CAD-Αναφορά Εργαστηρίου 2022

Γκίζας Μαρίνος ΑΜ: 1054348

Άσκηση 1

	7408	74ALS08	74AS08	74S08	74LS08
Χρόνος καθυστέρησης μετάβασης στο λογικό 0	27ns	9ns	4ns	8ns	13ns
Χρόνος καθυστέρησης μετάβασης στο λογικό 1	27ns	9ns	4ns	8ns	13ns

1.Παράδειγμα μέτρησης καθυστέρησης για την 7408(0->1)

2.Παράδειγμα μέτρησης καθυστέρησης για την 7408(1->0)

Ομοίως γίνεται η μέτρηση και για τις υπόλοιπες πύλες.

Άσκηση 2

Για την δεύτερη άσκηση θα σχεδιάσουμε, αρχικά, έναν carry-save πολλαπλασιαστή 2 bits με την top-down φιλοσοφία, ενώ έπειτα θα σχεδιάσουμε με την φιλοσοφία bottom-up έναν καταχωρητή 2 bits.

3.Top-Down Design

4.Full Adder

5.Stimulus

6.Waveforms

7.Bottom-Up Design

8.D FF

9.Stimulus

10.Waveforms

Άσκηση 3

11.Διαδρόμιση δύο επιπέδων(DESIGN1.MAX)

12.Στατιστικά

Παρατηρήσεις:

Παρατηρούμε ότι η διαδρόμιση με τα δύο επίπεδα είναι πλήρης αφού το %Routed είναι 100%.

13.Διαδρόμιση ενός επιπέδου(DESIGN2.MAX)

14.Στατιστικά

Παρατηρήσεις:

Παρατηρούμε ότι η διαδρόμιση δεν είναι πλήρης αφού το %Routed είναι στο 88.37%.

Άσκηση 4

Η καθυστέρηση που επιτυγχάνεται είναι **4ns** από το U7, **2ns** από το U2, **2ns** από το U1 και U4 (φροντίζουμε να έρθει το clk ακριβώς όποτε το χρειαζόμαστε), **16ns** για τον πρώτο adder U3 και άλλα **16ns** για τον δεύτερο adder U5 αφού πρέπει να περιμένουμε να μας έρθει το κρατούμενο από τον U3. Τέλος, έχουμε και άλλα **2ns** από το U6 για να πάρουμε στην έξοδο τα δεδομένα μας. Συνολικά έχουμε **42ns** καθυστέρηση. Συνεπώς η μέγιστη συχνότητα είναι Fmax=1/42 Hz.

15. Hasp(Χωρίς τις αλλαγές)

16.Hasp(μετά τις αλλαγές)

17. Hasp without connector, header and capacitor

Οι αλλαγές που έγιναν στον δεύτερο σχεδιασμό (vcc αντι για gnd στο clear των FF και αλλαγή στις εισόδους των adder που παίρνουν gnd/vcc) για το simulation έχουν μεταφερθεί και στον πρώτο αφού έγινε η εξομοίωση.

18.Simulation

19.Layout

20..Διαδρόμηση μόνο με GND,VCC

21.Διαδρόμηση όλων των σημάτων εκτός GND,VCC

22.Fanout (GND-PWR)

Άσκηση 5

1.4 Bit Counter code

```
Tedit-counters
File Edit View Tools Window

Desire Edit View Tools Window

Desire Edit View Tools Window

Desire Edit View Tools Window
                                                                                                                        - a ×
• In #
    1 module counter4 (clear, clock, load, start_stop, count, data);
    2 input [3:0] data;
3 output [3:0] count;
    4
        input start_stop;
       input load;
        input clock;
        input clear;
        reg [3:0] count;
  10 always @(posedge clock or posedge clear)
        if (clear) count <= 0;
else if (load) count <= data;
  11
  12
                         else if (start_stop) count <= count + 1;</pre>
  13
  14 endmodule
  15
```

2.8 Bit counter code

```
The fact contents View Tash Window

File fact View Tash View Ta
```

3.Testbench for 8 Bit counter

Simulation

4.Clear and start_stop

• Synchronous clear

6.4 bit counter-syn clr

```
| Tell to Ver but Window | Fire fair Ver but Wi
```

7.8 bit counter-syn clr

Testbench for 8 bit counter: (έγινε αλλαγή στις καθυστερήσεις των clk ,clr για να φανεί στις κυματομορφές ότι είναι σύγχρονο το clr).

8.Clear and start_stop

9.Load<=1

10.4 bit counter with 20ns delay

Αφού έχουμε 20ns delay, το clock έχει ως ελάχιστη τιμή το 20ns για να επιτελούνται οι λειτουργίες του μετρητή. Συνεπώς Fmax= 1/20ns= $5 * 10^{-11}$.

