Predictive Parsing

CS 4100 Gordon Stewart Ohio University

Quiz?

Quiz!

MCIML

- Appel 3.2: Predictive Parsing
- Reminder: Book is available online through library site; read!

Some grammars are easy to parse by hand using an algorithm you saw in 3200: *recursive descent*

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

 $E \rightarrow num = num$

[Appel GRAMMAR 3.11]

Some grammars are easy to parse by hand using an algorithm you saw in 3200: *recursive descent*

[Appel GRAMMAR 3.11]

Is the following string in the language?

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

S -> if E then S else S

S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

```
S -> if E then S else S

S -> begin S L

S -> print E

if E then S else S
```

L -> end This is the only possible rule to unfold, given first

L ->; S L terminal in input is **if**

[Appel GRAMMAR 3.11]

```
if 4 = 5 then
begin print 7 = 8
end
else print 9 = 9
```

- S -> if E then S else S
- S -> begin S L
- S -> print E

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

i 4 = 5 thenbegin print 7 = 8endelse print 9 = 9

The next terminal in the input is a num, 4

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]

S -> if E then S else S

S -> begin S L

S -> print E

L -> end

L ->; S L

E -> num = num

[Appel GRAMMAR 3.11]


```
let rec s (_ : unit) : unit =
 let tok = getToken () in
  match tok with
  | IF -> eat IF; e (); eat THEN; s (); eat ELSE; s ()
  | BEGIN -> eat BEGIN; s (); l ()
  | PRINT -> eat PRINT; e ()
   _ -> raise (Parse_failure (Some tok, "in nonterminal S"))
and l (_ : unit) : unit =
 let tok = getToken () in
 match tok with
  | END -> eat END
  | SEMI -> eat SEMI; s (); l ()
   _ -> raise (Parse_failure (Some tok, "in nonterminal L"))
and e (_ : unit) : unit =
 let tok = getToken () in
  match tok with
  | NUM _ -> eat_num (); eat EQ; eat_num ()
  | _ -> raise (Parse_failure (Some tok, "in nonterminal E"))
```

https://github.com/gstew5/cs4100-public/blob/master/recursive/grammar311.ml

When Recursive Descent Fails

```
S -> if E then S else S
```

S -> if E then S

S -> begin S L

S -> print E

L -> end

L ->; S L

The ambiguous "dangling else"

we saw last

week...

This grammar can't be parsed by recursive descent; Two productions for S have the same "first" set

```
let rec s (_ : unit) : unit =
let tok = getToken () in

match tok with

| IF -> (* ??? *)

| BEGIN -> eat BEGIN; s (); l ()
| PRINT -> eat PRINT; e ()
| _ -> raise (Parse_failure (Some tok, "in nonterminal S"))
S -> if E then S else S
S -> if E then S
```

Recursive descent only works when the next token in the input string gives enough information to determine which production to apply!

The grammar above is ambiguous – it derives two distinct parse trees for the string if E then if E then S else S.

But there are many unambiguous grammars that are still not parseable by recursive descent.

Example

Unambiguous but not parseable by recursive descent:

- Why?
 - Consider 3 + 4 + 5
 - Next symbol: 3
 - When parsing the nonterminal E, should we apply
 - **E** -> **T**, or
 - E -> E + E?

BUILDING RECURSIVE DESCENT PARSERS USING FIRST AND FOLLOW SETS

FIRST and FOLLOW Sets

nullable(X) = if X can derive the empty string ""

 $FIRST(\gamma)$ = the set of terminals that can begin strings derived

```
from \gamma

first(X) = {a, b}

first(Y) = {a}

\gamma is either a

terminal or

nonterminal
```

FOLLOW(X) = the set of terminals that can immediately follow X

follow(X) = {}

follow(Y) = {b}

initialize a table **nullable** to all **false**.

repeat

```
for each production X \to Y_1 Y_2 \dots Y_k (* in which case X \to "" *) if Y_1 Y_2 \dots Y_k are all nullable, or k = 0 nullable(X) = true
```

