ΛΥΣΗ

- α) Η συνάρτηση f με $f(x)=(\frac{2-\lambda}{4})^x$ είναι εκθετική και ορίζεται στο $\mathbb R$ όταν η βάση είναι θετική και διάφορη της μονάδας. Δηλαδή, (i) $\frac{2-\lambda}{4}>0$ ή ισοδύναμα $\lambda<2$ και (ii) $\frac{2-\lambda}{4}\neq 1$ ή ισοδύναμα $\lambda\neq-2$. Άρα, $\lambda\in(-\infty,-2)\cup(-2,2)$.
- β) Μία εκθετική συνάρτηση της μορφής α^x είναι γνησίως φθίνουσα όταν $0<\alpha<1$. Επομένως, $0<\frac{2-\lambda}{4}<1$ ή ισοδύναμα $-2<\lambda<2$.
- γ) Για λ=0 έχουμε την συνάρτηση $f(x)=(\frac{1}{2})^x$ με $x\in\mathbb{R}.$
- i. Η f είναι εκθετική με βάση μικρότερη της μονάδας, άρα είναι γνησίως φθίνουσα συνάρτηση. Η γραφική της παράσταση, με βάση τον πίνακα τιμών, φαίνεται στο παρακάτω σχήμα:

х	-1	0	1
У	2	1	$\frac{1}{2}$

ii. Η εξίσωση f(x) + f(x+1) = 6 μετά την αντικατάσταση γίνεται

$$(\frac{1}{2})^{x} + (\frac{1}{2})^{x+1} = 6 \Leftrightarrow (\frac{1}{2})^{x} + \frac{1}{2} (\frac{1}{2})^{x} = 6.$$

Άρα,
$$\frac{3}{2}(\frac{1}{2})^x=6 \Leftrightarrow (\frac{1}{2})^x=4 \Leftrightarrow 2^{-x}=2^2$$
 συνεπώς $x=-2$.