四子棋实验报告

2017011620 计 73 李家昊 2019 年 5 月 13 日

1 算法基本思路

该实验中采用蒙特卡洛树搜索(Monte Carlo tree search, MCTS)与信心上限树(Upper Confidence Trees, UCT)相结合的算法。标准 MCTS 算法主要分为 Tree Policy, Default Policy, Back Up 三个部分,算法流程如下:

Algorithm 1 General MCTS Algorithm

- 1: **function** MCTSSEARCH (s_0)
- 2: create root node v_0 with state s_0
- 3: while within computational budget do
- 4: $v_l \leftarrow \text{TreePolicy}(v_0)$
- 5: $\Delta \leftarrow \text{DefaultPolicy}(s(v_l))$
- 6: BACKUP (v_l, Δ)
- 7: **return** $a(BESTCHILD(v_0))$

1.1 Tree Policy

这一部分完成 MCT 上结点的扩展。若结点未扩展完全,则优先扩展未扩展的结点,并返回;否则,选择 UCB 值最高的孩子,循环上一操作。

每个结点的 UCB 值定义如下:

$$UCB = \frac{Q}{N} + c \cdot \sqrt{\frac{2 \ln N_p}{N}}$$

其中 Q 为该节点赢的次数,N 为该节点的访问次数, N_p 为父亲结点的访问次数。c 为超参数,用于调节 exploitation 和 exploration,具体调参实验见下文。

1.2 Default Policy (Rollout)

这一部分进行随机模拟。从新拓展的结点开始,双方循环随机落子,直到游戏结束。双方决出胜负,或者平局,计算得到 reward,记为 Δ 。

1.3 Backup

向上更新自身及父代的 Q 值,对每个父代结点,访问次数 N 增 1,并用 终局的 reward 更新其 Q 值,获胜方给予正 reward,失败方给予负 reward,即

$$Q' = \begin{cases} Q + \Delta, & \text{if won} \\ Q - \Delta, & \text{if lost} \\ Q, & \text{if tied} \end{cases}$$

2 算法优化

2.1 必胜剪枝

实现随机的 MCTS 算法后,发现超过两步的必胜走法很难预测出来,于是考虑剪枝。

正常人下棋时,只要下一步能赢,就必定会落到能赢的位置,而不会考虑其他位置,我们称这种局面为"必胜局面"。

于是考虑剪枝:在下一步能够赢的时候,将赢棋的落子位置设为合法,其他位置设为非法,这样一来,只要出现"必胜局面",无论在 Tree Policy 还是在 Default Policy 过程中,必定只有一种走法,从而实现剪枝,剪枝数量为 N-1,原本在这 N-1 条枝干上,由于 MCTS 的随机性,可能存在非常多的结点。

2.2 必败剪枝的尝试

同样的,当对方下一步要赢的时候,将阻碍对方赢的落子位置设为合法,其他位置设为非法。

但由于有必胜剪枝,即使不进行必败剪枝,若 MCTS 扩展出其他位置,那么对方下一步必定会选择必胜策略,虽然必败剪枝数量也达到 N-1,但 真正剪掉的结点只有 2N-2。这一改进可看似合理,实际上意义不大。

2.3 其他剪枝的尝试

尝试进一步优化,比如当我方走某一步棋时,对方下一步将要赢棋,那么就不走这一步。这么做同样意义不大,因为若走了这一步,对方下一步必走必胜策略,剪枝数量仅为 1,剪掉结点数量仅为 2。

2.4 Discount Factor

人们总是希望在最短的时间内赢棋,在 MCTS 中同理,越深的结点对根节点的胜率贡献越小。

因此,在 Backup 过程中,从初始结点开始,将赢棋的 reward 初始化为 1,每次向上更新父亲的 Q 值时,将 reward 乘上一个衰减系数(Discount Factor),记为 λ ,再更新父亲的 Q 值。这里取 $\lambda=0.99$ 。即对于每个结点,若其高度为 h,则更新的 Q 值大小为

$$|\Delta Q| = \lambda^h$$

优化后,运行效率基本不变,但棋力有了轻微的提升。

2.5 棋盘和 top 数组的共享化

一开始在每个 Node 中都独立存储了一个棋盘和 top 数组,这样做空间消耗极大,且运行效率极低。

考虑到每次沿着 MCT 遍历的时候,棋盘和 top 数组的更新是局部的:从父亲到孩子,只需要在棋盘中增加孩子的落子,并更新 top 数组这一列的值即可;从孩子到父亲,只需要在棋盘中去掉孩子的落子,并更新 top 数

组这一列的值即可。因此将 board 和 top 数组定义为全局共享的,每次迭代时对其进行局部更新,降低了空间消耗,提高了运行效率。

2.6 预先分配内存

new 和 delete 开销非常大,经测试,每次 delete 1M 个结点,消耗时间约为 200ms。为避免 new 和 delete 的开销,在程序开始时,我预先分配了内存池,定义了 5M 个结点的静态数组,在程序运行过程中,不再使用 new 和 delete 操作。

2.7 MCT 的复用

在预先分配内存池中有 5M 个结点,一次落子的搜索必然用不完,若 全部清理,则造成浪费,因此可以考虑 MCT 的复用。

每次初始化时,可以根据自己上一步的落子,以及对方上一步的落子 (lastX, lastY),可以在先前建立的 MCT 中,找到以当前状态为根的一颗子 树,这样就省去了再次建树的操作,并且很多结点都被保留下来,在效果上相当于隐性的增加了迭代次数。

若初始化时,内存池预留的结点不足 1M,则会将内存池清空,并以当前状态为根节点,重新建立 MCT。

2.8 重复状态的消除

MCT 上结点的 State 有很多都是重复的,事实上,只要每一列双方落子的顺序相同,则必然产生重复的 State,这种重复造成了大量的内存开销以及效率开销。

于是采用高效的哈希函数,将 State 映射到哈希表上,每次扩展新结点时,若节点的 State 已在哈希表中出现过,则不再扩展新结点,而是直接沿用旧结点,这样一来,成百上千重复结点的 Q 值和 N 值被综合到一起,在效果上相当于隐性地增加了搜索次数。

2.9 最后的优化

最后的优化就是把上述所有剪枝、Discount Factor、哈希表、MCT 结点复用全部去掉,此时棋力达到顶峰。由此得出难以解释但被实验证实的结论:几乎所有的优化都是劣化,不做任何剪枝的 AI 反而是最优的,即原生 MCTS + UCT 的随机策略反而是最聪明的。

3 调整参数

UCB 算法中,c 值需要根据实际情况而定,这里进行了调参实验。考虑到 100.dll 经常 timeout,无法反映其真实水平,于是这里令 AI 在不同的 c 值下与 98.dll 对战 50 局(先后手分别 25 局),首先进行粗调,胜率如下表所示:

c	0.6	0.7	0.8	0.9
Win	78%	92%	88%	86%

表 1: 不同 c 值下对战 98.dll 的胜率

可以看出,最优 c 值应处于 0.6-0.8 之间,下面进行细调。

c	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74	0.76	0.78	0.80
Win	78%	82%	80%	84%	92%	92%	92%	86%	90%	84%	88%

表 2: 不同 c 值下对战 98.dll 的胜率

由表可知,当 c 在 0.7 附近时,胜率最高,符合论文建议的最优值,最终取 $c=1/\sqrt{2}$ 。

4 评测结果

设置迭代时间为 2.5 s, 迭代次数平均为 1M 次。与所有测例分别对战 50 局(先后手分别 25 局), 胜率如下:

AI	Winning Rate	AI	Winning Rate	AI	Winning Rate
2.dll	100%	36.dll	100%	70.dll	100%
4.dll	100%	38.dll	100%	72.dll	96%
6.dll	100%	40.dll	100%	74.dll	98%
8.dll	100%	42.dll	100%	76.dll	98%
10.dll	100%	44.dll	100%	78.dll	100%
12.dll	100%	46.dll	98%	80.dll	96%
14.dll	100%	48.dll	100%	82.dll	98%
16.dll	100%	50.dll	100%	84.dll	92%
18.dll	100%	52.dll	98%	86.dll	98%
20.dll	100%	54.dll	100%	88.dll	94%
22.dll	100%	56.dll	100%	90.dll	94%
24.dll	100%	58.dll	98%	92.dll	90%
26.dll	100%	60.dll	100%	94.dll	96%
28.dll	100%	62.dll	100%	96.dll	94%
30.dll	100%	64.dll	100%	98.dll	90%
32.dll	100%	66.dll	100%	100.dll	92%
34.dll	100%	68.dll	100%		

表 3: 改进后的 AI 与所有测例 AI 的对战结果

改进后的 MCTS 取得了不错的效果,对战编号 80 以上的 AI, 胜率 在 90% 以上。其中,测例 64.dll 和 66.dll 存在比较严重的 bug,经常导致 Compete.exe 卡死 (内存占用约 2G, CPU 占用 0%,且 Ctrl+C 都杀不死),希望最终评测时能保证测例正常运行。

5 总结收获

- 1. 通过本次实验, 我实现了 MCTS 和 UCT 算法, 加深了对随机搜索算法的理解, 并将其应用到实际问题中。
- 2. 另外, 我还对标准的 MCTS 进行了优化, 加上了人的先验知识, 但发现未做任何剪枝的 AI 是最聪明的。
- 3. 感谢这个平台提供的易用接口,以及助教的耐心指导!