ET 540 – Introduction to Digital Computing Theory HOMEWORK # 3 - Boolean Algebra and DeMorgan's Theorem

Student's Name_	
Instructions	

- Show all work to receive full credit
- Student's Name______

Boolean Analysis of Logic Circuits

Find the output and use Boolean algebra to simplify the output. Also sketch the simplified circuit.

1.

- a. (5 pts) Output Y _____
- b. (10 pts) Simplified output Y _____
- c. (3 pts) Draw the simplified circuit

Find the output X and use Boolean algebra and DeMorgan's theorem to simplify the output. Also sketch the simplified circuit.

2.

- a. (6 pts) Output X _____
- b. (12 pts) Simplified output X _____
- c. (3 pts) Draw the simplified circuit

3.

- a. (6 pts) Output X _____
- b. (12 pts) Simplified output X _____
- c. (3 pts) Draw the simplified circuit

4. Simplify the following output using Boolean algebra and/or DeMorgan's techniques (12 pts a-b, 13 pts c-d)

a.
$$X = AB + (\bar{A} + \bar{B})C + AB$$

b.
$$Z = \bar{A}B + \bar{A}B\bar{C} + \bar{A}BCD + \bar{A}B\bar{C}\bar{D}E$$

c.
$$W = \overline{\overline{A} + B.BC} + \overline{B}C$$

d.
$$Y = \overline{(A + \overline{B})(\overline{C} + D)}$$

------Homework 4 Ends Here ------