High Performance Software Defined Radio

Progetto Hardware e Software Open Source (GNU type) Descrizione del Progetto: http://hpsdr.org

Scheda ATLAS

Guida all'Assemblaggio e Documentazione

Philip Covington, N8VB Progetto della scheda

> Christopher T.Day, AE6VK Testo

Philip Covington, N8VB Horst Gruchow, DL6KBF Ray Anderson, WB6TPU

Grafica e Layout Traduzione in Italiano

Horst Gruchow, DL6KBF Alberto di Bene I2PHD

Coordinatore del Progetto Eric Ellison, AA4SW

Rev. 1.4 del 10 Giugno 2006 © 2006 DL6KBF

Indice

Dove trovare tutto

Indice Dove trovare tutto	2
ATLAS – la scheda madre Il modulo ATLAS	3
ATLAS - il Bus ATLAS Descrizione Fisica del Bus Connettori Standard: Connettori Opzionali: Caratteristiche Varie: Note Pinout del Bus DIN41612 Connessioni all' XBUS ATLAS Connessioni all' YBUS ATLAS Note e Glossario	4 5 5 6 7 8 9
ATLAS – la Costruzione Come ottenere il PCB dell'ATLAS Lista dei Materiali (BOM) US BOM EU BOM Costruzione della Scheda ATLAS Attrezzi Installazione rapida Note sulla Costruzione	11 11 12 12 13 13 13
ATLAS – la Meccanica Dimensioni delle schede Plug-in Alcune foto della scheda ATLAS	16 17
ATLAS – le Prestazioni Ray Anderson, WB6TPU, sulle prestazioni dell'ATLAS ATLAS Plottaggi TDR e VNA dei bus	19 20
ATLAS – le Informazioni Informazioni utili e Links	22
Storico delle Revisioni	23

ATLAS – la Scheda Madre

A proposito del modulo ATLAS

La scheda ATLAS e' una scheda madre passiva sulla quale si innestano tutte le altre. La scheda prevede fino a sei connettori DIN41612 spaziati di 0.8 pollici. La scheda prevede un connettore ATX da 20 pin, in modo da poter usare i 12V, 5V, 3.3V etc. forniti da un alimentatore standard PC per alimentare l' HPSDR. Questi alimentatori sono facilmente reperibili, sia nuovi che surplus, il ché risolve il problema dell'alimentazione.

I varii files per la scheda ATLAS possono essere trovati qui :

http://www.philcovington.com/HPSDR/ATLAS/ .

La spaziatura dei connettori DIN e le dimensioni della scheda sono stati scelti in modo che questa scheda madre possa essere alloggiata in un normale contenitore per PC

Il project leader per ATLAS e' Phil, N8VB.

Scheda ATLAS montata, con un alimentatore ATX PicoPSU collegato (foto Christopher T. Day, AE6VK)

ATLAS - il Bus

Descrizione fisica del Bus ATLAS

Scheda: 4 Strati , 5.500" X 3.940"(139.7x100 mm²)

J1-J6 slots spaziati di 0.800"(20.3 mm)

Ordine: Piano di massa (Strato superiore)

YBUS

Piano delle tensioni di alimentazione

XBUS (Strato inferiore)

Alimentazione: +12VDC, -12VDC, +5VDC, -5VDC, +3.3VDC

Descrizione fisica del BUS ATLAS

Connettori Standard:

96 pin DIN41612 (J1-J6) - BUS 20 pin ATX PS (J19) - POWER PS LOAD (J21) - LOAD 6 pin 0.100 SIP (J20) - POWER T1-T6 per LED esterni T7-T8 per il pulsante remoto On/Off dell'alimentatore ATX T9 per il segnale PWR OK dell'alimentatore ATX **Connettori Opzionali:** 64 pin DIN41612 (usa solo l' XBUS) 32x2 0.100"(2.54 mm) Header (usa solo l' XBUS) Caratteristiche varie: Ciascun pin dei connettori puo' essere isolato dal bus e jumperato ad un altro segnale oppure ad un altro pin del bus J7-J18 servono per headers SIP da 32 pin opzionali o per pins wire-wrap. Questo permette un reindirizzamento del bus secondo necessita'. L'utente puo' decidere di usare il solo XBUS mettendo in J1-J6 connettori a 64 pin DIN41612 "Type B" oppure headers a 32 pin doppi da 0.100. J21 permette di piazzare un resistore opzionale di carico sul bus dei +5V quando si usa un power supply ATX. Questo resistore di carico deve essere munito di un adeguato dissipatore di calore. D1-D5 sono LED SMT collegati al power bus (+12V, -12V, +5V, -5V, +3.3V) tramite le resistenze di carico R1-R5. T1-T6 permettono di montare i LED a pannello anziché SMT.

