Análisis de datos de movimiento en Python

JORGE P. RODRÍGUEZ

C.A. UNED Illes Balears, 15 de junio de 2023

Programa

jueves, 15 de junio

10:00-10:15 h. Bienvenida

Jorge Pablo Rodríguez García Profesor Tutor. C.A. UNED Illes Balears.

10:15-11:15 h. Análisis de 'Big Data' aplicados a datos de movimiento

Jorge Pablo Rodríguez García Profesor Tutor. C.A. UNED Illes Balears.

11:45-12:30 h. MegaMove: a global synthesis for informing marine megafauna conservation

Ana M. Sequeira Associate Professor del Australian National University

16:30-18:00 h. Práctica con datos de movimiento

Jorge Pablo Rodríguez García Profesor Tutor. C.A. UNED Illes Balears.

- 1. Comandos en Python de utilidad para optimizar los códigos (velocidad, legibilidad y memoria)
- 2. Herramientas de visualización espacio-temporal
- 3. Estandarización de datos para su análisis
- 4. Análisis de desplazamientos a niveles individual y colectivo.
- 5. Análisis de propiedades espaciales de las trayectorias
- 6. Creación de matrices de origen-destino y aplicación para la detección de provincias

Hannah Calich

- 1. Comandos en Python de utilidad para optimizar los códigos (velocidad, legibilidad y memoria)
- 2. Herramientas de visualización espacio-temporal

Notebook pythonic_and_efficient.ipynb

3. Estandarización de datos para su análisis.

Datos de trayectorias de individuos (humanos, animales y/o logísticos)

Trayectorias descritas por:

Individuo, Latitud, Longitud, Tiempo

Otros posibles datos: estado, calidad de los datos...

Metadatos del individuo (archivo adicional): especie, sexo, lugar de marcado, edad, masa, talla, clase social, estatus laboral...

Consejo (memoria y eficiencia): almacenar tiempo como un decimal.

Ejemplo: 2019-01-10T15:59:56Z es un string que podría almacenarse como la variable double 43473.66662037037, que son días desde el 1 de enero de 1990

- 4. Análisis de desplazamientos a niveles individual y colectivo
- 4.1 ¿Cómo escala el espacio con el tiempo?

Tenemos una trayectoria (longitud(t),latitud(t))

Medimos la distancia al origen tras un tiempo T d(T)

Solo tenemos un punto, pero podemos muestrear a lo largo de la trayectoria para tener más estadística

Valores esperados:

- a) desplazamiento promedio ⟨d(T)⟩
- b) desplazamiento cuadrático promedio 〈d²(T)〉

 $\langle d(T) \rangle y \langle d^2(T) \rangle^{1/2}$ son comparables y escalan con T^{α}

Movimiento Browniano (difusivo): α =0.5

Movimiento balístico: α=1

Movimiento superdifusivo $\alpha > 0.5$

4.1 ¿Cómo escala el espacio con el tiempo?

Ejemplo: elefantes marinos del sur

Rodríguez et al., Sci. Rep (2017)

4.1 ¿Cómo escala el espacio con el tiempo?

Permite comparar el movimiento de distintas especies

- 4. Análisis de desplazamientos a niveles individual y colectivo
- 4.2 ¿Cómo se distribuyen los desplazamientos?

DESPLAZAMIENTO

Salto entre posición a tiempo t y posición a tiempo t+T

Podemos comprobar la distribución de desplazamientos para distintos valores de T

4.2 ¿Cómo se distribuyen los desplazamientos?

Elefantes marinos del sur

4.2 ¿Cómo se distribuyen los desplazamientos?

Elefantes marinos del sur

Normalizando con el desplazamiento medio de cada T, mismo patrón de movimiento independiente de la escala temporal

- 5. Análisis de propiedades espaciales de las trayectorias
- 5.1 Patrones de ocupación

Se discretiza el espacio en celdas (por ejemplo, la red regular, pero también celdas de Voronoi)

Objetivo: estimar cómo se distribuyen estas trayectorias en el espacio, cómo se ocupa el espacio

Dos aproximaciones:

- 1. Número de puntos (ideal para trayectorias con intervalos temporales regulares, libre de parámetros)
- 2. Tiempo en celda (trayectorias con intervalos irregulares, necesidad de introducir una escala espacial y otra temporal)

5. Análisis de propiedades espaciales de las trayectorias

5.1 Patrones de ocupación

Ejemplo: estimación del esfuerzo pesquero con trayectorias de barcos de pesca

- 5. Análisis de propiedades espaciales de las trayectorias
- 5.2 Entropía
- ¿Cómo se distribuye cada trayectoria en el espacio? ¿Hay puntos calientes?
- p_i: Probabilidad de visitar la celda i

$$S = -\sum_{i} p_{i} \log(p_{i})$$

El valor depende del número de celdas visitadas, pero se puede normalizar. Si se distribuye de forma uniforme a lo largo de M celdas, S_{unif}=logM

$$s = S/S_{unif}$$

 $0 \le s \le 1$

s=0: sólo se visita una celda (mínimo desorden)

s=1:todas las celdas se visitan con probabilidad uniforme (máximo desorden)

6. Creación de matrices de origen-destino y aplicación para la detección de provincias

Matriz Origen-Destino Ω_{ja} =1/2

$$\Omega_{\rm ib}$$
=5/16

$$\Omega_{\rm ic}$$
=3/16

Esta matriz define una red espacial en la que se pueden calcular comunidades

6. Creación de matrices de origen-destino y aplicación para la detección de provincias

Ejemplo: 14 provincias de pesca procedentes del movimiento de pesqueros

Ana Sequeira

Víctor Eguíluz Hannah Calich

Juan Fernández-Gracia

