## **AUTO**

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Sat Aug 12 21:35:35 2017

Program finished at Sat Aug 12 22:56:32 2017 [Runtime:0000:01:20:57]



### **Options**

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2920979946

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0

Order of parameters:

1  $\Theta_1$  <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

**Exponential Distribution** -Population size estimation:

Proposal distributions for parameter

Parameter Proposal Theta Metropolis sampling M Metropolis sampling Divergence Metropolis sampling Divergence Spread Metropolis sampling Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Delta Prior Minimum Mean Maximum Bins UpdateFreq Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains 50000 Recorded steps [a] 200 Increment (record every x step [b] Number of concurrent chains (replicates) [c]

20000000 Visited (sampled) parameter values [a\*b\*c] 10000 Number of discard trees per chain (burn-in)

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

> 1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.1.0

Haplotyping is turned on: NO

Output file: outfile\_1.0\_0.5

Posterior distribution raw histogram file: bayesfile

bayesallfile\_1.0\_0.5 Print data: No

Print genealogies [only some for some data type]: None

Raw data from the MCMC run:

### Data summary

Data file: infile.1.0
Datatype: Sequence data
Number of loci: 100

| Locus S | ublocus | Mutationmodel | Mutationmodel parameters |
|---------|---------|---------------|--------------------------|
| 1       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 2       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 3       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 4       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 5       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 6       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 7       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 8       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 9       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 10      | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 11      | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 12      | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 13      | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 14      | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |
| 15      | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |

Mutationmodel:

| 25       | 1      | Julian Contar                | [Decefred: 0.25]                       |
|----------|--------|------------------------------|----------------------------------------|
| 35       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 36<br>37 | 1      | Jukes-Cantor<br>Jukes-Cantor | [Basefreq: =0.25]                      |
| 38       | 1<br>1 | Jukes-Cantor                 | [Basefreq: =0.25]<br>[Basefreq: =0.25] |
| 39       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 40       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 41       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 42       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 43       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 44       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 45       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 45       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 47       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 48       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 49       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 50       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 50       | 1      | Jukes-Cantor                 |                                        |
| 52       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 52       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]<br>[Basefreq: =0.25] |
| 54       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 54<br>55 | 1      | Jukes-Cantor                 |                                        |
| 55<br>56 | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 57       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]<br>[Basefreq: =0.25] |
| 57<br>58 | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 56<br>59 | 1      | Jukes-Cantor                 |                                        |
| 60       |        | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 61       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 62       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 63       | 1<br>1 | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 64       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 65       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 66       |        | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 67       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]<br>[Basefreq: =0.25] |
| 68       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 69       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 70       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 70       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 71       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 73       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 73       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 75       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 76       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 77       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 77<br>78 | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 79       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| , ,      | 1      | Junes Carnor                 | [5455,154, -0.20]                      |

|           |       |              |                   | AUTO 5 |
|-----------|-------|--------------|-------------------|--------|
| 80        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 81        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 82        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 83        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 84        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 85        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 86        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 87        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 88        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 89        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 90        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 91        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 92        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 93        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 94        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 95        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 96        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 97        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 98        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 99        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 100       | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
|           |       |              |                   |        |
| Sites per | locus |              |                   |        |
| Locus     |       | Sites        |                   |        |

| Sites |
|-------|
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
| 10000 |
|       |

| 21 | 10000 |  |
|----|-------|--|
| 22 | 10000 |  |
| 23 | 10000 |  |
| 24 | 10000 |  |
| 25 | 10000 |  |
| 26 | 10000 |  |
| 27 | 10000 |  |
| 28 | 10000 |  |
| 29 | 10000 |  |
| 30 | 10000 |  |
| 31 | 10000 |  |
| 32 | 10000 |  |
| 33 | 10000 |  |
| 34 | 10000 |  |
| 35 | 10000 |  |
| 36 | 10000 |  |
| 37 | 10000 |  |
| 38 | 10000 |  |
| 39 | 10000 |  |
| 40 | 10000 |  |
| 41 | 10000 |  |
| 42 | 10000 |  |
| 43 | 10000 |  |
| 44 | 10000 |  |
| 45 | 10000 |  |
| 46 | 10000 |  |
| 47 | 10000 |  |
| 48 | 10000 |  |
| 49 | 10000 |  |
| 50 | 10000 |  |
| 51 | 10000 |  |
| 52 | 10000 |  |
| 53 | 10000 |  |
| 54 | 10000 |  |
| 55 | 10000 |  |
| 56 | 10000 |  |
| 57 | 10000 |  |
| 58 | 10000 |  |
| 59 | 10000 |  |
| 60 | 10000 |  |
| 61 | 10000 |  |
| 62 | 10000 |  |
| 63 | 10000 |  |
| 64 | 10000 |  |
| 65 | 10000 |  |

| 66      | 10000                  |                |             |            |  |
|---------|------------------------|----------------|-------------|------------|--|
| 67      | 10000                  |                |             |            |  |
| 68      | 10000                  |                |             |            |  |
| 69      | 10000                  |                |             |            |  |
| 70      | 10000                  |                |             |            |  |
| 71      | 10000                  |                |             |            |  |
| 72      | 10000                  |                |             |            |  |
| 73      | 10000                  |                |             |            |  |
| 74      | 10000                  |                |             |            |  |
| 75      | 10000                  |                |             |            |  |
| 76      | 10000                  |                |             |            |  |
| 77      | 10000                  |                |             |            |  |
| 78      | 10000                  |                |             |            |  |
| 79      | 10000                  |                |             |            |  |
| 80      | 10000                  |                |             |            |  |
| 81      | 10000                  |                |             |            |  |
| 82      | 10000                  |                |             |            |  |
| 83      | 10000                  |                |             |            |  |
| 84      | 10000                  |                |             |            |  |
| 85      | 10000                  |                |             |            |  |
| 86      | 10000                  |                |             |            |  |
| 87      | 10000                  |                |             |            |  |
| 88      | 10000                  |                |             |            |  |
| 89      | 10000                  |                |             |            |  |
| 90      | 10000                  |                |             |            |  |
| 91      | 10000                  |                |             |            |  |
| 92      | 10000                  |                |             |            |  |
| 93      | 10000                  |                |             |            |  |
| 94      | 10000                  |                |             |            |  |
| 95      | 10000                  |                |             |            |  |
| 96      | 10000                  |                |             |            |  |
| 97      | 10000                  |                |             |            |  |
| 98      | 10000                  |                |             |            |  |
| 99      | 10000                  |                |             |            |  |
| 100     | 10000                  |                |             |            |  |
|         |                        |                |             |            |  |
|         | e variation and probab |                |             |            |  |
| Locus S | Sublocus Region type   | Rate of change | Probability | Patch size |  |
| 1       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 2       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 3       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 4       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 5       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 6       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
|         |                        |                |             |            |  |

| 7  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 8  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 9  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 10 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 11 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 12 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 13 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 14 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 15 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 16 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 17 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 18 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 19 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 20 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 21 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 22 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 23 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 24 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 25 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 26 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 27 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 28 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 29 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 30 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 31 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 32 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 33 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 34 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 35 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 36 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 37 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 38 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 39 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 40 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 41 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 42 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 43 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 44 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 45 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 46 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 47 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 48 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 49 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 50 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 51 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |

| 52 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 53 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 54 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 55 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 56 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 57 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 58 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 59 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 60 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 61 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 62 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 63 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 64 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 65 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 66 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 67 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 68 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 69 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 70 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 71 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 72 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 73 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 74 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 75 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 76 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 77 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 78 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 79 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 80 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 81 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 82 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 83 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 84 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 85 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 86 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 87 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 88 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 89 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 90 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 91 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 92 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 93 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 94 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 95 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 96 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|    |   |   |       |       |       |  |

| 97         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
|------------|-----------|---|-------|-------|-------|-------------|
| 98         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| 99         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| 100        | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| Population |           | ı | 1.000 | 1.000 | Locus | Gene copies |
| 1 Roman    |           |   |       |       | 1     | 10          |
| i Koman    | 3110111_0 |   |       |       | 2     | 10          |
|            |           |   |       |       | 3     | 10          |
|            |           |   |       |       |       |             |
|            |           |   |       |       | 4     | 10          |
|            |           |   |       |       | 5     | 10          |
|            |           |   |       |       | 6     | 10          |
|            |           |   |       |       | 7     | 10          |
|            |           |   |       |       | 8     | 10          |
|            |           |   |       |       | 9     | 10          |
|            |           |   |       |       | 10    | 10          |
|            |           |   |       |       | 11    | 10          |
|            |           |   |       |       | 12    | 10          |
|            |           |   |       |       | 13    | 10          |
|            |           |   |       |       | 14    | 10          |
|            |           |   |       |       | 15    | 10          |
|            |           |   |       |       | 16    | 10          |
|            |           |   |       |       | 17    | 10          |
|            |           |   |       |       | 18    | 10          |
|            |           |   |       |       | 19    | 10          |
|            |           |   |       |       | 20    | 10          |
|            |           |   |       |       | 21    | 10          |
|            |           |   |       |       | 22    | 10          |
|            |           |   |       |       | 23    | 10          |
|            |           |   |       |       | 24    | 10          |
|            |           |   |       |       | 25    | 10          |
|            |           |   |       |       | 26    | 10          |
|            |           |   |       |       | 27    | 10          |
|            |           |   |       |       | 28    | 10          |
|            |           |   |       |       | 29    | 10          |
|            |           |   |       |       | 30    | 10          |
|            |           |   |       |       | 31    | 10          |
|            |           |   |       |       | 32    | 10          |
|            |           |   |       |       | 33    | 10          |
|            |           |   |       |       | 34    | 10          |
|            |           |   |       |       | 35    | 10          |
|            |           |   |       |       | 36    | 10          |
|            |           |   |       |       | 37    | 10          |
|            |           |   |       |       | 38    | 10          |
|            |           |   |       |       | 39    | 10          |
|            |           |   |       |       | 40    | 10          |
|            |           |   |       |       |       | -           |

| 41 | 10 |
|----|----|
| 42 | 10 |
| 43 |    |
| 44 |    |
| 45 |    |
| 46 |    |
| 47 |    |
| 48 |    |
| 49 |    |
| 50 |    |
| 51 |    |
| 52 |    |
| 53 |    |
| 54 |    |
| 55 |    |
| 56 |    |
| 57 |    |
| 58 |    |
| 59 |    |
| 60 |    |
| 61 |    |
|    |    |
| 62 |    |
| 63 |    |
| 64 |    |
| 65 |    |
| 66 |    |
| 67 |    |
| 68 |    |
| 69 |    |
| 70 |    |
| 71 |    |
| 72 |    |
| 73 |    |
| 74 |    |
| 75 |    |
| 76 |    |
| 77 |    |
| 78 |    |
| 79 |    |
| 80 |    |
| 81 |    |
| 82 |    |
| 83 |    |
| 84 |    |
| 85 | 10 |
|    |    |

|                          | 86       | 10 |  |
|--------------------------|----------|----|--|
|                          | 87       | 10 |  |
|                          | 88       | 10 |  |
|                          | 89       | 10 |  |
|                          | 90       | 10 |  |
|                          | 91       | 10 |  |
|                          | 92       | 10 |  |
|                          | 93       | 10 |  |
|                          | 94       | 10 |  |
|                          | 95       | 10 |  |
|                          | 96       | 10 |  |
|                          | 97       | 10 |  |
|                          |          |    |  |
|                          | 98       | 10 |  |
|                          | 99       | 10 |  |
|                          | 100      | 10 |  |
| Total of all populations | 1        | 10 |  |
|                          | 2        | 10 |  |
|                          | 3        | 10 |  |
|                          | 4        | 10 |  |
|                          | 5        | 10 |  |
|                          | 6        | 10 |  |
|                          | 7        | 10 |  |
|                          | 8        | 10 |  |
|                          | 9        | 10 |  |
|                          | 10       | 10 |  |
|                          | 11       | 10 |  |
|                          | 12       | 10 |  |
|                          | 13       | 10 |  |
|                          | 14       | 10 |  |
|                          | 15       | 10 |  |
|                          | 16       | 10 |  |
|                          | 17       | 10 |  |
|                          | 18       | 10 |  |
|                          | 19       | 10 |  |
|                          | 20       | 10 |  |
|                          | 21       | 10 |  |
|                          | 22       | 10 |  |
|                          | 23       | 10 |  |
|                          | 23<br>24 |    |  |
|                          |          | 10 |  |
|                          | 25       | 10 |  |
|                          | 26       | 10 |  |
|                          | 27       | 10 |  |
|                          | 28       | 10 |  |
|                          | 29       | 10 |  |
|                          | 30       | 10 |  |
|                          |          |    |  |

| 31 | 10 |
|----|----|
| 32 | 10 |
| 33 | 10 |
| 34 | 10 |
| 35 | 10 |
| 36 | 10 |
| 37 | 10 |
| 38 | 10 |
| 39 | 10 |
| 40 | 10 |
| 41 | 10 |
| 42 | 10 |
| 43 | 10 |
| 44 | 10 |
| 45 | 10 |
| 46 | 10 |
| 47 | 10 |
| 48 | 10 |
| 49 | 10 |
| 50 | 10 |
| 51 | 10 |
| 52 | 10 |
| 53 | 10 |
| 54 | 10 |
| 55 | 10 |
| 56 | 10 |
| 57 | 10 |
| 58 | 10 |
| 59 | 10 |
| 60 | 10 |
| 61 | 10 |
| 62 | 10 |
| 63 | 10 |
| 64 | 10 |
| 65 | 10 |
| 66 | 10 |
| 67 | 10 |
| 68 | 10 |
| 69 | 10 |
| 70 | 10 |
| 71 | 10 |
| 72 | 10 |
| 73 | 10 |
| 74 | 10 |
| 75 | 10 |
|    |    |

