Exercice 1:

Let E be a set with a prtial order denoted by \leq . We say that \leq is a well quasi-order (wqo) if from any sequence of elements of E, we can extract an infinite monotone increasing sequence. I.e. $\forall (x_i)_{i\in\mathbb{N}} \in E^{\mathbb{N}}$, there exists an increasing sub-sequence of indexes : $i_0 < i_1 < \cdots < i_n < \cdots$ for which the sequence $(x_{i_n})_{n\in\mathbb{N}}$ is increasing : $x_{i_0} \leq x_{i_1} \leq \cdots \leq x_{i_n} \leq \cdots$.

- 1. Let E, \leq be an ordered set, we call it well founded if there is no infinite decreasing sequence. Assume that E is countable and show that the order is wqo iff the set of all antichains is countable.
- 2. Dickson's Lemma : Let (E_1, \preccurlyeq_1) and (E_2, \preccurlyeq_2) be a wqo set. Show that $(\preccurlyeq_1, \preccurlyeq_2)$ is a wqo on the product $E_1 \times E_2$.
- 3. Higman's Lemma : Let \leq be a wqo on Σ . Define a relationship on Σ^* as follows :

$$a_1...a_m \leq_{sw} b_1b_2...b_n \Leftrightarrow \begin{cases} \exists 1 \leq i_1 < i_2 < \dots < i_m \leq n \\ a_1 \preccurlyeq b_{i_1} \land a_2 \preccurlyeq b_{i_2} \cdots a_m \preccurlyeq b_{i_m} \end{cases}$$

- (a) Show that \leq_{sw} is an order
- (b) Show that \leq_{sw} is wqo. Recall that we've shown that \leq_{sw} is wqo if for any sequence $(x_i)_{i\in\mathbb{N}}$, we can find i < j s.t. $x_i \leq x_j$.
- 4. Let E, \leq be an ordered set, and $F \subset E$ s.t. : $\forall y \in E$, if there exists $x \in F$ s.t $x \leq y$, then $y \in F$ (we say that the set F is upward closed or upper).
 - (a) Let E, \leq be wqo. Show that a that any increasing sequence of upward closed sets is stationary, i.e. $F_1 \subseteq F_2 \subseteq \cdots$ there exists i such that for any j > i $F_i = F_j$.
 - (b) Show that if F is an upward closed set, there exists a finte set of elements $x_1, ..., x_n$ in F s.t. $F = \bigcup_i \{ y \in E, x_i \leq y \}$.

Exercice 2:

Let k a non-zero natural number. We equip \mathbb{N}^k with the relation :

$$(x_1,...,x_k) \le (y_1,...,y_k) \Leftrightarrow \forall i \in \{1,...,k\}, x_i \le y_i$$

- 1. Show that \leq is a wqo \mathbb{N}^k .
- 2. A vectors addition system (VAS) on \mathbb{N}^k is a the tuple $\langle v_0, \mathcal{T} \rangle$, where $v_0 \in \mathbb{N}_k$ (called the initial state), and \mathcal{T} is a finite subset of \mathbb{Z}^k (called a set of transitions). For any element $t \in \mathcal{T}$ we define a application("firing") of t on an element of \mathbb{N}^k by $\xrightarrow{t}: v \xrightarrow{t} v'$ if v' = v + t, for all $v, v' \in \mathbb{N}^k$ (note that for some t and $v \in \mathbb{N}^k$, $v + t \notin \mathbb{N}^k$, in this case the application of t is not defined on v). We say that $v \in \mathbb{N}^k$ is reachable from v_0 if there exists a finite sequence t_1, t_2, \ldots, t_n such that $v_0 \xrightarrow{t_1} v_1 \xrightarrow{t_2} \cdots \xrightarrow{t_n} v_n = v$.
 - (a) Let u_1, u_2, v_1 elements of \mathbb{N}^k such that $u_1 \leq u_2$ and V_1 is reachable from u_1 . Show that there exists v_2 reachable from u_1 such that $v_1 \leq v_2$
 - (b) Assume there exist $u, v \in \mathbb{N}^k$ such that $u \leq v$, v is reachable from u, and that for the j component $u_j < v_j$. Show that there is an infinite sequence $u_0 = u \leq u_1 = v \leq u_2 \leq \cdots \leq u_n \leq \cdots$ where all u_i are reachable from u and such that the sequence of the j-th components is unbounded $((u_n)_j \xrightarrow{n \to \infty} \infty)$.
 - (c) We extend \mathbb{N} with an element ω which is greater then all elements in $\mathbb{N}: \mathbb{N}_{\omega} = \mathbb{N} \cup \{\omega\}$. We extend the addition of elements in \mathbb{N} where $n + \omega = \omega + n = \omega$, $\forall n \in \mathbb{N}_{\omega}$ and the multiplication $n\omega = \omega n = \omega$. This allows us to extend our VAS on \mathbb{N}_{ω} . We now build a *covering tree*, in the following way:

- The root of the tree is the vertex s_o labeled with the vector v_0 .
- Given a branch of the tree $(s_0, v_0) \to (s_1, v_1) \to \cdots \to (s_n, v_n)$, and $t \in \mathcal{T}$ which is fire-able from $v_n \xrightarrow{t} v_{n+1}$, we extend the branch in the following way:
- R1 If there $\exists i \leq n$ such that $v_{n+1} \leq v_i$, we **do not** extend the branch.
- R2 If there $\exists i \leq n$ such that, $v_{n+1} > v_i$, We define the vector $\bar{v}_{n+1} = v_i + \omega(v_{n+1} v_i)$ (if $(v_i)_j < (v_{n+1})_j$ then $(\bar{v}_{n+1})_j = \omega$). And we add the vertex (s_{n+1}, \bar{v}_{n+1}) to the end of the branch.
- R3 If $\forall i \leq n, v_{n+1}$ and v_i are incomparable, we add the vertex (s_{n+1}, v_{n+1}) to the end of the branch.

Show that this tree is finite.

- (d) Let k = 3, and the VAS with $V_0 = (1,0,1)$ and $\mathcal{T} = \{a = (1,1,-1), b = (-1,0,1), c = (0,-1,0)\}$. Show that the set or reachable vectors are infinite and build the covering tree.
- (e) Show that the covering tree over-approximate the reachability set of a given VAS (v_0, \mathcal{T}) , in the following way:
 - $\forall v$ reachable from v_0 , There is a vertex of the tree labeled by w such that $v \leq w$.
 - The set of reachable vectors of the VAS is finite iff there are no vertices labeled with ω .

Exercice 3 (Dilworth's theorem):

Recall Dilworth's theorem: Let k be the maximal cardinality of an antichain in E. Then E is a disjoint union of k chains (a set of comparable elements).

- 1. Let N be a non zero natural number.
 - (a) Let $\mathcal{F} = \{n_i, i \in [N]\}$ a sequance of natural numbers. We equip \mathcal{F} with the following relation:

$$n_i \leq n_j$$
 if $(i \leq j \land n_i \leq n_j)$

Show that \leq is a partial order. Describe the chains and antichains for the order \leq .

- (b) Let m and n be two natural numbers such that N-1=nm. Show that \mathcal{F} contains an increasing subsequence of length n+1 or a decreasing one of length m+1.
- 2. Let \mathcal{I} be a family of $N \in \mathbb{N}$ closed intervals in \mathbb{R} . Let m and n be two natural numbers such that N-1=nm. Show that there are either m+1 disjoint intervals in \mathcal{I} or there are n+1 intervals with a non empty intersection.

Exercice 4 (Théorème de Cantor-Bernstein) :

Let A and B two sets and $f:A\to B$ and $g:B\to A$ two injective functions. Let $H:\mathcal{P}(A)\to\mathcal{P}(A)$ the map:

$$X \mapsto A \setminus g[B \setminus f[X]]$$

- 1. Using the Knaster-Tarski theorem, show that H has a fixed point
- 2. Deduce that A and B are equipotent.
- 3. What are the smalles and largest fixed points of H? (Comparer avec la preuve du cours)

Exercise 5:

Show that any function from \mathbb{R} to \mathbb{R} , is Scott continuous iff it is left continuous and monotonically increasing.

Exercise 6:

Let $R \in \mathcal{P}(E \times E)$, and t the map:

$$\left\{ \begin{array}{ccc} \mathcal{P}(E\times E) & \to & \mathcal{P}(E\times E) \\ Q & \mapsto & Q \cup R \cup Q^2 \end{array} \right.$$

where $Q^2 := \{(x, z) \in E \times E \mid \exists y \in E, \, xQy \wedge yQz\}.$

Show that t is Scott continuous for inclusion.