Associação Instituto de Inteligência Artificial Aplicada - I2A2

As regras do jogo:

A planilha contém 17 sensores e 8 equipamentos. Um dos equipamentos está com defeito. Descobrir qual é o equipamento defeituoso. Importante, o equipamento, e não o sensor que está alarmando o defeito.

Carregamento de bibliotecas e conjunto de dados

```
In [1]:
```

```
# Carregamento de bibliotecas
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os

# Utilizar códigos abaixo somente se necessário para ignorar avisos 'warnings'
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
# Carrega os dados de um arquivo excel ra o conjunto de dados: df
df = pd.read_excel(os.getcwd() + '\\Defective_Equipment(revised).xlsx')
```

Data Wrangling

In [3]:

```
# Visualizar os dados carregados
df
```

Out[3]:

	Seq	V1	V2	V3	V4	V5	V6	V7	V8
0	1	375	135	458	475	509	336	469	492
1	2	57	47	53	73	63	62	63	58
2	3	245	267	242	227	271	219	268	286
3	4	1472	1494	1462	1582	1613	1323	1490	1493
4	5	105	66	103	103	118	98	101	118
5	6	54	41	62	64	55	59	63	59
6	7	193	209	184	235	207	172	223	156
7	8	147	93	122	160	139	130	152	101
8	9	1102	674	957	1137	1058	990	1098	878
9	10	720	1033	566	874	628	646	706	320
10	11	253	143	171	265	193	226	247	99
11	12	685	586	750	803	830	615	699	777
12	13	488	355	418	570	465	437	467	313
13	14	198	187	220	203	247	176	209	204
14	15	360	334	337	365	376	322	363	348
15	16	1374	1506	1572	1256	1734	1235	1597	1684
16	17	156	139	147	175	167	138	164	170

In [4]:

```
# Conferir o corpo do conunto de dados carregados
df.shape
```

Out[4]:

(17, 9)

```
In [5]:
```

```
# Analise de valores estatísticos padrão df.describe()
```

Out[5]:

	Seq	V1	V2	V3	V4	V5	V6	V7	V8
count	17.000000	17.000000	17.000000	17.000000	17.000000	17.000000	17.000000	17.000000	17.000000
mean	9.000000	469.647059	429.941176	460.235294	503.941176	510.176471	422.588235	492.882353	444.470588
std	5.049752	452.701466	479.896014	469.595907	463.859282	517.552562	405.843267	480.721448	491.302748
min	1.000000	54.000000	41.000000	53.000000	64.000000	55.000000	59.000000	63.000000	58.000000
25%	5.000000	156.000000	135.000000	147.000000	175.000000	167.000000	138.000000	164.000000	118.000000
50%	9.000000	253.000000	209.000000	242.000000	265.000000	271.000000	226.000000	268.000000	286.000000
75%	13.000000	685.000000	586.000000	566.000000	803.000000	628.000000	615.000000	699.000000	492.000000
max	17.000000	1472.000000	1506.000000	1572.000000	1582.000000	1734.000000	1323.000000	1597.000000	1684.000000

In [6]:

```
# Verificação quantos valores nulos esistem no conjunto de dados
df.isnull().sum()
```

Out[6]:

Seq 0 V1 0 V2 0 V3 0 V4 0 V5 0 V6 0 V7 0 V8 0

dtype: int64

df_todos = df.drop(['Seq'], axis=1) # Drop a coluna 'Seq' retirar elementos potualmente desnecessários
df_todos.shape # Conferir o corpo do conunto de dados carregados

Out[7]:

In [7]:

(17, 8)

In [8]:

```
# Gerar tabela de correlações
df_todos.corr()
```

Out[8]:

	V1	V2	V3	V4	V5	V6	V7	V8
V1	1.000000	0.947619	0.984917	0.990654	0.985102	0.999954	0.994283	0.950215
V2	0.947619	1.000000	0.940742	0.937061	0.940745	0.947792	0.948130	0.900400
V3	0.984917	0.940742	1.000000	0.964122	0.999965	0.985104	0.995020	0.987685
V4	0.990654	0.937061	0.964122	1.000000	0.964438	0.990426	0.975923	0.917521
V5	0.985102	0.940745	0.999965	0.964438	1.000000	0.985238	0.995116	0.987497
V6	0.999954	0.947792	0.985104	0.990426	0.985238	1.000000	0.994309	0.950647
V7	0.994283	0.948130	0.995020	0.975923	0.995116	0.994309	1.000000	0.970414
V8	0.950215	0.900400	0.987685	0.917521	0.987497	0.950647	0.970414	1.000000

```
In [9]:
```

```
# Analise de valores estatísticos padrão
df_todos.corr().describe()
```

