Chapter 10

(Limitations of Algorithm Power)

- **a.** Prove that any algorithm for this problem must make at least $\lceil \log_3(2n+1) \rceil$ weighings in the worst case.
- **b.** Draw a decision tree for an algorithm that solves the problem for n = 3 coins in two weighings.
- **c.** Prove that there exists no algorithm that solves the problem for n = 4 coins in two weighings.
- **d.** Draw a decision tree for an algorithm that solves the problem for n = 4 coins in two weighings by using an extra coin known to be genuine.
- **e.** Draw a decision tree for an algorithm that solves the classic version of the problem—that for n = 12 coins in three weighings (with no extra coins being used).

11. *Jigsaw puzzle* A jigsaw puzzle contains *n* pieces. A "section" of the puzzle is a set of one or more pieces that have been connected to each other. A "move" consists of connecting two sections. What algorithm will minimize the number of moves required to complete the puzzle?

11.3 P, NP, and NP-Complete Problems

In the study of the computational complexity of problems, the first concern of both computer scientists and computing professionals is whether a given problem can be solved in polynomial time by some algorithm.

DEFINITION 1 We say that an algorithm solves a problem in polynomial time if its worst-case time efficiency belongs to O(p(n)) where p(n) is a polynomial of the problem's input size n. (Note that since we are using big-oh notation here, problems solvable in, say, logarithmic time are solvable in polynomial time as well.) Problems that can be solved in polynomial time are called *tractable*, and problems that cannot be solved in polynomial time are called *intractable*.

There are several reasons for drawing the intractability line in this way. First, the entries of Table 2.1 and their discussion in Section 2.1 imply that we cannot solve arbitrary instances of intractable problems in a reasonable amount of time unless such instances are very small. Second, although there might be a huge difference between the running times in O(p(n)) for polynomials of drastically different degrees, there are very few useful polynomial-time algorithms with the degree of a polynomial higher than three. In addition, polynomials that bound running times of algorithms do not usually have extremely large coefficients. Third, polynomial functions possess many convenient properties; in particular, both the sum and composition of two polynomials are always polynomials too. Fourth, the choice of this class has led to a development of an extensive theory called *computational complexity*, which seeks to classify problems according to their inherent difficulty. And according to this theory, a problem's intractability

remains the same for all principal models of computations and all reasonable input-encoding schemes for the problem under consideration.

We just touch on some basic notions and ideas of complexity theory in this section. If you are interested in a more formal treatment of this theory, you will have no trouble finding a wealth of textbooks devoted to the subject (e.g., [Sip05], [Aro09]).

P and NP Problems

Most problems discussed in this book can be solved in polynomial time by some algorithm. They include computing the product and the greatest common divisor of two integers, sorting a list, searching for a key in a list or for a pattern in a text string, checking connectivity and acyclicity of a graph, and finding a minimum spanning tree and shortest paths in a weighted graph. (You are invited to add more examples to this list.) Informally, we can think about problems that can be solved in polynomial time as the set that computer science theoreticians call *P*. A more formal definition includes in *P* only *decision problems*, which are problems with yes/no answers.

DEFINITION 2 Class P is a class of decision problems that can be solved in polynomial time by (deterministic) algorithms. This class of problems is called **polynomial**.

The restriction of P to decision problems can be justified by the following reasons. First, it is sensible to exclude problems not solvable in polynomial time because of their exponentially large output. Such problems do arise naturally—e.g., generating subsets of a given set or all the permutations of n distinct items—but it is apparent from the outset that they cannot be solved in polynomial time. Second, many important problems that are not decision problems in their most natural formulation can be reduced to a series of decision problems that are easier to study. For example, instead of asking about the minimum number of colors needed to color the vertices of a graph so that no two adjacent vertices are colored the same color, we can ask whether there exists such a coloring of the graph's vertices with no more than m colors for $m = 1, 2, \ldots$ (The latter is called the m-coloring problem.) The first value of m in this series for which the decision problem of m-coloring has a solution solves the optimization version of the graph-coloring problem as well.

It is natural to wonder whether *every* decision problem can be solved in polynomial time. The answer to this question turns out to be no. In fact, some decision problems cannot be solved at all by any algorithm. Such problems are called *undecidable*, as opposed to *decidable* problems that can be solved by an algorithm. A famous example of an undecidable problem was given by Alan

Turing in 1936.¹ The problem in question is called the *halting problem*: given a computer program and an input to it, determine whether the program will halt on that input or continue working indefinitely on it.

