Cantor's Diagonal Lemma

Last time Infinite sets are not rigid!

An infinite set can be equinumerous to its proper subsets.

E.g.
$$[a, b] \approx [c, d]$$

$$d = \frac{1}{2} \qquad y = m(x-a) + c$$

Cantor's Diagonal Lemma

Cantor's Diagonal Lemma

R1: ABAB --- BBA ---R2: BAAB -- . R3: ABBA ---

Cantor's Diagonal Lemma

Let f be any function from \mathbb{N} to (0,1). Then there exists $y \in (0,1)$ such that y does not belong to the range of f.

Below is a key consequence of Cantor's diagonal lemma.

Theorem 1 (Cantor, 1873)

 \mathbb{R} is not equinumerous to \mathbb{N} .

froof Suppose IR ≈ IN. By symmetry of ≈, IN ≈ IR. We know that IR ∝ (0,1). Thus, by transitivity of \approx , $1N \approx (0,1)$. So there is a bijection of from 1N to (0,1). This of is a function from 1N to (0,1). By CDL, there is $y \in (0,1)$ such that $y \notin (0,1)$. Thus of is not a surjection from 1N to (0,1), so of is not a bijection from 1N to (0,1). This is a contradiction,

Cantor's Diagonal Lemma: Idea of Proof

To prove Cantor's diagonal lemma, we need to find/construct $y \in (0,1)$ such that $y \notin \text{Rng}(f) = \{f(n) : n \in \mathbb{N}\}.$

Decimal expansion of f(n)

does not end in repeating 9's. e.g. $1/2 = 0.5 = 0.4999 \cdots$

For each $n \in \mathbb{N}$, $f(n) \in (0,1)$ so it has the <u>standard</u> decimal expansion

$$f(n) = 0.x_{n1}x_{n2}x_{n3}x_{n4}\dots$$

That is,

$$f(1) = 0.x_{11}x_{12}x_{13}x_{14} \dots,$$

$$f(2) = 0.x_{21}x_{22}x_{23}x_{24} \dots,$$

$$f(3) = 0.x_{31}x_{32}x_{33}x_{34} \dots,$$

$$f(4) = 0.x_{41}x_{42}x_{43}x_{44} \dots,$$
and so on.

Recap

$$0.4999... = 0.49 = 0.49 = \frac{1}{2}$$

||

 $0.4 + 0.09 + 0.009 + ...$

||

 $0.4 + \frac{9}{10^2} + \frac{9}{10^3} + \frac{9}{10^4} + ...$

||

 $0.4 + \frac{9}{10^2} (1 + \frac{1}{10} + \frac{1}{10^3} + ...) = 0.4 + \frac{9}{10^3} = 0.5$

Cantor's Diagonal Lemma: Idea of Proof (cont')

$$y_n = \begin{cases} 5 & \text{if } x_{nn} \neq 5, \\ 4 & \text{if } x_{nn} = 5. \end{cases}$$

 $y_n = \begin{cases} 5 & \text{if } x_{nn} \neq 5, \\ 4 & \text{if } x_{nn} = 5. \end{cases}$ Then for each $n \in \mathbb{N}$, $y_n \neq x_{nn}$. Now let y be the number whose standard lecimal expansion is $y = 0.y_1y_2y_3y_4 \dots$

$$y=0.y_1y_2y_3y_4\ldots.$$

Observation

- $y \in (0,1)$; in fact, $0.444... \le y \le 0.555...$
- $y \notin \operatorname{Rng}(f)$ because for each $n \in \mathbb{N}$, $y \neq f(n)$.

(yn # 2mm)

because they differ in the nth decimal place

$$f(1) = 0.784...$$

 $f(2) = 0.327...$
 $f(3) = 0.555...$

Higher Orders of Infinity

Denumerable, Countable, and Uncountable

Definition 2

Let A be a set.

- 1 To say that A is denumerable means that A is equinumerous to \mathbb{N} .
- \bigcirc To say that A is countable means that A is finite or denumerable.
- **3** To say that *A* is uncountable means that *A* is not countable.

meaning A is infinite and A is not denumerable

Example.

- Each of \mathbb{N} , \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, and \mathbb{O} is denumerable.
- \mathbb{R} is uncountable.

7/10

Cardinality

Definition 3

Let A and B be sets.

- 1 To say that the cardinality of A is less than or equal to the cardinality of B (denoted $\overline{\overline{A}} \leq \overline{\overline{B}}$) means that A is equinumerous to a subset of B.
- 2 To say that the cardinality of A is strictly less than the cardinality of B (denoted $\overline{\overline{A}} < \overline{\overline{B}}$) means that A is equinumerous to a subset of B but A is not equinumerous to B.
- **3** To say that the cardinality of A is equal to the cardinality of B (denoted $\overline{\overline{A}} = \overline{\overline{B}}$) means that A is equinumerous to B.

Example. $\overline{\overline{\mathbb{N}}} < \overline{\overline{\mathbb{R}}}$.

Cardinality (cont')

Notes.

• Let A and B be sets. Then $\overline{\overline{A}} \leqslant \overline{\overline{B}}$ iff there exists an injection from A to B.

• Let A be any set. Then $\overline{\overline{A}} \leqslant \overline{\overline{\mathcal{P}(A)}}$.

Cantor's Generalized Diagonal Lemma

Cantor's Generalized Diagonal Lemma

Let A be a set and let f be a function on A such that for each $x \in A$, f(x) is a set. Then there exists a subset $C \subseteq A$ such that C does not belong to the range of f.

Below is a key consequence of Cantor's generalized diagonal lemma.

Theorem 4 (Cantor, 1891)

Any set has strictly smaller cardinality than its power set.