

数学分析

作者: Huang

时间: May 1, 2025

目录

第1章	数列	1	
1.1	极限的计算	. 1	
	1.1.1 stolz 定理	. 1	
	1.1.2 abel 变换	. 1	
	1.1.3 拟合法	. 2	
1.2	渐进展开	. 2	
	1.2.1 初等方法	. 2	
	1.2.2 迭代方法	. 3	
	1.2.3 Laplace 方法	. 3	
1.3	递推数列的敛散性判断		
	1.3.1 单调性分析方法	. 3	
	1.3.2 压缩映像方法		
	1.3.3 蛛网工作法	. 4	
第2章	函数	6	
2.1			
2.1	2.1.1 定义法		
	2.1.2 级数法		
	2.1.3 Schwarz 导数		
2.2	一致连续性		
2.3	函数方程		
	2.3.1 柯西方程		
	2.3.2 迭代法	. 9	
-	一元函数微分学	10	
3.1	微分中值定理		
	3.1.1 插值法		
	3.1.2 K 值法		
2.2	3.1.3 微分方程法		
3.2	函数性态分析		
	3.2.1 常用结论		
2.2	3.2.2 综合运用		
3.3	函数逼近问题		
	3.3.1 连续函数的逼近		
	3.3.2 可积函数的逼近	, 13	
第4章	章 一元函数积分学		
4.1	积分的计算	. 14	
	4.1.1 区间再现公式	. 14	
	4.1.2 Froullani 积分	. 14	
	4.1.3 化为含参积分处理	. 15	
	4.1.4 级数方法	. 15	

		A STATE OF THE STA	冰
4.2	积分的	p新进展开	15
	4.2.1	定积分定义	15
	4.2.2	Euler-Maclaurin 公式	16
4.3	积分不	、等式	16
	4.3.1	Cauchy 不等式	16
	4.3.2	Jensen 不等式	17
	4.3.3	Chebyshev 不等式	18
	4.3.4	Opial 不等式	18
	4.3.5	Young 不等式	18
	4.3.6	单调性方法	18
	4.3.7	中信定理	18

第1章 数列

1.1 极限的计算

1.1.1 stolz 定理

定理 1.1.1 (stolz)

• $(\frac{0}{0})$ 型, $\{a_n\}$, $\{b_n\}$ 是无穷小量, $\{a_n\}$ 单调递减, $\lim_{n\to\infty} \frac{b_{n+1}-b_n}{a_{n+1}-a_n} = l$,则 $\lim_{n\to\infty} \frac{b_n}{a_n} = l$ • $(\frac{*}{\infty})$ 型, $\{a_n\}$ 是严格单调递增无穷大量, $\lim_{n\to\infty} \frac{b_{n+1}-b_n}{a_{n+1}-a_n} = l$,则 $\lim_{n\to\infty} \frac{b_n}{a_n} = l$

•
$$\left(\frac{*}{\infty}\right)$$
 型, $\left\{a_n\right\}$ 是严格单调递增无穷大量, $\lim_{n\to\infty}\frac{b_{n+1}-b_n}{a_{n+1}-a_n}=l$,则 $\lim_{n\to\infty}\frac{b_n}{a_n}=l$

例题 1.1 设 $a_1 \in (0,1), a_{n+1} = \sin a_n, n = 1, 2, \cdots$,试计算

$$\lim_{n\to\infty} \sqrt[n]{na_n}$$

 \Diamond

例题 1.2 设 $a_n > 0$ 且

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

存在或者为确定符号的 ∞。

(1) 求证:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

(2) 进一步, 若

$$\lim_{n \to \infty} a_n = a,$$

计算

$$\lim_{n \to \infty} \left(\frac{\sqrt[n]{a_1} + \sqrt[n]{a_2} + \dots + \sqrt[n]{a_n}}{n} \right)^n.$$

(2023 中科院夏令营)

例题 1.3

• 设

$$S_n = \sum_{k=0}^n \frac{\ln C_n^k}{n^2},$$

求

$$\lim_{n\to\infty} S_n.$$

计算

$$\lim_{n \to \infty} \frac{\ln n}{\sum_{k=1}^{n} \frac{1}{k} - \ln n}.$$

(第十二届全国大学生数学竞赛)

1.1.2 abel 变换

定理 1.1.2

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n, \quad \sharp \, \psi B_k = \sum_{i=1}^{k} b_i.$$

例题 1.4 设 $\lim_{n\to\infty}\sum_{k=1}^n a_k$ 存在,试计算 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n ka_k$.

例题 1.5 (2023 中科大考研压轴) 设有实数列 $\{a_n\}$, 令 $S_n = \sum_{k=1}^n a_k$, $\sigma_n = \frac{1}{n} \sum_{k=1}^n S_k$ 。

(1) 证明: 若 $\{S_n\}$ 有极限S,则 $\lim_{n\to\infty}\sigma_n=S$ 。

(2) 若 $\{\sigma_n\}$ 收敛, 且 $a_n = o\left(\frac{1}{n}\right)$, 则 $\{S_n\}$ 收敛。

例题 1.6 (2023 中科院提前批) 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 试求:

$$\lim_{n \to \infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n}$$

1.1.3 拟合法

拟合法主要是一种思想, 在于抓住问题的关键部分

例题 1.7 (2023 北师大夏令营) 设 $f \in C[0,1]$, 求证:

$$\lim_{h \to 0^+} \int_0^1 \frac{h}{h^2 + x^2} f(x) dx = \frac{\pi}{2} f(0).$$

例题 1.8 (2022 浙大直博压轴) 设 $f(x) \in R[0,1]$, 求证:

$$\lim_{n\to\infty} \int_0^1 f(x) |\sin nx| dx = \frac{2}{\pi} \int_0^1 f(x) dx.$$

例题 1.9

• 求证:

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x \, dx = 0.$$

• (2022 吉大夏令营改编) 设 $f \in R[0,1]$, 且 f(x) 在 x = 1 处连续,求证:

$$\lim_{n \to \infty} n \int_0^1 f(x) x^n \, dx = f(1).$$

1.2 渐进展开

1.2.1 初等方法

反复利用 Stolz 定理即可

例题 1.10 (2021 电子科大考研) 设 $x_{n+1} = \ln(1+x_n), n = 1, 2, \dots, x_1 > 0$ 。 试求

$$\lim_{n \to \infty} \frac{n(nx_n - 2)}{\ln n}$$

例题 1.11 设 $x_{n+1} = \sin x_n, n = 1, 2, \dots, x_1 \in (0, \pi)$ 。 计算

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(1 - \sqrt{\frac{n}{3}} x_n \right)$$

例题 1.12 (2023 南大夏令营) 已知方程 $x^n - 2023x = 2023$ 在 $(0, +\infty)$ 上有唯一解 x_n ,试求极限

$$\lim_{n\to\infty} \frac{nx_n^n}{\ln n}$$

例题 1.13

1. (2020 电子科大考研) 设 $0 < a_n < 1, a_{n+1} = a_n(1 - a_n)$, 求证:

$$\lim_{n\to\infty}\frac{na_n}{\ln n}=1.$$

2. (2024 浙大考研) 设 $x_1 = 1, x_{n+1} = \sqrt{\frac{2x_n^2}{2+x_n^2}}, n = 1, 2, \dots$ 。求证:

$$\lim_{n\to\infty} \frac{n(x_n - x_{n+1})}{\ln(1 + x_n)} = 1.$$

1.2.2 迭代方法

例题 1.14 设 $x_n > 0$ 且满足 $x_n e^{x_n} = n, n = 1, 2, \cdots$,求证:

$$x_n = \ln n - \ln \ln n + \frac{\ln \ln n}{\ln n} + o\left(\frac{\ln \ln n}{\ln n}\right), \quad n \to \infty.$$

例题 1.15 (2024 上交考研) 设 $f \in C(0, +\infty)$,且满足 $x = f(x)5^{f(x)}$,求证:

- 1. f(x) 严格单调递增,
- $\lim_{x \to +\infty} f(x) = +\infty,$
- 3. $\lim_{x \to +\infty} \frac{f(x)}{\ln x} = \frac{1}{\ln 5}$.

例题 1.16 (2021 北师夏令营压轴) 给定方程 $x^n(x-1)=1$, 求证:

- 1. 上述方程在 $[1,+\infty)$ 上有唯一根 x_n 。
- 2. 成立不等式:

$$x_{n+1} > 1 + \frac{\ln n}{n} - \frac{\ln \ln n}{n}$$

1.2.3 Laplace 方法

大体上,Laplace 方法适用于 $\int_a^b f^n(x)g(x)dx$ 型积分的渐近估计。可以通过变形和换元法转化为标准形式。这种方法的整体思想就是抓极值部分和所谓的局部化原理。

例题 1.17 (Wallis 公式) 求证:

$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, \quad n \to \infty.$$

例题 1.18 (Stirling 公式) 求证:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, \quad n \to \infty.$$

例题 1.19

• (2023 吉大夏令营) 已知函数 f(x) 一阶导存在且 f(1) = 0,求极限

$$\lim_{n\to\infty} n \int_0^1 x^n f(x) \, dx.$$

1.3 递推数列的敛散性判断

1.3.1 单调性分析方法

单调性分析方法仅仅适用于

$$x_{n+1} = f(x_n), \quad n \in \mathbb{N}.$$

f 是单调递增或是单调递减的情形。

结论1

设f是单调递增函数,则上述递推式确定的 x_n 一定单调,且和不动点的大小关系固定。

结论 2

设f是单调递减函数,则上述递推式确定的 x_n 一定不单调,且和不动点的大小关系交错。

例题 1.20 设
$$x_1 > -1$$
, $x_{n+1} = \frac{1}{1+x_n}$, $n = 1, 2, \cdots$, 求极限

$$\lim_{n\to\infty} x_n.$$

例题 1.21 (第十五届全国大学生数学竞赛赛制)设 $x_1 = a = \sqrt[3]{3}, x_{n+1} = a^{x_n}, n = 1, 2, 3, \ldots$, 求证:

$$\lim_{n\to\infty} x_n$$

存在但不等于3。

例题 1.22

- $\mathsection \mathsection \$

1.3.2 压缩映像方法

压缩映像方法是一种非常重要的处理模型。其思想内核有两种。一种是找到不动点 x_0 ,然后得到某个 $L \in (0,1)$ 。s.t.

$$|x_n - x_0| \le L|x_{n-1} - x_0| \le \dots \le L^{n-1}|x_1 - x_0|$$

另一种是得到某个 $L \in (0,1)$ 。s.t.

$$|x_n - x_{n-1}| \le L|x_{n-1} - x_{n-2}| \le \dots \le L^{n-2}|x_2 - x_1|$$

当数列的递推式 $x_{n+1} = f(x_n)$ 确定时,我们有:

$$|x_n - x_0| = |f(x_{n-1}) - f(x)|, \quad |x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})|$$

因此往往可以通过中值定理或直接放缩来得到 $L \in (0,1)$ 。

例题 1.23 (2023 中科院提前批) 对于给定实数 x,不断将余弦函数作用在之前的数上,得到的序列 $\{a_n\}$ 如下: $a_0 = x, a_1 = \cos(x), a_2 = \cos(\cos(x)), \dots$,试问当 $n \to \infty$ 时,这一序列会有怎样的趋势?

例题 1.24 给定方程 $x^n + 2023x = 2023$,求证: 方程在 $(0, +\infty)$ 只有唯一解 x_n 。且 $\lim_{n \to \infty} x_n = 1$ 。

例题 1.25 设 $x_1 > -1, x_{n+1} = \frac{1}{1+x_n}, n = 1, 2, \dots$,求极限 $\lim_{n \to \infty} x_n$ 。

例题 1.26 求数列 $\sqrt{7}$, $\sqrt{7-\sqrt{7}}$, $\sqrt{7-\sqrt{7}+\sqrt{7}}$, ... 的极限。

1.3.3 蛛网工作法

法

先看图 2.4(a)。在其中的曲线代表函数 y = f(x)。它同直线 y = x 的交点的横坐标 a 就是 f 的不动点。从图中的 x 轴上代表初始值 a_1 的点出发作平行于 y 轴的直线,它与曲线 y = f(x) 的交点的纵坐标就是 $a_2 = f(a_1)$ 。

在这里的一个技巧是从上述交点作平行于x轴的直线与直线y=x相交。这个交点的横坐标当然也是 a_2 。在图 中从这个交点作一条虚线与纵轴平行,并将它与x轴的交点标为 a_2 。这就完成了蛛网工作法的第一步。

在图 2.4(a) 上将这个方法继续做几步:可以看出,所得的数列是单调增加的

例题 1.27 设 $u_1 = b$, $u_{n+1} = u_n^2 + (1-2a)u_n + a^2$, 试判断 u_n 的敛散性。

例题 1.28 设 $x_{n+1}(2-x_n)=1, n=1,2,\cdots$ 。 试判断 x_n 的敛散性。 例题 1.29 定义数列 $a_0=x, a_{n+1}=\frac{a_n^2+y^2}{2}, n=0,1,2,\cdots$,记 $D=\{(x,y)\in\mathbb{R}^2:$ 数列 a_n 收敛 $\}$ 。

第2章 函数

2.1 连续性和可微性

2.1.1 定义法

例题 2.1 (2023 复旦应统夏令营) 若 $f'(x_0)$ 存在, 试求 $\lim_{h\to 0} \frac{f(x_0+ah)-f(x_0-bh)}{h}$; 反之, 若 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-h}{h}$ 存在, 试问 f(x) 在 x_0 处是否可导?

例题 2.2 (2021 中科院考研) 若 f(x) 在 x=0 处连续,且 $\lim_{x\to 0} \frac{f(2x)-f(x)}{x}=0$,求证: f'(0)=0。

例题 2.3 (2024 上交夏令营) 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续,且 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,令

$$g(x) = \int_0^1 f(xt) \, dt,$$

- (1) 求 g'(x);
- (2) 讨论 g'(x) 在 x=0 处的连续性。

2.1.2 级数法

例题 2.4 (2024 同济夏令营) 设 $\{x_n\} \subset (0,1), x_j \neq x_i \ (i \neq j)$, 定义函数

$$f(x) = \sum_{n=1}^{\infty} \frac{\operatorname{sgn}(x - x_n)}{2^n},$$

试判断 f(x) 的连续性并给出证明。

例题 2.5 (2023 复旦数科院夏令营) 设数列 $\{r_n\}$ 为 [0,1] 中的所有有理点的一个排列,证明函数

$$f(x) = \sum_{n=1}^{\infty} \frac{|x - r_n|}{3^n}, \quad x \in [0, 1]$$

具有以下性质:

- (1) 处处连续;
- (2) 在无理点处可微,有理点处不可微。

例题 2.6 (Cantor 函数) 设 C 为 [0,1] 上的 Cantor 集,对于 $x=2\sum_{i=1}^{\infty}\frac{a_i}{3^i}\in C, a_i\in\{0,1\}$,令

$$\phi(x) = \phi\left(2\sum_{i=1}^{\infty} \frac{a_i}{3^i}\right) = \sum_{i=1}^{\infty} \frac{a_i}{2^i}.$$

Cantor 函数 $\phi(x)$ 定义为: $\forall x \in [0,1]$,

$$\phi(x) = \sup \{ \phi(y) \mid y \in C, y \le x \}.$$

求证: ϕ 为 [0,1] 上的连续函数。

例题 2.7 设 $Q = \{x_1, x_2, \dots\}$ 为有理数集合,令

$$f(x) = \sum_{x_n \le x} \frac{1}{2^n},$$

证明: f(x) 仅在有理点处不连续。

2.1.3 Schwarz 导数

定义 2.1.1

设有定义在开集 $A \subset \mathbb{R}$ 上的实函数 f(x), 若对于 $a \in A$,

$$\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h} = f^{s}(a)$$

存在,则称 f(x) 在点 a Schwarz 可导,称 $f^s(a)$ 为 Schwarz 导数。

命题 2.1.1

设 $f(x) \in C[a,b]$ 且在 (a,b) 上 Schwarz 可导, 那么:

- $\vec{x} f(b) > f(a), \ \mathbb{1} g \in (a,b), \ \text{ deg } f^s(c) \geq 0.$
- <math><math>f(a) > f(b), 则 $\exists c \in (a,b),$ 使得 f $(c) \le 0.$

定理 2.1.1 (Schwarz 导数的 Rolle 中值定理)

设 $f(x) \in C[a,b]$ 且在 (a,b) 上 Schwarz 可导,若 f(a) = f(b),则 $\exists r,t \in (a,b)$,使得 $f^s(r) \geq 0$ 且 $f^s(t) \leq 0$ 。

定理 2.1.2 (Schwarz 导数的 Lagrange 中值定理)

设 $f(x) \in C[a,b]$ 且在 (a,b) 上 Schwarz 可导,则存在 $r,t \in (a,b)$,使得

$$f^s(r) \le \frac{f(b) - f(a)}{b - a} \le f^s(t).$$

 \Diamond

定理 2.1.3 (Schwarz 导数与一般导数的联系)

设 $f(x) \in C[a,b]$ 且在 (a,b) 上 Schwarz 可导, 若 $f^s(x)$ 在 (a,b) 上连续, 则 f(x) 在 (a,b) 上可导且

$$f'(x) = f^s(x), \quad \forall x \in (a, b).$$

 \circ

定理 2.1.4 (利用 Schwarz 导数判断函数单调性)

设函数 f(x) 在开区间 I 上连续且 Schwarz 可导,若 $f^s(x) \geq 0$ 对所有 $x \in I$ 成立,则 f(x) 在 I 上单调递增。

2.2 一致连续性

例题 2.8 设 f(x) 在 $[a, +\infty)$ 上一致连续,g(x) 在 $[a, +\infty)$ 上连续,且

$$\lim_{x \to +\infty} |f(x) - g(x)| = 0.$$

求证: g(x) 在 $[a, +\infty)$ 上一致连续。

例题 2.9 设 f(x) 在 $[1, +\infty)$ 上一致连续。求证:存在 M > 0,使得

$$\frac{|f(x)|}{x} \leq M, \quad \forall x \in [1, +\infty).$$

例题 2.10 设 f(x) 在 $[0,+\infty)$ 上一致连续,且对任意 $x \ge 0$ 有

$$\lim_{n \to +\infty} f(x+n) = 0, \quad n \in \mathbb{N}.$$

求证:

$$\lim_{x \to +\infty} f(x) = 0.$$

例题 2.11 设 f(x) 在 $[0,+\infty)$ 上连续,且满足

$$\lim_{n \to \infty} f(\sqrt{n}) = 0.$$

求证: $\lim_{x\to+\infty} f(x)$ 存在当且仅当 f(x) 在 $[0,+\infty)$ 上一致连续。

例题 2.12 若 f(x) 在 $[0,+\infty)$ 上可导,且满足:

- 1. f'(x) 在 $[0, +\infty)$ 上一致连续;
- 2. $\lim_{x\to+\infty} f(x)$ 存在。

求证:

$$\lim_{x \to +\infty} f'(x) = 0.$$

例题 2.13 (2024 国防科大考研) 设函数 f(x) 在 (0,1] 上连续且可导,且满足

$$\lim_{x \to 0^+} \sqrt{x} f'(x) = a.$$

求证: f(x) 在 (0,1] 上一致连续。

例题 2.14 (2024 哈工大考研) 设 (a,b) 为有界开区间,求证: f(x) 在 (a,b) 上一致连续的充要条件是对于任意 Cauchy 列 $\{x_n\} \subset (a,b)$,像列 $\{f(x_n)\}$ 也是 Cauchy 列。

例题 2.15 (2023 吉大夏令营) 设 $f(x) \in C[1, +\infty)$, 且满足

$$\lim_{x \to +\infty} \frac{f(x)}{x^2} = 1.$$

求证: f(x) 在 $[1,+\infty)$ 上非一致连续。

2.3 函数方程

2.3.1 柯西方程

定义 2.3.1

我们称函数 $f: \mathbb{R} \to \mathbb{R}$ 满足的函数方程

$$f(x+y) = f(x) + f(y)$$

为 Cauchy 方程。

例题 2.16 设 $f: \mathbb{R} \to \mathbb{R}$ 是 Cauchy 方程的解,则:

(1) 对任意有理数 $r \in \mathbb{Q}$,有

$$f(rx) = rf(x);$$

(2) 进一步, 若 f 连续, 则存在常数 c = f(1) 使得

$$f(x) = cx, \quad \forall x \in \mathbb{R}.$$

例题 2.17 求证: \mathbb{R} 上既凸又凹的连续函数必为线性函数,即存在常数 $a,b \in \mathbb{R}$ 使得

$$f(x) = ax + b, \quad \forall x \in \mathbb{R}.$$

例题 2.18 设 f(x) 在 $(0, +\infty)$ 上连续, 且满足函数方程:

$$f(xy) = xf(y) + yf(x), \quad \forall x, y \in (0, +\infty).$$

求证: f(x) 在 $(0,+\infty)$ 上可微。

例题 2.19 (2024 中科院夏令营) 证明:在 ℝ上满足函数方程

$$f(x+y) = f(x)f(y)$$

的唯一不恒等于零的连续解是指数函数 $f(x) = a^x$, 其中 a > 0 为常数。

2.3.2 迭代法

基本思想:通过构造递推关系,将函数方程转化为可求和的形式。

例题 2.20 求函数方程

$$2f(2x) = f(x) + x$$

在 \mathbb{R} 上且满足 f 在 x=0 处连续的所有解。

例题 2.21 求函数方程

$$f(x+y) - f(x-y) = f(x)f(y)$$

在 \mathbb{R} 上且满足f在x=0处连续的所有解。

例题 2.22 求函数方程

$$f(\log_2 x) = f(\log_3 x) + \log_5 x$$

在 ℝ+ 上的所有连续解。

第3章 一元函数微分学

3.1 微分中值定理

3.1.1 插值法

有一类中值定理习题中往往会给我们很多关于函数 f(x) 的信息,进而去证明一个等式。如何利用好这些已知信息?这就涉及到数值分析中的 Lagrange 插值与 Newton 插值。

定理 3.1.1 (Lagrange 插值)

已知插值节点为 $(x_i, y_i), i = 0, 1, 2, \dots, n$, 那么

$$y = f(x) = \sum_{0 \le i \le n} \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)} y_i$$

对应的插值余项为:

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

定理 3.1.2 (Newton 插值)

已知插值节点为 $(x_i, y_i), i = 0, 1, 2, \dots, n$, 那么

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1)(x - x_2) + \dots + a_{n-1}(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x$$

其中 $a_n = f[x_0, x_1, \dots, x_k]$, 对应的插值余项为:

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

Tip: Newton 插值可以带重节点,进而反映出导数信息。

例题 3.1 设 $f \in D^3[-1,1]$, f(-1) = 0, f'(0) = 0, f(1) = 1。求证: $\exists \theta \in (-1,1)$, s.t. $f'''(\theta) = 3$.

例题 3.2 设 $f \in C[0,2] \cap D(0,2)$ 满足 f(0) = f(2) = 0, $|f'(x)| \leq M$, $\forall x \in (0,2)$ 。求证:

$$\left| \int_0^2 f(x) \, dx \right| \le M.$$

例题 3.3 设 $f \in C^3[0,2]$ 满足

$$f(0) = f'(0) = 0$$
, $\int_0^2 f(x) dx = 8 \int_0^1 f(x) dx$.

证明: 存在 $\theta \in (0,2)$, 使得 $f''(\theta) = 0$ 。

下面我们来介绍插值法的积分型余项,这种余项往往蕴含着更多的信息。

定理 3.1.3 (积分型余项)

设 f(x) 是 [a,b] 上的二阶可导函数且 $f''(x) \in R[a,b]$,则有:

$$f(x) = \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b) + \int_{a}^{b} f''(y)k(x,y)dy,$$

其中,

$$k(x,y) = \begin{cases} \frac{(x-a)(y-b)}{b-a}, & a \le y \le x \le b; \\ \frac{(b-x)(a-y)}{b-a}, & a \le x \le y \le b. \end{cases}$$

 \Diamond

例题 3.4 (2021 华东师范考研压轴) 设 $f \in C^2[0,1]$ 满足 f(0) = f(1) = 0, 证明:

