MCST1043 RESEARCH DESIGN AND ANALYSIS IN DATA SCIENCE

REINFORCEMENT LEARNING FOR AUTOMATED TRADING IN STOCK MARKET

CANDIDATE : LEE HONG JIAN

LECTURER : ASSOC. PROF. DR MOHD

SHAHIZAN BIN OTHMAN

VENUE :MP1,LEVEL 1,BLOCK N28A

DATE : 29/Jun 2025

Innovating Solutions

Presentation Video:

https://www.youtube.
com/watch?v=EbuiOB

<u>h_BTo</u>

CHAPTER 1: RESEARCH INTRODUCTION

Research Introduction

- Definition of Machine Learning (ML) and Reinforcement Learning (RL):
 - ML focuses on creating algorithms to let agents learn from data without explicit programming (Vec et al., 2024).
 - DRL involves agents making decisions based on real-time interactions with the environment using a reward system (Barto et al., 2025).
- Deep Reinforcement Learning (DRL) in Trading:
 - DRL adapts to market changes, develops strategies based on trends, and enhances decision-making (Huang et al., 2024).
- Benefits of DRL in Trading:
 - Adaptability: Dynamic algorithms adjust based on market conditions.
 - Improved Decision-Making: Enhanced through market interaction and data-driven strategies.
 - Automation and Optimization: DRL reduces resource usage and increases efficiency (Kabbani & Duman, 2022).
 - Emotional Neutrality: DRL removes emotional biases in decision-making, unlike human traders who may be affected by emotions.
- Potential in Decision-Making and Forecasting:
 - DRL's ability to make effective decisions and forecasts makes it highly effective in the dynamic stock market (Sangve et al., 2025).

Problem Background

- Emotional Biases in decision-making (Aziz et al. 2024).
- Lack of the automation in decision-making process (Kabbani and Duman, 2022).
- Multiple of the policy for optimize returns (Huang et al.2024)

The Goals of Study

- Improve efficiency of DRL model training in stock market
- Improvement in Trading Strategy Optimization
- Minimizing the emotional biases in decision-making (advancement of market prediction)

Research Mapping

Research Gap	Problem Statement	Research Question	Research Objective
Emotional biases affecting trading strategies during decision-making (Aziz et al. 2024).	Decision-making is influenced by the sentimental, will leading to suboptimal outcomes	How can emotional biases in decision-making be minimized?	To train an agent resistant to sentiment-driven biases using the DRL model.
Limitations of traditional trading strategies (Kabbani and Duman, 2022).	Lack of automation in decision-making processes.	What is the optimal model for automated decision-making?	To compare performance and analyze strengths/weaknesses of DQN, PPO, and SAC models
Policies that optimize return rates (Huang et al.2024)	Each model has different mechanisms/policy settings for training the agent	What is the best policy to optimizing returns?	To develop a dashboard visualizing returns from agents trained under different mechanisms.

CHAPTER 2: LITERATURE REVIEW

Standard & Poor 500 (S&P 500)

- S&P 500 Introduction: Launched in 1957 to track 500 major U.S. companies on the New York Stock Exchange (NYSE).
- Index Updates: Regularly adjusted to reflect economic changes; over 900 companies added/removed.
- Outperformance: The S&P 500 consistently outperforms most active managers due to the inclusion of highperforming companies.
- Economic Representation: Represents diverse sectors of the U.S. economy, ensuring ongoing relevance

