PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 215/48, A61K 31/47, C07D 417/12, 417/14, 215/36, 403/12, C07F 7/10, C07D 405/06, 215/60, 401/12, 413/12, 405/12 (11) International Publication Number:

WO 98/11073

(43) International Publication Date:

19 March 1998 (19.03.98)

(21) International Application Number:

PCT/US97/15310

(22) International Filing Date:

5 September 1997 (05.09.97)

(74) Agent: GAMMILL, Martha, A.; Pharmacia & Upjohn Company, Intellectual Property Legal Services, 301 Henrietta

Street, Kalamazoo, MI 49001 (US).

(30) Priority Data:

60/025.870 60/050,720

10 September 1996 (10.09.96) US 25 June 1997 (25.06.97)

US

(71) Applicant (for all designated States except US): PHARMACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(72) Inventors; and (75) Inventors/Applicants (for US only): VAILLANCOURT, Valerie, A. [US/US]: 4342 Bronson Boulevard, Kalamazoo, MI 49008 (US). ROMINES, Karen, R. [US/US]; 62181 41st Street, Paw Paw, MI 49079 (US). ROMERO, Arthur, G. [US/US], 6629 Morningstar Way, Kalamazoo, MI 49009 (US). TUCKER, John, A. [US/US]; Apartment 301, 3721 Greenleaf Circle, Kalamazoo, MI 49008 (US). STRO-HBACH, Joseph, W. [US/US]; 54490 M-66, Mendon, MI 49072 (US). BEZENCON, Olivier [SE/US]; 254 Lake Ridge Drive, Kalamazoo, MI 49005 (US). THAISRIVONGS, Suvit [US/US]; 5695 Swallow, Kalamazoo, MI 49002 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK. LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: 8-HYDROXY-7-SUBSTITUTED QUINOLINES AS ANTI-VIRAL AGENTS

$$R^{2} \xrightarrow{N} \stackrel{OH}{\stackrel{O}{\stackrel{II}{\stackrel{II}{\stackrel{}}{\stackrel{}}}{\stackrel{}}}} -N - R^{0}$$

$$R^{3} \xrightarrow{R^{1}} \qquad (IA)$$

(57) Abstract

The present invention provides for 8-hydroxy-7-substituted quinoline compounds such as formula (IA). These compounds are useful as anti-viral agents. Specifically, these compounds have anti-viral activity against the herpes virus, cytomegalovirus (CMV). Many of these compounds are also active against other herpes viruses, such as the varicella zoster virus, the Epstein-Barr virus, the herpes simplex virus and the human herpes virus type 8 (HHV-8).

BNSDOCID <WO 99:1073A1 1 >

٦)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	U.1	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BC	Bulgaria	HU	Hungary	ML	Malı	TT	Trinidad and Tobago
BJ	Benin	31	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	lialy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CC	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Core d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN ·	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	I.C	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	I.R	Liberia	SG	Singapore		

BNSDDC1D <WD 9811073A1 F >

8-HYDROXY-7-SUBSTITUTED QUINOLINES AS ANTI-VIRAL AGENTS

FIELD OF THE INVENTION

The present invention provides for 8-hydroxy-7-substituted quinoline

compounds and pharmaceutically acceptable salts thereof which are useful as antiviral agents. The invention also relates to a pharmaceutical composition containing such compound in combination with a suitable excipient, the composition being useful in combating viral infections. The invention also relates to a method for selectively combating viral infections in animals, including man. Specifically, these compounds have anti-viral activity against the herpes virus, cytomegalovirus (CMV). Many of these compounds are also active against other herpes viruses, such as the varicella zoster virus, the Epstein-Ban virus, the herpes simplex virus, and the human herpes virus type 8 (HHV-8).

BACKGROUND OF THE INVENTION

The herpesviruses comprise a large family of double stranded DNA viruses. The herpesvirus family can be divided into three subfamilies (α, β, γ) based upon a number of biological properties such as host range and tropism, viral life cycle, and viral persistence and latency. Eight of the herpesviruses, herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), and human herpes viruses 6, 7, and 8 (HHV-6, HHV-7, and HHV-8), have been shown to infect humans.

HSV-1 and HSV-2 are the prototypic α -herpesviruses. These two serotypes share approximately 50% nucleotide homology. Both are neurotropic viruses, but their primary sites of replication are different. HSV-1 typically infects the oral mucosa resulting in ulcerations commonly refered to as cold sores. HSV-2 infects and cuases ulcerations of the genital mucosa. HSV infection can also result in disseminated disease and encephalitis, especially in immunocompromised patients. D.O. White and F.J. Fenner, In Medical Virology, D.O. White and F.J. Fenner, eds., Academic Press, p. 318-347 (1994).

VZV is also an α-herpesvirus and is the causitive agent of chicken pox. VZV establishes a latent infection in the dorsal root ganglia of the peripheral nervous system. From its latent site, VZV can cause recurrent disease commonly refered to as shingles or zoster. The probability of shingles increases with age and frequently occurs in immunocompromised patients. A.M. Arvin, In Virology, B.N. Field, D.M. Knipe, and P.M. Howley, ed., Lippincott-Raven Press, New York, p. 2547-2586 (1996).

15

25

Human cytomegalovirus (HCMV), a β-herpesvirus, is an ubiquitous agent producing infection in individuals of all age groups. Infection rates of 60-100%, depending on geographic area and socioeconomic status have been reported. R.J. Whitley, S. Goldsmith and J. Gnann, In Society for General Microbiology. 45th Symposium: Control of Virus Diseases, Mimmock, N.J.; P.D. Griffiths and C.R. Madely, eds., Cambridge University Press, Cambridge, p. 315 (1990). The majority of infections are asymptomatic. However infections occurring in the immunocompromised patient, including organ transplant recipients and individuals with AIDS may be severe and include HCMV induced pneumonia, colitis, and retinitis. L.W. Drew, Clin. Infect. Dis. 14:608-615 (1992). HCMV is the leading cause of blindness in AIDS patients. T.C. Merigan and S. Resta, Rev. Infect. Dis. 12:S693 (1990). HCMV also establishes lifelong latency in the host.

HCMV DNA polymerase (HCMV pol) is an enzyme essential for viral replication. D.H. Spector, K.M. Klucher, D.K. Rabert and D.A. Wright, In

Herpesvirus Transcription and Its Regulation, E.K. Wagner, ed., CRC Press, Boca Raton, FL, p. 261 (1991). The current therapies for HCMV; Ganciclovir, Foscarnet and Vistide act by inhibition of HCMV pol. A.K. Field and K.K. Biron, Clin. Micro. Reviews 7:(1) 1-13 (1994). See also US Patents 4,199,574; 4,215,113; 4,355,032; and E. DeClercq et al., Antiviral Research, Vol 8, pages 261-272 (1987). Ganciclovir and Foscarnet display significant toxicity and induction therapy is restricted to an intravenous route of administration. D. Faulds and R.C. Heel, Drugs, 39:597 (1990). Maintenance therapy with Ganciclovir and Foscarnet will likely contribute to drug resistant virus. A.K. Field and K.K. Biron, Clin. Micro. Reviews 7:(1) 1-13 (1994). Clearly less toxic, orally bioavailable alternatives are needed.

EBV is a γ-herpesvirus which replicates in the epithelial cells of the nasopharynx and salivary glands and resides latently in B-cells. Childhood infections of EBV are normally asymptomatic. However, EBV infection is associated with several diseases in adults such as infectious mononucleosis, Burkitt's lymphoma, nasopharyngeal carcinoma, and Hodgkins disease. A.B. Rickinson and E. Kieff, In Virology, B.N. Fields, D.M. Knipe, and P.M. Howley, eds., Lippincott-Raven Press, New York, p. 2397-2446 (1996).

HHV-6 is a β-herpesvirus which causes roseola (exanthem subitum) in children. P. Lusso, Antivir. Res. 31:1-21 (1996). HHV-7 shares 50-60% nucleotide sequence homology with HHV-6. It's disease association is unclear, but it may be involved in some cases of roseola. N. Frenkel and E. Roffman, In Virology, B.N. Fields, D.M. Knipe, P.M. Howley, eds., Lippincott-Raven Press, New York, p. 2609-

25

- 1

2622 (1996). HHV-8, also known as Kaposi's sarcoma associated herpesvirus (KSHV), is a γ -herpesvirus which has recently been associated with Kaposi's sarcoma in AIDS patients and multiple myeloma. M.B. Rettig et al., Science, 276:1851-1854 (1997).

INFORMATION DISCLOSURE

Published Japanese patent application H1-136152 published 29 May 1989 discloses a silver halide photographic light-sensitive material comprising a support, and thereon, at least 1 silver halide emulsion layer containing a cyan dye-forming coupler represented by a broad generic formula. This broad generic formula includes 8-hydroxy-quinoline derivatives substituted by a wide variety of substituents, e.g., substituted carboxamide groups at the 7-position. None of the specific compounds disclosed in this reference are structurally similar to the compounds of the present invention. Also, the compounds of the present invention are useful as pharmaceutical agents, specifically HCMV inhibitors, whereas the reference compounds are useful in color photography.

Published Japanese patent application HEI 3-73949 published 28 March 1991 discloses a thermally developable color light-sensitive material comprising at least a light-sensitive silver halide, a reducing agent, a binder, and a coupler represented by a first generic formula and/or a second generic formula on a support. These broad generic formulas include 8-hydroxy-quinoline derivatives substituted by a wide variety of substituents, e.g., substituted carboxamide groups at the 7-position. As noted for the previous Japanese reference, none of the specific compounds disclosed in this reference are structurally similar to the compounds of the present invention. Also, the compounds of the present invention are useful as pharmaceutical agents, specifically HCMV inhibitors, whereas the reference compounds are useful in color photography.

Published Japanese patent application 02152966 A2 discloses 4-hydroxy-carbostyryl derivatives as anti-allergy and antiinflammatory agents. The compounds of the present invention are 1-(N-unsubstituted)- 8-hydroxy-7-quinoline-carboxamides.

US Patent No. 4,959,363 discloses 1-(N-substituted)-1,4-dihydro-4-oxo-6-and/or-7-substituted-3-quinolinecarboxamides as antiviral agents. The compounds of the present invention are 1-(N-unsubstituted)-8-hydroxy-7-quinolinecarboxamides.

US Patent Nos. 5,459,146 and 5,506,236 disclose 4-substituted-3-alkyl-pyrazolo[3,4-b]quinoline compounds as antiviral agents. Basically, these compounds are the tricyclic version of compounds such as those disclosed in the '363 patent.'

25

30

5

. 1

1-:

above, and are structurally very different from the compounds of the present invention.

US Patent No. 5,378,694 discloses compounds such as 1-(N-substituted)-3-substituted-4-hydroxy-2-quinolinones, and generically, 3-substituted-4-bydroxycoumarin compounds as antiviral agents. US Patent No. 5,412,104 discloses compounds similar to those disclosed in the '694 patent for anti-viral or anti-hypertensive use; however, these 1-(N-substituted) reference compounds are disclosed as having substituents other than hydroxy at the 4-position of the quinolinone ring. The compounds of the present invention are 1-(N-unsubstituted)-8-hydroxy-7-quinolinecarboxamides.

German patent DE 1 908 548 discloses a variety of compounds including 4-hydroxy-quinoline compounds which may be substituted at the 3-position by carboxamide groups, and which are useful against cold viruses.

Published German patent application DE 44 25 647 A1 discloses heterocyclic1-phenyl substituted quinolone and naphthyridone carboxylic acids for treating retroviral infections; Published German patent application DE 44 25 648 A1 discloses 6 and 6,8-substituted 1-[4-(1H-1,2,4-triazol-1-yl-methyl)phenyl] quinolone carboxylic acids for treating retroviral infections; Published German patent application DE 44 25 650 A1 discloses substituted triazolylmethylphenyl20 naphthyridone carboxylic acids for treating retroviral infections; Published German patent application DE 44 25 659 A1 discloses N1-diverse 6-fluoro-8-difluoromethoxy substituted quinolone carboxylic acids for treating retroviral infections. The compounds of these references are structurally very different from the compounds of the present invention.

Derwent Abstract 96-246942/25 of JP 8099957-A discloses optionally heterocyclyl substituted 4-oxo-quinoline and naphthyridine derivatives which are useful for treating herpes, particularly herpes simplex virus, herpex zoster virus and cytomegalovirus.

Derwent Abstract 95-271358/36 of JP 7165748-A discloses compounds having heterocyclic ketones which are used in antiviral agents for treating cytomegalovirus infectious disease.

Nowhere do these references teach or suggest the specific 8-hydroxyquinoline-7-carboxamide compounds of the present invention which are useful as anti-HCMV agents.

US Patent 5,463,072 discloses a process for the preparation of naphtholic 2equivalent cyan couplers which are useful in color photography. It discloses an 8-

25

30

hydroxy-quinoline compound having a substituted triazole moiety at the 6-position and a carbamoyl moiety at the 7-position.

International Publication WO 95/11592, published 4 May 1995, discloses a marine structure carrying a coating comprising a layer which contains a quinoline compound, or an N-oxide or a salt thereof, having antifouling activity. It generically discloses such compounds with a variety of substituents, such as hydroxy, (optionally substituted $C_{1.12}$ -alkyl)sulphonyl, (optionally substituted aryl)sulphonyl, mono or di (optionally substituted $C_{1.12}$ alkyl)aminosulphonyl.

Derwent Abstract 91-232424/32 (Sandoz AG) discloses the use of 5HT-3 antagonists for the prevention or reduction of dependence on alcohol, psychostimulants, nicotine or opiates. A variety of compounds is disclosed including quinoline compounds having unsubstituted phenyl rings.

Derwent Abstract 90-343755/46 (Sandoz Ltd.) discloses serotonin 5-HT3 antagonists used for treating stress-related psychiatric disorders, rhinitis, nasal disorders and lung embolism. It discloses a variety of compounds, including quinoline compounds substituted by bridged piperidine groups.

Derwent Abstract 90-290145/38 (DuPont DeNemours Co.) discloses n-substituted naphthalene or quinoline sulphonamides which are radio and chemosensitising agents in tumour treatment. Other than the sulfonamide bonds, the quinoline compounds are not further substituted on their phenyl rings.

Derwent Abstract 90-264471/35 (Yoshitomi Pharm. Ind. KK.) discloses (iso)quinoline-sulphonamide compounds and their acid addition salts as vasodilators and cerebral circulation improving agents.

Derwent Abstract 85-063337/11 (Sandoz-Patent-Gmbh) discloses a variety of new fused heterocyclic sulphonic amide and ester derivatives with analgesic, antiarrythmic and antipsychotic activities.

Derwent Abstract 22,706 (Pfizer & Co.) discloses quinoline derivatives and their acid addition salts as bronchodilators, but no sulfonamide substituents are disclosed for these compounds.

U.S. Patent 5,240,940 discloses fungicidal compositions comprising a combination of two fungicides, one of which is a quinoline or cinnoline compound.U.S. Patent 4,881,969 discloses sulfonamides as herbicidal agents.

European Published applications 0326330 and 0326328 discloses quinoline, quinazoline and cinnoline fungicides.

JP 63307451 discloses a silver halide color photographic photosensitive material with improved granularity containing a water-soluble coupler capable of a

j

10

20

25

30

coupling reaction with an oxidant main ingredient in color developing, which coupler may include specific 8-hydroxy-quinoline compounds.

JPO7033729-A discloses the production of N-cyano-N-substitutedarylcarboxyimidamide compounds in which aryl may be 8-quinolyl groups.

International Publication Number WO 96/25399, published 22 August 1996, discloses aroylaniline derivatives which exhibit anti-retroviral activity.

International Publication Number WO 97/03069, published 30 January 1997, discloses substituted heteroaromatic compounds which are protein tyrosine kinase inhibitors, in particular to substituted quinolines and quinazolines.

International Publication Number WO 96/06084, published 29 February 1996, discloses quinolylamine derivatives which are useful for the treatment of arrhythmia.

European Patent Application No. 0206751, published 30 December 1996, discloses 2-substituted-phenylalkenyl-quinoline derivatives which are useful as selective antagonists of leukotrienes of D_4 .

International Application No. WO 9632015 discloses synergistic fungicidal compositions made of quinoline derivatives and cytochrome complex III inhibitors.

European Patent Application No. 0399818 discloses diarylstyrylquinoline diacids which are leukotriene antagonists and inhibitors of leukotriene biosynthesis. These compounds are useful as anti-asthmatic, anti-allergic, anti-inflammatory and cytoprotective agents.

SUMMARY OF THE INVENTION

The present invention particularly provides:

A compound of formula IA

25 wherein R⁰ is

5

10

15

20

- a) $-(CH_2)_n-X^1$,
- b) $-(CH_2)_n-C_3-C_8$ cycloalkyl substituted by zero (0) or one (1) R^8 ,
- c) $-(CH_2)_n W^1 X^2$,
- d) $-(CH_2)_p W^1CH_2X^1$, or
- 30 e) $-(CH_2)_n-CHR^9-(CH_2)_n-X^1$;

wherein R1 is

- a) -H,
- b) -F,
- c) -Cl,
- 35 d) -Br,
 - e) $-CF_3$, or

-6-

f) -NO₂;

wherein R^2 is

- a) -H,
- b) $-C_1-C_3$ alkyl,
- 5 c) -OH,
 - d) -CF₃,
 - e) -CH=CH-furanyl,
 - f) -CH=CH-phenyl substituted by zero (0) or one (1) R⁴,
 - g) -CH=CH-pyridinyl,
- 10 h) $-(CH_2)_p$ -phenyl substituted by zero (0) or one (1) R^4 ,
 - i) -NHV¹,
 - j) -CH₂NHV¹, or
 - k) $-CH_2Z^1$;

wherein R^3 is

- 15 a) -H,
 - b) -OH,
 - c) $-CF_3$, or
 - d) $-C_1-C_3$ alkyl;

wherein R4 is

- 20 a) -H
 - b) -F,
 - c) -Cl,
 - d) -Br,
 - e) $-NO_2$,
- 25 f) -CF₃,
 - g) -W1-R10,
 - h) $-C_1-C_6$ alkyl,
 - i) -C₃-C₈ cycloalkyl,
 - j) -[CH₂]_n-aryl,
- 30 k) $-[CH_2]_n$ -het,
 - 1) -CH₂-C₃-C₈ cycloalkyl,
 - m) -SO₂NH-het
 - n) -CN,
 - o) -I, or
- 35 p) -CH₂-OH;

wherein R^{δ} is

٦,

 Γ :

- a) -H,
- b) -F,
- c) -Cl,
- d) -Br,
- 5 e) $-W^1-R^{10}$,
 - f) -CF₃,
 - g) -C₁-C₆ alkyl,
 - h) -C₃-C₈ cycloalkyl,
 - i) -(CH₂)_n-aryl substituted by R⁶,
- j) $-(CH_2)_n$ -het substituted by R^7 , or
 - k) -CH₂-C₃-C₈ cycloalkyl;

wherein R⁶ is

- a) -H,
- b) -F,
- 15 c) -Cl, or
 - d) -Br;

wherein R7 is

- a) -H,
- b) -F,
- 20 c) -Cl, or
 - d) -Br;

wherein R⁸ is

- a) -C₁-C₄ alkyl,
- b) -W¹-H, or
- 25 c) $-CH_2W^1H$;

wherein R9 is

- a) -C₁-C₇ alkyl,
- b) -C₃-C₈ cycloalkyl,
- c) $-C(O)R^{11}$,
- 30 d) -C(O)NHR¹¹,
 - e) $-CH(OH)R^{11}$,
 - f) -CH₂OH,
 - g) $-CO_2R^{11}$, or
 - h) -aryl;
- 35 wherein R¹⁰ is
 - a) -H,

j

! :

- b) $-C_1-C_6$ alkyl,
- c) -C₃-C₈ cycloalkyl,
- d) -(CH₂)_n-aryl optionally substituted with F, Cl, CH₂OH or -NO₂,
- e) $-(CH_2)_n$ -het, or
- 5 f) -CH₂-C₃-C₃ cycloalkyl;

wherein R^{11} is

- a) $-C_1-C_7$ alkyl,
- b) -C₃-C₈ cycloalkyl,
- c) $-(CH_2)_n X^1$, or
- d) -CH₂-C₃-C₈ cycloalkyl;

wherein X1 is

- a) -aryl substituted by zero (0), one (1), two (2), or three (3) R4,
- b) -het substituted by zero (0), one (1) or two (2) R⁶,
- c) $-C_1-C_8$ alkyl,
- d) -CH(OH)-phenyl,
 - e) -S-phenyl,
 - f) -NHSO₂-phenyl substituted by one (1), two (2) or three (3) R⁴,
 - g) -CN,
 - h) -OH,
- 20 i) -C₃-C₅ cycloalkyl substituted by zero (0), one (1) or two (2) R⁵, or
 - j) -4-cyano-2,3,5,6-tetrafluoro-phenyl;

wherein X2 is

- a) -aryl substituted by zero (0), one (1), two (2) or three (3) R⁴,
- b) -het substituted by zero (0), one (1) or two (2) R⁵,
- c) $-C_1-C_8$ alkyl,
 - d) -CH(OH)-phenyl, or
 - e) $-C_3-C_8$ cycloalkyl substituted by zero (0), one (1) or two (2) \mathbb{R}^8 ;

wherein W^1 is

- a) -NH,
- 30 b) -oxygen, or
 - c) -sulfur;

wherein V^1 is

- a) $-R^{11}$,
- b) $-C(O)R^{11}$,
- 35 c) $-SO_2R^{11}$, or
 - d) $-C(O)NHR^{11}$;

whrein Z1 is

5

15

- a) $-C_1-C_7$ alkyl,
- b) -C₃-C₈ cycloalkyl,
- c) $-C(O)R^{11}$,
- d) -C(O)NHR¹¹, or
 - e) $-CO_2R^{11}$;

wherein -aryl is

- a) -phenyl,
- b) -naphthyl,
- 10 c) -biphenyl,
 - d) -tetrahydro-naphthyl, or
 - e) fluorenyl;

wherein -het is a 5-, 6- or 7-membered saturated or unsaturated ring containing from one (1) to three (3) heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another heterocyclic;

wherein -cycloalkyl is a saturated or unsaturated hydrocarbon ring including any bicyclic group in which the above ring is connected to a benzene, heterocyclic or other hydrocarbon ring;

20 wherein n is zero (0) to six (6), inclusive;

wherein p is one (1), two (2) or three (3);

or a pharmaceutically acceptable salt or N-oxide thereof.

The present invention further provides:

The compound of formula IA provided that:

- when R^0 is $-(CH_2)_n X^1$ and X^1 is -OH, then n is one or greater; and
 - b) when R^0 is $-(CH_2)_p$ W^1X^2 , W^1 is -oxygen or -sulfur and X^2 is phenyl then R^4 is other than t-pentyl.

The present invention also provides:

A compound of formula I

- 30 wherein R1 is
 - a) -H,
 - b) -F,
 - c) -Cl,
 - d) -Br,
- 35 e) -CF₃, or
 - f) -NO₂;

٠,

wherein R2 is

- a) -H,
- b) -C₁-C₃alkyl,
- c) -OH,
- 5 d) -CF₃,
 - e) -CH=CH-furanyl,
 - f) -CH=CH-phenyl substituted by zero (0) or one (1) R⁴,
 - g) -CH=CH-pyridinyl, or
 - h) -(CH₂)_p-phenyl substituted by zero (0) or one (1) R⁴;
- 10 wherein R3 is
 - a) -H,
 - b) -OH,
 - c) -CF₃, or
 - d) -C₁-C₃alkyl;
- 15 wherein X1 is
 - a) -phenyl substituted by zero (0) or one (1) R4,
 - b) -het substituted by zero (0) or one (1) R⁵,
 - c) $-C_1-C_{12}$ alkyl,
 - d) -CH(OH)-phenyl,
- 20 e) -S-phenyl,
 - f) -naphthyl,
 - g) -NHSO₂-phenyl substituted by one (1) R⁴, or
 - h) -CN;

wherein het is

- 25 a) -1,3,4-thiadiazol-2-yl,
 - b) -4,5-dihydro-4-oxo-2-thiazolyl,
 - c) -thiazolyl,
 - d) -benzothiazolyl,
 - e) -pyridinyl,
- 30 f) -morpholinyl, or
 - g) -imidazolyl;

wherein R4 is

- a) -H
- b) -F,
- 35 c) -Cl,
 - d) -Br,

-11-

٦)

1':

- e) $-NO_2$,
- f) -OCH₃,
- g) -CF₃, or
- h) $-C_1-C_4$ alkyl;
- 5 wherein R⁵ is
 - a) -H,
 - b) -F,
 - c) -Cl,
 - d) -Br,
- 10 e) $-(CH_2)_n$ -(phenyl substituted by R^6),
 - f) -thienyl substituted by R⁷, or
 - g) -OH;

wherein R6 is

- a) -H,
- 15 b) -F,
 - c) -Cl, or
 - d) -Br;

wherein R7 is

- a) -H,
- 20 b) -F,
 - c) -Cl, or
 - d) -Br;

wherein n is zero (0) to six (6) inclusive;

or a pharmaceutically acceptable salt or a N-oxide thereof.

- The present invention further provides compounds of formula II wherein R^1 is
 - a) -H,
 - b) -Cl,
 - c) -Br, or
- d) -NO₂;

wherein R^2 is

- a) -H,
- b) -CH₃,
- c) -CF₃,
- d) $-(CH_2)_p$ -phenyl substituted by zero (0) or one (1) R^4 ,

11:

e) -CH=CH-furanyl, or

٠,

f) -CH=CH-phenyl substituted by zero (0) or one (1) R4;

wherein X^1 is

- a) -phenyl substituted by one (1) R⁴,
- b) -het substituted by one (1) R⁵,
- 5 c) -CH(OH)-phenyl,
 - d) -S-phenyl,
 - e) -naphthyl,
 - f) -NHSO₂-phenyl substituted by one (1), two (2) or three (3) R⁴, or
 - g) -CN;
- 10 wherein het is
 - a) -1,3,4-thiadiazol-2-yl,
 - b) -4,5-dihydro-4-oxo-2-thiazolyl,
 - c) -2-thiazolyl, or
 - d) -2-benzothiazolyl;
- 15 wherein R4 is
 - a) -H,
 - b) -Cl,
 - c) -Br,
 - d) $-NO_2$, or
- 20 e) -OCH₃;

wherein R^5 is

- a) -H,
- b) -Cl,
- c) $-(CH_2)_n$ -(phenyl substituted by R^6),
- 25 d) -2-thienyl substituted by R⁷, or
 - e) OH;

wherein R⁶ is

- a) -H,
- b) -Cl, or
- 30 c) -Br;

wherein R7 is

- a) -H,
- b) -Cl, or
- c) -Br.
- 35 In another aspect, the present invention provides

17 :

A use of a compound of formula LA

-13-

`]

to prepare a medicament for treating a susceptible cytomegaloviral infection in a mammal

wherein R^0 is

- a) $-(CH_2)_n-X^1$,
- b) $-(CH_2)_n-C_3-C_8$ cycloalkyl substituted by zero (0) or one (1) \mathbb{R}^8 ,
 - c) $-(CH_2)_p W^1X^2$,
 - d) $-(CH_2)_p W^1CH_2X^1$, or
 - e) $-(CH_2)_n CHR^9 (CH_2)_n X^1$;

wherein R^1 is

- 10 a) -H,
 - b) -F,
 - c) -C1,
 - d) -Br,
 - e) $-CF_3$, or
- f) $-NO_2$;

wherein R2 is

- a) -H,
- b) -C₁-C₃alkyl,
- c) -OH,
- 20 d) -CF₃,
 - e) -CH=CH-furanyl,
 - f) -CH=CH-phenyl substituted by zero (0) or one (1) R4,
 - g) -CH=CH-pyridinyl,
 - h) $-(CH_2)_p$ -phenyl substituted by zero (0) or one (1) \mathbb{R}^4 ,
- 25 i) -NHV¹,
 - j) -CH₂NHV¹, or
 - k) $-CH_2Z^1$;

wherein R3 is

- a) -H,
- 30 b) -OH,
 - c) $-CF_3$, or
 - d) $-C_1-C_3$ alkyl;

wherein R4 is

- a) -H
- 35 b) -F,
 - c) -Cl,

-14-

```
d)
                                -Br,
                                -NO<sub>2</sub>,
                    e)
                    f)
                                -CF<sub>3</sub>,
                               -W1-R10,
                    g)
                               -C_1-C_6 alkyl,
  5
                    h)
                               -C<sub>3</sub>-C<sub>8</sub> cycloalkyl,
                   i)
                               -[CH_2]_n-aryl,
                   j)
                   k)
                               -[CH_2]_n-het,
                               -CH<sub>2</sub>-C<sub>3</sub>-C<sub>8</sub> cycloalkyl,
                   1)
                               -SO<sub>2</sub>NH-het
10
                   m)
                               -CN,
                   n)
                   0)
                               -I, or
                               -CH<sub>2</sub>-OH;
                   рì
        wherein R<sup>5</sup> is
15
                   a)
                               -H.
                               -F,
                   b)
                               -Cl,
                   c)
                   d)
                               -Br,
                               -W1-R10,
                   e)
                               -CF<sub>3</sub>,
20
                   n
                               -C<sub>1</sub>-C<sub>6</sub> alkyl,
                   g)
                               -C3-C8 cycloalkyl,
                   h)
                               -(CH<sub>2</sub>)<sub>z</sub>-aryl substituted by R<sup>6</sup>,
                   i)
                               -(CH<sub>2</sub>)<sub>n</sub>-het substituted by R<sup>7</sup>, or
                   j١
```

-CH₂-C₃-C₈ cycloalkyl;

wherein R^6 is

k)

25

a) -H,

b) -F,

c) -Cl, or

30 d) -Br;

wherein R7 is

a) -H,

b) -F,

c) -Cl, or

35 d) -Br;

wherein Re is

-15-

BNSDCCID kWD - 9811073A1 Fis

.

٦,

1 :

- a) $-C_1-C_4$ alkyl,
- b) $-W^1-H$, or
- c) $-CH_2W^1H_1$;

wherein R9 is

- 5 a) $-C_1-C_7$ alkyl,
 - b) -C₃-C₈ cycloalkyl,
 - c) $-C(O)R^{11}$,
 - d) -C(O)NHR¹¹,
 - e) $-CH(OH)R^{11}$,
- 10 f) -CH₂OH,
 - g) $-CO_2R^{11}$, or
 - h) -aryl;

wherein R10 is

- a) -H,
- b) $-C_1-C_6$ alkyl,
 - c) -C₃-C₅ cycloalkyl;
 - d) $-(CH_2)_n$ -aryl optionally substituted with F, Cl, CH_2OH or $-NO_2$,
 - e) $-(CH_2)_n$ -het, or
 - f) $-CH_2-C_3-C_3$ cycloalkyl;
- 20 wherein R11 is
 - a) $-C_1-C_7$ alkyl,
 - b) -C₃-C₈ cycloalkyl,
 - c) $-(CH_2)_n X^1$, or
 - d) -CH₂-C₃-C₈ cycloalkyl;
- 25 wherein X1 is
 - a) -aryl substituted by zero (0), one (1), two (2), or three (3) R⁴,
 - b) -het substituted by zero (0), one (1) or two (2) R⁵,

1: :

- c) $-C_1-C_8$ alkyl,
- d) -CH(OH)-phenyl,
- 30 e) -S-phenyl,
 - f) -NHSO₂-phenyl substituted by one (1), two (2) or three (3) R⁴,
 - g) -CN,
 - h) -OH,
 - i) $-C_3-C_8$ cycloalkyl substituted by zero (0), one (1) or two (2) \mathbb{R}^8 , or
- j) -4-cyano-2,3,5,6-tetrafluoro-phenyl;

wherein X^2 is

٠,

- a) -aryl substituted by zero (0), one (1), two (2) or three (3) R4,
- b) -het substituted by zero (0), one (1) or two (2) R⁵,
- c) $-C_1-C_8$ alkyl,
- d) -CH(OH)-phenyl, or
- 5 e) -C₃-C₈ cycloalkyl substituted by zero (0), one (1) or two (2) R⁸;

wherein W1 is

à

بر

- a) -NH,
- b) -oxygen, or
- c) -sulfur;
- 10 wherein V1 is
 - a) $-R^{11}$,
 - b) $-C(O)R^{11}$,
 - c) $-SO_2R^{11}$, or
 - d) $-C(O)NHR^{11}$;
- 15 whrein Z' is
 - a) $-C_1-C_7$ alkyl,
 - b) -C₃-C₈ cycloalkyl.
 - c) $-C(O)R^{11}$,
 - d) -C(O)NHR¹¹, or
- 20 e) -CO₂R¹¹;

wherein -aryl is

- a) -phenyl,
- b) -naphthyl,
- c) -biphenyl,
- 25 d) -tetrahydro-naphthyl, or
 - e) fluorenyl;

wherein -het is a 5-, 6- or 7-membered saturated or unsaturated ring containing from one (1) to three (3) heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur; and including any bicyclic group in which any of the above

heterocyclic rings is fused to a benzene ring or another heterocyclic; wherein -cycloalkyl is a saturated or unsaturated hydrocarbon ring including any bicyclic group in which the above ring is connected to a benzene, heterocyclic or other hydrocarbon ring;

wherein n is zero (0) to six (6), inclusive;

wherein p is one (1), two (2) or three (3); or a pharmaceutically acceptable salt or N-oxide thereof; as well as a method of

11:

treating a cytomegalovirus comprising the administration of an effective amount of a compound of the formula IA.

The present invention also provides:

An antiviral pharmaceutical composition which comprises a pharmaceutically acceptable excipient and an effective amount of a compound of formula I.

Further, the present invention provides:

A compound of the formula III

wherein R1 is

10

- a) -H,
- b) -C₁-C₆ alkyl, or
 - c) -CH=CH-aryl;

wherein R2 is

- a) $-C_1-C_{10}$ alkyl,
- b) $-(CH_2)_n R^3$,
- 15 c) $-CH(R^4)R^3$, or
 - d) $-(CH_2)_n X^2 R^3$;

wherein R³ is

- a) -aryl,
- b) -het substituted by zero (0) to two (2) R⁵, or
- 20 c) -C₃-C₆ cycloalkyl;

wherein R4 is

- a) $-C_1-C_5$ alkyl, or
- b) -aryl;

wherein X^1 is

- 25 a) -H,
 - b) -F,
 - c) -Cl,
 - d) -Br, or
 - e) -I;
- 30 wherein X2 is
 - a) -O-,
 - b) -S-, or
 - c) -NH-;

wherein n is zero (0) to four (4) inclusive;

- 35 wherein aryl is
 - a) phenyl substituted by zero (0) to two (2) R⁵, or

b) naphthyl substituted by zero (0) to two (2) R⁵;

wherein het is a 5-, 6- or 7-membered saturated or unsaturated ring containing from one (1) to three (3) heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur; and including any bicyclic group in which any of the above

- heterocyclic rings is fused to a benzene ring or another heterocycle; and the ring may be connected through a carbon or secondary nitrogen in the ring or an exocyclic nitrogen; and if chemically feasible, the nitrogen and sulfur atoms may be in the oxidized forms; and if chemically feasible, the nitrogen atom may be in the protected form;
- 10 wherein R⁵ is

څپه

- a) -H,
- b) $-C_1-C_5$ alkyl,
- c) -F,
- d) -Cl,
- e) $-OCH_3$,
 - f) -CF₃,
 - g) -NHSO $_2$ -het substituted by zero (0) to two (2) - C_1 - C_5 alkyl, or
 - h) -NHSO₂-phenyl;

or a pharmaceutically acceptable salt thereof;

20 A compound of formula III

wherein R1 is

- a) -H,
- b) $-CH_3$, or
- c) -CH=CH-phenyl;
- 25 wherein R² is
 - a) $-(CH_2)_n R^3$,
 - b) $-(CH_2)_n X^2 R^3$, or
 - c) $-CH(R^4)R^3$;

wherein R3 is

- 30 a) -phenyl substituted by zero (0) to two (2) R⁶,
 - b) -het,
 - c) -naphthyl, or
 - d) -C_{3.6} cycloalkyl;

wherein R4 is

- 35 a) $-CH_3$, or
 - b) -phenyl;

-19-

1: :

١,

wherein R5 is

- a) -F,
- b) -Cl,
- c) -NHSO₂-phenyl;
- 5 wherrein X1 is
 - a) -Cl, or
 - b) -Br;

wherein X2 is

- a) -O-, or
- 10 b) -S-;

wherein het is

- a) -imidazolyl, or
- b) -indolyl.

The present invention also provides:

15 A compound of the formula IV

where X1 is

- a) -H,
- b) -F,
- c) -Cl,
- 20 d) -Br, or
 - e) -I;

wherein R_2 , R_3 and R_4 may be the same or different and are

- a) $-C_1-C_5$ alkyl, or
- b) -phenyl.
- 25 Also provided is:

A compound of formula V

wherein X1 is

- a) phenyl substituted by zero (0) to three (3) R⁴,
- b) naphthyl substituted by zero (0) to three (3) R⁴,
- 30 c) fluorenyl substituted by zero (0) to three (3) R⁴,
 - d) het substituted by zero (0) to one (1) \mathbb{R}^5 , or
 - e) 4-cyano-2,3,5,6-tetrafluorophenyl;

wherein R4 is

- a) -F,
- 35 b) -Cl,
 - c) -Br,

-20-

d) -I,

بج

- e) -NO₂,
- f) -CN,
- g) -CF₃,
- 5 h) $-C_1-C_6$ alkyl,
 - i) phenyl,
 - j) cyclohexyl,
 - k) hydroxymethyl,
 - l) -OR¹⁰,
- 10 m) -SR¹⁰, or
 - n) -SO₂NH-het;

wherein het is

- a) 1,3-benzodioxol-4-yl,
- b) 1,3-benzodioxo-5-yl,
- c) coumarinyl,
 - d) indazoyl,
 - e) indolyl,
 - f) benzothiazolyl,
 - g) benzothiadiazolyl,
- 20 h) quinolinyl,
 - i) pyridinyl,
 - j) 1,3,4-thiadiazol-2-yl, or
 - k) isoxazolyl substituted with one or two C_1 - C_4 alkyl;

wherein R5 is

- 25 a) -F,
 - b) -Cl,
 - c) -Br,
 - d) -I,
 - e) $-CF_3$,
- 30 f) $-C_1-C_4$ -alkyl, or
 - g) -C₁-C₂-alkylsubstituted with an aryl;

wherein R^{10} is

- a) hydrogen,
- b) -C₁-C₄ alkyl,
- 35 c) phenyl,
 - d) benzyl, or

-21-

`]

e) 4-nitrophenyl; as well as

A compound of formula V

wherein het is

- a) indazoyl,
- 5 b) indoyl, or
 - c) isoxazolyl substituted with one (1) or two (2) C₁-C₄ alkyl.

Finally, the present invention provides:

A compound of formula VI or VII

wherein X is

- 10 a) -C, or
 - b) -SO;

wherein Y is

- a) -NH,
- b) -O, or
- 15 c) -S;

wherein EWG is an electron withdrawing group;

wherein R1, R2 and R3 are as defined in claim 1;

wherein R4 is

- a) -H,
- 20 b) $-(CH_2)_n-CO_2-C_1-C_6$ alkyl,
 - c) $-(CH_2)_m$ -phenyl optionally substituted with one (1) or two (2) R^7 ,
 - d) $-(CH_2)_m$ -het,
 - e) $-C_1-C_6$ alkyl optionally substituted by one \mathbb{R}^6 ,
 - f) -C₁-C₄ alkyl-NH-COOCH₂-benzyl, or
- g) $-C_1-C_4$ alkyl-S-CH₃;

wherein R⁵ is pyrrolidin-1-yl optionally substituted with EWG or R⁶;

wherein n is zero (0) to three (3);

wherein m is zero (0) to one (1);

wherein -het is a 5-, 6- or 7-membered saturated or unsaturated ring containing

from one (1) to three (3) heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another heterocyclic;

wherein R⁶ is

- a) hydroxy,
- 35 b) $-C_1-C_6$ alkyloxy,
 - c) mercapto, or

d) -C₁-C₆ alkylmercapto;

wherein R7 is

...,

لإ

- a) hydroxy, or
- b) -C₁-C₆ alkyloxy; as well as

5 A compound of formula VI or VII

wherein R' is t-butyl;

wherein EWG is

- a) $-NH-CO_2C(CH_3)_3$,
- b) -CN,
- c) $-COX^2-C_1-C_6$ alkyl, or
 - d) -COOH;

wherein X2 is

10

20

25

30

- a) -O-, or
- b) -NH: and
- 15 wherein het is
 - a) 1,3-benzodioxol-4-yl,
 - b) 1,3-benzodioxol-5-yl, or
 - c) indolyl.

"Pharmaceutically acceptable salts" refers to those salts which possess the biological effectiveness and properties of the parent compound and which are not biologically or otherwise undesirable.

"N-oxide" refers to the oxidized form of the nitrogen in the ring of the 8-hydroxy-quinoline compounds of the present invention. The preparation of such compounds is well known to one of ordinary skill in organic chemistry, including methods such as oxidation with metachloro-peroxy-benzoic acid.

"Electron-withdrawing group" means any substituent on the ring which tends to draw electron density from the ring. Examples of such groups include halogen, nitro, cyano, carboxylic acids, carboxylic esters, sulfoxides, sulfones, sulfonamides, ketones and aldehydes.

"Halogen" means fluroine, chlorine, or bromine.

1":

"Het" is a 5-, 6- or 7-membered saturated or unsaturated ring containing from one (1) to three (3) heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another heterocycle; and the ring may be connected through a carbon or secondary nitrogen in the ring or an exocyclic nitrogen; and if chemically feasible, the nitrogen and sulfur atoms may be in the

٠,

oxidized forms; and if chemically feasible, the nitrogen atom may be in the protected form; and substituted or unsubstituted. Examples of "het" include the following: thiadiazolyl, thiazolyl, benzothiazolyl, pyridinyl (or pyridyl), morpholinyl, imidazolyl, indolyl, and piperazinyl.

The compounds of the present invention are named according to the IUPAC or CAS nomenclature system.

The carbon atom content of various hydrocarbon-containing moieties is indicated by a prefix designating the minimum and maximum number of carbon atoms in the moiety, i.e., the prefix C_i - C_j indicates a moiety of the integer "i" to the integer "j" carbon atoms, inclusive. Thus, for example, $(C_1$ - $C_3)$ alkyl refers to alkyl of one to three carbon atoms, inclusive, or methyl, ethyl, propyl and isopropyl, straight and branched forms thereof.

Throughout this application, abbreviations which are well known to one of ordinary skill in the art may be used, such as "Ph" for phenyl, "Me" for methyl, and "Et" for ethyl.

The following Charts A-I describe the preparation of the compounds of the present invention. All of the starting materials are prepared by procedures described in these charts or by procedures analogous thereto, which would be well known to one of ordinary skill in organic chemistry. All of the final compounds of the present invention are prepared by procedures described in these charts or by procedures analogous thereto, which would be well known to one of ordinary skill in organic chemistry. All of the variables used in the charts are as defined below or as in the claims.

CHART A

The preparation of the starting materials, 8-hydroxyquinoline-7-carboxylic acids, is accomplished in low to moderate yields by the carboxylation of 8-hydroxyquinolines, which are either commercially available or which are prepared by literature methods: G.S. Bajwa, K.E. Hartman, and M.N. Jouillie, Journal of Medicinal Chemistry, Vol.16, No. 2, pages 134-138 (1973); L.C. March, W.A.

Romanchick, G.S. Bajwa, and M.M. Jouillie, Journal of Medicinal Chemistry, Vol. 16, No. 4, pages 337-342 (1973). The compound of formula A-1 is reacted with K₂CO₃ (3 eq.), CO₂(800 p.s.i) at 170° for 7 days, to yield the compound of formula A-2. J. Hannah et al., Journal of Medicinal Chemistry, Vol. 21, No. 11, pages 1093-1100 (1978). (R¹ and R² in formula A-1 are the same as R¹ and R² in formula A-2.)

The compound of formula A-2 wherein R¹ is -H and R² is -H is the intermediate compound of Preparation 1 below. The compound of formula A-2 wherein R¹ is -F

5

and R^2 is -H is the intermediate compound of Preparation 4 below. The compound of formula A-2 wherein R^1 is -Cl and R^2 is -H is the intermediate compound of Preparation 3 below. The compound of formula A-2 wherein R^1 is -H and R^2 is -CH₃ is the intermediate compound of Preparation 5 below.

5

À,

_3

10

CHART B

Bromination of 8-hydroxyquinoline-7-carboxylic acid of formula B-1 with one equivalent of bromine (HOAc, reflux, 1 hr) yields 5-bromo-8-hydroxy-7-quinoline-carboxylic acid of formula B-2 in quantitative yield, which is prepared in Preparation 2 below. R. Schmitt and F. Engelmann, Chem. Ber., 20; 1887; 2694.

20

25

CHART C

The acid of formula C-1, prepared as described in Charts A and B above, is condensed with the amine of formula C-2, which is commercially available (e.g., p-chloro or p-nitrobenzylamine), under appropriate conditions (EDC is used as the coupling agent, HOBt, DMF, rt, 18 hr) to yield the compound of formula C-3. (R¹ and R² in formula C-1 are the same as R¹ and R² in formula C-3. X in formula C-2 is the same as X in formula C-3.) The compound of formula C-3 wherein R¹ is -Br, R² is -H and X is -Cl is the final compound of Example 9 below. The compound of formula C-3 wherein R¹ is -H, R² is -CH₃ and X is -Cl is the final compound of Example 10 below. The compound of Fxample 11 below. The compound of Fxample 12 below. The compound of formula C-3 wherein R¹ is -H and X is -NO₂ is the final compound of Example 12 below. The compound of Fxample 16 below. Chart C is the preferred coupling method for benzylamines.

`]

1: :

CHART D

Under the same conditions as in Chart C above (i.e., EDC, HOBt, DMF, rt, 7 days), the acid of formula D-1 is condensed with the heterocyclic amine of formula D-2 to give the final compound of formula D-3, which is prepared in Example 8 below.

CHART E

Chart E discloses a more efficient method of coupling the 8-hydroxyquinoline7-carboxylic acids with anilines and heterocyclic amines utilizing PCl₃ as the condensing agent. H. Singh, A.K. Singh, S. Sharma, R.N. Iyer, J. Med. Chem., 20:826 (1977); H. Singh, S. Sharma, R.N. Iyer, Ind. J. Chem., 15B:73 (1977); S.K. Dubey, A.K. Singh, H. Singh, S. Sharma, R.N. Iyer, J. Med. Chem., 37:999 (1994). The compound of formula E-1 is coupled with the compound of formula E-2 (using PCl₃, xylenes, at reflux, for 18hr) to yield the compound of formula E-3 wherein X is -H (which is the final compound of Example 5 below) or X is -Br (which is the final compound of Example 6 below). (X in formula E-1 is the same as X in formula E-3.) Chart E is the preferred coupling method for heterocyclic amines.

5

15

•

Ì,

مو

CHART F

The required thiazolones of formula F-3 are prepared in three steps from commercially available acids of formula F-1 as follows: the compound of formula F-1 is first treated with P_{tred} in Br and is then treated with AcCl in methanol to yield the compound of formula F-2. This compound is then reacted with thiourea at ethanol at reflux to yield the compound of formula F-3. T. Sohda et al., Chem. Pharm. Bull., Vol. 30, No. 10, pages 3601-3616 (1982).

CHART G

Anilines are also coupled in low to moderate yields under the conditions of Chart E. Thus, the compound of formula G-1 is coupled with the compound of formula G-2 (using PCl₃, xylenes, at reflux, for 18 hours) to yield the compound of formula G-3. (R¹ in formula G-1 is the same as R¹ in formula G-3.) The compound of formula G-3 wherein R¹ is -H is the final compound of Example 3 below; the compound of formula G-3 wherein R¹ is -Br is the final compound of Example 4 below; and the compound of formula G-3 wherein R¹ is -Cl is the final compound of Example 15 below. The coupling conditions of this reaction are preferred when anilines are used.

30
$$\stackrel{\mathsf{OH}}{\underset{\mathsf{R}'}{\mathsf{OH}}} \cdot \stackrel{\mathsf{NH}_{2'}}{\underset{\mathsf{C}_1}{\mathsf{OH}}} \cdot \stackrel{\mathsf{OH}}{\underset{\mathsf{R}'}{\mathsf{OH}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}{\mathsf{OH}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}{\mathsf{OH}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{N}}{\underset{\mathsf{N}}}} \stackrel{\mathsf{OH}}{\underset{\mathsf{N}}} \stackrel{\mathsf{N}}{\underset{\mathsf{N}}} \stackrel{\mathsf{N}}{\underset{\mathsf{N}}}} \stackrel{\mathsf{N}}{\underset{\mathsf{N}}} \stackrel{\mathsf{N}}{\underset{\mathsf{N}$$

1: :

CHART H

Chart H discloses another method of coupling which is used in the condensation of benzylamines, although the yields are lower than found for the EDC couplings. The compound of formula H-1 is coupled with the compound of formula

H-2 (using PCl₃, xylenes, at reflux for 18 hr) to yield the compound of formula H-3, which is the final compound of Example 1 below.

CHART I

Other heterocyclic amines are also condensed with quinoline carboxylic acids under these conditions. The quinoline carboxylic acid of formula I-1 (which was prepared in Chart A above) is coupled with the appropriate heterocyclic amine of formula I-2, I-4, I-6 or I-8 (using PCl₃, xylenes, at reflux, for 18 hours) to yield the compound of formula I-3, I-5, I-7 or I-9, respectively. The compound of formula I-3 is the final compound of Example 2 below; the compound of formula I-5 is the final compound of Example 13 below which is useful as an intermediate; and the compound of formula I-9 is the final compound of Example 14 below.

1

1: :

PCT/US97/15310 WO 98/11073

CHART J

The preparation of the starting materials is accomplished by O-methylation of commercially-available 5,7-dihalo-8-hydroxyquinolines according to the procedure of R.A.W. Johnstone and M.E. Rose in Tetrahedron, vol. 35, page 21169 (1979). The compound of formula J-1 is treated with t-butyllithium or n-butyllithium at low temperature in ether/toluene, then exposed to sulfur dioxide gas to prepare the compound of formula J-2. Conversion of the compound of formula J-2 to the sulfonyl chloride of formula J-3 is accomplished by treatment with N-chlorosuccinimide 25 (CH₂Cl₂, 3 hr). The sulfonamide of formula J-4 is then prepared by reaction of the sulfonyl chloride of formula J-3 with 1 equivalent of a primary amine of the formula R2NH2 and 2 equivalents of pyridine in CH2Cl2 (15 hr). Finally, the compound of formula J-5 is prepared using either excess pyridinium hydrochloride (220 °C, 10 min) or excess boron tribromide (CH₂Cl₂, 1.5 hr).

BNSDDDD VWD - 9HIDZALLV

20

٤.

بي. مد

CHART K

Compounds of the structure K-3 are prepared from commercially-available 5,7-dihalo-8-hydroxyquinolines (K-1) in two steps. Formation of the silylether intermediates K-2 is accomplished by reaction of the 8-hydroxyquinolines K-1 with chlorotrialkylsilanes in the presence of imidazole and DMF at room temperature for 18-20 hours. The intermediates are then treated with t-butyllithium or n-butyllithium at low temperature in THF to give the compound of formula K-3.

20

$$N \rightarrow X^{2}$$
 $N \rightarrow X^{2}$
 $N \rightarrow X^{2}$

CHART L

To a mixture of o-anidisine of L-1 and ethyl-4,4,4-trifluoroacetoacetate of L-2 is added 6N HCl. The resulting enamine is heated in diphenylether at 250°C to produce 4-hydroxy-8-methoxy-2-trifluoromethylquioline of L-3.

$$H_2N$$
 $+$
 F_3C
 OCH_3
 OC

-30-

.

BNSDOCID KWO 9811073A1 1 >

25

30

CHART M

The compound of M-1 is chlorinated with phosphorus oxychloride in CH₂Cl₂/DMF at room temperature. The resulting chloride of M-2 is reductively cleaved by hydrogenation in EtOH, Et₃N to give M-3. Methyl ether deprotection with pyridine hydrochloride at 220°C gives 2-trifluoromethyl-8-hydroxyquinoline of M-4. This material is carboxylated to M-5 under Kolbe-Schmidt conditions. Standard amide couplings gives the desired products of M-6.

CHART N

Alternatively, pyridine hydrochloride deprotection of N-1 gives the 4,8-dihydroxy-quinoline of N-2, which again is carboxylated under Kolbe-Schmidt conditions to give N-3. Standard amide couplings give the desired products of N-4.

CHART O

Aryl aldehydes of O-2 are condensed with 8-hydroxyquinaldine of O-1 at 180°C to form the 2-styryl-8-hydroxyquinolines of O-3. These are carboxylated under Kolbe-Schmidt conditions to give O-4. Standard couplings of the resulting acid with amines gives the desired amides O-5.

-31-

BNSC/COOL - WID - SHIPTIAN F -

20

25

30

٠,

.

٠,

CHART P

The preparation of the starting material of formula P-1 is accomplished by chlorination of commercially-available 8-hydroxyquinaldine according to the procedure described in DE 1770065. The compound of formula P-1 is then treated with neat flourosulfonic acid at 120 °C to form the compound of formula P-2. Finally, the sulfonamides of formula P-3 are prepared by heating to 140 °C a mixture of 1 eq of the sulfonyl flouride of formula P-2, 2 eq of the primary amine of formula RNH₂ and 3 eq of N,N-diisopropylethylamine in chlorobenzene.

CHART Q

The preparation of the starting material of formula Q-1 is accomplished by O-methylation of commercially-available 5,7-dibromo-2-methyl-8-quinolinol according to the procedure of R. A. W. Johnstone and M. E. Rose in Tetrahedron, vol. 35, page 21169 (1979). The styrene derivative of formula Q-2 is obtained by heating the 2-methylquinoline of formula Q-1 with benzaldehyde for 18 h. The intermediate of formula Q-2 (which corresponds to J-1, $R^1 = CH = CHPh$, $X^1 = X^2 = Br$) is then advanced in four steps to the sulfonamides of formula Q-3 (which corresponds to J-5, $R^1 = CH = CHPh$, $X^1 = Cl$; $R^2 = R$) following the route previously described in Chart J.

-32-

BNSD00:0 <W0 9911073A1 1 >

5

15

25

30

35

•

CHART R

The preparation of the starting material of formula R-1 is accomplished by chlorination of commercially-available 8-hydroxyquinaldine according to the procedure described in DE 1770065. The 7-iodo derivative of formula R-2 is then prepared by reaction of the quinoline of formula R-1 with iodine monochloride in methanol. The compound of formula R-2 is treated successively with methyl magnesium bromide and n-butyllithium at -78 °C in THF, then exposed to sulfur dioxide gas to prepare the compound of formula R-3. Conversion of the compound of formula R-3 to the sulfonyl chloride of formula R-4 is accomplished by treatment with N-chlorosuccinimide in methylene chloride at room temperature for 2 h. The sulfonamide of formula R-5 is then prepared by reaction of the sulfonyl chloride of formula R-4 with 2-(4-aminophenyl)ethylamine and pyridine in methylene chloride. Finally, the compound of formula R-6 is prepared by reaction of the compound of formula R-5 with excess sulfonyl chloride of the formula RSO₂Cl in pyridine.

R-2

R-3

R-5

 $\frac{}{}_{\text{CI}} = \frac{\text{NHSO}_{2}R}{\text{NH}}$

R-

A -1

20

25

CHART S

R-6

The commercially-available 5-flouro-8-hydroxyquinoline of formula S-1 is treated with neat chlorosulfonic acid at 90-105 °C to form the sulfonyl chloride of formula S-

å,

_,

`}

2. The sulfonamide of formula S-3 is then prepared by reaction of 1 eq of the sulfonyl chloride of formula S-2 with 3 eq of benzylamine in THF.

CHART T

10 Commercially available 8-hydroxyquinoline (T-1) is converted to the 7-carboxylic acid (T-2) by heating at 175° C in the presence of potassium carbonate under 800 psi carbon dioxide gas for 7 days. The acid is then condensed with various aliphatic amines after activation with either 1,1'-carbonyldiimidazole, or alternatively 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and 1-hydroxybenzotriazole to afford the desired amides of the formula T-3. The above amides are prepared either as discrete analogues or as part of a parallel synthesis block.

CHART U

Anhydride U-1 is prepared from 8-hydroxy-7-quinoline carboxylic acid using 2,2,2-trichloroethyl chloroformate and disopropylethylamine. The purity of the starting materials is crucial for this reaction to succeed; particularly, any trace of any metalic cations but alkali cations, or Lewis acids, has to be avoided, as they lead to an

inhibition of the reaction as well as to decarboxylation of anhydride U-1, probably through a chelation of both starting material and product; during the whole course of the reaction, strictly basic conditions have to be maintained, acidic conditions favoring a decarboxylation of the product as well. Ester U-3 is prepared from 8-hydroxy-7-quinoline carboxylic acid as well, the 8-hydroxy substituent being first protected to ester U-2 according to a literature procedure (German Patent No. 540842, 10 December 1931) and subsequent activation of the 7-carboxylic acid as its fluoride, using cyanuric fluoride and diisopropylethylamine.

CHART V

N-Aryl-8-hydroxy-7-quinolinecarboxamides V-4-14 are prepared as single compounds from anhydride U-1 (Chart U) following GP II described below. Both amide coupling and deprotection of the 8-hydroxy substituent can be realized in a single step with primary amines, provided some traces of water are present in the reaction mixture. (No water needs to be added; water coming from glassware and used solvents is enough to ensure a complete deprotectino, at least on small scale.) Probably, the amide function of the still protected intermediate is nucleophilic enough to attack the carbonate at the 7-position via a six-membered ring; subsequent hydrolysis, catalyzed by pyridinium chloride, leads to the desired amides. Similarly, N-Aryl-8hydroxy-7-quinolinecarboxamides V-21-36 are prepared by parallel synthesis from anhydride U-1, following GP III described below. N-Aryl-8-hydroxy-7-quinolinecarboxamides V-15-20 are prepared as single compounds following GP IV described below from ester U-3 (Chart U). After the coupling step is achieved (6 h to 5 days depending on the amine), methanol is added, which leads to the deprotection of the 8-hydroxy substituent within 6 to 24 h. N-aryl-8-hydroxyquinoline-7-carboxamides V-17-20 as well as V-37-94 are also prepared by parallel synthesis from ester U-3, following GP V described below.

When parallel synthesis is used, some impurities appear occasionally besides

١.

11:

20

25

30

35

the desired product, mainly the carbamate resulting from an attack of the amine at the carbonate positions when anhydride U-1 is involved, or methyl 8-hydroxy-7quinoline carboxylate after methanolic treatment of the reaction mixture from ester U-3.

5

10

15

20

25

CHART W

The synthesis of 2-amino-5-alkyl-1,3,4-thiadiazoles W-95-98, W-100-102, W-105, W-108 and X-109-117, which are to be coupled with the activated 8-hydroxy-7-quinoline carboxylic acid derivatives U-1 or U-3 (refer to Chart U) to afford the corresponding 8-hydroxy-N-(1,3,4-thiadiazol-2-yl)-7-quinolinecarboxamides X-118-136, required one to four steps. 2-Amino-5-bromo-1,3,4-thiadiazole W-95 is prepared through bromination of commercially available 2-amino-1,3,4-thiadiazole. Thiadiazole derivatives W-96-98 are prepared through direct bromide displacement of thiadiazole W-95 with the corresponding amines. Using the same strategy, nitrile W-100 is prepared from aminonitrile W-99, itself prepared from piperonal through a Strecker synthesis. Displacement of the bromide of thiadiazole W-95 with L- and D-phenylalanine methyl esters leads to esters W-101 and W-102, though in low yields. Known literature procedures are used to prepare amino acids W-103 and W-106, of which acid groups are converted into the corresponding tert-butyl esters (compounds W-104 and W-107) by standard procedures; subsequent bromide displacement as last step affords esters W-105 and W-108.

TABLE 2

Example No.	Conc (M)	pol type	% Inhib	IC50 uM
17	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	0.7 26.4 57.1 89 95.5 97.5	11.3
18	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	5.3 14.9 13.9 51.7 79.6 91.8	27.9
19	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	11.8 20 28.9 56.6 69.1 83.9	23.6
	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	10.9 25.5 41.3 73.2 92 95.4	14.5
	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	33.5 43.4 57.2 85.2 94.4 96.6 17.6 35.3 45.1 69.9 90.8 97.9	7.5 12.6
22	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-006 6.25e-006 1.30e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	13.2 33.3 68.9 90.7 96.7 98.2 43.3 51.5 78.3	8.6 4.5

`]

 $\Gamma:$

TABLE 2 (CONTINUED)

Example No.	Conc (M)	pol type	% Inhib	1C50 uM
22	2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV	95.2 98.6 99.7	
23	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-007 6.25e-007 1.25e-006 2.50e-006 5.00e-006 1.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	48 90.9 98.8 99.4 99.3 16.3 13 14.7 34.6 83.9 99.9	3.1
24	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	7.9 8 9.9 3.9 -6.4 -0.3 36.5 55.4 82.4 97.5 99.3 98.8	>100
25	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	48.7 63.3 69.4 76.6 83.7 87.6	3.6
26	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	32.1 60.2 79.5 86.4 87.8 90.1	4.6
27	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	27.2 36.6 33.5 58.7 93.5 96.7	14.8

TABLE 2 (CONTINUED)

Example No.	Cond (M)	pol type	% Inhib	IC50 uM
28	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	28.1 52 78.3 93 94.6 96.4	5.5
29	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-004 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	40.9 33.9 36.1 44.4 54.1 71.4 27.3 27.3 32.9 42 45.8 64	18.3 40.1
30	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	42.6 59.9 73.4 87.5 95.4 97	4.3
31	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-007 6.25e-007 1.25e-006 2.50e-006 5.00e-006 1.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	82.9 95 97.3 97.8 97.8 97.3 -7.9 20 22.7 38.5 55 88.2	3.7
32	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-007 6.25e-007 1.25e-006 2.50e-006	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	75.1 89:1 94.6 96.3 97.5 98.2 -14.4 9.8 20.6 30.4	< 3.1 4.7

TABLE 2 (CONTINUED)

Example No.	Conc (M)	pol type	% Inhib	IC50 uM
32	5.00e-006 1.00e-005	CMV CMV	47.9 85.2	·
33	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	-10.5 38.7 45.7 78 87.9 95.4	12.8

TABLE 3

Γ	Example No.	Concentration (uM)	% Inhibition	IC ₅₀ (uM)
-	34	100	97	17.2
5		50	54	
		25	63	
		12.5	57	
		6.25	21	
-	35	100	96	10.0
10		50	89	
		12.5	44	
-		6.25	41	
		3.13	31	
	36	200	19	>200
15		100	3	
		50	15	
		25	0	
		12.5	6	
		6.25	-3	·
20		3.13	-1	
	37	100	55	72.3
		50	50	
		25	21	
		12.5	12	
25		6.25	3	

TABLE 3 (CONTINUED)

	Example No.	Concentration (uM)	% Inhibition	IC ₅₀ (uM)
į	38	100	97	10.5
5		50	96	
		25	62	
		12.5	58	
		6.25	36	
	39	200	90	21.6
10		100	71	
		50	79	
		25	41	
		12.5	43	
		6.25	28	
15		3.13	16	
	40	100	94	13.7
		50	80	
		25	53	
		12.5	47	
20		6.25	36	
		3.13	22	,

-166-

-

TABLE 4

Example No.	Conc (uM)	% Inh - AV	IC50 (AV)
41	2.00e+000 1.00e+001 5.00e+001 4.00e+001 2.00e+001 4.00e+000 8.00e-001 4.00e+001 2.00e+001 8.00e+000 4.00e+000 4.00e+000 8.00e-001	56.0 92.0 78.0 76.0 76.0 70.0 39.0 99.0 86.0 78.0 65.0	0.5 1.4 3.8 3.8 3.8 3.8 3.8 3.8
42	8.00e-001 4.00e+000 2.00e+001 4.00e+001 4.00e+001 2.00e+001 4.00e+000	0.0 51.0 88.0 92.0 99.0 99.0 89.0	5.2 5.2 5.2 5.2 <0.1 <0.1
43	8.00e-001 4.00e+000 2.00e+001 4.00e+001 4.00e+000 8.00e-001 4.00e-001 2.00e+001 1.00e+001 5.00e+000 2.50e+000 1.25e+000	65.0 77.0 90.0 85.0 81.0 88.0 43.0 50.0 99.0 99.0 99.0	0.12 0.12 0.12 0.44 0.44 0.44 0.44 <0.5 <0.5 <0.5 <0.5 <0.5
44	8.00e-001 4.00e+000 2.00e+001 4.00e+001 4.00e+001 2.00e+001 4.00e+000 8.00e-001	23.0 65.0 88.0 93.0 44.0 43.0 59.0 58.0	2.7 2.7 2.7 2.7 2.7
45	8.00e-001 4.00e+000 2.00e+001 4.00e+001	39.0 75.0 83.0 89.0	1.2 1.2 1.2 1.2

TABLE 5

Example No.	Conc (M)	pol type	% Inhib	IC50 uM
. 46	5.00e-005 1.00e-004 2.50e-005 3.13e-006 6.25e-006 1.30e-005	CMV CMV CMV CMV CMV CMV CMV	67.1 83.2 54.2 13.9 23 30.7	23.3
47	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 7.81e-008 1.56e-007 3.13e-007 6.25e-007 1.25e-006 1.25e-006	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	76.5 61.3 54.3 59.4 65.9 73.1 5.6 20.3 48.6 76.7 88.5 94.9 96.4	0.35
	2.50e-006 5.00e-006 1.00e-005 6.25e-007 3.13e-007	CMV CMV CMV CMV CMV CMV	96.7 96.1 95.5 93.2 80.5	< 0.3
48	3.13e-007 6.25e-007 1.25e-006 2.50e-006 5.00e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	32.6 61.3 77.2 87.2 91.8 95.6 97.2 96.8 97.5 97.8 98.8 97.8	0.5 < 3.1
49	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-004 3.13e-007 6.25e-007 1.25e-006 5.00e-006 1.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	95.2 96 97 97.3 97.2 98.4 41.2 49.3 66.8 85.5 92.8 96.1	< 3.1 0.6

TABLE 5 (CONTINUED)

Example No.	Conc (M)	pol type	% Inhib	IC50 uM
50	5.00e-005 1.00e-004 2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-004 3.13e-006 6.25e-006 1.30e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	92.6 95.6 80.9 83.7 91.1 92.6 96 97.1 97.7 23.2 34.9 40.1	< 3.1 1.2
51	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	97.1 96.6 96.8 96.9 97.9 98.7 60.2 86.7 94.2 98.2 98.7 98.4	0.17
52	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	97.4 98.4 98.9 98.7 98.5 98.6 59.7 84.6 95.2 97.3 98.7 99	0.17
53	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-007 6.25e-007 1.25e-006 2.50e-006 5.00e-006	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	94.6 94.2 94.7 95.8 92.7 95.8 46 68.2 84.8 92.8	0.3

