Last time: Differentiation laws

Thm (Product rule) Let $I\subseteq \mathbb{R}$ be an open interval, $f,g:I\rightarrow \mathbb{R}$, and $a\in I$. If f and g are differentiable at a, then fg is differentiable at a and

Pf: For h ≠ 0,

$$= \frac{f(a+h)-f(a)}{h} \cdot g(a+h) + f(a) \cdot \frac{g(a+h)-g(a)}{h}$$

As I and a are differentiable at a, we know:

$$\begin{array}{ccc}
\text{lim} & \frac{f(a+h)-f(a)}{h} = f'(a)
\end{array}$$

$$\frac{2}{h} \lim_{h \to 0} \frac{g(a+h)-g(a)}{h} = g'(a)$$

3 g continuous at a (by lecture 22) $\Rightarrow \lim_{n \to \infty} g(n) = g(a)$

Therefore, by the limit laws,

=
$$\lim_{h\to 0} \left[\frac{f(a+h)-f(a)}{h} \cdot g(a+h) + f(a) \cdot \frac{g(a+h)-g(a)}{h} \right]$$

 \Box

Thm (Quotient rule) Let $I \subseteq \mathbb{R}$ be an open interval, $f,g: I \to \mathbb{R}$, and $a \in I$. If f and g are differentiable at a and $g(a) \neq 0$, then $\frac{f}{q}$ is differentiable at a and

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$
.

Pf: It suffices to show

$$\left(\frac{1}{g}\right)^{1}(a) = -\frac{g^{1}(a)}{g(a)^{2}}.$$

Indeed, once we prove this, then by the product rule we have

$$(f \cdot \frac{1}{g})'(a) = f'(a) \cdot \frac{1}{g(a)} + f(a) \cdot (\frac{1}{g})'(a)$$

$$= \frac{f'(a)}{g(a)} - \frac{f(a)g'(a)}{g(a)^2}$$

=
$$\frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$
.

Want: $\lim_{h\to 0} \frac{g(a+h)-g(a)}{h} = -\frac{g'(a)}{g(a)^2}$. As g is continuous at a (by Lecture 22) and $g(a) \neq 0$, then $\exists 8>0$ s.t. $g(x) \neq 0$ $\forall x \in (a-8,a+8)$ (by Lecture 15). So for $h \in (-8,8)$, $\frac{1}{g(a+h)}$ makes sense and

$$\frac{g(a+h) - g(a)}{h} = \frac{g(a) - g(a+h)}{h \cdot g(a) \cdot g(a+h)}$$

$$= -\frac{g(a+h) - g(a)}{h} \cdot \frac{1}{g(a)g(a+h)}$$

As g is differentiable at a, we know:

$$\lim_{h\to 0} \frac{g(a+h)-g(a)}{h} = g'(a)$$

② g continuous at a (by lecture 22)

$$\Rightarrow$$
 $\lim_{x\to a} g(x) = g(a)$

$$\Rightarrow$$
 $\lim_{h\to 0} g(a+h) = g(a)$ and $g(a) \neq 0$

$$\Rightarrow$$
 lim $g(a)g(a+h) = \frac{1}{g(a)}$

Together, by the limit laws,

$$\lim_{h\to 0} \frac{1}{g(a+h)} - \frac{1}{g(a)} = \lim_{h\to 0} \left[-\frac{g(a+h) - g(a)}{h} \cdot \frac{1}{g(a)g(a+h)} \right]$$

$$= -g'(a) \cdot \frac{1}{g(a)^2}$$

$$\int_0^{\infty} \left(\frac{1}{9}\right)'(a) = -\frac{9'(a)}{9(a)^2}$$

 $Ex \forall n \in \mathbb{Z}, \frac{d}{dn}(x^n) = nx^{n-1}.$

Pf: Case: n > O. Already know (lecture 24).

Case: n<0. Then $x^n = \frac{1}{x^n}$ with -n>0.

Fix $a \neq 0$. We know $g(x) = x^{-n}$ is differentiable with $g'(a) = -na^{-n-1}$ and $g(a) = a^{-n} \neq 0$. So, by the quotient rule,

$$(x^{n})'(a) = \left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{g(a)^{2}}$$

$$= -\frac{(-n)a^{-n-1}}{(a^{-n})^{2}} = na^{-n-1+2n} = na^{n-1}. \quad 0$$

Ex let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2+1}$. Prove f is differentiable, and find its derivative.

Pf: Fix a e IR. Then

$$(n)'(a) = 1$$
, $(n^2+1)'(a) = 2a$

(These are polynomials, which we already know are differentiable on \mathbb{R} .) As $a^2+1\neq 0$ (since $a^2\geq 0$), then by the quotient rule we have

$$f'(a) = \frac{1 \cdot (a^2+1) - a \cdot 2a}{(a^2+1)^2} = \frac{-a^2+1}{(a^2+1)^2}.$$

Thm (Chain rule) Let $I, J \subseteq \mathbb{R}$ be open intervals, $f: I \rightarrow J$ and $g: J \rightarrow \mathbb{R}$ be functions, and a $\in I$. If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a and