Ancorra: TreeBanks for Indian Languages

Akshara Barati, Dipti Misra Sharma, Samar Husain, Lakshmi Bai, Rafiya Begam, Rajeev Sangal

March 16, 2012

Contents

1 Background

A major bottleneck in developing various natural language applications for Indian languages is the unavailability of appropriate language resources. For any NLP application, certain linguistic knowledge is required. This knowledge can be prepared in the form of dictionaries, grammars, wordformation rules etc. An alternative approach is to annotate linguistic knowledge in electronic texts. The annotated texts can be used for machine learning, developing these resources by extracting the knowledge etc. Penn Treebank for English (Marcus et al., 1993), Prague Dependency Tree bank for Czech (Hajicova, 1998) etc. are some of the efforts in this direction.

The idea of developing such a resource for Indian languages was first decided to be taken up at the "Workshop on Lexical Resources for Natural Language Processing", 58 Jan 2001, held at IIIT Hyderabad. The task was named as AnnCorra, shortened for "Annotated Corpora".

For achieving this, certain standards had to be drawn in terms of selecting a grammatical model and developing tagging schemes for the three levels of sentential analysis, POS tagging, chunking and syntactic parsing. Since Indian languages are morphologically richer, they allow the order of the words to be more flexible. This also implies that the information at the morphological level can be crucial for sentence analysis. Hence, coming up with standards for morph feature representations for various Indian languages also becomes critical. The standards for POS tagging, Chunking and Morph feature representation were initially arrived at in the project 'ILILMT System'. In this project nine language pairs were taken for developing bidirectional MT systems. The project is being carried out in a consortium mode and is funded by DIT, Government of India. For defining the standards for the above, several workshops were conducted with participation from major NLP groups working on thenine languages undertaken in the project.

The natural next step after POS tagging, chunking and morph analysis is sentence level parsing. Thus, it was decided to work out a scheme for annotating tree bank for Hindi. Hindi was chosen as an example language. The theoretical model that has been adopted for the sentence analysis is Panini's grammatical model which provides a level of syntacticosemantic analysis.

This document, a guidelines on dependency annotation of Hindi has two major Parts. Part1 contains a description of the grammatical model and the details of the tagging scheme. Part2 contains examples of certain typical constructions of Hindi and their analysis in Paninian dependency model.

2 The Task

The task is to develop a dependency Treebank for Hindi. As part of the task, it is decided to annotate the corpora for the following linguistic information:

- 1. Relevant morph features for the token in the context (lexical level)
- 2. POS tag (lexical level)
- 3. Chunk (phrasal level (without distorting the internal dependencies))
- 4. Dependencies (sentential level syntactico-semantic)
- 5. Shared and missing arguments
- 6. Sentence type
- 7. Voice type
- 8. Conference in specific cases

The task can be better explained with the help of an illustration. Given below is a sentence from Hindi:

(1) rAma ne mohana ko nIII kiwAba xI.

raam ne mohan ko niilii kitaab dii. ram erg Mohan acc blue book gave. 'Ram gave a blue book to Mohan.'

The above example would be given the following dependency analysis:

The dependency representation of the above example shown in Fig 1., represents that Ram the 'kartaa' (doer marked as k1) of the action denoted by the verb 'dii' 'gave', Mohan is the 'sampradana' (recipient marked as k4) and 'niilii kitaab' 'blue book' is the 'karma' (locus of result of the action denoted by the verb -marked as k2) of the verb. The root node of a dependency tree is normally a 'verb and, apart from the morphological information (not represented here) annoted for each note, the main verb (the root node) is also annotated for the sentence type and the voice type.

The main task, therefore, is to explicitly mark the relations (arc labels) between various elements (words) of a sentence. This obviously requires a grammatical model basing which the dependency relations can be annotated.

3 PART-1-A

This has a description of the grammatical model used in designing the tagging scheme and the details of the tagging scheme. Some details about the corpora and where it has been taken from are also provided.

3.1 Grammatical Model

Paninian grammatical model has been chosen for the sentence analysis for the Hindi treebank creation. Hence, the tag labels also reflect Paninian framework. As mentioned above, the model offers a syntactico-semantic level of linguistic knowledge which has been adopted for the Hindi treebanking. Preference for this model is based on:

- (a) The model, not only offers a mechanism for SYNTACTIC analysis, but also incorporates the SEMANTIC information (dependency analysis).
- (b) Indian languages have a relatively free word order, hence a dependency grammar based approach would be better suited for sentence analysis.

The Paninian grammatical model treats a sentence as a series of modifier modified elements starting from a primary modified (generally a finite verb). The objective of the grammarian, according to this framework, is to extract meaning from a sentence as spoken by a lay person. It works with the assumption that language is used for communication. The meaning in a sentence is encoded, not only in the words (lexical items), but also in the relations between words. Thus every word in a sentence has a twofold role towards composing the larger meaning; (i) the concept it represents and (ii) the participatory role it plays in the sentence in relation to the other words. The latter (ii) is, most often, expressed through some explicit markers such as nominal inflections, verbal inflections etc. This implies that certain linguistic cues are explicitly available in a sentence using which one can extract the meaning from a sentence. Morphologically rich languages such as Sanskrit (a classical Indian language), Telugu, Tamil etc (some of the modern Indian languages) mark the grammatical information in the words themselves (through affixes). However, for languages such as Hindi, one has to go beyond lexical items and use postpositions (for case marking) and auxiliaries (for tense, aspect, modalities) for this purpose. A step of local word grouping (LWG - Bharati et al, 1995) helps in computing the grammatical information easily. Thus, the Paninian Grammatical model (let us refer to it as Computational Paninian Grammatical (CPG) model) can easily be designed to meet the parsing requirements and also help in extracting meaning from a

sentence.

The grammatical relations which have been considered here are of two types:

- 1. kaaraka, and
- 2. Relations other than kaarakas.

Kaaraka, according to Patanjali, is the one which performs an action (karotiiti kaarakam). A number of direct participants are needed for an action to be completed successfully. Doer of an action, time when the action is carried out, receipient of an action which requires transfer of some sort, source of an action which denotes a point of departure etc are some examples of the direct participants (kaarakas) of an action. There could also be other players when an action is being carried out. These players may not have any direct role in the action though. Reason and purpose are two examples of such players. 'kaarakas' are the roles of various direct participants in an action. An action in a sentence is normally denoted through a verb. Hence, a verb becomes the primary modified (root node of a dependency tree) in a sentence. Panini has spelled out six kaarakas (Bharati et al., 1995). The sentence may contain a number of relations between words which are not 'kaaraka' relations. The scheme adopted for annotating dependency relations in this treebank refers to these relations as 'other than kaaraka' relations. Purpose, reason, genitive etc. would fall under the second type of relations within the Paninian framework.

The six **kaarakas** given by Panini are **'kartaa'** (doer of an actions), **karma** (locus of the result of the action), **karana** (instrument), **sampradaana** (receipient/beneficiary), **apaadaana** (source) and **adhikarana** (location).

'kartaa' is defined as the 'most independent' of all the *kaarakas* (participants). 'kartaa' is the one who carries out the action. It is conceptually different from the agent theta role as it does not always have volitionality. It is the locus of the activity implied by the verb root. In other words, the activity resides in or springs forth from the 'kartaa' (Bharati et al., 1995). For example:

1.Ram made the basket.

Ram is 'kartaa' here as he is performing the action of making the basket. In Paninian grammar, every action is a bundle of sub-actions and all the participants (*kaarakas*) in an action have a sub-action located in them. Thus every *kaaraka* is the 'kartaa' (doer) of its own action. For example;

2.a Ram opened the lock with a key

In the above example, 'Ram' ('kartaa'), 'lock' (karma) and 'key' (instrument) are the three kaarakas of the action of 'opening'. The larger action of opening the lock involves following sub-actions (i) action of Ram, (ii) action of the lock and (iii) action of the key. Therefore, 'lock' and 'key' are the 'kartaa' of the sub-actions carried out by each of them. (2b) and (2c) exemplify this.

2.b The lock opened

The action here is of the lever coming apart. If a lock is rusted, then even if the key turns the lever, the lock would not open as the lock's action is not carried out. Thus, in (2b) the emphasis is on the 'lock's action'.

2.c This key opened the lock

A wrong key cannot open a lock. ((More Details to be added))

3.2 The Scheme

The tagging scheme here includes tagsets at various levels of annotation, the representation format, the naming conventions etc.

3.2.1 A Little History

The first step in the direction of coming up with a tagging scheme for annotating dependencies at the sentential level for Indian languages was conceived and worked out in 2000 itself. At the time it was decided to break the dependency annotation into two parts. Local dependencies and the dependencies of postpositions and auxiliaries to their respective nouns or verbs etc would be done separately. Since it is easy to mark such dependencies automatically with fairly high degree of accuracy, it was decided to leave these out of the manual task of annotation. Thus, the dependency annotation would be manually marked only between the heads of the chunks, i.e. at the inter-chunk level. A chunk is taken to be a basic unit for marking the syntactico-semantic relations with the assumption that the intra-chunk dependencies could be obtained automatically by using a rule based system. Also, the verb chunk is more or less a grouping of the verb base form and its tense, aspect and modality (TAM) auxiliaries. The practical aspect of this decision was that it would save the effort in manual annotation. Once inter-chunk annotation is over, a tool would automatically mark the relations within a chunk/local word group, thus, giving a full dependency tree. Thus, the initial dependency tagging scheme did not include intra-chunk relations.

The task of treebanking could not be immediately carried forward at the time as other tasks such as POS tagging and chunking etc for Indian languages needed prior attention. Substantial amount of work was then done in the direction of developing standards for POS tagging and chunking for Indian languages and a tagging scheme for the same (Bharati et al. 2006). It was decided to revisit the AnnCorra Tagset for inter-chunk dependency relations in Jan 2005. Each of the tag was discussed and a revised list was arrived at. The tagset contained around 26 tags.

Based on the tagset developed in 2005, a small set of sentences (about 2000) from Hindi were annotated. During this process it was noted that there were constructions which could not be satisfactorily captured in the existing tagset. Subsequently, the tagset was re-visited and the tagset given in these guidelines was evolved.

Intra-chunk dependency labels (see Appendix 10.4) were also subsequently.

3.2.2 Corpora

The corpora for the treebank has been acquired from ISI, Calcutta. The Hindi corpus is mainly newspaper texts from Dailies. The domains chosen for the annotation are general news articles (350k), tourism and conversational texts (50k).

3.2.3 Treebank Representation Format (SSF)

The annotated data is stored in SSF format (Bharati et al., 2007). The SSF is a four column format in which the first column is for address, the second column is for the token, the third column is for the category of the node and the fourth column has other features. Any required linguistic or other information can be annotated in the fourth column using an attribute value pair. Thus, POS and chunk category of the tokens would be in the third column and the morph, dependency and any other information pertaining to a node would appear in the fourth column. For more details on SSF read (Appendix 10.2)

3.2.4 Naming Conventions

The naming conventions adopted in the treebank are as follows:

A. Naming tokens

Every lexical item and chunk will have a name. The attribute for naming is 'name'. Values for lexical nodes would be the concerned lexical item. In case there are more than one occurrences of the same word the value for the name attribute would be the lexical item followed by a numerical. For example, if the token is 'phala' (fruit), it would be represented as name='phala'. In case 'Pala' occurs twice in a sentence, the first time its naming feature would be name='phala' and the second time it will be named as name='phala2'. Some more examples are: Hari name='Hari' said name='said'

```
Ram name='Ram'
Ram name='Ram2'
! Name='!'
```

B. Naming Chunks

The chunks are named as their respective phrase tags(NP/VP/JJP). As in the case of lexical items, the subsequent occurrences of the chunks are also named by appending an iterated number(starting with 2) to the phrase tag. For example,

```
NP name='NP'
VP name='VP'
NP name='NP2'
NP name='NP3'
```

- C. Naming NULL nodes In case a NULL node is inserted, the NULL node would be assigned a approriate POS tag. The naming of a NULL node would also be similar to the naming of tokens. That is the node would be named name='NULL' and the subsequent NULL nodes within the same sentence would be assigned names NULL2, NULL3 etc. Similarly, at the chunk level, a chunk containing a NULL node would have the chunk category of the type NULL_NP, NULL_VGF, NULL_JJP etc depending on the POS category of the NULL node within a chunk. The naming on these chunks would be similar to the other chunks, i.e. a NULL_NP chunk would be named as 'NULL_NP' etc.
- **D. Naming Example Sentences** For ease of access, the examples for various labels and constructions have also been given ids in this document. The convention in Part-1b is that every example starts with 'Relation-DS-'. Thereafter, the id has the relation label for which the example stands for followed by a number. For example, examples for 'kartaa' kaaraka would have the following ids Relation-DS-k1-1, Relation-DS-k1-2 and so on. Similarly, for karma kaaraka examples the ids would be Relation-DS-k2-1, Relation-DS-k2-2 and so on. This allows a flexibility of adding more examples for each type of relation at a later stage.

In Part-2, the examples are named as [Construction type-DS-examplenumber]. Thus, examples for causative constructions would read as follows: Causative-DS-1, Causative-DS-2 and so on.

3.2.5 Relations and tag labels

(A) The POS and Chunk Tags

The tagging scheme for POS and Chunk annotation has been developed through conducting various workshops in which scholars representing several major languages of India participated. The scheme aimed at coming up with a tagset which would be comprehensive to the extent possible covering issues from all Indian languages and should be simple for the annotators.

((ADD MORE DETAILS)) Annotation guidelines based on the above scheme are also prepared (Appendix 10.3). The task of annotating POS and chunk in several Indian languages is already going on under the ILMT project funded by Department of Information Technology (DIT), Ministry of Communication and Information Technology (MCIT), Government of India.

(B) Dependency labels

The scheme contains about 40 tags which are arrived at considering various types of sentence constructions in Hindi. These labels contain relations (a) kaaraka and non-kaaraka dependency relations (b) some underspecified tags of the type vmod, nmod etc and (c) some tags which indicate relations which are not exactly dependency relations but are required to represent the sentence structures.

As mentioned earlier, the grammatical model captures certain syntactico semantic relations. The tag labels represent various kaaraka and other than kaaraka relations. All kaaraka relations have been labeled starting with a 'k' followed by a numerical. Paninian grammar talks about six kaaraka relations. In this section we describe the kaaraka relations and how they have to be annotated. Although the basic

number of kaarakas is six, there are a number of relations which are either finer types of kaarakas (such as k2p, k2g etc) or are in some way or the other related to a kaaraka (such as k1s, k2s, k1u, k2u etc). The labels for dependency relations other than kaarakas start with an 'r'.

There are certain relations which do not fall under 'dependency relation' directly but are required for showing the dependencies indirectly. For example, for representing a labels 'ccof' and 'pof' appear in the tagging scheme to represent 'co-ordination' and 'complex predicates' respectively. The dependency relation type tree in bf Figure 2 below shows the relations from coarser to finer on a modifier modified paradigm.

Figure 1: Dependency Relation Types

The classification shown in the above tree allows underspecification of certain relations in cases where a finer analysis is not very significant for this level of annotation and is also more difficult for decision making for the annotators. Therefore, the labels such as k1, k2 etc represent a finer level depicted deeper in the tree, whereas, labels such as 'vmod', 'nmod' show an underspecified representation of the relation. More details for this are given under respective labels in Section 4.1 of this document.

