Übungen zur Linearen Algebra I

Wintersemester 2016/17

Universität Heidelberg Mathematisches Institut Dr. D. Vogel

Dr. M. Witte

Blatt 8

Abgabetermin: Donnerstag, 15.12.2016, 9.30 Uhr

Aufgabe 1. (Matrizenrechnung)

(a) Berechnen Sie:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} + 5 \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}^2$$

(b) Bestimmen Sie eine Zeilenstufenform der Matrix

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 0 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 5 & 4 \\ 3 & 4 & 5 & 2 & 1 & 0 \end{pmatrix}.$$

Die gegebenen Matrizen sollen dabei als Matrizen mit Einträgen aus \mathbb{R} aufgefasst werden.

Im Folgenden sei K ein Körper und $m, n \in \mathbb{N}$.

Aufgabe 2. (Permutationsmatrizen) Für eine Permutation $\sigma \in S_m$ sei $P_{\sigma} = (p_{k,\ell})$ die $m \times m$ -Matrix mit den Einträgen

$$p_{k,\ell} = \begin{cases} 1 & \text{falls } k = \sigma(\ell), \\ 0 & \text{sonst.} \end{cases}$$

Zeigen Sie:

- (a) Ist $A = (a_{i,j})$ eine $m \times n$ -Matrix mit Einträgen aus K, so gilt $P_{\sigma}A = (a_{\sigma^{-1}(i),j})$, d. h. P_{σ} permutiert die Zeilen von A.
- (b) P_{σ} ist invertierbar und $f: S_m \to GL(m, K), \ \sigma \mapsto P_{\sigma}$ ist ein injektiver Gruppenhomomorphismus.

 $(P_{\sigma} \text{ heißt } Permutations matrix zu \sigma).$

Tipp: Machen Sie sich zunächst an Beispielen klar, dass die Aussagen gelten.

Aufgabe 3. (Elementarmatrizen) Für $i, j \in \{1, ..., m\}$ mit $i \neq j$ und $\lambda \in K$ sei $E_{i,j}(\lambda) = (e_{k,\ell})$ die $m \times m$ -Matrix mit den Einträgen

$$e_{k,\ell} = \begin{cases} 1 & k = \ell \\ \lambda & k = i \text{ und } \ell = j \\ 0 & \text{sonst.} \end{cases}$$

Für $i \in \{1, ..., m\}$ und $\mu \in K^{\times}$ sei $D_i(\mu) = (d_{k,\ell})$ die $m \times m$ -Matrix mit den Einträgen

$$d_{k,\ell} = \begin{cases} 1 & \text{falls } k = \ell \neq i, \\ \mu & \text{falls } k = \ell = i, \\ 0 & \text{sonst.} \end{cases}$$

Für $i, j \in \{1, ..., m\}$ mit $i \neq j$ sei $P_{i,j}$ die Permutationsmatrix zu der Permutation $\sigma \in S_m$, die i und j vertauscht und alle anderen Elemente von $\{1, ..., m\}$ auf sich selbst abbildet.

- (a) Beschreiben Sie die elementaren Zeilenumformungen (Definition 10.5 aus der Vorlesung) durch Linksmultiplikation einer $m \times n$ -Matrix A mit den Matrizen $E_{i,j}(\lambda)$, $P_{i,j}$ und $D_i(\mu)$.
- (b) Zeigen Sie: $E_{i,j}(\lambda)$ und $P_{i,j}$ lassen sich als Produkte von Matrizen der Form $E_{k,\ell}(1)$ und $D_k(\mu)$ für $\mu \in K^{\times}$ und $k, \ell \in \{1, \ldots, m\}$ schreiben.

(Matrizen der Form $E_{i,j}(\mu)$, $P_{i,j}$ und $D_i(\mu)$ mit $i \neq j \in \{1, \dots, m\}$, $\mu \in K^{\times}$ heißen Elementarmatrizen.)

Aufgabe 4. (Elementare Scherungs- und Streckungsmatrizen) Wir behalten die Notation aus Aufgabe 3 bei. Zeigen Sie:

- (a) $E_{i,j}(\lambda)$ ist invertierbar und $(K,+) \to GL(m,K)$, $\lambda \mapsto E_{i,j}(\lambda)$ ist ein injektiver Gruppenhomomorphismus.
- (b) $D_i(\mu)$ ist invertierbar und $K^{\times} \to GL(m, K)$, $\mu \mapsto D_i(\mu)$ ist ein injektiver Gruppenhomomorphismus.

(Matrizen der Form $E_{i,j}(\lambda)$ werden manchmal als elementare Scherungsmatrizen, die Matrizen $D_i(\mu)$ als elementare Streckungsmatrizen bezeichnet.)

Zusatzaufgabe 5. (Das Zorn'sche Lemma und das Auswahlaxiom) Zeigen Sie, dass das Zorn'sche Lemma das Auswahlaxiom impliziert:

Sei $(M_i)_{i\in I}$ eine Familie von nichtleeren Mengen. Dann gibt es eine Abbildung

$$\phi\colon I\to \bigcup_{i\in I}M_i$$

mit $\phi(i) \in M_i$ für alle $i \in I$.

Betrachten Sie dazu die Menge P der Paare (J,ψ) mit $J\subseteq I$ und

$$\psi \colon J \to \bigcup_{i \in J} M_i$$

mit $\psi(i) \in M_i$ für alle $i \in J$ und definieren Sie eine geeignete Halbordnung auf P. (Umgekehrt impliziert das Auswahlaxiom das Lemma von Zorn. Diese Implikation ist aber schwieriger zu zeigen.)