СЕРВИС ДЛЯ ОЦЕНКИ СТОИМОСТИ НЕДВИЖИМОСТИ

Дополнительное задание ко второму туру

Ларин Кирилл Андреевич – 10 класс – Кузбасс (Капитан, анализ проблемы)

Филиппов Семён Сергеевич – 9 класс – Кузбасс (Front-end)

Сахибов Холмухаммад Фирдавсович – 9 класс – Кузбасс (Обучение модели)

Исаков Илья Михайлович – 8 класс – Кузбасс (Сбор и подготовка данных)

Загрузка данных, вывод статистик

Для работы с данными выбрана библиотека pandas. Создан датафрейм, выведены основные метрики по каждому столбцу таблицы для дальнейшего анализа.

Обработка отсутствующих значений

Проанализировав количество непустых ячеек в каждом столбце, было принято решение об удалении неинформативных столбцов и строк (количество непустых записей в которых соответственно <21330 и <204 (70% от общего числа)). Таким образом удалено 10 колонок и 0 строк. Оставшиеся пустые ячейки были заполнены средним значением по столбцу.

Обработка лишних значений

В ходе проведенного анализа можно заметить, что данные коррелируются с ценой.

В последнем столбце 'price_doc' указана зависимость от каждой строчки.

В очищенном датасете больше всего коррелируют строчки 'full_sq', 'num_room', 'life_sq', имея значения: 0.608, 0.502, 0.456.

	id	full_sq	life_sq	floor	max_floor	material	build_year	num_room	kitch_sq	state	price_doc
id	1.000000	0.046391	0.058977	0.002082	0.010992	-0.003783	0.032047	0.021957	-0.046112	-0.071205	0.083090
full_sq	0.046391	1.000000	0.863599	0.145572	0.164839	-0.017983	0.232453	0.798658	0.170791	-0.062420	0.608341
life_sq	0.058977	0.863599	1.000000	0.141682	0.105360	-0.033365	0.228419	0.677133	-0.183024	-0.274163	0.456044
floor	0.002082	0.145572	0.141682	1.000000	0.494951	-0.027113	0.352762	-0.011255	0.018450	-0.086640	0.102398
max_floor	0.010992	0.164839	0.105360	0.494951	1.000000	-0.022665	0.508753	-0.028003	0.172568	-0.052193	0.083708
material	-0.003783	-0.017983	-0.033365	-0.027113	-0.022665	1.000000	-0.043965	-0.042910	0.126893	-0.017265	0.017868
build_year	0.032047	0.232453	0.228419	0.352762	0.508753	-0.043965	1.000000	-0.057281	0.102672	-0.212218	0.018242
num_room	0.021957	0.798658	0.677133	-0.011255	-0.028003	-0.042910	-0.057281	1.000000	0.145338	0.076479	0.502347
kitch_sq	-0.046112	0.170791	-0.183024	0.018450	0.172568	0.126893	0.102672	0.145338	1.000000	0.386853	0.249087
state	-0.071205	-0.062420	-0.274163	-0.086640	-0.052193	-0.017265	-0.212218	0.076479	0.386853	1.000000	0.138883
price_doc	0.083090	0.608341	0.456044	0.102398	0.083708	0.017868	0.018242	0.502347	0.249087	0.138883	1.000000

Выявление аномалий

Аномалии и некорректность в данных присутствует. Это может быть связано с человеческим фактором. Сразу после загрузки данных и вывода статистики по ним мы заметили, что в некоторых столбцах присутствуют нулевые значения (например, full_sq, life_sq соответственно показывают общую и жилую площадь недвижимости, эти значения не могут равняться нулю, или год постройки здания не может быть позже 2015 года). В подобных случаях, необходимо удалить строку с некорректным значением целиком.

Сбалансированность

Датасет не сбалансирован. Медианное значение должно примерно соответствовать среднему арифметическому данных по столбцу, чего во многих случаях не наблюдается. Также прослеживается не прямо пропорциональное увеличение данных в метриках 25%, 50%, 75%, что говорит о большом среднеквадратичном отклонении (std), т.е. несбалансированности. В качестве выхода из этой ситуации можно установить верхние и нижние границы по некоторым признакам. Например, по общей площади недвижимости, стоит брать

записи <150 м².

	shopping_centers_raion	office_raion	full_all	male_f	\
count	17792.000000	17792.000000	1.779200e+04	17792.000000	
mean	4.526922	8.755058	1.574488e+05	72319.010286	
std	4.783980	23.993245	2.999139e+05	137109.545250	
min	0.000000	0.000000	2.546000e+03	1208.000000	
25%	1.000000	0.000000	4.379500e+04	21145.000000	
50%	4.000000	2.000000	8.946700e+04	41288.000000	
75%	6.000000	5.000000	1.253540e+05	58773.000000	
max	23.000000	141.000000	1.716730e+06	774585.000000	

Базовый отбор признаков

Лишними колонками в данном датасете являются столбцы в роде «ID_railroad_station_walk», который содержит в себе информацию об идентификационном номере ближайшей ж/д станции. Данная информация никак не влияет и не поможет для оценки стоимости недвижимости.

Подобные графики были построены с разными признаками

Статистики

Было проведено исследование датасета предоставленного в условиях, с найденным нами на Kaggle датасетом. По итогам сравнения было выявлено, что стоимость на недвижимость с идентичными характеристиками отличаются. Недвижимость в новом датасете при тех же данных стоит дороже, чем в выданном датасете. Причиной этому может служить инфляция, санкции (повышение издержек на строительство новостроек застройщиками).

Выводы

Проведено полноценное исследование датасета по итогам которого можно отметить, что подготовка данных для машинного обучения достаточно сложный и трудоёмкий процесс, который ранее нами недооценивался. Данные для обучения модели нейронной сети следует тщательно очищать от ячеек, которые могут ухудшить точность работы НС, проверять их на сбалансированность, корреляцию между собой и т.д. Для этого используются разнообразные методы, статистики