3 Couche réseau : vecteur de distances

Figure 2 - Un réseau composé de six routeurs A, B, C, D, E et F

Cette question est relative au protocole des vecteurs de distances. Lorsque le réseau de la Figure 2 est mis en place, les tables de routage des six routeurs peuvent être représentées dans la matrice ci-dessous.

	Α	В	С	D	Е	F
Α	0 [local] 5	7	62	13	16
В	5	0 [local] 2	16	9	11
С	7	2	0 [local] 14	7	9
D	21	16	14	0 [local] ₇	4
Е	14	9	7	7	0 [local]2
F	16	11	9	4	2	0 [local

Dans cette matrice, toutes les colonnes et toutes les lignes sont intitulées par le nom d'un des six routeurs. Si la cellule – placée dans la colonne X et à la ligne Y – contient de l'information, cette cellule représente l'entrée de la table de routage du routeur X relative au routeur Y. Si cette cellule ne contient pas d'information, cela signifie que le routeur X ne possède pas d'information à propos du routeur Y.

Le routeur A envoie un troisième vecteur de distances. Dessinez ce vecteur dans le rectangle vide ci-dessous et représentez l'état des tables de routage, après réception des copies de ce vecteur, en complétant la matrice ci-dessous.

	А	В	С	D	Е	F
А	0			62		58
В	5	0		63		
С			0			
D				0		4
Е				6	0	2
F	58			4		0

Le routeur B envoie un troisième vecteur de distances. Dessinez ce vecteur dans le rectangle vide ci-dessous et représentez l'état des tables de routage, après réception des copies de ce vecteur, en complétant la matrice ci-dessous.

	Α	В	С	D	E	F
Α	0	5		62		58
В	5	0		63		63
С	7	2	0	65		65
D	68	63		0		4
E				6	0	2
F	58			4		0

Le routeur D envoie en premier un vecteur de distances. Dessinez ce vecteur dans le rectangle vide ci-dessous et représentez l'état des tables de routage, après réception des copies de ce vecteur, en complétant la matrice ci-dessous.

	А	В	С	D	E	F
А	0					
В		0		63		
С			0			
D				0		
Е				7	0	
F				4		0

Le routeur F envoie un deuxième vecteur de distances. Dessinez ce vecteur dans le rectangle vide ci-dessous et représentez l'état des tables de routage, après réception des co de ce vecteur, en complétant la matrice ci-dessous.

	А	В	С	D	Е	F
А	0			62		58
В		0		63		
С			0			
D				0		4
Е				7	0	2
F				4		0

2/ Alice, Bob et Charlie sont des utilisateurs connectés au réseau.

Tous les routeurs connaissent maintenant la topologie du réseau, et choisissent la route la moins chère.

Alice n'arrive pas à se connecter à Charlie, et fait un "traceroute" pour voir à quel routeur se situe le problème. Quelle est la particularité du paquet qui sera envoyé à D lors de ce "traceroute"? (Protocole, champs qui ne sont pas par défaut, ...)

3/ Si le sous-reseau de F est le suivant: 192.168.1.0/24, combien de nouvelles machines (en plus de Charlie) peuvent s'y connecter?

Ici c'est uniquement le /24 qui nous interesse

/24 == 255.255.255.0

Chaque zone à 256 possibilité (0->255) donc ici on a qu'une à 256 possibilités - 2 qui sont réservées ce qui fait 254 machines

4/ A quoi sert le protocole ARP?

A connaitre le mac adresse à partir d'une adresse ip. Limité au reseau local.

La machine envoie une requete a tout le reseau en demandant par ex "Qui est 192.168.1.5 ?" La machine qui se reconnait via cette adresse lp repond en fournissant sa mac adresse