, ~	续,可偏导,可	可微						
(15)	若 $f(x, y)$ 的点	$\bar{x}(x_0,y_0)$ 处的	两个偏导	数都不	字在,则(В).		
(A)	f(x, y) 在点(x	· ₀ , y ₀) 的某个领	邓域内有	界;				
(B)	$f(x, y_0)$ 在点 x	· ₀ 处连续, <i>f</i> (x ₀ , y) 在	点 y ₀ 女	上连续;			
(C)	f(x, y) 在点(x	· ₀ , y ₀) 的某个领	邓域内连	续;				
(D)	f(x, y) 在点(x	· ₀ , y ₀) 处可微.						
(16) j	函数 $f(x,y) = \sqrt{x}$	$\sqrt{x^2+y^4}$ 在点	(0,0)处的	的偏导	上数(B) .		
(A)	f' _x (0,0)存在,	f' _y (0,0) 不存	在	(B)	$f_x'(0,0)^{7}$	不存在,	$f_y'(0,0)$	存在
(C)	$f'_{x}(0,0)$, $f'_{y}(0)$,0)都存在		(D)	$f_x'(0,0)$,	$f_y'(0,0)$)都不存	在
(17)	关于二元函数	数 $f(x,y)$ 有	下列四~	个命题	į:			
① f	$f(x,y)$ 在点 P_0	(x_0, y_0) 处可征	散					
② f	(x, y) 在点 P ₀ ((x ₀ , y ₀) 处偏-	导数存在	生				
③ f	(x,y)在点 <i>P</i> ₀ ((x ₀ , y ₀) 处连约	卖					
4 f	· (x, y)在点 P ₀ ((x ₀ , y ₀) 处存	在连续的	的偏导	数			
	$A \Rightarrow B$ 表示 \Box	· ·				确的是	. (A) .
(A)	1)⇒2	(B) 2=	⇒ <u>1</u>				
	(1)⇒(4)	(Г)	→ (4)				

(18) 设函数
$$f(x,y) = \begin{cases} \sqrt{x^2 + y^2} + \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$
, 则函数 $f(x,y)$ 在点

(0,0)处(D).

- (A) 连续,且偏导数存在 (B) 连续,但偏导数不存在
- (C) 不连续,但偏导数存在 (D) 不连续,且偏导数不存在
- (19) z = f(x, y)在点 (x_0, y_0) 偏导数存在,是该函数在点 (x_0, y_0) 可微的(A).
 - (A) 必要且非充分条件; (B) 充分但非必要条件;
- - (C) 充分必要条件; (D) 既非充分,也非必要条件.
- 二、求极限、全微分、偏导数
- (15) 已知 f(1,2) = 4, df(1,2) = 8dx + 4dy, df(1,4) = 16dx + 8dy, 则 z = f(x, f(x, y))在点(1,2)处对x的偏导数为<u>80</u>
- (16) 设方程 $xyz + e^z = 1$ 确定 $z \neq x$, y 的函数,则 $\frac{\partial z}{\partial x} = (C)$.
- (A) $-\frac{yz}{e^z}$ (B) $\frac{yz}{e^z}$ (C) $-\frac{yz}{xy+e^z}$ (D) $\frac{yz}{xy+e^z}$
- (16) 极限 $\lim_{\substack{x\to 0 \ y\to \pi}} \frac{\sin(xy)}{x} = \underline{\qquad \underline{\pi}}$ _____.
 - (17) 极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{xy}{x^2 + y^2} = (D)$.
 - (A) $\frac{2}{3}$ (B) 0 (C) $\frac{5}{6}$ (D) 不存在

(17) 设函数
$$z = f(x, y)$$
连续,且 $\lim_{\substack{x \to 0 \ y \to 0}} \frac{f(x, y) - x - y}{\sqrt{x^2 + y^2}} = 0$,则 $dz \Big|_{(0,0)} = _dx + dy ___.$

(18) 设
$$z = f(x + y, xy)$$
, 其中 $f \in C^{(1)}$ 类函数,则 $\frac{\partial z}{\partial x} = ____f' + yf_2' ____$.

(19)
$$\forall z = \cos e^{xy}$$
, $\bigcup dz = \underline{} -e^{xy} \sin e^{xy} (x+d x y \underline{})$.

三、方向导数和梯度

(15) 函数
$$u = xy^2 + yz^3$$
 在 $P_0(2,-1,1)$ 处沿方向 $l = (2,2,-1)$ 的方向导数为 8/3.

(16) 函数
$$u = x^2 - xy + 2yz$$
 在点(1,1,1)处的方向导数的最大值为______.

(17) 求函数 $u = x^2 + y^2 + z^2 - xy + 2yz$ 在点 M(-1, 2, -3)处的梯度及在该点处沿 l = (1, 1, 1) 方向的方向导数.

(A)
$$l=(-4,3)$$
; (B) $l=(-3,-4)$; (C) $l=(3,4)$; (D) $l=(4,-3)$.

四、偏导数的几何应用

(15) 求曲线
$$\begin{cases} x = t \\ y = -t^2 与平面 x + 2y + z = 4 平行的切线方程. \\ z = t^3 \end{cases}$$

(16) 在曲面 z = xy 上求一点, 使这点处的法线垂直于平面 x + 3y + z + 9 = 0, 并写出该法线方程.

- (17) 曲面 $e^z z + xy = 3$ 在点 M(2,1,0) 处的切平面方程为_x + 2y 4 = 0__.
- (18) 过点(1,0,0)与(0,1,0),且与曲面 $z=x^2+y^2$ 相切的平面方程为(B).

 - (A) z=0 = x+y-z=1 (B) z=0 = 2x+2y-z=2

 - (C) y = x = 5x + y z = 1 (D) y = x = 52x + 2y z = 2

(19) 求曲面 $x^2 + 2y^2 + 3z^2 = 21$ 平行于平面 x + 4y + 6z = 0的切平面方程.

五、抽象复合函数的高阶偏导数,隐函数微分法等

(15) 设
$$z = f(x+y, x-y, xy)$$
,函数 f 存在二阶连续的偏导数,求 dz 和 $\frac{\partial^2 z}{\partial x \partial y}$.

(16) 设
$$f$$
 为 $C^{(2)}$ 类函数,且 $z = f(x+y,x-y)$,求 dz 和 $\frac{\partial^2 z}{\partial x \partial y}$.

$$(17)$$
 设 f 为 $C^{(2)}$ 类函数,且 $z = f(xy)$,则 $\frac{\partial^2 z}{\partial x \partial y} = _-f' + xyf_-$.

(18) 已知函数 z = z(x, y) 是由方程 $x = z \cdot e^{y+z}$ 所确定的隐函数,求 $dz|_{(e,0)}$.

(19) 设
$$z = x^3 f\left(xy, \frac{y}{x}\right)$$
, f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.

六、极值最值

(15) 求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值.

(16)设x>0,y>0,z>0,用 Lagrange 乘数法求函数 $u=x^3y^2z$ 在约束条件x+y+z=12下的最大值.

(17)求函数 $f(x,y) = x^2 + 2y^2 - x$ 在闭区域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 上的最大值 和最小值.

- (18)函数 $z = x^2 y^2 + 2y + 7$ (C).
 - (A) 没有驻点, 也没有极值点 (B) 有驻点, 也有极值点

 - (C) 有驻点,但没有极值点 (D) 没有驻点,但有极值点

(18) 利用 Lagrange 乘数法求函数 f(x,y)=2x-y+1满足约束条件 $x^2+y^2=5$ 下的最大值和最小值.

(19)设f(1,1) = -1为函数 $f(x,y) = ax^3 + by^3 + cxy$ 的极值,则 a,b,c 分别等于 (D).

- (A) 1,1,-1; ; (B) -1,-1,3; (C) -1,-1,-3; (D) 1,1,-3.

(19) 求函数 $z=x^2+y^2$ 在圆域 $\{(x,y)|(x-\sqrt{2})^2+(y-\sqrt{2})^2\leq 9\}$ 上的最大值与最小值.