题号		=	三	四	总分
得分					

一、单选题(共18分,每小题3分).

得分

姓名:

₩ ₩

- 1、设n阶方阵A,B,C满足关系式ABC = E,其中E为n阶单位矩阵,则必有
 - (A) BAC = E. (B) $B = C^{-1}A^{-1}$. (C) BCA = E. (D) CBA = E.

- 2、设 α_1 , α_2 和 β_1 , β_2 是向量空间 \mathbb{R}^2 的两组基,并且 $\beta_1 = -5\alpha_1 2\alpha_2$, $\beta_2 = 3\alpha_1 + \alpha_2$,则由 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 到 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 的过渡矩阵是 1
- (A) $\begin{bmatrix} 0 & -4 \\ 1 & -6 \end{bmatrix}$. (B) $\begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix}$. (C) $\begin{bmatrix} 5 & 2 \\ -3 & -1 \end{bmatrix}$. (D) $\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$.
- 3、设 $\boldsymbol{\alpha}_1 = (1,0,0,0)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (2,-1,1,-1)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (0,1,-1,a)^{\mathrm{T}}, \boldsymbol{\beta} = (3,-2,b,-2)^{\mathrm{T}},$ 已知 $\boldsymbol{\beta}$ 不 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出,则
 - (A) b = 2. (B) $b \neq 2$.
- (C) a = 1.
- 4、设A是 3 阶矩阵,|A|=-4,且 $A^2-A=2E$,则A 的伴随矩阵 A^* 的特征值为【
 - (A) -2, -2, 4. (B) -2, 4, 4. (C) 2, 2, -4. (D) 2, -4, -4.

- 5、设 A 为 n 阶可逆矩阵,则下述说法不正确的是【】.

- (A) $|A| \neq 0$ (B) $|A^{-1}| \neq 0$ (C) r(A) = n (D) A 的列向量组线性相关
- 6、设 $A_{4\times4} = [\pmb{\alpha}_1 \ \pmb{\alpha}_2 \ \pmb{\alpha}_3 \ \pmb{\alpha}_4]$, $\pmb{\xi}_1 = (-2,0,1,0)^{\mathrm{T}}$, $\pmb{\xi}_2 = (1,0,0,1)^{\mathrm{T}}$ 为齐次线性方程组 $\pmb{A}\pmb{x} = \pmb{0}$ 的基础解系, η 是A的属于特征值2的特征向量,则以下命题中错误的是 1
 - (A) $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$ 线性无关.

- (B) $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 线性无关.
- (C) $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\eta}$ 线性无关.
- (D) ξ_1, ξ_2, η 线性无关.

二、填空题(共18分,每小题3分).

得分

1、设
$$A = \begin{bmatrix} 1 & k & 2 \\ 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$
,行列式 $|3A| = 27$,则参数 $k =$ ______.

- 2、矩阵 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ -1 & 0 & 0 \end{bmatrix}$ 的逆矩阵为______.
- 3、向量空间 $V = \{x = (x_1, x_2, 0) | x_1, x_2 \in R \}$ 的维数为______.
- 4、已知二次型 $f(x_1,x_2,x_3)=x_1^2+3x_2^2+3x_3^2+2bx_2x_3$ 可通过正交变换化成标准形 $f=y_1^2+2y_2^2+4y_3^2$,则 $b^2=$ _______.
- 5、已知 A = PQ, $P = (1,2,1)^{T}$, Q = (2,-1,2),则矩阵 A^{2} 的秩是_____.
- 6、若向量组 $\mathbf{\alpha}_1 = (3,2,0,1)^{\mathrm{T}}, \mathbf{\alpha}_2 = (3,0,\lambda,0)^{\mathrm{T}}, \mathbf{\alpha}_3 = (1,-2,4,-1)^{\mathrm{T}}$ 线性相关,则 $\lambda = \underline{\hspace{1cm}}$.
- 三、计算题(共50分,每小题10分)
- 1. 计算n 阶行列式.

得分

$$D_n = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 & 1 \\ 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 1 & 1 \end{vmatrix}$$

2. 设 3 阶方阵
$$\boldsymbol{A}$$
, \boldsymbol{B} 满足关系式 $\boldsymbol{A}\boldsymbol{B}\boldsymbol{A} = -2\boldsymbol{E} + \boldsymbol{A}\boldsymbol{B}$, 又已知 $\boldsymbol{A} = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$, 求矩阵 \boldsymbol{B} .

3.设向量组

4. 设
$$A$$
为 3 阶实对称矩阵,且满足 $A^2+A-2E=0$,已知向量 $\boldsymbol{\alpha}_1=\begin{bmatrix}0\\1\\0\end{bmatrix}$, $\boldsymbol{\alpha}_2=\begin{bmatrix}1\\0\\1\end{bmatrix}$ 是矩阵

A 对应于特征值 $\lambda = 1$ 的特征向量,求 A^n ,其中 n 为正整数.

5. 已知向量
$$\eta_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}$$
, $\eta_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 4 \end{bmatrix}$, $\eta_3 = \begin{bmatrix} 4 \\ 5 \\ -3 \\ 11 \end{bmatrix}$ 是方程组
$$\begin{cases} a_1x_1 + 2x_2 + a_3x_3 + a_4x_4 = d_1, \\ 4x_1 + b_2x_2 + 3x_3 + b_4x_4 = d_2, \\ 3x_1 + c_2x_2 + 5x_3 + c_4x_4 = d_3 \end{cases}$$

的三个解, 求该方程组的通解

四、证明题(共 14 分,每小题 7 分) 设 A 为 $m \times n$ 矩阵, b 是 m 维列向量,证明:

得分

- (1) $r(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = r(\mathbf{A})$;
- (2) 线性方程组 $\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathsf{T}} \mathbf{b}$ 必有解.