Okay, here is a formula sheet drafted based on the provided rubric, covering Measure Theory, Functional Analysis, and Fourier Analysis.

Analysis Formula Sheet

1. Measure Theory

(1.1) Basics of Measure Theory

***Outer Measure** $\mu^*: \mathcal{P}(X) \to [0,\infty]$: * $\mu^*(\emptyset) = 0$ * Monotone: $A \subseteq B \Longrightarrow \mu^*(A) \le \mu^*(B)$ * Countably Subadditive: $\mu^*(\bigcup_{i=1}^\infty A_i) \le \sum_{i=1}^\infty \mu^*(A_i)$ ***Carathéodory Measurable Sets** \mathcal{M} : $E \in \mathcal{M}$ if $\forall A \subseteq X$, $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$. * *** σ -algebra:** A collection \mathcal{A} of subsets of X closed under complements and countable unions. \mathcal{M} is a σ -algebra. * **Measure** μ : A countably additive set function $\mu: \mathcal{A} \to [0,\infty]$ with $\mu(\emptyset) = 0$. If μ^* is an outer measure, its restriction to \mathcal{M} is a measure. * **Lebesgue Measure** m on \mathbb{R}^n : The completion of the unique Borel measure on \mathbb{R}^n such that $m(\prod_{i=1}^n [a_i,b_i]) = \prod_{i=1}^n (b_i-a_i)$. * **Borel σ -algebra** $\mathcal{B}(X)$: Smallest σ -algebra containing all open sets in a topological space X. * **Radon Measure:** A Borel measure μ on a Hausdorff space X that is: * Finite on compact sets: $\mu(K) < \infty$ for K compact. * Outer regular: $\mu(E) = \inf\{\mu(O): E \subseteq O, O \text{ open}\}$ for $E \in \mathcal{B}(X)$. * Inner regular on open sets: $\mu(O) = \sup\{\mu(K): K \subseteq O, K \text{ compact}\}$ for O open. (If μ is finite, inner regular on all Borel sets). * **Approximation (Lebesgue measure m on \mathbb{R}^n , finite measure sets):** For $E \in \mathcal{M}$ with $m(E) < \infty$, $\forall \epsilon > 0$, $\exists O$ open, F closed such that $F \subseteq E \subseteq O$ and $m(O \setminus F) < \epsilon$.

(1.2) Measurable Functions

***Measurability:** $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ is measurable if $f^{-1}(A)\in\mathcal{M}$ for all $A\in\mathcal{N}$. For $f:X\to[-\infty,\infty]$, usually check $f^{-1}((\alpha,\infty])\in\mathcal{M}$ for all $\alpha\in\mathbb{R}$. **Properties:** If $f_n:X\to[-\infty,\infty]$ are measurable, then $\sup f_n$, $\inf f_n$, $\lim\sup f_n$, $\lim\inf f_n$ are measurable. If f,g are measurable real-valued, then f+g, fg, cf are measurable. **Simple Functions:** $s(x)=\sum_{i=1}^k c_i\chi_{E_i}(x)$, where $E_i\in\mathcal{M}$. Any non-negative measurable f is the pointwise limit of an increasing sequence of non-negative simple functions. ***Lusin's Theorem:** If μ is Radon, $f:X\to\mathbb{C}$ measurable, E measurable with $\mu(E)<\infty$. Then $\forall \epsilon>0$, $\exists F\subseteq E$ closed such that $\mu(E\setminus F)<\epsilon$ and $f|_F$ is continuous. ***Egorov's Theorem:** If $\mu(X)<\infty$, $f_n\to f$ a.e., f_n,f measurable. Then $\forall \epsilon>0$, $\exists E\subseteq X$ such that $\mu(X\setminus E)<\epsilon$ and $f_n\to f$ uniformly on $f_n\to f$ in measure:** $f_n\to f$ in measure if $f_n\to f$ in measure if $f_n\to f$ in measure if $f_n\to f$ a.e. If $f_n(x)=f(x)=f(x)$ and $f_n\to f$ in measure implies convergence in measure.

