Technische Universität München

Ferienkurs Mathematik für Physiker 1

(2021/2022)Übungsblatt 1

Yigit Bulutlar

21. März 2022

1 Matrizen und Vektoren

1.1

Gegeben seien die folgende Matrizen:

$$A = \begin{pmatrix} 3 & 4 & -2 \\ 4 & -1 & 1 \\ 2 & 2 & -3 \\ 1 & 5 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 3 \\ 1 & 2 \\ 7 & -5 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 2 & 1 & 0 \\ -2 & 1 & -1 & 3 \end{pmatrix}$$

Welche der folgende Matrixprodukte sind definiert? Berechnen Sie gegebenenfalls das Ergebnis.

(a)
$$AC$$
 (b) AB (c) CD (d) BC (e) BD (f) DA

1.2

Es seien die folgende beiden Matrizen gegeben:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 4 & 9 & 0 \\ -2 & -5 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -2 & 1 \\ 4 & 4 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

- (a) Bestimmen Sie A^{-1} und B^{-1} .
- (b) Rechnen Sie nach, dass $(A^T)^{-1} = (A^{-1})^T$ gilt.
- (c) Sind AB bzw. BA invertierbar? Bestimmen Sie gegebenenfalls die jeweilige inverse Matrix.
- (d) Zeigen Sie: Ist $C \in \mathbb{R}^{n \times n}$ eine symmetrische, invertierbare Matrix, so ist auch C^{-1} symmetrisch.

2 Gruppen

2.1

Mit Hilfe der üblichen Addition und Multiplikation auf ℝ definieren wir eine Verknüpfung:

$$\diamond : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \quad (x,y) \mapsto x \diamond y := x \cdot y - x - y + 2$$

- (a) Zeigen Sie, dass für reelle Zahlen $x \neq 1, y \neq 1$ auch $x \diamond y \neq 1$ ist.
- (b) Es sei $G := \mathbb{R} \setminus \{1\}$. Nach Teilaufgabe (a) haben wir also eine Abbildung $\diamond : G \times G \to G$, $(x,y) \mapsto x \diamond y$. Zeigen Sie, dass G zusammen mit \diamond eine kommutative Gruppe ist.

2.2

In der symmetrischen Gruppe S_6 seien die folgenden Permutationen gegeben:

$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 1 & 4 & 6 & 2 \end{pmatrix}, \quad \tau := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 6 & 1 & 3 \end{pmatrix}, \quad \mu := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 4 & 2 & 6 & 5 \end{pmatrix}$$

Geben Sie die folgenden Permutationen sowohl in Tabellenschreibweise als auch als Produkte von paarweise elementfremden Zykeln an:

(a)
$$\sigma \tau$$
, (b) $\mu \tau$, (c) μ^{-1} , (d) $\sigma \tau \sigma^{-1}$

3 Vektoräume

3.1

Welche der Folgende Teilmengen sind Untervektorräume des \mathbb{R} -Vektorraumes \mathbb{R}^3 ? Begründen Sie ihre Antwort.

(a)
$$U_1 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x - z = 5 \right\}$$
 (b) $U_2 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x + 2y = 0 \right\}$ (c) $U_3 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| y^2 + z^2 = 0 \right\}$ (d) $U_4 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x \ge 0 \text{ und } y \le 0 \right\}$

3.2

Betrachten Sie den \mathbb{R} -Vektorraum $\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R} | f \text{ ist Funktion}\}$. Zeigen Sie, dass die folgende Mengen Untervektorräume sind.

(a)
$$U_1 = \{ f \in \mathbb{R}^\mathbb{R} : f(x) = f(-x) \ \forall x \in \mathbb{R} \}$$

(b)
$$U_2 = \{ f \in \mathbb{R}^{\mathbb{R}} : f(x) = -f(-x) \ \forall x \in \mathbb{R} \}$$

2

3.3

Sei K ein Körper, V ein K-Vektorraum und U, W zwei Unterräume von V. Beweisen Sie die folgende Aussage:

$$V = U \cup W \iff V = U \text{ oder } V = W$$

4 Basen

4.1

Bestimmen Sie, ob folgende Teilmengen linear unabhängig sind. Erzeugen diese Teilmengen den jeweils umgebenden Vektorraum?

(a)
$$\left\{ \begin{pmatrix} -3\\0\\2 \end{pmatrix}, \begin{pmatrix} 5\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-3 \end{pmatrix} \right\} \subset \mathbb{R}^3$$

(b)
$$\{x + 2x^2 + 7x^3, 2x + 3x^2 + 5x^3, 2x + 8x^3\} \subset \mathbb{R}_{\leq 3}[x]$$

(c)
$$\left\{ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\} \subset \mathbb{R}^{2 \times 2}$$

4.2

Bestimmen Sie eine Basis des Unterraums

$$U = \left\langle \begin{pmatrix} 1 \\ 1+i \\ 1 \end{pmatrix}, \begin{pmatrix} i \\ i \\ 1+i \end{pmatrix}, \begin{pmatrix} -i \\ 2-i \\ 1-i \end{pmatrix} \right\rangle \subset \mathbb{C}^3$$

und ergänzen Sie es zu einer Basis von \mathbb{C}^3 .