Name:

MATH 321: In-Class 4

- 1. Let $X_1, \ldots, X_m \stackrel{iid}{\sim} \text{Binomial } (n = 5, p)$.
 - (a) Find the method of moments estimator for p.
 - (b) Show that \hat{p}_{MME} is an unbiased estimator.
- 2. Let X_1, \ldots, X_n be a random sample from $f(x \mid \theta) = (\theta + 1)x^{\theta}$, $0 < x < 1, \theta > -1$. Find the MME of θ .

- 3. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(p)$. We are going to find the maximum likelihood estimator for p.
 - (a) Find the likelihood function and log-likelihood function for p.

(b) Optimize the log-likelihood function and solve for \hat{p} .

(c) Perform second derivative test to confirm if \hat{p} is the MLE for p.

- (d) Suppose we collected a random sample of size n=8 and $\mathbf{x}=\{0,1,1,1,0,1,0,0\}$. Compute \hat{p}_{MLE} .
- (e) Now find the MLE for V(X) = p(1-p).