NCER-1921-01

DPP#02 PARABOLA

Topics Position of Point w.r.t Parabola , Position of Line w.r.t Parabola

Position of Point

- **1.(E)** With respect to parabola $y^2 = 2x$ the points P(4, 2) & Q(1, 4) are such that
 - (a) P & Q both lie inside parabola
 - (b) P & Q both lie outside parabola
 - (c) P lie inside & Q lie outside parabola
 - (d) Q lie inside & P lie outside parabola
- **2.(E)** If the point (2a, a) lies inside the parabola $x^2 2x 4y + 3 = 0$, then a lies in the interval
 - (a) $\left[\frac{1}{2}, \frac{3}{2}\right]$
- (b) $\left(\frac{1}{2}, \frac{3}{2}\right)$

(c) (1, 3)

 $(d)\left(\frac{-3}{2},\frac{-1}{2}\right)$

Position of Line

- **3.(E)** The equation of the tangent to the parabola $y^2 = 4x + 5 \text{ parallel to the line } y = 2x + 7 \text{ is}$
 - (a) 2x y 3 = 0
- (b) 2x y + 3 = 0
- (c) 2x + y + 3 = 0
- (d)None of these
- **4.(E)** The line 1x + my + n = 0 will touch the parabola $y^2 = 4ax$, if
 - (a) $mn = al^2$
- (b) $lm = an^2$
- (c) $ln = am^2$
- (d) mn = al
- **5.(E)** The line $x\cos\alpha + y\sin\alpha = p$ will touch the parabola $y^2 = 4a(x+a), \text{ if }$
 - (a) $p\cos\alpha + a = 0$
- (b) $p\cos\alpha a = 0$
- (c) $a\cos\alpha + p = 0$
- (d) $a\cos\alpha p = 0$
- **6.(E)** The straight line $y = 2x + \lambda$ does not meet the parabola $y^2 = 2x$, if

- (a) $\lambda < \frac{1}{4}$
- $(b) \lambda > \frac{1}{4}$
- (c) $\lambda = 4$

- (d) $\lambda = 1$
- **7.(E)** The equation of the common tangent of the parabolas $x^2 = 108y$ and $y^2 = 32x$, is
 - (a) 2x + 3y = 36
- (b) 2x + 3y + 36 = 0
- (c) 3x + 2y = 36
- (d) 3x + 2y + 36 = 0
- **8.(E)** A tangent to the parabola $y^2 = 8x$ makes an angle of 45^0 with the straight line y = 3x + 5, then the equation of tangent is
 - (a) 2x + y 1 = 0
- (b) x + 2y 1 = 0
- (c) 2x + y + 1 = 0
- (d)None of these
- **9.(E)** The angle between the tangents drawn at the end points of the latus rectum of parabola $y^2 = 4ax$, is
 - $(a)\frac{\pi}{3}$

 $(b)\frac{2\pi}{3}$

 $(c)\frac{\pi}{4}$

- $(d)\frac{\pi}{2}$
- **10.(M)** Angle between the tangents drawn from (1, 4) to the parabola $y^2 = 4x$ is [IIT-2004]
 - (a) $\pi/2$

(b) $\pi/3$

(c) $\pi/6$

- (d) $\pi/4$
- 11.(E) If the parabola $y^2 = 4ax$ passes through the point (1, -2), then the tangent at this point is
 - (a) x + y 1 = 0
- (b) x y 1 = 0
- (c) x + y + 1 = 0
- (d) x y + 1 = 0

- 12.(E) If y_1, y_2 are the ordinates of two points P and Q on the parabola and y_3 is the ordinate of the point of intersection of tangents at P and Q, then
 - (a) y_1, y_2, y_3 are in A.P. (b) y_1, y_3, y_2 are in A.P.
 - (c) y_1, y_2, y_3 are in G.P. (d) y_1, y_3, y_2 are in G.P.
- 13.(M) The equation of the common tangent touching the circle $(x-3)^2 + y^2 = 9$ and the parabola $y^2 = 4x$ above the *x*-axis, is [IIT -2001]
 - (a) $\sqrt{3}y = 3x + 1$
- (b) $\sqrt{3}y = -(x+3)$
- (c) $\sqrt{3}y = x + 3$
- (d) $\sqrt{3}y = -(3x + 1)$
- **14.(M)** Tangent to the parabola $y = x^2 + 6$ at (1, 7) touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ at the point

[IIT - 2005]

- (a) (-6, -9)
- (b)(-13, -9)
- (c) (-6, -7)
- (d)(13, 7)
- **15.(M)** If two tangents drawn from the point (α, β) to the parabola $y^2 = 4x$ be such that the slope of one tangent is double of the other then
 - (a) $\beta = \frac{2}{9} \alpha^2$
- (b) $\alpha = \frac{2}{9} \beta^2$
- (c) $2\alpha = 9\beta^2$
- (d) none of these
- **16.(E)** The equation of tangents to the parabola $y^2 = 4ax$ at the ends of its latus rectum is [AIEEE-2002]
 - (a) x y + a = 0
- (b) x + y + a = 0

- (c) x + y a = 0
- (d) both (a) and (b)
- 17.(E) The equation of a tangent to the parabola $y^2 = 8x$ is y = x + 2. The point on this line from which the other tangent to the parabola is perpendicular to the [AIEEE 2007] given tangent
 - (a)(-1,1)
- (b) (0, 2)

(c)(2,4)

- (d)(-2,0)
- 18.(T) The locus of the point of intersection of the tangents to the parabola $x^2 - 4x - 8y + 28 = 0$ which are at right angle is
 - (a) y = 0

(b) y = -1

(c) x = 1

- (d) y = 1
- **19.(M)** The parabola $y^2 = 4ax$ and circle $x^2 + y^2 + 2bx = 0$ have more than one common tangent if-
 - (a) ab > 0

- (b) ab < 0
- (c) ab < -2
- (d) ab > 2
- **20.**(T) If P (t^2 , 2t) $t \in [0, 2]$ is an arbitrary point on parabola $y^2 = 4x$. Q is foot of perpendicular from focus S on the tangent at P, then maximum area of $\triangle PQS$ is
 - (a) 1

(b) 2

(c) $\frac{5}{16}$

(d) 5

ANSWER KEY:

1	c	2	b	3	b	4	c	5	a
6	b	7	b	8	c	9	d	10	b
11	С	12	b	13	С	14	С	15	b
16	d	17	d	18	d	19	a	20	d