[영역] 5.기하

5-2-3.삼각형의 외심과 내심의 혼합

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2016-10-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 삼각형의 외심과 내심의 혼합

- 1) 정삼각형: 외심과 내심이 일치
- 2) 이등변삼각형: 외심과 내심이 모두 꼭지각의 이등분선 위에 있다.

2. 외심과 내심의 혼합에서 각의 크기 구하기

오른쪽 그림에서 두 점 O, I가 각각 △ABC의 외심, 내심일 때

1)
$$\angle BOC = 2 \angle A$$
, $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A$

2) $\angle OAB = \angle OBA$, $\angle IBA = \angle IBC$

3. 직각삼각형의 내접원과 외접원

 $\angle C = 90$ °인 직각삼각형 ABC에서

- 1) 외접원의 반지름의 길이 R
- $\Rightarrow R = \frac{1}{2} \times (\cancel{\text{1}}) \times$
- 2) 내접원의 반지름의 길이 r
- \Rightarrow (\triangle ABC의 넓이)= $\frac{1}{2} \times r \times (\triangle$ ABC의 둘레의 길이)
- $\Rightarrow \frac{1}{2}ab = \frac{1}{2}r(a+b+c)$

삼각형의 외심과 내심

☑ 다음 명제 중 옳은 것에 ○. 틀린 것에 ×를 표시하여라.

삼각형의 외심에서 세 변에 이르는 거리는 모두 같다.

정삼각형의 내심과 외심은 일치한다.

삼각형의 세 내각의 이등분선의 교점은 외접원의 중심이다.

모든 삼각형의 외심은 삼각형 외부에 있다. 4.

)

삼각형의 외심은 세 변의 수직이등분선의 교점이다.

삼각형의 내심에서 세 꼭짓점에 이르는 거리는 같다.

)

직각삼각형의 외심은 빗변의 중점이다.

삼각형의 내심은 세 내각의 이등분선의 교점이다.

삼각형의 내심은 항상 삼각형의 내부에 있다.

)

- □ 다음 중 내심에 대한 내용이면 '내', 외심에 대한 내용이면 '외'라고 써라.
- 10. 삼각형의 세 변의 수직이등분선의 교점이다.

()

11. 삼각형의 세 내각의 이등분선의 교점이다.

)

12. 삼각형의 세 변에서 같은 거리에 있는 점이다.

()

13. 삼각형의 세 꼭짓점에서 같은 거리에 있는 점이다.

()

14. 직각삼각형에서는 빗변의 중점과 같은 위치에 있다.

()

- ☑ 다음 []안에 알맞은 것을 써넣어라.
- 15. 삼각형의 세 변의 수직이등분선의 교점은 []이다.
- 16. 삼각형의 세 내각의 이등분선의 교점은 []이다.
- 17. 다음 삼각형에 나타낸 점이 외심인 것과 내심인 것을 각각 골라라.

- (1) 외심
- (2) 내심

(

삼각형의 외심과 내심에서 각의 크기 구하기

☑ 다음 그림에서 점 \bigcirc 는 삼각형의 외심이고 점 \bigcirc 는 삼각형의 내심일 때, $\angle x + \angle y$ 의 값을 구하여라.

18.

19.

20.

21.

22.

Arr 다음 그림에서 점 Arr 이, I는 각각 Arr Arr Arr Arr 이 이등변삼각형 ABC의 외심과 내심일 때, 다음을 구하여라.

- 23. ∠OBC**의 크기**
- 24. ∠IBC**의 크기**
- 25. ∠OBI**의 크기**
- Arr 다음 그림에서 점 Arr 이, I는 각각 Arr Arr Arr Arr 이 이등변삼각형 ABC의 외심과 내심일 때, 다음을 구하여라.

- 26. ∠OBC**의 크기**
- 27. ∠IBC**의 크기**
- 28. ∠OBI**의 크기**

ightharpoonup 다음 $m \triangle ABC$ 에서 점 O는 외심, 점 I는 내심일 때, $m \angle x$ 의 크기를 구하여라.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

- \square 다음 그림에서 점 O,I는 각각 $\triangle ABC$ 의 외심과 내심일 때, 물음에 답하여라.
- 40. ∠BIC의 크기를 구하여라.

41. ∠BPC의 **크기**

42. ∠BOC-∠BIC의 크기

43. $\angle B = 50^{\circ}$, $\angle C = 60^{\circ}$ **2** III, $\angle BOC + \angle BIC$ **2 3**

- □ 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 점 O, I는 각각 $\triangle ABC$ 의 외심과 내심일 때, 물음에 답하여라.
- 44. $\angle A = 40^{\circ}$ 일 때, $\angle OBI$ 의 크기를 구하여라.

45. $\angle A = 70^{\circ}$ 일 때, $\angle IBO$ 의 크기

46. $\angle BAC = 76^{\circ}$ 이고 $\overline{AD} = \overline{CD}$ 일 때, $\angle x$ 의 크기

47. \angle A = 36 ° 이고 \angle IDC = 90 ° 일 때, \angle IEC의 크기를 구하여라.

□ 다음 그림의 점 O와 점 I는 각각 △ABC의 외심과 내심이고, ĀĪ, ĀŌ의 연장선이 BC와 만나는 점을 각각 D, E라고하자. ∠BAD=40°,∠CAE=30°일 때, 다음을 구하여라.

- 48. ∠IAO의 크기
- 49. ∠ACE**의 크기**
- 50. ∠AED의 **크기**
- \square 다음 그림에서 점 O,I는 각각 $\triangle ABC$ 의 외심과 내심일 때, 물음에 답하여라.
- 51. ∠AED의 크기

52. ∠ADE**의 크기**

53. ∠CAO**의 크기**

B

삼각형의 외접원과 내접원

☑ AB=6cm, BC=8cm, AC=10cm, ∠B=90°인 직각삼각
형 ABC에서 다음을 구하여라.

- 54. 내접원의 반지름
- 55. 내접원의 넓이
- 56. 외접원의 반지름
- 57. 외접원의 넓이
- 58. 내접원과 외접원의 넓이의 합
- ☑ 다음 조건이 주어질 때, △ABC의 넓이를 구하여라.
- 59. $\angle B = 90$ ° 인 직각삼각형 ABC의 내접원과 외접원의 넓이 가 각각 $4\pi (cm^2)$, $25\pi (cm^2)$ 일 때
- 60. $\angle A = 90$ ° 인 직각삼각형 ABC의 외접원과 내접원의 넓이 가 각각 $81\pi \text{cm}^2$, $4\pi \text{cm}^2$ 일 때,
- $\Delta A = 90$ ° 인 직각삼각형 ABC의 외접원과 내접원의 넓이 가 각각 $81\pi \, \mathrm{cm}^2$, $16\pi \, \mathrm{cm}^2$ 일 때,

- □ 다음 그림과 같이 ∠A=90°인 직각삼각형 ABC의 내접원 과 외접원을 그릴 때, 색칠한 부분의 넓이를 구하여라.
- 62.

63.

64.

65.

정답 및 해설 🥻

- 1) ×
- ⇒ 삼각형의 내심에서 세 변에 이르는 거리는 같다.
- 2) 🔾
- $3) \times$
- ☆ 삼각형의 세 내각의 이등분선의 교점은 내접원의 중심 이다
- 4) ×
- □ 예각삼각형의 외심은 삼각형의 내부, 직각삼각형의 외심은 빗변의 중점, 둔각삼각형의 외심은 삼각형의 외부에 있다.
- 5) O
- 6) X
- ⇒ 삼각형의 외심에서 세 꼭짓점에 이르는 거리는 같다.
- 7) O
- 8) O
- 9) O
- 10) 외
- 11) 내
- 12) 내
- 13) 외
- 14) 외
- 15) 외심
- 16) 내심
- 17) (1) ①, ② (2) ②, ⑤
- 18) 45°
- $ightharpoonup \angle AOB = 2 \angle C$ 이므로 $\angle C = 65\,^\circ$ 일 때, $\angle AOB = 130\,^\circ \text{이고, } \overline{OA} = \overline{OB}\,\text{이므로 } \angle x = 25\,^\circ \text{이다.}$ 또, $\angle y + 35\,^\circ + 35\,^\circ = 90\,^\circ \text{이므로 } \angle y = 20\,^\circ \text{이다.}$ 따라서 $\angle x + \angle y = 45\,^\circ \text{이다.}$
- 19) 150°
- \Rightarrow $\angle x = 35^{\circ}$, $\angle y = 115^{\circ}$
- 20) 215°

- $\Rightarrow \angle x = 2 \times 50 = 100^{\circ}, \ \angle y = 90 + \frac{1}{2} \times 50 = 115^{\circ}$
- 21) 66°
- 다 $\angle x = 90 30 25 = 35$ °, $\angle y = 90 32 27 = 31$ ° 따라서 $\angle x + \angle y = 66$ °이다.
- 22) 206
- 23) 54°
- Arr $Arr BOC = 2 \angle A = 2 \times 36^{\circ} = 72^{\circ}$ Arr DBC에서 $Arr OB = \overline{OC}$ 이므로 $Arr DBC = rac{1}{2}(180^{\circ} 72^{\circ}) = 54^{\circ}$
- 24) 36°
- 25) 18°
- \Rightarrow $\angle OBI = \angle OBC \angle IBC = 54^{\circ} 36^{\circ} = 18^{\circ}$
- 26) 50°
- Arr Arr
- 27) 35°
- 28) 15°
- \Rightarrow \angle OBI = \angle OBC \angle IBC = 50 $^{\circ}$ 35 $^{\circ}$ = 15 $^{\circ}$
- 29) 100°
- 30) 124°
- $\Rightarrow \angle A = \frac{1}{2} \angle BOC = \frac{1}{2} \times 136^{\circ} = 68^{\circ}$ $\therefore \angle x = 90^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + \frac{1}{2} \times 68^{\circ} = 124^{\circ}$
- 31) 120°

$$\Rightarrow \angle BIC = 90^{\circ} + \frac{1}{2} \angle A = 120^{\circ} \text{ old } \angle A = 60^{\circ}$$
$$\therefore \angle x = 2 \times 60^{\circ} = 120^{\circ}$$

32) 15°

$$\Leftrightarrow$$
 $\overline{AB} = \overline{AC}$ 이므로 $\angle ABC = \frac{1}{2} \times (180 \degree - 40 \degree) = 70 \degree$

$$\therefore \angle IBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 70^{\circ} = 35^{\circ}$$

한편
$$\angle BOC = 2 \angle A = 2 \times 40^{\circ} = 80^{\circ}$$
이고 $\overline{OB} = \overline{OC}$ 이므

로 ∠OBC =
$$\frac{1}{2}$$
 × (180° - 80°) = 50°

$$\therefore \angle x = \angle OBC - \angle IBC = 50^{\circ} - 35^{\circ} = 15^{\circ}$$

33) 126°

$$\Rightarrow \angle A = \frac{1}{2} \angle BOC = \frac{1}{2} \times 144^{\circ} = 72^{\circ}$$

$$\therefore \angle x = 90^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + \frac{1}{2} \times 72^{\circ} = 126^{\circ}$$

34) 115°

$$\Rightarrow$$
 $\angle BOC = 2 \angle A = 100^{\circ} \text{ M/H} \angle A = 50^{\circ}$

$$\therefore \angle x = 90^{\circ} + \frac{1}{2} \times 50^{\circ} = 115^{\circ}$$

35) 115°

[해답]
$$\angle A = \frac{1}{2} \angle BOC = \frac{1}{2} \times 100^{\circ} = 50^{\circ}$$

$$\therefore \angle x = 90^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + \frac{1}{2} \times 50^{\circ} = 115^{\circ}$$

36) 80°

[해답]
$$110^{\circ} = 90^{\circ} + \frac{1}{2} \angle A$$
이므로 $\angle A = 40^{\circ}$

$$\therefore$$
 $\angle x = 2 \angle A = 2 \times 40^{\circ} = 80^{\circ}$

37) 160°

[해답]
$$130^{\circ} = 90^{\circ} + \frac{1}{2} \angle A$$
이므로 $\angle A = 80^{\circ}$

$$\therefore \angle x = 2 \angle A = 2 \times 80^{\circ} = 160^{\circ}$$

38) 129°

39) 8°

40) 115°

$$\Rightarrow \angle BAC = \frac{1}{2} \times 100^{\circ} = 50^{\circ}$$

$$\therefore \angle BIC = 90^{\circ} + \frac{1}{2} \times 50^{\circ} = 115^{\circ}$$

41) 150°

42) 30°

$$Arr$$
 Arr Arr

$$\therefore \angle BOC - \angle BIC = 160^{\circ} - 130^{\circ} = 30^{\circ}$$

43) 265°

44) 15°

45) 7.5°

46) 64°

47) 108°

 $\overrightarrow{AB} = \overrightarrow{AC}$ 이고, 외심 이의 성질에 의해서 $\overrightarrow{OA} = \overrightarrow{OC}$ 이므로 \angle OAC = \angle OCA = 18 $^{\circ}$ 이다.

