I Just Received My Microarray Data, Now What?

Danny Park MGH-PGA (ParaBioSys) Sat April 24, 2004

I Just Received My Microarray Data ...

- Where did this come from?
 - A description of the process from RNA to raw data
- What do I do now?
 - A description of how to analyze your data

Demystifying the Core Facility

Demystifying the Core Facility

RT & Labeling

Hybridization

Synthesized oligonucleotides in 384 well plates Test Reference labeled cDNA labeled cDNA Combine Robotic printing Microarray

Genomic Solutions Hybridization Station (PerkinElmer)

Hybridization

Scanning

Hybridized Microarray

Axon Instruments GenePix 4000B

ParaBioSys

Parallel Biological Systems
Mass. General Hospital • Harvard Medical School • Boston University

Scanning

20 µg total RNA macrophage RAW

Cy5: 100 ng/mL LPS 2 h

Cy3: no treatment

Mass. General Hospital • Harvard Medical School • Boston Universit

Scanned Image

Numerical Data

Core Facility – Demystified!

Core Facility – Demystified?

What Do I Do Now? (data analysis)

- What was I asking?
 - Remember your experimental design
- How do I analyze the data?
 - Learn some typical filters, transformations, and statistics
 - Learn the necessary software tools
 - Consult biostatistician

What Was I Asking?

- Typically: "which genes changed expression patterns when I did _____"
- Common _____'s:
 - Binary conditions: knock out, treatment, etc
 - Unordered discrete scales: multiple types of treatment or mutations
 - Continuous scales: time courses, levels of treatment, etc
- My focus: binary conditions (aka "diagnostic experiments")

Diagnostic Experiments

- Two-sample comparison w/N replicates
 - KO vs. WT
 - Treated vs. untreated
 - Diseased vs. normal
 - Etc
- Question of interest: which genes or groups are (most) differentially expressed?

Software Tools?

- BASE BioArray Software Environment
 - Data storage and distribution
 - Simple filtering, normalization, averaging, and statistics
 - Export/Download results to other tools
- R, Bioconductor (complex statistics)
- MS Excel (general)
- TIGR Multi Experiment Viewer (clustering)
- GenMAPP (ontologies)

Analyzing a Diagnostic Experiment

- Filter out bad spots
- Adjust low intensities
- Normalize correct for non-linearities and dye inconsistencies
- Calculate average ratios and significance values per gene
- Rank, sort, filter, squint, sift data
- Validate results

Filtering bad spots – Why?

Filtering bad spots

Filtering bad spots

Adjusting low intensities – Why?

Gene	Т	C	Ratio	log2	Sp	Reporter name
2210417C17Rik	-48	1942	NaN	NaN		homolog to OPIOID GROWTH FACTOR
B230114J08Rik	-91	1141	NaN	NaN	DAMES OF THE OWNER.	homolog to MEMBRANE PROTEIN C21ORF4
Tgtp	-4 9	3020	NaN	NaN	•	T-cell specific GTPase

Adjusting low intensities – Why?

Gene	Т	C	Ratio	log2	Sp	Reporter name
2210417C17Rik	-48	1942	NaN	NaN	1000	homolog to OPIOID GROWTH FACTOR
B230114J08Rik	-91	1141	NaN	NaN	ALCOHOL: UNKNOWN	homolog to MEMBRANE PROTEIN C21ORF4
Tgtp	-49	3020	NaN	NaN	•	T-cell specific GTPase

LOWESS Normalization

log(T), log(C)

Data is gone!

Adjusting low intensities

Gene	Т	C	Ratio	log2	Sp	Reporter name
2210417C17Rik	-48	1942	NaN	NaN		homolog to OPIOID GROWTH FACTOR
B230114J08Rik	-91	1141	NaN	NaN	CARRIED TO STATE OF	homolog to MEMBRANE PROTEIN C21ORF4
Tgtp	-4 9	3020	NaN	NaN	•	T-cell specific GTPase

Gene	Т	C	Ratio	log2	Sp	Reporter name
2210417C17Rik	50	1942	0.03	-5.28		homolog to OPIOID GROWTH FACTOR
B230114J08Rik	50	1141	0.04	-4.51	6	homolog to MEMBRANE PROTEIN C21ORF4
Tgtp	50	3020	0.02	-5.92	•	T-cell specific GTPase

Adjusting low intensities

Parallel Biological Systems
Mass. General Hospital • Harvard Medical School • Boston University

Normalization – Why?

- Not perfectly centered around zero
- Implies that nearly all genes down regulated?
- There are dye effects

Normalization – Why?

