Mining Massive Datasets

Lecture 4

Artur Andrzejak

http://pys.ifi.uni-heide

http://pvs.ifi.uni-heidelberg.de

Note on Slides

A part of these slides come (either verbatim or in a modified form) from the book

Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University).

For more information, see the website accompanying the book: http://www.mmds.org.

Spark: DataFrames and Datasets

DataFrames in Spark

- DataFrames (DF) are tables with named and typed data columns
 - Similar to a dataframe in R, or Pandas (Python), or tables in DBMS/SQL
 - Impose a structure and schema on data
- Example

DataFrames and Datasets in 2016

Spark 2.0 unified data structures:DF became a specialized Dataset

 High-level DSL-like APIs for DFs and DS introduced

Typed AP

From: Databricks, 7 Steps for a Developer to Learn

Apache Spark, 2017

- Dataset is a <u>strongly typed</u> collection of <u>anything</u> T
 - APIs only for Scala and Java, not for Python
- DataFrame a is a collection of Row-objects
 - DataFrame = Dataset[Row]

	SQL	DataFrame	Dataset
Syntax errors	Runtime	Compile Time	Compile Time
Analysis errors	Runtime	Runtime	Compile Time

API ~ Domain Specific Language

- APIs for DFs and DSs provide highlevel operators like sum,
 - count, avg, min, max etc.
- Highly-efficient code generated (faster than for RDDs!)
- Example (in Scala):

From: Databricks, 7 Steps for a Developer to Learn Apache Spark, 2017


```
// a dataset with field names fname, lname, age, weight
// access using object notation
val seniorDS = peopleDS.filter( p => p.age > 55 )
// a dataframe with named columns fname, lname, age, weight
// access using col name notation
val seniorDF = peopleDF.where( peopleDF("age") > 55)
// equivalent Spark SQL code
val seniorDF = spark.sql("SELECT age from person where age > 35")
```

Creating DataFrames in PySpark

- A DF can be created from multiple sources ...
 - By converting "normal" RDDs
 - Loading from text, csv, json, xml, parquet files
 - Importing from DBMS (Hive, Cassandra, ..)
- Each DF has a schema: definition of names and types of columns
 - Schema can be set programmatically, or inferred from data

DataFrames from RDDs

```
// Read file with rows: <name, age>
filePath = "home/immd-user/spark-2 .../examples/src/main/resources/people.txt"
parts = sc.textFile(filePath).map( lambda line: line.split(",") )
// Each row should become a tuple (name, age)
peopleRDD = parts.map( lambda p: (p[0], p[1].strip() )
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("Exmpl").getOrCreate()
schema = StructType( [
              StructField ("name", StringType(), True),
              StructField ( "age", StringType(), True) ] )
dfPeople = spark.createDataFrame (peopleRDD, schema)
print ( dfPeople.take(5) )
```

Read DFs From Other Sources

```
filePath = "home/immd-user/spark-2 .../examples/src/main/resources/people.txt"
// Read from CSV (comma separated values) files
df_csv = spark.read.csv(filePath, schema = schema)
print (df csv.take(5) )
// Read from json – schema is inferred!
df ison =
spark.<u>read</u>.<u>json</u>("examples/src/main/resources/people.json")
df_json.show()
  # +----+
  # | age | name |
  # +----+
  # |null|Michael|
  # | 30 | Andy |
  # | 19 | Justin |
  # +----+
```

DFs Operations

```
# Print schema
dfPeople.printSchema()
  # root
  # |-- age: string (nullable = true)
  # |-- name: string (nullable = true)
# Select only the "name" column
dfPeople.select("name").show()
       name
  # |
  # |Michael| ...
# Group by age and count per group
dfPeople. groupBy("age").count().show()
  # | age|count|
  # | 19 | 1 |
  # |null| 1|
  # | 30 | 1 |
```

SQL: More User-Friendly

Standard DF API:

```
# Select people older than 25
dfPeople.filter(dfPeople['age'] > 25).show()
    # |age|name|
    # | 30|Andy|
```

Same result with **SQL**:

```
# Register the DataFrame as a SQL temporary view dfPeople.createOrReplaceTempView("people")
```

```
sqlDF = spark.sql("SELECT * FROM people where age > 25")
sqlDF.show()
```

User Defined Functions (UDFs)

```
      | lat
      | latdir | long
      | longdir |

      | 37.329732
      | N | -121.901782 | W |

      | 37.330698
      | N | -121.888979 | W |

      | ... | ... | ... |
      | ... |
```

Standard DFs Functions

There are many ready-to-use functions, similar to ones in SQL

Туре	Sample Available Functions		
String functions	startswith, substr, concat, lower, upper, regexp_extract, regexp_replace		
Math functions	abs, ceil, floor, log, round, sqrt		
Statistical functions	avg, max, min, mean, stddev		
Date functions	date_add, datediff, from_utc_timestamp		
Hashing functions	md5, sha1, sha2		
Algorithmic functions	soundex, levenshtein		
Windowing functions	over, rank, dense_rank, lead, lag, ntile		

From: Jeffrey Aven: Sams teach yourself Apache Spark in 24 hours, 2017

More Resources on DataFrames

- Jeffrey Aven: Sams teach yourself Apache Spark in 24 hours,
 2017, http://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=68102164 (free from univ. domain!)
- Databricks, 7 Steps for a Developer to Learn Apache Spark,
 2017, https://goo.gl/chn8GE
- Spark Documentation: Spark SQL, DataFrames and Datasets Guide, https://goo.gl/HuHNEq
- Ankit Gupta: Complete Guide on DataFrame Operations in PySpark, 2016, https://goo.gl/mrNL4i
- Michael Armbrust, Wenchen Fan, Reynold Xin and Matei Zaharia: Introducing Apache Spark Datasets, 2016, https://goo.gl/VLu9dn

MapReduce Paradigm

Fundamentals

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file
- Sample application:
 - Analyze web server logs to find popular URLs

Task: Word Count

- Count occurrences of words:
 - words(doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per line
- This captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

MapReduce: The Map Step

This step in Spark?

MapReduce: The Reduce Step

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) \rightarrow <k', v'>*
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v">*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

MapReduce: Word Counting

Provided by the programmer

MAP:

Read input and produces a set of key-value pairs

Group by key:
Collect all pairs
with same key

Provided by the programmer

Reduce:

Collect all values belonging to the key and output

The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long term space based man/mache partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to

Big document

need

```
(The, 1)
(crew, 1)
(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)
....
```

(key, value)

(crew, 1)
 (crew, 1)
 (space, 1)
 (the, 1)
 (the, 1)
 (the, 1)
 (shuttle, 1)
 (recently, 1)
 ...

(key, value)

(crew, 2) (space, 1) (the, 3) (shuttle, 1) (recently, 1) ...

(key, value)

Only sequential reads

Word Count Using MapReduce

```
map(key, value):
// key: document name; value: text of the document
  for each word w in value:
     emit(w, 1)
reduce(key, values):
// key: a word; value: an iterator over counts
      result = 0
      for each count v in values:
            result += v
      emit(key, result)
```

Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Map-Reduce: A diagram

MAP:

Read input and produces a set of key-value pairs

Intermediate

Group by key:

Collect all pairs with same key
(Hash merge, Shuffle, Sort, Partition)

Reduce:

Collect all values belonging to the key and output

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

Map-Reduce

- Programmer specifies:
 - Map and Reduce and input files

Workflow:

- Read inputs as a set of key-valuepairs
- Map transforms input kv-pairs into a new set of k'v'-pairs
- Sorts & Shuffles the k'v'-pairs to output nodes
- All k'v'-pairs with a given k' are sent to the same reduce
- Reduce processes all k'v'-pairs grouped by key into new k"v"-pairs
- Write the resulting pairs to files
- All phases are distributed with many tasks doing the work

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

MapReduce Paradigm

Advanced Concepts

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info (but not data!) to reducers
- Master pings workers periodically to detect failures

Dealing with Failures

Map worker failure

- Map tasks completed or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker
- Reduce worker failure
 - Only in-progress tasks are reset to idle
 - Reduce task is restarted
- Master failure
 - MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

- M map tasks, R reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures
- Usually R is smaller than M
 - Because output is spread across R files

Task Granularity & Pipelining

- Fine granularity tasks: map tasks >> machines
 - Minimizes time for fault recovery
 - Can do pipeline shuffling with map execution
 - Better dynamic load balancing

Refinements: Backup Tasks

Problem

- Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things

Solution

- Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"

Effect

Dramatically shortens job completion time

Refinement: Combiners

- Often a Map task will produce many pairs of the form (k,v_1) , (k,v_2) , ... for the same key k
 - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
 - combine(k, list(v_1)) $\rightarrow v_2$
 - Combiner is usually same as the reduce function
- Works only if reduce function is <u>commutative</u> and <u>associative</u>

Refinement: Combiners

- Back to our word counting example:
 - Combiner combines the values of all keys of a single mapper (single machine):

• Much less data needs to be copied and shuffled!

Refinement: Partition Function /1

- Partition Function controls how <u>intermediate keys</u> are assigned to reduce-workers
- System uses a default partition function:

User

Defined Function

(UDF)

- hash(key) mod R (R = # of reduce workers)
- If hash(key1) == hash(key2), then the same reduce worker will receive (key1, vals[]) and (key2, vals[])
- Overriding is useful to ensure that a group of reducetasks can write to a single file (or a local file system)
 - To override you need a custom implementation:

Refinement: Partition Function /2

- E.g. in word count: you want that counts for all words from 'a' to 'f' should end up in a single file (or local file system)
- = > Ensure that the reducer-tasks for keys 'a', 'b', ..., 'f' are on the same machine (ID == 0):

- A longer example:
 - http://hadooptutorial.wikispaces.com/Custom+partitioner

Expressing Algorithms in MapReduce

Example: Count 5-Word Sequences

- Statistical machine translation:
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents
- Very easy with MapReduce:
 - Map:
 - Extract (5-word sequence, count) from document
 - Reduce:
 - Combine the counts

Design Patterns

- Design Patterns are "best solutions" for recurrent patterns of code => save thinking [©]
- Inspiration for MapReduce comes from Object-Oriented Design Patterns
 - Compared to OO-patterns: added consideration for performance

Example: "Top Ten"

Intent

- Retrieve a relatively small number of top k records, according to a ranking scheme in your data set
- No matter how large the data
- Generalization of maximum / minimum (k=1)

Motivation

- Finding outliers
- Top ten lists are fun
- Building dashboards
- Sorting/Limit isn't going to work here

"Top Ten" with Map-Reduce

How to implement?

"Top Ten" - Pseudocode

```
class mapper:
 setup ():
   initialize top k sorted list T (small local array of size k)
 map (key, record):
   compare record r against current "worst" element of T
   if r is better then
          insert r into T (according to ranking)
   if length(T) > k:
    truncate T to a length of k
 cleanup ():
   for record in T:
          emit null, record
class reducer:
 setup ():
   initialize top k sorted list T (small local array of size k)
 reduce (key, records):
   sort records (according to ranking)
   truncate records to length k
   for record in records:
          emit record
```

From: MapReduce Design Patterns von Donald Miner, Adam Shook O'Reilly Media, 2012

Categories of Patterns (Book)

Summarization

Numerical summarizations Inverted index Counting with counters

Filtering Bloom filtering Top ten Distinct

Filtering

Data Organization

Joins

Metapatterns

Input and output

From: MapReduce Design Patterns von Donald Miner, Adam Shook O'Reilly Media, 2012

Structured to hierarchical **Partitioning** Binning Total order sorting Shuffling

Job chaining Chain folding Job merging

Reduce-side join Replicated join Composite join Cartesian product

Generating data External source output External source input Partition pruning

Example: Join By Map-Reduce

- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S are each stored in files
- Tuples are pairs (a,b) (for R) or (b,c) (for S)

Α	В
a ₁	b_1
a_2	b_1
a_3	b_2
a_4	b_3

R

В	C	
b_2	C ₁	
b_2	C_2	=
b_3	c_3	

Α	С
a_3	C ₁
a_3	C_2
a_4	c_3

S

Map-Reduce Join

- Use a hash function h from b-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple \$(b,c) into (b,(c,\$))

Only "marker" for S, R

- Map processes send each key-value pair with key b to reduce process h(b)
 - Hadoop does this automatically; just tell it what k is
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c)

Thank you.

Questions?

Additional Materials and Further Reading

Hadoop Resources

- Releases from Apache download mirrors
 - http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
- Nightly builds of source
 - http://people.apache.org/dist/lucene/hadoop/nightly/
- Source code from subversion
 - http://lucene.apache.org/hadoop/version_control.html

Cost of Map-Reduce

Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
- Communication cost = total I/O of all processes
- 2. Elapsed communication cost = max of I/O along any path
- 3. (*Elapsed*) *computation cost* analogous, but count only running time of processes

Note that here the big-O notation is <u>not</u> the most useful (adding more machines is always an option)

Example: Cost Measures

- For a map-reduce algorithm:
 - Communication cost = input file size + 2 × (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes
 - Elapsed communication cost is the sum of the largest input + output for any map process, plus the same for any reduce process

What Cost Measures Mean

- Either the I/O (communication) or processing (computation) cost dominates
 - Ignore one or the other
- Total cost tells what you pay in rent from your friendly neighborhood cloud
- Elapsed cost is wall-clock time using parallelism

Cost of Map-Reduce Join

- Total communication cost
 - $= O(|R|+|S|+|R\bowtie S|)$
- Elapsed communication cost = O(s)
 - We're going to pick k and the number of Map processes so that the I/O limit s is respected
 - We put a limit s on the amount of input or output that any one process can have. s could be:
 - What fits in main memory
 - What fits on local disk
- With proper indexes, computation cost is linear in the input + output size
 - So computation cost is like comm. cost