Técnicas de Projeto de Algoritmos - Programação Dinâmica Problema da Mochila

Kleber Jacques F. de Souza

Problema da Mochila

- Dados n itens
 - Pesos: p₁, p₂, ..., p_n
 - Valores: v₁, v₂, ..., v_n
 - Uma mochila de capacidade C
- Problema:
 - Encontrar o subconjunto mais valioso de itens que caibam dentro da mochila.

Problema da Mochila - Com Repetição

Valor	Peso	0	1	2	3	4	5	6	7	8	9	10
4	3	0	0	0	4	4	4	8	8	8	12	12
5	4	0	0	0	4	5	5	8	9	10	12	13
8	5	0	0	0	4	5	8	8	9	12	13	16
10	7	0	0	0	4	5	8	8	10	12	13	16

 $max(T[i-1,j], T[i, j - P_i] + V_i)$

PUC Minas Virtual

Problema da Mochila - Sem Repetição

				,				,	1/1/10			
Valor	Peso	0	1	2	3	4	5	6	7	8	9	10
4	3	0	0	0	4	4	4	4	4	4	4	4
5	4	0	0	0	4	5	5	5	9	9	9	9
8	5	0	0	0	4	5	8	8	9	12	13	13
10	7	0	0	0	4	5	8	8	10	12	13	14

 $max(T[i-1,j], T[i-1, j-P_i] + V_i)$ PUC Minas Virtual