Chapter 2

Digital Image Fundamentals

Contents

- Elements of visual perception
- Light and the electromagnetic spectrum
- Image sensing and acquisition
- Image sampling and quantization
- Some basic relationships between pixels
- Linear and nonlinear operations
- Image geometry

2.1 Elements of Visual Perception

- Structure of the human eye
- Image formation in the eye

2.1.1 Structure of the Human Eye(1)

Structure of the Human Eye(2)

FIGURE 2.2 Distribution of rods and cones in the retina.

Distribution of discrete light receptors

Receptors	Quantity/eye	Sensitive to	Population		
Cones	6 to 7 M	color	cluttered around near Fovea		
Rods	75 to 150 M	brightness	scattered radially symmetrically and indirectly proportional to radius		

2.1.2 Image Formation in the Eye

- Lens of human eye is flexible.
- Ciliary muscle controls thickness of lens from 14 mm to 17 mm. → focal length
- Lens is thickened to focus on nearby objects and flattened on distant objects.
- As lens is thickened, focal length decreases.

2.2 Light and the Electromagnetic Spectrum

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

2.3 Image Sensing and Acquisition – Sensor Types

2.3.1 2D Image with a Single Sensor

9

2.3.2 2D Image with Sensor Strips

FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

2.3.3 2D Image with Sensor Arrays

FIGURE 2.15 An example of the digital image acquisition process (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

2.3.4 A Simple Image Model (1)

As light is a form of energy,

$$0 < f(x, y) < \infty$$

- The basic nature of f(x, y) may be characterized by two components:
 - illumination i(x, y)
 - the amount of source light incident on the scene
 - reflectance r(x, y)
 - the amount of light reflected by the objects in the scene

A Simple Image Model (2)

- Amplitude of f at (x, y)
 - = intensity of the image at that point

$$f(x, y) = i(x, y)r(x, y)$$

$$0 < i(x, y) < \infty$$

$$0 < r(x, y) < 1$$

A Simple Image Model (3)

i(x, y)		r(x, y)	
Sunny	$90,000 \ lm/m^2$	Black velvet	0.01
Cloudy	<10,000	Stainless stee	el 0.65
Full moon	0.1	White wall	0.80
Office	1000	Silver	0.90
		Snow	0.93

2.4 Image Sampling and Quantization

2.4.1 Basic Concepts(1)

Basic Concepts(2)

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Basic Concepts(3)

- The resolution of an image depends on the # of samples and # of gray levels.
- Sampling determines Spatial Resolution.
- Quantization determines Gray-level Resolution.
- Digitization of the spatial coordinates (x,y) is called image sampling.
- Digitization of amplitude is called gray-level quantization.

2.4.2 Representing Digital Images(1)

FIGURE 2.18

Coordinate convention used in this book to represent digital images.

Representing Digital Images(2)

$$f(x,y) \approx \begin{bmatrix} f(0,0) & \Lambda & & & \\ M & O & M & & \\ & \Lambda & f(M-1,N-1) \end{bmatrix} \longrightarrow M$$

M = y size of image, N = x size of image

 $G = 2^k = number of gray levels$

The # of bits required to store a digitized image

$$= M \times N \times k$$

Representing Digital Images(3)

TABLE 2.1 Number of storage bits for various values of N and k.

N/k	1(L = 2)	2(L=4)	3(L = 8)	4(L = 16)	5(L=32)	6(L = 64)	7(L = 128)	8(L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Assume that M = N.

Representing Digital Images(4)

 How many samples and gray levels are required for a good approximation? -> Trade-off between
 Quality and Computational complexity

2.4.3 Effect of Varying Spatial Resolution(1)

- Decreasing the spatial resolution(Figure 2.19)
- Figure 2.19(a): N=1024
- Figure 2.19(b) ~ (f): N=512, 256, 128, 64, 32
- For all cases, # of gray levels = 256
- Display area shrinks according to subsampling.

Effect of Varying Spatial Resolution(2)

FIGURE 2.19 A 1024×1024 , 8-bit image subsampled down to size 32×32 pixels. The number of allowable gray levels was kept at 256.

Effect of Varying Spatial Resolution(3)

- Decreasing the spatial resolution(Figure 2.20)
- Figure 2.20(a): N=1024
- Figure 2.20(b) ~ (f): N=512, 256, 128, 64, 32
- For all cases, # of gray levels = 256
- Display area used for each image is the same.
 (1024*1024 display field)

Effect of Varying Spatial Resolution(4)

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Effect of Varying Gray Level Resolution(1)

- Decreasing the gray level resolution(Figure 2.21)
- Figure 2.21(a): N=1024, m = 8bit image
- Figure 2.21(b) \sim (h) : m = 7 to m = 1

(30

Effect of Varying Gray Level Resolution(2)

Effect of Varying Gray Level Resolution(3)

• False contouring effect in low gray level resolution

REMEDY

- Nonuniform sampling -> sparse sampling in smoothly varying area, dense sampling in abruptly varying area
- Nonuniform quantization -> sparse quantization in abruptly varying area, dense quantization in smoothly varying area

Effect of Varying Gray Level Resolution(4)

• Isopreference Curves.

30

2.4.4 Aliasing and Moire Patterns

FIGURE 2.24 Illustration of the Moiré pattern effect.

2D sinusoidal(aliased) waveform, Moire pattern, is generated due to the break-up of periodicity.

2.4.5 Zooming and Shrinking(1)

Zooming requires two steps:

- 1. Creation of new pixel location Geometric transformation
- 2. Assignment of new gray level to that location Gray level interpolation

Zooming and Shrinking(2)

Zooming with nearest neighbor interpolation

Zooming with bilinear interpolation

abe

FIGURE 2.25 Top row: images zoomed from 128 × 128, 64 × 64, and 32 × 32 pixels to 1024 × 1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Bilinear Interpolation (p65)

■
$$I(dx,0) = (I(1,0) - I(0,0)) \times dx + I(0,0)$$

 $= (1-dx) \times I(0,0) + (dx) \times I(1,0)$
■ $I(dx,1) = (1-dx) \times I(0,1) + (dx) \times I(1,1)$
■ $I(0,dy) = (1-dy) \times I(0,0) + (dy) \times I(0,1)$
■ $I(1,dy) = (1-dy) \times I(1,0) + (dy) \times I(1,1)$

34

$$I(dx,dy) = \{ (1-dx) \times I(0,dy) + (dx) \times I(1,dy)$$

$$+ (1-dy) \times I(dx,0) + (dy) \times I(dx,1) \}/2$$

$$= (1-dx) \times (1-dy) \times I(0,0) + (dx) \times (1-dy) \times I(1,0)$$

$$+ (1-dx) \times (dy) \times I(0,1) + (dx) \times (dy) \times I(1,1)$$

World Coordinates Screen Coordinates

The BMP Structure

Screen Coordinate

Memory Coôfdinate

BMP

```
Header ( 54 byte ) Data ( xSize * ySize * 3 byte )
```

```
File header ( 14 byte ) File information header ( 40 byte )
```

```
file header 가
 BITMAPFILEHEADER( Win32
bfType (2 byte):"BM" bmp
bfSize (4 byte):
                         *window
                                       (xsize, ysize) (xsize * ysize *3 + 54)
bfReserved1( 2 byte ) :
                             (0)
                             (0)
bfReserved2( 2 byte ) :
bfOffBits(4 byte):
                         가
                                        (54)
  BITMAPINFOHEADER(Win32 file information header가
biSize ( 4 byte ) : BITMAPINFOHEADER
                                     (40)
biWidth (4 byte): 가
                           (xsize)
biHeight (4 byte):
                           (vsize)
biplanes (2 byte): (
                           1)
biBitCount (2 byte):
                                      가
                                                      ) (24)
biCompression (4 byte):
                              : 1,
                                        :0)
biSizeImage (4 byte): (xsize * ysize * 3)
biXPelsPerMeter ( 4 byte ) :
                            가
                                            0)
biYPelsPerMeter ( 4 byte ) :
                                            0)
biClrUsed (4 byte):
                            (0
biClrImprtant (4 byte):
                                                                       38
                                   ( 0
```

MFC

2.5 Some Basic Relationships between Pixels

2.5.1 Neighbors of a pixel (picture element)

4-neighbors = $N_4(p)$ diagonal neighbors = $N_D(p)$

8-neighbors = $N_8(p)$

	f(x, y-1)	
f(x-1, y)	f(x, y)	f(x+1, y)
	f(x, y+1)	

f(x-1. y-1)		f(x+1. y-1)
	f(x, y)	
f(x-1, y+1)		f(x+1, y-1)

f(x-1, y-1)	f(x. y-1)	f(x+1, y-1)
f(x-1, y)	f(x, y)	f(x+1, y)
f(x-1, y+1)	f(x, y+1)	f(x+1, y+1)