이 때, \angle IEC는 \triangle CDE의 한 외각이므로 이웃하지 않는 두 내각의 크기의 합과 같다.

따라서 ∠IEC = 90°+18°=108°이다.

48) 10°

49) 40°

50) 70°

51) 74°

다 내심 I는 삼각형의 세 내각의 이등분선의 교점이므로 \angle DAE = 8 $^{\circ}$ 이다.

이 때, 외심의 성질에 의해 \angle BOC = $2\angle$ A = 144° , $\overline{OA} = \overline{OB} = \overline{OC}$ 이므로

$$\angle OCA = 28^{\circ}, \ \angle OCB = \frac{1}{2}(180^{\circ} - 144^{\circ}) = 18^{\circ} \text{ old}.$$

따라서 \angle C = $46\,^{\circ}$ 이고, \angle AED는 \triangle AEC의 한 외각이 므로 \angle AED = $28\,^{\circ}$ + $46\,^{\circ}$ = $74\,^{\circ}$ 이다.

52) 62°

의심 이에 의해서 OA= OB이므로 ∠ABO=26°이다.
 내심 I에 의해서 ∠BAI=∠CAI=40°이므로
 ∠A=80°이다. 이 때, ∠BOC=2∠A=160°이고,
 ∠OBC=∠OCB=10°이다. ∠ADE는 △ABD의 외각이므로 이웃하지 않는 두 내각의 크기의 합과 같다.
 따라서 ∠ADE=∠BAD+∠ABD=26°+36°=62°이다.

53) 30°

⇒ 점 I는 내심이므로 $\angle BAC = 80\degree$ 이고, 점 O는 외심이 므로 $\overline{OA} = \overline{OB} = \overline{OC}$ 이다.

이 때, $\angle BOC = 2 \angle A = 160^{\circ}$ 이므로 $\angle OCB = 10^{\circ}$ 이다. 또, $\angle OED = 70$ °는 $\triangle OEC$ 의 외각이므로 $\angle \, \mathsf{COE} + 10\,^\circ = 70\,^\circ \,, \ \angle \, \mathsf{COE} = 60\,^\circ \, \, \mathsf{O|CL} \,.$ 따라서 $\angle AOC = 120$ 이므로 $\angle CAO = 30$ 이다.

 \Rightarrow 내접원의 반지름의 길이를 r cm라고 하면 $\frac{1}{2}r(6+10+8) = \frac{1}{2} \times 8 \times 6$ $\therefore r = 2 \text{ (cm)}$

- 55) $4\pi \text{ cm}^2$
- 56) 5 cm
- \Rightarrow \overline{AC} 가 외접원의 지름이므로, 외접원의 반지름의 길이는 5 cm이다.
- 57) $25\pi \text{ cm}^2$
- $\Rightarrow \pi \times 5^2 = 25\pi \text{ (cm}^2\text{)}$
- 58) $29\pi \text{ cm}^2$
- $\Rightarrow 4\pi + 25\pi = 29\pi \text{ (cm}^2\text{)}$
- 59) 24cm²

내접원과 외접원의 넓이가 각각 $4\pi cm^2$, $25\pi cm^2$ 이면 각 각의 반지름의 길이는 2cm, 5cm이다. 위 그림에서 $\overline{AD} = xcm$, $\overline{CE} = ycm$ 라 하면 x + y = 10이다. 이 때, $\triangle ABC$ 의 넓이는 $\triangle AIC$, $\triangle AIB$, $\triangle BIC$ 의 합과 같으므 로 $\frac{1}{2}\{10\times2+2(x+2)+2(y+2)\}=\frac{1}{2}\times48=24$ 이 성립 한다. 따라서 $\triangle ABC$ 의 넓이는 $24cm^2$ 이다.

60) 40cm²

위 그림에서 외접원과 내접원의 넓이가 각각 $81\pi cm^2$, $4\pi cm^2$ 일 때, 각각의 반지름의 길이는 9cm, 2cm이다. 접선의 성질에 의해 x+y=18cm일 때, $\triangle ABC$ 의 넓이 를 구하면 $\frac{1}{2} \times 2 \times (4 + 2x + 2y) = 40$, $\therefore 40cm^2$

- 61) 88cm²
- 62) $84\pi \, \text{cm}^2$
- 63) $(60-9\pi)$ cm²
- 64) $\frac{17}{2}$ π cm²
- 65) $(96-16\pi)$ cm²