TEST REPORT

Reference No. : WTS19S04027029W001

FCC ID..... : 2AJIV-MF1690

Applicant: Creative Labs Pte. Ltd.

Address 31 International Business Park #03-01 Creative Resource Singapore

609921

Manufacturer: Creative Labs Pte. Ltd.

Address 31 International Business Park #03-01 Creative Resource Singapore

609921

Factory.....: AJS Electronics Limited

Address 15/F, Liuchuang Building II, No. 29, South Ring Road, South Area Hi-

Tech Zone, Nanshan District, Shenzhen, China

Product: Creative T100

Model(s)..... : MF1690

Standards : FCC CFR47 Part 15 Section 15.247:2019

Date of Receipt sample : 2019-04-30

Date of Test : 2019-04-31 to 2019-05-17

Date of Issue : 2019-06-06

Test Result : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By: Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Philo Zhong / Manager

Reference No.: WTS19S04027029W001 Page 2 of 57

1 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China.Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), ISED (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Reference No.: WTS19S04027029W001 Page 3 of 57

1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD\RED	-
Taiwan	100/150 47005	NCC	-
Hong Kong	ISO/IEC 17025	OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED CAB identifier: CN0013.

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd.	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

2 Contents

		Page
	COVER PAGE	1
1	LABORATORIES INTRODUCTION	2
	1.1 TEST FACILITY	3
2	CONTENTS	4
3	REVISION HISTORY	6
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T	
	4.2 DETAILS OF E.U.T	
	4.3 CHANNEL LIST	
_	4.4 TEST MODE EQUIPMENT USED DURING TEST	
5		
	5.1 EQUIPMENTS LIST	
	5.3 SUBCONTRACTED	
6	TEST SUMMARY	
7	CONDUCTED EMISSION	
	7.1 E.U.T. OPERATION	
	7.2 EUT SETUP	
	7.3 MEASUREMENT DESCRIPTION	
	7.4 CONDUCTED EMISSION TEST RESULT	
8	RADIATED EMISSIONS	
	8.1 EUT OPERATION	
	8.2 TEST SETUP	
	8.4 TEST PROCEDURE	
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	8.6 SUMMARY OF TEST RESULTS	
9	BAND EDGE MEASUREMENT	
	9.1 TEST PROCEDURE	
	9.3 TEST RESULT:	
10	BANDWIDTH MEASUREMENT	
	10.1 Test Procedure:	
	10.2 TEST SETUP	
	10.3 TEST RESULT:	
11	MAXIMUM PEAK OUTPUT POWER	
	11.1 TEST PROCEDURE:	
	11.2 TEST SETUP	
10		
12	HOPPING CHANNEL SEPARATION	
	12.1 TEST PROCEDURE:	
	12.3 TEST RESULT:	
13	NUMBER OF HOPPING FREQUENCY	47

Reference No.: WTS19S04027029W001 Page 5 of 57

	13.1	Test Procedure:	47
	13.2	TEST SETUP	47
	13.3	TEST RESULT:	48
14	DWEL	_L TIME	50
	14.1	Test Procedure:	50
	14.2	TEST SETUP	50
	14.3	TEST RESULT:	50
15	ANTE	NNA REQUIREMENT	50
16	FCC I	D: 2AJIV-MF1690 RF EXPOSURE REPORT	57
17	РНОТ	OGRAPHS - TEST SETUP PHOTOS	57
18	РНОТ	OGRAPHS - CONSTRUCTIONAL DETAILS	57
	18.1	EXTERNAL PHOTOS	57
	18.2	INTERNAL PHOTOS	

Reference No.: WTS19S04027029W001 Page 6 of 57

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS19S04027029W001	2019-04-30	2019-04-31 to 2019-05-17	2019-06-06	original	-	Valid

Reference No.: WTS19S04027029W001 Page 7 of 57

4 General Information

4.1 General Description of E.U.T

Product : Creative T100

Model(s) : MF1690

Operation Frequency: 2402-2480MHz, 79(EDR) Channels in total

Antenna installation : PCB Printed Antenna

Antenna Gain : 1.9dBi

Type of Modulation: GFSK, $\pi/4$ DQPSK, 8DPSK

Frequency hopping systems (FHS):

This transmitter device is frequency hopping device, and complies with FCC Part15.247 Requirements.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. The average time of occupancy on any channel is less than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels (79 channels) employed.

All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an Bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part15.247.

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 30, 29, 54, 70, 43, 67, 48, 60, 69, 09, 24, 04, 26, 73, 22, 33, 51, 06, 49, 23, 25, 07, 34, 14, 31, 01, 65, 19, 63, 64, 38, 77, 02, 12, 50, 52, 05, 72, 11, 16, 17, 18, 37, 13, 71, 46, 45, 76, 74, 32, 44, 66, 28, 42, 59, 78, 53, 57, 40, 03, 41, 10, 68, 58, 47, 39, 55, 08, 00, 27, 75, 61, 62, 36, 15, 56, 35, 20, 21 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Reference No.: WTS19S04027029W001 Page 8 of 57

4.2 Details of E.U.T

Ratings Power adapter:

Input: 100-240V~, 50/60Hz, 1.5A

Output: 18V ===2A

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	1	-

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

Note: The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

5 Equipment Used during Test

5.1 Equipments List

Condu	Conducted Emissions						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Valid	
1.	EMI Test Receiver	R&S	ESCI	101155	2018-09-15	1Year	
2.	LISN	SCHWARZBECK	NSLK 8128	8128-259	2018-09-15	1Year	
3.	Limiter	CYBERTEK	EM5010	261115-001- 0024	2018-09-15	1Year	
4.	Cable	Laplace	RF300	-	2018-07-18	1Year	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Valid	
1	Spectrum Analyzer	R&S	FSP30	100091	2019-04-19	1Year	
2	Broad-band Horn Antenna(1-18GHz)	SCHWARZBECK	BBHA 9120 D	667	2019-04-19	1Year	
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2019-04-19	1Year	
4	Coaxial Cable (above 1GHz)	ZT26-NJ-NJ-8M/FA	1GHz-18GHz	NA	2019-04-19	1Year	
5	Spectrum Analyzer	R&S	FSP40	100501	2018-11-13	1Year	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2018-10-25	1Year	
7	Microwave Broadband Preamplifier (18-40GHz)	SCHWARZBECK	BBV 9721	100472	2018-10-25	1Year	
8	Coaxial Cable	ZT40-2.92J-2.92J- 2.0M	10MHz-40GHz	17100919	2018-10-15	1Year	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions				
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Valid	
1	Test Receiver	R&S	ESCI	101296	2019-04-20	1Year	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018-05-24	1Year	
3	Active Loop Antenna	Com-Power Corp.	AL-130R	10160007	2019-04-28	1Year	
4	Amplifier	ANRITSU	MH648A	M43381	2019-04-19	1Year	
5	Cable	HUBER+SUHNER	CBL2	525178	2019-04-20	1Year	

Reference No.: WTS19S04027029W001 Page 10 of 57

RF Co	RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Valid		
1.	Spectrum Analyzer	R&S	FSL6	100959	2018-11-18	1Year		
2	Coaxial Cable	Тор	10Hz-30GHz	1	2018-09-12	1Year		
3	Antenna Connector*	Realacc	45RSm	-	2018-09-12	1Year		
4	DC Block	Gwave	GDCB-3G-N- SMA	140307001	2018-09-12	1Year		

[&]quot;*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5.2 Measurement Uncertainty

Parameter	Uncertainty		
Radio Frequency	± 1 x 10 ⁻⁶		
RF Power	± 1.0 dB		
RF Power Density	± 2.2 dB		
	± 5.03 dB (30M~1000MHz)		
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)		
Conducted Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)		
Confidence interval: 95%. Confidence factor:k=2			

