

Data Mining Lab

Fall 2017 NTHU, ISA Elvis Saravia

Slides: https://goo.gl/7EhCQL

king - man + woman = ?

Expectations for this lab

- Environment Setup
- 1
- Data Preprocessing

- Training Models
- Evaluation of Models
- Assignment

Knowledge Discovery (KDD) Process

Word Vector Representations

Word embedding is the collective name for a set of <u>language modeling</u> and <u>feature learning</u> techniques in <u>natural language processing</u> (NLP) where words or phrases from the vocabulary are mapped to <u>vectors</u> of <u>real numbers</u>. Conceptually it involves a mathematical <u>embedding</u> from a space with one dimension per word to a continuous <u>vector space</u> with much lower dimension. - **Wikipedia**

Represent the meaning of a word?

Words and phrases directly represent an idea

Words and signs are used to express an idea in work of writing, art, etc.

How does a computer represent the meaning of a word?

Represent the meaning of a word on a computer?

Solution: Taxonomy, such as WordNet and ConceptNet, that contains hypernyms (is-a) relationships and synonyms sets.

Problems with Discrete Representation

- Low Coverage fails to capture all word nuances (e.g., synonyms)
- **Difficult to keep up to date** we just keep inventing new words like *boo* and *fab*
- Subjective because it requires human annotation

Problems with Discrete Representation

Most Natural Language Processing (NLP) and rule-based approaches regard words as **atomic symbols** ("each word a nation on its own")

- Word Similarity Fails no clear relationship between words
- Curse of Dimensionality too many dimensions; too much sparsity; memory inefficient

One-hot representation

Distribution Similarity Based Representations

Idea: represent words through it neighbours or the context in which they are used

Solution: dense vector representation for predicting words appearing in some context

"You shall know a word by the company it keeps"

Distributed representation (low-dimension vector)

hotel = [0.728 0.234 -0.23 0.223]

Word2vec (faster and simpler)

Ideas:

- Word vectors are trained so that they become good features for predicting context (surrounding) words
- 2. Every word is mapped to a **unique word vector**
- 3. Similar words tend to be **close to each other** in a vector space (use <u>cosine similarity</u>)

Algorithm:

- Initialize random vectors
- 2. Pick an objective function
- 3. Do gradient descent

Architectures: CBOW and Skip-gram

CBOW - predicts the current word based on the context

$$J_{\theta} = \frac{1}{T} \sum_{t=1}^{T} \log p(w_t \mid w_{t-n}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+n}).$$

Skip-gram - predicts surrounding words given the current word

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j}|w_t)$$

parameters to optimize denotes window range

Feedforward Neural Net Language Model (NNLM)

Paper source: https://arxiv.org/pdf/1301.3781.pdf

Quiz!

CBOW or Skip-gram?

Intuition: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Review Skip-gram architecture

Example: "The fox jumped over the lazy dog"

Objective function: maximize the log-likelihood of seeing the *context* words given the *target* word

How to define this prob. distribution?

Hard work pays off

Features: Vector Arithmetic

Application Opportunities

- 1. Smart Search engines
- Context-aware conversational bots

https://www.healthvault.com/en-us/health-bo t/

Research Opportunities

- Machine translation
- 2. Recommendation systems
- 3. Feature engineering

References

- Main Repository: https://github.com/omarsar/data_mining_lab_fall_2
- Other resources:
 - O Gensim guide for word2vec: https://goo.gl/i2UrdH
- Original word2vec paper: https://goo.gl/7b72S9
- Stanford NLP with Deep Learning Course: http://web.stanford.edu/class/cs224n/syllabus.html
- Text Mining Overview: https://goo.gl/uNJDrs
- word2vec online calculator: http://rare-technologies.com/word2vec-tutorial/#app

Code Session

Sentence Classification

Task: Classify text into one of 4 emotions

Data: SemEval 2017 Task - Emotion Intensity

	id	text	emotion	intensity
617	20617	Recording some more #FNAF and had to FaceTime	fear	0.458
992	20992	@darwinwatersons @pennyfitzger31 @gumballwatte	fear	0.271
144	20144	@Budget car rental you have made realize why	fear	0.729
224	20224	Retweeted Dr. Rand Paul (@RandPaul):\n\nStop f	fear	0.667
385	40385	@SimonSSSJ123 @EllieG10853 @Onision @Eugenia_C	sadness	0.485
574	10574	@MMASOCCERFAN @outmagazine No offense but the \dots	anger	0.417
281	10281	Have wee pop socks on and they KEEP FALLING OF	anger	0.562
579	30579	@Devilligan It's a beautifully sincere balanci	joy	0.375
609	10609	I've been wanting salty fries from McDonald's	anger	0.396
231	30231	Ryan Gosling and Eva Mendes finally ; B joyfu	joy	0.620

Sample

You ever just find that the people around you really irritate you sometimes? That's me right now

Anger

You ever just find that the people around you really irritate you sometimes? That's me right now

Sample

r U scared to present in front of the class? severe anxiety... whats That r u sad sometimes?? go get ur depression checked out IMEDIATELY!!!

Fear

r U scared to present in front of the class? severe anxiety... whats That r u sad sometimes?? go get ur depression checked out IMEDIATELY!!!

Demo