Imperative Programmierung (IPR)

Kapitel 6: Tabellen

Univ.-Prof. Dr.-Ing. habil. Gero Mühl

Lehrstuhl für Architektur von Anwendungssystemen (AVA)
Fakultät für Informatik und Elektrotechnik (IEF)
Universität Rostock

Inhalte

1. Definition

2. Spezifikation

3. Implementierung als Array

4. Implementierung als binärer Suchbaum

Kapitel 6.1 **Definition**

Die Tabelle

Definition 1 (Tabelle)

Die **Tabelle** ist ein grundlegender Datentyp, der die Speicherung einer Menge von Schlüssel/Wert-Paaren (Einträgen) und den Zugriff auf die gespeicherten Werte mittels der eindeutigen Schlüssel ermöglicht.

Beispiel 1

insert(1, Elefant)
insert(3, Tiger)
insert(7, Giraffe)
insert(11, Schimpanse)

#	Tier
1	Elefant
3	Tiger
7	Giraffe
11	Schimpanse

- ightharpoonup read(1) = Elefant
- \blacksquare isin(4) = False

Typische Anwendungsbeispiele für Tabellen

- Speicherung von Personaldaten unter dem Schlüssel der Personalnummer
- Speicherung von Bestandsinformationen unter dem Schlüssel der Inventarobjektnummer
- Speicherung von Platzkarteninformationen unter dem Schlüssel der Kombination von Zugnummer und Datum
- Verwaltung von Variablen und ihrer Werte in einem Interpreter
- Symboltabelle eines Compilers

Spezifikation

Grundlegende Funktionen einer Tabelle

Funktion	Beschreibung der Funktion
init	Neue Tabelle
insert(k,v,t)	Fügt Wert <i>v</i> mit Schlüssel <i>k</i> ein
read(k,t)	Liefert Wert zu Schlüssel
delete(k,t)	Löscht Wert zu Schlüssel
update(k,v,t)	Aktualisiert Wert zu Schlüssel
isin(k,t)	Prüft, ob Schlüssel vorhanden
empty(t)	Prüft, ob Tabelle leer
full(t)	Prüft, ob Tabelle voll
length(t)	Liefert Länge der Tabelle

Schrittweise Entwicklung der Spezifikation

■ Die Beschreibung des Datentyps Table greift zurück auf:

$$[\mathbb{B}, \mathbb{N}, \textit{Key}, \textit{Value}]$$

■ Innerhalb von Value soll es zusätzlich einen Fehlerwert geben (z. B. für den Fall, dass mittels read auf die leere Tabelle zugegriffen wird):

```
errorvalue ∈ Value
```

■ Zur einfacheren Spezifikation der Eigenschaften definieren wir noch:

```
Value_V = Value \setminus \{errorvalue\}

Table_X = \{t \in Table \mid full(t)\}
```

Schrittweise Entwicklung der Spezifikation

■ Wir definieren die Menge von Tabellen:

■ Tabellen können mit folgenden Funktionen erzeugt werden:

 $\textit{init}: Table \\ \textit{insert}: \textit{Key} \times \textit{Value} \times \textit{Table} \longrightarrow \textit{Table}$

Schließlich gibt es eine Konstante für die maximale Anzahl von Einträgen (Schlüssel/Wert-Paaren) in einer Tabelle:

$$maxentries \geq 1$$

Jetzt können die Eigenschaften der weiteren Funktionen der Tabelle definiert werden.

Tabellenoperationen: insert

```
insert : Key \times Value \times Table \longrightarrow Table
\forall k : Key; v : Value_V; t : Table \bullet
insert(k, errorvalue, t) = t
isin(k, t) = True
\Rightarrow insert(k, v, t) = t
\forall k : Key; v : Value_V; t : Table_X \bullet
insert(k, v, t) = t
```

- Hier wird also nur eine einfache Fehlerbehandlung realisiert, bei der das Einfügen in eine volle Tabelle diese unverändert lässt.
- Das erneute Einfügen eines Schlüssels lässt die Tabelle unverändert.
- Alternativ ließe sich auch eine erweiterte Fehlerbehandlung mit overflow realisieren.