Here is a surprisingly short proof of this remarkable fact. By way of contradiction, assume that A is an algorithm that solves the halting problem. That is, for any program P and input I,

$$A(P, I) = \begin{cases} 1, & \text{if program } P \text{ halts on input } I; \\ 0, & \text{if program } P \text{ does not halt on input } I. \end{cases}$$

We can consider program P as an input to itself and use the output of algorithm A for pair (P, P) to construct a program Q as follows:

$$Q(P) = \begin{cases} \text{halts,} & \text{if } A(P, P) = 0, \text{ i.e., if program } P \text{ does not halt on input } P; \\ \text{does not halt,} & \text{if } A(P, P) = 1, \text{ i.e., if program } P \text{ halts on input } P. \end{cases}$$

Then on substituting Q for P, we obtain

$$Q(Q) = \begin{cases} \text{halts,} & \text{if } A(Q, Q) = 0, \text{ i.e., if program } Q \text{ does not halt on input } Q; \\ \text{does not halt,} & \text{if } A(Q, Q) = 1, \text{ i.e., if program } Q \text{ halts on input } Q. \end{cases}$$

This is a contradiction because neither of the two outcomes for program Q is possible, which completes the proof.

Are there decidable but intractable problems? Yes, there are, but the number of *known* examples is surprisingly small, especially of those that arise naturally rather than being constructed for the sake of a theoretical argument.

There are many important problems, however, for which no polynomial-time algorithm has been found, nor has the impossibility of such an algorithm been proved. The classic monograph by M. Garey and D. Johnson [Gar79] contains a list of several hundred such problems from different areas of computer science, mathematics, and operations research. Here is just a small sample of some of the best-known problems that fall into this category:

Hamiltonian circuit problem Determine whether a given graph has a Hamiltonian circuit—a path that starts and ends at the same vertex and passes through all the other vertices exactly once.

Traveling salesman problem Find the shortest tour through n cities with known positive integer distances between them (find the shortest Hamiltonian circuit in a complete graph with positive integer weights).

^{1.} This was just one of many breakthrough contributions to theoretical computer science made by the English mathematician and computer science pioneer Alan Turing (1912–1954). In recognition of this, the ACM—the principal society of computing professionals and researchers—has named after him an award given for outstanding contributions to theoretical computer science. A lecture given on such an occasion by Richard Karp [Kar86] provides an interesting historical account of the development of complexity theory.

Knapsack problem Find the most valuable subset of *n* items of given positive integer weights and values that fit into a knapsack of a given positive integer capacity.

Partition problem Given n positive integers, determine whether it is possible to partition them into two disjoint subsets with the same sum.

Bin-packing problem Given n items whose sizes are positive rational numbers not larger than 1, put them into the smallest number of bins of size 1.

Graph-coloring problem For a given graph, find its chromatic number, which is the smallest number of colors that need to be assigned to the graph's vertices so that no two adjacent vertices are assigned the same color.

Integer linear programming problem Find the maximum (or minimum) value of a linear function of several integer-valued variables subject to a finite set of constraints in the form of linear equalities and inequalities.

Some of these problems are decision problems. Those that are not have decision-version counterparts (e.g., the m-coloring problem for the graph-coloring problem). What all these problems have in common is an exponential (or worse) growth of choices, as a function of input size, from which a solution needs to be found. Note, however, that some problems that also fall under this umbrella can be solved in polynomial time. For example, the Eulerian circuit problem—the problem of the existence of a cycle that traverses all the edges of a given graph exactly once—can be solved in $O(n^2)$ time by checking, in addition to the graph's connectivity, whether all the graph's vertices have even degrees. This example is particularly striking: it is quite counterintuitive to expect that the problem about cycles traversing all the edges exactly once (Eulerian circuits) can be so much easier than the seemingly similar problem about cycles visiting all the vertices exactly once (Hamiltonian circuits).

Another common feature of a vast majority of decision problems is the fact that although solving such problems can be computationally difficult, checking whether a proposed solution actually solves the problem is computationally easy, i.e., it can be done in polynomial time. (We can think of such a proposed solution as being randomly generated by somebody leaving us with the task of verifying its validity.) For example, it is easy to check whether a proposed list of vertices is a Hamiltonian circuit for a given graph with n vertices. All we need to check is that the list contains n+1 vertices of the graph in question, that the first n vertices are distinct whereas the last one is the same as the first, and that every consecutive pair of the list's vertices is connected by an edge. This general observation about decision problems has led computer scientists to the notion of a nondeterministic algorithm.

DEFINITION 3 A *nondeterministic algorithm* is a two-stage procedure that takes as its input an instance *I* of a decision problem and does the following.

Nondeterministic ("guessing") stage: An arbitrary string S is generated that can be thought of as a candidate solution to the given instance I (but may be complete gibberish as well).

Deterministic ("verification") stage: A deterministic algorithm takes both I and S as its input and outputs yes if S represents a solution to instance I. (If S is not a solution to instance I, the algorithm either returns no or is allowed not to halt at all.)

We say that a nondeterministic algorithm solves a decision problem if and only if for every yes instance of the problem it returns yes on some execution. (In other words, we require a nondeterministic algorithm to be capable of "guessing" a solution at least once and to be able to verify its validity. And, of course, we do not want it to ever output a yes answer on an instance for which the answer should be no.) Finally, a nondeterministic algorithm is said to be *nondeterministic polynomial* if the time efficiency of its verification stage is polynomial.

Now we can define the class of NP problems.

DEFINITION 4 Class *NP* is the class of decision problems that can be solved by nondeterministic polynomial algorithms. This class of problems is called *nondeterministic polynomial*.

Most decision problems are in NP. First of all, this class includes all the problems in P:

$$P \subseteq NP$$
.

This is true because, if a problem is in P, we can use the deterministic polynomial-time algorithm that solves it in the verification-stage of a nondeterministic algorithm that simply ignores string S generated in its nondeterministic ("guessing") stage. But NP also contains the Hamiltonian circuit problem, the partition problem, decision versions of the traveling salesman, the knapsack, graph coloring, and many hundreds of other difficult combinatorial optimization problems cataloged in [Gar79]. The halting problem, on the other hand, is among the rare examples of decision problems that are known not to be in NP.

This leads to the most important open question of theoretical computer science: Is P a proper subset of NP, or are these two classes, in fact, the same? We can put this symbolically as

$$P \stackrel{?}{=} NP$$
.

Note that P = NP would imply that each of many hundreds of difficult combinatorial decision problems can be solved by a polynomial-time algorithm, although computer scientists have failed to find such algorithms despite their persistent efforts over many years. Moreover, many well-known decision problems are known to be "NP-complete" (see below), which seems to cast more doubts on the possibility that P = NP.

NP-Complete Problems

Informally, an *NP*-complete problem is a problem in *NP* that is as difficult as any other problem in this class because, by definition, any other problem in *NP* can be reduced to it in polynomial time (shown symbolically in Figure 11.6).

Here are more formal definitions of these concepts.

DEFINITION 5 A decision problem D_1 is said to be **polynomially reducible** to a decision problem D_2 , if there exists a function t that transforms instances of D_1 to instances of D_2 such that:

- 1. t maps all yes instances of D_1 to yes instances of D_2 and all no instances of D_1 to no instances of D_2
- **2.** *t* is computable by a polynomial time algorithm

This definition immediately implies that if a problem D_1 is polynomially reducible to some problem D_2 that can be solved in polynomial time, then problem D_1 can also be solved in polynomial time (why?).

DEFINITION 6 A decision problem *D* is said to be *NP-complete* if:

- **1.** it belongs to class *NP*
- 2. every problem in NP is polynomially reducible to D

The fact that closely related decision problems are polynomially reducible to each other is not very surprising. For example, let us prove that the Hamiltonian circuit problem is polynomially reducible to the decision version of the traveling

FIGURE 11.6 Notion of an *NP*-complete problem. Polynomial-time reductions of *NP* problems to an *NP*-complete problem are shown by arrows.

salesman problem. The latter can be stated as the existence problem of a Hamiltonian circuit not longer than a given positive integer m in a given complete graph with positive integer weights. We can map a graph G of a given instance of the Hamiltonian circuit problem to a complete weighted graph G' representing an instance of the traveling salesman problem by assigning 1 as the weight to each edge in G and adding an edge of weight 2 between any pair of nonadjacent vertices in G. As the upper bound m on the Hamiltonian circuit length, we take m = n, where n is the number of vertices in G (and G'). Obviously, this transformation can be done in polynomial time.

Let G be a yes instance of the Hamiltonian circuit problem. Then G has a Hamiltonian circuit, and its image in G' will have length n, making the image a yes instance of the decision traveling salesman problem. Conversely, if we have a Hamiltonian circuit of the length not larger than n in G', then its length must be exactly n (why?) and hence the circuit must be made up of edges present in G, making the inverse image of the yes instance of the decision traveling salesman problem be a yes instance of the Hamiltonian circuit problem. This completes the proof.

The notion of NP-completeness requires, however, polynomial reducibility of all problems in NP, both known and unknown, to the problem in question. Given the bewildering variety of decision problems, it is nothing short of amazing that specific examples of NP-complete problems have been actually found. Nevertheless, this mathematical feat was accomplished independently by Stephen Cook in the United States and Leonid Levin in the former Soviet Union.² In his 1971 paper, Cook [Coo71] showed that the so-called CNF-satisfiability problem is NP-complete. The CNF-satisfiability problem deals with boolean expressions. Each boolean expression can be represented in conjunctive normal form, such as the following expression involving three boolean variables x_1 , x_2 , and x_3 and their negations denoted \bar{x}_1 , \bar{x}_2 , and \bar{x}_3 , respectively:

$$(x_1 \vee \bar{x}_2 \vee \bar{x}_3) \& (\bar{x}_1 \vee x_2) \& (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3).$$

The CNF-satisfiability problem asks whether or not one can assign values *true* and *false* to variables of a given boolean expression in its CNF form to make the entire expression *true*. (It is easy to see that this can be done for the above formula: if $x_1 = true$, $x_2 = true$, and $x_3 = false$, the entire expression is *true*.)

Since the Cook-Levin discovery of the first known NP-complete problems, computer scientists have found many hundreds, if not thousands, of other examples. In particular, the well-known problems (or their decision versions) mentioned above—Hamiltonian circuit, traveling salesman, partition, bin packing, and graph coloring—are all NP-complete. It is known, however, that if $P \neq NP$ there must exist NP problems that neither are in P nor are NP-complete.

^{2.} As it often happens in the history of science, breakthrough discoveries are made independently and almost simultaneously by several scientists. In fact, Levin introduced a more general notion than *NP*-completeness, which was not limited to decision problems, but his paper [Lev73] was published two years after Cook's.

For a while, the leading candidate to be such an example was the problem of determining whether a given integer is prime or composite. But in an important theoretical breakthrough, Professor Manindra Agrawal and his students Neeraj Kayal and Nitin Saxena of the Indian Institute of Technology in Kanpur announced in 2002 a discovery of a deterministic polynomial-time algorithm for primality testing [Agr04]. Their algorithm does not solve, however, the related problem of factoring large composite integers, which lies at the heart of the widely used encryption method called the **RSA algorithm** [Riv78].

Showing that a decision problem is NP-complete can be done in two steps. First, one needs to show that the problem in question is in NP; i.e., a randomly generated string can be checked in polynomial time to determine whether or not it represents a solution to the problem. Typically, this step is easy. The second step is to show that every problem in NP is reducible to the problem in question in polynomial time. Because of the transitivity of polynomial reduction, this step can be done by showing that a known NP-complete problem can be transformed to the problem in question in polynomial time (see Figure 11.7). Although such a transformation may need to be quite ingenious, it is incomparably simpler than proving the existence of a transformation for every problem in NP. For example, if we already know that the Hamiltonian circuit problem is NP-complete, its polynomial reducibility to the decision traveling salesman problem implies that the latter is also NP-complete (after an easy check that the decision traveling salesman problem is in class NP).

The definition of NP-completeness immediately implies that if there exists a deterministic polynomial-time algorithm for just one NP-complete problem, then every problem in NP can be solved in polynomial time by a deterministic algorithm, and hence P = NP. In other words, finding a polynomial-time algorithm

FIGURE 11.7 Proving *NP*-completeness by reduction.