

Práctica 3

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

Tel/Fax: (++54 +11) 4576-3300 http://www.exactas.uba.ar

$\acute{\mathbf{I}}\mathbf{ndice}$

3.	Prá	ctica 3	2
	3.1.	Ejercicio 1	2
	3.2.	Ejercicio 2	2
	3.3.	Ejercicio 3	2
	3.4.	Ejercicio 4	2
	3.5.	Ejercicio 5	3
	3.6.	Ejercicio 6	4
	3.7.	Ejercicio 7	4
	3.8.	Ejercicio 8	4
	3.9.	Ejercicio 9	4
	3.10.	Ejercicio 10	4
	3.11.	Ejercicio 11	4
	3.12.	Ejercicio 12	5
	3.13.	Ejercicio 13	5
	3.14.	Ejercicio 14	5
	3.15.	Ejercicio 15	5
	3.16.	Ejercicio 16	5
	3.17.	Ejercicio 17	6
	3.18.	Ejercicio 18	6
	3.19.	Ejercicio 19	6
	3.20.	Ejercicio 20	6
	3.21.	Ejercicio 21	7
	3.22.	Ejercicio 22	7
	3.23.	Ejercicio 23	7
	3.24.	Ejercicio 24	7
	3.25.	Ejercicio 25	7
	3.26.	Ejercicio 26	8
		Ejercicio 27	8
	3.28.	Ejercicio 28	9
	3.29.	Ejercicio 29	9
	3.30.	Ejercicio 30	9
	3.31.	Ejercicio 31	10
	3.32.	Eiercicio 32	10

3. Práctica 3

3.1. Ejercicio 1

Por enunciado, $A = \{n \in V : n \ge 132\}$

Y también, $A^c = \{ n \in V : n < 132 \}$

Se que dado un elemento cualquiera, $x \in V \iff (x \in \mathbb{N} \land x \mod 15 = 0)$

Por lo tanto, $A^c = \{n \in V : (n < 132 \land n \mod 15 = 0)\}$

Así,
$$\#A^c = \lfloor \frac{132}{15} \rfloor = 8$$

Por extensión, $A^c = \{15, 30, 45, 60, 75, 90, 105, 120\}$

3.2. Ejercicio 2

Defino el conjunto universal $V = \{n \in \mathbb{N} : n \le 1000\}$

Defino el conjunto $T = \{n \in \mathbb{N} : n \mod 3 = 0\}$

Defino el conjunto $C = \{n \in \mathbb{N} : n \mod 5 = 0\}$

Se que un número no es múltiplo de 3 si no pertenece a T y no es multiplo de 5 si no pertenece a C

Luego #
$$T = \lfloor \frac{1000}{3} \rfloor = 333$$
 y # $C = \lfloor \frac{1000}{5} \rfloor = 200$

Pero existen números que son múltiplos de 3 y 5 a la vez. Los múltiplos de 15.

Sea
$$Q = \{n \in \mathbb{N} : n \mod 15 = 0\}$$

Luego,
$$\#Q = \lfloor \frac{1000}{15} \rfloor = 66$$

Por lo tanto la cantidad de números menores a 1000 que no son multiplos ni de 3 ni de 5 son:

$$res = \#V - \#T - \#C + \#Q$$

$$res = 1000 - 333 - 200 + 66$$

$$res=533$$

Luego existen 533 números naturales menores a 1000 que no son múltiplos de 3 ni de 5.

3.3. Ejercicio 3

$$\#(A \cup B \cup C) = \#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C)$$

3.4. Ejercicio 4

3.4.A. Pregunta i

Datos del enunciado:

1.
$$\#V = 150$$

2.
$$\#A = 83$$

3.
$$\#B = 67$$

4.
$$\#(A \cap B) = 45$$

Luego,

$$\#(A \cup B)^c = \#V - \#(A \cup B)$$

$$= \#V - (\#A + \#B - \#(A \cap B))$$

$$= 150 - (83 + 67 - 45)$$

$$= 45$$

3.4.B. Pregunta ii

Total de elementos en A = elementos sólo en A + elementos en la intersección A y B + elementos en la intersección A y C + elementos en la intersección A, B y C 63 = 30 + x + z + 7

Total de elementos en B = elementos sólo en B + elementos en la intersección A y B + elementos en la intersección B y C + elementos en la intersección A, B y C 30 = 13 + x + y + 7

Total de elementos en C = elementos sólo en C + elementos en la intersección A y C + elementos en la intersección A, B y C 50 = 25 + y + z + 7

Resolviendo las ecuaciones:

Desde la ecuación 2, despejamos y en función de x:

$$y = 10 - x$$

Desde la ecuación 3, despejamos z en función de y:

$$z = 18 - y z = 18 - (10 - x) z = 8 + x$$

Luego, reemplazamos los valores de y y z en la ecuación 1:

$$63 = 30 + x + (8 + x) + 7$$

Resolviendo para x:

$$x = 9$$

Luego, reemplazando en las ecuaciones 2 y 3:

$$y = 10 - 9 = 1 z = 8 + 9 = 17$$

Por lo tanto, el número de elementos en la intersección A y B es 9, en la intersección A y C es 17, en la intersección B y C es 1, y en la intersección A, B y C es 7.

En resumen:

- 1. Cuántos alumnos estudian exactamente dos idiomas? 9 + 17 + 1 = 27
- 2. ¿Cuántos inglés y alemán pero no francés? 9
- 3. ¿Cuántos no estudian ninguno de esos idiomas? 110 102 = 8

Resoución de E-Liq

3.5. Ejercicio 5

Datos del enunciado:

- 1. Rutas BSAS Ros = 3
- 2. Rutas Ros SF = 4
- 3. Rutas SF Req = 4

Por lo tanto hay $3 \cdot 4 \cdot 2 = 24$ formas de ir de Buenos Aires a Reconquista pasando por Rosario y Santa Fe.

3.6. Ejercicio 6

3.6.A. Pregunta i

Hay $8 \cdot 9 \cdot 9 \cdot 9 = 5832$ números.

3.6.B. Pregunta ii

Calculando por el complemento:

Hay $9 \cdot 10 \cdot 10 \cdot 10 = 9000$ números de cuatro cifras.

En el inciso anterior se calculó la cantidad de números que no tienen cierto dígito (calculado por 5, vale para 7).

Luego habrá 9000 - 5832 = 3168 números.

3.7. Ejercicio 7

Puede distribuirlos en 3¹⁷ formas.

3.8. Ejercicio 8

Defino $A = \{materias\}$, se que #A = 5

Luego las posibles elecciones están dadas por $\#P(A) = 2^5 = 32$

Si tiene que cursar al menos dos materias, no puede elegir las opciones de cursar ninguna materia o una sola materia.

4

Así tiene 32 - 5 - 1 = 26 formas de cursar al menos dos materias.

3.9. Ejercicio 9

Se que A es de la forma $A = \{a_1, a_2, ..., a_n\}$

R es una relación en $A \times A \iff R \subseteq A \times A$: si R es un subconjunto del producto cartesiano $A \times A$

Luego la cantidad de relaciones en A será: $\#P(A\times A)=2^{n^2}$

- 1. Reflexivas: 2^{n^2-2}
- 2. Simétricas: $2^{\sum_{k=1}^{n} k} = 2^{\frac{n(n+1)}{2}}$
- 3. Simétricas: $2^{\sum_{k=1}^{n-1} k} = 2^{\frac{n(n-1)}{2}}$

3.10. Ejercicio 10

- 1. # $\{f \in F/f \text{ es función}\} = 12^5$
- 2. $\#\{f \in F/10 \not\in Im(f)\} = 11^5$
- 3. $\#\{f \in F/10 \in \text{Im}(f)\} = 12^5 11^5$
- 4. $\#\{f \in F/f(1) \in \{2,4,6\}\} = 3 \cdot 12^4$

3.11. Ejercicio 11

- 1. 7! = 5040 functiones.
- 2. $3! \cdot 4! = 144$ functiones.

3.12. Ejercicio 12

De cinco cifras usando los dígitos $\{1, 2, 3, 4, 5\}$: 5!

De cinco cifras usando los dígitos $\{1, 2, 3, 4, 5, 6, 7\}: \frac{5!}{2!}$

De cinco cifras usando los dígitos $\{1,2,3,4,5,6,7\}$ sin 2 en las cententas: $\frac{7!}{2!} \cdot \frac{4}{5}$

3.13. Ejercicio 13

Rdo. funciones inyectivas: Una función $f:A\to B$ es inyectiva sii $(x\in A)\land (y\in A)\land (x\neq y)\implies f(x)\neq f(y)$

- 1. $\frac{10!}{(10-7)!} = \frac{10!}{3!}$
- 2. Para f(1) tengo 5 opciones. Al resto todas menos las que ya fueron asignadas $(9.8,7,...) \implies 5 \cdot \frac{9!}{3!}$

3.14. Ejercicio 14

Defino $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{1, 2, 3, 4, 5, 6, 7\}$

Luego #A = #B = 7

 $f: A \to B$ es viyectiva $\iff \forall x \in A; \exists ! y \in B : f(x) = y$

Y además me piden que $f(\{1, 2, 3\}) \subseteq \{3, 4, 5, 6, 7\}$

Luego habrá $\frac{5!}{2!} \cdot 4!$ funciones que cumplen lo pedido.

3.15. Ejercicio 15

Tengo R relación de equivalencia en $A = \{f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\} : f \text{ es inyectiva}\}$

Por definición, $fRg \iff f(1) + f(2) = g(1) + g(2)$

Necesito saber cuantas $q \in A$ se relaciones con f(n) = n + 2

Pero,

$$fRg \iff f(1) + f(2) = g(1) + g(2)$$

 $3 + 4 = g(1) + g(2)$

7 = g(1) + g(2)

Entonces, busco las $g \in A : g(1) + g(2) = 7$

Hay seis funciones de $\{1,2\} \rightarrow \{2,3,4,5,6\}$ que cumplen con esto.

Completo el total de funciones asignando el resto de los elementos de forma inyectiva.

Luego habrá $6 \cdot \frac{6!}{4!} = 180$ elementos dentro de la clase de equivalencia de f(n) = n + 2

3.16. Ejercicio 16

Defino $A = \{1, 2, 3, ... 8\}$ y $B = \{1, 2, 3, ..., 12\}$ con #A = 8 y #B = 12

Condiciones que me piden:

- 1. f invectiva
- 2. f(5) + f(5) = 6
- 3. $f(1) \leq 6$

Primero busco asignaciones a f(5) y f(6) que cumplan lo pedido. Para esto hay cuatro opciones posibles.

Luego f(1) puede tomar cualquier valor menos los dos que ya fueron asignados ya que f(5); f(6) siempre toman valores ≤ 6 . Luego para f(1) hay 4 opciones.

Para los demás elementos de A pueden tomar alguno de los 9 elementos restantes de B.

Por lo tanto hay $4 \cdot 4 \cdot \frac{9!}{4!}$ opciones.

3.17. Ejercicio 17

- 1. $\binom{7}{4}$
- 2. $\binom{6}{3}$
- 3. $\binom{6}{4}$
- 4. $\binom{5}{3} \cdot 2$

3.18. Ejercicio 18

Por enunciado $A = \{n \in \mathbb{N} : n \le 20\}$ y #A = 20

3.18.A. Pregunta i

Defino $B_1 = \{n \in \mathbb{N} : n \le 20 \land n \mod 3 = 0\} = \{3, 6, 9, 12, 15, 18\}$

Luego para armar las funciones debo elegir 4 del conjunto B_1 y 6 elementos del conjunto $B-B_1$

Luego habrá $\binom{6}{4} \cdot \binom{14}{6}$ subconjuntos.

3.18.B. Pregunta ii

Hay suma impar de dos elementos si uno de ellos es par y el otro impar. Entonces, todos los elementos deben ser pares o impares.

Si son todos pares $\implies \binom{10}{5}$ subconjuntos.

Si son todos impares $\implies \binom{10}{5}$ subconjuntos.

Luego habrá $2 \cdot \binom{10}{5}$

3.19. Ejercicio 19

Cada punto de una recta se une a dos de la otra para formar un triángulo.

Es decir, para cada vértice en una recta, elijo dos en la otra recta para formar el triángulo.

Luego habrá $\binom{m}{2} \cdot n$ con $m \geq 2; n \in \mathbb{N}$

3.20. Ejercicio 20

Defino $A = \{1, 2, 3, ..., 11\}$ y $B = \{1, 2, 3, ..., 16\}$

Me piden:

- 1. f invectiva
- 2. n, f(n) pares
- 3. f(1) < f(3) < f(5) < f(7)

La segunda condición me dice que los pares solo pueden tener imagen par, luego habrá #fp funciones para los pares.

$$\#fp = \frac{8!}{3!}$$

Para los impares tengo que considerar la tercera condición, esta implica que no me importa el orden de los elementos de B, sino que me voy a quedar con aquel que cumple la condición.

Así habrá #fi funciones para los impares.

$$\#fi = \binom{11}{4} \cdot 7 \cdot 6$$

Por lo tanto, hay $\frac{8!}{3!} \cdot \binom{11}{4} \cdot 7 \cdot 6$ funciones que cumplen lo pedido.

3.21. Ejercicio 21

- 1. 7!
- $2. \frac{7!}{3!}$
- $3. \frac{12!}{3! \cdot 2!}$

3.22. Ejercicio 22

- 1. $\binom{7}{3} \cdot 3! \cdot 4!$
- 2. $\binom{7}{4} \cdot 3!$
- $3. \ 4! \cdot 4!$

3.23. Ejercicio 23

- 1. Por el complemento: $\frac{10!}{3!.2!} \frac{9!}{3!}$
- 2. $\binom{10}{3} \cdot 3! \cdot 7!$

3.24. Ejercicio 24

Defino $F = \{D, D, D, D, D, D, N, N, B, P, H, K, C, M\}$

Condiciones:

- 1. Dos frutas por día.
- 2. No más de una N por día.

Calculo por el complemento,

#Todas – #Dos naranjas por día = $14! - 7 \cdot 12!$

3.25. Ejercicio 25

Hay 15 personas pero A Juan y Nicolás los puedo pensar como bloque (JN), luego tengo 14 elementos para ordenar. Calculo por el complemento:

Rta. = #Todas las formas donde JN va en auto - #LMD no van en auto y JN va en auto

$$= 3 \cdot \binom{13}{2} \cdot \binom{11}{4} \cdot \binom{7}{4} - 3 \cdot \binom{10}{2} \cdot \binom{8}{4} \cdot \binom{4}{4}$$

3.26. Ejercicio 26

Hago la demostración por inducción.

Defino $p(n): \binom{2n}{n} > n \cdot 2^n; \forall n \in \mathbb{N}_{\geq 4}$

Caso base n=4

$$p(4): \binom{8}{4} > 4 \cdot 2^4 \iff \frac{8!}{4! \cdot 4!} > 4 \cdot 2^4 \iff 70 > 64$$

Luego p(4) es verdadero.

Paso inductivo

Dado $k \ge 4$ quiero probar que $p(k) \implies p(k+1)$

HI: $\binom{2k}{k} > k \cdot 2^k$

$$\mathrm{Qpq:} \ \binom{2(k+1)}{k+1} > (k+1) \cdot 2^{k+1} \iff \binom{2k+2}{k+1} > (k+1) \cdot 2^{k+1}$$

Pero,

Luego alcanza probar que,

$$\frac{(2k+2)(2k+1)(k.2^k)}{(k+1)^2} \ge (k+1) \cdot 2^{k+1}$$

$$\frac{2(k+1)(2k+1)(k.2^k)}{(k+1)(k+1)} \ge (k+1) \cdot 2^k \cdot 2$$

$$\frac{(2k+1) \cdot k}{k+1} \ge k+1$$

$$2k^2 + k \ge k^2 + 2k + 1$$

$$k^2 - k \ge 1$$

$$k \cdot (k-1) > 1$$

Que es verdadero, $\forall k \geq 4$.

Luego $p(k) \implies p(k+1)$ como se quería probar.

Así, p(n) es verdadero, $\forall n \in \mathbb{N}_{>4}$

3.27. Ejercicio 27

Lo pruebo por inducción.

Defino
$$p(n): a_n = \binom{2n}{n} \forall n \in \mathbb{N}$$

Caso base n=1

$$p(1): a_1 = \binom{2.1}{1} = 2$$

Por definición de la sucesión, $a_1 = 2$

Luego p(n) es verdadero.

Paso inductivo

Dado $k \ge 1$ quiero probar que $p(k) \implies p(k+1)$

$$HI: a_k = \binom{2k}{k}$$

Qpq: $a_{k+1} = {2(k+1) \choose k+1} = {2k+2 \choose k+1}$

Pero.

$$a_{k+1} = 4 \cdot a_k - 2 \cdot \frac{(2k)!}{(k+1)! \cdot k!}$$

$$= 4 \cdot \binom{2k}{k} - 2 \cdot \frac{(2k)!}{(k+1)! \cdot k!}$$

$$= 4 \cdot \frac{(2k)!}{k! \cdot k!} - 2 \cdot \frac{(2k)!}{(k+1)! \cdot k!}$$

$$= \frac{4 \cdot (k+1) \cdot (2k)! - 2 \cdot (2k)!}{(k+1)! \cdot k!}$$

Luego alcanza probar que,

$$\frac{4 \cdot (k+1) \cdot (2k)! - 2 \cdot (2k)!}{(k+1)! \cdot k!} = \binom{2k+2}{k+1}$$

$$\frac{4 \cdot (k+1) \cdot (2k)! - 2 \cdot (2k)!}{(k+1)! \cdot k!} = \frac{(2k+2)!}{(k+1)!(k+1)!}$$

$$\frac{4 \cdot (k+1) - 2}{k!} = \frac{(2k+2) \cdot (2k+1)!}{(k+1)!}$$

$$4 \cdot (k+1) - 2 = \frac{2(k+1)(2k+1)}{k+1}$$

$$4k + 4 - 2 = 4k + 2$$

$$4k + 2 = 4k + 2$$

Luego $p(k) \implies p(k+1)$ como se quería probar. Así, p(n) es verdadero, $\forall n \in \mathbb{N}$

3.28. Ejercicio 28

TODO

3.29. Ejercicio 29

Enunciado, $X = \{1, 2, 3, ..., 20\}$ y R una relación en P(X)

Por definición, sean $A \in P(X)$; $B \in P(X)$ conjuntos, $ARB \iff A - B = \emptyset \iff A \subseteq B$

Luego busco $A \in P(X) : (\#A \ge 2) \land (AR\{1, 2, 3, 4, 5, 6, 7, 8, 9\})$

Por el complemento: $\#P(\{1,2,...,9\}) - \#\{c: \#c < 2 \land c - \{1,2,...,9\} = \emptyset\}$

Luego habrá $2^9 - \left[\binom{9}{0} + \binom{9}{1}\right] = 2^9 - 10$ subconjuntos.

3.30. Ejercicio 30

Por enunciado, $X = \{1, 2, 3, 4, 5, 5, 7, 8, 9, 10\}$

Por definición, $ARB \iff A \cap \{1,2,3\} = B \cap \{1,2,3\}$

Luego busco conjuntos $B \in P(X) : (\#B = 5) \land (BR\{1,3,5\})$

Pero
$$BR\{1,3,5\} \iff B \cap \{1,2,3\} = \{1,3,5\} \cap \{1,2,3\} = \{1,3\}$$

Así, busco subconjuntos de X de 5 elementos que incluyan al {1,3} y no tengan al 2.

Entonces, hay $\binom{7}{3} = 35$ subconjuntos.

3.31. Ejercicio 31

Por enunciado, $X = \{n \in \mathbb{N} : n \le 100\}$ y $A = \{1\}$

Se que $A \triangle B \iff (A \cup B) - (A \cap B)$

Entonces, busco B tales que $A\triangle B$ tengan 0 o 1 o 2 elementos.

Para obtener 0 elementos $B = \{1\} \implies A \triangle B = (A \cup B) - (A \cap B) = \{1\} - \{1\} = \emptyset$

Hay un elemento.

Para obtener 1 elemento $B = \{b_1, 1\} \implies A \triangle B = (A \cup B) - (A \cap B) = \{b_1, 1\} - \{1\} = \{b_1\}$

Luego hay $\binom{99}{1} + 99$ que cumplen esto.

Para obtener 2 elementos $B = \{b_1, b_2, 1\} \implies A \triangle B = (A \cup B) - (A \cap B) = \{b_1, b_2, 1\} - \{1\} = \{b_1, b_2\} = \{b_1, b_2, 1\} =$

Luego hay $\binom{99}{2}$ que cumplen esto.

Así, habrá $1 + \binom{99}{1} + 99 + \binom{99}{2} = 5050$

3.32. Ejercicio 32

3.32.A. Pregunta i

Tengo un conjunto A con n elementos. Busco que la relación de equivalencia de $a \in A$ tenga n elementos.

La relación de equivalencia me dice con cuantos elementos se relaciona, en este caso, el elemento a.

Luego voy a tener tantas clases de equivalencia como formas de elegir n elementos de un conjunto de 2n elementos.

Así, habrá $\binom{2n}{n}$ clases de equivalencia.

3.32.B. Pregunta ii

Con el mismo rezanamiento que el inciso anterior habrá, $\binom{3n}{b} \cdot \binom{2n}{n}$ clases de equivalencia.