[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2022-2023 Scribed by: Akshay (202051018) Lecture (Week 13)

1 ElGamal Public Key Cryptosystem

- 1. Select a prime p.
- 2. Consider the group $(\mathbb{Z}_p^*, . \text{ mod p})$ (* means excluding 0 from \mathbb{Z}_p)
- 3. Select a primitive element $\alpha \in \mathbb{Z}_p^*$ (generator)

$$\mathbb{Z}_p^* \to \text{Cyclic group}$$

$$\mathbb{Z}_p^* = <\alpha>$$

- 4. Plaintext space = \mathbb{Z}_p^* Keyspace = $\{(p, \alpha, a, \beta) \mid \beta = \alpha^a \mod p\}$
- 5. Public Key: p, α , β Secret Key: a $\beta = \alpha^a$, Given β , α finding a will be hard (Discrete log problem).
- 6. Select a random number $x \in \mathbb{Z}_{p-1}$, x is kept secret

7. Encryption

$$\overline{e_K(m,x)} = (y_1, y_2)$$
 (m: message)

$$y_1 = \alpha^x \mod p$$

$$y_2 = m.\beta^x \mod p$$

8. Decryption

$$\overline{d_K(y_1, y_2)} = y_2(y_1^a)^{-1} \mod p$$

$$y_1^a = (\alpha^x)^a \mod p$$
$$= (\alpha^a)^x \mod p$$
$$= \beta^x \mod p$$

$$y_2.(y_1^a)^{-1} = (m.\beta^x).(\beta^x)^{-1} \mod p$$

= $m \mod p$

Security of ElGamal Cryptosystem depends on two problems:

1) **Discrete log problem** is hard

 $\beta = \alpha^a$, Given β , α finding a will be hard

2) Diffie Hellman problem is hard

Knowns: g, g^a, g^b

Not knowns: a, b

Finding g^{ab}

Because security can be broken if we are able to find α^{ax} from knowns i.e. $(\alpha, \alpha^a = \beta, \alpha^x = y_1)$ as we just need to multiply inverse of this with y_2 to reveal message (m).

2 Discrete Log Problem

Given: Finite cyclic group G of order n, generator α of G, element $\beta \in G$.

Find: Integer x , $0 \le x \le n-1$ such that $\alpha^x = \beta$

Exhaustive search (O(n)) is inefficient.

Baby-Step Giant-Step Algorithm:

Time complexity: $O(\sqrt{n})$

$$m = \lceil \sqrt{n} \rceil$$
 $\alpha^n = 1$

If $\beta = \alpha^x$ then we can write:

x = i.m + j (through Division algo)

m: divisor, i: quotient, j: remainder

$$0 \leq i,j \leq m$$

$$\alpha^x = \alpha^{im}.\alpha^j$$

$$\beta = \alpha^{im}.\alpha^j$$

$$\Rightarrow \alpha^j = \beta.(\alpha^{im})^{-1}$$

$$\alpha^j = \beta . (\alpha^{-m})^i$$

For x, we need to find unique i,j which will satisfy above equation.

Now, instead of x, target is to find i and j. Size of space of i,j is strictly less than m (= $\lceil \sqrt{n} \rceil$) Now, aim is to find i and j in such a way that complexities don't get multiplied.

- Compute each value of j and corresponding α^{j} . Store it in a table in a sorted manner.
- For each i:
 - Compute $\beta . (\alpha^{-m})^i$
 - get corresponding j by subtracting i.m from x
 - get corresponding α^j from the look-up table
 - Compare α^j with $\beta.(\alpha^{-m})^i$ for solution.

Formal Presentation of this algorithm:

Input: generator α of a cyclic group G, ord(G) = n, $\beta \in G$.

Output: the discrete log, $x = log_x \beta$

- 1. Set $m \leftarrow \lceil \sqrt{n} \rceil$
- 2. Prepare a table T with entries (j, α^j) $0 \le j < m$

- (a) Sort T by second component
- 3. Compute α^{-m} and set $\gamma \leftarrow \beta$
- 4. For i=0 to m-1 do:
 - (a) check if γ is second of some entry in T.
 - (b) If $\gamma = \alpha^j$ then we got the solution. Return
 - (c) Set $\gamma \leftarrow \gamma . \alpha^{-m}$

Storage: $O(\sqrt{n})$

Number of multiplications: $O(\sqrt{n})$ Sort : $O(\sqrt{n}.log\sqrt{n}) = (\sqrt{n}.logn)$

3 Kerberos (Version 4) (User Authentication Protocol)

Didn't get clarity in this topic. I will come back to it later.