程式設計(109-1) 作業九

作業設計:孔令傑 國立臺灣大學資訊管理學系

繳交作業時,請至 PDOGS (http://pdogs.ntu.im/judge/)為三題各上傳一份 C++ 原始碼(以複製貼上原始碼的方式上傳)。每位學生都要上傳自己寫的解答。不接受紙本繳交;不接受遲交。請以英文或中文作答。

這份作業的截止時間是 **12** 月 **29** 日早上八點。在你開始前,請閱讀課本的第 22.1–22.6 節與第 9–10 章 1 。為這份作業設計測試資料並且提供解答的助教是吳琦艾跟鄭亦辰。

第一題

 $(20\ \mathcal{G})$ 承作業八,本題一樣要進行撲克牌遊戲。場上共有四位玩家,每位玩家各有五張牌且皆不重複,請隨機將兩玩家組隊,並從十張牌中選出五張,目標依舊為最大化得分。舉例來說,若四位玩家的牌型分別為 $\{SA, S2, S3, H4, S5\}$ 、 $\{SK, D7, CK, S4, S8\}$ 、 $\{DJ, DQ, DK, DA, D2\}$ 、 $\{HQ, HK, HA, H2, H3\}$,假設我們將玩家一和二組成一隊,即可從 $\{SA, S2, S3, H4, S5, SK, D7, CK, S4, S8\}$ 中任選五張以最大化得分,以此例我們會選擇 $\{SA, S2, S3, S4, S5\}$ 這五張牌,得分為 100。請依上述方式組合任意兩位玩家,並找出最高得分。

本題要求你實作 class 而非 structure,如無意外,應該會有 Card 和 Deck 這兩個 class。以下有幾點設計需要考慮。首先,請視情況將類別成員(變數或函數)設定為 private 或 public,原則是針對不希望隨意被更改或呼叫的變數或函數,請用 private 將它保護起來;第二個為 getter 和 setter 的設置,需自行權衡是否會與 private 的設置相衝突,你應該為有其需要的私有成員變數設置 getter 或 setter,但不應該幫每一個私有成員變數都把 getter 和 setter 全寫出來;第三個為 constructor 和 destructor 的設置,可自行設計並決定 constructor 的數量和其傳入參數的種類(例如是否要有 default constructor、是否要有帶參數的 constructor)、是否要有 destructor。

輸入輸出格式

系統會提供數組測試資料,每組測試資料裝在一個檔案裡。檔案的輸入格式和作業八第二題一模一樣。 讀入輸入資料後,請根據上述規則,找出哪兩位玩家組隊後的五張牌可以得到最高分,並輸出一個正整 數代表該分數。

舉例來說,如果輸入是

SA, S2, S3, H4, S5

SK, D7, CK, S4, S8

DJ, DQ, DK, DA, D2

HQ, HK, HA, H2, H3

則輸出應該是

 $^{^1}$ 課本是 Deitel and Deitel 著的 $\mathit{C++}$ How to Program: Late Objects Version 第七版。

100

如果輸入是

SA,S2,D2,S4,S5 SK,S7,S8,SQ,SJ DJ,CQ,DK,DA,C2 HK,HA,H2,H9,C4

則輸出應該是

40

你上傳的原始碼裡應該包含什麼

你的.cpp 原始碼檔案裡面應該包含讀取測試資料、做運算,以及輸出答案的 C++ 程式碼。當然,你應該寫適當的註解。針對這個題目,你**可以**使用任何方法。

評分原則

這一題的 20 分會根據程式運算的正確性給分。PDOGS 會直譯並執行你的程式、輸入測試資料,並檢查輸出的答案的正確性。一筆測試資料佔 2 分。

第二題

(40 分)現在我們要來玩一個撲克牌接龍遊戲,讓玩家把獲得的一疊撲克牌按照指定規則,盡可能地分成依花色區隔、依點數順序由小到大排好的四堆牌,然後計算被放入四個牌堆的總牌數。

規則大致如下。首先玩家會拿到一疊撲克牌,這疊牌的數量不固定,但確定沒有重複的牌。一開始桌面上無任何撲克牌,玩家每次翻開牌堆最上方的一張牌,就查看桌面上是否有可以接續此牌的牌堆,若有就放入那個牌堆接續,沒有就捨棄。由於四個花色會分開接續,因此一開始玩家應先以黑桃 A、紅心 A、方塊 A 和梅花 A 為目標,翻開的牌若非這四張,即可捨棄;若是其一,則可以放在桌面上,開始該花色的接龍,讓點數為二的同花色牌可以接在它後面,依此類推。最後整副撲克牌依上述規則翻開並各判斷一次後,我們會計算每種花色在桌面上的數量,並依黑桃、紅心、方塊、梅花的順序輸出該牌堆的牌數。

舉例來說,現有一副牌,依序分別為梅花 6、梅花 2、紅心 A、方塊 10、紅心 2、方塊 2、方塊 A、方塊 3,則玩家首先翻開第一張牌,發現梅花 6 無處可放(因為桌面上沒有梅花 5),則選擇丟棄;接著玩家翻開第二張梅花 2,由於梅花 2 也無處可放(因為桌面上沒有梅花 A),因此也丟棄;到了第三張,玩家翻開發現為紅心 A,便可以放在桌面作為「紅心」此花色的龍頭,換言之,現在玩家期待的牌型更新為黑桃 A、紅心 2、方塊 A 與梅花 A 了。按此規則,後面的方塊 10 和方塊 3 會被丟棄,而紅心 2 和方塊 A 會留在桌面。請注意雖然方塊 2 可以接在方塊 A 後面,但因為方塊 2 被翻開時方塊 A 還沒出現,因此方塊 2 只能被丟棄。結束後,計算各花色牌數,我們可以得到黑桃 0 張,紅心 2 張,方塊 1 張,梅花 0 張,因此輸出 $0 \cdot 2 \cdot 1 \cdot 0$ 。

本題請利用前一題實做的 class Card,再實作一個 class CardStack,用來按照此題規則存放一疊撲克牌的花色和數字。在之前我們曾經實作過一個 class Deck,用來存放每位玩家的手牌,大家可以以此為參考,試著調整並設計出這次的 class CardStack。

輸入輸出格式

系統會提供數組測試資料,每組測試資料裝在一個檔案裡。每個檔案中會有一行,為一個字串,分別是第一張牌的花色、點數,第二張牌的花色、點數,直到第n 張牌的花色、點數,兩兩中間以一個逗號隔開。每筆測資的n 不固定, $1 \le n \le 52$ 。其中花色字元是 $S \cdot H \cdot D \cdot C$ 其中之一,點數字元則是 $A \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot J \cdot Q \cdot K \cdot n$ 張牌不會重複。請根據上述規則,讀入一疊撲克牌後進行接龍遊戲,並計算各花色留在桌面上的數量,並依規則輸出四個整數,兩兩以一個逗號隔開。

舉例來說,如果輸入是

C6, C2, HA, D10, H2, D2, DA, D3

則輸出應該是

0,2,1,0

如果輸入是

S7, SA, CA, C2, C3, S6, S2, H5, C4, DA

則輸出應該是

2,0,1,4

你上傳的原始碼裡應該包含什麼

你的.cpp 原始碼檔案裡面應該包含讀取測試資料、做運算,以及輸出答案的 C++ 程式碼。當然,你應該寫適當的註解。針對這個題目,你**不可以**使用上課沒有教過的方法。

評分原則

- 這一題的其中 20 分會根據程式運算的正確性給分。PDOGS 會編譯並執行你的程式、輸入測試資料,並檢查輸出的答案的正確性。一筆測試資料佔 2 分。
- 這一題的其中 20 分會根據你所寫的程式的品質來給分。助教會打開你的程式碼並檢閱你的程式的 運算邏輯、可讀性,以及可擴充性(順便檢查你有沒有使用上課沒教過的語法,並且抓抓抄襲)。 請寫一個「好」的程式吧!

除此之外,你**必須**實做題目指定的 class ,並考慮相關設計,利用這些東西來完成運算。若你沒有這麼做,「程式的品質」部份將被扣分。

第三題

 $(40\ \mathcal{G})$ 經濟學上有一個概念叫做帕累托效率(pareto efficiency),給定多個目標,不同的選項在各目標上會有不同的達成程度,而在帕累托前緣(pareto frontier)上的任何一點(任何一種選項) 2 ,代表沒有任何另一個選項會在各目標上同時優於這個選項。

舉例來說,假設現在我們要選擇一種交通方式前往某處,我們既希望時間盡量少,也希望花費盡量少,而這些選項中包括了腳踏車、計程車、公車與走路,每種選項皆有各自的花費時間和成本。我們估算了各種選項的所需時間與成本,並在二維平面上表示這些選項,如圖 1 所示。我們可以看到,對於計程車、腳踏車和走路這三種選項的任意一種,並沒有任何另一種選項同時在時間和成本花費上少於它,因此藍色的線條代表帕累托前緣,而這三種選項都在此前緣上;反之,由於腳踏車這個選項比公車這個選項花費時間和成本皆較少(可能剛好這個人要去的地方搭公車不太方便),所以公車並不在帕累托前緣上。

圖 1: 帕累托前緣舉例示意圖 1

本題會給定 n 個候選選項 x_1 到 x_n ,以及 m 個目標,各目標數值皆為越小越好。第 i 個選項在 m 個目標上的數值分別為 $x_{i,1}$ 、 $x_{i,2}$,直到 x_{im} 。給定兩個選項 x_i 和 x_j ,若 x_i 在各目標上表現皆優於或等於 x_i 在各目標上的表現,且至少有其中一個目標 x_i 表現優於 x_j ,也就是

$$x_{it} \leq x_{it} \quad \forall t = 1, 2, ..., m$$

且存在至少一個 to 使得

$$x_{i,t_0} < x_{j,t_0}$$
,

則我們說 x_i 「優於」 $(dominate) x_j$ 。給定 n 個選項,請實作一個 class Option,去記錄各選項的編號以及在各目標上的數值,以及一個成員函式

bool Option::isDominating(Option b)

傳入另一個選項,判斷呼叫此函數的選項是否優於傳入的選項,以及另一個函式

²更精確的定義在下一段提供。

bool Option::isBefore(Option b)

傳入另一個選項,判斷呼叫此函數的編號是否小於傳入的選項的編號。請利用這個 class 找出所有在帕累托前緣上的選項,並根據選項之編號由小到大依序輸出各選項在各目標上的數字。

舉例來說,若給定 n=4,m=2,選項一到四在兩目標上的數字分別為 (2,2)、(1,5)、(4,3)、(5,1)(在二維平面上圖示如圖 2),則在帕累托前緣上的選項為編號 1、2 和 4,因此依序輸出 (2,2)、(1,5)、(5,1)。

圖 2: 帕累托前緣舉例示意圖 2

輸入輸出格式

系統會提供數組測試資料,每組測試資料裝在一個檔案裡。每個檔案中會有 n+1 行,第一行有兩個數字 n+1 何,第一行有兩個數字 n+1 何,第一日標數量,其中 $1 \le n \le 100$, $1 \le m \le 10$ 。第二到第 n+1 行各有 m+1 個數字,在第 i+1 行中,第一個數字為該選項編號 i,第二到 m+1 的第 t+1 個數字為該選項 在各目標上的數字 x_{it} ,其中 $0 \le x_{it} \le 1000$,各數字間兩兩以一個空白隔開。請根據上述規則,找出在 帕累托前緣上的選項,並依照編號由小到大,依序輸出這些選項在各目標式的值,目標式之間以一個逗點隔開,選項之間以一個分號隔開。

舉例來說,如果輸入是

```
4 2
4 5 1
1 2 2
3 4 3
2 1 5
```

則輸出應該是

```
2,2;1,5;5,1
```

如果輸入是

```
      5
      4

      1
      2
      3
      1
      2

      4
      0
      5
      0
      1

      3
      0
      0
      0
      2

      2
      7
      9
      8
      1

      5
      10
      12
      9
      7
```

則輸出應該是

```
0,0,0,2;0,5,0,1
```

你上傳的原始碼裡應該包含什麼

你的.cpp 原始碼檔案裡面應該包含讀取測試資料、做運算,以及輸出答案的 C++ 程式碼。當然,你應該寫適當的註解。針對這個題目,你**可以**使用任何方法。

評分原則

這一題的 40 分會根據程式運算的正確性給分。PDOGS 會直譯並執行你的程式、輸入測試資料,並檢查輸出的答案的正確性。一筆測試資料佔 2 分。