

Projekt do předmětu Robotika

ROS driver GPS připojené k Velodyne (převod UDP paketů na ROS zprávy)

22. Prosince 2013

Autor: Tomáš Goldmann

xgoldm03@stud.fit.vutbr.cz

Obsah

Úvod a cíle projektu	1
Rozbor problematiky	
Datový výstup Velodyne	
ROS zpráva s navigačními daty	
Popis implementace	
Uzel pro získávání RAW pozičních dat	
Uzel pro převod RAW pozičních dat do ROS zprávy s informacemi o poloze	
Parametry ovladače	
Testování	
Závěr	

Úvod a cíle projektu

Senzor Velodyne LiDAR 32E slouží pro 3D mapování prostoru pomocí rotačního laserového dálkoměru, kromě této hlavní funkce umožňuje i příjem GPS signálu, který následně zpracuje a získaná data odešle v TCP/IP paketu. Z Velodyne přicházejí prostřednictvím síťového rozhraní dva typy paketů, jeden obsahuje data o bodech popisující prostor a druhý poziční data. Cílem tohoto projektu je převést TCP/IP paket na takzvanou ROS zprávu (ROS message). Projekt byl implementován pro verzi ROS Groovy, měl by ovšem fungovat i s novější verzi Hydro.

Rozbor problematiky

Datový výstup Velodyne

Senzor Velodyne LiDAR 32E (dále Velodyne), jak již bylo v úvodu zmíněno, poskytuje dva typy paketů nad protokolem UDP z TCP/IP. Datové pakety posílá Velodyne na port 2368, zatímco pakety s pozičními daty na port 8308. Dle dokumentace¹ je odesláno 16-18 datových paketů mezi dvěma pozičními pakety, toto ovšem platí pro verze Velodyne do V1.8. Nad tuto verzi se počet odeslaných datových paketů mezi pozičními pakety může lišit.

Struktura datového paketu (port 2368):

- 1. Hlavička: 42B, začínající FF EE a končící 00 00, kontrolní součet obsahuje náhodnou hodnotu
- 2. Data: 12 bloků dat strukturovaných následovně:
 - 1. Start: 2B, FF EE
 - 2. Úhel: 2B, AB CD => CD AB => HEX=> úhel (0-35999) v 1/100 stupně
 - 3. Vzdálenost a intenzita: 32 bloků po 3B, (pro každý laserový kanál) strukturovaných následovně:
 - 1. Laser kanál č. 1:
 - Vzdálenost: 2B
 - Intenzita: 1B

....

32. Laser kanál č. 32:

¹ http://velodyne.com/lidar/doc/CD%20HDL%20Product%20Information/Velodyne%20HDL-INFO %20CD%20v%203.0/HDL-32%20Documents/___Presentation%20Velodyne%20Overview.pdf

- Vzdálenost: 2B- Intenzita: 1B

3. Časová značka: 4B, AB CD EF GH => GH EF CD AB => HEX => mikrosekundy

4. Faktor použití: 2B

Struktura pozičního paketu (port 8308):

- 1. Hlavička: 42B, začínající s FF FF, hodnota kontrolního součtu je náhodná
- 2. Nulový oddělovač: 14B
- 3. Gyro-board 1: 8B, AB CD => CD AB => C (0=Úhlová rychlost, 1=Teplota, 2=Akcelerace ve směru X, 3=Akcelerace ve směru Y), DAB=naměřená hodnota
- 4. Gyro-board 2: 8B, AB CD => CD AB => C (0='Uhlov'a rychlost, 1=Teplota, 2=Akcelerace ve sm'eru X, 3=Akcelerace ve sm'eru Y), DAB=naměřená hodnota
- 5. Gyro-board 3: 8B, AB CD => CD AB => C (0=Úhlová rychlost, 1=Teplota, 2=Akcelerace ve směru X, 3=Akcelerace ve směru Y), DAB=naměřená hodnota
- 6. Nulový oddělovač: 160B
- 7. Časová značka: 4B, AB CD EF GH => GH EF CD AB => HEX=> mikrosekundy
- 8. NMEA věta: 72B, HEX => ASCII=> \$ GPRMC,03020,A,3709.3015,N,121009.5432,W,000.0,211.8,140812,013.8,E,D*03
- 9. Nulový oddělovač: 234B

V ovladači budeme využívat data z pozičního paketu, konkrétně z NMEA věty. Tato věta je typu RMC (*Recommended minimum specific GPS/Transit data*), jedná se o minimum informací, které je poskytované GPS senzorem. Struktura RMC je následující:

<1>- určuje čas

<2>- status (A=active, V=void) platná či neplatná pozice

<3>,<4> - zeměpisná šířka (latitude)

<5>,<6> - zeměpisná délka (longitude)

<7> - rychlost v námořních uzlech

<8> - azimut ve stupních

<9> - datum

<10> - chybí záznam o magnetickém rozptylu

<11> - chybí záznam o orientaci magnetického rozptylu

<12> - indikátor módu

ROS zpráva s navigačními daty

Pro výstup z ovládače je v projektu použitá ROS zpráva typu sensor msgs/NavSatFix, která obsahuje informaci latitude a longitude.