Άσκηση 6

Ερώτημα 1

11.Κώδικας

```
| Compared | Compared
```

12.Top.ucf

Μέγιστη συχνότητα λειτουργίας: Θα βρούμε το path με την μεγαλύτερη καθυστέρηση και αυτό αν το αντιστρέψουμε θα βρούμε την μέγιστη συχνότητα λειτουργίας.

Το path με την μεγαλύτερη καθυστέρηση έχει 11.778ns. Άρα Fmax=1/11.778ns=84.9MHz.

Ερώτημα 2Α

13.Κώδικας

```
| Oligoch| Mappivoc(CAD\ask6)ask6_2.Aucf - Notepad+
Apxio: EntExpanolic Eigen [Doploh] Kubikontolingn Dúcoca Pugliciet. Tgols Maxpocartoh] EntExpanolic Eigen Eigen
```

14.Top.ucf

Μέγιστη καθυστέρηση=12.652ns. Συνεπώς η <u>μέγιστη συχνότητα</u> <u>λειτουργίας</u> είναι Fmax=1/12.652ns=79 MHz.

Ερώτημα 2Β

15.Κώδικας

```
☑ D:\Σχολή Μαρίνος\CAD\ask6\ask6_2_B.v - Notepad++
Αρχείο Επεξεργασία Εύρεση Προβολή Κωδικοποίηση Γλώσσα Ρυθμίσεις Tools Μακροεντολή Εκτέλεση Πρόσθετα Παράθυρο
 ] 🚽 🖯 🖺 😘 😘 🕼 🕹 🕹 🕒 🗈 C | 최 🛬 🌂 🔍 🖫 📴 🚍 🗔 1 🃜 🗷 💯 🖺 🐿 💌 🗷 🗷 🕩 🗩
 counter4.v 🔀 🔛 syn_clr_testcounter8.v 🔀 🔛 counter4delay.v 🔀 🔛 RAM vhdl 🔀 🔛 checkpoint_vcd 🔀 🔛 mbzv 🔀 🔛 ask6_1.v 🔀 📄 top_6_2.uc
      module six_2_B(a1,a0,b1,b0,out,dp);
      input a1,a0,b1,b0;
      output reg [6:0]out;
      output reg dp;
      always@ (a1,a0,b1,b0)
 8 $\daggeraps \text{case({a1,a0,b1,b0})}
              4'b0000: {dp,out}=8'b01110111; //output =0
              4'b0001: {dp,out}=8'b01110111; //output =0
              4'b0010: {dp,out}=8'b01110111; //output =0
             4'b0011: {dp,out}=8'b01110111; //output =0
 14
              4'b0100: {dp,out}=8'b01110111; //output =0
              4'b0101: {dp,out}=8'b00010010; //output =1
 16
              4'b0110: {dp,out}=8'b11011101; //output =-2
              4'b0111: {dp,out}=8'b10010010; //output =-1
 19
              4'b1000: {dp,out}=8'b01110111; //output =0
              4'b1001: {dp,out}=8'b11011101; //output =-2
              4'b1010: {dp,out}=8'b00111010; //output =4
              4'b1011: {dp,out}=8'b01011101; //output =2
 24
              4'b1100: {dp,out}=8'b01110111; //output =0
              4'b1101: {dp,out}=8'b10010010; //output =-1
              4'b1110: {dp,out}=8'b01011101; //output =2
 26
              4'b1111: {dp,out}=8'b00010010; //output =1
           endcase
 29
      end
      endmodule
```

<u>Top.ucf:</u> είναι το ίδιο με το Α

Μέγιστη καθυστέρηση=13.274ns. Συνεπώς η μέγιστη συχνότητα λειτουργίας είναι Fmax=1/13.274ns =75.3 MHz.

Άσκηση 7

Οι κώδικες βρίσκονται στα αρχεία ask7_2.ucf,ask7_2_top.v,leds.v,stopwatch.v,cnt5_128.v

Για το stopwatch φτιάξαμε έναν καταχωρητή που θα κρατάει την τιμή του πραγματικού χρόνου την δεδομένη χρονική στιγμή (now_time) και αν κάνουμε το stop==1 τότε θα περνάει στην έξοδο μόνο αυτή η τιμή που είναι αποθηκευμένη έναν κύκλο πριν. Αυτή η τιμή θα είναι στην έξοδο μέχρι να αλλάξουμε και πάλι το stop.

Για να δημιουργήσουμε τα δέκατα θέλουμε ο χρόνος να είναι 10 φορές μικρότερος από ότι στα δευτερόλεπτα. Συνεπώς, θέλουμε συχνότητα 10πλάσια δηλαδή 10 Hz. Αν την διαιρέσουμε με τον χρονιστή μας δίνει $10^7 = 25^3 * 2^7 * 5$. Θα χρειαστούμε λοιπόν για την μέτρηση 3 counter mod25 που έχουμε ήδη, έναν 7 bits και έναν 5 bits. Η σειρά που τους τοποθετήσαμε παίζει ρόλο στον χρονισμό του κυκλώματος.