

I hereby certify that this paper and every paper referred to therein as being enclosed is being deposited with the U.S. Postal Service as first class mail, postage prepaid, in an envelope addressed to: Commissioner for Patents, Alexandria, Virginia 22813,

2, 2003

#160 RECEIVED JUL 0 8 2003 TECH CENTER 1600/2900.

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Case No. 02-090-B In re Application of: Bakthavatchalam et al. Before the Examiner: Kahsay Habte Serial No.: 09/910,442 Filed: July 20, 2001 Art Unit: 1624 For: Capsaicin Receptor Ligands

RESPONSE TO THE OFFICE ACTION MAILED MARCH 4, 2003

Commissioner for Patents Alexandria, VA 22313

Dear Sir:

Responsive to the Office Action mailed March 4, 2003, Applicants respectfully request the Examiner to reconsider above-identified patent application in view of the following Amendments and Remarks.

AMENDMENTS

1-3. (Cancelled)

1

(Currently Amended) A compound of the formula:

T,900C

or a pharmaceutically acceptable salt thereof, wherein:

A is absent or is selected from the group consisting of O, $S,\ NR_A,\ NR_ACR_BR_B{}^{{}_{}},\ CR_B\ R_B{}^{{}_{}}NR_A,$

-CR_A=CR_B-, and C₃H₄; where R_A, R_B, and R_B' are independently selected at each occurrence from hydrogen and alkyl;

Z is oxygen or sulfur; $each \ R_3 \ and \ R_4 \ is \ independently$

(a) selected from the group consisting of hydrogen;
halogen; hydroxy; amino; cyano; nitro;
-COOH; -CHO; optionally substituted alkyl; optionally
substituted alkenyl; optionally substituted alkynyl;
optionally substituted alkoxy; optionally substituted

alkylthio; optionally substituted alkyl ketone; optionally substituted alkylester; optionally substituted alkylsulfinyl; optionally substituted alkylsulfonyl; optionally substituted mono- or dialkylcarboxamide; optionally substituted -S(O),NHalkyl; substituted optionally $-S(0)_nN(alkyl)(alkyl);$ optionally substituted -NHC(=0) alkyl; optionally substituted -NC(=0) (alkyl) (alkyl); optionally substituted -NHS(O)_nalkyl; optionally substituted - $NS(O)_n(alkyl)(alkyl);$ optionally substituted saturated heterocyclic ring or partially unsaturated heterocycle of from 5 to 8 atoms, which saturated heterocyclic ring or partially unsaturated heterocycle contains 1, 2, or 3 heteroatoms independently selected from N, O, and S; optionally substituted aryl having from 1 to 3 rings; and optionally substituted heteroaryl, heteroaryl having from 1 to 3 rings, 5 to 8 ring members in each ring and, in at least one of rings, from 1 to about 3 heteroatoms independently selected from the group consisting of N, O, and S; or

(b) joined to a R_3 or R_4 not attached to the same carbon to form an optionally substituted aryl ring, a

à

saturated or partially unsaturated carbocyclic ring of from 5 to 8 members, which carbocyclic ring optionally substituted, ora saturated, partially unsaturated, or aromatic heterocyclic ring of from .5 to 8 members, which heterocyclic ring is optionally substituted and contains 1, heteroatoms . 2, or3 selected from N, O, and S;

Ar₁ is selected from the group consisting of:

- (a) cyclohexyl, cyclopentyl, piperidinyl, piperazinyl, phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b] thiophenyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and quinoxalinyl, each of which is optionally mono-, di-, or trisubstituted with R_5 ; and
 - (b) bicyclic oxygen-containing groups of the formula:

optionally mono-, di-, or trisubstituted with R_5 , where L represents point of attachment and may be at any point on the benzene ring, and the oxygen-containing ring of the bicyclic oxygen-containing group consists of from 5 to 8 ring atoms, contains 1 or 2 oxygen atoms and remaining ring atoms are carbon;

Ar₂ is selected from the group consisting of:

- (a) cyclohexyl, cyclopentyl, piperidinyl, piperazinyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, [pyrazinyl,] benzimidazolyl, naphthyl, indolyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and quinoxalinyl, each of which is optionally mono-, di-, or trisubstituted with R₅; and
- (b) bicyclic oxygen-containing groups of the formula:

T,1350

optionally mono-, di-, or trisubstituted with R_5 , where L represents point of attachment and may be at any point on the benzene ring, and the oxygen-containing

ring of the bicyclic oxygen-containing group consists of from 5 to 8 ring atoms, contains 1 or 2 oxygen atoms and remaining ring atoms are carbon;

- R_5 is independently selected at each occurrence from the group consisting of halogen, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{2-6} alkynyl substituted with 0-2 R_6 , C_{1-6} alkoxy and Y;
- R₆ is independently selected at each occurrence from the group consisting of halogen, hydroxy, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, $-S(O)_n(C_{1-4}$ alkyl), halo (C_{1-4}) alkyl, halo (C_{1-4}) alkoxy, $CO(C_{1-4}$ alkyl), $CONH(C_{1-4}$ alkyl), $CON(C_{1-4}$ alkyl) (C_{1-4} alkyl₂) where alkyl₁ and alkyl₂ may be joined to form a saturated heterocyclic ring [heterocycle] of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, $-XR_7$, and Y;
- X is independently selected at each occurrence from the group consisting of $-CH_2-$, $-CHR_8-$, -O-, $-S(O)_n-$, -NH-, $-NR_8-$, -C(=O)-, -C(=O)O-, -C(=O)NH-, $-C(=O)NR_8-$, $-S(O)_nNH-$, $-S(O)_nNR_8-$, NHC(=O)-, $-NR_8C(=O)-$, $-NHS(O)_n-$, and $-NR_8S(O)_n-$;

Ş.

R₇ and R₈ are independently selected at each occurrence from hydrogen, and straight, branched, and cyclic alkyl groups, and (cycloalkyl) alkyl groups, said straight, branched, and cyclic alkyl groups, (cycloalkyl)alkyl groups consisting of 1 to 8 carbon atoms, and containing zero or one or more double or triple bonds, each of which 1 to 8 carbon atoms is unsubstituted or substituted with one substituent(s) independently selected from oxo, hydroxy, halogen, amino, cyano, nitro, haloalkyl, haloalkoxy, -O(alkyl), -NH(alkyl), -N(alkyl)(alkyl), -NHC(O)(alkyl), -N(alkyl)C(O)(alkyl), -NHS(O)_n(alkyl), $-S(0)_n(alkyl)$, $-S(0)_nNH(alkyl)$, $-S(0)_nN(alkyl_3)(alkyl_4)$ where alkyl₃ and alkyl₄ are optionally joined to form a saturated heterocyclic ring [heterocycle] consisting of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, and Y';

Y and Y' are independently selected at each occurrence from 3- to 8-membered carbocyclic or heterocyclic groups which are saturated, unsaturated, or aromatic, which may be further substituted with one or more substituents independently selected from halogen, oxo,

hydroxy, amino, nitro, cyano, alkyl, alkoxy, haloalkyl, haloalkoxy, mono- or dialkylamino, and alkylthio;

wherein said 3- to 8-membered heterocyclic groups contain one or more heteroatom(s) independently selected from N, O, and S; and n is independently chosen at each occurrence from O, 1, and 2.

(Previously Amended) A compound or salt according to Claim 4, wherein:

 R_A , R_B , and R_B ' are independently selected at each occurrence from hydrogen and C_{1-6} alkyl; each R_3 and R_4 is independently

(a) chosen from the group consisting of hydrogen, halogen, cyano, nitro, $halo(C_{1-6})alkyl$, $halo(C_{1-}$ $_{6}$) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 ; C_{2-6} alkynyl substituted with 0-2 R_6 ; C_{1-6} alkoxy substituted with 0-2 $-NH(C_{1-6}alkyl)$ substituted with R_6 , 0-2 $_{6}$ alkyl) (C_{1-6} alkyl) where each C_{1-6} alkyl is independently substituted with 0-2 R_6 , -XR₇, and Y; or

- (b) joined to a R_3 or R_4 not attached to the same carbon to form an aryl ring substituted with 0-3 R_6 , a saturated or partially unsaturated carbocyclic ring of from 5 to 8 members, which carbocyclic ring is substituted with 0-2 R_6 , or a saturated, partially unsaturated, or aromatic heterocyclic ring of from 5 to 8 members, which heterocyclic ring is substituted with 0-2 R_6 and contains 1, 2, or 3 heteroatoms independently selected from N, O, and S;
- $\ensuremath{R_{7}}$ and $\ensuremath{R_{8}}$ are independently selected at each occurrence from hydrogen, and straight, branched, and cyclic alkyl groups, and (cycloalkyl) alkyl groups, said straight, branched, and cyclic alkyl groups, and (cycloalkyl)alkyl groups consisting of 1 to 8 carbon atoms, and containing zero or one or more double or triple bonds, each of which 1 to 8 carbon atoms is unsubstituted or substituted with one ormore substituent(s) independently selected from hydroxy, halogen, amino, cyano, nitro, haloalkyl, haloalkoxy, -O(alkyl), -NH(alkyl), -N(alkyl)(alkyl), -NHC(0)(C_{1-4} alkyl), $-N(C_{1-4}alkyl)C(0)(C_{1-4}alkyl)$, NHS(0)_n(C_{1-4} alkyl), $-S(O)_n(C_{1-4}alkyl)$, $-S(O)_nNH(C_{1-4}alkyl)$ $_4$ alkyl), $_-$ S(O) $_n$ N($_{1-4}$ alkyl $_3$)($_{1-4}$ alkyl $_4$) where $_{1-4}$ alkyl $_3$

Ģ.

and C_{1-4} alkyl₄ are optionally joined to form a <u>saturated</u> <u>heterocyclic ring</u> [heterocycle] consisting of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, and Y'; and

Y and Y' are independently selected at each occurrence from 3- to 8-membered carbocyclic or heterocyclic groups which are saturated, unsaturated, or aromatic, which are unsubstituted or substituted with one or more substituents independently selected from halogen, oxo, hydroxy, amino, nitro, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, halo(C₁₋₄)alkyl, halo(C₁₋₄)alkoxy, mono- or di(C₁₋₄)alkylamino, and C₁₋₄alkylthio;

wherein said 3- to 8-membered heterocyclic groups contain one or more heteroatom(s) independently selected from N, O, and S.

3 (Original) A compound or salt according to Claim 1, wherein Z is oxygen.

7. (Cancelled)

(Currently Amended) A compound of the formula:

$$Ar_1 \xrightarrow{A} \xrightarrow{R_3} \xrightarrow{R_4} \xrightarrow{R_3} \xrightarrow{R_4} \xrightarrow{R_4} \xrightarrow{R_3} \xrightarrow{R_4} \xrightarrow{R_3} \xrightarrow{R_4} \xrightarrow{R_3} \xrightarrow{R_4} \xrightarrow{R_3} \xrightarrow{R_4} \xrightarrow{R_4} \xrightarrow{R_3} \xrightarrow{R_4} \xrightarrow{R_5} \xrightarrow{R_$$

or a pharmaceutically acceptable salt thereof, wherein:

A is absent or is selected from the group consisting of O, $S,\ NR_A,\ CR_BR_B',\ NR_ACR_BR_B',\ CR_B\ R_B'NR_A,\ -CR_A=CR_{B^-},\ and\ C_3H_4;$ where $R_A,\ R_B,\ and\ R_B'$ are independently selected at each occurrence from hydrogen or alkyl;

each R₃ and R₄ is independently

(a) selected from the group consisting of hydrogen; halogen; hydroxy; amino; cyano; nitro;

-COOH; -CHO, optionally substituted alkyl; optionally substituted alkenyl; optionally substituted alkynyl; optionally substituted alkoxy; optionally substituted dialkylamino; mono optionally substituted optionally substituted alkyl alkylthio; optionally substituted alkylester; optionally substituted alkylsulfinyl; optionally substituted alkylsulfonyl; optionally substituted monoalkylcarboxamide; optionally substituted -S(O)_nNHalkyl; optionally substituted $-S(0)_nN(alkyl)(alkyl);$ optionally -NHC(=0) alkyl; optionally substituted

-NC(=0) (alkyl) (alkyl); substituted optionally substituted -NHS(0)nalkyl; optionally substituted -NS(0)_n(alkyl)(alkyl); optionally substituted saturated heterocyclic ring or partially unsaturated heterocycle of from 5 to 8 atoms, which saturated heterocyclic ring or partially unsaturated heterocycle contains 1, 2, or 3 heteroatoms independently selected from N, O, and S; optionally substituted aryl having from 1 to 3 rings; and optionally substituted heteroaryl, said heteroaryl having from 1 to 3 rings, 5 to 8 members in each ring and, in at least one of said rings, from · 1 to about 3 heteroatoms per ring independently selected from the group consisting of N, O, and S; or

joined to a R_3 or R_4 not attached to the same carbon form an optionally substituted aryl ring; saturated or partially unsaturated carbocyclic ring of to 8 members, which carbocyclic ring optionally substituted; saturated, partially orа unsaturated, or aromatic heterocyclic ring of from 5 to 8 members, which heterocyclic ring is optionally substituted and contains 1, 2, or 3 heteroatoms independently selected from N, O, and S;

- Ar₁ [and Ar₂ are independently] \underline{is} selected from the group consisting of:
 - (a) cyclohexyl, cyclopentyl, piperidinyl, piperazinyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl; wherein Ar₁ is optionally mono-, di-, or trisubstituted with R_{5} , and Ar_{2} is optionally mono-, di-, or trisubstituted with R9;

Ar₂ is selected from the group consisting of:

cyclohexyl, cyclopentyl, piperidinyl, piperazinyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, benzimidazolyl, naphthyl, indolyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and quinoxalinyl; wherein Arı is optionally

mono-, di-, or trisubstituted with R_5 , and Ar_2 is optionally mono-, di-, or trisubstituted with R_9 ; and

(b) groups of the formula:

1,1370

optionally mono-, di-, or trisubstituted with R_5 , where L represents point of attachment and may be at any point on the benzene ring, and the oxygen-containing ring of the bicyclic oxygen-containing group consists of from 5 to 8 ring atoms, contains 1 or 2 oxygen atoms and remaining ring atoms are carbon;

- R_5 is independently selected at each occurrence from the group consisting of cyano, nitro, haloalkyl, haloalkoxy, hydroxy, amino, alkyl substituted with 0-2 R_6 , alkenyl substituted with 0-2 R_6 , alkynyl substituted with 0-2 R_6 , alkoxy and Y;
- R_9 is independently selected at each occurrence from the group consisting of nitro, haloalkoxy, hydroxy, amino, alkyl substituted with 0-2 R_6 , alkenyl substituted with 0-2 R_6 , alkynyl substituted with 0-2 R_6 , alkoxy substituted with 0-2 R_6 , and Y;
- R_6 is independently selected at each occurrence from the group consisting of halogen, hydroxy, cyano, alkyl,

alkoxy, -S(O)_n(alkyl), haloalkyl, haloalkoxy, CO(alkyl), CONH(alkyl), $CON(alkyl_1)(alkyl_2)$ $alkyl_1$ and $alkyl_2$ may be joined to form a saturated heterocyclic ring [heterocycle] of from 5 to 8 ring atoms and containing 1, 2, or3 heteroatoms independently selected from N, O, and S, -XR7, and Y;

- X is independently selected at each occurrence from the group consisting of $-CH_2-$, $-CHR_8-$, -O-, $-S(O)_n-$, -NH-, $-NR_8-$, -C(=O)-, -C(=O)O-, -C(=O)NH-, $-C(=O)NR_8-$, $-S(O)_nNH-$,
 - $-S(O)_{n}NR_{8}-$, NHC(=O)-, $-NR_{8}C(=O)-$, $-NHS(O)_{n}-$, and $-NR_{8}S(O)_{n}-$;
- R_7 and R_8 are independently selected at each occurrence from hydrogen, and straight, branched, and cyclic alkyl groups, and (cycloalkyl)alkyl groups, said straight, branched, and cyclic alkyl groups, (cycloalkyl) alkyl groups consisting of 1 to 8 carbon atoms, and containing zero or one or more double or triple bonds, each of which 1 to 8 carbon atoms is unsubstituted or substituted with one or more substituent(s) independently selected from hydroxy, halogen, amino, cyano, nitro, haloalkyl, haloalkoxy, -O(alkyl),

-NH(alkyl), -N(alkyl)(alkyl), -NHC(0)(alkyl), -N(alkyl)C(0)(alkyl), -NHS(0)_n(alkyl), -S(0)_n(alkyl), -S(0)_nNH(alkyl), -S(0)_nN(alkyl_3)(alkyl_4) where alkyl_3 and alkyl_4 are optionally joined to form a saturated heterocyclic ring [heterocycle] consisting of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, and Y';

Y and Y' are independently selected at each occurrence from

3- to 8-membered carbocyclic or heterocyclic groups
which are saturated, unsaturated, or aromatic, which
are unsubstituted or substituted with one or more
substituents independently selected from halogen, oxo,
hydroxy, amino, nitro, cyano, alkyl, alkoxy,
haloalkyl, haloalkoxy, mono- or dialkylamino, and
alkylthio;

wherein said 3- to 8-membered heterocyclic groups contain one or more heteroatom(s) independently selected from N, O, and S; and

n is independently chosen at each occurrence from 0, 1, and 2.

(Previously Amended) A compound of the formula:

T,9002

or a pharmaceutically acceptable salt thereof, wherein:

- G, Q, T, and W are the same or different and are selected from the group consisting of N, CH, and CR_5 , wherein T or W or both is N;
- A is absent or is selected from the group consisting of O, S, NR_A , CR_BR_B ', $NR_ACR_BR_B$ ', CR_BR_B ', and C_3H_4 ; where R_A , R_B , and R_B ' are independently selected at each occurrence from hydrogen and alkyl;

Z is oxygen or sulfur; each R_3 and R_4 is independently

selected from the group consisting of hydrogen; halogen; hydroxy; amino; cyano; nitro; -COOH; -CHO, optionally substituted C_{1-6} alkyl; optionally substituted C_{2-6} alkenyl; optionally substituted C_{2-6} alkynyl; optionally substituted C_{1-} 6alkoxy; optionally substituted di (C1mono or 6) alkylamino; optionally substituted C1-6alkylthio; optionally substituted C₁₋₆alkyl ketone; optionally substituted C_{1-6} alkylester; optionally substituted C_{1-6}

6alkylsulfinyl; optionally substituted C_{1-} $_{6}$ alkylsulfonyl; optionally substituted mono- or di(C_{1-} 6) alkylcarboxamide; optionally substituted -S(0) NH C1-6alkyl; optionally substituted $-S(0)_{n}N(C_{1-6}alkyl)(C_{1-6}alkyl)$ 6alkyl); optionally substituted -NHC(=0) C_{1-6} alkyl; optionally substituted $-NC(=0)(C_{1-6}alkyl)(C_{1-6}alkyl);$ optionally substituted -NHS(O)_nC₁₋₆alkyl; optionally substituted $-NS(0)_n(C_{1-6}alkyl)(C_{1-6}alkyl);$ optionally substituted saturated heterocyclic ring or partially unsaturated heterocycle of from 5 to 8 atoms, which saturated heterocyclic ring or partially unsaturated heterocycle contains 1, 2, or3 heteroatoms independently selected from N, O, and S; optionally substituted aryl having from 1 to 3 rings; optionally substituted heteroaryl, said heteroaryl having from 1 to 3 rings, 5 to 8 ring members in each ring and, in at least one of said rings, from 1 to about 3 heteroatoms per ring independently selected from the group consisting of N, O, and S; or

(b) joined to a R_3 or R_4 not attached to the same carbon to form an optionally substituted aryl ring; a saturated or partially unsaturated carbocyclic ring of from 5 to 8 members, which carbocyclic ring is

optionally substituted; or a saturated, partially unsaturated, or aromatic heterocyclic ring of from 5 to 8 members, which heterocyclic ring is optionally substituted and contains 1, 2, or 3 heteroatoms independently selected from N, O, and S;

- R₅ represents 1 to 3 substituents independently selected at each occurrence from the group consisting of cyano, hydroxy, amino, C₃₋₆ alkyl substituted with 0-2 R₆, C₂₋₆ alkenyl substituted with 0-2 R₆, C₂₋₆ alkynyl substituted with 0-2 R₆, C₃₋₆ alkoxy, -NH(C₁₋₆alkyl) substituted with 0-2 R₆, -N(C₁₋₆alkyl) (C₁₋₆alkyl) where each alkyl is independently substituted with 0-2 R₆, -XR₇, and Y;
- R_9 represents 0 to 3 substituents independently selected at each occurrence from the group consisting of halogen, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{1-6} alkoxy substituted with 0-2 R_6 , and Y;
- R_6 is independently selected at each occurrence from the group consisting of halogen, hydroxy, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, $-S(O)_n(C_{1-4}$ alkyl), halo (C_{1-4}) alkyl, halo (C_{1-4}) alkoxy, $CO(C_{1-4}$ alkyl), $CONH(C_{1-4}$ alkyl), $CON(C_{1-4})$

 $_4$ alkyl $_1$) (C_{1-4} alkyl $_2$) where alkyl $_1$ and alkyl $_2$ may be joined to form a <u>saturated heterocyclic ring</u> [heterocycle] of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, 0, and S, -XR $_7$, and Y;

- X is independently selected at each occurrence from the group consisting of $-CH_2-$, $-CHR_8-$, -O-, $-S(O)_n-$, -NH-, $-NR_8-$, -C(=O)-, -C(=O)O-, -C(=O)NH-, $-C(=O)NR_8-$, $-S(O)_nNH-$, $-S(O)_nNR_8-$, NHC(=O)-, $-NR_8C(=O)-$, $-NHS(O)_n-$, and $-NR_8S(O)_n-$;
- $\ensuremath{R_{7}}$ and $\ensuremath{R_{8}}$ are independently selected at each occurrence from hydrogen, and straight, branched, and cyclic alkyl groups, and (cycloalkyl) alkyl groups, said straight, branched, and cyclic alkyl groups, (cycloalkyl) alkyl groups consisting of 1 to 8 carbon atoms, and containing zero or one or more double or triple bonds, each of which 1 to 8 carbon atoms is unsubstituted orsubstituted with one or more substituent(s) independently selected from hydroxy, halogen, amino, cyano, nitro, haloalkyl, haloalkoxy, $-O(C_{1-4}alkyl)$, $-NH(C_{1-4}alkyl)$, $-N(C_{1} _{4}$ alkyl) (C_{1-4} alkyl), -NHC(O)(C_{1-4} alkyl), $-N(C_{1-}$ $_{4}$ alkyl)C(O)(C₁₋₄alkyl), $-NHS(O)_n(C_{1-4}alkyl), -S(O)_n(C_{1-4}alkyl)$

01

 $_4$ alkyl), $_-$ S(O) $_n$ NH(C $_{1-4}$ alkyl), $_-$ S(O) $_n$ N(C $_{1-4}$ alkyl $_3$)(C $_{1-4}$ alkyl $_4$) where C $_{1-4}$ alkyl $_3$ and C $_{1-4}$ alkyl $_4$ are optionally joined to form a <u>saturated heterocyclic ring</u> [heterocycle] consisting of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, and Y';

Y and Y' are independently selected at each occurrence from 3- to 8-membered carbocyclic or heterocyclic groups which are saturated, unsaturated, or aromatic, which are unsubstituted or substituted with one or more substituents independently selected from halogen, oxo, hydroxy, amino, nitro, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, halo (C_{1-4}) alkyl, halo (C_{1-4}) alkoxy, mono- or di (C_{1-4}) alkylamino, and C_{1-4} alkylthio;

wherein said 3- to 8-membered heterocyclic groups contain one or more heteroatom(s) independently selected from N, O, and S; and

n is independently chosen at each occurrence from 0, 1, and 2.

