Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2015/2016 Corso di Laurea in Ingegneria Fisica – Corso di Metodi Analitici e Statistici per l'Ingegneria Fisica Terzo appello di Metodi Analitici (12-9-16) – Prof. I. FRAGALÀ

I. ANALISI COMPLESSA.

(i) Date la funzioni di variabile complessa

$$f(z) = \frac{1}{z^3 - z^4}, \qquad g(z) = \frac{e^z}{(z+1)^5},$$

per ciascuna di esse determinare i punti i singolarità e di che tipo di singolarità si tratta.

- (ii) Determinare lo sviluppo di Laurent di f di centro z=0, e lo sviluppo di Laurent di g di centro z=-1 (con i rispettivi raggi di convergenza).
- (iii) Calcolare Res(f, 0) e Res(g, -1).

Soluzione.

(i) Le singolarità della funzione f sono i punti z=0 e z=1. Poiché possiamo scrivere f come

$$f(z) = \frac{1}{z^3} \frac{1}{1-z} \,,$$

il punto z = 0 è un polo di ordine 3, il punto z = 1 è un polo di ordine 1. La funzione g ha come unica singolarità il punto z = -1. Poiché il numeratore di g è limitato in un intorno di z = -1, si tratta di un polo di ordine 5.

(ii) Si ha

$$f(z) = \frac{1}{z^3} \sum_{k=0}^{+\infty} z^k = \sum_{k=-3}^{+\infty} z^k$$
,

con raggio di convergenza 1.

Per quanto riguarda la funzione g osserviamo che, posto $h(z) := e^z$, si ha $h^{(k)}(-1) = e^{-1}$ per ogni $k \in \mathbb{N}$, e quindi possiamo scrivere, per ogni $z \in \mathbb{C}$,

$$h(z) = e^z = \sum_{n \ge 0} \frac{e^{-1}}{n!} (z+1)^n$$
.

Pertanto si ha

$$g(z) = \frac{e^z}{(z+1)^5} = \sum_{n=0}^{+\infty} \frac{e^{-1}}{n!} (z+1)^{n-5} = \sum_{k=-5}^{+\infty} \frac{e^{-1}}{(k+5)!} (z+1)^k,$$

con raggio di convergenza $+\infty$.

(iii) Dal punto precedente si ricava immediatamente

$$\operatorname{Res}(f,0) = 1$$
 $\operatorname{Res}(g,-1) = \frac{e^{-1}}{4!} = \frac{e^{-1}}{24}$.

II. ANALISI FUNZIONALE.

- (i) Enunciare un teorema di passaggio al limite sotto il segno di integrale nella teoria di Lebesgue.
- (ii) Data la successione di funzioni

$$f_n(x) := \frac{e^x - 1}{x^{2/3}(1 - x)^{1/n}}, \qquad x \in (0, 1),$$

determinare il limite puntuale f(x).

(iii) Stabilire se f_n converge a f in $L^1(0,1)$.

Soluzione.

- (i) Si veda uno dei testi consigliati.
- (ii) Per ogni $x \in (0,1)$ si ha $(1-x)^{1/n} \to 1$ per $n \to +\infty$. Pertanto il limite puntuale è la funzione

$$f(x) = \frac{e^x - 1}{x^{2/3}}$$
.

(iii) Per poter applicare il teorema di convergenza dominata di Lebesgue, cerchiamo una maggiorante integrabile, ossia una funzione $\varphi \in L^1(0,1)$ tale che $|f_n(x)| \leq \varphi(x)$ per q.o. $x \in (0,1)$. Poiché

$$(1-x)^{1/n} \ge (1-x)^{1/2} \quad \forall n \ge 2, \ x \in (0,1),$$

la funzione

$$\varphi(x) := \frac{e^x - 1}{x^{2/3}(1 - x)^{1/2}}$$

è una maggiorante.

Tale funzione è chiaramente integrabile su tutti gli insiemi del tipo $[\epsilon, 1-\epsilon]$. Dobbiamo controllare l'integrabilità vicino a x=0 e vicino a x=1.

Osserviamo che per $x \to 0^+$ la funzione $\varphi(x)$ resta limitata (in quanto $e^x - 1 \sim x$ per $x \to 0^+$).

D'altra parte, in un intorno sinistro di x=1, la funzione φ si comporta asintoticamente come $\frac{1}{(1-x)^{1/2}}$ e dunque è integrabile.

In conclusione si ha $\varphi \in L^1(0,1)$ e dunque per il teorema di convergenza dominata di Lebesgue si ha $f_n \to f$ in $L^1(0,1)$.

III. SERIE/TRASFORMATA DI FOURIER.

Sia $u(x) := \max\{1 - |x|, 0\}$, per $x \in \mathbb{R}$.

- (i) Stabilire per quali $p \in [1, +\infty]$ si ha $u \in L^p(\mathbb{R})$.
- (ii) Calcolare \hat{u} .
- (iii) Stabilire per quali $p \in [1, +\infty]$ si ha $\hat{u} \in L^p(\mathbb{R})$.
- (iv) Calcolare $\hat{\hat{u}}$.

Soluzione.

- (i) Poiché la funzione u è continua e il suo supporto è l'insieme compatto [-1,1], si ha $u \in L^{\infty}([-1,1])$, e di conseguenza $u \in L^p(\mathbb{R})$ per ogni $p \in [1,+\infty]$.
- (ii) Si ha $u'(x)=\chi_{(0,1)}-\chi_{(-1,0)},$ e pertanto

$$\mathcal{F}(u')(\xi) = \frac{2 - 2\cos(\xi)}{i\xi}$$

Utilizzando la regola $i\xi \mathcal{F}(u) = \mathcal{F}(u')$, si ottiene quindi

$$\mathcal{F}(u) = \frac{\mathcal{F}(u')}{i\xi} = \frac{2 - 2\cos(\xi)}{\xi^2}$$

- (iii) Poiché $u \in L^1(\mathbb{R})$, si ha $\hat{u} \in L^{\infty}(\mathbb{R})$. Inoltre, poiché il numeratore di \hat{u} è limitato, per $|\xi| \to +\infty$ si ha $\hat{u}(\xi) \sim \frac{1}{\xi^2}$. Peranto si ha $\hat{u} \in L^p(\mathbb{R})$ per ogni p tale che 2p > 1, e dunque per ogni $p \ge 1$.
- (iv) Poiché $u \in L^2(\mathbb{R})$, vale la formula di inversione, e quindi

$$\hat{\hat{u}}(x) = 2\pi u(-x) = 2\pi u(x) = 2\pi \max\{1 - |x|, 0\}.$$