Порождение элементарных комбинаторных объектов

(темы нет в учебном пособии)

Часто возникает необходимость порождения и исследования всех элементов некоторого класса комбинаторных объектов. Наиболее общие методы решения таких задач основаны на поиске с возвратом, однако во многих случаях объекты настолько просты, что целесообразнее применять специализированные методы. В данном разделе рассмотрим процедуры порождения некоторых комбинаторных объектов, которые обычно встречаются на практике. В каждом случае существуют две возможные цели: систематическое порождение всех возможных конфигураций и порождение равномерно распределенных случайных конфигураций.

Алгоритм систематического порождения состоит из трех компонент: выбор начальной конфигурации, преобразование одного объекта в следующий и условие окончания. Общая форма такого алгоритма будет иметь следующий вид:

В рамках такой схемы выбор начальной конфигурации должен учитывать тот факт, что алгоритм предпринимает еще одно преобразование после того, как выведен последний объект. Поскольку это избыточное преобразование не должно приводить к ошибке, некоторые из операций выбора начальной конфигурации могут присваивать значения на вид посторонним переменным, например, нулевому или (n+1)-му элементу массива, в то время как массив для представления объекта обычно имеет элементы только с номерами от 1 до n. Обращение к этой посторонней переменной или изменение ее значения часто можно использовать как условие окончания.

В алгоритме порождения всех элементов множества нас прежде всего интересует общее количество времени, требующегося для порождения всего множества. В частности, в некоторых алгоритмах можно порождать все множество за время, пропорциональное его мощности. Такие алгоритмы, называемые линейными, желательны, поскольку их эффективность — асимптотически наилучшая из возможных. Представляет также интерес количество изменений, которые происходят при переходе к последующим объектам. Иногда желательно, чтобы такого рода изменения были минимальными. Такие алгоритмы называются алгоритмами с минимальным изменением. Точное определение минимального изменения зависит от рассматриваемых комбинаторных конфигураций.

Задачи, требующие случайного порождения элементов в классе комбинаторных объектов, возникают при оценке сложности по методу Монте-Карло. Например, если мы не можем удовлетворительно проанализировать поведение алгоритма в среднем, для суждений об эффективности, возможно, придется испытать его на большом числе случайно выбранных входных конфигурациях.

Один из способов подхода к систематическому и случайному порождению состоит в задании определенного соответствия между целыми числами 1, 2, ..., N и N объектами. Систематическое порождение тогда осуществляется перечислением целых чисел от 1, 2, ..., N и обращением каждого числа в объект, в то время как случайное порождение осуществляется случайным порождением целого числа от 1, 2, ..., N и обращением его в объект. Процесс обращения, однако, может быть дорогостоящим, и обычно лучше его избегать, если это возможно.

3.6. Перестановки различных элементов

К часто порождаемым комбинаторным объектам относятся перестановки множества различных элементов. Без ограничения общности будем полагать, что элементами множества являются целые числа от 1 до n, всего имеем n! перестановок.

3.6.1. Лексикографический порядок

Последовательность перестановок на множестве $\{1, 2, ..., n\}$ представлена в лексикографическом порядке, если она записана в порядке возрастания получающихся чисел. Например, лексикографическая последовательность перестановок трех элементов имеет вид 123, 132, 213, 231, 312, 321. В общем случае если $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$ и $\tau = (\tau_1, \tau_2, ..., \tau_n)$ – перестановки, то говорят, что σ лексикографически меньше τ , если и только если для некоторого $k \ge 1$ имеет место $\sigma_j = \tau_j$ для всех j < k и $\sigma_k < \tau_k$.

Необходимо отметить, что явное применение алгоритма поиска с возвратом к перестановкам порождает их в лексикографическом порядке.

Перестановки можно порождать одну за другой следующим образом. Начиная с перестановки (1,2,...,n), осуществляется переход от перестановки $\Pi=(\pi_1,\pi_2,...,\pi_n)$ к ее последующей путем просмотра Π справа налево в поисках самой правой позиции i, в которой $\pi_i < \pi_{i+1}$. Найдя позицию i, производится поиск позиции j, в которой π_j есть наименьший элемент, расположенный справа от π_i и больший его. Затем осуществляется транспозиция элементов π_i и π_j и обращение отрезка $\pi_{i+1},...,\pi_n$ (элементы которого расположены в порядке убывания) путем транспозиции симметрично расположенных элементов (в результате элементы отрезка будут расположены в порядке возрастания).

