Sri Lanka Institute of Information Technology

B. Sc Degree in IT/IS/CSN, Diploma in Information Technology

Year 01 – Semester I – 2017

Mathematics for Computing (IT1030)

Tutorial 04

- 1. Use the differentiation rules to find the derivative of the function.
 - a) y = 3
 - $b) \qquad f(x) = 3x 1$
 - c) $g(t) = t^2 + 2t 3$
 - d) $g(x) = 4\sqrt[3]{x} + 2$
 - e) $y = 4x^{-2} + 2x^2$
- 2. Find the marginal cost for producing x units.
 - a) C = 4500 + 1.47x
 - b) C = 104,000 + 7200x
 - c) $C = 55,000 + 470x 0.25 x^2$
 - d) $C = 100 (9 + 3 \sqrt{x})$
- 3. Find the marginal revenue for producing x units.
 - a) $R = 50x 0.5x^2$
 - b) $R = 30x x^2$
 - c) $R = -6x^3 + 8x^2 + 200x$
 - d) $R = 50(20x x^{3/2})$

4. Find the marginal profit for producing x units.

a)
$$P = -2x^2 + 72x - 145$$

b)
$$P = -0.25 x^2 + 2000x - 1,250,000$$

c)
$$P = -0.00025 x^2 + 12.2x - 25,000$$

d)
$$P = -0.5 x^3 + 30 x^2 - 164.25x - 1000$$

5. Find the value of the derivative of the functions given below.

a)
$$f(x) = x^2(3x^3 - 1)$$

b)
$$f(x) = (x^2 + 1)(2x + 5)$$

c)
$$f(x) = \frac{x}{x-5}$$

d)
$$h(x) = \frac{x+1}{x-1}$$

6. Differentiate the functions given below.

a)
$$f(x) = (x^3 - 3x)(2x^2 + 3x + 5)$$
 b) $f(x) = (x - 1)(x^2 - 3x + 2)$

b)
$$f(x) = (x-1)(x^2 - 3x + 2)$$

c)
$$g(x) = \left(\frac{x-3}{x+4}\right)(x^2 + 2x + 1)$$

d)
$$f(x) = (x^2 - x)(x^2 + 1)(x^2 + x + 1)$$

7. Find the derivative of the functions given below.

a)
$$y = (2x - 7)^3$$

b)
$$y = 2(x^2 - 1)^3$$

c)
$$y = \sqrt[3]{9x^2 + 4}$$

d)
$$y = (4 - 3x)^{-5/2}$$

e)
$$f(t) = (9t + 2)^{2/3}$$

Further Exercises

1. Find the derivative of the following.

a)
$$f(x) = x^2 - 5x + 3$$

c)
$$f(t) = (t^2 + 6t) (t^{1/5} - 4)$$

$$e) f(x) = \frac{x-4}{x^3+5x}$$

g)
$$f(x) = \sqrt{x^2 + 3x + 8}$$

i)
$$f(x) = \sqrt[5]{x^{-2} - x^5}$$

b)
$$f(x) = \left(\frac{2-5x}{\sqrt{x+2}}\right)^{2/5} + (x+6)(x^3+2x)$$

d)
$$f(x) = (x^8 + 5x^3 - 6)(3x + \sqrt[3]{4x})$$

f)
$$f(t) = (t^4 + 3t - 7)^{12}$$

h)
$$g(x) = \frac{\left(x^4 + \sqrt{x} - 5\right)}{\left(x + 4x^2\right)}$$

$$j) f(s) = \left(\frac{6s + 5s^2}{s^3 + 5}\right)^8$$