Tutte le tensioni di alimentazione hanno condensatori di bypass

ATLAS - Descrizione fisica del bus

Note:

- 1. Il bus e' separato in XBUS e YBUS, ciascuno con 24 linee.
- 2. L'XBUS e' tracciato sullo strato inferiore del PCB.
- 3. L'YBUS e' tracciato fra lo strato di massa superiore e lo strato delle alimentazioni,
- 4. L'XBUS e' diviso nei sottogruppi XAO-XA7, XBO-XB7, XCO-XC7, XDC.
- 5. L'YBUS e' diviso nei sottogruppi YAO-YA7, YBO-YB7, YCO-YC7, YDC.
- 6. XDC e YDC sono connessi in catena fra gli slots (vedi lo schema).
- 7. La divisione in sottogruppi dell'XBUS e dell'YBUS ha solo uno scopo di nomenclatura fisica
- 8. Poiche' l'YBUS e' in mezzo a due altri strati, dovrebbe essere usato per segnali di media velocità oppure segnali di clock fra le schede. Per quanto non concepito come bus LVDS, dovrebbe andar bene per velocità di clock fino a 20-25 MHz.
- 9. J7, J9, J11, J13, J15, J17 sono connessi all' XBUS.
 J8, J10, J12, J14, J16, J18 sono connessi all' YBUS.
 Sul lato inferiore della scheda Atlas, J7-J18 sono connessi tramite piste a
 J1-J6. Questo consente di isolare pins sui connettori J1-J6 tagliando le piste
 di interconnessione. Vedere il punto 10 seguente.
- 10. Se una applicazione richiede il reindirizzamento di segnali sul bus, una possibile soluzione e' di usare dei pin wire wrap sui relativi pin dei connettori J7-J18. Il segnale a questo punto puo' essere trasportato tramite filo wire wrap sul lato superiore della scheda ATLAS, che essendo il piano di massa, facilita la riduzione del crosstalk e del rumore, se il filo wire wrap e' steso aderente al piano stesso.
- 11. Una alternativa al wire wrap e' di piazzare dei jumper fra i segnali del bus reindirizzati sulle piazzole J7-J18.
- 12. Vedere sotto il pinot del bus fisico.

ATLAS – Descrizione fisica del bus

Pinout del Bus DIN41612

	XI	BUS			YBUS		US	
<u>PIN</u>	<u>NOME</u>	<u>ALTERNATIVO</u>	PIN	NOME	П	<u>PIN</u>	<u>NOME</u>	<u>ALTERNATIVO</u>
A1	+12VD C		B1	+12VDC		C1	+12VDC	
A2	X0A0		B2	GND		C2	Y0A0	
A3	X1A1		В3	GND		C3	Y1A1	
A4	X2A2		B4	GND		C4	Y2A2	
A5	X3A3		B5	GND		C5	Y3A3	
A6	X4A4		B6	GND		C6	Y4A4	
A 7	X5A5		B7	GND		C7	Y5A5	
A8	X6A6		B8	GND		C8	Y6A6	
A9	X7A7		B9	GND		C9	Y7A7	
A10	X8B0		B10	GND		C10	Y8B0	
A11	X9B1		B11	GND		C11	Y9B1	
A12	X10B2		B12	GND		C12	Y10B2	
A13	X11B3		B13	GND		C13	Y11B3	
A14	X12B4		B14	GND		C14	Y12B4	
A15	X13B5		B15	GND		C15	Y13B5	
A16	X14B6		B16	GND		C16	Y14B6	
A17	X15B7		B17	GND		C17	Y15B7	
A18	X16C0	1-WIRE	B18	GND		C18	Y16C0	SPI - nCS4
A19	X17C1	nRST	B19	GND		C19	Y17C1	SPI - nCS3
A20	X18C2	I2C - SCL	B20	GND		C20	Y18C2	SPI - nCS2
A21	X19C3	I2C - SDA	B21	GND		C21	Y19C3	SPI - nCS1
A22	X20C4	JTAG - TRST	B22	GND		C22	Y20C4	SPI - nCS0
A23	X21C5	JTAG - TMS	B23	GND		C23	Y21C5	SPI - SCK
A24	X22C6	JTAG - TCK	B24	GND		C24	Y22C6	SPI - MISO
A25	X23C7	JTAG - SDO ret	B25	GND		C25	Y23C7	SPI - MOSI
A26	-12VDC		B26	-12VDC		C26	-12VDC	
A27	X24DC	JTAG - SDO	B27	GND		C27	Y24DC	SPI - MOSI ovfl out
A28	-5VDC		B28	-5VDC		C28	-5VDC	
A29	X25DC	JTAG - SDI	B29	GND		C29	Y25DC	SPI - MOSI ovfl in
A30	+3.3VDC		B30	+3.3VDC		C30	+3.3V DC	
A31	X26DC		B31	GND		C31	Y26DC	
A32	+5VDC		B32	+5VDC		C32	+5VDC	

