

UNIVERSIDADE FEDERAL DO CEARÁ Campus de Quixadá Prof. André Braga

QXD0148- Sistemas Operacionais II

2021.2

Nome:	Matrícula:
1 tollie:	- Midtitedia:

[2.0 pontos] 1. Explique o que significam as quatro curvas abaixo dentro de um contexto de valoração de tasks de acordo com sua importância. Quem são f_i , $v(f_i)$ e d_i ?

[3.0 pontos] 2. Considere um conjunto de *tasks* do tipo *soft* que apresente valor de importância de acordo com o gráfico abaixo:

Suas propriedades são apresentadas na tabela abaixo:

Task	Tempo de Chegada (a_i)	Tempo de Execução (C_i)	Prazo (D_i)	Tolerância (m_i)	Valor (v_i)
$ au_0$	3	3	7	5	4
$ au_1$	1	5	8	2	10
$ au_2$	2	2	9	3	8
$ au_3$	0	3	10	3	6
$ au_4$	2	4	15	2	2

Llotor	mina
176161	mine:

Nota:	
INULA.	

- a) A sequência de escalonamento utilizando o algoritmo EDF desconsiderando a chegada de τ_0 (t=3).
- b) A sequência de escalonamento utilizando o algoritmo EDF considerando a chegada de τ_0 (t=3).
- c) Calcule a carga de cada *task* no instante de chegada de τ_0 (t = 3).
- d) Calcule a folga residual de cada *task* no instante de chegada de τ_0 (t = 3).
- e) Existe uma escala de execução diferente da fornecida pelo EDF que implica na maximização do valor de importância agregado? Caso positivo, determine a escala.
- [2.0 pontos] 3. Considere o conjunto de tarefas abaixo com somente uma instância de cada *task*. Desenhe a escala de execução, considerando que herança de prioridade é usada para controlar o acesso aos recursos compartilhados. Considere que as *tasks* alocam os recursos durante toda sua execução. Determine o tempo de resposta de cada *task*.

Task	Tempo de Chegada (ms)	Tempo de Execução (ms)	Prioridade	Semáforo usado
T_1	8	2	10	A
T_2	3	5	5	A
T_3	6	5	7	В
T_4	0	10	2	В

- [1.0 pontos] 4. Determine e descreva os três possíveis modos de inversão de prioridade que podem ocorrer ao se empregar o algoritmo *Priority Ceiling Protocol* (PCP).
- [2.0 pontos] 5. Considere três task periódicas τ_1 , τ_2 e τ_3 (com prioridades decrescentes) que dividem quatro recursos A, B, C e D, acessados utilizando o PIP. Calcule o tempo máximo de bloqueio B_i para cada task, sabendo que a maior duração δ_{iR} para a task τ_i no recurso R é dada pela tabela abaixo:

	A	В	С	D
$ au_1$	1	2	2	1
$ au_2$	4	3	6	8
$ au_3$	2	1	5	7

Fórmulas úteis:

Tempo de bloqueio PIP:

$$B_i^l = \sum_{j=i+1}^n \max_k \{\delta_{j,k} - 1 | C(S_k) \ge P_i\}$$

$$B_i^s = \sum_{k=1}^m \max_{i} \{ \delta_{i,k} - 1 | C(S_k) \ge P_i \}$$

$$B_i = \min(B_i^l, B_i^s)$$

Tempo de bloqueio PCP:

$$\gamma_i = \{Z_{j,k} | P_j < Pi \ e \ C(R_k) \geq P_i \}$$

$$B_i = \max_{j,k} \{ \delta_{j,k} - 1 | Z_{j,k} \in \gamma_i \}$$

Carga computacional no instante t ($\rho(t)$):

$$\rho_i(t) = \frac{\sum_{d_k \leq d_i} c_k(t)}{d_i - t}$$

$$\rho(t) = \max_{i} \rho_i(t)$$

Desempenho do escalonador A ($\Gamma_{\!A}$)

$$\Gamma_A = \sum_{i=1}^n v(f_i)$$

$$\Gamma_A = \varphi_A \Gamma^*$$

Folga residual (L_i):

$$L_i = d_i - f_i$$

$$L_i = L_{i-1} + (d_i - d_{i-1}) - c_i(t)$$

$$E_i = \max\{0, -(L_i + M_i)\}$$

$$\rho_i(t) = 1 - \frac{L_i}{d_i - t}$$