Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3130</u>	Студент <u>Неграш А. В.</u>
Работа выполнена 11.06.20 10:00	Преподаватель Соловьёв Д.П.

Рабочий протокол и отчет по лабораторной работе № 4.03V

«Кольца Ньютона»

Вариант 1

1. Цель работы.

Изучение интерференционной картины колец Ньютона. Определение радиуса кривизны плоско-выпуклой линзы с помощью интерференционной картины колец Ньютона.

- 2. Задачи, решаемые при выполнении работы.
 - 1) Построение интерференционной картины колец Ньютона.
 - 2) Расчёт радиуса кривизны линзы.
 - 3) Сравнение теоретической и экспериментальной функций видности.

3. Объект исследования.

Кольца Ньютона

4. Метод экспериментального исследования.

Симуляция

5. Рабочие формулы и исходные данные.

$$\begin{split} L_{coh} &= c\tau \quad , \Delta \leq L_{coh} \quad , \quad \Delta \leq L_{coh} = c\tau = \frac{c}{\Delta \nu} \quad , \quad \frac{c}{\Delta \nu} \cdot \frac{\nu}{\nu} = \lambda \cdot \frac{\nu}{\Delta \nu} \quad , \\ |\Delta \nu| &= |\Delta(\frac{c}{\lambda})| = \frac{c}{\lambda^2} \Delta \lambda \quad , \quad \frac{\nu}{\Delta \nu} = \frac{c/\lambda}{c \cdot \Delta \lambda/\lambda^2} = \frac{\lambda}{\Delta \lambda} \quad , \quad \Delta \lambda = \frac{\lambda^2}{\Delta} = \frac{2\lambda^2 R}{2r_{disappear}^2 + R\lambda} \quad , \\ V &= \frac{I_{max} - I_{min}}{I_{max} + I_{min}}, \quad I_0 = \int_{\omega_1}^{\omega_2} J(\omega) \, d\omega = J_0 \Delta \omega, \quad I(r) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left[\frac{\omega}{c} \Delta_{opt}\right], \\ V(r) &= a \left| \sin\left[\frac{\Delta \omega}{2c} \Delta_{opt}\right] \right|, \quad \Delta_{opt} = \frac{r^2}{R_{lens}} + \frac{\lambda}{2} \approx \frac{r^2}{R_{lens}}, \quad R &= \frac{r_m^2 - r_n^2}{(m-n)\lambda} \end{split}$$

Согласно варианту №1 $n_1 = 1$; $n_2 = 1,3$; $\lambda_1 = 775$ нм; $\lambda_2 = 730$ нм

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый	Погрешность	
			диапазон	прибора	
1	Ось графика расстояния	Электронный	0-2 мм	0,1 мм	
2	Шкала длины волн	Электронный	380-780 нм	0,5 нм	

7. Схема установки (виртуальная).

8. Результаты прямых измерений и их обработки.

Вариант	1					
№ опыта	1	2	. 3		1	
Наблюдение картины	отраженный свет	отраженный свет	отраженный свет	отраженный свет		
Тип излучения	монохроматичес кий источник	монохроматиче ский источник	бихроматическ ий источник	сплошной спектр		
λ ₁ , μm	775,0	775,0	775,0	775,6	9	
λ ₂ , μm	-	3 0	730,0	730,0	Δn	0,005
n ₁	1,00	-	-	<u>-</u> :	Δ _λ , μm	0,5
n ₂	-	1,30	1,30	1,30	Δ _{ur} , mm	0,1

Опыт 1

Опыт 2

Опыт 3

Опыт 4

9. Расчет результатов косвенных измерений.

Опыт 1

Порядок	Радиусы ко	олец, г, mm Квадраты радиус г², mm²		
m	Темные	Светлые	Темные	Светлые
0	0,0	_	0,0	-
1	0,9	0,6	0,8	0,4
2	1,2	1,1	1,6	1,2
3	1,5	1,4	2,3	1,9
4	1,8	1,6	3,1	2,7
5	2,0	1,9	4	3,5
6	2,2	2,1	5	4
7	2,3	2,2	5	5
8	2,5	2,4	6	6

Порядки	Кв. Ради	уса кольца	10000000000000000000000000000000000000	визны линзы, _{спэ} , м		
	Темного	Светлого	Отн. Темных	Отн. Светлых		
8	6	6	1,0	1,0	Результат R, м:	1,0
5	3,9	3,5				
	Оценка погрешнос	ти кривизны линзы				
	Относительн	ая погрешность	Ü			
	Темное, є _к , %	Светлое, є _к , %				
	27%	26%				
	Абсолютная	погрешность				
	Темное, ∆к, м	Светлое, ∆д, м				
	0,27	0,26				
	Абсолютная погрешно	сть результата, Δ _R , м				
	0	,19				
		ешность результата, , %				
	1	9%				

Опыт 2

Порядок	Радиусы кол	лец, r, mm	Квадраты r²,	_
m	Темные	Светлые	Темные	Светлые
0	0	_	0,0	-
1	0,8	0,5	0,6	0,3
2	1,1	0,9	1,2	0,9
3	1,3	1,2	1,8	1,5
4	1,5	1,4	2,4	2,1
5	1,7	1,6	3,0	2,7
6	1,9	1,8	3,6	3,3
7	2,0	2,0	4	3,9
8	2,2	2,1	5	4
9	2,3	2,3	5	5
10	2,4	2,4	6	6

Порядки	Кв. Ради	уса кольца	64	визны линзы,		
	Темного	Светлого	Отн. Темных	Отн. Светлых		
10	6	6	0,8	0,8	Результат R, м:	0,
1	0,6	0,30				
-	Оценка погрешнос	ти кривизны линзы				
	Относительн	ая погрешность	4			
	Темное, ε _R , %	Светлое, єд, %				
	0,10	0,09				
	Абсолютная	погрешность				
	Темное, Δ _R , м	Светлое, Δ _R , м				
	0,07	0,07				
	Абсолютная погрешность результата, Δ_R , м $0,05$					
	- Sacratament and a consequence of the	ешность результата, , %				
	0	,07				

Опыт 3

Порядок	Темное				Светлое			
m	r, mm	I, отн.	ед.	r, mm		I,	отн.	ед.
0	0,0		0,0	-		-		
1	0,8		0,0		0,5			1,0
2	1,1		0,0		0,9			1,0
3	1,3		0,1		1,2			0,9
4	1,5		0,1		1,4			0,9
5	1,7		0,2		1,6			0,8
6	1,9		0,3		1,8			0,8
7	2,0		0,4		1,9			0,7
8	2,1		0,5		2,1			0,6
9	2,2		0,5		2,2			0,5
10	2,3		0,4		2,3			0,6
11	2,5		0,3		2,4			0,7

Расчет для функции видности								
r, mm		Δ_{opt} , μ m	x	sinc(x)	V _{эксп}	V _{Teop}		
(0,6	0,7	-0,18	1,0	1,0	1,0		
:	1,0	1,7	-0,4	1,0	0,9	0,9		
:	1,3	2,7	-0,7	0,9	0,8	0,8		
:	1,5	3,7	-0,9	0,9	0,7	0,6		
:	1,7	5	-1,2	0,8	0,6	0,4		
:	1,8	6	-1,4	0,7	0,5	0,2		
	2,0	7	-1,6	0,6	0,29	0,1		
	2,1	8	-1,9	0,5	0,11	0,3		
	2,2	8	-2,1	0,4	0,02	0,5		
	2,3	9	-2,3	0,34	0,18	0,6		
	2,4	10	-2,5	0,24	0,4	0,8		

Опыт 4

Порядок	Темное	Св	етлое	
m	r, mm	І, отн. ед.	r, mm	І, отн. ед.
0	0,0	0,00	-	-
1	0,9	0,009	0,6	1,0
2	1,2	0,035	1,1	1,0
3	1,5	0,08	1,4	0,9
4	1,7	0,13	1,6	0,9
5	1,9	0,21	1,8	0,8
6	2,1	0,29	2,0	0,8
7	2,3	0,4	2,2	0,7
8	2,4	0,5	2,4	0,6
9	-	-	2,5	0,5