Volume	Adj Close ①	Close ①	Low	High	Open	Date
4,645,090,000	5,659.91	5,659.91	5,644.15	5,691.69	5,679.65	May 9, 2025
5,627,400,000	5,663.94	5,663.94	5,635.38	5,720.10	5,663.60	May 8, 2025
4,987,440,000	5,631.28	5,631.28	5,578.64	5,654.73	5,614.18	May 7, 2025
4,717,260,000	5,606.91	5,606.91	5,586.04	5,649.58	5,605.87	May 6, 2025
4,358,260,000	5,650.38	5,650.38	5,634.48	5,683.38	5,655.32	May 5, 2025
4,854,380,000	5,686.67	5,686.67	5,642.28	5,700.70	5,645.88	May 2, 2025
4,935,270,000	5,604.14	5,604.14	5,597.35	5,658.91	5,625.14	May 1, 2025
5,449,490,000	5,569.06	5,569.06	5,433.24	5,581.84	5,499.44	Apr 30, 2025
4,747,150,000	5,560.83	5,560.83	5,505.70	5,571.95	5,508.87	Apr 29, 2025
4,257,880,000	5,528.75	5,528.75	5,468.64	5,553.66	5,529.22	Apr 28, 2025
4,236,580,000	5,525.21	5,525.21	5,455.86	5,528.11	5,489.73	Apr 25, 2025
4,697,710,000	5,484.77	5,484.77	5,371.96	5,489.40	5,381.38	Apr 24, 2025
5,371,390,000	5,375.86	5,375.86	5,356.17	5,469.69	5,395.92	Apr 23, 2025
4,666,950,000	5,287.76	5,287.76	5,207.67	5,309.61	5,207.67	Apr 22, 2025
4,226,340,000	5,158.20	5,158.20	5,101.63	5,232.94	5,232.94	Apr 21, 2025
4,714,880,000	5,282.70	5,282.70	5,255.58	5,328.31	5,305.45	Apr 17, 2025
4,607,750,000	5,275.70	5,275.70	5,220.79	5,367.24	5,335.75	Apr 16, 2025
4,317,110,000	5,396.63	5,396.63	5,386.44	5,450.41	5,411.99	Apr 15, 2025
5,031,440,000	5,405.97	5,405.97	5,358.02	5,459.46	5,441.96	Apr 14, 2025
5,602,550,000	5,363.36	5,363.36	5,220.77	5,381.46	5,255.56	Apr 11, 2025
6,677,140,000	5,268.05	5,268.05	5,115.27	5,353.15	5,353.15	Apr 10, 2025
9,489,600,000	5,456.90	5,456.90	4,948.43	5,481.34	4,965.28	Apr 9, 2025
7,408,140,000	4,982.77	4,982.77	4,910.42	5,267.47	5,193.57	Apr 8, 2025
8,691,980,000	5,062.25	5,062.25	4,835.04	5,246.57	4,953.79	Apr 7, 2025

Existing Model Framework

- Traditional Analysis in trading (Huang et al., 2024):
 - Fundamental Analysis
 - Technical Analysis
 - Statistical Models in Trading
- Best fit for stable stock market but not applicable for dynamics stock market (Huang et al., 2024).

DRL Models in Trading

						UNIVERSITI TEKNOLO
No	Model Name	Function of model in trading	Strength of model	Limitation of model	Results of paper	Citation
	Deep-Q-Network (DQN)	calculate the Q-values, discrete trading actions (Sell, Hold, Buy) based on the mapping status (observations of market)	- Able to handles the high dimensional state spaces.	s. grade of policy quality. rule-based strategies with higher		Otabek, S., & Choi, J. (2024). Multi- level deep Q-networks for bitcoin trading strategies. Scientific Reports
:			 Without the handcrafted features, able to learn directly from the raw data (price of stock data) 	- Only suitable for the discrete action spaces.	ratios on historical stock data (Otabek et al. 2024)	(Nature Publisher Group), 14(1), 771. doi: https://doi.org/10.1038/s41598- 024-51408-w
			- Efficient of sample and robust to hyperparameter choices.	- intensive computation	l l	Sun, Q. (2023). Reinforcement learning algorithms for stock
;	Proximal Policy Optimization (PPO)	By the surrogate clipped objectives to balance the exploration and exploitation. It will help in stable policy update for discrete and continuous spaces.	- Well handle of stochastics policy and helps in improvement of exploration.	- May achieve the local optima without the adequate exploration.	PPO agents adapt well toward the dynamics market and outperformed than DQN and A2C models in portfolio management (Sun., 2023)	(3186188497). Retrieved from
		Jointed policy (optimal actor) and value (critic) networks to reduce the variances of gradient and increase the speed of training convergence.	- Better trade-off for bias-variance.	 Less sample-efficient than PPO. 		Goluža, S., Kovačević, T., Bauman, T., & Kostanjčar, Z. (2024). Deep
:	Advantage Actor-Critic (A2C)		- Convergence faster than pure policy gradient methods.	- Sensitive to 'Noisy' data of financial market.	•	reinforcement learning with positional context for intraday grading. Ithaca: doi: https://doi.org/10.1007/s12530-024-09593-6
		TD3 improved DDPG by using the double Q- p3) learning clipped to reduce the overestimation bias and delayed of policy update for stability.	- More stable of training in continuous spaces	- Sensitive to 'Noisy' data of financial market.		Majidi, N., Shamsi, M., & Marvasti, F. (2022). Algorithmic trading using
Twin Delayed DDPG (TI	Twin Delayed DDPG (TD3)		- Better sample efficiency	- Additional computational overhead required.	returns and lower down the drawdowns than DDPG and PPO (Majidi et al., 2022)	continuous action space deep reinforcement learning. Ithaca: Retrieved from https://vpn.utm.my/working-papers/algorithmic-trading-using-continuous-action-space/docview/2723274890/se-2
	Soft Actor-Critic (SAC)	SAC is the off-policy actor-critic algorithm that can help in optimize the maximum entropy objective and will helps in exploration and robustness	- Robust toward hyperparameter variations	 Complexity of computational 	SAC agents overnerforming than	Kong, M., & So, J. (2023). Empirical analysis of automated stock trading
Soft 5			- Have a strong exploration in continuous action spaces	- Tunning issues for financial data.	PPO and DDPG in the trading multiple assets with lower risk and high stability (Kong et al., 2023)	sing deep reinforcement earning. Applied Sciences, 13(1), 33. oi:https://doi.org/10.3390/app1301633

CHAPTER 3: RESEARCH METHODOLOGY

Research Framework Overview

Data Collection

Volume	Adj Close ①	Close ①	Low	High	Open	Date
4,645,090,000	5,659.91	5,659.91	5,644.15	5,691.69	5,679.65	May 9, 2025
5,627,400,000	5,663.94	5,663.94	5,635.38	5,720.10	5,663.60	May 8, 2025
4,987,440,000	5,631.28	5,631.28	5,578.64	5,654.73	5,614.18	May 7, 2025
4,717,260,00	5,606.91	5,606.91	5,586.04	5,649.58	5,605.87	May 6, 2025
4,358,260,00	5,650.38	5,650.38	5,634.48	5,683.38	5,655.32	May 5, 2025
4,854,380,00	5,686.67	5,686.67	5,642.28	5,700.70	5,645.88	May 2, 2025
4,935,270,00	5,604.14	5,604.14	5,597.35	5,658.91	5,625.14	May 1, 2025
5,449,490,00	5,569.06	5,569.06	5,433.24	5,581.84	5,499.44	Apr 30, 2025
4,747,150,00	5,560.83	5,560.83	5,505.70	5,571.95	5,508.87	Apr 29, 2025
4,257,880,00	5,528.75	5,528.75	5,468.64	5,553.66	5,529.22	Apr 28, 2025
4,236,580,00	5,525.21	5,525.21	5,455.86	5,528.11	5,489.73	Apr 25, 2025
4,697,710,00	5,484.77	5,484.77	5,371.96	5,489.40	5,381.38	Apr 24, 2025
5,371,390,00	5,375.86	5,375.86	5,356.17	5,469.69	5,395.92	Apr 23, 2025
4,666,950,00	5,287.76	5,287.76	5,207.67	5,309.61	5,207.67	Apr 22, 2025
4,226,340,00	5,158.20	5,158.20	5,101.63	5,232.94	5,232.94	Apr 21, 2025
4,714,880,00	5,282.70	5,282.70	5,255.58	5,328.31	5,305.45	Apr 17, 2025
4,607,750,00	5,275.70	5,275.70	5,220.79	5,367.24	5,335.75	Apr 16, 2025
4,317,110,00	5,396.63	5,396.63	5,386.44	5,450.41	5,411.99	Apr 15, 2025
5,031,440,00	5,405.97	5,405.97	5,358.02	5,459.46	5,441.96	Apr 14, 2025
5,602,550,00	5,363.36	5,363.36	5,220.77	5,381.46	5,255.56	Apr 11, 2025
6,677,140,00	5,268.05	5,268.05	5,115.27	5,353.15	5,353.15	Apr 10, 2025
9,489,600,00	5,456.90	5,456.90	4,948.43	5,481.34	4,965.28	Apr 9, 2025
7,408,140,00	4,982.77	4,982.77	4,910.42	5,267.47	5,193.57	Apr 8, 2025
8,691,980,00	5,062.25	5,062.25	4,835.04	5,246.57	4,953.79	Apr 7, 2025

