Signals and Systems

1. Continuous-Time and Discrete-Time Signals

continuous-time signals x(t) discrete-time signals x[n]

1.1 Signal Energy and Power

the total energy

$$E_{\infty} riangleq \lim_{T o \infty} \int_{-T}^{T} |x(t)|^2 \, \mathrm{d}t = \int_{-\infty}^{\infty} |x(t)|^2 \, \mathrm{d}t$$

$$E_{\infty} riangleq \lim_{N o \infty} \sum_{n=-N}^{+N} |x[n]|^2 = \sum_{n=-\infty}^{+\infty} |x[n]|^2$$

the time-averaged power

$$P_{\infty} riangleq \lim_{T o \infty} rac{1}{2T} \int_{-T}^{T} |x(t)|^2 \, \mathrm{d}t$$

$$P_{\infty} riangleq \lim_{N o \infty} rac{1}{2N+1} \sum_{n=-N}^{+N} |x[n]|^2$$

2. Transfermations of the Independent Variable

time shift x[n] and $x[n-n_0]$

 ${\rm time\ reversal\ } x[-n]$

time scaling x(2t) and $x(\frac{t}{2})$

It is often of interest to determine the effect of transforming the independent variable of x(t) to $x(\alpha t + \beta)$, where α and β are given numbers.

2.1 Periodic Signals

$$x(t) = x(t+T)$$

The **fundamental period** T_0 of x(t) is the smallest positive value of T for which it holds.

$$x[n] = x[n+N]$$

The **fundamental period** N_0 of x[n] is the smallest positive value of N for which it holds.

A signal that is not periodic will be referred to as an **aperiodic** signal.

2.2 Even and Odd Signals

even signals
$$x(-t)=x(t)$$
 and $x[-n]=x[n]$ odd signals $x(-t)=-x(t)$ and $x[-n]=-x[n]$

any signal can be broken into a sum of two signals, one of which is even and one of which is odd the **even part** of x(t): $\mathcal{E}_v\{x(t)\}=\frac{1}{2}[x(t)+x(-t)]$ the **odd part** of x(t): $\mathcal{O}_d\{x(t)\}=\frac{1}{2}[x(t)-x(-t)]$

3. Exponential and Sinusoidal Signals

3. 1 Continuous-Time Complex Exponential and Sinusoidal Signals

The continuous-time complex exponential signal is of the form $x(t)=C\mathrm{e}^{at}.$

real exponential signals C and a are real

periodic complex exponential signals $x(t)=\mathrm{e}^{\mathrm{j}\omega_0 t}$

it is periodic, $T_0=rac{2\pi}{\omega_0}$

sinusoidal signals $x(t) = A\cos(\omega_0 t + \phi)$

Euler's relation $\mathrm{e}^{\mathrm{j}\omega_0 t} = \cos(\omega_0 t) + \mathrm{j}\sin(\omega_0 t)$

fundamental frequency $|\omega_0|$

harmonically related complex exponential $\phi_k(t)=\mathrm{e}^{\hspace{1pt}\mathrm{j} k\omega_0 t} \quad k=0,\pm 1,\pm 2,...$

general complex exponential signals

 ${\cal C}$ expressed in polar form and a in rectangular form

we have
$$C=|C|\mathrm{e}^{\mathrm{j} heta}$$
 and $a=r+\mathrm{j}\omega_0$ then $C\mathrm{e}^{at}=|C|\mathrm{e}^{rt}\mathrm{e}^{\mathrm{j}(\omega_0t+ heta)}$

Sinusoidal signals multiplied by decaying exponentials are commonly referred to as **damped sinusoids**.

