| 中的概率是 0.96 。                                                                                                                               | 0.6, 乙命中的概率是 0.9, 两人同时各射击一次,目标被命<br>- 0.4、0、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. 若 $\xi$ 服从 $(0,4)$ 上的均匀分布,那么 $P$                                                                                                        | $\{\xi < 2 \xi > 1\} = \frac{1}{3}$ $P(\xi < 2 \xi > 1) = \frac{P(\xi < \xi < 2)}{P(\xi > 1)} = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12 PM - 14 45 654 (47 20 30 00 1 50 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                         | 为中心的正方形 [-1,1]×[-1,1] 上服从均匀分布,那么                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $P\left\{X < \frac{1}{2}\right\} = \frac{3}{24} \cdot \frac{1}{2}$                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                            | 次数, $p$ 为 $A$ 在每次试验中出现的概率,则对任意的 $\varepsilon > 0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \mathbf{\hat{q}} \lim_{\kappa \to +\infty} P\left\{ \left  \frac{\eta_{\kappa}}{n} - p \right  \le \varepsilon \right\} = 1 $            | A~B(u,b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5. 标准正态分布的概率密度函数是                                                                                                                          | $f(x) = \sqrt{\frac{e^{-\frac{x^2}{2}}}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6. 若随机变量 X 服从二项分布 B(100,0.<br>×~B(100                                                                                                      | (4) <b>,那么</b> X <b>的数学期望是</b> 40 ,其方差是 4 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7. 有十张彩票,其中有一张中奖,现采                                                                                                                        | 逐取抓阄的方式分配给 10 个人,前四个人都没有抓到这张彩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 票,那么这时第五个人抓阄的人恰好抓到                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8. $\mathbf{A}\theta_1, \theta_2$ 都是参数 $\theta$ 的无偏估计量,且                                                                                   | $\Delta D(\hat{\theta}_1) < D(\hat{\theta}_2)$ ,这时我们通常称统计量 $\hat{\theta}_1$ 比 $\hat{\theta}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. "个人随机地排成一列,其中甲和乙醇                                                                                                                       | 两个人排在一起的概率是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. 若P(AB)=0,则                                                                                                                              | $\frac{2(1-1)}{1} \qquad (\mathbb{P}^2) \qquad n-2 \uparrow \lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (A) A, B 是互不相容的事件;                                                                                                                         | (B) $P(A) = 0$ 或者 $P(B) = 0$ ; $A = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (C) A, B 是对立的事件;                                                                                                                           | (D) $P(A \cup B) = P(A) + P(B)$ . $P(A + B) = P(A) + P(B) - P(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                            | 分布于标准正态分布。有人作出如下四个论断:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1) X+Y服从正态分布,但是X-Y><br>(2) X+Y与X-Y有相同的数学期望;                                                                                               | 20 COMB CORON - FOR COMB CONTROL OF COMB CONTR |
| (3) X+Y与X-Y有相同的方差;                                                                                                                         | 1~/0(01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (4) X+Y与X-Y是不相关的。<br>在这四个断言中,正确断言的个数是                                                                                                      | $Con(X+\lambda,X-\lambda)=Con(X'\times)-con(\lambda'\lambda)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (A) 1 (B) 2                                                                                                                                | $(C)_3$ $(D)_4 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3. 设 $X_1, X_2, \cdots, X_n$ 相互独立,且同分布于                                                                                                    | 标准正态分布,下列随机变量中服从 $\chi^2$ 分布的是。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>(A)</b> $X_1 + X_2 + \dots + X_n$                                                                                                       | <b>(B)</b> $(X_1 + X_2 + \dots + X_n)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (C) $X_1^2 + X_2^2 + \dots + X_n^2$                                                                                                        | <b>(D)</b> $\sqrt{X_1^2 + X_2^2 + \dots + X_n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                            | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4. 设 X <sub>2</sub> ,,X <sub>s</sub> 是来自某总体的一个                                                                                             | 样本,下面统计量中可以作为总体均值 $\mu$ 的无偏估计量的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                            | 样本,下面统计量中可以作为总体均值 μ 的无偏估计量的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4. 设 X <sub>1</sub> , X <sub>2</sub> ,, X <sub>n</sub> 是来自某总体的一个<br>是。<br>(A) X <sub>1</sub> + X <sub>2</sub> + ··· + X <sub>n</sub>       | 样本,下面统计量中可以作为总体均值 $\mu$ 的无偏估计量的 $\frac{X_1+X_2+\cdots+X_s}{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4. 设 X <sub>2</sub> ,, X <sub>s</sub> 是来自某总体的一个<br>是。                                                                                      | 样本,下面统计量中可以作为总体均值 μ 的无偏估计量的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (A) $X_1 + X_2 + \dots + X_n$<br>(C) $\frac{X_1 + X_2 + \dots + X_n}{n-1}$                                                                 | (B) $\frac{X_1 + X_2 + \dots + X_n}{n}$ (D) $\frac{X_1 + X_2 + \dots + X_n}{n} - \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (A) $X_1 + X_2 + \dots + X_n$<br>(C) $\frac{X_1 + X_2 + \dots + X_n}{n-1}$                                                                 | $\frac{X_1 + X_2 + \dots + X_n}{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (A) $X_1 + X_2 + \dots + X_n$<br>(C) $\frac{X_1 + X_2 + \dots + X_n}{n-1}$                                                                 | (B) $\frac{X_1 + X_2 + \dots + X_n}{n}$ (D) $\frac{X_1 + X_2 + \dots + X_n}{n} - \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (A) X <sub>1</sub> +X <sub>2</sub> +···+X <sub>n</sub> (C) X <sub>1</sub> +X <sub>2</sub> +···+X <sub>n</sub> n-1  5. 设 X, Y 是相互独立的随机变量,它们 | (B) $\frac{X_1 + X_2 + \dots + X_n}{n}$ (D) $\frac{X_1 + X_2 + \dots + X_n}{n} - \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



2. 
$$\frac{1}{3}$$

3. 
$$\frac{3}{1}$$

2. 
$$\frac{1}{3}$$
 3.  $\frac{3}{4}$  4. 1 5.  $\frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}}, x \in \mathbb{R}$  7.  $\frac{1}{6}$  8. 有效 9.  $\frac{2}{n}$ 

7. 
$$\frac{1}{6}$$

9. 
$$\frac{2}{n}$$

答案: 1.D

2. B 3. C

5. D

解: X 的概率密度函数为  $f(x)=1, x \in (0,1)$  (1分)。

(1) 当 0 < z < 1 时,概率密度为  $f_z(z) = \frac{1}{2\sqrt{z}}$  (3 分); 其它情况概率密度为  $f_z(z) = 0$  (1 分)。

4. B

(2) 
$$EZ = \int_0^1 z \cdot \frac{1}{2\sqrt{z}} dz = \frac{1}{3}$$
 (2 分),  $DZ = EZ^2 - (EZ)^2 = \frac{4}{45}$  (3 分).

解答: (1)  $X_k$  ( $1 \le k \le 100$ ) 的可能取值为 1, 2, 3, 4, 5, 6, 且各种情况的出现是等可能的,因 此 $X_k$  得分布律为 $P\{X_k = m\} = \frac{1}{6}$ ,  $1 \le m \le 6$  (1分)。

(2) 共有 10 种情况可以使得  $X_1 + X_2 + X_3 = 6$ , 即  $(X_1, X_2, X_3)$  为 (4, 1, 1), (1, 4, 1), (1, 1, 4), (3, 2, 1), (3, 1, 2), (2, 3, 1), (1, 3, 2), (1, 2, 3), (2, 1, 3), (2, 2, 2), (1分) 且每种情况出现的可能性都是  $\frac{1}{216}$  (1分)。因此,所求概率为 $P\{X_1+X_2+X_3=6\}=\frac{10}{216}=\frac{5}{108}$  (1分)。

(3) 由 (1) 以及數學期望的定义有  $EX_k = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{7}{2}$  (1 分),  $X_k$  的二阶 矩 为  $EX_k^2 = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{6} + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6} = \frac{91}{6}$  (1分), 因此  $X_k$ 的方差为  $DX_k = EX_k^2 - (EX_k)^2 = \frac{91}{6} - \frac{49}{4} = \frac{35}{12}$  (1 分)

