

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Proof of Completeness: Theorem *Tautology-Theorem*

08-09-2018 Sundar B. CS&IS, BITS Pilani 0

Theorem Tautology-Theorem

- Theorem T-T:
 - Every tautology (in propositional logic) is a theorem (i.e. it is <u>provable</u>): i.e. if $|=\chi|$ holds then $|-\chi|$ holds.
- Proof Outline:
 - If $|=\chi|$ holds, there is a truth table for χ with all 1s in the last column
 - Using the Line Semantics Lemma
 - we construct a proof corresponding to each row of the truth table and
 - and assemble all those proofs using
 - nested application of the ve proof rule (along with LEM for each atomic proposition)

Example Truth Table (for some formula ϕ)

p ₀	p ₁	•••	p _m	ф
0	0	•••	0	0
0	0	•••	1	1
•••	•••	•••	•••	
1	1	•••	1	

Example Truth Table (for some tautology ϕ)

p ₀	p ₁	•••	p _m	ф
0	0	•••	0	1
0	0	•••	1	1
•••	•••	•••	•••	•••
1	1	•••	1	1

Example Truth Table (for some tautology ϕ)

p ₁	p ₂	•••	p _m	ф
0	0	•••	0	1
0	0	•••	1	1
•••	•••	•••	•••	•••
1	1	•••	1	1

Generate proof T_1 Generate proof T_2 Generate proof T_k where $k = 2^m$

Assemble all proofs!

Lemma Line-Semantics

Lemma Line-Semantics:

- Let ϕ be a propositional formula on propositional atoms $\mathbf{p_1}$, $\mathbf{p_2}$, ... $\mathbf{p_m}$.
- Let k be a line (i.e. row) number in the truth table for ϕ .
- Define
 - $L_{k,i} = p_i$ if entry for p_i is 1 in line k
 - $L_{k,i} = \neg p_i$ otherwise.
- Then
 - $L_{k,1}, L_{k,2}, ... L_{k,m}$ | ϕ is provable if entry for ϕ in line k is 1
 - $L_{k,1}, L_{k,2}, ... L_{k,m}$ $| \neg \phi |$ is provable if entry for ϕ in line k is 0

Lemma Line-Semantics (proved in later slides)

- Informally, the Line-Semantics lemma states that:
 - for each line of the truth table for ϕ there exists a proof
 - deriving ϕ if the last line of the row is 1; deriving $\neg \phi$ if it is 0.
 - with each propositional atom (if its column is 1 in that row) or its negation (if it is 0) as a premise

Example Truth Table (for some tautology ϕ)

p ₁	p ₂	•••	p _m	ф
0	0	•••	0	1
$\neg p_1$	$\neg p_2$		$\neg p_m$	ф
0	0	•••	1	1
$-p_1$	$\neg p_2$		p _m	ф
•••	•••	•••	•••	•••
1	1	•••	1	1
p_1	p ₂		p _m	ф

Proof of the Line-Semantics Lemma

- Lemma Line-Semantics:
 - L1, L2, ... Lm $|-\phi|$ is provable if entry for ϕ in line k is 1
 - L1, L2, ... Lm $|- \neg \phi|$ is provable if entry for ϕ in line k is 0
- Proof Outline: (by structural induction)
 - Case ϕ is an atomic proposition: see following slides
 - Case ϕ is of the form $\neg \phi \mathbf{1}$: see following slides
 - Case ϕ is of the form $\phi 1 --> \phi 2$: see following slides
 - Case ϕ is of the form $\phi 1 \wedge \phi 2$: similar to the case $\phi 1 --> \phi 2$
 - Case ϕ is of the form $\phi 1 \vee \phi 2$: similar to the case $\phi 1 --> \phi 2$

Proof of the Line-Semantics Lemma

- Proof (specific cases):
 - Case φ is an atomic proposition p:
 - Show that p |- p (Trivial)
 - Show that $\neg p \mid -\neg p$ (Trivial)
 - Case ϕ is of of the form $\neg \psi$:
 - Assume that ϕ evaluates to 1 i.e. ψ evaluates to 0
 - ψ has the same atomic propositions as ϕ
 - By induction hypothesis:
 - L1, L2, ,...,Lm |- ¬ψ
 - but $\neg \psi$ is same as ϕ and so we are done.
 - Assume that ϕ evaluates to 0 i.e. ψ evaluates to 1
 - By induction hypothesis:
 - L1, L2, ,...,Lm |- ψ
 - By $\neg\neg i$ rule, we get **L1, L2, ,...,Lm** $| \neg \neg \psi \rangle$
 - but $\neg(\neg\psi)$ is same as $\neg\phi$ and so we are done.

