LWA352 SNAP2 F-Engine Documentation

Release 1.0.0

Jack Hickish

CONTENTS:

1		allation	3
		Get the Source Code	
	1.2	Install Prerequisites	3
2	Cont	trol Interface	5
	2.1	Overview	5
	2.2	SNAP2Fengine Python Interface	6
	2.3	etcd Interface	24
3	F-En	ngine Register Definitions	31
	3.1	Register Descriptions	31
4	Indi	ces and tables	39
In	dex		41

Contents:

CONTENTS: 1

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

The LWA 352 F-Engine pipeline is available at https://github.com/realtimeradio/caltech-lwa. Follow the following instructions to download and install the pipeline.

Specify the build directory by defining the BUILDDIR environment variable, eg:

```
export BUILDDIR=~/src/mkdir -p $BUILDDIR
```

1.1 Get the Source Code

Clone the repository and its dependencies with:

```
# Clone the main repository
cd $BUILDDIR
git clone https://github.com/realtimeradio/caltech-lwa
# Clone relevant submodules
cd caltech-lwa
git submodule init
git submodule update
```

1.2 Install Prerequisites

1.2.1 Firmware Requirements

The LWA-253 F-Engine firmware can be built with the CASPER toolflow, and was designed using the following software stack:

- Ubuntu 18.04.0 LTS (64-bit)
- MATLAB R2019a
- Simulink R2019a
- MATLAB Fixed-Point Designer Toolbox R2019a
- Xilinx Vivado HLx 2019.1.3
- Python 3.6.9

It is *strongly* recommended that the same software versions be used to rebuild the design.

CONTROL INTERFACE

2.1 Overview

A Python class Snap2Fengine is provided to encapsulate control of individual blocks in the firmware DSP pipeline. The structure of the software interface aims to mirror the hierarchy of the firmware modules, through the use of multiple Block class instances, each of which encapsulates control of a single module in the firmware pipeline.

In testing, and interactive debugging, the Snap2Fengine class provides an easy way to probe board status for a SNAP2 board on the local network.

In order to integrate with the larger LWA352 control framework, control and monitoring of multiple F-Engines can also be carried out through the passing of JSON-encoded messages through an etcd¹ key-value store. This mechanismi, shown in Fig. 2.1, utilizes the Python class Snap2FengineEtcdClient to translate commands and responses between the etcd format and the underlying Snap2Fengine method calls.

Fig. 2.1: The top-level control architecture.

¹ See etcd.io

2.2 SNAP2Fengine Python Interface

2.2.1 Top-Level Control

class lwa_f.snap2_fengine.Snap2Fengine(host, logger=None)
 A control class for LWA352's SNAP2 F-Engine firmware.

Parameters

- host (casperfpga.CasperFpga) CasperFpga interface for host.
- logger (logging.Logger) Logger instance to which log messages should be emitted.

adc

Control interface to ADC block

autocorr

Control interface to Autocorrelation block

blocks

Dictionary of all control blocks in the firmware system.

configure_output (base_ant, n_chans_per_packet, chans, ips, ports=None)

Configure channel reordering and packetizer modules to emit a selection of frequency channels.

Parameters

- base_ant (int) Antenna ID which should be written to output packet headers. In general this should be the first antenna on this F-engine board.
- n_chans_per_packet (int) Number of channels per packet.
- **chans** (*list of int*) A list of channel indices to be sent, e.g. range (0, 1024). The number of channels in this list should be an integer multiple of n_chans_per_packet. An assertion error is raised if this is not the case.
- ips (list of str) A list of IP addresses to which packets should be sent. The order of values in ips and chans should reflect where different channels should be sent. The n th IP address in ips is the destination to which channels chans [n*n_chans_per_packet: (n+1)*n_chans_per_packet] should be sent. As such, ips should have len(chans) // n_chans_per_packet elements. IP addresses should be provided in dotted-quad string representation.
- ports (list of int) The UDP destination ports to which packets should be transmitted. Addressing rules are the same as for ips. If None, all packets are transmitted to UDP port 10000.

corr

Control interface to Correlation block

delay

Control interface to Coarse Delay block

eq

Control interface to Equalization block

eq_tvg

Control interface to post-equalization Test Vector Generator block

eth

Control interface to 40GbE interface block

fpga

Control interface to high-level FPGA functionality

get_status_all()

Call the get_status methods of all blocks in self.blocks.

Returns The contents of the underlying get_status calls, in a dictionary keyed by the names of the blocks in self.blocks.

hostname

hostname of the F-Engine's host SNAP2 board

initialize (read_only=True)

Call the `initialize methods of all underlying blocks.

Parameters read_only (bool) – If True, call the underlying initialization methods in a read_only manner.

input

Control interface to Input Multiplex block

noise

Control interface to Noise Generation block

packetizer

Control interface to Packetizer block

pfb

Control interface to PFB block

print_status_all (use_color=True)

Print the status returned by get_status for all blocks in the system.

Parameters use_color (bool) – If True, highlight values with colors based on error codes.

reorder

Control interface to Channel Reorder block

sync

Control interface to Synchronization / Timing block

2.2.2 FPGA Control

```
class lwa_f.blocks.fpga.Fpga(host, name, logger=None)
```

Instantiate a control interface for top-level FPGA control.

Parameters

- host (casperfpga. CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.

get_build_time()

Read the UNIX time at which the current firmware was built.

Return build_time Seconds since the UNIX epoch at which the running firmware was built.

Rtype int

get_firmware_version()

Read the firmware version register and return the contents as a string.

Return version major_version.minor_version.revision.bugfix

Rtype str

get_status()

Get status and error flag dictionaries.

Status keys:

- programmed (bool): True if FPGA appears to be running DSP firmware. False otherwise, and flagged as a warning.
- flash_firmware (str): The name of the firmware file currently loaded in flash memory.
- flash_firmware_md5 (str): The MD5 checksum of the firmware file currently loaded in flash memory.
- timestamp (str): The current time, as an ISO format string.
- serial (str): The serial number / identifier for this board. Flagged with a warning if no serial is available.
- host (str): The host name of this board.
- sw_version (str): The version string of the control software package. Flagged as warning if the version indicates a build against a dirty git repository.
- fw_version (str): The version string of the currently running firmware. Available only if the board is programmed.
- fw_build_time (int): The build time, in seconds since the UNIX epoch. Available only if the board is programmed.
- sys_mon (str): 'reporting' if the current firmware has a functioning system monitor module. Otherwise 'not reporting', flagged as an error.
- temp (float): FPGA junction temperature, in degrees C. (Only reported is system monitor is available). Flagged as a warning if outside the recommended operating conditions. Flagged as an error if outside the absolute maximum ratings. See DS892.
- vccaux (float): Voltage of the VCCAUX FPGA power rail. (Only reported is system monitor is available). Flagged as a warning if outside the recommended operating conditions. Flagged as an error if outside the absolute maximum ratings. See DS892.
- vccbram (float): Voltage of the VCCBRAM FPGA power rail. (Only reported is system monitor is available). Flagged as a warning if outside the recommended operating conditions. Flagged as an error if outside the absolute maximum ratings. See DS892.
- vccint (float): Voltage of the VCCINT FPGA power rail. (Only reported is system monitor is available). Flagged as a warning if outside the recommended operating conditions. Flagged as an error if outside the absolute maximum ratings. See DS892.

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary are as defined in *error_levels.py* and indicate that values in the status dictionary are outside normal ranges.

is programmed()

Lazy check to see if a board is programmed. Check for the "version_version" register. If it exists, the board is deemed programmed.

Returns True if programmed, False otherwise.

Return type bool

2.2.3 Timing Control

```
class lwa_f.blocks.sync.Sync(host, name, logger=None)
     arm_noise()
           Arm noise generator resets
     arm_sync()
           Arm sync pulse generator.
     count_ext()
               Returns Number of external sync pulses received.
               Rtype int
     count_int()
               Returns Number of internal sync pulses received.
               Rtype int
     get_error_count()
               Returns Number of sync errors.
               Rtype int
     get_latency()
               Returns Number of FPGA clock ticks between sync transmission and reception
               Rtype int
     get_status()
           Get a dictionary of status values, with optional warning of error flags. To be overridden by individual
               Returns (status_dict, flags_dict) tuple. status_dict is a dictionary of status key-value pairs, de-
                   fined on a per-block basis. flags_dict is a dictionary with all, or a sub-set, of the keys in
                   status_dict. The values held in this dictionary should be as defined in error_levels.py.
     initialize(read only=False)
           Initialize block.
               Parameters read_only (bool) - If False, initialize system control register to 0 and reset
                   error counters. If True, do nothing.
     load telescope time(tt, software load=False)
           Load a new starting value into the telescope time counter on the next sync.
               Parameters
                   • tt (int) - Telescope time to load
                   • software load (bool) - If True, immediately load via a software trigger. Else load
                     on the next external sync pulse arrival.
     period()
               Returns The number of FPGA clock ticks between the last two external sync pulses.
               Rtype int
     reset_error_count()
           Reset internal error counter to 0.
```

```
reset telescope time()
```

Reset the telescope time counter to 0 immediately.

sw_sync()

Issue a software sync pulse

uptime()

Returns Time in FPGA clock ticks since the FPGA was last programmed. Resolution is 2**32 (21 seconds at 200 MHz)

Return type int

wait_for_sync()

Block until a sync has been received.

2.2.4 ADC Control

class lwa_f.blocks.adc.Adc(host, name, logger=None)

Instantiate a control interface for an ADC block.

Parameters

- host (casperfpga.CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.

```
calibrate (use_ramp=False)
```

Compute and set all ADC data lane input delays to their optimal values. After this call, the ADCs are left in test mode.

Parameters use_ramp (bool) – If True, after calibration, use the ramp test pattern to verify the ADC->FPGA link is functioning correctly. If False, perform this verification with the same constant test value used for the calibration procedure.

Returns True if the calibration procedure succeeded. False otherwise.

Return type bool

```
get_snapshot (fmc, signed=False, trigger=True)
```

Read a snapshot of data from all ADC channels on a single FMC card. Return data without interleaving ADC cores.

Parameters

- fmc (int) Which FMC port (0 or 1) to read.
- **signed** (bool) If True, return data interpretted as signed 2's complement integers. If False, return data as unsigned integers.
- **trigger** (bool) If True, trigger a new simultaneous capture of data from all channels. If False, read existing data capture. Grabbing data without a new trigger may be useful if you wish to read channels from a second FMC port which were captured simultaneously with another port.

Returns Array of captured data with dimensions [ADC_CHIPS_PER_FMC, ADC_LANES, TIME_SAMPLES]. Data from ADC lanes representing the same analog input are _not_ interleaved. Data from ADC lanes n,n+1 are associated with the same analog input.

Return type numpy.array

get_snapshot_interleaved(fmc, signed=False, trigger=True)

Read a snapshot of data from all ADC channels on a single FMC card. Return data with ADC cores interleaved.

Parameters

- fmc (int) Which FMC port (0 or 1) to read.
- **signed** (bool) If True, return data interpretted as signed 2's complement integers. If False, return data as unsigned integers.
- **trigger** (bool) If True, trigger a new simultaneous capture of data from all channels. If False, read existing data capture. Grabbing data without a new trigger may be useful if you wish to read channels from a second FMC port which were captured simultaneously with another port.

Returns numpy array of captured data with dimensions [ADC_CHANNELS_PER_FMC, TIME_SAMPLES].

Return type numpy.ndarray

initialize (read_only=False, clocksource=1)

Initialize connected ADC boards.

Parameters

- read_only (bool) If True, don't do anything which would affect a running system. If False, train ADC->FPGA data links.
- **clocksource** (*int*) Which ADC board (0 or 1) on an FMC card should serve as the source of the clocks. Note that while this parameter is set for boards on all FMC cards, only the FMC card selected as the clock source at Simulink compile-time will be used for clocking.

Returns True if initialization was successful. False otherwise.

mmcm is locked()

Read the ADC control register to determine if the clock PLLs are locked.

Returns True if the ADC clocks are locked. False otherwise.

Return type bool

print_sweep (errs, best_delays=None, step_size=4)

Print, using ASCII, the valid data capture eye as a function of delay setting. Delays are printed such that one row represents a sweep of delays for a single ADC data lane. Each column in the row is \times if data contained errors at this delay, – if no errors were detected at this delay, and \mid , if this delay is considered the best setting in the sweep range.

Parameters

- **errs** (*list*) Array of error counts with dimensions [DELAY_TRIALS, ADC_CHIPS, DATA_LANES_PER_ADC_CHIP] such as that returned by _get_errs_by_delay.
- best_delays (list) Array of best delays, with shape [ADC_CHIPS, DATA_LANES_PER_ADC_CHIP], such as that returned by _get_best_delays. These delays are marked with an ASCII |.
- **step_size** (*int*) Number of IDELAY tap steps between delay trials.

reset()

Toggle the ADC reset input.

set delays (adc, delays)

Set IDELAY tap values for all ADC data lanes on an FMC port.

Parameters

- adc (casperfpga.ads5296.AD5296) ADS5296 object associated with an FMC ADC interface.
- **delays** (*list*) Array of delays to load, with shape [ADC_CHIPS, DATA LANES PER ADC CHIP], such as that returned by get best delays.

sync()

Toggle the ADC sync input.

2.2.5 Input Control

class lwa_f.blocks.input.**Input** (*host*, *name*, *n_streams=64*, *n_bits=10*, *logger=None*) Instantiate a control interface for an Input block.

Parameters

- host (casperfpga.CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- n_streams (int) Number of independent streams which may be delayed
- n_bits (int) Number of bits per ADC sample.

get_all_histograms()

Get histograms for all antpols, summing over all interleaving cores.

Returns (vals, hists). vals is a list of histogram bin centers. hists is an [n_stream x 2**n_bits] list of histogram data.

get_bit_stats()

Get the mean, RMS, and mean powers of all ADC streams.

Returns (means, powers, rmss) tuple. Each member of the tuple is an array with self. n streams elements.

Rval (numpy.ndarray, numpy.ndarray, numpy.ndarray)

get_histogram(stream, sum_cores=True)

Get a histogram for an ADC stream.

Parameters

- **stream** (*int*) ADC stream from which to get data.
- **sum_cores** (bool) If True, compute one histogram from both A & B ADC cores. If False, compute separate histograms.

Returns If sum_cores is True, return (vals, hist), where vals is a list of histogram bin centers, and hist is a list of histogram data points. If sum_cores is False, return (vals, hist_a, hist_b), where hist_a and hist_b are separate histogram data sets for the A and B ADC cores, respectively.

get_status()

Get status and error flag dictionaries.

Status keys:

- switch_position<n> (str): Switch position ('noise', 'adc' or 'zero') for input stream n, where n is a two-digit integer starting at 00. Any input position other than 'adc' is flagged with "NOTIFY".
- power<n> (float): Mean power of input stream n, where n is a two-digit integer starting at 00. In units of (ADC LSBs)**2.
- rms<n> (float): RMS of input stream n, where n is a two-digit integer starting at 00. In units of ADC LSBs. Value is flagged as a warning if it is >30 or <5.
- mean<n> (float): Mean sample value of input stream n, where n is a two-digit integer starting at 00. In units of ADC LSBs. Value is flagged as a warning if it is > 2.

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary are as defined in *error_levels.py* and indicate that values in the status dictionary are outside normal ranges.

get_switch_positions()

Get the positions of the input switches.

Returns List of switch positions. Entry n contains the position of the switch associated with ADC input n. Switch positions are "noise" (internal digital noise generators), "adc" (digitized ADC stream), or "zero" (constant 0).

Return type list of str

```
initialize(read only=False)
```

Initialize the block.

Parameters read_only (bool) – If True, do nothing. If False, set the input multiplexers to ADC data and enable statistic computation.

plot_histogram(stream)

Plot a histogram.

Parameters stream (int) – ADC stream from which to get data.

print_histograms()

Print histogram stats to screen.

use adc(stream=None)

Switch input to ADC.

Parameters stream (int or None) - Which stream to switch. If None, switch all.

```
use noise(stream=None)
```

Switch input to internal noise source.

Parameters stream (int or None) - Which stream to switch. If None, switch all.

```
use_zero (stream=None)
```

Switch input to zeros.

Parameters stream (int or None) - Which stream to switch. If None, switch all.

2.2.6 Noise Generator Control

class lwa_f.blocks.noisegen.**NoiseGen** (host, name, n_noise=5, n_outputs=64, logger=None)
Noise Generator controller

This block controls a digital noise source, which can generate multiple independent channels of gaussian noise. These channels can be assigned to multiple outputs of this block, to create correlated or uncorrelated noise streams

Parameters

- host (casperfpga. CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- n_noise (int) The number of independent noise generation cores in the underlying block. 2*n_noise independent noise streams will be produced.
- **n_outputs** (*int*) The number of output channels from the block.

assign output (output, noise)

Assign an output channel to a given noise stream. Note that the output stream will not be affected unless the downstream input multiplexors are set to noise mode.

Parameters

- **output** (*int*) The index of the output stream to be assigned.
- **noise** (*int*) The index of the noise stream to assign to *output*. Note that each noise generator core generates two independent streams, so *noise* can be in range(0, 2*self.n_noise)

get_output_assignment(output)

Get the index of the noise stream assigned to an output.

Parameters output (int) – The index of the output stream to query.

Returns The index of the noise stream to assign to *output*. Note that each noise generator core generates two independent streams, so *noise* can be in range(0, 2*self.n noise)

Return type int

$get_seed(n)$

Get the seed of a noise generator.

Parameters n (int) – Noise generator ID whose seed to read.

Returns Noise generator seed.

Rtype int

get_status()

Get status and error flag dictionaries.

Status keys:

- noise_core<m>_seed (int): Seed currently loaded into noise generator core m. m should be a two-digit integer starting at 00.
- output_assignment<n> (int): The noise generator ID currently assigned to output stream n, where n is a two-digit integer starting at 00.

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary are as defined in *error_levels.py* and indicate that values in the status dictionary are outside normal ranges.

```
initialize (read_only=False)
```

Initialize the block

Parameters read_only (bool) - If False, set the seen of noise generator n to n. If True, do nothing.

set_seed(n, seed)

Set the seed of a noise generator.

Parameters

- n (int) Noise generator ID to seed.
- **seed** (int) Noise generator seed to load.

2.2.7 Delay Control

class lwa_f.blocks.delay.**Delay** (*host*, *name*, *n_streams=64*, *logger=None*) Instantiate a control interface for a Delay block.

Parameters

- host (casperfpga. CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- n_streams (int) Number of independent streams which may be delayed

MIN DELAY = 5

minimum delay allowed

get_delay (stream)

Get the current delay for a given input.

Parameters stream (int) – Which ADC input index to query

Returns Currently loaded delay, in ADC samples

Return type int

get_max_delay()

Query the firmware to get the maximum delay it supports.

Returns Maximum supported delay, in ADC samples

Return type int

get_status()

Get status and error flag dictionaries.

Status keys:

- delay<n>: Currently loaded delay for ADC input index n. in units of ADC samples.
- max_delay: The maximum delay supported by the firmware.
- min_delay: The minimum delay supported by the firmware.

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary are as defined in *error_levels.py* and indicate that values in the status dictionary are outside normal ranges.

```
initialize (read_only=False)
```

Initialize all delays.

Parameters read_only (bool) – If True, do nothing. If False, initialize all delays to the minimum allowed value.

```
set_delay (stream, delay)
```

Set the delay for a given input stream.

Parameters

- **stream** (*int*) ADC stream index to which delay should be applied.
- **delay** (*int*) Number of ADC clock cycles delay to load.

2.2.8 PFB Control

class lwa f.blocks.pfb.**Pfb** (host, name, logger=None)

```
get_status()
```

Get a dictionary of status values, with optional warning of error flags. To be overridden by individual blocks

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs, defined on a per-block basis. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary should be as defined in *error_levels.py*.

```
initialize(read_only=False)
```

Individual blocks should override this method to configure themselves appropriately

Parameters read_only (bool) – If False, initialize blocks in a way that might change the configuration of running hardware. If True, read runtime info from blocks, but don't change anything.

2.2.9 Auto-correlation Control

Instantiate a control interface for an Auto-Correlation block.

Parameters

- host (casperfpga.CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- acc_len (int) Accumulation length initialization value, in spectra.
- n_chans (int) Number of frequency channels.

- n_pols (int) Number of individual data streams.
- n_parallel_streams (int) Number of streams processed by the firmware module in parallel.
- **n_cores** (*int*) Number of accumulation cores in firmware design.
- use_mux (bool) If True, only one core is instantiated and a multiplexer is used to switch different inputs into it. If False, multiple cores are instantiated simultaneously in firmware.

get_acc_len()

Get the currently loaded accumulation length in units of spectra.

Returns Current accumulation length

Return type int

get_new_spectra(core=0)

Get a new average power spectra.

Parameters core (*int*) – If using multiplexing, read data for this core. If not using multiplexing, read data from all cores.

Returns Float32 array of dimensions [POLARIZATION, FREQUENCY CHANNEL] containing autocorrelations with accumulation length divided out.

Return type numpy.array

get_status()

Get status and error flag dictionaries.

Status keys:

• acc_len (int): Currently loaded accumulation length in number of spectra.

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary are as defined in *error_levels.py* and indicate that values in the status dictionary are outside normal ranges.

initialize(read_only=False)

Initialize the block, setting (or reading) the accumulation length.

Parameters read_only (bool) – If False, set the accumulation length to the value provided when this block was instantiated. If True, use whatever accumulation length is currently loaded.

plot spectra(core=0, db=True, show=True)

Plot the spectra of all polarizations in a single core, with accumulation length divided out

Parameters

- core (int) If using multiplexing, read data for this core. If not using multiplexing, read data from all cores.
- **db** $(b \circ o 1)$ If True, plot $10 \log 10$ (power). Else, plot linear.
- **show** (bool) If True, call matplotlib's *show* after plotting

Returns matplotlib.Figure

set_acc_len (acc_len)

Set the number of spectra to accumulate.

Parameters acc len (int) – Number of spectra to accumulate

2.2.10 Correlation Control

class lwa_f.blocks.corr.**Corr** (*host*, *name*, *acc_len=1024*, *logger=None*, *n_chans=1024*) Instantiate a control interface for a Correlation block.

Parameters

- host (casperfpga. CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- acc_len (int) Accumulation length initialization value, in spectra.
- **n_chans** (*int*) Number of frequency channels in the correlation output.

get_acc_len()

Get the currently loaded accumulation length in units of spectra.

Returns Current accumulation length

Return type int

```
get_new_corr (pol1, pol2, flush_vacc=True)
```

Get a new correlation.

Parameters

- **pol1** (*int*) First (unconjugated) polarization index.
- pol2 (int) Second (conjugated) polarization index.
- **flush_vacc** (bool) If True, throw away the first accumulation after setting the input selection registers. This is good practice the first time a new polarization pair is read.

Returns Complex-valued cross-correlation spectra of *pol1* and *pol2* with accumulation length divided out.

Return type numpy.array

get status()

Get status and error flag dictionaries.

Status keys:

• acc_len: Currently loaded accumulation length in number of spectra.

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary are as defined in *error_levels.py* and indicate that values in the status dictionary are outside normal ranges.

initialize(read_only=False)

Initialize the block, setting (or reading) the accumulation length.

Parameters read_only (bool) – If False, set the accumulation length to the value provided when this block was instantiated. If True, use whatever accumulation length is currently loaded.

```
plot_corr (pol1, pol2, show=False)
```

Plot a correlation spectra.

Parameters

- pol1 (int) First (unconjugated) polarization index.
- pol2 (int) Second (conjugated) polarization index.
- show (bool) If True, call matplotlib's show after plotting

Returns matplotlib. Figure

set acc len(acc len)

Set the number of spectra to accumulate.

Parameters acc_len (int) – Number of spectra to accumulate

2.2.11 Post-FFT Test Vector Control

class lwa_f.blocks.eqtvg.**EqTvg** (*host*, *name*, *n_streams=64*, *n_chans=4096*, *logger=None*) Instantiate a control interface for a post-equalization test vector generator block.

Parameters

- host (casperfpga. CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- n_streams (int) Number of independent streams which may be delayed
- **n_chans** (*int*) Number of frequency channels.

get_status()

Get status and error flag dictionaries.

Status keys:

• tvg_enabled: Currently state of test vector generator. True if the generator is enabled, else False.

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary are as defined in *error_levels.py* and indicate that values in the status dictionary are outside normal ranges.

initialize (read_only=False)

Initialize the block.

Parameters read_only (bool) – If True, do nothing. If False, load frequency-ramp test vectors, but disable the test vector generator.

read_stream_tvg(stream)

Read the test vector loaded to an ADC stream.

Parameters stream (int) - Index of stream from which test vectors should be read.

Returns Test vector array, as loaded to the FPGA in 8-bit unsigned integer representation.

Return type numpy.ndarray

tvg_disable()

Disable the test vector generator

tvg_enable()

Enable the test vector generator.

tvg is enabled()

Query the current test vector generator state.

Returns True if the test vector generator is enabled, else False.

Return type bool

write_const_per_stream()

Write a constant to all the channels of a stream, with stream i taking the value i.

write_freq_ramp()

Write a frequency ramp to the test vector that is repeated for all ADC inputs. Data are wrapped to fit into 8 bits. I.e., the test vector value for channel 257 takes the value 1.

write_stream_tvg(stream, test_vector)

Write a test vector pattern to a single signal stream.

Parameters

- **stream** (*int*) Index of stream to which test vectors should be loaded.
- **test_vector** (list or numpy.ndarray) self:n_chans-element test vector. Values should be representable in 8-bit unsigned integer format. Data are loaded such that the most-significant 4 bits of the test_vectors are interpretted as the 2's complement 4-bit real sample data. The least-significant 4 bits of the test vectors are interpretted as the 2's complement 4-bit imaginary sample data.

2.2.12 Equalization Control

class lwa_f.blocks.eq.**Eq** (host, name, $n_streams = 64$, n_st

Parameters

- host (casperfpga.CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- n streams (int) Number of independent streams which may be delayed
- n_coeffs (int) Number of coefficients per input stream. Coefficients are shared among neighbouring frequency channels.

clip_count()

Get the total number of times any samples have clipped, since last sync.

Returns Clip count.

Return type int

get_coeffs (stream)

Get the coefficients currently loaded. Reads the actual coefficients from the board.

Parameters stream (int) – ADC stream index to query.

Returns (coeffs, binary_point). coeffs is an array of self.n_coeffs integer coefficients currently being applied. binary_point is the position of the binary point wy which these integers are scaled on the FPGA.

Return type (numpy.ndarray, int)

get_status()

Get status and error flag dictionaries.

Status keys:

- clip count: Number of clip events in the last sync period.
- width: Bit width of coefficients
- binary point: Binary point position of coefficients
- coefficients<n>: The currently loaded, integer-valued coefficients for ADC stream n.

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary are as defined in *error_levels.py* and indicate that values in the status dictionary are outside normal ranges.

initialize(read_only=False)

Initialize block.

Parameters read_only (bool) – If False, set all coefficients to some nominally sane value. Currently, this is 100.0. If True, do nothing.

```
set_coeffs (stream, coeffs)
```

Set the coefficients for a data stream. Clipping and saturation will be applied before loading.

Parameters

- **stream** (*int*) ADC stream index to which coefficients should be applied.
- **coeffs** (list or numpy.ndarray) Array of coefficients to load. This should be of length self.n_coeffs, else an AssertionError will be raised.

2.2.13 Channel Selection Control

class lwa_f.blocks.chanreorder.**ChanReorder**(*host*, *name*, *n_chans=1024*, *logger=None*) Instantiate a control interface for a Channel Reorder block.

Parameters

- host (casperfpga. CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- n_chans (int) Number of channels in the system.

initialize(read only=False)

Initialize the block.

Parameters read_only (bool) – If True, this method is a no-op. If False, initialize the block with the identity map. I.e., map channel n to channel n.

n_parallel_chans = 8

Number of channels per reorder word

read reorder(raw=False)

Read the currently loaded reorder map.

Parameters raw(bool) – If True, return the map as loaded onto the FPGA. If False, return the resulting channel map – i.e., the channel ordering being output by this F-engine.

Returns The reorder map currently loaded.

Return type list

set_channel_order(order)

Re-order channels so that they are sent with the order in the specified map.

There are various requirements of the map which must be met.

- Every integer multiple of *self.n_parallel_chans* of the map must start on an integer multiple of *n_parallel_chans*. Eg., for *n_parallel_chans* = 8 order[0] = 16 is acceptable. order[0] = 4 is not.
- Blocks of $n_parallel_channels$ must be consecutive. Eg., if $n_parallel_chans=8$, order[16:24] = [0,1,2,3,4,5,6,7] is acceptable. order[16:24] = [0,1,2,3,8,9,10,11] is not.
- The provided map must be *self.n_chans* elements long.

Parameters order (list of int) – The order to which data should be mapped. I.e., if order[0] = 16, then the first channel out of the F-engine will be channel 16. The order map should meet the above criteria. A ValueError exception will be raised if they are not.

2.2.14 Packetization Control

class lwa_f.blocks.packetizer.**Packetizer**(host, name, n_chans=4096, n_pols=64, sample rate mhz=200.0, logger=None)

The packetizer block allows dynamic definition of packet sizes and contents. In firmware, it is a simple block which allows insertion of header entries and EOFs at any point in the incoming data stream. It is up to the user to configure this block such that it behaves in a reasonable manner – i.e.

- Output data rate does not overflow the downstream Ethernet core
- · Packets have a reasonable size
- EOFs and headers are correctly placed.

Parameters

- host (casperfpga. CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- logger (logging.Logger) Logger instance to which log messages should be emitted.
- n_chans (int) Number of frequency channels in the correlation output.
- n_pols (int) Number of independent analog streams in the system
- sample_rate_mhz (float) ADC sample rate in MHz. Used for data rate checks.

get_packet_info(n_pkt_chans, occupation=0.95, chan_block_size=8)

Get the packet boundaries for packets containing a given number of frequency channels.

Parameters

- n_pkt_chans (int) The number of channels per packet.
- occupation (float) The maximum allowed throughput capacity of the underlying link. The calculation does not include application or protocol overhead, so must necessarily be < 1.

• **chan_block_size** (*int*) – The granularity with which we can start packets. I.e., packets must start on an n*`chan_block` boundary.

Returns

packet_starts, packet_payloads, channel_indices

- **packet_starts** [list of ints] The word indexes where packets start i.e., where headers should be written. For example, a value [0, 1024, 2048, ...] indicates that headers should be written into underlying brams at addresses 0, 1024, etc.
- **packet_payloads** [list of range()] The range of indices where this packet's payload falls. Eg: [range(1,257), range(1025,1281), range(2049,2305), ... etc] These indices should be marked valid, and the last given an EOF.
- **channel_indices** [list of range()] The range of channel indices this packet will send. Eg: [range(1,129), range(1025,1153), range(2049,2177), ... etc] Channels to be sent should be re-indexed so that they fall into these ranges.

Write the packetizer configuration BRAMs with appropriate entries.

Parameters

- **packet_starts** (list of int) Word-indices which are the first entry of a packet and should be populated with headers (see get_packet_info())
- packet_payloads (list of range()s) Word-indices which are data payloads, and should be mared as valid (see get_packet_info())
- **channel_indices** (*list of ints*) Header entries for the channel field of each packet to be sent
- ant_indices (list of ints) Header entries for the antenna field of each packet to be sent
- **dest_ips** list of str IP addresses for each packet to be sent.
- **dest_ports** (*list of int*) UDP destination ports for each packet to be sent.
- print (bool) If True, print config for debugging

All parameters should have identical lengths.

2.2.15 Ethernet Output Control

class lwa_f.blocks.eth.**Eth** (*host*, *name*, *logger=None*)
Instantiate a control interface for a 40 GbE block.

Parameters

- host (casperfpga.CasperFpga) CasperFpga interface for host.
- name (str) Name of block in Simulink hierarchy.
- **logger** (*logging.Logger*) Logger instance to which log messages should be emitted.

add_arp_entry(ip, mac)

Set a single arp entry.

Parameters

- **ip** (*int*) The last octet of the IP address matching the given MAC.
- mac (int) The MAC address to be loaded to the ARP cache.

disable_tx()

Disable Ethernet transmission.

enable tx()

Enable Ethernet transmission.

get_status()

Get a dictionary of status values, with optional warning of error flags. To be overridden by individual blocks

Returns (status_dict, flags_dict) tuple. *status_dict* is a dictionary of status key-value pairs, defined on a per-block basis. flags_dict is a dictionary with all, or a sub-set, of the keys in *status_dict*. The values held in this dictionary should be as defined in *error_levels.py*.

initialize (read_only=False)

Individual blocks should override this method to configure themselves appropriately

Parameters read_only (bool) – If False, initialize blocks in a way that might change the configuration of running hardware. If True, read runtime info from blocks, but don't change anything.

reset()

Disable, then reset the 40 GbE core. It must be enabled with enable_tx before traffic will be transmitted.

set_arp_table (macs)

Set the ARP table with a list of MAC addresses.

Parameters macs (list of int) – MAC addresses to be loaded into the ARP table. These should be the form of a list of integers, such that the ``n``th list entry contains the MAC address of the device with IP XXX.XXX.XXX.n.

status reset()

Reset all status counters.

2.3 et.cd Interface

The etcd F-Engine interface provides a mechanism to control multiple SNAP2 boards running F-Engine firmware via the passing of messages through an etcd key-value store.

In order to use the etcd control interface, a daemon Snap2FengineEtcdClient instance is required to be running on a server with network access to the SNAP2 hardware being controlled.

2.3.1 Key Organization

For an F-Engine running on a SNAP2 hostname, there are three relevant etcd key paths.

Command

The command key is:

/cmd/snap/<hostname>/command

Writing messages to this key results in the execution of Snap2Fengine command methods.

Response

Each command written to the command key will elicit a response published to the key:

/resp/snap/<hostname>/response

The response message will indicate the success of failure of the command, and may contain a command-dependent data payload. For example, a spectra, or snapshot of ADC samples.

Monitor

In addition to the Command/Response control protocol, general telemetry relating to pipeline element blockname can be read from the keys beneath the path:

/mon/snap/<hostname>/<blockname>

Such keys are indended to be continuously updated on a ~1 second time cadence, and contain low data-volume status information. For example, FPGA temperature, ADC RMS, number of transmitted Ethernet packets, and similar.

2.3.2 Command/Response Protocol

The Command/Response protocol is designed to be a simple interface to the underlying Snap2Fengine control class. It will naturally extend as the control class functionality is expanded.

A simple example of a control client is implemented in the Snap2FengineEtcdControl class, which is used for internal testing.

Command Format

Commands sent to the command key are JSON-encoded dictionaries, and should have the following fields:

Field	Type	Description
se-	integer	A unique integer associated with this command, used to identify the command's re-
quence_id		sponse
timestamp	float	The UNIX time when this command was issued
command	string	Command Name
block	string	Firmware block name to which command applies
kwargs	dictio-	Dictionary of arguments required by the block.command method
	nary	

Allowed values for "block" are any of the keys in the Snap2Fengine blocks attribute. I.e.:

2.3. etcd Interface 25

```
from lwa_f import snap2_fengine
f = snap2_fengine.Snap2Fengine('snap2-rev2-11')
for block in sorted(f.blocks.keys()): print(block)
adc
autocorr
corr
delay
eq
eq_tvg
eth
input
noise
packetizer
pfb
reorder
sync
```

Allowed values for "command" are any of the methods which can be called against Snap2Fengine. blocks[block]. For example, for the delay block, allowed commands are:

- get_max_delay
- set_delay
- get_delay
- initialize
- get_status

All blocks are instances of the generic Block class, and thus it is also possible to call parent class methods such as read_uint and write_uint. These directly manipulate FPGA registers, and should be used with caution.

The "kwargs" field should contain any arguments required by the command method being called. For example, the Fengine delay block's set_delay method requires a stream argument (to select which of the 64 SNAP2 data streams is being manipulated) and a delay argument (to set the delay for this stream).

As such, in order to set the delay of data stream 5 to 100 adc samples, a command should be issued with:

Field	Value
block	"delay"
command	"set_delay"
kwargs	{"stream": 5, "delay": 100}

An example of a valid command JSON string, issued with the above parameters at UNIX time 1618060712.60 and with sequence_id=1 is:

```
'{"block": "delay", "timestamp": 1618060712.6, "kwargs": {"delay": 100, "stream": 5}, "command": "set_delay", "sequence_id": 1}'
```

Consult the Snap2Fengine API details for a list of commands and their arguments.

Response Format

Every command sent elicits the writing of JSON-encoded dictionary to the response key. This dictionary has the following fields:

		•
Field	Туре	Description
sequence_id	integer	An integer matching the sequence_id field of the command
		string to which this is a response
timestamp	float	The UNIX time when this response was issued
status	string	The string "normal" if the corresponding command was processed
		without error, or "error" if it was not.
response	command-	The response of the command method, as determined by the com-
	dependent	mand API. If a method would usually return a numpy array, when
		using the etcd interface the response will be a list. In the event
		that the status field is "error", The response field will contain an
		error message string

Table 2.1: Response Fields

Not all Snap2Fengine methods return values, in whice case the response field is null. The previous command example (setting a delay) results in the underlying API call Snap2Fengine.blocks['delay'].set_delay(5, 100) which returns None. The response to the example command (assuming processing the command took 0.2 milliseconds) is thus:

Field	Value
sequence_id	1
timestamp	1618060712.8
status	"normal"
response	null

or, in JSON-encoded form:

```
'{"sequence_id": 1, "timestamp": 1618060712.8, "status": "normal", "response": null}'
```

If the response status field is "error", common response error messages, and their meanings are:

"JSON decode er- ror"	Command string could not be JSON-decoded.
"Sequence ID not in-	Sequence ID was not provided in the command string or decoded to a non-integer value.
teger"	
"Bad command for-	Received command did not comply with formatting specifications. E.g. was missing a
mat"	required field such as block or command.
"Command invalid"	Received command doesn't exist in the Snap2Fengine API, or is prohibited for etcd
	access.
"Wrong block"	block field of the command decoded to a block which doesn't exist.
"Command argu-	kwargs key contained missing, or unexpected keys.
ments invalid"	
"Command failed"	The underlying Snap2Fengine API call raised an exception.

In the event that a command fails, more information is available in the Snap2FengineEtcdClient daemon logs.

2.3. etcd Interface 27

Monitoring Interface

Туре	
int	Description Accumulation length, in spectra, of the internal autocorrelation module.
int	Accumulation length, in spectra, of the internal correlation module.
int	Delay of each of the n data streams.
int	The maximum delay supported by the firmware.
int	The position of the EQ coefficient binary point
int	The bit width of the EQ coefficients
int	The number of clips when requantizing spectra to 4-bit. This counter resets every [TODO: when??]
list (int)	The currently loaded coefficients, in integer form (i.e., interpretted with all bits above the binary point)
bool	True if the post-FFT test vector generator is enabled. False otherwise.
int	Running count of number of packets transmitted.
int	Running count of number of packet errors detected.
int	Running count of number of transmission buffer over-flow events.
int	Running count of number of 256-bit words transmitted.
string	The current .fpg bitstream file stored in flash memory
int	The MD5 checksum of the .fpg bitstream stored in flash
string	The hostname of the SNAP2 board
bool	True if the board appears to be running DSP firmware. False otherwise.
string	The version string of the currently running firmware, presented as major_v ersion. minor_version.revision.bugfix. Only available if the FPGA is currently programmed
int	The time, in seconds since 00:00:00 on 1 January 1970, that the currently running firmware was built. Only available if the FPGA is currently programmed
string	A notional "serial number" of this hardware. Not yet implemented.
string	The software version of the lwa_f python library currently in use
string	"reporting" if the current firmware has a working system monitor module. "not reporting" if no monitoring is available.
float	FPGA junction temperature, in degrees C, reported by system monitor (if available)
float	Voltage of the VCCAUX FPGA power rail reported by system monitor (if available)
float	Voltage of the VCCBRAM FPGA power rail reported by system monitor (if available)
float	Voltage of the VCCINT FPGA power rail reported by system monitor (if available)
float	Mean of ADC sample values for input ADC n.
float	RMS of ADC sample values for input ADC n.
	int int int int int int int int list (int) bool int int int string int string bool string tint string bool string float float float float float float

Table 2.2 – continued from previous page

Key	Type	Description
input/n/power	float	Mean of squares of ADC sample values for input ADC
		n.
input/n/switch_position	string	Switch position for input data stream n. noise for in-
		ternal noise generators, add for analog inputs, zero
		for zero.
noise/noise_core00_seed	int	Seed value for internal noise generator 0.
noise/noise_core01_seed	int	Seed value for internal noise generator 1.
noise/noise_core02_seed	int	Seed value for internal noise generator 2.
noise/n/output_assignment	int	Noise source (0 - 5) currently assigned to data stream n.
pfb/fft_shift	int	Currently loaded FFT shift schedule.
pfb/overflow_count	int	Running count of FFT overflow events.
sync/ext_count	int	Running count of number of external sync pulses re-
		ceived since FPGA was programmed.
sync/int_count	int	Running count of number of internal sync pulses re-
		ceived since FPGA was programmed.
sync/period_fpga_clks	int	Detected period of external sync pulses in units of
		FPGA clock cycles.
sync/uptime_secs	int	Number of seconds since FPGA was last programmed

2.3. etcd Interface 29

F-ENGINE REGISTER DEFINITIONS

F-Engine firmware is designed to be manipulated using the provided Snap2FEngine class, or its higher level etcd-based control interface.

However, individual F-engine registers and their purposes are described below.

3.1 Register Descriptions

Register Name	Size (Bytes)	Permission	Description
ADC Registers			
ads5296_controller_ <i>_<j></j></i>	128	r/w	ADS5296 board control register for the j th ADC card in FMC i. Should be manipulated using the ADS5296 class of the casperfpga python library.
ads5296_spi_controller <i></i>	16	r/w	ADS5296 SPI controller register for ADC cards on FMC slot i. Should be manipulated using the ADS5296 class of the casperfpga python library.
ads5296_wb_ram <i>_<j>_<k></k></j></i>	4096	r/w	ADC snapshot RAM for ADC chip k on board j of FMC port i. Should be manipulated using the ADS5296 class of the casperfpga python library.
adc_rst	4	r/w	Set to 1 to assert the ADC reset. This flushes the ADC output FIFOs. Data will not begin flowing again until the ADC sync input transitions from 0 to 1.
adc_snapshot_trigger	4	r/w	When this register transitions from 0 to 1, all ADC channels will simultaneously capture a burst of ADC samples.
adc_sync	4	r/w	Write 1 to this register to assert the ADC's sync input. This input is edge sensitive.
Auto-Correlator Registers			
autocorr_acc_cnt	4	г	32-bit wrapping accumulation counter, which increments each time a new accumulation is recorded to RAM. There is no buffer locking when correlation data are read, so this counter can be used to ensure that data have not changed during a read.
autocorr_acc_len	4	r/w	Accumulation length, in spectra.

Table 3.1 – continued from previous page

Danistan Nama			On previous page
Register Name	Size (Bytes)	Permission	Description
autocorr_common_dout0_bram	262144	r/w	For memory name suffix <n>_bram, stores the autocorrelation powers for frequency channels 8n of 16 consective F-engine inputs. Data are stored in [input_number, freq_channel] order.</n>
autocorr_common_dout1_bram	262144	r/w	For memory name suffix <n>_bram, stores the autocorrelation powers for frequency channels 8n of 16 consective F-engine inputs. Data are stored in [input_number, freq_channel] order.</n>
autocorr_common_dout2_bram	262144	r/w	For memory name suffix <n>_bram, stores the autocorrelation powers for frequency channels 8n of 16 consective F-engine inputs. Data are stored in [input_number, freq_channel] order.</n>
autocorr_common_dout3_bram	262144	r/w	For memory name suffix <n>_bram, stores the autocorrelation powers for frequency channels 8n of 16 consective F-engine inputs. Data are stored in [input_number, freq_channel] order.</n>
autocorr_common_dout4_bram	262144	r/w	For memory name suffix <n>_bram, stores the autocorrelation powers for frequency channels 8n of 16 consective F-engine inputs. Data are stored in [input_number, freq_channel] order.</n>
autocorr_common_dout5_bram	262144	r/w	For memory name suffix <n>_bram, stores the autocorrelation powers for frequency channels 8n of 16 consective F-engine inputs. Data are stored in [input_number, freq_channel] order.</n>
autocorr_common_dout6_bram	262144	r/w	For memory name suffix <n>_bram, stores the autocorrelation powers for frequency channels 8n of 16 consective F-engine inputs. Data are stored in [input_number, freq_channel] order.</n>
autocorr_common_dout7_bram	262144	r/w	For memory name suffix <n>_bram, stores the autocorrelation powers for frequency channels 8n of 16 consective F-engine inputs. Data are stored in [input_number, freq_channel] order.</n>
autocorr_mux_sel	4	r/w	Input selection controller. Set bits [1:0] to n to compute the autocorrelations of F-engine inputs 16n16 (n+1) -1.
Channel Reorder Registers			
chan_reorder_dynamic_map1	16384	r/w	Determines the remapping of input samples to output samples. I.e., if the first entry is 5, then the first sample into the reorder will come out 5th
Correlation Registers			
corr_0_acc_cnt	4	r	32-bit wrapping accumulation counter, which increments each time a new accumulation is recorded to RAM. There is no buffer locking when correlation data are read, so this counter can be used to ensure that data have not changed during a read.

Table 3.1 – continued from previous page

			om previous page
Register Name	Size (Bytes)		Description
corr_0_acc_len	4	r/w	Accumulation length, in FPGA clock cycles. To specify an accumulation length as a number of spectra this register should be written with number_of_spectra x frequency_channels_per_spectra. Here the number of frequency channels per spectra is the number output by the correlation subsystem. Glitches may occur (resulting in the no new accumulations for a few seconds) if the value in this register is reduced without re-applying a sync to the correlation module.
corr_0_dout	32768	r/w	Correlation data buffer. Word [2n] is the real part of the correlation of frequency channel n (after any channel averaging). Word [2n+1] is the imaginary part of this correlation.
corr_0_input_sel	4	r/w	Input selector control register. Bits [5:0] select the unconjugated correlation input. Bits [13:8] select the conjugated correlation input.
Delay Registers			
delay_ <n>_delay</n>	4	r/w	The delay applied to stream n. Any value entered in this 32-bit register will be interpretted modulo the maximum supported delay.
delay_max_delay	4	r	Interpretted as a unint32 value, contains the maximum allowed delay, in ADC samples, which may be applied to a data stream.
Equalization Registers			
eq_core <n>_clip_cnt</n>	4	r	A count of the number of times a sample has been clipped, for any of F-engine inputs 16n 16 (n+1)-1. This counter is reset only by a global system reset.
eq_core <n>_coeffs</n>	131072	r/w	This memory holds coefficients for F-engine streams 16n16(n+1)-1. Coefficients are stored as a [16, n_fft_channels / 8] array, where the first axis (over input number) varies <i>slowest</i> . Coefficients are shared over 8 consecutive frequency channels, with coefficient m being applied to frequency channel m8 (m+1)-1. Coefficients are interpretted with 5 bits below the binary point.
40GbE Registers			• •
eth_ctrl	4	r/w	40GbE control register. Bit 0 is an active high reset of the 40GbE interface core. Bit 1 is an active high transmission enable for the core, which takes effect either after the next packet is sent, or when the force flag is asserted. Bit 18 is an active high reset for statistics provided by the Ethernet core. Bit 19 is an active high force signal, which causes the current transmission enable flag to immediately take effect.
eth_forty_gbe_txctr	4	r	Counter which increments each time a valid end-of-frame is seen on a packet to be transmitted

Table 3.1 – continued from previous page

			om previous page
Register Name	Size (Bytes)	Permission	Description
eth_forty_gbe_txfullctr	4	r	Counter which increments every time the transmission buffer is full
eth_forty_gbe_txofctr	4	r	Counter which increments on every transmission overflow event
eth_forty_gbe_txvldctr	4	r	Counter which increments with every valid word of data input to the core
Input Control Registers			
input_bit_stats_histogram_outpu	t 32768	r/w	BRAM storing histogram data. Word n in the bottom half of the RAM stores the number of occurances of of ADC sample code n in _even_ numbered ADC samples. Word n in the _top_ half of the RAM stores the number of occurances of ADC sample code n in _odd_ numbered ADC samples.
input_bit_stats_input_sel	4	r/w	Input selection. The least significant 6 bits should be set to n to compute the histogram for input n.
input_rms_enable	4	r/w	Enable statistics recording. If the least-significant bit is 1, statistics will be recorded to RAM.
input_rms_levels	32768	r/w	Multi-channel statistics. For the n th 64-bit word, the least significant 32 bits represent the accumulated ADC power, accumulated over 65536 samples and stored as an unsigned 32-bit integer. The most significant 32 bits represent the sum of 65536 ADC samples stored as a signed 32-bit integer.
input_source_sel0	4	r/w	Selector control to determine if signal streams carry ADC samples, digital noise samples, or zeros. Streams n=015 is controlled by register bits [2n+1:2n]. Value 0 selects noise; 1 selects ADC; 2 selects zeros.
input_source_sel1	4	r/w	Selector control to determine if signal streams carry ADC samples, digital noise samples, or zeros. Streams $n=1631$ is controlled by register bits $[2(n-16)+1:2(n-16)]$. Value 0 selects noise; 1 selects ADC; 2 selects zeros.
input_source_sel2	4	r/w	Selector control to determine if signal streams carry ADC samples, digital noise samples, or zeros. Streams $n=3247$ is controlled by register bits $[2(n-32)+1:2(n-32)]$. Value 0 selects noise; 1 selects ADC; 2 selects zeros.
input_source_sel3	4	r/w	Selector control to determine if signal streams carry ADC samples, digital noise samples, or zeros. Streams $n=4863$ is controlled by register bits $[2(n-48)+1:2(n-48)]$. Value 0 selects noise; 1 selects ADC; 2 selects zeros.
Noise Generator Registers			
noise_octal_mux0_sel	4	r/w	The lower 2 bits define the select signal for the noise multiplexor. If this register has value v, then noise generator v is selected.

