





## CONCEPTION ET VÉRIFICATION DE SYSTÈMES CRITIQUES

LA SPÉCIFICATION DES PROPRIÉTÉS AVEC LA LOGIQUE CTL

2A Cursus Ingénieurs - ST5 : Modélisation fonctionnelle et régulation

m CentraleSupelec - Université Paris-Saclay - 2024/2025



- > Introducing CTL
- > CTL Logics
- > CTL running example
- Example : Dining Philosophers

## PRINCIPLE OF MODEL-CHECKING



- Introducing CTL
- > CTL Logics
- > CTL running example
- > Example : Dining Philosophers

#### LTL AND CTL

- LTL (linear-time logic)
  - Describes properties of individual executions.
  - Semantics defined as a set of executions.
- CTL (computation tree logic)
  - Describes properties of a computation tree: formulas can reason about many executions at once.
     (CTL belongs to the family of branching-time logics.)
  - Semantics defined in terms of states.

#### **COMPUTATION TREE**

- Let  $\mathcal{T}=(S,\to,s^0)$  be a transition system. Intuitively, the **computation tree** of  $\mathcal{T}$  is the acyclic unfolding of  $\mathcal{T}$ .
- Formally, we can define the unfolding as the least (possibly infinite) transition system  $(U,\to',u^0)$  with a labelling  $l:U\to S$  such that :
  - $lacksquare u^0 \in U$  and  $l(u^0) = s^0$
  - ullet if  $u\in U, l(u)=s$ , and s o s' for some u,s,s' then there is  $u'\in U$  with u o' u' and l(u')=s'
  - $ullet u^0$  does not have a direct predecessor, and all other states in U have exactly one direct predecessor

**Note**: For model checking CTL, the construction of the computation tree will not be necessary. However, this definition serves to clarify the concepts behind CTL.

# COMPUTATION TREE EXAMPLE

A transition system and its computation tree (labelling *l* given in blue)





- > Introducing CTL
- > CTL Logics
- > CTL running example
- Example : Dining Philosophers

#### **CTL - OVERVIEW**

- Combines temporal operators with quantification over runs
- Operators have the following form: Q T
  - E: there exists an execution
     A: for all executions
     T■  $X \equiv \bigcirc$ : next
      $F \equiv \diamondsuit$ : finally
      $G \equiv \square$ : globally
      $U \equiv \bigcup$ : until
     (and possibly others)

#### CTL - SYNTAX

- We define a minimal syntax first. Later we define additional operators with the help of the minimal syntax.
- Let  $\overline{AP}$  be a set of atomic propositions: The set of CTL formulas over  $\overline{AP}$  is as follows:

```
if a\in AP, then a is a CTL formula; if \phi_1,\ \phi_2 are CTL formulas, then so are \neg\phi_1,\ \phi_1\lor\phi_2,\ EX\ \phi_1,\ EG\ \phi_1,\ E\ (\phi_1\ U\ \phi_2)
```

#### **CTL - SEMANTICS**

- let  $\mathcal{K} = (S, \rightarrow, s^0, AP, v)$  be a Kripke structure.
- We define the semantic of every CTL formula  $\phi$  over AP with respect to  $\mathcal K$  as a set of states  $[\![\phi]\!]_{\mathcal K}$ , as follows :

```
 \begin{split} \llbracket a \rrbracket_{\mathcal{K}} &= v(a) \qquad a \in AP \\ \llbracket \neg \phi_1 \rrbracket_{\mathcal{K}} &= S \backslash \llbracket \phi_1 \rrbracket_{\mathcal{K}} \\ \llbracket \phi_1 \vee \phi_2 \rrbracket_{\mathcal{K}} &= \llbracket \phi_1 \rrbracket \cup \llbracket \phi_2 \rrbracket_{\mathcal{K}} \\ \llbracket EX \ \phi_1 \rrbracket_{\mathcal{K}} &= \{s \mid \text{there is a state } t \text{ with } s \rightarrow t \text{ and } t \in \llbracket \phi_1 \rrbracket_{\mathcal{K}} \} \\ \llbracket EG \ \phi_1 \rrbracket_{\mathcal{K}} &= \{s \mid \text{there is a run } \sigma \text{ with } \sigma(0) = s \text{ and } \sigma(i) \in \llbracket \phi_1 \rrbracket_{\mathcal{K}} \ \forall i \geq 0 \} \\ \llbracket E \ (\phi_1 \ U \ \phi_2) \rrbracket_{\mathcal{K}} &= \{s \mid \text{there is a run } \sigma \text{ with } \sigma(0) = s \text{ and } k \geq 0, \ \sigma(i) \in \llbracket \phi_1 \rrbracket_{\mathcal{K}} \ \forall i < k, \ \sigma(k) \in \llbracket \phi_2 \rrbracket_{\mathcal{K}} \} \end{split}
```

#### CTL - EXTENDED SYNTAX

$$false \equiv 
eg true$$
 $\phi_1 ee \phi_2 \equiv 
eg (
eg \phi_1 \land 
eg \phi_2)$ 
 $EF \phi \equiv E \ (true \ U \ \phi)$ 
 $AX \phi \equiv 
eg EX \ 
eg \phi$ 
 $AG \phi \equiv 
eg EF \ 
eg \phi$ 
 $AF \phi \equiv 
eg EG \ 
eg \phi$ 
 $A \ (\phi_1 \ U \ \phi_2) \equiv 
eg E \ 
eg (\phi_1 \ U \ \phi_2)$ 

- > Introducing CTL
- > CTL Logics
- > CTL running example
- Example : Dining Philosophers

#### **CTL EXAMPLES**

We use the following computation tree as a running example (with varying distributions of red and black states)



In the following slides, the topmost state satisfies the given formula if the black states satisfy p and the red states satisfy q.

#### **SOLVING NESTED FORMULAS**

$$s^0 \in \llbracket AFAG \ x 
rbracket$$



- To compute the semantics of formulas with nested operators,
  - we first compute the states satisfying the innermost formulas;
  - then we use those results to solve progressively more complex formulas.
- ullet In this example, we compute  $[\![x]\!]$  ,  $[\![AG\ x]\!]$  , and  $[\![AFAG\ x]\!]$  , in that order

## Compute $[\![x]\!]$



## Compute $\llbracket AG\ x rbracket$



#### Compute $\llbracket AFAG\ x rbracket$



- > Introducing CTL
- > CTL Logics
- > CTL running example
- > Example : Dining Philosophers

## **EXAMPLE: DINING PHILOSOPHERS**



#### **EXAMPLE: DINING PHILOSOPHERS**

Philosophers 1 and 4 will never eat at the same time.

$$AG \neg (e_1 \wedge e_4)$$

• Whenever philosopher 4 has finished eating, he cannot eat again until philosopher 3 has eaten.

$$AG\ (f_4\Rightarrow A\ (\lnot e_4\ W\ e_3))$$

• Philosopher 2 will be the first to eat.

$$A(\lnot(e_1\lor e_3\lor e_4\lor e_5)\ U\ e_2)$$

# **THANK YOU**

PDF version of the slides

Back to the begin - Back to the outline