| 76  | 10 |
|-----|----|
| 77  | 10 |
| 78  | 10 |
| 79  | 10 |
| 80  | 10 |
| 81  | 10 |
| 82  | 10 |
| 83  | 10 |
| 84  | 10 |
| 85  | 10 |
| 86  | 10 |
| 87  | 10 |
| 88  | 10 |
| 89  | 10 |
| 90  | 10 |
| 91  | 10 |
| 92  | 10 |
| 93  |    |
|     | 10 |
| 94  | 10 |
| 95  | 10 |
| 96  | 10 |
| 97  | 10 |
| 98  | 10 |
| 99  | 10 |
| 100 | 10 |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 1     | $\Theta_1$ | 0.03233 | 0.04360 | 0.04790 | 0.04967 | 0.05167 | 0.04483 | 0.08551 |
| 2     | $\Theta_1$ | 0.03287 | 0.04453 | 0.04790 | 0.04980 | 0.05160 | 0.04570 | 0.08595 |
| 3     | $\Theta_1$ | 0.03707 | 0.04573 | 0.04797 | 0.04953 | 0.05160 | 0.04597 | 0.08748 |
| 4     | $\Theta_1$ | 0.03367 | 0.04447 | 0.04790 | 0.04987 | 0.05160 | 0.04557 | 0.08509 |
| 5     | $\Theta_1$ | 0.03447 | 0.04453 | 0.04797 | 0.04987 | 0.05160 | 0.04563 | 0.08662 |
| 6     | $\Theta_1$ | 0.03540 | 0.04533 | 0.04817 | 0.05013 | 0.05193 | 0.04637 | 0.08789 |
| 7     | $\Theta_1$ | 0.03327 | 0.04427 | 0.04803 | 0.04993 | 0.05167 | 0.04537 | 0.08612 |
| 8     | $\Theta_1$ | 0.03427 | 0.04467 | 0.04803 | 0.04980 | 0.05180 | 0.04590 | 0.08705 |
| 9     | $\Theta_1$ | 0.03380 | 0.04527 | 0.04803 | 0.04973 | 0.05160 | 0.04543 | 0.08498 |
| 10    | $\Theta_1$ | 0.03367 | 0.04413 | 0.04783 | 0.04967 | 0.05160 | 0.04537 | 0.08638 |
| 11    | $\Theta_1$ | 0.03513 | 0.04467 | 0.04790 | 0.04987 | 0.05167 | 0.04583 | 0.08698 |
| 12    | $\Theta_1$ | 0.03520 | 0.04660 | 0.04830 | 0.04987 | 0.05187 | 0.04677 | 0.08768 |
| 13    | $\Theta_1$ | 0.03380 | 0.04440 | 0.04783 | 0.04973 | 0.05153 | 0.04550 | 0.08590 |
| 14    | $\Theta_1$ | 0.03407 | 0.04500 | 0.04803 | 0.04993 | 0.05173 | 0.04603 | 0.08700 |
| 15    | $\Theta_1$ | 0.03500 | 0.04500 | 0.04803 | 0.04980 | 0.05173 | 0.04617 | 0.08767 |
| 16    | $\Theta_1$ | 0.03433 | 0.04493 | 0.04797 | 0.04993 | 0.05160 | 0.04603 | 0.08691 |
| 17    | $\Theta_1$ | 0.03413 | 0.04447 | 0.04790 | 0.04980 | 0.05160 | 0.04563 | 0.08607 |
| 18    | $\Theta_1$ | 0.03500 | 0.04453 | 0.04770 | 0.04947 | 0.05140 | 0.04583 | 0.08670 |

| 19 | $\Theta_1$ | 0.03527 | 0.04500 | 0.04810 | 0.05020 | 0.05167 | 0.04603 | 0.08730 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 20 | $\Theta_1$ | 0.03420 | 0.04493 | 0.04790 | 0.04980 | 0.05193 | 0.04610 | 0.08817 |
| 21 | $\Theta_1$ | 0.03427 | 0.04433 | 0.04797 | 0.04973 | 0.05167 | 0.04550 | 0.08670 |
| 22 | $\Theta_1$ | 0.03407 | 0.04453 | 0.04797 | 0.04993 | 0.05160 | 0.04563 | 0.08674 |
| 23 | $\Theta_1$ | 0.03433 | 0.04493 | 0.04790 | 0.04967 | 0.05153 | 0.04557 | 0.08576 |
| 24 | $\Theta_1$ | 0.03453 | 0.04453 | 0.04810 | 0.05000 | 0.05180 | 0.04563 | 0.08751 |
| 25 | $\Theta_1$ | 0.03407 | 0.04547 | 0.04790 | 0.04967 | 0.05153 | 0.04563 | 0.08594 |
| 26 | $\Theta_1$ | 0.03360 | 0.04460 | 0.04810 | 0.05007 | 0.05173 | 0.04570 | 0.08630 |
| 27 | $\Theta_1$ | 0.03480 | 0.04400 | 0.04797 | 0.04960 | 0.05133 | 0.04530 | 0.08703 |
| 28 | $\Theta_1$ | 0.03387 | 0.04527 | 0.04797 | 0.04967 | 0.05160 | 0.04577 | 0.08702 |
| 29 | $\Theta_1$ | 0.03413 | 0.04473 | 0.04810 | 0.05000 | 0.05173 | 0.04583 | 0.08770 |
| 30 | $\Theta_1$ | 0.03600 | 0.04513 | 0.04803 | 0.04987 | 0.05167 | 0.04623 | 0.08783 |
| 31 | $\Theta_1$ | 0.03413 | 0.04480 | 0.04783 | 0.04953 | 0.05173 | 0.04603 | 0.08774 |
| 32 | $\Theta_1$ | 0.03533 | 0.04513 | 0.04770 | 0.04953 | 0.05147 | 0.04630 | 0.08878 |
| 33 | $\Theta_1$ | 0.03487 | 0.04453 | 0.04783 | 0.04967 | 0.05160 | 0.04570 | 0.08581 |
| 34 | $\Theta_1$ | 0.03400 | 0.04447 | 0.04783 | 0.04967 | 0.05160 | 0.04563 | 0.08658 |
| 35 | $\Theta_1$ | 0.03400 | 0.04427 | 0.04790 | 0.04987 | 0.05160 | 0.04543 | 0.08531 |
| 36 | $\Theta_1$ | 0.03207 | 0.04480 | 0.04803 | 0.04980 | 0.05167 | 0.04497 | 0.08470 |
| 37 | $\Theta_1$ | 0.03447 | 0.04493 | 0.04790 | 0.04987 | 0.05173 | 0.04603 | 0.08702 |
| 38 | $\Theta_1$ | 0.03133 | 0.04360 | 0.04797 | 0.04980 | 0.05160 | 0.04477 | 0.08319 |
| 39 | $\Theta_1$ | 0.03533 | 0.04473 | 0.04797 | 0.04967 | 0.05153 | 0.04597 | 0.08821 |
| 40 | $\Theta_1$ | 0.03340 | 0.04433 | 0.04790 | 0.04973 | 0.05167 | 0.04550 | 0.08602 |
| 41 | $\Theta_1$ | 0.03307 | 0.04433 | 0.04790 | 0.04987 | 0.05167 | 0.04550 | 0.08570 |