Proof of Line Semantics Lemma

- Proof (specific cases):
- Case ϕ is of the form $\psi \longrightarrow \chi$
 - If ϕ evaluates to 0:
 - then ψ must evaluate to 1 and χ must evaluate to 0
 - We have, by <u>induction hypotheses</u>,
 - Lq₁, Lq₂,...,Lq_k |- ψ and Lr₁, Lr₂,...,Lr_n |- $\neg \chi$
 - where $\mathbf{q_i}$ and $\mathbf{r_j}$ are atomic propositions in $\boldsymbol{\psi}$ and $\boldsymbol{\chi}$ respectively.
 - So, $Lp_1, Lp_2, ..., Lp_m \mid -\psi \land \neg \chi$
 - where $\{p_i | 1 \le i \le m\} = \{q_j | 1 \le j \le k\} \cup \{r_j | 1 \le j \le n\}$
 - and we can prove (by ND):
 - $\psi \wedge \neg \chi \mid -\neg (\psi --> \chi)$

Proof of Line Semantics Lemma

- Proof (specific cases):
- Case ϕ is of the form $\psi \longrightarrow \chi$ (continued)
 - If ϕ evaluates to TRUE: we have three cases:
 - 1) both ψ and χ evaluate to 0:

By hypothesis: Lq₁, Lq₂,...,Lq_k
$$|-\neg\psi|$$
 and Lr₁, Lr₂,...,Lr_n $|-\neg\chi|$ so Lp₁,Lp₂,...,Lp_m $|-\neg\psi| \land \neg\chi$

- and we need to show (by ND): $\neg \chi \land \neg \psi \mid \psi --> \chi$
- 2) both ψ and χ evaluate to 1:

```
By hypothesis: \mathbf{Lq_1}, \mathbf{Lq_2},...,\mathbf{Lq_k} | - \psi and \mathbf{Lr_1}, \mathbf{Lr_2},...,\mathbf{Lr_n} | - \chi so \mathbf{Lp_1},\mathbf{Lp_2},...,\mathbf{Lp_m} | - \psi \wedge \chi
```

- and we need to show (by ND): $\chi \land \psi$ | ψ --> χ
- 3) ψ evaluates to 0 and χ evaluates to 1:

```
By hypothesis: \mathbf{Lq_1}, \mathbf{Lq_2},...,\mathbf{Lq_k} | - \neg \psi and \mathbf{Lr_1}, \mathbf{Lr_2},...,\mathbf{Lr_n} | - \chi so \mathbf{Lp_1},\mathbf{Lp_2},...,\mathbf{Lp_m} | - \neg \psi \land \chi
```

• and we need to show (by ND): $\chi \land \neg \psi$ | - ψ --> χ

Theorem T-T: Using Lemma Line-Semantics

- Assuming
 - $| = \phi$
- ullet apply Lemma *Line-Semantics* on the truth table for $oldsymbol{\phi}$
 - Since ϕ is a tautology, it <u>evaluates to 1 in all 2^m lines</u> of its truth table (where m is the number of atomic propositions)
 - i.e. we will get 2^m proofs of the form
 - $L_1, L_2, ... L_m \mid -\phi$
- All these proofs are to be assembled into one proof (in ND) without any premises i.e.
 - \bullet $|-\phi|$

RECALL- Example

Given the tautology

$$p \wedge q --> p$$

and its truth table:

p	q	p ^ q	p ∧ q> p
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

We generate one proof per row:

Sequents
¬p, ¬q - p∧q>p
¬p, q - p∧q>p
p, ¬q - p∧q>p
p, q - p∧q>p

Each of these sequents is valid by the **Line-Semantics Lemma**.

How do we combine them?

Theorem T-T: Proof-assembly - Example

- How do you assemble proofs?
 - Example: p ∧ q --> p

- •Suppose you prove (i) p $|-p \land q -->p$ and (ii) $\neg p |-p \land q -->p$
- •Then you have proved $|-p \land q --> p$
- i.e. $p \land q \rightarrow p$ is true independent of truth (or falsity) of p.

Theorem T-T: Proof-assembly - Example (contd.)

- How do you assemble proofs?
 - Example: p ∧ q --> p

 $p \land q \rightarrow p$ is true independent of the truth (or the falsity) of p or that of q.

Theorem T-T: Proof

• How do you assemble proofs?

Applying this proof-assembly technique on the 2^m proofs of the form **L1, L2, ... Lm** $|-\phi|$ yields a proof of $|-\phi|$ i.e.

- i. starting from $| = \phi$,
- ii. we draw a truth table for ϕ ,
- iii. write proofs for each line (based on Line-Semantics),
- iv. and assemble them all to get $|-\phi|$
- i.e. two proofs of the form:

L1, L2, ... Lm-1, p |-
$$\phi$$
 and L1, L2, ... Lm-1, \neg p |- ϕ can be combined to yield:

L1, L2, ... Lm-1
$$\mid$$
- ϕ

- By induction on m (the number of propositional atoms):
 - all propositional atoms (and their negations) can be eliminated as premises, yielding:

RECAP: Proof of completeness – Steps: I

- We proved Lemma Line-Semantics
 by structural induction on formulas in propositional logic
- We proved Theorem T-T
 - i.e. If $| = \psi$ then $| \psi$ in two steps:
 - 1. We showed by Lemma Line-Semantics there is a proof corresponding to every row of truth table for ψ
 - We showed by induction on n
 that we can <u>assemble all 2ⁿ proofs into a single proof</u> of |- ψ

RECAP: Proof of completeness – Steps: II

- Assume $\phi_1, \phi_2, ..., \phi_n = \psi$.
 - 1. We showed by induction on n that

$$|=\phi_1 -> (\phi_2 -> (\phi_3 -> (... \phi_n -> \psi)...))|$$

2. We showed by Theorem T-T

$$|-\phi_1-->(\phi_2-->(\phi_3-->(...\phi_n-->\psi)...))|$$
 is valid

3. We showed by induction on **n**

$$\phi_1, \phi_2, \dots \phi_n \mid -\psi$$
 is valid