The Dynamic Consequences of Monopoly Power

Mohamad Adhami, Jean-Felix Brouillette and Emma Rockall

March 11, 2023

Motivation

Welfare consequences of product market power?

The *static* perspective (Edmond, Midrigan and Xu, 2022):

- Markup level: constrains output
- Markup dispersion: misallocation

We extend the analysis to a *dynamic* setting:

- Endogenous growth from innovation by profit-maximizing firms
- How do the welfare costs of markups change in this setting?
- Equilibrium vs. constrained-optimal allocation

Theoretical setting

To characterize consequences of markups, must take a stance on:

- Origin of product market power
- Nature of innovation

We adopt the particular view that:

- Market power from monopolistic competition among differentiated firms
- Innovation as costly reduction of firms' marginal cost of production
- VES demand and heterogeneity in productivity imply markup dispersion

Theoretical setting

To characterize consequences of markups, must take a stance on:

- Origin of product market power
- Nature of innovation

We adopt the particular view that:

- Market power from monopolistic competition among differentiated firms
- Innovation as costly reduction of firms' marginal cost of production
- VES demand and heterogeneity in productivity imply markup dispersion

Alternatives left for future work:

- Oligopolistic competition
- Product quality improvements

Outline

- 1. Partial equilibrium intuition
- 2. General equilibrium model
- 3. Quantification
- 4. Counterfactuals

Partial equilibrium intuition

Let p denote a commodity's price and q(p) be demand at this price

A monopolist produces at marginal cost 1/z > 0 and the demand function satisfies:

$$\frac{\partial q(p)}{\partial p} < 0$$
, $q(1/z) > 0$ and $\vartheta(p) \equiv -\frac{\partial \ln(q(p))}{\partial \ln(p)} > 1$

• The profit-maximizing price p(z) is such that q(p(z)) > 0

Static cost of monopoly power

What about dynamics?

Introducing dynamics

Achieve g% improvement in z at cost i(g) for i strictly increasing-convex

To 1st-order approx., the producer and planner dynamic problems are:

$$\max_{g} \{ \underbrace{\pi(z) + \pi'(z)gz}_{\approx \pi((1+g)z)} - i(g) \} \quad \text{and} \quad \max_{g} \{ \underbrace{S(z) + S'(z)gz}_{\approx S((1+g)z)} - i(g) \}$$

First-order conditions of each problem:

$$\pi'(z) = i'(g)/z$$
 and $S'(z) = i'(g)/z$

Private and social incentives won't coincide if $\pi'(z) \neq S'(z)$

Too little innovation?

Proposition 1

The ratio R(z) of marginal producer surplus to marginal social surplus from an infinitesimal reduction in marginal cost is characterized by:

$$R(z) \equiv \frac{\pi'(z)}{S'(z)} = \frac{q(p(z))}{q(1/z)} < 1.$$

All else equal, for any downward-sloping demand function with a price elasticity above unity, social incentives for productivity improvements will exceed private incentives.

Misallocation of innovation?

Proposition 2

The elasticity of the ratio R(z) *with respect to productivity is characterized by:*

$$\frac{\partial \ln(R(z))}{\partial \ln(z)} = \frac{\vartheta(p(z))[\vartheta(p(z)) - 1]}{\vartheta(p(z)) + \varepsilon(p(z)) - 1} - \vartheta(1/z)$$

where $\varepsilon(p) \equiv \partial \ln(\vartheta(p)) / \partial \ln(p)$ denotes the "super-elasticity" of demand.

Illustrative examples

Going from partial to general equilibrium

Partial equilibrium takeaways:

- Too little innovation
- Misallocation of innovation

Why a general equilibrium model?

- Quantitative counterfactuals
- Too much innovation from business stealing externality

Outline

- 1. Partial equilibrium intuition
- 2. General equilibrium model
- 3. Quantification
- 4. Counterfactuals

Theoretical ingredients

Endogenous growth from Markovian productivity improvements

• Ericson and Pakes (1995), Atkeson and Burstein (2010), Stokey (2014), Benhabib, Perla and Tonetti (2021), Lashkari (2023)

Theoretical ingredients

Endogenous growth from Markovian productivity improvements

 Ericson and Pakes (1995), Atkeson and Burstein (2010), Stokey (2014), Benhabib, Perla and Tonetti (2021), Lashkari (2023)

Heterogeneous markups from VES demand and productivity dispersion

• Kimball (1995), Klenow and Willis (2016), Edmond, Midrigan and Xu (2022)

Theoretical ingredients

Endogenous growth from Markovian productivity improvements

 Ericson and Pakes (1995), Atkeson and Burstein (2010), Stokey (2014), Benhabib, Perla and Tonetti (2021), Lashkari (2023)

Heterogeneous markups from VES demand and productivity dispersion

• Kimball (1995), Klenow and Willis (2016), Edmond, Midrigan and Xu (2022)

Selection from endogenous entry and exit

Hopenhayn (1992), Luttmer (2007), Arkolakis (2016), Lashkari (2023)

Population and preferences

Population of measure N_t growing at rate n:

$$\dot{N}_t = nN_t$$

Infinitely lived representative household with separable preferences:

$$U_0 = \int_0^\infty e^{-(\rho - n)t} [\ln(c_t) - v(h_t)] dt$$
 where $c_t \equiv C_t/N_t$, $h_t \equiv H_t/N_t$

Production technology

Final good Y_t is a Kimball (1995) aggregate of differentiated varieties:

$$M_t^{-1} \int_{j \in \mathcal{J}_t} \Upsilon(q_{jt}) \mathrm{d}j = 1$$
 where $q_{jt} \equiv \frac{y_{jt}}{Y_t/M_t}$ and $M_t \equiv |\mathcal{J}_t|$

Each variety produced by a single firm using labor l_{jt} with productivity z_{jt} :

$$y_{jt} = \exp(z_{jt})l_{jt}$$

Must pay per-period fixed cost of $c_F > 0$ units of labor to remain active

Innovation technology

Productivity follows a controlled Itô diffusion process:

$$dz_t = \gamma_t dt + \sigma dB_t$$

Labor requirement to achieve drift γ at detrended productivity \hat{z} is $i(\gamma, \hat{z})$:

- $\hat{z}_t \equiv z_t g_t t$
- $i: \mathbb{R}_0^+ \times \mathbb{R} \to \mathbb{R}_0^+$
- i is strictly increasing-convex in γ
- $i(0,\hat{z}) = 0$ and $\lim_{\gamma \to \infty} i(\gamma,\hat{z}) = \infty$

Entry and exit

- Potential entrants allocate $c_E > 0$ units of labor to achieve unit flow of entry
- Start producing with productivity draw from CDF $F_t^E(z)$
- $F_t^E(z)$ defined over productivity support of incumbents: $[\underline{z}_t, \infty)$
- Endogenous exit from unpaid fixed costs

Resource constraints

Final good is used for consumption:

$$C_t = Y_t$$

Labor can be allocated to production, innovation, entry or fixed costs:

$$L_t + I_t + c_E E_t + c_F M_t = H_t$$

Aggregate production and innovation labor:

$$L_t \equiv M_t \int_{\underline{z}_t}^{\infty} l_t(z) dF_t(z)$$
 and $I_t \equiv M_t \int_{\underline{z}_t}^{\infty} i(\gamma_t(z), \hat{z}) dF_t(z)$

Economic environment

$\dot{N}_t = nN_t$	Population
$U_0 = \int_0^\infty e^{-(\rho-n)t} [u(c_t) + v(h_t)] \mathrm{d}t$	Preferences
$\int_{\underline{z}_t}^{\infty} \Upsilon(q_t(z)) \mathrm{d}F_t(z) = 1$, $q_t(z) \equiv y_t(z) M_t / Y_t$	Final good production
$y_t(z) = \exp(z)l_t(z)$	Variety production
$\mathrm{d}z_t = \gamma_t \mathrm{d}t + \sigma \mathrm{d}B_t$	Innovation
$C_t = Y_t$	Final good resources
$L_t + I_t + c_E E_t + c_F M_t = H_t$	Labor resources
$\dot{M}_t = (e_t - \delta_t) M_t$	Varieties
$\dot{F}_t(z) = -\gamma_t(z)F_t'(z) + \sigma^2 F_t''(z)/2 + e_t[F_t^E(z) - F_t(z)] - \delta_t[1 - F_t(z)]$	Distribution

Market structure

- Perfectly competitive **final good** (numéraire) market
- Perfectly competitive labor market
- Perfectly competitive asset market
- *Monopolistically* competitive **variety** markets

All prices taken as given besides firms choosing their variety's price

Decision problems

- 1. Household's problem Details
 - Choose $\{c_t, h_t\}_t$ to maximize lifetime utility
- 2. Final sector's problem Details
 - Choose $q_t(z)$ to maximize profits each period
- 3. Firm's static problem Details
 - Choose $p_t(z)$ to maximize profits each period
- 4. Firm's dynamic problem Details
 - Choose $\{\gamma_t(z), \underline{z}_t\}_t$ to maximize expected PDV of profits
- 5. Entrant's problem Details
 - Choose E_t to maximize expected PDV of profits

$$v'(h_t)/u'(c_t)=w_t$$

$$\dot{c}_t/c_t = r_t - \rho$$

Intratemporal Euler equation

Intertemporal Euler equation

$$v'(h_t)/u'(c_t) = w_t$$
 Intratemporal Euler equation $\dot{c}_t/c_t = r_t - \rho$ Intertemporal Euler equation $p_t(z) = \Upsilon'(q_t(z))D_t$ Inverse demand function

$v'(h_t)/u'(c_t)=w_t$	Intratemporal Euler equation
$\dot{c}_t/c_t = r_t - \rho$	Intertemporal Euler equation
$p_t(z) = \Upsilon'(q_t(z))D_t$	Inverse demand function
$p_t(z) = \mu(q_t(z))w_t \exp(-z)$	Monopoly pricing

$v'(h_t)/u'(c_t)=w_t$	Intratemporal Euler equation
$\dot{c}_t/c_t = r_t - \rho$	Intertemporal Euler equation
$p_t(z) = \Upsilon'(q_t(z))D_t$	Inverse demand function
$p_t(z) = \mu(q_t(z))w_t \exp(-z)$	Monopoly pricing
$V_t'(z) = w_t \times \partial i(\gamma, \hat{z})/\partial \gamma$	Optimal innovation
$V_t(\underline{z}_t) = V_t'(\underline{z}_t) = 0$	Value matching and smooth pasting

$v'(h_t)/u'(c_t)=w_t$	Intratemporal Euler equation
$\dot{c}_t/c_t = r_t - \rho$	Intertemporal Euler equation
$p_t(z) = \Upsilon'(q_t(z))D_t$	Inverse demand function
$p_t(z) = \mu(q_t(z))w_t \exp(-z)$	Monopoly pricing
$V_t'(z) = w_t imes \partial i(\gamma,\hat{z})/\partial \gamma$	Optimal innovation
$V_t(\underline{z}_t) = V_t'(\underline{z}_t) = 0$	Value matching and smooth pasting
$(\int_{\underline{z}_t}^{\infty} V_t(z) dF_t^E(z) - w_t c_E) E_t = 0$	Free-entry condition

Equilibrium allocation

Given initial conditions $\{N_0, M_0, F_0(z)\}$:

- $\{c_t, h_t\}_{t=0}^{\infty}$ solve the household's problem
- $\{q_t(z)\}_{t=0}^{\infty}$ solve the final sector's problem
- $\{p_t(z)\}_{t=0}^{\infty}$ solve the firms' static problem
- $\{\gamma_t(z), \underline{z}_t\}_{t=0}^{\infty}$ solve the firms' dynamic problem
- $\{E_t\}_{t=0}^{\infty}$ satisfies the free-entry condition
- $\{Y_t\}_{t=0}^{\infty}$ satisfies the Kimball (1995) aggregator
- $\{w_t\}_{t=0}^{\infty}$ clears the labor market
- $\{r_t\}_{t=0}^{\infty}$ clears the asset market
- Population, measure of varieties and distribution of firms evolve as described

