



1. tood byproducts

2. graviimetric properties

3. aero dynamic properties

4. scheological properties

5. thermal properties

6. hygroscopic protesties.



# Physico-Chemical Constituents and Engineering Properties of Food Crops

Dr. R.P. KACHRU

Head, Post Harvest Engineering Division

Central Institute of Agricultural Engineering (ICAR)

Bhopal – 462 018

Er. R.K. GUPTA

Scientist, All India Coorinated Research Project on Post Harvest Technology (ICAR) Central Institute of Agricultural Engineering (ICAR) Bhopal - 462 018

&

Dr. ANWAR ALAM

Asstt. Director General (Engineering)
Indian Council of Agril. Research
Krishi Bhawan,
New Delhi - 110 001



SCIENTIFIC PUBLISHERS, JODHPUR

Published by SCIENTIFIC PUBLISHERS 5A, New Pali Road, P.O. Box. 91 Jodhpur-342 001, INDIA

First Published 1994 © Authors, 1994

F8,3:(D) N94

ISBN: 81-7233-083-9



Typeset by Akshya Kumar Chakravartty



Printed in India

## **FOREWORD**

This publication is an important contribution in the discipline of Post Harvest Engineering and Technology. Knowledge and reliable data about dimensions and behavioural properties of agricultural crops and animal products are needed for designers of equipments and processes, operators of processing plants and researchers. This book fills a felt need. It is to be noted that all the information given is based on varieties of crops grown and used in India, and therefore, relevant for ready use.

The book covers a wide area as ably explained in the Introduction. However, it does not contain information on electro-magnetic properties as probably no research work is done and no data are available. There is no data on surface areas of grains and very limited on fruits etc. Generally speaking, 14 per cent moisture content (on dry basis) of biological materials is used for comparison.

The publication is very rich in information on the subject matter, is very timely, well prepared and organized and is a mile stone. The authors deserve lot of credit for bringing out this publication on Physico-Chemical Constituents and Engineering Properties of Food Crops.

Prof. A. C. Pandya
Ex-Head, Deptt. of Agril. Engng;
I.I.T.; Kharagpur
Ex-Director, CIAE, Bhopal

#### **PREFACE**

Food processing activities must increase to maintain a continuous and quality food supply and to increase economic returns through value-addition of raw agricultural produce. From the production units on the farm to the consumer, food materials are subjected to various physical and chemical treatments, involving mechanical, thermal and biological techniques and devices. The systematic information on physical constituents and engineering properties of food crops thus, plays an important role in designing the machines, processes and handling operations which may lead to optimization of various parameters, efficiency of operation and quality of the end product. Besides, scientifically based improvements in the existing technology, processes, systems and equipment require in-depth study of engineering properties of food materials. The information on chemical constituents of food materials will be helpful in assessing the nutritive value of existing diets and in correcting inadequacies therein through a judicious choice of available food stuffs.

Considerable research data on various engineering properties, physical and chemical constituents of food crops have been generated and published in scientific journals, reports etc. However, the information is not readily available to the users since no compilation of data has been done at one place. Besides, till recently, the properties of various food crops were mainly based on the work carried out in other countries. This book is an attempt of its own kind to place significant research data based on Indian work on physico-chemical constituents and engineering properties of food crops under one cover.

The publication has been divided in eight chapters covering topics on physico-chemical constituents of food crops, definitions and methods for determination of physical, mechanical, thermal and biological properties of food materials. At the end of each chapter, research data on engineering properties collected from various sources have been given in the form of tables. The data presented in the book are based mostly on Indian work and more particularly, the work carried out at various Centres of All India Coordinated Research Project on Post Harvest Technology (ICAR). The standard curves for various properties and instrumentation required for their determination are also given in the book. Glossary of food products with botonical and hindi names provided at the end may make it more convenient to the users.

The contents of the book are so grouped to facilitate its usage as text or reference material for students and teachers in technical universities as well as researchers in any branch of science and technology and engineers concerned with physical behaviour of food materials.

# CONTENTS

| TOREWORD                                                                                                                              | 1   |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|
| Preface                                                                                                                               | ii  |
| Contents                                                                                                                              | iii |
| Introduction                                                                                                                          | 1   |
| CHAPTER                                                                                                                               |     |
| I. Physico-Chemical Constitutents and Properties of Food Crops and Their                                                              |     |
| Byproducts 1.1 Physical constituents of cereals                                                                                       | 1 2 |
| 1.2 Physical constituents of pulses                                                                                                   | 6   |
|                                                                                                                                       |     |
| 1.3 Physical constituents of oilseeds                                                                                                 | 7   |
| 1.4 Physical constituents of some fruits, spices and other crops                                                                      | 9   |
| 1.5 Chemical constituents of cereals                                                                                                  | 11  |
| 1.6 Chemical constituents of pulses                                                                                                   | 14  |
| 1.7 Chemical constituents of oilseeds and oil cake                                                                                    | 17  |
| 1.8 Chemical constituents of fruits, vegetables, spices and other crops                                                               | 19  |
| 1.9 Physico-chemical properties of oils                                                                                               | 22  |
| 1.10 Chemical composition of food crops and their by-products                                                                         | 24  |
| II. Spatial Dimensions, Size and Sphericity Shape, spatial dimensions, size, sphericity, surface area, roundness and moisture content | 41  |
| 2.1 Spatial dimensions, size and sphericity of cereal grains                                                                          | 48  |
| 2.2 Spatial dimensions, size and sphericity of pulses                                                                                 | 55  |
| 2.3 Spatial dimensions, size and sphericity of oilseeds                                                                               | 58  |
| 2.4 Spatial dimensions, size, sphericity and surface area of fruit and vegetable seeds                                                | 62  |
| 2.5 Spatial dimensions, size and sphericity of spices                                                                                 | 64  |
| III. Gravimetric Properties  Thousand grain weight, bulk density, volume, specific gravity and porosity                               | 65  |
| 3.1 Gravimetric properties of cereal grains                                                                                           | 69  |
| 3.2 Gravimetric properties of pulses                                                                                                  | 78  |
| 3.3 Gravimetric properties of oilseeds                                                                                                | 81  |

#### CONTENTS

| 3.4 Gravimetric properties of fruits and vegetable seeds                                                                                | 85  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.5 Gravimetric properties of spices and jaggery (gur)                                                                                  | 86  |
| IV. Frictional Properties  Angle of repose, coefficient of external friction, coefficient of internal friction and initial shear stress | 87  |
| 4.1 Frictional properties of cereals                                                                                                    | 92  |
| 4.2 Frictional properties of pulses                                                                                                     | 97  |
| 4.3 Frictional properties of oilseeds                                                                                                   | 100 |
| 4.4 Frictional properties of spices                                                                                                     | 104 |
| V. Aerodynamic Properties  Terminal velocity and drag co-efficient                                                                      | 105 |
| 5.1 Aerodynamic properties of cereals                                                                                                   | 106 |
| 5.2 Aerodynamic properties of pulses                                                                                                    | 106 |
| 5.3 Aerodynamic properties of oilseeds                                                                                                  | 107 |
| 5.4 Aerodynamic properties of fruit and vegetable seeds                                                                                 | 108 |
| 5.5 Aerodynamic properties of spices                                                                                                    | 108 |
| VI. Rheological Properties  Hardness, relative hardness number, coefficient of restitution, crushing load and ultimate compressive load | 109 |
| 6.1 Rheological properties of cereals                                                                                                   | 110 |
| 6.2 Rheological properties of pulses                                                                                                    | 112 |
| 6.3 Rheological properties of oilseeds                                                                                                  | 113 |
| 6.4 Rheological properties of fruit and vegetable seeds                                                                                 | 114 |
| 6.5 Rheological properties of spices                                                                                                    |     |
| VII. Thermal Properties Specific heat, thermal conductivity and thermal diffusivity                                                     | 115 |
| 7.1 Thermal properties of cereals                                                                                                       | 120 |
| 7.2 Thermal properties of pulses                                                                                                        | 122 |
| 7.3 Thermal properties of oilseeds                                                                                                      | 122 |
| 7.4 Thermal properties of jaggery (gur)                                                                                                 | 124 |
| VIII. Hygroscopic Properties  Equilibrium moisture content, equilibrium relative humidity, adsorption and desorption isotherms          | 125 |
| 8.1 Relative humidity of saturated salt solution at different temperatures                                                              | 132 |
| 8.2 Weight of salt required to saturate 100 ml of water                                                                                 | 135 |
| 8.3 Relative humidity of different concentrations of aqueous acid solutions at various temperatures.                                    | 136 |

#### CONTENTS

| 8.4 Hygroscopicity of cereals                                            | 138 |
|--------------------------------------------------------------------------|-----|
| 8.5 Hygroscopicity of pulses                                             | 136 |
| 8.6 Hygroscopicity of oilseeds                                           | 146 |
| References Cited                                                         | 152 |
| Appendix                                                                 |     |
| I. Glossary of food crops with botanical and hindi names                 | 161 |
| II. Standard curves for various properties of food crops                 | 168 |
| III. Instrumentation required for determination of various properties of | 105 |
| food crops                                                               | 187 |



#### **ACKNOWLEDGEMENT**

We are grateful to Dr. NSL Srivastava, Director, Central Institute of Agricultural Engineering, Bhopal for his encouragement in bringing out this publication. We are also thankful to him for writing "Preface" for this book. Authors are greatly indebted to Prof. AC Pandya for going through the manuscript and writing "Foreword" for it.

We sincerely appreciate the painstaking work of Mr. JT Sheriff, Scientist, CTCRI, Trivandrum, in the perparation of the manuscript. The help rendered by Mr.V.Natekar in the preparation of ink drawings Mr. H. S. Sriwas in the cover design and Mr. ZV John for typing the manuscript is greatly appreciated.

This publication would not have been possible without the co-operation of scientists/engineers, who were approached for giving valuable informations. It would be impossible to name and acknowledge individuals for making use of their published papers, books, bulletins, reports, illustrative material etc. in the preparation of this book. However, an attempt has been made to indicate the sources of all materials used throughout the book. The bibliographical references to these sources are also given at the end of this publication. Special acknowledgement is made for using the data on chemical composition of food crops, taken from the book entitled "Nutritive Value of Indian Foods" (edited by Gopalan, C. et al., 1982).

This book, being the first publication of its own kind in placing significant research data based on Indian work on physico-chemical constituents and engineering properties of food crops under one cover, it may be, that there exist some gaps in the information collected/reported. The authors would thus, appreciate for any feed back from the readers by providing additional data and information for the improvement of the future edition of the book.

This book gives fair representation of important engineering properties and data on physico-chemical constituents of food crops at one place. Thus, it may prove to be a text or reference material for students and teachers in technical universities, engineering colleges, polytechnics as well as for researchers and engineers involved directly or indirectly with the physical behaviour of food materials.

**BHOPAL** 

Dr. R.P. Kachru Er. R.K. Gupta Dr. A. Alam

#### INTRODUCTION

The physical constituents and engineering properties of food crops are important for the design of machines, processes and analysis of the behaviour of the product in their handling and processing. The information on the major chemical constituents, viz: carbohydrate, protein and fat content of food crops, would be helpful in making a balance diet. While processing, the material used undergoes to different degrees of heat and moisture treatment which may alter the composition of these constituents and sometimes, may lead to lower nutritive value.

The raw material rich in protein and carbohydrate should not be exposed to higher temperatures while preparing food because carbohydrates and protein form carbonyl complexes and depending on their degree of polymerization, the food becomes dark in colour and bitter in taste besides, the nutritive value decreases. Oil bearing materials, depending upon temperature, moisture, availability of oxygen and the lipid profile go through varying degree of oxidative changes, rancidity and refining losses. Though the vegetables do not form the bulk of diet, they are major source of valuable vitamins and essential minerals, each having then typical chemical composition. In case of high oxlate containing vegetables like spinach, care should be taken to combine these oxlate rich materials with lower level of calcium containing food systems which would facilitate formation of calcium oxlate precipitate preventing oxlates being assimilated and becoming cause of stone formation. On the basis of the compositions, dieticians can formulate hazard free diet.

Food rich in protein and low in simple carbohydrates are needed for diabetics. All these call for the relevant information on chemical compositions of food crops which form constituents of the dishes that we eat. Such information is also useful in the production of livestock feeds. Deep understanding of chemical and nutritional compositions helps development of high value products using relatively low cost raw materials.

Measurement of engineering properties of food grains are the parameters of great importance for analysis of behaviour of grains during handling, drying, processing, storage and designing the machinery.

Post harvest operations of food materials involving handling and processing by mechanical and/or thermal techniques and devices call for full understanding of size, shape, surface area, volume, particle and bulk density and porosity, static and dynamic co-efficients of friction, specific heat, thermal conductivity, thermal diffusivity and latent heat of various food materials. Conservation of food through drying, dehydration and scientific storage calls for full understanding of hygroscopic nature of food materials. Aerodynamic properties such as, terminal velocity, drag co-efficient are needed for pneumatic conveying and separation.

The physical characteristics of seed or grain are important and useful for the design of the processing equipments. The physical characteristics are also important in the design of seed drills and storage structures. Besides, the information regarding physical properties of grain and seed could be utilized for their classification into different grades as fine, medium and coarse for commercial use.

#### INTRODUCTION

When physical properties of grains, seeds, fruits and vegetables are studied by considering either bulk or individual units of the material, it is important to have an accurate estimate of shape, size, surface area and other physical characteristics which may be considered as engineering parameters for that product.

Shape and size are important parameters which govern design of winnowers, cleaners and graders, for separating the grains from foreign materials and in the development of the grading machinery. In conveying of solid materials by air or water, estimate of frontal area and related diameters are needed for determination of terminal velocity, drag co-efficient and Reynold's number. Size and shape are also important factors in the analysis of problems of stress distribution under load, heat mass transfer, pneumatic and hydraulic handling and separation and electrostatic separation of seeds and grains.

Gravimetric properties such as, specific gravity, bulk density are important in design and analysis of separation, handling, drying, processing, storage and transport equipment and systems. Specific gravity is a widely used criteria for separation of food materials. Bulk density decides the capacity of storage structures, hoppers and in determining resulting loads which must be taken in to consideration in the design of their components. The knowledge of density and specific gravity of grain is also needed in solutions of transport problems, in determining Reynold's number in pneumatic and hydraulic handling of the material and in separating the grain from undersize.

Porosity of the solid mass governs the resistance to air flow in a dryer and dictates the bed thickness which can be dried safely and the type of blower needed. The per cent voids of a consolidated and unconsolidated mass of porous materials is often required in air flow and heat flow studies as well as in other applications.

Static and sliding friction co-efficients of grains and other food materials on metal, wood and other surfaces are needed by the design engineers for rational design, predicting motion in handling, determining pressure of grain against bin walls and silos. Co-efficient of internal friction is important in studying consolidation and compressibility of the material and determining methods of compressing and packaging. The handling and flow of the material requires a better understanding of the frictional properties, angle of repose etc. This, in turn, helps in the design of belt conveyors, screw conveyors etc.

Aerodynamic properties such as terminal velocity and drag co- efficient are needed for air conveying and separation of materials. In air conveying or pneumatic separation, an air velocity greater than terminal velocity lifts the particles. Rheological properties such as compressive strength, impact and shear resistance, hardness, co-efficient of restitution and deformation load are important and in some cases, necessary engineering data in studying size reduction of food grains as well as resistance to mechanical injury to the seed under mechanical threshing and handling. Similarly, the crushing load of a material plays an important role in determining milling characteristics in combination with the moisture content.

Many of the food grains and the products are subjected to various types of thermal processing before they are placed at the disposal of consumers. It may involve heating, cooking, drying and freezing. These call for information about the specific heat, thermal conductivity, thermal diffusivity and latent heat associated with the various food materials. Grain drying and storage are of the prime importance to the agricultural industry. Many of the problems encountered in drying and storing may be analysed by using heat transfer principles. For example, temperature changes may be calculated by use of the basic heat transfer equations. The use of these equations, necessitates, the knowledge of the thermal properties of the grains. The specific heat,

#### INTRODUCTION

thermal conductivity and thermal diffusivity must be known before the equations of heat flow can be used. Consideration of heat transfer is not limited to problems of grain drying and storing but may be used for analysis of other processes such as aeration and refrigeration. Measurement of the thermal conductivity of agricultural products of various types such as granular materials and powdered materials are important for designing and controlling operations, where such materials are subjected to heating, cooling, drying or freezing.

The moisture content of food materials exerts a profound influence on their physical and biological properties. It is of major concern in handling, processing and storage of food materials. Hygroscopicity of food materials is usually measured by determining equilibrium moisture content, it maintains, at a given temperature and relative humidity.

# **CHAPTER-1**

# PHYSICO-CHEMICAL CONSTITUENTS AND PROPERTIES OF FOOD CROPS AND THEIR BY-PRODUCTS

The physical parameters, viz; plant height, number of branches, clusters, pods and seeds per plant are used to predict the yield of a particular food crop. The information on the plant parameters is also important to assess the need of agronomical inputs like cultural practices, application of fertilizer and weed control to overcome the deficiencies at the initial stage of the crop growth. Whereas, measurement of physical constituents of the food crops, viz; grain to crop ratio, grain to straw ratio and grain fractions are important for the design of harvesting/threshing machines, processes and analysis of the behaviour of the product in their handling and processing. It also quantifies the various constituents for their better utilization.

For the measurement of physical parameters, plants are to be counted/measured during field experiments. The lot size may vary according to the situation such as, crop plot size and purpose for which observations are being taken. However, a minimum of 100 plants, pods and/or grains should be taken for the determination of the said parameters. Physical constituents of cereals, pulses, oilseeds, fruits, spices and other crops are given in Tables 1.1 to 1.4.

The information on the major chemical/nutritional constituents, viz; carbohydrate, protein and fat content of food crops would help in the development of high value and new products using relatively low cost raw materials and for making balance diet. For the determination of major chemical constituents of food crops, standard methods/procedures, described in Association of Official Analytical Chemists (AOAC) may be followed. Chemical constituents of cereals, pulses, oilseeds and fruits, vegetables, spices and other crops are given in Tables 1.5 to 1.8.

The knowledge on physico-chemical properties of oils, viz; specific gravity, refractive index, apparent density, iodine value, FFA etc. are useful to monitor the quality of oils during processing, handling and storage. These properties may be determined by using methods given in American Oil Chemists Society (AOCS). Physico-chemical properties of oils are given in Table 1.9. Additional information on chemical composition of food crops and their by-products are given in Table 1.10.

22A2-10

IR-4630-22-2-5-1-2

| Table 1.1: Phys        | sical consti                                                                                                           | ituents                                                                                           | of cereals                      |                    |                              |          |           |                            |                              |
|------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------|--------------------|------------------------------|----------|-----------|----------------------------|------------------------------|
| Crop/Variety           | Constituent                                                                                                            |                                                                                                   |                                 |                    |                              | Re       | ference   |                            |                              |
| Finger millet<br>Local | Grain to str                                                                                                           | raw ratio                                                                                         | =1:4                            |                    |                              | 57       |           |                            |                              |
| Maize (corn)<br>Local  | Cob length: Cob diamet Cob girth: 1 No. of grain Dry matter Grain to sta Grain to col Grain frac Endosperm Germ: 10-11 | er: 46 mm<br>119.9-146<br>as/cob: 42<br>: 89.5%<br>alk ratio :<br>b ratio =<br>etion<br>a: 79-83% | n<br>.0 mm<br>3<br>=1:3<br>1:15 |                    |                              | 59,      | 97,131    |                            |                              |
| G-5                    | Straw mois<br>Grain m.c.<br>Straw grain                                                                                | ture cont<br>=12.6% (c                                                                            | db)                             | =17.4% (           | db)                          |          |           |                            |                              |
| Paddy                  | Suaw Sian                                                                                                              | 114400                                                                                            | 1.0.1                           |                    |                              |          |           |                            |                              |
| Local                  | Grain to str<br>Grain frac<br>Hull: 18-22<br>Germ: 1-2%<br>Endosperm<br>Bran: 4-6%                                     | etion<br>%<br>: 70-72%                                                                            |                                 |                    |                              | 98,      | 133, 136, | 164,174                    |                              |
| Pusa-221               | Straw m.c.: 13.9% (db) Grain m.c.: 16.9% (db) Straw grain ratio = 1:0.67                                               |                                                                                                   |                                 |                    |                              |          |           |                            |                              |
| IR-36                  | Grain to cre<br>Grain m.c.                                                                                             | op ratio =                                                                                        | : 1:2.2—1:                      | 1.9                |                              |          |           |                            |                              |
|                        | Days to 50% flowering                                                                                                  | Plant<br>height,<br>mm                                                                            | Panicle<br>length,<br>mm        | Grains/<br>panicle | Filled<br>grains/<br>panicle |          |           | Total<br>tillers/<br>plant | Fertile<br>tillers/<br>plant |
|                        | 1.                                                                                                                     | 2.                                                                                                | 3                               | 4.                 | 5.                           | 6.       | 7.        | 8.                         | 9.                           |
| Bala                   | 58                                                                                                                     | 680                                                                                               | 168                             | 75.3               | ,===                         | <u> </u> | _         | _                          |                              |
| Bashat                 | 54                                                                                                                     | 930                                                                                               | 198                             | 60.6               | , <del>,</del> ,             | -        | -         | -                          | -                            |
| Bile kagga             | -                                                                                                                      | _                                                                                                 |                                 | 124.3              | 85.1                         | 12.2     | 36.2      | 14.6                       | 11.5                         |
| Char nock              |                                                                                                                        |                                                                                                   | _                               | 104.3              | 86.8                         | 13.4     | 18.0      | 13.9                       | 11.5                         |
| Chinee 988             | 71                                                                                                                     | 1020                                                                                              | 223                             | 82.6               | name .                       | _        | _         | _                          | -                            |
| CSR-1                  |                                                                                                                        | -                                                                                                 | Command Command                 | 128.6              | 97.4                         | 10.2     | 20.5      | 11.4                       | 9.3                          |
| CSR–1<br>Mutant        | welsely                                                                                                                | -                                                                                                 | -                               | 131.4              | 94.3                         | 11.7     | 16.4      | 11.9                       | 9.3                          |
| CSR-2                  | -                                                                                                                      | _                                                                                                 |                                 | 135.8              | 99.1                         | 9.9      | 23.2      | 11.8                       | 9.4                          |
| CSR-3                  | _ `                                                                                                                    | Time:                                                                                             | 410                             | 135.4              | 99.5                         | 9.5      | 18.9      | 10.9                       | 8.4                          |
| Govind                 | 76                                                                                                                     | 760                                                                                               | 192                             | 82.4               | -                            |          |           | _                          | _                            |
| IRAT-8                 | dates                                                                                                                  |                                                                                                   | etim.                           | 161.7              | 124.4                        | 10.9     | 11.4      | 7.1                        | 5.7                          |
| IR-36                  | 87                                                                                                                     | 710                                                                                               | 202                             | 81.2               |                              | page .   | _         | -                          | -                            |
| IR-58                  | 59                                                                                                                     | 950                                                                                               | 224                             | 110.4              | ·                            |          |           | -                          | -                            |
| IR-4227-<br>109-1-3-3  | -                                                                                                                      | und                                                                                               |                                 | 116.4              | 96.2                         | 17.6     | 19.3      | 11.4                       | 9.3                          |
| IR-4462-               | -                                                                                                                      | _                                                                                                 |                                 | 96.3               | 77.1                         | 11.9     | 19.4      | 9.2                        | 7.9                          |

116.7

92.9

13.1

20.0

10.4

8.4

| CD 1 1 | ~     | . 3        |
|--------|-------|------------|
| 'l'ah  | e Con | +4         |
|        |       | L LOUIS DO |

|                         | 1  | 2.   | 3.  | . 4.   | 5.    | 6.   | 7.    | 8.   | 9.           |
|-------------------------|----|------|-----|--------|-------|------|-------|------|--------------|
| IR-5178-1-<br>1-4       | 70 | 1050 | 197 | 93.9   | -     | -    | nemo. | -    | -            |
| IR-8192-<br>200-3-3-1-1 | ~  | -    | -   | 112.10 | 81.0  | 13.2 | 21.1  | 12.4 | 10.1         |
| Kare kagga              | -  | -    | _   | 88.5   | 73.4  | 10.2 | 14.7  | 6.7  | 5.5          |
| M-224                   | -  | -    | -   | 106.7  | 97.1  | 15.6 | 26.9  | 18.9 | 14.4         |
| MCM-1                   | -  | -    | -   | 100.5  | 93.4  | 21.2 | 29.0  | 13.5 | 12.0         |
| Narendra-1              | 77 | 790  | 194 | 89.7   | _     | _    | _     | _    | -            |
| N-22                    | 66 | 820  | 178 | 88.2   | _     | _    |       | _    | _            |
| Oorgondon               | -  | -    | -   | 146.6  | 124.6 | 18.7 | 23.9  | 13.8 | 10.9         |
| PAU-21-88-5             | _  | -    | _   | 111.9  | 93.7  | 16.4 | 21.2  | 12.1 | 9.6          |
| Toduken                 | -  | -    | -   | 129.5  | 89.5  | 13.2 | 18.1  | 18.1 | 14.7         |
| UPR-Pusa-33             | 75 | 700  | 194 | 89.5   | anny  | _    | _     | _    | _            |
| UPR-79-9                | 73 | 760  | 206 | 72.2   | _     | -    | -     | -    | _            |
| UPR-79-151              | 67 | 690  | 193 | 73.8   | · -   | -    | -     | _    | -            |
| UPR-79-168              | 56 | 900  | 167 | 71.3   | _     | _    | eman. |      |              |
| UPR-79-169              | 57 | 940  | 180 | 87.1   | made  | -    | -     | _    | _            |
| UPR-82-31               | 73 | 800  | 179 | 101.2  | -     | _    | _     | -    | _            |
| UPR-83-169              | 64 | 970  | 170 | 75.1   | _     | _    | -     | -    | _            |
| UPR-103-D7-             | 78 | 770  | 218 | 103.2  | -     | _    |       | -    | <del>-</del> |
| VL-16                   | 80 | 1160 | 272 | 102.3  | _     |      | -     | -    | -            |
| VL-206                  | 78 | 1290 | 225 | 116.0  | _     | _    | _     | _    | _            |

|              | Moisture<br>content, % (db) | Husk,<br>% (by wt.) | Bran,<br>% (by wt.) |
|--------------|-----------------------------|---------------------|---------------------|
| Bad Shahbhog | 13.7                        | 21.0                | 6.3                 |
| Bora         | 14.0                        | 23.2                | 9.4                 |
| Chilarai     | 13.8                        | 20.0                | 7.5                 |
| Gajepsali    | 14.0                        | 19.2                | 7.8                 |
| IET-6666     | 14.1                        | 20.1                | 4.2                 |
| IET-8021     | 14.1                        | 20.2                | 5.7                 |
| Jahinga      | 14.2                        | 21.2                | 5.2                 |
| Kalajaha     | 13.9                        | 20.0                | 6.8                 |
| Mahsuri      | 14.1                        | 21.2                | 6.5                 |
| Manoharsali  | 13.8                        | 19.2                | 7.2                 |
| Masuri       | 14.0                        | 20.9                | 6.2                 |
| Nekera       | 14.1                        | 21.3                | 6.4                 |
| Pakhi Bara   | 13.8                        | 24.2                | 4.3                 |
| Pankaj       | 14.4                        | 20.7                | 5.2                 |
| Ranga Sali   | 14.3                        | 22.2                | 7.0                 |
| Rochi        | 14.2                        | 20.3                | 8.9                 |
| Rongile      | 14.2                        | 22.4                | 5.2                 |
| Sakowa       | 14.3                        | 20.8                | 8.9                 |
| Salpona.     | 13.8                        | 22.3                | 5.4                 |
| Telkuchi     | 13.8                        | 20.9                | 5.3                 |

Table Contd.....

| Crop/Variety             | Constituents                                                                                                |                                                           |                  |                                                   |                      |                     | Reference      |
|--------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|---------------------------------------------------|----------------------|---------------------|----------------|
| Pearl millet             |                                                                                                             |                                                           |                  |                                                   |                      |                     |                |
| Local                    | Plant height: 1,300—1,450 mm; Tillers/plant: 6—10; Earhead length = 220–260 mm; Grain to straw ratio = 1: 4 |                                                           |                  |                                                   |                      |                     |                |
|                          | Fingers/<br>earhead                                                                                         | Finger length, mm                                         | Finger width, mm | Spikelets<br>per finger                           | Grains per<br>finger | Grain<br>appearance |                |
| Ragi                     |                                                                                                             |                                                           |                  |                                                   |                      |                     | <br>57         |
| Indaf-8                  | 5—10                                                                                                        | 64—118                                                    | 12—15            | 52—120                                            | 4                    | Reddish brown       |                |
| HR—911                   | 68                                                                                                          | 65—114                                                    | 12—18            | 53—112                                            | 5                    | Brown               |                |
| Local                    |                                                                                                             | 40—95                                                     | 10—14            | 43—67                                             | 3                    | Dark brown          | _              |
| Diag (h                  |                                                                                                             |                                                           |                  |                                                   |                      |                     |                |
| Rice (brown) General     | T                                                                                                           | laui a a um                                               |                  | 1 00                                              |                      |                     | 60 100         |
| General                  |                                                                                                             | ericarp                                                   | ماليم            | : 1-2%                                            |                      |                     | 69,122         |
|                          | a<br>E                                                                                                      | Aleurone, nuo<br>nd seed coat<br>Embryo<br>Endosperm      |                  | : 4-6%<br>: 2-3%<br>: 89-94%                      |                      |                     |                |
| Rice (embryo)<br>General | C<br>P<br>F                                                                                                 | Spiblast<br>Soleorniza<br>Plumule<br>Radicle<br>Scutellum |                  | : 0.26%<br>: 0.18%<br>: 0.34%<br>: 0.18%<br>: 1:4 |                      | 70                  | 69             |
| Sorghum<br>General       | C                                                                                                           | rain to stick                                             | s ratio          | : 20%:80                                          | 9%                   |                     | 19,38,169      |
| CSH-9                    |                                                                                                             | traw m.c.<br>Grain m.c.<br>Straw grain r                  | atio             | : 10.1% (d<br>: 8.2% (db<br>: 1:3                 |                      |                     |                |
|                          | Primary                                                                                                     | Secondary                                                 | Grains           | Yield per                                         |                      | Kernel fraction,    | %              |
|                          | Rachi/ear                                                                                                   | Rachi/ear                                                 | per year         | plant, g                                          | Husk                 | Germ                | Endo-<br>sperm |
| CSH—1                    | -                                                                                                           |                                                           | -                | -                                                 | 7.5                  | 7.5                 | 85.0           |
| CSH—5                    | 52.3                                                                                                        | 294                                                       | 1602             |                                                   | 6.2                  | 7.3                 | 86.5           |
| CSH—6                    | -                                                                                                           | _                                                         |                  | . —                                               | 7.5                  | 5.7                 | 86.8           |
| CSH-9                    | and the last                                                                                                |                                                           |                  | -                                                 | 6.9                  | 7.8                 | 85.3           |
| Local                    |                                                                                                             | -                                                         |                  | 227.9                                             | -                    | CORPOR              | -              |
| SPV-351                  | alisaning                                                                                                   | -                                                         | _                | mailteitie                                        | 10.3                 | 4.9                 | 84.8           |
| SPV-462                  | 52.0                                                                                                        | 314                                                       | 1730             |                                                   | -                    | . —                 | -              |

|             | Grains/Year  | Grain, %                                                     | Straw, %               | Reference         |
|-------------|--------------|--------------------------------------------------------------|------------------------|-------------------|
| eat         |              |                                                              |                        |                   |
| A206        | 21.1         | _                                                            | _                      | 58, 117, 152, 160 |
| HD65        | 19.4         |                                                              | _                      |                   |
| HD—1553     |              | 40.0                                                         | 60.0                   |                   |
| HD—1593     | _            | 40.0                                                         | 60.0                   |                   |
| HD-2189     | _            | 41.7                                                         | 58.3                   |                   |
| HD-2278     | _            | 41.7                                                         | 58.3                   |                   |
| HD-5439     | _            | 38.5                                                         | 61.5                   |                   |
| Malvi local | 14.1         | _                                                            |                        |                   |
| Meghdoot    | 17.6         | _                                                            | -                      |                   |
| Pissi Local | 18.0         | _                                                            | _                      |                   |
|             |              | Constituents                                                 |                        |                   |
| General     | Gern         | n to straw ratio =1<br>n : 3.0%; Bran : 12<br>osperm : 85%   |                        |                   |
| HD 4530     | Grai         | w m.c: 5.5% (db)<br>n m.c: 9.1% (db)<br>w to grain ratio = 1 | : 0.78                 |                   |
| Lok—1       | Grai<br>Grai | n to crop ratio = 1 :<br>n m.c : 5.5—7.3% (c                 | 2.22 – 1 : 1.85<br>lb) |                   |
| Sonalika    | Grai<br>Grai | n to crop ratio = 1 :<br>n m.c : 7.8—8.2% (d                 | 2.6 - 1 : 2.22<br>lb)  |                   |

Table 1.2: Physical constituents of pulses

| Crop/Variety | Constituents                                                                                                                      | Reference  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| Bengal gram  |                                                                                                                                   |            |
| General      | Grain to staw ratio=1: 2; Cotyledon to grain ratio: 87.0 to 85.5; Testas: 15-20% of whole seed                                    | 32         |
| H-205        | Grain to crop ratio: 0.43-0.48; Moisture content of grain: 7.5-8.6%(db)                                                           |            |
| Radhey       | Moisture content of grain: 8.5% (db); Moisture content of straw: 9.6% (db); Straw grain ratio: 1.04; Grain to crop ratio= 50:100% |            |
| Black gram   |                                                                                                                                   |            |
| General      | Cotyledon to grain ratio: 88.0                                                                                                    | 104,173    |
| Local        | Dry matter: 90%                                                                                                                   |            |
| Cluster bean |                                                                                                                                   |            |
| Local        | Plant height: 820-867 mm; No. of branches per plant: 4-5; No. of cluster/plant: 8-11; No. of seeds/pod: 8; No. of pods/plant: 28  | 93         |
| Cowpea       |                                                                                                                                   |            |
| Local        | Plant height: 242 mm; No. of cluster/plant: 12; No. of pods/plant: 26; No. of seeds/pod: 10                                       | 39         |
| Green gram   |                                                                                                                                   |            |
| General      | Cotyledon to grain ratio: 88.0                                                                                                    | 31         |
| Horse gram   |                                                                                                                                   |            |
| Local        | Dry matter: 92.5%                                                                                                                 | 173        |
| Lentil       |                                                                                                                                   |            |
| General      | Cotyledon to grain ratio: 88.5                                                                                                    | 173        |
| Local        | Dry matter: 89.6%                                                                                                                 |            |
| Pea          |                                                                                                                                   |            |
| EC-4108      | Pods per plant: 35; Seed per plant: 43; Seed yield per plant: 127 g                                                               | 115        |
| General      | Grain fraction (kernel: 89%; hull:11.0%)                                                                                          |            |
| IC-4604      | Pods per plant: 23; Seed per plant: 51; Seed yield per plant: 117 g                                                               | 24,102     |
| Pigeon pea   |                                                                                                                                   |            |
| C-11         | No. of pods per plant: 42; Dry matter per plant: 13.7 g                                                                           | 24,102,104 |
| General      | Grain to stubble ratio=1:3; Cotyledon to grain ratio: 85.0 to 88.5                                                                |            |
| Hy-3C        | No. of pods per plant: 40; Dry matter per plant: 12.2 g                                                                           |            |
| ICPL-87      | Grain to crop ratio=41:100%, Grain m.c: 8.8% (db); straw m.c. : 8.3% (db)                                                         |            |
| Local        | Plant height: 1,610-2,030 mm; No. of pods per plant: 88-129; Dry matter per plant: 89.9%                                          |            |
| Type-21      | Grain to crop ratio: 0.20-0.29; Moisture content of grain: 7.4-7.9% (db)                                                          |            |
| UPAS-120     | Stalk to grain ratio: 1.8-3.8                                                                                                     |            |

Reference

able 1.3: Physical constituents of oilseeds
rop/variety

Constituents

| roudnut                |                                      |                                         |                               |                                                  |          |              |
|------------------------|--------------------------------------|-----------------------------------------|-------------------------------|--------------------------------------------------|----------|--------------|
| General                | Pods per pla<br>7.8% (dd<br>straw ra | o); Pod fractions (ke                   | per pod: 2-3;<br>ernel = 70%; | Pod moisture content<br>hull: 30%); Kernels to   | ::<br>o  | 68           |
| oundnut (pod)<br>JL–24 |                                      |                                         |                               |                                                  |          |              |
| JL-24                  | Pod type                             | Moisture                                |                               | Constitutents                                    |          |              |
|                        | 1 od type                            | content, % (db)                         | Hull                          | Constitutents, %  Kernel                         |          |              |
|                        |                                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Han                           |                                                  | Cotyledo | na           |
|                        | Single kernel ellipsoid              | 7.6                                     | 21.5                          | 2.6                                              | 75.9     | 118          |
|                        | Double kernel ellipsoid              | 7.6                                     | 22.8                          | 1.3                                              | 75.9     |              |
|                        | Paired<br>ellipsoid                  | 6.8                                     | 23.8                          | 2.2                                              | 74.0     |              |
|                        | Cassinoids                           | 8.9                                     | 24.1                          | 2.4                                              | 73.5     |              |
|                        | Triple kernel                        | 7.5                                     | 23.2                          | 1.9                                              | 74.9     |              |
| inseed                 | ellipsoid                            |                                         |                               |                                                  |          | 123          |
| ILS-73-25              | No. of primar                        | ry branches/plant: 3<br>r plant: 2.3 g  | ; Capsules pe                 | r plant: 14; Dry matter                          |          | 120          |
| ILS-169                | No. of prima                         | -                                       | Capsules per                  | plant: 20; Dry matter                            |          |              |
| ILS-252                | No. of prima                         | -                                       | Capsules pe                   | r plant:21; Dry matter                           |          |              |
| Mustard                |                                      | •                                       |                               |                                                  |          | ,104,<br>162 |
| Kranti                 | Silique per p<br>9.4 g               | olant: 383; Seeds pe                    | r silique: 11;                | Grain yield per plant:                           |          |              |
| Krishna                | Silique per p<br>8.9 g               | plant: 368; Seeds per                   | r silique: 12;                | Grain yield per plant:                           |          |              |
| Pusa bold              | Grain to crop<br>: 3.1% (c           |                                         | 6; Grain m.c.                 | : 2.8% (db); Straw m.c.                          |          |              |
| RH-78                  |                                      |                                         |                               | er plant: 5; Secondary<br>Grain yield per plant: |          |              |
| RK-14                  | Silique/plan                         | t: 352; Seeds per sili                  | que:9; Grian                  | yield per plant: 7.6 g                           |          |              |
| Varuna                 | Plant height                         |                                         | ranches/plan                  | t:4; Secondary braches                           |          |              |
| Vasdan                 |                                      |                                         |                               | n yield per plant: 10.4                          |          |              |
| Siger                  |                                      | •                                       |                               |                                                  |          |              |
| GA-5                   | Plant height<br>42                   | : 1,880 mm; Branche                     | ≋ per plant: 1                | 12; Capsules per plant:                          |          | 159          |
| GA-23                  | Plant height 36                      | : 1,753 mm; Branch                      | es per plant:                 | 9; Capsules per plant:                           |          |              |
| Local                  | Plant height<br>41                   | : 1,605 mm; Branche                     | es per plant: 1               | 3; Capsules per plant:                           |          |              |
| N-35                   | Plant height<br>59                   | : 1,733 mm; Branche                     | s per plant: 1                | .2; Capsules per plant:                          |          |              |

| Crop/Variety   | Constituents                                                                                                                                                                                                                                                                      | Reference   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| N-71           | Plant height: 1,730 mm, Branches per plant: 12; Capsules per plant: 44                                                                                                                                                                                                            |             |
| Safflower      |                                                                                                                                                                                                                                                                                   | 94          |
| General        | Plant height: 1,220-1,423 mm; Total number of branches per plant: 40-66; Yield per plant: 46.1-71.8 g; Pod moisture content: 5.3-5.8% (db); Seed fractions (kernel: 48-51%; hull:49-52%)                                                                                          |             |
| JSF-1          | Seed moisture content: 4.0% (db); Seed fraction (kernel: 54%; hull: 46%)                                                                                                                                                                                                          |             |
| Thin varieties | Seed fraction (kernel: 55-70%; hull: 30-45%)                                                                                                                                                                                                                                      |             |
| Sesamum        |                                                                                                                                                                                                                                                                                   | 57          |
| General        | Plant height: 570-790 mm; No. of capsules per plant: 8-28                                                                                                                                                                                                                         |             |
| Soybean        | 1                                                                                                                                                                                                                                                                                 | .35,149,171 |
| General        | Plant height: 200-613 mm; Branches per plant: 4-7; Pods per plant: 70-164; Seeds per plant: 93-286; Seed yield per plant: 12.3-25.8 g; Cotyledon to grain ratio: 89 to 90; Seed fractions (kernel: 89%; hull: 11%)                                                                |             |
| Bragg          | Plant height: 299 mm; No. of branches/plant: 1; Stem diameter: 5.1 mm; No. of pods/plant: 31; Grain to straw ratio=1: 1.8-                                                                                                                                                        |             |
| JS-2           | Plant height: 198.5 mm; No. of branches/plant:1; Stem diameter: 5.0 mm; No. of pods/plant: 39; Grain to straw ratio=1: 2.4                                                                                                                                                        |             |
| JS-7244        | Plant height: 445 mm; No. of branches/plant: 2; Stem diameter: 5.4 mm; No. of pods/plant: 72; Straw moisture content: 10.6% (db); Seed moisture content: 9.8% (db); Grain to straw ratio= 1: 2.7                                                                                  |             |
| JS-7546        | Plant height: 570.2 mm; No. of branches/plant: 1; Stem diameter: 6.1mm; No. of pods/plant: 59; grain to straw ratio= 1: 1.2                                                                                                                                                       |             |
| Punjab-1       | Plant height: 473.9 mm; No. of branches/plant: 2; Stem diameter: 5.5 mm; No. of pods/plant: 74; Grain to straw ratio: 1: 1.2; Grain to crop ratio: 34.5 to 100 %; Grain m.c. = 9.8% (db); Straw m.c.: 14.8% (db)                                                                  |             |
| Sunflower      |                                                                                                                                                                                                                                                                                   | 173         |
| Co-1           | Plant height: 678 mm; No. of leaves/plant: 19; Dia. of Capitulum: 78 mm; No. of seeds (outer portion: 97; middle portion: 50; inner portion: 29); Seed yield (outer: 2.3g; middle: 1.8g; inner:1.2 g); No. of seeds per capitulum: 176; Seed yield per capitulum: 5.3 g           |             |
| Co-2           | Plant height: 1,446 mm; No. of leaves/plant: 32; Dia. of capitulum: 116mm; No. of seeds (outer portion: 204; middle portion: 142; inner portion: 127); Seed yield (outer: 8.9 g; middle: 5.3 g; inner: 5.3 g); No. of seeds per capitulum: 473; Seed yield/capitulum: 19.6 g      |             |
| EC-68414       | Pod moisture content: 7.5% (db); Capitulum fraction (kernel: 23.8%; husk: 76.2%)                                                                                                                                                                                                  |             |
| EC-68415       | Pod moisture content: 7.5% (db); Capitulum fraction (kernel: 23.3%; 76.7%)                                                                                                                                                                                                        |             |
| General        | Seed fractions (kernel: 70%; hull: 30%)                                                                                                                                                                                                                                           |             |
| Morden         | Capitulum fraction (kernel: 28.6%; husk: 71.4%); Seed fraction (kernel: 70.4%; hull: 29.6%)                                                                                                                                                                                       |             |
| TNAU-SUF-4     | Plant height: 1,363 mm; No. of leaves/plant: 31; Dia. of capitulum: 121.5 mm; No. of seeds (outer portion: 185; middle portion: 122; inner portion: 103); Seed yield (outer: 7.2 g, middle: 4.5 g; inner: 4.5 g); No. of seeds per capitulum: 410; Seed yield per capitulum: 15 g |             |

able 1.4: Physical constituents of some fruits, spices and other crops

| op/Variety                      | Constituents                                                                                                                                               | Reference |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| anana                           |                                                                                                                                                            |           |
| C.V.Basrai                      | Plant height: 1,663-1,688 mm; Plant girth: 603-611 mm; Total leaves per plant: 45; Bunch weight: 1,050-1,090 g; Fruits per bunch: 106-108                  | 139       |
| ardamom                         |                                                                                                                                                            |           |
| Malabar                         | Moisture content: 8.7%(db); Seed to husk ratio=1: 0.40                                                                                                     | 46        |
| Mysore                          | Moisture content: 7.8% (db); Seed to husk ratio= 1: 0.35                                                                                                   |           |
| Local                           | No. of seeds per capsule: 13; Capsule weight: 0.2 g; Capsule fraction (seed: 32%; skin: 68%); Seed recovery: 67.5%                                         |           |
| Vazhukka                        | Moisture content: 11.1% (db); Seed to husk ratio= 1: 0.33                                                                                                  |           |
| arrot                           |                                                                                                                                                            |           |
| General                         | Water content: 86-89%                                                                                                                                      | 57        |
| ashewnuts                       |                                                                                                                                                            |           |
| General                         | Kernel: 25%, Shell: 75%                                                                                                                                    | 3         |
| assava                          |                                                                                                                                                            |           |
| Local                           | Tuber to stem ratio =1:1; Moisture content of tuber: 150% (db); Leaves: 6%; Stem: 44%; Tuber: 50%                                                          | 57        |
| love                            | Weight of clove: 0.07-0.09 g                                                                                                                               | 88        |
| oconut                          |                                                                                                                                                            |           |
| Seedling                        | Girth: 155 mm; Height: 154 mm; Total no. of leaves: 8; Seedling weight: 2,370 g                                                                            | 57        |
| Tree                            | Height: 4,970 mm; Girth: 810 mm; No. of functional leaves: 32                                                                                              |           |
| Coriander seed                  |                                                                                                                                                            |           |
| Local                           | Kernel: 56.8%; Hull: 43.2% at 10.4% (db) moisture content of coriander seed                                                                                | 172       |
| Curry leaf                      |                                                                                                                                                            |           |
| DWD-1                           | Shoot length: 81 mm; No. of leaves per shoot: 8; No. of leaflets per leaf: 9; Girth of shoot at base: 1.6 mm; Internodal length at base of shoot: 5.4 mm   | 85        |
| DWD-2                           | Shoot length: 312 mm; No. of leaves per shoot: 16; No. of leaflets per leaf: 20; Girth of shoot at base: 3.8 mm; Internodal length at base of shoot: 24 mm |           |
| <b>Frape</b>                    |                                                                                                                                                            |           |
| General                         | Bud load per vine: 36-120 kg                                                                                                                               | 25,176    |
| inseed stalk fibre              | Tenacity: 22.896 ± 2.16 g/tex; Fineness: 4.016 ± 0.126 tex; Colour percentage: 50.16; Bulk density: 4.025 g/cm <sup>3</sup> ; Lusture: 0.993               | 22        |
| ongmelon seed                   |                                                                                                                                                            |           |
| Local<br>Mango                  | Kernel: 68; Hull: 32%                                                                                                                                      | 127       |
| Local                           | Pulp content: 61%; Stone content: 21%; Peel content: 18%                                                                                                   | 57        |
| vlango stone<br>Vluskmelon seed | Kernel content: 57%; Pericarp content: 43%                                                                                                                 | 173       |
| Local                           | Kernel: 75%; Hull: 25%                                                                                                                                     | 127       |
| Nutmeg fruit<br>General         | Pericarp: 81-82%; Seed: 16-17%; Aril surrounding the seed: 2-2.5%;<br>Length: 20-35 mm; Diameter: 15-28 mm                                                 | 88        |

| Crop/Variety    | Constituents                                                                                                                                                                     | Referen    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Oil Palm        |                                                                                                                                                                                  |            |
| General         | Plant height: 20,000-30,000 mm; Fruit per bunch: 500-2,000 Weight of fruit: 3-30 g; Age of tree: 100 or more years                                                               | ; 17       |
| Peach           |                                                                                                                                                                                  |            |
| Tesia Samisto   | Fruit weight: 54.1-79.5 g                                                                                                                                                        | 11         |
| Pomegranate     |                                                                                                                                                                                  |            |
| Local           | Weight per seed: 12-25 mg; Weight of testa (as on whole seed weight: 50-57%                                                                                                      | ) 12       |
| Potato          |                                                                                                                                                                                  |            |
| Kufri Jyoti     | Plant height: 383 mm; Tubers weight per hill: 182.7 g                                                                                                                            | 100,144,15 |
| Local           | Plant height: 377-415 mm; No. of leaves per plant: 42-65; Stems per plant: 3-5; Tubers per plant: 6-12; Weight of tubers per plant: 282-543 g; Tubers weight per hill: 229-259 g |            |
| SS/C-562        | Plant height: 363 mm; Tubers weight per hill: 179.7 g                                                                                                                            |            |
| SS/C-1101       | Plant height: 364 mm; Tubers weight per hill: 166.0 g                                                                                                                            |            |
| Sugarcane       |                                                                                                                                                                                  |            |
| CO-1148         | Juice content: 62.7% at 8 months; 62.7% at 10 months; 59.2% at 12 months                                                                                                         | 3,10       |
| CO-7314         | Juice content: 61.2% at 8 months; 60.9% at 10 months; 57.6% at 12 months                                                                                                         |            |
| CO-7717         | Juice content: 61.8% at 8 months; 66.8% at 10 months; 58.3% at 12 months                                                                                                         |            |
| CO-J64          | Juice content: 61.7% at 8 months; 61.9% at 10 months; 57.5% at 12 months                                                                                                         |            |
| General         | Water content: 73-76%; Solids content: 24-27%; Cane-thresh (leaves and portion of the top of stalk) from cane harvested: 10%                                                     |            |
| Sweet potato    |                                                                                                                                                                                  |            |
| Jawahar-145     | Moisture content of fresh tuber: 217.5% (db); Moisture content of dry tuber: 5.4% (db)                                                                                           | 57         |
| Water chest-nut |                                                                                                                                                                                  |            |
| Red and White   | Moisture content of fresh kernel: 115.3-114.3% (db); Moisture content of dry kernel: 7.5-10.9% (db)                                                                              | 173        |

Table 1.5: Chemical constituents of cereals

| Crop/Variety          | Constituents                                                                                                                                                                    | Reference |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Barley                |                                                                                                                                                                                 | 99, 151   |
| Local                 | Crude protein: 11.5%; Fat: 1.5%; Crude fibre: 7.5%                                                                                                                              | 00, 101   |
| Finger millet         | oraco protessi. 12,0%, 140, 1.0%, 01440 11010 . 1.0%                                                                                                                            | 21        |
| CO-11                 | Protein: 7.5%; Carbohydrate: 76.0%; Starch: 62.0%                                                                                                                               | 21        |
| Godavari              | Ash: 2.6%, Nitrogen: 1.3%; Phosphorus: 29.5%; Iron: 6%                                                                                                                          |           |
| Maize (corn)          | 7.511 . 2.0 %, 1111 ogen . 1.0 %, 1 nosphorus . 20.0 %, 11011 . 0 %                                                                                                             | 112,151   |
| Local                 | Crude protein: 9.0-9.8%; Ash: 1.7-2.1%; Carbohydrate: 62.5-65.4%;                                                                                                               | 112,101   |
| Docar                 | Crude fibre: 2.0-2.4%                                                                                                                                                           |           |
| Local (kernel dry)    | Carbohydrate: 80%; Protein: 10%; Oil: 4.5%, Fibre: 3.5%; Minerals: 2.0%                                                                                                         |           |
| Oats                  |                                                                                                                                                                                 | 151       |
| Local                 | Crude protein: 9.5%; Fat: 4.0%; Crude fibre: 12.0%                                                                                                                              |           |
| Pearmillet            |                                                                                                                                                                                 | 30        |
| CO-6                  | Ash: 1.4%; Protein: 9.5%                                                                                                                                                        |           |
| CO-7                  | Ash: 1.4%; Protein: 12.9%                                                                                                                                                       |           |
| Local                 | Ash: 2.7%; Protein: 11.9%; Carbohydrate: 59.2%                                                                                                                                  |           |
| WCC-75                | Ash: 1.2%; Protein: 10.3%                                                                                                                                                       |           |
| X4                    | Protein: 12.0%; Carbohydrate: 70.0%; Starch: 60.0%; Amylose: 18.4%; Amylopectin: 41.6%                                                                                          |           |
| Prosomillet           |                                                                                                                                                                                 |           |
| (common millet/Baragu |                                                                                                                                                                                 |           |
| BR-7                  | Protein: 10.2%; Fat: 2%; Ash: 4.1%; Tannin: 84.2 mg/100g; Amylose: 20.2 mg/100g; Starch: 50.2 mg/100g; Sugar: 55.8 mg/100g                                                      | 18        |
| CO-1                  | Protein; 6.8%; Ash: 3.4%; Calcium: 26.4 mg/100g; Phosphorous: 164.8 mg/100g; Tannin: 115.4 mg/100g; Amylose: 13.2 mg/100g; Starch: 49.1 mg/100g; Sugar: 54.6 mg/100g            |           |
| CO-2                  | Protein: 19.0%; Ash: 3.9%, Tannin: 92.7 mg/100g; Amylose: 21.8 mg/100g; Starch: 48.7 mg/100g; Sugar: 54.2 mg/100g                                                               |           |
| K-2                   | Protein: 7.3%; Ash: 3.7%; Calcium: 30.7 mg/100g; Phosphorous: 112.5 mg/100g; Tannin: 123.7 mg/100g; Amylose: 19.1 mg/100g; Starch: 53.3 mg/100g; Sugar: 58.3 mg/100g            |           |
| Raum-11               | Protein: 14.9%; Fat: 1.8%; Ash: 3.3%, Calcium: 26.2 mg/100g; Phosphorous: 163.6 mg/100g; Tannin: 92.7 mg/100g; Amylose: 14.2 mg/100g; Starch: 51.7 mg/100g; Sugar: 61.2 mg/100g |           |
| Rice (brown)          |                                                                                                                                                                                 |           |
| Jaha                  | Protein: 7.2%; Reducing sugar: 0.42%; Amylose: 18.3%; Fat: 2.6%; FFA: 31.3 mg KOH/100 g                                                                                         | 134       |
| Manoharsali           | Protein: 6.3%; Reducing sugar: 0.40%; Amylose: 19.2%; Fat: 2.2%; FFA: 37.5 mg KOH/100 g                                                                                         |           |
| General range         | Protein (N x 5.95): 7.1-13.1%; Crude fat: 1.8-4.0%; Dietary fat: 0.2-2.6%; Ash: 1.0-2.4%; Nitrogen-free extract: 74.5-90.2%                                                     |           |
| Rice (embryo)         |                                                                                                                                                                                 |           |
| General range         | Protein (N x 5.95): 17.7-24.1%; Crude fat: 15.2-23.8%; Dietary fat: 2.0-4.8%; Ash: 6.1-10.1%; Nitrogen-free extract: 36.2-57.3%                                                 | 134       |
| Rice (kani)           |                                                                                                                                                                                 |           |
| Local                 | Crude protein: 8.0%; Fat: 1.7%; Crude fibre: 1.4%                                                                                                                               | 134       |
| Rice (milled)         |                                                                                                                                                                                 |           |

| Crop/Variety                       | Constituents                                                                                                                        | Reference |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
| CO-33                              | Protein: 10.1%; Carbohydrate: 81.9%                                                                                                 | 134       |
| General range                      | Protein (N x 5.95): 5.6-13.3%; Crude fat: 0.2-1.1%; Dietary fat: 0.1-0.6%; Ash: 0.3-0.7%; Nitrogen-free extract: 84.0-93.5%         |           |
| Jaha                               | Protein: 6.7%; Reducing sugar: 0.31%; Amylose: 19.7%; Fat: 1.7%; FFA: 26.0 mg KOH/100 g                                             |           |
| Manoharsali                        | Protein: 6.1%; Reducing sugar: 0.20%; Amylose: 20.9%; Fat: 1.1%; FFA: 30.6 mg KOH/100 g                                             |           |
| Prasadbhog                         | Protein: 6.0%; Reducing sugar: 0.31%; Amylose: 20.4%; Fat: 1.4%; FFA: 20.4 mg KOH/100 g                                             |           |
| Rice (bran)                        |                                                                                                                                     | 134       |
| General range                      | Protein (N x 5.95): 12. 1-17. 2%; Crude fat: 14.6-21.7%; Dietary fat: 8.7-13.1%; Ash; 9.0-12.12%; Nitrogen-free extract: 40.9-49.1% |           |
| Jaha<br>(bran yield : 3.9%)        | Protein: 12.1%; Fat: 18.6%; FFA: 279.2 mg Koh/100 g                                                                                 |           |
| Manoharsali<br>(bran yield : 4.9%) | Protein: 11.8%; Fat: 19.5%; FFA: 234.3 mg KoH/100 g                                                                                 |           |
| Prasadbhog (bran yield : 3.9%)     | Protein: 11.2%; Fat: 18.0% FFA: 216.8 mg KoH/100g                                                                                   |           |
| Rice (huller bran)                 | Protein: 5-7%; fibre: 20-35%; Ash: 16%; oil content: 3-4%; Silica: 15-20%                                                           | 134       |
| Rice (polish)<br>General range     | Protein (Nx 5.95): 12.8-16.4%; Crude fat: 8.8-15.3%; Dietary fat: 2.1-5.3%; Ash: 5.0-9.3%; Nitrogen-free extract: 53.7-71.3%        | 134       |
| Sorghum                            |                                                                                                                                     | 7,15      |
| CO-18                              | Crude Protein: 9.1%; Carbohydrate: 74.5%; Tannin: 0.40%; Lysine: 0.24%                                                              |           |
| CO-21                              | Crude Protein: 8.8%; Carbohydrate: 72.4%; Tannin: 0.35%;<br>Lysine: 0.26%                                                           |           |
| CSH-1                              | Crude Protein: 8.4%; Fat: 2.4%; Crude fibre: 1.5%; Ash: 1.4%; Carbohydrate: 77.4%                                                   |           |
| CSH-5                              | Crude protein: 8.9%; Fat: 2.2%; Crude fibre: 1.4%; Ash: 1.4-1.7%; Calcium: 0.32%; Carbohydrate: 76.2%; Phosphorus: 0.25%            |           |
| CSH-6                              | Crude protein: 8.4%; Fat: 2.3%; Crude fibre: 1.4%; Ash: 1.2-1.6%; Calcium: 0.36%; Carbohydrate: 75.9%; Phosphorus: 0.26%            | 7,151     |
| CSH-8R                             | Ash: 1.4%; Calcium: 0.32%; Phosphorus: 0.28%                                                                                        |           |
| CSH-9                              | Crude protein: 8.2%; Fat: 2.5%; Crude fibre: 1.8%; Ash: 1.5-1.8%; Calcium: 0.44%; Carbohydrate: 75.4%; Phosphorus: 0.30%            |           |
| D-340                              | Ash: 1.8%; Calcium: 0.32%; Phosphorus: 0.25%                                                                                        |           |
| Local                              | Moisture content: 9.0%(db); Crude Protein: 10.0-10.4%; Fat: 2.8-3.2%; Crude fibre: 2.0%; Nitrogen: 1.7%                             |           |
| Moti                               | Ash: 1.7%; Calcium: 0.40%; Phosphorus: 0.25%                                                                                        |           |
| M-35-1                             | Ash: 1.8%; Calcium: 0.44%; Phosphorus: 0.23%                                                                                        |           |
| N-1                                | Ash: 1.5%; Calcium: 0.40%; Phosphorus: 0.22%                                                                                        |           |
| N-131                              | Ash: 1.6%; Calcium: 0.36%; Phosphorus: 0.20%                                                                                        |           |
| PJ-837                             | Ash: 1.4%; Calcium: 0.44%; Phosphorus: 0.18%                                                                                        |           |
| PJ-840                             | Ash: 1.4%; Calcium: 0.36%; Phosphorus: 0.20%                                                                                        |           |
| PJ-842                             | Ash: 1.5%; Calcium: 0.32%; Phosphorus: 0.22%                                                                                        |           |
| PJ-845                             | Ash: 1.3%; Calcium: 0.36%; Phosphorus: 0.22%                                                                                        |           |

| Crop/Variety    | Constituents                                                                                                                                                                         | Reference  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| PJ-868          | Ash: 1.8%; Calcium: 0.36%; Phosphorus: 0.22%                                                                                                                                         |            |
| SPV-86          | Ash: 1.6%; Calcium: 0.40%; Phosphorus: 0.23%                                                                                                                                         |            |
| SPV-126         | Ash: 1.5%; Calcium: 0.48%; Phosphorus: 0.30%                                                                                                                                         |            |
| SPV-168         | Ash: 1.6%; Calcium: 0.40%; Phosphorus: 0.28%                                                                                                                                         |            |
| SPV-221         | Ash: 1.8%; Calcium: 0.44%; Phosphorus: 0.31%                                                                                                                                         |            |
| SPV-346         | Ash: 1.8%; Calcium: 0.40%; Phosphorus: 0.28%                                                                                                                                         |            |
| SPV-351         | Crude Protein: 7.9%; Fat: 3.2%; Crude Fibre: 2.1%; Ash: 1.5-1.9%; Calcium: 0.36%; Carbohydrate: 74.2%; Phosphorus: 0.26%                                                             |            |
| SPV-386         | Ash: 1.6%; Calcium: 0.44%; Phosphorus: 0.26%                                                                                                                                         |            |
| SPV-422         | Ash: 1.5%; Calcium: 0.40%; Phosphorus: 0.22%                                                                                                                                         |            |
| Swarna          | Ash: 1.7%; Calcium: 0.48%; Phosphorus: 0.26%                                                                                                                                         |            |
| Wheat (Chapati) |                                                                                                                                                                                      |            |
| Local           | Moisture content: 5.6%(db); Crude protein: 10.9%; Crude fat: 1.1%; 13<br>Crude fibre: 1.2%; Ash: 2.9%                                                                                | 18,140,155 |
| Wheat (Dalia)   |                                                                                                                                                                                      |            |
| Aestivam        | Moisture content: 11.1-11.2%(db); Dry gluten: 8.4-8.8% (dry wt. basis); Ash: 1.6-1.7% (total): 0.08-0.14 (insoluble); Pigments: 3.0-3.8 ppm (dry wt. basis)                          | 118        |
| Wheat (grain)   |                                                                                                                                                                                      |            |
| C-306           | Moisture content: 9.2%(db); Ash: 1.6-1.9%; Crude protein: 8.8-9.8%; 12<br>Crude fibre: 2.6%; Crude fat: 1.6%; Carbohydrate: 87.9%; Calcium: 89.9 mg/100 g; Phosphorus: 149.4 mg/100g | 17,118,160 |
| HD-2009         | Moisture content: 7.7%(db); Ash: 1.6%; Crude protein: 10.1%; Crude fibre: 1.1%; Calcium: 77.5 mg/100 g; Phosphorus: 174.4 mg/100g                                                    |            |
| HD-2204         | Ash: 1.6%; Crude protein: 12.3%; Crude fibre: 4.1%; Crude fat: 1.7%; Carbohydrate: 84.5%                                                                                             |            |
| Kalyan Sona     | Moisture content: 7.6%(db); Ash: 1.7%; Crude protein: 9.6%; Crude fibre: 1.2%; Calcium: 64.2 mg/100 g; Phosphorus: 179.9 mg/100g                                                     |            |
| Sonalika        | Moisture content: 14.5%(db); Ash: 1.1%; Crude protein: 10.9%; Gluten: 37.3% (wet): 11.5% (dry)                                                                                       |            |
| UP-301          | Moisture content: 12.7%(db); Ash: 1.4%; Crude protein: 11.6%; Gluten: 35.3% (wet): 11.5% (dry)                                                                                       |            |
| WH-147          | Moisture content: 7.5%(db); Ash: 2.0%; Crude protein: 8.9%; Crude fibre: 1.1%; Calcium: 139.1 mg/100g; Phosphorus: 373.3 mg/100g                                                     |            |
| WH-157          | Moisture content: 8.2%(db); Ash: 1.9%; Crude protein: 12.1%; Crude fibre: 1.2%; Calcium: 89.1 mg/100 g; Phosphorus: 242.2 mg/100g                                                    |            |
| WL-711          | Moisture content: 7.9%(db); Ash: 1.8%; Crude protein: 9.7%; Crude fibre: 1.4%; Calcium: 74.9 mg/100 g; Phosphorus: 191.1 mg/100g                                                     |            |
| Wheat (straw)   | Crude protein: 2.9-3.5%; Crude fibre: 34.6-39.6%; Cellulose: 37.4-41.6%                                                                                                              | 160        |

Table 1.6: Chemical constituents of pulses

| Crop/Variety                    | Constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reference |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Bengal gram<br>(edible portion) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| General                         | Water: 11.0%; Protein: 20.1%; Oil: 4.5%; Fibre: 4.9%; Carbohydrate: 56.6%; Ash: 2.9%; Calories: 358 kcal/100 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151       |
| Local                           | Dry matter: 92.0%; Protein: 18.7%; Oil: 4.5%; Carbohydrate (soluble): 58.0%; Fibre: 0.2%; Total mineral matter: 3.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| Black gram                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| CO-4                            | Protein: 21.7%; Carbohydrate: 58.0%; Free amino acid: 15.3 mg/100g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 151       |
| Black gram<br>(edible portion)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Local                           | Dry matter: 90.0%; Protein: 19.3%; Oil: 0.7%; Carbohydrate (soluble): 62.4%; Fibre: 0.5%; Total mineral matter: 7.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 151       |
| Cowpea                          | Water: 11.0%; Protein: 23.4%; Oil: 1.8%; Fibre: 4.3%; Carbohydrate: 56.0%; Ash: 3.5%; Calories: 342 kcal/100g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 151       |
| Fababean                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| General                         | Water: 11.0%; Protein: 23.4%; Oil: 2.0%; Fibre: 7.8%; Carbohydrate: 52.4%; Ash: 3.4%; Calories: 348 kcal/100 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42,151    |
| JB-33                           | Moisture content: 12.7%(db); Ash: 3.0%; Protein: 26.6%; Oil: 1.5%; Crude fibre: 2.8%; Carbohydrate: 56.9%; Starch: 55.4%; Free soluble sugar: 1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| JV-1                            | Moisture content: 11.6%(db); Ash: 3.0%; Protein: 24.9%; Oil: 1.4%; Crude fibre: 2.5%; Carbohydrate: 55.8%; Starch: 54.2%; Free soluble sugar: 1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| JV-6                            | Moisture content: 12.5%(db); Ash: 3.1%; Protein: 26.1%; Oil: 2.4%; Crude fibre: 3.2%; Carbohydrate: 57.6%; Starch: 56.0%; Free soluble sugar: 1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| JV-7                            | Moisture content: 12.6%(db); Ash: 3.1%; Protein: 26.8%; Oil: 1.9%; Crude fibre: 3.2%; Carbohydrate: 58.2%; Starch: 56.7%; Free soluble sugar: 1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| JV-17                           | Moisture content: 12.5%(db); Ash: 3.1%; Protein: 25.4%; Oil: 2.4%; Crude fibre: 3.1%; Carbohydrate: 56.9%; Starch: 55.5%; Free soluble sugar: 1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| JV-18                           | Moisture content: 12.2%(db); Ash: 2.8%; Protein: 25.0%; Oil: 2.3%; Crude fibre: 3.8%; Carbohydrate: 56.9%; Starch: 55.5%; Free soluble sugar: 1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| <b>JV-7</b> 0                   | Moisture content: 11.8%(db); Ash: 2.9%; Protein: 23.1%; Oil: 1.21%; Crude fibre: 2.6%; Carbohydrate: 55.8%; Starch: 59.4%; Free soluble sugar: 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| JV-89                           | Moisture content: 12.9%(db); Ash: 3.0%; Protein: 25.7%; Oil: 2.3%; Crude fibre: 2.9%; Carbohydrate: 56.4%; Starch: 54.9%; Free soluble sugar: 1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| JV-7081                         | Moisture content: 11.5%(db); Ash: 2.8%; Protein: 24.7%; Oil: 1.4%; Crude fibre: 3.6%; Carbohydrate: 56.4%; Starch: 54.8%; Free soluble sugar: 1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| Whole Faba bean                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Winter crop                     | Moisture: 14.1%; Ether extract: 0.95%; Protein (Nx 6.25):23.3%; Crude fibre: 7.05%; Ash: 3.5%; N-free extract: 51.1%; Calcium: 0.08%; Average phosphorus: 0.1%; Salt: 0.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151       |
|                                 | order of the production of the contract of the |           |

| Spring crop                         | Moisture: 11.8%; Ether extract: 1.0%; Protein (Nx 6.25):27.7%;                                                                                                                                                                                   |           |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Crop/Variety                        | Constituents                                                                                                                                                                                                                                     | Reference |
|                                     | Crude fibre: 6.30%; Ash: 3.5%; N-free extract: 49.7%; Calcium: 0.08%; Average phosphorus: 0.1%; Salt: 0.8%                                                                                                                                       |           |
| Dehulled Faba bean (testas removed) |                                                                                                                                                                                                                                                  |           |
| Winter crop                         | Moisture: 14.9%; Ether extract: 1.02%; Protein (Nx 6.25):25.3%; Crude fibre: 2.95%; Ash: 3.5%; N-free extract: 52.3%; Calcium: 0.03%; Average phosphorus: 0.1%; Salt: 0.7%                                                                       | 151       |
| Spring crop                         | Moisture: 12.3%; Ether extract: 1.08%; Protein (Nx 6.25):30.5%; Crude fibre: 2.07%; Ash: 3.5%; N-free extract: 50.6%; Calcium: 0.03%; Average phosphorus: 0.1%; Salt: 0.7%                                                                       |           |
| Green gram                          |                                                                                                                                                                                                                                                  |           |
| M-2                                 | Protein: 20.96%; Carbohydrate: 60.0%; Free amino acid: 13.6 mg/100 g                                                                                                                                                                             | 151       |
| Green gram<br>(edible portion)      |                                                                                                                                                                                                                                                  |           |
| Local                               | Dry matter: 89.6%; Protein: 21.2%; Oil: 1.1%; Carbohydrate: (soluble: 59.6%; fibre: 3.8%); Total mineral matter: 4.1%                                                                                                                            | 151       |
| Horse gram                          |                                                                                                                                                                                                                                                  |           |
| Local                               | Moisture content: 11.1%(db); Protein: 26.0%; Crude fat: 0.98%; Carbohydrate: 52.9%; Mineral matter: 3.5%                                                                                                                                         | 151       |
| Horse gram (dhal)                   | Moisture content: 10.7%(db); Protein: 26.6%; Crude fat: 1.4%; Carbohydrate: 56.2%; Mineral matter: 5.0%                                                                                                                                          | 151       |
| Horse gram<br>(edible portion)      |                                                                                                                                                                                                                                                  |           |
| Local                               | Dry matter: 92.5%(db); Protein: 23.4%; Oil: 0.9%; Carbohydrate: (soluble: 58.4%; fibre: 4.6%); Total mineral matter: 4.8%                                                                                                                        | 151       |
| Horse gram<br>(germinated)          |                                                                                                                                                                                                                                                  |           |
| Local                               | Moisture content: 9.2%(db); Protein: 25.9%; Crude fat: 1.3%; Carbohydrate: 52.9%; Mineral matter: 4.2%                                                                                                                                           | 151       |
| Lentil                              | Water: 11.0%; Protein: 24.2%; Oil: 1.8%; Fibre: 1.8%; Carbohydrate: 59.0%; Ash: 2.2%; Calories: 346 kcal/100g                                                                                                                                    | 151       |
| Lima beans                          |                                                                                                                                                                                                                                                  |           |
| General                             | Water: 12.7%; Protein: 21.4%; Oil: 1.4%; Carbohydrate: 61.1%; Fibre: 4.3%; Ash: 3.4%; Calories: 335 kcal/100 g; Calcium: 116.0 mg/100g; Thiamine: 0.33 mg/100g; Iron: 4.9 mg/100g; Riboflavin: 0.16 mg/100g; Niacine: 2.1 mg/100 g               | 151       |
| Pea                                 |                                                                                                                                                                                                                                                  |           |
| General                             | Water: 11.0%; Protein: 22.5%; Oil: 1.8%; Fibre: 5.5%; Carbohydrate: 53.7%; Ash: 5.5%; Calories: 346 kcal/100g                                                                                                                                    | 151       |
| Local                               | Moisture content: 14.4-19.2%(db); Crude fibre: 3.9-6.3%; Ash: 2.9-4.0%; Crude protein: 15.0-29.4%; Crude fat: 1.2-2.6%; Carbohydrate: 58.6-73.8%                                                                                                 |           |
| Dried                               | Water: 13.3%; Carbohydrate: 50.0%; Fat: 1.3%; Protein: 21.6%; Nitrogen: 3.45%; Na: 38 mg/100g; K: 990 mg/100g; Ca: 61 mg/100g; Mg: 116 mg/100g; P: 300 mg/100g; Fe: 47 mg/100g; Cu: 0.5 mg/100g; Zn: 3.5 mg/100g; S: 130 mg/100g; Cl: 60 mg/100g |           |
| Table Contd                         | 0.0 mg/100g, 2m. 0.0 mg/100g, 0. 100 mg/100g, 01. 00 mg/100g                                                                                                                                                                                     |           |
|                                     |                                                                                                                                                                                                                                                  |           |

#### Physico-chemical Constituents and Properties of Food Crops

Fresh Water: 78.5%; Carbohydrate: 10.6%; Fat: 0.4%; Protein: 5.8%;

| Crop/Variety       | Constituents                                                                                                                                                                                       | Reference |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                    | Nitrogen: 0.9%; Na: 1.0 mg/100g; K: 340 mg/100g; Ca: 15 mg/100g; Mg: 30 mg/100g; P: 100 mg/100g; Fe: 1.9 mg/100g; Cu: 0.2 mg/100g; Zn: 0.7 mg/100g; S: 2.0 mg/100g; Cl: 3.9 mg/100g                |           |
| Pigeon pea         |                                                                                                                                                                                                    |           |
| Co-11              | Crude protein: 18.9%                                                                                                                                                                               | 167       |
| Со-33              | Crude protein: 21.2%, Carbohydrate: 57.4%; Free amino acid: 13.0 mg/100g                                                                                                                           |           |
| Local              | Moisture content: 14.2%(db); Ash: 4.8%; Crude fibre: 7.1%; Crude protein: 22.6%; Crude fat: 2.7%; Carbohydrate: 62.9%; Total sugar: 7.5%; Dry matter: 89.9%; Oil: 1.3%; Total mineral matter: 3.8% |           |
| No. 148            | Crude protein: 24.9%                                                                                                                                                                               |           |
| T-vishaka          | Crude protein: 22.8%                                                                                                                                                                               |           |
| Pigeon pea         |                                                                                                                                                                                                    |           |
| (husk)             | Dry matter: 92.2%; Protein: 8.4%; Oil: 1.5%; Carbohydrate: (soluble: 41.9%; Fibre: 35.1%); Total mineral matter: 5.3%                                                                              | 167       |
| Pigeon pea (split) | Moisture content: 17.9%(db); Protein: 22.3%; Fat: 1.7%; Carbohydrate: 57.2%; Ash: 3.6%                                                                                                             | 167       |
| Winged beans       |                                                                                                                                                                                                    |           |
| General            | Protein: 21-46%; Oil: 7-22%; Crude fibre: 9-11%; Nitrogen-free extract: 24-28%                                                                                                                     | 57        |

Table 1.7 Chemical constituents of oilseeds and oil cake

| Crop/Variety     | Constituents                                                                                                                                                     | Reference |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Castor seed      |                                                                                                                                                                  |           |
| General          | Oil content: 45-52%; Protein: 12-16%; Soluble sugar: 3-7%; Fibre: 23-27%; Minerals: 2.0%                                                                         | 111       |
| Castor cake      |                                                                                                                                                                  |           |
| General          | Protein: 20-25%; Crude fibre: 40-45%; Carbohydrate 15%                                                                                                           | 111       |
| Coconut          |                                                                                                                                                                  |           |
| General          | Oil content: 62% in copra                                                                                                                                        | 3         |
| Cotton seed      |                                                                                                                                                                  |           |
| General          | Oil content: 14-18%                                                                                                                                              | 3         |
| Groundnut        |                                                                                                                                                                  |           |
| POL-2            | Protein: 23.2%; Oil content: 41.5%                                                                                                                               | 111       |
| Spanish bunch    | Oil content: 48.7%; Protein: 22.9%; Soluble sugar: 9.8%; Energy value: 2,676 J/100 g                                                                             |           |
| TMV-7            | Oil content: 40.2%; Protein: 22.3%                                                                                                                               |           |
| Valencia         | Oil content: 47.2%; Protein: 23.7%; Soluble sugar: 7.9%; Energy value: 2,645 J/100 g                                                                             |           |
| Virginia bunch   | Oil content: 51.4%; Protein: 23.0%; Soluble sugar: 9.8%; Energy value: 2,708 J/100 g                                                                             |           |
| Virginia runner  | Oil content: 47.2%; Protein: 23.6%; Soluble sugar: 11.6%; Energy value: 2,646 J/100 g                                                                            |           |
| Linseed          |                                                                                                                                                                  |           |
| General          | Oil content: 37.8-47.7%; Protein: 11.1-31.9%                                                                                                                     | 111       |
| Mahua seed       |                                                                                                                                                                  |           |
| General          | Oil content: 36%                                                                                                                                                 | 3         |
| Mustard/rapeseed |                                                                                                                                                                  |           |
| General          | Oil content: 37.6-43.9%; Protein: 22-34%; Ash: 6.0- 7.8%; Iodine value: 100.2-101.5; Refractive index at 40°C: 1.4604-1.4627                                     | 6,88      |
| Mustard (meal)   | Carbohydrate: 35%                                                                                                                                                | 128       |
| Neem seed        |                                                                                                                                                                  |           |
| General          | Oil content: 45-50%                                                                                                                                              | 3         |
| Niger seed       |                                                                                                                                                                  |           |
| CHH-1            | Moisture content: 7.4%(db); Oil content: 47.0%; Ash: 4.6%; Protein: 36.4%; Iodine value: 127.8; Saponification value: 198.8; FFA: 1.9%; Refractive Index: 1.4717 | 128       |
| General          | Oil content: 30.0-32.4%; Crude protein: 26.0-30.6%                                                                                                               |           |
| IGP-76           | Moisture content: 6.6%(db); Oil content: 46.4%; Protein: 35.7%; Ash: 4.3%; Iodine value: 125.9; Saponification value: 196.5; FFA: 2.0%; Refractive Index: 1.4731 |           |
| N-5              | Moisture content: 4.4%(db); Oil content: 41.6%; Protein: 38.7% Ash: 4.2%; Iodine value: 126.4; Saponification value: 195.0; FFA: 1.5%; Refractive Index: 1.4734  |           |
| N-35             | Moisture content: 5.1%(db); Oil content: 40.3%; Protein: 37.5%; Ash: 4.6%; Iodine value: 128.4; Saponification value: 193.3; FFA: 1.8%; Refractive Index: 1.4705 |           |
| N-71             | Moisture content: 5.5%(db); Oil content: 45.9%; Protein: 36.7%; Ash: 4.9%; Iodine value: 126.4; Saponification value: 194.6; FFA: 1.8%; Refractive Index: 1.4731 |           |

| Crop/Variety            | Constituents                                                                                                                                                                                                                      | Reference |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Safflower               |                                                                                                                                                                                                                                   |           |
| Bhima                   | Oil content: 30.0%; Protein: 9.0-10.0%; Fibre: 26-27%; Mineral matter: 2.0-3.0%                                                                                                                                                   | 128       |
| General                 | Oil content: 27-35%; Protein: 13-17%; Ash: 2.0%; Total sugar: 3.2%; Crude fibre: 40.6%                                                                                                                                            |           |
| Safflower (cake/meal)   |                                                                                                                                                                                                                                   |           |
| General                 | Fibre: 2.9-4.0%; Phosphorus: 0.29-0.30%; Calcium: 0.29-0.47%; Tannin: 0.52-0.74%; Energy content: 1,470-3,804, kcal/kg                                                                                                            | 128       |
| Sesamum seed            |                                                                                                                                                                                                                                   |           |
| General                 | Oil content: 48.8-49.1%; Protein: 18-26%                                                                                                                                                                                          | 128       |
| Soybean                 |                                                                                                                                                                                                                                   |           |
| Cocker stuart<br>(bold) | Moisture content: 8.5% (db); Ash: 5.2%; Protein: 35.0%; Oil content: 23.1%; Crude fibre: 2.9%, Carbohydrate: 17.7%; Starch: 17.2%; Free sugar: 0.25%; Calcium: 280.0 mg/100g; Sulphur: 186.8 mg/100 g; Phosphorus: 76.6 mg/100 g  | 128       |
| JS-72-44<br>(medium)    | Moisture content: 9.3% (db); Ash: 5.6%; Protein: 34.3%; Oil content: 21.1%; Crude fibre: 2.9%; Carbohydrate: 17.4%; Starch: 16.9%; Free sugar: 0.25%; Calcium: 320.0 mg/100 g; Sulphur: 208.4 mg/100 g; Phosphours: 86.8 mg/100 g |           |
| JS-76-205<br>(small)    | Moisture content: 9.5%(db); Ash: 6.1%; Protein: 32.9%; Oil content: 19.9%; Crude fibre: 2.9%; Carbohydrate: 18.3%; Sulphur: 208.4 mg/100 g; Phosphorus: 86.8 mg/100 g; starch: 17.8%; Free sugar: 0.26%; Ca: 300.0 mg/100g        |           |
| Soybean (cake)          | Protein: 41.0%; Fat: 3.5%; Fibre: 6.5%                                                                                                                                                                                            | 128       |
| Sunflower               |                                                                                                                                                                                                                                   |           |
| EC-68414                | Oil content: 36-38%; Protein: 17-18%; Fibre: 5-6%; Mineral matter: 2-3%                                                                                                                                                           |           |
| EC-68415                | Oil content: 35-37%; Protein: 17-18%; Fibre: 5.5-6%; Mineral matter: 2-3%                                                                                                                                                         |           |
| General                 | Oil content: 41.2-45.0 %; Protein: 48.5-49.3% (defatted seed)                                                                                                                                                                     |           |

able 1.8: Chemical constituents of fruits, vegetables, spices and other crops

| rop/Variety           | Constituents                                                                                                                                                                                                     | Reference |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| niseed                |                                                                                                                                                                                                                  |           |
| General               | Moisture content: 9.9-14.9%(db); Protein: 1.8%; Fatty oil: 8-23%; Essential oil: 2-7%; Sugar: 3-5%; Starch: 5%; Crude fibre: 12-15%; Ash: 8-10%                                                                  | 88        |
| Apple                 |                                                                                                                                                                                                                  |           |
| General               | Moisture content: 549.4% (db); Protein: 0.2%; Carbohydrate: 13.4%; Fat: 0.5%; Minerals: 0.3%; Fibre: 1.0%                                                                                                        | 57        |
| Beet greens           |                                                                                                                                                                                                                  |           |
| Local                 | Crude protein: 3.2%; Crude fat: 0.8%; Crude fibre: 0.3%; Ash: 1.9%                                                                                                                                               | 84        |
| Beet sag              |                                                                                                                                                                                                                  |           |
| Local                 | Moisture content: 5.8% (db); Crude protein: 15.6%; Crude fat: 1.7%; Crude Fibre: 1.7%; Ash: 12.8%                                                                                                                | 84        |
| Carrot                |                                                                                                                                                                                                                  |           |
| General               | Protein: 0.8-1.0%; Fat: 0.2%; Calcium: 30-39 mg/100g; Magnesium: 17 mg/100 g; Phosphorus: 32-43 mg/100g                                                                                                          | 57        |
| Celery leaves         |                                                                                                                                                                                                                  |           |
| General               | Moisture content: 434.8% (db); Carbohydrate: 8.6%; Fat: 0.6%; Protein: 6%                                                                                                                                        | 88        |
| Celery stalks         |                                                                                                                                                                                                                  |           |
| General               | Moisture content: 1438.5% (db); Carbohydrate: 3.5%; Fat: 0.1%; Protein: 0.8%                                                                                                                                     | 88        |
| Chillies              |                                                                                                                                                                                                                  |           |
| Dry                   | Moisture content: 11.1% (db); Protein: 15.9%; Fat: 0.2%; Carbohydrate: 31.6%; Fibre: 30.2%; Mineral matter: 6.1%; Calcium: 0.16%; Phosphorus: 0.37%; Iron: 0.0023%; Votamin: 50 mg/100g; Vitamin E: 2.4 mg/100 g | 81        |
| Green                 | Moisture content: 474.7% (db); Protein: 2.9%; Fat: 0.6%; Carbohydrate: 6.1%; Fibre: 6.8%; Mineral matter: 1.0%; Calcium: 0.3%; Phosphorus: 0.8%; Iron: 0.0012%                                                   |           |
| Chilli meal           | Protein: 28.92%; Carbohydrate: 26.37%; Fibre: 29.1%; Ash: 5.61%                                                                                                                                                  | 81        |
| Chilli powder         | Moisture content: 11.1% (db) max.; Total ash: 8% max; Acid insoluble ash: 1.25% max; Crude fibre: 30% max; Non-volatile ether extract: 12% min.                                                                  | 81        |
| Chilli seeds Cinnamon | Moisture content: 6.7% (db); Oil: 26.1%                                                                                                                                                                          | 81        |
| Madagaskar            | Moisture content: 13.6% (db) max; Total ash: 5% max; Acid insoluble ash: 1% max; Volatile oils (whole: 1% 100 g min db; ground: 0.7% 100 g min db)                                                               | 85        |
| Srilanka              | Moisture content: 13.6% (db) max; Total ash: 7% max; Acid insoluble ash: 2% max; Volatile oils (whole: 0.4% 100 g min db; ground: 0.3% 100 g min db)                                                             |           |
| Clove                 |                                                                                                                                                                                                                  |           |
| Dried                 | Protein: 5.2%; Fat 8.9%; Fibre: 9.5%; Carbohydrates: 46%; Mineral matter: 5.2%                                                                                                                                   | 84        |
| Coconut               |                                                                                                                                                                                                                  |           |
| Dry                   | Moisture content: 4.5% (db); Protein: 6.8%; Carbohydrate: 18.4%; Fat: 62.3%; Minerals: 1.6%; Fibre: 6.6%                                                                                                         | 88,173    |

| Crop/Variety                 | Constituents                                                                                                                                                                                                                                                           | Reference |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Fresh                        | Moisture content : 56.9% (db); Protein : 41.6%; Carbohydrate : 13.0%; Fat : 41.6%; Minerals : 1.0%; Fibre : 3.6%                                                                                                                                                       |           |
| Coriander                    |                                                                                                                                                                                                                                                                        |           |
| General                      | Moisture content: 12.6% (db); Protein: 14.1%; Carbohydrate: 21.6%; Fat: 16.1%; Minerals: 4.4%; Fibre: 32.6%                                                                                                                                                            | 88        |
| Cumin                        |                                                                                                                                                                                                                                                                        |           |
| General                      | Moisture content: 13.5% (db); Protein: 18.7%; Carbohydrate: 36.6%; Fat: 15.0%; Minerals: 5.8%; Fibre: 12.0%                                                                                                                                                            | 88        |
| Curry leaf                   |                                                                                                                                                                                                                                                                        |           |
| General                      | Moisture content: 199.4% (db); Protein: 6.1%; Carbohydrate: 18.7%; Vitamin A: 12600 IV; Vitamin C: 4 mg/100 g                                                                                                                                                          | 84        |
| Fenugreek seed               |                                                                                                                                                                                                                                                                        |           |
| General                      | Moisture content: 15.9% (db); Protein: 26.2%; Carbohydrate: 44.1%; Fat: 5.8%; Minerals: 3.0%; Fibre: 7.2%                                                                                                                                                              | 88        |
| Fenugreek leaves             |                                                                                                                                                                                                                                                                        |           |
| General                      | Moisture content: 614.3% (db); Protein: 4.4%; Fibre: 11.1%; Fat: 0.9%; Carbohydrate: 6%; Ash: 1.5%                                                                                                                                                                     | 88        |
| Garlic                       |                                                                                                                                                                                                                                                                        |           |
| Cured                        | Moisture content: 163.2% (db); Protein: 6.3%; Carbohydrate: 29.8%; Fat: 0.1%; Minerals: 1.0%; Fibre: 0.8%                                                                                                                                                              | 88        |
| Ginger                       |                                                                                                                                                                                                                                                                        |           |
| Dry                          | Moisture content: 9.3-19.8% (db); Starch: 40.4-59.0%; Crude fibre: 4.79-9.80%; Crude protein: 10.3-15.0%; Oleoresin (acetone extract): 3.9-9.3%; Oleoresin (water extract): 14.4-25.8%; Cold alcohol extract: 3.55-9.28%; Total ash: 5.12-9.28%; Volatile oil:1.0-2.7% | 79        |
| Grape                        |                                                                                                                                                                                                                                                                        |           |
| General                      | Total soluble solids: 16.7-18.0%; Acidity: 0.378-0.407%                                                                                                                                                                                                                | 173       |
| Honey                        | Glucose: 35%; Fructose: 40%; Sucrose: 5%                                                                                                                                                                                                                               | 141       |
| Mace                         |                                                                                                                                                                                                                                                                        |           |
| Dry                          | Moisture: 18.9% (db); Protein: 6.5%; Ether extract: 24.4%; Carbohydrate: 47.8%                                                                                                                                                                                         | 84        |
| Mushroom<br>Nutmeg           | Protein: 26.4%; Carbohydrate: 44%; Free amino acid: 2.0%                                                                                                                                                                                                               | 11        |
| Dry                          | Moisture content: 16.7% (db); Protein: 7.5%; Ether extract: 36.4%; Carbohydrate: 28.5%; Fibre: 11.6%; Mineral matter: 1.7%; Furfurol: 1.5%; Pectins: 0.5-0.6%; Volatile oil:6-16%; Starch: 14.6-24.2%; Pentosans: 2-2.5%                                               | 84        |
| Onion                        |                                                                                                                                                                                                                                                                        |           |
| Local                        | Carbohydrate: 11.0 g/100g; Protein: 1.2 g/100g; Dietery Fibre: 0.6g/100g                                                                                                                                                                                               | 173       |
| Peach                        |                                                                                                                                                                                                                                                                        |           |
| Tesia Samisto Pepper (black) | Total soluble solids : 10.67-11.40%; pH : 2.85-3.21                                                                                                                                                                                                                    | 133       |
| Dry                          | Moisture content: 13.6% (db); Total ash: 5.4%; Acid insoluble ash: 0.02%; Oleoresin yield: 12.5%; Piperine: 6.5%; Piperine in oleoresin: 52.0%; Non volatile ether extract: 8.3%; Crude fibre: 15.8%                                                                   | 89        |

| Crop/Variety    | Constituents                                                                                                                                                                                                                     | Reference |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Fresh           | Moisture: 212.5% (db); Volatile oil: 2.1%; Non volatile ether extract: 8.1%; Crude fibre: 14.1%; Ascorbic acid: 3.2 mg/100 g; Starch: 13.3%; Total sugars: 0.6%                                                                  |           |
| Potato          |                                                                                                                                                                                                                                  |           |
| General         | Moisture Content: 171.7-663.4% (db); Corbohydrate: 13.3-30.5%; Total solids: 13.1-36.8%; Protein: 0.70-4.60; Ash: 0.44-1.90%; Crudefibre: 0.17-3.48%                                                                             | 173       |
| Radish          |                                                                                                                                                                                                                                  |           |
| General         | Moisture content: 1860.8% (db); Protein: 0.5%; Carbohydrate: 3.2%; Fat: 0.1%; Minerals: 0.7%; Fibre: 0.6%                                                                                                                        | 173       |
| Sugarbeet       | Moisture content: 713% (db); Protein: 1.7%; Carbohydrate: 11.8%; Fat: 0.1%; Minerals: 0.8%; Fibre: 1.1%                                                                                                                          | 34        |
| Sugarcane       |                                                                                                                                                                                                                                  |           |
| General         | Soluble solids: 10-16%; Fibre (dry): 11-16%; Gur from cane crushed: 10%; Crystal sugar from gur refined: 62.4%; Crystal sugar from cane crused: 9.97%; Khandsari sugar from gur refined: 37.5%; Molasses from cane crushed: 3.5% | 3,34      |
| Sugarcane juice |                                                                                                                                                                                                                                  |           |
| General         | Sugars: 75-92%; Salts: 3.0-4.5%; Protein: 0.5-0.6%; Carboxylic acids: 1.1-3.0%; Amino acids: 0.50-2.5%                                                                                                                           | 34        |
| Sweet potato    |                                                                                                                                                                                                                                  |           |
| Jawahar 114     | Protein: 3.2%; Ash: 0.13%; Oil: 0.3%; Crude fibre: 2.9%; Total carbohydrate: 41.3%; Starch: 39.9%; Free sugar (dry): 0.95%; Phosphourus: 75.3 mg/100 g; Sulphur: 45.9 mg/100 g; Calcium: 562 mg/100 g; Iron: 305.9 ppm           | 173       |
| Jawahar 145     | Protein: 3.5%; Ash: 0.14%; Oil: 0.4%; Crude fibre: 3.1%; Total carbohydrate: 35.5%; Starch: 3.4%; Free soluble sugar (dry): 1.1%; Phosphorus: 76.6 mg/100 g; Sulphur: 46.1 mg/100g, Calcium: 560 mg/100 g; Iron: 306.5 ppm       |           |
| Turnip greens   | Crude protein: 5.2%; Crude fat: 0.9%; Crude fibre: 0.6%; Ash: 1.5%                                                                                                                                                               | 57        |
| Turnip sag      | Moisture content: 85% (db); Crude protein: 20.4%; Crude fat: 3.5%; Crude fibre: 6.9%; Ash: 10.8%                                                                                                                                 | 57        |
| Water chestnut  |                                                                                                                                                                                                                                  |           |
| Red             | Protein: 10.9%; Ash: 3.6%; Oil: 0.6%; Crude fibre: 0.7%; Total carbohydrate: 69.7%; Starch: 64.3%; Free soluble sugar (dry): 5.2%: Phosphorus: 45.0 mg/100 g; Sulphur: 60.0 mg/100 g; Calcium: 60.0 mg/100 g; Iron: 145.2 ppm    | 173       |
| White           | Protein: 11.2%; Ash: 2.8%; Oil: 0.8%; Crude fibre: 0.6%; Total carbohydrate: 70.7%; Starch: 67.1%; Free soluble sugar (dry): 3.3%; Phosphorus: 48.3 mg/100 g; Sulphur: 130.2 mg/100 g; Calcium: 20.0 mg/100 g; Iron: 129.0 ppm   |           |

Table 1.9: Physico-chemical properties of oils

| Oil/Crop variety | Properties                                                                                                                                                                                   | Reference |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Aniseed oil      |                                                                                                                                                                                              |           |
| General          | Congealing point: 15° max: Sp. gravity at 20° C: 0.978- 0.992;<br>Solubility at 20° C at 90% alcohol = 1: 3 vol.; Refractive index<br>at 20° C: 1.553-1.560; Optical rotation: 1-2 to +1°    | 88        |
| Castor oil       |                                                                                                                                                                                              |           |
| General          | Specific gravity: 0.950-0.974; Saponification value: 81-91; Iodine value: 86-94; Oleic acid: 8.0%; Linolic acid: 4.0%                                                                        | 128       |
| Celery oil       |                                                                                                                                                                                              |           |
| General          | Sp. gravity: 0.850-0.895; Acid value: upto 5; Ester value: 15-40; Refractive index: 1.478-1.486                                                                                              | 88        |
| Cinnamon oil     |                                                                                                                                                                                              |           |
| General          | Optical rotation at $20^{\circ}$ C : $2.5^{\circ}$ to $2^{\circ}$ ; Refractive index at $20^{\circ}$ C : $1.530-1.540$ ; Solubility in ethanol at $20^{\circ}$ C( $70\%$ V/V) = 1 : 2 vol.   | . 85      |
| Madagasker       | Apparent density at 20° C: 1.032-1.052 g/ml; Total phenols: 70-95% by vol.                                                                                                                   | •         |
| Srilanka         | Apparent density at $20^{\circ}$ C : 1.034-1.050 g/ml; Total phenols: 75-85% by vol.                                                                                                         |           |
| Clove oil        |                                                                                                                                                                                              |           |
| Bud              | Apparent density at 20° C: 1.041-1.054 g/ml; Optical rotation at 20° C: 0-1.5°; Refractive index at 20° C: 1.528-1.538; Total phenols: 85-93% by volume                                      | 84        |
| Leaf             | Apparent density at 20° C: 1.036-1.048 g/ml: Refractive index at 20° C: 1.531-1.535; Total phenols: 89-90% by volume                                                                         |           |
| Stem             | Apparent densiy at 20° C: 1.048-1.056 g/ml; Refractive index at 20° C: 1.531-1.538; Total phenols: 90-95% by volume                                                                          |           |
| Conconut oil     |                                                                                                                                                                                              |           |
| General          | Iodine value: 7.5-10.0; Saponification value: 248-265; Unsaponifiable matter: 0.5%; Refractive index: 1.446-1.448; Melting point: 23-26° C                                                   | 88        |
| Fennel oil       |                                                                                                                                                                                              |           |
| General          | Sp. gravity: 0.9774-0.9767; Optical rotation: 11.42-16.54; Refractive index at 25°C: 1.5355-1.5383; Congealing point: +5.5° to 9.0°; Solubility in vol. 99% alcohol: 1                       | 88        |
| Ginger oil       |                                                                                                                                                                                              |           |
| General          | Sp. gravity at $30^{\circ}$ C : 0.8640-0.8758; Optical rotation at $30^{\circ}$ C = $-30^{\circ}$ to $-60^{\circ}$ ; Refractive index at $20^{\circ}$ C : 1.4880-1.4970                      | 79        |
| Groundnut oil    |                                                                                                                                                                                              |           |
| Spanish bunch    | Iodine value: 96.3; Oil stability index = 18: 1/18: 2: 1.3; Nutritional quality index = 18:2/Sat.fatty acid: 1.8; Palmitic, 16:0 = 14.3%; Oleic, 18: 1 = 44.7%; Linoleic, 18: 2 = 34.7%      | 128       |
| Valencia         | Iodine value: 98.4; Oil stability index = 18: 1/18: 2 = 1.1; Nutritional quality index = 18: 2/Sat.fatty acid: 2.4; Palmitic > 16: 0 = 13.3%; Oleic, 18: 1 = 46.1%; Linoleic > 18: 2 = 35.9% |           |
| Virginia bunch   | Iodine value: 95.4%; Oil stability index, 18: 1/18: 2 = 1.5; Nutritional quality index, 18:2/ Sat. fatty acid: 2.2; Palmitic, 16: 0 = 13.1%; Oleic, 18: 1 = 47.6%; Linoleic, 18: 2 = 34.0%   |           |

| Dil/Crop variety | Properties                                                                                                                                                                                                                       | Reference |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Virginia runner  | Iodine value: 96.2; Oil stability index, 18: 1/18: 2 = 1.6; Nutritional quality index, 18:2/Sat. fatty acid: 2.1; Palmitic, 16: 0 = 12.6%; Oleic, 18: 1 = 49.7%; Linoleic, 18: 2 = 31.6%                                         |           |
| Linseed oil      |                                                                                                                                                                                                                                  |           |
| General          | Specific gravity: 0.914-0.930; Refractive index: 1.4756-1.4802; Acid value: 0.70-2.90%; Iodine value: 153.1-194.3; Saponification value: 192.4-198.3; Palmitic acid: 4.2-15.9%; Oleic acid: 13.0-35.4%; Linoleic acid: 8.1-65.8% | 128       |
| Niger seed oil   |                                                                                                                                                                                                                                  |           |
| General          | Refractive index at 40°: 0.5-1.0; Iodine value: 112.8-129.0; Saponification value: 1.4655-1.4673; Palmitic acid: 6.0-9.4%; Unsaponifiable matter: 0.2-1.7%; Oleic acid: 13.4-39.3%; Linoleic acid: 45.4-65.8%                    | 128       |
| Nutmeg oil       |                                                                                                                                                                                                                                  |           |
| General          | Apparent viscosity: 0.885-0.915 g/ml; Optical rotation at 20° C: + 8° to 25°; Refractive index at 20° C: 1.4750-1.4880                                                                                                           | 84        |
| Palm oil         |                                                                                                                                                                                                                                  |           |
| General          | Saturated fatty acid: 53%; Unsaturated fatty acid: 47%                                                                                                                                                                           | 173       |
| Slin molting n   | oint SFI Fatty saids % W/                                                                                                                                                                                                        | 137       |

| Slip melting poin<br>34.5° C | t SFI                                                  | Fatty acids                                                                                                      | % W/W                      |    |
|------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|----|
| 10° C                        | 37.2                                                   | 14:0                                                                                                             | 1.1                        |    |
| 15° C                        | 33.6                                                   | 16:0                                                                                                             | 42.1                       |    |
| 20° C                        | 26.5                                                   | 18:0                                                                                                             | 4.4                        |    |
| 25° C                        | 14.5                                                   | 18:1                                                                                                             | 40.6                       |    |
| 30° C                        | 8.6                                                    | 18:2                                                                                                             | 11.3                       |    |
| 35° C                        | 4.2                                                    | •                                                                                                                |                            |    |
| 40° C                        | 0.4                                                    |                                                                                                                  |                            |    |
| Safflower oil                | Iodine value : 136-146; Sap<br>1.09%; Butyrometric ref | onification value : 186-196<br>fractive index at 40°C:62.5-                                                      | 6; FFA:0.15- 12<br>64.5    | 28 |
| Sesamum oil                  |                                                        | onification value:188.6- 19<br>id:34.6-47.3%; Linoleic acid                                                      | 1.2; Palmitic              | 28 |
| Sunflower oil                | Saponification value:1                                 | 87; Refractive index at 4<br>.7-2.5; Iodine value: 10<br>1.93-2.0; Oleic acid cont<br>-48%; Unsaponifiable:0.20- | 01.4-135.0;<br>ent:42-57%; | 28 |

| th         |                                  |
|------------|----------------------------------|
| on th      |                                  |
| es pased   |                                  |
| alues      |                                  |
| t value    |                                  |
| onten      | 0.47                             |
| COL        | e no                             |
| ure        | Reference                        |
| moistu     | efer                             |
| 2          |                                  |
| 7-products | Source                           |
| rod        | V /                              |
| by-F       | aly) (                           |
| eir        | 10 U                             |
| d th       | rtio                             |
| and        | ile pc                           |
| rops       | d other values are based on edil |
| od c       | no                               |
| f food c   | ased                             |
|            | e ba                             |
| sitic      | sar                              |
| omposition | alùe                             |
| ပ          | er v                             |
| hemical    | oth                              |
| hen        | pue                              |
| 0          | one                              |
| 10         | orti                             |
| le 1       | Je r                             |
| Table      | whole portion and oth            |
|            |                                  |

| Table 1.10: Chemical composition of food crops and their by-products (moisture c whole portion and other values are based on edile portion only) (Source: Reference | Chemical composition of food crops and other values are based on edil | comp<br>r valu                             | osition<br>les are | n of fo | od cro     | ps an  | d thei                  | r by-p               | Source              | ts (mo                      | isture      | conte          | ent va<br>47)        | and their by-products (moisture content values based on portion only) (Source : Reference no. 47) | ased o             | n the              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|--------------------|---------|------------|--------|-------------------------|----------------------|---------------------|-----------------------------|-------------|----------------|----------------------|---------------------------------------------------------------------------------------------------|--------------------|--------------------|
| Product                                                                                                                                                             | Edible portion,                                                       | Edible Moist-<br>porti- ure, %<br>on, (wb) | Prot-<br>ein,      | Fat,    | Mine-rals, | Fibre, | Carbo<br>hydr-<br>ates, | Ener-<br>gy,<br>kcal | Cal-<br>cium,<br>mg | Phos-<br>phor-<br>us,<br>mg | Iron,<br>mg | Car-<br>otene, | Thia-<br>mine,<br>mg | Ribo-<br>flavin,<br>mg                                                                            | Nia-<br>cin,<br>mg | Vita-<br>min<br>C, |
| 1.                                                                                                                                                                  | 2                                                                     | 3.                                         | 4.                 | 5.      | .9         | 7.     | œ                       | 9.                   | 10.                 | 11.                         | 12.         | 13.            | 14.                  | 15.                                                                                               | 16.                | 17.                |
| CEREAL GRAINS AND PRODUCTS                                                                                                                                          | D PROD                                                                | UCTS                                       |                    |         |            |        |                         |                      |                     |                             |             |                |                      |                                                                                                   |                    |                    |
| Bajra (Pearl millet)                                                                                                                                                | \$                                                                    | 12.4                                       | 6.7                | 4.2     | 1.9        | 1.0    | 26.7                    | 361                  | 35.3                | 248.6                       | 4.2         | 110.9          | 0.28                 | 0.21                                                                                              | 1.9                | 0                  |
| Barley                                                                                                                                                              | 100                                                                   | 12.5                                       | 11.5               | 1.3     | 1.2        | 3.9    | 9.69                    | 336                  | 26                  | 215                         | 3.0         | 10             | 0.47                 | 0.20                                                                                              | 5.4                | 0                  |
| Jowar (sorghum)                                                                                                                                                     | 100                                                                   | 11.9                                       | 10.4               | 1.9     | 1.6        | 1.6    | 72.6                    | 349                  | 25                  | 222                         | 5.8         | 47             | 0.37                 | 0.13                                                                                              | 3.1                | 0                  |
| Maize (corn)                                                                                                                                                        | 100                                                                   | 14.9                                       | 11.1               | 3.6     | 1.5        | 2.7    | 66.2                    | 342                  | 10                  | 348                         | 2.0         | 8              | 0.45                 | 0.10                                                                                              | 1.8                | 0                  |
| Maize, tender                                                                                                                                                       | 37                                                                    | 67.1                                       | 1.7                | 0.3     | 0.3        | 0.7    | 9.1                     | 125                  | 3.3                 | 44.8                        | 1.2         | 11.8           | 0.04                 | 90.0                                                                                              | 0.2                | 2.2                |
| Ragi                                                                                                                                                                | 100                                                                   | 13.1                                       | 7.3                | 1.3     | 2.7        | 3.6    | 72.0                    | 328                  | 344                 | 283                         | 6.4         | 42             | 0.42                 | 0.19                                                                                              | 1.1                | 0                  |
| Rice, parboiled, handpounded                                                                                                                                        | 100                                                                   | 12.6                                       | 8.5                | 9.0     | 0.0        | :      | 77.4                    | 349                  | 10                  | 280                         | 2.8         | 6              | 0.27                 | 0.12                                                                                              | 4.0                | 0                  |
| Rice, parboiled, milled                                                                                                                                             | 100                                                                   | 13.3                                       | 6.4                | 0.4     | 0.7        | 0.2    | 79.0                    | 346                  | 6                   | 143                         | 4.0         | :              | 0.21                 | 0.05                                                                                              | 3.8                | 0                  |
| Rice, raw, handpounded                                                                                                                                              | 100                                                                   | 13.3                                       | 7.6                | 1.0     | 6.0        | 9.0    | 76.7                    | 346                  | 10                  | 190                         | 3.2         | 2              | 0.21                 | 0.16                                                                                              | 3.9                | 0                  |
| Rice, raw, milled                                                                                                                                                   | 100                                                                   | 13.7                                       | 8.9                | 0.5     | 9.0        | 0.2    | 78.2                    | 345                  | 10                  | 160                         | 3.1         | 0              | 0.00                 | 90.0                                                                                              | 1.9                | 0                  |
| Rice bran                                                                                                                                                           | :                                                                     | 11.0                                       | 13.5               | 16.2    | 9.9        | 4.3    | 48.4                    | 393                  | 19                  | 1410                        | 35.0        | :              | 2.70                 | 0.48                                                                                              | •                  | 0                  |
| Rice flakes                                                                                                                                                         | 100                                                                   | 12.2                                       | 9.9                | 1.2     | 2.0        | 0.7    | 77.3                    | 346                  | 20                  | 238                         | 20.0        | 0              | 0.21                 | 0.02                                                                                              | 4.0                | 0                  |
| Rice, puffed                                                                                                                                                        | 100                                                                   | 14.7                                       | 7.5                | 0.1     | 3.8        | 0.3    | 73.6                    | 325                  | 23                  | 150                         | 9.9         | 0              | 0.21                 | 0.01                                                                                              | 4.1                | 0                  |
| Sanwa millet                                                                                                                                                        | •                                                                     | 11.9                                       | 6.2                | 2.2     | 4.4        | 8.6    | 65.5                    | 307                  | 20                  | 280                         | 2.9         | 0              | ٠                    | •                                                                                                 | 4.2                | 0                  |
| Semolina                                                                                                                                                            | 100                                                                   | •                                          | 10.4               | 0.8     | :          | 0.2    | 74.8                    | 348                  | 16                  | 102                         | 1.6         | :              | 0.12                 | 0.03                                                                                              | 1.6                | 0                  |

| rable contra             |     |      |      |      |     |     |      |     |      |       |      |      |      |      |      |     |
|--------------------------|-----|------|------|------|-----|-----|------|-----|------|-------|------|------|------|------|------|-----|
| -                        | 2.  | 3.   | 4.   | 5.   | .9  | 7.  | 8.   | 9.  | 10.  | 11.   | 12.  | 13.  | 14.  | 15.  | 16.  | 17. |
| Wheat Bulgar             | 100 | 8.6  | 8.2  | 1.6  | 1.5 | 1.7 | 77.2 | 356 | 37   | 298   | 4.9  | :    | 0.74 | 0.11 | 4.8  | 0   |
| Wheat (whole)            | 100 | 12.8 | 11.8 | 1.5  | 1.5 | 1.2 | 71.2 | 346 | 41   | 306   | 4.9  | 49   | 0.45 | 0.17 | 5.5  | 0   |
| Wheat flour (whole)      | 100 | 12.2 | 12.1 | 1.7  | 2.7 | 1.9 | 69.4 | 341 | 48   | 355   | 11.5 | 29   | 0.49 | 0.17 | 4.3  | 0   |
| Wheat flour (refined)    | 100 | 13.3 | 11.0 | 6.0  | 9.0 | 0.3 | 73.9 | 348 | 23   | 121   | 2.5  | 25   | 0.12 | 0.07 | 2.4  | 0   |
| Wheat germ               | 100 | 5.2  | 29.2 | 7.4  | 3.5 | 1.4 | 53.3 |     | 40   | 846   | 0.9  | :    | 1.40 | 0.54 | 2.9  | 0   |
| PULSES AND LEGUMES       | S   |      |      |      |     |     |      |     |      |       |      |      |      |      |      |     |
| Bengal gram<br>(whole)   | 100 | 8.6  | 17.1 | 5.3  | 3.0 | 3.9 | 6.09 | 360 | 202  | 312   | 10.2 | 189  | 0.30 | 0.15 | 2.9  | 8   |
| Bengal gram dhal         | 100 | 6.6  | 20.8 | 5.6  | 2.7 | 1.2 | 8.65 | 372 | 56   | 331   | 9.1  | 129  | 0.48 | 0.18 | 2.4  | 1   |
| Bengal gram<br>(roasted) | 100 | 10.7 | 22.5 | 5.2  | 2.5 | 1.0 | 58.1 | 369 | 28   | 340   | 9.5  | 113  | 0.20 | :    | 13   | 0   |
| Black gram dhal          | 100 | 10.9 | 24.0 | 1.4  | 3.2 | 6.0 | 59.6 | 347 | 154  | 385   | 9.1  | 38   | 0.42 | 0.20 | 2.0  | 0   |
| Cow pea                  | 6   | 13.4 | 23.4 | 0.97 | 3.1 | 3.7 | 52.9 | 323 | 74.7 | 401.6 | 5.7  | 11.6 | 0.5  | 0.19 | 1.26 | 0   |
| Field bean, dry          | :   | 9.6  | 24.9 | 0.8  | 3.2 | 1.4 | 60.1 | 347 | 9    | 433   | 2.7  | 0    | 0.52 | 0.16 | 1.8  | 0   |
| Green gram (whole)       | 100 | 10.4 | 24.0 | 1.3  | 3.5 | 4.1 | 26.7 | 334 | 124  | 326   | 7.3  | 8    | 0.47 | 0.27 | 2.1  | 0   |
| Green gram dhal          | 100 | 10.1 | 24.5 | 1.2  | 3.5 | 0.8 | 59.9 | 348 | 75   | 405   | 8.5  | 49   | 0.47 | 0.21 | 2.4  | 0   |
| Horse gram               | 100 | 11.8 | 22.0 | 0.5  | 3.2 | 5.3 | 57.2 | 321 | 287  | 311   | 8.4  | 71   | 0.42 | 0.20 | 1.5  | 1   |
| Khesari dhal             | 100 | 10.0 | 28.2 | 9.0  | 2.3 | 2.3 | 9.99 | 345 | 8    | 317   | 6.3  | 120  | 0.39 | 0.17 | 2.9  | 0   |
| Lentil                   | 100 | 12.4 | 25.1 | 0.7  | 2.1 | 0.7 | 59.0 | 343 | 69   | 293   | 4.8  | 270  | 0.45 | 0.20 | 2.6  | 0   |
| Moth beans               | 100 | 10.8 | 23.6 | 1.1  | 3.5 | 4.5 | 56.5 | 330 | 202  | 230   | 9.5  | 6    | 0.45 | 000  | 1 8  | C   |

|      | -     |
|------|-------|
|      | •     |
|      |       |
| 9    | _     |
| 0    | =     |
|      |       |
|      | =     |
|      | -1    |
| -    | 1     |
|      | -     |
|      | 4     |
|      | -     |
|      | i 0 ] |
|      | -1    |
| حنا  | ~     |
|      | ●]    |
| Can. | -1    |
|      |       |
|      | 2     |
|      | -     |
|      |       |
|      |       |

| 1                     |     |      |       |      |     |      |        |     |       |      |      |         |      |      | 11   | **   |
|-----------------------|-----|------|-------|------|-----|------|--------|-----|-------|------|------|---------|------|------|------|------|
|                       | 2.  | 3.   | 4.    | 5.   | 9   | 7.   | ∞<br>• | 9.  | 10.   | 11.  | 12.  | 13.     | 14.  | 15.  | 16.  | 1/.  |
| Peas, dry             | 100 | 16.0 | 19.7  | 1.1  | 2.2 | 4.5  | 56.5   | 315 | 75    | 298  | 5.1  | 39      | 0.47 | 0.19 | 3.4  | 0    |
| Peas, roasted         | 100 | 10.1 | 22.9  | 1.4  | 2.4 | 4.4  | 58.8   | 340 | 81    | 345  | 6.4  | 18      | 0.47 | 0.21 | 3.5  | 0    |
| Rajmah                | :   | 12.0 | 22.9  | 1.3  | 3.2 | :    | 9.09   | 346 | 260   | 410  | 5.8  | :       | :    | :    | •    | •    |
| Redgram dhal          | 100 | 13.4 | 22.3  | 1.7  | 3.5 | 1.5  | 57.6   | 335 | 73    | 304  | 5.8  | 132     | 0.45 | 0.19 | 2.9  | 0    |
| Soybean               | :   | 8.1  | 43.2  | 19.5 | 4.6 | 3.7  | 20.9   | 432 | 240   | 069  | 11.5 | 426     | 0.73 | 0.39 | 3.2  | :    |
| LEAFY VEGETABLES      |     |      |       |      |     |      |        |     |       |      |      |         |      |      |      |      |
| Agathi                | :   | 73.1 | 8.4   | 1.4  | 3.1 | 2.2  | 11.8   | 93  | 1,130 | 80   | 3.9  | 5,400   | 0.21 | 0.09 | 1.2  | 169  |
| Amaranth, spined      | •   | 85.0 | 3.0   | 0.3  | 3.6 | 1.1  | 7.0    | 43  | 800   | 20   | 22.9 | 3,564   | 0    | :    | :    | 33   |
| Amaranth, tender      | 39  | 85.7 | 1.6   | 0.2  | 1.1 | 0.39 | 2.4    | 45  | 154.8 | 32.4 | 6.6  | 2,152.8 | 0.01 | 0.11 | 0.5  | 38.6 |
| Bamboo, tender shoots | 54  | 88.8 | . 2.1 | 0.3  | 9.0 | :    | 3.1    | 43  | 10.8  | 35.1 | 0.05 | 0       | 0.04 | 0.10 | 0.11 | 2.7  |
| Bathua leaves         | 4 : | 9.68 | 3.7   | 0.4  | 2.6 | 0.8  | 2.9    | 30  | 150   | 8    | 4.2  |         | 0.01 | 0.14 | 9.0  | 35   |
| Beet greens           | 51  | 86.4 | 1.7   | 0.4  | 1.1 | 0.4  | 3.3    | 46  | 193.8 | 15.3 | 8.3  | 64      | 0.13 | 0.29 | 1.6  | 35.7 |
| Bengal gram leaves    | 26  | 73.4 | 6.4   | 1.3  | 1.9 | 1.8  | 12.9   | 76  | 312.8 |      | 21.9 |         | 0.08 | 0.00 | 0.55 | 56.1 |
| Bottle gourd leaves   | •   | 87.9 | 2.3   | 0.7  | 1.7 | 1.3  | 6.1    | 39  | 80    |      | :    |         | :    | :    | :    | :    |
| Broad bean leaves     | •   | 77.6 | 5.0   | 0.3  | 1.3 | 3.7  | 11.5   | 71  | 111   | 14.9 | :    |         | •    | :    | :/   | •    |
| Brussels sprouts      | 100 | 85.5 | 4.7   | 0.5  | 1.0 | 1.2  | 7.1    | 52  | 43    | 82   | 1.8  |         | 0.05 | 0.16 | 0.4  | 72   |
| Cabbage               | 88  | 91.9 | 1.6   | 0.00 | 6.0 | 6.0  | 4.0    | 27  | 34.3  | 38.7 | 0.7  |         | 0.05 | 0.08 | 0.35 | 1001 |
| Carrot leaves         | 51  | 9.92 | 2.6   | 0.3  | 1.4 | 0.97 | 6.7    | 11  | 173.4 | 56.1 | 4.5  | 2,907   | 0.02 | 0.19 | 1.1  | 40.3 |
| Cauliflower greens    | :   | 80.0 | 5.9   | 1.3  | 3.2 | 2.0  | 7.6    | 99  | 979   | 107  | 40.0 |         | :    | :    | :    | •    |

| 7.         8.         9.         10.         11.         12.         13.         14.           0.99         1.1         37         163.3         99.4         4.5         2,832.9         0           0.8         4.4         44         128.8         49.7         12.9         4,842.6         0.04           1.2         4.1         38         290         58         20.1         6,072         0.05           5.3         15.5         108         688.9         47.3         5.8         6,274.8         0.07           0.7         9.4         92         330         52.5         5.3         5,085         0.05           0.7         9.4         92         330         52.5         5.3         5,085         0.05           1.3         4.7         43         540.2         36.5         9.7         1,380.1         0.05           1.4         5.2         55         160         100         7.3         3,000         0.01           1.4         5.2         36         320         80.5         9.7         3,026.6         0.18           1.4         5.2         32         10         60         2.6                                                                                                | 2. 3. 71 88.0 ves 70 86.3 ss 89.0 aves 75 75.9 aves 75 75.9 aves 75 86.1 s 84.2 sens 73 86.7 sens 73 86.7 sens 73 86.7 ag 84.2 ag 87.2 are 81.7 are 80.8 ss 89.8 ss 89.8                                                                                                                                                                                                                                                                                                                                                                                  |     |       | 0.99 | 8. 1.1 | 9.  | 10.   | -1    | 12.  | 13.     | 14.  | 15.  | 16.  | 1/.   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------|--------|-----|-------|-------|------|---------|------|------|------|-------|
| ves         71         88.0         4.5         0.4         1.5         0.99         1.1         37         163.3         99.4         4.5         2,832.9         0           ves         70         86.3         2.3         0.4         1.6         0.8         4.4         44         128.8         49.7         12.9         4,842.6         0.04           ss          89.0         3.4         0.7         1.6         1.2         4.1         38         290         58         20.1         6,072         0.04           sves         7.5         8.3         6.3         8.2         1.2         4.1         38         290         58         20.1         6,072         0.04           sves         7.5         8.2         0.7         1.6         88.9         4.7         5.8         5.0         5.0         0.0           sens          84.2         6.1         1.1         2.1         2.2         5.6         3.2         3.6         0.7         3.0         0.0         3.2         3.2         3.2         3.0         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2                                                                                    | ves 70 86.3  ss 89.0  aves 75 75.9  aves 75 75.9  aves 75 75.9  aves 75 75.9  aves 75 86.1  s 84.2  ens 73 86.7  ag 87.2  ag 81.7  are  45 84.9  ss 89.8  ss 89.8                                                                                                                                                                                                                                                                                                                                                                                         |     |       | 0.99 | 1.1    | 37  | 163.3 |       |      |         |      |      |      |       |
| nder leaves         70         86.3         2.3         0.4         1.6         0.8         4.4         4.1         128.8         4.9.7         1.2         4.34         6.9         78         4.9.7         1.0         1.0         1.2         4.1         38         290         58         20.1         6,972         0.05           rear leaves         8.3         63.8         5.1         0.83         3.3         5.2         108         688.9         47.3         5.8         6,274.8         0.05           sprick leaves         7.5         75.9         5.0         1.3         1.7         0.7         9.4         92         330         5.25         5.0         0.0           greek leaves         7.5         6.0         0.5         0.9         0.6         3.5         49         23.4         1.0         1.1         2.1         5.2         1.0         1.3         4.7         4.7         4.3         4.7         5.8         6.74.8         0.0           skhol greens         6         9.4         1.4         1.5         1.4         5.2         55         160         10.0         1.3         4.7         4.7         4.7         4.7         4.7                                  | nder leaves         70         86.3           cea leaves         8         8.3           r leaves         83         63.8           r leaves         75         75.9           strick leaves         75         75.9           greek leaves         75         86.1           ari leaves          84.2           ce         66         93.4           ce         66         93.4           ce tree          81.7           ce tree          84.9           ard leaves          89.8           ard leaves          89.8           ard leaves          59.4 |     |       | 0.8  | 4.4    |     |       | 99.4  | 4.5  | 2,832.9 | 0    | 0.08 | 0.0  | 44    |
| sealeaves          89.0         3.4         0.7         1.6         1.2         4.1         38         290         58         20.1         6,072         0.05           cleaves         83         63.8         5.1         0.83         3.3         5.3         15.5         108         688.9         47.3         5.8         5.74.8         0.07           strick leaves         75         75.9         5.0         1.3         1.7         0.7         9.4         92         33.0         52.5         5.8         5.78         6.74.8         0.07           greek leaves         59         86.1         2.6         0.5         0.9         0.6         3.5         49         233.1         30.1         9.7         1,380.1         0.0           strick leaves         73         86.7         2.6         0.29         0.9         1.3         4.7         4.3         540.2         5.3         5,085         0.0           strick leaves         73         86.7         2.6         0.29         0.9         1.3         4.7         4.3         540.2         56.7         3.0         0.0           ce tree         86.9         3.7         3.6                                                      | bea leaves        89.0         r leaves       83       63.8         stick leaves       75       75.9         greek leaves       59       86.1         ari leaves        84.2         khol greens       73       86.7         ce       66       93.4         ce       66       93.4         ce tree        81.7         ce tree        84.9         ard leaves        89.8         ard leaves        89.8         a leaves        59.4                                                                                                                     |     |       | 1.2  |        | 44  | 128.8 | 49.7  | 12.9 | 4,842.6 | 0.04 | 0.04 | 9.0  | 94.5  |
| rleaves         83         6.3.8         5.1         6.83         5.3         5.5         16.5         10.83         3.3         5.3         15.5         10.8         68.9         47.3         5.8         6.274.8         0.07           sprek leaves         75         75.9         5.0         1.3         1.7         0.7         9.4         92         330         52.5         5.9         5.08         0.05           greek leaves         59         86.1         2.6         0.5         0.9         0.6         3.5         40         23.1         30.1         9.7         1,380.1         0.02           shol greens         7         84.2         6.1         1.0         1.1         2.1         5.5         55         160         100         7.3         3,000         0.01           shol greens         7         86.7         2.6         0.29         0.9         1.3         4.7         43         540.2         36.5         9.7         3,000         0.01           ce tree         6         93.4         1.4         0.19         0.8         0.3         1.7         31         1.6         3.6         3.2         32         32         3.6                                         | rleaves 83 63.8 stick leaves 75 75.9 greek leaves 59 86.1 ari leaves 84.2 khol greens 73 86.7 ce tree 87.2 ce tree 81.7 ce tree 81.7 ce tree 90.2 ard leaves 89.8 ard leaves 89.8                                                                                                                                                                                                                                                                                                                                                                         |     |       |      | 4.1    | 38  | 290   | 58    | 20.1 | 6,072   | 0.05 | 0.18 | 9.0  | 4     |
| strick leaves         75         75.9         5.0         1.3         1.7         0.7         9.4         92         33.0         52.5         5.3         5,085         0.05           greek leaves         59         86.1         2.6         0.5         0.9         0.6         3.5         49         23.1         30.1         9.7         1,380.1         0.02           ari leaves          84.2         6.1         1.0         1.1         2.1         5.5         55         160         1.3         4.7         43         540.2         36.5         9.7         1,380.1         0.02           skhol greens          87.2         3.0         0.4         2.8         1.7         43         540.2         36.5         9.7         3,000         0.01           sce tree          87.2         1.4         0.19         0.8         0.3         1.7         21         33         18.5         1.6         653.4         0.06           ce tree          81.7         5.1         0.4         2.6         3.2         32         32         32         32         32         32         32         32         32                                                                                         | strick leaves       75       75.9         greek leaves       59       86.1         ari leaves        84.2         khol greens       73       86.7         khol greens        87.2         ce       66       93.4         ce        81.7         ves, mature        90.2         ves, tender       45       84.9         ard leaves        89.8         read leaves        59.4                                                                                                                                                                            | 0 0 |       | 5.3  | 15.5   | 108 | 688.9 | 47.3  | 5.8  | 6,274.8 | 0.07 | 0.17 | 1.9  | 3.3   |
| greek leaves         59         86.1         2.6         0.5         0.9         0.6         3.5         49         233.1         30.1         9.7         1,380.1         0.02           ari leaves         3         86.7         6.1         1.0         1.1         2.1         5.5         55         160         100         7.3         3,000         0.01           khol greens         7         86.7         2.6         0.29         0.9         1.3         4.7         43         540.2         36.5         9.7         3,000         0.01           khol greens         87.2         3.0         0.4         2.8         1.4         5.2         36         36         37         3,000         0.01           ce tree         86         93.4         1.4         0.19         0.8         0.3         1.7         21         33         18.5         1.6         653.4         0.06           ce tree         8.         1.4         0.1         2.6         2.2         2.0         1.7         2.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6                                        | greek leaves       59       86.1         ari leaves        84.2         -khol greens       73       86.7         -khol greens        87.2         ce       66       93.4         ce        81.7         ce        90.2         ce        45       84.9         ard leaves        89.8         ard leaves        59.4                                                                                                                                                                                                                                      | 0 0 |       | 0.7  | 9.4    | 92  | 330   | 52.5  | 5.3  | 5,085   | 0.05 | 0.04 | 9.0  | 165   |
| And Iteraces          84.2         6.1         1.0         1.1         2.1         5.5         55         160         100         7.3         3,000         0.01           And Igreens         73         86.7         2.6         0.29         0.9         1.3         4.7         43         540.2         36.5         9.7         3,026.6         0.18           Ikarha sag          87.2         3.6         0.3         1.4         5.2         36         36.7         36.5         9.7         3,026.6         0.18           ce         6         93.4         1.4         0.19         0.8         0.3         1.7         21         33         18.5         1.6         653.4         0.06           ce tree          81.7         0.4         2.6         1.7         21         33         18.5         1.6         653.4         0.06           ce tree          81.7         0.4         2.6         1.7         1.0         3.6         2.6         3.0         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6<                                                                                    | ari leaves        84.2         khol greens       73       86.7         karha sag        87.2         ce       66       93.4         ce tree        81.7         ce tree        90.2         ves, tender       45       84.9         ard leaves        89.8         ard leaves        59.4                                                                                                                                                                                                                                                                 | 0 0 |       | 9.0  | 3.5    | 49  | 233.1 | 30.1  | 9.7  | 1,380.1 | 0.05 | 0.18 | 0.47 | 30.7  |
| khol greens         73         86.7         2.6         0.29         0.9         1.3         4.7         43         540.2         36.5         9.7         3,026.6         0.18           khol greens          87.2         3.6         0.29         0.9         1.3         4.7         52         36         36.2         36.2         36.2         36.2         36.2         36.2         36.2         36.2         36.2         36.2         36.2         36.2         36.2         36.2         37.2         36.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37.2         37 | khol greens       73       86.7         karha sag        87.2         ce       66       93.4         ce tree        81.7         ce tree        90.2         ce tree        90.2         ves, tender       45       84.9         ard leaves        89.8         reaves,        59.4                                                                                                                                                                                                                                                                       |     |       | 2.1  | 5.5    | 55  | 160   | 100   | 7.3  | 3,000   | 0,01 | 0.03 | •    | 41    |
| ce tree         66         93.4         1.4         0.19         0.8         1.4         5.2         36         330         21                    330         21 </td <td>ce tree 87.2 ce tree 81.7 ce tree 81.7 ce tree 90.2 ce tree 90.2 ard leaves 89.8 rleaves 59.4</td> <td></td> <td></td> <td>1.3</td> <td>4.7</td> <td>43</td> <td>540.2</td> <td>36.5</td> <td>9.7</td> <td>3,026.6</td> <td>0.18</td> <td>:</td> <td>2.2</td> <td>114.6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ce tree 87.2 ce tree 81.7 ce tree 81.7 ce tree 90.2 ce tree 90.2 ard leaves 89.8 rleaves 59.4                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       | 1.3  | 4.7    | 43  | 540.2 | 36.5  | 9.7  | 3,026.6 | 0.18 | :    | 2.2  | 114.6 |
| ce tree 81.7 5.1 0.4 2.6 10.2 65 320 80 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ce tree        81.7         ce tree        90.2         ce tree        90.2         ces, tender       45       84.9         ard leaves        89.8         1 leaves        59.4                                                                                                                                                                                                                                                                                                                                                                           |     |       | 1.4  | 5.2    | 36  | 330   | 21    | :    | :       | :    | :    | :    | :     |
| ce tree 81.7 5.1 0.4 2.6 10.2 65 320 80 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ce tree        81.7         ves, mature        90.2         ce tree        90.2         ves, tender       45       84.9         ard leaves        89.8         1 leaves        59.4                                                                                                                                                                                                                                                                                                                                                                       |     |       | 0.3  | 1.7    | 21  | 33    | 18.5  | 1.6  | 653.4   | 90.0 | 0.00 | 0.33 | 9.9   |
| ce tree          90.2         3.6         0.2         2.2         0.6         3.2         29         170         60         3.6         888         0.03           res, tender         45         84.9         2.2         0.2         0.6         0.6         0.9         2.6         48         90         27.9         7.0         729         0.03           ard leaves          89.8         4.0         0.6         1.6         0.8         3.2         34         155         26         16.3         2,622         0.03           rest          89.8         4.0         0.6         1.6         0.8         3.2         34         155         26         16.3         2,622         0.03           rune          59.4         7.1         1.0         3.4         6.2         22.9         129         510         80         17.1         1,998         0.04           rune          82         74.6         4.8         0.82         2.6         1.5         11.1         87         143.5         147.7         1.574.4         0.03                                                                                                                                                                        | ce tree 90.2 ves, tender 45 84.9 ard leaves 89.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       | :    | 10.2   | 65  | 320   | 80    | 2.6  | 0       | :    | :    | :    | :     |
| ard leaves 89.8 4.0 0.6 1.6 0.8 3.2 34 155 26 16.3 2,622 0.03 leaves, 59.4 7.1 1.0 3.4 6.2 22.9 129 510 80 17.1 1,998 0.04 leaves, tender 100 59.4 11.6 3.0 2.6 1.5 11.1 87 319.8 143.5 14.7 1574.4 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45 84.9 ard leaves 89.8 59.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       | 9.0  | 3.2    | 29  | 170   | 09    | 3.6  | 888     | 0.03 | 0.11 | 0.2  | 10    |
| d leaves 89.8 4.0 0.6 1.6 0.8 3.2 34 155 26 16.3 2,622 0.03 eaves, 59.4 7.1 1.0 3.4 6.2 22.9 129 510 80 17.1 1,998 0.04 eaves, tender 100 59.4 11.6 3.0 2.6 2.2 21.2 158 130 190 25.3 2,760 0.06 82 74.6 4.8 0.82 2.6 1.5 11.1 87 319.8 143.5 14.7 1 574.4 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.8<br>59.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       | 6.0  | 2.6    | 48  | 8     | 27.9  | 7.0  | 729     | 0.03 | 0.12 | 0.45 | 12.2  |
| eaves, 59.4 7.1 1.0 3.4 6.2 22.9 129 510 80 17.1 1,998 0.04 re eaves, tender 100 59.4 11.6 3.0 2.6 2.2 21.2 158 130 190 25.3 2,760 0.06 82 74.6 4.8 0.82 2.6 1.5 11.1 87 319.8 143.5 14.7 15744 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |       | 0.8  | 3.2    | 34  | 155   | 26    | 16.3 | 2,622   | 0.03 | :    | :    | 33    |
| eaves, tender 100 59.4 11.6 3.0 2.6 2.2 21.2 158 130 190 25.3 2,760 0.06 82 74.6 4.8 0.82 2.6 1.5 11.1 87 319.8 143.5 14.7 1574.4 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       | 6.2  | 22.9   | 129 | 510   | 80    | 17.1 | 1,998   | 0.04 | 0    | 1.4  | 218   |
| 82 74.6 4.8 0.82 2.6 1.5 11.1 87 319.8 143.5 14.7 1 574.4 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 59.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       | 2.2  | 21.2   | 158 | 130   | 190   | 25.3 | 2,760   | 90.0 | 0    | 1.5  | 104   |
| CO:0 1:1 1:01 1:01 1:01 1:01 1:01 1:01 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82 74.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 2 2.6 | 1.5  | 11.1   | 87  | 319.8 | 143.5 | 14.7 | 1,574.4 | 0.03 | 0.15 | 0.4  | 230.4 |

| I able come                       |     |      | -    |      |      |      |      |      |       |       |      |        |       |       |      |      |
|-----------------------------------|-----|------|------|------|------|------|------|------|-------|-------|------|--------|-------|-------|------|------|
| 1                                 | 2   | 3,   | 4.   | 5.   | .9   | 7.   | œ    | 9.   | 10.   | 11.   | 12.  | 13.    | 14.   | 15.   | 16.  | 17.  |
| Parwar sag                        |     | 80.5 | 5.4  | 1.1  | 3.0  | 4.2  | 5.8  | 55   | 531   | 73    | :    | :      | :     | :     | :    | :    |
| Potato leaves                     | •   | 88.0 | 4.4  | 6.0  | 1.8  | 1.3  | 3.6  | 40   | 120   | 50    | :    |        | :     | :     | :    | •    |
| Pumpkin leaves                    | •,  | 81.9 | 4.6  | 0.8  | 2.7  | 2.1  | 7.9  | 57   | 392   | 112   | :    | :      | :     | :     | :    | :    |
| Radish feaves                     | 100 | 8.06 | 3.8  | 0.4  | 1.6  | 1.0  | 2.4  | 28   | 265   | 59    | 3.6  | 5,295  | 0.18  |       | 0.8  | 81   |
| Rape leaves                       | :   | 84.9 | 5.1  | 0.4  | 2.5  | 1.2  | 5.9  | 48   | 370   | 110   | 12.5 | 1380   | 0.01  | 0.03  | 6.0  | 65   |
| Rape leaves (dried)               | •   | 7.4  | 27.0 | 2.9  | 15.3 | 6.7  | 40.7 | 297  | 3095  | 200   | •    | :      | :     | :     | :    | :    |
| Sonchal sag                       | 100 | 86.2 | 4.3  | 9.0  | 2.1  | 1.2  | 5.6  | 45   | 300   | 09    | 19.5 | 2490   | •     |       | 0.2  | 79   |
| Spinach                           | 87  | 92.1 | 1.7  | 0.61 | 1.5  | 0.5  | 2.5  | 26   | 63.5  | 18.3  | 9.5  | 4854.6 | 0.026 | 0.23  | 0.4  | 24.4 |
| Soya leaves                       | :   | 79.5 | 0.9  | 0.5  | 3.2  | :    | 10.8 | 72   | 180   | 190   | 8.0  | :      | *     | 0.16  | :    | :    |
| Sweet potato greens               | 100 | 80.7 | 4.2  | 0.8  | 2.2  | 2.4  | 2.6  | 63   | 360   | 09    | 10.0 | 750    | 0.07  | 0.24  | 1.7  | 27   |
| Table radish leaves               | 49  | 89.1 | 1.9  | 0.3  | 0.8  | 0.3  | 2.1  | 38   | 151.9 | 29.4  | 8.8  | 2813.6 | 0.00  |       | 2.7  | 51.9 |
| Tamarind leaves, tender           | 100 | 70.5 | 2.8  | 2.1  | 1.5  | 1.9  | 18.2 | 115  | 101   | 140   | 5.2  | 250    | 0.24  |       | 4.1  | 8    |
| Tamarind leaves,<br>tender, dried | :   | 8.9  | 8.6  | 3.0  | 8.5  | 10.1 | 6.09 | 305  | 1485  | 124   | :    | :      | :     | :     | :    | :    |
| Turnip greens                     | 51  | 81.9 | 2.0  | 0.77 | 1.1  | 0.51 | 4.8  | 34.2 | 362.1 | 30.6  | 14.5 | 4791.9 | 0.16  | 0.29  | 2.8  | 91.8 |
| ROOTS AND TUBERS                  |     |      |      |      |      |      |      |      |       |       |      |        |       |       |      |      |
| Banana rhizome                    | 35  | 85.1 | 0.14 | 0.07 | 0.49 | 0.39 | 4.1  | 51   | 8.8   | 3.5   | 0.39 | 5.6    | 0     | 0.01  | 0.07 | 0.35 |
| Beet root                         | 85  | 87.7 | 1.4  | 0.00 | 0.7  | 0.8  | 7.5  | 43   | 15.6  | 46.8  | 0.85 | 0      | 0.03  | 0.08  | 0.34 | 8.5  |
| Carrot                            | 95  | 0.98 | 98.0 | 0.19 | 1.04 | 1.14 | 10.1 | 48   | 9/    | 503.5 | 2.1  | 1795.5 | 0.038 | 0.019 | 0.57 | 2.85 |

| Table Contd          |     |      |      |       |      |      |      |     |      |      |       |       |       |       |       |      |
|----------------------|-----|------|------|-------|------|------|------|-----|------|------|-------|-------|-------|-------|-------|------|
| -                    | 2.  | 3.   | 4    | 5.    | 9.   | 7.   | ∞.   | 9.  | 10.  | 11.  | 12.   | 13.   | 14.   | 15.   | 16.   | 17.  |
| Lotus root           | :   | 85.9 | 1.7  | 0.1   | 0.2  | 0.8  | 11.3 | 53  | 21   | 74   | 0.4   | :     | 0.10  | 6     | *     | 22   |
| Mango ginger         | 87  | 85.0 | 96.0 | 0.61  | 1.22 | 1.13 | 9.14 | 53  | 21.8 | 78.3 | 2.3   | 17.4  | 0.08  | 0.026 | 0     | 0.87 |
| Onion, big           | 95  | 9.98 | 1.1  | 0.095 | 0.38 | 0.57 | 10.5 | 20  | 44.6 | 47.5 | 0.67  | 0     | 0.076 | 0.000 | 0.38  | 10.5 |
| Onion, small         | ;   | 84.3 | 1.8  | 0.1   | 9.0  | 9.0  | 12.6 | 59  | 40   | 09   | 1.2   | 15    | 0.08  | 0.05  | 0.5   | 2    |
| Potato               | 85  | 74.7 | 1.4  | 0.00  | 0.5  | 0.3  | 19.2 | 26  | 8.5  | 34   | 9.0   | 20    | 0.00  | 0.000 | 1.0   | 14.5 |
| Radish, pink         | 86  | 8.06 | 0.59 | 0.29  | 0.88 | 0.59 | 6.7  | 32  | 49   | 19.6 | 0.49  | 2.9   | 0.059 | 0.019 | 0.39  | 16.7 |
| Radish, rat-tailed   |     | 92.3 | 1.3  | 0.3   | 0.7  | 1.1  | 4.3  | 25  | 78   | 24   | :     | :     | :     | :     | :     | :    |
| Radish, table        | 100 | 94.9 | 0.5  | 0.1   | 0.7  | 9.0  | 3.2  | 16  | 20   | 20   | 1.0   | 4     | 0.00  | 0.03  | 1.4   | 21   |
| Radish, white        | 8   | 94.4 | 69.0 | 0.099 | 0.59 | 0.79 | 3.57 | 17  | 34.7 | 21.8 | 0.396 | 2.97  | 0.059 | 0.019 | 0.495 | 14.9 |
| Sweet potato         | 6   | 68.5 | 1.16 | 0.29  | 0.97 | 0.78 | 27.4 | 120 | 44.6 | 48.5 | 0.78  | 5.8   | 0.078 | 0.039 | 0.68  | 23.3 |
| Tapioca              | :   | 59.4 | 0.7  | 0.2   | 1.0  | 9.0  | 38.1 | 157 | 20   | 40   | 6.0   | :     | 0.05  | 0.10  | 0.3   | 25   |
| Tapioca chips, dried | 100 | 12.0 | 1.3  | 0.3   | 2.0  | 1.8  | 82.6 | 338 | 91   | 70   | 3.6   | 0     | 0.23  | 0.10  | 1.4   | 0    |
| Turnip               | 65  | 91.6 | 0.33 | 0.13  | 0.4  | 9.0  | 4    | 29  | 19.5 | 26   | 0.3   | 0     | 0.03  | 0.03  | 0.33  | 27.9 |
| Yam, elephant        | :   | 78.7 | 1.2  | 0.1   | 0.8  | 0.8  | 18.4 | 79  | 50   | 34   | 9.0   | 260   | 90.0  | 0.07  | 0.7   | 0    |
| Yam, ordinary        | 92  | 6.69 | 1.3  | 0.00  | 1.5  | 0.92 | 23.9 | 111 | 32.2 | 18.4 | 1.2   | 71.8  | 90.0  | :     | 9.0   |      |
| Yam, wild            | 88  | 70.4 | 2.2  | 0.27  | 1.2  | 0.89 | 21.7 | 110 | 17.8 | 62.9 | 0.89  | 502.9 | 0.17  | 0.42  | 1.07  | 0.89 |

| 1.                    | 2. | 3.   | 4    | 5.    | 9.    | 7.   | 80   | 9.  | 10.  | 11.   | 12. | 13.   | 14.   | 15.    | 16.  | 17.  |
|-----------------------|----|------|------|-------|-------|------|------|-----|------|-------|-----|-------|-------|--------|------|------|
| Water lily, red       | :  | 49.1 | 4.1  | 0.3   | 1.6   | 1.5  | 43.4 | 193 | 65   | 217   | :   | :     | :     |        | :    | :    |
| Water lily, white     | :  | 62.5 | 3.1  | 0.3   | 1.3   | 1.1  | 31.7 | 142 | 9/   | 220   | :   | *     | •     | ę<br>6 | •    | :    |
| OTHER VEGETABLES      |    |      |      |       |       |      |      |     |      |       |     |       |       |        |      |      |
| Amaranth stem         | :  | 92.5 | 6.0  | 0.1   | 8.1.8 | 1.2  | 3.5  | 19  | 260  | 30    | 1.8 | 255   | 0.01  | 0.18   | 0    | 10   |
| Ash gourd             | 19 | 96.5 | 0.3  | 0.07  | 0.2   | 0.5  | 1.3  | 10  | 20.1 | 13.4  | 0.5 | 0     | 0.04  | 0.007  | 0.3  | 0.67 |
| Beans, scarlet runner | 59 | 58.3 | 4.4  | 0.59  | 0.0   | 1.1  | 17.6 | 158 | 29.5 | 94.4  | 1.5 | 20.1  | 0.2   | 0.11   | 0    | 15.9 |
| Bitter gourd          | 16 | 92.4 | 1.55 | 0.19  | 9.0   | 9.0  | 4.1  | 25  | 19.4 | 6.79  | 1.7 | 122.2 | 0.067 | 0.087  | 0.49 | 85.4 |
| Bitter gourd, small   | 93 | 83.2 | 1.9  | 6.0   | 1.3   | 1.6  | 6.6  | 8   | 21.4 | 35.3  | 1.9 | 177.2 | 0.065 | 0.056  | 0.37 | 89.3 |
| Bottle gourd          | 98 | 96.1 | 0.17 | 0.00  | 0.4   | 0.5  | 2.2  | 12  | 17.2 | 9.8   | 9.0 | 0     | 0.026 | 0.000  | 1.7  | 0    |
| Brinjal               | 91 | 92.7 | 1.3  | 0.27  | 0.27  | 1.18 | 3.6  | 24  | 16.4 | 42.8  | 0.8 | 67.3  | 0.036 | 0.10   | 0.8  | 10.9 |
| Broad beans           | 88 | 85.4 | 3.96 | 0.00  | - 0.7 | 1.8  | 6.3  | 48  | 44.0 | 56.3  | 1.2 | 7.9   | 0.07  | :      | 0.7  | 10.6 |
| Cauliflower           | 70 | 8.06 | 1.8  | 0.3   | 0.7   | 0.8  | 2.8  | 30  | 23.1 | .39.9 | 1.1 | 21.0  | 0.03  | 0.07   | 0.7  | 39.2 |
| Celery stalks         | :  | 93.5 | 0.8  | 0.1   | 6.0   | 1.2  | 3.5  | 18  | 30   | 38    | 4.8 | 520   | 0.12  | 0.05   | 0.3  | 9    |
| Cluster beans         | :  | 81.0 | 3.2  | 0.4   | 1.4   | 3.2  | 10.8 | 16  | 130  | 57    | 4.5 | 198   | 0.00  | 0.03   | 9.0  | 49   |
| Cowpea pods           | :  | 85.3 | 3.5  | 0.2   | 6.0   | 2.0  | 8.1  | 48  | 72   | 59    | 2.5 | 564   | 0.07  | 0.00   | 6.0  | 14   |
| Cucumber              | 83 | 96.3 | 0.3  | 0.08  | 0.2   | 0.3  | 2.1  | 13  | 8.3  | 20.8  | 1.2 | 0     | 0.05  | 0      | 0.17 | 5.8  |
| Drumstick             | 83 | 86.9 | 2.1  | 0.083 | 1.7   | 3.9  | 3.1  | 26  | 24.9 | 91.3  | 4.4 | 91.3  | 0.04  | 90.0   | 0.17 | 9.66 |
| Drumstick flowers     | •  | 85.9 | 3.6  | 0.8   | 1.3   | 1.3  | 7.1  | 20  | 51   | 06    | :   | :     | :     | :      | :    | :    |

|                           |     |      |      |      |      |      |      |     |       |      |      |       |       | 1     |       |       |
|---------------------------|-----|------|------|------|------|------|------|-----|-------|------|------|-------|-------|-------|-------|-------|
| 1.                        | 2.  | 3.   | 4.   | 5.   | 9.   | 7.   | 8.   | 9.  | 10.   | 11.  | 12.  | 13.   | 14.   | 15.   | 16.   | 17.   |
| Field beans, tender       | 93  | 86.1 | 3.5  | 0.65 | 0.84 | 1.7  | 6.2  | 48  | 195.3 | 63.2 | 1.6  | 173.9 | 0.00  | 0.056 | 0.65  | 8.4   |
| Figs, red                 | :   | 79.4 | 1.2  | 9.0  | 1.6  | 6.4  | 10.8 | 53  | 187   | 39   | :    | :     | :     | :     | *     | :     |
| French beans              | 94  | 91.4 | 1.6  | 0.00 | 0.47 | 1.7  | 4.2  | 26  | 47    | 26.3 | 1.6  | 124.1 | 0.075 | 0.056 | 0.28  | 22.6  |
| Giant chillies (capsicum) | 97  | 92.4 | 1.26 | 0.29 | 0.68 | 0.97 | 4.2  | 24  | 9.7   | 29.1 | 1.16 | 414.2 | 0.53  | 0.049 | 0.097 | 132.9 |
| Jack, tender              | •   | 84.0 | 2.6  | 0.3  | 6.0  | 2.8  | 9.4  | 51  | 30    | 40   | 1.7  | 0     | 0.05  | 0.04  | 0.2   | 14    |
| Kandan kathiri            | :   | 75.5 | 3.1  | 0.8  | 1.6  | 14.2 | 8.4  | 39  | 100   | 8    | 1.2  | :     | :     |       | :     | :     |
| Karonda, fresh            | 86  | 91.0 | 1.08 | 2.8  | 0.59 | 1.47 | 2.8  | 42  | 20.6  | 27.4 | *    | :     | :     | *     | :     | :     |
| Karonda, dry              | :   | 18.2 | 2.3  | 9.6  | 2.8  | :    | 67.1 | 364 | 160   | 99   | 39.1 | :     | *     | :     | :     | :     |
| Knol-khol                 | 74  | 7.76 | 0.8  | 0.1  | 0.5  | 1.1  | 2.8  | 21  | 14.8  | 25.9 | 0.3  | 15.5  | 0.04  | 0.07  | 0.4   | 67.9  |
| Ladies fingers            | 2   | 9.68 | 1.6  | 0.17 | 9.0  | 1.0  | 5.4  | 35  | 55.4  | 47.0 | 1.3  | 43.7  | 90.0  | 0.08  | 0.5   | 10.9  |
| Lotus stem, dry           | 100 | 9.5  | 4.1  | 1.3  | 8.7  | 25.0 | 51.4 | 234 | 405   | 128  | 9.09 | 0     | 0.82  | 1.21  | 1.9   | 6     |
| Mango, green              | 72  | 87.5 | 0.5  | 0.07 | 0.3  | 6.0  | 7.3  | 4   | 7.2   | 13.7 | 3.9  | 64.8  | 0.03  | 0.007 | 0.1   | 2.2   |
| Onion stalks              | 100 | 87.6 | 6.0  | 0.2  | 0.8  | 1.6  | 8.9  | 41  | 20    | 50   | 7.5  | 595   | 0     | 0.03  | 0.3   | 17    |
| Papaya, green             | :   | 92.0 | 0.7  | 0.2  | 0.5  | 6.0  | 5.7  | 27  | 28    | 40   | 6.0  | 0     | 0.01  | 0.01  | 0.1   | 12    |
| Parwar                    | 95  | 92.0 | 1.9  | 0.29 | 0.48 | 2.9  | 2.1  | 20  | 28.5  | 38   | 1.6  | 145.4 | 0.048 | 0.057 | 0.48  | 27.6  |
| Peas                      | 53  | 72.1 | 3.8  | 0.05 | 0.4  | 2.1  | 8.4  | 93  | 10.6  | 73.7 | 0.8  | 43.9  | 0.13  | 0.005 | 0.4   | 4.8   |
| Pink beans                | 94  | 8.98 | 2.9  | 0.38 | 0.56 | 1.97 | 9.9  | 4   | 50.8  | 65 R | 1 4  | 425 R | 9800  | 0,00  |       |       |

| w     |   |
|-------|---|
| -     | 1 |
| -     | 1 |
| =     | 1 |
| 3     | 1 |
| 9     | 1 |
| ble   |   |
| ble   |   |
| able  |   |
| able  |   |
| able  |   |
| able  |   |
| Pable |   |

| Table Contd           |    |      |      |       |      |      |      |     |       |       |      |       |       |        | ١    |     |
|-----------------------|----|------|------|-------|------|------|------|-----|-------|-------|------|-------|-------|--------|------|-----|
| ;                     | 2  | 3.   | 4    | 5.    | 9    | 7.   | 8.   | 9.  | 10.   | 11.   | 12.  | 13.   | 14.   | 15.    | 16.  | _   |
| Plantain flower       | 43 | 6.68 | 0.7  | 0.3   | 9.0  | 9.0  | 2.2  | 34  | 13.8  | 18.1  | 0.7  |       | 0.05  | 0.000  | 0.2  |     |
| Plantain, green       | 58 | 83.2 | 0.8  | 0.1   | 0.3  | 0.4  | 8.1  | 2   | 5.8   | 16.8  | 0.3  |       | 0.03  | 0.01   | 0.2  |     |
| Plantain stem         | :  | 88.3 | 0.5  | 0.1   | 9.0  | 0.8  | 6.6  | 42  | 10    | 10    | 1.1  |       | 0.02  | 0.01   | 0.2  |     |
| Pumpkin               | 79 | 92.6 | 1.1  | 0.08  | 0.5  | 9.0  | 3.6  | 25  | 7.9   | 23.7  | 9.0  | 39.5  | 0.05  | 0.03   | 0.4  | 1.6 |
| Pumkin flowers        | :  | 89.1 | 2.2  | 0.8   | 1.4  | 0.7  | 5.8  | 39  | 120   | 09    | :    |       | :     | :      | :    |     |
| Rape plant, stem      | :  | 91.4 | 3.1  | 0.1   | 1.4  | :    | 4.0  | 29  | 100   | 100   | 1.2  |       | •     | 9      | :    |     |
| Redgram, tender       | 72 | 65.1 | 7.1  | 0.7   | 0.7  | 4.5  | 12.2 | 116 | 41.0  | 118.1 | 0.8  |       | 0.23  | 0.24   | 2.2  |     |
| Ridge gourd           | 82 | 95.2 | 0.4  | 0.08  | 0.25 | 0.4  | 2.8  | 17  | 14.8  | 21.3  | 0.4  |       | :     | 0.008  | 0.16 |     |
| Sannhemp flowers      | :  | 78.9 | 4.8  | 9.0   | 1.4  | 3.9  | 10.4 | 8   | 200   | 100   | •    |       | :     | :      | :    |     |
| Snake gourd           | 86 | 94.6 | 0.49 | 0.29  | 0.49 | 0.78 | 3.23 | 18  | 25.48 | 19.6  | 0.29 |       | 0.039 | 0.059  | 0.29 |     |
| Spinach stalks        | :  | 93.4 | 6.0  | 0.1   | 1.8  | :    | 3.8  | 20  | 8     | 20    | 1.6  |       | :     | :      | 4    |     |
| Spinach beans         | 86 | 87.2 | 2.65 | 0.19  | 0.59 | 1.47 | 9.7  | 4   | 58.8  | 39.2  | 1.96 |       | 0.078 | 0.078  | 0.49 |     |
| Tinda, tender         | 8  | 93.5 | 1.39 | 0.19  | 0.49 | 0.99 | 3.37 | 21  | 24.8  | 23.8  | 0.89 |       | 0.039 | 0.079  | 0.29 |     |
| Tomato, green         | 86 | 93.1 | 1.86 | 0.098 | 0.59 | 69.0 | 3.53 | 23  | 19.6  | 35.3  | 1.76 | 188.2 | 0.069 | 0.0098 | 0.39 |     |
| Vegetable marrow      | 94 | 94.8 | 0.5  | 0.1   | 0.3  | 0.8  | 3.5  | 17  | 10    | 30    | 9.0  | :     | 0.05  | 0      | 0.4  | 18  |
| Water chestnut, fresh | 38 | 70.0 | 1.8  | 0.1   | 0.4  | 0.2  | 8.9  | 115 | 7.6   | 57    | 0.3  | 4.6   | 0.02  | 0.03   | 0.2  | 3.4 |
| Water chestnut, dry   | •  | 13.8 | 13.4 | 0.8   | 3.1  | :    | 68.9 | 336 | 20    | 440   | 2.4  | :     | :     | •      | :    | :   |

| 1,                 | 2.  | 3.   | 4    | 5.   | .9   | 7.   | ×    | 9.  | 10.   | 11.   | 12.  | 13.  | 14.   | 15.   | 16.  | 17.  |
|--------------------|-----|------|------|------|------|------|------|-----|-------|-------|------|------|-------|-------|------|------|
| Waterlily flowers  | •   | 8.06 | 1.6  | 9.0  | 0.7  | 6.0  | 5.4  | 33  | 29    | 18    | :    | :    | :     | •     | •    | •    |
| NUTS AND OILSEEDS  |     |      |      |      |      |      |      |     |       |       |      |      |       |       |      |      |
| Almond             | •   | 5.2  | 20.8 | 58.9 | 2.9  | 1.7  | 10.5 | 655 | 230   | 490   | 4.5  | 0    | 0.24  | 0.57  | 4.4  | 0    |
| Cashewnut          | •   | 5.9  | 21.2 | 46.9 | 2.4  | 1.3  | 22.3 | 965 | 20    | 450   | 5.0  | 09   | 0.63  | 0.19  | 1.2  | 0    |
| Chilgoza           | •   | 4.0  | 13.9 | 49.3 | 2.8  | 1.0  | 29.0 | 615 | 91    | 464   | 3.6  | :    | 0.32  | 0.30  | 3.6  | 0    |
| Coconut, dry       | : ' | 4.3  | 8.9  | 62.3 | 1.6  | 9.9  | 18.4 | 662 | 400   | 210   | 2.7  | 0    | 0.08  | 0.01  | 3.0  | 7    |
| Coconut, fresh     | 100 | 36.3 | 4.5  | 41.6 | 1.0  | 3.6  | 13.0 | 444 | 10    | 240   | 1.7  | 0    | 0.05  | 0.10  | 0.8  | 1    |
| Gingelly seeds     | 100 | 5.3  | 18.3 | 43.3 | 5.2  | 2.9  | 25.0 | 563 | 1450  | 570   | 10.5 | 09   | 1.01  | 0.34  | 4.4  | 0    |
| Groundnut          | 73  | 3.0  | 18.5 | 29.3 | 1.8  | 2.3  | 19.1 | 292 | 65.7  | 255.5 | 2.0  | 27.0 | 99.0  | 0.00  | 14.5 | 0    |
| Groundnut, roasted | 69  | 1.7  | 18.1 | 27.5 | 1.7  | 2.1  | 18.4 | 570 | ,53.1 | 255.3 | 2.1  | 0    | 0.27  | 0.00  | 15.2 | 0    |
| Jungli badam       | 10  | 35.6 | 1.1  | 3.6  | 0.2  | :    | •    | :   | 3.3   | 4.2   | 0.2  | 0    | 90000 | 0.008 | 0.1  | 0.5  |
| Linseed seeds      | 8   | 6.5  | 20.1 | 36.7 | 2.38 | 4.75 | 28.6 | 530 | 168.3 | 366.3 | 2.67 | 29.7 | 0.228 | 0.069 | 0.99 | 0    |
| Mustard seeds      | •   | 8.5  | 20.0 | 39.7 | 4.2  | 1.8  | 23.8 | 541 | 490   | 700   | 17.9 | 162  | 0.65  | 0.26  | 4.0  | 0    |
| Niger seeds        | :   | 4.2  | 23.9 | 39.0 | 4.9  | 10.9 | 17.1 | 515 | 300   | 224   | 56.6 | :    | 0.07  | 0.97  | 8.4  | 0    |
| Pistachio nut      | •   | 5.6  | 19.8 | 53.5 | 2.8  | 2.1  | 16.2 | 979 | 140   | 430   | 7.7  | 144  | 0.67  | 0.28  | 2.3  | :    |
| Safflower seeds    | :   | 5.5  | 13.5 | 25.6 | 2.6  | 34.9 | 17.9 | 356 | 236   | 823   | :    | •    | •     |       | :    | :    |
| Sunflower seeds    | 52  | 5.5  | 10.3 | 27.1 | 1.9  | 0.52 | 9.3  | 620 | 145.6 | 348.4 | 2.6  | 0    | 0.45  | 0.01  | 2.3  | 0.52 |
| Wainut             | 45  | 4.5  | 7.0  | 29.0 | 0.81 | 1.0  | 70   | 607 | AK    | 171   |      | 8    |       |       |      |      |

| -    | -  |
|------|----|
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
| 2000 | -  |
|      | ы  |
|      | ы  |
| -    | a  |
| -    | -  |
|      | -  |
|      | -8 |
| W.   | ч. |
| -    | -  |
|      | •  |
|      |    |
|      | -8 |
|      |    |
|      |    |
|      |    |
|      |    |

| Table Colled          |     |      |      |      |     |      |      |     |       |       |      |       |       |      |      |      |
|-----------------------|-----|------|------|------|-----|------|------|-----|-------|-------|------|-------|-------|------|------|------|
| 1.                    | 2.  | 3.   | 4.   | 5.   | 9   | 7.   | œ    | 9.  | 10.   | 11.   | 12.  | 13.   | 14.   | 15.  | 16.  | 17.  |
| CONDIMENTS AND SPICES | ES  |      |      |      |     |      |      |     |       |       |      |       |       |      |      |      |
| Arisithippili         | :   | 12.5 | 13.2 | 4.7  | 0.9 | 5.2  |      | 329 | 460   |       | 13.5 | :     | :     | •    | :    | •    |
| Asafoetida            | :   | 16.0 | 4.0  | 1.1  | 7.0 | 4.1  |      | 297 | 069   |       | 22.2 | 4     | 0     | 0.04 | 0.3  | 0    |
| Cardamom              | . : | 20.0 | 10.2 | 2.2  | 5.4 | 20.1 |      | 229 | 130   |       | 5.0  | 0     | 0.22  | 0.17 | 8.0  | 0    |
| Chillies, dry         | :   | 10.0 | 15.9 | 6.2  | 6.1 | 30.2 |      | 246 | 160   |       | 2.3  | 345   | 0.93  | 0.43 | 9.5  | 20   |
| Chillies, green       | 8   | 85.7 | 2.6  | 0.5  | 6.0 | 6.1  |      | 29  | 27    |       | 1.1  | 157.5 | 0.17  | 0.35 | 8.0  | 6.66 |
| Cloves, dry 1         | 100 | 25.2 | 5.2  | 8.9  | 5.2 | 9.5  |      | 286 | 740   |       | 4.9  | 253   | 0.08  | 0.13 | 0    | 0    |
| Cloves, green         | :   | 65.5 | 2.3  | 5.9  | 2.2 | :    |      | 159 | 310   |       | 2.1  | 72    | :     | :    | :    | z    |
| Coriander             | :   | 11.2 | 14.1 | 16.1 | 4.4 | 32.6 |      | 288 | 630   |       | 17.9 | 942   | 0.22  | 0.35 | 1.1  | 0    |
| Cumin seeds           | :   | 11.9 | 18.7 | 15.0 | 5.8 | 12.0 |      | 356 | 1080  |       | 31.0 | 522   | 0.55  | 0.36 | 2.6  | en . |
| Fenugreek seeds       |     | 13.7 | 26.2 | 5.8  | 3.0 | 7.2  |      | 333 | 160   |       | 14.1 | 96    | 0.34  | 0.29 | 1.1  | 0    |
| Garlic, dry           | 85  | 62.0 | 5.4  | 0.00 | 6.0 | 0.7  |      | 145 | 25.5  |       | 1.1  | 0     | 0.02  | 0.20 | 0.3  | 11.1 |
| Ginger, fresh         | :   | 6.08 | 2.3  | 6.0  | 1.2 | 2.4  |      | 29  | 20    |       | 2.6  | 40    | 90.0  | 0.03 | 9.0  | 9    |
| Lime peel             | :   | 999  | 1.8  | 0.5  | 1.8 | :    |      | 129 | 710   |       | 2.7  | :     | :     | :    | :    | :    |
| Mace                  | :   | 15.9 | 6.5  | 24.4 | 1.6 | 3.8  |      | 437 | 180   |       | 12.6 | 3027  | 0.25  | 0.45 | 1.4  | 0    |
| Nutmeg                | :   | 14.3 | 7.5  | 36.4 | 1.7 | 11.6 |      | 472 | 120   |       | 4.6  | 0     | 0.33  | 0.01 | 1.4  | 0    |
| Nutmeg rind           | :   | 8.98 | 1.0  | 0.4  | 9.0 | :    |      | 52  | 40    |       | 2.0  | 4     | :     | :    | :    | :    |
| Pepper, dry           | 95  | 13.2 | 10.9 | 6.5  | 4.2 | 14.2 | 46.7 | 304 | 437   | 188.1 | 15.9 | 1026  | 0.086 | 0.13 | 1.3  | :    |
| Pepper, green         | 81  | 9.07 | 3.9  | 2.2  | 1.5 | 5.2  |      | 86  | 218.7 |       | 1.9  | 437.4 | 0.04  | 0.03 | 0.16 | 0.81 |
| Tamarind pulp         | •   | 20.9 | 3.1  | 0.1  | 2.9 | 5.6  |      | 283 | 170   | _     | 10.9 | 09    | :     | 0.07 | 0.7  | 6    |

| Table Contd      |     |      |      |      |      |      |      |     | ١     |       |      |        |       |       |      |       |
|------------------|-----|------|------|------|------|------|------|-----|-------|-------|------|--------|-------|-------|------|-------|
| 1.               | 2.  | 3.   | 4    | 5.   | .9   | 7.   | ∞.   | 9.  | 10.   | 11.   | 12.  | 13.    | 14.   | 15.   | 16.  | 17.   |
| Turmeric         | 100 | 13.1 | 6.3  | 5.1  | 3.5  | 2.6  | 69.4 | 349 | 150   | 282   | 14.8 | 30     | 0.03  | 0     | 2.3  | 0     |
| FRUITS           |     |      |      |      |      |      |      |     |       |       |      |        |       |       |      |       |
| Amla             | 88  | 81.8 | 0.4  | 0.00 | 0.4  | 3.0  | 12.2 | 58  | 44.5  | 17.8  | 1.1  | 8.0    | 0.027 | 0.009 | 0.18 | 534   |
| Apple            | 8   | 84.6 | 0.18 | 0.45 | 0.27 | 0.0  | 12.1 | 59  | 6     | 12.6  | 6.0  | 0      | :     | :     | 0    | 0.0   |
| Apricots, fresh  | 98  | 85.3 | 0.86 | 0.26 | 0.6  | 0.95 | 9.98 | 53  | 17.2  | 21.5  | 1.9  | 1857.6 | 0.03  | 0.11  | 0.5  | 5.2   |
| Apricots, dried  | 93  | 19.4 | 1.5  | 0.65 | 2.6  | 1.95 | 68.3 | 306 | 102.3 | 65.1  | 4.3  | 53.9   | 0.20  | :     | 2.1  | 1.9   |
| Avocado pear     | :   | 73.6 | 1.7  | 22.8 | 1.1  | :    | 8.0  | 215 | 10    | 80    | 0.7  | :      | :     | *     | :    | :     |
| Bael fruit       | 2   | 61.5 | 1.2  | 0.2  | 1.1  | 1.9  | 20.4 | 137 | 54.4  | 32    | 0.4  | 35.2   | 0.08  | 0.02  | 0.7  | 5.1   |
| Bamboo fruit     | :   | 56.3 | 3.9  | 0.1  | 1.6  | 3.9  | 34.2 | 153 | 10    | 110   | 1.5  | 11     | 0.00  | 0.00  | •    | 1     |
| Banana, ripe     | 71  | 70.1 | 6.0  | 0.2  | 9.0  | 0.3  | 19.3 | 116 | 12.1  | 25.6  | 9.0  | 55.4   | 0.04  | 90.0  | 0.4  | 4.9   |
| Banyan tree figs |     | 74.1 | 1.7  | 2.0  | 1.9  | 8.5  | 11.8 | 72  | 364   | 43    |      | :      | :     | :     | :    | :     |
| ВІаскрепту       | 100 | 87.2 | 1.3  | 0.5  | 0.5  | 3.8  | 6.7  | 37  | 30    | 20    | 4.3  | 7      | *     | *     | 2.0  | 6     |
| Bread fruit      | :   | 79.5 | 1.5  | 0.2  | 6.0  | 2.1  | 15.8 | 71  | 40    | 30    | 0.5  | 6      | 0.04  | 0.07  | :    | 21    |
| Cape gooseberry  | 87  | 82.9 | 1.6  | 0.17 | 0.7  | 2.8  | 6.7  | 53  | 8.7   | 58.3  | 1.7  | 1242.4 | 0.04  | 0.017 | 0.26 | 42.6  |
| Cashew fruit     | 77  | 86.3 | 0.15 | 0.08 | 0.15 | 69.0 | 9.5  | 51  | 7.7   | 7.7   | 0.15 | 17.7   | 0.015 | 0.039 | 0.31 | 138.6 |
| Cherries, red    | 8   | 83.4 | 0.97 | 0.4  | 0.7  | 0.35 | 12.1 | 2   | 21.1  | 22    | 1.1  | 0      | 0.07  | 0.07  | 0.26 | 6.2   |
| Currants, black  | 86  | 18.4 | 2.6  | 0.49 | 2.16 | 0.98 | 73.7 | 316 | 127.4 | 107.8 | 8.3  | 20.6   | 0.029 | 0.137 | 0.39 | 0.98  |
| Dates, dried     | 98  | 15.3 | 2.15 | 0.3  | 1.8  | 3.4  | 65.2 | 317 | 103.2 | 43    | 6.3  | 22.4   | 0.000 | 0.017 | 8.0  | 2.6   |
| Dates, fresh     | :   | 59.2 | 1.2  | 0.4  | 1.7  | 3.7  | 33.8 | 144 | 22    | 38    | :    | :      | :     | •     | •    |       |

| Table Contd                      |     |       |      |      |      |      |      |    |      |      |      |       |        |       |      |      |
|----------------------------------|-----|-------|------|------|------|------|------|----|------|------|------|-------|--------|-------|------|------|
| 1.                               | 2.  | 3.    | 4.   | 5.   | .9   | 7.   | ∞°   | 9. | 10.  | 11.  | 12.  | 13.   | 14.    | 15.   | 16.  | 17.  |
| Fig                              | 86  | 88.1  | 1.29 | 0.19 | 0.59 | 2.18 | 7.52 | 37 | 79.2 | 29.7 | 0.99 | 160.4 | 0.059  | 0.049 | 0.59 | 4.95 |
| Grapes, blue variety             | 95  | 82.2  | 0.57 | 0.38 | 98.0 | 2.7  | 12.4 | 28 | 19   | 21.9 | 0.48 | 2.9   | 0.038  | 0.029 | 0.19 | 0.95 |
| Grapes, pale green<br>variety    | :   | 79.2  | 0.5  | 0.3  | 9.0  | 2.9  | 16.5 | 71 | 20   | 30   | 0.5  | 0     | •      | •     | 0    | 1    |
| Grapefruit<br>(Marsh's seedless) | :   | 88.5  | 1.0  | 0.1  | 0.4  | :    | 10.0 | 45 | 30   | 30   | 0.2  | :     | 0.12   | 0.02  | 0.3  | :    |
| Grapefruit<br>(Triumph)          | :   | 92.0  | 0.7  | 0.1  | 0.2  | :    | 7.0  | 32 | 20   | 20   | 0.2  | •     | 0.12   | 0.02  | 0.3  | 31   |
| Guava, country                   | 100 | 81.7  | 6.0  | 0.3  | 0.7  | 5.2  | 11.2 | 51 | 10   | 28   | 1.4  | 0     | 0.03   | 0.03  | 0.4  | 212  |
| Guava, hill                      | :   | 85.3  | 0.1  | 0.2  | 9.0  | 4.8  | 0.6  | 38 | 20   | 20   | 1.2  | 0     | 0.05   | 0.05  | 0.3  | 15   |
| Jack fruit                       | 30  | 76.2  | 9.0  | 0.03 | 0.3  | 0.3  | 5.9  | 88 | 9    | 12.3 | 0.2  | 52.5  | 0.009  | 0.04  | 0.12 | 2.1  |
| Jambu fruit                      | 75  | 83.7. | 0.5  | 0.5  | 0.3  | 0.7  | 10.5 | 62 | 11.3 | 11.3 | 6.0  | 36    | 0.05   | 0.008 | 0.15 | 13.5 |
| Kusum fruits                     | *   | 86.2  | 1.5  | 0.8  | 1.0  | 9.0  | 6.6  | 53 | 15   | 42   | :    | :     | •      | :     | :    | :    |
| Lemon                            | :   | 85.0  | 1.0  | 6.0  | 0.3  | 1.7  | 11.1 | 22 | 70   | 10   | 2.3  | 0     | 0.05   | 0.01  | 0.1  | 39   |
| Lichi                            | 89  | 84.1  | 0.7  | 0.1  | 0.3  | 0.3  | 9.5  | 61 | 8.9  | 23.8 | 0.5  | 0     | 0.01   | 0.04  | 0.3  | 21.1 |
| Lichies, bastard                 | :   | 83.9  | 1.4  | 0.3  | 0.8  | 0.5  | 13.1 | 61 | 15   | 35   | :    | *     | e<br>p | :     | :    | :    |
| Lime                             | :   | 84.6  | 1.5  | 1.0  | 0.7  | 1.3  | 10.9 | 69 | 06   | 20   | 0.3  | 15    | 0.05   | 0.03  | 0.1  | 63   |
| Lime, sweet, malta               | 29  | 90.3  | 0.5  | 0.1  | 0.3  | 0.4  | 5.2  | 36 | 20.1 | 13.4 | 0.7  | 0     | :      | :     | 0    | 36.2 |
| Lime, sweet,<br>musambi          | 71  | 88.4  | 9.0  | 0.2  | 0.5  | 0.4  | 9.9  | 43 | 28.4 | 21.3 | 0.5  | 0     | •      | :     | 0    | 35.5 |
| Loquat                           | 92  | 88.2  | 0.5  | 0.2  | 0.4  | 9.0  | 7.3  | 43 | 22.8 | 15.2 | 0.99 | 424.8 | :      | :     | 0    | 0    |

| lable Conta         |     |      |      |      |      |      |      |     |      |      |        |        |       |        |      |      |
|---------------------|-----|------|------|------|------|------|------|-----|------|------|--------|--------|-------|--------|------|------|
| 1                   | 2.  | က    | 4.   | 5.   | .9   | 7.   | œ.   | 9.  | 10.  | 11.  | 12.    | 13.    | 14.   | 15.    | 16.  | 17.  |
| Mahua, ripe         | 0   | 73.6 | 1.4  | 1.6  | 0.7  | :    | 22.7 | 111 | 45   | 22   | 1.1    | 307    | :     | *      | :    | 40   |
| Mango, ripe         | 74  | 81.0 | 0.4  | 0.3  | 0.3  | 0.5  | 12.5 | 74  | 10.4 | 11.8 | 96.0   | 2029.8 | 90.0  | 0.07   | 0.7  | 11.8 |
| Melon, musk         | 78  | 95.2 | 0.2  | 0.16 | 0.3  | 0.3  | 2.7  | 17  | 24.9 | 10.9 | 1.1    | 131.8  | 60.0  | 90.0   | 0.2  | 20.3 |
| Melon, water        | 78  | 95.8 | 0.16 | 0.16 | 0.2  | 0.16 | 2.6  | 16  | 8.6  | 9.4  | 6.2    | 0      | 0.016 | 0.03   | 0.08 | 0.8  |
| Mulberry            | 100 | 86.5 | 1.1  | 0.4  | 9.0  | 1.1  | 10.3 | 49  | 70   | 30   | 2.3    | 22     | 0.04  | 0.13   | 0.5  | 12   |
| Neem fruit          |     | 81.9 | 1.3  | 1.0  | 0.7  | :    | 15.1 | 75  | 25   | 41   | e<br>• | :      | :     | e<br>0 | *    |      |
| Orange              | 29  | 87.6 | 0.5  | 0.1  | 0.2  | 0.5  | 7.3  | 48  | 17.4 | 13.4 | 0.21   | 739.7  | :     | :      |      | 20.1 |
| Orange juice        | ÷   | 97.7 | 0.5  | 0.1  | 0.1  |      | 1.9  | 6   | 2    | S    | 0.7    | 15     | 90.0  | 0.05   | 6.0  | 64   |
| Papaya, ripe        | 75  | 8.06 | 0.5  | 0.08 | 0.4  | 9.0  | 5.4  | 32  | 12.8 | 9.8  | 0.4    | 499.5  | 0.03  | 0.19   | 0.15 | 42.8 |
| Passion fruit       | :   | 76.3 | 6.0  | 0.1  | 0.7  | 9.6  | 12.4 | 25  | 10   | 09   | 2.0    | 22     | 0.07  | 0.14   | 1.6  | 25   |
| Passion fruit juice | 100 | 89.0 | 1.2  | 0.5  | 0.7  | 1.2  | 7.7  | 37  | 10   | 30   | 0.7    | 1968   | 0.01  | 0.05   | 0    | 13   |
| Peaches             | 88  | 86.0 | 1.1  | 0.26 | 0.7  | 1.1  | 9.5  | 20  | 13.2 | 36.1 | 2.1    | 0      | 0.018 | 0.026  | 0.44 | 5.3  |
| Pears               | 85  | 86.0 | 0.5  | 0.17 | 0.26 | 6.0  | 10.1 | 52  | 8.8  | 12.8 | 0.4    | 23.8   | 0.02  | 0.026  | 0.17 | 0    |
| Phaisa              | 69  | 80.8 | 6.0  | 9.0  | 92.0 | 0.8  | 10.1 | 72  | 89.0 | 26.9 | 2.1    | 289.1  | •     | :      | 0.5  | 15.2 |
| Pine apple          | 09  | 87.8 | 0.24 | 90.0 | 0.24 | 0.3  | 6.5  | 46  | 12.0 | 5.4  | 0.72   | 10.8   | 0.12  | 0.07   | 90.0 | 23.4 |
| Pipal tree figs     | :   | 62.4 | 2.5  | 1.7  | 2.3  | 9.9  | 21.2 | 110 | 289  | 88   | *      |        | :     | :      |      | *    |
| Plum                | 06  | 86.9 | 9.0  | 0.45 | 0.36 | 0.36 | 66.6 | 25  | 6    | 10.8 | 0.5    | 149.4  | 0.036 | 60 0   | 0 27 | 4.5  |

| Table Contd              |      |      |       |      |      |      |      |     |      |      |      |      |       |      |      | 1      |
|--------------------------|------|------|-------|------|------|------|------|-----|------|------|------|------|-------|------|------|--------|
| 1.                       | 2.   | က်   | 4     | 5.   | 9    | 7.   | σċ   | 9.  | 10.  | 11.  | 12.  | 13.  | 14.   | 15.  | 16.  | 17.    |
| Pomegranate              | 89   | 78.0 | 1.09  | 0.07 | 0.5  | 3.5  | 6.6  | 99  | 6.8  | 47.6 | 0.2  | 0    | 0.04  | 0.02 | 0.5  | 10.9   |
| Prunes                   | :    | 85.3 | 0.5   | 0.3  | 9.0  | 0.5  | 12.8 | 99  | 10   | 18   | :    | •    | :     | :    | :    | :      |
| Raisins                  | 100  | 20.2 | 1.8   | 0.3  | 2.0  | 1.1  | 74.6 | 308 | 87   | 80   | 7.7  | 2.4  | 0.07  | 0.19 | 0.7  | -      |
| Raspberry                | •    | 84.8 | 1.0   | 9.0  | 6.0  | 1.0  | 11.7 | 99  | 40   | 110  | 2.3  | 1248 | :     | :    | 8.0  | 30     |
| Rose apple               | 100  | 89.1 | 0.7   | 0.5  | 0.3  | 1.2  | 8.5  | 39  | 10   | 30   | 0.5  | 141  | 0.01  | 0.02 | 0.4  | က      |
| Sapota                   | 83   | 73.7 | 9.0   | 6.0  | 0.4  | 2.2  | 17.8 | 86  | 23.2 | 22.4 | 1.7  | 80.5 | 0.017 | 0.05 | 0.17 | 4.98   |
| Seethaphal               | 45   | 70.5 | 0.7   | 0.2  | 0.41 | 1.4  | 10.6 | 104 | 7.7  | 21.2 | 0.7  | 0    | 0.03  | 0.08 | 9.0  | 16.7   |
| Strawberry               | 96   | 87.8 | 0.67  | 0.19 | 0.38 | 1.06 | 9.4  | 44  | 28.8 | 28.8 | 1.7  | 17.3 | 0.029 | 0.19 | 0.19 | 49.9   |
| Tomato, ripe             | 100  | 94.0 | 6.0   | 0.5  | 0.5  | 8.0  | 3.6  | 20  | 48   | 20   | 0.4  | 351  | 0.12  | 90.0 | 0.4  | 27     |
| MISCELLANEOUS FOODSTUFFS | ODST | JFFS |       |      |      |      |      |     |      |      |      |      |       |      |      |        |
| Amaranth seeds           | 100  | 10.0 | 14.7  | 1.9  | 3.1  | 9.6  | 2.09 | 319 | 510  | 397  | 11.0 | •    | 0.02  | 0.21 | 0.5  | -      |
| Arecanut                 | 0    | 31.3 | 4.9   | 4.4  | 1.0  | 11.2 | 47.2 | 249 | 20   | 130  | 1.5  | 3.0  | :     | :    | •    | d<br>0 |
| Arrow root flour         | *    | 16.5 | 0.5   | 0.1  | 0.1  | •    | 83.1 | 334 | 10   | 20   | 1.0  | •    | •     | :    | :    | •      |
| Avocado pear (nut)       | :    | 63.7 | 2.5   | 0.7  | 1.1  | •    | 32.0 | 144 | 20   | 80   | 1.2  | :    | :     | :    | :    | :      |
| Betel leaves             | :    | 85.4 | 3.1   | 0.8  | 2.3  | 2.3  | 6.1  | 44  | 230  | 40   | 7.0  | 2260 | 0.07  | 0.03 | 0.7  | 2      |
| Bread, brown             | 100  | 39.0 | 80.00 | 1.4  | •    | 1.2  | 49.0 | 244 | 18   | :    | 2.2  | :    | 0.21  | :    | 2.5  | ф<br>Я |
| Bread, white             | 100  | 39.0 | 7.8   | 0.7  |      | 0.5  | 51.9 | 245 | 11   | :    | 1.1  | :    | 0.02  | :    | 0.7  | *      |
| Cane sugar               | 100  | 0.4  | 0.1   | 0    | 0.1  | 0    | 99.4 | 398 | 12   | 1    | :    | :    | :     | :    | :    | •      |

| 1.                              | 23  | က်   | 4.   | 5.   | 9   | 7.  | ∞i     | 9.  | 10.   | 11.   | 12.  | 13.  | 14.    | 15.  | 16. | 17. |
|---------------------------------|-----|------|------|------|-----|-----|--------|-----|-------|-------|------|------|--------|------|-----|-----|
| Cholai or Seel                  | :   | 11.5 | 13.6 | 5.5  | 3.1 | 5.6 | 60.7   | 347 | 160   | 929   | 4.5  | :    | :      | :    | 3.7 | :   |
| Coconut, tender                 | *   | 8.06 | 6.0  | 1.4  | 9.0 | :   | 6.3    | 41  | 10    | 30    | 6.0  | ;    |        | :    | :   | 63  |
| Coconut milk                    | 100 | 42.8 | 3.4  | 41.0 | 6.0 | 0   | 11.9   | 430 | 15    | 140   | 1.6  | 0    | 80.0   | 0.04 | 9.0 | က   |
| Coconut water                   | 100 | 93.8 | 1.4  | 0.1  | 0.3 | 0   | 4.4    | 24  | 24    | 10    | 0.1  | 0    | 0.01   | 0    | 0.1 | 8   |
| Coconut meal, deoiled           | 100 | 8.7  | 23.8 | 2.8  | 7.0 | 8.6 | 47.9   | 312 | 112   | 646   | 69.4 | 0    | 0.13   | 0.57 | 0.9 | S   |
| Groundnut cake                  |     | 7.2  | 40.9 | 7.4  | 2.5 | 3.2 | 38.8   | 386 | 213   | 548   | :    | :    | :      | :    | :   | :   |
| Honey                           | *   | 20.6 | 0.3  | 0    | 0.2 | :   | 79.5   | 319 | 2     | 16    | 6.0  | 0,   | 0      | 0.04 | 0.2 | 4   |
| Jack fruit seeds                | *   | 64.5 | 9.9  | 0.4  | 1.2 | 1.5 | 25.8   | 133 | 20    | 97    | 1.5  | 10   | 0.25   | 0.11 | 0.3 | 11  |
| Jaggery (cane)                  | :   | 3.9  | 4.0  | 0.1  | 9.0 | :   | 95     | 383 | 80    | 40    | 11.4 | 168  | 0.05   | 0.04 | 0.5 | 0   |
| Jaggery (coconut palm)          | •   | 10.3 | 1.0  | 0.2  | 2.0 | •   | 83.5   | 340 | 1638  | 62    | :    | *    | :      | :    | :   | :   |
| Jaggery (date palm)             | :   | 9.6  | 1.5  | 0.3  | 5.6 | :   | 86.1   | 353 | 363   | 62    | •    | •    | •      | :    | :   | :   |
| Jaggery (fan palm)              | :   | 8.6  | 1.0  | 0.1  | 1.8 | :   | 98.5   | 359 | 225   | 44    | *    | :    | :      | :    | :   | :   |
| Jaggery (sago palm)             | :   | 9.5  | 2.3  | 0.1  | 3.7 |     | 84.7   | 349 | 1252  | 372   | :    | :    | :      | :    | •   | :   |
| Lotus seed, dry                 | :   | 10.0 | 17.2 | 2.4  | 3.8 | 5.6 | 64.0   | 346 | 36    | 294   | 2.3  | :    | :      | ¢    | :   | :   |
| Lotus seed, green<br>and mature | *   | 84.6 | 3.9  | 0.7  | 1.1 | 6.0 | &<br>& | 22  | 49    | 151   | :    | 9 6  | 8<br>4 | :    | :   | :   |
| Mahua flowers                   | 88  | 18.6 | 3.9  | 0.5  | 2.4 | 1.5 | 64.1   | 311 | 124.6 | 124.6 | 13.4 | 20.5 | 0.027  | 0.78 | 4.6 | 6.2 |
| Makhana                         | *   | 12.8 | 9.7  | 0.1  | 0.5 | *   | 76.9   | 347 | 20    | 06    | 1.4  | *    | *      | :    | *   | ;   |
| Mango seed kernel               | 54  | 55.0 | 1.4  | 2.3  | 0.8 | 0.5 | 104    | 100 | 216   | 7 03  |      | •    |        | (    |     |     |

| Table Contd                   |     |      |      |      |      |      |      |     |      |      |          |      |      |      |      |      |
|-------------------------------|-----|------|------|------|------|------|------|-----|------|------|----------|------|------|------|------|------|
| 1.                            | 2.  | 3.   | 4.   | 5.   | 9.   | 7.   | ∞    | 9.  | 10.  | 11.  | 12.      | 13.  | 14.  | 15.  | 16.  | 17.  |
| Mango powder                  | :   | 8.9  | 2.8  | 7.8  | 4.9  | 13.7 | 64.0 | 337 | 180  | 160  | 45.2     | 0    | :    | *    | 0.7  | 41   |
| Marking nut (kernel)          | •   | 3.8  | 26.4 | 36.4 | 3.6  | 1.4  | 28.4 | 587 | 295  | 836  | 6.1      | •    | 0.38 | 0.15 | 2.7  | :    |
| Mushroom                      | 88  | 88.5 | 2.7  | 0.7  | 1.2  | 0.35 | 3.8  | 43  | 5.3  | 8.96 | 1.3      | 0    | 0.12 | 0.14 | 2.1  | 10.6 |
| Poppy seeds                   | :   | 4.3  | 21.7 | 19.3 | 6.6  | 8.0  | 36.8 | 408 | 1584 | 432  | :        | :    | :    | •    | •    | :    |
| Pumpkin seeds                 | 20  | 8.0  | 17.0 | 33.0 | 3.3  | 0.14 | 10.9 | 584 | 35   | 581  | 3.9      | 26.6 | 0.23 | 0.11 | 2.2  | 0.7  |
| Red palm oil                  | 100 | :    | *    | 100  | •    | :    | :    | 006 | :    | :    | :        | :    | :    | :    | :    | :    |
| Sago                          | :   | 12.2 | 0.2  | 0.2  | 0.3  | :    | 87.1 | 351 | 10   | 10   | 1.3      | :    | 0.01 | :    | 0.2  | :    |
| Sea weeds, fresh              | 100 | 91.0 | 0.8  | 0.2  | 4.0  | 0.3  | 3.7  | 20  | 134  | 10   | 7.0      | 260  | 0.02 | •    | 1.7  | :    |
| Sea weeds, dry                | 100 | 9.5  | 10.8 | 0.8  | 22.7 | 5.0  | 51.2 | 255 | 1543 | 114  | :        | 94   | 0.04 | •    | 0    | 1    |
| Sugar cane juice              | *   | 90.2 | 0.1  | 0.2  | 0.4  | :    | 9.1  | 39  | 10   | 10   | 1.1      | 9    | :    | 0.04 |      | *    |
| Tamarind seed kernel, roasted | :   | 6.6  | 16.1 | 7.3  | 1.6  | 1.0  | 64.1 | 387 | 121  | 237  | <b>'</b> | :    | :    | :    | :    | :    |
| Toddy fermented               | :   | 9.76 | 0.1  | 0.3  | 0.2  | :    | 1.8  | 38  | :    | *    | :        | 0    | 0.01 | 0.01 | 0.2  | :    |
| Toddy sweet                   | :   | 84.7 | 0.1  | 0.3  | 0.7  | :    | 14.3 | 65  | 150  | 10   | 0.3      | :    | :    | 0.04 | :    | :    |
| Water lily seeds              |     | 10.0 | 8.3  | 1.0  | 0.0  | 4.2  | 75.6 | 345 | 20   | 110  | :        | :    | :    | :    | :    | :    |
| Water melon seeds (kernel)    | •   | 4.3  | 34.1 | 52.6 | 3.7  | 0.3  | 4.5  | 623 | 400  | 937  | 7.4      | :    | 0.13 | 0.20 | 1.3  | :    |
| Yeast, dried (Brewer's)       | •   | 13.6 | 39.5 | 9.0  | 7.0  | 0.2  | 39.1 | 320 | 440  | 1490 | 43.7     | 99   | 0.9  | 4.0  | 40.0 | 0    |
| Yeast, dried (food)           | •   | 7.8  | 35.7 | 1.8  | 8.4  | :    | 46.3 | 344 | 160  | 2090 | 21.5     | •    | 3.20 | :    | 27.0 | 0    |
|                               |     |      |      |      |      |      |      |     |      |      |          |      |      |      |      |      |

# CHAPTER-II

# SPATIAL DIMENSIONS, SIZE AND SPHERICITY

Engineering properties of biomaterials play an important role in designing the equipments which are used for post harvest operations and storage. Shape and size are important parameters which govern design of winnowers, cleaners and graders. In conveying of solid materials by air or water, estimate of the frontal area and related diameters are needed for determination of terminal velocity, drag coefficient and Reynold's number. Further, they are also important in the analysis of problems of heat and mass transfer, pneumatic and hydraulic handling and separation, electrostatic separation of seeds and grains.



Shape defines the form of an object. In defining the shape, some dimensional parameters of an object must be measured. For this, longitudinal and lateral cross sections of the material can be compared with the standard shapes (Fig.2.1).

Using the standards (Fig.2.1), the shape of the product can now be defined by the following descriptive terms (Mohsenin, 1980).

Fig. 2.1. Example of charted standard for describing the shape of an object

| Shape      | Description                                               |
|------------|-----------------------------------------------------------|
| Round      | approaching spheroid                                      |
| Oblate     | flattened at the stem and apex                            |
| Oblong     | vertical diameter greater than the horizontal diameter    |
| Conic      | tapered toward the apex                                   |
| Ovate      | egg shaped and broad at the stem end                      |
| Obavate    | inverted ovate                                            |
| Elliptical | approaching ellipsoid                                     |
| Truncate   | having both ends squared or flattened                     |
| Unequal    | one-half larger than the other                            |
| Ribbed     | in cross section, sides are more or less angular          |
| Regular    | horizontal section approaches a circle                    |
| Irregular  | horizontal cross section departs materially from a circle |



Fig. 2.2. Dimensions of an object

Spatial dimensions of a seed can be measured using micro-meters/projection microscope with suitable least count (say 0.001mm) in case of small seeds, such as, linseed, mustard etc. Projection microscope may be used for measuring the spatial dimensions. The spatial dimensions can also be obtained by measurment of the total length/width of 10 seeds (randomly chosen) arranged in a line tip to tip/touching along with width or maximum diameter (Wratten et al, 1969). This measurement could then be divided by 10 to obtain an average seed length/width.

The longest dimension, 'L' is called length, second longest dimension 'B' perpendicular to

'L' is called breadth and the third longest dimension 'T' perpendicular to both is called thickness of an object (Fig.2.2).

Size or equivalent diameter is the geometric mean of the three dimensions, viz; length, breadth and thickness. Size can be calculated using the following expression:

Size =  $(length x breadth x thickness)^{1/3}$ 

Sphericity is defined as the ratio of surface area of sphere having same volume as that of the grain to the surface area of the grain.

Sphericity = 
$$\frac{d_i}{d_c}$$
 . . . (2.1)



Sphericity =  $\frac{di}{dc}$  Roundness =  $\frac{Ap}{Ac}$ 



Roundness Ratio =  $\frac{r}{R}$ 

Where, d<sub>i</sub> is the diameter of the largest inscribed circle, and d<sub>c</sub> is the diameter of the smallest circumscribed circle as shown in Fig. 2.3

For determination of surface area of many spheroidal agricultural objects, the following formula can be used. Surface area 'S' of a prolate spheroid is given by

$$S = 2\pi b^2 + 2\pi \frac{ab}{e} \sin^{-1}e \qquad (2.2)$$

Where, a and b are, respectively major and minor semiaxes of the ellipse of rotation and

$$e = [1 - (b/a)^2]^{1/2}$$
 . . . (2.3)

Surface area 'S' of an oblate - spheroid is

Fig. 2.3. Sphericity and roundness as defined togiven by describe shape of grain (Curray, 1951)

$$S=2\pi a^2 + \pi \frac{b^2}{e} \ln \frac{(1+e)}{(1-e)} \qquad (2.4)$$

Where, a, b and e are as defined earlier.

For determination of surface area of paddy grains, assuming them as cono-elliptical cylinders as well as cono-circular cylinders, two different relationships (emperical) have been developed in terms of principal dimension L, B and T (Fig. 2.2) as follows:

$$S = \frac{3}{4} L\pi [3(b+t) - \sqrt{(3b+t)(b+3t)}]$$
 (2.5)

and 
$$S = \frac{13}{11} (B+T) L$$
 . . . (2.6)

. Where L, B and T represent length, breadth and thickness, respectively and 'b' and 't' are half the values of B and T.

Roundness is a measure of the bluntness of the corners of an object. Several methods (Mohsenin, 1980) have been proposed for estimating roundness. Some of the selected methods are:

Roundness = 
$$\frac{A_p}{A_c}$$
 . . . (2.7)

Where,  $A_p$  is the largest projected area of object in natural rest position and  $A_c$  is the area of the smallest circumscribing circle. The object area is obtained either by projection or tracing (Fig. 2.3).

Roundness = 
$$\frac{\Sigma R}{nR}$$
 . . . (2.8)

Where, r is the radius of curvature as defined in Fig. 1.3, R is the radius of the maximum inscribed circle and n is the total number of corners summed in numerator (Fig.2.3).

Roundness ratio = 
$$\frac{r}{R}$$
 . . . (2.9)

Where, R is the mean radius of the object and r is the radius of curvature of the sharpest corner (Fig.2.3).

### Moisture content

Moisture content (m.c.) of a substance is defined as the amount of water present in it. It is an index of the probable keeping quality of the product. The amount of moisture in a product is designated on the basis of the weight of water and is usually expressed in per cent. There are two methods of designating the moisture content, viz; wet basis and dry basis. The moisture content on a wet basis (w b) is obtained by dividing the weight of water present in the material by the total weight of the material(Eqn. 2.10).

Moisture content, % (w b) = 
$$\frac{W_w}{W_w + W_d} \times 100$$
 . . . (2.10)

Where, Ww = weight of water, g and

W<sub>d</sub> = weight of dry matter, g.

The moisture content on a dry basis (d b) is determined by dividing the weight of water by the weight of dry matter (Eqn. 2.11).

Moisture content, % (db) = 
$$\frac{W_w}{W_d} \times 100$$
 . . . (2.11)

The moisture content on a wet basis is used for commercial designation whereas, the dry basis is mainly used by research workers and in equations dealing with moisture variations. The moisture content on the dry basis is always larger than the wet basis. The following relationship can be used for converting the moisture content on one basis to the other:

Moisture content, % (db) = 
$$\frac{moisture\ content,\ \%(w\ b)}{100-\ moisture\ content,\%(w\ b)} \times 100$$
 . . . (2.12)

Moisture content, % (wb) = 
$$\frac{moisture\ content$$
, % (d b)  $\times$  100 . . . (2.13)

### **Determination of moisture content**

The methods of determining the moisture content of products may be divided into two broad classifications: (1) direct and (2) indirect. Direct method includes oven methods, distillation methods and drying with desiccants.

### I. Direct methods

Several different oven procedures are available for moisture determination of different materials. The usual procedure is to remove the moisture from the product in an air-oven. When warm or hot water is circulated around the walls to heat the oven by the circulating water, it is called a water-oven. The usual oven methods for moisture determination of grain are;

#### A. Air-oven method

- 1. Single stage; for grain under 13 per cent moisture.

  Grind duplicate samples of 2 to 3 g each. Heat for 1 h at 130°C ± 1°C.

  Place in desiccator, then weigh.
- 2. Double stage; for grain above 13 per cent moisture.

  Remove moisture of 25 to 30 g samples until it is below 13 per cent (usually about 14 to 16 h are required at 130°C ± 1°C).

  Continue as discussed under (1).

### B. Water-oven or Air-oven Method

Place duplicate 25 to 30 g samples in oven, heated to 100°C for 72 - 96 h. Place in desiccator, then weigh.

#### Distillation methods

With the distillation methods, moisture is removed by heating the grain in oil and determining the volume or weight of water removed from the grain in condensed vapour or from the loss of weight of the sample.

## Drying with desiccants

The moisture content of a product is determined by placing the sample near an efficient drying agent in a closed container with the vapour pressure of the material higher than that of the desiccant, the moisture moves from the material to the drying agent. One standard procedure is to place the sample in a vacuum oven with anhydrous sulphuric acid until constant weight is obtained. This method is particularly useful for materials where dry matter decomposition would be large when the product is heated for extended time.

### II. Indirect Methods

Indirect methods involve the measurement of a property of the material which depends upon the moisture content. The moisture content is usually expressed on a wet basis for the indirect methods. All types of moisture meters fall under the indirect methods for moisture measurement. Some of the indirect methods are described as follows:

#### i. Electrical resistance method

The electrical resistance or conductivity of a material depends upon its moisture content. The electrical resistance varies with moisture, temperature and degree of compaction. This principle is used as a basis for a number of moisture meters.

The useful range of these meters extends up to atleast 25% m.c. Temperature correction is necessary and must be provided in the form of charts or scale adjustments for each class of material.

## ii. Capacitance (Impedance) method

The basis of this measurement is the distinctive dielectric characteristic of water, which affects the impedance measurement more strongly than other substances normally present in crop material. The presence of water has a considerable influence on the permittivity or the dielectric constant of the material. Capacitance meters for grain and other seeds are mainly of the high frequency type (MHz frequencies), with compact, solid state circuits, operated by battery power. Their range extends to 30% m.c. in most cases, each class of material requiring its own calibration. Over their normal range, these meters mainly give indications that are within ± 1% m.c. of the standard oven results.

## Sample Conditioning

Sometimes, grain samples with desired moisture content are needed for determining the various engineering properties. For this, the following methods could be used to obtain the samples at desired moisture content.

The seeds are moistured with pre-determined quantity of water and periodically stirred in air tight plastic bags. The treated samples are preserved in a refrigerator at 5°C for 5 days to ensure uniform distribution of moisture (Sreenarayanan et al, 1985).

The grain samples of the desired moisture levels are prepared by adding calculated amount of distilled water and sealing in separate polyethylene bags. The samples are kept at 278 K in a refrigerator for atleast a week to enable the moisture to distribute uniformly throughout the sample. Before starting a test, the required quantity of the grain is taken out of the refrigerator and allowed to warm upto the room temperature (Dutta et al, 1988).

The moisture content of the sample prepared using above methods can be verified by standard oven method before starting a test. The following relationship may be used for calculation of the amount of water to be added for sample preparation:

$$W = I \frac{(W_2 - W_1)}{(100 - W_2)}$$
 (2.14)

Where,

W = amount of water to be added, g

I = initial weight of the sample, g

 $W_1$  and  $W_2$  = initial and final moisture content of the sample, %.

However, for determining the moisture content of oilseeds, method as prescribed in IS: 3579-1966, may be used.

Weigh accurately  $2.0 \pm 0.5$  g of the sample in a moisture dish which has been dried previously, cooled in the desiccator and then weighed. Place the dish in the air oven for approximately one hour at  $105 \pm 1^{\circ}$ C. Remove the dish from the oven, cool in the desiccator to room temperature and weigh. Repeat this procedure but keep the dish in the oven only for half an hour each time until the difference between the two successive weighings does not exceed one mg.

Various research workers have carried out studies on the physical properties for cereals (corn, finger millet, minor millets, paddy, pearl millet, rice, sorghum and wheat); pulses (black gram, Bengal gram, cowpea, greengram, lentil, pea and pigeon pea); oilseeds (castor, ground-nut, linseed, mustard, niger, safflower, soybean and sunflower), fruit/vegetable seeds (brinjal, long melon, musk melon, pumpkin, summer melon, tomato and water melon) and spices (aniseed, coriander seed, cumin seed, fenugreek seed and turmeric rhyzome) for Indian varieties at different moisture contents. Some of these properties such as, spatial dimension, size, sphericity, projected area and surface area are listed in the Tables 2.1–2.5.

Table 2.1: Spatial dimensions, size and spericity of cereal grains

| Grain/Variety   | Moisture content, %(db) | Length,<br>mm | Width<br>/dia,<br>mm | Thick-<br>ness,<br>mm | Size,<br>mm | Sphericity | Reference |
|-----------------|-------------------------|---------------|----------------------|-----------------------|-------------|------------|-----------|
| 1.              | 2.                      | 3.            | 4.                   | 5.                    | 6.          | 7.         | 8.        |
| Bajra           |                         |               |                      | a                     |             |            | 16,41     |
| HB-1            | 8.7                     | 3.10          | 1.95                 | 1.87                  | 2.24        | 0.72       |           |
|                 | 12.4                    | 3.11          | 2.03                 | 1.99                  | 2.33        | 0.75       |           |
|                 | 16.3                    | 3.23          | 2.13                 | 2.11                  | 2.44        | 0.76       |           |
|                 | 20.5                    | 3.14          | 2.18                 | 2.19                  | 2.47        | 0.79       |           |
|                 | 25.0                    | 3.31          | 2.38                 | 2.32                  | 2.63        | 0.80       |           |
| Corn (maize)    |                         |               |                      |                       |             |            | 16,41     |
| Ganga-5         | 8.7                     | 8.67          | 7.07                 | 5.45                  | 6.94        | 0.80       |           |
| Small category  | 12.4                    | 8.84          | 7.14                 | 5.57                  | 7.06        | 0.80       |           |
|                 | 16.3                    | 9.11          | 7.60                 | 5.64                  | 7.31        | 0.80       |           |
|                 | 20.5                    | 9.28          | 7.91                 | 5.99                  | 7.54        | 0.81       |           |
|                 | 25.0                    | 8.93          | 8.06                 | 6.55                  | 7.78        | 0.87       |           |
| Medium category | 8.7                     | 10.47         | 8.44                 | 3.91                  | 7.02        | 0.67       |           |
|                 | 12.4                    | 10.80         | 9.37                 | 4.05                  | 7.43        | 0.69       |           |
|                 | 16.3                    | 10.85         | 9.26                 | 4.20                  | 7.50        | 0.69       |           |
|                 | 20.5                    | 10.98         | 9.08                 | 4.26                  | 7.52        | 0.69       |           |
|                 | 25.0                    | 11.34         | 9.52                 | 4.48                  | 7.85        | 0.69       |           |
| Large category  | 8.7                     | 11.99         | 8.36                 | 4.97                  | 7.93        | 0.66       |           |
|                 | 12.4                    | 12.12         | 8.52                 | 4.21                  | 7.58        | 0.63       |           |
|                 | 16.3                    | 12.16         | 8.80                 | 4.33                  | 7.74        | 0.64       |           |
|                 | 20.5                    | 12.24         | 8.90                 | 4.47                  | 7.87        | 0.64       |           |
| •               | 25.0                    | 12.33         | 9.24                 | 4.69                  | 8.12        | 0.66       |           |
| Malan           |                         |               |                      |                       |             |            |           |
| Small category  | 8.7                     | 7.93          | 7.99                 | 4.09                  | 6.38        | 0.80       |           |
|                 | 12.4                    | 8.13          | 8.05                 | 4.17                  | 6.49        | 0.80       |           |
|                 | 16.3                    | 8.17          | 8.04                 | 4.05                  | 6.43        | 0.79       |           |
|                 | 20.5                    | 8.18          | 7.98                 | 3.94                  | 6.36        | 0.78       |           |
|                 | 25.0                    | 8.16          | 7.99                 | 4.04                  | 6.41        | 0.79       |           |
| Medium category | 8.7                     | 9.11          | 8.44                 | 4.37                  | 6.95        | 0.76       |           |
|                 | 12.4                    | 9.36          | 8.58                 | 4.41                  | 7.08        | 0.76       |           |
|                 | 16.3                    | 9.42          | 8.63                 | 4.38                  | 7.09        | 0.75       |           |
|                 | 20.5                    | 9.30          | 8.48                 | 4.45                  | 7.05        | 0.76       |           |
| e               | 25.0                    | 9.47          | 8.63                 | 4.25                  | 7.02        | 0.74       |           |
| Large category  | 8.7                     | 10.51         | 9.88                 | 4.38                  | 7.69        | 0.73       |           |
|                 | 12.4                    | 10.52         | 9.78                 | 4.54                  | 7.76        | 0.74       |           |
|                 | 16.3                    | 10.58         | 9.57                 | 4.42                  | 7.65        | 0.72       |           |

| 1.            | 2.   | 3.    | 4.   | 5.   | 6.   | 7.   | 8.    |
|---------------|------|-------|------|------|------|------|-------|
|               | 20.5 | 10.69 | 9.42 | 4.29 | 7.65 | 0.71 |       |
|               | 25.0 | 10.91 | 9.45 | 4.47 | 7.72 | 0.71 |       |
| MOC-5         | _    | 9.17  | 6.99 | -    | -    | _    |       |
| Finger millet |      |       |      |      |      |      |       |
| Co-11         | -    | 1.45  | 1.33 |      |      | _    | 41    |
| Kodu          |      |       |      |      |      |      | 173   |
| GPLM-52       | -    | _     |      |      | 1.53 | 0.99 |       |
| IPS-147-5     | _    | _     | _    | -    | 1.23 | 0.47 |       |
| JK-41         |      | -     |      | _    | 2.01 | 0.75 |       |
| JK-62         | -    |       | _    |      | 2.12 | 0.77 |       |
| RPS-76        | _    |       | _    |      | 1.98 | 0.77 |       |
| Kutki         |      |       |      |      |      |      | 173   |
| JK-8          | _    | _     | _    |      | 1.50 | 0.70 |       |
| RPC-3         | -    | _     |      | _    | 1.45 | 0.73 |       |
| RPM-85-1      |      | _     | -    |      | 1.50 | 0.67 |       |
| Paddy         |      |       |      |      |      |      | 10,33 |
| ADT-3         | 11.2 | 7.57  | 3.00 | 2.09 | 3.48 | 0.46 |       |
| ADT-4         | 11.2 | 7.87  | 3.13 | 2.05 | 3.70 | 0.47 |       |
| ADT-10        | 12.7 | 7.28  | 3.00 | 2.03 | 3.54 | 0.49 |       |
| ADT-11        | 12.9 | 7.32  | 2.92 | 2.07 | 3.54 | 0.48 |       |
| ADT-16        | 11.6 | 7.00  | 2.08 | 1.69 | 2.91 | 0.42 |       |
| ADT-20        | 12.1 | 6.00  | 2.84 | 1.95 | 3.22 | 0.54 |       |
| ADT-22        | 13.2 | 8.08  | 2.91 | 2.12 | 3.68 | 0.46 |       |
| ADT-27        | 8.2  | 5.98  | 2.60 | 1.99 | 3.13 | 0.52 |       |
|               | 8.8  | 5.93  | 2.81 | 2.00 | 3.22 | 0.54 |       |
|               | 11.6 | 6.12  | 3.08 | 2.03 | 3.37 | 0.55 |       |
| ADT-28        | 12.1 | 7.95  | 3.17 | 2.25 | 3.34 | 0.50 |       |
| ADT-31        | 10.6 | 7.64  | 3.40 | 1.97 | 3.71 | 0.49 |       |
| ASD-1         | 11.1 | 7.80  | 3.08 | 2.24 | 3.78 | 0.48 |       |
| ASD-5         | 11.7 | 7.78  | 2.56 | 2.00 | 3.42 | 0.44 |       |
| ASD-8         | 9.9  | 7.48  | 3.00 | 2.16 | 3.65 | 0.49 |       |
| ASD-10        | 14.2 | 7.96  | 3.28 | 2.25 | 3.89 | 0.49 |       |
| ASD-11        | 12.1 | 8.40  | 2.50 | 2.84 | 3.91 | 0.47 |       |
| Akkulla       | 13.8 | 8.01  | 2.51 | 1.79 | 3.30 | 0.41 |       |
|               | 18.0 | 8.04  | 2.52 | 1.80 | 3.32 | 0.41 |       |
|               | 19.7 | 8.08  | 2.54 | 1.80 | 3.32 | 0.41 |       |

Table Contd..

| 1.           | 2.   | 3.    | 4.   | 5.    | 6.   | 7.   | 8 |
|--------------|------|-------|------|-------|------|------|---|
|              | 22.8 | 8.12  | 2.54 | 1.84  | 3.36 | 0.41 |   |
|              | 24.1 | 8.17  | 2.56 | 1.85  | 3.38 | 0.41 |   |
| Annapoorna   | 10.9 | 8.25  | 3.04 | 2.05  | 3.72 | 0.45 |   |
| Anupama      | 11.8 | 8.91  | 2.68 | 2.01  | 3.63 | 0.41 |   |
| Aswathi      | 11.0 | 8.80  | 3.14 | 2.11  | 3.88 | 0.44 |   |
| BAM-3        | 11.5 | 8.41  | 2.64 | 2.00  | 3.54 | 0.42 |   |
| Bala         | 12.0 | 6.40  | 2.78 | 1.92  | 3.26 | 0.51 |   |
| Basmati      | 13.6 | 10.05 | 2.30 | 1.83  | 3.49 | 0.35 |   |
| Basumathi    |      | 9.40  | 2.55 | 1.90  | 3.57 | 0.38 |   |
| BC-11-6-3    | 13.7 | 9.75  | 3.35 | 2.06. | 4.07 | 0.42 |   |
| Bhavani      | 11.4 | 8.26  | 2.48 | 1.89  | 3.38 | 0.41 |   |
| Cavery       |      | 8.19  | 2.27 | 1.84  | 3.44 | 0.42 |   |
| CH-2         | 12.4 | 7.83  | 3.21 | 2.00  | 3.69 | 0.47 |   |
| CH. Sx O. 16 | 11.4 | 8.09  | 2.17 | 1.72  | 3.11 | 0.39 |   |
| CR. 12-178   | 13.3 | 8.18  | 2.50 | 1.98  | 3.43 | 0.42 |   |
| CO 1         | 12.7 | 8.21  | 2.75 | 2.03  | 3.58 | 0.44 |   |
| CO 2         | 12.6 | 7.48  | 2.84 | 1.95  | 3.46 | 0.46 |   |
| CO 4         | 11.4 | 8.86  | 2.86 | 2.18  | 3.81 | 0.43 |   |
| CO 7         | 13.4 | 9.58  | 2.89 | 2.01  | 3.82 | 0.43 |   |
| CO 8         | 10.9 | 8.81  | 2.52 | 1.96  | 3.52 | 0.40 |   |
| CO 10        | 11.0 | 8.40  | 3.05 | 2.12  | 3.70 | 0.45 |   |
| CO 13        | 10.9 | 7.92  | 3.08 | 2.15  | 3.74 | 0.47 |   |
| CO 16        | 12.5 | 7.54  | 2.88 | 2.02  | 3.53 | 0.47 |   |
| CO 18        | 10.9 | 8.18  | 2.91 | 2.02  | 3.64 | 0.45 |   |
| CO 19        | 12.0 | 7.50  | 2.75 | 2.14  | 3.53 | 0.47 |   |
| CO 25        | 7.8  | 6.84  | 3.09 | 2.00  | 3.48 | 0.51 |   |
|              | 11.1 | 6.44  | 2.88 | 2.13  | 3.41 | 0.53 |   |
| CO 26        | 12.1 | 6.76  | 2.88 | 2.04  | 3.41 | 0.53 |   |
| CO 29        | 10.7 | 8.00  | 2.91 | 2.09  | 3.65 | 0.46 |   |
| CO 30        | 12.4 | 7.66  | 2.54 | 1.88  | 3.32 | 0.43 |   |
| CO 32        | 12.7 | 7.45  | 2.58 | 1.93  | 3.34 | 0.45 |   |
| CO 33        | 9.2  | 6.02  | 2.96 | 1.95  | 3.26 | 0.54 |   |
|              | 11.9 | 5.79  | 3.03 | 2.10  | 3.32 | 0.58 |   |
| CO 34        | 11.6 | 7.32  | 2.85 | 2.05  | 3.50 | 0.48 |   |
| CO 36        | 11.6 | 7.60  | 2.64 | 1.89  | 3.36 | 0.44 |   |
| CO 37        | 12.0 | 7.84  | 2.80 | 1.99  | 3.52 | 0.45 |   |

Table Contd...

| 1.           | 2.           | 3.   | 4.    | 5.   | 6.   | 7.   |  |
|--------------|--------------|------|-------|------|------|------|--|
| Desal        | 11.2         | 7.36 | 2.96  | 2.05 | 3.55 | 0.48 |  |
| Gettu        | 11.9         | 7.91 | 2.95  | 2.00 | 3.60 | 0.46 |  |
| GEB-24       | 12.0         | 7.54 | 2.31  | 1.79 | 3.15 | 0.42 |  |
| IET-1039     | 12.5         | 8.80 | 2.14  | 1.81 | 3.24 | 0.37 |  |
| IET-2222     | 11.5         | 9.14 | 2.91  | 1.96 | 3.74 | 0.41 |  |
| IET-2585     | 12.9         | 7.54 | .2.70 | 1.97 | 3.42 | 0.45 |  |
| IR 5         | 15.9         | 7.43 | 3.15  | 1.97 | 3.58 | 0.48 |  |
|              | 11.0         | 8.36 | 3.22  | 2.13 | 3.86 | 0.46 |  |
| IR 8         | 7.8-<br>23.0 | 8.70 | 3.09  | 1.99 | 3.76 | 0.43 |  |
|              | 11.2         | 9.00 | 3.14  | 2.13 | 3.92 | 0.44 |  |
| IR 20        | 7.8–<br>23.0 | 7.64 | 2.46  | 1.76 | 3.21 | 0.42 |  |
|              | 10.9         | 8.04 | 2.56  | 1.86 | 3.37 | 0.42 |  |
| IR 24        | 11.1         | 8.80 | 2.60  | 2.00 | 3.58 | 0.41 |  |
| IR 26        | 12.2         | 7.80 | 2.64  | 1.90 | 3.49 | 0.44 |  |
| Jaya         | 10.7         | 8.46 | 2.52  | 1.76 | 3.27 | 0.42 |  |
| J. W. Walley | 14.6         | 9.02 | 3.03  | 1.98 | 3.78 | 0.41 |  |
| 22576        | 16.4         | 9.34 | 3.11  | 1.91 | 3.81 | 0.41 |  |
| 20/6/9       | 5 18.7       | 9.39 | 3.13  | 1.91 | 3.83 | 0.41 |  |
| 28/6/        | 21,1         | 9.50 | 3.14  | 1.93 | 3.86 | 0.41 |  |
|              | 22.6         | 9.55 | 3.15  | 1.94 | 3.88 | 0.41 |  |
| STATE MYSOR  | 24.8         | 9.59 | 3.16  | 1.95 | 3.90 | 0.41 |  |
|              | _            | 8.96 | 3.01  | 2.06 | 3.81 | 0.42 |  |
| Jagannath    | 12.4         | 7.50 | 2.70  | 2.02 | 3.45 | 0.46 |  |
|              | 16.1         | 7.08 | 2.57  | 1.76 | 3.18 | 0.45 |  |
|              | 18.1         | 7.12 | 2.57  | 2.77 | 3.70 | 0.52 |  |
|              | 21.3         | 7.17 | 2.59  | 1.77 | 3.20 | 0.45 |  |
|              | 23.8         | 7.21 | 2.60  | 1.78 | 3.22 | 0.45 |  |
|              | 25.8         | 7.26 | 2.61  | 1.80 | 3.24 | 0.45 |  |
| Kakitya      | 11.0         | 7.68 | 3.00  | 1.94 | 3.55 | 0.46 |  |
| Kannagi      | 12.4         | 7.71 | 2.96  | 2.04 | 3.60 | 0.47 |  |
| Karikala     | 10.9         | 7.04 | 3.20  | 2.44 | 3.80 | 0.54 |  |
| Krishna      | 10.7         | 8.33 | 2.71  | 1.92 | 3.51 | 0.42 |  |
| Massori      | 13.6         | 7.68 | 2.46  | 1.70 | 3.18 | 0.41 |  |
|              | 17.0         | 7.72 | 2.47  | 1.71 | 3.20 | 0.41 |  |
|              | 20.9         | 7.77 | 2.51  | 1.73 | 3.23 | 0.42 |  |
|              | 23.9         | 7.82 | 2.51  | 1.74 | 3.24 | 0.42 |  |

Table Contd...

| 1.                              | 2.   | 3.    | 4.   | 5.   | 6.   | 7.   | 8 |
|---------------------------------|------|-------|------|------|------|------|---|
|                                 | 27.4 | 7.86  | 2.52 | 1.76 | 3.27 | 0.42 |   |
| Mozhi Karuppm                   | 11.1 | 8.27  | 3.52 | 2.59 | 4.11 | 0.50 |   |
| N—12                            | _    | 8.96  | 2.19 | 1.62 | 3.16 | 0.35 |   |
| No. 16—17                       | 15.2 | 10.09 | 2.85 | 1.89 | 3.79 | 0.38 |   |
|                                 | 17.2 | 10.13 | 2.86 | 1.91 | 3.81 | 0.38 |   |
|                                 | 19.3 | 10.20 | 2.88 | 1.92 | 3.82 | 0.37 |   |
|                                 | 25.8 | 10.32 | 2.90 | 1.94 | 3.87 | 0.38 |   |
|                                 | 28.7 | 10.40 | 2.91 | 1.95 | 3.89 | 0.37 |   |
| Padma                           | 11.0 | 8.12  | 2.79 | 1.68 | 3.36 | 0.41 |   |
| Pankaj                          | 11.1 | 7.34  | 3.12 | 2.13 | 3.65 | 0.50 |   |
| Patnai Local                    | 14.0 | 8.15  | 2.80 | 1.89 | 3.51 | 0.43 |   |
| Patnai—23                       | 14.6 | 10.88 | 2.57 | 2.03 | 3.85 | 0.35 |   |
| Pennai                          | 10.9 | 7.34  | 3.12 | 2.13 | 3.65 | 0.50 |   |
| PLR—1                           | 12.2 | 7.50  | 2.72 | 2.00 | 3.44 | 0.46 |   |
| PLR—2                           | 12.2 | 8.66  | 3.04 | 2.12 | 3.82 | 0.44 | , |
| PTB—10                          | 12.1 | 7.91  | 2.91 | 2.01 | 3.59 | 0.45 |   |
| PTB—15                          | 12.9 | 7.79  | 2.58 | 1.90 | 3.37 | 0.43 |   |
| PUR—1                           | 11.4 | 8.09  | 2.95 | 2.07 | 3.67 | 0.45 |   |
| Ratna                           | 10.9 | 7.34  | 2.60 | 2.05 | 3.40 | 0.46 |   |
|                                 | 12.1 | 8.45  | 2.34 | 1.77 | 3.33 | 0.37 |   |
|                                 | _    | 9.34  | 2.33 | 1.86 | 3.43 | 0.36 |   |
| RP4—14                          | 12.9 | 9.05  | 2.55 | 3.54 | 4.34 | 0.48 |   |
| RP 172—2                        | 12.9 | 8.82  | 3.05 | 2.09 | 3.83 | 0.43 |   |
| RP 176—5                        | 14.4 | 8.52  | 2.65 | 1.88 | 3.49 | 0.41 |   |
| Rohini                          | 10.7 | 9.05  | 3.00 | 2.02 | 3.80 | 0.42 |   |
| Sabarmathi                      | 10.9 | 7.65  | 2.65 | 1.97 | 3.42 | 0.45 |   |
| Saket—4                         |      | 9.14  | 2.38 | 1.83 | 3.41 | 0.37 |   |
| Sona                            | 10.9 | 9.28  | 2.00 | 1.82 | 3.23 | 0.35 |   |
| Thallahamsa                     | 11.5 | 9.29  | 2.57 | 2.08 | 3.68 | 0.40 |   |
| Thillarnaya-gam<br>(Paramakudi) | 11.4 | 7.71  | 3.27 | 2.31 | 3.88 | 0.50 |   |
| Thillarnaya-gam<br>(Peravurni)  | 13.1 | 7.71  | 3.29 | 2.31 | 3.88 | 0.51 |   |
| TKM—4                           | 10.5 | 8.66  | 2.21 | 1.97 | 2.58 | 0.30 |   |
| TKM—5                           | 10.9 | 8.05  | 3.00 | 2.05 | 3.67 | 0.46 |   |
| TKM—6                           | 24.0 | 8.12  | 2.33 | 1.79 | 3.23 | 0.40 |   |

| 1.           | 2.   | 3.   | 4.   | 5.   | 6.                                      | 7.   | 8.    |
|--------------|------|------|------|------|-----------------------------------------|------|-------|
| TNR—2        | 11.0 | 8.38 | 2.36 | 1.86 | 3.33                                    | 0.40 |       |
|              | 13.3 | 8.21 | 3.30 | 2.20 | 3.91                                    | 0.48 |       |
| Triveni      | 10.9 | 8.12 | 3.04 | 2.03 | 3.69                                    | 0.45 |       |
| Туре—3       |      | 9.16 | 2.06 | 1.77 | 3.22                                    | 0.35 |       |
| Vijaya       | 11.7 | 7.60 | 2.64 | 1.95 | 3.40                                    | 0.45 |       |
| 633          | 14.3 | 7.64 | 2.92 | 1.99 | 3.54                                    | 0.46 |       |
| 658          | 12.5 | 7.40 | 2.76 | 2.04 | 3.47                                    | 0.47 |       |
| 688          | 13.0 | 7.40 | 3.00 | 1.98 | 3.53                                    | 0.48 |       |
| 4611         | 12.7 | 8.00 | 2.67 | 1.88 | 3.42                                    | 0.43 |       |
| 4614         | 14.5 | 8.35 | 3.04 | 2.07 | 3.75                                    | 0.45 |       |
| 6464         | 14.0 | 7.40 | 3.28 | 2.22 | 3.78                                    | 0.51 |       |
| 6534         | 13.6 | 7.83 | 3.63 | 2.67 | 3.89                                    | 0.50 |       |
| 6543         | 13.4 | 7.76 | 3.04 | 1.99 | 3.61                                    | 0.47 |       |
| 6547         | 14.1 | 7.72 | 3.04 | 2.01 | 3.61                                    | 0.47 |       |
| 7711         | 13.1 | 8.30 | 2.52 | 2.00 | 3.47                                    | 0.42 |       |
| 8111         | 13.6 | 7.32 | 2.64 | 1.89 | 3.32                                    | 0.45 |       |
| Pearlmillet  |      |      |      |      |                                         |      | 41    |
| СО—6         | _    | 3.21 | 2.27 |      |                                         | -    |       |
| Rice         |      |      |      |      |                                         |      | 10,33 |
| Basmati      | **** | 7.50 | 1.95 |      | -                                       | _    |       |
| B.S.         | _    | 6.15 | 2.00 | _    |                                         |      |       |
| Ch 45        | _    | 6.30 | 2.65 |      | _                                       | _    |       |
| Gansali      | _    | 4.30 | 2.15 |      | _                                       | _    |       |
| GEB-24       | _    | 5.95 | 2.20 | _    | _                                       | _    |       |
| GMR 2        |      | 7.35 | 2.65 | _    | ******                                  |      |       |
| Gowri Sanna  | _    | 5.50 | 2.20 | -    | *************************************** | -    |       |
| Halubbulu    | _    | 6.25 | 2.40 | _    | _                                       | _    |       |
| Intan        | -    | 6.60 | 2.45 | _    |                                         | -    |       |
| IR 8         |      | 6.75 | 2.65 | _    | _                                       | -    |       |
| IR 20        | _    | 5.95 | 2.15 |      |                                         | -    |       |
| <b>J</b> —65 | -    | 5.15 | 3.05 | _    |                                         | _    |       |

| 1.        | 2.                                      | 3.            | 4.              | 5.              | 6.   | 7.   | 8.    |
|-----------|-----------------------------------------|---------------|-----------------|-----------------|------|------|-------|
| Jaya      | _                                       | 6.45          | 2.65            | -               | _    | -    |       |
| Jenugoodu | Total Control Control                   | 6.10          | 1.85            | -               | -    | _    |       |
| Jeerasali | -                                       | 4.35          | 1.90            | _               | -    | _    |       |
| Madhu     | _                                       | 6.05          | 2.25            | _               | _    | _    |       |
| Mangala   | . <del></del>                           | 6.20          | 2.60            | _               | _    | _    |       |
| Peta      | _                                       | 6.55          | 2.55            | <b>George</b>   | _    | . —  |       |
| Prakash   |                                         | 6.95          | 2.15            | -               | _    | _    |       |
| Pushpa    | -                                       | 7.20          | 2.20            | _               | _    | _    |       |
| S-701     | _                                       | 6.45          | 2.15            | _               | •    |      |       |
| Sona      |                                         | 6.70          | 1.95            | _               | _    | _    |       |
| SR 26 B   | <del></del> ,                           | 8.35          | 2.35            | _               | _    | _    |       |
| Sukandi   | _                                       | 5.45          | 2.85            | _               |      |      |       |
| Vani      | <u> </u>                                | 6.45          | 2.05            | _               | _    | _    | ,     |
| Sawan     |                                         |               |                 |                 |      |      | 173   |
| REF-51-1  | <u></u>                                 | <del></del>   |                 | _               | 2.05 | 0.72 |       |
| REF—79—1  |                                         | _             |                 | _               | 1.89 | 0.70 |       |
| Sorghum   |                                         |               |                 |                 |      |      | 36,38 |
| CSH—5     | 25.0                                    | 4.23±<br>0.10 | $3.80 \pm 0.52$ | 2.46 ± 0.14     | 3.41 | 0.31 |       |
| CSH—8R    | 25.0                                    | 4.91±<br>0.16 | 4.49 ± 0.28     | $2.70 \pm 0.08$ | 3.90 | 0.80 | ,     |
| CHS-202   | 25.0                                    | 4.74 ± 0.10   | 4.70 ± 0.18     | 2.90 ± 0.11     | 4.01 | 0.85 |       |
| CO-627    | *************************************** | 4.25          | 3.83            | -               | _    | _    |       |
| M—35—1    | 25.0                                    | 5.03 ± 0.21   | 4.73 ± 0.15     | 3.35 ± 0.14     | 4.30 | 0.86 |       |
| SPU-86    | 25.0                                    | 5.03 ± 0.18   | 4.45 ± 0.15     | 3.15 ± 0.11     | 4.13 | 0.82 |       |
| Wheat     |                                         |               |                 |                 |      |      | 15,41 |
| HD—2189   |                                         | 6.08          | 2.92            | -               | -    |      |       |
| WH—147    | 6.7                                     | 6.81          | 3.09            | 2.77            | 3.88 | 0.57 |       |
| WS—147    | waterb                                  | 6.81 ± 1.06   | 3.09 ± 0.22     | 2.77 ± 0.24     | 3.88 | 0.57 |       |

Table 2.2: Spatial dimensions, size and sphericity of pulses

| Grain/<br>Variety | Moisture<br>content,<br>% (db) | Length,<br>mm | Width,<br>mm | Thickness,<br>mm | Size,<br>mm | Sphericity | Reference |
|-------------------|--------------------------------|---------------|--------------|------------------|-------------|------------|-----------|
| 1.                | 2.                             | 3.            | 4.           | 5.               | 6.          | 7.         | 8.        |
| Bengal gram       |                                |               |              |                  |             |            | 41,52     |
| BR—77             | ·                              | 8.56          | 6.25         | 5.96             | 6.83        | 0.80       |           |
| CS-24             | 7.5                            | 7.16          | 5.18         | 5.08             | 5.73        | 0.80       |           |
|                   | 13.6                           | 7.73          | 5.64         | 5.32             | 6.14        | 0.79       |           |
|                   | 22.0                           | 8.04          | 6.21         | 5.65             | 6.56        | 0.82       |           |
|                   | 31.6                           | 8.15          | 6.57         | 6.11             | 6.89        | 0.85       |           |
| JG-74             | 14.9                           |               | _            |                  | 6.48        | 0.78       |           |
| Local             | 8.8                            |               |              | _                | 0.29        | 0.34       |           |
| L550              | 14.9                           | _             | _            |                  | 6.20        | 0.87       |           |
| Ujjain—21         | 7.9                            | 8.22          | 5.77         | 5.55             | 6.41        | 0.81       |           |
| Ujjain            | 14.9                           | _             | _            |                  | 6.03        | 0.80       |           |
| Black gram        |                                |               |              |                  |             |            | 143       |
| DU—1              |                                | 4.77          | 3.72         | 3.13             | 3.82        | _          |           |
| DU—2              |                                | 4.12          | 3.41         | 3.04             | 3.50        | _          |           |
| DU—3              | _                              | 4.23          | 3.53         | 3.12             | 3.61        | _          |           |
| DU-4              |                                | 4.20          | 3.60         | 3.16             | 3.63        | _          |           |
| JU—77—41          | _                              | 4.50          | 3.57         | 3.09             | 3.69        |            |           |
| JU—78—3           | _                              | 4.17          | 3.43         | 3.07             | 3.53        | _          |           |
| JU—78—27          |                                | 4.20          | 3.43         | 3.05             | 3.53        | _          |           |
| Khargone—3        | 3 —                            | 4.55          | 3.73         | 3.17             | 3.78        |            |           |
| Local             | 7.6                            | _             | _            | _                | 3.78        | 0.78       |           |
| N55               | _                              | 4.35          | 3.51         | 3.13             | 3.63        |            |           |
| Pant-U-3          | 0 —                            | 4.19          | 3.39         | 3.12             | 3.54        | _          |           |
| PDU—1             |                                | 4.68          | 3.88         | 3.02             | 3.80        | _          |           |
| PDU—3             | _                              | 3.80          | 3.34         | 3.10             | 3.75        | _          |           |
| PU-26             |                                | 4.47          | 3.57         | 3.17             | 3.70        |            |           |
| PU30              |                                | 4.25          | 3.26         | 2.85             | 3.41        | _          |           |
| RU—2              |                                | 4.30          | 3.58         | 3.16             | 3.65        |            |           |
| Sardomogh         | _                              | 4.22          | 3.52         | 3.11             | 3.59        | -          |           |
| T-9               | 7.5                            | 4.47          | 3.35         | 2.88             | 3.51        | 0.79       |           |
|                   | 13.6                           | 4.67          | 3.41         | 2.89             | 3.58        | 0.77       |           |
|                   | 22.0                           | 4.80          | 3.55         | 3.08             | 3.74        | 0.78       |           |
|                   | 31.6                           | 4.91          | 3.79         | 3.31             | 3.95        | 0.80       |           |
|                   |                                | 4.18          | 3.45         | 3.12             | 3.56        |            |           |

| 1.                 | 2.    | 3.    | 4.   | 5.   | 6.   | 7.   | 8.     |
|--------------------|-------|-------|------|------|------|------|--------|
| UG-201             | _     | 4.16  | 3.44 | 3.06 | 3.53 | _    |        |
| UG—218             | _     | 4.31  | 3.62 | 3.13 | 3.66 | _    |        |
| UH—28              |       | 4.48  | 3.65 | 3.14 | 3.72 |      |        |
| UH-80-4            | _     | 3.98  | 3.62 | 3.15 | 3.57 | _    |        |
| UH-80-7            |       | 4.45  | 3.66 | 3.22 | 3.74 | _    |        |
| UPU-80-3-5         |       | 4.31  | 3.64 | 3.28 | 3.72 | _    |        |
| UPU—83—2           | _     | 4.18  | 3.58 | 3.18 | 3.62 | -    |        |
| UPG-82-5           |       | 4.27  | 3.46 | 3.14 | 3.59 | _    |        |
| 727                |       | 4.87  | 3.90 | 3.37 | 4.00 | 0.76 |        |
| Cowpea             |       |       |      |      |      |      | 41     |
| Local              | 7.2   | _     | _    |      | 5.35 | 0.73 |        |
| T-2                | _     | 7.83  | 6.11 | 4.70 | 6.08 | 0.77 |        |
| Green gram         |       | ***** |      | 2000 |      |      | 143    |
| HB—45              |       | 3.86  | 3.18 | 3.11 | 3.37 | 0.86 |        |
| J—45               |       | 4.16  | 3.25 | 3.15 | 3.49 |      |        |
| K—851              | _     | 4.25  | 3.16 | 3.16 | 3.49 | _    |        |
| Kopargaon          |       | 4.80  | 3.63 | 3.49 | 3.93 | _    |        |
| Local              | 7.2   | _     | _    | _    | 3.54 | 0.84 |        |
| MH—81—7            |       | 4.17  | 3.14 | 3.04 | 3.46 | _    |        |
| MH—309             |       | 4.15  | 2.98 | 2.98 | 3.33 | _    |        |
| Pant Mung—2        |       | 4.32  | 3.11 | 2.97 | 3.42 |      |        |
| Pb                 | 7.5   | 4.43  | 3.54 | 3.43 | 3.78 | 0.76 |        |
|                    | 13.6  | 4.49  | 3.55 | 3.45 | 3.80 | 0.76 |        |
|                    | 22.0  | 4.94  | 3.61 | 3.48 | 3.96 | 0.75 |        |
|                    | 31.6  | 5.17  | 3.85 | 3.76 | 4.21 | 0.72 |        |
| PS—16              |       | 3.76  | 2.92 | 2.70 | 3.10 |      |        |
| Pusa Baisakhi      |       | 4.06  | 3.26 | 3.10 | 3.45 |      |        |
| Puss—105           |       | 3.82  | 3.09 | 2.98 | 3.10 | _    |        |
| Rahuri—1           | -     | 4.46  | 3.23 | 3.08 | 3.54 | _    |        |
| UPM-82-4           | _     | 4.03  | 3.00 | 2.91 | 3.28 | -    |        |
| UPM-83-10          |       | 4.03  | 3.01 | 2.95 | 3.30 | _    |        |
| 11—395             | ***** | 4.25  | 3.20 | 3.07 | 3.47 |      |        |
| Horse gram (local) | _     | 5.56  | 3.85 | 2.23 | 2.56 | 0.41 | 173    |
| Lentil             |       |       |      |      |      |      | 48, 52 |
| L-9-12             | 7.5   | 3.59  | 3.43 | 2.25 | 3.03 | 0.84 |        |
|                    | 13.6  | 3.63  | 3.47 | 2.29 | 3.07 | 0.85 |        |
|                    | 22.0  | 3.72  | 3.65 | 2.37 | 3.18 | 0.85 |        |
|                    | 31.6  | 4.13  | 3.99 | 2.43 | 3.42 | 0.83 |        |

| 1.                     | 2.   | 3.   | 4.   | 5.   | 6.   | 7.    | 8.        |
|------------------------|------|------|------|------|------|-------|-----------|
| Local                  | 8.9  | _    |      |      | 3.03 | 0.80  |           |
| Local (Malka<br>Masur) | 8.5  |      | ·    | _    | 3.46 | 0.80  |           |
| Pea                    |      |      |      | 9    |      |       | 41        |
| Bonniville             | _    | 8.36 | 6.65 | 5.92 | 5.90 | 0.82  |           |
| VRS-615                |      | 6.80 | 6.43 | 6.04 | 6.44 | 0.95  |           |
| Pigeon pea             |      | 0.00 | 0120 | 0.02 | 0.22 |       | 41,52,173 |
| C—11                   |      | 6.56 | 5.30 | 4.63 | 5.44 | 0.89  | ,,        |
| ICPL—1                 | 13.6 |      | -    |      | 4.92 | 0.92  |           |
| ICPL—6                 | 13.6 | -    |      |      | 4.75 | 0.84  |           |
| ICPL—87                | 13.6 |      |      | _    | 4.91 | 0.85  |           |
| ICPL—131               | 13.6 |      |      |      | 4.76 | 0.87  |           |
| ICPL—138               | 13.6 |      |      |      | 4.80 | 0.88  |           |
| ICPL—211               | 13.6 | _    | _    |      | 5.94 | 0.90  |           |
| ICPL—227               | 13.6 | _    | _    | _    | 4.90 | 0.88  |           |
| ICPL—270               | 13.6 |      | _    |      | 5.22 | 0.84  |           |
| ICPL—332               | 13.6 | _    |      |      | 4.40 | 0.85  |           |
| ICPL—333               | 13.6 | _    | _    |      | 5.11 | 0.90  |           |
| ICPL—7035              | 13.6 | _    | _    | _    | 6.72 | 0.89  |           |
| ICPL—84060             | 13.6 | _    | _    | _    | 4.77 | 0.87  |           |
| JA-3                   | 6.2  | 5.97 | 4.59 | 4.16 |      | _     |           |
| 011                    | 7.5  | 5.88 | 5.07 | 4.23 | 5.02 | 0.85  |           |
|                        | 13.6 | 6.17 | 5.09 | 4.28 | 5.12 | 0.83  |           |
|                        | 22.0 | 6.62 | 5.22 | 4.48 | 5.38 | 0.81  |           |
|                        | 31.6 | 6.92 | 5.65 | 4.48 | 5.76 | 0.83  |           |
| Local                  | 9.5  | _    | _    | _    | 4.08 | 0.68  |           |
| Pigeon pea (p od)      |      |      |      |      |      | •     | 173       |
| UPAS—20                | 11.3 |      |      | _    |      | 19.8* |           |
|                        | 11.5 |      |      | -    | -    | 20.0* |           |
|                        | 11.6 |      |      | _    |      | 20.5* |           |
|                        | 12.7 |      |      | _    |      | 25.5* |           |
|                        | 13.8 | -    |      | _    | _    | 20.7* |           |
|                        | 14.2 |      |      | _    | -    | 20.5* |           |
|                        | 14.4 |      | _    | -    | _    | 21.2* |           |
|                        | 16.4 |      | _    | _    |      | 23.7* |           |
|                        | 16.5 | _    |      | _    | _    | 21.7* |           |
|                        | 19.3 |      |      |      | -    | 25.9* |           |
|                        | 19.9 |      |      | -    | _    | 27.5* |           |
|                        | 20.3 |      |      |      | _    | 27.0* |           |

Table 2.3: Spatial dimensions, size and sphercity of oil seeds

| Oilseed/Variety    | Moisture content, % (db) | Length,<br>mm | Width/dia,<br>mm | Thickness,<br>mm | Size,<br>mm | Spheri-<br>city | Reference |
|--------------------|--------------------------|---------------|------------------|------------------|-------------|-----------------|-----------|
| 1.                 | 2.                       | 3.            | 4.               | 5.               | 6.          | 7.              | 8.        |
| Castor             |                          |               |                  |                  |             |                 | 51,54     |
| Local              |                          |               |                  |                  |             |                 |           |
| Small              | 5.4                      | 9.98          | 6.94             | 5.15             | 7.09        | 0.71            | 227.1*    |
| Medium             | 5.3                      | 17.82         | 10.23            | 6.80             | 10.74       | 0.60            | 606.2*    |
| Large              | 4.9                      | 17.39         | 13.21            | 7.33             | 11.89       | 0.68            | 817.3*    |
| NPH—1              | 7.5                      | 9.98          | 6.85             | 5.07             | 7.02        | 0.70            |           |
|                    | 13.6                     | 10.10         | 6.92             | 5.10             | 7.09        | 0.70            |           |
|                    | 21.9                     | 10.14         | 6.97             | 5.16             | 7.16        | 0.75            |           |
|                    | 31.6                     | 10.68         | 6.99             | 5.30             | 7.34        | 0.69            |           |
| Groundnut (kernel) |                          |               |                  |                  |             |                 | 41,53     |
| G—11               | 7.5                      | 15.85         | 7.56             | 6.84             | 9.36        | 0.61            |           |
|                    | 13.6                     | 16.11         | 8.02             | 6.99             | 9.67        | 0.60            |           |
|                    | 21.9                     | 16.20         | 8.27             | 7.57             | 10.05       | 0.62            |           |
|                    | 31.6                     | 17.65         | 8.38             | 7.61             | 10.40       | 0.59            |           |
| Local              |                          |               |                  |                  |             | ,               |           |
|                    | 6.2                      | _             |                  | _                | 8.53        | 313.7°          |           |
|                    | 8.5                      |               | <u> </u>         | _                | 8.97        | 357.5°          |           |
|                    | 10.2                     | _             | <u> </u>         | _                | 9.14        | 337.9*          |           |
| RS—1               | <del>-</del> .           | 14.45         | 8.74             | 7.50             | 9.82        | 0.69            |           |
| TG-3               | 7.5                      | 12.47         | 6.88             | 6.33             | 8.16        | 0.65            |           |
|                    | 13.6                     | 12.66         | 7.39             | 6.96             | 8.81        | 0.69            |           |
|                    | 21.9                     | 13.75         | 8.14             | 7.09             | 9.21        | 0.67            |           |
|                    | 31.6                     | 14.35         | 8.45             | 8.12             | 9.48        | 0.66            |           |
| Groundnut (pod)    | ,                        |               |                  |                  |             |                 | 10,75,137 |
| GAUG-1             | 5.3                      | 21.79         | 10.42            | 10.26            | , 13.26     | 0.61            |           |
|                    | 13.6                     | 22.06         | 10.65            | 10.39            | 13.46       | 0.61            |           |
|                    | 20.5                     | 23.37         | 11.32            | 10.78            | 14.18       | 0.61            |           |
|                    | 28.2                     | 24.02         | 11.66            | 10.98            | 14.54       | 0.61            |           |
| GAUG-10            | 5.3                      | 28.40         | 10.98            | 12.58            | 15.77       | 0.56            |           |
|                    | 13.6                     | 28.71         | 11.21            | 12.86            | 15.06       | 0.56            |           |
|                    | 20.5                     | 30.03         | 11.69            | 13.80            | 16.92       | 0.56            |           |
| * Surface area     | 28.2                     | 30.76         | 11.81            | 14.26            | 17.30       | 0.57            |           |

Table Contd...

| 1.                            | 2.   | 3.    | 4.    | 5.    | 6.    | 7.   | 8.      |
|-------------------------------|------|-------|-------|-------|-------|------|---------|
| GG-2                          | 5.3  | 23.76 | 11.24 | 11.44 | 14.51 | 0.61 |         |
|                               | 13.6 | 24.13 | 11.56 | 11.66 | 14.82 | 0.61 |         |
|                               | 20.5 | 25.46 | 12.27 | 12.11 | 15.68 | 0.61 |         |
|                               | 28.2 | 26.10 | 12.74 | 12.20 | 15.95 | 0.61 |         |
| GG-11                         | 5.3  | 31.36 | 12.02 | 14.12 | 17.46 | 0.56 |         |
|                               | 13.6 | 31.83 | 12.33 | 14.57 | 17.80 | 0.56 |         |
|                               | 20.5 | 33.21 | 12.86 | 15.50 | 18.78 | 0.57 |         |
|                               | 28.2 | 34.00 | 12.94 | 15.93 | 19.14 | 0.56 |         |
| JL-24-1                       |      |       |       |       |       |      |         |
| Single<br>kernel<br>ellipsoid | 10.3 | 18.25 | 11.53 | 12.55 | 13.82 | 0.76 | 616.3*  |
| Double<br>kernel<br>ellipsoid | 10.3 | 27.17 | 12.61 | 11.47 | 15.78 | 0.58 | 1009.3* |
| Paired ellipsoids             | 10.3 | 33.61 | 11.22 | 12.28 | 16.67 | 0.50 | 1110.3* |
| Cassinoids                    | 10.3 | 28.09 | _     | 11.15 | 15.17 | 0.54 | 1019.9* |
| Triple<br>kernel<br>ellipsoid | 10.3 | 42.15 | 11.28 | 11.99 | 17.86 | 0.42 | 1434.2* |
| M-13                          | 5.3  | 33.52 | 12.70 | 14.32 | 18.27 | 0.55 |         |
|                               | 13.6 | 34.00 | 12.92 | 14.77 | 18.65 | 0.54 |         |
|                               | 20.5 | 35.39 | 13.44 | 15.62 | 19.51 | 0.55 |         |
|                               | 28.2 | 36.31 | 13.53 | 16.09 | 19.92 | 0.55 |         |
| Pol-1                         |      | 38.70 | 11.00 | 10.70 | 16.58 | 0.43 |         |
| TMV—1                         |      | 28.95 | 11.92 | 10.89 | 15.55 | 0.54 |         |
| TMV—3                         | _    | 23.55 | 11.42 | 10.94 | 14.32 | 0.61 |         |
| TMV—7                         | _    | 23.55 | 12.21 | 11.43 | 14.87 | 0.63 |         |
| nseed                         |      |       |       |       |       |      | 20,173  |
| JL—23—10                      |      |       |       |       | 2.20  | 0.49 |         |
| LC-54                         | 5.5  | 4.64  | 2/30  | 1.20  | 2.34  | 0.48 |         |
|                               | 11.9 | 4.76  | 2.38  | 1.13  | 2.34  | 0.49 |         |
|                               | 19.2 | 5.00  | 2.41  | 1.18  | 2.42  | 0.48 |         |

\* Surface area, mm<sup>2</sup>

| 1.         | 2.              | 3.            | 4.               | 5.            | 6.   | 7.   | 8.        |
|------------|-----------------|---------------|------------------|---------------|------|------|-----------|
|            | 28.9            | 5.19          | 2.55             | 1.22          | 2.53 | 0.48 |           |
|            | 39.5            | 5.27          | 2.79             | 1.35          | 2.08 | 0.51 |           |
| LC—185     | 5.5             | 4.50          | 2.18             | 0.98          | 2.13 | 0.47 |           |
|            | 11.9            | 4.61          | 2.23             | 1.03          | 2.20 | 0.47 |           |
|            | 19.2            | 4.77          | 2.28             | 1.07          | 2.27 | 0.47 |           |
|            | 28.9            | 4.85          | 2.35             | 1.12          | 2.34 | 0.48 |           |
|            | 39.5            | 5.00          | 2.40             | 1.16          | 2.41 | 0.48 |           |
| R7         | 7.5             | 5.09          | 2.40             | 1.11          | 2.39 | 0.47 |           |
|            | 13.6            | 5.17          | 2.45             | 1.17          | 2.46 | 0.48 |           |
|            | 21.9            | 5.25          | 2.58             | 1.21          | 2.54 | 0.48 |           |
|            | 31.6            | 5.28          | 2.67             | 1.23          | 2.59 | 0.49 |           |
| Т—59       | 6.8             | 5.54          | 2.61             | 1.17          | 2.57 | 0.46 |           |
| Mustard    |                 |               |                  |               |      |      | 9,78      |
| Pusa bold  | 7.7             | _             | 1.98             | _             | 1.98 | 0.98 |           |
|            | 8.0             | _             | 2.30             | _             | 2.30 | 0.98 |           |
|            | 13.6            | _             | 2.00             |               | 2.00 | 0.98 |           |
|            | 21.9            | _             | 2.04             |               | 2.04 | 0.97 |           |
|            | 31.6            |               | 2.11             | _             | 2.11 | 0.96 |           |
| Niger seed |                 |               |                  |               |      |      | 78        |
| Local      | 10.1            | 3.98±<br>0.52 | $0.99 \pm 0.2$ 2 | 0.70±0.1<br>9 | 1.40 | 0.36 |           |
| Safflower  |                 |               |                  |               |      |      | 9,78      |
| JSF—1      | 6.9             | 9.31          | 4.20             | 3.30          | 5.00 | 0.54 |           |
|            | 7.5             | 8.93          | 4.67             | 4.33          | 5.65 | 0.63 |           |
|            | 13.6            | 9.24          | 4.95             | 4.38          | 5.85 | 0.63 |           |
|            | 21.9            | 9.43          | 5.13             | 4.48          | 6.01 | 0.64 |           |
|            | 31.6            | 9.67          | 5.21             | 4.58          | 6.13 | 0.63 |           |
| Soybean    |                 |               |                  | /             |      |      | 37,41,143 |
| Ankur      | -               | _             | _                | _             | 5.83 | 0.86 |           |
| Bragg      | -               | _             | _                | _             | 6.74 | 0.85 |           |
| DS-76-1-   | <del>-2</del> 9 | _             | _                | -             | 5.46 | 0.85 |           |
| JS—2       | 7.5             | 7.85          | 7.15             | 5.89          | 6.92 | 0.88 |           |
|            | 13.6            | 8.10          | 7.30             | 6.12          | 7.13 | 0.88 |           |

| 1.                  | 2.    | 3.        | 4.        | 5.        | 6.   | 7.   | 8.      |
|---------------------|-------|-----------|-----------|-----------|------|------|---------|
|                     | 21.9  | 9.69      | 7.34      | 6.14      | 7.59 | 0.78 |         |
|                     | 31.6  | 9.79      | 7.68      | 6.23      | 7.77 | 0.79 |         |
| JS-7244             | 11.3  | 7.71±1.02 | 6.12±0.64 | 4.80±0.65 | 6.10 | 0.79 |         |
|                     | 8.7   | 6.32      | 5.23      | 3.99      | 5.09 | 0.81 | 81.3*   |
|                     | 10.4  | 6.33      | 5.26      | 4.07      | 5.13 | 0.81 | 82.8*   |
|                     | 14.6  | 6.49      | 5.35      | 4.19      | 5.26 | 0.81 | 87.0*   |
|                     | 16.4  | 6.58      | 5.45      | 4.25      | 5.34 | 0.81 | 89.6*   |
|                     | 21.8  | 6.64      | 5.52      | 4.34      | 5.42 | 0.82 | 92.2*   |
|                     | 25.0  | 6.75      | 5.55      | 4.45      | 5.51 | 0.82 | 95.2*   |
| JS-75-19            | _     |           | _         |           | 5.86 | 0.86 |         |
| JS-75-45            | _     | _         | _         | _         | 5.77 | 0.86 |         |
| JS-76-205           | _     | _         | _         | _         | 5.80 | 0.87 |         |
| JS—76—259           | _     | _         | _         | _         | 5.36 | 0.83 |         |
| JS-76-280           | _     | -         |           | _         | 5.22 | 0.82 |         |
| JS-80-21            | _     | _         | _         |           | 5.40 | 0.82 |         |
| Kalituar            | _     | _         | _         | _         | 5.08 | 0.80 |         |
| Lee                 | _     | 7.29      | 6.84      | 5.88      | 6.64 | 0.91 |         |
| MACS—75             | -     | _         | _         | _         | 5.54 | 0.84 |         |
| N—19                |       | _         | _         | _         | 5.88 | 0.92 |         |
| PK-472              | .—    | _         | _         |           | 5.95 | 0.90 |         |
| Punjab—1            | _     | 7.02      | 6.29      | 5.05      | 6.06 | 0.87 |         |
| T—49                | _     | _         |           | _         | 4.83 | 0.81 |         |
| Sunflower<br>(head) |       |           |           |           |      |      | 113     |
| Morden              | _     | _         | 107.00    | 17.00     | _    | 0.87 |         |
| Sunflower<br>(seed) |       |           |           |           |      |      | 9,41,78 |
| GD—1                | _     | 9.5       | 3.80      | 2.50      | 4.42 | 0.47 |         |
| KBSH—1              | _     | 10.9      | 4.30      | 2.70      | 4.94 | 0.45 |         |
| Morden              | 7.7 _ | 10.33     | 5.28      | 2.95      | 5.44 | 0.53 |         |
|                     | 9.2   | 10.59     | 4.19      | 2.81      | 5.00 | 0.47 |         |
|                     | _     | 11.00     | 4.40      | 2.90      | 5.11 | 0.46 |         |
|                     | 13.6  | 11.57     | 5.57      | 3.87      | 6.13 | 0.54 |         |
|                     | 21.9  | 11.60     | 6.14      | 4.25      | 6.72 | 0.58 |         |
|                     | 31.6  | 12.28     | 6.42      | 4.47      | 7.06 | 0.58 |         |
| RHA-274             |       | 9.3       | 3.90      | 2.50      | 4.43 | 0.48 |         |

\* Surface area, mm<sup>2</sup>

Table 2.4: Spatial dimensions, size, sphericity and surface area of fruit and vegetable seeds

| •                              | Moisture<br>content,<br>% (db) | Length,<br>mm | Width,<br>mm  | Thick-<br>ness,<br>mm | Size,<br>mm          | Spheri-<br>city | Surface<br>area,<br>mm <sup>2</sup> | Refer-<br>ence |
|--------------------------------|--------------------------------|---------------|---------------|-----------------------|----------------------|-----------------|-------------------------------------|----------------|
| 1.                             | 2.                             | 3.            | 4.            | 5.                    | 6.                   | 7.              | 8.                                  | 9.             |
| Brinjal                        | ,                              |               |               |                       |                      |                 |                                     | 148            |
| Local                          | 3.6                            | 2.64±<br>0.21 | 2.08±<br>0.36 | 0.73±<br>0.07         | 1.59 ± 0.13          | 0.61 ± 0.06     | 0.61 ± 0.05                         |                |
| Cassava (tuber)                |                                |               |               |                       |                      |                 |                                     | 173            |
| Deskinned tuber<br>Whole tuber | <u>-</u>                       | -             | 40.12         | -                     | -                    | _               | -                                   |                |
| H 165                          | <del>-</del>                   | 154.00        | _             | 86.60                 |                      | _               | _                                   |                |
| Local                          | -                              |               | 42.37         | _                     | _                    | _               | _                                   |                |
| Grape (whole fruit)            |                                |               |               |                       |                      |                 |                                     | 173            |
| Berry                          |                                | 146.00        | 141.00        | _                     | _                    |                 | _                                   |                |
| Bunch                          |                                | 201.50        | 121.50        | <del>-</del> .        |                      |                 | _                                   |                |
| Long melon                     | ,                              |               |               | •                     |                      |                 |                                     | 127            |
| Min.                           | · —                            | 6.50          | 2.50          | 0.70                  | 2.25                 | 0.35            | _                                   |                |
| Max.                           | <del>-</del> -                 | 9.60          | 3.70          | 1.00                  | 3.29                 | 0.34            | _                                   |                |
| Av.                            |                                | 7.90          | 3.10          | 1.00                  | 2.90                 | 0.37            | -                                   |                |
| Gorgon nut (Makhana)           |                                | •             |               |                       |                      |                 |                                     | 70             |
| Local                          | 15–60                          | _             |               | <del>-</del> .        | 6.5 <u>4</u><br>1291 | 0.99            | -                                   |                |
| Mango stone                    | _                              | 62.00         | 30.00         | 19.00                 | 31.70                | 0.51            | -                                   | 173            |
| Mango whole fruit              | wante                          | 72.60         | 51.40         | 52.60                 | 55.80                | 0.77            | -                                   | 173            |
| Marking nut                    |                                | e e           |               |                       |                      |                 |                                     | 8              |
| Large with flower              |                                | 27.2          | 18.4          | 11.7                  | -                    | _               | - California                        |                |
| Large without flower           | witness                        | 21.7          | 18.6          | 10.3                  | -                    | _               | -                                   |                |
| Medium with flower             | _                              | 25.8          | 16.5          | 11.5                  |                      |                 | _                                   |                |
| Medium without flow            | er —                           | 19.4          | 16.6          | 9.9                   | _                    | -               | _                                   |                |
| Small with flower              | _                              | 22.3          | 15.8          | 9.9                   | -                    | -               | -                                   |                |
| Small without flower           |                                | 17.6          | 15.2          | 9.6                   | -                    | -               | _                                   |                |

| 1.                    | 2.           | 3.             | 4.              | 5.              | 6.              | 7.                                              | 8.              | 9.          |
|-----------------------|--------------|----------------|-----------------|-----------------|-----------------|-------------------------------------------------|-----------------|-------------|
| Musk melon            |              |                |                 |                 |                 |                                                 |                 | 127         |
| Min.                  |              | 7.10           | 3.00            | 0.90            | 2.68            | 0.38                                            | _               |             |
| Max.                  | _            | 11.70          | 4.60            | 1.40            | 4.22            | 0.36                                            | _               |             |
| Av.                   |              | 9.50           | 3.80            | 1.10            | 3.41            | 0.36                                            | _               |             |
| Peach fruit           | _            | 55.10          | 52.70           | _               |                 | <del></del>                                     | · —             | 173         |
| Pomegranate<br>seed   | -            | _              | 0.40            | _               | -               | -                                               | _               | 173         |
| Potato                |              |                |                 |                 |                 |                                                 |                 |             |
| Kufri<br>Chandramukhi | 325.5        | _              |                 | . —             | 52.0            | 0.79                                            |                 | 173         |
| Pumpkin               |              |                |                 |                 |                 |                                                 |                 | 148         |
| Local                 | 10.9         | 19.00±<br>1.19 | 10.04 ± 1.19    | $2.64 \pm 0.31$ | $7.92 \pm 0.60$ | $0.42 \pm 0.02$                                 | 13.33 ± 2.68    |             |
| Ridge-gourd<br>fruit  | _            | 178.10         | 39.30           | -               | _               | _                                               | -               | 173         |
| Ridge-gourd<br>vine   | _            | 51.70          | · · <u> </u>    |                 | <del>-</del> ,  |                                                 | _               |             |
| Summer melon          |              |                |                 |                 |                 |                                                 |                 | 148         |
| Local                 | 4.5          | 10.70±<br>0.85 | 4.35 ± 0.74     | $1.54 \pm 0.23$ | 4.11 ± 0.31     | $0.39 \pm 0.04$                                 | $4.70 \pm 0.52$ |             |
| Tomato                | 5.2<br>upali | 4.19±<br>0.64  | $2.99 \pm 0.81$ | $1.20 \pm 0.30$ | 2.42 ± 0.39     | $0.59 \pm 0.10$                                 | $0.49 \pm 0.10$ |             |
| Water melon           |              |                |                 |                 | . •             |                                                 |                 | 127,<br>148 |
| Baby sugar            | 4.7          | 12.60±<br>0.61 | 6.92 ± 0.39     | 2.41 ± 0.30     | 5.90 ± 0.23     | $\begin{array}{c} 0.47 \pm \\ 0.02 \end{array}$ | 7.18 ± 1.20     |             |
| Local                 |              |                |                 |                 |                 |                                                 |                 |             |
| Min.                  |              | 10.90          | 7.30            | 1.80            | 5.23            | 0.48                                            | _               |             |
| Max.                  | _            | 15.00          | 8.70            | 2.60            | 6.98            | 0.47                                            | -               |             |
| Av.                   |              | 12.80          | 8.10            | 2.20            | 6.11            | 0.48                                            |                 |             |

Table 2.5 Spatial dimensions, size and sphericity of spices

| Seed/Variety    | Moist-<br>ure<br>content,<br>% (db) | Length,<br>mm             | Width<br>/dia,<br>mm  | Thick-<br>ness,<br>mm | Size,<br>mm           | Shericity | Proej-<br>cted<br>area,<br>mm <sup>2</sup> | Refer-<br>ence |
|-----------------|-------------------------------------|---------------------------|-----------------------|-----------------------|-----------------------|-----------|--------------------------------------------|----------------|
| 1.              | 2.                                  | 3.                        | 4.                    | 5.                    | 6.                    | 7.        | 8.                                         | 9.             |
| Aniseed (local) |                                     |                           |                       | -                     |                       |           |                                            | 49             |
| Coarse          | 10.8                                | 4.05 <del>-</del><br>7.30 | 1.25—<br>2.60         | 0.95 <u>–</u><br>1.55 | 1.86-<br>3.01         | 0.40      | 25.80                                      |                |
| Fine            | 9.7                                 | 3.20 <u>–</u><br>6.10     | 0.80 <u>-</u><br>1.45 | 0.65 <u>-</u><br>1.10 | 1.30-<br>2.15         | 0.35      | 11.90                                      |                |
| Coriander seed  |                                     |                           |                       |                       |                       |           |                                            | 86             |
| Local           | 10.4                                | 4.90 <u></u><br>6.10      | 2.40–<br>3.55         |                       | 3.30-<br>4.20         | 0.69      | 31.50                                      |                |
| Cumin seed      |                                     |                           |                       |                       |                       |           |                                            | 172            |
| Local           | 7.6                                 | 4.10-<br>5.60             | 0.95 <u>-</u><br>1.55 | 0.85 <u>-</u><br>1.30 | 1.49-<br>2.24         | 0.40      | 16.90                                      |                |
| Fenugreek seed  | 1                                   |                           |                       |                       |                       |           |                                            | 172            |
| Local           | 8.9                                 | 3.20-<br>4.90             | 1.60-<br>2.85         | 1.35—<br>2.50         | 1.90 <u>–</u><br>3.27 | 0.72      | 26.8                                       |                |
| Turmeric rhyzo  | ome                                 |                           |                       |                       |                       | /         |                                            | 50             |
| Sangali         | 12.5                                | 23.0-<br>58.0             | 9.0-<br>21.0          | 5.0-<br>18.0          | 10.0-<br>24.0         | 0.43      | _                                          |                |

# **CHAPTER III**

## GRAVIMETRIC PROPERTIES

A knowledge of density, specific gravity and porosity are important in design and analysis of separation, handling, drying, processing, storage and transport equipment and systems. Bulk density decides the capacity of the storage structures, hoppers or transport vehicles body and resulting loads which must be taken into consideration in the design of their components. Specific gravity is a widely used criteria of separation of food materials. Porosity of the solid mass governs the resistance to air flow in a dryer and dictates the thickness of the layers which can be dried safely and the type of blower needed.

Thousand grain weight can be determined using the method described in Indian Standard IS:4333 (Part IV) - 1968. The method is as follows:

#### 1. Determination on 'As - Is' basis:

Take at random an amount of approximately 500 grains from the sample. Sort out the whole grains and weigh. Subsequently, count the whole grains.

## 2. Determination on dry basis:

If the weight of 1,000 grains is to be referred on dry basis, proceed as above and also determine the moisture content of the whole grains in a separate sample.

#### Calculation:

The weight of 1,000 grains on 'as-is' basis = 
$$\frac{a \times 1,000}{b}$$

Where,

a = weight of the whole grains, g and

b = number of whole grains in the sample weighed.

Weight of 1,000 grains on dry basis = 
$$\frac{A \times (100-B)}{100}$$

Where,

A = weight of 1000 grains on 'as-is' basis, g and

B = moisture content, expressed as per centage.

Bulk density can be determined with the help of Indian Standard IS:4333 Part-III-1967. This standard prescribes the method for determining bulk density. Size of the test sample shall be 500 g.

#### Procedure

- 1. Fill the pan and hold it over the kettle in such a way that the opening of the pan is above the center of kettle and pouring occurs from a height of about 150mm above the kettle (Fig.3.1). Pour the grain in to the kettle in a regular slow stream.
- 2. Place the stroker (Fig. 3.1) on the edge of the kettle lightly without jarring the kettle. Hold the stroker on the kettle with the side of the stroker in vertical position. Stroke the grain from the kettle with three full length zig-zag motions of the stroker. Weigh the grain in the kettle on the balance.

Volume can be measured using Air Comparison Pycnometer (Mohsenin, 1980). The Pycnometer (Fig. 3.2) is a commercially available instrument for volume measurement. The apparatus (Fig. 3.2) consists basically of two chambers and two pistons, a valve connecting the two chambers, a differential pressure indicator, and a digital counter calibrated for readings in cm<sup>3</sup>. This instrument measures the true volume of a sample. For measurement of apparent volume, i.e., the volume of a sample enclosed by its outer surface plus the volume of its open pores, it is recommended to fill the pores first by immersing the sample in molten wax bath. It works on the principle of pressure differential. The volume of sample can be measured by calibrated scale.

#### Procedure

- 1. Close perge valve and open coupling valve.
- 2. Rotate hand wheels to counter clockwise extreme.
- 3. Turn measuring hand wheel clockwise until starting number is set on the counter.
- 4. Place sample in cup. Insert cup in the compartment. Lock sample cup in place by pressing clamp handle down firmly. Wait 15 sec., then close the coupling valve.
- 5. Turn both handle wheels simultaneously or alternately until reference hand wheel rests against stop. Keep pointer on scale during this process. Wait 10 sec., then bring pointer to null point with measuring hand wheel.
- 6. Open coupling valve. Read sample volume on counter directly in cm<sup>3</sup>.
- 7. Turn both hand wheels counter clockwise to rest against stop. Remove sample cup.

Volume and Specific gravity can also be determined by using a general purpose reagent (toluene rectified) with the help of measuring cylinder and using following equation:



Fig. 3.1. Apparatus for determination of bulk density of grain



Fig. 3.2. Comparison Pycnometer

(in cc) Fig. 3.2. Apparatus for determination of porosity of granular materials (Day, 1964)

### **Porosity**

The per cent voids of an unconsolidated mass of materials in terms of volume can be defined as porosity.

Day (1964) has given a simple method for determination of porosity which is illustrated in Fig. 3.3.

#### Procedure

With the material in tank 2, valve 2 is closed and air is supplied to tank 1 (Fig. 3.3). When suitable manometer displacement is achieved, valve 1 is closed and after the manometer has come to equilibrium, pressure  $P_1$  is read. Now, valve 3 is closed and valve 2 is opened and the pressure  $P_3$  is read. By using the following formula porosity can be calculated:

Porosity = 
$$\frac{P_1 - P_3}{P_2} \qquad \dots (3.3)$$

The porosity can also be determined indirectly using the following definition:

Porosity = 
$$\frac{(Specific gravity - Bulk density) \times 100}{Specific gravity} \dots (3.4)$$

Various research workers have carriedout studies on the gravimetric properties for cereals (corn, finger millet, paddy, pearl millet, prosomillet, rice, sorghum and wheat); pulses (Bengal gram, black gram, green gram, horse gram, lentil and pigeon pea); oilseeds (castor, groundnut, linseed, mustard, niger seed, safflower, soybean and sunflower); fruit/vegetable seeds (brinjal, long melon, musk melon, peach, pomegranate, pumpkin, summer melon, tomato and water melon) and spices (aniseed, coriander seed, cumin seed, fenugreek seed and turmeric rhyzome) for Indian varieties and jaggery (gur) at different moisture contents. Some of these properties such as, 1000 grain weight, bulk density, specific gravity, volume of a single grain and porosity are listed in the Tables 3.1–3.5.

Table 3.1: Gravimetric properties of cereal grains

| Grain/Variety | Moisture content, % (db) | 1000<br>grain<br>Wt., g | Bulk<br>density,<br>g/cm <sup>3</sup> | Specific gravity | Volume of single grain, mm <sup>3</sup> | Porosity, % | Reference |
|---------------|--------------------------|-------------------------|---------------------------------------|------------------|-----------------------------------------|-------------|-----------|
| 1.            | 2.                       | 3.                      | 4.                                    | 5.               | 6.                                      | 7.          | 8.        |
| Corn          |                          |                         |                                       |                  |                                         |             | 16        |
| Ganga—5       | < 10.0                   |                         | 0.836                                 | 1.41             |                                         | _           |           |
| -             | 10.0—19.9                | -                       | 0.833                                 | 1.39             |                                         | _           |           |
|               | 20.0 — 29.9              | -                       | 0.747                                 | 1.31             |                                         | -           |           |
|               | 30.0—39.9                | _                       | 0.740                                 | 1.30             | _                                       | _           |           |
|               | 40.0-50.0                |                         | 0.740                                 | 1.30             |                                         |             |           |
| Kisan compos  | ite —                    | 349.7                   | displaces                             | 1.22             | 286.0                                   | _           |           |
|               | _                        | 282.3                   | _                                     | 1.23             | 252.3                                   | _           |           |
| Local         | < 10.0                   | _                       | 0.820                                 | 1.39             |                                         |             |           |
|               | 10.0—19.9                |                         | 0.812                                 | 1.35             | _                                       | _           |           |
|               | 20.0—29.9                | _                       | 0.792                                 | 1.32             |                                         |             |           |
|               | 30.0—39.9                |                         | 0.740                                 | 1.26             | _                                       |             |           |
|               | 40.0 —50.0               | _                       | 0.740                                 | 1.23             |                                         | _           |           |
| MLU—5         | 7.6                      | _                       | 0.684                                 |                  | _                                       | 30.08       |           |
|               | 22.5                     | _                       | 0.609                                 | _                |                                         | 37.16       |           |
|               | 28.4                     |                         | 0.601                                 | _                | _                                       | 36.12       |           |
|               | 20.0 —29.9               | _                       | 0.792                                 | 1.32             | · · · —                                 | materia     |           |
|               | 30.0 — 39.9              | _                       | 0.740                                 | 1.26             | _                                       | *******     |           |
|               | 40.0 — 50.0              |                         | 0.740                                 | 1.23             | _                                       | -           |           |
| Vijay compos  | ite < 10.0               | _                       | 0.835                                 | 1.37             |                                         |             |           |
|               | 10.0 —19.9               |                         | 0.824                                 | 1.37             | •                                       | -           |           |
|               | 20.0 —29.9               | _                       | 0.750                                 | 1.34             | . —                                     | _           |           |
|               | 30.0 —39.9               |                         | 0.745                                 | 1.31             | -                                       | _           |           |
|               | 40.0-50.0                |                         | 0.743                                 | 1.30             |                                         | -           |           |
| Finger millet |                          |                         |                                       |                  |                                         |             | 16        |
| Co-11         | 9.8                      |                         | 0.706                                 |                  | _                                       | 45.10       |           |
|               | 19.8                     | _                       | 0.668                                 |                  |                                         | 35.08       |           |
|               | 32.5                     |                         | 0.645                                 | -                | _                                       | 42.44       |           |
| Paddy         |                          |                         |                                       |                  |                                         |             | 10,173    |
| ADT—3         | 10.1                     |                         | 0.593                                 | annium.          | do-matte                                |             |           |
| ADT—4         | 11.3                     |                         | 0.684                                 |                  | _                                       |             |           |
| ADT—10        | 11.3                     |                         | 0.545                                 | -                |                                         | -           |           |
| ADT—11        | 11.4                     | - Companies             | 0.594                                 |                  | _                                       |             |           |

| 1.         | 2.           | 3.       | 4.    | 5.   | 6.       | 7.            | 8 |
|------------|--------------|----------|-------|------|----------|---------------|---|
| ADT—16     | 10.4         | -        | 0.559 | -    | -        | -             |   |
| ADT—20     | 10.8         |          | 0.622 | -    | _        | _             |   |
| ADT-22     | 11.7         |          | 0.565 | _    | _        | _             |   |
| ADT—27     | 8.5—<br>24.0 | _        | 0.580 | 1.24 | _        | 51.25         |   |
|            | 10.4         | _        | 0.580 | _    | _        | _             |   |
| ADT—28     | 10.8         | _        | 0.606 |      | _        | _             |   |
| ADT—31     | 9.6          |          | 0.614 |      |          |               |   |
| Akkular    | 18.0         |          | 0.569 | 1.47 | _        | 61.0          |   |
|            | 19.8         | _        | 0.575 | 1.43 | <u> </u> | 56.0          |   |
|            | 22.8         |          | 0.580 | 1.40 |          | 58.0          |   |
|            | 24.1         | -        | 0.587 | 1.35 | _        | 56.0          |   |
| Annapoorna | 9.8          |          | 0.588 |      | _        | _             |   |
| Anupama    | 10.6         | <u> </u> | 0.578 | _    |          | _             |   |
| ASD—1      | 9.9          |          | 0.575 | _    |          | _             |   |
| ASD—5      | 10.5         |          | 0.527 | _    |          | _             |   |
| ASD—8      | 9.9          | _        | 0.574 | _    | _        | _             |   |
| ASD—10     | 12.5         | _        | 0.544 |      | _        | _             |   |
| ASD—11     | 10.8         | _        | 0.548 |      | _        | _             |   |
| Bala       | 10.7         | _        | 0.614 |      | _        |               |   |
| BAM—3      | 10.4         |          | 0.569 |      | _        | , <del></del> |   |
| Basmathi   | 13.6         | _        | 0.530 |      |          |               |   |
| Basumathi  | -            |          | 0.499 | ٠.   | _        | _             |   |
| BC, 11—6—3 | 12.1         |          | 0.551 | _    |          |               |   |
| Bhavani    | 10.2         |          | 0.595 | _    | _        | _             |   |
| Cauvery    | 12.0         | 22.28    | 0.580 | 1.38 | _        | 57.97         |   |
|            | 14.0         | 22.79    | 0.580 | 1.38 | _        | 57.97         |   |
|            | 16.0         | 23.02    | 0.580 | 1.39 | _        | 58.27         |   |
|            | 18.0         | 23.21    | 0.590 | 1.39 | _        | 57.55         |   |
|            | 20.0         | 23.73    | 0.600 | 1.40 | _        | 57.14         |   |
| CH—2       | 11.1         | -        | 0.586 | _    | _        |               |   |
| CH, SO—16  | 11.2         | _        | 0.566 | _    | _        |               |   |
| Co-1       | 11.3         |          | 0.565 | -    |          |               |   |
| Co-2       | 11.2         | _        | 0.563 | _    | _        | _             |   |
| Co-4       | 10.2         | -        | 0.547 | _    | _        | _             |   |
| Co-7       | 11.9         | _        | 0.548 |      | -        | _             |   |
| Co-8       | 9.8          | -        | 0.528 | _    | _        | _             |   |

Table Contd....

| 1.        | 2.       | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.    | 5.          | 6. | 7.    | 8. |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|----|-------|----|
| Co-10     | 9.9      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.608 |             |    | -     |    |
| Co—13     | 9.8      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.535 | _           | _  |       |    |
| Co—16     | 11.1     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.582 | _           |    | _     |    |
| Co-18     | 9.9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.576 | _           | _  | _     |    |
| Co-19     | 10.7     | majorijo o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.599 |             | -  | _     |    |
| Co-25     | 8.5-24.0 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.600 | 1.25        | _  | 31.63 |    |
|           | 10.0     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.570 | _           | -  | _     |    |
| Co-26     | 10.8     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.575 | _           |    | _     |    |
| Co-29     | 9.7      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.578 | _           | _  | _     |    |
| Co-30     | 11.0     | elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.540 | _           | _  | _     |    |
| Co-32     | 11.5     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.532 | -           | _  | _     |    |
| Со-33     | 9.2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.590 | 1.25        | _  | 49.70 |    |
|           | 10.6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.592 | designature | _  | _     |    |
| Co-34     | 10.4     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.575 | _           | _  |       |    |
| Co-35     | 9.9      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.589 |             | _  | _     |    |
| Co-36     | 10.4     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.594 | Material    |    | ·     |    |
| Co-37     | 10.7     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.613 | _           | _  | _     |    |
| CR—12—17  | 70 11.7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.542 |             |    | _     |    |
| Desal     | 10.1     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.590 | _           | _  | _     |    |
| GEB—24    | 10.7     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.603 | _           |    | _     |    |
| Gettu     | . 10.7   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.578 |             | _  | _     |    |
| IET—1039  | 11.1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.570 | <del></del> | _  | _     |    |
| IET—2222  | 10.3     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.577 | _           | _  |       |    |
| IET—2585  | 11.5     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.597 | _           |    | _     |    |
| IR—5      | 9.9      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.567 |             |    | _     |    |
|           | 15.9     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.572 | 1.23        |    | _     |    |
| IR—8      | 10.1     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.555 | _           |    |       |    |
|           | 14.2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.573 | _           | _  | _     |    |
| IR-20     | 9.9      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.617 |             | _  |       |    |
|           | 8.5–23.0 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.570 | 1.22        |    | 53.53 |    |
| IR-24     | 10.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.550 |             | _  |       |    |
| IR—26     | 10.9     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.547 | _           | _  | _     |    |
| Jagannath |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.570 |             |    |       |    |
|           | 16.1     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.605 | 1.38        | _  | 56.16 |    |
|           | 18.1     | and the same of th | 0.610 | 1.37        | _  | 55.47 |    |
|           | 21.3     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.617 | 1.36        |    | 54.60 |    |

Table Contd....

| 1.            | 2.           | 3.       | 4.    | 5.         | 6.           | 7.           | 8. |
|---------------|--------------|----------|-------|------------|--------------|--------------|----|
|               | 23.8         | -        | 0.624 | 1.34       | parties.     | 53.47        |    |
|               | 25.8         | -        | 0.630 | 1.33       | -            | 52.45        |    |
| Jaha          |              | 14.57    | 0.600 | 1.18       |              | 49.68        |    |
| Jaya          | 8.5—<br>10.5 | _        | 0.590 | 1.24       |              | 46.85        |    |
|               | 9.7          |          | 0.579 | -          | _            | _            |    |
|               | 12.0         | 27.09    | 0.540 | 1.33       | -            | 59.39        |    |
|               | 14.0         | 27.70    | 0.550 | 1.33       | _            | 58.64        |    |
|               | 14.8         |          | 0.523 | 1.15       | -            | 28.30        |    |
|               | 16.0         | 27.74    | 0.570 | 1.34       | _            | 57.46        |    |
|               | 16.4         |          | 0.542 | 1.50       | _            | 63.80        |    |
|               | 18.0         | _        | 0.544 | 1.48       |              | 63.20        |    |
|               | 20.0         | 29.52    | 0.580 | 1.34       | _            | 56.71        |    |
|               | 21.1         | _        | 0.547 | 1.44       | _            | 62.00        |    |
|               | 22.6         |          | 0.550 | 1.42       |              | 61.20        |    |
|               | 24.8         | _        | 0.554 | 1.41       |              | 60.70        |    |
| Kakitya       | 9.9          | _        | 0.588 | _          | _            | _            |    |
| Kanaagi       | 11.0         | <u>.</u> | 0.612 |            |              | colonia.     |    |
| Karikala      | 9.8          | _        | 0.598 |            | _            | _            |    |
| Krishna       | 9.7          | -        | 0.564 |            |              | _            |    |
| Masori        | 13.6         | -        | 0.590 | 1.45       | _            | 59.00        |    |
|               | 17.0         | _        | 0.590 | 1.42       | -            | 57.00        |    |
|               | 20.9         | _        | 0.603 | 1.40       | _            | 56.00        |    |
|               | 23.9         | _        | 0.609 | 1.37       |              | 55.00        |    |
|               | 27.4         |          | 0.614 | 1.35       | - California | 54.00        |    |
| Monoharsali   |              | 28.30    | 0.600 | 1.22       | _            | 51.17        |    |
| Mozhikarupper | 9.9          | -        | 0.504 | _          |              | -            |    |
| N-12          | 12.0         | 19.39    | 0.550 | 1.33       | -            | 58.64        |    |
|               | 14.0         | 19.58    | 0.560 | 1.33       | _            | 57.89        |    |
|               | 16.0         | 19.95    | 0.570 | 1.33       | _            | 57.14        |    |
|               | 18.0         | 20.79    | 0.580 | 1.34       |              | 54.71        |    |
|               | 20.0         | 20.99    | 0.590 | 1.34       | _            | 55.97        |    |
| Padma         | 9.9          | · -      | 0.563 | delegation | -            | -            |    |
| Pankaj        | 10.0         | -        | 0.588 |            | -            | -            |    |
| Patnai—23     | 14.6         | _        | 0.455 | 1.20       | -            | -            |    |
| Patnai local  | 14.0         | _        | 0.576 | 1.24       |              | - California |    |
| Pennai        | 9.8          | مششه     | 0.594 | -          | -            | Acres .      |    |
| PLR—1         | 10.9         | -        | 0.586 | -          |              | ereten.      |    |
| PLR—2         | 10.9         | *****    | 0.592 | - Carriera | -            | -            |    |

| 1.                              | 2.           | 3.    | 4.    | 5.        | 6.          | 7.       | 8. |
|---------------------------------|--------------|-------|-------|-----------|-------------|----------|----|
| Prasad bhog                     |              | 18.66 | 0.580 | 1.24      | -           | 53.44    |    |
| PTB—10                          | 10.8         | _     | 0.598 |           |             | _        |    |
| PTB—15                          | 11.4         |       | 0.556 | Carrent . | _           | _        |    |
| PVR—1                           | 10.2         |       | 0.595 |           | -           | _        |    |
| Ratna                           | 10.8         | _     | 0.551 | _         | _           | -        |    |
|                                 | 12.0         | 19.86 | 0.500 | 1.44      | _           | 65.27    |    |
|                                 | 14.0         | 20.14 | 0.500 | 1.44      |             | 65.27    |    |
|                                 | 16.0         | 20.54 | 0.500 | 1.46      | • —         | 65.51    |    |
|                                 | 18.0         | 20.55 | 0.510 | 1.46      |             | 65.06    |    |
|                                 | 20.0         | 20.74 | 0.520 | 1.46      | _           | 64.38    |    |
| Rohini                          | 9.7          |       | 0.597 | 2.10      |             | -        |    |
| RP—4—2                          | 11.3         |       | 0.549 |           |             |          |    |
| RP—4—14                         | 11.4         |       | 0.532 |           |             |          |    |
| RP—172-2                        | 11.5         |       | 0.532 |           |             |          |    |
| RP—176—5                        | 12.6         |       | 0.577 |           |             |          |    |
| Sabarmathi                      | 9.8          | _     | 0.573 |           | _           |          |    |
| Saket—4                         | 12.0         | 19.55 | 0.550 | 1.37      |             | 59.85    |    |
| Saket—4                         |              | 20.54 | 0.550 | 1.38      | _           | 60.14    |    |
|                                 | 14.0         |       |       |           | _           |          |    |
|                                 | 16.0         | 20.81 | 0.560 | 1.38      |             | 59.42    |    |
|                                 | 18.0         | 20.91 | 0.570 | 1.38      | -           | 58.69    |    |
| C                               | 20.0         | 21.28 | 0.590 | 1.39      |             | 57.55    |    |
| Sona                            | 9.9          |       | 0.535 |           | _           | _        |    |
| Thellhamsa                      | 10.2         | _     | 0.554 | _         | _           | _        |    |
| Thillain ayagam<br>(Perururni)  | 11.6         | _     | 0.581 | _         | _           | _        |    |
| Thillainaya gan<br>(Paramakudi) | 10.2         |       | 0.578 |           | _           | _        |    |
| TKM—4                           | 9.5          | _     | 0.546 |           | . —         |          |    |
| TKM—5                           | 9.8          |       | 0.591 |           | _           |          |    |
| TKM6                            | 8.5—<br>24.0 |       | 0.610 | 1.29      | _           | 53.21    |    |
|                                 | 9.9          | -     | 0.561 | _         | _           |          |    |
| TNR-2                           | 11.7         |       | 0.534 | _         | -           | _        |    |
| Triveni                         | 9.8          | _     | 0.622 | . —       | _           | -        |    |
| Туре—3                          | 12.0         | 18.55 | 0.530 | 1.32      |             | 59.84    |    |
|                                 | 14.0         | 18.74 | 0.540 | 1.32      | -           | 59.09    |    |
|                                 | 16.0         | 19.08 | 0.550 | 1.33      | _           | 59.09    |    |
|                                 | 18.0         | 19.09 | 0.570 | 1.34      | _           | 57.46    |    |
|                                 | 20.0         | 19.86 | 0.580 | 1.34      | _           | 56.71    |    |
| Vijaya                          | 10.5         | -     | 0.601 |           | dispusation | denomina |    |
| 6–17                            | 15.2         |       | 0.408 | 1.26      |             | 67.80    |    |

| 1.                | 2.           | 3.     | 4.    | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8. |
|-------------------|--------------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                   | 17.2         | _      | 0.411 | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 19.3         | _      | 0.417 | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sales and Sales  | 65.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 25.8         |        | 0.429 | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 28.7         | -      | 0.435 | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 633               | 12.5         | _      | 0.610 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 658               | 11.2         | -      | 0.578 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 688               | 11.5         | _      | 0.570 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 4611              | 11.3         |        | 0.585 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 4614              | 12.7         | _      | 0.619 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 6464              | 12.3         | _      | 0.600 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 6534              | 11.9         | _      | 0.724 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 6543              | 11.8         |        | 0.608 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 6547              | 12.4         |        | 0.604 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 7711              | 11.6         |        | 0.573 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 8111              | 12.0         | _      | 0.642 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Pearl millet      |              |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 |
| Co—6              | 8.9          | _      | 0.795 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 25.1         |        | 0.701 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 30.0         |        | _     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| HB—1              | 8.0          | -      | 0.775 | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 11.0         | _      | 0.767 | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 14.0         |        | 0.756 | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 17.0         |        | 0.745 | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                   | 20.0         | -      | 0.737 | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Prosomillet (comm | non millet/B | aragu) | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 |
| BR7               | _            | 6.0    | 0.744 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| CO—1              | _            | 6.5    | 0.740 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| CO-2              | *            | 6.3    | 0.720 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Name of the last o | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| CO—3              |              | 5.0    | 0.630 | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name of the last o |    |
| CO-4              |              | 7.2    | 0.742 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| C2PM—13           |              | 4.5    | 0.680 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | destable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| K—1               | _            | 9.0    | 0.756 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| K-2               | _            | 8.0    | 0.768 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| MS-1685           |              | 7.0    | 0.730 | Marinetta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| PC—1              | -            | 4.7    | 0.720 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | College                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| PC—2              |              | 5.5    | 0.712 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| PC-3              | -            | 5.0    | 0.630 | CONTRACTOR OF THE PARTY OF THE | Grandin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Raum—5            | -            | 6.6    | 0.732 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Raum—7            | epitaino.    | 5.5    | 0.714 | - CARROLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Raum—9            | easterns.    | 4.0    | 0.700 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marin .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Raum—10           | etitino      | 4.5    | 0.640 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | California, Califo |    |
| Raum—11           | engin        | 3.5    | 0.660 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

| 1.             | 2.             | 3.             | 4.    | 5.   | 6.            | 7.      | 8.      |
|----------------|----------------|----------------|-------|------|---------------|---------|---------|
| Rice(brown)    |                |                |       |      |               |         | 33      |
| Jaha           |                | 11.54          | 0.790 | 1.39 | _             | 43.53   |         |
| Monaharsali    | _              | 22.33          | 0.820 | 1.39 | _             | 41.49   |         |
| Prasadbhog     |                | 14.54          | 0.800 | 1.39 |               | 42.96   |         |
| Rice(milled)   | •              |                |       |      |               |         | 33      |
| ASM—25         | 12.5           | 32.6           | 0.532 | 1.11 | designation . | 52.20   |         |
| ASM—44         | 12.5           | 27.2           | 0.568 | 1.15 |               | 50.80   |         |
| ASM—51         | 12.5           | 25.9           | 0.526 | 1.14 |               | 53.90   |         |
| Baok           | 12.5           | 29.9           | 0.422 | 1.22 |               | 65.30   |         |
| Beak Ganggas   | 12.5           | 25.0           | 0.472 | 1.19 | _             | 60.10   |         |
| Benong-13      | 12.5           | 24.7           | 0.500 | 1.23 | _             | 59.30   |         |
| CR-28-25       | deplement      | 18.0           |       | 1.09 | 16.2          | _       |         |
| IR-8-288-3     | symbol         | 26.8           |       | 1.08 | 25.9          |         |         |
| Jaha           | Carried States | 11.40          | 0.800 | 1.41 | -             | 42.26   |         |
| Jenugudu       | 12.5           | 16.0           | 0.563 | 1.22 |               | 53.90   |         |
| Monoharsali    | Contrador      | 21.65          | 0.830 | 1.41 | -             | 40.92   |         |
| MR-44          | 12.5           | 23.3           | 0.551 | 1.23 | _             | 55.00   |         |
| Prasadbhog     |                | 14.23          | 0.810 | 1.41 | _             | 42.41   |         |
| Purple Puttu   | 12.5           | 27.1           | 0.509 | 1.08 | <del></del>   | 52.90   |         |
| Sukhanandi     | 12.5           | 23.4           | 0.580 | 1.22 | _             | 52.60   |         |
| S-701          | 12.5           | 19.7           | 0.897 | 1.24 |               | 51.40   |         |
| S-705          | 12.5           | 22.2           | 0.560 | 1.23 | _             | 54.40   |         |
| Taichung—65    | 12.5           | 25.7           | 0.611 | 1.19 |               | 48.60   |         |
| Taichung (N) 1 | 12.5           | 26.0           | 0.607 | 1.22 | _             | 50.20   |         |
| Taiwan—3       | 12.5           | 25.2           | 0.606 | 1.18 |               | 48.60   |         |
| White Puttu    | 12.5           | 28.0           | 0.483 | 1.16 | -             | 58.20   |         |
| Sorghum        |                |                |       |      |               |         | 138,147 |
| Co-22          | 10.5           | 26.0           | 0.727 | 1.27 | _             | _       |         |
| Co-23          | 13.4           | 25.9           | 0.761 | 1.25 | 7             | _       |         |
| CSH-5          | 11.3           | _              | 0.754 | 1.28 |               | Opposes |         |
|                | 12.0           | ,—             | 0.787 | 1.35 | _             | 41.49   |         |
|                | 16.0           | and the second | 0.779 | 1.33 | annana.       | 41.60   |         |
|                | 20.0           |                | 0.767 | 1.32 |               | 41.91   |         |
|                | 24.0           |                | 0.746 | 1.31 |               | 43.11   |         |
| CSH-SR         | 12.0           |                | 0.746 | 1.28 | _             | 41.81   |         |
|                | 16.0           | canno          | 0.735 | 1.27 |               | 42.30   |         |
|                | 20.0           |                | 0.725 | 1.27 | _             | 42.71   |         |
|                | 24.0           |                | 0.690 | 1.25 | -             | 44.78   |         |

| 1.                   | 2.        | 3.        | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.                                      | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8     |
|----------------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| HB-MSCK-60-<br>IS-84 | -         | 35.0      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.3                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Local                | 8.4       | , -       | 0.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                       | 41.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 12.6      |           | 0.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                      | 20.6      | 26.0      | 0.620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                       | 31.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 29.1      | _         | 0.570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 42.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      |           | 34.0      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.3                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| M-35-1               | 12.0      | _         | 0.795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 37.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 16.0      | _         | 0.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                       | 38.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 20.0      |           | 0.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                       | 39.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 24.0      |           | 0.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 39.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| SPH-202              | 12.0      |           | 0.808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | minor                                   | 39.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 16.0      | -         | 0.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                       | 40.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 20.0      | · _       | 0.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                       | 41.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 24.0      |           | 0.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 41.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| SPU-86               | 12.0      |           | 0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 39.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 16.0      |           | 0.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                       | 39.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 20.0      |           | 0.774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 40.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 24.0      |           | 0.752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 41.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| heat                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41,76 |
| C-306                |           | 49.70     | 0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22,00 |
| CPAN-1676            |           | 43.20     | 0.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| HD-2189              | 7.7       |           | 0.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 41.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 20.9      |           | 0.626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       | 39.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 30.4      |           | 0.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                       | 35.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| HD-2204              |           | 48.60     | 0.772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| HD—2281              |           | 49.30     | 0.731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| HD-2285              |           | 53.20     | 0.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dimento                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| HS—86                |           | 50.00     | 0.746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Malviya—12           |           | 48.20     | 0.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| NP—720               | _         | 48.7      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.3                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| PB—593               |           | 51.5      | - Companies (Contraction Contraction Contr | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.2                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| RR—21                | 9.1       |           | 0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 40.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 2020 202             | 9.2       |           | 0.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 41.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 11.3      |           | 0.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                       | 40.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 13.3      | - Cameron | 0.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 46.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | 18.3      | -         | 0.780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                       | 41.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Sonalika             | - Chinasa | 42.70     | 0.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       | and the same of th |       |
| UP—115               |           | 46.70     | 0.756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| UP—262               | منبئت     | 52.00     | 0.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| UP-368               | custime   | 48.20     | 0.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | distance                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| UP-2003              | disative  | 46.80     | 0.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | distre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | distorts                                | Million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| VL-421               |           | 40.30     | 0.757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at the last of the | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| WH—147               | 6.7       | 40.90     | alangan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |

Table 3.1.1: Linear regression equation of bulk density, kg/m<sup>3</sup> (Y) and moisture content, %, wb. (X)

| Grain/Variety  | Regression equation | Correlation coefficient | Reference |
|----------------|---------------------|-------------------------|-----------|
| Finger millet  |                     |                         |           |
| CO—10          | Y = 826.1 - 3.9 X   | 0.99                    | 177       |
| Foxtail millet |                     |                         |           |
| Local          | Y = 815.5 - 8.6 X   | 0.95                    |           |
| Kodo millet    |                     |                         |           |
| Local          | Y = 883.7 - 9.2 X   | 0.90                    |           |
| Little millet  |                     |                         |           |
| Local          | Y = 849.6 - 12.7 X  | 0.97                    |           |
| Pearlmillet    |                     |                         |           |
| Km—2           | Y = 854.5 - 4.2 X   | 0.98                    |           |
| Sorghum        |                     |                         |           |
| CO—18          | Y = 967.9 - 9.9 X   | 0.99                    |           |

Table 3.2: Gravimetric properties of pulses

| Grain/Variety     | Moisture<br>content,<br>% (db) | 1000 grain<br>wt.,g | Bulk<br>density,<br>g/cm <sup>3</sup> | Specific gravity | Volume<br>of single<br>grain,<br>mm <sup>3</sup> | Porosity,  | Reference |
|-------------------|--------------------------------|---------------------|---------------------------------------|------------------|--------------------------------------------------|------------|-----------|
| 1.                | 2.                             | 3.                  | 4.                                    | 5.               | 6.                                               | 7.         | 8.        |
| Bengal gram (chic | ekpea)                         |                     |                                       |                  |                                                  |            | 41,52     |
| BR-77             |                                | 206.20              | _                                     | 1.28             | 161.7                                            |            |           |
| C—235             | 7.5                            |                     | 0.783                                 |                  | 107.0                                            | _          |           |
|                   | 8.0                            | 142.40              | -                                     | 1.36             | -                                                | _          |           |
|                   | 13.6                           | _                   | 0.811                                 | _                | 114.0                                            |            |           |
|                   | 21.9                           |                     | 0.794                                 |                  | 135.9                                            |            |           |
|                   | 31.6                           | _                   | 0.756                                 | <del>-</del>     | 169.8                                            | _          |           |
| CS-24             | 7.5                            | 147.30              | 0.755                                 | -                | 102.1                                            |            |           |
|                   | 13.6                           | 155.80              | 0.763                                 | ·                | 109.2                                            | _          |           |
|                   | 21.9                           | 167.20              | 0.752                                 |                  | 119.6                                            |            |           |
|                   | 31.6                           | 180.30              | 0.714                                 | . · <del>-</del> | 136.8                                            | _          |           |
| JG—74             | 14.9                           | 179.390             | 0.750                                 | 1.43             |                                                  | _          |           |
| L-550             | 14.9                           | 243.80              | 0.800                                 | 1.25             |                                                  |            |           |
| Radhey            | 7.5                            | _                   | 0.753 🧃                               |                  | 162.0                                            |            |           |
|                   | 13.6                           |                     | 0.760                                 | -                | 166.0                                            |            |           |
|                   | 21.9                           |                     | 0.748                                 |                  | 172.6                                            | -          |           |
|                   | 31.6                           | _                   | 0.723                                 | -                | 186.2                                            | _          |           |
| Ujjain—21         | 14.9                           | 175.15              | 0.670                                 | 1.32             | _                                                |            |           |
| Black gram        |                                |                     | •                                     |                  |                                                  |            | 52,173    |
| DU—1              | -                              | 48.35               | 0.720                                 | 1.43             |                                                  | _          |           |
| DU—2              | minum                          | 45.13               | 0.780                                 | 1.15             |                                                  | _          |           |
| DU-3              | -                              | 47.01               | 0.800                                 | 1.39             | _                                                | _          |           |
| DU-4              | - minim                        | 46.75               | 0.790                                 | 1.33             | California                                       | _          |           |
| JU-77-41          | *****                          | 35.13               | 0.800                                 | 1.12             | -                                                | Collection |           |
| JU—78—3           | <u></u>                        | 45.19               | 0.780                                 | 1.02             | _                                                | _          |           |
| JU—78—27          | _                              | 40.00               | 0.800                                 | 1.25             | _                                                |            |           |
| Khargone 3        | 3 —                            | 47.00               | 0.690                                 | 1.28             | -                                                | -          |           |
| N55               |                                | 35.30               | 0.600                                 | 1.29             | -                                                | -          |           |
| Pant 4-30         | _                              | 40.32               | 0.810                                 | 1.03             | -                                                | witedistre |           |
| PDU—1             |                                | 45.16               | 0.740                                 | 1.43             | -                                                | -          |           |
| PDU—3             |                                | 40.31               | 0.800                                 | 1.28             | -                                                |            |           |
| PU—26             | -                              | 34.50               | 0.710                                 | 1.34             | -                                                | -          |           |
| PU-30             | -                              | 34.70               | 0.670                                 | 1.32             | -                                                | -          |           |
| RU—2              |                                | 39.75               | 0.840                                 | 1.09             |                                                  |            |           |
| Sardomagh         |                                | 42.31               | 0.770                                 | 1.19             | -                                                | desire     |           |

| 1.           | 2.        | 3.     | 4.       | 5.   | 6.       | 7.        | 8.                                      |
|--------------|-----------|--------|----------|------|----------|-----------|-----------------------------------------|
| T—9          | _         | 35.24  | 0.790    | 1.16 | -        |           |                                         |
|              | 7.5       | 38.10  | 0.879    |      | 24.2     |           |                                         |
|              | . 13.6    | 40.80  | 0.927    | _    | 25.3     | _         |                                         |
|              | 21.9      | 43.60  | 0.871    | _    | 27.0     | _         |                                         |
|              | 31.6      | 47.40  | 0.763    | _    | 30.3     | _         |                                         |
| 727          | _         | 50.50  | mponeme. | 1.34 | 38.6     | -         |                                         |
| UG-201       | _         | 39.70  | 0.820    | 1.11 | _        | _         |                                         |
| UG—218       | _         | 43.31  | 0.780    | 1.28 | _        |           |                                         |
| UG—236       |           | 45.36  | 0.800    | 1.06 | _        | _         |                                         |
| UH—28        | _         | 39.80  | 0.800    | 1.24 | _        | -         |                                         |
| UH—87        | -         | 40.25  | 0.830    | 1.33 | militare | -         |                                         |
| UH-80-4      |           | 40.00  | 0.790    | 1.25 |          |           |                                         |
| Cowpea       |           |        |          |      |          |           | 173                                     |
| T—2          | _         | 152.30 | _        | 1.19 | 128.3    |           |                                         |
| Greengram    |           |        |          |      |          |           | 41,52,143                               |
| HB—45        | _         | 30.00  |          | 1.55 | 19.5     | _         | , , , , , , , , , , , , , , , , , , , , |
| J-45         | _         | 30.66  | 0.670    | 1.45 |          | _         |                                         |
| K—851        | _         | 45.00  | 0.750    | 1.05 | _        | _         |                                         |
| Kopargaon    |           | 52.67  | 0.580    | 1.38 |          |           |                                         |
| MH—87—7      | _         | 35.00  | 0.650    | 1.11 | _        | _         |                                         |
| MH-309       |           | 40.00  | 0.720    | 1.18 | _        | _         |                                         |
| Pant Mung—2  | _         | 36.12  | 0.770    | 1.07 | _        |           |                                         |
| PB           | 7.5       | 36.70  | 0.759    | _    | 28.5     | _         |                                         |
|              | 13.6      | 39.30  | 0.764    | _    | 33.0     | _         |                                         |
|              | 21.9      | 41.80  | 0.748    |      | 37.3     | _         |                                         |
|              | 31.6      | 45.30  | 0.715    |      | 40.6     |           |                                         |
| PS-16        | emblishib | 35.25  | 0.770    | 1.18 | · —      |           |                                         |
| Pusa—Baisaki | _         | 36.33  | 0.560    | 1.58 |          | _         |                                         |
| Pusa—105     | -         | 35.30  | 0.740    | 1.04 | _        |           |                                         |
| Rahuri       |           | 35.20  | 0.700    | 1.03 |          | _         |                                         |
| UPM-82-4     |           | 35.18  | 0.730    | 1.06 |          |           |                                         |
| UPM8310      | -         | 33.10  | 0.760    | 1.17 | _        |           |                                         |
| 11—395       |           | 39.15  | 0.690    | 1.25 | _        | _         |                                         |
| Horsegram    |           |        |          |      |          |           | 41                                      |
| Local        | _         | 32.10  | 0.829    | 1.33 | _        |           |                                         |
| Lentil       |           |        |          |      |          |           | 52                                      |
| L—9—12       | 7.5       | 17.8   | 0.765    |      | 13.4     |           |                                         |
|              | 13.6      | 18.9   | 0.753    | _    | 14.4     | entirure. |                                         |
|              | 21.9      | 20.2   | 0.734    | -    | 15.3     | _         |                                         |
|              | 31.6      | 21.8   | 0.711    | _    | 15.9     |           |                                         |

| 1.         | 2.   | 3.           | 4.      | 5.       | 6.         | 7.           | 8.     |
|------------|------|--------------|---------|----------|------------|--------------|--------|
| Pea        |      |              |         |          |            |              | 41,52  |
| Arcle      | 7.5  | _            | 0.630   | _        | 131.6      | _            |        |
|            | 13.6 | _            | 0.632   |          | 144.6      |              |        |
|            | 21.9 |              | 0.622   | gradum   | 155.2      | _            |        |
|            | 31.6 | _            | 0.592   | payments | 160.4      | _            |        |
| Banniville |      | 239.40       | _       | 1.13     | 213.6      | _            |        |
| VRS-6115   | _    | 210.40       | -       | 1.37     | 160.8      | _            |        |
| Pigeon pea |      |              |         |          |            |              | 52,173 |
| ICPL—1     | 13.6 |              | 0.850   | 1.14     |            |              | ·      |
| ICPL—6     | 13.6 | _            | 0.770   | 1.02     | _          | _            |        |
| ICPL—87    | 13.6 | _            | 0.760   | 1.05     | _          | _            |        |
| ICPL—131   | 13.6 |              | 0.780   | 1.15     |            | _            |        |
| ICPL—138   | 13.6 |              | 0.760   | 1.13     | _          |              |        |
| ICPL—211   | 13.6 |              | 0.800   | 1.14     | _          | _            |        |
| ICPL-227   | 13.6 |              | 0.740   | 1.07     | _          | _            |        |
| ICPL-270   | 13.6 |              | 0.750   | 1.03     | _          | _            |        |
| ICPL—332   | 13.6 |              | 0.830 ~ | 1.13     |            |              |        |
| ICPL—333   | 13.6 |              | 0.800   | 1.08     | · <u>·</u> | _            |        |
| ICPL—7035  | 13.6 | _            | 0.770   | 1.17     |            | _            |        |
| ICPL-84060 | 13.6 |              | 0.810   | 1.15     | _          | _            |        |
| JA3        | 7.5  | 90.00        | 0.758   | _        | 67.1       | *****        |        |
|            | 7.9  | 90.50        | _       | 1.34     |            | estimate in  |        |
|            | 13.6 | 94.30        | 0.734   | mann.    | 70.8       | <del>-</del> |        |
|            | 21.9 | 102.30       | 0.689   | -        | 87.8       |              |        |
|            | 31.6 | 109.60       | 0.628   |          | 92.7       | _            |        |
| K—11       |      | 120.20       | _       | 1.33     | 90.9       |              |        |
| Local      | 9.2  | _            | 0.820   | 1.33     | _          | 38.5         |        |
|            | 10.8 | _            | 0.810   | 1.33     | _          | 39.0         |        |
|            | 14.1 | _            | 0.810   | 1.33     |            | 39.5         |        |
|            | 18.9 | -uphent-take | 0.810   | 1.33     | _          | 40.0         |        |
| UPAS—120   | 12.4 | _            | 0.948   | 1.36     | _          | 37.5         |        |
|            | 13.2 | _            | 0.845   | 1.35     | _          | 37.4         |        |
|            | 14.9 | _            | 0.943   | 1.35     | _          | 37.5         |        |
|            | 16.5 | -            | 0.911   | 1.34     | _          | 37.5         |        |
|            | 19.3 | _            | 0.938   | 1.34     | _          | 37.6         |        |
|            | 20.2 | _            | 0.933   | 1.34     |            | 37.8         |        |
|            | 26.6 |              | 0.925   | 1.34     | _          | 39.3         |        |

Table 3.3: Gravimetric properties of oilseeds

| Grain/Variety  | Moisture<br>content,<br>% (db) | 1000<br>grain wt, g | Bulk<br>density,<br>g/cm <sup>3</sup> | Specific<br>gravity | Volume of single seed, mm <sup>3</sup> | Porosity, | Reference |
|----------------|--------------------------------|---------------------|---------------------------------------|---------------------|----------------------------------------|-----------|-----------|
| 1.             | 2.                             | 3.                  | 4.                                    | 5.                  | 6.                                     | 7.        | 8.        |
| Castor         |                                |                     |                                       |                     |                                        |           | 51,54     |
| NPH—1          | 7.5                            | _                   | 0.568                                 |                     | 187.10                                 |           |           |
|                | 13.6                           |                     | 0.571                                 | -                   | 189.70                                 | _         |           |
|                | 21.9                           | _                   | 0.569                                 | emphasio (a)        | 192.10                                 | Contract  |           |
|                | 31.6                           |                     | 0.566                                 | _                   | 196.70                                 | _         |           |
| Local          |                                |                     |                                       |                     |                                        |           | •         |
| Small          | 5.4                            | 178.0               | 0.582                                 | 0.89                | 225.00                                 | 34.3      |           |
| Medium         | 5.3                            | 566.5               | 0.457                                 | 0.85                | 666.00                                 | 46.3      |           |
| Large          | 4.9                            | 686.7               | 0.475                                 | 0.71                | 900.00                                 | 33.0      |           |
| Groundnut (ker | nel)                           |                     |                                       |                     |                                        |           | 41,53     |
| G—11           | 7.5                            | _                   | 0.593                                 | _                   | 364.30                                 | _         |           |
|                | 13.6                           | _                   | 0.604                                 |                     | 374.20                                 | _         |           |
|                | 21.9                           | _                   | 0.572                                 |                     | 403.20                                 | _         |           |
|                | 31.6                           | _                   | 0.554                                 | -                   | 441.70                                 | _         |           |
| RS—1           | _                              | 507.3               |                                       | 0.93                | 545.00                                 |           |           |
| TG-3           | 7.5                            | _                   | 0.604                                 | _                   | 236.80                                 | _         |           |
|                | 13.6                           | _                   | 0.614                                 | , —                 | 257.30                                 | _         |           |
|                | 21.9                           | _                   | 0.593                                 |                     | 321.20                                 |           |           |
|                | 31.6                           |                     | 0.584                                 |                     | 443.40                                 | _         |           |
| Groundnut (pod |                                |                     |                                       |                     |                                        |           | 10,75,137 |
| GAUG-1         | 5.3                            | _                   | 0.321                                 | 0.66                | -                                      | 69.9      |           |
|                | 13.6                           | _                   | 0.326                                 | 0.68                | -                                      | 67.8      |           |
|                | 20.5                           | _                   | 0.342                                 | 0.71                |                                        | 66.2      |           |
|                | 28.2                           |                     | 0.356                                 | 0.79                | _                                      | 65.4      |           |
| GAUG-10        | 5.3                            |                     | 0.238                                 | 0.49                | _                                      | 76.8      |           |
|                | 13.6                           | -                   | 0.238                                 | 0.52                | ***                                    | 74.8      |           |
|                | 20.5                           | _                   | 0.246                                 | 0.53                | -                                      | 73.6      |           |
|                | 28.2                           |                     | 0.266                                 | 0.57                | _                                      | 73.2      |           |
| GG-2           | 5.3                            | nine.               | 0.287                                 | 0.59                | -                                      | 70.9      |           |
|                | 13.6                           | -                   | 0.297                                 | 0.62                |                                        | 68.4      |           |
|                | 20.5                           | _                   | 0.303                                 | 0.63                | -                                      | 66.7      |           |
|                | 28.2                           | -                   | 0.328                                 | 0.71                | _                                      | 66.0      |           |
| GG-11          | 5.3                            | -                   | 0.221                                 | 0.45                | _                                      | 77.0      |           |
|                | 13.6                           | -                   | 0.224                                 | 0.45                | also                                   | 75.4      |           |
|                | 20.5                           | -                   | 0.238                                 | 0.49                | -                                      | 74.4      |           |
|                | 28.2                           | _                   | 0.247                                 | 0.53                | . —                                    | 73.6      |           |

| 1.                         | 2.   | 3.    | 4.         | 5.         | 6.           | 7.     | 8. |
|----------------------------|------|-------|------------|------------|--------------|--------|----|
| M-13                       | 5.3  | -     | 0.211      | 0.43       | _            | 78.1   |    |
|                            | 13.6 | end . | 0.219      | 0.47       | _            | 76.3   |    |
|                            | 20.5 | -     | 0.229      | 0.48       | _            | 75.3   |    |
|                            | 28.2 | _     | 0.243      | 0.50       | _            | 75.0   |    |
| JL-24                      |      |       |            |            |              |        |    |
| Single kernel<br>ellipsoid | 10.3 | _     | -          | 0.61       | _            | _      |    |
| Double kernel ellipsoid    | 10.3 | _     | _          | 0.56       | _            | _      |    |
| Paired ellipsoid           | 10.3 | _     | -          | 0.53       | _            | _      |    |
| Cassinoids                 | 10.3 |       | _          | 0.55       | _            |        |    |
| Triple kernel ellipsoid    | 10.3 | _     | · <u> </u> | 0.55       | _            | -      |    |
| Pol.1                      |      | _     | 0.308      |            | _            | _      |    |
| TMV—1                      | _    | _     | 0.317      | _          | _            | _      |    |
| TMV—3                      |      | _     | 0.274      | -          | _            | _      |    |
| TMV—7                      |      | _     | 0.281      | -          |              |        |    |
| inseed                     |      |       |            |            |              |        | 20 |
| JL—23—01                   |      | 6.50  | 0.700      | 1.18       | _            | 40.68  |    |
| LC-54                      | 5.4  |       | 0.732      | 1.13       | _            | 35.44  |    |
|                            | 11.0 | _     | 0.696      | 1.11       | Marine State | 37.24  |    |
|                            | 16.4 |       | 0.652      | 1.10       | _            | 40.61  |    |
|                            | 22.3 |       | 0.588      | 1.10       |              | 46.36  |    |
|                            | 28.1 | _     | 0.586      | 1.08       | -            | 45.84  |    |
| LC-185                     | 5.4  | _     | 0.718      | 1.13       | _            | 36.51  |    |
|                            | 11.0 | _     | 0.712      | 1.11       | _            | 35.85  |    |
|                            | 16.4 |       | 0.692      | 1.11       |              | 37.43  |    |
|                            | 22.3 |       | 0.642      | 1.10       | _            | 41.58  |    |
|                            | 28.1 | -     | 0.637      | 1.07       | _            | 40.46  |    |
| R-7                        | 7.5  | -     | 0.556      | -          | 7.00         | -      |    |
|                            | 13.6 | -     | 0.558      | -          | 7.60         | _      |    |
|                            | 21.9 | -     | 0.555      | -          | 8.10         | orana. |    |
|                            | 31.6 | -     | 0.546      |            | 8.30         |        |    |
| T—59                       | 6.8  | 9.24  |            | 1.08       | -            | •      |    |
| Mustard                    |      |       |            |            |              |        | 9  |
| Pusabold                   | 7.5  |       | 0.564      | Ministeren | 3.70         |        |    |
|                            | 8.0  | 7.10  | -          | 1.13       |              | _      |    |
|                            | 13.6 | -     | 0.572      | _          | 4.00         |        |    |
|                            | 21.9 |       | 0.567      | -          | 4.30         | _      |    |

| 1.           | 2.   | 3.              | 4.             | 5.           | 6.               | 7.                                      | 8.     |
|--------------|------|-----------------|----------------|--------------|------------------|-----------------------------------------|--------|
|              | 31.6 | _               | 0.556          |              | 4.70             |                                         |        |
| Niger seed   |      |                 |                |              |                  |                                         | 78     |
| Local        | 10.1 | 2.85            | _              | 1.07         | _                | _                                       |        |
| Safflower    |      |                 |                |              |                  |                                         | 9,78   |
| JSF—1        | 7.0  | 74.77           | _              | 1.00         | -                | -                                       | ,      |
|              | 7.5  | _               | 0.624          |              | 80.32            | *************************************** |        |
|              | 13.6 | eneman.         | 0.621          |              | 84.60            | _                                       |        |
|              | 21.9 |                 | 0.619          | _            | 87.70            |                                         |        |
|              | 31.6 |                 | 0.604          |              | 90.00            | _                                       |        |
| Soybean      | 01.0 |                 | 0.001          |              | 00.00            |                                         | 37,173 |
| Ankur        | _    | 107.22          | 0.950          | 1.19         |                  |                                         | 01,110 |
| Bragg        |      | 148.67          | 0.970          | 1.11         |                  |                                         |        |
| D1465        | 9.2  | 110.01          | 0.680          | 1.20         |                  | 43.40                                   |        |
|              | 9.4  |                 | 0.810          | 1.33         |                  | 41.40                                   |        |
|              | 10.8 | _               | 0.690          | 1.18         | _                | 41.80                                   |        |
|              | 13.6 |                 | 0.680          | 1.18         |                  | 42.20                                   |        |
|              | 19.6 | _               | 0.670          | 1.18         | _                | 48.10                                   |        |
| DG 76 1 90   |      | 101.00          |                |              |                  | 40.10                                   |        |
| DS-76-1-29   |      | 101.99          | 0.990          | 1.21         | 168.80           |                                         |        |
| JS—2         | 7.5  | _               | 0.684          | _            |                  |                                         |        |
|              | 13.6 | _               | 0.659          | _            | 179.00           |                                         |        |
|              | 21.9 |                 | 0.647          | _            | 204.00           | _                                       |        |
|              | 31.6 | 150.07          | 0.624          | 1 10         | 210.70           |                                         |        |
| TC #044      | 0.77 | 153.97          | 0.960          | 1.10         | 01.00            | 20.50                                   |        |
| JS7244       | 8.7  | 110.0           | 0.736          | 1.22*        | 91.00            | 39.50                                   |        |
|              | 10.4 | 111.0           | 0.732          | 1.19*        | 93.00            | 38.80                                   |        |
|              | 14.6 | 115.0           | 0.723          | 1.17*        | 98.00            | 38.40                                   |        |
|              | 16.4 | 120.0           | 0.721          | 1.17*        | 103.00<br>109.00 | 38.20                                   |        |
|              | 21.8 | 124.0           | 0.713          | 1.14*        |                  | 37.60                                   |        |
| TO 75 10     | 25.0 | 127.0           | 0.708          | 1.12*        | 113.00           | 37.00                                   |        |
| JS-75-19     |      | 121.64          | 0.880          | 1.03         | _                | _                                       |        |
| JS-75-45     | -    | 122.66          | 0.940          | 1.38         |                  | _                                       |        |
| JS—76—205    |      | 104.20          | 0.930<br>0.960 | 1.12<br>1.09 |                  |                                         |        |
| JS—76—259    |      | 110.84          | 0.960          |              |                  |                                         |        |
| JS—76—280    | _    | 93.93<br>103.27 | 0.970          | 1.10<br>1.37 |                  |                                         |        |
| JS—80—21     |      | 75.01           | 0.970          | 1.15         |                  |                                         |        |
| Kalituar     | -    |                 | 0.570          | 1.15         | 171.10           |                                         |        |
| Lee          | 6.7  | 194.70          | 0.672          | 1.10         | 171.10           | 34.94                                   |        |
| Local        | 6.7  |                 | 0.620          |              |                  | 04.74                                   |        |
| * Kernel den | 19.9 |                 | 0.020          |              |                  |                                         |        |

<sup>\*</sup> Kernel density

Table Contd...

| 1.                  | 2.           | 3.          | 4.       | 5.     | 6.                        | 7.         | 8.       |
|---------------------|--------------|-------------|----------|--------|---------------------------|------------|----------|
|                     |              |             | _        | _      | _                         | 34.40      |          |
|                     | 23.8         | -           | _        | · —    | _                         | 30.32      |          |
|                     | 29.7         | nament.     | _        | _      |                           | gaspanella |          |
| MACS—75             | Contribution | 105.49      | 0.920    | 1.39   | -                         |            |          |
| N—19                | -            | 100.44      | 0.980    | 1.14   | _                         |            |          |
| PK-472              |              | 123.12      | 0.980    | 1.10   | generative                | _          |          |
| Punjab—1            |              | 149.70      |          | 1.22   | 131.00                    |            |          |
| T-49                |              | 73.02       | 0.970    | 1.09   | -                         | _          |          |
| Sunflower<br>(head) |              |             |          |        |                           |            | 113      |
| Morden              |              | -           | 0.085    | 0.26   | 1.53 X<br>10 <sup>5</sup> | 67.4       |          |
| Sunflower<br>(seed) |              |             |          |        |                           |            | 9,41,113 |
| CO-1                | 4.3          | _           | 0.311    | _      | _                         | 58.81      |          |
|                     | 19.9         | <u> </u>    | 0.312    | _      |                           | -          |          |
|                     | 25.0         | <del></del> | 0.336    | _      | _                         | 46.03      |          |
| CMS—234A            | <u> </u>     | 38.64       | 0.368    | 0.64   |                           | -          |          |
| GD—1                |              | 28.64       | 0.451    | 0.63   | Water Co.                 |            |          |
| KSH—1               | <del></del>  | 36.33       | 0.297    | 0.64   | _                         | _          |          |
| Morden              | 7.6          |             | 0.414    |        | _                         | _          |          |
|                     | 7.9          | _           | 0.289    | 0.65   | 62.00                     | 55.00      |          |
|                     | 9.2          | 42.18       | pulsipus | Name . | 70.50                     |            |          |
|                     | 13.6         | _           | 0.422    | 0.73   | 76.10                     | , c        |          |
|                     | 21.9         |             | 0.409    | W-W    | 80.40                     |            |          |
|                     | 31.6         | -           | 0.384    |        | 82.23                     | -          |          |
|                     | -            | 41.12       | 0.359    | 0.61   | _                         | _          |          |
| RHA-274             |              | 27.66       | 0.412    | 0.69   |                           | -          |          |

Table 3.4: Gravimetric properties of fruit and vegetable seeds

| Crop/Variety            | Moisture<br>content,<br>% (db) | 1000 grain<br>wt., g | Bulk<br>density,<br>g/cm | Specific gravity | Volume of single seed, mm <sup>3</sup> | Porosity,       | Reference |
|-------------------------|--------------------------------|----------------------|--------------------------|------------------|----------------------------------------|-----------------|-----------|
| 1.                      | 2.                             | 3.                   | 4.                       | 5.               | 6.                                     | 7.              | 8.        |
| Brinjal                 |                                |                      |                          |                  |                                        |                 | 148       |
| Local                   | 3.6                            | 2.3                  | 0.418                    | 0.61             | $2.15 \pm 0.48$                        | 31.8            |           |
| Gorgon nut<br>(makhana) |                                |                      |                          |                  |                                        |                 |           |
| Local                   | 15-60                          | 195-894              | 0.541-<br>09. 776        | 1.11-<br>1.25    | -                                      | 37.60-<br>51.30 | 70        |
| Long melon              |                                |                      |                          |                  |                                        |                 | 127       |
| Hull                    | _                              | -                    | 0.120                    | _                |                                        | _               |           |
| Kernel                  | -                              | _                    | 0.480—<br>0.560          | -                | _                                      | _               |           |
| Seed                    |                                | _                    | 0.460                    |                  |                                        | -               |           |
| Musk melon              |                                |                      |                          |                  |                                        |                 | 127       |
| Hull .                  | · -                            | _                    | 0.100—<br>0.120          | · _              | _                                      | -               |           |
| Kernel                  |                                | _                    | 0.500—<br>0.540          | -                | -                                      | _               |           |
| Seed                    | -                              | _                    | 0.450—<br>0.470          | -                | _                                      | -               |           |
| Peach fruit             |                                |                      |                          |                  |                                        |                 | 173       |
| Local                   | _                              | _                    |                          |                  | < 61.58×10 <sup>3</sup>                | SAME            |           |
| Pomegranate             |                                |                      |                          |                  |                                        |                 |           |
| Seed testa              | _                              | _                    | 0.700                    | -                | _                                      |                 | 173       |
| Whole seed              | _                              | _                    | 0.530                    | _                |                                        | _               |           |
| Pumpkin                 |                                |                      |                          |                  |                                        |                 | 148       |
| Local                   | 10.9                           | 150.8                | 0.394                    | 0.81             | 264 .00 ± 56.22                        | 51.5            |           |
| Summer melon            |                                |                      |                          |                  |                                        |                 | 148       |
| Local                   | 4.5                            | 37.6                 | 0.446                    | 0.86             | $36.94 \pm 7.94$                       | 51.5            |           |
| Tomato                  |                                |                      |                          |                  |                                        |                 | 148       |
| Rupali                  | 5.2                            | 2.6                  | 0.454                    | 1.13             | $8.04 \pm 4.03$                        | 59.9            |           |
| Water melon             |                                |                      |                          |                  |                                        |                 | 127,148   |
| Baby sugar              | 4.7                            | 104.9                | 0.474                    | 0.83             | 107.88 ± 12.57                         | 42.6            |           |
| Hull                    | _                              | -                    | 0.200                    | -                |                                        | _               |           |
| Kernel                  |                                | -                    | 0.500—                   | _                |                                        | _               |           |
| Seed                    | _                              |                      | 0.460—<br>0.580          | _                | _                                      | -               |           |

Table 3.5 Gravimetric properties of spices and jaggery

| Seed/<br>Variety | Moisture<br>content,<br>% (db) | 1000 grain<br>wt; g | Bulk<br>density,<br>g/cm | Specific gravity | Volume<br>of single<br>seed,<br>mm <sup>3</sup> | Porosity,      | Reference |
|------------------|--------------------------------|---------------------|--------------------------|------------------|-------------------------------------------------|----------------|-----------|
| 1.               | 2.                             | 3.                  | 4.                       | 5.               | 6.                                              | 7.             | 8.        |
| Aniseed (local)  |                                |                     |                          |                  |                                                 |                | 49        |
| Coarse           | 10.8                           | 8.56                | 0.422                    | 0.98             | 8.70                                            | 56.80          |           |
| Fine             | 9.7                            | 3.48                | 0.478                    | 1.13             | 2.30                                            | 57.60          |           |
| Coriander seed   |                                |                     |                          |                  |                                                 |                | 86        |
| Local            | 10.4                           | 5.80                | 0.292                    | 0.65             | 25.0                                            | 54.87          |           |
| Cumin seed       |                                |                     |                          |                  |                                                 |                | 172       |
| Local            | 7.6                            | 3.70                | 0.420                    | 0.87             | 3.50                                            | 51.95          |           |
| Fenugreek seed   |                                |                     |                          |                  |                                                 |                |           |
| Local            | 8.9                            | 10.87               | 0.728                    | 1.38             | 8.00                                            | 41.45          | 172       |
| Jaggery (gur)    |                                |                     | ,                        |                  |                                                 |                |           |
|                  | 4.7                            |                     | 1.350*                   | _                | _                                               | _              | 66        |
|                  | 6.2                            |                     | 1.370*                   |                  | <u> </u>                                        | _              |           |
|                  | 7.4                            |                     | 1.386*                   | _                | _                                               | _              |           |
|                  | 8.4                            |                     | 1.404*                   |                  |                                                 |                |           |
|                  | 9.9                            | -                   | 1.415*                   | -                | _                                               | · <del>_</del> |           |
|                  | 11.7                           | ,                   | 1.436*                   |                  | -                                               | -              |           |
|                  | 12.4                           | _                   | 1.438*                   | _                | _                                               |                |           |
|                  | 13.8                           | _                   | 1.440*                   | ******           |                                                 | _              |           |
| Turmeric rhyzome |                                |                     |                          | per 5            |                                                 |                | 50        |
| Sangali          | 12.5                           | 1285.0              | 0.730                    | 1.33             |                                                 | 45.1           |           |

# **CHAPTER - IV**

## FRICTIONAL PROPERTIES

The need for a knowledge of frictional properties of granular materials such as, seeds and grains on various surfaces has long been recognized by the engineers concerned with rational design of grain bins, silos and other storage structures. Co-efficient of internal friction and expansion characteristics are important in studying consolidation and compressibility of the material and determining methods of compressing and packaging. Angle of repose is important in design of equipment for solid flow and structures for storage of these materials.

Angle of repose: When a granular material is allowed to flow freely from a point into a pile, the angle which the side of the pile makes with horizontal plane is called the angle of repose.

Angle of repose of grains can be determined by the following method (IS:6663, 1972).

#### Procedure:

- 1. Place the timber base on a flat and level surface (Fig. 4.1). Fix up the stand along with funnel on the steel base already provided on the timber base so as to keep the funnel outlet 250 mm above the top edge of the container. Place the cylindrical container into a fixed position on the timber base.
- 2. With the container removed and the funnel outlet gate closed, pour the grain sample until the funnel is full and over flowing. Strike of the heaped cone of grain above the funnel inlet with a ruler.
- 3. Open the funnel outlet gate fully and allow the grain to fall freely into the measuring container.
- 4. Care should be taken while filling the container not to move or disturb it, so as to avoid any chance for packing or settling of the grain.
- 5. Calculate the height of the pile (d<sub>3</sub>) (Fig. 4.2) by the formula,

$$d_3 = d_1 - d_2$$
 Where, 
$$d_1 = \frac{d_{1a} + d_{1b}}{2}$$

6. Calculate the tangent of the angle (tan  $\phi$ )



Fig. 4.1. Details of apparatus for determination of angle of respose of grain.

$$\tan \varphi = \frac{d_{1-}d_2}{100} = \frac{d_3}{100}$$

Angle of repose, 
$$\varphi = \tan^{-1} \left[ \frac{(d_{3)}}{100} \right]$$

## Coefficient of external friction



Fig. 4.2. Illustration of angle of respose of grain

The coefficient of external friction could be measured (Donald, 1954) by using a table provided

with changeable surfaces

(Fig. 4.3).

...(4.1)

The box of the size  $10.3 \, \text{cm} \times 10.3 \, \text{cm} \times 5 \, \text{cm}$  is tied by a cord passing over a pulley and a pan is attached to this cord. The weights were put into the pan until the box starts to slide. These weights (W<sub>1</sub>) are noted. Later, the box is filled with sample material and again the weights are put to cause sliding of the box. These weights (W2) are also noted. The coefficient of external friction could be calculated as;



Fig. 4.3. Arrangement for measuring coefficient of external friction.

$$\mu_e = \frac{W_2 - W_1}{W} \qquad \dots (4.2)$$

Where,

 $\mu_e$ = coefficient of the external friction,

 $W_1$  = weight to cause sliding of empty box,

W<sub>2</sub> = weight to cause sliding of filled box, and

W = weight of the material inside the box.

### Co-efficient of internal friction



Fig. 4.4. Arrangement for measuring coefficient of internal friction.

For determining the coefficient of internal friction, a box of size 10.0 cm x 10.0 cm x 5 cm is put under the box of size 45 cm x 15 cm x 5 cm (Fig. 4.4).

Both the boxes are filled with the sample material. A box having size of 10 cm x 10 cm x 5 cm is then tied with the cord passing over a pulley attached to a pan. The weights  $(W_2)$  are put to cause the sliding of the box. Later, smaller box is made empty and weights  $(W_1)$  to cause sliding of it noted. The angle of internal friction could be calculated as;

$$\mu_i = \frac{W_2 - W_1}{W}$$
 ... (4.3)

Where,

 $\mu_i$ = coefficient of internal friction,

W<sub>1</sub> = weight to cause sliding of empty smaller box,

W<sub>2</sub> = weight to cause sliding of filled smaller box, and

W = weight of the material inside the smaller box.

### Measurement of initial shear stress

A simple apparatus as explained by Stepanoff (Sreenarayan et al., 1985) could be used for measurement of shear stress ( $\tau$ ) for different values of normal stress ( $\sigma$ ). The Fig. 4.5 describes the apparatus.



Fig. 4.5. Arrangement for measuring initial shear stress

The sample material is put in a box to the level of the bottom of the cell which is filled with the sample material. On the top of the material, weights are put to provide a desired compaction. Afterwards weights are kept in the pan until the cell begins to move. The normal stress could be calculated as;

$$\sigma = \frac{G_1 + G_2}{F} + h.\gamma \qquad (4.4)$$



Fig. 4.6. Shear stress v/s normal stress for Bengal gram (Cicer Arietinum Linn).

Where,

 $G_1$  = weight of the cell, g  $G_2$  = weight due to load on top of the cell, g F = area of the cell, cm<sup>2</sup> h = height of solids in the cell, cm, and  $\gamma$  = density of the material.

The data obtained during the experimentation are used to plot a curve between shear stress and normal stress to obtain the value of initial shear stress (Fig. 4.6).

| Grain/        | Moiature           | ain/ Moisture Angle of Co-effici | Coeffici                       |       |                  | Coeffic | Co-efficient of static friction | c friction |                |               | Kefere |
|---------------|--------------------|----------------------------------|--------------------------------|-------|------------------|---------|---------------------------------|------------|----------------|---------------|--------|
| Variety       | content,<br>% (db) | repose,                          | ent of<br>internal<br>friction | Glass | Polyeth-<br>lene | Wood    | Plywood                         | R.C.C.     | Alumin-<br>ium | G.I.<br>Sheet | 90g    |
| 1.            | 2.                 | 60                               | 4.                             | 5.    | .9               | 7.      | 8.                              | 9.         | 10.            | 11.           | 12.    |
| Bajra         |                    |                                  |                                |       |                  |         |                                 |            |                |               | 41,127 |
| HB-1          | 11.1               | 1                                | 1                              | 1     | 0.28             |         | 1                               | 0.36       | 1              | ı             |        |
|               | 14.0               | 1                                | 1                              | -1    | 0.29             | ,       | 1                               | 0.39       | 1              | ı             |        |
|               | 17.0               | 1                                | 1                              | 1     | 0.31             | 1       | 1                               | 0.40       | 1              | ı             |        |
|               | 20.0               | ı                                | 1                              | 1     | 0.34             | 1       | 1                               | 0.42       | ì              | ı             |        |
| Finger millet | •                  |                                  |                                |       |                  |         |                                 |            |                |               | 41     |
| CO-11         | 8.0                | ı                                | 1                              | 1     | 0.26             | ı       | ı                               | 0.35       | 1              | 1             |        |
|               | 10.9               | ı                                | 1                              | 0.17  | 1                | 0.47    | 1                               | 1          | 0.39           | . 1           |        |
| Maize         |                    |                                  |                                |       |                  |         |                                 |            |                |               | 127    |
| Ganga-6       | < 10.0             | 27.0                             | ı                              | 1     | 1                | 1       | 0.23                            | 1          | ı              | 0.23          |        |
|               | 10.0-19.9          | 28.0                             | ı                              | .1    | 1                | ı       | 0.25                            | 1          | 1              | 0.28          |        |
|               | 20.0-29.9          | 34.4                             | 1                              | ı     | 1                | i       | 0.38                            | 1          | 1              | 0.39          |        |
|               | 30.0—39.9          | 34.5                             | 1                              | 1     | 1                | 1       | 0.39                            | 1          | 1              | 0.42          |        |
|               | 40.0-49.9          | 35.0                             | ı                              | ı     |                  | 1       | 0.41                            | 1          | 1              | 0.44          |        |
| Local         | < 10.0             | 26.1                             | 1                              | ł     | ı                | 1       | 0.22                            | 1          | 1              | 0.23          |        |
|               | 10.0-19.9          | 28.2                             | 1                              | 1     | 1                |         | 0.25                            | 1          | 1              | 0.28          |        |
|               | 20.0-29.9          | 32.8                             | 1                              | 1     | 1                | 1       | 0.27                            | 1          | 1              | 0.32          |        |
|               | 30.0—39.9          | 37.1                             | 1                              | 1     | 1                | 1       | 0.37                            |            | 1              | 0.38          |        |
|               | 40.0-49.9          | 38.0                             | 1                              | 1     | 1                | 1       | 0.39                            | 1          | 1              | 0.39          |        |
| Malan         | 7.9                | 26.6                             | 1                              | 1     | ı                | 1       | 0.30                            | 1          | 1              | 0.32          |        |
|               | 10.9               | 26.2                             | 1                              | 1     | 1                | . 1     | 0.31                            | 1          | 1              | 0.34          |        |
|               | 14.0               | 27.6                             | 1                              | 1     | 1                | 1       | 0.34                            | 1          | 1              | 0.35          |        |
|               | 16.9               | 28.0                             | i                              | 1     | 1                | 1       | 0.36                            | 1          | 1              | 0.38          |        |
|               | 20.0               | 28.9                             | 1                              | 1     | 1                | 1       | 0.39                            | 1          |                | 0.40          |        |
| MCLU-6        | 8.2                | 30.1                             | 1                              | 1     | -                | 1       | 1                               | 1          | 1              | 0.34          |        |

|           | 23        | က    | *  | 5. | .9 | 7. | œ.   | 9. | 10. | 11.  | 12.    |
|-----------|-----------|------|----|----|----|----|------|----|-----|------|--------|
| Vijay-    | < 1.0.0   | 28.4 | -  | 1  | 1  | 1  | 0.23 | ı  | 1   | 0.24 |        |
| composite | 10.0-19.9 | 28.7 | 1  | 1  | 1  | 1  | 0.25 | ١  | 1   | 0.28 |        |
|           | 20.0-29.9 |      | 1  | .1 | 1  | 1  | 0.33 | 1  | ł   | 0.40 |        |
|           | 30.0—39.9 |      | 1  | 1  | 1  | 1  | 0.34 | ı  | 1   | 0.39 |        |
|           | 40.0 49.9 |      | 1  | 1  | 1  | 1  | 0.36 | ١  | 1   | 0.40 |        |
| addy      |           |      |    |    |    |    |      |    |     |      | 41,173 |
| ADT-27    | 9.6       | 25.3 | I  | 1  | 1  | 1  | 1    | ١  | 1   | 1    |        |
|           | 13.2      | 27.0 | 1  | 1  | 1  | 1  | 1    | ı  | ١   | ı    |        |
|           | 16.7      | 8.92 | ı  | 1  | I  | 1  | 1    | 1  | 1   | ı    |        |
|           | 19.6      | 28.5 | 1  | 1  | 1  | 1  | 1    | ı  | 1   | ļ    |        |
|           | 25.6      | 31.3 | ļ  | ı  | 1  | 1  | 1    | ı  | 1   | ı    |        |
|           | 31.6      | 32.0 | 1  | Ì  | 1  | ı  | ı    | ı  | ı   | ı    |        |
| Basmati   | 13.6      | 34.7 | 1  | 1  | I  | 1  | 1    | 1  | 1   | . 1  |        |
| CO-25     | 9.3       | 25.9 | 1  | 1  | I  | ı  | 1    | 1  | ı   | ı    |        |
|           | 13.6      | 27.2 | 1  | 1  | 1  | 1  | 1    | ı  | 1   | ı    |        |
|           | 17.2      | 27.4 | 1  | 1  | 1  | ı  | ı    | 1  | 1   | ı    |        |
|           | 20.0      | 31.8 | 1. | 1  | 1  | ı  | 1    | ı  | 1   | ı    |        |
|           | 25.3      | 28.4 | I  | 1  | 1  | 1  | 1    | ı  | 1   | 1    |        |
|           | 31.6      | 27.8 | 1  | 1  | 1  | 1  | 1    | 1  | . 1 | ı    |        |
| CO-33     | 6.6       | 27.8 | 1  | 1  | 1  | ı  | 1    | I  | 1   | ı    |        |
|           | 12.9      | 32.3 | 1  | 1  | 1  | ı  | ļ    | 1  | 1   | ı    |        |
|           | 15.6      | 32.5 | 1  | 1  | 1  | 1  | 1    | 1  | 1   | ļ    |        |
|           | 20.0      | 32.6 | 1  | 1  | 1  | 1  | 1    | 1  | 1   | ĵ    |        |
|           | 25.9      | 31.0 | 1  | 1  | 1  | 1  | ı    | 1  | ı   | 1    |        |
|           | 0 00      | 0.0  |    |    |    |    |      |    |     |      |        |

|             | 12. |      |      |      |      |      |            |      |      |       |      |      |      |      |      |           |           |      |      |        |           |      |      |      |           |
|-------------|-----|------|------|------|------|------|------------|------|------|-------|------|------|------|------|------|-----------|-----------|------|------|--------|-----------|------|------|------|-----------|
|             | 11. | I    | l    | I    | l    | ì    | ı          | ł    | I    | ł     | 1    | 1    | ı    | 1    | . 1  | 1         | 1         | J    | 1    | ł      | 1         | 1    | . 1  | I    | 1         |
|             | 10. | 1    | 1    | 1    | ١    | 1    | <b> </b> - | I    | 1    | ļ     | 1    | ١    | 1    |      | 1    | !         | 1         | ı    | 1    | 1      | 1         | 1    | 1    | t    | 1         |
|             | 6   | ı    | 1    | 1    | 1    | ı    | 1          | 1    | 1    |       | -1   | ı    | . 1  | 1    | 1    | 1         | 1         | 1    | 0.49 | 1      | 1         | 0.49 | 0.53 | 0.55 | 1         |
|             | œ.  | ı    | 1    | 1    | 1    | 1    | l          | Ì    | 1    | ı     | 1    | 1    | 1    | 1    | Į.   | 1         | 1         | 1    | 1    | 1      | ı         | 1    | 1    | 1    | 1         |
| ,           | 7.  | ı    | I    | 1    | 1    | I    | 1          | Į.   | 1    | J     | 1    | ļ    | 1    | 1    | ı    | ı         | 1         | 1    | 0.38 | 1      | 1         | 0.43 | 0.46 | 0.52 | 1         |
|             | 6.  | 1    | I    | ı    | ļ    | 1    | 1          | ļ    | 1    | ı     | .    | ı    | 1    | 1    | ı    | 1         | 1         | 1    | 0.52 |        | 1         | 0.53 | 0.54 | 0.55 | ١         |
|             | 5.  | ı    | 1    | İ    | ı    | 1.   |            | ı    | 1    | ı     |      | I    | 1    |      | 1    | 1         | ļ         | 1    | 1    | 1      | 1         | 1    | 1    | 1    | 1         |
|             | 4.  | ı    | 1    | 1    | 1    | 1    | 1          | 1    | ı    | 1     | 1    | 1    | I    | 1    | 1    | ļ         | 1         | 1    | 0.56 | 1      | 1         | 0.57 | 0.58 | 0.59 | 1         |
|             | ю.  | 43.3 | 26.9 | 28.4 | 34.9 | 32.7 | 31.2       | 31.9 | 33.9 | 29.6  | 30.7 | 31.2 | 30.9 | 29.1 | 29.7 | 37.2      | 38.2      | 47.0 | 1    | 33.3   | 33.7      | 1    | 1    | 1    | 35.4      |
| td          | 2.  | 15.9 | 9.4  | 10.9 | 14.2 | 17.6 | 22.4       | 26.1 | 29.9 | 9.4   | 12.1 | 17.6 | 20.3 | 26.7 | 29.7 | 10.0-19.0 | 20.0—30.0 | 1    | 9.60 | < 10.0 | 10.0—19.0 | 11.8 | 14.0 | 18.8 | 20.0-30.0 |
| Table Contd | 1.  | IR-6 | IR-8 |      |      |      |            |      |      | IR-20 |      |      |      |      |      | IR-579    |           |      |      |        |           |      |      |      |           |

|                   |                |      |   |      |    |      |    | •  | **   | * * | 5   |
|-------------------|----------------|------|---|------|----|------|----|----|------|-----|-----|
|                   | 2.             | 3.   | 4 | 5.   | 9  | 7.   | œ. | 6. | 10.  | 11. | 12. |
| Joshna            | < 10.0         | 31.5 | 1 | 1    | 1  | 1    | 1  | 1  | 1    | 1   |     |
| -351              | 10.0-19.0      | 33.2 | 1 | ı    | 1  | 1    | 1  | -  | 1    | 1   |     |
|                   | 20.0—30.0      | 35.3 | 1 | 1    | 1  | ı    | I  | -  | 1    | -   |     |
| Manoha-<br>rasali | -1             | 45.0 | 1 | 1    | ı  | 1    | I  | i  | ı    | I   |     |
| Patnai            | 14.0           | 34.0 | 1 | 1    | 1  | 1    | 1  | 1  | ı    | 1   |     |
| Patnai-23         | 14.5           | 37.4 | 1 | Ì    | 1  | ١    | ١  | 1  | ı    | ı   |     |
| Ponmani           | 9.1            | - 1  | 1 | 1    | 1  | 1    | ı  | 1  | 1    | ı   |     |
|                   | 9.2            | 29.4 | ı | 1    | 1  | 1    | 1  | 1  | 1    | 1   |     |
|                   | 9.8            | ł    | 1 | 1    | 1. | 1    | 1  | ı  | 1    | 1   |     |
| Prasadbhog        | 1              | 47.0 | İ | . 1  | 1  | I    | 1  | ı  | ı    | 1   |     |
| TKM-6             | 9.5            | 28.6 | I | 1    | 1  | ļ    | 1  | ı  | 1    | 1   |     |
|                   | 10.9           | 30.2 | 1 | 1    | 1  | 1    | 1  | 1  | 1    | ı   |     |
|                   | 15.5           | 29.8 | 1 |      | 1  | 1    | ı  | I  | 1    | 1   |     |
|                   | 19.0           | 30.8 | ı | 1    | 1  | I    | l  | 1  | ı    | 1   |     |
|                   | 24.1           | 31.4 | I | 1    | 1  | 1    | 1  | 1  | 1    | 1   |     |
|                   | 30.9           | 31.6 | 1 | 1    | 1  | I    | 1  | 1  | 1    | 1   |     |
| Pearl millet      |                |      |   |      |    |      |    |    |      |     | 41  |
| 9-00              | 9.8            | 1    | 1 | 0.24 | 1  | 0.35 | ı  | I  | 0.31 | 1   |     |
| Sorghum           |                |      |   |      |    |      |    |    |      |     | 9   |
| CO-27             | 9.1            | 1    | 1 | 0.23 | 1  | 0.41 | 1  |    | 0.30 | .   |     |
| CSH-5             | 13.6± 0.5      | 23.8 | ı | 1    | I  | 1    | 1  | 1  | 1    | ı   |     |
|                   | $19.0 \pm 0.5$ | 25.2 | 1 | 1    | 1  | ļ    | 1  | 1  | ı    | j   |     |
|                   | $25.0 \pm 0.5$ | 27.1 | 1 | 1    | 1  | 1    | ı  | 1  | 1    | 1   |     |
|                   | 21 5.05        | 020  |   |      |    |      |    |    |      |     |     |

| 8. 9. 10. 11.  8. 9. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11.  1. 10. 11. | Table Contd | ntd        |      |      |      |      |      |    |      |      |    |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------|------|------|------|------|----|------|------|----|---------|
| 130 ± 0.5   25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 2.         | 69   | 4.   | 5.   | .9   | 7.   | œ. | 6    | 10.  | 11 | 12.     |
| 19.0 ± 0.5 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _           | 13.6 ± 0.5 | 25.1 | 1    | 1    | -    | 1    | 1  | 1    | 1    | 1  |         |
| 250 ± 0.0 5 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 19.0 ± 0.5 | 26.9 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | -  |         |
| 31.5 ± 0.5 28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 25.0 ± 0.5 | 27.3 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1. |         |
| 36—1       136 ± 0.6       27.8       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 31.5 ± 0.5 | 28.9 | -    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| 19.0 ± 0.6 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M-35-1      | 13.6 ± 0.5 | 27.8 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| 25.0 ± 0.5 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 19.0 ± 0.5 | 29.5 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| 31.5 ± 0.5 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 25.0 ± 0.5 | 31.3 | ı    | 1    | 1    | 1    | 1  | -    | 1    | 1  |         |
| -86 13.6 ± 0.5 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 31.5 ± 0.5 | 32.8 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| 19.0 $\pm$ 0.5 28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPV-86      | 13.6 ± 0.5 | 27.1 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| 25.0 ± 0.5 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 19.0 ± 0.5 | 28.9 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| 31.5 ± 0.5   31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 25.0 ± 0.5 | 31.0 | 1    | 1    | 1    | 1    | ı  | ı    | 1    | 1  |         |
| -202 13.6 ± 0.5 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 31.5 ± 0.5 | 31.5 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPH-202     | 13.6 ± 0.5 | 22.5 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| 25.0 ± 0.5 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 19.0≠0.6   | 24.1 | 1    | 1    | 1    | 1    | 1  | 1    | 1    | 1  |         |
| t2189 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 25.0 ± 0.5 | 27.3 | 1    | 1    | Ţ    | 1    | 1  | 1    | 1    | 1  |         |
| t 41,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 31.5 ± 0.5 | 28.9 | 1    | 1    | 1    | 1    | -  | 1    | 1    | 1  |         |
| -2189 8.4       -       0.18       -       0.26       -         alika 11.3       -       0.49       -       0.31       0.37       -       -       -         12.5       -       0.50       -       0.35       -       -       -       -         18.3       -       0.54       -       0.34       0.38       -       0.51       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wheat       |            |      |      |      |      |      |    |      |      |    | 41, 173 |
| 11.3     —     0.49     —     0.31     0.37     —     —       12.5     —     0.50     —     0.35     —     0.46     —       18.3     —     0.54     —     0.34     0.38     —     0.51     —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HD-2189     | 8.4        | -    | 1    | 0.18 | 1    | 0.28 | 1  | 1    | 0.26 | 1  | ,       |
| -     0.50     -     0.33     0.35     -     0.46     -       -     0.54     -     0.34     0.38     -     0.51     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sonalika    | 11.3       | 1    | 0.49 | 1    | 0.31 | 0.37 | 1  | 1    | 1    | 1  |         |
| -     0.54     -     0.34     0.38     -     0.51     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 12.5       | 1    | 0.50 | 1    | 0.33 | 0.35 | 1  | 0.46 | 1    | 1  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 18.3       | 1    | 0.54 | 1    | 0.34 | 0.38 | 1  | 0.51 | 1    | 1  |         |

| 1           | Moissita Anglo of Cooffic | Angloof           | Co-offici-                     |       |          | Coeffici | Co-efficient of static friction | c friction |          |             | Reference |
|-------------|---------------------------|-------------------|--------------------------------|-------|----------|----------|---------------------------------|------------|----------|-------------|-----------|
| Variety     | content,<br>% (db)        | repose,<br>degree | ent of<br>internal<br>friction | Glass | Polyeth- | Wood     | Plywood                         | R.C.C.     | Allumin- | GI<br>Sheet |           |
| 1.          | 23                        | es.               | 4.                             | 5.    | .9       | 7.       | 00                              | 9.         | 10.      | 11.         | 12.       |
| Bengal gram |                           |                   |                                |       |          |          |                                 |            |          |             | 48        |
| Local       | 8.1                       | 30.7              | 0.95                           | 1     | 1        | 1        | 0.56                            | 0.62       | 1        | 0.43        |           |
|             | 9.9                       | 1                 | 1                              | 1     | 1        | 0.38     | 1                               | 1          | 1        | 1           |           |
|             | 15.0                      | 1                 | 1                              | 1     | 1        | 0.40     | 1                               | 1          | 1        | 1           |           |
|             | 19.2                      |                   | 1                              | 1     | 1        | 0.42     | Į                               | 1          | 1        | 1           |           |
|             | 23.0                      | 1                 | 1                              | 1     | 1        | 0.44     | 1                               | 1          | 1        | 1           |           |
|             | 27.2                      | 1                 | 1                              | 1     | 1        | 0.51     | -                               | 1          | 1        | 1           |           |
|             | 319                       | 1                 | 1                              | 1     | 1        | 0.56     | 1                               | 1          | 1        | -           |           |
| Black gram  |                           |                   |                                |       |          |          |                                 |            |          |             | 143       |
| DU-1        | -                         | 42.9              | 1                              | 1     | 1        | 1        | -                               | 1          | 1        | 1           |           |
| DU-2        | 1                         | 43.1              | 1                              | 1     | 1        | 1        | 1                               | 1          | İ        | 1           |           |
| DU-3        |                           | 43.2              | 1                              | 1     | 1        | 1        | 1                               | 1          | 1        | ı           |           |
| DU-4        | 1                         | 43.0              | 1                              | 1     | 1        | 1        | 1                               | 1          | 1        | ŀ           |           |
| JU-77-41    | 1                         | 42.8              |                                | 1     | 1        | 1        | 1                               | 1          | -        | ļ           |           |
| JU-78-3     | 1                         | 42.9              | 1                              | 1     | 1        | 1        | 1                               | -          | ı        | 1           |           |
| JU-78-27    | 1                         | 42.9              | 1                              | 1     | 1        | -        | . 1                             | 1          | 1        | 1           |           |
| Khargone—3  | 1                         | 42.8              | 1                              | 1     |          |          | -                               | 1          | 1        | 1           |           |
| Local       | 4.7                       | 28.6              |                                | 1     | 1        | 1        | 1                               | 1          | 1        | 1           |           |
|             | 4.9                       | 1                 | 1                              | 0.18  | -        | 0.29     | 1                               | -          | 0.29     | 1           |           |
|             | 7.1                       | 24.3              | 0.63                           | 1     | 1        | 1        | 0.51                            | 0.52       | 1        | 0.46        |           |
| 99-N        | -                         | 43.3              | 1                              | 1     | 1        | 1        | 1                               | 1          | ı        | 1           |           |
| Pant-U-30   | 1                         | 42.9              | 1                              | 1     | 1        | 1        | 1                               | 1          | 1        | ļ           |           |
| PDU-1       |                           | 40.0              |                                |       |          |          |                                 |            |          |             |           |

|             | 12. |       |       |       |      |           |      |        |        |        |       |         |         |          |            |          | 143        |      |           |       |       |         |        |             |       |      |          |          |
|-------------|-----|-------|-------|-------|------|-----------|------|--------|--------|--------|-------|---------|---------|----------|------------|----------|------------|------|-----------|-------|-------|---------|--------|-------------|-------|------|----------|----------|
|             | 11. | ı     | ı     | ı     | ļ    | ı         | ١    | ı      | ı      | ı      | ı     | ١       | ١       | 1        | i          | 1        |            | ļ.   | ı         | ı     | 0.34  | ı       | 1      | 1           | 1     | 1    |          | 1        |
|             | 10. | ı     | ı     | 1     | 1    | ı         | 1    | 1      | 1      | ŀ      | 1     | ١       | ı       | ı        | 1          | ı        |            | 1    | 1         | ļ     | 1     | 1       | 1      | ı           | 1     | ĺ    |          | ı        |
|             | 6   | ı     | 1     | ı     | 1    | ı         | 1    | 1      | I      | 1      | 1     | 1       | 1       | ı        | 1          | ı        |            | 1    | 1         | 1     | 0.41  | j       | ı      | 1           | 1     | 1    |          | 1        |
|             | ∞   | I     | ı     | 1     | 1    | ı         | ı    | 1      | I      | 1      | 1     | I       | I       | 1        | 1          | ı        |            |      | ı         | ı     | 0.34  | 1       | 1      | 1           | 1     | 1    |          | 1        |
|             | 7.  | ì     | 1     | 1     | 1    | ł         | 1    | i      | ı      | i      | 1.    | I       | ı       | ı        | ı          | 1        |            | 1.   | 1         | 1     | 1     | J       | 1      | 1           | . 1   | ı    |          | 1        |
|             | .9  | 1     | ١     | ı     | 1    | ı         | ł    | ı      | ı      | 1      | 1     | 1       | 1       | 1        | 1          | I        |            | 1    | ı         | ı     | i     | 1       | 1      | 1           | 1     | 1    |          | 1        |
|             | 5.  | 1     | ı     | 1     | 1    | 1         | 1    | 1      | ı      | ı      | ı     | J       | 1       | 1        | 1          | ,1       |            | 1    | I         | ļ     | 1     | 1       | 1      | 1           | 1     | 1    |          | 1        |
|             | 4.  | 1     | ţ     | 1     | 1    | ı         | 1    | 1      | ı      | ı      | I     | ı       | ı       | ١        | 1          | 1        |            | 1    | 1         | 1     | 0.58  | 1       | 1      | J,          | 1     | 1    |          | 1        |
|             | က   | 42.8  | 42.3  | 43.0  | 43.0 | 43.0      | 42.8 | 42.8   | 45.9   | 42.9   | 42.6  | 42.9    | 43.1    | 42.9     | 42.8       | 42.9     |            | 43.2 | 43.9      | 43.1  | 25.1  | 43.1    | 43.2   | 42.9        | 43.1  | 43.7 |          | 42.7     |
|             | 2.  | 1     | ı     | 1     | 1    | ļ         | -    | I      | 1      | 1      | 1     |         | 1       | 1        | 1          | 1        |            | 1    | ı         | 1     | 6.7   | 1       | 1      | 1           | 1     | Ì    |          | -        |
| Table Contd | 1.  | PDU-3 | PU-26 | PU-30 | RU-2 | Sardomage | T-9  | UG-201 | UG-218 | UG-236 | UH-28 | UH-80-4 | UH-80-7 | UPG-82-5 | UPU-80-3-5 | UPU-83-2 | Green gram | 3-45 | Kopargaon | K-851 | Local | MH-81-7 | MH-309 | Pant-Mung-2 | PS-16 | Pusa | Baisekhi | Puss-105 |

| 10          | 12. |          |          |         | 1      | 173       |       |        | 48    | 48,173    |        |        |         |          |          |          |          |          |          |          |           |           |       |      |      |      |      |
|-------------|-----|----------|----------|---------|--------|-----------|-------|--------|-------|-----------|--------|--------|---------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-------|------|------|------|------|
|             | TI. | 1        | 1        | 1       | ł      |           | 0.48  | ı      | 0.47  |           | ı      | ı      | 1       | 1        | ı        | 1        | I        | 1        | 1        | İ        | ı         | ı         | 0.49  | 1    | ı    | 1    | 1    |
|             | 10. | ı        | l        | 1       | ļ      |           | l     | ļ      | 1     |           | 1      | 1      | ı       | 1        |          | 1        | 1        | 1        | i        | ı        | 1         | ł         | ļ     | ı    | 1    | ١    | 1    |
|             | 6   | 1        | ı        | 1       | ı      |           | 1     | ı      | 0.53  |           | 1      | ı      | 1       | İ        | 1        | 1        | ı        | ı        | ı        | ı        | ı         | ı         | 0.51  | 0.31 | 0.31 | 0.31 | 0.35 |
|             | æ.  | 1        | ļ        | ı       | 1      |           | 1     | ļ      | 0.49  |           | 1      | ı      | ı       | 1        | 1        | ı        | I        | 1        | 1        | 1        | ı         | ı         | 0.50  | 1    | 1    | ı    | 1    |
|             | 7.  | ı        | ı        | 1       | 1      |           | i     |        | ı     |           |        | ı      | 1       | ı        | ı        | ı        | I        | 1        | 1        | I        | i         | 1         | ı     | 0.27 | 0.27 | 0.28 | 0.32 |
|             | 9.  | 1        | ı        | ı       | 1      |           | 0.45  | 1      | ı     |           | 1      | 1      | ı       | 1        | 1        | 1        | I        | ı        | ŀ        | 1        | ı         | ı         | 1     | 0.25 | 0.27 | 0.28 | 0.29 |
|             | 5.  | ı        | į        | ĺ       | ı      |           | 1     | 1      | 1     |           | 1      | 1      | ı       | 1        | ı        | 1        | 1        | 1        | 1        | 1        | .1        | ı         | 1     | 1    | 1    | 1    | 1    |
|             | 4   | 1        | ١        | 1       | l      |           | ١     | ı      | 0.51  |           | 0.41   | 0.40   | 0.42    | 0.38     | 0.42     | 0.36     | 0.42     | 0.40     | 0.37     | 0.37     | 0.38      | 0.38      | 0.40  | 0.34 | 0.34 | 0.35 | 0.38 |
|             | က်  | 42.9     | 42.8     | 43.2    | 42.9   | r         | 24.0  |        | 25.7  |           | 20.3   | 20.6   | 21.1    | 22.9     | 21.4     | 22.8     | 21.9     | 20.1     | 22.8     | 22.1     | 22.1      | 23.3      | 21.1  | ı    | 1    | 1    | 1    |
| rd          | 2.  | 1        | 1        | ı       | 1      |           | 1     |        | 8.2   |           | 1      | 1      | ı       | 1        | 1        | 1        | 1        | ı        | 1        | ı        | ı         | - 0       | 8.7   | 9.5  | 10.8 | 14.1 | 18.9 |
| Table Contd | 1.  | Rahuri-1 | UPM-82-4 | UPM-83- | 11—395 | Horsegram | Local | Lentil | Local | Pigeonpea | ICPL-1 | ICPL—6 | ICPL-87 | ICPL-131 | ICPL-138 | ICPL-211 | ICPL-227 | ICPL-270 | ICPL—332 | ICPL—333 | ICPL-7035 | ICPL_8406 | LOCAL | T-21 |      |      |      |

| y content, of efficient Allumini Glass Mill degree internal friction  2. 3. 4. 5. 6. 7.  dium 5.3 46.2 — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Moisture Angle Co-         | Moisture           | Angle                   | Co                         |      |       | Co   | efficient o  | Co-efficient of static fricion | ion    |               |      | Refer- |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-------------------------|----------------------------|------|-------|------|--------------|--------------------------------|--------|---------------|------|--------|
| 11 5.4 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Variety                    | content,<br>% (db) | of<br>repose,<br>degree | of<br>internal<br>friction |      | Glass | Mild | Ply-<br>wood | Polyet-<br>hylene              | R.C.C. | G.I.<br>sheet | Wood | ence   |
| ilium 5.4 47.8 — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.                         | 23                 | eri eri                 | 4.                         | 5.   | 6.    | 7.   | 80           | 9.                             | 10.    | 11.           | 12.  | 13.    |
| 5.4       47.8       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       — <td>Castor</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ap.</td> <td></td> <td></td> <td></td> <td></td> <td>51</td>              | Castor                     |                    |                         |                            |      |       |      | Ap.          |                                |        |               |      | 51     |
| 5.3       46.2       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       — <td>Small</td> <td>5.4</td> <td>47.8</td> <td>ı</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>98.0</td> <td>1</td> <td></td> | Small                      | 5.4                | 47.8                    | ı                          | 1    | -     | 1    | 1            | 1                              | 1      | 98.0          | 1    |        |
| 4.9       45.4       —       —       —       —         2.1       —       0.39       —       —       —         2.1       31.6       —       —       —       —         4.2       —       0.64       0.43       —       —       —         12.4       —       0.71       0.49       —       —       —         18.9       —       0.84       0.59       —       —       —       —         10.3       —       —       —       —       0.57         10.3       —       —       —       0.57         10.3       —       —       —       0.57         5.3       —       —       0.45       0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Medium                     | 5.3                | 46.2                    | 1                          | 1    | 1     | 1    | 1            | 1                              | 1      | 0.57          |      |        |
| 2.1       -       0.39       -       0.23       -         2.1       31.6       -       -       -       -         4.2       -       0.64       0.43       -       -         12.4       -       0.71       0.49       -       -         18.9       -       0.84       0.59       -       -         10.3       -       -       -       0.67         10.3       -       -       -       0.57         10.3       -       -       -       0.57         10.3       -       -       -       0.57         10.3       -       -       -       0.57         10.3       -       -       -       0.57         5.3       -       -       0.45       0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Large                      | 4.9                | 45.4                    | 1                          | 1    | 1     | 1    | 1            | 1                              | 1      | 0.85          | 1    |        |
| 2.1       —       0.39       —       0.23       —         2.1       31.6       —       —       —       —         4.2       —       0.64       0.43       —       —         12.4       —       0.71       0.49       —       —         18.9       —       0.84       0.59       —       —         10.3       —       —       —       0.67         10.3       —       —       —       0.57         10.3       —       —       —       0.57         10.3       —       —       —       0.57         10.3       —       —       —       0.57         5.3       —       —       0.45       0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gingelly                   |                    |                         |                            |      |       |      |              |                                |        |               |      | 147    |
| 2.1       31.6       —       —       —       —         4.2       —       0.64       0.43       —       —         12.4       —       0.71       0.49       —       —         18.9       —       0.84       0.59       —       —         10.3       —       —       —       0.60         10.3       —       —       —       0.57         10.3       —       —       —       0.59         10.3       —       —       —       0.57         5.3       —       —       —       0.45       0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Co-1                       | 2.1                | 1                       | 0.39                       | 1    | 0.23  | -    | 0.47         | 1                              | 1      | 1             | 1    |        |
| 4.2       0.64       0.43       —         12.4       —       0.71       0.49       —         18.9       —       0.84       0.59       —         10.3       —       —       —       0.60         10.3       —       —       —       0.57         10.3       —       —       —       0.59         10.3       —       —       —       0.59         10.3       —       —       —       0.57         5.3       —       —       —       0.45       0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Local                      | 2.1                | 31.6                    | Ì                          | -    | 1     | 1    | Ī            | 1                              | 1      | 1             | 1    |        |
| 4.2       0.64       0.43       —       —         12.4       —       0.71       0.49       —       —         18.9       —       0.84       0.59       —       —         10.3       —       —       —       0.60         10.3       —       —       —       0.57         10.3       —       —       —       0.57         10.3       —       —       —       0.59         10.3       —       —       —       0.57         5.3       —       —       —       0.45       0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gobisarson                 |                    |                         |                            |      |       |      |              |                                |        |               |      | 142    |
| 12.4     —     0.71     0.49     —       18.9     —     0.84     0.59     —       10.3     —     —     —     0.60       10.3     —     —     —     0.57       10.3     —     —     —     0.57       10.3     —     —     —     0.57       10.3     —     —     —     0.57       5.3     —     —     —     0.45     0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Local                      | 4.2                |                         | 0.64                       | 0.43 | 1     | 1    | 1            | 1                              | 1      | ļ             | 0.53 |        |
| 18.9     -     0.84     0.59     -       10.3     -     -     -     0.60       10.3     -     -     -     0.57       10.3     -     -     -     0.57       10.3     -     -     0.59       10.3     -     -     0.57       5.3     -     -     0.45     0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 12.4               | 1                       | 0.71                       | 0.49 | 1     | 1    | 0.39         | 1                              | 1      | ł             | 1    |        |
| 10.3       —       —       0.60         1       10.3       —       —       0.57         10.3       —       —       —       0.57         10.3       —       —       —       0.59         10.3       —       —       —       0.59         10.3       —       —       —       0.57         5.3       —       —       0.45       0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 18.9               | 1                       | 0.84                       | 0.59 | 1     | -    | 0.55         | 1                              | 1      | 1             | 1    |        |
| ternel     10.3     —     —     0.60       ternel     10.3     —     —     0.57       ids     10.3     —     —     0.57       ernel     10.3     —     —     0.59       ernel     10.3     —     —     0.59       ernel     10.3     —     —     0.57       ernel     10.3     —     —     0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Groundnut (pod) JL-24      |                    |                         |                            |      |       |      |              |                                |        |               |      | 75,137 |
| kernel     10.3     —     —     —     0.57       ids     10.3     —     —     —     0.57       ids     10.3     —     —     —     0.59       ernel     10.3     —     —     —     0.57       l     5.3     —     —     0.45     0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Single kernel<br>ellipsoid | 10.3               | 1                       | 1                          | 1    | 1     | 09.0 |              | 1                              | 1      | 1             | ı    |        |
| ids 10.3 — — — — 0.57<br>ernel 10.3 — — — — 0.59<br>l = 5.3 — — — 0.45 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Double kernel ellipsoid    |                    |                         | 1                          | 1    | 1     | 0.57 | ı            | ı                              | 1      | ı             | 1 .  |        |
| ids 10.3 — — — — 0.59  ernel 10.3 — — — — 0.57  l 5.3 — — — 0.45 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Paired                     | 10.3               | 1                       | 1                          | 1    | 1     | 0.57 | 1            | 1                              | 1      | 1             | 1    |        |
| srnel 10.3 — — — — 0.57 5.3 — — — 0.45 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>7</sup> Cassinoids    | 10.3               |                         | 1                          | 1    | 1     | 0.59 | 1            | 1                              | 1      | 1             | ı    |        |
| 5.3 — — — 0.45 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triple kernel ellipsoid    | 10.3               | 1                       | 1                          | 1    |       | 0.57 | 1            | 1                              | ı      | 1 -           | 1    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GAUG-1                     | 5.3                | 1                       | -                          | 1    | 0.45  | 0.47 | 0.56         | 1                              | 1      | 1             | 1    |        |

| 1. 2. 3. 13.6 — 20.5 — 28.2 — 20.5 — 13.6 — 20.5 — 20.5 — 20.5 — 20.5 — 28.2 — 28.2 — 28.2 — 28.2 — 28.2 | # | ÷       ; | 6.   | 0.51 | œ .  | 9.         | 10. | 11. | 12. | 13. |
|----------------------------------------------------------------------------------------------------------|---|-----------|------|------|------|------------|-----|-----|-----|-----|
| 13.6<br>20.5<br>28.2<br>13.6<br>20.5<br>28.2                                                             |   |           | 0.52 | 0.51 | 000  |            |     | 1   |     |     |
| 20.5<br>28.2<br>13.6<br>20.5<br>28.2                                                                     |   | 1 1       |      | 1    | 09.0 | 1          | 1   |     |     |     |
| 28.2<br>13.6<br>20.5<br>28.2                                                                             |   | 1         |      | 0.54 | 0.62 | 1          | 1   | 1   | 1   |     |
| - 5.3<br>13.6<br>20.5                                                                                    |   |           |      | 0.56 | 0.67 | 1          | 1   | 1   | 1   |     |
| 13.6<br>20.5<br>28.2                                                                                     |   |           | 0.42 | 0.42 | 0.53 | 1          | 1   | 1   | ı   |     |
| 20.5                                                                                                     |   |           |      | 0.46 | 0.57 | 1          | 1   | 1   | -   |     |
| 28.2                                                                                                     |   |           |      | 0.48 | 0.59 | 1          | 1   | 1   | 1   |     |
|                                                                                                          |   | -         |      | 0.51 | 0.62 | 1          | 1   | -   | 1   |     |
|                                                                                                          |   |           |      | 0.45 | 0.56 |            | 1   | 1   | 1   |     |
|                                                                                                          |   |           |      | 0.49 | 0.49 | 1          | 1   | 1   | 1   |     |
|                                                                                                          |   |           |      | 0.54 | 0.61 | 1          | 1   | ı   | 1   |     |
| 28.2                                                                                                     |   |           |      | 0.55 | 0.65 | 1          | 1   | ı   | 1   |     |
|                                                                                                          |   |           |      | 0.41 | 0.52 | 1          | 1   | ı   | ı   |     |
|                                                                                                          |   |           |      | 0.42 | 0.55 | 1          | 1   | 1   | 1   |     |
|                                                                                                          |   |           |      | 0.47 | 0.58 | -          | 1   | 1   | 1   |     |
|                                                                                                          |   |           |      | 0.50 | 0.62 | 1          | -   | 1   | 1   |     |
| M-13 5.3 -                                                                                               |   |           |      | 0.48 | 0.57 | 1          | 1   | 1   | 1   |     |
| 13.0                                                                                                     | ' |           | 0.56 | 0.53 | 0.51 | 1          | -   | 1   | 1   |     |
| 20.5                                                                                                     |   | 1         | 0.61 | 09.0 | 0.65 | 1          | 1   | 1   | 1   |     |
| 28.2                                                                                                     |   |           | 0.63 | 0.61 | 0.72 | - Constant | 1   | 1   | 1   |     |

|             | 13.  | 147     |       |        |      | 142,173            |         |      |        |      |        |      | 147     |        |        |      | 41,143  |       |       |      |      |      |        |
|-------------|------|---------|-------|--------|------|--------------------|---------|------|--------|------|--------|------|---------|--------|--------|------|---------|-------|-------|------|------|------|--------|
|             | 12.  |         | 1     |        | 1    |                    | İ       | 1    | 1      | 1    | 1      | 1    |         | 1      | 1      | 1    |         | J.    | 0.29  | 0.30 | 0.31 | 0.38 |        |
|             | 11.  |         | -     | 1      | 1    |                    | 1       |      | 1      | 1    | 1      |      |         | -      | 1      | ı    |         | 1     |       |      |      | 1    |        |
|             | 10.  |         | 1     | 1      | 1    |                    | 1       | 1    | 1      | 4    | l      | 1    |         |        | -      | -    |         | -     | 0.33  | 0.34 | 0.35 | 0.41 |        |
|             | 9.   |         | - 6   | 2 —    | - 0  |                    | - 0     | - 0  | - 9    | 2    | 9      | - 9  |         |        | - 9    |      |         | 1     | 7     |      |      |      | -      |
|             | 00   |         |       | 2 0.32 |      |                    |         |      | 9 0.45 |      |        |      |         |        | 99.0 9 |      |         | 1     | 0.27  | 0.2  | 0.2  | 0.3  | -      |
|             | 7.   |         | . 0.5 | 0.52   | 9.0  |                    | 0.56    |      | 0.39   |      | 0.63   | -    |         | 0.8    | 0.65   | 0.86 |         | 1     | 1     |      | I    | -    |        |
|             | . 6. |         | - 99  |        |      |                    |         | 13   |        | - 4  | - 69   | - 69 |         | - 60   | _ 9,   | _ 91 |         | 1     | 1     |      | l    |      | 1      |
|             | 5.   |         | 0.5   | 0.53   | 0.63 |                    |         |      | 0.47   |      | 0.5    |      |         | 9.0    | 0.76   | 0.8  |         | 2     | 4     | _ 9  | - 9  | - 6  | 9      |
|             | 4    |         | -     | 1      | -    |                    |         | 0.68 |        | 0.76 | -      | 0.88 |         |        | -      |      |         |       | 0.44  | 0.4  | 0.4  | 0.4  | 2 0.26 |
|             | က်   |         | 20.   | 21.5   |      |                    | 18.4    | 1    | 5 21.1 | -    | 7 27.0 | -    |         | 26.1   |        | 31.7 |         | 25.5  | 1     | 1    |      | -    | 27.2   |
| Table Contd | 2    |         | 4.0   | 11.0   | 15.5 |                    | 19 4.0  | 4.2  | 11.5   | 13.0 | 15.7   | 18.6 |         | 3.8    | 12.0   | 16.0 |         | 1     | 9.4   | 10.8 | 12.4 | 19.0 | 1      |
| Table (     |      | Linseed | LC-54 |        |      | Raya<br>(Rapeseed) | RLM-619 |      |        |      |        |      | Sesamum | Pb No1 |        |      | Saybean | Ankur | Bragg |      |      |      |        |

| 10          | 10.  |            |          |          |          |           |           |           |          |          |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |      | 113              |        |      |      | 41,113,173       |           |      |      |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |      |           |         |
|-------------|------|------------|----------|----------|----------|-----------|-----------|-----------|----------|----------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------|------------------|--------|------|------|------------------|-----------|------|------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|-----------|---------|
| 0,          | 16.  | l          | Į        | 1        | 1        | 1         | į         | I         | 1        |          | 1     | ļ    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 1      | 1    |                  | 1      | 1    | 1    |                  | J         |      | ļ    | ļ      | ı     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ     | 1     | 0.45 | 1         | 1       |
| ·           | 111. | ١          | 1        |          |          | 1         | 1         | i         | I        | 1        | 1     |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | ı      | ı    |                  | I      | -    | I    |                  | 0.57      | į    | 0.55 | 0.55   | ļ     | - Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Cons | -     | į     | 0.37 | 09.0      | 0.53    |
|             | 10.  | 1          | 1        | 1        | 1        | ļ         |           | 1         | 1        | ı        | 0.28  | ł    | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ł    | 1      | - Co |                  | 1      |      | 1    |                  | ı         | -    | -    | 1      | 4     | Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ     |       | 0.36 | 1         |         |
|             | 9.   | 1          | 1        | ì        |          | l         | 1         | .         | 1        |          | 1     | 1    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 1      |      |                  | 1      | İ    | 1    |                  | 1         | 1    |      | ļ      | -     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |       | 0.42 | 1         |         |
|             | œ    | ١          | .]       | 1        | 1        | 1         | ł         |           | ļ        | 1.       | 0.28  | l    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I    | 1      |      |                  | 1      | 1    |      |                  | 1         | 0.48 | 1    | ļ      | 1     | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | ļ     | 1    | 1         | 1       |
|             | 7.   | 1          | 1        | 1        | I        | 1         | 1         | 1         | I        | 1        | ı     | 1    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı    | -      | -    |                  | ł      | 1    | ļ    |                  | 0.62      | ı    | 0.55 | 0.55   | 1     | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı     | -     | 0.40 | 0.61      | 0.62    |
|             | 9.   | 1.         | 1        | į        | 1        | ł         | 1         | 1         | 1        | 1        | 0.18  | 1    | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |        | I    |                  | į      | ı    | I    |                  | ı         | 0.29 | 1    | ł      | ŀ     | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 1     | -    | - Company |         |
|             | 5.   |            | 1        | l        | l        | 1         | 1         | l         | [        | l        | 0.26  | 1    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l    |        | 1    |                  | !      |      | .1   |                  | i         | 0.35 | 1    | į.     | 1     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 1     | 0.38 | 1         |         |
|             | 4.   | 0.34       | 0.32     | 0.33     | 0.31     | 0.33      | 0.33      | 0.37      | 0.29     | 0.34     | 1     | 1    | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.28 | 0.35   | 0.34 |                  | 0.49   | 0.49 | 0.51 |                  |           | 1    |      |        | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 1.    | 1    | -         |         |
|             | 3.   | 21.8       | 30.3     | 24.6     | 21.1     | 24.7      | 27.3      | 23.1      | 22.2     | 23.7     | 25.5  | 25.5 | 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.5 | 25.8   | 28.1 |                  | į      | 1    | 1    |                  | 28.7      | 1    | 22.0 | 24.6   | 27.6  | 33.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.70 | 42.40 | 1    | 28.10     | 27.0    |
|             | 2.   | 1          | 1        | ł        | ł        | ļ         | ı         | 1         | 1        | 1        | 9.9   | 7.5  | O COMMITTEE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF | 1    | 1      | I    |                  | 9.3    | 14.9 | 19.8 |                  | 1         | 4.4  | 1    | 1      | 4.4   | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.9  | 20.0  | 7.7  |           |         |
| Table Contd | 1    | DS-76-1-29 | JS-72-44 | JS-75-19 | JS-75-45 | JS-76-205 | JS-76-259 | JS-76-280 | JS-80-21 | Kalituar | Local |      | MACS-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N-19 | PK-472 | T-49 | Sunflower (head) | Morden |      |      | Sunflower (seed) | CMS-234-A | CO-1 | GD-1 | KBSH-1 | Local | Morden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |      |           | RHA-274 |

Various research workers have carriedout studies on the frictional properties for cereals (bajra, finger millet, maize, paddy, pearl millet and sorghum); pulses (Bengal gram, black gram green gram, horsegram, lentil and pigeon pea); oilseeds (gingelly, gobisarson, groundnut linseed, rapeseed, sesamum, soybean and sunflower) and spices (aniseed, coriander seed, cumin seed and fenugreek seed) for Indian varieties at different moisture contents. Some of these properties such as, angle of repose, coefficient of static friction and co-efficient of internal friction of grains are listed in the Tables 4.1-4.4.

Table 4.4: Frictional properties of spices and gorgon nut

| Seed/Variety         | Moisture content,<br>% (db) | Angle of repose, degree                     | Coefficient of static friction (on GI surface) | Reference |
|----------------------|-----------------------------|---------------------------------------------|------------------------------------------------|-----------|
| Aniseed (local)      |                             | ر وه ۱ ده د د د د د د د د د د د د د د د د د |                                                | 49        |
| Coarse               | 10.8                        | <b>433.2</b>                                | 8 0.91                                         |           |
| Fine                 | 9.7                         | 36.4                                        | 0.96                                           |           |
| Coriander seed       |                             | W)-                                         |                                                | 86        |
| Local                | 10.4                        | 17.2                                        | 0.76                                           |           |
| Cumin seed           |                             |                                             |                                                | 172       |
| Local                | 7.6                         | 30.4                                        | 0.80                                           |           |
| Fenugreek seed       |                             |                                             |                                                | 172       |
| Local                | 8.9                         | 26.8                                        | 0.43                                           |           |
| Gorgon nut (Makhana) |                             |                                             |                                                |           |
| Local                | 15–60                       | 21.1-22.3                                   | 0.38-0.48                                      | 70        |

## **CHAPTER - V**

## AERODYNAMIC PROPERTIES

In handling and processing of agricultural products, often air is used as a carrier for transport or for separating the desirable product from the unwanted materials. Aerodynamic properties such as, terminal velocity and drag coefficient are needed for air conveying or pneumatic separation of materials. An air velocity greater than terminal velocity lifts the particle. To allow gentle fall of a particle, the air velocity could be adjusted to a point just below the terminal velocity.



Fig. 5.1. Vertical air tunnel for terminal velocity determination in air.

Terminal velocity of grains in air can be measured using vertical air tunnel (Fig. 5.1). In this, the range of different air velocities could be obtained by adjustable speed motor attached with blower. The air velocity at which the grain remains in suspension is called *terminal velocity*.

Once the terminal velocity of grain in air is known, the following relationship (Gill, 1969) can be used for the calculation of drag coefficient:

$$3 \rho_f C_D V_t^2 = 4 d_n (\rho_p - \rho_f) g \theta^{1/2}$$
 ... (5.1)

Where,

 $\rho_f$ = density of air,

 $V_t$  = terminal velocity,

C<sub>D</sub> = drag coefficient,

d<sub>n</sub> = nominal diameter of tunnel,

 $\rho_{p}$  = particle density,

 $\theta$ = sphericity, and

g = gravitational acceleration.

The nominal diameter,  $d_n$  is easily found since it being the diameter of the sphere having the same volume as the solid under consideration.

Various research workers have carriedout studies on the aerodynamic properties for cereals (maize, rice, sorghum and wheat), pulses (Bengal gram, black gram, cowpea, green gram, pea and pigeon pea), oilseeds (castor, gingelle, groundnut, mustard, niger and soybean), fruit and vegetable seeds (long melon, musk melon and water melon) and spices (aniseed, coriander seed, cumin seed and fenugreek seed) for Indian varieties at different moisture contents. Some of these properties such as, terminal velocity, carrying velocity and drag coefficient are listed in the Tables 5.1-5.5.

Table 5.1: Aerodyamic properties of cereals

| Crop/Variety         | Terminal vel | ocity, m/s | Drag co-e   | efficient | Reference |
|----------------------|--------------|------------|-------------|-----------|-----------|
|                      | Range        | Mean       | Range       | Mean      |           |
| Maize                |              |            |             |           | 41        |
| Ganga                | 13.10—14.15  | 13.85      | 0.52 - 0.64 | 0.55      |           |
| Kisan Composite      | 11.21—13.80  | 12.44      | 0.52-0.87   | 0.65      |           |
| Rice                 |              |            |             |           | 41        |
| CR—28—25             | 6.95—7.20    | 7.08       | 0.61-0.80   | 0.70      |           |
| IR-8-228-3           | 6.85—7.29    | 7.11       | 0.630.96    | 0.78      |           |
| Bran 11.5*           |              | 1.59       | _           | _         |           |
| Broken 11.6*         |              | 4.05       |             | _         |           |
| Germ 8.8*            | <del></del>  | 3.28       |             | _         |           |
| Sorghum              |              |            |             |           | 41        |
| HB—MSCK—<br>60—15—84 | 10.12—10.74  | 10.31      | 0.40—0.58   | 0.51      |           |
| Local                | 10.18—10.35  | 10.29      | 0.35 - 0.52 | 0.44      |           |
| Wheat                | •            |            |             |           | 35,41     |
| NP720                | 9.50—9.85    | 9.70       | 0.48 - 0.69 | 0.60      |           |
| PB593                | 9.93-10.10   | 10.02      | 0.50-0.67   | 0.60      |           |
| Wheat chaff          | 5.04—8.96    | 7.00       |             |           |           |
| Wheat stalk nodules  | 5.88—8.96    | 7.42       |             | _         |           |

\* Moisture content, % (db)

Table 5.2: Aerodynamic properties of pulses

| Crop/Variety | Terminal vel | ocity, m/s | Drag co-e | Drag co-efficient |      |  |
|--------------|--------------|------------|-----------|-------------------|------|--|
|              | Range        | Rean       | Range     | Mean              |      |  |
| Bengal gram  |              |            |           |                   | 41   |  |
| BR-77        | 11.75—12.55  | 11.81      | 0.59-0.69 | 0.64              |      |  |
| Black gram   |              | *          |           |                   | 41   |  |
| 72-7         | 10.89—11.28  | 11.07      | 0.40-0.55 | 0.46              |      |  |
| Cow pea      |              |            | •         |                   | 41   |  |
| T-2          | 12.35—13.29  | 12.48      | 0.44-0.52 | 0.49              |      |  |
| Green gram   |              |            |           |                   | 41   |  |
| HB—45        | 10.60—10.80  | 10.70      | 0.42-0.53 | 0.48              |      |  |
| Pea          |              |            |           |                   | · 41 |  |
| Bonniville   | 11.12—12.50  | 11.92      | 0.50-0.76 | 0.61              |      |  |
| VRS-6115     | 14.25—15.00  | 14.63      | 0.38-0.55 | 0.45              |      |  |
| Pegeon pea   |              |            |           |                   | 41   |  |
| C—11         | 13.39—13.90  | 13.48      | 0.39—0.49 | 0.43              |      |  |

Table 5.3: Aerodynamic properties of oilseeds

| Crop/Variety              | Moisture Terminal velocity |             | ocity, m/s | Drag co-   | Reference   |       |
|---------------------------|----------------------------|-------------|------------|------------|-------------|-------|
|                           | content,<br>% (db)         | Range       | Mean       | Range      | Mean        |       |
| 1.                        | 2.                         | . 3.        | 4.         | 5.         | 6.          | 7.    |
| Casior                    |                            |             |            |            |             | 51,54 |
| Local                     |                            |             |            |            |             |       |
| Small                     | 5.4                        |             | 10.20      | _          | -           |       |
| Medium                    | 5.3                        | _           | 13.93      | _          | _           |       |
| Large                     | 4.9                        | · ·         | 11.99      |            |             |       |
| NPH—1                     | 7.5                        | 4.20—4.60   | 4.40       | _          | _           |       |
|                           | 13.6                       | 4.60—5.80   | 5.50       | _          | _           |       |
|                           | 21.9                       | 5.90—6.76   | 6.33       | _          | _           |       |
|                           | 31.6                       | 6.80—7.00   | 8.00       | _          |             |       |
| Gingelle                  |                            |             | 4.42       | _          | -           |       |
| Groundnut (hull)          |                            |             |            |            |             | 54    |
| Half                      | 7.2                        | _           | 3.50       | _          | - Community |       |
| One-fourth                | 6.3                        | _           | 3.37       | _          | _           |       |
| Bits                      | 8.2                        |             | 2.25       | _          | _           |       |
| Groundnut (kernel)        |                            |             |            |            |             | 41,75 |
| JL—24                     | 4.4                        | 10.76—15.39 |            | _          |             |       |
| RS—1                      | - Contraction              | 12.31—13.78 | 13.23      | 0.52-0.64  | 0.59        |       |
| Groundnut (pod)<br>JL—24  |                            |             |            |            |             | 75    |
| Single kerne<br>ellipsoid | l 10.3                     | 8.94—14.60  | 12.56      | _          |             |       |
| Double kerne<br>ellipsoid | el 10.3                    | 9.71—14.24  | 12.19      | · <b>—</b> |             |       |
| Paired ellipsoid          | 10.3                       | 8.17—13.02  | 10.99      |            | minima      |       |
| Cassinoids                | 10.3                       | 7.32—12.53  | 10.94      |            | -           |       |
| Triple kerne<br>ellipsoid | l 10.3                     | 9.81—14.87  | 12.92      | Name .     | Charlotty   |       |
| Mustard                   | economic .                 |             | 3.26       | -          |             | 41    |
| Niger                     | 10.1                       | aviono      | 4.59       | -          |             | 41    |
| Soybean                   |                            |             |            |            |             | 41    |
| Lee                       | *                          | 13.30—14.55 | . 14.17    | 0.33—0.51  | 0.41        |       |
| Punjab—1                  | -                          | 12.30—13.92 | 13.40      | 0.38—0.62  | 0.47        |       |

Table 5.4: Aerodynamic properties of some fruit seeds

| Fruit      | Carrying velocity, | Reference |
|------------|--------------------|-----------|
|            | m/s                |           |
| Long melon |                    | 127       |
| Dry        |                    |           |
| Hull       | 2.33               |           |
| Kernel     | 7.22               |           |
| Seed       | 7.55               |           |
| Wet        |                    |           |
| Hull       | 2.89               |           |
| Kernel     | 7.78               |           |
| Seed       | 8.33               |           |
| Muskmelon  |                    | 127       |
| Dry        |                    |           |
| Hull       | 2:44               | •         |
| Kernel     | 7.00               |           |
| Seed       | 7.44               |           |
| Wet        |                    |           |
| Hull       | 2.78               |           |
| Kernel     | 7.78               |           |
| Seed       | 8.22               |           |
| Watermelon |                    | 127       |
| Dry        |                    |           |
| Hull       | 4.55               |           |
| Kernel     | 7.66               |           |
| Seed       | 8.33               |           |
| Wet        |                    |           |
| Hull       | 4.89               |           |
| Kernel     | 8.33               |           |
| Seed       | 9.11               |           |

Table 5.5: Aerodynamic properties of spices

| Seed/Variety    | Moisture content, % (db) | Terminal velocity, m/s | Reference |
|-----------------|--------------------------|------------------------|-----------|
| Aniseed (local) |                          |                        | 49        |
| Coarse          | 10.8                     | 5.0                    |           |
| Fine            | 9.7                      | 3.6                    |           |
| Coriander seed  |                          | ,                      | 86        |
| Local           | 10.4                     | 5.8                    |           |
| Cumin Seed      |                          |                        | 172       |
| Local           | 7.6                      | 3.1                    |           |
| Fenugreek seed  |                          |                        | 172       |
| Local           | 8.9                      | 4.2                    |           |

## **CHAPTER-VI**

## RHEOLOGICAL PROPERTIES

Mechanical damage to seeds and grains which occur in harvesting, threshing and handling can affect the quality of the final product. Rheological properties such as, compressive strength, impact, shear resistance etc., are important and in some cases necessary engineering data in studying size reduction of grains as well as resistance to mechanical injury to the seed under mechanical threshing and handling.

Compression tests of intact biological materials provide an objective method for determining mechanical properties significant in quality evaluation and control, maximum allowable load for minimizing mechanical damage, and minimum energy requirements for size reduction.

Determination of compressive properties requires the production of a complete force-deformation curve. For production of a force deformation curve (Fig. 6.1), the use of fully automatic testing machine known as Universal Testing Machine (INSTRON) has become popular in recent years.

Some of the important points which should be kept in mind during compression test using 'INSTRON' are as follows (Mohsenin, 1980):

- 1. Conduct the test under laboratory atmosphere of constant relative humidity and temperature. If possible, tests should be conducted under laboratory conditions of 20°C ± 5°C and 50 per cent relative humidity ± 5 per cent.
- 2. Place the specimen in the testing machine under the compression tool, taking care



under the compres- Fig. 6.1. Force deformation curve for material with bioyield point.

- to align the center of the tool with the peak of the curvature of the test specimen.
- 3. Set the speed control at the desired rate and calibrate the recording chart for load and displacement. Normally, the speed of testing (cross head speed) shall be chosen on the basis of the sensitiveness of the specimen to loading rate. For grain, the speed of 1.25 mm per minute ± 50 per cent shall be specified.
- 4. Start the machine and record the complete force-deformation curve through the point of rupture. When testing small, hard specimens such as, grains, the deflections of most load cells can not be considered negligible. For this reason, either proof shall be given that the load cell deflection is negligible or the deflection is determined and deducted from the recorded deformation.
- 5. Because of the large variance inherent in biological materials, each experiment shall be statistically designed with sufficient number of replications to result in an acceptable level of confidence in so far as significant differences are concerned. The variation due to shape, size, age and cellular structure are normally such that at least a minimum of twenty specimens are required to be tested for each sample.
- 6. For each series of tests, calculate the mean and standard deviation.

Various research workers have carriedout studies on the rheological properties for cereals (finger millet, maize, paddy, pearl millet, sorghum and wheat); pulses (Bengal gram, black gram, cowpea, green gram, lentil and pigeon pea); oilseeds (castor, gingelly, soybean and sunflower), fruit and vegetable seeds (brinjal, pumkin, summer melon, tomato and water melon) and spices (aniseed, coriander seed and cumin seed) for Indian varieties at different moisture contents. Some of these properties such as, relative hardness number, hardness, coefficient of restitution, crushing load, initial shear stress and ultimate compressive load are listed in the Tables 6.1-6.5.

Table 6.1: Rheological properties of cereals

| Grain/Variety | Moisture content, % (db) | Relative<br>hardness<br>number | Hardness,<br>kg | Co-efficient<br>of<br>restitution | Crushing<br>load,<br>kg | Reference |
|---------------|--------------------------|--------------------------------|-----------------|-----------------------------------|-------------------------|-----------|
| 1.            | 2.                       | 3.                             | 4.              | 5.                                | 6.                      | 7.        |
| Finger millet |                          |                                |                 |                                   |                         | 16,41     |
| CO-6          | 10.9                     |                                | 1.16            |                                   | _                       |           |
| Maize         |                          |                                |                 |                                   |                         | 16,41     |
| Ganga—2       | 9.9                      | 140                            |                 |                                   | _                       |           |
|               | 12.4                     | 63                             | . —             | <u> </u>                          | and the second second   |           |
|               | 14.9                     | 53                             |                 | _                                 | _                       |           |
| Ganga—3       | 9.9                      | 94                             | -               |                                   | _                       |           |
|               | 12.4                     | 70                             | _               | -                                 |                         |           |
|               | 14.9                     | 58                             | _               | -                                 | -                       |           |
| Ganga—5       | 9.9                      | 78                             | -               | -                                 | -                       |           |
|               | 12.4                     | 63                             | _               | name.                             | -                       |           |
|               | 14.9                     | 56                             |                 | pine min                          |                         |           |
| MLU—5         | 8.2                      | _                              | 22.84           |                                   | -                       |           |
| Paddy         |                          |                                |                 |                                   |                         | 41        |
| Local         | 12.6                     | -                              | -               | 0.09                              |                         |           |

Table contd...

| 1.           | 2.       | 3.  | 4.           | 5.       | 6.          | 7.        |
|--------------|----------|-----|--------------|----------|-------------|-----------|
| Ponmani      | 9.8      | *** | 6.90         | _        | _           |           |
| Pearl millet |          |     |              | •        |             | 41        |
| CO—6         | 9.8      | -   | 2.70         | quant    |             |           |
| Sorghum      |          |     |              |          |             | 41        |
| CO-27        | . 9.1    | _   | 7.77         |          | _           |           |
| Wheat        |          |     |              |          |             | 35,41,173 |
| C—306        |          |     | opinionilly. | _        | 8.63        |           |
| CPAN—1676    |          | _   | _            | _        | 9.75        |           |
| HD—2189      | 8.4      |     | 8.20         |          | _           |           |
| HD-2204      | _        | -   | _            |          | 10.06       |           |
| HD-2281      | _        | _   |              |          | 9.96        |           |
| HD—2285      | _        | -   | -            |          | 10.50       |           |
| HS-86        | _        | _   | _            | _        | 11.15       |           |
| Kalyan Sona  | 6.2      | _   | _            | _        | 5.17        |           |
| ·            | 7.8      | _   |              |          | 5.75        |           |
|              | 8.6      |     | _            |          | 5.81        |           |
|              | 13.7     | _   | ****         |          | 6.28        |           |
|              | 26.1     | _   | _            | _        | 3.24        |           |
|              | 30.0     |     | _            |          | 1.36        |           |
|              | 31.7     | _   | _            | _        | 0.90        |           |
|              | 37.4     |     | _            |          | 1.04        |           |
|              | 41.8     |     | _            |          | 1.46        |           |
| Local        | 16.9     |     | _            | 0.09     |             |           |
| Malviya—12   | 16.9     |     | _            |          | 10.70       |           |
| S—227        | 9.9      | 88  |              | <u>.</u> | _           |           |
|              | 12.4     | 47  |              | - Marine | <del></del> |           |
|              | 14.9     | 31  | _            | _        |             |           |
| S-308        | 9.9      | 100 | _            | _        | _           |           |
|              | 12.4     | 47  | cyclopalment | _        |             |           |
|              | 14.9     | 31  |              | _        | _           |           |
| Sonalika     |          |     | операти      |          | 9.80        |           |
| UP-115       | _        |     |              | _        | 10.60       |           |
| UP—262       |          |     | _            |          | 12.00       |           |
| UP368        |          | -   | -            | _        | 9.98        |           |
| UP—2003      | -        |     |              |          | 10.11       |           |
| VL-421       | e inchis | -   | GRADING.     |          | 12.56       |           |

Table 6.2: Rheological properties of pulses

| Grain/Variety | Moisture<br>content,<br>% (db) | Relative<br>hardness,<br>number | Hardness,<br>kg | Co-efficient of restitution | Crushing load, kg | Initial<br>shear<br>stress,<br>g/cm <sup>2</sup> | Reference |
|---------------|--------------------------------|---------------------------------|-----------------|-----------------------------|-------------------|--------------------------------------------------|-----------|
| 1.            | 2.                             | 3.                              | 4.              | 5.                          | 6.                | 7.                                               | 8.        |
| Bengalgram    |                                |                                 |                 |                             |                   |                                                  | 41,48     |
| Local         | 8.1                            | _                               |                 | _                           | 20.10             | 2.20                                             |           |
| T-3           | 9.9                            | 60                              | _               | _                           |                   |                                                  |           |
|               | 12.4                           | 47                              | <u>—</u> ,      | -                           | . <u></u>         |                                                  |           |
|               | 14.9                           | 41                              |                 | _                           |                   | _                                                |           |
| <b>T</b> —730 | 9.9                            | 63                              | .—              | _                           |                   | _                                                |           |
|               | 12.4                           | 56                              | _               | <del></del>                 | _                 | _                                                |           |
|               | 14.9                           | 47                              |                 | · . <del></del>             |                   |                                                  |           |
| Blackgram     |                                |                                 |                 |                             |                   |                                                  | 48        |
| CO-4          | 4.3                            | _                               | 2.0             | _                           | -                 | _                                                |           |
| Local         | 7.1                            |                                 |                 | ·                           | 3.50              | 2.00                                             |           |
| Cowpea        |                                |                                 |                 |                             |                   |                                                  | 41,48     |
| Local         | 6.7                            | <del>-</del> ,  , ,             | _               | _                           | 6.00              | 2.00                                             |           |
| Green gram    |                                |                                 |                 |                             |                   |                                                  | 48        |
| Local         | 6.7                            | _                               | name.           | _                           | 1.90              | 1.60                                             |           |
| Lentil        |                                |                                 |                 | *                           |                   |                                                  | 48        |
| Local         | 8.2                            |                                 |                 | _                           | 5.70              | 1.70                                             |           |
| Pigeon pea    |                                |                                 |                 |                             |                   |                                                  | 48        |
| Local         | 8.7                            | -                               | -               |                             | 11.50             | 2.00                                             |           |
|               | 14.2                           | _                               |                 | 0.17                        | _                 | _                                                |           |

Table 6.3: Rheological properties of oilseeds

| Grain/Variety | Moisture<br>content,<br>% (db) | Relative<br>hardness,<br>number | Hardness,<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Co-efficient of restitution | Crushing<br>load, kg | Ultimate compressive load, kg | Reference |
|---------------|--------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|-------------------------------|-----------|
| 1.            | 2.                             | 3.                              | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.                          | 6.                   | 7.                            | 8.        |
| Castor        |                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                      |                               | 51,54     |
| Local         |                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                      |                               |           |
| Small         | 5.4                            |                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 6.8                  |                               |           |
| Medium        | 5.3                            | _                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 11.2                 | _                             |           |
| Large         | 4.9                            | _                               | manufacture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | 6.7                  |                               |           |
| NPH—1         | 7.5                            | <u>.</u>                        | Committee (Committee)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                           | 6.60                 | _                             |           |
|               | 13.6                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           | 5.16                 | _                             |           |
|               | 21.9                           |                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                           | 6.30                 | _                             |           |
|               | 31.6                           | _                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 8.00                 |                               |           |
| Gingelly      |                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                      |                               | 41        |
| CO—1          | 2.1                            | _                               | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                           |                      |                               |           |
| Soybean .     |                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                      |                               | 41,143    |
| Ankur         |                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 10.0                 | 4.6                           |           |
|               | _                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 8.20                 | _                             |           |
| Bragg         | 7.7                            | 56                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                           | _                    | _                             |           |
| 30            | 11.1                           | 52                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | _                    |                               |           |
|               | 13.6                           | 38                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | _                    | _                             |           |
|               | -                              | _                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                           | 12.2                 | 5.4                           |           |
| CO—1          | 7.0                            |                                 | 8.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                           |                      | _                             |           |
| DS-76-1-29    |                                | Section                         | · —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | 7.30                 | 5.60                          |           |
| JS—2          | _                              | Manageria                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           | 10.50                | 7.60                          |           |
| JS-72-44      | _                              | terroles                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 8.10                 | 3.80                          |           |
| JS-75-19      | _                              |                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 10.20                | 4.70                          |           |
| JS-75-45      | _                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           | 8.20                 | 3.50                          |           |
| JS-76-205     | _                              | _                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           | 8.20                 | 3.00                          |           |
| JS-76-280     | _                              | _                               | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |                             | 10.20                | 4.20                          |           |
| JS-80-21      |                                | -                               | *Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | 10.50                | 5.50                          |           |
| Kalituar      |                                | <u> </u>                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 6.70                 | 3.00                          |           |
| Local         | 17.3                           | _                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.18                        | -                    |                               |           |
| MACS—75       | _                              | napation:                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           | 8.60                 | 5.30                          |           |
| N—19          |                                | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           | 8.40                 | 4.00                          |           |
| PK-472        | -                              | emilledir                       | displate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | 10.30                | 4.40                          |           |
| T-49          |                                | gazanes                         | evenue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | 8.80                 | 4.00                          |           |
| Sunflower     |                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                      |                               | 173       |
| CO—1          | 4.4                            | _                               | 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | diam'r.              |                               |           |

Table 6.4: Rheological properties of fruits and vegetable seeds

| Seed/Variety | Moisture content,<br>% (db) | Hardness,<br>kg | Reference |  |
|--------------|-----------------------------|-----------------|-----------|--|
| 1.           | 2.                          | 3.              | 4.        |  |
| Brinjal      |                             |                 | 148       |  |
| Local        | 3.6                         | 2.87            |           |  |
| Pumpkin      |                             |                 | 148       |  |
| Local        | 10.9                        | 10.69           |           |  |
| Summer melon |                             |                 | 148       |  |
| Local        | 4.5                         | 1.20            |           |  |
| Tomato       |                             |                 | 148       |  |
| Rupali       | 3.6                         | 2.87            |           |  |
| Water melon  |                             |                 | 148       |  |
| Baby sugar   | 4.7                         | 4.10            |           |  |

Table 6.5 Rheological properties of spices

| Seed/Variety    | Moisture content,<br>% (db) | Crushing load,<br>kg | Reference |  |
|-----------------|-----------------------------|----------------------|-----------|--|
| 1.              | 2.                          | 3.                   | 4.        |  |
| Aniseed (local) |                             |                      | 49        |  |
| Coarse          | 10.8                        | 2.7—6.8              |           |  |
| Fine            | 9.7                         | 2.4—6.9              |           |  |
| Coriander seed  |                             |                      | 86        |  |
| Local           | 10.4                        | 0.95—1.30            |           |  |
| Cumin seed      |                             |                      | 172       |  |
| Local           | 7.6                         | 2.4—3.0              |           |  |

# **CHAPTER-VII**

## THERMAL PROPERTIES

Any process involving heating and cooling requires a knowledge of the thermal properties of the substances being processed. Many of the food grains and the products are subjected to various types of thermal processing before they are placed at the disposal of the consumers. This calls for the information about the specific heat, thermal conductivity, thermal diffusivity and latent heats associated with the various food materials. The knowledge of specific heat is also important in aeration, drying, milling etc. of food grains.

Specific heat is the amount of heat required to raise the temperature of a unit mass of grain by 1°C. Specific heat of the food grains can be determined by any of the two methods described below (IS: 10699-1983):

#### A. Calorimetric Method

Apparatus: calorimeter

#### Procedure

- 1. Heat 30 g of foodgrain sample to a constant temperature (max. 66°C), avoiding over-heating which may alter the composition of the foodgrain. Fill the calorimeter cup with water of known temperature and dip the material in it. Stir the mixture well and note the final temperature, when it becomes steady.
- 2. Calculation

Specific heat of food grain (cal/g. °C) = 
$$\frac{(M_2C_1+M_3C_2) \ (\Delta \ t_2-\theta)}{M_1(\Delta t_1+\theta)} \ \dots \ (7.1)$$

Where,

 $M_1 =$ mass of the foodgrain sample, g

 $M_2$  = mass of the calorimeter cup, g

 $M_3$  = mass of water, g

C<sub>1</sub> = specific heat of calorimeter cup,cal/g.°C

C<sub>2</sub> = specific heat of water, cal/g.°C

 $\Delta t_1$  = temperature change of the sample, °C

 $\Delta$  t<sub>2</sub> = temperature change of the calorimeter cup and water, °C, and

 $\phi$  = temperature correction, °C.

#### **B.** Indirect Method

The specific heat of a sample may also be calculated from the known values of bulk density thermal conductivity and thermal diffusivity for a particular variety of a crop at a specifi moisture content by using the following equation:

$$c = \frac{k}{\rho \alpha} \qquad \dots (7.2)$$

Where,

c = specific heat, cal/(g.°C)

k = thermal conductivity, cal/cm.s.°C

 $\rho$  = bulk density, g/cm<sup>3</sup>, and

 $\alpha$ = thermal diffusivity, cm<sup>2</sup>/s.

Thermal Conductivity is defined as the amount of heat flow through unit thickness of material over an unit area per unit time for unit temperature difference.

The line source transient heat flow method can be used for determining the value of thermal conductivity, 'k'. The transient heat flow method developed originally for measuring thermal conductivity of liquids (Lentz, 1952) has been successfully applied to measurement of thermal conductivity of a number of materials including grain (Kazarian and Hall, 1965; Wratten et al, 1969; Suter et al, 1975; Bilanski and Fisher, 1966). The apparatus for the determination of thermal conductivity, 'k' is shown in Fig. 7.1. The thermal conductivity is calculated by using the following equation:

$$K = \frac{q \ln(\phi_{2}/\phi_{1})}{4\pi(t_{2}-t_{1})}$$
 ... (7.3)

Where,

 $t_1$  and  $t_2$  are the temperatures of heating element at times  $\phi_1$  and  $\phi_2$ , respectively and q = heat input.

Thermal diffusivity is a quantity which measures the rate of temperature changes and indicates the speed at which temperature equilibriums will be reached. In order to calculate the temperature change in a grain bin due to fluctuations in external or internal temperature and to predict the heat transfer in the food grains, it is essential to determine thermal diffusivity of food grains.



Fig. 7.1. Apparatus for the determination of thermal conductivity.

The following method may be used for the determination of thermal diffusivity of food grains (IS:10698-1983).

The apparatus consists of a thermal diffusivity tube and an insulated and well-stirred water bath of 25 litre capacity (Fig. 7.2).

#### Procedure

- 1. The food grain sample should be properly cleaned so that it does not have impurities more than 0.5 per cent. It should be free from insects, pests and micro-organisms.
- 2. Fill the cylinder (Fig. 7.2) with the food grains and place the entire assembly with end caps and thermocouples in a water bath. Heat the water bath at constant rate with the help of 1,000 W immersion heater. The output of the heater may be noted by connecting a wattmeter in the circuit. Stir the water in the tank with the help of a stirrer at suitable speed, driven by a motor of 40 W (½0hp), 4,000 rpm and coupled to a speed regulator.

#### Calculation

Plot the temperature versus time curve for the center and the surface of the tube (Fig. 7.3) and calculate the thermal diffusivity by using the following formula:



Fig. 7.3. Time-temperature curve.

$$\alpha = \frac{R^2 A}{4(T_R - T_C)} \tag{7.4}$$

Where,

 $\alpha$ = Thermal diffusivity, cm<sup>2</sup>/s

R = radius of the tube, cm

A = constant slope of temperature versus time curve in °C/s, and

 $T_R-T_C$  = constant temperature difference at any time between temperature at the surface  $(T_R)$  and temperature at the center  $(T_C)$  of thermal diffusivity tube in  $^{\circ}C$  (Fig. 7.3).

Various research workers have carried out studies on the thermal properties for cereals (maize, paddy, rice bran, sorghum and wheat), pulses (Bengal gram, black gram, green gram, lentil, pea and pigeon pea), oilseeds (castor, cotton seed, copra, groundnut, sesamum, soybean and sunflower) an jaggery (gur) for Indian varieties at different moisture contents. Some of these properties such as, thermal conductivity, specific heat and thermal diffusivity are listed in the Tables 7.1 - 7.4.

Table 7.1: Thermal properties of cereals

| Grain/Variety   | Moisutre content, % (db) | Thermal conductivity, W/m. <sup>0</sup> C | Specific heat,<br>J/g. <sup>0</sup> C | Thermal diffusivity cm <sup>2</sup> /s x 10 <sup>-4</sup> | Reference |
|-----------------|--------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------------------------|-----------|
| 1.              | 2.                       | 3.                                        | 4.                                    | 5.                                                        | 6.        |
| Maize           |                          |                                           |                                       |                                                           | 36,41     |
| Ganga—5         | 7.6                      | 0.149                                     |                                       |                                                           |           |
|                 | 9.8                      | 0.154                                     | _                                     |                                                           |           |
|                 | 11.8                     | 0.158                                     |                                       | _                                                         |           |
|                 | 14.2                     | 0.160                                     | -                                     | _                                                         |           |
|                 | 14.7                     | 0.165                                     | -                                     |                                                           |           |
|                 | 16.5                     | 0.170                                     | _                                     | Produce                                                   |           |
|                 | 22.7                     | 0.178                                     | · <u>-</u>                            |                                                           |           |
| Local           | 11.1                     | 0.148                                     | 1.63                                  | 11.20                                                     |           |
|                 | 16.3                     | 0.156                                     | 1.80                                  | 11.00                                                     |           |
|                 | 21.9                     | 0.164                                     | 1.97                                  | 10.80                                                     |           |
|                 | 31.6                     | 0.177                                     | 2.22                                  | 10.50                                                     |           |
| Vijay           | 11.1                     | 0.159                                     | 1.88                                  | 10.00                                                     |           |
|                 | 16.3                     | 0.164                                     | 2.05                                  | 9.76                                                      |           |
|                 | 21.9                     | 0.169                                     | 2.18                                  | 9.52                                                      |           |
|                 | 31.6                     | 0.176                                     | 2.43                                  | 9.16                                                      |           |
| Paddy           |                          |                                           |                                       |                                                           | 34,35,147 |
| IR8             | 10.7                     | 0.150                                     | ****                                  | •=-                                                       |           |
|                 | 16.4                     | 0.161                                     | -                                     | delica                                                    |           |
|                 | 21.7                     | 0.171                                     | _                                     | dadarrass                                                 |           |
|                 | 28.2                     | 0.177                                     | _                                     |                                                           |           |
|                 | 31.2                     | 0.183                                     | <u> </u>                              | _                                                         |           |
| Jaya            | 11.1                     | 0.117                                     | 1.42                                  | 9.60                                                      |           |
|                 | 16.8                     | 0.123                                     | 1.59                                  | 8.80                                                      |           |
|                 | 21.9                     | 0.129                                     | 1.76                                  | 8.00                                                      |           |
|                 | 31.6                     | 0.138                                     | 2.01                                  | 6.80                                                      |           |
| Joshn 219       | 11.1                     | 0.112                                     | 1.34                                  | 14.00                                                     |           |
|                 | 16.3                     | 0.118                                     | 1.51                                  | 12.80                                                     |           |
|                 | 219                      | 0.123                                     | 1.67                                  | 11.60                                                     |           |
|                 | 31.6                     | 0.132                                     | 1.93                                  | 9.80                                                      |           |
| almon—          | 11.1                     | 0.108                                     | 1.30                                  | 9.60                                                      |           |
| Fig. 7.9 Dots   | 16.3                     | 0.114                                     | 1.47                                  | 8.80                                                      |           |
| Fig. 7.2. Detai | 21.9                     | 0.120                                     | 1.63                                  | 8.00                                                      |           |
|                 | 31.6                     | 0.129                                     | 1.88                                  | 6.80                                                      |           |
|                 | 9.8                      | 0.085                                     | Miles III                             |                                                           |           |
|                 | 18.0                     | 0.110                                     | disustrete                            | _                                                         |           |
|                 | 28.7                     | 0.140                                     | digmon                                | Clinica                                                   |           |
|                 | 34.6                     | 0.120                                     |                                       |                                                           |           |

| 1.            | 2        | 3.             | 4.             | 5.           | 6.       |
|---------------|----------|----------------|----------------|--------------|----------|
| Rice bran     | 8.7—13.6 | -              | 1.85           |              | 34,41    |
|               | 11.1     | 0.164 (W/m. K) | 0.413(cal/g.K) | 0.777        |          |
|               | 13.6     | 0.192 (W/m.K)  | 0.429(cal/g.K) | 0.876        |          |
| Sorghum       |          |                |                |              | 1,36     |
| PSH-2         | 8.0      | 0.130          | 1.42           | 11.69        |          |
|               | 11.0     | 0.133          | 1.97           | 8.49         |          |
|               | 14.0     | 0.136          | 2.30           | 7.76         |          |
|               | 17.0     | 0.137          | 2.43           | 7.27         |          |
|               | 20.0     | 0.138          | 2.51           | 7.34         |          |
| Swarna        | 8.0      | 0.133          | 1.42           | 11.05        |          |
|               | 11.0     | 0.136          | 1.93           | 8.67         |          |
| ,             | 14.0     | 0.138          | 2.22           | 7.84         |          |
|               | 17.0     | 0.140          | 2.26           | 7.71         |          |
|               | 20.0     | 0.141          | 2.47           | 7.50         |          |
| Wheat         |          |                |                |              | 14,15,16 |
| Ralyan—227    | 8.7      | 0.133          | 1.67           | 10.36        |          |
| areay eas and | 13.6     | 0.137          | 1.84           | 10.04        |          |
|               | 19.0     | 0.141          | 1.97           | 9.72         |          |
|               | 25.0     | 0.145          | 2.14           | 9.40         |          |
|               | 31.6     | 0.149          | 2.30           | 9.08         |          |
| Sonalika      | 9.1      | 0.321          | _              |              |          |
|               | 11.1     | 0.335          | wheelship      | _            |          |
|               | 13.6     | 0.370          |                | terments.    |          |
|               | 16.3     | 0.377          | _              | armed .      |          |
|               | 19.0     | 0.423          | - Contracts    | _            |          |
| RR21          | 8.6      | 0.299          | _              | _            |          |
|               | 11.1     | 0.329          | deline.        | * companie   |          |
|               | 13.6     | 0.361          | -              | - Charleston |          |
|               | 16.3     | 0.392          | -              |              |          |
|               | 19.0     | 0.423          | *******        | valuesellik  |          |
| S—227         | 9.1      | 0.265          |                | distroctive  |          |
|               | 11.1     | 0.302          | -defragation   |              |          |
|               | 13.6     | 0.358          |                | -            |          |
|               | 16.3     | 0.367          |                | -            |          |
|               | 19.0     | 0.405          | -              |              |          |
| WG-357        | 8.7      | 0.127          | 1.63           | 9.46         |          |
|               | 13.6     | 0.130          | 1.80           | 9.14         |          |
|               | 19.0     | 0.132          | 1.93           | 8.82         |          |
|               | 25.0     | 0.135          | 2.05           | 8.50         |          |
|               | 31.6     | 0.137          | 2.18           | 8.18         |          |

Table 7.2: Thermal properties of pulses

| Grain/Variety | Moisuture content,<br>%(db) | Specific heat,<br>J/g. <sup>0</sup> C | Reference |  |
|---------------|-----------------------------|---------------------------------------|-----------|--|
| 1.            | 2.                          | 3.                                    | 4.        |  |
| Bengal gram   |                             |                                       | 55        |  |
| CS-24         | 7.5                         | 1.72                                  |           |  |
| Black gram    |                             |                                       | 55        |  |
| T-9           | 13.6                        | 1.88                                  |           |  |
| Green gram    |                             |                                       | 55        |  |
| Pb            | 7.5                         | 1.84                                  |           |  |
|               | 13.6                        | 1.97                                  |           |  |
| Lentil        |                             |                                       | 55        |  |
| L—9—12        | 13.6                        | 1.93                                  |           |  |
| Pea           |                             |                                       | 55        |  |
| Arcle         | 13.6                        | 2.01                                  |           |  |
| Pigeon pea    |                             |                                       | 55        |  |
| T—21          | 21.9                        | 2.01                                  |           |  |
|               | 31.6                        | 2.18                                  |           |  |

Table 7.3: Thermal properties of oilseeds

| Seed/Variety        | Moisture<br>content,<br>% (db) | Thermal conductivity, W/m. <sup>0</sup> C | Specific heat,<br>J/g. <sup>0</sup> C | Thermal diffusivity, cm <sup>2</sup> /s x 10 <sup>-4</sup> | Reference |
|---------------------|--------------------------------|-------------------------------------------|---------------------------------------|------------------------------------------------------------|-----------|
| 1.                  | 2.                             | 3.                                        | 4.                                    | 5.                                                         | 6.        |
| Castor (kernel)     | •                              |                                           |                                       |                                                            | 41        |
| Local               | 8.7—13.6                       | _                                         | 1.97                                  | _                                                          |           |
| Castor (whole)      |                                |                                           |                                       |                                                            | 41        |
| Local               | 8.7—13.6                       | <del></del> .                             | 1.67                                  | <b>Gallerian</b> (m.                                       |           |
| Cotton seed cake    | 8.7—13.6                       |                                           | 1.88                                  |                                                            |           |
| Cotton seed (meat)  |                                |                                           |                                       |                                                            | 41        |
| Fuzzy               | 2.0                            | 0.108                                     | <del></del> ,                         | _                                                          |           |
|                     | 6.3                            | 0.118                                     | · —                                   |                                                            |           |
|                     | 8.7—13.6                       | _                                         | 1.80                                  | _                                                          |           |
| Cotton seed (whole) |                                |                                           |                                       |                                                            | 41        |
| Fuzzy               | 8.7                            | 0.077                                     | _                                     | . —                                                        |           |
|                     | 8.7—13.6                       | anterior                                  | 1.76                                  | ***************************************                    |           |
|                     | 13.6                           | 0.079                                     |                                       | -                                                          |           |
| Copra               |                                |                                           |                                       |                                                            | 41        |
| Local               | 8.7—13.6                       | <del></del> .                             | 1.76                                  | -                                                          |           |
| Groundnut cake      | 8.7—13.6                       | -                                         | 1.88                                  | equinques                                                  |           |
| Groundnut (kernel)  |                                |                                           |                                       |                                                            | 41        |
| AK-12-24            | 8.0                            | 0.097                                     | 1.76                                  | 7.24                                                       |           |
|                     | 11.0                           | 0.100                                     | 2.18                                  | 6.82                                                       |           |
|                     | 14.0                           | 0.106                                     | . 2.26                                | 6.34                                                       |           |
|                     | 17.0                           | 0.108                                     | 2.43                                  | 6.10                                                       |           |

Table contd.....

| 1.                          | 2.       | 3.         | 4.       | 5.   | 6.    |
|-----------------------------|----------|------------|----------|------|-------|
|                             | 20.0     | 0.113      | 2.51     | 6.28 |       |
| Local                       | 5.3      | 0.112      | _        | _    |       |
|                             | 6.4      | _          | 2.01     | _    |       |
|                             | 13.6     | Contractor | 2.05     | _    |       |
| SB-11                       | 8.0      | 0.094      | 1.30     | 9.43 |       |
|                             | 11.0     | 0.097      | 2.05     | 6.93 |       |
|                             | 14.0     | 0.103      | 2.18     | 6.52 |       |
|                             | 17.0     | 0.106      | 2.26     | 6.40 |       |
|                             | 20.0     | 0.109      | 2.47     | 6.40 |       |
| Groundnut (pod)             |          |            |          |      | 41    |
| Local                       | 8.7—13.6 | _          | 1.51     | _    |       |
| Groundnut (shell)           | 8.7—13.6 | _          | 1.63     | _    | 41    |
| Sesamum (decuticled)        |          |            |          |      | 41    |
| Local                       | 8.7—13.6 |            | 1.97     | -    |       |
| Seasamum (whole)            |          |            |          |      | 41    |
| Local                       | 6.3      | 0.101      | _        | _    |       |
|                             | 8.7—13.6 | _          | 1.93     | _    |       |
|                             | 13.6     | 0.103      | _        |      |       |
| Soybean                     |          |            |          |      | 14,35 |
| Bragg                       | 2.9      | 0.246      |          | _    |       |
|                             | 13.9     | 0.286      | -        | _    |       |
|                             | 19.3     | 0.303      | _        |      |       |
|                             | 25.3     | 0.320      | _        | _    |       |
|                             | 29.0     | 0.328      | <u> </u> |      |       |
| Hardee                      | 9.5      | 0.170      | _        |      |       |
|                             | 11.0     | 0.172      | _        |      |       |
|                             | 13.0     | 0.175      | _        | -    |       |
| •                           | 15.0     | 0.177      | _        | -    |       |
| Local                       | 8.7—13.6 | _          | 0.40     | _    |       |
| Sunflower (kernel)<br>Local | 8.7—13.6 | _          | 0.47     |      | 41    |
| Sunflower (whole)<br>Local  | 8.7—13.6 |            | 0.40     | _    | 41    |

Table 7.4 Thermal properties of jaggery (gur)

| Material      | Moisture<br>content, %<br>(db) | True density, kg/m <sup>3</sup> | Thermal conductivity, W/m. °C | Specific heat,<br>J/kg. °C | Thermal diffusivity cm <sup>2</sup> /s x 10 <sup>-4</sup> | Reference |
|---------------|--------------------------------|---------------------------------|-------------------------------|----------------------------|-----------------------------------------------------------|-----------|
| Jaggery (gur) | 4.7                            | 1350                            | 0.0278                        | 0.265                      | 7.77                                                      | 65        |
|               | 6.2                            | 1370                            | 0.0298                        | 0.274                      | 7.95                                                      |           |
|               | 7.4                            | 1386                            | 0.0326                        | 0.279                      | 8.44                                                      |           |
|               | 8.4                            | 1404                            | 0.0396                        | 0.302                      | 9.33                                                      |           |
|               | 9.9                            | 1415                            | 0.0428                        | 0.311                      | 9.73                                                      |           |
|               | 11.7                           | 1436                            | 0.0458                        | 0.317                      | 10.13                                                     |           |
|               | 12.4                           | 1438                            | 0.0485                        | 0.320                      | 10.52                                                     |           |
|               | 13.8                           | 1440                            | 0.0512                        | 0.327                      | 10.83                                                     |           |

## **CHAPTER-VIII**

## HYGROSCOPIC PROPERTIES

## Hygroscopictiy

The grain is a living organsim and hygroscopic in nature. It absorbs or desorbs moisture as temperature and relative humidity conditions change. A knowledge of hygroscopic behaviour of grains is essential because of its direct relationship to storage and drying problems. Every hygroscopic substance tends to maintain a certain vapour pressure at a given temperature and relative humidity. This vapour pressure is known as equilibrium vapour pressure and the corresponding moisture content is known as equilibrium moisture content. This hygroscopic moisture of grains is of major concern for the design of grain storage, packaging and drying units, estimation of storage life and reconditioning factors etc. In order to provide proper moisture conditions for a particular material, it is often necessary to add or to remove moisture from the material. An understanding of this wetting and drying process requires a knowledge of the Equilibrium Moisture Content (EMC) of the material for the environment to which it is subjected.

The EMC OF MATERIAL in a given environment is the mositure content which the material would approach if left in that environment for an infinite period of time. The relative humidity of the surrounding atmosphere at which material approaches hygroscopic equilibrium is known as Equilibrium Relative Humidity at a particular temperature.

The equilibrium moisture content is important from the point of view of:

- a. ensuring whether the material will gain or lose moisture under given set of temperature and relative humidity conditions,
- b. determining the rate of moisture removal, and
- c. establishing a lower limit to which the material can be dried under known drying conditions.

The relationship between the mositure content of a particular material and its equilibrium relative humidity at a particular temperature can be expressed by means of a equilibrium moisture curves. These curves are sometimes referred to as ISOTHERMS because the values plotted for each curve usually corrospond to a specific temperature (Fig. 8.1).

The isotherm may be an ADSORPTION ISOTHERM which could be defined as a plot of equilibrium moisture content versus relative humidity at a given temperature for the material





Fig. 8.1. Equilibrium moisture content curve for biological material

which has been subjected to a wetting environment while a DESORPTION ISOTHERM may be described as a plot of equilibrium moisture content versus relative humidity at a given temperature for a material which has been subjected to a drying environment.

An empirical equation (Henderson, 1952) relating temperature, relative humidity and equilibrium moisture content in biological materials is most often written as;

$$1-RH=Exp.(-CTM_{\rho}^{n}) \qquad . . . (8.1)$$

Where, RH = relative humidity, in decimal,

T = absolute temperature, K

M<sub>e</sub> = equilibrium moisture content, % (db), and

C & n = constants varying with the material.

### **Sorption Hysteresis**

126

The phenomenon of the non-coincidence of the adsorption and desorption isotherms is called sorption hysteresis. In other words, if equilibrium is sought from a low initial moisture through an adsorption process, the equilibrium moisutre value reached is not always the same as when equilibrium is sought from a high initial moisture through a desorption process.

Two theories, the 'open-pore' or 'delayed meniscus' theory' and the 'ink-bottle' or 'bottle-neck' or 'cavity theory' have explained the phenomenon of hysteresis. The basis of the cavity theory is the hypothesis that sorption occurs by a process of condensation in and evaporation out of capillaries which are distinguished from each other by their shape characteristics.

At each pressure, condensation will occur in those capillary regions with radii corresponding to that pressure. Similarly, in the case of bottle-neck' capillaries which have not been completely filled, desorption will be reverse of adsorption. In completely filled bottle-neck' capillaries, however, desorption will not occur until the vapour pressure of the system has been decreased to the value corresponding to pressure necessry to vapourize water under conditions at the neck. It is this effect which is responsible for hysteresis.

## Determination of vapor pressure

The equilibrium moisture content information can be used for determining the vapor pressure of the material. If the vapor pressure of the material is higher than the vapor pressure of the surrounding atmosphere, moisture will, move from the material to the atmosphere. Conversely, if the vapor pressure of the material is lower than the surrounding atmosphere, moisture will move from the atmosphere to the material. The vapor pressure of the material can be determined by superimposing the equilibrium moisture content data on a psychrometric chart (Fig. 8.2).



Fig. 8.2. Psychrometric Chart (Baromatric pressure 760 mm of Mercury).

## Determination of equilibrium moisture content

Two general methods are used for determining the equilibrium moisture content. The STATIC METHOD, in which atmosphere surrounding the product comes to equilibrium with the product without mechanical agitation of the air or product, and the DYNAMIC METHOD, in which the atmosphere surrounding the product or the product is mechanically moved. The dynamic method is quicker but presents problems in design and instrumentation. Therefore, the static method has been used more extensively. However, both the methods are described here. When the static method is used for determining the equilibrium moisture content, a saturated salt solution or an acid solution may be used for maintaining the desired relative humidities at different temperatures.

#### Static Method

For determining the equilibrium moisutre content of grains using static method, environmental chamber is to be built for controlling the temperature and relative humidity. For this, Kachru (1985) has developed an environmental chamber (Fig. 8.3), to study the hygroscopic equilibrium of rough rice in desorption. The chamber was made of using pressed wood with a thin metal sheet as inside lining. The metal sheet lining was used to eliminate the possiblity of moisutre exchange between the pressed wood and the inside environment.



Fig. 8.3. Isometric view of an environmental chamber (Kachru, 1985).

The dimensions of the chamber were 0.6 m x 0.6 m x 1.0 m. The chamber was insulated by covering it with three layers of glass wool and kept air tight by using foam gaskets. A door was provided on the front side to have an access for checking the samples for weighing, taking dry and wet bulb temperatures and changing the salt solutions during the experimental runs.

At the top of the chamber, a sheet of plexiglass (0.3 m x 0.3 m) was provided for watching the inside of the chamber without disturbing the inside environment. A wire mesh floor was provided inside the chamber on which the samples, thermostat, thermometers and hygrometer were placed. A fancoil was hooked against the chamber wall having its 1000 W heater element connected to the thermostat through a red bulb alarm sign and a fan to agitate the inside air continuously. The experiments for the studies (Kachru, 1985) were arranged in such a way that higher temperature experiments were conducted in warmer season and vice-versa, because the chamber could not maintain the temperature below the surrounding. Different relative humidities were maintained by using known saturated salt solutions at different temperatures.

Tables 8.1 to 8.3 give the various salts and relative humidities achieved at different levels of temperature, weight of salt required to saturate 100 ml of water and different concentrations of aqueous acid solutions at various temperatures, respectively.

About 700-900 cc of salt solution was placed in the plastic trays (4 Nos.), kept inside the chamber and 4 to 5 g of dry salt was also added to the solutions to maintain their saturation condition. A simple hygrometer was used to monitor the relative humidity fluctuations. The order of changing the chemicals were selected in such a way that one set of experiments under constant temperature would begin from the highest relative humidity and endup with the lowest relative humidity for EMC studies in desorption. However, in adsorption, one set of experiments under constant temperature would begin from the lowest relative humidity and endup with the highest relative humidty.

The initial sample weight for EMC studies should be taken between 30-35 g, maintaining a thin layer of 1-3 kernels. An electronic balance with an accuracy of  $\pm$  0.0001 g is to be used for weighing the samples. When the weight of each sample had not changed for three subsequent turns (3-4 days interval), it is assumed that a sample has reached the equilibrium stage. At this point, 3-4 g sample is taken out and its moisture content is determined using standard method. This moisture content is the E.M.C. of the grains at a particular temperature and relative humidity.

## Dynamic Method.

For determing the equilibrium moisutre content of grains using dynamic method, an experimental set-up is to be made in which the atmosphere surrounding the product or the product is mechanically moved. For this, Kachru (1969) has developed an experimental set-up, for determination of constants C and n used in the Henderson's formula on equilibrium moisutre content for paddy varieties. This set-up (Fig. 8.4) consists of air supplying unit, water cooling unit, air humidifying unit, air heating unit, grain drying unit and balancing unit.

Before the experimentation, the refrigerating unit was allowed to cool the water in the water tank to a desirable level (say about 20°C). To achieve the uniform temperature throughout the tank, the water was recirculated in the beginning by means of a by-pass pipe. The blower and the water pump were then started to send air and water to the humidifying chamber, respectively. The wet-bulb depression of the air was zero before entering the heating unit. The humidified air was made to pass through the thermostatically controlled heating unit (Fig. 8.4). This hot air in the beginning was diverted to the atmoshpere with the help of an valve



- I WATER SUPPLY OUTLET
- 2. WATER FILTER
- 3. SAFETY VALVE
  4. AIR FILTER
  5. AIR INLET CONTROL
  6. BLOWER
  7. PUMP

- B. WATER TANK
- 9. WATER STIRRER
- 10- DIAL THERMOMETER
- 11. WATER FILTER AND VALVE
- 12. THREE WAY VALVE 13. BY PASS
- 14. PRESSURE PIPE (WATER)
- 15. PRESSURE GAUGE
- 16. AIR PIPE
- 17. THERMOSTAT SWITCH
- 18. WATER COOLING UNIT 19. SPRAY CHAMBER
- 20. WATER DROPLET FILTER
- 21. SPRAY NOZZLES
- 22. AUTOMIZER

- 23. WATER TRAP
  24. EXCESS WATER OUTLET
  25. WET/DRY-BULB THERMOMETERS
- 26. HEATER UNIT
- 27. CONTROL VALVE
- 28. ROTAMETER

- 29. CONTROL VALVE
  30. GRAIN CHAMBER
  31. FLEXIBLE CONNECTION
  32. PLENUM CHAMBER
  33. BALANCING BEAM
  34. DIAL GAUGE INDICATOR

Fig. 8.4. The experimental set-up for determination of E. M. C., using dynamic method (Kachru, 1969)

arrangement, to attain constant temperature. During the time the air could achieve this stability, the paddy grains were put in the drying chamber, whose initial m.c. was known and made balanced with the help of placing dead weights on the other end of balancing unit. At this point, the dial gauge would indicate zero reading. The air at required constant temperature was then diverted to the drying chamber through a rotameter with the help of two valves. In the beginning, the pointer on the dial gauge would shift through some divisions due to the pressure exerted by the drying air. This was rectified by bringing the pointer to zero mark again. The time was noted as zero minute at that stage. Hereafter, readings were taken after every 10 minutes till the pointer maintained a static position. The whole drying and balancing unit was covered up to check the influence of the atmospheric air disturbance on dial gauge readings.

The experiments conducted would take 4 to 8 hours total to attain a constant weight of a sample, depending upon the initial moisture content, air temperature and its relative humidity. Once the weight of sample becomes constant, its moisture content is determined using standard method. This moisture content is the E.M.C. of the sample at a particular environment condition.

Various research workers have carried out studies on hygroscopic equilibrium for cereals (maize, paddy, wheat, wheat flour and wheat semolina 'suji'); pulses (Bengal gram, Bengal gram flour 'besan', lentil and pigeon pea) and oil seeds (groundnut, groundnut kernel, groundnut shell, mustard, soybean, soyflour 'defatted' and soyflour 'full fat'). The values of E.M.C. in adosrption and desorption of some food crops are listed in the Tables 8.4 to 8.6.

Table 8.1: Relative humidity of saturated salt solution at different temperatures (Hall, 1957)

| Salt                                                                  | Tempt.,  | RH, %        |
|-----------------------------------------------------------------------|----------|--------------|
| 1.                                                                    | 2.       | 3.           |
| BaCl <sub>2</sub> . 2H <sub>2</sub> O <sup>38</sup> (Barium chloride) | 29       | 88.0         |
| CaCl <sup>37</sup> (Calcium chloride)                                 | 0        | 41.0         |
| CaCi2 (Calcium Chloride)                                              | 10       | 40.0         |
|                                                                       | 21       | 35.0         |
| CaCl <sub>2</sub> . 6H <sub>2</sub> O (Calcium chloride)              | 5        | 39.8         |
|                                                                       | 20       | 32.3         |
|                                                                       | 24       | 31.0         |
| $CaSO_4$ . $5H_2O$ (Calcium sulfate)                                  | 20       | 98.0         |
| $Ca(No_3)_2^{37}$ (Calcium nitrate)                                   | 0        | 64.0         |
| 0.0000000000000000000000000000000000000                               | 10       | 59.0         |
|                                                                       | 21       | 55.0         |
| $Ca(NO_3)_2$ . $4H_2O^{43}$ (Calcium nitrate)                         | 20       | 53.6         |
|                                                                       | 25       | 50.4         |
|                                                                       | 30       | 46.6         |
|                                                                       | 35       | 42.0         |
|                                                                       | 38       | 38.9         |
| KBr (Potassium bromide)                                               | 20       | 84.0         |
| T CO OT O D                                                           | 100      | 69.2         |
| $K_2CO_3$ . $2H_2O$ (Potassium carbonate)                             | 19       | 44.0         |
| TEG21043 (D                                                           | 24       | 43.0         |
| KCNS <sup>43</sup> (Potassium thiocynate)                             | 20       | 47.6         |
|                                                                       | 25<br>30 | 45.7<br>43.8 |
|                                                                       | 38       | 41.1         |
| ZG II 043 (D                                                          | 20       | 23.2         |
| $KC_2H_3O_2^{43}$ (Potassium acetate)                                 | 25       | 22.7         |
|                                                                       | 30       | 22.0         |
|                                                                       | 38       | 20.4         |
| KNO <sub>2</sub> <sup>43</sup> (Potassium nitrite)                    | 20       | 49.0         |
| invoy (1 otassiani murto)                                             | 25       | 48.2         |
|                                                                       | 30       | 47.2         |
|                                                                       | 38       | 45.9         |
| KNO <sub>3</sub> <sup>40</sup> (Potassium nitrate)                    | 0        | 97.6         |
|                                                                       | 10       | 95.5         |
|                                                                       | 20       | 93.2         |
|                                                                       | 30       | 90.7         |
|                                                                       | 40<br>50 | 87.9<br>85.0 |
| W CO43 (D )                                                           | 20       | 43.9         |
| $K_2CO_3^{43}$ (Potassium carbonate)                                  | 25       | 43.8         |
|                                                                       | 30       | 43.6         |
|                                                                       | 38       | 43.4         |
| K <sub>2</sub> CrO <sub>4</sub> <sup>43</sup> (Potassium chromate)    | 20       | 86.6         |
| 1170194 (1 Ottobium un omato)                                         | 25       | 86.5         |
|                                                                       | 30       | 86.3         |
|                                                                       | 38       | 85.6         |

## Table Contd...

| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.  | 3.   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| $K_2SO_4^{40}$ (Potassium sulfate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0   | 99.1 |
| 2004 (2000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10  | 97.9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20  | 97.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 96.6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  | 96.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50  | 95.8 |
| LiCl.H <sub>2</sub> O <sup>40</sup> (Lithium chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0   | 14.7 |
| Dici. H <sub>2</sub> O (Littlium chioride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20  | 12.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 11.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  | 11.6 |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50  | 11.4 |
| LiCl <sup>43</sup> (Lithium chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20  | 11.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25  | 11.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 11.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38  | 11.2 |
| MgCl <sub>2</sub> <sup>42</sup> (Magnesium chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23  | 32.9 |
| ingory (magnesium emerica)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30  | 32.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38  | 31.9 |
| MgCl <sub>2</sub> . 6H <sub>2</sub> O <sup>40</sup> (Magnesium chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0   | 35.0 |
| ingong to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control | 20  | 33.6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 32.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  | 32.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50  | 31.4 |
| 12 22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23  | 53.5 |
| $Mg(NO_3)_2^{42}$ (Magnesium nitrate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30  | 51.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 49.0 |
| M (NO.) CNI 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38  |      |
| $Mg(NO_3)_2 \cdot 6H_2O^{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0   | 60.6 |
| (Magnesium nitrate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20  | 54.9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 52.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  | 49.2 |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50  | 46.3 |
| NaBr <sup>43</sup> (Sodium bromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20  | 59.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25  | 57.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 56.3 |
| 40.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38  | 53.7 |
| NaCl <sup>40,43</sup> (Sodium chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0   | 74.9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20  | 75.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 75.6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  | 75.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50  | 74.7 |
| NaC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> <sup>42</sup> (Sodium acetate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23  | 74.8 |
| Maogrigo 2 (boardin accounc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30  | 71.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38* | 67.7 |
| NaC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> . 3H <sub>2</sub> O <sup>43</sup> (Sodium acetate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20  | 76.0 |
| (Sodium acetate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25  | 73.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 71.3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38  | 67.6 |
| NaNO <sub>2</sub> 42,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  | 65.3 |
| (Sodium nitrite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25  | 64.3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 63.3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38  | 61.8 |

Table Contd...

| 17.                                                                                                     | 2.        | 7    |
|---------------------------------------------------------------------------------------------------------|-----------|------|
| Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> <sup>42</sup> (Sodium dichromate)                        | 23        | 54.1 |
|                                                                                                         | 30        | 52.0 |
|                                                                                                         | 38        | 50.0 |
| Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> . 2H <sub>2</sub> O <sup>40</sup><br>(Sodium dichromate) | 0         | 60.6 |
| (Sodium dichromate)                                                                                     | 20        | 55.2 |
|                                                                                                         | 30        | 52.5 |
|                                                                                                         | 40        | 49.8 |
|                                                                                                         | 50        | 46.3 |
| NH <sub>4</sub> Cl <sup>37</sup> (Ammonium chloride)                                                    | 0         | 83.0 |
| *                                                                                                       | 10        | 81.0 |
|                                                                                                         | 21        | 75.0 |
| NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub> <sup>43</sup> (Ammonium                                  | 20        | 93.2 |
| Monophosphate)                                                                                          | <b>25</b> | 92.6 |
| monophosphate)                                                                                          | · 30      | 92.0 |
|                                                                                                         | 38        | 91.1 |
| $(NH_4)_2SO_4^{40,43}$ (Ammonium sulfate)                                                               | 0         | 83.7 |
| (                                                                                                       | 20        | 80.6 |
|                                                                                                         | 30        | 80.0 |
|                                                                                                         | 40        | 79.6 |
|                                                                                                         | 50        | 79.1 |

Table 8.2: Weight of salt required to saturate 100 ml of water (Hall, 1957)

| Chemical                                                           | Tempt., °C | Weight, g |
|--------------------------------------------------------------------|------------|-----------|
| BaCl <sub>2</sub> . 2H <sub>2</sub> 0 <sup>29</sup>                | 0          | 39.3      |
| Barium chloride)                                                   | 100        | 76.8      |
| CaClare (Calaium ablarida)                                         | 0          | 59.5      |
| CaCl <sub>229</sub> (Calcium chloride)                             | 20         | 74.5      |
|                                                                    | 30         | 102.0     |
|                                                                    | 30         | 102.0     |
| CoCl <sup>22</sup> (Cobaltous chloride)                            | 7          | 45.0      |
|                                                                    | 96         | 105.0     |
| CuCl <sub>2</sub> . 2H <sub>2</sub> O                              | 0          | 110.4     |
| (Cupric chloride)                                                  | 100        | 192.4     |
|                                                                    |            |           |
| KCL <sup>29</sup> Potassium chloride)                              | 20         | 34.0      |
|                                                                    | 30         | 37.0      |
|                                                                    | 40         | 40.0      |
| KNO <sub>3</sub> <sup>29</sup> (Potassium nitrate)                 | 20         | 31.6      |
| M103 (1 otassium muave)                                            | 30         | 45.8      |
|                                                                    | 40         | 63.9      |
| E C 029 (D                                                         | 20         | 61.7      |
| K <sub>2</sub> CrO <sub>4</sub> <sup>29</sup> (Potassium chromate) | 30         | 63.4      |
|                                                                    | 40         | 65.2      |
| 00                                                                 |            |           |
| $K_2SO_3^{29}$ (Potassium sulfate)                                 | 20         | 11.11     |
|                                                                    | 30         | 12.97     |
|                                                                    | 40         | 14.76     |
| LiCl <sup>22</sup> (Lithium chloride)                              | 100        | 127.5     |
| LiCl . H <sub>2</sub> O <sup>32</sup> (Lithium chloride)           | 30         | 46.3      |
| Dioi. 1120 (Divinam Cinoriae)                                      | 44         | 48.3      |
|                                                                    | 90         | 54.8      |
| McC) (Macmasium shlavida)                                          | 0          | 52.8      |
| MgCl <sub>2</sub> (Magnesium chloride)                             | 38         | 73.0      |
| 29                                                                 |            |           |
| $MgCl_2.6H_2O^{29}$                                                | 0 .        | 281.0     |
|                                                                    | 100        | 918.0     |
| NaCl <sup>29</sup> (Sodium chloride)                               | 10         | 35.8      |
|                                                                    | 20         | 36.0      |
|                                                                    | 30         | 36.3      |
|                                                                    | 40         | 36.6      |
|                                                                    | 100        | 39.1      |
| NaNO <sub>2</sub> (Sodium nitrite)                                 | 0          | 72.0      |
| 1,02,02,000                                                        | 100        | 163.0     |

Table 8.3: Relative humidity of different concentrations of aqueous acid solutions at various

temperatures, per cent (Hall, 1957)

| Acid                           | Tempt., |      | Acid by weight  | per cent |      |
|--------------------------------|---------|------|-----------------|----------|------|
|                                | °C      | 20   | 40              | 60       | 80   |
| H <sub>2</sub> SO <sub>4</sub> | 10      | 87.4 | 56.6            | 15.8     | 3.88 |
| (Sulfuric)                     | 20      | 87.7 | 56.7            | 16.3     | 4.76 |
|                                | 30      | 87.5 | 56.6            | 17.0     | 5.75 |
|                                | 40      | 87.6 | 57.5            | 17.8     | 6.88 |
|                                | 44      | 88.8 | 58.2            | 18.8     | 8.20 |
|                                |         |      | Acid by weight  | per cent |      |
|                                |         | 20   | 30              | 40       | 50   |
| HNO <sub>3</sub>               | 10      | 86.7 | 77.0            | 63.0     | 45.6 |
| (Nitric)                       | 20      | 86.6 | 75.2            | 61.5     |      |
|                                | 30      | 86.6 | 74.9            | 61.3     |      |
|                                | 40      | 85.9 | 74.1            | 60.5     |      |
|                                | 44      | 86.5 | 74.6            |          |      |
|                                | 60      | 86.9 | 75.6            |          |      |
|                                |         |      | Acid by weight, | per cent |      |
|                                |         | 10   | 20              | 30       | 40   |
| HCL                            | 10      | 83.5 |                 |          |      |
| (Hydrochloric)                 | 20      | 83.2 |                 |          |      |
|                                | 30      | 84.2 |                 |          |      |

Table 8.4 : See on page 138

Table 8.5: Hygroscopicity of pulses

| Grain/<br>Variety |              | Adsorption |                   | Co-effic | ients in Hend<br>equation* | erson's        | Reference |
|-------------------|--------------|------------|-------------------|----------|----------------------------|----------------|-----------|
|                   | Tempt;<br>°C | R.H.,<br>% | E.M.C.,<br>% (db) | С        | n                          | $\mathbb{R}^2$ |           |
| 1.                | 2.           | 3.         | 4.                | 5.       | 6.                         | 7.             | 8.        |
| Bengal gram       | 20           | 50.0       | 7.99              |          |                            |                | 55        |
| Radey             |              | 70.0       | 9.29              |          |                            |                |           |
|                   | 30           | 50.0       | 6.48              |          |                            |                |           |
|                   | 50           | 65.0       | 7.45              |          |                            |                |           |
| Bengal gram       | 20           | 33.0       | 10.43             | 3.131395 | 1.643150                   | 0.988          | 41,1      |
| flour besan'      |              | 43.9       | 12.09             |          |                            |                |           |
|                   |              | 54.2       | 14.62             |          |                            |                |           |
|                   |              | 59.6       | 15.90             |          |                            |                |           |
|                   |              | 68.4       | 19.66             |          |                            |                |           |
|                   |              | 79.2       | 21.84             |          |                            |                |           |
|                   |              | 90.7       | 30.61             |          |                            |                |           |
|                   | 30           | 32.4       | 8.77              | 4.653297 | 1.542517                   | 0.995          |           |
|                   |              | 43.5       | 11.23             |          |                            |                |           |
|                   |              | 51.4       | 12.65             |          |                            |                |           |
|                   |              | 69.4       | 17.82             |          |                            |                |           |
|                   |              | 78.2       | 20.43             |          |                            |                |           |
|                   |              | 89.9       | 28.10             |          |                            |                |           |

Table Contd....

| 1.                | 2.     | 3.    | 4.    | 5.       | 6.       | 7.    | 8.    |
|-------------------|--------|-------|-------|----------|----------|-------|-------|
|                   | 40     | 31.8  | 7.47  | 7.364640 | 1.414487 | 0.991 |       |
|                   |        | 41.0  | 9.22  |          |          |       |       |
|                   |        | 48.5  | 10.73 |          |          |       |       |
|                   |        | 61.6  | 14.17 |          |          |       |       |
|                   |        | 71.5  | 16.48 |          |          |       |       |
|                   |        | 79.2  | 19.38 |          |          |       |       |
|                   |        | 89.1  | 26.81 |          |          |       |       |
|                   | 50     | 31.2  | 7.17  | 6.787346 | 1.481422 | 0.984 |       |
|                   |        | 38.2  | 7.85  |          |          |       |       |
|                   |        | 48.5  | 9.61  |          |          |       |       |
|                   |        | 63.2  | 12.37 |          |          |       |       |
|                   |        | 68.6  | 13.73 |          |          |       |       |
|                   |        | 78.5  | 17.33 |          |          |       |       |
|                   |        | 88.3  | 23.95 |          |          |       |       |
| Lentil<br>L—9—12  | 20     | 50.0  | 9.11  |          |          |       | 55    |
| L—9—12            |        | 70.0  | 10.36 |          |          |       |       |
|                   | 30     | 50.0  | 5.90  |          |          |       |       |
|                   | 50     | 65.0  | 6.92  |          |          |       |       |
| Pegeonpea<br>T—21 | 35     | 20.0  | 4.52  |          |          |       | 14,35 |
| T—21              |        | 45.0  | 7.89  |          |          |       |       |
|                   |        | 65.0  | 10.86 |          |          |       |       |
|                   |        | 75.0  | 13.06 |          |          |       |       |
|                   | 70     | 20.0  | 3.57  |          |          |       |       |
|                   |        | 45.0  | 5.51  |          |          |       |       |
|                   |        | 65.0  | 10.23 |          |          |       |       |
|                   |        | 75.0  | 13.51 |          |          |       |       |
| Local             | 43     | 10.49 | 2.36  |          |          |       |       |
|                   |        | 31.48 |       |          |          |       |       |
|                   |        | 42.00 | 3.62  |          |          |       |       |
|                   |        | 6050  | 5.63  |          |          |       |       |
|                   |        | 74.85 | 8.56  |          |          |       |       |
|                   | 50     | 10.38 | 2.16  |          |          |       |       |
|                   |        | 30.59 | 6.49  |          |          |       |       |
|                   |        | 40.6  | 3.11  |          |          |       |       |
|                   |        | 60.25 | 4.90  |          |          |       |       |
|                   |        | 75.13 | 6.56  |          |          |       |       |
| 4                 | -CT Mn | 86.7  | 13.38 |          |          |       |       |

<sup>\*</sup>  $1-RH = e^{-CT} M_e^n$ 

Where,

RH = relative humidity, decimal;

 $M_e$  = equilibrium moisture content, % (db), and

T = temperature, K

C,n = co-efficients.

|                      | Adsorption |               |                      | Desorption |                   | Coefficie               | Coefficients in Henderson's equation | erson's | Reference — |
|----------------------|------------|---------------|----------------------|------------|-------------------|-------------------------|--------------------------------------|---------|-------------|
| Temper-<br>ature, °C | R.H.,      | E.M.C., %(db) | Temper-<br>ature, °C | R.H.,      | E.M.C.,<br>% (db) | C x 10°                 | u                                    | F.      |             |
|                      | က          | 4.            | 5.                   | .9         | 7.                | Š                       | 9.                                   | 10.     | 11.         |
|                      |            |               | 20                   | 84.0       | 22.34             | 0.619603                | 2.254577                             | 0.998   | 35,71,73    |
|                      |            |               |                      | 79.5       | 19.61             |                         |                                      |         |             |
|                      |            |               |                      | 0.69       | 18.51             |                         | ,                                    |         |             |
|                      |            |               |                      | 48.0       | 13.43             |                         |                                      |         |             |
|                      |            |               |                      | 35.0       | 11.13             |                         |                                      |         |             |
|                      |            |               |                      | 18.0       | 8.35              |                         |                                      |         |             |
|                      |            |               | 30                   | 83.0       | 19.67             | 0.956142                | 2.127630                             | 0.994   |             |
|                      |            |               |                      | 75.5       | 18.45             |                         |                                      |         |             |
|                      |            |               |                      | 0.89       | 16.44             |                         |                                      |         |             |
|                      |            |               |                      | 40.0       | 11.94             |                         |                                      |         |             |
|                      |            |               |                      | 32.0       | 10.16             |                         |                                      |         |             |
|                      |            |               |                      | 14.0       | 6.21              |                         |                                      |         |             |
|                      |            |               | 40                   | 80.0       | 17.32             | 0.896370                | 2.202570                             | 0.990   |             |
|                      |            |               |                      | 72.5       | 16.76             |                         |                                      |         |             |
|                      |            |               |                      | 63.5       | 13.85             |                         |                                      |         |             |
|                      |            |               |                      | 38.5       | 10.54             |                         |                                      |         |             |
|                      |            |               |                      | 20.0       | 9.18              |                         |                                      |         |             |
|                      |            |               |                      | 13.0       | 5.71              |                         |                                      |         |             |
|                      |            |               | 48.5                 | 21.5       | 13.95             | 1.3495x10 <sup>-2</sup> | 3.27631                              | ł       |             |
|                      |            |               |                      | 27.4       | 15.14             |                         |                                      |         |             |
|                      |            |               |                      | 31.2       | 15.85             |                         |                                      |         |             |
|                      |            |               |                      | 44.0       | 18.20             |                         |                                      |         | •           |
|                      |            |               | 0.09                 | 13.0       | 8.96              | 2.22703x10-2            | 3.44183                              | 1       |             |
|                      |            |               |                      | 18.0       | 9.89              |                         |                                      |         |             |
|                      |            |               |                      | 23.0       | 10.64             |                         |                                      |         |             |
|                      |            |               |                      | 26.0       | 11.26             |                         |                                      |         |             |

| 4.       |
|----------|
| 70.0     |
|          |
|          |
| 50.0     |
|          |
|          |
|          |
| 61.0     |
|          |
|          |
|          |
| 70.0     |
|          |
| 15.0     |
|          |
| 8.84 20  |
|          |
|          |
|          |
|          |
| 10.74 35 |
|          |
|          |
|          |
|          |
| 7.34 50  |
| 12.37    |
| 15.81    |

| 11          | 77.      |       |       |       |       |       |       |       |                          |       |       |       |                          |      |      |      |                          |      |      |      |          |          |       |       |       |      |          |       |       |       |       |      |
|-------------|----------|-------|-------|-------|-------|-------|-------|-------|--------------------------|-------|-------|-------|--------------------------|------|------|------|--------------------------|------|------|------|----------|----------|-------|-------|-------|------|----------|-------|-------|-------|-------|------|
| 10          | 10.      |       |       |       |       |       |       |       | ļ                        |       |       |       | 1                        |      |      |      | 1                        |      |      |      | 0.992    |          |       |       |       |      | 0.997    |       |       |       |       |      |
|             |          |       |       |       |       |       |       |       | 7.92151                  |       |       |       | 7.85681                  |      |      |      | 9.41291                  |      |      |      | 2.184995 |          |       |       |       |      | 2.203690 |       |       |       |       |      |
|             | œ.       |       |       |       |       |       |       |       | 2.78316x10 <sup>-7</sup> |       |       |       | 1.51149x10 <sup>-6</sup> |      |      |      | 2.96735x10 <sup>-7</sup> |      |      |      | 0.769133 |          |       |       |       |      | 0.896480 |       |       |       |       |      |
| 1           | 7.       | 9.87  | 5.89  | 14.36 | 15.35 | 11.10 | 9.18  | 6.19  | 12.00                    | 12.20 | 12.36 | 12.60 | 8.76                     | 9.30 | 9.40 | 9.77 | 86.9                     | 7.18 | 7.37 | 7.52 | 22.43    | 19.10    | 18.25 | 13.62 | 11.31 | 7.78 | 18.82    | 17.61 | 15.91 | 11.13 | 10.03 | 6.08 |
|             | 9.       | 45.0  | 20.0  | 80.0  | 75.0  | 65.0  | 45.0  | 20.0  | 27.0                     | 30.0  | 33.0  | 37.0  | 12.0                     | 18.5 | 20.0 | 26.0 | 8.5                      | 11.0 | 14.0 | 16.3 | 87.0     | 79.5     | 70.0  | 49.0  | 35.0  | 18.0 | 84.0     | 79.0  | 68.0  | 45.0  | 39.0  | 14.0 |
|             | 5.       |       |       | 70    |       |       |       |       | 46.5                     |       |       |       | 0.09                     |      |      |      | 70.00                    |      |      |      | 20       |          |       |       |       |      | 30       |       |       |       |       |      |
|             | 4.       | 17.62 | 19.29 | 8.67  | 12.07 | 14.05 | 18.08 | 18.05 |                          |       |       |       |                          |      |      |      |                          |      |      |      |          |          |       |       |       |      |          |       |       |       |       |      |
|             | <u>ن</u> | 75.0  | 80.0  | 20.0  | 45.0  | 65.0  | 75.0  | 80.0  |                          |       |       |       |                          |      |      |      |                          |      |      |      |          |          |       |       |       |      |          |       |       |       |       |      |
| Table Contd | .2       |       |       | 70    |       |       |       |       | 2                        |       |       |       |                          |      |      |      |                          |      |      |      |          | Y.       |       |       |       |      |          |       |       |       |       |      |
| Table       | 1.       |       |       |       |       |       |       |       | Patnai-23                |       |       |       |                          |      |      |      |                          |      |      |      | Rashti   | Domsorkh |       |       |       |      |          |       |       |       |       |      |

| 1. 2. 3. 4. 5. Rashti Salari 20 30 30 40 |      |            | 8.                                    | 9.088085 | 10.   | 11. |
|------------------------------------------|------|------------|---------------------------------------|----------|-------|-----|
| 20 20 30 40                              |      |            |                                       | 9 008008 | 0000  |     |
|                                          | 30   |            |                                       | 7.000000 | 0.980 |     |
|                                          | 30   |            | 9:                                    |          |       |     |
|                                          | 30   |            | 12                                    |          |       |     |
|                                          | 30   | 40.5 10.94 | 14                                    |          |       |     |
|                                          | 30   | 30.0 8.93  |                                       |          |       |     |
|                                          | 30   | 13.5 5.52  |                                       |          |       |     |
|                                          | 930  | 89.5 21.04 | 0.393947                              | 2.499090 | 0.994 |     |
| 30                                       | 930  | 82.5 18.23 | E.                                    |          |       |     |
| 30                                       | 30   | 75.0 16.84 | 4                                     |          |       |     |
| 30                                       | 30   | 48.0 13.24 | 4                                     |          |       |     |
| 30                                       | 30   | 36.0 10.62 | .2                                    |          |       |     |
| 30                                       | 30   | 18.0 7.84  |                                       |          |       |     |
| 40                                       |      | 83.0 18.19 | 9 0.010317                            | 2.157080 | 0.992 |     |
| 40                                       |      | 79.0 18.01 | 11                                    |          |       |     |
|                                          |      | 70.0 15.56 | 9                                     |          |       |     |
| 40                                       |      | 38.5 10.99 | 6                                     |          |       |     |
| 40                                       |      | 32.0 9.56  |                                       |          |       |     |
| 40                                       |      | 15.0 6.01  |                                       |          |       |     |
|                                          | 40   | 80.0 18.02 | 0.095085                              | 2.158205 | 0.994 |     |
|                                          |      | 77.0 15.97 | 1                                     |          |       |     |
|                                          |      | 67.0 14.23 | 53                                    |          |       |     |
|                                          |      | 40.0 10.48 | 8                                     |          |       |     |
|                                          |      | 30.0 8.45  |                                       |          |       |     |
|                                          |      | 14.0 5.81  |                                       |          |       |     |
| Taichung 50.0                            | 20.0 | 15.0 10.33 | 1.18787 <sub>x</sub> 10 <sup>-5</sup> | 6.53506  | 1     |     |
| Native-1                                 |      | 20.0 10.85 | 5                                     |          |       |     |
|                                          |      | 25.0 11.27 | 2                                     |          |       |     |
|                                          |      | 28.0 11.50 | 0'                                    |          |       |     |

|       |    |       |       |      |      |       |                          |         | 10  | 11   |
|-------|----|-------|-------|------|------|-------|--------------------------|---------|-----|------|
|       | 2. | 3.    | 4.    | 5.   | .9   | 7.    | × .                      | - 1     | 10. | 11.  |
|       |    |       |       | 0.09 | 10.0 | 8.39  | 1.05802×10 <sup>-5</sup> | 7.00666 |     |      |
|       |    |       |       |      | 16.0 | 9.04  |                          |         |     |      |
|       |    |       |       |      | 25.0 | 89.6  |                          |         |     |      |
|       |    |       |       |      | 30.0 | 10.00 | •                        |         |     |      |
|       |    |       |       | 68.0 | 10.0 | 7.21  | $1.41773 \times 10^{-5}$ | 7.38240 |     |      |
|       |    |       |       |      | 15.0 | 7.67  |                          |         |     |      |
|       |    |       |       |      | 24.0 | 8.22  |                          |         |     |      |
|       |    |       |       |      | 28.0 | 8.41  |                          |         |     |      |
| aize  | 43 | 10.49 | 1.13  |      |      |       |                          |         |     | . 14 |
| Local | ۰  | 31.48 | 5.47  |      |      |       |                          |         |     |      |
|       |    | 42.00 | 1     |      |      |       |                          |         |     |      |
|       |    | 60.50 | 5.29  |      |      |       |                          |         |     |      |
|       |    | 74.85 | 7.75  |      |      |       |                          |         |     |      |
|       | 90 | 10.38 | 1.04  |      |      |       |                          |         |     |      |
|       |    | 30.59 | 6.20  |      |      |       |                          |         |     |      |
|       |    | 40.60 | ı     |      |      |       |                          |         |     |      |
|       |    | 60.25 | 5.08  |      |      |       |                          |         |     |      |
|       |    | 75.13 | 8.64  |      |      |       |                          |         |     |      |
|       |    | 86.70 | 18.23 |      |      |       |                          |         |     |      |
| Wheat | 20 | 20.0  | 6.92  | 20   | 80.0 | 19.75 |                          |         |     | 35   |
| RR-21 |    | 45.0  | 11.84 |      | 75.0 | 17.18 |                          |         |     |      |
|       |    | 65.0  | 15.87 |      | 65.0 | 13.19 |                          |         |     |      |
|       |    | 75.0  | 18.58 |      | 45.0 | 9.71  |                          |         |     |      |
|       |    | 80.0  | 21.27 |      | 20.0 | 6.42  |                          |         |     |      |
|       |    | 0.06  | 29.12 | 35   | 45.0 | 7.94  |                          |         |     |      |
|       |    |       |       |      | 20.0 | 5.32  |                          |         |     |      |
|       | 35 | 65.0  | 12.83 | 20   | 80.0 | 16.12 |                          |         |     |      |
|       |    |       |       |      | 75.0 | 14.67 |                          |         |     |      |
|       | 20 | 20.0  | 5.29  |      | 65.0 | 11.36 |                          |         |     |      |
|       |    | 45.0  | 10.27 |      | 45.0 | 9.05  |                          |         |     |      |
|       |    | 65.0  | 12.56 |      | 20.0 | 5.41  |                          |         |     |      |
|       |    | 75.0  | 13 96 | 70   | 0 80 | 10 10 |                          |         |     |      |

| 1.    | 2. | 3.    | 4.    | 5. | 6.   | 7.   | 8.       | 9.       | 10.   | 11.    |
|-------|----|-------|-------|----|------|------|----------|----------|-------|--------|
|       |    | 80.0  | 17.48 |    | 45.0 | 6.71 |          |          |       |        |
|       |    | 0.06  | 40.55 |    | 20.0 | 3.41 |          |          |       |        |
| Wheat | 20 | 33.00 | 12.26 |    |      |      | 0.343746 | 2.379166 | 0.994 | 41,120 |
| Flour |    | 39.00 | 14.12 |    |      |      |          |          |       |        |
|       |    | 55.00 | 16.89 |    |      |      |          |          |       |        |
|       |    | 65.35 | 18.98 |    |      |      |          |          |       |        |
|       |    | 75.20 | 21.46 |    |      |      |          |          |       |        |
|       |    | 85.00 | 23.56 |    |      |      |          |          |       |        |
|       |    | 90.70 | 25.53 |    |      |      |          |          |       |        |
|       | 30 | 29.25 | 10.53 |    |      |      | 0.448887 | 2.338708 | 0.991 |        |
|       |    | 43.50 | 12.59 |    |      |      |          |          |       |        |
|       |    | 51.35 | 15.59 |    |      |      |          |          |       |        |
|       |    | 63.20 | 17.20 |    |      |      |          |          |       |        |
|       |    | 74.40 | 19.56 |    |      |      |          |          |       |        |
|       |    | 83.40 | 20.92 |    |      |      |          |          |       |        |
|       |    | 89.90 | 23.69 |    |      |      |          |          |       |        |
|       | 40 | 31.80 | 8.75  |    |      |      | 1.905157 | 1.931582 | 0.995 |        |
|       |    | 43.90 | 10.20 |    |      |      |          |          |       |        |
|       |    | 49.65 | 11.89 |    |      |      |          |          |       |        |
|       |    | 61.55 | 13.95 |    |      |      |          |          |       |        |
|       |    | 71.50 | 16.00 |    |      |      |          |          |       |        |
|       |    | 81.70 | 18.85 |    |      |      |          |          |       |        |
|       |    | 89.10 | 21.15 |    |      |      |          |          |       |        |

| Table Contd    |    |       |       |       |    |          |          |       |        |
|----------------|----|-------|-------|-------|----|----------|----------|-------|--------|
|                | 2. | က     | 4.    | 5. 6. | 7. | œ        | 9.       | 10.   | 11.    |
|                | 20 | 31.20 | 6.70  |       |    | 4.871995 | 1.610424 | 0.991 |        |
|                |    | 38.20 | 8.71  |       |    |          |          |       |        |
|                |    | 46.95 | 10.31 |       |    |          |          |       |        |
|                |    | 68.60 | 14.63 |       |    |          |          |       |        |
|                |    | 82.20 | 17.33 |       |    |          |          |       |        |
|                |    | 88.30 | 20.83 |       |    |          |          |       |        |
| Wheat,         | 20 | 33.00 | 13.39 |       |    | 0.279829 | 2.414804 | 0.983 | 41,120 |
| Semolina Suji' |    | 39.00 | 14.35 |       |    |          |          |       |        |
|                |    | 54.24 | 16.75 |       |    |          |          |       |        |
|                |    | 29.60 | 17.83 |       |    |          |          |       |        |
|                |    | 68.40 | 19.70 |       |    |          |          |       |        |
|                |    | 79.20 | 22.03 |       |    |          |          |       |        |
|                |    | 90.70 | 28.73 |       |    |          |          |       |        |
|                | 30 | 29.25 | 12.98 |       |    | 0.276435 | 2.428147 | 0.984 |        |
|                |    | 32.40 | 14.63 |       |    |          |          |       |        |
|                |    | 43.50 | 16.04 |       |    |          |          |       |        |
|                |    | 51.35 | 18.25 |       |    |          |          |       |        |
|                |    | 63.20 | 19.36 |       |    |          |          |       |        |
|                |    | 74.40 | 21.24 |       |    |          |          |       |        |
|                |    | 89.90 | 27.44 |       |    |          |          |       |        |
|                | 40 | 31.80 | 12.08 |       |    | 0.386734 | 2.363688 | 0 965 |        |
|                |    | 41.00 | 13.08 |       |    |          |          |       |        |
|                |    | 48.45 | 13.77 |       |    |          |          |       |        |
|                |    | 61.55 | 16.90 |       |    |          |          |       |        |
|                |    | 71.50 | 17.88 |       |    |          |          |       |        |
|                |    | 79.15 | 20.11 |       |    |          |          |       |        |
|                |    | 89.10 | 25.91 |       |    |          |          |       |        |
|                |    |       |       |       |    |          |          |       |        |

| 50 31.20 |       |    |    |    |          |                         |       | * * |
|----------|-------|----|----|----|----------|-------------------------|-------|-----|
|          | 4.    | 5. | 6. | 7. | œ.       | 9.                      | 10.   | T.  |
|          | 10.75 |    |    |    | 5.571696 | 5.571696 2.284325 0.960 | 0.960 |     |
| 38.20    | 11.91 |    |    |    |          |                         |       |     |
| 45.50    | 12.35 |    |    |    |          |                         |       |     |
| 63.20    | 15.34 |    |    |    |          |                         |       |     |
| 09.89    | 16.31 |    |    |    |          |                         |       |     |
| 78.45    | 18.11 |    |    |    |          |                         |       |     |
| 88.30    | 24.49 |    |    |    |          |                         |       |     |

Where,

RH = relative humidity, decimal,

T = temperature, K,

 $M_e = equilibrium$  moisture content, %(db), and

 $C, n = \infty$ -efficients.

| 1                  | V              | Adeprofice |         |        | Desorption |        | Coefficient           | Co-efficients in Henderson's equation | equation       | The section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the se |
|--------------------|----------------|------------|---------|--------|------------|--------|-----------------------|---------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variety -          | Temp.,         | R.H.,      | E.M.C., | Temp., | R.H.,      | E.M.C. | Cx10-6                | ď                                     | R <sup>2</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | J <sub>o</sub> | %          | %(qp)   | 2      | 20         | Canyor |                       |                                       | 10             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                  | 2              | 69         | 4.      | 5.     | 6.         | 7.     | Ϙ                     | e,                                    | 707            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Groundnut          | 40             | 33.0       | 7.80    | 40     | 30.0       | 4.40   | 12.70 (adsorption)    | 1.48 (adsorption)                     |                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                | 40.0       | 8.90    |        | 40.0       | 9.60   | 3.19 (desorption)     | 1.80<br>(desorption)                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                | 50.0       | 10.60   |        | 90.09      | 06.90  | 1                     | Į                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 45             | 30.0       | 6.80    | 45     | 30.0       | 3.50   | 22.50 (adsorption)    | 1.30 (adeorption)                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                | 40.0       | 8.40    |        | 40.0       | 4.40   | 5.44 (adsorption)     | 1.60<br>(adeorption)                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                | 50.        | 10.30   |        | 90.09      | 9.80   | l                     | ı                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 20             | 30.0       | 6.20    | 20     | 30.0       | 3.04   | 32.50 (adsorption)    | 1.11 (adsorption)                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                | 40.0       | 8.00    |        | 45.0       | 4.77   | 6.66<br>(desorption)  | 1.53<br>(desorption)                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                | 90.0       | 6.60    |        | 0.09       | 7.00   | 1                     | ı                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Groundnut (kernel) |                |            |         | 40     | 33.0       | 6.00   | 11.20<br>(desorption) | 1.36 (desorption)                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                |            |         |        | 40.0       | 7.18   |                       |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                |            |         |        | 44.0       | 9.00   |                       |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 1.                | ci | တ်    | 4.   | 5. | 6.    | 7.         | တ်                   | ó                    | 10, | 11. |
|-------------------|----|-------|------|----|-------|------------|----------------------|----------------------|-----|-----|
|                   |    |       |      | 45 | 30.0  | 5.20       | 12.80                | 1.32                 |     |     |
|                   |    |       |      |    |       |            | (desorbtion)         | (desorbtion)         |     |     |
|                   |    |       |      |    | 40.0  | 6.70       |                      |                      |     |     |
|                   |    |       |      |    | 50.0  | 8.60       |                      |                      |     |     |
|                   |    |       |      | 20 | 30.0  | 4.70       | 14.10                | 1.34                 |     |     |
|                   |    |       |      |    |       |            | (desorption)         | (desorption)         |     |     |
|                   |    |       |      |    | 40.0  | 6.10       |                      |                      |     |     |
|                   |    |       |      |    | 44.0  | 99.9       |                      |                      |     |     |
| Groundnut (shell) |    |       |      | 40 | 33.0  | 9.10       | 4.44<br>(desorntion) | 1.52 (dosorretion)   |     | 4   |
|                   |    |       |      |    | 40.0  | 10.70      |                      |                      |     |     |
|                   |    |       |      |    | 90.09 | 13.10      |                      |                      |     |     |
|                   |    |       |      | 45 | 30.0  | 7.40       | 8.20                 | 1.31                 |     |     |
|                   |    |       |      |    |       |            | (med man)            | Third main           |     |     |
|                   |    |       |      |    | 40.0  | 9.80       |                      |                      |     |     |
|                   |    |       |      |    | 90.09 | 12.30      |                      |                      |     |     |
|                   |    |       |      | 20 | 30.0  | 08.9       | 1.01<br>(desorption) | 1.26<br>(desorption) |     |     |
|                   |    |       |      |    | 40.0  | 8.50       |                      |                      |     |     |
|                   |    |       |      |    | 44.0  | 80.<br>80. |                      |                      |     |     |
| Mustard           | 43 | 10.49 | 1.28 |    |       |            |                      |                      |     | 14  |
|                   |    | 31.48 | 3.62 |    |       |            |                      |                      |     |     |
|                   |    | 45.00 | 1    |    |       |            |                      |                      |     |     |
|                   |    | 60.60 | 000  |    |       |            |                      |                      |     |     |

|             | 8. 9. 10. |       |       |       |       |       |       |       |         |       |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-------------|-----------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|             | 7.        |       |       |       |       |       |       |       | 25.05   | 16.99 | 12.20 | 8.55  | 8.07  | 12.25 | 11.68 | 8.09 | 7.95  | 6.23  |       |       |       |       |       | 16.10 | 11.33 | 10.76 | 09.9  | 6.72  |
|             | .9        |       |       |       |       |       |       |       | 85.0    | 75.0  | 65.3  | 52.0  | 43.9  | 75.0  | 72.2  | 62.0 | 54.0  | 43.5  |       |       |       |       |       | 80.00 | 75.00 | 65.00 | 45.00 | 31.40 |
|             | 5.        |       |       |       |       |       |       |       | 20      |       |       |       |       | 35    |       |      |       |       |       |       |       |       |       | 20    |       |       |       |       |
|             | 4.        | 5.85  | 1.23  | 4.30  | 1     | 3.69  | 5.90  | 10.50 | 6.52    | 7.49  | 10.85 | 15.05 | 24.50 | 5.61  | 7.55  | 9.52 | 12.65 | 13.75 | 1.84  | 3.22  | 6.11  | 8.25  | 10.27 | 6.68  | 5.71  | 10.23 | 13.50 | 16.87 |
|             | 3.        | 74.85 | 10.38 | 30.59 | 40.60 | 60.25 | 75.13 | 86.70 | 43.9    | 52.0  | 65.3  | 75.0  | 85.0  | 43.5  | 54.0  | 62.0 | 72.2  | 75.0  | 10.49 | 31.48 | 42.00 | 60.50 | 74.85 | 31.4  | 45.0  | 65.0  | 75.0  | 80.0  |
| Table Contd | 2.        |       | 90    |       |       |       |       |       | 20      |       |       |       |       | 35    |       |      |       |       | 43    |       |       |       |       | 20    |       |       |       |       |
| Table       | 1.        |       |       |       |       |       |       |       | Soybean |       |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |

| Table                  | Table Colled |      |       |    |       |       |           |           |       |        |
|------------------------|--------------|------|-------|----|-------|-------|-----------|-----------|-------|--------|
| 1.                     | 2.           | ů.   | 4.    | 5. | .9    | 7.    | œ.        | 9.        | 10.   | 11.    |
|                        |              | 65.7 | 8.71  | -  | 75.00 | 11.81 |           |           |       |        |
|                        |              | 75.0 | 12.17 |    | 65.70 | 8.79  |           |           |       |        |
|                        |              | 80.0 | 11.03 |    | 43.00 | 4.81  |           |           |       |        |
| Soyflour<br>(defatted) | 20           | 33.0 | 8.66  |    |       |       | 6.809781  | 1.407461  | 0.997 | 41,120 |
|                        |              | 39.0 | 9.85  |    |       |       |           |           |       |        |
|                        |              | 54.2 | 13.11 |    |       |       |           |           |       |        |
|                        |              | 9.69 | 14.90 |    |       |       |           |           |       |        |
|                        |              | 68.4 | 17.51 |    |       |       |           |           |       |        |
|                        |              | 79.2 | 22.09 |    |       |       |           |           |       |        |
|                        |              | 90.7 | 30.78 |    |       |       |           |           |       |        |
|                        | 30           | 32.4 | 7.68  |    |       |       | 9.665134  | 1.322522  | 0.987 |        |
|                        |              | 43.5 | 9.04  |    |       |       |           |           |       |        |
|                        |              | 51.4 | 11.06 |    |       |       |           |           |       |        |
|                        |              | 63.2 | 13.45 |    |       |       |           |           |       |        |
|                        |              | 4.69 | 16.15 |    |       |       |           |           |       |        |
|                        |              | 78.2 | 20.50 |    |       |       |           |           |       |        |
|                        |              | 89.9 | 28.06 |    |       |       |           |           |       |        |
|                        | 40           | 31.8 | 6.55  |    |       |       | 12.639877 | 1.270602  | 766 0 |        |
|                        |              | 41.0 | 7.48  |    |       |       |           |           | *     |        |
|                        |              | 48.5 | 8.85  |    |       |       |           |           |       |        |
|                        |              | 61.6 | 11.90 |    |       |       |           |           |       |        |
|                        |              | 71.5 | 15.18 |    |       |       |           |           |       |        |
|                        |              | 81.7 | 19.05 |    |       |       |           |           |       |        |
|                        |              | 89.1 | 24.78 |    |       |       |           |           |       |        |
|                        | 20           | 31.2 | 5.56  |    |       |       | 14 030346 | 1 969799  | 7000  |        |
|                        |              | 38.2 | 6.41  |    |       |       |           | 7.61707.1 | 0.334 |        |
|                        |              | 45.5 | 7.59  |    |       |       |           |           |       |        |

|             | 11. |       |       |       |       | 41,120    |           |       |       |       |       |       |           |      |      |       |       |       |       |           |      |      |       |       |       |       |           |      |
|-------------|-----|-------|-------|-------|-------|-----------|-----------|-------|-------|-------|-------|-------|-----------|------|------|-------|-------|-------|-------|-----------|------|------|-------|-------|-------|-------|-----------|------|
|             | 10. |       |       |       |       | 0.984     |           |       |       |       |       |       | 0.994     |      |      |       |       |       |       | 0.972     |      |      |       |       |       |       | 0.970     |      |
|             | 9.  |       |       |       |       | 1.285611  |           |       |       |       |       |       | 1.227063  |      |      |       |       |       |       | 1.263091  |      |      |       |       |       |       | 1.261158  |      |
|             | 8.  |       |       | ,     |       | 10.781814 |           |       |       |       |       |       | 14.039838 |      |      |       |       |       |       | 14.482447 |      |      |       |       |       |       | 15.687940 |      |
|             | 7.  |       |       |       |       |           |           |       |       |       |       |       |           |      |      |       |       |       |       |           |      |      |       |       |       |       | í e       |      |
|             | 6.  |       |       |       |       |           |           |       |       |       |       |       |           |      |      |       |       |       |       |           |      |      |       |       | •     |       |           | *    |
|             | 5.  |       |       |       |       |           |           |       |       |       |       |       |           |      |      |       |       |       |       |           |      |      |       |       |       |       |           |      |
|             | 4.  | 11.82 | 12.39 | 16.17 | 22.28 | 7.90      | 9.22      | 11.75 | 13.07 | 15.35 | 21.53 | 30.36 | 6.32      | 8.50 | 99.6 | 12.36 | 14.94 | 18.42 | 26.91 | 5.85      | 7.12 | 7.93 | 10.90 | 12.25 | 16.05 | 24.80 | 5.29      | 6.15 |
|             | က်  | 63.2  | 9.89  | 79.2  | 88.3  | 33.0      | 43.9      | 54.2  | 59.6  | 68.4  | 79.2  | 2.06  | 32.4      | 43.5 | 51.4 | 63.2  | 69.4  | 78.2  | 89.9  | 31.8      | 41.0 | 48.5 | 61.6  | 71.5  | 79.2  | 89.1  | 31.2      | 38.2 |
| ontd        | 2.  |       |       |       |       | 20        |           |       |       |       |       |       | 30        |      |      |       |       |       |       | 40        |      |      |       |       |       |       | 90        |      |
| Table Contd | 1.  |       |       |       |       | Soyflour  | (fullfat) |       |       |       |       |       |           |      |      |       |       |       |       |           |      |      |       |       |       |       |           |      |

| 5.    |  | 72 | 15.09 | 22.08 |
|-------|--|----|-------|-------|
|       |  |    |       |       |
| 6. 7. |  |    |       |       |
| œ     |  |    |       |       |
| 9.    |  |    |       |       |
| 10.   |  |    |       |       |
| 11.   |  |    |       |       |

 $^{\circ}$  1-RH =  $e^{-CT}$   $M_e^n$ 

Where,

RH = relative humidity, decimal,

T = temperature, K,

 $M_e = equilibrium moisture content, \% (db), and$ 

 $C, n = \infty$ -efficients.

## REFERENCES CITED

- 1. Adhaoo, S.H.; S.V.Dhawale and S.T.Ingle. Engineering properties of groundnut and jowar, part 2-Thermal properties. J. of Agril. Engg. 13(1) 1976. pp : 22-3.
- 2. Agrawal, Y.C.; A.K.Tikkoo; B.P.N.Singh and Maharaj Narain. Post harvest technology of oil seeds, Problems and perspectives. Bulletin of Grain Technol. 26(2) 1988, pp : 99-108.
- 3. Agricultural statistics at a glance. Directorate of Economics & Statistics, Department of Agriculture & Cooperation. Ministry of Agriculture, GOI, May 1992.
- 4. Alam, A and G.C.Shove. Hygroscopicity and thermal properties of soybean. Trans. ASAE 1973, 16(4), pp:707-9.
- 5. Alam, A and G.C. Shove. Hysteresis associated with hygroscopicity of soybeans. JAE, 12(1), 1975, pp:6-9.
- 6. Ali, M.H.; A.M.M.D. Rahman and M.J.Ullah. Effect of plant population and nitrogen on yield and oil content of rapeseed (Brassica napus). Indian J. of Agril. Sci. 60(9) 1990, pp : 624-30.
- 7. Aniche, Georgeana N, and Hilary Nwokedi. Preliminary studies on the effect of drying temperature and time on the concentration of dimethyl sulphide in sorghum wort. J. of Food Sci. Technol. 27(1) 1990, pp: 13-4.
- 8. Annual Report. AICRP on Post Harvest Technology (ICAR), PKV, Akola, 1992.
- 9. Annual Report. AICRP on Post Harvest Technology (ICAR). CIAE, Bhopal, 1987, 1988.
- 10. Annual Report. AICRP on Post Harvest Technology (ICAR). TNAU, Coimbatore, 1973, 1974.
- 11. Annual Report. AICRP on Post Harvest Technology (ICAR), TNAU, Coimbatore, 1992.
- 12. Annual Report. AICRP on Post Harvest Technology (ICAR). AAU, Jorhat, 1989-90.
- 13. Annual Report. AICRP on Post Harvest Technology (ICAR). IIT, Kharagpur, 1972-73.
- 14. Annual Report. GBPUAT, Pantnagar, 1968-69.
- 15. Annual Report. AICRP on Post Harvest Technology (ICAR). GBPUAT, Pantnagar, 1972, 1973, 1974, 1977, 1978.
- 16. Annual Report. AICRP on Post Harvest Technology (ICAR). RAU, Udaipur, 1973, 1975.
- 17. Anon. Engineering characteristics of biological materials. Research Bull., Department of Processing and Agricultural Structures, PAU, Ludhiana, 1975.
- 18 Anon. Physical, chemical and milling characteristics of baragu (common millet) varieties. Mysore. J. of Agril. Sciences. 1993.
- 19. Anuradha, K and P.S. Sarma. Potassium for yield improvement of sorghum (sorghum bicolor). Indian J. of Agril. Sci. 60(9) 1990, pp: 634-5.
- 20. Arora, S. and V.B. Sehgal. Effect of moisture content on the physical properties of oil seeds., J. of Agril. Engg. 24(3), 1987. pp; 279-85.

- 21. Balu, B. Venkanna; T. Ramana and T.M. Radhakrishnan. Chemical composition and protein content in hybrid varieties of fingermillet. Indian J. of Agril. Sci. 57(7) 1987, pp: 520-1.
- 22. Bargale, P.C.Development and testing of manual flax scutching machine. Biological Wastes, 32(1990), pp: 29-37.
- 23. Bhat. K. Shama; S.Bhagavan and R.V.Nair. Identification of high yielding trees in cacao (Theobroma Cacao). Indian J. of Agril. Sc. 60(9) 1990, pp: 641-2.
- 24. Bhat, S.S.; G.N.Kulkarni and B.K.Ramachandrappa. Response of pigeonpea genotypes to different dates of sowing. Madras. Agric. J. 76(7) 1989, pp: 413-6.
- 25. Bist, H.S. and S.D.Sharma. Vegetative characters of some local cultivars of grape (Vitis species) grown in Kinnaur. Indian J. of Agril. Sc. 60(9) 1990, pp : 636-7.
- 26. Brubaker. J.E. and J.Pos. Determining static coefficient of friction of grains on structural surfaces. Trans. ASAE, 1965, 8(1), pp: 53-5.
- 27. Carl, W. Hall. Drying of Farm Crops, Lyall Book Depot; Ludhiana, 1970.
- 28. Chakravarty A. and D.S.De. Post harvest technology of cereals and pulses. Oxford and IBH Publishing Co. 1981.
- 29. Chattopadyay, P.K.; Premchand; T.C.Mishra and N.D.Patil. Pneumatic separator for various rice fractions. Agril. Mechanization in Asia, Africa and Latin America. 14(3) 1983, pp : 49-54.
- 30. Chauhan, B.M.; Neeraj Suneja and C.M.Bhat. Nutritional value and fatty acid composition of some high yielding varieties of bajra. Bulletin of Grain Technol. 24(1) 1986, pp : 44-9.
- 31. Choudhary, B.S.; R.R.Rawat and S.C.Pathak. Relative preference of calloso bruchus chinensis (LINN) for different varieties of green gram. Bulletin of Grain Technology. 27(2) 1989, pp : 107-12.
- 32. Choudhary, B.S. and S.C.Pathak. Relative preference of calloso-bruchus chinensis (LINN) for different varieties of Bengal gram. Bulletin of Grain Technology. 27(3) 1989, pp: 181-7.
- 33. Decade of Post Harvest Technology (1975-86). AICRP on Post Harvest Technology (ICAR). TNAU, Coimbatore.
- 34. Decade of Post Harvest Technology (1972-79). AICRP on Post Harvest Technology (ICAR). IIT, Kharagpur.
- 35. Decade of Post Harvest Technology (1972-79). AICRP on Post Harvest Technology (ICAR). GBPUAT, Pantnagar.
- 36. Decade of Post Harvest Technology (1972-82). AICRP on Post Harvest Technology (ICAR). RAU, Udaipur.
- 37. Deshpande, S.D.; S. Bal and T. P. Ojha. Physical properties of soybean. J. Agric. Engng. Res. 56 (2) 1993, pp: 89-98.
- 38. Dev, D.K.; P.N.Satwadhar and V.M.Ingle. Effect of variety and moisture on certain selected physical properties of sorghum grain. J. of Agril. Engg., 19(2) 1982, pp : 43-7.
- 39. Dharmalingam, V. and M.Kadamba Vana Sundaram. Genetic divergence in cowpea. Madras Agric. J. 76(7), 1989. pp: 394-9.
- 40. Dutta, S.K.; V.K.Nema and R.K.Bhardwaj. Thermal properties of gram. J.Agri.Engng. Res. 39(4), 1988, pp: 269-75.
- 41. Engineering properties of food materials (Tech. Bull. CIAE/80/15), PHTS, CIAE, Bhopal. 1980. (Compiled: Singh, BPN; P.C. Sah and A.K. Tikoo. Edited and Illustrated: Alam, A.)
- 42. Fraser, B.M.; S.S.Verma and W.M.Muir. Some physical properties of fababeans. J.Agri.Engng. Res. 23(1), 1978, pp: 53-7.
- 43. Gadekar, Prema; D.B.Dhumale and R.S.Raut. Inter relationship between yield and its components in rice bean (Vigna Umbillata). Indian J. of Agril. Sc. 60(8) 1990, pp : 547-9.

- 44. Ghosh, B.N.Physical properties and processing of Arabia coffee beans. J. of Agril. Engng. 3(1) 1966, pp : 30-4.
- 45. Girija, T. and N.Natarajaratnam. Green matter yield and dry matter accumulation trends in forage sorghum cultivators. Madras, Agricultural J. 76(5) 1989, pp : 261-5.
- 46. Gopalkrishanan, M.; C.S.Narayanan, D. Kumaresan and P.Bhaskaran. Physico-Chemical changes in cardamom infested with trips. Spice India. 2(12) Dec. 1988, pp : 18-21.
- 47. Gopalan, C; B.V.Ramasastri and S.C.Balsubramanian. Nutritive value of Indian foods. National Institue of Nutrition, ICMR, Hyderabad, 1982.
- 48. Grover, P.C. and Deepak Kumar. Some engineering properties of pulses. Proc. of ISAE, SJC 1985, vol. 3, pp: II-27-35.
- 49. Gupta R.K. and R.P. Kachru. Physical, aerodynamic and rheological properties of aniseed. Paper submitted for publication in 'Spice India'. 1992.
- 50. Gupta, R.K. and R.P. Kachru. Physical properties of turmeric rhyzomes and powder. Spice India. Vol. V. No. 10. Oct. 1992, pp: 7-8 and 14.
- 51. Gupta, R.K. and R.P. Kachru. Some selected engineering properties of castor seed. CIAE, Bhopal 1993.
- 52. Gupta, R.K. and Saurab Prakash. Effect of moisture content on some engineering properties of pulses. Paper presented at XXVI Annual Conv. of ISAE held at Hissar, during 7-9 Feb. 1990.
- 53. Gupta, R.K.; Saurabh Prakash and B.D.Shukla, Effect of moisture content on physical properties of groundnut. Paper presented at XXIV Annual Convention of ISAE held at Akola, during 21-23 Jan. 1988.
- 54. Gupta, R.K.; Saurabh Prakash and B.D.Shukla. Effect of moisture content on some engineering properties of castor. Paper presented at XXV Annual Conv. of ISAE held at Udaipur, during Jan. 5-7,1989.
- 55. Gupta, R.K. and Saurabh Prakash. Studies on physical, aerodynamic, rheological, thermal and biological properties of oilseeds and pulses. Final report (RPF-III), CIAE, Bhopal, 1991.
- 56. Gupta, Subhash; J.L.Srivastava and B.K.Verma. Studies on the absorption of moisture by different food grains at different relative humidities. Bulletin of Grain Technology. 18(2) 1980, pp : 165-7.
- 57. Hand book of Agriculture. ICAR. 1984, pp: 1268-71.
- 58. Holkar, Sunil; K.N.Ruwali and B.H.Matai. Growth and yield responses of some improved and land race wheat varieties under rainfed conditions. Indian J. of Plant Physiology. XXXII(2) 1989, pp: 188-93.
- 59. Ibrahim, S. Mohamad and N. Gopalasamy. Effect of age of seedling on growth and yield of transplanted maize. Madras Agric. J. 76(4) 1989, pp: 181-3.
- 60. Indian Standard, IS: 4333 Part III, 1967. Methods of analysis for food grains.
- 61. Indian Standard, IS: 4333 Part IV, 1968. Methods of analysis for food grains. Weight of 1000 grains.
- 62. Indian Standard, IS; 6663-1972. Method for determination of angle of repose of grains.
- 63. Indian Standard; IS; 10698-1983. Method for determination of thermal diffusivity of food grains.
- 64. Indain Standard, IS: 10699, 1983. Method for determination of specific heat of food grains.
- 65. Information received through correspondance from AICRP on Post Harvest Technology Centres of PKV, Akola; UAS, Bangalore; TNAU, Coimbatore; JNKVV, Jabalpur; AAU, Jorhat; GAU, Jaunagadh; GBPUAT, Pantnagar and CTCRI, Trivandrum.
- 66. Jain, P. C., Sharma, M. P. and Rajesh Kumar. An investigation on thermal properties of gur (jaggery). Indian Journal of Agril. Engg. 2 (1) March 1992, pp: 71–3.

- 67. Jain, V.K.; Y.S.Chauhan; M.P.Khandekar and P.C.Jain. Effect of sowing dates and genotypes on yield and yield attributing traits in Indian mustard. Madras Agricultural J. 76(5) 1989, pp : 241-6.
- 68. Jana, P.K.; A.Barik; S.Ghatak; A.K.Mukherjee and G.Sanuda. Effect of nitrogen, phosphorus and potassium on yield and yield attributes of rainfed groundnut (Arach is hypogaea). Indian J. of Agril. Sc. 60(1) 1990, pp: 49-51.
- 69. Jeena, H.S. and S.C.Mani. Evaluation of rice (Oryza Sativa) genotypes for rainfed upland. Indian J. of Agril. Sc. 60(5) 1990, pp: 340-1.
- 70. Jha, S.N. and Suresh Prasad. Physical and mechanical properties of gorgon nut. Paper presented at XXVIII Annual Convention of ISAE held at CIAE, Bhopal, during March 2-4, 1993.
- 71. Kachru, R.P. Determination of constants C and n used in the Henderson's formula on equilibrium moisture content for paddy varieties. Unpublished. M.Tech. Thesis, IIT, Kharagpur, 1969.
- 72. Kachru, R.P.Development of niger seed separator. Part-I, Some physical properties of various fractions in niger seed stock. Proc. of ISAE, SJC; Process, Food and Diary Engg; Vol : 3, pp : II, 62-6, 1985.
- 73. Kachru, R.P.Hygroscopic equilbrium of rough rice in desorption at 20°, 30° and 40°C. Journal of the Institution of Engineers (India). Agril. Engg. Division. Vol. 65, AG. 1-2, pp : 8-11, 1985.
- 74. Kachru, R.P. Statics and Kinetics of rough rice drying. Unpulished Ph.D. Dissertation, Mississippi State University, USA. 1972.
- 75. Kachru, R.P. and D. R. Rai. Physical constituents and some engineering properties of peanut pods. Jr. of Oilseeds Res. 10 (2) 1993.
- 76. Kachru, R.P. and K.M.Sahay. Development and testing of manual grain screen cleaner. Paper presented at National Conference on Recent Trends in Processing of Cereals, Pulses and Oilseeds, held at PHTC, IIT, Kharagpur, during Dec. 18-20, 1984.
- 77. Kachru. R.P. and K.M.Sahay. Development and testing of pedal-cum-power operated air screen grain cleaner. AMA, Vol : 21, No. 4. 1990. pp : 29-32.
- 78. Kachru, R.P. and K.M. Sahay. Separation of oilseeds by pedal-cum-power operated air screen cleaner. J. of Oilseeds Research. Vol.5, No. 2, 1988, pp : 132-9.
- 79. Kachru, R.P. and P.K. Srivastava. Post harvest technology of ginger. Ginger special 'Cardamom'. Vol. 20, No. 5, May 1988, pp: 49-57.
- 80. Kachru, R.P. and P.K.Srivastava, Potential of rural based agro-processing industries in Punjab for higher economic gains and better employment generation. Agricultural Engg. Today. Vol. 13, No. 5 and 6, 1989, pp: 35-45.
- 81. Kachru, R.P. and P.K.Srivastava. Status of chilli processing. Part I. Spice India. Vol. III, No. 1, Jan. 1990, pp: 13-6.
- 82. Kachru, R.P. and P.K. Srivastava. Status of chilli processing. Part II. Spice India. Vol III, No. 2, Feb. 1990, pp: 10-5.
- 83. Kachru, R.P. and P.K. Srivastava and R.T. Patil. Post harvest aspects of cardamom. Cardamom. Vol.21, No.6, 1988, pp: 7-16.
- 84. Kachru, R.P.; P.K. Srivastava and R.T. Patil. Post harvest operations for tree spices. Part I. Spice India. Vol.II, No.11, Nov. 1989. pp: 5-8.
- 85. Kachru, R.P.; P.K. Srivastava and R.T. Patil. Post harvest operations for tree spices. Part II. Spice India. Vol. II, No.12, Dec.1989, pp. 13-7.
- 86. Kachru, R. P. and R. K. Gupta. Some selected engineering properties of coriander seed and powder. Paper presented at XXVIII Annual Convention of ISAE held at CIAE, Bhopal during March 2-4, 1993.
- 87. Kachru, R.P. and R.K. Matthes. The behaviour of rough rice in sorption. J.Agri. Engng. Res. 1976, 21, pp: 405-16.

- 88. Kachru, R.P., R.T. Patil and P.K. Srivastava. Post harvest operations of minor spices. Spice India. Vol.III, No.12, Dec.1990, pp: 13-9.
- 89. Kachru, R.P., R.T. Patil and P.K. Srivastava. Post harvest technology of pepper. Spice India. Vol. III, No.8, Aug. 1990, pp:12-6.
- 90. Kachru, R.P., T.P. Ojha and G.T.Kurup. Drying characteristics of Indian paddy varieties. Grain Technology. Vol.8, No.3, 1970, pp:98-102.
- 91. Kachru, R.P., T.P. Ojha, and G.T.Kurup. Equilibrium moisture content of Indian paddy varieties. Grain Technology. Vol.9, No.3, 1971,pp: 186-96.
- 92. Kahar, L.S. and K.B. Nigam. Response of opium poppy (Papavor Somniferum) to phosphorus and potassium. Indian J. of Agril. Sc. 60(6) 1990, pp. 417-8.
- 93. Kalavathi, D and K. Vanangamudi. Seed size, seedling vigour and storability in cluster beans. Madras Agric. J. 77(1) 1990, pp. 39-40.
- 94. Kar, C; B. Barua and K. Gupta. Responses of the safflower plant (Carthamur tinctorius L.Cv. JLA 900) towards plant growth retardants dikegulac sodium. CCC and Sadh. Indian J. of Plant Physiology. XXXII (2) 1989, pp. 144-7.
- 95. Katiyar, S.K.; K. Sharma; N. Kumar and A.K. Bhatia. Composition of some unconventional himalayan wild fruits. J.Fd. Sc. Technol. 27(5) 1990, pp. 309-10.
- 96. Kazarian, E.A. and C.W. Hall. Thermal properties of grains. Trans. ASAE. 1965, 8(1), pp. 33-37, 48.
- 97. Khanday, B.A. and R.C. Thakur. Response of rainfed maize (zea mays) to fertilization. Indian J. of Agril. Sc. 60(9) 1990, pp. 631-3.
- 98. Kumar, B.M.; M. Mahadevappa; P.V. Subbarao and H.S.R. Desikachar. Relationship of the courseness of rice (Oryza Sativa) varieties to the thickness of bran and aleuron layers. J. of Food Science and Tech. 5, 1968, pp: 193-4.
- 99. Kumar, Virendar and S.K. Agarwal. Influence of irrigation and nitrogen levels on growth and yield in huskless barley (Hordium vulgare), Indian J. of Agril.Sci. 60(9) 1990, pp. 596-600.
- 100. Kushwah, V.S. and J.S. Grewal. Relative performance of cut and whole seed turbers for growth and yield of potato (Solonum tuberosum). Indian J. of Agril. Sci. 60(5) 1990, pp:321-7.
- 101. Lorenzen, C. Moisture effect on granular friction of small grains. Trans. ASAE, 1959, Paper No. 59-416.
- 102. Mahapatra, P.K.; D. Satpathy; U.N. Dikshit and S.K. Uttaray. Effect of raw ratios in sesame (Sesamum indicum) and pigeonpea (Cajanas Cajan) intercropping. Indian J. of Agril. Sci. 60(6) 1990, pp. 419-21.
- 103. Maheshwari, R.C. and T.P. Ojha. Fuel characteristics of rice husk. Paper presented at XII ISAE Conv. 1974, OAT, Bhubaneshwar, India.
- 104. Majumdar, K. L. High capacity multi-crop thresher. RPF-III. CIAE, Bhopal. 1993.
- 105. Manivasakam, P.; N. Jayaraman; M.N. Prasad; T.S. Ravendran and S.Palanisamy, A new high yielding composite cumbu (Pearl millet Pennisetum americanum L.Leeke) for Tamil Nadu. Madras Agricultural J. 76(5) 1989, pp. 270-5.
- 106. Md.Nural Islam and T.T. Pedresen. Some physical properties of wheat and paddy and their relationship. AMA. 1987. 18(1), pp. 45-50.
- 107. Misra, Arvind; K. Mohan Naidu and M.L. Gupta. Effect of raw spacing and nitrogen level on ethanol production in sugarcane (Sacchareim officinarum) at different ages of crop harvest. Indian J. of Agril. Sc.60(2) 1990, pp. 110-4.
- 108. Mohsenin, Nuri N. Physical properties of food and agricultural materials. Gorden and Breach Science Publishers, Inc., One Park Avenue, New York, 1980.

- 109. Mohsenin, Nuri N. Physical properties of food and agricultural materials, a teaching manual. Gorden and Breach Science Publishers, Inc. One Park Avenue, New York, 1981.
- 110. Murthy, T.S.N; B.N Rao; and K. Kumna Rao. Physical properties of paddy grains. J. of Agril. Engg. 23(4) 1986 pp: 368-71.
- 111. Nagaraj, G. Biochemical quality of oilseeds. J. of Oilseed Research, 7(1) 1990, pp. 47-55.
- 112. Nagra, S.S. and J.S. Chawla. Cereals: as alternate energy sources for maize. Poultry Guide. XXV (7) 1988, pp: 17-20.
- 113. Naravani, N.B. and J.S. Panwar. A study on the physical and engineering properties of sunflower related to threshing. Part of unpublished Ph.D. thesis. Div. of Agril. Engg, IARI, New Delhi, 1991.
- 114. Natarajan, N. and P.C. Sundra Babu. Effect of sorghum earhead bag infestation on seed quality. Bulletin of grain Technol. 26(1) 1988, pp. 64-70.
- 115. Nath, V. and S.N. Bhardwaj. Regulation of seed size by plant hormones in field pea (Pisum satirum linn var a Arvensis). Indian J. of Plant Physiology. XXXII(2) 1989, pp. 178-81.
- 116. Nigam, K.B; V.S. Kandalkar and D.B. Dhumale. Induced mutants in opium poppy (Papaver somniferum). Indian J. of Agril. Sc. 60(4) 1990, pp. 267-8.
- 117. Paliwal, S.C. and Gurumukh Singh. Physico-chemical milling and bread making quality of wheats of Uttar Pradesh. J. Fd. Sc. Technol. 23(4) 1986, pp. 189-93.
- 118. Papli, Sarla and Kuldip Singh Dhindra. Quality characteristics of improved wheat varieties of Haryana and Punjab. Bulletin of Grain Technology. XVIII(1) 1980, pp. 10-6.
- 119. Prakash, S; M.C. Nautiyal and A. Kumar. Effect of plant growth substances and chemical on fruit retention and quality of Tesia Samisto' peach (Prunur persica). Indian J. of Agril. Sc. 60(6) 1990, pp: 387-91.
- 120. Pratap, V. Equilibrium moisture content of some flours. Unpublished M. Tech. Thesis, GBPUAT, Pantnagar, 1979.
- 121. Purohit, A.G. Effect of pollen parent on seed hardness in pomegranate. Indian. J. of Agril. Sc. 57(10) 1987, pp. 753-5:
- 122. Qadar, Ali. Differential Sodicity tolerance of growth and yield parameters in genotypes of rice (Oryza sativa). Indian J. of Agril. Sc. 58(8) 1988, pp. 607-11.
- 123. Raghuwanshi, R.K.S; V.K. Paradkar and R.K. Gupta. Effect of phosphorus levels and seed rate on yield of linseed grown in sodic clay soil. Indian J. of Agril. Sc. 57(2) 1987, pp. 948-9.
- 124. Rahim, A; C.N. Vatrala; G. Venkateswara Rao and S.R. Shurpalekar. A small scale process for milling of wheat, Part-II. A process for coarse grit (Dalia) milling. J.Fd. Sc. Technol. 23(4) 1986, pp. 193-6.
- 125. Rai, Bhupendra. Oil from sunflower. Kheti, Feb. 1988, pp. 10-3.
- 126. Raina, B.L.; A.K. Bhatia; S.K. Katiyar and A.K. Gupta. Quality characteristics of promising Himachal alive varieties of apple (alea evropaea L.) J. of Fd. Sc. Techno. 23(4) 1986, pp. 237-9.
- 127. Ramakrishna, P. Melon seeds-evaluation of physical characteristics. J. of Food Sc. Technol. 23(3) 1986, pp: 158-60.
- 128. Rao, K. Sundar and K.Singh. Chemical composition of newer oilseeds. The J. of the Oil Tech. Assoc. of India. XXII (3) 1990, pp. 56-7.
- 129. Rao, N. Kameshwara; Melak H. Mengesha and R.P.S. Pundir.. Cleavage damage due to rapid drying in pea-shaped seeds of chickpea (Cicer arietinum). Indian J. of Agril. Sc. 60(4) 1990, pp. 255-8.
- 130. Rao, S.D. and K.B. Bhattacharya. Some physical properties of rice with special reference to waxy and Ballu varieties. CFTRI, Mysore, 1977.

- 131. Reddy, B.B; S.N. Reddy; V.M.Reddy; M.R.Reddy; A.Kumar and K.B.Swamy. Effect of plant populations on the performance of maize hybrids at different fertility levels in a semi-arid environment. Indian J. of Agril. Sc. 57(10) 1987, pp: 705-9.
- 132. Renu and Leena Bhattacharya. Proximate composition of improved genotypes of peas (Pisum sotivrum). Bulletin of Grain Technol. 27(2) 1989, pp. 118-23.
- 133. Saha, Anita and D.K.Das Gupta. Physiological attributes of elite cultures of rice (Oryza sativa) under water logged condition. Indian J. of Agril. Sc. 60(6) 1990, pp. 428-30.
- 134. Saikia, L and G.S.Bains. Studies of some Assam rice varieties for processing and nutritional quality.

  J. of Food. Sc. Tech. 27(5) 1990, pp. 345-8.
- 135. Saini, S.K; J.N.Singh and P.C.Gupta. Effect of threshing methods on seed quality of soyabean. Bulletin of Grain Technology. 18(2) 1980, pp: 105-10.
- 136. Sangwan, Naresh K; Braham S. Verma; T.R. Ahlawat and Kuldip Singh Dhindsa. Varietal differences in quality characters of rice. Bulletin of Grain Technology. 27(3) 1989, pp. 208-16.
- 137. Satasiya, R.M; J.N.Nandasana and A.L. Varshney. Effect of moisture content on physical characteristics and properties of peanut pods. Paper presented at XXVIII Annual Convention of ISAE held at CIAE, Bhopal, during March 2-4, 1993.
- 138. Satyanarayana, K.V; R.Lakshminarayana and R.B.Narayana. Yield improvement in Indian flue-cured tobacco. Indian J. of Agril. Sc. 55(11) 1985, pp. 674-9.
- 139. Satyanarayan, M. Influence of corn weight on growth and yield of basrai banana. Madras Agric. J. 76(8) 1989, pp: 464-6.
- 140. Sawhney, Balwinder and B.L.Kawatra. Supplimentary value of beet (Beta vulgaris), Knol-Khol (Brassica cleracea) and Turnip (Brassica rapa) greens on the protein quality of wheat chapati. J.Fd. Sc. Technol. 23(6) 1986, pp. 311-5.
- 141. Sethi, P.S. and H.S. Brar. Processing and marketing of honey in Punjab. Paper presented at XXVIII Annual Conv. of ISAE held a CIAE, Bhopal, during March 2-4, 1993.
- 142. Sethi, P.S; P.C. Grover and B.C. Thakur. Selected engineering properties of raya, toria and gobisarson. Paper presented at XXVI Annual Convention of ISAE held at HAU, Hissar during 7-9, Feb. 1990.
- 143. Sharma, S.K; R.K. Dubey and C.K.Techchandani. Engineering properties of black gram, soybean and green gram. Proc. of ISAE, SJC Vol.3, 1985: II, pp: 181-5.
- 144. Sharma, U.C. Effect of sources and methods of nitrogen application on yield and nitrogen uptake of potato (Solonum tuberosum) in Meghalaya. Indian J. of Agril. Sc. 60(2) 1990, pp. 119-22.
- 145. Shashidhara, S.P. Steady flow of grain air mixture in horizontal pipes. Unpublished M. Tech. Thesis, GBPUAT, Pantnagar. 1971
- 146. Shepherd, H and R.K. Bhardwaj. Moisture dependent physical properties of pigeonpea. J. Agri. Engng. Res. 35, 1986, pp. 227-34.
- 147. Sheriff, J.T. Determination of physical and thermal properties of biological materials. Unpublished B.E. (Ag.) Thesis. TNAU, Coimbatore, 1984.
- 148. Sheriff, J.T. Final Report submitted for his training at CIAE, Bhopal. Jan-July 1990.
- 149. Sheriff, N.Mohamed. Relative contribution of intra capitular regions on the seed yield in sunflower. Madras Agric. J. 76(4) 1989, pp. 825-6.
- 150. Shingari, B.K; B.K.Gupta and S.Sappo. Feeding value of gullidanda seeds in broiler diets. Poultry Guide. XXV (7) 1988, pp. 21-5.
- 151. Shrivastava, A.K; B.Panda and N.Darshan. Comparative nutritive values of different cereals in quail diets. Indian J. of Animal Sc. 60(6) 1990, pp. 720-4.

- 152. Sidhu, M.S; B.D.Sharma and J.S.Saulhney. Grain yield of wheat (Triticum aestivum) and changes in available nutrient status as affected by different fodders grown in rotation and N rates in sandy loam soil. Indian J. of Agril. Sc. 60(5) 1990, pp. 312-6.
- 153. Singh, Ashok. Factors affecting characteristics of egg shell and shell membranes. Poultry Guide. XXVII (9) 1990, pp. 65-9.
- 154. Singh, B.P.N; D.K.Gupta and R.R.Lal. Thermal conductivity of wheat. Paper presented at XII ISAE Conv. 1974, OAT, Bhubaheshwar, India.
- 155. Singh, Gurmukh and S.C. Paliwal. Physico-chemical milling and bread making quality of two varieties of duram wheats. Bulletin of Grain Technol. 24(1) 1986, pp. 73-6.
- 156. Singh, Harlier; H.C.Sharma; A.C.Malik; Tej Singh and A.S.Paroda. Effect of soil moisture regimes on seed yield, water use and water use efficiency of rapeseed (Brassica Napus). Indian. J. of Agril. Sci. 60(1) 1990, pp. 45-8.
- 157. Singh, Harpal. A study of pressure drop in pneumatic conveying of rice husk. Unpublished Ph.D. Dissertation. AIT, Bangkok, Thailand, 1990.
- 158. Singh, Kamla and V.C.Sharma. Response of potato (Solonum tuberasum) cultivars to phosphorus in acidic soils of Meghalaya. Indian J. of Agril. Sc. 58(8) 1988, pp. 600-2.
- 159. Singh, M.K; R.L. Pandey and A.K. Tripathi. Performance of niger in northern hill region of chhattisgarh. Indian J. of Agril. Sc. 57(12) 1987, pp: 950-1.
- 160. Singh, Neelam; M.S.Usha and G.S. Chauhan. Evaluation of some U.P. hill wheats for their physical, chemical, rheological and bread making characteristics. J.Fd. Sc. Technol. 27(4) 1990, pp. 198-201.
- 161. Singh, Phundan and S.S.Narayanan. Interracial introgression for some economic characters in Gassypium arboreum linn. Indian J. of of Agril. Sc. 57 (9) 1987, pp : 628-30.
- 162. Singh, R.P. and Arvind Kumar. Effect of varieties and planting geometry levels on late sown Indian mustard (Brassica Juncea). Indian J. of Agril. Sc. 60(6) 1990, pp. 392-5.
- 163. Siwasamy, S. Terminal velocity of solids. Unpublished M.Tech. Thesis. GBPUAT, Pantnagar, 1971.
- 164. Sood, D.R. Comparison of quality characters of basmati-510 and mutant HK<sub>2</sub>R<sub>21</sub> varieties of rice. Bulletin of Grain Technol. 27(1) 1989, pp. 52-3.
- 165. Sreenarayanan, V.V; V.Subramaniyan and R.Visvanathan. Physical and thermal properties of soybean. Proc. of ISAE SJC 1985, Vol. 3, pp. II-161-9.
- 166. Srivastava, P.K. Determination of physical, thermal and chemical properties of rice bran in relation to its handling, storage and stabilization. Unpublished M.Tech. Thesis, 1976. IIT, Kharagpur.
- 167. Srivastava, S; D.P.Mishra and B.P.Khare. Effect of insect infestation on biochemical composition of pigeon pea (Cajanas Cajan L) seeds stored in mud bin. Bulletin of Grain Technol. 26(2) 1988. pp: 120-5.
- 168. Subramaniam, V; P. Thenammai and A.Dakshinamurthy. Physical characteristics of paddy variety. Jr. of Agric. Engng., XIV. No. 2. 1977, pp: 81-8.
- 169. Sudhakar, T. Ratna; K.Sreeramamurthy and P.V.Narayanarao. Relative susceptibility of jowar varieties to rice weevil (Sitophilus oryzae linn). Bulletin of Grain Technol. 26(3, 1988, pp. 208-13.
- 170. Summerfield, R. J. and E. H. Roberts. Grain Legume Crops. Collins, 8 Grafton Street, London WI. 1985.
- 171. Taware S. P; G. B. Halvankar; V. M. Raut and V.P. Patil. Hybrid vigour in soybean (Glycine max). Indian J. of Agril. Sc. 60(8) 1990, pp : 545-6.
- 172. Technical informations, PHTS, CIAE, BhopaL, 1992.
- 173. Technical informations received from various centres of AICRP on Post Harvest Technology (ICAR). 1992.
- 174. Test Report on CIAE multicrop thresher, TT&TS. Budni, M.P. June 1990.

- 175. Thirumalarao, S.D; R.Raghuramarao and B.R. Reddy. Varietal corelation between different quality components in mustard. J. of Oil Tech. Assoc. of India, 4(3) 1973, pp: 66-9..
- 176. Tomar, N.S. Fruiting potential and quality of Perlette' grape Vitis Vinifera' with differential pruning trained on head system. Indian J. of Agril. Sc. 60(5) 1990. pp. 327-31.
- 177. Visvanathan, R; N. Varadharaju; L. Gothandapani and V.V. Sreenarayanan. Effect of moisture content on angle of repose and bulk density of selected grains. J.F. Sci. Technol. Vol. 27(3) 1990; pp.133-5.
- 178. Wolfe, R.R. and C.G. Ttepo. Terminal velocity of chopped forage materials. Trans. ASAE. 1972. pp: 137-40.

## APPENDIX-I

## Glossary of food products with botanical and hindi names

| Product | Botanical name | Hindi name |
|---------|----------------|------------|
|         |                |            |

### **CEREAL GRAINS AND PRODUCTS**

| Bara (bulrush spiked millet) | Pennisetum typhoides    | Bajra       | बाजरा     |
|------------------------------|-------------------------|-------------|-----------|
| Barley                       | Hordeum vulgare         | Jau         | <b>जौ</b> |
| Barnyard millet              | Echinochloa frumemtacea | Kutki       | कुटकी     |
| Common millet                | Panicum millaceum       | Cheena      | चीना      |
| Jowar (sorghum)              | Sorghum vulgare         | Juar        | ञ्चार     |
| Kodo millet                  | Paspalum Scrobiculatum  | Koden       | कोदों     |
| Maize (corn)                 | Zea mays                | Maka        | मक्का     |
| Pearl millet (bajra)         | Pennisetum typhoideum   | Bajra       | बाजरा     |
| Ragi                         | Eleusine coracana       | Madua       | मदुआ      |
| Rice (parboiled)             | Oryza sativa            | Usna chawal | उसना चावल |
| Rice (raw)                   | Oryza sativa            | Chawal      | चावल      |
| Rice (bran)                  | Oryza sativa            | Kanki       | कनकी      |
| Rice (flakes)                | Oryza sativa            | Chewra      | चेवड़ा    |
| Rice (puffed)                | Oryza sativa            | Murmura     | मुख्य     |
| Sanwa millet                 | Echinochloa frumantacea | Sanwa       | सावां     |
| Semolina                     | Triticum aestivum       | Sooji       | सूजी      |
| Wheat                        | Triticum aestivum       | Gehun       | गेहूँ     |
| Wheat flour (whole)          | Triticum aestivum       | Atta        | आटा       |
| Wheat flour (fine)           | Triticum aestivum       | Maida       | मैदा      |
|                              |                         |             |           |

# PULSES

| Paramal man (mhala)              | Cicer arietinum       | Chana        | चना        |
|----------------------------------|-----------------------|--------------|------------|
| Bengal gram (whole)              |                       |              |            |
| Bengal gram (dhal)               | Cicer arietinum       | Chane ki dal | चने की दाल |
| Bengal gram<br>(chick pea) flour | Cicer arietinum       | Besan        | बेसन       |
| Bengal gram (roasted)            | Cicer arietinum       | Bhuna chana  | भुना चना   |
| Black gram (dhal)                | Phaseolus mungo Roxb  | Urd dal      | उर्ददाल    |
| Cow pea                          | Vigna catjang         | Lobia        | लोबिया     |
| Faba Bean                        | Vicia faba L.         | -            | _          |
| Field bean                       | Dolichos lablab       | Kadumal      | कदूमाल     |
| Green gram (whole)               | Phaseolus aureus Roxb | Mung         | मूँग       |

| Product Green gram (dhal)       | Botanical name                   | Hindi name  |            |
|---------------------------------|----------------------------------|-------------|------------|
|                                 | Phaseolus aureus Roxb            | Mung dal    | मूँग दाल   |
| Horse gram                      | Dolichos biflorus                | Kulthi      | कुलथी      |
| Khesari dhal                    | Lathyrus sativus                 | Khesari dal | खेस्री दाल |
| Lentil                          | Lens esculenta                   | Masur       | मसूरं      |
| Lima beans                      | Phaseolus lunatus L.             | Lima sem    | लाइमा सेम  |
| Moth beans                      | Phaseolus aconitifolieus, Jacq.  | Moth        | मोठ        |
| Peas                            | Pisum sativum                    | Matar       | मटर        |
| Rajmah                          | Phaseolus vulgaris               | Rajmah      | राजमा      |
| Red gram (dhal)<br>(pigeon pea) | Cajanus cajan                    | Arhar dal   | अरहर दाल   |
| Soy bean                        | Glycine max Merr                 | Soyabean    | सोयाबीन    |
| Winged beans                    | Psophocarpus teraganolobus (L) l | DC -        | _          |

#### LEAFY VEGETABLES

| Agathi                 | Sesbania grandiflora             | Agasti             | अगस्ती           |
|------------------------|----------------------------------|--------------------|------------------|
| Amaranth (spined)      | Amaranthus spinosus              | Kantewali chaulai  | कांटे वाली चौलाई |
| Amaranth (tender)      | Amaranthus gangeticus            | Chaulai sag        | चौलाईसाग         |
| Bamboo (tender shoots) | Bambusa arundinacea              | Bans               | बांस             |
| Bathua leaves          | Chenopodium album                | Bathua sag         | बधुवासाग         |
| Beet greens            | Beta vulagaris                   | Chukandar-ka-sag   | चुकन्दर का साग   |
| Bengal gram leaves     | Cicer arietinum                  | Chana sag          | चना साग          |
| Bottle gourd leaves    | Lagenaria vulgaris               | Lauki-ka-sag       | लौकी का साग      |
| Broad been leaves      | Vicia faba                       | Bakala             | बाकला            |
| Brussels sprouts       | Brassica oleracea var. gemmifera | Chotee gobee       | छोटी गोभी        |
| Cabbage                | Brassica oleracea var. capitata  | Band gobee         | बंद गोभी         |
| Carrot leaves          | Daucus carota                    | Gajar sag          | गाजर साग         |
| Cauliflower greens     | Brassica oleracea var. botrytis  | Phool gobee sag    | फूल गोभी साग     |
| Celery leaves          | Apium graveolens var. dulce      | Ajwan-ka-patta     | अजवाइन का पत्ता  |
| Colocasia leaves       | Colocasia antiquorum             | Arivi-ka-sag       | अरबी का साग      |
| Coriander leaves       | Coriandrum sativum               | Haradhania         | हराधनिया         |
| Cowpea leaves .        | Vigna catjang                    | Chavli pan         | चावली पान        |
| Curry leaves           | Murraya koenigii                 | Gandhela           | गंधेला           |
| Drumstick leaves       | Moringa oleifera                 | Sajan patta        | साजन पत्ता       |
| Fenugreek leaves       | Trigonella foenumgraecum         | Methi sag          | मेथी साग         |
| Khesari leaves         | Lathyrus sativus                 | Khesari sag        | खेसरी साग        |
| Knol-khol greens       | Brassica oleracea var. caulorapa | Ganth gobi- ka-sag | गांठ गोभी का साग |
| Lettuce                | Lactuca sativa                   | Salad              | सलाद             |
| Mint                   | Mentha spicata                   | Pudina             | पुदिना           |
| Mustard leaves         | Brassica campestris var. sarason | Sarson-ka-sag      | सरसों का साग     |
| Neem leaves            | Azadirachta indica               | Neem-ke-patte      | नीम के पते       |
| Nerringi               | Tribulus terrestris              | Gokhru             | गोखर             |
| Pacharisi keerai       | Euphorbia hirta                  | Dudhi              | दूषी             |

| roduct                | Botanical name                  | Hindi name      |                |
|-----------------------|---------------------------------|-----------------|----------------|
| Paruppu keerai        | Portulaca oleracea              | Kulfa           | कुल्फा         |
| arwar sag             | Trichosanthes dioica            | Potol sag       | पटोल साग       |
| umpkin leaves         | Cucurbita maxima                | Kumhra sag      | कुमढ़ा साग     |
| Radish leaves         | Raphanus sativus                | Moli-ka-sag     | मूली का साग    |
| Rape leaves           | Brassica napus                  | Sag sarson      | सरसों का साग   |
| Shepu                 | Peucedanum graveolens           | Sowa            | सोआ            |
| Spinach               | Spinacia oleracea               | Palak           | पालक           |
| Sweet potato greens   | Ipomoea batatas                 | Shakarkand sag  | शकरकंद साग     |
| Turnip greens         | Brassica rapa                   | Shalgam-ka-sag  | सलजम का साग    |
| ROOTS AND TUBERS      |                                 |                 |                |
| Beet root             | Beta vulgaris                   | Chukandar       | चुकंदर         |
| Bokwa                 | Dioscorea pentaphylla           | Kanta alu       | कांताआलू       |
| Carrot                | Daucus carota                   | Gajar           | गांबर          |
| Colocasia             | Colocasia antiquorum            | Arwi            | अरबी           |
| Lotus root            | Nelumbium nelumbo               | Kamal-ki-jadh   | कमल की जड़     |
| Onion                 | Allium cepa                     | Pyaz            | प्याज          |
| Potato                | Solanum tuberosum               | Alu             | आलू            |
| Radish                | Raphanus sativus                | Muli            | मूली           |
| Sweet potato          | Ipomoea batatas                 | Shakarkand      | शकरकंद         |
| Tapioca (cassava)     | Maninot esculer: *a             | Simla alu       | शिमला आलू      |
| Turnip                | Brassica rapa                   | Shalgam         | सलजम           |
| Yam, elephant         | Amorphophallus campanulatus     | Zimikand        | जिमीकंद        |
| Yam, wild             | Dioscorea versicolor            | Suar alu        | सोर आलू        |
| OTHER VEGETABLES      |                                 |                 |                |
| Amaranth stem         | Amaranthus gangeticus           | Cholai-ki-dandi | चौलाई की दंडी  |
| Ash gourd             | Benincasa hispida               | Petha           | पेठा           |
| Beans, scarlet runner | Phaseolus coccineus             | Sem             | सेम            |
| Bitter gourd          | Momordica charantia             | Karela          | करेला          |
| Bottle gourd          | Lagenaria vulgaris              | Lowki           | लौकी           |
| Brinjal (egg plant)   | Solanum melongena               | Baingan         | वैगन           |
| Broad beans           | Vicia faba                      | Bakla           | बाकला          |
| Cauliflower           | Brassica oleracea var. botrytis | Phul gobi       | फूलगोभी        |
| Cluster beans         | Cyamopsis tetragonoloba         | Guar ki phalli  | ग्वार की फली   |
| Colocasia stem        | Colocasia antiquorum            | Arwi-ki-dandi   | अरबी की दंडी   |
| Cucumber              | Cucumis sativus                 | Khira           | खीरा           |
| Drumstick             | Moringa oleifera                | Sajan-ki-phalli | साजन की फली    |
|                       |                                 | A *             | Owner Commence |
| Figs                  | Ficus cunia Phaseolus vulgaris  | Anjeer<br>Bakla | अंजीर<br>बाकला |

| Product                   | Botanical name             | Hindi name                |              |  |
|---------------------------|----------------------------|---------------------------|--------------|--|
| Giant chillies (capsicum) | Capsicum annum var. grossa | Sagiya mirchi             | सागिया मिर्च |  |
| Jack, tender              | Artocarpus heterophyllus   | Kathal                    | कटहल         |  |
| Kankoda                   | Momordica dioica           | Golkand                   | गोलकंद       |  |
| Karonda                   | Carissa carandas           | Karonda                   | करौंदा       |  |
| Kovai                     | Coccinia cordifolia        | Konduru                   | कुंदर        |  |
| Knol-khol                 | Brassica oleracea          | Kohl-rabi<br>(Ganth gobi) | गांठगोभी     |  |
| Ladies fingers (okra)     | Abelmoschus esculentus     | Bhindi                    | <b>শি</b> डी |  |
| Leeks                     | Allium porrum              | Lasson (vilayiti)         | लासन         |  |
| Lotus stem                | Nelumbium nelumbo          | Kamal gatta               | कमलगद्रा     |  |
| Mango green               | Mangifera indica           | Aam                       | आम           |  |
| Onion stalks              | Allium cepa                | Pyaz                      | प्याज        |  |
| Papaya, green             | Carica papaya              | Papita                    | पपीता        |  |
| Parwar                    | Trichosanthes dioica       | Parwal                    | परवल         |  |
| Peas                      | Pisum sativum              | Matar                     | मटर          |  |
| Plantain flower           | Musa sapientum             | Kele-ka-phool             | केले का फूल  |  |
| Plantain, green           | Musa sapientum             | Kela(hara)                | केला (हरा)   |  |
| Plantain stem             | Musa sapientum             | Kele-ka-tana              | केले का तना  |  |
| Pumpkin                   | Cucurbita maxima           | Kaddu                     | कद्दू        |  |
| Pumpkin flowers           | Cucurbita maxima           | Kaddu-ka-phool            | कद्दू का फूर |  |
| Rape plant stem           | Brassica napus             | Sarson-ki-dandi           | सरसों की दंड |  |
| Ridge gourd               | Luffa acutangula           | Torai                     | तोयई         |  |
| Sannhemp flowers          | Crotalaria juncea          | Sanai-ka-phool            | सनई का फूल   |  |
| Silk-cotton flowers       | Bombax malabaricum         | Semal-ka-phool            | सेमल का फूर  |  |
| Snake gourd               | Trichosanthes anguina      | Chachinda                 | चर्चीडा      |  |
| Sword beans               | Canavalia gladiata         | Bara sem                  | बड़ा सेम     |  |
| Tinda                     | Citrullus vulgaris         | Tinda                     | टिण्डा       |  |
| Tomato green              | Lycopersicon esculentum    | Tamator                   | टमाटर        |  |
| Vegetable marrow          | Cucurbita pepo             | Safed kaddu               | सफेद कद्दू   |  |
| Water chestnut            | Trapa bispinosa            | Shingara                  | सिंगाङ्ग     |  |
| Water lily flowers        | Nymphaea nouchali          | Bhent-ka-phool            | भेंत का फूल  |  |
| NUTS AND OILSEEDS         |                            |                           |              |  |
| Almond                    | Prunus amygdalus           | Badam                     | बादाम        |  |
| Cashew nut                | Anacardium occidentale     | Kaju                      | काजू         |  |
| Castor seed               | Ricinus communis           | Rendi                     | रेंडी        |  |
| Chilgoza                  | Pinus gerardiana           | Chilgoza                  | चिलगोजा      |  |
| Coconut                   | Cocos nucifera             | Nariyal                   | नारियल       |  |
| Coffee seed               | Coffee arabica             | Coffee                    | कॉफी         |  |
| Cotton seed               | Gossypium species          | Binola                    | विनौला       |  |
| Gingelly seeds            | Sesamum indicum            | Til                       | तिल          |  |
| -                         | 4 11 1                     | 20 2 21                   |              |  |

Arachis hypogaea

Groundnut

Moong phali

मूंगफली

|                 |                           |              | 165         |
|-----------------|---------------------------|--------------|-------------|
| Product         | Botanical name            | Hindi n      | ame         |
| Linseed seeds   | Linum usitatissimum       | Alsi         | अलसी        |
| Mustard seeds   | Brassica nigra            | Rai          | राई         |
| Niger seeds     | Guizotia abyssinica       | Sham til     | शम तिल      |
| Pistachio nut   | Pistacia vera             | Pista        | पिस्ता      |
| Pongam          | Pongamia glabra           | Karanj       | करंज        |
| Rape seeds      | B. campestris             | Sarson       | सरसों       |
| Safflower seeds | Carthamus tinctorius      | Kardi, Kusam | करडी, कुसुम |
| Sesamum seeds   | Sesamum indicum           | Til          | तिल         |
| Soybean         | Glycine max merr          | Soyabean     | सोयाबीन     |
| Sunflower seeds | Helianthus annuus         | Suraj mukhi  | सूरजमुखी    |
| Tea             | Camellia thea             | Chay         | चाय         |
| Walnut          | Juglans regia             | Akhrot       | अखरोट       |
| Aniseed         | Pimpinella anisum L.      | Somph        | सौंफ        |
|                 | D: : !!                   | ~ 1          | *           |
| Arisithippili   | Peepal                    | Peeper       | पीपर        |
| Asafoetida      | Ferula foetida            | Hing         | हींग        |
| Bishopsweed     | Corum captimum            | Ajwain       | अजवाइन      |
| Caraway         | _                         | Amaltaas     | अमलतास      |
| Cardamom        | Elettaria cardamomum      | Elaychi      | इलायची      |
| Celery          | -                         | Celery       | सेलरी       |
| Chillies        | Capsicum annuum           | Mirch        | मिर्च       |
| Cinnamon        | _                         | Dalchini     | दालचीनी     |
| Cloves          | Syzygium aromaticum       | Lavang       | लौंग        |
| Coriander       | Coriandrum sativum        | Dhania       | धनिया       |
| Cumin seeds     | Cuminum cyminum           | Safed jira   | सफेद जीरा   |
| Curry leaf      | -                         | Kady pati    | क्ड़ी पत्ती |
| Dill            | Anethum gravcolens        | Soaa         | सोआ         |
| Fennel          | -                         | Kallonji     | कलौजी       |
| Fenugreek seeds | Trigonella foenum graecum | Methi        | मेथी        |
|                 |                           | -            |             |

Allium sativum Lehsan लहसुन Garlic Zinziber officinale Adrak अदरक Ginger, fresh कुकुम Kukum Kokam नींबू का छिलका Neebu-ka-chilka Citrus medica var. acida Lime peel जावित्री Myristica fragrans Javithri Mace पुदीना Pudhena Mint Jaiphal जायफल Myristica fragrans Nutmeg अजवायन Trachyspermum ammi Ajwan Omum अजमोध Ajmodh Parseley काली मिर्च Kalimirch Piper nigrum Pepper केसर Kesar Saffron इमली Imli

Tamarindus indica

Tamarind pulp

| Product                  | Botanical name           | Hindi name |                   |                |
|--------------------------|--------------------------|------------|-------------------|----------------|
| Thyme                    | -                        |            | Thime (banjvayan) | थीइम (बनजवायन) |
| Tejpat                   | _                        |            | Tejpatta          | तेजपत्ता       |
| Turmeric                 | Curcuma domestica        |            | Haldi             | हल्दी          |
| Vanilla                  | -                        |            | Vanilla           | वनीला          |
|                          |                          |            |                   |                |
| FRUITS                   |                          |            |                   |                |
| Indian gooseberry (amla) | Emblica officinalis      |            | Amla              | आंवला          |
| Apple                    | Malus sylvestris         |            | Sev               | सेव            |
| Apricot                  | Prunus armeniaca         |            | Khoobani          | खुबानी         |
| Avacado pear             | Persea americana         |            | _                 | _              |
| Bael fruit               | Aegle marmelos           |            | Bel               | बेल            |
| Banana, ripe             | Musa paradisiaca         |            | Kela              | केला           |
| Banyan tree figs         | Ficus bengalensis        |            | Bargad-ka-phal    | बरगद का फल     |
| Blackberry               | Rubus fruiticosus        |            | Vilaiti-anchu     | विलायती अन्छू  |
| Bread fruit              | Artocarpus altilis       | ٠          | Madar             | मदार           |
| Cape gooseberry          | Physalis peruviana       |            | Rasberi           | रसबेरी         |
| Cashew fruit             | Anacardium occidentale   |            | Kajuphal          | काजूफल         |
| Cherries, red            | Prunus cerasus           |            | Gilas             | गिलास          |
| Cherimoyer               | Annona cherimolia        |            | Hanuman phal      | हनुमान फल      |
| Currants, black          | _                        |            | Munakka           | मुनक्का        |
| Dates                    | Phoenix dactylifera      |            | Khajur            | खजूर           |
| Figs                     | Ficus carica             |            | Anjeer            | अंजीर          |
| Grape                    | Vitis vinifera           |            | Angoor            | अंगूर          |
| Grapefruit               | Citrus paradisi          |            | Chakotra          | चकोतरा         |
| Guava, country           | Psidium guajava          |            | Amrud             | अमरुद          |
| Jack fruit               | Artocarpus heterophyllus |            | Kathal            | कटहल           |
| Jambu fruit              | Syzygium cumini          |            | Jamun             | जामुन          |
| Kila pazham              | Vaccinum leschenaultii   |            | Karaunda          | करौंदा         |
| Kusum fruits             | Achleichera trijuga      |            | Kusum-ka-phal     | कुसुम का फल    |
| Lemon                    | Citruslimom              |            | Bara nimbu        | बड़ा नीबू      |
| Lemon, sweet             | Citrus limetta           |            | Mitha nimbu       | मीठा नीबू      |
| Lichi                    | Nephelium litchi         |            | Lichi             | लीची           |
| Lichi, bastard           | Nephelium longana        |            | Ansphal           | अंशफल          |
| Lime                     | Citrus aurantifolia      | police.    | Neembu            | नींबू          |
| Lime, sweet (musammi)    | Citrus sinensis          |            | Musambi           | मुसम्बी        |
| Loquat                   | Eriobotrya japonica      |            | Lokat             | लोकट           |
| Mahua, ripe              | Bassia longifolia        |            | Mahua             | महुआ           |
| Mango, ripe              | Mangifera indica         |            | Aam (paka)        | पक्का आम       |
| Melon, musk              | Cucumis melo             |            | Kharbooja         | खरबूजा         |
| Melon, water             | Citrulls vulgaris        |            | Tarbuj            | तरबूज          |
| Mulberry,                | Morus sp.                |            | Shahtoot          | शहतूत          |
| Neem fruit               | Malia azadirachta        |            | Neem phal         | नीमफल          |

| Product         | Botanical name            | Hindi name                |                     |  |
|-----------------|---------------------------|---------------------------|---------------------|--|
| Drange          | Citrus aurantium          | Narangi                   | नारगी               |  |
| apaya, ripe     | Carica papaya             | Papita                    | पपीता               |  |
| assion fruit    | Passiflora edulis         | es                        |                     |  |
| Peaches         | Amygdalis persica         | Aarhoo                    | औरहू                |  |
| Pears           | Prunus persica            | Nashpati                  | नाशपात्ती           |  |
| Phalsa          | Grewia asiatica           | Falsa                     | फालसा               |  |
| Pine apple      | Ananas comosus            | Ananas                    | अनानास              |  |
| Plum            | Prunus domestica          | Alubokhara                | आलू बुखारा          |  |
| Pomegranate     | Punica granatum           | Anar                      | अनार                |  |
| Pummelo         | Citrus maxima             | Chakotra                  | चकोतरा              |  |
| Quince          | Cydonia oblonga           | Bihi                      | बीही                |  |
| Raisins         | Vitis vinifera            | Kishmish                  | किशमिश              |  |
| Raspberry       | _                         | Rusbhary                  | रुप्तबेरी           |  |
| Sapota          | Achras sapota             | Sapatu                    | सपातू               |  |
| Seethaphal      | Annona squamosa           | Sharifa                   | सरीफा               |  |
| Squash melon    | _                         | Squash melon              | स्क्वेश मेलन        |  |
| Strawberry      | Fragaria vesca            | Strawberry                | स्ट्राबेरी          |  |
| Summer melon    | Cucumis melo L.           | -                         | _                   |  |
| Water melon     | Citrullus vulgaris sohrad | Tarbooj                   | त्रबूज              |  |
| Wood apple      | Limonia acidissima        | Kaitha                    | कैथा                |  |
| Zizyphus        | Zizyphus jujuba           | Ber                       | बेर                 |  |
| MISCELLANEOUS F | OODS                      |                           |                     |  |
| Amaranth seeds  | Amaranthus sp.            | Jangli chowlai            | जंगली चौलाई         |  |
| Areca nut       | Areca catechu             | Supari                    | सुपारी              |  |
| Betel leaves    | Piper betle               | Pan-ka-pata               | पान का पत्ता        |  |
| Cane sugar      | Saccharum officinarum     | Ghanna                    | गन्ना               |  |
| Coconut milk    | Cocos nucifera            | Nariyal-ka-doodh          | नारियल का दूध       |  |
| Coconut water   | Cocos nucifera            | Nariyal-ka-pani           | नारियल का पानी      |  |
| Groundnut cake  | Arachis hypogaea          | Chinia badam-<br>ki-khali | चीनिया बादाम की खली |  |
| TI am and       |                           | Shaihad                   | शहर                 |  |

शहद Honey Shaihad गुइ Gud Jaggery मखाना Makhana Makhana (gorgon nut) Eurvale ferox Mangifera indica आम की गुठली Am-ki-guthli Mango seed kernel Amchoor अमचुर Mangifera indica Mango powder वेलवा का टोपी Semecarpus anacardium Velwa-ka-topi Marking nut खुम्मी Khummi Mushroom पोस्त दाना Post dana Papaver somniferum Poppy seeds साबू दाना Sabu dana Sago गने का रस Ganne-ka-ras Sugar cane juice

# APPENDIX - II

Standard curves for various properties of food crops



Fig. A1: Variation of thousand grain weight with moisutre content

Source: Dutta, S.K; V.K. Nema and R.K. Bhardwaj. Physical properties of gram. Jr. of Agril. Engng. Res. 1988, 39 (4). pp: 259-68.



Fig. A2: Variation of grain volume with moisture content

Source: Dutta, S.K; V.K. Nema and R.K. Bhardwaj. Physical properties of gram. Jr. of Agril. Engng. Res. 1988, 39 (4). pp: 259-68.



Fig. A3: Single kernal volume v/s grain moisture content

Source: Islam Md. Nural and T.T. Pedresen. Some physical properties of wheat and paddy and their relationship. AMA, 1987, 18 (1). pp: 45-50.



Fig. A 4: Specific gravity v/s moisture content of grain

Source: Islam Md. Nural and T.T. Pedresen. Some physical properties of wheat and paddy and their relationship. AMA, 1987, 18(1). pp: 45-50.



Fig. A5: Relation between density and moisture content for soft white wheat Source: Kazarian, E.A. and C.W. Hall. Thermal properties of grains. Trans. ASAE. 1965, 8(1). pp: 337-48.



Fig. A6: Relation between density and moisture content for corn Source: Kazarian, E.A. and C.W. Hall. Thermal properties of grains. Trans. ASAE. 1965, 8(1). pp: 337-48.



Fig. A7: Change of angle of repose for different grains with moisture content

#### Source:

- 1. Datte, S.K.; V.K. Nema and R.K. Bhardwaj. Physical properties of grain. J. Agril. Engng. Res. 1988, 39 (4). pp: 259-68.
- 2. Fraser, B.M.; S.S.Verma and W.E. Muir. Some physical properties of fababeans. J. Agril. Engng. Res. 1987, 23. pp: 53-7.
- 3. Lorenzen, C. Moisture effect on granular friction of small grains. Trans. ASAE. 1959. Paper No. 59-416.
- 4. Shepherd, H; R.K. Bhardwaj. Moisture dependent physical properties of pigeon pea. J. Agril. Engng. Res. 1986, 35. pp: 227-34.



Fig. A8: Static coefficient of friction of wheat on five surfaces

Source: Brubaker, J.E. and J.Pos. Determining static coefficient of friction of grains on structural surfaces. Trans. ASAE. 1965, 8 (1), pp: 53-5.



Fig. A9: Effect of moisture content on terminal velocity of grains

Source: Gupta, R.K. and Saurabh Prakash. Final Report (RPF-III). Studies on physical, aerodynamic, rheological, thermal and biological properties of oilseeds and pulses. 1991. CIAE. Bhopal.



Fig. A10: Terminal velocity of rice husk as a function of its moisture content

Source: Singh, Harpal. A study of pressure drop in pneumatic conveying of rice husk. Unpublished Dissertation, 1990.

AIT, Bangkok, Thailand, pp: 59.



Fig. A11: Effect of moisture content on the terminal velocity of chopped forage

Source: Wolfe, R.R. and C.G. Tatepo. Terminal velocity of chopped forage materials. Trans. ASAE, 1972, pp. 137-40.



Fig. A12: Variation of specific heat of gram with moisture content in different temp. ranges

Source: Dutta, S.K.; V.K. Nema, and R.K. Bhardwaj. Thermal properties of gram. Jr. of Agril. Engg. Res. 1988, 39 (4),
pp: 269-75.



Fig. A13: Relation between specific heat and moisture content for wheat Source: Kazarian, E.A. and C.W. Hall. Thermal properties of grains. Trans. ASAE. 1965, 8 (1). pp: 337-48.



Fig. A14: Relation between specific heat and moisture content for corn Source: Kazarian, E.A. and C. W. Hall. Thermal properties of grains. Trans. ASAE, 1965, 8 (1), pp: 337-48.



Fig. A15: Predicted variation of the ratio of latent heat of vapourization of water in soybeans to latent heat of vapourization of free water at various levels of moisture in beans

Source: Alam, A and Shove G.C. Hygroscopicity and thermal properties of soybeans. Trans. ASAE. 1973, 16 (4). pp: 707-9.



Fig. A16: Variation of thermal conductivity with moisture content at different temperatures

Source: Dutta, S.K.; V.K. Nema and R.K. Bhardwaj. Thermal properties of gram. Jr. of Agril. Engng. Res. 1988, 39 (4), pp: 269-75.



Fig. A17: Relation between thermal conductivity and moisture content for white wheat Source: Kazarian, E.A. and C.W. Hall. Thermal properties of grains. Trans. ASAE. 1965, 8(1). pp: 337-48.



Fig. A18: Relation between thermal conductivity and moisture content for corn Source: Kazarian, E.A. and C.W. Hall. Thermal properties of grains. Trans. ASAE. 1965, 8(1). pp: 337-48.



Fig. A19: Thermal diffusivity as a function of temperature and moisture content Source: Dutta, S.K.; V.K. Nema and R.K. Bhardwaj. Thermal properties of grains. Jr. of Agril. Engng. Res. 1988, 39 (4). pp: 269-75.



Fig. A20: Relation between thermal diffusivity and moisture content for wheat Source: Kazarian, E.A and C.W. Hall. Thermal properties of grains. Trans. ASAE. 1965, 8(1). pp: 337-48.



Fig. A21: Relation between thermal diffusivity and moisture content for corp.

Source: Kazarian, E.A. and C.W. Hall. Thermal properties of grains. Trans. ASAE. 1965, 8(1). pp: 337-48.



Fig. A22: Possible force deformation curve for an agricultural product, LL: linear limit; Y: bioyield point and R: rupture point

Source: Nuri, N. Mohsenin. Physical properties of plant and animal materials. Gordon and Breach Science Publishers, New York, 1990.



Fig. A23: Force deformation curve for pigeon pea at moisture content of 12% (w.b.)

Source: Gupta, R.K. and Saurabh Prakash. Final Report (RPF-III). Physical, aerodynamic, rheological, thermal and biological properties of oilseeds and pulses. 1991, CIAE, Bhopal.



Fig. A24: Force deformation curve for wheat

Source: Nuri, N. Mohsenin. Physical properties of food and agricultural materials. A teaching manual.Gordon and Breach Science Publishers. New York, 1981.



Fig. A25: Force deformation curves for various perishable agricultural products

Source: Nuri, N. Mohesenin. Physical properties of food and agricultural materials. A teaching manual. Gordon and Breach Science Publishers. New York, 1981.



Fig. A26: Load deformation curves for golden delicious apples

Source: Nuri. N. Mohsenin. Physical properties of food and agricultural materials. A teaching manual. Gordon and Breach Science Publishers. New York, 1981.



Fig. A27: Equilibrium moisture curves for several agricultural products (Henderson-1952)
Source: Carl, W. Hall. Drying Farm Crops. Lyall book depot, Ludhiana, 1970.



Fig. A28: Sorption-desportion isotherms for germ and endosperm in corn kernel at 74°F (23.3°C) (Shelef and Mohsenin)

Source: Carl, W. Hall. Drying Farm Crops. Lyall book depot, Ludhiana, 1970.



Fig. A29: Variation in equilibruim moisture content with relative humidity

Source: Kachru, R.P. Scanning of hysteresis loop in sorption for rough rice. Jr. Agril. Engg. 1984, 21 (1&2), pp: 62-8.



Fig. A30: Hysteresis in adsorption and desorption of water in soybean at 45° C Source: Alam, A and G.C. Shove, Hysteresis associated with hygroscopicity of soybeans. JAE, 12(1), 1975, pp: 6-9.

# APPENDIX - III

# Instrumentation required for determination of various properties of food crops

# 1. Spatial dimensions, size and sphericity

Shape Shadow graph

Charted standard for describing the shape of an object (given in the

text)

Spatial dimensions Travelling microscope (with cross aids and equipped with illuminat-

ing device)

Micrometer

## 2. Gravimetric properties

Thousand grain weighElectronic balance

Indian Standard; IS:4333 (Part IV) - 1968 may also be referred

Volume Air comparison pycnometer

General purpose reagent (toluene rectified) and measuring cylinder

Bulk density Electronic balance

Indian Standard; IS: 4333 (Part III)-1967 may also be referred

Specific gravity Specific gravity balance

Specific gravity gradient tube

General purpose reagent (toluene rectified) and measuring cylinder

Surface area/ projection area Overhead projector

#### 3. Frictional properties

Angle of repose Graduated scale

Indian Standard; IS: 6663-1972 may also be referred

Co-efficient of externaBet-up as explained in the text

internal friction

Measuring weights

#### 4. Aerodynamic properties

Terminal velocity Adjustable speed blower

Hot wire anemometer

'VANE' type electronic anemometer

## 5. Rheological properties

Deformation load Universal Testing Machine (INSTRON) compressive strength,

crushing load etc.

## 6. Thermal properties

Specific heat

Calorimeter

Electronic balance
Temperature recorder

Indian Standard; IS: 10699-1983 may also be referred

Thermal conductivity Rheostat

Voltmeter Ammeter Battery

Temperature recorder

Thermocouples

Set-up as explained in the text

Thermal diffusivity Immersion heater

Water bath
Thermocouples
Wattmeter
Electric motor

Temperature recorder

Indian Standard; IS: 10698-1983 may also be referred

# 7. Hygroscopic properties

Equilibrium moisture Set-up having controlled temperature (hot-air oven) content

Temperature recorder

Hygrometer

Electronic balance (LC: 0.0001 g)

Various saturated salt solutions to maintain a particular relative

humidity as given in the text

Humidity controlled oven with cooling arrangement

## 8. Chemical properties/constituents

Protein content

Micro-Kjeldahl apparatus

Digestion chamber/heater

Electronic balance (LC: 0.0001 g)

Fibre content

Muffle furnace

Electronic balance (LC: 0.0001 g)

Carbohydrate content Electronic balance (LC: 0.0001 g)

Glass wares

Fat content

Soxlet apparatus

Electronic balance (LC: 0.0001 g)

FFA content

Flask shaker

Electronic balance (LC: 0.0001 g)



S.97



# C. F. T. R. I. LIBRARY, MYSORE-13

Acc. No. 22576

Call No. F8,3: (D) N94

Please return this publication on or before the last DUE DATE stamped below to avoid incurring overdue charges.

To be issued from: 26-08-1995

| Due Date              | Return Date | Due Date  | Return Date |
|-----------------------|-------------|-----------|-------------|
| IN Rain<br>C. F. Murl | the sen     |           |             |
|                       |             |           |             |
| 9-95                  | 31.895      |           |             |
| 8.10.99.              | 4.10.55     |           |             |
|                       | 31-05-10    |           |             |
| distate               | 12/10/10    |           |             |
| -6-10                 | 31000       |           |             |
|                       | 1300        |           |             |
|                       |             |           |             |
|                       |             |           |             |
|                       |             |           |             |
|                       | 10 10 10    | 1 . 3 . 3 |             |



5-A, New Pali Road, Post Box 91 Jodhpur - 342 001, India