EDHEC S 2020

Exercice 1

Soit f la fonction définie par

$$\forall (x, y, z) \in \mathbb{R}^3, \qquad f(x, y, z) = x e^{x(y^2 + z^2 + 1)}$$

- 1. Montrer que f est de classe \mathcal{C}^2 sur \mathbb{R}^3
- 2. Déterminer le seul point critique A de f.
- 3. (a) Calculer les valeurs des dérivées partielles d'ordre 2 de f en A.
 - (b) Former la hessienne de f au point A et vérifier qu'elle est diagonale. Montrer que f présente un minimum local en A. Préciser la valeur de ce minimum.
- 4. (a) Montrer que, pour tout (x, y, z) de \mathbb{R}^3 , $f(x, y, z) \geq xe^x$.
 - (b) Que peut-on en déduire pour le minimum de f trouvé à la question 3.(b)?
- 5. On souhaite étudier les extrema de f sous la contrainte linéaire (C): $\begin{cases} x = 1 \\ x + y = 0 \end{cases}$. Montrer que, sous la contrainte (C), f présente un minimum global au point (1,0,0). Quelle est sa valeur?
- 6. On souhaite maintenant étudier les extrema de f sous la contrainte $(C'): x(y^2+z^2+1)=1$. Montrer que f possède un maximum global sous la contrainte (C'). En quel point est-il atteint? Quelle est sa valeur?

Exercice 2

On désigne par n un entier naturel supérieur ou égal à 2.

Soit X une variable aléatoire suivant la loi uniforme sur le segment $[0;\theta]$, où θ (theta) désigne un réel strictement positif.

- 1. On note f une densité de X, F sa fonction de répartition, $\mathbb{E}(X)$ son espérance et $\mathbb{V}(X)$ sa variance.
 - (a) Rappeler l'expression explicite de F(x) en fonction de x et θ .
 - (b) Donner les valeurs de $\mathbb{E}(X)$ et $\mathbb{V}(X)$.

Dans la suite, on suppose que le réel θ est inconnu et on en propose deux estimateurs. Pour construire ces estimateurs, on dispose d'un échantillon $(X_1,...,X_n)$ de la loi de X, ce qui signifie que $X_1,...,X_n$ sont n variables aléatoires, définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, mutuellement indépendantes et de même loi que X.

- 2. On pose $Y_n = \max(X_1, X_2, \dots, X_n)$ et on admet que Y_n est une variable aléatoire, elle aussi, définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.
 - (a) On rappelle qu'en Scilab, la commande grand(x,y,'unf',a,b) simule $x \times y$ variables aléatoires indépendantes suivant toutes la loi uniforme sur [a;b]. Écrire des commandes Scilab permettant d'entrer les valeurs des variables qui sont nécessaires et de simuler Y_n .
 - (b) On note F_n la fonction de répartition de Y_n . Pour tout réel x, écrire $F_n(x)$ à l'aide de F(x) puis déterminer explicitement $F_n(x)$.
 - (c) En déduire que Y_n est une variable aléatoire à densité, puis donner une densité f_n de Y_n .
 - (d) Montrer que Y_n est un estimateur asymptotiquement sans biais de θ .
- 3. On pose maintenant $Z_n = \frac{1}{n} \sum_{i=1}^n X_i$. Déterminer $\mathbb{E}(Z_n)$ puis proposer un estimateur $\widehat{Z_n}$, construit de façon affine à partir de Z_n , et qui soit un estimateur sans biais de θ .

Définition

On dit qu'un estimateur T_n de θ est d'ordre de convergence $\alpha > 0$ lorsque la suite $(n^{\alpha}(T_n - \theta))_{n \in \mathbb{N}^*}$ converge en loi vers une variable aléatoire qui n'est pas quasi-certainement nulle.

- 4. (a) Utiliser le théorème de Slutsky pour établir le résultat suivant : si une suite $(R_n)_{n\in\mathbb{N}^*}$ de variables aléatoires converge en loi vers une variable aléatoire R et si $(a_n)_{n\in\mathbb{N}^*}$ est une suite de réels qui converge vers le réel a, alors la suite $(a_nR_n)_{n\in\mathbb{N}^*}$ converge en loi vers la variable aléatoire aR.
 - (b) Déduire de ce résultat l'unicité de l'ordre de convergence d'un estimateur (on pourra raisonner par l'absurde en supposant qu'un estimateur T_n de θ possède deux ordres distincts, α et β , avec par exemple $0 < \alpha < \beta$).
- 5. On considère, dans cette question, une variable aléatoire T suivant la loi exponentielle de paramètre $\frac{1}{\theta}$ et on pose Y = -T. Déterminer la fonction de répartition, que l'on notera F_Y de Y.
- 6. (a) Justifier que, pour tout réel x positif ou nul, on a $\mathbb{P}(nY_n \theta) \leq x$ = 1.
 - (b) Montrer que, pour tout réel x strictement négatif et pour tout entier naturel n supérieur à $-\frac{x}{\theta}$, on a l'égalité

