Conjuntos

Álgebra y Geometría I (LM, PM, LF, PF, LCC)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

Conjuntos y pertenencia

Nociones primitivas: conjunto y elemento de un conjunto. Si x es un elemento del conjunto A (o x pertenece a A), escribimos

$$x \in A$$
.

Es decir, $x \in A$ es una proposición: puede ser verdadera o falsa. Su negación $\neg(x \in A)$, es decir x no pertenece a A, la abreviaremos por

$$x \notin A$$
.

Es tradición usar la notación de letras mayúsculas

$$A, B, C, \dots, X, Y, Z, \dots$$
 para conjuntos y letras minúsculas $a, b, c, \dots, x, y, z, \dots$ para los elementos de estos conjuntos.

Esta notación no es universal. Por ejemplo, $A \in x$ tiene perfecto sentido (aunque preferimos no usar esta notación).

Ejemplo

- $ightharpoonup A = \{4, 8, 10\}$ es un conjunto y sus elementos son 4, 8 y 10.
- \triangleright $B = \{\{4\}, \{8\}, \{10\}\}\$ es otro conjunto y sus elementos son $\{4\}, \{8\}$ y $\{10\}$.
- ► De hecho, valen:

$$4 \in A$$
, $4 \in \{4\} \in B$, $\{4\} \notin A$.

Igualdad de conjuntos

Empecemos por el problema más sencillo: ¿cuándo son iguales dos conjuntos?

Definición

Dos conjuntos son iguales si tienen los mismos elementos. En símbolos:

$$A = B \iff \forall x (x \in A \iff x \in B).$$

Definición de conjuntos por extensión

- La igualdad de conjuntos nos dice que podemos definir los conjuntos *por extensión*, listando todos los elementos del conjunto (entre llaves).
- ▶ {4,8,10} es el (único) conjunto cuyos elementos son exactamente 4, 8 y 10.
- ► También se puede usar la definición por extensión con conjuntos infinitos, aunque esto no es muy frecuente.
 - $\mathbb{N} = \{1, 2, 3, \ldots\}$
 - $ightharpoonup \mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$

Definición por comprensión

Si A es un conjunto y p(x) es una proposición abierta sobre los elementos de A, podemos formar el conjunto de los elementos x de A tales que p(x) es verdadera. Este conjunto lo denotaremos por

$$\{x \in A : p(x)\}.$$

A veces también se denota $\{x \in A \mid p(x)\}.$

Definición de conjuntos por comprensión

Ahora también podemos definir un conjunto por *comprensión*, especificando alguna propiedad que caracterice unívocamente a todos sus elementos. Por ejemplo,

- ▶ $\{n \in \mathbb{N} : \exists k \in \mathbb{N}, n = 2k\}$ es el conjunto de los números naturales pares.
- $\{x \in \mathbb{R} : (x-1)^2 \le 9\} = [-2,4].$

Conjuntos universales

- lacktriangle Utilizaremos un conjunto universal ${\mathcal U}$ del cual tomaremos todos los elementos con los que trabajaremos en un determinado contexto.
- Es importante tener claro cuál es el conjunto universal con el que estamos trabajando.
 - ▶ Por ejemplo, si $\mathcal{U} = \mathbb{N}$, entonces el conjunto $\{x : 2 < x \le 7\} = \{3, 4, 5, 6, 7\}$.
 - ▶ Pero si $\mathcal{U} = \mathbb{R}$, entonces $\{x : 2 < x \le 7\} = (2,7]$ (intervalo semiabierto).
 - Si no esta claro cuál es el conjunto universal, escribir $\{x: 2 < x \le 7\}$ es ambigüo y por tanto desaconsejado.

El conjunto vacío

Existe un conjunto \varnothing que no tiene ningún elemento. Formalmente

$$\exists \varnothing \ \forall x (x \notin \varnothing).$$

Otras notaciones para este conjunto vacío son \emptyset , $\{\}$ ó 0 (en desuso). El conjunto vacío tiene la siguiente importante propiedad.

