SEMESTER III

Course Code F	PAD21301J	Course Nam	e DEEP I	LEARNING FOR D	DATA SCI	ENCE	Cour		С			F	rofe	ssio	nal C	ore	Cour	se			L	T	P 4	C
Pre-requisite Courses Nil Co-requisite Courses Nil							3	P	rogre	essiv	e Co	ırses	- N	lil										
Course Offering De	epartment	Compu	ter Applications			Data Boo	k / Coo	des/S	tanda	ards	Nil													
Course Learning Rationale (CLR): The purpose of learning this course is to,				Lear	ning		Program Learning Outcomes (PLO)																	
CLR-2 : Understar								1 2 e Ex			1 Fu	2 Ap	3 _in c	1	5 6 Skil Al	0	8 An	9	10 Dr	11	12		14 Pr	
	liar with Kera	as library					f cto	pe e cte d		nd am ent	pli cat ion	n F Re d	ro ed iral	n y S to	Sk Ils in	ze,	Inv	obl		An aly tic	IC T	ore ssi on	Lif e Lo ng	
Course Learning O	outcomes (Cl	-O): At the e	nd of this course,	, learners will be at	ble to:		ng	g fic 31 er o cy	me		Kn ow	nc ept	ed k	(no vle ige	e liz ci e al Ki z ov at le o ge	n de inq d	er pr et Da ta	e Ski	lvi ng Ski	ati		Chi	Be	Le
CLO-1: Build a Pe									5 80	_	Н	Н	Н	Н	H H	-	М	М	L	-	Н	$\overline{}$	М	Н
CLO-2 : Build Neu									5 80	_	Ļ	H	Н	Н	1 1	-	M	M	L	-	Н	\rightarrow	M	H
CLO-3 : Using Pyt				e ontimization					5 80 5 80	_	L	H	H H	П	1 F	1 -	M	M	L	-	Н	-	M	Н
	CLO-4: Fine Tuning the Deep Learning models for performance optimization CLO-5: Build, Compile, Test, and evaluate model in Keras					_	5 80		Ĺ	H	H	Н	1 1	-	M	M	ı	-	Н	-	_	Н		
CLO-6 : Work with Generative Adversarial Networks					5 80	_	Ĺ		Н	Н	H H	-	М	М	Ĺ	-	Н	$\overline{}$	$\overline{}$	Н				
Duration (hour)						2		24 24																
SLO-1 Introduction to Neural Network Fine Tuning NN models ANN Processing Components Fine Tuning NN Models ANN Processing Components What is Fine Tuning			•					as and DL erview of TFMA Interactive Applications of DL			16													
SLO-2 Fundamentals Learning and Training in ANN Regularization		zation			Pi	ractic	tical Consideration for DL Machine Vision – CNN																	

