2019 G1

Ezra Guerrero Alvarez

November 18, 2021

2019 G1

2019 G1

Let ABC be a triangle. A circle passes through A, intersects \overline{AB} and \overline{AC} again at D and E respectively, and intersects \overline{BC} at F and G, with BF < BG. Let T be a point such that \overline{FT} is tangent to the circumcircle of $\triangle BDF$ and \overline{GT} is tangent to the circumcircle of $\triangle CEG$. Prove that $\overline{AT} \parallel \overline{BC}$.

We use directed angles $\mod 180^{\circ}$. Using the tangency and cyclic pentagon ADFGE, we have

$$\angle GFT = \angle BFT = \angle BDF = \angle ADF = \angle AGF$$

 $\angle TGF = \angle TGC = \angle GEC = \angle GEA = \angle GFA$

Adding these, we obtain $-\angle FTG = -\angle FAG$, so T lies on the circumcircle of $\triangle AFG$. However, we also have $\angle GFT = \angle AGF$, so ATGF must be an isosceles trapezoid with $\overline{AT} \parallel \overline{GF}$, which is what we wanted to prove.