Out[9]:

```
V1
                    V2
                             V3
                                      V4
                                               V5
                                                       V6
                                                                V7
                                                                         V8
count 8.000000 8.000000 8.000000 8.000000
                                                  8.000000
                                                           8.000000
                                                                    8.000000
mean 0.981593 0.945311 0.982194 0.967518 0.982263 0.981684 0.984149 0.958047
 std 0.020980 0.027090 0.020313 0.028370 0.020280 0.020844 0.017926 0.035336
 min 0.947619 0.900400 0.940742 0.917521 0.940745 0.947792 0.948130 0.900400
 25% 0.976242 0.939822 0.979718 0.957356 0.979936 0.976490 0.974546 0.942042
 50% 0.987878 0.944182 0.986395 0.970181 0.986368 0.987832 0.994296 0.960531
 75% 0.995700 0.947876 0.996256 0.990483 0.996328 0.995720 0.995044 0.987544
 max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
```

In [10]:

```
# Analise de valores estatísticos padrão: média df_todos.corr().mean()
```

Out[10]:

```
0.981593
V1
V2
      0.945311
V3
      0.982194
٧4
      0.967518
V5
      0.982263
۷6
      0.981684
V7
      0.984149
٧8
      0.958047
```

dtype: float64

In [11]:

```
# Analise de valores estatísticos padrão: Menor valor médio print(f'O menor valor médio entre as máquinas é: {df_todos.corr().mean().min()*100:.2f} %')
```

O menor valor médio entre as máquinas é: 94.53 %

In [12]:

```
# Analise de valores estatísticos padrão: Maior valor médio print(f'O maior valor médio entre as máquinas é: {df_todos.corr().mean().max()*100:.2f} %')
```

O maior valor médio entre as máquinas é: 98.41 %

Impressões do Data Wrangling

A maquina V2 apresenta um valor médio baixo com variação média aproximadamente 5,5 %, o que torna um ponto a ser verificado no analise posterior.

As caracteristica do conjunto de dados demonstram uma maquina térmica com sensores de temperatura diversos. Exemplo: Alto forno, forno de tratamento térmico ou coluna de separação.

Análise Visual (Gráfica)

In [13]:

```
# Sensores e equipamentos gráfico de barras
df_todos.plot(kind="barh", fontsize=10, figsize=(10,20))
```

Out[13]:

<AxesSubplot: >

In [14]:

```
# Análise do maior ponto de discrepância
df_todos.iloc[[8]].plot(kind="barh", fontsize=16, figsize=(25,8))
```

Out[14]:

<AxesSubplot: >

Observe: O gráfico acima monstra que a maquina 'V2' está com menor valor de medição em relação aos outros.

In [15]:

```
# Verificação gráfico de caixa 'Box' por quartis e pontos fora de padrão(outliers)
df_todos.plot(kind = 'box', figsize=(16,8)).set_title('Todos os Grupos', fontsize=16)
```

Out[15]:

Text(0.5, 1.0, 'Todos os Grupos')

Observe a maquina V2 os Outliers estão sobre postos o que denota anomalia onde a calda superior nos maiores valores.

```
# Amostragem gráfica de linhas do comportamento de máquinas por sensores df_todos.plot.line(figsize=(16,8)).set_title('Comportamento - Maquinas por Sensores', fontsize=16)
```

Out[16]:

Text(0.5, 1.0, 'Comportamento - Maquinas por Sensores')

Impressão da análise visual

Novamente a variação do sensor na maquina V2, no sensor 'Seq' = 9 no grafico de linha, e a amostragem no gráfico de caixa 'Box' que os outliers estão sobre postos o que montra falha na medição em fim de escala (sobre a calda superior).

- 1 Observavél no gráfico 'Box' que existem 5 maquinas com outliers e 3 sem outliers.
- 2 No gráfico de linha, entre o os sensores 11 e 13, existem variações como nos sensores 15 que devem ser observados.

