

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Campus Lourdes — Inst. de Ciências Exatas e Informática — Ciência da Computação

Fundamentos Téoricos da Computação

Lista de Exercícios N.01 (Valor: 1,0 ponto) Entrega: Quarta-feira, 10 de setembro de 2025 às 23:59

1. Considere o seguinte autômato finito determinístico (AFD) sobre o alfabeto $\Sigma = \{0, 1\}$.

Forneça uma sentença que descreva a linguagem reconhecida por esse AFD. Escreva uma expressão regular (ER) para essa linguagem.

- 2. Considere as seguintes linguagens sobre o alfabeto $\Sigma = \{0, 1\}$.
 - \bullet $L_1\colon \operatorname{Todas}$ as sentenças que contêm pelo menos dois 0s
 - \bullet $L_2\colon \operatorname{Todas}$ as sentenças que contêm pelo menos um 1
 - L_3 : Todas as sentenças que contêm pelo menos dois 0s e pelo menos um 1
 - \bullet $L_4\colon \operatorname{Todas}$ as sentenças que contêm no máximo um 0 ou nenhum 1s

Forneça AFDs para cada uma das linguagens $L_1,\,L_2,\,L_3$ e $L_4.$

3. Seja E_3 a linguagem sobre o alfabeto $\Sigma = \{a_1, a_2, a_3\}$ definida da seguinte forma.

 E_3 : Todas as sentenças nas quais a_i ocorre um número par de vezes para algum $i \in \{1, 2, 3\}$

Forneça um autômato finito não-determinístico (AFN) para a linguagem E_3 .

- 4. Forneça ER e gramáticas regulares (GR) para as seguintes linguagens sobre o alfabeto $\Sigma = \{0, 1\}$:
 - (a) Todas as sentenças que contêm pelo menos um 0 e pelo menos um 1 e que também terminam com pelo menos dois 1s.
 - (b) Todas as sentenças que não iniciam com 01.
 - (c) Todas as sentenças que contêm um número impar de 1s.
- 5. Obtenha uma GR que gere a linguagem reconhecida pelo seguinte AFD:

- 6. Forneça um AFD e GR para cada uma das seguintes linguagens sobre o alfabeto $\Sigma = \{0, 1\}$.
 - (a) A linguagem do seguinte AFN:

- (b) A linguagem dada pela expressão regular $(0+01)^*1^*$.
- 7. Seja $L_5 = \{0^{n^2} \mid n \ge 0\}$ e $L_6 = \{0\}^k \{0\}^*$, em que k é uma constante. Responda para cada uma das seguintes linguagens se ela é ou não regular, justificando sua resposta com uma prova.

- (a) $L_5 L_6$
- (b) $L_5 \cap L_6$
- (c) $L_5 \cup L_6$
- 8. Prove para cada uma das seguintes linguagens se ela é ou não regular.
 - (a) $C_n = \{x \mid x \text{ representa um número binário múltiplo de } n\}$, para todo $n \geq 1$
 - (b) $L_k = (\{0\}^k \{00, 01, 10, 11\}^* \{1\}^k) \cap \{0^n 1^n \mid n \geq 0\}$, para todo $k \geq 1000$