Outline

Recursive computation of the most powerful unfalsified model

Jan C. Willems, Ivan Markovsky, and Bart De Moor

K.U.Leuven, ESAT-SISTA

Introduction

Lag-recursive computation of the MPUM

Simulation example

Recursive LTI modeling

Our aim:

exact recursive modeling of time series by LTI systems

The algorithms can work recursively in:

- 1. the number of time series,
- 2. the length of the time series (real-time),
- 3. the length of the system laws,

or a combination of these.

recursive \approx computationally efficient algorithms

Introduction

Lag-recursive computation of the MPUM

Simulation example

Introduction

Lag-recursive computation of the MPUM

Simulation example

System identification: $w_d \mapsto \widehat{\mathscr{B}} \in \mathscr{M}$

Notation:

- $\mathbf{w}_{d} = (\mathbf{u}_{d}, \mathbf{y}_{d})$ given data, in this talk a vector time series
- $\widehat{\mathscr{B}}$ to be found model for W_d , in this talk an LTI system
- \bullet ${\mathscr M}$ model class, in this talk the set of LTI systems ${\mathscr L}$

System identification

- defines a mapping $w_d \mapsto \mathscr{B}$
- · derives effective algorithms that realize the mapping, and
- develops efficient software that implements the algorithms

Exact identification: two points of view

Find the true data generating system

- assume that $w_d \in \bar{\mathscr{B}} \in \mathscr{L}$
- find back $\bar{\mathscr{B}}$ from $w_{\rm d}$ (and an upper bound of the order)
- this is possible provided $\bar{\mathscr{B}}$ is controllable and an input component of $w_{\rm d}$ is persistently exciting

Find the least complex LTI system that fits w_d

- no assumption about $w_{\rm d}$
- find $\widehat{\mathscr{B}} \in \mathscr{L}$ with minimal # of inputs and order, s.t. $w_d \in \widehat{\mathscr{B}}$
- $\widehat{\mathscr{B}}$ —most powerful unfalsified model (MPUM) for w_{d} in \mathscr{L}

Introduction

Lag-recursive computation of the MPUM

Simulation example

LTI model representations

• Kernel representation (parameter $R(z) := \sum_{i=0}^{1} R_i z^i$)

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_1 w(t+1) = 0$$

• Impulse response represent (parameter $h: \mathbb{Z} \to \mathbb{R}^{p \times m}$)

$$w = \operatorname{col}(u, y), \qquad y(t) = \sum_{\tau = -\infty}^{t} h(\tau) u(t - \tau)$$

Input/state/output representation (parameter (A, B, C, D))

$$w = \operatorname{col}(u, y),$$
 $x(t+1) = Ax(t) + Bu(t)$
 $y(t) = Cx(t) + Du(t)$

p := dim(y) = row dim(R) is the # of outputs

m := dim(u) is the # of inputs, 1 := degree(R) is the lag

The most powerful unfalsified model (MPUM)

£w — LTI model class with w external variables

 $\mathscr{B} \in \mathscr{L}^{\mathsf{w}}$ is a linear, shift-invariant, closed subspace of $(\mathbb{R}^{\mathsf{w}})^{\mathbb{N}}$

 \mathscr{B} is the MPUM of w_d in \mathscr{L}^w if

- 1. \mathscr{B} is in the model class \mathscr{L}^{w} , *i.e.*, $\mathscr{B} \in \mathscr{L}^{\mathsf{w}}$
- 2. \mathscr{B} is unfalsified by w_d , *i.e.*, $w_d \subseteq \mathscr{B}$, and
- 3. any other unfalsified system in \mathcal{L}^{w} is less powerful, *i.e.*, $\mathcal{B}' \in \mathcal{L}^{w}$ and $w_{d} \subseteq \mathcal{B}'$ imply $\mathcal{B} \subseteq \mathcal{B}'$.

Introduction

Lag-recursive computation of the MPUM

Simulation example

Laws of the system

Consider a system $\mathscr{B} \in \mathscr{L}^{\mathsf{w}}$ defined by

$$\mathcal{B} := \{ w \in (\mathbb{R}^{w})^{\mathbb{Z}} \mid R_{0}w(t) + R_{1}w(t+1) + \dots + R_{1}w(t+1) = 0 \}$$
and let $R(z) := \sum_{i=0}^{1} R_{i}z^{i} \in \mathbb{R}^{p \times w}[z].$

The rows $r_1(z), \dots, r_p(z)$ of R(z) are annihilators or laws of \mathcal{B} .

