Exercise 2.7: Binary Operations and Groups Cheatsheet

1. Binary Operation

Definition: A function * on a non-empty set G, assigning a unique element $a*b \in G$ to each pair $(a,b) \in G \times G$.

Formula: $(a, b) \mapsto a * b$.

Analogy: A recipe combining two ingredients into one dish. **Example** (Q.1): Addition (+) on integers \mathbb{Z} : $2+3=5\in\mathbb{Z}$.

2. Properties of Binary Operations

Definition:

- Closure: $a * b \in S$.
- Commutativity: a * b = b * a.
- **Associativity**: (a * b) * c = a * (b * c).
- **Identity**: Exists $e \in S$: a * e = e * a = a.
- Inverse: For each $a \in S$, exists $a' \in S$: a * a' = a' * a = e.

Formulas:

- Commutativity: a * b = b * a.
- Associativity: a * (b * c) = (a * b) * c.
- Identity: a * e = e * a = a.
- Inverse: a * a' = a' * a = e.

Analogy: A team game where results stay in play, order doesn't matter, grouping is flexible, a neutral player exists, and actions are reversible.

Example (Q.1, Integers with +):

- Closure: $2+3=5\in\mathbb{Z}$.
- Commutativity: 2 + 3 = 3 + 2.
- Associativity: (1+2) + 3 = 1 + (2+3).
- Identity: 0 (a + 0 = a).
- Inverse: -a (a + (-a) = 0).

3. Field Axioms

Definition: A set F is a field if:

- Abelian group under +.
- $F \setminus \{0\}$ is an Abelian group under \times .
- Distributive laws hold.

Formulas:

- Left Distributivity: $a \times (b+c) = (a \times b) + (a \times c)$.
- Right Distributivity: $(a + b) \times c = (a \times c) + (b \times c)$.

Analogy: A bank with balanced deposit (addition) and interest (multiplication) rules.

Example (Q.2): Real numbers \mathbb{R} form a field. Complex numbers lack natural ordering (e.g., 2+i vs. 3-i).

4. Residue Classes Modulo n

Definition: Set $\{0, 1, ..., n-1\}$ with operations modulo n.

Formula: $a * b = (a \cdot b) \mod n$.

Analogy: A circular track with n points, looping after n.

Example (Q.3, Multiplication Modulo 5):

E.g., $2 * 3 = 6 \mod 5 = 1$.

Example (Q.4, Addition Modulo 4):

E.g., $2 + 3 = 5 \mod 4 = 1$.

5. Commutativity of Binary Operations

Definition: a * b = b * a. **Formula**: a * b = b * a.

Analogy: A handshake where order doesn't matter.

Example (Q.5): Table (b) is commutative (a * b = c, b * a = c), table (a) is not (a * b = c, b * a = b).

6. Associativity of Binary Operations

Definition: (a * b) * c = a * (b * c). **Formula**: (a * b) * c = a * (b * c).

Analogy: Stacking boxes where grouping doesn't change the stack. **Example** (Q.6): Third row: c * a = c, c * b = d, c * c = c, c * d = d.

7. Groupoid

Definition: A set with a closed binary operation.

Analogy: A club where interactions stay within the club.

Example: Integers \mathbb{Z} with subtraction $(a - b \in \mathbb{Z})$.

8. Semigroup

Definition: A set with a closed, associative binary operation.

Analogy: A team with consistent task combinations. **Example**: Natural numbers \mathbb{N} with addition (+).

9. Monoid

Definition: A semigroup with an identity element.

Analogy: A team with a neutral member.

Example: Whole numbers \mathbb{W} with addition, identity 0.

10. Group

Definition: A monoid with inverses for all elements. **Analogy**: A team where every action is reversible.

Example (Q.7): $\{0, 1, 2, 3\}$ with $+ \mod 4$:

- Identity: 0.

- Inverses: $0 \rightarrow 0$, $1 \rightarrow 3$, $2 \rightarrow 2$, $3 \rightarrow 1$.

11. Abelian Group

Definition: A group where the operation is commutative. **Analogy**: A team where collaboration order doesn't matter.

Example: Integers \mathbb{Z} with addition (a + b = b + a).