In deciding the kaaraka relations of elements in a sentence, the semantics of the verb plays a major role and at the same time syntax helps too. Normally 'kartaa' and karma agree with the verb. If 'kartaa' agrees with the verb then it takes a zero vibhakti (nominative case) otherwise it takes one of the following vibhaktis (postposition)- ne, ko, se, xvArA. Therefore, a mapping between vibhakti and TAM (tense, aspect and modality) can be quite useful for identifying the dependency relations such as 'kartaa' and karma.

A default rule for annotating kaarakas in sentences with more than one verb is that all kaarakas attach to the nearest verb on the right. $\mathbf{k1}$ has a special default rule for the shared argument relation. It attaches to the finite verb.

4 Part-1B

The issues related to actual annotation task such as how to mark various relations, how to handle shared arguments, what to do in case of missing arguments are described in this part of the document. All the relations and the labels to be used for them are also listed here. As mentioned above, the framework provides two kinds of dependency relations - **kaaraka relations** and **other relations**. Detailed description for each of the labels and the syntactic cues for marking them are also provided.

NOTE: Gloss has been provided for the examples given in the document. But often the gloss provides only the relevant lexical information and not all the information which might be there in a Hindi word. For example, most often the gender and number information is missing.

4.1 The Dependency Relations and How to mark them

We will now describe all the dependency relations and the tag label for each of them one by one. The objective of this section is to help the annotators with the actual annotation of various relations in a sentence. All the **kaaraka** relations which have labels starting with \mathbf{k} are listed first followed by **non-kaaraka** relation labels which begin with $\mathbf{\hat{r}}$.

4.1.1 kaaraka Relations

1. 'kartaa' (k1)- 'doer/agent/subject'

'kartaa' is the one who carries out the action. Various cases of a 'kartaa' in a sentence are listed below:

The grammar talks of two types of 'kartaa', (a) primary and (b) secondary. Primary 'kartaa' has volitionality whereas the secondary 'kartaa' does not. Therefore, 'kartaa's of 2b and 2c above do not have volitionality. In A.B.C. And D. below various conditions under which a 'kartaa' occurs in Hindi are explained through examples.

1.A. If the verb denotes an action, the k1 is the doer of the action. In examples (Relations-k1-1 to 7), rAma is the doer of the action so rAma is the 'kartaa'.

Example Id = Relation-DS-k1-1:

(2) rAma bETA hE

Ram baithaa hai Ram sit-perf is 'Ram is sitting.'

Syntactic Cues: Most general or default syntactic cues for identifying karta in a Hindi sentence are:

(a) *Kartaa* is normally in nominative case which is realized as 0 in Hindi. (b) By default verb in active voice (list of TAMs attached) agrees with the *kartaa* in number, gender and person.

IMPORTANT NOTE on syntactic cues: It is important to note that *kartaa* is not the only karaka which may appear with a 0 *vibhakti*. Some other relations may also appear without an explicit case marker. The conditions under which various karakas etc occur with a particular 'vibhakti' may not always be syntactic. Therefore, one needs to look at various cues such as the context, the semantic properties of the word under consideration, semantic properties of the words to which the given word is related etc. In short, the cues provided here are only to help take a decision but are not to be followed mechanically.

Some more examples of kartaa where the above syntactic cues would apply are: Example Id = Relation-DS-k1-2:

(3) rAma KIra KAwA hE

Ram khiir khaataa hai Ram rice-pudding eat-hab-sg-m is 'Ram eats rice-pudding.'

Example Id = Relation-DS-k1-3:

(4) sIwA KIra KAwI hE

siitaa khiir khaatii hai Sita rice-pudding eat-hab-sg-f is 'Sita eats rice-pudding.'

1.B. However, karta in Hindi can also occur with case markers other than nominative case (0 vibhakti).

NOTE: The terms case marker, vibhakti or postposition are used interchangeably in this document.

Example Id = Relation-DS-k1-4:

(5) rAma ne KIra KAyI

raam ne khiir khaaii Ram erg rice-pudding ate 'Ram ate rice-pudding.'

Example Id = Relation-DS-k1-5:

(6) rAma ko Kira KAnI padZI

Example Id = Relation-DS-k1-6:

(7) rAma ko Kira KAnA cAhiye

raam ko khiir khaanaa chaahiye Ram Dat rice-pudding eat+inf should 'Ram had to eat rice-pudding.'

Syntactic cues: for identifying a 'karta' in the above constructions are: If a noun occurs with the postpositions belonging to the list given below and the verb has the corresponding TAM in the list below then the noun would always be a *karta* in Hindi.

Postposition (Vibhakti) TAM

- (i) ne yA (past)
- (ii) ko nA_padZA (compulsive, past)
- (iii) ko nA_cAhiye (prescriptive)

C. In passive constructions, normally a karta would be absent. However, if it occurs, it will appear either with 'xvArA' or 'se' as its vibhakti.

(8) rAma xvArA KIra KAyI gayI

raam dwaaraa khiir khaaii gayii ram by rice-pudding ate Passv 'Ram had to eat rice-pudding.'

Syntactic cues: (a) A noun followed by the postposition 'xvArA' or 'se' and (b) the verb having a passive TAM (tense, aspect and modality) would be a 'arta'. A list of passive TAMs in Hindi is provided in Appendix for reference.

D. Karta with a genitive marker: Karta in Hindi can also occur with a genitive marker. Following are some examples of the same.

Example Id = Relation-DS-k1-8:

(9) rAma kA mAnanA hE ki kala bAriSa hogI

raam kaa maananaa hai ki kala baarish hogii Ram of belief is that tomorrow rain will-happen 'Ram believes that it will rain tomorrow.'

The *karta* with a genitive postposition (kA) occurs only with a few verbs such as 'kaha', 'soca', 'mAna' etc. The verb in these cases would have the TAM '-nA' (gerundive).

E. Some more examples of 'karta' in Hindi sentences: Example Id = Relation-DS-k1-9:

(10) rAma acCA hE

raam achechaa hai ram good is 'Ram is good.'

Example Id = Relation-DS-k1-10:

(11) muJako cAzxa xiKA

mujhako chaand dikhaaI-Dat moon appeared'I saw the moon.'

In the stative verbs, the state of a person or a thing is mentioned. The person or thing whose state is mentioned will be the karta. In example (Relation-DS-k1-8), state of rAma is mentioned so rAma

becomes the karta.

Similarly, the subject of an unaccusative verb would also be marked as karta. In example (Relation-DS-k1-10), \mathbf{cAzxa} 'moon' is the karta as 'xiKanA' (to be seen) is an unaccusative verb in Hindi. Following the definition of a karta as the doer of the activity denoted by the verb, the doer of the activity of 'xeKanA' (to see) is different from the activity of 'xiKanA' (to be seen). Therefore, the element 'rAma' in Relation-DS-k1-9, from where this activity springs forth would be karta.

F. Clausal karta: A clause can also be *karta*. For example,

Example Id = Relation-DS-k1-11:

(12) rAma kA yaha mAnanA sahI nahIM hE

```
raama kaa yaha maananaa sahii nahin hai
Ram of this belief true not is
'This belief of Ram is not true.'
```


In the above example the non-finite clause, 'rAma kA yaha mAnanA' is the karta of the verb 'hE'. The k1 tag in such cases would be annotated on the verb of the clausal karta. Therefore , (annotated example is represented in SSF)

```
(( NP <drel=r6:VGNN>
rAma NNP
kA PSP
))
(( NP <drel=k2:VGNN name=VGNN>
yaha PRP
))
(( VGNN <drel=k1:VGF>
mAnanA VM
))
(( JJP <drel=k1s:VGF>
sahI JJ
(( VGF <name=VGF>
nahIM NEG
hE VM
))
```

Robust cues for identifying karta:

Figure 3: SSF-1

1. A noun chunk with 'ne' case marker is always k1. For example,

(13) rAma ne KAnA KAyA.

raam ne khaanaa khaayaa Ram ERG food ate. 'Ram ate food.'

2. For a sentence in active voice, the verb generally agrees with the karta. For example,

(14) rAma KIra KA rahA hE.

raam khiir khaa raahaa hai Ram rice-pudding eat cont is 'Ram is eating rice-pudding.'

3. There is always at most one k1 for a verb. For example,

(15) rAma skUla jAkara Gara A gayA.

raam skuul jaakar ghar aa gayaa. Ram school gone home came went 'Having gone to school, Ram came home.'

4. All first and second person personal pronouns in nominative case are k1. For example,

(16) mEM KAnA KA rahA hUz.

main khaanaa khaa raahaa huun I food eat is am 'I am eating food.'

DRel-2. pk1, jk1, mk1 (causer, causee, mediator-causer)

Causatives in Hindi are realized through a morphological process. An intransitive or a transitive verb changes to a causative verb when affixed by either an 'A' or a '-vA' suffix. In our scheme, both 'causer' and 'causee' are marked. In addition to the causer and causee, there can also be a mediator who is both causee and causer.

A. pk1 (prayojaka karta 'causer') Example Id = Relation-DS-pk1-1:

(17) mAz ne bacce ko KAnA KilAyA.

maan ne bachche ko khaanaa khilaayaa. mother erg child acc food caused to eat 'The mother fed the child.'

Example Id = Relation-DS-pk1-2:

(18) sIwA ne AyA se bacce ko KAnA KilavAyA.

siitaa ne aayaa se bachche ko khaanaa khilavaayaa. mother erg child acc food caused to eat 'Sita made the maid feed the child.'

Example Id = Relation-DS-pk1-3:

Syntactic cues: Syntactically, 'pk1' will behave like 'karta'. Therefore, all the syntactic cues which are used for 'karta' would apply in the case of a 'prayojak karta' (pk1-causer) as well. The difference between a 'karta' and a 'prayojaka karta' is to be noted from the verb form. '-vA' suffix in the verb is a clear indicator of it being a causative.

(19) rAma ne mohana se BiKArI ko xAna xilavAyA.

raama ne mohan se bhikhaarii ko daana xilavaayaa. Ram erg Mohan by beggar acc food caused to give 'Ram made Mohan give the alms to the beggar'

B. jk1 (prayojya karta 'causee')

The causee in a causative construction is annotated as jk1. All the tags capture the information of agentive participation in various nouns.

noindentExample Id = Relation-DS-jk1-1:

(20) mAz ne AyA se bacce ko KAnA KilavAyA.

maan ne aayaa se bachche ko khaanaa khilavaayaa. mother erg child acc food caused to eat 'Mother made the maid feed the child.'

Example Id = Relation-DS-jk1-2:

(21) rAma ne mohana xvArA/se tikata KarixavAye.

raam ne mohan xvArA/se tikata KarixavAye. Ram erg Mohan by ticket caused-to-buy 'Ram made Mohan buy tickets for Raja.'

Example Id = Relation-DS-jk1-3:

(22) rAma ne mohana xvArA/se rAjA ko tikata xilavAye.

raam ne mohan xvaaraa/se raajaa ko tikata xilavaaye. Ram erg Mohan by Raja Dat ticket caused-to-give 'Ram made Mohan buy tickets for Raja.'

Syntactic cues: Syntactically, a causee would have either a 'ko' vibhakti or a 'se' vibhakti. The choice of 'ko' or 'se' would depend on the type of verb. Therefore, there is no definite syntactic cue. In this case also, it is the verb form and its semantics which are the determining factors for identifying this relation.

 $C.\ mk1$ (madhyastha karta 'mediator causer') Causative constructions have at least one causer and one causee. However, more than one causers can also occur in a sentence. The second causer (a mediator) in such cases is a causee-causer. The mediator (causee-causer) is marked as mk1. It is possible that more than one causee-causers can occur in a sentence. In case there are more than one mediators in a causative construction they are all marked as mk1. See the examples below:

Example Id = Relation-DS-mk1-1:

(23) mAz ne AyA se bacce ko KAnA KilavAyA.

maaz ne aayaa se bacce ko khaanaa khilavaayaa. mother erg Ayah by child acc food made-to-eat 'The mother made the Ayah make the child eat the meal.'

Example Id = Relation-DS-mk1-2:

(24) rAma ne SyAma xvArA mohana se BiKArI ko xAna xilavAyA.

raama ne Syaama xvaaraa mohana se bhikhaarii ko xaana xilavaayaa. Ram erg Shyam by Mohan by beggar Dat food caused to give 'Ram made Shyam make Mohan give alms to the beggar.'

Example Id = Relation-DS-mk1-3:

(25) sIwA ne mIrA xvArA AyA se bacce ko KAnA KilavAyA.

siiwaa ne miiraa xvaaraa aayaa se bacce ko khaanaa khilavaayaa. Sita erg mira by maid by child acc food caused to feed 'Sita made Mira make the maid feed the child.'

Syntactic cues: The vibhakti for a 'mk1' would either be xvArA or se. In case more than one mk1 occurs in a sentence, then the first one would have 'xvArA' vibhakti and the second one would have 'se' vibhakti.

However, the causer causee relation is derived more from the verb morphology rather than other clear syntactic cues.

Robust cues:

1. Causatives can be identified by the presence of the TAMs A or vA. For example,

(26) mAz ne bacce ko KAnA KilAyA.

maaz ne bacce ko khaanaa khilaayaa. mother erg child acc food caused to eat 'The mother fed the child.'

Possible cases of confusion:

1. Sometimes transitive verbs also end with -A TAM. Also, sentences with passive voice construction be confused as causatives.

DRel-3. k1s (vidheya karta - karta samanadhikarana 'noun complement of karta')

Noun complements of karta are marked as 'k1s'. The term samanadhikarana indicates 'having the same locus'. Therefore, karta samanadhikarana indicates having the same locus as karta.

Example Id = Relation-DS-k1s-1:

(27) rAma buxXimAna hE.

raama buddhimaana hai. Ram intelligent is 'Ram is intelligent.'

Example Id = Relation-DS-k1s-2:

(28) XaniyA iwanI vyavahArakuSala na WI.

dhaniyaa iwanii vyavahaarakushala na thii. Dhaniya so-much diplomatic not was 'Dhaniya was not that diplomatic.'

Robust cues: 1.k1s can only be there when a k1 is marked for a verb.

DRel-4. k2 (karma 'object/patient')

The element which is the object/patient of the verb is marked as karma. Karma is the locus of the result implied by the verb root.

A. karma in active voice sentences:

Given below are some examples of the occurrence of karma in active voice sentences: Example Id = Relation-DS-k2-1: rAma rojZa eka seba KAwA hE Ram everyday one apple eat-hab pres 'Ram eats an apple everyday'

(29) rAma rojZa eka seba KAwA hE.

raama roza eka seba khaawaa hai. Ram everyday one apple eat-hab pres 'Ram eats an apple everyday.'

Example Id = Relation-DS-k2-2: rAma ne KIra KAyI ram erg rice-pudding ate 'Ram ate rice-pudding.'

(30) rAma ne KIra KAyI

rama ne khiira khaayii. ram erg rice-pudding ate 'Ram ate rice-pudding.'

Example Id = Relation-DS-k2-3:

(31) rAma ne bAjZAra meM ravi ko xeKA

raama ne baazaara mein ravi ko dekhaa. Ram erg market in Ravi acc saw 'Ram saw Ravi in the market.'

Syntactic Cues: Karma occurs either with a zero vibhakti (postposition) or a 'ko' vibhakti (postposition). Often, in Hindi, both karta and karma occur without a postposition/vibhakti (zero vibhakti). In case both karta and karma occur with a zero vibhakti in a sentence and the two nouns are of different gender then the noun which does not agree with the verb would be karma (see example Relation-DS-k2-1 above).

If the karta is followed by a postposition in a sentence, then the noun which agrees with the verb would be karma (Relation-DS-k2-2). Karma can also occur with a 'ko' postposition. Karma would be marked by a 'ko' vibhakti when it is a human noun (Relation-DS-k2-3) . Sometimes, karma is marked by a 'ko' vibhakti to indicate definiteness as well.

