IKI10400 • Struktur Data & Algoritma: Tree

Fakultas Ilmu Komputer • Universitas Indonesia

Slide acknowledgments:
Suryana Setiawan, Ade Azurat, Denny, Ruli Manurung

Tujuan

- Memahami definisi dan terminologi mengenai tree secara umum.
- Mengenali aplikasi tree.

 Mengetahui cara melakukan operasi untuk tiap-tiap element pada tree (tree traversal)

Outline

- Tree
 - Contoh
 - terminologi/definisi
- Binary tree
- Traversal of trees
- Iterator

Contoh

- Sebuah tree merepresentasikan sebuah hirarki
 - Mis.: Struktur organisasi sebuah perusahaan

Contoh

Daftar isi sebuah buku

Contoh

■ File system

Istilah-istilah umum:

- A is the root node
- B is the parent of D and E
- C is the sibling of B
- D and E are the children of B
- D, E, F, G, I are external nodes, or leaves
- A, B, C, H are internal nodes
- The depth/level/path length of E is 2
- The height of the tree is 3
- The degree of node B is 2
- Property:
 (# edges) = (#nodes) I

Tree dilihat secara Rekursif

Setiap sub-tree adalah juga sebuah tree!

Binary Tree

- Binary tree: tree di mana semua internal nodes memiliki maksimum degree 2
- Ordered/Search tree: seluruh children dari tiap node terurut

Contoh Binary Tree

Representasi ekspresi arithmatik

Ketentuan mengenai Binary Tree

- Jika di batas bawah tiap node hanya memiliki dua node anak (children), maka:
 - (# external nodes) = (# internal nodes) + 1
 - (# nodes at level i) $\leq 2^i$
 - (# external nodes) ≤ 2 (height)
 - (height) ≥ log₂ (# external nodes)
 - (height) $\geq \log_2(\# \text{ nodes} + 1) 1$
 - (height) \leq (# internal nodes) = ((# nodes) 1)/2

Ketentuan mengenai Binary Tree

- Jumlah maksimum node dalam binary tree dengan tinggi k adalah 2^{k+1} -1.
 - Sebuah full binary tree adalah binary tree yang semua node-nya memiliki 0 atau 2 anak (children).
 - Sebuah complete binary tree dengan tinggi k adalah binary tree yang miliki jumlah maximum nodes di levels 0 sampai k 1 (semua level terisi kecuali pada level terakhir, yang terisi dari sisi kiri hingga kanan dan tidak memiliki missing nodes).
 - Sebuah perfect binary tree dengan tinggi k adalah sebuah binary tree yang memiliki $2^{k+1} 1$ nodes.

Source:

Weiss, Mark Allen. 2014. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida International University. — Fourth edition.

BinaryNode dalam Java

Tree adalah sekumpulan nodes yang dideklarasikan secara rekursif.

```
class BinaryNode<E>
{
    E element;
    BinaryNode<E> left;
    BinaryNode<E> right;
}
```


ADT Tree dalam Java

ADT tree menyimpan referensi dari root node, yang merupakan awal untuk mengakses tree.

```
public class BinaryTree<E>
{
    private BinaryNode<E> root;

    public BinaryTree()
    {
        root = null;
    }
}
```


Berfikir Rekursif

- Menghitung tinggi tree dapat menjadi program yang rumit bila tidak menerapkan rekursif.
- Tinggi sebuah tree adalah: maksimum tinggi dari subtree ditambahkan satu (tinggi dari root).
 - \blacksquare H_T = max (H_L+1, H_R+1)

Menghitung tinggi tree

- Antisipasi base case (empty tree).
 - Catatan: Tree dengan hanya satu node memiliki tinggi = 0.
- Terapkan perhitungan/analisa sebelumnya dalam bentuk program.

Algoritma pada Binary Tree

- Struktur data tree di definisikan / dilihat secara rekursif:
 - sebuah binary tree terdiri dari sebuah node dengan dua buah sub tree (kiri dan kanan) yang masing-masing adalah tree juga.
- Algoritma untuk Binary Tree akan lebih mudah dinyatakan secara rekursif.
- Binary tree memiliki dua kasus rekursif
 - Base case: empty leaf external node.
 - Recursive case: Sebuah internal node (root) and dua binary trees (subtree kiri dan subtree kanan)
- Traversing Tree: "Menjalani/mengunjungi" tree.

Traversing Trees: Preorder traversal

Contoh: reading a document from beginning to end

```
Algorithm preOrder(v)
      "visit" node v;
      preOrder(leftChild(v));
      preOrder(rightChild(v));
                                       References
      \S 1.1 (\S 1.2) (\S 2.1) (\S 2.2) (\S 2.3) (\S 3.1)
```

Print Pre-Order

```
class BinaryNode<E> {
     void printPreOrder() {
         System.out.println( element ); // Node
         if( left != null )
             left.printPreOrder();  // Left
         if( right != null )
             right.printPreOrder();  // Right
}
public class BinaryTree<E> {
     public void printPreOrder() {
         if( root != null )
             root.printPreOrder();
}
```


Traversing Trees: Postorder traversal

■Contoh: du (disk usage) command in Unix

Print Post-Order

```
class BinaryNode<E> {
     void printPostOrder( )
        if( left != null )
                                       // Left
           left.printPostOrder();
        if( right != null )
              right.printPostOrder(); // Right
        class BinaryTree<E> {
     public void printPostOrder( )
        if( root != null )
           root.printPostOrder();
```

Traversing Trees: Inorder traversal

Contoh: Representasi ekspresi arithmatik

```
Algorithm inOrder(v)
  inOrder(leftChild(v));
  "visit" node v;
  inOrder(rightChild(v));
```


Traversing tree: Inorder Traversal

- Contoh: Urutan penulisan ekspresi aritmatika
- Mencetak sebuah expressi aritmatika.
 - print "(" before traversing the left subtree
 - print ")" after traversing the right subtree

Print InOrder

```
class BinaryNode<E> {
      void printInOrder( )
         if( left != null )
                                              // Left
             left.printInOrder();
         System.out.println( element );
                                              // Node
         if( right != null )
                                              // Right
             right.printInOrder();
class BinaryTree<E> {
      public void printInOrder()
         if( root != null )
             root.printInOrder();
```

Traversing Tree

Pre-Order

Post-Order

InOrder

Euler Tour Traversal

- Generic traversal of a binary tree
- The preorder, inorder, and postorder traversals are special cases of the Euler tour traversal
- "walk around" the tree and visit each node three times:
 - on the left
 - from below
 - on the right

Puzzle

Sebuah binary tree dicetak dengan menggunakan traversal di bawah ini:

Pre-order: 5 23 55 9 42 6 12 14 44

In-order: 55 9 23 42 5 14 12 6 44

Post-order: 9 55 42 23 14 12 44 6 5

Catatan: urutan pencetakan kiri kemudian kanan

Gambarkan binary tree tersebut!

Latihan: Traversing Trees

Algoritma traversing mana yang sesuai untuk melakukan operasi perhitungan nilai expressi aritmatika yang direpresentasikan menggunakan binary tree?

Jawaban: postorder traversal

```
Algorithm evaluateExpression(v)

if v is an external node
    return nilai bilangan pada v

else
    x = evaluateExpression(leftChild(v))
    y = evaluateExpression(rightChild(v))
    // Misalkan o adalah operator pada v
    return x o y
```


Running Time

- Strategy yang digunakan adalah postorder traversal: information dari node dihitung setelah informasi dari seluruh children dihitung.
- Postorder traversal running time adalah N (jumlah elemen dalam tree) dikalikan beban waktu untuk memproses tiap node.
- Running time-nya linear karena tiap node hanya diproses sekali dengan beban waktu konstan.

Latihan

- Asumsi: Sebuah binary tree (seluruh internal node memiliki degree 2) dengan elemen bilangan bulat.
- Buat algoritma yang melakukan:
 - Pencarian bilangan paling besar.

■ Penghitungan total bilangan dalam tree.

Kesulitan dengan rekursif

- Terkadang, kita ingin memroses semua node tanpa peduli urutan.
- Agar mudah, kita mau looping sederhana → *Iterator*
- Bagaimana caranya implementasi secara rekursif?
 - Bayangkan saat current node yang sedang diakses adalah sebuah internal node. Bagaimana menentukan node mana yang akan diakses selanjutnya?
 - Pada fungsi rekursif, informasi ini implisit pada call stack.
- Bagaimana menghindari rekursif?
- Bagaimana mengimplementasikan traversal yang tidak rekursif?

Rekursif vs. Loop

- Fungsi rekursif dieksekusi Java menggunakan stack.
 - Kita dapat melakukan **traversal non-rekursif** dengan membuat stack sendiri.
 - Dengan kata lain, meng-emulasikan: stack of activation records.
- Apakah mungkin non-rekursif lebih cepat dari rekursif?
 - Ya
- Mengapa?
 - Kita dapat menyimpan hanya informasi yang penting saja dalam stack, sementara compiler menyimpan seluruh activation record.
 - Namun demikian efisiensi yang dihasilkan tidak akan terlalu besar apalagi dengan teknologi optimisasi compiler yang semakin maju.

Tree Iterator: implementation

Tree iterator dan traversal-nya diimplementasikan secara non-rekursif menggunakan stack.

Post-Order Traversal dengan Stack

- Gunakan stack untuk menyimpan status terakhir.
 (node yang sudah dikunjungi tapi belum selesai diproses)
 - sama dengan PC (program counter) dalam activation record
- Apa saja status pada post-order traversal?
- 0. akan melakukan rekursif pada subtree kiri
- 1. akan melakukan rekursif pada subtree kanan
- 2. akan memproses node yang dikunjungi

Post-Order Algorithm/Pseudocode

- init: push the root kedalam stack dengan status 0
- advance:

```
while (not stack.empty())
   node X = pop from the stack
   switch (state X):
       case 0:
           push node X with state 1;
           push left child node X (if it exists) w/ state 0;
           break;
       case 1:
           push node X with state 2;
            push right child node X (if it exists) w/ state 0;
           break;
       case 2:
            "visit"/"set current to" the node X;
            return;
```

Post-Order traversal: stack states

$$\begin{bmatrix} c & 0 \\ c & 1 \\ a & 2 \end{bmatrix} \begin{bmatrix} e & 1 \\ c & 1 \\ a & 2 \end{bmatrix} \begin{bmatrix} e & 2 \\ c & 1 \\ a & 2 \end{bmatrix} \begin{bmatrix} c & 1 \\ a & 2 \end{bmatrix} \begin{bmatrix} c & 2 \\ a & 2 \end{bmatrix} \begin{bmatrix} c$$

Latihan

Buat algorithm/pseudo-code dengan in-order traversal menggunakan stack.

 Buat algorithm/pseudo-code dengan pre-order traversal menggunakan stack.

In-Order Traversal using Stack

- Apa saja status pada in-order traversal?
- 0. akan melakukan rekursif pada subtree kiri
- 1. akan memproses node yang dikunjungi
- 2. akan melakukan rekursif pada subtree kanan

In-Order Algorithm/Pseudocode

- init: push the root into the stack with state 0
- advance:

```
while (not stack.empty())
   node X = pop from the stack
   switch (state X):
      case 0:
           push node X with state 1;
           push left child node X (if it exists) w/ state 0;
           break;
      case 1:
           push node X with state 2;
           "visit"/"set current to" the node X;
           return;
      case 2:
           push right child node X (if it exists) w/ state 0;
           break;
```

In-Order Algorithm/Pseudocode

- init: push the root into the stack with state 0
- advance (optimize):

```
while (not stack.empty())
  node X = pop from the stack
  switch (state X):
    case 0:
        push node X with state 1;
        push left child node X (if it exists) w/ state 0;
        break;
  case 1:
        "visit"/"set current to" the node X;
        push right child node X (if it exists) w/ state 0;
        return;
```


Pre-Order Traversal using Stack

- Apa saja status pada pre-order traversal?
- 0. akan memproses node yang dikunjungi
- 1. akan melakukan rekursif pada subtree kiri
- 2. akan melakukan rekursif pada subtree kanan

Pre-Order Algorithm/Pseudocode

- init: push the root into the stack with state 0
- advance:

```
while (not stack.empty())
   node X = pop from the stack
   switch (state X):
      case 0:
            "visit"/"set current to" the node X;
            push node X with state 1;
            return;
       case 1:
            push right child node X (if it exists) w/ state 0;
            push node X with state 2;
            break;
       case 2:
            push left child node X (if it exists) w/ state 0;
            break;
```

Pre-Order Algorithm/Pseudocode

- init: push the root into the stack
- advance (optimized):

```
if (not stack.empty())
  node X = pop from the stack
  "visit"/"set current to" the node X;
  push right child node X (if it exists);
  push left child node X (if it exists);
```


Level-order Traversal

- Kunjungi root diikuti oleh seluruh node pada sub tree dari kiri ke kanan kemudian diikuti oleh node pada sub tree-nya lagi.
- Tree dikunjungi berdasarkan level.

Pada tree dibawah urutan kunjungan adalah: A - B - C

Level-order Traversal: idea

- Gunakan queue bukan stack
- Algorithm (mirip dengan pre-order)
 - init: enqueue the root into the queue
 - advance:

```
node X = dequeue from the queue
"visit"/"set current to" the node X;
enqueue left child node X (if it exists);
enqueue right child node X (if it exists);
```


Latihan

- Buat program untuk mencetak isi dari sebuah binary tree secara level order
 - Implementasikan menggunakan queue
- Dapatkah anda membuat implementasi yang lebih mudah / sederhana?
 - Hint: Coba pikirkan representasi binary tree yang lain, sehingga implementasi level order dapat menjadi lebih sederhana.

Representasi binary tree dengan array

- Complete binary tree dengan n nodes dapat diresentasikan menggunakan array dengan index dari 1..n
- Untuk setiap node dengan index i, maka:
 - Parent (i) terletak pada index $\lfloor i/2 \rfloor$ if $i \neq 1$; for i = 1, tidak ada parent.
 - Left-child (i) terletak pada 2i if 2i ≤ n.
 (else tidak ada left-child)
 - Right-child (i) terletak pada 2i+1 if 2i +1 ≤ n
 (else tidak ada right-child)
- Akan dianalisa lebih dalam pada materi Heap.
- Sebuah complete binary tree dengan tinggi k adalah binary tree yang miliki jumlah maximum nodes di levels 0 sampai k − 1 (semua level terisi kecuali pada level terakhir, yang terisi dari sisi kiri hingga kanan dan tidak memiliki missing nodes)

Latihan

Pada ADT tree yang berisikan elemen bilangan bulat. Hitung elemen paling kecil pada leaves dan update seluruh leaves pada tree tersebut dengan elemen terkecil tersebut. (Repmin problem)

