Real Analysis (MA101), Tutorial Sheet (Limit and Continuity)

1. Find the value of α such that

$$\lim_{x \to -1} \frac{2x^2 - \alpha x - 14}{x^2 - 2x - 3}$$

exists. Find the limit.

- 2. Let $\lim_{x\to 0} \frac{f(x)}{x^2} = 5$. Show that $\lim_{x\to 0} \frac{f(x)}{x} = 0$.
- 3. Let f(x) = x if $x \in Q$ and f(x) = 0 if $x \in R \setminus Q$. Show that f is continuous at $x_0 = 0$. Also show that it is discontinuous at any other point.
- 4. Let f(x) = 1 if $x \in Q$ and f(x) = -1 if $x \in R \setminus Q$. Show that f is discontinuous at every point.
- 5. Give an example of a bounded function on [-1,1] which does not have a maximum or a minimum.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f is continuous at 0 then show that f is continuous at every point $c \in R$.
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be such that for every $x, y \in R$, $|f(x) f(y)| \le |x y|$. Show that f is continuous for
- 8. Use properties of limit to evaluate $\lim_{x\to 0} \left(\frac{\sin x}{\sqrt{1-\cos x}}\right)$.
- 9. Use the definition to establish the continuity of the following functions: (i) $f(x) = x^2$ at x = 3, $x \in [0, 7]$ (ii) $f(x) = \frac{1}{x}$ at $x = 1/2, x \in [0, 1]$ (iii) $f(x) = \sqrt{x}, x \ge 0$
- 10. Let $f(x) = \frac{x^2 + x 6}{x 2}$, $x \neq 2$. Define f(x) in a way such that it becomes continuous at x = 2.
- 11. (a) Show that the functions $x^2, \frac{1}{x}, \frac{1}{x^2}, x > 0$ are continuous at any point $c \in R$ but not uniformly. (b) Show that the function $x^2, x \in [-a, a], a > 0$ and functions $\frac{1}{x}, \frac{1}{x^2}, x \ge b > 0$ are uniformly continuous on respective domain.
 - (c) Show that $\sin x$, $\cos x$, |x| are continuous at every point $c \in \mathbb{R}$
- 12. Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Show that $\exists \ x_0\in[0,1]$ such that $f(x_0) = \frac{1}{3} (f(\frac{1}{4}) + f(\frac{1}{2}) + f(\frac{3}{4})).$
- 13. Let p(y) be a polynomial

$$p(y) = a_n y^n + a_{n-1} y^{n-1} + \dots + a_1 y + a_0.$$

Suppose n is even $(n \neq 0)$, $a_n = 1$, $a_0 = -1$. Show that p(y) has at least two real roots.

- 14. Compute the limit $\lim_{x\to\infty} \left(x^2 x^3 \sin\left(\frac{1}{x}\right)\right)$.
- 15. Let $f,g:\mathbb{R}\to\mathbb{R}$ be continuous functions such that $f(a)\neq g(a)$ for some $a\in\mathbb{R}$. Show that $\exists a \delta>0$ such that $f(x) \neq g(x)$, $\forall x$ such that $|x - a| < \delta$.
- 16. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with f(0) = -2, f(1) = 3. Let $S = \{x \in [0,1] | f(x) = 0\}$
 - (a) Show that S is non empty.
 - (b) Let β be the supremum of the set S. Show that $\beta \in (0,1]$.
 - (c) Show that $f(\beta) = 0$

- 17. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at $c \in \mathbb{R}$. Then |f| is continuous at c. Give an example to show that the reverse is not true.
- 18. A real function f is continuous on [0,2] and f(0)=f(2). Prove that there exists at least a point c in [0,1] such that f(c)=f(c+1).
- 19. (i) Give an example of a function f which satisfies the initial value problem (IVP) on a closed and bounded interval [a, b], but is not continuous on [a, b].
 - (ii) Give an example of a function f which is monotone increasing on a closed and bounded interval [a, b] but does not satisfy the IVP on [a, b].
- 20. Let $f:[0,\pi]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ x \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x} & \text{if } x \neq 0. \end{cases}$$

Is f continuous?

21. Let $f: \mathbb{R} \to (0, \infty)$, satisfy $f(x+y) = f(x)f(y) \ \forall \ x \in \mathbb{R}$. Suppose f is continuous at x = 0. Show that f is continuous at all $x \in \mathbb{R}$.