Zespo w tlce

Andrzej Pręgowski andpreg@boss.staszic.waw.pl

July 7, 2023

Po co to komu? Liczby zespolone dostarczają wiele pięknych narzędzi do badania liczb całkowitych, zobacz [5]. Są też bardzo użyteczne w rozwiązywaniu równań diofantycznych i, czasami, wkurzaniu znajomych.

Definicje:

- 0°) Niech $a = x + y\sqrt{D}$. Przez \bar{a} oznaczmy $x y\sqrt{D}$
- 1°) $\mathbb{Z}[i] = \{a + b \cdot i | a, b \in \mathbb{Z} \}$ (Są to liczby całkowite Gaussa)
- 2°) Niech $\alpha = a + b \cdot i$, gdzie $a, b \in \mathbb{Z}$. Wtedy $\bar{\alpha} = a b \cdot i$
- 3°) Niech α jak powyżej. Zdefiniujmy funkcję $N: \mathbb{Z}[i] \to \mathbb{Z}^{\geqslant 0}, \ N(\alpha) = \alpha \bar{\alpha} = a^2 + b^2$
- 4°) Niech $\alpha, \beta \in \mathbb{Z}[i]$. Mówimy że $\beta | \alpha \iff \exists_{\gamma \in \mathbb{Z}[i]} \alpha = \beta \cdot \gamma$

Ćwiczenie 0: Kiedy c + di|a + bi, gdy $a, b, c, d \in \mathbb{Z}$?

Ćwiczenie 1: Udowodnij że dla $\alpha, \beta \in \mathbb{Z}[i]$ mamy $N(\alpha\beta) = N(\alpha)N(\beta)$

Ćwiczenie 2: Udowodnij że jeśli dla $\alpha, \beta \in \mathbb{Z}[i]$ $\beta | \alpha$, to $N(\beta) | N(\alpha)$

Twierdzenie o dzieleniu z resztą w $\mathbb{Z}[i]$:

Niech $\alpha, \beta \in \mathbb{Z}[i]$. Istnieją wtedy $\psi, \phi \in \mathbb{Z}[i]$, takie że $\alpha = \beta \psi + \phi$ i $N(\phi) < N(\beta)$. Nie są zdefiniowane jednoznacznie!.

Dowód:

Niech $\frac{\alpha}{\beta} = x + yi$. Zdefiniujmy $c, d \in \mathbb{Z}$ tak, by $|x - c| \leqslant \frac{1}{2}$ i $|y - d| \leqslant \frac{1}{2}$. Wtedy x = c + e, y = d + f dla pewnych $0 \leqslant |e|, |f| \leqslant \frac{1}{2}$. Czyli $\alpha = (c + di) \cdot \beta + \beta \cdot (e + fi)$. Oczywistym jest, że $\beta(e + fi) \in \mathbb{Z}[i]$. Policzmy teraz $N(\beta(e + fi)) = N(\beta)N(e + fi) \leqslant N(\beta)((\frac{1}{2})^2 + (\frac{1}{2})^2) = \frac{1}{2} \cdot N(\beta) < N(\beta)$. Czyli biorąc $\psi = c + di, \phi = \beta \cdot (e + fi)$ widzimy że spełniają one warunki twierdzenia.

Kolejne definicje:

- $5a^{\circ}$) Niech $\alpha, \beta \in \mathbb{Z}[i]$ i niech $\alpha | \beta$ i $\beta | \alpha$. Mówimy wtedy że $\alpha \sim \beta$ (czyt. alfa stowarzyszone z beta)
- $5b^{\circ}$) Elementem odwracalnym należącym
n do $\mathbb{Z}[i]$ nazwiemy taki element α dla którego
 $\exists_{\beta \in \mathbb{Z}[i]} \alpha \beta = 1$. Nazywane są one również jednościami w $\mathbb{Z}[i]$.
- 6°) Niech dane będą $\alpha, \beta \in \mathbb{Z}[i]$. Przez $NWD(\alpha, \beta)$ rozumiemy taką liczbę $\delta \in \mathbb{Z}[i]$,że $\delta | \alpha, \beta$ i że jeżeli $\epsilon \in \mathbb{Z}[i]$ i $\epsilon | \alpha, \beta$, to $\epsilon | \delta$ (wybieramy dowolną liczbę z taką własnością, bo reszta jest z nią stowarzyszona).
- 7°) Liczbę $\pi \in \mathbb{Z}[i]$ nazywamy liczbą pierwszą gdy spełniony jest warunek:

dla dowolnych $\alpha, \beta \in \mathbb{Z}[i]$ $\pi | \alpha \beta \implies \pi | \alpha \vee \pi | \beta$

Ćwiczenie 3
a: Dla danej $\alpha \in \mathbb{Z}[i]$ znaleźć liczby stowarzyszone
z $\alpha.$

Ćwiczenie 3
b: Wyznacz elementy odwracalne w $\mathbb{Z}[i]$

Ćwiczenie 4: Wykaż że dla $\alpha, \beta \in \mathbb{Z}[i]$ $\exists_{\gamma, \delta \in \mathbb{Z}[i]} \alpha \gamma + \beta \delta \sim NWD(\alpha, \beta)$

Ćwiczenie 5: Wykaż że 2 i 5 nie są liczbami pierwszymi w $\mathbb{Z}[i]$, ale 3 i 7 są (Wskazówka:normy!)

Ćwiczenie 6: Udowodnij iż jeśli $\pi \in \mathbb{Z}[i], \pi$ jest liczbą pierwszą w $\mathbb{Z}[i]$ i $\pi = \alpha\beta$, to $\alpha \sim 1 \vee \beta \sim 1$. Udowodnij również zależność odwrotna

Twierdzenie Fermata o sumie dwóch kwadratów:

Liczba pierwsza jest sumą dwóch kwadratów wtedy i tylko wtedy gdy przystaje do 1 mod 4 lub jest równa

Dowód trywialny. ■

Cwiczenie 7: Udowodnij, że jeśli $p \in \mathbb{P}$ i $p \equiv 3 \mod 4$, to p jest liczbą pierwszą w $\mathbb{Z}[i]$

Ćwiczenie 8: Udowodnij, że jeśli $\alpha \in \mathbb{Z}[i]$ i $N(\alpha) \in \mathbb{P}$, to α jest liczbą pierwszą w $\mathbb{Z}[i]$

Ćwiczenie 9: Dana jest nierzeczywista liczba pierwsza Gaussa π . Wykaż że $\forall_{z \in \mathbb{Z}[i]} \exists_{n \in \{0,1,\dots,N(\pi)-1\}} z \equiv_{\pi} n$. Czy π może być rzeczywista?

Twierdzenie: Charakteryzacja liczb pierwszych w $\mathbb{Z}[i]$:

Niech $p \in \mathbb{P}$. Mamy wtedy następujące rozkłady

- $(1) 2 = -i(1+i)^2$
- (2) p = p, gdy $p \equiv 3 \mod 4$
- (3) p = (a+bi)(a-bi), gdy $p \equiv 1 \mod 4$

Dowód: Triv. ■

Twierdzenie: Rozkład liczb na czynniki pierwsze w $\mathbb{Z}[i]$:

Każda niezerowa, niestowarzyszona z 1 liczba w $\mathbb{Z}[i]$ może zostać zapisana jako iloczyn liczb pierwszych w $\mathbb{Z}[i]$, przy czym występuje forma jednoznaczności: jeśli mamy dwa takie rozkłady, to różnią się one co najwyżej tylko przemnożeniem odpowiednich liczb występujących w rozkładzie przez jedności

Dowód: Triv ■

Ćwiczenie 10: Udowodnić, iż jeśli $\alpha, \beta, \gamma \in \mathbb{Z}[i]$ i $\alpha\beta = \gamma^k, k \in \mathbb{Z}, NWD(\alpha, \beta) \sim 1$, to α, β są stowarzyszone z k-tymi potęgami

Ćwiczenie 11: Wyznacz NWD(a + bi, a - bi)

Ćwiczenie 12: Rozwiązać w \mathbb{Z} równanie: $z^2 = y^2 + x^2$

Ćwiczenie 13: Przedstawić $(a^2 + b^2)(c^2 + d^2)$ jako sumę kwadratów

Ćwiczenie 13b: Przedstawić $(a^2 + eb^2)(c^2 + ed^2)$ jako $x^2 + ey^2$

Ćwiczenie 14: Wykazać iż równanie $x^2 + y^2 = z^3$ ma nieskończenie wiele rozwiązań w \mathbb{Z} takich, że $x \perp y$

Ćwiczenie 15: Rozwiązać w \mathbb{Z} równanie: $x^3 = y^2 + 1$

Dalsze jeszcze definicje:

8°) Niech dana będzie liczba całkowita bezkwadratowa D. Przez τ_D oznaczmy:

 \sqrt{D} , gdy $D \equiv 2, 3 \mod 4$

 $\frac{1+\sqrt{D}}{2}, \text{ gdy } D \equiv 1 \mod 4$ 9°) Niech $\mathbb{Z}[\tau_D] = \{a+b \cdot \tau_D | a, b \in \mathbb{Z}\}$

10°) Niech $\alpha \in \mathbb{Z}[\tau_D]$ i $\alpha = a + b \cdot \tau_D$. Zdefiniujmy znowu $N_D : \mathbb{Z}[\tau_D] \to \mathbb{Z}$ jako $\alpha \bar{\alpha}$

11°) Elementem odwracalnym (jednością) nazwiemy element $\alpha \in \mathbb{Z}[\tau_D]$ taki że $\exists_{\beta \in \mathbb{Z}[\tau_D]} \alpha \beta = 1$.

Normowo Euklidesowe pierścienie kwadratowe:

W zbiorach $\mathbb{Z}[\tau_D]$, zachodzi twierdzenie o dzieleniu z resztą wtedy i tylko wtedy

gdy D=-2,-3,-7,-11,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73. W tych zbiorach da się również wyznaczać NWD i jest jednoznaczność rozkładu na czynniki pierwsze. Dowód tego jest nietrywialny i trudny

Twierdzenie: Jedności w $\mathbb{Z}[\tau_D]$, gdzie D > 0:

W takich zbiorach istnieje nieskończenie wiele jedności i istnieją dwie wyróżnione jedności które generują wszystkie inne

Dowód: Równania Pella (mniej więcej, jeśli $D \equiv 1 \mod 4$ to jest trochę trudniej) Przykład:

- (1) D=2. Jedności fundamentalne to $(1\pm\sqrt{2})$. Wszystkie inne jedności to są ich potęgi.
- (2) D=5. Jedności fundamentalne : $\frac{1\pm\sqrt{5}}{2}$

Ćwiczenie 16: Sfromułować i udowodnić analogiczne tezy do ćwiczeń (0),(1),(2),(3),(4),(8),(10) dla wartości D wymienionych w powyższym twierdzeniu ((3) tylko dla D < 0, bo dla innych jest nieskończenie wiele, np dla D=2 są to liczby postaci $(1+\sqrt{2})^n \cdot \alpha$

Ćwiczenie 16.2: Wykazać iż jeśli $a_n + b_n\sqrt{2} = (1+\sqrt{2})^n$, to $a_n^2 - 2b_n^2 = \pm 1$. Ćwiczenie 17: Przedstawić $(a^2 + ab + b^2)(c^2 + cd + d^2)$ w postaci $(x^2 + xy + y^2)$

Ćwiczenie 18: Rozwiązać równanie $x^3 = y^2 + 2 \le \mathbb{Z}$

Ćwiczenie 19: Rozwiązać równianie $x^3 = y^2 + 11 \le \mathbb{Z}$

Ćwiczenie 20: Rozwiązać równanie $y^5 = 2y^2 + 1 \le \mathbb{Z}$

Ćwiczenie 21 [OM73 2 etap]: Dodatnie liczby całkowite spełniają równość

$$a^3 + 4b + c = abc$$

przy czym $a \ge c$ oraz liczba $p = a^2 + 2a + 2$ jest pierwsza. Wykazać, że p jest dzielnikiem liczby a + 2b + 2

Ćwiczenie 22: Rozwiązać równanie $x^p = y^2 + 1 \le \mathbb{Z}$ dla p = 2, 5, 7

Ćwiczenie 23: Rozwiązać równanie $x^{2137} = 2y^2 + 1 \le \mathbb{Z}$

Ćwiczenie 24: Rozwiązać równanie $x^3 = y^2 + 9 \le \mathbb{Z}$

Ćwiczenie 25: Dane sa liczby $a, b, c, d \in \mathbb{Z}$ spełniające układ równań:

ac + 3bd = 1

ad + cb = 1

Wykazać iż albo $a^2 - 3b^2 = 1$, albo $c^2 - 3d^2 = 1$ i że jest nieskończenie wiele takich liczb a, b, c, d

Ćwiczenie 26: Udowodnić WTF dla n=3

Ćwiczenie 27: Istnieje nieskończenie wiele $x, y, z \in \mathbb{Z}$ takich że $x^3 + 1 = y^3 + z^3$

Ćwiczenie 28: Znaleźć przykłady podobne do zadania 25

Ćwiczenie 29 (nagroda: czekolada dla pierwszej osoby z dowodem niekorzystającym z WTF, powodzenia; update: czekolada zjedzona, już nieważne):

Wykaż, że dla dodatniej liczby całkowitej m>2 podzielnej przez 2 równanie $z^3-y^2=3^3\cdot 2^m\cdot x^{m+2}$ nie ma rozwiązań w liczbach całkowitych x, y, z takich, że są one parami względnie pierwsze

Ćwiczenie 30: Rozwiązać w \mathbb{N} równanie $y^2 + 1 = 5^n$

Ćwiczenie 31: $x^p = 2y^2 + 1$, gdzie $p \in \mathbb{P}$ i $p \equiv 3 \mod 4$ nie ma rozwiązań w \mathbb{Z} innych niż (1,0)

Ćwiczenie 32: Wykaż iż jeśli wierzchołki wielokata foremnego są punktami kratowymi, to jest on kwadratem Ćwiczenie 33: Rozwiązać równanie $2^n=y^2+7$ w \mathbb{Z} . Znaleźć związek z liczbami trójkątnymi i liczbami Mersenna (Więcej info w [6])

Inne pierścienie kwadratowe z jednoznacznością rozkładu

Może się zdarzyć iż w zbiorze $\mathbb{Z}[\tau_D]$ nie ma dzielenia z resztą, ale wszystkie ideały są główne (nie chce mi się pisać co to znaczy, jest w [3]). Dla pierścieni urojonych zdarza się to tylko gdy D = -19, -43, -67, -163. Dla pierścienie rzeczywistych zdarza się to na przykład gdy D=14,22,31,38,46,... Nie wiadomo czy jest ich nieskończenie wiele. Daje nam to istnienie NWD jako linowej kombinacji dwóch liczb, elementów pierwszych i jednoznaczności rozkładu.

Rozwiązania niektórych ćwiczeń:

Ćwiczenie 0:

Mamy $\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + i \cdot \frac{bc-ad}{c^2+d^2}$. Jeśli należy to do $\mathbb{Z}[i]$ to $\frac{ac+bd}{c^2+d^2}$, $\frac{bc-ad}{c^2+d^2} \in \mathbb{Z}$. Jest to warunek wystarczający i konieczny

Ćwiczenie 3a:

Niech $\beta \in \mathbb{Z}[i]$ będzie takie że $\alpha \sim \beta$. Wtedy $\alpha | \beta \iff \alpha = u \cdot \beta$, co dzięki C3 daje nam $N(\alpha) | N(\beta)$. Mamy też $N(\beta) | N(\alpha)$, co razem z tym iż $N(x) \geqslant 0$ daje $N(\alpha) = N(\beta)$. Jednocześnie $N(\alpha) = N(u \cdot \beta) = N(u)N(\beta) \implies N(u) = 1$, co, zapisując u = a + bi daje równanie $a^2 + b^2 = 1$, którego rozwiązaniami są pary (1,0), (-1,0), (0,1), (0,-1), co odpowiada liczbom 1,-1,i,-i. Czyli liczby stowarzyszone do $\alpha \in \mathbb{Z}[i]$ to liczby $-\alpha, -i\alpha, i\alpha$.

Cwiczenie 3b:

Niech ψ będzie elementem odwracalnym w $\mathbb{Z}[i]$. Czyli $\exists_{\phi \in \mathbb{Z}[i]} \phi \cdot \psi = 1$, czyli $1 = N(\psi \phi)$, co daje nam $N(\psi) = 1$, co daje $\psi = 1, -1, i, -i$ (patrz rozw.4a). Czyli jedyne elementy odwracalne to 1, -1, i, -i Ćwiczenie 7:

Wystarczy skorzystać z lematu:

Jeśli $p \in \mathbb{P}$ i $p|a^2 + 1$, to $p \equiv 1 \mod 4$

Ćwiczenie 8:

Niech dana będzie liczba $\alpha \in \mathbb{Z}[i]$ taka że $N(\alpha) \in \mathbb{P}$. Załóżmy iż $\alpha = \beta \gamma$ i że β, γ nie są stowarzyszone z 1. Wtedy $N(\alpha) = N(\beta \gamma) = N(\beta)N(\gamma) \in \mathbb{P}$. Oczywista sprzeczność.

