

Hack Session

From Language to Robotics: Practical Lessons Bridging LLMs, RL, and Al

Speaker

Logesh Kumar Umapathi

Machine Learning Consultant | Blackbox.ai

I am Logesh Kumar Umapathi

Machine Learning Consultant @ Blackbox.ai

Twitter: @logesh_umapathi

Linkedin: www.linkedin.com/in/logeshkumaru/

Website: logeshumapathi.com

Research: https://scholar.google.com/citations?user=eWwEqToAAAAJ&hl=en&authuser=1

Robotics: One of my nine lives

Graham Weaver: https://www.grahamweaver.com/blog/stanford-graduate-business-school-last-lecture-2024

Agenda

- 1. A Glimpse
- 2. Meet the Hardware So100
- 3. Fundamentals of Imitation Learning
- 4. Popular Policies:
 - a. ACT
 - b. SmolVLA
 - c. Pi0
- 5. How to record a dataset
- 6. How not to train the arm
- 7. Demo

Meet the Hardware

Spec	Value		
Degrees of freedom	6 (+ 1 gripper)		
Motors 6 serial bus servos			
Build	Mostly 3-D printed PLA		
Cost	~250 USD per Arm (India: INR 40000)		
Strength 200–300 g payload (w/ 12 V 30 kg cm serv			
Reach	~40 cm, ±180° sweep		

Academic Labs: Cost of building

Bill of Materials

Part	Quantity	Link	Price (per unit)
Robots			
ViperX 300 Robot Arm 6DOF	2	https://www.trossenrobotics.com/viperx-300-robot-arm-6dof.aspx	\$5,695.95
WidowX 250 Robot Arm 6DOF	2	https://www.trossenrobotics.com/widowx-250-robot-arm-6dof.aspx	\$3,295.95
Robot Cage			
Standing Desk (48x30", Black)	1	https://a.co/d/4JuSVhu	\$199.99
Extrusion Bars Black, 10PCS 1220mm(48")	1	https://a.co/d/8ywG7Eu	\$99.99
Extrusion Bars Black, 10PCS 1000mm(39.4")	1	https://a.co/d/8ywG7Eu	\$83.99
Extrusion Bars Black, 4PCS 150mm(5.9")	2	https://a.co/d/8ywG7Eu	\$11.99
Corner Bracket 20Set M5x8	3	https://a.co/d/9BCcU5S	\$28.99
Corner bracket Black L-4 with Screw	4	https://a.co/d/ihrw6YW	\$15.99
Rope Crimping Tool (15 inch for 3/64" to 1/8")	1	https://a.co/d/1t1EsyZ	\$35.97

BOM

Item	Qty	Cost (INR)		
12v ST3215 Servo	12	24000		
Motor Control Board	2	1048		
Top USB camera	1	1198		
Wrist USB camera	1	3000		
<u>Table Clamp</u> 4pcs	1	1101		
Power Supply 12v	2	1390		
3D Printing Parts		7600		
Total	~ 40,000 INR			

BOM for rest of the world and Printing guide: https://github.com/TheRobotStudio/SO-ARM100/blob/main/SO100.md

Imitation Learning 101

- 1. Supervised learning on <image, state> \rightarrow <next action> pairs
- 2. Advantages: simple, data-efficient, safe (no exploration)
- 3. Limitations: covariate shift & unseen states \rightarrow compounding errors

What is a policy?

- A policy is a function / model (π) that maps the current state (S) of the robot to an action

 $\pi:S \rightarrow A$

S - the state is usually the position of the robot, the cameras and sensors feed, and the text instructions.

A - the actions the 6-DOF (degrees of freedom)

cartesian position (x, y, z, rx, ry, rz), the angles of the joints...

Action Chunking Transformer

Fig. 4: Architecture of Action Chunking with Transformers (ACT). We train ACT as a Conditional VAE (CVAE), which has an encoder and a decoder. Left: The encoder of the CVAE compresses action sequence and joint observation into z, the style variable. The encoder is discarded at test time. Right: The decoder or policy of ACT synthesizes images from multiple viewpoints, joint positions, and z with a transformer encoder, and predicts a sequence of actions with a transformer decoder. z is simply set to the mean of the prior (i.e. zero) at test time.

Action Chunking Transformer

Train

```
python src/lerobot/scripts/train.py \
              --dataset.repo_id=repo_id/dataset_name
              --policy.type=act \
              --output_dir=outputs/train/output_dir \
              --job_name=act_so100_test \
              --policy.device=mps \
              --wandb.enable=true \
              --policy.push_to_hub=False
```


SmolVLA

SmolVLA

		Success Rate (%) — Real World					
Policy	VLA pt.	Pick-Place	Stacking	Sorting	Avg.		
Single-task Training							
SmolVLA (0.45B)	No	55	45	20	40		
Multi-task Training		community data helps!					
SmolVLA (0.45B)	No	80	40	35	51.7		
SmolVLA (0.45B)	Yes	75	90	70	78.3		

	Success Rate (%) — Real World						
Policy	Pick-Place	Stacking	Sorting	Avg.			
Single-task Training							
ACT	70	50	25	48.3			
Multi-task Training							
$\pi_0 \ (3.5B)$	100	40	45	61.7			
SmolVLA (0.45B)	75	90	70	78.3			

Table 3 | Real-world benchmarks (SO100). Success rate (%) across three tasks using policies trained in multi-task and single-task settings.

	Success Rate (%) — Real World				
Policy	In Distribution	Out of Distribution			
Single-task Training					
ACT	70	40			
SmolVLA (0.45B)	90	50			

Table 4 | Real-world benchmark (SO101). Success rate (%) for the Pick-Place-Lego task using policies trained in single-task setting.

SmolVLA

- Flow Matching Transformer (~100M parameters): direct, non-autoregressive prediction of continuous actions
- Visual Token Reduction: 512×512 image is compressed into just 64 tokens, instead of 1024
- Faster Inference via Layer Skipping: action expert only attends to VLM features up to half the total layers

Train

```
python src/lerobot/scripts/train.py \
              --policy.path=lerobot/smolvla_base \
              --dataset.repo_id=infinitylogesh/grab_toy_car \
              --batch_size=128 \
             --steps=20000 \
              --save_freq=10000 \
              --output_dir=outputs/train/grab_toy_car_2_cam_smolvla
              --job_name=grab_toy_car_2_cam_smolvla \
              --policy.device=cuda \
              --policy.repo_id=infinitylogesh \
             --wandb.enable=true \
             --policy.push_to_hub=true
```


PiO

$$\mathbf{A}_t = [a_t, a_{t+1}, ..., a_{t+H-1}]$$

$$o_t = [I_t^1, ..., I_t^n, \ell_t, q_t]$$

How to record a dataset

Assemble

Follow this guide:

https://huggingface.co/docs/lerobot/en/so100

Calibration

```
python -m lerobot.calibrate \
    --teleop.type=so100_leader \
    --teleop.port=/dev/tty.usbmodem59591125071
\    --teleop.id=my_leader
```

Teleoperation

```
python -m lerobot.teleoperate \
     --robot.type=so100_follower \
     --robot.port=/dev/tty.usbmodem58FA0958621 \
     --robot.id=my_follower \
     --robot.cameras="{ wrist: {type: opencv, index_or_path: 0, width: 1280, height: 720, fps: 30},top: {type: opencv, index_or_path: 1, width: 1280, height: 720, fps: 30}}" \
     --teleop.type=so100_leader \
     --teleop.port=/dev/tty.usbmodem59591125071 \
     --teleop.id=my_leader \
     --display_data=true
```


Controlling the Arm ⊕→i

- 1. Leader-Follower Teleoperation
- Two identical arms
- Encoders on leader stream joint angles → follower mirrors
- Intuitive, latency-free, but doubles hardware cost
- 2. Game-pad Teleoperation (PS4 Controller)
- Map sticks/buttons to joints & gripper
- Haptic & LED feedback for joint limits
- Preset poses & accelerometer control
- > Design rule: Match interfaces to your data-collection needs.

Action Chunking Transformer

Readings from an episode

0	# first ep	isode				1. •			•
	display <mark>(</mark> df	[df.episode_index==0])							
		action	observation.state	timestamp	frame_index	episode_index	index	task_index	6
	0	[1.9117647409439087, -99.41053009033203, 99.54	[1.9560878276824951, -98.74372100830078, 98.92	0.000000					C
	1	[1.9117647409439087, -99.41053009033203, 99.54	[1.9560878276824951, -98.74372100830078, 98.92	0.033333					
	2	[1.9117647409439087, -99.41053009033203, 99.54	[1.9560878276824951, -98.74372100830078, 98.92	0.066667	2		2		
	3	[1.9117647409439087, -99.41053009033203, 99.54	[1.9560878276824951, -98.74372100830078, 98.92	0.100000	3		3	0	
	4	[1.9117647409439087, -99.41053009033203, 99.54	[1.9560878276824951, -98.74372100830078, 98.92	0.133333	4		4		
	298	[4.485294342041016, -99.41053009033203, 99.453	[4.5109782218933105, -98.82746887207031, 98.83	9.933333	298		298		
	299	[4.485294342041016, -99.41053009033203, 99.453	[4.5109782218933105, -98.82746887207031, 98.83	9.966666	299		299		
	300	[4.485294342041016, -99.41053009033203, 99.453	[4.5109782218933105, -98.82746887207031, 98.83	10.000000	300		300		
	301	[4.485294342041016, -99.41053009033203, 99.453	[4.5109782218933105, -98.82746887207031, 98.83	10.033334	301		301	0	
	302	[4.485294342041016, -99.41053009033203, 99.453	[4.5109782218933105, -98.82746887207031, 98.83	10.066667	302		302		
	303 rows × 7	columns							

Total episode duration: 10 secs

Reading frequency: 30 times per sec (30hz)

Total number of readings: 302

Practical Teleop & Dataset Tips

- 1. Don't show the leader arm in any training camera view. Otherwise the policy learns to imitate the controller, not the task.
- 2. Use contrast backgrounds & anti-slip mats to reduce reflection & drift.
- 3. Diversify positions—cover edges & extremes of the workspace.
- 4. 50-60 demos ≈ enough for a simple pick-and-place skill.
- 5. Use a wrist camera and train on a stable surface.
- 6. Good to have a constant and stable source of light.

How not to record a dataset

Demo | Recording a dataset

Demo | Training and Inference - trained policy

Demo | Calibrating the Arms

What's the big deal?

Feedback & Questions

Twitter: @logesh_umapathi

Linkedin: www.linkedin.com/in/logeshkumaru/

Slides & code:

https://128.pl/1NLbm