

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y DISEÑO INDUSTRIAL

Grado en Ingeniería Eléctrica

TRABAJO FIN DE GRADO

TÍTULO DEL TRABAJO

Francisco Delgado López

Tutor: Óscar Perpiñán Lamigueiro

Departamento: Departamento de Ingeniería Eléctrica, Electrónica, Automática y

Física Aplicada

Copyright © 2024. Francisco Delgado López

Esta obra está licenciada bajo la licencia Creative Commons Atribución-No Comercial-Sin Derivadas 3.0 Unported (CC BY-NC-ND 3.0). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-nd/3.0/deed.es o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, EE.UU. Todas las opiniones aquí expresadas son del autor, y no reflejan necesariamente las opiniones de la Universidad Politécnica de Madrid.

TÌtulo: título del trabajo **Autor:** Francisco Delgado López **Tutor:** Óscar Perpiñán Lamigueiro

EL TRIBUNAL

Presidente:	
Vocal:	
Secretario:	
Realizado el acto de defensa y lectura del Trabajo Fin de Grado el día	ría y

VOCAL

SECRETARIO PRESIDENTE

Agradecimientos

Agradezco a . . .

Resumen

Este proyecto	se	resume	en														
---------------	----	--------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Palabras clave: geometría solar, radiación solar, energía solar, fotovoltaica, métodos de visualización, series temporales, datos espacio-temporales, S4

Abstract

т	.1 .	. ,				
In	this	project.				

 $\textbf{Keywords:} \quad \text{solar geometry, solar radiation, solar energy, photovoltaic, visualitation methods, temporal series, space-time data, S4$

Índice general

Agradecimientos	VII
Resumen	IX
Abstract	XI
ndice general	XII
ndice de figuras	XIII
ndice de tablas	XIV
Introducción 1.1. Objetivos	2
Estado del arte 2.1. Situación actual de la generación fotovoltaica	
Parte teórica y desarrollo del código	7
Ejemplo práctico de aplicación 4.1. solaR2 4.2. solaR 4.3. PVsyst 4.4. Comparación entre los tres	9 9
Detalles de la programación	11
A Código completo A.1. Constructores A.2. Clases A.3. Funciones A.4. Métodos A.5. Conjunto de datos	37 39 64
Bibliografía	87

Índice de figuras

Índice de tablas

CAPÍTULO 1

Introducción

1.1. Objetivos

El objetivo principal de este proyecto es el desarrollo de un paquete en R[R C23] con el cual poder realizar estimaciones y representaciones gráficas de la posible generación de una instalación fotovoltaica.

Durante el resto del documento, si fuera necesario, se hará referencia al paquete desarrollado en este proyecto con el nombre solaR2 [CITAR SOLAR2].

El usuario podrá colocar los datos que considere convenientes (desde una base de datos oficial, una base de datos propia... etc.) en cada una de las funciones que ofrece el paquete pudiendo así obtener resultados de la geometría solar, de la radiación horizontal, de la eficaz y hasta de la producción de diferentes tipos de sistemas fotovoltaicos.

El paquete también incluye una serie de funciones que permiten hacer representaciones gráficas de estas producciones con el fin de poder apreciar con más detalle las diferencias entre sistemas y contemplar cual es la mejor opción para el emplazamiento elegido.

Este proyecto toma su origen en el paquete ya existente solaR[Per12] el cual desarrolló el tutor de este proyecto en 2012. Por la antigüedad del código se propuso la idea de renovarlo teniendo en cuenta el paquete en el que basa su funcionamiento. El paquete solaR basó su funcionamiento en el paquete zoo[ZG05] el cual proporciona una sólida base para trabajar con series temporales. Sin embargo, como base de solaR2 se optó por el paquete data.table[Bar+24]. Este paquete ofrece una extensión de los clásicos data.frame de R en los data.table, los cuales pueden trabajar rápidamente con enormes cantidades de datos (por ejemplo, 100 GB de RAM).

La clave de ambos proyectos es que al estar alojados en R, cualquier usuario puede acceder a ellos de forma gratuita, tan solo necesitas tener instalado R en tu dispositivo.

Para alojar este proyecto se toman dos vías:

- Github Wan+23: Donde se aloja la versión de desarrollo del paquete.
- CRAN: Acrónimo de Comprehensive R Archive Network, es el repositorio donde se alojan las versiones definitivas de los paquetes y desde el cual se descargan a la sesión de R.

El paquete solaR2 permite realizar las siguientes operaciones:

 Cálculo de toda la geometría que caracteriza a la radiación procedente del Sol [CITAR CÓDIGO]

- Tratamiento de datos meteorológicos (en especial de radiación), procedentes de datos ofrecidos del usuario y de la red de estaciones SIAR [Min23] [CITAR CÓDIGO]
- Una vez calculado lo anterior, se pueden hacer estimaciones de:
 - Los componentes de radiación horizontal [CITAR CALCG0].
 - Los componentes de radiación eficaz en el plano inclinado [CITAR CALCGEF].
 - La producción de sistemas fotovoltaicos conectados a red [CITAR PRODGCPV] y sistemas fotovoltaivos de bombeo [CITAR PRODPVPS].

Este proyecto ha tenido a su vez una serie de objetivos secundarios:

- Uso y manejo de GNU Emacs [Sta85] en el que se realizaron todos los archivos que componen este documento (utilizando el modo Org [Dom+03]) y el paquete descrito (empleando ESS [Pro24])
- Dominio de diferentes paquetes de R:
 - zoo[ZG05]: Paquete que proporciona un conjunto de clases y métodos en S3 para trabajar con series temporales regulares e irregulares. Usado en el paquete solaR como pilar central.
 - data.table[Bar+24]: Otorga una extensión a los datos de tipo data.frame que permite una alta eficiencia especialmente con conjuntos de datos muy grandes. Se ha utilizado en el paquete solaR2 en sustitución del paquete zoo como tipo de dato principal en el cual se construyen las clases y métodos de este paquete.
 - microbenchmark[Mer+23]: Proporciona infraestructura para medir y comparar con precisión el tiempo de ejecución de expresiones en R. Usado para comparar los tiempos de ejecución de ambos paquetes.
 - profvis[Wic+24]: Crea una interfaz gráfica donde explorar los datos de rendimiento de una expresión dada. Aplicada junto con microbenchmark para detectar y corregir cuellos de botella en el paquete solaR2
 - lattice[Sar08]: Proporciona diversas funciones con las que representar datos. El paquete solaR2 utiliza este paquete para representar de forma visual los datos obtenidos en las estimaciones.
- Junto con el modo Org, se ha utilizado el prepador de textos LATEX (partiendo de un archivo .org, se puede exportar a un archivo .tex para posteriormente exportar un pdf).
- Obtener conocimientos teóricos acerca de la radiación solar y de la producción de energía solar mediante sistemas fotovoltaicos y sus diversos tipos. Para ello se ha usado en mayor medida el libro "Energía Solar Fotovoltaica" [Per23].

1.2. Análisis previo de soluciones

Este proyecto, como ya se ha comentado, es el heredero del paquete solaR desarrollado por Oscar Perpiñán. La filosofía de ambos paquetes es la misma y los resultados que dan son muy similares. Sin embargo, lo que les diferencia es el paquete sobre el que construyen sus datos. Mientras que solaR basa sus clases y métodos en el paquete zoo, solaR2 en el paquete data.table. Los dos paquetes pueden trabajar con series temporales, pero, mientras que zoo es más eficaz trabajando con series temporales, data.table es más

eficiente a la hora de trabajar con una cantidad grande de datos, lo cual a la hora de realizar estimaciones muy precisas es beneficioso. Por otro lado, existen otras soluciones fuera de R:

1. PVsyst - Photovoltaic Software

Este software es probablemente el más conocido dentro del ámbito del estudio y la estimación de instalaciones fotovoltaicas. Permite una gran personalización de todos los componentes de la instalación.

2. SISIFO

Herramienta web diseanda por el Grupo de Sistemas Fotovoltaicos del Instituto de Energía Solar de la Universidad Politécnica de Madrid.

3. PVGIS

Aplicación web desarrolada por el European Commission Joint Research Center desde 2001.

4. System Advisor Model

Desarrollado por el Laboratorio Nacional de Energías Renovables, perteneciente al Departamento de energía del gobierno de EE.UU.

En el apartado [ref:sec:ejemplos] se realizará un ejemplo práctico que compare los resultados entre **PVsyst**, solaR y solaR2

1.3. Aspectos técnicos

Para elaborar un paquete en R se deben aportar una serie de ficheros:

- R: Fichero que contiene todos los archivos .R que se van a ejecutar en la instalación del paquete. Esto incluye funciones, clases y métodos.
- data: Aquí se incluyen los datos externos que el paquete necesita para funcionar.
- DESCRIPTION: Contiene metadatos sobre el paquete, como el nombre, la versión, el autor, etc.
- NAMESPACE: Especifica qué funciones y datos se exportan y se importan.
- inst: Se usa para almacenar archivos importantes pero que no se almacenan en el resto de ficheros.
- tests: Se utiliza para almacenar scripts de pruebas que aseguran que el código del paquete funcione correctamente.
- man: Donde se alojan los ficheros .Rd relacionados con el manual de uso del paquete.
 En estos se almacenan la información de funciones, métodos, clases y datos.

Una vez se tienen todos estos ficheros, el paquete se construye y se prueba.

Estado del arte

2.1. Situación actual de la generación fotovoltaica

Según el informe anual de 2023 de la UNEF¹[UNE23] en 2022 la fotovoltaica se posicionó como la tecnología con más crecimiento a nivel internacional, tanto entre las renovables como entre las no renovables. Se instalaron 240 GWp de nueva capacidad fotovoltaica a nivel mundial, suponiendo esto un incremento del 137% con respecto a 2021.

A pesar de las diversas crisis internacionales, la energía solar fotovoltaica alcanzó a superar los 1185 GWp instalados. Como otros años, las cifras indican que China continuó siendo el primer actor mundial, superando los 106 GWp de potencia instalada en el año. La Unión Europea se situó en el segundo puesto, duplicando la potencia instalada en 2021, y alcanzando un nuevo record con 41 GWp instalados en 2022.

La producción energía fotovoltaica a nivel mundial representó el 31% de la capacidad de generación renovable, convirtiendose así en la segunda fuente de generación, solo por detrás de la energía hidráulica. En 2022 se añadió 3 veces más de energía solar que de energía eólica en todo el mundo.

Por otro lado, la Unión Europea superó a EE.UU. como el segundo mayor actor mundial en desarrollo fotovoltaico, instalando un $47\,\%$ más que en 2021 y alcanzando una potencia acumulada de más de 208 GWp. España lideró el mercado europeo con 8,6 GWp instalados en 2022, superando a Alemania.

El año 2022 fue significativo en términos legislativos con el lanzamiento del Plan RE-PowerEU²[Eur22]. Dentro de este plan, se lanzó la Estrategía de Energía Solar con el objetivo de alcanzar 400 GWp (320 GW) para 2030, incluyendo medidas para desarrollar tejados solares, impulsar la industria fotovoltaica y apoyar la formación de profesionales en el sector.

En 2022, España vivió un auge en el desarrollo fotovoltaico, instalando $5.641~\mathrm{MWp}$ en plantas en suelo, un $30\,\%$ más que en 2021, y aumentando el autoconsumo en un $108\,\%$, alcanzando $3.008~\mathrm{MWp}$. El sector industrial de autoconsumo creció notablemente, representando el $47\,\%$ del autoconsumo total.

España implementó varias iniciativas legislativas para enfrentar la volatilidad de precios de la energía y la dependencia del gas, destacando el RD-ley 6/2022[BOE22b] y el RD 10/2022[BOE22a], que han modificado mecanismos de precios y estableciendo límites al precio del gas.

¹UNEF: Unión Española Fotovoltaica.

²Plan REPowerEÚ: Proyecto por el cual la Unión Europea quiere poner fin a su dependencia de los combustibles fósiles rusos ahorrando energía, diversificando los suministros y acelerando la transción hacia una energía limpia.

El Plan SE+³[dem22] incluye medidas fiscales y administrativas para apoyar las renovables y el autoconsumo. En 2022, se realizaron subastas de energía renovable, asignando 140 MW a solar fotovoltaica en la tercera subasta y 1.800MW en la cuarta, aunque esta última quedó desierta por precios de reserva bajos.

Se adjudicaron 1.200 MW del nudo de transición justa de Andorra a Enel Green Power España, con planes para instalar plantas de hidrógeno verde y agrovoltaica. la actividad en hidrógeno verde y almacenamiento también creció, con fondos adicionales y exenciones de cargos.

El autoconsumo, apoyado por diversas regulaciones y altos precios de la electricidad, registró un crecimiento significativo, alcanzado 2.504 MW de nueva potencia en 2022. Las comunidades energéticas también avanzaron gracias a ayudas específicas, a pesar de la falta de un marco regulatorio definido.

2022 estuvo marcado por los programas financiados por la Unión Europea, especialmente el Mecanismo de Recuperación y Resiliencia[Hac22] que canaliza los fondos Next-GenerationEU[Uni20]. El PERTE⁴, aprobado en diciembre de 2021, espera crear más de 280.000 empleos, con ayudas que se ejecutarán hasta 2026. En 2023 se solicitó a Bruselas una adenda para segunda fase del PERTE, obteniendo 2.700 millones de euros adicionales.

La contribución del sector fotovoltaico a la economía española en 2022 fue significativa, aportando 7.014 millones de euros al PIB 5 , un $51\,\%$ más que el año anterior, y generando una huella econóimca total de 15.656 millones de euros. En términos de empleo, el sector involucró a 197.383 trabajadores, de los cuales 40.683 fueros directos, 97.600 indirectos y 59.100 inducidos.

El sector industrial fotovoltaico nacional tiene una fuerte presencia en España, con hasta un 65 % de los componentes manufacturados localmente. Empresas españolas se encuentran entre los principales fabricantes mundiales de inversores y seguidores solares. Además, España es un importante exportador de estructuras fotovoltaicas y cuenta con iniciativas prometedoras para la fabricación de módulos solares.

UNEF promueve la transformación industrial para que España se convierta en un hub industrial fotovoltaico. Se destaca la necesidad de proteger la industria existente, garantizar un crecimiento constante de la capacidad y ofrecer condiciones de financiamiento favorables. Además se propone implementar una Estrategia Industrial Fotovoltaica para contribuir significativamente a la reindustralización de la economía, aprovechando las medidas del REPower Plan, la Estrategia Solar y la Alianza de al Industria Solar Fotovoltaica.

En definitiva, la fotovoltaica es una tecnología en auge y con perspectivas para ser el pilar de la transición ecológica. Por ello, surge la necesidad de encontrar herramientas que permitan estimar el desempeño que estos sistemas pueden tener a la hora de realizar estudios de viabilidad económica.

2.2. Soluciones existentes y sus carencias

³Plan + Seguridad Energética: Se trata de un plan con medidas de rápido impacto dirigidas al invierno 2022/2023, junto con medidas que contribuyen a un refuerzo estructural de esa seguridad energética.

⁴PERTE: Proyecto Estratégico para la Recuperación y Transformación Económica.

⁵PIB: Producto Interior Bruto.

CAPÍTULO 3

Parte teórica y desarrollo del código

. . .

Ejemplo práctico de aplicación

Como demostración se va a realizar un caso práctico...

4.1. solaR2

. . .

4.2. solaR

. . .

4.3. PVsyst

. . .

4.4. Comparación entre los tres

CAPÍTULO 5

Detalles de la programación

. . .

Código completo

Todo el código que se muestra a continuación está disponible...

A.1. Constructores

calcSol

```
calcSol <- function(lat, BTd,</pre>
                          sample = 'hour', BTi,
2
                          EoT = TRUE,
3
                          keep.night = TRUE,
4
                          method = 'michalsky')
   {
6
        if(missing(BTd)) BTd <- truncDay(BTi)</pre>
7
        solD <- fSolD(lat, BTd, method = method) #daily values</pre>
8
        solI <- fSolI(solD = solD, sample = sample, #intradaily values</pre>
9
                        BTi = BTi, keep.night = keep.night,
10
                        EoT = EoT, method = method)
11
12
        if(!missing(BTi)){
13
            sample <- solI$Dates[2]-solI$Dates[1]</pre>
14
             sample <- format(sample)</pre>
15
        }
16
17
        solD[, lat := NULL]
18
        solI[, lat := NULL]
19
        result <- new('Sol',</pre>
                        lat = lat,
21
                        solD = solD,
22
                        solI = solI,
23
                        sample = sample,
24
                        method = method)
25
        return(result)
26
   }
```

calcG0

```
calcGO <- function(lat,
```

```
modeRad='prom',
3
                        dataRad,
                        sample='hour',
4
                        keep.night=TRUE,
5
                        sunGeometry='michalsky',
6
                        corr, f, ...)
7
   {
8
        if (missing(lat)) stop('lat missing. You must provide a latitude value.')
10
11
        stopifnot(modeRad %in% c('prom', 'aguiar','bd', 'bdI'))
12
13
14
   ###Datos de Radiacion
15
        if (missing(corr)){
16
            corr = switch(modeRad,
17
                           bd = 'CPR', #Correlation between Fd and Kt for daily values
18
                           aguiar = 'CPR', #Correlation between Fd and Kt for daily
19
       values
                           prom = 'Page', #Correlation between Fd and Kt for monthly
       averages
                           bdI = 'BRL'
                                             #Correlation between fd and kt for intraday
21
        values
                           )
22
23
24
        if(is(dataRad, 'Meteo')){BD <- dataRad}</pre>
25
26
        BD <- switch(modeRad,
27
                      bd = {
28
                               if (!is.list(dataRad)) dataRad <- list(file=dataRad)</pre>
29
                               switch(class(dataRad$file)[1],
30
                                      character={
31
                                           bd.default=list(file='', lat=lat)
32
                                           bd=modifyList(bd.default, dataRad)
33
                                           res <- do.call('readBDd', bd)</pre>
34
                                           res
35
                                      },
36
37
                                      data.table= ,
                                      data.frame={
38
                                           bd.default=list(file='', lat=lat)
39
                                           bd=modifyList(bd.default, dataRad)
40
                                           res <- do.call('dt2Meteo', bd)
41
                                           res
42
                                      },
43
                                      zoo={
44
                                           bd.default=list(file='', lat=lat, source='')
45
                                           bd=modifyList(bd.default, dataRad)
46
                                           res <- do.call('zoo2Meteo', bd)</pre>
47
                                           res
48
                                      })
49
                          }, #End of bd
50
                      prom = {
51
                          if (!is.list(dataRad)) dataRad <- list(GOdm=dataRad)</pre>
52
53
                          prom.default <- list(GOdm=numeric(), lat=lat)</pre>
                          prom = modifyList(prom.default, dataRad)
54
```

```
res <- do.call('readGOdm', prom)</pre>
55
                        }, #End of prom
56
                        aguiar = {
57
                             if (is.list(dataRad)) dataRad <- dataRad$GOdm</pre>
                             BTd <- fBTd(mode='serie')
59
                             solD <- fSolD(lat, BTd)</pre>
60
                             GOd <- markovGO(dataRad, solD)</pre>
61
                             res <- dt2Meteo(GOd, lat=lat, source='aguiar')</pre>
62
                        }, #End of aguiar
63
                        bdI = {
64
                             if (!is.list(dataRad)) dataRad <- list(file=dataRad)</pre>
65
                             switch(class(dataRad$file)[1],
66
                                     character = {
67
                                         bdI.default <- list(file='', lat=lat)</pre>
68
                                         bdI <- modifyList(bdI.default, dataRad)</pre>
69
                                         res <- do.call('readBDi', bdI)</pre>
71
                                         res
                                     },
72
                                     data.table = ,
73
                                     data.frame = {
                                         bdI.default <- list(file='', lat=lat)</pre>
75
                                         bdI <- modifyList(bdI.default, dataRad)</pre>
76
                                         res <- do.call('dt2Meteo', bdI)</pre>
77
                                         res
78
                                     },
79
                                     zoo = {
80
                                         bdI.default <- list(file='', lat=lat, source='')</pre>
81
                                         bdI <- modifyList(bdI.default, dataRad)</pre>
82
                                         res <- do.call('zoo2Meteo', bdI)
83
84
                                     },
85
                                     stop('dataRad$file should be a character, a data.
86
         table, a data.frame or a zoo.')
                                     )} #End of btI
87
                        )
                                        #End of general switch
88
         }
89
90
91
    ### Angulos solares y componentes de irradiancia
92
         if (modeRad=='bdI') {
93
              sol <- calcSol(lat, sample = sample,</pre>
94
                               BTi = indexD(BD), keep.night=keep.night, method=
95
         sunGeometry)
              compI <- fCompI(sol=sol, GOI=BD, corr=corr, f=f, ...)</pre>
96
              compD <- compI[, lapply(.SD, P2E, sol@sample),</pre>
97
                               .SDcols = c('GO', 'DO', 'BO'),
98
                               by = truncDay(Dates)]
99
              names(compD)[1] <- 'Dates'</pre>
100
              names(compD)[-1] <- paste(names(compD)[-1], 'd', sep = '')</pre>
101
102
              compD$Fd <- compD$D0d/compD$G0d</pre>
              compD$Kt <- compD$GOd/sol@solD$BoOd</pre>
103
         } else { ##modeRad!='bdI'
104
              sol <- calcSol(lat, indexD(BD), sample = sample,</pre>
105
                               keep.night = keep.night, method = sunGeometry)
106
              compD<-fCompD(sol=sol, GOd=BD, corr=corr, f, ...)</pre>
107
              compI<-fCompI(sol=sol, compD=compD, ...)</pre>
108
```

```
109
110
    ###Temperature
111
112
        Ta=switch(modeRad,
113
                    bd={}
114
                        if (all(c("TempMax","TempMin") %in% names(BD@data))) {
115
                            fTemp(sol, BD)
116
                        } else {
117
                            if ("Ta" %in% names(BD@data)) {
118
                                 data.table(Dates = indexD(sol),
119
                                             Ta =BD@data$Ta)
120
                            } else {
121
                                 warning('No temperature information available!')
122
                            }
123
                        }
124
                    },
125
                    bdI={
126
                        if ("Ta" %in% names(BD@data)) {
127
                            data.table(Dates = indexI(sol),
                                         Ta = BD@data$Ta)
129
                        } else {
130
                            warning('No temperature information available!')
131
                        }
132
                   },
133
                   prom={
134
                        if ("Ta" %in% names(BD@data)) {
135
                            data.table(Dates = indexD(sol),
136
                                         Ta = BD@data$Ta)
137
                        } else {
138
                            warning('No temperature information available!')
139
                        }
140
                    },
141
                    aguiar={
142
                        data.table(Dates = indexI(sol),
143
                                    Ta = BD@data$Ta)
144
                    }
145
                    )
146
147
    ###Medias mensuales y anuales
148
        nms <- c('GOd', 'DOd', 'BOd')</pre>
149
        GOdm <- compD[, lapply(.SD/1000, mean, na.rm = TRUE),</pre>
150
                        .SDcols = nms,
151
                        by = .(month(Dates), year(Dates))]
152
153
        if(modeRad == 'prom'){
154
             GOdm[, DayOfMonth := DOM(GOdm)]
155
             GOy <- GOdm[, lapply(.SD*DayOfMonth, sum, na.rm = TRUE),
156
                          .SDcols = nms,
157
                          by = .(Dates = year)]
             GOdm[, DayOfMonth := NULL]
        } else{
160
             GOy <- compD[, lapply(.SD/1000, sum, na.rm = TRUE),
161
                            .SDcols = nms,
162
163
                           by = .(Dates = year(Dates))]
164
```

```
GOdm[, Dates := paste(month.abb[month], year, sep = '. ')]
165
        GOdm[, c('month', 'year') := NULL]
166
        setcolorder(GOdm, 'Dates')
167
168
    ###Result
169
        result <- new(Class='GO',
170
                                    #GO contains "Meteo"
                        BD,
171
                        sol,
                                   #GO contains 'Sol'
172
                        GOD=compD, #results of fCompD
173
                        GOdm=GOdm, #monthly means
174
                                   #yearly values
                        GOy=GOy,
175
                        GOI=compI, #results of fCompD
                        Ta=Ta
                                   #ambient temperature
177
178
        return(result)
179
    }
```

calcGef

```
calcGef<-function(lat,</pre>
2
                       modeTrk='fixed',
                                              #c('two','horiz','fixed')
                       modeRad='prom',
3
                       dataRad,
4
                       sample='hour',
5
                       keep.night=TRUE,
6
7
                       sunGeometry='michalsky',
                       corr, f,
8
                       betaLim=90, beta=abs(lat)-10, alfa=0,
9
                       iS=2, alb=0.2, horizBright=TRUE, HCPV=FALSE,
10
                                       #modeShd=c('area','bt','prom')
                       modeShd='',
11
                       struct=list(), #list(W=23.11, L=9.8, Nrow=2, Ncol=8),
12
                       distances=data.frame(), #data.table(Lew=40, Lns=30, H=0)){
13
                       ...){
14
15
       stopifnot(is.list(struct), is.data.frame(distances))
16
17
       if (('bt' %in% modeShd) & (modeTrk!='horiz')) {
18
            modeShd[which(modeShd=='bt')]='area'
19
            warning('backtracking is only implemented for modeTrk=horiz')}
20
21
       if (modeRad!='prev'){ #not use a prev calculation
22
            radHoriz <- calcGO(lat=lat, modeRad=modeRad,</pre>
23
                                dataRad=dataRad,
24
                                 sample=sample, keep.night=keep.night,
25
                                 sunGeometry=sunGeometry,
26
                                 corr=corr, f=f, ...)
27
       } else {
28
                                            #use a prev calculation
29
            radHoriz <- as(dataRad, 'GO')</pre>
30
31
   ### Inclined and effective radiation
32
       BT=("bt" %in% modeShd)
33
       angGen <- fTheta(radHoriz, beta, alfa, modeTrk, betaLim, BT, struct,</pre>
34
       distances)
       inclin <- fInclin(radHoriz, angGen, iS, alb, horizBright, HCPV)</pre>
```

```
36
    ### Daily, monthly and yearly values
37
        by <- radHoriz@sample</pre>
38
        nms <- c('Bo', 'Bn', 'G', 'D', 'B', 'Gef', 'Def', 'Bef')
39
        nmsd <- paste(nms, 'd', sep = '')</pre>
40
41
42
        if(radHoriz@type == 'prom'){
43
            Gefdm <- inclin[, lapply(.SD/1000, P2E, by),</pre>
44
                               .SDcols = nms,
45
                              by = .(month(Dates), year(Dates))]
46
            names(Gefdm)[-c(1,2)] \leftarrow nmsd
47
            GefD <- Gefdm[, .SD*1000,</pre>
48
                             .SDcols = nmsd,
49
                            by = .(Dates = indexD(radHoriz))]
50
51
            Gefdm[, DayOfMonth := DOM(Gefdm)]
52
            Gefy <- Gefdm[, lapply(.SD*DayOfMonth, sum, na.rm = TRUE),</pre>
53
                            .SDcols = nmsd,
54
                            by = .(Dates = year)]
55
            Gefdm[, DayOfMonth := NULL]
56
        } else{
57
58
            GefD <- inclin[, lapply(.SD, P2E, by),</pre>
                              .SDcols = nms,
59
                             by = .(Dates = truncDay(Dates))]
60
            names(GefD)[-1] <- nmsd</pre>
61
62
            Gefdm <- GefD[, lapply(.SD/1000, mean, na.rm = TRUE),</pre>
63
                             .SDcols = nmsd,
64
                            by = .(month(indexD(radHoriz)), year(indexD(radHoriz)))]
65
            Gefy <- GefD[, lapply(.SD/1000, sum, na.rm = TRUE),</pre>
66
67
                           .SDcols = nmsd,
                           by = .(Dates = year(indexD(radHoriz)))]
68
        }
69
70
        Gefdm[, Dates := paste(month.abb[month], year, sep = '. ')]
71
        Gefdm[, c('month', 'year') := NULL]
72
        setcolorder(Gefdm, 'Dates')
73
74
    ###Resultado antes de sombras
75
        result0=new('Gef',
76
                                                              #Gef contains 'GO'
77
                     radHoriz,
                     Theta=angGen,
78
                     GefD=GefD,
79
                     Gefdm=Gefdm,
80
                     Gefy=Gefy,
81
                     GefI=inclin,
82
                     iS=iS,
83
                     alb=alb.
84
                     modeTrk=modeTrk,
85
                     modeShd=modeShd,
86
                     angGen=list(alfa=alfa, beta=beta, betaLim=betaLim),
87
                     struct=struct,
88
                     distances=distances
89
                     )
90
   ###Shadows
```

```
if (isTRUE(modeShd == "") || #If modeShd=='' there is no shadow
92
           ('bt' %in% modeShd)) {
                                                #nor if there is backtracking
93
           return(result0)
94
       } else {
95
           result <- calcShd(result0, modeTrk, modeShd, struct, distances)</pre>
96
           return(result)
97
       }
   }
99
```

prodGCPV

```
prodGCPV<-function(lat,</pre>
1
                        modeTrk='fixed',
2
                        modeRad='prom',
3
4
                        dataRad,
                        sample='hour',
5
                        keep.night=TRUE,
6
                        sunGeometry='michalsky',
7
                        corr, f,
8
                        betaLim=90, beta=abs(lat)-10, alfa=0,
9
                        iS=2, alb=0.2, horizBright=TRUE, HCPV=FALSE,
10
                        module=list(),
11
                        generator=list(),
12
                        inverter=list(),
13
                        effSys=list(),
14
                        modeShd='',
15
                        struct=list(),
16
                        distances=data.table(),
17
                        ...){
18
19
       stopifnot(is.list(module),
20
                  is.list(generator),
21
                  is.list(inverter),
22
                  is.list(effSys),
23
24
                  is.list(struct),
                  is.data.table(distances))
25
26
     if (('bt' %in% modeShd) & (modeTrk!='horiz')) {
27
         modeShd[which(modeShd=='bt')]='area'
28
          warning('backtracking is only implemented for modeTrk=horiz')}
29
30
       if (modeRad!='prev'){ #We do not use a previous calculation
31
32
       radEf <-calcGef(lat=lat, modeTrk=modeTrk, modeRad=modeRad,
33
                        dataRad=dataRad,
34
35
                        sample=sample, keep.night=keep.night,
36
                        sunGeometry=sunGeometry,
                        corr=corr, f=f,
37
                        betaLim=betaLim, beta=beta, alfa=alfa,
38
                        iS=iS, alb=alb, horizBright=horizBright, HCPV=HCPV,
39
                        modeShd=modeShd, struct=struct, distances=distances, ...)
40
41
     } else { #We use a previous calcGO, calcGef or prodGCPV calculation.
42
```

```
stopifnot(class(dataRad) %in% c('GO', 'Gef', 'ProdGCPV'))
44
          radEf <- switch(class(dataRad),</pre>
45
                            GO=calcGef(lat=lat,
46
                                         modeTrk=modeTrk, modeRad='prev',
47
                                         dataRad=dataRad,
48
                                         betaLim=betaLim, beta=beta, alfa=alfa,
49
                                         iS=iS, alb=alb, horizBright=horizBright, HCPV=
50
       HCPV,
                                         modeShd=modeShd, struct=struct, distances=
51
        distances, ...),
                            Gef=dataRad,
52
                            ProdGCPV=as(dataRad, 'Gef')
54
      }
55
56
57
        ##Production
58
        prodI<-fProd(radEf,module,generator,inverter,effSys)</pre>
59
        module=attr(prodI, 'module')
60
        generator=attr(prodI, 'generator')
61
        inverter=attr(prodI, 'inverter')
62
        effSys=attr(prodI, 'effSys')
63
64
        ##Calculation of daily, monthly and annual values
65
        Pg=generator$Pg #Wp
66
67
        by <- radEf@sample</pre>
        nms1 <- c('Pac', 'Pdc')</pre>
69
        nms2 <- c('Eac', 'Edc', 'Yf')</pre>
70
71
72
73
        if(radEf@type == 'prom'){
            prodDm <- prodI[, lapply(.SD/1000, P2E, by),</pre>
74
                               .SDcols = nms1,
75
                              by = .(month(Dates), year(Dates))]
76
            names(prodDm)[-c(1,2)] \leftarrow nms2[-3]
77
            prodDm[, Yf := Eac/(Pg/1000)]
78
            prodD <- prodDm[, .SD*1000,</pre>
79
                               .SDcols = nms2,
80
                              by = .(Dates = indexD(radEf))]
81
            prodD[, Yf := Yf/1000]
82
83
            prodDm[, DayOfMonth := DOM(prodDm)]
84
            prody <- prodDm[, lapply(.SD*DayOfMonth, sum, na.rm = TRUE),</pre>
85
                              .SDcols = nms2,
86
                              by = .(Dates = year)]
87
            prodDm[, DayOfMonth := NULL]
88
        } else {
89
            prodD <- prodI[, lapply(.SD, P2E, by),</pre>
90
                             .SDcols = nms1,
91
                             by = .(Dates = truncDay(Dates))]
92
            names(prodD)[-1] <- nms2[-3]</pre>
93
            prodD[, Yf := Eac/Pg]
94
95
            prodDm <- prodD[, lapply(.SD/1000, mean, na.rm = TRUE),</pre>
96
                              .SDcols = nms2,
97
```

```
by = .(month(Dates), year(Dates))]
98
             prodDm[, Yf := Yf * 1000]
99
             prody <- prodD[, lapply(.SD/1000, sum, na.rm = TRUE),</pre>
100
                              .SDcols = nms2,
101
                              by = .(Dates = year(Dates))]
102
             prody[, Yf := Yf * 1000]
103
        }
104
105
        prodDm[, Dates := paste(month.abb[month], year, sep = '. ')]
106
        prodDm[, c('month', 'year') := NULL]
107
        setcolorder(prodDm, 'Dates')
108
        result <- new('ProdGCPV',</pre>
110
                        radEf,
                                                   #contains 'Gef'
111
                        prodD=prodD,
112
                        prodDm=prodDm,
113
                        prody=prody,
114
                        prodI=prodI,
115
                        module=module,
116
                        generator=generator,
117
                        inverter=inverter,
118
                        effSys=effSys
119
120
                        )
    }
121
```

prodPVPS

```
prodPVPS<-function(lat,</pre>
                        modeTrk='fixed',
2
                        modeRad='prom',
3
                        dataRad,
4
                        sample='hour',
5
                        keep.night=TRUE,
6
                        sunGeometry='michalsky',
7
                        corr, f,
8
                        betaLim=90, beta=abs(lat)-10, alfa=0,
9
                        iS=2, alb=0.2, horizBright=TRUE, HCPV=FALSE,
10
                        pump, H,
11
                        Pg, converter= list(), #Pnom=Pg, Ki=c(0.01,0.025,0.05)),
12
                        effSys=list(),
13
                        ...){
14
15
       stopifnot(is.list(converter),
16
                   is.list(effSys))
17
18
       if (modeRad!='prev'){ #We do not use a previous calculation
19
20
21
            radEf<-calcGef(lat=lat, modeTrk=modeTrk, modeRad=modeRad,</pre>
                            dataRad=dataRad,
22
                            sample=sample, keep.night=keep.night,
23
24
                            sunGeometry=sunGeometry,
                            corr=corr, f=f,
25
                            betaLim=betaLim, beta=beta, alfa=alfa,
26
                            iS=iS, alb=alb, horizBright=horizBright, HCPV=HCPV,
27
                        modeShd='', ...)
```

```
} else { #We use a previous calculation of calcGO, calcGef or prodPVPS
30
            stopifnot(class(dataRad) %in% c('GO', 'Gef', 'ProdPVPS'))
31
            radEf <- switch(class(dataRad),</pre>
32
                              G0=calcGef(lat=lat,
33
                                         modeTrk=modeTrk, modeRad='prev',
34
                           dataRad=dataRad,
35
                           betaLim=betaLim, beta=beta, alfa=alfa,
36
                           iS=iS, alb=alb, horizBright=horizBright, HCPV=HCPV,
37
                           modeShd='', ...),
38
                           Gef=dataRad,
39
                           ProdPVPS=as(dataRad, 'Gef')
40
41
        }
42
43
   ###Electric production
        converter.default=list(Ki = c(0.01,0.025,0.05), Pnom=Pg)
45
        converter=modifyList(converter.default, converter)
46
47
        effSys.default=list(ModQual=3,ModDisp=2,OhmDC=1.5,OhmAC=1.5,MPP=1,TrafoMT=1,
48
        effSys=modifyList(effSys.default, effSys)
49
50
        TONC=47
51
        Ct = (TONC - 20) / 800
52
        lambda=0.0045
53
        Gef=radEf@GefI$Gef
        night=radEf@solI$night
55
        Ta=radEf@Ta$Ta
56
57
        Tc=Ta+Ct*Gef
58
59
        Pdc=Pg*Gef/1000*(1-lambda*(Tc-25))
        Pdc[is.na(Pdc)]=0 #Necessary for the functions provided by fPump
60
        PdcN=with(effSys,
61
                   Pdc/converter$Pnom*(1-ModQual/100)*(1-ModDisp/100)*(1-OhmDC/100)
62
63
        PacN=with(converter,{
64
            A=Ki[3]
65
            B=Ki[2]+1
66
            C=Ki[1]-(PdcN)
67
            ##AC power normalized to the inverter
68
            result=(-B+sqrt(B^2-4*A*C))/(2*A)
69
        })
70
        PacN[PacN<0]<-0
71
72
        Pac=with(converter,
73
                 PacN*Pnom*(1-effSys$0hmAC/100))
74
        Pdc=PdcN*converter$Pnom*(Pac>0)
75
76
77
   ###Pump
78
        fun<-fPump(pump=pump, H=H)</pre>
79
        ##I limit power to the pump operating range.
80
        rango=with(fun,Pac>=lim[1] & Pac<=lim[2])</pre>
81
        Pac[!rango] <- 0
82
        Pdc[!rango] <- 0
83
```

```
prodI=data.table(Pac=Pac,Pdc=Pdc,Q=0,Pb=0,Ph=0,f=0)
84
         prodI=within(prodI,{
85
             Q[rango] <- fun $fQ(Pac[rango])
86
             Pb[rango] <- fun$fPb(Pac[rango])
             Ph[rango] <- fun fPh(Pac[rango])
88
             f[rango] <-fun$fFreq(Pac[rango])
89
             etam=Pb/Pac
90
             etab=Ph/Pb
91
         })
92
93
         prodI[night,] <-NA</pre>
94
         prodI[, Dates := indexI(radEf)]
95
         setcolorder(prodI, c('Dates', names(prodI)[-length(prodI)]))
96
97
    ###daily, monthly and yearly values
98
99
         by <- radEf@sample</pre>
100
101
         if(radEf@type == 'prom'){
102
             prodDm <- prodI[, .(Eac = P2E(Pac, by)/1000,</pre>
                                    Qd = P2E(Q, by)),
104
                               by = .(month(Dates), year(Dates))]
105
106
             prodDm[, Yf := Eac/(Pg/1000)]
107
             prodD <- prodDm[, .(Eac = Eac*1000,</pre>
108
                                    Qd,
109
                                    Yf),
110
                               by = .(Dates = indexD(radEf))]
111
112
             prodDm[, DayOfMonth := DOM(prodDm)]
113
114
115
             prody <- prodDm[, lapply(.SD*DayOfMonth, sum, na.rm = TRUE),</pre>
                               .SDcols = c('Eac', 'Qd', 'Yf'),
116
                               by = .(Dates = year)]
117
             prodDm[, DayOfMonth := NULL]
         } else {
119
             prodD <- prodI[, .(Eac = P2E(Pac, by)/1000,</pre>
120
                                  Qd = P2E(Q, by)),
121
                              by = .(Dates = truncDay(Dates))]
122
             prodD[, Yf := Eac/Pg*1000]
123
124
             prodDm <- prodD[, lapply(.SD, mean, na.rm = TRUE),</pre>
125
                                .SDcols = c('Eac','Qd', 'Yf'),
                               by = .(month(Dates), year(Dates))]
127
             prody <- prodD[, lapply(.SD, sum, na.rm = TRUE),</pre>
128
                              .SDcols = c('Eac', 'Qd', 'Yf'),
129
                              by = .(Dates = year(Dates))]
130
131
         }
132
133
         prodDm[, Dates := paste(month.abb[month], year, sep = '. ')]
134
         prodDm[, c('month', 'year') := NULL]
135
         setcolorder(prodDm, 'Dates')
136
137
138
         result <- new('ProdPVPS',</pre>
                       radEf,
                                                   #contains 'Gef'
139
```

```
prodD=prodD,
140
                          prodDm=prodDm,
141
                          prody=prody,
142
                          prodI=prodI,
143
                          pump=pump,
144
                          H=H,
145
                          Pg=Pg,
146
                          converter=converter,
147
                          effSys=effSys
148
149
    }
150
```

calcShd

```
calcShd<-function(radEf,##class='Gef'</pre>
1
2
                       modeTrk='fixed',
                                              #c('two','horiz','fixed')
                       modeShd='prom',
                                              #modeShd=c('area','bt','prom')
3
                       struct=list(), #list(W=23.11, L=9.8, Nrow=2, Ncol=8),
4
                       distances=data.frame() #data.table(Lew=40, Lns=30, H=0)){
5
6
   {
7
        stopifnot(is.list(struct), is.data.frame(distances))
8
a
        ##For now I only use modeShd = 'area'
10
        ##With different modeShd (to be defined) I will be able to calculate Gef in a
11
        different way
        ##See macagnan thesis
12
        prom=("prom" %in% modeShd)
13
        prev <- as.data.tableI(radEf, complete=TRUE)</pre>
14
        ## shadow calculations
15
        sol <- data.table(AzS = prev$AzS,</pre>
16
                            AlS = prev$AlS)
17
        theta <- radEf@Theta
18
        AngGen <- data.table(theta, sol)</pre>
19
        FS <- fSombra(AngGen, distances, struct, modeTrk, prom)
20
21
        ## irradiance calculation
        gef0 <- radEf@GefI</pre>
22
        Bef0 <- gef0$Bef
23
        Dcef0 <- gef0$Dcef</pre>
24
        Gef0 <- gef0$Gef
25
        DiefO <- gefO$Dief
26
        Ref0 <- gef0$Ref
27
        ## calculation
28
        Bef <- Bef0*(1-FS)
29
        Dcef <- Dcef0*(1-FS)</pre>
30
        Def <- DiefO+Dcef
31
32
        Gef <- Dief0+Ref0+Bef+Dcef #Including shadows</pre>
33
        ##Change names
        nms <- c('Gef', 'Def', 'Dcef', 'Bef')</pre>
34
        nmsIndex <- which(names(gef0) %in% nms)</pre>
35
        names(gef0)[nmsIndex] <- paste(names(gef0)[nmsIndex], '0', sep='')</pre>
        GefShd <- gef0
37
        GefShd[, c(nms, 'FS') := .(Gef, Def, Dcef, Bef, FS)]
38
39
        ## daily, monthly and yearly values
```

```
by <- radEf@sample</pre>
41
        nms <- c('Gef0', 'Def0', 'Bef0', 'G', 'D', 'B', 'Gef', 'Def', 'Bef')
42
        nmsd <- paste(nms, 'd', sep = '')</pre>
43
44
        Gefdm <- GefShd[, lapply(.SD/1000, P2E, by),</pre>
45
                         by = .(month(truncDay(Dates)), year(truncDay(Dates))),
46
                          .SDcols = nms]
47
        names(Gefdm)[-c(1, 2)] \leftarrow nmsd
48
49
        if(radEf@type == 'prom'){
50
            GefD <- Gefdm[, .SD[, -c(1, 2)] * 1000,
51
                            .SDcols = nmsd,
52
                            by = .(Dates = indexD(radEf))]
53
54
            Gefdm[, DayOfMonth := DOM(Gefdm)]
55
56
            Gefy <- Gefdm[, lapply(.SD*DayOfMonth, sum, na.rm = TRUE),</pre>
57
                            .SDcols = nmsd,
58
                            by = .(Dates = year)]
59
            Gefdm[, DayOfMonth := NULL]
60
        } else{
61
            GefD <- GefShd[, lapply(.SD/1000, P2E, by),</pre>
62
63
                             .SDcols = nms,
                             by = .(Dates = truncDay(Dates))]
64
            names(GefD)[-1] <- nmsd</pre>
65
66
            Gefy <- GefD[, lapply(.SD[, -1], sum, na.rm = TRUE),</pre>
67
                           .SDcols = nmsd,
68
                           by = .(Dates = year(Dates))]
69
        }
70
71
72
        Gefdm[, Dates := paste(month.abb[month], year, sep = '. ')]
        Gefdm[, c('month', 'year') := NULL]
73
        setcolorder(Gefdm, c('Dates', names(Gefdm)[-length(Gefdm)]))
74
        ## Object of class Gef
76
        ## modifying the 'modeShd', 'GefI', 'GefD', 'Gefdm', and 'Gefy' slots
77
        ## from the original radEf object
78
        radEf@modeShd=modeShd
79
        radEf@GefI=GefShd
80
        radEf@GefD=GefD
81
        radEf@Gefdm=Gefdm
82
        radEf@Gefy=Gefy
83
        return(radEf)
84
   }
85
```

optimShd

```
betaLim=90, beta=abs(lat)-10, alfa=0,
8
                        iS=2, alb=0.2, HCPV=FALSE,
9
                        module=list(),
10
                        generator=list(),
11
                        inverter=list(),
12
                        effSys=list(),
13
                        modeShd='',
14
                        struct=list(),
15
                        distances=data.table(),
16
                        res=2,
                                     #resolution, distance spacing
17
                        prog=TRUE){ #Drawing progress bar
18
19
        if (('bt' %in% modeShd) & (modeTrk!='horiz')) {
20
            modeShd[which(modeShd=='bt')]='area'
21
            warning('backtracking is only implemented for modeTrk=horiz')}
22
23
        ##I save function arguments for later use
24
25
        listArgs<-list(lat=lat, modeTrk=modeTrk, modeRad=modeRad,</pre>
26
                        dataRad=dataRad,
27
                        sample=sample, keep.night=keep.night,
28
                        sunGeometry=sunGeometry,
29
                        betaLim=betaLim, beta=beta, alfa=alfa,
30
                        iS=iS, alb=alb, HCPV=HCPV,
31
                        module=module, generator=generator,
32
                        inverter=inverter, effSys=effSys,
33
                        modeShd=modeShd, struct=struct,
34
                        distances=data.table(Lew=NA, Lns=NA, D=NA))
35
36
37
        ##I think network on which I will do the calculations
38
39
        Red=switch(modeTrk,
                   horiz=with(distances,
40
                                data.table(Lew=seq(Lew[1],Lew[2],by=res),
41
                                            H=0)),
42
                    two=with(distances,
43
                             data.table(
44
                             expand.grid(Lew=seq(Lew[1],Lew[2],by=res),
45
                                          Lns=seq(Lns[1],Lns[2],by=res),
46
                                          H=0))),
47
                    fixed=with(distances,
48
                                data.table(D=seq(D[1],D[2],by=res),
49
                                            H=0))
50
        )
51
52
        casos < -dim(Red)[1] #Number of possibilities to study
53
54
        ##I prepare the progress bar
55
        if (prog) {pb <- txtProgressBar(min = 0, max = casos+1, style = 3)</pre>
56
            setTxtProgressBar(pb, 0)}
57
58
   ###Calculations
59
        ##Reference: No shadows
60
        listArgs0 <- modifyList(listArgs,</pre>
61
                                  list(modeShd='', struct=NULL, distances=NULL) )
62
        Prod0<-do.call(prodGCPV, listArgs0)</pre>
63
```

```
YfAnualO=mean(ProdO@prody$Yf) #I use mean in case there are several years
64
        if (prog) {setTxtProgressBar(pb, 1)}
65
66
        ##The loop begins
67
68
        ##I create an empty vector of the same length as the cases to be studied
69
        YfAnual <- numeric (casos)
70
71
        BT=('bt' %in% modeShd)
72
        if (BT) { ##There is backtracking, then I must start from horizontal
73
        radiation.
            RadBT <- as(Prod0, 'G0')</pre>
             for (i in seq_len(casos)){
75
                 listArgsBT <- modifyList(listArgs,</pre>
76
                                            list(modeRad='prev', dataRad=RadBT,
77
                                                  distances=Red[i,]))
78
                 prod.i <- do.call(prodGCPV, listArgsBT)</pre>
79
                 YfAnual[i]=mean(prod.i@prody$Yf)
80
                 if (prog) {setTxtProgressBar(pb, i+1)}
             }
82
        } else {
83
             prom=('prom' %in% modeShd)
84
             for (i in seq_len(casos)){
85
                 Gef0=as(Prod0, 'Gef')
86
                 GefShd=calcShd(Gef0, modeTrk=modeTrk, modeShd=modeShd,
87
                                 struct=struct, distances=Red[i,])
88
                 listArgsShd <- modifyList(listArgs,</pre>
                                              list(modeRad='prev', dataRad=GefShd)
90
91
                 prod.i <- do.call(prodGCPV, listArgsShd)</pre>
92
                 YfAnual[i]=mean(prod.i@prody$Yf)
93
                 if (prog) {setTxtProgressBar(pb, i+1)}
94
             }
95
        }
96
        if (prog) {close(pb)}
97
98
99
    ###Results
100
        FS=1-YfAnual/YfAnual0
101
        GRR=switch (modeTrk,
102
                    two=with(Red,Lew*Lns)/with(struct,L*W),
103
                    fixed=Red$D/struct$L,
104
                    horiz=Red$Lew/struct$L)
        SombraDF=data.table(Red,GRR,FS,Yf=YfAnual)
106
        FS.loess=switch(modeTrk,
107
                          two=loess(FS~Lew*Lns,data=SombraDF),
108
                          horiz=loess(FS~Lew,data=SombraDF),
109
                          fixed=loess(FS~D,data=SombraDF))
110
        Yf.loess=switch(modeTrk.
111
                          two=loess(Yf~Lew*Lns,data=SombraDF),
112
                          horiz=loess(Yf~Lew,data=SombraDF),
113
                          fixed=loess(Yf~D,data=SombraDF))
114
        result <- new('Shade',
115
                       Prod0, ##contains ProdGCPV
116
117
                       FS=FS,
                        GRR=GRR,
118
```

```
Yf=YfAnual,
119
                          FS.loess=FS.loess,
120
                          Yf.loess=Yf.loess,
121
                          modeShd=modeShd,
122
                          struct=struct,
123
                          distances=Red,
124
                          res=res
125
                          )
126
         result
127
    }
128
```

meteoReaders

```
#### monthly means of irradiation ####
1
   readG0dm <- function(G0dm, Ta = 25, lat = 0,</pre>
2
3
                          year = as.POSIXlt(Sys.Date())$year + 1900,
                          promDays = c(17, 14, 15, 15, 15, 10, 18, 18, 18, 19, 18, 13)
4
                          source = '')
5
6
7
        if(missing(lat)){lat <- 0}</pre>
       Dates <- as.IDate(paste(year, 1:12, promDays, sep = '-'), tz = 'UTC')
8
       GOdm.dt <- data.table(Dates = Dates,</pre>
9
                               GOd = GOdm,
10
                               Ta = Ta
11
       setkey(GOdm.dt, 'Dates')
12
       results <- new(Class = 'Meteo',
13
                        latm = lat,
14
                        data = GOdm.dt,
15
                        type = 'prom',
16
                        source = source)
17
   }
18
19
   #### file to Meteo (daily) ####
20
   readBDd <- function(file, lat,</pre>
^{21}
                        format = "%d/%m/%Y",header = TRUE,
22
                       fill = TRUE, dec = '.', sep = ';',
23
                       dates.col = 'Dates', ta.col = 'Ta',
24
                        g0.col = 'G0', keep.cols = FALSE)
25
   {
26
        #stops if the arguments are not characters or numerics
27
        stopifnot(is.character(dates.col) || is.numeric(dates.col))
28
       stopifnot(is.character(ta.col) || is.numeric(ta.col))
29
       stopifnot(is.character(g0.col) || is.numeric(g0.col))
30
31
       #read from file and set it in a data.table
32
33
       bd <- fread(file, header = header, fill = fill, dec = dec, sep = sep)
34
       #check the columns
35
       if(!(dates.col %in% names(bd))) stop(paste('The column', dates.col, 'is not
36
       in the file'))
        if(!(g0.col %in% names(bd))) stop(paste('The column', g0.col, 'is not in the
37
        file'))
       if(!(ta.col %in% names(bd))) stop(paste('The column', ta.col, 'is not in the
38
        file'))
```

```
39
        #name the dates column by Dates
40
        Dates <- bd[[dates.col]]</pre>
41
        bd[,(dates.col) := NULL]
42
        bd[, Dates := as.IDate(Dates, format = format)]
43
44
        #name the gO column by GO
45
        GO <- bd[[g0.col]]
46
        bd[, (g0.col) := NULL]
47
        bd[, G0 := as.numeric(G0)]
48
49
        #name the ta column by Ta
        Ta <- bd[[ta.col]]</pre>
51
        bd[, (ta.col) := NULL]
52
        bd[, Ta := as.numeric(Ta)]
53
        names0 <- NULL
55
        if(all(c('D0', 'B0') %in% names(bd))){
56
            names0 <- c(names0, 'D0', 'B0')</pre>
57
58
59
        names0 <- c(names0, 'Ta')</pre>
60
61
        if(all(c('TempMin', 'TempMax') %in% names(bd))){
62
            names0 <- c(names0, 'TempMin', 'TempMax')</pre>
63
        }
64
        if(keep.cols)
66
            #keep the rest of the columns but reorder the columns
67
            setcolorder(bd, c('Dates', 'GO', names0))
68
        }
69
70
        else
        {
71
            #erase the rest of the columns
72
            cols <- c('Dates', 'GO', names0)</pre>
73
            bd <- bd[, ..cols]</pre>
74
        }
75
76
77
        setkey(bd, 'Dates')
        result <- new(Class = 'Meteo',
78
                       latm = lat,
79
80
                       data = bd,
                       type = 'bd',
81
                       source = file)
82
   }
83
84
   #### file to Meteo (intradaily) ####
85
   readBDi <- function(file, lat,</pre>
86
                         format = "%d/%m/%Y %H:%M:%S",
87
                         header = TRUE, fill = TRUE, dec = '.',
88
                         sep = ';', dates.col = 'dates', times.col,
89
                         ta.col = 'Ta', g0.col = 'G0', keep.cols = FALSE)
90
   {
91
        #stops if the arguments are not characters or numerics
92
93
        stopifnot(is.character(dates.col) || is.numeric(dates.col))
        stopifnot(is.character(ta.col) || is.numeric(ta.col))
94
```

```
stopifnot(is.character(g0.col) || is.numeric(g0.col))
95
96
        #read from file and set it in a data.table
97
        bd <- fread(file, header = header, fill = fill, dec = dec, sep = sep)
99
        #check the columns
100
        if(!(dates.col %in% names(bd))) stop(paste('The column', dates.col, 'is not
101
        in the file'))
        if(!(g0.col %in% names(bd))) stop(paste('The column', g0.col, 'is not in the
102
        if(!(ta.col %in% names(bd))) stop(paste('The column', ta.col, 'is not in the
103
         file'))
104
        if(!missing(times.col)){
105
             stopifnot(is.character(times.col) || is.numeric(times.col))
106
             if(!(times.col %in% names(bd))) stop(paste('The column', times.col, 'is
107
        not in the file'))
108
             #name the dates column by Dates
109
             format <- strsplit(format, ' ')</pre>
110
             dd <- as.IDate(bd[[dates.col]], format = format[[1]][1])</pre>
111
             tt <- as.ITime(bd[[times.col]], format = format[[1]][2])</pre>
112
             bd[,(dates.col) := NULL]
113
             bd[,(times.col) := NULL]
114
             bd[, Dates := as.POSIXct(dd, tt, tz = 'UTC')]
115
        }
116
117
        else
118
119
             dd <- as.POSIXct(bd[[dates.col]], format = format, tz = 'UTC')</pre>
120
             bd[, (dates.col) := NULL]
121
122
             bd[, Dates := dd]
123
124
        #name the gO column by GO
125
        GO <- bd[[gO.col]]
126
        bd[, (g0.col) := NULL]
127
        bd[, G0 := as.numeric(G0)]
128
129
        #name the ta column by Ta
130
        Ta <- bd[[ta.col]]</pre>
131
        bd[, (ta.col) := NULL]
132
        bd[, Ta := as.numeric(Ta)]
133
134
        namesO <- NULL
135
        if(all(c('D0', 'B0') %in% names(bd))){
136
             names0 <- c(names0, 'D0', 'B0')</pre>
137
        }
138
139
        names0 <- c(names0, 'Ta')</pre>
140
141
        if(keep.cols)
142
143
             #keep the rest of the columns but reorder the columns
144
             setcolorder(bd, c('Dates', 'GO', names0))
145
146
```

```
else
147
         {
148
             #erase the rest of the columns
149
             cols <- c('Dates', 'GO', names0)</pre>
150
             bd <- bd[, ..cols]</pre>
151
152
153
         setkey(bd, 'Dates')
154
         result <- new(Class = 'Meteo',
155
                         latm = lat,
156
                         data = bd,
157
                         type = 'bdI',
                         source = file)
159
    }
160
161
162
    dt2Meteo <- function(file, lat, source = '', type){</pre>
163
         ## Make sure its a data.table
164
        bd <- data.table(file)</pre>
165
166
         ## Dates is an as.POSIX element
167
         bd[, Dates := as.POSIXct(Dates, tz = 'UTC')]
168
169
         ## type
170
         if(missing(type)){
171
             sample <- median(diff(file$Dates))</pre>
172
             IsDaily <- as.numeric(sample, units = 'days')</pre>
173
             if(is.na(IsDaily)) IsDaily <- ifelse('GOd' %in% names(bd),</pre>
174
                                                        1, 0)
175
             if(IsDaily >= 30) type <- 'prom'</pre>
176
             else{
177
                  type <- ifelse(IsDaily >= 1, 'bd', 'bdI')
178
179
180
         if(!('Ta' %in% names(bd))){
182
             if(all(c('Tempmin', 'TempMax') %in% names(bd)))
183
                  bd[, Ta := mean(c(Tempmin, TempMax))]
184
             else bd[, Ta := 25]
185
                  }
186
187
         ## Columns of the data.table
188
         nms0 <- switch(type,
189
                          bd = ,
190
                          prom = {
191
                              nms0 <- 'GOd'
192
                               if(all(c('DOd', 'BOd') %in% names(bd))){
193
                                   nms0 <- c(nms0, 'D0d', 'B0d')</pre>
194
195
                              nms0 <- c(nms0, 'Ta')</pre>
196
                               if(all(c('TempMin', 'TempMax') %in% names(bd))){
197
                                   nms0 <- c(nms0, 'TempMin', 'TempMax')
198
                              }
199
200
                              nms0
201
                          },
                          bdI = {
202
```

```
nms0 <- 'GO'
203
                               if(all(c('D0', 'B0') %in% names(bd))){
204
                                    nms0 <- c(nms0, 'D0', 'B0')
205
                               }
206
                               if('Ta' %in% names(bd)){
207
                                    nms0 <- c(nms0, 'Ta')</pre>
208
                               }
209
                               nms0
210
                          })
211
         ## Columns order and set key
212
         setcolorder(bd, c('Dates', nms0))
213
         setkey(bd, 'Dates')
214
         ## Result
215
         result <- new(Class = 'Meteo',
216
                         latm = lat,
217
                         data = bd,
                         type = type,
219
                         source = source)
220
    }
221
     #### Liu and Jordan, Collares-Pereira and Rabl proposals ####
223
    collper <- function(sol, compD)</pre>
224
225
    {
         Dates <- indexI(sol)</pre>
226
         x <- as.Date(Dates)
227
         ind.rep \leftarrow cumsum(c(1, diff(x) != 0))
228
         solI <- as.data.tableI(sol, complete = T)</pre>
         ws <- soll$ws
230
         w <- solI$w
231
232
         a \leftarrow 0.409-0.5016*sin(ws+pi/3)
233
234
         b \leftarrow 0.6609 + 0.4767 * sin(ws + pi/3)
235
         rd <- soll[, BoO/BoOd]
236
         rg <- rd * (a + b * cos(w))
237
238
         # Daily irradiation components
239
         GOd <- compD$GOd[ind.rep]</pre>
240
         BOd <- compD$BOd[ind.rep]
241
         D0d <- compD$D0d[ind.rep]</pre>
242
243
         # Daily profile
244
         GO <- GOd * rg
         DO <- DOd * rd
246
247
         # This method may produce diffuse irradiance higher than
248
         # global irradiance
249
         GO <- pmax(GO, DO, na.rm = TRUE)
250
         BO <- GO - DO
251
252
         # Negative values are set to NA
253
         neg \leftarrow (B0 < 0) \mid (D0 < 0) \mid (G0 < 0)
254
         is.na(G0) <- neg</pre>
255
         is.na(B0) <- neg
256
257
         is.na(D0) <- neg</pre>
258
```

```
# Daily profiles are scaled to keep daily irradiation values
259
         day <- truncDay(indexI(sol))</pre>
260
         sample <- sol@sample</pre>
261
262
         GOdCP <- ave(GO, day, FUN=function(x) P2E(x, sample))</pre>
263
         BOdCP <- ave(B0, day, FUN=function(x) P2E(x, sample))</pre>
264
         DOdCP <- ave(D0, day, FUN=function(x) P2E(x, sample))</pre>
265
         GO <- GO * GOd/GOdCP
267
         BO <- BO * BOd/BOdCP
268
         DO <- DO * DOd/DOdCP
269
270
271
         res <- data.table(GO, BO, DO)
         return(res)
272
    }
273
274
275
    #### intradaily Meteo to daily Meteo ####
276
    Meteoi2Meteod <- function(G0i)</pre>
277
         lat <- GOi@latm</pre>
279
         source <- G0i@source
280
281
         dt0 <- getData(G0i)
282
         dt <- dt0[, lapply(.SD, sum),</pre>
283
                    .SDcols = names(dt0)[!names(dt0) %in% c('Dates', 'Ta')],
284
                   by = .(Dates = as.IDate(Dates))]
         if('Ta' %in% names(dt0)){
286
             Ta \leftarrow dt0[, (Ta = mean(Ta),
287
                             TempMin = min(Ta),
288
                             TempMax = max(Ta)),
289
290
                         by = .(Dates = as.IDate(Dates))]
             if(all(Ta$Ta == c(Ta$TempMin, Ta$TempMax))) Ta[, c('TempMin', 'TempMax')
291
         := NULL]
             dt <- merge(dt, Ta)
292
293
         if('G0' %in% names(dt)){
294
             names(dt)[names(dt) == 'GO'] <- 'GOd'</pre>
295
         }
296
         if('D0' %in% names(dt)){
297
             names(dt)[names(dt) == 'D0'] <- 'D0d'</pre>
298
         }
299
         if('B0' %in% names(dt)){
             names(dt)[names(dt) == 'B0'] <- 'B0d'</pre>
301
302
         GOd <- dt2Meteo(dt, lat, source, type = 'bd')
303
         return(GOd)
304
    }
305
306
    #### daily Meteo to monthly Meteo ####
307
    Meteod2Meteom <- function(GOd)</pre>
308
    {
309
         lat <- GOd@latm
310
         source <- GOd@source</pre>
311
312
         dt <- getData(GOd)</pre>
313
```

```
nms \leftarrow names(dt)[-1]
314
         dt <- dt[, lapply(.SD, mean),</pre>
315
                   .SDcols = nms,
316
                   by = .(month(Dates), year(Dates))]
317
         dt[, Dates := fBTd()]
318
         dt <- dt[, c('month', 'year') := NULL]</pre>
319
320
         setcolorder(dt, 'Dates')
321
322
         GOm <- dt2Meteo(dt, lat, source, type = 'prom')</pre>
323
         return(GOm)
324
    }
325
326
    zoo2Meteo <- function(file, lat, source = '')</pre>
327
    {
328
         sample <- median(diff(index(file)))</pre>
329
         IsDaily <- as.numeric(sample, units = 'days')>=1
330
         type <- ifelse(IsDaily, 'bd', 'bdI')</pre>
331
         result <- new(Class = 'Meteo',
332
                        latm = lat,
                        data = file,
334
                        type = type,
335
336
                        source = source)
    }
337
338
    siarGET <- function(id, inicio, final, tipo = 'Mensuales', ambito = 'Estacion'){</pre>
339
         if(!(tipo %in% c('Horarios', 'Diarios', 'Semanales', 'Mensuales'))){
340
             stop('argument \'tipo\' must be: Horarios, Diarios, Semanales or
341
        Mensuales')
342
         if(!(ambito %in% c('CCAA', 'Provincia', 'Estacion'))){
343
344
             stop('argument \'ambito\' must be: CCAA, Provincia or Estacion')
345
346
         mainURL <- "https://servicio.mapama.gob.es"</pre>
347
348
         path <- paste('/apisiar/API/v1/Datos', tipo, ambito, sep = '/')</pre>
349
350
         ## prepare the APIsiar
351
         req <- request(mainURL) |>
352
             req_url_path(path) |>
353
             req_url_query(Id = id,
354
                             FechaInicial = inicio,
                             FechaFinal = final,
356
                             ClaveAPI = '_Q8L_niYFBBmBs-
357
        vB3UomUqdUYy98FTRX1aYbrZ8n2FXuHYGTV')
         ## execute it
358
         resp <- req_perform(req)</pre>
359
360
         ##JSON to R
361
         respJSON <- resp_body_json(resp, simplifyVector = TRUE)</pre>
362
363
         if(!is.null(respJSON$MensajeRespuesta)){
364
             stop(respJSON$MensajeRespuesta)
365
366
         }
367
```

```
res0 <- data.table(respJSON$Datos)</pre>
368
369
        res <- switch(tipo,
370
                        Horarios = {
371
                             res0[, HoraMin := as.ITime(sprintf('%04d', HoraMin),
372
                                                           format = '%H%M')]
373
                             res0[, Fecha := as.IDate(Fecha, format = '%Y-%m-%d')]
374
                            res0[, Fecha := as.IDate(ifelse(HoraMin == as.ITime(0),
375
                                                                Fecha+1, Fecha))]
376
                            res0[, Dates := as.POSIXct(HoraMin, Fecha,
377
                                                           tz = 'Europe/Madrid')]
378
                            res0 <- res0[, .(Dates,
379
                                               GO = Radiacion,
380
                                               Ta = TempMedia)]
381
                            return(res0)
382
                        },
383
                        Diarios = {
384
                            res0[, Dates := as.IDate(Fecha)]
385
                            res0 <- res0[, .(Dates,
386
                                               GOd = Radiacion * 277.78,
387
                                               Ta = TempMedia,
388
                                               TempMin,
389
                                               TempMax)]
390
                             return(res0)
391
                        },
392
                        Semanales = res0,
393
                        Mensuales = {
394
                             promDays<-c(17,14,15,15,15,10,18,18,18,19,18,13)
395
                             names(res0)[1] <- 'Year</pre>
396
                            res0[, Dates := as.IDate(paste(Year, Mes,
397
                                                               promDays[Mes],
398
399
                                                               sep = '-'))]
                            res0 <- res0[, .(Dates,
400
                                               GOd = Radiacion * 277.78,
401
                                               Ta = TempMedia,
402
                                               TempMin,
403
                                               TempMax)]
404
                        })
405
406
         return(res)
407
    }
408
409
    haversine <- function(lat1, lon1, lat2, lon2) {</pre>
410
        R < -6371 # Radius of the Earth in kilometers
411
        dLat <- (lat2 - lat1) * pi / 180
412
        dLon <- (lon2 - lon1) * pi / 180
413
         a <- sin(dLat / 2) * sin(dLat / 2) + cos(lat1 * pi / 180) *
414
             cos(lat2 * pi / 180) * sin(dLon / 2) * sin(dLon / 2)
415
        c \leftarrow 2 * atan2(sqrt(a), sqrt(1 - a))
416
        d <- R * c
417
        return(d)
418
    }
419
420
    readSIAR <- function(Lon = 0, Lat = 0,</pre>
421
422
                           inicio = paste(year(Sys.Date())-1, '01-01', sep = '-'),
                           final = paste(year(Sys.Date())-1, '12-31', sep = '-'),
423
```

```
tipo = 'Mensuales', n_est = 3){
424
         inicio <- as.Date(inicio)</pre>
425
        final <- as.Date(final)</pre>
426
        n_reg <- switch(tipo,</pre>
428
                           Horarios = {
429
                               tt <- difftime(final, inicio, units = 'days')</pre>
430
                               tt <- (as.numeric(tt)+1)*48
431
                               tt <- tt*n_est
432
                               tt
433
                           },
434
                           Diarios = {
435
                               tt <- difftime(final, inicio, units = 'days')</pre>
436
                               tt <- as.numeric(tt)+1
437
                               tt <- tt*n_est
438
                               t.t.
439
                           },
440
                           Semanales = {
441
                               tt <- difftime(final, inicio, units = 'weeks')</pre>
442
                               tt <- as.numeric(tt)</pre>
443
                               tt <- tt*n_est
444
                               tt
445
                           },
446
                           Mensuales = {
447
                               tt <- difftime(final, inicio, units = 'weeks')</pre>
448
                               tt <- as.numeric(tt)/4.34524
449
                               tt <- ceiling(tt)
450
                               tt <- tt*n_est
451
452
                           })
453
        if(n_reg > 100) stop(paste('Number of requested records (', n_reg,
454
                                         ') exceeds the maximum allowed (100)', sep = ''))
455
        ## Obtain the nearest stations
456
        siar <- est_SIAR[</pre>
457
             Fecha_Instalacion <= final & (is.na(Fecha_Baja) | Fecha_Baja >= inicio)
459
460
        ## Weigths for the interpolation
461
        siar[, dist := haversine(Latitud, Longitud, Lat, Lon)]
462
        siar <- siar[order(dist)][1:n_est]</pre>
463
        siar[, peso := 1/dist]
464
        siar[, peso := peso/sum(peso)]
465
         ## Is the given location within the polygon formed by the stations?
466
        siar <- siar[, .(Estacion, Codigo, dist, peso)]</pre>
467
468
        ## List for the data.tables of siarGET
469
        siar_list <- list()</pre>
470
        for(codigo in siar$Codigo){
471
             siar_list[[codigo]] <- siarGET(id = codigo,</pre>
472
                                                 inicio = as.character(inicio),
473
                                                final = as.character(final),
                                                tipo = tipo)
475
             siar_list[[codigo]]$peso <- siar[Codigo == codigo, peso]</pre>
476
        }
477
478
        ## Bind the data.tables
479
```

A.2. CLASES 37

```
s_comb <- rbindlist(siar_list, use.names = TRUE, fill = TRUE)</pre>
480
481
        nms <- names(s_comb)</pre>
482
        nms <- nms[-c(1, length(nms))]</pre>
484
         ## Interpole
485
        res <- s_comb[, lapply(.SD * peso, sum, na.rm = TRUE),
486
                        .SDcols = nms,
487
                        by = Dates]
488
489
        ## Source
490
        mainURL <- "https://servicio.mapama.gob.es"</pre>
        Estaciones <- siar[, paste(Estacion, '(', Codigo, ')', sep = '')]</pre>
492
        Estaciones <- paste(Estaciones, collapse = ', ')</pre>
493
        source <- paste(mainURL, '\n -Estaciones:', Estaciones, sep = ' ')</pre>
494
495
        res <- switch(tipo,
496
                        Horarios = {dt2Meteo(res, lat = Lat, source = mainURL, type = '
497
        bdI')},
                        Diarios = {dt2Meteo(res, lat = Lat, source = mainURL, type = '
        bd')},
                        Semanales = {res},
499
                        Mensuales = {dt2Meteo(res, lat = Lat, source = source, type = '
500
        prom')})
        return(res)
501
502
```

A.2. Clases

Sol

```
setClass(
1
            Class='Sol', ##Solar angles
2
            slots = c(
                 lat='numeric', #latitud in degrees, >0 if North
4
                 solD='data.table', #daily angles
5
                 solI='data.table', #intradaily angles
6
                 sample='character',#sample of time
7
8
                 method='character'#method used for geometry calculations
            ),
9
       validity=function(object) {return(TRUE)}
10
   )
11
```

Meteo

```
setClass(
2
      Class = 'Meteo', ##radiation and temperature data
      slots = c(
3
           latm='numeric',#latitud in degrees, >0 if North
4
           data='data.table', #data, incluying G (Wh/m2) and Ta (°C)
5
           type='character', #choose between 'prom', 'bd' and 'bdI'
6
           source='character'#origin of the data
7
      ),
8
      validity=function(object) {return(TRUE)}
```

```
10 )
```

G0

```
setClass(
       Class = 'GO',
2
       slots = c(
3
           GOD = 'data.table', #result of fCompD
4
           GOdm = 'data.table', #monthly means
5
           GOy = 'data.table', #yearly values
6
           GOI = 'data.table', #result of fCompI
7
           Ta = 'data.table'
                                 #Ambient temperature
8
9
       ),
       contains = c('Sol', 'Meteo'),
10
       validity = function(object) {return(TRUE)}
11
12
```

Gef

```
setClass(
2
            Class='Gef',
            slots = c(
3
              GefD='data.table', #daily values
4
              Gefdm='data.table', #monthly means
              Gefy='data.table', #yearly values
6
              GefI='data.table', #result of fInclin
7
              Theta='data.table', #result of fTheta
8
              iS='numeric',
                                 #dirt index
9
              alb='numeric',
                                  #albedo
10
                                      #tracking mode
              modeTrk='character',
11
              modeShd='character',  #shadow mode
12
                                     #includes alpha, beta and betaLim
              angGen='list',
13
              struct='list',
                                     #structure dimensions
14
              distances='data.frame' #distances between structures
15
              ),
16
            contains='GO',
17
            validity=function(object) {return(TRUE)}
18
19
```

ProdGCPV

```
setClass(
1
            Class='ProdGCPV',
2
            slots = c(
3
              prodD='data.table', #daily values
              prodDm='data.table', #monthly means
5
              prody='data.table', #yearly values
6
              prodI='data.table', #results of fProd
7
              module='list',
                                   #module characteristics
8
              generator='list',
                                   #generator characteristics
9
              inverter='list',
                                   #inverter characteristics
10
              effSys='list' #efficiency values of the system
```

```
),
contains='Gef',
validity=function(object) {return(TRUE)}
)
```

ProdPVPS

```
setClass(
            Class='ProdPVPS',
2
            slots = c(
3
              prodD='data.table', #daily values
4
              prodDm='data.table', #monthly means
5
              prody='data.table', #yearly values
6
              prodI='data.table', #results of fPump
7
              Pg='numeric',
8
                                    #generator power
              H='numeric',
                                    #manometric head
9
              pump='list',
                                  #parameters of the pump
10
              converter='list', #inverter characteristics
11
              effSys='list'
                                    #efficiency values of the system
12
13
              ),
            contains='Gef',
14
            validity=function(object) {return(TRUE)}
15
16
```

Shade

```
setClass(
1
2
            Class='Shade',
            slots = c(
3
              FS='numeric', #shadows factor values
4
              GRR='numeric', #Ground Requirement Ratio
              Yf='numeric', #final productivity
6
              FS.loess='loess', #local fitting of FS with loess
7
              Yf.loess='loess', #local fitting of Yf with loess
8
              modeShd='character', #mode of shadow
9
              struct='list',
                                   #dimensions of the structures
10
              distances='data.frame', #distances between structures
11
              res='numeric'
                                       #difference between the different steps of the
12
        calculations
              ),
13
            contains='ProdGCPV',##Resultado de prodGCPV sin sombras (Prod0)
14
            validity=function(object) {return(TRUE)}
15
```

A.3. Funciones

corrFdKt

```
#### monthly Kt ####

Ktm <- function(sol, GOdm){
    solf <- sol@solD[, .(Dates, BoOd)]
    solf[, c('month', 'year') := .(month(Dates), year(Dates))]</pre>
```

```
solf[,Bo0m := mean(Bo0d), by = .(month, year)]
5
        GOdf <- GOdm@data[, .(Dates, GOd)]</pre>
6
        GOdf[, c('month', 'year') := .(month(Dates), year(Dates))]
7
        GOdf[, GOd := mean(GOd), by = .(month, year)]
8
        Ktm <- GOdf$GOd/solf$BoOm</pre>
9
        return(Ktm)
10
   }
11
12
   #### daily Kt ####
13
   Ktd <- function(sol, G0d){</pre>
14
        BoOd <- sol@solD$BoOd
15
        GOd <- getGO(GOd)</pre>
        Ktd <- GOd/BoOd
17
        return(Ktd)
18
   }
19
   ### intradaily
21
   Kti <- function(sol, G0i){</pre>
22
        BoO <- sol@solI$BoO
23
        G0i <- getG0(G0i)</pre>
        Kti <- GOi/BoO
25
        return(Kti)
26
   }
27
28
29
   #### monthly correlations ####
30
31
   ### Page ###
32
   FdKtPage <- function(sol, G0dm){</pre>
33
        Kt <- Ktm(sol, GOdm)</pre>
34
        Fd=1-1.13*Kt
35
36
        return(data.table(Fd, Kt))
   }
37
38
   ### Liu and Jordan ###
   FdKtLJ <- function(sol, GOdm){</pre>
40
        Kt <- Ktm(sol, GOdm)</pre>
41
        Fd=(Kt<0.3)*0.595774 +
42
             (Kt \ge 0.3 \& Kt \le 0.7)*(1.39-4.027*Kt+5.531*Kt^2-3.108*Kt^3)+
43
             (Kt>0.7)*0.215246
44
        return(data.table(Fd, Kt))
45
   }
46
47
48
   #### daily correlations ####
49
50
   ### Collares-Pereira and Rabl
51
   FdKtCPR <- function(sol, GOd){</pre>
52
        Kt <- Ktd(sol, GOd)</pre>
53
        Fd=(0.99*(Kt<=0.17))+(Kt>0.17 & Kt<0.8)*
54
             (1.188-2.272*Kt+9.473*Kt^2-21.856*Kt^3+14.648*Kt^4)+
55
             (Kt \ge 0.8) * 0.2426688
56
        return(data.table(Fd, Kt))
57
   }
59
   ### Erbs, Klein and Duffie ###
```

```
FdKtEKDd <- function(sol, GOd){</pre>
         ws <- sol@solD$ws
62
         Kt <- Ktd(sol, GOd)</pre>
63
         WS1=(abs(ws)<1.4208)
65
         Fd=WS1*((Kt<0.715)*(1-0.2727*Kt+2.4495*Kt^2-11.9514*Kt^3+9.3879*Kt^4)+
66
                  (Kt \ge 0.715) * (0.143)) +
67
             !WS1*((Kt<0.722)*(1+0.2832*Kt-2.5557*Kt^2+0.8448*Kt^3)+
68
                     (Kt \ge 0.722) * (0.175)
69
      return(data.table(Fd, Kt))
70
    }
71
72
    ### CLIMED1 ###
73
    FdKtCLIMEDd <- function(sol, GOd){</pre>
74
        Kt <- Ktd(sol, GOd)</pre>
75
        Fd=(Kt <= 0.13)*(0.952)+
76
         (Kt>0.13 \& Kt<=0.8)*(0.868+1.335*Kt-5.782*Kt^2+3.721*Kt^3)+
77
           (Kt>0.8)*0.141
78
      return(data.table(Fd, Kt))
79
    }
80
81
    #### intradaily correlations ####
82
83
    ### intradaily EKD ###
84
    FdKtEKDh <- function(sol, G0i){</pre>
85
        Kt <- Kti(sol, G0i)</pre>
86
         Fd=(Kt \le 0.22)*(1-0.09*Kt)+
         (Kt>0.22 & Kt<=0.8)*(0.9511-0.1604*Kt+4.388*Kt^2-16.638*Kt^3+12.336*Kt^4)+
88
           (Kt>0.8)*0.165
89
      return(data.table(Fd, Kt))
90
    }
91
92
    ### intradaily CLIMED
93
    FdKtCLIMEDh <- function(sol, G0i){</pre>
94
         Kt <- Kti(sol, G0i)</pre>
         Fd=(Kt <= 0.21)*(0.995-0.081*Kt)+
96
             (Kt>0.21 \& Kt<=0.76)*(0.724+2.738*Kt-8.32*Kt^2+4.967*Kt^3)+
97
             (Kt>0.76)*0.180
98
         return(data.table(Fd, Kt))
    }
100
101
    ### intradaily Boland, Ridley and Lauret ###
102
    FdKtBRL <- function(sol, G0i){</pre>
103
         Kt <- Kti(sol, G0i)</pre>
104
         sample <- sol@sample</pre>
105
106
         solI <- as.data.tableI(sol, complete = TRUE)</pre>
107
         w <- soll$w
108
        night <- soll$night</pre>
109
        AlS <- solI$AlS
110
         GOd <- Meteoi2Meteod(GOi)</pre>
112
        ktd <- Ktd(sol, GOd)
113
114
115
         ##persistence
        pers <- persistence(sol, ktd)</pre>
116
```

```
117
         ##indexRep for ktd and pers
118
         Dates <- indexI(sol)</pre>
119
         x <- as.Date(Dates)</pre>
120
         ind.rep <- cumsum(c(1, diff(x) != 0))</pre>
121
         ktd <- ktd[ind.rep]</pre>
122
         pers <- pers[ind.rep]</pre>
123
124
         ##fd calculation
125
         Fd=(1+exp(-5.38+6.63*Kt+0.006*r2h(w)-0.007*r2d(AlS)+1.75*ktd+1.31*pers))^{(-1)}
126
127
         return(data.table(Fd, Kt))
128
    }
129
130
    persistence <- function(sol, Ktd){</pre>
131
         kt <- data.table(indexD(sol), Ktd)</pre>
         ktNA <- na.omit(kt)
133
         iDay <- truncDay(ktNA[[1]])</pre>
134
135
         x <- rle(as.numeric(iDay))$lengths
         xLast <- cumsum(x)</pre>
137
138
         lag1 <- shift(ktNA$Ktd, -1, fill = NA)</pre>
139
         for (i in xLast){
140
              if ((i-1) != 0){lag1[i] <- ktNA$Ktd[i-1]}</pre>
141
         }
142
143
         lag2 <- shift(ktNA$Ktd, 1, fill = NA)</pre>
144
         for (i in xLast){
145
              if ((i+1) <= length(ktNA$Ktd)){lag2[i] <- ktNA$Ktd[i+1]}</pre>
146
147
148
         pers <- data.table(lag1, lag2)</pre>
         pers[, mean := 1/2 * (lag1+lag2)]
149
         pers[, mean]
150
    }
151
```

fBTd

```
fBTd<-function(mode='prom',
1
                   year= as.POSIXlt(Sys.Date())$year+1900,
2
                   start=paste('01-01-',year,sep=''),
3
                   end=paste('31-12-',year,sep=''),
4
                   format=' %d-%m-%Y'){
5
       promDays<-c(17,14,15,15,15,10,18,18,18,19,18,13)
6
       BTd=switch(mode,
7
8
                        start.<-as.POSIXct(start, format=format, tz='UTC')</pre>
9
                        end.<-as.POSIXct(end, format=format, tz='UTC')</pre>
10
11
                        res<-seq(start., end., by="1 day")
                   },
12
                   prom=as.POSIXct(paste(year, 1:12, promDays, sep='-'), tz='UTC')
13
                   )
14
       BTd
   }
16
```

fBTi

```
intervalo <- function(day, sample){</pre>
1
       intervalo <- seq.POSIXt(from = as.POSIXct(paste(day, '00:00:00'), tz = 'UTC')</pre>
2
                           to = as.POSIXct(paste(day, '23:59:59'), tz = 'UTC'),
                           by = sample)
       return(intervalo)
5
   }
6
   fBTi <- function(d, sample = 'hour'){</pre>
8
       BTi <- lapply(d, intervalo, sample)
9
       BTi <- do.call(c, BTi)
10
       return(BTi)
11
   }
12
```

fCompD

```
fCompD <- function(sol, GOd, corr = 'CPR', f)</pre>
1
2
        if(!(corr %in% c('CPR', 'Page', 'LJ', 'EKDd', 'CLIMEDd', 'user', 'none'))){
3
            warning('Wrong descriptor of correlation Fd-Ktd. Set CPR.')
4
            corr <- 'CPR'
5
6
        if(class(sol)[1] != 'Sol'){
7
            sol <- sol[, calcSol(lat = unique(lat), BTi = Dates)]</pre>
8
9
        if(class(GOd)[1] != 'Meteo'){
10
            dt <- copy(data.table(GOd))</pre>
11
            if(!('Dates' %in% names(dt))){
12
                 dt[, Dates := indexD(sol)]
13
                 setcolorder(dt, 'Dates')
                 setkey(dt, 'Dates')
15
            }
16
            if('lat' %in% names(dt)){
^{17}
                 latg <- unique(dt$lat)</pre>
18
                 dt[, lat := NULL]
19
            }else{latg <- getLat(sol)}</pre>
20
            GOd <- dt2Meteo(dt, latg)</pre>
21
        }
22
23
        stopifnot(indexD(sol) == indexD(GOd))
24
        BoOd <- sol@solD$BoOd
25
        GO <- getData(GOd)$GO
26
27
        is.na(G0) <- (G0>Bo0d)
28
29
30
        ### the Direct and Difuse data is not given
        if(corr != 'none'){
31
            Fd <- switch(corr,
32
                           CPR = FdKtCPR(sol, GOd),
                           Page = FdKtPage(sol, GOd),
34
                           LJ = FdKtLJ(sol, GOd),
35
                           CLIMEDd = FdKtCLIMEDd(sol, GOd),
36
                          user = f(sol, GOd))
```

```
Kt <- Fd$Kt
38
            Fd <- Fd$Fd
39
            DOd <- Fd * GO
40
            BOd <- GO - DOd
41
42
        ### the Direct and Difuse data is given
43
        else {
44
            GO <- getData(GOd)$GO
45
            DOd <- getData(GOd)[['DO']]</pre>
46
            BOd <- getData(GOd)[['BO']]
47
            Fd <- DOd/GO
48
            Kt <- GO/BoOd
49
        }
50
51
        result <- data.table(Dates = indexD(sol), Fd, Kt, GOd = GO, DOd, BOd)
52
        setkey(result, 'Dates')
        result
54
   }
55
```

fCompI

```
fCompI <- function(sol, compD, GOI,</pre>
1
                         corr = 'EKDh', f,
2
                        filterGO = TRUE){
3
        if(!(corr %in% c('EKDh', 'CLIMEDh', 'BRL', 'user', 'none'))){
4
            warning('Wrong descriptor of correlation Fd-Ktd. Set EKDh.')
5
            corr <- 'EKDh'
6
        }
7
8
        if(class(sol)[1] != 'Sol'){
9
            sol <- sol[, calcSol(lat = unique(lat), BTi = Dates)]</pre>
10
11
        }
12
        lat <- sol@lat
13
        sample <- sol@sample</pre>
14
15
        night <- sol@solI$night</pre>
        BoO <- sol@solI$BoO
16
        Dates <- indexI(sol)</pre>
17
18
        ## If instantaneous values are not provided, compD is used instead.
19
        if (missing(GOI)) {
20
21
            GOI <- collper(sol, compD)</pre>
22
            GO <- GOI$GO
23
            BO <- GOI$BO
24
            DO <- GOI$DO
25
26
27
            Fd <- D0/G0
            Kt <- G0/Bo0
28
29
        } else { ## Use instantaneous values if provided through GOI
31
            if(class(GOI)[1] != 'Meteo'){
32
                 dt <- copy(GOI)</pre>
33
                 if(!('Dates' %in% names(GOI))){
```

```
dt[, Dates := indexI(sol)]
35
                     setcolorder(dt, 'Dates')
36
                     setkey(dt, 'Dates')
37
                }
38
                if('lat' %in% names(GOI)){latg <- unique(GOI$lat)}</pre>
39
                else{latg <- lat}</pre>
40
                GOI <- dt2Meteo(dt, latg)</pre>
41
            }
42
43
            if (corr!='none'){
44
                GO <- getGO(GOI)
45
                ## Filter values: surface irradiation must be lower than
46
                ## extraterrestial;
47
                if (filterG0) {is.na(G0) <- (G0 > Bo0)}
48
49
                ## Fd-Kt correlation
50
                Fd <- switch(corr,
51
                               EKDh = FdKtEKDh(sol, GOI),
52
                               CLIMEDh = FdKtCLIMEDh(sol, GOI),
53
                               BRL = FdKtBRL(sol, GOI),
54
                               user = f(sol, GOI))
55
56
                Kt <- Fd$Kt
57
                Fd <- Fd$Fd
58
                DO <- Fd * GO
59
                BO <- GO - DO
60
61
            } else {
62
                GO <- getGO(GOI)
63
                DO <- getData(GOI)[['DO']]
64
                B0 <- getData(G0I)[['B0']]
65
                ## Filter values: surface irradiation must be lower than
66
                ## extraterrestial;
67
                if (isTRUE(filterG0)) is.na(G0) <- is.na(D0) <- is.na(B0) <- (G0 >
68
       BoO)
69
                Fd <- D0/G0
70
                Kt <- G0/Bo0
71
            }
72
        }
73
        ## Values outside sunrise-sunset are set to zero
74
        GO[night] <- DO[night] <- BO[night] <- Kt[night] <- Fd[night] <- O
75
76
        result <- data.table(Dates, Fd, Kt, GO, DO, BO)
77
        setkey(result, 'Dates')
78
        result
79
   }
80
```

fInclin

```
fInclin <- function(compI, angGen, iS = 2, alb = 0.2, horizBright = TRUE, HCPV =
    FALSE){
    ##compI es class='G0'
    ##Arguments</pre>
```

```
stopifnot(iS %in% 1:4)
5
        Beta <- angGen$Beta
6
        Alfa <- angGen$Alfa
7
        cosTheta <- angGen$cosTheta</pre>
8
9
        comp <- as.data.tableI(compI, complete=TRUE)</pre>
10
        night <- comp$night</pre>
11
        BO \leftarrow comp\$BO
12
        BoO <- comp$BoO
13
        DO \leftarrow comp DO
14
        GO \leftarrow comp\$GO
15
        cosThzS <- comp$cosThzS</pre>
        is.na(cosThzS) <- night</pre>
17
18
        ##N.Martin method for dirt and non-perpendicular incidence
19
        Suc \leftarrow rbind(c(1, 0.17, -0.069),
                       c(0.98, .2, -0.054),
21
                       c(0.97, 0.21, -0.049),
22
                       c(0.92,0.27,-0.023))
23
        FTb \leftarrow (\exp(-\cos Theta/Suc[iS,2]) - \exp(-1/Suc[iS,2]))/(1 - \exp(-1/Suc[iS,2]))
        FTd \leftarrow \exp(-1/Suc[iS,2] * (4/(3*pi) * (sin(Beta) + (pi - Beta - sin(Beta))/(1
25
         + cos(Beta))) +
                                       Suc[iS,3] * (sin(Beta) + (pi - Beta - sin(Beta))/
26
        (1 + cos(Beta)))^2))
        FTr \leftarrow \exp(-1/Suc[iS,2] * (4/(3*pi) * (sin(Beta) + (Beta - sin(Beta)))/(1 - FTr)
27
        cos(Beta))) +
                                       Suc[iS,3] * (sin(Beta) + (Beta - sin(Beta))/(1 -
        cos(Beta)))^2))
29
        ##Hay and Davies method for diffuse treatment
30
        B \leftarrow B0 * cosTheta/cosThzS * (cosThzS>0.007) #The factor cosThzS>0.007 is
31
        needed to eliminate erroneous results near dawn
        k1 \leftarrow B0/(Bo0)
32
        Di \leftarrow D0 * (1-k1) * (1+cos(Beta))/2
33
        if (horizBright) Di <- Di * (1+sqrt(B0/G0) * sin(Beta/2)^3)</pre>
        Dc <- D0 * k1 * cosTheta/cosThzS * (cosThzS>0.007)
35
        R \leftarrow alb * GO * (1-cos(Beta))/2
36
37
        D <- (Di + Dc)
        ##Extraterrestrial irradiance on the inclined plane
38
        Bo <- BoO * cosTheta/cosThzS * (cosThzS>0.007)
39
        ##Normal direct irradiance (DNI)
40
        Bn <- B0/cosThzS
41
        ##Sum of components
42
        G \leftarrow B + D + R
43
        Ref <- R * Suc[iS,1] * (1-FTr) * (!HCPV)</pre>
44
        Ref[is.nan(FTr)] <- 0 #When cos(Beta)=1, FTr=NaN. Cancel Ref.
45
        Dief <- Di * Suc[iS,1] * (1 - FTd) * (!HCPV)</pre>
46
        Dcef <- Dc * Suc[iS,1] * (1 - FTb) * (!HCPV)</pre>
47
        Def <- Dief + Dcef
48
        Bef <- B * Suc[iS,1] * (1 - FTb)</pre>
49
        Gef <- Bef + Def + Ref
50
51
        result <- data.table(Bo, Bn,
52
53
                                G, D, Di, Dc, B, R,
                                FTb, FTd, FTr,
54
                                Dief, Dcef, Gef, Def, Bef, Ref)
55
```

```
## Use 0 instead of NA for irradiance values
result[night] <- 0
result[, Dates := indexI(compI)]
result[, .SD, by = Dates]
setcolorder(result, c('Dates', names(result)[-length(result)]))
result
}
result
}
```

fProd

```
## voc, isc, vmpp, impp : *cell* values
   ## Voc, Isc, Vmpp, Impp: *module/generator* values
2
3
   ## Compute Current - Voltage characteristic of a solar *cell* with Gef
4
5
   ## and Ta
   iv <- function(vocn, iscn, vmn, imn,</pre>
6
                    TONC, CoefVT = 2.3e-3,
7
                    Ta, Gef,
8
                    vmin = NULL, vmax = NULL)
9
   {
10
        ##Cell Constants
11
        Gstc <- 1000
12
        Ct <- (TONC - 20) / 800
13
        Vtn <- 0.025 * (273 + 25) / 300
14
        m < -1.3
15
16
        ##Cell temperature
17
        Tc <- Ta + Ct * Gef
18
        Vt \leftarrow 0.025 * (Tc + 273)/300
19
20
21
        ## Series resistance
        Rs <- (vocn - vmn + m * Vtn * log(1 - imn/iscn)) / imn
22
23
        ## Voc and Isc at ambient conditions
24
        voc <- vocn - CoefVT * (Tc - 25)
        isc <- iscn * Gef/Gstc</pre>
26
27
        ## Ruiz method for computing voltage and current characteristic of a *cell*
28
        rs <- Rs * isc/voc
29
        koc <- voc/(m * Vt)
30
31
        ## Maximum Power Point
32
        Dm0 \leftarrow (koc - 1)/(koc - log(koc))
33
        Dm \leftarrow Dm0 + 2 * rs * Dm0^2
34
35
36
        impp \leftarrow isc * (1 - Dm/koc)
37
        vmpp \leftarrow voc * (1 - log(koc/Dm)/koc - rs * (1 - Dm/koc))
38
        vdc <- vmpp
39
        idc <- impp
40
41
        ## When the MPP is below/above the inverter voltage limits, it
42
        ## sets the voltage point at the corresponding limit.
43
```

```
45
        ## Auxiliary functions for computing the current at a defined
46
        ## voltage.
47
        ilimit <- function(v, koc, rs)</pre>
48
49
             if (is.na(koc))
50
                 result <- NA
51
             else
52
             {
53
                 ## The IV characteristic is an implicit equation. The starting
54
                 ## point is the voltage of the cell (imposed by the inverter
55
                 ## limit).
56
57
                 izero <- function(i , v, koc, rs)</pre>
58
59
                      vp <- v + i * rs</pre>
60
                      Is <-1/(1 - \exp(-koc * (1 - rs)))
61
                      result <- i - (1 - Is * (exp(-koc * (1 - vp)) - exp(-koc * (1 -
62
        rs))))
                 }
63
64
                 result <- uniroot(f = izero,
65
                                      interval = c(0,1),
66
                                      v = v,
67
                                      koc = koc,
68
                                      rs = rs)$root
69
             }
70
71
             result
72
        ## Inverter minimum voltage
73
        if (!is.null(vmin))
74
75
             if (any(vmpp < vmin, na.rm = TRUE))</pre>
76
77
                 indMIN <- which(vmpp < vmin)</pre>
78
                 imin <- sapply(indMIN, function(i)</pre>
79
80
                      vocMIN <- voc[i]</pre>
81
                      kocMIN <- koc[i]</pre>
82
                      rsMIN <- rs[i]
83
                      vmin <- vmin/vocMIN</pre>
84
                      ##v debe estar entre 0 y 1
85
                      vmin[vmin < 0] <- 0</pre>
86
                      vmin[vmin > 1] <- 1</pre>
87
                      ilimit(vmin, kocMIN, rsMIN)
88
                 })
89
                 iscMIN <- isc[indMIN]</pre>
90
                 idc[indMIN] <- imin * iscMIN</pre>
91
                 vdc[indMIN] <- vmin</pre>
92
                 warning('Minimum MPP voltage of the inverter has been reached')}
93
        }
94
95
        if (!is.null(vmax))
96
97
        {
             if (any(vmpp > vmax, na.rm = TRUE))
98
99
```

```
indMAX <- which(vmpp > vmax)
100
                  imax <- sapply(indMAX, function(i)</pre>
101
                  {
102
                       vocMAX <- voc[i]</pre>
103
                       kocMAX <- koc[i]</pre>
104
                       rsMAX <- rs[i]
105
                       vmax <- vmax / vocMAX</pre>
106
                       ##v debe estar entre 0 y 1
107
                       vmax[vmax < 0] <- 0
108
                       vmax[vmax > 1] <- 1</pre>
109
                       ilimit(vmax, kocMAX, rsMAX)
110
                  })
111
                  iscMAX <- isc[indMAX]</pre>
112
                  idc[indMAX] <- imax * iscMAX</pre>
113
                  vdc[indMAX] <- vmax</pre>
114
                  warning('Maximum MPP voltage of the inverter has been reached')
116
         }
117
         data.table(Ta, Tc, Gef, voc, isc, vmpp, impp, vdc, idc)
118
119
120
    fProd <- function(inclin,</pre>
121
122
                         module=list(),
                         generator=list(),
123
                         inverter=list(),
124
                         effSys=list()
125
126
    {
127
128
         stopifnot(is.list(module),
129
                     is.list(generator),
130
                     is.list(inverter),
131
                     is.list(effSys)
132
133
         ## Extract data from objects
134
         if (class(inclin)[1]=='Gef') {
135
              indInclin <- indexI(inclin)</pre>
136
              gefI <- as.data.tableI(inclin, complete = TRUE)</pre>
137
             Gef <- gefI$Gef</pre>
138
             Ta <- gefI$Ta
139
         } else {
140
             Gef <- inclin$Gef</pre>
141
             Ta <- inclin$Ta
143
144
         ## Module, generator, and inverter parameters
145
         module.default <- list(Vocn = 57.6,
146
                                    Iscn = 4.7,
147
                                    Vmn = 46.08,
148
                                    Imn = 4.35,
149
                                    Ncs = 96,
150
                                    Ncp = 1,
151
                                    CoefVT = 0.0023,
152
                                    TONC = 47)
153
         module <- modifyList(module.default, module)</pre>
154
         ## Make these parameters visible because they will be used often.
155
```

```
Ncs <- module$Ncs</pre>
156
         Ncp <- module$Ncp</pre>
157
158
         generator.default <- list(Nms = 12,</pre>
159
                                        Nmp = 11
160
         generator <- modifyList(generator.default, generator)</pre>
161
         generator$Pg <- (module$Vmn * generator$Nms) *</pre>
162
              (module$Imn * generator$Nmp)
163
         Nms <- generator$Nms
164
         Nmp <- generator$Nmp</pre>
165
166
         inverter.default <- list(Ki = c(0.01, 0.025, 0.05),
167
                                      Pinv = 25000,
168
                                       Vmin = 420,
169
                                       Vmax = 750,
170
                                       Gumb = 20)
171
         inverter <- modifyList(inverter.default, inverter)</pre>
172
         Pinv <- inverter$Pinv</pre>
173
174
         effSys.default <- list(ModQual = 3,</pre>
175
                                    ModDisp = 2,
176
                                    OhmDC = 1.5,
177
                                    OhmAC = 1.5,
178
                                    MPP = 1,
179
                                    TrafoMT = 1,
180
                                    Disp = 0.5)
181
         effSys <- modifyList(effSys.default, effSys)</pre>
183
         ## Solar Cell i-v
184
         vocn <- with(module, Vocn / Ncs)</pre>
185
         iscn <- with(module, Iscn/ Ncp)</pre>
186
         vmn <- with(module, Vmn / Ncs)</pre>
187
         imn <- with(module, Imn / Ncp)</pre>
188
         vmin <- with(inverter, Vmin / (Ncs * Nms))</pre>
189
         vmax <- with(inverter, Vmax / (Ncs * Nms))</pre>
191
         cell <- iv(vocn, iscn,</pre>
192
193
                      vmn, imn,
                      module$TONC, module$CoefVT,
194
                      Ta, Gef,
195
                      vmin, vmax)
196
197
         ## Generator voltage and current
198
         Idc <- Nmp * Ncp * cell$idc</pre>
199
         Isc <- Nmp * Ncp * cell$isc</pre>
200
         Impp <- Nmp * Ncp * cell$impp</pre>
201
         Vdc <- Nms * Ncs * cell$vdc
202
         Voc <- Nms * Ncs * cell$voc
203
         Vmpp <- Nms * Ncs * cell$vmpp</pre>
204
205
         ##DC power (normalization with nominal power of inverter)
206
         ##including losses
207
         PdcN <- with(effSys, (Idc * Vdc) / Pinv *
208
                                  (1 - ModQual / 100) *
209
210
                                  (1 - ModDisp / 100) *
                                  (1 - MPP / 100) *
211
```

```
(1 - OhmDC / 100)
212
                        )
213
214
         ##Normalized AC power to the inverter
215
         Ki <- inverter$Ki
216
         if (is.matrix(Ki)) { #Ki is a matrix of nine coefficients-->dependence with
217
         tension
             VP <- cbind(Vdc, PdcN)</pre>
218
             PacN <- apply(VP, 1, solvePac, Ki)
219
         } else { #Ki is a vector of three coefficients-->without dependence on
220
         voltage
             A <- Ki[3]
221
             B \leftarrow Ki[2] + 1
222
             C <- Ki[1] - (PdcN)</pre>
223
             PacN <- (-B + sqrt(B^2 - 4 * A * C))/(2 * A)
224
         }
225
         EffI <- PacN / PdcN
226
         pacNeg <- PacN <= 0
227
         PacN[pacNeg] <- PdcN[pacNeg] <- EffI[pacNeg] <- 0</pre>
228
230
         ##AC and DC power without normalization
231
         Pac <- with(effSys, PacN * Pinv *
232
                                (Gef > inverter$Gumb) *
233
                                (1 - OhmAC / 100) *
234
                                (1 - TrafoMT / 100) *
235
                                (1 - Disp / 100))
236
         Pdc <- PdcN * Pinv * (Pac > 0)
237
238
239
         ## Result
240
241
         resProd <- data.table(Tc = cell$Tc,
                                 Voc, Isc,
242
                                 Vmpp, Impp,
243
                                 Vdc, Idc,
                                 Pac, Pdc,
245
                                 EffI)
246
         if (class(inclin)[1] %in% 'Gef'){
247
             result <- resProd[, .SD,</pre>
248
                                  by=.(Dates = indInclin)]
249
             attr(result, 'generator') <- generator</pre>
250
             attr(result, 'module') <- module</pre>
251
             attr(result, 'inverter') <- inverter</pre>
252
             attr(result, 'effSys') <- effSys</pre>
253
             return(result)
254
         } else {
255
             result <- cbind(inclin, resProd)</pre>
256
             return(result)
257
         }
258
    }
259
```

fPump

```
fPump <- function(pump, H){</pre>
```

```
w1=3000 ##synchronous rpm frequency
3
       wm=2870 ##rpm frequency with slip when applying voltage at 50 Hz
4
       s=(w1-wm)/w1
5
       fen=50 ##Nominal electrical frequency
6
       fmin=sqrt(H/pump$a)
7
       fmax=with(pump, (-b*Qmax+sqrt(b^2*Qmax^2-4*a*(c*Qmax^2-H)))/(2*a))
8
       ##fb is rotation frequency (Hz) of the pump,
q
       ##fe is the electrical frequency applied to the motor
10
       ##which makes it rotate at a frequency fb (and therefore also the pump).
11
       fb=seq(fmin,min(60,fmax),length=1000) #The maximum frequency is 60
12
       fe=fb/(1-s)
13
14
   ###Flow
15
       Q=with(pump, (-b*fb-sqrt(b^2*fb^2-4*c*(a*fb^2-H)))/(2*c))
16
       Qmin=0.1*pump$Qn*fb/50
17
       Q=Q+(Qmin-Q)*(Q<Qmin)
18
19
   ###Hydraulic power
20
       Ph=2.725*Q*H
21
22
   ###Mechanical power
23
        Q50=50*Q/fb
24
       H50=H*(50/fb)^2
25
       etab=with(pump, j*Q50^2+k*Q50+1)
26
       Pb50=2.725*H50*Q50/etab
27
       Pb=Pb50*(fb/50)^3
28
29
   ###Electrical power
30
       Pbc=Pb*50/fe
31
       etam=with(pump, g*(Pbc/Pmn)^2+h*(Pbc/Pmn)+i)
32
       Pmc=Pbc/etam
33
34
       Pm=Pmc*fe/50
       Pac=Pm
35
       ##Pdc=Pm/(etac*(1-cab))
36
37
   ###I build functions for flow, frequency and powers
38
   ###to adjust the AC power.
39
       fQ<-splinefun(Pac,Q)
40
       fFreq<-splinefun(Pac,fe)</pre>
41
       fPb <-splinefun(Pac, Pb)
42
       fPh <-splinefun (Pac, Ph)
43
       lim=c(min(Pac),max(Pac))
44
        ##lim marks the operating range of the pump
45
       result <-list(lim = lim,
46
                     fQ = fQ,
47
                      fPb = fPb,
48
                     fPh = fPh,
49
                     fFreq = fFreq)
50
   }
51
```

fSolD

```
fSolD <- function(lat, BTd, method = 'michalsky'){
   if (abs(lat) > 90){
      lat <- sign(lat) * 90</pre>
```

```
warning(paste('Latitude outside acceptable values. Set to', lat))
5
       sun <- data.table(Dates = unique(as.IDate(BTd)),</pre>
6
                           lat = lat)
7
8
       #### solarAngles ####
9
10
       ##Declination
11
       sun[, decl := declination(Dates, method = method)]
12
       ##Eccentricity
13
       sun[, eo := eccentricity(Dates, method = method)]
14
       ##Equation of time
       sun[, EoT := eot(Dates)]
16
       ##Solar time
17
       sun[, ws := sunrise(Dates, lat, method = method,
18
                             decl = decl)]
19
       ##Extraterrestrial irradiance
20
       sun[, BoOd := boOd(Dates, lat, method = method,
21
                            decl = decl,
22
                            eo = eo,
23
                            ws = ws
24
                            )]
25
       setkey(sun, Dates)
26
       return(sun)
27
   }
28
```

fSolI

```
fSolI <- function(solD, sample = 'hour', BTi,
1
                       EoT = TRUE, keep.night = TRUE, method = 'michalsky')
2
   {
3
        #Solar constant
        Bo <- 1367
5
6
        if(missing(BTi)){
7
            d <- solD$Dates</pre>
8
9
            BTi <- fBTi(d, sample)
10
        sun <- data.table(Dates = as.IDate(BTi),</pre>
11
                           Times = as.ITime(BTi))
12
        sun <- merge(solD, sun, by = 'Dates')</pre>
13
        sun[, eqtime := EoT]
14
        sun[, EoT := NULL]
15
16
        #sun hour angle
17
        sun[, w := sunHour(Dates, BTi, EoT = EoT, method = method, eqtime = eqtime)]
18
19
20
        #classify night elements
        sun[, night := abs(w) >= abs(ws)]
21
22
        #zenith angle
23
        sun[, cosThzS := zenith(Dates, lat, BTi,
24
                                  method = method,
25
                                  decl = decl,
26
                                  w = w
```

```
)]
28
29
        #solar altitude angle
30
        sun[, AlS := asin(cosThzS)]
31
32
        #azimuth
33
        sun[, AzS := azimuth(Dates, lat, BTi, sample,
34
                               method = method,
35
                               decl = decl,
36
                               w = w,
37
                               cosThzS = cosThzS)
38
39
        #Extraterrestrial irradiance
40
        sun[, Bo0 := Bo * eo * cosThzS]
41
42
        #When it is night there is no irradiance
43
        sun[night == TRUE, Bo0 := 0]
44
45
        #Erase columns that are in solD
46
        sun[, decl := NULL]
47
        sun[, eo := NULL]
48
        sun[, eqtime := NULL]
49
        sun[, ws := NULL]
50
        sun[, BoOd := NULL]
51
52
        #Column Dates with Times
53
        sun[, Dates := as.POSIXct(Dates, Times, tz = 'UTC')]
        sun[, Times := NULL]
55
56
        #keep night
57
        if(!keep.night){
58
59
            sun <- sun[night == FALSE]</pre>
60
61
        return(sun)
62
63
```

fSombra

```
fSombra<-function(angGen, distances, struct, modeTrk='fixed',prom=TRUE){
2
       stopifnot(modeTrk %in% c('two','horiz','fixed'))
3
       res=switch(modeTrk,
4
                  two={fSombra6(angGen, distances, struct, prom)},
                  horiz={fSombraHoriz(angGen, distances, struct)},
6
                  fixed= {fSombraEst(angGen, distances, struct)}
7
                  )
8
       return(res)
9
   }
10
```

```
fSombra2X<-function(angGen,distances,struct)
{
    stopifnot(is.list(struct),is.data.frame(distances))
    ##I prepare starting data
    P=with(struct,distances/W)</pre>
```

```
b=with(struct,L/W)
6
       AzS=angGen$AzS
7
       Beta=angGen$Beta
8
       AlS=angGen$AlS
9
10
       d1=abs(P$Lew*cos(AzS)-P$Lns*sin(AzS))
11
       d2=abs(P$Lew*sin(AzS)+P$Lns*cos(AzS))
12
       FC=sin(AlS)/sin(Beta+AlS)
13
       s=b*cos(Beta)+(b*sin(Beta)+P$H)/tan(AlS)
14
       FS1=1-d1
15
       FS2=s-d2
16
       SombraCond=(FS1>0)*(FS2>0)*(P$Lew*AzS>=0)
17
       SombraCond[is.na(SombraCond)] <- FALSE #NAs are of no use to me in a logical
18
       vector. I replace them with FALSE
       ## Result
19
       FS=SombraCond*(FS1*FS2*FC)/b
20
       FS[FS>1]<-1
21
       return(FS)
22
   }
23
```

```
fSombra6<-function(angGen, distances, struct, prom=TRUE)
1
2
       stopifnot(is.list(struct),
3
                  is.data.frame(distances))
4
       ##distances only has three distances, so I generate a grid
5
       if (dim(distances)[1]==1){
6
           Red <- distances[, .(Lew = c(-Lew, 0, Lew, -Lew, Lew),
7
                                 Lns = c(Lns, Lns, Lns, 0, 0),
8
                                 H=H)
9
       } else { #distances is an array, so there is no need to generate the grid
10
           Red <- distances [1:5,] | #I only need the first 5 rows...necessary in case a
11
        wrong data.frame is delivered
12
       ## I calculate the shadow due to each of the 5 followers
13
       SombraGrupo<-matrix(ncol=5,nrow=dim(angGen)[1]) ###VECTORIZE
14
       for (i in 1:5) {SombraGrupo[,i]<-fSombra2X(angGen,Red[i,],struct)}</pre>
15
       ##To calculate the Average Shadow, I need the number of followers in each
16
       position (distrib)
       distrib=with(struct,c(1,Ncol-2,1,Nrow-1,(Ncol-2)*(Nrow-1),Nrow-1))
17
       vProm=c(sum(distrib[c(5,6)]),
18
               sum(distrib[c(4,5,6)]),
19
               sum(distrib[c(4,5)]),
20
               sum(distrib[c(2,3,5,6)]),
21
               sum(distrib[c(1,2,4,5)]))
22
       Nseg=sum(distrib) ##Total number of followers
       ##With the SWEEP function I multiply the Shadow Factor of each type (
24
       ShadowGroup columns) by the vProm result
25
26
       if (prom==TRUE){
           ## Average Shadow Factor in the group of SIX followers taking into
27
       account distribution
           FS=rowSums(sweep(SombraGrupo,2,vProm,'*'))/Nseg
           FS[FS>1]<-1
       } else {
30
           ## Shadow factor on follower #5 due to the other 5 followers
31
           FS=rowSums(SombraGrupo)
```

```
33 | FS[FS>1]<-1}
34 | return(FS)
35 |
```

```
fSombraEst<-function(angGen, distances, struct)</pre>
1
2
       stopifnot(is.list(struct),is.data.frame(distances))
3
       ## I prepare starting data
4
       dist <- with(struct, distances/L)</pre>
5
       Alfa <- angGen$Alfa
6
       Beta <- angGen$Beta
7
       AlS <- angGen$AlS
8
       AzS <- angGen$AzS
9
       cosTheta <- angGen$cosTheta</pre>
10
       h <- dist$H #It must be previously normalized
11
       d <- dist$D
12
       ## Calculations
13
       s=cos(Beta)+cos(Alfa-AzS)*(sin(Beta)+h)/tan(AlS)
14
       FC=sin(AlS)/sin(Beta+AlS)
15
       SombraCond=(s-d>0)
16
       FS=(s-d)*SombraCond*FC*(cosTheta>0)
17
       ## Result
18
       FS=FS*(FS>0)
19
       FS[FS>1]<-1
       return(FS)
21
   }
22
```

```
fSombraHoriz<-function(angGen, distances, struct)
1
2
       stopifnot(is.list(struct),is.data.frame(distances))
3
       ## I prepare starting data
4
5
       d <- with(struct, distances/L)</pre>
       AzS <- angGen$AzS
6
       AlS <- angGen$AlS
7
       Beta <- angGen$Beta
8
       lew <- d$Lew #It must be previously normalized</pre>
9
       ## Calculations
10
       Beta0=atan(abs(sin(AzS)/tan(AlS)))
11
       FS=1-lew*cos(Beta0)/cos(Beta-Beta0)
12
       SombraCond=(FS>0)
13
       ## Result
14
       FS=FS*SombraCond
15
       FS[FS>1]<-1
16
       return(FS)
17
   }
18
```

fTemp

```
fTemp<-function(sol, BD)
{
    ##sol is an object with class='Sol'
    ##BD is an object with class='Meteo', whose 'data' slot contains two columns
    called "TempMax" and "TempMin"</pre>
```

```
stopifnot(class(sol) == 'Sol')
6
        stopifnot(class(BD) == 'Meteo')
7
8
        checkIndexD(indexD(sol), indexD(BD))
9
10
        Dates<-indexI(sol)</pre>
11
        x <- as.Date(Dates)
12
        ind.rep <- cumsum(c(1, diff(x) != 0))</pre>
13
14
        TempMax <- BD@data$TempMax[ind.rep]</pre>
15
        TempMin <- BD@data$TempMin[ind.rep]</pre>
16
        ws <- sol@solD$ws[ind.rep]</pre>
17
        w <- sol@solI$w
18
19
        ##Generate temperature sequence from database Maxima and Minima
20
21
        Tm=(TempMin+TempMax)/2
22
        Tr=(TempMax-TempMin)/2
23
24
        wp=pi/4
26
        a1=pi*12*(ws-w)/(21*pi+12*ws)
27
        a2=pi*(3*pi-12*w)/(3*pi-12*ws)
28
        a3=pi*(24*pi+12*(ws-w))/(21*pi+12*ws)
29
30
        T1=Tm-Tr*cos(a1)
31
        T2=Tm+Tr*cos(a2)
32
        T3=Tm-Tr*cos(a3)
33
34
        Ta=T1*(w<=ws)+T2*(w>ws&w<=wp)+T3*(w>wp)
35
36
37
        ##Result
        result <-data.table(Dates, Ta)
38
   }
39
```

