Lecture 6

Proofs 2: Proofs by Contrapositive

Special Section

Special Discussion Sections

Focus on Fundamentals (FoF) and CSP Discussions

- 2 hours
- Smaller class size, focus on group-work
- Need to change your section enrollment!
- 021: Friday 2-4 in 1230 USB
 - If interested, fill out the Admin form and we'll get you an override
 - Must happen before Monday's drop/add deadline
- 023: Monday 5:30-7:30 in 2150 DOW
 - Self-enroll on Wolverine Access

Extended Discussion Sections

- 1.5 hours
- Same format as standard discussions, just meet for longer
- Open to anyone: **no need** to change your section enrollment
 - 017: F 12-1:30 in 1005 DOW
 - 018: F 3-4:30 in 185 EWRE
 - 019: M 12-1:30 in 185 EWRE
 - 020: T 3-4:30. in 2150 DOW

Reminder: Surveys

- 2/3 surveys due today!
- Last survey (exam date confirmation) due next Tuesday, Sep 19
 - But you could do it today anyways, just for fun

Learning Objectives

After today's lecture (and the associated readings, discussion, & homework), you should be able to:

- Know Technical Vocab: Proof by contrapositive, "without loss of generality" (WLOG)
- Read and write proofs by contrapositive
- Recognize propositions for which proof by contrapositive might be helpful
- Understand when it is and isn't valid to use "without loss of generality" in a proof

Outline

- Disproofs
- Proofs by Contrapositive
- "Without Loss of Generality"

- A proof is a logical argument showing that a given proposition is true.
- A disproof is a logical argument showing that a given proposition is false.
- A disproof is **not** the same as a failed proof.
 - Attempting a proof but then getting stuck somewhere does **not** show that the statement is false! Maybe another proof would work.

To Disprove p:

First state the negation $\neg p$

Then prove $\neg p$.

(Showing that $\neg p$ is true is the same as showing that p is false.)

Def: An integer x is a multiple of m if there is an integer k with x = km.

Disprove: For all integers x, if x is a multiple of 3, then x is a multiple of 9.

Disproof:

Def: An integer x is a multiple of m if there is an integer k with x = km.

Disprove: For all integers x, if x is a multiple of 3, then x is a multiple of 9.

Disproof:

We will prove the negation:

"There exists an integer x such that x is a multiple of 3 and x is not a multiple of 9."

- Consider x = 3.
- $x = 3 \cdot 1$, so x is a multiple of 3.
- By algebra, when x=3 the only number with 9k=x is $k=\frac{1}{3}$.
- Since $\frac{1}{3}$ is not an integer, this means that x is not a multiple of 9.
- (optional concluding sentence) We have now proved that x is a multiple of 3 and not a multiple of 9, so the negation is proved.

Reminder:

The negation of "If p, then q" is "p and not q"

Disproofs on Mixed Quantifiers

(A) Proposition:

For all integers x, there exists an integer y such that $x^2 + y = 3$.

(B) Proposition:

There exists an integer y such that for all integers x, we have $x^2 + y = 3$.

True

False

Disproof:

...try it – can you disprove this?

Disprove:

There exists an integer y such that for all integers x, we have $x^2 + y = 3$.

Disproof:

Disprove:

There exists an integer y such that for all integers x, we have $x^2 + y = 3$.

Disproof:

• We will prove the negation:

"For all integers y, there exists an integer x such that $x^2 + y \neq 3$."

- Let y be an arbitrary integer.

• Consider $x = \begin{cases} 1 & \text{if } y = 3 \\ 0 & \text{if } y \neq 3 \end{cases}$ • So $x^2 + y = \begin{cases} 1 + y = 4 \neq 3 & \text{if } y = 3 \\ 0 + y = y \neq 3 & \text{if } y \neq 3 \end{cases}$

(Optional concluding sentence) We proved the negation, so we disproved the original proposition.

Many different choices for x would work here. Piecewise definitions are often helpful!

A quick look-ahead

Disprove:

There exists an integer y such that for all integers x, we have $x^2 + y = 3$.

Disproof:

• We will prove the negation:

"For all integers y, there exists an integer x such that $x^2 + y \neq 3$."

- Let y be an arbitrary integer.
- We will consider two cases: either y = 3, or $y \ne 3$.
- Case 1: Assume that y = 3.
 - Then consider x = 1...
- Case 2: Assume that $y \neq 3$.
 - Then consider x = 0...
- In either case, $x^2 + y \neq 3$, so the proposition is proved.

This is an example of a "proof by cases"

We'll talk about this a lot next week!

Outline

Disproofs

Proofs by Contrapositive

"Without Loss of Generality"

Handout

Some Proofs

Def: Int x is "even" if there exists an int k such that x = 2k.

Prove: For all integers x, if x is even, then x^2 is even.

Prove: For all integers x, if x^2 is even, then x is even.

Prove: For all integers x, if x is even, then x^2 is even.

Prove: For all integers x, if x is even, then x^2 is even.

Proof:

- Let x be an arbitrary integer.
- **Assume** that *x* is even.
- So there is an integer k with x = 2k.
- So $x^2 = (2k)^2$ = $4k^2$ = $2(2k^2)$
- Since k is an integer, $2k^2$ is also an integer
- So x^2 is even.

Prove: For all integers x, if x^2 is even, then x is even.

Prove: For all integers x, if x^2 is even, then x is even.

Proof Attempt:

- Let x be an **arbitrary** integer.
- Assume that x^2 is even.
- So there exists an integer k with $x^2 = 2k$
- So $\mathbf{x} = \sqrt{2k}$
- ..
- ...then what?
- ...
- So x is even

"If I bring an umbrella, then I will stay dry."

Recall: these statements are equivalent!

They are **contrapositives** of each other.

This gives us a powerful new tool for word proofs

"If I do **not** stay dry, then I did **not** bring an umbrella."

Proof by Contrapositive

Prove: For all integers x, if x^2 is even, then x is even.

contrapositive

Prove the contrapositive: For all integers x, if x is odd, then x^2 is odd.

This statement has the **same logical meaning** as the original, so we can prove it instead!

Axiom: an integer is not even if and only if it is odd

- "Proof By Contrapositive:"
 - Any proof that starts out by modifying the given proposition, replacing all or part of it with its contrapositive.
- "Direct Proof:"
 - A proof that does **not** use this contrapositive strategy, nor any of the other new proof styles we'll see soon.
 - Before this, all proofs we'd seen were direct proofs.

Proof by Contrapositive

Handout

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, if x^2 is even, then x is even.

Proof:

•	Let <i>x</i> be	

- We will prove the **contrapositive**: "______.'
- Assume _____

Proof by Contrapositive

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, if x^2 is even, then x is even.

Proof:

- Let x be an arbitrary integer.
- We will prove the **contrapositive**:

 "If x is odd, then x^2 is odd."

 We actually proved this last lecture, but we'll recap:
- Assume that x is odd.
- So there is an integer k with x = 2k + 1.
- So $x^2 = (2k+1)^2$ = $4k^2 + 4k + 1$ = $2(2k^2 + 2k) + 1$
- Since k is an integer, $2k^2 + 2k$ is an integer.
- So x^2 is odd.

Whenever you use a "proof style"

(contrapositive, or others that we will talk about soon)

you should always:

- 1. Announce it, and
- 2. Write down any logically modified statements that you will consider.

We're using this box marks the "main" part of the proof, where we show the if-then.

(it's just a visual guide – totally optional in your proofs)

Template: Proof by Contrapositive

Claim: If p, then q

Proof Template

We will prove the contrapositive: [state the contrapositive] Assume not(q).

... (make some deductions) ...

Therefore, not(p).

Another Contrapositive

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, if $x^2 + 6x + 5$ is even, then x is odd.

Things that should make you think "maybe a proof by contrapositive will be helpful..."

- An if-then statement
- In which the "if" part feels more complicated or harder to work with than the "then" part.

Handout

Another Contrapositive

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, if $x^2 + 6x + 5$ is even, then x is odd.

Proof:

•	Let <i>x</i> be			

• We will prove the **contrapositive:** "______."

• Assume _____

Another Contrapositive

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, if $x^2 + 6x + 5$ is even, then x is odd.

Proof:

- Let x be an arbitrary integer.
- We will prove the **contrapositive**:

"If x is even, then $x^2 + 6x + 5$ is odd."

- Assume that x is even
- So there is an integer k with x = 2k

• So
$$x^2 + 6x + 5 = (2k)^2 + 6(2k) + 5$$

= $4k^2 + 12k + 5$
= $2(2k^2 + 6k + 2) + 1$

- Since k is an integer, $2k^2 + 6k + 2$ is an integer
- So $x^2 + 6x + 5$ is odd.

Handout

You Try It

Prove: For all integers x, if $5x^2 + 4$ is even, then x is even.

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, y, if xy is even, then x is even or y is even.

Handout

Prove: For all integers x, if $5x^2 + 4$ is even, then x is even.

Def: Int x is "even" if there exists an int k such that x = 2k.

Prove: For all integers x, if $5x^2 + 4$ is even, then x is even.

Def: Int x is "even" if there exists an int k such that x = 2k.

Prove: For all integers x, if $5x^2 + 4$ is even, then x is even.

Proof:

- Let *x* be an **arbitrary** integer.
- We prove the contrapositive:

"If x is odd, then $5x^2 + 4$ is odd."

- Assume that x is odd.
- So there is an integer k with x = 2k + 1.

• So
$$5x^2 + 4 = 5(2k + 1)^2 + 4$$

= $5(4k^2 + 4k + 1) + 4$
= $20k^2 + 20k + 9$
= $2(10k^2 + 10k + 4) + 1$

- Since k is an integer, $10k^2 + 10k + 4$ is an integer.
- Therefore $5x^2 + 4$ is odd.

Def: Int x is "even" if there exists an int k such that x = 2k.

Handout

Prove: For all integers x, y, if xy is even, then x is even or y is even.

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, y, if xy is even, then x is even or y is even.

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, y, if xy is even, then x is even or y is even.

Proof:

- Let *x*, *y* be **arbitrary** integers.
- We prove the **contrapositive**:

"If x is odd and y is odd, then xy is odd."

- Assume that x is odd and y is odd.
- So there are integers j, k with x = 2j + 1 and y = 2k + 1.
- So xy = (2j + 1)(2k + 1)= 4jk + 2j + 2k + 1= 2(2jk + j + k) + 1
- Since j, k are integers, 2jk + j + k is an integer.
- Therefore *xy* is odd.

Outline

- Disproofs
- Proofs by Contrapositive

"Without Loss of Generality"

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, y, if x + y is even, then x, y have the same parity

(meaning both are even or both are odd)

Handout

Def: Int x is "even" if there exists an int k such that x = 2k.

Prove: For all integers x, y , if $x + y$ is even, then x, y	have the same parity
(meaning both are even or both are odd)	

		_	£	_
$\boldsymbol{\nu}$	rn	\mathbf{a}	т	•
	ıv	v		•

- Let *x*, *y* be ______
- Assume that _______

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, y, if x + y is even, then x, y have the same parity (meaning both are even or both are odd)

Proof:

- Let x, y be arbitrary integers.
- We will prove the contrapositive: "If x, y have different parities (one is even and the other is odd), then x + y is odd."
- Assume that x, y have different parities
- ... then what?
 - Next step is to apply even/odd defs to x, y
 - But we don't know which of x, y is even and which is odd.
 - Does it really matter which is which? It's essentially the same proof either way ...

"Without Loss of Generality"

In proofs, you can use "Assume without loss of generality..." or "Assume WLOG..." when:

- There are several possibilities about the state of the world
 - E.g. (x is even and y is odd) or (x is odd and y is even)
- But these possibilities are completely symmetric, and the proof would look essentially the same under one possibility as the other.
 - E.g. x, y are both arbitrary integers and we have assumed nothing else about them
 - So we might as well say x is the even one and y is the odd one.
- So we can write "Assume WLOG that [one of the two possibilities holds]."

Be careful with WLOG! Don't assume things unless you are sure that there really is symmetry.

You will never **have** to use WLOG – it's just a time-saving tool. The alternative is to consider each possibility separately, and repeat the proof in each case.

(We'll talk more about this alternative next week.)

Def: Int x is "even" if there exists an int k such that x = 2k.

Def: Int x is "odd" if there exists an int k such that x = 2k + 1.

Prove: For all integers x, y, if x + y is even, then x, y have the same parity (meaning both are even or both are odd)

Proof:

- Let *x*, *y* be **arbitrary** integers.
- We will prove the contrapositive:
 "If x, y have different parities (one is even and the other is odd), then x + y is odd."
- Assume that x, y have different parities.
- Assume without loss of generality (WLOG) that x is even and y is odd.
- So there are integers j, k with x = 2j and y = 2k + 1.
- So x + y = 2j + 2k + 1= 2(j + k) + 1
- Since j, k are integers, j + k is an integer
- So x + y is odd.

Prove: For all integers x, y, if x + y is even, then x, 3y have the same parity (meaning both are even or both are odd)

Proof:

- Let x, y be arbitrary integers.
- We will prove the contrapositive: "If x, 3y have different parities (one is even and the other is odd), then x+y is odd."
- Assume that x, 3y have different parities.

We **can't** continue using WLOG here: x, 3y are not symmetric!

(One is any integer, the other is any multiple of 3)

A more involved proof strategy would be needed.

Def: We say that **5 divides** an int x if there exists an int k such that x = 5k.

You Try It

Prove: For all integers x, y, if 5 does not divide xy, then 5 does not divide x and 5 does not divide y.

Def: We say that **5 divides** an int x if there exists an int k such that x = 5k.

You Try It

Prove: For all integers x, y, if 5 does not divide xy, then 5 does not divide x and 5 does not divide y.

Proofs:

- Let x, y be arbitrary integers.
- We will prove the contrapositive:

"If 5 divides x or 5 divides y, then 5 divides xy."

- Assume that 5 divides x or 5 divides y.
- Assume without loss of generality that 5 divides x.
 - \circ (x, y are completely symmetric: might as well call x the one that's divisible by 5.)
- So there is an integer k with x = 5k.
- So xy = 5ky.
- Since k, y are integers, ky is an integer.
- So 5 divides xy.

Wrapup

- Proofs by Contrapositive are a connection between proofs and logical equivalences:
 - Modify the proposition using logical equivalences to make it easier to prove
 - Then prove it
- This strategy is much broader than just contrapositive!
 - Apply implication breakout to an "if-then" or "or" proposition before proving it
 - Next week: proofs by contradiction and proofs by cases