Numerical Analysis Semester 4

Contents

Chapter 1	Interpolation	Page 2_
1.1	Linear Interpolation	2
1.2	Polynomial Interpolation	2
	Lagrange Polynomials — 2 • Newton Polynomial — 4 • Error due to polynomial interpolation — 6 Interpolation — 6	• Hermite

Chapter 1

Interpolation

1.1 Linear Interpolation

$$\begin{array}{c|cccc}
x & f(x) \\
\hline
0 & 0 \\
1 & 2 \\
2 & 3 \\
3 & 1 \\
4 & 3 \\
5 & 3.5
\end{array}$$

Linear interpolation is just drawing lines between the data points.

Definition 1.1.1: Linear Interpolation(lerp) equation

The equation of the lines between data points is

$$y = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}(x - x_i) + y_i.$$

Theorem 1.1.1 Error due to linear interpolation

Let f be a continuous and differentiable on [a,b]. We define the error z(x) to be

$$|z(x)| \leq \frac{(b-a)^2}{8} \sup_{a \leq x \leq b} |f''(x)|.$$

1.2 Polynomial Interpolation

1.2.1 Lagrange Polynomials

Really nice video here explaining Lagrange polynomials.

Theorem 1.2.1 Lagrange polynomial equation

Consider a set of n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The Lagrange polynomial for this set of data is

$$L(x) = \sum_{k=0}^{n} y_k \ell_k(x).$$

where

$$\ell_k(x) = \prod_{\substack{i=1\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}.$$

Case of equidistant points

If the set of x_i are equidistant from each other with a distance of $h = x_{i+1} - x_i$, then we can represent any point as $x_k = x_0 + kh$ where $k \in \mathbb{N}$ and any number $x = x_0 + sh$ where $s \in \mathbb{R}$. We can rewrite the formula as

$$Q(s) = \sum_{k=0}^{n} \ell_k(s) f(x_k).$$

where

$$\ell_k(s) = \prod_{\substack{j=0\\k\neq k}}^n \frac{s-j}{k-j}.$$

by substitution

$$s = \frac{x - x_0}{h}.$$

Existence

Proof: P(x) belongs to the vectorial space of polynomial of degree of, at most, n. Now, we must fins a basis for this vectorial space. Find the polynomial ℓ_k of degree $\leq n$ such that

$$\ell_k(x_i) = \delta_{ki} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}.$$

Then, $\ell_k(x) = \lambda(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)$ where

$$\lambda = \frac{1}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}.$$

The (n + 1) polynomials $\ell_k(x)$ for a system of generators in the vectorial space of polynomials of degree at most

$$\lambda_0 \ell_0(x) + \lambda_1 \ell_1(x) + \dots + \lambda_k \ell_k(x) + \dots + \lambda_n \ell_n(x) = 0.$$

for $x = x_k$

$$\lambda_0 \ell_0(x_k) + \lambda_1 \ell_1(x_k) + \dots + \lambda_k \ell_k(x_k) + \dots + \lambda_n \ell_n(x_k) = 0$$
$$0 + 0 + \dots + \lambda_k 1 + \dots + 0 = 0\lambda_k = 0.$$

 \therefore the set of ℓ_k for a basis in the vector space \Rightarrow there has to exist a polynomial passing through the given set of points.

⊜

Uniqueness

Proof: Let P and Q be 2 Lagrange polynomials of degrees $\leq n/P(x_i) = Q(x_i) = f(x_i) \quad \forall i = 0, 1, ..., n$. Let

$$\left. \begin{array}{l} R = P - Q \text{ of degree } \leq n \\ R = 0 \; (n+1) \text{ times} \end{array} \right\} R \equiv 0 \Longrightarrow P = Q \; \forall x.$$

☺

1.2.2 Newton Polynomial

Definition 1.2.1: Newton Polynomial equation

Consider a set of n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The Newton polynomial for this set of data is

$$p_n(x) = \underbrace{a_0}_{A_0} + \underbrace{a_1(x - x_0)}_{A_1} + \underbrace{a_2(x - x_0)(x - x_1)}_{A_2} + \cdots + \underbrace{a_n \prod_{i=0}^{n-1} (x - x_i)}_{A_i}.$$

where

$$a_i = f[x_0, x_1, \ldots, x_i].$$

Here $f[\dots]$ is the divided difference of the inputted data.

Definition 1.2.2: Backwards formula

$$P_n(x) = f_n + A_1 + A_2 + \cdots + A_n.$$

where

$$A_i = f[x_n, x_{n-1}, \dots, x_{n-i}] \prod_{j=n-i+1}^n (x - x_j).$$

The divided difference has 2 formulas, the recurrence formula

$$f[x_0,x_1,\ldots,x_{n+1}] = \frac{f[x_1,x_2,\ldots,x_{n+1}] - f[x_0,x_1,\ldots,x_n]}{x_{n+1} - x_0}.$$

and a general formula

$$f[x_0, x_1, \dots, x_n] = \sum_{i=1}^n \frac{y_i}{\prod_{\substack{k=0 \ i=1}}^n (x_i - x_k)}.$$

Now forget you ever saw those cause there is an easier method to finding the divided difference.

Divided Difference Table

After we have constructed the table we can find the divided difference we want by looking at the top diagonal

Case of equidistant points

Bla bla bla the formula becomes

$$P(t) = a_0 + a_1(t-0) + a_2(t-0)(t-1) + \dots + a_n \prod_{i=0}^{n-1} (t-i).$$

where in this case

$$a_k = \frac{\nabla^k [y](x_k)}{k!}.$$

and

$$x=x_0+th.$$

where $\nabla^k[y]$ is the discrete difference.

$$\nabla[y](x_i) = y(x_i + h) - y(x_i).$$

and the backwards formula is

$$P(t) = f_n + A_1 + A_2 + \cdots + A_n.$$

where

$$A_i = \frac{\bar{\nabla}^i f_n}{i!} \prod_{j=n-i+1}^n (t-j).$$

Definition 1.2.3: Discrete Difference

Forward discrete difference:

$$\nabla[y](x_i) = y(x_i + h) - y(x_i)$$

$$\nabla^2[y](x_i) = \nabla[y](x_i + h) - \nabla[y](x_i)$$

$$= y(x_i + 2h) - 2y(x_i + h) + y(x_i)$$

$$\nabla^k[y](x_i) = \nabla\left(\nabla^{k-1}[y](x_i)\right)$$

Backwards discrete difference:

$$\bar{\nabla}[y](x_i) = y(x_i) - y(x_i - h)$$
$$\bar{\nabla}^k[y](x_i) = \bar{\nabla}\left(\bar{\nabla}^{k-1}[y](x_i)\right)$$

1.2.3 Error due to polynomial interpolation

Let f(x) be of class $C^{n+1} \quad \forall x \in [a,b]$ and let the polynomial P(x) interpolate it.

The error function is bounded by

$$|\text{Error}| = |f(x) - P(x)| \le \frac{\left|\prod_{i=0}^{n} (x - x_i)\right|}{(n+1)!} \sup_{x \in [a,b]} |f^{(n+1)}(x)|.$$

1.2.4 Hermite Interpolation

Definition 1.2.4: Hermite interpolation formula

Consider (n + 1) sets of point (x_i, y_i, y_i') representing f(x) $(y_i = f(x_i))$ and $y_i' = f'(x_i)$, the hermite polynomial P(x) interpolates f(x) such that P'(x) = f'(x).

$$P(x) = \sum_{i=0}^{n} h_i(x)y_i + \sum_{i=0}^{n} k_i(x)y_i'.$$

where

$$h_i(x) = (1 - 2(x - x_i)\ell_i'(x_i)) \ell_i^2(x)$$

$$k_i(x) = (x - x_i)\ell_i^2(x)$$

$$\ell_i(x) = \prod_{j=0}^n \frac{x - x_j}{x_i - x_j}$$

Theorem 1.2.2 Error due to Hermite interpolation

$$|\text{Error}| = |f(x) - P(x)| \leq \frac{\left|\prod_{i=0}^n (x - x_i)^2\right|}{(2n+2)!} \sup_{x \in [a,b]} |f^{(2n+2)}(x)|.$$