

Introduction to Robotics

Dr. Divya Udayan J, Ph.D.(Konkuk University, S.Korea)

Assistant Professor(Selection Grade)

Department of CSE

Amrita School of Engineering, Amritapuri Campus,

Amrita Vishwa Vidyapeetham

Email: divyaudayanj@am.amrita.edu

Mobile: 9550797705

Recap

- Representation of "Point" in 3D.
- Pose in 3D.
- ☐ Homogenous Transformation Matrix in 3D.

Today's Discussion

- ☐Three Angle Representation:
 - Euler Angle,
 - Carden Angle.
- ☐2-Axis Representation.
- Axis Angle Representation.
- ■Quaternion Representation.
- Comparison.

Three Angle Representation

Three Angle Representation

- Representing rotation with sequence of elementary rotation.
- **Euler's Rotation Theorem:** Any two independent orthonormal coordinate frame can be related by a sequence of rotations (not more that 3) about coordinate axes, where no two successive rotations may be about same axis.

Euler Angles

Contain two rotation about same axis but not sequential

```
XYX XYZ XZY XZX
YXY YXZ YZX YZY
ZXY ZXZ ZYX ZYZ
```

Euler Angles

Contain two rotation about same axis but not sequential

```
XYX XYZ XZY XZX
YXY YXZ YZX YZY
ZXY ZXZ ZYX ZYZ
```

- Total 6 Euler Angles.
- Depending on the application, the sequence is selected. For robotics, aerospace, etc., ZYZ is used.

Euler Angles

Contain two rotation about same axis but not sequential

$$R = R_z(\phi)R_y(\theta)R_z(\psi)$$
$$\Gamma = (\phi, \theta, \psi)$$

For representing rotation about z- 45, y- 90 and z- 30

$$\Gamma = (45^{\circ}, 90^{\circ}, 30^{\circ})$$

This can be later converted into rotation matrix if required

Euler Angles – Special Case

$$\Gamma = (\phi, \theta, \psi)$$

$$R = R_z(\phi)IR_z(\psi)$$

$$R_y(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

$$R = R_z(\phi)R_z(\psi) = R(\phi + \psi)$$

1 DOF is Lost, this problem is called as **Singularity**.

Popularly called as **Gimbal Lock** problem.

Carden Angles

```
XYX XYZ XZY XZX
YXY YXZ YZX YZY
ZXY ZXZ ZYX ZYZ
```

- □Roll Pitch Yaw Angles XYZ or ZYX
 - ➤ Roll Rotation about the forward axis
 - ➤ Pitch elevation of the front with respect to horizontal
 - > Yaw direction of travel
- Depends on the application axis is considered

Roll – Pitch – Yaw Angles

$$R=R_z(\phi)R_y(\theta)R_x(\psi)$$
 Describing the attitude of vehicles such as ships, aircraft and cars

$$R = R_x(\phi)R_y(\theta)R_z(\psi)$$

Describing the attitude of a robot gripper

Roll – Pitch – Yaw Angles – SPECIAL CASE

$$\Gamma = \left(\phi, \pm \frac{\pi}{2}, \psi\right)$$

$$\Gamma = \left(\phi, \pm \frac{\pi}{2}, \psi\right)$$

$$R = R_x(\phi) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} R_z(\psi)$$

$$R = R_z(\phi + \psi) *$$

1 DoF is lost, this problem is called **Singularity**.

Popularly called as Gimbal Lock Problem.

*Proof: https://en.wikipedia.org/wiki/Gimbal lock

Singularity

Also called as Gimbal Lock.

What is **Gimbal**?

Singularity

One DoF is lost.

Two rotational axis becomes parallel.

Rotations obey the cyclic rotation rules

$$Rx(\frac{\pi}{2}) Ry(\theta) Rx(\frac{\pi}{2})^T \equiv Rz(\theta)$$

$$Ry(\frac{\pi}{2}) Rz(\theta) Ry(\frac{\pi}{2})^T \equiv Rx(\theta)$$

$$Rz(\frac{\pi}{2}) Rx(\theta) Rz(\frac{\pi}{2})^T \equiv Ry(\theta)$$

and anti-cyclic rotation rules

$$Ry(\frac{\pi}{2})^T Rx(\theta) Ry(\frac{\pi}{2}) \equiv Rz(\theta)$$

$$Rz(\frac{\pi}{2})^T Ry(\theta) Rz(\frac{\pi}{2}) \equiv Rx(\theta).$$

Singularity — Solution

- > To add one more active axis
- Avoid locking by moving the gimbals arbitrarily
- Avoid gimbal mechanism
- Use alternate representation

Two Vector Representation

- ightharpoonup Approach Vector $\hat{a} = (a_x, a_y, a_z)$
- \triangleright Orientation Vector $o = (o_x, o_y, o_z)$
- ightharpoonup Normal Vector $n = (n_x, n_y, n_z)$

$$R = \begin{pmatrix} n_x & o_x & a_x \\ n_y & o_y & a_y \\ n_z & o_z & a_z \end{pmatrix}$$

$$n = o \times \hat{a}$$

Rotation about an Arbitrary Vector

Two coordinate frames of arbitrary orientation are related by a single rotation about some axis in space.

Also called as Axis Angle Representation.

Rotation about an Arbitrary Vector

- > The axis around which the rotation occurs must be unchanged by the rotation
- Therefore the rotation axis must be an Eigen vector of R
- A rotation matrix has three Eigen vector
 - > Always one real Eigen vector corresponding to Eigen value of 1
 - > Plus two complex Eigen vectors with Eigen values

$$\lambda = \cos\theta \pm i\sin\theta$$

Finding rotation matrix is by Rodrigues' rotation formula

$$R = I_{3\times 3} + \sin\theta \left[\hat{v}\right]_{\times} + (1 - \cos\theta) \left[\hat{v}\right]_{\times}^{2}$$

Quaternion Representation

Ordinary Complex Number

$$a+ib$$

$$i^2 = -1$$

Hyper-Complex Number

$$a+ib+jc+kd$$

$$a+ib+jc+kd$$
 $i^2+j^2+k^2=ijk=-1$

Quaternion is a hyper-complex number, which is written as scaler and vector

$$s + iv_x + jv_y + kv_z$$

$$s+v$$

Quaternion Representation

Quaternions were discovered by Sir William Hamilton over 150 years ago and, while initially controversial, have great utility for robotics.

$$\overset{\circ}{q} = s + v$$

$$\stackrel{\circ}{q} = s\langle v_1, v_2, v_3 \rangle$$

$$\begin{vmatrix} \circ \\ q \end{vmatrix} = \sqrt{s^2 + v_1^2 + v_2^1 + v_3^2}$$

Quaternion Representation

Unit quaternion is 1:
$$\begin{vmatrix} \circ \\ q \end{vmatrix} = 1$$

Can be used to encode 3D rotation: q = s + v

Angle and axis representation:
$$s = cos \frac{\theta}{2}$$
 $v = nsin \frac{\theta}{2}$

Compounding:
$$\overset{\circ}{q_1} \cdot \overset{\circ}{q_2} = s_1 \cdot s_2 - v_1 \cdot v_2, \left\langle s_1 v_1 + s_2 v_1 + v_1 \times v_2 \right\rangle$$

Hamilton Product Rule

Inverse:
$$\binom{\circ}{q}^{-1} = s \langle -v \rangle$$
Identity Quaternion: $q = 1 \langle 0, 0, 0 \rangle$

Summary

Format	Number of Parameters	Singularity	Compounding
Rotation Matrix	9	No	matrix multiplication
Euler Angle, RPY	3	Yes	non-trivial
2 Vector	6	No	non-trivial
Angle axis	3(1+2)	No	non-trivial
Unit Quaternion	4	No	quaternion multiplication