Solution to Assignment 2, Problem 1 (c)

Akash Rana

Placeholder -Placeholder are nodes whose value is feed in at execution time. It is used to feed actual training example

Feed dictionaries - These are the values in batches that are input to while training

Solution to Assignment 2, Problem 2 (a)

Akash Rana

stack	buffer	new dependency	transition
[ROOT, parsed]	[this, sentence, correctly]	$parsed \rightarrow I$	LEFT-ARC
[ROOT, parsed, this]	[sentence, correctly]		SHIFT
[ROOT, parsed, this, sentence]	[correctly]		SHIFT
[ROOT, parsed, sentence]	[correctly]	sentence \rightarrow this	LEFT-ARC
[ROOT, parsed]	[correctly]	$parsed \rightarrow sentence$	RIGHT-ARC
[ROOT, parsed, correctly]			SHIFT
[ROOT, parsed]		parsed \rightarrow correctly	RIGHT-ARC
[ROOT]		$ROOT \rightarrow parsed$	RIGHT-ARC

Solution to Assignment 2, Problem 2 (b)

Akash Rana

A sentence containing n words will be parsed in 2n ways. It will take 1 step to shift the word and 1 step to do transition and there are n words. Hence, 2n ways.

Solution to Assignment 2, Problem 2 (g)

Akash Rana

- 1. Momentum is like a heavy ball rolling down the hill. The ball follows the steepest path with inertia which acts as a smoother and an accelerator, dampening oscillations and causing the ball to travell through small humps and local minima.
- 2. SOmething

Solution to Assignment 3, Problem 3 (a)

Akash Rana

Since y(t) is one-hot,

$$PP^{(t)}(y^{(t)}, \hat{y}^{(t)}) = \frac{1}{\hat{y}_j^{(t)}}$$

$$= 2^J$$
(1)

$$=2^{J} (2)$$