ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

- 1. Фамилия и номер группы.
- 2. Название лабораторной работы и ее номер.
- 3. Краткое теоретическое введение.
- 4. Принципиальная схема установки.
- 5. Спецификация измерительных приборов:
 - название прибора;
 - тип измеряемой величины;
 - система измерительного прибора;
 - пределы измерения;
 - цена деления;
 - класс точности прибора.
- 6. Перечень данных, указанных на установке.
- 7. Измерения, собранные в таблицу.
- 8. Пример расчета, сделанный по схеме:
 - расчетная формула;
 - подстановка численных значений в формулу;
 - последовательный расчет каждого члена формулы;
 - результат расчета;
 - размерность рассчитанной величины.
- 9. Расчет погрешности измерений:
 - определение случайных и систематических погрешностей отдельных измерений;
 - вывод расчетной формулы для ошибок и вычисление суммарной относительной и абсолютной погрешности результата измерений.
- 10. Графики, сделанные на миллиметровке (см. плакат «Построение графиков»).
- 11. Результаты и выводы лабораторной работы.
- 12. Дата оформления лабораторной работы и подпись студента.

ОШИБКИ ПРЯМЫХ ИЗМЕРЕНИЙ

Измеряемая величина: Х

Абсолютная ошибка величины: ΔX

Относительная ошибка величины: $E = \Delta X/X$

СЛУЧАЙНАЯ ОШИБКА: $\Delta X_{\rm сл}$

СИСТЕМАТИЧЕСКАЯ ОШИБКА: $\Delta X_{\rm cuct}$

проявление ошибок

При последовательных измерениях прибор дает разные результаты: $X_1, X_2, X_3, \dots X_n$

При последовательных измерениях прибор дает одинаковые результаты: $X_1 = X_2 = X_3 = \dots = X_n$

ОЦЕНКА ОШИБОК

$$X_{\rm cp} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

$$\Delta X_i = X_i - X_{\rm cp} \qquad \Delta X_{\rm KB} = \sqrt{\frac{\sum_i (\Delta X_i)^2}{n(n-1)}}$$

$$\Delta X_{\text{сл}} = \alpha_{n,p} \Delta X_{\text{KB}}$$

 $\alpha_{n,p}$ – коэффициент Стьюдента

n – число измерений

р – доверительная вероятность

n	3	4	5	6	7	8	9	10
p=0,5	0,82	0,76	0,74	0,73	0,72	0,71	0,71	0,70
p=0,7	1,39	1,25	1,19	1,16	1,13	1,12	1,11	1,10
p=0,9	2,92	2,35	2,13	2,02	1,94	1,89	1,86	1,83

Ошибки прибора:

- 1) $\Delta X = \Delta X_{\text{приб}}$
- 2) $\Delta X = 0,5$ деления шкалы
- 3) $\Delta X = \Delta X_{\text{весов}}$ (минимальный разновес)

Стрелочного прибора:

$$\Delta X = \frac{k}{100}A$$

k – класс точности прибора

A — максимальное значение измеряемой величины

Ошибка константы:

половина единицы последнего значащего разряда. Например:

$$g = 9.8 \text{ m/c}^2$$
, to $\Delta g = 0.05 \text{ m/c}^2$
 $g = 9.81 \text{ m/c}^2$, to $\Delta g = 0.005 \text{ m/c}^2$

ПРОЦЕСС ИЗМЕРЕНИЙ

Увеличение числа измерений уменьшает случайную погрешность

Систематическая ошибка не зависит от числа измерений

В КАЧЕСТВЕ ИТОГОВОЙ ПОГРЕШНОСТИ ОБЫЧНО БЕРУТ:

$$\Delta X = \sqrt{(\Delta X_{\rm cn})^2 + (\Delta X_{\rm cuct})^2}$$

ДЛЯ ОЦЕНОК МОЖНО ПОЛЬЗОВАТЬСЯ ФОРМУЛОЙ $\Delta X = \text{MAX}\{\Delta X_{\text{сл}}, \Delta X_{\text{сист}}\}$ Целесообразно число измерений выбирать так, чтобы ошибка определялась точностью прибора, т.е. чтобы $\Delta X_{\text{сл}}$ была много меньше $\Delta X_{\text{сист}}$

ОШИБКА КОСВЕННЫХ ИЗМЕРЕНИЙ

Нахождение величины P=f(X, Y, Z), являющейся функцией непосредственно измеряемых физических величин X, Y, Z называется косвенным измерением.