$$\mathbb{P}(n(Y_n - \theta)) \le x) = \left(1 + \frac{x}{n\theta}\right)^n$$

- (c) Établir enfin que $n(Y_n \theta)$ converge en loi vers la variable aléatoire Y. Conclure quant à l'ordre de convergence de Y_n .
- 7. (a) Justifier que $\widehat{Z_n} = \frac{1}{n} \sum_{i=1}^n (2X_i)$, où $\widehat{Z_n}$ est l'estimateur présenté à la troisième question.
 - (b) On pose $\widehat{Z_n}^* = \sqrt{n} \frac{\widehat{Z_n} \mathbb{E}(2X)}{\sqrt{\mathbb{V}(2X)}}$. En appliquant le théorème limite central à la suite de variables aléatoires $(2X_n)_{n \in \mathbb{N}^*}$, montrer que $\widehat{Z_n}^*$ converge en loi vers une variable aléatoire Z dont on précisera la loi.
 - (c) Vérifier que $\widehat{Z_n}^* = \frac{\sqrt{3n}}{\theta}(\widehat{Z_n} \theta)$ et en déduire que $\sqrt{n}(\widehat{Z_n} \theta)$ converge en loi vers une variable aléatoire $\mathcal{N}\left(0, \frac{\theta^2}{3}\right)$. Donner l'ordre de convergence de $\widehat{Z_n}$.

Exercice 3

Dans tout l'exercice, on désigne par E un \mathbb{R} -espace vectoriel de dimension n ($n \geq 2$), on note Id l'endomorphisme identité de E et θ l'endomorphisme nul de E. Pour tout endomorphisme f de E, on appelle trace de f, le réel, noté $\mathrm{Tr}(f)$, égal à la trace de n'importe laquelle des matrices représentant f.

On admet que l'application trace, ainsi définie, est une forme linéaire sur $\mathcal{L}(E)$.

Partie 1 : préliminaires

- 1. On considère un projecteur p de E, c'est-à-dire un endomorphisme de E tel que $p \circ p = p$.
 - (a) Montrer que $E = \operatorname{Ker}(p) \oplus \operatorname{Im}(p)$
 - (b) Établir que Im(p) = Ker(Id p)
 - (c) En déduire que p est diagonalisable et que l'on a :

$$rg(p) = Tr(p)$$

2. Montrer par récurrence sur k $(k \in \mathbb{N}^*)$ que, si E_1, \ldots, E_k sont des sous-espaces vectoriels de E, alors on a l'inégalité :

$$\dim(E_1 + \dots + E_k) \le \dim(E_1) + \dots + \dim(E_k)$$

Partie 2 : condition nécessaire et suffisante pour qu'une somme de projecteurs soit un projecteur

Soit un entier naturel k supérieur ou égal à 2. On considère des projecteurs de E, notés p_1, p_2, \ldots, p_k et on note $q_k = p_1 + p_2 + \ldots + p_k$.

- 3. Montrer que si, pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$, alors q_k est un projecteur.
 - On suppose dans toute la suite que q_k est un projecteur et on souhaite montrer que, pour tout couple (i,j) de $[\![1,k]\!]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$.
- 4. (a) Montrer que $\operatorname{Im}(q_k)$ est inclus dans $\operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$.
 - (b) Établir, grâce aux résultats de la partie 1, que $\operatorname{rg}(q_k) = \dim(\operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k))$, puis en déduire que $\operatorname{Im}(q_k) = \operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$.
 - (c) Établir finalement l'égalité

$$\operatorname{Im}(q_k) = \operatorname{Im}(p_1) \oplus \ldots \oplus \operatorname{Im}(p_k)$$

- 5. (a) Montrer que, pour tout j de [1, k], on a l'égalité $q_k \circ p_j = p_j$.
 - (b) En déduire que, pour tout j de [1, k], on a : $\forall x \in E$, $\sum_{\substack{i=1\\i\neq j}}^k p_i\left(p_j(x)\right) = 0$.
 - (c) Montrer alors que, pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$.
- 6. Conclure quant à l'objectif de cette partie.

Problème

Partie 1 : préliminaires (les trois questions sont indépendantes)

- 1. Pour tout entier naturel n non nul, on pose $u_n = \sum_{k=1}^n \frac{1}{k} \ln(n)$.
 - (a) Compléter le script Scilab suivant pour qu'il calcule et affiche u_n pour une valeur de n entrée par l'utilisateur

```
n=input('entrez une valeur pour n :')
x=1:n
u=----
disp(u)
```

- (b) Justifier que, pour tout entier naturel k non nul, on a $\frac{1}{k+1} \le \ln(k+1) \ln(k) \le \frac{1}{k}$.
- (c) Utiliser la question précédente pour montrer que, pour tout n de \mathbb{N}^* , on a :

$$0 \le u_n \le 1$$

- 2. Dans cette question, x désigne un réel élément de [0;1[.
 - (a) Pour tout n de \mathbb{N}^* et pour tout t de [0;x], simplifier la somme $\sum_{p=1}^n t^{p-1}$.
 - (b) En déduire que, pour tout n de \mathbb{N}^* , on a

$$\sum_{p=1}^{n} \frac{x^p}{p} = -\ln(1-x) - \int_0^x \frac{t^n}{1-t} dt$$

- (c) Montrer que $\lim_{n\to+\infty} \int_0^x \frac{t^n}{1-t} dt = 0$.
- (d) Établir alors que la série de terme général $\frac{x^p}{p}$ est convergente et que

$$\sum_{p=1}^{+\infty} \frac{x^p}{p} = -\ln(1-x)$$

3. On considère deux suites réelles $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ à termes positifs et on suppose que les séries de termes généraux a_n et b_n sont convergentes, de somme respectives $A = \sum_{n=1}^{+\infty} a_n$ et $B = \sum_{n=1}^{+\infty} b_n$.

Pour tout entier naturel n non nul, on pose $c_n = \sum_{k=1}^n a_k b_{n-k}$.

(a) Montrer que :
$$\forall n \in \mathbb{N}^*$$
, $\sum_{k=1}^n c_k \le \left(\sum_{k=1}^n a_k\right) \left(\sum_{k=0}^n b_k\right) \le \sum_{k=1}^{2n} c_k$.

(b) En déduire que la série de terme général c_n converge et que l'on a

$$\sum_{n=1}^{+\infty} c_n = \left(\sum_{n=1}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$$

- (c) Soit x un réel élément de [0;1[. On suppose dans cette question que l'on a $a_k = \frac{x^k}{k}$ $(k \in \mathbb{N}^*)$ et $b_k = x^k$ $(k \in \mathbb{N})$.
 - i. Justifier rapidement que les séries de termes généraux a_n et b_n sont convergentes et à termes positifs.
 - ii. Compléter le script Scilab suivant pour qu'il calcule et affiche la valeur de c_n pour une valeur de n entrée par l'utilisateur.

```
n=input('entrez une valeur pour n :')
x=input('entrez une valeur pour x :')
u=1:n
v=n-1:-1:0
a=-----
b=-----
c=-----
```

iii. Donner l'expression de c_n sous forme d'une somme.

Partie 2 : étude d'une fonction définie comme somme d'une série

Dans cette partie on désigne toujours par x un réel [0;1].

4. (a) Utiliser la troisième question du préliminaire pour établir que :

$$\sum_{n=1}^{+\infty} \left(\sum_{k=1}^n \frac{1}{k} \right) x^n = \left(\sum_{n=1}^{+\infty} \frac{x^n}{n} \right) \left(\sum_{n=0}^{+\infty} x^n \right)$$

- (b) En déduire que : $\sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \right) x^n = \frac{-\ln(1-x)}{1-x}$
- 5. (a) Montrer que, pour tout réel u strictement positif, on a $\ln(u) \leq u$.
 - (b) En déduire que la série de terme général $(\ln(n))x^n$, avec $n \ge 1$, est convergente.
- 6. On pose : $f(x) \sum_{n=1}^{+\infty} (\ln(n)) x^n$.
 - (a) Établir, en utilisant le résultat de la question 1.(c) que : $\frac{-\ln(1-x)}{1-x} \frac{x}{1-x} \le f(x) \le \frac{-\ln(1-x)}{1-x}$
 - (b) Montrer finalement l'équivalent suivant : $f(x) \approx \frac{-\ln(1-x)}{1-x}$
- 7. (a) Étudier les variations de la fonction f.
 - (b) Dresser le tableau de variations de f (valeur en 0 et limite en 1^- comprises).

- 8. (a) En remarquant que $f(x) = \sum_{n=2}^{+\infty} (\ln(n))x^n$, montrer que l'on a $0 \le f(x) \le \frac{x}{(1-x)^2} x$.
 - (b) En déduire que f est continue à droite en 0 et dérivable à droite 0. Donner la valeur du nombre dérivée à droite en 0 de f.
 - (c) On admet que f est continue sur [0;1[. Donner la nature de l'intégrale $\int_0^1 f(x) dx$.