Table 3.1 – continued from previous page

			om previous page
Register Name	Size (Bytes)	Permission	Description
noise_octal_mux1_sel	4	r/w	The lower 2 bits define the select signal for the noise multiplexor. If this register has value v, then noise generator v is selected.
noise_octal_mux2_sel	4	r/w	The lower 2 bits define the select signal for the noise multiplexor. If this register has value v, then noise generator v is selected.
noise_octal_mux3_sel	4	r/w	The lower 2 bits define the select signal for the noise multiplexor. If this register has value v, then noise generator v is selected.
noise_octal_mux4_sel	4	r/w	The lower 2 bits define the select signal for the noise multiplexor. If this register has value v, then noise generator v is selected.
noise_octal_mux5_sel	4	r/w	The lower 2 bits define the select signal for the noise multiplexor. If this register has value v, then noise generator v is selected.
noise_octal_mux6_sel	4	r/w	The lower 2 bits define the select signal for the noise multiplexor. If this register has value v , then noise generator v is selected.
noise_octal_mux7_sel	4	r/w	The lower 2 bits define the select signal for the noise multiplexor. If this register has value v, then noise generator v is selected.
noise_seeds0	4	r/w	Noise generator seed values. If the 32-bit value in this register is v, the seed for the first noise generator is (using Verilog syntax) {8'h5c, v[7:0], v[0:7], 8'ha3}. The seed for the second noise generator is {8'h5c, v[15:8], v[8:15], 8'ha3}. The seed for the third noise generator is {8'h5c, v[23:16], v[16:23], 8'ha3}. The seed for the fourth noise generator is {8'h5c, v[31:24], v[24:31], 8'ha3}
Packetizer Registers			
packetizer_ants	262144	r/w	Antenna header entry map. Word n``contains the header antenna ID field for sample ``n in a transmission period. This field is only relevant for samples accompanied by valid and header flags.
packetizer_chans	262144	r/w	Channel ID header entry map. Bits [23:0] of word n contain the header channel ID field for sample n in a transmission period. This header field should hold the index of the first channel in a packet. Bits [31:24] contain the header channel block index field for this sample. These field is only relevant for samples accompanied by valid and header flags.
packetizer_flags	262144	r/w	Packet flags. For word n, bit 0 is an active high flag which indicates that sample n in a transmission period is a packet header. Bit 8 is an active high flag which indicates that this word is valid and should be transmitted. Bit 16 is an active high flag indicating that this word is the last in a packet.

Table 3.1 – continued from previous page

			on previous page
Register Name	Size (Bytes)	Permission	Description
packetizer_ips	262144	r/w	IP Destination address map. Word n contains the IP address to which sample n in a transmission period should be sent. Only entries accompanied by valid and end of frame flags result in a packet's destination being set from this register.
packetizer_n_chans	4	r/w	32-bit n_chans header field for F-engine output data packets, indicating the number of frequency channels per packet.
packetizer_n_pols	4	r/w	32-bit n_pols header field for F-engine output data packets, indicating the number of antennapolarizations present in a packet.
packetizer_ports	262144	r/w	UDP Destination port map. For word n, bits [15:0] contain the UDP port to which sample n in a transmission period should be sent. Only samples accompanied by valid and end of frame flags result in a packet's destination being set from this register.
PFB Registers			
pfb_ctrl	4	r/w	PFB control register. Bit 18 is an active-high reset for overflow statistics counters. Bits 15:0 hold the FFT shift schedule for the PFB processing pipeline, with bit n an active high shift signal for the n th FFT stage.
pfb_pfb16x_ <n>_status</n>	4	r	A 32-bit counter which, for register name suffix <n>_status increments every time an FFT over-flow event is detected in any of FFT channels 16n16(n+1)-1. Resets only when commanded via the PFB control register, and will wrap once the maximum value is reached.</n>
Post-EQ Test Vector Genera-			
post_eq_tvg_tvg_en post_eq_tvg_tvg_en	524288	r/w	This memory holds 4+4 bit complex test vector streams for F-engine streams 16n 16(n+1)-1. Test vectors are stored as a [16, n_fft_channels] array, where the first axis (over input number) varies <i>slowest</i> , and vectors are stored in order of increasing FFT channel. An 8-bit word in location [m, c] is interpretted as a 4+4 bit complex value for channel c of F-engine stream 16n + m. The most significant 4 bits are interpretted as the real part of the complex value. Test vector multiplexor control. If the least significant bit is 1, ADC data will be replaced with
			software-controllable test vectors.
Synchronization Registers			

Table 3.1 – continued from previous page

Register Name	Size		Description
riogister rame	(Bytes)	1 611111331011	·
sync_ctrl	4	r/w	Timing control register. Bit 0: active high enable
-			allowing telescope time counter to be loaded from
			telescope time load registers on next synchroniza-
			tion pulse. Bit 1: When transitioned from 0 to 1,
			forces telescope time counter to be loaded from tele-
			scope time load registers immediately. Bit 2: ac-
			tive high telescope time counter reset. Bit 3: active
			high reset for error counters. Bit 4: active high arm
			signal, which causes a global system reset, released
			on the next synchronization pulse; a system sync on
			the next synchronization pulse. Bit 5: When transit-
			tioned from 0 to 1, emulates the arrival of an exter-
			nal sync pulse. Bit 6: When transittioned from 0 to
			1, arms noise generator seed loaders.
sync_ext_sync_count	4	r	Number of external synchronization pulses received.
sync_ext_sync_period	4	r	Measured number of FPGA clock ticks between pre-
			vious two external synchronization pulses.
sync_ext_sync_tt_lsb	4	r	Least significant 32 bits of the telescope time
			counter, at the point of the last external synchroniza-
			tion pulse.
sync_ext_sync_tt_msb	4	r	Most significant 32 bits of the telescope time
			counter, at the point of the last external synchroniza-
			tion pulse.
sync_int_sync_count	4	r	Number of synchronization pulses emitted via
			GPIO.
sync_latency	4	r	Measured latecy, in FPGA clock ticks, between
			transmitting a synchronization pulse and receiving
			it from the timing distribution system.
sync_sync_div_bits	4	r	Holds the log2 value of the sync period – i.e. the rate
			at which sync pulses are emitted from the board via
			GPIO – in FPGA clock ticks.
sync_tt_load_lsb	4	r/w	Telescope time load register. Least significant 32
5,		-,	bits to load to the telescope time counter.
sync_tt_load_msb	4	r/w	Telescope time load register. Most significant 32 bits
sync_tt_roud_mso	'	1, ,,	to load to the telescope time counter.
sync_tt_lsb	4	r	Least significant 32 bits of the telescope time
sync_tt_iso	7	1	counter.
sync_tt_msb	4	r	Most significant 32 bits of the telescope time
sync_tt_mso	7	1	counter.
syna untima msh	1		
sync_uptime_msb	4	r	Board uptime, in units of 2^32 FPGA clock ticks.
Version Registers	4		Hain time stamp in integral and the C
version_timestamp	4	r	Unix timestamp, in integer seconds, when firmware
			was last compiled.
version_version	4	r	Version register. Bits [31:24]: major version.
			Bits [23:16]: minor version. Bits [15:8]: re-
			vision. Bits [7:0]: buxfix.

CHAPTER

FOUR

INDICES AND TABLES

- genindex
- modindex
- search

INDEX

A	F
Adc (class in lwa_f.blocks.adc), 10	Fpga (class in lwa_f.blocks.fpga), 7
adc (lwa_f.snap2_fengine.Snap2Fengine attribute), 6 add_arp_entry() (lwa_f.blocks.eth.Eth method), 23	fpga (lwa_f.snap2_fengine.Snap2Fengine attribute), 6
arm_noise() (lwa_f.blocks.sync.Sync method), 9	G
arm_sync() (lwa_f.blocks.sync.Sync method), 9	<pre>get_acc_len() (lwa_f.blocks.autocorr.AutoCorr</pre>
assign_output() (lwa_f.blocks.noisegen.NoiseGen	method), 17
method), 14	<pre>get_acc_len() (lwa_f.blocks.corr.Corr method), 18</pre>
AutoCorr (class in lwa_f.blocks.autocorr), 16 autocorr (lwa_f.snap2_fengine.Snap2Fengine at-	get_all_histograms() (lwa_f.blocks.input.Input
tribute), 6	<pre>method), 12 get_bit_stats() (lwa_f.blocks.input.Input method),</pre>
В	12
	get_build_time() (lwa_f.blocks.fpga.Fpga
blocks (lwa_f.snap2_fengine.Snap2Fengine attribute), 6	<pre>method), 7 get_coeffs() (lwa_f.blocks.eq.Eq method), 20</pre>
0	get_delay() (lwa_f.blocks.delay.Delay method), 15
C	<pre>get_error_count() (lwa_f.blocks.sync.Sync</pre>
calibrate() (lwa_f.blocks.adc.Adc method), 10	method), 9
ChanReorder (class in lwa_f.blocks.chanreorder), 21 clip_count() (lwa_f.blocks.eq.Eq method), 20	<pre>get_firmware_version() (lwa_f.blocks.fpga.Fpga method), 7</pre>
configure_output()	get_histogram() (lwa_f.blocks.input.Input method),
(lwa_f.snap2_fengine.Snap2Fengine method),	12
6	<pre>get_latency() (lwa_f.blocks.sync.Sync method), 9</pre>
Corr (class in lwa_f.blocks.corr), 18 corr (lwa_f.snap2_fengine.Snap2Fengine attribute), 6	get_max_delay() (lwa_f.blocks.delay.Delay
count_ext() (lwa_f.blocks.sync.Sync method), 9	<pre>method), 15 get_new_corr() (lwa_f.blocks.corr.Corr method), 18</pre>
count_int() (lwa_f.blocks.sync.Sync method), 9	<pre>get_new_spectra()</pre>
D	(lwa_f.blocks.autocorr.AutoCorr method), 17
Delay (class in lwa_f.blocks.delay), 15	<pre>get_output_assignment()</pre>
<pre>delay (lwa_f.snap2_fengine.Snap2Fengine attribute), 6 disable_tx() (lwa_f.blocks.eth.Eth method), 24</pre>	(lwa_f.blocks.noisegen.NoiseGen method), 14
E	<pre>get_packet_info()</pre>
	(lwa_f.blocks.packetizer.Packetizer method), 22 get_seed() (lwa_f.blocks.noisegen.NoiseGen
enable_tx() (lwa_f.blocks.eth.Eth method), 24 Eq (class in lwa_f.blocks.eq), 20	method), 14
eq (lwa_f.snap2_fengine.Snap2Fengine attribute), 6	get_snapshot() (lwa_f.blocks.adc.Adc method), 10
eq_tvg (lwa_f.snap2_fengine.Snap2Fengine attribute),	<pre>get_snapshot_interleaved()</pre>
6	(lwa_f.blocks.adc.Adc method), 10 get_status() (lwa_f.blocks.autocorr.AutoCorr
EqTvg (class in lwa_f.blocks.eqtvg), 19 Eth (class in lwa_f.blocks.eth), 23	method), 17
eth (lwa_f.snap2_fengine.Snap2Fengine attribute), 6	get_status() (lwa_f.blocks.corr.Corr method), 18

```
get status() (lwa f.blocks.delay.Delay method), 15
                                                     noise (lwa f.snap2 fengine.Snap2Fengine attribute), 7
get_status() (lwa_f.blocks.eq.Eq method), 20
                                                     NoiseGen (class in lwa_f.blocks.noisegen), 14
get status() (lwa f.blocks.eqtvg.EqTvg method), 19
                                                     Р
get_status() (lwa_f.blocks.eth.Eth method), 24
get_status() (lwa_f.blocks.fpga.Fpga method), 8
                                                     Packetizer (class in lwa f.blocks.packetizer), 22
get status() (lwa f.blocks.input.Input method), 12
                                                     packetizer (lwa f.snap2 fengine.Snap2Fengine at-
                     (lwa f.blocks.noisegen.NoiseGen
get_status()
                                                               tribute), 7
        method), 14
                                                     period() (lwa_f.blocks.sync.Sync method), 9
get_status() (lwa_f.blocks.pfb.Pfb method), 16
                                                     Pfb (class in lwa_f.blocks.pfb), 16
get_status() (lwa_f.blocks.sync.Sync method), 9
                                                     pfb (lwa_f.snap2_fengine.Snap2Fengine attribute), 7
\verb|get_status_all()| (\textit{lwa_f.snap2\_fengine.Snap2Fengine} | \texttt{lot\_corr()}| (\textit{lwa\_f.blocks.corr.Corr method}), 18 \\
        method), 7
                                                     plot_histogram()
                                                                                   (lwa_f.blocks.input.Input
get_switch_positions()
                                                              method), 13
        (lwa_f.blocks.input.Input method), 13
                                                     plot_spectra()
                                                                            (lwa_f.blocks.autocorr.AutoCorr
                                                              method), 17
Η
                                                     print_histograms()
                                                                                   (lwa_f.blocks.input.Input
hostname
             (lwa_f.snap2_fengine.Snap2Fengine
                                                              method), 13
        tribute), 7
                                                     print_status_all()
                                                              (lwa f.snap2 fengine.Snap2Fengine method),
                                                     print_sweep() (lwa_f.blocks.adc.Adc method), 11
initialize() (lwa_f.blocks.adc.Adc method), 11
initialize()
                      (lwa_f.blocks.autocorr.AutoCorr
                                                     R
        method), 17
initialize()(lwa_f.blocks.chanreorder.ChanReorder read_reorder()(lwa_f.blocks.chanreorder.ChanReorder
        method), 21
                                                              method), 21
initialize() (lwa_f.blocks.corr.Corr method), 18
                                                     read_stream_tvg()
                                                                                 (lwa_f.blocks.eqtvg.EqTvg
initialize() (lwa_f.blocks.delay.Delay method), 16
                                                              method), 19
initialize() (lwa_f.blocks.eq.Eq method), 21
                                                                  (lwa_f.snap2_fengine.Snap2Fengine
                                                     reorder
                                                                                                      at-
initialize() (lwa_f.blocks.eqtvg.EqTvg method), 19
                                                              tribute), 7
initialize() (lwa_f.blocks.eth.Eth method), 24
                                                     reset() (lwa_f.blocks.adc.Adc method), 11
initialize() (lwa_f.blocks.input.Input method), 13
                                                     reset () (lwa_f.blocks.eth.Eth method), 24
initialize()
                     (lwa f.blocks.noisegen.NoiseGen
                                                     reset_error_count()
                                                                                   (lwa_f.blocks.sync.Sync
        method), 15
                                                              method), 9
initialize() (lwa_f.blocks.pfb.Pfb method), 16
                                                     reset_telescope_time() (lwa_f.blocks.sync.Sync
initialize() (lwa f.blocks.sync.Sync method), 9
                                                              method), 9
                  (lwa_f.snap2_fengine.Snap2Fengine
initialize()
                                                     S
         method), 7
Input (class in lwa_f.blocks.input), 12
                                                     set_acc_len()
                                                                            (lwa f.blocks.autocorr.AutoCorr
input (lwa_f.snap2_fengine.Snap2Fengine attribute), 7
                                                              method), 17
is_programmed() (lwa_f.blocks.fpga.Fpga method),
                                                     set_acc_len() (lwa_f.blocks.corr.Corr method), 19
                                                      set_arp_table() (lwa_f.blocks.eth.Eth method), 24
                                                     set_channel_order()
L
                                                              (lwa_f.blocks.chanreorder.ChanReorder
load_telescope_time() (lwa_f.blocks.sync.Sync
                                                              method), 22
        method), 9
                                                      set_coeffs() (lwa_f.blocks.eq.Eq method), 21
                                                     set_delay() (lwa_f.blocks.delay.Delay method), 16
M
                                                      set_delays() (lwa_f.blocks.adc.Adc method), 11
MIN DELAY (lwa f.blocks.delay.Delay attribute), 15
                                                      set seed()
                                                                           (lwa_f.blocks.noisegen.NoiseGen
mmcm is locked() (lwa f.blocks.adc.Adc method),
                                                              method), 15
         11
                                                     Snap2Fengine (class in lwa_f.snap2_fengine), 6
                                                      status_reset() (lwa_f.blocks.eth.Eth method), 24
Ν
                                                      sw_sync() (lwa_f.blocks.sync.Sync method), 10
n_parallel_chans (lwa_f.blocks.chanreorder.ChanReosderc (class in lwa_f.blocks.sync), 9
                                                      sync (lwa_f.snap2_fengine.Snap2Fengine attribute), 7
        attribute), 21
```

42 Index

```
sync() (lwa_f.blocks.adc.Adc method), 12
Т
tvg_disable() (lwa_f.blocks.eqtvg.EqTvg method),
        19
tvg_enable() (lwa_f.blocks.eqtvg.EqTvg method), 19
tvg_is_enabled()
                          (lwa_f.blocks.eqtvg.EqTvg
        method), 19
U
uptime() (lwa_f.blocks.sync.Sync method), 10
use_adc() (lwa_f.blocks.input.Input method), 13
use_noise() (lwa_f.blocks.input.Input method), 13
use_zero() (lwa_f.blocks.input.Input method), 13
W
wait_for_sync() (lwa_f.blocks.sync.Sync method),
        10
write_config() (lwa_f.blocks.packetizer.Packetizer
        method), 23
write_const_per_stream()
        (lwa_f.blocks.eqtvg.EqTvg method), 20
write_freq_ramp()
                          (lwa_f.blocks.eqtvg.EqTvg
        method), 20
                          (lwa_f.blocks.eqtvg.EqTvg
write_stream_tvg()
        method), 20
```

Index 43