Lecture 04 – 22 January 2009

SCIENCE TOPICS:
 Darkness and Light, Winter and Summer (continued)
 Geocentric and

READING

E2–E4, p. I–22 Ch. I, Sec I. I–I.3

Heliocentric models

Homework 01 is out
Due on Tuesday,
27 Jan at 11:59 pm

EXTRA PRACTICE:

p.22 Review: I-2, II-14

p.23 Self-Test: 2, 4–8, 11–15

p.23 Problems: 6–9

Precession of the equinoxes

The Earth's rotation axis precesses with a period of 26,000 years. At the moment is points close to Polaris.

Polaris not always the North Star

Astrological charts were devised in 131 BC.

What fraction of a precession cycle are they off?

How many constellations does that offset correspond to?

Orion the Hunter

Was in love with Merope (one of the Pleiades), who did not love him back. Stepped on Scorpius...

Placed by the gods next to the river Eridanus with his two dogs (Canis Major, Canis Minor).

Stars in a constellation need not be close to each other. They are only projected close to each other

4. What causes the phases of the moon?

5. Solar and lunar eclipses

Geometry of eclipses

Solar eclipses

Solar Eclipse seen from the ISS

Solar corona seen during a total eclipse of the Sun.

Motion of Planets in the Sky

Motion of Planets in the Sky

- They wander relative to the stars (found at slightly different places from one night to the next).
- Retrograde motion
- Brightness variations
- Some planets (Mercury, Venus) exhibit phases (cf, lunar phases)

The Geocentric model of the Solar System, according to Ptolemy

The Geocentric model of the Solar System, according to Ptolemy

Ptolemy

- Silent 'P'
- Around 85 I60AD
 Roman, lived in Egypt
- Earth is the centre of the Universe (geocentric model)
- Accepted until Nicolaus Copernicus

Nicolaus Copernicus

- 1473-1543
- De revolutionibus orbium coelestium (One the Revolutions of the Celestial Spheres), published 1543
- Put the Sun at the centre of the Universe (heliocentric model)

Orbit of Mars

http://cfa-www.harvard.edu/afoe/simulation/e3.html

Mars's Retrograde Motion

Phases of Venus explained by the Heliocentric model

Galileo Galilei

Invented telescope in 1609

400 years ago!

2009 is the International Year of Astronomy

Galileo's Observations of Jupiter

Copyright © 2007 Pearson Prentice Hall, Inc.

Johannes Kepler

- 1571 1630 (same time as Galileo)
- Was German but worked with Tycho Brahe (another very famous astronomer) in Prague, Czech Rep.
- Made meticulous observations and has "Three Laws"

Kepler's Laws

- I. The orbits of planets are ellipses with the Sun at one focus.
- 2. During their orbits around the sun, the planets sweep out equal areas in equal times (they move faster when they are closer to the Sun)
- 3. $P^2 = a^3$

Elliptical orbits of planets

e is the eccentricity (measures the elongation) e = 0 means perfect circle e close to 1 means very elongated

Copyright © 2007 Pearson Prentice Hall, Inc

Kepler's Laws

- I.The orbits of planets are ellipses with the Sun a one focus.
- 2. During their orbits around the sun, the planets sweep out equal areas in equal times (they move faster when they are closer to the Sun)

3.
$$P^2 = a^3$$

Kepler's Laws

- I. The orbits of planets are ellipses with the Sun a one focus.
- 2. During their orbits around the sun, the planets sweep out equal areas in equal times (they move faster when they are closer to the Sun)
- 3. $P^2 = a^3$

Orbit of Mars

Planet	Orbital Period (yrs)	Distance (AU)	P ²	a ³
Mercury	0.24	0.387		
Venus	0.61	0.723		
Earth	1.00	1.00		
Mars	1.88	1.523		
Jupiter	11.9	5.204		
Saturn	29.6	9.582		
Uranus	84.3	19.23		
Neptune	164.8	30.4		

Planet	Orbital Period (yrs)	Distance (AU)	P ²	a ³
Mercury	0.24	0.387	0.058	
Venus	0.61	0.723		0.378
Earth	1.00	1.00	1.00	1.00
Mars	1.88	1.523		
Jupiter	11.9	5.204	141.6	
Saturn	29.6	9.582		879.7
Uranus	84.3	19.23		
Neptune	164.8	30.4		28,094