X -> Yb X -> Y	
Y -> 1	
Y -> Xa Z -> cX	
Z -> XY	

	nullable
X	false
Υ	false
Z	false

initialize a table **nullable** to all **false**.

repeat

```
for each production X \to Y_1 Y_2 \dots Y_k (* in which case X \to "" *) if Y_1 Y_2 \dots Y_k are all nullable, or k = 0 nullable(X) = true
```

X -> Yb X -> Y	
Y -> 1	
Y -> Xa Z -> cX	
Z -> XY	

	nullable
X	false
Υ	false
Z	false

initialize a table **nullable** to all **false**.

repeat

```
for each production X \to Y_1 Y_2 \dots Y_k (* in which case X \to  "" *) if Y_1 Y_2 \dots Y_k are all nullable, or k = 0 nullable(X) = true
```

X -> Yb	
X -> Y	
Y ->	
Y -> Xa	
Z -> cX	
Z -> XY	

	nullable
X	false
Υ	true
Z	false

initialize a table **nullable** to all **false**.

repeat

```
for each production X \to Y_1 Y_2 \dots Y_k (* in which case X \to ""*) if Y_1 Y_2 \dots Y_k are all nullable, or k = 0 nullable(X) = true
```

X -> Yb	
X -> Y Y ->	
Y -> Xa	
Z -> cX	
Z -> XY	

	nullable
X	true
Υ	true
Z	false

initialize a table **nullable** to all **false**.

repeat

```
for each production X \to Y_1 Y_2 \dots Y_k (* in which case X \to ""*) if Y_1 Y_2 \dots Y_k are all nullable, or k = 0 nullable(X) = true
```

X -> Yb X -> Y	
Y ->	
Y -> Xa	
Z -> cX	
Z -> XY	

	nullable
X	true
Υ	true
Z	true

initialize a table **nullable** to all **false**.

repeat

```
for each production X \to Y_1 Y_2 \dots Y_k (* in which case X \to ""*) if Y_1 Y_2 \dots Y_k are all nullable, or k = 0 nullable(X) = true
```

until nullable table did not change in this iteration.

X -> Yb	
X -> Y	
Y ->	
Y -> Xa	
Z -> cX	
Z -> XY	

	nullable
X	true
Υ	true
Z	true

Nothing changed in this iteration so we're done (we've reached a "fixed point" of the iterative analysis)

nullable calculation specific instance of a general algorithm for iteratively calculating solutions of recursive equations:

```
\begin{array}{l} \text{nullable}(X) \bigvee = \text{nullable}(Y) \bigvee \text{(nullable}(X) \bigwedge \text{nullable}(Y)) \\ \text{nullable}(Y) \bigvee = \text{true} \\ \text{nullable}(Y) \bigvee = \text{nullable}(X) \\ \text{nullable}(Z) \bigvee = \text{nullable}(X) \bigwedge \text{nullable}(Y) \\ \end{array}
```

ALGORITHM:

- 1. Construct a table setting nullable(S) = false, for each symbol S.
- Iteratively update table using equations above until it doesn't change any more (you've reached a "fixed point" of the set of equations).

nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))

nullable(Y) \/= true

 $nullable(Y) \bigvee = nullable(X)$

 $nullable(Z) \/= nullable(X) / \/ nullable(Y)$

X	->	Υ
X	->	XY
Υ	->	
Υ	->	Χ
7		VV

	nullable
X	false
Υ	false
Z	false

```
nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)
```

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	false
Υ	true
Z	false

```
nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)
```

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	false
Υ	true
Z	false

```
nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)
```

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	false
Υ	true
Z	false

nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))

nullable(Y) \/= true

nullable(Y) \/= nullable(X)

