Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

1.

2.

3.

4.

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HAHIRU
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น AHHIRU
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HIAVRH

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

8.

9.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HHI
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น HHI
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น IHH

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree2;
0.
      tree2.insert('G');
1.
      tree2.insert('0');
2.
      tree2.insert('I');
3.
4.
      tree2.insert('N');
      tree2.insert('G');
5.
6.
      tree2.insert('M');
      tree2.insert('E');
7.
      tree2.insert('R');
8.
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```


9

10.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	GEOIGNMRTY
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	E66IMN ORTY
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	EGMNIYTROG

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น GEOMGR
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EG 6 M 0 ใใ
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น EG M ใ ใ

5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
8.
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ABCDEF6H
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ABCDEF6H
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น H6FEDCBA

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น EF6 H
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น H6FE
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ)
	BST ไล่ balace มีลำดับขับมากกว่า เพราะ balance มีกรถราชายอย่างมีระเมียบมากกว่า ไม่ balance
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากับ อย่างไร (ขอสั้นๆ) balance ดันนาได้เร็วกว่า ใช้เรก โดย n เท่า
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
	ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ) balance เหมา มีปราฉิทธิภาพ มากกว่า unbalance การ insert delete แล การ ดันนา ว่า ยกว่า และรวลเร็ว มากกว่า unbalance