Teorema

El conjunto vacío es único. En otras palabras, si A es un conjunto sin elementos, entonces $A = \emptyset$.

Antes de demostrar nuestro primer teorema sobre conjuntos, establecemos una notación que nos será muy útil en el futuro.

Contención / Subconjuntos

Ahora vamos a definir la noción de que un conjunto esté contenido o incluido en otro.

Definición

Decimos que un conjunto A está contenido en un conjunto B, o que A es un subconjunto de B, si todo elemento de A es también un elemento de B. Usaremos la notación

$$A \subseteq B$$

para indicar que A es un subconjunto de B. En símbolos:

$$A \subseteq B \iff \forall x (x \in A \implies x \in B).$$

Notación

Para indicar que A no es un subconjunto de B, es decir $\neg(A \subseteq B)$, usamos la notación

$$A \not\subseteq B$$
.

Definición

Decimos que un conjunto A está contenido estrictamente en un conjunto B si $A \subseteq B$ y $A \neq B$. O sea, A es un subconjunto de B pero B tiene más elementos que A. Para la contención estricta usaremos la notación

$$A \subset B$$
.

Importante

Las notaciones \subseteq y \subset no son adoptadas en todos los libros de matemática. Las notaciones

- $ightharpoonup A \subset B$ para la contención
- $ightharpoonup A \subsetneq B$ para la contención estricta

son también muy comunes (cuidado con el libro que lean).

Ejemplos

Consideremos los conjuntos

$$A = \{1, 2, 3\}$$

$$B = \{1, 2, 3, \{1, 2, 3\}\}$$

$$C = \mathbb{N}$$

Se verifica que:

- $ightharpoonup A \subset B$ y por lo tanto $A \subseteq B$
- ► *A* ∈ *B*
- $ightharpoonup A \subset \mathbb{N}$
- \triangleright $B \nsubseteq \mathbb{N}$

Algunas propiedades

Teorema

- 1. Para todo conjunto A se tiene que $A \subseteq A$.
- 2. Dos conjuntos A y B son iguales si y sólo si A es un subconjunto de B y B es un subconjunto de A. En otras palabras,

$$A = B \iff [(A \subseteq B) \land (B \subseteq A)].$$

Demostración.

- 1. Ejercicio.
- 2. Para probar \Longrightarrow podemos reescribir el lado derecho como $(A \subseteq A) \land (A \subseteq A)$, lo cual sabemos que es verdadero por el ítem anterior. Para ver \Longleftarrow debemos ver que $A \lor B$ tienen los mismos elementos. Si $x \in A$, como $A \subseteq B$, tenemos que $x \in B$. Análogamente, si $x \in B$, vemos que $x \in A$. Luego A = B.

Teorema

Sean A, B, C tres conjuntos. Se tiene:

- 1. Si $A \subseteq B$ y $B \subseteq C$, entonces $A \subseteq C$;
- 2. Si $A \subset B$ y $B \subset C$, entonces $A \subset C$.

Demostración.

- 1. Tenemos que probar que todo elemento de A es elemento de C. Sea $x \in A$, como $A \subseteq B$ concluimos que $x \in B$. Además, como $B \subseteq C$, sigue que $x \in C$, que es lo que queríamos probar.
- 2. Ejercicio.

Lema

Si \varnothing es un conjunto vacío y A es cualquier conjunto, entonces $\varnothing \subseteq A$. Más aún, si A es un conjunto no vacío, entonces $\varnothing \subset A$.

Demostración.

Usando la definición de contención, debemos probar

$$\forall x (x \in \varnothing \implies x \in A)$$

la cual es trivialmente verdadera (ya que para cada x, el antecedente de la implicación es falso).

Demostración del Teorema de Unicidad del Vacío.

Sean \varnothing y \varnothing' dos conjuntos vacíos. Por el lema anterior tenemos que $\varnothing\subseteq\varnothing'$ y $\varnothing'\subseteq\varnothing$. Usando el teorema de la doble contención sigue que $\varnothing=\varnothing'$.