Divisão dos conjuntos de dados em duas cateorias: Com Outliers e sem Outliers

In [17]:

```
# Criação de conjunto de dados sem pontos fora da amostragem (sem outliers)
#without_outliers_group = df.drop(['V2', 'V3', 'V5', 'V7', 'V8'], axis=1, inplace=True)

df_V2 = df_todos.drop(['V2'], axis=1)  # Remove a maquina V2

df_V3 = df_V2.drop(['V3'], axis=1)  # Remove a maquina V3

df_V5 = df_V3.drop(['V5'], axis=1)  # Remove a maquina V5

df_V7 = df_V5.drop(['V7'], axis=1)  # Remove a maquina V7

without_outliers_group = df_V7.drop(['V8'], axis=1)  # Remove a maquina V8
```

In [18]:

Conjunto de dados sem pontos fora da curva (sem outliers)
without_outliers_group

Out[18]:

	V1	V4	V6
0	375	475	336
1	57	73	62
2	245	227	219
3	1472	1582	1323
4	105	103	98
5	54	64	59
6	193	235	172
7	147	160	130
8	1102	1137	990
9	720	874	646
10	253	265	226
11	685	803	615
12	488	570	437
13	198	203	176
14	360	365	322
15	1374	1256	1235
16	156	175	138

In [19]:

Conjunto de dados sem pontos fora da amostragem (sem outliers) - BOX PLOT
without_outliers_group.plot(kind = 'box',figsize=(16,8)).set_title('Grupo sem Outliers', fontsize=16)

Out[19]:

Text(0.5, 1.0, 'Grupo sem Outliers')

In [20]:

```
# Mapa de calor do conjuto de dados sem Outliers
plt.figure(figsize=(16,8))
sns.heatmap(without_outliers_group.corr(),annot=True, vmin=.9, vmax=1, cmap="coolwarm_r").set_title('Grupo sem Outliers', fontsize=16)

| |
```

Out[20]:

Text(0.5, 1.0, 'Grupo sem Outliers')

In [21]:

```
# Criação de conjunto de dados com pontos fora da amostragem (com outliers)

df_V1 = df_todos.drop(['V1'], axis=1) # Remove a maquina V1

df_V4 = df_V1.drop(['V4'], axis=1) # Remove a maquina V4

only_outliers_group = df_V4.drop(['V6'], axis=1) # Remove a maquina V6
```

In [22]:

Visualizar os dados carregados Outliers only_outliers_group

Out[22]:

	V2	V3	V5	V 7	V8
0	135	458	509	469	492
1	47	53	63	63	58
2	267	242	271	268	286
3	1494	1462	1613	1490	1493
4	66	103	118	101	118
5	41	62	55	63	59
6	209	184	207	223	156
7	93	122	139	152	101
8	674	957	1058	1098	878
9	1033	566	628	706	320
10	143	171	193	247	99
11	586	750	830	699	777
12	355	418	465	467	313
13	187	220	247	209	204
14	334	337	376	363	348
15	1506	1572	1734	1597	1684
16	139	147	167	164	170

In [23]:

```
# Visualizar os dados carregados Outliers = BOX PLOT
only_outliers_group.plot(kind = 'box', figsize=(16,8)).set_title('Grupo com Outliers', fontsize=16)
```

Out[23]:

Text(0.5, 1.0, 'Grupo com Outliers')

In [24]:

```
# Heatmap do grupo com Outliers
plt.figure(figsize=(16,8))
sns.heatmap(only_outliers_group.corr(),annot=True, vmin=.9, vmax=1, cmap="coolwarm_r").set_title('Grupo sem Outliers', fontsize=16)
```

Out[24]:

Text(0.5, 1.0, 'Grupo sem Outliers')


```
# Heatmap dos grupos sem e com Outliers

f, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 8))

sns.heatmap(without_outliers_group.corr(),annot=True, vmin=.9, vmax=1, cmap="coolwarm_r", ax=ax[0])
ax[0].set_title('Grupo sem Outliers', fontsize=16)

sns.heatmap(only_outliers_group.corr(),annot=True, vmin=.9, vmax=1, cmap="coolwarm_r", ax=ax[1])
ax[1].set_title('Grupo com Outliers', fontsize=16)

plt.tight_layout()
plt.show()
```


In [26]:

```
# Heatmap todo o conjunto de dados
plt.figure(figsize=(16,8))
sns.heatmap(df_todos.corr(),annot=True, vmin=.9, vmax=1, cmap="coolwarm_r").set_title('Todos os Grupos', fontsize=16)
```

Out[26]:

Text(0.5, 1.0, 'Todos os Grupos')

Utilizando o mapa de calor é possível verificar os menores valore para o range de comparação na máquina 'V2'

Matriz em pares de relacionamento

```
In [27]:
```

```
# Par de relacionamentos
g = sns.pairplot(df_todos, diag_kind="kde")
g.map_lower(sns.kdeplot, levels=4, color=".2")
```

Out[27]:

<seaborn.axisgrid.PairGrid at 0x1da6eed1a30>

In [28]:

```
# Grupo sem Outliers
plt.figure(figsize=(16,8))
sns.kdeplot(without_outliers_group).set_title('Grupo sem Outliers', fontsize=16)
```