- Stock Data:
 - S&P 500 historical OHLC data and volume data
 - OHLC data = Open, High, Low, Close prices
 - Volume data = Daily trading volume
- Source: Yahoo Finance
- Time Period : 01/01/2016 to 01/01/2024

Data Cleaning and Preprocessing

- Handling Missing Data
 - Interpolation (continuous time-series data)
- Removing Outliers
 - Use statistical methods (Z-score or IQR)
 - To ensure the model does not learn from irregular, unrepresentative data.

Formula for Standardization:

$$Z = \frac{X - \mu}{\sigma}$$

where μ is the mean and σ is the standard deviation.

Lower Bound =
$$Q_1 - 1.5IQR$$

$$Upper\ Bound = Q_3 - 1.5IQR$$

Model/Problem Definition

- Research Aim: Use DRL to create an automated trading agent for stock market decisions with S&P 500 data.
- MDP Framework: Agent learns optimal trading (buy, hold, sell) to maximize cumulative return.
- State Space: Features from S&P 500 data: OHLC, closing price, moving average, and volume.
- Action Space: Discrete actions (buy, hold, sell) at each time step.
- Reward Function: $R_t = P_{t+1} P_t$
- Objective: Maximize cumulative reward using discounted return with factor γ (0 $\leq \gamma$ \leq 1).
- Evaluation Metrics: Compare DRL models against baseline strategies (buy/sell) based on profitability and risk-adjusted return.
- Goal: Identify the best model for long-term stock market strategy.

Model Selection

CKNOLO
Citation
k Choi, J. (2024). Multi- -networks for bitcoin egies. Scientific Reports
(Nature Publisher Group), 14(1), 771. doi: https://doi.org/10.1038/s41598- 024-51408-w
3). Reinforcement orithms for stock
er No. 31765482). Im ProQuest S & Theses Global. T). Retrieved from utm.my/dissertations- procement-learning- tock- view/3186188497/se-2
ovačević, T., Bauman, T., r, Z. (2024). Deep
nt learning with ontext for intraday ca: doi: org/10.1007/s12530-024-
namsi, M., & Marvasti, F. rithmic trading using
action space deep int learning. Ithaca: om utm.my/working- rithmic-trading-using- action- ew/2723274890/se-2
So, J. (2023). Empirical utomated stock trading
einforcement plied Sciences, 13(1), loi.org/10.3390/app1301
t /i C ; r o c o c i a r o u ri a e s u e p

Model Selection (DQN, PPO, SAC)

No	Model	Reason
1	PPO	Balance training stability and sample efficiency.Able to handle discrete and continuous action spaces
2	DQN	Able to handles the high dimensional state spacesBasic DRL model
3	SAC	Efficient ExplorationSample efficient

Model Selection (DQN)

- Deep Q-Network (DQN): A model-free, off-policy algorithm combining Q-learning and deep neural networks to approximate the Q-function, ideal for large state spaces like market data.
- **Objective**: Learn the optimal policy $\pi*(s)$ to maximize cumulative rewards by updating Q-values using deep neural networks.

