USA Series

- ▲ USA 400
- **▲ USA 900**
- ▲ USA 1310

♦ USA 400

♦ USA 900

♦ USA 1310

USA SERIES SERVICE MANUAL

USA400 USA900 USA1310

QSC Technical Services

Wats: 1-800-772-2834 Local: 1-714-957-7150 Fax: 1-714-754-6173

QSC Online! Online Computer Information System 1-714-668-7567

> QSC Audio Products, Inc. 1675 MacArthur Blvd. Costa Mesa, CA 92626

http://www.qscaudio.com

Table of Contents

Produc	ct Specifications	1
Introdu	uction & General Information	2
USA S	Series Test and Calibration	4
USA S	Series Troubleshooting	9
USA S	Series Parts List	
	USA Input Jack Plane Assembly	17
	USA400 Main Board Assembly	18
	USA400 Chassis Assembly	19
	USA900 Main Board Assembly	19
	USA900 Chassis Assembly	20
	USA1310 Ch.1 Main Board Assembly	20
	USA1310 Ch.2 Main Board Assembly	21
	USA1310 Chassis Assembly	22
Semic	onductors	23
Chass	is Drawings	
	USA400 Chassis Assembly	24
	USA900 Chassis Assembly	26
	USA1310 Chassis Assembly	28
Wiring	Diagrams	
	USA400 Wiring Diagram	30
	USA900 Wiring Diagram	32
	USA1310 Wiring Diagram	34
Schem	natics	
	USA Series Input Jack Plane	36
	USA400 Schematic	37
	USA900 Schematic	38
	USA1310 Schematic	39
Printed	d Circuit Board Diagrams	
	USA400 / USA900 Main PCB	40
	USA1310 Ch.1 Main PCB	41
	USA1310 Ch.2 Main PCB	42
	USA Series Jack Panel	43

USA Series Product Specifications

USA400

USA900

USA1310

USA400 USA900 USA1310

Output Power (per channel, typical):					
Continuous Average Output Power both channels driv	en:				
8 ohms, 20Hz - 20kHz, 0.1% THD	110 watts	240 watts	375 watts		
4 ohms, 1kHz, 1% THD	200 watts	450 watts	655 watts		
Continuous Average Output Power bridged mono oper	ration:				
8 ohms, 1kHz, 1% THD	400 watts	900 watts	1310 watts		
Dynamic Headroom (dB):					
8 ohms	2.0	2.0	2.0		
Voltage Gain (dB):	29	32	34		
Distortion:					
SMPTE-IM at rated power	Less than 0.0	25%			
Frequency Response:	20Hz to 20kH	z, +0, -1.0 dB,	at 1 watt		
Damping Factor	Greater than	200			
Noise (A weighted) Below Rated Power:	105dB	104dB	106dB		
Sensitivity (8 ohms) for Rated Power:	1.12 V RMS	1.16 V RMS	1.12 V RMS		
Input Impedance	10k ohms unt	oalanced, 20k o	hms balanced		
Dimensions					
Faceplate Width	Standard 19"	Rack Mounting			
Faceplate Height	5.25"	5.25"	7.0"		
Chassis Depth	9.5"	9.5"	10.8."		
Weight					
Shipping, Lbs/kg	28/12.7	37/16.8	57/25.9		
Net, Lbs/ka	24/10.9	34/15.4	54/24.5		

Introduction

This manual is prepared to assist service personnel with the repair and calibration of USA Series power amplifiers. The procedures described in this manual require advanced technical experience and sophisticated audio test equipment.

CAUTION

RISK OF ELECTRIC SHOCK

DO NOT OPEN

CAUTION: To reduce the risk of electric shock, do not remove the cover. No user-serviceable parts inside. Refer servicing to qualified service personnel.

WARNING: To prevent fire or electric shock, do not expose this equipment to rain or moisture.

Documentation

This manual contains schematics, printed circuit board (PCB) drawings, parts lists, and mechanical assembly drawings. This information should be used in conjunction with the test and troubleshooting guide.

The electrical and electronic components are identified by circuit identification numbers on the schematics and the parts list. The test & troubleshooting sections refer to designations shown in the schematics.

Equivalent Parts

Although many of the electronic components used in this product may be available from electronic suppliers, some components are specially tested and approved by QSC. A product repaired with non-QSC supplied components may not meet factory specifications. Repairs performed using non-QSC parts may void the product warranty. When in doubt, you may contact QSC Technical Services for assistance.

Parts orders to QSC should include the product model number, the part description, and the QSC part number (from the parts list in this manual). Parts will be shipped via UPS, F.O.B. Costa Mesa, California. Shipping, handling and COD charges may be added to the cost of the parts.

Factory Repair

It may become necessary to return a product to the factory for repair. Call QSC Technical Services for return instructions. QSC Technical Services may be reached at (800) 772-2834.

Test Equipment

For testing, as outlined in this manual, the following equipment will be needed.

REQUIRED TEST EQUIPMENT

- Distortion Analyzer capable of 0.05% THD+N
- High Power Load Bank (8, 4, & 2 ohms)
- Function Generator
- · 20MHz Oscilloscope
- Digital Multimeter
- · Variac (0-140 VAC, 30-40A)

SUGGESTED TEST EQUIPMENT

- Audio Precision System One
- Thermocouple probe

Audio Precision test and procedures files are made available, free of charge, from QSC Technical Services by either sending a self addressed stamped envelope and a 3 1/2" disk to QSC, or by logging on to QSC Online and downloading the appropriate files.

Test & Calibration

NOTE: This test procedure will refer to the amplifier's channels as Ch1 (Channel 1) & Ch2 (Channel 2). Component designation will have the prefix "5" for Ch1 and "6" for Ch2.

USA400 & USA900 Test Procedure

SET-UP

- 1. Connect a test load to the output terminals of the amplifier.
- 2. Set the Stereo / Bridge switch to Stereo.
- 3. Connect a distortion analyzer with a resolution of 0.05%, 20-20kHz (or better) to the output terminals of the amplifier.
- 4. Connect a dual-channel oscilloscope to the following test points:
 Ch1 a 10X (vertical sensitivity 2V/cm) scope probe to the channel speaker output.
 Ch2 a 1X scope probe (vertical sensitivity 0.1V/cm) to the distortion analyzer output.
- 5. Connect scope Ch. 2 (0.1V/cm) to distortion output.
- 6. Set amp gain pots fully clockwise.
- 7. Connect the output of the signal generator to the input terminals of the amplifier and select an output of 1.00 VRMS, 1KHz sine wave.
- 8. Lift the ground on the scope and the distortion analyzer.
- 9. Verify that the programming switches on the input board are in the off position.

POWER UP & MUTE DELAY TEST

- 1. Slowly raise the variac voltage and watch for excessive current draw (Line current greater than 1A a.c. at 120 Volts.) *This is slightly less for 240V.* Pause at 95VAC *(200VAC European)* for three seconds until the mute / protect circuit disengages. Raise to 120VAC *(240V European)*.
- 2. Turn the power switch off and on a few times to verify the 2 3 second power-up muting delay.

CHANNEL OUTPUT

- 1. Look for normal signal on the scope of channel 1. Switch the input signal and scope to channel 2 and repeat output test. Check for noisy / contaminated gain pots by observing general instability on your distortion waveform while adjusting the gain control levels.
- Select an 8 ohm load and confirm that this product is passing 125 watts for USA400 and 270 watts for USA900 at 1KHz 1% distortion.

BRIDGE MODE (1Vrms, sinewave, 1kHz)

Move the Bridge switch on the amp from the Stereo to Bridge position. Turn gain on CH2 fully counter clockwise (off). Remove the input plug from CH2. Check CH2 for full output with input applied to CH1. The output signal on CH2 should be 180 degrees out of phase with CH1output signal. Turn power off and place the amplifier under test back into the Stereo mode.

BIAS & RIPPLE (HUM) NULL ADJUSTMENT

HUM NULL:

1. Use 0.1% scale on distortion analyzer. Adjust TR2 hum-null trimpot for minimum signal distortion. Make this adjustment with your input signal at 20kHz below full output. Let the amplifier cool down.

CROSSOVER AND BIAS SETTING:

 While still at 20kHz, reduce input signal 20dB (80%) from full output and adjust crossover trimpot (TR3a & b) for a less than 400mVpk-pk cross-over spike protruding from the noise trace on the scope.

If a distortion analyzer is not available, a less accurate crossover distortion and bias adjustment can be made by monitoring the driver transistor (Q1 & Q2) bias current. With the amp at room temperature, and no input signal plugged into the amplifier, measure the DC voltage across the emitter resistors of Q1 and Q2. Adjust TR3a,b to obtain about 100mV d.c.

• SHORT CIRCUIT CURRENT (1Vrms, sinewave, 1kHz)

- 1. Select a 2-ohm load and verify even clipping on both channels by adjusting a 1kHz input signal to just beyond 1VRMS (sine wave). Apply a short to the output binding posts of each channel one channel at a time and adjust the short circuit current limits. TR4a & b is for positive clip adjust and current limiting while TR5a&b is for negative clip adjust and current limiting. AC current draw from the wall of 2.0A on the USA400 and 4.5A on the USA900 (1A, 240V and 2.25A, 240V respectively) should be evident. If adjustment is necessary, a symetrical adjustment of the wipers on TR4 and TR5 will be necessary to maintain even clipping. This balanced adjustment should achieve two things. The setting of a 2.0 A (USA400), or 4.5A (USA900) a.c. current draw from the line voltage while at the same time maintaining even clipping on the negative and positive portions of your output sinewave.
- 2. While the amplifier is driving a short between the black and red binding posts of the channel under test, observe the main supply rail voltages, ideally they will be no more than 3 volts from each other.
- 3. Next, an important thing to look for is that the channel will recover from a short into a 2 ohm load.
- 4. Perform the same procedure for the next channel to be calibrated.

