

PROJET IA

Application d'étude des accidents de la route

Tristan SAEZ - Vincent LE BRENN Adrien LEBOUCHER 2023

TABLE DES MATIERES

- **01** GESTION DE PROJET
- **02** LES DONNÉES
- O3 APPRENTISSAGE
 - non-supervisé
- 04 APPRENTISSAGE
 - supervisé
- **05** LES SCRIPTS

×

LES OUTILS

LES DONNÉES

Découverte & Préparation

Caractéristiques de la base de donnée

Valeur cible(descr_grav)	[1,2,3,4]
Nombre d'instance	21
Nombre d'instance par classe	73 643 -> 55 428
Taille des features	20

HISTOGRAMMES

CONVERSIONS

	index	value	
descr_cat_veh	0	0 PL seul > 7,5T	
descr_cat_veh	1	VU seul 1,5T <= PTAC <= 3,5T avec ou sans remor	
descr_cat_veh	2	2 VL seul	
descr_cat_veh	3	3 Autocar	
descr_cat_veh	4	4 PL > 3,5T + remorque	
descr_cat_veh	5	5 Cyclomoteur < 50cm3	
descr_cat_veh	6	6 Motocyclette > 125 cm3	
descr_cat_veh	7	7 Tracteur routier + semi-remorque	
descr_cat_veh	8	8 Tracteur agricole	
descr_cat_veh	9	9 PL seul 3,5T <ptca <="7,5T</td"><td></td></ptca>	
descr_cat_veh	10	0 Autobus	
descr_cat_veh	11	1 Train	
descr_cat_veh	12	2 Scooter > 125 cm3	
descr_cat_veh	13	3 Scooter < 50 cm3	
descr_cat_veh	14	Voiturette (Quadricycle à moteur carrossé) (ancie	
descr_cat_veh	15	Autre véhicule	
descr_cat_veh	16	Bicyclette	
descr_cat_veh	17	Motocyclette > 50 cm3 et <= 125 cm3	
descr_cat_veh	18	Scooter > 50 cm3 et <= 125 cm3	
descr_cat_veh	19	Engin spécial	
descr_cat_veh	20	Quad lourd > 50 cm3 (Quadricycle à moteur non c	
descr_cat_veh	21	1 Tramway	
descr_cat_veh	22	2 Tracteur routier seul	
descr_cat_veh	23	Quad léger <= 50 cm3 (Quadricycle à moteur non	
descr_agglo	0	Hors agglomération	
descr_agglo	1	En agglomération	

Conversions à effectuer :

- Valeurs non-numériques en numériques
- Dates et Heures au bon format

Problèmes rencontrés:

- Extraire le tableau sous format .xlsx
- Latitudes et longitudes des DOM-TOM

<u>Libraries utilisées :</u>

pandas, datetime

Tableau de conversion non-numériques ⇔ numériques

non-supervisé

RÉDUCTION DE DIMENSION

×

TABLEAU DE CORRÉLATION

Réduction de la dimension en fonction:

- Coefficients de corrélation
- Liens entre les variables

Coefficient de corrélation en fonction de la gravité des accidents				
feature	Coef de corrélation	Supprimée ?		
jour	0.01671	×		
id_usa	0.001948	×		
latitude	0.006072			
longitude	0.008392			
descr_athmo	0.012155	×		
id_code_insee	0.012865	×		
descr_etat_surf	0.015064	×		
descr_agglo	0.016364	×		
escription_intersection	0.019234			
heure	0.025678	×		
descr_lum	0.030840			
num_veh	0.034247	×		
descr_motif_traj	0.054042	X		
descr_type_col	0.055053			
X (id)	0.061824	×		
place	0.110989	X		
an_nais	0.132073			
descr_dispo_secu	0.222666	X		
descr_cat_veh	0.239771			
descr_grav	1.000000			

MATRICES DE CORRÉLATION

CLUSTERING

×

Clustering - "from scratch"

Différentes méthodes dans le calcul des distances:

- L1(Méthode Manhattan)	$d(A,B) = \left X_B - X_A\right + \left Y_B - Y_A\right $
- L2(Méthode Euclidienne)	$d(A,B) = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$
- Haversine	$=2r\arcsin\!\left(\sqrt{\sin^2\!\left(\frac{\varphi_2-\varphi_1}{2}\right)+\cos(\varphi_1)\cos(\varphi_2)\sin^2\!\left(\frac{\lambda_2-\lambda_1}{2}\right)}\right)$

Contexte d'utilisation des calculs de distance

Résultats de cluster via scratch

- -Etude avec 12 Clusters
- -les clusters sont très similaires
- -On utilise une projection mercator

Clustering - scikit-learn

Études avec 12 clusters

- Les points rouges représentent les centroïdes
- Étude effectué également avec 3, 5 et 8 clusters

Problèmes rencontrés:

- Affichage des centroïdes

<u>Libraries utilisées</u>: sklearn, plotly, numpy

Clustering - Evaluation quantitative

Nombre de cluster				
		3		
Méthode	scikit	L1	L2	Haversine
Metric	Score	Score	Score	Score
Coefficient de silhouette	0.4396002394042591	0.3099044630729121	0.3066844697028553	0.3066844697028553
Index de Calinski Harabasz	1002.1034962689257	619.8313597309689	617.8453619262061	617.8453619262061
Index de Bouldin Davies	0.759965228551648	1.4849925933563453	1.4822945609067348	1.4822945609067348
1 2 2	10)	
		Nombre de cluster		
		5		
Méthode	<u>scikit</u>	L1	L2	Haversine
Metric	Score	Score	Score	Score
Coefficient de silhouette	0.44375880274301455	0.20855898682664645	0.3088980353693082	0.3088980353693082
Index de <u>Calinski</u> <u>Harabasz</u>	1242.0986175669645	407.9566647218841	790.2322194733962	790.2322194733962
Index de Bouldin Davies	0.7179728279735788	1.9968265749287402	0.8234573037440249	0.8234573037440249
		Nombre de cluster		
		8		
Méthode	<u>scikit</u>	L1	L2	Haversine
Metric	Score	Score	Score	Score
Coefficient de silhouette	0.41307080643298366	0.26924551509454425	0.29935651624751863	0.29935651624751863
Index de <u>Calinski Harabasz</u>	1230.1642992694271	642.0362689580388	700.0842140392815	700.0842140392815
Index de <u>Bouldin</u> Davies	0.8160015678900034	1.033938304118349	0.9646450498949747	0.9646450498949747
Nombre de cluster				
12				
Méthode	scikit	L1	L2	Haversine
Metric	Score	Score	Score	Score
Coefficient de silhouette	0.4622257479910289	0.35067055901472927	0.28521006951152567	0.28521006951152567
Index de <u>Calinski Harabasz</u>	1366.3215155872706	851.2028692835758	724.7676272093031	724.7676272093031
Index de Bouldin Davies	0.7528093020232839	0.8516612387507877	1.2022495277774983	1.2022495277774983

CLASSIFICATION KNN

:

×

" From Scratch"

Avec scikit-learn

Métriques

×

EVALUATION QUANTITATIVE

	K_neighbors = 3	K_neighbors = 48
Taux d'apprentissage	0.7062170885000849	0.7379819942245626
Précision	0.6135697545151042	0.6594043498947395
Rappel	0.5960431408620842	0.563968700228848

MATRICES DE CONFUSION

COURBES ROC

ALGORITHMES "HAUT NIVEAU"

Matrices de confusion

Hold out avec GridSearch	Accuracy	Précision	F1-Scor e
Support Vector Machine	0.740	0.712	0.678
Random Forest	0.756	0.733	0.725
Multi layer perceptron	0.740	0.709	0.695
Vote majorité	0.7496	0.725	0.702

Tableau comparatifs des différentes classifications Hold out

Tableau comparatifs des différentes classifications leave one out

	Accuracy	Precision	Rappel	F1-Score
SVM	0.541	1.0	0.541	0.541
Random Forest	0626	1.0	0.626	0.626
MLP	0.5385	1.0	0.5385	0.5385

LES SCRIPTS

Scripts - utilisation

Lancer un script

- .\scripts.sh -m kmean [latitude] [longitude] [centroïdes]
- .\scripts.sh -m knn [info_accident] [nom_du_csv]
- .\scripts.sh -m classification [info_accident] [méthode]

- Script shell avec utilisation du flag -m pour le choix du mode
- Intégration à du contenu web grâce à un export .json

Problèmes rencontrés:

- Étude du langage de programmation bash
- Transfert des arguments en python
- Renvoie d'un fichier json au bon format

<u>Libraries utilisées</u>: pandas, numpy, sys

