પ્રશ્ન 1(અ) [3 ગુણ]

સિગ્નલને વ્યાખ્યાયિત કરો અને તેનું વર્ગીકરણ આપો.

જવાબ:

સિગ્નલ એ એક ભૌતિક માત્રા છે જે સમય, સ્થળ અથવા અન્ય સ્વતંત્ર ચલ સાથે બદલાય છે અને તેમાં માહિતી સમાયેલી હોય છે.

સિગ્નલનું વર્ગીકરણ:

વર્ગીકરણ માપદંડ	સિગ્નલના પ્રકાર	
સમય ડોમેન	કંટીન્યુઅસ-ટાઈમ સિગ્નલ, ડિસ્ક્રીટ-ટાઈમ સિગ્નલ	
એમ્પ્લિટ્યુડ	એનાલોગ સિગ્નલ, ડિજિટલ સિગ્નલ	
ਮ ਣੁਰਿ	ડીટર્મિનિસ્ટિક સિગ્નલ, રેન્ડમ સિગ્નલ	
સિમેટ્રી	ઈવન સિગ્નલ, ઓડ સિગ્નલ	
એનર્જી/પાવર	એનર્જી સિગ્નલ, પાવર સિગ્નલ	

મેમરી ટ્રીક: "CADEN" (Continuous/Discrete, Analog/Digital, Deterministic/Random, Even/Odd, Energy/Power)

પ્રશ્ન 1(બ) [4 ગુણ]

કંટીન્યુઅસ અને ડિસ્ક્રીટ ટાઈમ સિગ્નલ સમજાવો.

જવાબ:

કંટીન્યુઅસ-ટાઈમ સિગ્નલ	ડિસ્ક્રીટ-ટાઈમ સિગ્નલ
સમયના તમામ મૂલ્યો માટે વ્યાખ્યાયિત	માત્ર ચોક્કસ સમય અંતરાલ પર વ્યાખ્યાયિત
x(t) તરીકે રજુ થાય છે	x[n] અથવા x(nT) તરીકે રજુ થાય છે
ઉદાહરણ: સાઇન વેવ જેવા એનાલોગ સિગ્નલ	ઉદાહરણ: સેમ્પલ કરેલા સ્પીચ જેવા ડિજિટલ સિગ્નલ
ગ્રાફ પર સળંગ વક	ગ્રાફ પર બિંદુઓની શ્રેણી
પ્રોસેસિંગ માટે એનાલોગ સર્કિટની જરૂર પડે	પ્રોસેસિંગ ડિજિટલ પ્રોસેસર દ્વારા કરી શકાય

આકૃતિ:

મેમરી ટ્રીક: "CAD" - Continuous signals are Analog and Defined for all time; Discrete signals are digital and defined at specific points.

પ્રશ્ન 1(ક) [7 ગુણ]

યુનિટ ઇમ્પલ્સ અને યુનિટ સ્ટેપ ફંક્શન સમજાવો.

જવાબ:

યુનિટ ઇમ્પલ્સ ફંક્શન (δ(t))	યુનિટ સ્ટેપ ફંક્શન (u(t))
t=0 પર અનંત ઊંચાઈ, બાકી જગ્યાએ શૂન્ય	t≥0 માટે મૂલ્ય 1, t<0 માટે 0
વક નીચેનું ક્ષેત્રફળ = 1	ઇન્ટિગ્રલ રેમ્પ ફંક્શન આપે છે
તાત્કાલિક ઘટનાઓને રજૂ કરવા માટે	અચાનક બદલાવને રજૂ કરવા માટે
LTI સિસ્ટમ એનાલિસિસનો ગાણિતિક આધાર	સિસ્ટમ રિસ્પોન્સ એનાલિસિસ માટે ઉપયોગી
લાપ્લાસ ટ્રાન્સફોર્મ = 1	લાપ્લાસ ટ્રાન્સફોર્મ = 1/s

આકૃતિ:

ગુણદ્યમોં:

- સેમ્પલિંગ પ્રોપર્ટી: $\int f(t)\delta(t-t_0)dt = f(t_0)$
- યુનિટ સ્ટેપ ઇમ્પલ્સનું ઇન્ટિગ્રલ છે: $u(t) = \int \delta(\tau) d\tau$ from -∞ to t
- **ઇમ્પલ્સ યુનિટ સ્ટેપનો ડેરિવેટિવ છે**: δ(t) = du(t)/dt

મેમરી ટ્રીક: "SHARP-FLAT" - Impulse is Sharp and momentary; Step is Flat and persistent.

પ્રશ્ન 1(ક) OR [7 ગુણ]

ડિજિટલ કોમ્યુનિકેશન સિસ્ટમનો બ્લોક ડાયાગ્રામ સમજાવો.

