(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-80224

(43)公開日 平成11年(1999)3月26日

(51) Int.Cl.⁶

酸別配号

FΙ

C08F 4/605 10/00

C08F 4/605

10/00

審査請求 未請求 請求項の数12 OL (全 25 頁)

(21)出願番号

特願平10-196294

(22)出顧日

平成10年(1998) 7月10日

(31) 優先権主張番号 特願平9-185555

平9 (1997) 7月10日

(33)優先権主張国

日本(JP)

(71)出願人 000005887

三井化学株式会社

東京都千代田区霞が関三丁目2番5号

(72) 発明者 土 肥 靖

山口県玖珂郡和木町和木六丁目1番2号

三井化学株式会社内

(74)代理人 弁理士 鈴木 俊一郎

(54) 【発明の名称】 オレフィン重合用触媒成分、オレフィン重合用触媒およびオレフィンの重合方法

(57)【要約】

【課題】 新たなオレフィン重合用触媒成分、該触媒成 分を含むオレフィン重合用触媒および該触媒を用いたオ レフィンの重合方法を提供すること。

【解決手段】 オレフィン重合用触媒成分は、式(Ia)で表されるイオン性化合物または式(II-a)で表さ れる化合物からなる。

【化1】

(式中、A⁺ はカルボニウムカチオン、アンモニウムカ チオン等、R0 は2価の有機基、Qは周期表第13族か ら選ばれる原子)

【特許請求の範囲】

【請求項1】 下記一般式(I-a)で表されるイオン性 化合物からなることを特徴とするオレフィン重合用触媒 成分;

【化1】

$$A^{+} \left[\left(\begin{array}{c} \mathbb{R}^{0} & \mathbb{N} \end{array} \right)_{4} \mathbb{Q} \right]^{-} \cdots (\mathbb{I}^{-a})$$

(式中、A・はカチオンを示し、Qは周期表第13族から選ばれる原子を示し、R⁰ は2価の有機基を示す。)

(式中、R¹ ないしR⁴ は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示し、R¹ ないしR⁴ で示される基のうち隣接する2個の基が互いに連結してそれぞれが結合する炭素原子と共同して炭素数4ないし16の環を形成することがある。)

【請求項4】 前記一般式(I-a)で表されるイオン性化合物が、下記一般式(I-b)で表される化合物である請求項3に記載のオレフィン重合用触媒成分;

【化3】

(式中、 A^+ は前記一般式 (I-a) と同じ意味であり、Qは周期表第13族から選ばれる原子を示し、 R^1 および R^+ は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が $1\sim20$ の以上水素基、炭素原子数が $1\sim20$ のハロゲン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示し、これらの基が互いに連結してそれぞれが結合する炭素原子と共同して炭素数4ないし16の環を形成することがあり、 R^2 は、芳香環を有する基を示す。)

【請求項5】(A)周期表第3~12族の遷移金属化合

【請求項2】 前記一般式(I-a)におけるA・は、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオンまたは遷移金属を有するフェロセニウムカチオンから選ばれるカチオンである請求項1に記載のオレフィン重合用触媒成分。

【請求項3】 前記一般式 (I-a) における R^0 が、下記 a 群から選ばれる基である請求項1または2 に記載のオレフィン重合用触媒成分;

(化2)

物と、(B)請求項1ないし4のいずれかに記載のイオン性化合物とから形成されることを特徴とするオレフィン重合用触媒。

【請求項6】(A)周期表第3~12族の遷移金属化合物と、(B)請求項1ないし4のいずれかに記載のイオン性化合物と、(C)有機金属化合物とから形成されることを特徴とするオレフィン重合用触媒。

【請求項7】 下記一般式 (II-a) で表される素化合物 からなることを特徴とするオレフィン重合用触媒成分; 【化4】

(式中、Qは周期表第13族から選ばれる原子を示し、 R⁰ は2価の有機基を示す。)

【請求項8】 前記一般式 (II-a) における R^o が請求 項3に記載のa群から選ばれる基である請求項7に記載 のオレフィン重合用触媒成分。

【請求項9】 前記一般式 (II-a) で表される化合物 が、下記一般式 (II-b) で表される化合物である請求項 8に記載のオレフィン重合用触媒成分;

【化5】

(式中、Qは周期表第13族から選ばれる原子を示し、R¹ およびR⁴ は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示し、これらの基が互いに連結してそれぞれが結合する炭素原子と共同して炭素数4ないし16の環を形成することがあり、R² は、芳香環を有する基を示す。)

【請求項10】(A)周期表第3~12族の遷移金属化合物と(B')請求項7ないし9のいずれかに記載の化合物とから形成されることを特徴とするオレフィン重合用触媒。

【請求項11】(A)周期表第3~12族の遷移金属化合物と、(B')請求項7ないし9のいずれかに記載の化合物と、(C)有機金属化合物とから形成されることを特徴とするオレフィン重合用触媒。

【請求項12】 請求項5および6ならびに請求項10 および11のいずれかに記載のオレフィン重合用触媒の 存在下にオレフィンを重合または共重合させることを特 徴とするオレフィンの重合方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、オレフィン重合用 触媒成分、該触媒成分を含むオレフィン重合用触媒およ び該触媒を用いたオレフィンの重合方法に関するもので ある。

[0002]

【発明の技術的背景】従来からエチレン重合体、プロピレン重合体、エチレン・プロピレン共重合体などのオレフィン重合体を製造するための触媒として、チタン化合物と有機アルミニウム化合物とからなるチタン系触媒、バナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒などが知られている。

【0003】また、高い重合活性でオレフィン重合体を 製造することのできる触媒として幾何拘束型触媒を含

【0010】(式中、 R^1 ないし R^4 は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が $1\sim20$ の炭化水素基、炭素原子数が $1\sim20$

め、メタロセン系触媒などのシングルサイト触媒が知られており、これらの触媒と、アルミノキサンなどの有機アルミニウムオキシ化合物やトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのホウ素原子を含む化合物とを併用すると高活性を発揮することが一般に知られている。

【0004】このような状況のもとメタロセン化合物等と併用することにより触媒性能を発揮するような新たな助触媒成分の出現が望まれている。

[0005]

【発明の目的】本発明は、新規なオレフィン重合用触媒 成分、該触媒成分を含むオレフィン重合用触媒および該 触媒を用いたオレフィンの重合方法を提供することを目 的としている。

[0006]

【発明の概要】本発明に係るオレフィン重合用触媒成分は、下記一般式(I-a)で表されるイオン性化合物からなることを特徴としている;

[0007]

【化6】

$$A^{+} \left[\left(\begin{array}{c} R^{0} \\ \end{array} \right) N \xrightarrow{\downarrow_{\downarrow}} Q \right]^{-} \cdots (1-a)$$

【0008】(式中、A・はカチオンを示し、Qは周期 表第13族から選ばれる原子を示し、R⁰ は2価の有機 基を示す。)

前記一般式(I-a)におけるA⁺ としては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオンまたは遷移金属を有するフェロセニウムカチオンなどがあり、R⁰ が示す 2 価の有機基としては下記a群に示す基がある。

[0009]

【化7】

のハロゲン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示し、R¹ ないしR⁴ で示される基のうち 隣接する2個の基が互いに連結してそれぞれが結合する 炭素原子と共同して炭素数4ないし16の環を形成する ことがある。)

このような前記一般式 (I-a) で表されるイオン性化合物としては、下記一般式 (I-b) で表される化合物が好ましい。

[0011]

【化8】

【0012】(式中、A'は前記一般式(I-a)と同じ意味であり、Qは周期表第13族から選ばれる原子を示し、R'およびR4は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示し、これらの基が互いに連結してそれぞれが結合する炭素原子と共同して炭素数4ないし16の環を形成することがあり、R2は、芳香環を有する基を示す。)木発明の他の無様に係るオレフィン重会田軸雄成分は

本発明の他の態様に係るオレフィン重合用触媒成分は、下記一般式(II-a)で表される化合物(以下「13族化合物」ということがある。)からなることを特徴としている:

[0013]

【化9】

【0014】(式中、Qは周期表第13族から選ばれる原子を示し、R⁰ は2価の有機基を示す。)

前記一般式(II-a)においてR^o が示す2価の有機基としては、前記a群に示す基がある。

【0015】前記一般式(II-a)で表される化合物としては、下記一般式(II-b)で表される化合物が好ましい。

[0016]

【化10】

【0017】(式中、Qは周期表第13族から選ばれる原子を示し、R¹ およびR⁴ は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~20のパロゲ

ン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示し、これらの基が互いに連結してそれぞれが結合する炭素原子と共同して炭素数4ないし16の環を形成することがあり、R²は、芳香環を有する基を示す。)本発明に係るオレフィン重合用触媒は、(A)周期表第3~12族の遷移金属化合物と、(B)前記一般式(I-a)で表されるイオン性化合物または(B')前記一般式(II-a)で表される化合物と、必要に応じて(C)有機金属化合物とから形成されることを特徴としている。【0018】本発明に係るオレフィンの重合方法は、前記オレフィン重合用触媒の存在下にオレフィンを重合ま

[0019]

【発明の具体的説明】以下、本発明に係るオレフィン重合用触媒成分、オレフィン重合用触媒およびオレフィン の重合方法について具体的に説明する。

たは共重合させることを特徴としている。

【0020】本発明に係るオレフィン重合用触媒成分は、下記一般式(I-a)で表されるイオン性化合物からなる。

[0021]

【化11】

$$A^{+} \left[\left(\begin{array}{c} R^{0} \\ \end{array} \right) N \xrightarrow{\mu} Q \right] - \cdots (I-a)$$

【0022】式中、A* は、カチオンであり、具体的にはカルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどを示す。

【0023】カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。

【0024】前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリプチルアンモニウムカチオンなどのトリアルキルアンモニウムカチオンなどのトリアルキルアンモニウムカチオン、N、N-2、4、6-ペンタメチルアニリニウムカチオンなどのN、N-ジアルキルアニリニウムカチオンなどのN、N-ジアルキルアニリニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。

【0025】前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどが挙げられる。

【0026】Qは、周期表第13族から選ばれる原子であり、ホウ素またはアルミニウムが好ましい。R⁰ は2価の有機基を示し、たとえば主鎖が炭素原子および/または窒素原子から形成される2価の有機基、特に主鎖が少なくとも2個の炭素原子を含み、主鎖中に窒素原子を

【0029】式中、R1 ないしR4 は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示す。

【0030】ハロゲン原子としてはフッ素原子、塩素原 子、臭素原子、ヨウ素原子などが挙げられる。炭素原子 数が1~20の炭化水素基としては、メチル、エチル、 プロピル、ブチル、ヘキシル、オクチル、ノニル、ドデ シル、アイコシルなどのアルキル基;シクロペンチル、 シクロヘキシル、ノルボルニル、アダマンチルなどのシ クロアルキル基;ビニル、プロペニル、シクロヘキセニ ルなどのアルケニル基などが挙げられる。炭化水素基の うち芳香環を有する基としては、ベンジル、フェニルエ チル、フェニルプロピルなどのアリールアルキル基;フ ェニル、トリル、ジメチルフェニル、トリメチルフェニ ル、エチルフェニル、プロピルフェニル、ビフェニリ ル、ナフチル、メチルナフチル、アントリル、フェナン トリルなどのアリール基;ペンタフルオロビフェニル、 ノナフルオロフェニルなどの置換アリール基などの6~ 20個の炭素原子を有する基が挙げられる。

【0031】炭素原子数が1~20のハロゲン化炭化水素基としては、前記炭化水素基にハロゲンが置換した基が挙げられる。酸素含有炭化水素基としてはアルコシキ基、アルコシキアルキル基などがあり、アルコキシ基として具体的にはメトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、tert-ブトキシなどが挙げられ、アルコシキアルキル基として具体的には、メトキシメチル、メトキシエチルなどが挙げられる。

【0032】ケイ素含有基としてはメチルシリル、フェニルシリルなどのモノ炭化水素置換シリル;ジメチルシリル、ジフェニルシリルなどのジ炭化水素置換シリル;トリメチルシリル、トリアロピルシ

有してもよい2価の有機基が挙げられる。

【0027】具体的には、下記a群に示すような基が挙 げられる。

リル、トリシクロへキシルシリル、トリフェニルシリル、ジメチルフェニルシリル、メチルジフェニルシリル、トリナフチルシリルなどのトリ炭化水素置換シリル;トリメチルシリルエーテルなどの炭化水素置換シリルのシリルエーテル;トリメチルシリルメチルなどのケイ素置換アルキル基;トリメチルシリルフェニルなどのケイ素置換アリール基などが挙げられる。

【0033】またR¹ ないしR⁴ で示される基のうち隣接する2個の基が互いに連結してそれぞれが結合する炭素原子と共同して炭素数4ないし16の環を形成することがあり、隣接する基が環を形成する態様としては、ナフチル骨格、インデニル骨格、フルオレニル骨格を有する基などが例示される。

【0034】上記一般式 (I-a) で表されるイオン性化 合物としては、下記一般式 (I-b) で表される化合物が 好ましい。

[0035]

【化13】

$$A \cdot \left[\begin{array}{c|c} R^2 & C & R^1 \\ N & C & Q \\ N & C & Q \end{array} \right] - \cdots (1-b)$$

【0036】式中、A・およびQは、前記一般式(I-a)と同じ意味である。R¹ およびR⁴ は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示し、具体的には前記と同様の原子または基が挙げられる。

【0037】またR1 およびR4 は互いに連結してそれ

ぞれが結合する炭素原子と共同して炭素数4ないし16 の環を形成することがあり、環を形成する態様として は、ナフチル骨格、インデニル骨格、フルオレニル骨格 を有する基などが例示される。

【0038】 R^2 は、芳香環を有する基を示し、具体的には、前記と同様の $6\sim20$ 個の炭素原子を有する基が

挙げられる。このような一般式 (I-a)で表されるイオン性化合物のアニオン部としては、下記のようなアニオンが例示される。

【0039】 【化14】

[0040]

【0041】これらはホウ素化合物アニオンの例であるが、これらのアニオンのホウ素をアルミニウムに置き換えたアニオンも例示される。上述したようなイオン性化合物は、オレフィン重合用触媒成分として用いることができ、後述するような遷移金属化合物と組合わせると、オレフィン重合活性を有する。これらのイオン性化合物のなかでも、前記一般式(I-b)で表される化合物は、遷移金属化合物と組合わせて使用した場合、オレフィン重合活性が高いので好ましい。

【0042】本発明に係るオレフィン重合用触媒成分の他の態様は、下記一般式(II-a)で表される化合物(13族化合物)である。

[0043]

【化16】

【0044】式中、Qは、周期表第13族から選ばれる原子であり、ホウ素またはアルミニウムが好ましい。R は2価の有機基を示し、たとえば主鎖が炭素原子および/または窒素原子から形成される2価の有機基、特に主鎖が少なくとも2個の炭素原子を含み、主鎖中に窒素原子を有してもよい2価の有機基が挙げられる。具体的には前記a群に示すような基が挙げられる。

【0045】上記一般式(II-a)で表される化合物としては、下記一般式(II-b)で表される化合物が好ましい。

【0046】 【化17】

【0047】式中、Qは、前記一般式(II-a)と同じ意味である。R¹ およびR⁴ は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、酸素含有炭化水素基またはケイ素含有基を示し、具体的には前記と同様の原子または基が挙げられる。

【0048】またR¹ およびR⁴ は互いに連結してそれぞれが結合する炭素原子と共同して炭素数4ないし16の環を形成することがあり、環を形成する態様としては、ナフチル骨格、インデニル骨格、フルオレニル骨格を有する基などが例示される。

【0049】 R^2 は、芳香環を有する基を示し、具体的には、前記と同様のものが挙げられる。このような一般式 (II-a) で表される 13 族化合物としては、下記のような化合物が例示される。

[0050]

【化18】

$$B = \begin{pmatrix} N \\ N \end{pmatrix}_{3} \qquad B =$$

[0051]

【化19】

【0052】これらはホウ素化合物の例であるが、これらの化合物のホウ素をアルミニウムに置き換えた化合物も例示される。上述したような13族化合物は、オレフィン重合用触媒成分として用いることができ、後述するような遷移金属化合物と組合わせると、オレフィン重合活性を有する。これらの13族化合物のなかでも、前記一般式(II-b)で表される化合物は、遷移金属化合物と組合わせて使用した場合、オレフィン重合活性が高いので好ましい。

【0053】次に、前記イオン性化合物または13族化合物を触媒成分として用いたオレフィン重合用触媒および該触媒を用いたオレフィンの重合方法について説明する。本発明のオレフィン重合用触媒は、(A)周期表第3~12族の遷移金属化合物と、(B)前記一般式(I-a)で表されるイオン性化合物または(B')前記一般式(II-a)で表される13族化合物と、必用に応じて、

(C)有機金属化合物から形成されている。

【0054】まず、本発明のオレフィン重合用触媒を形成する各成分について具体的に説明する。

(A)周期表第3~12族の遷移金属化合物

(A) 遷移金属化合物としては、たとえば下記一般式 (III-1) または一般式 (IV) で表される化合物が挙げられる。

 $[0055]M^1L^1_x$... (III-1)

(式中、M¹ は周期表第4族の遷移金属原子を示し、L¹ は遷移金属原子M¹ に配位する配位子を示し、少なくとも1個のL¹ はシクロペンタジエニル骨格を有する配位子であり、シクロペンタジエニル骨格を有する配位子

以外のL¹ は、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子または水素原子であり、xは遷移金属原子M¹ の原子価である。)

 $M_3 L_3 \dots (IV)$

一般式(III-1)中、M¹ は周期表第4族の遷移金属原子を示し、具体的には、ジルコニウム、チタンまたはハフニウムであり、好ましくはジルコニウムである。

【0056】×は遷移金属原子M¹ の原子価であり、遷移金属原子M¹ に配位する配位子L¹ の個数を示す。L¹ は遷移金属原子に配位する配位子を示し、少なくとも1個のL¹ はシクロペンタジエニル骨格を有する配位子であり、シクロペンタジエニル骨格を有する配位子以外のL¹ は、炭素原子数が1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子または水素原子である。

【0057】シクロペンタジエニル骨格を有する配位子 としては、たとえばシクロペンタジエニル基、メチルシ クロペンタジエニル基、ジメチルシクロペンタジエニル 基、トリメチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基、メチルエチルシクロペンタジエニル基、メチルエチルシクロペンタジエニル基、ブロピルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ブチルシクロペンタジエニル基などのアルキル置換シクロペンタジエニル基あるいはインデニル基、4,5,6,7-テトラヒドロインデニル基、フルオレニル基などを例示することができる。これらの基は、炭素原子数が1~20の(ハロゲン化)炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子などで置換されていてもよい。

【0058】上記一般式 (III-1) で表される化合物がシクロペンタジエニル骨格を有する配位子を2個以上含む場合には、そのうち2個のシクロペンタジエニル骨格を有する配位子同士は、(置換)アルキレン基、(置換)シリレン基などの2価の結合基を介して結合されていてもよい。このような2個のシクロペンタジエニル骨格を有する配位子が2価の結合基を介して結合されている遷移金属化合物としては後述するような一般式 (III-3)で表される遷移金属化合物が挙げられる。

【0059】シクロペンタジエニル骨格を有する配位子 以外の配位子L¹ としては、具体的に下記のようなもの が挙げられる。炭素原子数が1~20の炭化水素基とし ては、アルキル基、シクロアルキル基、アルケニル基、 アリールアルキル基、アリール基などが挙げられ、より 具体的には、メチル、エチル、プロピル、ブチル、ヘキ シル、オクチル、ノニル、ドデシル、アイコシルなどの アルキル基;シクロペンチル、シクロヘキシル、ノルボ ルニル、アダマンチルなどのシクロアルキル基; ビニ ル、プロペニル、シクロヘキセニルなどのアルケニル 基;ベンジル、フェニルエチル、フェニルプロピルなど のアリールアルキル基;フェニル、トリル、ジメチルフ ェニル、トリメチルフェニル、エチルフェニル、プロピ ルフェニル、ビフェニリル、ナフチル、メチルナフチ ル、アントリル、フェナントリルなどのアリール基が挙 げられる。

【0060】炭素原子数が1~20のハロゲン化炭化水素基としては、前記炭素原子数が1~20の炭化水素基にハロゲンが置換した基が挙げられる。酸素含有基としてはヒドロキシ基;メトキシ、エトキシ、プロポキシ、ブトキシなどのアルコキシ基;フェノキシ、メチルフェノキシ、ジメチルフェノキシ、ナフトキシなどのアリーロキシ基;フェニルメトキシ、フェニルエトキシなどのアリールアルコキシ基などが挙げられる。

【0061】イオウ含有基としては前記酸素含有基の酸素がイオウに置換した置換基、ならびにメチルスルフォネート、トリフルオロメタンスルフォネート、フェニルスルフォネート、p-トルエン

スルフォネート、トリメチルベンゼンスルフォネート、トリイソブチルベンゼンスルフォネート、p-クロルベンゼンスルフォネート、ペンタフルオロベンゼンスルフォネートなどのスルフォネート基;メチルスルフィネート、フェニルスルフィネート、ベンゼンスルフィネート、p-トルエンスルフィネート、トリメチルベンゼンスルフィネート、ペンタフルオロベンゼンスルフィネートなどのスルフィネート基が挙げられる。

【0062】ケイ素含有基としてはメチルシリル、フェニルシリルなどのモノ炭化水素置換シリル;ジメチルシリル、ジフェニルシリルなどのジ炭化水素置換シリル;トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリシクロへキシルシリル、トリフェニルシリル、ジメチルフェニルシリル、メチルジフェニルシリル、トリトリルシリル、トリナフチルシリルなどのトリ炭化水素置換シリル;トリメチルシリルエーテルなどのケイ素置換アルキル基;トリメチルシリルフェニルなどのケイ素置換アリール基などが挙げられる。

【0063】ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。このような遷移金属化合物は、たとえば遷移金属の原子価が4である場合、より具体的には下記一般式(III-2)で示される。

【 0 0 6 4 】 R¹¹ R¹² R¹³ R¹⁴ M¹ ··· (III-2) 式中、M¹ は、前記と同様の周期表第4族から選ばれる 遷移金属原子を示し、好ましくはジルコニウム原子である。