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \le 4.$$

例题 3.5 设 $f(x) \in D^2[0,1]$, f(0) = f(1) = 0, $|f''(x)| \le M$, 求证:

$$\int_0^1 f(x) \, dx \le \frac{M}{12}$$

例题 3.6 已知 $f(x) \in C^2[a,b]$, f(a) = f(b) = 0, 求证:

$$|f(x)| \le \frac{(x-a)(b-x)}{b-a} \int_a^b |f''(y)| \, dy$$

3.1.2 K 值法

看例颢操作, 有手就行

例题 3.7 (2021 天津大学考研) 设函数 $f(x) \in C[a,b] \cap D^2(a,b)$, 求证: $\exists \xi \in (a,b)$, 使得

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}f''(\xi).$$

例题 3.8 (2024 大连理工考研) 设函数 f(x) 在 [0,2] 上有二阶连续导数,且 f(0) = f(1) = f(2) = 0,求证: $\forall x \in (0,2), \exists c \in (0,2), \notin \emptyset$

$$f(x) = \frac{1}{6}x(x-1)(x-2)f'''(c).$$

例题 3.9 设 f 在 [a,b] 上二阶可微,f(a) = f(b) = 0。证明:对每个 $x \in (a,b)$,存在 $\xi \in (a,b)$,使得

$$f(x) = \frac{f''(\xi)}{2}(x - a)(x - b).$$

例题 3.10 设 $f \in D^3[0,1]$ 满足 f(0) = -1, f'(0) = 0, f(1) = 0。证明对任何 $x \in [0,1]$,存在 $\theta \in (0,1)$,使得

$$f(x) = -1 + x^2 + \frac{x^2(x-1)}{6}f'''(\theta).$$

3.1.3 微分方程法

有一类中值定理习题的解决需要我们构造合适的函数,我们可以通过解微分方程来得到。下面我们结合具 体的例子来说明。

例题 3.11 设函数 $f(x) \in C[0,2] \cap D(0,2)$,且 f(0) = f(2) = 0, $\lim_{x \to 1} \frac{f(x)-2}{x-1} = 5$ 。求证:

$$\exists \xi \in (0,2), \text{ s.t. } f'(\xi) = \frac{2\xi - f(\xi)}{\xi}.$$

例题 3.12 (2024 复旦夏令营) 设函数 $f(x) \in C[0,1] \cap D(0,1)$,且 f'(1) = 0。求证:

$$\exists \xi \in (0,1), \text{ s.t. } f'(\xi) = 2024(f(\xi) - f(0)).$$

例题 3.13 (2024 上海夏令营) 设 f(x) 在 [a,b] 上可导,且 $\exists c \in [a,b]$, s.t. f'(c) = 0. 求证:

$$\exists \xi \in [a, b], \text{ s.t. } f'(\xi) = \frac{f(\xi) - f(a)}{b - a}.$$

例题 3.14 设函数 $f(x) \in C[0,1] \cap D(0,1)$,且 f(0) = 0。求证:

$$\exists u \in (0,1), \text{ s.t. } f'(u) = \frac{uf(u)}{1-u}.$$

例题 3.15 设函数 $f(x) \in C[-1,2] \cap D(-1,2)$, $f(-1) = f(2) = -\frac{1}{2}$, $f(\frac{1}{2}) = 1$ 。求证:

$$\forall \lambda \in \mathbb{R}, \exists \xi \in (-1, 2), \text{ s.t. } f'(\xi) = \lambda \left| f(\xi) - \frac{\xi}{2} \right| + \frac{1}{2}.$$

例题 3.16 设函数 $f(x) \in D^2\left[0, \frac{\pi}{4}\right], f(0) = 0, f'(0) = 1, f\left(\frac{\pi}{4}\right) = 1$ 。求证:

$$\exists \xi \in \left(0, \frac{\pi}{4}\right), \text{ s.t. } f''(\xi) = 2f(\xi)f'(\xi).$$

3.2 函数性态分析

3.2.1 常用结论

定理 3.2.1

导数大于 0 则函数的趋于无穷设 f 在 $[0,+\infty)$ 上可微且 $\lim_{x\to+\infty}f(x)=x>0$ 。求证: $\lim_{x\to+\infty}f(x)=+\infty$ 。

定理 3.2.2

函数值在 $[0,+\infty)$ 处必然有趋于 0 的子列,设 $k\in\mathbb{N}, a\in\mathbb{R}$ 且 $f\in D^k[a,-\infty]$ 。若 $\lim_{x\to+\infty}|f|(x)\neq+\infty$,那么存在趋于正无穷的数列 $\{x_n\}_{n=1}^\infty\subset[0,+\infty), \forall \lim_{x\to+\infty}f^{(k)}(x_n)=0$ 。

定理 3.2.3 (导数极限定理)

设 $f(x) \in C^{m,n} \cup D^m[a,b]$,且 $\lim_{x \to a_+} f'(x) = c$,存在。求证: f(x) 在 $[0,+\infty)$ 处可导且 $f'_+(a) = c$ 。

定理 3.2.4 (低阶导数控制高阶导数)

设 f(x) 在 $[0,+\infty)$ 上 n 阶可微,且存在有限极限 $\lim_{x\to+\infty} f(x)$ 和 $\lim_{x\to+\infty} f^{(k)}(x)$ 。 求证: $\forall k=1,2,\cdots,m$,有: $\lim_{x\to+\infty} f^{(k)}(x)=0$ 。

定理 3.2.5 (低阶导数控制高阶导数)

设 f(x) 在 $[0, +\infty)$ 上二阶可微, 且 |f(x)|, |f'(x)| 的上确界 A, B。求证: $|f(x)| \le \sqrt{2AB}$ 。

定理 3.2.6 (低阶导数控制高阶导数)

设 f(x) 在 $[0,+\infty)$ 上二阶可微, $\lim_{x\to\infty}f(x)=0$,且 $\lambda\in\mathbb{R}s.t.f''(x)+\lambda f'(x)$ 有上界,求证 $\lim_{x\to\infty}f'(x)=0$

3.2.2 综合运用

例题 3.17 设 $f(x) \in C(\mathbb{R})$, $g(x) = f(x) \int_0^x f(t) dt$ 单调递减, 求证: $f(x) \equiv 0$.

例题 3.18 设函数 f(x) 在 $(0, +\infty)$ 上可微, 极限 $\lim_{x\to +\infty} f(x)$ 和 $\lim_{x\to +\infty} f'(x)$ 均存在, 求证: $\lim_{x\to +\infty} f'(x) = 0$.