- Regional variations
- Up (red) and down (green) regulated genes should be randomly distributed across the slide (but they're not)

Normalization

Normalization – Thoughts

- There are many different ways to normalize data
 - Global median, LOWESS, LOESS, etc
 - By print tip, spatial, etc
- Choose one wisely
- BUT: don't expect it to fix bad data!
 - Won't make up for lack of replicates
 - Won't make up for horrible slides

Average Fold Ratios

Fibroblast growth factor 9 (20 repl)

You don't care about spots up or down regulated

- You care about genes up or down regulated
- Data is highly variable,
 so do a lot of replicates

	Т	С	Ratio ∀	log2
	2485.3	7729.6	0.32	-1.64
	1468.7	3989.8	0.37	-1.44
	1134.0	2986.4	0.38	-1.40
	335.38	837.71	0.40	-1.32
	3037.6	7517.7	0.40	-1.31
	762.22	1718.4	0.44	-1.17
	1322.1	2649.0	0.50	-1.00
	400.72	718.72	0.56	-0.84
	1637.1	2732.0	0.60	-0.74
	2689.5	4316.8	0.62	-0.68
	365.45	573.39	0.64	-0.65
	1536.3	2366.7	0.65	-0.62
	2520.0	3838.5	0.66	-0.61
	2749.4	3721.3	0.74	-0.44
	1047.7	1304.4	0.80	-0.32
	1524.7	1868.4	0.82	-0.29
	3207.2	3454.1	0.93	-0.11
, 1	5443.6	5753.6	0.95	-0.08
ill	1376.3	1321.3	1.04	0.06
			_	

Average Fold Ratios

Per-spot ratios

Ch1 int	Ch2 int	Ratio ▽	log2
2485.3	7729.6	0.32	-1.64
1468.7	3989.8	0.37	-1.44
1134.0	2986.4	0.38	-1.40
335.38	837.71	0.40	-1.32
3037.6	7517.7	0.40	-1.31
762.22	1718.4	0.44	-1.17
1322.1	2649.0	0.50	-1.00
400.72	718.72	0.56	-0.84
1637.1	2732.0	0.60	-0.74
2689.5	4316.8	0.62	-0.68
365.45	573.39	0.64	-0.65
1536.3	2366.7	0.65	-0.62
2520.0	3838.5	0.66	-0.61
2749.4	3721.3	0.74	-0.44
1047.7	1304.4	0.80	-0.32
1524.7	1868.4	0.82	-0.29
3207.2	3454.1	0.93	-0.11
5443.6	5753.6	0.95	-0.08
1376.3	1321.3	1.04	0.06
942.51	772.20	1.22	0.29

Per-gene ratios

myd88 fold ratio ∆	#	Reporter ID	Cluster	Gene	Reporter name
6.32166	1	M011911_01	Mm.157750	2400003M24Rik	pro-platelet basic protein
5.03461	2	M001974_01	Mm.5034	Pde7a	phosphodiesterase 7A
4.80875	3	M003900_01	Mm.25045	Vav2	Vav2 oncogene
4.70454	4	M009551_01	Mm.35830	Hbb-y	hemoglobin Y, beta-like embryonic chain
4.63545	5	M012310_01	Mm.159023	1700070G05Rik	RIKEN cDNA 1700070G05
4.43047	6	M013108_01	Mm.178707	1700011L22Rik	
4.28467	7	M009631_01	Mm.37922	4933405A16Rik	RIKEN cDNA 4933405A16
4.05637	8	M006174_01	Mm.116788	Gdf2	growth/differentiation factor-2
4.02236	9	M011938_01	Mm.158116	2310020N23Rik	RIKEN cDNA 2310020N23
3.8972	10	M011359_01	Mm.121197	5730402C15Rik	
3.88726	11	M003809_01	Mm.23895	Tekt2	tektin 2
3.86665	12	M005522_01	Mm.57212	Adra2a	adrenergic receptor, alpha 2a
3.4735	13	M012406_01	Mm.159221	5430405H02Rik	
3.47212	14	M001926_01	Mm.4956	Fgf4	fibroblast growth factor 4
3.36209	15	M000603_01	Mm.1641	Car4	carbonic anhydrase 4

Fold ratio average

ParaBioSys

- Which gene is more likely to be down regulated?
 - Fibroblast growth factor 9 ratio: 0.6
 - ETS-related transcription factor ratio: 0.6

Fibroblast growth factor 9 (20 repl)