(Original) A compound according to Claim 8, which is 4-(3-Chloro-2-pyridinyl)-N-[4(isopropyl)phenyl]-2-

methylthio-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

Wherein R_3 and R_4 are independently selected at each occurrence from the group consisting of hydrogen and C_{1-6} alkyl.

 $\mathcal{B}_{1/2}$. (Original) A compound according to Claim 1/1, wherein G and Q are selected from the group consisting of CH and CR_5 .

1/3. (Original) A compound according to Claim 1/1, wherein G , Q, and W are independently selected at each occurrence from the group consisting of CH and CR_5 ; and T is N.

1/4. (Original) A compound according to Claim 1/3 wherein R_3 and R_4 are hydrogen; and A is selected from the group consisting of NH, -CH=CH-, and -CH₂NH-.

15. (Original) A compound or salt according to Claim 14, wherein R_6 is independently selected at each occurrence

from the group consisting of halogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, -NH(C_{1-4} alkyl), and -N(C_{1-4} alkyl)(C_{1-4} alkyl).

16. (Original) A compound according to Claim 14, which is 4-(3-Trifluoromethyl-2-pyridinyl)-N-(3-methoxy-4-hydroxyphenylmethyl)-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

10. (Original) A compound according to Claim 14, which is 4-(3-Nitro-pyridinyl)-N-[4-(n-butyl)phenyl]-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

18. (Original) A compound according to Claim 14, which is 4-(3-Trifluoromethyl-2-pyridinyl)-N-[4-(n-butyl)phenyl]-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

(Original) A compound according to Claim 14, which is 4-(3-Methyl-2-pyridinyl)-N-[4-(isopropyl)phenyl]-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

(Original) A compound according to Claim 14, which is 4-(3-Methyl-2-pyridinyl)-N-[4-(n-butyl)phenyl]-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

21. (Original) A compound according to Claim 14, which is 4-(3-Chloro-5-trifluoromethyl-2-pyridinyl)-N-[4-(isopropyl)phenyl]-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

(Original) A compound according to Claim 14, which is 4-(3-Chloro-2-pyridinyl)-N-[4-(isopropyl)phenyl]-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

25. (Original) A compound according to Claim 14, which is 4-(3,5-Dichloro-2-pyridinyl)-N-[4-(isopropyl)phenyl]-1-piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

NE is was carelled cancel to

24. (Original) A compound according to claim 13, which 4-(3-Cyano-2-pyridinyl)-N-[4-(isopropyl)phenyl]-1-

piperazinecarboxamide, or a pharmaceutically acceptable salt thereof.

20

25. (Original) The compound according to claim 13, which is 4-(3-Chloro-2-pyridinyl)-N-[4-(isopropyl)phenyl]-2-methyl-1-piperazinecarboxamide.

21 26.

(Previously Amended) A compound of the formula:

(| T,1570

$$R_{5A}$$
 R_{4}
 R_{6}
 R_{4}
 R_{6}
 R_{6}

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from the group consisting of NH, -CH=CH-, and $_{\text{CH}_{2}\text{NH}};$

 R_4 is independently chosen from hydrogen and C_{1-4} alkyl;

R₅ represents 0 to 2 substituents independently chosen at each occurrence from the group consisting of halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl) substituted with 0-2 R_6 , and -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl)

- where each C_{1-6} alkyl is independently substituted with 0-2 R_6 ;
- R_9 represents 0 to 2 substituents and is independently chosen at each occurrence from the group consisting of halogen, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{2-6} alkynyl substituted with 0-2 R_6 , and C_{1-6} alkoxy substituted with 0-2 R_6 ;
- R_{5A} is independently selected from the group consisting of halogen, cyano, nitro, halo(C_{1-6}) alkyl, halo(C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{1-6} alkoxy, NH(C_{1-6} alkyl), and -N(C_{1-6} alkyl)(C_{1-6} alkyl);
- R_{9B} is independently selected from the group consisting of halogen, nitro, halo(C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, and C_{1-6} alkoxy; and
- R_6 is independently selected at each occurrence the group consisting of halogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, NH(C_{1-4} alkyl), and -N(C_{1-4} alkyl)(C_{1-4} alkyl).

2/1. (Previously Amended) A compound of the formula:

$$R_3$$
 R_4 R_3 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_5

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from the group consisting of a single bond, $S,\ NR_A,\ NR_ACHR_B,\ CHR_BNR_A,\ -CR_A=CR_B-,\ and\ C_3H_4;\ where\ R_A$ and R_B are independently selected at each occurrence from the group consisting of hydrogen and alkyl; each R_3 and R_4 is independently

(a) selected from the group consisting of hydrogen; halogen; hydroxy; amino; cyano; nitro;

-COOH; -CHO, optionally substituted alkyl; optionally substituted alkenyl; optionally substituted alkynyl; optionally substituted alkoxy; optionally substituted mono ordialkylamino; optionally substituted alkylthio; optionally substituted alkyl optionally substituted alkylester; optionally substituted alkylsulfinyl; optionally substituted alkylsulfonyl; optionally substituted monoalkylcarboxamide; optionally substituted -S(O),NHalkyl; optionally substituted $-S(0)_nN(alkyl)(alkyl);$

optionally substituted -NHC(=0)alkyl; optionally substituted -NC(=0) (alkyl) (alkyl); optionally substituted -NHS(O) nalkyl; optionally substituted - $NS(0)_n(alkyl)(alkyl)$; optionally substituted saturated heterocyclic ring or partially unsaturated heterocycle of from 5 to 8 atoms, which saturated heterocyclic ring or partially unsaturated heterocycle contains 1, 2, or 3 heteroatoms independently selected from N, O, and S; optionally substituted aryl having from 1 to 3 rings; and optionally substituted heteroaryl, heteroaryl having from 1 to 3 rings, 5 to 8 members in each ring and, in at least one of rings, from 1 to about 3 heteroatoms independently selected from the group consisting of N, O, and S; or

(b) joined to a R₃ or R₄ not attached to the same carbon to form an optionally substituted aryl ring; a saturated or partially unsaturated carbocyclic ring of from 5 to 8 members, which carbocyclic ring is optionally substituted; or a saturated, partially unsaturated, or aromatic heterocyclic ring of from 5 to 8 members, which heterocyclic ring is optionally

- substituted and contains 1, 2, or 3 heteroatoms independently selected from N, O, and S;
- R_5 represents 0-3 substituents independently selected at each occurrence from the group consisting of cyano, nitro, haloalkyl, haloalkoxy, C_{2-6} alkenyl substituted with 0-2 R_6 , and C_{2-6} alkynyl substituted with 0-2 R_6 ;
- R_9 represents 0-3 substituents independently selected at each occurrence from the group consisting of bromo, haloalkyl, haloalkoxy, hydroxy, C_{2-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{2-6} alkynyl substituted with 0-2 R_6 , and C_{2-6} alkoxy;
- R_6 is independently selected at each occurrence from the group consisting of halogen, hydroxy, cyano, alkyl, $-S(0)_n(alkyl)$, alkoxy, haloalkyl, haloalkoxy, CO(alkyl), CONH(alkyl), $CON(alkyl_1)(alkyl_2)$ $alkyl_1$ and $alkyl_2$ may be joined to form a saturated heterocyclic ring [heterocycle] of from 5 to 8 ring atoms and containing 1, 2, or3 heteroatoms independently selected from N, O, and S, -XR7, and Y;
- X is independently selected at each occurrence from the group consisting of $-CH_2-$, $-CHR_8-$, -O-, $-S(O)_n-$, -NH-, $-NR_8-$, -C(=O)-, -C(=O)O-, -C(=O)NH-, $-C(=O)NR_8-$, $-S(O)_nNH-$,

CI

 $-S(O)_nNR_8-$, NHC(=O)-, $-NR_8C(=O)-$, $-NHS(O)_n-$, and $-NR_8S(O)_n-$;

R₇ and R₈ are independently selected at each occurrence from straight, branched, and cyclic alkyl groups, and (cycloalkyl)alkyl groups, said straight, branched, and cyclic alkyl groups, and (cycloalkyl)alkyl groups consisting of 3 to 8 carbon atoms, and containing zero or one or more double or triple bonds, each of which 3 to 8 carbon atoms is unsubstituted or substituted with one or more substituent(s) independently selected from oxo, hydroxy, halogen, amino, cyano, nitro, haloalkyl, haloalkoxy, -O(alkyl), -NH(alkyl),

-N(alkyl)(alkyl), -NHC(O)(alkyl),

N(alkyl)C(0)(alkyl), $-NHS(0)_n(alkyl)$, $-S(0)_n(alkyl)$, $-S(0)_nNH(alkyl)$, $-S(0)_nN(alkyl_3)(alkyl_4)$ where $alkyl_3$ and $alkyl_4$ are optionally joined to form a <u>saturated</u> <u>heterocyclic ring [heterocycle] consisting of from 5</u> to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, and Y';

Y and Y' are independently selected at each occurrence from

3- to 8-membered carbocyclic or heterocyclic groups

which are saturated, unsaturated, or aromatic, which

are unsubstituted or substituted with one or more

substituents independently selected from halogen, oxo, hydroxy, amino, nitro, cyano, alkyl, alkoxy, haloalkyl, haloalkoxy, mono- or dialkylamino, and alkylthio;

wherein said 3- to 8-membered heterocyclic groups contain one or more heteroatom(s) independently selected from N, O, and S; and

n is independently chosen at each occurrence from 0, 1, and 2.

28. (Original) A compound or salt according to Claim in which R_3 and R_4 are independently selected at each occurrence from the group consisting of hydrogen and C_{1-6} alkyl.

