- 有机无机杂化钙钛矿数据库特征方案
 - 賞数据库概述
 - 🔬 特征体系详细设计
 - 1. 李-辛-商复形特征 (Lie-SympQuotient Complex Transformer)
 - 1.10-单纯形特征:原子特征(23维)
 - 1.21-单纯形特征: 化学键特征(15维)
 - 1.32-单纯形特征: 三体相互作用特征(18维)
 - 1.4 全局特征: Casimir不变量与结构统计(25维)
 - 2. 有机阳离子图特征【专属特征】
 - 2.1 节点特征:原子特征(11维)
 - 2.2 边特征: 化学键特征 (8维)
 - 2.3 全局特征: 分子特征(16维)
 - 3. 量子化学特征
 - 3.1 基础样本信息(4维)
 - 3.2 B位金属特征(16维)
 - 3.3 X位阴离子特征(15维)
 - 3.4 离子间相互作用特征(6维)
 - 3.5 晶体结构信息(6维)
 - 3.6 结构几何特征(3维)
 - 3.7 全局物理特征(6维)
 - 3.8 工艺参数(5维)
 - 3.9 文本特征(6维)
 - 4. 性能目标特征(9维)
 - - 1. 有机阳离子精确建模
 - 2. 杂化界面效应
 - 3. 稳定性预测优势

有机无机杂化钙钛矿数据库特征方案

)数据库概述

本数据库专门针对有机无机杂化钙钛矿材料(如MAPbl₃、FAPbl₃等),整合了四个核心特征设计体系:

1. 李-辛-商复形特征 (Lie-SympQuotient Complex Transformer): 基于数学群论 的严谨结构特征

2. **有机阳离子图特征**:基于图神经网络的分子结构特征(**专属特征**)

3. 量子化学特征:基于密度泛函理论的电子结构特征

4. 目标性能特征:实验测量的器件性能指标

总特征维度: 193维

≤ 特征体系详细设计

1. 李-辛-商复形特征 (Lie-SympQuotient **Complex Transformer)**

数学背景说明: 李代数描述连续对称性(如旋转), 辛代数描述相空间动力学(如 载流子运动),商代数处理周期性结构的等价关系。这些数学工具能够精确捕捉钙 钛矿晶体的对称性、动力学性质和周期性结构特征。

1.10-单纯形特征:原子特征(23维)

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
atomic_number	原子序数	int	元素表	pymatgen	元素的唯一标 识,决定核电 荷数
group_number	族数	int	元素表	pymatgen	价电子构型, 影响化学键合 能力
period_number	周期数	int	元素表	pymatgen	电子壳层数, 影响原子半径

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
atomic_mass	原子质量	float	元素表	pymatgen	原子质量,影 响晶格振动频 率
electronegativity	电 负 性	float	Pauling	pymatgen	吸引电子能 力,决定键的 极性
valence_electrons	价电子数	int	电子构型	pymatgen	参与化学键合 的电子数
ionization_energy	电离能	float	实验值	pymatgen	失去电子所需 能量,影响离 子稳定性
electron_affinity	电子亲和能	float	实验值	pymatgen	获得电子释放 的能量,影响 阴离子形成
oxidation_state	氧 化 态	int	化学分析	pymatgen	原子的实际电 荷状态
covalent_radius	共价半径	float	实验值	pymatgen	共价键长度的 一半,预测键 长
ionic_radius	离子 半径	float	Shannon	pymatgen	离子键长度的 组成部分

特征名称	中文名称	数据类型	数据来源	计算库	物理意义
van_der_waals_radius	范德华半径	float	实验值	pymatgen	非键接触距 离,影响分子 间作用
coordination_number	配 位 数	int	结构分析	pymatgen	周围配位原子 数,决定局部 几何
is_metal	金属性	bool	分类	pymatgen	是否为金属, 影响导电性
is_transition_metal	过渡金属性	bool	分类	pymatgen	是否为过渡金 属,d轨道是 否参与
is_lanthanoid	镧系元素性	bool	分类	pymatgen	是否为镧系元 素,f轨道效应
tolerance_factor_contrib	容忍因子贡献	float	几何计算	自定义	对 Goldschmidt 容忍因子的贡 献
octahedral_preference	八 面 体	float	化学规则	化学规则	形成八面体配 位的倾向

