Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Worum geht es?

- Graphen sind ein Grundbaustein der Algorithmik
- ... und der Diskreten Mathematik.
- Unzähligen Anwendungen sind als Graphen modellierbar, z.B.
 - ein Straßen- oder Schienennetz
 - ein Kontaktnetzwerk
 - Abhängigkeiten zwischen Prozessen
 - der Verdrahtungsplan eines Chips
 - das Gehirn
- dabei treten dieselben grundlegenden Problemstellungen auf
- Graphenalgorithmen sind also extrem vielseitig einsetzbar

Definition

Ein Graph G = (V, E) besteht aus

- einer Menge V von Knoten und
- einer Menge *E* von Kanten,

so daß jede Kante $e \in E$ eine zweielementige Teilmenge von V ist.

Graphisch stellen wir die Knoten als Punkte dar und die Kanten als ungerichtete Verbindungslinien.

Beispiel: der Petersen-Graph

- 10 Knoten
- 15 Kanten

Beispiel: der vollständige Graph K_4

- 4 Knoten
- **|** jeder der $\binom{4}{2}$ = 6 möglichen Kanten ist vorhanden

Beispiel: das Springerproblem

- Ist es möglich, mit einem Springer alle 64 Felder eines Schachbrettes in einem Zug genau einmal zu besuchen?
- Die Knoten entsprechen den Feldern, die Kanten den möglichen Zügen

Konvention

- \blacksquare angenommen G = (V, E) ist ein Graph
- sofern nicht ausdrücklich anders angegeben, nehmen wir stets an, daß die Knotenmenge endlich ist.
- mit V(G) = V und E(G) = E werden Knoten- und Kantenmenge eines Graphen bezeichnet.
- **•** für eine Kante $\{u, v\}$ verwenden wir die Kurzschreibweise uv.
- per Definition enthalten Graphen keine Mehrfachkanten und keine Schleifen.

Definition

Angenommen G = (V, E) ist ein Graph.

 \blacksquare die Nachbarschaft von $v \in V$ ist

$$\partial_G v = \{u \in V : uv \in E\}.$$

■ der Grad von v ist $d_G(v) = |\partial_G v|$.

Definition

Angenommen G = (V, E) ist ein Graph.

- die Knoten $v, w \in V$ sind adjazent oder benachbart, falls $vw \in E$.
- der Knoten v und die Kante $e \in E$ sind inzident, falls $v \in e$.

Definition

Angenommen G = (V, E) ist ein Graph.

- der Maximalgrad von G ist $\Delta(G) = \max_{v \in V} d_G(v)$.
- der Minimalgrad von G ist $\delta(G) = \min_{v \in V} d_G(v)$.
- der Graph ist k-regulär, falls $\Delta(G) = \delta(G) = k$.

Definition

Angenommen G=(V,E) ist ein Graph. Das Komplement \bar{G} von G ist der Graph mit Knotenmenge $V(\bar{G})=V$ und Kantenmenge

$$E(\bar{G}) = \{uv : u, v \in V, u \neq v, uv \notin E\}.$$

Beispiel: der vollständige und der leere Graph

- sei ℓ > 1.
- \blacksquare mit K_{ℓ} wird der vollständige Graph auf ℓ Knoten bezeichnet:

$$V(K_{\ell}) = \{1, 2, \dots, \ell\}$$

$$E(K_{\ell}) = \{vw : 1 \le v < w \le \ell\}$$

■ das Komplement \bar{K}_{ℓ} ist der leere Graph.

Beispiel: Kreise

- sei $\ell \geq 1$.
- \blacksquare mit C_{ℓ} wird der Kreis auf ℓ Knoten bezeichnet:

$$V(C_{\ell}) = \{1, 2, \dots, \ell\}$$

 $E(C_{\ell}) = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \dots, \{\ell, 1\}\}$

Beispiel: Pfade

- sei $\ell \geq 1$.
- \blacksquare mit P_{ℓ} wird der Pfad auf ℓ Knoten bezeichnet:

$$V(P_{\ell}) = \{1, 2, \dots, \ell\}$$

$$E(P_{\ell}) = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \dots, \{\ell - 1, \ell\}\}$$

Lemma

Für einen Graphen G gilt stets $\sum_{v \in V(G)} d_G(v) = 2|E(G)|$.

Beweis

- Wir führen Induktion nach der Anzahl der Kanten.
- In einem leeren Graphen haben wir

$$\sum_{v \in V(G)} d_G(v) = 0 = |E(G)|.$$

■ Wenn wir jetzt *G* aus *G'* erhalten, indem wir eine Kanten hinzufügen, dann gilt nach Induktion

$$\sum_{v \in V(G)} d_G(v) = 2 + \sum_{v \in V(G')} d_{G'}(v) = 2 + 2|E(G')| = 2|E(G)|.$$

Definition

Zwei Graphen G = (V, E) und G' = (V', E') sind isomorph, wenn es eine bijektive Abbildung $\phi : V \to V'$ gibt, so daß

 $vw \in E$

 \Leftrightarrow

 $\phi(v)\phi(w) \in E'$

für alle $v, w \in V$.

Definition

Ein Graph G = (V, E) enthält einen Graphen G' = (V', E')

- als Untergraph, falls $V' \subseteq V$ und $E' \subseteq E$.
- als induzierten Untergraphen, falls $V' \subseteq V$ und $E' = \{vw : v, w \in V', vw \in E\}$.

Definition

Der von G = (V, E) auf $S \subseteq V$ induzierte Untergraph ist der Graph G[S] = (S, E(G[S])) mit Kantenmenge

$$E(G[S]) = \{vw : v, w \in S, vw \in E\}.$$

Löschen von Knoten und Kanten

Angenommen G = (V, E) ist ein Graph.

- Wenn $U \subseteq V$ eine Menge von Knoten ist, definiere $G U = G[V \setminus U]$.
- Wenn $F \subseteq E$ eine Menge von Kanten ist, definiere $G F = (V, E \setminus F)$.

Definition

Ein Graph G = (V, E) enthält

- eine induzierte Kopie eines Graph G' = (V', E'), wenn es eine Menge $S \subseteq V$ gibt, so daß G[S] isomorph ist zu G'.
- eine Kopie von *G'*, wenn *G* einen Untergraphen *H* besitzt, der eine induzierte Kopie von *G'* enthält.

Beispiel

- \blacksquare der Petersengraph enthält eine induzierte Kopie von C_5 ,
- sowie eine Kopie von P_5 .

Definition

Eine ℓ -Clique in einem Graphen G = (V, E) ist eine Menge $S \subseteq V$ von $|S| = \ell$ Knoten, so daß

$$uv \in E$$

für alle $u, v \in S$, $u \neq v$.

Mit anderen Worten: eine ℓ -Clique ist eine Kopie von K_{ℓ} in G.

Definition

Eine ℓ -stabile Menge in einem Graphen G = (V, E) ist eine Menge $S \subseteq V$ von $|S| = \ell$ Knoten, so daß

 $uv \notin E$

für alle $u, v \in S$.

Mit anderen Worten: eine ℓ -stabile Menge ist eine induzierte Kopie von \bar{K}_{ℓ} in G.

Definition

■ Die Cliquenzahl von G ist definiert als

$$\omega(G) = \max\{|S| : S \text{ ist eine Clique in } G\}.$$

■ Die Stabilitätszahl von G ist definiert als

$$\alpha(G) = \max\{|S| : S \text{ ist eine stabile Menge in } G\}.$$

$$\left(\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)$$

Datenstruktur Adjazenzmatrix

■ die Adjazenzmatrix A(G) ist ene $n \times n$ -Matrix mit Einträgen

$$A(G)_{uv} = \mathbb{1} \{uv \in E\} \qquad (u, v \in V).$$

- die Zeilen/Spalten der Matrix sind durch die Knoten indiziert.
- die Matrix ist symmetrisch

$$\left(\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)$$

Datenstruktur Adjazenzmatrix

- lacktriangle mittels der Adjazenzmatrix kann in O(1) Zeit geprüft, ob zwei Knoten benachbart sind
- \blacksquare alle Nachbarn eines Knoten zu finden, benötigt O(n) Zeit
- Speicherbedarf $\Theta(n^2)$

1	\mapsto	2	\mapsto	3				
2	\mapsto	1	\mapsto	3	\mapsto	4	\mapsto	5
3	\mapsto	1	\mapsto	2	\mapsto	5		
4	\mapsto	2	\mapsto	5				
5	\mapsto	2	\mapsto	3	\mapsto	4		

Datenstruktur Adjazenzliste

- jeder Knoten wird durch eine Liste repräsentiert
- die Liste enthält seine Nachbarn
- die Reihenfolge ist beliebig

Datenstruktur Adjazenzliste

- Speicherbedarf O(n + m)
- um herauszufinden, ob $uv \in E$, benötigen wir Zeit $O(\min\{d_G(u), d_G(v)\})$
- Sofern nicht anders angegeben, werden Graphen immer durch Adjazenzlisten dargestellt!

Zusammenfassung

- wir haben Grundbegriffe der Graphentheorie kennengelernt/wiederholt
- Adjazenzlisten sind eine geeignete Datenstruktur zur Darstellung von Graphen