Out[28]:

Text(0.5, 1.0, 'Grupo sem Outliers')

In [29]:

```
# Histograma sem Outliers
plt.figure(figsize=(16,8))
sns.distplot(without_outliers_group).set_title('Grupo sem Outliers', fontsize=16)
```

Out[29]:

Text(0.5, 1.0, 'Grupo sem Outliers')

In [30]:

```
# Grupo com Outliers
plt.figure(figsize=(16,8))
sns.kdeplot(only_outliers_group, color='green').set_title('Grupo com Outliers', fontsize=16)
```

Out[30]:

Text(0.5, 1.0, 'Grupo com Outliers')

In [31]:

```
# Histograma com Outliers
plt.figure(figsize=(16,8))
sns.distplot(only_outliers_group, color='green').set_title('Grupo com Outliers', fontsize=16)
```

Out[31]:

Text(0.5, 1.0, 'Grupo com Outliers')

In [32]:

```
# Histograma conjunto de dados completo
plt.figure(figsize=(16,8))
sns.kdeplot(df_todos, color='black')
```

Out[32]:

<AxesSubplot: ylabel='Density'>

In [33]:

```
# Histograma conjunto de dados completo
plt.figure(figsize=(16,8))
sns.distplot(df_todos, color='black')
```

Out[33]:

<AxesSubplot: ylabel='Density'>

In [34]:

```
# Histograma - Sobre posição
plt.figure(figsize=(16,8))
sns.distplot(without_outliers_group)
sns.distplot(only_outliers_group, color='orange').set_title('Sobreposição de Grupos', fontsize=16)
sns.distplot(df_todos, color='black')
```

Out[34]:

<AxesSubplot: title={'center': 'Sobreposição de Grupos'}, ylabel='Density'>

In [35]:

```
# Histograma - Sobre posição
plt.figure(figsize=(16,8))
sns.kdeplot(without_outliers_group)
sns.kdeplot(only_outliers_group).set_title('Sobreposição de Grupos', fontsize=16)
sns.kdeplot(df_todos, shade=True)
```

Out[35]:

<AxesSubplot: title={'center': 'Sobreposição de Grupos'}, ylabel='Density'>

In [36]:

```
# Histograma - Sobre posição
plt.figure(figsize=(16,8))
# sns.set_style(style='whitegrid')
sns.scatterplot(df_todos).set_title('Conjunto de dados completo', fontsize=16)
```

Out[36]:

Text(0.5, 1.0, 'Conjunto de dados completo')

In [37]:

```
# PCA - Transformação
plt.figure(figsize=(16,8))
sns.regplot(data=df, x='Seq', y='V1', color='blue', label='V1')
sns.regplot(data=df, x='Seq', y='V2', color='black', label='V2')
sns.regplot(data=df, x='Seq', y='V3', color='yellow', label='V3')
sns.regplot(data=df, x='Seq', y='V4', color='orange', label='V4')
sns.regplot(data=df, x='Seq', y='V5', color='pink', label='V5')
sns.regplot(data=df, x='Seq', y='V6', color='red', label='V6')
sns.regplot(data=df, x='Seq', y='V7', color='green', label='V7')
sns.regplot(data=df, x='Seq', y='V8', color='violet', label='V8')
plt.gca().set_xlabel('Sensores')
plt.gca().set_xlabel('Sensores pelos valores amostrais')
plt.legend()
```

Out[37]:

<matplotlib.legend.Legend at 0x1da76ef14c0>

Data Wrangling - Criar valor de referência.

```
In [38]:
```

```
# Imprimir conjunto de dados de referência de máquinas e sensores
df_todos
```

Out[38]:

```
V1
          V2
               V3
                     V4
                          V5
                                V6
                                     V7
                                          V8
    375
         135
               458
                    475
                               336
                                    469
                                          492
0
                         509
     57
          47
                     73
                          63
                                62
                                          58
1
                53
                                     63
2
    245
         267
              242
                    227
                         271
                               219
                                    268
                                          286
3
   1472 1494 1462 1582 1613 1323 1490 1493
    105
          66
               103
                    103
                          118
                                98
                                    101
                                          118
     54
          41
                62
                     64
                          55
                                59
                                     63
                                           59
    193
         209
               184
                    235
                         207
                               172
                                    223
6
                                          156
          93
               122
                    160
                         139
                               130
                                          101
                                    152
8
   1102
         674
              957 1137 1058
                               990 1098
                                          878
    720
        1033
              566
                    874
                               646
                                          320
9
                         628
                                    706
    253
         143
               171
                    265
                         193
                               226
                                    247
11
    685
         586
              750
                    803
                         830
                               615
                                    699
                                          777
         355
              418
                    570
                         465
                               437
                                    467
12
    488
                                          313
13
    198
         187
              220
                    203
                         247
                               176
                                    209
                                          204
    360
         334
              337
                   365
                        376
                              322
                                    363
                                          348
14
   1374 1506 1572 1256 1734 1235 1597
                                         1684
15
    156
        139 147 175 167
                              138
                                    164
                                          170
```

In [39]:

```
# Gerar conjunto de dados de referência - Média
df_mean = df_todos.mean(axis=1)
```

In [40]:

```
# # Imprimir conjunto de dados de referência - Média
df_mean
```

Out[40]:

```
0
       406,125
1
        59.500
2
       253.125
3
      1491,125
4
       101.500
5
        57.125
6
       197.375
       130.500
8
       986.750
9
       686.625
10
       199.625
11
       718.125
12
       439.125
13
       205.500
14
       350.625
15
      1494.750
16
       157.000
dtype: float64
```

In [41]:

```
# Verifica nome de coluna da tabela de referência média
print(df_mean.index.name)
```

None

In [42]:

```
# Concatena os conjuntos de dados de máquinas e sensores com o de referência média df_ref =pd.concat([df_todos, df_mean], axis=1)
```

In [43]:

```
# Verifica os nomes de colunas
df_ref.columns
```

Out[43]

```
Index(['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 0], \ dtype='object')
```

```
In [44]:
```

```
# Nomeia a coluna de referência
df_Ref = df_ref.rename(columns={df_ref.columns[-1]:'Ref'})
```

In [45]:

df_Ref.columns

Out[45]:

Index(['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'Ref'], dtype='object')

In [46]:

Verifica os nomes de colunas
df_Ref

Out[46]:

	V1	V2	V3	V4	V5	V6	V 7	V8	Ref
0	375	135	458	475	509	336	469	492	406.125
1	57	47	53	73	63	62	63	58	59.500
2	245	267	242	227	271	219	268	286	253.125
3	1472	1494	1462	1582	1613	1323	1490	1493	1491.125
4	105	66	103	103	118	98	101	118	101.500
5	54	41	62	64	55	59	63	59	57.125
6	193	209	184	235	207	172	223	156	197.375
7	147	93	122	160	139	130	152	101	130.500
8	1102	674	957	1137	1058	990	1098	878	986.750
9	720	1033	566	874	628	646	706	320	686.625
10	253	143	171	265	193	226	247	99	199.625
11	685	586	750	803	830	615	699	777	718.125
12	488	355	418	570	465	437	467	313	439.125
13	198	187	220	203	247	176	209	204	205.500
14	360	334	337	365	376	322	363	348	350.625
15	1374	1506	1572	1256	1734	1235	1597	1684	1494.750
16	156	139	147	175	167	138	164	170	157.000

In [47]:

```
# PCA - Transformação com valor de referência

plt.figure(figsize=(16,8))
sns.regplot(data=df_Ref, x='Ref', y='V1', color='blue', label='V1')
sns.regplot(data=df_Ref, x='Ref', y='V2', color='black', label='V2')
sns.regplot(data=df_Ref, x='Ref', y='V3', color='yellow', label='V3')
sns.regplot(data=df_Ref, x='Ref', y='V4', color='orange', label='V4')
sns.regplot(data=df_Ref, x='Ref', y='V5', color='pink', label='V5')
sns.regplot(data=df_Ref, x='Ref', y='V6', color='red', label='V6')
sns.regplot(data=df_Ref, x='Ref', y='V7', color='green', label='V7')
sns.regplot(data=df_Ref, x='Ref', y='V8', color='violet', label='V8')

plt.gca().set_xlabel('Referência')
plt.gca().set_ylabel('Valores amostrais da máquinas')
plt.title('Comparação do valor médio de referência pelos valores amostrais')
plt.legend()
```

Out[47]:

<matplotlib.legend.Legend at 0x1da76ff1cd0>

Plota distribuições univariadas ou bivariadas usando a estimativa de densidade de kernel.*

* Um gráfico de estimativa de densidade de kernel (KDE) é um método para visualizar a distribuição de observações em um conjunto de dados, análogo a um histograma. O KDE representa os dados usando uma curva de densidade de probabilidade contínua em uma ou mais dimensões.

Conclusão

Com base nos dados e informações númericas e gráficas pode se observar que a máquina com maior desvio nos elementos sensores e, comparação as outras máquinas é a *máquina V2*.

Observações: Também é necessário corrigir os processos as máquinas: V3 e V8

In []: