Gaussian Distribution and Anomaly Detection

Gaussian Distribution Overview

Gaussian Distribution: Also known as the normal distribution, it is a probability distribution characterized by a bell-shaped curve. The curve is defined by two parameters: mean (Mu) and variance (sigma squared).

Gaussian (Normal) distribution of standard deviation

Say x is a number.

o² variance

Probability of x is determined by a Gaussian with mean μ , variance σ

Probability of x: The probability of a random variable x following a Gaussian distribution is given by the formula:

$$p(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/(2\sigma^2)}$$

Interpretation: The probability density function p(x) represents the likelihood of observing a specific value of x. The bell-shaped curve illustrates the distribution of a large number of samples drawn from this distribution.

Effect of Changing Mu and Sigma

- 1. Standard Gaussian Distribution (Mu = 0, Sigma = 1):
 - Centered at zero with a standard deviation of one.

- A common reference for comparison.
- 2. Reduced Sigma (Sigma = 0.5):
 - Thinner curve due to a smaller standard deviation.
 - Taller curve compensates for the reduced width.
- 3. Increased Sigma (Sigma = 2):
 - Wider distribution with a larger standard deviation.
 - Shorter curve to maintain a total area under the curve equal to one.
- 4. Change in Mu (Mu = 2, Sigma = 0.5):
 - Shifts the center of the distribution to the right while maintaining the standard deviation.

Application to Anomaly Detection

- Anomaly Detection Dataset: Given a dataset of m examples with a single feature x, the goal is to estimate parameters Mu and Sigma squared for a Gaussian distribution.
- Estimation Formulas:

$$\rho = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\sigma^2 = rac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu)^2$$

Parameter estimation

Dataset: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$

- Maximum Likelihood Estimates: These formulas provide estimates for Mu and Sigma squared and are technically known as maximum likelihood estimates.
- Anomaly Decision: Given an example x_{test} :
 - $\circ \:$ If $p(x_{ ext{test}}) < \epsilon$, flag it as an anomaly.
 - \circ If $p(x_{ ext{test}}) \geq \epsilon$, consider it normal.

Handling Multiple Features

- Extension to Multiple Features: In practical applications, there are usually multiple features (*n* features).
- Sophisticated Anomaly Detection:
 - The principles learned from a single Gaussian distribution can be extended to handle multiple features.
 - Calculate Mu and Sigma for each feature independently.
- **Multivariate Gaussian Distribution:** Utilize a multivariate Gaussian distribution to model the joint probability of multiple features. The extension involves using a covariance matrix in addition to Mu and Sigma.
- Next Steps: The next video will explore the application of Gaussian distribution to more sophisticated anomaly detection algorithms, considering scenarios with multiple features.