GI/G/1 Model and Simulator

A general case of single server system with general independent arrivals and general service times

Distributions of interarrival and service times

- M = exponential distribution
- D = deterministic case (constant value)
- U = uniform distribution (from A to B)
- GI = general independent arrivals (this case includes uniform distribution)

GI/G/1 – a general single server model

S = mean service time with coefficient of variation v_s

$$v_{s} = \sigma_{s} / S = \begin{cases} 1, & \text{for exponential distribution} \\ \frac{B - A}{\sqrt{3}(A + B)}, & \text{for uniform distribution [A,B]} \end{cases}$$

a = mean interarrival time with coefficient of variation v_a

 $v_a = \sigma_a / a =$ coefficient of variation of interarrival time

X = 1/a = throughput (input arrival and output departure rate)

U = SX = S / a =server utilization

R = response time

W = R - S = queue weight time

GI/G/1 formula


```
#include<iostream.h>
#include<math.h>
                                                                                       G/G/1
int main(void) // Jozo Dujmovic. Fall 2010
                                                                                Calculator
    char adist, sdist;
    double S. U. vs.va. Tmin. Tmax. a. X. R:
    cout << "G/G/1 MODEL ANALYZER";
    while(1)
    {
        cout << "\n\n-----
             << "\n\nThe available interarrival time distributions are:"</pre>
             << "\n (1) Constant"
             << "\n (2) Exponential"</pre>
             << "\n (3) Uniform"
             << "\nEnter your choice: ";</pre>
        cin >> adist:
        if(adist=='1') {va=0.; cout << "Constant interarrival time = "; cin >> a; X=1./a;}
        else if(adist=='2') {va=1.; cout << "Mean interarrival time = "; cin >> a; X=1./a;}
        else if (adist=='3')
            cout << "Enter min and max interarrival time = ":
            cin >> Tmin >> Tmax:
            a = (Tmax + Tmin)/2.;
            X=1./a:
            va = (Tmax-Tmin)/((Tmax+Tmin)*sgrt(3.)):
        else return 1:
        cout << "\n\nThe available service time distributions are:"
             << "\n (1) Constant"</pre>
             << "\n (2) Exponential"</pre>
             << "\n (3) Uniform"
             << "\nEnter your choice: ";</pre>
        cin >> sdist:
        if(sdist=='1') {vs=0.; cout << "Constant service time = "; cin >> S;}
        else if(sdist=='2') {vs=1.; cout << "Mean service time = "; cin >> S;}
        else if(sdist=='3')
            cout << "Enter min and max service time = ";
            cin >> Tmin >> Tmax;
            S = (T_{max} + T_{min})/2.;
            vs = (Tmax-Tmin)/((Tmax+Tmin)*sgrt(3.));
        else return 1:
        U = S*X:
        R = (S/(1.-U))*(1 - 0.5*U*(1. - vs*vs - ((vs*vs + 1.)*(va*va-1.)/(U*U*vs*vs+1.))));
        cout << "\nServer utilization U = " << U
             << "\nMean response time R = " << R</pre>
             << "\nMean queue length Q = " << ((adist=='1' && sdist == '1') ? U : U/(1-U))</pre>
             << "\nTime spent waiting W = " << R-S ;</pre>
    }
```

The available interarrival time distributions are:

- (1) Constant
- (2) Exponential
- (3) Uniform

Enter your choice: 3

Enter min and max interarrival time = 1 3

The available service time distributions are:

- (1) Constant
- (2) Exponential
- (3) Uniform

Enter your choice: 3

Enter min and max service time = 1 2

Server utilization U = 0.75

Mean response time R = 1.7381

Mean queue length Q = 3

Time spent waiting W = 0.238095

The available interarrival time distributions are:

- (1) Constant
- (2) Exponential
- (3) Uniform

Enter your choice: 3

Enter min and max interarrival time = 1 3

The available service time distributions are:

- (1) Constant
- (2) Exponential
- (3) Uniform

Enter your choice: 2

Mean service time = 1

Server utilization U = 0.5

Mean response time R = 1.26667

Mean queue length Q = 1

Time spent waiting W = 0.266667

The available interarrival time distributions are:

- (1) Constant
- (2) Exponential
- (3) Uniform

Enter your choice: 3

Enter min and max interarrival time = 1 3

The available service time distributions are:

- (1) Constant
- (2) Exponential
- (3) Uniform

Enter your choice: 1

Constant service time = 1

Server utilization U = 0.5

Mean response time R = 1.04167

Mean queue length Q = 1

Time spent waiting W = 0.0416667

The available interarrival time distributions are:

- (1) Constant
- (2) Exponential
- (3) Uniform

Enter your choice: 2

Mean interarrival time = 2

The available service time distributions are:

- (1) Constant
- (2) Exponential
- (3) Uniform

Enter your choice: 3

Enter min and max service time = 1 2

Server utilization U = 0.75

Mean response time R = 3.83333

Mean queue length Q = 3

Time spent waiting W = 2.33333

Results of Markus Neubrand simulator

a dist	s dist	Uan	Usim	E[%]	Qan	Qsim	E[%]
D(2.0)	D(1.0)	0.500	0.500	0.000	0.500	0.500	0.000
D(2.0)	M(1.0)	0.500	0.500	-0.033	0.600	0.627	4.564
D(2.0)	G(U 1.0-2.0)	0.750	0.750	0.014	0.774	0.750	-3.074
M(0.5)	D(1.0)	0.500	0.500	0.020	0.750	0.750	0.034
M(0.5)	M(1.0)	0.500	0.500	-0.055	1.000	1.001	0.107
M(0.5)	G(U 1.0-2.0)	0.750	0.750	0.033	1.917	1.919	0.099
G(U 1.0-3.0)	D(1.0)	0.500	0.500	-0.021	0.521	0.500	-3.977
G(U 1.0-3.0)	M(1.0)	0.500	0.500	0.023	0.633	0.658	3.927
G(U 1.0-3.0)	G(U 1.0-2.0)	0.750	0.750	0.009	0.869	0.825	-5.105
a dist	s dist	Ran	Rsim	E[%]	Wan	Wsim	E[%]
D(2.0)	D(1.0)	1.000	1.000	0.000	0.000	0.000	0.000
D(2.0)	M(1.0)	1.200	1.25	4.570	0.200	0.255	27.315
D(2.0)	G(U 1.0-2.0)	1.548	1.500	-3.063	0.048	0.000	-100.000
U(2.0)							
M(0.5)	D(1.0)	1.500	1.501	0.036	0.500	0.501	0.113
· /	,	1.500 2.000					

1.000

1.317

-4.000

3.999

0.042

0.267

0.000

0.317

0.149

-100.000

18.868

1.042

Exponential Distribution (M/M/1)

Uniform[0,10] / Uniform[1,5] (GI/G/1)

Simulation controls

Uniform[0,6.667] / Uniform[1,5] (GI/G/1)

