0.1 Distribución de Weibull

Definición 0.1 — Función densidad probabilidad.

$$f(t,\alpha,\lambda) = \frac{\alpha}{\lambda^{\alpha}} t^{\alpha-1} e^{-\left(\frac{t}{\lambda}\right)^{\alpha}}, t > 0$$
 (1)

Si resolvemos la ecuación 1 para t>0:

$$\frac{k}{\lambda^{\alpha}} \int_{0}^{x} t^{k-1} e^{-\left(\frac{t}{\lambda}\right)^{k}} = u$$

$$\left(\frac{\beta}{\lambda^{k}}\right) \left(-\frac{\lambda^{k}}{k}\right) e^{-\left(\frac{t}{\lambda}\right)^{k}} \Big|_{0}^{t} = u$$

$$1 - e^{-\left(\frac{t}{\lambda}\right)^{k}} = u$$

Despejando se tiene:

$$1 - u = e^{-\left(\frac{t}{\lambda}\right)^k}$$
$$1 - u = \frac{1}{e^{\left(\frac{t}{\lambda}\right)^k}}$$
$$e^{\left(\frac{t}{\lambda}\right)^k} = \frac{1}{1 - u}$$

Tomando Log neperiano:

$$Lne^{\left(\frac{t}{\lambda}\right)^{k}} = Ln\left(\frac{1}{1-u}\right)$$

$$\left(\frac{t}{\lambda}\right)^{k} = Ln\left(\frac{1}{1-u}\right)$$

$$\frac{t^{k}}{\lambda^{k}} = Ln\left(\frac{1}{1-u}\right) \to t^{k} = \lambda^{k}Ln\left(\frac{1}{1-u}\right)$$

$$t = \lambda \left[Ln\left(\frac{1}{1-u}\right)\right]^{\frac{1}{k}}$$

La distribución de Weibull es ampliamente usada en el estudio de tiempo de vida o tiempo de vida o tiempo para la falla de los componentes mecánicos. Los parámetros de la distribución de Weibull son: Forma $(k \circ \alpha)$ y Escala (λ) .

El número de ocurrencias de eventos por unidad de tiempo no permanece necesariamente constante, es decir, esta tasa de ocurrencia de eventos puede crecer o decrecer con el tiempo.

- R(t): Probabilidad de que el equipo no falle en un tiempo t. También se le llama **confiabilidad**.
- λ: Parámetro de escala, vida característica del equipo. 1
- k: Parámetro de forma, relaciona el periodo de tiempo en el que se encuentra operando el equipo.

¹No confundir con λ de la función distribución.

γ: También llamado parámetro de posición; define el punto de partida de la distribución.

Valor(k)	Carácteristicas
0 <k<1< th=""><th>Tasa de falla decreciente</th></k<1<>	Tasa de falla decreciente
k=1	Distribución exponencial
1 <k<2< th=""><th>Tasa de falla creciente (concava)</th></k<2<>	Tasa de falla creciente (concava)
k=2	Distribución de Rayleigh
k>2	Tasa de falla creciente (convexa)
3≤ <i>k</i> ≤4	Tasa de falla creciente

Figure 1: Distribución Weibull con diferentes valores de k (k).

Propiedades de la distribución de Weibull

De manera general

Corolario 0.1 — Distribución.

$$f(t) = \frac{k}{\alpha^k} (t - \gamma)^{k-1} e^{\left(\frac{t - \gamma}{\alpha}\right)^{\beta}}$$
 (2)

Corolario 0.2 — Infiabilidad.

$$F(t) = 1 - e^{-\left(\frac{t - \gamma}{\alpha}\right)^{\beta}} \tag{3}$$

Corolario 0.3 — Confiabilidad.

$$R(t) = e^{-\left(\frac{t-\gamma}{\alpha}\right)^{\beta}} \tag{4}$$

Corolario 0.4 — Tasa de fallas.

$$\lambda(t) = \frac{k}{\alpha^k} (t - \gamma)^{k-1} \tag{5}$$

Figure 2: CDF de una distribución de Weibull o Infiabilidad

Antena				
Modo de fallo	Causa de fallo	Efecto de fallo		
Desadaptación en el dipolo	Twist en el conector hacia el dipolo.	ector hacia el dipolo. Corte del sistema		
con guía de onda	Conector con armado defectuoso.	Corte dei sistema		
Desorientación de antena	Ajuste mecánico defectuoso en la abrazadera de	Corte del sistema		
Desorientación de antena	la antena hacia la torre			
Desadaptación del dipolo con	Temperatura bajo el cero provoca granizo de hielo	Corte del sistema		
el espacio libre	en el dipolo	Corte del Sistema		

Table 1: Antenna

	Guía de onda	
Modo de fallo	Causa de fallo	Efecto de
	Sección elíptica asimétrica de la guía	Curva de retardo
Desadaptación en el sistema Tx	ocasionado por el golpe en la superficie de la guía.	con ruptı
guía de onda-dipolo	Exceso de radio de encorbatura en el tendido de la	Corte en el sistem
	guía hacia la torre.	de ROI

Table 2: Guía de onda