Define the shift operator σ : $\sigma w(t) := w(t+1)$

$$r_i(\sigma)\mathscr{B}=0,$$
 for $i=1,\ldots,p$

Hankel matrix of the data

$$\mathcal{H}_{l+1}(w_d) := egin{bmatrix} w_d(1) & w_d(2) & \cdots & w_d(T-I) \ w_d(2) & w_d(3) & \cdots & w_d(T-I+1) \ w_d(3) & w_d(4) & \cdots & w_d(T-I+2) \ dots & dots & dots \ w_d(I+1) & w_d(\Delta+1) & \cdots & w_d(T) \end{bmatrix}$$

The left kernel of $\mathcal{H}_{I+1}(w_d)$

$$\mathcal{N}_{l+1}(\mathbf{w}_{d}) := \operatorname{left} \ker \left(\mathscr{H}_{l+1}(\mathbf{w}_{d}) \right)$$

contains laws of $\mathscr{B}_{mpum}(w_d)$.

Moreover, if $\mathscr{B}_{mpum}(w_d)$ is controllable, all laws of $\mathscr{B}_{mpum}(w_d)$ are contained in a basis of $\mathscr{N}_{l+1}(w_d)$ for l > 1 (the lag of \mathscr{B}_{mpum}).

Introduction

Lag-recursive computation of the MPUM

Simulation example

Inefficiency of the algorithm

Suppose that $\mathcal{H}_{l+1}(w_d)$ is rank deficient and let

$$\underbrace{\begin{bmatrix} r_0 & r_1 & \cdots & r_l \end{bmatrix}}_{r} \mathscr{H}_{l+1}(w_d) = 0.$$

Then due to the Hankel structure for L > I

$$\begin{bmatrix} r_0 & r_1 & \cdots & r_l & & & 0 \\ & r_0 & r_1 & \cdots & r_l & & & \\ & & \cdots & \cdots & & \cdots & & \\ 0 & & & r_0 & r_1 & \cdots & r_l \end{bmatrix} \mathcal{H}_{L+1}(w_d) = 0.$$

Moreover, extra work has to be done in order to "extract" from left $\ker (\mathcal{H}_{L+1}(w_d))$ a short law r.

In polynomial language, R(z) is not row reduced and an extra work is needed for its row reduction.

Identification algorithm: $w_d \rightarrow R(z)$

Lag-recursive computation of the MPUM

Let the rows of R form a basis for $\mathcal{N}_{l+1}(w_d)$, i.e.,

$$R\mathscr{H}_{l+1}(w_d) = 0$$
, $\operatorname{rank}(R) = \dim (\mathscr{N}_{l+1}(w_d))$.

Define a polynomial matrix R(z) constructed from R,

$$R(z) = \sum_{i=0}^{l} R_i z^i \in \mathbb{R}^{g \times w}[z],$$

where
$$R =: \begin{bmatrix} R_0 & R_1 & \cdots & R_I \end{bmatrix}, R_i \in \mathbb{R}^{g \times w}$$
. Then

$$\ker(R(\sigma)) = \mathscr{B}_{mpum}(w_d).$$

Introduction

Lag-recursive computation of the MPUM

Simulation example

Lag-recursive algorithm

Assume that the k shortest laws $r^{(1)}, \ldots, r^{(k)}$ have been computed

$$r^{(i)}(\sigma) w_{\rm d} = 0$$
, for $i = 1, ..., k$.

Question: How to use this information in order to compute the remaining laws $r^{(k+1)}, \dots, r^{(p)}$ of $\mathscr{B}_{mpum}(w_d)$ efficiently?

Assuming that the system induced by the matrix

$$R' := \operatorname{col}\left(r^{(1)}, \dots, r^{(k)}\right)$$

is controllable, this can be done as follows:

- 1. Compute D, such that col(R', D) is unimodular.
- 2. Define $e := D(\sigma) w_d$.
- 3. Compute E, such that $\mathscr{B}_{mpum}(e) = \ker(E(\sigma))$.
- 4. Define R := (R', ED).

Lag-recursive algorithm (cont.)

Lemma

- Assume that $\mathscr{B} := \ker (R(\sigma))$ is controllable.
- Let $R'(\sigma)\mathscr{B} = 0$ and $\mathscr{B}' := \ker(R'(\sigma))$ is controllable.
- Let D be such that col(R', D) is unimodular.

Then there exist *U* and *F*, such that UR = col(R', FD).

Proposition

- Assume that $\mathscr{B}_{mpum}(w_d)$ is controllable.
- Let $R'(\sigma)w_d=0$ and $\ker \left(R'(\sigma)\right)$ is controllable.
- Let D be such that col(R', D) is unimodular.
- Define $e := D(\sigma) w_d$ and let $\ker (E(\sigma)) = \mathscr{B}_{mpum}(e)$.

Then $\ker \left(\operatorname{col}(R', ED)(\sigma)\right) = \mathscr{B}_{\mathrm{mpum}}(w_{\mathrm{d}}).$

Introduction

Lag-recursive computation of the MPUM

Simulation example

$R = \text{lag recursive mpum}(W_d)$

```
1: if w_{\rm d} = 0 then
```

- 2: Let R := [].
- 3: **else**
- 4: Find the smallest $I \in \{0,1,2,...\}$, for which $\mathcal{H}_{l+1}(w_d)$ is rank deficient, or define I := -1 if there is no such I.
- 5: **if** l = -1 **then**
- 6: Let R := [].
- 7: **else**
- 8: Compute $r := [r_0 \quad r_1 \quad \cdots \quad r_I], \ r_i \in \mathbb{R}^{1 \times w}$ in left ker $(\mathscr{H}_{l+1}(w_d))$ and let $r(z) := \sum_{i=0}^{I} r_i z^i$.
- 9: Find D, such that col(r, D) is unimodular.
- 10: Compute $e := D(\sigma) w_d$.
- 11: $r' := lag_recursive_mpum(e)$.
- 12: if r' = [], then R := r else R := col(r, r'D) end if
- 13: **end if**
- 14: **end if**

Lag-recursive algorithm (cont.)

Lag-recursive computation of the MPUM

Computing a D, such that col(r, D) is unimodular is a Bézout-type problem.

Assuming that r_1 and r_2 of r are coprime, we solve the Bézout equation

$$r_1b - r_2a = 1$$
,

and define

$$D = \begin{bmatrix} a & b & 0 \\ 0 & 0 & I_{w-2} \end{bmatrix},$$

where I_{w-2} is the $(w-2) \times (w-2)$ identity matrix.

Applying the procedure recursively leads to a lag-recursive algorithm for computing a kernel representation of $\mathscr{B}_{mpum}(w_d)$.

Introduction

ag-recursive computation of the MPLII

Simulation example

Simulation example

Consider the 2 outputs 1 input system \mathcal{B} induced by

$$R(z) = \begin{bmatrix} r_1(z) \\ r_2(z) \end{bmatrix} = \begin{bmatrix} -1.73 & 1.37 & -2.03 \\ 0.35 & -0.50 & -0.24 \end{bmatrix} z^0 + \begin{bmatrix} 5.97 & -8.36 & 12.25 \\ 0.16 & 0.65 & 0.19 \end{bmatrix} z^1 + \begin{bmatrix} 2.00 & 7.82 & -11.33 \\ 0.00 & 0.00 & 0.00 \end{bmatrix} z^2.$$

 \mathcal{B} has two laws: $r_1(z)$ is of degree 2 and $r_2(z)$ is of degree 1

Simulation example (cont.)

$$\dim \left(\underbrace{\mathsf{leftker}(\mathscr{H}_2(w_{\mathsf{d}}))}_{\mathscr{N}_2(w_{\mathsf{d}})}\right) = 1 \text{ and } \mathscr{N}_2(w_{\mathsf{d}}) = \mathsf{span}\big(\mathit{r}_2(z)\big)$$

$$\mathcal{N}_2(w_d) = \text{span}\left(\begin{bmatrix} 0.35 & -0.50 & -0.24 & 0.16 & 0.65 & 0.19 \end{bmatrix}^\top\right).$$

$$\dim \left(\mathscr{N}_3(w_d) \right) = 3$$
, and $\mathscr{N}_3(w_d) = \operatorname{span} \left(r_2(z), z r_2(z), r_1(z) \right)$

$$\operatorname{span}\left(\begin{bmatrix} 0.35 & -0.5 & -0.24 & 0.16 & 0.65 & 0.19 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.35 & -0.50 & -0.24 & 0.16 & 0.65 & 0.19 \\ -1.7 & 1.37 & -2.03 & 5.97 & -8.36 & 12.25 & 2.00 & 7.82 & -11.3 \end{bmatrix}^{\top}\right).$$

In general, dim
$$(\mathcal{N}_{l+1}(w_d)) = 2l - 1$$
, for $l \ge 1$.

troduction Lag-recursive computation of the MPUM

Simulation example

Conclusions

- Exact recursive in the lag of the laws modeling.
- Avoid the repeated calculation of one and the same law.
- Main idea: project the time series on the orthogonal complement of the currently found laws.
- This is achieved by solving a Bézout equation.

roduction Lag-recursive computation of the MPUM

Simulation example (cont.)

Let w_d be a random trajectory of \mathcal{B} .

Applied on w_d , the proposed algorithm returns the matrix

$$\widehat{R}(z) = \begin{bmatrix} 0.36 & -0.52 & -0.24 \\ 0.00 & 0.03 & 0.13 \end{bmatrix} z^{0} + \\ \begin{bmatrix} 0.17 & 0.67 & 0.20 \\ -0.03 & -0.12 & -0.74 \end{bmatrix} z^{1} + \\ \begin{bmatrix} 0.00 & 0.00 & 0.00 \\ 0.03 & 0.13 & 0.64 \end{bmatrix} z^{2}$$

which is up to pre-multiplication by unimodular matrix equal to R

$$\mathscr{B} = \ker(\widehat{R}(\sigma)).$$

duction Lag-recursive computation of the MPUM Sim

Simulation example

Thank you