

National Open University Of Nigeria Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi - Abuja Faculty of Science

October/November 2016 Examination

Course Code: CHM305

Course Title: ORGANIC CHEMISTRY III

Credit Unit: 3 Time: 2 ½ HOURS

Instruction: Answer Question One and any other Four Questions. Each

Question Carries 14 Marks

1a) Give the names of the following compounds

I

Ιi

iv)

v)

1b) write the reaction condition of the below reactions

I)

ii)

2 RCOOH
$$\longrightarrow$$
 R - C O + H₂O

iv.

٧.

- 2a) With the aid of chemical structures, summarize the nucleophilic reaction of pyridine.
- 2b) Briefly discuss the aromatic character exhibited by Pridine.
- 3) The compound $H_2C(COOC_2H_5)_2$ is an important synthetic reagent,
 - a) Name the compound
 - b) Explain its methods of preparation
 - c) State its physical properties.
- 4) Answer the following questions with respect to dicarboxylic acid.
 - i) They contain _____ carboxyl groups.
- ii) Saturated dicarboxylic acids have the general formular _____ and may be equal or greater

than _____.

iii) In naming dicarboxylic acids using IUPAC system, the suffix _____ is added to the name of

the parent alkane.

	n the common system, the pos while in the	sition of the	substituents is ii	ndicated by	
I	UPAC system, it is indicated by	<i>'</i>	·		
v) Di	icarboxylic acids show	isom	nerism.		
vi) T	he general methods of prepara	ation of dica	rboxylic acids ar	e (a) - (i), List.	
vii) A	All dicarboxylic acids are		solids.		
viii)	Solubility in water	as mo	lecular mass	·	
	elting points of the acids with e ose with odd	ven number	of carbon atom	s are	
num	ber of carbon atoms.				
x) The a	acid strength of dicarboxylic ac	ids	with	in molecular	
	arboxylic acids dissociates in t le two steps.	wo step. Usi	ing a named dica	arboxylic acid,	
5a) Ans	wer the following questions wi	th respect to	carbonyl comp	ounds.	
i.	i. α,β – Unsaturated carbonyl compounds are and which are conjugated with a double bond.				
ii.	At the carbon-carbon double bor undergoes		ated ester or unsatu	ırated ketone	
iii.	addition of acid and Carbonyl compounds undergo t ketone.	· he	_ substitution typi	cal of esters or the	
iv.	The carbonyl group of α,β – uns nucleophilic and an el electrophilic carbon- theca	ectrophilic	5		
v.	α,β – unsaturated compounds cancer condensation.		l from	condensation, and the	
vi.	The carbon – carbon double bon	d normally se	rve as a source of _	for the	
vii.	electrophilic reagent. An electron- releasing substituer	nts	the transition state	e leading to the initial	
	carbocation while an electron wit	thdrawing gro	ups the	e transition state.	
viii.	Strong electron withdrawing gro				
	electrophilic addition but	the carl	oon-carbon double	bond towards	
	electron-rich reagent.	, 1		.9.1	
ix.	α,β – unsaturated ketones ,	, ester and _	are susc	eptible to	
х.	nucleophilic attack. Normal addition to a	ldehvdes or b	etones is called	addition	
Λ.	while when it involves addition to a	-			

	addition.				
xi.	α,β-unsaturated carbonyl compounds are converted to carbonyl				
	compounds when they react with aqueous sodium cyanide.				
xii.	Ammonia and some derivatives of ammonia like amines, hydroxylamine, phenyl				
	hydrazine, etc ,add to α,β-unsaturated carbonyl compounds to yield				
	compounds.				
xiii.	Michael addition is a special addition to α,β-unsaturated carbonyl				
С	ompounds.				
xiv. A	Ammonia and primary and secondary amines are powerful catalysts for the Michael				
ac	ldition.				
6a) In ch	emistry, six-membered heterocyclic compounds are formed when occurs.				
6b) Givin	ng names and structures, list the heterocyclics according to their subgroups.				
6c) Discu	iss the preparation of pyridine.				
	ss two synthetic applications of acetoacetic esters especially in the				
synthesi	is of carboxylic acid				