Stat674 Final

Kotomi Oda

```
library(dplyr)
library(fpp3)
library(tidyverse)
library(lmtest)
library(TSA)
library(forecast)
```

Section 7.10 Exercise 4

a.

Plot variable not specified, automatically selected `.vars = Sales`

b.

ANS variability increases with the time, therefore, by applying a logarithmic transformation can give great results when trying to control this type of variation and normalize them.

c.

```
fit_souv <- tslm(log_souvenirs ~ trend + festival_dummy + season, data = new_souvenirs_da
summary(fit_souv)</pre>
```

Call:

tslm(formula = log_souvenirs ~ trend + festival_dummy + season,
 data = new_souvenirs_data)

Residuals:

Min 1Q Median 3Q Max -0.32917 -0.11936 0.00042 0.09144 0.35460

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
            7.6662400 0.0729252 105.125 < 2e-16 ***
trend
            0.0207611 0.0008864 23.423 < 2e-16 ***
festival_dummy 0.5543818 0.1898240 2.921 0.00482 **
season2
            0.2526756 0.0921186 2.743 0.00789 **
            0.2232860 0.1866773 1.196 0.23607
season3
season4
            0.3878297  0.0921527  4.209  8.18e-05 ***
season5
            0.4145219 0.0921825 4.497 2.97e-05 ***
            season6
            0.5767690 0.0958756 6.016 9.52e-08 ***
season7
season8
            0.5406444 0.0958797 5.639 4.16e-07 ***
            season9
season10
            0.7239552 0.0959125
                               7.548 2.02e-10 ***
            1.1957774 0.0959412 12.464 < 2e-16 ***
season11
            1.9473841 0.0959780 20.290 < 2e-16 ***
season12
```

Residual standard error: 0.1723 on 64 degrees of freedom Multiple R-squared: 0.9509, Adjusted R-squared: 0.9409 F-statistic: 95.34 on 13 and 64 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

d.

autoplot(fit_souv\$residuals)

e.

boxplot(residuals(fit_souv) ~ cycle(residuals(fit_souv)))

f.

fit_souv\$coefficients

season3	season2	festival_dummy	trend	(Intercept)
0.2232860	0.2526756	0.5543818	0.0207611	7.6662400
season8	season7	season6	season5	season4
0.5406444	0.5767690	0.4551219	0.4145219	0.3878297
	season12	season11	season10	season9
	1.9473841	1.1957774	0.7239552	0.6296713

g.

checkresiduals(fit_souv)

Residuals from Linear regression model

Breusch-Godfrey test for serial correlation of order up to 17

data: Residuals from Linear regression model
LM test = 31.535, df = 17, p-value = 0.01718

By Breusch-Godfrey test, the p-value=0.017<0.05, which indicates that the data has a better fit with a logarithmic transformation.

h.

```
fc_data <- data.frame(festival_dummy = rep(0, 36))
pred <- forecast(fit_souv, newdata = fc_data)
head(pred)</pre>
```

\$model

Call:

```
tslm(formula = log_souvenirs ~ trend + festival_dummy + season,
    data = new_souvenirs_data)
```

Coefficients:

(Intercept)	trend	festival_dummy	season2	season3
7.66624	0.02076	0.55438	0.25268	0.22329
season4	season5	season6	season7	season8
0.38783	0.41452	0.45512	0.57677	0.54064
season9	season10	season11	season12	
0.62967	0.72396	1.19578	1.94738	

\$mean

	Jan	Feb	Mar	Apr	May	Jun	Jul
1993							9.883136
1994	9.430933	9.704370	9.695742	9.881046	9.928500	9.989861	10.132269
1995	9.680067	9.953503	9.944875	10.130180	10.177633	10.238994	10.381402
1996	9.929200	10.202636	10.194008	10.379313	10.426766	10.488127	
	Aug	Sep	Oct	Nov	Dec		
1993	9.867772	9.977560	10.092605	10.585189	11.357556		
1994	10.116905	10.226693	10.341738	10.834322	11.606690		
1995	10.366039	10.475827	10.590872	11.083455	11.855823		
1996							

\$lower

```
[,1] [,2]
Jul 1993 9.637329 9.503919
Aug 1993 9.621965 9.488555
```

```
Sep 1993 9.731753 9.598343
Oct 1993 9.846798 9.713388
Nov 1993 10.339382 10.205971
Dec 1993 11.111749 10.978339
Jan 1994 9.186093 9.053207
Feb 1994 9.459530 9.326644
Mar 1994 9.365756 9.186658
Apr 1994 9.636206 9.503320
May 1994 9.683659 9.550774
Jun 1994 9.745020 9.612135
Jul 1994 9.883394 9.748319
Aug 1994 9.868031 9.732955
Sep 1994 9.977819 9.842743
Oct 1994 10.092864 9.957788
Nov 1994 10.585447 10.450372
Dec 1994 11.357815 11.222739
Jan 1995 9.431764 9.296999
Feb 1995 9.705201 9.570436
Mar 1995 9.610605 9.429182
Apr 1995 9.881877 9.747112
May 1995 9.929330 9.794566
Jun 1995 9.990691 9.855927
Jul 1995 10.128745 9.991617
Aug 1995 10.113381 9.976253
Sep 1995 10.223169 10.086041
Oct 1995 10.338214 10.201086
Nov 1995 10.830798 10.693669
Dec 1995 11.603165 11.466037
Jan 1996 9.676730 9.539704
Feb 1996 9.950167 9.813141
Mar 1996 9.854949 9.670926
Apr 1996 10.126843 9.989817
May 1996 10.174296 10.037270
Jun 1996 10.235658 10.098631
```

\$upper

[,1] [,2]
Jul 1993 10.128943 10.262353
Aug 1993 10.113579 10.246989
Sep 1993 10.223367 10.356777
Oct 1993 10.338412 10.471822
Nov 1993 10.830995 10.964406
Dec 1993 11.603363 11.736773

```
Jan 1994 9.675774 9.808659
Feb 1994 9.949210 10.082096
Mar 1994 10.025727 10.204825
Apr 1994 10.125887 10.258772
May 1994 10.173340 10.306226
Jun 1994 10.234701 10.367587
Jul 1994 10.381144 10.516219
Aug 1994 10.365780 10.500856
Sep 1994 10.475568 10.610644
Oct 1994 10.590613 10.725689
Nov 1994 11.083197 11.218272
Dec 1994 11.855564 11.990640
Jan 1995 9.928369 10.063134
Feb 1995 10.201806 10.336570
Mar 1995 10.279144 10.460567
Apr 1995 10.378482 10.513247
May 1995 10.425935 10.560700
Jun 1995 10.487296 10.622061
Jul 1995 10.634059 10.771188
Aug 1995 10.618696 10.755824
Sep 1995 10.728484 10.865612
Oct 1995 10.843529 10.980657
Nov 1995 11.336112 11.473240
Dec 1995 12.108480 12.245608
Jan 1996 10.181669 10.318696
Feb 1996 10.455106 10.592132
Mar 1996 10.533067 10.717090
Apr 1996 10.631782 10.768809
May 1996 10.679236 10.816262
Jun 1996 10.740597 10.877623
```

\$level [1] 80 95

\$x

Ψ1							
	Jan	Feb	Mar	Apr	May	Jun	Jul
1987	7 7.417466	7.782194	7.951809	8.173939	8.230300	8.220064	8.377841
1988	3 7.823970	8.556075	8.885322	8.477627	8.682857	8.507414	8.728931
1989	9 8.458933	8.648683	9.206089	8.576364	8.778392	8.799481	8.902404
1990	8.686278	8.668124	9.427164	8.759319	8.937103	8.885268	9.002236
1991	1 8.481906	8.774967	9.173549	9.084910	9.073646	9.231072	9.330481
1992	2 8.937879	9.195195	9.585923	9.357668	9.141265	9.478999	9.725125
1993	3 9.234373	9.329623	9.990896	9.761770	9.680206	9.830999	

```
Aug
                    Sep
                              Oct
                                        Nov
                                                 Dec
     8.179295
               8.521548 8.767715
                                  8.935982 9.891223
1987
1988
     8.466352 8.611854 8.671647
                                   9.441458 10.259122
1989
     9.009034
              9.056393 9.178901
                                   9.625877 10.435909
1990
     8.984600 8.998762 9.045077
                                   9.793375 10.312759
1991
     9.437653 9.361978 9.518332 9.990679 10.715766
1992
     9.897902 10.083029 10.142164 10.491963 11.298763
1993
```

i.

In my opinion, this model can be improved by adding data to it - specifically average temperature by month. Considering given the location is in close to the beach, temperature could drastically explain the volatility in certain months.

Section 9.11 Exercise 7a 7b

```
head(aus_airpassengers)
# A tsibble: 6 x 2 [1Y]
  Year Passengers
  <dbl>
           <dbl>
1 1970
             7.32
2 1971
            7.33
3 1972
            7.80
4 1973
           9.38
5 1974
           10.7
6 1975
           11.1
7a.
  fit_aus <- aus_airpassengers %>%
    filter(Year < 2012)
  aus_model <- fit_aus %>%
    model(ARIMA(Passengers))
  report(aus_model)
Series: Passengers
Model: ARIMA(0,2,1)
Coefficients:
         ma1
     -0.8756
      0.0722
s.e.
sigma^2 estimated as 4.671: log likelihood=-87.8
AIC=179.61 AICc=179.93 BIC=182.99
  autoplot(aus_airpassengers, h = 10)
```

Plot variable not specified, automatically selected `.vars = Passengers`

Warning in geom_line(...): Ignoring unknown parameters: `h`

By applying ARIMA(), ARIMA(0,2,1) was chosen to have an appropriate model. In addition, the residuals do resemble white noise. It is also clear to see that all the figures in the acf plot are between the boundaries.

7b.

$$yt = -0.876\epsilon t - 1 + \epsilon t$$

$$(1-B)2yt = (1-0.876B)\epsilon t$$