2 OHM POWER

Verify correct loading down to 2 ohms. 2 ohms is allowed to clip somewhat unevenly, but must pass 250W on the USA400 and 550W on the USA900 (one channel driven, 1kHz, 1% THD). At this point, verify CLIP and PILOT LED's by adjusting your generator control until the channel is just above clipping.

• FREQUENCY RESPONSE

Set load to 8 ohms and scale your input to achieve 1 watt of power from the amplifier on each channel. Gain controls on the amplifier should be fully open. Check frequency response from 20Hz. (+0, -1dB at 1 watt) to 20KHz. (+0, -1dB at 1 watt) by sweeping random frequencies between these points. Check both channels.

POWER VS. DISTORTION TEST

Check to ensure that both channels will produce rated power at 20Hz, 2KHz, and 20kHz. While verifying rated power check that at all frequencies the distortion measurement is less than 0.1% (just below the onset of clipping.)

• THERMAL TEST

Set input frequency to 2KHz and short both channels while they are producing power into a load. AC current of about 2.0-3.0 (4.0 - 5.0 for USA900) amps PER CHANNEL should be read from the 120v (*240v*) line voltage. Verify that the PTC circuit causes thermal shutdown after an extended period. When shutdown occurs, verify AC idle of .75 to 1.5 amps. While waiting for thermal shutdown, verify presence of IC (IC1a & b) voltage at pins 4 and 8 of 4 - 8 volts d.c..

CM TEST

Check the Common Mode Rejection by inserting the 1/4" input jack halfway into each channel and observe a 50% signal reduction, and a 180 degrees phase inversion at the output of the amplifier under test.

OUTPUT NOISE

Set the amplifier **GAIN** to 0dB, with a 2kHz 1.00Vrms input signal. Note the output level. Remove the signal input connector and measure the residual noise level produced into the load. The noise signal should be 100 dB down from the full output power point measured. A signal to noise ratio should be better than 100dB (A weighted). Check both channels.

• FINAL CHECK

This completes the electronic test procedure. Inspect the amplifier for mechanical defects. Inspect the solder connections. Reassemble the amplifier and verify the amplifier's operation before returning the product to service.

USA1310 Test Procedure

SET-UP

- 1. Connect a test load to the output terminals of the amplifier.
- 2. Set the Stereo / Bridge switch to Stereo.
- 3. Connect a distortion analyzer with a resolution of 0.05%, 20-20kHz (or better) to the output terminals of the amplifier.
- 4. Connect a dual-channel oscilloscope to the following test points:
 - Ch1 a 10X (vertical sensitivity 2V/cm) scope probe to the channel speaker output.
 - Ch2 a 1X scope probe (vertical sensitivity 0.1V/cm) to the distortion analyzer output.
- 5. Connect scope Ch. 2 (0.1V/cm) to distortion output.
- 6. Set amp gain pots fully clockwise.
- 7. Connect the output of the signal generator to the input terminals of the amplifier and select an output of 1.00 VRMS, 2KHz sine wave.
- 8. Lift the ground on the scope and the distortion analyzer.
- 9. Verify that the programming switches on the input board are in the off position.

• POWER UP & MUTE DELAY TEST

 Slowly raise the variac voltage and watch for excessive current draw (Line current greater than 1A a.c. at 120 Volts.) This is slightly less for 240V. Pause at 95VAC (200VAC European) for three seconds until the mute / protect circuit disengages. Raise to 120VAC (240V European). 2. Turn the power switch off and on a few times to verify the 2 - 3 second power-up muting delay.

CHANNEL OUTPUT

- 1. Look for normal signal on the scope of channel 1. Switch the input signal and scope to channel 2 and repeat output test. Check for noisy / contaminated gain pots by observing general instability on your distortion waveform while adjusting the gain control levels.
- Select an 8 ohm load and confirm that this product is passing 400 watts at 1KHz 1% distortion.

BRIDGE MODE

Move the Bridge switch on the amp from the Stereo to Bridge position. Turn gain on CH2 fully counter clockwise (off). Remove the input plug from CH2. Check CH2 for full output with input applied to CH1. The output signal on CH2 should be 180 degrees out of phase with CH1output signal. Turn power off and place the amplifier under test back into the Stereo mode.

BIAS ADJUSTMENT

While still at 20kHz, reduce input signal 20dB (80%) from full output and adjust cross-over trimpot (TR1a & b) for a less than 400mVpk-pk cross-over spike protruding from the noise trace on the scope. An idle current (no signal applied with an 8 ohm load) should be less than or equal to 1.2A a.c.

If a distortion analyzer is not available, a less accurate crossover distortion and bias adjustment can be made by monitoring the driver transistor (Q1 & Q2) bias current. With the amp at room temperature, and no input signal plugged into the amplifier, measure the DC voltage across the emitter resistors of Q1 and Q2. Adjust TR1a,b to obtain about 80mV d.c.

• SHORT CIRCUIT CURRENT

- 1. Select a 4-ohm load and verify even clipping on both channels by adjusting a 1kHz input signal to just beyond 1.13VRMS (sine wave) with gain control fully up on the channel under test. Apply a short to the output binding posts of each channel one channel at a time and adjust the short circuit current limits. TR2a &b is for current limit adjustments. Upon shorting the channel, AC current draw from the wall of 5.5A (2.5A, 240V) should be evident.
- 2. While the amplifier is driving a short between the black and red binding posts of the channel under test, observe the main supply rail voltages, ideally they will be no more than 3 volts from each other.
- 3. Next, an important thing to look for is that the channel will recover from a short into a 2 ohm load and clip evenly. In order to set even clipping, adjust TR3a&b. If an adjustment with TR3 is necessary it is very important to re-measure the d.c. voltage rails and ensure that they do not deviate more that 3 volts from each other (ignoring the polarity difference).
- 4. Perform the same procedure for the next channel to be calibrated.

• 2 OHM POWER

Verify correct loading down to 2 ohms. 2 ohms is allowed to clip somewhat unevenly, but must pass 1000W (one channel driven, 1kHz, 1% THD). At this point, verify CLIP and PILOT LED's by adjusting your generator control until the channel is just above clipping.

• FREQUENCY RESPONSE

Set load to 8 ohms and scale your input to achieve 1 watt of power from the amplifier on each channel. Gain controls on the amplifier should be fully open. Check frequency

response from 20Hz. (+0, -1dB at 1 watt) to 20KHz. (+0, -1dB at 1 watt) by sweeping random frequencies between these points. Check both channels.

• POWER VS. DISTORTION TEST

Check to ensure that both channels will produce rated power at 20Hz, 2KHz, and 20kHz. While verifying rated power check that at all frequencies the distortion measurement is less than 0.1% (just below the onset of clipping.)

• THERMAL TEST

Set input frequency to 2KHz and short both channels while they are producing power into a load. AC current of about 4.0-5.0 amps PER CHANNEL should be read from the 120v (240v) line voltage. Verify that the PTC circuit causes thermal shutdown after an extended period. When shutdown occurs, verify AC idle of .75 to 1.5 amps. While waiting for thermal shutdown, verify presence of IC (IC1a & b) voltage at pins 4 and 8 of 4 - 8 volts d.c..

• CM TEST

Check the Common Mode Rejection by inserting the 1/4" input jack halfway into each channel and observe a 50% signal reduction, and a 180 degrees phase inversion at the output of the amplifier under test.

OUTPUT NOISE

Set the amplifier GAIN to 0dB, with a 2kHz 1.00Vrms input signal. Note the output level. Remove the signal input connector and measure the residual noise level produced into the load. The noise signal should be 100 dB down from the full output power point measured. A signal to noise ratio should be better than 100dB (A weighted). Check both channels.

• FINAL CHECK

This completes the electronic test procedure. Inspect the amplifier for mechanical defects. Inspect the solder connections. Reassemble the amplifier and verify the amplifier's operation before returning the product to service.

Troubleshooting

Current Draw

(Circuit breakers and fuses blow. Burning smell or smoke)

Symptoms: All Models

- · Fuses immediately blow
- · Amplifier quickly gets very hot
- · Line circuit breakers tripping upon turn on
- · Amplifier exhibits very loud hum with chassis vibration
- · Amplifier emits smoke
- · A burning smell is emanating from the amplifier

Possible Causes:

• EXCESSIVE CURRENT WITHOUT SIGNAL PRESENT

The amplifier draws high current when the AC supply voltage is first applied. This symptom may mean that there is a short in the power stages of the circuit.

This could also be a misadjusted bias setting. See calibration procedures in this manual for setting bias.

- FAST CURRENT DRAW (increases rapidly at only a few volts AC):
 - 1. Reversed or shorted main bridge rectifier B1 (B3, USA1310).
 - 2. Both supply clamping diodes D6, D7 reversed or shorted (D3, D4, USA1310).
 - 3. Output transistors or both drivers shorted.
- MEDIUM CURRENT DRAW (increases slowly, can go to 30 VAC before current becomes excessive.):
 - 1. Single polarity driver or output short.
 - 2. Single supply clamping diode D6 or D7 reversed or shorted (D3, D4, USA1310).
 - 3. Open or missing bias diodes D1, D2 or bias trim potTR3 and R38 (D5,D6,TR1,R4, USA1310).
- SLOW CURRENT DRAW (above 60 volts AC before current begins to increase, amp may pass signal):
 - 1. Severely misadjusted bias circuit or defective bias diodes D1 & D2.
 - 2. Severe oscillation causing current drain.
- RUNAWAY CURRENT DRAW (30-40V AC before current begins to increase or runaway):
 - 1. A reversed filter capacitor: caution, may vent explosively.

