Final Writeup

Kadriye Sude Almus

10/25/2020

Introduction

The Data

data <- read.csv("data/data-train.csv")</pre>

Goals

Prediction: For a new parameter setting of (Re, F r, St), predict its particle cluster volume distribution in terms of its four raw moments.

Inference: Investigate and interpret how each parameter affects the probability distribution for particle cluster volumes.

Methodology

Linear Modeling

Our univariate exploratory data analysis of Re, Fr, St, and each moment revealed that the R_moments are heavily right skewed, which poses a problem to potential linear analysis. We applied log transformations on each moment to obtain more normally distributed variables. The log-transformed R_moments are approximately normal, and it appears that each R_moment variable has somewhat of a linear relationship with St.

pairs(data)

Accordingly, we fit a basic linear model onto each log-transformed response variable. While the adjusted R^2 value for R_moment_1 was very high at 0.9949, subsequent moments exibited decreasing adjusted R^2 values, with R_moment_4 having an adjusted R^2 value of 0.6518. We explored multicollinearity through VIFs for each model, which were very low. We also explored the addition of interaction terms to the model. The only interaction term which was significant for all R_moments was the interaction between Re and Fr. Constructing a linear model as such:

glm.inter <- lm(cbind(log(R_moment_1), log(R_moment_2), log(R_moment_3), log(R_moment_4)) ~</pre>

(St + fact

```
summary(glm.inter)
## Response log(R_moment_1) :
##
## Call:
   lm(formula = `log(R_moment_1)` ~ (St + factor(Re) + factor(Fr) +
##
       factor(Re) * factor(Fr)), data = data)
##
##
##
   Residuals:
##
        Min
                        Median
                                      3Q
                                              Max
                   1Q
   -0.48592 -0.00915
                      0.03880
                                0.07277
##
##
   Coefficients: (1 not defined because of singularities)
##
                                Estimate Std. Error
                                                      t value Pr(>|t|)
## (Intercept)
                                -2.27306
                                             0.04110
                                                      -55.299
                                                                < 2e-16 ***
## St
                                             0.01803
                                                                < 2e-16 ***
                                 0.24989
                                                       13.863
## factor(Re)224
                                             0.05160
                                                      -73.948
                                -3.81588
                                                                < 2e-16 ***
## factor(Re)398
                                             0.05621 -106.548
                                -5.98854
                                                               < 2e-16 ***
## factor(Fr)0.3
                                -0.26297
                                             0.05622
                                                       -4.678 1.16e-05 ***
## factor(Fr)Inf
                                                       -5.693 1.99e-07 ***
                                -0.32944
                                             0.05787
## factor(Re)224:factor(Fr)0.3
                                 0.22050
                                             0.07574
                                                        2.911
                                                               0.00466 **
## factor(Re)398:factor(Fr)0.3
                                                  NA
                                                           NA
                                                                     NA
                                                        5.179 1.63e-06 ***
## factor(Re)224:factor(Fr)Inf
                                 0.40185
                                             0.07759
```

```
## factor(Re)398:factor(Fr)Inf 0.50151
                                           0.08366
                                                      5.995 5.58e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1312 on 80 degrees of freedom
## Multiple R-squared: 0.9969, Adjusted R-squared: 0.9966
## F-statistic: 3193 on 8 and 80 DF, p-value: < 2.2e-16
##
##
## Response log(R_moment_2) :
##
## Call:
## lm(formula = `log(R_moment_2)` ~ (St + factor(Re) + factor(Fr) +
##
      factor(Re) * factor(Fr)), data = data)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
  -5.8551 -0.0206 0.3104 0.5102
                                   1.0043
## Coefficients: (1 not defined because of singularities)
                               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                            0.3843 13.498 < 2e-16 ***
                                 5.1869
## St
                                                     4.949 4.06e-06 ***
                                 0.8340
                                            0.1685
## factor(Re)224
                                            0.4824 -15.420 < 2e-16 ***
                                -7.4387
## factor(Re)398
                               -11.3837
                                            0.5254 -21.665 < 2e-16 ***
## factor(Fr)0.3
                                -6.4163
                                            0.5256 -12.208 < 2e-16 ***
## factor(Fr)Inf
                                -6.6523
                                            0.5410 -12.297 < 2e-16 ***
## factor(Re)224:factor(Fr)0.3
                                                     6.196 2.37e-08 ***
                                 4.3872
                                            0.7081
## factor(Re)398:factor(Fr)0.3
                                     NA
                                                NA
                                                        NA
                                                                 NA
## factor(Re)224:factor(Fr)Inf
                                 4.7181
                                            0.7254
                                                     6.504 6.25e-09 ***
## factor(Re)398:factor(Fr)Inf
                                 7.0758
                                            0.7821
                                                     9.047 7.09e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.226 on 80 degrees of freedom
## Multiple R-squared: 0.9008, Adjusted R-squared: 0.8909
## F-statistic: 90.79 on 8 and 80 DF, p-value: < 2.2e-16
##
##
## Response log(R_moment_3) :
##
## Call:
## lm(formula = log(R_moment_3) \sim (St + factor(Re) + factor(Fr) +
       factor(Re) * factor(Fr)), data = data)
##
##
## Residuals:
       Min
                  10
                       Median
                                    3Q
                                            Max
                                         1.6559
## -10.3570 -0.0586
                       0.4564
                                0.8018
## Coefficients: (1 not defined because of singularities)
                               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                13.3986
                                            0.6241 21.469 < 2e-16 ***
## St
                                 1.1740
                                            0.2737
                                                     4.290 4.97e-05 ***
## factor(Re)224
                               -11.1636
                                            0.7835 -14.249 < 2e-16 ***
```

```
## factor(Re)398
                               -17.0302
                                            0.8534 -19.957 < 2e-16 ***
## factor(Fr)0.3
                                            0.8536 -14.618 < 2e-16 ***
                               -12.4781
                                            0.8786 -14.536 < 2e-16 ***
## factor(Fr)Inf
                               -12.7719
## factor(Re)224:factor(Fr)0.3
                                 8.3648
                                            1.1500
                                                     7.274 2.10e-10 ***
## factor(Re)398:factor(Fr)0.3
                                     NA
                                                NA
                                                        NA
                                                                 NΑ
                                            1.1781
                                                     7.446 9.76e-11 ***
## factor(Re)224:factor(Fr)Inf
                                 8.7718
## factor(Re)398:factor(Fr)Inf 13.3707
                                            1.2702 10.527 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.991 on 80 degrees of freedom
## Multiple R-squared: 0.8882, Adjusted R-squared: 0.877
## F-statistic: 79.44 on 8 and 80 DF, p-value: < 2.2e-16
##
##
## Response log(R_moment_4) :
##
## Call:
## lm(formula = `log(R_moment_4)` ~ (St + factor(Re) + factor(Fr) +
       factor(Re) * factor(Fr)), data = data)
##
## Residuals:
##
       Min
                  1Q
                                    3Q
                       Median
                                            Max
## -14.4109
              0.0031
                       0.5741
                                         2.2382
                                1.0506
##
## Coefficients: (1 not defined because of singularities)
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                21.6950
                                            0.8354 25.971 < 2e-16 ***
## St
                                 1.4690
                                                     4.010 0.000135 ***
                                            0.3663
## factor(Re)224
                               -14.9060
                                            1.0487 -14.214 < 2e-16 ***
## factor(Re)398
                               -22.7148
                                            1.1422 -19.886
                                                            < 2e-16 ***
## factor(Fr)0.3
                               -18.4708
                                            1.1425 -16.166 < 2e-16 ***
## factor(Fr)Inf
                               -18.8106
                                            1.1760 -15.995 < 2e-16 ***
                                            1.5393
## factor(Re)224:factor(Fr)0.3 12.2758
                                                     7.975 9.06e-12 ***
## factor(Re)398:factor(Fr)0.3
                                                        NA
                                                                 NA
                                     NA
                                                NA
## factor(Re)224:factor(Fr)Inf 12.7559
                                            1.5769
                                                     8.089 5.40e-12 ***
## factor(Re)398:factor(Fr)Inf 19.5683
                                            1.7001
                                                   11.510 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.666 on 80 degrees of freedom
## Multiple R-squared: 0.8917, Adjusted R-squared: 0.8809
## F-statistic: 82.34 on 8 and 80 DF, p-value: < 2.2e-16
```

Adding the interaction term between Re and Fr improved the fit of the model according to the adjusted R^2 values, which are higher for every moment.

###Predictive performance of linear modeling

We split data into training and testing sets to evaluate the predictive ability of the models we explored. The linear models with the interaction term for Re and Fr outperformed any other linear model, producing lower test MSEs for every moment of R.

Split data into training and test sets

```
attach(data)
set.seed(3)
train_ind <- sample(x = nrow(data), size = 0.8 * nrow(data))
test_ind_neg <- -train_ind
training <- data[train_ind, ]
testing <- data[test_ind_neg, ]</pre>
```

Linear model using least squares & interaction term

```
fit.lm1 <- lm(log(R_moment_1) ~ (St + factor(Re) + factor(Fr) + factor(Re)*factor(Fr)), data = training
pred.lm1 <- predict(fit.lm1, testing)</pre>
## Warning in predict.lm(fit.lm1, testing): prediction from a rank-deficient fit
## may be misleading
mse_test1 <- mean((pred.lm1 - log(testing$R_moment_1))^2)</pre>
fit.lm2 <- lm(log(R_moment_2) ~ (St + factor(Re) + factor(Fr) + factor(Re)*factor(Fr)), data = training
pred.lm2 <- predict(fit.lm2, testing)</pre>
## Warning in predict.lm(fit.lm2, testing): prediction from a rank-deficient fit
## may be misleading
mse_test2 <- mean((pred.lm2 - log(testing$R_moment_2))^2)</pre>
fit.lm3 <- lm(log(R_moment_3) ~ (St + factor(Re) + factor(Fr) + factor(Re)*factor(Fr)), data = training
pred.lm3 <- predict(fit.lm3, testing)</pre>
## Warning in predict.lm(fit.lm3, testing): prediction from a rank-deficient fit
## may be misleading
mse_test3 <- mean((pred.lm3 - log(testing$R_moment_3))^2)</pre>
fit.lm4 <- lm(log(R_moment_4) ~ (St + factor(Re) + factor(Fr) + factor(Re)*factor(Fr)), data = training
pred.lm4 <- predict(fit.lm4, testing)</pre>
## Warning in predict.lm(fit.lm4, testing): prediction from a rank-deficient fit
## may be misleading
mse_test4 <- mean((pred.lm4 - log(testing$R_moment_4))^2)</pre>
mse_test1
## [1] 0.008822464
mse_test2
## [1] 1.396723
mse_test3
## [1] 3.184988
mse_test4
## [1] 5.272393
```

Having an interaction term significantly improved the test MSEs of the linear model.

Other model selection methods

We applied other model selection methods and nonlinear models such as principle components regression, partial least squares, regression tree, random forest, box cox transformations, and polynomial regressions. The model fits and predictive performances of these models were poor or the same as the linear regression model.

Splines and GAM

Final Model

Linear model vs gam with splines

Results

Predictive results of the final model + uncertainties and trade-offs

Scientific insight

Conclusion