3.2 Discrete-Time Complex Exponential and Sinusoidal Signals

The discrete-time complex exponential signal is of the form $x[n] = C \alpha^n$.

real exponential signals C and α are real

sinusoidal signals |lpha|=1

then we have $x[n] = A \mathrm{cos}(\omega_0 n + \phi)$

general complex exponential signals

we have
$$C=|C|\mathrm{e}^{\mathrm{j}\theta}$$
 and $\alpha=|\alpha|\mathrm{e}^{\mathrm{j}\omega_0}$

then
$$Clpha^n=|C||lpha|^n\mathrm{cos}(\omega_0n+ heta)+\mathrm{j}|C||lpha|^n\mathrm{sin}(\omega_0n+ heta)$$

$$\mathrm{e}^{\mathrm{j}(\omega_0+2\pi)n}=\mathrm{e}^{\mathrm{j}\omega_0n}$$

The exponential at frequency $\omega_0 + 2\pi$ is the same as that at frequency ω_0 , therefore, we need only consider a frequency interval of length 2π in which to choose ω_0 .

The low-frequency discrete-time exponentials have values of ω_0 near $2k\pi-k\in\mathbb{Z}$, while the high frequencies are located near $\omega_0=(2k+1)\pi-k\in\mathbb{Z}$

The signal $e^{j\omega_0n}$ is periodic if $\frac{\omega_0}{2\pi}=\frac{m}{N}$ is a rational number and is not periodic otherwise. its fundamental frequency is $\frac{2\pi}{N}=\frac{\omega_0}{m}$

harmonically related complex exponential $\phi_k[n]=\mathrm{e}^{\mathrm{j}k\frac{2\pi}{N}n}\quad k=0,\pm 1,\pm 2,...$ and $\phi_{k+N}[n]=\phi_k[n]$, which implies that there are only N distinct periodic exponentials in the set

4. The Unit Impulse and Unit Step Functions

4.1 The Discrete-Time Unit Impulse and Unit Step Sequences

unit impulse or unit sample

$$\delta[n] = egin{cases} 0, & n
eq 0 \ 1, & n = 0 \end{cases}$$

unit step

$$u[n] = egin{cases} 1, & n \geq 0 \ 0, & n < 0 \end{cases}$$

There is a close relationship between the discrete-time unit impulse and unit step.

$$\delta[n] = u[n] - u[n-1]$$

$$u[n] = \sum_{m=-\infty}^n \delta[m] = \sum_{k=0}^n \delta[n-k]$$

and

$$x[n]\delta[n-n_0]=x[n_0]\delta[n-n_0]$$

4.2 The Continuous-Time Unit Step and Unit Impulse Functions

unit step function

$$u(t) = egin{cases} 1, & t \geq 0 \ 0, & t < 0 \end{cases}$$

unit impluse function

$$\delta(t) = \frac{\mathrm{d}u(t)}{\mathrm{d}t}$$

$$u(t) = \int_{-\infty}^{t} \delta(t) dt = \int_{0}^{\infty} \delta(t - \sigma) d\sigma$$

 $x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0)$

5. Continuous-Time and Discrete-Time Systems

continuous-time system x(t) o y(t) discrete-time systems x[n] o y[n]

6. Basic System Properities

A system is said to be **memoryless** if its output for each value of the independent variable at a given time is dependent only on the input at that same time.

for example y(t) = x(t)

An example of a discrete-time system with memory is y[n] = x[n-1].

A system is said to be **invertible** if distinct inputs lead to distinct outputs.

for example y(t)=2x(t), for which the inverse system is $w(t)=rac{1}{2}y(t)$

Examples of **noninvertible** systems are y[n] = 0

A system is **causal** if the output at any time depends only on values of the input at the present time and in the past.

A system is stable if small inputs lead to responses that do not diverge.

A system is time invariant if the behavior and characteristics of the system are fixed over time.

A system is linear if:

- 1.The response to $x_1(t) + x_2(t)$ is $y_1(t) + y_2(t)$. (additivity)
- 2.The response to $ax_1(t)$ is $ay_1(t)$, where a is any complex constant. (homogeneity)

superposition property

$$x[n] = \sum_k a_k x_k[n] o y[n] = \sum_k a_k y_k[n]$$