

Redes de Computadores

Camada de Aplicação

Prof. Me. Ricardo Girnis Tombi

Camada de aplicação

Aplicação

Transporte

Rede

Enlace

Física

Aplicações

- E-mail
- Web
- Mensagem instantânea
- Login remoto
- P2P file sharing
- Jogos de rede multiusuário
- Telefonia via Internet
- Videoconferência em tempo real

Aplicações na rede

Escrever programas que

- Executem sobre diferentes sistemas finais e
- Se comuniquem através de uma rede.
- Ex.: Web software de servidor Web se comunicando com software do browser

Nenhum software é escrito para dispositivos no núcleo da rede

- Dispositivos do núcleo da rede não trabalham na camada de aplicação
- Esta estrutura permite um rápido desenvolvimento de aplicação

Arquiteturas aplicação

a. Arquitetura cliente-servidor

b. Arquitetura P2P

Cliente - Servidor

Servidor:

- Hospedeiro sempre ativo
- Endereço IP permanente
- Fornece serviços solicitados pelo cliente

Clientes:

- Comunicam-se com o servidor
- Podem ser conectados intermitentemente
- Podem ter endereço IP dinâmico
- Não se comunicam diretamente uns com os outros

a. Aplicação cliente-servidor

Comunicação de processos

Processo: programa executando num hospedeiro

- Dentro do mesmo hospedeiro: dois processos se comunicam usando comunicação interprocesso (definido pelo OS)
- Processos em diferentes hospedeiros se comunicam por meio de troca de mensagens
- Processo cliente: processo que inicia a comunicação
- Processo servidor: processo que espera para ser contatado

Comunicação de processos

- Um processo envia/recebe mensagens para/de seu socket
- O socket é análogo a uma porta
 - O processo de envio empurra a mensagem para fora da porta

 O processo de envio confia na infra-estrutura de transporte no outro lado da porta que leva a mensagem para o socket no processo de recepção

Endereçamento de processos

- Para um processo receber mensagens, ele deve ter um identificador
- Um hospedeiro possui um único endereço IP de 32 bits

O endereço IP do hospedeiro onde o processo está executando é suficiente para identificar o processo?

Não, muitos processos podem estar em execução no mesmo hospedeiro

O identificador inclui o endereço IP e o número da porta associada ao processo no hospedeiro

- Exemplos de números de porta:
 - Servidor HTTP: 80
 - Servidor de Correio: 25

Serviços de transporte disponíveis para aplicações

- Transferência confiável de dados
- Vazão
- Temporização
- Segurança

Relembrando ...

Aplicação	Perda de dados	Vazão	Sensibilidade ao tempo
Transferência / download de arquivo	Sem perda	Elástica	Não
E-mail	Sem perda	Elástica	Não
Documentos Web	Sem perda	Elástica (alguns kbits/s)	Não
Telefonia via Internet/ videoconferência	Tolerante à perda	Áudio: alguns kbits/s – 1Mbit/s Vídeo: 10 kbits/s – 5 Mbits/s	Sim: décimos de segundo
Áudio/vídeo armazenado	Tolerante à perda	Igual acima	Sim: alguns segundos
Jogos interativos	Tolerante à perda	Poucos kbits/s – 10 kbits/s	Sim: décimos de segundo
Mensagem instantânea	Sem perda	Elástico	Sim e não

A Internet disponibiliza dois protocolos de transporte para aplicações, o UDP e o TCP.

Relembrando ...

A Internet disponibiliza dois protocolos de transporte para aplicações, o UDP e o TCP.

Aplicações populares da Internet, seus protocolos de camada de aplicação e seus protocolos de transporte subjacentes

Aplicação	Protocolo de camada de aplicação	Protocolo de transporte subjacente
Correio eletrônico	SMTP [RFC 5321]	TCP
Acesso a terminal remoto	Telnet [RFC 854]	TCP
Web	HTTP [RFC 2616]	TCP
Transferência de arquivos	FTP [RFC 959]	TCP
Multimídia em fluxo contínuo	HTTP (por exemplo, YouTube)	TCP
Telefonia por Internet	SIP [RFC 3261], RTP [RFC 3550] ou proprietária (por exemplo, Skype)	UDP ou TCP

Web e HTTP

Primeiro alguns jargões

- Página Web consiste de objetos
- Objeto pode ser arquivo HTML, imagem JPEG, Java applet, arquivo de áudio,...
- A página Web consiste de arquivo-HTML base, que inclui vários objetos referenciados
- Cada objeto é endereçado por uma URL
- Exemplo de URL:

www.someschool.edu/someDept/pic.gif

Nome do hospedeiro

Nome do caminho

HTTP

HTTP: hypertext transfer protocol

- Protocolo da camada de aplicação da Web
- Modelo cliente/servidor
 - Cliente: browser que solicita, recebe e apresenta objetos da Web
 - Servidor: envia objetos em resposta a pedidos
- HTTP 1.0: RFC 1945
- HTTP 1.1: RFC 2068