2.5.2 Adjacency, Connectivity, Regions, Boundaries(1)

Connectivity

- V : set of gray-level values used to define connectivity
- 4-connectivity: two pixels p & q with values from V are 4-connected if q is in the set N₄(p)
- 8-connectivity: two pixels p & q with values from V are 8-connected if q is in the set N₈(p)
- m-connectivity :

two pixels p and q with values form V are m-connected if q is in $N_4(p)$, or q is in $N_D(p)$ and the set $N_4(p) \cap N_4(q)$ is empty

Connectivity = Adjacency

Adjacency, Connectivity, Regions, Boundaries(2)

m-connectivity

	a	
b	С	

- a and b are not m-connected.
- If c is not there, then a and b are m-connected

FIGURE 2.26 (a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed) to the center pixel; (c) *m*-adjacency.

Adjacency, Connectivity, Regions, Boundaries(3)

Connected components

For pixels \mathbf{p} and $\mathbf{q} \in \text{image subset } \mathbf{S}$, If a path from \mathbf{p} to \mathbf{q} , then \mathbf{p} is connected to \mathbf{q} .

For any **p** in **S**,

the set of pixels connected to **p** is a connected component.

Adjacency, Connectivity, Regions, Boundaries(4)

- Labeling of Connected Components
 - 4-connectivity
 - First Pass

```
If p =1 then

if r=t=0, then

assign new label to p

else if one of r,t=1, then

assign that label to p

else if r=1 and t=1, then

assign any label to p and record

that labels for r,t are equivalent
```


Second Pass : relabel equivalent sets

Adjacency, Connectivity, Regions, Boundaries(5)

- Labeling of Connected Components
 - 8-connectivity
 - First Pass

```
If p =1 then

if q=r=s=t=0, then

assign new label to p

if one of q,r,s,t=1, then

assign that label to p

else if≥2 of q,r,s,t=1, then

assign any label to p and

record as equivalent
```

q	r	S
t	p	

Second Pass : relabel equivalent sets

2.5.3 Distance Measures(1)

- Distance measures
 - Euclidean distance between p=(x,y) and q=(s,t)
 - $D_e(p, q) = [(x s)^2 + (y t)^2]^{1/2}$
 - D₄ distance(city-block distance) between p and q
 - $D_4(p, q) = |x s| + |y t|$
 - D₈ distance(chessboard distance) between p and q
 - $D_8(p, q) = \max(|x s|, |y t|)$

Distance Measures(2)

- Distance measures
 - D₄ distance(city-block distance) between p and q

- D₈ distance(chessboard distance) between p and q
 - $D_8(p, q) = \max(|x s|, |y t|)$

2

```
1.
2.
3.
       (Thresold)
4. 8-connectivity
                            Labeling
            2 (
1.
2.
3.
      가
       가
4.
                         Debug
5.
           : 2
```

2.5.4 Image Operations on a Pixel Basis

- Image operations
 - Arithmetic operations
 - Logic operations

2.6 Linear and Nonlinear Operations

$$H(af + bg) = aH(f) + bH(g)$$

f, g: two images

a, b: two scalar values

H: opeartor

H is **linear** if the above relation is satisfied. Otherwise *H* is **nonlinear**.

Taking the average of two images is a linear operation.

Taking the absolute difference of two images is a nonlinear operation.

Imaging Geometry (1)

- Some basic transformations
 - Translation

•
$$x^* = X + X_0$$

$$Z^* = Z + Z_0$$

Scaling

$$S = \begin{bmatrix} Sx & 0 & 0 & 0 \\ 0 & Sy & 0 & 0 \\ 0 & 0 & Sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Imaging Geometry (2)

- Some basic transformations
 - Rotation

$$R_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta & 0 & 0 \\ -\sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_{\sigma} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha & 0 \\ 0 & -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{\beta} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Perspective Transformations (1)

 A perspective transformation projects 3-D points onto a plane

Perspective Transformations (2)

- (X, Y, Z)
 - World coordinate system of 3D scene
- (x, y, z)
 - Camera coordinate system
- λ
 - Focal length of the lens

$$\frac{x}{\lambda} = -\frac{X}{Z - \lambda} = \frac{X}{\lambda - Z} \longrightarrow x = \frac{\lambda X}{\lambda - Z}$$

$$\frac{y}{\lambda} = -\frac{Y}{Z - \lambda} = \frac{Y}{\lambda - Z} \longrightarrow y = \frac{\lambda Y}{\lambda - Z}$$

- These equations are nonlinear.