特征名称	中文名称 偏	数据 类型	数据来源	计算库	物理意义
	好				
frac_coord_x	分数坐标 x	float	晶体学	pymatgen	晶胞内x方向 的相对位置
frac_coord_y	分 数 坐 标 y	float	晶体学	pymatgen	晶胞内y方向 的相对位置
frac_coord_z	分数坐标 z	float	晶体学	pymatgen	晶胞内z方向 的相对位置
quotient_hash	商等价类散列	int	数学计算	hashlib	周期性结构的 等价类标识
avg_site_valence	平均位点价态	float	键价分析	pymatgen	位点的平均键 价,反映键合 稳定性

1.2 1-单纯形特征: 化学键特征(15维)

特征名称	中文名 称	数据类 型	数据 来源	计算库	物理意义
bond_distance	键长	float	结构 分析	pymatgen	原子间距离,反映键 强度
distance_inverse	距离倒 数	float	数学 计算	numpy	库仑作用强度,距离 越近作用越强
bond_direction_x	键方向x 分量	float	几何 计算	numpy	键在x方向的单位向 量分量
bond_direction_y	键方向y 分量	float	几何 计算	numpy	键在y方向的单位向 量分量
bond_direction_z	键方向z 分量	float	几何 计算	numpy	键在z方向的单位向 量分量
rbf_expansion_1	径向基 函数1	float	数学 展开	math.exp	短程距离的高斯展 开,捕捉近邻效应
rbf_expansion_2	径向基 函数2	float	数学 展开	math.exp	中程距离的高斯展开
rbf_expansion_3	径向基 函数3	float	数学 展开	math.exp	长程距离的高斯展开
crosses_boundary	跨越边 界	bool	几何 判断	pymatgen	键是否跨越晶胞边界
periodic_phase_x	周期相 位x	float	相位计算	math	布里渊区中x方向的 相位
periodic_phase_y	周期相 位y	float	相位计算	math	布里渊区中y方向的 相位
wrap_vec_x	周期包 装向量x	int	周期 性	pymatgen	x方向跨越的晶胞数
wrap_vec_y	周期包 装向量y	int	周期 性	pymatgen	y方向跨越的晶胞数
wrap_vec_z	周期包 装向量z	int	周期 性	pymatgen	z方向跨越的晶胞数
lie_bracket_mag	李括号 幅值	float	李代 数	geomstats	旋转生成元的李括号 运算结果

1.3 2-单纯形特征: 三体相互作用特征(18维)

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
edge_length_1	三角形边 长1	float	几何计算	pymatgen	三体相互作 用中的最短 边
edge_length_2	三角形边 长2	float	几何计算	pymatgen	三体相互作 用中的中等 边
edge_length_3	三角形边 长3	float	一 几 何 计 算	pymatgen	三体相互作 用中的最长 边
triangle_area	三角形面 积	float	几 何 计 算	trimesh	三体相互作 用的几何强 度
triangle_perimeter	三角形周 长	float	几 何 计 算	numpy	三体相互作 用的总几何 尺度
shape_factor	形状因子	float	几 何 计 算	自定义	12√3×面 积/周长², 量化三角形 形状(等边 三角形值为 1)
rbf_area_small	小面积径 向基函数	float	数 学	math.exp	小尺度三体 相互作用的 敏感性

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
			展 开		
rbf_area_medium	中面积径 向基函数	float	数学展开	math.exp	中等尺度三 体相互作用 的敏感性
rbf_area_large	大面积径 向基函数	float	数学展开	math.exp	大尺度三体 相互作用的 敏感性
octahedral_indicator	八面体指 示器	float	化学规则	化学规则	是否倾向于 形成八面体 配位
angle_strain	角度应变	float	几何计算	math.acos	偏离理想键 角的程度
coordination_type	配位类型	int	结构分析	pymatgen	配位环境的 类型编码
tilt_gen_x	x轴倾斜 生成元	float	李 代 数	geomstats	绕x轴的无穷 小旋转生成 元
tilt_gen_y	y轴倾斜 生成元	float	李 代 数	geomstats	绕y轴的无穷 小旋转生成 元
tilt_gen_z	z轴倾斜 生成元	float	李 代	geomstats	绕z轴的无穷 小旋转生成