7	SLO-1	Biological NN Vs ANN	Cluster analysis in ANN	What is Vector Quantization?	DL parameters	Pooling Layers		
S-2		ANN Architecture	NN Building blocks		Data Loading and Preprocessing	Lenet-5 in Keras		
		Computational Models in NN	Perceptron to Deep NN	1	Data Preprocessing with Keras	Alexnet and vggnet in keras		
S-3		Neurons Interconnection	Model and Hyper parameters	Relation between SOM and noisy encoder-decoder	Keras Layers	Natural Language processing		
S-4	SLO-1	Threshold Functions	Classification with NN	Voronoi Tesselation	Training Models with fit()	Creating word embeddings with word2vec		
3-4	SLO-2	Activation functions & ANN	Deep Learning Frameworks	LVQ Introduction	Monitoring Performance Metrics	Natural Language Classification with familiar networks		
S		Lab 1: Implement a Feed Forward Neural Network with Back propagation training	Lab 4: Build a NN model using		Lab 10: Build a model for Credit	Lab 13: Build a CNN model for		
5-8	SLO-2	algorithm for realizing XOR problem	PyTorch	for Pattern Classification	Card Fraudulence Detection	Image Classification		
0.0	-	Implementing Neural Networks Building Neural Networks Models	NN Categorization	The LVQ Algortihm	Checkpointing	Generative Adversarial Networks		
S-9	SLO-2	Use case of ANN	NN Computational Model	LINE LVOZ AIGONIAM	Debugging the model with eager execution	Essential GAN Theory		
S-	SLO-1	Perceptrons	NN Building Components	ineopian i eamino	Speed Up process with multiple GPUs	The Discriminator Network		
10	SLO-2	Single Layer Perceptron Model	Evolutionary Algorithm & Gradient Descent	THONNIAN LOSIMINA RIJIO		The Generator Network		
S-	SLO-1	Least Mean Square Algorithm	Object Image Classification	Competitive Learning	Transfer Learning	The Adversarial Network		
11	SLO-2	Learning Curves	Learning rates and Optimization	Optimizing NN	Image classification	GAN Training		
S-	SLO-1	Learning Rates	Optimizing Speed	Debugging NN	Keras Metrics	Reinforcement Learning		
10000	SLO-2	Perceptron	Dense Network Tuning using Hyper parameters	Learning rate optimization	Jupyter notebooks	Reinforcement Learning Process steps		
S 13- 16	SLO-1 SLO-2	Lab 2: Implement a Perceptron in Python	Lab 5: Implement ANN Training in Python for MNIST Digit Classification problem	lab 8: Using Keras, perform rate	Lab 11: Work on a text classification problem with Keras API	Lab 14: Design and build a Game environment		
S-	SLO-1	Multilayer Perceptron	Linear Model with Estimators	Optimizing Networks	Dataset for NN	Deep Reinforcement Learning Applications		
17	SLO-2	The XOR Problem	NN for Predictions	Rate adaption schedule	Exploring the Dataset	Deep RL Use cases		
S-	SLO-1	Back Propagation Algorithm	Optimization approaches for prediction	Scaling	Preparing the dataser	Deep-Q Learning Introduction		
18	SI I I /	Heuristics for improving BP algorithm	NN algorithms	Scaling methods	Visualizing the dataset	The DQN Agent		

c	SLO-1	Radial Basis Function Networks	Data preparation for NN	Batch Normalization	Compiling the model	Q-Learning
S-		e sa ar sans	Maria Cara Maria M	Mini Batch Normalization	Training the NN	Deep Q Learning
S-	SLO-1	Regularization	Training Samples	Internal Covariate Shift	Testing the NN	Steps in Deep Q Learning
20	SLO-2	Learning Strategies	Overfitting and Underfitting	Implement Gradient learning	Evaluate the model	Experience Replay
S	SLO-2			Lab 9: Implement Batch Normalization and gauge its performance		Lab 15:Build and Train the Deep Q Neural Network

Learning	Intelligence By Jon Krohn Grant Revieweld and Aglaé Bassens Sentember 2019	4. Introduction to Deep Learning by Sandro Skansi, Springer, 2018 5. Deep Learning withTensorFlow 2 and Keras - Second Edition,By
	3. Hugo Larochelle's Video Lectures on Deep Learning	Antonio Gulli, Amita Kapoor and Sujit Pal, December 2019

Learning	earning Assessment											
	Disamile		Continuous Learning Assessment (50% weightage)									
	Bloom's Level of Thinking	CLA - 1 (10%)		CLA – 2 (10%)		CLA -	3 (20%)	CLA – 4	l (10%)#	(50% weightage)		
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Loyal 1	Remember	200/	20%	15%	15%	15%	15%	15%	15%	15%	150/	
Level 1	Understand	20%	20%	15%	1376	13%	1576	15%	1576	13%	15%	
Lovel 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 3	Create	10 /0	10 /0	15/0	1370	1570	1576	15/6	13 /0	1370	1370	
	Total	100	% (100) %	100	% 0	100	0 %	100) %	

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Mr.G.Muruganandam, Group Project Manager, HCL Technologies, Chennai	Dr.Muthu, Professor, Loyola College, Chennai	Mrs. M.Ramla, Assistant Professor, SRM IST						
Mr.M. Hemachandar, Tech Lead, Wipro Limited, Chennai	Dr. Vincent, Associate Professor, VIT							