Probeklausur zur Vorlesung Lineare Algebra für Informatik Modul-Nr.: FMI-MA0022

Wintersemester 2018/19

Probeklausur 1

In den folgenden Aufgaben sei \mathbb{K} jeweils ein Körper. Wie üblich betrachten wir Elemente von \mathbb{K}^n als Spaltenvektoren.

Aufgabe 1: Lineare Gleichungssysteme

- a) (1 P.) Sei V ein \mathbb{K} -Vektorraum und $\vec{v}_1, \vec{v}_2, ..., \vec{v}_m \in V$. Unter welcher Bedingung nennt man $\vec{v}_1, \vec{v}_2, ..., \vec{v}_m$ linear unabhängig? Unter welcher Bedingung nennt man es ein Erzeugendensystem von V?
- b) (7 P.) Es sei $A := \begin{pmatrix} 1 & 4 & 0 & 3 \\ -1 & -3 & 1 & -2 \\ 2 & 5 & -3 & 2 \\ 2 & 7 & -1 & 5 \end{pmatrix} \in M_4(\mathbb{R})$ und $\vec{b} = \begin{pmatrix} 0 \\ 3 \\ -9 \\ -3 \end{pmatrix}$. Berechnen Sie $LR(A; \vec{b})$ sowie Basen von Spaltenraum(A) und Zeilenraum(A). **Zur Kontrolle:** Ihre Rechnung sollte ergeben, dass Rang(A) = 3 und $LR(A; \vec{b}) \neq \emptyset$.
- c) **Zusatzaufgabe (3 Bonus-P.):** Sei $m, n \in \mathbb{N}, A \in \mathbb{K}^{m \times n}$ und $\vec{b} \in \mathbb{K}^m$. Beweisen Sie: Wenn es <u>kein</u> $\vec{x} \in \mathbb{K}^n$ gibt mit $A \cdot \vec{x} = \vec{b}$, denn gibt es $\vec{y} \in \mathbb{K}^m$ mit $A^{\top} \cdot \vec{y} = \vec{0}$ und $\vec{b}^{\top} \cdot \vec{y} = 1$. **Hinweis:** Ränge von $\begin{pmatrix} A^{\top} \\ \vec{b}^{\top} \end{pmatrix}$ und $\begin{pmatrix} A^{\top} \\ \vec{b}^{\top} \end{pmatrix}$.

Aufgabe 2: Euklidische Räume

a) Prüfen Sie jeweils mit dem Hurwitz-Kriterium, ob es sich bei der gegebenen symmetrischen Matrix um die Matrix eines Skalarprodukts auf \mathbb{R}^3 handelt:

i)
$$(1 \text{ P.}) \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

ii)
$$(2 \text{ P.}) \begin{pmatrix} 6 & 0 & 5 \\ 0 & 6 & -2 \\ 5 & -2 & 5 \end{pmatrix}$$

- b) (4 P.) Sei $\vec{u}_1 := \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{u}_2 := \begin{pmatrix} 0 \\ 0 \\ -2 \\ 2 \end{pmatrix}$, $\vec{u}_3 := \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$. Berechnen Sie mit dem Gram-Schmidt-Verfahren eine ONB von $U := \operatorname{Span}(\vec{u}_1, \vec{u}_2, \vec{u}_3) \leq \mathbb{R}^4$ bezüglich des Standardskalarprodukts.
- c) (2 P.) Sei $m, n \in \mathbb{N}$, $A \in \mathbb{R}^{m \times n}$ und $\vec{b} \in \mathbb{R}^m$. Wir betrachten \mathbb{R}^m als euklidischen Raum mit dem Standardskalarprodukt. Es sei $\vec{x} \in \mathbb{K}^n$ mit $A \cdot \vec{x} = \vec{b}$ und $\vec{y} \in \mathbb{K}^m$ mit $A^{\top} \cdot \vec{y} = \vec{0}$. Zeigen Sie $\vec{y} \perp \vec{b}$. **Hinweis:** Einsetzen von \vec{b} in das Standardskalarprodukt.

Bitte wenden

Aufgabe 3: Lineare Abbildungen

- a) (2 P.) Was sind Kern und Bild einer linearen Abbildung? Was besagt die Rangformel?
- b) (1 P.) Zeigen Sie: Sind $f,g\colon V\to W$ lineare Abbildungen, so ist auch die Abbildung $h\colon V\to W$ gegeben durch $\forall \vec{v}\in V\colon h(\vec{v}):=2f(\vec{v})-5g(\vec{v})$ eine lineare Abbildung.
- c) (2 P.) Folgern Sie aus der Aussage der vorigen Teilaufgabe: Für alle linearen Abbildungen $\varphi, \psi \colon \mathbb{R}^5 \to \mathbb{R}^3$ gibt es ein $\vec{v} \in \mathbb{R}^5$, $\vec{v} \neq 0$, mit $5\varphi(\vec{v}) = 2\psi(\vec{v})$.

In den folgenden Teilaufgaben seien $\lambda, \mu \in \mathbb{K}, \lambda \neq \mu, n \in \mathbb{N}$ und $A \in M_n(\mathbb{K})$ mit $(A - \mu \mathbb{1}_n) \cdot (A - \lambda \mathbb{1}_n) = \mathbb{0}$. Die linearen Abbildungen $\varphi, \psi \colon \mathbb{K}^n \to \mathbb{K}^n$ seien gegeben durch $\forall \vec{v} \in \mathbb{K}^n \colon \varphi(\vec{v}) := A \cdot \vec{v} - \lambda \vec{v}$ und $\psi(\vec{v}) := A \cdot \vec{v} - \mu \vec{v}$.

- d) (2 P.) Zeigen Sie $n = \dim(\text{Bild}(\varphi)) + \dim(E_{\lambda}(A))$. **Hinweis:** Wie kann man $E_{\lambda}(A)$, $E_{\mu}(A)$ mittels φ , ψ ausdrücken?
- e) (1 P.) Zeigen Sie Bild $(\varphi) \subseteq E_{\mu}(A)$.
- f) (2 P.) Folgern Sie aus den Aussagen der vorigen beiden Teilaufgaben, dass A diagonalisierbar ist.

Aufgabe 4: Eigenwertprobleme

- a) (2 P.) Berechnen Sie die Eigenwerte von $\begin{pmatrix} -1 & -1 \\ 3 & 2 \end{pmatrix} \in M_2(\mathbb{C})$. **Hinweis:** Komplex, nicht reell.
- b) (8 P.) Berechnen Sie eine diagonalisierende Matrix für $\begin{pmatrix} 5 & -2 & 7 & 5 \\ 4 & -1 & 7 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -2 & -1 \end{pmatrix} \in M_4(\mathbb{R}).$

Erreichbare Punktzahl: 37

Probeklausur zur Vorlesung Lineare Algebra für Informatik Modul-Nr.: FMI-MA0022

Wintersemester 2018/19

Probeklausur 2

Aufgabe 1: Euklidische Räume

Wir betrachten \mathbb{R}^n als euklidischen Raum mit dem Standardskalarprodukt.

- a) (1 P.) Wie ist der Winkel $\triangleleft(\vec{v}, \vec{w})$ für $\vec{v}, \vec{w} \in \mathbb{R}^n$ definiert?
- b) (4 P.) Berechnen Sie eine Orthonormalbasis von $LR(\begin{pmatrix} -1 & 3 & -1 & -2 \\ 1 & 0 & -2 & -1 \\ 2 & -3 & -1 & 1 \end{pmatrix}; \vec{0}).$

Aufgabe 2: Matrizen und Abbildungen

- a) (3 P.) Sei $A = \begin{pmatrix} 1 & 1 & -2 \\ -2 & -2 & 2 \\ 3 & 4 & -4 \end{pmatrix}$. Berechnen Sie A^{-1} .
- b) (1 P.) Wie ist der Begriff "lineare Abbildung" definiert?
- c) (3 P.) Wir betrachten die Basen $B\colon \left(\begin{smallmatrix}2\\1\end{smallmatrix}\right), \left(\begin{smallmatrix}5\\2\end{smallmatrix}\right)$ und $C\colon \left(\begin{smallmatrix}1\\-1\end{smallmatrix}\right), \left(\begin{smallmatrix}-1\\3\end{smallmatrix}\right)$ sowie die Standardbasis $E\colon \vec{e_1}, \vec{e_2}$ des \mathbb{R}^2 . Die lineare Abbildung $f\colon \mathbb{R}^2 \to \mathbb{R}^2$ sei gegeben durch ${}^C_B f = \left(\begin{smallmatrix}1\\2&1\end{smallmatrix}\right)$. Berechnen Sie ${}^E_E f$.

Aufgabe 3: Matrixarithmetik und orthogonale Matrizen

Für $n \in \mathbb{N}$ betrachten wir \mathbb{R}^n als euklidischen Raum mit dem Standardskalarprodukt und der Standardbasis $\vec{e}_1, ..., \vec{e}_n$. Für einen normierten Vektor $\vec{v} \in \mathbb{R}^n$ (also $||\vec{v}|| = 1$) sei $H_{\vec{v}} := \mathbb{1}_n - 2 \cdot \vec{v} \cdot \vec{v}^{\top}$, wobei wir wie üblich mit Spaltenvektoren arbeiten. **Anmerkung:** $\vec{v} \cdot \vec{v}^{\top} \in M_n(\mathbb{R})$, denn es ist $\vec{v} \in \mathbb{R}^{n \times 1}$ und $\vec{v}^{\top} \in \mathbb{R}^{1 \times n}$.

- a) (3 P.) Sei $\vec{y} := \binom{3}{4}$, $\vec{z} := \binom{-2}{2}$ und $A := (\vec{y}, \vec{z}) = \binom{3}{4} \binom{-2}{2}$. Berechnen Sie $\vec{v} := \frac{1}{\|\vec{y} \|\vec{y}\| \cdot \vec{e_1}\|} \cdot (\vec{y} \|\vec{y}\| \cdot \vec{e_1})$, $H_{\vec{v}}$ und $H_{\vec{v}} \cdot A$.
- b) (1 P.) Wie ist der Begriff "orthogonale Matrix" definiert?
- c) (2 P.) Verifizieren Sie: Für alle $\vec{v} \in \mathbb{R}^n \setminus \{\vec{0}\}$ mit $\|\vec{v}\| = 1$ ist $H_{\vec{v}} \in O_n$. **Hinweis:** Ausmultiplizieren; Darstellung von $\|\vec{v}\|$ als Matrixprodukt.
- d) (3 P.) Es sei $\vec{e} \in \mathbb{R}^n$ mit $\|\vec{e}\| = 1$, es sei $\vec{y} \in \mathbb{R}^n$ und $\alpha := \|\vec{y}\|$ mit $\vec{y} \neq \alpha \cdot \vec{e}$, und es sei $\vec{v} := \frac{1}{\|\vec{y} \alpha \cdot \vec{e}\|} \cdot (\vec{y} \alpha \cdot \vec{e})$. Verifizieren Sie $H_{\vec{v}} \cdot \vec{y} = \|\vec{y}\| \cdot \vec{e}$.

