

Esercizi su dischi magnetici

Es3:

Sia dato un disco rigido con le seguenti caratteristiche:

- · capacità di 512GB;
- 4 piatti (8 facce);
- 524288 tracce per faccia e 1024 settori per traccia;
- velocità di rotazione di 10000 rpm;
- tempo medio di posizionamento della testina di 1,4 ms.

Si calcoli il tempo totale medio di accesso (in millisecondi, e senza contare l'attesa che il dispositivo ed uno dei suoi canali sia libero) che occorrono per trasferire 32KB, assumendo che i byte da trasferire siano memorizzati:

- a) in settori contigui di una singola traccia;
- b) in settori contigui di un cilindro.

Esercizi su dischi magnetici

Soluzione a): Sappiamo che

$$T_S = 1.4 \text{ ms e } T_L = (1000/(10000/60)) / 2 \approx 3.0 \text{ ms}$$

e che il tempo totale di trasferimento è dato da

$$T = T_S + T_L + T_t$$

dove il tempo di trasferimento (in millisecondi) è dato dalla formula

$$T_{t} = \frac{b}{rN} \times 1000$$
 b #byte da trasferire N #byte per traccia r velocità rotazione (in rotazioni per sec.)

Il numero di byte per faccia sarà dato dalla capacità totale del disco diviso il numero di facce

$$512GB / 8 = 2^{39} / 2^3 = 2^{36}$$

Esercizi su dischi magnetici

Il numero di byte per traccia N sarà dato dalla capacità totale di una faccia diviso il numero di tracce (524288 = 2^{19})

$$N = 2^{36} / 2^{19} = 2^{17}$$

Quindi

$$T_t = [1000 \times 32\text{KB}] / [(10000/60) \times 2^{17}]$$

= $[1000 \times 2^{15}] / [(10000/60) \times 2^{17}]$
= 1.5 ms

Pertanto il tempo totale di accesso è

$$T = 1.4 + 3.0 + 1.5 = 5.9 \text{ ms}$$

Soluzione b): come nel caso a), però essendo i settori memorizzati in un cilindro, si possono leggere simultaneamente i settori posti su tracce collocate nella medesima posizione di facce diverse. Pertanto il tempo di trasferimento dei 32KB deve essere diviso per 8 (numero facce):

$$T = 1.4 + 3.0 + 1.5/8 = 4.5875$$
 ms

Esercizi su dischi magnetici

Es4:

Sia dato un disco rigido con le seguenti caratteristiche:

- · capacità di 128GB;
- 2 piatti (4 facce);
- 65536 tracce per faccia e 2048 settori per traccia;
- velocità di rotazione di 4200 rpm;
- tempo medio di posizionamento della testina di 2,8 ms.

Sapendo che il tempo totale medio di accesso (in millisecondi, e senza contare l'attesa che il dispositivo ed uno dei suoi canali sia libero) che occorre per trasferire x byte (assumendo che i byte da trasferire siano memorizzati in settori contigui di una singola traccia) è di 11,728571 ms, si dica:

- a) quanti byte x sono stati trasferiti;
- b) quanti settori sono coinvolti nel trasferimento.

Esercizi su dischi magnetici

Soluzione a): Sappiamo che

$$T_S = 2.8 \text{ ms e } T_L = (1000/(4200/60)) / 2 \approx 7.142857 \text{ ms}$$

e che il tempo totale di trasferimento è dato da

$$T = T_S + T_L + T_t = 11,728571 \text{ ms}$$

dove il tempo di trasferimento (in millisecondi) è dato dalla formula

$$T_{t} = \frac{b}{rN} \times 1000$$

$$\begin{bmatrix} b & \text{#byte da trasferire} \\ N & \text{#byte per traccia} \\ r & \text{velocità rotazione} \\ \text{(in rotazioni per sec.)} \end{bmatrix}$$

Bisogna risalire al valore di b.

Il numero di byte per faccia sarà dato dalla capacità totale del disco diviso il numero di facce

$$128GB / 4 = 2^{37} / 2^2 = 2^{35}$$

Esercizi su dischi magnetici

Il numero di byte per traccia N sarà dato dalla capacità totale di una faccia diviso il numero di tracce (65536 = 2^{16})

$$N = 2^{35} / 2^{16} = 2^{19}$$

Quindi

$$b = T_t \times [(4200/60) \times 2^{19}] / 1000$$
= [11,728571 - 2,8 - 7,142857] × [(4200/60) × 2¹⁹] / 1000
= 65536 (arrotondando alla potenza di 2 più vicina)
= 64KB

Soluzione b): il numero di settori coinvolti nel trasferimento può essere stabilito andando a calcolare la dimensione di un singolo settore:

dimensione settore (in byte) =
$$N/(numero\ settori\ per\ traccia)$$

= $2^{19}/2048 = 2^8$

Quindi il numero di settori trasferiti è dato da:

$$b/(dimensione\ settore) = 2^{16}/2^8 = 2^8 = 256$$

Es6: Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU:

	Indirizzo	1/s	dato scritto (in esadecimale)
1 2	000100000000 000100001000	1 1	
3	000100001100	s	B1
4	000100001100	1	
5	000100010000	S	B4
6	000100010000	1	
7	000100010100	S	B7

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 8B, dimensione di blocco 2B, inizialmente vuota, e ad associazione a 2 vie (con politica di rimpiazzo LRU e politica di scrittura write-back).

Si assuma che la memoria abbia il contenuto esadecimale mostrato di seguito:

ind	byte	ind	byte	ind	byte	ind	byte			
100	0C	101	00	102	07	103	02			
104	00	105	00	106	00	107	00			
108	AE	109	13	10A	A1	10B	23			
10C	A1	10D	42	10E	90	10F	75			
110	В9	111	16	112	00	113	00			
114	0A	115	07	116	03	117	71			
ind = indirizzo										

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.