Tarea I - Optimización y Control

Solución 1. Sea $P = \{J(y) \mid y \in C\}$, donde $C = \{y \in C^1 \mid y(0) = 0, y(1) = 1\}$ y

$$J(y) = \int_{1}^{\frac{1}{2}} |y(x)| dx + \int_{\frac{1}{2}}^{1} |y'(x)| dx$$

- 1. Notemos que el conjunto C es no vació, pues la función $\mathrm{Id}_{[0,1]}$ cumple las condiciones para pertenecer a este. Luego podemos evaluar el funcional en $\mathrm{Id}_{[0,1]}$ y nos dará un numero pues estamos integrando una función continua sobre un compacto. Notemos que $|y(x)| \geq 0$ e $|y'(x)| \geq 0$ para todo $y \in C$ y $x \in [0,1]$, por lo tanto tenemos que $\forall y \in C, J(y) \geq 0$. Dado que mostramos que el conjunto P es no vacío y tiene una cota inferior, existe ínf $P \in \mathbb{R}$ por axioma del supremo e ínfimo.
- 2. Dado que en el paso anterior mostramos que 0 es un cota inferior para el conjunto P y el ínfimo es la mayor de las cotas superiores tenemos que

$$0 \leq \inf P$$

3. La intuición nos dice que una función que minimiza J que esta fuera del conjunto C es la indicatriz del conjunto $[\frac{1}{2},1]$, construyamos una sucesión de funciones que la aproximen desde C. Consideremos la siguiente sucesión para $n \geq 3$

$$f_n(x) = \begin{cases} 0 & \text{si } x \in [0, \frac{1}{2} - \frac{1}{n}) \\ P_n(x) & \text{si } x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}] \\ 1 & \text{si } x \in (\frac{1}{2}, 1] \end{cases}$$

Donde P_n sera un polinomio que a de cumplir con las siguientes condiciones

$$P_n(\frac{1}{2}) = 1$$

$$P'_n(\frac{1}{2}) = 0$$

$$P_n(\frac{1}{2} - \frac{1}{n}) = 0$$

$$P'_n(\frac{1}{2} - \frac{1}{n}) = 0$$

Pues si P_n cumple con esas cuatro condiciones, entonces $f_n \in C$, dado que están de acuerdo en la derivada en los puntos de pegado y en el valor de la función también. Notemos que por construcción $f_n(0) = 0$ y $f_n(1) = 1$.

Dado que tenemos 4 condiciones sobre P_n , un polinomio de grado 3 sera suficiente. Consideraremos $P_n(x) = a(x-\frac{1}{2})^3 + b(x-\frac{1}{2})^2 + c(x-\frac{1}{2}) + d$. Luego las cuatro condiciones se transforman en lo siguiente

$$d = 1$$

$$c = 0$$

$$-\frac{a}{n^3} + \frac{b}{n^2} + 1 = 0$$

$$\frac{3a}{n^2} - \frac{2b}{n} = 0$$

Resolviendo el sistema llegamos al polinomio P_n , el cual por construcción satisface todo lo que necesitábamos.

$$P_n(x) = -2n^3(x - \frac{1}{2})^3 - 3n^2(x - \frac{1}{2})^2 + 1$$

Luego $f_n \in C$. Probemos que en efecto $(f_n)_{n\geq 3}$ es una sucesión minimizante. Notemos que

$$J(f_n) = \int_0^{\frac{1}{2}} |f_n(x)| dx + \int_{\frac{1}{2}}^1 |f_n(x)'| dx$$
$$= \int_0^{\frac{1}{2} - \frac{1}{n}} 0 dx + \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} |P_n(x)| dx + \int_{\frac{1}{2}}^1 0 dx$$
$$= \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} |P_n(x)| dx$$

Dado que P_n' es una cuadrática con coeficiente líder negativo, y sabemos que $P_n'(\frac{1}{2}-\frac{1}{n})=0=P_n'(\frac{1}{2})$, tenemos que $\forall x\in[\frac{1}{2}-\frac{1}{n},\frac{1}{2}],P_n'(x)\geq0$, es decir P_n es creciente en ese intervalo, dado que $P_n(\frac{1}{2}-\frac{1}{n})=0$, tenemos que

$$\forall x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}], P_n(x) \ge 0$$

Luego seguimos con el calculo

$$J(f_n) = \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} P_n(x) dx$$

$$= \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} -2n^3 (x - \frac{1}{2})^3 - 3n^2 (x - \frac{1}{2})^2 + 1 dx$$

$$= -\frac{1}{2} n^3 (x - \frac{1}{2})^4 \Big|_{x = \frac{1}{2} - \frac{1}{n}}^{x = \frac{1}{2}} - n^2 (x - \frac{1}{2})^3 \Big|_{x = \frac{1}{2} - \frac{1}{n}}^{x = \frac{1}{2}} + \frac{1}{n}$$

$$= \frac{1}{2n} - \frac{1}{n} + \frac{1}{n}$$

$$= \frac{1}{2n}$$

Semestre: 2025-1

Por lo tanto obtenemos que

$$\lim_{n \to \infty} J(f_n) = 0$$

Es decir $(f_n)_{n\geq 3}$ es una sucesión minimizante.

4. No, no existe $\overline{y} \in C$ que minimice J, si suponemos que existe, entonces

$$J(\overline{y}) = 0$$

Pues existe la sucesión minimizante a 0 que construimos en el paso anterior y por tanto demostramos que ínf P=0. Dado que $J(\overline{y})$ es la suma de dos cantidades positivas y tiene que ser igual a 0, necesariamente cada una a de ser 0.

Notemos que

$$\int_0^{\frac{1}{2}} |\overline{y}(x)| dx = 0 \implies \forall x \in [0, \frac{1}{2}], |\overline{y}(x)| = 0 \implies \forall x \in [0, \frac{1}{2}], \overline{y}(x) = 0$$

Pues la cantidad de adentro es positiva y por tanto 0 c.t.p. y por continuidad, en todas partes. Por lo tanto tenemos que $\overline{y}|_{[0,\frac{1}{2}]}\equiv 0$. Análogamente, dado que estamos suponiendo $\overline{y}\in C, \overline{y}'$ es continua y por tanto su valor absoluto igual. Por el argumento anterior $\overline{y}'|_{[\frac{1}{2},1]}\equiv 0$, por lo tanto $\overline{y}|_{[\frac{1}{2},1]}\equiv c$ para algún $c\in\mathbb{R}$, dado que $\overline{y}(1)=1\implies c=1$. Esto es una contradicción pues entonces $0=\overline{y}(\frac{1}{2})=1$.

Solución 2. Usaremos el lema de Fermat. Supongamos que $y \in Y$ satisface el problema de minimización. Consideraremos una perturbación $h \in \mathcal{C}_0^2([0,L])$. Luego tenemos que

$$\lim_{\varepsilon \to 0} \frac{J(y+\varepsilon h) - J(y)}{h} = \frac{d}{d\varepsilon} J(y+\varepsilon h) \big|_{\varepsilon = 0} = 0$$

Hagamos el calculo

$$\frac{d}{d\varepsilon}J(y+\varepsilon h) = \frac{d}{d\varepsilon}(\frac{1}{2}\int_{0}^{L}EI(y''(x)+\varepsilon h''(x))^{2}dx - \int_{0}^{L}q(x)(y(x)+\varepsilon h(x)))$$

Dada la regularidad de las funciones con las que estamos trabajando, podemos entrar la derivada dentro de las integrales

$$\frac{d}{d\varepsilon}J(y+\varepsilon h) = \int_0^L EI(y''(x) + \varepsilon h''(x)) \cdot h''(x)dx - \int_0^L q(x)h(x)dx$$
$$= \int_0^L -q(x)h(x) + EI(y''(x) + \varepsilon h''(x))h''(x)dx$$

Semestre: 2025-1

Luego tenemos que

$$\int_0^L -q(x)h(x) + EIy''(x)h''(x)dx = \frac{d}{d\varepsilon}J(y+\varepsilon h)|_{\varepsilon=0} = 0$$

Considerando $\alpha(x)=-q(x)$ y $\beta(x)=EIy''(x)$ podemos usar el lema, pues q es continua por hipótesis e y es continua pues estamos suponiendo que resuelve el problema. Por lo tanto

$$y^{(4)}(x) = \frac{q(x)}{EI}$$