Т	C	Ratio ⊽	log2
2485.3	7729.6	0.32	-1.64
1468.7	3989.8	0.37	-1.44
1134.0	2986.4	0.38	-1.40
335.38	837.71	0.40	-1.32
3037.6	7517.7	0.40	-1.31
762.22	1718.4	0.44	-1.17
1322.1	2649.0	0.50	-1.00
400.72	718.72	0.56	-0.84
1637.1	2732.0	0.60	-0.74
2689.5	4316.8	0.62	-0.68
365.45	573.39	0.64	-0.65
1536.3	2366.7	0.65	-0.62
2520.0	3838.5	0.66	-0.61
2749.4	3721.3	0.74	-0.44
1047.7	1304.4	0.80	-0.32
1524.7	1868.4	0.82	-0.29
3207.2	3454.1	0.93	-0.11
5443.6	5753.6	0.95	-0.08
1376.3	1321.3	1.04	0.06
942.51	772.20	1.22	0.29

ETS-related transcription factor

		C	Ratio ₹	log2
	414.09	2934.2	0.14	-2.82
	2062.2	10543	0.20	-2.35
	1504.6	3871	0.39	-1.36
	741.63	1831.2	0.40	-1.30
	5254.1	12294	0.43	-1.23
	4781.5	10782	0.44	-1.17
	3086.2	6862.7	0.45	-1.15
	3820.4	7397.7	0.52	-0.95
	3572.1	6085.5	0.59	-0.77
	2774.5	4388.4	0.63	-0.66
	3935.4	6027.9	0.65	-0.62
	1110.5	1177	0.94	-0.08
	1717.0	1177.6	1.46	0.54
	1475.6	1010.3	1.46	0.55
	1539.5	1020.3	1.51	0.59
	9997.8	6037.2	1.66	0.73
	4927.9	2942.6	1.67	0.74
0	1757.0	1007.7	1.74	0.80
u	3580.1	1827.4	1.96	0.97
M	12403	5152.8	2.41	1.27

ibroblas	t growth	factor 9	9 (20 rep	I)			ETS-rela	ted trans	criptio	n f	actor
T	C	Ratio	⊽ log2				Т	C	Ratio	\forall	log2
2485.3	7729.6	0.32	-1.64				414.09	2934.2	0.14		-2.82
1468.7	3989.8	0.37	-1.44				2062.2	10543	0.20		-2.35
1134.0	2986.4	0.38	-1.40				1504.6	3871	0.39		-1.36
335.38	837.71	0.40	-1.32				741.63	1831.2	0.40		-1.30
3037.6	7517.7	0.40						2294	0.43		-1.23
762.22	1718.4	0.44	Sam	e aver	rage fold	d ratio	o, but	0782	0.44		-1.17
1322.1	2649.0	0.50	the	tene o	n the rig	oht he	26	862.7	0.45		-1.15
400.72	718.72	0.56	`					397.7	0.52		-0.95
1637.1	2732.0	0.60	alm	ost as 1	many re	eplica	tes	085.5	0.59		-0.77
2689.5	4316.8	0.62	goir	g un a	s it doe	s dov	vn!	388.4	0.63		-0.66
365.45	573.39	0.64	0.03	_			T.CCCC	027.9	0.65		-0.62
1536.3	2366.7	0.65	-0.62				1110.5	1177	0.94		-0.08
2520.0	3838.5	0.66	-0.61				1717.0	1177.6	1.46		0.54
2749.4	3721.3	0.74	-0.44				1475.6	1010.3	1.46		0.55
1047.7	1304.4	0.80	-0.32				1539.5	1020.3	1.51		0.59
1524.7	1868.4	0.82	-0.29				9997.8	6037.2	1.66		0.73
3207.2	3454.1	0.93	-0.11				4927.9	2942.6	1.67		0.74
5443.6	5753.6	0.95	-0.08			Pa	1757.0	1007.7	1.74		0.80
1376.3	1321.3	1.04	0.06		MGH PGA	Pu	3580.1	1827.4	1.96		0.97
942.51	772.20	1.22	0.29			M	12403	5152.8	2.41		1.27

Statistical Significance

Variability data

Cha ins	cha int	D-4'-	- 12
Ch1 int	Ch2 int	Katio	⊽ log2
2485.3	7729.6	0.32	-1.64
1468.7	3989.8	0.37	-1.44
1134.0	2986.4	0.38	-1.40
335.38	837.71	0.40	-1.32
3037.6	7517.7	0.40	-1.31
762.22	1718.4	0.44	-1.17
1322.1	2649.0	0.50	-1.00
400.72	718.72	0.56	-0.84
1637.1	2732.0	0.60	-0.74
2689.5	4316.8	0.62	-0.68
365.45	573.39	0.64	-0.65
1536.3	2366.7	0.65	-0.62
2520.0	3838.5	0.66	-0.61
2749.4	3721.3	0.74	-0.44
1047.7	1304.4	0.80	-0.32
1524.7	1868.4	0.82	-0.29
3207.2	3454.1	0.93	-0.11
5443.6	5753.6	0.95	-0.08
1376.3	1321.3	1.04	0.06
942.51	772.20	1.22	0.29

