

# CarryU Trash Bin

## Weijia Gao, Xinyue Shi, XingYu Wang Yiyuan Wang, Yufan Zhang

## **Problem description**

At large households, people need to transfer their trash bin to the curb and take it back on the trash collection day. This is a manual process for which householders need to keep track of dates and spend physical efforts. According to survey, over 90% of respondents are glad to get rid of this task for reasons of lifestyle improvement and safety. Automation opportunities exist for needs catering to elderly customers, busy middle-agers, tech-savvies and the solution to this problem leads one early preparation for the future market of home IoT systems.

In preparation, we designed an auto-guided trash bin carrier that with a one-time learning from human demonstration, activates itself on cleaning day to drive between the house and the roadside curb for its inside trash to be dumped.

## **Customer needs and specifications**

#### Stakeholder identification

Primary market: suburban house owners

#### **Desired functionalities**

- Automatic trash disposal (requires accurate and robust navigation algorithm for household trash delivery)
- Trash collection tracking (functional in day and night)



Figure 1: Pugh chart of core sub-functions. Terrain adaptability Smart Trash Bin Off Road Capability Cord Free Automatic Opening Weather Self-Driving Water date

Figure 2: Customer Needs Hierarchy and Specifications.

## Concept generation and selection

## **Selection process**

Abandoned track design and battery recharging sub-function.

#### **Key ideas and considerations**

- Navigation: motion, odometry and infrared and ultrasonic sensors integrated with accurate navigation algorithm for robust driving and obstacle avoidance.
- Wheel design: maneuverability and easiness for maintenance and repair.
- Reasonable traveling distance and climbing slope.



## **Concept description**

## Bin & electronic component Carrier

Assembled using 80/20 bars and laser cut acrylic board, whose stress is simulated in ANSYS

#### **Motor bracket**

Longer front motor bracket create 5% angle and make bin naturally sit back and lie on the frame.

#### **Navigation core component**

Navigation = Encoder + Compass + IR + Ultrasonic



Figure 4: Final CAD design.



Figure 5: Schematic.

Figure 6: Servo design.

#### **Analysis** On reset, proceed Odometry driving commands Calibration Navigation from memory Robot navigates Remember driving itself for H-C-H path IR beacon commands from H to C to H for one specific At the end of each one-way type of path run, robot tracks IR light Idle source at H or C to adjust for previous open-loop error. Assisted with ultrasonic H: Home Robot stops briefly at curb, distance measurement C: Curbside spot then ends at home and

Figure 7: Functional analysis diagram of CarryU automatic trash delivery robot.

## Compass sensor performance test and analysis

• LPF gives reasonable accuracy (±0.5°) and response time (T = 0.3 sec).

robot is charged for next run

Time constant is 311.2ms.



## Infrared sensor analysis

- L = 4.8671 \* exp(-0.0450 \* Intensity) + 1.3331 \* exp(-0.0016 \* Intensity) 0.3.
- Error of computation = 5.02%.



#### **Ultrasonic sensor analysis**

• The SR-04 ultrasonic sensor we used will be suitable for < 3m distance measurement with up to 15 cm error, and large sampling delay time (2s) can be used to marginalize sensor's sensitivity to measurement disturbance.



Figure 13: Ultrasonic errors with respect to measure distance.

#### **Finite Element Analysis**

- Acrylic board's yield stress: 76 MPa
- Maximum equivalent stress: 25.2 MPa
- Safety factor: 5.4167



## Final prototype testing Motor analysis and load testing

- Requirement: drive a 25kg robot with 157mm diameter wheels to climb 10° incline with an acceleration of 0.1 m/s<sup>2</sup>.
- Calculated required torque for each motor = 16.01kg\*cm. Actual torque for selected motor = 45 kg\*cm.
- Load Test: drive the robot carrying the maximum specified weight on a 10° hill to measure its performance.



**Conclusion**: the motors are able to drive the robot with 0.1 m/s<sup>2</sup> acceleration. **Odometry testing** 

• Drive robot between home to curb, iteratively measured the vertical and horizontal error after each round.

**Conclusion**: the odometry algorithm is very accurate, the positional error is less than 1.03m per 100m of travel.



Figure 16: Odometry Test Result (a) Horizontal Error (b) Vertical Error **Navigation testing** 

Figure 17: Odometry Testing.

- Tested robustness of navigation system in outdoor, uneven terrain, and at night
- Result shows that the navigation system is robust under these conditions with accuracy error no more than 19.8% of indoor navigation error





Figure 18: Night condition.

Figure 19: Outdoor and uneven terrain condition

#### Conclusions

## Final prototype evaluation

 Final prototype successfully fulfill the most important need of automatic trash disposal, capable to deliver trash to the curb with high accuracy and robustness.

## Market competence analysis

- Difference with real product: potential improvement could lies in the modularity of core sub-functions, which includes the arrangement of electronic wiring and mechanical parts. More intelligent obstacle avoidance algorithm to be developed.
- Market competence: our prototype has high positional accuracy whenever returning back home, and our automatic trash bin is more user friendly. Our trash bin has better maneuverability and off-road capability.