

Universidad Nacional Autónoma de México Facultad de Ciencias

Algebra superior 2

Tarea examen 4 Elías López Rivera

elias.lopezr@ciencias.unam.mx Fecha: 27/07/2025

Problema 1

Sea A un anillo conmutativo. Demuestre

- I. La conmutatividad de la suma en A[x]
- II. La conmutatividad del producto en A[x]

Demostración.

I. Conmutatividad de la suma

Sean $f(x), g(x) \in A[x]$, tenemos que que $f(x) = \sum_{i=0}^{\infty} a_i x^i$, $g(x) = \sum_{i=0}^{\infty} b_i x^i$, tenemos que $f(x) + g(x) = \sum_{i=0}^{\infty} (a_i + b_i) x^i, \text{ como } a_i, b_i \in A, \text{ para toda } i \in \mathbb{N}, \text{ se sigue que } a_i + b_i = b_i + a_i,$ para toda $i \in \mathbb{N}$ por tanto $f(x) + g(x) = \sum_{i=0}^{\infty} (a_i + b_i) x^i = \sum_{i=0}^{\infty} (b_i + a_i) x^i = f(x) + g(x), \text{ hemos}$ demostrado que la suma en el anillo de series de potencias conmuta, ahora solo falta comporbar que en efecto f(x) + g(x) es un polinomio, como $f(x) \in A[x]$, existe $k \in \mathbb{N}$ tal que $a_i = 0$, para i > k, de la misma manera existe $l \in \mathbb{N}$ tal que $b_i > 0$ para i > l, por tanto si i > max(l, k), $(a_i + b_i) = 0$, es decir $f(x) + g(x) \in A[x]$

II. Conmutatividad del producto

Sean $f(x), g(x) \in A[x]$, tenemos que que $f(x) = \sum_{i=0}^{\infty} a_i x^i$, $g(x) = \sum_{i=0}^{\infty} b_i x^i$, luego tenemos que $f(x) \cdot g(x) = \sum_{i=0}^{\infty} \lambda_i x^i$, con $\lambda_i = \sum_{j+k=i} a_j (b_k)$, como $a_j, b_k \in A$, tenemos que $a_j(b_k) = b_k(a_j)$, para toda $j, k \in \mathbb{N}$, por tanto $\lambda_i = \sum_{j+k=i} a_j (b_k) = \sum_{j+k=i} b_k (a_j)$, por tanto $f(x) \cdot g(x) = \sum_{i=0}^{\infty} \lambda_i x^i = g(x) \cdot f(x)$, fianlmente solo falta comprobar que $f(x) \cdot g(x)$ es un polinomio, de nuevo existen $r, l \in \mathbb{N}$ tal que i > r, $a_i = 0$, i > l $b_i = 0$, por tanto si i = k + j > l + r, tenemos que k > l o j > r (si $k \le l$, $j \le r$, entonces $i = k + l \le l + r$), entonces $b_i = 0$ o $a_i = 0$ y por tanto $\lambda_i = \sum_{i+k=i} a_i(b_k) = 0$, por tanto $f(x) \cdot g(x)$ es un polinomio

Sea $f(x) \in K[x]$ un polinomio de grado 5 con:

$$f(x) = f_1(x) f_2(x) f_3(x) f_4(x)$$

Donde los grados de los polinomios $f_i(x)$ tienen grado positivo para i = 1, 2, 3, 4. demuestre que al menos dos de los $f_i(x)$ tienen el mismo grado

Demostración.

Problema 3

Sean f(x), g(x) y h(x) polinomios en K[x]. Demuestre que

I. a|f(x) para toda $a \in K - \{0\}$

II. Si f(x)|g(x) y g(x)|h(x) entonces f(x)|h(x)

Demostración.

- I. Como K es campo entonces existe a^{-1} , luego definimos el polinomio $r(x) = a^{-1} \cdot f(x)$, ojo de nuevo estamos usando el morfismo de inclusión para decir que $t(x) = a^{-1}$ es un polinomio, luego tenemos que sea l(x) = a, $l(x) \cdot r(x) = l(x) \cdot (a^{-1} \cdot f(x))$, usando la asociatividad del producto en K[x], se tiene que $l(x) \cdot r(x) = (a \cdot a^{-1}) \cdot f(x) = 1 \cdot f(x) = f(x)$, por tanto a|f(x)
- II. si f(x)|g(x) existe $l(x) \in K[x]$ tal que $g(x) = f(x) \cdot l(x)$, de manera analoga tenemos que existe $z(x) \in K[x]$ tal que $h(x) = g(x) \cdot z(x)$, por tanto $h(x) = (f(x) \cdot l(x)) \cdot z(x)$ usando la asociatividad del producto en K[x] $h(x) = f(x) \cdot (l(x) \cdot z(x))$, luego debido a la cerradura del producto tenemos que f(x)|h(x)

Sean $f(x) \in K[x]$. Demuestre que f(x)|1 si y solo si f(x) = a con $a \in K - \{0\}$

Demostración.

- \Rightarrow) Supongamos que f(x)|1, por tanto existe $l(x) \in K[x]$ tal que $1 = l(x) \cdot f(x)$, recordando la propiedad de los grados en la multiplicación de polinomios tenemos que $\delta f + \delta g = 0$, como δf , $\delta g \geq 0$, tenemos que la unica posibilidad es que $\delta g = \delta f = 0$, luego como 1 es diferente del polinomio 0, entonces $f(x), l(x) \neq 0$, por tanto f(x) = a, donde $a \in K \{0\}$, recordemos que f(x) = a, hace referencia al polinomio constante a, esto gracias al morfismo de anilos que nos delta la inclusión de k en K[x] definida en clase
- \Leftarrow) si f(x) = a con $a \in K \{0\}$, como K es campo existe a^{-1} , de nuevo tomamndo el morfismo de anillos que nos da la inclusión mencionada anteriormente esiste $g(x) = a^{-1}$, como esta inclusión es un morfismo respeta el producto es decir $a \cdot a^{-1} = 1 \implies f(x) \cdot g(x) =$, solo hay que tener cuidado ya que unitario representa la identidad del producto en K y otro el polinomio 1. la identidad en K[x]

Problema 5

Sean $a, b \in K$. Demuestre que (x - a)|(x - b) si y solo si a = b

Demostración.

- \Rightarrow) Supongamos que a=b, por tanto f(x)=x-a=x-b=g(x), pues dos polinomios son iguales si y solo si son iguales coeficiente a coeficiente, luego es claro que $g(x)=1\cdot f(x)$, por tanto f(x)|g(x)
- \Leftarrow) Supongamos que (x-a)|(x-b), por tanto existe $l(x) \in K[x]$ tal que $(x-a) \cdot l(x) = (x-b)$, sean f(x) = x a y g(x) = x b, de nuevo usando la propiedad de los grados tenemos que $1 + \delta l = \delta f + \delta l = \delta g = 1$, como $\delta l \ge 0$, de tiene que necesariamente $\delta l = 0$, por tanto l(x) = s con $s \in K$, luego tenemos que $s \cdot (x-a) = sx sa = x b$, luego como dos polinomios son iguales si y solo si son iguales coeficiente a coeficiente tenemos que s = 1, sa = b, por tanto a = sa = b

Encuentre el cociente y el residuo al hacer la división de a(x) entre b(x) para los siguientes polinomios

I.
$$a(x) = x^5 + 2 y b(x) = 2x^3 - 3x^2 + x - 2$$

II.
$$a(x) = x^3 - 3x^2 - x - 1$$
 y $b(x) = 3x^2 - 2x + 1$

Demostración.

i)

$$2x^{3} - 3x^{2} + x - 2) \xrightarrow{x^{5}} + 2$$

$$-x^{5} + \frac{3}{2}x^{4} - \frac{1}{2}x^{3} + x^{2}$$

$$-\frac{3}{2}x^{4} - \frac{1}{2}x^{3} + x^{2}$$

$$-\frac{3}{2}x^{4} + \frac{9}{4}x^{3} - \frac{3}{4}x^{2} + \frac{3}{2}x$$

$$-\frac{7}{4}x^{3} + \frac{1}{4}x^{2} + \frac{3}{2}x + 2$$

$$-\frac{7}{4}x^{3} + \frac{21}{8}x^{2} - \frac{7}{8}x + \frac{7}{4}$$

$$-\frac{23}{8}x^{2} + \frac{5}{8}x + \frac{15}{4}$$

Por tanto $x^5 + 2 = (\frac{1}{2}x^2 + \frac{3}{4}x + \frac{7}{8})(2x^3 - 3x^2 + x - 2) + \frac{23}{8}x^2 + \frac{5}{8}x + \frac{15}{4}$

ii)

$$3x^{2} - 2x + 1) \frac{\frac{\frac{1}{3}x - \frac{7}{9}}{x^{3} - 3x^{2} - x - 1}}{-\frac{x^{3} + \frac{2}{3}x^{2} - \frac{1}{3}x}{-\frac{7}{3}x^{2} - \frac{4}{3}x - 1}}{\frac{\frac{7}{3}x^{2} - \frac{14}{9}x + \frac{7}{9}}{-\frac{26}{9}x - \frac{2}{9}}}$$

