Company confidential

General description

DA7212 is an ultra-low power audio codec targeting portable audio devices. The input paths support stereo FM line input and up to four analogue (or two analogue and two digital) microphones with two independent microphone biases. Comprehensive analogue mixing and bypass paths to the output drivers are available.

The headphone output is true-ground Class G with integrated charge pump. There is also a differential Class AB speaker driver that can serve as a mono lineout.

Digital audio transfer to/from the external processor is via a bidirectional digital audio interface that supports all common sample rates and formats. The device may be operated in slave or master modes using the internal PLL which may be bypassed if not required.

To fully optimise each customer application, a range of built in filtering, equalisation and audio enhancements are available. These are accessible by the processor over the I2C serial interface.

Key features

- 100 dB SNR stereo audio playback into 16 32 Ω headphones
- 3.1 mW power consumption for stereo DAC to headphone playback
- 1.2 W mono speaker driver
- 650 µW mono voice record
- Stereo digital microphone support
- Supports up to four analogue microphones
- Two low-noise microphone-bias outputs
- Low-power PLL provides system clocking and audio sample rate flexibility

- Built-in 5-band equaliser, ALC and noise-gate functions
- Built-in beep generator
- Integrated system controller to eliminate pops and clicks
- Minimised external component count
- 34-ball WLCSP (4.54 mm x 1.66 mm) package
- Staggered 0.5 mm pitch for easy PCB routing

Applications

- Personal Media Players
- Audio headphone/headsets
- Wearables

- Embedded applications
- Arduino-compatible development systems

Figure 1: The DA7212 chip

Company confidential

Contents

Ge	neral o	description	1
Ke	y featu	ıres	1
Ар	plicati	ons	1
Со	ntents		2
Fig	ures		е
Tal	oles		7
1	Term	s and definitions	9
2	Block	diagramdiagram	10
3	Pinou	ıt	11
4	Abso	lute maximum ratings	14
5	Reco	mmended operating conditions	15
6	Electi	rical characteristics	16
7	Parar	netric specifications	17
8	Digita	al signal processing	20
9	Audio	outputs	23
11	Clock	generationgeneration	27
12	Phase	Locked Loop (PLL)	27
13	Digita	al interfaces	28
	13.1	Codec Start-Up Time	31
14	Funct	ional description	32
	14.1	General description	32
	14.2	Input Signal Chain	. 32
	14.3	Microphone Inputs	33
	14.4	Digital microphones	34
	14.5	Auxiliary inputs	. 35
	14.6	Input mixers	. 35
	14.7	Stereo audio ADC	36
		Stereo audio ADC	

14.9 Beep Generator and Controller	. 38
14.10 Output Signal Chain	. 39
14.11 Stereo Audio DAC	. 40
14.12 Output Mixer	. 40
14.13 Headphone Amplifier	. 41
14.14 Speaker Amplifier	. 41
14.15 Charge Pump Control	. 42
14.16 Charge pump clock control	. 44
14.17 Boosting the charge pump using demand feedback control	. 44
14.17.1 Tracking the demands on the charge pump output	. 44
14.17.1.1 CP_MCHANGE = 00 (manual mode)	. 44
14.17.1.2 CP_MCHANGE = 01 (tracking the PGA gain setting)	. 44
14.17.1.3 CP_MCHANGE = 10 (tracking the DAC signal setting)	. 44
14.17.1.4 CP_MCHANGE = 11 (tracking the output signal magnitude)	. 44
14.17.2 Specifying clock frequencies when tracking the charge pump output demand	. 45
14.17.3 Controlling the boost of the charge pump clock-frequency	. 45
14.17.3.1 CP_ANALOGUE_LVL = 01	. 45
14.17.3.2 CP_ANALOGUE_LVL = 10	. 45
14.18 Other Charge Pump Controls	. 46
14.19 Digital Signal Processing Engine	. 46
14.20 Variable High Pass Audio Filter (DC Cut)	. 47
14.21 Variable High Pass Filter (Wind Noise Filtering)	. 48
14.22 DAC 5-Band Equaliser	. 49
14.23 Soft Mute	. 52
14.24 Playback Noise-Gate	. 53
14.25 Clock Modes	. 53

Company confidential

	14.26	PLL Bypass Mode	54
		14.26.1 Normal PLL Mode (DAI Master)	55
		14.26.2 Example calculation of the Feedback Divider setting:	55
	14.27	SRM PLL Mode (DAI Slave)	56
	14.28	32 kHz PLL Mode (DAI Master)	56
		14.28.1 Operating with a 2 MHz to 5 MHz MCLK	57
	14.29	Mixed Sample Rates	57
	14.30	I2C Control Interface	57
	14.31	Details of the I2C Control interface protocol	58
	14.32	Digital Audio Interface (DAI)	61
	14.33	I2S Mode	63
	14.34	Left Justified Mode	63
	14.35	Right Justified Mode	63
	14.36	DSP Mode	64
	14.37	Time Division Multiplexing (TDM) Mode	65
		14.37.1 Configuration of the Digital Audio Interface	66
	14.38	Pop-Free and Click-Free Start-up using the System Controllers	66
		14.38.1 Level 1 System Controller (SCL1)	66
		14.38.2 Level 2 System Controller (SCL2)	67
	14.39	Power Supply – Standby Mode	67
		14.39.1 Entering Standby Mode	67
		14.39.2 Exiting Standby Mode	67
15	Regis	ter definitions	.69
	15.1	Register map	69
	15.2	Status registers	76
	15.3	System initialisation registers	84

Datasheet

Revision 3a

19 August 2014

	15.4	Input ga	in/select filter registers	92
		15.4.1	Output Gain-Filter Registers	98
		15.4.2	System Controller Registers	108
		15.4.3	Control Registers	110
		15.4.4	Mixed Sample Mode Registers	121
		15.4.5	Configuration Registers	122
16	Packa	ige infori	mation	140
17	Orde	ring infor	rmation	141
Ap	pendix	A Appli	cations information	142
	A.1		nitialisation	
	A.2	Automa	tic ALC calibration	142
Αp	pendix	B Comp	onents	143
	B.1	Audio in	nputs	143
	B.2	Microph	none Bias	144
	B.3	Digital N	Microphone	144
	B.4	Audio O	outputs	145
	B.5	Headph	one Charge pump	146
	B.6	Digital I	nterfaces	147
	B.7	Capacito	or Selection	147
Αp	pendix	c C Calibr	ation Routine	149
	C.1	Trouble	shooting	149
	C.2	Referen	ces	150
	C.3	Supplies	5	151
	C.4	Ground		151
Αp	pendix	D PCB L	ayout Guidelines	152
	D.1	Layout a	and Schematic support	152
	D.2	General	Recommendations	152

Company confidential

Figures

Figure 1: The DA7212 chip	1
Figure 2: Block diagram showing component values for a typical application	10
Figure 3: DA7212 Ball layout	11
Figure 4: I2C Bus Timing	29
Figure 5 Digital audio interface timing diagram	30
Figure 6: Audio input routing and gain ranges	33
Figure 7: Typical microphone application for MIC1 (MIC2 is similar)	34
Figure 8: Digital microphone timing example	35
Figure 9: Principle of Operation of the ALC	37
Figure 10: Attack, Delay and Hold parameters	38
Figure 11: Analogue output signal paths and gain ranges	40
Figure 12: Input (clk) and Output Clocks (cp_clk and cp_clk2) at CP_FCONTROL = 010	44
Figure 13: ADC and DAC DC blocking (Cut-off frequency setting '00' to '11', 16 kHz)	48
Figure 14: Wind noise high-pass filter (cut-off frequency setting '000' to '111', 16 kHz)	49
Figure 15: Equaliser filter Band 1 frequency response at FS = 48 kHz	50
Figure 16: Equaliser filter Band 2 frequency response at FS = 48 kHz	51
Figure 17: Equaliser filter Band 3 frequency response at FS = 48 kHz	51
Figure 18: Equaliser filter Band 4 frequency response at FS = 48 kHz	52
Figure 19: Equaliser filter Band 5 frequency response at FS = 48 kHz	52
Figure 20: Schematic of the I2C control interface bus	58
Figure 21 Timing of I2C START and STOP Conditions	58
Figure 22: I2C Byte write (SDA signal)	59
Figure 23: Examples of the I2C Byte Read (SDA line)	59
Figure 24: Examples of I2C Page Read (SDA line)	59
Figure 25: I2C Page Write (SDA Line)	60

Figure 26: I2C Repeated Write (SDA Line)	61
Figure 27: Master Mode (DAI_CLK_EN = 1)	61
Figure 28: Slave Mode (DAI_CLK_EN = 0)	62
Figure 29: I2S Mode	63
Figure 30: Left Justified Mode	63
Figure 31: Right Justified Mode	63
Figure 32: DSP Mode	64
Figure 33: TDM Example (slave mode)	65
Figure 34: TDM Mode (left justified mode)	65
Figure 35: DA7212 package outline drawing	140
Figure 36 Micbias decoupling	144
Figure 37 Recommended Headphone layout	145
Figure 38 Charge Pump Decoupling	146
Figure 39 Charge Pump Flying Capacitor	146
Figure 40 I2C pull ups	147
Figure 41 Reference Capacitors	150
Figure 42 Power Supply Decoupling	151
Figure 43 DA7212 Example Layout	152
Tables	
Table 1: Pin descriptions	12
Table 2: Pin type definition	
Table 3: Absolute maximum ratings	
Table 4: Recommended operating conditions	15
Table 5: Power consumption	16
Table 6: Reference voltage generation	16
Table 7: Analogue to Digital Converter (ADC)	

Table 8: Microphone bias	18
Table 9: Input mixing units	19
Table 10: ADC/DAC Digital high-pass filter cut-off frequencies in music mode	20
Table 11: ADC/DAC Digital high-pass filter cut-off frequencies in voice mode	20
Table 12: DAC 5-Band equaliser frequencies	21
Table 13: Beep generator	22
Table 14: Digital to Analogue Converter (DAC)	23
Table 15: Class AB lineout amplifier / speaker	24
Table 16: True Ground charge pump	25
Table 17: True Ground headphone amplifier	26
Table 18: MCLK Input	27
Table 19: PLL Mode	27
Table 20: Bypass Mode	28
Table 21: I/O Characteristics	28
Table 22: I2C Control bus	2 9
Table 23: Digital Audio Interface Timing (I2S/DSP in Master/Slave Mode)	30
Table 24 Codec start-up times	31
Table 25: DTMF Keypad frequencies	39
Table 26: Charge pump output voltage control	42
Table 27: CP_THRESH_VDD2 Settings in DAC_VOL mode (CP_MCHANGE = 10)	43
Table 28: CP_THRESH_VDD2 Settings in Signal Size mode (CP_MCHANGE = 11)	43
Table 29: Charge pump current load control	46
Table 30: ADC/DAC Digital High Pass Filter specifications in Audio Mode	47
Table 31: Wind noise high-pass filter specifications	48
Table 32: DAC 5-Band Equaliser Turnover/Centre Frequencies	50
Table 33: Sample rate control register and corresponding system clock frequency	54

Company confidential

Table 34: PLL Input Divider	55
Table 35: Example PLL configurations	56
Table 36: Ordering information	141
Table 37: Audio inputs	143
Table 38: Microphone bias	144
Table 39: Digital microphones	144
Table 40: Headphone outputs	145
Table 41: Speaker outputs	145
Table 42: Headphone charge pump	146
Table 43: Digital interfaces – I2C	147
Table 44: Offset calibration, MIC1_P and MIC2_P single ended, slave mode	149
Table 45: Digital interfaces - I2S	150
Table 46: References	150
Table 47: Power supplies	151
Table 48: Ground	151

1 Terms and definitions

ADC Analogue Digital Converter

ALC Automatic Level Control

DAC Digital Audio Converter

DAI Digital Audio Interface

DTMF Dual Tone Multi-Frequency

I2C Inter-Integrated Circuit interface

I2S Inter-IC Sound
PLL Phase Locked Loop

PSSR Power Supply Rejection Ratio

SNR Signal to Noise Ratio
TDM Time Division multiplexing

THD+N Total Harmonic Distortion plus Noise

Company confidential

2 Block diagram

Figure 2: Block diagram showing component values for a typical application

ADC Digital Filter Analogue filter block incorporating wind noise filtering and Automatic Level Control (ALC)

DAC Digital Filter Digital filter block incorporating digital mixing, digital volume control, a 5-band equaliser and a noise gate

Beep Generator The Beep Generator block has two sine wave generators, each of which can be independently controlled. Output frequency is controllable in 10 Hz step sizes, and output gain is controllable in 3 dB steps from 0 dB to 45 dB. The Beep Generator block can also output standard DTMF keypad frequencies (see Table 25).

Company confidential

3 Pinout

Figure 3: DA7212 Ball layout

Company confidential

Table 1: Pin descriptions

Pin Name	Bump/Pin	Function	Alternate Function	Class		
	Audio Inputs					
MIC1_P	C17	Differential mic. input 1 (pos) / Single-ended mic. input 1 (left)	Digital mic. clock (DMICCLK)	AI/DO		
MIC1_N	B16	Differential mic. input 1 (neg) / Single-ended mic. input 2 (left)	Digital Mic. data (DMICIN)	AI/DI		
MIC2_P	D16	Differential mic. input 2 (pos) / Single-ended mic. input 1 (right)		AI		
MIC2_N	C15	Differential mic. input 2 (neg) / Single-ended mic. input 2 (right)		AI		
AUX_L	C13	Single-ended auxiliary input left		Al		
AUX_R	D14	Single-ended auxiliary input right		Al		
MICBIAS1	A15	Microphone bias output 1		AO		
MICBIAS2	A17	Microphone bias output 2		AO		
		Audio Outputs				
HP_L	А3	True-ground headphone output left		АО		
HP_R	A5	True-ground headphone output right		АО		
SP_P	B12	Differential speaker output (pos)		АО		
SP_N	A13	Differential speaker output (neg)		АО		
		Audio Charge pump				
HPCSP	A1	Charge pump reservoir capacitor (pos)		AIO		
HPCSN	C1	Charge pump reservoir capacitor (neg)		AIO		
HPCFP	D2	Charge pump flyback capacitor (pos)		AIO		
HPCFN	C3	Charge pump flyback capacitor (neg)		AIO		
		Digital Interfaces				
SDA	C9	I2C bidirectional data		DIO		
SCL	D8	I2C clock input		DI		
DATIN	C5	DAI data input		DIO		
DATOUT	C7	DAI data output		DIO		
BCLK	D4	DAI bit clock		DIO		
WCLK	D6	DAI word clock (L/R select)		DIO		
MCLK	C11	Master clock		DI		
		References				
DACREF	A7	Audio DAC reference capacitor		AIO		
VMID	A9	Audio mid-rail reference capacitor		AIO		
GND_SENSE	B4	Ground reference for headphone output		Al		
VREF	B8	Bandgap reference capacitor		AIO		

Datasheet Revision 3a 19 August 2014

Company confidential

Pin Name Bump/Pin		Function	Alternate Function	Class		
	Supplies					
VDD_A	VDD_A B6 Supply for analogue circuits			PS		
VDD_IO	D10	Supply for digital interfaces		PS		
VDD_SP	A11	Supply for speaker driver		PS		
VDD_MIC B14 Supply for micro		Supply for microphone bias circuits		PS		
VDIG	D12	Supply for digital circuits (LDO Output)		PS		
	Grounds					
GND_A	B10	Analogue ground		PG		
GND_CP	GND_CP B2 Charge pump/digital ground		PG			

Table 2: Pin type definition

Pin type	Description	Pin type	Description
DI	DI Digital Input		Analogue Input
DO Digital Output		AO	Analogue Output
DIO	Digital Input/Output	AIO	Analogue Input/Output
DIOD	Digital Input/Output open drain		
PU	Fixed pull-up resistor	SPU	Switchable pull-up resistor
PD	Fixed pull-down resistor	SPD	Switchable pull-down resistor

Company confidential

4 Absolute maximum ratings

Table 3: Absolute maximum ratings

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
	Storage Temperature		-65		+165	°C
Ta	Operating Temperature		-40		+85	°C
VDD_SP			-0.3		6.0	V
VDD_A	Supply Voltages		-0.3		2.75	V
VDD_IO VDD_MIC			-0.3		5.5	V
SDA SCL BCLK WCLK DATIN DATOUT	Digital Interface Signals		-0.3		VDD_IO + 0.3	
	Package Thermal Resistance		60			°C/W
	ESD Susceptibility	Human body model			2	kV

Note 1 Stresses beyond those listed under 'Absolute maximum ratings' may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Company confidential

5 Recommended operating conditions

Table 4: Recommended operating conditions

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Ta	Operating temperature		-40		+85	°C
VDD_A	Supply Voltages		1.6		2.65	V
VDD_IO			1.5		3.6	V
VDD_MIC			1.8		3.6	V
VDD_SP			0.95		5.25	V

- Note 2 Within the specified limits, a life time of 10 years is guaranteed
- Note 3 All Voltages are referenced to VSS unless otherwise stated
- Note 4 Currents flowing into DA7212 are deemed positive. Currents flowing out are deemed negative
- **Note 5** All parameters are valid over the recommended temperature range and power supply range unless otherwise noted.

Company confidential

6 Electrical characteristics

Table 5: Power consumption

Operating Mode	Conditions (Note 6)	Power Consumption	Unit
Powerdown mode		5	μA
Digital playback to Lineout	DAC_L/R to LINE, 10 kΩ load	2.2	mW
Digital playback to Headphone, no load	DAC_L/R to HP_L/R, quiescent	3.1	mW
Digital playback to Headphone, with load	DAC_L/R to HP_L/R, 16 Ω load, 0.1 mW at 0 dBFS	6.9	mW
Analogue bypass to Lineout	AUX_L/R to LINE, 10 kΩ load	2.0	mW
Analogue bypass to Headphone, no load	AUX_L/R to HP_L/R, quiescent	2.6	mW
Analogue bypass to Headphone, with load	AUX_L/R to HP_L/R, 16 Ω load, 0.1 mW at 0 dBFS	6.7	mW
Microphone stereo record	MIC_1/2 to ADC_L/R	2.1	mW
Microphone stereo record and digital playback to Headphone, no load	MIC_1/2 to ADC_L/R and DAC_L/R to HP_L/R, quiescent	4.8	mW
Microphone stereo record and digital playback to Headphone, with load	MIC_1/2 to ADC_L/R and DAC_L/R to HP_L/R, 16 Ω load, 0.1 mW at 0 dBFS	8.9	mW
Ultra-low power microphone mono record	MIC_1 to ADC_R, 8 kHz, quiescent, optimised clocking and bias	0.65	mW

Note 6 VDD_A=VDD_SP=VDD_IO=1.8 V, Ta=25°C, Fs=48 kHz, Charge pump signal-size mode, 0x95 = 0x06

Table 6: Reference voltage generation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VMID	Audio mid-rail voltage			0.45 × VDD_A		V
C _{VMID}	VMID decoupling capacitor			1.0		μF
DACREF	Audio DAC/ADC reference voltage			0.9 × VDD_A		V
C _{DACREF}	DACREF decoupling capacitor			1.0		μF
VBG	Bandgap voltage			1.2		V
C _{VBG}	Bandgap decoupling capacitor			1.0		μF

7 Parametric specifications

Table 7: Analogue to Digital Converter (ADC)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{MAX}	Full-scale input signal	Digital output level = 0 dBFS		1.6 × VDD_A		V_{PP}
SNR (Note 7)	Signal to Noise Ratio	A-weighted no input selected		90		dB
THD+N (Note 8)	Total Harmonic Distortion plus	-1 dBFS 44.1 kHz slave mode		-85		dB
, ,	Noise	-1 dBFS 32 kHz PLL mode		-80		dB
	In-band Spurious	Analog input level = 0 dBFS		-85		dB
	Channel separation			90		dB
B _{PASS}	Pass band				0.45*Fs	Hz
B _{STOP}	Stop band	Fs ≤ 48 kHz Fs = 88.2/96 kHz	0.56*Fs		7*Fs 3.5*Fs	Hz
	Pass band Ripple	Voice mode Music mode			±0.3 ±0.1	dB
	Stop band Attenuation	Voice mode Music mode	70 55			dB
	Group delay	Voice mode Music mode Fs = 88.2/96 kHz		4.3/Fs 18/Fs 9/Fs	600	μs
	Group delay mismatch	Between left and right channels			2	μs
PSRR (Note 9) with respect to VDD_A	Power Supply Rejection Ratio	20Hz – 2 kHz 20 kHz	70 50			dB

- Note 7 SNR (Signal-to-Noise Ratio) is a ratio of the full-scale output signal level to the noise level with no signal applied
- Note 8 THD+N (Total Harmonic Distortion plus Noise) is a ratio of the level of the harmonics and noise to the output signal
- **Note 9** PSRR (Power Supply Rejection Ratio) is a measure of the attenuation of a signal on the supply to the signal at the output

Table 8: Microphone bias

MICBIAS1 and MICBIAS2								
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
			1.52	1.57	1.62	V mA		
V	Diag Voltage	No load, VDD_MIC >	2.18	2.25	2.32	V		
VMICBIAS	Bias Voltage	V _{MICBIAS} + 200 mV	2.41	2.48	2.56	V		
			2.91	3.00	3.10			
I _{BIAS}	Maximum Current	Voltage drop < 50 mV		2		mA		
PSRR with	Power Supply	20Hz – 200 Hz	70			10		
respect to VDD_MIC	Rejection Ratio	>2 kHz	50			ав		
V _{NOISE}	Output Noise Voltage	VMICBIAS ≤ 2.2 V		5		μV_{RMS}		
	Capacitive Load	I _{BIAS} < 100 μA 100 μA < I _{BIAS} < 2 mA		100 200		pF		

Table 9: Input mixing units

	(MIC1_P/MIC1_N	/MIC2_P/MIC2_N/AUX_L/AUX_R	to AD	C_L/ADC_R		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VMAX	Full-scale input signal	Single-ended Differential MIC_1/2_AMP = AUX_L/R_AMP = MIXIN_L/R = 0dB		0.8 × VDD_A 1.6 × VDD_A		V _{PP}
RIN	Input resistance	MIC, single-ended AUX	12 6	15	18 40	kΩ
CIN	Input capacitance			1		pF
	Amplitude ripple	20Hz to 20 kHz	-0.5		+0.5	dB
	Programmable gain	MIC_1_AMP and MIC_2_AMP AUX_L_AMP and AUX_R_AMP MIXIN_L and MIXIN_R	-6 -54 -4.5		36 15 18	dB
	Programmable gain step size	MIC_1_AMP and MIC_2_AMP AUX_L_AMP and AUX_R_AMP MIXIN_L and MIXIN_R		6 1.5 1.5		dB
	Absolute gain accuracy	0 dB @ 1 kHz	-1.0		+1.0	dB
	Left/Right gain mismatch	20 Hz to 20 kHz	-0.1		+0.1	dB
	Gain step error	20 Hz to 20 kHz	-0.1		+0.1	dB
	Input noise level	Inputs connected to GND, A-weighted, input-referred, measured @ ADC output MIC_1/2_AMP = 24 dB AUX_L/R_AMP = 15 dB		5 6.5		μV _{RMS}
PSRR with	Power supply	Single-ended input 20Hz to 2 kHz 20 kHz	70 50			dB
respect to VDD_A	Power supply rejection ratio	Differential input 20Hz to 2 kHz 20 kHz	90 70			dB

Company confidential

8 Digital signal processing

Table 10: ADC/DAC Digital high-pass filter cut-off frequencies in music mode

Sampling Frequency (kHz)			sic Mode – Cut-Off Frequency (-3 dB) in Hz at F_CORNER / DAC_AUDIO_HPF_CORNER Register Settings				
Trequency (KHZ)	00	01	10	11			
8	0.3	0.7	1.3	2.7			
11.025	0.4	0.9	1.8	3.7			
12	0.5	1	2	4			
16	0.7	1.3	2.7	5.3			
24	1	2	4	8			
32	1.3	2.7	5.3	10.7			
44.1	1.8	3.7	7.3	14.7			
48	2	4	8	16			
88.2	3.6	7.4	14.6	29.4			
96	4	8	16	32			

Table 11: ADC/DAC Digital high-pass filter cut-off frequencies in voice mode

Sampling	ADC_\	Voice_HPF				dB) in Hz		tings
Frequency (kHz)	000	001	010	011	100	101	110	111
8	2.66	25	50	100	150	200	300	400
11.025	3.5	35	69	138	207	275	415	553
12	4	37.5	75	150	225	300	450	600
16	5	50	100	200	300	400	600	800

