M4202Cip – Recherche opérationnelle (III) Algorithme du simplexe

bruno.colombel@univ-amu.fr

IUT d'Aix-Marseille Site d'Arles DUT Informatique

2019-2020

Forme canonique et forme standart d'un programme linéaire

Bases et points extrêmes

Algorithme du simplexe

Sommaire

Forme canonique et forme standart d'un programme linéaire

Bases et points extrêmes

Algorithme du simplexe

Forme standard

Un programme linéaire est sous forme standard lorsque

- c'est une maximisation
- toutes ses contraintes sont des égalités
- toutes ses variables sont non-négatives

Forme standard

Un programme linéaire est sous forme standard lorsque

- c'est une maximisation
- toutes ses contraintes sont des égalités
- toutes ses variables sont non-négatives

Écriture matricielle

$$\max z = {}^{t}cx$$
s.c. $Ax = b$

$$x \ge 0$$

Forme canonique

Un programme linéaire est sous forme canonique lorsque

- c'est une maximisation
- toutes ses contraintes sont des inégalités
- toutes ses variables sont non-négatives

Forme canonique

Un programme linéaire est sous forme canonique lorsque

- c'est une maximisation
- toutes ses contraintes sont des inégalités
- toutes ses variables sont non-négatives

Écriture matricielle

$$\max z = {}^{t}cx$$
s.c. $Ax \le b$

$$x \ge 0$$

Théorème (Équivalence forme standard et canonique)

Tout programme linéaire peut s'écrire sous forme standard et sous forme canonique

Théorème (Équivalence forme standard et canonique)

Tout programme linéaire peut s'écrire sous forme standard et sous forme canonique

Une containte d'inégalité $Ax \leqslant b$ peut être transformée en égalité par l'introduction d'une variable d'écart :

$$Ax + s = b$$

$$\max z = 5x_1 + 4x_2$$
s.c.
$$\begin{vmatrix} 6x_1 + 4x_2 \le 24 \\ x_1 + 2x_2 \le 6 \\ x_2 \le 2 \\ -x_1 + x_2 \le 1 \\ x_1 & \ge 0 \\ x_2 \ge 0 \end{vmatrix}$$

$$\max z = 5x_1 + 4x_2$$
s.c.
$$\begin{vmatrix} 6x_1 + 4x_2 \le 24 \\ x_1 + 2x_2 \le 6 \\ x_2 \le 2 \\ -x_1 + x_2 \le 1 \\ x_1 & \ge 0 \\ x_2 \ge 0 \end{vmatrix}$$

Forme canonique

$$\max z = 5x_1 + 4x_2$$
s.c.
$$\begin{vmatrix} 6x_1 + 4x_2 + s_1 & = 24 \\ x_1 + 2x_2 & + s_2 & = 6 \\ x_2 & + s_3 & = 2 \\ -x_1 + x_2 & + s_4 = 1 \\ x_1 & \geq 0 \\ x_2 & \geq 0 \end{vmatrix}$$

$$\max z = 5x_1 + 4x_2$$
s.c.
$$\begin{vmatrix} 6x_1 + 4x_2 + s_1 & = 24 \\ x_1 + 2x_2 & + s_2 & = 6 \\ x_2 & + s_3 & = 2 \\ -x_1 + x_2 & + s_4 = 1 \\ x_1 & \geq 0 \\ x_2 & \geq 0 \end{vmatrix}$$

Forme standard

 s_i : variables d'écart avec $s_1, s_2, s_3, s_4 \ge 0$

Passage entre les formes

$$ax = b \iff \begin{cases} ax \leqslant b \\ ax \geqslant b \end{cases}$$

inéquation \rightarrow équation

$$ax \leqslant b \iff ax + s = b$$

 $ax \geqslant b \iff ax - s = b$

 $min \leftrightarrow max$

$$\max f(x) = -\min(-f(x))$$

Programmation linéaire

Feuille de TD

Formes canonique et standard

Sommaire

Forme canonique et forme standart d'un programme linéaire

Bases et points extrêmes

Algorithme du simplexe

Rappel du contexte

- Les contraintes définissent un polyèdre
- Une solution optimale est un sommet du polyèdre

Rappel du contexte

- Les contraintes définissent un polyèdre
- Une solution optimale est un sommet du polyèdre

Question

Comment énumérer les sommets d'un polyèdre?

Passage à la forme standard

$$\max z = {}^{t}cx$$
s.c. $Ax = b$

$$x \ge 0$$

- ▶ Une containte d'inégalité $Ax \le b$ est transformée en égalité par l'introduction d'une variable d'écart
- espace de dimension plus grande, mais toutes les contraintes sont des égalités
- Manipulations algébriques plus aisées

max
$$z = 5x_1 + 4x_2$$

s.c.
$$\begin{vmatrix} 6x_1 + 4x_2 + s_1 & = 24 & (1) \\ x_1 + 2x_2 & + s_2 & = 6 & (2) \\ x_2 & + s_3 & = 2 & (3) \\ -x_1 + x_2 & + s_4 = 1 & (4) \\ x_1 & \geq 0 & (5) \\ x_2 & \geq 0 & (6) \\ s_1 & \geq 0 & (7) \\ s_2 & \geq 0 & (8) \\ s_3 & \geq 0 & (9) \\ s_4 \geq 0 & (10) \end{vmatrix}$$

Système de m équations linéaires à n inconnues (m < n): infinité de solutions

- Système de m équations linéaires à n inconnues (m < n): infinité de solutions
- Si on fixe à zéro n − m variables : système de m équations à m inconnues possédant une solution unique (si la matrice est inversible). C'est une solution de base

- Système de m équations linéaires à n inconnues (m < n): infinité de solutions
- Si on fixe à zéro n m variables : système de m équations à m inconnues possédant une solution unique (si la matrice est inversible). C'est une solution de base

Solution de base

Une solution de base d'un programme linéaire est la solution unique du système de m équations à m inconnues obtenu en fixant à zéro n-m variables (pourvu que la matrice du système soit inversible). Les variables fixées à zéro sont appelées variables hors base et les autres variables en base.

Penons comme base $\mathcal{B} = \{s_1, s_2, s_3, s_4\}$

Penons comme base $\mathcal{B}=\{s_1,s_2,s_3,s_4\}$ On peut exprimer s_1 , s_2 , s_3 et s_4 en fonction de x_1 et x_2

Penons comme base $\mathcal{B}=\{s_1,s_2,s_3,s_4\}$ On peut exprimer $s_1,\ s_2,\ s_3$ et s_4 en fonction de x_1 et x_2

$$\begin{cases} z = +5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

Penons comme base $\mathcal{B}=\{s_1,s_2,s_3,s_4\}$ On peut exprimer $s_1,\ s_2,\ s_3$ et s_4 en fonction de x_1 et x_2

$$\begin{cases} z = +5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

Si
$$x_1 = x_2 = 0$$
, alors :

$$ightharpoonup s_1 = 24$$
, $s_2 = 6$, $s_3 = 2$, $s_4 = 1$

Penons comme base $\mathcal{B}=\{s_1,s_2,s_3,s_4\}$ On peut exprimer $s_1,\ s_2,\ s_3$ et s_4 en fonction de x_1 et x_2

$$\begin{cases} z = +5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

Si
$$x_1 = x_2 = 0$$
, alors :

- $ightharpoonup s_1 = 24$, $s_2 = 6$, $s_3 = 2$, $s_4 = 1$
- ► Toutes ces valeurs sont non-négatives

Penons comme base $\mathcal{B} = \{s_1, s_2, s_3, s_4\}$ On peut exprimer s_1 , s_2 , s_3 et s_4 en fonction de x_1 et x_2

$$\begin{cases} z = +5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

Si $x_1 = x_2 = 0$, alors :

- $ightharpoonup s_1 = 24$, $s_2 = 6$, $s_3 = 2$, $s_4 = 1$
- ► Toutes ces valeurs sont non-négatives
- la solution est réalisable

Solution de base réalisable

Définition

Une solution de base telle que toutes les variables prennent des valeurs **non-négatives** est appelée *solution de base réalisable*.

Géométrie des solutions de base

$$\mathcal{B} = \{s_1, s_2, s_3, s_4\} \implies x_1 = 0, x_2 = 0, s_1 = 24, s_2 = 6, s_3 = 2, s_4 = 1$$

► Cette solution de base réalisable correspond au sommet (0,0)

Géométrie des solutions de base

Base	Solution	Objectif	Sommet
$\{s_1, s_2, s_3, s_4\}$	(0,0)	0	Α
$\{x_1, s_2, s_3, s_4\}$	(4,0)	20	F
$\{s_1, x_1, s_3, s_4\}$	(6,0)	_	Non réalisable
$\{x_1, x_2, s_3, s_4\}$	(3, 1.5)	21	Ε

Géométrie des solutions de base

Base	Solution	Objectif	Sommet
$\{s_1, s_2, s_3, s_4\}$	(0,0)	0	A
$\{x_1, s_2, s_3, s_4\}$	(4,0)	20	F
$\{s_1, x_1, s_3, s_4\}$	(6,0)	_	Non réalisable
$\{x_1, x_2, s_3, s_4\}$	(3, 1.5)	21	Ε

Théorème

Toute solution de base réalisable correspond à un sommet du polyèdre

Feuille de TD

- ► Bases d'un système linéaire
- ► Bases d'un programme linéaire

Sommaire

Forme canonique et forme standart d'un programme linéaire

Bases et points extrêmes

Algorithme du simplexe

Détermination de la solution de base optimale

Nombre maximum de solutions de base :

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Nombre maximum de solutions de base :

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

► Algorithme « bête et méchant » : énumération de toutes les bases.

Nombre maximum de solutions de base :

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

- ► Algorithme « bête et méchant » : énumération de toutes les bases.
 - ▶ fonctionne : nombre fini de sommets

Nombre maximum de solutions de base :

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

- ► Algorithme « bête et méchant » : énumération de toutes les bases.
 - fonctionne : nombre fini de sommets
 - limitation : ce nombre peut être très grand en général

Nombre maximum de solutions de base :

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

- Algorithme « bête et méchant » : énumération de toutes les bases.
 - ▶ fonctionne : nombre fini de sommets
 - limitation : ce nombre peut être très grand en général

Algorithme du simplexe (G. B. Dantzig 1947)

Algorithme itératif permettant de résoudre un problème de programmation linéaire.

partir d'une solution de base admissible et passer à une solution de base voisine qui améliore la valeur de l'objectif

- partir d'une solution de base admissible et passer à une solution de base voisine qui améliore la valeur de l'objectif
- ► Solution voisine : changement d'une variable en base

- partir d'une solution de base admissible et passer à une solution de base voisine qui améliore la valeur de l'objectif
- ► Solution voisine : changement d'une variable en base
- 3 étapes :

- partir d'une solution de base admissible et passer à une solution de base voisine qui améliore la valeur de l'objectif
- ► Solution voisine : changement d'une variable en base
- ▶ 3 étapes :
 - 1. Détermination de la variable entrante

- partir d'une solution de base admissible et passer à une solution de base voisine qui améliore la valeur de l'objectif
- Solution voisine : changement d'une variable en base
- ▶ 3 étapes :
 - 1. Détermination de la variable entrante
 - 2. Détermination de la variable sortante

- partir d'une solution de base admissible et passer à une solution de base voisine qui améliore la valeur de l'objectif
- ► Solution voisine : changement d'une variable en base
- ▶ 3 étapes :
 - 1. Détermination de la variable entrante
 - 2. Détermination de la variable sortante
 - 3. Pivotage

$$\begin{cases} z = 0 + 5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

$$\mathcal{B} = \{s_1, s_2, s_3, s_4\} \implies x_1 = 0, x_2 = 0, s_1 = 24, s_2 = 6, s_3 = 2, s_4 = 1$$

$$\begin{cases} z = 0 + 5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

$$\mathcal{B} = \{s_1, s_2, s_3, s_4\} \implies x_1 = 0, x_2 = 0, s_1 = 24, s_2 = 6, s_3 = 2, s_4 = 1$$

$$z = 0$$

Question

Quel changement de base faire pour augmenter z?

$$z = 5x_1 + 4x_2$$

$$z = 5x_1 + 4x_2$$

Si x_1 (ou x_2) augmente (entre en base), la valeur de la fonction objectif z augmente

$$z = 5x_1 + 4x_2$$

- Si x_1 (ou x_2) augmente (entre en base), la valeur de la fonction objectif z augmente
- Principe heuristique :
 - ▶ faire rentrer en base la variable avec le coefficient le plus grand

$$z = 5x_1 + 4x_2$$

- Si x_1 (ou x_2) augmente (entre en base), la valeur de la fonction objectif z augmente
- Principe heuristique :
 - ▶ faire rentrer en base la variable avec le coefficient le plus grand
 - si tous les coefficients sont négatifs, l'algorithme s'arrête

$$z = 5x_1 + 4x_2$$

- Si x_1 (ou x_2) augmente (entre en base), la valeur de la fonction objectif z augmente
- Principe heuristique :
 - ▶ faire rentrer en base la variable avec le coefficient le plus grand
 - si tous les coefficients sont négatifs, l'algorithme s'arrête
- x₁ entre en base; qui doit sortir?

► x₁ entre en base; qui doit sortir?

- \triangleright x_1 entre en base; qui doit sortir?
- ► Contrainte : les autres variables doivent rester positives

- \triangleright x_1 entre en base; qui doit sortir?
- Contrainte : les autres variables doivent rester positives

Question

- ► x₁ entre en base; qui doit sortir?
- ► Contrainte : les autres variables doivent rester positives

Question

$$s_1=24-6x_1\geqslant 0\to x_1\leqslant 4$$

- ► x₁ entre en base; qui doit sortir?
- ► Contrainte : les autres variables doivent rester positives

Question

$$s_1 = 24 - 6x_1 \geqslant 0 \rightarrow x_1 \leqslant 4$$
$$s_2 = 6 - x_1 \geqslant 0 \rightarrow x_1 \leqslant 6$$

- ► x₁ entre en base; qui doit sortir?
- ► Contrainte : les autres variables doivent rester positives

Question

$$\begin{split} s_1 &= 24 - 6x_1 \geqslant 0 \to x_1 \leqslant 4 \\ s_2 &= 6 - x_1 \geqslant 0 \to x_1 \leqslant 6 \\ s_3 &= 2 \geqslant 0 \to 2 \geqslant 0 \text{ toujours !} \end{split}$$

- ► x₁ entre en base; qui doit sortir?
- ► Contrainte : les autres variables doivent rester positives

Question

$$s_1=24-6x_1\geqslant 0 \rightarrow x_1\leqslant 4$$

$$s_2=6-x_1\geqslant 0 \rightarrow x_1\leqslant 6$$

$$s_3=2\geqslant 0 \rightarrow 2\geqslant 0 \text{ toujours !}$$

$$s_4=1+x_1\geqslant 0 \rightarrow x_1\geqslant -1 \text{ toujours !}$$

- ► x₁ entre en base; qui doit sortir?
- ► Contrainte : les autres variables doivent rester positives

Question

$$\begin{split} s_1 &= 24 - 6x_1 \geqslant 0 \rightarrow x_1 \leqslant 4 \\ s_2 &= 6 - x_1 \geqslant 0 \rightarrow x_1 \leqslant 6 \\ s_3 &= 2 \geqslant 0 \rightarrow 2 \geqslant 0 \text{ toujours !} \\ s_4 &= 1 + x_1 \geqslant 0 \rightarrow x_1 \geqslant -1 \text{ toujours !} \end{split}$$

$$x_1 \leqslant 4$$

▶ Si $x_1 = 4$, alors $s_1 = 0$;

- ► Si $x_1 = 4$, alors $s_1 = 0$;
- $ightharpoonup x_1$ entre en base et s_1 sort de la base

- ► Si $x_1 = 4$, alors $s_1 = 0$;
- \triangleright x_1 entre en base et s_1 sort de la base
- ► Substitution :

$$x_1 = 4 - \frac{1}{6}s_1 - \frac{2}{3}x_2$$

- ► Si $x_1 = 4$, alors $s_1 = 0$;
- \triangleright x_1 entre en base et s_1 sort de la base
- ► Substitution :

$$x_1 = 4 - \frac{1}{6}s_1 - \frac{2}{3}x_2$$

Nouveau système :

$$z = 20 - \frac{5}{6}s_1 + \frac{2}{3}x_2$$

$$x_1 = 4 - \frac{1}{6}s_1 - \frac{2}{3}x_2$$

$$s_2 = 2 + \frac{1}{6}s_1 - \frac{4}{3}x_2$$

$$s_3 = 2 - x_2$$

$$s_4 = 5 - \frac{1}{6}s_1 - \frac{5}{3}x_2$$

➤ Variable entrante : plus grand coefficient positif dans la fonction objectif

- Variable entrante : plus grand coefficient positif dans la fonction objectif
 - ► Si tous les coefficients sont négatifs : l'algoritme s'arrête

- Variable entrante : plus grand coefficient positif dans la fonction objectif
 - ► Si tous les coefficients sont négatifs : l'algoritme s'arrête
- Variable sortante :
 - minimum du rapport du coefficient du membre de droite sur le coefficient de la variable entrante dans la même ligne lorsque celui-ci est positif

- Variable entrante : plus grand coefficient positif dans la fonction objectif
 - ► Si tous les coefficients sont négatifs : l'algoritme s'arrête
- Variable sortante :
 - minimum du rapport du coefficient du membre de droite sur le coefficient de la variable entrante dans la même ligne lorsque celui-ci est positif
 - la variable sortante est celle dont on lit la valeur dans la ligne où ce minimum se produit

$$\begin{cases} z = 0 + 5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

$$\begin{cases} z = 0 + 5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

$$\begin{cases} z = 20 - \frac{5}{6}s_1 + \frac{2}{3}x_2 \\ x_1 = 4 - \frac{1}{6}s_1 - \frac{2}{3}x_2 \\ s_2 = 2 + \frac{1}{6}s_1 - \frac{4}{3}x_2 \\ s_3 = 2 - x_2 \\ s_4 = 5 - \frac{1}{6}s_1 - \frac{5}{3}x_2 \end{cases}$$

$$\begin{cases} z = 0 + 5x_1 + 4x_2 \\ s_1 = 24 - 6x_1 - 4x_2 \\ s_2 = 6 - x_1 - 2x_2 \\ s_3 = 2 - x_2 \\ s_4 = 1 + x_1 - x_2 \end{cases}$$

$$\begin{cases} z = 20 - \frac{5}{6}s_1 + \frac{2}{3}x_2 \\ x_1 = 4 - \frac{1}{6}s_1 - \frac{2}{3}x_2 \\ s_2 = 2 + \frac{1}{6}s_1 - \frac{4}{3}x_2 \\ s_3 = 2 - x_2 \\ s_4 = 5 - \frac{1}{6}s_1 - \frac{5}{3}x_2 \end{cases}$$

$$\begin{cases} z = 21 - \frac{3}{4}s_1 - \frac{1}{2}s_2 \\ x_1 = 3 - \frac{1}{4}s_1 + \frac{1}{2}s_2 \\ x_2 = \frac{3}{2} + \frac{1}{8}s_1 - \frac{3}{4}s_2 \\ s_3 = \frac{1}{2} - \frac{1}{8}s_1 + \frac{3}{4}s_2 \\ s_4 = \frac{5}{2} - \frac{3}{8}s_1 + \frac{5}{4}s_2 \end{cases}$$

$$\begin{cases} z = 21 - \frac{3}{4}s_1 - \frac{1}{2}s_2 \\ x_1 = 3 - \frac{1}{4}s_1 + \frac{1}{2}s_2 \\ x_2 = \frac{3}{2} + \frac{1}{8}s_1 - \frac{3}{4}s_2 \\ s_3 = \frac{1}{2} - \frac{1}{8}s_1 + \frac{3}{4}s_2 \\ s_4 = \frac{5}{2} - \frac{3}{8}s_1 + \frac{5}{4}s_2 \end{cases}$$

$$\begin{cases} z = 21 - \frac{3}{4}s_1 - \frac{1}{2}s_2 \\ x_1 = 3 - \frac{1}{4}s_1 + \frac{1}{2}s_2 \\ x_2 = \frac{3}{2} + \frac{1}{8}s_1 - \frac{3}{4}s_2 \\ s_3 = \frac{1}{2} - \frac{1}{8}s_1 + \frac{3}{4}s_2 \\ s_4 = \frac{5}{2} - \frac{3}{8}s_1 + \frac{5}{4}s_2 \end{cases}$$

ightharpoonup z ne peut plus être augmentée (coef. de s_1 et s_2 négatifs)

$$\begin{cases} z = 21 - \frac{3}{4}s_1 - \frac{1}{2}s_2 \\ x_1 = 3 - \frac{1}{4}s_1 + \frac{1}{2}s_2 \\ x_2 = \frac{3}{2} + \frac{1}{8}s_1 - \frac{3}{4}s_2 \\ s_3 = \frac{1}{2} - \frac{1}{8}s_1 + \frac{3}{4}s_2 \\ s_4 = \frac{5}{2} - \frac{3}{8}s_1 + \frac{5}{4}s_2 \end{cases}$$

- ightharpoonup z ne peut plus être augmentée (coef. de s_1 et s_2 négatifs)
- **▶** *z* ≤ 21

$$\begin{cases} z = 21 - \frac{3}{4}s_1 - \frac{1}{2}s_2 \\ x_1 = 3 - \frac{1}{4}s_1 + \frac{1}{2}s_2 \\ x_2 = \frac{3}{2} + \frac{1}{8}s_1 - \frac{3}{4}s_2 \\ s_3 = \frac{1}{2} - \frac{1}{8}s_1 + \frac{3}{4}s_2 \\ s_4 = \frac{5}{2} - \frac{3}{8}s_1 + \frac{5}{4}s_2 \end{cases}$$

- ightharpoonup z ne peut plus être augmentée (coef. de s_1 et s_2 négatifs)
- **▶** *z* ≤ 21
- Si $s_1 = s_2 = 0$ alors z = 21 c'est l'optimum

$$\begin{cases} z = 21 - \frac{3}{4}s_1 - \frac{1}{2}s_2 \\ x_1 = 3 - \frac{1}{4}s_1 + \frac{1}{2}s_2 \\ x_2 = \frac{3}{2} + \frac{1}{8}s_1 - \frac{3}{4}s_2 \\ s_3 = \frac{1}{2} - \frac{1}{8}s_1 + \frac{3}{4}s_2 \\ s_4 = \frac{5}{2} - \frac{3}{8}s_1 + \frac{5}{4}s_2 \end{cases}$$

- ightharpoonup z ne peut plus être augmentée (coef. de s_1 et s_2 négatifs)
- **▶** *z* ≤ 21
- Si $s_1 = s_2 = 0$ alors z = 21 c'est l'optimum
- atteint pour $(x_1; x_2) = (3; \frac{3}{2})$

Terminaison de l'algorithme du simplexe

Solution de base dégénérée

Solution de base dégénérée si une ou plusieurs variables de base sont zéros (plus de bijection entre les solutions de base admissibles et les points extrêmes)

Terminaison de l'algorithme du simplexe

Solution de base dégénérée

Solution de base dégénérée si une ou plusieurs variables de base sont zéros (plus de bijection entre les solutions de base admissibles et les points extrêmes)

Terminaison de l'algorithme

Si toutes les solutions de base admissibles sont non dégénérées, l'algorithme du simplexe termine après un nombre fini d'itérations