11. Hãy đổi thứ tự lấy tích phân $I = \int_0^2 dx \int_{x^2}^{2x} f(x, y) dy$.

Ta viết miền lấy tích phân: $D = \{(x, y) / 0 \le x \le 2, x^2 \le y \le 2x\}$. Ở cách biểu diễn này x cố định [0,2] còn

y biến thiên theo x từ $y = x^2 \rightarrow y = 2x$.

Giờ ta cố định $y \in [0,4]$ thì x biến thiên từ

$$x = y / 2 \rightarrow x = \sqrt{y}$$

Vậy:
$$I = \int_0^4 dy \int_{y/2}^{\sqrt{y}} f(x, y) dx$$
. \rightarrow **chọn A**.

12.

13. Hãy đổi thứ tự lấy tích phân $I = \int_{-1}^{1} dx \int_{0}^{x^2} f(x, y) dy$.

Ta viết miền lấy tích phân: $D = \{(x, y) / -1 \le x \le 1, 0 \le y \le x^2\}$. Ở cách biểu diễn này x cố định [-1,1] còn y biến thiên theo x từ $y = 0 \rightarrow y = x^2$.

Giờ ta cố định $y \in [0,1]$ thì x biến thiên từ $x = -1 \rightarrow x = -\sqrt{y}$ và từ $x = \sqrt{y} \rightarrow x = 1$

$$\Rightarrow I = \int_0^1 dy \int_{-1}^{-\sqrt{y}} f(x, y) dx + \int_0^1 dy \int_{\sqrt{y}}^1 f(x, y) dx$$

 \rightarrow chọn A.

14. Cho tích phân $I = \int_{0}^{1} dx \int_{0}^{\sqrt{x}} f(x, y) dy$. Thay đổi thứ tự tính tích phân ta được:

Ta viết miền lấy tích phân: $D = \{(x,y) / 0 \le x \le 1, x \le y \le \sqrt{x}\}$. Ở cách biểu diễn này x cố định [0,1] còn y biến thiên theo x từ $y = x \rightarrow y = \sqrt{x}$.

Tung độ giao điểm của $y = x, y = \sqrt{x}$ là y = 0, y = 1. Giờ cố định $y \in [0,1]$ thì x biến thiên từ $x = y \rightarrow x = y^2$. Vậy

$$I = \int_{0}^{1} dy \int_{y}^{y^{2}} f(x, y) dx \rightarrow \mathbf{chon} \ \mathbf{D}.$$

15. Đổi thứ tự tính tích phân $I = \int_{1}^{2} dx \int_{2}^{4-x} f(x, y) dy$.

Ta viết miền lấy tích phân: $D = \{(x,y) \mid 1 \le x \le 2, \ 2 \le y \le 4 - x\}$. Ở cách biểu diễn này x cố định [1,2] còn y biến thiên theo x từ $y = 2 \rightarrow y = 4 - x$.

Cố định $y \in [2,3]$ thì x biến thiên từ $x = 1 \rightarrow x = 4 - y$. Vậy: $I = \int_{2}^{3} dy \int_{2}^{4-y} f(x,y) dx \rightarrow \text{chọn C}$.

21. Tính tích phân $I = \int_1^2 dx \int_x^{2x} (x+2y) dy$.

Ta có:
$$I = \int_{1}^{2} dx \int_{x}^{2x} (x+2y) dy = \int_{1}^{2} (xy+y^{2}) \Big|_{y=x}^{y=2x} dx = \int_{1}^{2} 4x^{2} dx = \frac{4}{3}x^{3} \Big|_{1}^{2} = \frac{28}{3} \rightarrow \text{chọn A}.$$

22. Tính
$$I = \iint_{x^2 + y^2 \le 1} (2x - 3) dx dy$$

Đổi biến sang tọa độ cực xác định bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 1 \rightarrow 0 \le r \le 1 \quad \text{và } 0 \le \varphi \le 2\pi \quad \text{và khi}$

 $\text{d\'o: } 2x - 3 = 2r\cos\varphi - 3$

Suy ra:
$$I = \int_{0}^{1} \int_{0}^{2\pi} (2r\cos\varphi - 3)r dr d\varphi = \int_{0}^{1} \int_{0}^{2\pi} (2r^{2}\cos\varphi - 3r) dr d\varphi = \int_{0}^{2\pi} \left(\frac{2}{3}r^{3}\cos\varphi - \frac{3}{2}r^{2}\right)\Big|_{r=0}^{r=1} d\varphi$$

$$= \int_{0}^{2\pi} \left(\frac{2}{3}\cos\varphi - \frac{3}{2}\right) d\varphi = \left(\frac{2}{3}\sin\varphi - \frac{3}{2}\varphi\right)\Big|_{0}^{2\pi} = -\frac{3}{2}.2\pi = -3\pi \rightarrow \text{chọn A}.$$

23. Tính
$$I = \iint_{x^2+y^2 \le 4, x \ge 0} (3-2y) dxdy$$
.

Đổi biến sang tọa độ cực xác định bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 4 \Rightarrow 0 \le r \le 2 \quad \text{và } -\pi / 2 \le \varphi \le \pi / 2$

Suy ra:
$$I = \int_{0-\pi/2}^{2} \int_{-\pi/2}^{\pi/2} (3 - 2r\sin\varphi) r dr d\varphi = \int_{0-\pi/2}^{2} \int_{0-\pi/2}^{\pi/2} (3r - 2r^2\sin\varphi) dr d\varphi = \int_{-\pi/2}^{\pi/2} \left(\frac{3}{2}r^2 - \frac{2}{3}r^3\sin\varphi \right) \Big|_{r=0}^{r} d\varphi$$

$$= \int_{-\pi/2}^{\pi/2} \left(6 - \frac{16}{3}\sin\varphi \right) d\varphi = 6\varphi + \frac{16}{3}\cos\varphi \Big|_{-\pi/2}^{\pi/2} = 6\pi \longrightarrow \text{chọn A}.$$

24. Tính
$$I = \iint_{x^2 + y^2 \le 4} \sqrt{x^2 + y^2} dxdy$$
.

Đổi biến sang tọa độ cực x/đ bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 4 \rightarrow 0 \le r \le 2 \quad \text{và } 0 \le \varphi \le 2\pi$ $\rightarrow D' = \{(r, \varphi) / 0 \le r \le 2, 0 \le \varphi \le 2\pi\}$

Khi đó:
$$I = \iint_{D'} \sqrt{r^2} r dr d\varphi = \int_0^2 r^2 dr \int_0^{2\pi} d\varphi = (2\pi - 0) \cdot \frac{r^3}{3} \Big|_0^2 = \frac{16\pi}{3} \rightarrow \text{chọn A}.$$

25. Tính
$$I = \iint_{x^2 + y^2 \le 4, y \ge 0} 3y dx dy$$
.

Đổi biến sang tọa độ cực x/đ bởi:
$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 4 \to 0 \le r \le 2$$

Vì $y \ge 0$ (nửa trên của hình tròn) nên $0 \le \varphi \le \pi \rightarrow D' = \{(r, \varphi) \mid 0 \le r \le 2, 0 \le \varphi \le \pi\}$

$$I = \iint_{D'} 3r \sin \varphi . r dr d\varphi = \int_{0}^{2} 3r^{2} dr \int_{0}^{\pi} \sin \varphi d\varphi = r^{3} \Big|_{0}^{2} (-\cos \varphi) \Big|_{0}^{\pi} = 8.[-(-1-1)] = 16 \rightarrow \text{chọn A}.$$

26. Tính $I = \iint_D 12y dx dy$ với D là miền phẳng kín giới hạn bởi các đường $x = y^2, x = y$.

Tung độ giao điểm của $x = y^2, x = y$ là y = 0, y = 1. Cố định $y \in [0,1]$ thì x biến thiên từ $x = y^2 \rightarrow x = y$. Viết D thành: $D = \{(x, y) / 0 \le y \le 1, y^2 \le x \le y\}$

$$I = \int_{0}^{1} 12y dy \int_{y^{2}}^{y} dx = \int_{0}^{1} 12y (y - y^{2}) dy = (4y^{3} - 3y^{4}) \Big|_{0}^{1} = 1 \rightarrow \text{chọn A}.$$

(nên vẽ hình để đễ dàng xác định cận lấy tích phân)

27. Tính tích phân
$$I = \iint_D x \ln y dx dy$$
 với $D: \begin{cases} 0 \le x \le 4 \\ 0 \le y \le e \end{cases}$.

$$I = \int_{0}^{4} x dx \int_{0}^{e} \ln y dy = 4 \int_{0}^{e} \ln y dy = 4 \lim_{a \to 0^{+}} \int_{a}^{e} \ln y dy = 4 \lim_{a \to 0^{+}} \left[y \ln y - y \Big|_{a}^{e} \right] = 4 \lim_{a \to 0^{+}} \left(a - a \ln a \right) = 4.0 = 0$$

 \rightarrow chọn A.

28. Tính tích phân I = $\iint_D (x^2 + y) dx dy$ với D là miền giới hạn bởi các đường:

$$y = -\frac{x}{2} - 1$$
; $y = \frac{x}{2} + 1$; $x = 0$.

$$D = \{(x, y) / -2 \le x \le 0, -\frac{x}{2} - 1 \le y \le \frac{x}{2} + 1\}$$

Suy ra:
$$I = \int_{-2}^{0} dx \int_{-\frac{x}{2}-1}^{\frac{x}{2}+1} (x^2 + y) dy = \int_{-2}^{0} \left[\left(x^2 y + \frac{1}{2} y^2 \right) \Big|_{y=-\frac{x}{2}-1}^{y=\frac{x}{2}+1} \right] dx = \int_{-2}^{0} \left(x^3 + 2x^2 \right) dx = \left(\frac{x^4}{4} + \frac{2x^3}{3} \right) \Big|_{-2}^{0} = \frac{4}{3}$$

 \rightarrow chọn A.

29. Tính tích phân I =
$$\iint_{D} \frac{dxdy}{(x+y)^2} \text{với } D: \{(x,y) \mid 3 \le x \le 5; 1 \le y \le 2\}$$

$$I = \int_{3}^{5} dx \int_{1}^{2} \frac{dy}{(x+y)^{2}} = \int_{3}^{5} \left[\left(-\frac{1}{x+y} \right) \Big|_{y=1}^{y=2} \right] dx = \int_{3}^{5} \left(\frac{1}{x+1} - \frac{1}{x+2} \right) dx = \ln \frac{x+1}{x+2} \Big|_{3}^{5} = \ln \frac{6}{7} - \ln \frac{4}{5} = \ln \frac{15}{14}$$

 \rightarrow chọn A.

30. Tính tích phân I =
$$\iint_D (x^2+y^2) dx dy$$
 với $D = [-1,1] \times [0,3]$

Viết lại: $D = [-1,1] \times [0,3] = \{(x,y) / -1 \le x \le 1, 0 \le y \le 3\}$

$$I = \int_{-1}^{1} dx \int_{0}^{3} (x^{2} + y^{2}) dy = \int_{-1}^{1} \left[\left(x^{2}y + \frac{y^{3}}{3} \right) \Big|_{y=0}^{y=3} \right] dx = \int_{-1}^{1} \left(3x^{2} + 9 \right) dx = (x^{3} + 9x) \Big|_{-1}^{1} = 20 \implies \text{chọn A}.$$

31. Tính tích phân I = $\iint_D (2x^2 - 8xy) dx dy$ với D là hình tam giác MNP có các đỉnh: M(-1,-2); N(-1,0); P(3,0).

Vẽ hình miền D:

Phương trình cạnh MP: x-2y=3 hay $y=\frac{x}{2}-\frac{3}{2}$, của NP là: y=0. Khi đó viết lại miền D:

$$D = \{(x, y) / -1 \le x \le 3, \frac{x}{2} - \frac{3}{2} \le y \le 0\}$$

$$I = \int_{-1}^{3} dx \int_{\frac{x}{2} - \frac{3}{2}}^{0} (2x^{2} - 8xy) dy = \int_{-1}^{3} \left[\left(2x^{2}y - 4xy^{2} \right) \Big|_{y = x/2 - 3/2}^{0} \right] dx = \int_{-1}^{3} (-3x^{2} + 9x) dx$$

$$=\left(-x^3 + \frac{9x^2}{2}\right)\Big|_{-1}^3 = 8 \to \text{chọn A}.$$

32. Tính $I = \iint_D dx dy$ với D là miền giới hạn bởi các đường y=x-1; x = y².

Tung độ giao điểm của 2 đường x = y + 1 và $x = y^2$ là $y = \frac{1 - \sqrt{5}}{2}, y = \frac{1 + \sqrt{5}}{2}$.

Viết D dạng:
$$D = \left\{ (x, y) / \frac{1 - \sqrt{5}}{2} \le y \le \frac{1 + \sqrt{5}}{2}, y^2 \le x \le y + 1 \right\}$$

33. Tính tích phân $I = \iint_D \frac{\ln y}{x+1} dx dy$, với D là miền xác định bởi: x = 0, x = 1, y = 1, y = e.

Miền lấy tích phân: $D = \{(x, y) / 0 \le x \le 1, 1 \le y \le e\}$

$$I = \iint_{D} \frac{\ln y}{x+1} dx dy = \int_{0}^{1} \frac{dx}{x+1} \int_{1}^{e} \ln y dy = \ln(x+1) \Big|_{0}^{1} \Big(y \ln y - y \Big|_{1}^{e} \Big) = \ln 2.(0+1) = \ln 2 \rightarrow \text{chọn A}.$$

34. Tính tích phân
$$I = \int_{2}^{4} dx \int_{x}^{2x} \frac{y}{x} dy$$

$$I = \int_{2}^{4} \frac{1}{x} dx \int_{x}^{2x} y dy = \int_{2}^{4} \frac{1}{x} \left(\frac{1}{2} y^{2} \Big|_{x}^{2x} \right) dx = \int_{2}^{4} \frac{1}{x} \left(2x^{2} - \frac{1}{2}x^{2} \right) dx = \frac{3}{2} \int_{2}^{4} x dx = \left(\frac{3}{4}x^{2} \right) \Big|_{2}^{4} = 9 \rightarrow \text{chon A}.$$

35. Tính tích phân
$$I = \int_{1}^{2} dy \int_{0}^{\ln y} e^{x} dx$$
.

$$I = \int_{1}^{2} dy \int_{0}^{\ln y} e^{x} dx = \int_{1}^{2} \left(e^{x} \Big|_{0}^{\ln y} \right) dy = \int_{1}^{2} (y - 1) dy = \left(\frac{1}{2} y^{2} - y \right) \Big|_{1}^{2} = \frac{1}{2}, \text{ (Chú \'y: } e^{\ln y} = y \text{)} \rightarrow \text{chọn A}.$$

36. Tính tích phân I = $\iint\limits_{D} \sqrt{x^2 + y^2} \, dx dy \, v \acute{o}i \, D \, là phần tư thứ nhất của hình tròn <math>x^2 + y^2 \leq a^2$.

Đổi biến sang tọa độ cực x/đ bởi:
$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le a^2 \to 0 \le r \le a$$

Vì D là 1/4 thứ nhất của hình tròn nên $0 \le \varphi \le \frac{\pi}{2}$. $\rightarrow D' = \{(r, \varphi) / 0 \le r \le a, 0 \le \varphi \le \pi / 2\}$

$$\Rightarrow I = \iint_{D'} \sqrt{r^2} r dr d\varphi = \int_0^a r^2 dr \int_0^{\pi/2} d\varphi = \left(\frac{\pi}{2} - 0\right) \frac{1}{3} r^3 \bigg|_0^a = \frac{\pi}{2} \cdot \frac{a^3}{3} = \frac{a^3 \pi}{6} \rightarrow \mathbf{chon} \ \mathbf{B}.$$

37. Trong hệ tọa độ cực, tích phân $I = \iint\limits_{x^2+y^2\leq 2} \frac{dxdy}{\sqrt{9-x^2-y^2}}$ được tính theo công thức nào sau đây:

Đổi biến sang tọa độ cực x/đ bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 2 \to 0 \le r \le \sqrt{2} \quad \text{và } 0 \le \varphi \le 2\pi$

$$\rightarrow D' = \{ (r, \varphi) / 0 \le r \le \sqrt{2}, 0 \le \varphi \le 2\pi \}$$

Do đó:
$$I = \iint_{D'} \frac{rdrd\varphi}{\sqrt{9-r^2}} = \int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt{2}} \frac{rdr}{\sqrt{9-r^2}} \rightarrow \mathbf{chọn} \ \mathbf{A}.$$

38. Tính tích phân I = $\iint_D \frac{dxdy}{\sqrt{1+x^2+y^2}} \text{ với D là phần tư thứ nhất của hình tròn đơn vị.}$

Viết miền lấy tích phân: $D = \{(x, y) / x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$

Đổi biến sang tọa độ cực x/đ bởi:
$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 1 \rightarrow 0 \le r \le 1 \quad \text{và } 0 \le \varphi \le \pi/2$$

Khi đó: miền lấy tích theo tọa độ mới là $D' = \{(r, \varphi) \mid 0 \le r \le 1, 0 \le \varphi \le \pi \mid 2\}$

$$\Rightarrow I = \iint_{D'} \frac{\operatorname{rdrd} \varphi}{\sqrt{1+r^2}} = \int_0^{\pi/2} d\varphi \int_0^1 \frac{rdr}{\sqrt{1+r^2}} = \frac{\pi}{2} \left(\sqrt{1+r^2} \right) \Big|_0^1 = \frac{\pi}{2} \cdot \left(\sqrt{2} - 1 \right) \to \text{ chọn A}.$$

39. Dùng tọa độ cực, tính tích phân: I= $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} (x^2 + y^2)^{3/2} dx dy$.

Miền lấy tích phân: $D = \{(x,y) / -2 \le y \le 2, 0 \le x \le \sqrt{4-y^2}\}$. Vậy D là nửa phải hình tròn $x^2 + y^2 \le 4$.

Đổi biến sang tọa độ cực x/đ bởi:
$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 4 \Rightarrow 0 \le r \le 2 \quad \text{và } -\pi / 2 \le \varphi \le \pi / 2$$

Khi đó: miền lấy tích theo tọa độ mới là $D' = \{(r, \varphi) / 0 \le r \le 2, -\pi / 2 \le \varphi \le \pi / 2\}$

$$\Rightarrow I = \iint_{D'} (r^2)^{3/2} r dr d\varphi = \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{2} r^4 dr = \left[\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right] \left(\frac{1}{5} \cdot r^5 \right) \Big|_{0}^{2} = \pi \cdot \frac{32}{5} = \frac{32\pi}{5} \implies \text{chọn A}.$$

40. Tính tích phân $I = \iint_D \frac{1}{\sqrt{x^2 + y^2}} dx dy$, với D là miền xác định bởi: $x^2 + y^2 \le 9$.

Đổi biến sang tọa độ cực x/đ bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 9 \to 0 \le r \le 3 \quad \text{và } 0 \le \varphi \le 2\pi$

Khi đó: miền lấy tích theo tọa độ mới là $D' = \{(r, \varphi) / 0 \le r \le 3, 0 \le \varphi \le 2\pi\}$

$$\Rightarrow I = \iint_{D'} \frac{1}{\sqrt{r^2}} \cdot r dr d\varphi = \int_0^{2\pi} d\varphi \int_0^3 dr = 2\pi . 3 = 6\pi \Rightarrow \text{chọn A}.$$

41. Tính tích phân $I = \iint_D \sqrt{x^2 + y^2} dx dy$, với D là miền xác định bởi: $1 \le x^2 + y^2 \le 4$.

Đổi biến sang tọa độ cực x/đ bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2$

Từ
$$1 \le x^2 + y^2 \le 4 \Rightarrow 1 \le r^2 \le 4 \rightarrow 1 \le r \le 2$$
 và $0 \le \varphi \le 2\pi$

Khi đó: miền lấy tích theo tọa độ mới là $D' = \{(r, \varphi) / 1 \le r \le 2, 0 \le \varphi \le 2\pi\}$

$$\Rightarrow I = \iint\limits_{D'} \sqrt{r^2} . r dr d\varphi = \int\limits_0^{2\pi} d\varphi \int\limits_1^2 r^2 dr = 2\pi . \left(\frac{1}{3} r^3 \bigg|_1^2\right) = 2\pi . \left(\frac{8}{3} - \frac{1}{3}\right) = \frac{14\pi}{3} \rightarrow \text{chọn A}.$$

42. Đổi sang tọa độ cực rồi tính : $I = \int_{0}^{1} dy \int_{0}^{\sqrt{1-y^2}} (x^2 + y^2) dx$.

Viết lại miền tích phân: $D = \{(x,y) / 0 \le y \le 1, 0 \le x \le \sqrt{1-y^2}\} = \{(x,y) / x^2 + y^2 \le 1, y \ge 0\}$ (tức D là nửa trên của hình tròn đơn vị)

Đổi biến sang tọa độ cực x/đ bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 1 \Rightarrow 0 \le r \le 1 \quad \text{và} \quad 0 \le \varphi \le \pi$

Khi đó: miền lấy tích theo tọa độ mới là $D' = \{(r, \varphi) / 0 \le r \le 1, 0 \le \varphi \le \pi\}$

$$\Rightarrow I = \iint_D (x^2 + y^2) dx dy = \iint_{D'} r^2 r dr d\varphi = \int_0^{\pi} d\varphi \int_0^1 r^3 dr = \pi \cdot \left(\frac{1}{4} r^4 \Big|_0^1 \right) = \frac{\pi}{4} \rightarrow \mathbf{chon} \ \mathbf{B}.$$

43. Tính tích phân $I = \iint_D xy dx dy$, với D là miền xác định bởi: $x^2 + y^2 \le R^2$, $x \ge 0$, $y \ge 0$, R > 0.

D là **phần tư thứ nhất** của hình tròn tâm (0,0) bàn kính R.

Đổi biến sang tọa độ cực x/đ bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le R^2 \Rightarrow 0 \le r \le R \quad \text{và} \quad 0 \le \varphi \le \pi/2$

Khi đó: miền lấy tích theo tọa độ mới là $D' = \{(r, \varphi) / 0 \le r \le R, 0 \le \varphi \le \pi / 2\}$

$$\Rightarrow I = \iint_{D'} r \cos \varphi . r \sin \varphi . r dr d\varphi = \int_{0}^{R} r^{3} dr \int_{0}^{\pi/2} \frac{1}{2} \sin 2\varphi d\varphi = \frac{1}{4} r^{4} \Big|_{0}^{R} \left(-\frac{1}{4} \cos 2\varphi \Big|_{0}^{\pi/2} \right) = \frac{R^{4}}{4} \cdot \frac{1}{2} = \frac{R^{4}}{8}$$

$$\Rightarrow \text{chon A}.$$

44. Tính $I = \iint_D xy dx dy$, với D là nửa phía trên đường tròn $x^2 + y^2 \le 1, y \ge 0$

Đổi biến sang tọa độ cực x/đ bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 1 \Rightarrow 0 \le r \le 1 \quad \text{và} \quad 0 \le \varphi \le \pi$

Khi đó: miền lấy tích theo tọa độ mới là $D' = \{(r, \varphi) / 0 \le r \le 1, 0 \le \varphi \le \pi\}$

$$I = \iint_{D'} r \cos \varphi . r \sin \varphi . r dr d\varphi = \int_{0}^{1} r^{3} dr \int_{0}^{\pi} \frac{1}{2} \sin \varphi d\varphi = \frac{1}{4} r^{4} \Big|_{0}^{1} \Big(-\cos 2\varphi \Big|_{0}^{\pi} \Big) = 0 \implies \text{chọn A}.$$

45. Tính tích phân $I = \iint_D (1 + x^2 + y^2) dx dy$, với D là hình tròn $x^2 + y^2 \le 1$.

Đổi biến sang tọa độ cực x/đ bởi: $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow x^2 + y^2 = r^2 \le 1 \Rightarrow 0 \le r \le 1 \quad \text{và} \quad 0 \le \varphi \le 2\pi$

Khi đó: miền lấy tích theo tọa độ mới là $D' = \{(r, \varphi) / 0 \le r \le 1, 0 \le \varphi \le 2\pi\}$

$$\Rightarrow I = \iint_{D'} (1+r^2) r dr d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{1} (r+r^3) dr = 2\pi \cdot \left(\frac{r^2}{2} + \frac{r^4}{4}\right) \Big|_{0}^{1} = 2\pi \left(\frac{1}{2} + \frac{1}{4}\right) = \frac{3\pi}{2} \Rightarrow \text{chon A}.$$

46. Tìm nghiệm tổng quát của phương trình vi phân $\frac{dx}{\cos y} + \frac{dy}{\sin x} = 0$ (1) (đây là ptvp tách biến)

(1) $\Leftrightarrow \cos y dy = -\sin x dx$

$$\rightarrow \int \cos y dy = \int -\sin x dx \rightarrow \sin y = \cos x + C \rightarrow \sin y - \cos x = C \qquad \rightarrow \text{ chọn A}.$$

47. Tìm nghiệm tổng quát của phương trình vi phân $\frac{dx}{1+x^2} + \frac{dy}{\sqrt{1-y^2}} = 0.$ (2)

$$(2) \to \int \frac{dx}{1+x^2} + \int \frac{dy}{\sqrt{1-y^2}} = C \to \arctan x + \arcsin y = C \to \mathbf{chon} \ \mathbf{A}.$$

48. Tìm nghiệm tổng quát của phương trình vi phân $y' \sin^2 x + y = 0$.

$$y'\sin^2 x + y = 0 \Leftrightarrow \sin^2 x \cdot \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{y} = \frac{-dx}{\sin^2 x} \Rightarrow \int \frac{dy}{y} = \int \frac{-1}{\sin^2 x} dx$$
$$\Rightarrow \ln y = \cot x + C_0 \Rightarrow y = e^{\cot x + C_0} = e^{C_0} e^{\cot x} = Ce^{\cot x}$$

Vậy
$$y = Ce^{\cot x}$$
, (với $C = e^{C_0}$) \rightarrow chọn A

49. Tìm nghiệm tổng quát của phương trình vi phân $y'(1-e^x)+e^xy=0$.

$$y'(1-e^{x}) + e^{x}y = 0 \Leftrightarrow (1-e^{x})\frac{dy}{dx} + e^{x}y = 0 \to \frac{dy}{y} = \frac{e^{x}}{e^{x}-1}dx$$
$$\to \int \frac{dy}{y} = \int \frac{e^{x}}{e^{x}-1}dx \to \ln y = \ln(e^{x}-1) + C_{0} = \ln C(e^{x}-1) \quad (*)$$

Suy ra:
$$y = C(e^x - 1)$$
 ($\mathring{\sigma}$ (*) ta chọn $C_0 = \ln C$) \rightarrow **chọn A**

51. Nghiệm riêng của phương trình vi phân $(1+e^x)yy'=e^x$ thỏa điều kiện ban đầu y(0)=-1 là:

$$(1+e^x)yy' = e^x \Leftrightarrow ydy = \frac{e^x}{e^x+1}dx \to \int ydy = \int \frac{e^x}{e^x+1}dx \to \frac{1}{2}y^2 = \ln(e^x+1) + C$$

Thay điều kiện đầu $y(0) = -1, (x = 0 \rightarrow y = -1)$ ta được: $\frac{1}{2}(-1)^2 = \ln(2) + C \Rightarrow C = \frac{1}{2} - \ln 2$

$$\rightarrow \frac{1}{2}y^2 = \ln(e^x + 1) + \frac{1}{2} - \ln 2 \rightarrow \frac{y^2}{2} - \frac{1}{2} = \ln \frac{e^x + 1}{2}$$
 (lấy e mũ 2 vế)

$$\rightarrow e^{\frac{y^2}{2} - \frac{1}{2}} = \frac{e^x + 1}{2} \rightarrow e^{\frac{y^2}{2}} \cdot e^{\frac{-1}{2}} = \frac{e^x + 1}{2} \rightarrow 2e^{\frac{y^2}{2}} = e^{\frac{1}{2}}(e^x + 1) \text{ hay } 2e^{\frac{y^2}{2}} = \sqrt{e}(e^x + 1) \rightarrow \text{chon A}$$

52. Tìm nghiệm riêng của phương trình vi phân y' = -y/x với điều kiện đầu y(1)=2.

$$y' = -y / x \Leftrightarrow \frac{dy}{y} = -\frac{dx}{x} \to \int \frac{dy}{y} = \int \frac{-dx}{x} \to \ln y = -\ln x + C$$

Thay điều kiện đầu $y(1) = 2, (x = 1 \rightarrow y = 2)$ ta được: $C = \ln 2$

Vậy nghiệm riêng: $\ln y = -\ln x + \ln 2 \rightarrow \ln y = \ln \frac{2}{x} \rightarrow y = 2/x \rightarrow \text{chọn B}$

53. Tìm nghiệm riêng của phương trình vi phân $(1+x^2)$ dy+ydx=0 với điều kiện đầu y(1)=1

$$(1+x^2)$$
dy+ydx= $0 \Leftrightarrow \frac{dy}{v} = \frac{-1}{1+x^2} dx \to \int \frac{dy}{v} = \int \frac{-1}{1+x^2} dx \to \ln y = -\arctan x + C$

Thay điều kiện đầu $y(1) = 1, (x = 1 \rightarrow y = 1)$ at được:

$$0 = -\arctan 1 + C \rightarrow C = \frac{\pi}{4}$$

Vậy nghiệm riêng là: $\ln y = \frac{\pi}{4} - \arctan x \rightarrow y = e^{\frac{\pi}{4} - \arctan x} \rightarrow \text{chọn A}$

54. Tìm nghiệm tổng quát của phương trình vi phân : $\sqrt{1-y^2} dx + x \ln x dy = 0$.

$$\sqrt{1 - y^2} dx + x \ln x dy = 0 \Leftrightarrow \frac{dy}{\sqrt{1 - y^2}} = -\frac{dx}{x \ln x} \to \int \frac{dy}{\sqrt{1 - y^2}} = \int -\frac{dx}{x \ln x}$$

$$\to \int \frac{dy}{\sqrt{1 - y^2}} = -\int \frac{d(\ln x)}{\ln x} \to \arcsin y = -\ln|\ln x| + C \quad \text{hay } \arcsin y + \ln|\ln x| = C$$

56. Tìm nghiệm tổng quát của phương trình vi phân : $\sqrt{1-x^2} dy + y \ln y dx = 0$. Hoàn toàn tương tự 54) ta chỉ cần đổi vai trò giữa x và y.

Vậy nghiệm tquat là: $\arcsin x + \ln |\ln y| = C \rightarrow \text{chọn A}$

57. Tìm nghiệm tổng quát của phương trình vi phân : $\frac{\sqrt{1-y^2}}{v}dx + \sqrt{1+x^2}dy = 0.$

$$\frac{\sqrt{1-y^2}}{y}dx + \sqrt{1+x^2}dy = 0 \Leftrightarrow \frac{ydy}{\sqrt{1-y^2}} + \frac{dx}{\sqrt{1+x^2}} = 0 \to \int \frac{ydy}{\sqrt{1-y^2}} + \int \frac{dx}{\sqrt{1+x^2}} = 0$$

$$\to - \int \frac{d(1 - y^2)}{2\sqrt{1 - y^2}} + \int \frac{dx}{\sqrt{1 + x^2}} = 0 \to -\sqrt{1 - y^2} + \ln\left|x + \sqrt{1 + x^2}\right| = C \to \text{ chọn } \mathbf{C}$$

58. Nghiệm của bài toán: $y' = \frac{\cos x}{\sin y}$, $y(0) = \pi$, là:

$$y' = \frac{\cos x}{\sin y} \Leftrightarrow \sin y dy = \cos x dx \to \int \sin y dy = \int \cos x dx \to -\cos y = \sin x + C$$

Thay đk đều $y(0) = \pi, (x = 0 \rightarrow y = \pi)$ vào ta được: $-\cos \pi = \sin 0 + C \Rightarrow C = 1$

Vậy nghiệm bài toán là: $\cos y + \sin x + 1 = 0 \rightarrow \text{chọn A}$

59. Nghiệm của bài toán:
$$(1+y^2)dx + x \ln x dy = 0$$
, $y(e) = 1$ là

$$(1+y^2)dx + x \ln x dy = 0 \Leftrightarrow \frac{dx}{x \ln x} + \frac{dy}{1+y^2} = 0 \Rightarrow \int \frac{dx}{x \ln x} + \int \frac{dy}{1+y^2} = C$$

$$\rightarrow \int \frac{d(\ln x)}{\ln x} + \int \frac{dy}{1 + y^2} = C \rightarrow \ln|\ln x| + \arctan y = C$$

Thay đk đầu $y(e) = 1, (x = e \rightarrow y = 1)$ ta được: $C = \ln |\ln e| + \arctan 1 = 0 + \frac{\pi}{4}$

Vậy nghiệm là: $\ln |\ln x| + \arctan y = \frac{\pi}{4} \rightarrow \text{chọn A}$

60. Tìm nghiệm tổng quát của phương trình vi phân: $\sqrt{1+y^2} dx + xy \ln x dy = 0$.

$$\sqrt{1+y^2} dx + xy \ln x dy = 0 \Leftrightarrow \int \frac{y dy}{\sqrt{1+y^2}} + \int \frac{dx}{x \ln x} = C \to \int \frac{d(1+y^2)}{2\sqrt{1+y^2}} + \int \frac{d(\ln x)}{\ln x} = C$$

$$\rightarrow \sqrt{1+y^2} + \ln|\ln x| = C$$

 \rightarrow chọn A

61. Phương trình đẳng cấp là phương trình vp nếu viết được dưới dạng: $y' = h\left(\frac{y}{x}\right)$ hay $\frac{dy}{dx} = h\left(\frac{y}{x}\right)$,

hoặc cho ở dạng: $\frac{dy}{dx} = \frac{P(x,y)}{Q(x,y)}$ với P, Q là 2 hàm đẳng cấp cùng cấp.

 \rightarrow **chọn B.** Vì $\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$. tử và mẫu của vế phải đều là hàm đẳng cấp cấp 2.

62. Tìm nghiệm riêng của phương trình vi phân: $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$; y(1) = 2.

$$\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$$
 (*) đây là ptvp đẳng cấp. (*) viết lại dạng:
$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{x}{y} + \frac{y}{x} \right)$$
 (*)'

Đặt $u = \frac{y}{x} \rightarrow y = ux \rightarrow \frac{dy}{dx} = x\frac{du}{dx} + u$ thay vào (*)', ta được:

$$x\frac{du}{dx} + u = \frac{1}{2}(u + \frac{1}{u}) \Leftrightarrow x\frac{du}{dx} = \frac{1}{2}\left(\frac{1}{u} - u\right) = \frac{1 - u^2}{2u} \to \frac{2u}{1 - u^2}du = \frac{dx}{x}$$

$$\to \int \frac{2u}{1-u^2} \, du = \int \frac{dx}{x} \to -\ln|1-u^2| = \ln|x| + C$$

Thay đk đầu: $y(1) = 2, (x = 1 \rightarrow y = 2, u = y / x = 2)$ ta được: $C = -\ln 3$

Suy ra: $-\ln |1 - u^2| = \ln |x| - \ln 3 \rightarrow \ln |u^2 - 1| + \ln |x| = \ln 3 \rightarrow \ln |x(u^2 - 1)| = \ln 3$

$$\rightarrow x(u^2 - 1) = 3$$
 thay $u = \frac{y}{x}$. Suy ra: $x\left(\frac{y^2}{x} - 1\right) = 3 \rightarrow \text{chon A.}$

63. Tìm nghiệm tổng quát của phương trình vi phân: $y' = \frac{y}{x} - \frac{y^2}{x^2}$. (1)

Đặt
$$u = \frac{y}{x} \rightarrow y = ux \rightarrow y' \equiv \frac{dy}{dx} = x \frac{du}{dx} + u$$
 thay vào (1), ta được:

$$x\frac{du}{dx} + u = u - u^2 \rightarrow x\frac{du}{dx} = -u^2 \rightarrow \int \frac{du}{-u^2} = \int \frac{dx}{x} \rightarrow \frac{1}{u} = \ln|x| + C \rightarrow \frac{x}{y} = \ln|x| + C \Rightarrow y = \frac{x}{\ln|x| + C}$$

 \rightarrow chọn A.

64. Tìm nghiệm tổng quát của phương trình vi phân: xy' = y + x.

$$xy' = y + x \Leftrightarrow y' = \frac{y}{x} + 1 \Leftrightarrow \frac{dy}{dx} = \frac{y}{x} + 1 \quad (*)$$

Đặt
$$u = \frac{y}{x} \rightarrow y = ux \rightarrow y' \equiv \frac{dy}{dx} = x\frac{du}{dx} + u$$
. Thay vào (*), được:

$$x\frac{du}{dx} + u = u + 1 \rightarrow x\frac{du}{dx} = 1 \rightarrow du = \frac{dx}{x} \Rightarrow \int du = \int \frac{dx}{x} \rightarrow u = \ln|x| + C$$

hay
$$\frac{y}{x} = \ln|x| + C \Rightarrow y = x(\ln|x| + C) \rightarrow \text{chon A.}$$

65. Tìm nghiệm của phương trình vi phân $y' = \frac{y}{x} + 1$ (*), với điều kiện đầu y(1) = 1.

(*)
$$\Leftrightarrow \frac{dy}{dx} = \frac{y}{x} + 1$$
 đây la ptvp ở câu 64) do đó: nghiệm tổng quát là: $\frac{y}{x} = \ln|x| + C$ $y = x(\ln|x| + C)$

Thay đk đầu
$$y(1) = 1, (x = 1 \rightarrow y = 1)$$
 ta được: $1 = \ln 1 + C \Rightarrow C = 1$

Vậy nghiệm riêng là:
$$\frac{y}{x} = \ln|x| + 1 \rightarrow \text{chọn A.}$$

66. Phương trình vp toàn phần là phương trình vp dạng: P(x,y)dx + Q(x,y)dy = 0 trong đó P,Q là các hàm khả vi liện tục và thỏa $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ (**).

Đối với việc kiểm tra phải là ptvp toàn phần không ta chỉ cần kiểm tra đk (**), (còn đk khả vi liên tục thì hầu như các phương trình cho các hàm P,Q thường đã thỏa).

Ta thấy pt ở A.
$$e^{x}(y-x^{2})dx + (e^{x}-y^{2}\sin y)dy = 0$$
 có: $P = e^{x}(y-x^{2}), Q = (e^{x}-y^{2}\sin y)$ mà

$$\frac{\partial P}{\partial y} = e^x = \frac{\partial Q}{\partial x}$$
 nên nó là ptvp toàn phần. \rightarrow **chọn A.**

67. Theo chú ý ở 66. Ta chọn A.
$$(ye^x - x \sin x) dx + (e^x - y \cos y) dy = 0$$
, (1)

$$(P = ye^x - x\sin x, Q = e^x - y\cos y)$$
 Vì $\frac{\partial P}{\partial y} = e^x = \frac{\partial Q}{\partial x} \Rightarrow (1)$ là ptvptp.

69. Chọn A.
$$(y \sin x - \cos y) dx - (\cos x - x \sin y) dy = 0$$
.

Ví có:
$$P = y \sin x - \cos y$$
, $Q = -(\cos x - x \sin y) = -\cos x + x \sin y$ thỏa $\frac{\partial P}{\partial y} = \sin x + \sin y = \frac{\partial Q}{\partial x}$

70. Chon C.
$$(ye^x - x \sin x) dx + (e^x - y \cos y) dy = 0$$

$$P = ye^x - x\sin x$$
; $Q = e^x - y\cos y$ thỏa $\frac{\partial P}{\partial y} = e^x = \frac{\partial Q}{\partial x}$

71. Dạng bài tập này ta tính y' rồi thay vào từng phương trình.

Ta có:
$$y = 2x + Ce^x \Rightarrow y' = 2 + Ce^x$$

Suy ra:
$$y'-y=2-2x=2(1-x)$$
 đây chính là ptvp A. \rightarrow **chọn A.**

72. Tương tự 71. Từ
$$y = Ce^{2x} + x^2 \Rightarrow y' = 2Ce^{2x} + 2x$$

$$\Rightarrow y' - 2y = 2x - x^2 = 2x(1-x) \rightarrow \mathbf{chon} \ \mathbf{A}.$$

73. Tìm nghiệm tổng quát của phương trình vi phân $y' - \frac{y}{x} = 3x^3$.

Đây là ptvp tuyến tính với
$$p(x) = -\frac{1}{x}$$
, $Q(x) = x^3$. Nghiệm tquat dạng: $y = e^{-\int p(x)dx} \left[\int Q(x)e^{\int p(x)dx} dx + C \right]$

Ta có:
$$\int p(x)dx = \int \frac{-1}{x} dx = -\ln x \Rightarrow e^{-\int p(x)dx} = e^{\ln x} = x \text{ và } e^{\int p(x)dx} = e^{-\ln x} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

Suy ra:
$$y = x \left[\int 3x^3 \cdot \frac{1}{x} dx + C \right] = x \left(x^3 + C \right) = Cx + x^4$$
. Vậy $y = Cx + x^4 \to \text{chọn A.}$

74. Tìm nghiệm của phương trình vi phân $y'\cos^2 x + y = 0$, với điều kiện y(0) = 1.

$$y'\cos^2 x + y = 0 \Leftrightarrow \frac{dy}{dx}\cos^2 x + y = 0 \Leftrightarrow \int \frac{dy}{y} + \int \frac{dx}{\cos^2 x} = C$$

 $\rightarrow \ln |y| + \tan x = C$

Thay đk đầu $y(0) = 1, (x = 0 \rightarrow y = 1)$ ta được $\ln |1| + \tan 0 = C \Rightarrow C = 0$

Vậy nghiệm cần tìm là: $\ln |y| + \tan x = 0 \Leftrightarrow \ln |y| = -\tan x \Rightarrow y = e^{-\tan x} \to \text{chọn A.}$

75. Tìm nghiệm tổng quát của phương trình vi phân $y'+2\frac{y}{x}=0$.

$$y' + 2\frac{y}{x} = 0 \Leftrightarrow \frac{dy}{dx} + \frac{2}{x}y = 0 \Rightarrow \frac{dy}{y} + \frac{2dx}{x} = 0 \Rightarrow \int \frac{dy}{y} + \int \frac{2dx}{x} = C_0$$

\rightarrow chọn A

76. Tìm nghiệm tổng quát của phương trình vi phân $xy'-y=3x^4$

Pt viết lại dạng:
$$y' - \frac{1}{x}y = 3x^3$$

(Đây là ptvp tuyến tính với $P = -\frac{1}{x}, Q = 3x^3$)

Nghiệm tquat dạng:
$$y = e^{-\int p(x)dx} \left[\int Q(x)e^{\int p(x)dx} dx + C \right]$$
 (*)

Ta có:
$$\int P(x)dx = -\int \frac{dx}{x} = -\ln|x| = \ln|x|^{-1} \Rightarrow e^{\int P(x)dx} = x^{-1} = \frac{1}{x} \text{ va } e^{-\int P(x)dx} = e^{\ln|x|} = x$$

Thay vào (*):
$$y = x \left[\int 3x^3 \cdot \frac{1}{x} dx + C \right] = x \left(\int 3x^2 dx + C \right) = x(x^3 + C) = x^4 + Cx$$

Vậy nghiệm tq của ptvp đã cho là: $y = x^4 + Cx \rightarrow \text{chọn A}$

77. Tìm nghiệm tổng quát của phương trình vi phân $xy'-2y=2x^3$

Pt viết lại thành:
$$y' - \frac{2}{x}y = 2x^2$$
 (Đây là ptvp tuyến tính với $P = -\frac{2}{x}, Q = 2x^2$)

Nghiệm tổng quát có dạng:
$$y = e^{-\int p(x)dx} \left[\int Q(x)e^{\int p(x)dx} dx + C \right]$$
 (1)

Ta có:
$$\int P(x)dx = -\int \frac{2dx}{x} = -2 \ln|x| = \ln|x|^{-2} \Rightarrow e^{\int P(x)dx} = x^{-2} = \frac{1}{x^2} \text{ va } e^{-\int P(x)dx} = e^{\ln x^2} = x^2$$

Thay vào (1):
$$y = x^2 \left[\int 2x^2 \cdot \frac{1}{x^2} dx + C \right] = x^2 \left(\int 2dx + C \right) = x^2 (x + C) = x^3 + Cx^2$$

Vậy nghiệm tq của ptvp đã cho là: $y = x^3 + Cx^2 \rightarrow \text{chọn A}$

78. Tìm nghiệm tổng quát của phương trình vi phân $y'-2y=e^{2x}$ (2)

(Đây là ptvp tuyến tính với
$$P = -2, Q = e^{2x}$$
)

Ta có:
$$\int P(x)dx = -\int 2dx = -2x \Rightarrow e^{\int P(x)dx} = e^{-2x}$$
 va $e^{-\int P(x)dx} = e^{2x}$

Thay vào (2):
$$y = e^{2x} \left[\int e^{2x} \cdot e^{-2x} dx + C \right] = e^{2x} \left(\int dx + C \right) = e^{2x} (x + C)$$

Vậy nghiệm tq của ptvp đã cho là: $y = e^{2x}(x+C) \rightarrow \text{chọn A}$

79. Tìm nghiệm tổng quát của phương trình vi phân $xy' + 2y = 5x^3$

Viết lại pt dạng:
$$y' + \frac{2}{x}y = 5x^2$$
 (Đây là ptvp tuyến tính với $P = \frac{2}{x}, Q = 5x^2$)

Nghiệm tổng quát có dạng:
$$y = e^{-\int p(x)dx} \left[\int Q(x)e^{\int p(x)dx} dx + C \right]$$
 (3)

Ta có:
$$\int P(x)dx = \int \frac{2dx}{x} = 2 \ln|x| = \ln x^2 \Rightarrow e^{\int P(x)dx} = x^2 \text{ va } e^{-\int P(x)dx} = e^{-\ln x^2} = e^{\ln x^{-2}} = x^{-2}$$

Thay vào (3):
$$y = x^{-2} \left[\int 5x^2 \cdot x^2 dx + C \right] = x^{-2} \left(\int 5x^4 dx + C \right) = x^{-2} (x^5 + C) = x^3 + \frac{C}{x^2} \rightarrow \text{chọn A}$$

80. Chọn cách đổi biến thích hợp để biến phương trình Bernoulli $4y'-4y=\frac{2x+1}{y^3}$ thành phương trình vi phân tuyến tính.

Pt viết lại dạng:
$$4y'-4y = (2x+1)y^{-3}$$
 hay $4y^3y'-4y^4 = (2x+1)$ (4)

Đặt
$$z = y^{1-(-3)} = y^4 \rightarrow z' = 4y^3y'$$
. Thay vào (4), ta được:

$$z'-4z=2x+1$$
 (và đây là phương trình tuyến tính với hàm cần tìm là $z(x)$) \rightarrow **chọn** A

81. Tìm nghiệm tổng quát của phương trình y''-3y'+2y=0.

Phương trình đặc trưng:
$$\lambda^2 - 3\lambda + 2 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 2$$
.

Vậy nghiệm tổng quát của của pt là: $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} = C_1 e^x + C_2 e^{2x}$ $(C_1, C_2 \in \mathbb{R}) \rightarrow \text{chọn A}$

82. Tìm nghiệm tổng quát của phương trình y'' - 5y' + 6y = 0.

Phương trình đặc trưng:
$$\lambda^2-5\lambda+6=0 \Longrightarrow \lambda_{_1}=2, \lambda_{_2}=3$$
 .

Vậy nghiệm tổng quát của của pt là: $y = C_1 e^{2x} + C_2 e^{3x}$ $(C_1, C_2 \in \mathbb{R}) \rightarrow \text{chọn } \mathbf{D}$

83. Tìm nghiệm tổng quát của phương trình y'' - 4y' + 4y = 0.

Phương trình đặc trưng:
$$\lambda^2 - 4\lambda + 4 = 0 \Rightarrow \lambda = \lambda_1 = \lambda_2 = 2$$
.

Vậy nghiệm tổng quát của của pt là: $y = C_1 e^{\lambda x} + C_2 x e^{\lambda x} = C_1 e^{2x} + C_2 x e^{2x} \ (C_1, C_2 \in \mathbb{R}) \rightarrow \mathbf{chọn} \ \mathbf{A}$

84. Tìm nghiệm tổng quát của phương trình y'' - 6y' + 9y = 0.

Phương trình đặc trưng:
$$\lambda^2-6\lambda+9=0 \Rightarrow \lambda=\lambda_1=\lambda_2=3$$
 .

Vậy nghiệm tổng quát của của pt là: $y = C_1 e^{\lambda x} + C_2 x e^{\lambda x} = C_1 e^{3x} + C_2 x e^{3x}$ $(C_1, C_2 \in \mathbb{R}) \rightarrow \text{chọn A}$

85. Tìm nghiệm tổng quát của phương trình vi phân y'' + 5y' + 6y = 0.

Phương trình đặc trưng:
$$\lambda^2 + 5\lambda + 6 = 0 \Rightarrow \lambda_1 = -2, \lambda_2 = -3$$
.

Vậy nghiệm tổng quát của của pt là: $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} = C_1 e^{-2x} + C_2 e^{-3x} \ (C_1, C_2 \in \mathbb{R}) \rightarrow \mathbf{chọn} \ \mathbf{C}$

86. . Nghiệm của bài toán y'' - 5y' + 6y = 0, y(0) = 2, y'(0) = 3 là:

Ta có phương trình đặc trưng:
$$\lambda^2-5\lambda+6=0 \Rightarrow \lambda_1=2, \lambda_2=3$$
 .

Vậy nghiệm tổng quát của của pt là: $y = C_1 e^{2x} + C_2 e^{3x}$

Suy ra:
$$y' = 2C_1e^{2x} + 3C_2e^{3x}$$
. Thay đk đầu:

$$\begin{cases} y(0) = 2 \\ y'(0) = 3 \end{cases} \Leftrightarrow \begin{cases} C_1 + C_2 = 2 \\ 2C_1 + 3C_2 = 3 \end{cases} \Rightarrow \begin{cases} C_1 = 3 \\ C_2 = -1 \end{cases}$$

Vậy nghiệm của bái toán là: $y = 3e^{2x} - e^{3x} \rightarrow \text{chọn A}$

87. Tìm nghiệm riêng của phương trình vi phân y'' + y'' - 2y = 0 (*) thỏa: y(0)=0, y'(0)=1.

Pt đặc trưng của (*) là:
$$\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = -2$$

 \Rightarrow nghiệm tổng quát của của pt là: $y = C_1 e^x + C_2 e^{-2x}$

Suy ra: $y' = C_1 e^x - 2C_2 e^{-2x}$. Thay đk đầu:

$$\begin{cases} y(0) = 0 \\ y'(0) = 1 \end{cases} \Leftrightarrow \begin{cases} C_1 + C_2 = 0 \\ C_1 - 2C_2 = 1 \end{cases} \Rightarrow \begin{cases} C_1 = 1/3 \\ C_2 = -1/3 \end{cases}$$

Vậy nghiệm của bái toán là: $y = \frac{1}{3}e^x - \frac{1}{3}e^{-2x} \rightarrow \text{chọn A}$

88. Tìm nghiệm tổng quát của phương trình vi phân : y'' - 3y' = 0

Ta có pt đặc trưng:
$$\lambda^2 - 3\lambda = 0 \Rightarrow \lambda_1 = 0, \lambda_2 = 3$$

Nghiệm tổng quát của pt là: $y = C_1 + C_2 e^{3x}$, $(C_1, C_2 \in \mathbb{R}) \rightarrow \text{chọn A}$

89. Tìm nghiệm tổng quát của phương trình vi phân : y''+ 4y'+4y=0.

Turong tự 83. \rightarrow **chọn B**

90. Nghiệm của phương trình vi phân y''+6y'+9y=0 (*), với điều kiện y(0)=1 và y'(0)=1 là:

Pt đặc trưng của (*) là:
$$\lambda^2 + 6\lambda + 9 = 0 \Rightarrow \lambda = \lambda_1 = \lambda_2 = -3$$

Nghiệm tổng quát của pt là: $y = C_1 e^{-3x} + C_2 x e^{-3x}$

Suy ra: $y' = -3C_1e^{-3x} + (C_2 - 3C_2x)e^{-3x}$. Thay đk đầu y(0) = 1, y'(0) = 1 ta được:

$$\begin{cases} y(0) = 1 \\ y'(0) = 1 \end{cases} \Leftrightarrow \begin{cases} C_1 = 1 \\ -3C_1 + C_2 = 1 \end{cases} \Rightarrow \begin{cases} C_1 = 1 \\ C_2 = 4 \end{cases}$$

Vậy nghiệm cần tìm là: $y = e^{-3x} + 4xe^{-3x} \rightarrow \text{chọn A}$

91. Một nghiệm riêng của phương trình $y'' + 4y' - 5y = xe^x$ (1:

Xét ptvp tuyến tính thuần nhất: y'' + 4y' - 5y = 0 (2)

PT đặc trưng của (2):
$$\lambda^2 + 4\lambda - 5 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = -5$$

Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó $p(x) = x, \alpha = 1$. Mà $\alpha = 1$ trùng với nghiệm đơn của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng:

$$y_r = x(ax+b)e^x \rightarrow \mathbf{chon} \ \mathbf{A}$$

92. Một nghiệm riêng của phương trình $y'' + y' - 6y = x^2 e^{-2x}$ (1):

Xét ptvp tuyến tính thuần nhất: y'' + y' - 6y = 0 (2)

PT đặc trưng của (2): $\lambda^2 + \lambda - 6 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -3$

Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó $p(x) = x^2$, $\alpha = -2$. Mà $\alpha = -2$ không trùng với nghiệm của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng:

$$y_r = (ax^2 + bx + c)e^{-2x} \rightarrow \text{chon A}$$

93. Một nghiệm riêng của phương trình $y''-4y'+3y=(2x+1)e^x$:

Xét ptvp tuyến tính thuần nhất: y''-4y'+3y=0 (2)

PT đặc trưng của (2):
$$\lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 3$$

Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó p(x) = 2x + 1, $\alpha = 1$. Mà $\alpha = 1$ trùng với nghiệm đơn của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng:

$$y_r = x(ax+b)e^x \rightarrow \text{chon A}$$

94. Một nghiệm riêng của phương trình $y''-3y'+2y=2x^2-3$ (1):

Xét ptvp tuyến tính thuần nhất: y''-3y'+2y=0 (2)

PT đặc trưng của (2):
$$\lambda^2 - 3\lambda + 2 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 2$$

Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó $p(x) = 2x^2 - 3$, $\alpha = 0$. Mà $\alpha = 0$ **không trùng với nghiệm** của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng:

$$y_r = ax^2 + bx + C \rightarrow \text{chon A}$$

95. Một nghiệm riêng của phương trình $y''-4y'+4y=(-3x+2)e^{2x}$ (1)

Xét ptvp tuyến tính thuần nhất: y'' - 4y' + 4y = 0 (2)

PT đặc trưng của (2):
$$\lambda^2 - 4\lambda + 4 = 0 \Rightarrow \lambda = \lambda_1 = \lambda_2 = 2$$

Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó p(x) = -3x + 2, $\alpha = 2$. Mà $\alpha = 2$ trùng với nghiệm kép của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng:

$$y_r = x^2 (ax + b)e^{2x} \rightarrow \text{chon A}$$

96. Nghiệm tổng quát của phương trình y'' + 3y' - 4y = x (1)

Xét ptvp tuyến tính thuần nhất: y'' + 3y' - 4y = 0 (2)

PT đặc trưng của (2):
$$\lambda^2 + 3\lambda - 4 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = -4$$

Nghiệm tổng quát của (2) là: $y_1 = C_1 e^x + C_2 e^{-4x}$

Xét (1). Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó $p(x) = x, \alpha = 0$. Mà $\alpha = 0$ *không trùng với nghiệm* của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng:

$$y_r = ax + b$$

Khi đó: $y_r' = a$; $y_r'' = 0$ thay vào (1): $3a - 4(ax + b) = x \Leftrightarrow -4ax + 3a - 4b = x$ đồng nhất 2 vế ta có:

$$\begin{cases} -4a = 1 \\ 3a - 4b = 0 \end{cases} \Rightarrow \begin{cases} a = -\frac{1}{4} \\ b = -\frac{3}{16} \end{cases}$$
 Suy ra: một nghiệm riêng của (1) là: $y_r = -\frac{1}{4}x - \frac{3}{16}$

Do đó: nghiệm tồng quát của (1) là: $y = y_1 + y_r = C_1 e^x + C_2 e^{-4x} - \frac{1}{4} x - \frac{3}{16} \rightarrow \text{chọn A}$

97. Tìm nghiệm tổng quát của phương trình vi phân : y''-4y'+3y=x (1)

Xét ptvp thuần nhất: y'' - 4y' + 3y = 0 (2)

PT đặc trưng: $\lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 3$

Suy ra: nghiệm tq của (2) là: $y_1 = C_1 e^x + C_2 e^{3x}$.

Xét (1). Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó $p(x) = x, \alpha = 0$. Mà $\alpha = 0$ *không trùng với nghiệm* của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng: $y_r = ax + b$

Khi đó: $y_r' = a$; $y_r'' = 0$ thay vào (1): $-4a + 3(ax + b) = x \Leftrightarrow 3ax + (-4a + 3b) = x$ đồng nhất 2 vế ta có:

$$\Rightarrow \begin{cases} 3a = 1 \\ -4a + 3b = 0 \end{cases} \Rightarrow \begin{cases} a = \frac{1}{3} \\ b = \frac{4}{9} \end{cases}$$
 Suy ra, một nghiệm riêng của (1) là: $y_r = \frac{1}{3}x + \frac{4}{9}$

Vậy nghiệm tổng quát của (1) là: $y = y_1 + y_r = C_1 e^x + C_2 e^{3x} + \frac{1}{3} x + \frac{4}{9} \rightarrow \mathbf{chọn} \ \mathbf{A}$

98. Nghiệm tổng quát của phương trình vi phân $y'' + y' = e^x$ (1)

Xét ptvp thuần nhất: y'' + y' = 0 (2)

PT đặc trưng: $\lambda^2 + \lambda = 0 \Rightarrow \lambda_1 = 0, \lambda_2 = -1$

Suy ra: nghiệm tq của (2) là: $y_1 = C_1 + C_2 e^{-x}$.

Xét (1). Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó $p(x) = 1, \alpha = 1$. Mà $\alpha = 1$ *không trùng với nghiệm* của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng: $y_r = ae^x$

Khi đó: $y_r' = ae^x$; $y_r'' = ae^x$ thay vào (1): $ae^x + ae^x = e^x \Leftrightarrow 2ae^x = e^x$ đồng nhất 2 vế ta có:

$$\Rightarrow 2a = 1 \Rightarrow a = \frac{1}{2}$$
. Suy ra, một nghiệm riêng của (1) là: $y_r = \frac{1}{2}e^x$

Vậy nghiệm tổng quát của (1) là: $y = y_1 + y_r = C_1 + C_2 e^{-x} + \frac{1}{2} e^x \rightarrow \text{chọn A}$

99. Một nghiệm riêng của phương trình vi phân y'' + y' - 2y = -4x (1)

Xét ptvp thuần nhất: y'' + y' - 2y = 0 (2)

PT đặc trưng: $\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = -2$

Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó p(x) = -4x, $\alpha = 0$. Mà $\alpha = 0$ **không trùng với nghiệm** của pt đặc trưng của ptvp thuần nhất nên nghiệm riêng của (1) có dạng: $y_r = ax + b$

Khi đó: $y_r' = a$; $y_r'' = 0$ thay vào (1): $a - 2(ax + b) = -4x \Leftrightarrow -2ax + (a - 2b) = -4x$ đồng nhất 2 vế ta có:

$$\Rightarrow \begin{cases} -2a = -4 \\ a - 2b = 0 \end{cases} \Rightarrow \begin{cases} a = 2 \\ b = 1 \end{cases}$$
. Suy ra, một nghiệm riêng của (1) là: $y_r = 2x + 1 \rightarrow \text{chọn A}$

100. Tìm nghiệm tổng quát của phương trình vi phân $y'' - 2y' + y = xe^x$ (1) Xét ptvp thuần nhất: y'' - 2y' + y = 0 (2)

PT đặc trưng: $\lambda^2 - 2\lambda + 1 = 0 \Rightarrow \lambda = \lambda_1 = \lambda_2 = 1$

Suy ra: nghiệm tq của (2) là: $y_1 = C_1 e^x + C_2 x e^x = (C_1 + C_2 x) e^x$.

Xét (1). Vế phải của pt không thuần nhất (1), có dạng: $f(x) = P(x)e^{\alpha x}$, trong đó $p(x) = x, \alpha = 1$. Mà $\alpha = 1$ trùng với nghiệm kép của pt đặc trung của ptvp thuần nhất nên nghiệm riêng của (1) có dạng: $y_r = (ax + b)x^2e^x$

Khi đó: $y_r' = [ax^2 + (3a+b)x + 2b]xe^x$; $y_r'' = [ax^3 + (6a+b)x^2 + (6a+4b)x + 2b]e^x$ thay vào (1):

$$(6ax + 2b)e^{x} = xe^{x} \Rightarrow \begin{cases} 6a = 1 \\ 2b = 0 \end{cases} \rightarrow \begin{cases} a = \frac{1}{6} \\ b = 0 \end{cases}$$
 đồng nhất 2 vế ta có:

Suy ra, một nghiệm riêng của (1) là: $y_r = \frac{1}{6}x^3e^x$

Vậy nghiệm tồng quát của (1) là: $y = y_1 + y_r = (C_1 + C_2 x)e^x + \frac{1}{6}x^3 e^x \rightarrow \mathbf{chọn} \ \mathbf{A}$

101. Cho hàm $f(x, y) = 3^{x/y}$. Tính df(1,1).

Ta có:

$$df(x,y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

$$\text{Mà } f(x,y) = 3^{x/y} \Rightarrow \frac{\partial f}{\partial x} = \left(\frac{x}{y}\right)'_x 3^{x/y} \ln 3 = \frac{1}{y} 3^{x/y} \ln 3; \quad \frac{\partial f}{\partial y} = \left(\frac{x}{y}\right)'_y 3^{x/y} \ln 3 = \frac{-x}{y^2} 3^{x/y} \ln 3$$

$$\text{Suy ra: } \frac{\partial f}{\partial x} (1,1) = \frac{1}{1} 3^{1/1} \ln 3 = 3 \ln 3; \frac{\partial f}{\partial y} (1,1) = \frac{-1}{1^2} .3^{1/1} \ln 3 = -3 \ln 3$$

$$\text{Do $d\acute{o}: } df(1,1) = 3 \ln 3 dx - 3 \ln 3 dy = 3 \ln 3 (dx - dy) \rightarrow \text{chop } \mathbf{D}$$

102. Cho hàm $f(x,y) = \frac{x+y}{2+y}$. Tính df(1,1). Tương tự 101.

$$\Rightarrow \frac{\partial f}{\partial x} = \frac{1}{2+y} \cdot (x+y)'_x = \frac{1}{2+y} \cdot 1 = \frac{1}{2+y};$$

$$\frac{\partial f}{\partial y} = \frac{(x+y)'_y (2+y) - (2+y)'_y (x+y)}{(2+y)^2} = \frac{1 \cdot (2+y) - 1 \cdot (x+y)}{(2+y)^2} = \frac{2-x}{(2+y)^2}$$

$$\Rightarrow \frac{\partial f(1,1)}{\partial x} = \frac{1}{2+1} = \frac{1}{3}; \frac{\partial f(1,1)}{\partial y} = \frac{2-1}{(2+1)^2} = \frac{1}{9}$$

Vậy:
$$df(1,1) = \frac{1}{3}dx + \frac{1}{9}dy = \frac{1}{9}(3dx + dy) \to \text{ chọn } \mathbf{D}$$

105. Vi phân toàn phần cấp 1 của hàm số
$$z = e^y + e^x + 1$$

Vi phân toàn phần cấp 1 là
$$dz = z'_x dx + z'_y dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Với
$$z'_x = e^x, z'_y = e^y$$
 Suy ra: $dz = e^x dx + e^y dy \rightarrow \mathbf{chọn} \ \mathbf{A}$

106. Tìm vi phân cấp 1 của hàm $z = f(x, y) = x^2 + 4^y$.

$$\Rightarrow dz = z'_x dx + z'_y dy = 2x dx + 4^y \ln 4 dy \rightarrow \mathbf{chon} \mathbf{A}$$

