I211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

I211E: Mathematical Logic

1/1

Sudoku

5	3			7				2
6			1	9	5			8
	9	8					6	7
8				6				3
4			8		3			1
7				2				6
	6					2	8	4
			4	1	9	6	3	5
				8		1	7	9

let's solve Sudoku as satisfiability problem

Schedule			
	propositional logic		predicate logic
4/13	syntax, semantics	5/11	syntax, semantics
4/18	normal forms	5/16	normal forms
4/20	examples	5/18	natural deduction I
4/25	natural deduction I	5/23	natural deduction II
4/27	natural deduction II	5/25	examples, properties
5/2	completeness	5/30	advanced topics
5/9	midterm exam	6/1	summary
		6/6	exam

Evaluation

midterm exam (40) + final exam (60)

I211E: Mathematical Logic

2/1

Contents

Aim

to develop formalization skill

Content

- 1 satisfiability problems (SAT)
- 2 Sudoku
- 3 other applications

l211E: Mathematical Logic 3/1 l211E: Mathematical Logic 4/1

Satisfiability Problem

I211E: Mathematical Logic

Satisfiability Problem II

5/1

Question

is there valuation that satisfies following formula?

Answer

no. unsatisfiability is shown by truth table

Satisfiability Problem I

Question

is there valuation v that satisfies following formula?

Answer

- solution: $\begin{cases} x \mapsto \mathsf{T} \\ y \mapsto \mathsf{F} \end{cases}$ another solution: $\begin{cases} x \mapsto \mathsf{F} \\ y \mapsto \mathsf{T} \end{cases}$

I211E: Mathematical Logic

6/1

Satisfiability Problem III

Question

is there valuation that satisfies following formula?

SAT Solvers

Example

I211E: Mathematical Logic

Sudoku

I211E: Mathematical Logic

10/1

SAT Encoding

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

idea: x_{ijk} is true if cell at (i, j) is digit k

 \blacksquare every cell (i,j) contains exactly one digit:

$$\mathsf{one}(\{x_{ij1},\ldots,x_{ij9}\})$$

2 every digit k occurs in every group of nine cells $(i_1, j_1), \ldots, (i_9, j_9)$:

one
$$(\{x_{i_1 j_1 k}, \dots, x_{i_0 j_0 k}\})$$

Can Enumeration Find Solution?

- \blacksquare 12750 clauses over 729 variables
- 282401395870821749694910884220462786335135391185157752468340193
 086269383036119849990587392099522999697089786549828399657812329
 686587839094762655308848694610643079609148271612057263207249270
 3527723757359478834530365734912 variable assignments

fortunately efficient algorithm (DPLL) exists!

Cardinality Constraints

ldea

 x_{ijd} is true \iff cell at (i,j) contains digit d

Exercise

Let $A = \{x, y, z\}$. Describe following statements in propositional logic:

- \blacksquare at least one atom in A is true
- \blacksquare at most one atom in A is true

General Forms

$$\begin{aligned} \text{at-least-one}(A) &= \bigvee A \\ \text{at-most-one}(A) &= \bigwedge \{ \neg x \vee \neg y \mid x,y \in A \text{ and } x \neq y \} \\ \text{one}(A) &= \text{at-least-one}(A) \wedge \text{at-most-one}(A) \end{aligned}$$

I211E: Mathematical Logic

13/1

How To Solve Sudoku?

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

SAT solver can find valuation v such that

$$\llbracket \phi_{\mathsf{Sudoku}} \wedge x_{115} \wedge x_{123} \wedge \dots \wedge x_{999}) \rrbracket_v = \mathsf{T}$$

Propositional Encoding of Sudoku

$$\begin{split} \phi_{\mathsf{Sudoku}} &= \bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \mathsf{one}(\{x_{ij1}, \dots, x_{ij9}\}) \\ &\wedge \bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \mathsf{one}(\{x_{i1k}, \dots, x_{i9k}\}) \\ &\wedge \bigwedge_{j=1}^{9} \bigwedge_{k=1}^{9} \mathsf{one}(\{x_{1jk}, \dots, x_{9jk}\}) \\ &\wedge \bigwedge_{j=1}^{2} \bigwedge_{k=1}^{2} \mathsf{one}\left(\left\{ \begin{matrix} x_{3i+1,3j+1,k}, & x_{3i+1,3j+2,k}, & x_{3i+1,3j+3,k}, \\ x_{3i+2,3j+1,k}, & x_{3i+2,3j+2,k}, & x_{3i+2,3j+3,k}, \\ x_{3i+3,3j+1,k}, & x_{3i+3,3j+2,k}, & x_{3i+3,3j+3,k} \end{matrix} \right) \end{split}$$

14/1

I211E: Mathematical Logic

Other Applications

 I211E: Mathematical Logic
 15/1
 I211E: Mathematical Logic
 16/1

Nonogram

(C) Juraj Simlovic, CC BY-SA 3.0

I211E: Mathematical Logic 17/1

Software Verification

failure of Ariane 5 (C) ESA

19/1

Map Coloring (Noto Coloring is Homework!)

taken from https://commons.wikimedia.org/wiki/File:Japan_template_large.png

18/1

I211E: Mathematical Logic