P-values

myd88 fold ratio Δ	myd88 p-value	#	Reporter ID	Cluster	Gene	Reporter name
6.32166	0.0283105	1	M011911_01	Mm.157750	2400003M24Rik	pro-platelet basic protein
5.03461	0.0957318	2	M001974_01	Mm.5034	Pde7a	phosphodiesterase 7A
4.80875	0.0141359	3	M003900_01	Mm.25045	Vav2	Vav2 oncogene
4.70454	0.00544169	4	M009551_01	Mm.35830	Hbb-y	hemoglobin Y, beta-like embryonic chain
4.63545	0.0703521	5	M012310_01	Mm.159023	1700070G05Rik	RIKEN cDNA 1700070G05
4.43047	0.123722	6	M013108_01	Mm.178707	1700011L22Rik	
4.28467	0.00264129	7	M009631_01	Mm.37922	4933405A16Rik	RIKEN cDNA 4933405A16
4.05637	0.00189037	8	M006174_01	Mm.116788	Gdf2	growth/differentiation factor-2
4.02236	0.0778869	9	M011938_01	Mm.158116	2310020N23Rik	RIKEN cDNA 2310020N23
3.8972	0.00547626	10	M011359_01	Mm.121197	5730402C15Rik	
3.88726	0.275014	11	M003809_01	Mm.23895	Tekt2	tektin 2
3.86665	0.0200593	12	M005522_01	Mm.57212	Adra2a	adrenergic receptor, alpha 2a
3.4735	0.18172	13	M012406_01	Mm.159221	5430405H02Rik	
3.47212	0.0356278	14	M001926_01	Mm.4956	Fgf4	fibroblast growth factor 4
3.36209	0.0210486	15	M000603_01	Mm.1641	Car4	carbonic anhydrase 4

T-test

Statistical Significance – Thoughts

- There are many different statistical significance metrics
 - T-test (P values), SAM (T values), Wilcoxon RST,
 ANOVA (F-statistics), many more
- Choose one (or more!) wisely
- BUT: don't let it make decisions for you!
 - There will always be false pos/neg hits
 - Ultimately, biological significance matters

Statistical Significance #'s – How Should We Use Them?

- To sort and rank data
- To reduce data set of 1000s genes to 10s or 100s
- With annotations and biological insight
- As a guide in selecting which genes to validate more precisely (qPCR)

Analysis Pipeline: Summary

- Filter out bad spots
- Adjust low intensities
- Normalize correct for non-linearities and dye inconsistencies
- Calculate average ratios and significance values per gene
- Rank, sort, filter, squint, sift data
- Validate results

Analysis Pipeline: Summary

Filter out bad spots

Adjust low intensities

and dye inc

Normalize - There's no one way to do it—just many

Calculate a variations on a theme!

significance values per gene

- Rank, sort, filter, squint, sift data
- Validate results

The Biologist's Creed (adapted from the US Marine Corps)

- This is my microarray analysis pipeline. There are many like it, but this one is mine. It is my life. I must master it as I must master my life. Without me my pipeline is useless. Without my pipeline, I am useless.
- My pipeline and I know that what counts in research is not the P-values we choose, the normalization parameters we pick, or the pretty plots we generate. We know that it is the validations that count. We will validate.

The Biologist's Creed (adapted from the US Marine Corps)

- My pipeline is human, even as I am human, because it is my life. Thus, I will learn it as a brother. I will learn its weaknesses, its strengths, its parts, its statistical assumptions, its usage, its variations, and their effects on my conclusions.
- I will keep my pipeline clean and ready, even as I am clean and ready. We will become part of each other.

The End! – What Have We Covered?

- The path from RNA samples to numeric data
- Typical steps & concerns in "data scrubbing"
- Typical analysis of diagnostic experiments

The End! – What Have We *Not* Covered?

- Different flavors of filters, normalizations and stat. significance metrics (10:45a)
- Analysis of time course & multiple treatment experiments (1:00p)
- Clustering, visualization methods (1:00p)
- Step by step tutorial of software (1:45p)

Acknowledgements

MGH Lipid Metabolism Unit Mason Freeman Harry Björkbacka MGH Microarray Core
Glenn Short
Jocelyn Burke
Najib El Messadi
Jason Frietas
Zhiyong Ren

MGH Molecular Biology
Bioinformatics Group
Chuck Cooper
Xiaowei Wang

Harvard School of Public
Health Biostatistics
Xiaoman Li

BU BioMolecular Engineering
Research Center
Temple Smith
Gabriel Eichler
Sean Quinlan
Prashanth Vishwanath

