Soham Chatterjee

Email: sohamc@cmi.ac.in

Course: Algorithmic Coding Theory

Takehome Endsem Roll: BMC202175

Date: November 24, 2023

Problem 1 List Decoding of RS Codes

In class we described a list deoding algorithm for RS codes that decoded from $n-2(k-1)\sqrt{n}$ errors where n is the block length of the code and k its dimension. In this problem we want you to improve this bound to correct $n-\sqrt{2kn}$ errors.

Recall that the algorithm from class involved two steps:

- (1) Find a non-zero polynomial Q(x, y) of degree at most $2\sqrt{n}$ such that $Q(\alpha_i, \beta_i) = 0$ for every $i \in [n]$.
- (2) Factor this polynomial and include P in the output if y P(x) divides Q(x, y) and $|\{i, [n] \mid P(\alpha_i) = \beta_i\}| \ge t$

Our modification will be obtained by carefully picking a set of monomials $M \subseteq \{x^iy^i \mid i,j \geq 0\}$ and requiring that Q be only supported on the monomials of M. (I.e. if $Q(x,y) = \sum_{i,j} c_{i,j}x^iy^j$ and $c_{ij} \neq 0$ for

some i, j then $x^i y^j \in M$.)

Describe a set of monomials M that allows you to solve the list-decoding algorithm above with $t = \sqrt{2kn}$. (No need to write the details of all remaining steps.)

Solution:

Problem 2

Consider the following algorithm for converting errors to erasures in an expander code:

Given a codeword $c \in \mathbb{F}_2^n$ and a corrupted word $w \in \mathbb{F}_q^n$ with errors $:= \{i \in [n] \mid w_i \neq c_i\}$ satisfying $|\text{errors}| \leq rn$, let U be the set of constriants left unsatisfied by the assignment w. Initially the algorithm sets erase $= \emptyset$ and unhappy = U (unhappy for unhappy constraints). Then while there exists a variable $i \in [n] \setminus \text{erase}$ with more than 1/3rd of neighbors in unhappy, it sets erase $= \text{erase} \cup \{i\}$ and unhappy $= \text{unhappy} \cup N(i)$. When no such i exists it stops and outputs erase.

Prove that if the expander code is based on a (c,d)-regular (γ,δ) -expander with $\gamma>\frac{2c}{3}$ then for some $\tau>0$ the alforithm's output satisfies

- (1) $|\text{erase}| < \delta n$
- (2) errors \subseteq erase

Solution:

Problem 3

Fix a matrix $A \in \mathbb{F}_q^{m \times n}$ for $m \leq n$. Suppose you have oracle access to A: that is there is a magic box, M, so that in time O(q), M(i,j) returns $A_{i,j}$. Give a randomized streaming algorithm that takes in an input $y \in \mathbb{F}_q^n$ (in a straming fashionm so it sees y_q , then y_2 , then y_3 and so on until y_m), and outputs its best guess about whether or not Ay = 0.

Solution:

Problem 4 (Local) Decodability of Reed-Muller Codes:

Recall that $\mathbb{F}_q \subseteq \mathbb{F}_{q^m}$. Show that there exist polynomials $p_1, \ldots, p_m \in \mathbb{F}_{q^m}[X]$ of degree q^{m-1} such that the map $p: \mathbb{F}_{q^m} \to (\mathbb{F}_{q^m})^m$ given by $p(x) = (p_1(x), \ldots, p_m(x))$ has image \mathbb{F}_q^m and p is a bijection from \mathbb{F}_{q^m} to \mathbb{F}_q^m . Use this map to conclude that the Reed-Muller Code RM(q, m, r) is a subcode of the reed solomon code obtained by evaluating polynomials of degree at most rq^{m-1} over all of \mathbb{F}_{q^m}

- (a) Use this bijection to give a polynomial times (non-local) decoding algorithm for correcting Reed-Muller codes with r < q up to half their minimum distance.
- (b) Show how to correct $\epsilon_0 \left(1 \frac{r}{q}\right)$ fraction of errors using a reduction to Reed-Solomon decoding with an O(q) query algorithm. Your ϵ_0 should be an absolute constant.

Solution: