Locus of evader coordinates with same evader velocity and same interception point:

Let evader be at (x_{e_1}, y_{e_1}) , target at (x_T, y_T) , pursuer at (x_n, y_n)

Let the velocity of the evader to the velocity of the pursuer ratio be $k = \frac{v_{e_1}}{v_p}$

The expressions for centre and radius of the corresponding Apollonius circle are

$$x_{c_1} = \frac{x_e - x_p k^2}{1 - k^2}$$
 (1)
$$y_{c_1} = \frac{y_{e_1} - y_p k^2}{1 - k^2}$$
 (2)

$$R_{1} = \sqrt{x_{c_{1}}^{2} + y_{c_{1}}^{2} - \frac{(x_{e_{1}}^{2} + y_{e_{1}}^{2})}{1 - k^{2}} + k^{2} \frac{(x_{p}^{2} + y_{p}^{2})}{1 - k^{2}}}$$
(3)

Equation of Apollonius circle is $(x-x_{c_1})^2+(y-y_{c_1})^2=R_1^2$

Let the corresponding interception point be (x_I, y_I) .

Objective is to find the set $\{x_e, y_e\}$ that result in (x_I, y_I) .

For (x_I, y_I) to be the interception point of any other circle, it has to be the nearest point to the target by definition. So the centres of all Apollonius circles for which (x_I, y_I) is the interception point must lie on the line joining target (x_T, y_T) and (x_I, y_I) \overline{IT} . So the following condition will hold.

$$\frac{y_T - y_I}{x_T - x_I} = \frac{y_c - y_{c_1}}{x_c - x_{c_1}} = M \tag{4}$$

Where (x_c, y_c) is the centre of any Apollonius circle whose interception point is (x_I, y_I) .

$$(x_c, y_c)$$
 lies on \overline{IT} .

Substituting corresponding expressions of (x_{c1}, y_{c1}) , (x_c, y_c) in (4),

$$\frac{y_e - y_p k^2}{1 - k^2} - \frac{y_{e_1} - y_p k^2}{1 - k^2} = M \left(\frac{x_e - x_p k^2}{1 - k^2} - \frac{x_{e_1} - x_p k^2}{1 - k^2} \right)$$
(5)

Simplifying,

L:
$$y_e - y_{e_1} = M(x_e - x_{e_1})$$
 (6)

So all the evader initial positions which result in same interception point (x_I, y_I) for constant k lie on the line with slope equal to the slope of \overline{IT} .

But this equation is also satisfied by all the evader coordinates whose corresponding interception points lie on \overline{IT} , as is obvious from (4).

Note that interception point (x_I, y_I) has to lie on all Apollonius circles for which it is interception point.

This means
$$(x_I - x_c)^2 + (y_I - y_c)^2 = R^2$$
 (7)

Substituting corresponding (1), (2), (3) in (7)

$$x_I^2 + y_I^2 - 2x_I x_e - 2y_I y_e = \frac{k^2 (x_p^2 + y_p^2)}{1 - k^2} - \frac{(x_e^2 + y_e^2)}{1 - k^2}$$

Solving we get the following circle equation.

C:
$$(x_e - x_I)^2 + (y_e - y_I)^2 = k^2 ((x_p - x_I)^2 + (y_p - y_I)^2)$$
 (8)

C is the set of all evader coordinates whose corresponding Apollonius circles pass through (x_I, y_I)

Fig 1. The game geometry with all the possible evader positions and corresponding Apollonius circles

Solving C and L means that we are finding all the evader coordinates whose corresponding Apollonius circles with their centres lying on \overline{IT} , pass through (x_I, y_I) . Hence the solution set can also include the cases which are infeasible, cases where the centres of Apollonius circles which pass through (x_I, y_I) , lie on \overline{IT} , but their interception points lie on the diametrically opposite end as in fig 2.

Fig 2. Infeasible case where (x_{e_2}, y_{e_2}) satisfies equations (6) & (8) but still its corresponding interception point is not (x_I, y_I)

Locus of evader coordinates with different evader velocities and same interception point:

Objective is to find the set $\{x_e, y_e, v_e\}$ that result in (x_I, y_I) .

Equation (5) changes to

$$\frac{y_{e} - y_{p}k_{e}^{2}}{1 - k_{e}^{2}} - \frac{y_{e_{1}} - y_{p}k^{2}}{1 - k^{2}} = M \left(\frac{x_{e} - x_{p}k_{e}^{2}}{1 - k_{e}^{2}} - \frac{x_{e_{1}} - x_{p}k^{2}}{1 - k^{2}} \right), \qquad k_{e} = \frac{v_{e}}{v_{p}}$$

$$\Rightarrow \frac{y_{e} - y_{p}k_{e}^{2}}{1 - k_{e}^{2}} - M \frac{x_{e} - x_{p}k_{e}^{2}}{1 - k_{e}^{2}} = c, \quad \text{Where } c = \frac{y_{e_{1}} - y_{p}k^{2}}{1 - k^{2}} - M \frac{x_{e_{1}} - x_{p}k^{2}}{1 - k^{2}}$$

$$\Rightarrow (y_{e} - y_{p}k_{e}^{2}) - M(x_{e} - x_{p}k_{e}^{2}) = c(1 - k_{e}^{2})$$

$$\Rightarrow (y_{e} - Mx_{e} - c) = (y_{p} - Mx_{p} - c)k_{e}^{2}$$

$$(y_{e} - Mx_{e} - c) = pk_{e}^{2} \qquad (9), \qquad \text{where } p = (y_{p} - Mx_{p} - c)$$
And equation (8) becomes $(x_{e} - x_{I})^{2} + (y_{e} - y_{I})^{2} = k_{e}^{2} \left((x_{p} - x_{I})^{2} + (y_{p} - y_{I})^{2} \right)$

$$\text{Substituting } k_{e}^{2} \text{ from (9) in (10), } (x_{e} - x_{I})^{2} + (y_{e} - y_{I})^{2} = \frac{\left((x_{p} - x_{I})^{2} + (y_{p} - y_{I})^{2} \right)}{p} (y_{e} - Mx_{e} - c)$$

Fig 2. $\{x_e, y_e, v_e\}$ for same interception point will be intersection of paraboloid and a plane (with k_e^2 considered as z)

Let
$$\frac{\left(\left(x_{p}-x_{I}\right)^{2}+\left(y_{p}-y_{I}\right)^{2}\right)}{p} \text{ be } L$$

Rearranging the terms, $(x_e - x_{cm})^2 + (y_e - y_{cm})^2 = \overline{R}^2$ (11)

where
$$x_{cm} = \left(x_i - \frac{LM}{2}\right)$$
, $y_{cm} = \left(y_i + \frac{L}{2}\right)$, $\overline{R}^2 = \frac{L^2(M^2 + 1)}{4} + L(y_I - Mx_I - c)$

So all (x_e, y_e) whose corresponding interception point can be (x_I, y_I) satisfy (11) and corresponding k_e lie on (9)

Fig 3. $\{x_{e}, y_{e}, v_{e}\}$