TABLE 5 (CONTINUED)

Example No.	Conc (M)	pol type	% Inhib	1C50 uM
53	1.00e-005	CMV	94.9	
54	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-007 6.25e-007 1.25e-006 2.50e-006 5.00e-006	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	88.7 94.4 95.1 95.6 95.6 95.3 45.9 77.8 89.6 94.2 97.3 98.7	0.3
55	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	17.2 27.4 27.7 42.9 51.4 73.5	31.5
56	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	27.9 30 36.8 48.4 59.8 81.8	19.7
58	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 3.13e-006 6.25e-006 1.30e-005 5.00e-005 1.00e-004 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV	-2.9 2.4 27.9 40.2 46.2 65 -2.9 2.4 27.9 40.2 46.2 65 -2.9 2.4 27.9 40.2 46.2 65 -2.9 2.4 27.9 40.2 46.2 65	49.7
57		СМУ		8.0

TABLE 6

Example No.	Concentration (µM)	% Inhibition	IC ₅₀ (μM)
Example 59	200	43	>200
	100	31	
	50	14	
	25	0	
	12.5	-3	
	6.25	-6	
	3.13	-7	
Example 60	200	70	57.4
	100	55	
	50	51	
	25	32	
	12.5	31	
	6.25	19	
	3.13	30	
Example 61	200	51	>200
	100	38	
	50	30	
	25	30	
	12.5	23	
	6.25	15	
	3.13	13	

-}

 $\Gamma:$

	Example No.	Concentration (μM)	% Inhibition	IC ₅₀ (μM)
	Example 62	200	42	>200
		100	33	
		50	14	
		25	10	
5		12.5	6	
		6.25	3	
		3.13	1	
	Example 63	100	92	11.4
		50	74	
10		25	71	
		12.5	49	
		6.25	34	
		3.13	29	
	Example 64	200	84	29.8
15		100	58	
		50	75	
		25	46	
		12.5	25	
		6.25	25	
20		3.13	16	
	Example 65	200	-8	>200
		100	-23	
		50	-23	

-172-

BNSDDCID (WD 9811073A1 I >

17:

	Example No.	Concentration (μM)	% Inhibition	IC ₅₀ (μM)
		25	-21	
		12.5	-13	
		6.25	-8	
		3.13	-8	
5	Example 66	200	89	11.0
		100	86	
		50	64	
		25	57	
		12.5	60	
10		6.25	41	
		3.13	32	
		200	88	17.9
	-	100	91	
		50	71	
15		25 _	77	
		12.5	37	
		6.25	30	
		3.13	13	
	Example 67	200	94	23.6
20		100	86	
		50	76	
		25	41	
		12.5	25	

1: :

Example No.	Concentration (µM)	% Inhibition	IC ₅₀ (μM)
	6.25	23	
·	3.13	13	

TABLE 7

	Antiviral S Polymerase IC	elective 50 Values -
Example Number, Structure	Polymerase	IC50 (uM)
Example 69	CMV	9.7
ОН 0 Н II		9.4
H ₃ C N CI		
Example 70	CMV	42.8
H ₃ C N O II C N H S		
Example 71 OH O	CMV	<3.1
ĊH,		
Example 73	CMV	13.3
CH ₂ O OH C N OH		

	CMV Ar	ntiviral Assa	У
Example Number, Structure	Cons (uM)	% Inh - AV	IC50 (AV)
Example 72 OH O N CEN	2.00e+001 4.00e+000 8.00e-001	90.0 41.0 34.0	3 3 3
Example 68 OH OH CON	4.00e+001 2.00e+001 4.00e+000 8.00e+001 4.00e+001 3.00e+001 2.00e+001 1.00e+001 8.00e+000 4.00e+000	99.0 96.0 12.0 21.0 66.0 52.0 54.0 50.0 35.0 8.0	3 3 3 14.1 14.1 14.1 14.1 14.1

TABLE 8

Compound	i i	MS-	NMR (d) (CDCl3)	Elem. Anal.
	(+)	ESI (-)		
75	332	330	8.8, 8.2, 8.1, 7.9, 7.5, 7.4, 7.3, 7.2, 7.1, 3.9, 3.2	
76	309	307		
77	385	383		
78	347	345	-	
79	347	345		
80	329	327		
81	321	319		
82	301	299	8.8, 8.2, 7.8, 7.5, 7.4, 3.5, 1.7, 1.5-1.2, 0.9	
83	347	345		
84	347	345		
85	297	295		
86	361	359	8.8, 8.2, 7.9, 7.5, 7.4, 7.2, 3.8, 3.1	
87	325	323		
88	313	311		
89	293	291		
90	293	291		
0 91	313	311		
92	309	307	8.8, 8.3, 8.2, 7.6, 7.5, 7.4, 5.0, 4.0, 3.7	

-176-

11.00

	Compound	MS- ESI (+)	MS- ESI (-)	NMR (d) (CDCl3)	Elem. Anal.
	93	369	367		
	94	308	306		
	95	301	299	8.8, 8.2, 7.8, 7.5, 7.4, 3.5, 1.6, 1.5-1.2, 1.0, 0.9	
	96	343	341		
5	97	441	439		
	98	371	369		
	99	327	325		
	100	307	305		
	101	383	381		
10	102	307	305 .		
	103	315	313	8.8, 8.2, 7.8, 7.5, 7.4, 3.5, 1.7, 1.5-1.2, 0.9	
	104	315	313		,
	105	313	311		
	106	285	283		
15	107	299	297		
	108	285	283		
	109	285	283		
	110	319	317		
	111	299	297		
20	112	305	303		
	113	285	283		

11:

.]

	Compound	MS-	MS-	NMR (d) (CDCl3)	Elem. Anal.
		ESI	ESI		
		(+)	(-)		
	114	355	353		
	115	293	291		
	116	287	282		
:	117	301	299		
5	118	327	325		
	119	409	407		
	120	343	341		
	121	343	341		
	122	293	291		
10	123	373	371		
	124	373	371		
	125	385	383		
	126	385	383		
	127	283	281		
15	128	325	323		
	129	339	337	·	·
	130	367	365	8.8, 8.2, 8.1, 7.5, 7.4-7.2,	
				5.3, 5.0, 4.2	
	131	367	355	8.8, 8.2, 8.1, 7.5, 7.4, 7.1,	
			ļ	6.8, 5.1, 3.8, 3.2	
	132	404	402		
20	133	323	321		
	134	457	455		

-178-

1" :

	Compound	MS- ESI (+)	MS- ESI (-)	NMR (d) (CDCl3)	Elem. Anal.
	135	396	394		
	136	315	313		
	137	287	285		
	138	331	329		
5	139	347	345		
	140	347	345		
	141	391	389		
	142	407	405		
	143	405	403		-
10	144	417	415		
	145	444	442		
	146	285	283	8.8, 8.2, 7.9, 7.5, 7.4, 3.4, 1.9-1.6, 1.4-1.0	C 71.57, H 7.08, N 9.87
	147	329	327	8.8, 8.2, 7.8, 7.6-7.4, 7.3, 5.2	C 76.52, H 5.19, N 8.59
	148	327	325	10.0, 8.8, 8.2, 8.0, 7.5, 7.3, 7.2, 7.1, 3.8, 3.0	C 65.82, H 4.63, N 8.56
15	149	347	345	9.6, 8.8, 8.4, 8.2, 7.7-7.3, 4.8	C 66.22, H 4.09, N 8.04
	150	325	323	10.0, 8.8, 8.2, 8.1, 7.5, 7.4, 7.3, 7.2, 7.1, 3.8, 3.2	C 66.48, H 5.06, N 8.55
	151	287	285	10, 8.8, 8.1, 7.8, 7.5, 7.3, 3.5, 1.7, 1.5-1.2, 0.9	

TABLE 9

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 93 OH O	0.9
NH NH	
Example 101	< 1.5
Example 87	1.5
CH3	
Example 114	< 3.1
OH O	1.6
NH NH	20

TABLE 9 (CONT'D.)

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 117 H ₃ C OH OH OH CH ₃	1.7
Example 126 OH NH HO	2.2 4.7

 Γ :

5

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 103	2.2
Example 118 OH OH OH OH OH OH OH OH OH O	2.3
Example 120	< 3.1
OH O CH ₃	2.4
	10.8

TABLE 9 (CONT'D.)

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 124 OH OH OH CH ₃	2.6
Example 125	2.9
OH OH HO	6.4
Example 121 OH O CH ₃	3
Example 143 OH O NH CI	3.1

٠,

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 96	< 3.1
NH CH,	
Example 106	< 3.1
OH O NH CH ₃	> 10
•	
Example 129	3.1
OH OH OH	

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 95 OH NH CH ₃	3.2
Example 147	3.7
Example 77 OH O NH	4.5

.]

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 123 OH OH OH CH ₃	4.6
Example 134	4.9
OH OH OH OH	
Example 98 OH O NH Br	5
Example 78 OH O NH CI CI	5.2

-186-

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 151	5.2
HO O N CH ₃	
Example 82	5.6
NH OH OCH3	·
Example 79	5.6
OH ONH CI	

١,

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 137 OH OH I	6.6
NH	
Example 99 OH NH CI	6.7
Example 148 HO O N CI	6.9
Example 104 OH OH NH F	7.1

1: :

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 80	
OH O CH ₃	7.1
Example 81	7.4
Example 111 OH O NH	7.6
Example 110 OH OH NH	7.6

	CMV pol Assay - Y.Yagi
Example Number, Structure	IC50 uM
Example 92	7.8
OH O NH HO	
CH ₃ OH OH CH ₃	7.9
Example 119 HO OH OH OH OCH ₃ H ₃ C CH ₃	8.1

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 91	8.1
OH O NH	
Example 142	8.4
OH ON S	
Example 97 OH OH OH CH3	8.4
Example 149 HO O CF ₃	8.5

٠,

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 105 OH O NH CI	8.7
Example 86 OH O CI CI CI	9
Example 130 OH OH NH OH OH OH OH OH OH OH	11.3
	9.2

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 150	9.2
N N N N N N N N N N N N N N N N N N N	·
Example 102	9.3
OH OH OH	
Example 144 OH OH NH NH	9.4
Example 141	
OH ON S	9.6

 Γ :

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 135	10.8
OH OH OH OH	
Example 75	11.1
OH OH NH	
Example 131	12.1
HO OH O NH OO	

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 145	12.6
OH O NH S	
Example 112	13.2
OH O NH	
Example 83	13.7
OH O NH F	
Example 139	14.6
OH O NH CI	

٠,

1: :

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 94 OH O NH H ₃ C	14.8
Example 84	15.7
Example 100 OH O CH ₃	16.8

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 140	17
OH O NH CI	
Example 138	17.5
OH O NH CI	
Example 127 OH NH NH	19.2
Example 128	19.3
NH NH OH	

1. :

.}

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 88	19.7
Example 76	20.1
OH O NH	
Example 108 OH OH OH CH ₃	20.6
Example 97	20.7
OH O NH-(CH ₂) ₁₇ -CH ₃	

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 85	21.1
NH NH	
Example 115 OH OH CH ₃	22.2
Example 136 OH NH F	22.3

``]

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 90 OH OH OH CH ₃	22.6
Example 89 OH OH NH H ₃ C	23.2
Example 109 OH OH NH CH ₃	23.3
Example 113	23.8

-200-

	CMV pol Assay -
Example Number, Structure	1C50 uM
Example 146	24.2
Example 133	24.3
Example 122 OH O NH CH ₃	24.5

5

	CMV pol Assay -
Example Number, Structure	IC50 uM
Example 132	24.6 29.4

TABLE 10

	CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 152 OH OH CH3 HCI	1.00e-004 5.00e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	98.7 87.6 2.5 3.4 11.8 43.1 98.2	30.1
Example 153 OH OH OH OH OH OH OH OH OH O	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV CMV	7 6.2 12.8 23.1 28.5 44 99.9	> 100
Examaple 154 OH O II C N HCI	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV CMV	56.8 90.6 99.7 99.8 100.8 100.3 99.9	1.7
Example 155 OH OH OH OH OH OF HCI	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	2.6 9.8 13.6 28.9 40.7 60 63.6	68.2
Example 156 OH C HCI	3.13e-007 6.25e-007 1.25e-006 2.50e-006 5.00e-005 1.00e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	13.8 32.1 40.9 57.3 65.3 74.6 76.1 79.8 82.9 83.6 82.8 90.8	< 3.1

٦,

	. CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 157 OH	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	-3.9 3.3 6.6 15.8 20.5 57.2	90
Example 158 OH N N H H HCI	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	-4.2 11.9 39.1 75.6 98.2 100	16.4
Example 159 OH	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	26.8 44.1 55.4 63.4 76.3 86.2	9.5
Example 160 OH N N H HCI	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	3.1 4.8 30 82.9 100 100.3 98.7	16.9
Example 161 OH N HCI F	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	0.4 7.1 8.4 26.2 26.5 59	82.9

·	CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	lC50 uM
Example 162 OH OH N H H H H H H H H H H H H H H H	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	1.1 6.6 32.7 58.1 68.8 80.6	26.3
Example 163 OH O NO2	1.25e-007 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	-0.2 10.4 18.3 34.6 50.3 71.3	48.4
Example 164 OH C N H CI	1.00e-004 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV	93.2 12 24.4 45.5 74.3 88.1	14
Example 165 OH O F CH ₃	3.13e-006 3.13e-006 6.25e-006 6.25e-005 1.30e-005 2.50e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	7.8 29.7 11.2 47.1 9.4 88.8 19.5 102.4 48.8 103 91.1	14.7
Example 166 OH O CH ₃ CH ₃	3.13e-006 3.13e-006 6.25e-006 6.25e-006 1.30e-005 1.30e-005 2.50e-005 5.00e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	6 26.3 2.3 35.6 5.8 69.7 9.5 101.8 18.1 103.6 65.8 102.8	22.4

	CMV pol Assay			
PNU/L-number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 167 OH O CH ₃	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	17 18.6 41.9 91.9 102.8 102.9	12.2
Example 169 HO NH NH	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	73.7 13.2 21.2 29.7 77.9 98.6 100	15.5
Examle 170	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	90.8 26 58.1 87.3 97.6 99 99.4	2.4
Example 171 HO C NH Br	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV	90.6 10 15.6 26.7 68.5 96.3 99.8	9.2
Example 172 OH O NH CI	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	71.5 9.8 15.5 19.9 59.5 69.9 51.4	32.7

		CMV pol A	ssay	
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 173	2.50e-005	СМV	30.6	
Example 174 OH OH NH NH	5.00e-005 2.50e-005 2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005	CMV CMV CMV CMV CMV CMV CMV	99.6 98 95.4 13.9 23 47.4 87.7	5.9
Example 175	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	85.3 17.4 49.8 85.1 97.2 98.3 99.1	2.9
Example 176 OH O NH S CH,	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	91.9 7.7 15.2 11.9 19.5 57.3 91.1	25.5
Example 177 OH OH OH CH ₃ CH ₃	6.25e-006 1.30e-005 2.50e-005 5.00e-005 3.13e-006 2.50e-005	CMV CMV CMV CMV CMV CMV CMV	13.1 23.1 75.4 99.1 11.1 84 5.9	19.2
Example 178 OH NH Br	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	79.6 10.7 16 14.4 37.1 85.3 99.7	29.7

		.CMV pol A	ssay	
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 179 OH OH NH OH OH OH OH OH OH OH	1.00e-004 5.00e-005 2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005	CMV CMV CMV CMV CMV CMV CMV	99.2 98.3 68 17.2 39.8 78.5 95.3	6.9
Example 180	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	67.1 8.9 15.2 19.5 38.9 77.2 98.8	30.5
Example 181	2.50e-005	CMV	37.8	
Example 182	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 2.50e-005	CMV CMV CMV CMV CMV CMV CMV	24.7 26.3 30.5 43 41.3 52.7 41.8	> 100
Example 183	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004 2.50e-005	CMV CMV CMV CMV CMV CMV CMV	30.8 63 88.9 97 97.8 98 42.7	4.1

		CMV pol A	ssay	
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 vM
Example 184	2.50e-005 5.00e-005 1.00e-004 3.13e-006 6.25e-006 1.30e-005 2.50e-005	CMV CMV CMV CMV CMV CMV CMV	87.3 77.3 71.8 31.3 65.7 82.9 37.5	3.9
Example 185	2.50e-005	CMV	37.6	
HO ONH				
Example 186 HO O	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	91.3 23.8 32.2 53 86.3 98.5 99.5	4.9
Example 187 HO NH Br	2.50e-005	CMV	30.5	
Example 188	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	81.8 -5 -5.4 -0.7 2.7 27.6 83.2	27.9

	CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	1C50 uM
Example 189	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	52 12.3 17 13.3 40.9 91.4 100.9	13.6
Example 190	2.50e-005	СМУ	30.8	
Example 191	2.50e-005	СМЛ	22.3	
Example 192	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	76.6 6.2 27.6 32.7 55.9 78.5 85.2	10.3
Example 193	2.50e-005	CMV	39.3	

	CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 194 HO O N'=0 O-CH ₃	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	52.2 10.8 17.6 16.8 33.2 51.1 75.5	22.4
Example 195 HO O N'=0 NH F F F F F	2.50e-005	CMV	33.1	
Example 196 NO C NO	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	79.2 2.8 31.7 49.6 70.5 81.1 89.7	7.1
Example 197 HO O F F F F F F F F F F F F F F F F F F	2.50e-005	СМУ	35.9	
Example 198	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	46.7 5.4 4 4.1 10 7 45.7	> 50

`]

	CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 199 HO O NH NH Ser	2.50e-005 1.56e-006 3.13e-006 6.25e-005 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	63.3 7.7 14 5.1 37 85.5 100	16
Example 200	2.50e-005	CMV	35	
Example 201 HO O NH Sr	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	47.7 7.9 15 19.8 65.4 96.9 100.8	10.1
Example 202	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	57.5 7.6 8 10.4 17.8 36.2 95.5	27.3
Example 203	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV	63.9 12.3 15.9 9 30 72 99.6	18.5

·		CMV pol Assay				
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM		
Example 204	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	73.9 2.1 13.6 14.3 20.6 35.7 93.9	26.8		
Example 205	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	5.3 8.3 7.9 13.4 31.2 98.4	27.4		
Example 206	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	94.6 26.5 27.1 32 48.7 92.7 99.4	9.4		
Example 207	2.50e-005	СМV	22.4			
Example 208	2.50e-005	СМУ	29.3			

	CMV poi Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 209	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV	91.7 30.1 50.5 64.1 80.2 89.5 95.7	3.3
Example 210	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 5.00e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	46.9 18.1 44.5 69.7 55. 49.7 52.9 17.8 29.4 38.9 50 47.2 56.5	6.9
Example 211 HO O NH CH ₃	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	96.6 22.4 26.3 33.1 68.3 99	7.5
Example 212	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	88.9 23.4 24.4 21.4 46 77.9 98.3	12.5
Example 213	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	78.7 -1.3 9.7 3.3 3.7 1.2 -6.5	> 100

	CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 214 HO NH NH CI	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	29.4 24.8 33.6 30.4 35.6 53.8 78.4	13.8
Example 215 HO NH NH NH NO O O O O O O O O O O O O	2.50e-005	CMV	91.5	
Example 216 HO O NH CH ₃	2.50e-005	CMV	37	
Example 217	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	97.5 23.3 30.1 61.5 92.8 98.4 99.5	4.3
Example 218 NH NH CH ₃	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	97.5 20.6 23.4 34.2 62.5 95.4 99.7	8.2

	CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 219 HO NH F F	2.50e-005	СМV	24	
Example 220 HO O NH H ₃ C	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	83.8 17.7 20.3 21.9 37.8 84.5 98.7	13.4
Example 221 HO NH NH NH O O O O O O O O O O O O O	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	88 21.9 30.4 44.9 85.5 99.3 99.3	5.5
Example 222 HO O NH NH NH C CH ₃	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	96.9 28.8 27.3 31.9 54.6 94.7 99.4	8.6
Example 166 NH NH CH3	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	97.6 19 20.7 32.4 67.9 98.9 99.8	8. *

		CMV pol A	ssay	•
Example Number, Structure	Conc (M)	pol type	% Inhib	IC50 uM
Example 223 HO O H ₃ C NH NH CH ₃ C CH ₃	2.50e-005	CMV	82.2	
Example 224	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	97.5 11.6 22.1 37.7 76.3 98.4 99.7	7.3
Example 165	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	73.5 7.4 23.7 36.9 89.6 100.3 100.7	6.6
Example 225	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	69.2 12.2 18.9 28.5 73.9 96.5 100	18.4
Example 167 No O O O O O O O O O O O O O O O O O O O	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	97 29.6 31.2 35.6 64.3 98.1 99.6	7

		CMV pol A	ssay	
Example Number, Structure	Conc (M)	pal type	% Inhib	IC50 uM
Example 226	2.50e-005 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005	CMV CMV CMV CMV CMV CMV CMV	94.2 22.7 26.5 31 46.4 88.6 99.4	10.2
Example 227	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	87 36.5 64 93.6 99.3 99.7 99.6	3.6
Example 228	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	49 24.4 45 60.8 8:.5 92.'	7.9
Example 229 HO O NH CH ₃ CH ₃	2.50e-005	: CMV	39	
Example 230	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	95 33.5 77.7 97.6 99.8 99.7 100	3.1

PCT/US97/15310

	CMV pol Assay			
Example Number, Structure	Conc (M)	pol type	% Inhib	1C50 uM
Example 231	2.50e-005	CMV	24	
HO O C CH ₃				
Example 232	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV	67 27.4 47.9 66.5 79.4 85.9 87.9	6.9
Example 233	2.50e-005	CMV	25	
HO O NH				
Example 234	2.50e-005	CMV	83	
HO ONH				
Example 168	2.50e-005	CMV CMV	97	7
FO C CI	3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV	23.8 40.8 69.9 95.6 99.5 99.7	,
н,с О				

٠,

		CMV pol As	ssay	
Example Number, Structure	Conc (M)	pol type	% Inhib	· IC50 uM
Example 235	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 1.00e-004	CMV CMV CMV CMV CMV CMV CMV CMV	96 38.2 66 86.1 97.3 99.3 99.6	3.7
Example 236	2.50e-005	СМV	35	
Example 237	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-004 3.13e-007 6.25e-007 1.25e-006 2.50e-006 1.00e-005	CMV CMV CMV CMV CMV CMV CMV CMV CMV CMV	84 70.9 94.5 99.2 99.1 99.7 15.5 19.8 37.9 82.7 99.5	< 3. ⁻
Example 238 HO O NH F F F F F F F F F F F F F F F F F F	2.50e-005	CMV	29	
Example 239 HO O H ₃ C NH NH	2.50e-005 3.13e-006 6.25e-006 1.30e-005 2.50e-005 1.00e-004 3.13e-007 6.25e-007 1.25e-006 5.00e-006 1.00e-005	CMV	94 89.6 98.5 99.6 99.9 99.4 99.8 14.5 19.7 20.4 62.8 95.2 98.4	2

CMV pol Assay IC50 uM Example Number, Structure Conc (M) pol type % Inhib Example 240 2.50e-005 CMV 23 CMV CMV CMV CMV 2.50e-005 43.2 Example 241 21.6 1.56e-006 3.13e-006 6.25e-006 18 24.7 28.6 37.5 54.9 1.30e-005 2.50e-005 5.00e-005 CMV CMV CMV 58.1 Example 242 82.3 2.50e-005 CMV CMV CMV 14.5 1.56e-006 3.13e-006 6.25e-006 1.30e-005 2.50e-005 5.00e-005 16.8 CMV CMV CMV CMV CMV 16.6 43.6 78.5 96.3

5

TABLE 11

	CMV pol Assay
Example Number, Structure	IC50 uM
Example 243	71
OH OH OH N-N CF3	
Example 244	93.2
OH OHO N-N Br	
Example 245	2.4
OH OEC NH HCI	
Example 246	2.5
OH O N-N C N-N S H OH-N C H OH-N OH-N OH-N OH-N OH-N OH-N OH-N OH-	

TABLE 11 (CONT'D.)