Diagramas de Venn

A veces se usan los llamados diagramas de Venn para representar gráficamente ciertas propiedades de los conjuntos y ayudarnos a ganar intuición. Por ejemplo, la contención $A \subset B$ la dibujamos como se muestra en la figura (donde también dibujamos el ejemplo concreto en que $A = \{1,5,7,12\}$ y $B = \{1,5,7,9,12,13,18\}$)

Cardinalidad

- ▶ Decimos que un conjunto A es *finito* si podemos contar cuántos elementos tiene y decimos que A es *infinito* si no es finito (esta es una definición informal, cuando veamos funciones podremos dar una definición precisa).
- La cardinalidad de un conjunto finito A se define como la cantidad de elementos de A y se denota por |A|.

Ejemplo

Sean

$$A = \{1,7,19\}, \qquad B = \{2,5,A,39\}, \qquad C = \mathbb{N}, \qquad D = \{\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}\}.$$

- |A| = 3.
- |B| = 4. Atención $|B| \neq 6$.
- C es un conjunto infinito.
- ► |D| = 5.

Teorema

Si A y B son dos conjuntos finitos, se tiene:

- 1. $A \subseteq B \implies |A| \le |B|$;
- 2. $A \subset B \implies |A| < |B|$.

Demostración (informal).

Probamos 1) y dejamos 2) como ejercicio. Si tenemos que contar los elementos del conjunto B, del cual A es subconjunto, podemos empezar contando los elementos que están en A y luego seguir con los elementos de B que no están en A. Claramente obtendremos que |B| es un número mayor o igual que |A|.

Corolario

$$|\varnothing| = 0.$$

Demostración.

Ejercicio.

Cardinalidad de conjuntos infinitos

- ➤ También tiene sentido hablar de la cantidad de elementos de un conjunto infinito (y comparar estas cardinalidades), pero es una teoría más complicada que no estudiaremos todavía.
- A modo de ejemplo, tratemos de pensar qué cardinalidad es más grande, ¿la de $\mathbb N$ o la de $\mathbb Z$?

- Otros ejemplos más complicados (que no veremos en este curso):
 - $ightharpoonup |\mathbb{N}| = |\mathbb{Q}|$
 - $ightharpoonup |\mathbb{N}| < |\mathbb{R}|$
 - $ightharpoonup |\mathbb{R}| = |\mathbb{C}|$

Conjunto de partes

Ejemplos

¿Cuántos subconjuntos tiene el conjunto $A = \{x, y, z\}$?

- ▶ Sabemos que si $B \subseteq A$, entonces $|B| \le |A| = 3$. Esto nos dice que una buena forma de contar los subconjuntos de A es mirando los subconjuntos de 0, 1, 2 y 3 elementos.
- ► Subconjuntos de 0 elementos: Ø
- ▶ Subconjuntos de 1 elemento: $\{x\}$, $\{y\}$, $\{z\}$
- ▶ Subconjuntos de 2 elementos: $\{x,y\}$, $\{x,z\}$, $\{y,z\}$
- ▶ Subconjuntos de 3 elementos: $\{x, y, z\}$
- ▶ Luego, *A* tiene $8 = 2^3$ subconjuntos.

Conjunto de partes

Si A es un conjunto, existe un conjunto $\mathcal{P}(A)$ formado exactamente por los subconjuntos de A. Este conjunto es llamado el *conjunto de partes* de A.

Observación

- ▶ Los elementos de $\mathcal{P}(A)$ no son elementos de A.
- ▶ Para todo A, se tiene que $\emptyset \in \mathcal{P}(A)$ y $A \in \mathcal{P}(A)$.

Teorema

Si A es un conjunto finito con n elementos, entonces

$$|\mathcal{P}(A)|=2^n.$$

Demostración.

Lo veremos más adelante

Operaciones con conjuntos

Unión de conjuntos

Definición

$$\forall x (x \in A \cup B \iff (x \in A \lor x \in B)).$$

Teorema

Si A, B y C son conjuntos, se tienen.

- 1. $A = A \cup A$.
- 2. $A \cup B = B \cup A$.
- 3. $A \subseteq A \cup B$ y $B \subseteq A \cup B$.
- 4. $A \subseteq B \iff A \cup B = B$.
- 5. $A \cup (B \cup C) = (A \cup B) \cup C$.

Demostración.

- 1. Ejercicio.
- 2. Ejercicio.
- 3. Ejercicio.

Demostración (cont.)

4. Para ver \implies tenemos que ver la doble contención.

Sabemos que $B \subseteq A \cup B$ por la parte 3).

Para probar que $A \cup B \subseteq B$ empezamos con un elemento $x \in A \cup B$.

Si $x \in B$ ya está.

De lo contrario $x \in A$. Pero como $A \subseteq B$, concluimos también que $x \in B$.

Para ver \iff tomamos $x \in A$. Como $x \in A \cup B$ y $A \cup B = B$, sigue que $x \in B$.

Por lo tanto $A \subseteq B$.

5. Hay que probar la doble contención. Veamos que $A \cup (B \cup C) \subseteq (A \cup B) \cup C$ y dejemos como ejercicio la otra inclusión.

Si $x \in A \cup (B \cup C)$ hay dos posibilidades:

Caso 1: $x \in A \implies x \in A \cup B \implies x \in (A \cup B) \cup C$.

Caso 2: $x \in B \cup C$. También se abren dos posibilidades:

- ▶ Subcaso 2a: $x \in B \implies x \in A \cup B \implies x \in (A \cup B) \cup C$.
- ▶ Subcaso 2b: $x \in C \implies x \in (A \cup B) \cup C$.

Como estudiamos todos los casos, el teorema queda demostrado.

Intersección de conjuntos

Definición

Si A y B son dos conjuntos se define su intersección como

$$A \cap B = \{x \in A : x \in B\} = \{x \in \mathcal{U} : x \in A \land x \in B\}.$$

En palabras, $A \cap B$ está formado por los elementos que A y B tienen en común.

Teorema

Si A, B y C son conjuntos, se tienen.

- 1. $A = A \cap A$.
- 2. $A \cap B = B \cap A$
- 3. $A \cap B \subseteq A \ y \ A \cap B \subseteq B$
- 4. $A \subseteq B \iff A \cap B = A$.
- 5. $A \cap (B \cap C) = (A \cap B) \cap C$.

Demostración.

Ejercicio.

Diferencia de conjuntos

Definición

Si A y B son dos conjuntos, el *conjunto diferencia* B-A está formado por los elementos de B que no están en A. En símbolos,

$$B - A = \{x \in B : x \notin A\}.$$

Notación alternativa

A veces el conjunto diferencia también se denota por

 $B \setminus A$

Teorema

Sean A, B y C tres conjuntos. Se cumplen:

- 1. $A A = \emptyset$.
- 2. $A \emptyset = A$.
- 3. $B A \subseteq B$. En particular, $\emptyset A = \emptyset$.
- 4. $B A = A B \implies A = B$.
- 5. $(A B) C \subseteq A (B C)$.

Demostración.

Dejamos las primeras tres como ejercicio.

- 4. Haremos $A \subseteq B$ y $B \subseteq A$.
 - Sea $x \in A$ y supongamos por el absurdo que $x \notin B$.

Sigue que $x \in A - B$, pero por hipótesis A - B = B - A. Luego $x \in B - A$ y por ende $x \notin A$, absurdo. Por lo tanto $A \subseteq B$.

Análogomento vemos que P C A

Análogamente vemos que $B \subseteq A$.

Demostración (cont.)

5. Empezamos con un elemento $x \in (A - B) - C$. Tenemos que $x \in (A - B)$ y $x \notin C$. Esto dice que $x \in A$, $x \notin B$ y $x \notin C$. En particular $x \notin B - C$. Concluimos que $x \in A - (B - C)$.

Complemento (relativo)

Definición

Dado un conjunto $A\subseteq\mathcal{U}$, definimos el complemento de A (relativo al conjunto universal \mathcal{U}) como el conjunto

$$\overline{A} = \mathcal{U} - A = \{x \in \mathcal{U} : x \notin A\}.$$

u

Otras notaciones frecuentes

- $\rightarrow A^c$
- ► CA
- ightharpoonup $ho_u A$

Definición

Dos conjuntos A y B se dicen disjuntos si $A \cap B = \emptyset$.

Ejemplo/Ejercicio

Dado $A \subseteq \mathcal{U}$,

- ► $A \cap \overline{A} = \emptyset$, es decir, A y su complemento son disjuntos.
- $ightharpoonup A \cup \overline{A} = \mathcal{U}.$

Leyes de la teoría de conjuntos

Teorema

Dados tres conjuntos A, B, C tomados de un universo \mathcal{U} , se tienen:

- 1. $\overline{\overline{A}} = A$ (ley del doble complemento)
- 2. $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (leyes de De Morgan)
- 3. $A \cup B = B \cup A$ $A \cap B = B \cap A$ (leyes conmutativas)
- 4. $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$ (leyes asociativas)
- 5. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (leyes distributivas)
- 6. $A \cup A = A$ $A \cap A = A$ (leyes idempotentes)

- 7. $A \cup \emptyset = A$ $A \cap \mathcal{U} = A$ (leyes de identidad)
- 8. $A \cup (A \cap B) = A$ $A \cap (B \cup A) = A$ (leyes de absorción)

Demostración.

- Ejercicio (algunas pruebas ya las hicimos).
- Tratar de dibujar en cada caso el diagrama de Venn que represente cada ley de la teoría de conjuntos.

Observación

Hay una similitud muy grande entre las leyes de la teoría de conjuntos y las leyes de la lógica. Esta analogía no es casual y se estudia en materias más avanzadas.

Ejemplo

El cardinal de la unión de dos conjuntos finitos A y B se puede calcular como

$$|A \cup B| = |A| + |B| - |A \cap B|.$$
 (1)

En efecto, la cantidad de elementos en $A \cup B$ se puede obtener sumando la cantidad de elementos en A y la cantidad de elementos en B, observando que de este modo estaríamos contando dos veces los elementos de $A \cap B$, por eso tenemos que restar el término $|A \cap B|$ en la fórmula (1).

Corolario

Si A y B son dos conjuntos finitos disjuntos, entonces

$$|A \cup B| = |A| + |B|.$$

Demostración.

Sigue del ejemplo anterior, observando que como en este caso $A \cap B = \emptyset$ tenemos que $|A \cap B| = 0$.

Ejemplo

Si A, B y C son tres conjuntos finitos, entonces

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Ejemplo (cont.)

El resultado anterior también lo podemos demostrar usando lo que ya sabemos sobre el cardinal de la unión de dos conjuntos $|X \cup Y| = |X| + |Y| - |X \cap Y|$ y las leyes de la teoría de conjuntos:

$$|A \cup B \cup C| = |A \cup (B \cup C)|$$

$$= |A| + |B \cup C| - |A \cap (B \cup C)|$$

$$= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap C)|$$

$$= |A| + |B| + |C| - |B \cap C|$$

$$- [|A \cap B| + |A \cap C| - |(A \cap B) \cap (A \cap C)|]$$

$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

Diferencia simétrica

Definición

La diferencia simétrica entre los conjuntos A y B es el conjunto

$$A \triangle B = (A - B) \cup (B - A)$$

Teorema

Dados los conjuntos A, B y C se tiene:

- 1. $A \triangle B = (A \cup B) (A \cap B)$.
- 2. $A \triangle (B \triangle C) = (A \triangle B) \triangle C$.
- 3. $A \triangle B = B \triangle A$.
- 4. $A \triangle \emptyset = A$.
- 5. $A \triangle A = \emptyset$. Más aún, $A \triangle B = \emptyset \iff A = B$.
- 6. $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.

Demostración

Veamos la primera afirmación a modo de ejemplo y dejemos las demás como ejercicio para practicar. Antes de seguir con la prueba, enunciamos el siguiente resultado auxiliar (cuya demostración queda como ejercicio).

Lema

Si X e Y son tomados de un conjunto universal \mathcal{U} , entonces $X - Y = X \cap \overline{Y}$.

Demostración del Teorema (cont.)

Supongamos que $A, B \subseteq \mathcal{U}$. Por un lado tenemos que

$$A \triangle B \stackrel{\text{def}}{=} (A - B) \cup (B - A) \stackrel{\text{Lema}}{=} (A \cap \overline{B}) \cup (B \cap \overline{A}).$$

Por otro lado

or otro lado
$$(A \cup B) - (A \cap B) = (A \cup B) \cap \overline{(A \cap B)}$$

$$= (A \cup B) \cap (\overline{A} \cup \overline{B})$$

$$= [(A \cup B) \cap \overline{A}] \cup [(A \cup B) \cap \overline{B}]$$

$$= [\overline{A} \cap (A \cup B)] \cup [\overline{B} \cap (A \cup B)]$$

 $= [(\overline{A} \cap A) \cup (\overline{A} \cap B)] \cup [(\overline{B} \cap A) \cup (\overline{B} \cap B)] \qquad \text{Distr.}$ $= [\varnothing \cup (\overline{A} \cap B)] \cup [(\overline{B} \cap A) \cup \varnothing] \qquad \qquad \text{Clase ant.}$ $= (\overline{A} \cap B) \cup (\overline{B} \cap A) \qquad \qquad \text{Neutro}$

$$= (A \cap \overline{B}) \cup (B \cap \overline{A}) \qquad \qquad \mathsf{Conmut.} \qquad \Box$$

$$38 / 48$$

Lema

Distr.

Conmut.

De Morgan

¿Qué es un par ordenado?

- ▶ IMPORTANTE: los conjuntos no están ordenados: $\{a, b\} = \{b, a\}$
- ▶ Dicho de otro modo, si tenemos un conjunto con dos elementos $A = \{a, b\}$ no podemos saber cuál es el primer elemento y cual es el segundo elemento de A. De hecho, ni siquiera tiene sentido preguntarnos esto.
- En un par *ordenado*, importa el orden de los dos elementos.

Definición

El par ordenado de los elementos a y b se define como

Se dice que a (resp. b) es el primer (resp. segundo) elemento del par ordenado (a, b).

Notación

A veces también decimos que a (resp. b) es la primera (resp. segunda) coordenada del par ordenado (a, b).

Igualdad de pares ordenados

Definición

Dados a, b, c, d tenemos que

$$(a,b)=(c,d)\iff a=c\ y\ b=d.$$

Importante

- ightharpoonup el par ordenado (a, b) se construye a partir de los elementos a y b;
- \triangleright el primer elemento de (a, b) es a;
- ightharpoonup el segundo elemento de (a, b) es b.

Producto cartesiano

Definición

Dados dos conjuntos A y B, el producto cartesiano $A \times B$ se define como el conjunto de todos los posibles pares ordenados en los cuales la primer coordenada es un elemento de A y la segunda un elemento de B:

$$A \times B = \{(a,b) : a \in A \land b \in B\}.$$

Ejemplo

▶ El plano se define como el producto cartesiano de dos rectas

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$
.

► El espacio tridimensional se puede definir como el producto cartesiano

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R}^2 = \mathbb{R} \times (\mathbb{R} \times \mathbb{R}).$$

Observar que también tendría sentido definir $\mathbb{R}^3=\mathbb{R}^2\times\mathbb{R}$. De hecho, en la práctica identificaremos $\mathbb{R}\times(\mathbb{R}\times\mathbb{R})$ con $(\mathbb{R}\times\mathbb{R})\times\mathbb{R}$ y simplemente usaremos ternas ordenadas

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) : x, y, z \in \mathbb{R}\}$$

► Se trabaja similarmente con $\mathbb{R}^4, \mathbb{R}^5, \dots, \mathbb{R}^n, \dots$

Uniones e intersecciones generalizadas

Unión generalizada

Definición

Si \mathscr{F} es un conjunto de conjuntos, existe un conjunto $\bigcup \mathscr{F}$, llamado la *unión de* \mathscr{F} , cuyos elementos son exactamente los elementos de todos los conjuntos que conforman \mathscr{F} . En símbolos

$$x \in \bigcup \mathcal{F} \iff \exists (A \in \mathcal{F}), x \in A$$

Ejemplo

$$\bigcup \{\{1,2,3\},\{2,3,4,5\}\} = \{1,2,3,4,5\}.$$

Otras notaciones

Existen notaciones más amigables para las uniones arbitrarias.

▶ Si $\mathscr{F} = \{A_1, A_2, \dots, A_n\}$ denotamos la unión $\bigcup \mathscr{F}$ de la siguiente manera

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n$$

$$= \{x \in \mathcal{U} : x \in A_i \text{ para algún } i = 1, 2, \dots, n\}.$$

▶ Si I es un conjunto de índices y $\mathscr{F} = \{A_i : i \in I\}$ denotamos la unión $\bigcup \mathscr{F}$ por

$$\bigcup_{i\in I}A_i=\{x\in \mathscr{U}:x\in A_i \text{ para algún } i\in I\}.$$

ightharpoonup Caso particular, cuando $I = \mathbb{N}$, se suele denotar

$$\bigcup_{i\in\mathbb{N}}A_i=\bigcup_{i=1}^\infty A_i=A_1\cup A_2\cup A_3\cup\cdots$$

Importante

A veces la notación de subíndices presenta dificultades cuando recién empezamos a usarla. Hay que tener en cuenta que lo importante es el conjunto I del cual se toman los índices, y no la letra particular $i \in I$ que usemos para denotarlos. Por ejemplo, si $I = \mathbb{N}$ tenemos que

$$\bigcup_{i\in\mathbb{N}} A_i = \bigcup_{k\in\mathbb{N}} A_k = \bigcup_{i=1}^{\infty} A_i = \bigcup_{j=1}^{\infty} A_j = \bigcap_{n=1}^{\infty} A_n \quad \text{etc.}$$

Ejemplo/Ejercicio

- ▶ Si A es un conjunto, entonces $\bigcup \mathcal{P}(A) = A$.
- ▶ Si \mathscr{F} es una familia de conjuntos, entonces $\bigcup \mathscr{F} = \bigcup_{A \in \mathscr{F}} A$.

Intersecciones arbitrarias

Análogamente a la uniones arbitrarias, podemos definir la intersección arbitraria de una familia de conjuntos.

Definición

Si \mathscr{F} es un conjunto de conjuntos, el conjunto $\bigcap \mathscr{F}$, llamado *la intersección de* \mathscr{F} , es el conjunto cuyos elementos son exctamente los elementos que están en todos los conjuntos que conforman \mathscr{F} a la vez. En símbolos

$$x \in \bigcap \mathcal{F} \iff \forall (A \in \mathcal{F}), x \in A.$$

Notaciones alternativas

- $\blacktriangleright \bigcap_{i \in \mathbb{N}} A_i = \bigcap_{i=1}^{\infty} A_i = \{x \in \mathcal{U} : x \in A_i \text{ para todo } i \in \mathbb{N}\}.$
- ▶ $\bigcap_{i \in I} A_i = \{x \in \mathcal{U} : x \in A_i \text{ para todo } i \in I\}.$

Ejemplo

${\sf Ejemplo/Ejercicio}$

Para cada $n \in \mathbb{N}$, sea

$$I_n = [-n, n] = \{x \in \mathbb{R} : -n \le x \le n\}.$$

Probar que,

$$\bigcup_{n=1}^{\infty} [-n, n] = \mathbb{R}, \qquad \qquad \bigcap_{n=0}^{\infty} [-n, n] = [-1, 1].$$

