

planetmath.org

Math for the people, by the people.

interchange law

Canonical name InterchangeLaw
Date of creation 2013-03-22 18:27:08
Last modified on 2013-03-22 18:27:08

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771)
Entry type Definition
Classification msc 18A99
Classification msc 08A99

Let S be a set and \circ and \bullet two http://planetmath.org/PartialFunctionpartial binary operations on S. Then \circ and \bullet are said to satisfy the *interchange law* if

$$(a \circ b) \bullet (c \circ d) = (a \bullet c) \circ (b \bullet d),$$

provided that the operations are defined on both sides of the equation.

An element $e \in S$ is a \circ -identity, or an identity with respect to \circ , if $e \circ a = a \circ e = a$ provided the operations are defined.

Proposition 1. If \circ is a total function (defined for all of $S \times S$), then there is at most one \circ -identity.

Proof. If e and f are both \circ -idenities, then $e = e \circ f = f$.

Proposition 2. If both \circ and \bullet are total functions, and identities exist and the same with respect to both operations, then $\circ = \bullet$ and is commutative.

Proof. Suppose that e is both the \circ -identity and the \bullet -identity. Then, according to the interchange law, $a \bullet d = (a \circ e) \bullet (e \circ d) = (a \bullet e) \circ (e \bullet d) = a \circ d$, showing that $\bullet = \circ$. Again, using the interchange law, $a \bullet d = (e \circ a) \bullet (d \circ e) = (e \bullet d) \circ (a \bullet e) = d \circ a = d \bullet a$, showing that \bullet is commutative. \square