Component Cause of Failure in a Series System with Masked Component Cause of Failure

Alex Towell

Contents

0.1 Probability of Component Cause of System Failure

This subsection is not necessary in our likelihood model, but it derives a useful result for making predictions about the component cause of failure.

Suppose we have observed a candidate set and a series system failure and we are interested in the probability that a particular component is the cause of failure.

Theorem 1. Assuming Conditions ?? and ??, the conditional probability of the component cause of failure is component j ($K_i = j$) given a masked component cause of failure ($C_i = c_i$) and system lifetime ($T_i = t_i$) is given by

$$\Pr\{K_i = j | T_i = t_i, C_i = c_i\} = \frac{h_j(t_i | \boldsymbol{\theta_j})}{\sum_{l \in c_i} h_l(t_i | \boldsymbol{\theta_l})} 1_{\{j \in c_i\}}.$$

$$(0.1)$$

Proof. The conditional probability $\Pr\{K_i = j | T_i = t_i, C_i = c_i\}$ may be written as

$$\Pr\{K_i = j | T_i = t_i, C_i = c_i\} = \frac{\Pr_{\theta}\{C_i = c_i | K_i = j, T_i = t_i\} f_{K_i, T_i}(j, t_i; \theta)}{\sum_{i=1}^{m} \Pr_{\theta}\{C_i = c_i | K_i = j, T_i = t_i\} f_{K_i, T_i}(j, t_i; \theta)}.$$

By Theorem ??, $f_{K_i,T_i}(j,t_i;\boldsymbol{\theta}) = h_j(t_i;\boldsymbol{\theta})R_{T_i}(t_i;\boldsymbol{\theta})$. We may make this substitution and simplify:

$$\Pr\{K_i = j | T_i = t_i, C_i = c_i\} = \frac{\Pr_{\boldsymbol{\theta}}\{C_i = c_i | K_i = j, T_i = t_i\}h_j(t_i; \boldsymbol{\theta_j})}{\sum_{j'=1}^{m} \Pr_{\boldsymbol{\theta}}\{C_i = c_i | K_i = j', T_i = t_i\}h_{j'}(t_i; \boldsymbol{\theta_{j'}})}.$$

Assuming Conditions ?? and ??, we may rewrite the above as

$$\Pr\{K_i = j | T_i = t_i, C_i = c_i\} = \frac{\Pr_{\boldsymbol{\theta}}\{C_i = c_i | K_i = j, T_i = t_i\} h_j(t_i; \boldsymbol{\theta_j})}{\Pr_{\boldsymbol{\theta}}\{C_i = c_i | K_i = j, T_i = t_i\} \sum_{l \in c_i} h_l(t_i; \boldsymbol{\theta_l})} = \frac{h_j(t_i; \boldsymbol{\theta_j})}{\sum_{l \in c_i} h_l(t_i; \boldsymbol{\theta_l})}.$$

Frequently, we may not have any information at all about the component cause of failure. In this case, $c_i = \{1, \ldots, m\}$, and we obtain the following corollary.

Corollary 1. The probability that the j^{th} component is the cause of system failure given only that we know a system failure occurred at time t_i is given by

$$\Pr\{K_i = j | T_i = t_i\} = \frac{h_j(t_i; \boldsymbol{\theta_j})}{\sum_{l=1}^m h_l(t_i; \boldsymbol{\theta_l})}.$$