PC executando
Explorer

A pache

Restrictedo Hilling Restrictedo H

Servidor executando

HTTP

Utiliza TCP:

- Cliente inicia conexão TCP (cria socket) para o servidor na porta 80
- Servidor aceita uma conexão TCP do cliente
- Mensagens HTTP (mensagens do protocolo de camada de aplicação) são trocadas entre o browser (cliente HTTP) e o servidor Web (servidor HTTP)
- A conexão TCP é fechada

HTTP é "stateless"

O servidor não mantém informação sobre os pedidos passados pelos clientes

Protocolos que mantêm informações de "estado" são complexos!

- Histórico do passado (estado) deve ser mantido
- Se o servidor/cliente quebra, suas visões de "estado" podem ser inconsistentes, devendo ser reconciliadas

HTTP não persistente

Tempo

- No máximo, um objeto é enviado sobre uma conexão TCP
- O HTTP/1.0 utiliza HTTP n\u00e3o persistente

(contém texto, referências a 10 imagens jpeg) Usuário entra com a URL: www.someSchool.edu/someDepartment/home.index 1a. Cliente HTTP inicia conexão TCP ao servidor HTTP (processo) em www.someSchool.edu. Porta Servidor HTTP no hospedeiro 80 é a default para o servidor www.someSchool.edu esperando HTTP pela conexão TCP na porta 80. "Aceita" conexão, notificando o cliente Cliente HTTP envia HTTP request message (contendo a URL) para o socket da conexão TCP Servidor HTTP recebe mensagem de pedido, forma response message contendo o objeto solicitado (someDepartment/home.index), envia mensagem para o socket

HTTP não persistente

5. Cliente HTTP recebe
mensagem de resposta
contendo o arquivo html,
apresenta o conteúdo html.
Analisando o arquivo html,
encontra 10 objetos jpeg
referenciados

Tempo

 Servidor HTTP fecha conexão TCP

Passos 1-5 são repetidos para cada um dos 10 objetos jpeg

HTTP não persistente – Tempo de Resposta

Definição de RTT: tempo para enviar um pequeno pacote que vai do cliente para o servidor e retorna

Tempo de resposta:

- Um RTT para iniciar a conexão TCP
- Um RTT para requisição HTTP e primeiros bytes da resposta HTTP para retorno
- Tempo de transmissão de arquivo

Total = 2RTT+ tempo de transmissão

RTT = Round Trip Time

HTTP persistente

Características do HTTP persistente:

- Requer 2 RTTs por objeto
- OS deve manipular e alocar recursos do hospedeiro para cada conexão TCP.
 Mas os browsers freqüentemente abrem conexões TCP paralelas para buscar objetos referenciados

HTTP persistente

- Servidor deixa a conexão aberta após enviar uma resposta
- Mensagens HTTP subsequentes entre o mesmo cliente/servidor são enviadas pela conexão

Persistente sem **pipelining**:

- O cliente emite novas requisições apenas quando a resposta anterior for recebida
- Um RTT para cada objeto referenciado

Persistente com **pipelining**:

- Padrão no HTTP/1.1
- O cliente envia requisições assim que encontra um objeto referenciado
- Tão pequeno como um RTT para todos os objetos referenciados

Mensagens HTTP

- Dois tipos de mensagens HTTP: request, response
- HTTP request message:
 - ASCII (formato legível para humanos)

```
Linha de pedido
(comandos GET, POST,
HEAD)

Linhas de cabeçalho

Carriage return,
line feed
indica fim da mensagem

GET /somedir/page.html HTTP/1.0

User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr
(extra carriage return, line feed)
```

Mensagens HTTP

Métodos HTTP

HTTP/1.0

- GET
- POST
- HEAD
 - Pede para o servidor deixar o objeto requisitado fora da resposta

HTTP/1.1

- GET, POST, HEAD
- PUT
 - Envia o arquivo no corpo da entidade para o caminho especificado no campo de URL
- DELETE
 - Apaga o arquivo especificado no campo de URL

Response HTTP

```
(protocolo código de status)

HTTP/1.0 200 OK

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Linhas de cabeçalho

Content-Length: 6821

Content-Type: text/html

Dados, ex.:

arquivo html
```

Status das respostas HTTP

Na primeira linha da mensagem de resposta servidor → cliente. Alguns exemplos de códigos:

200 OK

Requisição bem-sucedida, objeto requisitado a seguir nesta mensagem

301 Moved permanently

 Objeto requisitado foi movido, nova localização especificada a seguir nesta mensagem (Location:)

400 Bad request

Mensagem de requisição não compreendida pelo servidor

404 Not Found

Documento requisitado n\u00e3o encontrado neste servidor

505 HTTP version not supported

Interação usuário-servidor: cookies

Cookies, definidos no [RFC 6265], permitem que sites monitorem seus usuários.

