Technical Setup in Progress

Training starts at 9:05 am

Please put your name/affiliation in:

- Chat box (Teams Participants)
- Nametags & Chat Box (On-site Participants)

Agenda

Welcome/Introduction

Nicky Sandhu, Jamie Anderson, Nicole Osorio, and Parviz Nader-Tehrani

Session 1: DSM2 Planning Study Input: Presentation and Hands-on

Brad Tom

Session 2: DSM2 Planning Study Output: Presentation and Hands-On Brad Tom

Hands-on Exercise Helpers

Kijin Nam, Ines Ferreira, Peyman Namadi, Wenli Yin, Kevin He

Housekeeping Items

- The training will be recorded in Teams
 - Keep muted / camera off
 - Questions: Teams chat box
 - Hands-on task done: Teams "Raise Your Hand"
- Teams participants:
 - Teams Breakout Room for help with exercises
- On-site participants:
 - Wi-Fi: CNRAGuest
 - Restroom needs CNRA Badge to return
- Training Feedback Survey
 - To be sent out after the training; QR code & link in chat

DSM2 Learning Series: Planning

Oct 27, 2023

Modeling Support Office, Delta Modeling Section

DSM2 Learning Series: Planning Studies

October 27, 2023

Nicky Sandhu, Jamie Anderson, Nicole Osorio, and Parviz Nader-Tehrani

DSM2 Learning Series

DSM2 Learning Series

Follow-Up Survey

Please suggest topics for future learning sessions on the Follow-Up Survey

CALIFORNIA DEPARTMENT OF WATER RESOURCES

Course Prerequisite

DSM2 Quick Start

Course Videos

https://www.youtube.com/playlist?list=PL33EJkVWqE lUkKFFz6A4A0LLyXqLVe HD5

DSM2 Learning Series: Quick Start

June 23, 2023

Course Slides

https://github.com/CADWR
DeltaModeling/DSM2Learning
Series/tree/main/quick_start

Delta Simulation Model II (DSM2)

How is DSM2 used?

Historical

Real-Time

Today's class exercises use 2021 Delivery Capability Report studies AS EXAMPLES ONLY

Planning

e.g. Delta Conveyance, Climate Change

Model Integration-Handshake

What is each one modeling?
How is each one representing it?
How to connect?

- Boundary conditions: Sacramento & San Joaquin River flows, S. Delta pumping, etc in hands-on exercises
- Sea level rise covered briefly today

Interactive Survey

Switch to Menti Paste link in chat

Where to get DSM2 for planning studies

To recreate an existing planning study, get DSM2 executable from that study's release package

To create a new planning study, get DSM2 from the latest release on CNRA open data

DSM2 official releases: CNRA Open Data

Organization

California Department of Water Resources

DWR manages
California's water
resources, systems, and
infrastructure, including
the State Water Project
(SWP), in a responsible,
sustainable way. read
more

Social

Twitter

https://data.cnra.ca.gov/dataset/dsm2

DSM2 v 8.2.2 is used in this learning session

GitHub

https://cadwrdeltamodeling.github.io/dsm2/dsm2_learning_series/ https://github.com/CADWRDeltaModeling/dsm2 https://cadwrdeltamodeling.github.io/dsm2/

DSM2 Learning Series

DSM2 code

DSM2 documentation

Today's Topics

- Brief overview of DSM2 Jamie Anderson
- Historical vs planning studies Jamie Anderson
- CalSim Overview Nicole Osorio
- Training Delta Salinity ANN Nicole Osorio
- Level of Development & Climate Change Jamie Anderson
- CalSim output as DSM2 input Jamie Anderson
- DSM2 planning process Parviz Nader-Tehrani

Delta Simulation Model II (DSM2)

Hydro

Flow, velocity, water levels

Qual

Water Quality Model

- Salinity including chloride, bromide, ...
- Water Temperature
- Dissolved oxygen

GTM

General Transport Model

- Salinity
- Suspended sediment
- Sediment bed
- Mercury
- Modular for easy expansion

ECO-PTM

Ecological Particle Tracking Model

- Neutrally buoyant particles
- Position oriented particles
- Salmon particles

DSM2 Boundary Conditions

In planning studies,
CalSim provides
inflows & exports
to DSM2

Consumptive Use

- From Delta Channel
 Depletion (DCD) model
- Same total amount used in both CalSim & DSM2
- Total amount divided
 -5 locations CalSim
 -200+ locations DSM2

What is a SWP/CVP/Delta planning study?