જવાબ:

ડિજિટલ કોમ્યુનિકેશન સિસ્ટમનો બ્લોક ડાયાગ્રામ:

સમજૂતી:

બ્લોક	รเน้	
સોર્સ	ટ્રાન્સમિટ કરવાનો મેસેજ ઉત્પન્ન કરે છે	
સોર્સ એન્કોડર	મેસેજને ડિજિટલ ફોર્મમાં રૂપાંતરિત કરે છે, રિડન્ડન્સી દૂર કરે છે	
ચેનલ એન્કોડર	એરર ડિટેક્શન/કરેક્શન માટે નિયંત્રિત રિડન્ડન્સી ઉમેરે છે	
ડિજિટલ મોક્યુલેટર	ડિજિટલ બિટ્સને ટ્રાન્સમિશન માટે યોગ્ય સિગ્નલમાં રૂપાંતરિત કરે છે	
ચેનલ	ભૌતિક માધ્યમ જેના દ્વારા સિગ્નલ પ્રવાસ કરે છે	
ડિજિટલ ડિમોક્યુલેટર	પ્રાપ્ત સિગ્નલમાંથી ડિજિટલ ડેટા પુનઃપ્રાપ્ત કરે છે	
ચેનલ ડિકોડર	ઉમેરેલી રિડન્ડન્સીનો ઉપયોગ કરીને એરર શોધે/સુધારે છે	
સોર્સ ડિકોડર	પ્રાપ્ત બિટ્સમાંથી મૂળ સંદેશ પુનઃનિર્માણ કરે છે	
ડેસ્ટિનેશન	પ્રેષિત સંદેશ પ્રાપ્ત કરે છે	

મેમરી ટ્રીક: "SECDCSD" - "Seven Engineers Can Design Communication Systems Diligently"

પ્રશ્ન 2(અ) [3 ગુણ]

સિગ્નલમાં 8000 બીટ/સેકન્ડનો બીટ રેટ અને 1000 બોડનો બોડ દર હોય છે. દરેક સિગ્નલ એલીમેંટ દ્વારા કેટલા ડેટા એલીમેંટ વહન કરવામાં આવે છે?

જવાબ:

દરેક સિગ્નલ એલિમેન્ટ દ્વારા વહન કરાતા ડેટા એલિમેન્ટ (બિટ્સ)ની સંખ્યા:

- = બીટ રેટ ÷ બોડ રેટ
- = 8000 બિટ્સ/સેકન્ડ ÷ 1000 બોડ
- = 8 બિટ્સ/સિગ્નલ એલિમેન્ટ

કોષ્ટક:

પેરામીટર	મૂલ્ચ	સંબંધ
બીટ રેટ	8000 બિટ્સ/સેક	આપેલ
બોડ રેટ	1000 બોડ	આપેલ
બિટ્સ/સિગ્નલ	8 બિટ્સ	બીટ રેટ ÷ બોડ રેટ

ਮੇਮરੀ ਟ੍ਰੀs: "Bits Divided By Bauds" (BDBB)

પ્રશ્ન 2(બ) [4 ગુણ]

એનર્જી અને પાવર સિગ્નલ સમજાવો.

જવાબ:

એનર્જી સિગ્નલ	પાવર સિગ્નલ
અંતિમ કુલ એનર્જી	અનંત કુલ એનર્જી પરંતુ અંતિમ સરેરાશ પાવર
શૂન્ય સરેરાશ પાવર	બિન-શૂન્ય સરેરાશ પાવર
E = ∫ x(t) ²dt (અંતિમ)	P = lim(T→∞) 1/2T ∫ x(t) ²dt (અંતિમ)
ઉદાહરણ: પત્સ, ક્ષચિત એક્સપોનેન્શિયલ	ઉદાહરણ: સાઇન વેવ, સ્ક્વેર વેવ
સમયમાં સીમિત	બધા સમય માટે અસ્તિત્વમાં

आङ्गति:

મેમરી ટ્રીક: "FEZIL" - Finite Energy is Zero in Long-term; Power signals are Infinite in Length

પ્રશ્ન 2(ક) [7 ગુણ]

FSK મોક્યુલેટર અને ડી-મોક્યુલેટરના બ્લોક ડાયાગ્રામને વેવફોર્મ સાથે સમજાવો.