Tabellenoperationen: read

Beispiel 2 (read) $read(\underbrace{3}_{x}, insert(\underbrace{1}_{y}, \underbrace{Elefant}_{v}, insert(3, Giraffe, insert(5, Kamel, init)))))$ $= read(\underbrace{3}_{x}, insert(\underbrace{3}_{x}, \underbrace{Giraffe}_{v}, \underbrace{insert(5, Kamel, init)}_{t})))$ = Giraffe

Tabellenoperationen: delete

```
Beispiel 3 (delete)

delete(\underbrace{3}_{x}, insert(\underbrace{1}_{y}, \underbrace{Elefant}_{v}, \underbrace{insert(3, Giraffe, insert(5, Kamel, init))})))

= insert(1, Elefant, delete(\underbrace{3}_{x}, insert(\underbrace{3}_{x}, \underbrace{Giraffe}_{v}, \underbrace{insert(5, Kamel, init)}))))

= insert(1, Elefant, insert(5, Kamel, init))
```

Tabellenoperationen: update

Beispiel 4 (update) $update(\underbrace{3}_{x},\underbrace{Kuh},insert(\underbrace{1}_{y},\underbrace{Elefant},insert(3,Giraffe,insert(5,Kamel,init)))))$ $=insert(1,Elefant,update(\underbrace{3}_{x},\underbrace{Kuh},insert(\underbrace{3}_{x},\underbrace{Giraffe},insert(5,Kamel,init)))))$

= insert(1, Elefant, insert(3, Kuh, insert(5, Kamel, init)))

Tabellenoperationen: isin

Beispiel 5 (isin) $isin(\underbrace{4}, insert(\underbrace{1}, \underbrace{Elefant}, insert(3, Giraffe, insert(5, Kamel, init))}_{v})))$ $= isin(\underbrace{4}, insert(\underbrace{3}, \underbrace{Giraffe}_{v}, insert(\underbrace{5}, Kamel, init)))$ $= isin(\underbrace{4}, insert(\underbrace{5}_{v}, \underbrace{Kamel}_{v}, init))$ $= isin(\underbrace{4}, init) = False$

IPR / Kapitel 6.2

14 / 78

Tabellenoperationen: empty

```
empty: Table \longrightarrow \mathbb{B}
\forall k: Key; v: Value_V; t: Table \setminus Table_X \bullet
empty(init) = True
empty(insert(k, v, t)) = False
```

```
Beispiel 6 (empty)

empty(insert(\underbrace{1}_{k},\underbrace{Elefant}_{v},\underbrace{insert(3,Giraffe,insert(5,Kamel,init))})))

= False
```

Tabellenoperationen: length

```
length: Table \longrightarrow \mathbb{N}
\forall \ k: Key; \ v: Value_V; \ t: Table \setminus Table_X \bullet
length(init) = 0
length(insert(k, v, t)) = 1 + length(t)
```

Beispiel 7 (length)

$$length(insert(\underbrace{1}_{k},\underbrace{Elefant},\underbrace{insert(3,Giraffe,insert(5,Kamel,init))}))$$

$$= 1 + length(insert(\underbrace{3}_{k},\underbrace{Giraffe},\underbrace{insert(5,Kamel,init)}))$$

$$= 1 + 1 + length(insert(\underbrace{5}_{k},\underbrace{Kamel},\underbrace{init}))$$