Абсолютная ошибка величины: ΔP

Относительная ошибка величины: $E=\Delta P/P$

ОЦЕНКА ОШИБКИ ПРИ КОСВЕННОМ ИЗМЕРЕНИИ

АБСОЛЮТНАЯ ОШИБКА ОТНОСИТЕЛЬНАЯ ОШИБКА

$$\Delta P = \sqrt{\left(\frac{\partial f}{\partial X}\Delta X\right)^2 + \left(\frac{\partial f}{\partial Y}\Delta Y\right)^2 + \left(\frac{\partial f}{\partial Z}\Delta Z\right)^2} \qquad E = \frac{\Delta P}{P} = \sqrt{\left(\frac{\partial \ln f}{\partial X}\Delta X\right)^2 + \left(\frac{\partial \ln f}{\partial Y}\Delta Y\right)^2 + \left(\frac{\partial \ln f}{\partial Z}\Delta Z\right)^2}$$

Для оценок можно также пользоваться формулами

$$\Delta P = \left| \frac{\partial f}{\partial X} \Delta X \right| + \left| \frac{\partial f}{\partial Y} \Delta Y \right| + \left| \frac{\partial f}{\partial Z} \Delta Z \right| \qquad E = \frac{\Delta P}{P} = \left| \frac{\partial \ln f}{\partial X} \Delta X \right| + \left| \frac{\partial \ln f}{\partial Y} \Delta Y \right| + \left| \frac{\partial \ln f}{\partial Z} \Delta Z \right|$$

ЗАПИСЬ РЕЗУЛЬТАТА ИЗМЕРЕНИЙ

$$X = X_{\rm cp} \pm \Delta X,$$
 $P = P_{\rm cp} \pm \Delta P,$ $\Delta X = \sqrt{(\Delta X_{\rm cn})^2 + (\Delta X_{\rm cuct})^2}$ $\Delta P = EP_{\rm cp}$

При записи погрешность округляется до одной значащей цифры (если это цифра 1, то до двух значащих цифр)

ПРИМЕРЫ ЗАПИСЕЙ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

BEPHO	HEBEPHO		
$r = (1,2\pm0,3)\times10^3 \text{ kg/m}^3$	$r = (1,23\pm0,33)\times10^3 \text{ kg/m}^3$		
$t = (23,0\pm0,2)$ c	$t = (23,04\pm0,22)$ c		
$A = 1280 \pm 70$	$A = 1278,3\pm67,94$		
$l = (7,23\pm0,12) \text{ M}$	$l = (7,2\pm0,1) \text{ M}$		
$m = (1,78\pm0,03)$ кг	$m = (1,783\pm0,029)$ кг		

ОШИБКИ ЭЛЕКТРИЧЕСКИХ ПРИБОРОВ

ЦИФРОВЫЕ ПРИБОРЫ

Если показания прибора, например,

1.453 B

и с течением времени не изменяются, тогда случайная ошибка равна нулю, приборная ошибка равна половине единицы последнего разряда показания прибора. В приведенном примере абсолютная ошибка вольтметра:

Если показания прибора, например,

1.453 B

и различны при каждом последующем измерении, тогда случайная ошибка превышает приборную ошибку. Расчет случайной ошибки производится по стандартной методике (см. плакат «Ошибки прямых измерений»). Значения измеряемой величины записывают с точностью до разряда: 1,453 В; 1,457 В; 1,451 В и т. д.

СТРЕЛОЧНЫЕ ПРИБОРЫ

Относительная погрешность

$$E = \frac{\Delta U}{U} = \frac{\left(k/100\right)U_{\text{max}}}{U}$$

U —значение измеряемой величины

 ΔU — абсолютная ошибка

k – класс точности прибора

 $U_{
m max}$ — максимальное значение установленного предела измерений

В рассматриваемом примере:

$$E = \frac{\Delta U}{U} = \frac{(2,5/100) \times 30}{8} = 0,09$$

Системы приборов

– магнитоэлектрическая

– электромагнитная

– электродинамическая

тепловая

- электростатическая

СПЕЦИФИКАЦИЯ ЭЛЕКРИЧЕСКИХ ПРИБОРОВ

Тип измеряемой	Название	Система	Пределы	Цена	Класс
величины	прибора	прибора	измерений	деления	точности
напряжение	вольтметр	\cap	30 B	1 B	2,5

ПОСТРОЕНИЕ ГРАФИКОВ

- 1. Графики выполняются карандашом на миллиметровой бумаге размером с тетрадный лист.
- 2. Используется прямоугольная система координат с равномерной разметкой осей. Значения аргумента откладываются по оси X, а значения функции по оси Y.
- 3. Масштаб и начало координат выбираются так, чтобы экспериментальные точки располагались по всей площади рисунка.
- 4. Единица масштаба должна быть кратна 1×10^n , 2×10^n , 3×10^n и так далее, где n = ... -2, -1, 0, 1, 2, ...
- 5. Рядом с осью дается буквенное обозначение, порядок и размерность физической величины.
- 6. Никаких линий и отметок, поясняющих построение точек на графике, наносить нельзя.

ПРИМЕРЫ ПОСТРОЕНИЯ ГРАФИКОВ

