1.Definitions:

1.Statistical Experiment: is a planned activity whose set of the results (outcomes) is certain; but it can't be said before that; which outcome occurs.

1.2.Sample Space: is the set of all possible outcomes of the experiment. It is denoted by S or Ω .

1.3.Event: is a subset of the sample space. For an n element set;

The number of the events: 2^n

EXAMPLES:

1- The experiment: Flip a coin (tossing of a coin)

Sample Space:

Head

Tail

Events:

 $A_1 = \{H\}$, The filp is H.

 $A_2 = \{T\}$, The filp is T.

 $A_3 = \{\emptyset\}$

 $A_4 = \{H, T\}$, The filp is H or T

2- The experiment : Flip a coin two times.

Sample space:

$$\Omega = \{TT, TH, HT, HH\}$$

 $n(\Omega) = 4$ (Number of elements)

Events:

$$A = \{TT\}$$

$$A = \{TH\}$$

$$A = \{HT\}$$

$$A = \{HH\}$$

$$A = \{TT, TH\}$$

.

.

Number of Events: $2^4 = 16$

$$A = \Omega$$

A: The first flip is head.

$$A = \{HT, HH\}$$

B: The second flip is tail.

$$B = \{TT, HT\}$$

C: The first flip is tail, the second is head.

$$C = \{TH\}$$

D: In two times, at least one time tail.

$$D = \{TT, TH, HT\}$$

3-Flip a coin three times.

Sample space:

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

 $n(\Omega) = 8$ (Number of elements)

Number of Events: $2^8 = 64$

Event A: 1st flip is heads.

$$A = \{HHH, HHT, HTH, HTT\}$$

4-Flip the two coins at the same time.

Sample space:

$$\Omega = \{TT, TH, HH\}$$

 $n(\Omega) = 3$ (Number of elements)

TT means: Two flips are observed as tails.

TH means: One flip is head one is tail (HT is the same as the TH, either of them can be used)

HH means: Two flips are observed as heads.

Events:

$$A = \{TT\}$$

$$A = \{TH\}$$

$$A = \{HT\}$$

$$A = \{HH\}$$

$$A = \{TT, TH\}$$

•

•

Number of Events: $2^3 = 8$

 $A = \Omega$

Student:

5. Flip the three coins at the same time. Write the sample space, define the events.

 $\Omega = \dots \dots$

$$n(\Omega) = \dots$$

Events:

The number of events:

6. Flip a dice:

Sample space:

$$\Omega = \{1,2,3,4,5,6\}$$

Events:

$$A = \{1\}$$

$$A = \{2\}$$

$$A = \{3\}$$

•

$$E = \{1,2,3,4,5,6\}$$

Number of Events: $2^6 = 64$

7. Flip a dice two times.

Sample space :

$$\Omega = \{(1,1), (1,2), \dots, (6,6)\}$$

$$n(\Omega) = 36$$

Number of Events: 2³⁶

Student:

8. Flip the two dices at the same time. $\Omega = \dots$ $n(\Omega) = \dots \dots$

Events:

The number of events:

Event/Set Operations:

- 1. The complement of an event A: The set of all elements of S not in A. It is denoted as A^{C}
- 2. The intersection of two events A and B: The set of all elements in both A and B. It is denoted as $A \cap B$.
- 3. The union of two events A and B: The set of all elements in either A and B. It is denoted as $A \cup B$.
- 4. If $A \cap B = \emptyset$; two events are <u>mutually exclusive</u>.

Example:

Experiment: Flip a coin three times.

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

A: The first flip is head.

$$A = \{HHH, HHT, HTH, HTT\}$$

$$A^c = \{THH, THT, TTH, TTT\}$$

B: The 3. flip is tail.

$$B = \{HHT, HTT, THT, TTT\}$$

 $A \cap B$: The first flip is head, third is tail.

 $A \cap B = \{HHT, HTT\} \rightarrow A, B$ are not mutually exclusive.

 $A \cup B$: The first flip is head or third is tail.

 $A \cup B {=} \{HHH, HHT, HTH, HTT, THT, TTT\}$

Probablity of an Event:

The probability of an event *A* is given as;

$$P(A) = \frac{n}{N}$$

where

n: the number of points in cluster A.

N : the number of points in Ω sample space.

The Probability Axioms:

For any event A;

- 1. $0 \le P(A) \le 1$.
- 2. $P(\Omega) = 1$
- **3.** The probability of the complement of event $A(A^c)$;

$$P(A^c) = 1 - P(A)$$

- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 5. If $A \setminus B$ are mutually exclusive;

$$P(A \cup B) = P(A) + P(B)$$

(Because;
$$P(A \cap B) = P(\emptyset) = 0$$
)

Independent Events: For any event $A, B \ (A, B \neq \emptyset)$ If the probability

 $P(A \cap B)$ can be written as;

$$P(A \cap B) = P(A).P(B)$$

The two events are **independent** from each other.

Note: If A, B are mutually exclusive, they can't be independent.

Examples:

1.The experiment : Flip a coin two times.

Sample space:

$$\Omega = \{TT, TH, HT, HH\} ; N = 4$$

A: The 1.flip is tail

$$A = \{TT, TH\}, \ n = 2$$

$$P(A) = \frac{n}{N} = \frac{2}{4}$$

B: The 2.flip is head

$$B = \{TH, HH\}$$

$$P(A) = \frac{n}{N} = \frac{2}{4}$$

$$A \cap B = \{TH\}$$

$$P(A \cap B) = \frac{n}{N} = \frac{1}{4}$$

A, B are not mutually exclusive,

 $A \cap B \neq \emptyset$;

$$P(A \cap B) = P(A).P(B)$$

$$\frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2}$$

A, B are independent from each other.

2.The experiment : Flip a coin three times.

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

Student:

A: At most two flips are heads

$$A =$$

$$P(A)=$$

B: At At most two flips are tails.

$$B =$$

$$P(B)=$$

Are they independent events?

Student:

3.The experiment : Flip the three coins at the same time.

Define some events and calculate the probabilities.

4.The experiment : Flip a dice two times.

$$\Omega = \{(1,1), (1,2), ..., (6,6)\}$$

A: The sum of the surface points is seven

$$A = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1) \} n = 6$$

$$P(A) = \frac{6}{36} = \frac{1}{6}$$

B: The sum of the surface points is odd number

$$B = \{(1,2), (1,4), (1,6), (2,1), (2,3), (2,5), \dots (6,5)\}$$

$$P(A) = \frac{18}{36} = \frac{1}{2}$$