What is claimed is:

26

1	1. A stacked gate flash memory cell having two
2	symmetrical memory structures therein, comprising:
3	a substrate having a trench therein;
4	a conductive layer disposed on the bottom of the
5	trench;
6	a pair of source regions, each disposed in the
7	substrate adjacent to one sidewall of the
8	trench, electrically connecting the conductive
9	layer;
10	a source isolation layer disposed on the conductive
11	layer;
12	a pair of tunnel oxide layers, respectively disposed
13	on one sidewall of the trench, contacting the
14	source regions thereby;
15	a pair of floating gates, respectively disposed on
16	the source isolation layer, contacting the
17	tunnel oxide layers thereby;
18	a pair of inter-gate dielectric layers, respectively
19	overlying the floating gate thereby;
20	a pair of control gates, respectively overlying the
21	inter-gate dielectric layer thereby;
22	an insulating layer disposed in the trench,
23	isolating the two control gates, forming two
24	symmetrical memory structures therein; and
25	a drain region disposed in the substrate adjacent to

the trench.

- 2. The flash memory cell as claimed in claim 1,
 wherein the substrate is P-type silicon substrate.
- 3. The flash memory cell as claimed in claim 1, wherein a bottom insulating layer is further disposed under the conductive layer.
- 4. The flash memory cell as claimed in claim 3,
 wherein the bottom insulating layer is silicon dioxide.
- 5. The flash memory cell as claimed in claim 1, wherein the conductive layer is N-type dopant doped polysilicon.
- 1 6. The flash memory cell as claimed in claim 1, 2 wherein the source isolation layer is silicon dioxide.
- 7. The flash memory cell as claimed in claim 1, wherein the tunnel oxide layer is silicon dioxide.
- 8. The flash memory cell as claimed in claim 1, wherein the floating gate is N-type dopant doped polysilicon.
- 9. The flash memory cell as claimed in claim 1, wherein the floating gate is a composite polysilicon layer composed of a second polysilicon layer and a third polysilicon layer.
- 1 10. The flash memory cell as claimed in claim 1,
 2 wherein the floating gate is L-shaped or reverse L-shaped
 3 (4).

1	11. The flash memory cell as claimed in claim 1,
2	wherein the inter-gate dielectric layer is silicon
3	dioxide.
1	12. The flash memory cell as claimed in claim 1,
2	wherein the control gate is N-type dopant doped
3	polysilicon.
1	13. The flash memory cell as claimed in claim 1,
2	wherein the conductive layer is composed of a polysilicon
3	layer adjacent to sidewalls of the trench and a source
4	line material layer in the trench.
1	14. A method of fabricating stacked gate flash
2	memory cells, comprising the steps of:
3	providing a substrate;
4	forming a plurality of parallel long trenches along
5	a first direction in the substrate;
6	forming a conductive layer and a pair of source
7	regions on the bottom of each long trench,
8	wherein the source regions are respectively
9	disposed in the substrate adjacent to two
10	sidewalls of each long trench and electrically
11	connected to the conductive layer;
12	forming a source isolation layer on each conductive
13	layer;
14	forming a tunnel oxide layer on two sidewalls of
15	each long trench, contacting the source region
16	thereby;

- forming a pair of floating gates on the source 17 isolation layer, respectively contacting the 18 tunnel oxide layer; 19 20 forming a pair of inter-gate dielectric layers, respectively overlying the floating gate; 21 forming a pair of control gates, respectively 22 overlying the inter-gate dielectric layer; 23 forming a second insulating layer in each long 24 trench, isolating the control gates; 25 26 forming a plurality of parallel shallow 27 isolation (STI) regions along a direction, defining a plurality of 28 cell 29 trenches; and 30 forming a drain region in the substrate adjacent to each cell trench. 31 The method as claimed in claim 14, wherein the 1 15. 2 first direction is perpendicular to the second direction.
- 1 16. The method as claimed in claim 14, wherein the substrate is P-type silicon substrate.

1

2

3

4

5

- 17. The method as claimed in claim 14, further comprising, before forming a plurality of parallel long trenches along a first direction in the substrate, the step of sequentially forming a pad oxide layer and a mask layer on the substrate.
- 1 18. The method as claimed in claim 17, wherein the 2 mask layer is silicon nitride.

1	19. The method as claimed in claim 14, wherein the
2	source isolation layer is sequentially formed by LPCVD
3	and HDPCVD.
1	20. The method as claimed in claim 14, further
2	comprising, before forming a conductive layer and a pair
3	of source regions on the bottom of each long trench, the
4	step of forming a bottom insulating layer in the bottom
5	of each long trench.
1	21. The method as claimed in claim 14, wherein
2	forming a conductive layer and a pair of source regions
3	on the bottom of each long trench further comprises the
4	steps of:
5	forming a source line material layer in each long
6	trench, exposing portions of the bottom
7	insulating layer therein;
8	removing the exposed bottom insulating layer,
9	partially exposing the sidewalls of each long
10	trench;
11	forming a first spacer on the sidewalls of each long
12	trench;
13	etching the source line material layer, exposing
14	portions of the bottom insulating layer
15	adjacent to sidewalls of each long trench;
16	removing the exposed bottom insulating layer,
17	respectively forming a first sidewall gap on
18	the sidewalls of each long trench;
19	conformally depositing a polysilicon layer in each
20	long trench, filling the first sidewall gaps;

performing a thermal annealing process, forming a pair of source regions in the substrate adjacent to two sidewalls of each long trench; and

etching the polysilicon layer, leaving portions of the polysilicon layer in the first sidewall gaps adjacent to the source line material layer, forming a conductive layer composed of the source material layer and the adjacent polysilicon layers in each long trench, wherein the source regions are electrically connected with the conductive layer.

- 22. The method as claimed in claim 21, wherein the method for depositing the source line material layer is chemical vapor deposition (CVD).
- 23. The method as claimed in claim 21, wherein the method for removing the exposed bottom insulating layer is wet etching.
- 24. The method as claimed in claim 14, further comprising, before forming a tunnel oxide layer on two sidewalls of each long trench, the step of performing a threshold voltage implantation on the sidewalls of each long trench.
- 25. The method as claimed in claim 14, wherein forming a pair of floating gates on the source isolation layer, and thereby respectively contacting the tunnel oxide layer further comprises the steps of:

- conformally depositing a second polysilicon layer in 5 6 each long trench, contacting the tunnel oxide 7 layers therein; 8 forming a protective layer in each long trench, 9 exposing portions of the second polysilicon 10 layer; 11 removing portions of the second polysilicon layer 12 exposed by the protective layer, forming a Ushaped second polysilicon layer therein; 13 14 forming a pair of second spacers, respectively 15 disposed on the vertical portions of the U-16 shaped second polysilicon layer; 17 removing the protecting layer; 18 conformally depositing a third polysilcon layer in 19 each long trench; and 20 etching the third polysilicon layer and the U-shaped 21 second polysilicon layer until the source 22 isolation layer is exposed, leaving a composite 23 polysilicon layer composed of the second 24 polysilicon layer and the third polysilicon 25 layer on the two sides of the long trench as a 26 floating gate, wherein the floating gate is L-27 shaped or reverse L-shaped (1). 1 26. The method as claimed in claim 25, wherein the 2 protecting layer is boro-silicate-glass (BSG).
- 1 27. The method as claimed in claim 25, wherein the 2 method for depositing the second spacers is LPCVD.

1	28. The method as claimed in claim 25, wherein the
2	second spacer is silicon dioxide.
1	29. The method as claimed in claim 14, wherein
2	forming a plurality of parallel shallow trench isolation
3	(STI) regions along a second direction, defining a
4	plurality of cell trenches, further comprises the steps
5	of:
6	sequentially performing photolithography and
7	etching, defining a plurality of parallel long
8	isolation trenches along a second direction,
9	stopping at the conductive layer therein; and
10	forming an third insulating layer in each long
11	isolation trench.
1	30. The method as claimed in claim 29, wherein the
2	third insulating layer is silicon dioxide.
1	31. The method as claimed in claim 29, wherein the
2	method of forming the third insulating layer is low
3	pressure chemical vapor deposition (LPCVD).
1	32. The method as claimed in claim 14, wherein
2	forming a drain region in the substrate adjacent to each
3	of the cell trenches further comprises the steps of:
4	removing the mask layer and the pad oxide layer,
5	exposing a plurality of active areas on the
6	substrate;

performing a drain implantation on the active areas;

7

- performing a thermal annealing process, forming a drain region in the substrate adjacent each cell trench; and forming a fourth insulating layer on each drain region.
 - 1 33. The method as claimed in claim 32, wherein 2 impurities used in the drain region implantation are N-3 type impurities.
 - 1 34. The method as claimed in claim 33, wherein the N-type impurities comprise arsenic (As) ions.
 - 1 35. The method as claimed in claim 32, wherein the 2 thermal annealing process is rapid thermal annealing 3 (RTA) process.
 - 1 36. The method as claimed in claim 32, wherein the 2 fourth insulating layer is a silicon dioxide layer.
 - 37. The method as claimed in claim 32, the method for forming the fourth insulating layer is high density plasma chemical vapor deposition (HDP CVD).