- 1. Prove that an angle inscribed in a semicircle is a right angle using vector analysis.
- 2. A field is expressed in spherical coordinates by $\mathbf{E} = \mathbf{a_R}(25/R^2)$.
 - a) Find $|\mathbf{E}|$ and E_x at the point P(-3, 4, -5).
 - b) Find the angle that **E** makes with the vector $\mathbf{B} = \mathbf{a_x} 2 \mathbf{a_v} 2 + \mathbf{a_z}$ at point P.
- 3. Given a vector function $\mathbf{E} = \mathbf{a_x}y + \mathbf{a_y}x$, evaluate the scalar line integral $\int \mathbf{E} \cdot dl$ from $P_1(2, 1, -1)$ to $P_2(8, 2, -1)$
 - a) along the parabola $x = 2y^2$,
 - b) along the straight line joining the two points.

Is this **E** a conservative field?

- 4. Find the divergence of the following radial vector fields:
 - a) $f_1(\mathbf{R}) = \mathbf{a}_{\mathbf{R}} R^n$,
 - b) $f_2(\mathbf{R}) = \mathbf{a}_{\mathbf{R}} \frac{k}{R^2}$.
- 5. For vector function $\mathbf{A} = \mathbf{a_r} r^2 + \mathbf{a_z} 2z$, verify the divergence theorem for the circular cylindrical region enclosed by r = 5, z = 0, and z = 4.
- 6. For two differentiable vector functions **E** and **H**, prove that

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) = \mathbf{H} \cdot (\nabla \times \mathbf{E}) - \mathbf{E} \cdot (\nabla \times \mathbf{H}).$$

7. Use the definition

$$(\nabla \times \mathbf{A})_u = \mathbf{a_u} \cdot (\nabla \times \mathbf{A}) = \lim_{\Delta s_u \to 0} \frac{1}{\Delta s_u} (\oint_{C_u} \mathbf{A} \cdot dl)$$

to derive the expression of the $\mathbf{a_R}$ component of $\nabla \times \mathbf{A}$ in spherical coordinates for a vector field $\mathbf{A} = \mathbf{a_R} A_R + \mathbf{a_{\theta}} A_{\theta} + \mathbf{a_{\phi}} A_{\phi}$.

- 8. Given a vector function $\mathbf{F} = \mathbf{a}_{\mathbf{x}}(x + c_1 z) + \mathbf{a}_{\mathbf{y}}(c_2 x 3z) + \mathbf{a}_{\mathbf{z}}(x + c_3 y + c_4 z)$.
 - a) Determine the constants c_1 , c_2 , and c_3 if **F** is irrotational.
 - b) Determine the constant c_4 if **F** is also solenoidal.
 - c) Determine the scalar potential function V whose negative gradient equals \mathbf{F} .