Лекция 15: Основы сетевой безопасности

Юрий Литвинов yurii.litvinov@gmail.com

06.06.2022

Сетевая безопасность

- Почти все сервисы требуют авторизации и обеспечения безопасности
- Аутентификация установление личности (точнее, идентичности) участника взаимодействия
 - Обычно взаимна
- Авторизация установление прав на выполнение операции
- Шифрование обеспечение конфиденциальности передаваемой информации
- Также важны:
 - Целостность злоумышленник ничего не поменял.
 - Актуальность злоумышленник не проиграл старое сообщение

Некоторые соображения

- Основные уязвимости в современных системах не технические по характеру
- Большинство попыток взлома изнутри организации
- Сетевая безопасность игра против живого, умного и часто хорошо оснащённого противника
 - Задача средств безопасности не сделать взлом невозможным, а сделать его нерентабельным
- За протоколами безопасности стоит большая наука
 - Придумать свой хитрый шифр или протокол аутентификации в общем случае очень плохая идея
- tradeoff между безопасностью и удобством использования

Шифрование

- Алгоритм шифрования считается известным, секретен только ключ
- Усложнение алгоритма шифрования не всегда повышает криптостойкость

Шифрование с симметричным ключом

- Data Encryption Standard (DES, Triple DES)
- ► Advanced Encryption Standard (AES, он же Rijndael)

Режимы шифрования, ЕСВ

- ▶ Electronic Code Book один ключ применяется ко всем блокам
 - Быстро, надёжно, но не криптостойко

Режимы шифрования, СВС

- Cipher Block Chaining хог-им следующий блок с зашифрованным предыдущим перед шифровкой
 - ▶ Более криптостоек, не устойчив к ошибкам передачи
 - Initialization Vector (IV)

Режимы шифрования, SCM

- Stream Cipher Mode шифруем IV ключом снова и снова, генерируя ключ бесконечной длины
 - И хог-им его с шифруемым текстом
 - Устойчив к ошибкам передачи, довольно быстр
 - lacktriangle Уязвим к Keystream Reuse Attack (($P_0\oplus K_0)\oplus (Q_0\oplus K_0)$)

Режимы шифрования, Counter Mode

- ightharpoonup Counter Mode шифруем IV+i для каждого i-го блока
 - ▶ И хог-им его с шифруемым текстом
 - Для произвольного доступа к зашифрованным блокам

Алгоритм Диффи-Хеллмана

Атака "Man In The Middle"

Шифрование с открытым ключом

Или почему нельзя отдать ключи от Telegram

- Алгоритм делится на две части, D и E, так, что D(E(P)) = P
- D очень сложно получить по Е
 - Например, найти простые сомножители огромного числа или дискретный логарифм по заданному модулю
- ▶ Е не ломается атакой "произвольного открытого текста"
- D (ключ от D) держится в секрете, Е выкладывается в открытый доступ
- Если Боб хочет послать Алисе сообщение, он берёт её открытый ключ E_A, шифрует им сообщение P и отправляет Алисе
- ▶ Алиса дешифрует сообщение, вычисляя $D_A(E_A(P))$
- У каждого пользователя своя пара ключей
- Алгоритмы: RSA, ElGamal, эллиптические шифры

Цифровые подписи, задачи

- Получатель может установить личность отправителя
- Отправитель не может отрицать, что он подписал сообщение
- Получатель не может сам подделать сообщение и сделать вид, что его послал отправитель

Цифровые подписи, реализация

© Э. Таненбаум

- ▶ Надо, чтобы D(E(P)) = P (это так для большинства криптосхем)
- Шифровать всё сообщение слишком медленно
- Message Digest-ы хорошие хеши сообщений
 - MD5, SHA-1
- Подписывается только хеш, это почти так же криптостойко, но в сотни раз быстрее

SHA-1

- Считается блоками по 512 бит, возвращает 160-битный дайджест
- Изменение в одном бите входа даёт совершенно другой выход
- **Р** Если известен P, очень сложно найти такой P', что MD(P') = MD(P)

Атака дней рождения

Уважаемый господин декан,

Это [письмо | обращение] отражает мое [искреннее | откровенное] [мнение | суждение] о проф. Томе Уилсоне, являющемся [кандидатом | претендентом] на профессорскую должность в [настоящее время | этом году]. Я [знакома | работала] с проф. Уилсоном в течение [почти | около] шести лет. Он является [слабым | недостаточно талантливым] [исследователем | ученым], почти не известным в той области науки, которой он занимается. В его работах практически не заметно понимания [ключевых | главных] [проблем | вопросов] современности.

[Более | Кроме] того, он также не является сколько-нибудь [уважаемым | ценимым] [преподавателем | педагогом]. Его студенты дают его [занятиям | лекциям] [самые низкие | негативные] оценки. Он самый непопулярный [преподаватель | учитель] нашей кафедры, [славящийся | печально известный] своей [привычкой | склонностью] [высмеивать | ставить в неудобное положение] студентов, осмелившихся задавать вопросы на его [лекциях | занятиях].