Table 12: DAC 5-Band equaliser frequencies

Sampling	Centre/	ntre/Cutoff frequency of 5-Band Equaliser (Hz)					
Frequency (kHz)	Band 1 Cutoff (Note 10)	Band 2 Centre	Band 3 Centre	Band 4 Centre	Band 5 Cutoff (Note 10)		
8	21	85	563	1151	2909		
11.025	29	117	776	2137	4009		
12	31	128	845	2326	4364		
16	41	90	441	2128	5840		
22.05	56	124	607	2933	8048		
24	61	135	664	3192	8759		
32	58	95	418	1731	6374		
44.1	80	132	577	2385	8784		
48	87	143	628	2596	9560		
88.2	N/A	N/A	N/A	N/A	N/A		
96	N/A	N/A	N/A	N/A	N/A		

Note 10 For equaliser bands 1 and 5 the cut-off frequency depends on the gain setting. The figures quoted in this table refer to the –1 dB point with the band gain set to –3 dB

Table 13: Beep generator

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
	Single-tone frequency		10		12000	Hz
	Single-tone frequency step			10		Hz
	Dual-tone modulation frequency A			697 770 852 941		Hz
	Dual-tone modulation frequency B			1209 1336 1477 1633		Hz
	Output signal level		-45		0	dBFS
	Output signal step size			3		dB
T _{ON} ,T _{OFF}	On/off pulse duration		10		2000	ms
	On/off pulse step size	$T_{ON/OFF}$ =10 – 200ms $T_{ON/OFF}$ =200 – 2000ms		10 50		ms
	On/off pulse repeat	continuous mode		1,2,4,8,16,32 ∞		cycles

Company confidential

9 Audio outputs

Table 14: Digital to Analogue Converter (DAC)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{MAX}	Full-scale output signal	Digital input level = 0 dBFS		1.6×VDD_A		V_{PP}
SNR	Signal to Noise Ratio	A-weighted		100		dB
THD+N	Total Harmonic Distortion Plus Noise	-1 dBFS 44.1 kHz slave mode		-90		dB
	Distortion Flus Noise	-1 dBFS 32 kHz PLL mode		-80		dB
	Channel separation			90		dB
B _{PASS}	Pass band				0.45×Fs	kHz
B _{STOP}	Stop band	Fs ≤ 48 kHz Fs = 88.2/96 kHz	0.56×Fs		7×Fs 3.5×Fs	kHz
	Pass band Ripple	Voice mode Music mode			±0.15 ±0.1	dB
	Stop band Attenuation	Voice mode Music mode	70 55			dB
	Group delay	Voice mode Music mode Fs = 88.2/96 kHz		4.8/Fs 18.5/Fs 9/Fs	650	μs
	Group delay variation	20Hz to 20 kHz			1	μs
	Group delay mismatch	Between left and right channels			2	μs
PSRR with respect to VDD_A	Power Supply Rejection Ratio	20Hz to 2 kHz 20 kHz	70 50			dB

Company confidential

Table 15: Class AB lineout amplifier / speaker

	Fro	m DAC_L/DAC_R to (SP_P, SP_N)	From DAC_L/DAC_R to (SP_P, SP_N)								
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit					
V_{MAX}	Full-scale output signal	No load		1.8×VD D_SP		V_{PP}					
		VDD_SP = 1.2 V THD < 10 % $R_{LOAD} = 8 \Omega$, 1 kHz		65		mW _{RMS}					
P_{MAX}	Maximum output power	VDD_SP = 1.5 V THD < 10 % $R_{LOAD} = 8 \Omega$, 1 kHz		115		mW _{RMS}					
		VDD_SP = 3.7 V THD < 10 % R_{LOAD} = 8 Ω , 1 kHz		745		mW _{RMS} mW _{RMS} Ω μH pF Hz					
		VDD_SP = 5.0 V THD < 10% $R_{LOAD} = 8 \Omega$, 1 kHz		1200		mW _{RMS}					
R _{LOAD}	Load impedance		6.4	8	1 200	μH					
	Frequency response	±0.5 dB	20		20k	Hz					
	Amplitude ripple	20Hz to 20 kHz	-0.5		0.5	dB					
	Programmable gain		-48		+15	dB					
	Mute attenuation			100		dB					
	Programmable gain step size			1		dB					
	Absolute gain accuracy	0 dB @ 1 kHz	-0.8		+0.8	dB					
	Gain step error	20 Hz to 20 kHz	-0.1		+0.1	dB					
SNR	Signal to noise ratio	A-weighted gain = 0 dB VDD_SP = 1.6 V		96.5		dB					
V _{NOISE}	Output Noise Level	Non A-weighted Gain ≤ -15 dB 20Hz to 20 kHz		6		μV					
THD+N	Total Harmonic	VDD_SP = 1.6 V -1 dBFS 44.1 kHz slave mode $R_{LOAD} > 2$ kΩ		-86		dB					
TTIDTIN	Distortion Plus Noise	$VDD_SP = 1.6 V$ $-1 dBFS$ $32 kHz PLL mode$ $R_{LOAD} > 2 kΩ$		-80		dB					
PSRR with respect to VDD_SP	Power Supply Rejection Ratio	20 Hz to 2 kHz 20 kHz	90 70			dB					

Datasheet Revision 3a 19 August 2014

Table 16: True Ground charge pump

HPCSP and HPCSN									
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit			
VDDCSP	Positive rail output	CP_MOD = 11 CP_MOD = 10		VDD_A VDD_A / 2		٧			
VDDCSN	Negative rail output	CP_MOD = 11 CP_MOD = 10		-VDD_A -(VDD_A / 2)		V			
	Flyback capacitor	One capacitor		1.0		μF			
	Reservoir capacitors	Two capacitors		1.0		μF			

Table 17: True Ground headphone amplifier

From DAC_L/DAC_R to (HP_L/HP_R)									
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit			
V_{MAX}	Full-scale Output Signal	No load		1.6×VDD_A		V_{PP}			
	DC output offset	HP Gain < -30 dB			100	μV			
		$VDD_A = 1.6 V$ THD < 0.1 % $R_{LOAD} = 16 Ω, 1 kHz$		L = 23 R = 23		mW_RM			
P_{MAX}	Maximum power per channel	$VDD_A = 1.8 V$ THD < 0.1 % $R_{LOAD} = 16 Ω, 1 kHz$		L = 29 R = 29		mW _{RM}			
		$VDD_A = 2.5 V$ THD < 0.1 % $R_{LOAD} = 16 Ω, 1 kHz$		L = 67 R = 67		mW _{RM}			
R _{LOAD} L _{LOAD} C _{LOAD}	Load Impedance		13	16	400 500	Ω μH pF			
	Frequency Response	±0.5 dB	20		20k	Hz			
	Amplitude Ripple	20Hz to 20 kHz	-0.5		+0.5	dB			
	Programmable Gain		-56		+6	dB			
	Mute Attenuation			70		dB			
	Programmable Gain Step Size			1.0		dB			
	Absolute Gain Accuracy	0 dB @ 1 kHz	-0.8		+0.8	dB			
	Input Gain L/R-Mismatch	20Hz to 20 kHz	-0.1		+0.1	dB			
	Input Gain Step Error	20Hz to 20 kHz	-0.1		+0.1	dB			
SNR	Signal to Noise Ratio	A-weighted gain = 0 dB VDD_A = 2.5 V VDD_A = 1.8 V		100 98		dB			
V _{NOISE}	Output Noise Level	20 to 20 kHz, non A-weighted gain < -20 dB			2.5	μVrms			
THD+N	Total Harmonic Distortion Plus Noise	$VDD_A = 1.6 V$ -5 dBFS $R_{LOAD} = 16 \Omega$		-87		dB			
PSRR with respect to VDD_A	Power Supply Rejection Ratio	20Hz to 2 kHz 20 kHz	70 50			dB			

Company confidential

11 Clock generation

Table 18: MCLK Input

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
	Input Amplitude	MCLK squarer enabled MCLK squarer disabled	0.3 0.9×VDD_IO		VDD_IO VDD_IO	>
	Input Impedance	DC impedance > 10 MΩ	300 0.5	1	2	Ω pF

12 Phase Locked Loop (PLL)

Table 19: PLL Mode

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
J _C J _A	MCLK Input Jitter	Cycle jitter (rms) Absolute jitter (rms)			50 100	ps
		Absolute litter (IIIIs)			100	ps
F _{IN}	Input frequency	Normal mode 32 kHz mode	2 (Note 11)	5 - 50 32.768	50	MHz kHz
	SRM Tracking Range	DAI slave mode WCLK frequency variation	-4		4	%
	SRM Tracking Rate	DAI slave mode WCLK drift rate			50	ppm/s

Note 11 See section 32 kHz PLL Mode (DAI Master) on page 56 for further details on using an MCLK frequency_between 2 MHz and 5 MHz

Company confidential

Table 20: Bypass Mode

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Jc	Input littor	Cycle jitter (rms)			TBD	ps
J_A	Input Jitter	Absolute jitter (rms)			TBD	ps
F _{IN}	Input frequency	Sample frequency: 11.025, 22.05, 44.1, 88.2 kHz 8, 12, 16, 24, 32, 48, 96 kHz		11.2896 12.288		MHz

13 Digital interfaces

Table 21: I/O Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IH}	SCL, SDA, Input High Voltage		0.7*VDD_IO			٧
V _{IL}	SCL, SDA, Input Low Voltage				0.3*VDD_IO	>
V _{IH}	MCLK, BCLK, WCLK, DATIN, DATOUT Input High Voltage		0.7*VDD_IO			V
V _{IL}	MCLK, BCLK, WCLK, DATIN, DATOUT Input Low Voltage				0.3*VDD_IO	V
V _{OL} @3mA	SDA Output Low Voltage				0.24	V

Figure 4: I2C Bus Timing

Table 22: I2C Control bus

Symbol	Parameter	Test Conditions (Note 12)	Min	Тур	Max	Unit
	Bus free time STOP to START		500			ns
	Bus line capacitive load				150	pF
	Standa	rd/Fast Mode				
	SCL clock frequency		0		1000	kHz
	Start condition setup time		260			ns
STH	Start condition hold time		260			ns
CLKL	SCL low time		500			ns
CLKH	SCL high time		260			ns
	SCL rise/fall time	Input requirement			1000	ns
	SDA rise/fall time	Input requirement			300	ns
DST	SDA setup time		50			ns
DHT	SDA hold time		0			ns
TSS	Stop condition setup time		260			ns
	High-	Speed Mode				
	SCL clock frequency		0		3400	kHz
	Start condition setup time		160			ns
STH	Start condition hold time		160			ns
CLKL	SCL low time		160			ns
CLKH	SCL high time		60			ns
	SCL rise/fall time	Input requirement			160	ns

Company confidential

	SDA rise/fall time	Input requirement		160	ns
DST	SDA setup time		10		ns
DHT	SDA hold time		0		ns
TSS	Stop condition setup time		160		ns

Note 12 VDD_IO = 1.8 V

Figure 5 Digital audio interface timing diagram

Note 13 Diagram shown is valid for all modes except DSP. For DSP mode the BCLK signal is inverted

Table 23: Digital Audio Interface Timing (I2S/DSP in Master/Slave Mode)

Symbol	Parameter	Test Conditions (Note 14)	Min	Тур	Max	Unit
	Input impedance	DC impedance	300			Ω
	input impedance	> 10MΩ	1.0		2.5	pF
Т	BCLK period		75			ns
t _r	BCLK rise time				8	ns
t _f	BLCK fall time				8	ns
t _{hC}	BCLK high period		40 %		60 %	Т
t _{IC}	BCLK low period		40 %		60 %	Т
t _{dCW}	BCLK to WCLK delay		-30 %		+30 %	Т
t _{dCD}	BCLK to DATOUT delay		-30 %		+30 %	Т
t _{hW}	WCLK high time	DSP mode	100 %			Т

Company confidential

		Non-DSP mode	Word length (Note 15)			Т
t _{IW}		DSP mode	100 %			Т
	WCLK low time	Non-DSP mode	Word length (Note 16)			Т
t _{sW}	WCLK setup time	Slave mode	7			ns
t _{hW}	WCLK hold time	Slave mode	2			ns
t _{sD}	DATIN setup time		7			ns
t _{hD}	DATIN hold time		2			ns
t _{dWD}	DATOUT to WCLK delay		DATOUT is synchronised to BCLK			

Note 14 VDD_IO = 1.8 V

Note 15 WCLK must be high for at least the word length number of BCLK periods

Note 16 WCLK must be low for at least the word length number of BCLK periods

13.1 Codec Start-Up Time

After the audio system controller has been enabled using SYSTEM_MODES_INPUT and SYSTEM_MODES_OUTPUT, the startup times for the various codec paths are as specified below:

Table 24 Codec start-up times

Source	Output	Comment	Min	Тур	Max	Unit
	VMID	VMID > 90 % of final value 1µF capacitor		25		ms
Any analogue input or DAC_L/R	HP_L HP_R	PLL bypass or PLL normal mode	200	200		ms
Any analogue input or DAC_L/R	HP_L HP_R	PLL SRM or PLL 32 kHz mode		500		ms
Any analogue input or DAC_L/R	SP_P SP_N	PLL bypass or PLL normal mode		250		ms
Any analogue input	ADC_L ADC_R	PLL bypass or PLL normal mode		200		ms
Any analogue input	ADC_L ADC_R	PLL SRM or PLL 32 kHz mode		600		ms

Company confidential

14 Functional description

14.1 General description

DA7212 is an ultra-low-power audio CODEC with true ground headphone drivers, mixing capability, and digital audio enhancement. It offers HiFi audio quality with class-leading power consumption for portable media and embedded applications.

Featuring a high efficiency headphone amplifier and minimum supply voltage of 1.6 V, the ultra-low 3.1 mW quiescent power consumption extends music playback time for battery-operated equipment.

Control and data interfaces are supplied from a dedicated VDD_IO rail. For compatibility with higher I/O levels, an extended voltage range up to 3.6 V can be selected.

The integrated PLL uses a fractional-N architecture that supports frequencies from 2 MHz to 50 MHz. Standard mobile phone/USB system clock frequencies are supported, and audio data synchronisation is supported even when no master clock is available.

The DA7212 has a stereo pair of single-ended line inputs as well as two microphone inputs, each of which can be configured as single-ended or differential. Both line and microphone signals can be routed to the ADC or directly to the output mixers via a bypass path. In addition, the DA7212 supports both single and dual-channel digital microphone inputs by routing the digital signals directly to the ADC digital filters.

Input and output mixers with stereo-to-mono conversion also support mono configurations such as single speaker outputs.

Three output drivers are available in the output stage of the DA7212. A stereo true-ground amplifier directly drives standard 3-wire 16 ohm headphones while a differential mono speaker amplifer is capable of driving 1.2W into 8 ohms.

Audio enhancement functions are performed digitally including programmable high-pass filtering, 5-band EQ, noise-gate and an AGC with configurable attack and decay parameters.

The multislot I2S/PCM Digital Audio Interface (DAI) supports all common sample rates between 8 kHz and 96 kHz in master or slave modes.

The CODEC register space can be accessed via the I2C interface of DA7212 on the default 7-bit address 0x1A.

DA7212 implements a unique Smart Controller that enables easy configuration of the Codec for different application scenarios, thereby reducing the number of register writes needed for each case. The Smart Controller runs automatically once enabled, and is optimised to allow pop-free and click-free power-up and power-down operation.

14.2 Input Signal Chain

The DA7212 has a stereo pair of single-ended line inputs as well as two microphone inputs that can each be configured as single-ended or differential. Both line and microphone signals can be routed to the ADC or directly to the output mixers via a bypass path. In addition, the DA7212 supports both single and dual channel digital microphone inputs by routing the digital signals directly to the ADC digital filters. The input routing paths and input amplifier gain ranges are illustrated in Figure 5.

Company confidential

Figure 6: Audio input routing and gain ranges

14.3 Microphone Inputs

The DA7212 includes two pairs of analogue microphone inputs that can be connected in three ways:

- fully differential mode for improved common mode noise rejection
- single ended or pseudo-differential mode by connecting MIC1_N or MIC2_N to GND (see Figure 7). The microphone source is specified using MIC_1_AMP_IN_SEL and MIC_2_AMP_IN_SEL
- single ended or pseudo-differential mode by connecting MIC1_P or MIC2_P to GND (see Figure 7). The microphone source is specified using MIC_1_AMP_IN_SEL and MIC_2_AMP_IN_SEL

The microphone PGAs are enabled by the MIC_1_AMP_EN / MIC_2_AMP_EN controls and can be muted via MIC_1_AMP_MUTE_EN / MIC_2_AMP_MUTE_EN. For maximum flexibility, each microphone channel includes an individual gain setting (MIC_1_AMP_GAIN / MIC_2_AMP_GAIN controls) that has a range of -6 dB to +36 dB in 6 dB steps. The currently active gain setting of each microphone is stored in MIC_1_GAIN_STATUS and MIC_2_GAIN_STATUS.

A maximum analogue gain from microphone to ADC input of +54 dB with a resolution of 1.5 dB can be selected.

Datasheet Revision 3a 19 August 2014

Company confidential

Figure 7: Typical microphone application for MIC1 (MIC2 is similar)

Standard electret microphones can be supplied from an embedded microphone bias regulator, enabled using the MICBIAS2_EN control bit. Two separate outputs are available on either the MICBIAS1 pin or the MICBIAS2 pin. These are enabled using the MICBIAS2_EN and MICBIAS1_EN controls. The voltage on the MICBIAS pins is set to 1.6 V, 2.2 V, 2.5 V or 3.0 V by the MICBIAS2_LEVEL and MICBIAS1_LEVEL controls. The microphone bias generates an ultra-low-noise voltage to feed several electret microphones with up to 2mA.

14.4 Digital microphones

DA7212 implements a digital microphone interface via a clock output (shared pin with MIC1_P) and a serial data input (shared pin with MIC1_N). The serial data is a sigma delta sampled bitstream. Modulators up to 3rd Order are supported.

MICBIAS1 can be used to power the digital microphone, but it must be enabled because it is MICBIAS1 that supplies the digital microphone pins.

The clock and data pins are shared with two analogue microphone inputs. This allows DA7212 to record from single or dual channel digital microphones, or from conventional mono/stereo analogue microphones.

The clock frequency can be selected to be either 1.5 MHz or 3 MHz by using DMIC_CLK_RATE control.

Single channel and dual channel digital microphone modules are supported. The dual channel modules change the output data on both the rising and the falling edges of the clock, as illustrated in Figure 7. In this case DMIC_SAMPLEPHASE must be set to zero in order to enable the sample detection at the edges of the clock. Each DMIC input is enabled via DMIC_L_EN / DMIC_R_EN and is associated with a clock edge via DMIC_DATA_SEL control.

A digital microphone requires a decimation filter to reconstruct the signal at the required sampling rate. The ADC decimation filters are re-used for this purpose, so either digital microphones or analogue sources may be used for recording at any one time.

Company confidential

Figure 8: Digital microphone timing example

14.5 Auxiliary inputs

Standard analogue sources (for example FM radio) are supported via the AUX stereo line inputs. Auxiliary inputs are enabled by AUX_L_AMP_EN / AUX_R_AMP_EN. They can be summed with each other, and with the microphone paths, which enables flexible audio mixing.

Each channel includes individual gain settings in 1.5 dB steps from -54 dB to +15 dB using AUX_L_AMP_GAIN and AUX_R_AMP_GAIN. The auxiliary amplifiers can be muted by asserting AUX L AMP MUTE EN and AUX R AMP MUTE EN.

Changes in gain can be synchronised with zero-crossing by asserting the AUX_L_AMP_ZC_EN and AUX_R_AMP_ZC_EN bits. If no zero-crossing is detected within approximately 85ms, the gain change is applied unconditionally. The sensitivity of the zero-cross detector is maximised by automatic selection of whether the zero-cross detection is performed at the input to the AUX amplifier, or the output from it. This is configured using the AUX_L_AMP_ZC_SEL and AUX_R_AMP_ZC_SEL controls.

Smooth changes in gain are enabled by asserting the AUX_L_AMP_RAMP_EN and AUX_R_AMP_EN controls. If the ramp controls are asserted, the rate of ramping is specified by the GAIN_RAMP_RATE control. Any zero-cross activation is over-ridden if gain ramping is set.

The currently active AUX_L_GAIN and AUX_R_GAIN settings are stored in the AUX L GAIN STATUS and AUX R GAIN STATUS controls.

NOTE: When implementing fade-in and fade-out effects on the record path, it is recommended that this is done through ADC L and ADC_R. When implementing fade-in and fade-out effects on the output path, this should be done using the HP L, HP R and LINE amplifiers.

14.6 Input mixers

The DA7212 has two second level input amplifiers (MIXIN_L and MIXIN_R) that mix the analogue inputs as well as providing up to 18 dB extra gain. They are enabled by asserting the controls MIXIN_L_AMP_EN and MIXIN_R_AMP_EN. Gain can be controlled in 1.5 dB steps from 4.5 dB to +18 dB using the MIXIN_L_GAIN and MIXIN_R_GAIN register bits.

Zero-crossing can be enabled by asserting MIXIN_L_AMP_ZC_EN or MIXIN_R_AMP_ZC_EN. If no zero crossing is detected within approximately 85ms, the gain change is applied unconditionally. Smooth changes in gain are performed by asserting the MIXIN_L_AMP_RAMP_EN and MIXIN_R_AMP_RAMP_EN controls. If the ramp controls are asserted, the rate of ramping is specified by the GAIN_RAMP_RATE control. Any zero-cross activation is over-ridden if gain ramping is set.

Datasheet Revision 3a 19 August 2014

Company confidential

The left mixer accepts inputs from AUX_L_AMP and from either or both of the microphone PGAs (MIC_1_AMP and MIC_2_AMP), as well as from the right mixer MIXIN_R for stereo-to-mono conversion. Similarly the right mixer accepts inputs from AUX_R_AMP and from either or both of the microphone PGAs (MIC_1_AMP and MIC_2_AMP), as well as from the left mixer MIXIN_L for stereo-to-mono conversion. Input channel selection is determined by MIXIN_L_MIX_SELECT and MIXIN_R MIX_SELECT.

The mixers can be muted using the MIXIN_L_AMP_MUTE_EN and MIXIN_R_AMP_MUTE_EN controls. The currently active gain settings are stored in MIXIN_L_AMP_GAIN_STATUS and MIXIN_R_AMP_GAIN_STATUS registers.

14.7 Stereo audio ADC

DA7212 includes a low power 24-bit high quality stereo audio ADC that supports sampling rates from 8 kHz to 96 kHz. The sample rate is specified using the SR register.

The stereo ADC can be enabled and disabled on either channel using ADC_L_EN and ADC_R_EN, thereby providing the opportunity to save power during mono operation.

The ADC channels offer a configurable digital gain from 83.25 dB to +12 dB in 0.75 dB steps after the digital conversion. Individual gain settings can be programmed via controls ADC_L_DIGITAL_GAIN and ADC_R_DIGITAL_GAIN. The currently active gain settings are stored in ADC_L_GAIN_STATUS and ADC_R_GAIN_STATUS registers.

Muting, and the ramping of digital gain changes, can be controlled using the dedicated ADC_L_CTRL and ADC_R_CTRL registers. If the ramping is enabled using the control bits ADC_L_RAMP_EN and ADC_R_RAMP EN, the rate of the ramping is controlled using GAIN RAMP RATE.

To enable saturation-free signals with maximum signal to noise ratios, the input levels of the ADC are adjusted with second level PGAs that are enabled with controls MIXIN_L_AMP_EN and MIXIN_R_AMP_EN. The signal routing and mix are configured using the MIXIN_L_SELECT and MIXIN_R_SELECT registers.

On the dedicated MIXIN_L_CTRL and MIXIN_R_CTRL registers, settings such as gain changes at zero-cross (for smooth volume changes), ramping of gain changes at signal zero cross ramping of gain changes, and mute can be configured. If the ramping is enabled using the control bits MIXIN_L_AMP_RAMP_EN and MIXIN_R_AMP_RAMP_EN, the speed of the ramp can be configured on GAIN_RAMP_RATE.

14.8 Automatic Level Control (ALC)

For improved sound recordings of signals with a large volume range, the DA7212 offers a fully-configurable automatic recording level control (ALC) for microphone inputs. This is enabled via the ALC_L_EN and ALC_R_EN controls, and can be enabled independently on either left or right channel. It is recommended that the ALC is only enabled in stereo as this applies the same gain to both channels and so protects the pan of stereo signals.

The ALC monitors the digital signal after the ADC and adjusts the microphones' analogue and digital gain to maintain a constant recording level, whatever the analogue input signal level.

Operation of ALC is illustrated in Figure 9. When the input signal volume is high, the ALC system will reduce the overall gain until the output volume is below the specified maximum value. When the input signal volume is low, the ALC will increase the gain until the output volume increases above the specified minimum value. If the output signal is within the desired signal level (between the specified minimum and maximum levels), the ALC does nothing.

The maximum and the minimum thresholds that trigger a gain change of the ALC are programmed by the ALC_THRESHOLD_MAX and ALC_THRESHOLD_MIN controls.

Company confidential

Figure 9: Principle of Operation of the ALC

The total gain is made up of an analogue gain, which is applied to the microphone PGAs, and a digital gain, which is implemented in the filtering stage. The ALC block monitors and controls the gain of the microphone PGAs and the ADC. Note that although the ALC is controlling the gain, it does not modify any of the registers MIC_1_AMP_GAIN, MIC_2_AMP_GAIN, ADC_L_DIGITAL_GAIN and ADC_R_DIGITAL_GAIN. These registers are ignored while the ALC is in operation.

The minimum and maximum levels of digital gain that can be applied by the ALC are controlled using ALC_ATTEN_MAX and ALC_GAIN_MAX.

Similarly the minimum and maximum levels of analogue gain are controlled by ALC_ANA_GAIN_MIN and ALC_ANA_GAIN_MAX. The rates at which the gain is changed are defined by the attack and decay rates in register ALC_CTRL2. When attacking, the gain decreases with ALC_ATTACK rate. When decaying, the gain increases with ALC_RELEASE rate.

The hold-time is defined by ALC_HOLD in the ALC_CTRL3 register. This controls the length of time that the system maintains the current gain level before starting to decay. This prevents unwanted changes in the recording level when there is a short-lived 'spike' in input volume, for example when recording speech.

Typically the attack rate should be much faster than the decay rate, as it is necessary to reduce rapidly increasing waveforms as quickly as possible, whereas fast release times will result in the signal appearing to 'pump'. The ALC also has an anti-clipping function that applies a very fast attack rate when the input signal is close to full-range. This prevents clipping of the signal by reducing the signal gain at a faster rate than would normally be applied. The anti-clip function is enabled using ALC_ANTICLIP_EN, and the threshold above which it is activated is set in the range 1/128 full-scale to full-scale using ALC_ANTICLIP_LEVEL.

A recording Noise-Gate feature is provided to avoid increasing the gain of the channel when there is no signal, or when only a noise signal is present. Boosting a signal on which only noise is present is known as 'noise pumping'. The Noise-Gate prevents this. Whenever the level of the input signal drops below the noise threshold configured in ALC_NOISE, the channel gain remains constant.

Company confidential

Figure 10: Attack, Delay and Hold parameters

14.9 Beep Generator and Controller

The DA7212 has two sine wave generators (SWG). Each SWG can generate an audio frequency from 10Hz to 12 kHz with a 12.288 MHz system clock (or from 10Hz to 11.02 kHz with a 11.288 MHz system clock). The output frequency of each SWG can be specified with a 10Hz step size using the FREQ1_L and FREQ1_U registers for SWG 1, and FREQ2_L and FREQ2_U for SWG 2.

For all Output Frequency calculations,

FREQ[15:8] = FREQn_U FREQ[7:0] = FREQn_L

For sample rates (SR) = 8/12/16/24/32/48/96 kHz,

 $FREQ = (2^16 * (f_{Hz}/12)) -1$

For sample rates (SR) = 11.025/22.05/44.4/88.2 kHz,

 $FREQ = (2^16 * (f_{Hz}/11.025)) -1$

The SWGs have a programmable gain that can be set in 3 dB steps from 0 dB to 45 dB using the GAIN register field. The gain setting applies equally to both SWGs.

The beep generator generates beeps that can be a single tone from either SWG (register SWG_SEL = 1 or SWG_SEL = 2), or a mix of two tones from the two SWGs (register SWG_SEL = 0 or SWG_SEL = 3). The beep generator can also output standard DTMF keypad values (listed in Table 4) by asserting the DTMF_EN register bit.

Note that output from the beep generator is mixed into the DAI to DAC path. This means that if the source path for DAC_L or DAC_R is selected to be ADC_L or ADC_R (registers 0x2A[5:4] and 0x2A[1:0]), the beep generator is omitted from the signal path.

Company confidential

Table 25: DTMF Keypad frequencies

Frequency 1	Frequency 2 (Hz)					
(Hz)	697	770	852	941		
1209	1	2	3	А		
1336	4	5	6	В		
1477	7	8	9	С		
1633	*	0	#	D		

The beep tone On and Off periods are specified using the BEEP_ON_PER and BEEP_OFF_PER register fields. Beep-On and Beep-Off periods can be configured in 10ms steps from 10ms to 200ms, and in 50ms steps from 250ms to 2000ms. The Beep-On period can also be configured as continuous. The number of beep cycles is configured using the BEEP_CYCLES register field.

The tone generator is started by asserting the START_STOPN register bit, and is halted by clearing it. If START_STOPN is cleared, beep generation terminates on completion of the current beep-cycle, or at the next zero-cross if in continuous mode.

The START_STOPN register bit is cleared automatically once the programmed number of beeps has completed. In continuous-beep mode (BEEP_CYCLES = 6 or 7, or BEEP_ON_PER = 63), the tone generator is switched off by clearing START_STOPN.

14.10 Output Signal Chain

The DA7212 has two audio outputs. These are a stereo Class-G headphone driver, and a mono Class-AB speaker driver. Two output mixers allow mixing of signals from the DACs and the analogue bypass paths, with output going to any or all of the three output PGAs. These output paths are illustrated in Figure 11.

Company confidential

Figure 11: Analogue output signal paths and gain ranges

14.11 Stereo Audio DAC

The integrated stereo DAC is suitable for high quality audio playback by MP3 players and by portable multi media players of all kinds.

The left and right channels of the DAC can be individually enabled using controls DAC_L_EN and DAC_R_EN.

Each channel includes individual gain settings that are controllable in 0.75 dB steps from 78 dB to 12 dB using DAC_L_DIGITAL_GAIN and DAC_R_DIGITAL_GAIN. The currently active gain settings are stored in DAC_L_GAIN_STATUS and DAC_R_GAIN_STATUS registers.

On the dedicated DAC_L_CTRL and DAC_R_CTRL registers, settings such as mute and ramping of gain changes can be configured. If ramping is enabled using the control bits DAC_L_RAMP_EN or DAC_R_RAMP_EN, the rate of the ramping can be controlled using GAIN_RAMP_RATE.

A digital high-pass filter for each DAC channel is implemented with a 3 dB cut-off frequency controlled by DAC_AUDIO_HPF_CORNER. The high-pass filter is enabled by control DAC_HPF_EN. After Reset, the high pass filters for both channels are enabled by default.

14.12 Output Mixer

For playback, the output mixer amplifier is enabled using MIXOUT_L_AMP_EN and MIXOUT_R_AMP_EN. The audio signal can be mixed from all sources, and can be output simultaneously to both headphones and speakers. The mixing takes place only after asserting the control MIXOUT_L_MIX_EN and MIXOUT_R_MIX_EN.

The output mixer is configured using register MIXOUT_L_SELECT and MIXOUT_R_SELECT. This

Company confidential

output-mixer control is independent of the input path, so recording of one audio signal while listening to another signal such as FM Radio or an MP3 file is possible. The playback sound can be mixed with background signals or with inverted background microphone signals (side tone) to enable a basic headphone environmental noise reduction, or to compensate for unwanted damping of environmental sound while listening with sealed headphones. Playback signals coming from the AUX or microphone input channels can be individually inverted before being mixed out to the left and right channel (see MIXOUT_L_SELECT and MIXOUT_R_SELECT registers).

A stereo to mono conversion can be implemented by using either the input or the output mixer. This allows direct feeding of high power speaker amplifiers and other mono devices with the complete audio content.

14.13 Headphone Amplifier

The headphone Class G amplifiers offer 'true ground' technology, which allows cost and space optimisation by removing the need for bulky headphone-coupling capacitors. This also enhances the bass performance, which is typically reduced by conventional AC-coupling. In comparison to alternative approaches like 'phantom ground', 'true ground' technology generates real ground-centred output signals, which provide common GND as required for Mini-USB connectors and CEA 936 A-compliant interfaces. An embedded offset compensation circuit suppresses click and pop noise during start-up and dynamic supply voltage adjustments.

Integrated short circuit protection enables a 'resistors free' connection to a standard audio jack, to achieve a maximum output power of up to 67 mW per channel (referenced to VDD_A). Headphone load impedance is typically 16 Ω , but the paths can also be used as volume controlled lineout signals for external speaker amplifiers and audio devices. The headphone Class G amplifiers are supplied from the positive VDD_A rail via a capacitive charge pump that generates the negative rail required for 'true ground' mode. For improved power efficiency, the headphone headphone supply voltage levels are dynamically adjusted between \pm VDD_A and \pm VDD_A/2 to match the levels of the left and right headphone signals.

The headphone amplifiers are enabled with controls HP_L_AMP_EN and HP_R_AMP_EN. For optimum pop and click performance when switching the amplifier On and Off, the headphone amplifier provides a high impedance mode that can be enabled via HP_L_AMP_OE / HP_R_AMP_OE.

Balance is controlled by programming the left and right gains separately. The gain of each headphone channel can be programmed independently in steps of 1.0 dB from +6 dB down to – 57 dB using controls HP L AMP GAIN / HP R AMP GAIN.

Settings such as mute, gain changes at signal zero cross (for smooth volume changes), and the ramping of gain changes are controlled using the dedicated HP_L_CTRL and HP_R_CTRL registers. If the ramping is enabled using the control bits HP_L_AMP_RAMP_EN and HP_R_AMP_RAMP_EN, the rate of the ramping is controlled using GAIN_RAMP_RATE.

For smooth volume changes, the gain update can be synchronised to audio signal zero-crossings using HP_L_AMP_ZC_EN and HP_R_AMP_ZC_EN. If no zero crossing is detected within approximately 85ms, the gain change is applied unconditionally. The left and right channels are synchronised independently.

14.14 Speaker Amplifier

The differential lineout channel can be used to directly drive mini speakers with a nominal impedance $\geq 8~\Omega$. For highest efficiency and speaker output power, a direct supply from the battery is supported via a separate supply pin. This amplifier offers individually programmable volume control in 1.0 dB steps from +15 dB to 48 dB using LINE_AMP_GAIN.

On the dedicated LINE_CTRL register, settings such as mute, tri-state output mode and ramping of gain changes can be configured. If ramping is enabled via control bit LINE_AMP_RAMP_EN, the rate of the ramping can be configured on GAIN_RAMP_RATE.

The differential speaker amplifier can be used to drive mini-speakers with an impedance of 8 Ω or

Company confidential

higher. A direct supply from the battery is provided by the VDD_SP pin. This allows maximum speaker power, and a wide operating range from 5.0 V down to 1.0 V.

The mono lineout/speaker amplifier is enabled by asserting LINE_AMP_EN. Gain can be set in the range -48 dB to +15 dB in 1 dB steps using the LINE_AMP_GAIN control. The speaker amplifier can be muted by asserting LINE_AMP_MUTE_EN.

Smooth updates to line/speaker amplifer gain can be made by asserting LINE_AMP_RAMP_EN. When LINE_AMP_RAMP_EN is asserted, gain updates are made by ramping sequentially through all intermediate gain values.

14.15 Charge Pump Control

The charge pump is enabled by asserting CP_EN in the CP_CTRL (0x47) register. Once enabled, the charge pump can be controlled manually or automatically. When under manual control (CP_MCHANGE = 00), the output voltage level is directly determined by CP_MOD.

The amount of charge stored, and therefore the voltage generated, by the charge pump is controlled by the charge pump controller (CP_CTRL register). As the power consumed by devices such as amplifiers is proportional to Voltage2, significant power savings are available by matching the charge pump's output with the system's power requirement.

Under automatic control, there are three modes of operation that are determined by the CP_MCHANGE setting. All four modes (one manual and three automatic) are described in Table 5.

Table 26: Charge pump output voltage control

Charge Pump Tracking Mode CP_MCHANGE	Charge Pump Output Voltage	Details
00	Manual	The charge pump's output voltage is determined by the settings of CP_MOD.
01	Voltage level depends on the programmed gain setting	The charge pump controller monitors the PGA volume settings, and generates the minimum voltage that is high enough to drive a full-scale signal at the current gain level.
10	Voltage level depends on the DAC signal envelope	The charge pump controller monitors the DAC signal, and generates a voltage that is high enough to drive a full-scale output at the current DAC signal volume level
11	Voltage level depends on the signal magnitude and the programmed gain setting	The charge pump monitors both the programmed volume settings and the actual signal size, and generates the appropriate output voltage. This is the most power-efficient mode of operation.

When CP_MCHANGE is set to 10 (tracking DAC signal size, described in Table 26) or CP_MCHANGE is set to 11 (tracking the output signal size), the charge pump switches its supply between the VDD_A rail and the VDD_A/2 rail depending on its power requirements. When low output voltages are needed, the charge pump saves power by using the the lower-voltage VDD_A/2 rail.

The switching point between using the VDD_A rail and the VDD_A/2 rail is determined by the CP_THRESH_VDD2 register setting. The switching points determined by CP_THRESH_VDD2 vary between the two CP_MCHANGE modes, and are summarised in Table 27 and Table 28.

Company confidential

Note 17 When the charge pump output voltage is controlled manually (CP_MCHANGE = 00) or when it is tracking the PGA gain settings (CP_MCHANGE = 01), the charge pump always takes its supply from VDD_A

Table 27: CP_THRESH_VDD2 Settings in DAC_VOL mode (CP_MCHANGE = 10)

CP_THRESH_VDD2 Setting	Approximate Switching Point	Notes
0x01	-30 dBFS	Do not use. Very power-inefficient as nearly always VDD/1
0x03	-24 dBFS	Not recommended. Very power-inefficient as nearly always VDD/1
0x07	-18 dBFS Good to use but not power efficient	
0x0E	-12 dBFS	Good to use
0x10	-10 dBFS	Recommended setting
0x3F - 0x13		Not recommended

Note 18 Full Scale (FS) = 1.6 * VDD_A

Table 28: CP_THRESH_VDD2 Settings in Signal Size mode (CP_MCHANGE = 11)

CP_THRESH_VDD2 Setting	Approximate Switching Point	Notes
0x00	Never	Not recommended. Always VDD/1 mode
0x01	Never	Not recommended. Always VDD/1 mode
0x02	-32 dBFS	Not recommended. Very power-inefficient as nearly always VDD/1
0x03	-24 dBFS	Good to use
0x04	-20 dBFS	Good to use
0x05	-17 dBFS	Good to use
0x06	-15 dBFS	Recommended setting
0x07	-13 dBFS	Good to use
0x08	-12 dBFS	Good to use
0x09	-11 dBFS	Good to use
0x0A	-10 dBFS	Good to use
0x0B	-9 dBFS	Not recommended. VDD/2 begins to clip
0x0C	Never	Not recommended. Always VDD/2 mode
0x0D	Never	Not recommended. Always VDD/2 mode
0x0E	Never	Not recommended. Always VDD/2 mode
0x0F	Never	Not recommended. Always VDD/2 mode

Note 19 Full Scale (FS) = 1.6 * VDD_A

Company confidential

14.16 Charge pump clock control

The charge pump on DA7212 requires two clocks (cp_clk and cp_clk2). The cp_clk2 clock runs at a slower frequency than cp_clk. It is cp_clk that actually clocks the charge pump.

To prevent the clocks stopping in an unknown state, there are always two pulses on cp_clk for every one pulse of cp_clk2. This is illustrated in Figure 12.

Figure 12: Input (clk) and Output Clocks (cp_clk and cp_clk2) at CP_FCONTROL = 010

When CP_ANALOGUE_LVL = 00 ('No feedback' – see Section 14.17 for more details), the charge pump's nominal clock rate cp_clk is controlled by CP_FCONTROL, providing a range from 1 MHz (CP_FCONTROL = 000) down to 63 kHz (CP_FCONTROL = 100). With the slower clock rates, quiescent power consumption is lower but the trade-off is a reduced load current, and slower changes to the voltage.

Section 14.17 describes how quiescent power and load current can be varied according to demand.

14.17 Boosting the charge pump using demand feedback control

When CP_ANALOGUE_LVL = 00, the clock frequency for the charge pump is under direct control of the registers as described in Section 0.

When CP_ANALOGUE_LVL = 01 or 10 (11 is reserved and is not used), the demands on the charge pump output are tracked, and the clock frequency is boosted when necessary to give the required output current.

This gives the benefit of a very low (or even zero) quiescent current when the charge pump is not required combined with a maximum output when that is required.

14.17.1 Tracking the demands on the charge pump output

There are three points at which the demands on the charge pump can be tracked. These tracking points are determined by CP_MCHANGE.

14.17.1.1 **CP_MCHANGE** = 00 (manual mode)

If CP_MCHANGE = 00, the voltage level is controlled by the CP_MOD setting.

14.17.1.2 CP_MCHANGE = 01 (tracking the PGA gain setting)

If CP_MCHANGE = 01, it is the PGA gain setting that is tracked, and which provides the feedback to boost the clock frequency when necessary.

14.17.1.3 CP_MCHANGE = 10 (tracking the DAC signal setting)

If CP_MCHANGE = 01, it is the size of the DAC signal that is tracked, and which provides the feedback to boost the clock frequency when necessary.

14.17.1.4 CP_MCHANGE = 11 (tracking the output signal magnitude)

If CP_MCHANGE = 01, it is the magnitude of the output signal that is tracked, and which provides

Company confidential

the feedback to boost the clock frequency when necessary.

14.17.2 Specifying clock frequencies when tracking the charge pump output

CP_FCONTROL specifies the frequency of the charge pump clock. The frequency is fixed and is set manually if CP_MCHANGE = 00 (see section 14.17.1.1). The available frequency settings are 1 MHz (the absolute maximum), and 500, 250, 125 and 63 kHz.

If CP_MCHANGE not = 00, the charge pump load is monitored and the clock frequency adjusted accordingly to allow the charge pump to supply the required current. Clock frequency varies depending on the charge pump requirements, and the CP_FCONTROL settings specify the minimum frequency at which the clock will run. The maximum frequency is always 1 MHz.

In addition to the CP_FCONTROL settings outlined above, and which specify the minimum clock frequency, there is an extra setting of CP_FCLOCK = 101 which has no minimum frequency. The clock frequency is under the complete control of the tracking and feedback mechanism. The frequency can vary from 0 Hz when there is no load on the charge pump and no component leakage, up to the maximum of 1 MHz.

These settings are all summarised in Table 29.

14.17.3 Controlling the boost of the charge pump clock-frequency

The manner in which the charge pump clock-frequency is boosted is controlled by CP_ANALOGUE_LVL. If CP_ANALOGUE_LVL = 00, there is no feedback to the clock generator, and the frequency remains fixed at the frequency specified by CP_FCONTROL.

14.17.3.1 CP_ANALOGUE_LVL = 01

If CP_ANALOGUE_LVL = 01, the clock frequency is boosted from the base frequency specified in CP_FCONTROL by the insertion of extra clock pulses in to the clock signal as and when required. When no extra pulses are being inserted, the clock frequency remains fixed at the value specified by CP_FCONTROL. The extra clock pulses are inserted in to the clock signal as needed as long as the clock frequency does not exceed its maximum of 1 MHz. These settings are all summarised in Table 29.

.

14.17.3.2 CP ANALOGUE LVL = 10

If CP_ANALOGUE_LVL = 10, instead of boosting the clock frequency by inserting extra clock pulses as described in section 14.17.3.1, the clock is restarted. By restarting the clock before the next pulse is due, the frequency is effectively increased. The clock frequency can be increased from the minimum frequency specified in CP_FCONTROL, up to the maximum frequency of 1 MHz. These settings are all summarised in Table 29.

Company confidential

Table 29: Charge pump current load control

		CP_ANALOGUE_LVL (0x47[1:0])				
		00 No current boost	01 Variable current boost	10 Variable current boost	11	
	000	1 MHz	1 MHz	1 MHz	Reserved	
	001	500 kHz	From 500 kHz to1MHz depending on demand Note 20	From 500 kHz to1MHz depending on demand Note 20	Reserved	
	010	250 kHz	From 250 kHz to1MHz depending on demand Note 20	From 250 kHz to1MHz depending on demand Note 20	Reserved	
CP_FCONTROL (0x96[2:0])	011	125 kHz	From 125 kHz to1MHz depending on demand Note 20	From 125 kHz to1MHz depending on demand Note 20	Reserved	
	100	63 kHz	From 63 kHz to1MHz depending on demand Note 20	From 63 kHz to1MHz depending on demand Note 20	Reserved	
	101	Reserved	0 Hz to 1MHz depending on demand Note 20	0 Hz to 1MHz depending on demand Note 20	Reserved	
	110	Reserved	Reserved	Reserved	Reserved	
	111	Reserved	Reserved	Reserved	Reserved	

Note 20 Power demand is determined by the PGA gain level if CP_MCHANGE = 01, by the DAC signal level if CP_MCHANGE = 10, or by the output signal level If CP_MCHANGE = 11

14.18 Other Charge Pump Controls

When a higher charge pump output voltage is needed, the charge pump increases its output as the fastest rate possible given the controls and settings in that currently in place. Once the higher output voltage is no longer needed, the charge pump controller waits for a period determined by the CP_TAU_DELAY setting before reducing the output voltage. For best performance Dialog recommend setting CP_TAU_DELAY to 16ms or greater.

The charge pump limiter is controlled by CP_ON_OFF. The limiter restricts the current flow to the charge pump's capacitors at start-up.

CP_SMALL_SWITCH_FREQ_EN enables a low-load, low-power switching mode. If CP_SMALL_SWITCH_FREQ_EN is enabled and CP_FCONTROL is set to a value between 000 and 100, any feedback from the analogue level detector results in a switch from low-power to full-power. Full-power is maintained for one CP_TAU_DELAY period after the pulse. Any subsequent pulses restart the CP_TAU_DELAY period.

If CP_FCONTROL = 101, the first feedback from the analogue level detector primes the change to full-power mode. If another pulse occurs within 32 clock cycles of the first feedback from the analogue level detector, full power is enabled for one CP_TAU_DELAY period.

14.19 Digital Signal Processing Engine

The digital signal processing engine includes a configurable audio processor that offers flexible routing and extensive audio enhancement and effects. Linear phase FIR filters perform the DAC

Company confidential

interpolation and decimation for the required sample rates. Configurable high-pass filtering (optionally enabled on both ADC and DAC) removes any signal DC offset and can help to filter out wind noise. A 5-band playback equaliser can be configured to suit the users listening preferences.

14.20 Variable High Pass Audio Filter (DC Cut)

Any DC offset from the input path is removed via IIR filters (typically <2Hz roll-off, configurable). After reset the filters for both channels are enabled by default, but can be disabled by clearing ADC_HPF_EN and DAC_HPF_EN. The cutoff frequency of the filters can be programmed using ADC_AUDIO_HPF_CORNER and DAC_AUDIO_HPF_CORNER. Enabling the high pass filter is especially important if the ADC output is fed into the DAC.

Table 30: ADC/DAC Digital High Pass Filter specifications in Audio Mode

Sampling Frequency (kHz)	Cut-off frequency (Hz) at ADC_AUDIO_HPF_CORNER and DAC_AUDIO_HPF_CORNER Settings						
	00 01 10 11						
8	0.3	0.7	1.3	2.7			
11.025	0.4	0.9	1.8	3.7			
12	0.5	1	2	4			
16	0.7	1.3	2.7	5.3			
22.05	0.9	1.8	3.7	7.3			
24	1	2	4	8			
32	1.3	2.7	5.3	10.7			
44.1	1.8	3.7	7.3	14.7			
48	2	4	8	16			

Company confidential

Figure 13: ADC and DAC DC blocking (Cut-off frequency setting '00' to '11', 16 kHz)

14.21 Variable High Pass Filter (Wind Noise Filtering)

To improve the quality of microphone recordings, the DA7212 provides a programmable high pass filter engine, enabled via ADC_VOICE_EN. The low frequency roll off is configured over a wide range using the ADC_VOICE_HPF_CORNER control. This allows for flexible removal of wind and pop noise.

During playback, dedicated voiceband filtering can be enabled using DAC_VOICE_EN. The low frequency roll off is configured over a wide range using the DAC_VOICE_HPF_CORNER control.

In Voice mode, the wind noise high-pass filter cut-off frequency is determined by the settings of the ADC_VOICE_HPF_CORNER and the DAC_VOICE_HPF_CORNER register bits, These cut-off frequencies are not fixed, however, and vary with the sample rate being used. Table 31 shows the cut-off frequencies for all valid settings of ADC_VOICE_HPF_CORNER and DAC_VOICE_HPF_CORNER, at all sample rates of 16 kHz and below.

Table 31: Wind noise high-pass filter specifications

Cut-off frequency at ADC_VOICE_HPF_CORNER and DAC_VOICE_HPF_CORNER settings (Voice Filtering only, and with Sample Rate 16 kHz or lower)									
Fs [kHz]	Fs [kHz] 000 001 010 011 100 101 110 111								
8.0	8.0 2.5 25 50 100 150 200 300 400								
11.025	11.025 3.4 34.5 69 138 207 276 413 551								
12.0	12.0 3.75 37.5 75 150 225 300 450 600								
16.0	5	50	100	200	300	400	600	800	

Company confidential

Figure 14: Wind noise high-pass filter (cut-off frequency setting '000' to '111', 16 kHz)

14.22 DAC 5-Band Equaliser

To enable user controllable listening preferences, the digital playback path includes a programmable 5 band equaliser that is enabled by control DAC_EQ_EN. A low pass filter, a three band-pass filters and a high pass filter with cut-off/centre frequencies at approximately 87Hz, 132Hz, 628Hz, 2.6 kHz and 9.6 kHz (for FS=48 kHz) offer boosting or damping of each frequency band in 1.5 dB steps from 10.5 to +12 dB. The gains of each band can be individually configured using DAC_EQ_BAND1, DAC_EQ_BAND2, DAC_EQ_BAND3, DAC_EQ_BAND4, DAC_EQ_BAND5 controls.

The 5-band equaliser cannot be used at 88.2 and 96 kHz sampling rate. For frequency responses see Table 9, and Figure 15 to Figure 19.

Table 32: DAC 5-Band Equaliser Turnover/Centre Frequencies

	Centre/Cutoff frequency of DAC 5-Band Equaliser (Hz)						
Sampling Frequency (kHz)	Band 1 Cutoff (Note 21)	Band 2 Centre	Band 3 Centre	Band 4 Centre	Band 5 Cutoff (Note 21)		
8	21	85	563	1151	2909		
11.025	29	117	776	2137	4009		
12	31	128	845	2326	4364		
16	41	90	441	2128	5840		
22.05	56	124	607	2933	8048		
24	61	135	664	3192	8759		
32	58	95	418	1731	6374		
44.1	80	132	577	2385	8784		
48	87	143	628	2596	9560		
88.2	N/A	N/A	N/A	N/A	N/A		
96	N/A	N/A	N/A	N/A	N/A		

Note 21 For equaliser bands 1 and 5, the cut-off frequency depends on the gain setting. The figures quoted in this table refer to the -1 dB point with the band gain set to -3 dB

Figure 15: Equaliser filter Band 1 frequency response at FS = 48 kHz

Company confidential

Figure 16: Equaliser filter Band 2 frequency response at FS = 48 kHz

Figure 17: Equaliser filter Band 3 frequency response at FS = 48 kHz

Company confidential

Figure 18: Equaliser filter Band 4 frequency response at FS = 48 kHz

Figure 19: Equaliser filter Band 5 frequency response at FS = 48 kHz

14.23 Soft Mute

To improve the user's perception of audio reconfigurations, the DAC channel signals may be soft muted by asserting the control DAC_SOFTMUTE_EN. The soft mute function attenuates the digital input to the DAC, ramping the gain down in steps of 0.1875 dB from its current level to -77.25 dB, then completely muting the channel. When DAC_SOFTMUTE_EN is released, the attenuation is set to 77.25 dB, and then ramped up to the previous gain level. Both left and right channels of Soft Mute enabled output amplifiers are muted simultaneously. The ramping up and down rate is dependent on the audio sample rate and can be individually configured using control DAC_SOFTMUTE_RATE.

Note 22 Please note that during active soft muting, the digital gain of the DAC will be different to the value programmed inside controls DAC_L_DIGITAL_GAIN and DAC_R_DIGITAL_GAIN.

Company confidential

14.24 Playback Noise-Gate

Noise-Gate is an automatic gain control for DAC playback that reduces the noise heard during playback if no signal is present. It is enabled using the DAC_NG_EN control.

When the output signals on both channels are below a given threshold level, and they stay low for longer than a specified period, then playback noise-gate is activated. When the playback noise-gate activates, the gain on the active HP and Line amplifiers are ramped down to their lowest levels. This is equivalent to asserting the minimum-gain controls HP_L_AMP_MIN_GAIN_EN, HP_R_AMP_MIN_GAIN_EN and LINE_AMP_MIN_GAIN_EN.

The Noise-Gate Threshold Level can be specified in 6 dB steps from 90 dB to 48 dB. The Noise-Gate Threshold Time ranges from 256 samples to 2048 samples and is set using the control DAC_NG_SETUP_TIME.

When the averaged level of the two channels exceeds the release threshold configured in DAC_NG_OFF_THRESHOLD, the gain of the amplifiers is ramped up back to its original value. When the average level of the two channels is below the attack threshold configured in DAC_NG_ON_THRESHOLD for longer than the time specified in DAC_NG_SETUP_TIME, the gain is ramped down to its minimum value.

The attack and release rate can be configured via controls DAC_NG_RAMPDN_RATE and DAC_NG_RAMPUP_RATE. The Noise-gate release time is usually much faster than the attack time, to allow a proper playback as soon as a signal is present at the output amplifiers.

14.25 Clock Modes

The DA7212 requires a clock for operation of various circuits within the chip. There are four ways in which the main system clock may be generated:

- PLL bypass mode: If digital playback or record is required, the MCLK frequency should be set to one of 11.2896/12.288 MHz or 22.5792/24.576 MHz or 45.1584/49.152 MHz (Note 23). The PLL INDIV register bit must then be programmed accordingly
- Normal PLL mode: Alternative frequency clock applied to MCLK pin (in the range of 2 to 50 MHz), where MCLK is synchronous with WCLK, or Master Mode is enabled
- SRM PLL mode: Clock applied to MCLK pin (in the range of 2 to 50 MHz) is asynchronous to WCLK
- 32 kHz mode: Watch crystal frequency (32.768 kHz) clock applied to MCLK
- 32 kHz mode: Watch crystal frequency (32.768 kHz) clock applied to MCLK

Note 23 11.2896 MHz (or multiples) should be used as MCLK frequency for 11.025, 22.05, 44.1, 88.2 kHz sample rates and 12.288 MHz (or multiples) should be used for 8, 12, 16, 24, 32, 48, 96 kHz sample rates

Mode	PLL bypassed	PLL enabled	PLL enabled SRM enabled	PLL enabled 32 kHz enabled
Master	Yes (Note 24)	Yes (Note 25)	No	Yes (Note 26)
Slave	Yes (Note 27)	Yes (Note 28)	Yes (Note 29)	No

Note 24 11.2896 MHz (or multiples) should be used as MCLK frequency for 11.025, 22.05, 44.1, 88.2 kHz sample rates and 12.288 MHz (or multiples) should be used for 8, 12, 16, 24, 32, 48, 96 kHz sample rates

Company confidential

- Note 25 MCLK must be exactly 12.288 MHz or 11.2896 MHz or a multiple thereof
- Note 26 MCLK must be between 2 MHz and 50 MHz
- Note 27 MCLK must be 32.768 kHz
- Note 28 MCLK must be exactly 12.288 MHz or 11.2896 MHz or a multiple thereof and synchronous with BCLK and WCLK
- Note 29 MCLK must be synchronous with BCLK and WCLk
- Note 30 BCLK must be synchronous with WCLK. MCLK must be between 2 MHz and 50 MHz

With the default register settings, the clock input should be a square wave with CMOS logic levels (referenced to VDD_IO). A 'clock squarer circuit' can be enabled by asserting the PLL_MCLK_SQR_EN register bit. This clock squarer allows a sine wave or other a low amplitude clock (down to 300 mVpp) to be applied to the codec. The input is AC coupled on chip when using the clock squarer mode.

If the MCLK input frequency drops below 1 MHz, the PLL_MCLK_STATUS bit is cleared, and the chip will automatically use its internal reference oscillator as a clock source.

14.26 PLL Bypass Mode

If an MCLK signal at 11.2896/12.288 MHz or 22.5792/24.576 MHz or 45.1584/49.152 MHz is available, the PLL is not required and should be disabled to save power. PLL bypass mode is activated by clearing the PLL enable register bit PLL_EN.

In this mode the PLL is bypassed and an audio frequency clock is applied to the MCLK pin of the codec. The required clock frequency depends on the sample rate at which the audio DACs and ADCs are operating. These clock frequencies are summarized in Table 33 for the range of DAC and ADC sample rates that can be configured using the SR register.

Table 33: Sample rate control register and corresponding system clock frequency

Sample rate, FS (kHz)	SR Register	System clock frequency (MHz)
8	0001	12.288
11.025	0010	11.2896
12	0011	12.288
16	0101	12.288
22.05	0110	11.2896
24	0111	12.288
32	1001	12.288
44.1	1010	11.2896
48	1011	12.288
88.2	1110	11.2896
96	1111	12.288

If digital playback or record is required in bypass mode then the MCLK frequency should be set to 11.2896/12.288 MHz, or to 22.5792/24.576 MHz, or to 45.1584/49.152 MHz and PLL_INDIV should be programmed accordingly.

If no valid MCLK is detected, the output of the internal reference oscillator is used instead. However in this case only analogue bypass paths may be used.

Company confidential

14.26.1 Normal PLL Mode (DAI Master)

The DA7212 contains a Phase Locked Loop (PLL) that can be used to generate the required 11.2896 MHz or 12.288 MHz internal system clock when a frequency of between 2 and 50 MHz is applied to MCLK. This allows sharing of clocks between devices in an application, reducing total system cost. For example, the codec may operate from common 13 MHz or 19.2 MHz system clock frequency.

The PLL is enabled by asserting PLL_EN. Once the PLL is enabled and has achieved phase lock, PLL Bypass Mode is disabled, and the output of the PLL is used as the system clock.

The PLL Input Divider register (PLL_INDIV) is used to reduce the PLL reference frequency to the usable range of 2 to 5 MHz as shown in Table 12. PLL_INDIV reduces the PLL Reference Frequency according to the following equation:

FREF = FMCLK ÷ (2^PLL_INDIV)

Table 34: PLL Input Divider

MCLK input frequency (MHz)	MCLK input frequency (MHz) Input divider, (÷N)	
2 – 10	÷2	00
10 – 20	÷4	01
20 – 40	÷8	10
40 – 50	÷16	11

The value of the PLL Feedback Divider is used to set the Voltage Controlled Oscillator (VCO) frequency to 8 times the required system clock frequency (see Table 35)

FVCO = FREF × PLL Feedback Divider

The value of the PLL Feedback Divider is an unsigned number in the range of 0 to 128. It consists of seven integer bits and 13 fractional bits split across three registers:

PLL_INTEGER holds the seven integer bits

PLL_FRAC_TOP holds the top bits (MSB) of the fractional part of the divisor

PLL_FRAC_BOT holds the bottom bits (LSB) of the fractional part of the divisor

14.26.2 Example calculation of the Feedback Divider setting:

We will use as an example a codec operating with Fs (sample rate) = 48 kHz and an Reference Input Clock frequency of 12.288 MHz. The required output frequency is 98.304 MHz.

The Reference Clock Input = 12.288 MHz, which falls in the range 10-20 MHz so PLL_INDIV must be set to 0b01 (dividing the Reference Input Frequency by 2 - see Table 12: PLL Input Divider.

The formula for calculating the Feedback Divider is:

Feedback Divider (F) = VCO output frequency * Input Divider (PLL_INDIV) / Reference Input Clock

Company confidential

Feedback Divider = (98.304 * 4) / 12.288 = 32

So

PLL FBDIV INTEGER (holding the seven integer bits) = 0x20

PLL_FBDIV_FRAC_TOP (holding the top bits (MSB) of the fractional part of the divisor) = 0x00
PLL_FBDIV_FRAC_BOT (holding the bottom bits (LSB) of the fractional part of the divisor) = 0x00

Table 37 (below) shows example register settings that will configure the PLL when using a 13 MHz, 15 MHz or 19.2 MHz clock. Note that any MCLK input frequency between 2 and 50 MHz is

supported. PLL_INDIV must be used to reduce the PLL reference frequency to the usable range of 2 to 10 MHz as shown in Table 13.

Table 35: Example PLL configurations

MCLK input frequency (MHz)	System clock frequency (MHz)	PLL_CTRL Register (See Note 31 below)	PLL_FRAC_TOP Register	PLL_FRAC_BOT Register	PLL_INTEGER Register
13	11.2896	0x84	0x19	0x45	0x1B
13	12.288	0x84	0x07	0xEA	0x1E
15	11.2896	0x84	0x02	0xB4	0x18
15	12.288	0x84	0x06	0xDC	0x1A
19.2	11.2896	0x84	0x1A	0x1C	0x12
19.2	12.288	0x84	0x0F	0x5C	0x14

Note: Any MCLK input frequency between 2 and 50 MHz is supported. PLL_INDIV must be used to reduce the PLL reference frequency to the usable range of 2 to 5 MHz.

14.27 SRM PLL Mode (DAI Slave)

SRM mode enables the PLL output clock to be synchronized to the incoming WCLK signal on the DAI. The SRM PLL mode is enabled by setting the PLL as for normal PLL mode and asserting register bit PLL_SRM_EN. Register bit SRM_LOCK indicates whether or not the SRM has achieved synchronisation with WCLK.

Note 32 When using the digital audio interface in slave mode with the SRM enabled, removing and re-applying the DAI interface word clock WCLK may cause the PLL lock to be lost. To re-lock the PLL it is recommended that you disable the SRM (PLL_SRM_EN = 0), reset the PLL by re-writing to register PLL_INTEGER, and then re-enable the SRM (PLL_SRM_EN = 1) after the DAI WCLK has been reapplied.

Note 33 When switching sample rates between 44.1 kHz and 48 kHz (or between the multiples of these sample rates), SRM must be disabled and then re enabled using register bit PLL_SRM_EN.

14.28 32 kHz PLL Mode (DAI Master)

32 kHz mode enables the PLL output clock to be synchronized to a 32.768 kHz clock signal on the MCLK pin. 32 kHz PLL Mode is selected by enabling the PLL and asserting both PLL_SRM_EN and PLL_32K_MODE. Register bit SRM_LOCK indicates whether or not the SRM has achieved synronisation with MCLK.

Company confidential

14.28.1 Operating with a 2 MHz to 5 MHz MCLK

Note that when using the PLL with a 2 MHz-5 MHz MCLK, you must follow the procedure below to setup the PLL in the correct mode.

Setup PLL and clocking

Write F0 = 8b

Write F1 = 03

Write F0 = 00

When returning from this mode to a mode with an MCLK >5 MHz, you must follow the procedure below.

Write F0 = 8b

Write F1 = 01

Write F0 = 00

Setup PLL and clocking

14.29 Mixed Sample Rates

In DA7212 there is only one Sample Rate register and therefore, by default, this controls the sample rate of both the ADC and the DAC

Some applications require the ADC and the DAC to run at different sample rates. A special mode (24-48 Mode) is available by asserting 24_48_MODE at register address 0x84[0]. Asserting this bit sets the ADC to run at 24kHz and the DAC to run at 48kHz. In this mode all the functionality of the ADC and the DAC is available. The DAI will continue to run at 48kHz, and every ADC sample will be repeated across two WCLK frames.

14.30 I2C Control Interface

The DA7212 is completely software-controlled from the host by registers. The DA7212 provides an I2C compliant serial control interface to access these registers. Data is shifted into or out of the DA7212 under the control of the host processor, which also provides the serial clock.

The 7-bit I2C slave address is 0x1A so that the 8-bit address for writing is 0x34 and for reading is 0x35.

The I2C clock is supplied by the SCL line and the bi directional I2C data is carried by the SDA line. The I2C interface is open-drain supporting multiple devices on a single line. The bus lines have to be pulled HIGH by external pull-up resistors (1 k Ω to 20 k Ω range). The attached devices only drive the bus lines LOW by connecting them to ground. This means that two devices cannot conflict if they drive the bus simultaneously.

In standard/fast mode the highest frequency of the bus is 1 MHz. The exact frequency can be determined by the application and does not have any relation to the DA7212 internal clock signals. DA7212 will follow the host clock speed within the described limitations and does not initiate any clock arbitration or slow down.

In high-speed mode the maximum frequency of the bus can be increased up to 3.4 MHz. This mode is supported if the SCL line is driven with a push-pull stage from the host and if the host enables an external 3mA pull-up at the SDA pin to decrease the rise time of the data. In this mode the SDA line on DA7212 is able to sink up to 12mA. In all other respects the high speed mode behaves as the standard/fast mode. Communication on the I2C bus always takes place between two devices, one acting as the master and the other as the slave. The DA7212 will only operate as a SLAVE. The I2C interface has direct access to the whole register map of the DA7212.

Company confidential

Figure 20: Schematic of the I2C control interface bus

14.31 Details of the I2C Control interface protocol

All data is transmitted across the I2C bus in groups of 8 bits. To send a bit the SDA line is driven to the intended state while the SDA is LOW (a LOW on SDA indicates a zero bit). Once the SDA has settled, the SCL line is brought HIGH and then LOW. This pulse on SCL clocks the SDA bit into the receiver's shift register.

A two byte serial protocol is used containing one byte for address and one byte for data. Data and address transfer is transmitted MSB first for both read and write operations. All transmission begins with the START condition from the master while the bus is in the IDLE state (the bus is free). It is initiated by a high to low transition on the SDA line while the SCL is in the high state (a STOP condition is indicated by a low to high transition on the SDA line while the SCL line is in the high state).

Figure 21 Timing of I2C START and STOP Conditions

The I2C bus is monitored by DA7212 for a valid SLAVE address whenever the interface is enabled. It responds with an Acknowledge immediately when it receives its own slave address. The Acknowledge is done by pulling the SDA line low during the following clock cycle (white blocks marked with 'A' in Figure 22 to Figure 25).

The protocol for a register write from master to slave consists of a start condition, a slave address with read/write bit and the 8-bit register address followed by 8 bits of data terminated by a STOP condition (the DA7212 responds to all bytes with Acknowledge). This is illustrated in Figure 22.

Company confidential

Figure 22: I2C Byte write (SDA signal)

When the host reads data from a register it first has to write-access DA7212 with the target register address and then read access DA7212 with a repeated START, or alternatively a second START condition. After receiving the data the host sends a Not Acknowledge (NAK) and terminates the transmission with a STOP condition:

Figure 23: Examples of the I2C Byte Read (SDA line)

Consecutive (Page Mode) read-out mode (CIF_I2C_WRITE_MODE (0x1D [0]) = 0) is initiated from the master by sending an Acknowledge instead of Not Acknowledge (NAK) after receipt of the data word. The I2C control block then increments the address pointer to the next I2C address and sends the data to the master. This enables an unlimited read of data bytes until the master sends a NAK directly after the receipt of data, followed by a subsequent STOP condition. If a non-existent I2C address is read out, the DA7212 will return code zero.

Figure 24: Examples of I2C Page Read (SDA line)

Note 1 The slave address after the Repeated START condition must be the same as the previous slave address

Consecutive write-mode (CIF_I2C_WRITE_MODE (0x1D [0]) = 0) is supported if the Master sends several data bytes following a slave register address. The I2C control block then increments the address pointer to the next I2C address, stores the received data and sends an Acknowledge until the master sends the STOP condition.

Company confidential

Figure 25: I2C Page Write (SDA Line)

An alternative repeated-write mode that uses non-consecutive slave register addresses is available using the CIF_I2C_WRITE_MODE register. In this Repeat Mode (CIF_I2C_WRITE_MODE (0x1D [0]) = 1), the slave can be configured to support a host's repeated write operations into several non-consecutive registers. Data is stored at the previously received register address. If a new START or STOP condition occurs within a message, the bus returns to IDLE mode. This is illustrated in Figure 26

Company confidential

Figure 26: I2C Repeated Write (SDA Line)

Note 2 Note that in Page Mode (CIF_I2C_WRITE_MODE = 0), both Page Mode reads and writes using auto-incremented addresses, and Repeat Mode reads and writes using non auto-incremented addresses, are supported. In Repeat Mode (CIF_I2C_WRITE_MODE = 1) however, only Repeat Mode reads and writes are supported.

14.32 Digital Audio Interface (DAI)

DA7212 provides one Digital Audio Interface (DAI) to input DAC data or to output ADC data. It is enabled by asserting DAI_EN. The DSP provides flexible routing options allowing each interface to be connected to different signal paths as desired in each application.

The DAI consists of a four-wire serial interface, with bit clock (BCLK), word clock (WCLK), data-in (DATIN) and data-out (DATOUT) pins. Both master and slave clock modes are supported by the DA7212. Master mode is enabled setting register DAI_CLK_EN (0x28[7]) = 1. In master mode, the bit clock and word clock signals are outputs from the codec. In slave mode these are inputs to the codec.

Figure 27: Master Mode (DAI CLK EN = 1)

Company confidential

Figure 28: Slave Mode (DAI_CLK_EN = 0)

The internal serialized DAI data is 24 bits wide. Serial data that is not 24 bits wide is either shortened or zero-filled at input to, or at output from, the DAI's internal 24-bit data width. The serial data word length can be configured to be 16, 20, 24 or 32 bits wide using the DAI_WORD_LENGTH register bits.

Four different data formats are supported by the digital audio interface. The data format is determined by the setting of the DAI_FORMAT register bits.

- I2S mode
- Left Justified mode
- Right Justified mode
- DSP mode

Time division multiplexing (TDM) is available in any of these modes to support the case where multiple devices are communicating simultaneously on the same bus. TDM is enabled by asserting the DAI_TDM_MODE_EN bit.

Company confidential

14.33 I2S Mode

In I2S mode (DAI_FORMAT = 0), the MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge of the word clock. The MSB of the right channel is valid on the second rising edge of the bit clock after the rising edge of the word clock, and the MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge of the word clock.

Figure 29: I2S Mode

14.34 Left Justified Mode

In left-justified mode (DAI_FORMAT = 1), the MSB of the right channel is valid on the rising edge of the bit clock following the falling edge of the word clock. The MSB of the left channel is valid on the rising edge of the bit clock following the rising edge of the word clock.

Figure 30: Left Justified Mode

14.35 Right Justified Mode

In right-justified mode (DAI_FORMAT = 2), the LSB of the left channel is valid on the rising edge of the bit clock preceding the falling edge of word clock. The LSB of the right channel is valid on the rising edge of the bit clock preceding the rising edge of the word clock.

Figure 31: Right Justified Mode

Company confidential

14.36 **DSP Mode**

In DSP mode (DAI_FORMAT = 3), the rising edge of the word clock starts the data transfer with the left channel data first and immediately followed by the right channel data. Each data bit is valid on the falling edge of the bit clock.

Figure 32: DSP Mode

Company confidential

14.37 Time Division Multiplexing (TDM) Mode

Time Division Multiplexing (TDM) allows multiple devices to communicate on the same bus without conflicting. TDM mode (DAI_TDM_MODE_EN = 1) is an extension of the DSP and the Left Justified formats (see page 63).

Figure 33: TDM Example (slave mode)

Figure 34: TDM Mode (left justified mode)

Company confidential

A time offset is specified from the normal 'start of frame' condition using register bit DAI_OFFSET. Since a different offset may be defined for each device on the bus, they may both communicate without collisions.

In the Left-Justified TDM example illustrated in Figure 34, the left channel data is valid DAI_OFFSET clock cycles after the rising edge of the word clock, and the right channel data is valid the same DAI_OFFSET number of clock cycles after the falling edge of the word clock.

In DSP TDM mode (not illustrated), the left channel data is valid after the same DAI_OFFSET clock cycles from the rising edge of the word clock, but the right channel data is valid immediately after the left channel data.

The serial data pin must be tri-stated whenever the output is not valid.

Mono mode is supported in the TDM mode by asserting DAI_MONO_MODE_EN. If DAI_MONO_MODE_EN is asserted, only the data from the Digital Audio Interface left channel is transmitted.

14.37.1 Configuration of the Digital Audio Interface

The data format is configured using register DAI_FORMAT. The offset applied in TDM mode is configured using register DAI_OFFSET. The word length is configured using register DAI_WORD_LENGTH.

The digital audio interface is enabled using register DAI_EN and the frame length is configured using DAI_BCLKS_PER_WCLK.

When using the digital audio interface in slave mode (DAI_CLK_EN = 0), if the WCLK input is not from the same clock source as the MCLK input, then the SRM PLL mode must be enabled to maintain synchronization.

14.38 Pop-Free and Click-Free Start-up using the System Controllers

DA7212 has two System Controllers that provide pop-free and click-free start-up under most conditions.

14.38.1 Level 1 System Controller (SCL1)

The Level 1 System Controller (SCL1) is automatically activated whenever a sub-system's enable bit is asserted. SCL1 ensures that the desired component parts are sequenced in the correct order to provide click-free and pop-free start-up.

The following example using the left DAC illustrates SCL1 in operation.

- When the left DAC is enabled by assertion of the DAC_L_EN register bit (register 0x69[7])
 - a. SCL1 first activates the DAC clocks
 - b. SCL1 then activates the DSP logic
 - c. Next, SCL1 activates the analogue DAC
 - d. Finally, SCL1 ramps up the digital gain

In this way, SCL1 helps ensure that the DAC_L start-up is free of pops and clicks.

Note 34 Note, however, that if any dependent functions for a sub-system's activation have not been enabled, SCL1 will not automatically enable them. This allows you greater control over the sequencing of the sub-system, but it also means that any sub-system can potentially be brought up in such a way that audible artefacts such as pops and clicks are introduced.

Company confidential

14.38.2 Level 2 System Controller (SCL2)

Level 2 System Controller (SCL2) is a higher level controller that provides one-touch activation of standard operating modes. Input or output sub-systems can be activated either singly or in combination. All selected sub-systems will start up in the correct order and without pops or clicks when SCL2 is activated.

First, the desired input sub-systems must be selected by asserting the relevant fields (bits 1 to 7) of the SYSTEM_MODES_INPUT (0x50) register. Similarly, the desired output sub-systems must be selected by asserting the relevant fields (bits 1 to 7) of the SYSTEM_MODES_OUTPUT (0x51) register.

Once the desired sub-systems have been selected, the SCL2 controller is activated by writing '1' to the MODE_SUBMIT register field in either the SYSTEM_MODES_INPUT (0x50) or the SYSTEM_MODES_OUTPUT (0x51) register. It does not matter which of the two MODE_SUBMIT fields is asserted. Both work in the same way, and each will start up both the input and the output sub-systems.

When SCL2 is activated by asserting MODE_SUBMIT, all of the register-writes that are required by the selected sub-systems are performed automatically. Each sub-system is brought up in the correct order to avoid pops and clicks, and within each sub-system, the component parts are brought up in the correct pop-free and click-free sequence.

Note 35 Note that the MODE_SUBMIT field used to start SCL2 is self-clearing, and is automatically reset to '0' once SCL2 has started

SCL1 and SCL2 activity can be monitored using the SCL1_BUSY and SCL2_BUSY bits on the SYSTEM_STATUS (0xE0) register.

Note 36 If the DA7212 device is changed from one playback mode to another, or if it is changed from one record mode to another, the initial mode is closed down first before the second mode is activated. This happens automatically.

14.39 Power Supply - Standby Mode

DA7212 has an ultra-low power standby mode that can be enabled to save power when the device is not in use. Standby Mode is controlled using the SYSTEM_ACTIVE register.

14.39.1 Entering Standby Mode

Standby Mode is activated by writing a '0' to the SYSTEM_ACTIVE register bit. This SYSTEM_ACTIVE register cannot be read when in Standby Mode because the act of reading the bit causes it to be asserted, which causes the Standby Mode to be exited.

When entering Standby Mode, it is important that all audio paths are shut down first because the shut down is abrupt and audio artifacts such as pops and click may be heard. No audio functions are possible during Standby Mode, as the reference oscillator and the reference voltages are both shut down.

14.39.2 Exiting Standby Mode

Standby Mode can be exited by writing a '1' to the SYSTEM_ACTIVE register bit.

Any read or write access to the DA7212 will also cause the SYSTEM_ACTIVE bit to be asserted, but note that the first read or write access may fail because of the time taken to restart the reference

Company confidential

oscillator. It is recommended that Standby Mode is exited by writing to the the SYSTEM_ACTIVE register rather than relying on the automatic assertion of the register by a read or write access.

Read or write accesses to I2C slave addresses other than those used by the DA7212 will not cause Standby Mode to be exited.

Company confidential

15 Register definitions

15.1 Register map

Addr	Function	7	6	5	4	3	2	1	0		
	Status Registers										
0x02	STATUS1	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
0x03	PLL_STATUS	Reserved	Reserved	Reserved	Reserved	PLL_BYPASS_ACTIV E	PLL_MCLK_STATUS	PLL_SRM_LOCK	PLL_LOCK		
0x04	AUX_L_GAIN_STAT US	Reserved	Reserved	AUX_L_AMP_GAIN_STATUS							
0x05	AUX_R_GAIN_STAT US	Reserved	Reserved	eserved AUX_R_AMP_GAIN_STATUS							
0x06	MIC_1_GAIN_STAT US	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved MIC_1_AMP_GAIN_STATUS				
0x07	MIC_2_GAIN_STAT US	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved MIC_2_AMP_GAIN_STATUS				
0x08	MIXIN_L_GAIN_STA TUS	Reserved	Reserved	Reserved	Reserved	MIXIN_L_AMP_GAIN_STATUS					
0x09	MIXIN_R_GAIN_STA TUS	Reserved	Reserved	Reserved	Reserved	MIXIN_R_AMP_GAIN_STATUS					
0x0A	ADC_L_GAIN_STAT US	Reserved	ADC_L_DIGITAL_GAIN_STATUS								
0x0B	ADC_R_GAIN_STAT US	Reserved	ADC_R_DIGITAL_GAIN_STATUS								
0x0C	DAC_L_GAIN_STAT US	Reserved	DAC_L_DIGITAL_GAIN_STATUS								
0x0D	DAC_R_GAIN_STAT US	Reserved	DAC_R_DIGITAL_GAIN_STATUS								
0x0E	HP_L_GAIN_STATU S	Reserved	Reserved HP_L_AMP_GAIN_STATUS								

Company confidential

Addr	Function	7	6	5	4	3	2	1	0		
0x0F	HP_R_GAIN_STATU S	Reserved	Reserved	HP_R_AMP_GAIN_STATUS							
0x10	LINE_GAIN_STATU S	Reserved	Reserved		LINE_AMP_GAIN_STATUS						
System Initialisation Registers											
0x1D	CIF_CTRL	CIF_REG_SOFT_ RESET	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	CIF_I2C_WRITE_MOD E		
0x21	DIG_ROUTING_DAI	Reserved	Reserved	DAI_R	_SRC	Reserved	Reserved	DAI_	L_SRC		
0x22	SR	Reserved	Reserved	Reserved	Reserved		\$	SR			
0x23	REFERENCES	Reserved	Reserved	VMID_FAST_DISCH ARGE	VMID_FAST_CHARG E	BIAS_EN	Reserved	Reserved	Reserved		
0x24	PLL_FRAC_TOP	Reserved	Reserved	Reserved PLL_FBDIV_FRAC_TOP							
0x25	PLL_FRAC_BOT		PLL_FBDIV_FRAC_BOT								
0x26	PLL_INTEGER	Reserved	PLL_FBDIV_INTEGER								
0x27	PLL_CTRL	PLL_EN	PLL_SRM_EN	PLL_32K_MODE	K_MODE PLL_MCLK_SQR_EN PLL_INDIV Reserved Reserved						
0x28	DAI_CLK_MODE	DAI_CLK_EN	Reserved	Reserved	Reserved	DAI_WCLK_POL	DAI_CLK_POL	DAI_BCLKS	S_PER_WCLK		
0x29	DAI_CTRL	DAI_EN	DAI_OE	DAI_TDM_MODE_EN	MODE_EN DAI_MONO_MODE_ DAI_WORD_LENGTH DAI_FORMAT						
0x2A	DIG_ROUTING_DAC	DAC_R_MONO	Reserved	DAC_F	AC_R_SRC DAC_L_MONO Reserved DAC_L_SRC				_L_SRC		
0x2B	ALC_CTRL1	ALC_R_EN	Reserved	ALC_CALIB_OVERF LOW	ALC_AUTO_CALIB_ EN	ALC_L_EN	ALC_CALIB_MODE	ALC_SYNC_MODE	ALC_OFFSET_EN		
Input Gain / Select Filter Registers											
0x30	AUX_L_GAIN	Reserved	Reserved	Reserved AUX_L_AMP_GAIN							
0x31	AUX_R_GAIN	Reserved	Reserved	AUX_R_AMP_GAIN							
0x32	MIXIN_L_SELECT	DMIC_L_EN	Reserved	Reserved		MIXIN_L_SEL	MIC2_SEL	MIC1_SEL	AUX_L_SEL		
0x33	MIXIN_R_SELECT	DMIC_R_EN	Reserved	Reserved MIXIN_L_SEL MIC1_SEL MIC		MIC2_SEL	AUX_R_SEL				
0x34	MIXIN_L_GAIN	Reserved	Reserved	Reserved	Reserved MIXIN_L_AMP_GAIN						

Company confidential

Addr	Function	7	6	5	4	3	2	1	0		
0x35	MIXIN_R_GAIN	Reserved	Reserved	Reserved	Reserved	MIXIN_R_AMP_GAIN					
0x36	ADC_L_GAIN	Reserved				ADC_L_DIGITAL_GAIN					
0x37	ADC_R_GAIN	Reserved		ADC_R_DIGITAL_GAIN							
0x38	ADC_FILTERS1	ADC_HPF_EN	Reserved	d ADC_AUDIO_HPF_CORNER ADC_VOICE_EN ADC_VOICE_HPF_CORNER					NER		
0x39	MIC_1_GAIN	Reserved	Reserved	Reserved	Reserved	Reserved MIC_1_AMP_GAIN					
0x3A	MIC_2_GAIN	Reserved	Reserved	Reserved	Reserved	Reserved MIC_2_AMP_GAIN					
Output Gain / Select Filter Registers											
0x40	DAC_FILTERS5	DAC_SOFTMUTE _EN	I	DAC_SOFTMUTE_RATE Reserved Reserved Reserved				Reserved			
0x41	DAC_FILTERS2		DAC_I	DAC_EQ_BAND2 DAC_EQ_BAND1							
0x42	DAC_FILTERS3		DAC_I	DAC_EQ_BAND4 DAC_EQ_BAND3							
0x43	DAC_FILTERS4	DAC_EQ_EN	Reserved	Reserved	Reserved	DAC_EQ_BAND5					
0x44	DAC_FILTERS1	DAC_HPF_EN	Reserved	DAC_AUDIO_I	HPF_CORNER DAC_VOICE_EN DAC_VOICE_HPF_CORNER						
0x45	DAC_L_GAIN	Reserved		DAC_L_DIGITAL_GAIN							
0x46	DAC_R_GAIN	Reserved				DAC_R_DIGITAL_GA	IN				
0x47	CP_CTRL	CP_EN	CP_SMALL_SWIT CH_FREQ_EN	CP_MC	HANGE	CP_	MOD	CP_ANA	LOGUE_LVL		
0x48	HP_L_GAIN	Reserved	Reserved			HP_L_A	MP_GAIN				
0x49	HP_R_GAIN	Reserved	Reserved	Reserved HP_R_AMP_GAIN							
0x4A	LINE_GAIN	Reserved	Reserved	Reserved LINE_AMP_GAIN							
0x4B	MIXOUT_L_SELECT	Reserved	MIXIN_R_INV	MIXIN_L_INV	AUX_L_INV	DAC_L	MIXIN_R	MIXIN_L	AUX_L		
0x4C	MIXOUT_R_SELECT	Reserved	MIXIN_L_INV	MIXIN_R_INV	AUX_R_INV	DAC_R	MIXIN_L	MIXIN_R	AUX_R		
System Controller Registers (1)											
0x50	SYSTEM_MODES_I NPUT	ADC_R	ADC_L	MIXIN_R	MIXIN_L	MIC_2	MIC_1	Reserved	MODE_SUBMIT		
0x51	SYSTEM_MODES_O	DAC_R	DAC_L	HP_R	HP_L	LINE	AUX_R	AUX_L	MODE_SUBMIT		

Company confidential

Addr	Function	7	6	5	4	3	2	1	0		
	UTPUT										
Control Registers (2)											
0x60	AUX_L_CTRL	AUX_L_AMP_EN	AUX_L_AMP_MUT E_EN	AUX_L_AMP_RAMP_ EN	AUX_L_AMP_ZC_EN	AUX_L_AMP_ZC_SEL		Reserved	Reserved		
0x61	AUX_R_CTRL	AUX_R_AMP_EN	AUX_R_AMP_MUT E_EN	AUX_R_AMP_RAMP _EN	AUX_R_AMP_ZC_EN	AUX_R_AN	MP_ZC_SEL	Reserved	Reserved		
0x62	MICBIAS_CTRL	MICBIAS2_EN	Reserved	MICBIAS	2_LEVEL	MICBIAS1_EN	Reserved	MICBIA	AS1_LVL		
0x63	MIC_1_CTRL	MIC_1_AMP_EN	MIC_1_AMP_MUT E_EN	Reserved	Reserved	MIC_1_AN	/IP_IN_SEL	Reserved	Reserved		
0x64	MIC_2_CTRL	MIC_2_AMP_EN	MIC_2_AMP_MUT E_EN	Reserved	Reserved	MIC_2_AN	MIC_2_AMP_IN_SEL		Reserved		
0x65	MIXIN_L_CTRL	MIXIN_L_AMP_E N	MIXIN_L_AMP_MU TE_EN	MIXIN_L_AMP_RAM P_EN	MIXIN_L_AMP_ZC_E N	MIXIN_L_MIX_EN	Reserved	Reserved	Reserved		
0x66	MIXIN_R_CTRL	MIXIN_R_AMP_E N	MIXIN_R_AMP_M UTE_EN	MIXIN_R_AMP_RAM P_EN	MIXIN_R_AMP_ZC_E N	MIXIN_R_MIX_EN	Reserved	Reserved	Reserved		
0x67	ADC_L_CTRL	ADC_L_EN	ADC_L_MUTE_EN	ADC_L_RAMP_EN	Reserved	Reserved	Reserved	Reserved	Reserved		
0x68	ADC_R_CTRL	ADC_R_EN	ADC_R_MUTE_EN	ADC_R_RAMP_EN	Reserved	Reserved	Reserved	Reserved	Reserved		
0x69	DAC_L_CTRL	DAC_L_EN	DAC_L_MUTE_EN	DAC_L_RAMP_EN	Reserved	Reserved	Reserved	Reserved	Reserved		
0x6A	DAC_R_CTRL	DAC_R_EN	DAC_R_MUTE_EN	DAC_R_RAMP_EN	Reserved	Reserved	Reserved	Reserved	Reserved		
0x6B	HP_L_CTRL	HP_L_AMP_EN	HP_L_AMP_MUTE _EN	HP_L_AMP_RAMP_E N	HP_L_AMP_ZC_EN	HP_L_AMP_OE	HP_L_AMP_MIN_GAI N_EN	Reserved	Reserved		
0x6C	HP_R_CTRL	HP_R_AMP_EN	HP_R_AMP_MUTE _EN	HP_R_AMP_RAMP_ EN	HP_R_AMP_ZC_EN	HP_R_AMP_OE	HP_R_AMP_MIN_GAI N_EN	Reserved	Reserved		
0x6D	LINE_CTRL	LINE_AMP_EN	LINE_AMP_MUTE _EN	LINE_AMP_RAMP_E N	Reserved	LINE_AMP_OE	LINE_AMP_MIN_GAI N_EN	Reserved	Reserved		
0x6E	MIXOUT_L_CTRL	MIXOUT_L_AMP_ EN	Reserved	Reserved	MIXOUT_L_SOFTMI X_EN	MIXOUT_L_MIX_EN	Reserved	Reserved	Reserved		
0x6F	MIXOUT_R_CTRL	MIXOUT_R_AMP _EN	Reserved	Reserved	MIXOUT_R_SOFTMI X_EN	MIXOUT_R_MIX_EN	Reserved	Reserved	Reserved		

Company confidential

Addr	Function	7	6	5	4	3	2	1	0		
				Mixed Sa	mple Mode Reç	gister					
0x84	MIXED_SAMPLE_M ODE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	24_48_MODE		
	Configuration Registers										
0x90	LDO_CTRL	LDO_EN	Reserved	LDO_LEVE	L_SELECT	Reserved	Reserved	Reserved	Reserved		
0x92	GAIN_RAMP_CTRL	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	GAIN_RA	MP_RATE		
0x93	MIC_CONFIG	Reserved	Reserved	Rese	erved	Reserved	DMIC_CLK_RATE	DMIC_SAMPLEPHA SE	DMIC_DATA_SEL		
0x94	PC_COUNT	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PC_RESYNC_AUTO	PC_FREERUN		
0x95	CP_VOL_THRESHO LD1	Reserved	Reserved CP_THRESH_VDD2								
0x96	CP_DELAY	CP_O	N_OFF		CP_TAU_DELAY			CP_FCONTROL			
0x97	CP_DETECTOR	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	CPDET	_DROP		
0x98	DAI_OFFSET				DA	I_OFFSET					
0x99	DIG_CTRL	DAC_R_INV	Reserved	Reserved	Reserved	DAC_L_INV	Reserved	Reserved	Reserved		
0x9A	ALC_CTRL2		ALC_	_RELEASE		ALC_ATTACK					
0x9B	ALC_CTRL3	ALC_INTEC	S_RELEASE	ALC_INTE	G_ATTACK	ALC_HOLD					
0x9C	ALC_NOISE	Reserved	Reserved			ALC_NOISE					
0x9D	ALC_TARGET_MIN	Reserved	Reserved			ALC_THRE	SHOLD_MIN				
0x9E	ALC_TARGET_MAX	Reserved	Reserved			ALC_THRE	SHOLD_MAX				
0x9F	ALC_GAIN_LIMITS		ALC_	GAIN_MAX			ALC_AT	TEN_MAX			
0XA0	ALC_ANA_GAIN_LI MITS	Reserved		ALC_ANA_GAIN_MAX			ALC_ANA_GAIN_MIN				
0xA1	ALC_ANTICLIP_CTR L	ALC_ANTICLIP_E N	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
0xA2	ALC_ANTICLIP_LEV EL	Reserved	ALC_ANTICLIP_LEVEL								
0xA3	ALC_OFFSET_AUT	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		

Datasheet Revision 3a 19 August 2014

Company confidential

Addr	Function	7	6	5	4	3	2	1	0	
	O_M_L									
0xA4	ALC_OFFSET_AUT O_U_L	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xA6	ALC_OFFSET_MAN _M_L	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xA7	ALC_OFFSET_MAN _U_L	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xA8	ALC_OFFSET_AUT O_M_R	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xA9	ALC_OFFSET_AUT O_U_R	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xAB	ALC_OFFSET_MAN _M_R	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xAC	ALC_OFFSET_MAN _U_R	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xAD	ALC_CIC_OP_LVL_ CTRL	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xAE	ALC_CIC_OP_LVL_ DATA	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
0xAF	DAC_NG_SETUP_TI ME	Reserved	Reserved	Reserved	Reserved	DAC_NG_RAMPDN_ RATE	DAC_NG_RAMPUP_ RATE	DAC_NG_S	ETUP_TIME	
0xB0	DAC_NG_OFF_THR ESHOLD	Reserved	Reserved	Reserved	Reserved	Reserved	DA	C_NG_OFF_THRESHO	DLD	
0xB1	DAC_NG_ON_THRE SHOLD	Reserved	Reserved	Reserved	Reserved	Reserved	DA	AC_NG_ON_THRESHO	LD	
0xB2	DAC_NG_CTRL	DAC_NG_EN	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
	Tone Generation & Beep Registers									
0xB4	TONE_GEN_CFG1	START_STOPN	Reserved	Reserved	DTMF_EN		DTMF	_REG		
0xB5	TONE_GEN_CFG2			GAIN		Reserved	Reserved	SWG	s_SEL	
0xB6	TONE_GEN_CYCLE S	Reserved	Reserved	Reserved	Reserved	Reserved		BEEP_CYCLES		

Datasheet Revision 3a 19 August 2014

Addr	Function	7	6	5	4	3	2	1	0		
0xB7	TONE_GEN_FREQ1 _L		FREQ1_L								
0xB8	TONE_GEN_FREQ1 _U		FREQ1_U								
0xB9	TONE_GEN_FREQ2 _L		FREQ2_L								
0xBA	TONE_GEN_FREQ2 _U	FREQ2_U									
0xBB	TONE_GEN_ON_PE R	Reserved	Reserved			BEEP_	ON_PER				
0xBC	TONE_GEN_OFF_P ER	Reserved	Reserved			BEEP_0	OFF_PER				
	System Controller Registers (2)										
0xE0	SYSTEM_STATUS	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	SC2_BUSY	SC1_BUSY		
0xFD	SYSTEM_ACTIVE	Reserved	SYSTEM_ACTIVE								

Company confidential

15.2 Status registers

Regi add	ster ress	Bit	Туре	Label	Default	Description
0x STA	02 ΓUS1	7:0	R	(reserved)	00000000	

Register address	Bit	Туре	Label	Default	Description
0x03 PLL_STATU	7:4	R	(reserved)	0000	
	3	R	PLL_BYPASS_A CTIVE	0	Indicates whether the PLL is in bypass mode 0 = not in bypass mode 1 = bypass mode
	2	R	PLL_MCLK_STA TUS	0	Indicates if the frequency on MCLK is greater than 1 MHz 0 = MCLK frequency 1 MHz or less 1 = MCLK frequency greater than 1 MHz
S	1	R	PLL_SRM_LOCK	0	Asserted if the SRM is locked to the reference signal 0 = SRM not locked to reference signal 1 = SRM locked to reference signal
	0	R	PLL_LOCK	0	Asserted if the PLL is locked to the reference clock 0 = PLL not locked to reference clock 1 = PLL locked to reference clock

Register address	Bit	Туре	Label	Default	Description
	7:6	R	(reserved)	00	
0x04 AUX_L_GAI N_STATUS	5:0	R	AUX_L_AMP_G AIN_STATUS	000000	Actual AUX_L amplifier gain <010001 = -54 dB 010010 = -52.5 dB 010011 = -51 dB continuing in +1.5 dB steps to 111110 = 13.5 dB 111111 = 15 dB

Register address	Bit	Туре	Label	Default	Description
	7:6	R	(reserved)	00	
0x05 AUX_R_GAI N_STATUS	5:0	R	AUX_R_AMP_G AIN_STATUS	000000	Actual AUX_R amplifier gain <010001 = -54 dB 010010 = -52.5 dB 010011 = -51 dB continuing in +1.5 dB steps to 111110 = 13.5 dB 111111 = 15 dB

Register address	Bit	Туре	Label	Default	Description
	7:3	R	(reserved)	00000	
0x06 MIC_1_GAI N_STATUS	2:0	R	MIC_1_AMP_GA IN_STATUS	001	Actual MIC_1 amplifier gain $000 = -6 \text{ dB}$ $001 = 0 \text{ dB}$ $010 = 6 \text{ dB}$ and continuing in +6 dB steps to $111 = 36 \text{ dB}$

Register address	Bit	Туре	Label	Default	Description
	7:3	R	(reserved)	00000	
0x07 MIC_2_GAI N_STATUS	2:0	R	MIC_2_AMP_GA IN_STATUS	001	Actual MIC_2 amplifier gain $000 = -6 \text{ dB}$ $001 = 0 \text{ dB}$ $010 = 6 \text{ dB}$ and continuing in +6 dB steps to $111 = 36 \text{ dB}$

Register address	Bit	Туре	Label	Default	Description
	7:4	R	(reserved)	0000	
0x08 MIXIN_L_GA IN_STATUS	3:0	R	MIXIN_L_AMP_ GAIN_STATUS	0000	Actual IN_L amplifier gain 0000 = -4.5 dB 0001 = -3 dB 0010 = -1.5 dB 0011 = 0 dB continuing in +1.5 dB steps to 1111 = 18 dB

Register address	Bit	Туре	Label	Default	Description
	7:4	R	(reserved)	0000	
0x09 MIXIN_R_G AIN_STATU S	3:0	R	MIXIN_R_AMP_ GAIN_STATUS	0000	Actual IN_R amplifier gain 0000 = -4.5 dB 0001 = -3 dB 0010 = -1.5 dB 0011 = 0 dB continuing in +1.5 dB steps to 1111 = 18 dB

Register address	Bit	Туре	Label	Default	Description
	7	R	(reserved)	0	
0x0A ADC_L_GAI N_STATUS	6:0	R	ADC_L_DIGITAL _GAIN_STATUS	0000000	Actual ADC_L digital gain 0000000 = -83.25 dB 0000001 = -82.50 dB 0000010 = -81.75 dB continuing in +0.75 dB steps to 1111110 = 11.25 dB 1111111 = 12 dB Note: 1101111 = 0 dB

Register address	Bit	Туре	Label	Default	Description
	7	R	(reserved)	0	
					Actual ADC_R digital gain
0x0B ADC_R_GAI N_STATUS	6:0	R	ADC_R_DIGITAL _GAIN_STATUS	0000000	0000000 = -83.25 dB 0000001 = -82.50 dB 0000010 = -81.75 dB continuing in +0.75 dB steps to 1111110 = 11.25 dB 1111111 = 12 dB Note: 1101111 = 0 dB

Register address	Bit	Туре	Label	Default	Description
	7	R	(reserved)	0	
0x0C					Actual DAC_L digital gain 0000000 to 0000111 = mute 0001000 = -77.25 dB 0001001 = -76.50 dB
DAC_L_GAI N_STATUS	6:0	R	DAC_L_DIGITAL _GAIN_STATUS	0000000	0001010 = -75.75 dB continuing in +0.75 dB steps to 1111110 = 11.25 dB 1111111 = 12.00 dB Note: 1101111 = 0 dB

Register address	Bit	Туре	Label	Default	Description
	7	R	(reserved)	0	
0x0D DAC_R_GAI N_STATUS	6:0	R	DAC_R_DIGITAL _GAIN_STATUS	0000000	Actual DAC_R digital gain 0000000 to 0000111 = mute 0001000 = -77.25 dB 0001001 = -76.50 dB 0001010 = -75.75 dB continuing in +0.75 dB steps to 1111110 = 11.25 dB 1111111 = 12.00 dB Note: 1101111 = 0 dB

Register address	Bit	Туре	Label	Default	Description
	7:6	R	(reserved)	00	
0x0E HP_L_GAIN _STATUS	5:0	R	HP_L_AMP_GAI N_STATUS	000000	Actual HP_L amplifier gain 000000 = -57 dB 000001 = -56 dB 000010 = -55 dB continuing in +1 dB steps to 111110 = 5 dB 111111 = 6 dB
					Note: 111001 = 0 dB

Register address	Bit	Туре	Label	Default	Description
	7:6	R	(reserved)	00	
0x0F HP_R_GAIN _STATUS	5:0	R	HP_R_AMP_GAI N_STATUS	000000	Actual HP_R amplifier gain 000000 = -57 dB 000001 = -56 dB 000010 = -55 dB continuing in +1 dB steps to 111110 = 5 dB 111111 = 6 dB Note: 111001 = 0 dB

Register address	Bit	Туре	Label	Default	Description
	7:6	R	(reserved)	00	
0x10 LINE_GAIN_ STATUS	5:0	R	LINE_AMP_GAI N_STATUS	000000	Actual LINE amplifier gain 000000 = -48 dB 000001 = -47 dB continuing in +1 dB steps to 111110 = 14 dB 111111 = 15 dB Note: 110000 = 0 dB

Company confidential

15.3 System initialisation registers

Register address	Bit	Туре	Label	Default	Description
	7	R/W	CIF_REG_SOFT _RESET	0	Software reset that returns all the registers back to the default. Writing to this bit causes all the registers to reset
	6:1	R/W	(reserved)	000000	
0x1D CIF_CTRL	0	R/W	CIF_I2C_WRITE _MODE	0	Mode of operation for the I2C interface 0 = Page Mode 1 = Repeat Mode Note: Page Mode supports both Page Mode and Repeat Mode reads and writes. Repeat Mode only supports Repeat Mode reads and writes.

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x21	5:4	R/W	DAI_R_SRC	01	Data select for the DAI right output stream 00 = ADC left 01 = ADC right 10 = DAI input left data 11 = DAI input right data
DIG_ROUTI NG_DAI	3:2	R/W	(reserved)	00	
	1:0	R/W	DAI_L_SRC	00	Data select for the DAI left output stream 00 = ADC left 01 = ADC right 10 = DAI input left data 11 = DAI input right data

Register address	Bit	Туре	Label	Default	Description
	7:4	R/W	(reserved)	0000	
0x22 SR	3:0	R/W	SR	1010	Sample rate control 0001 = 8 kHz 0010 = 11.025 kHz 0011 = 12 kHz 0100 = reserved 0101 = 16 kHz 0110 = 22 kHz 0111 = 24 kHz 1000 = reserved 1001 = 32 kHz 1010 = 44.1 kHz (Note 37) 1011 = 48 kHz 1110 = 88.2 kHz 1111 = 96 kHz

Note 37 b1011 (48kHz) is the only valid setting when using 24-48 mode (24_48_MODE = 1)

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	1	
	6	R/W	(reserved)	0	
	5	R/W	VMID_FAST_DIS CHARGE	0	VMID fast discharge enable: 0 = low noise slow discharge mode 1 = high noise fast discharge mode
0x23 REFERENC ES	4	R/W	VMID_FAST_CH ARGE	0	VMID fast charge enable: 0 = low noise slow charge mode 1 = high noise fast charge mode
	3	R/W	BIAS_EN	0	Master bias enable: 0 = disabled 1 = enabled
	2	R/W	(reserved)	0	
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7:5	R/W	(reserved)	000	
0x24 PLL_FRAC_ TOP	4:0	R/W	PLL_FBDIV_FRA C_TOP	00000	PLL fractional division value (top bits). The full PLL fractional division value is a concatenation of these bits (MSB) and PLL_FBDIV_FRAC_BOT (LSB)

Register address	Bit	Туре	Label	Default	Description
0x25 PLL_FRAC_ BOT	7:0	R/W	PLL_FBDIV_FRA C_BOT	00000000	PLL fractional division value (bottom bits). The full PLL fractional division value is a concatenation of PLL_FBDIV_FRAC_TOP (MSB) and these bits (LSB)

Register address	Bit	Туре	Label	Default	Description
0x26	7	R/W	(reserved)	0	
PLL_INTEG ER	6:0	R/W	PLL_FBDIV_INT EGER	0100000	PLL integer division value

Register address	Bit	Туре	Label	Default	Description
	7	R/W	PLL_EN	0	PLL enable: 0 = system clock is MCLK 1 = system clock is PLL output
	6	R/W	PLL_SRM_EN	0	PLL sample rate tracking enable: 0 = SRM disabled 1 = SRM enabled
0x27	5	R/W	PLL_32K_MODE	0	Sets the PLL into 32 kHz mode: 0 = disabled 1 = enabled
PLL_CTRL	4	R/W	PLL_MCLK_SQR _EN	0	Enables the squarer at the MCLK: 0 = disabled 1 = enabled
	3:2	R/W	PLL_INDIV	11	Sets the input clock range for the PLL: 00 = 2 - 10 MHz 01 = 10 - 20 MHz 10 = 20 - 40 MHz 11 = 40 - 80 MHz
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAI_CLK_EN	0	DAI master mode enable: 0 = slave mode (BCLK/WCLK inputs) 1 = master mode (BCLK/WCLK outputs)
	6:4	R/W	(reserved)	000	
0x28	3	R/W	DAI_WCLK_POL	0	DAI word clock polarity: 0 = normal polarity 1 = inverted polarity
DAI_CLK_M ODE	2	R/W	DAI_CLK_POL	0	DAI bit clock polarity: 0 = normal 1 = inverted
,	1:0	R/W	DAI_BCLKS_PE R_WCLK	01	DAI master mode BCLK number per WCLK period: 00 = BCLK = 32 01 = BCLK = 64 10 = BCLK = 128 11 = BCLK = 256

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAI_EN	0	DAI enable: 0 = disabled 1 = enabled
	6	R/W	DAI_OE	0	DAI output enable: 0 = DATOUT pin is high impedence 1 = DATOUT pin is driven when required
	5	R/W	DAI_TDM_MOD E_EN	0	DAI TDM mode enable: 0 = DAI normal mode 1 = DAI TDM mode
0x29 DAI_CTRL	4	R/W	DAI_MONO_MO DE_EN	0	DAI mono mode enable: 0 = DAI stereo mode 1 = DAI mono mode Note: DAI mono mode can only be enabled when the DSP data format = DSP Mode (DAI_FORMAT = 11)
	3:2	R/W	DAI_WORD_LE NGTH	10	DAI data word length: 00 = 16 bits per channel 01 = 20 bits per channel 10 = 24 bits per channel 11 = 32 bits per channel
	1:0	R/W	DAI_FORMAT	00	DAI data format: 00 = I2S mode 01 = left justified mode 10 = right justified mode 11 = DSP mode

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAC_R_MONO	0	When asserted, the DAI right input stream is replaced with a mono mix of left and right 0 = Right input stream 1 = Mono mix of left and right input streams
	6	R/W	(reserved)	0	3p
0x2A	5:4	R/W	DAC_R_SRC	11	Data select to the DAC_R path: 00 = ADC left output 01 = ADC right output 10 = Determined by DAC_L_MONO (bit [3] of this register) 11 = Determined by DAC_R_MONO (bit [7] of this register) Note: The beep generator is omited from the signal path if this is set to '00' or '01'
DIG_ROUTI NG_DAC	3	R/W	DAC_L_MONO	0	When asserted, the DAI left input stream is replaced with a mono mix of left and right 0 = Left input stream 1 = Mono mix of left and right input streams
	2	R/W	(reserved)	0	
	1:0	R/W	DAC_L_SRC	10	Data select to the DAC_L path: 00 = ADC left output 01 = ADC right output 10 = Determined by DAC_L_MONO (bit [3] of this register) 11 = Determined by DAC_R_MONO (bit [7] of this register) Note: The beep generator is omited from the signal path if this is set to '00' or '01'

Register address	Bit	Туре	Label	Default	Description
	7	R/W	ALC_R_EN	0	Enables the ALC operation on the right ADC channel: 0 = disabled 1 = enabled
	6	R/W	(reserved)	0	
	5	R	ALC_CALIB_OV ERFLOW	0	Offset overflow during calibration 0 = no offset overflow 1 = offset overflow
	4	R/W	ALC_AUTO_CAL IB_EN	0	Automatic calibration enable (self clearing bit) 0 = disabled 1 = enabled
0x2B ALC_CTRL1	3	R/W	ALC_L_EN	0	Enables the ALC operation on the left ADC channel: 0 = disabled 1 = enabled
	2	R/W	ALC_CALIB_MO DE	0	Calibration mode 0 = Automatic calibration 1 = Manual calibration
	1	R/W	ALC_SYNC_MO DE	0	Selects the ALC Operation Mode: 0 = Full digital gain solution 1 = Mixed digital/analogue gain solution
	0	R/W	ALC_OFFSET_E N	0	Enable DC Offset cancellation: 0 = disabled 1 = enabled

Company confidential

15.4 Input gain/select filter registers

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x30 AUX_L_GAI N	5:0	R/W	AUX_L_AMP_G AIN	110101	Gain setting for the AUX left amplifier (1.5 dB step): <010001 = -54 dB 010010 = -52.5 dB 010011 = -51 dB continuing in +1.5 dB steps to 111110 = 13.5 dB 111111 = 15 dB Note: 110101 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x31 AUX_R_GAI N	5:0	R/W	AUX_R_AMP_G AIN	110101	Gain setting for the AUX right amplifier (1.5 dB step): <010001 = -54 dB 010010 = -52.5 dB 010011 = -51 dB continuing in +1.5 dB steps to 111110 = 13.5 dB 111111 = 15 dB Note: 110101 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DMIC_L_EN	0	Enable the left DMIC input: 0 = disabled 1 = enabled
	6	R/W	(reserved)	0	
	5:4	R/W	(reserved)	00	
0x32 MIXIN_L_SE LECT	3	R/W	MIXIN_R	0	0 = MIXIN_R not mixed in 1 = MIXIN_R mixed in
LLOT	2	R/W	MIC2_SEL	0	0 = MIC2 input not mixed in 1 = MIC2 input mixed in
	1	R/W	MIC1_SEL	0	0 = MIC1 input not mixed in 1 = MIC1 input mixed in
	0	R/W	AUX_L_SEL	0	0 = AUX_L input not mixed in 1 = AUX_L input mixed in

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DMIC_R_EN	0	Enable the right DMIC input: 0 = disabled 1 = enabled
	6	R/W	(reserved)	0	
	5:4	R/W	(reserved)	00	
0x33 MIXIN_R_S ELECT	3	R/W	MIXIN_L_SEL	0	0 = MIXIN_L input not mixed in 1 = MIXIN_L input mixed in
ELLOT	2	R/W	MIC1_SEL	0	0 = MIC_1 input not mixed in 1 = MIC_1 input mixed in
	1	R/W	MIC2_SEL	0	0 = MIC_2 input not mixed in 1 = MIC_2 input mixed in
	0	R/W	AUX_R_SEL	0	0 = AUX_R input not mixed in 1 = AUX_R input mixed in

Register address	Bit	Туре	Label	Default	Description
	7:4	R/W	(reserved)	0000	
0x34 MIXIN_L_GA IN	3:0	R/W	MIXIN_L_AMP_ GAIN	0011	Gain setting for the IN left amplifier (1.5 dB step): 0000 = -4.5 dB 0001 = -3 dB 0010 = -1.5 dB 0011 = 0 dB continuing in +1.5 dB steps to 1111 = 18 dB

Register address	Bit	Туре	Label	Default	Description
	7:4	R/W	(reserved)	0000	
0x35 MIXIN_R_G AIN	3:0	R/W	MIXIN_R_AMP_ GAIN	0011	Gain setting for the IN right amplifier (1.5 dB step): 0000 = -4.5 dB 0001 = -3 dB 0010 = -1.5 dB 0011 = 0 dB continuing in +1.5 dB steps to 1111 = 18 dB

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
0x36 ADC_L_GAI N	6:0	R/W	ADC_L_DIGITAL _GAIN	1101111	ADC left digital gain (0.75 dB step): 0000000 = -83.25 dB 0000001 = -82.50 dB 0000010 = -81.75 dB continuing in +0.75 dB steps to 1111110 = 11.25 dB 1111111 = 12 dB Note: 1101111 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
0x37 ADC_R_GAI N	6:0	R/W	ADC_R_DIGITAL _GAIN	1101111	ADC right digital gain (0.75 dB step): 0000000 = -83.25 dB 0000001 = -82.50 dB 0000010 = -81.75 dB continuing in +0.75 dB steps to 1111110 = 11.25 dB 1111111 = 12 dB Note: 1101111 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7	R/W	ADC_HPF_EN	1	ADC high pass filter enable: 0 = disabled 1 = enabled
	6	R/W	(reserved)	0	
	5:4	R/W	ADC_AUDIO_HP F_CORNER	00	Cut-off frequency at the 3 dB for the High Pass Filter at 48 kHz (for other frequencies see Table 30): 00 = 2 Hz 01 = 4 Hz 10 = 8 Hz 11 = 16 Hz
0x38 ADC_FILTE RS1	3	R/W	ADC_VOICE_EN	0	ADC voice filter enable: 0 = disabled 1 = enabled
	2:0	R/W	ADC_VOICE_HP F_CORNER	000	Cutoff frequency at the 3 dB for the Voice Filter at 8 kHz (for other frequencies see Table 31): 000 = 2.5 Hz 001 = 25 Hz, 010 = 50 Hz 011 = 100 Hz 100 = 150 Hz 101 = 200 Hz 110 = 300 Hz 111 = 400 Hz

Register address	Bit	Туре	Label	Default	Description
	7:3	R/W	(reserved)	00000	
0x39 MIC_1_GAI N	2:0	R/W	MIC_1_AMP_GA IN	001	Gain setting for the MIC left amplifier (6 dB step): 000 = -6 dB 001 = 0 dB 010 = 6 dB continuing in 6 dB steps to 111 = 36 dB Note: This setting is ignored if the ALC is enabled (ALC_R_EN or ALC_L_EN= 1) and the ALC is running in Syncronised Mode (ALC_SYNC_MODE = 1)

Register address	Bit	Туре	Label	Default	Description
	7:3	R/W	(reserved)	00000	
0x3A MIC_2_GAI N	2:0	R/W	MIC_2_AMP_GA IN	001	Gain setting for the MIC right amplifier (6 dB step): 000 = -6 dB 001 = 0 dB 010 = 6 dB continuing in 6 dB steps to 111 = 36 dB Note: This setting is ignored if the ALC is enabled (ALC_R_EN or ALC_L_EN= 1) and the ALC is running in Syncronised Mode (ALC_SYNC_MODE = 1)

Company confidential

15.4.1 Output Gain-Filter Registers

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAC_SOFTMUT E_EN	0	DAC soft mute enable on both channels: 0 = disabled 1 = enabled
0x40 DAC_FILTE RS5	6:4	R/W	DAC_SOFTMUT E_RATE	000	Softmute gain update rate (samples per 0.1875 dB): 000 = 1 001 = 2 010 = 4 011 = 8 100 = 16 101 = 32 110 = 64 111 = reserved
	3:0	R/W	(reserved)	0000	

Register address	Bit	Туре	Label	Default	Description
0x41	7:4	R/W	DAC_EQ_BAND 2	1000	Gain setting for the DAC 5-Band EQ band 2 (1.5 dB steps). 0000 = -10.5 dB 0001 = -9 dB continuing in +1.5 dB steps to 1110 = 10.5 dB 1111 = 12 dB Note: 0111 = 0 dB Note: 1000 = 1.5 dB (default)
DAC_FILTE RS2	3:0	R/W	DAC_EQ_BAND 1	1000	Gain setting for the DAC 5-Band EQ band 1 (1.5 dB steps): 0000 = -10.5 dB 0001 = -9 dB continuing in +1.5 dB steps to 1110 = 10.5 dB 1111 = 12 dB Note: 0111 = 0 dB Note: 1000 = 1.5 dB (default)

Register address	Bit	Туре	Label	Default	Description
0x42	7:4	R/W	DAC_EQ_BAND 4	1000	Gain setting for the DAC 5-Band EQ band 4 (1.5 dB steps). 0000 = -10.5 dB 0001 = -9 dB continuing in +1.5 dB steps to 1110 = 10.5 dB 1111 = 12 dB Note: 0111 = 0 dB Note: 1000 = 1.5 dB (default)
DAC_FILTE RS3	3:0	R/W	DAC_EQ_BAND 3	1000	Gain setting for the DAC 5-Band EQ band 3 (1.5 dB steps): 0000 = -10.5 dB 0001 = -9 dB continuing in +1.5 dB steps to 1110 = 10.5 dB 1111 = 12 dB Note: 0111 = 0 dB Note: 1000 = 1.5 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAC_EQ_EN	0	DAC 5-band equaliser enable: 0 = disabled 1 = enabled
	6:4	R/W	(reserved)	000	
0x43 DAC_FILTE RS4	3:0	R/W	DAC_EQ_BAND 5	1000	Gain setting for the DAC 5-Band EQ band 5 (1.5 dB steps): 0000 = -10.5 dB 0001 = -9 dB continuing in +1.5 dB steps to 1110 = 10.5 dB 1111 = 12 dB Note: 0111 = 0 dB Note: 1000 = 1.5 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAC_HPF_EN	1	DAC High Pass filter enable: 0 = disabled 1 = enabled
	6	R/W	(reserved)	0	
	5:4	R/W	DAC_AUDIO_HP F_CORNER	00	Cutoff frequency at the 3 dB for the High Pass Filter at 48 kHz (for other frequencies see Table 30): 00 = 2 Hz 01 = 4 Hz 10 = 8 Hz 11 = 16 Hz
0x44 DAC_FILTE RS1	3	R/W	DAC_VOICE_EN	0	DAC voice filter enable: 0 = disabled 1 = enabled
	2:0	R/W	DAC_VOICE_HP F_CORNER	000	Cutoff frequency at the 3 dB for the Voice Filter at 8 kHz (for other frequencies see Table 31): 000 = 2.5 Hz 001 = 25 Hz 010 = 50 Hz 011 = 100 Hz 100 = 150 Hz 101 = 200 Hz 110 = 300 Hz 111 = 400 Hz

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
0x45 DAC_L_GAI N	6:0	R/W	DAC_L_DIGITAL _GAIN	1101111	DAC left digital gain (0.75 dB step): 0000000 to 0000111 = mute 0001000 = -77.25 dB 0001001 = -76.50 dB 0001010 = -75.75 dB continuing in +0.75 dB steps to 1111110 = 11.25 dB 1111111 = 12.00 dB Note: 1101111 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
0x46 DAC_R_GAI N	6:0	R/W	DAC_R_DIGITAL _GAIN	1101111	DAC right digital gain (0.75 dB step): 0000000 to 0000111 = mute 0001000 = -77.25 dB 0001001 = -76.50 dB 0001010 = -75.75 dB continuing in +0.75 dB steps to 1111110 = 11.25 dB 1111111 = 12.00 dB Note: 1101111 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
0x47 CP_CTRL	7	R/W	CP_EN	0	Charge pump enable: 0 = disabled 1 = enabled
	6	R/W	CP_SMALL_SWI TCH_FREQ_EN	1	Charge pump low-load low-power mode enable: 0 = disabled 1 = enabled
	5:4	R/W	CP_MCHANGE	10	Charge pump tracking mode select: 00 = voltage level is controlled by CP_MOD 01 = voltage level is controlled by the output PGA gain setting 10 = voltage level is controlled by the DAC signal level 11 = voltage level is controlled by the output signal magnitude
	3:2	R/W	CP_MOD	00	Charge pump manual mode level control: 00 = standby 01 = reserved 10 = CPVDD/2 11 = CPVDD/1
	1:0	R/W	CP_ANALOGUE _LVL	01	Charge pump analogue feedback control mode: 00 = no feedback 01 = low voltage indicator boosts charge pump 10 = low voltage indicator restarts charge pump cycle 11 = Reserved

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x48 HP_L_GAIN	5:0	R/W	HP_L_AMP_GAI N	111001	Headphone left amplifier gain (1 dB step): 000000 = -57 dB 000001 = -56 dB 000010 = -55 dB continuing in +1 dB steps to 111110 = 5 dB 111111 = 6 dB Note: 111001 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x49 HP_R_GAIN	5:0	R/W	HP_R_AMP_GAI N	111001	Headphone right amplifier gain (1 dB step): 000000 = -57 dB 000001 = -56 dB 000010 = -55 dB continuing in +1 dB steps to 111110 = 5 dB 111111 = 6 dB Note: 111001 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x4A LINE_GAIN	5:0	R/W	LINE_AMP_GAI N	110000	LINE amplifier gain (1 dB step) 000000 = -48 dB 000001 = -47 dB continuing in +1 dB steps to 111110 = 14 dB 111111 = 15 dB Note: 110000 = 0 dB (default)

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
0x4B MIXOUT_L_ SELECT	6	R/W	MIXIN_R_INV	0	MIXIN R Inverted control 0 = Inverted MIXIN R not selected 1 = Inverted MIXIN R selected
	5	R/W	MIXIN_L_INV	0	MIXIN L Inverted control 0 = Inverted MIXIN L not selected 1 = Inverted MIXIN L selected
	4	R/W	AUX_L_INV	0	AUX L Inverted control 0 = Inverted AUX_L not selected 1 = Inverted AUX_Lselected
	3	R/W	DAC_L	0	DAC L control 0 = DAC_L not selected 1 = DAC_L selected
	2	R/W	MIXIN_R	0	MIXIN R control 0 = MIXIN_R not selected 1 = MIXIN_R selected
	1	R/W	MIXIN_L	0	MIXIN L control 0 = MIXIN_L not selected 1 = MIXIN_Lselected
	0	R/W	AUX_L	0	AUX_L control 0 = AUX_L not selected 1 = AUX_L selected

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
0x4C MIXOUT_R_ SELECT	6	R/W	MIXIN_L_INV	0	MIXIN L Inverted control 0 = Inverted MIXIN L not selected 1 = Inverted MIXIN L selected
	5	R/W	MIXIN_R_INV	0	MIXIN R Inverted control 0 = Inverted MIXIN R not selected 1 = Inverted MIXIN R selected
	4	R/W	AUX_R_INV	0	AUX R Inverted control 0 = Inverted AUX_R not selected 1 = Inverted AUX_R selected
	3	R/W	DAC_R	0	DAC R control 0 = DAC_R not selected 1 = DAC_R selected
	2	R/W	MIXIN_L	0	MIXIN L control 0 = MIXIN_L not selected 1 = MIXIN_L selected
	1	R/W	MIXIN_R	0	MIXIN R control 0 = MIXIN_R not selected 1 = MIXIN_R selected
	0	R/W	AUX_R	0	AUX_R control 0 = AUX_R not selected 1 = AUX_R selected

Company confidential

15.4.2 System Controller Registers

Register address	Bit	Туре	Label	Default	Description
	7	R/W	ADC_R	0	Preconfigured system mode - ADC_R Control 0 = ADC_R not used 1 = use ADC R
	6	R/W	ADC_L	0	Preconfigured system mode - ADC_L Control 0 = ADC_L not used 1 = use ADC L
	5	R/W	MIXIN_R	0	Preconfigured system mode – IN_R Control 0 = IN R amplifier not used 1 = use IN_R amplifer
	4	R/W	MIXIN_L	0	Preconfigured system mode – IN_L Control 0 = IN L amplifier not used 1 = use IN_L amplifer
0x50 SYSTEM_M ODES_INPU T	3	R/W	MIC_2	0	Preconfigured system mode – MIC_2 Control 0 = MIC 2 amplifier not used 1 = use MIC 2 amplifier
	2	R/W	MIC_1	0	Preconfigured system mode – MIC_1 Control 0 = MIC 1 amplifier not used 1 = use MIC 1 amplifier
	1	R/W	(Reserved)	0	
	0	R/W	MODE_SUBMIT	0	System Controller 2 activation control 0 = ADC_mode and DAC_mode inactive 1 = ADC_mode and DAC_mode active Note: this register bit is a duplicate of MODE_SUBMIT (reg 0x51[0]). Either register can be used to activate System Controller 2.
					Note: This bit is self-clearing.

Register address	Bit	Туре	Label	Default	Description
	7:3	R/W	DAC_R	0	Preconfigured system mode – DAC_R Control 0 = DAC_R not used 1 = use DAC R
	6	R/W	DAC_L	0	Preconfigured system mode – DAC_L Control 0 = DAC_L not used 1 = use DAC L
	5	R/W	HP_R	0	Preconfigured system mode – HP_R Control 0 = HP_R not used 1 = use HP_R amplifier
	4	R/W	HP_L	0	Preconfigured system mode – HP_L Control 0 = HP_L not used 1 = use HP_L amplifier
0x51 SYSTEM_M ODES_OUT	3	R/W	LINE	0	Preconfigured system mode – LINE Control 0 = LINE not used 1 = use LINE amplifier
PUT	2	R/W	AUX_R	0	Preconfigured system mode – AUX_R Control 0 = AUX_R amplifier not used 1 = use AUX_R amplifier
	1	R/W	AUX_L	0	Preconfigured system mode – AUX_L Control 0 = AUX_L amplifier not used 1 = use AUX_L amplifier
	0	R/W	MODE_SUBMIT	0	System Controller 2 activation control 0 = ADC_mode and DAC_mode inactive 1 = ADC_mode and DAC_mode active Note: this register bit is a duplicate of MODE_SUBMIT (reg 0x51[0]). Either register can be used to activate System Controller 2. Note: This bit is self-clearing.

Company confidential

15.4.3 Control Registers

Register address	Bit	Туре	Label	Default	Description
	7	R/W	AUX_L_AMP_EN	0	AUX_L amplifier enable: 0 = disabled 1 = enabled
	6	R/W	AUX_L_AMP_M UTE_EN	1	AUX_L amplifier mute enable: 0 = disabled 1 = enabled
	5	R/W	AUX_L_AMP_RA MP_EN	0	AUX_L amplifier gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
0x60 AUX_L_CTR L	4	R/W	AUX_L_AMP_ZC _EN	0	AUX_L amplifier zero cross gain update mode enable: 0 = disabled 1 = enabled
	3:2	R/W	AUX_L_AMP_ZC _SEL	01	Selects where the zero cross detection on the AUX_L input is measured: 00 = Input of AUX_L amplifier 01 = input of AUX_L amplifier if gain ≤ 4.5 dB otherwise on the output 10 = Neither (no zero cross possible) 11 = Output of AUX_L amplifier
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	AUX_R_AMP_E N	0	AUX_R amplifier enable: 0 = disabled 1 = enabled
	6	R/W	AUX_R_AMP_M UTE_EN	1	AUX_R amplifier mute enable: 0 = disabled 1 = enabled
	5	R/W	AUX_R_AMP_R AMP_EN	0	AUX_R amplifier gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
0x61 AUX_R_CT RL	4	R/W	AUX_R_AMP_Z C_EN	0	AUX_R amplifier zero cross gain update mode enable: 0 = disabled 1 = enabled
	3:2	R/W	AUX_R_AMP_Z C_SEL	01	Selects where the zero cross detection on the AUX_R input is measured: 00 = Input of AUX_R amplifier 01 = input of AUX_R amplifier if gain ≤ 4.5 dB otherwise on the output 10 = Neither (no zero cross possible) 11 = Output of AUX_R amplifier
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	MICBIAS2_EN	0	Microphone 2 bias enable: 0 = Disable 1 = Enable
	6	R/W	(reserved)	0	
0x62	5:4	R/W	MICBIAS2_LEVE L	01	Microphone 2 bias level 00 = 1.6 V 01 = 2.2 V 10 = 2.5 V 11 = 3.0 V
MICBIAS_C TRL	3	R/W	MICBIAS1_EN	0	Microphone 1 bias enable: 0 = Disable 1 = Enable
	2	R/W	(reserved)	0	
	1:0	R/W	MICBIAS1_LEVE L	01	Microphone 1 bias level 00 = 1.6 V 01 = 2.2 V 10 = 2.5 V 11 = 3.0 V

Register address	Bit	Туре	Label	Default	Description
	7	R/W	MIC_1_AMP_EN	0	MIC_1 amplifier enable: 0 = disabled 1 = enabled
	6	R/W	MIC_1_AMP_MU TE_EN	1	MIC_1 amplifier mute enable: 0 = amplifier unmuted 1 = amplifier muted
0x63	5	R/W	(reserved)	0	
MIC_1_CTR L	4	R/W	(reserved)	0	
	3:2	R/W	MIC_1_AMP_IN_ SEL	00	MIC_1 input source select: 00 = differential 01 = MIC_1_P single-ended 10 = MIC_1_N single-ended 11 = reserved
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	MIC_2_AMP_EN	0	MIC_2 amplifier enable: 0 = disabled 1 = enabled
	6	R/W	MIC_2_AMP_MU TE_EN	1	MIC_2 amplifier mute enable: 0 = amplifier unmuted 1 = amplifier muted
0x64 MIC_2_CTR	5	R/W	(reserved)	0	
L	4	R/W	(reserved)	0	
	3:2	R/W	MIC_2_AMP_IN_ SEL	00	MIC_2 input source select: 00 = differential 01 = MIC_2_P single-ended 10 = MIC_2_N single-ended 11 = reserved
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	MIXIN_L_AMP_E N	0	MIXIN_L amplifier enable: 0 = disabled 1 = enabled
	6	R/W	MIXIN_L_AMP_ MUTE_EN	1	MIXIN_L amplifier mute enable: 0 = disabled 1 = enabled
0x65	5	R/W	MIXIN_L_AMP_ RAMP_EN	0	MIXIN_L amplifier gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
MIXIN_L_CT RL	4	R/W	MIXIN_L_AMP_Z C_EN	0	MIXIN_L amplifier zero cross gain update mode enable: 0 = disabled 1 = enabled
	3	R/W	MIXIN_L_MIX_E N	0	MIXIN_L mixer enable. When disabled all inputs are deselected: 0 = mixer disabled 1 = mixer enabled
	2	R/W	(reserved)	0	
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	MIXIN_R_AMP_ EN	0	MIXIN_R amplifier enable: 0 = disabled 1 = enabled
	6	R/W	MIXIN_R_AMP_ MUTE_EN	1	MIXIN_R amplifier mute enable: 0 = disabled 1 = enabled
0x66	5	R/W	MIXIN_R_AMP_ RAMP_EN	0	MIXIN_R amplifier gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
MIXIN_R_C TRL	4	R/W	MIXIN_R_AMP_ ZC_EN	0	MIXIN_R amplifier zero cross gain update mode enable: 0 = disabled 1 = enabled
	3	R/W	MIXIN_R_MIX_E N	0	MIXIN_R mixer enable. When disabled all inputs are deselected: 0 = mixer disabled 1 = mixer enabled
	2	R/W	(reserved)	0	
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	ADC_L_EN	0	ADC_L enable: 0 = disabled 1 = enabled
0x67	6	R/W	ADC_L_MUTE_E N	1	ADC_L mute enable: 0 = disabled 1 = enabled
ADC_L_CTR	5	R/W	ADC_L_RAMP_ EN	0	ADC_L digital gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
	4:2	R/W	(reserved)	000	
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	ADC_R_EN	0	ADC_R enable: 0 = disabled 1 = enabled
0x68	6	R/W	ADC_R_MUTE_ EN	1	ADC_R mute enable: 0 = disabled 1 = enabled
ADC_R_CT RL	5	R/W	ADC_R_RAMP_ EN	0	ADC_R digital gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
	4:2	R/W	(reserved)	000	
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAC_L_EN	0	DAC_L enable: 0 = disabled 1 = enabled
	6	R/W	DAC_L_MUTE_E N	1	DAC_L mute enable: 0 = disabled 1 = enabled
0x69 DAC_L_CTR L	5	R/W	DAC_L_RAMP_ EN	0	DAC_L digital gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
	4	R/W	(reserved)	0	
	3	R/W	(reserved)	1	
	2:0	R/W	(reserved)	000	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAC_R_EN	0	DAC_R enable: 0 = disabled 1 = enabled
6 0x6A	6	R/W	DAC_R_MUTE_ EN	1	DAC_R mute enable: 0 = disabled 1 = enabled
DAC_R_CT RL	5	R/W	DAC_R_RAMP_ EN	0	DAC_R digital gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
	4	R/W	(reserved)	0	
	3:0	R/W	(reserved)	000	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	HP_L_AMP_EN	0	HP_L amplifier enable: 0 = disabled 1 = enabled
	6	R/W	HP_L_AMP_MU TE_EN	1	HP_L amplifier mute enable: 0 = disabled 1 = enabled
	5	R/W	HP_L_AMP_RA MP_EN	0	HP_L amplifier gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
0x6B HP_L_CTRL	4	R/W	HP_L_AMP_ZC_ EN	0	HP_L amplifier zero cross gain update mode enable: 0 = disabled 1 = enabled
	3	R/W	HP_L_AMP_OE	0	HP_L amplfier output enable: 0 = output is high impedence 1 = output is driven
	2	R/W	HP_L_AMP_MIN _GAIN_EN	0	HP_L amplifiers gain held at the minimum value: 0 = normal gain operation 1 = minimum gain
	1:0	R/W	(reserved)	01	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	HP_R_AMP_EN	0	HP_R amplifier enable: 0 = disabled 1 = enabled
	6	R/W	HP_R_AMP_MU TE_EN	1	HP_R amplifier mute enable: 0 = disabled 1 = enabled
	5	R/W	HP_R_AMP_RA MP_EN	0	HP_R amplifier gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
0x6C HP_R_CTRL	4	R/W	HP_R_AMP_ZC_ EN	0	HP_R amplifier zero cross gain update mode enable: 0 = disabled 1 = enabled
	3	R/W	HP_R_AMP_OE	0	HP_R amplfier output enable: 0 = output is high impedence 1 = output is driven
	2	R/W	HP_R_AMP_MIN _GAIN_EN	0	HP_R amplifiers gain held at the minimum value: 0 = normal gain operation 1 = minimum gain
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	LINE_AMP_EN	0	LINE amplifier enable: 0 = disabled 1 = enabled
	6	R/W	LINE_AMP_MUT E_EN	1	LINE amplifier mute enable: 0 = disabled 1 = enabled
0x6D	5	R/W	LINE_AMP_RAM P_EN	0	LINE amplifier gain ramping enable (overrides zero crossing): 0 = disabled 1 = enabled
LINE_CTRL	4	R/W	(reserved)	0	
	3	R/W	LINE_AMP_OE	0	LINE amplfier output enable: 0 = output is high impedence 1 = output is driven
	2	R/W	LINE_AMP_MIN _GAIN_EN	0	LINE amplifiers gain held at the minimum value: 0 = normal gain operation 1 = minimum gain
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	MIXOUT_L_AMP _EN	0	MIXOUT_L mixer amp enable: 0 = disabled 1 = enabled
	6	R/W	(reserved)	0	
	5	R/W	(reserved)	0	
0x6E MIXOUT_L_ CTRL	4	R/W	MIXOUT_L_SOF TMIX_EN	1	MIXOUT L soft mix enable. When enabled, the gain of any signal that is added to the mixer is ramped up or down at a rate determined by the GAIN_RAMP_RATE (0x92[1:0]) setting 0 = disabled 1 = enabled
	3	R/W	MIXOUT_L_MIX _EN	0	MIXOUT L mixer enable: 0 = disabled 1 = enabled
	2	R/W	(reserved)	0	
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	MIXOUT_R_AM P_EN	0	MIXOUT_R mixer amp enable: 0 = disabled 1 = enabled
	6:5	R/W	(reserved)	00	
0x6F MIXOUT_R_ CTRL	4	R/W	MIXOUT_R_SOF TMIX_EN	1	MIXOUT R soft mix enable. When enabled, the gain of any signal that is added to the mixer is ramped up or down at a rate determined by the GAIN_RAMP_RATE (0x92[1:0]) setting 0 = disabled 1 = enabled
	3	R/W	MIXOUT_R_MIX _EN	0	MIXOUT R mixer enable: 0 = disabled 1 = enabled
	2:0	R/W	(reserved)	000	

Company confidential

15.4.4 Mixed Sample Mode Registers

Register Address	Bit	Туре	Label	Default	Description
	7:1	R/W	(reserved)	0000000	
0x84 MIXED_SA MPLE_MOD E	0	R/W	24_48_MODE	0	Enables the 24_48_MODE of operation. When this bit is asserted, 24_48_MODE is activated. The ADC path runs at 24kHz and the rest of the system, including the DAC path, at 48kHz. Note: in 24_48_MODE, the system sample rate, which is controlled by bit SR at register address 0x22[3:0], must be set to 1010, or 48kHz. This will make the I2S also run at 48kHz and so the ADC output, running at 24 kHz, will be double sampled. 0 = Both ADC and DAC paths run at a speed determined by the setting of SR at 0x22[3:0] 1 = The ADC path runs at 24 kHz, and the DAC path at 48 kHz

Company confidential

15.4.5 Configuration Registers

Register address	Bit	Туре	Label	Defau It	Description
0x90 LDO_CTRL	7 R/W LDO_EN		0	Audio sub-system digital LDO control. The master bias must be enabled for the LDO to operate. 0 = LDO bypassed 1 = LDO active After powering up from Off or from Powerdown Mode, you must wait for a minimum of 40 ms after the first I2C access before enabling the LDO. Failure to wait 40 ms can cause the chip to reset. All other I2C accesses are unaffected.	
	6	R/W	(reserved)	0	
	5:4	R/W	LDO_LEVEL_SELECT	00	Audio sub-system digital LDO level select: 0 = 1.05 V 1 = 1.10 V 2 = 1.20 V 3 = 1.40 V
	3:0	R/W	(reserved)	0	

Register address	Bit	Туре	Label	Default	Description
	7:2	R/W	(reserved)	000000	
					Speed of the gain-ramping when activated.
					00 = nominal rate / 8
			GAIN_RAMP_RATE		(ramps from zero to maximum in about 1/128 second)
		:0 R/W			01 = nominal rate / 16
0x92					(fastest ramp rate. Ramps from zero to maximum in about 1/256 second)
GAIN_RAMP_					10 = nominal rate * 16
CTRL	1:0			00	(approximately 1 second fade-in from zero to maximum)
					11 = nominal rate * 32
					(slowest ramp rate, with approximately 2 second fade-in from zero to maximum)
					The nominal rate is targeted to be approx 1.28ms per dB for the AUX, HP and LINE, and 0.64ms per 0.75 dB for the ADC, DAC and MIXOUT

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
	6	R/W	(reserved)	0	
	5:4	R/W	(reserved)	00	
	3	R/W	(reserved)	0	
0x93 MIC_CONFI G	2	R/W	DMIC_CLK_RAT E	0	Clock rate for the digital microphone is: 0 = 3 MHz 1 = 1.5 MHz
	1	R/W	DMIC_SAMPLEP HASE	0	Phase of the digital microphone: 0 = sample on DMICCLK edges 1 = sample between DMICCLK edges
	0	R/W	DMIC_DATA_SE	0	DMIC channel select 0 = rising L, falling R 1 = falling L, rising R

Register address	Bit	Туре	Label	Default	Description
	7:2	R/W	(reserved)	000000	
0x94 PC_COUNT	1	R/W	PC_RESYNC_A UTO	1	PC resync mode. If the DAI clock drifts away from the system clock, this determines whether the system attempts to resynchronise the clocks (=1) or whether it skips a sample/samples twice (=0). 0 = freerun - double sample if the DAI clock is fast, or skip a sample if the DAI clock is slow 1 = autoresync upon detection of DAI drift with respect to the system clock Note: Resynchronising (PC_RESYNC_AUTO = 1) can reduce the artifacts caused by jitter on either MCLK or BCLK
	0	R/W	PC_FREERUN	0	Enables the filter operation when DAI is not enabled or no DAI clocks are available (ADC to DAC processing path): 0 = ADC and DAC Filters synchronised to the DAI 1 = Filters free running Note: This should be set to 1 if the ADC is feeding the DAC directly and no DAI clocks are present

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x95 CP_VOL_TH	*****				Threshold at and below which the charge pump can use the CPVDD/2 rail. Full details are given in section 14.15 on page 42
RESHOLD1	5:0	R/W	CP_THRESH_V DD2	100000	Note: This setting is only effective when CP_MCHANGE = 10 or CP_MCHANGE = 11. It is ignored for CP_MCHANGE settings of 00 and 01

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	CP_ON_OFF	10	Charge pump limiter enable: 00 = limiter on 01 = limiter off 10 = limiter automatically enabled when required 11 = reserved
5:3 0x96	5:3	R/W	CP_TAU_DELAY	010	Charge pump voltage decay rate control measured (all values are rounded): 000 = 0ms 001 = 2ms 010 = 4ms 011 = 16ms 100 = 64ms 101 = 128ms 110 = 256ms 111 = 512ms
CP_DELAY	2:0	R/W	CP_FCONTROL	101	Charge pump nominal clock rate. Lower rates provide lower power but also drive a lower load. If set to 101 (the default), there is no fixed clock frequency. Whenever the HP_POS or HP_NEG voltage is low, the clock runs at 1 MHz and stops as soon as the required voltage is reached. 000 = 1 MHz 001 = 500 kHz 010 = 250 kHz 011 = 125 kHz 100 = 63 kHz 101 = 0 kHz or 1 MHz, depending on demand (analogue mode only) 110 and 111 = reserved

Register address	Bit	Туре	Label	Default	Description
	7:2	R/W	(reserved)	000000	
0x97 CP_DETEC TOR	1:0	R/W	CPDET_DROP	00	Charge pump maximum voltage droop: 00 = 25 mV 01 = 50 mV 10 = 75 mV 11 = 100 mV

Register address	Bit	Туре	Label	Default	Description
0x98 DAI_OFFSE T	7:0	R/W	DAI_OFFSET	0000000	DAI data offset with respect to WCLK. If set to 0, no offset will be inserted relative to the normal formatting. The DAI data offset is measured in BCLK cycles.

Register address	Bit	Туре	Label	Default	Description
	7	R/W	DAC_R_INV	0	0 = DAI right input stream is not inverted 1 = DAI right input stream is inverted
0x99	6:4	R/W	(reserved)	000	
DIG_CTRL	3	R/W	DAC_L_INV	0	0 = DAI left input stream is not inverted 1 = DAI left input stream is inverted
	2:0	R/W	(reserved)	000	

Register address	Bit	Туре	Label	Default	Description
	7:4	R/W	ALC_RELEASE	0000	Sets the ALC release rate. This is the speed at which the ALC can increase the gain by 1 dB. 0000 = 29/fs (0.6ms/dB @48 kHz) 0001 = 57/fs (1.2ms/dB @48 kHz) 0010 = 115/fs (2.4ms/dB @48 kHz) 0011 = 229/fs (4.8ms/dB @48 kHz) 0100 = 459/fs (9.6ms/dB @48 kHz) 0101 = 917/fs (19.1ms/dB @48 kHz) 0110 = 1834/fs (38.2ms/dB @48 kHz) 0111 = 3669/fs (76.4ms/dB @48 kHz) 1000 = 7338/fs (153ms/dB @48 kHz) 1001 = 14676/fs (306ms/dB @48 kHz) 1010 to 11111 = 29347/fs (611ms/dB @48 kHz)
0x9A ALC_CTRL2	3:0	R/W	ALC_ATTACK	0000	Sets the ALC attack rate, which is the speed at which the ALC can decrease the gain by 1 dB. 0000 = 7.3/fs (0.15ms/dB @48 kHz) 0011 = 15/fs (0.31ms/dB @48 kHz) 0010 = 29/fs (0.61ms/dB @48 kHz) 0011 = 59/fs (1.2ms/dB @48 kHz) 0100 = 117/fs (2.4ms/dB @48 kHz) 0101 = 235/fs (4.9ms/dB @48 kHz) 0110 = 469/fs (9.8ms/dB @48 kHz) 0111 = 938/fs (20ms/dB @48 kHz) 1000 = 1876/fs (39ms/dB @48 kHz) 1001 = 3753/fs (78ms/dB @48 kHz) 1010 = 7506/fs (156ms/dB @48 kHz) 1011 = 15012/fs (312ms/dB @48 kHz) 1100 to 1111 = 30024/fs (625ms/dB @48 kHz)

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	ALC_INTEG_RE LEASE	00	Sets the rate at which the input signal envelope is tracked as the signal gets smaller 00 = 1/4 01 = 1/16 10 = 1/256 11 = Reserved (Do not use)
	5:4	R/W	ALC_INTEG_AT TACK	00	Sets the rate at which the input signal envelope is tracked as the signal gets larger: 00 = 1/4 01 = 1/16 10 = 1/256 11 = Reserved (Do not use)
0x9B ALC_CTRL3	3:0	R/W	ALC_HOLD	0000	Sets the ALC hold time, which is the the length of time that the ALC waits before releasing 0000 = 62/fs (1.3ms @48 kHz) 0001 = 124/fs (2.6ms @48 kHz) 0010 = 248/fs (5.2ms @48 kHz) 0011 = 496/fs (10.3ms @48 kHz) 0100 = 992/fs (20.7ms @48 kHz) 0101 = 1984/fs (41.3ms @48 kHz) 0110 = 3968/fs (82.7ms @48 kHz) 0111 = 7936/fs (165ms @48 kHz) 1000 = 15872/fs (331ms @48 kHz) 1001 = 31744/fs (661ms @48 kHz) 1010 = 63488/fs (1.3s @48 kHz) 1011 = 126976/fs (2.6s @48 kHz) 1101 = 507904/fs (10.6s @48 kHz) 1110 = 1015808/fs (21s @48 kHz) 1111 = 2031616/fs (42s @48 kHz)

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x9C ALC_NOISE	5:0	R/W	ALC_NOISE	111111	Sets the threshold below which input signals will not cause the ALC to change gain: 000000 = 0 dBFS 000001 = -1.5 dBFS continuing in -1.5 dBFS steps to 111111 = -94.5 dBFS

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x9D ALC_TARG ET_MIN	5:0	R/W	ALC_THRESHO LD_MIN	111111	Sets the minimum amplitude of the ALC output signal before the ALC increases the gain. If the maximum allowable gain level is reached then the ALC will not increase the gain even if this threshold is breached: 000000 = 0 dBFS 000001 = -1.5 dBFS continuing in -1.5 dBFS steps to

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0x9E ALC_TARG ET_MAX	5:0	R/W	ALC_THRESHO LD_MAX	000000	Sets the maximum amplitude of the ALC output signal before the ALC decreases the gain. If the maximum attenution level allowed is reached then the ALC will not reduce the gain even if this threshold is exceeded: 000000 = 0 dBFS 000001 = -1.5 dBFS continuing in -1.5 dB steps to

Register address	Bit	Туре	Label	Default	Description
0x9F	7:4	R/W	ALC_GAIN_MAX	1111	Sets the maximum amount of gain that can be applied to the input signal by the ALC when the input signal amplitude is smaller than ALC_THRESHOLD_MIN: 0000 = 0 dB 0001 = 6 dB continuing in +6 dB steps to
ALC_GAIN_ LIMITS	3:0	R/W	ALC_ATTEN_MA X	1111	Sets the maximum amount of attenuation that can be applied to the input signal by the ALC when the input signal amplitude is larger than ALC_THRESHOLD_MAX: 0000 = 0 dB 0001 = 6 dB continuing in +6 dB steps to 1111 = 90 dB

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
0XA0	6:4	R/W	ALC_ANA_GAIN _MAX	111	Sets the maximum amount of analogue gain that can be applied to the input signal by the ALC when the input signal amplitude is smaller than ALC_THRESHOLD_MIN: 000 = reserved 001 = 0 dB 010 = 6 dB continuing in +6 dB steps to
ALC_ANA_G	3	R/W	(reserved)	0	
AIN_LIMITS	2:0	R/W	ALC_ANA_GAIN _MIN	001	Sets the minimum amount of analogue gain that can be applied to the input signal by the ALC when the input signal amplitude is larger than ALC_THRESHOLD_MAX: 000 = reserved 001 = 0 dB 010 = 6 dB continuing in +6 dB steps to 111 = 36 dB

Register address	Bit	Туре	Label	Default	Description
0xA1 ALC_ANTIC LIP_CTRL	7	R/W	ALC_ANTICLIP_ EN	0	Enables the ALC signal clip prevention mechanism: 0 = Disabled 1 = Enabled
	6:2	R/W	(reserved)	00000	
	1:0	R/W	(reserved)	00	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	(reserved)	0	
0xA2 ALC_ANTIC LIP_LEVEL	6:0	R/W	ALC_ANTICLIP_ LEVEL	0000000	Sets the threshold above which the ALC enters anti-clip operation. The formula for determining the anti-clip level is: (ALC_ANTICLIP_LEVEL+1)*Full Scale/128 0000000 = 0.0078*Full Scale 0000001 = 0.015*Full Scale continuing in 0.0078 steps to 1111111 = 1.0000*Full Scale

Register address	Bit	Туре	Label	Default	Description
	7:4	R/W	(reserved)	0000	
	3	R/W	DAC_NG_RAMP DN_RATE	0	Attack rate at which the gain of the output amplifier (HP or LINE) is reduced: 0 = 0.64 ms/dB 1 = 20.48 ms/dB
0xAF DAC_NG_S ETUP_TIME	2	R/W	DAC_NG_RAMP UP_RATE	0	Release rate at which the gain of the ouput amplifier (HP or LINE) is increased: 0 = 0.02 ms/dB 1 = 0.16 ms/dB
	1:0	R/W	DAC_NG_SETU P_TIME	00	Time for which the largest signal through the DACs must be below DAC_NG_ON_THRESHOLD for the noise-gate to mute the data: 00 = 256 samples 01 = 512 samples 10 = 1024 samples 11 = 2048 samples

Register address	Bit	Туре	Label	Default	Description
	7:3	R/W	(reserved)	00000	
0xB0 DAC_NG_O FF_THRESH OLD	2:0	R/W	DAC_NG_OFF_ THRESHOLD	000	Threshold above which the noise-gate will be deactivated: 000 = -90 dB 001 = -84 dB 111 = -48 dB

Register address	Bit	Туре	Label	Default	Description
	7:3	R/W	(reserved)	00000	
0xB1 DAC_NG_O N_THRESH OLD	2:0	R/W	DAC_NG_ON_T HRESHOLD	000	Threshold below which the noise-gate starts to activate: 000 = -90 dB 001 = -84 dB 111 = -48 dB

Register address	Bit	Туре	Label	Default	Description
0xB2 DAC_NG_C TRL	7	R/W	DAC_NG_EN	0	DAC noise-gate enable: 0 = disabled 1 = enabled
	6:0	R/W	(reserved)	0000000	

Register address	Bit	Туре	Label	Default	Description
	7	R/W	START_STOPN	0	Tone generator stop and start control. Setting this to high will start the tone-generator. After the tone-generator has finished it will reset the register to 0. In Continuous mode, setting it to 0 will stop the tone generation.
0xB4 TONE_GEN	6:5	R/W	(reserved)	00	
_CFG1	4	R/W	DMTF_EN	0	DTMF enable 0 = Use values in the FREQ1 and FREQ2 registers to generate sine wave(s) 1 = Use values from the DMTF_REG to generate sine-waves
	3:0	R/W	DMTF_REG	0000	The DTMF key pad values 0 to 15.

Register address	Bit	Туре	Label	Default	Description
0xB5	7:4	R/W	GAIN	0000	0000 = 0 dB 0001 = -3 dB 0010 = -6 dB 0011 = -9 dB continuing in -3 dB steps to 1111 = -45 dB
TONE_GEN _CFG2	3:2	R/W	(reserved)	00	
	1:0	R/W	SWG_SEL	00	Sine wave select: 00 = Sum of both SWG values is mixed into the audio 01 = Only SWG1 value is output 10 = Only SWG2 value is output 11 = Sum of both SWG values is mixed into the audio.

Register address	Bit	Туре	Label	Default	Description
	7:3	R/W	(reserved)	00000	
0xB6 TONE_GEN _CYCLES	2:0	R/W	BEEP_CYCLES	000	Number of beep cycles required. 000 = 1 cycle 001 = 2 cycles 010 = 4 cycles 011 = 8 cycles 100 = 16 cycles 101 = 32 cycles 110 and 111 = infinite (until START_STOPN is set to 0)

Register address	Bit	Туре	Label	Default	Description
0xB7 TONE_GEN _FREQ1_L	7:0	R/W	FREQ1_L	0x55	Lower two bytes of the four-byte number used to calculate the output frequency for the first Sine Wave Generator (SWG1). The output frequency is dependent on the sample rate For sample rates (SR) = 8/12/16/24/32/48/96 kHz: FREQ1_U & FREQ1_L = (2^16 * (fHZ/12000)) -1 For sample rates (SR) = 11.025/22.05/44.4/88.2 kHz: FREQ1_U & FREQ1_L = (2^16 * (fHZ/11025)) -1

Register address	Bit	Туре	Label	Default	Description
0xB8 TONE_GEN _FREQ1_U	7:0	R/W	FREQ1_U	0x15	Upper two bytes of the four-byte number used to calculate the output frequency for the first Sine Wave Generator (SWG1). The output frequency is dependent on the sample rate For sample rates (SR) = 8/12/16/24/32/48/96 kHz: FREQ1_U & FREQ1_L = (2^16 * (fHZ/12000)) -1 For sample rates (SR) = 11.025/22.05/44.4/88.2 kHz: FREQ1_U & FREQ1_L = (2^16 * (fHZ/11025)) -1

Register address	Bit	Туре	Label	Default	Description
0xB9 TONE_GEN _FREQ2_L	7:0	R/W	FREQ2_L	0x00	Lower two bytes of the four-byte number used to calculate the output frequency for the second Sine Wave Generator (SWG2). The output frequency is dependent on the sample rate For sample rates (SR) = 8/12/16/24/32/48/96 kHz: FREQ2_U & FREQ2_L = (2^16 * (fHz/12000)) -1 For sample rates (SR) = 11.025/22.05/44.4/88.2 kHz FREQ2_U & FREQ2_L = (2^16 * (fHz/11025)) -1

Register address	Bit	Туре	Label	Default	Description
0xBA TONE_GEN _FREQ2_U	7:0	R/W	FREQ2_U	0x40	Upper two bytes of the four-byte number used to calculate the output frequency for the second Sine Wave Generator (SWG2). The output frequency is dependent on the sample rate For sample rates (SR) = 8/12/16/24/32/48/96 kHz: FREQ2_U & FREQ2_L = (2^16 * (fHZ/12000)) -1 For sample rates (SR) = 11.025/22.05/44.4/88.2 kHz FREQ2_U & FREQ2_L = (2^16 * (fHZ/11025)) -1

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0xBB TONE_GEN _ON_PER	5:0	R/W	BEEP_ON_PER	02	Beep 'On' period 0x00 = Reserved 0x01 = 10ms 0x02 = 20ms 0x03 = 30ms Continuing in 10ms steps to 0x20 = 200ms 0x21 = Reserved 0x22 = Reserved 0x23 = Reserved 0x24 = Reserved 0x24 = Reserved Then in 50ms steps from 0x25 = 250ms to 0x60 = 2000msec 0x61 = Reserved 0x62 = Reserved 0x63 = continuous

Register address	Bit	Туре	Label	Default	Description
	7:6	R/W	(reserved)	00	
0xBC TONE_GEN _OFF_PER	5:0	R/W	BEEP_OFF_PER	01	Beep 'Off' period 0x00 = Reserved 0x01 = 10ms 0x02 = 20ms 0x03 = 30ms Continuing in 10ms steps to 0x20 = 200ms 0x21 = Reserved 0x22 = Reserved 0x23 = Reserved 0x24 = Reserved Then in 50ms steps from 0x25 = 250ms to 0x60 = 2000msec 0x61 = Reserved 0x62 = Reserved 0x63 = continuous

Register address	Bit	Туре	Label	Default	Description
	7:2	R/W	(reserved)	000000	
0xE0 SYSTEM_S	1	RO	SC2_BUSY	0	Indicates the current status of System Controller 2 0 = complete 1 = busy
TATUS	0	RO	SC1_BUSY	0	Indicates the current status of System Controller 1 0 = complete 1 = busy

Register address	Bit	Туре	Label	Default	Description
0xFD	7:1	R/W	(reserved)	0000000	
SYSTEM_A CTIVE	0	R/W	SYSTEM_ACTIV E	0	Switch off the oscillator 0 = oscillator off 1 = oscillator on

Company confidential

16 Package information

Figure 35: DA7212 package outline drawing

Company confidential

17 Ordering information

The ordering number consists of the part number followed by a suffix indicating the packing method. For details and availability, please consult your local sales representative.

Table 36: Ordering information

Part Number	Package	Shipment Form	Pack quantity
DA7212-01UM2	34-bump CSP Pb-free/green	T&R	4500

Company confidential

Appendix A Applications information

A.1 Codec initialisation

Depending on the specific application, some general settings need to be set. Examples of these settings include the sample rate, the PLL, and the Digital Audio Interface. Then the amplifiers, the mixers and channels of the ADC/DAC have to be configured and enabled via their respective control registers.

An example sequence is shown below:

- 1. Configure clock mode as required for operation, (e.g. PLL bypass / PLL etc...)
- 2. Configure the digital audio interface
- 3. Configure the charge pump if the headphone path is in use.
- 4. Set input and output mixer paths and gains
- 5. Enable Input and Output paths using the Level 2 System Controller (SLC2)

A.2 Automatic ALC calibration

When using the automatic level control (ALC) in sync-mode the DC offset between the digital and analogue PGAs must be cancelled. This is performed automatically if the following procedure is performed:

- 1. Enable Microphone amplifiers unmuted
- 2. Mute microphones
- 3. Enable Input mixer and ADC unmuted
- 4. Enable AIF interface
- 5. Set ALC_AUTO_CALIB_EN in ALC_CTRL1 to '1' (ALC_CTRL1 = 0x10). This bit will auto-clear when calibration is complete.
- 6. When calibration is complete, enable the ALC with ALC_SYNC_MODE and ALC_OFFSET_EN enabled (ALC_CTRL1 = 0x8b).
- 7. Unmute microphones

Company confidential

Appendix B Components

The following recommended components are examples selected from requirements of a typical application. The electrical characteristics (that is, the supported voltage/current ranges) have to be cross-checked and component types may need to be adapted from the individual needs of the target circuitry.

B.1 Audio inputs

Table 37: Audio inputs

Pin Name	Bump/Pin	Power Domain	Description	Туре
MIC1_P	C17	VDD_A	Differential mic. input 1 (positive) / Single-ended mic. Input 1 (left)	Analogue Input
MIC1_N	B16	VDD_A	Differential mic. input 1 (negative) / Single-ended mic. Input 2 (left)	Analogue Input
MIC2_P	D16	VDD_A	Differential mic. input 2 (positive) / Single-ended mic. Input 1 (right)	Analogue Input
MIC2_N	C15	VDD_A	Differential mic. input 2 (negative) / Single-ended mic. Input 2 (right)	Analogue Input
AUX_L	C13	VDD_A	Single-ended auxiliary input (left)	Analogue Input
AUX_R	D14	VDD_A	Single-ended auxiliary input (right)	Analogue Input

The DA7212 microphone inputs can be configured to accommodate single-ended or differential microphones and line inputs. These are accompanied by two dedicated single ended auxiliary input pins.

The internal input mixer allows all inputs to be mixed prior to the ADC. Analogue bypass paths exist directly from the AUX inputs to the output mixers and from the input mixer to the output mixer should the ADC not be required.

A DC blocking capacitor is required for each used analogue input bump used in the target application. The choice of capacitor is determined by the filter that is formed between that capacitor and the input impedance of the input pin which can be found in the 'Input Mixing Units' section of the datasheet.

$$C = \frac{1}{2\pi . R. F_c}$$

Where F_c is the 3 dB cut off frequency of the low pass filter (typically 20Hz for audio applications). A $1\mu F$ capacitor is suitable for most applications.

Due to their high stability tantalum capacitors are particularly suitable for this application. Ceramic equivalents with an X5R dielectric are recommended as a cost effective alternative. Care should be taken to ensure that the desired capacitance is maintained over operating temperature and voltage.

Company confidential

Z5U dielectric ceramics should be avoided due to their susceptibility to microphonic effects. Unused input bumps can be left floating or connected via a capacitor to ground.

B.2 Microphone Bias

Table 38: Microphone bias

Pin Name	Bump/Pin	Power Domain	Description	Туре
MICBIAS1	A15	VDD_MIC	Microphone bias output 1	Analogue Output
MICBIAS2	A17	VDD_MIC	Microphone bias output 2	Analogue Output

A 1µF capacitor to GND_A should be used to decouple the MICBIAS output.

Figure 36 Micbias decoupling

B.3 Digital Microphone

Table 39: Digital microphones

Pin Name	Bump/Pin	Power Domain	Description	Туре
DMICCLK	C17	VDD_MIC	Digital Microphone Clock	Digital Output
DMICIN	B16	VDD_MIC	Digital Microphone Data	Digital Input

These pins can be routed directly to a digital microphone. In stereo mode they can be connected to two digital microphones with one configured to send data on the rising clock edge and the other on the falling edge. The clock output operates at 1.5 MHz or 3 MHz. The appropriate layout considerations for clock signals should be followed.

Company confidential

B.4 Audio Outputs

Table 40: Headphone outputs

Pin Name	Bump/Pin	Power Domain	Description	Туре
HP_L	А3	VDD_A	True-ground headphone output (left)	Analogue Output
HP_R	A5	VDD_A	True-ground headphone output (right)	Analogue Output
GND_SENSE	B4	VDD_A	Ground reference for headphone output	Analogue Input

DA7212 contains a capless true-ground Class-G headphone amplifier with a ground sense connection. For optimum noise immunity the headphone ground sense should be tracked between the HP_L and HP_R signals before being grounded at the headphone connector. In this configuration the ground sense connector cancels common mode noise on the headphone from the PCB.

Figure 37 Recommended Headphone layout

Table 41: Speaker outputs

Pin Name	Bump/Pin	Power Domain	Description	Туре
SP_P	B12	VDD_SP	Differential speaker output (pos)	Analogue Output
SP_N	A13	VDD_SP	Differential speaker output (neg)	Analogue Output

The DA7212 has a differential Class-AB speaker driver that can output 1.2W into an 80hm speaker. These pins can be connected directly to an external speaker or receiver or as a differential line output. For common mode noise immunity SP_P and SP_N should be treated as a differential pair where possible.

A DC blocking capacitor is required when the speaker is being used to drive a line level output. The choice of capacitor is determined by the filter that is formed between that capacitor and the impedance of the load.

Company confidential

$$C = \frac{1}{2\pi. R. F_c}$$

Where F_c is the 3 dB cut off frequency of the low pass filter (typically 20Hz for audio applications). A $1\mu F$ capacitor is suitable for most applications.

Due to their high stability tantalum capacitors are particularly suitable for this application. Ceramic equivalents with an X5R dielectric are recommended as a cost effective alternative. Care should be taken to ensure that the desired capacitance is maintained over operating temperature and voltage.

If the speaker/line output is unused the output pins can be left floating or connected via a capacitor to ground.

B.5 Headphone Charge pump

Table 42: Headphone charge pump

Pin Name	Bump/Pin	Power Domain	Description	Туре
HPCSP	A1	VDD_A	Chargepump reservoir capacitor (pos)	Charge Pump
HPCSN	C1	VDD_A	Chargepump reservoir capacitor (neg)	Charge Pump
HPCFP	D2	VDD_A	Chargepump flying capacitor (pos)	Charge Pump
HPCFN	C3	VDD_A	Chargepump flying capacitor (neg)	Charge Pump

A 1µF reservoir capacitor is required between the HPCSP and GND_CP and between HPCSN and GND_CP. For best performance the capacitors should be fitted as near to the device as possible.

Figure 38 Charge Pump Decoupling

A $1\mu F$ flying capacitor is required between HPCFP and HPCFN. For best performance the capacitor should be fitted as near to the device as possible.

Figure 39 Charge Pump Flying Capacitor

Company confidential

To ensure stable charge pump operation the effective series resistance of the flying capacitor should be kept to a minimum. This can be achieved by selecting an appropriate capacitor dielectric (X5R, X7R) and ensuring that the capacitor is placed as near to the device as possible. Ideally the connection between the pins and the capacitor should not run through Vias (connected on top layer of PCB only).

B.6 Digital Interfaces

Table 43: Digital interfaces - I2C

Pin Name	Bump/Pin	Power Domain	Description	Туре
SDA	C9	VDD_IO	I2C bidirectional data	Digital Input / Output
SCL	D8	VDD_IO	I2C clock input	Digital Input

The I2C data and clock lines are powered from VDD_IO. Both I2C line require a pull up to VDD_IO. The value of this pull up is dependent on I2C bus speed, bus length and supply voltage. A 2.2 k Ω resistor is satisfactory in most applications.

Figure 40 I2C pull ups

B.7 Capacitor Selection

Ceramic capacitors are manufactured with a variety of dielectrics, each with a different behaviour over temperature and applied voltage. Capacitors must have a dielectric adequate to ensure the minimum capacitance over the necessary temperature range, dc bias conditions and low Equivalent Series Resistance (ESR). X5R or X7R dielectrics with a voltage rating of 6.3 V or 10 V are recommended for best performance. Y5V and Z5U dielectrics are not recommended for use because of their poor temperature and dc bias characteristics.

The worst-case capacitance accounting for capacitor variation over temperature, component tolerance, and voltage is calculated using the following equation:

$$C_{EFF} = C_{OUT} x (1 - TEMPCO) x (1 - TOL)$$

where: *CEFF* is the effective capacitance at the operating voltage. *TEMPCO* is the worst-case capacitor temperature coefficient. *TOL* is the worst-case component tolerance. These figures can be found in the manufacturer's datasheet.

In the example below, the worst-case temperature coefficient (TEMPCO) over -55° C to +85°C is assumed to be 15 %. The tolerance of the capacitor (TOL) is assumed to be 10 %, and COUT is 0.65 μ F at 1.8 V.

Substituting these values in the equation yields

Company confidential

$$C_{EFF} = 0.65 \mu F \ x \ (1-0.15) \ x \ (1-0.1) = 0.497 \ \mu F$$

Below is a table with recommended capacitor types:

Application	Value	Size	Temp. Char.	Tolerance	Rated Voltage	Туре
VDD_IO, VREF, VDD_MIC, VDD_SP, VDD_A, VDIG, DACREF, VMID, HPCFP/HPCFN, HPCSP, HPCSN, MICBIAS1, MICBIAS2, AUX_L, AUX_R	14x 1µF	0201	X5R +/- 15 %	+/-10 %	6.3V	Murata GRM033R60J105M

Company confidential

Appendix C Calibration Routine

The calibration routine requires the full signal path from microphone to ADC to be enabled and a clock to be present. The calibration routine using MIC1_P and MIC2_P and with the device in slave mode is outlined in Table 44.

Table 44: Offset calibration, MIC1_P and MIC2_P single ended, slave mode

Instruction	Registers affected	Value
Enable Master Bias	0x23	0x80
2. Enable AIF and setup clocks (for 44.1 kHz, I2S, slave mode)	0x29	0xC8
3. Enable the Microphones unmuted	0x63 0x64	0x84 0x84
4. Mute the microphones	0x63 0x64	0xC4 0xC4
5. Enable the Input mixers unmuted	0x65 0x66	0xA8 0xA8
6. Route the microphone to the mixers	0x32 0x33	0x04 0x04
7. Enable the ADC unmuted	0x67 0x68	0xA0 0xA0
8. Calibrate Offset	0x2B	0x10
9. Wait until offset bit has been cleared	Wait until 0	x2B = 0x00
10. Enable ALC	0x2B	0x8B
11. Unmute Microphones	0x63 0x64	0xA8 0xA8

Other clocking and microphone setups are also possible by changing their respective registers. Once this calibration is complete the record path with Automatic Level Control is active.

C.1 Troubleshooting

0x2B should automatically clear after 256 samples (5.33ms at 48 kHz). If 0x2B does not return 0x00 after 256 samples this indicates a setup error. If this occurs check that the microphone is enabled and muted, the mixer is enabled with the microphone input selected and unmuted and that the ADC is enabled and unmuted. It is also critical that an MCLK and BCLK are present on the device. BCLK can be provided either from the AIF interface in slave mode or generated internally by having the device in master mode.

Company confidential

Table 45: Digital interfaces - I2S

Pin Name	Bump/Pin	Power Domain	Description	Туре
DATIN	C5	VDD_IO	DAI data input	Digital Output
DATOUT	C7	VDD_IO	DAI data output	Digital Input
BCLK	D4	VDD_IO	DAI bit clock	Digital Input / Output
WCLK	D6	VDD_IO	DAI word clock (L/R select)	Digital Input / Output
MCLK	C11	VDD_IO	Master clock	Digital Input

The DAI interface pins should be treated as clock signals and the appropriate layout rules for routing clocks should be adhered to.

C.2 References

Table 46: References

Pin NAME	Bump/Pin	Power Domain	DESCRIPTION	Туре
DACREF	A7	VDD_A	Audio DAC reference capacitor	Reference
VMID	A9	VDD_A	Audio mid-rail reference capacitor	Reference
VREF	B8	VDD_A	Bandgap reference capacitor	Reference

A $1\mu F$ capacitor should be connected between each of the references and GND_A. For best performance the capacitors should be fitted as near to the device as possible.

Figure 41 Reference Capacitors

Company confidential

C.3 Supplies

Table 47: Power supplies

Pin NAME	Bump/Pi n	Power Domain	DESCRIPTION	Туре
VDD_A	В6	Min: 1.7 V Max: 2.5 V	Supply for analogue circuits / Supply for headphone chargepump	Power Supply
VDD_IO	D10	Min: 1.6 V Max: 3.6 V	Supply for digital interfaces	Power Supply
VDD_SP	A11	Min: 0.95 V Max: 5.25 V	Supply for speaker driver	Power Supply
VDD_MIC	B14	Min: 1.8 V Max: 3.6 V	Supply for microphone bias circuits	Power Supply
VDIG	D12		Output of internal regulator.	Power Supply

Decoupling capacitors are recommended between all supplies and GND_A. These capacitors should be located as near to the device as possible.

Figure 42 Power Supply Decoupling

C.4 Ground

Table 48: Ground

Pin NAME	Bump/Pin	Power Domain	DESCRIPTION	Туре
GND_A	B10		Analogue ground	Power Ground
GND_CP	B2		Chargepump/digital ground	Power Ground

GND_A and GND_CP should be connected directly to the system ground.

Company confidential

Appendix D PCB Layout Guidelines

DA7212 uses Dialog Semiconductor's 'Route Easy™' technology allowing the device to be routed using conventional, low cost, PCB technology. All device balls are routable on the top level and conventional plated through hole vias can be used throughout.

This design is fully realisable using a 2-layer PCB however for optimum performance it is recommended that a 4-layer PCB is used with layers 2 and 3 as solid ground planes.

Decoupling and reference capacitors should be located as close to the device as possible and appropriately sized tracks should be used for all power connections.

Figure 43 DA7212 Example Layout

D.1 Layout and Schematic support

Copies of the evaluation board schematics and layout are available on request to aid in PCB development. Dialog Semiconductor also offer a schematic and layout review service for all designs utilising Dialog's devices. Please contact your local Dialog Semiconductor Office if you wish to utilise this service.

D.2 General Recommendations

- Appropriate trace width and number of vias should be used for all power supply paths
- A common ground plane should be used, which allows proper electrical and thermal performance
- Noise-sensitive analogue signals such as feedback lines or clock connections should be kept away from traces carrying pulsed analogue or digital signals. This can be achieved by separation (distance) or by shielding with quiet signals or ground traces
- Decoupling capacitors should be X5R ceramics and should be placed as near to the device as possible
- Charge pump capacitors should be X5R ceramics and should be placed as near to the device as possible

Company confidential

Status definitions

Revision	Datasheet status	Product status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterisation data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via Customer Product Notifications.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

Company confidential

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, unless otherwise stated.

© Dialog Semiconductor GmbH. All rights reserved.

RoHS compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2).

Dialog Semiconductor's statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

Germany Headquarters

Dialog Semiconductor GmbH

Phone: +49 7021 805-0

United Kingdom

Dialog Semiconductor (UK) Ltd

Phone: +44 1793 757700

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email:

enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Taiwan

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

Singapore

Dialog Semiconductor Singapore

Phone: +65 64 849929

China

Dialog Semiconductor China Phone: +86 21 5178 2561

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8291

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Dialog Semiconductor:

DA7212-01UM2