Например, для n=8 и $\Pi=(2,3,6,8,7,5,4,1)$ имеем $\pi_i=\pi_3=6$ и $\pi_j=\pi_5=7$. Выполнив транспозицию π_3 и π_5 и обращение π_4 , π_5 , π_6 , π_7 , π_8 , получаем перестановку (2,3,7,1,4,5,6,8), следующую за перестановкой Π в лексикографическом порядке.

Детали реализации порождения перестановок в лексикографическом порядке показаны в алгоритме 1. Алгоритм начинает работу с вывода $\Pi=(1,2,...,n)$, первой в лексикографическом порядке перестановки, и останавливается только, когда i=0, что происходит, если и только если $\pi_1 > \pi_2 > ... > \pi_n$, то есть после порождения $\Pi=(n,n-1,...,1)$, последней в лексикографическом порядке перестановки.

```
for j \leftarrow 0 to n do \pi_j \leftarrow j
i \leftarrow 1
                       Вывести \Pi = (\pi_1, \pi_2, ..., \pi_n)
                       //найти самое правое место, где \pi_i < \pi_{i+1}
                       while \pi_i > \pi_{i+1} do i \leftarrow i-1
                       || найти \pi_i , наим элемент справа от \pi_i и больший его
\begin{vmatrix} r \leftarrow n \\ s \leftarrow i + 1 \end{vmatrix}
while r > s do \begin{cases} \pi_r \leftrightarrow \pi_s \\ r := r - 1 \\ s := s + 1 \end{cases}
```

Алгоритм 1. Лексикографическое порождение перестановок

Общую эффективность этого алгоритма определяют две операции: число транспозиций и число сравнений между элементами перестановок. Воспользуемся результатами из [21].

Заметим, что в лексикографически упорядоченной последовательности перестановок существует полная подпоследовательность k! перестановок из k правых элементов, в которой остальные элементы не перемещаются. Это наблюдение позволяет получить рекуррентное соотношение для I_k и C_k , числа транспозиций « $\pi_i \leftrightarrow \pi_j$ » или « $\pi_r \leftrightarrow \pi_s$ » и и числа сравнений « $\pi_i > \pi_{i+1}$ » или « $\pi_i > \pi_j$ » соответственно использованных алгоритмом 1 для порождения первых k! из n! перестановок. В частности, заметим, что для каждого из n возможных значений π_1 , т. е. для каждой подпоследовательности перестановок, соответствующих n-1 самым правым компонентам, используется I_{n-1} транспозиций.

Преобразование последней перестановки одной из этих подпоследовательностей в первую перестановку следующей подпоследовательности требует $\lfloor (n+1)/2 \rfloor$ перестановок, и всего таких преобразований будет n-1. Таким образом, за исключением преобразования, которое осуществляется при i=0, имеется $nI_{n-1}+(n-1)\lfloor (n+1)/2 \rfloor$ транспозиций, а поэтому

$$I_n = n I_{n-1} + (n-1) \lfloor (n+1)/2 \rfloor$$

 $I_1 = 0$

Решение этого рекуррентного соотношения трудно найти прямо, но путем замены переменных можно сделать следующее. Пусть

$$S_n = I_n + \lfloor (n+1)/2 \rfloor;$$

тогда

$$S_1 = 1,$$
 $S_n = n(S_{n-1} + \varepsilon_n), \ \varepsilon_n = \begin{cases} 0, \ \text{если} \ n \ \text{нечетно,} \\ 1, \ \text{если} \ n \ \text{четно.} \end{cases}$

Решение этого соотношения легко получить:

$$S_n = n! \left(1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots + \frac{1}{(2\lfloor (n-1)/2 \rfloor)!} \right).$$

Поэтому

$$I_n = n! \left(\sum_{j=0}^{\left\lfloor (n-1)/2 \right\rfloor} \frac{1}{(2j)!} \right) - \left\lfloor \frac{n+1}{2} \right\rfloor.$$

Добавление $\lfloor (n+2)/2 \rfloor$ транспозиций, осуществляемых при i=0, дает всего

$$n! \left(\sum_{j=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{(2j)!} \right) + \varepsilon_n$$

транспозиций. Поскольку

$$\sum_{j=0}^{\lfloor (n-1)/2\rfloor} \frac{1}{(2j)!} \approx \operatorname{ch} 1 \approx 1,54308,$$

получаем, что алгоритм для порождения n! перестановок использует приблизительно 1,54308n! транспозиций.

