DEPARTMENT OF MATHEMATICS BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI

IMM5002 Numerical Method Lab, Session: (MO-19)
Lab Assignment - 3

1. The following four methods are proposed to compute $\sqrt[3]{21}$. Rank them in order based on their apparent speed of convergence, assuming $p_0 = 1$:

(a)
$$p_n = \frac{20P_{n-1} + \frac{21}{p_{n-1}^2}}{21}$$
,

(b)
$$p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2},$$

(c)
$$p_n = p_{n-1} - \frac{p_{n-1}^4 - 21p_{n-1}}{p_{n-1}^2 - 21}$$
,

(d)
$$p_n = \left(\frac{21}{p_{n-1}}\right)^{\frac{1}{2}}$$
,

Based upon the first four iterations, which one do you think gives the best approximation to the solution.

- 2. Find all the zeros accurate to within 10^{-4} of $f(x) = x^2 + 10\cos x$ by using the fixed point iteration method for an appropriate iteration function g.
- 3. For $x = 2 + \frac{5}{x^2}$, determine the interval [a, b] on which the fixed point iteration will converge. Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-5} and perform the calculations.