5.3 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:					
☐ Yes	⊠ No				
If Yes, list the related test items and lab information:					
Test Lab: N/A					

Lab address: N/A
Test items: N/A

Reference No.: WTS19S04027029W001 Page 11 of 57

6 Test Summary

Test Items	Test Requirement	Result		
Conduct Emission	15.207	Pass		
	15.205(a)			
Radiated Spurious Emissions	15.209	Pass		
	15.247(d)			
Dond odge	15.247(d)	Door		
Band edge	15.205(a)	Pass		
Bandwidth	15.247(a)(1)	Pass		
Maximum Peak Output Power	15.247(b)(1)	Pass		
Frequency Separation	15.247(a)(1)	Pass		
Number of Hopping Frequency	15.247(a)(1)(iii)	Pass		
Dwell time	15.247(a)(1)(iii)	Pass		
RF exposure	1.1307(b)(1)	Pass		
Antenna Requirement	15.203	Pass		
RF Exposure	1.1307(b)(1)	Pass		
Note: Pass=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.				

Reference No.: WTS19S04027029W001 Page 12 of 57

7 **Conducted Emission**

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

PASS Test Result:

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit:

Fraguency (MHz)	Conducted Limit (dBµV)					
Frequency (MHz)	Qsi-peak	Average				
0.15 to 0.5	66 to 56*	56 to 46*				
0.5 to 5.0	56	46				
5.0 to 30 60 50						
*Decreases with the logarithm of the frequency.						

7.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C Humidity: 52.6 % RH 101.2kPa Atmospheric Pressure:

Test Voltage: AC 120V, 60Hz

The test was performed in Transmitting mode, the worst test data **EUT Operation:**

(GFSK modulation Low channel) were shown in the report.

EUT Setup 7.2

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

Remark: only the worst data (GFSK modulation Low channel mode) were reported

Live line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1580	26.49	10.27	36.76	65.56	-28.80	QP	
2	0.1580	15.18	10.27	25.45	55.56	-30.11	AVG	
3	0.2340	22.21	10.37	32.58	62.30	-29.72	QP	
4	0.2340	13.06	10.37	23.43	52.30	-28.87	AVG	
5	0.6180	25.68	10.48	36.16	56.00	-19.84	QP	
6	0.6180	14.03	10.48	24.51	46.00	-21.49	AVG	
7	1.7300	19.54	10.52	30.06	56.00	-25.94	QP	
8	1.7300	12.09	10.52	22.61	46.00	-23.39	AVG	
9	5.6460	24.14	10.87	35.01	60.00	-24.99	QP	
10	5.6460	20.96	10.87	31.83	50.00	-18.17	AVG	
11	17.6980	22.29	10.81	33.10	60.00	-26.90	QP	
12	17.6980	9.49	10.81	20.30	50.00	-29.70	AVG	

Neutral line: 80.0 dBuV Limit: AVG: 70 60 50 40 30 20 10 0.0 0.150 0.5 30.0 MHz

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1539	27.00	10.27	37.27	65.78	-28.51	QP	
2	0.1539	15.52	10.27	25.79	55.78	-29.99	AVG	
3	0.2540	22.97	10.39	33.36	61.62	-28.26	QP	
4	0.2540	13.24	10.39	23.63	51.62	-27.99	AVG	
5	0.6100	29.84	10.48	40.32	56.00	-15.68	QP	
6	0.6100	17.01	10.48	27.49	46.00	-18.51	AVG	
7	1.5660	18.06	10.49	28.55	56.00	-27.45	QP	
8	1.5660	12.02	10.49	22.51	46.00	-23.49	AVG	
9	5.6460	23.98	10.87	34.85	60.00	-25.15	QP	
10	5.6460	20.99	10.87	31.86	50.00	-18.14	AVG	
11	17.4420	21.11	10.82	31.93	60.00	-28.07	QP	
12	17.4420	8.80	10.82	19.62	50.00	-30.38	AVG	

Reference No.: WTS19S04027029W001 Page 15 of 57

Radiated Emissions 8

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: **PASS** Measurement Distance: 3m

Limit:

LIIIII.						
	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

8.1 **EUT Operation**

Operating Environment:

Temperature: 23.5 °C Humidity: 52.1 % RH Atmospheric Pressure: 101.2kPa

Test Voltage: AC 120V, 60Hz

The test was performed in Transmitting mode, the worst test data **EUT Operation:**

(GFSK modulation) were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	<u>z</u>	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS19S04027029W001 Page 18 of 57

8.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 8. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS19S04027029W001 Page 19 of 57

8.6 Summary of Test Results

Test Frequency: 9 kHz ~ 30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30 MHz ~ 18 GHz

Only the worst case GFSK mode were record in the report.

F	Receiver	Receiver	Turn			Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Lo	ow Chanr	nel 2402	MHz			
483.91	42.68	QP	352	1.0	Н	-10.31	32.37	46.00	-13.63
483.91	34.63	QP	80	1.1	V	-10.31	24.32	46.00	-21.68
4804.00	49.73	PK	56	1.6	V	-1.06	48.67	74.00	-25.33
4804.00	44.46	Ave	56	1.6	V	-1.06	43.40	54.00	-10.60
7206.00	50.57	PK	176	1.1	Н	1.33	51.90	74.00	-22.10
7206.00	42.64	Ave	176	1.1	Н	1.33	43.97	54.00	-10.03
2312.67	45.92	PK	58	1.2	V	-13.19	32.73	74.00	-41.27
2312.67	38.83	Ave	58	1.2	V	-13.19	25.64	54.00	-28.36
2387.95	42.95	PK	185	1.4	Н	-13.14	29.81	74.00	-44.19
2387.95	37.08	Ave	185	1.4	Н	-13.14	23.94	54.00	-30.06
2485.15	44.80	PK	80	1.4	٧	-13.08	31.72	74.00	-42.28
2485.15	38.41	Ave	80	1.4	٧	-13.08	25.33	54.00	-28.67

Reference No.: WTS19S04027029W001 Page 20 of 57

	Receiver	Datastas	Turn	RX An	tenna	Corrected	1 0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Mid	ddle Char	nnel 244	11MHz			
483.91	42.47	QP	118	1.0	Н	-10.31	32.16	46.00	-13.84
483.91	33.18	QP	98	1.2	V	-10.31	22.87	46.00	-23.13
4880.00	48.82	PK	49	1.2	V	-0.62	48.20	74.00	-25.80
4880.00	43.25	Ave	49	1.2	V	-0.62	42.63	54.00	-11.37
7320.00	50.63	PK	76	1.6	Н	2.21	52.84	74.00	-21.16
7320.00	42.89	Ave	76	1.6	Н	2.21	45.10	54.00	-8.90
2347.83	46.35	PK	124	1.4	V	-13.19	33.16	74.00	-40.84
2347.83	38.53	Ave	124	1.4	V	-13.19	25.34	54.00	-28.66
2350.75	43.93	PK	254	1.7	Н	-13.14	30.79	74.00	-43.21
2350.75	36.07	Ave	254	1.7	Н	-13.14	22.93	54.00	-31.07
2484.16	44.81	PK	346	1.4	V	-13.08	31.73	74.00	-42.27
2484.16	36.81	Ave	346	1.4	V	-13.08	23.73	54.00	-30.27