A tecnologia dos cookies tem quatro componentes:

- ✓ Uma linha de cabeçalho de cookie na mensagem de resposta HTTP;
- ✓ Uma linha de cabeçalho de cookie na mensagem de requisição HTTP;
- Um arquivo de cookie mantido no sistema final do usuário e gerenciado pelo navegador do usuário;

Interação usuário-servidor: cookies

Mantendo o estado do usuário com *cookies*.

Caches Web

Um *cache* **Web** — também denominado **servidor** *proxy* — é uma entidade da rede que atende requisições HTTP em nome de um servidor Web de origem.

Clientes requisitando objetos por meio de um *cache* Web:

FTP – File Transfer Protocol

- Transferência de arquivos de/para o computador remoto
- Modelo cliente/servidor
 - Cliente: lado que inicia a transferência
 - Servidor: hospedeiro remoto
- FTP: RFC 959
- FTP servidor: porta 21

FTP – File Transfer Protocol

- Cliente FTP contata o servidor FTP na porta 21 especificando o TCP como protocolo de transporte
- Cliente obtém autorização pela conexão de controle
- Cliente procura o diretório remoto enviando comandos pela conexão de controle
- Quando o servidor recebe um comando para uma transferência de arquivo, ele abre uma conexão de dados TCP para o cliente
- Após a transferência de um arquivo, o servidor fecha a conexão
- Servidor abre uma segunda conexão de dados TCP para transferir outro arquivo
- Conexão de controle: "out-of-band"
- Servidor FTP mantém "estado": diretório atual, autenticação anterior

DNS – Domain Name Service

- Há duas maneiras de identificar um hospedeiro:
 - Nome de hospedeiro
 - Endereço IP
- Para conciliar isso, é necessário um serviço de diretório que traduza nomes de hospedeiro para endereços IP.
- Esta é a tarefa principal do DNS da Internet.
- O DNS:
 - (1) Banco de dados distribuído executado em uma hierarquia de servidores de DNS
 - (2) Protocolo de camada de aplicação que permite que hospedeiros consultem o banco de dados distribuído.

DNS – Sistema distribuído

Nenhum servidor DNS isolado tem todos os mapeamentos para todos os hospedeiros da Internet.

Em vez disso, os mapeamentos são distribuídos pelos servidores DNS.

Parte da hierarquia de servidores DNS

DNS – Sistema distribuído

Cliente quer o IP para www.amazon.com; 1ª aprox.:

- Cliente consulta um servidor de raiz para encontrar o servidor DNS com
- Cliente consulta o servidor DNS com para obter o servidor DNS amazon.com
- Cliente consulta o servidor DNS amazon.com para obter o endereço IP para www.amazon.com

Servidores DNS raíz

- São contatados pelos servidores de nomes locais que não podem resolver um nome
- Servidores de nomes raiz:
 - Buscam servidores de nomes autorizados se o mapeamento do nome não for conhecido
 - Conseguem o mapeamento
 - Retornam o mapeamento para o servidor de nomes local

Servidores TLD, autorizados e locais

Servidores top-level domain (TLD):

Responsáveis pelos domínios com, org, net, edu etc. e todos os domínios toplevel nacionais br, uk, fr, ca, jp.

Servidores DNS autoritativo:

- Servidores DNS de organizações, provêem nome de hospedeiro autorizado para mapeamentos IP para servidores de organizações (ex.: Web e mail).
- Podem ser mantidos por uma organização ou provedor de serviços

Servidores DNS locais

- Não pertence estritamente a uma hierarquia
- Cada ISP (ISP residencial, companhia, universidade) possui um
- Também chamado de "servidor de nomes default"
- Quando um hospedeiro faz uma pergunta a um DNS, a pergunta é
- enviada para seu servidor DNS local
- Age como um proxy, encaminhando as perguntas para dentro da
- hierarquia

Interação dos diversos servidores DNS

Outros serviços da camada de aplicação

SMTP – Simple Mail Transfer Protocol

POP3 – Post Office Protocol

SNMP – Simple Network Management Protocol

DHCP – Dynamic Host Control Protocol

P2P - Peer to Peer

Telnet

PERGUNTAS?

