jpg", "family4.jpg", "obama.jpg"
- □ 学習と評価の合計の実行時間は長くても 3 分程度であること. なお, サンプルコードの実行時間は約 1 分である.
- □ img_lbl_filenames_test で指定された画像ファイルに対する **F1** score を print で表示すること.
- □ 学習と評価には img と 1b1 フォルダに格納されている画像ファイルのみを使用すること. ヒント:
 - ➤ 識別器は何を採用してもよい. 自作してもよいが、本課題では、scikit-learn が提供している識別器の利用を強く推奨する. 他のモジュールを使用する場合は報告書に明記せよ.
 - ▶ 複数の識別器を比較・検討した場合は、その内容を報告書に記載し、最も高い汎化能力を 達成したコードを提出する。
 - ▶ 画素の特徴の表現方法に制限はない. なお, サンプルコードでは, 画素を RGB 値の 3 次元特徴で表現している.

^{*1} W.R. Tan, et al., "A Fusion Approach for Efficient Human Skin Detection", T-II, vol. 8(1): pp. 138-147, 2012.

,	報告書
	□ ファイル名は skin_detection_XXXXXXXX.pdf (XXXXXXXX は学生番号) とすること.
	□ A4 サイズ 2 ページ相当以上の文量があること.
	□ 使用・作成した識別器とその原理を解説すること.
	□ サンプルコードからの主な変更点を説明すること.
	□ コードを記載する場合は、説明に必須な部分にとどめること.
	□ 性能を表す具体的な評価値を示し、サンプルコードよりも汎化能力が高いと言える根拠およ
	び汎化能力を高くできた理由を述べること.
	□ 誤検出・検出漏れの傾向と原因について考察すること.
	□ 止むを得ず必要条件を満たさない場合は,その旨と理由を述べること.
	□ 信頼性のある参考文献を引用し、適切に出典を記述すること.
	ヒント:
	▶ サンプルコード skin_detection.py の内容を報告書の読者が知っていることを前提に
	してよい. しかし, 提出する Python コードを読者が直接見なくても, その内容や動作を
	理解できるように報告書で解説するべきである、例えば、本書の付録のようにサンプルコ

ードを解説できる.報告書では、特にサンプルコードからの変更点を解説するべきである.

評価・加点項目:

- Python コード
 - □ 必要条件を適切に満たしていること
 - □ 汎化能力の高さ
 - □ 低計算量
 - □ サンプルコードからの変更内容の単純さ
 - □ 識別器の性能を十分に引き出す工夫(パラメータの調整,データの使い方等)

● 報告書

- □ 必要条件を適切に満たしていること
- □ 独自性
- □ 機械学習の観点からの考察(学習不足・過学習について等)
- □複数の識別器の比較・検討
- □ 汎化能力以外の性能や識別器の性質に関する考察

提出先:LACS「パターン処理工学特論」レポート課題

提出期限:9月1日(木)17:40

問い合わせ先: tsakai@cis.nagasaki-u.ac.jp

付録:サンプルコード skin_detection.py の仕様

	開発環境 Anacc	onda でサンプルコードは動作確認済み. Python2.7, Python3.5 の両方可.	
	入力:	カラー画像, 肌領域を表す 2 値画像.	
	標準出力:	訓練データと評価用データに対する適合率と再現率,および動作状況.	
	ファイル出力:	推定した肌領域のカラー画像(ファイル名の末尾は "pred_skin.png"),	
		推定した肌領域の2値画像(ファイル名の末尾は "pred_label.png").	
行番号と仕様			
	L11-L12:	識別器の学習と評価用に、カラー画像とその肌領域を表す2値画像を使用す	
		る. これらの画像はそれぞれ img と 1b1 に格納されている.	
		例: カラー画像 img/obama.jpg の	
		肌領域を表す2値画像は lbl/obama.png である.	
	L15-L29:	変数 img_lbl_filenames_train は、訓練データとして使用するカラー画	
		像と 2 値画像のファイル名の組(例えば(obama.jpg, obama.png))のリ	
		ストである. 同様に,変数 img_lbl_filenames_test は評価用データの	
		ファイル名の組のリストである.	
	L35-L37:	numpy, PIL, time を使用する.	
	L39-L45:	関数 read_image_as_3d_points(f)は,カラー画像を 3 次元特徴ベクト	
		ルの集合として読み込む. ファイル名 f のカラー画像の各画素は, 画素値	
		(R,G,B) の 3 つの値で特徴表現される.戻り値 features は,画素数 $ imes 3$	
		のサイズの 2 次元配列である.	
	L47-L51:	関数 read_image_as_labels(f)は、2 値画像をラベルの集合として読み	
		込む. ファイル名 f の 2 値画像の各画素は, 0 (肌領域以外), 1 (肌領域)	
		で表される.戻り値 labels は,画素数のサイズの 1 次元配列である.	
	L53-L62:	関数 fetch_data(image_label_filenames)は,	
		image_label_filenames で与えられたすべてのカラー画像と 2 値画像を	
		読み込み,特徴ベクトルの集合を表す 2 次元配列 features と,それに対応	
		するラベルの集合を表す 1 次元配列 labels を返す.	
	L64-L72:	関数 save_labels_as_image(label_pred, f)は,推定した肌領域のカ	
		ラー画像と2値画像をファイルに出力する. 肌領域の推定結果のラベルの集	
		合 label_pred を 2 値画像(黒 0 (肌領域以外),白 255 (肌領域))として	
		保存する. この 2 値画像は f に "_pred_label" を付加したファイル名の	
		PNG 形式であり、保存場所は 1b1 である. 画像のサイズはファイル名 f の	
		カラー画像と同じとする. また、推定した肌領域を表すカラー画像を保存す	
		る. その保存場所は img であり, fに"_pred_skin" を付加したファイル	

名の PNG 形式である.

□ L78-L79: 識別器 clf は, $\gamma = 10^{-2}$, C = 1の RBF 核関数を用いたサポートベクトルマ

シンとし、sklearn が提供する svm.SVC を使用する.

□ L85-L87: 訓練データを features と labels として読み込む.

□ L90-L92: データ数 (訓練データの全画像の総画素数) が多いので、ランダムに 99%を

捨てた訓練データを features と labels とする.

□ L101: 訓練データ features と labels で識別器 clf を学習する.

□ L112-L114: 訓練誤差を評価し、適合率と再現率を表示する.

□ L116-L117: 評価用データを features test と labels test として読み込み,識別

器 clf で識別する.

□ L118: 汎化誤差を評価し、適合率と再現率を表示する.

□ L128-L136: 訓練データに対して肌領域を推定し、結果を画像で保存する.

□ L145-L153: 評価用データに対して肌領域を推定し、結果を画像で保存する.

ヒント:

▶ サンプルコードは img と lbl にある画像ファイルの一部しか訓練データに使用していない. 訓練データを変更したい場合は, L15-L29の変数 img_lbl_filenames_trainを書き換える.

- ▶ 画素の特徴表現を変更する場合は、L39-L45の関数 read_image_as_3d_points を書き換える.
- ▶ scikit-lean の識別器を変更したい場合は、L78-L79 を書き換える.
- ▶ サンプルコードは読み込んだ画像の一部の画素しか訓練データに使用していない. 使用する画素数を変更したい場合は, L90-L92 で test_size の値を変更する. すべての画素を使用したい場合は L90-L92 の処理を省略する.
- ▶ 推定された肌領域を表すカラー画像と2値画像は、それぞれimgと1b1に保存される. 性能を測るだけの実験をする場合は、L128-L153の処理を省略できる.