编号 姓名 专业 第*次作业

一、对应分析和典型相关分析

1.

由以上可知,有70%可用第一维度表示。

相应的坐标和散布图如下

Row scores:

_		
	[,1]	[,2]
1	-0.6781	0.30671
2	-0.8206	0.67031
3	-0.7078	0.08213
4	-0.9228	-1.87861
5	-0.6675	1.65574
6	1.2901	-0.08889
7	-0.7137	0.93068
8	-0.8776	-1.48437

Column scores:

	[,1]	[,2]
x1	-0.6508	0.4202
x2	-0.7725	-0.2051
x3	-0.4937	0.1815
X4	-0.5928	1.0371
X 5	-1.0072	-2.7230
X6	1.4506	-0.1662

由散布图可知,取样点和污染物可分为三类。 污染物X1,X2,X3,X4主要分布在取样点1,2,3,5,7附近。 污染物X5主要分布在取样点4,8附近。 污染物X6主要分布在取样点6附近。

plot (data.ca)

2.

(1).对应分析:

求出协方差,特征值及特征向量,得到前两个方差的累计贡献率为87%,可以继续进行, 计算载荷矩阵并化为图片可得:

(2).R型因子分析法;

使用pcacov函数(标准化后)得到R因子结果:

F₁主要是生活用品及其他、食品、文化生活服务支出,占贡献率59%

F₂主要是食品和生活用品及其他,占贡献率22%

F3主要是衣着,占贡献率10%

总贡献率91%,主要因素为生活用品及其他和食品.

总分排行为:上海,北京,浙江,天津,辽宁,江苏,吉林,山东,内蒙古,安徽,福建, 黑龙江,山西,河南,江西,河北.

(3).聚类分析:

使用clusterdata函数(标准化后)得到聚类结果:

第一类: 北京

第二类:上海

第三类:河北、山西、内蒙、山东、河南

第四类:天津、辽宁、吉林、黑龙江、江苏、浙江、安徽、福建、江西

结果相差不大。

3.先进行卡方检验

```
setwd('F:\\XMU_files数学竞赛数学建模\\\\\CH17')

B <- data.frame(jinhuang=c(326,688,343,98),hong=c
(38,116,84,48),he=c(241,584,909,403),

shenhong=c(110,188,412,681),hei=c(3,4,26,85))

row.names(B)=c('lan','danlan','qianlan','shenlan')

B

chisq.test(B)
```

输出结果为:

p值远小于0.05,可见其因素之间存在着较强的相关性。

(2)画散点图。

```
B. ca <- corresp (B, nf=2)

B. ca

biplot (B. ca, cex=0.8)

abline (v=0,h=0,lty=3)
```

输出结果为:

```
First canonical correlation(s): 0.4464 0.1735
 Row scores:
            [,1]
                     [,2]
lan
        -0.89679
                  0.9536
       -0.98732
                  0.5100
danlan
qianlan 0.07531 -1.4125
shenlan 1.57435
                  0.7720
 Column scores:
                      [,2]
             [,1]
jinhuang -1.21871
                   1.0022
         -0.52258
                   0.2783
hong
         -0.09415 -1.2009
he
shenhong
          1.31888
                   0.5993
hei
          2.45176
                    1.6514
```


所以可以分为三类,眼睛蓝色、淡蓝色的和头发金黄色为一类,眼睛浅蓝色和头发为红色、 褐色一类,眼睛深蓝与头发深红和黑色一类。

4.利用R语言进行对应分析:

```
> fly <- read.csv("data.csv", header=FALSE)
  > library (MASS)
  > ca < corresp (fly ,2)
25
  > ca
   First canonical correlation(s): 0.4962368 0.1641114
28
   Row scores:
29
                [,1]
                            [,2]
30
    [1,] -0.7842683 0.47552200
    [2,] 0.5970759 -0.57565401
32
    [3,] -0.4193079 -2.03182344
33
    [4,] 1.2136436 -0.53073893
34
    [5,] -1.0079221 -0.94915578
35
    [6,] -0.9903145 1.22215357
    [7,] 1.3023041 0.01323004
37
    [8,] 1.0485474 1.21727682
38
    [9,] -1.0750760 0.64503980
39
40
    Column scores:
            [,1]
                         [,2]
42
   V1 1.0327867 0.28897091
43
   V2 = 0.8302158 -0.69834341
44
  V3 - 0.5834084 \quad 0.50588567
  V4 0.3678161
                  1.85037509
  V5 -1.1831337
                  0.48894732
47
  V6 0.9958246
                  0.74368787
48
  V7 \quad 1.1575836 \quad -1.58884144
49
  V8 -1.2682184 -0.05064382
  V9 -1.0208052 -1.22517528
  > summary(ca)
52
          Length Class
                        Mode
53
```

```
        54
        cor
        2
        -none- numeric

        55
        rscore 18
        -none- numeric

        56
        cscore 18
        -none- numeric

        57
        Freq 81
        -none- numeric

        58
        > biplot (ca)
```

得到图像:

5、利用R语言进行对应分析:

```
data <- read.csv("F:\\R_project\\5.csv",header=FALSE)

library(MASS)

ca <- corresp(data,2)

ca

summary(ca)
biplot(ca)</pre>
```

得到图像:

6.

```
    Principal inertias (eigenvalues):

    1
    2
    3
    4
    5
    6
    7
    8
    9

    Value
    0.11563
    0.090524
    0.024469
    0.019529
    0.012688
    0.005121
    0.002601
    0.001195
    0.00054

    Percentage
    42.46%
    33.24%
    8.99%
    7.17%
    4.66%
    1.88%
    0.96%
    0.44%
    0.2%
```

由以上可知,有42.46%可用第一维度表示,33.24%可用第一维度表示 相应的坐标和散布图如下

由上图可知,地区11受各种癌症死亡的人数较多,3,9,12,7,6,4,2,8各种癌症死亡人数一般,地区10和5主要受食道癌症的影响。膀胱癌和宫颈癌致死的病例较少,地区一主要死亡因素是胃癌。

```
数据输入省略

66

67 library(ca)

68 library(MASS)

69 data.ca=ca(data)

70 data.ca

71 plot(data.ca)

72 data.ca1=corresp(data,nf=2)

73 data.ca1
```

7.

代码如下:

```
xx = [\dots]
  [n p] = size(xx);
  T=sum(sum(xx));
76
  xcols = zeros(1,p);
77
  xrows = zeros(1,n);
78
  for k=1:p
79
            x cols(k) = sum(xx(:,k));
80
  end
  for l=1:n
            xrows(1) = sum(xx(1,:));
83
  end
84
  z=zeros(p,p);
85
  for i=1:n
86
            for j=1:p
87
            z(i, j) = (xx(i, j) - xrows(i) * xcols(j)/T)/((
88
               xrows(i)*xcols(j))^(1/2);
            end
89
  end
  a=z '* z
  [X b] = eig(a)
```

第一个方差的贡献率已达96.1%,接下来计算载荷矩阵:

```
f=zeros(p)
for t=1:p
f(t)=(0.0417^{0.5})*(X(t,5))
end
f
g=z*f
```

结果如下:

```
f =
            g =
                0.0104
   -0.0169
               -0.0117
   -0.0031
               -0.0079
   -0. 2029
               -0.0041
    0.0106
    0.0109
               -0.0091
               -0.0027
               -0.0010
               -0.0011
               -0.0034
               -0.0114
                0.0014
               -0.0343
               -0.0007
```

```
R \leftarrow data.frame(c(1,0.63,0.24,0.59),c)
      (0.63,1,-0.06,0.07), c(0.24,-0.06,1,0.42), c
      (0.59, 0.07, 0.42, 1))
   colnames (R) <- c("X1", 'X2', 'Y1', "Y2")
100
   row.names(R) <- c("X1", 'X2', 'Y1', "Y2")
101
   rho11 \leftarrow matrix(c(1,0.63,0.63,1),nrow = 2)
102
   rho12 \leftarrow matrix(c(0.24, -0.06, 0.59, 0.07), 2, 2)
103
   rho21 \leftarrow matrix(c(0.24, 0.59, -0.06, 0.07), 2, 2)
104
   rho22 \leftarrow matrix(c(1,0.42,0.42,1),nrow = 2)
105
  A <- solve (rho11)%*%rho12%*%solve (rho22)%*%rho21
  Α
107
  B <- solve (rho22)%*%rho21%*%solve (rho11)%*%rho12
  В
109
   a <- eigen (A) $ value
110
   a \leftarrow sqrt(a)
111
112
   eigen (A)
   eigen (B)
114
```

```
> a <- eigen(A)$value
> a
[1] 0.50255340 0.01091574
> a <- sqrt(a)
> a
[1] 0.7089100 0.1044784
```

```
eigen(A)
eigen() decomposition
$values
[1] 0.50255340 0.01091574
$vectors
           [,1]
[1,] 0.8715828 -0.1040107
[2,] -0.4902484 0.9945762
> eigen(B)
eigen() decomposition
$values
[1] 0.50255340 0.01091574
$vectors
            [,1]
[1,] -0.09706182 -0.8954425
[2,] -0.99527835 0.4451773
```

 $U_1 = 0.8715828x_1 - 0.4902484x_2$

 $V_1 = -0.09706182y_1 - 0.99527835y_2$

第一典型相关系数为0.7089100,即阅读能力和运算能力之间的相关程度较高。

9.

利用R语言进行典型相关分析:

```
> data = read.table("9.txt", header=T, row.names=1)
   > data <- scale (data)
   > ca <- cancor(data[,1:2],data[,3:5])
117
   > ca
   $cor
119
   [1] 1.000000 0.419282
120
121
   $xcoef
122
            [,1] [,2]
   x1 0.3341978 0.9825477
   x2 \quad 0.1805112 \quad -1.0220097
125
126
```

```
$ycoef
                  [,1]
                           [\;,2\,]
                                                  [,3]
128
    y1 -0.6790076 \ 0.2956356 \ -0.3848459
129
    y2 -0.1867460 \ 0.6685178 \ -0.3023967
130
    y3 -0.6302582 \ 0.5688273
                                          0.1119758
131
132
     $xcenter
133
                   x1
134
     1.332268 \, \mathrm{e}{-16} \ \ 9.436896 \, \mathrm{e}{-17}
136
     $ycenter
137
                                       y2
                   y1
                                                          y3
138
     7.771561\,\mathrm{e}{-17}\ 6.453171\,\mathrm{e}{-17}\ 4.440892\,\mathrm{e}{-17}
139
```


10、利用R语言进行对应分析:

```
data <- read.csv("F:\\R_project\\10.csv", header=FALSE)
library(MASS)
ca <- corresp(data,2)
ca
summary(ca)</pre>
```

```
biplot (ca)
```

得到图像:


```
data=load('1.txt');

rho11=data(1:5,1:5);

rho12=data(1:5,6:12);

rho21=data(6:12,1:5);

rho22=data(6:12,6:12)

A=(rho11^(-1))*rho12*(rho22^(-1))*rho21;
```

$$B = (\text{rho22}^{\circ}(-1)) * \text{rho21} * (\text{rho11}^{\circ}(-1)) * \text{rho12};$$

$$[X1, B1] = \text{eig}(A)$$

$$[X2, B2] = \text{eig}(B)$$

$$C = \text{sqrt}(B1)$$

$$U_1 = -0.6246x_1 - 0.2890x_2 - 0.2483x_3 + 0.0339x_4 - 0.6808x_5$$

 $V_1 = 0.5542y_1 - 0.2723y_2 - 0.0468y_3 + 0.0307y_4 + 0.3784y_5 + 0.6722y_6 - 0.1436$ 第一典型相关系数仅为30.66%,即职业特性与职业满意度之间的关系不是很强烈。

12.

include 'Canonical co		x1	x2	y1	y2	第
cancorr set1=x1 x2/	1	191.00	155.00	179	145.00	
set2=y1 y2/.	2	190.00	159.00	195	157.00	
	3	195.00	149.00	201	152.00	
	4	188.00	151.00	187	158.00	
	5	181.00	148.00	185	149.00	
	6	163.00	137.00	161	130.00	
	7	183.00	153.00	188	149.00	
	8	195.00	155.00	183	158.00	
	9	176.00	144.00	171	142.00	
	10	186.00	153.00	173	148.00	
	11	208.00	157.00	192	152.00	
	12	181.00	145.00	182	146.00	
	13	189.00	150.00	190	149.00	
	14	175.00	140.00	165	137.00	
	15	197.00	159.00	189	152.00	
	16	192.00	154.00	185	152.00	

使用spss软件的cancorr函数可得:

两对典型变量中:第一对的典型相关系数达到0.788,属于强相关,而第二对只有0.054,比较弱,

长子的头型变量被自身的第一典型变量解释了86.7%,次子的头型变量被自身的第一典型变量解释了91.8%

$$C \leftarrow \text{read.table}("13.txt", \text{header} = T)$$

```
C
cancor(C[,1:7],C[,8:12])
```

```
cancor(C[,1:7],C[,8:12])
[1] 0.8446422 0.6772783 0.5392241 0.3640115 0.2612006
$xcoef
           [,1]
X1 -0.0176900504 -0.0013416603 0.024267009
                                          0.0274619332 -0.0011694343
X2 -0.0097306145 -0.0048184242 -0.025647931 -0.0109187810 -0.0038759988
                                                                     0.010868117 -0.003532008
X3 -0.0057862464 0.0008912145 0.007620476 -0.0004049028 0.0008067791
X4 -0.0025517033 0.0050088988 -0.021522447 0.0141127701 0.0193950276 -0.009032014
X5 -0.0024885265 0.0112180557 -0.003032145 -0.0065216986
                                                        0.0003432800
                                                                      0.001831411
                                                                                   0.002941728
X6 -0.0006364595 -0.0043165567
                              0.007302303 -0.0113477501
                                                        0.0037698698 -0.027892484
                                                                                  0.004026108
X7 -0.0005583015 -0.0026184356
                              $ycoef
    0.1621331150 -0.389885929 -0.0278378038 -0.2699051234
X8
X9 -0.0011889660 -0.003330845 -0.0001445273 0.0031997318
X10 -0.0253937298 -0.011295209 0.0326615721 -0.0406126662 -0.0408377643
X11 -0.0043748296    0.003612972    -0.0458265169    -0.0349500428    -0.0001551957
X12 0.0008931099 -0.001221382 -0.0018132491 -0.0004000009 -0.0036974720
$xcenter
                          X3
                                   X4
                                             X5
                X2
47.42105
          59.68421 114.47368
                             44.63158
                                       66.90789
                                                 15.34211
                                                          59.73684
$ycenter
       X8
                           X10
                                      X11
  7.128947 439.789474
                     27.815789
                                 7.578947 361.500000
```

所以第一典型相关系数为0.8446422, 第二典型相关系数为0.6772783,

```
U_1 = -0.0176900504x_1 - 0.0097306145x_2 - 0.0057862464x_3 - 0.0025517033x_4 - 0.0024-0.0006364595x_6 - 0.0005583015x_7U_2 = -0.0013416603x_1 - 0.0048184242x_2 + 0.0008912145x_3 + 0.0050088988x_4 + 0.0112-0.0043165567x_6 - 0.0026184356x_7
```

 $V_2 = -0.389885929x_8 - 0.003330845x_9 - 0.011295209x_10 + 0.003612972x_11 - 0.001221$ 第一组第一典型变量 U_1 主要代表 X_1 反复横荡次数, X_2 纵跳高度和 X_3 背力,第

 $V_1 = 0.1621331150x_8 - 0.0011889660x_9 - 0.0253937298x_10 - 0.0043748296x_11 + 0.00089$

二典型变量 U_2 主要代表 X_5 塔台升降指数, X_4 握力和 X_2 纵跳高度。

第二组第一典型变量 V_1 主要代表 X_8 50米跑,第二典型变量 V_2 主要代表 X_8 50米跑,但呈现负相关。

```
> data = read.table("14.txt", header=T, row.names=1)
   > data <- scale (data)
160
   |> ca <- cancor(data[,1:3],data[,4:6])
161
   > ca
162
   $cor
163
    [1] \quad 0.79356211 \quad 0.19006613 \quad 0.02265696
164
165
   $xcoef
166
                [,1]
                               [,2]
                                              [,3]
167
   Dec -0.01218793 \quad 0.211437907
                                     0.04950157
         0.19559525 -0.066110758
                                     0.04986370
   Jan
169
         0.03490273 0.001131413 -0.20512044
   Feb
170
171
   $ycoef
172
                   [,1]
                                [,2]
                                               [,3]
           0.09130213 - 0.02440774 0.17813093
   high7
174
   high4 -0.04885330 -0.21147220 0.01508689
175
          0.14233784 - 0.12547180 - 0.10604916
   high8
176
177
   $xcenter
178
                                Jan
                                                Feb
               Dec
179
    -8.807058e - 18 -2.775558e - 16 -5.898060e - 17
180
181
   $ycenter
182
             high7
                             high4
                                              high8
    -9.607699e - 18 2.435285e - 17 3.963176e - 17
184
185
```

```
| > U <- as.matrix(data[,1:3])%*%ca$xcoef
| > V <- as.matrix(data[,4:6])%*%ca$ycoef
| > plot(U[,1], V[,1], xlab="U1", ylab="V1")
```