Protection, Muting Circuit, and Power On/Off Delay

(The amplifier locks up or does not startup and shut off correctly)

Symptoms: All Models

USA400, & USA900

- · Both channels do not come out of protect
- Amplifier will not thermally protect
- · Pilot LED not working
- Too little or too much muting delay

USA1310

- · Relay won't turn on
- · Poor mute circuit timing
- · No D.C. protect
- · Shuts off under signal
- · No Red protect LED
- · No thermal shutdown

Possible Causes:

USA400, & USA900

- BOTH CHANNELS DO NOT COME OUT OF PROTECT
 - 1. Q11 or Q12 shorted base emitter
 - 2. Voltage on Z5 should be 14v 15v. If this voltage is low, check for leaky E8, E9, defective Z5, or open R33.
 - 3. Check for open LD3 and open PTC.
- AMPLIFIER WILL NOT THERMALLY PROTECT
 - 1. Check for shorted LD3 and PTC, incorrect R35, R34, open pilot LD2, or open R39.
- MUTING DELAY

Too Much: Check for open LD2 or R39, incorrect R33, R34, R35 or shorted LD3.

Too Little: Check for incorrect E8, E9, or R33.

- PILOT LED NOT WORKING
 - 1. Check for shorted or open pilot LD2. Check R39.

Possible Causes:

USA1310

- RELAY WON'T TURN ON
 - 1. Check speaker bus for DC; if over 10V DC is present, the protect circuit is operating normally to prevent operation. If DC is present, (presumably without current draw), continue below; if no DC is present on the output, skip to the section below other protection related faults.
 - 2. Check relay power voltage. With relay off, voltage at E5 should measure 36V (set by Zener Z6). If not check R31, D9, or shorted Z6.
 - 3. If power voltage is OK, check voltage on timing capacitor E4. Should rise to 12-15V, in three seconds, which triggers Q19. If not, check R19, R20, E4's polarity, or for a shorted Q20. If timing voltage is OK, check relay transistor Q21. If good, a 47K resistor from base to speaker bus should activate relay.
 - 4. If relay driver Q21 is OK, check driver Q19 and LED LD3.

POOR MUTE CIRCUIT TIMING

NO MUTING DELAY (relay or circuit is "stuck on")

- 1. Relay driver Q21 shorted or wrongly mounted. Check by jumping base to emitter, should turn it off if OK.
- 2. Driver Q19 shorted or wrongly stuffed (check by jumping base to emitter as above).
- 3. D7 reversed (charges timing capacitor E7 immediately)
- 4. R20 low (fast E4 charge)
- 5. R19 low (low voltage on E4 turns Q19 on too soon)
- 6. Missing or high R23 (no off current)

EXCESSIVE MUTING DELAY

- 1. Check timing capacitor E4 voltage. If it rises normally but circuit is slow to turn on, check Z7 (lift temporarily while checking circuit), LD3 bad or intermittent, R23 too low.
- 2. Timing capacitor voltage wrong; check for R19, R20, reversed E4, missing R22.
- 3. Reversed or wrong Q20 type.

• NO D.C. PROTECT

DC FAULT WITHOUT CURRENT DRAW. In most cases, shorts in the output circuit will cause current draw, but certain shorts will only cause DC offset in the output. In both cases, measure the various circuit voltages, and look for abnormal values to help trace the fault, which can be a solder or component short (zero volts), reversed zener or diode (.6V) reversed electrolytic (several volts), or wrong value parts (abnormal voltage). Look at the following points in the circuit.

- 1. Shorted IC rail, sometimes both shorted together; including input cable connectors and jacks
- 2. Defective Z2-3 gives zero volts on IC rail.
- 3. Collector-base short on driver (rare without further damage)
- 4. Sometimes IC forces the rest of the circuit into DC due to shorts in the feedback network, etc.
- 5. To check this, remove IC, check for +15V, -15V on IC rails, and balanced voltages in the drivers and outputs. If so, output stage is probably OK, look for problems in IC, or its associated parts.
- 6. Defective or reversed IC (pull and check voltages).
- 7. R30 missing or very high.
- 8. B2 defective or wrongly mounted on PCB.
- 9. Q20 defective or wrong type.
- 10. D7 reversed (also no muting delay).
- 11. Replace LD-3 if voltage drop across it is less than 1.5V.

• SHUTS OFF UNDER SIGNAL

1. E6 missing, defective, or much too small.

NO RED PROTECT LED

Check LED voltage. If over +2V, LED is defective. If 0V with relay off (meaning no positive voltage to LED), check for solder short, or there is no "protect" power, (missing R29), which defeats shut-down circuits. Be sure to correct before proceeding.

• NO THERMAL SHUTDOWN

- 1. Short amplifier load with full signal to raise heat sink temperature and put voltmeter across PTC, (yellow sensor on heat sink), looking for voltage across PTC to rise from .7V cold to about 5.5V at shutdown.
- 2. No Red "Protect", may have no R29, which defeats whole thermal circuit (no voltage across PTC).
- 3. If the PTC reaches 6V but won't shut down, check Z7, or relay drive circuit stuck on (see above).

4. If red "protect" /R12 is OK, but no voltage across PTC, then the PTC is defective or shorted (lift temporarily or replace with 10K pot, confirm shutdown).

Faults with Signal Present

(The amplifier passes a signal but is not running correctly)

Symptoms: All Models

- · Output power "breaking up"
- 'Ringing' sound with no input to amplifier
- Output collapses into a 8, 4 or 2 ohm load
- · Voltage rails ok without signal.

- Amplifier gets too hot
- · One channel clips prematurely
- · Excessive hum with no input to amplifier

Possible Causes:

- OUTPUT POWER "BREAKING UP" (Output distorted)
 - 1. Hum-null components may have burned open. Check R7, R8 and TR2.
 - 2. Ground traces may be bad. Check for continuity between speaker ground, input ground and ac ground.
- "RINGING' SOUND WITH NO INPUT TO AMPLIFIER
 - 1. C2 and/or C4 (C4, C7, USA1310) may be bad.
 - 2. Check op amp IC1.
- OUTPUT COLLAPSES INTO A LOAD
 - 1. No continuous ground between main pcb to heatsink through pem stud. The spring tooth lock washer may not be biting through anodized surface on main heatsink.
 - 2. Misadjusted TR4 or TR5.
 - 3. Check for R20 and R21.
- VOLTAGE RAILS OK WITHOUT SIGNAL Collapses with a signal
 - 1. E2 or E3 leaking.
 - 2. Check for capacitance value of C2 and C4 (C7, C13, E1, USA1310).
- AMPLIFIER GETS TOO HOT WITHOUT LOAD
 - 1. TR3 (TR1, USA1310), misadjusted, opened or burned.
 - 2. Incorrect bias diode (should be 1N4934) D1, D2 (D5, D6, USA1310).
 - 3. Missing C2 or C4 (C4, C7, USA1310). High frequency oscillations evident.
 - 4. Open R17, R18 (R16, R17, USA1310).
 - 5. Defective op amp IC1. Unstable and generating high frequencies).
- ONE CHANNEL CLIPS PREMATURELY
 - 1. R15 or R16 may be open.
 - 2. Misadjusted TR4 & TR5.
 - 3. Into a 4 ohm load, check for open R22, or open D4 & D5 (D1 & D2, USA1310).
 - 4. Check R7 & R8 for open or incorrect value.

- 5. Check for open R12, R13, R20, R21 (R14, R15, R52, R53, USA1310)
- 6. 450 ohm chargeback resistor R22 may be open.
- 7. Check for open on D4 and D5.

EXCESSIVE HUM WITH NO INPUT TO AMPLIFIER

- 1. TR2 (hum-null trim potentiometer) misadjusted, opened or burned.
- 2. Check for mismatched capacitance value of output filter capacitors.

Instability

(Gain problems, spurious noises, and oscillations)

Symptoms: All Models

- · General Output Distortion
- "Ringing" sound with no input to amplifier
- · Excessive or unbalanced crossover
- · Output waveform appears "fuzzy"

Possible Causes:

First, distinguish between instability (fuzziness), "ringing" which is momentary instability after a transition, "step" distortion, crossover distortion (both often show ringing), or general distortion.

• GENERAL OUTPUT DISTORTION

SEVERE:

All loads, often with current draw: usually very low or missing slew rate capacitor C4, or feedback capacitor C2.

MEDIUM:

Especially with a light load, often too high a value of a stability capacitor; check feedback capacitor C2, secondary stability capacitors C9, (C5,6 USA1310); and output filter R32/C5 (USA1310-R27,28/C10). Jump with comparable value, if better, replace with increased value, if worse, try replacing with 50% lower value).

LOW GAIN:

Suspect open circuit in feedback shunt R5 (USA1310-R7/E1). Check for broken circuit trace. Substitute IC, and check IC socket for contamination.

"RINGING" SOUND WITH NO INPUT TO AMPLIFIER

Usually indicates marginal instability, usually triggered after passing through the crossover. Can indicate problem in "minor" stability components. Also check output filter. Possibly the crossover is larger than usual.

EXCESSIVE OR UNBALANCED CROSSOVER (Excess notch or ringing at zero crossing)

Severe: shorted bias diode D1-2 (D5, D6, USA1310).

Moderate: Out-of-spec bias diodes.

Defective bias trimmer components TR3 (TR1, USA1310) and R38 (R54, USA1310).

Check for open base resistors R17,18 (R16, R17, USA1310) on output devices.

OUTPUT WAVEFORM APPEARS "FUZZY"

Instability on one side of the waveform:

Add .015uF trimmer bypass capacitor around bias trimmer TR3 (TR1, USA1310).

Check/adjust driver emitter capacitors C8 and C9 (C5,6 on USA1310).

Power Supply and Voltage Rail Balancing

(Uneven rails and power supply problems)

Symptoms: All MODELS

- · Current limiting wrong
- · Current limiting too high into short
- · IC Rail too high into short
- · Current limiting too low into short
- · Uneven voltage rails

Possible Causes:

• CURRENT LIMITING WRONG

Current limits should remain high down to 2 ohms, and collapse to a lower value for short circuits. This is caused by the IC rails going from normal 14 - 15 volts to about 5-6 volts. Current limit trimmers TR4 & TR5 (TR2 on USA1310) permits adjustment of each channel to specified range. See Test & Calibration Procedures for correct adjustment of the current limiting.

- CURRENT LIMITING TOO HIGH INTO SHORT (IC RAILS CHECK NORMAL 5-6 volts)
 - 1. Reversed or shorted 3.9 or 4.7V zeners Z15, Z16.
 - 2. Shorted bias diode D1,2 (also shows severe crossover), (D5, 6, USA1310).
- IC RAIL TOO HIGH INTO SHORT
 - 1. Check op amp (weak output current).
 - 2. Clip LED open.
 - 3. B2 defective, (B1, USA1310)
 - 4. Check for short circuit current balance on the USA400 and USA900 by measuring the main rail voltages during short circuit; they should be balanced within 3V. If severely offset, check Z3 (3.9V) and Z4 (4.7V) for correct voltage, and check values of R15 and R16.
- CURRENT LIMITING TOO LOW INTO SHORT AND 2 OHM LOAD

IC RAILS OK

- 1. Bias resistor R12, R13 high.
- 2. Very low gain driver transistors (see below).
- 3. Missing connection or emitter resistors in some of the paralleled output transistors.
- CURRENT LIMITING TOO LOW INTO SHORT ONLY (OK into normal loads)
 - 1. Check Clip LED shorted, 1.5A rectifier B1 shorted.
 - 2. 3.9 or 4.7V zeners high (7.5V or 15V).

• OK INTO SHORT BUT LOW INTO 2 OHMS: (Usually on one side only)

IC RAIL LOW (driving two ohms even before clipping): check for high or missing charge-back R22 (USA1310-R49), or missing/reversed charge-back diodes D4 or D5 (usually causes premature clipping at 4 ohms as well).

IC RAIL OK (until clipping starts) usually indicates low output section gain caused by weak driver, open output devices, or open emitter resistors. Also check value of driver emitter resistors R15, R16.

• UNBALANCED RAIL VOLTAGES: (USA400 and USA900)

Rail voltage is determined by R7 and R8 from the positive and negative rails. If the amplifier is passing a signal but clipping unevenly due to uneven rail voltages, check and replace R7,8 (47K, 1watt, Metal Oxide).

NOTEO		
NOTES		

USA1310 Power Supply

The USA1310 power supply has a transformer center-tap return (DC-coupled), so the rails are forced to remain balanced. Check current balance by raising scope gain during short, and looking at the small voltage across the residual resistance of the short. The voltages (and thus currents) must be balanced within 33% (2:3 ratio maximum). They may be quite uneven. If so, check Z4 (3.9V) and Z1 (4.7V) for correct voltage, check values of R14 and R15, and if necessary adjust TR3 to balance the currents. Concentrate on the parts mentioned above, connected to the side with the high current (remember "reverse" polarity of QSC circuit –see below).

Driver Transistor Gain

To check driver gain, note the "REVERSED" polarity of QSC circuitry. The positive side of the circuit pulls the rails and output DOWN and thus is responsible for NEGATIVE output problems; the negative side of circuit is responsible for positive output. First, confirm their value, and then scope probe or measure the DC voltage on driver emitter resistors R12 or R13. If the driver's emitter resistor on the weak side has low voltage, its current is low, caused by poor drive or low gain. Inspect drive components shown above in Short Circuit Limit sections, or substitute drivers with an approved part. If a driver shows equal or greater current, it is OK and is trying to overcome weakness in outputs. Check that all devices and emitter resistors are good.

How to determine which power transistors are shorted

Determine which power supply rail (+ or -) is being clamped to ground. A positive side short (Q1, Q3 - Q10) will clamp the positive rail to ground, and a negative side short (Q2, Q11 - Q18) will clamp the negative rail to ground.

Raise the AC supply voltage current until the current draw is 2-5 amps. Measure the voltage on the supply rail and output transistors. A hard short to ground will read virtually zero volts. A shorted output device will read 0-.5V depending on the short current.

Confirm that a voltage drop exists across that device's emitter resistor as well. A measurement of .6-1V above ground indicates clamping due to reversed or defective diode D6-7, or a shorted output. A measurement of 1-2 volts could mean a bad driver, but the outputs may be OK (especially if all emitter resistors have the same voltage drop).

Determine which individual devices in a parallel bank are shorted by measuring the voltage across the emitter resistors on the side with the low rail (the faulty side). The shorted devices will draw more current, causing higher voltages on their emitter resistors. The good devices on the opposite rail will all be conducting equal current.

If the base voltage to a group of outputs measures zero, there is a probable solder short to the heat sink or an output collector-to-base short (rare). If output collector to base junction is shorted, all outputs on the same bank must be removed from the circuit board and check the same collector to base junction carefully.

Check for a driver transistor short by measuring across the emitter resistors R12 and R13 (USA1310-R12/13). If the voltage drop is near zero, there is no driver transistor current draw and no driver transistor short. Don't forget to check for open emitter resistors (burned open by a shorted output device).

USA Series Jack Plane Assembly

Part Number	Description	Reference
CA-110001-10	CAP SM 100PF, 5%, 500V	C307,407
CA-410004-10	CAP CER .1UF 20% 50V	C31
CA-415001-10	CAP MYLAR .15UF 5% 100V	C305,405
CA-422001-10	CAP MYLAR .22UF 5% 50V	C302,303,
		C402,403
CA-610002-10	10UF,35V,20%,RADIAL ELECT	C306,406
CA-647001-10	CAP LYTIC RL 47UF 10% 10V NP	C301,401
CA-710001-10	CAP LYTIC RL 100UF 20% 35V	C32,33
CO-000005-BS	5 POSITION BARRIER STRIP	J31
CO-000086-00	CONN VERT COMBO XLR/JACK	J301,401
CO-640385-AH	HEADER PCB.156 16-POS RT ANGLE	J32
HW-060040-PS	#6-32 X 4 PEM STUD	
HW-060120-SO	STANDOFF,1/4" HEX AL 6-32X3/4"	
HW-060150-SO	#6-32 X 29/32" STANDOFF	
IC-000032-00	IC LIN DUAL OP AMP MC33178P	U301,401
IC-000037-00	IC LIN DUAL OP AMP TRANSCOND	U31
NW-062010-FW	#6 FLT WSHR,SAE,ZINC,3/64 THK	
PC-001325-00	USA 2 JACKPLANE PCB	
PT-320300-CR	RES VAR IT 20K 20% 0.2W	R306,406
QD-000063-10	XISTOR PNP TO-92 40V 0.2A 1.5W	Q301,302,
		Q401,402
QD-004004-DX	DIODE RECT DO41 400V 1A	D31-34
RE-010005-BC	RES CF 100 5% 1/4W	R313,314,
		R413,414
RE-023701-BM	RES MF 237 1% 1/4W	R317,417
RE-041201-BM	RES MF 412 1% 1/4W	R316,416
RE-053601-BM	RES MF 536 1% 1/4W	R318,418
RE-110005-BC	RES CF 1K 5% 1/4W	C305,405
RE-147005-BC	RES CF 4.7K 5% 1/4W	R302,307,
		R402,407
RE-156201-BM	RES MF 5.62K 1% 1/4W	R308,310,
		R408,410
RE-175001-BM	RES MF 7.50K 1% 1/4W	R315,415
RE-210001-BM	RES MF 10.0K 1% 1/4W	R301,303,
		R312,401,
		R403,412
RE-220001-BM	RES MF 20.0K 1% 1/4W	R309,409,
		R311,411
RE-234801-BM	RES MF 34.8K 1% 1/4W	R304,404
RE-339005-BC	RES CF 390K 5% 1/4W	R319,419
SW-000008-DS	SWITCH, DIP, 8 POSITION	SW31

USA 400 Main Board Assembly

USA 400 Main Board Assembly (con't)