Balanced growth path

Restrict attention to BGP equilibrium allocations:

- $\{c_t, w_t, Y_t/N_t, \underline{z}_t\}$ grow at *endogenous* constant rate g
- $\{N_t, L_t, I_t, E_t, M_t\}$ grow at exogenous constant rate n
- $\{h_t, r_t, q_t(z), p_t(z), D_t, \gamma_t(z)\}$ are stationary
- Distribution $\mathcal{F}_t(\hat{z})$ of detrended productivity is stationary

Economic growth

Contributions to growth from:

- Incumbent firms' productivity growth (+)
- Incumbent firms' productivity volatility (±)
- Selection from entry (±)
- Selection from exit (+)

No growth from expanding varieties

Characterization

$$v(h)=eta imes rac{h^{1+\eta}}{1+\eta}$$
 MaCurdy (1981)
$$\Upsilon(q)=1+(\theta-1)\exp\left(rac{1}{\epsilon}
ight)\epsilon^{ heta/\epsilon-1}\left[\Gamma\left(rac{ heta}{\epsilon},rac{1}{\epsilon}
ight)-\Gamma\left(rac{ heta}{\epsilon},rac{q^{\epsilon/ heta}}{\epsilon}
ight)
ight]$$
 Klenow and Willis (2016)
$$i(\gamma,\hat{z})=\exp(\psi+\phi\hat{z}) imes rac{\gamma^{1+\lambda}}{1+\lambda}$$
 Assumption
$$\mathcal{F}^E(\hat{z})=\mathcal{F}(\hat{z})^\zeta$$
 Benhabib, Perla and Tonetti (2021)

Firm-level static outcomes

Outline

- 1. Partial equilibrium intuition
- 2. General equilibrium theory
- 3. Quantification
- 4. Counterfactuals

Policy interventions

Size-dependent transfers to firms:

$$\pi_t^*(z) = \pi_t(z) + T_t(q)$$
 where $T_t(q) = [\varrho_0 \Upsilon(q) + \varrho_1 \Upsilon'(q) q] D_t Y_t / M_t$

Optimal subsidy: $(\varrho_0, \varrho_1) = (1, -1)$

Eliminate markup level and dispersion

Uniform subsidy:
$$(\varrho_0, \varrho_1) = (0, x/(1-x))$$

• Reduce markup level by x% but leave dispersion unchanged

Size-dependent subsidy:
$$(\varrho_0, \varrho_1) = (1/(1+x), -1)$$

• Eliminate markup dispersion but leave level to 1 + x

Profit and value function

Innovation incentives response

Distributional response

Next steps

- 1. Solution and estimation strategy
 - Spectral collocation + quadrature
 - $\bullet \ \ Mathematical\ program\ with\ equilibrium\ constraints + TikTak\ multi-start$
- 2. Estimation with firm-level administrative data from France
 - Data on revenues and quantities for manufacturing firms
- 3. Transition dynamics with physical capital
- **4**. Alternative policy interventions?

Defining the surpluses

$$\pi(z) = p(z)q(p(z))/\vartheta(p(z))$$
 Producer surplus $C(z) = \int_{p(z)}^{\overline{p}} q(p) dp$ Consumer surplus $H(z) = \int_{1/z}^{p(z)} [q(p) - q(p(z))] dp$ Harberger triangle $S(z) = \pi(z) + C(z) + H(z)$ Social surplus

Distribution

Cumulative density $M_t(z)$ of firms with productivity z:

$$M_t(z) = F_t(z)M_t$$
 where $M_t = \int_{z_t}^{\infty} dM_t(z)$

Law of motion given by Kolmogorov forward equation for all $z > \underline{z}_t$:

$$\dot{M}_t(z) = -\gamma_t(z)M_t'(z) + \sigma^2[M_t''(z) - M_t''(z_t)]/2 + E_t F_t^E(z)$$

Standard boundary conditions:

$$M'_t(\underline{z}_t) = \lim_{z \to \infty} M'_t(z) = \lim_{z \to \infty} M''_t(z) = 0$$

Distribution

Boundary conditions imply law of motion for measure of varieties:

$$\dot{M}_t = (e_t - \delta_t) M_t$$
 where $e_t \equiv E_t / M_t$ where $\delta_t \equiv \sigma^2 F_t''(\underline{z}_t) / 2$

Which in turn implies law of motion for $F_t(z)$ for all $z > \underline{z}_t$:

$$\dot{F}_t(z) = -\gamma_t(z)F_t'(z) + \sigma^2 F_t''(z)/2 + e_t[F_t^E(z) - F_t(z)] - \delta_t[1 - F_t(z)]$$

Household's problem

Choose consumption and labor supply to maximize lifetime utility:

$$\max_{\{c_t,h_t\}_{t=0}^{\infty}} \int_0^{\infty} e^{-(\rho-n)t} [\ln(c_t) - v(h_t)] dt \quad \text{s.t.} \quad \dot{a}_t = (r_t - n)a_t + w_t h_t - c_t$$

Value of corporate assets per capita denoted by $a_t \equiv A_t/N_t$:

$$A_t = M_t \int_{\underline{z}_t}^{\infty} V_t(z) dF_t(z)$$
 where $\lim_{t \to \infty} e^{-\int_0^t r_{t'} dt'} A_t = 0$

Delivers standard intratemporal and intertemporal Euler equations:

$$\frac{v'(h_t)}{u'(c_t)} = w_t$$
 and $\frac{\dot{c}_t}{c_t} = r_t - \rho$

Final sector's problem

Choose demand for each variety to maximize profits:

$$\max_{\{q_t(z)\}_{z=z_t}^{\infty}} \left\{ P_t - \int_{\underline{z}_t}^{\infty} p_t(z)q_t(z)\mathrm{d}F_t(z) \right\} Y_t \quad \text{s.t.} \quad \int_{\underline{z}_t}^{\infty} \Upsilon(q_t(z))\mathrm{d}F_t(z) = 1$$

Delivers inverse demand functions:

$$p_t(z) = \Upsilon'(q_t(z))P_tD_t$$

Price and demand indices defined as:

$$P_t \equiv \int_{\underline{z}_t}^{\infty} p_t(z) q_t(z) \mathrm{d}F_t(z) = 1$$
 and $D_t \equiv \left(\int_{\underline{z}_t}^{\infty} \Upsilon'(q_t(z)) q_t(z) \mathrm{d}F_t(z)\right)^{-1}$

Firm's static problem

Choose variety's price to maximize profits:

$$\pi_t(z) = \max_{p_t(z)} \{ [p_t(z) - w_t \exp(-z)] q_t(z) \} Y_t / M_t - w_t c_F \quad \text{s.t.} \quad p_t(z) = \Upsilon'(q_t(z)) D_t$$

Set price to a markup above marginal cost:

$$p_t(z) = \frac{\mu(q_t(z))w_t}{\exp(z)}$$
 where $\mu(q) \equiv \frac{\vartheta(q)}{\vartheta(q) - 1}$

Express firm profits as implicit function of productivity:

$$\pi_t(z) = \frac{p_t(z)q_t(z)Y_t}{\vartheta(q_t(z))M_t} - w_t c_F$$

Firm's dynamic problem

Control productivity drift and choose optimal exit time to maximize PDV of profits:

$$\begin{aligned} V_t(z) &= \max_{\tau, \{\gamma_s\}_{s=t}^{\infty}} \mathbb{E}_t \left\{ \int_t^{t+\tau} e^{-\int_t^s r_{t'} \mathrm{d}t'} [\pi_s(z_s) - w_t i(\gamma_s, \hat{z}_s)] \mathrm{d}s \middle| z_t = z \right\} \\ \text{s.t.} \quad \mathrm{d}z_t &= \gamma_t \mathrm{d}_t + \sigma \mathrm{d}B_t \end{aligned}$$

Value function satisfies HJB equation in continuation region:

$$r_t V_t(z) = \pi_t(z) + \max_{\gamma} \{ \gamma V_t'(z) - w_t i(\gamma, \hat{z}) \} + \sigma^2 V_t''(z) / 2 + \dot{V}_t(z)$$

As well as first-order, value matching and smooth pasting conditions:

$$V_t'(z) = w_t \times \frac{\partial i(\gamma, \hat{z})}{\partial \gamma}$$
 and $V_t(\underline{z}_t) = V_t'(\underline{z}_t) = 0$

Entrant's problem

Engage in perfect competition on labor market:

$$V_t^E = \max_{E_t} \left\{ E_t \int_{\underline{z}_t}^{\infty} V_t(z) \mathrm{d}F_t^E(z) - w_t c_E E_t
ight\}$$

Delivers free-entry condition (in complementary-slackness form):

$$\left(\int_{\underline{z}_t}^{\infty} V_t(z) dF_t^E(z) - w_t c_E\right) E_t = 0$$

Economic growth

Defining
$$\hat{Z} \equiv \left(\int_{\hat{z}}^{\infty} q(\hat{p}(\hat{z})) \exp(-\hat{z}) d\mathcal{F}(\hat{z}) \right)^{-1}$$
 and $\hat{Z}^{E} \equiv \left(\int_{\hat{z}}^{\infty} q(\hat{p}(\hat{z})) \exp(-\hat{z}) d\mathcal{F}^{E}(\hat{z}) \right)^{-1}$:
$$g = \frac{\int_{\hat{z}}^{\infty} [q'(\hat{p}(\hat{z}))\hat{p}'(\hat{z}) - q(\hat{p}(\hat{z}))] \exp(-\hat{z})\gamma(\hat{z}) d\mathcal{F}(\hat{z})}{\int_{\hat{z}}^{\infty} [q'(\hat{p}(\hat{z}))\hat{p}'(\hat{z}) - q(\hat{p}(\hat{z}))] \exp(-\hat{z}) d\mathcal{F}(\hat{z})} + \frac{\sigma^{2} \int_{\hat{z}}^{\infty} [q''(\hat{p}(\hat{z}))\hat{p}'(\hat{z})^{2} + q'(\hat{p}(\hat{z}))\hat{p}''(\hat{z}) - 2q'(\hat{p}(\hat{z}))\hat{p}'(\hat{z}) + q(\hat{p}(\hat{z}))] \exp(-\hat{z}) d\mathcal{F}(\hat{z})}{2 \int_{\hat{z}}^{\infty} [q'(\hat{p}(\hat{z}))\hat{p}'(\hat{z}) - q(\hat{p}(\hat{z}))] \exp(-\hat{z}) d\mathcal{F}(\hat{z})} + \frac{e(\hat{Z}/\hat{Z}^{E} - 1)}{\hat{Z} \int_{\hat{z}}^{\infty} [q'(\hat{p}(\hat{z}))\hat{p}'(\hat{z}) - q(\hat{p}(\hat{z}))] \exp(-\hat{z}) d\mathcal{F}(\hat{z})} - \frac{\delta[\hat{Z}q(p(\hat{z})) \exp(-\hat{z}) - 1]}{\hat{Z} \int_{\hat{z}}^{\infty} [q'(\hat{p}(\hat{z}))\hat{p}'(\hat{z}) - q(\hat{p}(\hat{z}))] \exp(-\hat{z}) d\mathcal{F}(\hat{z})}$$

Firm-level static outcomes

Firm's relative price (*W* denotes Lambert *W*-function), relative demand and profits:

$$\hat{p}(\hat{z}) = \frac{(\theta/\epsilon) \exp(-\hat{z}) w_0 / \overline{p}_0}{W[(\theta/\epsilon) \exp(\theta/\epsilon - \hat{z}) w_0 / \overline{p}_0]}$$

$$q(\hat{p}) = \begin{cases} [-\epsilon \ln(\hat{p})]^{\theta/\epsilon} & \text{if } \hat{p} < 1\\ 0 & \text{if } \hat{p} \ge 1 \end{cases}$$

$$\pi_t(\hat{z}) = \frac{\hat{p}(\hat{z}) q(\hat{p}(\hat{z}))^{1+\epsilon/\theta} \overline{p}_t Y_t}{\theta M_t} - w_t c_F$$