$$= 1 + 1 + 1 + length(init) = 1 + 1 + 1 + 0 = 3$$

Tabellenoperationen: full

$$full : Table \longrightarrow \mathbb{B}$$

$$\forall t : Table_X \bullet$$

$$full(t) = True$$

$$\forall t : Table \setminus Table_X \bullet$$

$$full(t) = False$$

```
module Table where
import Prelude hiding (init, read, length)
type Key = Int
type Value = String
errorvalue = "ERROR"
maxentries = 5
data Table = Empty | App(Key, Value, Table)
     deriving Show
```

```
init :: Table
insert :: (Key, Value, Table) -> Table
isin :: (Key, Table) -> Bool
init = Empty
insert(k,v,t) = if v == errorvalue then t
                else if isin(k,t) then t
                else if full(t) then t
                else App(k,v,t)
isin(x, Empty) = False
isin(x, App(k, v, t)) = if x == k then True
                     else isin(x,t)
```

```
read :: (Key, Table) -> Value
empty :: Table -> Bool
delete :: (Key, Table) -> Table
read(x,Empty) = errorvalue
read(x, App(k, v, t)) = if x == k then v
                    else read(x,t)
empty(Empty) = True
empty(App(k,v,t)) = False
delete(x,Empty) = Empty
delete(x,App(k,v,t)) = if x == k then t
                      else App(k,v,delete(x,t))
```

```
update :: (Key, Value, Table) -> Table
length :: Table -> Int
full :: Table -> Bool
update(k,v,Empty) = Empty
update(k,v,App(k2,v2,t)) =
   if k == k2 then App(k,v,t)
   else App(k2, v2, update(k, v, t))
length(Empty) = 0
length(App(k,v,t)) = 1 + length(t)
full(t) = if length(t) == maxentries then True
          else False
```

Kapitel 6.3 Implementierung als Array

Implementierung als Array

- Die Einträge der Tabelle werden in einem Array gespeichert.
- Ein Element des Arrays enthält entweder eine Referenz auf einen Eintrag oder aber den Wert null.
- Ein Eintrag enthält dabei sowohl den Schlüssel (Typ int) als auch den Wert (Typ char*).
- Sofern die Tabelle nicht voll ist, wird beim Einfügen nach einem unbelegten Array-Element gesucht und der Eintrag dort eingefügt.

Implementierung als Array

- Der Array-Index, an dem zuletzt ein Eintrag gelöscht wurde, wird in der Variablen last_delete gespeichert.
- So kann zumindest der erste Einfügevorgang nach einem Löschvorgang schnell ausgeführt werden (Vorform einer Freiliste).
- Ansonsten wird die Suche an der Stelle im Array fortgesetzt, an der zuletzt ein Eintrag eingefügt wurde.
- Diese Stelle wird jeweils in der Variablen last_insert gespeichert.

Implementierung als Array

```
#define MAX_ELEMENTS 100
typedef char* element;
struct _node {
  element value;
  int key;
};
typedef struct _node node;
struct _table {
  int size;
  int last_insert;
  int last_delete;
  node* nodes[MAX_ELEMENTS];
};
typedef struct _table table;
```

Implementierung init und length

```
table * table_init() {
  table* t = malloc(sizeof(table));
  t \rightarrow size = 0:
  t->last_insert = -1;
  t->last_delete = -1;
  for (int i = 0; i < MAX_ELEMENTS; i++)</pre>
    t->nodes[i] = NULL;
  return t;
int table_length(table* t) {
  return t->size;
}
```

Implementierung empty und full

```
int table_empty(table* t) {
   return table_length(t) == 0;
}
int table_full(table* t) {
   return table_length(t) == MAX_ELEMENTS;
}
```

Implementierung isin

```
int table_isin(int k, table* t) {
  if (table_empty(t)) {
    return 0;
 } else {
    for (int i = 0; i < MAX_ELEMENTS; i++) {</pre>
      if (t->nodes[i] != NULL) {
        if (t->nodes[i]->key == k)
          return 1;
  return 0;
```

Implementierung insert

```
table* table_insert(int k, element e, table* t) {
  if (e == NULL || table_full(t) || table_isin(k, t))
    return t;

node* n = malloc(sizeof(node));
n->key = k;
n->value = e;

// continued on next slide
```

```
// continued from previous slide
if (t->last_delete != -1) {
 t->nodes[t->last_delete] = n;
 t->last_insert = t->last_delete;
 t->last_delete = -1;
} else {
 do {
   t->last_insert++;
   t->last_insert %= MAX_ELEMENTS;
 } while (t->nodes[t->last_insert] != NULL);
  t->nodes[t->last_insert] = n;
t->size++;
return t;
```

Implementierung read

```
element table_read(int k, table* t) {
  if (table_empty(t))
    return NULL;
  for (int i = 0; i < MAX_ELEMENTS; i++)</pre>
    if (t->nodes[i] != NULL)
      if (t->nodes[i]->key == k)
        return t->nodes[i]->value;
  return NULL;
```

Implementierung delete

```
table * table_delete(int k, table * t) {
  if (table_empty(t))
    return t;
  for (int i = 0; i < MAX_ELEMENTS; i++) {</pre>
    if (t->nodes[i] != NULL) {
      if (t->nodes[i]->key == k) {
        free(t->nodes[i]);
        t->nodes[i] = NULL;
        t->last_delete = i;
        t->size--;
        break:
  return t;
```

Implementierung update

```
table * table_update(int k, element e, table * t) {
  if (e == NULL || table_empty(t))
    return t;
  for (int i = 0; i < MAX_ELEMENTS; i++) {</pre>
    if (t->nodes[i] != NULL) {
      if (t->nodes[i]->key == k) {
        t->nodes[i]->value = e;
        break:
  return t;
```

Implementierung print

```
void table_print(table* t) {
  int e = 0;
  node* n;
  for (int i = 0; i < MAX_ELEMENTS; i++) {</pre>
    n = t - nodes[i];
    if (n != NULL) {
      printf("insert(%i,%s,", n->key, n-> value);
      e++;
  printf("init");
  for (int i = 0; i < e; i++)
   printf(")");
}
```

Implementierung print

```
void table_destroy(table* t) {
  for (int i = 0; i < MAX_ELEMENTS; i++)
    if (t->nodes[i] != NULL)
      free(t->nodes[i]);
  free(t);
}
```

Exemplarische Implementierung main

```
int main(int argc, char* argv[]) {
  table * t = table_init();
  table_insert(5, "Affe", t);
  table_insert(8, "Giraffe", t);
  table_insert(2, "Ente", t);
  table_insert(3, "Tiger", t);
  printf("%i\n", table_isin(6, t)); // 0
  printf("%i\n", table_isin(8, t)); // 1
  printf("%s\n", table_read(6, t)); // NULL
  printf("%s\n", table_read(8, t)); // Giraffe
  table_delete(8, t);
  printf("%s\n", table_read(8, t)); // NULL
  table_update(5, "Katze", t);
  printf("%s\n", table_read(5, t)); // Katze
  table_print(t);
  table_destroy(t);
}
```

Diskussion der Implementierung als Array

- Der Hauptvorteil der Implementierung liegt in ihrer Einfachheit.
- Nachteilig ist, dass viele Operationen linearen Aufwand erfordern.
- Lediglich empty, full und length benötigen konstanten Aufwand.
- Durch Verwendung einer Freiliste kann auch der Aufwand für insert auf konstanten Aufwand gedrückt werden.
- Für den Anwendungsfall Tabelle gibt es aber deutlich effizientere Datenstrukturen.
- Hierzu gehören binäre Suchbäume, die nachfolgend besprochen werden, sowie Hashing, das im nächsten Semester behandelt wird.

Aufwand der Tabellenoperationen

Funktion	Aufwand
init	linear
insert	linear
read	linear
delete	linear
update	linear
isin	linear
empty	konstant
full	konstant
length	konstant

Kapitel 6.4

Implementierung als binärer Suchbaum

Binärer Suchbaum

Definition 2 (Binärer Suchbaum / engl. binary search tree (BST))

Ein binärer Suchbaum ist ein binärer Baum, bei dem

- 1 die Knoten des linken Teilbaums jedes Knotens nur kleinere Schlüssel als der Knoten selbst besitzen und
- 2 die Knoten des rechten Teilbaums jedes Knotens nur größere Schlüssel als der Knoten selbst besitzen.