Сертификаты

- Сертификат сообщение, подтверждающее идентичность ключа, подписанное Certificate Authority (стандарт X.509)
- Цепочка сертификатов СА верхнего уровня подписывает сертификаты СА уровнем ниже, чтобы они могли подписывать сертификаты пользователей
- Корневые сертификаты сертификаты, которым принято доверять
- Самоподписанные сертификаты не доверенные, используются для отладки

Сертификаты (2)

```
Настоящим удостоверяю, что открытый ключ 19838A8B03030CF8373TE3837837FC3s87092827262643FFA82710382828282A принадлежит Роберту Джону Смиту Университетская улица 12345 Беркли, СА 94702 1958 род. 5 июля 1958Кг. Электронный адрес: bob@superdupernet.com

Xeш SHA-1 данного сертификата подписан закрытым ключом Управления сертификации
```

- Подписанный у СА сертификат стоит денег (от \$7 до более \$200 в год, в зависимости от типа)
 - И требует идентификации личности (например, по паспорту)
 - Есть бесплатно и без бюрократии, но ими далеко не всё можно подписать
- Сертификаты всегда выдаются на фиксированное время
- Сертификат можно отозвать
- ► Куча несовместимых форматов: .pem, .p12, .pfx, .der, .cer, .crt

Certificate Authority

© Э. Таненбаум

 https://letsencrypt.org/ — автоматически и бесплатно даёт сертификаты, но они подтверждают только владение доменом, а не личность хозяина

Применения сертификатов

- Протокол HTTPS, проверка идентичности сервера
- Подписывание кода (Windows SmartScreen, Apple Code Signing)
- Подписывание сборок, сильные имена сборок в .NET

Менеджер сертификатов, Windows

Snap-In в MMC

OpenSSL

- OpenSSL библиотека и набор инструментов для криптографии и работы с протоколами SSL/TLS
- Стандарт де-факто для работы с открытыми ключами, сертификатами и т.д.
- ► Как сгенерить самоподписанный сертификат: openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout privatekey.key
 - -out certificate.crt

Аутентификация Challenge-Response с общим ключом

- $ightharpoonup R_B$ **nonce** (number used once), для предотвращения атаки повтором
- K_{AB} общий ключ

"Упрощённый" протокол

Зеркальная атака

© Э. Таненбаум

Разработать корректный протокол аутентификации сложнее, чем это может показаться

Правильный протокол

© Э. Таненбаум

HMAC — Hashed Message Authentication Code

Как на самом деле

- Basic Authentication логин и пароль передаются нешифрованными в заголовке HTTP-запроса
- ▶ HTTPS обеспечивает безопасность
- Сервер возвращает Access Token,
- Access Token предъявляется при каждом следующем запросе
 - Имеет ограниченное время жизни, но его можно продлять
- Пароли не хранятся на сервере, хранятся их хеши
 - Salt случайное число, дописываемое к паролю на стороне сервера, хранится вместе с хешем пароля
 - Если базу паролей украдут, узнать исходные пароли очень сложно

Аутентификация с открытым ключом

- ► E_A, E_B открытые ключи Алисы и Боба
- $ightharpoonup R_A$, R_B nonce

OAuth 2

- Позволяет разрешить пользование ресурсом, не раскрывая хозяину ресурса логин и пароль пользователя
 - Логин по аккаунту в Google или аккаунту в VK
- Роли:
 - Client приложение, пытающееся получить доступ
 - Resource Server сервер, хранящий защищённую информацию. К нему пытается получить доступ клиент
 - ► Resource Owner пользователь, владеющий защищённой информацией
 - Authorization Server сервер, выдающий клиенту токен на доступ к ресурсному серверу

Протокол

		Resource Owner
Client	+(C) Authorization Grant> <-(D) Access Token	Authorization Server
	(E) Access Token> <-(F) Protected Resource	Resource Server

Детали

- Access Token выдаётся авторизационным сервером и посылается с каждым запросом, ограниченное время жизни
- ► Refresh Token выдаётся авторизационным сервером, используется для получения нового Access Token
- Scope к какой части ресурса даёт доступ Access Token

Пример: Google OAuth 2.0

- Google Developer Console,
 Client ID ν Client Secret
- Scope
- Consent Screen

© https://developers.google.com

HTTPS

- SSL (Secure Sockets Layer)
- ► HTTPS HTTP через SSL
- ▶ Порт 443
- Аутентифицируется только сервер

SSL, транспортный субпротокол

- Triple DES + SHA-1
- ▶ Или RC4 со 128-битным ключом + MD5
- TLS Transport Layer Security (продвинутый SSL)

DNS Spoofing

© Э. Таненбаум

- Запрос foobar.trudy-the-intruder.com (чтобы trudy-the-intruder.com попал в кеш провайдера)
- Запрос www.trudy-the-intruder.com (чтобы получить следующий порядковый номер провайдера)
- Запрос об адресе www.trudy-the-intruder.com к нашему DNS
- Запрос к bob.com
- 5. Запрос о bob.com к DNS зоны com
- 6. Подделанный ответ о bob.com
- Настоящий ответ, отвергнутый, потому что уже поздно

Результат

Как это всё отлаживать

И ломать

- ▶ Fiddler кроссплатформенный отладочный прокси
 - Перехват НТТР-трафика
 - Man-In-The-Middle-атака с самоподписанными сертификатами
 - Расшифровка HTTPS-трафика на лету
 - Возможность модифицировать HTTP-пакеты, повторять пакеты и т.д.
- Wireshark когда Fiddler-а мало
 - Перехват пакетов на низком уровне
 - Умеет даже ставить себя как драйвер USB и читать USB-пакеты