Casper Slashing Conditions

Christian Reitwießner chris@ethereum.org

0.1 Basic Definitions

Let \mathcal{V} be the (finite) set of *validators*. We assume it to be fixed for now. Let \mathcal{H} be the (finite) set of *hash values*, usually the set of bitstrings of 256 bits. Finally, $\mathbb{N} := \{0, 1, \dots\}$ is the set of natural numbers.

Since hashes in \mathcal{H} correspond to blocks in a blockchain, we assume every hash has a parent parent (H).

Valid Messages

Every validator can broadcast messages, which can be either prepare messages from the set

$$\mathcal{P} := \{ (v, H, n, n_0) \mid v \in \mathcal{V}, H \in \mathcal{H}, n, n_0 \in \mathbb{N}, n > n_0 \}$$

or *commit* messages

$$\mathcal{C} := \{ (v, H, n) \mid v \in \mathcal{V}, H \in \mathcal{H}, n \in \mathbb{N}, n > 0 \}.$$

Signatures ensure that only the validator v can send messages (v, H, n, n_0) and (v, H, n).

Slashing Conditions

Let $\mathcal{M} \subseteq \mathcal{P} \cup \mathcal{C}$ be the set of messages visible to the Casper contract at a certain point in time. Depending on this set, the contract will slash the deposit of validators. To ease notation, let us define some notions:

The prepare ratio of a hash $H \in \mathcal{H}$ at a view $n \in \mathbb{N}$ depending on the view $n_0 \in \mathbb{N}$ is

$$\operatorname{prepratio}_{\mathcal{M}}(H, n, n_0) = \frac{\#\{v \in \mathcal{V} \mid (v, H, n, n_0) \in \mathcal{M}\}}{\#\mathcal{V}}$$

and the prepare ration of H at the view n is

$$\operatorname{prepratio}_{\mathcal{M}}(H, n) = \max_{n_0 \in \mathbb{N}} \operatorname{prepratio}_{\mathcal{M}}(H, n, n_0)$$

Note: If the validator set can change, the above definitions will get more complicated.

The Casper contract slashes the deposit of a validator v_0 if any of the following conditions are met:

- 1. $(v_0, H, n) \in \mathcal{M}$ for some $H \in \mathcal{H}$, $n \in \mathbb{N}$, and prepratio_{\mathcal{M}} $(H, n) < \frac{2}{3}$.

 A hash was committed that was not properly prepared.
- 2. $(v_0, H, n, n_0) \in \mathcal{M}$ for some $H \in \mathcal{H}$, $n \in \mathbb{N}$, $n_0 > 0$ and prepratio_{\mathcal{M}}(parent^{$n-n_0$}(H), n_0) $< \frac{2}{3}$.

 A hash was prepared based on an ancestor that was not properly prepared.
- 3. $(v_0, H, n), (v_0, H', n', n'_0) \in \mathcal{M}$ for some $H, H' \in \mathcal{H}, n, n', n'_0 \in \mathbb{N}$ and $n'_0 < n < n'$.

 A hash was prepared ignoring an already committed hash.
- 4. $(v_0, H, n, n_0), (v_0, H', n, n'_0) \in \mathcal{M}$ for some $H, H' \in \mathcal{H}, n, n_0, n'_0 \in \mathbb{N}$ and $(H, n_0) \neq (H', n'_0)$.

 Two different prepare messages were sent for the same view.

Note that both prepratio_{\mathcal{M}} functions are monotonous in \mathcal{M} and thus also the conditions are monotonous in \mathcal{M} .