4.0	$\frac{1}{s^2} \phi$	t₽	$\frac{Tz}{(z-1)^2}$	o o
5.	1 5 v	$\frac{t^2}{2}\varphi$	$\frac{T^2z(z+1)}{2(z-1)^3}$	<u>)</u> 2
60	$\frac{1}{s^{n+1}} $	$\frac{t^n}{n!} \varphi$	$\lim_{z\to 0} \frac{(-1)^s}{n!} \frac{\partial^s}{\partial a^s} (\frac{1}{2} a^s)$	$\frac{z}{z-e^{-sT}}$) e^{z}
7.0	$\frac{1}{s+a}$ e ³	e ^{-at} o	$\frac{z}{z - e^{-aT}}$	÷ 49
80	$\frac{1}{(s+a)^2} \circ$	te ^{−at} o	$\frac{Tze^{-aT}}{(z-e^{-aT})}$	₹ ²
90	$\frac{a}{s(s+a)}$	$1-e^{-at}\varphi$	$\frac{(1-e^{-\epsilon T})z}{(z-1)(z-e^{-\epsilon T})}$	***** *******************************
10		$e^{-at} - e^{-bt} \phi$	$\frac{z}{z - e^{-aT}} - \frac{z}{z - aT}$	47
114	$\frac{\omega}{s^2 + \omega^2} \varphi$	sin Ot o	$\frac{z \sin \omega T}{z^2 - 2z \cos \omega}$	47
12-	$\frac{s}{s^2 + \omega^2} \leftrightarrow$	cos ⊕t ₽	$\frac{z(z-\cos\omega)}{z^2-2z\cos\omega}$	$\frac{T}{T+1}$ ϕ
13.	$\frac{\omega}{(s+a)^2+\omega^2} \varphi$	$e^{-\alpha t}\sin\omega t$	$\frac{ze^{-aT}\sin\alpha}{z^2 - 2ze^{-aT}\cos\alpha}$	oT e
14	$\frac{s+a}{(s+a)^2+\omega^2} \varphi$	e ^{-at} cos <i>ωt</i> ₽	$\frac{z^2 - ze^{-aT} \cos \omega}{z^2 - 2ze^{-aT} \cos \omega}$	$\frac{s \omega T}{T + e^{-2sT}} e^{s}$
15	$\frac{1}{s - (1/T) \ln a} e^{s}$	$a^{tT}\varphi \qquad \qquad \frac{z}{z-\alpha}\varphi$		÷ 67% □ · · · · · · · · · · · · · · · · · ·
e-at		1 s+	<u>a</u>	$\frac{z}{z-e^{-aT}}$
te-at		(s+	1 a) ²	$\frac{zTe^{-aT}}{(z-e^{-aT})^2}$
$a^{t/T}$		<u>s</u> –	1 (1/T)lna	$\frac{z}{z-a} (a>0)$
sin@t			υ + ω²	$\frac{z\sin_{\theta}T}{z^2 - 2z\cos_{\theta}T + 1}$
cos⊕t		<u>s</u> -	- ω²	$\frac{z^2 - z\cos_{\theta}T}{z^2 - 2z\cos_{\theta}T + 1}$
$1 - e^{-at}$		<u> </u>	2 + a)	$\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$
e ^{-s} tsin@t		(s+	$\frac{\omega}{a)^2+\omega^2}$	$\frac{ze^{-at}\sin\omega T}{z^2-2ze^{-at}\cos\omega T+e^{-zaT}}$
$e^{-at}\cos\omega t$			$\frac{s+a}{a)^2+\omega^2}$	$\frac{z(z-e^{-aT}\cos\omega T)}{z^2-2ze^{-aT}\cos\omega T+e^{-2aT}}$