CHE221A

Assignment 8

Questions

- 1. Consider a binary mixture of n-propanol and water in vapor-liquid equilibrium (VLE). Let n-propanol be designated species 1 and water, species 2. A plot of the activity coefficients for this system at 100° C follows. The Lewis/Randall reference state is chosen for both species. The mole fraction of n-propanol in the liquid, x_1 is 0.2, and the temperature is 100° C. The saturation pressure of n-propanol at 100° C is 1.12 bar.
 - (a) Label the curve that corresponds to the activity coefficient for n-propanol, y_1 , and the curve that corresponds to the activity coefficient for water, y_2 Explain.
 - (b) Are like or unlike interactions stronger? Explain.
 - (e) Find the total pressure of the system.
 - (d) Find the mole fraction of n-propanol in the vapor phase.
 - (e) Estimate the value of the Henry's law constant of n-propanol in water, H₁
 - (f) Does this system exhibit an azeotrope? Explain.

2. The Gibbs energies for the liquid phase and the vapor phase vs. mole fraction of a for two systems (system I and system II) follow. These plots are at constant temperature and pressure. What type of behavior does each of these plots correspond to?

3. Consider the following reaction:

$$2A(g) + B(g) \rightarrow 2C(g)$$

The Gibbs energy of reaction at 298 K is determined to be $\Delta g_{rxn,298}^0$ = -1,000 J/mol, and at a given temperature, the equilibrium constant is reported to be K_T = 16. Now consider the reaction is written as follows:

$$A(g) + 0.5 B(g) \rightarrow C(g)$$

What are the values of $\Delta g^0_{rxn,298}$ = and K_T?

4. At 300 K and 1 bar, the equilibrium constant for the following reaction:

$$A(g) + B(g) \rightarrow C(g)$$

Is reported to be 10. What is the equilibrium constant at 300 K and 10 bar? You may assume ideal gas behavior.