Lineare Algebra I

Blatt 6

Abgabe: 22.12.2020, 10 Uhr

Gruppennummer angeben!

Aufgabe 1 (15 Punkte).

Gegeben einen Körper \mathbb{K} und eine natürliche Zahl $n \geq 1$, betrachte den \mathbb{K} -Vektorraum \mathbb{K}^n .

(a) Zeige, dass für jedes n-Tupel (a_1, \ldots, a_n) aus \mathbb{K}^n die Abbildung

$$F_{\bar{a}}: \mathbb{K}^n \to \mathbb{K}$$

$$(x_1, \dots, x_n) \mapsto \sum_{i=1}^n a_i x_i$$

linear (bezüglich des K-Vektorraumes K) ist. Berechne die Darstellungsmatrix der Abbildung $F_{\bar{a}}$, d.h. die Matrix, welche $F_{\bar{a}}$ darstellt.

(b) Beschreibe explizit die Menge

$$\{\bar{a} \in \mathbb{K}^n \mid F_{\bar{a}} = \mathbf{0}\}.$$

- (c) Sei $(a, b, c) \neq (0, 0, 0)$ ein Tripel aus \mathbb{R}^3 . Was ist eine geometrische Interpretation der Teilmenge $\text{Ker}(F_{(a,b,c)})$ von \mathbb{R}^3 ? Was ist hierbei die Rolle von (a,b,c)?
- (d) Zeige, dass die Abbildung

$$\Psi: \quad \mathbb{K}^n \quad \to \quad (\mathbb{K}^n)^*$$
$$(a_1, \dots, a_n) \quad \mapsto \quad F_{\bar{a}}$$

ein Monomorphismus ist (wobei $(\mathbb{K}^n)^*$ der Dualraum zu \mathbb{K}^n ist).

(e) Sei $G: \mathbb{K}^n \to \mathbb{K}$ die einzige lineare Abbildung mit $G(e_1) = \ldots = G(e_{n-1}) = -1_{\mathbb{K}}$ und $G(e_n) = 1_{\mathbb{K}}$. Liegt G im Bildbereich der obigen Abbildung Ψ ?

Aufgabe 2 (5 Punkte).

Sei F der Endomorphismus des \mathbb{R} -Vektorraumes \mathbb{R}^4 mit Darstellungsmatrix

$$A = \begin{pmatrix} 1 & -4 & 5 & 3 \\ 0 & 1 & -2 & -2 \\ -1 & 3 & -2 & 1 \\ -1 & 3 & -4 & -3 \end{pmatrix}.$$

- (a) Was ist die Dimension des Kerns von F?
- (b) Was ist die Dimension des Bildbereiches $F(\mathbb{R}^4)$?

ABGABE IN ILIAS ALS EINE EINZIGE PDF-DATEI EINREICHEN.