B. In passive constructions, the noun which agrees with the verb is the karma. Example Id = Relation-DS-k2-4:

(32) xivAlI para KZUba miTAI KAyI gayI.

xivaalii para khuuba mithaaii khaayii gayii. Diwali on lots of sweets eat-Passv 'Lots of sweets were eaten on Diwali.'

Example Id = Relation-DS-k2-5:

(33) xivAlI para KZUba patAKe CodZe gaye.

xivaalii para khuuba patakhe chode gaye. Diwali on lots of crackers leave go-Passv 'Lots of crackers were burst on Diwali.'

Syntactic Cues: If the verb in a sentence occurs with a passive TAM then the noun which agrees with the verb is the karma

C. Vakya-karma (Sentential object 'complement clauses')

Finite clauses occur as sentential object the verb of the subordinate clause is attached to the verb of the main clause and the arc is tagged as 'k2'. For example, Example Id = Relation-DS-k2-6:

(34) rAma ne bawAyA ki bAhara pAnI barasa rahA hE.

raama ne bataayaa ki baahara paanii barasa rahaa hai. Ram-erg told that outside water raining prog pres 'Ram told that it was raining outside'

Example Id = Relation-DS-k2-7:

(35) usane kahA ki rAma kala nahIM AyegA.

usane kahaa ki raama kala nahiin aayegaa. he-erg told that ram tomorrow not will-come 'He told that Ram will not come tomorrow.'

DRel-5. k2p (Goal, Destination)

The destination or goal is also taken as a karma in this framework. However, it is marked as k2p in the treebank. k2p is a subtype of karma (k2). The goal or destination where the action of motion ends is a k2p. These are mostly the objects of motion verbs. They also occur with other types of verbs. The syntactic behavior of k2p is slightly different from other k2. That is why a separate tag has been kept for them. Unlike other karma, the goal/destination karma do not agree with the verb under similar syntactic context (see example Relation-DS-k2p-2 below).

Example Id = Relation-DS-k2p-1:

(36) rAma Gara gayA.

raama ghara gayaa. Ram home went 'Ram went home.'

Example Id = Relation-DS-k2p-2:

(37) vaha saba ko apane Gara bulAwA hE.

vaha saba ko apane ghara bulaawaa hai.he all-acc his home invite-be-Pres'He invites everybody to his home.'

Example Id = Relation-DS-k2p-3: rAma ko xillI jAnA padZA Ram acc Delhi go lie 'He had to go to Delhi'

(38) rAma ko xilli jAnA padZA.

raama ko xillii jaanaa padaa. Ram acc Delhi go lie 'Ram had to go to Delhi.'

Example Id = Relation-DS-k2p-3b: *rAma ko xillI jAnI padZI

'xillI' is a feminine noun in Hindi. However, an agreement between 'xillI' and the verb 'jAnA padZA' in example Relation-DS-k2p-3b above is ungrammatical. This is why, though a destination is also a karma, it is treated as a special case.

In general, verbs such as jAnA (to go), AnA (to come), pahucanA (to reach), etc. will take k2p.

DRel-6. k2g (secondary karma)

It is possible to have more than one 'karma' of the same verb in a sentence. For example:

Example Id = Relation-DS-k2g-1:

(39) ve loga gAMXIjI ko bApU BI kahawe hEM.

ve loga gaandhiijii ko baapuu bhii kahawe hain. those people Gandhi+hon acc Bapu also say+hab be-Pres 'They also call Gandhiji Bapu.'

Verbs such as kahanA (to say/to call) can have two karma. In sentence Relation-DS-k2g-1 above, 'kahate hEM' (say/call) has two karmas - gAMXIji and bApU.

DRel-7. k2s (karma samanadhikarana 'object complement')

The object complement is called as karma samanadhikarana and the tag used for it is 'k2s'. Example Id = Relation-DS-k2s-1:

(40) ve gAMXIjI ko bApU BI mAnawe hEM.

ve gandhijii ko baapuu bhii maanawe hain. they Gandhiji acc father also believe+hab be-Pres 'They consider Gandhiji as a father.'

Example Id = Relation-DS-k2s-2:

(41) rAma mohana ko buxXimAna samaJawA hE.

rama mohana ko buddhimaana samajhawaa hai. ram mohan acc intelligent consider-Impf be-Pres 'Ram considers Mohan to be intelligent.'

Notice that both kahanA 'to say' and mAnanA 'to believe' seem to have two karmas, but only kahanA can be treated as taking two 'karma'. This is because in (Relation-DS-k2g-1), 'bApU' is a word or substance, whereas in (Relation-DS-k2s-1), 'bApU' is a property that resides in 'gAMXIjI'. That is why in Relation-DS-k2s-1 'bApU' is the object of a ditransitive verb and in Relation-DS-k2s-1 'bApU' is the complement of 'gAMXIjI' and thus would be marked as 'k2s'.

Robust cues:

1.k2s can only be there if there is a k2 in a sentence.

Possible case of confusion:

There may be some inconsistency in marking the additional argument in the form of either 'rs' or 'k2s' in the case of perception and communication verbs like, xeKa (to see), soca (to think), suna (to hear/listen), pUCa (to ask), bola (to speak), etc. The additional argument should consistently be marked as 'k2s' and be directly attached to the main verb.

DRel-8. k3 (karana 'instrument')

karana karaka denotes the instrument of an action expressed by a verb root. The activity of karana helps in achieving the activity of the main action. The karana karaka is annotated as k3. Some examples of sentences having karana karaka are given below.

Example Id = Relation-DS-k3-1:

(42) rAma ne cAkU se seba kAtA.

raama ne caakuu se seba kaataa. Ram erg knife inst apple cut 'Ram cut the apple with a knife.'

The element 'with a knife' in the above sentence is karana as with the help of the knife, the result, i.e. the 'pieces of the apple', is achieved. Some more examples of sentences having karana karaka are given below.

Example Id = Relation-DS-k3-2:

(43) rAma ne cammaca se KIra KAyI.

raama ne cammaca se khiira khaayii. Ram erg spoon with rice-pudding ate 'Ram ate the rice-pudding with a spoon.'

Example Id = Relation-DS-k3-3:

(44) sIwA ne pAnI se GadZe ko BarA.

siiwaa ne paanii se ghade ko bharaa. Sita erg water with clay-pot acc filled 'Sita filled the clay-pot with water.'

Any element/noun which is instrumental in achieving the result would be marked as 'k3' for karana. The noun need not necessarily denote a physical object which is an instrument. For example, the noun 'pAnI' (water) in the sentence Relation-DS-k3-3, is instrumental in achieving the action of 'BaranA' (to fill). Thus, 'pAnI'(water) would be marked as 'k3' (karana).

Syntactic cues: karana karaka always takes a se vibhakti (postposition) in Hindi.

Possible cases of confusion:

1. Many other non-k3 karakas can also take 'se' vibhakti. We saw this in the case of karta karaka above. 'se' vibhkati can also be taken up by k4 (cf. section 4.1.9). It can also appear with rh (cf. section 4.1.23), and k5. 2. 'se' is quite an ambiguous vibhakti. The following examples list out some varied cases. You will notice that one cannot solely depend on the vabhakti to decide the relations and that the semantics of the verb is an equally important factor.

koI [kisi se]/k2 milawA hE

koi [kisi se]/k2 samparka banAwA hE

koI [kisi se]/k4 kehawA hE

koI [kisi se]/k4 pUcawA hE

koI [kisi se]/ras-k1 bAwa karwA hE

koI [kisi se]/ras-k1 milwA hE

kisi ke [havAle se]/k3

koI [kisi se]/k5 ubawA hE

koI [kisi se]/mk1 kuCa karvAwA hE

DRel-9. k4 (sampradana 'recipient')

Sampradana karaka is the recipient/beneficiary of an action. In other words, the person/object for whom the karma is intended for is sapradana.

Example Id = Relation-DS-k4-1:

(45) rAma ne mohana ko KIra xI.

raama ne mohana ko khiira dii. Ram erg Mohan dat rice-pudding gave 'Ram gave rice-pudding to Mohan.'

Example Id = Relation-DS-k4-2:

(46) rAma ne mohana ko kahAnI sunAyI.

raama ne mohana ko kahaanii sunaayii. Ram-erg Mohan-dat story told 'Ram narrated a story to Mohan.'

The final destination of the action 'xI' (gave) in Relation-DS-k4-1 above is mohana 'Mohan' which is marked with ko. Similarly the final destination of the action 'sunAyI' (told) in Relation-DS-k4-2 is mohana 'Mohan' which is again marked with ko.

Syntactic Cue: sampradana karaka normally takes a ko vibhakti in Hindi.

B. Certain cases where sampradana does not take a 'ko' postposition.

Verbs such as 'kahanA' take a 'se' vibhakti for k4. Example Id = Relation-DS-k4-3:

(47) rAma ne hari se yaha kahA.

raama ne hari se yaha kahaa. Ram-erg Hari to this said 'Ram said this to Hari.'

It appears that some communication verbs take 'se' vibhakti for k4 but not all. Therefore, k4 of verbs such as 'bawAnA', 'sunAnA' does not take a 'se' vibhakti. It takes a 'ko' vibhakti in these cases also.

Example Id = Relation-DS-k4-4:

(48) rAma ne hari ko yaha bAwa bawAyI.

rAma ne hari ko yaha bAwa bawAyI. Ram-erg Hari to this matter told 'Ram told this (matter) to Hari.'

Robust cues: 1. For verbs like bola, kaha, puCa, etc. noun with 'se' vibhakti is k4. For example:

(49) rAma ne mohana se kuCa bolA.

raama ne mohana se kuchha bolaa. Ram-erg Mohan-abl something said 'Ram told this (matter) to Hari.'

DRel-10. k4a (anubhava karta 'Experiencer')

Perception verbs such as 'seem', 'appear' etc. have a perceiver/experiencer participant. In the Hindi example Relation-DS-k4a-1 below, rAma is k1, buxXimAna is k1s and muJako 'I-Dat' is k4a (perceiver). Here muJako 'I-Dat' is a passive agent i.e. experiencer who is not making any effort but just receiving or perceiving the activity carried out by another agent is identified as anubhava karta and is marked as k4a. The term anubhava karta does not occur in Sanskrit grammatical literature. This has been introduced here for Hindi based on the observations of Hindi syntax. Also, since the passive participation of perceiving is that of a receipient, it has been placed under sampradana here. The anubhava karta can be equated with a dative subject.

Example Id = Relation-DS-k4a-1:

(50) muJako rAma buxXimAna lagawA hE

mujhako raama buddhimaana lagawaa hai. I-Dat ram intelligent seems be-Pres 'Ram seems intelligent to me.'

Syntactic cues: anubhava karta always takes a 'ko' vibhakti. Argument of unaccusative verbs having a 'ko' vibhakti would also be marked as anubhava karta (Example Relation-DS-k4a-2 below). Verbs such as 'laganA' (to seem) and 'xiKanA' (to appear) take passive agents and would be marked 'k4a'. On the other hand, verbs such as 'mAnanA' (to believe) and 'xeKAnA' (to see) take active agents and would be marked as 'k1'. See the following examples:

Example Id = Relation-DS-k1-10:

(51) vaha mAnawA hE ki rAma buxXimAna hE

Example Id = Relation-DS-k4a-2:

(52) muJako cAzxa xiKA.

mujhako chaand dikhaa. I-Dat moon appeared 'I saw the moon.'

Example Id = Relation-DS-k1-13:

(53) mEne cAzxa xeKA.

maine chaand dekhaa. I-Erg moon saw 'I saw the moon.'

In examples (Relation-DS-k1-10 and 11), vaha 'he' and mEne 'I-erg' respectively are k1 as they are active agents. On the other hand, in examples Relation-DS-k4a-1 and 2, muJako 'I-Dat' is k4a as in both the examples it appears as a passive agent (experiencer). Some more examples of anubhava karta are:

Example Id = Relation-DS-k4a-3:

$(54)\;\;{\rm rAma}$ ko kiw Aba mil
I.

raama ko kitaaba milii. Ram Dat book got 'Ram found a book.'

Example Id = Relation-DS-k4a-4:

(55) rAma ko BUKa lagI.

raama ko bhuukha lagii. Ram Dat hungry felt 'Ram felt hungry.'

Example Id = Relation-DS-k4a-5:

(56) rAma ko xuKa hE.

raama ko dukha hai. Ram Dat unhappiness is 'Ram is unhappy.'

Example Id = Relation-DS-k4a-6:

(57) muJe/muJako acCA lagA.

raama ko dukha hai. I-Dat good felt 'I felt good.'

Example Id = Relation-DS-k4a-7:

(58) muJe/muJako laddU acCe lagawe hEM.

mujhe/mujhakoladduuachchhelagatehain.I-Datsweetgoodfeel-habbe-Pres'I like sweets.'

DRel-11. k5 (apadana 'source') Apadana karaka indicates the source of the activity, i.e. the point of departure. A noun denoting the point of separation for a verb expressing an activity which involves movement 'away from' is apadana. In other words, the participant which remains stationary when the separation takes place is marked k5.

Example Id = Relation-DS-k5-1:

(59) rAma ne cammaca se katorI se KIra KAyI.

raama ne chammacha se katorii se khiira khaayii. Ram erg spoon with bowl from rice-pudding ate 'Ram ate the rice-pudding from a bowl with a spoon.'

Example Id = Relation-DS-k5-2:

(60) cora pulisa se BAgawA hE.

chora pulisa se bhaagataa hai. thief police from run-away-hab pres 'A thief runs away from police.'

Syntactic Cues: apadana karaka always takes a se vibhakti in Hindi. However, since 'se' postposition in Hindi is functionally overloaded, it is not a very reliable cue for identifying a karaka. Therefore, one has to look for additional cues in cases where 'se' is a vibhakti. The other cue in case of apadana karaka would be the verb semantics. If the verb denotes some motion, then the point of departure would be marked with 'se' and that would be apadana karaka.

B. Emotional verbs such as gussA honA 'to be angry', KuSa honA 'to be happy' also take an apadana karaka. The entity which triggers these emotions is annotated as k5

Example Id = Relation-DS-k5-3:

(61) rAma mohana se gussA huA.

raam mohana se gussaa hai. Ram Mohan from angry is 'Ram is angry with Mohan.'

The example Relation-DS-k5-3 shows a case where there is no explicit point of separation from the noun 'mohana' (Mohan). However, it will still be marked as 'k5' since it expresses the source of anger. At an abstract level, the anger is triggered from Mohan. Thus, 'mohana' (Mohan) would be the point of departure for the emotion of anger triggered in 'rAma' (Ram) and will be marked as 'k5'.

C. Verbs such as pUCanA 'to ask' also take a k5. The entity from which the information has to be elicited is marked as k5 as it functions as the source.

Example Id = Relation-DS-k5-4:

(62) mEMne usase eka praSna pUCA.

maine usase eka prashana puuchhaa. I-erg him-abl one question asked 'I asked him a question.'

DRel-12. k5prk (prakruti apadana 'source material' in verbs denoting change of state)

Examples such as the following pose an interesting problem for appropriate karaka assignment. Example Id = Relation-DS-k5prk-1:

(63) jUwe camade se banawe hEM.

juute chamade se banate hain. shoes leather from make-hab be-pres-pl 'Shoes are made of leather.'

