Семинар 1

Алексеев Василий

1 сентября 2021

Содержание

1	Матрицы и определители 2-го и 3-го порядков		1
	1.1	Операции с матрицами	1
	1.2	Определитель матрицы	3
2	2 Системы линейных уравнений. Правило Крамера		4
3 Дополнение		олнение	7
	3.1	Правило треугольника	7
	3.2	Диагональные дела	8
	3.3	Задание определителя с помощью формулы	8
	3.4	Свойства определителя	9
	3.5	Задание определителя через свойства	10

1. Матрицы и определители 2-го и 3-го порядков

Вещественная матрица A размера $m \times n$ — "таблица" из чисел $a_{ij} \in \mathbb{R}, i=1\dots m, j=1\dots n$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

1.1. Операции с матрицами

Определение 1.1 (Сложение матриц). Пусть $A, B \in \mathbb{R}^{n \times n}$. Суммой A + B называется матрица $C \in \mathbb{R}^{n \times n}$, такая что $c_{ij} = a_{ij} + b_{ij}$, $i, j = 1, \dots, n$.

Определение 1.2 (Умножение матрицы на число). Пусть $A \in \mathbb{R}^{n \times n}$, $\alpha \in \mathbb{R}$. Произведением матрицы A на число α называется матрица C, такая что $c_{ij} = \alpha \cdot a_{ij}$, $i, j = 1, \ldots, n$.

Замечание. Можно проверить, что матрицы $\mathbb{R}^{n \times n}$ с введённой операцией сложения и умножения на числа из \mathbb{R} образуют линейное пространство \mathbb{R}^1 , то есть операции обладают следующими свойствами:

- 1. A + (B + C) = (A + B) + C, $\forall A, B, C \in \mathbb{R}^{n \times n}$ (ассоциативность сложения).
- 2. $A+B=B+A, \forall A, B \in \mathbb{R}^{n \times n}$ (коммутативность сложения).
- 3. $\exists 0_{n \times n} \in \mathbb{R}^{n \times n} : 0_{n \times n} + A = A, \forall A \in \mathbb{R}^{n \times n}$.
- 4. $\forall A \in \mathbb{R}^{n \times n} \exists -A \in \mathbb{R}^{n \times n} : A + (-A) = 0_{n \times n}$
- 5. $\alpha(\beta A) = (\alpha \beta) A$, $\forall \alpha, \beta \in \mathbb{R}$, $\forall A \in \mathbb{R}^{n \times n}$ (ассоциативность умножения на скаляр).
- 6. $1 \cdot A = A, \forall A \in \mathbb{R}^{n \times n}$.
- 7. $(\alpha + \beta)A = \alpha A + \beta A$, $\forall \alpha, \beta \in \mathbb{R}$, $A \in \mathbb{R}^{n \times n}$ (дистрибутивность умножения матрицы на число относительно сложения чисел).
- 8. $\alpha(A+B) = \alpha A + \alpha B$, $\forall \alpha \in \mathbb{R}$, $A, B \in \mathbb{R}^{n \times n}$ (дистрибутивность умножения матрицы на число относительно сложения матриц).

Определение 1.3 (Линейная комбинация матриц). Линейной комбинацией матриц A_1, \ldots, A_n называется их сумма с некоторыми коэффициентами $\alpha_i \in \mathbb{R}$:

$$\alpha_1 \cdot A_1 + \ldots + \alpha_n \cdot A_n$$

Задача (15.2(6)). Вычислить линейную комбинацию матриц:

$$2\begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} = ?$$

Решение. Вычисляя линейные комбинации соответственных элементов матриц, получаем ответ:

$$\begin{pmatrix} -1 & 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & -1 & 1 \end{pmatrix}$$

¹wikipedia.org/wiki/Vector space

Определение 1.4 (Умножение матриц). Пусть $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$. Тогда матрица C называется произведением матриц A и B, если

$$\begin{cases} c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} \\ 1 \le i \le m \\ 1 \le j \le n \end{cases}$$

и обозначается C = AB.

$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \xrightarrow{\triangleright} \begin{array}{c} \times \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & & \downarrow \\$$

Рис. 1: Иллюстрация умножения матриц.