fTheta

```
fTheta<-function(sol, beta, alfa=0, modeTrk='fixed', betaLim=90,
1
                     BT=FALSE, struct, dist)
2
   {
3
       stopifnot(modeTrk %in% c('two', 'horiz', 'fixed'))
4
       if (!missing(struct)) {stopifnot(is.list(struct))}
5
       if (!missing(dist)) {stopifnot(is.data.frame(dist))}
6
       betaLim=d2r(betaLim)
8
       lat=getLat(sol, 'rad')
9
       signLat=ifelse(sign(lat)==0, 1, sign(lat)) ##When lat=0, sign(lat)=0. I
10
       change it to sign(lat)=1
11
       solI<-as.data.tableI(sol, complete=TRUE, day = TRUE)</pre>
12
       AlS=solI$AlS
13
       AzS=solI$AzS
14
       decl=solI$decl
15
       w<-solI$w
16
17
```

```
night <- solI $ night
18
19
        Beta<-switch(modeTrk,</pre>
20
                      two = \{Beta2x=pi/2-AlS\}
21
                          Beta=Beta2x+(betaLim-Beta2x)*(Beta2x>betaLim)},
22
                      fixed = rep(d2r(beta), length(w)),
23
                      horiz={BetaHorizO=atan(abs(sin(AzS)/tan(AlS)))
24
                          if (BT){lew=dist$Lew/struct$L
25
                               Longitud=lew*cos(BetaHoriz0)
26
                               Cond=(Longitud>=1)
27
                               Longitud[Cond]=1
28
                               ## When Cond==TRUE Length=1
29
                               ## and therefore asin(Length)=pi/2,
30
                               ## so that BetaHoriz=BetaHoriz0
31
                               BetaHoriz=BetaHorizO+asin(Longitud)-pi/2
32
                          } else {
33
                               BetaHoriz=BetaHoriz0
34
                               rm(BetaHoriz0)}
35
                          Beta=ifelse(BetaHoriz>betaLim, betaLim, BetaHoriz)}
36
                      )
37
        is.na(Beta) <- night
38
39
40
        Alfa<-switch(modeTrk,
                      two = AzS,
41
                      fixed = rep(d2r(alfa), length(w)),
42
                      horiz=pi/2*sign(AzS))
43
        is.na(Alfa) <- night
45
        cosTheta<-switch(modeTrk,</pre>
46
                          two=cos(Beta-(pi/2-AlS)),
47
                          horiz={
48
                               t1=sin(decl)*sin(lat)*cos(Beta)
49
                               t2=cos(decl)*cos(w)*cos(lat)*cos(Beta)
50
                               t3=cos(decl)*abs(sin(w))*sin(Beta)
51
                               cosTheta=t1+t2+t3
52
                               rm(t1,t2,t3)
53
                               cosTheta
54
                          },
55
                          fixed={
56
                               t1=sin(decl)*sin(lat)*cos(Beta)
57
                               t2=-signLat*sin(decl)*cos(lat)*sin(Beta)*cos(Alfa)
58
                               t3=cos(decl)*cos(w)*cos(lat)*cos(Beta)
59
                               t4=signLat*cos(decl)*cos(w)*sin(lat)*sin(Beta)*cos(Alfa)
60
                               t5=cos(decl)*sin(w)*sin(Alfa)*sin(Beta)
61
                               cosTheta=t1+t2+t3+t4+t5
62
                               rm(t1,t2,t3,t4,t5)
63
                               cosTheta
64
                          }
65
66
        is.na(cosTheta) <- night</pre>
67
        cosTheta=cosTheta*(cosTheta>0) #when cosTheta<0, Theta is greater than 90°,
68
        and therefore the Sun is behind the panel.
69
        result <- data.table(Dates = indexI(sol),
70
71
                               Beta, Alfa, cosTheta)
        return(result)
72
```

A.3. FUNCIONES 59

73 }

HQCurve

```
## HQCurve: no visible binding for global variable 'fb'
   ## HQCurve: no visible binding for global variable 'Q'
   ## HQCurve: no visible binding for global variable 'x'
3
   ## HQCurve: no visible binding for global variable 'y'
   ## HQCurve: no visible binding for global variable 'group.value'
6
   if(getRversion() >= "2.15.1") globalVariables(c('fb', 'Q', 'x', 'y', 'group.value
       '))
8
   HQCurve<-function(pump){</pre>
9
     w1=3000 #synchronous rpm frequency
10
11
     wm=2870 #rpm frequency with slip when applying voltage at 50 Hz
     s=(w1-wm)/w1
12
     fen=50 #Nominal electrical frequency
13
14
     f = seq(35,50,by=5)
15
     Hn=with(pump,a*50^2+b*50*Qn+c*Qn^2) #height corresponding to flow rate and
16
       nominal frequency
17
     kiso=Hn/pump$Qn^2 #To paint the isoyield curve I take into account the laws of
18
       similarity
     Qiso=with(pump, seq(0.1*Qn,Qmax,l=10))
19
     Hiso=kiso*Qiso^2 #Isoperformance curve
20
21
     Curva <- expand.grid(fb=f,Q=Qiso)
22
23
     Curva<-within(Curva,{
24
       fe=fb/(1-s)
25
       H=with(pump,a*fb^2+b*fb*Q+c*Q^2)
26
27
       is.na(H) <- (H<0)
28
       Q50=50*Q/fb
       H50=H*(50/fb)^2
30
       etab=with(pump,j*Q50^2+k*Q50+1)
31
       Pb50=2.725*H50*Q50/etab
32
       Pb=Pb50*(fb/50)^3
33
34
       Pbc=Pb*50/fe
35
       etam=with(pump,g*(Pbc/Pmn)^2+h*(Pbc/Pmn)+i)
36
       Pmc=Pbc/etam
37
       Pm=Pmc*fe/50
38
39
40
       etac=0.95 #Variable frequency drive performance
41
       cab=0.05 #Cable losses
       Pdc=Pm/(etac*(1-cab))
42
       rm(etac,cab,Pmc,Pbc,Pb50,Q50,H50)
43
     })
   ###H-Q curve at different frequencies
46
     ##I check if I have the lattice package available, which should have been
47
       loaded in .First.lib
```

```
lattice.disp<-("lattice" %in% .packages())</pre>
48
     latticeExtra.disp<-("latticeExtra" %in% .packages())</pre>
49
     if (lattice.disp && latticeExtra.disp) {
50
       p<-xyplot(H~Q,groups=factor(fb),data=Curva, type='l',
51
                  par.settings=custom.theme.2(),
52
                  panel=function(x,y,groups,...){
53
                    panel.superpose(x,y,groups,...)
54
                    panel.xyplot(Qiso,Hiso,col='black',...)
55
                    panel.text(Qiso[1], Hiso[1], 'ISO', pos=3)}
56
57
       p=p+glayer(panel.text(x[1], y[1], group.value, pos=3))
58
       print(p)
       result <- list (result = Curva, plot = p)
60
     } else {
61
       warning('lattice and/or latticeExtra packages are not available. Thus, the
62
       plot could not be created')
       result<-Curva}
63
   }
64
```

local2Solar

```
local2Solar <- function(x, lon=NULL){</pre>
1
     tz=attr(x, 'tzone')
2
     if (tz=='' || is.null(tz)) {tz='UTC'}
3
     ##Daylight savings time
4
     A0=3600*dst(x)
5
     AOneg=(AO<0)
6
     if (any(AOneg)) {
7
        AO[AOneg] = 0
8
        warning('Some Daylight Savings Time unknown. Set to zero.')
9
10
     ##Difference between local longitude and time zone longitude LH
11
     LH=lonHH(tz)
12
     if (is.null(lon))
13
        {deltaL=0
14
      } else
15
     {deltaL=d2r(lon)-LH
16
    }
^{17}
18
     ##Local time corrected to UTC
     tt <- format(x, tz=tz)</pre>
19
     result <- as.POSIXct(tt, tz='UTC')-A0+r2sec(deltaL)</pre>
20
     result
21
   }
```

markovG0

A.3. FUNCIONES 61

```
solD <- copy(solD)</pre>
9
        timeIndex <- solD$Dates</pre>
10
        BoOd <- solD$BoOd
11
        Bo0dm <- solD[, mean(Bo0d), by = .(month(Dates), year(Dates))][[3]]
12
        ktm <- GOdm/BoOdm
13
14
        ##Calculates which matrix to work with for each month
15
        whichMatrix <- findInterval(ktm, Ktmtm, all.inside = TRUE)</pre>
16
17
        ktd <- state <- numeric(length(timeIndex))</pre>
18
        state[1] <- 1
19
        ktd[1] <- ktm[state[1]]</pre>
20
        for (i in 2:length(timeIndex)){
21
             iMonth <- month(timeIndex[i])</pre>
22
             colMonth <- whichMatrix[iMonth]</pre>
23
            rng <- Ktlim[, colMonth]</pre>
             classes <- seq(rng[1], rng[2], length=11)</pre>
25
            matMonth <- MTM[(10*colMonth-9):(10*colMonth),]</pre>
26
             ## http://www-rohan.sdsu.edu/~babailey/stat575/mcsim.r
27
             state[i] <- sample(1:10, size=1, prob=matMonth[state[i-1],])</pre>
28
             ktd[i] <- runif(1, min=classes[state[i]], max=classes[state[i]+1])</pre>
29
        }
30
31
        GOdmMarkov <- data.table(ktd, BoOd)</pre>
        GOdmMarkov <- GOdmMarkov[, mean(ktd*BoOd), by = .(month(timeIndex), year(</pre>
32
        timeIndex))][[3]]
        fix <- GOdm/GOdmMarkov</pre>
33
        indRep <- month(timeIndex)</pre>
        fix <- fix[indRep]</pre>
35
        GOd <- data.table(Dates = timeIndex, GOd = ktd * BoOd * fix)</pre>
36
37
   }
```

NmgPVPS

```
## NmgPVPS: no visible binding for global variable 'Pnom'
   ## NmgPVPS: no visible binding for global variable 'group.value'
3
   if(getRversion() >= "2.15.1") globalVariables(c('Pnom', 'group.value'))
4
5
   NmgPVPS <- function(pump, Pg, H, Gd, Ta=30,
6
                        lambda=0.0045, TONC=47,
7
                        eta=0.95, Gmax=1200, t0=6, Nm=6,
8
                        title='', theme=custom.theme.2()){
9
10
       ##I build the type day by IEC procedure
11
       t = seq(-t0, t0, 1 = 2*t0*Nm);
12
       d=Gd/(Gmax*2*t0)
13
       s=(d*pi/2-1)/(1-pi/4)
14
       G=Gmax*cos(t/t0*pi/2)*(1+s*(1-cos(t/t0*pi/2)))
15
       G[G<0]<-0
16
       G=G/(sum(G,na.rm=1)/Nm)*Gd
       Red <- expand.grid (G=G, Pnom=Pg, H=H, Ta=Ta)
18
       Red<-within(Red, {Tcm<-Ta+G*(TONC-20)/800
19
                         Pdc=Pnom*G/1000*(1-lambda*(Tcm-25)) #Available DC power
20
                         Pac=Pdc*eta})
                                                                #Inverter yield
```

```
22
       res=data.table(Red,Q=0)
23
24
       for (i in seq_along(H)){
25
            fun=fPump(pump, H[i])
26
            Cond=res$H==H[i]
27
            x=res$Pac[Cond]
28
            z=res$Pdc[Cond]
29
            rango=with(fun,x>=lim[1] & x<=lim[2]) #I limit the power to the operating
30
        range of the pump.
            x[!rango]<-0
31
32
            z[!rango]<-0
            y=res$Q[Cond]
33
            y[rango] <-fun$fQ(x[rango])</pre>
34
            res$Q[Cond]=y
35
            res$Pac[Cond] =x
            res$Pdc[Cond]=z
37
       }
38
39
       resumen <- res[, lapply(.SD, function(x)sum(x, na.rm = 1)/Nm),
40
                        by = .(Pnom, H)]
41
       param=list(pump=pump, Pg=Pg, H=H, Gd=Gd, Ta=Ta,
42
                   lambda=lambda, TONC=TONC, eta=eta,
43
                   Gmax=Gmax, t0=t0, Nm=Nm)
44
45
46
47
   ###Abacus with common X-axes
48
       ##I check if I have the lattice package available, which should have been
49
       loaded in .First.lib
       lattice.disp<-("lattice" %in% .packages())</pre>
50
       latticeExtra.disp<-("latticeExtra" %in% .packages())</pre>
51
       if (lattice.disp && latticeExtra.disp){
52
53
            tema<-theme
            tema1 <- modifyList(tema, list(layout.width = list(panel=1,
                                              ylab = 2, axis.left=1.0,
55
                                              left.padding=1, ylab.axis.padding=1,
56
                                              axis.panel=1)))
57
            tema2 <- modifyList(tema, list(layout.width = list(panel=1,</pre>
58
                                              ylab = 2, axis.left=1.0, left.padding=1,
59
                                              ylab.axis.padding=1, axis.panel=1)))
60
            temaT <- modifyList(tema, list(layout.heights = list(panel = c(1, 1))))</pre>
61
            p1 <- xyplot(Q~Pdc, groups=H, data=resumen,
62
                          ylab="Qd (m\u00b3/d)", type=c('l','g'),
63
                          par.settings = tema1)
64
65
            p1lab<-p1+glayer(panel.text(x[1], y[1], group.value, pos=2, cex=0.7))
66
67
            ##I paint the linear regression because Pnom Pdc depends on the height.
68
            p2 <- xyplot(Pnom~Pdc, groups=H, data=resumen,
69
                          ylab="Pg", type=c('l', 'g'), #type=c('smooth', 'g'),
70
                          par.settings = tema2)
71
            p2lab<-p2+glayer(panel.text(x[1], y[1], group.value, pos=2, cex=0.7))
72
73
74
            p<-update(c(p1lab, p2lab, x.same = TRUE),</pre>
                       main=paste(title, '\nSP', pump$Qn, 'A', pump$stages, ' ',
75
```

A.3. FUNCIONES 63

```
'Gd ', Gd/1000," kWh/m\u00b2",sep=''),
76
                       layout = c(1, 2),
77
                       scales=list(x=list(draw=FALSE)),
78
                       xlab='',
79
                       ylab = list(c("Qd (m\u00b3/d)", "Pg (Wp)"), y = c(1/4, 3/4)),
80
                       par.settings = temaT
81
82
            print(p)
83
            result<-list(I=res,D=resumen, plot=p, param=param)</pre>
84
        } else {
85
            warning('lattice, latticeExtra packages are not all available. Thus, the
86
       plot could not be created')
            result<-list(I=res,D=resumen, param=param)</pre>
87
        }
88
   }
89
```

utils-angle

```
#degrees to radians
   d2r < function(x) \{x*pi/180\}
3
   #radians to degrees
4
   r2d<-function(x){x*180/pi}
6
   #hours to radians
7
   h2r<-function(x){x*pi/12}
8
9
   #hours to degrees
10
   h2d \leftarrow function(x) \{x*180/12\}
11
12
   #radians to hours
13
   r2h<-function(x){x*12/pi}
14
15
   #degrees to hours
16
   d2h < -function(x) \{x*12/180\}
17
18
   #radians to seconds
19
   r2sec < -function(x) \{x*12/pi*3600\}
20
   #radians to minutes
22
   r2min<-function(x){x*12/pi*60}
```

utils-time

```
#complete time to hours
t2h <- function(x)
{
    hour(x)+minute(x)/60+second(x)/3600
}

#hours minutes and seconds to hours
hms <- function(x)
{
    hour(x)+minute(x)/60+second(x)/3600</pre>
```

```
}
11
12
   #day of the year
13
   doy <- function(x){</pre>
14
     as.numeric(format(x, '%j'))
15
16
17
   #day of the month
   dom <- function(x){</pre>
19
     as.numeric(format(x, '%d'))
20
   }
21
22
23
   #trunc days
   truncDay <- function(x){as.POSIXct(trunc(x, units='days'))}</pre>
```

A.4. Métodos

as.data.tableI

as.data.tableD

```
setGeneric('as.data.tableD', function(object, complete=FALSE, day=FALSE){
       standardGeneric('as.data.tableD')})
2
   setMethod('as.data.tableD',
              signature=(object='Sol'),
4
              definition=function(object, complete=FALSE, day=FALSE){
5
                   sol <- copy(object)</pre>
6
                   solD <- sol@solD
7
                   data <- solD
8
                   if(day){
9
                       ind <- indexD(object)</pre>
10
                       data[, day := doy(ind)]
11
                       data[, month := month(ind)]
12
                       data[, year := year(ind)]
13
                   }
14
                   return(data)
15
              }
16
              )
17
18
   setMethod('as.data.tableD',
19
              signature = (object='GO'),
20
              definition = function(object, complete=FALSE, day=FALSE){
^{21}
                   g0 <- copy(object)
22
                   GOD <- g0@GOD
23
                   solD <- g0@solD
24
25
                   if(complete){
26
                       data <- data.table(GOD, solD[, Dates := NULL])</pre>
                   } else {
27
                       GOD[, Fd := NULL]
28
                       GOD[, Kt := NULL]
29
                       data <- GOD
30
                   }
31
                   if(day){
32
                       ind <- indexD(object)</pre>
```

```
data[, day := doy(ind)]
34
                       data[, month := month(ind)]
35
                       data[, year := year(ind)]
36
                   }
37
                   return(data)
38
              })
39
40
   setMethod('as.data.tableD',
41
              signature = (object='Gef'),
42
              definition = function(object, complete=FALSE, day=FALSE){
43
                   gef <- copy(object)</pre>
44
                   GefD <- gef@GefD
                   GOD <- gef@GOD
46
                   solD <- gef@solD
47
                   if(complete){
48
                       data <- data.table(GefD,</pre>
49
                                            GOD[, Dates := NULL],
50
                                            solD[, Dates := NULL])
51
                   52
53
                   if (day) {
54
                       ind <- indexD(object)</pre>
55
56
                       data[, day := doy(ind)]
                       data[, month := month(ind)]
57
                       data[, year := year(ind)]
58
                   }
59
                   return(data)
              }
61
62
63
   setMethod('as.data.tableD',
65
              signature = (object='ProdGCPV'),
              definition = function(object, complete=FALSE, day=FALSE){
66
                   prodgcpv <- copy(object)</pre>
67
                   prodD <- prodgcpv@prodD</pre>
68
                   GefD <- prodgcpv@GefD
69
                   GOD <- prodgcpv@GOD
70
                   solD <- prodgcpv@solD</pre>
71
72
                   if(complete){
                       data <- data.table(prodD,</pre>
73
                                            GefD[, Dates := NULL],
74
                                            GOD[, Dates := NULL],
75
                                            solD[, Dates := NULL]
76
77
                   } else { data <- prodD[, c('Dates', 'Eac',</pre>
78
                                                 'Edc', 'Yf')]}
79
                   if (day) {
80
                       ind <- indexD(object)</pre>
81
                       data[, day := doy(ind)]
82
                       data[, month := month(ind)]
83
                       data[, year := year(ind)]
84
                   }
85
                   return(data)
86
              }
87
              )
88
89
```

```
setMethod('as.data.tableD',
                signature = (object='ProdPVPS'),
91
                definition = function(object, complete=FALSE, day=FALSE){
92
                     prodpvps <- copy(object)</pre>
93
                     prodD <- prodpvps@prodD</pre>
94
                     GefD <- prodpvps@GefD</pre>
95
                     GOD <- prodpvps@GOD
96
                     solD <- prodpvps@solD</pre>
97
                     if(complete){
98
                         data <- data.table(prodD,</pre>
99
                                                GefD[, Dates := NULL],
100
                                                GOD[, Dates := NULL],
101
                                                solD[, Dates := NULL]
102
103
                    } else { data <- prodD[, c('Dates', 'Eac',</pre>
104
                                                    'Qd', 'Yf')]}
105
                     if (day) {
106
                         ind <- indexD(object)</pre>
107
                         data[, day := doy(ind)]
108
                         data[, month := month(ind)]
                         data[, year := year(ind)]
110
111
                     return(data)
112
                }
113
                )
114
```

as.data.tableM

```
setGeneric('as.data.tableM', function(object, complete = FALSE, day=FALSE){
       standardGeneric('as.data.tableM')})
2
   setMethod('as.data.tableM',
              signature=(object='GO'),
4
              definition=function(object, complete=FALSE, day=FALSE){
5
                  g0 <- copy(object)
6
                  GOdm <- g0@GOdm
                  data <- GOdm
8
                  if(day){
9
                       ind <- indexD(object)</pre>
10
                       data[, month := month(ind)]
11
                       data[, year := year(ind)]
12
13
                  return(data)
14
              }
15
              )
16
17
   setMethod('as.data.tableM',
19
              signature=(object='Gef'),
              definition = function(object, complete=FALSE, day=FALSE){
20
                   gef <- copy(object)</pre>
21
                  Gefdm <- gef@Gefdm
22
                  GOdm <- gef@GOdm
23
                  if(complete){
24
                       data <- data.table(Gefdm, GOdm[, Dates := NULL])</pre>
25
                  } else {data <- Gefdm}</pre>
```

```
if(day){
27
                         ind <- indexD(object)</pre>
28
                         data[, month := month(ind)]
29
                         data[, year := year(ind)]
30
                    }
31
                    return(data)
32
               }
33
34
35
    setMethod('as.data.tableM',
36
               signature = (object='ProdGCPV'),
37
               definition = function(object, complete=FALSE, day=FALSE){
                    prodgcpv <- copy(object)</pre>
39
                    prodDm <- prodgcpv@prodDm</pre>
40
                    Gefdm <- prodgcpv@Gefdm</pre>
41
                    GOdm <- prodgcpv@GOdm
42
                    if(complete){
43
                         data <- data.table(prodDm,</pre>
44
                                               Gefdm[, Dates := NULL],
45
                                               GOdm[, Dates := NULL])
46
                    } else {data <- prodDm}</pre>
47
                    if(day){
48
                         ind <- indexD(object)</pre>
49
                         data[, month := month(ind)]
50
                         data[, year := year(ind)]
51
                    }
52
                    return(data)
               }
54
55
56
    setMethod('as.data.tableM',
57
               signature = (object='ProdPVPS'),
58
               definition = function(object, complete=FALSE, day=FALSE){
59
                    prodpvps <- copy(object)</pre>
60
                    prodDm <- prodpvps@prodDm</pre>
61
                    Gefdm <- prodpvps@Gefdm</pre>
62
                    GOdm <- prodpvps@GOdm
63
64
                    if(complete){
                         data <- data.table(prodDm,</pre>
65
                                               Gefdm[, Dates := NULL],
66
                                               GOdm[, Dates := NULL])
67
                    } else {data <- prodDm}</pre>
68
                    if(day){
69
                         ind <- indexD(object)</pre>
70
                         data[, month := month(ind)]
71
                         data[, year := year(ind)]
72
                    }
73
                    return(data)
74
               }
75
               )
```

