

Cognitive Modelling

Modelling of face perception 1

Introduction

• Fourth module of the course: application of methods and theories seen so far.

Introduction

- Fourth module of the course: application of methods and theories seen so far.
- You'll run an experiment based on face perception and model the data you collect.

The experiment

- Cognitive test about face perception
 - -How do we recognize that a face is smiling?
 - –What characterizes a masculine-looking vs a feminine-looking face?

Can we teach a computer to model this kind of information?

The experiment

 The experiment we are going to work on is inspired by the following paper:

Fagertun, Jens, Tobias Andersen, and Rasmus Reinhold Paulsen. "Gender recognition using cognitive modeling." European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012

Available on Inside.

Person perception vs face perception

- When interacting with other people, we subconsciously make all sort of determinations about them:
 - –Are they friendly? Or angry?
 - -Age
 - -Gender
 - **—** . . .
- These are based on many different types of data:
 - -Looks
 - -Voice
 - Clothes they are wearing

Person perception vs face perception

- In this experiment we limit ourselves to faces
- Our data are sets of portrait pictures of faces

Modelling of facial expressions

- Can be used as a way to model human emotions
- FACS (Facial Action Coding System) is a popular model, which was proposed in the late 1970 by Ekman, Friesen and others
- It's based on modelling small components of an expression (Action Units)
- Human coders initially. Now also machines.

Binary classification vs continuous scales

- The binary classification (friendly/not friendly, male/female) is not enough.
- Our brain is able to model in-betweens and edge cases.
- How to teach this to a computer?
- In the experiment, the test person will make binary classifications, and we want our model to be able to deal with the continuous.

How to? Let's try!

Determine if the faces on the next slides are smiling. Quick! Don't overthink it ©

What can we notice?

Could we perform the task?

How long did it take?

What can we notice?

- Could we perform the task?
 - -Generally yes

- How long did it take?
 - -The **edge/in-between cases** give a **slower** reaction
 - We can build **reaction time** into our model
 - This gives us a **continuous** scale, that encodes the perceived strength or intensity of the chosen variable in the stimulus.

The data

- We use publicly-available face databases
- Links are in the homework
- How to include picture data in our model?
 - –A lot of pixels
 - -High dimensional! 600 * 600 = 360000!
 - –Is a single pixel an interesting feature to model a face anyway?

We need better (and fewer) features.

PCA for dimensionality reduction

- Principal Component Analysis gives us a way to
 - Reduce dimensionality
 - Find directions in our dataset that express large amounts of variance.

PCA for dimensionality reduction

How can we interpret the principal components?

Which components are relevant for our model?

We'll discuss this next time

Homework

The description is on Inside.

Goals:

- 1. Setup the experiment
- 2. Run the experiment
- 3. Analyze data
- 4. Build a model

The hand-in is a report covering the points above.

Run the experiment

A Matlab script to run the experiment is provided

Run the experiment

- It's a very simplified stimulus presentation
- Some parameters need to be changed:

```
% BEGIN PARAMETERS
58
59
       % enter the full path to your image database directory
60 -
       image folder = 'C:\Users\pamas\academia\teaching\2019E cognitive modelling\face databases\KDEF-cropped\KDEF-cropped\';
61
       % enter the file extension of your files
       file pattern = '*.png';
63 -
64
       % enter the two options (left will correspond to the 'z' key, right to the
       % 'm' kev
67 -
       handles.textLeft.String = 'Unhappy';
       handles.textRight.String = 'Happy';
       % END PARAMETERS
```


Run the experiment

- You'll have to enter a subject ID (integer)
- The sequence of pictures is randomized, with seed depending on the subject ID.
- During the experiment, use the keys **z** and **m** to answer the left and right option, respectively.

Test persons

- You'll use your group members as test persons. You are welcome to collect additional data from other people.
- The test person has to answer quickly. Aim at below one second. Not too much thinking © Remember that we need the reaction times.

The collected data

- The Matlab script produces a file called "results.txt", containing the collected answers.
- It's a comma separated file with the following columns:

Example

3	1	Photo3.jpg	Smiling	0.5
3	2	Photo1.jpg	Not Smiling	0.3

Goals for today

- 1. Choose a variable and a face database (links in the homework).

 The variable can be one of
 - -smiling / not smiling
 - -angry / not angry
 - -masculine / feminine
- 2. Select a subset of pictures (~500) from the chosen database
- 3. Download the stimulus presentation script (Homework 4/Stimulus presentation script) from Inside
- 4. Set up the script with the chosen parameters and run pilot trials
- 5. Collect data using your group members as test subjects

Next week

- We'll focus on the modelling part of the project:
 - -PCA
 - -Feature selection
 - -Generate new samples using the model