ATLAS – Connessioni dell' XBUS

XBUS							
<u>PIN</u>	NOME	JANUS U11	OZY U3	ALTERNATIVO			
A1	+12VD C						
A2	X0A0	PIN 97 IO	PIN 147 IO				
A3	X1A1	PIN 95 IO	PIN 146 IO				
A4	X2A2	PIN 91 IO	PIN 145 IO				
A5	X3A3	PIN 89 IO	PIN 144 IO				
A6	X4A4	PIN 87 IO	PIN 143 IO				
A7	X5A5	PIN 85 IO	PIN 142 IO				
A8	X6A6	PIN 83 IO	PIN 141 IO				
A9	X7A7	PIN 81 IO	PIN 139 IO				
A10	X8B0	PIN 77 IO	PIN 138 IO				
A11	X9B1	PIN 75 IO	PIN 137 IO				
A12	X10B2	PIN 73 IO	PIN 135 IO				
A13	X11B3	PIN 71 IO	PIN 134 IO				
A14	X12B4	PIN 69 IO	PIN 133 IO				
A15	X13B5	PIN 67 IO	PIN 128 IO				
A16	X14B6	PIN 64 IO/GCLK3	PIN 127 IO				
A17	X15B7	PIN 61 IO	PIN 120 IO				
A18	X16C0	PIN 57 IO / U14 ID	PIN 119 IO	1-WIRE			
A19	X17C1	PIN 55 IO	PIN 118 IO	nRST (1)			
A20	X18C2	PIN 53 I2CSCK	PIN 117 IO	I2C - SCL			
A21	X19C3	PIN 51 I2CSDA	PIN 116 IO	I2C - SDA			
A22	X20C4	PIN 49 IO	PIN 115 IO	JTAG - TRST			
A23	X21C5	PIN 22 CTMS	PIN 114 IO	JTAG - TMS			
A24	X22C6	PIN 24 CTCK	PIN 113 IO	JTAG - TCK			
A25	X23C7	JP 10 SDOBACK	PIN 112 IO	JTAG - SDO ret			
A26	-12VDC						
A27	X24DC	PIN 25 CTDO	PIN 110 IO	JTAG - SDO			
A28	-5VDC						
A29	X25DC	PIN 23 CTDI	PIN 106 IO	JTAG - SDI			
A30	+3.3VDC						
A31	X26DC	PIN 40 IO	PIN 105 IO				
A32	+5VDC						

ATLAS – Connessioni dell' YBUS

YBUS						
<u>PIN</u>	NOME	JANUS U11	OZY U3	<u>ALTERNATIVO</u>		
C1	+12VDC					
C2	Y0A0	PIN 98 IO	PIN 149 IO			
C3	Y1A1	PIN 96 IO	PIN 150 IO			
C4	Y2A2	PIN 92 IO	PIN 151 IO			
C5	Y3A3	PIN 90 IO	PIN 152 IO			
C6	Y4A4	PIN 88 IO	PIN 160 IO			
C7	Y5A5	PIN 86 IO	PIN 161 IO			
C8	Y6A6	PIN 84 IO	PIN 162 IO			
C9	Y7A7	PIN 82 IO	PIN 163 IO			
C10	Y8B0	PIN 78 IO	PIN 164 IO			
C11	Y9B1	PIN 76 IO	PIN 165 IO			
C12	Y10B2	PIN 74 IO	PIN 168 IO			
C13	Y11B3	PIN 72 IO	PIN 169 IO			
C14	Y12B4	PIN 70 IO	PIN 170 IO			
C15	Y13B5	PIN 68 IO	PIN 171 IO			
C16	Y14B6	PIN 66 IO	PIN 173 IO			
C17	Y15B7	PIN 62 IO/GCLK2	PIN 175 IO			
C18	Y16C0	PIN 58 IO	PIN 176 IO	SPI - nCS4		
C19	Y17C1	PIN 56 IO	PIN 179 IO	SPI - nCS3		
C20	Y18C2	PIN 54 IO	PIN 180 IO	SPI - nCS2		
C21	Y19C3	PIN 52 IO	PIN 181 IO	SPI - nCS1		
C22	Y20C4	PIN 50 IO	PIN 182 IO	SPI - nCS0		
C23	Y21C5	PIN 48 IO	PIN 185 IO	SPI - SCK		
C24	Y22C6	PIN 44 IO/DEV_CLRn	PIN 187 IO	SPI - MISO		
C25	Y23C7	PIN 43 IO/DEV_OE	PIN 188 IO	SPI - MOSI		
C26	-12VDC					
C27	Y24DC	PIN 42 IO	PIN 189 IO	SPI - MOSI ovfl		
C28	-5VDC					
C29	Y25DC	PIN 41 IO	PIN 191 IO	SPI - MOSI ovfl		
C30	+3.3V DC					
C31	Y26DC	PIN 39 IO	PIN 192 IO			
C32	+5VDC					

Note e Glossario

TERMINE	SPIEGAZIONE		
JANUS U11	Altera EPM240TQFP100 CPLD sulla scheda JANUS		
OZY U3	Altera EP2C5-208 FPGA sulla scheda OZY		
CPLD	Complex Programmable Logical Device		
FPGA	Field Programmable Gate Array		
1-WIRE	Board Identification (using MAXIM DS2431P with 64-bit ROM registration no. + 1024bit EEPROM) DALLAS 1-Wire Protocol		
nRST	RESET		
I2CSCK / I2C-SLC	Inter-Integrated Circuit (I ² C Bus) - Master Clock Line		
I2CSDA	I ² C Bus - Serial Data Line		
JTAG	Joint Test Action Group - Implementation of IEEE 1149.1 Stan- dard Test Access Port and Boundary-Scan Architecture Programming Port for Altera Devices		
JTAG-TRST	Test Reset		
JTAG-TMS	Test Mode Select		
JTAG-TCK	Test Clock		
JTAG-SDO	Test Data Out		
JTAG-SDOret	Test Data Out Return - Jumper JP12 on JANUS to be set if JANUS U11 programmed via OZY USB - J12 open for local JTAG programming		
JTAG-SDI	Test Data In		
GCLK2 /GCLK3	Clocks connected to Global Clock Network on JANUS U11		
SPI-nCS4 to CS0	Serial Peripheral Interface – Chip (Slave) Select		
SPI-SCK	SPI - Master Clock		
SPI-MISO	SPI - Master In Slave Out Data / Serial Data In		
SPI-MOSI	SPI - Master Out Slave In Data / Serial Data Out		
SPI-MOSI ovfl out	SPI - Data Overflow Master		
SPI-MOSI ovfl in	SPI - Data Overflow Slave		
DEV_CLRn	Clear all Registers on Low - JANUS U11		
DEV_OE	All I/O pins tristate on Low - JANUS U11		

ATLAS - la Costruzione

Come ottenere un circuito stampato ATLAS

Situazione al Giugno 2006

Un batch di 400 schede beta e' stato prodotto da Eric Ellison, AA4SW, dopo che il numero iniziale di ordini aveva superato i 300. Potrebbero esserci ancora delle schede disponibile di questo primo batch. Attualmente il costo e' di 10 dollari USA piu' la spedizione. Controllare su questa pagina Web: http://www.hamsdr.com

E' necessario registrarsi per poter vedere il tab **Projects** dove e' listato lo stato corrente degli ordini del progetto **HPSDR**. Per far questo basta cliccare su **Log-In/Join** in alto a destra, poi scegliere **Join** dal menu, e dare le informazioni richieste nel form. Quindi cliccare sul bottone **Save** in basso nel form. Questo website e' protetto dallo spam e da' accesso a una miriade di informazioni sulla Software Defined Radio.

