西南交通大学 2019-2020 学年第(二)学半期试卷

课程代码 MATH000112 课程名称 线性代数 考试时间 60 分钟

题号	1		四	五	六	七	八	总成绩
得分								

阅卷教师签字:

1. 计算行列式
$$D_4 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 16 & 81 & 256 \end{vmatrix}$$

2.
$$abla A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 3 \\ 1 & 2 \\ 3 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 4 \\ 0 & -2 \end{pmatrix}, \quad p = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

求 (1) $2A+3B^T$; (2) B^TA^T ; (3) |AB|; (4) (AB+C)p.

3.设
$$A = \begin{pmatrix} 2 & 2 & o \\ -1 & -1 & o \\ o & 1 & 1 \\ o & 0 & 1 \end{pmatrix}$$
,求 A^2 及 A^{2020} .

4.
$$\exists \mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{Q} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{d} & \mathbf{e} & \mathbf{f} \end{pmatrix},$$

求 (1) PAQ; (2) Q^5A ; (3) AQ^3 .

5.
$$\Box$$
知 $A = \begin{pmatrix} 4 & 1 & -2 \\ 2 & 2 & 1 \\ 3 & 1 & a \end{pmatrix}$, $B = \begin{pmatrix} 1 & -3 \\ 2 & 2 \\ 3 & -1 \end{pmatrix}$,

- (1) **a** 为何值时,矩阵 **A** 可逆?
- (2) 在A可逆时,解矩阵方程AX = B.

6. 已知矩阵
$$A = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix}$$
,

- (1) 求的秩,并求一个最高阶非零子式;
- (2) 用初等行变换将 A 化成行最简形阵。

7. **λ**取何值时,线性方程组
$$\begin{cases} 3x_1 + x_2 + x_3 = 4 \\ \lambda x_1 + 4x_2 + 10x_3 = 1 \\ x_1 + 7x_2 + 17x_3 = 3 \end{cases}$$
有无穷解? 并在无穷解时求其解.
$$2x_1 + 2x_2 + 4x_3 = 3$$