

https://github.com/yxing12/loan-default-predictor

Yunfei (Cynthia) Xing Data Science Institute

December 6, 2023

Recap

Problem

Loan Default - situation where a borrower fails to repay a loan according to the terms agreed upon.

Negatively impacts the borrower (credit rating) and the financial institution (revenue, reputation).

Leverage ML techniques to predict loan defaults.

Dataset

- Lending Club's loan data from 2007-2017 adopted from <u>Kaggle</u>
 - Aggregated data from <u>Lending Club website</u>
- Cleaned Dataset shape: (739,391, 32)
- I.I.D: Yes
- Classification Problem categorize the loan into one of the two class (fully paid/defaulted) based on loan specs and borrower financials

Recap -Target Variable

- ~80% loans fully paid
 ~20% charged off /
 defaulted
 - → unbalanced classification problem

^{*} A charge-off is a debt that a creditor has given up trying to collect on after borrower have missed payments for several months.

Recap - Splitting

train + val shape shape: (731997, 31) (731997,) Basic train_test_split test shape: (7394, 31) (7394,) Large i.i.d dataset (>700k rows) y other Distribution: Fully-Paid: 78.90%, Defaulted/Charged-off: 21.10% y test Distribution: Fully-Paid: 78.90%, Defaulted/Charged-off: 21.10% # collect the features cat_ftrs = ['home_ownership','verification_status','purpose',\ Preprocessing 'addr_state', 'initial_list_status', 'application_type'] ordinal_ftrs = ['grade','sub_grade'] OneHotEncoder ordinal_cats = [['A','B','C','D','E','F','G'], ['A1', 'A2', 'A3', 'A4', 'A5', \ categorical 'B1', 'B2', 'B3', 'B4', 'B5', \ OrdinalEncoder 'C1', 'C2', 'C3', 'C4', 'C5', \ 'D1', 'D2', 'D3', 'D4', 'D5', \ ordinal 'E1', 'E2', 'E3', 'E4', 'E5', 'F1', 'F2', 'F3', 'F4', 'F5', \ 'G1', 'G2', 'G3', 'G4', 'G5']] MinMaxScaler max_min_ftrs =['loan_amnt','int_rate','installment','fico_score'] std_num_ftrs = ['term', 'dti', 'earliest_cr_line', 'open_acc', 'pub_rec', \ StandardScaler 'revol_util', 'total_pymnt', 'total_rec_int', 'last_pymnt_amnt', \ 'acc_open_past_24mths', 'avg_cur_bal', 'bc_open_to_buy', 'bc_util', \ continuous 'mo_sin_old_rev_tl_op', 'mo_sin_rcnt_rev_tl_op', 'mort_acc', \ 'num_actv_rev_tl', 'pub_rec_bankruptcies', 'log_annual_inc']

Cross Validation Pipeline

- Define a "CustomSplit" class
 - Functions like StratifiedKFold
 - Configurable number of splits for CV
 - Allows setting a specific proportion for test data (98-1-1)
- CV Pipeline
 - o Sampled 200,000 data
 - Iterate through 5 random states
 - Split the data into 'other' and 'test'
 - Create pipeline and GridSearchCV
 - preprocess the data
 - undergo GridSearchCV to train and validate the model
 - scoring = accuracy
 - Find best model, refit on full dataset, and calculate test scores

ML Algos & Hyperparameters

Tuned on a subsample of 200,000 data points for 5 random states

Results & Outlook

Results from CV

	Model	Mean Test Score	Std Test Score	#stds Above Baseline Accuracy
0	Logistic Regression	0.9932	0.001806	113.0
1	XGBoost Classifier	0.9968	0.001030	202.0
2	Random Forest Classifier	0.9956	0.001356	152.0
3	K Neighbors Classifier	0.8736	0.007317	12.0

- KNN struggles in high-dimensional spaces (the curse of dimensionality) and with non-linear relationships between features
- KNN can be significantly impacted by noise and imbalances in the dataset

Best Model

XGBClassifier (random_state=42, colsample_bytree=0.9, subsample=0.8, max_depth=20, reg_alpha=0.1, reg_lambda=1.0, early_stopping_rounds=10)

- Refit best model on full dataset
- 98-1-1 split ratio
- cm threshold = 0.2

Validation accuracy: 0.9981065728969435 Validation precision: 0.9980670103092784 Validation recall: 0.992948717948718 Validation F1 score: 0.9955012853470437

Test accuracy: 0.9966188801731133
Test precision: 0.9974076474400518
Test recall: 0.9865384615384616
Test F1 score: 0.9919432806961006

Global Feature Importance

estimates predictive influence based on the drop in model performance due to random perturbation of a feature

Global Feature Importance

Weight - number of times a feature is used to split the data across all trees.

Total Gain - relative contribution of the corresponding feature to the model's accuracy

Global Feature Importance

estimates predictive influence based on Shapley values from game theory

Local Feature Importance

gauge the contribution of a feature to the predictability of a certain point

Outlook

Due to limitation in computing power, I only used 3 folds in CV. Increasing to 5 or 10 folds would be ideal.

Due to the large size of the dataset, I was unable to run SVM because it was taking too long. Also, I'm curious about exploring non-ML techniques, such as Neural Networks, to see how they can influence model performance and interpretability.

I would like to explore more ways to minimize false negatives and false positives, which is especially important in loan default prediction. For instance, false negatives can cause credit issues for both borrowers and financial institutions.

