psa-teoretična-01

1. naloga

1. Naslednje funkcije razvrsti v **nepadajočem vrstnem redu** glede na **asimptotično rast** (veliki *O*).

$$ullet f_1(n) = 2^{2^{1000000}}$$

•
$$f_2(n) = 2^{1000000n}$$

$$ullet f_3(n)=inom{n}{2}$$

•
$$f_4(n) = n\sqrt{n}$$

Primer: f(n)=n raste asimptotično počasneje kot $g(n)=n^2$. Z drugimi besedami, $f(n)\in O(g(n))$, toda $g(n)\notin O(f(n))$.

 $f_1(n)$

 $f_1(n)$ je konstantna funkcija, saj $2^{2^{1000000}}$ ni odvisno od n, zaradi česar velja

$$f_1(n) \in O(1) \Longleftrightarrow f_1(n) = O(1)$$

 $f_2(n)$

Po pravilu $a^{m \cdot n} = (a^m)^n = (a^n)^m$ velja:

$$f_2(n) = 2^{1000000n} = (2^{1000000})^n = (2^n)^{1000000}$$

Velja, da funkcija raste tako hitro, kot raste n. To pomeni, da $(2^n)^{1000000}$ raste hitreje kot $(2^n)^{99999}$ in ta počasneje kot 99998, itn.

To vodi do tega, da funkcija $f_2(n)$ raste vsaj tako hitro, kot 2^n , torej:

$$f_2(n)=O(2^n)$$

 $f_3(n)$

 $f_3(n)=inom{n}{2}$ lahko razvijemo po enačbi:

$$\binom{n}{r} = \frac{n!}{(n-r)! \cdot r!}$$

$$\implies \binom{n}{2} = \frac{n!}{(n-2)! \cdot 2!}$$

$$= \frac{n(n-1) \cdot (n-2)!}{(n-2)! \cdot 2!}$$

$$= \frac{n(n-1)}{2!}$$

$$= \frac{n(n-1)}{2!}$$

Torej $f_3(n)=rac{n(n-1)}{2}$ in velja naprej:

$$\frac{n(n-1)}{2} = \frac{n^2-n}{2} = \frac{n^2}{2} - \frac{n}{2}$$

O-notacija opisuje zgornjo mejo asimptotičnega obnašasnja funkcij - kako se funkcija obnaša, ko n raste - funkcija ne raste hitreje, kot največji člen v enačbi.

V naši enačbi je največji člen $n^2/2$, saj $n^2=n\cdot n=2n>n$. Funkcija ne raste hitreje kot n^2 , zato je to zgornja meja in velja, da je asimptotična rast funkcije:

$$f_3(n)=O(n^c); \quad c\geq 2$$

za vsak $c \geq 2$, oziroma $O(n^2)$.

$$f_4(n)$$

Če preuredimo zapis funkcije:

$$f_4(n)=n\sqrt{n}=n^1\cdot n^{1/2}$$

Po pravilu $a^n \cdot a^m = a^{n+m}$ velja:

$$n^1 \cdot n^{1/2} = n^{1+1/2} = n^{3/2}$$

Funkcija grafično izgleda tako:

Podobno kot prej rečemo, da funkcija ne raste hitreje kot člen $n^{3/2}$, torej

$$f_4(n)=O(n^c); \quad c\geq rac{3}{2}$$

Katera od f_3 in f_4 ima večjo asimptotično rast?

 $f_3=O(n^2)$ raste hitreje kot $f_4=O(n^{3/2})$, saj $n^{3/2}=n^{1.5}$ raste hitreje kot n_11 , a počasneje kot n^2 (glede na primer iz navodil).

Grafično predstavljeno (modra = f_3 , rdeča = f_4):

Nepadajoči vrstni red funkcij glede na njihove asimptotične rasti

$$O(1) < O(n^{3/2}) < O(n^2) < O(2^n) \implies f_1 < f_4 < f_3 < f_2$$

- 2. Z uporabo definicije velikega O pokaži $n^{1+0,001} \not\in O(n)$.
- 2. naloga