Lezione 21 Algebra I

Federico De Sisti2024-12-10

Esercizi Schede 1

$$G = GL_2(\mathbb{C})$$
$$X = Mat_{2\times 2}(\mathbb{C})$$

$$\mathbf{G}{\times}X \to X$$

 $(A, B) \rightarrow A \cdot B$ è un'azione tra gruppi

Studiare le orbite

Soluzione

$$O_{\left(\begin{smallmatrix}0&0\\0&0\end{smallmatrix}\right)} = \left\{ \begin{pmatrix}0&0\\0&0\end{pmatrix} \right\}$$

 $O_{Id} = \{ \text{ matrici invertibili} \}$

Restano da studiare solo i casi di matrici non invertibili e non nulle

Se
$$det(B) = 0$$
 allora $B = \begin{pmatrix} x & y \\ \lambda x & \lambda y \end{pmatrix}$ $x, y, \lambda \in \mathbb{C}$

$$O_B = ?$$

Caso 1

Se
$$x = 0 \Rightarrow y \neq 0$$

$$\Rightarrow B = \begin{pmatrix} 0 & y \\ 0 & \lambda y \end{pmatrix}$$
Allora scelgo
$$A = \begin{pmatrix} \frac{1}{y} & ? \\ ? & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} \frac{1}{y} & ?\\ ? & 1 \end{pmatrix}$$

$$AB = \begin{pmatrix} \frac{1}{y} & 0 \\ -\lambda & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & y \\ 0 & \lambda y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Dove ho messo al posto dei punti interrogativi numeri appositi per arrivare alla matrice e_{12}

Quindi se $x \neq 0 \Rightarrow O_B = O_{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}$

Caso II

Se $x \neq 0$

Se
$$x \neq 0$$

Scelgo $A = \begin{pmatrix} \frac{1}{x} & 0 \\ ? & 1 \end{pmatrix}$
 $AB = \begin{pmatrix} \frac{1}{x} & 0 \\ -\lambda & 1 \end{pmatrix} \begin{pmatrix} x & y \\ \lambda x & \lambda y \end{pmatrix} = \begin{pmatrix} 1 & \frac{y}{x} \\ 0 & 0 \end{pmatrix}$
 $O_B = O_{\begin{pmatrix} 1 & \frac{y}{x} \\ 0 & 0 \end{pmatrix}}$

La matrice
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Scambia le righe di B

$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$AB = \begin{pmatrix} c & b \\ a & b \end{pmatrix}$$

1.1 Ideali

Definizione 1 (Ideali)

$$(R,+,\cdot)$$
 anello

Un ideale è un sottogruppo $(I, +) \leq (R, +)$ tale che

1.
$$\forall a \in I \quad \forall x \in R$$

 $\Rightarrow x \cdot a \in I$

[Ideale Sinistro]

$$2. \ \forall a \in I \ \forall x \in R \\ \Rightarrow a \cdot x \in I$$

[Ideale Destro]

3.
$$\forall a \in I, \forall x \in R$$

$$\Rightarrow \begin{cases} x \cdot a \in I \\ a \cdot x \in I \end{cases}$$

[Ideale bilatero]

Osservazione

Se R è commutativo allora un sottogruppo (additivo) $I \leq R$ è ideale sinistro \Leftrightarrow è un ideale destro \Leftrightarrow è un ideale bilatero.

Notazione 1

R anello I ideale bilatero lo chiameremo semplicemente ideale

Osservazione

R anello \Rightarrow (R,+) è un gruppo abeliano

 $\Rightarrow I \subseteq R$ ideale è un sottogruppo additivo normale

Esercizio:

R anello $I \subseteq R$ ideale $\Rightarrow (R/I, +)$ gruppo abeliano.

Dimostrare che l'operazione

$$\cdot : R/I \times R/I \to R/I$$

$$(aI,bI) \rightarrow (ab)I$$

è ben definita e dedurre che $(R/I, +, \cdot)$ è un anello.

Esempio

 $(\mathbb{R}, +, \cdot)$ è un anello

$$(\mathbb{Z},+) \leq (\mathbb{R},+)$$

 $(\mathbb{Z}, +, \cdot)$ è un sottoanello

 $(\mathbb{Z},+,\cdot)$ non è un ideale in $(\mathbb{R},+,\cdot)$

Infatti $\sqrt{2} \cdot 1 \notin \mathbb{Z}$

Esempi

R anello

 $\Rightarrow I = \{0\}$ è un ideale

 $\Rightarrow I=R$ è un ideale

Definizione 2

R anello commutativo. $I \subseteq R$ ideale

 $I \ si \ dice \ primo \ se \ I \neq R \ e \ ab \in I \Rightarrow a \in I \ oppure \ b \in I$

Esercizio

$$R = (\mathbb{Z}, +, \cdot)$$

Determinare tutti gli ideali primi di ${\cal R}$

Esercizio:

Ranello $I\subseteq R$ ideale

Dimostrare che le seguenti sono equivalenti

- 1. R/I è un dominio d'integrità
- 2. Se $a \cdot b \in I \Rightarrow a \in I$ oppure $b \in I$

Teorema 1 (Omomorfismo per anelli)

Dato $\varphi: R \to S$ un omomorfismo di anelli abbiamo

- 1. $ker(\varphi) \subseteq R$ è un ideale
- 2. esiste un unico omomorfismo di anelli $\bar{\varphi}: R/ker(\varphi) \to S$ tale che

3. Esiste un isomorfismo di anelli $R/ker(\varphi) \cong Im(\varphi)$

Dimostrazione (Esercizio)

1) Basta verificare che se $x \in ker(\varphi)$ e $y \in R$ allora $\begin{cases} x \cdot y \in ker(\varphi) \\ y \cdot x \in ker(\varphi) \end{cases}$

$$x \in ker(\varphi) \Rightarrow \varphi(x) = 0$$
 Quindi

$$\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$$

$$= 0 \cdot \varphi(y)$$

$$= 0$$

$$\Rightarrow x \cdot y \in Ker(\varphi) \\ \cdot \varphi(y \cdot x) = \varphi(y) \cdot \varphi(x)$$

$$= \varphi(y) \cdot 0$$
$$= 0$$

$$\Rightarrow y \cdot x \in ker(\varphi)$$

1.2 Caratteristica

Voglio associare ad ogni anello un numero intero che ci possa dare qualche informazione su di esso.

Definizione 3 $(R,+,\cdot) \text{ anello.}$ Considero l'omomorfismo di anelli $\psi: \mathbb{Z} \to R$ $1 \to 1_R$ $n \to (1_R + \ldots + 1_R)$ $Osserviamo che \psi \(\dot{e}\) un omomorfismo di anelli$ $\psi(nm) = \psi(n) \cdot \psi(m).$ Infatti $\psi(n) \cdot \psi(m) =$ $= (1_R + \ldots + 1_R)(1_R + \ldots + 1_R)$ $n \text{ volte} \qquad m \text{ volte}$ $= 1_R(1_R + \ldots + 1_R) + \ldots + 1_R(1_R + \ldots + 1_R)$ $m \text{ volte} \qquad m \text{ volte}$ $= \psi(n \cdot m)$ $Allora \ker(\psi) = (m) \subseteq \mathbb{Z} \text{ per qualche } m \geq 0$

Osservazione

Supponiamo che R abbia caratteristica positiva m>0 allora $m=ord_{(R,+)}(1_R)$

Esercizio:

 $(R,+,\cdot)$ campo

Dimostrare che la caratteristica $R \ge 0$ oppure un numero primo

Esempi:

 $\mathbb{R}, \mathbb{Q}, \mathbb{C}$

sono campi di caratteristica 0

m si dice caratteristica di R.

Mentre $\mathbb{Z}/(p)$ è un campo di caratteristica p (con p primo)

Esercizio

Un anello commutativo è un campo se e solo se non possiede ideali non banali

Soluzione

Supponiamo che R sia un campo e sia $I \subseteq R$ un ideale $I \neq \{0\}$

Allora dobbiamo mostrare che I = R.

Se $a \in I \neq \{0\}$ considero $a^{-1} \in R$

 $a^{-1} \cdot a = 1 \in I$

[Dato che è un ideale]

Dato $b \in R$:

 $b=b\cdot 1\in I$

[Dato che 1 è nell'ideale]

Viceversa:

dato $a \in R \setminus \{0\}$ dobbiamo verificare che esiste $b \in R$ tale che $a \cdot b = 1$ Definiamo $I := \{a \cdot r | r \in R\} \subseteq R$

I è un ideale. In oltre $I \neq \{0\}$ poiché $a \in I$ $\Rightarrow I = R \Rightarrow 1 \in I$

[Per ipotesi]

Quindi esiste $b \in R$ tale che $a \cdot b = 1$

${\bf Osservazione}$

Se R campo e $\psi:R\to S$ è un omomorfismo di anelli, allora ψ è iniettivo oppure ψ è l'omomorfismo nullo.

Abbiamo verificato che $ker(\psi)$ è un ideale in R. Quindi:

- $ker(\psi) = \{0\}$ \Rightarrow iniettivo