Week 2: Analysis of Algorithms

Analysis of Algorithms

Running Time

6/89

An algorithm is a step-by-step procedure

- for solving a problem
- in a finite amount of time

Most algorithms map input to output

- running time typically grows with input size
- average time often difficult to determine
- Focus on worst case running time
 - o easier to analyse
 - o crucial to many applications: finance, robotics, games, ...

Empirical Analysis

7/89

- 1. Write program that implements an algorithm
- 2. Run program with inputs of varying size and composition
- 3. Measure the actual running time
- 4. Plot the results

Limitations:

- requires to implement the algorithm, which may be difficult
- results may not be indicative of running time on other inputs
- same hardware and operating system must be used in order to compare two algorithms

Theoretical Analysis

8/89

- Uses high-level description of the algorithm instead of implementation ("pseudocode")
- Characterises running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode 9/89

Example: Find maximal element in an array

```
arrayMax(A):

| Input array A of n integers
| Output maximum element of A
|
| currentMax=A[0]
| for all i=1..n-1 do
| if A[i]>currentMax then
| currentMax=A[i]
| end if
| end for
| return currentMax
```

... Pseudocode

Control flow

```
if ... then ... [else] ... end if
while .. do ... end while
repeat ... until
for [all][each] .. do ... end for
```

Function declaration

```
• f(arguments):
Input ...
Output ...
```

Expressions

- = assignment
- = equality testing
- n² superscripts and other mathematical formatting allowed
- swap A[i] and A[j] verbal descriptions of simple operations allowed

... Pseudocode

- More structured than English prose
- Less detailed than a program
- · Preferred notation for describing algorithms
- Hides program design issues

Exercise #1: Pseudocode

12/89

Formulate the following verbal description in pseudocode:

To reverse the order of the elements on a stack S with the help of a queue:

- 1. In the first phase, pop one element after the other from S and enqueue it in queue Q until the stack is empty.
- 2. In the second phase, iteratively dequeue all the elements from Q and push them onto the stack.

As a result, all the elements are now in reversed order on S.

Sample solution:

```
while S is not empty do
   pop e from S, enqueue e into Q
end while
while Q is not empty do
   dequeue e from Q, push e onto S
end while
```

Exercise #2: Pseudocode

14/89

Implement the following pseudocode instructions in C

1. A is an array of ints

```
...
swap A[i] and A[j]
...
```

2. S is a stack

```
swap the top two elements on S ...
```

```
    int temp = A[i];
        A[i] = A[j];
        A[j] = temp;
    x = StackPop(S);
        y = StackPop(S);
        StackPush(S, x);
        StackPush(S, y);
```

The following pseudocode instruction is problematic. Why?

```
\ldots swap the two elements at the front of queue Q \ldots
```

The Abstract RAM Model

16/89

RAM = Random Access Machine

- A CPU (central processing unit)
- A potentially unbounded bank of memory cells
 - each of which can hold an arbitrary number, or character
- Memory cells are numbered, and accessing any one of them takes CPU time

Primitive Operations

17/89

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- · Largely independent of the programming language
- Exact definition not important (we will shortly see why)
- Assumed to take a constant amount of time in the RAM model

Examples:

- evaluating an expression
- indexing into an array
- calling/returning from a function

Counting Primitive Operations

18/89

By inspecting the pseudocode ...

- we can determine the maximum number of primitive operations executed by an algorithm
- as a function of the input size

Example:

Estimating Running Times

19/89

Algorithm arrayMax requires 5n-2 primitive operations in the *worst* case

• best case requires 4n - 1 operations (why?)

Define:

- a ... time taken by the fastest primitive operation
- *b* ... time taken by the slowest primitive operation

Let *T*(*n*) be worst-case time of arrayMax. Then

```
a(5n - 2) \le T(n) \le b(5n - 2)
```

Hence, the running time T(n) is bound by two linear functions

... Estimating Running Times

20/89

Seven commonly encountered functions for algorithm analysis

- Constant ≅ 1
- Logarithmic $\cong \log n$
- Linear $\cong n$
- N-Log-N \cong $n \log n$
- Quadratic $\cong n^2$
- Cubic $\cong n^3$
- Exponential $\cong 2^n$

... Estimating Running Times

21/89

In a log-log chart, the slope of the line corresponds to the growth rate of the function

... Estimating Running Times

22/89

The growth rate is not affected by constant factors or lower-order terms

- Examples:
 - \circ 10²n + 10⁵ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

... Estimating Running Times

23/89

Changing the hardware/software environment

- affects *T*(*n*) by a constant factor
- but does not alter the growth rate of *T(n)*
- \Rightarrow Linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Exercise #3: Estimating running times

24/89

Determine the number of primitive operations

```
matrixProduct(A, B):
    Input n×n matrices A, B
    Output n×n matrix A•B

    for all i=1..n do
        | for all j=1..n do
        | C[i, j]=0
        | for all k=1..n do
```

```
matrixProduct(A, B):
   Input n \times n matrices A, B
   Output n×n matrix A • B
   for all i=1..n do
                                                2n+1
      for all j=1...n do
                                                n(2n+1)
         C[i, j]=0
                                                n^2(2n+1)
          for all k=1..n do
             C[i, j] = C[i, j] + A[i, k] \cdot B[k, j] \quad n^3 \cdot 4
      end for
   end for
   return C
                                                1
                                               6n^3+4n^2+3n+2
                                      Tota1
```

Big-Oh

Big-Oh Notation

27/89

Given functions f(n) and g(n), we say that

$$f(n) \in O(g(n))$$

if there are positive constants c and n_0 such that

$$f(n) \le c \cdot g(n) \quad \forall n \ge n_0$$

Hence: O(g(n)) is the set of all functions that do not grow faster than g(n)

... Big-Oh Notation

28/89

Example: function 2n + 10 is in O(n)

- 2*n*+10 ≤ *c*·*n*
 - \Rightarrow $(c-2)n \ge 10$
 - $\Rightarrow n \ge 10/(c-2)$
- pick c=3 and $n_0=10$

... Big-Oh Notation

29/89

Example: function n^2 is not in O(n)

- $n^2 \le c \cdot n$ $\Rightarrow n \le c$
- inequality cannot be satisfied since *c* must be a constant

Exercise #4: Big-Oh

30/89

Show that

- 1. 7n-2 is in O(n)
- 2. $3n^3 + 20n^2 + 5$ is in O(n^3)
- 3. $3 \cdot \log n + 5$ is in $O(\log n)$
- 1. $7n-2 \in O(n)$

need c>0 and $n_0 \ge 1$ such that $7n-2 \le c \cdot n$ for $n \ge n_0$

```
\Rightarrow true for c=7 and n<sub>0</sub>=1
```

2.
$$3n^3 + 20n^2 + 5 \in O(n^3)$$

need c>0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$

- \Rightarrow true for c=4 and n₀=21
- 3. $3 \cdot \log n + 5 \in O(\log n)$

need c>0 and $n_0 \ge 1$ such that $3 \cdot \log n + 5 \le c \cdot \log n$ for $n \ge n_0$

 \Rightarrow true for c=8 and n₀=2

Big-Oh and Rate of Growth

32/89

- Big-Oh notation gives an upper bound on the growth rate of a function
 - \circ "f(n) \in O(g(n))" means growth rate of f(n) no more than growth rate of g(n)
- use big-Oh to rank functions according to their rate of growth

	$f(n) \in O(g(n))$	$g(n) \in O(f(n))$
g(n) grows faster	yes	no
f(n) grows faster	no	yes
same order of growth	yes	yes

Big-Oh Rules

33/89

- If f(n) is a polynomial of degree $d \Rightarrow f(n)$ is $O(n^d)$
 - o lower-order terms are ignored
 - constant factors are ignored
- Use the smallest possible class of functions
 - say "2n is O(n)" instead of "2n is O(n²)"
 - but keep in mind that, $2n \text{ is in } O(n^2)$, $O(n^3)$, ...
- Use the simplest expression of the class
 - say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Exercise #5: Big-Oh

34/89

Show that
$$\sum_{i=1}^n i=1+2+3+...+n$$
 is $\operatorname{O}(\mathit{n}^2)$

$$\sum_{i=1}^n i = rac{n(n+1)}{2} = rac{n^2+n}{2}$$

Asymptotic Analysis of Algorithms

36/89

Asymptotic analysis of algorithms determines running time in big-Oh notation:

- find worst-case number of primitive operations as a function of input size
- express this function using big-Oh notation

Example:

algorithm arrayMax executes at most 5n – 2 primitive operations
 ⇒ algorithm arrayMax "runs in O(n) time"

Constant factors and lower-order terms eventually dropped ⇒ can disregard them when counting primitive operations

Example: Computing Prefix Averages

37/89

• The *i-th prefix average* of an array X is the average of the first i elements:

$$A[i] = (X[0] + X[1] + ... + X[i]) / (i+1)$$

NB. computing the array A of prefix averages of another array X has applications in financial analysis

... Example: Computing Prefix Averages

38/89

A quadratic algorithm to compute prefix averages:

```
end for return A O(1) 2 \cdot O(n^2) + 3 \cdot O(n) + O(1) = O(n^2)
```

 \Rightarrow Time complexity of algorithm prefixAverages1 is O(n²)

... Example: Computing Prefix Averages

39/89

The following algorithm computes prefix averages by keeping a running sum:

Thus, prefixAverages2 is O(n)

Example: Binary Search

40/89

The following recursive algorithm searches for a value in a *sorted* array:

... Example: Binary Search

41/89

Successful search for a value of 8:

... Example: Binary Search

42/89

Unsuccessful search for a value of 7:

... Example: Binary Search

43/89

Cost analysis:

- C_i = #calls to search() for array of length i
- for best case, $C_n = 1$
- for a[i.. j], j<i (length=0)
 - \circ C₀ = 0
- for a[i..j], $i \le j$ (length=n)

$$\circ$$
 $C_n = 1 + C_{n/2} \Rightarrow C_n = log_2 n$

Thus, binary search is O(log₂ n) or simply O(log n) (why?)

... Example: Binary Search

44/89

Why logarithmic complexity is good:

Math Needed for Complexity Analysis

45/89

- Logarithms
 - \circ $\log_b(xy) = \log_b x + \log_b y$
 - $\circ \log_b(x/y) = \log_b x \log_b y$
 - $\circ \log_b x^a = a \log_b x$
 - $\circ \log_a x = \log_b x \cdot (\log_c b / \log_c a)$
- Exponentials
 - \circ $a^{(b+c)} = a^b a^c$
 - o $a^{bc} = (a^b)^c$
 - o $a^{b} / a^{c} = a^{(b-c)}$
 - o $b = a^{\log_a b}$
 - o $b^c = a^{c \cdot log}a^b$
- Proof techniques
- Summation (addition of sequences of numbers)
- Basic probability (for average case analysis, randomised algorithms)

Exercise #6: Analysis of Algorithms

46/89

What is the complexity of the following algorithm?

```
enqueue(Q, Elem):
    Input queue Q, element Elem
    Output Q with Elem added at the end
    Q.top=Q.top+1
    for all i=Q.top down to 1 do
        Q[i]=Q[i-1]
    end for
    Q[0]=Elem
    return Q
```

Answer: O(|Q|)

What is the complexity of the following algorithm?

```
insertionSort(A):
    Input array A[0..n-1] of n elements

for all i=1..n-1 do
    element=A[i], j=i-1
    while j≥0 and A[j]>element do
    A[j+1]=A[j]
    j=j-1
    end while
    A[j+1]=element
    end for
```

Answer: O(n²)

Best known sorting algorithms are $O(n \cdot log n)$. Example: Quicksort (\rightarrow week 10)

Exercise #8: Analysis of Algorithms

50/89

What is the complexity of the following algorithm?

Assume that creating a stack and pushing an element both are O(1) operations ("constant")

Answer: O(log n)

Relatives of Big-Oh

52/89

big-Omega

• $f(n) \in \Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that

$$f(n) \ge c \cdot g(n) \quad \forall n \ge n_0$$

big-Theta

• $f(n) \in \Theta(g(n))$ if there are constants c',c'' > 0 and an integer constant $n_0 \ge 1$ such that

... Relatives of Big-Oh

53/89

- f(n) belongs to O(g(n)) if f(n) is asymptotically less than or equal to g(n)
- f(n) belongs to $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)
- f(n) belongs to $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)

... Relatives of Big-Oh

54/89

Examples:

- $\frac{1}{4}n^2 \in \Omega(n^2)$
 - o need c > 0 and $n_0 \ge 1$ such that $\frac{1}{4}n^2 \ge c \cdot n^2$ for $n \ge n_0$
 - \circ let c= $\frac{1}{4}$ and $n_0=1$
- $\frac{1}{4}n^2 \in \Omega(n)$
 - o need c > 0 and $n_0 \ge 1$ such that $\frac{1}{4}n^2 \ge c \cdot n$ for $n \ge n_0$
 - \circ let c=1 and n₀=4
- $\sqrt[1]{4}n^2 \in \Theta(n^2)$
 - since $\frac{1}{4}n^2$ belongs to $\Omega(n^2)$ and $O(n^2)$

Complexity Analysis: Arrays vs. Linked Lists

Static/Dynamic Sequences

56/89

Previously we have used an array to implement a stack

- fixed size collection of homogeneous elements
- can be accessed via index or via "moving" pointer

The "fixed size" aspect is a potential problem:

- how big to make the (dynamic) array? (big ... just in case)
- what to do if it fills up?

The rigid sequence is another problems:

• inserting/deleting an item in middle of array

... Static/Dynamic Sequences

57/89

Inserting a value (4) into a sorted array a with n elements:

... Static/Dynamic Sequences

58/89

Deleting a value (3) from a sorted array a with n elements:

... Static/Dynamic Sequences

59/89

The problems with using arrays can be solved by

- allocating elements individually
- linking them together as a "chain"

Benefits:

- insertion/deletion have minimal effect on list overall
- only use as much space as needed for values

Self-referential Structures

60/89

To realise a "chain of elements", need a *node* containing

- a value
- a link to the next node

To represent a chained (linked) *list* of nodes:

- we need a pointer to the first node
- each node contains a pointer to the next node
- the next pointer in the last node is NULL

... Self-referential Structures

61/89

Linked lists are more flexible than arrays:

- values do not have to be adjacent in memory
- values can be rearranged simply by altering pointers
- the number of values can change dynamically
- values can be added or removed in any order

Disadvantages:

- it is not difficult to get pointer manipulations wrong
- each value also requires storage for next pointer

... Self-referential Structures

62/89

Create a new list node:

Exercise #9: Creating a Linked List

63/89

Write pseudocode to create a linked list of three nodes with values 1, 42 and 9024.

```
mylist=makeNode(1)
mylist.next=makeNode(42)
(mylist.next).next=makeNode(9024)
```

Iteration over Linked Lists

65/89

When manipulating list elements

- typically have pointer p to current node
- to access the data in current node: p. value
- to get pointer to next node: p. next

To iterate over a linked list:

- set p to point at first node (head)
- examine node pointed to by p
- change p to point to next node
- stop when p reaches end of list (NULL)

... Iteration over Linked Lists

66/89

Standard method for scanning all elements in a linked list:

```
list // pointer to first Node in list
p // pointer to "current" Node in list
p=list
while p≠NULL do
| ... do something with p. value ...
| p=p. next
end while
```

... Iteration over Linked Lists

67/89

... Iteration over Linked Lists

68/89

... Iteration over Linked Lists

Check if list contains an element:

Time complexity: O(|L|)

... Iteration over Linked Lists

70/89

Print all elements:

```
showLL(L):

| Input linked list L
|
| p=L
| while p≠NULL do
| print p.value
| p=p.next
| end while
```

Time complexity: O(|L|)

Exercise #10: Traversing a linked list

71/89

What does this code do?

```
1 p=list
2 while p≠NULL do
3 | print p.value
4 | if p.next≠NULL then
5 | p=p.next.next
6 | else
7 | p=NULL
8 | end if
9 end while
```

What is the purpose of the conditional statement in line 4?

Every second list element is printed.

If p happens to be the last element in the list, then p. next. next does not exist. The if-statement ensures that we do not attempt to assign an undefined value to pointer p in line 5.

Exercise #11: Traversing a linked list

73/89

Rewrite showLL() as a recursive function.

```
showLL(L):

| Input linked list L
|

| if L≠NULL do
| print L.value
| showLL(L.next)
| end if
```

Modifying a Linked List

75/89

Insert a new element at the beginning:

```
insertLL(L, d):
    Input linked list L, value d
    Output L with d prepended to the list
    new=makeNode(d) // create new list element
    new.next=L // link to beginning of list
    return new // new element is new head
```

Time complexity: O(1)

... Modifying a Linked List

76/89

Delete the first element:

```
deleteHead(L):
    Input non-empty linked list L, value d
    Output L with head deleted
    return L.next // move to second element
```

Time complexity: O(1)

Delete a *specific* element (recursive version):

```
deleteLL(L, d):
    Input linked list L
    Output L with element d deleted
```

Time complexity: O(|L|)

Exercise #12: Implementing a Queue as a Linked List

77/89

Develop a datastructure for a queue based on linked lists such that ...

- enqueuing an element takes constant time
- dequeuing an element takes constant time

Use pointers to both ends

Dequeue from the front ...

Enqueue at the rear ...

Comparison Array vs. Linked List

79/89

Complexity of operations, *n* elements

	array	linked list
insert/delete at	O(n)	O(1)

beginning		
insert/delete at end	O(1)	O(1) ("doubly-linked" list, with pointer to rear)
insert/delete at middle	O(n)	O(n)
find an element	O(n) (O(log n), if array is sorted)	O(n)
index a specific element	O(1)	O(n)

Complexity Classes

Complexity Classes

81/89

Problems in Computer Science ...

- some have *polynomial* worst-case performance (e.g. n^2)
- some have exponential worst-case performance (e.g. 2ⁿ)

Classes of problems:

- P = problems for which an algorithm can compute answer in polynomial time
- NP = includes problems for which no P algorithm is known

Beware: NP stands for "nondeterministic, polynomial time (on a theoretical *Turing Machine*)"

... Complexity Classes

82/89

Computer Science jargon for difficulty:

- tractable ... have a polynomial-time algorithm (useful in practice)
- intractable ... no tractable algorithm is known (feasible only for small n)
- non-computable ... no algorithm can exist

Computational complexity theory deals with different degrees of intractability

Generate and Test

83/89

In scenarios where

- it is simple to test whether a given state is a solution
- it is easy to generate new states (preferably likely solutions)

then a *generate and test* strategy can be used.

It is necessary that states are generated systematically

- so that we are guaranteed to find a solution, or know that none exists
 - some randomised algorithms do not require this, however (more on this later in this course)

... Generate and Test

84/89

Simple example: checking whether an integer *n* is prime

- generate/test all possible factors of n
- if none of them pass the test \Rightarrow *n* is prime

Generation is straightforward:

• produce a sequence of all numbers from 2 to *n-1*

Testing is also straightforward:

• check whether next number divides *n* exactly

... Generate and Test

85/89

Function for primality checking:

Complexity of isPrime is O(n)

Can be optimised: check only numbers between 2 and $\lfloor \sqrt{n} \rfloor \Rightarrow \mathsf{O}(\sqrt{n})$

Example: Subset Sum

86/89

Problem to solve ...

Is there a subset S of these numbers with $\Sigma_{x \in S} x = 1000$?

```
34, 38, 39, 43, 55, 66, 67, 84, 85, 91, 101, 117, 128, 138, 165, 168, 169, 182, 184, 186, 234, 238, 241, 276, 279, 288, 386, 387, 388, 389
```

General problem:

- given *n* arbitrary integers and a target sum *k*
- is there a subset that adds up to exactly k?

... Example: Subset Sum

87/89

Generate and test approach:

```
subsetsum(A, k):

| Input set A of n integers, target sum k
| Output true if Σ<sub>x∈S</sub>x=k for some S⊆A
| false otherwise
|
| for each subset B⊆A do
| if Σ<sub>b∈B</sub>b=k then
| return true
| end if
| end for
| return false
```

- How many subsets are there of n elements?
- How could we generate them?

... Example: Subset Sum

88/89

Given: a set of n distinct integers in an array A ...

• produce all subsets of these integers

A method to generate subsets:

- represent sets as *n* bits (e.g. *n=4*, 0000, 0011, 1111 etc.)
- bit *i* represents the *i* th input number
- if bit *i* is set to 1, then A[i] is in the subset
- if bit *i* is set to 0, then A[i] is not in the subset
- e.g. if A[]=={1, 2, 3, 5} then 0011 represents {1, 2}

... Example: Subset Sum

89/89

Algorithm:

```
subsetsum1 (A, k):

| Input set A of n integers, target sum k | Output true if \Sigma_{x \in S} x = k for some S \subseteq A | false otherwise |

| for s=0..2<sup>n</sup>-1 do | if k = \Sigma_{(i^{th} \ bit \ of \ s \ is \ 1)} A[i] then | return true | end if | end for | return false
```

... Example: Subset Sum

90/89

Alternative approach ...

```
subsetsum2(A, n, k) (returns true if any subset of A[0..n-1] sums to k, returns false otherwise)
```

- if the nth value A[n-1] is part of a solution ...
 then the first n-1 values must sum to k A[n-1]
- if the *n*th value is not part of a solution ...
 - then the first *n*-1 values must sum to *k*
- base cases: k=0 (solved by {}); n=0 (unsolvable if k>0)

```
subsetsum2(A, n, k):
```

```
Input array A, index n, target sum k
Output true if some subset of A[0..n-1] sums up to k
    false otherwise

if k=0 then
   return true // empty set solves this
else if n=0 then
   return false // no elements => no sums
else
   return subsetsum(A, n-1, k-A[n-1]) or subsetsum(A, n-1, k)
end if
```

... Example: Subset Sum

91/89

Cost analysis:

- C_i = #calls to subsetsum2() for array of length i
- for worst case,
 - \circ C₁ = 2
 - $\circ \ \ C_n = 2 + 2 \cdot C_{n-1} \ \ \Rightarrow C_n \cong 2^n$

Thus, subsetsum2 also is $O(2^n)$

... Example: Subset Sum

92/89

Subset Sum is typical member of the class of NP-complete problems

- intractable ... only algorithms with exponential performance are known
 - o increase input size by 1, double the execution time
 - o increase input size by 100, it takes $2^{100} = 1,267,650,600,228,229,401,496,703,205,376$ times as long to execute
- but if you can find a polynomial algorithm for Subset Sum, then any other NPcomplete problem becomes P...

Summary 93/89

- Big-Oh notation
- Asymptotic analysis of algorithms
- Examples of algorithms with logarithmic, linear, polynomial, exponential complexity
- Linked lists vs. arrays
- Suggested reading:
 - o Sedgewick, Ch. 2.1-2.4, 2.6

Produced: 19 Sep 2022