MULTIPLE OPERAND ADDITION Chapter 3

Multioperand Addition

□ Add up a bunch of numbers

$$s = \sum_{i=1}^{m} x(i)$$

- □ Used in several algorithms
 - Multiplication, recurrences, transforms, and filters
- □ Signed (two's comp) and unsigned
 - Don't deal with overflow...

Bit Arrays

- Simplify things by assuming that all arguments have the same range of values
 - Bit arrays are rectangular
 - Means you may end up sign-extended operands
 - If you are adding *m* operands where each operand is an *n*-bit array: the sum has *n*+*p* bits

$$p = \lceil \log_2 m \rceil$$

 \blacksquare Extend operands (0-fill or sign-extend) to n+p bits

Sign Extension

$$\begin{array}{lll} a_0 a_0 a_0 a_0 a_0 a_{1} a_{2} & \dots & a_{n} \\ b_0 b_0 b_0 b_0 b_1 b_1 b_2 & \dots & b_{n} \\ c_0 c_0 c_0 c_0 c_0 c_1 c_2 & \dots & c_{n} \\ d_0 d_0 d_0 d_0 d_1 d_2 & \dots & d_n \\ e_0 e_0 e_0 e_0 e_0 e_1 e_2 & \dots & e_n \end{array} \qquad \begin{array}{ll} m = 5 \\ \lceil \log_2 5 \rceil = 3 \end{array}$$

sign extension

Figure 3.1: SIGN-EXTENDED ARRAY FOR m = 5.

Sign Extension Trick

- Sign extension requires that all the adder bits for the sign extended bits be implemented
 - A trick for collecting all the sign extensions into one extra term is:
 - Recall:

represent x as
$$x_0.x_1x_2\cdots x_n$$

$$x = -x_0 + \sum_{i=1}^{n} x_i 2^{-i}$$

■ In other words: represent \mathbf{x} as a fraction, and because of two's comp, \mathbf{x}_0 has negative weight

Sign Extension Trick

Apply identity

$$(-x_0)+1-1 = (1-x_0)-1 = x_0'-1$$

□ So this transforms signed operand

$$x_0 \cdot x_1 x_2 x_3 \cdots x_n$$

to be replaced by

$$x_0' \cdot x_1 x_2 x_3 \cdots x_n$$

-1

■ Now you can invert the x0's and add up number of times you did that

Sign Extension Trick b'o. b1b2 ... bn (Show Example...)

Example for m=5<u>-5=1011</u> \square What happens if we add this to x_0 '? $1 + x_0' = 1 + (1 - x_0) = 2 - x_0$ 10-0=10, 10-1=01, $1+x_0'=x_0' x_0$ □ 0+x₀'=x₀'

[5:2] Adder P=5 5 rows of operands K=2 Clumps of 2 bits H=3 3 "carry" bits W=3 2 bits of intermediate sum • denotes the bits representing w (a)

Rows vs. Columns

- □ Reduction by rows adds up p rows and produces a vector of 2 rows (carry save)
 - □ Different adders may take a different sized clump
 - Deals with carries from previous stage, and produces carries to next stage
 - No propagation further than one stage though!
- $\hfill\Box$ Reduction by columns adds a whole column
 - □ Produces a single-row output
 - As many bits as necessary for that size column

(p:q] Counters

- \square Add up a column of p bits
 - Result is q bits that represent the sum of those column bits
 - $lue{}$ If p inputs, then max output value is p (all ones)
 - For example, ten rows (p=10)
 - You must be able to represent "ten" in q output bits
 - $2^{q} 1 \ge p$ $q = \lceil \log_2(p+1) \rceil$

(p:q] Counters

Add column of p bits of the same weight Produce q bits of adjacent weights

$$\sum_{i=0}^{p-1} x_i = \sum_{j=0}^{q-1} y_j 2^j$$
 (3:2], (7:3], and (15:4] are examples

$$2^q - 1 \ge p$$
, i.e., $q = \lceil log_2(p+1) \rceil$

Gate Network for (7:3]

□ Input is seven binary bit-vectors

$$X = (x_6, x_5, x_4, x_3, x_2, x_1, x_0)$$

Output is three bits

$$q = \sum_{i=0}^{6} x_i = 4q_2 + 2q_1 + q_0$$

□ Partition the input array into two subvectors

$$X_A = (x_2, x_1, x_0)$$
 $X_B = (x_6, x_5, x_4, x_3)$

Gate Network for (7:3]

□ Partial sums of subvectors are

$$q_A = 2q_{A1} + q_{A0}$$
$$q_B = 4q_{B2} + 2q_{B1} + q_{B0}$$

□ Sum q₄ is like a full adder (three inputs)

$$q_{A0} = x_2 \oplus x_1 \oplus x_0$$

 $q_{A1} = x_2 x_1 + x_2 x_0 + x_1 x_0$

Gate Network for (7:3]

$$q_{B0} = x_6 \oplus x_5 \oplus x_4 \oplus x_3$$

$$q_{B1} = [\text{any two bits}] \cdot (x_6 x_5 x_4 x_3)'$$

$$= aq'_{B2}$$

$$a = [x_6 x_5 + x_4 x_3 + (x_6 + x_5)(x_4 + x_3)]$$

$$q_{B2} = (x_6 x_5 x_4 x_3)'$$

$$q_{B2} = (x_6 x_5 x_4 x_3)'$$

$$q_{B3} = [x_6 x_5 + x_4 x_3 + (x_6 + x_5)(x_4 + x_3)]$$

$$q_{B4} = [x_6 x_5 + x_4 x_3 + (x_6 + x_5)(x_4 + x_3)]$$

$$q_{B5} = (x_6 x_5 x_4 x_3)'$$

$$q_{B5} = (x_6 x_5 x_4 x_3)$$

$$q_{B5} = (x_6 x_5 x_4 x_3)$$

$$q_{B5} = (x_6 x_5 x_4 x_3)$$

Gate Network for (7:3]

Finally,
$$q = q_A + q_B$$

$$q_0 = q_{A0} + q_{B0}$$

$$q_1 = (q_{A1} \oplus q_{B1}) \oplus q_{A0}q_{B0}$$

$$sum \quad Carry from 0$$

$$q_2 = q_{B2} + q_{B1}q_{A1} + (q_{B1} \oplus q_{A1})(q_{B0}q_{A0})$$

$$G1 \qquad P1 \cdot G0$$

$$q_{B1} = a \cdot q'_{B2} \Rightarrow a \cdot q_{A1}$$

Gate Network for (7:3)

Multicolumn Counters...

Sequential Implementation If your input array is big You can add rows sequentially Uses only one adder and a register Sequentially Cycle time dependent on precision XII Carry Propagate Asser Sequentially Cycle time not dependent on precision XIII Sequential Implementation XIII Sequen

Combinational Implementation Reduction by rows Linear array of [p:2] adders Tree of [p:2] adders Reduction by columns Using (p:q] counters

Adder Trees Because addition is associative, you can organize as a tree Number of adders is the same (same number of inputs...) • k - the number of [p:2] CS adders for m operands: pk = m + 2(k-1) $k = \left\lceil \frac{m-2}{p-2} \right\rceil \quad \text{[p:2] carry-save adders}$

Example Build array to compute f=a+3b+3c+dOperands are integers in the range -4 to 3 Two's comp Compute range of result... Operands in [-4,3). Result range: $-4+(-12)+(-12)-4=-32 \le f \le 3+9+9+3=24$ Thus f requires 6 bits Decompose 3b and 3c into 2b+b and 2c+c

Example: f=a+3b+3c+d	
$ \begin{vmatrix} 1 & 0 & b_2' & a_2' & a_1 & a_0 \\ & c_2' & b_2' & b_1 & b_0 \\ & & b_1 & b_0 \\ & & c_2' & c_1 & c_0 \\ & & c_1 & c_0 \\ & & d_2' & d_1 & d_0 \end{vmatrix} $ Determine adder types at each level * Helps by reducing the width of the CPA	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Conclusion

- $\hfill\Box$ Lots of ways of adding up a bunch of numbers
 - Arguments are a bit-array
 - Reduce that bit array by reducing rows or columns
 - End result is typically in carry-save form
 - So you might need a CPA if you want the answer in conventional form
 - Pipelining is always an option