29. (Original) A compound or salt according to claim 2 27, wherein A is selected from the group consisting of NH, -CH=CH-, and CH₂NH; R₃ is hydrogen and R₄ is independently chosen at each occurrence from hydrogen and methyl; and R₆ is independently selected at each occurrence from the group consisting of halogen, hydroxy, C₁₋₄ alkyl, C₁₋₄ alkoxy, -NH(C₁₋₄ alkyl), and -N(C₁₋₄ alkyl)(C₁₋₄ alkyl).

36. (Previously Amended) A compound of the formula:

$$R_{5A}$$
 R_{4}
 R_{5A}
 R_{4}
 R_{9B}

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from the group consisting of NH, -CH=CH-, and $\mbox{CH}_{2}\mbox{NH};$

 R_4 is independently selected at each occurrence from hydrogen and C_{1-4} alkyl;

 R_5 represents 0 to 2 substituents independently selected at each occurrence from the group consisting of halogen, cyano, nitro, halo(C_{1-6}) alkyl, halo(C_{1-6}) alkoxy, amino, C_{2-6} alkenyl substituted with 0-2 R_6 , and C_{2-6} alkynyl substituted with 0-2 R_6 ;

 R_9 represents 0 to 2 substituents and is independently selected at each occurrence from the group consisting of halogen, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , and C_{1-6} alkoxy substituted with 0-2 R_6 ;

 R_{5A} is independently selected from the group consisting of halogen, cyano, nitro, trifluoromethyl,

C

trifluoromethoxy, hydroxy, amino, C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl), and $-N(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl);

- R_{9B} is independently selected from the group consisting of trifluoromethoxy, hydroxy, C_{2-6} alkyl, and C_{2-6} alkoxy; and
- R_6 is independently selected at each occurrence from the group consisting of halogen, hydroxy, C_{1-4} alkyl, and C_{1-4} alkoxy.

9 (Previously Amended) A compound of the formula:

- or a pharmaceutically acceptable salt thereof, wherein the compound or pharmaceutically acceptable salt thereof exhibits an EC50 or $K_{\rm i}$ of 1 micromolar or less in a standard assay of capsaicin receptor mediated calcium mobilization; and wherein
- A is absent or is selected from the group consisting of O, S, NR_A , $NR_ACR_BR_B$, CR_B , R_B , CR_B , R_B , CR_B , R_B , and R_B , are independently selected at each occurrence from hydrogen and C_{1-6} alkyl;

Z is oxygen or sulfur;

each R₃ and R₄ is independently

- (a) selected from the group consisting of hydrogen, halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 ; C_{2-6} alkynyl substituted with 0-2 R_6 ; C_{1-6} alkoxy substituted with 0-2 R_6 , -NH $(C_{1-6}$ alkyl) substituted with 0-2 R_6 , -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl) where each C_{1-6} alkyl is independently substituted with 0-2 R_6 , -XR $_7$, and Y; or
- (b) joined to a R_3 or R_4 not attached to the same carbon to form an aryl ring substituted with 0-3 R_6 , a saturated or partially unsaturated carbocyclic ring of from 5 to 8 members, which carbocyclic ring is substituted with 0-2 R_6 , or a saturated, partially unsaturated, or aromatic heterocyclic ring of from 5 to 8 members, which heterocyclic ring is substituted with 0-2 R_6 and contains 1, 2, or 3 heteroatoms independently selected from N, O, and S;

 Ar_1 is selected from the group consisting of:

(a) cyclohexyl, cyclopentyl, piperidinyl, piperazinyl, phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and quinoxalinyl, each of which is optionally mono-, di-, or trisubstituted with R_5 ; and

(b) bicyclic oxygen-containing groups of the formula:

C1 T,1490

optionally mono-, di-, or trisubstituted with R_5 , where L represents point of attachment and may be at any point on the benzene ring, and the oxygen-containing ring of the bicyclic oxygen-containing group consists of from 5 to 8 ring atoms, contains 1 or 2 oxygen atoms and remaining ring atoms are carbon;

 ${\rm Ar}_2$ is selected from the group consisting of:

(a) cyclohexyl, cyclopentyl, piperidinyl, piperazinyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, [pyrazinyl,] benzimidazolyl, naphthyl, indolyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and quinoxalinyl, each of which is optionally mono-, di-, or trisubstituted with R_5 ; and

(b) bicyclic oxygen-containing groups of the formula:

T,1390

optionally mono-, di-, or trisubstituted with R_5 , where L represents point of attachment and may be at any point on the benzene ring, and the oxygen-containing ring of the bicyclic oxygen-containing group consists of from 5 to 8 ring atoms, contains 1 or 2 oxygen atoms and remaining ring atoms are carbon;

- R_5 is independently selected at each occurrence from the group consisting of halogen, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{2-6} alkynyl substituted with 0-2 R_6 , C_{1-6} alkoxy and Y;
- R_6 is independently selected at each occurrence from the group consisting of halogen, hydroxy, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, $-S(O)_n(C_{1-4}$ alkyl), halo (C_{1-4}) alkyl, halo (C_{1-4}) alkoxy, $CO(C_{1-4}$ alkyl), $CONH(C_{1-4}$ alkyl), $CON(C_{1-4})$

 $_4$ alkyl $_1$) (C $_{1-4}$ alkyl $_2$) where alkyl $_1$ and alkyl $_2$ may be joined to form a <u>saturated heterocyclic ring</u> [heterocycle] of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, 0, and S, -XR $_7$, and Y;

- X is independently selected at each occurrence from the group consisting of $-CH_2-$, $-CHR_8-$, -O-, $-S(O)_n-$, -NH-, $-NR_8-$, -C(=O)-, -C(=O)O-, -C(=O)NH-, $-C(=O)NR_8-$, $-S(O)_nNH-$, $-S(O)_nNR_8-$, NHC(=O)-, $-NR_8C(=O)-$, $-NHS(O)_n-$, and $-NR_8S(O)_n-$;
- R_7 and R_8 are independently selected at each occurrence from hydrogen, and straight, branched, and cyclic alkyl groups, and (cycloalkyl) alkyl groups, said straight, branched, and cyclic alkyl groups, (cycloalkyl)alkyl groups consisting of 1 to 8 carbon atoms, and containing zero or one or more double or triple bonds, each of which 1 to 8 carbon atoms is unsubstituted or substituted with one substituent(s) independently selected from hydroxy, halogen, amino, cyano, nitro, haloalkyl, haloalkoxy, $-O(C_{1-4}alkyl)$, $-NH(C_{1-4}alkyl)$, $-N(C_{1-}$ 4alkyl)(C₁₋₄alkyl), -NHC(O)(C_{1-4} alkyl), $-N(C_{1} _4$ alkyl)C(O)(C₁₋₄alkyl), -NHS(O)_n(C_{1-4} alkyl), $-S(0)_n(C_{1-})$

C1

 $-S(O)_{n}NH(C_{1-4}alkyl)$, $-S(0)_{n}N(C_{1-4}alkyl_{3})(C_{1-4}alkyl_{3})$ ₄alkyl), $_4$ alkyl $_4$) where C_{1-4} alkyl $_3$ and C_{1-4} alkyl $_4$ are optionally joined form saturated to a heterocyclic ring [heterocycle] consisting of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, and Y';

Y and Y' are independently selected at each occurrence from 3- to 8-membered carbocyclic or heterocyclic groups which are saturated, unsaturated, or aromatic, which with may be further substituted one ormore substituents independently selected from halogen, oxo, hydroxy, amino, nitro, cyano, C₁₋₄alkyl, C_{1-4} alkoxy, $halo(C_{1-4})$ alkyl, halo (C_{1-4}) alkoxy, monodi (C₁₋ 4) alkylamino, and C₁₋₄alkylthio;

wherein said 3- to 8-membered heterocyclic groups contain one or more heteroatom(s) independently selected from N, O, and S; and

n is independently chosen at each occurrence from 0, 1, and 2.

(Previously Amended) A compound of the Formula A, Formula B, Formula C, Formula D, Formula E, or Formula F:

Formula A

Formula B

T,1660

61

Formula C

Formula D

Formula E

Formula F

or a pharmaceutically acceptable salt of Formula A, Formula B, Formula C, Formula D, Formula E, or Formula F, wherein A represents NH or O; each R_3 and R_4 is independently

(a) selected from the group consisting of hydrogen, halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 ; C_{2-6} alkynyl substituted with 0-2 R_6 ; C_{1-6} alkoxy substituted with 0-2 R_6 , -NH $(C_{1-6}$ alkyl) substituted with 0-2 R_6 , -N $(C_{1-6}$

- $_6 alkyl) \, (C_{1-6} alkyl)$ where each $C_{1-6} alkyl$ is independently substituted with 0-2 $R_6,$ -XR7, and Y; or
- (b) joined to a R_3 or R_4 not attached to the same carbon to form an aryl ring substituted with 0-3 R_6 , a saturated or partially unsaturated carbocyclic ring of from 5 to 8 members, which carbocyclic ring is substituted with 0-2 R_6 , or a saturated, partially unsaturated, or aromatic heterocyclic ring of from 5 to 8 members, which heterocyclic ring is substituted with 0-2 R_6 and contains 1, 2, or 3 heteroatoms independently selected from N, O, and S;
- represents from 1 3 to substituents independently selected at each occurrence from the group consisting halogen, cyano, nitro, halo (C_{1-6}) alkyl, 6) alkoxy, hydroxy, amino, C₁₋₆alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 , C_{2-6} alkynyl substituted with 0-2 R_6 , C_{1-6} alkoxy, $-NH(C_{1-6}alkyl)$ substituted with 0-2 R_6 , $-N(C_{1-6}alkyl)(C_{1-6}alkyl)$ where each C_{1-6} alkyl is independently substituted with 0-2 R_6 , - XR_7 , and Y;
- R_9 represents from 1 to 3 substituents independently selected at each occurrence from the group consisting of halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6})

- $_{6}$) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_{6} , C_{2-6} alkenyl substituted with 0-2 R_{6} , C_{2-6} alkynyl substituted with 0-2 R_{6} , C_{1-6} alkoxy substituted with 0-2 R_{6} , and Y;
- R_6 is independently selected at each occurrence from the group consisting of halogen, hydroxy, cyano, C1-4alkyl, C_{1-4} alkoxy, $-S(0)_n(C_{1-4}alkyl)$, halo $(C_{1-4})alkyl$, halo(C₁₋ ₄)alkoxy, $CO(C_{1-4}alkyl)$, $CONH(C_{1-4}alkyl)$, CON (C1- $_4$ alkyl $_1$) (C_{1-4} alkyl $_2$) where $alkyl_1$ and $alkyl_2$ may be joined form a saturated heterocyclic ring [heterocycle] of from 5 to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, $-XR_7$, and Y;
- X is independently selected at each occurrence from the group consisting of $-CH_2-$, $-CHR_8-$, -O-, $-S(O)_n-$, -NH-, $-NR_8-$, -C(=O)-, -C(=O)O-, -C(=O)NH-, $-C(=O)NR_8-$, $-S(O)_nNH-$, $-S(O)_nNR_8-$, NHC(=O)-, $-NR_8C(=O)-$, $-NHS(O)_n-$, and $-NR_8S(O)_n-$;
- R_7 and R_8 are independently selected at each occurrence from hydrogen, and straight, branched, and cyclic alkyl groups, and (cycloalkyl)alkyl groups, said straight, branched, and cyclic alkyl groups, and (cycloalkyl)alkyl groups consisting of 1 to 8 carbon

atoms, and containing zero or one or more double or triple bonds, each of which 1 to 8 carbon atoms is unsubstituted substituted or with one more substituent(s) independently selected from oxo, hydroxy, halogen, amino, cyano, nitro, haloalkyl, haloalkoxy, $-O(C_{1-4}alkyl)$, $-NH(C_{1-4}alkyl)$, $-N(C_{1}$ 4alkyl) (C₁₋₄alkyl), $-NHC(0)(C_{1-4}alkyl)$, $-N(C_{1})$ $_{4}$ alkyl)C(O)(C_{1-4} alkyl), -NHS(O) $_{n}$ (C_{1-4} alkyl), $-S(0)_n(C_{1-})$ $_{4}$ alkyl), $_{-}$ S(O) $_{n}$ NH(C_{1-4} alkyl), $_{-}$ S(O) $_{n}$ N(C_{1-4} alkyl $_{3}$)(C_{1-4} $_4$ alkyl $_4$) where C_{1-4} alkyl $_3$ and C_{1-4} alkyl $_4$ are optionally joined to form a saturated heterocyclic [heterocycle] consisting of from 5 to 8 ring atoms and containing 1, 2, heteroatoms or 3 independently selected from N, O, and S, and Y';

