Objective:

The objective of the project is to find out the forward and inverse kinematics of an industrial robot using MATLAB

Robot Selection:

The industrial robot chosen for this purpose was the "Schunk Powerball Light Weight Arm 4-P". This robot has 6 degree of freedom with all joints being revolute. The research paper used to gather the relevant data is "Robotic Arm Calibration and Control 6-DOF Powerball LWA 4P" by Curtis Bradley.

The DH parameters of the robotic arm are as follows:

Joint Axis	θ_{offset}	d	a	α
1	0	0.205m	0	$-\frac{\pi}{2}$
2	$-\frac{\pi}{2}$	0	0.350 <i>m</i>	π
3	$-\frac{\pi}{2}$	0	0	$-\frac{\pi}{2}$
4	0	0.305 <i>m</i>	0	$\frac{\pi}{2}$
5	0	0	0	$-\frac{\pi}{2}$
6	0	0.075m	0	0

Forward Kinematics:

The forward kinematics of the robotic arm can be evaluated using the DH parameters and using the homogeneous transformation matrix shown below:

$$_{i-1}T_{i} = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i}\cos\alpha_{i} & \sin\theta_{i}\sin\alpha_{i} & a_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\theta_{i}\cos\alpha_{i} & -\cos\theta_{i}\sin\alpha_{i} & a_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Using this method, the transformation matrix of each link is calculated. The final transformation matrix obtained after multiplication of these matrixes results in the forward kinematics matrix.

$${}^{0}T_{6} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$

Inverse Kinematics:

The inverse kinematics were calculated using the transformation matrix obtained above. The algebraic approach was used for this purpose. Some of the formulae obtained are shown below:

$$d_{elbow} = {}^{0} T_{6}(1:3,4) - dx - \begin{bmatrix} 0 \\ 0 \\ d_{1} \end{bmatrix}$$

$$\theta_3 = \pm \left(\pi - \arccos \frac{a_2^2 + d_4^2 - |d_{elbow}|^2}{2 * a_2 * d_4} \right)$$

axis
$$k_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, axis $k_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{p} = \begin{bmatrix} 0 \\ 0 \\ a_2 \end{bmatrix} + \begin{bmatrix} -d_4 \sin \theta_3 \\ 0 \\ d_4 \cos \theta_3 \end{bmatrix}$, $\vec{q} = \overrightarrow{d_{elbow}}$.

MATLAB OUTPUT:

♣ The transformation matrix output for various joint angles

```
Command Window
creating new robot
Current plot held
Warning: Stretch-to-fill scaling not supported;
use DASPECT or PBASPECT before calling ARROW3.
 > In arrow3 at 377
  In trplot at 232
  In SerialLink.plot>create robot at 443
  In SerialLink.plot at 247
  In forwardkinematics at 39
ans =
    1.0000
              0
                           0
                                 0.3500
         0 1.0000
                                      0
                            0
                                 0.5850
         0
                  0
                      1.0000
                   0
                                 1.0000
                            0
ans =
            -0.4416
    0.8083
                        0.3894
                                 0.4704
    0.4794
           0.8776
                        0.0000
                                 0.0000
            0.1867
   -0.3417
                        0.9211
                                 0.4187
                            0
                                 1.0000
         0
                  0
```

♣ Inverse kinematics numerical method iterations

0.0031	-0.0026	0.0011	0.0000	0.0025	1.7876
-0.0031	-0.0025	0.0011	-0.0000	0.0027	1.7624
-0.0031	-0.0024	0.0011	-0.0000	0.0028	1.7373
-0.0031	0.0019	0.0021	-0.5246	0.0002	0.9927
-0.0031	0.0020	0.0021	-0.4995	0.0001	0.9676
0.0031	0.0021	0.0022	-0.4744	0.0000	0.9425
-0.0031	0.0022	0.0022	-0.4492	-0.0000	0.9173
0.0031	0.0023	0.0023	-0.4241	-0.0001	0.8922
0.0031	0.0024	0.0023	-0.3990	-0.0001	0.8671
0.0031	0.0025	0.0024	-0.3738	-0.0001	0.8419
-0.0031	0.0025	0.0024	-0.3487	-0.0001	0.8168
-0.0031	0.0026	0.0025	-0.3236	-0.0001	0.7917
-0.0031	0.0027	0.0026	-0.3047	-0.0001	0.7728
-0.0031	0.0027	0.0026	-0.2859	-0.0001	0.7540
-0.0031	0.0028	0.0027	-0.2670	-0.0001	0.7351
-0.0031	0.0028	0.0028	-0.2482	-0.0001	0.7163
-0.0031	0.0029	0.0028	-0.2293	-0.0000	0.6974
-0.0031	0.0029	0.0029	-0.2105	-0.0000	0.6786
0.0031	0.0030	0.0030	-0.1916	0.0000	0.6597
-0.0031	0.0030	0.0030	-0.1728	0.0000	0.6409
-0.0031	0.0030	0.0031	-0.1539	0.0000	0.6220
-0.0031	-0.0018	0.0000	-0.0031	0.0018	-0.0000
-0.0031	-0.0018	-0.0000	-0.0031	0.0018	-0.0000
-0.0031	-0.0018	-0.0001	-0.0031	0.0017	-0.0000
-0.0031	-0.0018	-0.0001	-0.0031	0.0017	-0.0000
-0.0031	-0.0018	-0.0001	-0.0031	0.0017	-0.0000
-0.0031	-0.0018	-0.0002	-0.0031	0.0017	-0.0000
0.0031	-0.0018	-0.0002	0.0031	0.0016	0.0000
0.0031	-0.0018	-0.0002	0.0031	0.0016	0.0000
-0.0031	-0.0031	-0.0029	-2.1834	0.0002	-2.1174
-0.0031	-0.0031	-0.0029	-2.1708	0.0002	-2.1049

PLOT OF ROBOTIC ARM:

