손글씨 인식 모델

김현주

2 진행 상황

주제 선정 배경

주제 선정 배경

장애 유형은 지적장애(41.9%)가 가장 많으며 다음으로는 자폐성장애 (22.8%), 지체장애(11.8%), 발달지체장애(11.3%) 순으로 나타났다. 특히 자폐성장애 학생은 2018년(2천73명)에 비해 2022년(3천44명)에 46.8%나 증가했다. Feb 9,2023

.

복지뉴스

http://m.bokjinews.com > news > articleView

서울 특수교육 학생 4년간 4.9% 증가..."특수학급 259개 확대 ...

지체장애 아동은 어깨, 팔, 손의 **운동능력이 부족**하여 글씨를 잘 쓰지 못하는 경우가 많고 전혀 쓰지 못하거나 연필을 잡고 쓰기는 해도 매우 느리고 힘들어서 **쉽게 피로**해짐

글씨 쓰기가 학교 활동에서 차지하는 비중이 높기 때문에 가능하면 **직접 쓸 수 있도록 지도**하는 것이 좋음 손글씨 인식 모델을 활용해 지체 장애 학생의 수업 참여율이 증가하도록 도움을 줄 수 있는 프로그램 개발

하지만 데이터 수집에 어려움이 있어 먼저 **비장애인의 손글씨 데이터**를 학습하고 잘 **인식**할 수 있는 모델을 개발할 예정

3 데이터 출처

1

https://aihub.or.kr/aihubdata/data/view.do?currMenu=&topMenu=&aihubDataSe=data&dataSetSn=71300

2

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=91

진행 상황

교육용 OCR - 데이터 확인

```
나라 노래 다리
가자 나라 노래 다리
가자 나라 노래 다리
가자 나라 노래 다리
```

```
"Annotation": {
 "object_recognition": 1,
 "text language": 0
"Dataset": {
 "category": 0,
 "identifier": "OCR(edu)",
 "label_path": "OCR(edu)/E/G1",
 "name": "대규모 OCR 데이터(교육)",
 "src_path": "OCR(edu)/E/G1",
 "type": 1
"Images": {
 "acquisition_location": "타임교육C\u0026P",
 "application field": "자유형",
 "area": 2,
 "background": 0,
 "class": 1,
 "data_captured": "2022.10.25 02:48:54",
 "dpi": 300,
```

```
"grade": 1,
    "group": 1,
    "height": 196,
    "identifier": "EDU_E1_032060",
    "make_id": "R154",
    "section": 1,
    "type": "png",
    "width": 358
},
    "Bbox": [
    {
        "data": "가자",
        "id": 1,
        "type": 1,
        "x": [15, 15, 78, 78],
        "y": [44, 75, 44, 75]
},
```

교육용 OCR

```
# 파일 정보를 읽어서 데이터프레임 생성
df list = []
                                                        "Annotation": {
path = './data/labels/'
                                                          "object_recognition": 1,
grades = os.listdir(path)
                                                          "text_language": 0
for grade in grades:
   files = os.listdir(path+grade)
                                                        "Dataset": {
   for file in files:
                                                          "category": 0,
        with open(path+grade+'/'+file,'r') as f:
                                                          "identifier": "OCR(edu)",
            data = json.load(f)
                                                          "label path": "OCR(edu)/E/G1",
            # 파일명, 파일의 x,y좌표값, 손글씨 라벨 리스.
                                                          "name": "대규모 OCR 데이터(교육)",
           file name = data["Images"]["identifier"]
                                                          "src_path": "OCR(edu)/E/G1",
           file_type = data["Images"]["type"]
                                                          "type": 1
            data_num = len(data["Bbox"])
           info = data["Bbox"]
                                                        "Images": {
           for i in range(data num):
                                                          "acquisition location": "타임교육C\u0026P",
               data list = []
                                                          "application field": "자유형",
               label = info[i]['data']
                                                          "area": 2.
                                                          "background": 0,
               x start = info[i]['x'][0]
                                                          "class": 1.
               y start = info[i]['y'][0]
                                                          "data_captured": "2022.10.25 02:48:54",
               x = \inf = \inf [i][x'][-1]
                                                          "dpi": 300,
               y_end = info[i]['y'][-1]
               data_list.append(grade+'/'+file_name+'.'+file_type)
               data list.append(label)
               data_list.append(x_start)
               data_list.append(y_start)
               data_list.append(x_end)
               data_list.append(y_end)
               df list.append(data list)
```

```
"grade": 1,
    "group": 1,
    "height": 196,

"identifier": "EDU_E1_032060'
    "make_id": "R154",
    "section": 1,
    "type": "png",
    "width": 358
},
"Bbox": [
{
    "data": "가자",
    "id": 1,
    "type": 1,
    "x": [15, 15, 78, 78],
    "y": [44, 75, 44, 75]
},
```

