

Lecture 7: Circuit Tools

- Equivalent Resistance Defined
- Voltage Divider
- Current Divider
- Power Dissipation in Series and Parallel Resistive Loads
- Example Problems and Practice

Series Connection

Series connections share the same current

Equivalent Resistance

Equivalent Resistance is the resistance value you get when you place an entire resistive network into a (virtual) box and characterize it as an Ohmic device (a new resistor).

Equivalent Resistance of Series Resistors

Resistances in series add up

$$R_{eq} = R_1 + R_2 + \dots + R_N$$

This can be intuitive: think of telegraphy wires in series.

Voltage Divider Rule (VDR)

When a voltage divides across resistors in series, more voltage drop appears across the largest resistor.

$$V_k = \frac{R_k}{R_{eq}} \cdot V_T$$

Q: If $R_1 < R_2$, which of the following is true?

A.
$$V_1 < V_2$$
 and $I_1 < I_2$

B.
$$V_1 < V_2$$
 and $I_1 = I_2$

C.
$$V_1 = V_2$$
 and $I_1 = I_2$

D.
$$V_1 > V_2$$
 and $I_1 = I_2$

E.
$$V_1 > V_2$$
 and $I_1 > I_2$

Q: Use VDR to find V_1 .

A.
$$V_1 \le -6 V$$

B.
$$-6 < V_1 \le -2 V$$

C.
$$-2 < V_1 \le 2 V$$

D.
$$2 < V_1 \le 6 V$$

E.
$$6 V < V_1$$

VDR Derivation

Since
$$I=I_k$$
, $\frac{V}{R_{eq}}=\frac{V_k}{R_k}$ by Ohm's Law. So, $V_k=\frac{R_k}{R_{eq}}\cdot V$

- One VDR Application
 - Compares the input voltage to known voltages.
 - Uses "voltage dividers" and "comparators"
 - This is stuff we will understand through ECE110!

Parallel Connection

Parallel connections share the same voltage potentials at two end nodes (shared by the elements)

$$V_1 = V_2 = V_3$$
 because of KVL

Q: Are appliances in your house/apartment connected in series or in parallel?

Equivalent Resistance of Parallel Resistors

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

If
$$N=2$$
,

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Q: Which statement is true in general?

A.
$$R_{eq} \approx R_1$$

B.
$$R_{eq} < R_1$$

C.
$$R_{eq} > R_1$$

D. None of these is true

Resistors and Power Ratings

Q: Which statement is true regarding a single 50-Ohm resistor vs two 100-Ohm resistors, each of which is rated $\frac{1}{4}$ -watts, used as shown above in the same circuit?

- A. The 100-Ohm parallel combination has twice the power rating.
- B. The 100-Ohm parallel combination has a resistance of 200 Ohms.
- C. The 100-Ohm parallel combination has twice the probability of failure.
- D. None of these are true.
- E. All of these are true.

Current Divider Rule (CDR)

When a current divides into two or more paths, a greater amount of current will go down the path of lower resistance.

$$I_k = \frac{R_{eq}}{R_k} \cdot I$$

One CDR Application

- High-current Ammeter
- Use a high-power shunt resistance R_S to carry most of the current
- Measure the current through R_M (the meter resistor) using a galvanometer.

Q: Which is true in this application?

A.
$$R_S \ll R_M$$
B. $R_S \gg R_M$
C. $R_S \approx R_M$

Q: Give the formula for I (the current we want measured) in terms of I_M (the current we did measure).

$$I = \frac{R_k}{R_{eq}} I_M = \dots = \frac{R_S + R_M}{R_S} I_M$$

Q: If $R_1 < R_2$, which of the following is true?

A.
$$I_1 < I_2 < I_S$$

B.
$$I_1 < I_s < I_2$$

C.
$$I_2 < I_1 < I_S$$

B.
$$I_1 < I_S < I_2$$
C. $I_2 < I_1 < I_S$
D. $I_2 < I_S < I_1$

E.
$$I_s < I_2 < I_1$$

Q: In a parallel connection, does a smaller or larger resistor absorb more power?

Α.

L7 Learning objectives

- a. Identify series and parallel connections within a circuit network
- b. Find equivalent resistance of circuit networks
- c. Compute power ratings of resistor networks
- d. Estimate resistance by considering the dominant elements
- e. Apply rules for current and voltage division to networks
- f. Apply conservation of energy to components within a circuit network