Задача (15.5(12)). Вычислить произведение матриц:

$$\begin{pmatrix} 0 & \dots & 0 & \lambda_1 \\ 0 & \dots & \lambda_2 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \lambda_n & \dots & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = ?$$

Решение.

$$\begin{pmatrix} 0 & \dots & 0 & \lambda_1 \\ 0 & \dots & \lambda_2 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \lambda_n & \dots & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = \begin{pmatrix} 0 \cdot \lambda_1 + \dots + \lambda_1 \cdot 0 & \dots & 0 + \dots + \lambda_1 \cdot \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_n \cdot \lambda_1 + \dots + 0 & \dots & \lambda_n \cdot 0 + \dots + 0 \cdot \lambda_n \end{pmatrix} = \begin{pmatrix} 0 & \dots & \lambda_1 \lambda_n \\ \vdots & \ddots & \vdots \\ \lambda_n \lambda_1 & \dots & 0 \end{pmatrix}$$

И ещё пара небесполезных концепций из мира матриц.

Определение 1.5 (Единичная матрица). Матрица $A \in \mathbb{R}^{n \times n}$ называется единичной, если она нулевая, кроме главной диагонали ($\{a_{ij} \mid i=j\}$), на которой стоят единицы. То есть $a_{ij}=1$ при i=j и $a_{ij}=0$ при $i\neq j$:

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Единичная матрица обычно обозначается E или I.

Определение 1.6 (Транспонирование матрицы). Пусть $A \in \mathbb{R}^{n \times n}$. Тогда транспонированной по отношению к матрице A матрицей называется такая матрица , что $c_{ij} = a_{ji}$. Транспонированная матрица обозначается A^T .

Определение 1.7 (След матрицы). Следом матрицы $A \in \mathbb{R}^{n \times n}$ называется сумма элементов, находящихся на главной диагонали $\{a_{ij} \mid i=j, i=0,\dots,n\}$:

$$\begin{cases} \operatorname{Sp}: \ \mathbb{R}^{n \times n} \to \mathbb{R} \\ \operatorname{Sp}: \ A \mapsto \sum_{i=1}^{n} a_{ii} \end{cases}$$

У следа есть несколько возможных обозначений. Например, можно ещё писать Тг А.

1.2. Определитель матрицы

Об определителе можно думать как об особой числовой функции на множестве матриц, обозначаемой det или | · |

$$\det: \mathbb{R}^{n \times n} \to \mathbb{R}$$

Существует несколько эквивалентных способов определения det: через свойства функции, конкретную формулу вычисления по элементам матрицы 2 при произвольном n. Мы пока опустим строгое определение det и будем считать, что определитель "просто есть", как-то задан. И рассмотрим, как его вычислять для квадратных матриц размерностей 2 и 3.

Пример. Определитель второго порядка:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

Пример. Определитель третьего порядка (разложение по первой строке):

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$= a_1 \cdot \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \cdot \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \cdot \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

$$= a_1 b_2 c_3 - a_1 b_3 c_2 - a_2 b_1 c_3 + a_3 b_1 c_2 + a_2 b_3 c_1 - a_3 b_2 c_1$$

$$(1)$$

Но и при более высоких порядках (четыре и далее) можно использовать тот же алгоритм разложения по первой строке, сводя вычисление определителя порядка n к вычислению нескольких определителей порядка n-1. Даже если мы ещё раз посмотрим на определитель второго порядка, то увидим, что он тоже может быть посчитан разложением по первой строке, если положить определитель матрицы размера 1×1 из одного элемента равным этому самому элементу:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot |d| - b \cdot |c| \xrightarrow{|x| \equiv x} ad - cb$$

Таким образом, мы уже фактически пришли к следующему варианту определить функцию det:

Определение 1.8 (Определитель (рекурсивный вариант определения)). Положим определитель матрицы из одного элемента равным этому самому элементу

$$\det(a) \equiv a$$

Пусть d_{ij} — определитель подматрицы D_{ij} матрицы $A \in \mathbb{R}^{n \times n}$, которая получается при вычёркивании i-ой строки и j-го столбца. Тогда

$$\det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} d_{ij}$$

где i — любая строка матрицы A (не важно, какая — значение функции det не изменится).

Задача (14.7(3)).

$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{vmatrix} = ?$$

Решение.

$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{vmatrix} = 1 \cdot \left(1 \cdot 1 - (-2) \cdot (-2) \right) - 2 \cdot \left(2 \cdot 1 - 2 \cdot (-2) \right) + 2 \cdot \left(2 \cdot (-2) - 2 \cdot 1 \right) = -3 - 12 - 12 = -27$$

2. Системы линейных уравнений. Правило Крамера

Система m линейных уравнений с n неизвестными:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

В матричном виде:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Или так:

$$A_{m\times n}\boldsymbol{x}_{n\times 1}=\boldsymbol{b}_{m\times 1}$$

Определение 2.1 (Решение системы).

$$\{x \in \mathbb{R}^n \mid Ax = b\}$$

Определение 2.2. Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет решений.

Определение 2.3. Говорят, что система B следует из системы A, если множество решений B содержит множество решений A (2).

Теорема 2.1. Пусть число уравнений в системе m равно числу неизвестных n. Тогда если $\det A \neq 0$, то система Ax = b имеет решение, и притом только одно.

Рис. 2: Множество решений А содержится во множестве решений В.

Теорема 2.2 (Правило Крамера). Пусть число уравнений в системе m равно числу неизвестных n. Тогда если $\det A \neq 0$, то

$$\begin{cases} x_i = \frac{\Delta_i}{\Delta} \\ \Delta \equiv \det A \\ \Delta_i \equiv \det(\boldsymbol{a}_1, \dots, \boldsymbol{a}_{i-1}, \boldsymbol{b}, \boldsymbol{a}_{i+1}, \dots, \boldsymbol{a}_n) \end{cases}$$

Пример. Если определитель матрицы системы равен нулю, то решений может как не быть вообще, так и быть бесконечно много. Например:

$$\begin{cases} x + y = 2 \\ x + y = -1 \end{cases} \begin{cases} x + y = 2 \\ x + y = 2 \end{cases}$$

Задача (17.1(2)). *Решить систему*:

$$\begin{cases} 3x + 5y = 2\\ 5x + 9y = 4 \end{cases}$$

Решение. Перепишем систему в матричном виде:

$$\begin{cases} Ax = b \\ A = \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix} \\ b = \begin{pmatrix} 2 & 4 \end{pmatrix}^T \end{cases}$$

Расширенная матрица системы: (A|b).

Матрица A квадратная. Её определитель |A|=2 отличен от нуля. Поэтому решение системы существует и единственно. И его можно найти по формулам:

$$\Delta = \det A = \det \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix} = 2$$

$$\Delta_x = \det\begin{pmatrix} 2 & 5 \\ 4 & 9 \end{pmatrix} = -2 \Rightarrow x = \frac{\Delta_x}{\Delta} = \frac{-2}{2} = -1$$

$$\Delta_y = \det\begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix} = 2 \Rightarrow y = \frac{\Delta_y}{\Delta} = \frac{2}{2} = 1$$

И решение:

 $\mathbf{x} = \begin{pmatrix} x & y \end{pmatrix}^T = \begin{pmatrix} -1 & 1 \end{pmatrix}^T$

3. Дополнение

В дополнении приведём ещё один способ считать определитель третьего порядка. Отметим "роль" главной диагонали. И далее приведём ещё несколько равносильных способов задать определитель (без доказательства равносильности), отметим пару свойств определителя.

3.1. Правило треугольника

(Как было замечено на семинаре) при подсчёте определителя третьего порядка ещё можно пользоваться т.н. "правилом треугольника" (3).

Рис. 3: Правило треугольника для вычисления определителя третьего порядка.

Если сложить все тройки, сначала с плюсом, потом с минусом, то получаем (первая тройка в каждом "блоке" — диагональные элементы):

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_3 b_1 c_2 + a_2 b_3 c_1 - a_3 b_2 c_1 - a_1 b_3 c_2 - a_2 b_1 c_3$$

Что совпадает, с точностью до перестановки троек, с формулой вычисления по первой строке (1).

Ещё есть (возможно, не такое красивое, как с треугольниками) правило Саррюса (4).

Рис. 4: Правило Саррюса для вычисления определителя третьего порядка (картинка взята с русской страницы Википедии).

3.2. Диагональные дела

Главная диагональ, как для квадратных, так и для прямоугольных матриц, определяется как множество элементов матрицы с одинаковыми индексами: $\left\{a_{ij} \mid i=j, i\in\{1,\dots,m\}, j\in\{1,\dots,n\}\right\}$.

Где в мире прямоугольных матриц может встречаться понятие главной диагонали? О транспонировании можно думать, как об отражении матрицы относительно главной диагонали (5).

$$\begin{bmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 \end{bmatrix}$$

Puc. 5: Главная диагональ прямоугольной матрицы (картинка с en.wikipedia.org/wiki/Main diagonal).

Также известно, например, что любую прямоугольную матрицу можно представить в виде произведения трёх матриц с определёнными свойствами (SVD разложение). Не обращая внимание на левый и правый множители, заметим лишь, что у матрицы-множителя посередине ненулевые элементы в SVD разложении могут стоять только на главной диагонали (6).

Puc. 6: SVD разложение прямоугольной матрицы (картинка с en.wikipedia.org/wiki/Singular value decomposition).

Побочная же диагональ вводится только для квадратных матриц $A \in \mathbb{R}^{n \times n}$ как множество следующих элементов: $\{a_{ij} \mid i+j=n+1, i \in \{1,\ldots,n\}, j \in \{1,\ldots,n\}\}$ (7).

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Рис. 7: Побочная диагональ квадратной матрицы (картинка с en.wikipedia.org/wiki/Main diagonal).

3.3. Задание определителя с помощью формулы

Теорема 3.1 (Формула полного разложения определителя). Пусть $A \in \mathbb{R}^{n \times n}$. Тогда определитель det A матрицы равен

$$\det A = \sum_{(i_1, \dots, i_n)} (-1)^{N(i_1, \dots, i_n)} a_{1i_1} \dots a_{ni_n}$$
 (2)

где $N(i_1, \ldots, i_n)$ — число нарушений порядка в перестановке чисел i_1, \ldots, i_n^2 . Сумма в формуле берётся по всем перестановкам чисел $1, \ldots, n^3$.

Пример. Вспомним формулу вычисления определителя для матрицы размера 3:

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 - a_1 b_3 c_2 - a_2 b_1 c_3 + a_3 b_1 c_2 + a_2 b_3 c_1 - a_3 b_2 c_1$$

Элементы в каждом слагаемом упорядочены по номеру столбца. Поэтому посмотрим на число беспорядков по строкам (неважно, как считать беспорядки, по строкам или по столбцам, потому что $\det A = \det A^T$). В первом слагаемом: N(1,2,3) = 0. Во втором: N(1,3,2) = 1 (тройка и двойка). В третьем: N(2,1,3) = 1 (двойка и единица). В четвёртом: N(3,1,2) = 2 (два беспорядка с тройкой и единицей и тройкой и двойкой). В пятом: N(2,3,1) = 1+1 = 2 (для двойки и единицы и для тройки и единицы). В шестом: N(3,2,1) = 2+1 = 3 (тройка-двойка, тройка-единица, двойка-единица).

3.4. Свойства определителя

Теорема 3.2. Некоторые свойства определителя (матрицы в формулах ниже представляются столбцами $a_i \in \mathbb{R}^n$):

1. Линейность по столбцу (строке) — полилинейность:

$$\begin{cases}
\det(\boldsymbol{a}_{1}, \dots, \boldsymbol{p} + \boldsymbol{q}, \dots, \boldsymbol{a}_{n}) = \det(\boldsymbol{a}_{1}, \dots, \boldsymbol{p}, \dots, \boldsymbol{a}_{n}) + \det(\boldsymbol{a}_{1}, \dots, \boldsymbol{q}, \dots, \boldsymbol{a}_{n}) \\
\det(\boldsymbol{a}_{1}, \dots, \underbrace{\alpha \boldsymbol{p}, \dots, \boldsymbol{a}_{n}}) = \alpha \det(\boldsymbol{a}_{1}, \dots, \boldsymbol{p}, \dots, \boldsymbol{a}_{n})
\end{cases} \tag{3}$$

2. При перестановке двух столбцов (строк) матрицы её определитель меняет знак (кососимметричность, антисимметричность по столбцам/строкам):

$$\det(a_1, \dots, a_i, \dots, a_i, \dots, a_n) = -\det(a_1, \dots, a_i, \dots, a_i, \dots, a_n)$$

$$\tag{4}$$

3. Если два столбца (две строки) матрицы совпадают, то её определитель равен нулю:

$$\det(\boldsymbol{a}_1,\ldots,\boldsymbol{p},\ldots,\boldsymbol{p},\ldots,\boldsymbol{a}_n)=0 \tag{5}$$

Свойства можно доказать как следствия теоремы 3.1.

И ещё пара более частных утверждений, которые следуют/являются подслучаями свойств выше:

• Общий множитель элементов строки (столбца) можно выносить за знак определителя:

$$\det(\boldsymbol{a}_1,\ldots,\alpha\boldsymbol{p},\ldots,\boldsymbol{a}_n) = \alpha \cdot \det(\boldsymbol{a}_1,\ldots,\boldsymbol{p},\ldots,\boldsymbol{a}_n)$$

• К любой строке (столбцу) матрицы можно прибавлять линейную комбинацию других строк (столбцов) — определитель при этом не изменится:

$$\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_n) = \det(\boldsymbol{a}_1,\ldots,\sum_{\substack{1 \leq j \leq n \\ i \neq i}} \alpha_j \boldsymbol{a}_j + \boldsymbol{a}_i,\ldots,\boldsymbol{a}_n)$$

²Нарушение порядка — когда правее большего элемента стоит меньший элемент: $i_k > i_s$, но k < s.

 $^{^{3}}$ Например, перестановки чисел 1, 2, 3: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

• При вычислении определителя матрицы вида αA скаляр α можно выносить за знак det следующим образом:

$$\det \alpha A = \alpha^n \det A$$

И посмотрим, чему равен определитель нескольких специального вида матриц. Пример. Определитель единичной матрицы:

$$\det E = 1^n = 1$$

Определение 3.1 (Вырожденная матрица 4). Матрица A называется вырожденной, если det A=0. В противном случае матрица A называется невырожденной.

Теорема 3.3. Определитель транспонированной матрицы

$$\det A^T = \det A$$

Теорема 3.4. Определитель произведения двух квадратных матриц:

$$\det(AB) = \det A \cdot \det B$$

Теорема 3.5. Определитель матрицы, обратной к невырожденной матрице

$$\det A^{-1} = \left(\det A\right)^{-1}$$

3.5. Задание определителя через свойства

Как отмечалось выше, существует несколько эквивалентных определений det. Один из способов — с помощью формулы (2). Приведём далее ещё пару, основанных на перечислении свойств, которыми должна обладать функция det.

Определение 3.2 (Вариант 1^5). Функция $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ называется определителем (детерминантом) и обозначается det, если

• Функция f является линейным однородным многочленом от элементов любой строки:

$$\begin{cases} f(A) = h_1 a_{i1} + \dots + h_n a_{in} \\ 1 \le i \le n \\ h_j = h_j (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n), \ 1 \le j \le n \end{cases}$$

то есть коэффициенты в разложении по элементам строки не зависят от этой самой строки.

- Значение f на вырожденной матрице 6 равно нулю 0.
- Значение f на единичной матрице $E_{n \times n}$ равно единице 1.

Определение 3.3 (Вариант 2^7). Функция $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ называется определителем (детерминантом) и обозначается det, если

⁴Определение вырожденной матрицы можно вводить по-разному. Ещё возможный вариант: квадратная матрица называется вырожденной, если её строки $\{a_i\}_{i=1}^n$ линейно зависимы. Строки линейно зависимы — когда существует нетривиальная линейная комбинация строк, которая даёт нулевую строку: $\sum_{i=1}^n \alpha_i a_i = \mathbf{0}, \sum_{i=1}^n \alpha_i^2 > 0$.

⁵Беклемишев Д. В. «Курс аналитической геометрии и линейной алгебры»

⁶У которой строки линейно зависимы

⁷https://en.wikipedia.org/wiki/Determinant

- Функция f полилинейна по строкам матрицы $A \in \mathbb{R}^{n \times n}$ (3).
- Функция f кососимметрична по строкам матрицы A (4).
- Значение f на единичной матрице $E_{n \times n}$ равно единице 1.

Определение 3.4 (Вариант 3^8). Функция $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ называется определителем (детерминантом) и обозначается det, если

- Функция f полилинейна по строкам матрицы $A \in \mathbb{R}^{n \times n}$ (3).
- Значение f на матрице с двумя одинаковыми строками равно нулю 0 (5).
- Значение f на единичной матрице $E_{n \times n}$ равно единице 1.

⁸Hans Schneider, George Phillip Barker. «Matrices and Linear Algebra»