Z1ab,2ab,5

QD-004744-ZA DIODE ZNR 15V 5% 1W 1N4744A

			QD-004744-2A	DIODE ZING 150 570 TW 1147 44A	Z 1 aD, Z aD, J
Part Number	Description	Reference	QD-004934-DX	DIODE RECT DO41 FAST 100V 1A	D1ab,2ab
CA-047001-10	CAP CER 47PF 10% 100V NPO	C1AB,2AB,	QD-008599-TX	XISTOR PNP TO-92 60V 0.5A	Q11
		C6AB	QD-400400-BX	DIODE BRIDGE RECT 400V 40A	B1ab
CA-222002-10	.0022UF,200V,10%,MYLAR	C12AB	RE02205-FW	RES WW 0.22 10% 3W	R23a,24b,
		C4AB,11AB,			R25a,26b,
CA-233001-10	CAP MYLAR .0033UF 10% 100V	C8AB,9AB			R27a,28b,
CA-310001-10	CAP MYLAR .01UF 10% 100V	C7AB			R29a,30b
CA-368001-10	CAP MYLAR .068UF 5% 100V	C3AB,5AB	RE56005-EM	RES MOFP 5.6 5% 2W	R31ab
CA-368250-AS	CAP SURGE .068UF 20% 250VAC	C10	RE68005-DM	RES MOFP 6.8 5% 1W	R15ab,16ab
CA-422002-10	CAP MPOLY 0.22UF 10% 250V	C22AB	RE-000009-PT	RES PTC 90C 0.1K MAX COLD	PTC
CA-547002-10	4.7UF,16V,20% RADIAL NON-POLAR	E1AB	RE-000050-NR	THERMISTOR NTC 50 OHM	R38ab
CA-547003-10	CAP LYTIC RL 4.7UF 10% 160V	E8	RE-001005-EM	RES MOFP 10 5% 2W	R32ab
CA-647002-10	CAP LYTIC RL 47UF 20% 50V	E9	RE-002205-DM	RES MOFP 22 5% 1W	R17ab,18ab
CA-722002-10	CAP LYTIC RL 220UF 20% 25V	E2AB,3AB	RE-015001-BM	RES MF 150 1% 1/4W	R14ab,36ab
CA-833080-BE	CAP LYTIC RL 3300UF 20% 80V	E4AB-7AB	RE-023701-BM	RES MF 237 1% 1/4W	R5ab
CH-140208-LX	1200/1400/1700 HEATSINK, FAB.		RE-030005-HW	RES WW 300 10% 5W	R22ab
CO-000008-IC	8 PIN IC SOCKET	lC1ab	RE-075001-BM	RES MF 750 1% 1/4W	R10ab
CO-350432-AP	HEADER PCB 3 X 3 AMP TYPE	J101	RE-110005-BC	RES CF 1K 5% 1/4W	R12ab,13ab
HW-000001-FC	FUSE CLIPS	F1ab	RE-120005-EM	RES MOFP 2K 5% 2W	R20ab,21ab
HW-060100-PS	STUD PEM 6-32 X 0.625"		RE-147005-BC	RES CF 4.7K 5% 1/4W	R11ab
HW-060405-SP	SPACER RND AL .25"OD X 5/32"L		RE-162005-CC	RES CF 6.2K 5% 1/2W	R19
HW-060600-SO	STANDOFF 1/4" HEX AL 6-32 M/F		RE-168005-BC	RES CF 6.8K 5% 1/4W	R34,41
IC-000021-00	IC LIN DUAL OP AMP 5532	IC1A,B	RE-210001-BM	RES MF 10.0K 1% 1/4W	R1ab,2ab,
LB-120209-AX	LABEL, UL. FUSE CAUTION				R3ab,4ab
MS-000048-HS	HEAT SINK, ISOL TO-220	REF:Q1A,B,	RE-210002-CM	RES MF 10.0K 2% 1/2W	R6ab
		REF:Q2A,B	RE-210005-EM	RES MOFP 10K 5% 2W	R39
MS-070125-FU	7A, 125V, FUSE	F1ab	RE-247005-CC	RES CF 47K 5% 1/2W	R9ab
NW-060500-KP	#6-32 KEPS NUT		RE-247005-DM	RES MOFP 47K 5% 1W	R35
PC-140044-LX	PCB FAB, MAIN PCB 1200/1400				R7AB,8AB,
PL-000000-AF	ADHESIVE FEET		RE-310005-BC	RES CF 100K 5% 1/4W	R40
PL-903125-SP	SPACER,ROUND,NYLON,0.125"L	D1A,B,	RE-315005-BC	RES CF 150K 5% 1/4W	R33
		D2A,B,	SC-061041-SP	#6 X 1/4" "A" P/P W/SCRAPING	PTC
		L1A,B,	SC-062050-PP	#6 X 5/16" "B" P/P ZINC	
		R38A,B	SW-000151-SW	SWITCH, SLIDE, SPDT	SW1
PL-905156-SP	SPACER,ROUND,NYLON,#6,0.155"L	REF: LD3	WC-0.3022-JW	.3" JUMPER, WHITE, 22 GA SLD	R37,W3,8
PL-905325-SP	SPACER, ROUND,NYLON,#6,0.325"L	LD1ab,2	WC-0.6022-JW	.6" JUMPER, WHITE, 22 GA, SLD	W2,9,19,28
PL-909235-SP	HOLDER,LED,90 DEGREE,NYLON	LD1ab,2	WC-0.9022JW	.9" JUMPER, WHITE, 22 GA, SLD	W1,4,15,
PT-110000-AT	RES VAR IT 100 20% 0.15W CARB	TR3ab			W21,22,30,
PT-250000-AT	RES VAR IT 5K 20% 0.15W CARB	TR4ab,5ab			W31
PT-422000-AT	RES VAR IT 220K 20% 0.5W CERM	TR2ab	WC-001102-SQ	INSUL. SLEEVE QSC 1102,.6",CLR	PTC
QD-000004-TX	XISTOR NPN TO-92+60V 0.5A 1W	Q12	WC-1.2518-JW	1.25" JUMPER, WHITE 18 GA, SLD	W23
QD-000032-QD	XISTOR NPN TO-3 200V 16A	Q10B	WC-1.5022-JW	1.5" JUMPER, WHITE, 22 GA, SLD	W11,12,16,
		Q7A,8B,9A,			W17,18,20
QD-000033-QD	XISTOR PNP TO-3 200V 16A	Q3A,4B,5A,			W5,6,7,10,
		Q6B	WC-2.5018-JW	2.5" JUMPER, WHT, 18 GA, SLD	W13,14,24,
QD-000045-00	DIODE BRIDGE RECT DIP 200V 1A	B2AB			W25,26,27
QD-000076-00	XISTOR NPN TO-220 250V	Q1A,B	XF-200016-CR	INDUCTOR 2UH 18AWG VERT MNT	L1ab
QD-000077-00	XISTOR PNP TO-220 250V	Q2A,B			
QD-000134-LG	LED GRN T-1 3/4	LD2			
QD-000134-LR	LED RED T-1 3/4	LD1ab			
QD-0003.9-ZT	DIODE ZNR 3.9V TESTED	Z3ab			
QD-0004.7-ZT	DIODE ZNR 4.7V TESTED	Z4ab			
QD-001340-LR	LED RED T-1 3/4 VOLTAGE REF	LD3			
QD-004004-DX	DIODE RECT DO41 400V 1A	D10ab,11ab			
		D4ab-7ab,8			

USA 400 Chassis Assembly

USA 900 Main Board Assembly (con't)

USA 400 Citassis Assembly			OSA 300 Maili Boald Assembly (cont)			
			HW-060405-SP	SPACER RND AL .25"OD X 5/32"L		
Part Number	Description	Reference	HW-060600-SO	STANDOFF 1/4" HEX AL 6-32 M/F		
CH-001850-00	USA400/900/SE185/425 FACEPLATE		IC-000021-00	IC LIN DUAL OP AMP 5532	IC1A,B	
CH-140101-00	CHASSIS, SA/USA/SER.1 3 SPACE		LB-140225-AX	LABEL, UL. FUSE CAUTION		
CH-140210-BX	1400 KNOB FABRICATION		MS-000048-HS	HEAT SINK, ISOL TO-220	REF:Q1A,B,	
CO-000011-00	CONN DUAL 5-WAY BIND RD/BLK R				REF:Q2A.B	
CO-000012-00	CONN DUAL 5-WAY BIND RD/BLK L		MS-120250-FU	12A 250V, FUSE	F1ab	
LB-000052-00	LABEL, cUL APPROVAL		NW-060500-KP	#6-32 KEPS NUT		
LB-000138-00	LABEL, INPUT, USA 2 SERIES		PC-140044-LX	PCB FAB, MAIN PCB 1200/1400		
LB-000143-00	LABEL, FACEPLATE USA 400 (D0M)		PL-000000-AF	ADHESIVE FEET		
LB-140102-00	LABEL OUTPUT SLC		PL-903125-SP	SPACER,ROUND,NYLON,0.125"L	D1ab,2ab,	
NW-040422-SW	TOSHIBA SHOULDER WASHER				L1ab,R38ab	
NW-060400-HN	#6-32 X 1/4" HEX NUT		PL-905156-SP	SPACER,ROUND,NYLON,#6,0.155"L	REF: LD3	
NW-100600-KP	#10-32 KEPS NUT		PL-905325-SP	SPACER, ROUND,NYLON,#6,0.325"L	LD1ab,2	
PL-000001-SR	HEYCO 6W-1 STRAIN RELIEF 16/3		PL-909235-SP	HOLDER,LED,90 DEGREE,NYLON	LD1ab,2	
PL-000003-CP	AC CORD PROTECTOR		PT-110000-AT	RES VAR IT 100 20% 0.15W CARB	TR3ab	
SC-030000-SC	3mm x 8mm,P/P,TYPE 1,BLK. OX.		PT-250000-AT	RES VAR IT 5K 20% 0.15W CARB	TR4ab,5ab	
SC-060030-PU	#6-32 X 3/16 P/F UNDERCUT ZINC		PT-422000-AT	RES VAR IT 220K 20% 0.5W CERM	TR2ab	
SC-060081-PP	#6-32 X 1/2" P/P BLACK		QD-000004-TX	XISTOR NPN TO-92+60V 0.5A 1W	Q12	
SC-061081-PP	#6 X 3/8" "B" P/P ZINC		QD-000032-QD	XISTOR NPN TO-3 200V 16A	Q7AB-10AB	
SC-081101-SP	#8-18 X 5/8", TYPE 1 P/P BLACK		QD-000033-QD	XISTOR PNP TO-3 200V 16A	Q3AB-6AB	
SC-100121-PS	#10-32 X 3/4" P/P SEMS BLACK		QD-000045-00	DIODE BRIDGE RECT DIP 200V 1A	B2AB	
SW-000005-CB	5A. CIRCUIT BREAKER		QD-000076-00	XISTOR NPN TO-220 250V	Q1A,B	
SW-000016-SW	SPST SNAP IN POWER SWITCH		QD-000077-00	XISTOR PNP TO-220 250V	Q2A,B	
WC-000034-00	WIRE ASSY, 4.5", BLACK		QD-000134-LG	LED GRN T-1 3/4	LD2	
WC-001005-AX	QSC WIRE 1005, 2.5", BLACK		QD-000134-LR	LED RED T-1 3/4	LD1ab	
WC-003050-AX	PWR CORD 100/120VAC		QD-0003.9-ZT	DIODE ZNR 3.9V TESTED	Z3ab	
WP-001325-00	PCB ASSY,JCKPLN,USA 2 SERIES		QD-0004.7-ZT	DIODE ZNR 4.7V TESTED	Z4ab	
WP-120044-TD	1200 MAIN DOM		QD-001340-LR	LED RED T-1 3/4 VOLTAGE REF	LD3	
XF-001201-BX	XFMR P 1200 115/230V		QD-004004-DX	DIODE RECT DO41 400V 1A	D11ab	
					D4ab-7ab	
USA 900 N	lain Board Assembly				D8,10ab,	
			QD-004744-ZA	DIODE ZNR 15V 5% 1W 1N4744A	Z1ab,2ab,	
Part Number	Description	Reference			Z5	
CA-047001-10	CAP CER 47PF 10% 100V NPO	C1AB,6AB	QD-004934-DX	DIODE RECT DO41 FAST 100V 1A	D1ab,2ab	
CA-068001-10	CAP CER 68PF 10% 100V	C2A,B	QD-008599-TX	XISTOR PNP TO-92 60V 0.5A	Q11	
CA-222002-10	.0022UF,200V,10%,MYLAR	C12AB	QD-400400-BX	DIODE BRIDGE RECT 400V 40A	B1ab	
		C4AB,11AB,	RE02205-FW	RES WW 0.22 10% 3W	R23ab-30ab	
CA-233001-10	CAP MYLAR .0033UF 10% 100V	C8AB,9AB	RE56005-EM	RES MOFP 5.6 5% 2W	R31ab	
CA-310001-10	CAP MYLAR .01UF 10% 100V	C7AB	RE68005-DM	RES MOFP 6.8 5% 1W	R15ab,16ab	
CA-368001-10	CAP MYLAR .068UF 5% 100V	C3AB,5AB	RE-000009-PT	RES PTC 90C 0.1K MAX COLD	PTC	
CA-368250-AS	CAP SURGE .068UF 20% 250VAC	C10	RE-000050-NR	THERMISTOR NTC 50 OHM	R38ab	
CA-422002-10	CAP MPOLY 0.22UF 10% 250V	C22A,B	RE-000140-NR	THERMISTOR NTC 9A CUR LIM	R37	
CA-547002-10	4.7UF,16V,20% RADIAL NON-POLAR	E1AB	RE-001005-EM	RES MOFP 10 5% 2W	R32ab	
CA-547003-10	CAP LYTIC RL 4.7UF 10% 160V	E8	RE-002205-DM	RES MOFP 22 5% 1W	R17ab,18ab	
CA-647002-10	CAP LYTIC RL 47UF 20% 50V	E9	RE-015001-BM	RES MF 150 1% 1/4W	R14ab,36ab	
CA-722002-10	CAP LYTIC RL 220UF 20% 25V	E2AB,3AB	RE-016501-BM	RES MF 165 1% 1/4W	R5ab	
CA-833001-00	CAP LYTIC 3300UF 100V 20%	E4AB-7AB	RE-025010-NW	RES WW 250 10% 15W	R42	
CH-140208-LX	1200/1400/1700 HEATSINK, FAB.		RE-045010-HW	RES WW 450 10% 5W	R22ab	
CO-000008-IC	8 PIN IC SOCKET	lC1ab	RE-075001-BM	RES MF 750 1% 1/4W	R10ab	
CO-350432-AP	HEADER PCB 3 X 3 AMP TYPE	J101	RE-110005-BC	RES CF 1K 5% 1/4W	R12ab,13ab	
HW-000001-FC	FUSE CLIPS	F1ab	RE-130005-EM	RES MOFP 3K 5% 2W	R20ab,21ab	
HW-060100-PS	STUD PEM 6-32 X 0.625"		RE-147005-BC	RES CF 4.7K 5% 1/4W	R11ab	

USA 900 Main Board Assembly (con't)

Part Number	Description	Reference
RE-162005-CC	RES CF 6.2K 5% 1/2W	R19
RE-168005-BC	RES CF 6.8K 5% 1/4W	R34,41
RE-210001-BM	RES MF 10.0K 1% 1/4W	R1ab-4ab
RE-210002-CM	RES MF 10.0K 2% 1/2W	R6ab
RE-210005-EM	RES MOFP 10K 5% 2W	R39
RE-247005-CC	RES CF 47K 5% 1/2W	R9ab
RE-247005-DM	RES MOFP 47K 5% 1W	R35
		R7AB,8AB,
RE-310005-BC	RES CF 100K 5% 1/4W	R40
RE-318005-BC	RES CF 180K 5% 1/4W	R33
00.001041.00	#6 V 1 / 4# "A" D/D W//SCDADING	DTC SW2

١

USA 900 Chassis Assembly (con't)

SW-000010-CB	10A. CIRCUIT BREAKER
SW-000016-SW	SPST SNAP IN POWER SWITCH
WC-000034-00	WIRE ASSY, 4.5*, BLACK
WC-001004-CX	QSC AC CORD 1004, 72", BLACK
WC-001005-AX	QSC WIRE 1005, 2.5", BLACK
WP-001325-00	PCB ASSY,JCKPLN,USA 2 SERIES
WP-140044-TD	1400 MAIN DOM
XF-001401-BX	1400 POWER XFMR 120/230V

USA 1310 Ch.1 Main Board Assembly

CAP SM 27PF 10% 500V CAP CER 47PF 10% 100V NPO

CAP MYLAR .001UF 5% 50V

.0022UF,200V,10%,MYLAR

CAP MYLAR .0015UF 5% 200V

CAP MYLAR .033UF 10% 100V

CAP MYLAR .047UF 10% 400V

CAP SURGE .1UF 20% 250VAC

CAP MYLAR .12UF 5% 100V

10UF,35V,20%,RADIAL ELECT

CAP LYTIC RL 47UF 20% 50V

CAP LYTIC RL 220UF 20% 25V

CAP LYTIC RL 47UF 10% 10V NP

CAP LYTIC RL 220UF 20% 10V NP

Description

Reference

C4

C1,2

C12

C7

C8

C9

C10

C3

E4

E1

E5

E6

E2,3

C13-16

Part Number

CA-027001-10

CA-047001-10 CA-210050-CP

CA-215002-10

CA-222002-10 CA-333100-BP

CA-347400-BP

CA-410250-AS

CA-412001-10

CA-610002-10

CA-647001-10

CA-647002-10

CA-722001-10

CA-722002-10

	,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
RE-247005-DM	RES MOFP 47K 5% 1W	R35
		R7AB,8AB,
RE-310005-BC	RES CF 100K 5% 1/4W	R40
RE-318005-BC	RES CF 180K 5% 1/4W	R33
SC-061041-SP	#6 X 1/4" "A" P/P W/SCRAPING	PTC,SW2
SC-062050-PP	#6 X 5/16" "B" P/P ZINC	
SW-000055-TS	55C THERMAL CUT-IN SWITCH	SW2
SW-000151-SW	SWITCH, SLIDE, SPDT	SW1
WC-0.3022-JW	.3" JUMPER, WHITE, 22 GA SLD	W3,8
WC-0.6022-JW	.6" JUMPER, WHITE, 22 GA, SLD	W2,9,19,28
WC-0.9022-JW	.9" JUMPER, WHITE, 22 GA, SLD	W1,4,15,
		W21,22,29,
		W30,31
WC-001102-SQ	INSUL. SLEEVE QSC 1102,.6",CLR	PTC
WC-001103-SQ	INSUL SLEEVE 1103,.875",CLEAR	REF: SW2
WC-1.2518-JW	1.25" JUMPER, WHITE 18 GA, SLD	W23
WC-1.5022-JW	1.5" JUMPER, WHITE, 22 GA, SLD	W11,12,16,
		W17,18,20
		W5,6,7,10,
WC-2.5018√W	2.5" JUMPER, WHT, 18 GA, SLD	W13,14,24,
		W25,26,27
XF-200016-CR	INDUCTOR 2UH 18AWG VERT MNT	L1ab

USA 900	Chassis	Assembly
---------	---------	-----------------

Part Number	Description	Reference
CH-001850-00	USA400/900/SE185/425 FACEPLATE	
CH-140101-00	CHASSIS, SA/USA/SER.1 3 SPACE	
CH-140210-BX	1400 KNOB FABRICATION	
CO-000011-00	CONN DUAL 5-WAY BIND RD/BLK R	
CO-000012-00	CONN DUAL 5-WAY BIND RD/BLK L	
LB-000052-00	LABEL, cUL APPROVAL	
LB-000138-00	LABEL, INPUT, USA 2 SERIES	
LB-000142-00	LABEL, FACEPLATE USA 900 (DOM)	
LB-140102-00	LABEL OUTPUT SLC	
MS-000069-00	FAN ASSY, 1400	
NW-040422-SW	TOSHIBA SHOULDER WASHER	
NW-060400-HN	#6-32 X 1/4" HEX NUT	
PL-000001-SR	HEYCO 6W-1 STRAIN RELIEF 16/3	
PL-000003-CP	AC CORD PROTECTOR	
SC-030000-SC	3mm x 8mm,P/P,TYPE 1,BLK. OX.	
SC-060030-PU	#6-32 X 3/16 P/F UNDERCUT ZINC	
SC-060081-PP	#6-32 X 1/2" P/P BLACK	
SC-061081-PP	#6 X 3/8" "B" P/P ZINC	
SC-081101-SP	#8-18 X 5/8", TYPE 1 P/P BLACK	
SC-100061-PS	SCREW 10-32X3/8" BLK P/P SEMS	

0		
CA-822100-BE	CAP LYTIC RL 2200UF 20% 100V	E7-14
CH-140208-LX	1200/1400/1700 HEATSINK, FAB.	
CO-000008-IC	8 PIN IC SOCKET	REF: IC1
CO-350432-AP	HEADER PCB 3 X 3 AMP TYPE	P2
CO-641119-AH	8 PIN .156"/C HEADER	P1
HW-000001-FC	FUSE CLIPS	REF: F1,2
HW-060100-PS	STUD PEM 6-32 X 0.625"	Р
HW-060405-SP	SPACER RND AL .25"OD X 5/32"L	Р
HW-060600-SO	STANDOFF 1/4" HEX AL 6-32 M/F	S
IC-000021-00	IC LIN DUAL OP AMP 5532	IC1
MS-000044-FT	FOAM ADHESIVE TAPE 1/8X 1/2 X1	PCB
MS-000057-00	CLIP HEATSINK TO220	REF:Q1A,2A
MS-000061-00	HEATSINK TO-220	REF:Q1A,2A
MS-150250-FU	15A, 250V, FUSE	F1,2
NW-060500-KP	#6-32 KEPS NUT	
PC-000001-00	1700 MAIN PCB ASSY CHANNEL 1	
PL-000000-AF	ADHESIVE FEET	PCB
PL-000077-00	INSULATOR TO-218 .725 X .950	REF:Q1A,2A
PL-903125-SP	SPACER,ROUND,NYLON,0.125*L	R54
		REF: D5,6,
PL-905100-SP	SPACER,ROUND,NYLON,#6,0.100"L	REF: L1
PL-905156-SP	SPACER,ROUND,NYLON,#6,0.155"L	REF: LD3
PL-905200-SP	SPACER,ROUND,NYLON,#6,0.200"L	REF: LD1,2
PL-909235-SP	HOLDER,LED,90 DEGREE,NYLON	REF: LD1,2
PT-110000-AT	RES VAR IT 100 20% 0.15W CARB	TR1,2
PT-250000-AT	RES VAR IT 5K 20% 0.15W CARB	TR3
QD-000004-TX	XISTOR NPN TO-92+60V 0.5A 1W	Q21
QD-000024-QD	DIODE ZNR 6.2V 5% TESTED	Z5

USA 1310 Ch.1 Main Board Assembly (con't)

USA 1310 Ch.1	Main I	Board A	ssembly	(con't)
---------------	--------	---------	---------	---------

WC-2.5018-JW 2.5" JUMPER, WHT, 18 GA, SLD XF-200014-CR INDUCTOR 2UH 14AWG VERT MNT

Part Number	Description	Reference
QD-000032-QD	XISTOR NPN TO-3 200V 16A	Q11-Q18
QD-000033-QD	XISTOR PNP TO-3 200V 16A	Q3-Q10
QD-000045-00	DIODE BRIDGE RECT DIP 200V 1A	B1,2

QD-000033-QD	XISTOR PNP TO-3 200V 16A	Q3-Q10	USA 1310 Ch.2 Main Board Assembly		
QD-000045-00	DIODE BRIDGE RECT DIP 200V 1A	B1,2			
QD-000056-10	XISTOR PNP TO-92 60V 0.5A	Q19,20	Part Number	Description	Reference
QD-000076-00	XISTOR NPN TO-220 250V	Q1A	CA-027001-10	CAP SM 27PF 10% 500V	C4
QD-000077-00	XISTOR PNP TO-220 250V	Q2A	CA-047001-10	CAP CER 47PF 10% 100V NPO	C1,2
QD-000134-LR	LED RED T-1 3/4	LD2	CA-210050-CP	CAP MYLAR .001UF 5% 50V	C12
QD-000134-LX	LED RED/GRN T-1 3/4	LD1	CA-215002-10	CAP MYLAR .0015UF 5% 200V	C7
QD-0003.9-ZT	DIODE ZNR 3.9V TESTED	Z4	CA-222002-10	.0022UF,200V,10%,MYLAR	C8
QD-0004.7-ZT	DIODE ZNR 4.7V TESTED	Z1	CA-333100-BP	CAP MYLAR .033UF 10% 100V	C9
QD-001340-LR	LED RED T-1 3/4 VOLTAGE REF	LD3	CA-347400-BP	CAP MYLAR .047UF 10% 400V	C17-20
QD-004004-DX	DIODE RECT DO41 400V 1A	D1,2,D7-13	CA-368250-AS	CAP SURGE .068UF 20% 250VAC	C11
QD-004744-ZA	DIODE ZNR 15V 5% 1W 1N4744A	Z2,3	CA-410250-AS	CAP SURGE .1UF 20% 250VAC	C10
QD-004753-ZT	DIODE ZNR 36V 5% 1W 1N4753A	Z6	CA-412001-10	CAP MYLAR .12UF 5% 100V	C3
QD-004934-DX	DIODE RECT DO41 FAST 100V 1A	D5,6	CA-610002-10	10UF,35V,20%,RADIAL ELECT	E4
QD-005402-DX	DIODE RECT DO27 200V 3A	D3,4	CA-647001-10	CAP LYTIC RL 47UF 10% 10V NP	E1
QD-400400-BX	DIODE BRIDGE RECT 400V 40A	B3	CA-647002-10	CAP LYTIC RL 47UF 20% 50V	E5
RE04705-FW	RES WW 0.47 10% 3W	R33-48	CA-722001-10	CAP LYTIC RL 220UF 20% 10V NP	E6
RE56005-EM	RES MOFP 5.6 5% 2W	R13A	CA-722002-10	CAP LYTIC RL 220UF 20% 25V	E2,3
		R26,12A,	CA-822100-BE	CAP LYTIC RL 2200UF 20% 100V	E7-14
RE-000009-PT	RES PTC 90C 0.1K MAX COLD	R56	CH-140208-LX	1200/1400/1700 HEATSINK, FAB.	
RE-000050-NR	THERMISTOR NTC 50 OHM	R54	CO-000008-IC	8 PIN IC SOCKET	REF: IC1
RE-001005-EM	RES MOFP 10 5% 2W	R27,28	CO-350432-AP	HEADER PCB 3 X 3 AMP TYPE	P2
RE-002205-DM	RES MOFP 22 5% 1W	R16,17	CO-641119-AH	8 PIN .156"/C HEADER	P1
RE-004705-BC	RES CF 47 5% 1/4W	R55	HW-000001-FC	FUSE CLIPS	REF: F1,2
RE-015005-BC	RES CF 150 5% 1/4W	R25	HW-060100-PS	STUD PEM 6-32 X 0.625"	Р
RE-025010-NW	RES WW 250 10% 15W	R50	HW-060405-SP	SPACER RND AL .25"OD X 5/32"L	Р
RE-033201-BM	RES MF 332 1% 1/4W	R7	HW-060600-SO	STANDOFF 1/4" HEX AL 6-32 M/F	S
RE-045010-HW	RES WW 450 10% 5W	R31	IC-000021-00	IC LIN DUAL OP AMP 5532	IC1
RE-068010-HW	RES WW 680 10% 5W	R49	MS-000044-FT	FOAM ADHESIVE TAPE 1/8X 1/2 X1	PCB
RE-110005-BC	RES CF 1K 5% 1/4W	R5,14,15	MS-000057-00	CLIP HEATSINK TO220	REF:Q1A,2A
RE-115005-BC	RES CF 1.5K 5% 1/4W	R24	MS-000061-00	HEATSINK TO-220	REF:Q1A,2A
RE-116201-BM	RES MF 1.62K 1% 1/4W	R32	MS-150250-FU	15A, 250V, FUSE	F1,2
RE-136001-00	RES MOFP 3.6K 5% 5W	R52,53	NW-060500-KP	#6-32 KEPS NUT	
RE-147005-BC	RES CF 4.7K 5% 1/4W	R6	PC-000002-00	1700 MAIN PCB ASSY CHANNEL 2	
RE-175005-EM	RES MOFP 7.5K 5% 2W	R29	PL-000000-AF	ADHESIVE FEET	PCB
RE-210001-BM	RES MF 10.0K 1% 1/4W	R1-4	PL-000077-00	INSULATOR TO-218 .725 X .950	REF:Q1A,2A
RE-210005-EM	RES MOFP 10K 5% 2W	R30	PL-903125-SP	SPACER,ROUND,NYLON,0.125"L	R54
RE-221001-CM	RES MF 21.0K 1% 1/2W	R9			REF: D5,6,
RE-247005-CC	RES CF 47K 5% 1/2W	R21	PL-905100-SP	SPACER,ROUND,NYLON,#6,0.100"L	REFIL1
RE-275001-BM	RES MF 75.0K 1% 1/4W	R8	PL-905156-SP	SPACER,ROUND,NYLON,#6,0.155"L	REF: LD3
RE-310005-BC	RES CF 100K 5% 1/4W	R22,23	PL-905200-SP	SPACER,ROUND,NYLON,#6,0.200"L	REF: LD1,2
RE-333005-BC	RES CF 330K 5% 1/4W	R19,20	PL-909235-SP	HOLDER,LED,90 DEGREE,NYLON	REF: LD1,2
SC-061041-SP	#6 X 1/4" "A" P/P W/SCRAPING	R56	PT-110000-AT	RES VAR IT 100 20% 0.15W CARB	TR1,2
		REF:SW1,	PT-250000-AT	RES VAR IT 5K 20% 0.15W CARB	TR3
SC-062050-PP	#6 X 5/16" "B" P/P ZINC	REF:Q3-Q18	QD-000004-TX	XISTOR NPN TO-92+60V 0.5A 1W	Q21
SW-000013-RY	RELAY, SPDT, 15A, 24VDC	K1	QD-000024-QD	DIODE ZNR 6.2V 5% TESTED	Z 5
SW-000055-TS	55C THERMAL CUT-IN SWITCH	SW1	QD-000032-QD	XISTOR NPN TO-3 200V 16A	Q11-Q18
WC-0.5018-JW	.5" JUMPER, WHT., 18 GA, SOLID	W5,7	QD-000033-QD	XISTOR PNP TO-3 200V 16A	Q3-Q10
WC-0.6022-JW	.6" JUMPER, WHITE, 22 GA, SLD	W10,11	QD-000045-00	DIODE BRIDGE RECT DIP 200V 1A	B1,2
WC-001102-SQ	INSUL. SLEEVE QSC 1102,.6",CLR	REF:R56	QD-000056-10	XISTOR PNP TO-92 60V 0.5A	Q19,20
WC-001103-SQ	INSUL SLEEVE 1103,.875",CLEAR	REF:SW1	QD-000076-00	XISTOR NPN TO-220 250V	Q1A

USA 1310 Ch.2 Main Board Assembly (con't)

USA 1310 Chassis Assembly

Part Number	Description	Reference	Part Number	Description	Reference
QD-000077-00	XISTOR PNP TO-220 250V	Q2A	CH-006500-00	USA1310/SE650 FACEPLATE	
QD-000134-LR	LED RED T-1 3/4	LD2	CH-140210-BX	1400 KNOB FABRICATION	
QD-000134-LX	LED RED/GRN T-1 3/4	LD1	CH-170101-00	CHASSIS, SA/1700	
QD-0003.9-ZT	DIODE ZNR 3.9V TESTED	Z4	CH-170205-AX	1700 FAN SHROUD	
QD-0004.7-ZT	DIODE ZNR 4.7V TESTED	Z1	CO-000011-00	CONN DUAL 5-WAY BIND RD/BLK R	
QD-001340-LR	LED RED T-1 3/4 VOLTAGE REF	LD3	CO-000012-00	CONN DUAL 5-WAY BIND RD/BLK L	
QD-004004-DX	DIODE RECT DO41 400V 1A	D1,2,D7-13	LB-000052-00	LABEL, cUL APPROVAL	
QD-004744-ZA	DIODE ZNR 15V 5% 1W 1N4744A	Z2,3	LB-000136-00	LABEL, FACEPLATÉ UPR USA 1310	
QD-004753-ZT	DIODE ZNR 36V 5% 1W 1N4753A	Z6	LB-000138-00	LABEL, INPUT, USA 2 SERIES	
QD-004934-DX	DIODE RECT DO41 FAST 100V 1A	D5,6	LB-000144-00	LBL,FACEPLT LWR USA 1310 (DOM)	
QD-005402-DX	DIODE RECT DO27 200V 3A	D3,4	LB-140102-00	LABEL OUTPUT SLC	
QD-400400-BX	DIODE BRIDGE RECT 400V 40A	ВЗ	MS-000069-00	FAN ASSY, 1400	
RE04705-FW	RES WW 0.47 10% 3W	R33-48	NW-060400-HN	#6-32 X 1/4" HEX NUT	
RE56005-EM	RES MOFP 5.6 5% 2W	R13A	PL-000003-CP	AC CORD PROTECTOR	
		R26,12A,	PL-000008-SR	HEYCO SR-7P-2 STR. RELIEF 14/3	
RE-000009-PT	RES PTC 90C 0.1K MAX COLD	R56	SC-030000-SC	3mm x 8mm,P/P,TYPE 1,BLK. OX.	
RE-000050-NR	THERMISTOR NTC 50 OHM	R54	SC-060042-PP	#6-32 X 1/4" P/P BLACK,SEMS,IT	
RE-000100-NR	THERMISTOR NTC 20A CUR LIM	R57	SC-060081-PP	#6-32 X 1/2" P/P BLACK	
RE-001005-EM	RES MOFP 10 5% 2W	R27,28	SC-061041-SP	#6 X 1/4" "A" P/P W/SCRAPING	
RE-002205-DM	RES MOFP 22 5% 1W	R16,17	SC-081101-SP	#8-18 X 5/8", TYPE 1 P/P BLACK	
RE-004705-BC	RES CF 47 5% 1/4W	R55	SC-100061-PS	SCREW 10-32X3/8" BLK P/P SEMS	
RE-015005-BC	RES CF 150 5% 1/4W	R25	SW-000015-CB	15A. CIRCUIT BREAKER	
RE-033201-BM	RES MF 332 1% 1/4W	R7	SW-000016-SW	SPST SNAP IN POWER SWITCH	
RE-045010-HW	RES WW 450 10% 5W	R31	WC-000033-00	WIRE ASSY, 1.5", BLACK	
RE-068010-HW	RES WW 680 10% 5W	R49	WC-001038-BX	1038 AC CORD, 88", BLACK	
RE-110005-BC	RES CF 1K 5% 1/4W	R5,14,15	WC-001048-TQ	WIRE ASSY,BLACK,5.75" L.	
RE-115005-BC	RES CF 1.5K 5% 1/4W	R24	WC-003090-00	WIRE ASSY, 10"LG, (RED/YEL)	
RE-116201-BM	RES MF 1.62K 1% 1/4W	R32	WC-003091-00	WIRE ASSY, 7"LG, (WHT/BLU)	
RE-136001-00	RES MOFP 3.6K 5% 5W	R52,53	WP-001325-00	PCB ASSY,JCKPLN,USA 2 SERIES	
RE-147005-BC	RES CF 4.7K 5% 1/4W	R6	WP-170053-TD	1700 CHNL 1 DOM	
RE-175005-EM	RES MOFP 7.5K 5% 2W	R29	WP-170054-TD	1700 CHNL 2 DOM	
RE-210001-BM	RES MF 10.0K 1% 1/4W	R1-4	XF-001700-BX	XFMR P 1700 120/230V	
RE-210005-EM	RES MOFP 10K 5% 2W	R30		·	
RE-216501-CM	RES MF 16.5K 1% 1/2W	R51			
RE-221001-CM	RES MF 21.0K 1% 1/2W	R9			
RE-247005-CC	RES CF 47K 5% 1/2W	R21			
RE-275001-BM	RES MF 75.0K 1% 1/4W	R8			
RE-310005-BC	RES CF 100K 5% 1/4W	R22,23			
RE-333005-BC	RES CF 330K 5% 1/4W	R19,20			
SC-061041-SP	#6 X 1/4" "A" P/P W/SCRAPING	R56			
30-001041-37	#U X 1/4 X F/F W/SONALING	REF:SW1,			
SC DESOED DD	#6 X 5/16" "B" P/P ZINC	REF:Q3-Q18			
SC-062050-PP	,				
SW-000013-RY	RELAY, SPDT, 15A, 24VDC	K1			
SW-000055-TS	55C THERMAL CUT-IN SWITCH	SW1			
SW-000151-SW	SWITCH, SLIDE, SPDT	SW2			
WC-0.5018-JW	.5" JUMPER, WHT., 18 GA, SOLID	W5,7			
WC-001102-SQ	INSUL. SLEEVE QSC 1102,.6",CLR	REF:R56			
WC-001103-SQ	INSUL SLEEVE 1103,.875",CLEAR	REF:SW1			
WC-2.2522-JW	2.25" JUMPER, WHT, 22 GA, SLD	W10			
WC-2.5018-JW	2.5" JUMPER, WHT, 18 GA, SLD	W1			
XF-200014-CR	INDUCTOR 2UH 14AWG VERT MNT	L1			

USA Series Semiconductor Identification

DRIVER TRANSISTORS

MJE15032 NPN / MJE15033 PNP

POWER TRANSISTORS

MJ21194 NPN / MJ21193 PNP

OP-AMP

NE5532AN Dual Operational Amplifier

SMALL SIGNAL TRANSISTORS

2N4410 NPN / MPS8599 PNP

OP-AMP

MC33178P Dual Operational Amplifier

OP-AMP

LM13600 Dual Transconductance

USA900 Schematic

38

