

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Lineare Algebra II

Sommersemester 2021

Übungsblatt 4

10.05.21

Aufgabe 1 (Gram-Schmidt-Verfahren und Abstände)

Es seien die Vektoren

$$v_1 = \begin{pmatrix} -1\\1\\0\\1\\1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} -3\\5\\0\\4\\4 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} -7\\-1\\0\\5\\5 \end{pmatrix}$$

im euklidischen Vektorraum \mathbb{R}^5 mit dem Standardskalarprodukt gegeben.

a) Bestimmen Sie eine Orthonormalbasis des Untervektorraums $U \coloneqq \mathrm{LH}(v_1, v_2, v_3)$.

b) Bestimmen Sie den Abstand des Vektors
$$\begin{pmatrix} -2\\0\\2\\1\\-1 \end{pmatrix}$$
 zum affinen Unterraum $\begin{pmatrix} 3\\1\\0\\0\\-4 \end{pmatrix} + U$.

c) Bestimmen Sie eine Orthonormalbasis von U^{\perp} .

Aufgabe 2 (Projektionen und Orthogonalprojektionen)

(10 Punkte)

Es sei V ein endlichdimensionaler reeller Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und der davon induzierten Norm $\| \cdot \|$.

Außerdem sei $U\subseteq V$ ein Untervektorraum. Wir nennen einen Endomorphismus $\varphi\colon V\to V$

- Projektion, falls $\varphi^2 = \varphi$ gilt.
- Orthogonal projektion auf U, falls $\varphi(v) \in U$ und $\|v - \varphi(v)\| = d(v, U)$ für alle $v \in V$ gilt.
- nichtexpandierend, falls $\|\varphi(v)\| \leq \|v\|$ für alle $v \in V$ gilt.

Beweisen Sie folgende Aussagen:

a) Falls φ eine Projektion ist, so ist auch id $-\varphi$ eine Projektion und es gelten die Aussagen

$$\ker(\varphi) = \operatorname{Bild}(\operatorname{id} - \varphi), \quad \operatorname{Bild}(\varphi) = \ker(\operatorname{id} - \varphi), \quad V = \ker(\varphi) \oplus \operatorname{Bild}(\varphi).$$

- b) Falls φ eine Orthogonalprojektion auf U ist, dann ist φ auch eine Projektion und es gilt $U = \text{Bild}(\varphi)$.
- c) Eine Abbildung φ ist genau dann eine Orthogonalprojektion, wenn φ eine Projektion mit $\ker(\varphi) = \operatorname{Bild}(\varphi)^{\perp}$ ist.
- d) Falls φ eine Orthogonal projektion ist, ist φ nichtexpandierend. *Hinweis:* Satz des Pythargoras.

Abgabe bis Montag, den 17.05.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.