Perspective Transformations (3)

- Nonlinear form -> Linear form (using homogeneous coordinates)
 - Cartesian -> Homogeneous

$$\boldsymbol{w} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \qquad \boldsymbol{w}_{h} = \begin{bmatrix} kX \\ kY \\ kZ \\ k \end{bmatrix}$$

(k : arbitrary nonzero constant.)

- Conversion of homogeneous into Cartesian
 - Dividing the first three homogeneous coordinates by the fourth.

Perspective Transformations (4)

If we define the perspective transformation matrix as

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{-1}{\lambda} & 1 \end{bmatrix}$$

• The product pwh yields a vector denoted C_h

 $c_h = Pw_h$ (C_h are the camera coordinates in homogeneous form)

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{\lambda} & 1 \end{bmatrix} \begin{bmatrix} kX \\ kY \\ kZ \\ k \end{bmatrix} = \begin{bmatrix} kX \\ kY \\ kZ \\ -\frac{kZ}{\lambda} + k \end{bmatrix}$$

Perspective Transformations (5)

 Cartesian coordinates of any point in the camera coordinate system are given in vector form by

$$c = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{\lambda X}{\lambda - Z} \\ \frac{\lambda Y}{\lambda - Z} \\ \frac{\lambda Z}{\lambda - Z} \end{bmatrix}$$

Perspective Transformations (6)

The inverse perspective transformation

$$\mathbf{w}_{h} = \mathbf{P}^{-1}\mathbf{c}_{h} \qquad , \qquad p^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{\lambda} & 1 \end{bmatrix}$$

• Suppose that an image point has coordinates $(X_0, Y_0, 0)$, where the 0 in the z location simply indicates that the image plane is located at z = 0. Then,

$$C_h = \begin{bmatrix} kX & 0 \\ kY & 0 \\ 0 \\ k \end{bmatrix} \quad \text{and} \quad W_h = \begin{bmatrix} kX & 0 \\ kY & 0 \\ 0 \\ k \end{bmatrix}$$

Perspective Transformations (7)

This results in
$$w = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ 0 \end{bmatrix}$$

Why always Z=0?

Perspective Transformations (8)

 Formulate the inverse perspective transformation by using the z component of Ch as a free variable instead of 0.

$$c_{h} = \begin{bmatrix} kx_{0} \\ ky_{0} \\ kz \\ k \end{bmatrix} \dots (2.5-32) \qquad w_{h} = \begin{bmatrix} kx_{0} \\ ky_{0} \\ kz \\ \frac{kz}{\lambda} + k \end{bmatrix} \dots (2.5-33)$$

Perspective Transformations (9)

• From Eq.2.5-33, we have as Cartesian coordinates

$$w = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \frac{\lambda x_0}{\lambda + z} \\ \frac{\lambda y_0}{\lambda + z} \\ \frac{\lambda z}{\lambda + z} \end{bmatrix} \qquad Y = \frac{\lambda x_0}{\lambda + z}$$

$$Z = \frac{\lambda z}{\lambda + z}$$

Perspective Transformations (10)

- Solving for z in terms of Z in the last equation.
- Substituting in the first two expressions yields.

$$X = \frac{x_0}{\lambda}(\lambda - Z)$$
 , $Y = \frac{y_0}{\lambda}(\lambda - Z)$

 Recovering a 3-D point from its image by means of the inverse perspective transformation requires knowledge of at least one of the world coordinates of the point.

