Exercise 1.3.9: (a) If $\sup A < \sup B$ then show that there exists an element $b \in B$ that is an upper bound for A.

(b) Give an example to show that this is not necessarily the case if we we only assume $\sup A \leq \sup B$.

Proof (a). Suppose $\sup A < \sup B$, and let $x = \sup A$ and $y = \sup B$. First consider σ such that $0 < \sigma < y - x$, and therefore through algebra, $x < y - \sigma$. By Lemma 1.3.8, we know that $y = \sup B$ then there exists some $b \in B$ such that $y - \sigma < b$. Thus,

$$x < y - \sigma < b < y$$
.

Since x is an upper bound for A and $x \le b$ then we know that b is also an upper bound for A.

Example for (b): When we assume $supA \le supB$, consider A = [0, 2] and B = [0, 2). In this case supA = supB and since any $x \in \mathbb{R}$ such that $0 \le x < 2$ is also in A.

Exercise 1.3.11: Decide if the following statements are true. Give a short proof for the true statements and a counterexample for the false statements.

a. If A and B are nonempty, bounded, and satisfy $A \subseteq B$ then $\sup A \le \sup B$.

Solution: (True) Suppose A and B are nonempty, bounded, and satisfy $A \subseteq B$. Consider $a \in A$, and note that since $A \subseteq B$ we know that $a \in B$. Note that by definition of upper bound we know that $a \le \sup B$ and therefore $\sup B$ is an upper bound for the set A. Since $\sup A$ is the least upper bound for the set A we get $\sup A \le \sup B$. \square

b. If $\sup A < \inf B$ for sets A and B, then there exists $c \in \mathbb{R}$ such that a < c < b for all $a \in A$ and $b \in B$.

Solution: (True) Suppose $\sup A < \inf B$ for sets A and B. Now consider $c \in \mathbb{R}$ such that,

$$c = \frac{\sup A + \inf B}{2}$$

Note that this produces the following inequality,

$$\sup A < c < \inf B$$
.

Therefore by definition we get that for all $a \in A$ and $b \in B$,

$$a < c < b$$
.

c. If there exists $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$ then $\sup A < \inf B$.

Solution: (False) Let $A = x \in \mathbb{R}$; x < 1 and $B = x \in \mathbb{R}$; x > 1. Note that c = 1 satisfies the inequality a < c < b, for all $a \in A$ and $b \in B$, while clearly $\sup A = \inf B = 1$.

Exercise First Edition 1.4.1: Recall that I stands for the set of irrational numbers.

a. Show that if $a, b \in \mathbb{Q}$ then ab and $a + b \in \mathbb{Q}$ as well.

Proof: Suppose that $a, b \in \mathbb{Q}$. By definition we know that $a = \frac{i}{j}$ and $b = \frac{n}{m}$ where $i, n \in \mathbb{Z}$ and $j, m \in \mathbb{Z}^*$. Consider the following,

$$ab = \frac{i}{j}\frac{n}{m} = \frac{in}{jm}$$

Note that, $in \in \mathbb{Z}$ and $jm \in \mathbb{Z}^*$. Therefore, by definition, $ab \in \mathbb{Q}$. Now consider,

$$a+b=\frac{i}{j}+\frac{n}{m}=\frac{mi+jn}{jm}$$

Note that, $mi + jn \in \mathbb{Z}$ and $jm \in \mathbb{Z}^*$. Therefore, by definition, $a + b \in \mathbb{Q}$.

b. Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a + t \in \mathbb{I}$ and if $a \neq 0$ then $at \in \mathbb{I}$ as well.

Math 401: Homework 2

Proof: Let $a \in \mathbb{Q}$ such that $a = \frac{i}{j}$ where $i, j \in \mathbb{Z}$ and $j \neq 0$. Also let $t \in \mathbb{I}$. Now suppose for the contrary that both $a + t \in \mathbb{Q}$. Note,

$$a+t=\frac{i}{j}+t=\frac{n}{m},$$

for some $n, m \in \mathbb{Z}$ where $m \neq 0$. Through algebra we get that,

$$\frac{i}{j} + t = \frac{n}{m},$$

$$t = \frac{n}{m} - \frac{i}{j},$$

$$= \frac{jn - mi}{jm}.$$

Note that, $jn - mi \in \mathbb{Z}$ and $jm \neq 0$. Therefore $t \in \mathbb{I}$ and $t \notin \mathbb{I}$. Now suppose for the contrary that $t \in \mathbb{Q}$. Note,

$$at = \frac{i}{j}t = \frac{n}{m},$$

for some $n, m \in \mathbb{Z}$ where $m \neq 0$. Through algebra we get that,

$$\frac{i}{j}t = \frac{n}{m}$$

$$t = \frac{n}{m}\frac{j}{i}$$

$$= \frac{nj}{mi}$$

Note that, $nj, mi \in \mathbb{Z}$ and $mi \neq 0$. Therefore $t \in \mathbb{I}$ and $t \notin \mathbb{I}$.

c. Part (a) says that the rational numbers are closed under multiplication and addition. What can be said about st and s + t when $s, t \in \mathbb{I}$?

Proof: We can show that the irrational numbers are not closed with respect to addition and multiplication. For a counterexample let $s = \sqrt{2}$ and $t = -\sqrt{2}$. Note that s + t = 0 which is rational, and st = -2 which is again a rational number.

Exercise First Edition 1.4.2: Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Let $s \in \mathbb{R}$ have the property that for all $n \in \mathbb{N}$, s + (1/n) is an upper bound for A but s - (1/n) is not an upper bound for A. Show that $s = \sup A$.

Proof: Let $A \subseteq \mathbb{R}$ be nonempty and bounded above also let $s \in \mathbb{R}$ have the property such that for all $n \in \mathbb{N}$, s + (1/n) is an upper bound for A but s - (1/n) is not an upper

bound for A. Now suppose to the contrary that there exists $x \in A$ such that x > s. From the Archimedean Property we get that there exists an $n \in \mathbb{N}$ such that $\frac{1}{n} < x - s$. Note,

$$\frac{1}{n} < x - a$$

$$s + \frac{1}{n} < x$$

We have shown that $s + \frac{1}{n}$ is both an upper bound and not an upper bound, and thus by contradiction we have proven that for all $x \in A$, $x \le s$.

Suppose to the contrary that there exists some upper bound of A, t such that t < s. From the Archimedean Property we get that there exists an $n \in \mathbb{N}$ such that $\frac{1}{n} < s - t$. Note,

$$\frac{1}{n} < s - t$$
$$t < s - \frac{1}{n}$$

We have shown that $s - \frac{1}{n}$ is both an upper bound and not an upper bound, and thus by contradiction we have proven that for all upper bounds t of A, $s \le t$

Exercise First Edition 1.4.3: Show that $\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset$.

Proof: Suppose $A_n = (0, \frac{1}{n})$ and $A = \bigcap_{n=1}^{\infty} A_n$. Suppose there exists some $x \in A$. Note that by the definition of $A_1 = (0, 1)$, it is the case that x > 0. Recall that by the Archimedean Property we know that if x > 0, there exists an $m \in \mathbb{N}$ which satisfies,

$$\frac{1}{m} < x$$
.

Therefore we know that for all $n \ge m$, $x \notin A_n$ and therefore $x \notin A$.

Exercise First Edition 1.4.4: Let a < b be real numbers and let $T = [a, b] \cap \mathbb{Q}$. Show that $\sup T = b$.

Math 401: Homework 2

Proof: Suppose $x \in T$. Note by the definition of T, $x \le b$ and thus b is an upper bound.

Suppose to the contrary that there exists an upper bound, u for the set T such that u < b. Recall that the Density of $\mathbb Q$ in $\mathbb R$ shows us that between the two real numbers u and b there exists a rational number r such that u < r < b. By definition $r \in T$ and therefore u is not an upper bound. Thus we have shown that all upper bounds u, of T satisfy $b \le u$ and tha $\sup A = b$.

Exercise First Edition 1.4.5: Use Exercise 1.4.1 to provide a proof of Corollary 1.4.4 (Density of Rational Numbers) by considering real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$.

Proof: Suppose that $a, b \in \mathbb{R}$ and that a < b. Consider the real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$. Note that by the Density of Rational Numbers Theorem we know that there exists $x \in \mathbb{Q}$ such that,

$$a - \sqrt{2} < x < b - \sqrt{2}$$
.

Through algebra we get,

$$a < x + \sqrt{2} < b$$
.

Note that by Exercise 1.4.1 we know that $t = x + \sqrt{2} \in \mathbb{I}$. Thus there exist an irrational number t satisfying a < t < b.