Analog and Digital Transmission

- Data
- Signaling
- Transmission
- Encoding
 - − Digital → analog
 - Analog → digital
 - − Digital → digital
 - Analog →analog

Data and Signals

Analog data

Takes on continuous values. Ex. Voice or video

• Digital data

Takes on discrete values. Ex. Text and integers

Analog Signal

 Continuously varying electromagnetic wave representing data carried over a variety of medium

• Digital **Signal**

Sequence of voltage pulses representing data transmitted over a wire medium

Examples

- Analog to analog
 - Voice (Analog Data) → Telephone → Analog Signal
- Digital to analog
 - PC (Digital Data) → Modem → Analog Signal
- Analog to digital
 - Voice (Analog Data) → CODEC → Digital Signal
- Digital to Digital
 - PC (Digital Data) → Digital Transmitter → Digital Signal

Important

Analog or Digital Data Can Be Represented By Either Analog or Digital Signals. These Signals Can Then Be Propogated (Moved Along a Medium). Optical Fiber Only Propogates Analog Signals

Reasons for Conversions

- Digital data → Digital Signal
 - Easy and simple to implement
- Analog data → Digital Signal
 - Allows the use of digital transmission and switching equipment
- Digital data → Analog Signal
 - Allows us of the public telephone system
 - Allows use of optical fiber
- Analog Data → Analog Signal
 - Easy
 - Telephone system was primarily analog

Transmission Systems

- Analog Transmission
 - Not used with digital signal
 - Transmits analog signals without regard whether it represents digital or analog data
 - Uses amplifiers also boosts noise
 - Okay for voice
 - Can distort digital data

Transmission Systems

- Digital Transmission
 - Concerned with the content of the signal
 - Uses repeaters which recover the pattern of 0's and 1's and retransmits
 - Can be used with analog signals if it carries digital data
 - Again it recovers the digital data from the analog signal and generates a new clean analog signal
 - Is becoming more standard

Analog Encoding of **Digital** Information (cont)

- Amplitude shift keying
 - Two binary numbers (0,1) represented by two different amplitudes of the carrier wave
 - Rather inefficient
 - Used up to 1200 bps on voice grade lines
 - Used to transmit digital data over optical fiber
- Frequency shift keying
 - Two binary numbers (0,1) represented by two different frequencies of the carrier wave
 - Less susceptible to error than ASK
 - Used up to 1200bps on voice grade lines
 - Commonly used for high frequency (4 to 30mhz) radio

Analog Encoding of Digital Information

- Phase shift keying
 - Two binary numbers (0,1) represented by phase shift of the carrier wave
 - More efficient and noise resistant than FSK
 - Used up to 9600 on voice grade lines

Analog Encoding of Digital Information

- Techniques can be combined
- Common to combine phase shift and amplitude shift
- Can get 56kps on a voice grade line
- With some techniques called multilevel signaling each signal represents more than one bit
- Baud rate = signal changes per second
- Bit rate = bits per second

Digital Encoding of Analog Information

- Commonly used in digitizing voice.
- Technique is called Pulse Code Modulation (PCM)
 - Sampling theory states if a signal is sampled at a rate twice the highest frequency then the samples contain all the information of the original signal
 - Voice data in the telephone system is limited to a maximum of 4KHz
 - 8000 samples /sec would be sufficient
 - Each of these samples is assigned a binary code (8 bits)
 - Typically 8 bits are used which gives 256 levels

- **Digital** Encoding of **Digital** Information
- Nonreturn—to-zero-level
 - Uses two different voltage levels to represent (0's and 1's)
 - Typically negative voltage=1 and positive voltage =0
 - The signal never returns to zero voltage
 - The value during a bit time is level voltage
 - Short distances

- Digital Encoding of Digital Information
- NRZI (NRZ, invert on ones)
 - Constant voltage during bit time
 - No transition =0
 - Transition form lo to hi or hi to lo =1
 - Compares polarity of signals
 - Doesn't matter if accidentally switch leads

Digital Encoding of Digital Information

- Disadvantages of NRZ Codes
 - Hard to tell where one bit ends or starts
 - With long string of 0's or 1's any drift between timing of transmitter and receiver results in errors
- Bi-Phase Encoding
 - Use at least one transition per bit time
 - Known as self clocking codes
 - Predictable bit transitions during each bit time
 - Absence of a transition indicates an error
 - Manchester and Differential Manchester are two examples

Digital Encoding of **Digital** Information

- Manchester
 - Transition at the middle of each bit period
 - Lo to hi transition=1
 - Hi to lo transition =0
 - Used in Ethernet and LANS

- Digital Encoding of Digital Information
- Differential Manchester
 - Midbit transition is clocking only
 - Transition at beginning of bit period =0
 - Absence of transition at beginning of bit period =1
 - Used in Token Ring networks

Analog Encoding of Analog Information

- Can be converted directly into an analog signal
- Ex. Voice is represented by electromagnetic signal with same frequency components and transmitted on voice grade line
- Can also produce a new analog signal at higher frequency
- Techniques used to modulate include
 - AM Amplitude Modulation
 - FM Frequency Modulation
 - PM Phase Modulation