જવાબ:

FSK મોક્યુલેટર અને ડિમોક્યુલેટર:

વેવફોર્મ:

મુખ્ય સિદ્ધાંતો:

- **બિટ 0**: ફ્રીક્વન્સી f₁ તરીકે ટ્રાન્સમિટ થાય છે
- **બિટ 1**: ફ્રીક્વન્સી f₂ તરીકે ટ્રાન્સમિટ થાય છે
- **ડિમોક્યુલેશન**: ફ્રીક્વન્સીઓને અલગ કરવા માટે બેન્ડપાસ ફિલ્ટર્સનો ઉપયોગ કરે છે
- ડિટેક્શન: એન્વેલપ ડિટેક્ટર્સ ડિજિટલ સિગ્નલને પુનઃપ્રાપ્ત કરે છે

મેમરી ટ્રીક: "FIST" - Frequency Is Shifted for Transmission

પ્રશ્ન 2(અ) OR [3 ગુણ]

સિગ્નલ 4 બીટ/સિગ્નલ એલીમેંટ ઘરાવે છે. જો 1000 સિગ્નલ એલીમેંટ પ્રતિ સેકન્ડ મોકલવામાં આવે છે. તો બીટ રેટ શોદ્યો.

જવાબ:

બીટ રેટ = સિગ્નલ એલિમેન્ટ દીઠ બિટ્સની સંખ્યા × પ્રતિ સેકન્ડ સિગ્નલ એલિમેન્ટ બીટ રેટ = 4 બિટ્સ/સિગ્નલ એલિમેન્ટ × 1000 સિગ્નલ એલિમેન્ટ/સેકન્ડ બીટ રેટ = 4000 બિટ્સ/સેકન્ડ

કોષ્ટક:

પેરામીટર	મૂલ્ય	સંબંધ
સિમ્બોલ દીઠ બિટ્સ	4	આપેલ
સિમ્બોલ રેટ	1000 સિમ્બોલ/સેક	આપેલ
બીટ રેટ	4000 બિટ્સ/સેક	બિટ્સ/સિમ્બોલ × સિમ્બોલ રેટ

મેમરી ટ્રીક: "BBS" - Bit rate equals Bits per symbol times Symbol rate

પ્રશ્ન 2(બ) OR [4 ગુણ]

ઈવન અને ઓડ સિગ્નલ સમજાવો.

જવાબ:

ઈવન સિગ્નલ	ઓડ સિગ્નલ	
y-અક્ષની આસપાસ સિમેટ્રિક	y-અક્ષની આસપાસ એન્ટી-સિમેટ્રિક	
x(-t) = x(t)	x(-t) = -x(t)	
ઉદાહરણ: cos(t)	ઉદાહરણ: sin(t)	
ફૂરિયર ટ્રાન્સફોર્મ વાસ્તવિક છે	ફૂરિયર ટ્રાન્સફોર્મ કાલ્પનિક છે	
ઈવન સિગ્નલનો સરવાળો ઈવન છે	ઓડ સિગ્નલનો સરવાળો ઓડ છે	

આકૃતિ:

ગુણધર્મો:

- કોઈપણ સિગ્નલને ઈવન અને ઓડ ઘટકોના સરવાળા તરીકે વ્યક્ત કરી શકાય છે
- ย์ดา ยระ: x₁(t) = [x(t) + x(-t)]/2
- ઓડ ઘટક: x₂(t) = [x(t) x(-t)]/2

મેમરી ટ્રીક: "SAME-FLIP" - Even signals are the SAME when flipped; Odd signals FLIP their sign.

પ્રશ્ન 2(ક) OR [7 ગુણ]

QPSK મોક્યુલેટર અને ડી-મોક્યુલેટરના બ્લોક ડાયાગ્રામને કોન્સોલેશન ડાયાગ્રામ સાથે સમજાવો.

જવાબ:

QPSK મોક્યુલેટર અને ડિમોક્યુલેટર:

કોન્સ્ટેલેશન ડાયાગ્રામ:

મુખ્ય લક્ષણો:

- ઇનપુટ: દરેક સિમ્બોલ 2 બિટ્સ દ્વારા નક્કી થાય છે
- **ફੇઝ**: 4 ફੇઝ (0°, 90°, 180°, 270°)
- બિટ્સથી ફેઝ:
 - o 00:45°
 - o 01: 135°
 - o 11: 225°
 - o 10:315°
- બેન્ડવિડ્થ એફિશિયન્સી: 2 બિટ્સ પ્રતિ સિમ્બોલ

ਮੇਮરੀ ਟ੍ਰੀs: "QUADrature" - 4 phases for 4 possible 2-bit combinations

પ્રશ્ન 3(અ) [3 ગુણ]

ASK મોક્યુલેટરનું કાર્ય બ્લોક ડાયાગ્રામ અને વેવફોર્મ સાથે સમજાવો.

જવાબ:

ASK મોક્યુલેટર બ્લોક ડાયાગ્રામ:

વેવફોર્મ:

કાર્ય સિદ્ધાંત:

- ડિજિટલ 1: કેરિયર સિગ્નલ ટ્રાન્સમિટ થાય છે
- ડિજિટલ 0: કોઈ સિગ્નલ નહીં (અથવા ઓછી એમ્પ્લિટ્યુડ) ટ્રાન્સિમટ થાય છે
- આઉટપુટ એમ્પ્લિટ્યુડ ઇનપુટ ડિજિટલ સિગ્નલ સાથે બદલાય છે

મેમરી ટ્રીક: "ASKY" - Amplitude Switches the Carrier? Yes!