例题 3.19 若 $f'(x) \in C^2[0,1]$, f'(0) = 0, $|f''(x)| \le |f(x) - f(0)|$ 。求证: f(x) 在 [0,1] 上为常值函数。

例题 3.20 设 $f(x) \in C^2[0,1]$, f(0) = f(1), 且 $|f''(x)| \le 2$, $\forall x \in [0,1]$ 。证明: $\forall x \in [0,1]|f'(x)| \le 1$ 。

例题 3.21 设 $f(x) \in C[0,1] \cap D(0,1)$, f(0) = f(1), 且 |f'(x)| < 1. 求证: $\forall x_1, x_2 \in [0,1]$, $|f(x_1) - f(x_2)| < \frac{1}{2}$.

3.3 函数逼近问题

3.3.1 连续函数的逼近

定理 3.3.1 (Weierstrass 第一逼近定理)

对于闭区间 [a,b] 上的任意连续函数 f(x), 存在多项式序列 $\{P_n\}$ 在 [a,b] 上一致收敛于 f(x)。

 \Diamond

定理 3.3.2 (Weierstrass 第二逼近定理)

 \mathbb{R} 上周期为 2π 的连续函数可被三角多项式一致逼近。

 \Diamond

例题 3.22 设 $f(x) \in C[0,1]$, $\forall n \in \mathbb{N}$, $\int_0^1 f(x) x^n dx = 0$, $\forall n = 0, 1, 2, \cdots$, 求证: $f(x) \equiv 0, \forall x \in [0,1]$.

例题 3.23Riemann 引理 设函数 f(x) 在 [a,b] 上可积,那么有:

$$\lim_{\lambda \to \infty} \int_a^b f(x) \sin \lambda x dx = 0, \quad \lim_{\lambda \to \infty} \int_a^b f(x) \cos \lambda x dx = 0.$$

例题 3.24 设 $f(x) \in R[a,b], g(x)$ 以 T 为周期且在 [0,T] 上可积,则有:

$$\lim_{n \to \infty} \int_a^b f(x)g(nx)dx = \frac{1}{T} \int_0^T g(x)dx \int_a^b f(x)dx.$$

例题 3.25 设 $f(x) \in R[a,b]$,求证: $\lim_{n\to\infty} \int_a^b f(x) \sin nx dx = \frac{2}{\pi} \int_a^b f(x) dx$ 。

3.3.2 可积函数的逼近

例题 3.26 阶梯逼近 设 $f(x) \in R[a,b], \forall \epsilon > 0$, 存在 [a,b] 上的阶梯函数 g(x), 使得

$$\int_{a}^{b} |f(x) - g(x)| dx \le \epsilon.$$

例题 3.27 连续逼近 设 $f(x) \in R[a,b], \forall \epsilon > 0$, 存在 $g(x) \in C[a,b]$, 使得

$$\int_{a}^{b} |f(x) - g(x)| dx < \epsilon.$$

例题 3.28 可微逼近 设 $f(x) \in R[a,b], \forall \epsilon > 0$, 存在 $g(x) \in C^1[a,b]$, 使得

$$\int_{a}^{b} |f(x) - g(x)| dx < \epsilon.$$

例题 3.29 绝对连续性 设 f(x) 在任意有限区间可积,证明: $\forall [a,b]$,有:

$$\lim_{h \to 0} \int_{a}^{b} |f(x+h) - f(x)| dx = 0.$$

例题 3.30 设 $f(x) \in R[a,b], F(x) = \int_a^x f(t)dt$. 求证:

$$\int_{a}^{b} F(x)dx = \int_{a}^{b} (b-x)f(x)dx.$$

第4章 一元函数积分学

4.1 积分的计算

4.1.1 区间再现公式

例题 **4.1** 区间再现公式 求 $\int_a^b f(x)dx - \int_a^b f(a+b-x)dx = \frac{1}{2} \int_a^b [f(x) + f(a+b-x)]dx$ 。 例题 **4.2** 计算:

(1)
$$\int_0^1 \ln a \ln x dx$$
, (2) $\int_0^1 \frac{\ln(1+x)}{1+x^2} dx$.

例题 4.3 计算:

$$(1) \int_0^\infty \frac{dx}{(1+x^2)(1+x^a)} \ (a>0), \quad (2) \int_0^\infty \frac{\ln x}{x^2+x+1} dx.$$

例题 4.4 计算

$$\int_0^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx$$

例题 4.5 对 $n \in \mathbb{N}$ 计算

$$\int_0^{2\pi} \sin(\sin x + nx) \, dx$$

4.1.2 Froullani 积分

例题 4.6Froullani 积分 设 $f \in C(0, +\infty)$, 若存在极限

$$\lim_{x \to 0^+} f(x), \quad \lim_{x \to +\infty} f(x)$$

则有:

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[\lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} f(x) \right] \ln \frac{b}{a}$$

例题 4.7 计算

$$\int_0^{+\infty} \left(\frac{\sin 3x}{3x^2} - \frac{\sin 2x}{2x^2} \right) dx$$

例题 4.8 计算

$$\int_0^\infty \frac{\cos ax - \cos bx}{x} dx, \quad b > a > 0.$$

例题 4.9

1. 若存在极限和积分

$$\lim_{x \to 0} f(x) = 0, \quad \int_a^b \frac{f(x)}{x} dx$$

, 求证:

$$\forall a, b > 0, \int_0^a \frac{f(ax) - f(bx)}{x} dx = a \ln \frac{b}{a};$$

2. 若存在极限和积分

$$\lim_{x \to \infty} f(x) = 0, \quad \int_0^a \frac{f(x)}{x} dx$$

, 求证:

$$\forall a, b > 0, \int_0^a \frac{f(ax) - f(bx)}{x} dx = a \ln \frac{b}{a}.$$

4.1.3 化为含参积分处理

例题 4.10 计算

$$\int_0^1 \frac{\arctan x}{x\sqrt{1-x^2}} \, dx$$

例题 4.11 计算 $I(y) = \int_0^\infty e^{-x^2} \cos 2xy \, dx, \quad y \in \mathbb{R}.$ 例题 4.12 计算 $\int_0^\infty \frac{\arctan ax}{x(1+x^2)} \, dx.$

