Deep
learning
in
Medical Image
Analysis

Lecture 6 Semen Kiselev

34-layer residual

Recap

4

3

8

3 0

4 2

4 | 5

8

6 2 8

3 9

W	w_1	w_3
W.	w_5	w_6
w	$_{7} w_{8}$	w_9

relu

weight layer

X

identity

A residual block

 $\mathcal{F}(\mathbf{x}) + \mathbf{x}$

 $\mathcal{F}(\mathbf{x})$

Agenda

- Classification
- 2. Segmentation
- 3. Object detection (localization)
- 4. Landmark detection
- 5. Image Generation
- 6. Quiz

- a. Medical need & Examples of applications
- b. Input and output formats
- c. Relevant datasets
- d. DL formalization of the problem

P.S. mostly focusing on 2D chest X-rays in this lecture, keep in mind that all of this concepts are easily transferred to other study modalities

Classification

Medical need

 Discovery of lung pathologies during annual health-check

 X-ray analysis in the districts where the qualified doctors are not available

Input format

Chest X-ray image = a 2D array of of shape (H,W,1)

····						
	2	4	8	3	6	
	9	3	4	2	5	
	5	4	6	3	1	
	2	3	1	3	4	
	2	7	4	5	7	
						···.

Output format

Pathology **title**→

single number representing→ the **code** of pathology

Vector representing the **code** (one-hot encoding of the code)

X-ray classification datasets

Link	# of samples	access	Annotation method	annotation type
Chest14	112k	public	NLP	pathology presence
CheXpert	220k	by request,	manually	pathology presence
MIMIC-CXR	370k	by request,	manually	Semi-structured reports
PADchest	160k	public	27% manually / 73% NLP	pathology presence

X-ray classification datasets: PADchest example

PA I

Labels ['pneumothorax', 'pulmonary mass']

Localizations ['loc apical', 'loc right']

LabelsLocalizationsBySentence ['pneumothorax', 'loc apical', 'loc right', 'pulmonary mass', 'loc right']

labelCUIS ['C2073565' 'C0149726']

LocalizationsCUIS ['C0734296' 'C0444532']

DL formalization

Input tensor shape: (Height, Width, Channels)

Output tensor shape: (# of pathologies, 1)

Architecture

DL formalization

Reason → Final activation → Loss

Multiple pathologies → Sigmoid activation → Binary cross-entropy loss

$$g(z) = \frac{1}{1 + e^{-z}} \qquad Loss = (Y)(-log(Y_{pred})) + (1 - Y)(-log(1 - Y_{pred}))$$
Remains when Y = 1 Remains when Y = 0

Removed when Y = 0

Removed when Y = 1

Unique pathology → **SoftMax activation** → **Cross-entropy** loss

$$ext{softmax}(\mathbf{y})_i = rac{\exp(\mathbf{y}_i)}{\sum_j \exp(\mathbf{y}_j)} \qquad L_{ ext{cross-entropy}}(\mathbf{\hat{y}}, \mathbf{y}) = -\sum_i y_i \log(\hat{y}_i)$$

Segmentation

Medical need

 Segmentation of organs and human body parts is used by doctors during the planning of surgeries.

 It also allows us to automatically estimate the volume of organs (e.g. heart, lungs on a 3D study), which is useful to detect some pathologies.

Input and Output formats

X-ray segmentation datasets

Link	# of samples	access	Annotation method	annotation type
<u>JSRT</u>	~250	by request	manually	lung masks
SIIM ACR Pneumothorax Segmentation	12k	public	manually	pathology masks

DL formalization

Input tensor shape: (Height, Width, Channels)

Output tensor shape: (Height, Width, # of classes)

- Activation →
- Sigmoid
- pixel-wise SoftMax
- $Loss \rightarrow$
- Cross-entropy
- Dice

$$DSC = rac{2|X \cap Y|}{|X| + |Y|}$$

Object detection

Medical need

 Localization of the pathology on the X-ray helps to convince doctors in the results of Al

Detection of Pneumonia

Input and Output formats

X-ray Object detection datasets

Link	# of samples	access	Annotation method	annotation type
<u>JSRT</u>	154	by request	manually	Circle around nodule
Chest14	79	public	_	Bbo around nodule
RSNA Pneumonia Detection Challenge	26k	public	manually	Bbox around Pneumonia region

DL formalization

Input tensor shape: (Height, Width, Channels)

Output tensor shape: (# of Boxe, 4, 2)

Landmark detection

Medical need

Detection of surgery instrument heads

Cardiometry

DL formalization v1

Input tensor shape: (Height, Width, Channels)

Output tensor shape: (# of Points, 2)

DL formalization v2

Input tensor shape: (Height, Width, Channels)

Output tensor shape: (Height, Width, # of Points)

DL formalization v2

Architecture

Activation →

- Sigmoid
- ReLU
- Tanh
- SoftMax 2D

Loss \rightarrow • MAE

- MSE
- Wing Loss

Image generation

Medical need

Removal of redundant image parts

(e.g. bone suppression)

 Generation of pathologic images (to address dearth of data in medical imaging)

DL formalization

Input tensor shape: (Height, Width, Channels) = image

Output tensor shape: (Height, Width, Channels) = image

Quiz

Спасибо за внимание

innoboria innoboria