Аналогично, для числа сравнений можно составить рекуррентное соотношение

$$C_n = n C_{n-1} + \frac{(n-1)(3n-2)}{2}$$

 $C_1 = 0$

и найти его решение (путем замены переменных, т. е. подставив $T_n = C_n + (3n+1)/2$. В результате получим, что

$$C_n \approx \left(\frac{3}{2}e - 1\right)n! \approx 3,07742n!$$

Таким образом, временная сложность алгоритма O(n!).

3.6.2. Векторы инверсий

Пусть $\Pi = (\pi_1, \pi_2, ..., \pi_n)$ есть перестановка. Пара (π_i, π_j) называется *инверсией* Π , если i < j и $\pi_i > \pi_j$. Вектор инверсий перестановки Π – это последовательность целых чисел

$$D=(d_1,\,d_2,\,\ldots,\,d_n)$$

таких, что d_j — число элементов π_i , таких, что (π_i, π_j) является инверсией. Другими словами. d_j — число элементов, больших π_j и стоящих в перестановке слева от него, $0 \le d_i < j$.

Например, вектором инверсий перестановки

$$\Pi = (2, 3, 6, 8, 7, 5, 4, 1)$$

будет

Вектор инверсий $D = (d_1, d_2, ..., d_n)$ однозначно определяет перестановку множества $\{1, 2, ..., n\}$. Рассмотрим пример. Предположим, имеется вектор инверсий

Вычислим соответствующую перестановку. Поскольку $d_5=1$, имеем $\pi_5=4$. Затем так как $d_4=2$, то $\pi_4=2$. Аналогично, так как $d_3=1$, то $\pi_3=3$. Поскольку $d_2=1$, то $\pi_2=1$, и поэтому $\pi_1=5$. Таким образом, перестановка имеет вид $\Pi=(5,1,3,2,4)$.

Поскольку вектор инверсий однозначно определяет перестановку, его можно использовать для порождения всех перестановок, начиная с вектора

и завершая вектором

Однако, этот путь неэффективен, поскольку построение перестановки по ее вектору инверсий требует $O(n^2)$ операций, что приводит к нелинейному алгоритму.

Польза вектора инверсий (особенно сумма его элементов) заключается в том, что он несет информацию о количестве «беспорядка» в перестановке, т. е. может использоваться в качестве некоторого количественного критерия для оценки степени неотсортированности перестановки. Это будет полезным при анализе некоторых алгоритмов сортировки.

3.6.3. Циклические перестановки

Одним из простейших видов перестановок является циклическая перестановка. Циклическая перестановка порядка k и степени d есть перестановка, в которой самые левые k элементов сдвинуты циклически вправо на d позиций, а положение остальных элементов фиксировано. Например,

$$\Pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 5 & 1 & 2 & 6 & 7 & 8 \end{pmatrix}$$

есть циклическая перестановка порядка 5 и степени 3.

Использование циклических перестановок дает способ порождения всех перестановок, который состоит в следующем. Начинается с перестановки (1, 2, ..., n) и последовательно сдвигаются по циклу на один разряд все n элементов. Когда сдвиг по циклу на один разряд первых n элементов возвращает к ранее порожденной перестановке (получаем тождественную перестановку), сдвигаются по циклу первые n-1 элементов на один разряд. Если этот шаг возвращает к ранее порожденной перестановке, сдвигаются по циклу первые n-2 элементов на один разряд. После получения новой перестановки снова реализуется сдвиг по циклу всех n элементов. Детали процесса порождения перестановок показаны в алгоритме 2.

$$\begin{array}{l} \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ n \ \textbf{do} \ \pi_i \leftarrow i \\ k \leftarrow 0 \\ \\ \textbf{while} \ k \neq 1 \ \textbf{do} \end{array} \begin{cases} \textbf{В} \textbf{ывести} \ \Pi = (\pi_1, \pi_2, \ldots, \pi_n) \\ k \leftarrow n \\ \textbf{Сдвинуть} \ \text{первые} \ k \ \text{элементов на одну позицию} \\ \\ \textbf{while} \ \pi_k = k \neq 1 \ \textbf{do} \end{cases} \begin{cases} k \leftarrow k - 1 \\ \textbf{Сдвинуть} \ \text{первые} \ k \ \text{элементов} \\ \textbf{на одну позицию} \end{cases}$$

Алгоритм 2. Порождение перестановок циклическим сдвигом

Для n = 4 алгоритм порождает перестановки в следующем порядке (прямоугольником обведены тождественные перестановки, они алгоритмом не включаются в порождаемую последовательность перестановок):

1234	3124	2314	2134	3214	1324	2134
4123	4312	4231	4213	4321	4132	1234
3412	2431	1423	3421	1432	2413	
2341	1243	3142	1342	2143	3241	
1234	3124	2314	2134	3214	1324	
		1234				

Порядок, определяемый этими вложенными циклами, нельзя породить эффективно. Преобразование одной перестановки в следующую может потребовать в худшем случае n^2 транспозиций и всегда требует не менее чем n транспозиций. Это чрезвычайно неэффективно. Даже если циклический сдвиг рассматривать как элементарную операцию, преобразование в худшем случае все равно требует порядка n операций, что не дает линейного алгоритма. Данный алгоритм представляет некоторый исторический и теоретический интерес, имеет малую практическую ценность.

3.6.4. Транспозиция смежных элементов

Для минимизации объема работы, необходимого для порождения последовательности перестановок, соседние перестановки в последовательности должны иметь минимальные различия. Лучшее, чего можно достигнуть, — это то, что любая перестановка в последовательности должна отличаться от предшествующей перестановки транспозицией двух соседних элементов.

Такую последовательность перестановок легко построить рекурсивно. Для n=1 единственная перестановка (1) удовлетворяет требованиям. Предположим, что имеем последовательность $\Pi_1, \Pi_2, \dots \Pi_{(n-1)!}$, перестановок на множестве $\{1, 2, \dots, n-1\}$, в которой последовательные перестановки различаются только транспозицией смежных элементов. Будем расширять каждую из этих (n-1)! перестановок, вставляя элемент n на каждое из n возможных мест. Особенность состоит в том, чтобы расположить эти n! перестановок в порядке, удовлетворяющем требованию минимального изменения. Для этого n добавляется к Π_i последовательно во все позиции справа налево, если i нечетно, и слева направо, если i четно. Порядок порождаемых таким образом перестановок будет следующим:

Очевидно, что практически трудно порождать весь список последовательностей целиком. Однако ту же последовательность перестановок можно породить итеративно, получая каждую перестановку из предшествующей ей перестановки и небольшого количества добавочной информации. Это делается с помощью трех векторов: текущей перестановки $\Pi = (\pi_1, \pi_2, ..., \pi_n)$, обратной к ней перестановки $P = (p_1, p_2, ..., p_n)$ и направления сдвига $D = (d_1, d_2, ..., d_n)$, где $d_i = -1$, если элемент i сдвигается влево, $d_i = +1$, если вправо, и $d_i = 0$, если элемент не сдвигается.

Прежде всего, напомним понятие обратной перестановки.

Под *суперпозицией* перестановок f и g понимают перестановку fg, определяемую как fg(i) = f(g(i)), $1 \le i \le n$. Для суперпозиции двух перестановок, скажем

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix} \text{ }_{\mathbf{H}} \text{ } g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix},$$

достаточно изменить порядок столбцов в перестановке f таким образом, чтобы в первой строке получить последовательность, имеющуюся во второй строке перестановки g, тогда вторая строка перестановки f дает суперпозицию fg. В нашем случае

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix} \quad f = \begin{pmatrix} 2 & 5 & 3 & 1 & 4 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix} \quad fg = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix}.$$

Тождественная перестановка обычно обозначается

$$e = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}.$$

Каждая перестановка f однозначно определяет *обратную* к ней перестановку f^{-1} , такую, что $ff^{-1} = f^{-1}f = e$. Чтобы ее определить, достаточно поменять местами строки в записи перестановки f и упорядочить по первой строке. Например, для

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 1 & 5 \end{pmatrix}$$
 получаем $f^{-1} = \begin{pmatrix} 3 & 4 & 2 & 1 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$.

