Программа курса

 λ -исчисление, 2024

- 1. Определение множества λ -выражений. Сокращённая нотация. Свободные и связанные переменные. Совместимость отношения с операциями. α -конгруэнтность.
- 2. Корректные λ -выражения. Если M корректно, то $\mathrm{BV}(M) \sqcup \mathrm{FV}(M) = \mathrm{TV}(M)$. Всякое λ выражение α -конгруэнтно корректному. Правило переменных.
- 3. Определение оператора подстановки. Оператор подстановки уважает α -конгруэнтность. Лемма о подстановке.
- 4. Определение $\beta\eta$ -конверсии. Теорема о неподвижной точке. Оператор подстановки уважает конверсию.
- 5. Определение комбинатора. Стандартные комбинаторы. Комбинатор фиксированной точки. Терминология λ -теории (равенства, замкнутость, согласованность, противоречивость, несовместимость). І несовместимо с **K**.
- 6. Определение редукции (отношения (\rightarrow) , (\rightarrow) , (=) с вариантами $(\beta$ -), $(\eta$ -), $(\beta\eta$ -)). Редексы. Нормальные формы. Редукционный путь. Нормальная форма ни к чему не редуцируется. Определение редукционного графа. Свойство Чёрча-Россера.
- 7. Теорема о минимальном элементе. $CR(\Box) \Rightarrow CR(Trans(\Box))$.
- 8. Оператор подстановки уважает «рефлексивную β -редукцию» \rightsquigarrow (лемма 1.6.2.).
- 9. → удовлетворяет свойству Чёрча-Россера.
- 10. $\underset{\beta}{\to}$ это транзитивное замыкание \rightsquigarrow . Теорема Чёрча-Россера для $\underset{\beta}{\twoheadrightarrow}$. Следствия.
- 11. Диаграммы бинарных отношений. Коммутирующие отношения. Лемма Хиндли-Росена.
- 12. Если для \beth_1 , \beth_2 выполняется определённая диаграмма, то $\operatorname{Preord}(\beth_1)$ и $\operatorname{Preord}(\beth_2)$ коммутируют.
- 13. удовлетворяет свойству Чёрча-Россера.
- 14. $\underset{\beta}{\twoheadrightarrow}$ и $\underset{n}{\twoheadrightarrow}$ коммутируют.
- 15. Оператор подстановки уважает отношение $\operatorname{Refl}(\underset{n}{\to})$. Теорема Чёрча-Россера для $\underset{\beta_n}{\twoheadrightarrow}$. Следствия.
- 16. Внешние/внутренние редексы/нормальные формы. Разбиение редукции на внешнюю и внутреннюю.
- 17. Стандартный редукци
онный путь. Для любой редукции $M \twoheadrightarrow N$ существует стандартная редукция
 $M \twoheadrightarrow N$.
- 18. Нормализующая редукционная стратегия. Определение крайней левой стратегии $F_l.\ F_l$ нормализующая.
- 19. Комбинаторы **T** и **F**. Упорядоченные пары. Конечные кортежи (+проекции). Обобщённая теорема о неподвижной точке.
- 20. Числа Барендрегта (λ -числа). Определение класса рекурсивных функций (суперпозиция, примитивная рекурсия, минимизация). λ -представимость.
- 21. Все рекурсивные функции λ -представимы.
- 22. Все λ -представимые функции рекурсивны (эскиз доказательства). Кодирование, функция комбинации, функция нумерации.
- 23. Числа Чёрча. Функции перехода от чисел Барендрегта к числам Чёрча и обратно. Функция $\varphi: \mathbb{N}_0^p \to \mathbb{N}_0$ рекурсивна $\Longleftrightarrow \varphi$ λ -представима с помощью чисел Чёрча.
- 24. λ -выражения ${\bf A}_+, {\bf A}_*$ и ${\bf A}_{\rm exp}$ λ -представляют сложение, умножение и возведение в степень на числах Чёрча.
- 25. Числовые системы. Критерий адекватности числовой системы.
- 26. Рекурсивно сепарабельные и рекурсивные множества. Множества, замкнутые относительно конверсии.
- 27. Теорема Скотта-Карри о неразрешимости. Следствия.