 Hinweis: Drücken Sie in $H_{\vec{v}} \cdot \vec{y}$ sowohl $(\vec{y} \alpha \cdot \vec{e})^{\top} \cdot \vec{y}$ als auch $\|\vec{y} \alpha \cdot \vec{e}\|^2$ in möglichst einfacher Weise durch α und $\langle \vec{e} \mid \vec{y} \rangle$ aus.
- e) **Zusatzaufgabe (3 Bonus-P.):** Folgern Sie aus den vorigen Teilaufgaben: Für alle $A \in \mathbb{R}^{m \times n}$ gibt es $T \in O_m$, so dass $T \cdot A$ Zeilenstufenform hat.

Bitte wenden

Aufgabe 4: Diagonalisierbarkeit und Skalarprodukte

a) (3 P.) Welche der folgenden Matrizen $A_1, ..., A_4 \in M_3(\mathbb{R})$ ist diagonalisierbar, welche nicht? Die Antworten sind zu begründen, aber eine diagonalisierende Matrix soll jeweils nicht berechnet werden.

$$A_1 := \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad A_2 := \begin{pmatrix} 1 & 3 & 0 \\ 3 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad A_3 := \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix} \quad A_4 := \begin{pmatrix} 2 & -1 & 4 \\ 0 & -2 & -5 \\ 0 & 2 & 4 \end{pmatrix}$$

- b) (2 P.) Was versteht man unter einer Bilinearform auf \mathbb{R}^n ? Unter welcher Bedingung nennt man eine Bilinearform symmetrisch bzw. positiv definit?
- c) (4 P.) Berechnen Sie eine diagonalisierende Matrix für $A := \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix} \in$ $M_3(\mathbb{R})$. Hinweis: Es gehört zur Aufgabe, die Eigenwerte von A zu berechnen. Zur Kontrolle dieses Zwischenergebnisses: Ihre Rechnung sollte die Eigenwerte 1 und 3 ergeben.
- d) (1 P.) Untersuchen Sie mit dem Hurwitz-Kriterium, ob die Matrix A aus der vorigen Teilaufgabe die Matrix eines Skalarprodukts ist.

Aufgabe 5: Eigenräume und Vertauschbarkeit

- a) Es seien $A, B \in M_n(\mathbb{R})$ mit folgenden Eigenschaften: A hat n paarweise verschiedene Eigenwerte $\lambda_1, ..., \lambda_n \in \mathbb{R}$ und $A \cdot B = B \cdot A$.
 - i) (1 P.) Warum hat \mathbb{R}^n eine Basis aus Eigenvektoren von A?
 - ii) (1 P.) Zeigen sie: Ist $\vec{v} \in \mathbb{R}^n$ ein Eigenvektor von A zum Eigenwert λ , so ist $B \cdot \vec{v} \in E_{\lambda}(A)$.
 - iii) (1 P.) Folgern Sie aus der vorherigen Aussage, dass jeder Eigenvektor von A ein Eigenvektor von B ist. **Hinweis:** Was ist $\dim(E_{\lambda}(A))$?
 - iv) (1 P.) Folgern Sie aus den vorherigen Aussagen: $\exists S \in GL_n(\mathbb{R})$, so dass S eine diagonalisierende Matrix sowohl von A als auch von B ist.
- b) (1 P.) Es seien $A, B \in M_n(\mathbb{R})$ und es gebe ein $S \in GL_n(\mathbb{R})$, das gleichzeitig eine diagonalisierende Matrix von A und von B ist. Zeigen Sie: $A \cdot B = B \cdot A$. **Hinweis:** Warum gilt $(S^{-1}AS) \cdot (S^{-1}BS) = (S^{-1}BS) \cdot (S^{-1}AS)$ und wie folgt daraus die zu zeigende Aussage?
- c) (1 P.) Geben Sie ein Beispiel zweier Matrizen $A, B \in M_2(\mathbb{R})$, so dass A diagonalisierbar ist und $A \cdot B = B \cdot A$, aber B nicht diagonalisierbar ist. Es ist zu begründen, dass Ihr Beispiel diese Eigenschaften tatsächlich besitzt.

Viel Erfolg!