Y and Y' are independently selected at each occurrence from 3- to 8-membered carbocyclic or heterocyclic groups which are saturated, unsaturated, or aromatic, which may be further substituted with one or more substituents independently selected from halogen, oxo, hydroxy, amino, nitro, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, halo(C₁₋₄)alkyl, halo(C₁₋₄)alkoxy, mono- or di(C₁₋₄)alkylamino, and C₁₋₄alkylthio;

wherein said 3- to 8-membered heterocyclic groups contain one or more heteroatom(s) independently selected from N, O, and S; and

n is independently chosen at each occurrence from 0, 1, and 2.

(Original) A compound or salt according to Claim A 3/2, wherein A represents NH.

(Original) A compound or salt according to Claim 27 , 32, wherein:

A represents NH; and

 R_{3} and R_{4} are independently chosen at each occurrence from the group consisting of hydrogen, halogen, cyano, $halo(C_{1-6})alkyl$, $halo(C_{1-6})alkoxy$, hydroxy, amino, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkyl, C_{1-6} alkoxy substituted with 0-2 R_6 , - NH(C_{1-6} alkyl), and $-N(C_{1}$ 6alkyl) (C₁₋₆alkyl).

35. (Original) A compound or salt according to Claim $\frac{2}{3}$ 2, wherein:

A represents NH;

R₃ represents hydrogen; and

 R_4 is independently chosen at each occurrence from $\label{eq:R4} \mbox{hydrogen and} \quad C_{1\text{-}6} \mbox{ alkyl} \,.$

36. (Original) A compound or salt according to Claim
32, wherein:

A represents NH;

R₃ represents hydrogen; and

 R_4 is independently chosen at each occurrence from hydrogen and methyl.

37. (Previously Amended) A compound or salt according to Claim 32, wherein:

A represents NH;

R₃ represents hydrogen;

 R_4 is independently chosen at each occurrence from hydrogen and methyl; and

R₅ represents from 1 to 3 substituents independently selected at each occurrence from the group consisting of halogen, cyano, nitro, halo(C₁₋₆)alkyl, halo(C₁₋₆)alkoxy, hydroxy, amino, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, -NH(C₁₋₆alkyl), -N(C₁₋₆alkyl)(C₁₋₆alkyl), and C₃₋₈ cycloalkyl; and

R₉ represents from 1 to 3 substituents independently selected at each occurrence from the group consisting of halogen, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, and C_{3-8} cycloalkyl.

33 34

38. (Previously Amended) A compound or salt of the Formula A-1

7,1710 C1

$$R_{5}$$

Formula A-1

wherein

R₄ is hydrogen or methyl;

R₅ and R₉ are independently selected from the group consisting of halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl), and C_{3-8} cycloalkyl; and

 R_{5B} and R_{9B} each represent from 0 to 2 substituents independently selected at each occurrence from hydrogen, halogen, cyano, nitro, halo (C_{1-2}) alkyl,

halo(C_{1-2})alkoxy, hydroxy, amino, C_{1-3} alkyl, C_{1-3} alkoxy, -NH(C_{1-3} alkyl), and -N(C_{1-6} alkyl)(C_{1-6} alkyl).

34 39. (Original) A compound or salt according to Claim 38, wherein:

 R_5 is C_{3-6} alkyl; C_{3-6} alkoxy; halo(C_{1-3})alkyl, halo(C_{1-3})alkoxy, or C_{3-8} cycloalkyl;

 R_{9} is chloro or trifluoromethyl; and R_{5B} and R_{9B} are hydrogen.

36. (Previously Amended) A compound or salt of Formula B-1:

$$R_{5}$$

Formula B-1

wherein

R₄ is hydrogen or methyl;

 R_5 and R_9 are independently selected from the group consisting of halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl,

 C_{2-6} alkynyl, C_{1-6} alkoxy, -NH(C_{1-6} alkyl), -N(C_{1-6} alkyl)(C_{1-6} alkyl), and C_{3-8} cycloalkyl; and

 R_{5B} and R_{9B} each represent from 0 to 2 substituents independently selected at each occurrence from hydrogen, halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, hydroxy, amino, C_{1-3} alkyl, C_{1-3} alkoxy, -NH $(C_{1-3}$ alkyl), and -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl).

3. (Original) A compound or salt according to Claim 6, wherein:

 R_5 is C_{3-6} alkyl; C_{3-6} alkoxy; halo(C_{1-3})alkyl, halo(C_{1-3})alkoxy, or C_{3-8} cycloalkyl;

 R_{9} is chloro or trifluoromethyl; and R_{5B} and R_{9B} are hydrogen.

(Previously Amended) A compound or salt of Formula C-1:

$$R_{5}$$
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 R_{6}
 R_{7}
 R_{9}
 R_{9}

Formula C-1

wherein:

R₅ and R₉ are independently selected from the group consisting of halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl), and C_{3-8} cycloalkyl; and

 R_{5B} and R_{9B} each represent from 0 to 2 substituents independently selected at each occurrence from hydrogen, halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, hydroxy, amino, C_{1-3} alkyl, C_{1-3} alkoxy, -NH $(C_{1-3}$ alkyl), and -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl).

36 37 43. (Original) A compound or salt according to Claim 32, wherein:

 R_5 is C_{3-6} alkyl; C_{3-6} alkoxy; halo(C_{1-3})alkyl, halo(C_{1-3}) alkoxy, or C_{3-8} cycloalkyl;

 R_{9} is chloro or trifluoromethyl; and R_{5B} and R_{9B} are hydrogen.

44. (Previously Amended) A compound or salt according to Claim 3/1 of Formula D-1:

Formula D-1

wherein:

 R_5 is selected from the group consisting of halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl), and C_{3-8} cycloalkyl;

 R_9 is selected from the group consisting of halogen, cyano, nitro, halo(C_{1-6})alkyl, halo(C_{1-6})alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, and C_{3-8} cycloalkyl; and

and R_{9B} each represent R_{5B} from 0 to 2 substituents independently selected at each occurrence hydrogen, halogen, cyano, nitro, $halo(C_{1-2})alkyl$, halo (C_{1-2}) alkoxy, hydroxy, amino, C_{1-3} alkyl, C_{1-3} alkoxy, $-NH(C_{1-3}alkyl)$, and $-N(C_{1-6}alkyl)(C_{1-6}alkyl)$.

39 45. (Original) A compound or salt according to Claim
44, wherein:

 R_5 is C_{3-6} alkyl; C_{3-6} alkoxy; halo(C_{1-3})alkyl, halo(C_{1-3}) alkoxy, or C_{3-8} cycloalkyl;

 R_9 is chloro or trifluoromethyl; and

 R_{5B} and R_{9B} are hydrogen.

46. (Previously Amended) A compound or salt of Formula E-1:

Formula E-1

wherein:

R₄ is hydrogen or methyl;

R₅ and R₉ are independently selected from the group consisting of halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl), and C_{3-8} cycloalkyl; and

 R_{5B} and R_{9B} each represent from 0 to 2 substituents independently selected at each occurrence hydrogen, halogen, cyano, nitro, $halo(C_{1-2})alkyl$,

halo(C_{1-2})alkoxy, hydroxy, amino, C_{1-3} alkyl, C_{1-3} alkoxy, -NH(C_{1-3} alkyl), and -N(C_{1-6} alkyl)(C_{1-6} alkyl).

49. (Original) A compound or salt according to Claim
46, wherein:

 R_5 is C_{3-6} alkyl; C_{3-6} alkoxy; halo(C_{1-3})alkyl, halo(C_{1-3})alkoxy, or C_{3-8} cycloalkyl;

 R_{9} is chloro or trifluoromethyl; and R_{5B} and R_{9B} are hydrogen.

48. (Previously Amended) A compound of salt of

Formula F-1

wherein:

R₄ is hydrogen or methyl;

R₅ and R₉ are independently selected from the group consisting of halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), -N $(C_{1-6}$ alkyl) (C_{1-6} alkyl), and C_{3-8} cycloalkyl; and

and R_{9B} each represent substituents R_{5B} from 0 to 2 independently selected at each occurrence hydrogen, halogen, cyano, nitro, $halo(C_{1-2})alkyl,$ halo (C_{1-2}) alkoxy, hydroxy, amino, C_{1-3} alkyl, C_{1-3} alkoxy, -NH(C_{1-3} alkyl), and -N(C_{1-6} alkyl)(C_{1-6} alkyl).

W4 49. (Original) A compound or salt according to Claim
W4, wherein:

 R_5 is C_{3-6} alkyl; C_{3-6} alkoxy; halo(C_{1-3})alkyl, halo(C_{1-3})alkoxy, or C_{3-8} cycloalkyl;

R₉ is chloro or trifluoromethyl; and

 R_{5B} and R_{9B} are hydrogen.