特征名称	中文名称	数据 类型	数据 来 源	计算库	物理意义
			数		元
casimir_C2	二阶 Casimir 不变量	float	群论	sympy	旋转群的二 阶不变量, 表征倾斜能 量
glazer_cont_param	Glazer连 续参数	float	晶 体 学	numpy	八面体倾斜 的连续化描 述
mean_bond_angle_variance	平均键角 方差	float	统计计算	pymatgen	配位几何的 畸变程度

1.4 全局特征: Casimir不变量与结构统计(25维)

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
casimir_2_so3	SO(3)二 次 Casimir 不变量	float	群 论	sympy	总角动量 平方J ² , 表征旋转 对称性
casimir_2_u1	U(1)二次 Casimir 不变量	float	群论	numpy	电荷平方 Q ² ,表征 电荷守恒
casimir_4_so3	SO(3)四 次 Casimir 不变量	float	群 论	sympy	四阶角动 量不变 量,高阶 对称性

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
symplectic_casimir	辛 Casimir 不变量	float	辛 几 何	sympy	相空间体 积守恒, 载流子输 运稳定性
symplectic_gen_x	x方向辛 生成元	float	辛 几 何	geomstats	载流子x 方向动态 演化的生 成元
symplectic_gen_y	y方向辛 生成元	float	辛几何	geomstats	载流子y 方向动态 演化的生 成元
symplectic_weighted_casimir	有效质量 加权辛 Casimir	float	辛 几 何	sympy	有效质量 加权的相 空间不变 量,输运 性质代理
casimir_mixed	混合 Casimir 不变量	float	群论	自定义	角动量与 电荷的耦 合不变量
mean_bond_length	平均键长	float	统 计	numpy	整体键长 尺度,影 响晶格常 数
mean_tilt_angle	平均倾斜 角	float	统 计	numpy	八面体倾 斜的平均 程度
octahedral_count	八面体数 量	int	计 数	pymatgen	结构中八 面体配位 的数量

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
glazer_mode_ratio	Glazer模 式占比	float	晶 体 学	自定义	不同倾斜 模式的分 布比例
lie_dielectric_casimir	李介电 Casimir 不变量	float	群论	sympy	介电响应 的旋转不 变量
symplectic_dielectric_gen	辛介电生 成元	float	辛几何	geomstats	介电响应 的相空间 动态生成 元
lie_polarization_casimir	李极化 Casimir 不变量	float	群论	sympy	极化各向 异性的李 代数不变 量
lie_energy_casimir	李能量 Casimir 不变量	float	群论	sympy	晶格能的 混合不变 量
quotient_volume_metric	商体积度 量	float	商代数	pymatgen	晶胞体积 的周期等 价类表示
quotient_density_hash	商密度散 列	int	商代数	hashlib	密度分布 的周期等 价标识
volume_per_fu	每化学式 单元体积	float	几何	pymatgen	结构紧密 程度,影 响密度
packing_fraction	堆积分数	float	几 何	pymatgen	空间利用 效率
lattice_anisotropy_ratio	晶格各向 异性比	float	几 何	pymatgen	晶格参数 的各向异

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
					性程度
bond_valence_std	键价标准 差	float	统 计	pymatgen	键价分布 的均匀性
quotient_bartel_tau	商Bartel 稳定因子	float	商代数	pymatgen	Bartel稳 定因子的 商空间表 示
quotient_tau_prob	商稳定概 率	float	商代数	pymatgen	结构稳定 概率的周 期等价类 表示
symplectic_absorption_gen	辛吸收生 成元	float	辛 几 何	geomstats	光吸收过程的相空间动态生成元,光学性质代理

数

Bartel稳定性判据说明: $\tau < 4.18$ 表示高概率形成钙钛矿结构,稳定概率 $P(\tau) = 1/[1 + exp(0.5(\tau-4.18))]$

2. 有机阳离子图特征【专属特征】

图神经网络背景说明:有机分子可以表示为图结构,其中原子是节点,化学键是 边。图神经网络能够学习分子的拓扑结构、化学环境和空间构型,这对于理解有机 阳离子与无机框架的相互作用至关重要。

2.1 节点特征: 原子特征(11维)

特征名称	中文 名称	数据 类型	数据 来源	计算 库	物理意义
node_formal_charge	形式电荷	int	化学 规则	RDKit	原子的形式电 荷,影响静电 相互作用
node_num_hydrogen	氢原 子数	int	分子 结构	RDKit	连接的氢原子 数,影响空间 位阻
node_degree	连接度	int	图拓 扑	RDKit	连接的原子 数,反映配位 环境
node_hybridization_orbitals	杂化 轨道 类型	int	量子 化学	RDKit	轨道杂化类 型,决定几何 构型
node_is_aromatic	芳香 性	bool	化学 规则	RDKit	是否参与芳香 体系,影响电 子结构
node_local_env_density	局部 环境 密度	float	几何 计算	自定义	原子周围的拥 挤程度
node_partial_charge	部分 电荷	float	量子计算	RDKit	原子上的部分 电荷分布
node_polarizability	原子 极化 率	float	查表	查表	原子的极化能 力,影响范德 华力
node_chirality	手性 编码	int	立体化学	RDKit	手性中心的构 型,影响对称 性
fraction_aromatic_atoms	芳香 原子 比例	float	统计	RDKit	分子中芳香原 子的比例
ring_atom_ratio	环原 子比	float	统计	RDKit	分子中环状原 子的比例

例

手性编码说明:根据记忆,使用 0 表示非手性,-1 表示 S 构型(左旋),+1 表示 R 构型(右旋)

2.2 边特征: 化学键特征(8维)

特征名称	中文 名称	数据类 型	数据 来源	计算 库	物理意义
edge_bond_type	键类 型	int	化学 键	RDKit	单键、双键、三 键等键级
edge_is_conjugated	共轭 性	bool	化学 规则	RDKit	是否参与共轭体 系,电子离域
edge_bond_length	键长	float	几何	RDKit	化学键的长度, 反映键强度
edge_is_in_ring	环内 键	bool	拓扑	RDKit	是否在环结构 中,影响分子刚 性
edge_ring_membership	环成 员特 征	int	拓扑	自定义	所属环的大小和 类型
edge_connectivity_index	连接 性指 数	float	拓扑	自定义	键的连接性重要 程度
edge_stereo_config	立体 构型	int	立体 化学	RDKit	键的立体化学构 型
rotor_bond_energy	旋转键能	float	分子 力学	RDKit	键旋转所需的能 量

2.3 全局特征: 分子特征(16维)

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
global_molecular_volume	分子体积	float	几何计算	Mordred	分子占 据的真 实体积
global_mcgowan_volume	McGowan 体积	float	经验公式	Mordred	基于原 子贡献 的分子 体积
global_polarizability	分子极化 率	float	量子计算	Mordred	分子的 整体极 化能力
global_topological_charge	拓扑电荷	float	拓扑计算	Mordred	基于拓 扑结构 的电荷 分布
global_dipole_moment	偶极矩	float	量子计算	RDKit	分子的 电偶极 矩,表 征极性
global_num_rotatable_bonds	可旋转键 数	int	拓扑分析	RDKit	分子的 柔性程 度
global_num_hbd	氢键给体 数	int	化学规则	RDKit	可以提 供氢键 的基团 数
global_num_hba	氢键受体 数	int	化 学	RDKit	可以接 受氢键

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
			规 则		的基团 数
global_molecular_weight	分子量	float	原子质量	RDKit	分子的 相对分 子质量
global_tpsa	拓扑极性 表面积	float	拓扑计算	RDKit	分子表 面的极 性区域 面积
global_logp	脂水分配 系数	float	经验公式	RDKit	分子在 脂相和 水相中 的分配 倾向
kappa_shape_index1	κ形状指数 1	float	拓扑计算	RDKit	分子形 状复杂 度的一 阶描述
kappa_shape_index2	κ形状指数 2	float	拓扑计算	RDKit	分子形 状复杂 度的二 阶描述
asphericity	非球形度	float	几 何 计 算	RDKit+numpy	分子偏 离球形 的程度

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
surface_area_vdw	范德华表 面积	float	几何计算	RDKit	基于范 德华半 径的分 子表面 积
graph_hotspot_density	图热点密 度	float	图 分 析	RDKit+numpy	芳 域 化 度 子 程 天 程

图热点密度计算: graph_hotspot_density = sum(node_polarizability where is_aromatic) / num_nodes

3. 量子化学特征

量子化学背景说明:基于密度泛函理论(DFT)计算和实验测量的电子结构、几何结构和热力学性质,这些特征直接关联材料的基本物理化学性质。

3.1 基础样本信息(4维)

特征名称	中文名称	数据 类型	数据来 源	计算 库	物理意义
sample_id	样本标识 符	str	人工编 号	-	样本的唯一标识
chemical_formula	化学分子 式	str	化学分 析	-	样本的化学组成
composition_string	组成描述	str	化学分 析	-	详细的组成信息

特征名称	中文名称	数据 类型	数据来 源	计算 库	物理意义
crystal_structure_file	结构文件 路径	str	CIF文 件	-	晶体结构数据文 件的路径

3.2 B位金属特征(16维)

特征名称	中文 名称	数据 类型	数据来源	计 算 库	物理意义
b_site_ionic_radius	B位离 子半 径	float	Shannon半径	查表	B位 金离的效径
b_site_oxidation_state	B位氧 化态	int	电荷平衡+BV	分 析	B位 金属 的氧 化态
b_site_coordination_number	B位配 位数	int	CIF+CrystalNN	分 析	B位 金属 的位原 子数
b_site_d_electron_count	B位d 电子 数	int	电子构型	查表	B位 金轨 道电数
b_site_bader_charge	B位 Bader 电荷	float	DFT+Bader分 析	DFT	基于电子密度分析

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理 意义
					的实 际电 荷
b_site_d_band_center	B位d 带中 心	float	DFT能带分析	DFT	d子带重位置影催活电能的心,响化性
<pre>b_site_d_band_width</pre>	B位d 带宽 度	float	DFT态密度	DFT	d子带宽度反d道域度电能的,映轨离程
<pre>b_site_crystal_field_splitting</pre>	B位晶 体场 分裂	float	DFT+配体场	DFT	配场致d道级裂体导的机能分
b_site_covalency_parameter	B位共 价性 参数	float	DFT键合分析	DFT	B-X 键的 共价

特征名称	中文 名称	数据 类型	数据来源	计 算 库	物理意义
					性程度
b_site_charge_transfer_energy	B位电 荷转 移能	float	DFT光谱计算	DFT	电荷移跃所的量
b_site_magnetic_moment	B位磁 矩	float	DFT磁性计算	DFT	B位原子的磁矩大小
b_site_spin_density	B位自 旋密 度	float	DFT自旋计算	DFT	B位 原子 处自旋 密度
b_site_orbital_mixing	B位轨 道混 合	float	DFT轨道分析	DFT	不 轨 间 混 程
b_site_electron_localization	B位电 子局 域化	float	ELF分析	DFT	电局化数值反电局程一子域函,映子域度

特征名称	中文 名称	数据 类型	数据来源	计 算 库	物理意义
b_site_bond_valence_sum	B位键 价和	float	键价分析	分 析	键 方 计 的 键 价
<pre>b_site_effective_coordination</pre>	B位有 效配 位数	float	键价+几何	分 析	考键度有配数

3.3 X位阴离子特征(15维)

特征名称	中文名 称	数据 类型	数据来源	计 算 库	物理 意义
x_site_ionic_radius	X位离子 半径	float	Shannon半径	查表	X位 阴离 子的 有效 半径
x_site_oxidation_state	X位氧化 态	int	电荷平衡	分 析	X位 阴离 子的 氧化 态

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理 意义
x_site_coordination_number	X位配位 数	int	CIF+CrystalNN	分析	X位 阴子配原 原数
x_site_bader_charge	X位 Bader电 荷	float	DFT+Bader分 析	DFT	基电密分的际荷于子度析实电
x_site_mulliken_charge	X位 Mulliken 电荷	float	DFT布居分析	DFT	基轨布分的荷
x_site_p_band_center	X位p带 中心	float	DFT能带分析	DFT	p电 子能 带的 重心 位置
x_site_p_band_width	X位p带 宽度	float	DFT态密度	DFT	p电 子能 带的 宽度
x_site_electron_affinity_eff	X位有效 电子亲 和能	float	DFT轨道能级	DFT	获得 电子 的有

