Grafteori-workshop UNF København

Ungdommens Naturvidenskabelige Forening

07-12-2021

Program

- 1 Hvad er grafteori?
- Opgaver
- Pause
- 4 Eulerture
- Pause
- O Vægtede grafer og grafalgoritmer
- Opgaver
- Tak for denne gang

Program

- Mvad er grafteori?

- 6 Vægtede grafer og grafalgoritmer

Hvad er en graf?

En graf er en samling af knuder forbundet af kanter.

Løkke

- Løkke
- Naboknuder

- Løkke
- Naboknuder
- Valens

- Løkke
- Naboknuder
- Valens
- Isoleret knude

Resultater om valens

Sætning 1.2

Den totale valens i en graf er antallet af kanter gange 2.

Korollar 1.3

Den totale valens for en graf er et lige tal.

Rute

- Rute
- Tur

- Rute
- Tur
- Vej

- Rute
- Tur
- Vej
- Lukkede ruter og ture

- Rute
- Tur
- Vej
- Lukkede ruter og ture
- Kreds

Simple grafer og sammenhængende grafer

Komplette grafer, K_n

Kredsgrafer, C_n

Vejgrafer, P_n

Program

- 1 Hvad er grafteori?
- Opgaver
- 3 Pause
- 4 Eulerture
- Pause
- 6 Vægtede grafer og grafalgoritmer
- Opgaver
- Tak for denne gang

Opgaver

• Opgaverne er 1.1 til 1.14 i det udleverede materiale.

Program

- 1 Hvad er grafteori?
- Opgave
- Pause
- 4 Eulerture
- Description
 Description
- 6 Vægtede grafer og grafalgoritmer
- Opgaver
- Tak for denne gang

Program

- 1 Hvad er grafteori?
- Opgave
- 3 Pause
- 4 Eulerture
- Description
 5
- 6 Vægtede grafer og grafalgoritmer
- Opgaver
- Tak for denne gang

Euler og Königsberg (historisk)

Åbne og lukkede Eulerture

Definition

En Eulertur er en tur som indeholder alle grafens kanter.

- Lukket: starter og slutter i samme knude.
- Åben: starter og slutter i forskellige knuder.

Eksempler

Lukket:

Åben:

Eulerture

Sætning 2.4

Betragt en graf G uden isolerede knuder.

- G har en lukket Euler-tur, hvis og kun hvis den er sammenhængende og alle knuder har lige valens.
- ② G har en åben Euler-tur, hvis og kun hvis den er sammenhængende og har præcist to knuder med ulige valens.

Opgaver

Opgaverne er $2.1\ \text{til}\ 2.8\ \text{i}\ \text{det}\ \text{udleverede}\ \text{materiale}.$

Fleurys algoritme

Definition: Bro

En kant i en graf kaldes en bro, hvis grafen bliver usammenhængende, når kanten fjernes.

Fleurys algoritme (lukket Eulertur)

- Vælg en vilkårlig knude
- Gå langs en kant til en anden knude, "fjern" denne kant
- Hvis der kun er én kant videre, fortsæt da langs denne. Hvis der er flere kanter, vælg da en som ikke er en bro.
- Fortsæt denne proces, indtil Eulerturen er slut.

For en åben Eulertur: skal starte og slutte i en knude med ulige valens.

Program

- 1 Hvad er grafteori?
- Opgaver
- Pause
- 4 Eulerture
- Pause
- 6 Vægtede grafer og grafalgoritmer
- Opgaver
- Tak for denne gang

Program

- 1 Hvad er grafteori?
- Opgaver
- 3 Pause
- 4 Eulerture
- Description of the property of the property
- 6 Vægtede grafer og grafalgoritmer
- Opgave
- Tak for denne gang

Vægtede grafer, korteste veje og mindste udspændende træer

• Vælg en startknude s, og sæt afstanden fra s til alle andre knuder til uendelig, ∞ . Markér s som besøgt (en besøgt knude bliver aldrig besøgt igen).

- Vælg en startknude s, og sæt afstanden fra s til alle andre knuder til uendelig, ∞ . Markér s som besøgt (en besøgt knude bliver aldrig besøgt igen).
- ② Udregn afstanden fra s til den nuværende knudes naboer. Hvis afstanden er kortere end den tidligere noterede afstand, erstat den gamle afstand med den nye.

- Vælg en startknude s, og sæt afstanden fra s til alle andre knuder til uendelig, ∞ . Markér s som besøgt (en besøgt knude bliver aldrig besøgt igen).
- ② Udregn afstanden fra s til den nuværende knudes naboer. Hvis afstanden er kortere end den tidligere noterede afstand, erstat den gamle afstand med den nye.
- Udvælg knuden (der ikke nødvendigvis er en nabo til den nuværende knude) med kortest afstand til s og markér denne som besøgt. Denne knude bliver også den nye nuværende knude.

- Vælg en startknude s, og sæt afstanden fra s til alle andre knuder til uendelig, ∞ . Markér s som besøgt (en besøgt knude bliver aldrig besøgt igen).
- ② Udregn afstanden fra s til den nuværende knudes naboer. Hvis afstanden er kortere end den tidligere noterede afstand, erstat den gamle afstand med den nye.
- Udvælg knuden (der ikke nødvendigvis er en nabo til den nuværende knude) med kortest afstand til s og markér denne som besøgt. Denne knude bliver også den nye nuværende knude.
- Gentag trin 2 og 3 til alle knuder er besøgt.

Eksempel

Eksempel (fortsat)

Nuværende knude	В	C	D	Ε	F
$A \rightarrow$	3	5	∞	∞	∞
B ightarrow	\checkmark	5	3 + 7	∞	3 + 10
$C \rightarrow$		\checkmark	5 + 2	5 + 1	13
${\cal E} ightarrow$			7	\checkmark	6 + 6
D ightarrow			\checkmark		12
$F \rightarrow$					\checkmark

Afrunding af Djikstra's algoritme

Sætning

Djikstra's algoritme giver den korteste vej.

Vi udelader beviset, men det kan let findes online eller i lærebøger såsom "Introduction to Algorithms"

Mindste udspændende træer

Kruskals algoritme

Sortér kanterne i grafen efter vægt fra mindst til størst. Har nogle af kanterne ens vægt, er rækkefølgen ligegyldig. Lad A betegne mængden (som i starten er tom) af de kanter, der skal være med i vores træ.

30 / 40

UNF Grafteori-workshop 07-12-2021

Kruskals algoritme

- Sortér kanterne i grafen efter vægt fra mindst til størst. Har nogle af kanterne ens vægt, er rækkefølgen ligegyldig. Lad A betegne mængden (som i starten er tom) af de kanter, der skal være med i vores træ.
- ② Kig på kanten med mindst vægt. Hvis tilføjelsen af kanten til A skaber en kreds i A, spring kanten over. Ellers tilføj kanten til A.

Kruskals algoritme

- Sortér kanterne i grafen efter vægt fra mindst til størst. Har nogle af kanterne ens vægt, er rækkefølgen ligegyldig. Lad A betegne mængden (som i starten er tom) af de kanter, der skal være med i vores træ.
- ② Kig på kanten med mindst vægt. Hvis tilføjelsen af kanten til A skaber en kreds i A, spring kanten over. Ellers tilføj kanten til A.
- Gentag trin 2 for den næste kant i den sorterede liste af kanter, indtil alle kanter er blevet checket.

UNF Grafteori-workshop 07-12-2021 30 / 40

Program

- 1 Hvad er grafteori?
- Opgave
- 3 Pause
- 4 Eulerture
- Description
 Description
- 6 Vægtede grafer og grafalgoritmer
- Opgaver
- Tak for denne gang

Opgaver

• Opgaverne er 3.1 til 3.9, hvis man vil arbejde med Djikstras algoritme. Vil man arbejde med Kruskals algoritme, se opgave 3.10 til 3.16.

Program

- 1 Hvad er grafteori?
- Opgave
- 3 Pause
- 4 Eulerture
- Description of the second o
- 6 Vægtede grafer og grafalgoritmer
- Opgaver
- Tak for denne gang

Tak for denne gang

Andre arrangementer (foredrag, workshops og andet) i UNF København kan ses her: https://unf.dk/aktiviteter/?department=kbh

Information om vores sommer-sciencecamps kan ses her: https://unf.dk/sciencecamps/

