TUTORIAL 1 COMBINATIONAL LOGIC CIRCUIT

Overview

- We will review the following concept in this tutorial:
- Combinational logic circuit
 - No memory, output(s) solely determined by input(s)
- Truth table and logic function
- Two-level logic and PLA
- Simplification with Boolean Algebra and K-map
- Circuit design
- Work with two practical examples
 - Bit comparator
 - Encoder

Digital Logic Circuit

- Two types of digital logic circuits inside a computer:
 - □ Combinational logic circuits
 - Logic circuits that do not have memory
 - The output depends only on the current inputs and the circuit
 - They can be specified fully with a truth table or a logic equation
 - □ Sequential logic circuits
 - Logic circuits that have memory
 - The output depends on both the current inputs and the value stored in memory (called state)

Circuit Design Process

- A simple logic design process involves
 - Problem specification
 - □ Truth table derivation
 - Derivation of logical expression
 - □ Simplification of logical expression
 - Implementation

Review of Boolean Algebra

- Boolean algebra consists of
 - □ Boolean variables (with values equal to either '0' or '1')
 - □ Binary operators: AND (·), OR (+), NOT (')
- Any logic function can be expressed as a two-level logic expression, either as
 - □ Sum-of-Products (SoP) representation, or
 - Product-of-Sums (PoS) representation
- The AND, OR, and NOT operations form a functionally complete set (namely, universal gates), as they can specify any logic function.

Basic Laws of Boolean Algebra

Name	AND Form	OR Form		
Identity Law	1A = A	0 + A = A		
Null Law	0A = 0	1 + A = A		
Idempotent Law	AA = A	A + A = A		
Inverse Law	$A\overline{A} = 0$	$A + \overline{A} = 1$		
Commutative Law	AB = BA	A + B = B + A		
Associative Law	(AB)C = A(BC)	(A + B) + C = A + (B + C)		
Distributive Law	A + BC = (A + B)(A + C)	A(B+C) = AB + AC		
Absorption Law	A(A+B)=A	A + AB = A		
De Morgan's Law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$		

Boolean Algebra Exercise 1

- Find the direct Boolean expression for the following circuit
- Simplify the Boolean expression using Boolean algebra
- Draw the new circuit for the simplified Boolean expression

Boolean Algebra Exercise 2

 Simplify the combinational logic circuit shown below to a minimum form

Boolean Algebra Exercise 3

Simplify the following Boolean expression

$$AB + \overline{AB}CD + \overline{CD}EF$$

2-bit Comparator

- Here we'll be designing circuits to compare 2-bit binary numbers.
- Suppose we have two 2-bit numbers A & B at the inputs, and three outputs as A>B, A==B, A<B</p>
- Only one of the three outputs would be true accordingly if A is greater than or equal to or less than B.
- We'll practice the circuit design for f(A==B), try to work on f(A>B) and f(A<B) by yourself</p>

Solution: 2-bit Comparator Truth Table

$A(A_1A_0)$	$B(B_1B_0)$	f (A>B)	f (A==B)	f (A <b)< th=""></b)<>
			面 香港科	技 大 學

Solution: Logic Function for f(A==B)

Solution: Circuit for f(A==B)

Solution: PLA Implementation

■ The same circuit can be equivalently represented by a programmable logic array (PLA) circuit.

8-to-3 Encoder

- An encoder (2^N-to-N encoder) is a logical block with an 2^N-bit input and N 1-bit outputs, which performs the inverse function of a decoder.
- Example (8-to-3 encoder)
 - 8 inputs $(D_0, D_1, ..., D_7)$ and 3 outputs (X, Y, Z)

8-to-3 Encoder Truth Table

D_0	D_1	D ₂	D_3	D ₄	D_5	D_6	D ₇	X	Υ	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Solution: Logic Function and Circuit

Extra Exercise: Decoder

- A decoder takes a single N-bit input and outputs 2^N 1-bit signals. The 1-bit output corresponds to the N-bit input bit pattern is true while all other outputs are false.
- The following figure shows a block diagram for a 2-to-4 decoder.

Questions

- Why a 2-bit input can generate 4 outputs in the decoder?
- If the input bits are 11, what will happen to the outputs of the decoder?
- Is it possible to have more than one outputs asserted?
- Name two potential uses of the decoder.
- Implement the decoder using Logisim.

Extra Exercise: Multiplexor

- A multiplexor is a devices that given the control signal, selects one of the inputs to be forwarded to the output. The following figure shows a 4-input multiplexor.
- 4-to-1 multiplexor

Questions

- If the inputs A/B are 32-bit in width, what is the data width of the Output O?
- What is the maximum number of inputs if the control signal is 10-bit in width?
- What is the bit-width of the control signal for the multiplexor if there are 9 inputs?