- Hinweis: Wir betrachten hier nur BSTs ohne Duplikate, d. h. mit eindeutigen Schlüsseln.
- Die Inorder-Traversierung eines BSTs liefert stets die sortierte Folge der Schlüssel:

[2, 5, 7, 9, 11, 13, 15]

- Um einen Schlüssel in einem BST zu finden, wird dieser mit dem Schlüssel des Wurzelknotens verglichen.
- Sind beide Schlüssel gleich, so wurde der Schlüssel gefunden.
- Ist der gesuchte Schlüssel kleiner (größer), so wird die Suche rekursiv im linken (rechten) Teilbaum fortgesetzt.
- Die Suche terminiert, wenn der Schlüssel gefunden oder ein Knoten erreicht wird, bei dem die Suche nicht fortgesetzt werden kann.
- Letzteres ist der Fall, wenn der gesuchte Schlüssel kleiner (größer) als der des betrachteten Knotens ist und das linke (rechte) Kind dieses Knotens nicht existiert.
- In diesem Fall ist der gesuchte Schlüssel nicht im Baum enthalten.

- Die Suche nach dem Schlüssel 7 führt vom Wurzelknoten aus in den linken Teilbaum, da 7 < 9.
- Der n\u00e4chste Schritt f\u00fchrt in den rechten Teilbaum, da 7 > 5, und findet den Schl\u00fcssel 7.

- Die Suche nach dem Schlüssel 12 führt vom Wurzelknoten aus in den rechten Teilbaum, da 12 > 9.
- $lue{}$ Der nächste Schritt führt in den linken Teilbaum, da 12 < 13.
- Dort terminiert die Suche erfolglos, da 12 > 11 ist, aber das rechte Kind dieses Knotens nicht existiert.

- Der Aufwand für die Suche in einem binären Suchbaum beträgt O(h) und ist damit abhängig von der Höhe des Baums h.
- Die Höhe eines binären Baums beträgt im besten Fall $O(\log n)$ bei einem balancierten Baum und im schlechtesten Fall O(n), zum Beispiel bei einem zu einer Kette entarteten Baum.
- Die Höhe eines binären Suchbaums hängt von der Vorgehensweise beim Einfügen sowie beim Entfernen von Schlüsseln ab.
- Durch eine geeignete Vorgehensweise kann eine Balancierung sichergestellt werden.
- Wir betrachten im Folgenden aber ein einfacheres Verfahren.

Einfügen in einen Binären Suchbaum

- Beim Einfügen eines Schlüssels in einen binären Suchbaum wird zunächst so vorgegangen, wie bei der Suche nach diesem Schlüssel.
- Die Suche terminiert dann bei einem Knoten, weil eine Fortsetzung der Suche nicht möglich ist, da das entsprechende Kind nicht existiert.
- Sie terminiert also immer bei einem Blatt (beide Kinder fehlen) oder einem Halbblatt (ein Kind fehlt).
- Bei diesem Knoten wird dann der neue Schlüssel als linkes (rechtes) Kind als Blatt eingefügt, wenn der neue Schlüssel kleiner (größer) als der Schlüssel des Knotens ist.

Einfügen in einen Binären Suchbaum

Der Schlüssel 7 wird als rechtes Kind des Knotens mit dem Schlüssel 5 einfügt, da 7 < 9 und 7 > 5 ist und das rechte Kind des Knotens mit Schlüssel 5 nicht existiert.

Einfügen in einen Binären Suchbaum

- Der Aufwand beim Einfügen ist wieder O(h).
- DONALD E. KNUTH wies 1973 nach, dass durch das Einfügen zufällig sortierter Elemente ein BST mit logarithmischer Höhe entsteht.
- Durch wiederholtes Einfügen von aufsteigend (oder absteigend) sortierten Schlüsseln kann der Baum hingegen zu einer Kette entarten.

- Hier werden drei Fälle unterschieden, je nachdem ob der zu löschende Knoten ein Blatt, ein Halbblatt oder ein innerer Knoten ist.
 - 1 Ist der zu löschende Knoten ein Blatt, dann wird der Knoten einfach ersatzlos aus dem Baum entfernt.
 - 2 Ist der zu löschende Knoten ein Halbblatt, dann wird das (einzige) Kind des zu löschenden Knotens an die Stelle dieses Knotens gesetzt.
 - 3 Ist der zu löschende Knoten hingegen ein innerer Knoten, hat er also zwei Kinder, so ist das Löschen komplizierter (siehe folgende Folien).

Löschen eines inneren Knotens aus einem BST

- Hier wird der zu löschende Knoten durch den minimalen Knoten seines rechten Teilbaums ersetzt. Der evtl. nicht-leere rechte Teilbaum des Ersatzknotens tritt dann an die Stelle des Ersatzknotens.
- Hinweis: Der linke Teilbaum des minimalen Knotens ist immer leer!
- Alternativ kann der Knoten auch durch den maximalen Knoten seines linken Teilbaums ersetzt werden. Dann tritt dessen potentiell nicht-leerer linke Teilbaum an die Stelle des Ersatzknotens.
- Hinweis: Der rechte Teilbaum des maximalen Knotens ist immer leer!
- Der Ersatzknoten ist also der nächstgrößere bzw. der nächstkleinere Knoten im Teilbaum des zu löschenden Knotens.
- Beide Alternativen sollten alternierend angewendet werden, um dem Entarten des Baums entgegenzuwirken.
- Der Aufwand für das Löschen beträgt O(h).

Löschen eines inneren Knotens aus einem BST

- Im folgenden BST soll der Knoten mit Schlüssel 5 gelöscht werden.
- Bei Wahl des Knotens mit minimalem Schlüssel (6) des rechten Teilbaums ergibt sich folgende Transformation:

Löschen eines inneren Knotens aus einem BST

- Im folgenden BST soll der Knoten mit Schlüssel 5 gelöscht werden.
- Bei Wahl des Knotens mit maximalem Schlüssel (4) des linken Teilbaums ergibt sich folgende Transformation:

Finden des minimalen/maximalen Schlüssels

- Der minimale Schlüssel in einem BST wird gefunden, indem von der Wurzel aus solange wie möglich immer nur nach links gegangen wird.
- Der maximale Schlüssel kann analog durch den Abstieg immer nach rechts gefunden werden.
- Beide Operation benötigen einen Aufwand von O(h).

Implementierung einer Tabelle als binärer Suchbaum

- Realisierung des Baums als verkettete Datenstruktur.
 - Tabelle hat Referenz auf Wurzelknoten des Baums.
 - Knoten hat Referenz auf linken und rechten Kindknoten.

```
struct _table {
  node* root;
  int size;
};
struct _node {
  element value;
  int key;
  _node* left;
  _node* right
};
```

■ Hinweis: Abb. zeigt nur die Schlüssel und *nicht* die Wertobjekte.

Implementierung init

```
#define MAX_ELEMENTS 100
typedef char* element;
struct _node {
        element value;
        int key;
        _node* left:
        _node* right;
};
typedef struct _node node;
struct _table {
        node* root:
        int size;
};
typedef struct _table table;
table* tableInit() {
  table * t = malloc(sizeof(table));
  t \rightarrow root = NULL;
  t\rightarrow size = 0:
  return t:
```

Implementierung length, empty und full

```
int tableLength(table* t) { return t->size; }
int tableEmpty(table* t) {
  return tableLength(t) == 0;
}
int tableFull(table* t) {
  return tableLength(t) == MAX_ELEMENTS;
}
```

Implementierung isin

```
int tableIsin(int k, table* t) {
  if (tableEmpty(t))
  return 0;
 node* n = t->root;
  while (n != NULL) {
    if (k == n -> key) \{ // key found
      return 1;
        } else if (k < n->key) { // left subtree
      n = n - > left;
        } else if (k > n->key) { // right subtree
          n = n - right;
  // key not found
  return 0;
```

Implementierung insert

```
table * table Insert(int k, element e, table * t) {
  if (e == NULL || tableFull(t) || tableIsin(k, t))
    return t;
  node* m = malloc(sizeof(node));
  m \rightarrow key = k;
  m \rightarrow value = e;
  m \rightarrow left = NULL;
  m->right = NULL;
  if (tableEmpty(t)) {
  t->root = m;
  } else {
  // continued on next slide
```

Implementierung insert

```
node* n = t \rightarrow root:
while (n != NULL) {
  if (k < n\rightarrow key) { // insert left
     if (n\rightarrow NULL) {
       n\rightarrow left = m;
        break;
     } else
       n = n \rightarrow left;
     } else if (k > n->key) { // insert right
        if (n->right == NULL) {
          n\rightarrow right = m;
           break:
        } else
          n = n \rightarrow right;
t \rightarrow size ++:
return t;
```

