Ch 7.1-7.2: Polynomial regression and Step Functions Lecture 22 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

:: Dept of Computational Mathematics, Science & Engineering

Weds, Nov 1, 2023

Announcements

Last time:

- PLS
- High dimensions

This lecture:

- 7.1 Polynomial regression
- 7.2 Step functions

Announcements:

 \bullet HW #6 due Monday

Dr. Munch (MSU-CMSE)

Section 1

Last time

High-Dimensional Data

Low-Dimensions

$$n \gg p$$

- Low here means p is low, or at least small relative to n
- Can do all the stuff we've talked about so far

High-Dimensions

$$n \ll p$$

- Issues show up even if p is close to or slightly smaller than n
- Classical approaches not appropriate since lots of overfitting

4/18

What to do about it?

Be less flexible....

Key points

- regularization or shrinkage plays a key role in high-dimensional problems,
- appropriate tuning parameter selection is crucial for good predictive performance, and
- the test error tends to increase as the dimensionality of the problem increases, unless the additional features are truly associated with the response.

- Curse of dimensionality
- Report results on an independent test set, or cross-validation errors.

5 / 18

Or. Munch (MSU-CMSE) Weds, Nov 1, 2023

Section 2

Polynomial Regression

Polynomial regression

Replace linear model

$$y_i = \beta_0 + \beta_1 x_1 + \varepsilon_i$$

with

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \varepsilon_i$$

Dr. Munch (MSU-CMSE)

Coding bit

wage =
$$\beta_0 + \beta_1$$
age + β_2 age² + \cdots + β_p age^p + ε .

Example with wage data

Section 3

Step function

r. Munch (MSU-CMSE) Weds, Nov 1, 2023

Step functions

$$I(X < c)$$
 $I(c_1 \le X < c_2)$ $I(c \le X)$

More on step function setup

$$C_0(X) = I(X < c_1),$$

$$C_1(X) = I(c_1 \le X < c_2),$$

$$C_2(X) = I(c_2 \le X < c_3),$$

$$\vdots$$

$$C_{K-1}(X) = I(c_{K-1} \le X < c_K),$$

$$C_K(X) = I(c_K \le X),$$

r. Munch (MSU-CMSE) Weds, Nov 1, 2023

Example

Given knots $c_1 = 3$, $c_2 = 5$, $c_3 = 7$, determine the entries in the columns for $C_i(X)$ in the below matrix.

Х	$C_0(X)$	$C_1(X)$	$C_2(X)$	$C_3(X)$
1				
2				
3				
4				
5				

Х	$C_0(X)$	$C_1(X)$	$C_2(X)$	$C_3(X)$
6				
7				
8				
9				
10				

Draw the function

My code doing regression on the step function input returned the function.

$$f(X) = -1 + 3C_1(X) + 4C_2(X) - 2C_3(X).$$

Fill in the table of values, then draw this function below.

Х	F(X)	X	F(X)	-5					
1		6		- 4					
2		7		-3					
3		8		-1					
1		9		0	1 2 3 4	6 6 7	8 9	10	1/1
4		9		-1					
5		10		-2					
				-3					

Dr. Munch (MSU-CMSE)

Step function: Learned model

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \cdots + \beta_K C_K(x_i) + \varepsilon_i$$

r. Munch (MSU-CMSE) Weds, Nov 1, 2023

Coding bit

Back to the wage data set

Dr. Munch (MSU-CMSE) Weds, Nov 1, 2023

Step function example

Next time

Lec#	# Date		# Date		Reading	Homeworks	
20	Fri	Oct 27	Dimension Reduction	6.3			
21	Mon	Oct 30	More dimension reduction; High dimensions	6.4			
22	Wed	Nov 1	Polynomial & Step Functions	7.1,7.2			
23	Fri	Nov 3	Step Functions	7.2	HW #6 Due		
24	Mon	Nov 6	Basis functions, Regression Splines	7.3,7.4			
25	Wed	Nov 8	Decision Trees	8.1			
26	Fri	Nov 10	Random Forests	8.2.1, 8.2.2			
27	Mon	Nov 13	Maximal Margin Classifier	9.1			
28	Wed	Nov 15	SVC	9.2			
29	Fri	Nov 17	SVM	9.3, 9.4			
30	Mon	Nov 20	Single layer NN	10.1			
31	Wed	Nov 22	Overflow/project day?				
	Fri	Nov 24	No class - Thanksgiving				
	Mon	Nov 27	Review				
	Wed	Nov 29	Midterm #3				
32	Fri	Dec 1	Multi Layer NN	10.2			
33	Mon	Dec 4	CNN	10.3			
34	Wed	Dec 6	Unsupervised Learning & Clustering	12.1, 12.4			
35	Fri	Dec 8	Overflow/Project day?		Project due		

Or. Munch (MSU-CMSE) Weds, Nov 1, 2023