પ્રશ્ન 3(બ) [4 ગુણ]

8-PSK અને 16-QAM ના કોન્સોલેશન ડાયાગ્રામ દોરો.

જવાબ:

8-PSK કોન્સ્ટેલેશન ડાયાગ્રામ:

16-QAM કોન્સ્ટેલેશન ડાયાગ્રામ:

મુખ્ય તફાવતો:

- 8-PSK: 8 સિમ્બોલ, સમાન એમ્પ્લિટ્યુડ, 45° અંતરે ફેઝ
- **16-QAM**: 16 સિમ્બોલ, બદલાતી એમ્પ્લિટ્યુડ અને ફેઝ

મેમરી ટ્રીક: "P-Phase Q-Quantity" - PSK varies Phase only; QAM varies both amplitude (Quantity) and phase

પ્રશ્ન 3(ક) [7 ગુણ]

1100101101 ના ક્રમ માટે ASK અને FSK મોક્યુલેશન વેવફોર્મ દોરો.

જવાબ:

મોક્યુલેશન વેવફોર્મ:

Binary Input:	1 1 0 0 1 0 1 1 0 1
Carrier:	/\/\/\/\/\/\/\/\/\/\/\/\/\/\
ASK Output:	/\/\/\\/\\/\/\\/\/\\\\ 1
FSK Output:	MMMMMMMMM/\/\/MMMMM/\/\/MMMMMMMMMMMMMM

મુખ્ય લક્ષણો:

- ASK: બિટ 1 માટે કેરિયર હાજર, બિટ 0 માટે ગેરહાજર
- **FSK**: બિટ 1 માટે ઉચ્ચ ફ્રીક્વન્સી (f₂), બિટ 0 માટે નીચી ફ્રીક્વન્સી (f₁)

મોડ્યુલેશન પદ્ધતિનું કોષ્ટક:

મોક્યુલેશન	બિટ 0	બિટ 1	બદલાતો પેરામીટર
ASK	શૂન્ય અથવા ઓછી એમ્પ્લિટ્યુડ	ઉચ્ચ એમ્પ્લિટ્યુડ	એમ્પ્લિટ્યુડ
FSK	ફ્રીક્વન્સી f ₁	ફ્રીક્વન્સી f ₂	ફ્રીક્વન્સી

ਮੇਮਰੀ ਟ੍ਰੀਡ: "AFRO" - Amplitude For 1, Remove for 0 (ASK); Frequency Rises for 1, Off-peak for 0 (FSK)

પ્રશ્ન 3(અ) OR [3 ગુણ]

PSK મોક્યુલેટરનું કાર્ય બ્લોક ડાયાગ્રામ અને વેવફોર્મ સાથે સમજાવો.

જવાબ:

PSK મોક્યુલેટર બ્લોક ડાયાગ્રામ:

વેવફોર્મ:

કાર્ય સિદ્ધાંત:

- ડિજિટલ 1: 0° ફેઝ સાથે કેરિયર સિગ્નલ
- ડિજિટલ 0: 180° ફેઝ સાથે કેરિયર સિગ્નલ (ઉલટું)
- એમ્પ્લિટ્યુડ સ્થિર રહે છે, માત્ર ફેઝ બદલાય છે

મેમરી ટ્રીક: "PSKIT" - Phase Shift Keeps Information True

પ્રશ્ન 3(બ) OR [4 ગુણ]

1101001101 ના ક્રમ માટે MSK મોક્યુલેશન વેવફોર્મ દોરો.

જવાબ:

MSK મોક્યુલેશન વેવફોર્મ:

MSKના લક્ષણો:

- સતત ફેઝ ટ્રાન્ઝિશન (કોઈ ફેઝ જમ્પ નહીં)
- f₁ અને f₂ વચ્ચે ફ્રીક્વન્સી શિફ્ટ
- ન્યૂનતમ ફ્રીક્વન્સી સેપરેશન: Δf = 1/(2T)
- FSK કરતાં વધુ સ્મૂધ ટ્રાન્ઝિશન

કોષ્ટક:

લક્ષણ	MSK લક્ષણ
ફેઝ કન્ટિન્યુઇટી	સતત, કોઈ અચાનક બદલાવ નહીં
ફ્રીક્વન્સી ડેવિએશન	ન્યૂનતમ શક્ય (1/2T)
સ્પેક્ટ્રલ એફિશિયન્સી	પરંપરાગત FSK કરતાં વધુ સારી
બેન્ડવિડ્થ	બીટ રેટનો 1.5 ગણો

મેમરી ટ્રીક: "MINIMUM SMOOTH" - MSK uses Minimum frequency separation with Smooth transitions

પ્રશ્ન 3(ક) OR [7 ગુણ]

1100101011 માટે BPSK અને QPSK મોક્યુલેશન વેવફોર્મ દોરો.

