MATH 323: PROBABILITY A MAP OF THE DISTRIBUTIONS

Direct link — \longrightarrow Special case, transformation or summation Indirect link — ----> Limit case

After diagram in Statistical Inference, by G Casella and RL Berger.

DISCRETE DISTRIBUTIONS

Models based on an independent sequence of identical binary trials with success probability *p*.

- **BERNOULLI:** *Y* is the total number of successes in **one** trial.
- **BINOMIAL:** *Y* is the total number of successes in *n* trials.
- **GEOMETRIC:** *Y* is the total number of trials required to obtain **one** success.
- NEGATIVE BINOMIAL:
 - **Version I:** *Y* is the total number of trials required to obtain *r* successes.
 - **Version II:** Consider X = Y r, to give a distribution on $\{0, 1, 2, \ldots\}$.
- **POISSON:** The Poisson distribution is obtained as the limiting form of the Binomial(n, p) distribution, with $n \longrightarrow \infty$ but with $\lambda = np$ held fixed. Y is the count of the number of events in a given (continuous) time interval.

Connections:

• Bernoulli/Binomial

$$Y_1, \dots, Y_n \sim Bernoulli(p) \implies Y = \sum_{i=1}^n Y_i \sim Binomial(n, p)$$

• Geometric/Negative Binomial

$$Y_1, \dots, Y_n \sim Geometric(p) \implies Y = \sum_{i=1}^n Y_i \sim NegBinomial(n, p)$$

• Binomial/Poisson

$$Y_n \sim Binomial(n, p) \longrightarrow Y \sim Poisson(\lambda)$$

where $\lambda = np$ is held fixed and $n \longrightarrow \infty$.

• Negative Binomial/Poisson

$$Y_n \sim NegBinomial(n, p)$$
 $X_n = Y_n - n \longrightarrow X \sim Poisson(\lambda)$

where $\lambda = n(1-p)$ is held fixed and $n \longrightarrow \infty$.

Sums of Independent Random Variables: Proved using mgfs.

• Binomial

$$Y_1 \sim Binomial(m, p)$$

 $Y_2 \sim Binomial(n, p)$ \Longrightarrow $Y = Y_1 + Y_2 \sim Binomial(m + n, p)$

• Negative Binomial

$$Y_1 \sim NegBinomial(m, p)$$

 $Y_2 \sim NegBinomial(n, p)$ \Longrightarrow $Y = Y_1 + Y_2 \sim NegBinomial(m + n, p)$

• Poisson

$$\left. \begin{array}{l} Y_1 \sim Poisson(\lambda_1) \\ Y_2 \sim Poisson(\lambda_2) \end{array} \right\} \qquad \Longrightarrow \qquad Y = Y_1 + Y_2 \sim Poisson(\lambda_1 + \lambda_2)$$

CONTINUOUS DISTRIBUTIONS

- Distributions on \mathbb{R}^+ : Begin with $Y \sim Uniform(0,1)$:
 - ▶ $U = -\beta \log Y \sim Exponential(\beta)$, for $\beta > 0$.
 - $ightharpoonup X = (U/(\beta\lambda))^{1/\alpha} \sim Weibull(\alpha,\lambda), \text{ for } \alpha,\lambda > 0.$
 - ▶ If $X_1, ..., X_n \sim Exponential(\beta)$, independent, then $Z = \sum_{i=1}^n X_i \sim Gamma(n, \beta)$.
 - ▶ If $Y_1 \sim Gamma(\alpha_1, \beta)$ and $Y_2 \sim Gamma(\alpha_2, \beta)$ are independent, then

$$S = Y_1 + Y_2 \sim Gamma(\alpha_1 + \alpha_2, \beta)$$

- ullet Distributions on \mathbb{R} : The Normal distribution and connections
 - ▶ Suppose $Y \sim N(0,1)$. Then $X = \mu + \sigma Y \sim N(\mu, \sigma^2)$.
 - ▶ Suppose $Y \sim N(0,1)$. Then $U = Y^2 \sim Gamma(1/2,2) \equiv Chisquared(1)$.
 - ▶ If $Y_i \sim Gamma(\alpha_i/2, 2) \equiv Chisquared(\alpha_i)$ for i = 1, ..., n are independent, then

$$V = \sum_{i=1}^{n} Y_{i} \sim Gamma(\nu/2, 2) \equiv Chisquared(\nu)$$

where

$$\nu = \sum_{i=1}^{n} \alpha_i.$$

▶ If $Y_1 \sim N(\mu_1, \sigma_1^2)$ and $Y_2 \sim N(\mu_2, \sigma_2^2)$ are independent, then

$$Y = Y_1 + Y_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

- Distribution on (0, 1): The Beta distribution
 - ▶ If $Y_1 \sim Gamma(\alpha_1, \beta)$ and $Y_2 \sim Gamma(\alpha_2, \beta)$ are independent, then

$$Y = \frac{Y_1}{Y_1 + Y_2} \sim Beta(\alpha_1, \alpha_2)$$

This result follows by multivariate transformations.

All the summation results proved using mgfs.