- A planning study is a long-term operational scenario for the SWP & CVP for specified
 - Hydrology and climate
 - Operating rules and regulatory requirements
 - Water demands
 - Infrastructure & channel configuration
- For scenario comparison purposes
 NOT for recreating historical conditions

Historical vs Planning Studies

Study Type	Models Used		Physical System & Infrastructure	
Historical	NOT CalSim	N/A	N/A	N/A
	DSM2	Based on historical data	Based on historical data	Based on historical data

Baseline may include historically-based hydrology, infrastructure, operating rules and regulations.

CalSim simulations ARE NOT meant to represent actual historical conditions.

Historical vs Planning Studies

Study Type	Models Used	Hydrology and water demands		Operating Rules & Regulations
	NOT CalSim	N/A	N/A	N/A
Historical	DSM2	Based on historical data	Based on historical data	Based on historical data
Planning Baseline + Alternatives	CalSim	Chosen Scenario	Chosen Scenario	Chosen Scenario
	DSM2	Chosen Scenario	Chosen Scenario	Chosen Scenario

Baseline may include historically-based hydrology, infrastructure, operating rules and regulations fo CalSim simulations ARE NOT meant to represent actual historical conditions.

Models Used for Planning Studies

Nicole Osorio will introduce CalSim

CalSim3Water Operations

DSM2
Delta Flows &
Water Quality

Statewide SWP-CVP System

CALSIM 3

- Monthly-timestep statewide long-term planning model
- Simulates operations of the CVP/SWP and the rest of water resources infrastructure in Central Valley and Sacramento-San Joaquin Delta
- Accounts for operational objectives, physical constraints, and legal and institutional agreements and statutes
- Latest versions use 100 years of historical hydrology (WY 1922-2021) which are modified to reflect a fixed level of development

CALSIM 3 Delta Schematic

CALSIM 3 Delta Regulations

- SWRCB Decision-1641 (D-1641)
- 2019 FWS and NMFS Biological Opinions under the Long-Term Operations of the CVP and SWP
- 2020 SWP Incidental Take Permit (ITP)

SWRCB State Water Resources Control Board

FWS Fish & Wildlife Service

NMFS National Marine Fisheries Service

CVP Central Valley Project
SWP State Water Project

CALSIM 3 - ANN

- Artificial Neural Network (ANN) is used to determine the flow-salinity relationship to meet Delta Salinity and X2 position standards
- Trained and validated with DSM2
- Embedded in CALSIM as a dynamic link library (DLL)

CALSIM 3 – D-1641 Salinity Standards

- All studies have these standards:
 - A. Emmaton: Apr-Aug, 0.45-2.78 mmhos/cm EC
 - B. Jersey Point: Apr-Aug, 0.45-2.20 mmhos/cm EC
 - C. Rock Slough: year-round, 130-225 mg/l Cl
 - D. Collinsville: Oct-May, 8.0-19.0 mmhos/cm EC

Modeled standards are based on actual standards, but they have been modified since CalSim has a monthly time step and can't represent daily or 14-day standards directly

EC Electrical Conductivity

CI Chloride

CALSIM 3 – D-1641 Minimum Required Delta Outflow: X2 Position

- X2
 - Location of the 2 ppt isohaline
 (kilometers from Golden Gate Bridge)
 - Represented by EC of 2.64 mmhos/cm
 - Estimated by ANN DLL
 - Three compliance locations
 - Roe, Chipps, Confluence

ANN Artificial Neural Network
DLL Dynamic Link Library
ppt Parts-per-thousand

Training Delta Salinity ANN

Full Circle Analysis

Full-circle ANN retaining needed if a study has

- New infrastructure
- Climate change / sea level rise
- Significant changes in Delta channel configuration

TIP: using an existing ANN saves time and resources if it is appropriate for your study

ANN Artificial Neural Network DLL Dynamic Linked Library

What does level of development mean?

- CalSim 3 uses a "level of development" (LOD) approach to simulate operation of water management facilities and flows in rivers, streams, and channels
- LOD can be thought of as a pattern of water use
- The following are held constant over the simulation period for a specific LOD:
 - Facilities
 - Land use
 - Water supply contracts
 - Regulations

Year Represented in CalSim Hydrology 1922-2021*	1922	1950's	2021

^{*}The 2021 DCR CalSim 3 studies used for this training have a simulation period from 1922-2015. But the latest versions use an extended hydrology from 1922-2021.

Year Represented in CalSim Hydrology 1922-2021*	1922	1950's	2021
Historical-actual evolution through time NOT used in CalSim			

^{*}The 2021 DCR CalSim 3 studies used for this training have a simulation period from 1922-2015. But the latest versions use an extended hydrology from 1922-2021.

Year Represented in CalSim Hydrology 1922-2021	1922	1950's	2021
Historical-actual evolution through time NOT used in CalSim			
Baseline 2020 Level of Development			

CalSim planning studies use a fixed level of development (2020 or 2040) for facilities, land use, water supply contracts, and regulatory requirements for the entire simulation period, not an evolving level of development.

Year Represented in CalSim Hydrology 1922-2021	1922	1950's	2021
Historical-actual evolution through time NOT used in CalSim			
Baseline 2020 Level of Development			
Future Scenarios 2040 Level of Development			

CalSim planning studies use a fixed level of development (2020 or 2040) for facilities, land use, water supply contracts, and regulatory requirements for the entire simulation period, not an evolving level of development.

Climate Change in DSM2 Planning Studies

- Changes in Delta inflows and exports come from CalSim
 - Climate change methodologies evolve, so different studies may not use the same climate change representation
 - DSM2 "inherits" the climate change representation used in the CalSim study as it is reflected in Delta inflows and exports
- Martinez water levels are detrended to bring the entire baseline time series to the same base sea level
- For sea level rise,
 - Retrain CalSim ANN (0, 15, 30, and 55 cm currently available)
 - Adjust Martinez water levels and salinity

Provided for today's hands-on exercises

Water Year Types can change for Climate Change Scenarios

Above Normal 7.8 < 9.2

Below Normal 6.8 ≤ 7.8

Dry $5.4 \le 6.5$

Critical <5.4

Sacramento Valley Water Year Index =

0.4 * Current Apr-Jul Runoff Forecast (in maf) + 0.3 *

Current Oct-Mar Runoff in (maf) +

0.3 * Previous Water Year's Index

**Similar index for San Joaquin Valley

Studies that have changes in hydrology, such as climate change, can change the water year types in CalSim WYT_SAC_ and WYT_SJR_

Some operations and standards are based on water year type

DSM2 Planning Study Inputs

From CalSim

- Delta Inflows: Sacramento, San Joaquin, and others
- Export pumping: SWP, CVP, and other Delta exports
- Delta Cross Channel and Suisun Marsh Salinity Control Gate operations
- Level of sea level rise (if used)

Assumption/User Input

- Martinez water levels and salinity
- Temporary barrier installation/removal dates (if used)
- Head of Old River operations (if used)
- Study specific assumptions

Sample DSM2 input from CalSim3 Output

A single DSM2 input may be several CalSim outputs combined

DSM2 and CalSim have different time steps

- 1-month CalSim
- 15-min DSM2

DSM2 Name		DSM2 Node	CalSim3	
BOUNDARY_FLO)W			
sac	FLOW	330	C_SAC041	
vernalis		17	C_SJR070	
calaveras	FLOW-CHANNEL	21	C_CLV004	
cosumnes		446	C_CSM005	
yolo		316	C_CSL005	
moke	FLOW-INFLOW	447	C_MOK022 SR_60N_MOK019 SR 26S MOK014	
SOURCE FLOW				
COSMA1	FLOW-DELIVERY	33	D_SJR028_WTPDWS	
northbay		273	C_CSL004B	
ccc		206	D408	
cvp		181	C_DMC000	
SOURCE_FLOW_RESERVOIR				
swp	FLOW-DELIVERY	clifton_court	C_CAA003	
NODE_CONCENTRATION				
vernalis	SALINITY-EC	17	VERNWQFINAL	

DSM2 Downstream Boundary Martinez

DSM2 Planning Process NO Sea Level Rise

SCHISM corroboration

- SCHISM corroboration for sea level rise
 - changes DSM2 dispersion coefficients and
 - helps create EC boundary conditions
- Only used in scenarios with sea level rise

DSM2 Planning Process with Sea Level Rise

ANN=Artificial Neural Network EC=Electrical Conductivity

DCD=Delta Channel Depletion
SMCD= Suisun Marsh Channel Depletion

Questions?

Please enter questions into the chat

DSM2 QR Codes & break timer next slide

Prabhjot.Sandhu@water.ca.gov
Jamie.Anderson@water.ca.gov
Nicole.Osorio@water.ca.gov
Parviz.Nader-Tehrani@water.ca.gov

10-minute break

DSM2 Learning Series

DSM2 Releases

Follow-Up Survey

DSM2 code

10:00

DSM2 Quick Start

DSM2 documentation