જવાબ:

BPSK અને QPSK મોક્યુલેશન વેવફોર્મ:

મુખ્ય તફાવતો:

• **BPSK**: 1 બીટ પ્રતિ સિમ્બોલ, 2 ફેઝ (0° અને 180°)

• QPSK: 2 બીટ પ્રતિ સિમ્બોલ, 4 ફેઝ (45°, 135°, 225°, 315°)

• **QPSK જોડી**: 00, 01, 10, 11 અલગ-અલગ ફેઝને મેપ કરે છે

કોષ્ટક:

મોક્યુલેશન	બીટ્સ/સિમ્બોલ	ફેઝની સંખ્યા	બેન્ડવિડ્થ એફિશિયન્સી
BPSK	1	2	1 બીટ/Hz
QPSK	2	4	2 બીટ/Hz

મેમરી ટ્રીક: "ONE-TWO" - ONE bit for BPSK, TWO bits for QPSK

પ્રશ્ન 4(અ) [3 ગુણ]

નીચેની પ્રોબેબીલીટી ક્રમ માટે હફમેન કોડનો ઉપયોગ કરીને ડેટાને એન્કોડ કરો. P = { 0.4, 0.2, 0.2, 0.1, 0.1}

જવાબ:

હફમેન કોડિંગ પ્રક્રિયા:

સિમ્બોલ	પ્રોબેબિલિટી	હફમેન કોડ
A	0.4	0
В	0.2	10
С	0.2	11
D	0.1	110
E	0.1	111

હફમેન ટ્રી:

મેમરી ટ્રીક: "Higher Probability Means Shorter Code"

પ્રશ્ન 4(બ) [4 ગુણ]

સંભાવના અને એન્ટ્રોપી વ્યાખ્યાયિત કરો.

જવાબ:

સંક	કલ્પના	વ્યાખ્યા	સૂત્ર	મહત્વ
સંહ	સાવના	ઘટના ઘટવાની સંભાવનાનું માપ	P(A) = અનુકૂળ પરિણામોની સંખ્યા / કુલ શક્ય પરિણામોની સંખ્યા	કોમ્યુનિકેશનમાં અનિશ્ચિતતા મોડેલ કરવા માટે ઉપયોગી
એન	ન્ટ્રોપી	સિસ્ટમમાં અનિશ્ચિતતા અથવા રેન્ડમનેસનું માપ	$H(X) = -\sum P(xi) \log_2 P(xi)$	સરેરાશ માહિતી સામગ્રી દર્શાવે છે

મુખ્ય લક્ષણો:

• સંભાવના રેન્જ: 0 ≤ P(A) ≤ 1

• **એન્ટ્રોપી એકમો**: બિટ્સ (log₂નો ઉપયોગ કરીને)

• મહત્તમ એન્ટ્રોપી: જ્યારે બધી ઘટનાઓ સમાન સંભાવના ધરાવે છે

• ન્યૂનતમ એન્ટ્રોપી: જ્યારે પરિણામ નિશ્ચિત હોય (સંભાવના = 1)

મેમરી ટ્રીક: "PURE" - Probability Underpins Randomness Estimation

પ્રશ્ન 4(ક) [7 ગુણ]

CDMA ટેકનિકને વિગતવાર સમજાવો.

જવાબ:

CDMA (કોડ ડિવિઝન મલ્ટિપલ એક્સેસ):

CDMA લક્ષણોનું કોષ્ટક:

લક્ષણ	વર્ણન
એક્સેસ મેથડ	બહુવિધ વપરાશકર્તાઓ એક જ ફ્રીક્વન્સી અને સમય શેર કરે છે
વિભાજન	વપરાશકર્તાઓને અનન્ય સ્પ્રેડિંગ કોડ દ્વારા અલગ પાડવામાં આવે છે
સ્પ્રેડિંગ કોડ	ઓર્થોગોનલ અથવા પ્સ્યુડો-ઓર્થોગોનલ સિક્વન્સ
પ્રોસેસિંગ ગેઇન	સ્પ્રેડ બેન્ડવિડ્થનો મૂળ બેન્ડવિડ્થ સાથેનો ગુણોત્તર
મલ્ટિપલ એક્સેસ	ફ્રીક્વન્સી અથવા સમય વિભાજનને બદલે કોડ સ્પેસનો ઉપયોગ કરે છે
ઇન્ટરફેરન્સ રિજેક્શન	નેરોબેન્ડ ઇન્ટરફેરન્સને નકારવાની અંતર્ગત ક્ષમતા