The issue here is whether 'camade' (leather) in the above example is karana karaka or apadana. Both these karakas in Hindi take a 'se' postposition. Therefore, how do we decide what role 'camade' (leather) is playing in the action of 'banate' (make). An instrument participates in an action as a mediator for accomplishing the result of the action and is not itself affected by it, i.e., it does not undergo a change. However, 'camade' as a participant in the action of 'banate' (make) undergoes a change and also has a relation with the finished product. Change of state verbs such as 'make' require at least two participants 'a raw material' ('leather' in this case) with the aid of which a finished product ('shoes' in this case) is made. Hence, it is a relation which involves a kind of separation separation from the larger raw material from which a product is made. The karaka relation will then be a special case of apadaan i.e k5. This is because there is a conceptual separation point from the original raw material 'camade' (leather) to the finished product 'jUte' (shoes). The two states in this change of state action are referred to as prakriti 'natural' and vikruti 'change'. Therefore the tag for this type of apadana is named as 'k5prk'.

NOTE: Currently, this distinction of k5 is not being annotated in the treebank.

DRel-13. k7t (kAlAdhikarana 'location in time')

Adhikaran karaka is the locus of karta or karma. It is what supports, in space or time, the karta or the karma. The participant denoting the time of action is marked as 'k7t'. For example,

Example Id = Relation-DS-k7t-1:

(64) rAma cAra baje AegA.

raama chaara baje aayegaa. Ram 4'o clock come 'Ram will come at 4'o clock.'

In the example above, 'cAra baje' is k7t. adhikarana can be of time or space. It is not mandatory of adhikarana to always take a vibhakti. Therefore, even k7t may occur with or without a vibhakti. For instance, in example Relation-DS-k7t-2 and 3 there are no vibhaktis, whereas Relation-DS-k7t-4 and 5 take a meM.

Example Id = Relation-DS-k7t-2:

(65) kala pAnI barasA WA.

kala paanii barasaa thaa. yesterday water rained be-Past 'It rained yesterday.'

Example Id = Relation-DS-k7t-3: rAma pahale AyA Ram first came 'Ram came first.'

(66) rAma pahale AyA.

raama pahale aayaa. Ram first came 'Ram came first.'

Example Id = Relation-DS-k7t-4: usa jZamAne meM mahazgAI kama WI that period in expensive-ness less be-Past 'The cost of living was less those days'

(67) usa jZamAne meM mahazgAI kama WI.

usazamaanemeinmahangaaiikamathii.thatperiodinexpensive-nesslessbe-Past'The cost of living was less those days.'

Example Id = Relation-DS-k7t-5:

(68) bacapana meM vaha bahuwa SEwAna WA.

bachapana mein vaha bahuta shaitaana thaa. childhood in he very naughty be-Past 'He was very naughty in his childhood.'

Syntactic Cue: As mentioned above, 'k7t' is often marked by a 'meM' vibhakti. Some time expressions (such as 'subaha' morning, 'pahale' before/first, 'kala' yesterday/today, 'mahIne' month etc) when participating in an adhikarana role do not take any vibhakti. However, there are some specific cases where 'k7t' has other vibhaktis as well. For example, Example Id = Relation-DS-k7t-6:

(69) wuma mere Gara SAma ko AnA.

tuma mere ghar shaama ko aanaa. you my home evening acc come 'You come to my place in the evening.'

Example Id = Relation-DS-k7t-7:

(70) rAma apanA kAma samaya para karawA hE.

raama apanaa kaama samaya para karataa hai. Ram own work time on do-hab be-pres 'Ram does his work on time.'

DRel-14. k7p (deshadhikarana 'location in space')

The participant denoting the location of karta or karma at the time of action is called as deshad-hikarana. It will be marked as 'k7p'. Some examples of 'k7p' are given below. Example Id = Relation-DS-k7p-1:

(71) mejZa para kiwAba hE.

meza para kitaaba hai. table on book is 'The book is on the table.'

Example Id = Relation-DS-k7p-2:

(72) havA meM TaMdaka hE.

havaa mein thandaka hai. air in chill is 'The air is chilly.'

Example Id = Relation-DS-k7p-3:

(73) rAma vahAz KadZA hE jahAz SyAma KadZA hE.

raam vahaan khadaa hai jahan shyaam khadaa hai Ram there standing is where Shyam standing is 'Ram is standing there where Shyam is standing.'

Syntactic Cues: Like location of time(k7t), some locations of place carry explicit vibhaktis (case markers) and some don't. When a location of place does take an explicit vibhakti then most of the postposition would be meM 'in' or para 'on'. In example Relation-DS-k7p-3 'k7p' has no vibhakti. The tag k7p refers to a location of place which is an actual physical place and not a metaphorical or abstract place.

DRel-15. k7 (vishayadhikarana 'location elsewhere')

Another kind of adhikarana is vishayadhikarana which can be roughly translated as 'location in a topic'. For example:

Example Id = Relation-DS-k7-1:

(74) ve rAjanIwi para carcA kara rahe We.

ve raajaniiti para charchaa kara rahe the. they poilitics on discussion do prog be-past 'They were discussing politics.'

However, the term 'topic' can be misleading as it is not restricted to the 'topic' of discourse alone. It is in fact a location other than time and place. Some more examples of *vishayadhikarana* are:

Example Id = Relation-DS-k7-2:

(75) harI ne svawanwrawA saMgrAma meM hissA liyA.

harii ne svatantrataa sangraama mein hissaa liyaa. Hari erg independence movement in part took 'Hari took part in the independence movement.'

Example Id = Relation-DS-k7-3:

(76) unhoMne apane SiRya ko ASrama kI sevAoM se mukwa karane meM saMkoca nahIM kiyA.

'He didn't hesitate in freeing his student from the services of the ashram.'

Example Id = Relation-DS-k7-4:

(77) mere mana meM gussA hE.

mere mana mein gussaa hai. my mind in anger is 'I am angry.'

Example Id = Relation-DS-k7-5:

(78) merA mana amarIkA meM hE.

meraa mana amariikaa mein hai. my mind America in is 'I am mentally in America.'

In the example (4) above 'mana' is not a concrete physical place, therefore, it will be marked as k7. In the example (5), 'amerikA' is an actual physical place, but this will also be NOT marked as k7p. Instead, it will be marked as k7. The reason for marking it as k7 is that though America is an actual physical place, but the entity (mana in this case) which is in America is not. So, for a participant to be marked as k7p there has to be an actual physical contact, i.e., the located and the location have to be concrete objects. If they are not, then the location would be marked as k7.

Syntactic Cue: Like other types of adhikarana, vishayAdhikarana also takes 'meM' and 'para' postpositions as its case markers.

DRel-16. k7a (according to)

For noun chunks with vibhaktis, ke_muwAbika/ke_anusAra/ke_wahawa should be marked as k7a. For example,

Example Id = Relation-DS-k7a-1:

(79) rAma ke muwAbika sIwA Gara para nahIM hE.

raama ke mutaabika siitaa ghara para nahiin hai Ram gen according Sita home loc not is 'According to Ram, Sita is not at home.'

In the above example, 'rAma' which is taking 'ke_muwabika' postposition is marked as k7a.

DRel-17. k*u (sAdrishya 'similarity/comparison')

The tag to mark similarity is 'k*u'. This can be used for annotating both similarity and comparison. The tag is marked on the 'comparand' in a comparative construction. Since the compared entity can compare with any karaka, the tag includes a star. '*' in the tag label is a variable for whichever karaka is the compared of the comparand. Therefore, while marking the comparand (the compared entity), the * would be replaced by the appropriate karaka label. For example, Example Id = Relation-DS-k*u-1:

(80) rAXA mIrA jEsI sunxara hE.

raadhaa miiraa jaisii sundara hai. Radha Mira like beautiful is 'Radha is beautiful like Mira.'

In the above example, 'rAXA' is the karta of the verb 'hE'. 'mIrA' is the comparand (entity with which 'rAXA', the karta, is being compared) and 'rAXA' is the comparee (entity which is being compared). Therefore, 'mIrA' in the above example will be annotated as 'k1u'. Some more examples are given below:

Example Id = Relation-DS-k*u-2:

(81) sIwA ko mIrA rAXA jEsI sunxara lagI.

siitaa ko miiraa radhaa jaisii sundara lagii. Sita Dat Mira Radha like beautiful appeared 'To Sita Mira appeared as beautiful as Radha.'

Example Id = Relation-DS-k*u-3:

(82) sIwA mIrA ko rAXA jEsI sunxara mAnatI hE.

siitaa miiraa ko radhaa jaisii sundara maanatii hai. Sita Mira acc Radha like beautiful consider pres 'Sita considers Mira as beautiful as Radha.'

Example Id = Relation-DS-k*u-4:

(83) rAXA mIrA kI wulanA meM aXika sunxara hE.

raadhaa miiraa kii tulanaa mein adhik sundara hai Radha Mira of comparison in more beautiful is 'Radha is more beautiful in comparison to Mira.'

Example Id = Relation-DS-k*u-5: pUre BArawa meM leha-laxxAKZa jEsA mAhOla banA rahe All India in Leh-Laddakh like condition prevail 'Like Leh-Laddakh conditions should prevail through out India.'

(84) pUre BArawa meM leha-laxxAKZa jEsA mAhOla banA rahe.

puure bhaarat mein leha-laddakha jaisa maahaul bana rahe. All India in Leh-Laddakh like condition prevail 'Like Leh-Laddakh conditions should prevail through out India.'

Example Id = Relation-DS-k*u-6:

(85) rAma ne kahA ki use BI sIwA kI waraha woPZe xiye jAyeM.

raama ne kahaa ki use bhii siitaa kii taraha tohfe diye jaayein. Ram erg said that he-dat emph Sita of like gifts should-be-given 'Ram said that he should be given gifts like Sita.'

Similarly, in the example Relation-DS-k*u-2, 'mIrA' is the comparee and 'rAXA' comparand. Therefore, 'rAXA' would be marked as 'k1u'. However, in example Relation-DS-k*u-3, 'Mira', the comparee is 'k2', thus 'rAXA', the comparand will be annotated as 'k2u'. In example, Relation-DS-k*u-5, 'BArawa' the comparee is 'k7p', and 'leha-laxxAKZa', the comparand will be annotated as 'k7pu'. In example, Relation-DS-k*u-6, 'use' the comparee is 'k4', and 'sIwA', the comparand will be annotated as 'k4u'.

Syntactic Cue: In the comparative constructions the comparand will take either 'jEsA' or 'se' post-position.

DRel-18. r6 (shashthi 'genitive/possessive')

The genitive/possessive relation which holds between two nouns has to be marked as 'r6'. For example:

Example Id = Relation-DS-r6-1:

(86) sammAna kA BAva

sammaana kaa bhaava respect of feeling 'Feeling of respect.'

Example Id = Relation-DS-r6-2:

(87) puswaka kI kImawa

pustaka kii kiimata book of price 'Price of the book.'

Example Id = Relation-DS-r6-3:

(88) pATaka kI krayaSakwi

paaThaka kii krayashakti reader of purchasing-power 'Purchasing power of the reader.'

Syntactic Cues: This is one of an easy to identify relation. It has a relatively reliable syntactic cue. It mostly occurs with a 'kA' postposition. A reliable cue for its identification is that the postposition 'kA' agrees with the noun it modifies in number and gender. Thus, in example Relation-r6-1 above 'kA' has masculine gender and singular number which agrees with the following noun (its modified) ''. In Relation-r6-2 and 3, the postposition 'kA' agrees with 'kImawa' and 'krayaSakwi', both feminine nouns in Hindi.

Possible case of confusion:

The 'kA/ke/kI' vibhakti can occur with relations other than r6. We see this in section DRel-18, DRel-19. Sometimes, this vibhakti can also be taken up by a k1 (cf. example Relation-DS-k1-8)

DRel-19. r6-k1, r6-k2 (karta or karma of a conjunct verb (complex predicate))

Indian languages have extensive use of conjunct verbs. A conjunct verb is composed of a noun or an adjective followed by a verbalizer. Some times the argument (karta or karma) occur in a genitive case. Whenever the argument of a conjunct verb is in genitive case it will have a dependency relation with the noun of the conjunct verb. This is because the argument in the genitive case agrees with the noun of the conjunct verb and not with the verb. The noun of the conjunct verb agrees with the verb. In the exmple Relation-DS-r6-k1-1 below, maMxira kA 'temple of' will be marked as r6-k1with uxGAtana

'inauguration'. maMxira has r6 relation with the noun of conjunct verb and in the sentence, maMxira has karaka relation k1 of the conjunct verb 'uxGAtana karanA'. In example Relation-DS-r6-k2-1, maMxira kA 'temple of' will be marked as r6-k2 with uxGAtana 'inauguration'. maMxira has r6 relation with the uxGAtana 'inauguration' which is the noun of conjunct verb and in the sentence, maMxira has karaka relation of k2.

Example Id = Relation-DS-r6-k1-1:

(89) kala manxira kA uxGAtana huA

kala mandira kaa udghaaTana huaa yesterday temple of inauguration happened 'Yesterday, the temple got inaugurated.'

Example Id = Relation-DS-r6-k2-1:

(90) manwrIjI ne kala manxira kA uxGAtana kiyA.

mantrii jii ne mandira kaa udghaaTana kiyaa. minister erg yesterday temple of inauguration did. 'The minister inaugurated the temple yesterday.'

Remarks:

- 1. A genitive noun attached to the nominal part of the complex predicate should be r6-k*.
- 2. Presence of r6-k* indicates that the verb is complex.
- 3. A genitive k1/k2 attached to a complex verb must be r6-k1/r6-k2 respectively. Also, its attachment should be with the nominal part of the complex verb. Thus, the example Relation-DS-r6-k2-1, would be annotated as follows:

Possible case of confusion:

1. r6-k* and pof should not have the same parent.

DRel-20. r6v ('kA' relation between a noun and a verb)

There are instances where a noun with 'kA' is attached to the verb but does not have any karaka relation. Instead, it does indicate a sense of possessesion. For example:

Example Id = Relation-DS-r6v-1:

(91) rAma ke eka betI hE

raam ke eka betii hai. Ram of one daughter is 'Ram has a daughter.'

The above example has a possessive relation between the noun $rAma\ ke$ 'Ram's' and the verb hE 'is'. The relation between this noun and the verb is marked as r6v.

Syntactic cue: In an r6v relation, the 'kA' vibhakti normally does not agree with the noun after it.

DRel-21. adv (kriyAvisheSaNa 'adverbs - ONLY 'manner adverbs' have to be taken here').

Adverbs of manner are marked as 'adv'. Note that the adverbs such as place, time, etc. are not marked as 'adv' under this scheme. Place adverbs are assigned 'k7p' tag and time adverbs are marked as 'k7t'.

Example Id = Relation-DS-adv-1:

(92) vaha jalxI jalxI liKA rahA WA

vaha jaldii jaldii likha rahaa thaa. He fast fast write prog be-past 'He was writing fast.'

Example Id = Relation-DS-adv-2:

(93) vaha bahuwa wejZa bolawA hE

vaha bahut tez bolataa hai. he very fast speak-hab be-pres 'He speaks very fast.'

Remarks:

1. Sometimes an adv can occur with a se vibhakti such as in kaWiwa rUpa se

DRel-22. sent-adv (Sentential Adverbs)

Some adverbial expressions have the entire sentence in their scope. For example:

Example Id = Relation-DS-sent-adv-1:

(94) isake alAvA, BakaPA (mAovAxI) ke rAmabacana yAxava ko giraPZwAra kara liyA gayA.

isake alaavaa, bhaakapaa (maaovaadii) ke raamabachana yaadava ko giraftaara this-of apart, BKP (maoist) of Rambacana Yadav ACC arrest kara liyaa gayaa.
do reflx-perf go-perf

'Apart from this, Rambacana Yadav of BKP (Maoist) was arrested.'

In the above example, phrase 'isake alAvA' is a connective which is modifying the verb but has the entire clause in its scope. Such expressions would be attached to the verb of the sentence they are modifying and the attachment would be labeled as 'sent-adv'.

Remarks:

1. A list of possible lexical items that act as sent-adv is given in Appendix 10.3

Possible case of confusion:

1. A conjunct cannot be sent-adv of a verb.

DRel-23. rd (relation prati 'direction')

The participant indicating 'direction' of the activity has to be marked as 'rd'. The label 'rd' stands for 'relation direction'.

Example Id = Relation-DS-rd-1:

(95) sIwA gAzva kI ora jA rahI WI

sitaa gaanva kii ora jaa rahii thii. Sita village of direction go prog be-past 'Sita was going towards her village.'

Example Id = Relation-DS-rd-2:

(96) pedZa ke Upara pakRI udZa rahA hE

peda ke uupara pakshii uda rahaa hai. tree of above bird fly prog be-pres 'The bird is flying over the tree.'

Example Id = Relation-DS-rd-3: rAma ke prawi mohana ko SraxXA hE Ram of direction Mohan dat respect be-Pres 'Mohan has respect for Shyam.'

(97) rAma ke prawi mohana ko SraxXA hE

raama ke prati mohana ko shraddhaa hai. Ram of direction Mohan dat respect be-Pres 'Mohan has respect for Shyam.'

Syntactic cues: An element having postpositions such as 'kI_ora' or 'ke_prati' is to be marked as 'rd'.

DRel-24. rh (hetu 'reason')

The reason or cause of an activity is to be marked as 'rh'.

Example Id = Relation-DS-rh-1:

(98) mEne mohana kI vajaha se kiwAba KArIxI

maine mohana kii vajah se kitaab khariidii. I-erg Mohan of because book bought 'I bought the book because of Mohan.'

Example Id = Relation-DS-rh-2:

(99) mohana vyavasAyika lakSya se kAma karawA hE

maine mohana kii vajah se kitaab khariidii. mohan professional goal because of work do-Impf be-Pres 'Mohan works for professional goals.'

Syntactic cues: Complex postpositions such as 'ke_karana', 'kl_vajaha_se' etc are indicators of 'rh' relation. An 'rh' relation might also occur with a 'se' postposition. However, since 'se' postposition in Hindi is highly overloaded, its presence alone can not be a deciding factor.

Robust cues:

- 1. Noun chunk with vibhakti ke_kAraNa/ki_vajaha_se should be rh.
- 2. Conjunct 'kyoMki' should be rh and should have a parent and a child.

DRel-25. rt (tadarthya 'purpose')

The purpose of an action is called as tadarthya which is marked as 'rt'.

Example Id = Relation-DS-rt-1:

(100) mEne mohana ke liye kiwAba KArIxI

maine mohana ke liye kitaab khariidii. I-erg Mohan of because book bought 'I bought the book because of Mohan.'

Example Id = Relation-DS-rt-2:

(101) mEne jAne ke liye tiketa KArIxA

maine jaane ke liye kitaab khariidaa. I-erg going for ticket bought 'I bought the ticket for going.'

Example Id = Relation-DS-rt-3:

$(102)\,$ mohana pad
Zane ke liye sk Ula j Aw
A h E

mohana padhane ke liye skuula jaataa hai Mohan studying for school go-hab be-Pres 'Mohan goes to school for studying.'

Notice that in the second and third examples above, have verbs which are purpose of the action. For example in the example Relation-rt-2 jAne ke live 'for going' is the purpose of the action KArIdI 'bought'.

Syntactic cue: Most often 'ke_liye' postposition in Hindi indicates a 'rt' relation.

DRel-26. ras-k* (upapada_sahakArakatwa 'associative')

In sentences where two participants perform the same action but syntactically one is expressed as primary and the other as its associate, the associate participant is marked as 'ras-k*'. k* can be any karaka of which it is an associative. In this tag 'r' stands for relation and 'as' stands for 'associative'. The associative, like comparative can be for any relation, karaka or non-karaka. The * stands for the label whose associative it is.

Example Id = Relation-DS-ras-k1-1:

(103) rAma apane piwAji ke sAWa bAjZAra gayA

raam apane pitaajii ke saath baazaara gayaa. Ram own father of with market went 'Ram went to the market with his father.'

Example Id = Relation-DS-ras-k1-2:

(104) rAma ke sAWa mohana ne bhI xUXa ke sAWa kele KAye

raam ke saath mohana ne bhii duudha ke saath kele khaaye. Ram of with Mohan erg also milk of with banana ate 'Along with Ram, Mohan also ate bananas with milk.'

In the first example rAma is 'k1' of the action 'gaya' (went) and since pIwAjI 'father' is associative of rAma so it will be marked as 'ras-k1'. The second example (Relation-ras-2) has two instances of associative karakas. 'rAma' is associative of 'mohana', thus will be marked as 'ras-k1' and 'k1' respectively. Also, xUXa 'milk' is associative of kele 'bananas' which is k2 so xUXa will be marked as 'ras-k2'.

Similarly, we can have associatives for other tags as well. Given below are examples for 'ras-k4', and 'ras-k7'.

Example Id = Relation-DS-ras-k4-1:

(105) pra
X Anamanwr I ne anya pawrak Aro
M ${\bf k}{\bf I}$ waraha h I waru Na vijaya ko milane k A samaya xiy A
 W A

anya patraka aronpradhaan mantrii tarah hii taruNa vijaya ko kiineminister erg other reporters like-that emph Tarun Vijay Acc. meeting milane kaa samaya diyaa thaa. of $_{
m time}$ gave was

'The Prime Minister had given Tarun time for meeting like he had given to the other reporters.'

In the above example, anya pawrakAroM 'other reporters' is associative of taruNa vijaya 'Tarun Vijay' which is 'k4' so anya pawrakAroM 'other reporters' will be marked as 'ras-k4'.

Example Id = Relation-DS-ras-k7-1:

(106) unhoMne rAjanIwika viRayoM ke sAWa sAWa anya viRayoM par BI kiwAbeM liKIM.

unhone raajaniitika vishayonsaath saath anya kitaabeinkevishayonbhiipolitical with books He-erg topics of with othertopics emph on likhiin. wrote

'He has written books on other topics along with political issues.'

rAjnIwika viSayoM 'political topics' is associative of anya viSayoM 'other topics' which is k7 so rAjnIwika viSayoM 'political topics' will be marked as 'ras-k7'.

Syntactic cues: Postposition 'ke_sAWa', 'ke_sAWa', and 'kI_waraha' normally marks an associative relation.

DRel-27. ras-NEG (Negation in Associatives)

In sentences where a karaka and its associative participate in an action but the associative does not perform the action, the associative is participant is marked as 'ras-NEG'.

Example Id = Relation-DS-ras-NEG-1:

(107) rAma pIwAjI ke binA gayA

raam pitaajii ke binaa gayaa Ram father without went 'Ram went without his father.'

rAma is 'k1' and pIwAjI $ke\ binA$ 'without his father' has an associative relationship with rAma. The relation is denoted by 'ras-NEG'.

Syntactic cues: Postposition ke binA 'without' indicates the sense of negation of associative. DRel-28. rs (relation samanadhikaran 'noun elaboration')

Elements (normally clauses) which elaborate on a noun/pronoun are annotated as 'rs'.

Example Id = Relation-DS-rs-1:

(108) bAwa yaha hE ki vo kal nahIM AyegA.

baat yaha hai ki vo kal nahin aayegaa. fact this is that he tomorrow not will-come 'The fact is that he will not come tomorrow'

bAwa 'fact' is 'k1' (karta) in the above example and yaha 'this' is its 'k1s' (k1 samanadhikaran). The relations 'k1' and 'k1s' will be attached to the verb whereas the clause ki vo kal nahI AyegA 'that he will not come tomorrow' will have a dependency relation with yaha 'this'. The relation is denoted by 'rs' (relation samanadhikaran). The main verb will take one samanadhikaran as its argument. If there are two samanadhikarans then the second samandhikaran is related with one of karakas with which it is associated.

Example Id = Relation-DS-rs-2:

(109) usane yaha kahA ki rAma kala nahIM AyegA.

usane yaha kahaa ki raam kal nahin aayegaa. he-erg this told that ram tomorrow not will-come 'He told that Ram will not come tomorrow'

In Relation-DS-rs-2 above, the complement clause is the complement of the karma pronoun yaha 'this'. Therefore, it will be attached to the pronoun 'yaha' and would also be labeled as 'rs'. While annotating the sentence, the conjunct 'ki' will be annotated as 'rs' will be attached to the 'yaha' which is the k2 of the verb of the main clause ('kahA' in this case). The finite verb of the complement clause ('nahIM AyegA' in the above example) will be attached to the conjunct 'ki' (that) and would be labeled as 'ccof'.

Remarks:

Possible case of confusion:

1. There may be some inconsistency in marking the additional argument in the form of either 'rs' or 'k2s' in the case of perception and communication verbs like, xeKa, soca, suna, pUCa, bola, etc. The additional argument should consistently be marked as 'k2s' and be directly attached to the main verb.

DRel-29. rsp (relation for duratives)

The durative expressions have two points a point of starting and an end point. The expression as a whole may express time, place or manner etc. The tag 'rsp' shows the relation between the starting point and the end point of a durative expression. For example:

Example Id = Relation-DS-rsp-1:

(110) 1990 se lekara 2000 waka BArawa kI pragawi wejZa rahI.

1990 se lekara 2000 tak bhaarat kii pragati tez rahii. 1990 from taking 2000 till India of development fast was 'India was fast developing from 1990 till 2000.'

The entire expression kala se lekara Aja waka 'from yesterday till today' is a time expression. There are two parts in this time expression, one is starting point (kala) and the other is the ending point (Aja). The vibhaktis se 'from' and waka 'till' give us the information of starting point and ending point in time. As the entire expression kala se lekara Aja waka is a time expression it will have a relation k7t (time relation) with the verb. Now internally the two parts of the time expressions are related to each other. So the relation of kala se lekara 'from yesterday' with Aja waka 'till today' will be rsp (relation source of a durative).

Syntactic cues: Duratives will have 'se lekara - - - waka' construction.

DRel-30. rad (address terms)

Terms such as 'SrImAnajI', 'paMdiwajI' etc. are the address terms. Such terms are annotated as 'rad'.

Example Id = Relation-DS-rad-1:

(111) mAz, muJe kala xillI jAnA hE.

maa, mujhe kala dillii jaanaa hai. mother, I-Dat tomorrow Delhi to go be-pres 'Mother, I have to go to Delhi tomorrow.'

Example Id = Relation-DS-rad-2:

(112) mAstara sAhaba, kyA kala skUla KulA hE?

mastar saahab, kyaa kala skuul khulaa hai? master hon what tomorrow school open be-Pres 'Teacher, is the school open tomorrow?.'

DRel-31. nmod_relc, jjmod_relc, rbmod_relc (relative clauses, jo-vo constructions)

A relative clause construction in Hindi has a 'jo' pronoun. Typically, the modified element has a pronoun 'vaha' in it. Such relative clauses where there is a corresponding 'vaha' pronoun in the main clause are called relative-correlative (jo-vo) constructions. The jo-vo constructions in Hindi are highly productive. These occur not only as noun modifiers but also as modifiers of adjectives and manner adverbs.

Relative_clause-DS-1:

(113) merI bahana [jo xillI meM rahawI hE] kala A rahI hE.

merii bahan jo dillii mein rahatii hai, kal aa rahii hai. my sister who Delhi in live-hab pres tomorrow come prog pres 'My sister who lives in Delhi is coming tomorrow.'

The above example does not have a 'vaha' pronoun in the modified NP. Relative clauses without a 'vaha' pronoun in the modified NP normally are elaborative in nature. These are also not so frequent.

A relative clause can be either prenominal or postnominal.

(a) Prenominal: The relative clause occurs to the left of the head noun and it carries a relative pronoun 'jo' as a demonstrative along with the noun. For example,

Relative_clause-DS-2:

jo ladZakA vahAz KadZA hE [vaha merA BAI hE].

[jo ladakaa vahaan khadaa hai] [vaha meraa bhaaii hai]. who boy there standing pres he my brother is 'The boy who is standing there is my brother.'

Relative clause in the above example is modifying 'vaha' of the main clause. However, 'vaha' itself refers to 'ladZakA' which occurs in the subordinate relative clause along with the relative pronoun 'jo'. Thus, the relative clause has 'jo ladZakA' as the relativizing element. The pronoun vaha 'he' in the main clause has 'jo ladZakA' as its referent. The prenominal relative clauses in Hindi moslty have this structure.

- (b) Postnominal: The relative clause occurs to the right of the head noun and the relative pronoun in such cases behaves like a full-fledged pronoun and is not a demonstrative any more. Relative_clause-DS-3:
- (114) vaha ladZaka [jo vahAz KadZA hE] merA BAI hE.

vaha ladakaa [jo vahaan khadaa hai] [vaha meraa bhaaii hai]. that boy who there standing pres my brother is 'The boy who is standing there is my brother.'

A relative clause can also occur to the right of the main verb as in the following example:

Relative_clause-DS-4:

(115) vaha ladZakA merA BAI hE [jo vahAz KadZA hE].

vaha ladakaa meraa bhaaii hai [jo vahaan khadaa hai]. that boy my brother is who there standing pres 'That boy is my brother who is standing there.'

A relative clause can modify any element in the main clause whatever its participatory role it might have. Thus a relative clause can modify a karta (subject/agent), karma (direct object), samradana (indirect object), karana, adhikarana (oblique object) etc.

(i) karta (subject) modification:-

Relative_clause-DS-5:

jo ladZakA vahAz KadZA hE [vaha merA BAI hE].

[jo ladakaa vahaan khadaa hai] [vaha meraa bhaaii hai]. who boy there standing pres he my brother is 'The boy who is standing there is my brother.'

(ii) karma (object) modification):-

$Relative_clause-DS-6:$

(116) rAma ne vaha seba KAyA jo KArAba ho gayA WA.

raam ne vaha seb khaayaa jo khaaraab ho gayaa thaa. Ram erg that apple ate which rotten happen go-perf be-past 'Ram ate an apple which was rotten.'

(iii) sampradana (Indirect object) modification:-

Relative_clause-DS-7:

 $(117)\,$ r
Ama ne usa lad Zake ko kiw Aba xI jo vah Az Kad
ZA WA.

raam ne usa ladake ko kitaab dii jo vahaan khadaa thaa. Ram erg that boy acc book gave who there standing be-past 'Ram gave the book to that boy who was standing there.'

(iv) karana (Oblique object) modification:-

Relative_clause-DS-8: rAma ne usa cAkU se seba kAta jo wejza WA Ram erg that knife by apple cut which sharp was 'Ram cut an apple with the knife which was very sharp.'

(118) rAma ne usa cAkU se seba kAta jo wejza WA.

raam ne usa chaakuu se seb kaataa jo tez thaa. Ram erg that knife by apple cut which sharp was 'Ram cut an apple with the knife which was very sharp.'

Given below are the examples and corresponding tags for the 'jo-vo' constructions of Hindi:

a. nmod_relc (relative clause constructions modifying a noun)

Example $Id = Relation-DS-nmod_relc-1$:

(119) jo ladZakA vahAz bETA hE, vaha merA BAI hE.

[jo ladakaa vahaan baithaa hai] [vaha meraa bhaaii hai]. who boy there sitting pres he my brother is 'The boy who is sitting there is my brother.'

