the derivatives of $u^{(n)}$ with respect to the variables in the graph. This example is intended to further understanding by showing a simplified case where all variables are scalars, and we wish to compute the derivatives with respect to $u^{(1)}, \ldots, u^{(n_i)}$. This simplified version computes the derivatives of all nodes in the graph. The computational cost of this algorithm is proportional to the number of edges in the graph, assuming that the partial derivative associated with each edge requires a constant time. This is of the same order as the number of computations for the forward propagation. Each $\frac{\partial u^{(i)}}{\partial u^{(j)}}$ is a function of the parents $u^{(j)}$ of $u^{(i)}$, thus linking the nodes of the forward graph to those added for the back-propagation

Algorithm 6.2 Simplified version of the back-propagation algorithm for computing

the forward propagation. Each $\frac{\partial u^{(i)}}{\partial u^{(j)}}$ is a function of the parents $u^{(j)}$ of $u^{(i)}$, thus linking the nodes of the forward graph to those added for the back-propagation graph.

Run forward propagation (algorithm 6.1 for this example) to obtain the activations of the network.

Initialize grad_table, a data structure that will store the derivatives that have been computed. The entry grad_table[$u^{(i)}$] will store the computed value of $\frac{\partial u^{(n)}}{\partial u^{(i)}}$.

grad_table $[u^{(n)}] \leftarrow 1$ for j = n - 1 down to 1 do

The next line computes $\frac{\partial u^{(n)}}{\partial x^{(n)}} = \sum_{i \in \mathcal{D}_{i}} e_{i}(x) \frac{\partial u^{(n)}}{\partial x^{(n)}} \frac{\partial u^{(i)}}{\partial x^{(n)}}$ using stored values:

The next line computes $\frac{\partial u^{(n)}}{\partial u^{(j)}} = \sum_{i:j \in Pa(u^{(i)})} \frac{\partial u^{(n)}}{\partial u^{(i)}} \frac{\partial u^{(i)}}{\partial u^{(j)}}$ using stored values: grad_table[$u^{(j)}$] $\leftarrow \sum_{i:j \in Pa(u^{(i)})} \operatorname{grad_table}[u^{(i)}] \frac{\partial u^{(i)}}{\partial u^{(j)}}$

end for return {grad table $[u^{(i)}] \mid i = 1, ..., n_i$ }