Por tanto $x^3 - 3x^2 - x - 1 = \left(\frac{1}{3}x - \frac{7}{9}\right) \left(3x^2 - 2x + 1\right) - \frac{26}{9}x - \frac{2}{9}$

Encuentre el máximo común divisor en \mathbb{Q} de las siguientes parejas de poinomios f(x) y g(x), escribalos como combinación líneal de la pareja de polinomios

I.
$$f(x) = -x^4 + 3x^3 - 4x^2 + 12x$$
 y $g(x) = x^3 - 4x^2 + 4x - 3$

II.
$$f(x) = x^4 + 5x^3 - 4x^2 + 12x$$
 y $g(x) = -3x^4 - x^3 + 4x^2$

Demostración.

i) Proponemos usar el algoritmo de Euclides

Por tanto sea $l(x) = -4x^2 + 13x - 3$ entonces $0 < \delta l < \delta g$, por tanto podemos seguir con el algoritmo de Euclides:

$$\begin{array}{r}
 -4x^2 + 13x - 3) \\
 -4x^2 + 13x - 3) \\
 -x^3 + \frac{13}{4}x^2 - \frac{3}{4}x \\
 -\frac{3}{4}x^2 + \frac{13}{4}x - 3 \\
 -\frac{3}{4}x^2 - \frac{39}{16}x + \frac{9}{16} \\
 \hline
 \frac{13}{16}x - \frac{39}{16}
\end{array}$$

De nuevo sea $r(x) = \frac{13}{16}x - \frac{39}{16}$, $0 < \delta r < \delta l$, por tanto podemos seguir aaplicando el algoritmo de Euclides

$$\frac{\frac{13}{16}x - \frac{39}{16}}{\frac{13}{16}x - \frac{39}{16}} \underbrace{\frac{-\frac{64}{13}x + \frac{16}{13}}{-4x^2 + 13x - 3}}_{x - 3}$$

$$\frac{x - 3}{-x + 3}$$

$$0$$

Como obtenemos que el residuo de esta división es 0, se sigue que $mcd(g(x), f(x)) = \frac{13}{16}x - \frac{39}{16} = \frac{16}{13}(\frac{13}{16}x - \frac{39}{16}) = x - 3$, sea $M(x) = \frac{13}{16}x - \frac{39}{16}$, procedemos a escribirlo como combinación lineal de f(x) y g(x):

$$g(x) = (-4x^2 + 13x - 3)\left(\frac{-1}{4}x + \frac{3}{16}\right) + M(x)$$

$$f(x) = g(x)(-x - 1) + (-4x^2 + 13x - 3)$$

$$g(x) + (g(x)(-x - 1) - f(x))\left(\frac{-1}{4}x + \frac{3}{16}\right) = M(x)$$

$$x - 3 = \frac{16}{13}M(x) = \frac{16}{13}\left(\frac{1}{4}x - \frac{3}{16}\right)f(x) + \frac{16}{13}\left(1 - (x + 1)\left(\frac{-1}{4}x + \frac{3}{16}\right)\right)g(x)$$

$$x - 3 = \frac{16}{13}\left(\frac{1}{4}x - \frac{3}{16}\right)f(x) + \frac{16}{13}\left(\frac{13}{16} + \frac{x^2}{4} + \frac{x}{16}\right)g(x)$$

ii) Proponemos usar el algoritmo de Euclides

Por tanto sea $l(x) = 14x^3 - 8x^2 + 36x$ entonces $0 < \delta l < \delta g$, por tanto podemos seguir con el algoritmo de Euclides:

De nuevo sea $r(x)=-\frac{166}{49}x^2-\frac{114}{49}x,\,0<\delta\,r<\delta\,l,$ por tanto podemos seguir aaplicando el algoritmo de Euclides

$$\frac{\frac{343}{83}x - \frac{3283}{6889}}{-\frac{166}{49}x^2 - \frac{114}{49}x) - 14x^3 - 8x^2 + 36x} - \frac{14x^3 + \frac{798}{83}x^2}{\frac{134}{83}x^2 + 36x} - \frac{\frac{134}{83}x^2 - \frac{7638}{6889}x}{\frac{240366}{6889}x}$$

Por tanto sea $w(x) = \frac{240366}{6889}x$ entonces $0 < \delta w < \delta r$, por tanto podemos seguir con el algoritmo de Euclides:

$$\frac{\frac{-\frac{571787}{5888967}x}{\frac{240366}{6889}x} - \frac{130891}{1962989}}{\frac{\frac{166}{49}x^2}{\frac{166}{49}x^2}} - \frac{\frac{114}{49}x}{\frac{114}{49}x} - \frac{\frac{114}{49}x}{\frac{114}{49}x} - \frac{114}{0}x$$

Como obtenemos que el residuo de esta división es 0, se sigue que $mcd(g(x),f(x))=\frac{240366}{6889}x=\frac{6889}{240366}\frac{240366}{6889}x=x,$ sea $M(x)=\frac{240366}{6889}x$

Problema 8

Factoriza el polinomio $2x^3 + 3x^2 - 10x - 25$ en irreducibles en \mathbb{Q} y en \mathcal{C}

Demostración.

Lemma 0.1.

Sea $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ y sea $\frac{r}{s} \in \mathbb{Q}$ una raíz de f(x) con (r, s) = 1. Entonces $s|a_n$ y $r|a_0$ Demostración.

Como $\frac{r}{s}$ es una raiz de f(x), se tiene que:

$$f\left(\frac{r}{s}\right) = \sum_{i=0}^{n} a_i \left(\frac{r}{s}\right)^i = a_0 + \sum_{i=1}^{n} a_i \left(\frac{r}{s}\right)^i = 0$$

Luego multiplicamos por s^n

$$s^{n}a_{0} + \sum_{i=1}^{n} r^{i} s^{n-i} = 0 \implies s^{n}a_{0} = -r \sum_{i=1}^{n} r^{i-1} s^{n-i}$$

como $i-1\geq 0$ para todo $i\in\mathbb{N}_n$ y $n-i\geq 0$ para todo $i\in\mathbb{N}_n$, se sigue que $-\sum_{i=1}^n r^{i-1}\,s^{n-i}\in\mathbb{Z}$, por

tanto $r|a_0 s^n$, luego como $(r, s^n) = 1$, debido a que (r, s) = 1, se sigue que $r|a_0$, siguiendo un proceso análogo tenemos que:

$$r^n a_n = -\sum_{i=0}^{n-1} a_i r^i s^{n-i} = -s \sum_{i=0}^n r^i s^{n-1-i}$$

Como $n-1-i \geq 0$ para toda $i \in \mathbb{N}_{n-1}$, se sigue que $-\sum_{i=0}^n r^i s^{n-1-i} \in \mathbb{Z}$, por tanto $s|r^n a_n$, como $(s,r^n)=1$, se concluye que $s|a_n$

Si $f(x) = 2x^3 + 3x^2 - 10x - 25$ tiene una raís racional $\frac{m}{k}$, aplicando el teorema anterior k|2 y m|25, por tanto $k \in D(2) := \{-2, -1, 1, 2\}$ y $m \in D(25) := \{-25, -5, -1, 1, 5, 25\}$, luego tenemos que:

$$f\left(\frac{5}{2}\right) = 2\left(\frac{5}{2}\right)^3 + 3\left(\frac{5}{2}\right)^2 - 10\left(\frac{5}{2}\right) - 25 = 0$$

Por tanto $\frac{5}{2}$ es raíz de f(x), aplicando división sintética

Por tanto tenemos que f(x) = 2 $\left(x - \frac{5}{2}\right)$ $\left(x^2 + 4x + 5\right) = (2x - 5)(x^2 + 4x + 5)$, tenemos que $g(x) = x^2 + 4x + 5$ es irreducible en $\mathbb{Q}[x]$ pues si analizamos su disrimintante 16 - 4(5)(1) = 16 - 20 = -4 < 0, finalmente obtenemos las raices de g(x) en $\mathbb{C}[x]$:

$$\alpha_{1,2} = \frac{-4 \pm \sqrt{4} \ i}{2} = -2 \pm i$$

Por tanto la factorización en irreducibles en C[x] es f(x) = (2x-5)(x+2-i)(x+2+i)