1 교육용 OCR

	file_name	label	x_start	y_start	x_end	y_end
0	E1/EDU_E1_032060.png	가자	15	44	78	75
1	E1/EDU_E1_032060.png	가자	17	83	79	113
2	E1/EDU_E1_032060.png	가자	21	118	81	151
3	E1/EDU_E1_032060.png	가자	21	156	86	187
4	E1/EDU_E1_032060.png	나라	97	7	163	38

366233	M3/SCH_M3_010692.png	\angle CDA	436	498	614	592
366234	M3/SCH_M3_010692.png	(\angle BAD	204	601	442	693
366235	M3/SCH_M3_010692.png	1=1	441	621	482	677
366236	M3/SCH_M3_010692.png	\angle DCB)	479	595	669	678
366237	M3/SCH_M3_010692.png	\therefore	146	501	202	558

```
# 전체 이미지 크롭 후 저장하기

folder_path == './data/images/'

for i in range(len(dataDF)):

img_path = folder_path+'/'+dataDF['file_name'][i]

img = Image.open(img_path)

crop_img = img.crop(tuple(dataDF.iloc[i])[-4:])

crop_img.save(f"./crop_image/{i}_{dataDF['label'][i]}"+'.png')
```

1 교육용 OCR

행 번호를 붙여서 이미지 저장

1

교육용 OCR

	file_name	label	x_start	y_start	x_end	y_end
0	E1/EDU_E1_032060.png	가자	15	44	78	75
1	E1/EDU_E1_032060.png	가자	17	83	79	113
2	E1/EDU_E1_032060.png	가자	21	118	81	151
3	E1/EDU_E1_032060.png	가자	21	156	86	187
4	E1/EDU_E1_032060.png	나라	97	7	163	38

366231	M3/SCH_M3_010692.png	\angle CDA	436	498	614	592
366232	M3/SCH_M3_010692.png	(\angle BAD	204	601	442	693
366233	M3/SCH_M3_010692.png	=	441	621	482	677
366234	M3/SCH_M3_010692.png	\angle DCB)	479	595	669	678
366235	M3/SCH_M3_010692.png	\therefore	146	501	202	558

```
# 라벨의 고유값과 각 값의 빈도수 출력
```

len(dataDF['label'].unique()), dataDF['label'].value_counts()

110,295

단어로 학습을 진행하면 경우의 수가 너무 많음

→ 한 글자씩 학습 진행

2 한 글자씩 학습


```
"info" : {
 "name" : "Korean OCR Data Set",
 "description" : "Korean OCR Data Set (letter handwrite)",
 "date created": "2020-12-22 13:38:11",
 "text" : "가"
"image" : {
 "file_name" : "00130001001.jpg",
 "width" : 111,
 "height" : 110,
 "dpi" : 300,
 "bit" : 24
"text" : {
 "type" : "letter",
 "output" : "handwrite",
 "letter" : {
   "value" : "7 "
```

한 글자씩 학습

```
# 각 글자 이름의 폴더 생성
for label in labels:
os.mkdir(f"./letter/{label}")
```

앞과 같이 데이터프레임을 만든 후 각 라벨의 이름과 같은 폴더를 생성

```
# 이미지 읽어서 저장하기
file_path = './data/handwrite_image/'
for i in range(len(dataDF)):
    img_path = file_path+dataDF['image_path'][i]
    img = Image.open(img_path)
    img.save(f"./letter/{dataDF['label'][i]}/{dataDF['image_path'][i][:3]}"+'.jpg')
```

새로 생성한 폴더에 이미지 다시 저장

한 글자씩 학습

ResNet50 활용해 전이학습 수행 중

1 len(imgDS)

✓ 0.0s

276886

추후 계획

1 성능 개선

● 더 많은 손글씨 데이터 + 인쇄체도 함께 학습

• 데이터에 맞는 다른 모델도 사용하여 학습

CRAFT 모델 사용

CRAFT 모델은 텍스트 검출을 위해 단어를 바로 예측하는 것이 아니라,

문자의 위치를 나타내는 region score,

문자간 거리를 나타내는 affinity score를 예측

입력 이미지는 한 글자가 아닌 **단어** 또는 **문장 단위**

- → 입력된 이미지의 위치를 찾아 한글자씩 자르기 위해 CRAFT 모델 사용
- → 최종 시연을 할 때는 글자의 **위치를 찾는 모델**과 그 위치의 **글자를 인식**하는 모델 2가지 사용할 계획

이미지 업로드 → 이미지 자르기 →

한 글자씩 읽기 → 결과 통합 후 출력

모델부터 잘 만들겠습니다…

김현주