Package 'kmr4toxicogenetics'

August 17, 2017
Title Kernel multitask regression for toxicogenetics
Version 0.1.0
Description The package delivers a vignette containing code to reproduce the experiments in the paper "Kernel multitask regression for toxicogenetics" (bioRxiv-171298).
Depends R (>= 3.2)
Imports kmr (>= 0.1), glmnet, randomForest, parallel, Hmisc, stats, methods
Suggests knitr, rmarkdown, WGCNA, reshape2, gplots
License GPL-3 + file LICENSE
Encoding UTF-8
LazyData true
<pre>URL https://github.com/jpvert/kmr4toxicogenetics</pre>
BugReports https://github.com/jpvert/kmr4toxicogenetics/issues
RoxygenNote 6.0.1
VignetteBuilder knitr
R topics documented:
design

evaluateCV		•	
id.rna			
kcell			
kchem			
nontoxic			
predictorElasticNet			
predictorKMR			
predictorLasso			
predictorRF			
tox			

2 evaluateCV

design

The design matrix

Description

The design matrix processed from the Dream 8 toxicogenetics challenge dataset.

Usage

design

Format

A data frame with 884 cell lines in rows and 1,237 variables in columns of three categories:

covariate 16 variables binarized from 3 attributes (sex, population, batch) characterizing the nature of cell lines provided by the challenge.

RNAgram 337 variables corresponding to RNA Gram matrix (linear kernel) of normalized and NA-fixed RNA-seq counts of cell lines.

SNPgram 884 variables corresponding to genotypic SNP distance matrix (squared Euclidean distance) of SNP data of cell lines.

Note

RNA-seq data are available only for 337 cells from the challenge.

Source

```
https://doi.org/10.7303/syn1761567
```

evaluateCV

Performance evaluation by cross-validation

Description

Evaluate regression performance of a predictor by cross-validation.

Usage

```
evaluateCV(mypredictor = c("predictorKMR", "predictorElasticNet",
   "predictorLasso", "predictorRF"), celllines, celllinesKernel, chemicals,
   chemicalsKernel, toxicity, nfolds = 5, nrepeats = 10, seed = 47,
   mc.cores = 1, ...)
```

evaluateCV 3

Arguments

mypredictor Character indicating a predictor function. Possible options are KMR (default),

ElasticNet, Lasso and RF.

celllines Matrix of descriptors for ncell cell lines, of dimension ncell x pcell. Only

used for ElasticNet, Lasso and RF.

celllinesKernel

Kernel Gram matrix for ncell cell lines, of dimension ncell x ncell. Only

used for KMR.

chemicals Matrix of descriptors for nchem chemicals, of dimension nchem x pchem. Only

used for ElasticNet, Lasso and RF.

chemicalsKernel

Kernel Gram matrix for nchem chemicals, of dimension nchem x nchem. Only

used for KMR.

toxicity Matrix of toxicity values for ncell cell lines responding to nchem chemicals, of

dimension ncell x nchem.

nfolds Number of folds for cross-validation. Default is 5.

nrepeats Number of times the k-fold cross-validation is performed. Default is 1.

seed A seed number for the random number generator (useful to have the same CV

splits).

mc.cores Number of parallelable CPU cores to use.

... Other arguments to pass to predictor function.

Value

A list with matrices of cross-validation performance scores. Each score matrix is of dimension nexp x nchem (per CV experiment, per chemical) where nexp=nfolds*nrepeats and corresponds to one of the evaluation criteria:

matrix.ci Concordance index.

matrix.rho Pearson correlation.

References

Bernard, E., Jiao, Y., Scornet, E., Stoven, V., Walter, T., and Vert, J.-P. (2017). "Kernel multitask regression for toxicogenetics." bioRxiv-171298.

See Also

predictorKMR, predictorElasticNet, predictorLasso, predictorRF

4 kcell

id.rna

The identifiers of RNA-seq only cell lines

Description

The identifiers of RNA-seq only cell lines of the Dream 8 toxicogenetics challenge dataset.

Usage

id.rna

Format

A vector of character strings of identifiers of the 337 RNA-seq only cell lines.

Source

```
https://doi.org/10.7303/syn1761567
```

References

Eduati, F., et al. "Prediction of human population responses to toxic compounds by a collaborative competition." Nature biotechnology 33.9 (2015): 933-940. doi:10.1038/nbt.3299.

kcell

Kernel matrices for cell lines

Description

A list of example kernel matrices of cell line features.

Usage

kcell

Format

A list of 24 kernel matrices for cell lines of three categories of cell line features:

Kcovariates 4 kernel matrices of cell line covariates provided by the challenge, three of which correspond to a linear kernel of each attribute (sex, population, batch) plus one more combining all three attributes.

KrnaseqRbf 10 kernel matrices of normalized and NA-fixed RNA-seq counts of cell lines, corresponding to Gaussian RBF kernel with various bandwidth.

KsnpRbf 10 kernel matrices of genotypic SNP data of cell lines, corresponding to Gaussian RBF kernel with various bandwidth.

Source

https://doi.org/10.7303/syn1761567

kchem 5

References

Bernard, E., Jiao, Y., Scornet, E., Stoven, V., Walter, T., and Vert, J.-P. (2017). "Kernel multitask regression for toxicogenetics." bioRxiv-171298.

kchem

Kernel matrices for chemicals

Description

A list of example kernel matrices of chemical features.

Usage

kchem

Format

A list of 32 kernel matrices for chemicals of five categories of cell line features:

KcdkRbf 10 kernel matrices of chemical descriptors calculated using the Chemistry Development Kit (CDK) provided by the challenge, corresponding to Gaussian RBF kernel with various bandwidth.

Kchemcpp 1 kernel matrix of a marginalized graph kernel, as implemented in the ChemCPP package, in the 2D structure of the chemicals.

KpredtargetRbf 10 kernel matrices based on the chemical descriptors by their predicted targets, corresponding to Gaussian RBF kernel with various bandwidth.

KsirmsRbf 10 kernel matrices of chemical descriptors generated by the Simplex representation of molecular structure (SIRMS) provided by the challenge, corresponding to Gaussian RBF kernel with various bandwidth.

Ksubstructure 1 kernel matrix (linear kernel) of the presence or absence of a list of predefined substructures from the PubChem fingerprint in the 2D structure of the chemicals.

Source

https://doi.org/10.7303/syn1761567

References

Bernard, E., Jiao, Y., Scornet, E., Stoven, V., Walter, T., and Vert, J.-P. (2017). "Kernel multitask regression for toxicogenetics." bioRxiv-171298.

6 predictorElasticNet

nontoxic	Non-toxic chemical compounds

Description

15 out of 106 chemical compounds in toxicity data that were shown to have no toxicity across the human cell population.

Usage

nontoxic()

Value

A sequence of identifiers for those 15 non-toxic chemical compounds in toxicity data.

References

Eduati, F., et al. "Prediction of human population responses to toxic compounds by a collaborative competition." Nature biotechnology 33.9 (2015): 933-940. doi:10.1038/nbt.3299.

	predictorElasticNet	Wrapper function for elastic net regression	
--	---------------------	---	--

Description

Wrapper function to perform elastic net regression with cv.glmnet that trains a model on training set and then predicts on test set for multiple tasks.

Usage

```
predictorElasticNet(patientsTrain, patientsTest, response, alpha = 0.5)
```

Arguments

patientsTrain	Matrix of training descriptors, of dimension $n \times p$, for n training patients with p descriptors.
patientsTest	Matrix of test descriptors, of dimension $m \times p$, for m test patients with the same set of p descriptors.
response	Matrix of observed toxicity values, of dimension $n \times t$, for the n training patients responding to t drugs.
alpha	The elasticnet mixing parameter. alpha=1 is the lasso penalty, and alpha=0 the ridge penalty. Default is 0.5. All other arguments are taken by default implementation of randomForest.

Value

A matrix of predicted toxicity values, of dimension $m \times t$, for the m test patients responding to the t drugs.

predictorKMR 7

Note

Prediction is made per task with no special treatment for multitask learning, nor are task features needed.

See Also

cv.glmnet

predictorKMR	Wrapper function for kernel multitask regression
•	

Description

Wrapper function to perform kernel multitask regression with cv. kmr that trains a model on training set and then predicts on test set for multiple tasks.

Usage

```
predictorKMR(patientsKernelTrain, patientsKernelTest, response, drugsKernel,
  lambdas = exp(-15:25), nfolds = 5, nrepeats = 1)
```

Arguments

patientsKernelTrain

Precomputed kernel Gram matrix of n training patients, of dimension n x n.

patientsKernelTest

Precomputed kernel Gram matrix of m test patients crossing n training patients,

of dimension $m \times n$.

response Matrix of observed toxicity values, of dimension n x t, for the n training

patients responding to t drugs.

drugsKernel Kernel Gram matrix of the t drugs, of dimension t x t.

lambdas Sequence of lambdas that must be tested to fit a cross-validated KMR model.

Default is exp(-15:25).

nfolds Number of folds for cross-validation. Default is 5.

nrepeats Number of times the k-fold cross-validation is performed. Default is 1.

Value

A matrix of predicted toxicity values, of dimension $m \times t$, for the m test patients responding to the t drugs.

Note

Multitask prediction is made, for which task relationships are encoded in drugsKernel.

References

Bernard, E., Jiao, Y., Scornet, E., Stoven, V., Walter, T., and Vert, J.-P. (2017). "Kernel multitask regression for toxicogenetics." bioRxiv-171298.

8 predictorLasso

See Also

cv.kmr

predictorLasso Wrapper function for lasso regression

Description

Wrapper function to perform lasso regression with cv.glmnet that trains a model on training set and then predicts on test set for multiple tasks.

Usage

predictorLasso(patientsTrain, patientsTest, response)

Arguments

patientsTrain Matrix of training descriptors, of dimension n x p, for n training patients with

p descriptors.

patientsTest Matrix of test descriptors, of dimension m x p, for m test patients with the same

set of p descriptors.

response Matrix of observed toxicity values, of dimension n x t, for the n training

patients responding to t drugs.

Value

A matrix of predicted toxicity values, of dimension $m \times t$, for the m test patients responding to the t drugs.

Note

Prediction is made per task with no special treatment for multitask learning, nor are task features needed.

See Also

cv.glmnet, lasso implements a special case of elastic net predictorElasticNet

predictorRF 9

predictorRF	Wrapper function for random forest regression	

Description

Wrapper function to perform random forest regression with randomForest that trains a model on training set and then predicts on test set for multiple tasks.

Usage

```
predictorRF(patientsTrain, patientsTest, response, ntree = 500)
```

Arguments

patientsTrain	Matrix of training descriptors, of dimension $n \times p$, for n training patients with p descriptors.
patientsTest	Matrix of test descriptors, of dimension $m \times p$, for m test patients with the same set of p descriptors.
response	Matrix of observed toxicity values, of dimension $n \times t$, for the n training patients responding to t drugs.
ntree	Number of trees to grow a random forest. Default is 500. All other arguments are taken by default implementation of randomForest.

Value

A matrix of predicted toxicity values, of dimension $m \times t$, for the m test patients responding to the t drugs.

Note

Prediction is made per task with no special treatment for multitask learning, nor are task features needed.

See Also

randomForest

tox The toxicity matrix

Description

The toxicity values of cell lines, represented by the one-tenth maximal effective concentration-response exposure data (EC10) responding to various chemicals, from the Dream 8 toxicogenetics challenge dataset.

Usage

tox

10 tox

Format

A data frame of EC10 values of 884 cell lines in rows and 91 toxic chemical compounds in columns.

Source

https://doi.org/10.7303/syn1761567

Index

```
*Topic datasets
    design, 2
    id.rna,4
    kcell, 4
    kchem, 5
    tox, 9
cv.glmnet, 7, 8
cv.kmr, 8
\text{design}, \textcolor{red}{2}
evaluateCV, 2
id.rna, 4
kcell, 4
kchem, 5
nontoxic, 6
predictorElasticNet, 3, 6, 8
predictorKMR, 3, 7
predictorLasso, 3, 8
predictorRF, 3, 9
randomForest, 9
tox, 9
```