

## AUTHOR INDEX

Adler, S. *See Puffeles, M.*  
Ahi, S. M. *See Bollen, W. B.*  
**Allison, F. E.**, and Minor, F. W. Coenzyme R requirements of rhizobia, 473-484.  
Asghar, A. G. *See Puri, A. N.*  
Bastisse, E. *See Demolon, A.*  
**Beater, B. E.** Movement and fixation of superphosphate in soils, 453-466.  
Blair, A. W. *See Prince, A. L.*, Toth, S. J., and.  
**Bollen, W. B.**, and Ahi, S. M. Effect of "alkali" salts on general microbial function in soil, 287-306.  
**Bouyoucos, G. J.** Efficient and convenient type of cooling and freezing bath, 21-22; field outfit for determining moisture content of soils, 107-112; mechanical device for determining permanent wilting point of soils by cohesion method, 331-336.  
Brown, I. C. *See Miller, J. T.*  
**Childs, E. C.** Movement of water in heavy soils after irrigation, 95-106.  
**Conn, H. J.**, and Darrow, M. A. Effect of moisture changes on soil as medium for bacterial growth, 365-378.  
Darrow, M. A. *See Conn, H. J.*  
Davis, L. H. *See Seelye, F. T.*, Grange, L. I., and.  
**Demolon, A.**, and Bastisse, E. Results of lysimeter experiments, 1-8.  
**Drosdoff, M.**, and Miles, E. F. Action of hydrogen peroxide on weathered mica, 391-396.  
Dua, A. N. *See Puri, A. N.*  
**Eggleton, W. G. E.** Influence of environmental factors on numbers of soil microorganisms, 351-364.  
**Emmert, E. M.** Rapid determination of organic carbon in soil, 397-400.  
**Gilbert, B. E.**, and Pember, F. R. Economical uses of fertilizer elements by forage crops, 279-286.  
Grange, L. I. *See Seelye, F. T.*, and Davis, L. H.  
**Hilbert, G. E.**, Pinck, L. A., Sherman, M. S., and Tremearne, T. H. Organic phosphates: I, 409-418.  
Katznelson, H. *See Vandecasteyne, S. C.*  
**Keaton, C. M.** Relation of soil-water ratios to pH values, 259-266.  
**MacIntire, W. H.**, Shaw, W. M., and Robinson, B. Leaching action of rain water upon dolomite and limestone separates incorporated with quartz in outdoor lysimeters, 9-20.  
**MacIntire, W. H.**, Shaw, W. M., Young, J. B., and Robinson, B. Behavior of calcium, magnesium, and potassium sulfates, as influenced by limestone and dolomite, 229-248.  
Miles, E. F. *See Drosdoff, M.*  
**Miller, J. T.**, and Brown, I. C. Soils of northern and central Mexico, 427-452.  
Minor, F. W. *See Allison, F. E.*  
**Moers, C. A.** Neubauer and Cunninghamella and Aspergillus niger methods for determination of fertilizer needs of soil, 211-228.  
Pember, F. R. *See Gilbert, B. E.*  
Pinck, L. A. *See Hilbert, G. E.*, Sherman, M. S., and Tremearne, T. H.  
**Prince, A. L.**, and Toth, S. J. Behavior of manganese in soils, 83-94.  
**Prince, A. L.**, Toth, S. J., and Blair, A. W. Chemical composition of soil from cultivated land and from land abandoned to grass and weeds, 379-390.  
**Puffeles, M.**, and Adler, S. Effect of sheep and goat manure on Mediterranean red soils, 273-278.  
**Puri, A. N.**, and Asghar, A. G. Influence of salts and soil-water ratio on pH of soils, 249-258.  
**Puri, A. N.**, and Dua, A. N. Hydrogen-ion activity of colloidal acids in soils, 113-128.  
**Puri, A. N.**, and Puri, M. L. Interaction between carbonates and soils, 401-408.  
**Puri, A. N.**, and Sarup, A. Isohydric pH value of soils, 49-56; oxidation-reduction potentials in soils, 323-330.  
**Puri, A. N.**, and Uppal, H. L. Action of carbon dioxide on soils, 467-471.  
**Puri, M. L.** *See Puri, A. N.*

Remy, Th. Fertilization in relationship to course of nutrient absorption by plants, 187-210.

Robinson, B. *See MacIntire, W. H.*, Shaw, W. M., Young, J. B., and; *MacIntire, W. H.*, Shaw, W. M., and.

Salminen, A. Titania in chemically unweathered soils, 41-48.

Sarup, A. *See Puri, A. N.*

Seelye, F. T., Grange, L. I., and Davis, L. H. Laterities of western Samoa, 23-32.

Shaw, W. M. *See MacIntire, W. H.*, and Robinson, B.; *MacIntire, W. H.*, Young, J. B., and Robinson, B.

Sherman, M. S. *See Hilbert, G. E.*, Pinck, L. A., and Tremearne, T. H.

Sideri, D. I. Formation of structure in soil: IV, 129-138; V, 267-272; VI, 337-350.

Taylor, C. B. *Bacterium globiforme* in Canadian soils, 307-322.

Toth, S. J. *See Prince, A. L.*; *Prince, A. L.*, and Blair, A. W.

Tremearne, T. H. *See Hilbert, G. E.*, Pinck, L. A., Sherman, M. S., and.

Uppal, H. L. *See Puri, A. N.*

Vandecaveye, S. C., and Katzenelson, H. Microbial activities in soil: IV, 57-74; V, 139-168.

Van Itallie, T. H. Cation equilibria in plants in relation to soil, 175-186.

Winters, E. Ferromanganiferous concretions from podzolic soils, 33-40.

Young, J. B. *See MacIntire, W. H.*, Shaw, W. M., and Robinson, B.

## SUBJECT INDEX

Acids, colloidal, hydrogen-ion activity, 113  
 Actinomycetes, number in soils, 60, 147, 293, 299, 355  
**Alkali**—  
 salts, effect on microbial functions in soil, 287  
 soils, chemical properties, 295  
**Aluminum**, effect on humus-clay formation, 132  
**Ammonia** in soils, 157  
***Aspergillus niger***—  
 autolytic products in structure formation, 343  
 method for fertilizer requirements, 211  
**Azotobacter** in soils, 67, 299  
**Bacteria**—  
 cellulose-decomposing, 66  
 growth as affected by soil moisture, 365  
 nitrogen-fixing, 66  
 number in soils, 60, 146, 293, 299, 355  
***Bacterium***—  
***globiforme***—  
 as a soil deficiency indicator, 370  
 in Canadian soils, 307  
 morphology and physiology, 313  
***radiobacter*** as an indicator for soil deficiencies, 367  
 Barley, nutrient absorption by, 191, 202  
 Base, single-base soils, action of carbon dioxide on, 469  
**Bases**—  
 exchangeable, in soils treated with manure, 277  
 saturation of soil with individual, 402  
 Beets, nutrient absorption by, 202  
 Beidelite, titanium in, 45  
 Bent grass (colonial), solution culture for, 281

---

**BOOK REVIEWS**

Agricultural Analysis, 487-488  
 Animal Husbandry, Science and Practice of Canadian, 490-491  
 Animal Nutrition, *see* Nutrition  
 App, F., and Waller, A. G. Farm Economics, 420  
 Bacteriology, Handbook of Practical, 493-494  
 Bacteriology, Principles and Practices of, 419  
 Bakhuizen, H. L. van de S. *See* Sande-Bakhuizen, H. L. van de.

Bear, F. E. *Theory and Practice in the Use of Fertilizers*. Second edition, 173  
 Biochemistry, Annual Review of, 492-493  
 Biochemistry, Plant, 422-423  
 Biochemistry, Practical Methods in, 171  
 Biological Laboratory Technique, 77  
 Brønsted, J. N. *Physical Chemistry*, 486  
 Bruno, A. *See* Eckstein, O., and Turrentine, J. W.  
 Bryan, A. H., and Bryan, C. *Principles and Practice of Bacteriology*, 419  
 Bryan, C. *See* Bryan, A. H.  
 Bull, S., and Carroll, W. E. *Principles of Feeding Farm Animals*, 169  
 Carroll, W. E. *See* Bull, S.  
 Catalysis, 75-76  
 Chemical Analysis of Foods and Food Products, 486  
 Chemistry of Plant Constituents, 423-424  
 Chemistry, Physical, 486-487  
 Collingwood, C. H. *Knowing Your Trees*, 174  
 Cox, J. F., and Jackson, L. E. *Crop Management and Soil Conservation*, 78-79  
 Crop Management and Soil Conservation, 78-79  
 Crops, Productive Farm, 485  
 Eckstein, O., Bruno, A., and Turrentine, J. W. *Potash Deficiency Symptoms*, 80  
 Economics, Farm, 420-421  
 Economics of Agriculture, 77-78  
 Ellis, C., and Swaney, M. W. *Soilless Growth of Plants*, 490  
 Energy, World Resources, *Energiequellen der Welt*, 80-81  
 Ewen, A. H. *See* MacEwan, J. W. G.  
 Ferns, Guide to Eastern, 488  
 Fertilizers, Theory and Practice in the Use of, 173-174  
 Furnas, C. C., and Furnas, S. M. *Man, Bread and Destiny*, 172  
 Furnas, S. M. *See* Furnas, C. C.  
 Gatenby, J. B. *Biological Laboratory Technique*, 77  
 Gisvold, O., and Rogers, C. H. *Chemistry of Plant Constituents*, 423  
 Horvarth, A. A. *Soybean Industry*, 489  
 Hubbard, H. V. *See* Nolen, J.  
 Italy, soil erosion, *Le Sistemazioni Idraulico-Agrarie*, 425-426  
 Jackson, L. E. *See* Cox, J. F.  
 Jacobs, M. B. *Chemical Analysis of Foods and Food Products*, 486  
 Koch, F. C. *Practical Methods in Biochemistry*. Second edition, 171  
 Land Use, Mother Earth, 172-173  
 Land Use, Parkways and Land Values, 170-171  
 Landslides and Related Phenomena, 421-422  
 Luck, J. M., and Noller, C. R. (editors) *Annual Review of Biochemistry*, vol. 7, 492  
 McCartney, J. B. *See* Mackie, T. J.  
 MacEwan, J. W. G., and Ewen, A. H. *Science and Practice of Canadian Animal Husbandry*, 490

Mackie, T. J., and McCartney, J. B. *Handbook of Practical Bacteriology*. Fifth edition, 493

Maynard, L. A. *Animal Nutrition*, 488

Millar, C. E. *Soils and Soil Management*, 420

Montgomery, E. G. *Productive Farm Crops*, 485

Muskat, M. *Flow of Homogeneous Fluids Through Porous Media*, 169

Nolen, J., and Hubbard, H. V. *Parkways and Land Values*, 170

Noller, C. R. *See Luck, J. M.*

Nutrition, Animal, 488-489

Nutrition, Animal, *Principles of Feeding Farm Animals*, 169

Nutrition, Foundations of, 424-425

Nutrition, Man, Bread and Destiny, 172

Oliva, A. *Le Sistemazioni Idraulico-Agrarie*, 425

Physics, *Flow of Homogeneous Fluids Through Porous Media*, 169-170

Plant Biochemistry, 422-423

Plant Constituents, Chemistry of, 423-424

Potash Deficiency Symptoms, 80

Regul, R. *Energiequellen der Welt*, 80

Robinson, G. W. *Mother Earth*, 172

Rogers, C. H. *See Gisvold, O.*

Rose, M. S. *Foundations of Nutrition*. Third edition, 424

Rothamsted Experimental Station Report for 1936, 81

Sande-Bakhuyzen, H. L. van de. *Studies on Wheat Grown Under Constant Conditions*, 75-76

Schwab, G. M. *Catalysis*, 75

Sharpe, C. F. S. *Landslides and Related Phenomena*, 421

Snedecor, G. W. *Statistical Methods*, 76

Soil Conservation, Crop Management and, 78-79

Soil erosion, *Le Sistemazioni Idraulico-Agrarie*, 425-426

Soil, Mother Earth, 172-173

Soil Science Society of America, 1937 Proceedings, 426

Soilless Growth of Plants, 491-492

Soils and Soil Management, 420

Soybean Industry, 489-490

Statistical Methods, 76-77

Swaney, M. W. *See Ellis, C.*

Tottenham, W. E. *Plant Biochemistry*. Revised edition, 422

Trees, Knowing Your, 174

Turrentine, J. W. *See Eckstein, O., Bruno, A., and Van der Post, A. P. Economics of Agriculture*, 77

Waller, A. G. *See App. F.*

Wheat, *Studies on Wheat Grown Under Constant Conditions*, 75

Wherry, E. T. *Guide to Eastern Ferns*, 488

Wright, C. H. *Agricultural Analysis*, 487

---

**Calcium—**

- absorption by plants, 189
- carbonate reaction with soil acidoids, 405
- content of various soil fractions, 5
- exchangeable—
  - in cultivated and uncultivated soils, 387
  - in hydrogen soils treated with calcium carbonate, 406
  - relation to calcium concentration in plants, 179

**Calcium—(continued)**

- magnesium ratio in leachings, 237
- outgo from soils, 3, 12, 233
- soil—
  - effect of carbon dioxide on, 469
  - influence on pH value of calcium carbonate suspensions, 407
  - reaction with sodium carbonate, 403
- sulfate—
  - in leachings, 18
  - in soil as influenced by limestone, 229

**Carbon—**

- dioxide—
  - action on soils, 467
  - evolution from soils, 142, 291, 296
  - sulfur, effect on evolution of, 300
- nitrogen—
  - ratio in soils treated with manure, 276
  - relationships in soils treated with organic matter, 145

**Cation—**

- distribution in soils, with depth, 385
- equilibria in plants, 175
- exchangeable, relation to absorption by plants, 178
- saturation of soils, 249

**Clay—**

- colloids, examination, 6
- composition of, from granites, 5
- fraction in laterites, 28
- humus formations, 129
- hydroxides of iron and aluminum, 133
- minerals, titanium in, 45
- sand formations, 129
- sodium, behavior, 135
- structure, 338

**Climate, effect on microbial activity**, 64

**Colloids—**

- acids in, hydrogen-ion activity of, 113
- clay, 6
- composition of, from Mexican soils, 437

**Crops—**

- forage, fertilizers used by, 279
- removal of nutrients by, 202

**Dickite, titanium in**, 45

**Dilatometer, cooling bath for**, 21

**Dolomite, leaching action of water on**, 9

**Drainage, cropped and uncropped soils affecting**, 2; *see also Water, Lysimeter*

**Fertilization—**

- relation to nutrient absorption by plants, 187
- with organic phosphates, 417

Fertilizers—  
*Aspergillus niger* method for need of, 211  
efficient use of, 201  
influence on structure, 343  
Neubauer method for need of, 211  
organic phosphate versus inorganic as, 417  
plant groups, requirements, 205  
rapid tests for need of, 226  
soil needs for, methods of determining, 211  
use by forage crops, 279

Fungi, number in soils, 60, 149, 293, 299, 355

Granite—  
analyses, 5  
weathering, 4, 391

Gypsum, effect on moisture profile, 99, 100, 101

Hydrogen-ion—  
activity of colloidal acids, 113  
concentration (pH)—  
exchange neutrality, 49  
isohydric, 49  
methods of determining, 54  
of cultivated and uncultivated soils, 387  
relation to Eh, 158, 325  
concentration (pH), as affected by—  
carbon dioxide, 467  
salts, 251, 467  
soil-water ratio, 250, 259  
concentration (pH), effect on—  
phosphate fixation, 414  
sugar inversion, 124

Hydrogen peroxide, action on mica, 391

Humus—  
clay formations, 129  
in clay-humus mixture, 341  
presence in sodium-saturated soils, 341

Iron—  
effect on humus-clay formations, 132  
ferric and ferrous, in soil as affected by pH, 325

Isohydric pH value of soils, 49

Kaolinite—  
saturation with sodium, 133  
titanium in, 45

Laterites—  
profile description, 23  
Samoa, 23  
use of term, 29

Lime—  
effect on—  
manganese in soils, 89  
sulfates of calcium, magnesium, and potassium, 229

Lime—(continued)  
Neubauer and *Aspergillus niger* tests, as affected by, 222

Limestone—  
dolomitic, effect on behavior of sulfates of calcium, magnesium, and potassium, 229  
leaching action of water on, 9  
state of division, importance, 18

Lysimeter—  
experiments, 1, 9  
leachings, analyses, 6, 11  
studies, 229

Magnesium—  
absorption by plants, 189  
exchangeable—  
in cultivated and uncultivated soils, 387  
relation to concentration in plants, 179  
in soil fractions, 5  
outgo from soil, 3, 14, 235  
soil, effect of carbon dioxide on, 469  
sulfate in soil, influence of limestone on, 229

Manganese—  
exchangeable, 90  
in soils, 83

Manure—  
effect on red soils, 273  
sheep and goat analyses, 274

Mica, hydrogen peroxide action on, 391

Microörganisms—  
activity—  
organic matter transformations and, 139  
seasonal variations in, 59  
carbon-dioxide formation and numbers of, 143  
climatic effect on, 64  
environmental effects on numbers of, 351  
humus effects, 67  
oxidation-reduction potential effects, 67, 151  
phosphate fixation by, 417  
rhythymical behavior, 360  
seasonal variation in numbers of, other than bacteria, 359  
soil types and, 57  
vegetation cover effect, 64

Minerals, loss from soils, 3

Moisture—  
content, method of determining, 107  
effect on pH, 250, 259  
gypsum, effect on, movement, 103  
in goat and sheep manure 274  
profiles, 98

Montmorillonite, titanium in, 45  
 Neubauer method for fertilizer requirements, 211  
**Nitrate**—  
 formation, effect of straw on, 4  
 in soils, 157  
**Nitrogen**—  
 absorption by plants, 189, 202  
 fixing bacteria, 66  
 fractions in soils, 153  
 gain in uncultivated soils, 382  
 in goat and sheep manure, 274  
 loss from soils, 3  
**Nontronite**, titanium in, 45  
**Organic**—  
 carbon, method of determining, 397  
 matter—*see also Humus*  
 decomposition as affected by salts, 290  
 fractionations, 151  
 gain in uncultivated soils, 381  
 loss from grass versus forest vegetation, 163  
 transformations and microbial activity, 139  
 phosphates, fixation studies, 409  
**Peas**, nutrient absorption by, 191, 202  
**Phosphates**—  
 availability of several sources, 225  
 citric-soluble, in soils, 462  
 fixation in soils, 453  
 loss by erosion, 465  
 movement in soils, 457  
 organic, studies in fixation, 409  
**Phosphorus**—  
 absorption by plants, 189, 202  
 availability, analysis of methods, 218  
 distribution in soil leachings, 412  
 in goat and sheep manure, 274  
 loss from soils, 3  
**Plant**—  
 groups, methods of fertilizing, 205  
 nutrients—  
 absorption during growth, 188  
 available, comparison of methods, 215  
 daily absorption, 203  
 quantity absorbed, 202  
 seasonal absorption, 192  
**Plants**—  
 cation equilibria in, 175  
 effect on *Bacterium globiforme*, 317  
 nutrient absorption by, 187, 202  
 Podzolic soils, concretions in, 33  
**Potassium**—  
 absorption by plants, 189, 202  
 availability, analysis of methods, 219  
 exchangeable—  
 in cultivated and uncultivated soils, 387  
 relation to concentration in plants, 180  
 in goat and sheep manure, 274  
 outgo from soils, 3, 238  
 soil, effect of carbon dioxide on, 469  
 sulfate in soils as influenced by limestone, 229  
**Potatoes**, nutrient absorption by, 191, 202  
**Rainfall map of parts of Mexico**, 429  
**Rape**, nutrient absorption by, 191, 202  
**Redtop**, solution cultures for, 281  
**Rhizobia**—  
 coenzyme R requirements, 473  
 species and strains, 478  
**Root distribution in soils**, 70  
**Rye**—  
 Italian, cation content, 177  
 nutrient absorption by, 188, 202  
**Samoa**, laterites in western, 23  
**Sodium**—  
 carbonate, reaction with—  
 calcium soils, 403  
 soil acidoid, 402  
 exchangeable, relation to concentration in plants, 180  
 soil—  
 effect of carbon dioxide on, 469  
 influence on pH of calcium carbonate suspensions, 407  
**Soil**—  
 acidoid reaction with—  
 calcium carbonate, 404  
 sodium carbonate, 402  
 calcium soil, reaction with sodium carbonate, 403  
 cation equilibria in plants in relation to, 175  
 chemical composition of, cultivated and uncultivated, 379  
 concretions, 33  
 constituents, distribution with depth, 384  
 cropped and uncropped, effect on leaching, 2  
 erosion, loss of phosphates by, 465  
 fertilizer needs, methods of determining, 211  
 fractions, variation in composition, 5  
 microbial activity in, 57

## Soil—(continued)

moisture, changes affecting bacteria, 365;  
see also Moisture, Water  
organic carbon in, rapid determination,  
397  
profiles—  
Aguia Neuva sandy loam, 439  
concretions in, 37  
description of a number of, 23  
gray desert, 430  
Irapuato clay loam, 442  
Juarez clay, 439  
Queretaro clay, 441  
Tamazunchale clay, 445  
processes, 27  
rapid tests, 226  
ratings for fertilizer requirements, 220  
reaction, effect of potassium chloride on,  
255; see also Hydrogen-ion.  
saline, microbial activity in, 294  
series, analyses, descriptions, or experi-  
ments with—  
Aguia Neuva, 439; Alderwood, 261; Ava,  
36; Barnes, 261; Cashmere, 261;  
Cecil, 89, 410; Chehalis, 261; Col-  
bert, 213; Collington, 86; Colts  
Neck, 86, 89; Cumberland, 212;  
Decatur, 212; Denny, 38; Ephrata,  
261; Everett, 261; Felida, 261;  
Fullerton, 212; Garrison, 261;  
Greenville, 261; Grundy, 38; Hart-  
sells, 213; Helmer, 57, 69, 139;  
Hesson, 261; Hoquiam, 261; Hous-  
ton, 261; Huntington, 212; Ira-  
puato, 442; Juarez, 439; Lakewood,  
261; Las Vegas, 411; Lynden, 261;  
Magia, 24, 26; Malatula, 25, 26;  
Melbourne, 261; Memphis, 211;  
Mericourt, 213; Mohave, 261;  
Montevallo, 213; Norfolk, 410;  
Olympic, 261; Palouse, 57, 69, 139,  
261; Penn, 90; Phillips, 447; Ply-  
mouth, 369; Puget, 261; Putnam,  
38; Queretaro, 441; Ritzville, 261;  
Rushville, 38; Saleimoa, 24, 26;  
Salkum, 261; Sassafras, 86, 89;  
Sharkey, 89; Spanaway, 261; Ta-  
mazunchale, 445; Tiavi, 25, 26;  
Torreon, 430; Tuasivi, 25, 26;  
Vaitele, 24, 26; Volusia, 369;  
Walla Walla, 261; Willamette, 290;  
Wynoose, 37

## Soil—(continued)

structure—  
autolytic products of *A. niger* in, 343  
formation, 129, 267, 337  
microscopic investigation of, 337  
types—  
fixation of organic phosphates by, 409  
microflora in, 57  
water ratio, influence on pH, 249, 259; see  
also Water, Moisture  
zonal types, microflora, 57  
Soils—  
acids in colloids of, 113  
alkali—  
chemical properties, 295  
reclamation effects of carbon dioxide,  
469  
alkaline, pH value, 55  
buffer capacity, 55  
Canadian, *Bacterium globiforme* in, 307  
carbon dioxide evolution from, 142, 296  
carbonates and, interaction between, 401  
cation-saturated, studies, 177  
chemical analyses of Mexican, 434  
chernozem, in Mexico, 441  
concretions in podzolic, 33  
cultivated versus uncultivated, 379  
fallow, effect on leaching, 3  
ferromanganese concretions in, 33  
fertilizer needs of, tests used, 211  
flocculation of, effect of carbon dioxide on,  
470  
gain and loss of organic matter in, 382  
gray desert, 428  
hydrolysis of acetate by, 116, 120  
Illinois, ferromanganese concretions  
in, 34  
intrazonal, in Mexico, 433  
isohydric pH value, 49  
lateritic, in Mexico, 444  
laterite, see Laterites  
manganese in, 83  
mechanical analyses, effect of hydrogen  
peroxide, 393  
Mexico, 427  
microbial activities in, 57, 139, 287  
nutrient deficiencies in, indicator for, 367  
oxidation-reduction potentials in, 323  
Palestine, 274  
phosphate fixation in, 453  
podzolic and alpine meadow, 446  
red Mediterranean, 273

Soils—(*continued*)  
root distribution in, 70  
salts, influence on pH, 249  
Samoa, 23  
single-base, action of carbon dioxide on, 468  
solonchak, 433, 440  
sucrose inversion by, 121, 126  
unsaturation, 387  
unweathered, titanium in, 41  
water movement in irrigated, 95  
wilting point, method, 331  
Solution cultures, growing timothy, redtop, and bent grass in, 281  
Straw, effect on nitrates, 4  
Sucrose, inversion by soils, 121, 124  
Sulfates, outgo from soil as influenced by lime, 232  
Sulfur—  
loss from soils, 3  
sulfate, outgo from soils, 243

Timothy, solution cultures for, 281  
Titanium—  
accumulation in colloids, 7  
distribution in clay fraction, 44  
in laterites, 26  
in minerals, 45  
in unweathered soils, 41  
Vermiculite, alteration by hydrogen peroxide, 391  
Water—  
evaporation from cropped and uncropped soil, 2  
extract, composition of soil, 292  
leaching action on dolomite and limestone, 9  
loss from soil, 1  
movement in soils upon irrigation, 95  
Weathering—  
granite, 4  
mica, 391  
Wilting point of soils, method of determining, 331

