INFINITE GAMES

AMAN RAJ (170101006)

MAYANK WADHWANI (170101038)

EXAMPLE

	C	D
\overline{A}	(0, 2)	(1,1)
B	(1, 1)	(1, 2)

- Dominated strategy: A strategy of a player dominates another one if the outcome of the first strategy is better
- Strategy B of player 1 dominates strategy A
- If player 2 knows that player 1 prefers strategy B to strategy A, then he will in turn prefer D to C
- ▶ (B, D) will be played
- This is iterated elimination of dominated strategies
- Surviving strategies are called iteratively admissible strategies.

MULTIPLAYER GAMES

$$\mathcal{G} = \langle P, (V_i)_{i \in P}, E, (\mathbf{W} \mathbf{IN}_i)_{i \in P} \rangle$$

- MULTIPLAYER GAMES
- ► HISTORY AND RUN $|\tilde{a}| = n$, if n is finite -> history else run

- MULTIPLAYER GAMES
- ► HISTORY AND RUN $|\tilde{a}| = n$, if n is finite -> history else run
- Occ(path)

$$\{s \in V \mid \exists i \in \mathbb{N}. \ i < |\rho|, \rho_i = s\}.$$

- MULTIPLAYER GAMES
- ► HISTORY AND RUN $|\tilde{a}| = n$, if n is finite -> history else run
- Occ(path)
- Stratergies (a function ->

$$(V^* \cdot V_i) \to V$$
, such that if $\sigma_i(\rho) = s$ then $(\operatorname{last}(\rho), s) \in E$.

- MULTIPLAYER GAMES
- ► HISTORY AND RUN $|\tilde{a}| = n$, if n is finite -> history else run
- Occ(path)
- Stratergies
- 1) S = set of all stratergies
- 2) S(i) = set of stratergies for state I
- ▶ 3) S(-i) = set of stratergies for all states except i

- MULTIPLAYER GAMES
- ► HISTORY AND RUN $|\tilde{a}| = n$, if n is finite -> history else run
- Occ(path)
- Stratergies
- Winning Stratergies

A strategy σ_i

of player i is said to be winning from state s against a rectangular set $S_{-i} \subseteq S_{-i}$, if for all $\sigma_{-i} \in S_{-i}$, $Out_s(\sigma_i, \sigma_{-i}) \in WIN_i$. It is simply said winning from state s if $S_{-i} = S_{-i}$. For each player i, we write $WIN_i^s(\sigma_P)$ if $Out_s(\sigma_P) \in WIN_i$.

SOME WINNING CONDITIONS REVISITED

- A safety condition is defined by a set $Bad_i \subseteq V$: WIN_i = $(V \setminus Bad_i)^{\omega}$.
- A reachability condition is defined by a set $Good_i \subseteq V$: $WIN_i = V^* \cdot Good_i \cdot V^{\omega}$.

• A Büchi condition is defined by a set $F_i \subseteq V$: WIN_i = $(V^* \cdot F_i)^{\omega}$.

ADMISSIBILITY

σ very weakly dominates strategy σ' with respect to S:

$$\forall \tau \in S_{-i}, \operatorname{Win}_{i}^{s}(\sigma', \tau) \Rightarrow \operatorname{Win}_{i}^{s}(\sigma, \tau)$$

- lacksquare σ weakly dominates strategy σ' with respect to S, if σ very weakly dominates strategy σ' but vice versa is false.
- A strategy $\sigma \in S_i$ is dominated in S if there exists $\sigma' \in S_i$ such that σ' weakly dominates σ
- A strategy that is not dominated in S is admissible in S.

ADMISSIBILITY (CONT.)

- The set S* of iteratively admissible strategies is obtained by iteratively eliminating dominated strategies, starting from set S
- $S^0 = S$; • $S^{n+1} = \prod_{i \in P} \{ \sigma_i \in S_i^n \mid \sigma_i \text{ admissible in } S^n \}$
- $\mathcal{S}^* = \bigcap_{n \in \mathbb{N}} \mathcal{S}^n$

EXAMPLE

VALUE

- Our algorithms are based on the notion of value of a history
- It characterizes whether a player can win (alone) or cannot win (even with the help of other players)
- The value of history h for player i after the n-th step of elimination, written as Valin (h).
- No strategy profile Sn winning for player i, then value = -1
- If a strategy is always winning for player i, then value = 1
- Else value = 0

- The winning coalition problem
- ▶ Given a set of vertices, 2 subsets W,L, find an iteratively admissible profile such that all players in W wins and all players In L lose the game.
- Our robot motion is a type of winning coalition problem

- The winning coalition problem
- lambda

$$\lambda(h) = \{i \in P \mid \exists k < |h|, \ h_k \in Bad_i\}.$$

- The winning coalition problem
- Lambda
- T -> basically set of all badtransitions (all transitions where if we take that transition, we will lose)

Definition 5. We write T_i^n for the set of transitions $s \to s' \in E$, such that s is controlled by player i and $\operatorname{Val}_i^n(s) > \operatorname{Val}_i^n(s')$. Such transitions are said to be dominated after the n-th step of elimination. We write T^n for the union of all T_i^n .

- The winning coalition problem
- Lambda
- T -> basically set of all badtransitions (all transitions where if we take that transition, we will lose)
- Doubt -> we wont have a transition from 1->-1 right?

- The winning coalition problem
- Lambda
- T -> basically set of all useless transitions (all transitions where if we take that transition, we will lose)
- Subgame

Definition 6 (Subgame). Let $\mathcal{G} = \langle P, V, E, \operatorname{Win}_P \rangle$ be a game and $T \subseteq E$ a set of transitions. If each state $s \in V$ has at least one successor by $E \setminus T$, the game $\mathcal{G} \setminus T = \langle P, V, E \setminus T, \operatorname{Win}_P \rangle$ is

PROPOSITIONS

- Lemma 1: A player that plays according to an admissible strategy cannot go to a state that changes the value of the current history
- Players losing on h: $\lambda(h) = \{i \in P \mid \exists k < |h|, h_k \in Bad_i\}$
- Proposition 1: For safety winning conditions, the value of a history h only depends on λ(h) and last(h)
- We encode the set $\lambda(h)$ of losing players in the state of the game
- New game: States in $2^P \times V$ Set of transitions $(\lambda, s) \to (\lambda \cup \{i \mid s' \in Bad_i\}, s')$ for any $\lambda \subseteq P$, if $s \to s'$

DOMINANCE OF TRANSITIONS

- Definition: T_i^n for the set of transitions $s ext{ -> } s' \in E$, s.t. s is controlled by player i and $Val_i^n(s) > Val_i^n(s')$
- Such transitions are said to be dominated after the n-th step of elimination
- ► Tⁿ for the union of all T_iⁿ
- Subgame: Let G = <P, V, E, WIN_P> be a game and T ⊆ E a set of transitions. If each state s ∈ V has at least one successor by E \ T , the game G \ T = <P, V, E \ T, WIN_P> is called a subgame of G
- Proposition 2: All admissible strategies w.r.t. Sⁿ of player i are strategies of S_i (G \ T_iⁿ)

ALGORITHM

Algorithm 1: Computing the set of iteratively admissible strategies

```
n := 0; T_i^{-1} := \emptyset;
2 repeat
          for all the s \in V do
                 if there is a winning strategy for player i from s in
                \mathcal{G} \setminus T^{n-1} then \operatorname{Val}_i^n(s) := 1;
                 else if there is no winning run for player i from s in
                \mathcal{G} \setminus T^{n-1} then \operatorname{Val}_i^n(s) := -1;
                else \operatorname{Val}_{i}^{n}(s) := 0;
6
          for all the i \in P do
7
                T_i^n := T_i^{n-1} \cup \{(s, s') \in E \mid s \in V_i \wedge \operatorname{Val}_i^n(s) > 1\}
8
                \operatorname{Val}_{i}^{n}(s')\};
          n := n + 1;
10 until \forall i \in P. T_i^n = T_i^{n-1};
```

EXAMPLE REVISITED

- ▶ Val of q4 is -1 initially
- So q0->q4 removed
- Now, player 2 may lose if go to q2', so remove that edge

PROBLEM STATEMENT

► ROBOT MOTION PROBLEM

The game structure $\mathcal{G}^{\mathcal{M}}$ of imperfect information corresponding to multi-agent system $\mathcal{M} = \{R_1, R_2\}$ is a tuple $\mathcal{G}^{\mathcal{M}} = (\mathcal{V}, \Lambda, \tau, \mathcal{OBS}, \gamma)$ where

$$\begin{split} \mathcal{V} &= \{t\} \cup \mathcal{O}_1 \cup \mathcal{O}_2, \\ \Lambda &= \Lambda_1 \cup \Lambda_2, \\ \tau &= \tau_e \vee \tau_s, \\ \tau_e &= t = 1 \wedge t' = 2 \wedge \tau_1 \wedge Same(\mathcal{O}_2, \mathcal{O}_2'), \\ \tau_s &= t = 2 \wedge t' = 1 \wedge \tau_2 \wedge Same(\mathcal{O}_1, \mathcal{O}_1'), \\ \mathcal{OBS} &= \mathcal{OBS}_2, and \\ \gamma &= \gamma_2. \quad \Box \end{split}$$

PLAN OF ACTION

- ROBOT MOTION PROBLEM
- Define -> initial predicate, global predicate
- In some way, convert our game to a safety game
- Find admissible stratergies for this safety game
- Composition
- Concurrency??