 $nullable(Z) \/= nullable(X) / \/ nullable(Y)$

())	X -> Y X -> XY
	Y ->
	Y -> X
	Z -> XY

	nullable
X	true
Υ	true
Z	false

ITERATION 2

nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	true
Υ	true
Z	false

nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	true
Υ	true
Z	false

nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	true
Υ	true
Z	true

nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))

nullable(Y) \/= true

 $nullable(Y) \bigvee = nullable(X)$

 $nullable(Z) \/= nullable(X) / \/ nullable(Y)$

	X -> Y
'))	X -> XY
	Y ->
	Y -> X
	Z -> XY

	nullable
X	true
Υ	true
Z	true

```
nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)
```

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	true
Υ	true
Z	true

```
nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)
```

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	true
Υ	true
Z	true

```
nullable(X) \/= nullable(Y) \/ (nullable(X) /\ nullable(Y))
nullable(Y) \/= true
nullable(Y) \/= nullable(X)
nullable(Z) \/= nullable(X) /\ nullable(Y)
```

X -> Y
X -> XY
Y ->
Y -> X
Z -> XY

	nullable
X	true
Υ	true
Z	true

Nothing changed in this iteration so we're done.

ITERATIVE CALCULATION OF FIRST AND FOLLOW SETS

FIRST and FOLLOW Sets

nullable(X) = if X can derive the empty string ""

 $FIRST(\gamma)$ = the set of terminals that can begin strings derived

```
from \gamma

first(X) = {a, b}

first(Y) = {a}

nonterminal
```

FOLLOW(X) = the set of terminals that can immediately follow X
 follow(X) = {}
 follow(Y) = {b}

```
initialize tables FIRST and FOLLOW to empty.
for each terminal symbol a, FIRST(a) = \{a\}
repeat
  for each production X \to Y_1 Y_2 \dots Y_k
   for each i from 1 to k, for each j from i+1 to k
      if Y_1 \dots Y_{i-1} are all nullable, or if i = 1
        FIRST(X) = FIRST(X) \cup FIRST(Y_i)
      if Y_{i+1} \dots Y_k are all nullable, or if i = k
        FOLLOW(Y_i) = FOLLOW(Y_i) \cup FOLLOW(X)
      if Y_{i+1} \dots Y_{i-1} are all nullable, or if i+1=j
        FOLLOW(Y_i) = FOLLOW(Y_i) \cup FIRST(Y_i)
until FIRST and FOLLOW did not change in this iteration.
```

if
$$Y_1 ... Y_{i-1}$$
 are all nullable, or if $i = 1$

$$FIRST(X) = FIRST(X) \cup FIRST(Y_i)$$

```
if Y_1 ... Y_{i-1} are all nullable, or if i = 1

FIRST(X) = FIRST(X) \cup FIRST(Y_i)
```

if $Y_{i+1} \dots Y_k$ are all nullable, or if i = k $FOLLOW(Y_i) = FOLLOW(Y_i) \cup FOLLOW(X)$

X -> A B C D E F G H I FOLLOW(H) = FOLLOW(H) U FOLLOW(X) nullable

```
if Y_1 ... Y_{i-1} are all nullable, or if i = 1

FIRST(X) = FIRST(X) \cup FIRST(Y_i)
```

 $FIRST(X) = FIRST(X) \cup FIRST(H)$

if $Y_{i+1} \dots Y_k$ are all nullable, or if i = k $FOLLOW(Y_i) = FOLLOW(Y_i) \cup FOLLOW(X)$

X -> A B C D E F G H I FOLLOW(H) = FOLLOW(H) U FOLLOW(X) nullable

if $Y_{i+1} \dots Y_{j-1}$ are all nullable, or if i+1 = j $FOLLOW(Y_i) = FOLLOW(Y_i) \cup FIRST(Y_i)$

