Fundamentals of Materials Science Homework 11

Name: Xiao, Liyang Date: <u>03/17/2017</u> Student #: <u>15090215</u>

Homework Problems:

Problems 1 & 2

已知条件为 Ag 的密度和原子量分别为 9.5 g/cm³ 和 107.9 g/mol。计算 Ag 在这个温度段的空位形成能。

# of vacancies	at different temp. to
temp. (°c)	# of vacancies (ato
300	1.63×1019
400	1.04 ×1021
500	7.94× (v21
600	4.66×10 ²²
7.0	3.17× 1023
800	3.60 × 10 3
900	2.59 × 1024

Solution:

Atomic weight of Ag: 107.9g/mol

Density of Ag: 9.5g/cm³

$$\therefore \rho = \frac{NA}{VN_A} \therefore N = \frac{\rho V N_A}{A} = \frac{9.5 g / cm^3 \times 1 \times 10^6 cm^3 \times 6.02 \times 10^{23} atoms / mol}{107.9 g / mol} = 5.3 \times 10^{28}$$

$$\because N_V = N \exp \left(\frac{-Q_V}{KT} \right) \therefore \frac{N_D}{N} = \exp \left(\frac{-Q_D}{KT} \right) \therefore \ln \frac{N_D}{N} = \frac{-Q_D}{KT}$$

Fundamentals of Materials Science

Nv	Ln(N _V /N)	Temp/k	1/T/(1/k)
1.63×10^{19}	-21.90	573.15	1.74×10 ⁻³
1.04×10^{21}	-17.75	673.15	1.49×10 ⁻³
7.94×10^{21}	-15.71	773.15	1.29×10 ⁻³
4.66×10^{22}	-13.94	873.15	1.15×10 ⁻³
3.17×10^{23}	-12.03	973.15	1.03×10 ⁻³
3.60×10^{23}	-11.90	1073.15	9.32×10 ⁻⁴
2.59×10^{24}	-9.93	1173.15	8.52×10 ⁻⁴

y = -1.2757x + 0.7127

$$\therefore k_{l} = -\frac{Q_{V}}{K} = -12757 atom \cdot k; Q_{V} = 12757 atom \cdot k \times 1.38 \times 10^{-23} J / atom \cdot k = 1.76 \times 10^{-19} J$$

北京工业大学 2014 年硕士研究生入学考试试题

科目代码: 875 科目名称: 材料科学基础

4. 热激活过程通常可由 Arrhenius 方程来描述。令 E 为形成一个空位所需的能量,那么,能量超过平均能量可跃迁形成空位的原子数 n 与总原子数 N 之比为

$$C = \frac{n}{N} = Ae^{-\frac{E}{kT}}$$

式中 A 为比例常数, k 为玻尔兹曼常数, T 为绝对温度。一个实验室的研究生在实验记录本上系统地测量了 Ag 在不同温度下单位立方米空位的数量。请大家处理这些原始数据,计算一下 Ag 在这个温度段的空位形成能。已知条件为 Ag 的密度和原子量分别为 $9.5~g/cm^3$ 和 107.9~g/mol。详细描述运用已知条件和原始数据求解空位形成能的解题思路。(6~分)

t different temp.	# of vacancies
# of vacancies Co	temp. (°c)
1.63×1019	300
1.04 ×1021	4.0
7.94× (021	500
4.66×1022	600
2.17×1023	7.0
3.60 × 10 33	200
2.59 × 1024	900

Solution:

先用 temp 求出(1/T)的值。根据公式 $N=\frac{\rho V N_A}{A}$,求出 N 的值。画出 $\ln \frac{N_D}{N}$ (设为 y)和 1/T(设为 x)的图像,并求出趋势线。根据趋势线公式中斜率,利用 $k_l=-\frac{Q_V}{K}$ 求出 Qv。

Problems 3

请大家在作业截止提交前发一个微信朋友圈,里面包含对缺陷或者今天讲的点 缺陷的思考,不能只发知识本身,要表现出你对缺陷的一些深入的、甚至哲学 性的思考,或者和你学过的课程内容融会贯通的联系,可结合任何事情或应用, 要有创新性、趣味性、专业性,要有 2 张以上配图,地点也要有亮了的感觉。 提交作业请提交朋友圈内容本身及点赞和评论的截屏。

Solution:

Fundamentals of Materials Science

