Example of a language in NL

```
Reach = \{(G = (V, E), s, t) \mid \text{there is a path in } G \text{ from } s \text{ to } t\}
```

```
current ← s; count ← 0;
while count < n + 1 or current ≠ t;
{
    next ← non-det. guess a vertex from neighbors of current;
    current ← next;
    count ++;
}
if current = t then accept;
else reject;</pre>
```

6 / 9

Configurations of a non-deterministic space bounded machine.

Configuration of a space bounded Turing machine M

index: input head position (uses $O(\log n)$ bits)

data: the working space bits (uses O(s(n)) bits)

 S_M : machine related information (Q, δ) (uses O(1) bits)

A typical configuration (index, data, S_M)

Let C_M be the set of all possible configuration of M.

Let C_0 be the initial configuration.

Let C_{acc} be the accepting configuration.

Definition

Let L be a language in NSPACE(s(n)) with TM M. Let C, C' be two configurations in C_M . We say that a configuration C yields C' on input W if the machine M in one step goes from C to C' on input W.

Configurations Graph of M on input w.

Let
$$\mathcal{E}_{M,w} = \{(C,C') \mid C,C' \in \mathcal{C}_{\mathcal{M}} \text{ and } C \text{ yields } C' \text{ on input } w\}$$

Let
$$\mathcal{G}_{M,w} = (\mathcal{C}_M, \mathcal{E}_{M,w})$$

Let $\mathcal{G}_{M,w}$ be the configuration graph of M on w.

Theorem

If L is in NSPACE(s(n)) then L is in TIME($2^{O(s(n))}$).

We know that $L \in NSPACE(s(n))$. Let M be the machine.

First note that, $w \in L$ if and only if C_{acc} is reachable from C_0 in $\mathcal{G}_{M,w}$.

On any input w, the graph $\mathcal{G}_{M,w}$ can be computed in time $TIME(2^{O(s(n))})$.

$$|\mathcal{C}_M| = 2^{O(s(n))}.$$

Given C, C', checking whether $(C, C') \in \mathcal{E}_{M,w}$ or not is checkable in time $2^{O(s(n))}$.

Theorem

If L is in NSPACE(s(n)) then L is in TIME($2^{O(s(n))}$).

We know that $L \in NSPACE(s(n))$. Let M be the machine.

First note that, $w \in L$ if and only if C_{acc} is reachable from C_0 in $\mathcal{G}_{M,w}$.

On any input w, the graph $\mathcal{G}_{M,w}$ can be computed in time $TIME(2^{O(s(n))})$.

Checking whether C_{acc} is reachable from C_0 can be checked in time $2^{O(s(n))}$.

Reachability in a graph of size $2^{O(s(n))}$.

Corollary

NL is contained in P.