In-distribution generalization

Inductive biases

Out-of-distribution generalization

Inductive Biases

Algorithms

• Data

Ease of learning

Agent

Policy

Non-stationary data streams

Systematic Generalization

OOD Generalization

Transfer Learning

Continual Learning

Meta-learning

Cognitive Systems

Sparse Factor Graph

- Natural language is sparse (pixel space is not)
- Consciousness prior (put pressure on encoder)

•

$$P(V) \propto \prod_{k} \phi_{k}(V_{s_{k}})$$

• V_{S_k} is the subset of V with indices S_k , which involves **only a few** variables.

Attention

- Content based soft attention
- Operate on sets
- Dynamic connection
- What is the object of attention? → named variable

Inspiration: programming language

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Dynamically recombined modules

Meta-learning

- Outer loop
 - Slow learning
 - Stable and stationary
- Inner loop
 - Fast learning
 - Adapt to new changes
 - Task-specific

- OOD Generalization
 - Intervention cause distribution changes
 - Change is localized

Causality

- Statistical correlation ≠ Causality
- Independent Causal Mechanisms (ICM)
- X Bayesian Network
- X Structural Causal Models
- **Causal Factor Graph**

- Nature doesn't shuffle examples.
- Challenge: Joint discovery of
 - 1. High-level representations
 - 2. Causal structure at the high level