Analysis I

Wintersemester 2013/2014

Prof. Dr. D. Lenz

Blatt 4

Abgabe 14.11.2013

- (1) Sei $(K,+,\cdot)$ ein angeordneter Körper. Beweisen Sie, dass für alle $a,b,\lambda\in K$ mit $\lambda>0$ gilt
 - (a) $|ab| \le \frac{1}{2\lambda}a^2 + \frac{\lambda}{2}b^2$,
 - (b) $(a+b)^2 \ge 4ab$.
- (2) Sei $(K, +, \cdot)$ ein angeordneter Körper. Zeigen Sie, dass für $r, s \in K$ mit $0 \le r < s$ gilt

$$\frac{r}{1+r} < \frac{s}{1+s}.$$

(3) Sei $(K, +, \cdot)$ ein angeordneter Körper. Zeigen Sie, dass eine Menge $M \subseteq K$ genau dann nach oben beschränkt ist, wenn -M nach unten beschränkt ist. Weisen Sie nach, dass sup M genau dann existiert, wenn $\inf(-M)$ existiert und dass in diesem Fall gilt

$$\inf(-M) = -\sup M.$$

(4) Betrachten Sie den Körper \mathbb{Q} der rationalen Zahlen. Zeigen Sie, dass $\{q \in \mathbb{Q} : q^2 \leq 2\}$ kein Supremum in \mathbb{Q} besitzt.

Zusatzaufgabe

Seien $n \in \mathbb{N}$ mit $n \geq 2$ und $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$ gegeben. Sei $\alpha_m := \sum_{k=1}^m a_k$ für $m = 1, \ldots, n$. Zeigen Sie die Gültigkeit von

$$\sum_{k=1}^{n} a_k b_k = \alpha_n b_n + \sum_{k=1}^{n-1} \alpha_k (b_k - b_{k+1}).$$