Reference No.: WTS19S04027029W001 Page 21 of 57

_	Receiver		Turn	RX An	tenna	Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK H	igh Chan	nel 2480	OMHz			
483.91	42.64	QP	63	1.6	Н	-10.31	32.33	46.00	-13.67
483.91	34.65	QP	316	1.1	V	-10.31	24.34	46.00	-21.66
4960.00	45.78	PK	314	1.5	V	-0.24	45.54	74.00	-28.46
4960.00	40.40	Ave	314	1.5	V	-0.24	40.16	54.00	-13.84
7440.00	52.93	PK	100	1.6	Н	2.84	55.77	74.00	-18.23
7440.00	39.76	Ave	100	1.6	Н	2.84	42.60	54.00	-11.40
2332.92	46.86	PK	150	1.6	V	-13.19	33.67	74.00	-40.33
2332.92	39.48	Ave	150	1.6	V	-13.19	26.29	54.00	-27.71
2382.20	43.90	PK	223	1.8	Н	-13.14	30.76	74.00	-43.24
2382.20	36.19	Ave	223	1.8	Н	-13.14	23.05	54.00	-30.95
2491.69	43.52	PK	352	1.4	V	-13.08	30.44	74.00	-43.56
2491.69	36.95	Ave	352	1.4	V	-13.08	23.87	54.00	-30.13

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS19S04027029W001 Page 22 of 57

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

9.2 Test Setup

9.3 Test Result:

Test plots

Date: 16.MAY.2019 04:18:02

Date: 16.MAY.2019 20:10:17

Date: 16.MAY.2019 03:58:57

Date: 16.MAY.2019 20:18:26

Date: 16.MAY.2019 20:04:42

π /4 DQPSK Hopping Band edge-left side

Date: 16.MAY.2019 20:07:08

Date: 16.MAY.2019 19:55:53

π /4 DQPSK Hopping Band edge-right side

Date: 16.MAY.2019 20:23:09

Date: 16.MAY.2019 02:48:22

8DPSK Hopping Band edge-left side

Date: 16.MAY.2019 20:13:01

Date: 16.MAY.2019 03:41:48

Date: 16.MAY.2019 20:15:22

Reference No.: WTS19S04027029W001 Page 29 of 57

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

10.2 Test Setup

10.3 Test Result:

Modulation	Test Channel	20 dB Bandwidth	99% Bandwidth
GFSK	Low	0.918MHz	1.020MHz
GFSK	Middle	0.918MHz	0.942MHz
GFSK	High	0.864MHz	0.870MHz
π /4 DQPSK	Low	1.224MHz	1.218MHz
л 4 DQPSK	Middle	1.236MHz	1.200MHz
π /4 DQPSK	High	1.230MHz	1.194MHz
8DPSK	Low	1.266MHz	1.230MHz
8DPSK	Middle	1.254MHz	1.206MHz
8DPSK	High	1.260MHz	1.206MHz

Reference No.: WTS19S04027029W001 Page 30 of 57

Test result plot as follows:

Modulation: GFSK Low Channel

Date: 16.MAY.2019 02:45:50

Date: 16.MAY.2019 02:57:40

Date: 16.MAY.2019 03:14:20

Modulation: $\pi/4$ DQPSK

Date: 16.MAY.2019 04:12:51

Date: 16.MAY.2019 04:25:38

Date: 16.MAY.2019 03:51:27

Modulation: 8DPSK

Date: 16.MAY.2019 04:37:15

Date: 16.MAY.2019 04:27:57

Date: 16.MAY.2019 19:57:41

Reference No.: WTS19S04027029W001 Page 35 of 57

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Setup

11.3 Test Result:

Toot	Dete	Pea			
Test Mode	Data Rate	Low Channel	Middle Channel	High Channel	Limit (dBm)
GFSK	1Mbps	1.76	1.41	1.22	30.00
π/4 DQPSK	2Mbps	1.58	0.02	-0.32	20.97
8DPSK	3Mbps	0.85	0.46	0.46	20.97

Reference No.: WTS19S04027029W001 Page 36 of 57

Test result plot as follows:

Modulation: GFSK
Low Channel

Date: 16.MAY.2019 02:43:06

Middle Channel

Date: 16.MAY.2019 02:55:48

Date: 16.MAY.2019 03:12:03

Modulation: π/4 DQPSK Low Channel Low Channel

Date: 16.MAY.2019 04:10:58

Middle Channel

Date: 16.MAY.2019 04:08:06

Date: 16.MAY.2019 03:57:05

Modulation: 8DPSK Low Channel

Low Channel

Date: 16.MAY.2019 04:35:25

Middle Channel

Date: 16.MAY.2019 04:28:51

Date: 16.MAY.2019 19:56:35

Reference No.: WTS19S04027029W001 Page 41 of 57

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz, Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Setup

12.3 Test Result:

Test result plot as follows:

Modulation	Test Channel	Separation (MHz)	Result
GFSK	Low	1 MHz	PASS
GFSK	Middle	1 MHz	PASS
GFSK	High	1 MHz	PASS
π/4 DQPSK	Low	1 MHz	PASS
π/4 DQPSK	Middle	1 MHz	PASS
π/4 DQPSK	High	1 MHz	PASS
8DPSK	Low	1 MHz	PASS
8DPSK	Middle	1 MHz	PASS
8DPSK	High	1 MHz	PASS

Test plots

Date: 16.MAY.2019 02:50:28

Date: 16.MAY.2019 03:00:01

Date: 16.MAY.2019 03:44:39

Date: 16.MAY.2019 04:14:41

Date: 16.MAY.2019 03:46:14

Date: 16.MAY.2019 04:34:15

Date: 16.MAY.2019 04:30:14

Date: 16.MAY.2019 20:01:23

Reference No.: WTS19S04027029W001 Page 47 of 57

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.2 Test Setup

13.3 Test Result:

Total Channels are 79 Channels.

Date: 16.MAY.2019 20:42:59

Date: 16.MAY.2019 20:36:14

Date: 16.MAY.2019 20:30:24

Reference No.: WTS19S04027029W001 Page 50 of 57

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure:

- 1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 3MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Setup

14.3 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period The test period: T= 0.4(s) * 79 = 31.6 (s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX).

Reference No.: WTS19S04027029W001 Page 51 of 57

So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*31.6*(MkrDelta)/1000		
DH3	1600/79/4*31.6*(MkrDelta)/1000		
DH1	1600/79/2*31.6*(MkrDelta)/1000		
Remark	Mkr Delta is single pulse time.		

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	3.008	0.321	0.4
		middle	3.008	0.321	0.4
		High	3.008	0.321	0.4
π/4 DQPSK	DH5	Low	3.008	0.321	0.4
		middle	3.008	0.321	0.4
		High	3.008	0.321	0.4
8DPSK	DH5	Low	3.008	0.321	0.4
		middle	3.008	0.321	0.4
		High	3.008	0.321	0.4

Modulation: GFSK

Data Packet:

DH5.Low channel

Date: 16.MAY.2019 02:52:51

Data Packet: DH5.Middle channel

Date: 16.MAY.2019 03:01:56

Data Packet: DH5, High channel

Date: 16.MAY.2019 03:03:34

Modulation: π/4 DQPSK

Data Packet:

Date: 16.MAY.2019 03:06:33

Data Packet: 2DH5.Middle channel

Date: 16.MAY.2019 03:06:03

Data Packet: 2DH5, High channel

Date: 16.MAY.2019 03:05:29

Modulation: 8DPSK
Data Packet:
3DH5.Low channel

Date: 16.MAY.2019 03:07:18

Data Packet: 3DH5.Middle channel

Date: 16.MAY.2019 03:08:29

Data Packet: 3DH5, High channel

Date: 16.MAY.2019 03:10:03

Reference No.: WTS19S04027029W001 Page 56 of 57

15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB Printed Antenna for Bluetooth Antenna, meets the requirements of FCC 15.203.

Reference No.: WTS19S04027029W001 Page 57 of 57

16 FCC ID: 2AJIV-MF1690 RF Exposure Report

Note: Please refer to RF Exposure Report: WTS19S04027029W002.

17 Photographs - Test Setup Photos

Note: Please refer to Photos: WTS19S04027029W003.

18 Photographs - Constructional Details

18.1 External Photos

Note: Please refer to Photos: WTS19S04027029W003.

18.2 Internal Photos

Note: Please refer to Photos: WTS19S04027029W003.

====End of Report=====