Struktura této zprávy je následující:

```
Header header

NavSatStatus status

float64 latitude

float64 longitude

float64 altitude

float64[9] position_covariance

uint8 COVARIANCE_TYPE_UNKNOWN = 0

uint8 COVARIANCE_TYPE_APPROXIMATED = 1

uint8 COVARIANCE_TYPE_DIAGONAL_KNOWN = 2

uint8 COVARIANCE_TYPE_KNOWN = 3

uint8 position_covariance_type
```

Zpráva obsažena v sensor_msgs/NavSatFix sensor_msgs/NavSatSatuts má strukturu:

```
int8 STATUS_NO_FIX = -1
int8 STATUS_FIX = 0
int8 STATUS_SBAS_FIX = 1
int8 STATUS_GBAS_FIX = 2

int8 status

uint16 SERVICE_GPS = 1
uint16 SERVICE_GLONASS = 2
uint16 SERVICE_COMPASS = 4
uint16 SERVICE_GALILEO = 8
```

Popis implementace

Implementace je rozdělená do dvou části, v první části jsou poziční data získaná ze síťového rozhraní a ve druhé části jsou tyto data převedená do sensor_msgs/NavSatFix zprávy. Protože je ovládač implementován v systému ROS jsou jednotlivé části tvořeny ROS uzly (ROS nodes).

Uzel pro získávání RAW pozičních dat

Tento uzel vychází ve svém základu z ROS ovladače pro získávání LIDAR paketů z Velodyne (velodyne_driver). Ovládač má podporu dvou vstupu, první z nich je určen pro příjem paketů ze sítového rozhraní a druhý pro příjem paketů z PCAP souboru. Tento vstup se využívá v případě provádění simulací, ale uplatnění nalezne i v případě testování tohoto projektu, kdy není Velodyne fyzicky k dispozici.

Uzel pro převod RAW pozičních dat do ROS zprávy s informacemi o poloze

Cílem tohoto uzlu je extrakce dat pro určení polohy a následný převod do výstupní ROS zprávy typu sensor_msgs/NavSatFix. V samotné implementaci se odehrávají tři hlavní činnosti. Při první jsou RAW data nahrána do struktury reprezentující poziční paket, ve druhém kroku dochází k extrakci NMEA zprávy a v posledním kroku se provádí zpracování. Pokud je chyba ve formátu RAW pozičních dat (nelze získat NMEA RMC) je paket zahozen.

Při zpracování je zapotřebí provést správný převod času, zeměpisné délky a zeměpisné šířky. Orientace světových stran se neurčuje u zeměpisné šířky písmeny reprezentující světové strany, ale jednoduše kladnou nebo zápornou hodnotou (jih a západ jsou v záporné hodnotě). Hodnota nadmořské výšky v RMC větě není uvedená, proto se tato hodnota ve výstupní zprávě nastaví na NaN. Jestliže jsou data validní, nastaví se status v ROS zprávě na STATUS_FIX jinak na STATUS_NO_FIX. Hodnota časového razítka pro výstupní zprávu je stejná s hodnotou vstupní RAW zprávy.

Ověřování kontrolního součtu z NMEA věty se nevyužívá. Patřičné funkce byly implementovány a otestovány, ale kontrolní součet NMEA věty z Velodyne poskytoval chybné hodnoty, popř. se výpočet musí provést způsobem, který není shodný se standardem výpočtu pro NMEA.

Obrázek 1: Graf zachycující ROS topics a ROS nodes ovladače

Parametry ovladače

```
Pro velodyne_gps_driver velodyne_gps_driver_node:

pcap - cesta k PCAP souboru

packet_rate- rychlost přenosů paketů v případě použití PCAP

frame id - id zařízení
```

Pro velodyne_gps velodyne_gps_node žádné další parametr nejsou, jako vstup se berou zprávy z topic /velodyne_gps_packet_raw a publikují se na /velodyne gps nav msg.

Testování

Pro otestování je zapotřebí spustit oba ROS uzly. V případě, že chceme využít PCAP vstup je nutné nastavit při spuštění parametr *pcap* s cestou k PCAP souboru. Soubory se streamy paketů pro otestování ovládače byly získány z http://velodyne.com/lidar/doc/CD%20V%20Information/Velodyne%20HDL-INFO%20CD%20v%201.0/Sample%20Captures/.

rosrun velodyne_gps_driver velodyne_gps_driver_node _pcap:=/home/viki/data.pcap rosrun velodyne gps velodyne gps node

Obrázek 2: Ukázka výpisu zprávy (sensor_msgs/NavSatFix) z topic /velodyne_gps_nav_msg

Závěr

Implementovaný ovládač umožňuje příjem Velodyne pozičních dat. Ovládač je rozdělený do dvou části, aby bylo možné případě vytvořit k prvním uzlu uzel pro extrakci dat z akcelerometru, které rovněž obsahuje poziční paket ze senzoru.