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 42    | $\Theta_1$ | 0.03360 | 0.04453 | 0.04803 | 0.04987 | 0.05153 | 0.04563 | 0.08633 |
| 43    | $\Theta_1$ | 0.03433 | 0.04433 | 0.04783 | 0.04967 | 0.05153 | 0.04550 | 0.08676 |
| 44    | $\Theta_1$ | 0.03333 | 0.04427 | 0.04783 | 0.04967 | 0.05160 | 0.04550 | 0.08598 |
| 45    | $\Theta_1$ | 0.03400 | 0.04427 | 0.04797 | 0.04980 | 0.05167 | 0.04543 | 0.08644 |
| 46    | $\Theta_1$ | 0.03400 | 0.04567 | 0.04810 | 0.04980 | 0.05167 | 0.04583 | 0.08744 |
| 47    | $\Theta_1$ | 0.03313 | 0.04520 | 0.04790 | 0.04953 | 0.05173 | 0.04537 | 0.08407 |
| 48    | $\Theta_1$ | 0.03307 | 0.04413 | 0.04777 | 0.04960 | 0.05167 | 0.04543 | 0.08551 |
| 49    | $\Theta_1$ | 0.03607 | 0.04473 | 0.04797 | 0.04980 | 0.05167 | 0.04590 | 0.08842 |
| 50    | $\Theta_1$ | 0.03453 | 0.04587 | 0.04803 | 0.04953 | 0.05180 | 0.04603 | 0.08727 |
| 51    | $\Theta_1$ | 0.03347 | 0.04500 | 0.04797 | 0.04993 | 0.05180 | 0.04610 | 0.08651 |
| 52    | $\Theta_1$ | 0.03487 | 0.04433 | 0.04803 | 0.04967 | 0.05147 | 0.04563 | 0.08770 |
| 53    | $\Theta_1$ | 0.03727 | 0.04513 | 0.04803 | 0.05000 | 0.05153 | 0.04623 | 0.08759 |
| 54    | $\Theta_1$ | 0.03013 | 0.04447 | 0.04790 | 0.04980 | 0.05187 | 0.04563 | 0.08610 |
| 55    | $\Theta_1$ | 0.03367 | 0.04433 | 0.04797 | 0.04987 | 0.05173 | 0.04550 | 0.08567 |
| 56    | $\Theta_1$ | 0.03407 | 0.04447 | 0.04797 | 0.04967 | 0.05180 | 0.04570 | 0.08711 |
| 57    | $\Theta_1$ | 0.03500 | 0.04473 | 0.04803 | 0.04987 | 0.05173 | 0.04590 | 0.08664 |
| 58    | $\Theta_1$ | 0.03353 | 0.04460 | 0.04790 | 0.04993 | 0.05167 | 0.04570 | 0.08710 |
| 59    | $\Theta_1$ | 0.03347 | 0.04460 | 0.04797 | 0.04987 | 0.05173 | 0.04570 | 0.08681 |
| 60    | $\Theta_1$ | 0.03433 | 0.04447 | 0.04797 | 0.04987 | 0.05167 | 0.04563 | 0.08631 |
| 61    | $\Theta_1$ | 0.03380 | 0.04473 | 0.04797 | 0.04993 | 0.05173 | 0.04583 | 0.08638 |

| 62 | $\Theta_1$ | 0.03373 | 0.04480 | 0.04810 | 0.05007 | 0.05167 | 0.04590 | 0.08628 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 63 | $\Theta_1$ | 0.03333 | 0.04400 | 0.04803 | 0.04973 | 0.05173 | 0.04530 | 0.08609 |
| 64 | $\Theta_1$ | 0.03460 | 0.04473 | 0.04810 | 0.05007 | 0.05167 | 0.04577 | 0.08712 |
| 65 | $\Theta_1$ | 0.03400 | 0.04487 | 0.04810 | 0.04993 | 0.05180 | 0.04603 | 0.08734 |
| 66 | $\Theta_1$ | 0.03640 | 0.04480 | 0.04803 | 0.04967 | 0.05187 | 0.04610 | 0.08868 |
| 67 | $\Theta_1$ | 0.03347 | 0.04440 | 0.04790 | 0.04987 | 0.05140 | 0.04550 | 0.08663 |
| 68 | $\Theta_1$ | 0.03593 | 0.04493 | 0.04797 | 0.04967 | 0.05173 | 0.04623 | 0.08825 |
| 69 | $\Theta_1$ | 0.03380 | 0.04507 | 0.04823 | 0.05013 | 0.05180 | 0.04617 | 0.08764 |
| 70 | $\Theta_1$ | 0.03413 | 0.04427 | 0.04790 | 0.04973 | 0.05173 | 0.04557 | 0.08691 |
| 71 | $\Theta_1$ | 0.03693 | 0.04587 | 0.04817 | 0.04993 | 0.05167 | 0.04603 | 0.08815 |
| 72 | $\Theta_1$ | 0.03367 | 0.04453 | 0.04777 | 0.04973 | 0.05180 | 0.04570 | 0.08728 |
| 73 | $\Theta_1$ | 0.03427 | 0.04487 | 0.04790 | 0.04980 | 0.05173 | 0.04603 | 0.08668 |
| 74 | $\Theta_1$ | 0.03493 | 0.04473 | 0.04777 | 0.04953 | 0.05167 | 0.04597 | 0.08820 |
| 75 | $\Theta_1$ | 0.03347 | 0.04420 | 0.04803 | 0.04980 | 0.05187 | 0.04543 | 0.08717 |
| 76 | $\Theta_1$ | 0.03413 | 0.04473 | 0.04817 | 0.04993 | 0.05167 | 0.04590 | 0.08811 |
| 77 | $\Theta_1$ | 0.03427 | 0.04487 | 0.04810 | 0.05020 | 0.05160 | 0.04590 | 0.08761 |
| 78 | $\Theta_1$ | 0.03213 | 0.04380 | 0.04790 | 0.04987 | 0.05160 | 0.04497 | 0.08417 |
| 79 | $\Theta_1$ | 0.03200 | 0.04367 | 0.04777 | 0.04960 | 0.05160 | 0.04497 | 0.08554 |
| 80 | $\Theta_1$ | 0.03187 | 0.04393 | 0.04790 | 0.04980 | 0.05160 | 0.04510 | 0.08487 |
| 81 | $\Theta_1$ | 0.03433 | 0.04493 | 0.04790 | 0.05000 | 0.05173 | 0.04603 | 0.08701 |
| 82 | $\Theta_1$ | 0.03327 | 0.04447 | 0.04797 | 0.04993 | 0.05153 | 0.04550 | 0.08548 |
| 83 | $\Theta_1$ | 0.03573 | 0.04473 | 0.04790 | 0.04987 | 0.05147 | 0.04577 | 0.08731 |
| 84 | $\Theta_1$ | 0.03353 | 0.04540 | 0.04803 | 0.04953 | 0.05167 | 0.04577 | 0.08734 |

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 85    | $\Theta_1$ | 0.03307 | 0.04440 | 0.04803 | 0.04993 | 0.05167 | 0.04550 | 0.08556 |
| 86    | $\Theta_1$ | 0.03313 | 0.04473 | 0.04803 | 0.05000 | 0.05167 | 0.04583 | 0.08669 |
| 87    | $\Theta_1$ | 0.03520 | 0.04480 | 0.04783 | 0.04973 | 0.05167 | 0.04597 | 0.08757 |
| 88    | $\Theta_1$ | 0.03233 | 0.04380 | 0.04783 | 0.04973 | 0.05133 | 0.04490 | 0.08524 |
| 89    | $\Theta_1$ | 0.03400 | 0.04453 | 0.04777 | 0.04967 | 0.05153 | 0.04570 | 0.08632 |
| 90    | $\Theta_1$ | 0.03113 | 0.04393 | 0.04770 | 0.04973 | 0.05160 | 0.04510 | 0.08453 |
| 91    | $\Theta_1$ | 0.03433 | 0.04520 | 0.04803 | 0.05007 | 0.05167 | 0.04623 | 0.08819 |
| 92    | $\Theta_1$ | 0.03480 | 0.04453 | 0.04803 | 0.04987 | 0.05173 | 0.04577 | 0.08695 |
| 93    | $\Theta_1$ | 0.03393 | 0.04493 | 0.04797 | 0.04993 | 0.05180 | 0.04603 | 0.08756 |
| 94    | $\Theta_1$ | 0.03340 | 0.04427 | 0.04790 | 0.04980 | 0.05173 | 0.04543 | 0.08433 |
| 95    | $\Theta_1$ | 0.03407 | 0.04553 | 0.04783 | 0.04927 | 0.05140 | 0.04570 | 0.08611 |
| 96    | $\Theta_1$ | 0.03347 | 0.04507 | 0.04830 | 0.05013 | 0.05173 | 0.04610 | 0.08794 |
| 97    | $\Theta_1$ | 0.03660 | 0.04507 | 0.04770 | 0.04947 | 0.05147 | 0.04637 | 0.08863 |
| 98    | $\Theta_1$ | 0.03467 | 0.04460 | 0.04783 | 0.04967 | 0.05167 | 0.04583 | 0.08670 |
| 99    | $\Theta_1$ | 0.03407 | 0.04480 | 0.04797 | 0.04980 | 0.05180 | 0.04590 | 0.08735 |
| 100   | $\Theta_1$ | 0.03253 | 0.04420 | 0.04797 | 0.04987 | 0.05153 | 0.04537 | 0.08494 |
| All   | $\Theta_1$ | 0.01393 | 0.01713 | 0.01897 | 0.02067 | 0.02333 | 0.01890 | 0.09974 |
|       |            |         |         |         |         |         |         |         |

#### Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

| Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,     |  |  |  |  |  |
| and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79. |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |

## Bayesian Analysis: Posterior distribution over all loci



### Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:  $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$ 

| Locus | TI(1a)    | BTI(1b)   | SS(2)     | HS(3)     |
|-------|-----------|-----------|-----------|-----------|
| 1     | -15128.70 | -14737.46 | -14781.13 | -14837.17 |
| 2     | -16771.38 | -15729.85 | -15660.11 | -15715.23 |
| 3     | -17474.58 | -16247.61 | -16147.27 | -16202.74 |
| 4     | -17057.31 | -16074.79 | -16023.37 | -16077.02 |
| 5     | -15770.77 | -15191.52 | -15207.47 | -15258.71 |
| 6     | -17632.23 | -16414.04 | -16325.59 | -16372.65 |
| 7     | -15901.22 | -15299.45 | -15308.29 | -15364.65 |
| 8     | -15836.04 | -15360.49 | -15396.63 | -15447.87 |
| 9     | -15345.49 | -14888.52 | -14918.95 | -14975.43 |
| 10    | -16114.48 | -15427.42 | -15419.17 | -15478.21 |
| 11    | -16201.64 | -15520.52 | -15520.93 | -15572.71 |
| 12    | -16190.89 | -15685.71 | -15715.78 | -15769.26 |
| 13    | -17300.01 | -16089.92 | -15991.40 | -16048.85 |
| 14    | -16513.86 | -15804.12 | -15803.11 | -15851.96 |
| 15    | -15776.34 | -15363.28 | -15416.78 | -15464.38 |
| 16    | -17256.55 | -15888.12 | -15755.60 | -15810.42 |
| 17    | -16031.42 | -15391.48 | -15396.88 | -15449.31 |
| 18    | -17547.02 | -16169.60 | -16042.69 | -16094.78 |
| 19    | -16003.15 | -15369.81 | -15379.88 | -15427.90 |
| 20    | -16150.18 | -15671.94 | -15717.11 | -15763.26 |
| 21    | -16526.80 | -15795.50 | -15791.25 | -15840.42 |
| 22    | -18149.81 | -16413.31 | -16216.20 | -16271.02 |
| 23    | -16259.31 | -15435.69 | -15407.53 | -15460.50 |
| 24    | -17240.31 | -16200.85 | -16146.26 | -16190.95 |
| 25    | -15844.67 | -15180.97 | -15181.15 | -15232.82 |
| 26    | -15441.05 | -15020.84 | -15058.76 | -15117.25 |
| 27    | -16914.32 | -15992.36 | -15947.73 | -16001.32 |
| 28    | -17983.14 | -16389.09 | -16219.80 | -16274.72 |
| 29    | -17532.75 | -16456.60 | -16402.71 | -16448.69 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 21:35:35]

| 30 | -17392.53 | -16337.22 | -16276.91 | -16326.73 |
|----|-----------|-----------|-----------|-----------|
| 31 | -17945.78 | -16407.11 | -16249.29 | -16305.47 |
| 32 | -18167.00 | -16875.44 | -16778.72 | -16824.41 |
| 33 | -15834.02 | -15205.40 | -15207.86 | -15262.72 |
| 34 | -15699.17 | -15200.13 | -15227.93 | -15280.93 |
| 35 | -16345.59 | -15688.05 | -15692.87 | -15747.76 |
| 36 | -16168.56 | -15560.43 | -15573.76 | -15626.81 |
| 37 | -16272.39 | -15550.43 | -15547.85 | -15594.67 |
| 38 | -14921.80 | -14561.76 | -14600.59 | -14661.86 |
| 39 | -16156.91 | -15641.93 | -15675.95 | -15724.50 |
| 40 | -15384.29 | -14933.04 | -14969.95 | -15021.61 |
| 41 | -15839.47 | -15233.95 | -15244.74 | -15297.55 |
| 42 | -15410.04 | -15004.13 | -15047.85 | -15101.34 |
| 43 | -18241.69 | -16816.18 | -16688.41 | -16739.78 |
| 44 | -16090.41 | -15633.46 | -15676.26 | -15727.84 |
| 45 | -16141.97 | -15428.40 | -15422.90 | -15477.27 |
| 46 | -17549.41 | -16316.70 | -16222.18 | -16273.77 |
| 47 | -15153.87 | -14833.84 | -14889.57 | -14948.66 |
| 48 | -16245.36 | -15341.50 | -15291.84 | -15349.07 |
| 49 | -18820.68 | -17733.90 | -17693.47 | -17735.10 |
| 50 | -15530.73 | -15094.01 | -15131.35 | -15185.16 |
| 51 | -15608.04 | -14999.18 | -15002.70 | -15058.08 |
| 52 | -16597.56 | -15887.49 | -15888.09 | -15935.94 |
| 53 | -16497.12 | -15904.51 | -15930.44 | -15976.36 |
| 54 | -16835.88 | -15740.24 | -15661.30 | -15715.38 |
| 55 | -16303.85 | -15472.37 | -15439.04 | -15494.44 |
| 56 | -18277.44 | -17061.90 | -16983.30 | -17028.02 |
| 57 | -16527.31 | -15642.92 | -15603.35 | -15659.08 |
| 58 | -16605.13 | -15634.83 | -15580.44 | -15631.75 |
| 59 | -16184.07 | -15607.75 | -15628.16 | -15679.31 |
| 60 | -15780.83 | -15299.07 | -15331.10 | -15384.25 |
| 61 | -16523.63 | -15800.69 | -15796.68 | -15848.57 |
| 62 | -16925.86 | -15931.29 | -15877.37 | -15927.15 |
| 63 | -16393.58 | -15562.94 | -15528.04 | -15585.80 |
| 64 | -16779.94 | -15689.99 | -15610.25 | -15666.28 |
| 65 | -17119.27 | -15950.39 | -15863.81 | -15914.13 |
| 66 | -17652.78 | -16613.52 | -16560.87 | -16605.92 |
| 67 | -17281.76 | -16346.88 | -16307.69 | -16357.58 |
| 68 | -17280.54 | -16435.39 | -16415.22 | -16464.91 |
| 69 | -16003.90 | -15514.32 | -15556.98 | -15601.83 |
| 70 | -17040.22 | -16387.22 | -16395.45 | -16457.70 |
| 71 | -17169.67 | -16505.71 | -16521.23 | -16569.35 |
| 72 | -17374.25 | -16112.29 | -15999.46 | -16058.47 |
| 73 | -16907.38 | -16022.84 | -15990.85 | -16041.61 |
| 74 | -17417.63 | -16709.41 | -16725.88 | -16766.73 |
| L  |           |           |           |           |

| 75  | -17140.23   | -16106.82   | -16049.63   | -16097.38   |
|-----|-------------|-------------|-------------|-------------|
| 76  | -18128.01   | -16717.08   | -16598.29   | -16641.41   |
| 77  | -17382.99   | -16422.22   | -16380.07   | -16427.07   |
| 78  | -15758.73   | -15248.07   | -15271.21   | -15327.47   |
| 79  | -16520.81   | -15756.79   | -15742.89   | -15794.41   |
| 80  | -15549.65   | -15172.40   | -15217.29   | -15273.09   |
| 81  | -17454.27   | -16012.68   | -15863.68   | -15921.18   |
| 82  | -16774.50   | -15938.81   | -15916.95   | -15967.82   |
| 83  | -16584.58   | -15741.65   | -15715.99   | -15764.78   |
| 84  | -16872.19   | -15951.97   | -15915.27   | -15962.51   |
| 85  | -16661.53   | -15738.41   | -15690.03   | -15745.91   |
| 86  | -16294.05   | -15432.36   | -15396.49   | -15452.35   |
| 87  | -16485.73   | -15835.74   | -15847.65   | -15893.37   |
| 88  | -17736.31   | -16539.96   | -16444.91   | -16503.33   |
| 89  | -15452.26   | -15030.09   | -15071.95   | -15123.73   |
| 90  | -15895.47   | -15321.35   | -15332.36   | -15389.78   |
| 91  | -16864.18   | -16159.42   | -16159.98   | -16211.82   |
| 92  | -16752.51   | -15713.12   | -15649.85   | -15698.31   |
| 93  | -17251.41   | -16034.30   | -15939.19   | -15992.48   |
| 94  | -14976.00   | -14584.78   | -14624.33   | -14681.11   |
| 95  | -15692.46   | -15228.82   | -15258.07   | -15316.61   |
| 96  | -16509.36   | -15879.49   | -15901.77   | -15945.14   |
| 97  | -18340.30   | -17002.00   | -16895.70   | -16948.27   |
| 98  | -16368.94   | -15628.20   | -15618.99   | -15670.99   |
| 99  | -16366.35   | -15589.17   | -15566.87   | -15621.98   |
| 100 | -16613.56   | -15639.31   | -15576.53   | -15636.71   |
| All | -1660554.69 | -1577699.51 | -1575086.98 | -1580304.39 |

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 166.464208]

#### Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets.

In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods, Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

## Acceptance ratios for all parameters and the genealogies

| Parameter              | Accepted changes                           | Ratio              |
|------------------------|--------------------------------------------|--------------------|
| $\Theta_1$ Genealogies | 370053025/400009205<br>71796209/1599990795 | 0.92511<br>0.04487 |

## MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter   | Autocorrelation | Effective Sampe Size |
|-------------|-----------------|----------------------|
| $\Theta_1$  | 0.42833         | 4009941.41           |
| Genealogies | 0.47993         | 3553087.72           |

## Average temperatures during the run

### Chain Temperatures

- 1 0.00000
- 2 0.00000
- 3 0.00000
- 4 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

| gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian         |
|-----------------------------------------------------------------------------------------------------------------------|
| inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta       |
| beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have     |
| a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou            |
| tes are estimated poorly because the data contains little or no information for that route. Increasing the range will |
| not help in such situations, reducing number of parameters may help in such situations.                               |
|                                                                                                                       |
|                                                                                                                       |
| No warning was recorded during the run                                                                                |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |