Digital Image Processing Final Project Analysis of Histopathological Images CE-42 B

Members

340413 - Zakriya Paracha

359075 - Haris Fayyaz

334584 - Wajeeha Tahir

Code:

Preprocessing

```
processed_train_image= np.zeros_like(train_img)
processed_test_image = np.zeros_like(test_img)
gamma_table = [int((i/255.0) ** 5 * 255) for i in range(256)]

for i in range(len(train_img)):
   processed_train_image[i] = (np.power(train_img[i] / 255.0, 8) * 255).astype(np.uint8)
for i in range(len(test_img)):
   processed_test_image[i] = (np.power(test_img[i] / 255.0, 8) * 255).astype(np.uint8)
```

Model

```
modelUnet = keras.models.load_model("modelU_v1_77.h5")
modelClassify = keras.models.load_model("modelC_v1_60.h5")
```

Models

- 1. Semantic segmentation of an image between 12 classes (modelU_v1_77 : 77% acc, 77% F1, 32% Iou)
- 2. Classification of input image between 3 classes (modelC v1 60: 60% acc, 59% F1)

For the semantic segmentation, we have used a Unet model with 1,925,964 parameters whereas the classification model has 502,083 parameters.

Pre-Processing

The queensland data used in the following code is processed by following steps

- 1. Images: Gamma Correction (6)
- 2. Masks: Pixels that did not classify as one of the 12 classes were converted to background pixels and the resulting image is encoded as 255x255x1 images.

Input to model (shuffled)

Segmentation Models:

1. modelU v1 77: Trained over 50-50 epochs

Outputs:

Evaluation:

Classification Models:

1. modelC v1 60: Trained over 50,50,50,30,30,40,20,20 epochs

Outputs:

Figure 1 Falsely Classified

Evaluation:

References:

1. Preprocessing code

https://colab.research.google.com/drive/1svDtOr0nt82beMu3U1fGOCcjP2TnJ3gK?usp=sharing

2. Machine Learning code

https://www.kaggle.com/code/zakriyaparacha/final-project

3. Multiclass Semantic Segmentation:

 $\underline{https://www.youtube.com/watch?v=}XyX5HNuv-xE$