【0065】R¹¹は、シクロペンタジエニル骨格を有する基(配位子)を示し、R¹²、R¹³およびR¹⁴は、互いに同一でも異なっていてもよく、シクロペンタジエニル骨格を有する基(配位子)、炭素原子数が1~20の(ハロゲン化)炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子または水素原子を示す。

【0066】本発明では上記一般式(III-2)で示される遷移金属化合物において、R¹²、R¹³およびR¹⁴のうち少なくとも1個がシクロペンタジエニル骨格を有する基(配位子)である化合物、たとえばR¹¹およびR¹²がシクロペンタジエニル骨格を有する基(配位子)である化合物が好ましく用いられる。また、R¹¹およびR¹²がシクロペンタジエニル骨格を有する基(配位子)である場合、R¹³およびR¹⁴はシクロペンタジエニル骨格を有する基、アルキル基、シクロアルキル基、アルケニル基、アリールアルキル基、アリール基、アルフォネート基、ハロゲン原子または水素原子であることが好ましい

【0067】以下に、前記一般式(III-1)で表され、

M¹ がジルコニウムである遷移金属化合物について具体 的な化合物を例示する。ビス(シクロペンタジエニル) ジルコニウムモノクロリドモノハイドライド、ビス (シ クロペンタジエニル) ジルコニウムジクロリド、ビス (シクロペンタジエニル) ジルコニウムジブロミド、ビ ス (シクロペンタジエニル) メチルジルコニウムモノク ロリド、ビス (シクロペンタジエニル) ジルコニウムフ ェノキシモノクロリド、ビス(メチルシクロペンタジエ ニル) ジルコニウムジクロリド、ビス (エチルシクロペ ンタジエニル) ジルコニウムジクロリド、ビス (プロピ ルシクロペンタジエニル) ジルコニウムジクロリド、ビ ス (ブチルシクロペンタジエニル) ジルコニウムジクロ リド、ビス(ヘキシルシクロペンタジエニル)ジルコニ ウムジクロリド、ビス (オクチルシクロペンタジエニ ル) ジルコニウムジクロリド、ビス (インデニル) ジル コニウムジクロリド、ビス(4,5,6,7-テトラヒドロイン デニル) ジルコニウムジクロリド、ビス (インデニル) ジルコニウムジブロミド、ビス (シクロペンタジエニ ル) ジルコニウムジメチル、ビス (シクロペンタジエニ ル) ジルコニウムメトキシクロリド、ビス (シクロペン タジエニル) ジルコニウムエトキシクロリド、ビス(フ ルオレニル)ジルコニウムジクロリド、ビス(シクロペ ンタジエニル) ジルコニウムビス (メタンスルホナ ト)、ビス(シクロペンタジエニル)ジルコニウムビス (p-トルエンスルホナト)、ビス(シクロペンタジエニ ル) ジルコニウムビス (トリフルオロメタンスルホナ ト)、ビス(メチルシクロペンタジエニル)ジルコニウ ムビス(トリフルオロメタンスルホナト)、ビス(エチ ルシクロペンタジエニル)ジルコニウムビス(トリフル オロメタンスルホナト)、ビス(プロピルシクロペンタ ジエニル) ジルコニウムビス (トリフルオロメタンスル ホナト)、ビス(ブチルシクロペンタジエニル)ジルコ ニウムビス(トリフルオロメタンスルホナト)、ビス (ヘキシルシクロペンタジエニル) ジルコニウムビス (トリフルオロメタンスルホナト)、ビス(ジメチルシ クロペンタジエニル) ジルコニウムビス (トリフルオロ メタンスルホナト)、ビス(メチルエチルシクロペンタ ジエニル) ジルコニウムビス (トリフルオロメタンスル ホナト)、ビス(メチルプロピルシクロペンタジエニ ル) ジルコニウムビス (トリフルオロメタンスルホナ ト)、ビス(メチルブチルシクロペンタジエニル)ジル コニウムビス(トリフルオロメタンスルホナト)、ビス (ジメチルシクロペンタジエニル) ジルコニウムジクロ

リド、ビス (メチルプロピルシクロペンタジエニル) ジ ルコニウムジクロリド、ビス (メチルブチルシクロペン タジエニル)ジルコニウムジクロリド、ビス(メチルヘ キシルシクロペンタジエニル) ジルコニウムジクロリ ド、ビス (エチルブチルシクロペンタジエニル) ジルコ ニウムジクロリド、ビス (トリメチルシクロペンタジエ ニル) ジルコニウムジクロリド、ビス (テトラメチルシ クロペンタジエニル)ジルコニウムジクロリド、ビス (ペンタメチルシクロペンタジエニル) ジルコニウムジ クロリド、ビス(メチルベンジルシクロペンタジエニ ル) ジルコニウムジクロリド、ビス (エチルヘキシルシ クロペンタジエニル)ジルコニウムジクロリド、ビス (メチルシクロヘキシルシクロペンタジエニル) ジルコ ニウムジクロリド、ピス (シクロペンタジエニル) エチ ルジルコニウムモノクロリド、ビス (シクロペンタジエ ニル) シクロヘキシルジルコニウムモノクロリド、ビス (シクロペンタジエニル) フェニルジルコニウムモノク ロリド、ビス(シクロペンタジエニル)ベンジルジルコ ニウムモノクロリド、ビス (シクロペンタジエニル) メ チルジルコニウムモノハイドライド、ビス (シクロペン タジエニル) ジフェニルジルコニウム、ビス (シクロペ ンタジエニル) ジベンジルジルコニウム、ビス (インデ ニル) ジルコニウムビス (p-トルエンスルホナト)、ビ ス (ジメチルシクロペンタジエニル) ジルコニウムエト キシクロリド、ビス(メチルエチルシクロペンタジエニ ル) ジルコニウムジクロリド、ビス (プロピルシクロペ ンタジエニル) ジルコニウムジクロリド、ピス (メチル ブチルシクロペンタジエニル) ジルコニウムビス (メタ ンスルフォネート)、ビス(トリメチルシリルシクロペ ンタジエニル) ジルコニウムジクロリドなど。

【0068】なお上記例示において、シクロペンタジエニル環の二置換体は、1,2-および1,3-置換体を含み、三置換体は、1,2,3-および1,2,4-置換体を含む。またプロピル、ブチルなどのアルキル基は、n-、i-、sec-、tert-などの異性体を含む。

【0069】また上記のようなジルコニウム化合物において、ジルコニウムを、チタンまたはハフニウムに置換えた化合物を挙げることもできる。2個のシクロペンタジエニル骨格を有する配位子が2価の結合基を介して結合されている遷移金属化合物化合物としては、たとえば下記式(III-3)で表される化合物が挙げられる。

【0070】 【化20】

【0071】式中、M1 は、周期表第4族の遷移金属原 子を示し、具体的には、ジルコニウム、チタニウムまた

はハフニウムであり、好ましくはジルコニウムである。 R^{15} 、 R^{16} 、 R^{17} および R^{18} は、互いに同一でも異なっていてもよく、炭素原子数が $1\sim20$ の炭化水素基、炭素原子数が $1\sim20$ の炭化水素基、炭素原子数が $1\sim20$ のハロゲン化炭化水素基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基、リン含有基、水素原子またはハロゲン原子を示す。 R^{15} 、 R^{16} 、 R^{17} および R^{18} で示される基のうち、互いに隣接する基の一部が結合してそれらの基が結合する炭素原子ともに環を形成していてもよい。なお、 R^{15} 、 R^{16} 、 R^{17} および R^{18} が各々2 ヶ所に表示されているが、それぞれたとえば R^{15} と R^{15} などは、同一の基でもよくまた相異なる基でもよい。 R で示される基のうち同一のサフィックスのものは、それらを継いで、環を形成する場合の好ましい組み合せを示している。

【0072】炭素原子数が $1\sim20$ の炭化水素基として 具体的には、前記一般式 (III-1) における L^1 と同様 のアルキル基、シクロアルキル基、アルケニル基、アリ ールアルキル基、アリール基などが挙げらる。

【0073】これらの炭化水素基が結合して形成する環としてはベンゼン環、ナフタレン環、アセナフテン環、インデン環などの縮環基、および前記縮環基上の水素原子がメチル、エチル、プロピル、ブチルなどのアルキル基で置換された基が挙げられる。

【0074】炭素原子数が $1\sim20$ のハロゲン化炭化水素基としては、前記炭素原子数が $1\sim20$ の炭化水素基にハロゲンが置換した基が挙げられる。ケイ素含有基として具体的には、前記一般式 (III-1) における L^1 と同様のモノ炭化水素置換シリル、ジ炭化水素置換シリル、トリ炭化水素置換シリル、炭化水素置換シリルのシリルエーテル、ケイ素置換アルキル基、ケイ素置換アリール基などが挙げられる。

【0075】酸素含有基具体的には、前記一般式(III-1)におけるL¹と同様のヒドロキシ基、アルコキシ基、アリーロキシ基、アリールアルコキシ基などが挙げられる。

【0076】イオウ含有基としては前記酸素含有基の酸素がイオウに置換した置換基などが挙げられる。窒素含有基としてはアミノ基;メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジシクロヘキシルアミノなどのアルキルアミノ基;フェニルアミノ、ジフェニルアミノ、ジトリルアミノ、ジナフチルアミノ、メチルフェニルアミノなどのアリールアミノ基またはアルキルアリールアミノ基などが挙げられる。

【0077】リン含有基としてはジメチルフォスフィノ、ジフェニルフォスフィノなどのフォスフィノ基などが挙げられる。ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。

【0078】これらのうち炭素原子数が1~20の炭化水素基であることが好ましく、特にメチル、エチル、プ

ロピル、ブチルの炭素原子数が1~4の炭化水素基、炭化水素基が結合して形成されたベンゼン環、炭化水素基が結合して形成されたベンゼン環上の水素原子がメチル、エチル、n-プロピル、iso-プロピル、n-ブチル、iso-ブチル、tert-ブチルなどのアルキル基で置換された基であることが好ましい。

【0079】 X^1 および X^2 は、互いに同一でも異なっていてもよく、炭素原子数 $1\sim20$ の炭化水素基、炭素原子数 $1\sim20$ のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、水素原子またはハロゲン原子を示す。

【0080】炭素原子数 $1\sim20$ の炭化水素基、炭素原子数 $1\sim20$ のハロゲン化炭化水素基、酸素含有基およびハロゲン原子としては、前記 $R^{15}\sim R^{18}$ と同様の基および原子を挙げることができる。

【0081】イオウ含有基としては、前記R¹⁵~R¹⁸と同様の基、ならびにメチルスルフォネート、トリフルオロメタンスルフォネート、アトルエンスルフォネート、ベンジルスルフォネート、アトルエンスルフォネート、トリイソブチルベンゼンスルフォネート、アクロルベンゼンスルフォネート、ペンタフルオロベンゼンスルフィネート、アトルエンスルフィネート、ベンゼンスルフィネート、アトルエンスルフィネート、トリメチルベンゼンスルフィネート、ペンタフルオロベンゼンスルフィネートなどのスルフィネート、メタフルオロベンゼンスルフィネートなどのスルフィネート基が例示できる。

【0082】ケイ素含有基としては、前記R¹⁵~R¹⁸と同様のケイ素置換アルキル基、ケイ素置換アリール基が挙げられる。これらのうち、ハロゲン原子、炭素原子数1~20の炭化水素基またはスルフォネート基であることが好ましい。

【0083】Y¹ は、炭素原子数が $1\sim20$ の2価の炭化水素基、炭素原子数が $1\sim20$ の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、 $-O-、-CO-、-S-、-SO-、-SO_2-、-Ge-、-Sn-、-NR¹9-、-P(R¹9)-、-P(O)(R¹9)-、-BR¹9-または<math>-A1R¹9-$ [ただし、R¹9は、互いに同一でも異なっていてもよく、炭素原子数が $1\sim20$ の炭化水素基、炭素原子数が $1\sim20$ の炭化水素基、炭素原子数が $1\sim20$ の大水素基、炭素原子またはハロゲン原子である〕を示す。

【0084】炭素原子数が1~20の2価の炭化水素基として具体的には、メチレン、ジメチルメチレン、1,2-エチレン、ジメチル-1,2-エチレン、1,3-トリメチレン、1,4-テトラメチレン、1,2-シクロヘキシレン、1,4-シクロヘキシレンなどのアルキレン基;ジフェニルメチレン、ジフェニル-1,2-エチレンなどのアリールアルキレン基などが挙げられる。

【0085】炭素原子数が1~20の2価のハロゲン化

炭化水素基として具体的には、クロロメチレンなどの上 記炭素原子数が1~20の2価の炭化水素基をハロゲン 化した基などが挙げられる。

【0086】2価のケイ素含有基としては、シリレン、メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジにープロピル)シリレン、ジ(i-プロピル)シリレン、ジ(シクロヘキシル)シリレン、メチルフェニルシリレン、ジ(p-トリル)シリレン、ジ(p-クロロフェニル)シリレンなどのアルキルシリレン基;アルキルアリールシリレン基;アリールシリレン基;アトラメチル-1,2-ジシリレン、テトラフェニル-1,2-ジシリレンなどのアルキルジシリレン基;アルキルアリールジシリレン基;アルキルアリールジシリレン基などが挙げられる。

【0087】2価のゲルマニウム含有基としては、上記2価のケイ素含有基のケイ素をゲルマニウムに置換した基などが挙げられる。2価のスズ含有基としては、上記2価のケイ素含有基のケイ素をスズに置換した基などが挙げられる。

【0088】これらのうち、ジメチルシリレン、ジフェニルシリレン、メチルフェニルシリレンなどの置換シリレン基が特に好ましい。また、 R^{19} は、前記 R^{15} ~ R^{18} と同様のハロゲン原子、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基である。

【0089】以下に、前記式 (III-3) で表される遷移 金属化合物について具体的な化合物を例示する。エチレ ン-ビス (インデニル) ジメチルジルコニウム、エチレ ン-ビス (インデニル) ジルコニウムジクロリド、エチ レン-ビス (インデニル) ジルコニウムビス (トリフル オロメタンスルホナト)、エチレン-ビス(インデニ ル) ジルコニウムビス (メタンスルホナト)、エチレン -ビス (インデニル) ジルコニウムビス (p-トルエンス ルホナト)、エチレン-ビス(インデニル)ジルコニウ ムビス (p-クロルベンゼンスルホナト)、エチレン-ビ ス(4,5,6,7-テトラヒドロインデニル)ジルコニウムジ クロリド、イソプロピリデン (シクロペンタジエニル) (フルオレニル) ジルコニウムジクロリド、イソプロピ リデン (シクロペンタジエニル)(メチルシクロペンタジ エニル) ジルコニウムジクロリド、ジメチルシリレン-ビス (シクロペンタジエニル) ジルコニウムジクロリ ド、ジメチルシリレン-ビス (メチルシクロペンタジエ ニル) ジルコニウムジクロリド、ジメチルシリレン-ビ ス(ジメチルシクロペンタジエニル)ジルコニウムジク

ロリド、ジメチルシリレン-ビス(トリメチルシクロペ ンタジエニル) ジルコニウムジクロリド、ジメチルシリ レンーピス (インデニル) ジルコニウムジクロリド、ジ メチルシリレン-ビス (インデニル) ジルコニウムビス (トリフルオロメタンスルホナト)、ジメチルシリレン -ビス(4,5,6,7-テトラヒドロインデニル)ジルコニウ ムジクロリド、ジメチルシリレン (シクロペンタジエニ ル)(フルオレニル) ジルコニウムジクロリド、ジフェニ ルシリレン-ビス (インデニル) ジルコニウムジクロリ ド、メチルフェニルシリレン-ビス (インデニル) ジル コニウムジクロリド、rac-ジメチルシリレン-ビス(2, 3,5-トリメチルシクロペンタジエニル)ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス(2,4,7-トリメ チルシクロペンタジエニル) ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス(2-メチル-4-tert-ブチル シクロペンタジエニル) ジルコニウムジクロリド、イソ プロピリデン (シクロペンタジエニル)(フルオレニル) ジルコニウムジクロリド、ジメチルシリレン (3-tert-ブチルシクロペンタジエニル)(インデニル)ジルコニウ ムジクロリド、イソプロピリデン(4-メチルシクロペン タジエニル)(3-メチルインデニル)ジルコニウムジクロ リド、イソプロピリデン(4-tert-ブチルシクロペンタ ジエニル) (3-メチルインデニル) ジルコニウムジクロリ ド、イソプロピリデン(4-tert-ブチルシクロペンタジ エニル) (3-tert-ブチルインデニル) ジルコニウムジク ロリド、ジメチルシリレン(4-メチルシクロペンタジエ ニル)(3-メチルインデニル)ジルコニウムジクロリド、 ジメチルシリレン (4-tert-ブチルシクロペンタジエニ ル)(3-メチルインデニル)ジルコニウムジクロリド、ジ メチルシリレン (4-tert-ブチルシクロペンタジエニル) (3-tert-ブチルインデニル) ジルコニウムジクロリド、 ジメチルシリレン (3-tert-ブチルシクロペンタジエニ ル)(フルオレニル) ジルコニウムジクロリド、イソプロ ピリデン (3-tert-ブチルシクロペンタジエニル)(フル オレニル) ジルコニウムジクロリドなど。

【0090】また上記のような化合物中のジルコニウムを、チタニウムまたはハフニウムに代えた化合物を挙げることもできる。前記一般式(III-3)で表される遷移金属化合物として、他の具体的な例としては下記一般式(III-4)または(III-5)で表される遷移金属化合物がある。

【0091】 【化21】

【0092】式中、M¹は周期表第4族の遷移金属原子を示し、具体的には、チタニウム、ジルコニウムまたはハフニウムであり、好ましくはジルコニウムである。R²¹は、互いに同一でも異なっていてもよく、炭素原子数が1~6の炭化水素基を示し、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、シクロヘキシルなどのアルキル基;ビニル、プロペニルなどのアルケニル基などが挙げられる。

【0093】これらのうちインデニル基に結合した炭素原子が1級のアルキル基が好ましく、さらに炭素原子数が1~4のアルキル基が好ましく、特にメチル基およびエチル基が好ましい。

【0094】 R^{22} 、 R^{24} 、 R^{25} および R^{26} は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子または R^{21} と同様の炭素原子数が $1\sim6$ の炭化水素基を示す。 R^{23} は、互いに同一でも異なっていてもよく、水素原子または炭素原子数が $6\sim16$ のアリール基を示し、具体的には、フェニル、 α -ナフチル、 β -ナフチル、アントリル、フェナントリル、ピレニル、アセナフチル、フェナレニル、アセアントリレニル、テトラヒドロナフチル、インダニル、ビフェニリルなどが挙げられる。これらのうちフェニル、ナフチル、アントリル、フェナントリルであることが好ましい。

【0095】これらのアリール基は、フッ素、塩素、臭 素、ヨウ素などのハロゲン原子;メチル、エチル、プロ ピル、ブチル、ヘキシル、シクロヘキシル、オクチル、 ノニル、ドデシル、アイコシル、ノルボルニル、アダマ ンチルなどのアルキル基; ビニル、プロペニル、シクロ ヘキセニルなどのアルケニル基;ベンジル、フェニルエ チル、フェニルプロピルなどのアリールアルキル基:フ ェニル、トリル、ジメチルフェニル、トリメチルフェニ ル、エチルフェニル、プロピルフェニル、ビフェニル、 ル、フェナントリル、ベンジルフェニル、ピレニル、ア セナフチル、フェナレニル、アセアントリレニル、テト ラヒドロナフチル、インダニル、ビフェニリルなどのア リール基などの炭素原子数が1~20の炭化水素基;ト リメチルシリル、トリエチルシリル、トリフェニルシリ ルなどの有機シリル基で置換されていてもよい。

【0096】 X^1 および X^2 は、互いに同一でも異なっていてもよく、前記一般式 (III-3) における X^1 および X^2 と同じである。これらのうち、ハロゲン原子または炭素原子数が $1\sim20$ の炭化水素基であることが好ましい。

【0097】Y¹ は、前記一般式 (III-3) における、Y¹ と同じである。これらのうち、2価のケイ素含有基、2価のゲルマニウム含有基であることが好ましく、2価のケイ素含有基であることがより好ましく、アルキ

ルシリレン、アルキルアリールシリレンまたはアリール シリレンであることがより好ましい。

【0098】以下に上記一般式 (!II-4) で表される遷 移金属化合物の具体的な例を示す。rac-ジメチルシリレ ン-ビス {1-(2-メチル-4-フェニルインデニル)}ジル コニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(α-ナフチル) インデニル) \ ジルコニ ウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(β-ナフチル) インデニル) } ジルコニウム ジクロリド、rac-ジメチルシリレン-ビス {1-(2-メチ ルー4-(1-アントリル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(2-アントリル) インデニル) トジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(9-アントリル) インデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2-メチル-4-(9-フェ ナントリル) インデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1- (2-メチル-4-(p-フル オロフェニル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(ペ ンタフルオロフェニル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-クロロフェニル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(m-クロロフェニル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(o-クロロフェニル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(o,p-ジクロロフェニル)フェニルインデニル) } ジ ルコニウムジクロリド、rac-ジメチルシリレン-ビス {1 - (2-メチル-4-(p-ブロモフェニル) インデニル) } ジ ルコニウムジクロリド、rac-ジメチルシリレン-ビス {1 - (2-メチル-4-(p-トリル) インデニル) } ジルコニウ ムジクロリド、rac-ジメチルシリレン-ビス {1-(2-メ チル-4-(m-トリル) インデニル) } ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(o -トリル) インデニル) } ジルコニウムジクロリド、rac -ジメチルシリレン-ビス {1- (2-メチル-4-(o,o'-ジメ チルフェニル)-1-インデニル)ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-エチルフェニル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-i -プロピルフェニル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ピス {1-(2-メチル-4-(p-ベンジルフェニル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-ビフェニル) インデニル)) ジルコニウムジクロ リド、rac-ジメチルシリレン-ピス {1-(2-メチル-4-(m -ビフェニル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-

トリメチルシリレンフェニル) インデニル) } ジルコニ ウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(m-トリメチルシリレンフェニル) インデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1-(2-フェニル-4-フェニルインデニル)}ジル コニウムジクロリド、rac-ジエチルシリレン-ビス {1-(2-メチル-4-フェニルインデニル) } ジルコニウムジ クロリド、rac-ジ-(i-プロピル) シリレン-ピス (1-(2) -メチル-4-フェニルインデニル) } ジルコニウムジクロ リド、rac-ジ-(n-ブチル) シリレン-ビス {1-(2-メチ ル-4-フェニルインデニル) } ジルコニウムジクロリ ド、rac-ジシクロヘキシルシリレン-ビス {1-(2-メチ ル-4-フェニルインデニル) } ジルコニウムジクロリ ド、rac-メチルフェニルシリレン-ビス {1-(2-メチル-4-フェニルインデニル) / ジルコニウムジクロリド、ra c-ジフェニルシリレン-ビス {1-(2-メチル-4-フェニル インデニル) } ジルコニウムジクロリド、rac-ジ(p-ト リル) シリレン-ピス {1-(2-メチル-4-フェニルインデ ニル) } ジルコニウムジクロリド、rac-ジ (p-クロロフ ェニル)シリレン-ビス {1-(2-メチル-4-フェニルイン デニル) } ジルコニウムジクロリド、rac-メチレン-ビ ス {1-(2-メチル-4-フェニルインデニル)}ジルコニ ウムジクロリド、rac-エチレン-ビス {1-(2-メチル-4-フェニルインデニル) \ ジルコニウムジクロリド、rac-ジメチルゲルミレン-ビス {1-(2-メチル-4-フェニルイ ンデニル) } ジルコニウムジクロリド、rac-ジメチルス タニレン-ビス {1-(2-メチル-4-フェニルインデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1-(2-メチル-4-フェニルインデニル)}ジルコ ニウムジブロミド、rac-ジメチルシリレン-ビス {1-(2 -メチル-4-フェニルインデニル) } ジルコニウムジメチ ル、rac-ジメチルシリレン-ビス {1-(2-メチル-4-フェ ニルインデニル) } ジルコニウムメチルクロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-フェニルイン デニル) | ジルコニウムクロリドSO, Me、rac-ジメ チルシリレン-ビス {1-(2-メチル-4-フェニルインデニ ル) } ジルコニウムクロリドOSO, Me、

【0099】 $rac-ジメチルシリレン-ビス {1- (2-エチル-4-フェニルインデニル)} ジルコニウムジクロリド、<math>rac-ジメチルシリレン-ビス {1- (2-エチル-4-(α-ナフチル) インデニル)} ジルコニウムジクロリド、<math>rac-ジメチルシリレン-ビス {1- (2-エチル-4-(β-ナフチル) インデニル)} ジルコニウムジクロリド、<math>rac-ジメチルシリレン-ビス {1- (2-エチル-4-(2-メチル-1-ナフチル) インデニル)} ジルコニウムジクロリド、<math>rac-ジメチルシリレン-ビス {1- (2-エチル-4-(5-アセナフチル) インデニル)} ジルコニウムジクロリド、<math>rac-ジメチルシリレン-ビス {1- (2-エチル-4-(9-アントリル) インデニル)} ジルコニウムジクロリド、<math>rac-ジメチルシリレン-ビス {1- (2-エチル-4-(9-フェナントリル) シリレン-ビス {1- (2-エチル-4-(9-フェナントリル)$

インデニル) } ジルコニウムジクロリド、rac-ジメチル シリレン-ピス {1-(2-エチル-4-(o-メチルフェニル) インデニル) } ジルコニウムジクロリド、rac-ジメチル シリレン-ビス {1-(2-エチル-4-(m-メチルフェニル) インデニル) } ジルコニウムジクロリド、rac-ジメチル シリレン-ビス {1-(2-エチル-4-(p-メチルフェニル) インデニル) } ジルコニウムジクロリド、rac-ジメチル シリレン-ピス {1-(2-エチル-4-(2.3-ジメチルフェニ ル)インデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ピス {1-(2-エチル-4-(2,4-ジメチルフ ェニル) インデニル) } ジルコニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(2,5-ジメチ ルフェニル) インデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2-エチル-4-(2,4,6-ト リメチルフェニル) インデニル) } ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(o-クロロフェニル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(m-ク ロロフェニル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ピス {1-(2-エチル-4-(p-ク ロロフェニル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(2,3-ジクロロフェニル) インデニル) \ ジルコニウムジクロ リド、rac-ジメチルシリレン-ピス {1-(2-エチル-4-(2, 6-ジクロロフェニル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(3,5-ジクロロフェニル) インデニル) } ジルコニウム ジクロリド、rac-ジメチルシリレン-ビス {1-(2-エチル -4-(2-ブロモフェニル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-エチル-4 -(3-プロモフェニル) インデニル) \ ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(4-ブロモフェニル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(4-ビフェニリル) インデニル) } ジルコニウムジクロ リド、rac-ジメチルシリレン-ピス {1-(2-エチル-4-(4-トリメチルシリルフェニル) インデニル) } ジルコニウ ムジクロリド、rac-ジメチルシリレン-ビス {1-(2-n-プ ロピル-4-フェニルインデニル) } ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2-n-プロピル-4 -(α-ナフチル) インデニル) トジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-n-プロピル-4- $(\beta-\tau)$ ド、rac-ジメチルシリレン-ビス {1-(2-n-プロピル-4-(2-メチル-1-ナフチル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-n-プロピ ル-4-(5-アセナフチル) インデニル) \ ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-n-プロピ ル-4-(9-アントリル) インデニル) {ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-n-プロピル -4-(9-フェナントリル) インデニル) とジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-i-プロピ ル-4-フェニルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-i-プロピル-4-(α-ナフチル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-i-プロピル-4- $(\beta-\tau)$ ド、rac-ジメチルシリレン-ビス {1-(2-i-プロピル-4-(8-メチル-9-ナフチル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-i-プロピ ル-4-(5-アセナフチル) インデニル) \ ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-i-プロピ ル-4-(9-アントリル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-i-プロピル -4-(9-フェナントリル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-s-ブチル -4-フェニルインデニル) > ジルコニウムジクロリド、r ac-ジメチルシリレン-ビス {1-(2-s-ブチル-4-(α-ナフ チル) インデニル) } ジルコニウムジクロリド、rac-ジ メチルシリレン-ビス {1-(2-s-ブチル-4-(β-ナフチ ル) インデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2-s-ブチル-4-(2-メチル-1-ナ フチル) インデニル) } ジルコニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-s-ブチル-4-(5-アセナフ チル) インデニル) } ジルコニウムジクロリド、rac-ジ メチルシリレン-ビス {1-(2-s-ブチル-4-(9-アントリ ル) インデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2-s-ブチル-4-(9-フェナントリ ル) インデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2-n-ペンチル-4-フェニルイン デニル) - ジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1-(2-n-ペンチル-4-(α-ナフチル) インデ ニル) トジルコニウムジクロリド、rac-ジメチルシリレ ン-ビス {1-(2-n-ブチル-4-フェニルインデニル)}ジ ルコニウムジクロリド、rac-ジメチルシリレン-ビス {1 $-(2-n-ブチル-4-(\alpha-ナフチル) インデニル) } ジルコ$ ニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2n-ブチル-4-(β-ナフチル) インデニル) } ジルコニウ ムジクロリド、rac-ジメチルシリレン-ビス {1-(2-n-ブ チル-4-(2-メチル-1-ナフチル) インデニル) } ジルコ ニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2n-ブチル-4-(5-アセナフチル) インデニル) } ジルコニ ウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-n-ブチル-4-(9-アントリル) インデニル) } ジルコニウム ジクロリド、rac-ジメチルシリレン-ビス {1-(2-n-ブチ ル-4-(9-フェナントリル) インデニル) } ジルコニウム ジクロリド、rac-ジメチルシリレン-ビス {1-(2-i-ブチ ル-4-フェニルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-i-ブチル-4-(α -ナフチル) インデニル) } ジルコニウムジクロリド、r ac-ジメチルシリレン-ビス {1-(2-i-ブチル-4-(β-ナフ チル) インデニル) } ジルコニウムジクロリド、rac-ジ メチルシリレン-ビス {1-(2-i-ブチル-4-(2-メチル-1-ナフチル) インデニル) } ジルコニウムジクロリド、ra c-ジメチルシリレン-ビス {1-(2-i-ブチル-4-(5-アセナ フチル) インデニル) } ジルコニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-i-ブチル-4-(9-アントリ ル) インデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2-i-ブチル-4-(9-フェナントリ ル) インデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2-ネオペンチル-4-フェニルイ ンデニル) } ジルコニウムジクロリド、rac-ジメチルシ リレン-ビス {1-(2-ネオペンチル-4-(α-ナフチル) イ ンデニル) } ジルコニウムジクロリド、rac-ジメチルシ リレン-ビス {1-(2-n-ヘキシル-4-フェニルインデニ ル) トジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1-(2-n-ヘキシル-4-(α-ナフチル) インデニ ル) } ジルコニウムジクロリド、rac-メチルフェニルシ リレン-ビス {1-(2-エチル-4-フェニルインデニル)} ジルコニウムジクロリド、rac-メチルフェニルシリレン -ビス {1-(2-エチル-4-(α-ナフチル) インデニル) } ジルコニウムジクロリド、rac-メチルフェニルシリレン -ビス {1-(2-エチル-4-(9-アントリル) インデニル) } ジルコニウムジクロリド、rac-メチルフェニルシリレン -ビス {1-(2-エチル-4-(9-フェナントリル) インデニ ル) } ジルコニウムジクロリド、rac-ジフェニルシリレ ン-ビス {1-(2-エチル-4-フェニルインデニル) } ジル コニウムジクロリド、rac-ジフェニルシリレン-ビス {1 -(2-エチル-4-(α-ナフチル) インデニル) } ジルコニ ウムジクロリド、rac-ジフェニルシリレン-ビス {1-(2-エチルー4-(9-アントリル) インデニル) } ジルコニウム ジクロリド、rac-ジフェニルシリレン-ビス {1-(2-エチ ル-4-(9-フェナントリル) インデニル) } ジルコニウム ジクロリド、rac-ジフェニルシリレン-ビス {1-(2-エチ ル-4-(4-ビフェニリル) インデニル) } ジルコニウムジ クロリド、rac-メチレン-ビス {1-(2-エチル-4-フェニ ルインデニル) } ジルコニウムジクロリド、rac-メチレ ン-ビス (1-(2-エチル-4-(α-ナフチル) インデニ ル) } ジルコニウムジクロリド、rac-エチレン-ビス {1 -(2-エチル-4-フェニルインデニル) } ジルコニウムジ クロリド、rac-エチレン-ピス $\{1-(2-エチル-4-(α-+1))\}$ フチル) インデニル) } ジルコニウムジクロリド、rac-エチレン-ビス {1-(2-n-プロピル-4-(α-ナフチル) イ ンデニル) } ジルコニウムジクロリド、rac-ジメチルゲ ルミルービス {1-(2-エチル-4-フェニルインデニル) } ジルコニウムジクロリド、rac-ジメチルゲルミルービス {1-(2-エチル-4-(α-ナフチル) インデニル) } ジルコ ニウムジクロリド、rac-ジメチルゲルミル-ビス {1-(2n-プロピル-4-フェニルインデニル) } ジルコニウムジ クロリドなど。

【0100】また上記のような化合物中のジルコニウムをチタニウムまたはハフニウムに代えた化合物を挙げることもできる。本発明では、炭素原子数が3以上のオレフィンを重合する際には、前記一般式(III-4)で表される遷移金属化合物のラセミ体が触媒成分として好ましく用いられる。

【0101】このような一般式(III-4)で表される遷 移金属化合物は、Journal of Organometallic Chem.288 (1985)、第63~67頁、ヨーロッパ特許出願公開第0,320,762号明細書および実施例に準じて製造することができる。

【0102】次に、一般式 (III-5) で表される遷移金 属化合物について説明する。

【0103】 【化22】

【0104】式中、M¹ は周期表第4族の遷移金属原子を示し、具体的には、チタニウム、ジルコニウムまたはハフニウムであり、好ましくはジルコニウムである。R³¹およびR³²は、互いに同一でも異なっていてもよく、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基、リン含有基、水素原子またはハロゲン原子を示し、具体的には、前記R¹⁵~R¹⁸と同様の原子または基が挙げられる。

【0105】これらのうち R^{31} は、炭素原子数が $1\sim2$ 0の炭化水素基であることが好ましく、特にメチル、エチル、プロピルの炭素原子数が $1\sim3$ の炭化水素基であることが好ましい。

【0106】 R^{32} は、水素原子または炭素原子数が $1\sim$ 20の炭化水素基であることが好ましく、特に水素原子あるいは、メチル、エチル、プロピルの炭素原子数が $1\sim$ 3の炭化水素基であることが好ましい。

【0107】R³³およびR³⁴は、互いに同一でも異なっていてもよく、炭素原子数が1~20のアルキル基を示し、具体的にはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、シクロヘキシル、オクチル、ノニル、ドデシル、アイコシル、ノルボルニル、アダマンチルなどが挙げられる。

【0108】これらのうち R^{33} は、2級または3級アルキル基であることが好ましい。 X^1 および X^2 は、互いに同一でも異なっていてもよく、前記一般式 (III-3)における X^1 および X^2 と同じである。

【0109】Y¹は、前記一般式(III-3)における、Y¹と同じである。以下に上記一般式(III-5)で表される遷移金属化合物の具体的な例を示す。rac-ジメチルシリレン-ビス{1-(2,7-ジメチル-4-n-プロピルインデニル)}ジルコニウムジクロリド、rac-ジメチルシリレン-ビス{1-(2,7-ジメチル-4-n-プロピルインデニル)}ジルコニウムジクロリド、rac-ジメチルシリレン-ビス{1-(2,7-ジメチル-4-i-プロピルインデニル)}ジル

コニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2,7-ジメチル-4-n-ブチルインデニル) } ジルコニウ ムジクロリド、rac-ジメチルシリレン-ビス {1-(2,7-ジメチル-4-sec-ブチルインデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2,7-ジメ チル-4-t-ブチルインデニル) { ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,7-ジメチル-4n-ペンチルインデニル) } ジルコニウムジクロリド、ra c-ジメチルシリレン-ビス {1-(2.7-ジメチル-4-n-ヘキ シルインデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2,7-ジメチル-4-シクロヘキシ ルインデニル) } ジルコニウムジクロリド、rac-ジメチ ルシリレン-ビス {1-(2,7-ジメチル-4-メチルシクロへ キシルインデニル) / ジルコニウムジクロリド、rac-ジ メチルシリレン-ビス {1-(2,7-ジメチル-4-フェニルエ チルインデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2,7-ジメチル-4-フェニルジク

··· (III-5)

メチルインデニル) } ジルコニウムジクロリド、rac-ジ メチルシリレン-ビス {1-(2,7-ジメチル-4-トリメチル シリルメチルインデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2,7-ジメチル-4-トリ メチルシロキシメチルインデニル) } ジルコニウムジク ロリド、rac-ジエチルシリレン-ビス {1-(2,7-ジメチ ル-4-i-プロピルインデニル) { ジルコニウムジクロリ ド、rac-ジ(i-プロピル)シリレン-ビス {1-(2,7-ジ メチル-4-i-プロピルインデニル) } ジルコニウムジク ロリド、rac-ジ (n-ブチル) シリレン-ビス {1-(2,7-ジメチル-4-i-プロピルインデニル) } ジルコニウムジ クロリド、rac-ジ (シクロヘキシル) シリレン-ビス (1 - (2,7-ジメチル-4-i-プロピルインデニル) } ジルコニ ウムジクロリド、rac-メチルフェニルシリレン-ビス {1 - (2,7-ジメチル-4-i-プロピルインデニル) } ジルコニ ウムジクロリド、rac-メチルフェニルシリレン-ビス {1 - (2.7-ジメチル-4-t-ブチルインデニル) } ジルコニウ

ロロメチルインデニル) } ジルコニウムジクロリド、ra

c-ジメチルシリレン-ビス {1-(2,7-ジメチル-4-クロロ

ムジクロリド、rac-ジフェニルシリレン-ビス {1-(2.7) -ジメチル-4-t-ブチルインデニル) } ジルコニウムジク ロリド、rac-ジフェニルシリレン-ビス {1-(2,7-ジメ チル-4-i-プロピルインデニル) } ジルコニウムジクロ リド、rac-ジフェニルシリレン-ビス {1-(2,7-ジメチ ル-4-エチルインデニル) } ジルコニウムジクロリド、r ac-ジ (p-トリル) シリレン-ビス {1-(2,7-ジメチル-4 -i-プロピルインデニル) } ジルコニウムジクロリド、r ac-ジ (p-クロロフェニル) シリレン-ビス {1-(2.7-ジ メチル-4-i-プロピルインデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4i-プロピル-7-エチルインデニル) } ジルコニウムジブ ロミド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリ メチル-4-エチルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ル-4-n-プロピルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ル-4-i-プロピルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ル-4-n-ブチルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ル-4-sec-ブチルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ル-4-t-ブチルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ル-4-n-ペンチルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ル-4-n-ヘキシルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ル-4-シクロヘキシルインデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリ メチル-4-メチルシクロヘキシルインデニル) } ジルコ ニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチル-4-トリメチルシリルメチルインデ ニル) } ジルコニウムジクロリド、rac-ジメチルシリレ ン-ビス {1-(2,3,7-トリメチル-4-トリメチルシロキシ メチルインデニル) } ジルコニウムジクロリド、rac-ジ メチルシリレン-ビス {1-(2,3,7-トリメチル-4-フェニ ルエチルインデニル) | ジルコニウムジクロリド、rac-ジメチルシリレン-ピス {1-(2,3,7-トリメチル-4-フェ ニルジクロロメチルインデニル) } ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメ チル-4-クロロメチルインデニル) } ジルコニウムジク ロリド、rac-ジエチルシリレン-ビス {1-(2,3,7-トリ メチル-4-i-プロピルインデニル) } ジルコニウムジク ロリド、rac-ジ(i-プロピル)シリレン-ビス {1-(2, 3,7-トリメチル-4-i-プロピルインデニル) } ジルコニ ウムジクロリド、rac-ジ (n-ブチル) シリレン-ビス {1 - (2,3,7-トリメチル-4-i-プロピルインデニル) } ジル コニウムジクロリド、rac-ジ (シクロヘキシル) シリレ

ン-ビス {1-(2,3,7-トリメチル-4-i-プロピルインデニ ル) } ジルコニウムジクロリド、rac-メチルフェニルシ リレン-ビス {1-(2,3,7-トリメチル-4-i-プロピルイン デニル) } ジルコニウムジクロリド、rac-メチルフェニ ルシリレン-ビス {1-(2,3,7-トリメチル-4-t-ブチルイ ンデニル) } ジルコニウムジクロリド、rac-ジフェニル シリレン-ビス {1-(2,3,7-トリメチル-4-t-ブチルイン デニル) } ジルコニウムジクロリド、rac-ジフェニルシ リレン-ビス {1-(2,3,7-トリメチル-4-i-プロピルイン デニル)) ジルコニウムジクロリド、rac-ジフェニルシ リレン-ビス {1-(2,3,7-トリメチル-4-エチルインデニ ル) } ジルコニウムジクロリド、rac-ジ (p-トリル) シ リレン-ビス {1-(2,3,7-トリメチル-4-i-プロピルイン デニル) トジルコニウムジクロリド、rac-ジ(p-クロロ フェニル)シリレン-ビス {1-(2,3,7-トリメチル-4-i-プロピルインデニル) } ジルコニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-i-プロピル-7 -メチルインデニル) } ジルコニウムジメチル、rac-ジ メチルシリレン-ビス {1-(2-メチル-4-i-プロピル-7-メチルインデニル) } ジルコニウムメチルクロリド、ra c-ジメチルシリレン-ビス {1-(2-メチル-4-i-プロピル -7-メチルインデニル) } ジルコニウム-ビス (メタンス ルホナト)、rac-ジメチルシリレン-ビス {1-(2-メチ ル-4-i-プロピル-7-メチルインデニル) } ジルコニウム -ビス(p-フェニルスルフィナト)、rac-ジメチルシリ レン-ビス {1-(2-メチル-3-メチル-4-i-プロピル-7-メ チルインデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2-メチル-4,6-ジ-i-プロピル インデニル) } ジルコニウムジクロリド、rac-ジメチル シリレン-ビス {1-(2-エチル-4-i-プロピル-7-メチル インデニル) } ジルコニウムジクロリド、rac-ジメチル シリレン-ビス {1-(2-フェニル-4-i-プロピル-7-メチ ルインデニル) } ジルコニウムジクロリド、rac-ジメチ ルシリレン-ビス {1-(2-メチルインデニル)}ジルコ ニウムジクロリド、rac-エチレン-ビス {1-(2,4,7-ト リメチルインデニル) } ジルコニウムジクロリド、rac-イソプロピリデン-ビス {1-(2,4,7-トリメチルインデ ニル) } ジルコニウムジクロリドなど。

【0110】また上記のような化合物中のジルコニウムをチタニウムまたはハフニウムに代えた化合物を挙げることもできる。これらの中で、4位にi-プロピル、sec-ブチル、tert-ブチル基などの分岐アルキル基を有するものが、特に好ましい。

【0111】本発明では、炭素原子数が3以上のオレフィンを重合する際には、前記一般式(III-5)で表される遷移金属化合物のラセミ体が触媒成分として好ましく用いられる。

【0112】上記のような一般式 (III-5) で表される 遷移金属化合物は、インデン誘導体から既知の方法たと えば特開平4-268307号公報に記載されている方 法により合成することができる。

【0113】また、本発明では、(A)遷移金属化合物として下記一般式(III-6)で表される化合物を用いることもできる。

 $L^2 M^2 X^3_2 \cdots (III-6)$

式中、M2 は周期表第4族の遷移金属原子を示す。

【0114】 L^2 は、非局在化 π 結合基の誘導体であり、金属 M^2 活性サイトに拘束幾何形状を付与しており、 X^3 は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子または20個以下の炭素原子、ケイ素原子もしくはゲルマニウム原子を含有する炭化水素基、シリル基もしくはゲルミル基である。

【0115】このような一般式(III-6)で表される化合物のうちでは、下記一般式(III-7)で表される化合物が好ましい。

[0116]

【化23】

Z — Y²
/ /
Cp — M²

【0117】式中、 M^2 は周期表第4族の遷移金属原子を示し、具体的にはジルコニウム、チタンまたはハフニウムであり、好ましくはジルコニウムである。Cpは、 M^2 に π 結合しており、かつ置換基Zを有する置換シクロペンタジエニル基またはその誘導体を示す。

【 0118】 Zは、酸素原子、イオウ原子、ホウ素原子 または周期表第14族の原子を含む配位子を示し、たと えばーSi(R^{41}_2)-、-C(R^{41}_2)-、-Si(R^{41}_2) Si(R^{41}_2)-、-C(R^{41}_2) C(R^{41}_2)-、-C(R^{41}_2) C(R^{41}_2)-、-С(R^{41}_2) C(R^{41}_2)-、-C(R^{41}_2)-、-C(R^{41}_2)-、-C(R^{41}_2)-、-C(R^{41}_2))-、-C(R^{41}_2))-、-C(R^{41}_2))-、-C(R^{41}_2))-、-C(R^{41}_2))-、-C(R^{41}_2))-、-C(R^{41}_2))-などである。

【O119】 Y^2 は、窒素原子、リン原子、酸素原子またはイオウ原子を含む配位子を示し、たとえば-N(R^{42})-、-O-、-S-、-P(R^{42}) -などである。またZと Y^2 とで縮合環を形成してもよい。

【0120】上記R 41 は水素原子または20個までの非水素原子をもつアルキル基、アリール基、シリル基、ハロゲン化アルキル基、ハロゲン化アリール基およびこれらの組合せから選ばれた基であり、R 42 は炭素原子数が $1\sim10$ のアルキル、炭素原子数が $6\sim10$ のアリール基もしくは炭素原子数が $7\sim10$ のアラルキル基であるか、または1個もしくはそれ以上のR 41 と30個までの非水素原子の縮合環系を形成してもよい。

【 0 1 2 1 】 X³ は、前記一般式 (III-6) の定義と同様である。以下に上記一般式 (III-7) で表される遷移 金属化合物の具体的な例を示す。 (tert-ブチルアミド) (テトラメチルーカ⁵-シクロペンタジエニル)-1,2-エタン ジイルジルコニウムジクロリド、(tert-ブチルアミド) (テトラメチルーカ⁵-シクロペンタジエニル)-1,2-エタン

ジイルチタンジクロリド、(メチルアミド)(テトラメチルーカ⁵-シクロペンタジエニル)-1,2-エタンジイルジルコニウムジクロリド、(メチルアミド)(テトラメチルーカ⁵-シクロペンタジエニル)-1,2-エタンジイルチタンジクロリド、(エチルアミド)(テトラメチルーカ⁵-シクロペンタジエニル)-メチレンチタンジクロリド、(tert-ブチルアミド)ジメチル(テトラメチルーカ⁵-シクロペンタジエニル)シランチタンジクロリド、(tert-ブチルアミド)ジメチル(テトラメチルーカ⁵-シクロペンタジエニル)シランジルコニウムジクロリド、(ベンジルアミド)ジメチル-(テトラメチルーカ⁵-シクロペンタジエニル)シランチタンジクロリド、(フェニルホスフィド)ジメチル(テトラメチルーカ⁵-シクロペンタジエニル)シランチタンジクロリド、(フェニルホスフィド)ジメチル(テトラメチルーカ⁵-シクロペンタジエニル)シランジルコニウムジベンジルなど。

【0122】一般式 (IV) 中、M3 は周期表第3~12 族の遷移金属原子を示し、好ましくは周期表第4~10 族の遷移金属原子であり、より好ましくはチタン、ジル コニウム、ハフニウム、ニッケル、パラジウム、クロ ム、鉄、コバルトである。L3 は遷移金属原子M3 に配 位するシクロペンタジエニル骨格を有する配位子以外の 中性またはアニオン性配位子を示し、配位子L3 は遷移 金属原子M³ と、B、C、N、O、P、S、ハロゲンな どの原子で、電荷の状態が中性またはアニオンの形式で 結合している。これらのL3で示される配位子は、互い に同一でも異なっていてもよい。中性配位子のなかでB で結合している配位子の例としてはアルキルボラン、ア リールボランなどが挙げられ、Cで結合している配位子 の例としては、共役ジエン化合物残基などが挙げられ、 Nで結合している配位子の例としては、アミノ、アミ ド、スルホンアミド、イミド、イミノなどが挙げられ、 Oで結合している配位子の例としては、アルコキシ、カ ルポニル、エステル、アミドなどが挙げられ、Pで結合 している配位子の例としては、フォスフィン、フォスフ ァイトなどが挙げられ、Sで結合している配位子の例と しては、チオフェノール、フルフィド、チオケトン、チ オケトエステルなどが挙げられる。アニオン性配位子の なかで、Bで結合している配位子の例としては、アルキ ルボレート、アリールボレート、ボラベンゼンなどが挙 げられ、Cで結合している配位子の例としては、πーア リールなどが挙げられる、Nで結合している配位子の例 としては、アミド、アミジン、イミダゾール、アミデー ト、イミデートなどが挙げられ、Oで結合している配位 子の例としては、フェノキシド、アルコキシド、カルボ キシル、オキシム、ケトアルコキシなどが挙げられ、P で結合している配位子の例としては、フォスフェートな どが挙げられ、Sで結合している配位子の例としては、 チオフェノキシド、チオカルボンキシル基、ジチオカル バメート基などが挙げられる。このような一般式(IV) で表される化合物としては、たとえば以下のようなもの が挙げられる。このような遷移金属化合物は、単独でま

たは2種以上混合して用いることができる。

(B) イオン性化合物または(B')13族化合物

(B) イオン性化合物または(B') 13族化合物としては、前記一般式(I-a)で表されるイオン性化合物または前記一般式(II-a)で表される13族化合物が挙げられる。これらのうち、イオン性化合物が好ましい。

【0123】上記のようなイオン性化合物は、1種単独でまたは2種以上組合わせて用いることができ、13族化合物は、1種単独でまたは2種以上組合わせて用いることができる。また、イオン性化合物および13族化合物を2種以上組合わせて用いることもできる。

【0124】本発明に係るオレフィン重合用触媒は、前記(A)遷移金属化合物と、前記(B)イオン性化合物または(B')13族化合物とから形成されるが、必要に応じて下記(C)有機金属化合物を含むことができる

【0125】(C)有機金属化合物

本発明において、必要に応じて用いられる有機金属化合物(C)として、具体的には下記のような周期表第1、2族および第12、13族の有機金属化合物が挙げられる。

[0126]

(C-1) 一般式 R^a_a A1 (OR b) $_n$ H_p X_q (式中、 R^a および R^b は、互いに同一でも異なっていてもよく、炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、Xはハロゲン原子を示し、mは0< $m\leq3$ 、nは $0\leq n<3$ 、pは $0\leq p<3$ 、qは $0\leq q<3$ の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。

【0127】(C-2) 一般式 M3 A1Ra4

(式中、 M^3 はLi、Na、Kを示し、 R^a は炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示す。)で表される第1族金属とアルミニウムとの錯アルキル化物。

【0128】(C-3) 一般式 Ra Rb M4

(式中、 R^a および R^b は、互いに同一でも異なっていてもよく、炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、 M^4 はMg、Zn またはCdである。)で表される第2族または第12族金属のジアルキル化合物。

【0129】前記(C-1) に属する有機アルミニウム化合物としては、次のような化合物などを例示できる。

①一般式 Ram Al (ORb)3-m

(式中、 R^a および R^b は、互いに同一でも異なっていてもよく、炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、mは好ましくは $1.5\leq m\leq3$ の数である。)で表される有機アルミニウム化合物、

②一般式 Ram AlX3-m

(式中、R® は炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは

好ましくは0<m<3である。)で表される有機アルミニウム化合物、

③一般式 Ran AlH3-m

(式中、 R^a は炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、mは好ましくは $2\leq m<3$ である。) で表される有機アルミニウム化合物、

④一般式 Raa Al (ORb), Xa

(式中、 R^a および R^b は、互いに同一でも異なっていてもよく、炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、Xはハロゲン原子を示し、mは0< $m\leq3$ 、nは $0\leq n<3$ 、qは $0\leq q<3$ の数であり、かつm+n+q=3である。)で表される有機アルミニウム化合物。

【0130】(C-1) に属するアルミニウム化合物として より具体的にはトリエチルアルミニウム、トリnーブチル アルミニウムなどのトリn-アルキルアルミニウム: トリ イソプロピルアルミニウム、トリイソブチルアルミニウ ム、トリsec-ブチルアルミニウム、トリ tert-ブチルア ルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルブチルアルミニウム、トリ2-メチルペンチルアル ミニウム、トリ3-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ2-メチルヘキシルア ルミニウム、トリ3-メチルヘキシルアルミニウム、トリ 2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキ ルアルミニウム; トリシクロヘキシルアルミニウムなど のトリシクロアルキルアルミニウム; トリフェニルアル ミニウム、トリトリルアルミニウムなどのトリアリール アルミニウム; ジイソブチルアルミニウムハイドライド などのジアルキルアルミニウムハイドライド:トリイソ プレニルアルミニウムなどのトリアルケニルアルミニウ ム;イソブチルアルミニウムメトキシド、イソブチルア ルミニウムエトキシド、イソブチルアルミニウムイソプ ロポキシドなどのアルキルアルミニウムアルコキシド; ジエチルアルミニウムエトキシド、ジブチルアルミニウ ムプトキシドなどのジアルキルアルミニウムアルコキシ ド;エチルアルミニウムセスキエトキシド、ブチルアル ミニウムセスキブトキシドなどのアルキルアルミニウム セスキアルコキシド; Ra 2.5 Al (ORb) 0.5 など で表される平均組成を有する部分的にアルコキシ化され たアルキルアルミニウム; ジエチルアルミニウムクロリ ド、ジブチルアルミニウムクロリド、ジエチルアルミニ ウムブロミドなどのジアルキルアルミニウムハライド: エチルアルミニウムセスキクロリド、ブチルアルミニウ ムセスキクロリド、エチルアルミニウムセスキブロミド などのアルキルアルミニウムセスキハライド:エチルア ルミニウムジクロリド、プロピルアルミニウムジクロリ ド、ブチルアルミニウムジブロミドなどのアルキルアル ミニウムジハライドなどの部分的にハロゲン化されたア ルキルアルミニウム;ジエチルアルミニウムヒドリド、 ジブチルアルミニウムヒドリドなどのジアルキルアルミ

ニウムヒドリド; エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム; エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを挙げることができる。

【O131】また(C-1) に類似する化合物も使用することができ、たとえば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、 $(C_2 H_5)_2 AIN(C_2 H_5)_2$

【0132】前記(C-2) に属する化合物としては、 LiAl(C₂ H₅)₄

LiAl(C_7 H_{15})。などを挙げることができる。 【0133】その他にも、有機金属化合物(C)としては、一般式

 $(i-C_4 H_9)_x Al_y (C_5 H_{10})_z$

などを挙げることができる。

(式中、x、yおよびzは正の数であり、z≥2xである。)で表されるイソプレニルアルミニウムを使用することもできる。

【0134】さらにその他にも、有機金属化合物(C)としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、メチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、プロピルマグネシウムブロミド、プロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウム、ジブチルマグネシウム、ブチルエチルマグネシウムなどを使用することもできる。

【0135】また重合系内で上記有機アルミニウム化合物が形成されるような化合物、たとえばハロゲン化アルミニウムとアルキルリチウムとの組合せ、またはハロゲン化アルミニウムとアルキルマグネシウムとの組合せなどを使用することもできる。

【0136】本発明で用いる有機金属化合物(C)としては、分岐鎖状のアルキル基を有する金属化合物が好ましく、特にエチル基、イソプロピル基、イソブチル基を有する金属化合物、中でもトリイソブチル金属化合物が好ましい。また金属としてはアルミニウムが好ましく、トリエチルアルミニウム、トリイソブチルアルミニウムが最も好ましい。

【0137】このような有機金属化合物は、単独でまたは2種以上混合して用いることができる。また、本発明 に係るオレフィン重合用触媒は、必要に応じて下記

(D) フェノール誘導体を含むことができる。

【0138】 (D) フェノール誘導体

本発明において、必要に応じて用いられるフェノール誘導体(D)は、下記一般式(V)で表される化合物である。

【0139】 【化24】

【0140】式中、Ř⁴⁴~R⁴⁸は互いに同一でも異なっ ていてもよく、アルキル基、アリール基、アルコキシ 基、アリーロキシ基、トリアリールシリル基、水素原子 またはハロゲン原子を示し、具体的にはメチル、エチ ル、プロピル、ブチル、ヘキシル、シクロヘキシル、オ クチル、ノニル、ドデシル、アイコシル、ノルボルニ ル、アダマンチルなどの炭素原子数が1~20のアルキ ル基:フェニル、トリル、ジメチルフェニル、トリメチ ルフェニル、エチルフェニル、プロピルフェニル、ピフ ェニル、 α -または β -ナフチル、メチルナフチル、ア ントリル、フェナントリル、ベンジルフェニル、ピレニ ル、アセナフチル、フェナレニル、アセアントリレニ ル、テトラヒドロナフチル、インダニル、ビフェニリル などの炭素原子数が6~20のアリール基;メトキシ、 エトキシ、プロポキシ、ブトキシなどの炭素原子数が1 ~20のアルコキシ基;フェノキシ、メチルフェノキ シ、ジメチルフェノキシ、ナフトキシなどの炭素原子数 が6~20のアリーロキシ基;トリフェニルシリルなど のトリアリールシリル基;前記と同様の、ハロゲン原子 が挙げられる。

【0141】このような前記一般式(V)で表されるフ ェノール誘導体として具体的には、以下のような化合物 が挙げられる。2-t-ブチルフェノールなどのモノアルキ ル置換フェノール; 2,6-ジメチルフェノール、2,4-ジ-t -ブチルフェノール、2,6-ジ-t-ブチルフェノール、3,5-ジ-t-ブチルフェノール、2-t-ブチル-4-メチルフェノー ル、2-t-ブチル-4,6-ジメチルフェノール、2,6-ジイソ プロピルフェノールなどのジアルキル置換フェノール; 2,6-ジメチル-4-t-ブチルフェノール、2,6-ジ-t-ブチル -4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェ ノール、2.6-ジ-t-ブチル-4-n-ブチルフェノール、2-(1-メチルシクロヘキシル) -4,6-ジメチルフェノー ル、2-メチル-4,6-ジノニルフェノール、2,6-ジイソプ ロピル-4-メチルフェノールなどのトリアルキル置換フ ェノール;2-フェニルフェノール、3-フェニルフェノー ル、4-フェニルフェノールなどのモノアリール置換フェ ノール: 2.6-ジフェニルフェノールなどのジアリール置 換フェノール; 2,6-ジメチル-4-フェニルフェノールな どのジアルキルモノアリール置換フェノール; 2,6-ジフ ェニル-4-メチルフェノールなどのモノアルキルジアリ ール置換フェノール; 2-t-ブチル-4-メトキシフェノー ルなどのモノアルキルモノアルコキシ置換フェノール;

2,6-ジ-t-ブチル-4-メトキシフェノールなどのジアルキルモノアルコキシ置換フェノール; 2-フェニル-4-メトキシフェノールなどのモノアリールモノアルコキシ置換フェノール; 2,6-ジ-トリフェニルシリルフェノールなどのジ(トリアリールシリル)置換フェノールなどのアルキルジ(トリアリールシリル)置換フェノールなど。

【0142】これらの中では、R⁴⁴、R⁴⁶およびR⁴⁸の うち少なくとも1個が炭素原子数1~12の炭化水素基 で置換されたフェノール誘導体が好ましい。このような フェノール誘導体は、単独でまたは2種以上混合して用 いることができる。

【0143】本発明に係るオレフィン重合用触媒は、上記のような(A) 遷移金属化合物、(B)イオン性化合物または(B')13族化合物、(C)有機金属化合物および(D)フェノール誘導体の一部または全部を下記のような担体に担持した固体触媒として使用することもできる。

【0144】(E)担体

(E) 担体としては、無機あるいは有機の化合物であって、粒径が $10\sim300\mu$ m、好ましくは $20\sim200\mu$ mの顆粒状ないしは微粒子状の固体が使用される。このうち無機担体としては多孔質酸化物が好ましく、具体的には SiO_2 、 Al_2O_3 、MgO、 ZrO_2 、 TiO_2 、 B_2O_3 、CaO、ZnO、BaO、 ThO_2 などまたはこれらを含む混合物、たとえば SiO_2 -MgO、 SiO_2 - Al_2O_3 、 SiO_2 - TiO_2 、 SiO_2 - V_2O_5 、 SiO_2 - Cr_2O_3 、 SiO_2 - TiO_2 -MgOなどを例示することができる。これらの中で SiO_2 および Al_2O_3 からなる群から選ばれた少なくとも1種の成分を主成分とするものが好ましい。

【0145】なお、上記無機酸化物には少量の Na_2CO_3 、 K_2CO_3 、 $CaCO_3$ 、 $MgCO_3$ 、 Na_2SO_4 、 Al_2 (SO_4) $_3$ 、 $BaSO_4$ 、 KNO_3 、Mg(NO_3) $_2$ 、Al(NO_3) $_3$ 、 Na_2O 、 K_2O 、 Li_2O などの炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していても差しつかえない。

【0146】このような(E)担体はその種類および製法により性状は異なるが、本発明で好ましく用いられる担体は、比表面積が50~1000m²/g、好ましくは100~700m²/gであり、細孔容積が0.3~2.5 c m³/gであることが望ましい。該担体は、必要に応じて100~1000℃、好ましくは150~700℃で焼成して用いられる。

【0147】さらに、(E)担体としては、粒径が10~300μmである有機化合物の顆粒状ないしは微粒子状固体を挙げることができる。これら有機化合物としては、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2~14のα-オレフィンを主成分として生成される(共)重合体あるいはビニルシ

クロヘキサン、スチレンを主成分として生成される重合 体もしくは共重合体を例示することができる。

【0148】オレフィン重合用触媒

本発明に係るオレフィン重合用触媒は、前記のような(A) 遷移金属化合物、および(B) イオン性化合物(または(B')13族化合物)、必要に応じて(C)有機金属化合物および/または(D)フェノール誘導体から形成されている。

【0149】以下、本発明に係るオレフィン重合用触媒の供給法および調製法を(B)イオン性化合物を用いた場合を例に挙げて説明するが、(B')13族化合物を用いた場合も(B)イオン性化合物を用いた場合と同様の方法で供給、調製することができる。

【0150】前記各成分は重合器に個別に供給してもよく、また前記各成分から選ばれる任意の2成分以上を予め重合器外で接触させてから重合器に供給してもよい。この場合、(A) 遷移金属化合物と、(B) イオン性化合物とを予め重合器外で接触させて予備接触触媒を調製した後、該予備接触触媒と、(C) 有機金属化合物および(D) フェノール誘導体を重合器に供給することが好ましい。

【0151】前記各成分を重合器に別個に供給する場合には、供給順序は特に限定されないが、(C)有機金属化合物、(D)フェノール誘導体、(A)遷移金属化合物、(B)イオン性化合物の順序で供給することが好ましい。また、前記のように予備接触触媒を調製した場合には、供給順序は特に限定されないが、(C)有機金属化合物、(D)フェノール誘導体、予備接触触媒の順序で重合器に供給することが好ましい。

【0152】予備接触触媒を調製するときには、アルキルリチウム化合物、アルキルマグネシウム化合物、アルキルアルミニウム化合物などの周期表第1~3族および第11~13族の有機金属化合物を用いることができる

【0153】アルキルリチウム化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウムなどが挙げられる。アルキルマグネシウム化合物としては、メチルマグネシウムクロリド、メチルマグネシウムブロミド、エチルマグネシウムクロリド、エチルマグネシウムブロミド、プロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムクロリド、ブチルマグネシウムブロミドなどが挙げられる。

【0154】アルキルアルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム、トリ(2-エチルヘキシル)アルミニウム、トリデシルアルミニウムなどが挙げられる。

【0155】本発明に係るオレフィン重合用触媒は、前

記各成分の一部または全部が前記(E)担体に担持された固体触媒であってもよく、前記固体触媒(成分)にオレフィンが予備重合された予備重合触媒であってもよい。

【0156】固体触媒(成分)は、たとえば前記(E) 担体と(A)遷移金属化合物および/または(B)イオン性化合物、必要に応じて(C)有機金属化合物および/または(D)フェノール誘導体を不活性溶媒中で混合接触させることにより調製することができる。また、予備重合触媒は、たとえば前記(A)遷移金属化合物、

(B) イオン性化合物および(E) 担体、必要に応じて(C) 有機金属化合物および/または(D) フェノール誘導体の存在下、不活性炭化水素溶媒中にオレフィンを導入することにより調製することができる。なお、固体触媒(成分)、予備重合触媒の調製時に(C) 有機金属化合物および/または(D) フェノール誘導体を用いなかった場合には、(C) 有機金属化合物および/または(D) フェノール誘導体は、固体触媒(成分)または予備重合触媒とともに重合器に添加される。

【0157】図1に、本発明に係るオレフィン重合用触 媒の調製工程を示す。本発明のオレフィン重合用触媒に より重合することができるオレフィンとしては、炭素原 子数が $2\sim20$ の α -オレフィン、たとえばエチレン、 プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテ ン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペ ンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラ デセン、1-ヘキサデセン、1-オクタデセン、1-エイコセ ン;炭素原子数が3~20の環状オレフィン、たとえば シクロペンテン、シクロヘプテン、ノルボルネン、ケメ チル-2-ノルボルネン、テトラシクロドデセン、2-メチ ル-1, 4, 5, 8-ジメタノ-1, 2, 3, 4, 4a, 5, 8, 8a-オクタヒドロ ナフタレンなどを挙げることができる。さらにスチレ ン、ビニルシクロヘキサンなどが挙げられる。またオレ フィンとともに、ブタジエン、イソプレン、1,4-ヘキサ ジエン、ジシクロペンタジエン、5-エチリデン-2-ノル ボルネン、7-メチル-1,6-オクタジエンなどの鎖状また は環状ジエン;6,10-ジメチル-1,5,6-ウンデカトリエ ン、5,9-ジメチル-1,4,8-デカトリエンなどの鎖状また は環状トリエン;6,10,14-トリメチル-1,5,9,13-ペンタ デカテトラエン、5,9,13-トリメチル-1,4,8,12-テトラ デカテトラエンなどの鎖状または環状テトラエンなど種 々のポリエン類を共重合させることもできる。

【0158】オレフィンの重合方法

本発明では、オレフィンの重合は、気相重合法あるいは 懸濁重合法、溶液重合法などの液相重合法のいずれでも 行うことができる。重合溶媒としては、不活性炭化水素 を用いることができ、オレフィン自体を溶媒とすること もできる。

【0159】このような不活性炭化水素溶媒として具体的には、ブタン、イソブタン、ペンタン、ヘキサン、オ

クタン、デカン、ドデカン、ヘキサデカン、オクタデカンなどの脂肪族系炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、シクロオクタンなどの脂環族系炭化水素;ベンゼン、トルエン、キシレンなどの芳香族系炭化水素;ガソリン、灯油、軽油などの石油留分などが挙げられる。これら不活性炭化水素媒体のうち脂肪族系炭化水素、脂環族系炭化水素、石油留分などが好ましい。

【0160】重合に際して、(A) 遷移金属化合物は、重合系内の(A) 遷移金属化合物中の遷移金属原子の濃度として、重合容積1リットル当り $10^{-8}\sim10^{-3}$ グラム原子、好ましくは $10^{-7}\sim10^{-4}$ グラム原子となるような量で用いられる。(B) イオン性化合物は、該(B) イオン性化合物と(A) 遷移金属化合物とのモル比〔(B) /(A)〕が、 $0.01\sim10$ 、好ましくは $0.5\sim5$ の範囲となるような量で用いられる。

【0161】必要に応じて用いられる有機金属化合物 (C)は、該(C)有機金属化合物中の周期表第13族の原子(M)と、(A)遷移金属化合物中の遷移金属との原子比(M/遷移金属)が、通常5~50000、好ましくは10~2000の範囲となるような量で用いられる。また、必要に応じて用いられる(D)フェノール誘導体は、(B)イオン性化合物1モルに対し、0.1~2.9モル、好ましくは0.4~2.5モル、特に好ましくは0.7~2モルの範囲となるように用いられる

【0162】前記(B')13族化合物の使用量は、

(B) イオン性化合物と同様である。重合温度は、通常 $-50\sim200$ ℃、好ましくは $0\sim180$ ℃の範囲であり、重合圧力は、通常常圧ないし100kg/cm 2 、好ましくは常圧 ~50 kg/cm 2 の条件下である。

【0163】重合は、回分式、半連続式、連続式のいずれの方式においても行うことができ、さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。

[0164]

【発明の効果】本発明に係るオレフィン重合用触媒成分は、メタロセン化合物等と組合わせるとオレフィン重合活性を有する。

【0165】本発明のオレフィン重合用触媒は、高いオレフィン重合活性を有している。本発明のオレフィンの重合方法は、オレフィン重合活性が高い。

[0166]

【実施例】以下、実施例に基づいて本発明をさらに具体 的に説明するが、本発明はこれら実施例に限定されるも のではない。

[0167]

【合成例】

<u>4-メチル-3-ペンタフルオロフェニル-イミダゾールの合</u>成

[0168]

【化25】

【0169】充分窒素置換した100mlの三ツ口反応器に2-メチルイミダゾール(12.18ミリモル)、ペンタフルオロヨードベンゼン1.70ml(12.18ミリモル)、無水アセトニトリル10mlを加え、撹拌しながら光照射を72時間行った。溶媒を留去し、残留物にジエチルエーテルをいれ、この溶液を炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して淡オレンジ固体を1.00g(収率33%)得た。構造の同定はFD-MSにより行った。

【0170】 リチウムテトラキス (4-メチル-3-ペンタフルオロフェニル-イミダゾール) ホウ素の合成

[0171]

【化26】

【0172】充分窒素置換した100mlの三ツ口反応器(スターラチップ、コンデンサー、滴下ロート、温度計付)に上記で合成した4-メチル-3-ペンタフルオロフェニル-イミダゾール1.00g(4.03ミリモル)、テトラヒドロホウ酸リチウム0.021(0.96ミリモル)を加え180℃で加熱しながら撹拌を行った。24時間後、この固体ををグラスフィルターで沪過し、沪物を無水トルエン50mlで5回洗浄した。これにより、白色固体を0.8g(収率83%)で得た。

【0173】N,N-ジメチルアニリニウム (テトラキス (4-メチル-3-ペンタフルオロフェニル-イミダゾール)

<u>ホウ素の合成</u>

[0174]

【化27】

$$PhNMe_2H B + N + F + F + F$$

$$CH_3$$

【0175】50m1ナスフラスコにN,N-ジメチルアニリン0.02g(0.165ミリモル)と水10m1をいれ室温で撹拌し、これに0.1 N塩酸水溶液3.3m1(0.33ミリモル)を加え、室温で30分間撹拌して、N,N-ジメチルアニリン塩酸塩を調製した。もう一方で50m1ナスフラスコにリチウムテトラキス(4-メチル-3-ペンタフルオロフェニルーイミダゾール)ホウ素0.15g(0.149ミリモル)と水10m1を入れ、室温で30分間撹拌させておく。これに先程調製したN,N-ジメチルアニリン塩酸塩を加え、室温で1日撹拌した。この白色スラリーをグラスフィルターで沪過し、水50m1で洗浄し、得られた固体を減圧下で乾燥させることにより固体を0.09g(収率54%)で得た。【0176】

【実施例1】充分に窒素置換した内容量500m1のガラス製オートクレーブにトルエン400m1を装入し、エチレンを100リットル/時間の量で流通させ、75℃で10分間保持させておいた。これに、トリイソブチルアルミニウムを0.800ミリモル添加し、次いで、エチレンビス(インデニル)ジルコニウムジクロリド0.0008ミリモルを添加し、最後にN,N-ジメチルアニリニウム(テトラキス(4-メチルー3ーペンタフルオロフェニルーイミダゾール)ホウ素0.0016ミリモルを加え重合を開始した。エチレンガスを100リットル/時間の量で連続的に供給し、常圧下、75℃で6分間重合を行った後、少量のメタノールを添加し重合を停止した。ポリマー溶液を大過剰のメタノールに加え、ボリマーを析出させ、80℃で12時間、減圧乾燥を行った結果、ポリマー2.0gが得られた。

【図面の簡単な説明】

【図1】本発明に係るオレフィン重合用触媒の調製工程 を示す説明図である。

【図1】

(19) Japan Patent Office (JP)

(11) Laid Open Patent Application No.

Hei 11-80224 (80,224/1999)

(43) Laid Open Date:

26 March 1999

(12) Kokai [Laid Open] Patent Gazette (A)

(51)	Int. CI. ⁶ Identification symbols	FI	
(C 08 F 4/605 10/00	C 08 F	4/605 10/00
number of claims: 12 O L [filed online] examination request: not yet requested (the [Japanese] document totals 25 page			(the [Japanese] document totals 25 pages)
(21)	Application Number:	(71)	Patent Applicant: 000005887
	Hei 10-196294 (196,294/1998)		Mitsui Kagaku Kabushiki Kaisha (Mitsui Chemical, Inc.)
(22)	Filing Date: 10 July 1998	2-5, Kasumigaseki 3-chome Chiyoda-ku, Tokyo (72) Inventor: [The surname is given second — Translator] Yasushi DOI Mitsui Chemical, Inc. 1-2, Waki 6-chome, Waki-cho Kuga-gun, Yamaguchi Prefecture	
(31)	Priority Application No.:		
	Hei 9-185555 (185,555/1997)		second — Translator] Yasushi DOI Mitsui Chemical, Inc. 1-2, Waki 6-chome, Waki-cho
(32)	Priority Date: 10 July 1997		
(33)	Country of Priority: Japan (JP)		
		(74)	Agent: Shunichiro SUZUKI, Patent Attorney

(54) Title of the Invention: Olefin polymerization catalyst components, olefin polymerization catalysts, and methods for olefin polymerization

(57) Abstract

[Problem]

To provide novel olefin polymerization catalyst components, olefin polymerization catalysts that contain said catalyst components, and olefin polymerization methods that use said catalysts.

[Solution]

Olefin polymerization catalyst component comprising an ionic compound with formula (I-a) or a compound with formula (II-a)

$$A^{+} \left[\left(\begin{array}{c} R^{0} \\ \end{array} \right) A \right]^{-} (I-a) \left(\begin{array}{c} R^{0} \\ \end{array} \right) A \right]^{-} (I-a)$$

wherein A^{\dagger} represents a carbonium cation, ammonium cation, etc.; R^0 represents a divalent organic group; and Q is an atom selected from Group 13 of the Periodic Table.

Claims

[Claim 1] Olefin polymerization catalyst component that characteristically comprises an ionic compound represented by general formula (I-a)

$$A^{+} \left[\left(\begin{array}{c} R^{0} \\ N \end{array} \right)_{4} \right]^{-}$$
 (I-a)

wherein A⁺ represents a cation, Q represents an atom selected from Group 13 of the Periodic Table, and R⁰ represents a divalent organic group.

[Claim 2] The olefin polymerization catalyst component described in claim 1, wherein A^{\dagger} in general formula (I-a) is a cation selected from carbonium cations, oxonium cations, ammonium cations, phosphonium cations, the cycloheptyltrienyl cation, and transition metal-containing ferrocenium cations.

[Claim 3] The olefin polymerization catalyst component described in claim 1 or 2, wherein \mathbb{R}^0 in general formula (I-a) is a group selected from the following set **a**

wherein R^1 to R^4 are independently selected from the hydrogen atom, halogen atoms, C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, oxygen-containing hydrocarbyl, and siliconcontaining groups, wherein two adjacent groups among the groups represented by R^1 to R^4

may be bonded to each other to form, together with the carbon atoms to which they are bonded, a ring containing from 4 to 16 carbons.

[Claim 4] The olefin polymerization catalyst component described in claim 3, wherein the ionic compound shown by general formula (I-a) is a compound shown by the following general formula (I-b)

$$A^{+} \begin{bmatrix} \begin{pmatrix} R^{1} \\ R^{2} & I \\ C & C \\ I & N \end{pmatrix} & Q \end{bmatrix}$$
 (I-b)

wherein A^{\dagger} has the same meaning as for general formula (I-a); Q is an atom selected from Group 13 of the Periodic Table; R^{1} and R^{4} are independently selected from the hydrogen atom, halogen atoms, C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, oxygen-containing hydrocarbyl, and silicon-containing groups, wherein these groups may be bonded to each other to form, together with the carbon atoms to which they are bonded, a ring containing from 4 to 16 carbons; and R^{2} is a group containing an aromatic ring.

[Claim 5] Olefin polymerization catalyst that is characteristically formed from

- (A) a transition metal compound from Groups 3-12 of the Periodic Table and
- (B) an ionic compound as described in any of claims 1 to 4.

[Claim 6] Olefin polymerization catalyst that is characteristically formed from

- (A) a transition metal compound from Groups 3-12 of the Periodic Table,
- (B) an ionic compound as described in any of claims 1 to 4, and
- (C) an organometal compound.

[Claim 7] Olefin polymerization catalyst component that characteristically comprises a compound represented by general formula (II-a)

$$\left(\begin{array}{c} R^0 \\ N \\ \end{array}\right)_3$$
 (II-a)

wherein Q is an atom selected from Group 13 of the Periodic Table and R⁰ represents a divalent organic group.

[Claim 8] The olefin polymerization catalyst component described in claim 7, wherein R⁰ in general formula (II-a) is a group selected from the set a described in claim 3.

[Claim 9] The olefin polymerization catalyst component described in claim 8, wherein the compound shown by general formula (II-a) is a compound shown by the following general formula (II-b)

$$\begin{pmatrix}
R^{2} & R^{1} \\
C & C \\
I & N \\
N & C \\
R^{4} & A
\end{pmatrix}$$
(II-b)

wherein Q is an atom selected from Group 13 of the Periodic Table; R^1 and R^4 are independently selected from the hydrogen atom, halogen atoms, C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, oxygen-containing hydrocarbyl, and silicon-containing groups, wherein these groups may be bonded to each other to form, together with the carbon atoms to which they are bonded, a ring containing from 4 to 16 carbons; and R^2 is a group containing an aromatic ring.

[Claim 10] Olefin polymerization catalyst that is characteristically formed from

- (A) a transition metal compound from Groups 3-12 of the Periodic Table and
- (B^{\prime}) a compound as described in any of claims 7 to 9.

[Claim 11] Olefin polymerization catalyst that is characteristically formed from

- (A) a transition metal compound from Groups 3-12 of the Periodic Table,
- (B') a compound as described in any of claims 7 to 9, and

(C) an organometal compound.

[Claim 12] Method for olefin polymerization, characterized by

polymerizing or copolymerizing olefin in the presence of an olefin polymerization catalyst as described in any of claims 5 and 6 and claims 10 and 11.

Detailed Description of the Invention

[0001]

Technical Field of the Invention

This invention relates to olefin polymerization catalyst components, olefin polymerization catalysts that contain said catalyst components, and methods of olefin polymerization that use said catalysts.

[0002]

Technical Background of the Invention

The catalysts heretofore known for the production of such olefin polymers as ethylene polymers, propylene polymers, and ethylene—propylene copolymers include titanium-type catalysts comprising a titanium compound and an organoaluminum compound and vanadium-type catalysts comprising a vanadium compound and an organoaluminum compound.

[0003]

In addition, single-site catalysts, such as metallocene-type catalysts and including geometrically constrained catalysts, are known as catalysts that can produce olefin polymers at high polymerization activities. It is generally known that high activities are exhibited when these catalysts are used in combination with an organoaluminumoxy compound (e.g., aluminoxane) or a boron-containing compound (e.g., triphenylcarbenium tetrakis(pentafluorophenyl)borate).

[0004]

Given these circumstances, the appearance is desired of novel co-catalyst components that enable the manifestation of catalytic properties upon co-use with, e.g., metallocene compounds.

[0005]

Object of the Invention

The object of this invention is to provide novel olefin polymerization catalyst components, olefin polymerization catalysts that contain said catalyst components, and methods of olefin polymerization that use said catalysts.

[0006]

Summary of the Invention

An olefin polymerization catalyst component according to this invention characteristically comprises an ionic compound represented by general formula (I-a)

[0007]

$$A^{+} \left[\left(\begin{array}{c} R^{0} \\ N \end{array} \right)_{4} \right]^{-}$$
 (I-a)

[0008]

wherein A⁺ represents a cation, Q represents an atom selected from Group 13 of the Periodic Table, and R⁰ represents a divalent organic group.

 A^{\dagger} in general formula (I-a) is, for example, a carbonium cation, oxonium cation, ammonium cation, phosphonium cation, the cycloheptyltrienyl cation, or a transition metal-containing ferrocenium cation. The divalent organic group represented by R^0 is, for example, a group as shown in the following set **a**.

[0010]

 R^1 to R^4 in the preceding formulas are independently selected from the hydrogen atom, halogen atoms, C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, oxygen-containing hydrocarbyl, and silicon-containing groups, wherein two adjacent groups among the groups represented by R^1 to R^4 may be bonded to each other to form, together with the carbon atoms to which they are bonded, a ring containing from 4 to 16 carbons.

The ionic compound with general formula (I-a) of this nature is preferably a compound with the following general formula (I-b).

[0011]
$$A^{+} \begin{bmatrix} R^{2} & R^{1} \\ R^{2} & C \\ I & N \\ N \approx C \\ R^{4} \end{bmatrix}$$
(I-b)

[0012]

 A^{\dagger} in this formula has the same meaning as for general formula (I-a) above; Q is an atom selected from Group 13 of the Periodic Table; R^{1} and R^{4} are independently selected from the hydrogen atom, halogen atoms, C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, oxygen-

containing hydrocarbyl, and silicon-containing groups, wherein these groups may be bonded to each other to form, together with the carbon atoms to which they are bonded, a ring containing from 4 to 16 carbons; and R² is a group containing an aromatic ring.

An olefin polymerization catalyst component according to another embodiment of the present invention characteristically comprises a compound represented by general formula (II-a) (hereinafter referred to in some cases as the Group 13 compound).

[0013]

$$\left(\begin{array}{ccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

[0014]

Q in the preceding formula is an atom selected from Group 13 of the Periodic Table and R^0 represents a divalent organic group.

The divalent organic group represented by R⁰ in general formula (II-a) is, for example, a group as shown in the aforementioned set **a**.

[0015]

The compound shown by general formula (II-a) is preferably a compound shown by the following general formula (II-b).

[0016]

$$\begin{pmatrix}
R^{2} & R^{1} \\
C > C \\
I & N \\
N > C \\
R^{4}
\end{pmatrix}_{3}$$
(II-b)

[0017]

Q in this formula is an atom selected from Group 13 of the Periodic Table; R^1 and R^4 are independently selected from the hydrogen atom, halogen atoms, C_{1-20} hydrocarbyl, C_{1-20}

halogenated hydrocarbyl, oxygen-containing hydrocarbyl, and silicon-containing groups, wherein these groups may be bonded to each other to form, together with the carbon atoms to which they are bonded, a ring containing from 4 to 16 carbons; and R² is a group containing an aromatic ring.

Olefin polymerization catalyst according to the present invention is characteristically formed from (A) a transition metal compound from Groups 3-12 of the Periodic Table, (B) an ionic compound as shown by general formula (I-a) or (B') a compound as shown by general formula (II-a), and optionally (C) an organometal compound.

[0018]

The olefin polymerization method according to the present invention is characterized by polymerizing or copolymerizing olefin in the presence of olefin polymerization catalyst as described hereinabove.

[0019]

Specific Description of the Invention

The olefin polymerization catalyst components according to this invention, the olefin polymerization catalysts according to this invention, and the olefin polymerization methods according to this invention are specifically described below.

[0020]

Olefin polymerization catalyst components according to this invention comprise ionic compounds with the following general formula (I-a).

$$A^{+} \left[\left(\begin{array}{c} R^{0} \\ N \end{array} \right)_{4} \right]^{-}$$
 (I-a)

[0022]

A⁺ in the preceding formula is a cation and specifically represents, for example, a carbonium cation, oxonium cation, ammonium cation, phosphonium cation, the cycloheptyltrienyl cation,

JP A 11-080224

or a transition metal-containing ferrocenium cation.

[0023]

The carbonium cation can be specifically exemplified by trisubstituted carbonium cations such as the triphenylcarbonium cation, the tri(methylphenyl)carbonium cation, and the tri(dimethylphenyl)carbonium cation.

[0024]

The aforementioned ammonium cation can be specifically exemplified by trialkylammonium cations such as the trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation, and tri(n-butyl)ammonium cation; N,N-dialkylanilinium cations such as the N,N-diethylanilinium cation and N,N-2,4,6-pentamethylanilinium cation; and dialkylammonium cations such as the di(isopropyl)ammonium cation and dicyclohexylammonium cation.

[0025]

The aforementioned phosphonium cation can be specifically exemplified by triarylphosphonium cations such as the triphenylphosphonium cation, tri(methylphenyl)phosphonium cation, and tri(dimethylphenyl)phosphonium cation.

[0026]

Q is an atom selected from Group 13 of the Periodic Table and is preferably boron or aluminum. R⁰ represents divalent organic groups, for example, divalent organic groups in which the main chain is formed of carbon and/or nitrogen atoms and particularly divalent organic groups whose main chain contains at least 2 carbon atoms and may contain nitrogen.

[0027]

R⁰ is specifically exemplified by the groups shown in the following set **a**.

[0029]

 R^1 to R^4 in these formulas are independently selected from the hydrogen atom, halogen atoms, C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, oxygen-containing hydrocarbyl, and silicon-containing groups.

[0030]

The halogen atoms are exemplified by the fluorine atom, chlorine atom, bromine atom, and iodine atom. The C_{1-20} hydrocarbyl is exemplified by alkyl such as methyl, ethyl, propyl, butyl, hexyl, octyl, nonyl, dodecyl, and eicosyl; cycloalkyl such as cyclopentyl, cyclohexyl, norbornyl, and adamantyl; and alkenyl such as vinyl, propenyl, and cyclohexenyl. Aromatic ring-containing groups encompassed by the hydrocarbyl can be exemplified by C_{6-20} groups, e.g., arylalkyl groups such as benzyl, phenylethyl, and phenylpropyl; aryl groups such as phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenylyl, naphthyl, methylnaphthyl, anthryl, and phenanthryl; and substituted aryl groups such as pentafluorobiphenyl and nonafluorophenyl [sic].

[0031]

The C_{1-20} halogenated hydrocarbyl can be exemplified by those groups afforded by the substitution of halogen into the hydrocarbyl given above. The oxygen-containing hydrocarbyl can be exemplified by alkoxy and alkoxyalkyl, wherein the alkoxy can be specifically exemplified by methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, and tert-butoxy and the alkoxyalkyl can be specifically exemplified by methoxymethyl and methoxyethyl.

[0032]

The silicon-containing groups can be exemplified by monohydrocarbyl-substituted silyl such as methylsilyl and phenylsilyl; dihydrocarbyl-substituted silyl such as dimethylsilyl and diphenylsilyl; trihydrocarbyl-substituted silyl such as trimethylsilyl, triethylsilyl, tripropylsilyl, tricyclohexylsilyl, triphenylsilyl, dimethylphenylsilyl, methyldiphenylsilyl, tritolylsilyl, and trinaphthylsilyl; the silyl ethers of hydrocarbyl-substituted silyl, such as trimethylsilyl ether; silicon-substituted alkyl such as trimethylsilylmethyl; and silicon-substituted aryl such as trimethylsilylphenyl.

[0033]

Two adjacent groups among the groups represented by R¹ to R⁴ may be bonded to each other to form, together with the carbon atoms to which they are bonded, a ring containing from 4 to 16 carbons. Embodiments in which adjacent groups form a ring can be exemplified by groups having a naphthyl, indenyl, or fluorenyl skeleton.

[0034]

Compounds with general formula (I-b), infra, are preferred for ionic compounds with general formula (I-a).

$$A^{+} \begin{bmatrix} \begin{pmatrix} R^{1} \\ R^{2} \\ C \neq C \\ I \\ N \neq C \\ I \\ R^{4} \end{pmatrix}$$
 (I-b)

[0036]

 A^{\dagger} and Q in the preceding formula are defined as for general formula (I-a), while R^{1} and R^{4} are independently selected from the hydrogen atom, halogen atoms, C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, oxygen-containing hydrocarbyl, and silicon-containing groups and can be specifically exemplified by the same atoms and groups already provided above.

[0037]

In addition, R¹ and R⁴ may be bonded to each other to form, together with the carbon atoms to

which they are bonded, a ring containing from 4 to 16 carbons. Groups having a naphthyl, indenyl, or fluorenyl skeleton are examples of the embodiment in which a ring is formed.

[0038]

 R^2 represents an aromatic ring-containing group and is specifically exemplified by the C_{6-20} groups already provided hereinabove. The anions provided below are examples of the anion moiety of the ionic compound with general formula (I-a).

[0039]

[0040]

$$B + \begin{pmatrix} N_{1} & N_{2} & N_{3} & N_{4} \\ N_{2} & N_{3} & N_{4} & N_{4} & N_{4} \\ N_{2} & N_{3} & N_{4} & N_{4} & N_{4} \\ N_{3} & N_{4} & N_{4} & N_{4} & N_{4} \\ N_{3} & N_{4} & N_{4} & N_{4} & N_{4} \\ N_{4} & N_{5} & N_{5} & N_{5} & N_{5} \\ N_{5} & N_{5} & N_{5}$$

[0041]

The preceding are examples of boron compound anions, but other examples are those anions afforded by replacing the boron in the preceding anions with aluminum. The ionic compound as described hereinabove can be used as an olefin polymerization catalyst component and exhibits olefin polymerization activity when combined with a transition metal compound, vide infra. Among the ionic compounds under consideration, compounds with general formula (I-b) are preferred for the high olefin polymerization activity they afford when used in combination with the transition metal compound.

[0042]

Compounds (Group 13 compounds) with general formula (II-a) are another embodiment of olefin polymerization catalyst components according to the present invention.

[0043]

[0044]

Q in this formula is an atom selected from Group 13 of the Periodic Table and is preferably boron or aluminum. R⁰ represents divalent organic groups, for example, divalent organic groups in which the main chain is formed of carbon and/or nitrogen atoms and particularly divalent organic groups whose main chain contains at least 2 carbon atoms and may contain nitrogen. R⁰ is specifically exemplified by the groups shown in set a, supra.

[0045]

Compounds represented by general formula (II-b) are preferred for compounds with general formula (II-a).

[0046]

$$\begin{pmatrix}
R^{2} & R^{1} \\
C & C \\
I & N \\
N & C \\
I & R^{4}
\end{pmatrix}_{3}$$
(II-b)

[0047]

Q in the preceding formula is defined as for general formula (II-a), while R^1 and R^4 are independently selected from the hydrogen atom, halogen atoms, $C_{1\text{-}20}$ hydrocarbyl, $C_{1\text{-}20}$ halogenated hydrocarbyl, oxygen-containing hydrocarbyl, and silicon-containing groups and can be specifically exemplified by the same atoms and groups already provided above.

[0048]

In addition, R¹ and R⁴ may be bonded to each other to form, together with the carbon atoms to which they are bonded, a ring containing from 4 to 16 carbons. Groups having a naphthyl, indenyl, or fluorenyl skeleton are examples of the embodiment in which a ring is formed.

[0049]

R² represents aromatic ring-containing groups and is specifically exemplified by the same groups as already provided above. The following compounds are examples of this Group 13 compound with general formula (II-a).

[0050]

$$B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3}$$

$$B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3}$$

$$B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3}$$

$$B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3}$$

$$B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3}$$

$$B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3}$$

$$B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3}$$

$$B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3} \quad B = \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{3}$$

[0051]

$$B \leftarrow \begin{pmatrix} N_{N} & C_{0}F_{8} \end{pmatrix}_{3} \quad B \leftarrow \begin{pmatrix} N_{N} & C_{0}F_{8} \end{pmatrix}_{3} \quad B \leftarrow \begin{pmatrix} N_{N} & C_{0}F_{8} \end{pmatrix}_{3}$$

$$B \leftarrow \begin{pmatrix} N_{N} & C_{0}F_{8} \end{pmatrix}_{3} \quad B \leftarrow \begin{pmatrix} N_{N} & C_{0}F_{8} \end{pmatrix}_{3} \quad B \leftarrow \begin{pmatrix} N_{N} & C_{0}F_{8} \end{pmatrix}_{3} \quad B \leftarrow \begin{pmatrix} N_{N} & N_{N} & C_{0}F_{8} \end{pmatrix}_{3}$$

$$B \leftarrow \begin{pmatrix} N_{N} & C_{0}F_{8} \end{pmatrix}_{3} \quad B \leftarrow \begin{pmatrix} N_{N} & N_{N} & C_{0}F_{8} \end{pmatrix}_{3} \quad B \leftarrow \begin{pmatrix} N_{N} & N_{N}$$

[0052]

The preceding are examples of boron compounds, but other examples are those compounds afforded by replacing the boron in the preceding compounds with aluminum. The Group 13 compound as described hereinabove can be used as an olefin polymerization catalyst component and exhibits olefin polymerization activity when combined with a transition metal compound, vide infra. Among the Group 13 compounds under consideration, compounds with general formula (II-b) are preferred for the high olefin polymerization activity they afford when used in combination with the transition metal compound.

[0053]

Olefin polymerization catalysts that use a hereinabove-described ionic compound or Group 13 compound as a catalyst component are described below, as are olefin polymerization methods that use said catalysts. Olefin polymerization catalyst according to the present invention is characteristically formed from (A) a transition metal compound from Groups 3-12 of the Periodic Table, (B) an ionic compound as shown by general formula (I-a) or (B') a Group 13 compound as shown by general formula (II-a), and optionally (C) an organometal compound.

[0054]

Each component forming the inventive olefin polymerization catalyst will first be described in specific detail.

(A) The transition metal compound from Groups 3-12 of the Periodic Table

This transition metal compound (A) can be exemplified by compounds with the following general formulas (III-1) and (IV).

[0055]

$$M^{1}L^{1}_{x}$$
 (III-1)

 M^1 in the preceding formula represents a transition metal atom from Group 4 of the Periodic Table and L^1 represents the ligands coordinated to the transition metal atom M^1 , wherein at least one ligand L^1 is ligand having a cyclopentadienyl skeleton (hereinafter referred to as Cpd skeleton ligand). The L^1 other than Cpd skeleton ligand is C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, an oxygen-containing group, a sulfur-containing group, a siliconcontaining group, a halogen atom, or the hydrogen atom. x is the atomic valence of the transition metal atom M^1 .

$$M^3 L_x^3$$
 (IV)

 M^3 in the preceding formula represents a transition metal atom from Groups 3-12 of the Periodic Table, while L^3 represents anionic or neutral ligands — other than Cpd skeleton ligand — coordinated to the transition metal atom M^3 . The ligand L^3 is bonded in a form with a neutral or anionic charge state to the transition metal atom M^3 through, for example, an atom such as B, C, N, O, P, S, or halogen. x is the atomic valence of the transition metal atom M^3 .

M¹ in general formula (III-1), which represents a transition metal atom from Group 4 of the Periodic Table, can be specifically exemplified by zirconium, titanium, and hafnium wherein zirconium is preferred.

[0056]

x denotes the atomic valence of the transition metal atom M^1 and represents the number of ligands L^1 that are coordinated to the transition metal atom M^1 . L^1 represents the ligands coordinated to the transition metal atom M^1 , wherein at least one ligand L^1 is Cpd skeleton

ligand. The L^1 other than Cpd skeleton ligand may be C_{1-20} hydrocarbyl, C_{1-20} halogenated hydrocarbyl, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a halogen atom, or the hydrogen atom.

[0057]

The Cpd skeleton ligand can be exemplified by the cyclopentadienyl group; alkyl-substituted cyclopentadienyl groups such as methylcyclopentadienyl, dimethylcyclopentadienyl, trimethylcyclopentadienyl, tetramethylcyclopentadienyl, pentamethylcyclopentadienyl, ethylcyclopentadienyl, methylethylcyclopentadienyl, propylcyclopentadienyl, methylpropylcyclopentadienyl, butylcyclopentadienyl, methylbutylcyclopentadienyl, and hexylcyclopentadienyl; and by the indenyl group, 4,5,6,7-tetrahydroindenyl group, and fluorenyl group. These groups may be substituted, for example, by C_{1-20} (halogenated) hydrocarbyl, oxygen-containing groups, sulfurcontaining groups, silicon-containing groups, and halogen atoms.

[0058]

When a compound with general formula (III-1) contains two or more Cpd skeleton ligands, two of these Cpd skeleton ligands may be connected to each other through a divalent bridging group such as, for example, an optionally substituted alkylene group or an optionally substituted silylene group. Transition metal compounds with general formula (III-3), infra, are examples of such transition metal compounds in which two Cpd skeleton ligands are connected to each other through a divalent bridging group.

[0059]

The ligands L^1 other than Cpd skeleton ligands are specifically exemplified as follows. The C_{1-20} hydrocarbyl can be, for example, alkyl, cycloalkyl, alkenyl, arylalkyl, or aryl. More specifically, the alkyl can be exemplified by methyl, ethyl, propyl, butyl, hexyl, octyl, nonyl, dodecyl, and eicosyl; the cycloalkyl can be exemplified by cyclopentyl, cyclohexyl, norbornyl, and adamantyl; the alkenyl can be exemplified by vinyl, propenyl, and cyclohexenyl; the arylalkyl can be exemplified by benzyl, phenylethyl, and phenylpropyl; and the aryl can be exemplified by phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenylyl, naphthyl, methylnaphthyl, anthryl, and phenanthryl.

[0060]

The C_{1-20} halogenated hydrocarbyl can be exemplified by groups afforded by the substitution of halogen into the aforementioned C_{1-20} hydrocarbyl. The oxygen-containing groups can be exemplified by the hydroxyl group; alkoxy groups such as methoxy, ethoxy, propoxy, and

butoxy; aryloxy groups such as phenoxy, methylphenoxy, dimethylphenoxy, and naphthoxy; and arylalkoxy groups such as phenylmethoxy and phenylethoxy.

[0061]

The sulfur-containing groups can be exemplified by substituents afforded by substituting sulfur for the oxygen in the aforementioned oxygen-containing groups, and also by sulfonates such as methylsulfonate, trifluoromethanesulfonate, phenylsulfonate, benzylsulfonate, p-toluene-sulfonate, trimethylbenzenesulfonate, triisobutylbenzenesulfonate, p-chlorobenzenesulfonate, and pentafluorobenzenesulfonate; and sulfinates such as methylsulfinate, phenylsulfinate, benzenesulfinate, p-toluenesulfinate, trimethylbenzenesulfinate, and pentafluorobenzenesulfinate.

[0062]

The silicon-containing groups can be exemplified by monohydrocarbyl-substituted silyl such as methylsilyl and phenylsilyl; dihydrocarbyl-substituted silyl such as dimethylsilyl and diphenylsilyl; trihydrocarbyl-substituted silyl such as trimethylsilyl, triethylsilyl, tripropylsilyl, tricyclohexylsilyl, triphenylsilyl, dimethylphenylsilyl, methyldiphenylsilyl, tritolylsilyl, and trinaphthylsilyl; the silyl ethers of hydrocarbyl-substituted silyl, such as trimethylsilyl ether; silicon-substituted alkyl such as trimethylsilylmethyl; and silicon-substituted aryl such as trimethylsilylphenyl.

[0063]

The halogen atom can be exemplified by the fluorine atom, chlorine atom, bromine atom, and iodine atom. When, for example, the transition metal has an atomic valence of 4, the transition metal compound under consideration can be more specifically represented by the following general formula (III-2).

[0064]
$$R^{11}R^{12}R^{13}R^{14}M^{1}$$
 (III-2)

M¹ in the preceding formula represents, as above, a transition metal atom selected from Group 4 of the Periodic Table and is preferably the zirconium atom.

[0065]

R¹¹ represents a group (ligand) having the cyclopentadienyl skeleton (hereafter referred to as a cyclopentadienyl skeleton group (ligand)), while R¹², R¹³, and R¹⁴ are independently

Mitsui Chemical, Inc.

selected from cyclopentadienyl skeleton groups (ligands), C_{1-20} (halogenated) hydrocarbyl, oxygen-containing groups, sulfur-containing groups, silicon-containing groups, halogen atoms, and the hydrogen atom.

[0066]

A compound in which at least one of R^{12} , R^{13} , and R^{14} is a cyclopentadienyl skeleton group (ligand), for example, a compound in which R^{11} and R^{12} are cyclopentadienyl skeleton groups (ligands), is preferably used in this invention for the transition metal compound (III-2). In addition, when R^{11} and R^{12} are cyclopentadienyl skeleton groups (ligands), R^{13} and R^{14} are preferably a Cpd skeleton group, alkyl, cycloalkyl, alkenyl, arylalkyl, aryl, alkoxy, aryloxy, trialkylsilyl, a sulfonate group, halogen, or the hydrogen atom.

[0067]

Transition metal compounds (III-1) in which M^1 = zirconium can be exemplified by the following specific compounds:

bis(cyclopentadienyl)zirconium monochloride monohydride,

bis(cyclopentadienyl)zirconium dichloride,

bis(cyclopentadienyl)zirconium dibromide,

bis(cyclopentadienyl)methylzirconium monochloride,

bis(cyclopentadienyl)zirconium phenoxymonochloride,

 $bis (methyl cyclopenta dienyl) zirconium\ dichloride,$

bis(ethylcyclopentadienyl)zirconium dichloride,

 $bis (propylcyclopenta dienyl) zirconium\ dichloride,$

bis(butylcyclopentadienyl)zirconium dichloride,

bis(hexylcyclopentadienyl)zirconium dichloride,

bis(octylcyclopentadienyl)zirconium dichloride,

bis(indenyl)zirconium dichloride,

bis(4,5,6,7-tetrahydroindenyl)zirconium dichloride,

bis(indenyl)zirconium dibromide,

bis (cyclopenta dienyl) dimethyl zirconium,

bis(cyclopentadienyl)zirconium methoxychloride,

 $bis (cyclopenta dienyl) zirconium\ ethoxychloride,$

bis(fluorenyl)zirconium dichloride,

bis(cyclopentadienyl)zirconium bis(methanesulfonate),

bis(cyclopentadienyl)zirconium bis(p-toluenesulfonate),

bis(cyclopentadienyl)zirconium bis(trifluoromethanesulfonate),

bis(methylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(ethylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(propylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(butylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(hexylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(dimethylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(methylethylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(methylpropylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(methylbutylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate), bis(dimethylcyclopentadienyl)zirconium dichloride, bis(methylpropylcyclopentadienyl)zirconium dichloride, bis(methylbutylcyclopentadienyl)zirconium dichloride, bis(methylhexylcyclopentadienyl)zirconium dichloride, bis(ethylbutylcyclopentadienyl)zirconium dichloride, bis(trimethylcyclopentadienyl)zirconium dichloride, bis(tetramethylcyclopentadienyl)zirconium dichloride, bis(pentamethylcyclopentadienyl)zirconium dichloride, bis(methylbenzylcyclopentadienyl)zirconium dichloride, bis(ethylhexylcyclopentadienyl)zirconium dichloride, bis(methylcyclohexylcyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)ethylzirconium monochloride, bis(cyclopentadienyl)cyclohexylzirconium monochloride, bis(cyclopentadienyl)phenylzirconium monochloride, bis(cyclopentadienyl)benzylzirconium monochloride, bis(cyclopentadienyl)methylzirconium monohydride, bis(cyclopentadienyl)diphenylzirconium, bis(cyclopentadienyl)dibenzylzirconium, bis(indenyl)zirconium bis(p-toluenesulfonate), bis(dimethylcyclopentadienyl)zirconium ethoxychloride, bis(methylethylcyclopentadienyl)zirconium dichloride, bis(propylcyclopentadienyl)zirconium dichloride, bis(methylbutylcyclopentadienyl)zirconium bis(methanesulfonate), and bis(trimethylsilylcyclopentadienyl)zirconium dichloride.

[0068]

In the preceding examples, the substitution pattern for the disubstituted cyclopentadienyl ring

includes the 1,2- and 1,3-substitution patterns, while the trisubstitution pattern includes the 1,2,3- and 1,2,4-substitution patterns. In addition, alkyl groups such as propyl and butyl include the n-, i-, sec-, and tert-isomers.

[0069]

Other examples include the compounds afforded by replacing the zirconium in the preceding zirconium compounds with titanium or hafnium. Compounds with formula (III-3) can be provided as examples of the transition metal compounds in which two cyclopentadienyl skeleton ligands are connected to each other through a divalent bridging group.

$$X^{1}$$
 X^{2} X^{1} X^{2} X^{2} X^{1} X^{2} X^{2

[0071]

 M^1 in this formula represents a transition metal atom from Group 4 of the Periodic Table and specifically is zirconium, titanium, or hafnium and is preferably zirconium. The groups R^{15} , R^{16} , R^{17} , and R^{18} are each independently selected from C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, silicon-containing groups, oxygen-containing groups, sulfur-containing groups, nitrogen-containing groups, phosphorus-containing groups, the hydrogen atom, and halogen atoms. Among these groups R^{15} , R^{16} , R^{17} , and R^{18} , some of the groups adjacent to each other may be interconnected to form a ring together with the carbon atoms to which said groups are bonded. Each of the groups R^{15} , R^{16} , R^{17} , and R^{18} is specified at two locations, and in each case the two groups, for example, R^{15} and R^{15} , may be the same as each other or may differ from one another. Among the groups designated by R, those with the same superscript represent a preferred combination for ring formation through their interconnection.

Mitsui Chemical, Inc. JP A 11-080224

[0072]

The C_1 to C_{20} hydrocarbyl can be specifically exemplified by the same alkyl, cycloalkyl, alkenyl, arylalkyl, and aryl as provided above for L^1 in relation to general formula (III-1).

[0073]

The rings formed by the interconnection of these hydrocarbyl groups can be exemplified by condensed ring groups such as the benzene ring, naphthalene ring, acenaphthene ring, and indene ring and by groups as afforded by replacing hydrogen in these condensed ring groups with an alkyl group such as methyl, ethyl, propyl, and butyl.

[0074]

The C_1 to C_{20} halogenated hydrocarbyl can be exemplified by groups as afforded by substituting halogen into the aforementioned C_1 to C_{20} hydrocarbyl. The silicon-containing groups can be specifically exemplified by the same monohydrocarbyl-substituted silyl, dihydrocarbyl-substituted silyl, trihydrocarbyl-substituted silyl, silyl ethers of hydrocarbyl-substituted silyl, silicon-substituted alkyl, and silicon-substituted aryl as provided above for L^1 in relation to general formula (III-1).

[0075]

The oxygen-containing groups can be specifically exemplified by the hydroxyl group and the same alkoxy, aryloxy, and arylalkoxy groups as provided above for L¹ in relation to general formula (III-1).

[0076]

The sulfur-containing groups can be exemplified by groups as afforded by replacing the oxygen in the aforementioned oxygen-containing groups with sulfur. The nitrogen-containing groups can be exemplified by the amino group; alkylamino groups such as methylamino, dimethylamino, diethylamino, dipropylamino, dibutylamino, and dicyclohexylamino; and by arylamino and alkylarylamino groups such as phenylamino, diphenylamino, ditolylamino, dinaphthylamino, and methylphenylamino.

[0077]

The phosphorus-containing groups can be exemplified by phosphino groups such as dimethylphosphino and diphenylphosphino. The halogen atoms can be exemplified by the fluorine atom, chlorine atom, bromine atom, and iodine atom.

[0078]

C₁ to C₂₀ hydrocarbyl is preferred among these possibilities, and the following are particularly preferred: C₁ to C₄ hydrocarbyl such as methyl, ethyl, propyl, and butyl; a benzene ring as formed by the interconnection of hydrocarbyl groups; and groups as afforded by substituting alkyl (e.g., methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl) for the hydrogen on the benzene ring generated by the interconnection of hydrocarbyl groups.

[0079]

 X^1 and X^2 are each independently selected from C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, oxygen-containing groups, sulfur-containing groups, siliconcontaining groups, the hydrogen atom, and halogen atoms.

[0800]

The C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, oxygen-containing groups, and halogen atoms can be exemplified by the same groups and atoms provided in relation to the aforementioned R^{15} - R^{18} .

[0081]

The sulfur-containing groups can be exemplified by the same groups provided in relation to the aforementioned R¹⁵-R¹⁸ and by sulfonate groups such as methylsulfonate, trifluoromethanesulfonate, phenylsulfonate, benzylsulfonate, p-toluenesulfonate, trimethylbenzenesulfonate, triisobutylbenzenesulfonate, p-chlorobenzenesulfonate, and pentafluorobenzenesulfonate, and by sulfinate groups such as methylsulfinate, phenylsulfinate, benzenesulfinate, p-toluenesulfinate, trimethylbenzenesulfinate, and pentafluorobenzenesulfinate.

[0082]

The silicon-containing groups can be exemplified by the same silicon-substituted alkyl groups and silicon-substituted aryl groups provided in relation to the aforementioned R^{15} - R^{18} . Preferred among the preceding are halogen atoms, C_1 to C_{20} hydrocarbyl, and sulfonate groups.

[0083]

 Y^1 represents C_1 to C_{20} divalent hydrocarbyl, C_1 to C_{20} divalent halogenated hydrocarbyl, divalent silicon-containing groups, divalent germanium-containing groups, divalent tincontaining groups, $-O_-$, $-CO_-$, $-S_-$, $-SO_-$, $-SO_2_-$, $-Ge_-$, $-Sn_-$, $-NR^{19}_-$, $-P(R^{19}_-)_-$, $-P(O)(R^{19}_-)_-$, $-P(R^{19}_-)_-$, or $-AR^{19}_-$ (each R^{19}_- is independently selected from C_1 to C_{20}

hydrocarbyl, C₁ to C₂₀ halogenated hydrocarbyl, the hydrogen atom, and halogen atoms).

[0084]

The C_1 to C_{20} divalent hydrocarbyl is specifically exemplified by alkylene groups such as methylene, dimethylmethylene, 1,2-ethylene, dimethyl-1,2-ethylene, 1,3-trimethylene, 1,4-tetramethylene, 1,2-cyclohexylene, and 1,4-cyclohexylene, and by arylalkylene groups such as diphenylmethylene and diphenyl-1,2-ethylene.

[0085]

The C_1 to C_{20} divalent halogenated hydrocarbyl can be specifically exemplified by groups as afforded by halogenation of the above-described C_1 to C_{20} divalent hydrocarbyl, for example, chloromethylene.

[0086]

The divalent silicon-containing groups can be exemplified by silylene; alkylsilylene, alkylaryl-silylene, and arylsilylene groups such as methylsilylene, dimethylsilylene, diethylsilylene, di(n-propyl)silylene, di(i-propyl)silylene, di(cyclohexyl)silylene, methylphenylsilylene, diphenylsilylene, di(p-tolyl)silylene, and di(p-chlorophenyl)silylene; and alkyldisilylene, alkylaryldisilylene, and aryldisilylene groups such as tetramethyl-1,2-disilylene and tetraphenyl-1,2-disilylene.

[0087]

The divalent germanium-containing groups can be exemplified by groups as afforded by replacing the silicon in the above-described divalent silicon-containing groups with germanium. The divalent tin-containing groups can be exemplified by groups as afforded by replacing the silicon in the above-described divalent silicon-containing groups with tin.

[8800]

Particularly preferred among the preceding are substituted silylene groups such as dimethylsilylene, diphenylsilylene, and methylphenylsilylene. In addition, R^{19} represents the same C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, and halogen atoms as provided in relation to the aforementioned R^{15} - R^{18} .

[0089]

Transition metal compounds (III-3) can be exemplified by the following specific compounds: ethylenebis(indenyl)dimethylzirconium, ethylenebis(indenyl)zirconium dichloride,

ethylenebis(indenyl)zirconium bis(trifluoromethanesulfonate), ethylenebis(indenyl)zirconium bis(methanesulfonate), ethylenebis(indenyl)zirconium bis(p-toluenesulfonate), ethylenebis(indenyl)zirconium bis(p-chlorobenzenesulfonate), ethylenebis(4,5,6,7-tetrahydroindenyl)zirconium dichloride, isopropylidene(cyclopentadienyl)(fluorenyl)zirconium dichloride, isopropylidene(cyclopentadienyl)(methylcyclopentadienyl)zirconium dichloride, dimethylsilylenebis(cyclopentadienyl)zirconium dichloride, dimethylsilylenebis(methylcyclopentadienyl)zirconium dichloride, dimethylsilylenebis(dimethylcyclopentadienyl)zirconium dichloride, dimethylsilylenebis(trimethylcyclopentadienyl)zirconium dichloride, dimethylsilylenebis(indenyl)zirconium dichloride, dimethylsilylenebis(indenyl)zirconium bis(trifluoromethanesulfonate), dimethylsilylenebis(4,5,6,7-tetrahydroindenyl)zirconium dichloride, dimethylsilylene(cyclopentadienyl)(fluorenyl)zirconium dichloride, diphenylsilylenebis(indenyl)zirconium dichloride, methylphenylsilylenebis(indenyl)zirconium dichloride, rac-dimethylsilylenebis(2,3,5-trimethylcyclopentadienyl)zirconium dichloride, rac-dimethylsilylenebis(2,4,7-trimethylcyclopentadienyl)zirconium dichloride, rac-dimethylsilylenebis(2-methyl-4-tert-butylcyclopentadienyl)zirconium dichloride, isopropylidene(cyclopentadienyl)(fluorenyl)zirconium dichloride, dimethylsilylene(3-tert-butylcyclopentadienyl)(indenyl)zirconium dichloride, isopropylidene(4-methylcyclopentadienyl)(3-methylindenyl)zirconium dichloride, isopropylidene(4-tert-butylcyclopentadienyl)(3-methylindenyl)zirconium dichloride, isopropylidene(4-tert-butylcyclopentadienyl)(3-tert-butylindenyl)zirconium dichloride, dimethylsilylene(4-methylcyclopentadienyl)(3-methylindenyl)zirconium dichloride, dimethylsilylene(4-tert-butylcyclopentadienyl)(3-methylindenyl)zirconium dichloride, dimethylsilylene(4-tert-butylcyclopentadienyl)(3-tert-butylindenyl)zirconium dichloride, dimethylsilylene(3-tert-butylcyclopentadienyl)(fluorenyl)zirconium dichloride, and isopropylidene(3-tert-butylcyclopentadienyl)(fluorenyl)zirconium dichloride.

[0090]

Other examples include the compounds afforded by replacing the zirconium in the preceding compounds with titanium or hafnium. Transition metal compounds with the following general formulas (III-4) and (III-5) are additional specific examples of transition metal compounds (III-3).

$$R^{24}$$
 R^{25}
 R^{26}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{25}
 R^{26}
 R^{25}
 R^{25}

[0092]

 M^1 in this formula represents a transition metal atom from Group 4 of the Periodic Table and specifically is titanium, zirconium, or hafnium and is preferably zirconium. Each R^{21} is independently selected from C_1 to C_6 hydrocarbyl and can be specifically exemplified by alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, and cyclohexyl, and by alkenyl such as vinyl and propenyl.

[0093]

Preferred among the preceding are alkyl in which the carbon atom bonded to the indenyl group is a primary carbon, more preferably C₁ to C₄ alkyl and particularly preferably methyl and ethyl.

[0094]

The groups R^{22} , R^{24} , R^{25} , and R^{26} are each independently selected from the hydrogen atom, halogen atoms, and the same C_1 to C_6 hydrocarbyl as described for R^{21} . Each R^{23} is independently selected from the hydrogen atom and C_6 to C_{16} aryl and can be specifically exemplified by phenyl, α -naphthyl, β -naphthyl, anthryl, phenanthryl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, and biphenylyl. Preferred among the preceding are phenyl, naphthyl, anthryl, and phenanthryl.

Mitsui Chemical, Inc.

[0095]

These aryl groups can be substituted by halogen atoms such as fluorine, chlorine, bromine, and iodine; C_1 to C_{20} hydrocarbyl, for example, alkyl (e.g., methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, and adamantyl), alkenyl (e.g., vinyl, propenyl, and cyclohexenyl), arylalkyl (e.g., benzyl, phenylethyl, and phenylpropyl), and aryl (e.g., phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, α - and β -naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, and biphenylyl); and organosilyl such as trimethylsilyl, triethylsilyl, and triphenylsilyl.

[0096]

 X^1 and X^2 are defined as for X^1 and X^2 in general formula (III-3) and may be the same as each other or may differ from one another. Among the various possibilities, halogen atoms and C_1 to C_{20} hydrocarbyl are preferred.

[0097]

Y¹ is defined as for Y¹ in general formula (III-3). Among the various possibilities, divalent silicon-containing groups and divalent germanium-containing groups are preferred. Divalent silicon-containing groups are more preferred and alkylsilylene, alkylarylsilylene, and arylsilylene are even more preferred.

[0098]

The following are specific examples of transition metal compounds with general formula (III-4):

rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(α-naphthyl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(β-naphthyl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(1-anthryl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(2-anthryl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(9-anthryl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(9-phenanthryl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(p-fluorophenyl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(p-chlorophenyl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(p-chlorophenyl)indenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-(m-chlorophenyl)indenyl)}zirconium dichloride,

```
rac-dimethylsilylenebis{1-(2-methyl-4-(o-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(o,p-dichlorophenyl)phenylindenyl)}zirconium dichloride.
rac-dimethylsilylenebis{1-(2-methyl-4-(p-bromophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-tolyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(m-tolyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(o-tolyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(0,0'-dimethylphenyl)-1-indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-ethylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-isopropylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-benzylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-biphenyl))indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(m-biphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-trimethylsilylenephenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(m-trimethylsilylenephenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-phenyl-4-phenylindenyl)}zirconium dichloride,
rac-diethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-di(i-propyl)silylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-di(n-butyl)silylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-dicyclohexylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-di(p-tolyl)silylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-di(p-chlorophenyl)silylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-methylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-ethylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylgermylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylstannylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dibromide,
rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}dimethylzirconium,
rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}methylzirconium chloride,
rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium chloride SO<sub>2</sub>Me,
rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium chloride OSO<sub>2</sub>Me,
```

[0099]

rac-dimethylsilylenebis $\{1-(2-ethyl-4-phenylindenyl)\}$ zirconium dichloride, rac-dimethylsilylenebis $\{1-(2-ethyl-4-(\alpha-naphthyl))\}$ zirconium dichloride,

```
rac-dimethylsilylenebis{1-(2-ethyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(o-methylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(m-methylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(p-methylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2,3-dimethylphenyl))ndenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2,4-dimethylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2,5-dimethylphenyl))ndenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2,4,6-trimethylphenyl))ndenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(o-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(m-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(p-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2,3-dichlorophenyl))ndenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2,6-dichlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(3,5-dichlorophenyl))ndenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2-bromophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(3-bromophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(4-bromophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(4-biphenylyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(4-trimethylsilylphenyl))}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(α-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-propyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis\{1-(2-i-propyl-4-(\alpha-naphthyl)\}\)zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-propyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-propyl-4-(8-methyl-9-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-propyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-propyl-4-(9-anthryl)indenyl)}zirconium dichloride,
```

Mitsui Chemical, Inc. JP A 11-080224

```
rac-dimethylsilylenebis{1-(2-i-propyl-4-(9-phenanthryl))ndenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-s-butyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-s-butyl-4-(α-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-s-butyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-s-butyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-s-butyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-s-butyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-s-butyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-pentyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis\{1-(2-n-pentyl-4-(\alpha-naphthyl)\}\)zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis\{1-(2-n-butyl-4-(\alpha-naphthyl))\}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-(β-naphthyl))indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis\{1-(2-i-butyl-4-(\alpha-naphthyl)\}\)zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-neopentyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis\{1-(2-neopentyl-4-(\alpha-naphthyl)indenyl)\}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-hexyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis\{1-(2-n-hexyl-4-(\alpha-naphthyl))\}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2-ethyl-4-phenylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis\{1-(2-ethyl-4-(\alpha-naphthyl))\}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2-ethyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2-ethyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2-ethyl-4-phenylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2-ethyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2-ethyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
```

Mitsui Chemical, Inc. JP A 11-080224

rac-diphenylsilylenebis $\{1-(2-ethyl-4-(4-biphenylyl)indenyl)\}$ zirconium dichloride, rac-methylenebis $\{1-(2-ethyl-4-phenylindenyl)\}$ zirconium dichloride, rac-methylenebis $\{1-(2-ethyl-4-(\alpha-naphthyl)indenyl)\}$ zirconium dichloride, rac-ethylenebis $\{1-(2-ethyl-4-phenylindenyl)\}$ zirconium dichloride, rac-ethylenebis $\{1-(2-ethyl-4-(\alpha-naphthyl)indenyl)\}$ zirconium dichloride, rac-ethylenebis $\{1-(2-n-propyl-4-(\alpha-naphthyl)indenyl)\}$ zirconium dichloride, rac-dimethylgermylbis $\{1-(2-ethyl-4-phenylindenyl)\}$ zirconium dichloride, rac-dimethylgermylbis $\{1-(2-ethyl-4-(\alpha-naphthyl)indenyl)\}$ zirconium dichloride, and rac-dimethylgermylbis $\{1-(2-n-propyl-4-phenylindenyl)\}$ zirconium dichloride.

[0100]

Other examples are the compounds generated by replacing the zirconium in the preceding compounds with titanium or hafnium. The racemic form of the transition metal compound (III-4) is preferably used as the catalyst component in this invention when olefin having 3 or more carbons is to be polymerized.

[0101]

The transition metal compound (III-4) can be synthesized according to <u>Journal of Organo-metallic Chem.</u>, 288 (1985) pp. 63-67 and the examples and description of EP 0,320,762 A.

[0102]

The transition metal compound with general formula (III-5) will now be described.

$$X^{1}$$
 X^{2} X^{33} X^{32} X^{33} X^{34} X^{31} X^{31} X^{32} X^{33} X^{32} X^{33} X^{32} X^{33} X^{34} X^{31} X^{31} X^{32} X^{33} X^{32} X^{33} X^{34} X^{31} X^{31} X^{32} X^{33} X^{32} X^{33} X^{34} X^{31} X^{31} X^{32} X^{33} X^{32} X^{33} X^{32} X^{33} X^{34} X^{31} X^{31} X^{32} X^{33} X^{34} X^{34} X^{34}

[0104]

M¹ in the preceding formula is a transition metal atom from Group 4 of the Periodic Table and

specifically is titanium, zirconium, or hafnium with zirconium being preferred. R^{31} and R^{32} are each independently selected from C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, silicon-containing groups, oxygen-containing groups, sulfur-containing groups, nitrogen-containing groups, phosphorus-containing groups, the hydrogen atom, and halogen atoms. R^{31} and R^{32} can be specifically exemplified by the same atoms and groups as provided above for R^{15} to R^{18} .

[0105]

Among the preceding possibilities, R^{31} is preferably C_1 to C_{20} hydrocarbyl and particularly preferably is C_1 to C_3 hydrocarbyl, i.e., methyl, ethyl, or propyl.

[0106]

 R^{32} is preferably the hydrogen atom or C_1 to C_{20} hydrocarbyl and particularly preferably is the hydrogen atom or C_1 to C_3 hydrocarbyl, i.e., methyl, or propyl.

[0107]

 R^{33} and R^{34} are each independently selected from C_1 to C_{20} alkyl and are specifically exemplified by alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, and adamantyl.

[0108]

Among the preceding possibilities, R^{33} is preferably secondary or tertiary alkyl. X^1 and X^2 may be the same as each other or may differ from one another and are defined as for X^1 and X^2 in general formula (III-3).

[0109]

Y¹ is defined as for Y¹ in general formula (III-3). Specific examples of the transition metal compound (III-5) are as follows:

rac-dimethylsilylenebis{1-(2,7-dimethyl-4-ethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-n-propylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-n-butylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-sec-butylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-t-butylindenyl)}zirconium dichloride,

rac-dimethylsilylenebis{1-(2,7-dimethyl-4-n-pentylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-n-hexylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-cyclohexylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-methylcyclohexylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-phenylethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-phenyldichloromethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-chloromethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-trimethylsilylmethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,7-dimethyl-4-trimethylsiloxymethylindenyl)}zirconium dichloride, rac-diethylsilylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-di(i-propyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-di(n-butyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-di(cyclohexyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-methylphenylsilylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-methylphenylsilylenebis{1-(2,7-dimethyl-4-t-butylindenyl)}zirconium dichloride, rac-diphenylsilylenebis{1-(2,7-dimethyl-4-t-butylindenyl)}zirconium dichloride, rac-diphenylsilylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-diphenylsilylenebis{1-(2,7-dimethyl-4-ethylindenyl)}zirconium dichloride, rac-di(p-tolyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-di(p-chlorophenyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-ethylindenyl)}zirconium dibromide, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-ethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-n-propylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-n-butylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-sec-butylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-t-butylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-n-pentylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-n-hexylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-cyclohexylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-methylcyclohexylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-trimethylsilylmethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-trimethylsiloxymethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-phenylethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-phenyldichloromethylindenyl)}zirconium dichloride, rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-chloromethylindenyl)}zirconium dichloride,

```
rac-diethylsilylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-di(i-propyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-di(n-butyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-di(cyclohexyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2,3,7-trimethyl-4-t-butylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2,3,7-trimethyl-4-t-butylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2,3,7-trimethyl-4-ethylindenyl)}zirconium dichloride,
rac-di(p-tolyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-di(p-chlorophenyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-methylindenyl)}dimethylzirconium,
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-methylindenyl)}methylzirconium chloride,
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-methylindenyl)}zirconium
     bis(methanesulfonate),
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-methylindenyl)}zirconium bis(p-
     phenylsulfinate),
rac-dimethylsilylenebis{1-(2-methyl-3-methyl-4-i-propyl-7-methylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4,6-di-i-propylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-i-propyl-7-methylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-phenyl-4-i-propyl-7-methylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methylindenyl)}zirconium dichloride,
rac-ethylenebis{1-(2,4,7-trimethylindenyl)}zirconium dichloride, and
rac-isopropylidenebis{1-(2,4,7-trimethylindenyl)}zirconium dichloride.
```

[0110]

Other examples include compounds generated by replacing the zirconium in the preceding compounds with titanium or hafnium. Among the various possibilities, compounds having a branched alkyl, e.g., i-propyl, sec-butyl, or tert-butyl, at position 4 are particularly preferred.

[0111]

The racemic form of the transition metal compound (III-5) is preferably used as the catalyst component in this invention when olefin having 3 or more carbons is to be polymerized.

[0112]

These transition metal compounds (III-5) can be synthesized by known methods from indene

derivatives, for example, by the method described in Japanese Laid Open (Unexamined or Kokai or A) Patent Application Number Hei 4-268307 (268,307/1992).

[0113]

Compounds with the following general formula (III-6) can also be used as the transition metal compound (A)

$$L^2M^2X^3_2 (III-6)$$

wherein M^2 is a transition metal atom from Group 4 of the Periodic Table.

[0114]

Here, L^2 is the derivative of a delocalized π -bonding group and imparts a constrained geometric shape to the M^2 metal active site. The groups X^3 may be the same as each other or may differ from one another and represent the hydrogen atom, a halogen atom, or a hydrocarbyl, silyl, or germyl group containing no more than 20 carbon atoms, silicon atoms, or germanium atoms.

[0115]

Compounds with the following general formula (III-7) are preferred among compounds with general formula (III-6).

[0116]

$$Z \longrightarrow Y^2$$
 $Cp \longrightarrow M^2 \longrightarrow (X^3)_2$
(III-7)

[0117]

 M^2 in this formula is a transition metal atom from Group 4 of the Periodic Table and specifically is zirconium, titanium, or hafnium with zirconium being preferred. Cp is π -bonded to M^2 and represents a substituted cyclopentadienyl group bearing a substitutent Z or a derivative of such a substituted cyclopentadienyl group.

[0118]

Z is a ligand containing the oxygen atom, sulfur atom, boron atom, or an atom from Group 14

Mitsui Chemical, Inc.

of the Periodic Table and can be exemplified by $-Si(R^{41}_2)-$, $-C(R^{41}_2)-$, $-Si(R^{41}_2)-$, $-Si(R^{41}_2)-$, $-C(R^{41}_2)C(R^{41}_2)-$, $-C(R^{41}_2)C(R^{41}_2)-$, $-C(R^{41}_2)C(R^{41}_2)-$, $-C(R^{41}_2)C(R^{41}_2)-$, and $-Ge(R^{41}_2)-$.

[0119]

 Y^2 represents a ligand containing the nitrogen atom, phosphorus atom, oxygen atom, or sulfur atom and can be exemplified by $-N(R^{42})-$, -O-, -S-, and $-P(R^{42})-$. A condensed ring can also be formed by Z and Y^2 .

[0120]

 R^{41} is the hydrogen atom or a group that contains up to 20 non-hydrogen atoms and is selected from alkyl, aryl, silyl, halogenated alkyl, halogenated aryl, and their combinations. R^{42} is C_1 to C_{10} alkyl, C_6 to C_{10} aryl, or C_7 to C_{10} aralkyl or together with one or more of the R^{41} substituents can form a condensed ring system having up to 30 non-hydrogen atoms.

[0121]

X³ has the same definition as for general formula (III-6), supra. Specific examples of the transition metal compound (III-7) are as follows:

 $(tert-butylamido)(tetramethyl-\eta^5-cyclopentadienyl)-1,2-ethanediylzirconium dichloride,\\ (tert-butylamido)(tetramethyl-\eta^5-cyclopentadienyl)-1,2-ethanediylzirconium dichloride,\\ (methylamido)(tetramethyl-\eta^5-cyclopentadienyl)-1,2-ethanediylzirconium dichloride,\\ (methylamido)(tetramethyl-\eta^5-cyclopentadienyl)-1,2-ethanediyltitanium dichloride,\\ (ethylamido)(tetramethyl-\eta^5-cyclopentadienyl)methylenetitanium dichloride,\\ (tert-butylamido)dimethyl(tetramethyl-\eta^5-cyclopentadienyl)silanetitanium dichloride,\\ (tert-butylamido)dimethyl(tetramethyl-\eta^5-cyclopentadienyl)silanezirconium dichloride,\\ (benzylamido)dimethyl(tetramethyl-\eta^5-cyclopentadienyl)silanetitanium dichloride,\\ and\\ (phenylphosphido)dimethyl(tetramethyl-\eta^5-cyclopentadienyl)silanedibenzylzirconium.$

[0122]

M³ in general formula (IV) is a transition metal atom from Groups 3-12 of the Periodic Table and preferably is a transition metal atom from Groups 4-10 of the Periodic Table and more preferably is titanium, zirconium, hafnium, nickel, palladium, chromium, iron, or cobalt. L³ represents anionic or neutral ligands — other than Cpd skeleton ligand — coordinated to the transition metal atom M³. The ligand L³ is bonded in a form with a neutral or anionic charge state to the transition metal atom M³ through, for example, an atom such as B, C, N, O, P, S,

or halogen. The ligands L^3 may be the same as or different from each other. Among the neutral ligands, ligands bonded through B can be exemplified by alkylborane and arylborane; ligands bonded through C can be exemplified by the residues of conjugated diene compounds; ligands bonded through N can be exemplified by amino, amido, sulfonamide, imido, and imino; ligands bonded through O can be exemplified by alkoxy, carbonyl, ester, and amido; ligands bonded through P can be exemplified by phosphine and phosphite; and ligands bonded through S can be exemplified by thiophenol, sulfide, thioketone, and thioketo ester. Among the anionic ligands, ligands bonded through B can be exemplified by alkylborate, arylborate, and borabenzene; ligands bonded through C can be exemplified by π -aryl; ligands bonded through N can be exemplified by amido, amidine, imidazole, amidate, and imidate; ligands bonded through O can be exemplified by phenoxide, alkoxide, carboxyl, oxime, and ketoalkoxy; ligands bonded through P can be exemplified by phosphate; and ligands bonded through S can be exemplified by thiophenoxide, thiocarboxyl groups, and dithiocarbamate groups. Compounds with general formula (IV) can be exemplified as below. This transition metal compound can be a single compound or a mixture of two or more compounds.

(B) The ionic compound or

(B') The Group 13 compound

The ionic compound (B) can be an ionic compound with the general formula (I-a) given above while the Group 13 compound (B') can be a Group 13 compound with the general formula (II-a) given above, wherein the ionic compounds are preferred.

[0123]

A single ionic compound as described above can be used, or a combination of two or more ionic compounds as described above can be used. A single Group 13 compound can be used, or a combination of two or more Group 13 compounds can be used. Combinations of an ionic compound or compounds with a Group 13 compound or compounds can also be used.

[0124]

The olefin polymerization catalyst according to the present invention is formed from the above-described transition metal compound (A) and the above-described ionic compound (B) or Group 13 compound (B'), but may also contain the organometal compound (C) described below on an optional basis.

Mitsui Chemical, Inc.

[0125]

(C) The organometal compound

Organometal compounds from Groups 1 and 2 and 12 and 13 as specifically defined below can be used as the organometal compound (C) employed in the present invention on an optional basis.

[0126]

Organoaluminum compounds with the general formula

$$R^{a}_{m}AI(OR^{b})_{n}H_{p}X_{q}$$
 (C-1)

in which R^a and R^b are independently selected from C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl; X is a halogen atom; and $0 < m \le 3$, $0 \le n < 3$, $0 \le p < 3$, $0 \le q < 3$, and m + n + p + q = 3.

[0127]

The complex alkylates of aluminum and a Group 1 metal with the general formula

$$M^3AIR^a_4$$
 (C-2)

in which M³ is Li, Na, or K and R^a is C₁ to C₁₅ and preferably C₁ to C₄ hydrocarbyl.

[0128]

The dialkylates of a Group 2 or Group 12 metal with the general formula

$$R^a R^b M^4$$
 (C-3)

in which R^a and R^b are independently selected from C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl and M^4 is Mg, Zn, or Cd.

[0129]

The organoaluminum compounds encompassed by (C-1) can be exemplified by the following compounds:

① organoaluminum compounds with the general formula $R^a_{mAl(OR^b)_{3-m}}$

in which R^a and R^b are independently selected from C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl and m is preferably a number satisfying $1.5 \le m \le 3$;

② organoaluminum compounds with the general formula

in which R^a is C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl, X is a halogen atom, and **m** preferably satisfies 0 < m < 3;

organoaluminum compounds with the general formula

in which R^a is C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl and **m** preferably satisfies $2 \le m < 3$; and

organoaluminum compounds with the general formula

$$R^a_{mAI}(OR^b)_nX_q$$

in which R^a and R^b are independently selected from C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl, X is a halogen atom, and $0 < m \le 3$, $0 \le n < 3$, and m + n + q = 3.

[0130]

The aluminum compounds encompassed by (C-1) can be more specifically exemplified by tri-n-alkylaluminums such as triethylaluminum and tri-n-butylaluminum;

tri-branched chain-alkylaluminums such as triisopropylaluminum, triisobutylaluminum, tri-sec-butylaluminum, tri-tert-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylpentylaluminum, tri-4-methylpentylaluminum, tri-4-methylpentylaluminum, tri-4-methylpentylaluminum, tri-2-methylhexylaluminum, tri-3-methylhexylaluminum, and tri-2-ethylhexylaluminum;

tricycloalkylaluminums such as tricyclohexylaluminum;

triarylaluminums such as triphenylaluminum and tritolylaluminum;

dialkylaluminum hydrides such as diisobutylaluminum hydride;

trialkenylaluminums such as triisoprenylaluminum;

alkylaluminum alkoxides such as isobutylaluminum methoxide, isobutylaluminum ethoxide, and isobutylaluminum isopropoxide;

dialkylaluminum alkoxides such as diethylaluminum ethoxide and dibutylaluminum butoxide; alkylaluminum sesquialkoxides such as ethylaluminum sesquiethoxide and butylaluminum sesquibutoxide;

partially alkoxylated alkylaluminums with the average compositional formula $R^a_{2.5}Al(OR^b)_{0.5}$; dialkylaluminum halides such as diethylaluminum chloride, dibutylaluminum chloride, and

diethylaluminum bromide;

alkylaluminum sesquihalides such as ethylaluminum sesquichloride, butylaluminum sesquibromide;

partially halogenated alkylaluminums such as alkylaluminum dihalides such as ethylaluminum dichloride, propylaluminum dichloride, and butylaluminum dibromide;

dialkylaluminum hydrides such as diethylaluminum hydride and dibutylaluminum hydride;

other partial hydrogenated alkylaluminums such as alkylaluminum dihydrides such as ethylaluminum dihydride and propylaluminum dihydride; and

partially alkoxylated and halogenated alkylaluminums such as ethylaluminum ethoxychloride, butylaluminum butoxychloride, and ethylaluminum ethoxybromide.

[0131]

Also usable are compounds that resemble (C-1), for example, organoaluminum compounds as afforded by bonding two or more aluminum compounds to each other through the nitrogen atom. Compounds of this type can be specifically exemplified by

$$(C_2H_5)_2AIN(C_2H_5)AI(C_2H_5)_2$$
.

[0132]

Compounds encompassed by (C-2) can be exemplified by LiAI(C₂H₅)₄ and LiAI(C₇H₁₅)₄.

[0133]

In addition to the preceding, isoprenylaluminums with the following general formula can also be used as the organometal compound (C)

$$(i-C_4H_9)_xAI_y(C_5H_{10})_z$$

wherein x, y, and z are positive numbers and $z \ge 2x$.

[0134]

In addition to the preceding, the following can also be used as the organometal compound (C): methyllithium, ethyllithium, propyllithium, butyllithium, methylmagnesium bromide, methylmagnesium chloride, ethylmagnesium bromide, ethylmagnesium chloride, propylmagnesium bromide, butylmagnesium chloride, dimethylmagnesium, diethylmagnesium, dibutylmagnesium, and butylethylmagnesium.

[0135]

Compounds that will form the above-described organoaluminum compounds in the polymerization system can also be used, for example, the combination of aluminum halide and alkyllithium and the combination of aluminum halide and alkylmagnesium.

[0136]

The organometal compound (C) used by the present invention is preferably a metal compound containing branched-chain alkyl. Ethyl-, isopropyl-, and isobutyl-containing metal compounds and particularly triisobutylmetal compounds thereamong are preferred. Aluminum is preferred as the metal, wherein triethylaluminum and triisobutylaluminum are most preferred.

[0137]

A single organometal compound as described above can be used or a mixture of two or more of these compounds can be used. In addition, the olefin polymerization catalyst according to the present invention can optionally contain a phenol derivative (D) as defined below.

[0138]

(D) The phenol derivative

The phenol derivative (D) used by this invention on an optional basis is a compound with the following general formula (V).

[0139]

$$R^{44}$$
 R^{45} R^{46} R^{48} R^{47} R^{46} R^{48} R^{47}

[0140]

 R^{44} - R^{48} in the preceding formula are independently selected from alkyl, aryl, alkoxy, aryloxy, triarylsilyl, the hydrogen atom, and halogen atoms, and are specifically exemplified by C_{1-20} alkyl such as methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, and adamantyl; C_{6-20} aryl such as phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, α - and β -naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl,

Mitsui Chemical, Inc.

and biphenylyl; C_{1-20} alkoxy such as methoxy, ethoxy, propoxy, and butoxy; C_{6-20} aryloxy such as phenoxy, methylphenoxy, dimethylphenoxy, and naphthoxy; triarylsilyl such as triphenylsilyl; and the same halogen atoms as provided above.

[0141]

Phenol derivatives with general formula (V) can be specifically exemplified by the following compounds:

monoalkyl-substituted phenols such as 2-tert-butylphenol;

dialkyl-substituted phenols such as 2,6-dimethylphenol, 2,4-di-tert-butylphenol, 2,6-di-tert-butylphenol, 3,5-di-tert-butylphenol, 2-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol [sic], and 2,6-diisopropylphenol;

trialkyl-substituted phenols such as 2,6-dimethyl-4-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2-(1-methylcyclohexyl)-4,6-dimethylphenol, 2-methyl-4,6-dinonylphenol, and 2,6-diisopropyl-4-methylphenol;

monoaryl-substituted phenols such as 2-phenylphenol, 3-phenylphenol, and 4-phenylphenol;

diaryl-substituted phenols such as 2,6-diphenylphenol; dialkyl/monoaryl-substituted phenols such as 2,6-dimethyl-4-phenylphenol; monoalkyl/diaryl-substituted phenols such as 2,6-diphenyl-4-methylphenol; monoalkyl/monoalkoxy-substituted phenols such as 2-tert-butyl-4-methoxyphenol; dialkyl/monoalkoxy-substituted phenols such as 2,6-di-tert-butyl-4-methoxyphenol; monoaryl/monoalkoxy-substituted phenols such as 2-phenyl-4-methoxyphenol; di(triarylsilyl)-substituted phenols such as 2,6-di(triphenylsilyl)phenol; and alkyl/di(triarylsilyl)-substituted phenols such as 2,6-di(triphenylsilyl)-4-methylphenol.

[0142]

Among the preceding, phenol derivatives are preferred in which at least one of R^{44} , R^{46} , and R^{48} is replaced by C_{1-12} hydrocarbyl. A single phenol derivative or a mixture of two or more phenol derivatives can be used.

[0143]

The olefin polymerization catalyst according to the present invention can also be used in the form of the solid catalyst afforded by supporting all or part of the

- (A) transition metal compound,
- (B) ionic compound or (B') Group 13 compound,

Mitsui Chemical, Inc. JP A 11-080224

- (C) organometal compound, and
- (D) phenol derivative on a carrier as described below.

[0144]

(E) The carriers

Granular or microparticulate solid organic or inorganic compounds with a size of 10 to 300 μm and preferably 20 to 200 μm are used for the carrier (E). Porous oxides are preferred for the inorganic carriers and may be specifically exemplified by SiO₂, Al₂O₃, MgO, ZrO₂, TiO₂, B₂O₃, CaO, ZnO, BaO, and ThO₂ and by mixtures of the preceding such as SiO₂-MgO, SiO₂-Al₂O₃, SiO₂-TiO₂, SiO₂-V₂O₅, SiO₂-Cr₂O₃, and SiO₂-TiO₂-MgO. Preferred among the preceding are carriers whose main component is at least 1 component selected from the group consisting of SiO₂ and Al₂O₃.

[0145]

The aforementioned inorganic oxide may also contain small amounts of a carbonate, sulfate, nitrate, or oxide component such as Na₂CO₃, K₂CO₃, CaCO₃, MgCO₃, Na₂SO₄, Al₂(SO₄)₃, BaSO₄, KNO₃, Mg(NO₃)₂, Al(NO₃)₃, Na₂O, K₂O, and Li₂O.

[0146]

While the properties of such a carrier (E) will vary as a function of its constituents and method of production, carriers preferred for use in the present invention desirably have a specific surface area of 50 to 1,000 m²/g and preferably 100 to 700 m²/g and desirably have a pore volume of 0.3 to 2.5 cm³/g. As necessary, the subject carrier can be used after calcining at 100 to 1,000°C and preferably 150 to 700°C.

[0147]

Granular and microparticulate solid organic compounds with a particle size of 10 to 300 μ m can also be used for the carrier (E). These organic compounds can be exemplified by polymers and copolymers synthesized mainly from C₂ to C₁₄ α -olefin, e.g., ethylene, propylene, 1-butene, and 4-methylpent-1-ene, and by polymers and copolymers synthesized mainly from vinylcyclohexane or styrene.

Mitsui Chemical, Inc. JP A 11-080224

[0148]

The olefin polymerization catalyst

The olefin polymerization catalyst according to the present invention is formed from the above-described transition metal compound (A) and ionic compound (B) or (Group 13 compound (B')) and optionally the organometal compound (C) and/or phenol derivative (D).

[0149]

Procedures for charging and producing the inventive olefin polymerization catalyst are described in the following for the example of the use of an ionic compound (B), but charging and production can be carried out with the Group 13 compound (B') using the same procedures as for the ionic compound (B).

[0150]

The individual components described above may each be charged separately to the reactor, but may also be charged to the reactor after any two or more components selected therefrom have been brought into contact with each other in advance outside the reactor. In a preferred embodiment in this latter case, a precontact catalyst is first prepared by preliminarily contacting the transition metal compound (A) with the ionic compound (B) outside the reactor and this precontact catalyst, the organometal compound (C), and the phenol derivative (D) are then charged to the polymerization reactor.

[0151]

The charging sequence is not critical when the individual components as described above are each charged separately to the polymerization reactor. However, charging is preferably carried out in the following sequence: organometal compound (C), phenol derivative (D), transition metal compound (A), and ionic compound (B). While the charging sequence is again not critical when a precontact catalyst as referenced above is produced, charging in this case is preferably carried out in the following sequence: organometal compound (C), phenol derivative (D), and precontact catalyst.

[0152]

A Group 1-3 or Group 11-13 organometal compound, e.g., an alkyllithium compound, alkylmagnesium compound, or alkylaluminum compound, can be used for production of the precontact catalyst.

[0153]

The alkyllithium compound can be exemplified by methyllithium, ethyllithium, propyllithium, and butyllithium, while the alkylmagnesium compound can be exemplified by methylmagnesium chloride, methylmagnesium bromide, ethylmagnesium chloride, ethylmagnesium bromide, propylmagnesium chloride, propylmagnesium bromide, butylmagnesium chloride, and butylmagnesium bromide.

[0154]

The alkylaluminum compound can be exemplified by trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trioctylaluminum, tri(2-ethylhexyl)aluminum, and tridecylaluminum.

[0155]

The olefin polymerization catalyst according to the present invention can be a solid catalyst comprising all or part of the above-described individual components supported on the above-described carrier (E), or can be the prepolymerized catalyst afforded by the preliminary polymerization of olefin on such a solid catalyst (component).

[0156]

The solid catalyst (component) can be produced, for example, by intermixing the carrier (E) and the transition metal compound (A) and/or ionic compound (B) and optionally the organometal compound (C) and/or phenol derivative (D) in an inert solvent. The prepolymerized catalyst can be produced, for example, by the introduction of olefin into inert hydrocarbon solvent in the presence of the above-described transition metal compound (A), ionic compound (B), and carrier (E) and optionally the organometal compound (C) and/or (D) phenol derivative. When the organometal compound (C) and/or phenol derivative (D) is/are not used during preparation of the solid catalyst (component) or prepolymerized catalyst, the organometal compound (C) and/or phenol derivative (D) can then be added to the polymerization reactor along with the solid catalyst (component) or prepolymerized catalyst.

[0157]

The process for preparing the inventive olefin polymerization catalyst is illustrated in Figure 1. Olefin polymerizable by the inventive olefin polymerization catalyst can be exemplified by C_{2-20} α -olefin such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene, and by C_{3-20} cycloolefins such as cyclopentene,

cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, and 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a,5,8,8a-octahydronaphthalene. Other examples are styrene and vinylcyclohexane. Various polyenes can also be copolymerized with the olefin, for example, chain and cyclic dienes such as butadiene, isoprene, 1,4-hexadiene, dicyclopentadiene, 5-ethylidene-2-norbornene, and 7-methyl-1,6-octadiene; chain and cyclic trienes such as 6,10-dimethyl-1,5,6-undecatriene and 5,9-dimethyl-1,4,8-decatriene; and chain and cyclic tetraenes such as 6,10,14-trimethyl-1,5,9,13-pentadecatetraene and 5,9,13-trimethyl-1,4,8,12-tetradecatetraene.

[0158]

The olefin polymerization method

Olefin polymerization can be executed according to the present invention by a gas-phase polymerization method or by a liquid-phase polymerization method such as solution polymerization or suspension polymerization. The polymerization solvent can be an inert hydrocarbon or the olefin itself.

[0159]

The inert hydrocarbon solvent can be specifically exemplified by aliphatic hydrocarbons such as butane, isobutane, pentane, hexane, octane, decane, dodecane, hexadecane, and octadecane; alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, and cyclooctane; aromatic hydrocarbons such as benzene, toluene, and xylene; and petroleum fractions such as gasoline, kerosene, and gas oil. Preferred among these inert hydrocarbon solvents are aliphatic hydrocarbons, alicyclic hydrocarbons, and petroleum fractions.

[0160]

The transition metal compound (A) is used in polymerization in an amount that provides, expressed in terms of the concentration within the polymerization system of the transition metal atom in the transition metal compound (A), from 10^{-8} to 10^{-3} gram-atom and preferably from 10^{-7} to 10^{-4} gram-atom per 1 liter of polymerization volume. The ionic compound (B) is used in an amount that provides a molar ratio [(B)/(A)] between the ionic compound (B) and transition metal compound (A) of from 0.01 to 10 and preferably from 0.5 to 5.

[0161]

The organometal compound (C) employed on an optional basis is used in an amount that provides a value generally from 5 to 50,000 and preferably from 10 to 20,000 for the

Mitsui Chemical, Inc. JP A 11-080224

M/(transition metal) atomic ratio between the Group 13 atom (M) in the organometal compound (C) and the transition metal in the transition metal compound (A). The phenol derivative (D) employed on an optional basis is used at 0.1 to 2.9 moles, preferably 0.4 to 2.5 moles, and particularly preferably 0.7 to 2 moles per 1 mole ionic compound (B).

[0162]

The Group 13 compound (B') is used in the same quantities as the ionic compound (B). The polymerization temperature will generally be -50 to 200° C and preferably is 0 to 180° C. The polymerization pressure will generally be from atmospheric pressure to 100 kg/cm^2 and is preferably from atmospheric pressure to 50 kg/cm^2 .

[0163]

The polymerization can be run by batch, semicontinuous, or continuous methods. The polymerization can also be divided into 2 or more stages with different reaction conditions.

[0164]

Advantageous Effects of the Invention

Olefin polymerization catalyst components according to the present invention exhibit olefin polymerization activity when combined with, for example, a metallocene compound.

[0165]

Olefin polymerization catalyst according to the present invention exhibits a high olefin polymerization activity. The inventive olefin polymerization method also exhibits a high polymerization activity.

[0166]

Examples

This invention is more specifically described hereinbelow through illustrative examples, but is not limited to these examples.

[0167]

Synthesis Example

Synthesis of 4-methyl-3-pentafluorophenylimidazole

[0168]

[0169]

2-methylimidazole (12.18 mmol), 1.70 mL pentafluoroiodobenzene (12.18 mmol), and 10 mL anhydrous acetonitrile were introduced into a 100 mL three-neck reactor that had been thoroughly purged with nitrogen and were irradiated for 72 hours while stirring. The solvent was distilled off and the residue was taken up in diethyl ether. The resulting solution was washed with aqueous sodium bicarbonate and saturated aqueous sodium chloride and then dried over anhydrous sodium sulfate. The solvent was distilled off to give 1.00 g (yield = 33%) of a light orange solid. The structure was identified by FD-MS.

[0170]

Synthesis of lithium tetrakis(4-methyl-3-pentafluorophenylimidazole)boron

[0171]

[0172]

1.00 g (4.03 mmol) of the 4-methyl-3-pentafluorophenylimidazole synthesized as above and 0.021 g (0.96 mmol) lithium tetrahydroborate were introduced into a 100-mL three-neck reactor

Mitsui Chemical, Inc.

(fitted with a stirring bar, condenser, addition funnel, and thermometer) that had been thoroughly purged with nitrogen. The reactor was heated to 180°C while stirring. After 24 hours, the solid was filtered off on a glass filter and the material on the filter was washed 5 times with 50 mL anhydrous toluene. This gave 0.8 g (yield = 83%) of a white solid.

[0173]

Synthesis of N,N-dimethylanilinium tetrakis(4-methyl-3-pentafluorophenylimidazole)boron

[0174]

[0175]

0.02 g (0.165 mmol) N,N-dimethylaniline and 10 mL water were introduced into a 50-mL roundbottom flask and were stirred at room temperature. 3.3 mL (0.33 mmol) 0.1 N aqueous hydrochloric acid was added and N,N-dimethylaniline hydrochloride was prepared by stirring for 30 minutes at room temperature. 0.15 g (0.149 mmol) lithium tetrakis(4-methyl-3-pentafluorophenylimidazole)boron and 10 mL water were also introduced into a separate 50-mL roundbottom flask and were stirred for 30 minutes at room temperature. To this was added the previously prepared N,N-dimethylaniline hydrochloride followed by stirring for 1 day at room temperature. The resulting white slurry was filtered on a glass filter and was washed with 50 mL water. The obtained solid was dried under reduced pressure to give 0.09 g (yield = 54%) of a solid.

[0176]

Example 1

400 mL toluene was charged to a 500-mL glass autoclave that had been thoroughly purged with nitrogen, ethylene was passed through at 100 L/hour, and the system was maintained at 75°C for 10 minutes. Polymerization was initiated by the addition of 0.800 mmol triisobutylaluminum, then 0.0008 mmol ethylenebis(indenyl)zirconium dichloride, and finally

Mitsui Chemical, Inc. JP A 11-080224

0.0016 mmol N,N-dimethylanilinium tetrakis(4-methyl-3-pentafluorophenylimidazole)boron. Polymerization was run for 6 minutes at 75°C at ambient pressure while continuously feeding ethylene gas at 100 L/hour. Polymerization was then stopped by the addition of a small amount of methanol. The polymer was precipitated by the addition of the polymer solution to a large excess of methanol and was dried under reduced pressure for 12 hours at 80°C. 2.0 g polymer was obtained.

Brief Description of the Drawings

Figure 1 contains a descriptive drawing that illustrates the process for preparing olefin polymerization catalyst according to the present invention.

Mitsui Chemical, Inc.

JP A 11-080224

Figure 1.