મુખ્ય ફાયદાઓ:

• **ક્ષમતા**: ઘણા કિસ્સાઓમાં FDMA/TDMA કરતાં વધારે

• સુરક્ષા: સ્પ્રેડિંગ કોડ દ્વારા અંતર્ગત એન્ક્રિપ્શન

• મલ્ટિપાથ રિજેક્શન: રેક રિસીવર મલ્ટિપાથ ઘટકોને જોડી શકે છે

• સોફ્ટ હેન્ડઓફ: મોબાઇલ એક સાથે બહુવિધ બેઝ સ્ટેશનો સાથે વાતચીત કરી શકે છે

મેમરી ટ્રીક: "CODES" - Capacity Optimized with Direct-sequence Encoding Schemes

પ્રશ્ન 4(અ) OR [3 ગુણ]

નીચેના પ્રોબેબીલીટી ક્રમ માટે શેનોન ફેનો કોડનો ઉપયોગ કરીને ડેટાને એન્કોડ કરો. P = { 0.5, 0.25, 0.125, 0.125}

જવાબ:

શેનોન-ફેનો કોડિંગ પ્રક્રિયા:

સિમ્બોલ	પ્રોબેબિલિટી	શેનોન-ફેનો કોડ
А	0.5	0
В	0.25	10
С	0.125	110
D	0.125	111

શેનોન-ફેનો ટ્રી:

મેમરી ટ્રીક: "Split For Optimum" - Shannon-Fano splits groups for optimum coding

પ્રશ્ન 4(બ) OR [4 ગુણ]

ઈન્ફોર્મેશન અને ચેનલ કેપેસિટી વ્યાખ્યાયિત કરો.

જવાબ:

સંકલ્પના	વ્યાખ્યા	સૂત્ર	મહત્વ
ઈન્ફોર્મેશન	અનિશ્ચિતતામાં ઘટાડાનું માપ	$I(x) = -\log_2$ $P(x)$	ઓછી સંભાવના ધરાવતી ઘટનાઓ વધુ માહિતી ધરાવે છે
ચેનલ કેપેસિટી	મહત્તમ દર જે પર નિર્ધારિત ત્રુટિ સાથે માહિતી પ્રસારિત કરી શકાય	$C = B \log_2(1 + S/N)$	વિશ્વસનીય કોમ્યુનિકેશનની મૂળભૂત મર્યાદા

મુખ્ય મુદ્દાઓ:

- **ઈન્ફોર્મેશન એકમો**: બિટ્સ (log₂નો ઉપયોગ કરીને)
- **યેનલ કેપેસિટી એકમો**: બિટ્સ પ્રતિ સેકન્ડ
- કેપેસિટીને અસર કરતા પરિબળો:
 - ૦ બેન્ડવિડ્થ (B)
 - ૦ સિગ્નલ-ટુ-નોઇઝ રેશિયો (S/N)

મેમરી ટ્રીક: "INCHES" - Information Numerically Calculated, Hopping through Efficient Shannon limit

પ્રશ્ન 4(ક) OR [7 ગુણ]

TDMA ટેકનિકને વિગતવાર સમજાવો.

જવાબ:

TDMA (ટાઇમ ડિવિઝન મલ્ટિપલ એક્સેસ):

TDMA લક્ષણોનું કોષ્ટક:

લક્ષણ	વર્ણન
એક્સેસ મેથડ	બહુવિદ્ય વપરાશકર્તાઓ એક જ ફ્રીક્વન્સી અલગ-અલગ ટાઇમ સ્લોટમાં શેર કરે છે
ફ્રેમ સ્ટ્રક્ચર	સમય ફ્રેમમાં વિભાજિત, ફ્રેમ સ્લોટમાં વિભાજિત
ว แร้	ઓવરલેપ ટાળવા માટે સ્લોટ વચ્ચે ટૂંકા સમયગાળા
સિન્કોનાઇઝેશન	ટ્રાન્સમિટર અને રિસીવર વચ્ચે ચોક્કસ ટાઇમિંગની જરૂર
કાર્યક્ષમતા	ઉચ્ચ સ્પેક્ટ્રમ ઉપયોગ
પાવર કન્ઝમ્પશન	ટ્રાન્સમિટર માત્ર સોંપાયેલા સ્લોટ દરમિયાન ચાલુ

TDMA ફ્રેમ સ્ટ્રક્ચર:

```
|<---->|
| TS1 | TS2 | TS3 | TS4 | TS1 | TS2 | TS3 | TS4 | ...
|User1|User2|User3|User4|User1|User2|User3|User4| ...
```

મેમરી ટ્રીક: "TIME" - Transmission In Measured Epochs

પ્રશ્ન 5(અ) [3 ગુણ]

T1 કેરિયર સિસ્ટમ સમજાવો.

