25 System window watchdog (WWDG)

25.1 Introduction

The system window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the contents of the down-counter before the T6 bit becomes cleared. An MCU reset is also generated if the 7-bit down-counter value (in the control register) is refreshed before the down-counter has reached the window register value. This implies that the counter must be refreshed in a limited window.

The WWDG clock is prescaled from the APB1 clock and has a configurable time-window that can be programmed to detect abnormally late or early application behavior.

The WWDG is best suited for applications which require the watchdog to react within an accurate timing window.

25.2 WWDG main features

- Programmable free-running down-counter
- Conditional reset
 - Reset (if watchdog activated) when the down-counter value becomes lower than 0x40
 - Reset (if watchdog activated) if the down-counter is reloaded outside the window (see Figure 322)
- Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when the down-counter is equal to 0x40.

25.3 WWDG functional description

If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the 7-bit down-counter (T[6:0] bits) is decremented from 0x40 to 0x3F (T6 becomes cleared), it initiates a reset. If the software reloads the counter while the counter is greater than the value stored in the window register, then a reset is generated.

The application program must write in the WWDG_CR register at regular intervals during normal operation to prevent an MCU reset. This operation must occur only when the counter value is lower than the window register value and higher than 0x3F. The value to be stored in the WWDG_CR register must be between 0xFF and 0xC0.

Refer to Figure 321 for the WWDG block diagram.

828/1124 RM0364 Rev 4

25.3.1 WWDG block diagram

WWDG Register interface CMP = 1 when T[6:0] > W[6:0]W[6:0] APB bus WWDG CFR wwdg out rst WWDG_SR **WDGA** Write to WWDG_CR T[6:0] T6 0x40 readback Logic WWDG_CR T[6:0] FWI ➤ wwda it ٠. **FWIF** cnt_out preload v 7-bit DownCounter (CNT) ÷ 2^{WDGTB} pclk ÷ 4096 MS47214V1

Figure 321. Watchdog block diagram

25.3.2 Enabling the watchdog

The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the WWDG CR register, then it cannot be disabled again except by a reset.

25.3.3 Controlling the down-counter

This down-counter is free-running, counting down even if the watchdog is disabled. When the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset.

The T[5:0] bits contain the number of increments that represent the time delay before the watchdog produces a reset. The timing varies between a minimum and a maximum value due to the unknown status of the prescaler when writing to the WWDG_CR register (see *Figure 322*). The *WWDG configuration register (WWDG_CFR)* contains the high limit of the window: to prevent a reset, the down-counter must be reloaded when its value is lower than the window register value and greater than 0x3F. *Figure 322* describes the window watchdog process.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared).

25.3.4 How to program the watchdog timeout

Use the formula in Figure 322 to calculate the WWDG timeout.

Warning: When writing to the WWDG_CR register, always write 1 in the T6 bit to avoid generating an immediate reset.

577

RM0364 Rev 4 829/1124

Figure 322. Window watchdog timing diagram

The formula to calculate the timeout value is given by:

$$t_{WWDG} = t_{PCLK1} \times 4096 \times 2^{WDGTB[1:0]} \times (T[5:0] + 1)$$
 (ms)

where:

t_{WWDG}: WWDG timeout

t_{PCLK}: APB1 clock period measured in ms 4096: value corresponding to internal divider

As an example, lets assume APB1 frequency is equal to 48 MHz, WDGTB[1:0] is set to 3 and T[5:0] is set to 63:

$$t_{WWDG} = (1/48000) \times 4096 \times 2^{3} \times (63+1) = 43.69 \text{ms}$$

Refer to the datasheet for the minimum and maximum values of the t_{WWDG}.

577

25.3.5 Debug mode

When the device enters debug mode (processor halted), the WWDG counter either continues to work normally or stops, depending on the configuration bit in DBG module. For more details refer to .

25.4 WWDG interrupts

The early wakeup interrupt (EWI) can be used if specific safety operations or data logging must be performed before the actual reset is generated. The EWI interrupt is enabled by setting the EWI bit in the WWDG_CFR register. When the down-counter reaches the value 0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR) can be used to trigger specific actions (such as communications or data logging), before resetting the device.

In some applications, the EWI interrupt can be used to manage a software system check and/or system recovery/graceful degradation, without generating a WWDG reset. In this case, the corresponding interrupt service routine (ISR) has to reload the WWDG counter to avoid the WWDG reset, then trigger the required actions.

The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register.

Note:

When the EWI interrupt cannot be served, e.g. due to a system lock in a higher priority task, the WWDG reset is eventually generated.

25.5 WWDG registers

Refer to Section 1.2 on page 43 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by halfwords (16-bit) or words (32-bit).

25.5.1 WWDG control register (WWDG_CR)

Address offset: 0x000 Reset value: 0x0000 007F

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	WDGA				T[6:0]										
								rs	rw	rw	rw	rw	rw	rw	rw

RM0364 Rev 4 831/1124

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 WDGA: Activation bit

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset.

0: Watchdog disabled1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)

These bits contain the value of the watchdog counter, decremented every $(4096 \times 2^{WDGTB[1:0]})$ PCLK cycles. A reset is produced when it is decremented from 0x40 to 0x3F (T6 becomes cleared).

25.5.2 WWDG configuration register (WWDG_CFR)

Address offset: 0x004

Reset value: 0x0000 007F

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Res.	Res.	Res.	Res.	Res.	Res.	EWI	WDG	WDGTB[1:0]		W[6:0]							
						rs	rw	rw	rw	rw	rw	rw	rw	rw	rw		

Bits 31:10 Reserved, must be kept at reset value.

Bit 9 EWI: Early wakeup interrupt

When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is only cleared by hardware after a reset.

Bits 8:7 WDGTB[1:0]: Timer base

The time base of the prescaler can be modified as follows:

00: CK Counter Clock (PCLK div 4096) div 1

01: CK Counter Clock (PCLK div 4096) div 2

10: CK Counter Clock (PCLK div 4096) div 4

11: CK Counter Clock (PCLK div 4096) div 8

Bits 6:0 W[6:0]: 7-bit window value

These bits contain the window value to be compared with the down-counter.

25.5.3 WWDG status register (WWDG_SR)

Address offset: 0x008

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
	•	•						•			•				•
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 Res.	14 Res.	13 Res.	12 Res.	11 Res.	10 Res.	9 Res.	8 Res.	7 Res.	6 Res.	5 Res.	Res.	Res.	Res.	1 Res.	0 EWIF

832/1124 RM0364 Rev 4

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 EWIF: Early wakeup interrupt flag

This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by software by writing '0'. Writing '1' has no effect. This bit is also set if the interrupt is not enabled.

25.5.4 WWDG register map

The following table gives the WWDG register map and reset values.

Table 110. WWDG register map and reset values

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	11	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
0x000	WWDG_CR	Res.	WDGA			Т	[6:0	0]																									
	Reset value																									0	1	1	1	1	1	1	1
0x004	WWDG_CFR	Res.	EWI	WDGTB1	WDGTB0			٧	V[6:	0]																							
	Reset value																							0	0	0	1	1	1	1	1	1	1
0x008	WWDG_SR	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	EWIF																							
	Reset value																																0

Refer to Section 2.2 on page 47 for the register boundary addresses.

RM0364 Rev 4 833/1124