(1.3) Integration

***Integral:** $\int f d\mu = \sup\{\int s d\mu : 0 \le s \le f, s \text{ simple}\}\$ for $f \ge 0$. $\int s d\mu = \sum c_i \mu(E_i)$. For general f, $\int f d\mu = \int f^+ d\mu - \int f^- d\mu$. f is integrable if $\int |f| d\mu < \infty$. $L^1(\mu) = \{f : \int |f| d\mu < \infty\}$. ***Bounded Convergence Theorem (BCT):** If $|f_n| \le M$, $f_n \to f$ a.e., $\mu(X) < \infty$. Then $\int f_n d\mu \to \int f d\mu$. (General form: replace $|f_n| \le M$ with $|f_n| \le g \in L^1$, $\mu(X) < \infty$ not needed - Dominated Convergence Theorem, DCT). ***Fatou's Lemma:** If $f_n \ge 0$ measurable, then $\int (\liminf f_n) d\mu \le \liminf \int f_n d\mu$. ***Monotone Convergence Theorem (MCT):** If $0 \le f_n \uparrow f$ a.e., f_n measurable. Then $\int f_n d\mu \to \int f d\mu$. ***Absolute Continuity of the Integral:** If $f \in L^1(\mu)$, then $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $\mu(E) < \delta$, then $|\int_E f d\mu| < \epsilon$.

(1.4) Differentiation and Integration (on \mathbb{R} with Lebesgue measure m)

Vitali Covering Lemma: Let $E \subseteq \mathbb{R}^n$, \mathcal{V} a collection of non-degenerate closed balls covering E in the sense that $\forall x \in E, \forall \epsilon > 0$, $\exists B \in \mathcal{V}$ with $x \in B$ and $\operatorname{diam}(B) < \epsilon$. Then $\exists \{B_k\} \subseteq \mathcal{V}$ disjoint such that $m(E \setminus \cup B_k) = 0$. (Often used for $m^*(E) < \infty$). ***Monotone Functions:** If $F : [a, b] \to \mathbb{R}$ is monotone, then F is differentiable a.e. and $F' \in L^1([a, b], m)$, with $\int_a^b F'(x) dx \leq F(b) - F(a)$. ***Functions of Bounded Variation (BV):** $V_a^b(F) = \sup\{\sum_{i=1}^k |F(x_i) - F(x_{i-1})|\} \text{ over partitions } a = x_0 < \dots < x_k = b. \ F \in BV([a, b]) \text{ iff } F = G - H \text{ where } G, H \text{ are monotone increasing. } F \in BV \implies F \text{ differentiable a.e. ***Differentiation of Indefinite Integral:** If } f \in L^1([a, b])$, let $F(x) = \int_a^x f(t) dt$. Then F is absolutely continuous (AC) and F'(x) = f(x) a.e. ***Absolute Continuity (AC):** $F : [a, b] \to \mathbb{R}$ is AC if $\forall \epsilon > 0$, $\exists \delta > 0$ such that for any finite collection of disjoint intervals $(a_k, b_k) \subseteq [a, b]$, $\sum (b_k - a_k) < \delta \Longrightarrow \sum |F(b_k) - F(a_k)| < \epsilon$. F is AC iff $F(x) = F(a) + \int_a^x g(t) dt$ for some

 $g \in L^1([a,b])$. In this case g = F' a.e. ***Fundamental Theorem of Calculus (Newton-Leibniz):** F is AC on [a,b] iff F' exists a.e., $F' \in L^1([a,b])$, and $\int_a^b F'(x) dx = F(b) - F(a)$.

(1.5) Product Measures

***Product σ -algebra:** $\mathcal{M} \otimes \mathcal{N}$ on $X \times Y$ is generated by measurable rectangles $A \times B$ where $A \in \mathcal{M}, B \in \mathcal{N}$. ***Product Measure:** For σ -finite measures μ, ν , there exists a unique measure $\mu \times \nu$ on $\mathcal{M} \otimes \mathcal{N}$ such that $(\mu \times \nu)(A \times B) = \mu(A)\nu(B)$. ***Tonelli's Theorem:** If $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ are σ -finite measure spaces, and $f: X \times Y \to [0, \infty]$ is measurable wrt $\mathcal{M} \otimes \mathcal{N}$. Then:

$$\int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x) = \int_Y \left(\int_X f(x,y) d\mu(x) \right) d\nu(y) = \int_{X \times Y} f d(\mu \times \nu)$$