In alternativa e' possibile produrre autonomamente la scheda, poiche' i files PCB sono Open Source e disponibili presso http://www.philcovington.com/HPSDR/ATLAS/ in formato Gerber.

Controllare anche:

HPSDR mailing list

HpsdrWiki:Community Portal

per informazioni sullo stato attuale del progetto HPSDRt.

A partire dal 7 Giugno 2006, l'organizzazione TAPR (TUCSON AMATEUR PACKET RADIO CORPORATION) e' entrata in cooperazione con il gruppo HPSDR, e distribuisce le schede ATLAS e i kit. Il primo kit disponibile e' l'insieme dei componenti per la scheda ATLAS stessa.

Visitare il sito http://www.tapr.org/kits-atlas.html

Elenco dei materiali (BOM)

Come dimostrato da ordini campione, tutti i componenti per la scheda ATLAS dovrebbero essere disponibili presso distributori qualificati. La scheda usa componenti SMT standard, principalmente del tipo 0805.

Prestare particolare cura ai 5 condensatori al tantalio C1 - C5. I soli dimensionalmente adeguati sono i tipi 3216 or 3528 (A, B o S, T per low profile).

L'header ATX Molex potrebbe presentare problemi di reperibilita', poiche' l'esperienza insegna che non tutti lo hanno in stock. Puo' essere di aiuto un posting sul gruppo di discussione HPSDR mailing list.

Le tabelle seguenti presentano due possibili fonti di approvvigionamento. Quella marcata US BOM usa part numbers. e part designations del rivenditore <u>MOUSER ELECTRONICS</u>. Quella marcata EU BOM fa riferimento al rivenditore tedesco <u>SEGOR-electronics</u> che spedisce in tutta Europa e accetta PayPal. In genere ha tutti i componenti in stock.

US BOM

Posizion	e MOUSER Part No.	Descrizione	Unita'	Prezzo/Unita'	Totale
J1-J6	571-5350905	AMP Eurocard Connectors Type C Receptacle 96 Position	6	\$ 3.360	\$ 20.16
J19	538-39-29-9202	Molex Mini-Fit Jr. Connectors 20 CKT VERT HEADER	1	\$ 2.570	\$ 2.57
C6-C35	80-C0805C104Z5V	Kemet 0805 SMD Ceramic Chip Capacitors 0.1uF 50V Y5V	30	\$ 0.070	\$ 2.10
D1-D5	859-LTST-C171GKT	Lite-On SMT LED 0805 Green, Clear 569nm	5	\$ 0.130	\$ 0.65
R3	260-1.0K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 1KOHMS 5%	1	\$ 0.080	\$ 0.08
R2, R4	260-1.8K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 1.8KOHMS	2	\$ 0.080	\$ 0.16
R1, R5	260-3.3K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 3.3KOHMS	2	\$ 0.080	\$ 0.16
C1-C5	74-293D106X9016A2TE3	Vishay/Sprague Solid Tanta- lum SMD Capacitors 10uF 16volts 10% A case	5	\$ 0.300	\$ 1.50

EU BOM

Posizion	e SEGOR Part No.	Descrizione	Unita'	Prezzo/Unita'	Totale
J1-J6	VG96F-ABC	VG-Buchse 96pol ABC	6	€ 2.00	€ 12.00
J19	MFJR20M-PR/Molex	20p.Stiftwanne 180'Print	1	€ 2.00	€ 2.00
C6-C35	u10-0805-X7R	100nF 63V X7R 10% 0805	30	€ 0.075	€ 2.25
D1-D5	LED 0805 gn-LC	SMD-LED grün 565nm 0805	5	€ 0.15	€ 0.75
R3	1k0-0805-5%	1,0k Ohm 5% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
R2, R4	1k8-0805-5%	1,8k Ohm 5% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
R1, R5	3k3-0805-1% !	3.3k Ohm1% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
C1-C5	TA10u-16A SMD	10uF-16V Tantal SMD A3216	5	€ 0.20	€ 1.00

Costruzione della scheda ATLAS

Attrezzi

Poiche' i componenti e le piazzole sono molto piccoli, usare un saldatore a punta sottile e stagno di piccolo diametro. Io ho usato un saldatore da 15W e stagno da 0.5 mm a base di Argento.

Una buona lente di ingrandimento e' sicuramente utile per saldare e controllare, unitamente a una buona fonte di luce. Chi non e' familiare con le saldature SMD, puo' leggere qui : http://www.amqrp.org/kits/micro908/smt_construction.pdf

Installazione veloce

Fase 1: Installare prima i componenti arancio.

Fase 2: Installare i componenti rossi controllando la polarita'!

Fase 3: Installare i componenti verdi.

Fase 4: Installare i componenti blu

Note Costruttive

1) Iniziare installando i condensatori ceramici di bypass da 0.1uF C6 through C36 con pochissimo stagno su una sola estremita', fissandola al pad; dovrebbe bastare lo stagno gia' presente sul pad per fissare il condensatore. Poi saldare l'altra estremita' con appena una goccia di stagno. Infine aggiungere una piccola quantita' di stagno alla prima estremita'.

- 2) Installare la resistenza R3 da 1K usando la stessa tecnica.
- 3) Installare le resistenze R2 e R4 da 1.8K.
- 4) Installare le resistenze R1 e R5 da 3.3K.
- 5) Usando ancora la stessa tecnica, installare i condensatori al tantalio da 10uF C1-C5. Attenzione a rispettare la polarita' l'estremita' marcata del condensatore va al pad con il segno "+" sulla serigrafia. Non indugiare con il saldatore per non danneggiare i componenti
- 6) Installare i LED D1-D5. Sono polarizzati e vanno installati correttamente. Il catodo del LED e' marcato con un piccolo punto colorato sul lato della lente piu' vicino all'estremita'. Questo catodo va sul pad al lato opposto rispetto all'indicazione della tensione, esempio sul pad di destra per le tensioni "+" e sul pad di sinistra per le tensioni "-", guardando la scheda con le marcature dei LED a destra verso l'alto.
- 7) Controllare per corto-circuiti verificando almeno che non ce ne siano fra ogni coppia di pad sul connettore J20. Se ce ne dovessero essere, controllare tutti i componenti per corto-circuiti o altri problemi. E' difficile accedere a molti componenti dopo aver montato i connettori.
- 8) Installare il connettore DIN 41612 in J1. Per mantenere il connettore allineato con la scheda usare due viti da 2-56 x 1/4" con relativi dadi per fissare temporaneamente il connettore alla scheda. Stringere solo leggermente i dadi. (Opzionalmente durante la saldatura dei pin appoggiare il connettore su un tavolo e premere con la scheda dal di sopra.) Controllare che la forma delle estremità dei connettori sia in accordo con la serigrafia. I connettori DIN entrano nei fori in entrambi i sensi, ma un montaggio nel verso sbagliato causa un rovesciamento delle schede infilate in essi. Controllare due volte prima di saldare i pin, poiche' dopo sara' troppo tardi... Verificata la correttezza dell'orientamento, saldare due pin ai pad sui due lati opposti e ricontrollare che il connettore aderisca bene alla scheda. Infine saldare gli altri pin. Non soffermarsi piu' di 2 o 3 secondi su ogni pin. A saldatura terminata, controllare per ponticelli di stagno o saldature fredde.
- 9) Installare i connettori DIN 41612 J2-J6 nello stesso modo.

10) Infilare il connettore ATX da 20 pin J19 al suo posto e saldare i pin ai pad sul lato inferiore della scheda.

- 11) Collegare T7 e T8 ad uno switch SPST esterno. Se non si usa uno switch, collegare T7 e T8 fra di loro per permettere il funzionamento dell'alimentatore ATX.
- 12) Fare un check finale su ogni connettore per ponticelli di stagno o pin non saldati, e per corto-circuiti sul connettore J20.

Se tutto e' OK, dovreste avere una scheda ATLAS perfettamente funzionante.

Congratulazioni!

ATLAS - la Meccanica

Dimensioni della scheda Plug-In

Alcune foto della scheda ATLAS

Lato superiore della scheda nuda (foto Phil Covington, N8VB; sul righello sono Pollici)

Lato inferiore della scheda nuda (foto Phil Covington, N8VB; sul righello sono Pollici)

Scheda assemblata con serial no. 001 (foto Phil Covington, N8VB) Notare che il connettore ATX non e' ancora stato montato

Prime luci (foto Christopher T. Day, AE6VK)

ATLAS – le Prestazioni

Ray Anderson, WB6TPU, a proposito delle prestazioni della scheda ATLAS

...sono riuscito a nascondermi nel laboratorio per circa un'ora e a fare dei test TDR e VNA sulla scheda ATLAS. Nessun problema rilevato. Tutto come previsto, eccetto forse l'impedenza delle linee che e' risultata diversa da quella simulata, probabilmente a causa di errate assunzioni in fase di simulazione .

Ho intenzione di mettere dei plot accessibili su Internet fra un giorno o due, comunque il succo della analisi e' questo:

Ho fatto delle analisi TDR e VNA su tutti i segnali [0:24] dei bus XBUS e YBUS.

Il comportamento di ogni linea su ogni bus e' stato praticamente identico.

Misure TDR:

XBUS: impedenza misurata 40 ohm mediamente, predetta 78.5 ohm

YBUS: impedenza misurata 46.2 ohm mediamente, predetta 58 ohm

Le suddette impedenze dovrebbero andar bene praticamente per tutte le applicazioni, e probabilmente anche per l'LVDS, ce ne dovesse essere bisogno

Misure VNA:

XBUS: Misura tra i connettori DIN 1 e 6 - Ripple 6 dB pp tra la DC e 1.5 GHZ.

Risonanze importanti iniziano a 1.5 GHz (-50dB a 2.1 $\,$ GHz)

YBUS : Misura tra i connettori DIN 1 e 6 - Rolloff monotonico tra la DC e 1 GHz di -8dB

Ripple 6db pp tra 1 GHz e !.5 GHz .

Risonanze importanti iniziano a 1.5 GHz (-47dB a 2.1 GHz).

73 Ray WB6TPU

Plottaggi TDR e VNA sulla scheda ATLAS

Le misure TDR sono state fatte con Digital Sampling Scope Tektronix TDS8000B e una Sampling Head 80E04 (20 psec tempo di salita)

Le misure VNA sono state fatte con un VNA Agilent N5230A

Misure fatte su tutte le reti di segnale dei pin [0:24]. Questi plottaggi rappresentano un caso tipico. (Sono praticamente tutti uguali)

ATLAS – le Informazioni

Informazioni utili e Links

Descrizione del Progetto e Informazioni

http://hpsdr.org

http://hpsdr.org/wiki/index.php?title=HpsdrWiki:Community Portal

<u>http://www.hamsdr.com</u> (necessaria registrazione per accesso completo)

http://www.philcovington.com

Lista di Discussione / Riflettore

La lista di discussione HPSDR (nota anche come "riflettore") e' il metodo principale di intercomunicazione tra tutte le persone interessate al progetto.

A volte il numero dei messaggi puo' essere alto – altre volte possono passare uno o due giorni senza messaggi. Tutti possono vedere il traffico di messaggi negli archivi online. Si trovano a :

http://lists.hpsdr.org/pipermail/hpsdr-hpsdr.org/

Kit di componenti e schede

La TAPR Corporation distribuisce kit di componenti come pure circuiti stampati per il progetto HPSDR.

TAPR Corporation http://www.tapr.org

ATLAS kit di componenti http://www.tapr.org/kits_atlas.html

Storico delle Revisioni

Revisione	Data	Cambiamenti	Autore
1.4	Giugno 10, 2006	Pagina 11 modificata Pagina 22 modificata	DL6KBF
1.3	Giugno 4, 2006	Pagina 11 modificata: Come ottenere un circuito stampato ATLAS	DL6KBF
1.2	Maggio 29, 2006	Pagine 8, 9, 10 aggiunte: Descrizione dei segnali del bus Pagina 16 aggiunta: Dimensioni della scheda plug- in	DL6KBF
1.1	Maggio 05, 2006	Pagina 7: Tabella dei pinout aggiornata	N8VB
		Pagina 19 aggiunta : Storico delle Revisioni	DL6KBF
1.0	Aprile 30, 2006	Pubblicazione iniziale	DL6KBF