જવાબ:

T1 કેરિયર સિસ્ટમ:

લક્ષણ	સ્પેસિફિકેશન
ડેટા રેટ	1.544 Mbps
ચેનલ	24 વોઇસ ચેનલ
વોઇસ સેમ્પલિંગ	8000 સેમ્પલ/સેકન્ડ
સેમ્પલ સાઇઝ	8 બિટ્સ પ્રતિ સેમ્પલ
ફ્રેમ સાઇઝ	193 બિટ્સ (24×8 + 1)
ફ્રેમ રેટ	8000 ફ્રેમ/સેકન્ડ

T1 ફ્રેમ સ્ટ્રક્ચર:

भेभरी ट्रीड: "T1-24-8-8" - T1 has 24 channels, 8 bits, 8kHz

પ્રશ્ન 5(બ) [4 ગુણ]

ટાઈમ ડિવિઝન મલ્ટિપ્લેક્સિંગ ટેકનિક (TDM) ને વિગતવાર સમજાવો.

જવાબ:

ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગ (TDM):

TDM લક્ષણોનું કોષ્ટક:

લક્ષણ	વર્ણન
સિદ્ધાંત	બહુવિધ સિગ્નલ વારાફરતી લઈને એક ચેનલ શેર કરે છે
સમય ફાળવણી	દરેક સિગ્નલને નિશ્ચિત સમય સ્લોટ ફાળવવામાં આવે છે
સિન્ક્રોનાઇઝેશન	મલ્ટિપ્લેક્સર અને ડિમલ્ટિપ્લેક્સર વચ્ચે ચોક્કસ ટાઇમિંગની જરૂર
ઇન્ટરલીવિંગ	વિવિધ સ્ત્રોતોના સેમ્પલ સમયમાં ઇન્ટરલીવ્ડ
પ્રકારો	સિન્ક્રોનસ TDM અને એસિન્ક્રોનસ (સ્ટેટિસ્ટિકલ) TDM

TDM ફ્રેમ સ્ટ્રક્ચર:

```
|<---->|
| S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | ... |
```

મેમરી ટ્રીક: "TWIST" - Time Windows Interleaving Signals Together

પ્રશ્ન 5(ક) [7 ગુણ]

ઇન્ફોમેશન સિક્યોરિટીમાં આવતા સિક્યોરિટી ઘટકોને વિગતવાર સમજાવો.

જવાબ:

ઇન્ફોર્મેશન સિક્યોરિટી ઘટકો:

સિક્યોરિટી ઘટકોનું કોષ્ટક:

ยวร	นญ์า	અમલીકરણ પદ્ધતિઓ
કોન્ફિડેન્શિયાલિટી	માહિતી માત્ર અધિકૃત વપરાશકર્તાઓને જ ઉપલબ્ધ થાય તેની ખાતરી	એન્ક્રિપ્શન, એક્સેસ કંટ્રોલ, ઓથેન્ટિકેશન
ઇન્ટેગ્રિટી	ડેટાની સચોટતા અને સુસંગતતા જાળવવી	ડિજિટલ સિગ્નેચર, હેશિંગ, ચેકસમ
એવેલેબિલિટી	જ્યારે જરૂર હોય ત્યારે માહિતી ઉપલબ્ધ થાય તેની ખાતરી	રેડન્ડન્સી, બેકઅપ સિસ્ટમ, ડિઝાસ્ટર રિકવરી
ઓથેન્ટિકેશન	વપરાશકર્તાઓની ઓળખની ચકાસણી	પાસવર્ડ, બાયોમેટ્રિક્સ, ડિજિટલ સર્ટિફિકેટ
નોન-રેપ્યુડિએશન	માહિતી મોકલવા/પ્રાપ્ત કરવાના ઇન્કારને રોકવું	ડિજિટલ સિગ્નેચર, ઓડિટ ટ્રેઇલ્સ

સામાન્ય સુરક્ષા ધમકીઓ:

• **માલવેર**: વાયરસ, વોર્મ્સ, ટ્રોજન, રેન્સમવેર

• સોશિયલ એન્જિનિયરિંગ: ફિશિંગ, પ્રીટેક્સ્ટિંગ

• મેન-ઇન-ધ-મિડલ એટેક: વાતચીતને અવરોધવી

• ડિનાયલ-ઓફ-સર્વિસ: કાયદેસર એક્સેસને રોકવી

મેમરી ટ્રીક: "CIA" - Confidentiality, Integrity, Availability

પ્રશ્ન 5(અ) OR [3 ગુણ]

E1 કેરિયર સિસ્ટમ સમજાવો.