* **Fubini's Theorem:** If $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ are σ -finite and $f \in L^1(X \times Y, \mu \times \nu)$. Then $f(x, \cdot) \in L^1(\nu)$ for a.e. $x, f(\cdot, y) \in L^1(\mu)$ for a.e. y. The functions $x \mapsto \int_Y f(x, y) d\nu(y)$ and $y \mapsto \int_X f(x, y) d\mu(x)$ are in $L^1(\mu)$ and $L^1(\nu)$ respectively, and the conclusion of Tonelli's theorem holds (the iterated integrals equal the double integral).

(1.6) Differentiation of Measures

***Absolute Continuity:** $\nu \ll \mu$ if $\mu(E) = 0 \Longrightarrow \nu(E) = 0$. ***Mutually Singular:** $\mu \perp \nu$ if $\exists E, F$ disjoint such that $X = E \cup F$, μ is concentrated on E ($\mu(F) = 0$), and ν is concentrated on F ($\nu(E) = 0$). ***Radon-Nikodym Theorem:** Let μ, ν be σ -finite measures on (X, \mathcal{M}) . If $\nu \ll \mu$, then $\exists ! f \in L^1(\mu), f \geq 0$ a.e. $[\mu]$, such that $\nu(E) = \int_E f d\mu$ for all $E \in \mathcal{M}$. We write $f = \frac{d\nu}{d\mu}$. ***Lebesgue Decomposition:** Let μ, ν be σ -finite measures. Then $\exists !$ decomposition $\nu = \nu_{ac} + \nu_{sing}$ where $\nu_{ac} \ll \mu$ and $\nu_{sing} \perp \mu$. Moreover, $\nu_{ac}(E) = \int_E \frac{d\nu}{d\mu} d\mu$. ***Signed Measures:** $\nu : \mathcal{M} \to (-\infty, \infty]$ (or $[-\infty, \infty)$ or \mathbb{R}) countably additive. ***Hahn Decomposition:** $\exists X = P \cup N$ disjoint, P positive set ($\nu(E) \geq 0$ for $E \subseteq P$), N negative set ($\nu(E) \leq 0$ for $E \subseteq N$). ***Jordan Decomposition:** $\nu = \nu^+ - \nu^-$, where ν^+, ν^- are measures and $\nu^+ \perp \nu^-$. Total variation: $|\nu| = \nu^+ + \nu^-$. ***Lebesgue Points:** $\nu \in \mathbb{R}^n$ is a Lebesgue point of $\nu \in \mathbb{R}^n$ if $\nu \in \mathbb{R}^n$ if $\nu \in \mathbb{R}^n$ if $\nu \in \mathbb{R}^n$ is a Lebesgue point. ***Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is not points:** $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is not points:** $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is not points:** $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is not points:** $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If $\nu \in \mathbb{R}^n$ is a Lebesgue-Besicovitch Differentiation Theorem:** If

(1.7) Riesz Representation Theorems

***Dual of L^p $(1 \le p < \infty)$:** Let (X, \mathcal{M}, μ) be a σ -finite measure space. If $1 \le p < \infty$ and 1/p + 1/q = 1. Then for every continuous linear functional $\phi \in (L^p(\mu))^*$, there exists a unique $g \in L^q(\mu)$ such that $\phi(f) = \int_X fg d\mu$ for all $f \in L^p(\mu)$. Moreover, $\|\phi\| = \|g\|_{L^q}$. So $(L^p)^* \cong L^q$. (Note: $(L^\infty)^* \supsetneq L^1$ generally). ***Riesz-Markov(-Kakutani) Theorem (Dual of $C_c(X)$):** Let X be a locally compact Hausdorff space. For every positive linear functional $\phi: C_c(X) \to \mathbb{R}$, there exists a unique (outer regular on Borel, inner regular on open and sigma-finite sets) Radon measure μ on X such that $\phi(f) = \int_X f d\mu$ for all $f \in C_c(X)$. (Can be extended to bounded linear functionals and complex/signed Radon measures). ***Riesz-Thorin Interpolation Theorem:** Let (X,μ) , (Y,ν) be measure spaces. Let $1 \le p_0, p_1, q_0, q_1 \le \infty$. Let T be a linear operator defined on simple functions on X mapping to measurable functions on Y. Suppose $\|Tf\|_{L^{q_0}} \le M_0 \|f\|_{L^{p_0}}$ and $\|Tf\|_{L^{q_1}} \le M_1 \|f\|_{L^{p_1}}$. For $0 < \theta < 1$, define $\frac{1}{p_\theta} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ and $\frac{1}{q_\theta} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$. Then T extends to a bounded operator $T: L^{p_\theta} \to L^{q_\theta}$ with $\|T\|_{L^{p_\theta} \to L^{q_\theta}} \le M_0^{1-\theta} M_1^{\theta}$.