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
					效亲 和能
x_site_polarizability_tensor	X位极化 率张量	float	DFT响应计算	DFT	极率量迹整极能
x_site_charge_density_min	X位电荷 密度最 小值	float	DFT电荷分析	DFT	原周电密的小子围荷度最值
x_site_electrostatic_potential	X位静电 势	float	DFT静电计算	DFT	原子 处的 静电 势
x_site_bond_order_to_b	X-B键级	float	DFT键合分析	DFT	X位 与B 位的键 级度
x_site_covalency_index	X位共价 指数	float	DFT键性分析	DFT	参与 共价 键的 程度
x_site_hardness_parameter	X位硬度 参数	float	DFT+HSAB理 论	DFT	软硬 酸碱 理论

特征名称		中文名 称	数据 类型	数据来源		计 算 库	物理 意义
							中的 硬度 参数
x_site_electron_localizatio	n	X位电子 局域化	float	ELF分析		DFT	电子 局域 化函 数值
3.4 离子间相互作用特征(6维)							
特征名称	中文名称	数据 类型	数据来》	京	计算库	物理意	ť义
a_b_size_ratio	A-B 离子半径比	float	rA/rB		计算	A位与I 位离子 径比, 响结构 定性	·半 影
a_x_size_ratio	A-X 离子半径比	float	rA/rX		计 算	A位与) 离子半 比	
b_x_size_ratio	B-X 离子半径比	float	rB/rX		计算	B位与》 离子半 比	

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
electronegativity_variance	电负性方差	float	$\sigma^2(\chi A, \chi B, \chi X)$	计算	三种离子 电负性差 异的方差
hardness_mismatch_factor	硬度失配因子	float	HSAB分析	计算	软硬酸碱 匹配程度
ionic_potential_ratio	离子势比值	float	(qA/rA²)/(qB/rB²)	计算	不同离子 静电势的 比值

有机阳离子半径: 使用Kieslich有效半径 r_A,eff = (3V_mol/4π)^(1/3)

3.5 晶体结构信息(6维)

特征名称	中文名称	数据类型	数据来源	计算库	物理意义
lattice_a	晶格参数a	float	CIF文件	晶体学	晶胞在a方向的长度
lattice_b	晶格参数b	float	CIF文件	晶体学	晶胞在b方向的长度
lattice_c	晶格参数c	float	CIF文件	晶体学	晶胞在c方向的长度
lattice_alpha	晶格角α	float	CIF文件	晶体学	b和c轴之间的夹角
lattice_beta	晶格角β	float	CIF文件	晶体学	a和c轴之间的夹角
lattice_gamma	晶格角γ	float	CIF文件	晶体学	a和b轴之间的夹角

3.6 结构几何特征(3维)

特征名称	中文名 称	数据 类型	数据来源	计 算 库	物理意义
tolerance_factor	容忍因 子t	float	Goldschmidt 公式	计算	结构稳 定性的 几何判 据
octahedral_factor	八面体 因子µ	float	几何计算	计 算	八面体 配位的 几何适 应性
tolerance_oct_interaction	容忍-八 面体交 互项	float	几何交互稳定 性	计 算	两个几 何因子 的耦合 效应

容忍因子计算: $t = (rA + rX)/[\sqrt{2(rB + rX)}]$,其中有机阳离子半径使用Kieslich有效 半径

3.7 全局物理特征(6维)

特征名称	中文名称	数据 类型	数据来源	计算库	物理 意义
formation_energy	形成能	float	DFT/MP	DFT	从质成合的量化单形化物能变
decomposition_energy	分 解 能	float	DFT/MP	DFT	分解 为稳 定相 所需

特征名称	中文名称	数据 类型	数据来源	计算库	物理 意义
					的能 量
energy_above_hull	相图稳定性	float	DFT/MP	DFT	相于稳相能差
bulk_modulus	体 模 量	float	DFT	DFT	材的积缩量反机性料体压模,映械质
electrostatic_potential_mean	平均静电势	float	DFT+Bader	DFT	整体 静电 势的 平 值
charge_volume_proxy	电荷体积代理	float	计算	Mordred + pymatgen	微阳子分荷宏体的合代多观离部电与观积耦,理尺

