CS 228 : Logic in Computer Science

Krishna, S

► Prove by induction on |w|

- ▶ Prove by induction on |w|
- ▶ Base case : For $|w| = \epsilon$, $\hat{\delta}(q_{00}, \epsilon) = q_{00}$

- ▶ Prove by induction on |w|
- ▶ Base case : For $|w| = \epsilon$, $\hat{\delta}(q_{00}, \epsilon) = q_{00}$
- ▶ Assume the claim for $x \in \Sigma^*$, and show it for $xc, c \in \{a, b\}$.

 $\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$

- $\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$
- By induction hypothesis, $\hat{\delta}(q_{00}, x) = q_{ij}$ iff
 - parity of *i* and $|x|_a$ are the same
 - ▶ parity of j and $|x|_b$ are the same

- ► Case Analysis : If $|x|_a$ odd and $|x|_b$ even, then i = 1, j = 0
 - $\delta(q_{10}, a) = q_{00}, \delta(q_{10}, b) = q_{11}$
 - ▶ $|xa|_a$ is even and $|xa|_b$ is even
 - ▶ $|xb|_a$ is odd and $|xb|_b$ is odd
- Other Cases : Similar
- $\hat{\delta}(q_{00}, x) = q_{10}$ iff $|x|_a$ odd and $|x|_b$ even

Closure Properties : DFA

Closure under Complementation

- ▶ If *L* is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$
 - ▶ For every $w \notin L$, $\hat{\delta}(q_0, w) = q$ for some $q \notin F$
 - ▶ Construct $\overline{A} = (Q, q_0, \Sigma, \delta, Q F)$
 - $w \in L(\overline{A})$ iff $\hat{\delta}(q_0, w) \in Q F$ iff $w \notin L(A)$
 - $L(\overline{A}) = L(\overline{A})$

aaab

7/1

aaab

► aaab

► aaab

▶ aaab

aabba

aabba

aabba

▶ aabba

15/1

▶ aabba

► aabba

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- A = (Q₁ × Q₂, Σ, δ, (q₀, s₀), F),
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$

```
▶ A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)
```

•
$$A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$$

►
$$A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$$

$$\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$$

$$F = F_1 \times F_2$$

▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2$$

18/1

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- ► $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2 \text{ iff } \hat{\delta_1}(q_0, x) \in F_1 \text{ and } \hat{\delta_2}(s_0, x) \in F_2$$

```
ightharpoonup A_1 = (Q_1, Σ, δ_1, q_0, F_1)
```

•
$$A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$$

►
$$A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$$

$$\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$$

$$F = F_1 \times F_2$$

▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta}_1(q_0, x), \hat{\delta}_2(s_0, x)) \in F_1 \times F_2 \text{ iff } \hat{\delta}_1(q_0, x) \in F_1 \text{ and } \hat{\delta}_2(s_0, x) \in F_2 \text{ iff } x \in L(A_1) \text{ and } x \in L(A_2)$$

18/1

Closure under Union

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- ▶ $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$

Closure under Union

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A)$$
 iff $x \in L(A_1)$ or $x \in L(A_2)$