Analiza szeregów czasowych

Krawiec Piotr

12/06/2021

Spis treści

T		reg - Rozwoj biznesu	1
	1.1	Wczytanie danych	1
	1.2	Główne cechy analizowanych danych	2
		Dekompozycja szeregu	
		1.3.1 Modele regresji z trendem liniowym i sezonowością	4
		1.3.2 Model addytywny	6
	1.4	Eliminacja trendu i sezonowości	8
	1.5	Wyznaczenie rzędu MA	9
	1.6	Wyznaczenie rzędu AR	11
		1.6.1 $AR(52)$ i $AR(56)$	12
		1.6.2 auto.arima	14
	1.7	Porównanie analizowanych modeli	14
	1.8	Prognozowanie	15
		1.8.1 Prognozowanie naiwne metodą średniej	15
		1.8.2 Prognozowanie naiwne sezonowe	17
2	- In	ndex cen nieruchomości	17

1 Szereg - Rozwój biznesu

Na szereg ten składają się dane po chodzące ze strony FRED. Dane zbierane są przez U.S Census Bureau, obejmują lata 2006-2021. Zbierane są w tygodniowych odstępach i dotyczą ilości wniosków o wydanie identyfikatora EAN (Employer Identyfication Number). Każdy pracodawna, koropracja, organizacja nonprofit itp muszą posiadać takie numery, aby móc rozliczać się z podatku. Jest to zatem dobry wskaźnik tego ile nowych biznesów powstaje.

Do korzyści jakie przyniesie prognoza należy przewidywanie rozwoju gospodarki, gdyż nowo powstające biznesy mogą świadczyć o tym że w kraju panują korzystne warunki do rozwoju biznesu. Analiza szeregu pozwoli też przewidzieć jak ludzie postrzegają obecny stan gospodarki - czy są w stanie zaryzykować inwestując we własny biznes.

1.1 Wczytanie danych

W tym etapie wczytałem dane oraz uzupełniłem brakujące wartości średnimi.

Warning: NAs introduced by coercion

```
## DATE BUSAPPWNSAUS
## 1 2006-01-07 39580
## 2 2006-01-14 36920
## 3 2006-01-21 63300
```

```
## 4 2006-01-28 51910
## 5 2006-02-04 61430
## 6 2006-02-11 62890
```

1.2 Główne cechy analizowanych danych

Tak prezentuje się wykres ilości wniosków w czasie:

```
library("forecast")

## Registered S3 method overwritten by 'quantmod':

## method from

## as.zoo.data.frame zoo
```

```
t <- ts(d\$BUSAPPWNSAUS, freq = 365.25/7, start = 2006 + 7/365.25) plot(t)
```


Z wykresu wywnioskować możemy że szereg ten posiada dużą sezonowość, pojawia się tu charakterystyczny wzorzec (odstające szpilki). Widać także niewielki dodatni trend, który gwałtownie rośnie na początku roku 2020.

seasonplot(t)

Seasonal plot: t

Porównując kolejne roczne sezony między sobą, sezonowość widać jeszcze dokładniej. Pojawia się też rok 2020, który znacznie odstaje wartościami, lecz kształtem nadal przypomina poprzednie sezony.

Acf(t)

Series t

Powolny spadek dodatnich wartości funkcji Acf wskazuje dodatni trend w szeregu.

Series t

Na wykresie pojawia się wartość znacząca przy Lag=52, ponieważ dane są tygodniowe oznacza to korelację z danymi z poprzednich lat.

1.3 Dekompozycja szeregu

1.3.1 Modele regresji z trendem liniowym i sezonowością

Poniższy wykres przedstawia dopasowanie dwóch modeli liniowych trendu, z czego jeden z nich uwzględnia sezonowość.

```
ti <- t
tT <- tslm(t ~ trend) # Model regrasji z trendem liniowym
tTS <- tslm(t ~ trend + season) # Model regresji z trendem liniowym i sezonowością
plot(t)
lines(fitted(tT), col = "blue", lty = 2)
lines(fitted(tTS), col = "red", lty = 2)</pre>
```


Model czerwony, uwzględniający sezonowość, został bardzo dobrze dopasowany do szeregu. Wręcz za dobrze (gdyż mogło dojść do przeuczenia), gdyż wektor reszt jest wektorem samych zer.