X -> A B C D E F G H I

FOLLOW(A) = FOLLOW(A) U FIRST(G)

all nullable

	nullable
X	true
Υ	true
Z	false

	FIRST	FOLLOW
X	{}	{}
Υ	{}	{}
Z	{}	{}
а	{a}	
С	{c}	
d	{d}	

	nullable
X	true
Υ	true
Z	false

X -> Y
X -> a
Y ->
Y -> c
Z -> d
Z -> X Y Z

	FIRST	FOLLOW
X	{a}	{}
Υ	{}	{}
Z	{}	{}
a	{a}	
С	{c}	
d	{d}	

	nullable
X	true
Υ	true
Z	false

	FIRST	FOLLOW
X	{a}	{}
Υ	{}	{}
Z	{}	{}
a	{a}	
С	{c}	
d	{d}	

	nullable
X	true
Υ	true
Z	false

X -> Y
X -> a
Y ->
Y -> c
Z -> d
Z -> X Y Z

	FIRST	FOLLOW
X	{a}	{}
Υ	{c}	{}
Z	{}	{}
a	{a}	
С	{c}	
d	{d}	

	nullable
X	true
Υ	true
Z	false

X -> Y
X -> a
Y ->
Y -> c
Z -> d
Z -> X Y Z

	FIRST	FOLLOW
X	{a}	{}
Υ	{c}	{}
Z	{d}	{}
а	{a}	
С	{c}	
d	{d}	

for each terminal symbol **a**, FIRST(**a**) = {**a**} for each production $X \rightarrow Y_1 Y_2 \dots Y_k$

for each i from 1 to k, for each j from i+1 to k

if $Y_1 \dots Y_{i-1}$ are all nullable, or if i = 1 $FIRST(X) = FIRST(X) \cup FIRST(Y_i)$

if $Y_{i+1} \dots Y_k$ are all nullable, or if i = k

 $FOLLOW(Y_i) = FOLLOW(Y_i) \cup FOLLOW(X)$

If $Y_{i+1} \dots Y_{j-1}$ are all nullable, or if i+1=j

 $FOLLOW(Y_i) = FOLLOW(Y_i) \cup FIRST(Y_j)$

nullable
true
true
false

X -> Y
X -> a
Y ->
Y -> c
Z -> d
$Z \rightarrow X Y Z$

	FIRST	FOLLOW
X	{a}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}
а	{a}	
С	{c}	
d	{d}	

for each terminal symbol **a**, FIRST(**a**) = {**a**} for each production $X \rightarrow Y_1 Y_2 \dots Y_k$ for each i from 1 to k, for each j from i+1 to k

> if $Y_1 \dots Y_{i-1}$ are all nullable, or if i = 1 $FIRST(X) = FIRST(X) \cup FIRST(Y_i)$

if $Y_{i+1} \dots Y_k$ are all nullable, or if i = k

 $FOLLOW(Y_i) = FOLLOW(Y_i) \cup FOLLOW(X)$

if $Y_{i+1} \dots Y_{j-1}$ are all nullable, or if i+1=j

 $FOLLOW(Y_i) = FOLLOW(Y_i) \cup FIRST(Y_j)$

nullable
true
true
false

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}
a	{a}	
С	{c}	
d	{d}	

nullable
true
true
false

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}
a	{a}	
С	{c}	
d	{d}	

	nullable
Χ	true
Υ	true
Z	false

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}
а	{a}	
С	{c}	
d	{d}	

	nullable
X	true
Υ	true
Z	false

X -> Y
X -> a
Y ->
Y -> c
Z -> d
$Z \rightarrow X Y Z$

	FIRST	FOLLOW	
X	{a, c}	{a, c, d}	
Υ	{c}	{a, c, d}	
Z	{a, c, d}	{}	
a	{a}		
С	Nothing changed in this iteration so we're done		
d	(we've reached a "fixed point" of the iterative analysis)		

FIRST Equations Applied

BUILDING PREDICTIVE PARSING TABLES FROM FIRST AND FOLLOW

- In M[X, a], add all productions X -> Y Z ... W such that a
 is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

	а	С	d
X			
Υ			
Z			

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
$Z \rightarrow X Y Z$	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable
X	true
Υ	true
Z	false

- In M[X, a], add all productions X -> Y Z ... W such that a
 is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
$Z \rightarrow X Y Z$	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable
X	true
Υ	true
Z	false

- In M[X, a], add all productions X -> Y Z ... W such that a
 is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
$Z \rightarrow X Y Z$	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable	
X	true	
Υ	true	
Z	false	

- In M[X, a], add all productions X -> Y Z ... W such that a is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
Z -> X Y Z	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable	
X	true	
Υ	true	
Z	false	

- In M[X, a], add all productions X -> Y Z ... W such that a is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
Z -> X Y Z	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable	
X	true	
Υ	true	
Z	false	

- In M[X, a], add all productions X -> Y Z ... W such that a
 is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
Z -> X Y Z	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable
X	true
Υ	true
Z	false

- In M[X, a], add all productions X -> Y Z ... W such that a is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

	а	C	d
X	X -> a X -> Y	X -> Y	X -> Y
Y	Y ->	Y -> c Y ->	
Z			

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
$Z \rightarrow X Y Z$	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable	
X	true	
Υ	true	
Z	false	

- In M[X, a], add all productions X -> Y Z ... W such that a is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

	a	С	d
X	X -> a X -> Y	X -> Y	X -> Y
Y	Y ->	Y -> c Y ->	Y ->
Z			

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
$Z \rightarrow X Y Z$	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable	
X	true	
Υ	true	
Z	false	

- In M[X, a], add all productions X -> Y Z ... W such that a
 is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

	а	С	d
X	X -> a X -> Y	X -> Y	X -> Y
Υ	Y ->	Y -> c Y ->	Y ->
Z	Z -> X Y Z		

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
Z -> X Y Z	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable	
X	true	
Υ	true	
Z	false	

- In M[X, a], add all productions X -> Y Z ... W such that a
 is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

	а	c	d
X	X -> a X -> Y	X -> Y	X -> Y
Υ	Y ->	Y -> c Y ->	Y ->
Z	Z -> X Y Z	Z -> X Y Z	

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
Z -> X Y Z	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable
X	true
Υ	true
Z	false

- In M[X, a], add all productions X -> Y Z ... W such that a
 is in FIRST(Y) or nullable(Y) and a is in FIRST(Z), etc., or
- If Y Z ... W are all nullable, add production X -> Y Z ... W to M[X, a] if a in FOLLOW(X).

	a	С	d
X	X -> a X -> Y	X -> Y	X -> Y
Υ	Y ->	Y -> c Y ->	Y ->
Z	Z -> X Y Z	Z -> X Y Z	Z -> d Z -> X Y Z

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
$Z \rightarrow X Y Z$	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable
X	true
Υ	true
Z	false

Duplicate entries in the parsing table mean this grammar can't be parsed by recursive descent.

X -> Y	
X -> a	
Y ->	
Y -> c	
Z -> d	
Z -> X Y Z	

	FIRST	FOLLOW
X	{a, c}	{a, c, d}
Υ	{c}	{a, c, d}
Z	{a, c, d}	{}

	nullable
X	true
Υ	true
Z	false

Left-Recursive Grammars

Consider the following grammar:

This grammar is not parseable via recursive descent. Why?

Left-Recursive Grammars

Consider the following grammar:

Grammars
with *left recursion*are not parseable via
recursive descent

This grammar is not parseable via recursive descent. Why?

	FIRST	FOLLOW
Е	at least FIRST(T) (i.e., num)	
Т	num	

Factoring Left-Recursive Grammars

To eliminate left recursion, rewrite using *right recursion*:

	FIRST	FOLLOW
E	num	
E'	+	\$
Т	num	+,\$

Left Factoring

If two productions for the same nonterminal start with the same symbol, we can *left factor* the grammar.

	FIRST	FOLLOW	
S'	if		
S	if	\$, else	
X	else	\$	
E		then	

S' -> S \$
S -> if E then S X
S ->
X ->
X -> else S

	if	then	else	\$
S'	S' -> S \$			
S	S -> if E then S X			
Х			X -> else S	X ->