2. Functional Analysis

(2.1) Hilbert Spaces

***Hilbert Space H:** Complete inner product space. Inner product $\langle \cdot, \cdot \rangle$. Norm $\|x\| = \sqrt{\langle x, x \rangle}$. *

Orthogonality: $x \perp y$ if $\langle x, y \rangle = 0$. $M^{\perp} = \{x \in H : \langle x, y \rangle = 0, \forall y \in M\}$. ***Projection Theorem:** If M is a closed subspace of H, then $H = M \oplus M^{\perp}$. Any $x \in H$ has a unique decomposition x = y + z with $y \in M, z \in M^{\perp}$. $y = P_M x$ is the orthogonal projection. ***Riesz Representation Theorem (Hilbert):** For every continuous linear functional $\phi \in H^*$, there exists a unique $y \in H$ such that $\phi(x) = \langle x, y \rangle$ for all $x \in H$. Moreover, $\|\phi\|_{H^*} = \|y\|_H$. Thus $H^* \cong H$ (anti-linearly). ***Orthonormal Basis (ONB):** $\{e_\alpha\}_{\alpha \in A}$ is an ONB if $\langle e_\alpha, e_\beta \rangle = \delta_{\alpha\beta}$ and span $\{e_\alpha\}$ is dense in H. ***Parseval's Identity:** For any $x \in H$, $x = \sum_{\alpha \in A} \langle x, e_\alpha \rangle e_\alpha$ and $\|x\|^2 = \sum_{\alpha \in A} |\langle x, e_\alpha \rangle|^2$. **Bessel's Inequality:** For any orthonormal set $\{e_\alpha\}$, $\sum_{\alpha \in A} |\langle x, e_\alpha \rangle|^2 \leq \|x\|^2$. * Separable iff ONB is countable. *

Fourier Basis for $L^2(T)$: $T = \mathbb{R}/(2\pi\mathbb{Z})$. The set $\{e_k(x) = \frac{1}{\sqrt{2\pi}}e^{ikx} : k \in \mathbb{Z}\}$ is an ONB for $L^2(T)$. For $f \in L^2(T)$, $f = \sum_{k \in \mathbb{Z}} \hat{f}(k)e_k$ in L^2 , where $\hat{f}(k) = \langle f, e_k \rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(x)e^{-ikx}dx$. (Often normalized differently: basis e^{ikx} , $\hat{f}(k) = \frac{1}{2\pi} \int_0^{2\pi} f(k)e^{ikx}$, $\|f\|^2 = 2\pi \sum |\hat{f}(k)|^2$).

(2.2) Banach Spaces

***Banach Space X:** Complete normed vector space. * **Continuous Linear Maps:** $T: X \to Y$ is continuous $\iff T$ is bounded ($\|Tx\|_Y \le C\|x\|_X$ for some C). Operator norm $\|T\| = \sup_{\|x\|=1} \|Tx\|$. * **Dual Space:** $X^* = B(X, \mathbb{K})$ (space of bounded linear functionals on X). It is a Banach space. * **Direct Sums:** $X \oplus Y$ with norm e.g. $\|(x,y)\| = \|x\| + \|y\|$. * **Quotient Space:** X/M where M is a closed subspace. Norm $\|x+M\| = \inf_{m \in M} \|x+m\|$. If X is Banach, X/M is Banach. * **Hahn-Banach Theorem:** * **(Extension form):** Let M be a subspace of X. Any $\phi \in M^*$ can be extended to $\tilde{\phi} \in X^*$ such that $\tilde{\phi}|_M = \phi$ and $\|\tilde{\phi}\|_{X^*} = \|\phi\|_{M^*}$. * **(Geometric form/Separation):** Let A, B be disjoint convex subsets of X, A open. Then $\exists \phi \in X^*$, $c \in \mathbb{R}$ such that $\text{Re}(\phi(a)) < c \le \text{Re}(\phi(b))$ for all $a \in A, b \in B$. * **Baire Category Theorem:** A complete metric space is not a countable union of nowhere dense sets. * **Uniform Boundedness Principle (Banach-Steinhaus):** Let X be Banach, Y normed. Let $\mathcal{F} \subseteq B(X,Y)$. If for each $x \in X$, $\{\|Tx\|_Y : T \in \mathcal{F}\}$ is bounded (pointwise bounded), then \mathcal{F} is uniformly bounded (sup $_{T \in \mathcal{F}} \|T\| < \infty$). * **Open Mapping Theorem:** If $T \in B(X,Y)$ is surjective, X,Y Banach, then T is an open map (maps open sets to open sets). * **Inverse Mapping Theorem:** If $T \in B(X,Y)$ is bijective, X,Y Banach, then $T^{-1} \in B(Y,X)$. * **Closed Graph Theorem:** If $T \in X \to Y$ is linear, X,Y Banach. T is bounded \iff its graph $G(T) = \{(x,Tx) : x \in X\}$ is closed in $X \times Y$.

(2.3) Topological Spaces

***(Local) Basis:** A collection \mathcal{B} is a basis for topology τ if $\tau = \{ \cup \mathcal{B}' : \mathcal{B}' \subseteq \mathcal{B} \}$. \mathcal{N}_x is a local basis at x if every neighborhood of x contains some $N \in \mathcal{N}_x$. ***Convergence:** Net $x_\alpha \to x$ if for every neighborhood U of x, $\exists \alpha_0$ such that $x_\alpha \in U$ for $\alpha \geq \alpha_0$. ***Continuity:** $f: X \to Y$ is continuous if $f^{-1}(V)$ is open in X for every open $V \subseteq Y$. ***Compactness:** Every open cover has a finite subcover. (Equivalent: Tychonoff - product of compact spaces is compact. Heine-Borel in \mathbb{R}^n). In metric spaces: compact \iff sequentially compact \iff complete and totally bounded. ***Weak Topology $(\sigma(X, X^*))$:** Smallest topology on X making all $\phi \in X^*$ continuous. Basis of neighborhoods of 0: $\{x: |\phi_i(x)| < \epsilon, i = 1, \ldots, k\}$. Convergence: $x_\alpha \to x$ weakly iff $\phi(x_\alpha) \to \phi(x)$ for all $\phi \in X^*$. ***Weak-* Topology $(\sigma(X^*, X))$:** Smallest topology on X^* making all evaluation maps $\hat{x}(\phi) = \phi(x)$ (for $x \in X$) continuous. Basis of neighborhoods of 0: $\{\phi: |\phi(x_i)| < \epsilon, i = 1, \ldots, k\}$. Convergence: $\phi_\alpha \to \phi$ weak-* iff $\phi_\alpha(x) \to \phi(x)$ for all $x \in X$. ***Stone-Weierstrass Theorem:** Let X be compact Hausdorff. Let A be a subalgebra of $C(X, \mathbb{R})$ that separates points and contains constants. Then A is dense in $C(X, \mathbb{R})$ (wrt uniform norm). (Complex version: need A closed under conjugation). ***Banach-Alaoglu Theorem:** The closed unit ball $B^* = \{\phi \in X^* : \|\phi\| \le 1\}$ is compact in the weak-* topology $\sigma(X^*, X)$. (If X is reflexive, the unit ball B is weakly compact).

(2.4) Locally Convex Spaces (LCS)

LCS:** Vector space with topology generated by a family of seminorms $\{p_{\alpha}\}$ separating points. Basis of neighborhoods of 0: $V = \{x : p_{\alpha_i}(x) < \epsilon, i = 1, \dots, k\}$. ***Minkowski Gauge:** For a convex, absorbing set A, $p_A(x) = \inf\{t > 0 : x \in tA\}$. p_A is a seminorm if A is balanced. Neighborhood basis of 0 exists consisting of convex, balanced, absorbing sets. ***Hahn-Banach (LCS): (Analytic): Let p be a seminorm on LCS X. Let M subspace, $\phi \in M^*$ s.t. $|\phi(x)| \leq p(x)$ on M. Then $\exists \tilde{\phi} \in X^*$ s.t. $\tilde{\phi}|_M = \phi$ and $|\tilde{\phi}(x)| \leq p(x)$ on X. * (Geometric): Disjoint convex sets A, B, A open. Can be separated by a closed hyperplane (defined by a continuous linear functional). ***Metrizability:** An LCS is metrizable iff its topology can be defined by a countable family of seminorms. ***Fréchet Space:** Complete metrizable LCS. ***Banach-Steinhaus (LCS):** Let X be Fréchet (or barrelled), Y be LCS. Let $\mathcal{F} \subseteq L(X,Y)$. If \mathcal{F} is pointwise bounded, then \mathcal{F} is equicontinuous. ***Open Mapping Theorem (LCS):** If $T: X \to Y$ is continuous, surjective, X, Y Fréchet, then T is open.

(2.5) Distributions

***Test Functions on $T = \mathbb{R}/(2\pi\mathbb{Z})$:** $C^{\infty}(T)$, space of smooth 2π -periodic functions. Topology from seminorms $||f^{(k)}||_{\infty}$. Fréchet space. ***Distributions on T:** $D'(T) = (C^{\infty}(T))^*$, the continuous linear functionals on $C^{\infty}(T)$. $u \in D'(T)$ acts as $\langle u, \phi \rangle$. ***Schwartz Functions $S(\mathbb{R}^n)$:** Smooth functions $f: \mathbb{R}^n \to \mathbb{C}$ such that $\sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} f(x)| < \infty$ for all multi-indices α, β . Topology from these seminorms. Fréchet space. ***Tempered

Distributions $S'(\mathbb{R}^n)$:** $(S(\mathbb{R}^n))^*$, the continuous linear functionals on $S(\mathbb{R}^n)$. ***Operations:** *

Differentiation: $\langle \partial^\alpha u, \phi \rangle = (-1)^{|\alpha|} \langle u, \partial^\alpha \phi \rangle$. ***Multiplication:** For $f \in C^\infty$, $\langle fu, \phi \rangle = \langle u, f\phi \rangle$. (Requires $f\phi$ to be a test function). ***Convergence:** $u_j \to u$ in D'(T) (or $S'(\mathbb{R}^n)$) if $\langle u_j, \phi \rangle \to \langle u, \phi \rangle$ for all test functions ϕ . *

Examples: * Dirac delta δ_0 : $\langle \delta_0, \phi \rangle = \phi(0)$. * Principal value: $\langle \text{pv}(1/x), \phi \rangle = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{\phi(x)}{x} dx$. * $(x \pm i0)^{-1}$: $\lim_{\epsilon \to 0^+} (x \pm i\epsilon)^{-1} = \text{pv}(1/x) \mp i\pi \delta_0(x)$. These are in $S'(\mathbb{R})$. ***Support:** supp $(u) = X \setminus \bigcup \{O \text{ open } : u|_O = 0\}$. Smallest closed set outside which u vanishes.

(2.6) Bounded Operators on Banach Spaces

***Adjoint Operator:** $T \in B(X,Y)$. Adjoint $T^* \in B(Y^*,X^*)$ defined by $\langle Tx,y^* \rangle_Y = \langle x,T^*y^* \rangle_X$ (or $(T^*y^*)(x) = y^*(Tx)$). $||T^*|| = ||T||$. If H Hilbert, $T \in B(H)$, adjoint T^* satisfies $\langle Tx,y \rangle = \langle x,T^*y \rangle$. ***Spectrum $\sigma(T)$:** $T \in B(X)$. $\sigma(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible in } B(X)\}$. Spectrum is compact, non-empty subset of \mathbb{C} . **Resolvent Set:** $\rho(T) = \mathbb{C} \setminus \sigma(T)$. For $\lambda \in \rho(T)$, $R(\lambda,T) = (T-\lambda I)^{-1}$ is the resolvent operator. ***Spectral Radius:** $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$. Gelfand's formula: $r(T) = \lim_{n \to \infty} ||T^n||^{1/n}$. Always $r(T) \leq ||T||$. ***Self-Adjoint Operators on Hilbert Space:** $T \in B(H)$, $T = T^*$. Then $\sigma(T) \subseteq \mathbb{R}$. ***Banach Space Valued Integrals/Derivatives:** E.g., Bochner integral. $\frac{d}{dt}f(t)$ can be defined. ***Continuous Functional Calculus (Self-Adjoint):** For $T = T^* \in B(H)$, there is an isometric *-isomorphism $\Phi : C(\sigma(T)) \to B(H)$ such that $\Phi(\mathrm{id}) = T$, $\Phi(1) = I$. We write $f(T) = \Phi(f)$. $||f(T)|| = ||f||_{C(\sigma(T))} = \sup_{\lambda \in \sigma(T)} |f(\lambda)|$. ***Spectral Measure:** For $T = T^*$, there exists a unique projection-valued measure E on $B(\sigma(T))$ such that $f(T) = \int_{\sigma(T)} f(\lambda) dE(\lambda)$.

(2.7) Compact Operators on Banach Spaces

***Compact Operator:** $T \in B(X,Y)$. T is compact if it maps bounded sets in X to pre-compact (relatively compact) sets in Y. Equivalently, if $x_n \to x$ weakly, then $Tx_n \to Tx$ strongly (in norm). ***Properties:** * The set of compact operators K(X,Y) is a closed subspace of B(X,Y). * Composition: If S is bounded, T compact, then ST and TS are compact. * Adjoint: T is compact iff T^* is compact. ***Approximation (Separable Hilbert):** If H is separable Hilbert, $T \in K(H)$ iff T is the norm limit of finite-rank operators. ***Analytic Fredholm Theorem:** Let $D \subseteq \mathbb{C}$ open, connected. Let A(z) be an analytic operator-valued function $D \to K(X)$. Then either $(I - A(z))^{-1}$ exists for no $z \in D$, or it exists for all $z \in D \setminus S$, where S is a discrete subset of D. ***Riesz-Schauder Theorem (Spectrum of Compact Operators):** Let $T \in K(X)$, X infinite-dimensional Banach. * $0 \in \sigma(T)$. * $\sigma(T) \setminus \{0\}$ consists only of eigenvalues $\{\lambda_k\}$. * This set is either finite or $\lambda_k \to 0$. * Each non-zero eigenvalue has finite (geometric and algebraic) multiplicity. ***Hilbert-Schmidt Operators (Hilbert Space):** $T \in B(H)$ is Hilbert-Schmidt if $\sum \|Te_k\|^2 < \infty$ for some (hence any) ONB $\{e_k\}$. Hilbert-Schmidt operators are compact. $\|T\|_{HS}^2 = \sum \|Te_k\|^2$.

3. Fourier Analysis

***Fourier Coefficients:** For $f \in L^1(T)$, $\hat{f}(k) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx$, $k \in \mathbb{Z}$. ***Orthogonality:** $\{e^{ikx}\}_{k \in \mathbb{Z}}$ are orthogonal in $L^2(T)$. $\langle e^{ikx}, e^{ilx} \rangle_{L^2} = \int_0^{2\pi} e^{i(k-l)x} dx = 2\pi \delta_{kl}$. *** L^2 Theory (Riesz-Fischer, Parseval):** * $f \in L^2(T) \iff \{\hat{f}(k)\} \in l^2(\mathbb{Z})$. * Parseval: $||f||_{L^2(T)}^2 = \int_0^{2\pi} |f(x)|^2 dx = 2\pi \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^2$. * The map $f \mapsto \{\hat{f}(k)\}$ is an isomorphism $L^2(T) \to \sqrt{2\pi} l^2(\mathbb{Z})$. * Fourier series $S_N(f)(x) = \sum_{k=-N}^N \hat{f}(k) e^{ikx} \to f$ in $L^2(T)$. * **Convergence:** * If $f \in C^1(T)$, then $S_N(f) \to f$ uniformly. * If f is continuous and f in f

^{**(3.1)} Fourier Series on $T = \mathbb{R}/(2\pi\mathbb{Z})^{**}$

N and $F \in L^2(T)$. ***Schwartz Kernel Theorem:** Let $K : C^{\infty}(X) \to D'(Y)$ be continuous linear. Then there exists a unique $k \in D'(X \times Y)$ (the kernel) such that $\langle K\phi, \psi \rangle = \langle k, \phi \otimes \psi \rangle$.

(3.2) Fourier Transform on \mathbb{R}^{n}

***Definition:** For $f \in S(\mathbb{R}^n)$, $\hat{f}(\xi) = \mathcal{F}f(\xi) = \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi}dx$. Inverse: $\mathcal{F}^{-1}g(x) = (2\pi)^{-n}\int_{\mathbb{R}^n} g(\xi)e^{ix\cdot\xi}d\xi$. (Normalization varies!) ***Properties on $S(\mathbb{R}^n)$:** $\mathcal{F}: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$ is an isomorphism. * Differentiation: $\widehat{(\partial^\alpha f)}(\xi) = (i\xi)^\alpha \hat{f}(\xi)$. * Multiplication: $\widehat{(-ix)^\alpha f}(\xi) = (\partial^\alpha \hat{f})(\xi)$. * Convolution: $\widehat{(f*g)}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$. (If using $(2\pi)^{-n/2}$ normalization, it's $\sqrt{2\pi}^n \hat{f}\hat{g}$). * Translation: $\widehat{(f(-a))}(\xi) = e^{-ia\cdot\xi}\hat{f}(\xi)$. Modulation: $(e^{ia\cdot x}f(x))(\xi) = \hat{f}(\xi-a)$. * **Fourier Transform on $S'(\mathbb{R}^n)$:** Extend by duality: $\langle \hat{u}, \phi \rangle = \langle u, \hat{\phi} \rangle$ for $u \in S', \phi \in S$. $\mathcal{F}: S'(\mathbb{R}^n) \to S'(\mathbb{R}^n)$ is an isomorphism. Properties above extend. * **L^2 Theory (Plancherel):** \mathcal{F} extends uniquely to a unitary isomorphism $\mathcal{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ (with $(2\pi)^{-n/2}$ normalization). $\|\hat{f}\|_{L^2} = (2\pi)^{n/2} \|f\|_{L^2}$. Parseval: $\int f\bar{g}dx = (2\pi)^{-n} \int \hat{f}\bar{g}d\xi$. **Compactly Supported Distributions:** If $u \in \mathcal{E}'(\mathbb{R}^n)$ (distributions with compact support), then $\hat{u}(\xi)$ is an entire analytic function given by $\hat{u}(\xi) = \langle u_x, e^{-ix\cdot\xi} \rangle$. (Paley-Wiener-Schwartz Theorem characterizes these). ***Gaussian:** $\mathcal{F}(e^{-a|x|^2/2})(\xi) = (\frac{2\pi}{a})^{n/2}e^{-|\xi|^2/(2a)}$. **Heat Equation:** $u_t = \Delta u, u(0,x) = f(x)$. Solution $u(t,x) = (K_t * f)(x)$, where $K_t(x) = (4\pi t)^{-n/2}e^{-|x|^2/(4t)}$. In Fourier space: $\hat{u}_t(t,\xi) = -|\xi|^2\hat{u}(t,\xi)$, so $\hat{u}(t,\xi) = e^{-t|\xi|^2}\hat{f}(\xi)$. $\hat{K}_t(\xi) = e^{-t|\xi|^2}$. **Sobolev Spaces $H^s(\mathbb{R}^n)$.** H^s is a Hilbert space. **Sobolev Embedding:** If s > n/2 + k, then $H^s(\mathbb{R}^n) \hookrightarrow C_B^s(\mathbb{R}^n)$ (continuously embedded into space of k-times continuously differentiable functions with bounded derivatives).