as.data.tableY

```
setGeneric('as.data.tableY', function(object, complete=FALSE, day=FALSE){
    standardGeneric('as.data.tableY')})
```

```
setMethod('as.data.tableY',
3
               signature=(object='GO'),
4
               definition=function(object, complete=FALSE, day=FALSE){
5
                    g0 <- copy(object)
6
                   GOy <- g0@GOy
7
                   data <- GOy
8
                   if(day){data[, year := Dates]}
9
                   return(data)
10
               }
11
               )
12
13
    setMethod('as.data.tableY',
14
               signature = (object='Gef'),
15
               definition = function(object, complete=FALSE, day=FALSE){
16
                   gef <- copy(object)</pre>
17
                   Gefy <- gef@Gefy
18
                   GOy <- gef@GOy
19
                   if(complete){
20
                        data <- data.table(Gefy, GOy[, Dates := NULL])</pre>
21
                   } else {data <- Gefy}</pre>
22
                   if(day){data[, year := Dates]}
23
                   return(data)
24
               }
25
               )
26
27
    setMethod('as.data.tableY',
28
               signature = (object='ProdGCPV'),
29
               definition = function(object, complete=FALSE, day=FALSE){
30
                   prodgcpv <- copy(object)</pre>
31
                   prody <- prodgcpv@prody</pre>
32
33
                   Gefy <- prodgcpv@Gefy</pre>
                   GOy <- prodgcpv@GOy
34
                   if(complete){
35
                        data <- data.table(prody,</pre>
36
                                              Gefy[, Dates := NULL],
37
                                              GOy[, Dates := NULL])
38
                   } else {data <- prody}</pre>
39
                    if(day){data[, year := Dates]}
40
                   return(data)
41
               }
42
               )
43
44
    setMethod('as.data.tableY',
45
               signature = (object='ProdPVPS'),
46
               definition = function(object, complete=FALSE, day=FALSE){
47
                   prodpvps <- copy(object)</pre>
48
                   prody <- prodpvps@prody</pre>
49
                   Gefy <- prodpvps@Gefy</pre>
50
                   GOy <- prodpvps@GOy
51
                    if(complete){
52
                        data <- data.table(prody,</pre>
53
                                              Gefy[, Dates := NULL],
54
                                              GOy[, Dates := NULL])
55
                   } else {data <- prody}</pre>
56
                   if(day){data[, year := Dates]}
57
```

compare

```
## compareFunction: no visible binding for global variable 'name'
1
   ## compareFunction: no visible binding for global variable 'x'
2
   ## compareFunction: no visible binding for global variable 'y'
   ## compareFunction: no visible binding for global variable 'group.value'
    if(getRversion() >= "2.15.1") globalVariables(c('name', 'x', 'y', 'group.value'))
6
    setGeneric('compare', signature='...', function(...){standardGeneric('compare')})
8
9
10
    compareFunction <- function(..., vars){</pre>
        dots <- list(...)</pre>
11
        nms0 <- substitute(list(...))</pre>
12
        if (!is.null(names(nms0))){ ##in do.call
13
            nms <- names(nms0[-1])
14
        } else {
15
            nms <- as.character(nms0[-1])</pre>
16
        }
17
        foo <- function(object, label){</pre>
18
            yY <- colMeans(as.data.tableY(object, complete = TRUE)[, ..vars])</pre>
19
            yY <- cbind(stack(yY), name=label)
20
21
        }
22
        cdata <- mapply(FUN=foo, dots, nms, SIMPLIFY=FALSE)</pre>
23
        z <- do.call(rbind, cdata)
24
        z$ind <- ordered(z$ind, levels=vars)</pre>
25
        p <- dotplot(ind~values, groups=name, data=z, type='b',</pre>
26
                      par.settings=solaR.theme)
27
        print(p+glayer(panel.text(x[length(x)], y[length(x)],
28
                                     label=group.value, cex=0.7, pos=3, srt=45)))
29
30
        return(z)
31
32
33
    setMethod('compare',
34
              signature='GO',
35
              definition=function(...){
36
                 vars <- c('DOd', 'BOd', 'GOd')</pre>
37
                 res <- compareFunction(..., vars=vars)</pre>
38
                 return(res)
39
              }
40
41
              )
42
   setMethod('compare',
43
              signature='Gef',
44
              definition=function(...){
                 vars <- c('Defd', 'Befd', 'Gefd')</pre>
46
                 res <- compareFunction(..., vars=vars)</pre>
47
                 return(res)
48
```

```
50
51
    setMethod('compare',
52
               signature='ProdGCPV',
               definition=function(...){
54
                  vars <- c('GOd', 'Gefd', 'Yf')</pre>
55
                  res <- compareFunction(..., vars=vars)</pre>
56
                  return(res)
57
               }
58
               )
59
```

getData

```
## extracts the data for class Meteo ##
   setGeneric('getData', function(object){standardGeneric('getData')})
3
   ### getData ####
4
   setMethod('getData',
5
             signature = (object = 'Meteo'),
6
             definition = function(object){
7
                 result <- object@data
8
                  return(result)
9
             })
10
```

getG0

```
## extracts the global irradiance for class Meteo ##
   setGeneric('getG0', function(object){standardGeneric('getG0')})
2
3
   ### getG0 ###
4
   setMethod('getG0',
5
              signature = (object = 'Meteo'),
6
              definition = function(object){
                  result <- getData(object)</pre>
8
                  return(result$G0)
9
              })
10
```

getLat

```
## extracts the latitude from the objects ##
   setGeneric('getLat', function(object, units = 'rad')
   {standardGeneric('getLat')})
3
   ## extracts the latitude from the objects ##
   setGeneric('getLat', function(object, units = 'rad')
   {standardGeneric('getLat')})
8
   setMethod('getLat',
9
             signature = (object = 'Meteo'),
10
             definition = function(object, units = 'rad'){
11
                 stopifnot(units %in% c('deg', 'rad'))
12
                 result = switch(units,
13
                                  rad = d2r(object@latm),
```

```
deg = object@latm)
return(result)
})
```

indexD

```
## extract the index of the daily data ##
   setGeneric('indexD', function(object){standardGeneric('indexD')})
2
   ### indexD ###
   setMethod('indexD',
             signature = (object = 'Sol'),
5
             definition = function(object){as.POSIXct(object@solD$Dates)
6
             })
8
   setMethod('indexD',
9
             signature = (object = 'Meteo'),
10
             definition = function(object){as.POSIXct(getData(object)$Dates)})
```

indexI

```
## extract the index of the intradaily data ##
setGeneric('indexI', function(object){standardGeneric('indexI')})
### indexI ###
setMethod('indexI',
signature = (object = 'Sol'),
definition = function(object){as.POSIXct(object@solI$Dates)}
})
```

levelplot

```
setGeneric('levelplot')
2
   setMethod('levelplot',
3
              signature=c(x='formula', data='Meteo'),
4
              definition=function(x, data,
5
                                   par.settings = solaR.theme,
6
                                   panel = panel.levelplot.raster, interpolate = TRUE,
7
                                   xscale.components = xscale.solar,
8
                                   yscale.components = yscale.solar,
9
10
                  data0=getData(data)
11
                  ind=data0$Dates
12
                  data0$day=doy(ind)
13
                  dataO$month=month(ind)
14
15
                  data0$year=year(ind)
                  data0$w=h2r(hms(ind)-12)
16
                  levelplot(x, data0,
17
                             par.settings = par.settings,
18
                             xscale.components = xscale.components,
19
                             yscale.components = yscale.components,
20
                             panel = panel, interpolate = interpolate,
21
                             ...)
22
```

```
24
25
   setMethod('levelplot',
26
              signature=c(x='formula', data='Sol'),
27
              definition=function(x, data,
28
                                    par.settings = solaR.theme,
29
                                    panel = panel.levelplot.raster, interpolate = TRUE,
30
                                    xscale.components = xscale.solar,
31
                                    yscale.components = yscale.solar,
32
                                    ...){
33
                  data0=as.data.tableI(data, complete=TRUE, day=TRUE)
34
                  ind=dataO$Dates
35
                  data0$day=doy(ind)
36
                  dataO$month=month(ind)
37
                  data0$year=year(ind)
38
                  levelplot(x, data0,
39
                             par.settings = par.settings,
40
                             xscale.components = xscale.components,
41
                             yscale.components = yscale.components,
42
                             panel = panel, interpolate = interpolate,
43
44
              }
45
46
47
   setMethod('levelplot',
48
              signature=c(x='formula', data='G0'),
49
              definition=function(x, data,
                                    par.settings = solaR.theme,
51
                                    panel = panel.levelplot.raster, interpolate = TRUE,
52
                                    xscale.components = xscale.solar,
53
                                    yscale.components = yscale.solar,
55
                  data0=as.data.tableI(data, complete=TRUE, day=TRUE)
56
                  ind=dataO$Dates
57
                  data0$day=doy(ind)
                  dataO$month=month(ind)
59
                  data0$year=year(ind)
60
                  levelplot(x, data0,
61
                             par.settings = par.settings,
62
                             xscale.components = xscale.components,
63
                             yscale.components = yscale.components,
64
                             panel = panel, interpolate = interpolate,
65
66
              }
67
              )
68
```

losses

```
if (isShd) {
8
                   shd <- with(dat, mean(1-Gefd/Gef0d))</pre>
9
                   eff <- with(dat, mean(1-Gef0d/Gd))</pre>
10
                } else {
11
                   shd <- 0
12
                   eff <- with(dat, mean(1-Gefd/Gd))</pre>
13
14
                result <- data.table(Shadows = shd, AoI = eff)
15
                result
16
              }
17
              )
18
   setMethod('losses',
20
              signature=(object='ProdGCPV'),
21
              definition=function(object){
22
                   datY <- as.data.tableY(object, complete=TRUE)</pre>
                   module0=object@module
24
                   moduleO$CoefVT=O ##No losses with temperature
25
                   Pg=object@generator$Pg
26
                   Nm=1/sample2Hours(object@sample)
27
                   datI <- as.data.tableI(object, complete=TRUE)</pre>
28
                   if (object@type=='prom'){
29
                       datI[, DayOfMonth := DOM(datI)]
30
                       YfDCO <- datI[, sum(Vmpp*Impp/Pg*DayOfMonth, na.rm = TRUE),
31
                                      by = month(Dates)][[2]]
32
                       YfDCO <- sum(YfDCO, na.rm = TRUE)
33
                       YfACO <- datI[, sum(Pdc*EffI/Pg*DayOfMonth, na.rm = TRUE),
                                       by = month(Dates)][[2]]
35
                       YfACO <- sum(YfACO, na.rm = TRUE)
36
                   } else {
37
                       datI[, DayOfMonth := DOM(datI)]
38
                       YfDCO <- datI[, sum(Vmpp*Impp/Pg*DayOfMonth, na.rm = TRUE),
39
                                       by = year(Dates)][[2]]
40
                       YfACO <- datI[, sum(Pdc*EffI/Pg*DayOfMonth, na.rm = TRUE),
41
                                       by = year(Dates)][[2]]
42
43
                   gen <- mean(1-YfDCO/datY$Gefd)</pre>
44
                   YfDC <- datY$Edc/Pg*1000
45
                   DC=mean(1-YfDC/YfDC0)
46
                   inv=mean(1-YfACO/YfDC)
47
                   AC=mean(1-datY$Yf/YfACO)
48
                   result0 <- losses(as(object, 'Gef'))</pre>
49
                   result1 <- data.table(Generator = gen,
50
                                           DC = DC,
51
                                           Inverter = inv,
52
                                           AC = AC)
53
                   result <- data.table(result0, result1)
54
                   result
55
              }
56
              )
57
58
   ###compareLosses
59
60
   ## compareLosses, ProdGCPV: no visible binding for global variable 'name'
   if(getRversion() >= "2.15.1") globalVariables(c('name'))
62
63
```

```
setGeneric('compareLosses', signature='...', function(...){standardGeneric('
        compareLosses')})
65
   setMethod('compareLosses', 'ProdGCPV',
               definition=function(...){
67
                 dots <- list(...)</pre>
68
                 nms0 <- substitute(list(...))</pre>
69
                 if (!is.null(names(nms0))){ ##do.call
70
                   nms \leftarrow names(nms0[-1])
71
                 } else {
72
                   nms <- as.character(nms0[-1])</pre>
73
                 }
                 foo <- function(object, label){</pre>
75
                   yY <- losses(object)
76
                   yY <- cbind(yY, name=label)
77
                   yY
78
                 }
79
                 cdata <- mapply(FUN=foo, dots, nms, SIMPLIFY=FALSE)</pre>
80
                 z <- do.call(rbind, cdata)
                 z <- melt(z, id.vars = 'name')</pre>
82
                 p <- dotplot(variable~value*100, groups=name, data=z,</pre>
83
                                par.settings=solaR.theme, type='b',
84
85
                                auto.key=list(corner=c(0.95,0.2), cex=0.7), xlab='Losses
         (%)')
                 print(p)
86
                 return(z)
87
               }
               )
89
```

mergeSolar

```
setGeneric('mergesolaR', signature='...', function(...){standardGeneric('
       mergesolaR')})
2
   fooMeteo <- function(object, var){yY <- getData(object)[, .SD,</pre>
3
4
                                                                   by = Dates,
5
                                                                   .SDcols = var]}
6
   fooG0 <- function(object, var){yY <- as.data.tableD(object)[, .SD,</pre>
7
                                                                       by = Dates,
8
                                                                       .SDcols = var]}
9
10
   mergeFunction <- function(..., foo, var){</pre>
11
        dots <- list(...)</pre>
12
        dots <- lapply(dots, as, class(dots[[1]])) ##the first element is the one
13
       that dictates the class to everyone
        nms0 <- substitute(list(...))</pre>
14
        if (!is.null(names(nms0))){ ##do.call
15
            nms \leftarrow names(nms0[-1])
16
        } else {
17
            nms <- as.character(nms0[-1])</pre>
19
        cdata <- sapply(dots, FUN=foo, var, simplify=FALSE)</pre>
20
        z <- cdata[[1]]</pre>
21
       for (i in 2:length(cdata)){
```

```
z <- merge(z, cdata[[i]], by = 'Dates', suffixes = c("", paste0('.', i)))
23
24
        names(z)[-1] \leftarrow nms
25
26
   }
27
28
   setMethod('mergesolaR',
29
               signature='Meteo',
30
               definition=function(...){
31
                 res <- mergeFunction(..., foo=fooMeteo, var='GO')</pre>
32
33
               }
34
               )
35
36
   setMethod('mergesolaR',
37
               signature='GO',
38
               definition=function(...){
39
                 res <- mergeFunction(..., foo=fooGO, var='GOd')</pre>
40
41
                 res
               }
42
43
44
   setMethod('mergesolaR',
45
               signature='Gef',
46
               definition=function(...){
47
                 res <- mergeFunction(..., foo=fooG0, var='Gefd')</pre>
48
49
                 res
               }
50
51
52
   setMethod('mergesolaR',
               signature='ProdGCPV',
54
               definition=function(...){
55
                 res <- mergeFunction(..., foo=fooG0, var='Yf')</pre>
56
57
               }
58
               )
59
60
   setMethod('mergesolaR',
61
               signature='ProdPVPS',
62
               definition=function(...){
63
                 res <- mergeFunction(..., foo=fooG0, var='Yf')</pre>
64
65
               }
66
               )
67
```

shadeplot

```
n=9, ...){
8
                  red=x@distances
9
                  FS.loess=x@FS.loess
10
                  Yf.loess=x@Yf.loess
11
                   struct=x@struct
12
                  mode=x@modeTrk
13
                  if (mode=='two'){
14
                       Lew=seq(min(red$Lew),max(red$Lew),length=100)
15
                       Lns=seq(min(red$Lns),max(red$Lns),length=100)
16
                       Red=expand.grid(Lew=Lew,Lns=Lns)
17
                       FS=predict(FS.loess,Red)
18
                       Red$FS=as.numeric(FS)
19
                       AreaG=with(struct,L*W)
20
                       GRR=Red$Lew*Red$Lns/AreaG
21
                       Red$GRR=GRR
22
                       FS.m<-matrix(1-FS,
23
                                     nrow=length(Lew),
24
                                     ncol=length(Lns))
25
                       GRR.m<-matrix(GRR,</pre>
26
                                      nrow=length(Lew),
27
                                      ncol=length(Lns))
28
                       niveles=signif(seq(min(FS.m),max(FS.m),l=n+1),3)
29
                       pruebaCB<-("RColorBrewer" %in% .packages())</pre>
30
                       if (pruebaCB) {
31
                           paleta=rev(brewer.pal(n, 'YlOrRd'))
32
                       } else {
33
                           paleta=rev(heat.colors(n))}
34
                       par(mar=c(4.1,4.1,2.1,2.1))
35
                       filled.contour(x=Lew,y=Lns,z=FS.m,#...,
36
                                       col=paleta, #levels=niveles,
37
                                       nlevels=n,
38
                                       plot.title=title(xlab=xlab,
39
                                                          ylab=ylab, main=main),
40
                                       plot.axes={
41
                                            axis(1); axis(2);
42
                                            contour(Lew, Lns, FS.m,
43
                                                    nlevels=n, #levels=niveles,
44
                                                    col="black", labcex=.8, add=TRUE)
45
                                            contour(Lew, Lns, GRR.m,
46
                                                    col="black", lty=3, labcex=.8, add=
47
       TRUE)
                                            grid(col="white",lty=3)},
48
                                       key.title=title("1-FS",cex.main=.8))
49
50
                  if (mode=='horiz') {
51
                       Lew=seq(min(red$Lew),max(red$Lew),length=100)
52
                       FS=predict(FS.loess,Lew)
53
                       GRR=Lew/struct$L
54
                       plot(GRR,1-FS,main=main,type='l',...)
55
                       grid()
56
                   if (mode=='fixed'){
57
                       D=seq(min(red$D),max(red$D),length=100)
58
                       FS=predict(FS.loess,D)
59
                       GRR=D/struct$L
60
                       plot(GRR,1-FS,main=main,type='l',...)
61
                       grid()
                                  }
62
```

```
63 }
64 )
```

window

```
setMethod('[',
1
                signature='Meteo',
2
                definition=function(x, i, j,...){
3
                  if (!missing(i)) {
                     i <- truncDay(i)</pre>
5
                  } else {
6
                     i \leftarrow indexD(x)[1]
7
                  }
8
                  if (!missing(j)) {
9
                     j \leftarrow truncDay(j)+86400-1 ##The end is the last second of the day
10
11
                  } else {
                     nDays <- length(indexD(x))</pre>
12
                     j \leftarrow indexD(x)[nDays]+86400-1
13
                  }
14
                  stopifnot(j>i)
15
                  if (!is.null(i)) i <- truncDay(i)</pre>
16
                  if (!is.null(j)) j <- truncDay(j)+86400-1</pre>
17
                  d <- indexD(x)</pre>
18
                  x@data \leftarrow x@data[(d >= i & d <= j)]
19
20
                }
21
                )
22
23
24
    setMethod('[',
25
                signature='Sol',
26
27
                definition=function(x, i, j, ...){
                     if (!missing(i)) {
28
                          i <- truncDay(i)</pre>
29
                     } else {
30
31
                          i \leftarrow indexD(x)[1]
32
                     if (!missing(j)) {
33
                          j \leftarrow truncDay(j)+86400-1\#The end is the last second of the day
34
                     } else {
35
                          nDays <- length(indexD(x))</pre>
36
                          j <- indexD(x)[nDays]+86400-1</pre>
37
                     }
38
                     stopifnot(j>i)
39
                     if(!is.null(i)) i <- truncDay(i)</pre>
40
                     if(!is.null(j)) j <- truncDay(j)</pre>
41
42
                     d1 \leftarrow indexD(x)
43
                     d2 \leftarrow indexI(x)
                     x@solD \leftarrow x@solD[(d1 \ge i \& d1 \le j)]
44
                     x@solI \leftarrow x@solI[(d2 \ge i \& d2 \le j)]
45
46
                }
47
48
49
   setMethod('[',
```

```
signature='GO',
51
                definition=function(x, i, j, ...){
52
                     sol \leftarrow as(x, 'Sol')[i=i, j=j, ...] ##Sol method
53
                    meteo <- as(x, 'Meteo')[i=i, j=j, ...] ##Meteo method</pre>
                     i <- indexI(sol)[1]</pre>
55
                     j <- indexI(sol)[length(indexI(sol))]</pre>
56
                    d1 \leftarrow indexD(x)
57
                    d2 <- indexI(x)</pre>
58
                    GOIw \leftarrow x@GOI[(d2 >= i \& d2 <= j)]
59
                    Taw \leftarrow x@Ta[(d2 >= i \& d2 <= j)]
60
                    GOdw \leftarrow x@GOD[(d1 >= truncDay(i) & d1 <= truncDay(j))]
61
                    GOdmw <- GOdw[, lapply(.SD/1000, mean, na.rm= TRUE),</pre>
62
                                     .SDcols = c('GOd', 'DOd', 'BOd'),
63
                                    by = .(month(Dates), year(Dates))]
64
                    if (x@type=='prom'){
65
                         GOdmw[, DayOfMonth := DOM(GOdmw)]
66
                         GOyw <- GOdmw[, lapply(.SD*DayOfMonth, sum, na.rm = TRUE),
67
                                          .SDcols = c('GOd', 'DOd', 'BOd'),
68
                                          by = .(Dates = year)]
69
                         GOdmw[, DayOfMonth := NULL]
70
                    } else {
71
                         GOyw <- GOdw[, lapply(.SD/1000, sum, na.rm = TRUE),</pre>
72
                                         .SDcols = c('GOd', 'DOd', 'BOd'),
73
                                        by = .(Dates = year(unique(truncDay(Dates))))]
74
75
                    GOdmw[, Dates := paste(month.abb[month], year, sep = '. ')]
76
                    GOdmw[, c('month', 'year') := NULL]
                     setcolorder(GOdmw, 'Dates')
78
                    result <- new('GO',
79
                                     meteo.
80
81
                                     sol,
                                     GOD=GOdw,
82
                                     GOdm=GOdmw,
83
                                     GOy=GOyw,
84
                                     GOI=GOIw,
                                     Ta=Taw)
86
                    result
87
                }
88
                )
90
91
    setMethod('[',
92
                signature='Gef',
93
                definition=function(x, i, j, ...){
94
                    g0 \leftarrow as(x, 'G0')[i=i, j=j, ...] ##G0 method
95
                    i <- indexI(g0)[1]</pre>
96
                    j <- indexI(g0)[length(indexI(g0))]</pre>
97
                    d1 \leftarrow indexD(x)
98
                    d2 <- indexI(x)
99
                    GefIw \leftarrow x@GefI[(d2 >= i \& d2 <= j)]
100
                    Thetaw \leftarrow x@Theta[(d2 >= i & d2 <= j)]
101
                    Gefdw <- x@GefD[(d1 >= truncDay(i) & d1 <= truncDay(j))]</pre>
102
                    nms <- c('Bod', 'Bnd', 'Gd', 'Dd',</pre>
103
                               'Bd', 'Gefd', 'Defd', 'Befd')
104
                    Gefdmw <- Gefdw[, lapply(.SD/1000, mean, na.rm = TRUE),</pre>
105
                                       .SDcols = nms,
106
```

```
by = .(month(Dates), year(Dates))]
107
                    if (x@type=='prom'){
108
                         Gefdmw[, DayOfMonth:= DOM(Gefdmw)]
109
                         Gefyw <- Gefdmw[, lapply(.SD*DayOfMonth, sum),</pre>
110
                                           .SDcols = nms,
111
                                           by = .(Dates = year)]
112
                         Gefdmw[, DayOfMonth := NULL]
113
                    } else {
114
                         Gefyw <- Gefdw[, lapply(.SD/1000, sum, na.rm = TRUE),</pre>
115
                                          .SDcols = nms,
116
                                          by = .(Dates = year)]
117
                    Gefdmw[, Dates := paste(month.abb[month], year, sep = '. ')]
119
                    Gefdmw[, c('month', 'year') := NULL]
120
                    setcolorder(Gefdmw, 'Dates')
121
                    result <- new('Gef',
122
                                    g0,
123
                                    GefD=Gefdw.
124
125
                                    Gefdm=Gefdmw,
                                    Gefy=Gefyw,
                                    GefI=GefIw,
127
                                    Theta=Thetaw,
128
129
                                    iS=x@iS,
                                    alb=x@alb,
130
                                    modeTrk=x@modeTrk,
131
                                    modeShd=x@modeShd,
132
                                    angGen=x@angGen,
133
                                    struct=x@struct,
134
                                    distances=x@distances
135
136
                    result
137
                }
138
                )
139
140
    setMethod('[',
142
                signature='ProdGCPV',
143
                definition=function(x, i, j, ...){
144
                    gef <- as(x, 'Gef')[i=i, j=j, ...] ##Gef method</pre>
145
                    i <- indexI(gef)[1]</pre>
146
                    j <- indexI(gef)[length(indexI(gef))]</pre>
147
                    d1 \leftarrow indexD(x)
148
                    d2 <- indexI(x)
149
                    prodIw \leftarrow x@prodI[(d2 >= i \& d2 <= j)]
150
                    prodDw <- x@prodD[(d1 >= truncDay(i) & d1 <= truncDay(j))]</pre>
151
                    prodDmw <- prodDw[, lapply(.SD/1000, mean, na.rm = TRUE),</pre>
152
                                         .SDcols = c('Eac', 'Edc'),
153
                                         by = .(month(Dates), year(Dates))]
154
                    prodDmw$Yf <- prodDw$Yf</pre>
155
                    if (x@type=='prom'){
                         prodDmw[, DayOfMonth := DOM(prodDmw)]
157
                         prodyw <- prodDmw[, lapply(.SD*DayOfMonth, sum, na.rm = TRUE),</pre>
158
                                              .SDcols = c('Eac', 'Edc', 'Yf'),
159
                                             by = .(Dates = year)]
160
                         prodDmw[, DayOfMonth := NULL]
161
                    } else {
162
```

```
prodyw <- prodDw[, lapply(.SD/1000, sum, na.rm = TRUE),</pre>
163
                                          .SDcols = c('Eac', 'Edc', 'Yf'),
164
                                         by = .(Dates = year)]
165
                 }
                    prodDmw[, Dates := paste(month.abb[month], year, sep = '. ')]
167
                    prodDmw[, c('month', 'year') := NULL]
168
                    setcolorder(prodDmw, c('Dates', names(prodDmw)[-length(prodDmw)]))
169
                    result <- new('ProdGCPV',
170
                                    gef,
171
                                    prodD=prodDw,
172
                                    prodDm=prodDmw,
173
                                    prody=prodyw,
                                    prodI=prodIw,
175
                                    module=x@module,
176
                                    generator=x@generator,
177
                                    inverter=x@inverter,
178
                                    effSys=x@effSys
179
180
                    result
               }
182
183
184
    setMethod('[',
185
               signature='ProdPVPS',
186
               definition=function(x, i, j, ...){
187
                  gef <- as(x, 'Gef')[i=i, j=j, ...] ##Gef method</pre>
188
                  i <- indexI(gef)[1]</pre>
                  j <- indexI(gef)[length(indexI(gef))]</pre>
190
                  d1 \leftarrow indexD(x)
191
                  d2 <- indexI(x)
192
                  prodIw \leftarrow x@prodI[(d2 >= i \& d2 <= j)]
193
                  prodDw <- x@prodD[(d1 >= truncDay(i) & d1 <= truncDay(j))]</pre>
194
                  prodDmw <- prodDw[, .(Eac = Eac/1000,</pre>
195
                                          Qd = Qd,
196
                                          Yf = Yf)
                                      by = .(month(Dates), year(Dates))]
198
                  if (x@type=='prom'){
199
                      prodDmw[, DayOfMonth := DOM(prodDmw)]
200
                      prodyw <- prodDmw[, lapply(.SD*DayOfMonth, sum, na.rm = TRUE),</pre>
                                           .SDcols = c('Eac', 'Qd', 'Yf'),
202
                                          by = .(Dates = year)]
203
                      prodDmw[, DayOfMonth := NULL]
204
                  } else {
                      prodyw <- prodDw[, .(Eac = sum(Eac, na.rm = TRUE)/1000,</pre>
206
                                              Qd = sum(Qd, na.rm = TRUE),
207
                                              Yf = sum(Yf, na.rm = TRUE)),
208
                                         by = .(Dates = year)]
209
210
                  prodDmw[, Dates := paste(month.abb[month], year, sep = '. ')]
211
                  prodDmw[, c('month', 'year') := NULL]
212
                  setcolorder(prodDmw, c('Dates', names(prodDmw)[-length(prodDmw)]))
                  result <- new('ProdPVPS',</pre>
214
                                 gef,
215
216
                                 prodD=prodDw,
217
                                 prodDm=prodDmw,
                                 prody=prodyw,
218
```

```
prodI=prodIw,
219
220
                                    pump=x@pump,
                                    H=x@H,
221
                                    Pg=x@Pg,
222
                                    converter=x@converter,
                                    effSys=x@effSys
224
225
                   result
226
                }
227
                )
228
```

writeSolar

```
setGeneric('writeSolar', function(object, file,
1
                                        complete=FALSE, day=FALSE,
2
                                        timeScales=c('i', 'd', 'm', 'y'), sep=',',
3
                                        ...){
4
        standardGeneric('writeSolar')})
5
6
   setMethod('writeSolar', signature=(object='Sol'),
              definition=function(object, file, complete=FALSE, day=FALSE,
8
                                    timeScales=c('i', 'd', 'm', 'y'), sep=',', ...){
9
                  name <- strsplit(file, '\\.')[[1]][1]</pre>
10
                   ext <- strsplit(file, '\\.')[[1]][2]
11
                  timeScales <- match.arg(timeScales, several.ok=TRUE)</pre>
12
                   if ('i' %in% timeScales) {
13
                       zI <- as.data.tableI(object, complete=complete, day=day)</pre>
14
                       write.table(zI,
15
                                    file=file, sep=sep, row.names = FALSE, ...)
16
                  }
17
                  if ('d' %in% timeScales) {
18
                       zD <- as.data.tableD(object, complete=complete, day = day)</pre>
19
                       write.table(zD.
20
                                  file=paste(name, 'D', ext, sep='.'),
21
22
                                  sep=sep, row.names = FALSE, ...)
                  }
23
                  if ('m' %in% timeScales) {
24
                       zM <- as.data.tableM(object, complete=complete, day = day)</pre>
25
                       write.table(zM,
26
                                  file=paste(name, 'M', ext, sep='.'),
27
                                  sep=sep, row.names = FALSE, ...)
28
                  }
29
                  if ('y' %in% timeScales) {
30
                       zY <- as.data.tableY(object, complete=complete, day = day)</pre>
31
                       write.table(zY.
32
                                  file=paste(name, 'Y', ext, sep='.'),
33
                                  sep=sep, row.names = FALSE, ...)
34
                  }
35
              })
36
```

xyplot

```
xscale.solar <- function(...){ans <- xscale.components.default(...); ans$top=</pre>
      FALSE; ans}
   yscale.solar <- function(...){ans <- yscale.components.default(...); ans$right=</pre>
      FALSE; ans}
6
   solaR.theme <- function(pch=19, cex=0.7, region=rev(brewer.pal(9, 'YlOrRd')),</pre>
       ...) {
     theme <- custom.theme.2(pch=pch, cex=cex, region=region, ...)
8
     theme$strip.background$col='transparent'
9
     theme$strip.shingle$col='transparent'
10
     theme$strip.border$col='transparent'
     theme
12
   }
13
14
   solaR.theme.2 <- function(pch=19, cex=0.7, region=rev(brewer.pal(9, 'Y10rRd')),
     theme <- custom.theme.2(pch=pch, cex=cex, region=region, ...)
16
     theme$strip.background$col='lightgray'
17
     theme$strip.shingle$col='lightgray'
19
   }
20
21
   23
   24
   setGeneric('xyplot')
25
26
   setMethod('xyplot',
27
            signature = c(x = 'data.frame', data = 'missing'),
28
            definition = function(x, data,
29
30
                                  par.settings = solaR.theme.2,
                                  xscale.components=xscale.solar,
31
                                  yscale.components=yscale.solar,
32
                                  scales = list(y = 'free'),
33
                                  ...){
34
                N \leftarrow length(x)-1
35
                x0 <- x[, lapply(.SD, as.numeric), by = Dates]</pre>
36
                x0 <- melt(x0, id.vars = 'Dates')</pre>
37
                x0$variable <- factor(x0$variable,</pre>
38
                                     levels = rev(levels(factor(x0$variable))))
39
                xyplot(value ~ Dates | variable, x0,
40
                       par.settings = par.settings,
41
                       xscale.components = xscale.components,
42
                       yscale.components = yscale.components,
43
                       scales = scales,
44
                       type = 'l', layout = c(1,N),
45
                       ...)
46
            })
47
48
   setMethod('xyplot',
49
            signature=c(x='formula', data='Meteo'),
50
            definition=function(x, data,
51
                                par.settings=solaR.theme,
52
                                xscale.components=xscale.solar,
53
                                yscale.components=yscale.solar,
54
```

```
...){
55
                 data0=getData(data)
56
                 xyplot(x, data0,
57
                        par.settings = par.settings,
                        xscale.components = xscale.components,
59
                        yscale.components = yscale.components,
60
                        strip = strip.custom(strip.levels=c(TRUE, TRUE)), ...)
61
               }
62
               )
63
64
    setMethod('xyplot',
65
               signature=c(x='formula', data='Sol'),
               definition=function(x, data,
67
                                    par.settings=solaR.theme,
68
                                    xscale.components=xscale.solar,
69
                                    yscale.components=yscale.solar,
70
71
                   data0=as.data.tableI(data, complete=TRUE, day=TRUE)
72
                   data0[, w := h2r(hms(Dates)-12)]
73
                   xyplot(x, data0,
                          par.settings = par.settings,
75
                          xscale.components = xscale.components,
76
77
                          yscale.components = yscale.components,
                          strip = strip.custom(strip.levels=c(TRUE, TRUE)), ...)
78
               }
79
               )
80
81
    setMethod('xyplot',
82
               signature=c(x='formula', data='GO'),
83
               definition=function(x, data,
84
                                    par.settings=solaR.theme,
85
                                    xscale.components=xscale.solar,
86
                                    yscale.components=yscale.solar,
87
                                    ...){
88
                 data0=as.data.tableI(data, complete=TRUE, day=TRUE)
                 xyplot(x, data0,
90
                        par.settings = par.settings,
91
92
                        xscale.components = xscale.components,
                        yscale.components = yscale.components,
93
                        strip = strip.custom(strip.levels=c(TRUE, TRUE)), ...)
94
               }
95
               )
96
97
    setMethod('xyplot',
98
               signature=c(x='formula', data='Shade'),
99
               definition=function(x, data,
100
                                    par.settings=solaR.theme,
101
                                    xscale.components=xscale.solar,
102
                                    yscale.components=yscale.solar,
103
                                    ...){
104
                 data0=as.data.table(data)
                 xyplot(x, data0,
106
                        par.settings = par.settings,
107
108
                        xscale.components = xscale.components,
                        yscale.components = yscale.components,
109
                        strip = strip.custom(strip.levels=c(TRUE, TRUE)), ...)
110
```

```
111
               )
112
113
    setMethod('xyplot',
114
               signature=c(x='Meteo', data='missing'),
115
               definition=function(x, data,
116
                                      ...){
117
                    x0=getData(x)
118
                    xyplot(x0,
119
                            scales=list(cex=0.6, rot=0, y='free'),
120
                            strip=FALSE, strip.left=TRUE,
121
                            par.strip.text=list(cex=0.6),
122
123
                            ylab = '',
                            ...)
124
               }
125
               )
127
    setMethod('xyplot',
128
               signature=c(x='GO', data='missing'),
129
               definition=function(x, data, ...){
130
                    x0 <- as.data.tableD(x, complete=FALSE)</pre>
131
                    x0 <- melt(x0, id.vars = 'Dates')</pre>
132
                    xyplot(value~Dates, x0, groups = variable,
133
                            par.settings=solaR.theme.2,
134
                            xscale.components=xscale.solar,
135
                            yscale.components=yscale.solar,
136
                            superpose=TRUE,
137
                            auto.key=list(space='right'),
138
                            ylab='Wh/m\u00b2',
139
                            type = 'l',
140
141
                            ...)
               }
142
               )
143
144
    setMethod('xyplot',
               signature=c(x='ProdGCPV', data='missing'),
146
               definition=function(x, data, ...){
147
                    x0 <- as.data.tableD(x, complete=FALSE)</pre>
148
                    xyplot(x0,
149
                            strip = FALSE, strip.left = TRUE,
150
                            ylab = '', ...)
151
               }
152
               )
153
154
    setMethod('xyplot',
155
               signature=c(x='ProdPVPS', data='missing'),
156
               definition=function(x, data, ...){
157
                    x0 <- as.data.tableD(x, complete=FALSE)</pre>
158
                    xyplot(x0,
159
                            strip = FALSE, strip.left = TRUE,
160
                            ylab = '', ...)
161
               }
162
               )
163
```

A.5. Conjunto de datos

aguiar

```
data(MTM)
Ktlim
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 0.031 0.058 0.051 0.052 0.028 0.053 0.044 0.085 0.010 0.319 [2,] 0.705 0.694 0.753 0.753 0.807 0.856 0.818 0.846 0.842 0.865
```

```
1 Ktmtm
```

[1] 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 1.00

```
head(MTM)
```

SIAR

```
data(SIAR)
head(est_SIAR)
```

```
Estacion Codigo
                              Longitud Latitud Altitud Fecha_Instalacion Fecha_Baja
          <char> <char>
                                 <num>
                                          <num>
                                                   <int>
                                                                      <Date>
                                                                                  <Date>
         Villena
                     A01 -0.884444444 38.67639
                                                                 1999-11-09 2000-03-19
                                                     519
                     A02 -0.772777778 38.67917
A03 -0.256111111 38.52778
2: Camp de Mirra
                                                     589
                                                                 1999-11-09
                                                                                    <NA>
    Vila Joiosa
3:
                                                      73
                                                                 1999-11-10
                                                                                    <NA>
          Ondara
                     A04 0.006388889 38.81833
                                                                 1999-11-10
                                                                                    <NA>
5:
      Dénia Gata
                     A05 0.082500000 38.79250
                                                      86
                                                                 1999-11-15
                                                                                    <NA>
6:
          Pinoso
                     A06 -1.060555556 38.42722
                                                     629
                                                                 1999-11-14
                                                                                    <NA>
```

helios

```
data(helios)
head(helios)
```

```
yyyy.mm.dd
1 2009/01/01
                 G.O. TambMax TambMin
              980.14
                        11.77
                                  6.31
2 2009/01/02 1671.80
                        15.08
                                  7.27
3 2009/01/03 671.02
                         9.33
                                  6.36
4 2009/01/04 2482.80
                        11.71
                                  1.11
                         7.33
7.77
5 2009/01/05 1178.19
                                 -1.54
6 2009/01/06 1722.31
                                 -0.78
```

prodEx

```
data(prodEx)
head(prodEx)
```

```
Dates
         <Date>
                      <niim>
                                  <niim>
                                              <num>
                                                          <niim>
                                                                      <niim>
                                                                                 <niim>
                                                                                             <niim>
                                                                                                         <niim>
                                                                                                                     <niim>
   2007-07-02 8.874982 8.847533 7.173181 8.874982 8.920729 8.975626 8.948177 8.948177 8.948177
   2007-07-03 8.710291 8.691992 8.655395 8.710291 8.737740 8.792637 8.774338 8.774338 8.746889
   2007-07-04 8.746889 8.737740 8.865832 8.737740 8.765188 8.838384 8.810935 8.792637 8.801786
4: 2007-07-05 8.280266 8.271117 8.408359 8.280266 8.344313 8.380911 8.353462 8.362612 8.316864
5: 2007-07-06 8.399209 8.417508 8.509003 8.435807 8.490704 8.490704 8.499854 8.527302 8.472405 6: 2007-07-07 8.197921 8.170473 8.335163 8.225370 8.243669 8.307715 8.298565 8.280266 8.243669
           10
                                  12
                                                          14
                                                                      15
                                                                                                                     19
                       11
                                              13
                                                                                  16
                                                                                              17
                                                                                                         18
                                                       <num>
                                                                               <num>
        <num>
                    <num>
                               <num>
                                           <num>
                                                                   <num>
                                                                                          <num>
                                                                                                      <num>
                                                                                                                  <num>
                                                                                                                              <num>
1: 8.984775 8.783487 8.865832 8.966476 8.884131 8.774338 8.829234 8.627946 8.911580 8.807886 6.505270
2: 8.801786 8.545601 8.682843 8.774338 8.691992 8.591348 8.646245 8.426658 8.710291 8.563900 3.952569
3: 8.829234 8.545601 8.618797 8.829234 8.719441 8.618797 8.664544 8.426658 8.728590 8.612697 6.331430 4: 8.380911 8.179622 8.271117 8.353462 8.280266 8.207071 8.261968 8.188772 7.950886 8.222320 5.498829 5: 8.509003 8.316864 8.426658 8.490704 8.435807 8.344313 8.408359 8.371761 8.463256 8.332113 6.551017
6: 8.326014 8.152174 8.161323 8.316864 8.234519 8.143024 8.179622 8.170473 8.243669 8.161323 6.669960
                       22
           21
1: 3.742131 3.980018
2: 4.080662 3.238911
3: 1.363270 1.043039
4: 3.998316 2.461206
5: 5.361587 4.959010
6: 5.215195 4.922413
```

pumpCoef

```
data(pumpCoef)
head(pumpCoef)
```

```
Qmax
       Qn stages
   <int>
           <int>
                  <num>
                         <int>
                                                 <num>
                                                           <num> <num>
                                                                         <num>
                                                                                <num>
                                                                                          <num>
                                                                                                  <num>
                                                                                                          <num>
                                      <num>
                    2.6
2.6
2.6
                6
                            370 0.01409736 0.018576
                                                         -3.6324 -0.32
                                                                          0.74
                                                                                  \tt 0.22 - 0.1614 \ 0.5247 \ 0.0694 
                                                        -5.4486 -0.32
-7.8702 -0.12
2:
                                                                                 0.22 -0.1614 0.5247 0.0694 0.27 -0.1614 0.5247 0.0694
        2
                9
                            370 0.02114604 0.027864
                                                                          0.74
                            550 0.03054428 0.040248
                                                                          0.49
               13
                                                                                 0.47 -0.1614 0.5247 0.0694
        2
                     2.6
                           750 0.04229208 0.055728 -10.8972 -0.16
4:
               18
                                                                          0.42
                           1100 0.05403988 0.071208 -13.9242 -0.20
                                                                          0.51
                                                                                 0.42 -0.1614 0.5247 0.0694
5:
               23
                           1500 0.06578768 0.086688 -16.9512 -0.24
                                                                          0.50
```

Bibliografía

- [Sta85] Richard Stallman. GNU Emacs. Un editor de texto extensible, personalizable, autodocumentado y en tiempo real. 1985. URL: https://www.gnu.org/software/emacs/.
- [Dom+03] Carsten Dominik et al. *Org Mode*. Un sistema de organización de notas, planificación de proyectos y autoría de documentos con una interfaz de texto plano. 2003. URL: https://orgmode.org.
- [ZG05] Achim Zeileis y Gabor Grothendieck. "zoo: S3 Infrastructure for Regular and Irregular Time Series". En: *Journal of Statistical Software* 14.6 (2005), págs. 1-27. DOI: 10. 18637/jss.v014.i06.
- [Sar08] Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. New York: Springer, 2008. ISBN: 978-0-387-75968-5. URL: http://lmdvr.r-forge.r-project.org.
- [Per12] Oscar Perpiñán. "solaR: Solar Radiation and Photovoltaic Systems with R". En: Journal of Statistical Software 50.9 (2012), págs. 1-32. DOI: 10.18637/jss.v050.i09.
- [Uni20] European Union. NextGenerationEU. 2020. URL: https://next-generation-eu.europa.eu/index_es.
- [BOE22a] BOE. Real Decreto-ley 10/2022, de 13 de mayo, por el que se establece con carácter temporal un mecanismo de ajuste de costes de producción para la reducción del precio de la electricidad en el mercado mayorista. 2022. URL: https://www.boe.es/buscar/act.php?id=B0E-A-2022-7843.
- [BOE22b] BOE. Real Decreto-ley 6/2022, de 29 de marzo, por el que se adoptan medidas urgentes en el marco del Plan Nacional de respuesta a las consecuencias económicas y sociales de la guerra en Ucrania. 2022. URL: https://www.boe.es/buscar/doc.php?id=BOE-A-2022-4972.
- [dem22] Ministerio para transción ecológica y el reto demográfico. Plan + Seguridad Energética. 2022. URL: https://www.miteco.gob.es/es/ministerio/planes-estrategias/seguridad-energetica.html#planSE.
- [Eur22] Consejo Europeo. REPowerEU. 2022. URL: https://www.consilium.europa.eu/es/policies/eu-recovery-plan/repowereu/.
- [Hac22] Ministerio de Hacienda. Mecanismo de Recuperación y Resiliencia. 2022. URL: https://www.hacienda.gob.es/es-ES/CDI/Paginas/FondosEuropeos/Fondos-relacionados-COVID/MRR.aspx.
- [Mer+23] Olaf Mersmann et al. microbenchmark: Accurate Timing Functions. Proporciona infraestructura para medir y comparar con precisión el tiempo de ejecución de las expresiones de R. 2023. URL: https://github.com/joshuaulrich/microbenchmark.
- [Min23] pesca y alimentación Ministerio de agricultura. Sistema de Información Agroclimática para el Regadío. 2023. URL: https://servicio.mapa.gob.es/websiar/.
- [Per23] O. Perpiñán. Energía Solar Fotovoltaica. 2023. URL: https://oscarperpinan.github.io/esf/.
- [R C23] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2023. URL: https://www.R-project.org/.

88 BIBLIOGRAFÍA

[UNE23] UNEF. "Fomentando la biodiversidad y el crecimiento sostenible". En: *Informe anual UNEF* (2023). URL: https://www.unef.es/es/recursos-informes?idMultimediaCategoria=18.

- [Wan+23] Chris Wanstrath et al. GitHub. 2023. URL: https://github.com/.
- [Bar+24] Tyson Barrett et al. data.table: Extension of 'data.frame'. R package version 1.15.99, https://Rdatatable.gitlab.io/data.table, https://github.com/Rdatatable/data.table. 2024. URL: https://r-datatable.com.
- [Pro24] ESS Project. *Emacs Speaks Statistics (ESS)*. Un paquete adicional para GNU Emacs diseñado para apoyar la edición de scripts y la interacción con varios programas de análisis estadístico. 2024. URL: https://ess.r-project.org/.
- [Wic+24] H. Wickham et al. profvis: Interactive Visualizations for Profiling R Code. R package version 0.3.8.9000. 2024. URL: https://github.com/rstudio/profvis.