Cwiczenie 11:

Przepisane z [1]

Niech d=NWD(a,b). Wtedy $NWD(a+bi,a-bi)=d\cdot NWD(\frac{a+bi}{d},\frac{a-bi}{d})$. Niech e=a/d,f=b/d. Niech $\delta\sim NWD(e+fi,e-fi)$. Wtedy $\delta|2e,2fi$. Ale $\exists_{x,y\in\mathbb{Z}}ex+fy=1$, czyli $\delta|2ex+2fyi=2$. Czyli $\delta\sim 1$ lub $\delta\sim 1+i$ lub $\delta\sim 2$. Ostatni przypadek zachodzić nie może. Łatwo też sprawdzić iż (1+i)|(x+yi) iff $x\equiv y\mod 2$, gdyż $x\equiv y\mod 2$ iff układ równań u-w=x,u+w=y ma rozwiązanie, czyli też wtedy gdy (1+i)(u+wi)=(x+yi).

Ćwiczenie 12:

Możemy założyć $x \perp y$. Wtedy $(x+yi)(x-yi)=z^2$. Chcemy sprawdzić czy $x+yi \perp x-yi$, co z C15 jest równoważne temu że $x \not\equiv y \mod 2$, co jest oczywiste. Czyli zgodnie z C10 mamy $x+yi=\epsilon(a+bi)^2$, co daje $x=\pm(a^2-b^2), y=\pm 2ab$ lub $x=\pm 2ab, y=\pm(a^2-b^2)$. Oczywiście $z=\pm(a^2+b^2)$ Ćwiczenie 16(4):

Dla D=-3 to pierwiastki 6-tego stopnia z 1, dla reszty(oprócz -1) to ± 1

Ćwiczenie 17:

Skorzystać z N_{-3} . x = (ac - bd), y = (cb + ad + bd)

Ćwiczenie 20

Oczywiste jest to że 2 /x. Wykorzystajmy jednoznaczność rozkładu w $Z[\tau_{-2}]$.

Mamy $x^5 = (1+y\sqrt{-2})(1-\sqrt{-2}y)$. Niech $\delta \sim NWD(1+y\sqrt{-2},1-y\sqrt{-2})$. Wtedy $\delta|1+\sqrt{-2}y+1-\sqrt{-2}y=2$. Czyli $\delta \sim 1$ lub $\delta \sim \sqrt{-2}$ lub $\delta \sim 2$. Jeśli $\sqrt{-2}|\delta$, to $2=N_{-2}(\sqrt{-2})|N_{-2}(\delta)|N_{-2}(1+y\sqrt{-2})=x^5$, czyli $\delta \sim 1$. Czyli $1+y\sqrt{-2}=(\pm 1)^5(a+b\sqrt{-2})^5$, gdzie $a,b\in\mathbb{Z}$. Rozwiązanie tego jest trywialne i daje rozwiązania $(x,y)=(1,0),(3,\pm 11)$.

Literatura:

Zadania o numerach 10, 11, 17, 30, 22, 18, 19, 32 są z [1]

Warto poczytać o równaniu Pella (np. na stronce Imomath)

- [1]: Adam Neugebauer, Algebra i Teoria Liczb, Wydawnictwo Szkolne Omega, Wydanie 2 poprawione
- [2]: Wacław Sierpiński, Elementary theory of numbers, PAN, Warszawa 1964
- [3]: Wacław Sierpiński, Teoria liczb, "Warszawa Wrocław 1950
- [4]: https://youtube.com/playlist?list=PLSibAQEfLnTwq2-zCB-t9v2WvnnVKd0wn
- [5]: Michał Krych, Szereg Leibniza i punkty kratowe, magazyn Delta, Styczeń 2019
- [6]: Wacław Sierpiński, Liczby trójkątne, Państwowe Zakłady Wydawnictw Szkolnych, Warszawa Grudzień 1962

Link do [2]: http://matwbn-old.icm.edu.pl/kstresc.php?wyd=10&tom=42&jez=en

 $\label{link} Link do~[3]:~http://matwbn-old.icm.edu.pl/kstresc.php?tom=19\&wyd=10\&jez=pl$