1 Radon-Nikodym の定理

Capinski, and Kopp, *Measure, Integral and Probability*, Springer, 2004 をもとに Radon-Nikodym の定理を証明: 可測空間 (Ω, \mathcal{F}) 上の $F \in \mathcal{F}$ に対する測度 v(F) が

$$F \mapsto \nu(F) = \int_{F} f \, d\mu \tag{1}$$

となるような f を見つける問題.

用語

絶対連続 (absolutely continuous)

任意の $F \in \mathcal{F}$ に対して $\mu(F) = 0$ ならば $\nu(F) = 0$, が成り立つならば, ν は μ に対して**絶対連続**であるといい, $\nu \ll \mu$ と表す.

押さえる (dominate)

任意の $F \in \mathcal{F}$ に対して $0 \le \nu(F) \le \mu(F)$ が成り立つとき, μ は ν を押さえるという.

分割 (partition)

 $\mathcal F$ 内の有限な排反部分集合の集まり $\mathcal P$ + $(F_i)_{i\leq n}$ で $\cup_i F_i = \Omega$ をみたすものを、(有限可測な) Ω の分割と呼ぶ。

細分 (refinement)

2 つの分割 \mathcal{P},\mathcal{P}' について、任意の \mathcal{P} の要素が \mathcal{P}' の排反な要素の和集合で表されるとき、 \mathcal{P}' は \mathcal{P} の細分と呼ぶ.

σ -有限 (σ -finite)

 $\cup_i F_i = \Omega$ をみたす \mathcal{F} -可測な集合列 F_i が存在して、各 i について $v(F_i)$ が有限の値をとるとき、v を σ -有限な測度と呼ぶ.

証明

Radon-Nikodym の定理を証明する前に、以下の補助定理を証明しておくと便利. Radon-Nikodym の定理との違いは

- 2 つの測度が σ -有限ではなく、一方が片方を押さえているという仮定になっている.
- 押さえている方の測度 μ が全測度で 1 となる.

という2点. ただし、結論の形式はRadon-Nikodymの定理と同様なので、その雰囲気は伝わるはず.

Theorem 1. 任意の $F \in \mathcal{F}$ に対して, $\mu(\Omega) = 1$, $0 \le \nu(F) \le \mu(F)$ が成り立つ,つまり μ は ν を押さえる測度 とする.このとき,任意の $F \in \mathcal{F}$ に対して,

$$\nu(F) = \int_{F} h d\mu \tag{2}$$

をみたす, $(\Omega 上 0)$ 非負 \mathcal{F} -可測関数 h が存在する.

以下のステップで証明

・分割 $\mathcal P$ に含まれる集合上で、(2) をみたすような $h_{\mathcal P}$ を構成する. ついでに $\mathcal P_{n+1}$ が $\mathcal P_n$ を細分するような分割の列 $\mathcal P_1,\mathcal P_2,\dots$ について、

$$\int_{\Omega} h_{\mathcal{P}_n}^2 d\mu \tag{3}$$

が非減少列になることを確認する.

- 1. の結果,および (3) で定められる列は上限 1 で押さえられることから,収束定理を用いて (2) をみた h を $h_{\mathcal{P}_n}$ の極限として求めることができる.
- 2. の方法で定めた h が望ましい性質を持つことを確認する.