જવાબ:

E1 કેરિયર સિસ્ટમ:

લક્ષણ	સ્પેસિફિકેશન
ડેટા રેટ	2.048 Mbps
ચેનલ	32 ટાઇમ સ્લોટ (30 વોઇસ + 2 સિગ્નલિંગ)
વોઇસ સેમ્પલિંગ	8000 સેમ્પલ/સેકન્ડ
સેમ્પલ સાઇઝ	8 બિટ્સ પ્રતિ સેમ્પલ
ફ્રેમ સાઇઝ	256 બિટ્સ (32×8)
ફ્રેમ રેટ	8000 ફ્રેમ/સેકન્ડ

E1 ફ્રેમ સ્ટ્રક્ચર:

```
|<---->|
| TS0 | TS1 | TS2 | ... | TS15 | TS16 | TS17 | ... | TS31 |
| 8 | 8 | 8 | ... | 8 | 8 | ... | 8 |
```

સ્પેશિયલ ટાઇમ સ્લોટ:

• TSO: ફ્રેમ એલાઇનમેન્ટ સિગ્નલ

• TS16: સિગ્નલિંગ ચેનલ

भेभरी ट्रीड: "E1-32-8-8" - E1 has 32 channels, 8 bits, 8kHz

પ્રશ્ન 5(બ) OR [4 ગુણ]

ફ્રીક્વન્સી ડિવિઝન મલ્ટિપ્લેક્સિંગ ટેકનિક (FDM) ને વિગતવાર સમજાવો.

જવાબ:

ફ્રીક્વન્સી ડિવિઝન મલ્ટિપ્લેક્સિંગ (FDM):

FDM લક્ષણોનું કોષ્ટક:

લક્ષણ	વર્ણન
સિદ્ધાંત	બહુવિધ સિગ્નલ અલગ-અલગ ફ્રીક્વન્સી બેન્ડનો ઉપયોગ કરીને એક ચેનલ શેર કરે છે
ગાર્ડ બેન્ડ	ઇન્ટરફેરન્સને રોકવા માટે ચેનલો વચ્ચે વપરાય ન હોય તેવા ફ્રીક્વન્સી બેન્ડ
ચેનલ બેન્કવિડ્થ	દરેક સિગ્નલને ચોક્કસ ફ્રીક્વન્સી રેન્જ ફાળવેલી હોય છે
અમલીકરણ	સિગ્નલને અલગ-અલગ ફ્રીક્વન્સી બેન્ડમાં શિફ્ટ કરવા માટે મોક્યુલેટર્સનો ઉપયોગ
ઉપયોગો	રેડિયો બ્રોડકાસ્ટિંગ, ટેલિવિઝન, કેબલ સિસ્ટમ

FDM સ્પેક્ટ્રમ:

મેમરી ટ્રીક: "FROG" - FRequencies Organized with Gaps

પ્રશ્ન 5(ક) OR [7 ગુણ]

ઈન્ટરનેટ ઓફ થિંગ્સ (IoT) ના ખ્યાલ અને મુખ્ય લક્ષણો સમજાવો.

જવાબ:

ઈન્ટરનેટ ઓફ થિંગ્સ (IoT) ખ્યાલ:

IoTના મુખ્ય લક્ષણોનું કોષ્ટક:

લક્ષણ	นย์า
કનેક્ટિવિટી	ડિવાઇસીસ ઇન્ટરનેટ અને એકબીજા સાથે જોડાયેલી
ઇન્ટેલિજન્સ	સ્માર્ટ પ્રોસેસિંગ, નિર્ણય લેવાની ક્ષમતાઓ
સેન્સિંગ	સેન્સર્સ દ્વારા પર્યાવરણમાંથી ડેટા એકત્રિત કરવો
એક્સપ્રેસિંગ	એક્ચ્યુએટર્સ દ્વારા કાર્યવાહી કરવી
એનર્જી એફિશિયન્સી	બેટરી-સંચાલિત ડિવાઇસીસ માટે ઓછી પાવર વપરાશ
સિક્યોરિટી	અનધિકૃત એક્સેસ અને હુમલાઓથી સુરક્ષા
સ્કેલેબિલિટી	નેટવર્કમાં વધુ ડિવાઇસીસ ઉમેરવાની ક્ષમતા

IoT આર્કિટેક્ચર લેયર્સ:

IoT એપ્લિકેશન્સ:

- સ્માર્ટ હોમ અને બિલ્ડિંગ
- હેલ્થકેર મોનિટરિંગ
- ઇન્ડસ્ટ્રિયલ ઓટોમેશન
- સ્માર્ટ સિટીઝ
- એગ્રીકલ્ચર મોનિટરિંગ
- સપ્લાય ચેઇન મેનેજમેન્ટ

મેમરી ટ્રીક: "CASED" - Connected, Automated, Sensing, Expressing, Data-driven