Camera Model(1)

- So far we assumed that world and camera coordinate systems are aligned.
- Now we generalize this.
- World coordinate system(X,Y,Z) used to locate both the camera and 3-D point (w)

Camera Model(2)

- We try to bring camera and world coordinate systems into alignment by applying a set of transformations.
- (1) Translation of the origin of the world coordinate system to the location of the gimbal center is accomplished by using the transformation matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & -X_0 \\ 0 & 1 & 0 & -Y_0 \\ 0 & 0 & 1 & -Z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera Model(3)

- GW_h is new coordinate system after the transformation.
- (2) pan of the x axis, (3) tilt of the z axis.

$$R = R \alpha R \theta = \begin{bmatrix} \cos \theta & \sin \theta & 0 & 0 \\ -\sin \theta \cos \alpha & \cos \theta \cos \alpha & \sin \alpha & 0 \\ \sin \theta \sin \alpha & -\cos \theta \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• (4)Displacement of the image plane with respect to the gimbal center.

$$C = \begin{bmatrix} 1 & 0 & 0 & -r_1 \\ 0 & 1 & 0 & -r_2 \\ 0 & 0 & 1 & -r_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera Model(4)

• Thus applying to W_h the series of transformations $CRGW_h$ brings the world and camera coordinate systems into coincidence.

$$c_h = PCRGW_h$$

$$x = \lambda \frac{(X - X_0)\cos\theta + (Y - Y_0)\sin\theta - r_1}{-(X - X_0)\sin\theta\sin\alpha + (Y - Y_0)\cos\theta\sin\alpha - (Z - Z_0)\cos\alpha + r_3 + \lambda}$$

$$y = \lambda \frac{-(X - X_0)\sin\theta\cos\alpha + (Y - Y_0)\cos\theta\cos\alpha + (Z - Z_0)\sin\alpha - r_2}{-(X - X_0)\sin\theta\sin\alpha + (Y - Y_0)\cos\theta\sin\alpha - (Z - Z_0)\cos\alpha + r_3 + \lambda}$$

Camera Calibration(1)

- Camera calibration
 - The computational procedure used to obtain the camera parameters using known points.
- $C_h = AW_h$,A : All the camera parameters.

$$\begin{bmatrix} c_{k1} \\ c_{k2} \\ c_{k3} \\ c_{k4} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \dots (2.5-44)$$

Camera Calibration(2)

Camera coordinates in Cartesian form

$$x = c_{h1} / c_{h4}, y = c_{h2} / c_{h4}$$

• Substituting Ch1 = XCh4, Ch2 = yCh4 in Eq.(2.5-44), expanding the matrix product yields (Ch3: ignored)

$$\begin{aligned} xc_{\mathrm{M}} &= a_{11}X + a_{12}Y + a_{13}Z + a_{14} \\ yc_{\mathrm{M}} &= a_{21}X + a_{22}Y + a_{23}Z + a_{24} \\ c_{\mathrm{M}} &= a_{41}X + a_{42}Y + a_{43}Z + a_{44} \end{aligned}$$

Camera Calibration(3)

• Substitution of C_{h4} yields 2 equations with 12 unknowns

$$a_{11}X + a_{12}Y + a_{13}Z - a_{41}xX - a_{42}xY - a_{43}xZ - a_{44}x + a_{14} = 0 \qquad \dots (2.5-48)$$

$$a_{21}X + a_{22}Y + a_{23}Z - a_{41}yX - a_{42}yY - a_{43}yZ - a_{44}y + a_{24} = 0 \qquad \dots (2.5-49)$$

- The Calibration procedure
 - (1) obtain m>=6 world points with known coordinates(Xi,Yi,Zi)
 - (2) project these points with the camera in a given position to obtain the corresponding image points(xi,yi)
 - (3) use these results in Eqs.(2.5-48)&(2.5-49) to solve for the unknown coefficients. -> first linear, then nonlinear problem solving

Stereo Imaging (1)

Model of the stereo imaging process.

Stereo Imaging (2)

Top view of the stereo imaging process

Stereo Imaging (3)

$$X_1 = \frac{x_1}{\lambda}(\lambda - Z_1)$$
 , $X_2 = \frac{x_2}{\lambda}(\lambda - Z_2)$

since
$$X_2 = X_1 + B \& Z_2 = Z_1 = Z$$

$$X_1 = \frac{x_1}{\lambda}(\lambda - Z)$$
, $X_1 + B = \frac{x_2}{\lambda}(\lambda - Z)$

$$Z = \lambda - \frac{\lambda B}{x_2 - x_1} = \lambda \left(1 - \frac{B}{x_2 - x_1} \right)$$

Stereo Imaging (4)

- Problem in stereo imaging
 - Correspondence problem
 find 2 corresponding image points from the same 3-D point
 - Solution
 - → Use **epipolar line constraint** (2 corresponding image points have the same y coordinate)