(4)由數學期望的性质知道, $EX = E\left(\sum_{k=1}^{100} X_{k}\right) = \sum_{k=1}^{100} EX_{k} = 100 \cdot \frac{7}{2} = 350$  (2分)。又由于  $X_{k}$  (1 ≤ k ≤ 100) 相互独立,因此  $DX = D\left(\sum_{k=0}^{100} X_k\right) = \sum_{k=0}^{100} DX_k = 100 \cdot \frac{35}{12} = \frac{875}{3}$  (1分)。

(1)极大似然估计法。设来自总体的样本 $X_1,X_2,\cdots,X_{10}$ ,那么似然函数为 $L=\lambda^{10}\prod_{i=1}^{10}e^{-\lambda x_i}$  (2分),

取对数并对  $\lambda$  求导得到  $\frac{d}{d\lambda} \ln L = \frac{10}{\lambda} - \sum_{i=1}^{10} x_i$  (1 分), 令导数等于零 (1 分), 可以解得  $\lambda$  的极大似

然估计量为  $\hat{\lambda}=\frac{10}{\sum\limits_{10}^{10}X_{i}}$  (2分),于是  $\lambda$  的极大似然估计值为  $\lambda=\frac{1}{1200}$  (2分) .

(2) 矩估计法。T 的数学期望为 $ET = \int_0^{+\infty} x \cdot \lambda e^{\lambda x} dx = \frac{1}{\lambda}$  (1分),令 $ET = \overline{X}$  (1分),则解得 $\lambda$ 

的矩估计量为 $\hat{\lambda} = \frac{1}{X}$  (1分),进而矩估计值为 $\hat{\lambda} = \frac{10}{\sum_{i=0}^{10} X_i} = \frac{1}{1200}$  (1分)。

解答: (1) (9分) Z 的分布密度。因为 X 与 Y 独立, 所以 X, Y 的联合概率密度为

$$f(x,y) = f_x(x)f_y(y) = \begin{cases} \frac{1}{4}, & 0 \le x, y \le 2\\ 0, & 其它 \end{cases}$$

由分布函数的定义有

$$F_{Z_1}(z) = P\{Z_1 \le z\} = P\{X + Y \le z\} = \iint_{x+y \le z} f(x,y) dx dy$$

$$= \begin{cases} 0, & z \le 0 \\ \int_0^z dx \int_0^{z-x} \frac{1}{4} dy = \frac{z^2}{8}, & 0 \le z \le 2 \\ 1 - \int_{z-2}^2 dx \int_{z-x}^2 \frac{1}{4} dy = -1 + z - \frac{z^2}{8}, & 2 < z \le 4 \\ 1, & z \ge 4 \end{cases}$$

此时概率密度函数为  $f_{Z_i}(z) = \begin{cases} \frac{z}{4}, & 0 \le z \le 1 \\ 1 - \frac{z}{4}, & 1 < z \le 2 \end{cases}$  (3 分)。

## Z, 的分布密度。由分布函数的定义有

$$F_{Z_{2}}(z) = P\{\max\{X,Y\} \le z\} = P\{X,Y \le z\} = \begin{cases} 0, & z \le 0 \\ \iint\limits_{\substack{\max\{X,Y\} \le z \\ 0 \le x,y \le z}} \frac{1}{4} dx dy = \iint\limits_{\substack{0 \le x,y \le z}} \frac{1}{4} dx dy = \frac{z^{2}}{4}, & 0 \le z \le 2 \end{cases}$$

此时概率密度函数为  $f_{Z_2}(z) = \begin{cases} \frac{z}{2}, & 0 \le z \le 2 \\ 0, &$ 其它

## Z, 的分布密度。由分布函数的定义有

$$F_{Z_{3}}(z) = P\{|X - Y| \le z\} = \begin{cases} 0, & z \le 0 \\ \iint\limits_{\substack{|x - y| \le z \\ 0 \le x, y \le 2}} \frac{1}{4} dx dy = \iint\limits_{\substack{x - z \le y \le x + z \\ 0 \le x, y \le 2}} \frac{1}{4} dx dy = z - \frac{z^{2}}{4}, & 0 < z \le 2 \text{ o} \end{cases}$$

此时概率密度函数为  $f_{Z_s}(z) = \begin{cases} 1 - \frac{z}{2}, & 0 \le z \le 2 \\ 0, &$ 其它

(2) (3 分) 
$$P\{Z_1 \le 2, Z_2 \le 1\} = P\{X + Y \le 2, \max\{X, Y\} \le 1\} = \iint\limits_{\substack{x+y \le 2 \ 0 \le x, y \le 1}} f(x, y) dx dy = \frac{1}{4}$$
 (1 分)。由于

 $P\{Z_1 \le 2\}P\{Z_2 \le 1\} = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \ne \frac{1}{4}$  (1分),因此 $Z_1$ 与 $Z_2$ 不独立(1分)。

方法二: 因若  $\max\{X,Y\} \le \frac{1}{2}$ 则  $X + Y \le 1$  (1分), 故而

$$P\left\{Z_{1} \leq 1, Z_{2} \leq \frac{1}{2}\right\} = P\left\{X + Y \leq 1, \max\left\{X, Y\right\} \leq \frac{1}{2}\right\} = P\left\{\max\left\{X, Y\right\} \leq \frac{1}{2}\right\} = F_{Z_{2}}\left(\frac{1}{2}\right) = \frac{1}{4} \quad \text{(1 2)} \quad \text{(1 2)}$$

【解】(1) 由于  $\lim_{x\to 1-0} F(x) = 1$ ,  $\lim_{x\to -1+0} F(x) = 0$  (1+1 分),所以  $\begin{cases} A-B=0 \\ A+B=1 \end{cases}$  (1 分),解出得到  $A=B=\frac{1}{2}$  (1分)。

(2) 在-1 < x < 1 时, $F(x) = \frac{1}{2} + \frac{x}{2}$ ,所以概率密度函数  $f(x) = F'(x) = \frac{1}{2}$  (1分)。

在 $x \le -1$ 和 $x \ge 1$ 时,f(x) = F'(x) = 0 (1分)。

(3) 当 y < -1 时, $F_{y}(y) = 0$ ,因此  $f_{y}(y) = 0$ 。

当y > 1时, $F_y(y) = 1$ ,因此 $f_y(y) = 0$ 。(1分)。

当 
$$-1 \le y \le 1$$
 时, $F(y) = P\{Y \le y\} = P\{\sin \frac{\pi}{2} X \le y\} = P\{\frac{\pi}{2} X \le \arcsin y\}$ 

$$= P\{X \le \frac{2}{\pi} \arcsin y\} = \frac{1}{\pi} \arcsin y + \frac{1}{2} \text{ (4分), }$$
 千是, $f(y) = F'(y) = \frac{1}{\pi} \cdot \frac{1}{\sqrt{1 - y^2}} \text{ (1分)}$ 

(4) 显然, 
$$EY = 0$$
 (1分), 因此,  $DY = EY^2 = \int_{-1}^{1} y^2 \cdot \frac{1}{\pi} \cdot \frac{1}{\sqrt{1-y^2}} dy = \frac{1}{2}$  (3分)。

【解答】设一袋中有n只红球,n只黑球,随机抽取n只球的取法数为 $C_{2n}^{*}$  (2分),取到l只红球,

n-l 只黑球的取法数分别是 $C_n^i$  , $C_n^{n-l}$  ,因此恰好取到l 只红球的概率是 $\frac{C_n^i C_n^{n-l}}{C_{2n}^n} = \frac{\left(C_n^i\right)^2}{C_{2n}^n}$  (2分)。 用  $A_i, B_i$  ,  $0 \le i \le n$  ,分别表示恰好取到i 只红球和黑球,由全概率公式得到  $(C^i)^2$ 

 $\sum_{0 \le i \le n} P\{B_{n-i} | A_i\} P\{A_i\} = 1 \qquad (2 \quad \text{$\Omega$}) \quad \text{$\mu$} \quad \sum_{0 \le i \le n} \frac{\left(C_n^i\right)^2}{C_{2n}^n} = 1 \quad \text{$\chi$} \quad \text{$\chi$$