50. (Previously Amended) A compound of the Formula:

$$R_{5B}$$
 R_{5B}
 R_{5B}
 R_{3}
 R_{4}
 R_{3}
 R_{4}
 R_{9}
 R_{9B}

or a pharmaceutically acceptable salt thereof, wherein:

A is absent or is selected from the group consisting of O, $S,\ NR_A,\ CR_BR_{B'},\ NR_ACR_BR_{B'},\ CR_B\ R_{B'}NR_A,\ -CR_A=CR_{B^-},\ and\ C_3H_4;$ where $R_A,\ R_B,\ and\ R_{B'}$ are independently selected at each occurrence from hydrogen and C_{1-6} alkyl;

each R₃ and R₄ is independently

- (a) selected from the group consisting of hydrogen, halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl substituted with 0-2 R_6 , C_{2-6} alkenyl substituted with 0-2 R_6 ; C_{2-6} alkynyl substituted with 0-2 R_6 ; C_{1-6} alkoxy substituted with 0-2 R_6 , -NH $(C_{1-6}$ alkyl) substituted with 0-2 R_6 , -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl) where each C_{1-6} alkyl is independently substituted with 0-2 R_6 , -XR $_7$, and Y; or
- (b) joined to a R_3 or R_4 not attached to the same carbon to form an aryl ring substituted with 0-3 R_6 , a saturated or partially unsaturated carbocyclic ring of from 5 to 8 members, which carbocyclic ring is substituted with 0-2 R_6 , or a saturated, partially unsaturated, or aromatic heterocyclic ring of from 5 to 8 members, which heterocyclic ring is substituted with 0-2 R_6 and contains 1, 2, or 3 heteroatoms independently selected from N, O, and S;
- R_5 is selected from the group consisting of bromo, fluoro, iodo, halo (C_{1-6}) alkyl, halo (C_{3-6}) alkoxy, C_{3-6} alkyl substituted with 0-3 R_6 , C_{2-6} alkenyl substituted with 0-3 R_6 , C_{2-6} alkynyl substituted with 0-3 R_6 , C_{3-6} alkoxy, $(C_{3-6}$ cycloalkyl) C_{1-4} alkyl, $-NH(C_{1-6}$ alkyl) substituted

- with 0-2 R_6 , $-N(C_{1-6}alkyl)$ ($C_{1-6}alkyl$) where each $C_{1-6}alkyl$ is substituted with 0-2 R_6 , Y, -(C=O)Y, $-(CH_2)Y$, and -(CH(CN))Y;
- R_9 is selected from the group consisting of halogen, cyano, $-N(SO_2C_{1-6}alkyl)\,(SO_2C_{1-6}alkyl)\,, -SO_2NH_2\,, \qquad halo\,(C_{1-6})\,alkyl\,, \\ halo\,(C_{1-6})\,alkoxy\,, \quad C_{1-6}alkyl \quad substituted \quad with \quad 0-2 \quad R_6\,, \quad C_{2-6}alkynyl \\ substituted \quad with \quad 0-2 \quad R_6\,, \quad C_{2-6}alkynyl \\ substituted \quad with \quad 0-2 \quad R_6\,, \quad and \quad C_{1-6}alkoxy \quad substituted \quad with \\ 0-2 \quad R_6\,;$
- R_{5B} represents from 0 to 2 substituents independently selected at each occurrence from the group consisting of
 - (a) halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) 6) alkoxy, hydroxy, amino, C₁₋₆alkyl substituted with 0-2 R_6 , $(C_{3-8} \text{cycloalkyl}) C_{1-4} \text{alkyl}$ substituted with 0-2 R_6 , C_{2-1} 6alkenyl substituted with 0-2 R_{6} C_{2-6} alkynyl substituted with 0-2 R_6 , C_{1-6} alkoxy, $-NH(C_{1-6}alkyl)$ substituted with 0-2 R_6 , $-N(C_{1-6}alkyl)(C_{1-6}alkyl)$ where each C_{1-6} alkyl is independently substituted with 0-2 R_6 , and Y; and
 - (b) groups that are joined to R_5 to form a C_{3-8} cycloalkyl group or a saturated <u>heterocyclic ring</u> or partially unsaturated heterocycle, each of which is optionally

substituted by from 1 to 5 substituents independently chosen from cyano, halogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy; -NH(C_{1-4} alkyl), -N(C_{1-4} alkyl)(C_{1-4} alkyl), halo(C_{1-4})alkyl, and halo(C_{1-4})alkoxy, wherein the saturated heterocyclic ring or partially unsaturated heterocycle contains from 4 to 8 ring atoms of which 1, 2, or 3 are heteroatoms independently selected from N, O, and S;

- represents from 0 to 2 substituents independently R_{9B} selected at each occurrence from halogen, cyano, nitro, halo (C_{1-6}) alkyl, $halo(C_{1-6})alkoxy$, hydroxy, amino, C₁₋₆alkyl substituted with 0-2 R_{6} , (C₃₋ 8cycloalkyl)C₁₋₄alkyl substituted with 0-2 ₆alkenyl substituted with 0-2 R_6 , C_{2-6} alkynyl substituted with 0-2 R_6 , C_{1-6} alkoxy substituted with 0-2 R_{6} , and Y;
- R₆ is independently selected at each occurrence from the group consisting of cyano, halogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, $-S(O)_n(C_{1-4}$ alkyl), halo (C_{1-4}) alkyl, halo (C_{1-4}) alkoxy, $CO(C_{1-4}$ alkyl), $CONH(C_{1-4}$ alkyl), $CON(C_{1-4}$ alkyl) (C_{1-4} alkyl₂) where alkyl₁ and alkyl₂ may be joined to form a saturated heterocyclic ring [heterocycle] of from 5 to 8 ring atoms and containing 1, 2, or 3

heteroatoms independently selected from N, O, and S, - XR_7 , and Y;

- X is independently selected at each occurrence from the group consisting of $-CH_2-$, $-CHR_8-$, -O-, $-S(O)_n-$, -NH-, $-NR_8-$, -C(=O)-, -C(=O)NH-, $-C(=O)NR_8-$, $-S(O)_nNH-$, $-S(O)_nNR_8-$, NHC(=O)-, $-NR_8C(=O)-$, $-NHS(O)_n-$, and $-NR_8S(O)_n-$;
- R₇ and R₈ are independently selected at each occurrence from hydrogen, and straight, branched, and cyclic alkyl groups, and (cycloalkyl) alkyl groups, said straight, branched, and cyclic alkyl groups, (cycloalkyl)alkyl groups consisting of 1 to 8 carbon atoms, and containing zero or one or more double or triple bonds, each of which 1 to 8 carbon atoms may be further substituted with one or more substituent(s) independently selected from oxo, hydroxy, halogen, amino, cyano, nitro, haloalkyl, haloalkoxy, -O(C1-₄alkyl), $NH(C_{1-4}alkyl)$, $-N(C_{1-4}alkyl)$ ($C_{1-4}alkyl)$, $C_{1-4}alkyl)$, $-N(C_{1-4}alkyl)C(0)$ -NHC(O)($C_{1-4}alkyl)$, -NHS(O)_n(C_{1-4} alkyl), $-S(0)_n(C_{1-4}alkyl)$, $-S(O)_nNH(C_{1-}$ $_4$ alkyl), $_-$ S(O) $_n$ N($_{1-4}$ alkyl $_3$)($_{1-4}$ alkyl $_4$) where $_{1-4}$ alkyl $_3$ and C₁₋₄alkyl₄ are optionally joined to form a saturated heterocyclic ring [heterocycle] consisting of from 5

to 8 ring atoms and containing 1, 2, or 3 heteroatoms independently selected from N, O, and S, and Y';

Y and Y' are independently selected at each occurrence from 3- to 8-membered carbocyclic or heterocyclic groups which are saturated, unsaturated, or aromatic, which be further substituted with may one ormore substituents independently selected from halogen, oxo, hydroxy, amino, nitro, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, halo (C_{1-4}) alkyl, halo (C_{1-4}) alkoxy, monodi(C₁₋ $_{4}$) alkylamino, and C_{1-4} alkylthio; wherein said 3- to 8membered heterocyclic groups contain one or heteroatom(s) independently selected from N, O, and S; and

n is independently chosen at each occurrence from 0, 1, and 2.

51. (Original) A compound or salt according to Claim
50, wherein:

A is O or NR_A , wherein R_A is hydrogen or methyl.

47 82. (Original) A compound or salt according to Claim 50, wherein:

A is O or NR_A , wherein R_A is hydrogen or methyl; and

 R_3 and R_4 are independently chosen at each occurrence from the group consisting of hydrogen, halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), and -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl).

53. (Original) A compound or salt according to Claim
50, wherein:

A is O or NR_A , wherein R_A is hydrogen or methyl;

R₃ is hydrogen; and

 R_4 is independently chosen at each occurrence from the group consisting of hydrogen, halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), and -N $(C_{1-6}$ alkyl).

54. (Original) A compound or salt according to Claim
50, wherein:

A is O or NR_A , wherein R_A is hydrogen or methyl;

R₃ is hydrogen; and

 R_4 is independently chosen at each occurrence from hydrogen and $C_{1\text{-}6}$ alkyl.

50, Wherein:

A is NR_A , wherein R_A is hydrogen or methyl;

R₃ is hydrogen; and

 R_4 is independently chosen at each occurrence from hydrogen, halo(C_{1-3})alkyl, and C_{1-6} alkyl.

56. (Original) A compound or salt according to Claim 50, wherein:

A is NR_A , wherein R_A is hydrogen or methyl;

R₃ is hydrogen; and

 R_4 is independently chosen at each occurrence from $\label{eq:R4} \text{hydrogen and } C_{1\text{-}4} \text{alkyl} \, .$

57. (Original) A compound or salt according to Claim
50 of the Formula:

$$\begin{array}{c|c} R_{5B} & H & R_{9} \\ \hline \\ R_{5} & R_{4} & R_{9B} \end{array}$$

wherein:

 R_4 is independently chosen at each occurrence from $\label{eq:R4} \mbox{hydrogen and $C_{1\text{-}4}$ alkyl.}$

78. (Original) A compound or salt according to Claim
57 of the formula:

$$R_{5B}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

wherein

 R_{5B} and R_{9B} are independently chosen from hydrogen, halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy; and

 R_{10} is independently chosen at each occurrence from hydrogen, halogen, and C_{1-4} alkyl.

(Previously Amended) A compound or salt according to Claim 58 wherein:

 R_9 is selected from the group consisting of halogen, cyano, $-N\left(SO_2CH_3\right)_2,\ -SO_2NH_2,\ halo\left(C_{1-3}\right)alkyl,\ and\ C_{1-3}alkoxy.$

(Original) A compound or salt according to Claim 57, wherein:

 R_{5B} and R_{9B} are independently chosen from hydrogen, halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy.

61. (Original) A compound or salt according to Claim 51, wherein:

 R_{5B} represents 0 or 1 substituents chosen from halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy; and

 R_{9B} represents 0 or 1 substituents chosen from halogen, cyano, nitro, halo (C_{1-2}) alkyl, and C_{1-2} alkyl, and C_{1-2} alkoxy.