Since it is an entire clause which modifies an element in the main clause, the convention which is followed in the current annotation scheme is to attach the verb of the subordinate clause to the element it modifies. The relation between 'jo' and 'vo' is marked by showing a co-referential tag (coref). Therefore, a tree representation for the above example would be as follows:

b. rbmod__relc ('jo' construction modifying an adverb)

A relative-corelative construction can occur for an adverbial expression as well. Such 'jo' clauses would be attached under the adverb they modify with a tag 'rbmod_relc'.

Example Id = Relation-DS-rbmod_relc-1:

(120) rAma ne jEsA kiyA, mEMne BI vEsA hI kiyA.

raam ne jaisaa kiyaa, maine bhii vaisaa hii kiyaa. Ram erg like-what did, I-erg also like-that emph did 'I did exactly what Ram did.'

c. jjmod_relc ('jo' construction modifying an adjective)

A 'jo' clause can also modify an adjective. It will be annotated as jjmod_relc.

Example Id = Relation-DS-jjmod_relc-1:

(121) makAna vEsA hI suMxara banAo, jEsA kahA gayA hE.

makaan vaisaa hii sundara banaao jaisaa kahaa gayaa hai. house like-that part.beautiful build like-what told go-perf pres 'Build a house as beautiful as has been told.'

(Here the clause containing jEsA is modifying the adjective vEsA sunxara)

DRel-32. nmod (participles etc modifying nouns)

nmod is an underspecified relation label employed to show general noun modification without going into a finer type. Since the dependency relations are being marked at the chunk level, simple adjective modifiers do not normally occur at this level. An adjective - noun sequence is already chunked and their dependency relations are marked only when the chunks are expanded into dependency sub-trees. A tag 'adj' is used for marking simple adjective noun modification. This tag is not discussed in this document. The nominal modification by adjectival participles falls within the purview of this document. However, an underspecified tag 'nmod' is used to show these dependencies.

Example Id = Relation-DS-nmod-1:

(122) pedZa para bETI cidZiyA gAnA gA rahI WI.

```
ped par baithii chidiyaa gaanaa gaa rahii thii.
tree on sitting bird song sing prog be-past
'The bird sitting on the tree was singing a song.'
```

In the above example, the participle clause 'pedZa para bEThI' is modifying the noun 'cidZiyA'. The following is a tree representation of the above sentence:

Syntactic cues: The non-finite verb form of such participial modifiers agree in gender and number with the noun it modifies. The gender and number of the verb 'bEThI' in the above example agrees with the gender and number of the noun 'cidZiyA'.

Remarks:

Robust cues:

1. An 'nmod' should be attached to a noun chunk.

DRel-33 vmod (verb modifier)

'vmod' is another underspecified tag. For some relations getting into finer subtypes is not yet possible. Such relations are annotated with slightly underspecified tag, a tag high on the dependency tag type tree given in figure 2 under section 3.2.3. 'vmod' is one such tag. A verb (especially non-finite) that modifies another verb is thus marked as 'vmod'. There can be two types of verb modifiers:

(a) Simultaneous: where the actions denoted by the two verbs modifier and modified happen simultaneously.

Example Id = Relation-DS-vmod-1:

(123) vaha KAwe hue gayA.

vah khaate hue gayaa.he eat-Impf-prtpl went'He left while eating.'

(b) Sequential: where one action happens after the completion of another action.

Example Id = Relation-DS-vmod-2:

(124) vaha KAnA KAkara gayA.

vah khaanaa khaakar gayaa.he food having-eaten went'He left after eating the meal.'

Example Id = Relation-DS-vmod-3:

(125) usako vahAM gaye hue kaI xina bIwa gaye hEM.

vah khaanaa khaakar gayaa. he-Dat there go-perf prtpl several days pass go-perf be-pres 'A number of days have passed since he went there.'

- (c) '-kara' participles in Hindi: Most Indian languages have a high frequency of participials usages. So does Hindi. Of various participles in Hindi, 'kara' is one of the most frequent one. It also serves several semantic functions. One of them is showing sequentiality of events (example Relation-vmod-2 above). Other than sequential, 'kara' participle has other senses also. They are:
- (i) Consequential: In case of a 'kara' participle modifying another verb, the 'kara' participle expresses the causality of the other action. Consequential_kara-DS-1:
- (126) rAma sAzpa ko xeKakara dara gayA.

raam saanp ko dekhakar dar gayaa. Ram snake acc having seen fear go-past 'Having seen the snake Ram got frightened.'

(ii) Manner: The 'kara' participle in certain cases expresses the manner of the verb it modifies.

 $Manner_kara-DS-1:$

(127) rAma BAgakara AyA.

raam bhaagakar aayaa. Ram running came 'Ram came running.'

- (iii) Instrument: 'kara' participle also acts as an instrument of the verb it modifies. Instrument kara-DS-1: rAma mehanawa karake pEse kamAwA hE. ram hard-work having done money earn be-Pres 'Ram earns money by working hard.'
- (128) rAma mehanawa karake pEse kamAwA hE.

raam mehanata karake paisaa kamaataa hai. ram hard-work having done money earn be-Pres 'Ram earns money by working hard.'

All the above constructions with 'kara' and 'wA huA' are vmods. Finer analysis for the above is done. However, it has been decided to mark all of the above as 'vmod' only.

Remarks:

Robust cues:

- 1. A vmod should be attached to a verb chunk.
- 2. A noun/non-finite verb chunk with vibhakti 'ke_viruxXa/ke_KilAPZa' should be vmod.

DRel-34. jjmod (modifiers of the adjectives)

The tag for modifiers of the adjective is also an underspecified tag. In this case finer relations have not been worked out as yet since the need for finer relation tag for adjective modifiers is not felt for syntactic annotation. Therefore, the tag for marking adjective modifiers is 'jjmod'.

Example Id = Relation-DS-jjmod-1:

(129) halkI nIlI kiwAba.

halkii niilii kitaab. light blue book 'Light blue book.'

(The word halkI 'light' in the above example is modifying the adjective nIlI 'blue' and not the noun kiwAba 'book')

Remarks:

1. A jjmod should be attached to an adjectival chunk.

DRel-35. pof (part of units such as conjunct verbs)

A conjunct verb is a verb that is formed by combining a noun or an adjective with a verb. Therefore, the internal structure of a conjunct verb would be [noun/adj + verbalizer]. Conjunct verbs are highly productive in Hindi. 'karana, honA' are the most commonly occurring verbalizers in Hindi. Some of the other verbalizers are 'lenA, denA'. Identifying a conjunct verb is a difficult process in Hindi as the syntactics diagnostic tests work only upto a point and not beyond. Literature on the definite syntactic behaviour of conjunct verbs does suggest a number of diagnostics though (Mohanan 1994; Butt, 2004; Chakrabarty et. al, 2007; Bhatt, 2008).

In the current scheme a special tag 'pof' has been introduced to mark the conjunct verbs. 'pof' does not exactly denote a dependency. It rather represents that the two elements related by this tag are part of a multi word expression (MWE). Therefore, the relation between the two elements of the conjunct verb snAna + karanA 'bath + do' would be shown as follows:

Some examples of conjunct verb constructions are given below:

Example Id = Relation-DS-pof-1:

(130) rAma ravi kI prawIkSA kara rahA WA.

raam bhaagakar aayaa. Ram Ravi of wait do prog be-past 'Ram was waiting for Ravi.'

Example Id = Relation-DS-pof-2:

(131) rAma ne eka praSna kiyA.

raam ne ek prashn kiyaa. Ram erg one question did 'Ram asked a question.'

In Relation-DS-pof-1, prawIkSA kara 'to wait' is a conjunct verb. The relationship between prawIkSA and the verb kara 'do' will be marked as pof. In the second example above praSna kiyA 'questioned' is a conjunct verb. But praSna 'question' has a modifier eka 'one'. The issue here is semantically 'praSna karana' is one unit. Therefore, it is logical to group them together within a verb chunk. However, since the noun of a conjunct verb retains its nominal property and can be modified by an adjective (example Relation-DS-pof-2 above), we should be able to represent it in the dependency tree. Grouping them together within a verb chunk would fail to address the problem of an element modifying the noun element of a conjunct verb. eka 'one' in the above example is a modifier of praSna. praSna itself is a part of the conjunct verb praSna kiyA. Since praSna kiyA is already grouped as one chunk, it is not possible to establish relation between eka and praSna. Therefore, the noun 'praSna' would be chunked separately from the verb 'kiyA' (Bharati et al., 2006). However, the fact of 'praSna' and 'kiyA' being parts of a single unit, a conjunct verb, needs to be captured.

To overcome this problem it was decided that we tag the noun of the conjunct verb as NN at the POS level. Thereafter, the noun is grouped with its preceding adjectival modifiers (if any) as an NP chunk. The only problem in this approach is that the information of a noun verb sequence being a 'conjunct verb' is not captured at the chunk level and the noun of the 'conjunct verb' is separated from its verbalizer. Thus, we show the 'parts-of' relation between the noun and the verbalizer of a conjunct verb, using 'pof' tag.

The advantage of this solution is that:

- 1. It allows us to show the modifier-modified relation between an adjective such as eka 'one' in the above example with its modified noun praSna 'question'.
- 2. Since the information of a noun verb sequence being a 'conjunct verb' is crucial at the syntactic level, it is captured at this level by marking the relation between the 'noun' and its verbalizer by an appropriate tag.

As mentioned above there are problems in identifying conjunct verbs in a sentence in Hindi. The available syntactic tests (Mohanan 1994; Chakrabarty et. al, 2007; Bhatt, 2008) are not very satisfactory. This appears to be an issue for syntax semantic interface. There are several cases where a native

speaker is quite convinced that a noun verb sequence is a case of conjunct verbs. However, syntactically the noun behaves more like an argument of the verb. In the absence of satisfactory tests for identifying a conjunct verb, several noun verb sequences pose a major problem for the annotators on whether to treat them as conjunct verbs or otherwise.

Therefore, as of now, the decision has been left to the annotators with a full understanding that this may lead to some inconsistency in the data. The final decision of when a noun verb sequence is a conjunct verb and when not has been left to the senior linguists who would do some checks on the annotated data. Given below are a number of examples of Hindi conjunct verbs:

Conjunct_verb-DS-1:

(132) usane apanA Ora piSAca kA vriwwAMwa varNana kiyA.

usane apanaa aur pishaacha kaa vritaant varNana kiyaa. he-Erg own and devil of narration description did 'He described his own story and the story of the ghost.'

Here varNana 'description' and karana 'to do' have become one verb, and this verb has its karma karaka 'apanA aur pishAca kA vruttAMta' in the accusative case. Another possible construction of the same conjunct verb 'varNana karanA' is with the karma of the verb occurring with a genitive case. For example,

Example Id = Relation-DS-pof-3:

(133) usane apane Ora piSAca ke vriwwAMwa kA varNana kiyA.

usane apanaa aur pishaacha ke vritaant kaa varNana kiyaa. he-Erg own and devil of narration description did 'He described his own story and the story of the ghost.'

Example Id = Relation-DS-pof-4:

(134) bhAiyoM ne maharSi kI AjfyA svIkAra kI.

bhaaiiyon ne maharshii kii aagyaa sviikaara kii. brothers Erg saint of command accept did 'The brothers accepted the command of the saint.'

Example Id = Relation-DS-pof-5:

$(135)\,$ isa gran Wa kosvIkArakare M

isa granth ko sviikaar karein. this book acc accept do-Imper-hon. 'Please accept this book.'

Example Id = Relation-DS-pof-6:

(136) sadZaka cOdZI huI

sadak chaudii huii. road wide happened 'The road became wide.'

Some more conjunct verbs which have this alternation are wyAga karanA 'to forsake', AramBa karanA 'to commence', pAlana karanA 'to nurture'.

Another feature of Hindi conjunct verbs is that in some cases the verbalizer agrees with the noun which is a part of the conjunct verb. For example, grihaNa karanA 'to receive' or 'accept', vixA karanA 'to bid farewell' or 'to dismiss', kSamA karanA 'to forgive'.

Verbs such as xayA karanA 'to display mercy', rakRA karanA 'to protect', pUjA karanA 'to worship', sahAyawA karanA 'to render help' are some more conjunct verbs which are not fully compounded.

B. Since 'pof' indicates a 'part of' relation between two words of a single lexeme, it is generalized to indicate relation between different elements of other MWEs as well. Hence in the following example, 'PulA nahIM samAyA' is an idiom and 'pof' will be used to mark the relation between 'PulA' and 'nahIM samAyA'.

Example Id = Relation-DS-pof-7:

(137) rAma KZuSI se PUlA nahIM samAyA

raam khushii se phuulaa nahiin samaayaa. Ram happiness because of bloated not contained. 'Ram was bursting with happiness.'

Label 'pof' has three subtypes:

- 1. pof (conjunct verb)
- 2. pof-idiom (idiom)
- 3. pof-compound (compound noun)

Example (Relation-DS-pos-7) has an idiom PulA nahIM samAyA 'was bursting with happiness', the parts of this idiom would be connected by the label 'pof'.

Remarks:

- 1. A genitive noun attached to the nominal part of the complex predicate should be r6-k*.
- 2. Presence of r6-k* indicates that the verb is complex.

3. A genitive k1/k2 attached to a complex verb must be r6-k1/r6-k2 respectively. Also, its attachment should be with the nominal part of the complex verb.

Possible cases of confusion:

1. r6-k* and pof should not have the same parent.

DRel-36. ccof (co-ordination and sub-ordination)

Another special tag which does not exactly reflects a dependency relation is 'ccof'. This is used for coordinating as well as subordinating conjunctions. The dependency trees will show the conjuncts as heads. In case of coordinating conjuncts, the conjunct is the head and takes the coordinating elements as its children. Likewise, a subordinating conjunct would take the clause to which it is syntactically attached (the subordinate clause) as its child.

(a) co-ordinating conjunct:

Example Id = Relation-DS-ccof-1:

(138) rAma seba KAwA hE Ora sIwA xUXa pIwI hE

raam seb khaataa hai aur siitaa duudh piitii hai. Ram apple eat-hab be-pres and Sita milk drink-Imp 'Ram eats apple and Sita drinks milk.'

The above example is an example of co-ordination of two clauses. However, the tag 'ccof' would be used for any co-ordination. Therefore, co-ordination of nouns, adjectives or adverbs will all be tagged with a 'ccof' tag. Following is an example of noun co-ordination:

Example Id = Relation-DS-ccof-2:

(139) rAma Ora SyAma skUla jAwe hEM.

raam aur shyaam skuul jaate hain. Ram and Shyam school go-hab be-pres 'Ram and Shyam go to school.'

(b) sub-ordinating conjunct:

Example Id = Relation-DS-ccof-3:

(140) rAma ne SyAma se kahA ki vaha kala nahIM AyegA.

usane yaha kahaa ki raam kal nahin aayegaa. Ram erg Shyam to told that he tomorrow not will-come 'Ram told Shyam that he will not come tomorrow.'

A coordinating conjunct would have two or more branches which would be labeled as 'ccof' and a subordinating conjunct would have only one branch.

Remarks:

- 1. A ccof chunk should be attached to a conjunct.
- 2. A conjunct chunk should have children of the same type. For example,

rAma <drel=ccof:CCP name=NP> Ora <name=CCP> SyAma <drel=ccof:CCP name=NP>

'Ram and Shyam went to the market.'

Possible case of confusion:

1. A conjunct should not be sent-adv for a verb.

DRel-37 fragof (Fragment of)

'fragof' is a tag which has been included to handle some very special cases.

A. There are examples in the Hindi corpus where a postposition, a negative particle or an auxiliary are separated from the NP or VP of which normally they are a part of. Thus, they do not occur as part of the chunk where they belong. For example,

Example Id = Relation-DS-fragof-1:

(141) BakaPA (mAovAxI) ke rAmabacana yAxava ko giraPZwAra kara liyA gayA.

bhaakapaa (maaovaadii) ke raamabachana yaadava ko giraftaara kara liyaa BKP (maoist) of Rambacana Yadav ACC arrest do reflx-perf gayaa. go-perf

'Rambacana Yadav of BKP (Maoist) was arrested.'

In the above example, the NP chunk 'BAkapA ke' has been broken through the insertion of additional information (mAovAxI) about 'BakapA'. The noun '(mAovAxI)' itself forms a separate NP chunk. Therefore, the expression BAkaPA (mAovAxI) ke would appear as follows in chunks:

```
(( NP
BAkapA NNP
))
(( NP
( SYM
mAovAxi NN
) SYM
))
(( FRAGP
ke PSP
))
```

The expression 'BAkapA ke' is broken into two chunks. The postposition 'ke' which is separated from its noun 'BAkapA' is chunked as 'FRAGP'. To represent that the post position 'ke' is part of the noun chunk 'BakapA', the postposition chunk would be annotated with the value 'fragof' for the attribute 'drel'.

This is a tag which is an exception in the normal scheme as it marks the relation of two members of the same chunk. Also, this chunk would normally contain a function word which is a part of some other chunk. After annotating the value 'fragof' for the attribute 'drel', the FRAGP chunk would appear as follows:

```
(( FRAGP <drel=fragof:NP>
ke PSP
))
SSF-3
```

The occurrence of such cases could be due to some intervening material or some time the main part of the chunk is dropped.

B. There are also instances where the main part of the chunk is missing. It normally happens in cases of gapping particularly with negative particles. Example Id = Relation-DS-fragof-2:

(142) bihAra ke rAjyapAla ko notisa BejA jA sakawA hE ki nahIM?

```
bihaar ke raajyapaal ko notisa bhejaa jaa sakataa hai ki nahin?
Bihar of governor acc notice send go can is or not
'Can the notice be sent to the Bihar Governor or not?'
```

In the above example, the second occurrence of the verb 'BejA' has been ommitted. Consequently, only the negative particle 'nahIM' is left. To represent the dependencies of the second clause, it is important to insert a verb node. Since, in the current scheme, the negative particles are chunked with the verb, this intra-chunk relation would then be represented by marking the negative particle with 'fragof'. Therefore, the verb chunk and the negation chunk would appear as follows after annotation:

```
(( NEGP <drel=fragof:NULL__VGF>
nahIM
))
(( NULL__VGF <name=NULL__VGF>
NULL VG
))
```

DRel-38. enm (enumerator)

The tag 'enm' is another special tag. This tag also does not represent a dependency in the strict sense. Although, this again is a value for the attribute 'drel'. of the word. This tag is used to mark the enumerators such as 1, 2, 3 or a, b, c, etc in a text. These enumerators occur in the beginning of a sentence and they need to be attached to the root node. In the treebank, the root node normally, is either a verb or a conjunct. Therefore, it has been decided to attach the enumerators to the verb with a label 'enm'. For example,

Example Id = Relation-DS-enm-1:

(143) Apa apanA kara samaya se xe sakawe hEM.

```
aap apanaa kar samay se de sakate hain.
1. you your tax time on give can be-pres
'1. You can pay your taxes on time.'
```

In the above example, numeral '1.' has occurred as an enumerator. This will be chunked separately with a chunkd label 'BLK'. At the dependency level, this chunk will be attached to the verb 'xe sakawe hEM'. Therefore, the annotated example would be:

```
(( BLK <drel=enm:VGF>
1 QC
. SYM
))
```

SSF-5

DRel-39. rsym (tag for a symbol)

'rsym' is a label that marks the arc attaching a sentence end marker to the verb.

Example Id = Relation-DS-rsym-1:

(144) rAma Gara gayA

```
raam ghar gayaa
Ram home went
'Ram went home.'
```


Here the relation rsym exists between gayA 'went' and the fullstop (.) of Hindi ' |'.

DRel-40. psp_cl

'psp_cl' is the relation marked between a clause and the postposition following that clause. Example $Id = Relation-DS-psp_{cl-1}$:

(145) "xillI CodZo" ne halacala macA xI.

```
"Guit Delhi" caused chaos."

"dillii chhodo" ne halachal machaa dii.

Delhi leave erg chaos break-out did

"Quit Delhi" caused chaos."
```


Here the relation psp_cl is marked between ne postposition and the verb of the clause preceding it, i.e., CodZo 'leave' and the whole clause ' xillI CodZo ne' will be marked as karta of 'macA xI'.

4.2 How to Mark Elided Elements

An issue that came up before us while working on the scheme was whether to mark elided elements in a sentence or not. After due deliberations, it was decided to mark a missing element in the tree for the following cases:

- (a) In case of a missing verb since a verb forms the root node of a tree/subtree (see Section ?? on Gapping for more details)
- (b) In case of a missing co-ordinating conjunct since it also forms the root of a co-ordinating tree under the current scheme.
- (c) In case of any other node which may be a root node for a tree or a sub-tree. For example, 'ulleKanIya hE ki...',
- (d) In case of missing arguments of a verb. Amongst the missing arguments, it was decided to mark only k1 and k2. However, The missing arguments will be inserted only in the following cases:
 - (i) Shared arguments
 - (ii) Gapping
 - (iii) Also in finite subordinate clauses

For making the above missing elements explicit it was decided to introduce a NULL node in the tree. The node would be chunked and the relevant features would be annotated at the chunk level depending on the type of the node inserted. The details of the features to be annotated for various types have been provided under the cases discussed below.

In the following sub-sections each of the above, except 'shared arguments', is discussed in more details. The shared arguments have been discussed in more details under Section ??, below.

Remarks:

1. A NULL chunk should not have a 'drel' attribute. Instead, it should have a 'dmrel' attribute.

4.2.1 Gapping

Gapping is a type of ellipses where a verb is omitted in its repeat occurrences. Some times the arguments of the verb may also be omitted along with the verb. Ross (1967) introduced the term. An example of gapping in Hindi is given below:

Gapping-DS-1:

(146) rAma xillI gayA Ora SyAma AgarA.

```
raam dillii gayaa aur shyaam aagraa.
Ram Delhi went and Shyama Agra
'Ram Delhi went and Shyama Agra.'
```

In the above example the occurrence of the verb 'gayA' (went) in the second clause of the co-ordinating construction has been elided. To complete the dependencies of the second clause, it is essential to explicitly show the verb which would be the root node of the tree. The missing verb can be retrieved from the previous clause. Thus, the gapped element would be marked as follows:

(i) First a new node would be created:

NULL VM

Ssf-7

No other information about this node would be provided.

(ii) Next, the above node would be chunked. The chunk would be annotated for the following features:

```
<name=',' troot=',' mtype=','>
```

Of the three attributes given above, 'name' is an attribute which is annotated on all chunk nodes. The attribute 'troot' is to be added for a gapped verb as it is retrievable from the context. The attribute 'mtype' is to mark every missing element for whether it is a case of 'gap' or 'not'. Therefore, this attribute would have only two values (1) gap and (2) non-gap.

In case the gapped verb is also a dependent of a higher node, an additional attribute of 'dmrel' would be annotated as well. The attribute 'dmrel' is same as 'drel'. The attribute 'drel' is for the words in a sentence and the attribute 'dmrel' would be on elements which are not present in the sentence explicitly. Thus, the chunk annotated for the gapped element in the above example would look as follows:

```
(( NULL\_\_VGF <name='NULL\_\_CCP' troot='jA' mtype='gap'>
NULL VM
))
SSF-6
```

The example below is another case of gapping. Gapping-DS-2:

(147) rAma ne sIwA ko kiwAba xI Ora AwiPZa ne tInA ko.

```
raam ne siitaa ko kitaab dii aur aatif ne Tiinaa ko.
Ram Erg Sita acc. book gave and Atifa Erg Tina acc.
'Ram gave a book to Sita and Atif to Tina.'
```

However, in the above example, an argument is also dropped in the second clause. This argument and the verb can be retrieved from the previous clause. To build a complete dependency tree for the above example, the following items will be inserted in the tree, (a) the missing verb and (b) the missing argument. We are, however, are not inserting missing arguments unless they are required as a root node for a sub tree.

The following chunks for (a) and (b) will be created respectively:

```
(( NULL\_VGF <troot='xe' name='NULL\_\_VGF' mtype='gap'>
NULL VM
))
(( NULL\_\_NP <dmrel=k2:xe reftype=cotype:kwAba name='NULL\_\_CCP mtype='gap'>
NULL NN
))
```

4.2.2 Missing co-ordinating conjunct

Some times the co-ordinating conjunct is implicit and does not occur in the sentence explicitly. For example,

Elided-conjunct-DS-1:

(148) bacce badZe Ho gaye hEM kisI kI bAwa nahIM mAnawe.

```
bachche baDe ho gaye hain kisii kii baat nahiin maanate. children big happen go-perf be-pres no-one's of talk not listen to. 'The children have grown big and do not listen to anyone.'
```

In the above example, the co-ordinator 'Ora' is missing. Since co-ordinating conjunct forms the root node, a NULL node will be inserted to represent it. Thus, the example after the insertion of NULL would appear as:

Elided-conjunct-DS-1: 'bacce badZe ho gaye hEM NULL kisI kI bAwa nahIM mAnawe.' The feature structure for the NULL node would be:

```
(( NULL\_\_CCP <name=NULL\_\_CCP>
NULL CC
))
SSF-8
```

4.2.3 Missing root node

A commonly occurring construction in Hindi is:

Missing-yaha-DS-1:

(149) ulleKanIya hE ki unhoMne yaha bAwa mAna II.

```
ullekaniiy hai ki unhone yah baat maan lii.
noteworthy is that they this suggestion accept reflx-past.
'It is noteworthy that they accepted this proposal'
```

In the above example, the sentence begins with an adjective and has a complement clause in the predicative position. The highlighted words show the adjective, verb be and the complement 'ki'. The complement clause in such sentences is actually an NP complement of the subject, which is missing. To represent this a NULL node is to be inserted and the clause is can then be attached to it as its modifier. The inserted NULL node in this case would look like:

```
(( NULL\_\_NP <name=NULL\_\_NP troot=yaha mtype=non-gap>
NULL NN
))
SSF-9
```

4.2.4 Missing arguments in a co-ordinating construction:

The example Gapping-DS-2 above shows a case of an elided argument along with the gapped verb. In case of gapping, the verb is same in both the clauses and consequently its repeat occurrence is omitted. It is also possible that the two clauses in a co-ordinate structure may have two different verbs. In such a situation both the verbs are realized explicitly. However, the repeated arguments in a co-ordinated

construction are dropped even if the verb is different and is realized on surface. For example,

Elided-arg-DS-1:

SSF-10

(150) mohana ne kiwAba padZi Ora so gayA .

```
mohannekitaabpadhiaursogayaa.MohanErgbookreadandsleepgo-Past.'Mohanreadthe bookand slept.'
```

In the above case both the verbs 'padZI' (read) and 'so gayA' (slept) have Mohan as their karta (k1). However, the second occurrence of Mohan is omitted. In such cases also, the missing argument would be inserted and would be represented as follows:

```
(( NULL__NP <name=NULL__NP mtype='gap' dmrel='k1:VGF2' reftype=corefn:mohana>
NULL NN
))
```

However, as mentioned above, such missing arguments are not posited at the dependency level of annotation.

4.3 How to mark shared arguments

Since Hindi allows omitting of mandatory arguments, there are a number of sentences with missing arguments. Missing arguments in a sentences could be due to being shared between two or more verbs or due to ellipsis. The difference between sharing and omitting is that in sharing the argument occurs once which is shared by two verbs ie. main verb which would be finite and the participle clause which would have a non-finite verb. In sharing the second argument can not be realized syntactically. The other case of missing argument is when the argument can (in principle) occur twice but it has been dropped in the second clause (as in case of gapping).

Since k1 and k2 are otherwise mandatory arguments for several verbs and these two arguments also play a crucial role in several linguistic decisions, it was decided to make them explicit in case they were missing in a sentence. For making the missing k1 and k2 explicit the following procedure has to be followed.

- (a) Insert a NULL node in the tree for a missing argument.
- (b) Assign it appropriate POS tag, normally a NN.
- (c) Chunk the NULL node and assign it appropriate chunk label. However, it has to be prefixed with NULL_. As shown above (in 4.1), the label for missing verb chunk would be 'NULL_VGF'. For a missing nominal argument, it would be 'NULL_NP'.
- (d) As mentioned earlier, a new dependency attribute is introduced in the scheme to mark the dependency relations of the inserted nodes. The attribute is 'dmrel'. 'dmrel' stands for 'dependency relation for a missing element'.
- (a) Missing argument could either be co-referential with another element in the tree or could be of the same type but not exactly co-referential. Thus, to mark this distinction an attribute 'reftype' has been introduced. The values for the 'reftype' would be 'corefn:X' or 'cotype:X'. The value has three parts to it. The first part (corefn, cotype) indicates the 'type' of reference, the second part (:) indicates 'of' and the third part 'X' stands for 'what'. Please see example under section on shared argument for more clarity.

Therefore, the following information is annotated in an inserted node for a missing argument:

```
(( NULL_NP <name='NULL_NP' dmrel='' reftype='' mtype=''>
NULL NN
))
SSF-12
```

NOTE: The attribute 'troot' is not annotated for a missing argument as it is captured by the 'reftype'. In principle, the morph features (root, number, gender, person) of the corresponding element in the sentence can be copied to the inserted node and need not be manually annotated.

Coming back to the sharing of arguments, the sharing of arguments can be of two types:

4.3.1 Sharing in non-adjectival participles:

In non-adjectival partiples, an argument of a verb(main) is shared with another verb(participle). The argument occurs only once in the sentence but is semantically related to both the verbs. The shared argument syntactically always attaches with the main verb. For the other verb this argument is semantically realized but not syntactically. Arguments of -kara constructions and ke_bAxa constructions in Hindi would fall under this type. Note the following sentence:

Non-adjectival-Shared-arg-DS-1:

(151) rAma ne KAnA KAkara pAnI piyA.

```
raam ne khaanaa khaakar paanii piyaa.
Ram Erg food having eaten water drank.
'Ram drank water after eating the food.'
```

It may be noted that linguistically rAma ne is explicit karta of only piyA 'drank' and not of KAkara 'having eaten', even though, semantically it is the agent for both KAkara and piyA. Since agreement and its vibhakti are controlled by the main verb 'piyA' (drank) it will be attached to it. However, its semantic presence of being an argument of 'Kakara' will be annotated by following the steps given above. After the annotation the inserted node would look as follows:

```
(( NULL__NP <name='NULL__NP' dmrel='k1:'VGNF' reftype='corefn:NP' mtype='non-gap'>
NULL NN
))
```

'VGNF' and 'NP' in the values of attributes dmrel and reftype respectively are the names of the chunks to which this chunk would attach (VGNF) and would refer to (NP). Some more examples of this type of sharing are given below:

Non-adjectival-Shared-arg-DS-2:

SSF-13

(152) rAma KAnA KAne ke bAxa pAnI pIwA hE.

```
raam khaanaa khaane ke baad paanii piitaa hai.
Ram food eating after water drinks be-Prs.Sg.
'Ram drinks water after eating food.'
```

Noun 'Ram' in the above example is shared by 'KAne' (eating) and 'piwA_hE' (drinks) The inserted chunk for 'rAma' in the above example would be:

```
(( NULL__NP <name='NULL__NP' dmrel='k1:'VGNN' reftype='corefn:NP' mtype='non-gap'>
NULL NN
))
```

SSF-14

Non-adjectival-Shared-arg-DS-3:

(153) rAma xillI jAnA cAhawA hE.

raam dillii jaanaa chaahataa hai. Ram delhi to-go want-hab be-Pres. 'Ram wants to go to Delhi to Delhi.'

4.3.2 Sharing in adjectival participles (wA_huA constructions, KAye_gaye constructions)

In another kind of sharing of arguments, a participle clause modifies the noun and the modified noun, apart from being an argument of a higher verb, is also an argument of the verb in the participle clause. Therefore, the noun is shared by the main verb and its modifier verb. The adjectival participle, obviously, does not have the modified noun as its explicit argument. Again, although the argument in this case also is semantically realized but cannot occur syntactically. For example,

Adjectival-Shared-arg-DS-1:

(154) bEnca para bETA huA ladZakA seba KA rahA hE.

bench par baithaa huaa ladkaa seb khaa rahaa hai. bench on sit-perf be-ptpl boy apple eat prog pres. 'The boy sitting on the bench is eating an apple.'

Adjectival-Shared-arg-DS-2:

(155) mere xvArA Kaye gaye Pala acCe We.

mere dvaaraa khaaye gaye phal achchhe the. My-obl by eat-perf go-Perf fruits good past. 'The fruits eaten by me were good.'

In example (Adjectival-Shared-arg-DS-1) above, bETA huA 'sit-perf be-ptpl' is modifying the noun ladZakA 'boy'. Noun ladzakA 'boy' is an argument of the higher verb KA rahA he 'eat prog pres'. ladZakA 'boy' is also an argument of the non-finite verb bETA huA 'sit-perf be-ptpl'. Similarly, in example (Adjectival-Shared-arg-DS-2) the noun Pala 'fruits' is an argument of both, the finite verb We 'were' and the non-finite verb Kaye 'eaten'.

As in the case of shared arguments of the non-adjectival participles, the arguments of this type will also be annotated. However, for such shared arguments, a new node will not be created. Instead, it will be captured by the label on the arc between the modifying clause and the modified noun. For example, the karaka relation of ladZakA 'boy' with $KAwA\ huA$ 'eat.Impf.Ptpl' (in Adjectival-Shared-arg-DS-1) is k1 (karta karaka relation), it will be represented as nmod_k1inv. Similarly, in example (Adjectival-Shared-arg-DS-2), $KAye\ gaye$ 'ate go-Prf.' is the participle which modifies the noun Pala 'fruit', the noun Pala 'fruit' is k2 (karma karaka relation) of the verb Kaye hue 'eaten'. The relation between Pala 'fruits' and $KAye\ hue$ 'eaten' will be represented as nmod_k2inv.

Therefore, we have one more tag 'nmod_k*inv, which means nmod of the type k*inv, where k* stands for the type of karaka relation i.e. k1 or k2 etc. and inv stands for inverse. Along with the karaka relation we also specify inv which denotes that, here the relation arc is going from child to the parent instead of parent to the child. In this type of sharing a new node is not created, the label nmod_k*inv is sufficient.

Adjectival-Shared-arg-DS-3:

(156) dAliyoM para Kile Pula mahaka rahe We.

```
Daaliyon par khile phuul mahak rahe the.
branches on blossomed flowers smell prog past.
'The flowers flowering on the branches were spreading a scent.'
```

In the above example, *PUla* 'flowers' is the shared argument. Verb *Kile* 'blossomed' is modifying PUla 'flowers'. The feature structure of Kile 'blossomed' would be as follows:

```
(( VGNF <name='VGNF' drel='nmod\_\_k1inv'>
Kile VM
))
```

SSF-15

Since in this case, a new node is NOT inserted, none of the attributes which are annotated in an inserted node will be annotated here.

We also have 'nmod_pofiny'. Its example is given below:

Adjectival-Shared-arg-DS-4:

(157) rAma ke sIwA se kiye gaye vAxe JUTe We.

raam ke siitaa se kiye gayee vaade jhooThe the. Ram of Sita with did go-Prf promises false were. 'The promises done by Ram to Sita were false.'

In the example (Adjectival-Shared-arg-DS-4), $kiye\ gaye$ 'at go-Prf.' is the participle which modifies the noun vAxe 'promises', the noun vAxe 'promises' is pof of the verb kiye gaye 'at go-Prf.'. The relation between vAxe 'promises', and kiye gaye 'at go-Prf.' will be represented as nmod_pofinv.

5 Some Additional Features

During the discussion on what all information would be useful for various applications, it was decided to add two more features on every finite verb clause. The two features are:

5.1 stype (Sentence type)

The attribute 'stype' is to be annotated on every finite verb chunk. The values for this are: declarative, imperative, interrogative etc. A complete list of the sentence type is provided separately. For example,

Sentence-type-DS-1:

(158) Apa xAna rASi para Cuta kA xAvA kara leM.

```
aapdaanraashiiparchhuuTkaadaavaakarlein.youdonationamountonexceptionofclaimdoimp.'Youclaim(tax)exceptionon the donated amount.'
```

The attribute 'stype' will be marked on the verb chunk. Thus, the annotated verb chunk with the 'stype' attribute would be as follows:

SSF-16

5.2 voicetype (Voice type)

The other feature to be annotated on every finite verb chunk is 'voicetype'. The values for this are only two (1) active and (2) passive. For example,

Voice-type-DS-1:

(159) borda kA gaTana kiyA gayA.

```
borD kaa gaThan kiyaa gayaa.
board of formation do-perf go-perf.
'The board was formed.'
```

The voice type feature would be annotated on the verb as follows:

```
(( VGF <voicetype=passive>
kiyA VM
gayA VAUX
))
```

SSF-17

Voice-type-DS-2:

(160) Apa xAna rASi para CUta kA xAvA kara leM.

```
aap daan raashii par chhuuT kaa daavaa kar lein.
you donation amount on exception of claim do imp.
'You claim (tax) exception on the donated amount.'
```

```
(( VGF <voicetype=active>
kara VM
leM VAUX
))
```

SSF-18

5.3 coref (Coreference)

As mentioned in the section DRel-28, relative clauses are attached to the noun they modify with a label 'nmod_relc'. The attachment is between the main verb of the relative clause and the noun it modifies. Thus, an important information about the relative pronoun playing a crucial role in this relation is missed out. To capture this information, it has been decided to annotate the relative pronoun of the relative clause with an additional attribute of 'coref'. The value for the attribute 'coref' would be the referent noun in the main clause, i.e. the noun modified by the relative clause. An example of the same is:

Relative_clause-DS-1:

(161) merI bahana [jo xillI meM rahawI hE] kala A rahI hE.

```
merii bahan jo dillii mein rahatii hai, kal aa rahii hai.
my sister who Delhi in live-hab pres tomorrow come prog pres
'My sister who lives in Delhi is coming tomorrow.'
```


In the above example, the relative pronoun will, in addition to other features will also be marked with the attribute coref. Thus,

```
(( NP <name=NP>
merI
bahana
))
(( NP <coref=NP
jo
))</pre>
```

SSF-18

6 PART 2: Hindi Example Constructions

This section of the document contains some example constructions of Hindi and their relevant dependency analyses. The constructions given here are based on criteria normally considered for identifying construction types. Broadly these are:

- (a) For simple sentences, realization of a syntactic structure based on the verb type such as transitive, unergative, unaccusative etc.
- (b) For complex sentences, the type of subordination a clause may have. For example, relative clause, complement clause etc.
- (c) Constructions which result due to certain linguistic operations such as ellipsis, sharing of arguments etc.

(Most examples in this PART are taken from PS Guidelines)

6.1 Simple Transitives

Simple transitives in Hindi have mostly both karta and karma taking nominative case (0 vibhakti).

(a) Nominative

Transitive-Verbs-DS-1:

(162) AwiPZa kiwAba paDZegA.

aatif kitaab paDhegaa.Atif-Dat book.f read-Inf.f be.Prs.Sg'Atif will read (a/the) book.'

DS analysis (only the relevant dependency features are shown):

AwiPZa <drel=k1:VGF> kiwAba <drel=k2:VGF> paDZegA <name=VGF>

(b) Dative

Transitive-Verbs-DS-2:

(163) AwiPZa ko kiwAba paDZanI hE.

aatif ko kitaab paDhanii hai. Atif-Dat book.f read-Inf.f be.Prs.Sg 'Atif has to read (a/the) book.'

DS analysis:

```
AwiPZa ko <drel=k1:VGF> kiwAba <drel=k2:VGF> paDZanI hE <name=VGF>
```

The dependency analysis considers the postposition of the noun and the TAM markers of the verb to ascertain the karaka relations (refer Section 3.1 on Grammatical model)

(c) Ergative

An ergative construction in Hindi occurs when the verb is transitive and its TAM is past perfective. Transitive-Verbs-DS-3:

(164) AwiPZa ne kiwAba paDZI.

aatif ne kitaab paDhii. Atif-Erg book.f read-Pfv.F 'Atif read (a/the) book.'

DS analysis:

AwiPZa ne <drel=k1:VGF> kiwAba <drel=k2:VGF> paDZI <name=VGF>

6.2 Unergatives

(a) Nominative

Unergatives-DS-1:

(165) AwiPZa bAxa meM nahAegA.

aatif baad mein nahaaegaa. Atif.M later bathe-Fut.3MSg 'Atif will bathe later.'

DS analysis:

AwiPZa <drel=k1:VGF> bAxa meM <drel=k7t:VGF> nahAegA<name=VGF>

(b) Dative

Unergatives-DS-2:

(166) AwiPZa ko nahAnA hE.

```
aatif ko nahaanaa hai.
Atif-Dat bathe-Inf be.Prs
'Atif has to bathe.'
```

DS analysis:

```
AwiPZa ko <drel=k1:VGF> nahAnA hE <name=VGF>
```

The analysis of the dative construction within Paninian dependency framework would remain same for both transitives and unergatives as within Paninian framework what is considered as a syntactic cue for identifying the k1 of a verb is its TAM and the postpositions of the participating nouns. Therefore, the TAM nA_hE in active voice assigns a 'ko' vibhakti to the karta of a verb (refer to Transformation rules in Appendix) irrespective of the verb type. In other words, it is purely a syntactic operation in Hindi which applies to any verb.

(c) Ergative

Unergatives-DS-3:

(167) AwiPZa ne nahA liyA.

```
aatif ne nahaa liyaa.
Atif-Erg bathe TAKE.Pfv 'Atif has bathed.'
```

This is a sentence which can be contested by many native speakers of Hindi as bad. This also does not go well with the rule given under ergative above. However, it is found in the speech of some Hindi speakers so included here.

6.3 Unaccusatives

(a) Nominative

Unacusatives-DS-1:

(168) xaravAjZA Kula rahA hE.

```
daravaazaa khula rahaa hai.
door.M open Prog.MSg be.Prs.Sg
'The door is opening.'
```

(b) Dative

Unacusatives-DS-2:

(169) xaravAjZe ko bAraha baje KulanA hE.

```
daravaaze ko baarah baje khulanaa hai.
door-Dat 12 oclock open-Inf be.Prs
'The door has to open at noon.'
```

DS Analysis;

```
xaravAjZe ko <k1:VGF> bAraha baje <k7t:VGF> KulanA hE <name=VGF>
```

6.4 Dative Subject Constructions

The dative subject constructions of PS analysis correspond to the k4a constructions in DS analysis. For cross reference please see section DRel-10 of PART -1B.

6.5 Ditransitives

Ditransitive-DS-1:

(170) AtiPZa ne kala monA ko sabake sAmane wohaPZA xiyA.

```
daravaaze ko baarah baje khulanaa hai.
Atif Erg yesterday Mona Dat all-Gen.Obl.of in.front present give.Pfv.MS 'Atif gave a present to Mona yesterday in front of everyone.'
```

DS analysis:

```
AtiPZa ne <k1:VGF> kala <k7t:VGF> monA ko <k4:VGF> sabake sAmane <k7:VGF> wohaPZA <k2:VGF> xiyA <name=VGF>
```

6.6 Existentials

(a) Existential

Existential-DS-2:

(171) usa kamare meM cUhe hEM.

```
us kamare mein chuuhe hain.
that.Obl room in rats be.Prs.Pl
'There are rats in that room.'
```

DS Analysis;

```
usa kamare meM <k7p:VGF> cUhe <k1:VGF> hEM <name=VGF>
```

(b) Predicate Locative:

Predicative-locative-DS-1:

(172) mInA kamare meM hE.

```
miinaa kamare mein hai.
Mina room in is
'Mina is in the room.'
```

DS Analysis;

```
mInA <k1:VGF> kamare meM <k7p:VGF> hE<name=VGF>
```

As can be observed in the above examples, the dependency analysis of the predicative locative and simple existential would remain same.

6.7 Copular constructions

 $\label{eq:copular-DS-1} \mbox{Copular-DS-1:}$

(173) rAma dAktara hE.

```
raam daakTar hai.
Ram doctor be.Prs.Sg
'Ram is a doctor.'
```

DS Analysis;

```
rAma <k1:VGF>dAktara <k1s:VGF>hE <name=VGF>
```

6.8 Causatives

Causative-DS-1:

(174) AwiPZa ne kala mInA ko kiwAba xilavAyI.

```
aatif ne kal miinaa ko kitaab dilavaayii.
Atif.obl erg yesterday Mina.obl acc book.Sg give.Caus.Pfv.F.Sg 'Atif caused Mina to buy a book yesterday.'
```

DS analysis:

```
AwiPZa ne <pk1:VGF> kala <k7t:VGF> mInA ko <jk1:VGF>
kiwAba <k2:VGF> xilavAyI <name=VGF>
```

Causative-DS-2: Atif.obl erg yesterday Arif.Obl instr Mina.obl acc book.Sg give.Caus.Pfv.F.Sg 'Atif caused Arif to make Mina buy a book yesterday.'

(175) AwiPZa ne kala Arif se mInA ko kiwAba xilavAyI.

```
aatif ne kal aarif se miinaa ko kitaab dilavaayii.
Atif.obl erg yesterday Arif.Obl instr Mina.obl acc book.Sg give.Caus.Pfv.F.Sg 'Atif caused Arif to make Mina buy a book yesterday.'
```

DS Analysis;

```
AwiPZa ne <pk1:VGF> kala <k7t:VGF> Arif se <mk1:VGF> mInA ko <jk1:VGF> kiwAba <k2:VGF> xilavAyI <name=VGF>
```

- 6.9 Relative clauses (to be included)
- 6.10 Participles (to be included)
- 6.11 Complement clauses (to be included)

7 Conclusion

The tagging scheme presented above has been designed to annotate syntactic analysis within a dependency framework. The task of annotation for Hindi is underway. The basic scheme developed initially has been improved and revised. It is planned to conduct some experimental annotation on other languages and test if it can be applied to other Indian languages as well.

8 Acknowledgments

The scheme presented in the document has been developed through intense discussions with several Sanskrit scholars. However, Professor Ramakrishmacharyulu of Rashtriya Sanskrit Vidyapeetha (Tirupati) has been the main resource person who not only explained the theoretical aspects of various Hindi constructions but also helped us in deciding how deeper into analysis we need to go for various Hindi constructions. The scheme would not have taken a shape without his constant support. We are thankful to him for being there for us whenever we are lost (which we often are).

9 References: