

An Empirical Investigation of the Failure Mode of Training in Mildly Overparameterized NNs

Master's Thesis
- End-term Presentation-

Student: *Theodor Stoican* Supervisor: *Berfin Şimşek*

EPFL Outline

- Introducing the Problem
 - The Nature of the Landscape
 - Local Minima near Saddles
- Toy Setup
 - Overview
 - Escaping Local Minima
 - Ways of Getting to the Saddle
- MNIST Setup
 - Properties of the Saddle Line

Introducing the Problem

- Start with a neural network (normal regime)
- Add one neuron (mild OP regime) and retrain
 - What is the nature of the points at convergence?

Example of neuron-points at convergence. © offconvex.org

Introducing the Problem (2)

- The Nature of the Landscape e.g. questions:
 - How common are local minima?
 - Do we ever get stuck at non-strict saddles?
- For symmetry-induced critical points ([1])
 - Is there any local minimum nearby?
 - Can we escape to it?

- 1

Toy Setup

Teacher-student setup (same setup as the one published in [1])

- Dataset
 - 1681 points on a regular grid $\{(x_1,x_2)|4x_1=-20,\dots,20,4x_2=-20,\dots,20\}$
 - With labels $y=\Sigma_{i=1}^4a_i\sigma(\Sigma_{j=1}^2w_{ij}x_j)$, where w_{ij} preset weights of teacher, and $a_1=1,a_2=-1,a_3=1,a_4=-1$

EPFL Overview

- Out of 1000 experiments:
 - Those l.t. 1e-5 *global minima*
 - Those h.t. than 1e-5 *local minima*

		SI Critical Points	Other Local Minima
Global Minima	574	-	-
Local minima	426	55	371
Total	1000		

Overview of the nature of the points

Smallest eigenvalue and loss of neuron-points at convergence.

Escaping From Local Minima

- 77% of the points have a smallest eigenvalue of 0
- Any escape possible?
- **Idea**: perturb in the direction of the smallest evector
 - No escape
 - Not even by taking into account other eigenvectors

Perturbation across the smallest eigenvector for a sample failure point.

Detecting the Nearest Saddle

- For the local minima we found, we ask further:
 - Are they in the vicinity of an SI saddle?
 - Idea: Identify the points which have a pair of neurons close to each other

Could be merged to obtain 1 neuron. 1.00 0.75 0.50 - 0.0 0.25 0.00 -0.5 -0.25-1.0-0.50-0.75-1.0-0.50.0 0.5

Sample neuron-point where 2 incoming vectors are geometrically close to each other.

Ways of Getting to the Saddle

- Algorithm:
 - Choose the 2 closest neurons
 - Merge them
 - Obtain a reduced NN
 - Retrain the new NN from there

$$(w_1^1,w_2^1,a^1) igcap (rac{w_1^1+w_1^2}{2},rac{w_2^1+w_2^2}{2},a^1+a^2) \ (w_1^2,w_2^2,a^2)$$

Ways of Getting to the Saddle (2)

Example

Sample neuron point, before(left) and after merging 2 of the student's neurons(right).

- Next:
 - Extend the reduced NN neuron-point into a saddle line
 - Find the closest point on the line to the local minimum

Distance to SI Saddle - 1D

- To check whether one such local minima (where two incoming vectors are close together) is close to an SI-saddle:
 - Evaluate the loss on the 1D line between min and closest saddle
 - View the entire landscape between the min. and the saddle line

Evolution of loss(log) across the 1D line between the closest saddle and the local min. for a sample.

Evolution of loss(log) across the 2D plane between the closest saddle line and the local min. for a sample.

Applying Theoretical Results

- Empirically
 - The local min. is within a distance of ~1.1 to the saddle line
- Formally
 - Does our distance fulfil this theorem?

Theorem 2.1. Assume that the saddle point x^* has index-1: its Hessian has one negative eigenvalue and the other eigenvalues are positive. For all unit u such that $u^T \nabla^2 f(x^*) u \leq 0$, let $B = \min_{\|u\|=1} \max\{\nabla^3 f(x^*)(u), \nabla^3 f(x^*)(-u)\}$. We assume B > 0 exists. Assume that there is an R > 0 such that $\nabla^4 f(\xi)(u) \geq 0$ for all $\|\xi - x^*\| < R$ and $\|u\| = 1$. If

$$\frac{-3\lambda_{\min}}{B} \le R,$$

then we have a local min. within an l_2 -distance $-3\lambda_{\min}/B$ from the saddle point x^* .

Applying Theoretical Results (2)

- The conditions of the theorem are not fulfilled
 - In particular, the fourth derivative is not positive for every ξ in the theorem
- Hence:
 - The closest saddle we find may not really be "the closest"
 - The theorem's precondition may be relaxed for such cases

SI Critical Points as Failure Points

- Furthermore, some of the local minima seem to be SI critical points
 - The distance between the closest saddle and the min. is ~0

Example of the small distance between the local min. and the identified closest saddle (1e-5 - very close to 0).

Can we formally investigate their nature?

SI Critical Points as Failure Points (2)

• We can use the following conditions:

Conditions for no negative eigenvalue: If $U_{ij} = 0$ for all $j \in [d], i \in [d_0]$ and $\mu(1-\mu)Y$ has no negative eigenvalues, then the min. eigenvalue of the Hessian at this critical point $(w^*, \mu a^*, w^*, (1-\mu)a^*)$ is 0.

- 1. $Y = \hat{\mathbb{E}}[\sigma''(w^* \cdot x)a^* \cdot e(x)xx^T] \in \mathbb{R}^{d \times d}$ has at least one negative and at least one positive eigenvalue,
- 2. $U_{ij} = \hat{\mathbb{E}}[\sigma'(w^* \cdot x)e(x)_i x_j] \neq 0$ for some $j \in [d], i \in [d_0]$.
- For one such neuron-point
 - Find its origin in the reduced NN
 - Evaluate U_{ij}
 - Evaluate the eigenvalues of the $\mu(1-\mu)Y$ matrix
- ~50 points (13%) of failures are SI critical points

MNIST Setup

- How does the theory apply to a more world-like scenario?
- In particular:
 - A fully-connected 3-layer NN
 - Dataset
 - Inputs: top 10 PCA components
 - Labels: 1 for odd, -1 for even
 - MSE Loss

3-layer fully-connected NN with 10 neurons on each hidden layer. The output layer has 1 neuron only.

MNIST Setup (2)

- Procedure:
 - Train and find a local min. with this new setup
 - Stop condition: grad = ~1e-6
 - Duplicate a neuron on a layer
 - $(w, a) \rightarrow (w, \mu * a), (w, (1-\mu) * a)$
 - Vary μ
 - Perturb and retrain until a local min. is reached

Saddle Line - Verification

- Make sure the local min. we find is a failure mode in the overparameterized NN
 - Check the Y and U matrices
 - All $U_{ij}=0$ as before (only 1 output neuron)
 - Y must have neg. and pos. eigenvalues

The eigenspectrum of the Y matrix.

Saddle Line - Duplicating on the last layer

- Furthermore, inspect the eigenvalues (of H) across the saddle line
- 12 eigenvalues are expected to cross 0 at $\mu \in \{0,1\}$
 - Intuition: the Hessian will have duplicate rows after duplicating a neuron

The evolution of the 12 smallest eigenvalues on the SI saddle for a range of µ

Saddle Line - Duplicating on the second layer

• 4 eigenvalues cross 0 at μ = 0

The evolution of the 12 smallest eigenvalues on the SI saddle for a range of μ

Finding the Closest Local Min.

- Idea:
 - Vary µ
 - Perturb (with an isotropic Gaussian)
 - Train until the gradient is small (~1e-6)
- For -1 < μ < 2 the algorithm always finds a global minimum after perturbation
- TODO:
 - Investigate potential convergence issues why a global min. ?
 - Experiment with other seeds

References

- [1] Şimşek Berfin et al., 2021, Geometry of the Loss Landscape in Overparameterized Neural Networks: Symmetries and Invariances
- [2] Itay M Safran et al., 2021, The Effects of Mild Over-parameterization on the Optimization Landscape of Shallow ReLU Neural Networks
- [3] Brea Johanni et al., 2019, Weight-space symmetry in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape
- [4] Zhang Yaoyu, 2021, Embedding Principle of Loss Landscape of Deep Neural Networks

Escaping From Local Minima (2)

- Still, by perturbing, the smallest eigenvector can change direction during perturbation
- We investigate this, by adapting our algorithm:
 - By finding all 0 eigenvalue directions at any point during perturb.
 - By testing all these directions recursively
- Even so, for no point do we manage to escape

Relationship between the loss at the failure point and the min. loss obtained after perturbation.

Distance to SI Saddle - 2D

- For a better picture:
 - View the entire landscape between the min. and the saddle line
 - Project the GD trajectories on this plane

Evolution of loss(log) across the 2D plane between the closest saddle line and the local min. for a sample.

SI Critical Points as Failure Points (3)

- Evaluating U_{ij}
 - ullet $L = \sum_i \sigma(w_i \cdot x) \cdot a_i$
 - At the saddle:
 - $ullet rac{\partial L}{\partial w_i} = x \cdot \sigma'(w_i \cdot x) \cdot a_i = 0 \Rightarrow \sigma'(w_i \cdot x) = 0$
 - Hence, all U_{ij} are 0
- Evaluating $\mu(1-\mu)Y$
 - No negative eigenvalues for ~13% of the local minima
 - Hence, ~50 points of failure are SI critical points.

The distribution of the distances (local min. - SI saddle) for the local min. which are SI critical points.