	中				
特征名称	文	数据	数据来源	计算库	物理
14 III II 10.	名	类型	××1/0/1/1/1/	71 71 1- 1	意义
	称				

度电 荷效 应

公式说明: charge_volume_proxy = avg_cation_charge * volume_per_fu,其中 avg_cation_charge 是 A 和 B 位的平均部分电荷(使用 Mordred/RDKit从SMILES计算有机A位,pymatgen查表B位);volume_per_fu 是 每化学式单元体积(从CIF计算)。

3.8 工艺参数(5维)

特征名称	中文 名称	数据类 型	数据 来源	计算 库	物理意义
annealing_temperature	退火 温度	float	实验 记录	实验	热处理温度,影响 晶体质量
annealing_time	退火 时间	float	实验 记录	实验	热处理时间,影响 晶粒生长
solution_concentration	溶液 浓度	float	实验 记录	实验	前驱体溶液浓度, 影响薄膜厚度
spin_speed	旋涂 转速	float	实验 记录	实验	旋涂工艺转速,影 响薄膜均匀性
spin_time	旋涂 时间	float	实验 记录	实验	旋涂工艺时间,影 响薄膜质量

3.9 文本特征(6维)

特征名称	中文名称	数据类 型	数据来 源	计算 库	物理意义
synthesis_method	合成方法	str	文献记 录	文本	材料制备的工艺路 线

特征名称	中文名称	数据类 型	数据来 源	计算 库	物理意义
solvent_type	溶剂类型	str	实验记 录	文本	使用的溶剂种类
additive_type	添加剂类型	str	实验记录	文本	添加的改性剂种类
surface_treatment	表面处理	str	实验记 录	文本	表面修饰或处理方 法
device_architecture	器件结构	str	器件设 计	文本	太阳能电池的器件 架构
encapsulation	封装方式	str	器件处 理	文本	器件的封装保护方 法

4. 性能目标特征(9维)

特征名称	中文 名称	数据 类型	数据来源	计 算 库	物理意义
power_conversion_efficiency	光电 转换 效率	float	自动J-V扫描仪 测试(机器人 合成后)	测试	太阳能电 池的能量 转换效率
open_circuit_voltage	开路 电压	float	自动电流-电压 曲线测试	测试	无外部负 载时的最 大电压
short_circuit_current	短路 电流	float	自动电流-电压 曲线测试	测试	短路条件 下的最大 电流
fill_factor	填充 因子	float	自动电流-电压 曲线测试	测试	J-V曲线的 方形度, 反映器件 质量
band_gap	带隙	float	DFT计算或自 动UV-Vis光谱	计 算	价带顶与 导带底之

特征名称	中文 名称	数据 类型	数据来源	计 算 库	物理意义
			(高通量光谱 仪)		间的能量 差
thermal_stability_index	热稳 定性 指数	float	自动TGA/DSC 测试或加速老 化实验	测试	材料在高 温下的稳 定性
moisture_stability_index	湿度 稳定 性指 数	float	自动湿度 chamber测试	测试	材料在潮 湿环境下 的稳定性
exciton_binding_energy	激子 结合 能	float	DFT计算	计 算	电子-空穴 对的结合 能,影响 载流子分 离
<pre>charge_carrier_lifetime</pre>	载流 子寿 命	float	DFT估算或自 动TRPL测量	测试	载流子的 平均寿 命,影响 器件性能

愛 数据库优势

1. 有机阳离子精确建模

- **图神经网络特征**: 35维分子图特征,涵盖节点、边、全局三个层次的完整描述
- 化学精确性:基于RDKit的精确分子描述符,确保化学意义的准确性
- 构象敏感性: 捕捉旋转键能和分子柔性, 反映有机分子的动态行为

2. 杂化界面效应

界面相互作用: 有机分子与无机框架的相互作用通过氢键、范德华力等特征量化

- 氢键网络: 氢键给体/受体特征精确描述有机-无机界面的氢键相互作用
- 范德华相互作用: 分子表面积和极化率特征量化弱相互作用

3. 稳定性预测优势

- 分子运动性: 可旋转键数和构象自由度反映有机阳离子的热运动
- 热力学稳定性: Bartel τ因子专门针对有机阳离子优化,提高稳定性预测精度
- **降解机制**:有机分子的化学稳定性指标预测材料在使用环境中的降解行为