Implementierung read

```
element tableRead(int k, table* t) {
  if (tableEmpty(t))
    return NULL;
  node* n = t->root;
  while (n != NULL) {
    if (k == n -> key) \{ // key found \}
          return n->value;
        } else if (k < n->key) { // left subtree
          n = n -> left;
        } else if (k > n->key) { // right subtree
          n = n->right;
  return NULL;
```

Implementierung update

```
table * table Update (int k, element e, table * t) {
  if (e == NULL || tableEmpty(t))
  return t;
  node* n = t->root;
  while (n != NULL) {
    if (k == n -> key) \{ // key found \}
      n \rightarrow value = e;
      break:
    } else if (k < n->key) { // left subtree
    n = n - > left;
    } else if (k > n->key) { // right subtree
      n = n - right;
  return t;
```

Implementierung delete

```
table* tableDelete(int k, table* t) {
  if (tableEmpty(t) || !tableIsin(k, t))
  return t;
  t->root = tableDeleteNode(k, t->root);
  t->size--;
  return t;
}
```

```
node* tableDeleteNode(int k, node* n) {
  if (k < n->key) {
    // node to be deleted is in left subtree;
    // if node to be deleted is left child,
    // a new left subtree is attached
   n->left = tableDeleteNode(k, n->left);
   return n;
  if (k > n->key) {
    // node to be deleted is in right subtree
    // if node to be deleted is right child,
    // a new right subtree is attached
   n->right = tableDeleteNode(k, n->right);
    return n;
  // continued on next slide
```

Implementierung deleteNode

```
// n -> key == k
// node to be deleted was found
if (n->left == null) {
  // node is leaf
  // or half-leaf with right child
  return n->right;
// n->left != null => node is not a leaf
if (n->right == null) {
  // node is half-leaf with left child
  return n->left;
// continued on next slide
```

Implementierung deleteNode

```
// node is inner node
// get min node from right subtree
node* min = tableFindMin(n->right);
// delete min node from right subtree
// and attach right subtree of n to min
min->right = tableDeleteNode(min->key, n->right);
// attach left subtree of n to min
min->left = n->left;
// return min as replacement node for n
return min;
```

Implementierung findMin

```
node* tableFindMin(node* n) {
   // find min node starting from node n
   if (n != NULL)
   while (n->left != NULL)
     n = n->left;
   return n;
}
```

Beispiel deleteNode (Aufrufe)

Beispiel deleteNode (resultierende Zuweisungen)

Alternative Implementierung von deleteNode

```
public static Table deleteNode(int k, Table t) {
   if (empty(t) || !isin(k, t)) return t;
  Node parent = findParentNode(k, t.root);
  Node n = null, right = null, left = null;
   boolean isLeftChild = false, isRoot = false;
  // find node n to be deleted
   if (k < parent.key) {</pre>
      isLeftChild = true;
     n = parent.left;
  } else if (k > parent.key)
     n = parent.right;
   else { // (k == parent.key)
      isRoot = true;
     n = parent;
   // continued on next slide
```

Alternative Implementierung von deleteNode

```
if ((n.left != null) && (n.right != null)) {
    // n is inner node
    right = n.right;
    left = n.left;
   n = findMin(right);
    n.right = deleteMin(right);
    n.left = left;
} else {
   // n is leaf or half leaf
  n = (n.left != null) ? n.left : n.right;
// continued on next slide
```

Alternative Implementierung von deleteNode

```
if (isRoot)
   t.root = n;
else if (isLeftChild)
   parent.left = n;
else
   parent.right = n;
t.size--;
return t;
```

Implementierung von findParentNode

```
private static Node findParentNode(int k, Node n) {
  // returns parent node of node with key k
  // starting at node n
   if (n != null) {
      if (n.left != null) {
         if (k == n.left.key) return n;
         if (k < n.key)
            return findParentNode(k, n.left);
      }
      if (n.right != null) {
         if (k == n.right.key) return n;
         else if (k > n.key)
            return findParentNode(k, n.right);
   return n;
}
```

Implementierung von deleteMin

```
private static Node deleteMin(Node n) {
   if (n != null) {
      if (n.left != null)
            n.left = deleteMin(n.left);
      else
            return n.right;
   }
   return n;
}
```

Implementierung show

```
void tableShow2(node* n) {
  if (n == NULL)
  return;
  printf("\%i,\%s\n", n->key, n->value);
  tableShow2(n->left);
  tableShow2(n->right);
}
void tableShow(table* t) {
  printf("<<<<\n");
  if (!tableEmpty(t))
    tableShow2(t->root);
  else
    printf("empty");
  printf(">>>>\n");
```

Diskussion der Implementierung

- Durch Verwendung binärer Suchbäume wurde der Aufwand für insert, read, delete, update und isin auf O(log n) reduziert.
- Dies gilt allerdings nur für Suchbäume mit logarithmischer Höhe.
- Suchbäume, die durch das Einfügen zufälliger Schlüssel entstehen zufällige Suchbäume, haben im Durchschnitt logarithmische Höhe.
- Diese Eigenschaft bleibt auch unter Sequenzen von Einfüge- und Löschoperationen erhalten, wenn folgende Bedingungen erfüllt sind:
 - 1 Alle Permutationen von Einfüge- und Löschoperationen sind gleich wahrscheinlich.
 - 2 Bei Löschoperationen halten sich die Abstiege nach links und die nach rechts im Mittel die Waage.
- Balancierte Suchbäume haben immer logarithmische Höhe.
- Die Balance wird durch eine Erweiterung der vorgestellten Einfügeund Löschoperationen sichergestellt.

Diskussion der Implementierung

- Sind die einzufügenden Schlüssel im vorhinein bekannt, so kann ein Suchbaum mit optimaler Höhe folgendermaßen erzeugt werden:
 - Wähle als Schlüssel des Wurzelelements des Suchbaums den Obermedian aller Schlüssel.
 - Konstruiere mit allen Schlüsseln, die kleiner als der Obermedian der Schlüssel sind, den linken Teilsuchbaum.
 - Konstruiere mit allen Schlüsseln, die größer als der Obermedian der Schlüssel sind, den rechten Teilsuchbaum.

Beispiel 8 (Konstruktion eines Suchbaums mit optimaler Höhe)

- Die Menge der Schlüssel sei {1, 3, 5, 6, 7, 8}.
- Die 6 wird die Wurzel. Aus der Schlüsselmenge {1,3,5} wird der linke Teilbaum konstruiert, aus der Schlüsselmenge {7,8} der rechte.
- Die 3 wird die Wurzel des linken Teilbaum, die 1 ihr linkes und die 5 ihr rechtes Kind.
- Die 8 wird die Wurzel des rechten Teilbaums, die 7 ihr linkes Kind.

Aufwand der Tabellenoperationen

Funktion	Aufwand
init	konstant
insert	logarithmisch
read	logarithmisch
delete	logarithmisch
update	logarithmisch
isin	logarithmisch
empty	konstant
full	konstant
length	konstant

Der logarithmische Aufwand gilt nur für Suchbäume mit logarithmischer Höhe, ansonsten ist der Aufwand linear.

Exemplarische Fragen zur Lernkontrolle

- Wozu dient eine Tabelle?
- 2 Welche Operation bietet eine Tabelle typischerweise an?
- 3 Spezifizieren Sie alle grundlegenden Operationen der Tabelle!
- 4 Erläutern Sie die Implementierung der Tabelle als Array und als binärer Suchbaum!
- Wie funktioniert das Einfügen, das Suchen und das Löschen eines Elements bei einem binären Suchbaum?
- **6** Unter welcher Annahme hat ein binärer Suchbaum die Höhe $O(\log n)$?
- 7 Welche Höhe hat ein entarteter binärer Suchbaum?
- Wie kann bei bekannten Elementen ein binärer Suchbaum mit optimaler Höhe konstruiert werden?

Vielen Dank für Ihre Aufmerksamkeit!

Univ.-Prof. Dr.-Ing. Gero Mühl

gero.muehl@uni-rostock.de
https://www.ava.uni-rostock.de