(Previously Amended) A compound or salt according 5% to Claim 5%, wherein:

- R_9 is selected from the group consisting of halogen, cyano, $-N\left(SO_2CH_3\right)_2,\ -SO_2NH_2,\ halo\left(C_{1-3}\right)alkyl,\ and\ C_{1-3}alkoxy;$
- R_{5B} represents 0 or 1 substituents chosen from halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy; and
- R_{9B} represents 0 or 1 substituents chosen from halogen, $\mbox{cyano, nitro, halo}(C_{1-2})\,\mbox{alkyl, [and]}\ C_{1-2}\mbox{alkyl, and } C_{1-2}\mbox{alkoxy}.$

- (Previously Amended) A compound or salt according 52 to Claim 51, wherein:
- R_5 is selected from the group consisting of bromo, fluoro, iodo, halo (C_{1-6}) alkyl, halo (C_{3-6}) alkoxy, C_{3-6} alkyl substituted with 0-3 R_6 , C_{2-6} alkenyl substituted with 0-3 R_6 , Y, -(C=O)Y, -(CH₂)Y, and -(CH(CN))Y;
- R_9 is selected from the group consisting of halogen, cyano, $-N\left(SO_2CH_3\right)_2,\ -SO_2NH_2,\ halo\left(C_{1-2}\right)alkyl,\ C_{1-3}alkoxy;$
- R_{5B} represents 0 or 1 substituents chosen from halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy; and
- R_{9B} represents 0 or 1 substituents chosen from halogen, cyano, nitro, halo (C_{1-2}) alkyl, C_{1-2} alkyl, and C_{1-2} alkoxy.
- 64. (Original) A compound or salt according to Claim 53, wherein:
- R_6 is independently selected at each occurrence from the group consisting of cyano, halogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, -NH(C_{1-4} alkyl), and -N(C_{1-4} alkyl)(C_{1-4} alkyl) and Y; and
- Y is independently selected at each occurrence from C_{3-8} cycloalkyl, piperidinyl, piperazinyl,

tetrahydropyranyl, dihydropyranyl, morpholinyl, thiomorpholinyl, phenyl, pyridyl, pyrazinyl, pyrimidinyl, thiazolyl, thienyl, and imidazolyl, each of which may be further substituted with one or more substituents independently selected from halogen, oxo, hydroxy, amino, nitro, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, halo (C_{1-4}) alkyl, halo (C_{1-4}) alkoxy, mono- or di (C_{1-4}) alkylamino, and C_{1-4} alkylthio.

65. (Original) A compound or salt according to Claim 63, wherein:

 R_{9} is cyano, trifluoromethyl, chloro, or iodo; and R_{9B} is hydrogen.

61 56. (Original) A compound according to Claim 50, which is

N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

67. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-(4-cyclohexylphenyl)-2-

methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-[4-(trifluoromethyl) phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

45. (Original) A compound according to Claim 50, which is (2R)-N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is (2R)-4-(3-chloropyridin-2-yl)-N-(4-isopropylphenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is (2S)-4-(3-chloropyridin-2-yl)-N-(4-trifluoromethylphenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

(Original) A compound according to Claim 50, which is (2S)-N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

(Original) A compound according to Claim 80, which is (2S)-4-(3-chloropyridin-2-yl)-N-(4-isopropylphenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

74. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-(4-piperidin-1-ylphenyl)piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

75. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-[2-fluoro-4-(trifluoromethyl)phenyl]-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

76. (Original) A compound according to Claim 50, which is (2R)-2-methyl-N-[4-(trifluoromethyl)phenyl]-4-[3-

(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

77. (Original) A compound according to Claim 50, which is (2R)-N-(4-tert-butylphenyl)-2-methyl-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

Which is (2R)-N-(4-isopropylphenyl)-2-methyl-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

79. (Original) A compound according to Claim 50, which is 4-(3-chloropyridin-2-yl)-2,6-dimethyl-N-[4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

Which is N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)-2,6-dimethylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is 4-(3-chloropyridin-2-yl)-N-(4-isopropylphenyl)2,6-dimethylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

2. (Original) A compound according to Claim 50, which is (2R)-N-(4-cyclohexylphenyl)-2-methyl-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

%3. (Original) A compound according to Claim %0, which is 4-(3-chloropyridin-2-yl)-N-(4-cyclohexylphenyl)-2,6-dimethylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

84. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-(4-cyclopentylphenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

45 ×5. (Original) A compound according to Claim 50, which is (2R)-N-(4-cyclopentylphenyl)-2-methyl-4-[3(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

86. (Cancelled)

87. (Cancelled)

81

86. (Original) A compound according to Claim 50, which is (2R)-N-(4-tert-butylphenyl)-4-(3-methoxypyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

(trifluoromethyl)phenyl] piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

% 91. (Original) A compound according to Claim 50,5 which is (2R)-4-(3-chloropyridin-2-yl)-N-[4-(3,6-dihydro-2H-pyran-4-yl)phenyl]-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

92. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-(4-tetrahydro-2H-pyran-4-ylphenyl)piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

93. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-[4-(4-hydroxytetrahydro-2H-pyran-4-yl)phenyl]-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

y4. (Original) A compound according to Claim 50, which is (2R)-N-[4-(4-hydroxytetrahydro-2H-pyran-4-yl)phenyl]-2-methyl-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

yb. (Original) A compound according to Claim 80, which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-[4-(2-methyl-1,3-thiazol-4-yl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

96. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-[4-(2-ethyl-1,3-thiazol-4-yl)phenyl]-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

97. (Original) A compound according to Claim 80, which is (2R)-4-(3-chloropyridin-2-yl)-N-[4-(2-methoxy-1,1-dimethylethyl)phenyl]-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

91. (Original) A compound according to Claim 50, which is (2R)-N-[4-(2-methoxy-1,1-dimethylethyl)phenyl]-2-methyl-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

99. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-[4-(1-cyano-1-

methylethyl)phenyl]-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

100. (Original) A compound according to Claim 50, which is (2R)-N-[4-(1-cyano-1-methylethyl)phenyl]-2-methyl-4-[3-(trifluoromethyl) pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

101. (Original) A compound according to Claim 50, which is N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)-2-ethylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

102. (Original) A compound according to Claim 50, which is 4-(3-chloropyridin-2-yl)-2-ethyl-N-[4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

183. (Original) A compound according to Claim 50, which is 4-(3-chloropyridin-2-yl)-2-ethyl-N-(4-isopropylphenyl)piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

104. (Original) A compound according to Claim 50, which is N-(4-tert-butylphenyl)-2-ethyl-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

105. (Original) A compound according to Claim 50, which is 2-ethyl-N-[4-(trifluoromethyl)phenyl]-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

106. (Original) A compound according to Claim 50, which is 2-ethyl-N-(4-isopropylphenyl)-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

107. (Original) A compound according to Claim 80, which is 2-tert-butyl-N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

108. (Original) A compound according to Claim 50, which is 2-tert-butyl-N-[4-(trifluoromethyl)phenyl]-4-[3-

(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

10%. (Original) A compound according to Claim 50, which is N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)-2-isopropylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is N-(4-tert-butylphenyl)-2-isopropyl-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is 2-isopropyl-N-[4-(trifluoromethyl)phenyl]-4-[3-(trifluoromethyl) pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is 2-isopropyl-N-(4-isopropylphenyl)-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

1/3. (Original) A compound according to Claim 50,45 which is (2R)-4-(3-fluoropyridin-2-yl)-2-methyl-N-[4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

124. (Original) A compound according to Claim 50, which is (2R)-N-(4-tert-butylphenyl)-4-(3-fluoropyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is (2R)-4-(3-fluoropyridin-2-yl)-N-(4-isopropylphenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

116. (Original) A compound according to Claim 50, which is (2R)-N-(4-cyclohexylphenyl)-4-(3-fluoropyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

117. (Original) A compound according to Claim 50, which is (2R)-N-(4-cyclopentylphenyl)-4-(3-fluoropyridin-2-

yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

118. (Original) A compound according to Claim 50, which is (2R)-N-(4-tert-butylphenyl)-4-(3-cyanopyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

119. (Original) A compound according to Claim 50, which is (2R)-4-(3-cyanopyridin-2-yl)-2-methyl-N-[4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

120. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-{4-[cyano(phenyl)methyl] phenyl}-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

121. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-[3-methyl-4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is (2R)-4-(3-fluoropyridin-2-yl)-2-methyl-N-[3-methyl-4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

123. (Original) A compound according to Claim 50, which is (2R)-4-{3-[bis(methylsulfonyl)amino]pyridin-2-yl}-N-(4-tert-butylphenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is (2R)-2-methyl-N-[3-methyl-4-(trifluoromethyl)phenyl]-4-[3-(trifluoromethyl)pyridin-2-yl] piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

125. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-{4-[1-(trifluoromethyl)vinyl]phenyl} piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

126. (Original) A compound according to Claim 80, which is (2R)-2-methyl-4-[3-(trifluoromethyl)pyridin-2-yl]-

N-{4-[1-(trifluoromethyl)vinyl] phenyl}piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

120
121. (Original) A compound according to Claim 50,
which is (2R)-4-(3-fluoropyridin-2-yl)-2-methyl-N-{4-[1(trifluoromethyl)vinyl] phenyl}piperazine-1-carboxamide, or
a pharmaceutically acceptable salt thereof.

121. (Original) A compound according to Claim 50, which is (2R)-N-(4-sec-butylphenyl)-4-(3-fluoropyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

129. (Original) A compound according to Claim 50, which is (2R)-2-methyl-N-[4-(2,2,2-trifluoro-1-methylethyl)phenyl]-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

125
130. (Original) A compound according to Claim 50,
which is (2R)-4-(3-fluoropyridin-2-yl)-2-methyl-N-[4-(2,2,2-trifluoro-1-methylethyl)phenyl]piperazine-1carboxamide, or a pharmaceutically acceptable salt thereof.

124 131. (Original) A compound according to Claim 56,45 which is (2R)-4-(3-chloro-5-nitropyridin-2-yl)-2-methyl-N-[4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is (2R)-4-(5-amino-3-chloropyridin-2-yl)-2-methyl-N[4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a
pharmaceutically acceptable salt thereof.

which is (2R)-4-(3-fluoropyridin-2-yl)-N-[3-fluoro-4-(trifluoromethyl) phenyl]-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

124. (Original) A compound according to Claim 50, which is (2R)-N-[3-fluoro-4-(trifluoromethyl)phenyl]-2-methyl-4-[3-(trifluoromethyl) pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

128
135. (Original) A compound according to Claim 50,
which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-[4-

(2,2,2-trifluoro-1-methylethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

137. (Original) A compound according to Claim 50, which is (2R)-4-(3-fluoropyridin-2-yl)-2-methyl-N-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

(31-128. (Original) A compound according to Claim 50, which is (2R)-2-methyl-N-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

139. (Original) A compound according to Claim 50, which is (2R)-4-[3-(aminosulfonyl)pyridin-2-yl]-N-(4-tert-butylphenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

140. (Original) A compound according to Claim 50, which is (2R)-N-(4-benzoylphenyl)-4-(3-chloropyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

141. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-(4-iodophenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

135
142. (Original) A compound according to Claim 50,
which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-{4[2,2,2-trifluoro-1,1bis(trifluoromethyl)ethyl]phenyl}piperazine-1-carboxamide,
or a pharmaceutically acceptable salt thereof.

143. (Original) A compound according to Claim 50, which is (2R)-2-methyl-N-{4-[2,2,2-trifluoro-1,1-bis(trifluoromethyl)ethyl] phenyl}-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

131 144. (Original) A compound according to Claim 50, which is (2R)-N-(4-butylphenyl)-4-(3-chloropyridin-2-yl)-2methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

138
145. (Original) A compound according to Claim 50,
which is 2-(fluoromethyl)-N-[4-(trifluoromethyl)phenyl]-4[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide,
or a pharmaceutically acceptable salt thereof.

146. (Original) A compound according to Claim 50, which is (2R)-N-[4-bromo-3-(trifluoromethyl)phenyl]-4-(3-chloropyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

147. (Original) A compound according to Claim 50, which is (2R)-N-[4-bromo-3-(trifluoromethyl)phenyl]-2-methyl-4-[3-(trifluoromethyl) pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

141 148. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-N-[4-fluoro-3(trifluoromethyl) phenyl]-2-methylpiperazine-1-carboxamide,
or a pharmaceutically acceptable salt thereof.

149. (Original) A compound according to Claim 50, which is (2R)-N-[4-fluoro-3-(trifluoromethyl) phenyl]-2-methyl-4-[3-(trifluoromethyl) pyridin-2-yl] piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

180. (Original) A compound according to Claim 50, which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-{4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl] phenyl}piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

181. (Original) A compound according to Claim 50, which is (2R)-2-methyl-N-{4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl) ethyl]phenyl}-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

182. (Original) A compound according to Claim 40, which is (2R)-N-(4-tert-butylphenyl)-4-(3-chloropyrazin-2-

yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

153. (Original) A compound according to Claim 40, which is (2R)-4-(3-chloropyrazin-2-yl)-N-(4-isopropylphenyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

154. (Original) A compound according to Claim 40, which is (2R)-4-(3-chloropyrazin-2-yl)-2-methyl-N-[4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

Job. (Original) A compound according to Claim 40, which is (2R)-4-(3-chloropyrazin-2-yl)-2-methyl-N-{4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl] phenyl} piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

J86. (Original) A compound according to Claim 40, which is (2R)-4-(3-chloropyrazin-2-yl)-2-methyl-N-{4-cyclopentyl-phenyl} piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

150
157. (Original) A compound according to Claim 40,
which is (2R)-4-(3-chloropyrazin-2-yl)-2-methyl-N-{4cyclohexyl-phenyl} piperazine-1-carboxamide, or a
pharmaceutically acceptable salt thereof.

151 158. (Original) A compound according to Claim 42, which is 4-(3-chloropyridin-2-yl)-N-[5-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

189. (Original) A compound according to Claim 42, which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-[5-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

160. (Original) A compound according to Claim 42, which is (2R)-4-(3-chloropyridin-2-yl)-2-methyl-N-[6-(trifluoromethyl)pyridin-3-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

151. (Previously Amended) A compound of the Formula:

or a pharmaceutically acceptable salt thereof, wherein:

- A is absent or is selected from the group consisting of O, S, NR_A, CR_BR_B' , $NR_ACR_BR_B'$, CR_BR_B' , $CR_$
- R_3 and R_4 are independently chosen at each occurrence from the group consisting of hydrogen, halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), and -N $(C_{1-6}$ alkyl) $(C_{1-6}$ alkyl);
- R_5 is selected from the group consisting of halogen, halo(C_{1-6}) alkyl, C_{3-6} alkyl substituted with 0-3 R_6 , C_{2-6} alkenyl substituted with 0-3 R_6 , (C_{3-8} cycloalkyl) C_{1-4} alkyl substituted with 0-3 R_6 , and Y;
- R_{5B} and R_{9B} each represent from 0 to 2 substituents and are independently chosen from halogen, cyano, nitro,

Cl

halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy;

R₆ is independently selected at each occurrence from the group consisting of cyano, halogen, hydroxy, C1-4alkyl, C_{1-4} alkoxy, -NH(C_{1-4} alkyl), -N(C_{1-4} alkyl)(C_{1-4} alkyl) and Y; Y is independently selected at each occurrence from C3-8 cycloalkyl, piperidinyl, piperazinyl, tetrahydropyranyl, dihydropyranyl, morpholinyl, thiomorpholinyl, phenyl, pyridyl, pyrazinyl, pyrimidinyl, thiazolyl, thienyl, and imidazolyl, each of which may be further substituted with one or more substituents independently selected from halogen, oxo, hydroxy, amino, nitro, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, halo (C_{1-4}) alkyl, halo (C_{1-4}) alkoxy, mono-

4) alkylamino, and C₁₋₄alkylthio.

$$R_{5B}$$
 R_{5B}
 R_{5B}
 R_{6B}
 R_{6B}
 R_{6B}
 R_{6B}
 R_{6B}
 R_{6B}
 R_{6B}
 R_{6B}

wherein

 R_4 is independently selected at each occurrence from hydrogen and C_{1-4} alkyl.

163. (Original) A compound or salt according to Claim
156
162, wherein:

 R_5 is selected from the group consisting of halo(C_{1-6})alkyl, $C_{3-6} alkyl, \ (C_{3-8} cycloalkyl) C_{1-4} alkyl, \ and \ Y;$

 R_{5B} and R_{9B} each represent from 0 to 1 substituents and are independently chosen from halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy;

Y is selected from C_{3-8} cycloalkyl, piperidinyl, piperazinyl, tetrahydropyranyl, dihydropyranyl, morpholinyl, thiomorpholinyl, phenyl, pyridyl, pyrazinyl, pyrimidinyl, thiazolyl, thienyl, and imidazolyl.

164. (Original) A compound according to Claim 161, which is (2R)-4-isoquinolin-1-yl-2-methyl-N-[4-(trifluoromethyl)phenyl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

155. (Original) A compound according to Claim 161, which is (2R)-N-(4-tert-butylphenyl)-4-isoquinolin-1-yl-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

156. (Original) A compound according to Claim 161, which is (2R)-N-(4-isopropylphenyl)-4-isoquinolin-1-yl-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

(Original) A compound according to Claim 161, which is (2R)-N-(4-cyclopentylphenyl)-4-isoquinolin-1-yl-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

168. (Original) A compound according to Claim 161, which is (2R)-N-(4-cyclohexylphenyl)-4-isoquinolin-1-yl-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

169. (Previously Amended) A compound of the Formula:

or a pharmaceutically acceptable salt thereof, wherein:

- A is absent or is selected from the group consisting of O, S, NR_A, CR_BR_B' , $NR_ACR_BR_B'$, $CR_BR_B'NR_A$, $-CR_A=CR_B-$, and C_3H_4 ; where R_A , R_B , and R_B' are independently selected at each occurrence from hydrogen and C_{1-6} alkyl;
- R_3 and R_4 are independently chosen at each occurrence from the group consisting of hydrogen, halogen, cyano, nitro, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkoxy, hydroxy, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -NH $(C_{1-6}$ alkyl), and -N $(C_{1-6}$ alkyl);
- R_{5B} , R_{5C} , and R_{9B} each represent from 0 to 2 substituents and are independently chosen from halogen, cyano, nitro, halo(C_{1-2})alkyl, halo(C_{1-2})alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy; and
- R_9 is selected from the group consisting of halogen, cyano, $-N\left(SO_2CH_3\right)_2, \quad -SO_2NH_2, \quad halo\left(C_{1-3}\right)alkyl, \quad C_{1-3}alkoxy, \\ -NH\left(C_{1-3}alkyl\right), \text{ and } -N\left(C_{1-3}alkyl\right)\left(C_{1-3}alkyl\right).$

170. (Original) A compound or salt according to Claim
169 of the Formula:

T, 2020

Cl

wherein

 R_4 is independently selected at each occurrence from hydrogen and C_{1-4} alkyl.

171. (Original) A compound or salt according to Claim
163
170, wherein:

 R_9 is selected from the group consisting of halogen and halo(C_{1-2})alkyl; and

 R_{5B} and R_{9B} each represent from 0 to 1 substituents and are independently chosen from halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy.

which is(2R)-4-(3-chloropyridin-2-yl)-N-(9H-fluoren-2-yl)-

2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

173. (Original) A compound according to Claim 169, which is (2R)-N-(9H-fluoren-2-yl)-2-methyl-4-[3-(trifluoromethyl) pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

174. (Original) A compound according to Claim 38, which is (2R)-N-(4-tert-butylcyclohexyl)-4-(3-chloropyridin-2-yl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

175. (Original) A compound according to Claim 38, which is (2R)-4-(3-chloropyridin-2-yl)-N-(4-isopropylcyclohexyl)-2-methylpiperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

176. (Original) A compound according to Claim 38, which is (2R)-N-(4-isopropylcyclohexyl)-2-methyl-4-[3-(trifluoromethyl)pyridin-2-yl]piperazine-1-carboxamide, or a pharmaceutically acceptable salt thereof.

177-192. (Cancelled)

193. (Original) A compound or salt of Claim 50 wherein the compound or salt is not addictive.

194-196. (Cancelled)

T,2081

171 197. (Original) A compound of the Formula:

Ar₁ H N R_{9B}

or a pharmaceutically acceptable salt thereof wherein: R_4 is methyl or hydrogen;

 R_{9B} represents 0-2 substituents independently chosen from: halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy; and Ar_1 is 2,4-dichlorphenyl or 3-nitro-4-chlorophenyl.

179. (Original) A compound of the Formula:

T, 2082

$$R_{9B}$$

or a pharmaceutically acceptable salt thereof wherein:

R₉ is chloro or trifluoromethyl; and

 R_{5B} and R_{9B} independently represent from 0-2 substituents on each of the rings on which they occur and are independently chosen from: halogen, cyano, nitro, halo (C_{1-2}) alkyl, halo (C_{1-2}) alkoxy, amino, C_{1-4} alkyl, and C_{1-2} alkoxy.

199. (Previously added) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound or salt according to claim 4.

200. (Previously added) A package comprising a pharmaceutical composition of claim 199 in a container and further comprising indicia comprising instructions for using the composition to alleviate pain.

201. (Previously added) A package comprising a pharmaceutical composition of claim 199 in a container and further comprising indicia comprising instructions for using the composition to alleviate symptoms of exposure to capsaicin or tear gas.

202. (Previously added) A compound or salt of claim of wherein, in an in vitro assay of capsaicin receptor antagonism, the compound or salt exhibits capsaicin receptor antagonist activity, but in an in vitro assay of capsaicin receptor agonism the compound does not exhibit detectable agonist activity.

203. (Previously added) A compound or salt of claim a wherein a dose of the compound or salt that is twice the minimum dose sufficient to provide analgesia in an animal model for determining pain relief does not produce sedation in an animal model assay of sedation.

204. (Previously added) 4-(3-Chloro-2-pyridinyl)-N[4-(isopropyl)phenyl]-1-piperazinecarboxamide or a
pharmaceutically acceptable salt thereof.

179

205. (Previously added) (2R)-N-(4-tert-butylphenyl)-4[3-(dimethylamino)pyridin-2-yl]-2-methylpiperazine-1carboxamide or a pharmaceutically acceptable salt thereof.

189 206. (Previously added) (2R)-4-[3-(dimethylamino)pyridin-2-yl]-2-methyl-N-[4-

(trifluoromethyl)phenyl]piperazine-1-carboxamide or a pharmaceutically acceptable salt thereof.

207. (Previously added) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound or salt according to claim 21.

208. (Previously added) A compound or salt of claim 21 wherein, in an in vitro assay of capsaicin receptor antagonism, the compound or salt exhibits capsaicin receptor antagonist activity, but in an in vitro assay of capsaicin receptor agonism the compound does not exhibit detectable agonist activity.

299. (Previously added) A compound or salt of claim 21 wherein a dose of the compound or salt that is twice the minimum dose sufficient to provide analgesia in an animal

model for determining pain relief does not produce sedation in an animal model assay of sedation.

210. (Previously added) A package comprising a pharmaceutical composition of claim 207 in a container and further comprising indicia comprising instructions for using the composition to alleviate pain.

211. (Previously added) A package comprising a pharmaceutical composition of claim 207 in a container and further comprising indicia comprising instructions for using the composition to alleviate symptoms of exposure to capsaicin or tear gas.