

Faraday's law of electrolysis

76.

- Charge $Q = I \times t = 0.5 \times 600 = 300 \; \text{C}.$
- Ag⁺ + e⁻ → Ag, so 1 mole e⁻ deposits 1 equivalent (eq. wt = 108 g).
- Mass $m = ({
 m equivalent\ weight}) imes rac{Q}{F} = 108 imes rac{300}{96500}.$
- $m \approx 108 \times 0.003109 = 0.33598 \text{ g} \approx 0.336 \text{ g}.$

Answer: (b) 0.336 g

77. Answer: (c) Ampere

78.

- Moles $H_2 = 0.112/22.4 = 0.005 \text{ mol}.$
- Electrons needed = $0.005 \times 2 = 0.01 \ mol \ e^-$.
- $\bullet \quad \text{Charge } Q = 0.01 \times 96500 = 965 \text{ C}.$

Answer: (c) 965 Coulomb

(,

79.

• Resistance ∝ 1/conductance and conductance increases with ion concentration. The lowest concentration gives the highest resistance.

Answer: (a) 0.05 N NaCl

80. (b) In 5 gm CuO, 4 gm Cu and 1 gm O be present.

Element	Wt.	At Wt.	$Wt./At.Wt. \neq x$	Ratio
Cu	4 gm	63.5	4/63.5=.0625	$\frac{.0625}{.0625} = 1$

ELECTROCHEMISATRY

0	1 gm	16	1/16 =.0625	.0625
	_ 9		2, 20 10020	$\frac{.0025}{.0625} = 1$

Emperical formula = CuO of oxide

In this oxide, oxidation no. of Cu = +2

Equivalent weight =
$$\frac{\text{Molecular weight}}{\text{Oxidation no.}} = \frac{63.5}{2} \approx 31.75$$
 but Equivalent weight should be an

integeral no. = 32

81. (c) Given, Current = 241.25 *columb*

1 coulomb current will deposite = $1.118 \times 10^{-3} gm \ Ag$.

$$\therefore$$
 241.25 current will deposite = 1.118 \times 10 $^{-3}$ \times 241.25

=0.27 gm silver.

82. (b) Reaction for electrolysis of water is

$$2H_2O \iff 4H^+ + 2O^{2-}$$

$$2O^{2-} \rightarrow O_2 + 4e^-$$

$$4e^- + 4H^+ \rightarrow 2H_2$$

 \therefore n = 4 so 4 Faraday charge will liberate

1 mole =
$$22.4 dm^3$$
 oxygen

 \therefore 1 Faraday charge will liberate $\frac{22.4}{4} = 5.6 \ dm^3 \ O_2$.

83. (a) $Na^+ + e^- \rightarrow Na$

Charge (in F) = moles of e^- used = moles of Na deposited

$$=\frac{11.5}{23} gm = 0.5 Faraday.$$

84. (c) Hydrolysis of water : $2H_2O = 4H^+ + 4e^- + O_2$

4 F charge will produce = 1 mole $O_2 = 32 \text{ gm } O_2$

- 1 *F* charge will produce $=\frac{32}{4}=8 \ gm \ O_2$.
- **85.** (c) In a galvanic cell, the electrons flow from anode to cathode through the external circuit. At anode (–*ve* pole) oxidation and at cathode (+ pole) reduction takes place.

IIT-JEE CHEMISTRY

86. (e) Number of equivalents of silver formed = Number of equivalents of copper formed.

In $AgNO_3$, Ag is in +1 oxidation state.

In $CuSO_4$, Cu is in +2 oxidation state.

Equivalent weight of $Ag = \frac{108}{1} = 108$

Equivalent weight of $Cu = \frac{63.6}{2} = 31.8$

$$\frac{M_1}{M_2} = \frac{E_1}{E_2}$$
; $\frac{10.79}{M_{Cu}} = \frac{108}{31.8}$

$$M_{Cu} = \frac{10.79 \times 31.8}{108} = 3.2 \ gm$$
.

82.

Answer: (a) 11.2 dm³

Explanation:

· Electrolysis reaction at anode:

$$2H_2O
ightarrow O_2+4H^++4e^-$$

- 4 Faradays produce 1 mole of O₂.
- 1 mole O₂ at NTP = 22.4 L.
- 1 F produces: $22.4/2 = 11.2 \ dm^3 \ O_2$

83. A

Answer: (a) 0.5 F

ESTD: 2005

Explanation:

- Molar mass of Na = 23 g/mol \rightarrow 1 g eq. = 23 g (since Na is monovalent)
- Fraction of 1 F required: 11.5/23=0.5 F

84.

Answer: (c) 8 g of oxygen

Explanation:

- 4 F produce 1 mole O₂ = 32 g
- 1 F produces 32 / 4 = 8 g of O_2
- 85. Answer: (c) Anode → Cathode through external circuit

Explanation:

• Electrons are released at the **anode (oxidation)** and flow through the external circuit to the **cathode (reduction)**.

86. Answer: (e) 3.2 g

Step-by-Step:

- 1. Silver deposition: $Ag^+ + e^- \rightarrow Ag$
 - $_{\odot}$ Eq. wt of Ag = 108 g
 - $_{\odot}$ Moles of electrons used: 10.79/108=0.1 eq.10.79 / 108 = 0.1¥ ¥text{eq.} 10.79/108=0.1 eq.
- 2. Copper deposition: Cu²+ + 2e⁻ → Cu
 - o Eq. wt of Cu = $63.5 / 2 \approx 31.75$ g/equiv
 - o Mass deposited: $0.1 \times 31.75 \approx 3.2 g$
- **87.** (b) Laws of electrolysis were proposed by Faraday.
- **88.** (a) Given, Current (i) = 25 mA = 0.025 A Time (t) = 60 sec $Q = i t = 60 \times 0.025 = 1.5$ coulombs

IIT-JEE CHEMISTRY

No. of electrons =
$$\frac{1.5 \times 6.023 \times 10^{23}}{96500}$$

$$e^- = 9.36 \times 10^{18}$$

$$Ca \rightarrow Ca^{2+} + 2e^{-}$$

 $2e^-$ are required to deposite one Ca atom

$$9.36 \times 10^{\,18}~e^-$$
 will be used to deposite $= \frac{9.36 \times 10^{\,18}}{2}~= 4.68 \times 10^{\,18}$.

89. (d)
$$C_6H_5NO_2 + 6H^+ + 6e^- \rightarrow C_6H_5NH_2 + 2H_2O$$

1 mole = 123 gm nitrogen requires 6 mole electron e

$$=6 \times 96500$$
 coulomb charge

$$\therefore 12.3 gm \text{ nitrobenzene will require } = \frac{6 \times 96500 \times 12.3}{123} = 6 \times 9650 = 57900 C.$$

- **90.** (c) Au and Ag settle down below the anode as anode mud during the process of electrolytic refining of copper.
- **91. Answer**: (b) 41 hrs

Explanation:

- 1. Zinc oxidation: $Zn \rightarrow Zn^{2+} + 2e^{-}$
- 2. Moles of Zn: 50 / 65 ≈ 0.769 mol
- 3. Each mole of Zn releases 2 moles of electrons → total moles of e⁻: 0.769 × 2 ≈ 1.538 mol
- 4. Total charge: $Q = 1.538 \times 96500 \approx 148,400 C$
- 5. Current I = 1 A \rightarrow time t = Q / I = 148,400 s \approx 41.1 hrs
- **92. Answer**: (b) 18 g

Explanation:

ELECTROCHEMISATRY

- 1. Moles of $Cl_2 = 11.2 / 22.4 = 0.5 \text{ mol}$
- 2. Electrons: 2 e⁻ per mole $Cl_2 \rightarrow 0.5 \times 2 = 1 \text{ mol e}^-$
- 3. $Al^{3+} + 3e^{-} \rightarrow Al \rightarrow Mass Al deposited = 27 \times (1 / 3) = 9 g?$ Wait carefully:

Step:

• Cl₂: 0.5 mol → 1 mol e⁻ required?

Actually: 2 Cl $^- \rightarrow$ Cl2 + 2 e $^- \rightarrow$ 0.5 mol Cl2 requires 1 mol e $^-$

• Al
$$^{3+}$$
 + 3 e $^ \rightarrow$ Al \rightarrow Mass = 27 \times (1 mol e $^-$ / 3) = 9 g

So correct mass of AI = 9 g

// III-JEE

93. Answer: (d) 11.2 cm³

Explanation:

- 1. Silver deposition: $Ag^+ + e^- \rightarrow Ag$, mass = 0.108 g
- 2. Equivalent weight of Ag = 108 g/equiv \rightarrow moles of electrons = 0.108 / 108 = 0.001 mol e⁻
- 3. Water electrolysis at anode: $2 H_2O \rightarrow O_2 + 4 H^+ + 4 e^-$
- 4. Moles $O_2 = 0.001 / 4 = 0.00025$ mol \rightarrow Volume = 0.00025 \times 22.4 L = 0.0056 L = 5.6 mL? Wait options in cm³.

 $0.0056 L = 5.6 cm^3$

94. Answer: (b) 5.6 L

Explanation:

IIT-JEE CHEMISTRY

- 1. Moles of O_2 : 4 / 32 = 0.125 mol
- 2. H_2 is produced at cathode: 2 H^+ + 2 $e^- \rightarrow H_2$
- 3. 4 e⁻ produce 1 $O_2 \rightarrow 2$ e⁻ produce 1 $H_2 \rightarrow$ Moles $H_2 = 0.125 \times 2 = 0.25$ mol
- 4. Volume H_2 at NTP = 0.25 × 22.4 = 5.6 L

