Yann Kieffer mardi 1^{er} juin 2021 Grenoble-INP Esisar : $3^{i\grave{e}me}$ année IR&C $14h00 \rightarrow 15h30$

MA351: Théorie des graphes

Examen final

Calculatrices et tous documents autorisés

Les barèmes indiqués sont purement indicatifs.

1. Degrés des sommets dans les graphes non-orientés (4 points)

1) En utilisant l'encodage d'un graphe non-orienté sous forme de liste de voisinages, démontrez que :

$$\sum_{v \in V} d(v) = 2|E|$$

2) Existe-t-il des graphes non-orientés sur 5 sommets dont tous les sommets soient de degré égaux à 3?

2. Décompte des composantes connexes d'un graphe non-orienté (8 points)

Voici maintenant la routine A:

```
 \begin{array}{l} \underline{\mathbf{A}} \colon \\ \mathrm{Entr\'ee} \colon \ G = (V, E) \ \ \mathrm{avec} \ \ E = \{e_1, \dots, e_m\} \\ F \leftarrow \emptyset \\ \mathrm{Pour} \ \ i \ \ \mathrm{de} \ \ 1 \ \ \grave{a} \ \ m \,, \ \ \mathrm{Faire} \colon \\ \mathrm{si} \ \ (V, F \cup \{e_i\}) \ \ \mathrm{est} \ \ \mathrm{sans} \ \ \mathrm{cycle} \;, \ \ \mathrm{faire} \colon \\ F \leftarrow F \cup \{e_i\} \\ \mathrm{Retourner} \ \ F \\ \mathrm{Fin} \end{array}
```

- 1) Illustrez le déroulement de cet algorithme sur un graphe ayant au moins 2 composantes connexes et 2 arêtes.
- 2) En utilisant le fait qu'à l'issue de l'algorithme, le graphe H=(V,F) est sans cycle, démontrer que le nombre de composantes connexes de H (noté p(H)) vérifie la relation :

$$|V| = |F| + p(H)$$

- 3) Démontrez que toute composante connexe de H est incluse dans une composante connexe de G.
- 4) En déduire que les composantes connexes de H qui ont une intersection non-vide avec une composante connexe C de G forment une partition de C.
- 5) Montrez que si C, une composante connexe de G, contient plusieurs composantes connexes de H, alors il y a une arête e dans G qui n'est pas dans l'ensemble F retourné par l'algorithme.
- 6) Montrer que sous les hypothèses de la question précédente, l'arête e aurait due être choisie par l'algorithme.
- 7) Démontrez qu'à l'issue de l'algorithme, H a exactement les mêmes composantes connexes que G.
- 8) En déduire qu'il est possible d'utiliser cet algorithme pour compter les composantes connexes de G. Indiquez comment récupérer le nombre de composantes connexes de G!

3. Implémentation efficace de l'algorithme précédent (8 points)

Voici une implémentation efficace en Python de l'algorithme précédent :

```
def retrouve(f, x):
  if f[x] == x:
    return x
  else:
    return retrouve(f, f[x])
def identite(s):
  f = \{\}
  for x in s:
    f\left[\,x\,\right] \;=\; x
  return f
def composantes(g):
  f = identite(g)
  for x in g:
    for y in g[x]:
      a = retrouve(f, x)
      b = retrouve(f, y)
      if a != b:
         f[y] = x
  return f
def presente(f, g):
  c = \{\}
  for i in g:
    c[i] = []
  for i in g:
    j = retrouve(f, i)
    c[j].append(i)
  d = \{\}
  for i in c:
    if c[i] != []:
      d[i] = c[i]
  return d
```

L'objet de cette partie est de montrer que cet algorithme retourne bien les composantes connexes du graphe passé en entrée.

Voici un exemple d'exécution :

```
>>> g
{0: [2], 1: [], 2: [0], 3: [], 4: [], 5: [], 6: [], 7: [], 8: [9],
9: [8, 11], 10: [], 11: [9]}
>>> z = composantes(g)
>>> z
{0: 0, 1: 1, 2: 0, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 8, 10: 10, 11: 9}
>>> c = presente(z, g)
>>> c
{0: [0, 2], 1: [1], 3: [3], 4: [4], 5: [5], 6: [6], 7: [7], 8: [8, 9, 11], 10: [10]}
>>>
```

- 1) Si g est un dictionnaire sur un ensemble de clés S, et x est une clé de S, que retourne retrouve (identite(g), x)?
- 2) Si on considère la fonction partielle f, définie sur l'ensemble V, comme l'encodage d'un graphe orienté

- (V,A) avec $A = \{(v,f(v)), v \in V\}$, que calcule exactement la fonction $\mathsf{retrouve}(f,v)$?
- 3) Déroulez l'appel de la fonction composantes() sur un graphe de votre choix ayant 2 arêtes et 4 sommets.

Dans la suite, notre objectif sera de montrer qu'à l'issue de l'algorithme composantes (), deux sommets u et v de G seront dans la même composante connexe, si et seulement si retrouve(f,u) = retrouve(f,v), où f dénote la fonction partielle retournée par composantes ().

Notre méthode sera de montrer que cette propriété est vérifiée à chaque étape de l'algorithme pour un graphe bien choisi.

- 4) Montrer qu'après l'appel f = identite(g), deux sommets u et v du graphe (V, \emptyset) sont dans la même composante connexe si et seulement si f[u] == f[v].
- 5) Montrer qu'après les 4 instructions Python :

```
a = retrouve(f, x)
b = retrouve(f, y)
if a != b:
f[y] = x
```

les sommets x et y retourneront la même valeur pour la fonction $u \to \mathtt{retrouve}(f, u)$.

- 6) En déduire qu'il existe un ordre sur les arêtes de G (à préciser!) $E = \{e_1, \ldots, e_m\}$ tel qu'après k passages dans la boucle de la fonction composantes(), les sommets u et v sont dans la même composante connexe du graphe $G_k = (V, E_k)$ avec $E_k = \{e_1, \ldots, e_k\}$ si et seulement si $\mathsf{retouve}(f, u) = \mathsf{retrouve}(f, v)$.
- 7) En déduire que pour la fonction f retournée par composantes (), u et v sont dans la même composante connexe de G si et seulement si retrouve(f, u) = retrouve(f, v).
- 8) Expliquez ce que retourne la fonction presente(f, g), lorsqu'on lui passe en premier argument le résultat f de l'appel composantes(g).
- 9) Détaillez le fonctionnement du code de la fonction presente().