# MA LEC 03

isagila

@pochtineploho

@DUBSTEPHAVEGUN

Собрано 01.09.2023 в 17:53



## Содержание

| 1. | Лекции               | 3 |
|----|----------------------|---|
|    | 1.1. Лекция 23.09.01 | 3 |

### 1. Лекции

#### 1.1. Лекция 23.09.01.

**Def 1.1.1.** Числовым рядом называется выражение  $u_1 + u_2 + \ldots + u_n$ , где  $\{u_n\}$  это некоторая числовая последовательность. Обозначается  $\sum_{n=1}^{\infty} u_n$ .

Замечание 1.1.2. Нумерация может вестись с любого целого числа.

**Def 1.1.3.**  $u_n$  называется общим членом ряда.

**Def 1.1.4.**  $S_n = u_1 + \ldots + u_k$  называется частичной суммой ряда.

 $Замечание 1.1.5. S_n$  также образуют последовательность.

**Def 1.1.6.** Если последовательность частичных сумм сходится, т.е.  $\lim_{n\to\infty} S_n = S \in \mathbb{R}$ , то говорят, что ряд сходится к сумме S (S называется суммой ряда). Если предел равен бесконечности или не существует, то ряд расходится.

Иногда сумму ряда можно найти простой арифметикой.

Пример 1.1.7 (Непосредственное вычисление суммы ряда).

$$u_n = \frac{1}{n(n+1)} \Longrightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$S_n = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \underbrace{\left(\frac{1}{2} - \frac{1}{3}\right)}_{k=1} + \underbrace{\left(\frac{1}{3} - \frac{1}{4}\right)}_{k=3} + \dots + \underbrace{\left(\frac{1}{n} - \frac{1}{n}\right)}_{k=n-1} + \underbrace{\left(\frac{1}{n} - \frac{1}{n+1}\right)}_{k=n} = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = 1 = S$$

*Пример* 1.1.8 (Геометрический ряд (эталонный)). Пусть  $b ≠ 0, b ∈ \mathbb{R}$ .

$$\sum_{n=0}^{\infty} bq^n = b + bq + bq^2 + bq^3 + \dots + bq^n = b(1 + q + q^2 + q^3 + \dots + q^n) = b\frac{1 - q^{n+1}}{1 - q} = S_n$$

$$\lim_{n \to \infty} S_n = \frac{b}{1 - q} \lim_{n \to \infty} (1 - q^{n+1})$$

Далее значение предела зависит от q.

1. 
$$|q| < 1 \Longrightarrow q^n \to 0 \Longrightarrow \lim_{n \to \infty} S_n = \frac{b}{1 - q} = S$$

- 2.  $|q| > 1 \Longrightarrow q^n \to \infty \Longrightarrow$  ряд расходится.
- 3.  $q = 1 \Longrightarrow S_n = b(n+1) \to \infty \Longrightarrow$  ряд расходится.
- 4.  $q = -1 \Longrightarrow S_n = \frac{b}{2}(1 + 1 1 + \ldots + 1 1) = \begin{cases} b \\ 0 \end{cases}$   $\Longrightarrow$  две подпоследовательность сходятся к разным числам, значит предела нет и ряд расходится.

Замечание 1.1.9. Чаще требуется только определить сходимость ряда не вычисляя его сумму.

#### Свойства числовых рядов

Теорема 1.1.10.

$$\sum_{n=1}^{\infty} u_n > \longleftrightarrow \sum_{n=k>1}^{\infty} u_n >$$

$$\sum_{n=1}^{\infty} u_n < \longleftrightarrow \sum_{n=k>1}^{\infty} u_n <$$

$$\sum_{n=1}^{\infty} u_n > \longleftrightarrow \exists \lim_{n \to \infty} S_n \in \mathbb{R}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( \underbrace{u_1 + u_2 + \ldots + u_k}_{t} + u_{k+1} + \ldots + u_n \right) = \underbrace{\lim_{n \to \infty} v}_{t} + \lim_{n \to \infty} \left( u_{k+1} + \ldots + u_n \right)$$

Для расходящихся доказательство аналогично.

Замечание 1.1.11. Теорему 1.1.10 можно сформулировать по-другому (не формально): ряд и его «хвост» одновременно сходятся и расходятся.

Теорема 1.1.12.

$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}$$

$$\Rightarrow \sum_{n=1}^{\infty} \alpha u_n = \alpha S$$

$$\sum_{n=1}^{\infty} u_n > \iff \exists \lim_{n \to \infty} S_n \in \mathbb{R}$$

$$\lim_{n \to \infty} (\alpha u_1 + \ldots + \alpha u_n) = \alpha \lim_{n \to \infty} (u_1 + \ldots + u_n) = \alpha S$$

3амечание 1.1.13. Если ряд расходится, то умножение на  $\alpha \neq 0$  не меняет его расходимости.

Теорема 1.1.14.

$$\frac{\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}}{\sum_{n=1}^{\infty} v_n = \sigma \in \mathbb{R}} \Longrightarrow \sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm \sigma$$

 $\underbrace{\lim_{n\to\infty} S_n}_{S} \pm \underbrace{\lim_{n\to\infty} \sigma_n}_{\sigma} = \lim_{n\to\infty} (S_n \pm \sigma_n) = \sum_{n=1}^{\infty} (u_n \pm v_n)$ 

Замечание 1.1.15. Ряды складываются и вычитаются почленно.

Замечание 1.1.16. Из сходимости разности рядов не следует сходимость самих рядов. Например,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) \neq \underbrace{\sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1}}_{\text{pacxogstcs}}$$

Гармонический ряд (эталонный)

$$\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \dots$$

Рассмотрим вспомогательный ряд и вычислим его частичные суммы

$$\frac{1}{1} + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{\frac{1}{2}} + \underbrace{\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{\frac{1}{2}} + \underbrace{\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}}_{\frac{1}{2}} + \dots$$

$$\sigma_{1} = 1 + 0 \cdot \frac{1}{2} \qquad \sigma_{2} = 1 + 1 \cdot \frac{1}{2} \qquad \sigma_{n} = 1 + (n - 1) \cdot \frac{1}{2}$$

Последовательность частичных сумм  $\sigma_n$  расходится при  $n \to \infty$ . Последовательность частичных сумм исходного ряда почленно не меньше  $\sigma_n$ , значит  $\lim_{n \to \infty} S_n = \infty$ .

**Теорема 1.1.17.** Члены сходящегося ряда можно группировать произвольным образом **не переставляя**.

□ Группируя члены ряда получаем подпоследовательность последовательности частичных сумм. Если существует предел исходной последовательности, то существует и предел любой ее подпоследовательности. ■

Замечание 1.1.18. Перестановка членов ряда может изменить сумму. Например, рассмотрим ряд  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ . Он сходится (**TODO**: доказательство потом?).

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \frac{1}{13} - \frac{1}{14} + \frac{1}{15} - \frac{1}{16} + \dots$$

$$= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{16} + \left(\frac{1}{7} - \frac{1}{14}\right) - \frac{1}{32} + \dots$$

$$= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \frac{1}{3} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{8} + \frac{1}{5} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{16} + \frac{1}{7} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{32} + \dots$$

$$= \frac{1}{2} \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots\right) - \frac{1}{4} - \frac{1}{8} - \frac{1}{16} - \frac{1}{32} - \dots$$

**TODO:** Что-то получили, но я так и не понял, что не так :sad: