Deep Learning for NLP Convolutional Neural Networks

Nils Reimers

Course-Website: www.deeplearning4nlp.com

Recommended Readings

- https://www.youtube.com/watch?v=EevTPpQvxiU
- Kim, 2014, Convolutional Neural Networks for Sentence Classification
- http://cs231n.github.io/convolutional-networks/

Convolutional Neural Network

Universal architecture achieving state-of-the-art performance (in 2014)

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM _S (Silva et al., 2011)	_	_	_	_	95.0	_	_

Kim, 2014. Performance on Sentence Classification Tasks

Some notes on Conv. Neural Networks

- Convolutional Neural Networks are dominating computer vision
- For NLP, they became popular in ~2014
 - But became less popular in 2015 / 2016, as everyone is using LSTM
- Understanding the notation is quite difficult in computer vision
 - Images are typically 3 dimensional (width x height x color)
 - In NLP, we mainly deal with 1 dimensional data (our sentence / document)
 - Notation for 1 dimensional data is much simpler

Convolutional Neural Networks solve 2 crucial Challenges

First Challenge:

- In a lot of cases, we have variable sized input data, e.g. length of sentence / length of document.
- Our network / our hidden layers are of fixed sizes
- Solution 1: Window Approach (Collobert et al.), but we don't capture information outside of the window
- Solution 2: Recursive & Recurrent Neural Networks

Second Challenge:

- Increasing the window in the window approach allows us to capture more context information, but increases dramatically the number of parameters
- Often the position in the context window is of minor importance:
 - Jim [sells]_{Pred} his car for [\$5,000]_{???}
 - Jim [sells]_{Pred} his car, which he inherited from his dad, for [\$5,000]_{???}

Single Layer CNN – Single Filter

■ We compute a single filter for a window size of n (here n=3):

Word Vectors: $w_i \in \mathbb{R}^2$

Weight Matrix: $W \in \mathbb{R}^{1 \times 6}$

Bias: $b \in \mathbb{R}$

output =
$$\tanh \left(W \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} + b \right)$$

PAD The movie was awesome PAD

Single Layer CNN – Single Filter

- Compute the output for all windows of size n (in our case n=3)
- For each window use the same weight and bias values (shared weights)
- This gives us the same number of digits as the length of the sentence

PAD The movie was awesome PAD

Single Layer CNN – Pooling Layer

- New building block: Pooling
- Idea: Capture the most important activation
- Let $o_1, o_2, ... \in \mathbb{R}$ denote the output values for our filter
- Compute a max-over-time pooling layer:

$$c = \max_i(o_i) \in \mathbb{R}$$

- Because of max-over-time pooling, length of input sequence is irrelevant.
- We could use the output c and forward it to a softmax classifier and derive a sentiment class for the sentence
- Max-pooling most common in NLP. In Computer Vision, min-pooling and mean-pooling also common.

Excursion: Max Pooling in Computer Vision

- In computer vision, pooling is often applied over fixed windows (e.g. 2x2)
- Be careful, don't confuse max pooling and max-over-time pooling

Example:

- 224x224 pixel gray scale images, 64 images / batch
- 2x2 max-pooling reduces each image it to 112 x 112 dimensions

UKP

Max Pooling vs. Max-over-Time

- Max pool with 2x2 filters on variable sized input generates variable sized output
- Max-over-time generates fixed-sized output
- In NLP, mostly max-over-time is used (as presented by Collobert et al., NLP almost from scratch, section 3.2.2)
- A lot of literature on max pooling originated from computer vision
 - Be careful with different terminology and hyper parameters for those pooling layers
- Keras supports both:
 - MaxPooling1D: for fixed-size max pooling
 - GlobalMaxPooling: for max-over-time pooling

Single Layer CNN + Classification

1 Dimension – not enough information

Single Layer CNN – Multiple Filters

 By changing the dimensionality of the weight matrix, we can add further filters:

$$W \in \mathbb{R}^{k \times 6}$$

$$c_j = \max_i(o_{i,j})$$
 for $0 < j < k$

$$\begin{pmatrix}
0.5 \\
0.7
\end{pmatrix} \begin{pmatrix}
0.2 \\
0.1
\end{pmatrix} \begin{pmatrix}
-0.2 \\
0.7
\end{pmatrix} \begin{pmatrix}
-0.9 \\
0.8
\end{pmatrix}$$

$$o_{i} = \tanh \left(W\begin{pmatrix} w_{i-1} \\ w_{i} \\ w_{i+1} \end{pmatrix} + b\right) \in \mathbb{R}^{k}$$

$$\begin{pmatrix}
1 \\
1
\end{pmatrix} \begin{pmatrix}
7 \\
2
\end{pmatrix} \begin{pmatrix}
2 \\
5
\end{pmatrix} \begin{pmatrix}
1 \\
0
\end{pmatrix} \begin{pmatrix}
-3 \\
2
\end{pmatrix} \begin{pmatrix}
1 \\
1
\end{pmatrix}$$

PAD The movie was horrible PAD

Going further with Filters

 We can create convolutional layers working on unigrams, bigrams, trigrams etc. and combine their output

Or work on a different granularity

Conv. Layer on character trigrams

Conv. Layer on word trigrams

Stacking Convolutional Layers

Stacked Convolutional Layers

 Computer vision uses stacked convolutional layers to derive from simple representations high level representations

Terminology: Filter Length

- The filter length is the extension of each filter
- Mainly inspired by Computer Vision where we work on spatial close pixels
- In NLP we are more flexible:
 - Use a context window of size *n*
 - Use dependency links / syntax tree

Terminology: Stride

- The *stride* specifies the steps size we move across a sentence
- In NLP: Typically stride=1
- In computer vision: Other values can be used

How to choose the embeddings?

When we use words, how should we initialize the embeddings?

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4

Rand: Random initialization

Static: word2vec, no updates during training

Non-static: word2vec with updates

• Multichannel: next slide

Multi-Channel Idea

- We start with 2 copies for the word vectors, both initialized with word2vec/GloVe etc.
- Only one version of them is updated, the other is static
- We apply the same filters to both channels before we apply the pooling
- The one channel can learn task specific embeddings
 - E.g. for sentiment, *good* and *bad* should be far away in vector space
- So far mixed results
- Different Idea: Use differently pre-trained word embeddings
 - E.g. based on local context, on dependency trees, on relations from knowledge bases etc.
- Reference: Kim, 2014. Performance on Sentence Classification Tasks

Hints on the Implementation

- Numpy and Theano cannot work with variable sized rows
- How to model a dataset like this?
 [This is my first sentence.]
 [This is my second, longer sentence.]
 [Super short]
- 2 Approaches:
 - Ignore minibatches, just input 1 sentence at a time for training / testing
 - Bad for performance
 - Pad the sentences with 0 to make them of the same length
 - Be careful with the padding, that the max-pooling does not choose your padded values
 - Be careful with the runtime, that a single super long sentence does not create too much padding for all other sentences.
 - Great to run on GPU (convolutions can be computed easily in parallel)

Hints on the Implementation II

- Most implementation for convolutional layers are targeted for computer vision
- They introduce a lot more hyper parameters.
- Keras.Convolution1D:
 - nb_filter: dimensionality of the output
 - filter_length: The extension (spatial or temporal) of each filter.
 - border mode: How are vales at the border handled. 'valid' or 'full'.
 - subsample_length: The stride value for the filter

