Problem Set 3 Econometrics I

Vikrant Vig

Due: January 14th, 2017

1. (Fixed Effects Estimator - 20 pts) For T = 2 consider the standard unobserved effects model

$$y_{it} = x'_{it}\beta + \delta_i + u_{it} \quad t = 1, 2$$

Let $\hat{\beta}_W$ and $\hat{\beta}_{FD}$ denote the within and first difference estimators, respectively. In other words:

$$\ddot{y}_{it} = \ddot{x}_{it}\hat{\beta}_W + \ddot{u}_{it}$$

where $\ddot{y}_i = y_{it} - \overline{y}_i$, the same for all the other variables. Note that this is the transformed version of the main regression, where variables are demeaned. $\hat{\beta}_W$ is the OLS coefficient of this regression. Also:

$$\Delta y_i = \Delta x_i \hat{\beta}_{FD} + \Delta u_i$$

where $\Delta y_i = y_{it} - y_{it-1}$, the same for the other variables. Note that this is the transformed version of the main regression, in which variables are time-differenced. $\hat{\beta}_{FD}$ is the OLS coefficient of this regression

- (a) Show that the within and first differences estimators are numerically equal
- (b) Show that the properly computed error variance estimates from the FE and FD methods are numerically identical.
- 2. (Measurement Error Bias 15 pts) Suppose we observe a noisy version (x_i) of the true explanatory variable (x_i^*) . The true model we want to estimate is

$$y_i = \beta_0 + \beta_1 x_i^* + e_i \tag{0.1}$$

but we only observe x_i , and not x_i^* . We know, however, that $x_i = x_i^* + v_i$, where v_i is an iid error term with mean zero, variance σ_v^2) and independent of x_i^* , i.e. $E(x_i^*v_i) = 0$. You estimate the regression of y_i on x_i and obtain the coefficient $\tilde{\beta}_1$ for the slope variable. Show that this coefficient is biased, i.e.: $\tilde{\beta}_1 = \left(\frac{\sigma_{x_i^*}^2}{\sigma_{x_i^*}^2 + \sigma_v^2}\right)\beta_1$. Discuss the direction of this bias.

Hint: use the fact that the OLS estimator for the slope of a simple regression can be calculated as $\tilde{\beta}_1 = \frac{Cov(x_i, y_i)}{Var(x_i)}$

3. (15 pts) You have two regressors x_1 and x_2 , and estimate a regression with all quadratic terms.

$$y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i}^2 + \beta_4 x_{2i}^2 + \beta_5 x_{1i} x_{2i} + e_i$$
 (0.2)

One of your advisor asks: Can we exclude the variable x_2 from this regression? How do you translate this question into a statistical test? When answering these questions, be specific, not general.

- (a) What is the relevant null and alternative hypotheses?
- (b) What is an appropriate test statistic and its distribution?
- (c) What is the rule for acceptance/rejection of the null hypothesis?
- 4. (STATA only 20 pts) This data set is from Schaller (1990). It contains investment (inv) and q variables from 164 firms over 35 years that Schaller uses in his paper. Include a constant term in the following regressions.
 - (a) Run a regression of inv on q. Discuss the results (please refer to the paper)
 - (b) Create dummy variables corresponding to each firm using the command "xi". Now using 'regress', run a regression of inv on q and the firm dummies. How has the coefficient on q changed?
 - (c) Now regress inv on the firm dummies alone and obtain the residual (call it $e_i n v$) from the regression. Similarly, regress q on the firm dummies and obtain the residual (call it e_q) from this regression. finally, regress $e_i n v$ on e_q . Is the coefficient estimate on e_q the same as the coefficient estimate on q in part (b)? Why? What is the constant term estimate in this case? Why?
 - (d) How could you have used the standard error estimate on the q coefficient from part (b) to obtain the standard error estimate on the e_q coefficient in part (c) without running the regressions in part (c)?
 - (e) Regress inv on e_q . Is the coefficient estimate on e_q the same as in part (c)? Why?
- 5. (Computational Panel Data 30 pts) For this exercise, use the dataset PS3.xls. There are three variables (w: earnings, ed: education, and a:age) for three different years (0: 1990, 1:1991, and 2:1992). Note that this data-set is not in a panel format as in the question above. Either edit it in excel to transform it in a long panel, or use the function **reshape** in stata. You want to have a data with the following variables only: individual, year, w, ed, a. After that create variables corresponding to the individual means for log(wage), educ, exp, exp².
 - (a) For the 1990 portion of the data, regress log(wage) on constant, educ, exp, exp² (corresponding to the regression in the Problem Set 1). Now do the same OLS regression using all the data (1990-92), which is called the "pooled least squares" regression. Have the coefficients changed much?
 - (b) Discuss the validity of the assumption of homoskedastic errors in the regression above.
 - (c) How would you test if the coefficients estimates changed over the years using the pooled OLS from the regression in (a)?

- (d) (Matlab Only) Now estimate a Fixed Effects Model as seen in the lecture notes. Create the matrix M_D and use it to obtain $\hat{\beta}_{FE}$. Should you include an intercept parameter here?
- (e) Estimate the within estimator $(\hat{\beta}_W)$ for the wage equation. How is $\hat{\beta}_W$ related to $\hat{\beta}_{FE}$ estimated above? HINT: In this exercise, you need to demean the variables by each individual, i.e. subtract the time average of each variable by group. In Matlab see the function grp-stats(x,GROUP) that creates a mean of x by group GROUP (means x). To demean the variable x use x-kron(means x, ones(T,1)), where T in this case equal 3 (years). In STATA see function egen combined with by GROUP

The following questions are **OPTIONAL**. 10 extra marks are going to be given if you do it right.

- (f) (Matlab only) Obtain s_W^2 from the last regression. Also obtain the between coefficient estimates and s_B^2 . Use both s_W^2 and s_B^2 to form $\hat{\theta}$, the weight needed for FGLS. Generate the transformed variables and perform an OLS regression of them (also known as the FGLS estimator). Hint: The between estimator is calculated from a regression of the average by group of $y(\bar{y}_i)$ on the average by group of $x(\bar{x}_i)$ AND a constant. See the note on Random Effects for a formula to calculate s_W^2 , s_B^2 , $\hat{\theta}$ and the adjusted (y, x) variables, i.e. $\hat{\tilde{y}}_{it}$ and $\hat{\tilde{x}}_{it}$. Finally, note that you need to adjust the constant, as well.
- (g) (Stata only) Check if the results match with Stata by using the command **xtgls** on the variables from the original wage equation.
- (h) Are the FGLS results different than the FE ones? Perform a Hausman test. What do you conclude?