GEOMETRIA ALGEBRAICZNA, Lista 4

Niech K będzie ciałem algebraicznie domkniętym i $k, n, m \in \mathbb{N}_{>0}$.

- 1. Załóżmy, że V jest rozmaitością algebraiczną i $f \in K(V)$. Udowodnić, że dom(f) jest podzbiorem otwartym Zariskiego w V.
- 2. Dla maksymalnego idealu \mathfrak{m} w dziedzienie R, niech

$$R_{\mathfrak{m}} = \{a/b \in R_0 \mid a \in R, b \in R \setminus \mathfrak{m}\} \subseteq R_0.$$

Udowodnić, że

$$R = \bigcap \{R_{\mathfrak{m}} \mid \mathfrak{m} \text{ jest idealem maksymalnym } R\}.$$

3. Niech T będzie dziedziną. Definiujemy:

$$\partial: T[X] \to T[X], \ \partial(a_0 + a_1 X + \ldots + a_{n-1} X^{n-1} + a_n X^n) = a_1 + \ldots + (n-1)a_{n-1} X^{n-2} + na_n X^{n-1}.$$

Udowodnić, że:

- (a) funkcja ∂ jest różniczkowaniem;
- (b) jeśli char(T) = 0, to $\partial^{-1}(0) = T$;
- (c) jeśli char(T) = p > 0, to $\partial^{-1}(0) = T[X^p]$.
- 4. Załóżmy, że:
 - $G_1, \ldots, G_k, F_1, \ldots, F_m \in K[X_1, \ldots, X_n];$
 - $G_1, \ldots, G_k \in (F_1, \ldots, F_m)$;
 - $\bar{F} := (F_1, \dots, F_m), \ \bar{G} := (G_1, \dots, G_k);$
 - $v \in V(\bar{F})$.

Udowodnić, że każdy wiersz macierzy $J_{\bar{G}}(v)$ jest K-liniową kombinacją wierszy macierzy $J_{\bar{F}}(v)$.

- 5. Niech $F_1, \ldots, F_n \in K[X_1, \ldots, X_n]$ i $\bar{F} : \mathbb{A}^n \to \mathbb{A}^n$ będzie morfizmem, gdzie $\bar{F} = (F_1, \ldots, F_n)$.
 - (a) Udowodnić, że jeśli \bar{F} jest izomorfizmem, to $\det(J_{\bar{F}}) \in K^*$.
 - (b) Co sądzicie o implikacji przeciwnej do tej w punkcie (a)?
- 6. Załóżmy, że $K = \mathbb{C}$ i że $V \subseteq \mathbb{A}^n$ jest gładką rozmaitością algebraiczną. Udowodnić, że V jest zespoloną podrozmaitością \mathbb{C}^n (lub różniczkowalną podrozmaitością \mathbb{R}^{2n}). W szczególności, V jest też rozmaitością w sensie geometrii różniczkowej.
- 7. Niech P będzie ideałem pierwszym w pierścieniu R. Udowodnić, że:
 - (a) $(R/P)_0 \cong_R R_P/PR_P$;
 - (b) ilorazy P/P^2 oraz $PR_P/(PR_P)^2$ maja naturalne struktury R/P-modułów;
 - (c) jeśli ideał P jest maksymalny, to mamy

$$P/P^2 \cong_{R/P} PR_P/(PR_P)^2$$
.

8. Założmy, że $F, G \in K[X, Y]$ są nierozkładalne i że F nie dzieli G. Niech $V = V(FG) \subseteq \mathbb{A}^2$ oraz $a \in V$ będzie taki, że F(a) = G(a) = 0. Udowodnić, że a jest punktem osobliwym V.

- 9. Niech $F \in K[X,Y]$ i $V = V(F) \subseteq \mathbb{A}^2$. Udowodnić, że:
 - (a) jeśli $F \notin K$, to V jest nieskończony;
 - (b) jeśli $V(F, \frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y})$ jest skończony, to $\sqrt{(F)}=(F)$ oraz I(V)=(F);
 - (c) jeśli $V(F, \frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}) = \emptyset$, to V jest gładką rozmaitością algebraiczną.
- 10. Załóżmy, że char $(K) \neq 2$. Dla poniższych $F \in K[X,Y]$, znaleźć punkty osobliwe V(F) oraz dopasować krzywe V(F) do poniższego obrazka.
 - (a) $F = Y^4 + X^4 X^2$.
 - (b) $F = Y^6 + X^6 XY$.
 - (c) $F = Y^4 + X^4 + Y^2 X^3$.
 - (d) $F = Y^4 + X^4 X^2Y XY^2$.

