

TECNOLOGIA EM ANÁLISE DE SISTEMAS				
AVALIAÇÃO OFICIAL	DISCIPLINA: Mater	mática Discreta	NOTA	
DATA: 22/11/2021	TURMA: ADSVA1			
□ N1 ⊠N2 □ N3	PROFESSOR: Reinaldo M	ladarazo		
ALUNO:		RA:		
INSTRUMENTO DE AVALIAÇÃ CONDIÇÕES: Individual sem o TEMPO MÁXIMO DE DURAÇÃ	O: prova escrita à tinta consulta O: 2h00	Ciência do Aluno (vista de prova)		

Deverão ser escritos todos os passos da resolução nos espaços reservados. A clareza e a simplicidade da resolução fazem parte da prova. Questões respondidas fora do espaço reservado não serão corrigidas. *Duração da prova: 2 horas.*

Questão	1	2	3	4
Resposta				

- 1. Quando podemos efetuar um produto de matrizes?
- (a) Somente quando elas forem quadradas.
- (b) Somente quando o número de colunas da primeira matriz for igual ao número de linhas da segunda matriz.
- (c) Somente quando elas forem quadradas de mesma ordem.
- (d) Somente quando o número de linhas da primeira matriz for igual ao número de colunas da segunda matriz.
- (e) Somente quando o número de colunas da primeira matriz for igual ao número de colunas da segunda matriz.
- 2. Qual das seguintes alternativas contém uma *propriedade falsa*? Admita A e B matrizes e α número real.
- (a) $\alpha(A+B) = \alpha A + \alpha B$
- (b) $(A^{T})^{T} = A$
- (c) $A = B \leftrightarrow B = A$
- (d) AB = BA
- (e) $(AB)^T = B^TA^T$
- 3. Quando podemos somar duas matrizes?
- (a) Somente quando elas forem quadradas de mesma ordem.
- (b) Somente quando elas forem matrizes quadradas.
- (c) Quando as matrizes tiverem a mesa ordem.
- (d) Quando o número de colunas da primeira matriz for igual ao número de linhas da segunda matriz.
- (e) Quando o número de linhas da primeira matriz dor igual ao número de colunas da segunda matriz.
- 4. O que vem a ser uma relação biunívoca ou injetiva (assinale a alternativa correta)?
- (a) É a mesma coisa que uma relação Vários-Para-Um;
- (b) É a mesma coisa que uma relação Um-Para-Vários;
- (c) É a mesma coisa que uma relação Vários-Para-Vários;
- (d) É a mesma coisa que uma relação Um-Para-Um;
- (e) É a mesma coisa que uma relação reflexiva.

Uma função f é representada pelo conjunto de pares ordenados $f = \{(0,2),(1,3),(2,6),(3,4),(4,5)\}$. screva seu <i>domínio A</i> e seu <i>conjunto imagem B</i> . [0,5 ponto]							

6	Considere	a seguinte	matriz	nuadrada	de ordem	ვ.
u.	Considere	a seguinte	manız	quauraua	de ordeni	J.

$$\begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

[2 0 1]
Calcule sua matriz inversa, resolvendo o sistema linear. Outras formas de resolução não serão aceitas. [2,0 pontos]

7. Dados os seguintes diagramas de Venn, identifique se representam funções *injetoras*, *sobrejetoras* ou *bijetoras*.

(b)[0,5 ponto]

(c)[0,5 ponto

Resp.:

(d)[0,5 ponto]

Resp.:

8. Considere a seguinte expressão: $f(x) = \frac{5x-1}{x-2}$

(a) Determine a *inversa* $f^{-1}(x)$: [1,0 ponto]

(b) Qual é o <i>don</i> ponto]	nínio e contradomír	<i>nio</i> de <i>f(x)</i> para qu	ue ela seja uma fui	nção <i>bijetora</i> e adr	nita função inversa.[0 ,

Formulário:

$$AA^{-1} = A^{-1}A = I$$