Homework Assignment 7

Hopf algebras - Spring Semester 2018

Exercise 1

Let G be a group.

- Let $N \leq G$ be a subgroup. Show that k[G] is free as a left and right k[N]-module.
- If $N \subseteq G$ is a normal subgroup, let $p: G \mapsto G/N$ denote the natural projection and $\pi: k[G] \to k[G/N]$ the induced algebra morphism. Recall that $k[N]^+$ denotes the augmentation ideal, that is the kernel of the counit ϵ . Let $k[G]^{co \, k[G/N]}$ be the space of k[N]-coinvariant elements of k[G] with respect to the right k[G/N] comodule algebra structure given by $(\mathrm{id} \otimes \pi)\Delta$ (see last exercise sheet).

Show that $\ker \pi = k[G](k[N])^+$ and $k[G]^{\operatorname{co} k[G/N]} = k[N]$.

Exercise 2

Let \mathfrak{g} be a Lie algebra and $\mathfrak{a} \subset \mathfrak{g}$ a Lie subalgebra.

- Show that the map $U(\iota): U(\mathfrak{a}) \to U(\mathfrak{g})$ induced by the inclusion $\iota: \mathfrak{a} \to \mathfrak{g}$ is injective. Show as well that $U(\mathfrak{g})$ is free as a left and right $U(\mathfrak{a})$ -module.
- Suppose that \mathfrak{a} is a Lie ideal. Let $p:\mathfrak{g}\to\mathfrak{g}/\mathfrak{a}$ be the canonical map $\pi:U(\mathfrak{g})\to U(\mathfrak{g}/\mathfrak{a})$ the induced algebra homomorphism. Let $U(\mathfrak{a})^+$ be the augmentation ideal and let $U(\mathfrak{g})^{\operatorname{co} U(\mathfrak{g}/\mathfrak{a})}$ be the space of $U(\mathfrak{g}/\mathfrak{a})$ -coinvariant elements of $U(\mathfrak{g})$ with respect to the right $U(\mathfrak{g}/\mathfrak{a})$ comodule algebra structure given by $(\operatorname{id}\otimes\pi)\Delta$ (see last exercise sheet). Show that $\ker \pi = U(\mathfrak{g})U(\mathfrak{a})^+$ and describe $U(\mathfrak{g})^{\operatorname{co} U(\mathfrak{g}/\mathfrak{a})}$.

Exercise 3

Let \mathfrak{g} be a Lie algebra, I a set, and $x:I\to\mathfrak{g}$ an injective map. We say that \mathfrak{g} is freely generated by I if for every Lie algebra \mathfrak{h} and any map $f:I\to\mathfrak{h}$ there is a unique Lie algebra homomorphism $\bar{f}:\mathfrak{g}\to\mathfrak{h}$ such that the following diagram commutes:

$$I \xrightarrow{x} \mathfrak{g}$$

$$\downarrow f \qquad \downarrow \exists ! \tilde{f}$$

$$\mathfrak{h}$$

Show that for any set I there is a sub Lie algebra $\mathfrak{g}_I \subset k < x_i \mid i \in I >^-$ that is freely generated by I. Show that $U(\mathfrak{g}_I) \simeq k < x_i \mid i \in I >$.