Title: "STAT 601 - Homework 7"

Author: "Julius Hai"

Date: "10/14/2025"

1a. What are the appropriate assumptions?

1b. What is the appropriate test for the problem?

Df Sum Sq Mean Sq F value Pr(>F)
Percent_Sand 4 1093.6 273.40 75.44 8.94e-12 ***
Residuals 20 72.5 3.62
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Tables of means
Grand mean

39.93334

Percent_Sand
Percent_Sand
Percent_Sand
5 10 15 20 25
30.39 34.91 40.62 45.22 48.53

1c. State the Hypothesis test contains the correct mathematical/statistical notation (Greek letters, subscripts, and symbols, etc.)

MODEL: $Y_-ij = \mu + T_-i + \varepsilon_-ij$, with $\varepsilon_-ij \sim N(0, \sigma^2)$, i = 1,...,5 (sand levels), $j = 1,...,n_-i$ HYPOTHESES: HO: $\mu 1 = \mu 2 = \mu 3 = \mu 4 = \mu 5$ (all group means equal) ε_-i Equivalently: $\tau_-i = \tau_-i = \tau_-i$ (at least one mean differs) ANOVA TABLE (F-test corresponding to HO vs Ha): Df Sum Sq Mean Sq F value Pr(>F) Percent_Sand 4 1093.6 273.40 75.44 8.94e-12 *** Residuals 20 72.5 3.62 --- Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1 Test statistic: F = 75.4382, p-value = 8.937e-12, alpha = 0.05 Decision: Reject HO \rightarrow At least one mean differs among sand levels.

1d. Conduct the test using R, show the snip of the results the results

1e. Interpret the results by stating what the alpha level, F test result, and interpret the p value and your conclusion about the means.

Df Sum Sq Mean Sq F value Percent_Sand 4 264304 66076 52.44 Pr(>F)52.44 2.53e-10 *** Residuals 20 25200 1260 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 -----ANOVA INTERPRETATION SUMMARY _____ Significance Level (α): 0.05 F-statistic: 52.441 p-value: 0.0000 Decision: Reject Ho Conclusion: Sand content has a statistically significant effect on mean compression resistance. Interpretation: At least one mean compression strength differs among sand levels. ______

Q2a. First, the test for equal variance (Levene Test) state the hypothesis

2b. Provide a snip of the R results of the Levene test:

2c. Interpret the results and provide a conclusion of equal variance

2d. To test for normality, provide a applot of the residuals and state what you see

2e. Test for normality (Shapiro Test), state the hypothesis

- × ×

2f. Provide a snip of the results from the Shapiro test using R

2g. Interpret the results and provide a conclusion of normality

Shapiro-Wilk Normality Test (Residuals)

Shapiro-Wilk normality test

data: residuals_anova
W = 0.98894, p-value = 0.9921

Interpretation:
p-value = 0.9921 ≥ 0.05 → Fail to reject Ho.
Conclusion: Residuals are approximately normal.
Implication: The normality assumption for ANOVA is satisfied.

2h. State your final Conclusion of your Overall ANOVA Test