	CMV pol- Assay
Example Number, Structure	IC50 uM
Example 247	14.3
OH O N-N HN C O O C CH ₃ CH ₃ CH ₃	
Example 248	3.1
OH O N HCI	
Example 249 OH O	15.4
Example 250	9.4
• HCI	

	CMV pol Assay
Example Number, Structure	IC50 uM
Example 251 OH O N-N N-N C C CH ₃	4.3
Example 252 OH O N-N O C CH ₃ H O CH ₃	4.7
OH O N-N N S NH	7.1

TABLE 11 (CONT'D.)

·	CMV pol Assay
PNU/L-number, Structure	IC50 uM
Example 254	< 3.1
OH O N-N N-N N-N N-N N-N N-N N-N N-N N-N N	
Example 255 OH N N N N N N N N N N N N N	< 3.1
Example 256 OH O N-N CH ₃	11.4

	CMV pol Assay
Example Number, Structure	IC50 uM
Example 257 CH ₃ H ₃ C C CH ₃ O C C N-N N-N N-N H S N-N N-N N-N N-	13.9
Example 258 OH ON N-N N-N N-N COCCH ₃ CH ₃ CH ₃	26.6
Example 259 OH O N-N N-N C CH ₃ NH O CH ₃ CH ₃	< 3.1

TABLE 11 (CONT'D.)

	CMV pol Assay
Example Number, Structure	IC50 uM
Example 260 H ₃ C CH ₂ CH ₃	4.5
OH O N-N C O C CH ₃ CH ₃ CH ₃ CH ₃	
OH O N-N C CH ₃ OCH ₃ OCH ₃ CH	24.2

5

TABLE 11 (CONT'D.)

	CMV pol Assay
Example Number, Structure	IC50 uM
OH O N-N OH	22.6
Example 263 OH O N-N OH	18.9
OH O N-N OH OH S H O	8.5

TABLE 12

	CMV Antiviral Assay		
Example Number, Structure	Conc (uM)	% Inh - AV	IC50 (AV)
Example 13 OH OH OH OH S NH S	4.00e+001 2.00e+001 4.00e+000 8.00e-001	33.0 50.0 34.0 28.0	25.5 25.5 25.5 25.5 25.5
Example 36 OH H ₃ C N CI	4.00e+001 2.00e+001 4.00e+000 8.00e-001 2.00e+001 8.00e+000 4.00e+000	90:0 74:0 66:0 29:0 78:0 12:0 62:0 20:0	2.5 2.5 2.5 3.6 3.6 3.6 3.6
Example 59 OH SO ₂ NH N CI	4.00e+001 2.00e+001 1.00e+001 4.00e+000 8.00e-001 2.00e+001 1.50e+001 5.00e+000	94.0 69.0 8.0 1.0 4.0 78.0 60.0 45.0 36.0	14.4 14.4 14.4 14.4 14.4 9.4 9.4 9.4 9.4 9.4
Example 61 OH SO NH	2.00e+001 1.00e+001 4.00e+000 8.00e-001	93.0 97.0 54.0 0.0	3.5 3.5 3.5 3.5
Example 62 OH SO ₂ NH CI	2.00e+001 1.00e+001 4.00e+000 8.00e-001	79.0 26.0 17.0 35.0	14.6 14.6 14.6 14.6

1, :

٠,

	CMV Antiviral Assay		
Example Number, Structure	Conc (uM)	% Inh - AV	IC50 (AV)
Example 65 OH H ₃ C NH SO ₂ NH H ₃ C N H ₃ C	ı		
Example 153 OH OH C N HCI	8.00e+000 4.00e+000 2.00e+000 1.00e+000	63.0 53.0 48.0 0.0	9.9.9.9 9.9.9.9

	Structure and Name	MP (°C)	Mass Spec	IC ₅₀ (μΜ)
5	F ₃ C N CH ₃ CL	55-58	(EI) 394, M'	35% inhibition @ 100 uM
10	N-[(4-Chlorophenyl)methyl]-8-hydroxy- 4-methyl-2-(trifluoromethyl)-7- quinolinecarboxamide	·		
	H ₃ C N CH O CI	163-165	(EI) 312, M	7.6
15	N-(4-Chlorophenyl)-8-hydroxy-2- methyl-7-quinolinecarboxamide			
20	OH ON NO CI	218-220 (dec)	(EI) 357, M	2.6
	N-[(4-Chlorophenyl)methyl]-8-hydroxy- 5-nitro-7-quinolinecarboxamide			
25	2 - C - C - C - C - C - C - C - C - C -	289-290 (dec)	(EI) 408, M*	5.2
30	N-[4,5-dihydro-[5-(3-nitrophenyl)]-4-oxo-2-thiazolyl]-8-hydroxy-7-quinolinecarboxamide			

~]

 $V: \mathbb{R}^{n}$

	THE HE SECTION	249-250 (dec)	(EI) 411, M*	1.7
5	N-[5-[3-(4-Chlorophenyl)methyl]-4,5-dihydro-4-oxo-2-thiazolyl]-8-hydroxy-7-quinolinecarboxamide			
10	F.C. N C P S	127-129	(ESI) 393, M+H	41.6
	8-Hydroxy-N-[2-(phenylthio)ethyl]-2- (trifluoromethyl)-7- quinolinecarboxamide			
15	H-2C NH CI	274-276	(EI) 342, M ⁻	102
20	N-[(4-Chlorophenyl)methyl]-4,8- dihydroxy-2-methyl-7- quinolinecarboxamide			
	OH OH OH	110-111	(ESI) 393, M+H	5.1
25	(E)-8-Hydroxy-2-(2-phenylethenyl)-N-(3-phenylpropyl)-7-quinolinecarboxamide			

Trans.

TABLE 14

Structure and Name	Mass Spec	IC50 (μM)
8-Hydroxy-quinoline-7-	ESI -MS: M+H = 287 ESI-MS: M-H = 285	21 % inhibition at 25 uM
carboxylic acid trans-4- hydroxy-cyclohexylamide		
OH O N N N N C C C C C C C C C C C C C C C	ESI -MS: M+H = 402 ESI-MS: M-H = 400	14
[4-(3,4-Dichlorophenyl)- piperazin-yl]-(8-hydroxy- quinolin-7-yl)-methanone		
8-Hydroxy-quinoline-7-carboxylic acid	ESI -MS: M+H = 323 ESI-MS: M-H = 321	26
N-Hexyl-8-hydroxy-7-quinolinecarboxamide	ESI -MS: M+H = 273 ESI-MS: M-H = 271	27

5

15

 Γ :

.]

8-Hydroxy-quinoline-7-carboxylic acid 2-(5-nitropyridin-2-ylamino)-ethylamide	ESI -MS: M+H = 354 ESI-MS: M-H = 352	42
8-Hydroxy-N-[2-(phenyloxy)ethyl]-7-quinolinecarboxamide	ESI -MS: M+H = 309 ESI-MS: M-H = 307	29
8-Hydroxy-quinoline-7-carboxylic acid 2-(R)-hydroxy-1-(S)-methyl-2-phenyl-ethylamide	ESI -MS: M+H = 323 ESI-MS: M-H = 321	41
(S)-2-[(8-Hydroxy-	ESI -MS: M+H = 365 ESI-MS: M-H = 363	41
quinoline-7-carbonyl)- amino]-3-phenyl- propionic acid ethyl ester		

5

8-Hydroxy-quinoline-7-carboxylic acid cyanophenylylamide	ESI -MS: M+H = 304 ESI-MS: M-H = 302	54
OH O CH ₃ CH ₃ CH ₃ CH ₃	ESI -MS: M+H = 359 ESI-MS: M-H = 357	51
(S)-2-[(8-Hydroxy-quinoline-7-carbonyl)-amino]-4-methyl-penatnoic acid tert-butyl		
OH O OH	ESI -MS: M+H = 339 ESI-MS: M-H = 337	14
(S,S)-8-Hydroxy- quinoline-7-carboxylic acid 2-hydroxy-1- (hydroxy-phenyl-methyl)- ethylamide		

10

5

٠,

{ :

(S,S)-8-Hydroxy-quinoline-7-carboxylic acid 1-hydroxymethyl-2-methyl-butylamide	ESI -MS: M+H = 289 ESI-MS: M-H = 287	26
OH OH	ESI -MS: M+H = 323 ESI-MS: M-H = 321	93% inhibition at 25 uM
(S)-8-Hydroxy-quinoline- 7-carboxylic acid 1- benzyl-2-hydroxy- ethylamide		
8-Hydroxy-quinoline-7-carboxylic acid thiophen-2-ylmethylamide	ESI -MS: M+H = 285 ESI-MS: M-H = 283	34
(R)-8-Hydroxy-quinoline-7-carboxylic acid 2-hydroxy-1-phenyl-ethylamide	ESI -MS: M+H = 309 ESI-MS: M-H = 307	19

5

N-[2-(2-chlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide	ESI -MS: M+H = 327 ESI-MS: M-H = 325	26
OH O NH F	ESI -MS: M+H = 315 ESI-MS: M-H = 313	42
N-[(3,4- Difluorophenyl)methyl}- 8-hydroxy-7- quinolinecarboxamide		
OH O F	ESI -MS: M+H = 331 ESI-MS: M-H = 329	30
N-[(2-Chloro-6-fluoro-phenyl)methyl]-8-hydroxy-7-quinolinecarboxamide		
N-[(2-Chloro-4-fluoro-phenyl)methyl]-8-	ESI -MS: M+H = 331 ESI-MS: M-H = 329	28

10

	N-[(3,5-Dichloro-phenyl)methyl]-8-hydroxy-7-quinolinecarboxamide	ESI -MS: M+H = 347 ESI-MS: M-H = 345	27
5	(S)-8-Hydroxy-quinoline-7-carboxylic acid 2-	ESI -MS: M+H = 309 ESI-MS: M-H = 307	39% inhibition at 25 uM
	hydroxy-1-phenyl- ethylamide	ESI -MS: M+H = 311 ESI-MS:	39% inhibition at 25 uM
10	N-[2-(2-fluorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide	M-H = 309	
	N-[2-(4-	ESI -MS: M+H = 311 ESI-MS: M-H = 309	42% inhibition at 25 uM
15	fluorophenyl)ethyl]-8- hydroxy-7- quinolinecarboxamide		

	ESI -MS:	4
N HO O OH OH	M+H = 458	
	ESI-MS:	
trans-8-Hydroxy-	M-H = 456	
quinoline-7-carboxylic		
acid 4-{(8-hydroxy-		
quinoline-7-carbonyl)-		
amino]-cyclohexyl ester	ļ	
I	l	t

 $f_{\cdot\cdot}$:

٦.

CLAIMS

1. A compound of formula IA

wherein R^0 is

- 10 a) $-(CH_2)_n X^1$
 - b) -(CH₂)_n-C₃-C₈ cycloalkyl substituted by zero (0) or one (1) R⁸,
 - c) $-(CH_2)_p W^1X^2$,
 - d) $-(CH_2)_p W^1CH_2X^1$, or
 - e) $-(CH_2)_n-CHR^9-(CH_2)_n-X^1$;
- 15 wherein R1 is
 - a) -H,
 - b) -F,
 - c) -Cl,
 - d) -Br,
 - u) -D:
- 20 e) -CF₃, or
 - f) -NO₂;

wherein R^2 is

- a) -H,
- b) $-C_1-C_3$ alkyl,
- 25 c) -OH,
 - d) $-CF_3$,
 - e) -CH=CH-furanyl,
 - f) -CH=CH-phenyl substituted by zero (0) or one (1) R⁴,
 - g) -CH=CH-pyridinyl,
- 30 h) $-(CH_2)_p$ -phenyl substituted by zero (0) or one (1) R^4 ,
 - i) -NHV¹,
 - j) -CH₂NHV¹, or
 - k) $-CH_2Z^1$;

wherein R3 is

- 35 a) -H,
 - b) - OH,

-240-

- c) -CF₃, or
- d) -C₁-C₃alkyl;

wherein R^4 is

- a) -H
- 5 b) -F,
 - c) -Cl,
 - d) -Br,
 - e) -NO₂,
 - f) -CF_s,
- 10 g) -W¹-R¹⁰,
 - h) $-C_1-C_6$ alkyl,
 - i) -C₃-C₈ cycloalkyl,
 - j) -[CH₂]_n-aryl,
 - k) $-[CH_2]_n$ -het,
- 15 l) -CH₂-C₃-C₈ cycloalkyl,
 - m) -SO₂NH-het
 - n) -CN,
 - o) -I, or
 - p) $-CH_2-OH$;
- 20 wherein R5 is
 - a) -H,
 - b) -F,
 - c) -Cl,
 - d) -Br,
- 25 e) -W¹-R¹⁰,
 - f) -CF₃,
 - g) $-C_1-C_6$ alkyl,
 - h) -C₃-C₈ cycloalkyl,
 - i) -(CH₂)_n-aryl substituted by R⁶,
- 30 j) $-(CH_2)_n$ -het substituted by R^7 , or
 - k) -CH₂-C₃-C₈ cycloalkyl;

wherein R^6 is

- a) -H,
- b) -F,
- 35 c) -Cl, or
 - d) -Br;

٦,

wherein R^7 is

- a) -H,
- b) -F,
- c) -Cl, or
- 5 d) -Br;

wherein R8 is

- a) $-C_1-C_4$ alkyl,
- b) $-W^1-H$, or
- c) $-CH_2W^1H$;
- 10 wherein R9 is
 - a) $-C_1-C_7$ alkyl,
 - b) $-C_3-C_8$ cycloalkyl,
 - c) $-C(O)R^{11}$,
 - d) $-C(O)NHR^{11}$,
- 15 e) $-CH(OH)R^{11}$,
 - f) -CH₂OH,
 - g) $-CO_2R^{11}$, or
 - h) -aryl;

wherein R10 is

- 20 a) -H,
 - b) $-C_1-C_6$ alkyl,
 - c) -C₃-C₈ cycloalkyl,
 - d) -(CH₂)_e-aryl optionally substituted with F, Cl, CH₂OH or -NO₂,
 - e) $-(CH_2)_n$ -het, or
- 25 f) $-CH_2-C_3-C_3$ cycloalkyl;

wherein R11 is

- a) $-C_1-C_7$ alkyl,
- b) -C₃-C₈ cycloalkyl,
- c) $-(CH_2)_n X^1$, or
- 30 d) -CH₂-C₃-C₈ cycloalkyl;

wherein X^1 is

- a) -aryl substituted by zero (0), one (1), two (2), or three (3) R4,
- b) -het substituted by zero (0), one (1) or two (2) R⁵,
- $C_1 C_1 C_8$ alkyl,
- d) -CH(OH)-phenyl,
 - e) -S-phenyl,

- f) -NHSO2-phenyl substituted by one (1), two (2) or three (3) R4,
- g) -CN,
- h) -OH,
- i) $-C_3-C_8$ cycloalkyl substituted by zero (0), one (1) or two (2) \mathbb{R}^8 , or
- 5 j) -4-cyano-2,3,5,6-tetrafluoro-phenyl;

wherein X^2 is

- a) -aryl substituted by zero (0), one (1), two (2) or three (3) R⁴,
- b) -het substituted by zero (0), one (1) or two (2) R⁵,
- c) $-C_1-C_8$ alkyl,
- d) -CH(OH)-phenyl, or
 - e) $-C_3-C_8$ cycloalkyl substituted by zero (0), one (1) or two (2) \mathbb{R}^8 ;

wherein W1 is

- a) -NH,
- b) -oxygen, or
- c) -sulfur;

wherein V1 is

- a) $-R^{11}$,
- b) $-C(O)R^{11}$,
- c) $-SO_2R^{11}$, or
- 20 d) -C(O)NHR¹¹;

whrein Z1 is

- a) $-C_1-C_7$ alkyl,
- b) -C₃-C₃ cycloalkyl,
- c) $-C(O)R^{11}$,
- 25 d) -C(O)NHR¹¹, or
 - e) $-CO_2R^{11}$;

wherein -aryl is

- a) -phenyl,
- b) -naphthyl,
- 30 c) -biphenyl,
 - d) -tetrahydro-naphthyl, or
 - e) fluorenyl;

wherein -het is a 5-, 6- or 7-membered saturated or unsaturated ring containing from one (1) to three (3) heteroatoms selected from the group consisting of nitrogen,

oxygen and sulfur; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another heterocyclic;

-243-

wherein -cycloalkyl is a saturated or unsaturated hydrocarbon ring including any bicyclic group in which the above ring is connected to a benzene, heterocyclic or other hydrocarbon ring;

wherein n is zero (0) to six (6), inclusive;

- 5 wherein p is one (1), two (2) or three (3); or a pharmaceutically acceptable salt or N-oxide thereof.
 - 2. The compound of formula IA of claim 1 provided that:
 - a) when R^0 is $-(CH_2)_n X^1$ and X^1 is -OH, then n is one or greater; and
- b) when R^0 is $-(CH_2)_p$ W^1X^2 , W^1 is -oxygen or -sulfur and X^2 is phenyl then R^4 is other than t-pentyl;
 - 3. A compound of formula I of claim 1

- 20 wherein R1 is
 - a) -H,
 - b) -F,
 - c) -Cl,
 - d) -Br,
- e) $-CF_3$, or
 - f) -NO₂;

wherein R2 is

- a) -H,
- b) $-C_1-C_3$ alkyl,
- 30 c) -OH,
 - d) -CF₃,
 - e) -CH=CH-furanyl,
 - f) -CH=CH-phenyl substituted by zero (0) or one (1) R⁴,
 - g) -CH=CH-pyridinyl, or
- 35 h) $-(CH_2)_p$ -phenyl substituted by zero (0) or one (1) \mathbb{R}^4 ; wherein \mathbb{R}^3 is

٠,

- a) -H,
- b) -OH,
- c) -CF₃, or
- d) -C₁-C₃alkyl;

5 wherein X1 is

- a) -phenyl substituted by zero (0) or one (1) R⁴,
- b) -het substituted by zero (0) or one (1) R⁵,
- c) $-C_1-C_{12}$ alkyl,
- d) -CH(OH)-phenyl,
- 10 e) -S-phenyl,
 - f) -naphthyl,
 - g) $-NHSO_2$ -phenyl substituted by one (1) R^4 , or
 - h) -CN;

wherein het is

- a) -1,3,4-thiadiazol-2-yl,
 - b) -4,5-dihydro-4-oxo-2-thiazolyl,
 - c) -thiazolyl,
 - d) -benzothiazolyl,
 - e) -pyridinyl,
- 20 f) -morpholinyl, or
 - g) -imidazolyl;

wherein R^4 is

- a) -H
- b) -F,
- 25 c) -Cl,
 - d) -Br,
 - e) -NO₂,
 - f) $-OCH_3$,
 - g) $-CF_3$, or
- 30 h) $-C_1-C_4$ alkyl;

wherein R5 is

- a) -H,
- b) -F,
- c) -Cl,
- 35 d) -Br,
 - e) $-(CH_2)_n$ -(phenyl substituted by R^6),

-245-

BN500010 kW0 9911073A1 1 >

1":

٠,

- f) -thienyl substituted by R⁷, or
- g) -OH;

wherein R6 is

- a) -H,
- b) -F,
 - c) -Cl, or
 - d) -Br;

wherein R^7 is

- a) -H,
- b) -F,
 - c) -Cl, or
 - d) -Br;

wherein n is zero (0) to six (6) inclusive;

or a pharmaceutically acceptable salt or a N-oxide thereof.

15

10

5

4. The compound of claim 3 of formula II

$$H_{5} \longrightarrow H_{0} \longrightarrow C_{0} \longrightarrow C_{0$$

20

wherein R1 is

- a) -H,
- 25 b) -Cl,
 - c) -Br, or
 - d) $-NO_2$;

wherein R2 is

- a) -H,
- 30 b) $-CH_3$,
 - c) -CF₃,
 - d) $-(CH_2)_p$ -phenyl substituted by zero (0) or one (1) \mathbb{R}^4 ,
 - e) -CH=CH-furanyl, or
 - f) -CH=CH-phenyl substituted by zero (0) or one (1) R⁴;
- 35 wherein X1 is
 - a) -phenyl substituted by one (1) R⁴,

-246-

BNSDOCID <WD 9811073A1 1 >

- b) -het substituted by one (1) R⁵,
- c) -CH(OH)-phenyl,
- d) -S-phenyl,
- e) -naphthyl,
- 5. f) -NHSO₂-phenyl substituted by one (1), two (2) or three (3) R⁴, or
 - g) -CN;

wherein het is

- a) -1,3,4-thiadiazol-2-yl,
- b) -4,5-dihydro-4-oxo-2-thiazolyl,
- 10 c) -2-thiazolyl, or
 - d) -2-benzothiazolyl;

wherein R4 is

- a) -H,
- b) -Cl,
- 15 c) -Br,
 - d) $-NO_2$, or
 - e) -OCH₃;

wherein R5 is

- a) -H,
- 20 b) -Cl,
 - c) $-(CH_2)_n$ -(phenyl substituted by R^6),
 - d) -2-thienyl substituted by R7, or
 - e) OH;

wherein Re is

- 25 a) -H,
 - b) -Cl, or
 - c) -Br;

wherein R7 is

- a) -H,
- 30 b) -Cl, or
 - c) -Br.
 - 5. The compound of claim 1 selected from the group consisting of:

1. :

- N-[(4-Chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
- N-{5-[(4-Chlorophenyl)methyl}-1,3,4-thiadiazol-2-yl}-S-hydroxy-7-quinoline-carboxamide;

٠,

N-(4-Chlorophenyl)-8-hydroxy-7-quinolinecarboxamide;

5-Bromo-N-(4-chlorophenyl)-8-hydroxy-7-quinolinecarboxamide;

N-[5-(4-Chlorophenyl)-4,5-dihydro-4-oxo-2-thiazolyl]-8-hydroxy-7-quinoline-carboxamide;

- 5-Bromo-N-[5-(4-chlorophenyl)-4,5-dihydro-4-oxo-2-thiazolyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[5-(5-Bromo-2-thienyl)-2-thiazolyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[5-(3-Chlorophenyl)-4,5-dihydro-4-oxo-2-thiazolyl]-8-hydroxy-7-quinoline-carboxamide;
- 5-Bromo-N-[(4-chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[(4-Chlorophenyl)methyl]-8-hydroxy-2-methyl-7-quinolinecarboxamide;
 - 5-Chloro-N-[(4-chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-[(4-nitrophenyl)methyl]-7-quinolinecarboxamide;
 - N-[5-(4-Chlorophenyl)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinoline-
- 15 carboxamide;

20

5

- 5-Chloro-N-(4-chlorophenyl)-8-hydroxy-7-quinolinecarboxamide;
- 5-Fluoro-N-[[4-chlorophenyl]methyl]-8-hydroxy-7-quinolinecarboxamide;
- N-[(4-Chlorophenyl)methyl]-4,8-dihydroxy-2-trifluoromethyl-7-quinoline-carboxamide;
- N-[(4-Chlorophenyl)methyl]-8-hydroxy-2-[2-(4-methoxyphenyl)ethenyl]-7-quinolinecarboxamide;
 - N-Heptyl-8-hydroxy-2-[2-(4-methoxyphenyl)ethenyl]-7-quinolinecarboxamide;
 - N-Heptyl-8-hydroxy-2-(2-phenylethenyl)-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(2-hydroxy-2-phenylethyl)-2-(2-phenylethenyl)-7-quinoline-
- 25 carboxamide;
 - N-[(4-Chlorophenyl)methyl]-8-hydroxy-2-(2-phenylethenyl)-7-quinoline-carboxamide;
 - 8- Hydroxy-2-(2-phenylethenyl)-N-[2-(phenylthio)ethyl]-7-quinoline-carboxamide;
- 30 8-Hydroxy-N-(2-hydroxy-2-phenylethyl)-2-[2-(4-methoxyphenyl)ethenyl]-7-quinolinecarboxamide;
 - 8- Hydroxy 2- [2-(4-methoxyphenyl) ethenyl] N-[2-(phenylthio) ethyl] 7-quinoline carboxamide;
- N-[(4-Chlorophenyl)methyl]-8-hydroxy-2-(trifluoromethyl)-7-quinoline-35 carboxamide;
 - N-Heptyl-8-hydroxy-2-(trifluoromethyl)-7-quinolinecarboxamide;

-248-

N-[(4-Chlorophenyl)methyl]-2-[2-(2-furyl)ethenyl]-8-hydroxy-7-quinoline-carboxamide;

N-[(4-Chlorophenyl)methyl]-8-hydroxy-7-quinoline-N-oxide carboxamide.

N-[(4-chlorophenyl)methyl]-8-hydroxy-2-methyl-7-quinolinecarboxamide;

5-chloro-8-hydroxy-2-methyl-N-(3-phenylpropyl)-7-quinolinecarboxamide;

5-chloro-8-hydroxy-2-methyl-N-[(2-phenylthio)ethyl]-7-quinolinecarboxamide;

8-hydroxy-N-[5-[4-[(1-methylethyl)phenylsulfonyl]amino]pentyl]-7-quinoline-carboxamide;

8-hydroxy-N-(cyanomethyl)-7-quinolinecarboxamide;

8-hydroxy-N-(2-hydroxy-2-phenylethyl)-2-[2-(4-methoxyphenyl)ethyl]-7-quinolinecarboxamide;

N-[2-(3-Chlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hvdroxy-N-[2-(3-indolyl)ethyl)-7-quinolinecarboxamide;

8-Hydroxy-N-[2-(4-hydroxyphenyl)ethyl]-7-quinolinecarboxamide;

15 8-Hydroxy-N-[2-(2-[4-phenoxy]phenyl)ethyl]-7-quinolinecarboxamide;

N-[(2,4-Dichlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

N-[(3.4-Dichlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

N-Decyl-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(4-phenylbutyl)-7-quinolinecarboxamide;

20 8-Hydroxy-N-octyl-7-quinolinecarboxamide;

8-Hydroxy-N-[[4-(trifluoromethyl)phenyl]methyl]-7-quinolinecarboxamide;

8-Hydroxy-N-[[2-(trifluoromethyl)phenyl]methyl]-7-quinolinecarboxamide;

N-[2-(1-Cyclohexenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

N-[2-(2,4-Dichlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

25 8-Hydroxy-N-(cis-myrtanyl)-7-quinolinecarboxamide;

N-[(2-Chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[(2-methylphenyl)methyl]-7-quinolinecarboxamide;

8-Hydroxy-N-[(3-methylphenyl)methyl]-7-quinolinecarboxamide;

N-[(4-Chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

30 8-Hydroxy-N-(2-hydroxy-2-phenylethyl)-7-quinolinecarboxamide;

N-(2,2-Diphenylethyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(2-phenylpropyl)-7-quinolinecarboxamide;

N-[1-(2-Ethyl)hexyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-undecyl-7-quinolinecarboxamide;

35 8-Hydroxy-N-octadecyl-7-quinolinecarboxainide;

N-[2-(4-Bromophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

5

N-[2-(4-Chlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[2-(4-methylphenyl)ethyl]-7-quinolinecarboxamide:

N-(3,3-Diphenylpropyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(3-phenylpropyl)-7-quinolinecarboxamide;

5 8-Hydroxy-N-nonyl-7-quinolinecarboxamide;

N-[(2,6-Difluorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

N-[(3-Chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(2-methylcyclohexyl)-7-quinolinecarboxamide;

N-(2,3-Dimethylcyclohexyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(3-methylcyclohexyl)-7-quinolinecarboxamide;

8-Hydroxy-N-(4-methylcyclohexyl)-7-quinolinecarboxamide;

8-Hydroxy-N-[(1,2,3,4-tetrahydro-1-naphthalenyl)methyl]-7-quinoline-carboxamide;

N-Cyclooctyl-8-hydroxy-7-quinolinecarboxamide;

15 8-Hydroxy-N-(1-indanyl)-7-quinolinecarboxamide;

N-Cycloheptyl-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(diphenylmethyl)-7-quinolinecarboxamide;

8-Hvdroxy-N-(1-phenylethyl)-7-quinolinecarboxamide;

N-(2-Heptyl)-8-hydroxy-7-quinolinecarboxamide;

20 8-Hydroxy-N-(2-octyl)-7-quinolinecarboxamide;

N-(4-tert-Butylcyclohexyl)-8-hydroxy-7-quinolinecarboxamide;

S-N-[7-(7-Carboxy-8-hydroxy)quinolyl]-tyrosine, tert-butyl ester;

R-8-Hydroxy-N-{1-(1-naphthyl)ethyl}-7-quinolinecarboxamide;

S-8-Hydroxy-N-[1-(1-naphthyl)ethyl]-7-quinolinecarboxamide;

25 R-8-Hydroxy-N-(1-phenylethyl)-7-quinolinecarboxamide;

R-N-[1-(4-Bromophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

S-N-[1-(4-Bromophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

N-[2-((1S,2R)-1,2-Diphenyl-1-hydroxy)ethyl]-8-hydroxy-7-quinoline-carboxamide;

N-[2-((1R.2S)-1,2-Diphenyl-1-hydroxy)ethyl]-8-hydroxy-7-quinoline-carboxamide;

8-Hydroxy-N-(2-exo-norboranyl)-7-quinolinecarboxamide;

8-Hydroxy-N-[(4-hydroxy-3-methoxyphenyl)methyl]-7-quinolinecarboxamide;

S-8-Hydroxy-N-[2-(1-hydroxy-3-[4-hydroxyphenyl])propyl]-7-quinoline-

35 carboxamide;

S-N-[7-(7-Carboxy-8-hydroxy)quinolyl]-serine, benzyl ester;

-250-

N-[7-(7-Carboxy-8-hydroxy)quinolyl]-tyrosine, methyl ester;

N-[7-(7-Carboxy-8-hydroxy)quinolyl]-tryptophan, ethyl ester;

N-(2-Adamantyl)-8-hydroxy-7-quinolinecarboxamide;

S-O-Benzyl-N-[7-(7-Carboxy-8-hydroxy)quinolyl]-tyrosine, methyl ester;

5 S-N-[7-(7-Carboxy-8-hydroxy)quinolyl]-4-nitrophenylalanine, methyl ester;

N-[(2,5-Difluorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

8- Hydroxy-N-[1-(1-hydroxymethyl) cyclopentyl]-7-quinoline carboxamide;

 $N-\{(3-Chloro-4-flurorophenyl) methyl\}-8-hydroxy-7-quinoline carbox a mide;\\$

 $N-\{(2,3-Dichlorophenyl) methyl\}-8-hydroxy-7-quinoline carboxamide;\\$

N-[(2,5-Dichlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

 $N-(2-\{([2-chloro-6-fluorophenyl]methyl)thio]ethyl)-8-hydroxy-7-quinoline-carboxamide;\\$

N-[2-([(2,6-Dichlorophenyl)methyl]thio)ethyl]-8-hydroxy-7-quinoline-carboxamide;

N-[(2-Chloro-6-phenoxy-phenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[(2-[(2-[hydroxymethyl]phenyl)thio]phenyl)methyl]-7-quinoline-carboxamide;

8-Hydroxy-N-(2-[(4-[2-trifluoromethyl]quinolyl)thio]ethyl)-7-quinoline-carboxamide;

20 N-(Cyclohexylmethyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(1-naphthalenylmethyl)-7-quinolinecarboxamide;

N-{2-(3-Chlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

8- Hydroxy-N-[[3-(trifluoromethyl)phenyl]methyl]-7-quinoline carbox a mide;

8- Hydroxy-N- [2-(phenylthio) ethyl]-7-quino line carbox a mide;

25 N-Heptyl-8-hydroxy-7-quinolinecarboxamide;

 $8- Hydroxy-N-(4-methoxyphenyl)-7- quinoline carboxamide\ monohydrochloride;$

 $N\hbox{-}(4\hbox{-}Cyan ophenyl)\hbox{-}8\hbox{-}hydroxy\hbox{-}7\hbox{-}quino line carboxamide monohydrochloride};$

N-(3-Chlorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

N-[3,5-Bis(trifluoromethyl)phenyl]-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

N-Fluoren-2-yl-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

N-{[4-[(3,4-Dimethylisoxazol-5-ylamino)sulfonyl]phenyl}-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

 $N\hbox{-}1,3\hbox{-}Benzo dioxol\hbox{-}5\hbox{-}yl\hbox{-}8\hbox{-}hydroxy\hbox{-}7\hbox{-}quino line carboxamide monohydrochloride};$

8-Hydroxy-N-[4-(trifluoromethyl)coumarin-7-yl]-7-quinolinecarboxamide monohydrochloride;

30

15

- N-(3-Fluorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- N-(3,4-Difluorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- N-(3,5-Difluorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- 8-Hydroxy-N-(4-nitrophenyl)-7quinolinecarboxamide;
- 5 N-[2-Chloro-5-(trifluoromethyl)phenyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-(5-Fluoro-2-methylphenyl)-8-hydroxy-7-quinolinecarboxamide;
 - N-(2,4-Dimethylphenyl)-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(3-methylphenyl)-7-quinolinecarboxamide;
 - N-(2-Chloro-5-methoxyphenyl)-8-hydroxy-7-quinolinecarboxamide;
- 10 8-Hydroxy-N-naphth-2-yl-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-{4-{(indazo-6-ylamino)sulfonyl}phenyl}-7-quinolinecarboxamide monohydrochloride;
 - N-(3-Bromophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - N-(3,4-Dichlorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- 15 N-(3,5-Dichlorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - 8-Hvdroxy-N-(3-iodophenyl)-7-quinolinecarboxamide monohydrochloride;
 - N-(3-Benzoxyphenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - 8- Hydroxy-N-[3-(methylmercap to)phenyl]-7-quinoline carboxamide monohydrochloride;
- 20 N-(3,5-Dimethylphenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - N-(4-Bromophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-(4-phenoxyphenyl)-7-quinolinecarboxamide monohydrochloride;
 - N-(3,5-Dichloro-4-hydroxyphenyl)-8-hydroxy-7-quinolinecarboxamide
- 25 monohydrochloride;
 - 8-Hydroxy-N-biphen-4-yl-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-[4-(4-nitrophenylmercapto)phenyl]-7-quinolinecarboxamide monohydrochloride;
 - N-(4-Benzoxyphenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- 30 8-Hydroxy-N-[4-(4-nitrophenoxy)phenyl]-7-quinolinecarboxamide monohydrochloride;
 - N-(4-cyclohexylphenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-naphth-1-yl-7-quinolinecarboxamide:
 - N-(4-Bromonaphth-1-yl)-8-hydroxy-7-quinolinecarboxamide;
- 35 8-Hydroxy-N-(2-pyrrol-1-ylphenyl)-7-quinolinecarboxamide;
 - 8-Hydroxy-N-indol-5-yl-7-quinolinecarboxamide;

N-Benzo-2,1,3-thiadiazol-4-yl-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-quinolin-5-yl-7-quinolinecarboxamide; 8-Hydroxy-N-quinolin-8-yl-7-quinolinecarboxamide; 8-Hydroxy-N-isoquinolin-5-yl-7-quinolinecarboxamide; 8-Hydroxy-N-(4-methoxy-2-nitrophenyl)-7-quinolinecarboxamide; 5 8-Hydroxy-N-[2-nitro-4-(trifluoromethyl)phenyl]-7-quinolinecarboxamide; N-(3,5-Dinitrophenyl)-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-[4-nitro-2-(trifluoromethyl)phenyl]-7-quinolinecarboxamide; N-(2-Cyanophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2-Bromophenyl)-8-hydroxy-7-quinolinecarboxamide; 10 N-(2,4-Dibromophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2,5-Dibromophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2-Fluorophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(4-Cyano-2.3.5.6-tetrafluorophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2.4-Difluorophenyl)-8-hydroxy-7-quinolinecarboxamide; 15 8-Hydroxy-N-(2,4,5-trifluorophenyl)-7-quinolinecarboxamide; N-(2-Chlorophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(4-Bromo-2-chlorophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2.4-Dichlorophenyl)-8-hydroxy-7-quinolinecarboxamide; 20 N-(2-Chloro-4-nitrophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2,5-Dichlorophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2-Chloro-5-methylphenyl)-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-(2-iodophenyl)-7-quinolinecarboxamide; 8-Hydroxy-N-(2-nitrophenyl)-7-quinolinecarboxamide; N-(5-Chloro-2-hydroxyphenyl)-8-hydroxy-7-quinolinecarboxamide; 25 8-Hydroxy-N-(2-hydroxy-5-nitrophenyl)-7-quinolinecarboxamide; 8-Hydroxy-N-(2-hydroxy-5-methylphenyl)-7-quinolinecarboxamide; N-Biphen-2-yl-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-[2-(methylmercapto)phenyl]-7-quinolinecarboxamide; 8-Hydroxy-N-[2-(trifluoromethyl)phenyl]-7-quinolinecarboxamide; 30 8-Hydroxy-N-(2-methylphenyl)-7-quinolinecarboxamide; 8-Hydroxy-N-(2-methyl-3-nitrophenyl)-7-quinolinecarboxamide; N-(2,3-Dimethylphenyl)-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-(2,4,6-trimethylphenyl)-7-quinolinecarboxamide;

8-Hydroxy-N-[3-(trifluoromethyl)phenyl]-7-quinolinecarboxamide;

N-(2-Ethylphenyl)-8-hydroxy-7-quinolinecarboxamide;

1: :

8-Hydroxy-N-(2-methyl-4-fluorophenyl)-7-quinolinecarboxamide;

N-(4-Chloro-2-methylphenyl)-8-hydroxy-7-quinolinecarboxamide;

N-(4-Chloro-2-methoxy-5-methylphenyl)-8-hydroxy-7-quinolinecarboxamide;

N-(4-tert-Butylphenyl)-8-hydroxy-7-quinolinecarboxamide;

5 8-Hydroxy-N-(4-propylphenyl)-7-quinolinecarboxamide;

N-(2,6-Di-i-propylphenyl)-8-hydroxy-7-quinolinecarboxamide;

N-(4-Bromo-2-fluorophenyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(2,3,4-trifluorophenyl)-7-quinolinecarboxamide;

N-(2-Fluoro-4-iodophenyl)-8-hydroxy-7-quinolinecarboxamide;

10 8-Hydroxy-N-[4-(hydroxymethyl)phenyl]-7-quinolinecarboxamide;

N-Benzo-1,3-thiazol-6-yl-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-indazol-5-yl-7-quinolinecarboxamide;

8-Hydroxy-N-[2-methoxy-5-(trifluoromethyl)phenyl]-7-quinolinecarboxamide;

8-Hydroxy-N-(5-iodo-2-methylphenyl)-7-quinolinecarboxamide;

N-(2-Chloro-4-cyanophenyl)-8-hydroxy-7-quinolinecarboxamide;

N-(5-Bromopyridin-2-yl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(8-hydroxyquinolin-2-yl)-7-quinolinecarboxamide;

8-Hydroxy-N-[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]-7-quinoline-carboxamide;

N-(5-Bromo-1,3,4-thiadiazol-2-yl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[5-(2-phenylethyl)amino-1,3,4-thiadiazol-2-yl]-7-quinoline-carboxamide monohydrochloride; and

 $N- \{5- (Butylamino)-1, 3, 4-thiadiazol-2-yl\}-8-hydroxy-7-quinoline carboxamide monohydrochloride.$

25

15

20

6. The use of a compound of formula IA

30

to prepare a medicament for treating a susceptible cytomegaloviral infection in a mammal

35 wherein Ro is

a) $-(CH_2)_{n}-X^{1}$,

- b) $-(CH_2)_n-C_3-C_8$ cycloalkyl substituted by zero (0) or one (1) \mathbb{R}^8 ,
- c) $-(CH_2)_p W^1X^2$,
- d) $-(CH_2)_p W^1CH_2X^1$, or
- e) $-(CH_2)_n CHR^9 (CH_2)_n X^1$;
- 5 wherein R^1 is
 - a) -H,
 - b) -F,
 - c) -Cl,
 - d) -Br,
- 10 e) -CF₃, or
 - f) $-NO_2$;

wherein R2 is

- a) -H,
- b) $-C_1-C_3$ alkyl,
- 15 c) -OH,
 - d) -CF₃,
 - e) -CH=CH-furanyl,
 - f) -CH=CH-phenyl substituted by zero (0) or one (1) R⁴,
 - g) -CH=CH-pyridinyl,
- 20 h) $-(CH_2)_p$ -phenyl substituted by zero (0) or one (1) \mathbb{R}^4 ,
 - i) -NHV¹,
 - j) -CH₂NHV¹, or
 - k) $-CH_2Z^1$;

wherein R³ is

- 25 a) -H,
 - b) -OH,
 - c) -CF₃, or
 - d) $-C_1-C_3$ alkyl;

wherein R^4 is

- 30 a) -H
 - b) -F,
 - c) -Cl,
 - d) -Br,
 - e) $-NO_2$,
- 35 f) $-CF_3$,
 - g) $-W^1-R^{10}$,

-255-

1 :

٠,

- h) -C₁-C₆ alkyl,
- i) -C₃-C₈ cycloalkyl,
- j) -[CH₂]_n-aryl,
- k) $-[CH_2]_n$ -het,
- 5 l) -CH₂-C₃-C₈ cycloalkyl,
 - m) -SO₂NH-het
 - n) -CN,
 - o) -I, or
 - p) $-CH_2-OH$;
- 10 wherein R5 is
 - a) -H,
 - b) -F,
 - c) -Cl,
 - d) -Br,
- 15 e) -W¹-R¹⁰,
 - f) -CF₃,
 - g) $-C_1-C_6$ alkyl,
 - h) -C₃-C₈ cycloalkyl,
 - i) -(CH₂)_n-aryl substituted by R⁶,
- 20 j) $-(CH_2)_n$ -het substituted by R^7 , or
 - k) -CH₂-C₃-C₈ cycloalkyl;

wherein R^6 is

- a) -H,
- b) -F,
- 25 c) -Cl, or
 - d) -Br;

wherein R^7 is

- a) -H,
- b) -F,
- 30 c) -Cl, or
 - d) -Br;

wherein R⁸ is

- a) $-C_1-C_4$ alkyl,
- b) -W¹-H, or
- 35 c) $-CH_2W^1H$;

wherein R9 is

1: :

- a) $-C_1-C_7$ alkyl,
- b) -C₃-C₈ cycloalkyl,
- c) $-C(O)R^{11}$,
- d) -C(O)NHR¹¹,
- 5 e) $-CH(OH)R^{11}$,
 - f) -CH₂OH,
 - g) $-CO_2R^{11}$, or
 - h) -aryl;

wherein R10 is

- 10 a) -H,
 - b) $-C_1-C_6$ alkyl,
 - c) -C₃-C₅ cycloalkyl,
 - d) -(CH₂)_n-aryl optionally substituted with F, Cl, CH₂OH or -NO₂,
 - e) $-(CH_2)_n$ -het, or
- f) $-CH_2-C_3-C_3$ cycloalkyl;

wherein R11 is

- a) $-C_1-C_7$ alkyl,
- b) -C₂-C₈ cycloalkyl,
- c) $-(CH_2)_n X^1$, or
- 20 d) -CH₂-C₃-C₈ cycloalkyl;

wherein X1 is

- a) -aryl substituted by zero (0), one (1), two (2), or three (3) R⁴,
- b) -het substituted by zero (0), one (1) or two (2) R⁵,
- c) $-C_1-C_8$ alkyl,
- 25 d) -CH(OH)-phenyl,
 - e) -S-phenyl,
 - f) -NHSO₂-phenyl substituted by one (1), two (2) or three (3) R⁴,
 - g) -CN,
 - h) -OH,
- 30 i) -C₃-C₈ cycloalkyl substituted by zero (0), one (1) or two (2) R⁸, or
 - j) -4-cyano-2,3,5,6-tetrafluoro-phenyl;

wherein X^2 is

- a) -aryl substituted by zero (0), one (1), two (2) or three (3) R⁴,
- b) -het substituted by zero (0), one (1) or two (2) R⁵,

r :

- 35 c) $-C_1-C_s$ alkyl,
 - d) -CH(OH)-phenyl, or

-257-

٠,

e) $-C_3$ - C_8 cycloalkyl substituted by zero (0), one (1) or two (2) \mathbb{R}^8 ; wherein \mathbb{W}^1 is

- a) -NH,
- b) -oxygen, or
- 5 c) -sulfur;

wherein V1 is

- a) -R¹¹,
- b) $-C(O)R^{11}$,
- c) $-SO_2R^{11}$, or
- 10 d) -C(O)NHR¹¹;

whrein Z1 is

- a) $-C_1-C_7$ alkyl,
- b) -C₃-C₈ cycloalkyl,
- c) $-C(O)R^{11}$,
- 15 d) -C(O)NHR¹¹, or
 - e) $-CO_2R^{11}$;

wherein -aryl is

- a) -phenyl,
- b) -naphthyl,
- c) -biphenyl,
 - d) -tetrahydro-naphthyl, or
 - e) fluorenyl;

wherein -het is a 5-, 6- or 7-membered saturated or unsaturated ring containing from one (1) to three (3) heteroatoms selected from the group consisting of nitrogen,

- oxygen and sulfur; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another heterocyclic; wherein -cycloalkyl is a saturated or unsaturated hydrocarbon ring including any bicyclic group in which the above ring is connected to a benzene, heterocyclic or other hydrocarbon ring;
- wherein n is zero (0) to six (6), inclusive;
 wherein p is one (1), two (2) or three (3);
 or a pharmaceutically acceptable salt or N-oxide thereof.
- 7. The use of claim 6 wherein the compound is selected from the group consisting of:

N-[(4-Chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

-258-

N-[5-[(4-Chlorophenyl)methyl]-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinoline-carboxamide;

- N-(4-Chlorophenyl)-8-hydroxy-7-quinolinecarboxamide;
- 5-Bromo-N-(4-chlorophenyl)-8-hydroxy-7-quinolinecarboxamide;
- 5 N-[5-(4-Chlorophenyl)-4,5-dihydro-4-oxo-2-thiazolyl]-8-hydroxy-7-quinoline-carboxamide;
 - 5-Bromo-N-[5-(4-chlorophenyl)-4,5-dihydro-4-oxo-2-thiazolyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[5-(5-Bromo-2-thienyl)-2-thiazolyl]-8-hydroxy-7-quinolinecarboxamide;
- N-[5-(3-Chlorophenyl)-4,5-dihydro-4-oxo-2-thiazolyl]-8-hydroxy-7-quinoline-carboxamide;
 - 5-Bromo-N-[(4-chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[(4-Chlorophenyl)methyl]-8-hydroxy-2-methyl-7-quinolinecarboxamide;
 - 5-Chloro-N-[(4-chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
- 15 8-Hydroxy-N-[(4-nitrophenyl)methyl]-7-quinolinecarboxamide;
 - N-{5-(4-Chlorophenyl)-1,3,4-thiadiazol-2-yl}-8-hydroxy-7-quinoline-carboxamide;
 - 5-Chloro-N-(4-chlorophenyl)-8-hydroxy-7-quinolinecarboxamide;
 - 5-Fluoro-N-[[4-chlorophenyl]methyl]-8-hydroxy-7-quinolinecarboxamide;
- N-[(4-Chlorophenyl)methyl]-4,8-dihydroxy-2-trifluoromethyl-7-quinoline-carboxamide;
 - N-[(4-Chlorophenyl)methyl]-8-hydroxy-2-[2-(4-methoxyphenyl)ethenyl]-7-quinolinecarboxamide;
 - N-Heptyl-8-hydroxy-2-[2-(4-methoxyphenyl)ethenyl]-7-quinolinecarboxamide;
- N-Heptyl-8-hydroxy-2-(2-phenylethenyl)-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(2-hydroxy-2-phenylethyl)-2-(2-phenylethenyl)-7-quinoline-carboxamide;
 - N-[(4-Chlorophenyl)methyl]-8-hydroxy-2-(2-phenylethenyl)-7-quinoline-carboxamide;
 - 8-Hydroxy-2-(2-phenylethenyl)-N-[2-(phenylthio)ethyl]-7-quinoline-carboxamide;
 - 8-Hydroxy-N-(2-hydroxy-2-phenylethyl)-2-[2-(4-methoxyphenyl)ethenyl]-7-quinolinecarboxamide;
 - 8-Hydroxy-2-[2-(4-methoxyphenyl)ethenyl]-N-[2-(phenylthio)ethyl]-7-quinolinecarboxamide;
 - N-[(4-Chlorophenyl)methyl]-8-hydroxy-2-(trifluoromethyl)-7-quinoline-

- 1

30

carboxamide;

N-Heptyl-8-hydroxy-2-(trifluoromethyl)-7-quinolinecarboxamide; N-[(4-Chlorophenyl)methyl]-2-[2-(2-furyl)ethenyl]-8-hydroxy-7-quinolinecarboxamide;

N-[(4-Chlorophenyl)methyl]-8-hydroxy-7-quinoline-N-oxide carboxamide.
N-[(4-chlorophenyl)methyl]-8-hydroxy-2-methyl-7-quinolinecarboxamide;
5-chloro-8-hydroxy-2-methyl-N-(3-phenylpropyl)-7-quinolinecarboxamide;
5-chloro-8-hydroxy-2-methyl-N-[(2-phenylthio)ethyl]-7-quinolinecarboxamide;
8-hydroxy-N-[5-[4-[(1-methylethyl)phenylsulfonyl]amino]pentyl]-7-quinoline-

10 carboxamide;

8-hydroxy-N-(cyanomethyl)-7-quinolinecarboxamide; 8-hydroxy-N-(2-hydroxy-2-phenylethyl)-2-[2-(4-methoxyphenyl)ethyl]-7-quinolinecarboxamide;

N-[2-(3-Chlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

15 8-Hydroxy-N-[2-(3-indolyl)ethyl)-7-quinolinecarboxamide;

8-Hydroxy-N-[2-(4-hydroxyphenyl)ethyl]-7-quinolinecarboxamide;

8-Hydroxy-N-[2-(2-[4-phenoxy]phenyl)ethyl]-7-quinolinecarboxamide;

N-[(2,4-Dichlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

N-[(3,4-Dichlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

20 N-Decyl-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(4-phenylbutyl)-7-quinolinecarboxamide;

8-Hydroxy-N-octyl-7-quinolinecarboxamide;

8-Hydroxy-N-[[4-(trifluoromethyl)phenyl]methyl]-7-quinolinecarboxamide;

8-Hydroxy-N-[[2-(trifluoromethyl)phenyl]methyl]-7-quinolinecarboxamide;

25 N-[2-(1-Cyclohexenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

N-[2-(2,4-Dichlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(cis-myrtanyl)-7-quinolinecarboxamide:

N-[(2-Chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[(2-methylphenyl)methyl]-7-quinolinecarboxamide;

30 8-Hydroxy-N-[(3-methylphenyl)methyl]-7-quinolinecarboxamide;

N-[(4-Chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(2-hydroxy-2-phenylethyl)-7-quinolinecarboxamide;

N-(2,2-Diphenylethyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(2-phenylpropyl)-7-quinolinecarboxamide;

N-[1-(2-Ethyl)hexyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-undecyl-7-quinolinecarboxamide:

-260-

- 8-Hydroxy-N-octadecyl-7-quinolinecarboxamide;
- N-[2-(4-Bromophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;
- N-[2-(4-Chlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;
- 8-Hydroxy-N-[2-(4-methylphenyl)ethyl]-7-quinolinecarboxamide;
- 5 N-(3,3-Diphenylpropyl)-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(3-phenylpropyl)-7-quinolinecarboxamide;
 - 8-Hydroxy-N-nonyl-7-quinolinecarboxamide;
 - N-[(2,6-Difluorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[(3-Chlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
- 10 8-Hydroxy-N-(2-methylcyclohexyl)-7-quinolinecarboxamide;
 - N-(2,3-Dimethylcyclohexyl)-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(3-methylcyclohexyl)-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(4-methylcyclohexyl)-7-quinolinecarboxamide;
 - 8-Hydroxy-N-{(1,2,3,4-tetrahydro-1-naphthalenyl)methyl]-7-quinoline-
- 15 carboxamide;
 - N-Cyclooctyl-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(1-indanyl)-7-quinolinecarboxamide;
 - N-Cycloheptyl-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(diphenylmethyl)-7-quinolinecarboxamide;
- 20 8-Hydroxy-N-(1-phenylethyl)-7-quinolinecarboxamide;
 - N-(2-Heptyl)-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-(2-octyl)-7-quinolinecarboxamide;
 - N-(4-tert-Butylcyclohexyl)-8-hydroxy-7-quinolinecarboxamide;
 - S-N-[7-(7-Carboxy-8-hydroxy)quinolyl]-tyrosine, tert-butyl ester;
- 25 R-8-Hydroxy-N-[1-(1-naphthyl)ethyl]-7-quinolinecarboxamide;
 - S-S-Hydroxy-N-[1-(1-naphthyl)ethyl]-7-quinolinecarboxamide;
 - R-S-Hydroxy-N-(1-phenylethyl)-7-quinolinecarboxamide;
 - R-N-[1-(4-Bromophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;
 - S-N-[1-(4-Bromophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;
- N-[2-((1S,2R)-1,2-Diphenyl-1-hydroxy)ethyl]-8-hydroxy-7-quinoline-carboxamide:
 - N-[2-((1R,2S)-1,2-Diphenyl-1-hydroxy)ethyl]-8-hydroxy-7-quinoline-carboxamide;
 - 8-Hydroxy-N-(2-exo-norboranyl)-7-quinolinecarboxamide;

11:

- 35 8-Hydroxy-N-[(4-hydroxy-3-methoxyphenyl)methyl]-7-quinolinecarboxamide;
 - S-8-Hydroxy-N-[2-(1-hydroxy-3-[4-hydroxyphenyl])propyl]-7-quinoline-

٦,

carboxamide;

10

20

30

S-N-[7-(7-Carboxy-8-hydroxy)quinolyl]-serine, benzyl ester:

N-[7-(7-Carboxy-8-hydroxy)quinolyl]-tyrosine, methyl ester;

N-[7-(7-Carboxy-8-hydroxy)quinolyl]-tryptophan, ethyl ester;

5 N-(2-Adamantyl)-8-hydroxy-7-quinolinecarboxamide;

S-O-Benzyl-N-[7-(7-Carboxy-8-hydroxy)quinolyl]-tyrosine, methyl ester:

S-N-[7-(7-Carboxy-8-hydroxy)quinolyl]-4-nitrophenylalanine, methyl ester;

N-[(2,5-Difluorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[1-(1-hydroxymethyl)cyclopentyl]-7-quinolinecarboxamide;

N-[(3-Chloro-4-flurorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

N-[(2,3-Dichlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

N-[(2,5-Dichlorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;

N-(2-[([2-chloro-6-fluorophenyl]methyl)thio]ethyl)-8-hydroxy-7-quinoline-carboxamide;

N-[2-([(2,6-Dichlorophenyl)methyl]thio)ethyl]-8-hydroxy-7-quinoline-carboxamide;

N-{(2-Chloro-6-phenoxy-phenyl)methyl}-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-{(2-[(2-[hydroxymethyl]phenyl)thio]phenyl)methyl}-7-quinolinecarboxamide;

8-Hydroxy-N-(2-[(4-[2-trifluoromethyl]quinolyl)thio]ethyl)-7-quinoline-carboxamide;

N-(Cyclohexylmethyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(1-naphthalenylmethyl)-7-quinolinecarboxamide;

N-[2-(3-Chlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;

25 8-Hydroxy-N-[[3-(trifluoromethyl)phenyl]methyl]-7-quinolinecarboxamide:

8-Hydroxy-N-[2-(phenylthio)ethyl]-7-quinolinecarboxamide;

N-Heptyl-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(4-methoxyphenyl)-7-quinolinecarboxamide monohydrochloride;

N-(4-Cyanophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride:

N-(3-Chlorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

 $N-[3,5-Bis(trifluoromethyl)phenyl]-8-hydroxy-7-quinoline carboxamide\ monohydrochloride;\\$

N-Fluoren-2-yl-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

N-{[4-[(3,4-Dimethylisoxazol-5-ylamino)sulfonyl]phenyl}-8-hydroxy-7-

35 quinolinecarboxamide monohydrochloride;

N-1,3-Benzodioxol-5-yl-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

8-Hydroxy-N-[4-(trifluoromethyl)coumarin-7-yl]-7-quinolinecarboxamide monohydrochloride;

- N-(3-Fluorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- N-(3,4-Difluorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- 5 N-(3,5-Difluorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-(4-nitrophenyl)-7quinolinecarboxamide;
 - N-[2-Chloro-5-(trifluoromethyl)phenyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-(5-Fluoro-2-methylphenyl)-8-hydroxy-7-quinolinecarboxamide;
 - N-(2,4-Dimethylphenyl)-8-hydroxy-7-quinolinecarboxamide;
- 10 8-Hydroxy-N-(3-methylphenyl)-7-quinolinecarboxamide;
 - N-(2-Chloro-5-methoxyphenyl)-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-naphth-2-yl-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-{4-[(indazo-6-ylamino)sulfonyl]phenyl}-7-quinolinecarboxamide monohydrochloride;
- 15 N-(3-Bromophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - N-(3,4-Dichlorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - N-(3,5-Dichlorophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-(3-iodophenyl)-7-quinolinecarboxamide monohydrochloride;
 - N-(3-Benzoxyphenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-[3-(methylmercapto)phenyl]-7-quinolinecarboxamide monohydrochloride;
 - N-(3,5-Dimethylphenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - N-(4-Bromophenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- 25 8-Hydroxy-N-(4-phenoxyphenyl)-7-quinolinecarboxamide monohydrochloride;
 - N-(3,5-Dichloro-4-hydroxyphenyl)-8-hydroxy-7-quinoline carboxamide monohydrochloride;
 - 8-Hydroxy-N-biphen-4-yl-7-quinolinecarboxamide monohydrochloride;
- 8-Hydroxy-N-[4-(4-nitrophenylmercapto)phenyl]-7-quinolinecarboxamide
- 30 monohydrochloride;
 - N-(4-Benzoxyphenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - 8-Hydroxy-N-[4-(4-nitrophenoxy)phenyl]-7-quinolinecarboxamide monohydrochloride;
 - N-(4-cyclohexylphenyl)-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- 35 8-Hydroxy-N-naphth-1-yl-7-quinolinecarboxamide;
 - N-(4-Bromonaphth-1-yl)-8-hydroxy-7-quinolinecarboxamide;

-263-

8-Hydroxy-N-(2-pyrrol-1-ylphenyl)-7-quinolinecarboxamide: 8-Hydroxy-N-indol-5-yl-7-quinolinecarboxamide; N-Benzo-2,1,3-thiadiazol-4-yl-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-quinolin-5-yl-7-quinolinecarboxamide: 8-Hydroxy-N-quinolin-8-yl-7-quinolinecarboxamide; 5 8-Hydroxy-N-isoquinolin-5-yl-7-quinolinecarboxamide; 8-Hydroxy-N-(4-methoxy-2-nitrophenyl)-7-quinolinecarboxamide; 8-Hydroxy-N-[2-nitro-4-(trifluoromethyl)phenyl]-7-quinolinecarboxamide: N-(3,5-Dinitrophenyl)-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-[4-nitro-2-(trifluoromethyl)phenyl]-7-quinolinecarboxamide; 10 N-(2-Cyanophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2-Bromophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2.4-Dibromophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2,5-Dibromophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2-Fluorophenyl)-8-hydroxy-7-quinolinecarboxamide; 15 N-(4-Cyano-2,3,5,6-tetrafluorophenyl)-8-hydroxy-7-quinolinecarboxamide: N-(2,4-Difluorophenyl)-8-hydroxy-7-guinolinecarboxamide: 8-Hydroxy-N-(2,4,5-trifluorophenyl)-7-quinolinecarboxamide; N-(2-Chlorophenyl)-8-hydroxy-7-quinolinecarboxamide; 20 N-(4-Bromo-2-chlorophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2,4-Dichlorophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2-Chloro-4-nitrophenyl)-8-hydroxy-7-quinolinecarboxamide: N-(2,5-Dichlorophenyl)-8-hydroxy-7-quinolinecarboxamide; N-(2-Chloro-5-methylphenyl)-8-hydroxy-7-quinolinecarboxamide; 25 8-Hydroxy-N-(2-iodophenyl)-7-quinolinecarboxamide; 8-Hydroxy-N-(2-nitrophenyl)-7-quinolinecarboxamide; N-(5-Chloro-2-hydroxyphenyl)-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-(2-hydroxy-5-nitrophenyl)-7-quinolinecarboxamide; 8-Hydroxy-N-(2-hydroxy-5-methylphenyl)-7-quinolinecarboxamide; 30 N-Biphen-2-yl-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-[2-(methylmercapto)phenyl]-7-quinolinecarboxamide; 8-Hydroxy-N-[2-(trifluoromethyl)phenyl]-7-quinolinecarboxamide; 8-Hydroxy-N-(2-methylphenyl)-7-quinolinecarboxamide; 8-Hydroxy-N-(2-methyl-3-nitrophenyl)-7-quinolinecarboxamide;

N-(2,3-Dimethylphenyl)-8-hydroxy-7-quinolinecarboxamide; 8-Hydroxy-N-(2,4,6-trimethylphenyl)-7-quinolinecarboxamide;

N-(2-Ethylphenyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[3-(trifluoromethyl)phenyl]-7-quinolinecarboxamide;

8-Hydroxy-N-(2-methyl-4-fluorophenyl)-7-quinolinecarboxamide;

N-(4-Chloro-2-methylphenyl)-8-hydroxy-7-quinolinecarboxamide;

N-(4-Chloro-2-methoxy-5-methylphenyl)-8-hydroxy-7-quinolinecarboxamide;

N-(4-tert-Butylphenyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(4-propylphenyl)-7-quinolinecarboxamide;

N-(2,6-Di-i-propylphenyl)-8-hydroxy-7-quinolinecarboxamide;

N-(4-Bromo-2-fluorophenyl)-8-hydroxy-7-quinolinecarboxamide;

10 8-Hydroxy-N-(2,3,4-trifluorophenyl)-7-quinolinecarboxamide;

N-(2-Fluoro-4-iodophenyl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[4-(hydroxymethyl)phenyl]-7-quinolinecarboxamide;

N-Benzo-1,3-thiazol-6-yl-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-indazol-5-yl-7-quinolinecarboxamide;

S-Hydroxy-N-[2-methoxy-5-(trifluoromethyl)phenyl]-7-quinolinecarboxamide;

8-Hydroxy-N-(5-iodo-2-methylphenyl)-7-quinolinecarboxamide;

N-(2-Chloro-4-cyanophenyl)-8-hydroxy-7-quinolinecarboxamide;

N-(5-Bromopyridin-2-yl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-(8-hydroxyguinolin-2-yl)-7-quinolinecarboxamide;

8-Hydroxy-N-[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]-7-quinoline-carboxamide;

N-(5-Bromo-1,3,4-thiadiazol-2-yl)-8-hydroxy-7-quinolinecarboxamide;

8-Hydroxy-N-[5-(2-phenylethyl)amino-1,3,4-thiadiazol-2-yl]-7-quinoline-carboxamide monohydrochloride;

N-[5-(Butylamino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

N-[5-({2-{(tert-Butoxy)amido}ethyl}amino)-1,3,4-thiadiazol-2-yl}-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

N-{5-[(1,3-Benzodioxol-5-cyanomethyl)amino]-1,3,4-thiadiazol-2-yl)-8-hydroxy-30 7-quinolinecarboxamide monohydrochloride;

(S)-N-[5-({Benzyl[(methoxy)carbonyl]methyl)amino)-1,3,4-thiadiazol-2-yl}-8-hvdroxy-7-quinolinecarboxamide monohydrochloride;

(R)-N-[5-({Benzyl[(methoxy)carbonyl]methyl)amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrochloride;

N-[5-({1,3-Benzodioxol-5-yl-[(tert-butoxy)carbonyl]methyl]amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide semihydrate;

35

5

15

20

N-[5-({1,3-Benzodioxol-4-yl-[(tert-butyloxy)carbonyl]methyl} amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide semihydrate;

- $N-\{5-[(1,3,-Benzodioxol-5-ylmethyl)amino]-1,3,4-thiadiazol-2-yl\}-8-hydroxy-7-quinolinecarboxamide;$
- (S)-N-[5-([[(tert-Butoxy)carbonyl]-[4-hydroxybenzyl]methyl)amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide;
- (S)-N-[5-({5-[Benzoxy]amido-1-[(tert-butoxy)carbonyl]pentyl}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide;
- (S)-N-[5-({1-[(tert-Butoxy)carbonyl]-3-methylbutyl}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;
 - $(S)-N-(5-\{2-[(tert-Butoxy)carbonyl]pyrrolidin-N-yl\}-1,3,4-thiadiazol-2-yl)-8-hydroxy-7-quinolinecarboxamide semihydrate;$
 - $(S)-N-[5-(\{1-[(tert-Butoxy)carbonyl]-3-[methylmercapto]propyl\}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;$
- 15 (S)-N-[5-({1-[(tert-Butoxy)carbonyl]-2-indol-3-ylethyl]amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;
 - $(S)-N-(5-\{1-[(tert-Butoxy)carbonyl]-2-\{4-(tert-butoxy)phenyl]ethyl\}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;$
 - (S)-N-{5-({1,2-Di-[(tert-butoxy)carbonyl]ethyl}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;
 - N-[2-[(8-Hydroxyquinolin-7-yl)amido]-1,3,4-thiadiazol-5-yl}-2-benzo-1,3-dioxol-5-ylglycine monohydrotrifluoroacetate;
 - N-[2-[(8-Hydroxyquinolin-7-yl)amido]-1,3,4-thiadiazol-5-yl]-2-benzo-1,3-dioxol-4-ylglycine monohydrotrifluoroacetate; and
- N-{2-{(8-Hydroxyquinolin-7-yl)amido}-1,3,4-thiadiazol-5-yl}tryptophan monohydrotrifluoroacetate.
 - 8. An antiviral pharmaceutical composition which comprises a pharmaceutically acceptable excipient and an effective amount of a compound of formula I of claim 1.
 - 9. A compound of the formula III

5

10

20

$$\begin{array}{c|c} OH & \\ R^1 & N \\ \hline \end{array} \qquad \begin{array}{c} SO_2 - N - R^2 \\ H \end{array} \qquad \qquad \begin{array}{c} III \\ \end{array}$$

5

wherein R1 is

- a) -H,
- b) -C₁-C₅ alkyl, or
- c) -CH=CH-aryl;
- 10 wherein \mathbb{R}^2 is
 - a) $-C_1-C_{10}$ alkyl,
 - b) $-(CH_2)_n R^3$,
 - c) $-CH(R^4)R^3$, or
 - d) $-(CH_2)_n-X^2-R^3$;
- 15 wherein R³ is
 - a) -aryl,
 - b) -het substituted by zero (0) to two (2) R^5 , or
 - c) -C₃-C₆ cycloalkyl;

wherein R4 is

- 20 a) $-C_1-C_5$ alkyl, or
 - b) -aryl;

wherein X^{1} is

- a) -H,
- b) -F,
- 25 c) -Cl,
 - d) -Br, or
 - e) -I;

wherein X^2 is

- a) -O-,
- 30 b) -S-, or
 - c) -NH-;

wherein n is zero (0) to four (4) inclusive;

wherein aryl is

a) phenyl substituted by zero (0) to two (2) R⁶, or

11:

35 b) naphthyl substituted by zero (0) to two (2) R⁵;

wherein het is a 5-, 6- or 7-membered saturated or unsaturated ring containing from

-267-

SNSDDCID <WD 9911073A111 >

one (1) to three (3) heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another heterocycle; and the ring may be connected through a carbon or secondary nitrogen in the ring or an exocyclic nitrogen; and if chemically feasible, the nitrogen and sulfur atoms may be in the oxidized forms; and if chemically feasible, the nitrogen atom may be in the protected form;

wherein R5 is

- a) -H,
- b) $-C_1-C_5$ alkyl,
 - c) -F,
 - d) -Cl,
 - e) -OCH₃,
 - f) $-CF_3$,
- 15 g) -NHSO₂-het substituted by zero (0) to two (2) - C_1 - C_5 alkyl, or
 - h) -NHSO₂-phenyl;

or a pharmaceutically acceptable salt thereof.