Q-value Formula:

$$Q(s_t, a_t) = r_{t+k} + \gamma \cdot \max_a Q(s_{t+1}, a)$$

Q-value Update Formula:

$$Q(s_t, a_t) = r_t + \gamma \cdot Q(s_{t+1}, a_{t+1})$$
 (target Q-network)

Loss Function: Mean squared error (MSE) between predicted and target Q-values:

$$ext{MSE} = \left(Q(s_t, a_t) - \hat{Q}(s_t, a_t)
ight)^2$$

Q-network Update: Adjust weights θ using gradient descent:

$$\theta = \theta - \alpha \cdot \nabla_{\theta} \text{Loss}$$

Model Selection (SAC)

 Soft Actor-Critic (SAC): A reinforcement learning (RL) algorithm used primarily in robotics to maximize expected long-term rewards and entropy.

State-Value Function: Learned by minimizing squared residual error:

$$V(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^t r_t
ight]$$

Gradient:

$$\nabla_{ heta}V(s)$$

Q-function (Quality Function): Learned using the state-action value:

$$Q(s,a) = \mathbb{E}\left[\sum_{t=0}^T \gamma^t r_t
ight]$$

Next step Q-function:

$$Q'(s,a) = \mathbb{E}\left[\sum_{t=0}^T \gamma^t r_t
ight]$$

Gradient for Q-function:

$$\nabla_{\theta}Q(s,a)$$

Policy Learning: The policy is learned by maximizing the expected reward:

$$\pi(a|s) = rg \max_a Q(s,a)$$

Gradient:

$$\nabla_{\theta}\pi(a|s)$$

Model Selection (PPO)

 PPO Overview: A policy gradient-based DRL model developed by OpenAI to balance exploitation and exploration. It prevents large policy updates and maintains stability in learning.

Clipped Surrogate Objective:

$$L^{CLIP}(heta) = \mathbb{E}_t \left[\min \left(r_t(heta) \hat{A}_t, \operatorname{clip}(r_t(heta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t
ight)
ight]$$

Total Loss Function:

$$L(\theta) = \mathbb{E}_t \left[L^{CLIP}(\theta) - c_1 L^V(\theta) + c_2 S[\pi](\theta) \right]$$

Advantage Estimation: Use Generalized Advantage Estimation (GAE) to calculate the advantage:

$$A_t = \delta_t + (\gamma \lambda)\delta_{t+1} + \dots$$

Data Normalization & Splitting

- Normalization and Scaling
 - To ensure that the features are on the same scale and improve model training.
- Data Splitting (80% Training and 20% Test)

Formula for Min-Max Scaling:

$$\text{Scaled Value} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

Formula for Standardization:

$$Z = \frac{X - \mu}{\sigma}$$

where μ is the mean and σ is the standard deviation.

Model Training

Training Loop:

- Environmental Initialization: Initialize the state space from input data.
- Action Selection: Choose an action using DQN, PPO, or SAC strategies.
- Executing Action: Perform the selected action (buy, sell, or hold).Reward Calculation: Calculate reward based on the profit or loss.
- Next State Observation: Observe the new market state after the action.
- Experience Replay (DQN only): Store experiences and sample from buffer for training.
- Model Update: Update the model using Bellman equation (DQN), clipped objective (PPO), or soft Bellman backup (SAC).
- Episode Completion: Terminate after a predefined number of time steps.
- Repeat Process: Continue the cycle to improve the model's policy and reward.