107. Cho
$$f(x, y, z) = xy^2 z^{xy}$$
. Giá trị $\frac{\partial f}{\partial x}$ (1,3,1) là:

$$\Rightarrow \frac{\partial f(x,y,z)}{\partial x} = y^2 (x.z^{xy})'_x = y^2 (1.z^{xy} + x.y.z^{xy} \ln z) \quad \text{(chú \acute{y}: sử dụng đạo hàm của u.v và au)}$$

Suy ra:
$$\frac{\partial f(1,2,1)}{\partial x} = 3^2 (1^{1.3} + 1.3. \ln 1) = 9$$
 (do ln1=0) \rightarrow **chọn D**

108. Cho
$$f(x, y, z) = x^2 y + y^2 x + z^2 x + 2^z$$
. Tính $\frac{\partial f}{\partial z} (1, \sqrt{2}, -1)$

Ta có:
$$\frac{\partial f(x,y,z)}{\partial z} = 2zx + 2^z \ln 2 \Rightarrow \frac{\partial f}{\partial z} (1,\sqrt{2},-1) = 2.(-1).1 + 2^{-1} \ln 2 = \frac{1}{2} \ln 2 - 2 \Rightarrow \text{chọn B}$$

109. Cho hàm $f(x,y) = 3^x + y^3$. Tìm $\nabla f(0,-1)$.

Chú ý:
$$\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

$$\Rightarrow \frac{\partial f}{\partial x} = 3^x \ln 3; \quad \frac{\partial f}{\partial y} = 3y^2 \text{ . Suy ra: } \Rightarrow \frac{\partial f(0, -1)}{\partial x} = 3^0 \ln 3 = \ln 3; \quad \frac{\partial f(0, -1)}{\partial y} = 3(-1)^2 = 3$$

Vây:
$$\nabla f(0,-1) = (\ln 3,3)$$
 → **chọn A.**

110. Cho hàm
$$f(x,y) = e^{x+2y}$$
. Tìm $\nabla f(1,0)$.

$$\Rightarrow \frac{\partial f}{\partial x} = e^{x+2y}; \frac{\partial f}{\partial y} = 2e^{x+2y} \text{ . Suy ra: } \nabla f(1,0) = (e,2e) \rightarrow \text{chon A.}$$

111. Cho hàm
$$f(x, y, z) = xe^{\frac{y}{z}}$$
. Tìm $\nabla f(x, y, z)$.

$$\Rightarrow \frac{\partial f}{\partial x} = e^{\frac{y}{z}}; \quad \frac{\partial f}{\partial y} = x. \frac{1}{z}. e^{\frac{y}{z}} = \frac{x}{z}e^{\frac{y}{z}}; \quad \frac{\partial f}{\partial z} = x. \frac{-y}{z^2}e^{\frac{y}{z}} = -\frac{xy}{z}e^{\frac{y}{z}}$$

Vậy:
$$\nabla f(x, y, z) = \left(e^{\frac{y}{z}}, \frac{x}{z}e^{\frac{y}{z}}, -\frac{xy}{z}e^{\frac{y}{z}}\right) \rightarrow \text{chọn A.}$$

112. Cho hàm
$$f(x, y) = x^2 + x \cos^2 y$$
. Tìm $\nabla f(x, y)$.

$$\Rightarrow \frac{\partial f}{\partial x} = 2x + \cos^2 y; \quad \frac{\partial f}{\partial y} = -2x \cos y \sin y = -x \sin(2y)$$

Vậy:
$$\nabla f(x, y) = (2x + \cos^2 y, -x\sin(2y)) \rightarrow \text{chọn A.}$$

113. Cho hàm hai biến $z = \sin(xy)$. Tính z''_{xy} .

$$\Rightarrow z'_x = y \cos(xy) \Rightarrow z''_{xy} = \cos(xy) - xy \sin(xy) \rightarrow \text{chọn A.}$$

114. Cho hàm hai biến $z = e^{2x-y}$. Kết quả nào sau đây sai?

$$\Rightarrow z_x' = 2e^{2x-y} \Rightarrow z_{xx}'' = 4e^{2x-y}$$

$$\Rightarrow z_{xy}'' = -2e^{2x-y}$$

Tới đây ta thấy câu sai là A. \rightarrow **chọn A.**

115. Cho hàm hai biến $z = \sin(x + y)$. Tính đạo hàm riêng $z_{x^3y^3}^{(6)}$?

116. Tìm vi phân cấp hai của hàm hai biến $z = 3x^3 + 4xy^2 - 2y^3$.

$$\Rightarrow z'_{x} = 9x^{2} + 4y^{2} \Rightarrow z''_{xx} = 18x \text{ va } z''_{xy} = 8y$$

$$z'_{y} = 8xy - 6y^{2} \Rightarrow z''_{yy} = 8x - 12y$$

Vậy:
$$d^2z = 18xdx^2 + 2.8ydxdy + (8x - 12y)dy^2 \rightarrow \text{chọn A.}$$

117. Tìm vi phân cấp hai của hàm hai biến $z = x^2 + x \sin^2 y$.

Vậy: $d^2z = 2dx^2 + 2.\sin(2y)dxdy + 2x\cos(2y)dy^2 \rightarrow \text{chọn A.}$

118. Cho hàm $f(x,y) = x^2 e^{2y}$. Tính $d^2 f(1,0)$.

Suy ra:
$$f_{xx}''(1,0) = 2.e^0 = 1$$
; $f_{xy}''(1,0) = 4.1.e^0 = 4$; $f_{yy}''(1,0) = 4.1^2.e^0 = 4$

119. Cho hàm $f(x,y) = y \ln x$. Tính $d^2 f(1,2)$.

$$\rightarrow f'_x = y \cdot \frac{1}{x} \Rightarrow f''_{xx} = -\frac{y}{x^2} \text{ va } f''_{xy} = \frac{1}{x}$$

$$f_y' = \ln x \Rightarrow f_{yy}'' = 0$$

$$\Rightarrow f_{xx}''(1,2) = -2; f_{xy}''(1,2) = 1; f_{yy}''(1,2) = 0$$

Vậy
$$d^2 f(1,2) = f'''_{xx}(1,2)dx^2 + 2.f'''_{xy}(1,2)dxdy + f'''_{yy}(1,2)dy^2 = -2dx^2 + 2dxdy = 2(-dx^2 + dxdy)$$

 \rightarrow chọn A.

120. Vi phân toàn phần cấp 2 của hàm số $z = ye^x + xe^y$ là:

121. Tìm vi phân cấp 2 của hàm $z = x^2 + x \sin^2 y$.

Suy ra : $d^2z = 2dx^2 + 2\sin 2y dx dy + 2x\cos 2y dy^2 \rightarrow \text{chọn A.}$

122. Tìm $z_{xy}(0, \pi/2)$ của hàm $z = \cos(xy - \cos y)$.

$$\Rightarrow z'_x = -y\sin(xy - \cos y) \Rightarrow z''_{xy} = -\sin(xy - \cos y) - y(x + \sin y)\cos(xy - \cos y)$$

Suy ra:
$$z_{xy}''(0, \pi/2) = -\sin\left(-\cos\left(\frac{\pi}{2}\right)\right) - \frac{\pi}{2}\sin\frac{\pi}{2}\cos\left(-\cos\left(\frac{\pi}{2}\right)\right) = -\frac{\pi}{2} \rightarrow \text{chọn A.}$$

123. Cho $f(x, y) = xy \ln x$. Biểu thức $d^2 f(1, 2)$

$$\rightarrow \frac{\partial f}{\partial x} = y \ln x + y \cdot x \cdot \frac{1}{x} = y(\ln x + 1) \rightarrow \frac{\partial^2 f}{\partial x^2} = \frac{y}{x} \quad \text{và } \frac{\partial^2 f}{\partial x \partial y} = \ln x + 1$$

$$\rightarrow \frac{\partial f}{\partial y} = x \ln x \rightarrow \frac{\partial^2 f}{\partial y^2} = 0$$

Tính được:
$$\frac{\partial^2 f(1,2)}{\partial x^2} = 2$$
; $\frac{\partial^2 f(1,2)}{\partial x \partial y} = 1$; $\frac{\partial^2 f(1,2)}{\partial y^2} = 0$

$$d^2f(1,2) = \frac{\partial^2 f(1,2)}{\partial x^2} dx^2 + 2 \cdot \frac{\partial^2 f(1,2)}{\partial x \partial y} dx dy + \frac{\partial^2 f(1,2)}{\partial y^2} = 2dx^2 + 2dx dy \rightarrow \mathbf{chon} \mathbf{A}.$$

124. Cho hàm
$$f(x, y) = 2x^2 e^{xy} - xy + 2x + 1$$
. Tính $\frac{\partial f}{\partial y}$

$$\rightarrow \frac{\partial f}{\partial y} = 2x^2 \frac{\partial}{\partial y} (e^{xy}) - \frac{\partial}{\partial y} (xy) + \frac{\partial}{\partial y} (2x+1) = 2x^2 \cdot xe^{xy} - x + 0 = 2x^3 e^{xy} - x \rightarrow \text{chọn A.}$$

125. Cho
$$f(x, y) = \frac{e^{xy}}{x^y + y}$$
 Tính $\frac{\partial f}{\partial y}(1, 1)$.

$$\Rightarrow \frac{\partial f}{\partial y} = \frac{(e^{xy})'_y(x^y + y) - (x^y + y)'_y e^{xy}}{(x^y + y)^2} = \frac{xe^{xy}(x^y + y) - (x^y \ln x + 1)e^{xy}}{(x^y + y)^2}$$

Suy ra:
$$\frac{\partial f(1,1)}{\partial v} = \frac{e}{4} \rightarrow \mathbf{chon} \ \mathbf{A}.$$

126. Cho hàm số $z = x^2y + \cos(xy) + y$. Đẳng thức nào sau đây đúng?

$$\Rightarrow z'_y = \frac{\partial z}{\partial y} = x^2 - x\sin(xy) + 1 \rightarrow \mathbf{chon} \ \mathbf{C}.$$

127. Cho
$$z(x, y) = \ln(x + \sqrt{x^2 + y^2})$$
. Hãy tính z'_x .

$$\Rightarrow z_x' = \frac{\partial z}{\partial x} = \frac{(x + \sqrt{x^2 + y^2})_x'}{x + \sqrt{x^2 + y^2}} = \frac{1 + \frac{2x}{2\sqrt{x^2 + y^2}}}{x + \sqrt{x^2 + y^2}} = \frac{\sqrt{x^2 + y^2 + x}}{(x + \sqrt{x^2 + y^2})\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}} \Rightarrow \text{chon A.}$$

128. Hãy tính
$$\frac{\partial^2 f}{\partial x \partial y}$$
 với $f(x, y) = xy \sin^2 x$.

129. Tìm đạo hàm riêng cấp hai $\frac{\partial^2 z}{\partial x^2}$ của hàm $z = xe^y + y^2 + y\sin x$.

$$\rightarrow \frac{\partial f}{\partial x} = e^y + y \cos x \rightarrow \frac{\partial^2 f}{\partial x^2} = -y \sin x \rightarrow \mathbf{chon A.}$$

130. Cho hàm hai biến $z = e^{x+2y}$. Kết quả nào sau đây đúng?

131. Tìm đạo hàm riêng z''_{xy} của hàm $z = \ln(x^4 + y^2 + 1)$.

133. Tìm vi phân của hàm $z = x^2 - 2xy + \sin(xy)$.

135. Tìm vi phân cấp hai của hàm $z = e^{xy}$ tại $M_0(1,2)$.

Tại
$$M_0(1,2)$$
 thì $\frac{\partial^2 z(1,2)}{\partial x^2} = 4e^2$; $\frac{\partial^2 z(1,2)}{\partial x \partial y} = 3e^2$; $\frac{\partial^2 z(1,2)}{\partial y^2} = e^2$

$$d^{2}z(1,2) = \frac{\partial^{2}z(1,2)}{\partial x^{2}}dx^{2} + 2 \cdot \frac{\partial^{2}z(1,2)}{\partial x \partial y}dxdy + \frac{\partial^{2}z(1,2)}{\partial y^{2}}dy^{2} = 4e^{2}dx^{2} + 6e^{2}dxdy + e^{2}dy^{2}$$
$$= e^{2}(4dx^{2} + 6dxdy + dy^{2})$$

 \rightarrow chon A.

136. Cho hàm $z = ue^v$ trong đó u = u(x, y), v = v(x, y). Đạo hàm riêng z'_x được tính theo công thức nào sau đây:

$$\Rightarrow z_x' \equiv \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = e^v u_x' + u e^v v_x' \implies \text{chon A.}$$

137. Hàm hợp $z = x + \sin(\frac{y}{x})$ với $y = x^2$ có đạo hàm riêng z'_x và $\frac{dz}{dx}$ lần lượt là

$$\Rightarrow z'_x = 1 - \frac{y}{x^2} \cos\left(\frac{y}{x}\right), \ \ z'_y = \frac{1}{x} \cos\left(\frac{y}{x}\right); \ \frac{dy}{dx} = 2x$$

$$\rightarrow \frac{dz}{dx} = z'_x + z'_y \cdot \frac{dy}{dx} = 1 - \frac{y}{x^2} \cos\left(\frac{y}{x}\right) + \frac{1}{x} \cos\left(\frac{y}{x}\right) \cdot 2x = 1 + \cos x$$

(chú ý: thay $y = x^2$ vào biểu thức để được kết quả cuối) \rightarrow chọn **D**.

138. Hàm hợp $z = \arctan(\frac{u}{v})$ với $u = x \sin y, v = x \cos y$ có đạo hàm riêng

Áp dụng CT: $z_x' = z_u' \cdot u_x' + z_v' \cdot v_x'; z_y' = z_u' \cdot u_y' + z_v' \cdot v_y'$

$$z'_{u} = \frac{\frac{1}{v}}{1 + \frac{u^{2}}{v^{2}}} = \frac{v}{u^{2} + v^{2}} = \frac{\cos y}{x}; z'_{v} = \frac{-\frac{u}{v^{2}}}{1 + \frac{u^{2}}{v^{2}}} = -\frac{u}{u^{2} + v^{2}} = -\frac{\sin y}{x} \quad \text{Vi} \quad u^{2} + v^{2} = x^{2} \sin^{2} y + x^{2} \cos^{2} y = x^{2}$$

 $u_x' = \sin y, v_x' = \cos y, u_y' = x \cos y, v_y' = -x \sin y$. Thay vào CT trên, ta được:

 \rightarrow chon B.

139. Hàm ẩn y = y(x) xác định từ phương trình $xe^y + ye^x - e^{xy} = 0$ có

Đặt
$$F = xe^y + ye^x - e^{xy} = 0$$
. Ta có: $\rightarrow y'(x) = -\frac{F'_x}{F'_y} = -\frac{e^y + ye^x - ye^{xy}}{xe^y + e^x - xe^{xy}} = \frac{ye^{xy} - ye^x - e^y}{xe^y + e^x - xe^{xy}} \rightarrow$ chọn C.

140. Hàm ẩn z = z(x, y) xác định từ phương trình $e^z - xyz = 0$ có các đạo hàm riêng:

Đặt
$$F = e^z - xyz = 0$$
. Khi đó: $F'_x = -yz$, $F'_y = -xz$, $F'_z = e^z - xy$. Suy ra:

$$z'_{x} = -\frac{F'_{x}}{F'_{z}} = \frac{yz}{e^{z} - xy}; z'_{y} = -\frac{F'_{y}}{F'_{z}} = \frac{xz}{e^{z} - xy} \rightarrow \text{chọn A.}$$

141. Tính vi phân toàn phần cấp 1 của hàm số: $z = \sqrt{x^3 + y^3}$.

Ta có:
$$z'_x = \frac{3x^2}{2\sqrt{x^3 + y^3}}; z'_y = \frac{3y^2}{2\sqrt{x^3 + y^3}}$$

Suy ra: Vi phân toàn phần cấp 1 của z là: $dz = z_x' dx + z_y' = \frac{3x^2}{2\sqrt{x^3 + y^3}} dx + \frac{3y^2}{2\sqrt{x^3 + y^3}} dy \rightarrow \text{chọn B.}$

142. Cho
$$f(x, y) = xy\sin(2y)$$
, với $y = e^x + x$. Tính $\frac{df}{dx}$.

Ta có:

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} = y\sin(2y) + (x\sin(2y) + 2xy\cos(2y))(e^x + 1) = y\sin(2y) + x(\sin(2y) + 2y\cos(2y))(e^x + 1)$$

143. Tìm
$$\frac{\partial f}{\partial x}$$
 biết $f(u,v) = u^2 \sin v$, $u = x^2 + y^2$, $v = \frac{y}{x}$.

Ta có:
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} = 2u \sin v \cdot 2x + u^2 \cos v \cdot \left(\frac{-y}{x^2}\right) = 4xu \sin v - \frac{yu^2}{x^2} \cos v \rightarrow \text{chọn A.}$$

144. Cho các hàm: $u = \sqrt{r^2 + s^2}$, $r = y + x \cos z$, $s = x + y \sin z$. Giá trị của đạo hàm riêng $\frac{\partial u}{\partial x}$ tại x=1, y=2, z=0 là:

Ta có:
$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial x} = \frac{r}{\sqrt{r^2 + s^2}} \cdot (\cos z) + \frac{s}{\sqrt{r^2 + s^2}} \cdot 1$$

Tai
$$x = 1, y = 2, z = 0 \Rightarrow r = 3; s = 1; \sqrt{r^2 + s^2} = \sqrt{10}$$
. Do đó:

$$\frac{\partial u(1,2,0)}{\partial x} = \frac{3}{\sqrt{10}} \cdot 1 + \frac{1}{\sqrt{10}} = \frac{4}{\sqrt{10}} \to \text{chọn A.}$$

145. Hàm ẩn y = y(x) xác định từ phương trình $\cos(x - y) = xe^y$ (*) có y'(x) là

Đặt
$$F = \cos(x - y) - xe^y = 0$$
. Khi đó: $y'(x) = -\frac{F'_x}{F'_y} = -\frac{-\sin(x - y) - e^y}{\sin(x - y) - xe^y} = \frac{\sin(x - y) + e^y}{\sin(x - y) - xe^y}$. \rightarrow **chọn A.**

Cách khác: có thể đạo hạm (*) hai vế theo x.

146. Cho hàm $z = u \sin(v)$ trong đó u = u(x, y), v = v(x, y). Đạo hàm riêng z'_x được tính theo công thức nào sau đây:

Ta có:
$$z'_{y} = z'_{y}u'_{y} + z'_{y}v'_{y} = \sin(v)u'_{y} + u\cos(v)v'_{y} \rightarrow \text{chọn A.}$$

147. Cho hàm số z = z(x, y) xác định từ phương trình $z^3 - 4xz + y^2 - 4 = 0$. Tính z'_x, z'_y tại $M_0(1, -2, 2)$.

$$\text{Dăt } F = z^3 - 4xz + y^2 - 4 = 0$$

$$z'_x = -\frac{F'_x}{F'} = -\frac{-4z}{3z^2 - 4x}; z'_y = -\frac{F'_y}{F'} = -\frac{2y}{3z^2 - 4x}$$
. Khi đó tại $M_0(1, -2, 2)$, thì

$$z'_x(1,-2,2) = -\frac{-4.2}{3.2^2-4.1} = 1; z'_y(1,-2,2) = -\frac{2.(-2)}{3.2^2-4.1} = \frac{1}{2} \rightarrow \text{chon A.}$$

148. Tính
$$f'_x$$
, biết $f(u,v) = u^2 \sin v$, $u = x^2 + y^2$, $v = \frac{y}{x}$.

Ta có:
$$f'_x = f'_u u'_x + f'_v v'_x = 2u \sin v \cdot 2x + u^2 \cos v \cdot \left(\frac{-y}{x^2}\right) = 4x \sin v - \frac{yu^2}{x^2} \cos v \rightarrow \text{chọn A.}$$

149. Cho hàm hai biến $z = -x^2 + 4x - 4y^2 + 4y + 4$. Khẳng định nào sau đây đúng:

Ta có:
$$\begin{cases} z_x' = -2x + 4 = 0 \\ z_y' = -8y + 4 = 0 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 1/2 \end{cases}$$
. Suy ra: (2, 1/2) là điểm dừng của hàm số

$$z''_{xx} = -2, z''_{xy} = 0, z''_{yy} = -8$$
. Tại (2, -2) ta có:

$$A = z_{xx}''(2,1/2) = -2 < 0; B = z_{xy}''(2,1/2) = 0; C = z_{yy}''(2,1/2) = -8$$

$$\Delta = AC - B^2 = (-2)(-8) - 0^2 = 16 > 0$$

Vậy (2,1/2) là điểm cực đại của hàm z và $z_{\rm max}=9$ \rightarrow **chọn A.**

150. Cho hàm hai biến $z = x^2 - 4x + 4y^2 - 8y + 3$. Khẳng định nào sau đây đúng:

Ta có:
$$\begin{cases} z_x' = 2x - 4 = 0 \\ z_y' = 8y - 8 = 0 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 1 \end{cases}$$
. Suy ra: (2, 1) là điểm dừng của hàm số

$$z''_{xx} = 2, z''_{xy} = 0, z''_{yy} = 1 \text{ . Tại } (2, 1) \text{ ta có: } A = z''_{xx}(2, 1) = 2 > 0; B = z''_{xy}(2, 1) = 0; C = z''_{yy}(2, 1) = 1$$

$$\Delta = AC - B^2 = 2.1 - 0^2 = 2 > 0$$

Vậy (2,1/2) là điểm cực tiểu của hàm z và $z_{\min} = -1 \rightarrow \text{chọn A.}$

151. Cho hàm số $z = x^3 - y^2 - 3x + 6y$. Khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} z_x' = 3x^2 - 3 = 0 \\ z_y' = -2y + 6 = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 3 \end{cases} \lor \begin{cases} x = -1 \\ y = 3 \end{cases}$$
. Suy ra: z có điểm dừng là (1,3) và (-1,3).

Do ta thấy trong các lựa chọn A,B,C có 1 khẳng định C: có 2 điểm dừng nên ta chọn ngay.

\rightarrow chọn C.

(Ngoài ra nếu không có lựa chọn như C thì ta phải xét tie1p như sau:

$$z''_{xx} = 6x; z''_{xy} = 0, z''_{yy} = -2$$
.

+ Tại (1, 3) ta có:
$$A = z''_{xx}(1,3) = 6 > 0; B = z''_{xy}(1,3) = 0; C = z''_{yy}(1,3) = -2$$

$$\Delta = AC - B^2 = -2.6 - 0^2 = -12 < 0$$
. Do đó: (1,3) không là điểm cực trị của z.

+ Tại
$$(1,3)$$
 ta có: $A = z''_{xx}(-1,3) = -6 < 0; B = z''_{xy}(-1,3) = 0; C = z''_{yy}(-1,3) = -2$

$$\Delta = AC - B^2 = -2.(-6) - 0^2 = 12 > 0$$

Vậy (-1, 3) là điểm cực đại của hàm z và $z_{\text{max}} = 11$)

152. Với hàm số $z = xe^y + 5$, khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} z_x' = e^y > 0, \forall y \\ z_y' = xe^y \end{cases}$$
. Do đó hàm số không có điểm dừng \rightarrow **chọn D.**

153. Cho hàm số $z = xe^y + ye^x + 2$ và điểm M(-1,-1). Khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} z'_x = e^y + ye^x \\ z'_y = xe^y + e^x \end{cases}$$
. Thay $M(-1,-1)$ vào ta thấy $z'_x = 0, z'_y = 0$. Do đó: $M(-1,-1)$ là điểm dừng của

hàm số

Ta lại có: $z''_{xx} = ye^x$; $z''_{xy} = e^x + e^y$; $z''_{yy} = xe^y$. Tại điểm dừng M(-1,-1) thì

$$A = z_{yy}''(-1,-1) = -e^{-1} < 0; B = z_{yy}''(-1,-1) = e^{-1} + e^{-1} = 2e^{-1}; C = z_{yy}''(-1,-1) = -e^{-1}$$

$$\Delta = AC - B^2 = e^{-2} - 4e^{-2} = -3e^{-1} < 0$$
. Suy ra: $M(-1, -1)$ không là điểm cực trị.

Vậy M(-1,-1) là điểm dừng nhưng không phải là điểm cực trị. \rightarrow **chọn D.**

154. Cho hàm số $z = 4(x - y) - x^2 - y^2$. Khẳng định nào sau đây đúng?

Ta có: $\begin{cases} z'_x = 4 - 2x = 0 \\ z'_y = -4 - 2y = 0 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = -2 \end{cases}$ Suy ra: (2, -2) là điểm dừng của hàm số.

$$z''_{xx} = -2, z''_{xy} = 0, z''_{yy} = -2 \quad \text{Tai } (2, -2) \text{ ta có: } A = z''_{xx}(2, -2) = -2 < 0; B = z''_{xy}(2, -2) = 0; C = z''_{yy}(2, -2) = -2 < 0; B = z''_{xy}(2, -2) = 0; C = z''_{yy}(2, -2) = -2 < 0; B = z''_{xy}(2, -2) = 0; C = z''_{yy}(2, -2) = -2 < 0; B = z''_{xy}(2, -2) = 0; C = z''_{yy}(2, -2) = -2 < 0; B = z''_{xy}(2, -2) = 0; C = z''_{yy}(2, -2) =$$

Vậy (2, -2) là điểm cực đại của hàm z và $z_{\text{max}} = 8 \rightarrow \text{chọn A}$.

155. Cho hàm số $z = 2x^3 - xy^2 + 5x^2 + y^2 + 2$. Khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} z'_{x} = 6x^{2} - y^{2} + 10x = 0 \\ z'_{y} = -2xy + 2y = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \end{cases} \lor \begin{cases} x = 1 \\ y = 4 \end{cases} \lor \begin{cases} x = 1 \\ y = -4 \end{cases} \lor \begin{cases} x = -5/3 \\ y = 0 \end{cases}$$

Có 4 điểm dừng (0,0),(1,4),(1,-4),(-5/3,0).

Ta có:
$$z''_{xx} = 12x + 10; z''_{xy} = -2y; z''_{yy} = -2x + 2$$

Tai (0,0): A = 10 > 0, B = 0, C = 2 và $\Delta = AC - B^2 = 20 > 0$. Suy ra (0,0) là điểm cực tiểu của hàm số.

\rightarrow chọn A.

(Do có đáp án trả lời nên ta không cần xét các điểm dừng còn lại)

156. Cho hàm số $z = -x - y + xe^y + 5$. Khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} z'_x = -1 + e^y = 0 \\ z'_y = -1 + xe^y = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 0 \end{cases}$$
. Suy ra: z có một điểm dừng M(1, 0).

$$z''_{xx} = 0, z''_{xy} = e^y; z''_{yy} = xe^y \text{ . Tại } M(1, 0) \text{ thì } A = 0, B = 1, C = 1 \text{ và } \Delta = AC - B^2 = 0 - 1^2 = -1 < 0$$

Vậy hàm số không có cực trị. \rightarrow **chọn** C.

157. Hàm hai biến $z = x^3 + 2xy - 8y^3$:

Ta có:
$$\begin{cases} z_x' = 3x^2 + 2y = 0 \\ z_y' = 2x - 24y^2 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \end{cases} \lor \begin{cases} x = 1/3 \\ y = -1/6 \end{cases}$$
. Suy ra: z có 2 điểm dùng O(0, 0) và $M\left(\frac{1}{3}, -\frac{1}{6}\right)$.

(+)
$$z''_{xx} = 6x; z''_{xy} = 2; z''_{yy} = -48y$$
.

Tại điểm dừng O(0,0) thì $A = z''_{xx}(0,0) = 0$; $B = z''_{xy}(0,0) = 2$; $C = z''_{yy}(0,0) = 0$; $\Delta = AC - B^2 = 0 - 2^2 < 0$. Do đó O(0,0) không là điểm cực trị của hàm số.

Tại điểm dừng
$$M\left(\frac{1}{3}, -\frac{1}{6}\right)$$
thì $A = z''_{xx}\left(\frac{1}{3}, -\frac{1}{6}\right) = 2 > 0; B = z''_{xy}\left(\frac{1}{3}, -\frac{1}{6}\right) = 2; C = z''_{yy}\left(\frac{1}{3}, -\frac{1}{6}\right) = 8$ và $\Delta = AC - B^2 = 2.8 - 2^2 = 12 > 0$.

Do đó:
$$M\left(\frac{1}{3},-\frac{1}{6}\right)$$
 là điểm cực tiểu của hàm số và $z_{\min}=z\left(\frac{1}{3},-\frac{1}{6}\right)=-\frac{1}{27}$. \rightarrow **chọn C.**

158. Tìm cực trị của hàm số: $f(x, y) = x^2 + xy + y^2 - 3x - 6y$.

Ta có:
$$\begin{cases} z'_x = 2x + y - 3 = 0 \\ z'_y = x + 2y - 6 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 3 \end{cases}$$
 $f(x, y)$ có một điểm dừng $(0,3)$.

Ta có:
$$z''_{xx} = 2; z''_{xy} = 1y; z''_{yy} = 2$$

Tại (0,3): A = 2 > 0, B = 1, C = 2 và $\Delta = AC - B^2 = 2.2 - 1^1 = 3 > 0$. Suy ra (0,3) là điểm cực tiểu của hàm số. \rightarrow **chọn A.**

159. Cho hàm $z = x^4 - 8x^2 + y^2 + 5$. Và các điểm I(0,0), J(2,0), K(-2,0), L(1,1). Khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} z'_x = 4x^3 - 16x = 0 \\ z'_y = 2y = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \end{cases} \lor \begin{cases} x = 2 \\ y = 0 \end{cases} \lor \begin{cases} x = -2 \\ y = 0 \end{cases}.$$

Vậy z có 3 điểm dừng I(0,0), J(2,0) và K(-2,0).

$$z_{xx}'' = 12x^2; z_{xy}'' = 0; z_{yy}'' = 2$$

Tại
$$I(0,0)$$
: $A = z_{xx}''(0,0) = 0$; $B = z_{xy}''(0,0) = 0$; $C = z_{yy}''(0,0) = 2$ và $\Delta = AC - B^2 = 0$.

Tại J(2,0):
$$A = z_{xx}''(2,0) = 48 > 0; B = z_{xy}''(2,0) = 0; C = z_{yy}''(2,0) = 2 \text{ và } \Delta = AC - B^2 = 48.2 - 0^2 > 0.$$

$$\text{Tại K(-2,0): } A = z_{xx}''(-2,0) = 48 > 0; \\ B = z_{xy}''(2,0) = 0; \\ C = z_{yy}''(2,0) = 2 \text{ và } \Delta = AC - B^2 = 48.2 - 0^2 > 0.$$

Suy ra: hàm số đạt cực tiểu tại J và $K \rightarrow$ **chọn A.**

160. Cho hàm $z = x^3 + y^2 + 27x + 2y + 1$. Khẳng định nào sau đây đúng?

Ta có: $\begin{cases} z'_x = 3x^2 + 27 > 0, \forall x \\ z'_y = 2y + 2 \end{cases}$. Suy ra: hàm số không có điểm dừng. Vậy hàm số không có cực trị.

 \rightarrow chọn A.

161. Xét hàm số $f(x,y) = -x^2 + xy + y^2 + x - y + 5$. Khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} f_x' = -2x + y + 1 = 0 \\ f_y' = x + 2y - 1 = 0 \end{cases} \Rightarrow \begin{cases} x = 1/2 \\ y = 1/4 \end{cases}$$
 Suy ra: hàm số có một điểm dừng $M\left(\frac{1}{2}, \frac{1}{4}\right)$

*)
$$f''_{xx} = -2$$
; $f''_{xy} = 1$; $f''_{yy} = 2$.

Tại điểm dừng
$$M\left(\frac{1}{2},\frac{1}{4}\right)$$
 thì $A = f''_{xx}\left(\frac{1}{2},\frac{1}{4}\right) = -2 < 0; B = f''_{xy}\left(\frac{1}{2},\frac{1}{4}\right) = 1; C = f''_{yy}\left(\frac{1}{2},\frac{1}{4}\right) = 2$

và $\Delta = AC - B^2 = -2.2 - 1^2 < 0$. Do đó hàm số không có cực trị. \rightarrow **chọn D.**

162. Xét hàm số $f(x,y,z) = x + \frac{y}{x} + \frac{z}{y} + \frac{1}{z}$. Điểm dừng của hàm số này là những điểm nào trong các điểm sau: M(0;0;0), N(1;1;1), P(-1; 1; -1), Q(1; -1; 1)?

Ta có: $\begin{cases} f'_{x} = 1 - \frac{y}{x^{2}} \\ f'_{y} = \frac{1}{x} - \frac{z}{y^{2}} \end{cases}$ Thay tọa độ các điểm trên vào (*) ta thấy: **N(1;1;1), P(-1; 1; -1)** thì $f'_{z} = \frac{1}{y} - \frac{1}{z^{2}}$

 $f'_x = 0; f'_y = 0; f'_z = 0$ nên nó làm điểm dừng của hàm số. \rightarrow **chọn C.**

163. Xét hàm số $z = x^2 - y^4 - 2x + 32y$. Khẳng định nào sau đây đúng?

Ta có: $\begin{cases} z'_x = 2x - 2 = 0 \\ z'_y = -4y^3 + 32 = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 2 \end{cases}$. Suy ra: hàm số có một điểm dừng M(1,2).

(+)
$$z''_{xx} = 2; z''_{xy} = 0; z''_{yy} = -12y^2$$
.

Tại điểm dừng M(1,2) thì $A = z''_{xx}(1,2) = 2; B = z''_{xy}(1,2) = 0; C = z''_{yy}(1,2) = -48$

và $\Delta = AC - B^2 = 2.(-28) < 0$. Suy ra M(1,2)không là điểm cực trị. \rightarrow **chọn A.**

164. Điểm dừng của hàm $f(x, y) = (x-1)^2 + 2^{y^2}$ là:

Ta có: $\begin{cases} z_x' = 2(x-1) = 0 \\ z_y' = 2^{y^2} \cdot 2y \ln 2 = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 0 \end{cases}$. Suy ra điểm dừng của hàm số là $M(1,0) \to \text{chọn A.}$

165. Tìm điểm dừng của hàm $f(x,y) = y \sin x$.

Ta có: $\begin{cases} z_x' = y \cos x = 0 \\ z_y' = \sin x = 0 \end{cases} \Rightarrow \begin{cases} x = k\pi \\ y = 0 \end{cases}, k \in \mathbb{Z}. \text{ Suy ra điểm dừng của hàm số là } M(k\pi, 0), k \in \mathbb{Z} \to \text{chọn A.}$

166. Tìm giá trị cực đại M của hàm $f(x, y) = 4(x - y) - x^2 - y^2$.

Xem câu $154 \rightarrow \text{chọn A.}$

167. Tìm giá trị cực trị M của hàm $f(x, y) = x^2 + xy + y^2 - 3x - 6y$.

Xem 158. Ta có: $MM = f(0,3) = -9 \rightarrow \text{chọn A}$.

168. Cho hàm $z = x^2 - y^4 - 2x + 32y$. Khẳng định nào sau đây đúng?

Trùng với câu 163. \rightarrow chọn **D.**

169. Cho hàm $z = x^2 - 2y + y^2$. Khẳng định nào sau đây đúng?

Ta có: $\begin{cases} z_x' = 2x = 0 \\ z_y' = -2 + 2y = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 1 \end{cases}$. Suy ra: hàm số có một điểm dừng M(0,1).

(+)
$$z''_{xx} = 2; z''_{xy} = 0; z''_{yy} = 2$$
.

Tại điểm dừng M(0,1) thì $A = z''_{xx}(0,1) = 2 > 0; B = z''_{xy}(0,1) = 0; C = z''_{yy}(0,1) = 2$

và $\Delta = AC - B^2 = 2.2 - 0^2 = 4 > 0$. Suy ra M(0,1) là điểm cực tiểu. \rightarrow **chọn B.**

170. Cho hàm $z = 3x^2 - 12x + 2y^3 + 3y^2 - 12y$. Khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} z'_x = 6x - 12 = 0 \\ z'_y = 6y^2 + 6y - 12 = 0 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 1 \end{cases} \lor \begin{cases} x = 2 \\ y = -2 \end{cases} \Rightarrow \text{hàm số có 2 điểm dừng } M(2,1) \text{ và } N(2,-2).$$

(+)
$$z''_{xx} = 6; z''_{xy} = 0; z''_{yy} = 12y + 6$$
.

Tại điểm dừng M(2,1) thì $A = z''_{xx}(2,1) = 6 > 0; B = z''_{xy}(2,1) = 0; C = z''_{yy}(2,1) = 18$

và $\Delta = AC - B^2 = 6.18 - 0^2 > 0$. Suy ra M(2,1) là điểm cực tiểu.

Tại điểm dừng
$$M(2,-2)$$
 thì $A = z''_{xx}(2,1) = 6 > 0; B = z''_{xy}(2,1) = 0; C = z''_{yy}(2,1) = -18$

và $\Delta = AC - B^2 = 6.(-18) - 0^2 < 0$. Suy ra M(2,-2) không là điểm cực trị.

Vậy hàm số chỉ có một điểm cực tiểu. → chọn D.

171. Tìm cực trị của hàm $z = x^2 - 4x + 4y^2 - 8y + 3$.

Ta có:
$$\begin{cases} z'_x = 2x - 4 = 0 \\ z'_y = 8y - 8 = 0 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 1 \end{cases} \Rightarrow \text{hàm số có 1 điểm dừng } M(2,1).$$

(+)
$$z''_{xx} = 2; z''_{xy} = 0; z''_{yy} = 8$$
.

Tại điểm dừng
$$M(2,1)$$
 thì $A = z_{xx}''(2,1) = 2 > 0; B = z_{xy}''(2,1) = 0; C = z_{yy}''(2,1) = 8$

và $\Delta = AC - B^2 = 2.8 - 0^2 = 16 > 0$. Suy ra M(2,1) là điểm cực tiểu.. \rightarrow **chọn A.**

172. Tìm cực trị của hàm $z = -x^2 + 4xy - 10y^2 - 2x + 16y$.

Ta có:
$$\begin{cases} z'_x = -2x + 4y - 2 = 0 \\ z'_y = 4x - 20y + 16 = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 1 \end{cases} \Rightarrow \text{hàm số có 1 điểm dừng } M(1,1).$$

(+)
$$z''_{xx} = -2; z''_{xy} = 4; z''_{yy} = -20$$
.

Tại điểm dừng
$$M(1,1)$$
 thì $A = z''_{xx}(1,1) = -2 < 0; B = z''_{xy}(1,1) = 4; C = z''_{yy}(1,1) = -20$

và $\Delta = AC - B^2 = -2.(-20) - 4^2 = 24 > 0$. Suy ra M(1,1) là điểm cực đại. \rightarrow **chọn B.**

173. Cho hàm $z = x^2 - y - \ln |y| - 2$. Khẳng định nào sau đây đúng?

Ta có:
$$\begin{cases} z'_x = 2x = 0 \\ z'_y = -1 - \frac{y}{|y|^2} = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = -1 \end{cases} \Rightarrow \text{hàm số có 1 điểm dừng } M(0, -1).$$

(+)
$$z''_{xx} = 2; z''_{xy} = 0; z''_{yy} = \frac{-|y|+2}{|y|^3}$$
.

Tại điểm dừng
$$M(0,-1)$$
 thì $A = z''_{xx}(0,-1) = 2 > 0; B = z''_{xy}(0,-1) = 0; C = z''_{yy}(0,-1) = 1$

và
$$\Delta = AC - B^2 = 2.1 - 0^2 = 2 > 0$$
. Suy ra $M(0,-1)$ là điểm cực tiểu. \rightarrow **chọn A.**

174. Tìm cực trị của $z = x^2(y-1) - 3x + 2$ thỏa điều kiện x - y + 1 = 0.

Từ
$$x-y+1=0 \Rightarrow y-1=x$$
 thay vào z ta được: $z=x^3-3x+2 \Rightarrow z'_x=3x^2-3=0 \Rightarrow x=-1, x=1$

Có hai điểm dừng: (-1,0);(1,2). Đây là hàm một biến nên ta lập bảng biến thiên, ta thấy: (-1,0) là điểm cực đại và (1,2) là điểm cực tiểu. \rightarrow **chọn A.**

Chú ý: Ta cũng có kết luận tương tự bằng cách sử dụng PP nhân tử Lagrange.

175. Tìm cực trị của hàm hai biến $z = \frac{x^3}{3} - 3x + y - 3$ thỏa điều kiện $-x^2 + y + 4 = 0$.

Đặt $\varphi(x,y) = -x^2 + y + 4 = 0$. Lập hàm Lagrange: $L = \frac{x^3}{3} - 3x + y - 3 + \lambda(-x^2 + y + 4)$

Ta có:
$$\begin{cases} L'_x = x^2 - 3 - 2x\lambda = 0 \\ L'_y = 1 + \lambda = 0 \\ L'_\lambda = -x^2 + y + 4 = 0 \end{cases} \rightarrow \begin{cases} x = -3 \\ y = 5 \\ \lambda = -1 \end{cases} \lor \begin{cases} x = 1 \\ y = -3 \\ \lambda = -1 \end{cases} . \text{ L có 2 điểm dừng } (-3, 5, -1); (1, -3, -1) .$$

$$\Rightarrow L_{xx}'' = 2x - 2\lambda; L_{xy}'' = 0; L_{yy}'' = 0$$

$$\textbf{Tại } (-3,5,-1) \ \text{ta c\'o: } L''_{xx} = 2(-3) - 2(-1) = -4; L''_{xy} = 0; L''_{yy} = 0 \ \text{và do \'d\'o: } d^2L = L''_{xx}dx^2 + 0 + 0 = -4dx^2 < 0$$

Suy ra: z đạt cực đại tại (-3,5)

Tại
$$(1,-3,-1)$$
 ta có: $L''_{xx} = 2(1) - 2(-1) = 4$; $L''_{xy} = 0$; $L''_{yy} = 0$ và do đó: $d^2L = L''_{xx}dx^2 + 0 + 0 = 4dx^2 > 0$

Suy ra: z đạt cực tiểu tại (1,-3).

Vậy: z đạt cực tiểu tại A(1;-3) và đạt cực đại tại B(-3;5). \rightarrow **chọn A.**

Chú ý: Ta có thể đưa bài toán tìm cực trị có điều kiện về bài toán tìm cực trị tự do của hàm một biến bằng cách giải y theo x hoặc x theo y từ phương trình điều kiện rồi thay vào hàm z ban đầu. Như cách câu 180.

176. Tìm cực trị của hàm $z = 2 x^2 + y^2 - 2y - 2$ thỏa điều kiện y - x + 1 = 0.

Từ
$$y - x + 1 = 0 \Rightarrow y = x - 1$$
 thay vào z ta được: $z = 2x^2 + (x - 1)^2 - 2(x - 1) - 2 = 3x^2 - 4x - 3$
 $\Rightarrow z'_x = 6x - 4 = 0 \Rightarrow x = 2/3$ thay vào trên $y = 2/3 - 1 = -1/3$.

Có một điểm dừng: $\left(\frac{2}{3}, -\frac{1}{3}\right)$. Lập bảng biến thiên ta thấy $\left(\frac{2}{3}, -\frac{1}{3}\right)$ là điểm cực tiểu của ham số.

\rightarrow chon A.

177. Tìm cực trị của hàm hàm $z = x^2(y+1) - 3x + 2$ thỏa điều kiện x + y + 1 = 0.

Từ
$$x + y + 1 = 0 \Rightarrow y + 1 = -x$$
 thay vào z ta được: $z = x^3 - 3x + 2 \Rightarrow z'_x = 3x^2 - 3 = 0 \Rightarrow x = -1, x = 1$

Suy ra: z có 2 điểm dừng (-1,0),(1,-2).

Lập bảng biến thiên ta xác định được: z đạt cực đại tại (-1,0) và đạt cực tiểu tại (1,-2). \rightarrow **chọn D.**

178. Tìm cực trị của hàm z = xy thỏa điều kiện x + y - 1 = 0.

Từ
$$x+y-1=0 \Rightarrow y=1-x$$
 thay vào z ta được: $z=x(1-x)=-x^2+x$. Suy ra: $z'_x=-2x+1=0 \Rightarrow x=1/2$. Thay vào trên $y=1-1/2=1/2$.

Vậy có một điểm dừng
$$\left(\frac{1}{2},\frac{1}{2}\right)$$
. Lập bảng biến thiên ta thấy $\left(\frac{1}{2},\frac{1}{2}\right)$ là điểm cực đại của z. \rightarrow **chọn B.**

179. Tìm cực trị của hàm $z = 2x^2 + y^2 - 2y - 2$ thỏa điều kiện -x + y + 1 = 0. Trùng bài 176, chỉ là cách viết hơi khác của điều kiện.

180. Tìm cực trị của hàm $z = \frac{x^3}{3} - 3x + y$ thỏa điều kiện $-x^2 + y = 1$.

Từ
$$-x^2 + y = 1 \Rightarrow y = x^2 + 1$$
 thay vào hàm z ta được: $z = \frac{x^3}{3} - 3x + x^2 + 1$. Suy ra:

$$z'_x = x^2 + 2x - 3 = 0 \Rightarrow x = 1, x = -3$$
 thay vào $y = x^2 + 1$ ta được 2 điềm dừng: $(1, 2), (-3, 10)$.

Lập bảng biến thiên:

X	-3	1
z_x'	+ 0	- 0 +
Z		

Từ bảng biến thiên ta thấy z đạt cực đại tại (-3,10) và đạt cực tiểu tại (1,2). \rightarrow **chọn C.**

181. Tìm cực trị của hàm $z = x^2 + y^2$ thỏa điều kiện x + y = 1.

Từ
$$x + y = 1 \Rightarrow y = -x + 1$$
 (*) thay vào z ta được: $z = x^2 + (-x + 1)^2 = 2x^2 - 2x + 1$. Suy ra: $z'_x = 4x - 2 = 0 \Rightarrow x = 1/2$ thay vào (*): $y = 1/2$

$$z \text{ có 1 } \text{ diểm dừng } \left(\frac{1}{2}, \frac{1}{2}\right) \text{. Lập bảng biến thiên (xem 180) ta thấy: } z \text{ đạt cực tiểu tại } \left(\frac{1}{2}, \frac{1}{2}\right).$$

\rightarrow chon B.

182. Tìm giá trị lớn nhất và nhỏ nhất của hàm z = -x + 2y + 3 trên tập $D = [0;1] \times [0;1]$.

Chú ý: Đối bài toán tìm GTLN và GTNN mà hàm cần tìm là *hàm tuyến tính (bậc nhất)* và miền xác định là miền *đa giác lồi bị chặn* thì ta chỉ cần tìm tọa độ các đỉnh của đa giác rồi thay vào hàm z. Sau đó so sánh các giá trị tìm ra GTLN, GTNN.

D là miền hình chữ nhật có 4 đỉnh O(0,0), A(0,1), B(1,1) và C(1,0). Thay vào z ta được:

GTLN=
$$z(A) = 5$$
 và GTNN= $z(C) = 2$. \rightarrow chọn A.

183. Tìm giá trị lớn nhất và nhỏ nhất của hàm z = x + 2xy + 3y - 6 trên tập $D = [0;1] \times [0;2]$.

Xét bên trong D: 0 < x < 1, 0 < y < 2.

Ta có:
$$\begin{cases} z_x' = 1 + 2y = 0 \\ z_y' = 2x + 3 = 0 \end{cases} \Rightarrow \begin{cases} x = -3/2 \\ y = -1/2 \end{cases}$$
 điểm này không nằn trong D (loại).

Xét trên biên của D:

1) AB: $x = 0, (0 \le y \le 2)$ Suy ra: z = 3y - 6. Có 2 điểm cần xét

D B D C x

là O(0,0) và A(0,2).
$$Z(O) = -6; z(A) = 0$$
.

- 2) AB: $y = 2, (0 \le x \le 1)$. $\Rightarrow z = 5x$. Có 2 điểm cần xét A(0,2) và B(1,2). $\Rightarrow z(B) = 5$.
- 3) BC: $x = 1, (0 \le y \le 2)$. $\Rightarrow z = 5y 5$. Có 2 điểm cần xét B và C(1,0). z(C) = -5
- 4) AC: $y = 0, (0 \le x \le 1)$. $\Rightarrow z = x 6$. Có 2 điểm cần xét là O và C.

So sánh các giá trị ở tr6en ta đượ: GTNN của z là -6 và GTLN của z là 5. \rightarrow **chọn A.**

184. Tìm giá trị nhỏ nhất m của hàm $z = \ln x - 2y$ trong miền $D = [1/2, 1] \times [0, 1]$.

Xét bên trong D: 1/2 < x < 1, 0 < y < 1

Ta có:
$$\begin{cases} z'_x = \frac{1}{x} \\ z'_y = -2 \end{cases}$$
 không có điểm dừng

Xét trên biên D:

- 1) AB: $x = \frac{1}{2}$, $(0 \le y \le 1)$. $\Rightarrow z = \ln \frac{1}{2} 2y$. Có 2 điểm cần xét: A(1/2,0); B(1/2,1). $Z(A) = \ln \frac{1}{2}$; $z(B) = \ln \frac{1}{2} 2$.
- 2) BC: $y = 1, (1/2 \le x \le 1)$. $\Rightarrow z = \ln x 2$. Có 2 điểm cần xét B và C(1,1). $\Rightarrow z(C) = -2$.
- 3) CE: $x = 1, (0 \le y \le 1)$. $\Rightarrow z = -2y$. Có 2 điểm cần xét: C và E(1,0). $\Rightarrow z(E) = 0$.
- 4) AE: y = 0, $(1/2 \le x \le 1) \implies z = \ln x$. Có 2 điểm cần xét: A và E.

So sánh các giá trị trên ta có GTNN của z là: $\ln \frac{1}{2} - 2 \rightarrow \text{chọn A.}$

185. Xét hàm z = x + 2xy + 3y - 6 trong miền $D = [0,1] \times [1,2]$ và những phát biểu sau:

- (1) z đạt giá trị lớn nhất bằng 5 tại M(1,2). (2) z đạt giá trị nhỏ nhất bằng -3 tại N(0,1).
- (3) z có điểm dừng P(-3/2, -1/2). Các phát biểu nào ở trên là đúng?

Xét bên trong D: 0 < x < 1, 1 < y < 2

Ta có:
$$\begin{cases} z'_x = 1 + 2y = 0 \\ z'_y = 2x + 3 = 0 \end{cases} \Rightarrow \begin{cases} x = -3/2 \\ y = -1/2 \end{cases}$$
. Điểm này không nằm trong D.

Xét trên biên của D:

Trên AB: $x = 0, 1 \le y \le 2$. $\rightarrow z = 3y - 6$. Có 2 điểm cần xét: z(A) = z(0,1) = -3; z(B) = z(0,2) = 0

Trên BC: $y=2,0 \le x \le 1 \rightarrow z=5x$. Có 2 điểm cần xét z(C)=z(1,2)=5; z(B)=0

Trên CE: $x = 1, 1 \le y \le 2$. $\rightarrow z = 5y - 5$. Có 2 điểm cần xét: z(C) = 5; z(E) = z(1,1) = 0

Trên AE: $y = 1, 0 \le x \le 1 \rightarrow z = 3x - 3$. z(A) = -3; z(E) = z(1,1) = 0

So sánh các giá trị trên, ta thấy: GTLN của z là 5 đạt tại (1,2) và GTNN của z là -3 đạt tại (0,1).

 \rightarrow chọn A.

186. Tìm giá trị lớn nhất và nhỏ nhất của hàm $z = x^2 - 2x - y + 4$ trên tập $D = [0;1] \times [0;1]$.

Xét bên trong D: 0 < x < 1, 0 < y < 1

Ta có: $\begin{cases} z_x' = 2x - 2 \\ z_y' = -1 \neq 0, \forall x, y \end{cases}$. Không có điểm dừng

Xét trên biên của D:

1) OA: $x = 0, (0 \le y \le 1)$. $\Rightarrow z = -y + 4$. Có 2 điểm cần xét: O(0,0) và A(0,1). $\Rightarrow z(O) = 4, z(A) = 3$.

2) AB:
$$y = 1, (0 \le x \le 1)$$
. $\Rightarrow z = x^2 - 2x + 3$. Suy ra: $z'_x = 2x - 2 = 0 \Rightarrow x = 1$. Điểm dừng (1,1) trùng với B. $\Rightarrow z(B) = 2$. $z(A)$ đã xét.

- 3) BC: $x = 1, (0 \le y \le 1)$. $\Rightarrow z = -y + 3$. Có 2 điểm cần xét B(1,1) và C(1,0). $\Rightarrow z(C) = 3$.
- 4) OC: y = 0, $(0 \le x \le 1)$. $\Rightarrow z = x^2 2x + 4$. $\Rightarrow z'_x = 2x 2 = 0 \Rightarrow x = 1$. Có điểm dừng (1,0) trùng với C(đã xét).

So sánh các giá trị ở trên ta có: GTLN của z là 4 và GTNN của z là: $2 \rightarrow$ **chọn A.**

189. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm $z = x^2 + 2x + 2y + 4$ trong miền $-2 \le x \le 1$, $-1 \le y \le 1$.

Xét trên biên của D: -2 < x < 1, -1 < y < 1.

Ta có: $\begin{cases} z'_x = 2x + 2 \\ z'_y = 2 \neq 0, \forall y \end{cases}$ nên không có điểm dừng trong D.

Xét trên biên:

Trên AB: $x = -2, -1 \le y \le 1$. $\rightarrow z = 2y + 4$ Ta có 2 điểm cần xét:

$$z(B) = z(-2,1) = 2.1 + 4 = 6; z(A) = z(-2,-1) = 2(-1) + 4 = 2$$

Trên BC: $y = 1, -2 \le x \le 1$. $\rightarrow z = x^2 + 2x + 6 \Rightarrow z'_x = 2x + 2 = 0 \Rightarrow x = -1, y = 1$. Có điểm dừng $M_0(-1,1)$ $z(M_0) = z(-1,1) = 5$, z(C) = z(1,1) = 9

Trên CE: $x = 1, -1 \le y \le 1$. $\rightarrow z = 2y + 7$. Ta có 2 điểm cần xét: z(E) = z(1, -1) = 2. (-1) + 7 = 5; z(C) = 9

Trên AE:
$$y = -1, -2 \le x \le 1$$
. $\rightarrow z = x^2 + 2x + 2 \Rightarrow z'_x = 2x + 2 = 0 \Rightarrow x = -1, y = -1$. Co điểm dừng $M_1(-1, -1)$ và do đó $z(M_1) = z(-1, -1) = 1$.

So sánh các giá trị tại z(A), z(B), z(C), z(E), $z(M_0)$ và $z(M_1)$ ta có: GTNN m=1 và GTLN M=9.

 \rightarrow chọn A.

190. GTLN, GTNN của
$$z = x^2 - y^2$$
 trên $D: x^2 + y^2 \le 4$

-Xét bên trong D: $x^2 + y^2 < 4$

Ta có:
$$\begin{cases} z'_x = 2x = 0 \\ z'_y = -2y = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \end{cases}$$
 Có 1 điểm dừng $O(0,0) \to f(O) = f(0,0) = 0$

-Xét trên biên của D: $x^2 + y^2 = 4$ (1)

Cách 1: Đưa về tìm cực trị hàm 1 biến

Từ (1)
$$\rightarrow y = 4 - x^2, (-2 \le x \le 2)$$
 (2)

Khi đó:
$$z = x^2 - (4 - x^2) = 2x^2 - 4 \rightarrow z'_x = 4x = 0 \Rightarrow x = 0$$

Với
$$x = 0 \rightarrow y^2 = 4 \rightarrow y = \pm 2$$

Có 2 điểm dừng (0,-2) và (0,2). Ta có f(0,-2) = -4, f(0,2) = -4

Xét tại 2 biên của điều kiên (2): $x = -2, x = 2 \Rightarrow y = 0$. Có 2 điểm cần xét: (2,0) và (-2,0)

$$\Rightarrow f(2,0) = 4, f(-2,0) = 4$$

So sánh các giá trị ta có GTLN là 4 đạt tại (2,0) và (-2,0)

GTNN là -4 đạt tại
$$(0,-2)$$
 và $(0,2) \rightarrow$ **chọn D.**

Cách 2: Tìm cực trị có điều kiện của $z = x^2 - y^2$ với điều kiện $\varphi(x, y) = x^2 + y^2 - 4 = 0$

Hàm Lagrange: $L(x, y, \lambda) = x^2 - y^2 + \lambda(x^2 + y^2 - 4)$

$$\Rightarrow \begin{cases}
L'_{x} = 2x + 2\lambda x = 0 & \text{(a)} \\
L'_{x} = -2y + 2\lambda y = 0 & \text{(b)} \\
L'_{\lambda} = x^{2} + y^{2} - 4 = 0 & \text{(c)}
\end{cases}$$

Từ (a) $\rightarrow x = 0$ hoặc $\lambda = -1$. Thay x=0 vào (3) $\rightarrow y = \pm 2$

Từ (b)
$$\rightarrow y = 0$$
 hoặc $\lambda = 1$. Thay y=0 vào (3) $\rightarrow x = \pm 2$

Ta có 4 điểm dừng: (0,2),(-2,0) ứng với nhân tử $\lambda = 1$

$$(0,-2),(2,0)$$
 ứng với nhân tử $\lambda = -1$

Tính
$$f(0,2) = -4$$
; $f(-2,0) = 4$, $f(0,-2) = -4$; $f(2,0) = 4$.

So sánh các gia trị này với f(O) ta có GTLN là 4 đạt tại (2,0) và (-2,0)

GTNN là -4 đạt tại
$$(0,-2)$$
 và $(0,2) \rightarrow$ **chọn D.**

192. Tính tích phân $I = \iint_D (y-x) dx dy$ với D là miền giới hạn bởi các đường y = x+1; y = 0; x = 0.

Ta viết lại miền lấy tích phân: $D = \{(x, y) / -1 \le x \le 0, 0 \le y \le x + 1\}$

$$\Rightarrow I = \int_{-1}^{0} \left\{ \int_{0}^{x+1} (y-x) dy \right\} dx = \int_{-1}^{0} \left\{ \frac{y^{2}}{2} - yx \Big|_{y=0}^{x+1} \right\} dx = \int_{-1}^{0} \left\{ \frac{(x+1)^{2}}{2} - x(x+1) \right\} dx = \int_{-1}^{0} \left\{ -\frac{x^{2}}{2} + \frac{1}{2} \right\} dx = -\frac{x^{3}}{6} + \frac{x}{2} \Big|_{-1}^{0} = \frac{1}{3}$$

$$\Rightarrow \text{ chon B.}$$

194. Tìm cực trị của hàm $z = \frac{x^3}{3} - 3x + y$ thỏa điều kiện $-x^2 + y + 1 = 0$.

Từ
$$-x^2 + y + 1 = 0 \Rightarrow y = x^2 - 1$$
 thay vào z ta được:

$$z = \frac{x^3}{3} + x^2 - 3x - 1 \Rightarrow z'_x = x^2 + 2x - 3 = 0 \Leftrightarrow x = 1, x = -3$$

Có hai điểm dừng (1,0); (-3,8). Ta có bảng biến thiên:

X		-3		1	
z_x'	+	0	-	0	+
Z					

Dựa vào bảng biến thiên ta thấy z đạt cực đại tại (-3,8) và đạt cực tiểu tại (1,0). \rightarrow **chọn A.**

195. Nghiệm của phương trình vi phân: y''+9y=0 (1), với điều kiện y(0)=3 và y'(0)=3 là:

Phương trình đặc trưng của (1): $\lambda^2 + 9 = 0 \Rightarrow \lambda = \pm 3i$. Do đó nghiệm tổng quát của (1) có dạng:

 $y = C_1 \cos 3x + C_2 \sin 3x$. Suy ra: $y' = -3C_1 \sin 3x + 3C_2 \cos 3x$

Điều kiện đầu:
$$\begin{cases} y(0) = 3 \\ y'(0) = 0 \end{cases} \Leftrightarrow \begin{cases} C_1 = 3 \\ 3C_2 = 3 \end{cases} \Rightarrow \begin{cases} C_1 = 3 \\ C_2 = 1 \end{cases}$$

Vậy nghiệm tổng quát cần tìm là: $y = 3\cos 3x + \sin 3x \rightarrow \text{chọn A.}$

196. Cho hàm số $z = -x^2 + 2y^2 + 12x + 8y + 5$. Khẳng định nào sau đây ĐÚNG?

Ta có:
$$\begin{cases} z_x' = -2x + 12 = 0 \\ z_y' = 4y + 8 = 0 \end{cases} \Rightarrow \begin{cases} x = 6 \\ y = -2 \end{cases}$$
. Suy ra: z có một điểm dừng $(6, -2)$

Ta có:
$$z''_{xx} = -2$$
, $z''_{xy} = 0$, $z''_{yy} = 4$. Tai điểm dừng ta có: $A = -2 < 0$, $B = 0$, $C = 4$ và $\Delta = AC - B^2 = -2.4 - 0^2 = -8 < 0$.

Vậy hàm số có điểm dừng nhưng không có cực trị. \rightarrow **chọn** C.

197. Nghiệm của phương trình vi phân toàn phần: $(y + e^x)dx + xdy = 0$ (1) là:

Đây là ptvp toàn phần với $P(x,y) = y + e^x$; Q(x,y) = x (vì $\frac{\partial P}{\partial v} = 1 = \frac{\partial Q}{\partial x}$). Do đó tồn tại hàm u(x,y) sao cho: $du = Pdx + Qdy = 0 \Rightarrow u = C$ (2).

Ta có:
$$\begin{cases} \frac{\partial u}{\partial x} = P = y + e^x & (3) \\ \frac{\partial u}{\partial y} = Q = x & (4) \end{cases}$$
. Tích phân (3) theo x ta được: $u = yx + e^x + C(y)$ (5) $\Rightarrow \frac{\partial u}{\partial y} = x + C'(y)$ thay

vào (4) được: $x = x + C'(y) \Rightarrow C'(y) = 0 \Rightarrow C(y) = 0$. Thay vào (5): $u = yx + e^x$.

Vậy nghiệm tổng quát cần tìm là: $yx + e^x = C$. \rightarrow **chọn D.**

198. Hãy biểu diễn cân lấy tích phân của miền phẳng Ω trong toa đô Descartes Oxy, với $\Omega = \{(x, y) / y \ge 3x^2, y \le 6 - 3x\}.$

Ta có: hoành độ giao điểm của $y = 3x^2$, y = 6 - 3x là x = -2 và x = 1. Do đó miền lấy tích phân của miền Ω là $\Omega = \{(x, y) / -2 \le x \le 1, 3x^2 \le y \le 6 - 3x\}$. \to chọn A.

199. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số $z = x^2 + 2y + 1$ trong miền $D = [-1,0] \times [-1,1]$. B 1 C O x

Xét bện trong D,
$$D_1 = \{(x, y) / -1 < x < 0, -1 < y < 1\}$$

Xét bện trong D,
$$D_1=\{(x,y)/-1< x<0,-1< y<1\}$$
 Ta có:
$$\begin{cases} z'_x=2x\\ z'_y=2 \end{cases}$$
 Hàm số không có điểm dừng trong D_1 .

Trên biên AB:
$$x = -1, -1 \le y \le 1 \implies z = 2y + 2$$
. $Z(A) = Z(-1, 0) = 2; Z(B) = Z(-1, 1) = 4$

Trên biên BC:
$$y = 1, -1 \le x \le 0 \Rightarrow z = x^2 + 3 \Rightarrow z'_x = 2x = 0 \rightarrow x = 0$$
. Điểm dùng (0,1)

$$Z(0,1) = Z(C) = 3$$

Trên biên DC:
$$x = 0, -1 \le y \le 1 \Rightarrow z = 2y + 1$$
. $Z(D) = Z(0, -1) = -1$

Trên biên AD: $y=-1,-1 \le x \le 0 \Rightarrow z=x^2-1 \Rightarrow z_x'=2x=0 \Rightarrow x=0$. Điềm dừng (0,-1) Z(0,-1)=Z(D)=-1

Vậy: GTLN của z là M=4 và GTNN của z là m=-1 . \rightarrow chọn A.

200. Cho hàm
$$f(x, y) = \frac{x+y}{2+y}$$
. Tinh $df(1,1)$

Ta có:
$$f'_x = \frac{1}{2+y}$$
; $f'_y = \frac{2+y-(x+y)}{(2+y)^2} = \frac{2-x}{(2+y)^2}$

$$\Rightarrow f'_x(1,1) = \frac{1}{3} \text{ và } f'_y(1,1) = \frac{1}{9}$$

$$\Rightarrow df(1,1) = f'_{x}(1,1)dx + f'_{y}(1,1)dy = \frac{1}{9}(3dx + dy) \to \text{chọn D.}$$