head(tTS\$residuals)

```
## Time Series:
```

Start = 2006.01916495551

End = 2006.11498973306

Frequency = 52.1785714285714

[1] 0 0 0 0 0 0

Poniżej model uwzględniający wyłącznie trend liniowy. Sezonowość nadal występuje. Widać też niewielki trend po roku 2020.

tsdisplay(tT\$residuals)

1.3.2 Model addytywny

Ze względu na to , że wariancja sezonowa nie zmienia się w czasie (z wyjątkiem lat 2020 i w wzwyż), zastosowałem dekompozycję addytywną.

t.decompose.add <- decompose(t)
plot(t.decompose.add)</pre>

Decomposition of additive time series

Szereg został rozłożony na swoje składowe, wyraźnie widać sezonowość. Trend najbardziej widoczny jest po roku 2015.

tsdisplay(t.decompose.add\$random)

00009

-40000

Z wykresów funkcji ACF i PACF odczytać możemy, że cała sezonowość nie została usunięta z szeregu
(PACF posiada wartość odstającą \sim 52).

1.4 Eliminacja trendu i sezonowości

Z poprzednich wykresów wiem, że szereg charakteryzuje się wyraźnym trendem i sezonowością, którą należy wyeliminować. Dodatkowo, aby pozbyć się gwałtownej zmiany wariancji z początku roku 2020, zastosuję transformację logarytmiczną Boxa-Coxa.

```
t.bc <- BoxCox(t, lambda = 0)
t.bc.52 <- diff(t.bc, lag = 52)
tsdisplay(t.bc.52)</pre>
```


Po usunięciu sezonowości i zastosowaniu transformacji Boxa-Coxa, nadal pozostał silny trend - wykres funkcji ACF jest dodatni i stopniowo maleje.

```
t.bc.52.1 <- diff(t.bc.52, lag = 1)
tsdisplay(t.bc.52.1)
```

t.bc.52.1

Szereg ten nie jest realizacją szumu białego. Widać to po znaczących wartościach odstających dla lag=52. Stacjonarność szeregu sprawdzę korzystając z biblioteki urca, dla ufności $\alpha = 0.05$. Zawiera ona test na stacjonarność szeregu: H_0 - szereg jest stacjonarny, wobec hipotezy alternatywnej: szereg nie jest stacjonarny.

```
library(urca)
t.bc.52.1 %>% ur.kpss() %>% summary()
```

```
##
##
  #########################
## # KPSS Unit Root Test #
  ############################
##
##
## Test is of type: mu with 6 lags.
##
##
  Value of test-statistic is: 0.0072
##
##
  Critical value for a significance level of:
##
                   10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
```

Wartość statystyki jest bardzo mała, wynosi 0.0072, co jest poniżej wartości krytycznej dla zadanego poziomu ufności. Zatem brak podstaw do odrzucenia hipotezy o stacjonarności szeregu.

1.5 Wyznaczenie rzędu MA

Do wyznaczenia parametrów skorzystam z funkcji Acf. Rząd modelu dobiorę na podstawie wartości odstających.

```
Acf(t.bc.52.1, lag.max = 210)
```

Series t.bc.52.1

Do wyboru mam rzędy MA równe:

```
t.bc.52.1.acf \leftarrow Acf(t.bc.52.1, plot = FALSE, lag.max = 210)
t.bc.52.1.acf$lag[which(abs(t.bc.52.1.acf$acf)>1.96/sqrt(t.bc.52.1.acf$n.used))] # Wszystkie lag poza p
## [1]
          0
              1 25
                     26 35 37 50 52 53 57 77 78 79 98 103 106 120 135 182
## [20] 183 207 208
Obliczam współczynniki MA(52) i MA(26):
st <- t.bc.52.1 # szereg stacjonarny
st.ma52 \leftarrow Arima(st, order = c(0,0,52))
st.ma26 \leftarrow Arima(st, order = c(0,0,26))
st.ma26
## Series: st
  ARIMA(0,0,26) with non-zero mean
##
  Coefficients:
##
                      ma2
                               ma3
                                       ma4
                                                 ma5
                                                          ma6
                                                                   ma7
                                                                            ma8
             ma1
##
                  -0.0496
                            0.0758
                                    0.0052
                                            -0.0504
                                                      -0.0530
                                                               0.0479
                                                                        -0.0241
         -0.8599
                   0.0495
                            0.0503
                                    0.0499
                                              0.0500
                                                       0.0498
                                                               0.0499
                                                                         0.0503
##
          0.0367
  s.e.
##
             ma9
                     ma10
                              ma11
                                      ma12
                                                ma13
                                                        ma14
                                                                ma15
                                                                          ma16
##
         -0.0158
                  -0.0104
                            0.0416
                                    0.0012
                                            -0.0417
                                                      0.0401
                                                              0.0056
                                                                       -0.0946
                            0.0502
##
          0.0502
                    0.0500
                                   0.0500
                                              0.0511
                                                      0.0555
                                                              0.0487
                                                                        0.0517
                                      ma20
                                                       ma22
                                                                                 ma25
##
           ma17
                   ma18
                             ma19
                                              ma21
                                                                ma23
                                                                         ma24
                                                    0.0544
##
         0.0245
                 0.0530
                          -0.0132
                                  -0.0528
                                            0.0531
                                                            -0.0855
                                                                       0.0212 0.1067
## s.e.
                 0.0523
                           0.0508
                                   0.0483 0.0509 0.0481
                                                              0.0520
                                                                       0.0490 0.0574
         0.0506
##
            ma26
##
         -0.0465
                  9e-04
## s.e.
          0.0377
                  9e-04
```

```
##
## sigma^2 estimated as 0.03392: log likelihood=217.83
                  AICc=-377.41
## AIC=-379.66
                                   BIC=-250.22
st.ma52
## Series: st
## ARIMA(0,0,52) with non-zero mean
##
##
  Coefficients:
##
              ma1
                       ma2
                               ma3
                                         ma4
                                                   ma5
                                                            ma6
                                                                     ma7
                                                                               ma8
##
         -1.0682
                   0.1704
                            0.2471
                                     -0.0864
                                               -0.1146
                                                         0.0529
                                                                 0.0265
                                                                          -0.0606
##
           0.0477
                   0.0638
                            0.0713
                                      0.0681
                                                0.0662
                                                         0.0642
                                                                 0.0666
                                                                           0.0643
##
                     ma10
                                                  ma13
                                                           ma14
              ma9
                               ma11
                                        ma12
                                                                     ma<sub>15</sub>
                                                                               ma16
##
         -0.0424
                            -0.0198
                                      0.0000
                                                                           -0.0961
                   0.0741
                                               -0.0387
                                                         0.0861
                                                                  -0.0409
## s.e.
          0.0654
                   0.0652
                             0.0639
                                      0.0673
                                                0.0586
                                                         0.0626
                                                                   0.0645
                                                                             0.0658
##
            ma17
                     ma18
                               ma19
                                         ma20
                                                  ma21
                                                            ma22
                                                                      ma23
                                                                               ma24
##
         0.0900
                  -0.0054
                            -0.0694
                                                         -0.0469
                                                                   -0.1262
                                      -0.0106
                                                0.1193
                                                                            0.1011
         0.0665
                   0.0623
                             0.0653
                                       0.0632
                                                0.0654
                                                          0.0635
                                                                    0.0627
  s.e.
##
                                                           ma30
           ma25
                     ma26
                              ma27
                                        ma28
                                                  ma29
                                                                    ma31
                                                                             ma32
##
         0.1086
                  -0.2756
                            0.2672
                                     -0.0979
                                               -0.0778
                                                         0.0851
                                                                 0.0785
                                                                          -0.1424
##
  s.e.
         0.0613
                   0.0717
                            0.0694
                                      0.0642
                                                0.0644
                                                         0.0646
                                                                 0.0684
                                                                           0.0656
##
           ma33
                    ma34
                             ma35
                                       ma36
                                                ma37
                                                         ma38
                                                                   ma39
                                                                            ma40
                                                                                     ma41
##
                  0.0892
                           0.0510
                                    -0.1232
                                              0.0684
                                                      0.0817
                                                               -0.0947
                                                                         -0.0019
         0.0158
                                                                                   0.0150
                  0.0662
                           0.0665
                                     0.0723
                                              0.0706
                                                      0.0709
                                                                0.0626
                                                                          0.0591
## s.e.
         0.0664
                                                                                   0.0748
##
            ma42
                     ma43
                              ma44
                                       ma45
                                                ma46
                                                          ma47
                                                                   ma48
                                                                           ma49
                                                                                     ma50
##
         0.0705
                  -0.1183
                            0.0869
                                     0.0039
                                              0.0218
                                                       -0.1265
                                                                0.1748
                                                                         0.0742
                                                                                  -0.2604
##
         0.0660
                   0.0712
                            0.0708
                                     0.0693
                                              0.0705
                                                        0.0670
                                                                0.0705
                                                                         0.0760
                                                                                   0.0838
   s.e.
##
             ma51
                     ma52
                             mean
##
         -0.2389
                   0.1238
                            3e-04
## s.e.
          0.0675
                   0.0496
                            2e-04
##
## sigma^2 estimated as 0.0275:
                                    log likelihood=291.81
## AIC=-475.62
                  AICc=-467.09
                                   BIC=-225.99
```

1.6 Wyznaczenie rzędu AR

Do wyznaczenia parametrów skorzystam z funkcji Pacf. Rząd modelu dobiorę na podstawie wartości odstających.

```
Pacf(t.bc.52.1, lag.max = 210)
```

Series t.bc.52.1

Do wyboru mam rzędy AR równe:

```
t.bc.52.1.pacf <- Pacf(t.bc.52.1, plot = FALSE, lag.max = 210)
t.bc.52.1.pacf$lag[which(abs(t.bc.52.1.pacf$acf)>1.96/sqrt(t.bc.52.1.pacf$n.used))] # Wszystkie lag spo
## [1] 1 2 3 4 5 6 7 10 21 24 34 50 51 52 53 54 56 77 103
## [20] 106 129 181 206 207
```

1.6.1 AR(52) i AR(56)

Obliczam współczynniki AR(52), AR(56):

```
st.ar56.yw <-ar(st, order.max = 56, aic = FALSE, method = "yule-walker")
st.ar56.burg <- ar(st, order.max = 56, aic = FALSE, method = "burg")
st.ar52.yw <- ar(st, order.max = 52, aic = FALSE)
st.ar1.yw<- ar(st, order.max = 1, aic = FALSE)</pre>
```

Lista obliczonych współczynników:

```
st.ar56 <- Arima(st, order = c(56,0,0))
st.ar52 <- Arima(st, order = c(52,0,0), method = "CSS")
summary(st.ar56)</pre>
```

```
## Series: st
## ARIMA(56,0,0) with non-zero mean
##
## Coefficients:
##
                                           ar4
                                                     ar5
              ar1
                        ar2
                                  ar3
                                                               ar6
                                                                         ar7
                                                                                   ar8
##
         -0.9487
                   -0.8261
                             -0.6259
                                       -0.4941
                                                 -0.3921
                                                           -0.3649
                                                                     -0.3333
                                                                               -0.2995
## s.e.
           0.0365
                    0.0504
                              0.0581
                                        0.0612
                                                  0.0625
                                                            0.0644
                                                                      0.0652
                                                                                0.0657
##
                       ar10
                                ar11
                                          ar12
                                                    ar13
                                                              ar14
                                                                        ar15
                                                                                  ar16
              ar9
```

```
-0.2853 -0.2868 -0.2854 -0.2554 -0.2689 -0.2555 -0.2307 -0.2286
## s.e.
          0.0660
                   0.0664
                            0.0668
                                     0.0674
                                               0.0679
                                                      0.0685
                                                                 0.0691
                                                                          0.0696
##
            ar17
                     ar18
                              ar19
                                       ar20
                                                 ar21
                                                          ar22
                                                                   ar23
         -0.1952 -0.1663
                                    -0.1866 -0.1817 -0.1472 -0.1583 -0.1486
##
                           -0.1577
## s.e.
          0.0701
                   0.0702
                            0.0703
                                     0.0703
                                               0.0703
                                                       0.0704
                                                                 0.0705
                                                                         0.0707
##
            ar25
                     ar26
                              ar27
                                       ar28
                                                 ar29
                                                          ar30
                                                                   ar31
         -0.0854 -0.1497
                           -0.0954 -0.0649 -0.0463
                                                      -0.0606
                                                               -0.0426 -0.0417
## s.e.
         0.0709
                  0.0714
                            0.0722
                                     0.0723
                                               0.0722
                                                        0.0721
                                                                 0.0718
                                                                          0.0717
##
            ar33
                   ar34
                            ar35
                                    ar36
                                            ar37
                                                     ar38
                                                             ar39
                                                                     ar40
                                                                             ar41
##
         -0.0264 \quad 0.0053 \quad 0.1125 \quad 0.1557 \quad 0.1264 \quad 0.1209 \quad 0.1003 \quad 0.0985 \quad 0.0918
## s.e.
         0.0715 0.0712 0.0709 0.0708 0.0707 0.0706 0.0705 0.0703 0.0700
                                                                    ar49
##
           ar42
                   ar43
                           ar44
                                   ar45
                                                    ar47
                                           ar46
                                                            ar48
         0.1173 0.1256 0.1805 0.1874 0.2154 0.1898 0.1862 0.1981 0.1814
##
        0.0696 0.0692 0.0688 0.0687 0.0685 0.0685 0.0684 0.0686 0.0685
##
                    ar52
                             ar53
                                      ar54
                                                ar55
                                                         ar56
           ar51
                                                                mean
##
         0.0266 -0.4229 -0.3844 -0.2655 -0.1342 -0.0910 7e-04
## s.e. 0.0678 0.0660 0.0649
                                   0.0613
                                            0.0523
                                                       0.0375 7e-04
##
## sigma^2 estimated as 0.02585: log likelihood=328.37
## AIC=-540.75 AICc=-530.87 BIC=-272.63
##
## Training set error measures:
##
                                  RMSE
                                                      MPE
                                                                        MASE
                          ME
                                            MAE
                                                              MAPE
## Training set 0.0001153186 0.1545722 0.086313 402.8552 762.8487 0.4199214
##
                         ACF1
## Training set -0.0006334146
summary(st.ar52)
## Series: st
## ARIMA(52,0,0) with non-zero mean
##
## Coefficients:
##
                               ar3
                                        ar4
                                                  ar5
                                                           ar6
                                                                    ar7
                                                                             ar8
             ar1
                      ar2
##
         -0.9008
                 -0.8147
                          -0.6828 -0.5902 -0.5370 -0.5194 -0.4808 -0.4373
          0.0364
                   0.0474
                            0.0534
                                     0.0568
                                               0.0591
                                                        0.0607
                                                                 0.0618
                                                                          0.0630
## s.e.
##
                     ar10
                              ar11
                                       ar12
                                                 ar13
                                                          ar14
                                                                   ar15
             ar9
                                                                            ar16
         -0.4041 -0.3911
                          -0.3687
                                    -0.3261 -0.3277 -0.3105 -0.2875
##
                                                                         -0.2963
## s.e.
          0.0640
                 0.0651
                           0.0664
                                    0.0677
                                               0.0686
                                                      0.0694
                                                                 0.0700
                                                                         0.0703
            ar17
                    ar18
                             ar19
                                       ar20
                                               ar21
                                                          ar22
                                                                   ar23
                                                                            ar24
         -0.2752 -0.2521 -0.2263 -0.2368 -0.2145 -0.1683
                                                                         -0.1576
##
                                                               -0.1744
                  0.0708
## s.e.
         0.0705
                            0.0713
                                     0.0717
                                               0.0722
                                                       0.0726
                                                                 0.0729
                                                                         0.0732
##
                                       ar28
                                                          ar30
                                                                  ar31
                                                                          ar32
            ar25
                     ar26
                              ar27
                                                 ar29
##
         -0.0843 -0.1392
                           -0.0691
                                    -0.0352 -0.0087
                                                       -0.0041 0.0134 0.0270
                   0.0735
                            0.0736
                                     0.0736
                                               0.0735
                                                        0.0733 0.0732 0.0728
## s.e.
         0.0734
                                           ar37
##
                   ar34
                           ar35
                                   ar36
                                                                    ar40
           ar33
                                                    ar38
                                                            ar39
##
         0.0502 \quad 0.0849 \quad 0.2011 \quad 0.2521 \quad 0.2314 \quad 0.2297 \quad 0.2147 \quad 0.2248 \quad 0.2254
## s.e. 0.0724 0.0721 0.0717 0.0714 0.0713
                                                 0.0710 0.0707 0.0701 0.0696
##
           ar42
                   ar43
                           ar44
                                   ar45
                                            ar46
                                                    ar47
                                                            ar48
                                                                    ar49
##
         0.2659 \quad 0.2803 \quad 0.3539 \quad 0.3631 \quad 0.4054 \quad 0.3998 \quad 0.4161 \quad 0.4537 \quad 0.4659
        0.0687 0.0679 0.0669 0.0661 0.0649 0.0636 0.0618 0.0595 0.0557
##
           ar51
                    ar52
                            mean
         0.3314 -0.0879 0.0007
## s.e. 0.0488
                  0.0368 0.0011
```

##

Współczynniki dla AR(56) i AR(52) są podobne.

1.6.2 auto.arima

```
au <- auto.arima(st)
summary(au)
## Series: st
## ARIMA(1,0,0)(1,0,0)[52] with zero mean
##
## Coefficients:
##
                     sar1
             ar1
##
         -0.5210
                  -0.4427
## s.e.
          0.0314
                   0.0322
##
## sigma^2 estimated as 0.03631: log likelihood=174.79
## AIC=-343.58
                 AICc=-343.54
                                 BIC=-329.71
##
## Training set error measures:
                                                        MPE
                                  RMSE
                                              MAE
                                                                MAPE
                                                                           MASE
##
                          ME
## Training set 0.001074207 0.1903062 0.09991121 263.6516 471.3774 0.4860781
##
                       ACF1
## Training set -0.2010561
```

1.7 Porównanie analizowanych modeli

Wszystkie modele korzystały z transformacji Boxa-Coxa więc mogę je porównywać między sobą.

```
# ARIMA(0,0,26)
                            AIC=-379.66
                                           AICc=-377.41
                                                          BIC=-250.22
                            AIC=-475.62
# ARIMA(0,0,52)
                                           AICc=-467.09
                                                          BIC=-225.99
# ARIMA(56,0,0)
                            AIC=-540.75 + AICc=-530.87 + BIC=-272.63
# ARIMA(1,0,0)
                            AIC=-181.41
                                           AICc=-181.38
                                                          BIC=-167.54
# ARIMA(1,0,0)(1,0,0)[52]
                            AIC=-343.58
                                           AICc=-343.54
                                                          BIC=-329.71
```

Ze wszystkich modeli, najlepszym wydaje się ARIMA(56,0,0). Pomimo dużej ilości, parametrów jako jedyny przechodzi test Ljung-Boxa (dla $\alpha=0.05$). Analiza reszt znajduje się na wykresach poniżej.

```
checkresiduals(st.ar56)
```

Residuals from ARIMA(56,0,0) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(56,0,0) with non-zero mean
## Q* = 70.555, df = 47.357, p-value = 0.01601
##
## Model df: 57. Total lags used: 104.357142857143
```

1.8 Prognozowanie

1.8.1 Prognozowanie naiwne metodą średniej

```
t.meanf <- meanf(t, h = 60)
plot(t.meanf)</pre>
```

Forecasts from Mean

Prognozowanie naiwne metodą średniej nie daje dobrych rezultatów, może być to spowodowane tym iż szereg ten zawiera trend i sezonowość. Prognoza dla szeregu bez trendu i sezonowości:

```
st.meanf <- meanf(st, h = 60)
plot(st.meanf)</pre>
```

Forecasts from Mean

Prognoza ta jest dużo lepsza. Dodając trend i sezonowość moglibyśmy uzyskać nią lepsze przewidywania, niż za pierwszym razem.

1.8.2 Prognozowanie naiwne sezonowe

```
t.snaive <- snaive(t, h = 60)

## Warning in lag.default(y, -lag): 'k' is not an integer
plot(t.snaive)</pre>
```

Forecasts from Seasonal naive method

Prognoza naiwna sezonowa daje na pierwszy rzut oka najlepsze rezultaty. Uwzględnia ona silną sezonowość szeregu oraz to że w poprzednich latach składowa trendu była dużo większa, jednak nie uwzględnia ona przyszłego wzrostu trendu.

2 - Index cen nieruchomości