Hyperparameter Tuning

Model-Specific Hyperparameters:

- DQN:
 - Target Network Update Frequency: Controls target Q-network updates.
 - Double Q-Learning: Reduces overestimation bias in Q-values.
- PPO:
 - Clip Range: Prevents large policy changes for stability.
 - GAE Lambda: Balances bias and variance in advantage estimation.
- SAC:
 - Entropy Coefficient: Controls exploration-exploitation trade-off.
 - Target Entropy: Determines the model's exploration during training.
- Hyperparameter Tuning Methods:
 - Grid Search: Exhaustive search of predefined hyperparameter combinations.
 - Steps: Define ranges → Create grid → Train & evaluate → Select best performance → Fine-tune.
 - Random Search: Randomly selects hyperparameter combinations.
 - Steps: Define ranges → Randomly sample → Train & evaluate → Select best performance.
 - Cross-Validation: Reduces overfitting, splits data into k-folds for training and validation.
 - Steps: Split data → Train on k-1 folds → Validate on remaining fold → Average performance.

General Hyperparameters for DQN, PPO, and SAC:

- Learning rate, α
- Discount factor, y
- Batch size
- Exploration rate
- Replay buffer size
- Number of timesteps per episode

Evaluation Metrics

- **F1-Score** evaluation the accuracy of the model
 - Formula:

$$F1$$
-score = $\frac{2 \times Precision \times Recall}{Precision + Recall}$

• **Cumulative Return** - Measures the overall profitability of the model's trading decisions over time.

Formula:

$$\label{eq:Cumulative Return} \begin{aligned} \text{Cumulative Return} &= \frac{\text{Ending Portfolio Value} - \text{Starting Portfolio Value}}{\text{Starting Portfolio Value}} \times 100 \end{aligned}$$

Dashboard Development

Visualization:

- •Build an interactive dashboard to show:
 - Portfolio growth over time.
 - Comparison of total return for DQN, PPO, and SAC.
 - Real-time agent performance updates.

Model Comparison and Performance Analysis

Performance Comparison:

- •Compare **DQN**, **PPO**, and **SAC** based on:
 - Return optimization (total return).
 - F1-Score
 - Model robustness and stability over time.

Analysis:

- •Identify the strengths and weaknesses of each model.
- •Discuss trade-offs between risk and return in each DRL model.

CHAPTER 4: INITIAL FINDINGS

Data Preprocessing/ Data cleaning

Handles the missing data by interpolation

```
[ ] # Check if there are any missing values in the data
    if missing data.any():
        print("Missing values found. Interpolation will be performed.")
        # Perform linear interpolation to fill missing values
        data interpolated = data.interpolate(method='time', limit direction='both')
        print("Interpolation completed.")
    else:
        # If no missing data, skip interpolation
        data interpolated = data
        print("No missing values found. Skipping interpolation.")
    # Verify that there are no more missing values
    missing_data_after = data_interpolated.isnull().sum()
    print("Missing values after interpolation:\n", missing_data_after)
    No missing values found. Skipping interpolation.
    Missing values after interpolation:
     Price Ticker
    Close
            ^GSPC
    High
            ^GSPC
            ^GSPC
    Open
    Volume ^GSPC
    dtype: int64
```

Data Preprocessing/ Data cleaning

Remove outliers

```
from scipy.stats import zscore
    # Calculate z-scores for the close prices
    data['zscore'] = zscore(data['Close'])
    # Filter out data points where z-score is greater than 3 (outliers)
    data_clean = data[data['zscore'].abs() <= 3]</pre>
    # Drop the z-score column for the final cleaned data
    data_clean = data_clean.drop(columns=['zscore'])
    print(data_clean.head())
    Price
                      Close
                                    High
                                                                       Volume
                                                  Low
                                                              Open
    Ticker
                      ^GSPC
                                   ^GSPC
    Date
    2016-01-04 2012.660034 2038.199951 1989.680054
                2016.709961 2021.939941
                                         2004.170044
               1990.260010 2011.709961 1979.050049
                                                      2011.709961
    2016-01-07
               1943.089966 1985.319946 1938.829956
    2016-01-08 1922.030029 1960.400024 1918.459961 1945.969971 4664940000
```

Data Preprocessing/ Data cleaning

Final checking for the data set.

```
# Check for remaining missing values
print(data.isnull().sum())
# Check for duplicated rows
print(data.duplicated().sum())
# Display the final cleaned data
print(data.head())
Price
                  Ticker
Close
                  ^GSPC
High
                  ^GSPC
Low
                  ^GSPC
Open
                  ^GSPC
Volume
                  ^GSPC
zscore
Close Normalized
dtype: int64
0
Price
                  Close
                                High
                                                                     Volume
                                              Low
                                                           Open
Ticker
                  ^GSPC
                                                          ^GSPC
                                                                      ^GSPC
Date
2016-01-04 2012.660034
                         2038.199951
                                      1989.680054
                                                   2038.199951
                         2021.939941
                                      2004.170044
           1990.260010
                        2011.709961
                                      1979.050049
                                                   2011.709961
           1943.089966
                         1985.319946
                                      1938.829956
                                                   1985.319946
2016-01-08 1922.030029
                        1960.400024 1918.459961 1945.969971 4664940000
Price
              zscore Close Normalized
Ticker
Date
2016-01-04 -1.495889
                             0.061864
2016-01-05 -1.491027
                             0.063229
2016-01-06 -1.522778
                             0.054315
                             0.038420
2016-01-07 -1.579402
2016-01-08 -1.604683
                             0.031323
```

Data Normalization and Spliting

 Normalized the split the data into train and test set

```
import pandas as pd
   # Load your data (replace with the actual file path or DataFrame)
    # Assuming your data has a column 'Date' and 'Close' (or other stock-related data)
   # Convert the Date column to datetime if not already done
   data.index = pd.to datetime(data.index)
   # Calculate the split index
   train size = int(len(data) * 0.8) # 80% for training
   # Split the data into train and test sets
   train_data = data.iloc[:train_size]
   test_data = data.iloc[train_size:]
   # Display the results
    print("Train Data (80%):")
   print(train_data.head()) # Show the first few rows of the train data
   print("\nTest Data (20%):")
   print(test_data.head()) # Show the first few rows of the test data
→ Train Data (80%):
    Price
                    Close
                                                                     Volume
    Ticker
                                                                      ^GSPC
   2016-01-04 2012.660034 2038.199951 1989.680054 2038.199951 4304880000
   2016-01-05 2016.709961 2021.939941 2004.170044 2013.780029 3706620000
    2016-01-06 1990.260010 2011.709961 1979.050049 2011.709961
   2016-01-07 1943.089966 1985.319946 1938.829956 1985.319946 5076590000
   2016-01-08 1922.030029 1960.400024 1918.459961 1945.969971 4664940000
   Price
                 zscore Close Normalized
   Ticker
   Date
   2016-01-04 -1.495889
                               0.061864
   2016-01-05 -1.491027
   2016-01-06 -1.522778
                               0.054315
   2016-01-07 -1.579402
                               0.038420
   2016-01-08 -1.604683
   Test Data (20%):
                    close
   Price
                                                                     Volume \
   Ticker
                     ^GSPC
   2022-05-24 3941.479980 3955.679932 3875.129883 3942.939941 4923190000
   2022-05-25 3978.729980 3999.330078 3925.030029 3929.590088 4802560000
   2022-05-26 4057.840088 4075.139893 3984.600098 3984.600098 4709970000
   2022-05-27 4158.240234 4158.490234 4077.429932 4077.429932 4375620000
   2022-05-31 4132.149902 4168.339844 4104.879883 4151.089844 6822640000
                 zscore Close Normalized
   Ticker
   2022-05-24 0.819501
   2022-05-25 0.864216
                               0.724403
   2022-05-26 0.959182
   2022-05-27 1.079704
                               0.784895
   2022-05-31 1.048384
                               0.776103
```


Descriptive Statistics Analysis

₹*

```
# Plotting the Closing Price
plt.figure(figsize=(12,6))
plt.plot(data['Close'], label='S&P 500 Close')
plt.title('S&P 500 Close Price (2000-2024)', fontsize=14)
plt.xlabel('Date', fontsize=12)
plt.ylabel('Price (USD)', fontsize=12)
plt.legend()
plt.show()
```



```
[ ] # Compute 30-day and 100-day rolling mean and standard deviation
   data['30_day_MA'] = data['Close'].rolling(window=30).mean()
   data['100_day_MA'] = data['Close'].rolling(window=100).mean()
   data['30_day_STD'] = data['Close'].rolling(window=30).std()

# Plotting the closing price along with rolling mean and std
   plt.figure(figsize=(12,6))
   plt.plot(data['100_cdy_MA'], label='S&P 500 Close', color='blue')
   plt.plot(data['30_day_MA'], label='30-Day Rolling Mean', color='orange')
   plt.plot(data['100_day_MA'], label='100-Day Rolling Mean', color='green')
   plt.title('S&P 500 with Rolling Mean (30, 100)', fontsize=14)
   plt.xlabel('Date', fontsize=12)
   plt.legend()
   plt.show()
```


Descriptive Statistics Analysis

```
[ ] # Compute daily returns
  data['Daily Return'] = data['Close'].pct_change()

# Plot the distribution of daily returns
  plt.figure(figsize=(10,6))
  sns.histplot(data['Daily Return'], bins=100, kde=True, color='purple')
  plt.title('Distribution of Daily Returns (S&P 500)', fontsize=14)
  plt.xlabel('Daily Return', fontsize=12)
  plt.ylabel('Frequency', fontsize=12)
  plt.show()
Distribution of Daily Potures (S&P 500)
```



```
[] # Plotting the histogram for daily price differences
plt.figure(figsize=(12, 6))
plt.hist(data['Daily Difference'], bins=50, color='purple', edgecolor='black', alpha=0.7)
plt.title('Histogram of S&P 500 Daily Price Differences', fontsize=14)
plt.xlabel('Daily Price Difference (USD)', fontsize=12)
plt.ylabel('Frequency', fontsize=12)
plt.grid(True)
plt.show()
```


EDA

Correlation Heat Map

₹*

```
# Create a correlation heatmap
corr_matrix = data[['Open', 'High', 'Low', 'Close', 'Volume']].corr()

plt.figure(figsize=(10,6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Matrix for S&P 500 Price Data', fontsize=14)
plt.show()
```


Volatility plot of market

```
[ ] # Compute 30-day volatility (standard deviation of daily returns)
  data['30_day_volatility'] = data['Daily Return'].rolling(window=30).std()

# Plotting volatility
plt.figure(figsize=(12,6))
plt.plot(data['30_day_volatility'], label='30-Day Volatility', color='red')
plt.title('S&P 500 30-Day Volatility', fontsize=14)
plt.xlabel('Date', fontsize=12)
plt.ylabel('volatility', fontsize=12)
plt.legend()
plt.show()
```


Positive vs Negative Daily Price Differences

(S&P 500)

CHAPTER 5: CONCLUSION

Future Works

- The dashboard development for the performance analysis to visualize and analyze the performance of different DRL models (DQN, SAC and PPO).
 - Sharpe ratio, net worth over time and agent comparison.
 - F1 Score
 - Cumulative Return Rate
- The policy analysis of 3 DRL models:
 - Analyze performance metrics: return, Sharpe ratio, and standard deviation.
 - Behavioral insight: breakdown of each DRL model.
 - Correlate actions with changes in net worth.

THANK YOU

f in univteknologimalaysia W b utm.my utmofficial

