

Vergleich verlustfreier Datenkompressionsverfahren auf Bilddaten

Ziele der Arbeit

- Wieso sind einige Datenkompressionsverfahren für **Bilddaten** gut geeignet und andere nicht?
- Versuch: Implementierung verschiedener Kompressionsverfahren Vergleich mit verschiedenen Bildern

Gliederung

- Datenkompression allgemein
- Vorstellung der Kompressionsverfahren
- Messbarkeit definieren
- Theoretischer Vergleich der Kompressionsverfahren (Erwartungen)
- Versuch
- Interpretation der Ergebnisse
- Fazit: Was ist entscheidend, damit ein Kompressionsalgorithmus Bilddaten "gut" komprimieren kann

Kompressionsverfahren

- Runlength-Encoding (RLE)
- Huffman
- LZ77
- Deflate-Algorithmus: LZ77 + Huffman
- PNG: Filtern + Deflate-Algorithmus

Alle Kompressionsverfahren sind verlustfrei!

Messbarkeit

Wie gut ist ein Kompressionsverfahren?

- Kompressionsrate
- Kompressionsgeschwindigkeit, O-Notation
- Dekompressionsgeschwindigkeit

Versuch

Aktueller Stand

Code läuft, erste Ergebnisse auf Testbild:

Bild Name:	Auflösung Bild:	Größe (Byte)	Algorithmus	Komprimierte Größe	Zeit Kompression	Zeit Dekompression
Folie	(945, 718)	2.035.530	RLE	2.143.426 Byte	474 ms	769 ms
			Huffman	877.089 Byte + 768 Byte	238 ms	321 ms
			LZ77	511.036 Bytes	63.395 ms	72.963 ms
			Deflate	435.806 Bytes	63.460 ms	73.280 ms
			PNG	718 Byte Filter + 349.006 Bytes	100 s	53 s

Nick Schreiber 7

Probleme

- Implementierung der Algorithmen ist nicht trivial
- Große Matrizen sind eine Herausforderung (Python ist high-level Sprache)
- Kompressionsalgorithmen werden normalerweise nicht auf Bilddaten angewandt, manuelle Konvertierung und Anpassung an das Problem

Quellen

• W3C Algorithmus Spezifikationen

Informationstheorie:

• Informations- und Codierungstheorie. Mathematische Grundlagen der Daten-Kompression und -Sicherung in diskreten Kommunikationssystemen. (Werner Heise, Pasquale Quattrocchi)