- 10. The compound of claim 9 of formula III
- 20 wherein R1 is
 - a) -H,
 - b) $-CH_3$, or
 - c) -CH=CH-phenyl;

wherein R2 is

- 25 a) $-(CH_2)_n R^3$,
 - b) $-(CH_2)_n-X^2-R^3$, or
 - c) $-CH(R^4)R^3$;

wherein R3 is

- a) -phenyl substituted by zero (0) to two (2) R⁶,
- 30 b) -het,
 - c) -naphthyl, or
 - d) -C_{3.6} cycloalkyl;

wherein R4 is

- a) $-CH_3$, or
- 35 b) -phenyl;

wherein R5 is

-268-

BNSDOCID KWO 9611073A1 1 >

•

- a) -F,
- b) -Cl,
- c) -NHSO₂-phenyl;

wherrein X1 is

- 5 a) -Cl, or
 - b) -Br;

wherein X2 is

- a) -O-, or
- b) -S-;
- 10 wherein het is
 - a) -imidazolyl, or
 - b) -indolyl.
 - 11. A compound of claim 9 selected from the group consisting of:
- 5-Chloro-*N*-[(4-chlorophenyl)methyl]-8-hydroxy-2-methyl-7-quinoline-sulfonamide;
 - 5-Chloro-N-[(4-chlorophenyl)methyl]-8-hydroxy-7-quinolinesulfonamide;
 - 5-Chloro-N-[(4-chlorophenyl)methyl]-2-(1,1-dimethylethyl)-8-hydroxy-7-quinolinesulfonamide;
- 20 5-Chloro-N-(4-chlorophenyl)-8-hydroxy-7-quinolinesulfonamide;
 - 5-Chloro-8-hydroxy-*N*-(3-phenylpropyl)-7-quinolinesulfonamide monohydrobromide;
 - 5-Chloro-8-hydrxoy-N-(phenylmehtyl)-7-quinolinesulfonamide;
 - 5-Chloro-N-[2-(4-chlorophenyl)ethyl]-8-hydroxy-7-quinolinesulfonamide;
- 25 5-Bromo-8-hydroxy-N-(phenylmethyl)-7-quinolinesulfonamide;
 - 5-Chloro-N-[2-(2,4-dichlorophenyl)ethyl]-8-hydroxy-2-methyl-7-quinoline-sulfonamide;
 - 5-Chloro-8-hydroxy-2-methyl-N-[2-(phenylthio)ethyl]-7-quinolinesulfonamide;
 - 5-Chloro-8-hydroxy-2-methyl-N-(phenylmethyl)-7-quinolinesulfonamide;
 - 5-Chloro-N-(4-chlorophenyl)-8-hydroxy-2-methyl-7-quinolinesulfonamide;
 - 5-Chloro-8-hydroxy-2-methyl-N-octyl-7-quinolinesulfonamide;
 - 5-Chloro-N-[4-fluorophenyl)methyl]-8-hydroxy-2-methyl-7-quinoline-sulfonamide;
- 5-Chloro-8-hydroxy-2-methyl-N-(1-naphthalenylmethyl)-7-quinoline-35 sulfonamide;

1 :

5-Chloro-N-(cyclohexylmethyl)-8-hydroxy-2-methyl-7-quinolinesulfonamide;

٠,

30

5-Chloro-N-[(3-chlorophenyl)methyl]-8-hydroxy-2-methyl-7-quinoline-sulfonamide;

- 5-Chloro-8-hydroxy-2-methyl-N-(3-phenylpropyl)-7-quinolinesulfonamide;
- 5-Chloro-8-hydroxy-2-methyl-N-(2-phenoxyethyl)-7-quinolinesulfonamide;
- $\label{lem:condition} 5- Chloro-8-hydroxy-2-methyl-N-[3-(4-morpholinyl)propyl]-7-quinoline-sulfonamide;$
- 5-Chloro-8-hydroxy-N-[3-(1H-imidazol-1-yl)propyl]-2-methyl-7-quinoline-sulfonamide:
 - 5-Chloro-N-(diphenylmethyl)-8-hydroxy-2-methyl-7-quinolinesulfonamide;
 - (R)-5-Chloro-8-hydroxy-2-methyl-N-(1-phenylethyl)-7-quinolinesulfonamide;
 - (S)-5-Chloro-8-hydroxy-2-methyl-N-(1-phenylethyl)-7-quinolinesulfonamide;
 - 5-Chloro-8-hydroxy-2-methyl-N-(2-pyridinylmethyl)-7-quinolinesulfonamide;
- 5-Chloro-N-[2-(4-chlorophenyl)ethyl]-8-hydroxy-2-methyl-7-quinoline-sulfonamide;
 - 5-Chloro-8-hydroxy-2-methyl-N-(4-phenylbutyl)-7-quinolinesulfonamide;
 - 5-Chloro-8-hydroxy-2-methyl-N-[2-(2-pyridinyl)ethyl]-7-quinolinesulfonamide;
- (E) 5 Chloro 8 hydroxy 2 (2 phenylethenyl) N [2 (phenylthio)ethyl] 7 quinoline sulfonamide;
- 5-Chloro-8-hydroxy-N-[2-1H-indol-3-yl)ethyl]-2-methyl-7-quinoline-20 sulfonamide;
 - 5-Chloro-8-hydroxy-2-methyl-N-[2-[4-[[(3,5-dimethyl-4-isoxazolyl)sulfonyl]-amino]phenyl]ethyl]-7-quinolinesulfonamide;
 - 5-Chloro-8-hydroxy-2-methyl-N-[2-[4-[(phenylsulfonyl)amino]phenyl]ethyl]-7-quinolinesulfonamide; and
- 25 5-Flouro-8-hydroxy-N-(phenylmethyl)-7-quinolinesulfonamide.
 - 12. The compound of the formula IV

OH Si F

 ΓV

where X1 is

35 a) -H,

b) -F.

-270-

BNSDGCID <WC 9811073A1 1 >

30

5

10

15

- c) -Cl,
- d) -Br, or
- e) -I;

wherein R_2 , R_3 and R_4 may be the same or different and are

- a) -C₁-C₅ alkyl, or
- b) -phenyl.
- 13. A compound of claim 12 selected from the group consisting of:
 - 5-Chloro-7-[(1,1-dimethylethyl)dimethylsilyl]-8-quinolinol;
- 5-Chloro-7-[(tris(1-methylethyl)silyl]-8-quinolinol;
 - 5-Chloro-7-[(1,1,-dimethylethyl)diphenylsilyl]-8-quinolinol;
 - 5-Chloro-7-(trimethylsilyl)-8-quinolinol; and
 - 5-Chloro-7-(dimethylphenylsilyl)-8-quinolinol.
- 15 14. A compound of claim 1 of formula V

V

20

5

wherein X^1 is

- a) phenyl substituted by zero (0) to three (3) R⁴,
- b) naphthyl substituted by zero (0) to three (3) R4,
- c) fluorenyl substituted by zero (0) to three (3) R4,
- 25 d) het substituted by zero (0) to one (1) R⁵, or
 - e) 4-cyano-2,3,5,6-tetrafluorophenyl;

wherein R4 is

- a) -F,
- b) -Cl,
- 30 c) -Br,
 - d) -I,
 - e) -NO₂,
 - f) -CN,
 - g) -CF₃,
- 35 h) $-C_1-C_6$ alkyl,
 - i) phenyl,

-271-

BNSDOGO KWO - 981107JA1 Fis

- j) cyclohexyl,
- k) hydroxymethyl,
- l) -OR¹⁰,
- m) -SR¹⁰, or
- 5 n) -SO₂NH-het;

wherein het is

- a) 1,3-benzodioxol-4-yl,
- b) 1,3-benzodioxo-5-yl,
- c) coumarinyl,
- 10 d) indazoyl,
 - e) indolyl,
 - f) benzothiazolyl,
 - g) benzothiadiazolyl,
 - h) quinolinyl,
- i) pyridinyl,
 - j) 1,3,4-thiadiazol-2-yl, or
 - k) isoxazolyl substituted with one or two C_1 - C_4 alkyl;

wherein R5 is

- a) -F,
- 20 b) -Cl,
 - c) -Br,
 - d) -I,
 - e) $-CF_3$,
 - f) $-C_1-C_4$ -alkyl, or
- 25 g) -C₁-C₂-alkylsubstituted with an aryl;

wherein R10 is

- a) hydrogen,
- b) $-C_1-C_4$ alkyl,
- c) phenyl,
- 30 d) benzyl, or
 - e) 4-nitrophenyl.

A compound of claim 14

wherein het is

- 35 a) indazoyl,
 - b) indoyl, or

-272-

c) isoxazolyl substituted with one (1) or two (2) C₁-C₄ alkyl.

A compound of formula VI or VII 16.

5 VI VII

10 wherein X is

Ö

-C, or al

-SO;

wherein Y is

-NH. a)

-O, or 15 b)

> -S; c)

wherein EWG is an electron withdrawing group;

wherein R1, R2 and R3 are as defined in claim 1;

wherein R4 is

-H. 20 a)

 $-(CH_2)_n-CO_2-C_1-C_6$ alkyl,

-(CH₂)_m-phenyl optionally substituted with one (1) or two (2) R⁷,

-(CH₂),-het,

 $-C_1-C_6$ alkyl optionally substituted by one R^6 ,

25 f) -C₁-C₄ alkyl-NH-COOCH₂-benzyl, or

-C₁-C₄ alkyl-S-CH₃;

wherein R⁵ is pyrrolidin-1-yl optionally substituted with EWG or R⁶;

wherein n is zero (0) to three (3);

wherein m is zero (0) to one (1);

wherein -het is a 5-, 6- or 7-membered saturated or unsaturated ring containing from one (1) to three (3) heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another heterocyclic;

wherein R6 is

35 a) hydroxy,

> -C₁-C₆ alkyloxy, b)

> > -273-

- c) mercapto, or
- d) -C₁-C₆ alkylmercapto;

wherein R7 is

- a) hydroxy, or
- 5 b) $-C_1-C_6$ alkyloxy.
 - 17. A compound of claim 16 wherein R⁷ is t-butyl;

wherein EWG is

- 10 a) $-NH-CO_2C(CH_3)_3$,
 - b) -CN,
 - c) $-COX^2-C_1-C_6$ alkyl, or
 - d) -COOH;

wherein X2 is

- 15 a) -O-, or
 - b) -NH;

wherein het is

- a) 1,3-benzodioxol-4-yl,
- b) 1,3-benzodioxol-5-yl,
- c) indolyl.
 - 18. The compound of claim 16 selected from the group consisting of:

 N-[5-({2-[(tert-Butoxy)amido]ethyl}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7quinolinecarboxamide monohydrochloride;
- N-{5-[(1,3-Benzodioxol-5-cyanomethyl)amino}-1,3,4-thiadiazol-2-yl}-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
 - (S)-N-[5-({Benzyl[(methoxy)carbonyl]methyl}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrochloride;
- (R)-N-[5-([Benzyl[(methoxy)carbonyl]methyl]amino)-1,3,4-thiadiazol-2-yl]-8-30 hydroxy-7-quinolinecarboxamide monohydrochloride;
 - N-[5-({1,3-Benzodioxol-5-yl-[(tert-butoxy)carbonyl]methyl}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide semihydrate;
 - N-[5-({1,3-Benzodioxol-4-yl-[(tert-butyloxy)carbonyl]methyl} amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide semihydrate;
- N-{5-[(1,3,-Benzodioxol-5-ylmethyl)amino]-1,3,4-thiadiazol-2-yl}-8-hydroxy-7-quinolinecarboxamide;

~]

(S)-N-[5-([(tert-Butoxy)carbonyl]-[4-hydroxybenzyl]methyl]amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide;

- (S)-N-[5-({5-[Benzoxy]amido-1-[(tert-butoxy)carbonyl]pentyl)amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide;
- (S)-N-[5-({1-[(tert-Butoxy)carbonyl]-3-methylbutyl}amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;
- (S)-N-(5-{2-[(tert-Butoxy)carbonyl]pyrrolidin-N-yl}-1,3,4-thiadiazol-2-yl)-8-hydroxy-7-quinolinecarboxamide semihydrate;
- (S)-N-[5-({1-[(tert-Butoxy)carbonyl]-3-[methylmercapto]propyl}amino)-1,3,4-10 thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;
 - (S)-N-[5-({1-[(tert-Butoxy)carbonyl]-2-indol-3-ylethyl)amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;
 - (S)-N-(5-{1-[(tert-Butoxy)carbonyl]-2-[4-(tert-butoxy)phenyl]ethyl)amino)-1,3,4-thiadiazol-2-yl]-8-hydroxy-7-quinolinecarboxamide monohydrate;
- 15 (S)-N-[5-({1,2-Di-[(tert-butoxy)carbonyl]ethyl}amino)-1,3,4-thiadiazol-2-yl]-8-hvdroxy-7-quinolinecarboxamide monohydrate;
 - N-{2-[(8-Hydroxyquinolin-7-yl)amido]-1,3,4-thiadiazol-5-yl}-2-benzo-1,3-dioxol-5-ylglycine monohydrotrifluoroacetate;
- N-{2-{(8-Hydroxyquinolin-7-yl)amido}-1,3,4-thiadiazol-5-yl}-2-benzo-1,3-dioxol-20 4-ylglycine monohydrotrifluoroacetate; and
 - $N-\{2-[(8-Hydroxyquinolin-7-yl)amido]-1,3,4-thiadiazol-5-yl\} tryptophan monohydrotrifluoroacetate.$
 - 19. The compound of claim 1 selected from the group consisting of:
- N-[(4-Chlorophenyl)methyl]-8-hydroxy-4-methyl-2-(trifluoromethyl)-7-quinolinecarboxamide;
 - N-(4-Chlorophenyl)-8-hydroxy-2-methyl-7-quinolinecarboxamide;
 - N-[(4-Chlorophenyl)methyl]-8-hydroxy-5-nitro-7-quinolinecarboxamide;
- N-[4,5-dihydro-[5-(3-nitrophenyl)]-4-oxo-2-thiazolyl]-8-hydroxy-7-quinoline-30 carboxamide;
 - N-[5-[3-(4-Chlorophenyl)methyl]-4,5-dihydro-4-oxo-2-thiazolyl]-8-hydroxy-7-quinolinecarboxamide;
 - 8-Hydroxy-N-[2-(phenylthio)ethyl]-2-(trifluoromethyl)-7-quinolinecarboxamide;
 - N-[(4-Chlorophenyl)methyl]-4,8-dihydroxy-2-methyl-7-quinolinecarboxamide;
- 35 (E)-8-Hydroxy-2-(2-phenylethenyl)-N-(3-phenylpropyl)-7-quinoline-carboxamide;

1 :

5

`]

- 8-Hydroxy-quinoline-7-carboxylic acid trans-4-hydroxy-cyclohexylamide;
- [4-(3.4-Dichlorophenyl)-piperazin-yl]-(8-hydroxy-quinolin-7-yl)-methanone;
- 8-Hydroxy-quinoline-7-carboxylic acid bezo[1,3]dioxol-5-ylmethylamide;
- N-Hexyl-8-hydroxy-7-quinolinecarboxamide;
- 5 8-Hydroxy-quinoline-7-carboxylic acid 2-(5-nitro-pyridin-2-ylamino)-ethylamide;
 - 8-Hydroxy-N-[2-(phenyloxy)ethyl]-7-quinolinecarboxamide;
 - 8-Hydroxy-quinoline-7-carboxylic acid 2-(R)-hydroxy-1-(S)-methyl-2-phenylethylamide;
- 10 (S)-2-[(8-Hydroxy-quinoline-7-carbonyl)-amino]-3-phenyl-propionic acid ethyl ester;
 - 8-Hydroxy-quinoline-7-carboxylic acid cyano-phenylylamide;
 - (S)-2-[(8-Hydroxy-quinoline-7-carbonyl)-amino]-4-methyl-penatnoic acid tert-butyl ester;
- 15 (S,S)-8-Hydroxy-quinoline-7-carboxylic acid 2-hydroxy-1-(hydroxy-phenyl-methyl)-ethylamide;
 - (S,S)-8-Hydroxy-quinoline-7-carboxylic acid 1-hydroxymethyl-2-methyl-butylamide;
 - (S)-8-Hydroxy-quinoline-7-carboxylic acid 1-benzyl-2-hydroxy-ethylamide;
- 20 8-Hydroxy-quinoline-7-carboxylic acid thiophen-2-ylmethylamide;
 - (R)-8-Hydroxy-quinoline-7-carboxylic acid 2-hydroxy-1-phenyl-ethylamide;
 - N-[2-(2-chlorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[(3,4-Difluorophenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[(2-Chloro-6-fluoro-phenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
- 25 N-[(2-Chloro-4-fluoro-phenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[(3,5-Dichloro-phenyl)methyl]-8-hydroxy-7-quinolinecarboxamide;
 - (S)-8-Hydroxy-quinoline-7-carboxylic acid 2-hydroxy-1-phenyl-ethylamide;
 - N-[2-(2-fluorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;
 - N-[2-(4-fluorophenyl)ethyl]-8-hydroxy-7-quinolinecarboxamide;
- 30 trans-8-Hydroxy-quinoline-7-carboxylic acid 4-[(8-hydroxy-quinoline-7-carbonyl)-amino]-cyclohexyl ester;

INTERNATIONAL SEARCH REPORT

Interional Application No PC i/US 97/15310

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D215/48 A61K31/47 C07D41 C07D403/12 C07F7/10 C07D40! C07D413/12 C07D405/12	7/12 C07D417/14 C0 5/06 C07D215/60 C0	
According to	o international Patent Classification(IPC) or to both national classif	ication and IPC	
	SEARCHED	· · · · · · · · · · · · · · · · · · ·	
	ocumentation searched. (classification system followed by classifica CO7D A51K CO7F	ation symbols)	
Documenta	ion searched other than minimumdocumentation to the extent that	such documents are included in the fields	searcned
Electronic d	ata base consulted during the international search (name of data t	base and where practical, search terms us	ed)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category :	Citation of document, with indication, where appropriate of the ri	elevant passages	Relevant to claim No
X	CHEMICAL ABSTRACTS, vol. 82, no 14 April 1975 Columbus, Ohio, US;	. 15,	1
	abstract no. 98387x, KEMP.D.S. ET AL: "Peptide synth XP002050888 * RN 55477-69-5 *	hesis"	
	see abstract & TETRAHEDRON, vol. 30, no. 20, - 1974 pages 3677-3688,		
A	US 4 959 363 A (MARK P. WENTLAND September 1990 cited in the application see claims	D) 25	1.6
Eur;	ner documents are listed in the continuation of box C	Patent family members are list	ed in annex
Special categories of cited occuments .		"T" later document published after the international filing date or priority date and not in conflict with the application but	
"A" document defining the general state of the art which is not considered to be of particular relevance. "E" earlier document but published on or after the international liming date.		cried to understand the principle or theory underlying the invention. "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to	
"L" document which may throw doubts on phority daim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means.		"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled	
•р. аосили	means ent published prior to the international fiking date but han the priority date claimed	in the art "&" document member of the same pate	
Date of the	actual completion of theinternational search	Date of mailing of the international	
1	9 December 1997	15/01/1998	
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL = 2280 HV Rijswijk	Authorized officer	
	Tel (+31-70) 340-2040, Tx 31 651 epoint. Fax (+31-70) 340-3016	Van Bijlen. H	

٦,

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Int Stonel Application No

Patent document	Publication	Patent family	Publication
cited in search report	date	member(s)	date
US 4959363 A	25-09-90	NONE	
		· · · · · · · · · · · · · ·	
	•		
	•		

Form PCT/ISA/210 (patent territy annex) (July 1992)

BNSDOCID KWO - 9411073A1 1 >

: