Exercise

Exercise Dataset

Data Overview

The "AI-Powered Job Market Insights" dataset provides a snapshot of the modern job market, particularly focusing on the role of artificial intelligence (AI) and automation across various industries.

This dataset includes 500 unique job listings, each characterized by different factors like industry, company size, AI adoption level, automation risk, required skills, and job growth projections.

Data Preview

```
ai_jobs |>
  gt_preview() |>
  tab_header(title = "AI-Powered Job Market Insights") |>
  tab_source_note(source_note = "Source: Kaggle https://www.kaggle.com/datasets/
uom190346a/ai-powered-job-market-insights")
```

Al-Powered Job Market Insights

	in- job_ti- dus- tle try		com- pa- ny size	loca-	ai_adopæutom tion_levteoln_ri	job_growth_p jec- te <u>ti</u> foiendly		
1	Cy- ber- se- cu- rity Ana- lyst	En- ter- tain- ment	Small	Dubai	MediumHigh	UX/ UI 111392.17 De- sign	Yes	Growth
2	Mar- ket- ing Spe- cial- ist	Tech- nol- ogy	Large	Sin- ga- pore	MediumHigh	Mar- ket73792.56 ing	No	De- cline

Source: Kaggle https://www.kaggle.com/datasets/uom190346a/ai-powered-job-market-insights

Al-Powered Job Market Insights

	job_ti- tle	in- dus- try	com- pa- ny size	loca-		pæutom evtédon_ri:	a- skesspulareyd <u>u</u> sekdill:	s remote	job_growth_p jec- e <u>t</u> itoiendly
3	AI Resea	Tech- nol- rcher ogy	Large	Sin- ga- pore	Mediu	m L ow	UX/ UI 137170.26 De- sign	Yes	Growth
4	Sales Man- ager	Re- tail	Small	Berlin	Low	Mediu	Pro- ject Man- m 83027.95 age- ment	No	Growth
5	Cy- ber- se- cu- rity Ana- lyst	En- ter- tain- ment	Small	Tokyo	Low	Low	Jav a Stri p92	Yes	De- cline
6499									
500	En- HR Marter- ager tain- ment		Mediu	diumBerlin MediumHigh		mHigh	Pro- ject Man- 53764.38 age- ment	Yes	De- cline

Source: Kaggle https://www.kaggle.com/datasets/uom190346a/ai-powered-job-market-insights

To simplify our later code, I have created a separate table which is already filtered for the groups we will be looking at:

```
ai_jobs_risk <- ai_jobs |>
  filter(automation_risk %in% c("Low", "High"))
ai_jobs_high <- ai_jobs_risk |>
  filter(automation_risk == "High")
```

```
ai_jobs_low <- ai_jobs_risk |>
  filter(automation_risk == "Low")
```

Dataset Features:

Source: Kaggle https://www.kaggle.com/datasets/uom190346a/ai-powered-job-market-insights

- 1. Job Title:
 - **Description**: The title of the job role.
 - Type: Categorical
 - Example Values: "Data Scientist", "Software Engineer", "HR Manager"
- 2. Industry:
 - **Description**: The industry in which the job is located.
 - Type: Categorical
 - Example Values: "Technology", "Healthcare", "Finance"
- 3. Company_Size:
 - **Description**: The size of the company offering the job.
 - Type: Ordinal
 - Categories: "Small", "Medium", "Large"
- 4. Location:
 - **Description**: The geographic location of the job.
 - Type: Categorical
 - Example Values: "New York", "San Francisco", "London"
- 5. AI_Adoption_Level:
 - **Description**: The extent to which the company has adopted AI in its operations.
 - Type: Ordinal
 - Categories: "Low", "Medium", "High"
- 6. Automation Risk:
 - **Description**: The estimated risk that the job could be automated within the next 10 years.
 - Type: Ordinal
 - Categories: "Low", "Medium", "High"
- 7. Required_Skills:
 - **Description**: The key skills required for the job role.
 - Type: Categorical
 - Example Values: "Python", "Data Analysis", "Project Management"
- 8. Salary_USD:
 - **Description**: The annual salary offered for the job in USD.
 - Type: Numerical
 - Value Range: \$30,000 \$200,000
- 9. Remote Friendly:
 - **Description**: Indicates whether the job can be performed remotely.
 - **Type**: Categorical

- Categories: "Yes", "No"
- 10. Job Growth Projection:
 - **Description**: The projected growth or decline of the job role over the next five years.
 - Type: Categorical
 - Categories: "Decline", "Stable", "Growth"

Exercise - Mystery bags

To begin, split into three groups. Decide on the following roles, one per person:

- 1. Sampler draws samples from the population
- 2. Recording records the draws in R

Your group has been presented with a population model (bag containing salaries). There may be multiple populations represented in the various bags around the room.

Please DO NOT look in the bag OR empty the contents of the bag.

Exercise - Mystery bags {nonincremental}

The task

- 1. The **Sampler** draws 10 slips from the bag this is your sample of size 5.
- 2. The **Recorder** records the values on the slips into the sampling-exercise.R file.
 - Create a new list for each sample (sample 1 <- c(1, 2, 3, 2, 2))
- 3. Calculate the mean for the new sample and add it to the sample_means table.
- 4. Run the code to plot the histogram of your samples.
- 5. Return the slips to the bag.
- 6. Ensure the data is well mixed between samples.
- 7. Repeat

Bibliography