EBU6018 Advanced Transform Methods

The Wavelet Transform

Andy Watson

The Wavelet Transform

What is a "Wavelet"?

- a "small wave"
 We can make a family of wavelets by:
- scaling and shifting a base or mother wavelet
- to create daughter wavelets (sometimes called baby wavelets)

Same wavelet, just scaled and time-shifted

Applications of Wavelets

- Relatively new method of evaluating and processing signals
- Works on nonstationary data
- Two main applications are in feature extraction and trend analysis
- Useful in many types of applications
 - Pattern recognition
 - Biotech: distinguish normal from pathological membranes
 - Biometrics: facial/corneal/fingerprint recognition
 - Feature extraction
 - Metallurgy: characterization of rough surfaces
 - Trend detection:
 - Finance: exploring variation of stock prices
 - Perfect reconstruction
 - Communications: wireless channel signals
 - Video compression JPEG 2000

The Wavelet

Consider scaling and translating the function y

$$\psi(t) \to \psi\left(\frac{t-b}{a}\right)$$

- a determines the centre frequency.
- b determines the translation.
- Time frequency centre of $\psi((t-b)/a)$ are b (time centre) and $\langle \omega \rangle/a$ (frequency centre) $\langle \omega \rangle$ is mean freq of ψ
- Daughter wavelets:

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi \left(\frac{t-b}{a}\right)$$
Mother Wavelet

Continuous Wavelet Transform

$$CWT(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} s(t) \psi^* \left(\frac{t-b}{a}\right) dt$$
Scale
$$= \int_{-\infty}^{\infty} s(t) \psi_{a,b}^*(t) dt = \langle s, \psi_{a,b} \rangle$$
Translation

- The continuous wavelet transform, CWT(a,b) is a function of two real variables.
- Compare short-time Fourier Transform:

$$STFT(t,\omega) = \int_{-\infty}^{\infty} s(\tau) \gamma^*(\tau - t) e^{-j\omega t} d\tau$$

• Have $\psi_{a,b}^{*}(t)$ instead of $\gamma^{*}(\tau - t)e^{-j\omega t}$

CWT: Time-Frequency Analysis

 CWT provides a time-frequency as well as timescale representation.

$$CWT(a,b) = TF(t = b, \omega = \langle \omega \rangle / a)$$

We can define the Scalogram

$$SCAL(a,b) = |CWT(a,b)|^2$$

• Compare Spectrogram: $|STFT(t,\omega)|^2$

The Windowed Fourier Transform

- Harmonic wave e^{-jwt}
 (to perform the FT)
- A window γ(t)
 (this will be moved across the signal)
- A windowed wave
 γ(τ-t) e^{-jwt}
 (the basis function)

EBU6018 7

CWT versus STFT

CWT: Variable time-frequency resolution

Different width; Same no of cycles

STFT: Constant time-frequency resolution

Same width;

Different no of cycles

Scaling of a signal

Consider time-scaling a signal:
$$r(t) = s(t/\alpha)$$

This changes Fourier Transform:
$$R(\omega) = \alpha S(\alpha \omega)$$

So changes energy:
$$E_r = \int_{-\infty}^{\infty} \left| s(t/\alpha) \right|^2 dt = \int_{-\infty}^{\infty} \left| s(\tau) \right|^2 d(\tau \alpha) = \alpha E$$

New centre freq:

$$\langle \omega \rangle_R = \frac{1}{2\pi E_R} \int_{-\infty}^{\infty} \omega |R(\omega)|^2 d\omega$$

$$= \frac{1}{2\pi\alpha E} \int_{-\infty}^{\infty} \omega \left| \alpha S(\alpha \omega) \right|^{2} d\omega \qquad R(\omega) = \alpha S(\alpha \omega)$$

$$= \frac{1}{2\pi\alpha E} \int_{-\infty}^{\infty} \frac{\Omega}{\alpha} |\alpha S(\Omega)|^2 d\frac{\Omega}{\alpha} \qquad \Omega = \alpha \omega$$

$$= \frac{1}{2\pi\alpha E} \int_{-\infty}^{\infty} \Omega |S(\Omega)|^2 d\Omega = \frac{\langle \omega \rangle}{\alpha}$$
 Scaled centre freq

EBU6018

Slide no: 9

Scaling (cont)

New frequency width:

$$\begin{split} &\Delta_{\omega}^{2}(R) = \frac{1}{2\pi E_{R}} \int_{-\infty}^{\infty} \omega^{2} \left| R(\omega) \right|^{2} d\omega - \left\langle \omega \right\rangle_{R}^{2} \\ &= \frac{1}{2\pi \alpha E} \int_{-\infty}^{\infty} \omega^{2} \left| \alpha S(\alpha \omega) \right|^{2} d\omega - \left(\left\langle \omega \right\rangle / \alpha \right)^{2} \\ &= \frac{1}{2\pi \alpha E} \int_{-\infty}^{\infty} \left(\Omega / \alpha \right)^{2} \left| \alpha S(\Omega) \right|^{2} d\frac{\Omega}{\alpha} - \left\langle \omega \right\rangle^{2} / \alpha^{2} \\ &= \frac{1}{2\pi \alpha^{2} E} \int_{-\infty}^{\infty} \Omega^{2} \left| S(\Omega) \right|^{2} d\Omega - \left\langle \omega \right\rangle^{2} / \alpha^{2} \\ &= \frac{\Delta_{\omega}^{2}(S)}{\alpha^{2}} \qquad \text{Scaled frequency resolution} \end{split}$$

Partition of the time-frequency plane

- High scale (low frequency)
 - large window size, better frequency resolution
- Low scale (high frequency)
 - small window size, better time resolution.

time 18

Time-Freq Partition: STFT

FT: Equal time and frequency resolution

(WT: Logarithmic scale of frequency resolution)

Inverse CWT: The Admissability Criterion

- We can construct an Inverse FT to reconstruct s(t)
 Can we do the same for CWT?
- Yes: provided that the Admissibility Condition is satisfied:

$$C_{\Psi} = \int_{-\infty}^{\infty} \frac{\left|\Psi(\omega)\right|^2}{\left|\omega\right|} d\omega < \infty$$

where $\Psi(\omega) = \int_{-\infty}^{\infty} \psi(t) e^{-j\omega t} dt$ is the Fourier Transform of $\psi(t)$

Reconstruction:

$$s(t) = \frac{1}{C_{\Psi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{a^2} CWT(a,b) \psi_{a,b}(t) dadb$$

Admissibility Condition (cont)

- Square of the Fourier transform must decay faster than
 1/w.
- Admissibility is measure of signal's band-limitedness.
- Admissibility implies zero average:

$$\Psi(0) = \int_{-\infty}^{\infty} \psi(t) e^{-j0t} dt = \int_{-\infty}^{\infty} \psi(t) dt = 0$$

because otherwise

$$\frac{\left|\Psi(\omega)\right|^2}{\left|\omega\right|} \to \infty \quad \text{as} \quad \omega \to 0$$

Comparison of STFT and CWT

Similarities:

- signal is multiplied by a function, and the transform is computed separately for different segments of signals.
- can be written in inner product form

$$STFT(b,\omega) = \left\langle s(t), \gamma(t-b)e^{j\omega t} \right\rangle \quad CWT(b,a) = \left\langle s(t), \frac{1}{\sqrt{a}}\psi\left(\frac{t-b}{a}\right) \right\rangle$$

Time-frequency window area remains constant.

Difference:

- Fixed time duration and freq bandwidths of $\gamma(t)$
- Variable time duration and bandwidth of $\psi(t)$

Comparison of Bases

- Fourier Transform
 - Basis is global (across all time)
 - Sinusoids with frequencies in arithmetic progression
- Gabor Transform (STFT)
 - Basis is local (in time)
 - Sinusoid times Gaussian
 - Fixed-width Gaussian "window"
- Wavelet Transform
 - Basis is local (in time)
 - Frequencies in geometric progression
 - Basis has constant shape independent of scale

Problems with CWT

Redundancy (because continuous)

 Basis functions for CWT are shifted and scaled versions of each other. Usually do not form an orthonormal base.

Infinite solution space

 The result holds an infinite number of wavelets: hard to solve and hard to find the desired results out of the transformed data.

Efficiency

 Most transforms cannot be solved analytically. Solutions have to be calculated numerically: time-consuming.
 Must find efficient algorithms.

Solution?

Multiresolution Analysis