	Расчет для функции видности									
r,	mm		Δ_{opt} , μ m	x	sinc(x)	$V_{_{\mathfrak{S}KC\Pi}}$	V _{Teop}			
		0,31	0,16	0,0	1,0		1,0			
		1,0	1,6	-0,4	1,0	1,0	1,0			
		1,3	2,8	-0,7	0,9	0,9	0,9			
		1,6	4	-1,0	0,8	0,8	0,8			
		1,8	5	-1,3	0,7	0,7	0,7			
		2,0	7	-1,7	0,6	0,6	0,6			
		2,2	8	-2,0	0,5	0,4	0,5			
		2,3	9	-2,3	0,33	0,22	0,33			
		2,5	10	-2,6	0,21	0,04	0,21			

10. Расчет погрешностей измерений.

Опыт 1

$$R=rac{r_m^2-r_n^2}{(m-n)\lambda}pprox 1$$
,0 м

Тёмное

$$\Delta r_m = 0,1$$
м; $\Delta r = 0,07$ м; $\Delta \lambda = 0,5$ нм; $\Delta n = 0,005$
$$\varepsilon_{R_{\mathrm{T}}} = \sqrt{(\frac{\delta \ln R}{\delta r_m} \Delta r_m)^2 + (\frac{\delta \ln R}{\delta r_n} \Delta r_m)^2 + (\frac{\Delta \lambda}{\lambda})^2 + (\frac{\Delta n}{n})^2} \approx 0,27 = 27\%$$
 $\Delta R_{\mathrm{T}} = 0,27$ м

Светлое

$$\begin{split} \varepsilon_{R_c} &= \sqrt{(\frac{\delta \ln R}{\delta r_m} \Delta r_m)^2 + (\frac{\delta \ln R}{\delta r_n} \Delta r_m)^2 + (\frac{\Delta \lambda}{\lambda})^2 + (\frac{\Delta n}{n})^2} \approx 0,26 = 26\% \\ \Delta R_c &= 0,26 \text{M} \\ \Delta R &= \sqrt{\Delta R_c^2 + \Delta R_{\text{\tiny T}}^2} = 0,19 \text{м}; \ \varepsilon_R = 0,19 = 19\% \end{split}$$

Опыт 2

Аналогично Опыту 1

$$R=rac{r_m^2-r_n^2}{(m-n)\lambda}pprox 0$$
,8 м

Тёмное

$$\varepsilon_{R_{\mathrm{T}}} = \sqrt{\left(\frac{\delta \ln R}{\delta r_{m}} \Delta r_{m}\right)^{2} + \left(\frac{\delta \ln R}{\delta r_{n}} \Delta r_{m}\right)^{2} + \left(\frac{\Delta \lambda}{\lambda}\right)^{2} + \left(\frac{\Delta n}{n}\right)^{2}} \approx 0.10 = 10\%$$

Светлое

$$\varepsilon_{R_c} = \sqrt{(\frac{\delta \ln R}{\delta r_m} \Delta r_m)^2 + (\frac{\delta \ln R}{\delta r_n} \Delta r_m)^2 + (\frac{\Delta \lambda}{\lambda})^2 + (\frac{\Delta n}{n})^2} \approx 0.09 = 9\%$$

$$\Delta R = \sqrt{\Delta R_c^2 + \Delta R_T^2} = 0.05 \text{m}; \ \varepsilon_R = 0.07 = 7\%$$

11. Графики.

Опыт 1

Темные кольца

Характер зависимости: линейная

Светлые кольца

Характер зависимости: линейная

Опыт 2

Темные кольца

Характер зависимости: линейная

Светлые кольца

Характер зависимости: линейная

Опыт 3

Опыт 4

12. Окончательные результаты.

Опыт 1: $R=(1{,}00\pm0{,}19)$ м; $\varepsilon_R=19\%$; $\alpha=0{,}95$

Опыт 2: $R=(0.80\pm0.05)$ м; $\varepsilon_R=7\%$; $\alpha=0.95$

13. Выводы и анализ результатов работы.

Итак, в ходе выполнения данной лабораторной работы я изучил интерференционную картину колец Ньютона. Определил радиус кривизны плоско-выпуклой линзы с помощью интерференционной картины колец Ньютона.