例题 4.13 计算

$$\int_0^{+\infty} \frac{\cos x - \cos 2x}{x} e^{-x} \, dx$$

例题 4.14 计算

$$\int_0^{+\infty} \frac{\sin bx - \sin ax}{x} e^{-px} dx, p > 0, b > a$$

4.1.4 级数方法

为了换序 $\sum_{n=1}^{\infty} \int_a^b f_n(x) dx = \int_a^b \sum_{n=1}^{\infty} f_n(x) dx$,我们需要:

$$\lim_{m \to \infty} \sum_{n=1}^{m} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx.$$

有限和随意交换,我们需要:

$$\lim_{m \to \infty} \int_a^b \sum_{n=1}^m f_n(x) dx = \int_a^b \sum_{n=1}^\infty f_n(x) dx.$$

于是需要:

$$\lim_{m \to \infty} \int_a^b \sum_{n=m+1}^{\infty} f_n(x) dx = 0.$$

例题 4.15 计算: $\int_0^\infty \frac{x}{1+e^x} dx$. 例题 4.16 计算: $\int_0^\infty \frac{\ln x}{1-x^2} dx$.

例题 4.17 计算:

$$\int_0^1 \ln x \ln(1-x) dx$$

例题 4.18 计算积分:

$$\int_0^1 \frac{\ln(1+x+x^2)}{x} dx.$$

例题 4.19 计算积分:

$$\int_0^{+\infty} \frac{x - [x] - \frac{1}{2}}{x} dx.$$

4.2 积分的渐进展开

4.2.1 定积分定义

例题 4.20 设 f 在 [0,1] 上可微,|f'(x)| < M,证明:

$$\left| \int_0^1 f(x) \, dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| \le \frac{M}{2n}.$$

例题 4.21 设 f(x) 在 [0,1] 可微且导数在 [0,1] 上黎曼可积,则有:

$$\lim_{n \to \infty} n \left(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - \int_{0}^{1} f(x) \, dx \right) = \frac{f(1) - f(0)}{2}.$$

例题 4.22 设 f 在区间 [0,1] 上二阶可微,且 $f'' \in R[0,1]$,求证

$$\lim_{n \to \infty} n^2 \left(\int_0^1 f(x) \, dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{2k-1}{2n}\right) \right) = \frac{1}{24} [f'(1) - f'(0)].$$

例题 4.23 设 f(x) 在 [0,1] 上 2m 阶可微且 2m 阶导数在 [0,1] 上勒贝

$$\frac{1}{n}\sum_{k=1}^{n}f\left(\frac{k}{n}\right) = \frac{f(1) - f(0)}{2n} + \int_{0}^{1}f(x)\,dx + \sum_{k=1}^{m}\frac{\left(f^{(2k-1)}(1) - f^{(2k-1)}(0)\right)}{n^{2k}}b_{2k}(0) + o\left(\frac{1}{n^{2m}}\right).$$

例题 4.24 设 $f(x) = \arctan x$, A 为常数, 若

$$B = \lim_{n \to \infty} \left(\sum_{k=1}^{n} f\left(\frac{k}{n}\right) - An \right)$$

存在, 求A和B。

4.2.2 Euler-Maclaurin 公式

定理 4.2.1 (0 阶情形)

设 $a, b \in \mathbb{Z}, f(x) \in D^1[a, b], f'(x) \in L^1[a, b], 则有:$

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x) dx + \frac{f(a) + f(b)}{2} + \int_{a}^{b} \left([x] - \frac{1}{2} \right) f'(x) dx.$$

定理 4.2.2 (一般情形 (了解即可,本质上是分部积分))

设 $a,b,m\in\mathbb{Z},\ m\geq 2,\ f(x)\in D^m[a,b],\ f^{(m)}(x)\in L^1[a,b],\ 则有:$

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x) \, dx + \frac{f(b) + f(a)}{2} + \sum_{k=2}^{m} \frac{f^{(k-1)}(b) - f^{(k-1)}(a)}{k!} (b-a)^{k} + (-1)^{m+1} \int_{a}^{b} B_{m}(x) f^{(m)}(x) \, dx.$$

例题 4.25 设 $f \in C^2[0,h]$,则存在 $\xi \in [0,h]$,使得:

$$\int_0^h f(x) \, dx = \frac{h}{2} [f(0) + f(h)] - \frac{1}{12} f''(\xi) h^3.$$

例题 4.26 设 $f \in C^4[0,h]$,则存在 $\xi \in [0,h]$,使得:

$$\int_0^h f(x) \, dx = \frac{h}{2} [f(0) + f(h)] - \frac{h^2}{12} [f'(h) - f'(0)] + \frac{1}{720} f^{(4)}(\xi) h^5.$$

利用 Euler-Maclaurin 公式,我们可以导出很多渐近展开:

4.3 积分不等式

4.3.1 Cauchy 不等式

例题 **4.27Cauchy** 不等式 设 $f(x), g(x) \in R[a, b]$,则有:

$$\left(\int_{a}^{b} f(x)g(x) dx\right)^{2} \le \left(\int_{a}^{b} f^{2}(x) dx\right) \left(\int_{a}^{b} g^{2}(x) dx\right).$$

例题 4.28 (第十一届全国大学生数学竞赛) 设 $f(x) \in C[0,1]$, 且 $1 \le f(x) \le 3$, 求证:

$$1 \le \int_0^1 f(x) \, dx \int_0^1 \frac{1}{f(x)} \, dx \le \frac{4}{3}.$$

例题 4.29 设 $f(x) \in C^1[a,b]$, f(a) = 0, 求证:

$$\int_{a}^{b} f^{2}(x) dx \le \frac{(b-a)^{2}}{2} \int_{a}^{b} f'^{2}(x) dx.$$

例题 4.30 设 $f(x):[0,1]\to\mathbb{R}$,且 $\int_0^1 x f(x) dx = 0$,求证:

$$\int_0^1 f^2(x) \, dx \ge 4 \left(\int_0^1 f(x) \, dx \right)^2.$$

例题 4.31 (2024 厦门大学数学夏令营) 设 $f(x) \in C[a,b], \ f(a) = 0$, 求证:

$$\int_{a}^{b} f^{2}(x) dx \leq \frac{(b-a)^{2}}{2} \int_{a}^{b} [f'(x)]^{2} dx - \frac{1}{2} \int_{a}^{b} [f'(x)]^{2} (x-a)^{2} dx.$$

例题 4.32 已知 $f(x) \ge 0$, $f(x) \in C[a,b]$, $\int_a^b f(x) \, dx = 1$, k 为任意实数, 求证:

$$\left(\int_{a}^{b} f(x)\cos kx \, dx\right)^{2} + \left(\int_{a}^{b} f(x)\sin kx \, dx\right)^{2} \le 1.$$

例题 4.33 设 $f(x) \in C^1[a,b]$, f(a) = f(b) = 0, 求证

$$\int_{a}^{b} f^{2}(x) dx \le \frac{(b-a)^{2}}{4} \int_{a}^{b} f'^{2}(x) dx.$$

例题 4.34 设 $f(x,y) \in C[a,b]$, 求证:

$$\iint_D e^{f(x) - f(y)} \, dx \, dy \ge (a - b)^2, \quad D = [a, b] \times [a, b].$$

4.3.2 Jensen 不等式

例题 4.35Jensen 不等式 设 $f(x) \in R[a,b]$,且 $m \le f(x) \le M$, $\phi(x)$ 为 [m,M] 上的连续下凸函数,则有:

$$\phi\left(\frac{1}{b-a}\int_{a}^{b} f(x) dx\right) \le \frac{1}{b-a}\int_{a}^{b} \phi(f(x)) dx.$$

例题 4.36 设 $f(x) \in C[0,1]$, $\forall x,y \in [0,1]$, $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$, 求证:

$$\int_0^1 f(x) \, dx \le f\left(\frac{1}{2}\right).$$

例题 4.37 (2023 中科院提前批) 设函数 f(x) 在 [a,b] 上二阶可导,且 f''(x) > 0,求证:

- (1) $f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx;$
- (2) 若 $f(x) \le 0$, $x \in [a, b]$, 则有:

$$f(x) \ge \frac{2}{b-a} \int_a^b f(x) \, dx.$$

例题 4.38 (Hardmard 不等式) 设 $f(x) \in C^2[a,b], f''(x) > 0$, 求证:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \frac{f(a) + f(b)}{2}.$$

例题 4.39 求证:设 $f(x) \in C[0,1], f(x) > 0$,则有:

$$\ln \int_0^1 f(x) \, dx \ge \int_0^1 \ln f(x) \, dx.$$

例题 4.40 设 f(x) 是 [0,1] 上非负连续的凹函数,且 f(0) = 1,求证:

$$2\int_0^1 f(x) \, dx + \frac{1}{12} \le \left(\int_0^1 f(x) \, dx\right)^2.$$

4.3.3 Chebyshev 不等式

例题 4.41Chebyshev 不等式 设 $f(x), g(x) \in C[a,b]$,且 f(x), g(x) 在 [a,b] 上单调性一致,求证:

$$\int_a^b f(x) dx \int_a^b g(x) dx \le (b-a) \int_a^b f(x)g(x) dx.$$

注 若 f(x), g(x) 单调性不一致,则上述不等式反号。

例题 4.42 求证:

$$\int_0^{\frac{1}{2}} \frac{\sin x}{1+x^2} \, dx \le \int_{\frac{1}{2}}^1 \frac{\cos x}{1+x^2} \, dx.$$

例题 4.43 证明:

$$\int_{0}^{1} \frac{\sin x}{1+x^{2}} dx \le \int_{0}^{1} \frac{\cos x}{1+x^{2}} dx.$$

例题 4.44 证明 Chebyshev 的一般形式,即:若 $f(x), g(x), p(x) \in C[a,b]$,且 $\forall x \in [a,b], p(x) \geq 0$,f(x), g(x) 的单调性一致,则有:

$$\int_a^b p(x)f(x) dx \int_a^b p(x)g(x) dx \le \int_a^b p(x) dx \int_a^b p(x)f(x)g(x) dx.$$

例题 4.45 设 $f(x) \in C[0,1]$ 且单调递增,求证:

$$\frac{\int_0^1 x f^2(x) \, dx}{\int_0^1 x f(x) \, dx} \ge \frac{\int_0^1 f^2(x) \, dx}{\int_0^1 f(x) \, dx}.$$

4.3.4 Opial 不等式

例题 **4.46Opial 不等式** 设 $f(x) \in C^1[0,a]$ 且 f(0) = 0,求证:

$$\int_0^a |f(x)f'(x)| \, dx \le \frac{a}{2} \int_0^a f'^2(x) \, dx.$$

例题 4.47 设 $f(x) \in C^1[0,a]$ 且 f(0) = f(a) = 0,求证:

$$\int_0^a |f(x)f'(x)| \, dx \le \frac{a}{4} \int_0^a f'^2(x) \, dx.$$

4.3.5 Young 不等式

例题 4.48 设 $f(x) \in C[0,c]$ (c>0) 且严格递增,若 f(0)=0 且 $a\in [0,c]$, $b\in [0,f(c)]$,则:

$$\int_0^a f(x) \, dx + \int_0^b f^{-1}(x) \, dx \ge ab.$$

4.3.6 单调性方法

例题 4.49 设 $f(x) \in C[0,1]$ 且单调递减,求证: $\forall a \in (0,1)$,

$$\int_0^a f(x) \, dx \ge a \int_0^1 f(x) \, dx.$$

例题 4.50 设 $f(x) \in C[0,1]$, 且 $0 \le f(x) \le x$, 求证:

$$\int_{0}^{1} x^{2} f(x) dx \ge \left(\int_{0}^{1} f(x) dx \right)^{2}.$$

4.3.7 中值定理

例题 4.51 设 $f(x) \in C^2[0,1]$, 求证:

$$\max_{x \in [0,1]} |f'(x)| \le |f(1) - f(0)| + \int_0^1 |f''(x)| \, dx.$$

例题 4.52 设
$$f(x) \in C^1[0,2]$$
, $|f'(x)| \le 1$, $f(0) = f(2) = 1$, 求证:
$$1 \le \int_0^2 f(x) \, dx \le 3.$$