

Data sheet 5SYA 1262-04 Mar. 23

5SHY 65L4522

Asymmetric Integrated Gate-Commutated Thyristor

- V_{DRM} = 4500 V
- $I_{TGQM} = 6000 A$
- $I_{TSM} = 38.6 \cdot 10^3 \,\text{A}$
- $V_{T0} = 1.39 V$
- $r_T = 0.390 \text{ m}\Omega$
- V_{DC} = 2800 V
- High snubberless turn-off rating
- Optimized for high switching frequency
- High electromagnetic immunity
- Simple control interface with status feedback
- AC or DC supply voltage
- Option for series connection (contact factory)

Blocking

Maximum rated values 1)

Parameter	Symbol	Conditions min		typ	max	Unit
Rep. peak off-state voltage	V_{DRM}	Gate Unit energized.			4500	V
Permanent DC voltage for 100 FIT failure rate of GCT	V _{DC}	bient cosmic radiation at sea level in open air. e Unit energized.		2800	V	
Reverse voltage	V_{RRM}				17	V
Characteristic values						
Parameter	Symbol	Conditions	min	typ	max	Unit
Rep. peak off-state current	I _{DRM}	V _D = V _{DRM} , Gate Unit energized.		50	mA	

¹⁾ Maximum rated values indicate limits beyond which damage to the device may occur.

Mechanical data (see Fig. 12, 13)

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Mounting force	Fm		50	55	60	kN
Characteristic values						
Parameter	Symbol	Conditions	min	typ	max	Unit
Pole-piece diameter	Dp	± 0.1 mm		85		mm
Housing thickness	Н	F _m = 55 kN, T _a = 25 °C	25.3		25.8	mm
Weight (incl. Gate Unit)	m				2.9	kg
Surface creepage distance	Ds	Anode to Gate	33			mm
Air strike distance	Da	Anode to Gate	10			mm
Length (incl. Gate Unit)	I	± 1.0 mm		439		mm
Height (incl. Gate Unit)	h	± 1.0 mm		41		mm
Width IGCT (incl. Gate Unit)	w	± 1.0 mm		173		mm

GCT Data

On-state (see Fig. 3, 4, 5, 6, 15)

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Max. average on-state current	I _{T(AV)M}	Half sine wave, Tc = 85 °C,			2320	Α
RMS on-state current	I _{T(RMS)}	Double side cooled			3640	Α
Peak non-repetitive surge current	I _{TSM}	tp = 3 ms, Tj = 140 °C, — sine half wave.			52.9·10³	Α
Limiting load integral	I²t	VD = V _R = 0 V, after surge			4.20·10 ⁶	A ² s
Peak non-repetitive surge current	I _{TSM}	tp = 10 ms, Tj = 140 °C, — sine half wave,			38.6·10³	Α
Limiting load integral	l²t	ine nair wave, /D = V _R = 0 V, after surge			7.45·10 ⁶	A ² s
Stray inductance between GCT and antiparallel diode	L _D	Only relevant for applications with antiparallel diode to the IGCT			200	nH
Critical rate of rise of on-state current	di _T /dt _(cr)	For higher di₁/dt and current lower than 100 A an external retrigger pulse is required.			200	A/µs
Characteristic values						
Parameter	Symbol	Conditions	min	typ	max	Unit
On-state voltage	V _T	$I_T = 4000 \text{ A}, T_j = 140 ^{\circ}\text{C}$ 2.55		2.80	2.95	V
Threshold voltage	V _(T0)	I _T = 1000 A - 5000 A, T _j = 140 °C		1.36	1.39	V
Slope resistance	r _T			0.361	0.390	mΩ

Turn-on switching (see Fig. 15, 16)

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Critical rate of rise of on-state current	di _T /dt _(cr)	f = 0 Hz - 500 Hz, $V_D = 2800 \text{ V}, T_{vj} = 0 \text{ °C} - 140 \text{ °C},$ $I_T = 6000 \text{ A}, I_{TM} \le 9000 \text{ A}$			1900	A/µs
Characteristic values						
Parameter	Symbol	Conditions	min	typ	max	Unit
Turn-on delay time	t _{d(on)}	V _D = 2800 V, T _{vj} = 140 °C,			4	μs
Turn-on delay time status feedback	t _{d(on)} SF	$I_T = 4000 \text{ A},$ $di_T/dt = V_D / L_i, L_i = 1.5 \mu H,$			7	μs
Rise time	t _r	$-$ C _{CL} = 10 μ F, L _{CL} = 200 nH, D _{FWD} = 5SDF 20L4520			3	μs
Turn-on energy per pulse	Eon	D _{CL} = 5SDF 10H4503			3	J

Turn-off switching (see Fig. 2, 7, 8, 9, 11, 15, 16)

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Controllable turn-off current (non repetitive)	$\begin{split} & T_{Vj} = 0 \text{ °C} - 140 \text{ °C} \\ & V_D = 2800 \text{ V}, V_{DM} \leq V_{DRM,} \\ & R_S = 0.65 \ \Omega, \ C_{CL} = 10 \ \mu\text{F}, \\ & L_{CL} \leq 200 \ n\text{H}, \\ & D_{FWD} = 5\text{SDF} \ 20\text{L}4520 \\ & D_{CL} = 5\text{SDF} \ 10\text{H}4503 \end{split}$				6000	А
Characteristic values						
Parameter	Symbol	Conditions	min	typ	max	Unit
Turn-off delay time	$t_{d(off)}$	$T_{vj} = 140 ^{\circ}\text{C},$ $I_{TGO} = 4000 \text{A}.$			8	μs
Turn-off delay time status feedback	t _{d(off)} SF	I_{TGQ} = 4000 A, — V_D = 2800 V, V_{DM} ≤ V_{DRM} , — U_i = 1.5 μ H, — —			7	μs
Turn-off energy per pulse E_{off}		$R_s = 0.65 \Omega$, $C_{CL} = 10 \mu F$, $L_{CL} = 200 \text{ nH}$, $D_{FWD} = 5\text{SDF } 20\text{L}4520$ $D_{CL} = 5\text{SDF } 10\text{H}4503$		17.4	1921.5	J

¹⁾ Maximum rated values indicate limits beyond which damage to the device may occur.

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com www.hitachienergy.com/semiconductors We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Gate Unit Data

Power supply (see Fig. 2, 10, 11, 13, 14)

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Gate Unit voltage (Connector X1)	V _{Gin RMS}	C square wave amplitude (15 kHz - 100kHz) or DC voltage. lo galvanic isolation to power circuit.			40	V
Min. current needed to power up the Gate Unit	Gin Min	ectified average current 2 ee application note 5SYA 2031			Α	
Gate Unit power consumption	P _{Gin Max}				130	W
Characteristic values						
Parameter	Symbol	Conditions	min	typ	max	Unit
Internal current limitation	I _{Gin Max}	Rectified average current limited by the Gate Unit		8	Α	

Optical control input/output 2)

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Min. on-time	ton		40			μs
Min. off-time	t _{off}		40			μs
Characteristic values						
Parameter	Symbol	Conditions	min	typ	max	Unit
Optical input power	P _{on CS}		-15		-1	dBm
Optical noise power	Poff cs	CS: Command signal SF: Status feedback			-45	dBm
Optical output power	P _{on SF}	Valid for 1mm plastic optical fiber (POF)	-19		-1	dBm
Optical noise power	P _{off SF}				-50	dBm
Pulse width threshold	t _{GLITCH}	Max. pulse width without response			400	ns
External retrigger pulse width	t _{retrig}		700		1100	ns

Connectors 2) (see Fig. 12, 13, 14)

Parameter	Symbol	escription			
Gate Unit power connector	X1	P: MTA-156, Part Number 641210-5 ³⁾			
LWL receiver for command signal	CS	Avago, Type HFBR-2521Z ⁴⁾			
LWL transmitter for status feedback	SF	Avago, Type HFBR-1528Z ⁴⁾			

Visual feedback

Parameter	Symbol	Description	Color	
Gate OFF	LED1	"Light" when GCT is off	(green)	
Gate ON	LED2	"Light" when gate-current is flowing	(yellow)	
Fault	LED3	"Light" when not ready / failure	(red)	
Power supply voltage OK	LED4	"Light" when power supply is within specified range	(green)	

¹⁾ Maximum rated values indicate limits beyond which damage to the device may occur.

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com www.hitachienergy.com/semiconductors We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

²⁾ Do not disconnect or connect fiber optic cables while light is on.

³⁾ AMP, www.amp.com

⁴⁾ Avago Technologies, $\underline{www.avagotech.com}$

Thermal

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Junction operating temperature	T_{vj}		0		140	°C
Storage temperature range	T_{stg}		0		60	°C
Ambient operational temperature	Ta		0		50	°C
Characteristic values						

Parameter	Symbol	Conditions min	typ	max	Unit
	R _{th(j-c)}	Double side cooled $F_m = 50 60 \text{ kN}$		6.8	K/kW
Thermal resistance junction-to-case of GCT	R _{th(j-c)A}	Anode side cooled $F_m = 50 60 \text{ kN}$		11.3	K/kW
	R _{th(j-c)C}	Cathode side cooled $F_m = 50 60 \text{ kN}$		17.1	K/kW
Thermal resistance case-to-heatsink of GCT	R _{th(c-h)}	Double side cooled $F_m = 50 60 \text{ kN}$		2.4	K/kW

¹⁾ Maximum rated values indicate limits beyond which damage to the device may occur.

Analytical function for transient thermal impedance:

$$Z_{th(j-c)}(t) = \sum_{i=1}^{n} R_i(1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _i (K/kW)	3.45	2.26	0.97	0.10
τι(σ)	0.6050	0.1010	0.0052	0.0006

Fig. 1 Transient thermal impedance (junction-to-case) vs. time (max. values)

Max. Turn-off current for Lifetime operation

- calculated lifetime of on-board capacitors 20 years
- with slightly forced air cooling (air velocity > 0.5 m/s)
- strong air cooling allows for increased ambient temperature

Fig. 2 Max. turn-off current vs. frequency for lifetime operation

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com www.hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Max. on-state characteristic model:				
$V_{T25} = A_{Tvj} + B_{Tvj} \cdot I_T + C_{Tvj} \cdot ln(I_T + 1) + D_{Tvj} \cdot \sqrt{I_T}$				
Valid for I _T = 400 – 30000 A				
	A ₂₅	B ₂₅	C ₂₅	D ₂₅
Max.	-36.22·10 ⁻³	214.9 10-6	279 · 10 ⁻³	-5.014 · 10 ⁻³
Тур.	265·10 ⁻³	192.9 10-6	202.8·10 ⁻³	-1.763·10 ⁻³

Fig. 3 GCT on-state voltage characteristics

Fig. 5 Surge on-state current vs. pulse length, half-sine wave, no reapplied voltage

Fig. 4 GCT on-state voltage characteristics

Fig. 6 Surge on-state current vs. number of pulses, half-sine wave, 10 ms, 50Hz, no reapplied voltage

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

T_{vj} = 0 ... 140 °C 6000 5000 4000 3000 2000 5SHY 65L4522 Aug. 20 $V_{DM} < V_{DRM}$ $L_i = 1.5 \mu H$ 1000 $R_s = 0.65 \Omega$ C_{CL} = 10 µF $L_{CL} = 0.20 \, \mu H$ 0 500 1000 1500 2000 2500 3000 $V_D[V]$

Fig. 7 GCT turn-off energy per pulse vs. turn-off current

Fig. 8 Safe Operating Area, single pulse

I_{TGQ} [A]

Fig. 9 GCT turn-off energy per pulse vs. on-state voltage

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Fig. 10 Typ. Gate Unit input power in chopper mode

Fig. 11 Burst capability of Gate Unit

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Fig. 12 Outline drawing; all dimensions are in millimeters and represent nominal values unless stated otherwise

Fig. 13 Detail A: pin out of supply connector X1

Fig. 14 Block diagram

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com
www.hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Fig. 15 General current and voltage waveforms with IGCT - specific symbols

Fig. 16 Test circuit

Related documents:

5SYA 2031	Applying IGCT Gate Units
5SYA 2032	Applying IGCTs
5SYA 2036	Recommendations regarding mechanical clamping of Press Pack High Power Semiconductors
5SYA 2046	Failure rates of IGCTs due to cosmic rays
5SYA 2048	Field measurements on High Power Press Pack Semiconductors
5SYA 2051	Voltage ratings of high power semiconductors
5SZK 9118	General Environmental Conditions for High Power Semiconductors

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com www.hitachienergy.com/semiconductors We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.