Заметим, что по обратной перестановке легко определить позицию элемента в исходной перестановке. Например, по f^{-1} видно, что элемент 4 находится в позиции 2 в перестановке f, элемент 2 находится в позиции 3 и т. д.

Вернемся к алгоритму. Элемент сдвигается до тех пор, пока не достигнет элемента, большего, чем он сам; в этом случае сдвиг прекращается. В этот момент направление сдвига данного элемента изменяется на противоположное и передвигается следующий меньший его элемент, который можно сдвинуть. Поскольку хранится перестановка, обратная к П, то в П легко найти позицию следующего меньшего элемента.

Детали реализации представлены алгоритмом 3. Заметим, что выполняется присваивание $\pi_0 \leftarrow \pi_{n+1} \leftarrow n+1$, чтобы прекратить передвижение n, и $d_1 \leftarrow 0$, чтобы в тех случаях, когда m становится равным 1 во внутреннем цикле, остаток внешнего цикла был правильно определен.

$$\begin{aligned} & \textbf{for } i \leftarrow 1 \ \textbf{ to } n \ \textbf{ do } \begin{cases} \pi_i \leftarrow p_i \leftarrow i \\ d_i \leftarrow -1 \end{cases} \\ & d_1 \leftarrow 0 \\ \pi_0 \leftarrow \pi_{n+1} \leftarrow m \leftarrow n+1 \\ & \begin{cases} \text{Вывести } \Pi = (\pi_1, \pi_2, \dots, \pi_n) \\ m \leftarrow n \end{cases} \\ & \textbf{while } \pi_{p_m + d_m} > m \ \textbf{ do } \begin{cases} d_m \leftarrow -d_m \\ m \leftarrow m-1 \end{cases} \\ & \pi_{p_m} \leftrightarrow \pi_{p_m + d_m} \\ | \text{//} \textit{B этот момент } \pi_{p_m + d_m} = m \\ & p_{\pi_{p_m}} \leftrightarrow p_m \end{aligned}$$

Алгоритм 3. Порождение перестановок транспозицией смежных элементов

Этот алгоритм – один из наиболее эффективных алгоритмов для порождения перестановок. Алгоритм линеен, поскольку проверка условия во внутреннем цикле делается всего $\sum_{i=1}^{n} i! = n! + o(n!)$ раз. Более эффективный алгоритм получается применением метода макрорасширений, поскольку в n-1 из каждых n сдвигов сдвигается элемент n.

3.6.5. Случайные перестановки

Любую из обсуждавшихся выше последовательностей можно использовать для порождения случайных перестановок, поскольку существует четкое соответствие между целыми числами и перестановками. Выбирая случайное число между 0 и n!-1, мы тем самым выбираем перестановку. Однако в дополнение к задаче выбора, скажем, случайного целого между 0 и 52!-1 существует еще задача превращения этого числа в перестановку. Это превращение требует порядка n^2 операций.

Эффективный метод порождения случайных перестановок осуществляют последовательности из n-1 транспозиций. Начиная с любой перестановки $\Pi=(\pi_1,\,\pi_2,\,...,\,\pi_n)$, элемент π_n переставляется с одним из элементов $\pi_1,\,\pi_2,\,...,\,\pi_n$, выбираемым случайно. Затем π_{n-1} меняется местами с одним из элементов $\pi_1,\,\pi_2,\,...,\,\pi_{n-1}$, выбираемым случайно, и т. д. Детали реализации показаны в алгоритме 4.

for
$$i \leftarrow n$$
 downto 2 **do**
$$\begin{cases} j \leftarrow rand(1,i) \\ \pi_i \leftrightarrow \pi_j \end{cases}$$

Алгоритм 4. Порождение случайной перестановки