ML project ridge regression

March 3, 2024

Ridge regression

This Ridge Regression project is based on the previous simple model of logistic regression.

necessary imports

```
[]: #!pip install pandas
```

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge, LogisticRegression
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score,
precision_score, recall_score, f1_score, roc_auc_score
import numpy as np
```

Import and display df

```
[]: import tkinter as tk
from tkinter import filedialog

# No full GUI, keep the root window from appearing
root = tk.Tk()
root.withdraw()

# Open file dialog to choose the dataset file
file_path = filedialog.askopenfilename()
if not file_path:
    print("No file selected. Exiting...")
    exit()

# Data Loading
print("Loading data from file...")
df = pd.read_csv(file_path)

# Check if a file was selected
if file_path: # If a file was selected
```

```
print(f"Loading data from {file_path}")
  df = pd.read_csv(file_path) # Load the selected CSV into a pandas DataFrame
  print(df.head()) # Display the first few rows of the DataFrame
else:
    print("No file selected.")
```

Loading data from file...

Loading data from C:/Users/wjbea/Downloads/20240213 ML project credit card defaults/archive/UCI_Credit_Card.csv

	ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	\
0	1	20000.0	2	2	1	24	2	2	-1	-1	
1	2	120000.0	2	2	2	26	-1	2	0	0	
2	3	90000.0	2	2	2	34	0	0	0	0	
3	4	50000.0	2	2	1	37	0	0	0	0	
4	5	50000.0	1	2	1	57	-1	0	-1	0	

```
BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_AMT3
                                            0.0
                                                    689.0
0
           0.0
                       0.0
                                  0.0
                                                                0.0
1
        3272.0
                    3455.0
                               3261.0
                                            0.0
                                                   1000.0
                                                             1000.0
2 ...
       14331.0
                   14948.0
                              15549.0
                                         1518.0
                                                   1500.0
                                                             1000.0
3 ...
                   28959.0
                              29547.0
                                         2000.0
                                                   2019.0
                                                             1200.0
       28314.0
4
        20940.0
                   19146.0
                              19131.0
                                         2000.0
                                                  36681.0
                                                            10000.0
```

	PAY_AMT4	PAY_AMT5	PAY_AMT6	default.payment.next.month
0	0.0	0.0	0.0	1
1	1000.0	0.0	2000.0	1
2	1000.0	1000.0	5000.0	0
3	1100.0	1069.0	1000.0	0
4	9000.0	689.0	679.0	0

[5 rows x 25 columns]

data preparation and partitioning

Training on simple ridge model

```
[]: # Initialize the Ridge Regression model
     ridge_model = Ridge(alpha=1.0)
     # Fit the Ridge model on the training data
     ridge_model.fit(X_train, y_train)
     # Predict on the test data using Ridge Regression
     y_pred_ridge = ridge_model.predict(X_test)
     # Convert predicted values to binary predictions for Ridge Regression
     y_pred_ridge_binary = np.where(y_pred_ridge >= 0.5, 1, 0)
     # Calculate classification metrics for Ridge Regression
     mse_ridge = mean_squared_error(y_test, y_pred_ridge_binary)
     r2_ridge = r2_score(y_test, y_pred_ridge_binary)
     accuracy_ridge = accuracy_score(y_test, y_pred_ridge_binary)
     precision_ridge = precision_score(y_test, y_pred_ridge_binary)
     recall_ridge = recall_score(y_test, y_pred_ridge_binary)
     f1_ridge = f1_score(y_test, y_pred_ridge_binary)
     roc_auc_ridge = roc_auc_score(y_test, y_pred_ridge)
```

Training on logistic ridge model

comparison of the two models

```
[]: # Print metrics for both models
print("Ridge Regression Metrics:")
print(f'Mean Squared Error: {mse_ridge}')
print(f'R^2 Score: {r2_ridge}')
```

```
print(f'Accuracy: {accuracy_ridge}')
print(f'Precision: {precision_ridge}')
print(f'Recall: {recall_ridge}')
print(f'F1 Score: {f1_ridge}')
print(f'ROC AUC: {roc_auc_ridge}')
print("\n")

print("Logistic Ridge Regression Metrics:")
print(f'Mean Squared Error: {mse_logistic_ridge}')
print(f'R^2 Score: {r2_logistic_ridge}')
print(f'Accuracy: {accuracy_logistic_ridge}')
print(f'Precision: {precision_logistic_ridge}')
print(f'Recall: {recall_logistic_ridge}')
print(f'Roc AUC: {roc_auc_logistic_ridge}')
print(f'F1 Score: {f1_logistic_ridge}')
print(f'ROC AUC: {roc_auc_logistic_ridge}')
```

Ridge Regression Metrics:

Mean Squared Error: 0.2004444444444445

R^2 Score: -0.17665816326530615 Accuracy: 0.79955555555556 Precision: 0.6893203883495146 Recall: 0.14489795918367346 F1 Score: 0.23946037099494097 ROC AUC: 0.7170384247448979

Logistic Ridge Regression Metrics:

Mean Squared Error: 0.191

R^2 Score: -0.12121695269016697

Accuracy: 0.809

Precision: 0.680119581464873 Recall: 0.23214285714285715 F1 Score: 0.3461392164321035 ROC AUC: 0.7230513682745825

Visual comaprison

Receiver Operating Characteristic (ROC) Curve

for each model, sample train and test data each 5 times, 50 cases, calculate and compare accuracy results.

```
[]: from sklearn.model_selection import StratifiedKFold

# Initialize lists to store accuracy results

ridge_accuracies = []

logistic_ridge_accuracies = []
```

```
# Repeatedly sample train and test data and calculate accuracy for RidgeL
 \hookrightarrowRegression
for _ in range(5): # Repeat 5 times
    # Split the data into train and test sets using stratified k-fold
    skf = StratifiedKFold(n splits=5, shuffle=True, random state=None)
    for train_index, test_index in skf.split(X, y):
        X_train, X_test = X.iloc[train_index], X.iloc[test_index]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
        # Standardize the features
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
        # Initialize the Ridge Regression model
        ridge_model = Ridge(alpha=1.0)
        # Fit the Ridge model on the training data
        ridge_model.fit(X_train_scaled, y_train)
        # Predict on the test data using Ridge Regression
        y_pred_ridge = ridge_model.predict(X_test_scaled)
        # Calculate accuracy for Ridge Regression
        accuracy_ridge = accuracy_score(y_test, np.round(y_pred_ridge))
        ridge_accuracies.append(accuracy_ridge)
# Repeatedly sample train and test data and calculate accuracy for Logistic
 \hookrightarrowRidge Regression
for _ in range(5): # Repeat 5 times
    # Split the data into train and test sets using stratified k-fold
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=None)
    for train_index, test_index in skf.split(X, y):
        X_train, X_test = X.iloc[train_index], X.iloc[test_index]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
        # Standardize the features
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
        # Initialize the Logistic Ridge Regression model
        logistic_ridge_model = LogisticRegression(penalty='12', C=1.0)
        # Fit the Logistic Ridge model on the training data
        logistic_ridge_model.fit(X_train_scaled, y_train)
```

```
# Predict on the test data using Logistic Ridge Regression
y_pred_logistic_ridge = logistic_ridge_model.predict(X_test_scaled)

# Calculate accuracy for Logistic Ridge Regression
accuracy_logistic_ridge = accuracy_score(y_test, y_pred_logistic_ridge)
logistic_ridge_accuracies.append(accuracy_logistic_ridge)

# Print average accuracy results
print("Ridge Regression Average Accuracy:", sum(ridge_accuracies) /__
$\therefore\text{len(ridge_accuracies))}
print("Logistic Ridge Regression Average Accuracy:",__
$\therefore\text{sum(logistic_ridge_accuracies)} / len(logistic_ridge_accuracies))
```

Ridge Regression Average Accuracy: 0.799046666666667 Logistic Ridge Regression Average Accuracy: 0.810380000000001

Plot accuracy comparison for each sample

Model Summaries

```
[]: import statsmodels.api as sm

# Fit Ridge Regression model
ridge_model = sm.OLS(y_train, X_train).fit()

# Print summary
print("Ridge Regression Model Summary:")
print(ridge_model.summary())

# Fit Logistic Ridge Regression model
logistic_ridge_model = sm.Logit(y_train, X_train).fit()

# Print summary
print("\nLogistic Ridge Regression Model Summary:")
print(logistic_ridge_model.summary())
```

Ridge Regression Model Summary:

```
OLS Regression Results
```

==========

```
Dep. Variable: default.payment.next.month R-squared (uncentered):
```

0.316

Model: OLS Adj. R-squared (uncentered):

0.315

Method: Least Squares F-statistic:

460.5

Date: Sun, 03 Mar 2024 Prob (F-statistic):

0.00

Time: 23:35:14 Log-Likelihood:

-11402.

No. Observations: 24000 AIC:

2.285e+04

Df Residuals: 23976 BIC:

2.305e+04

Df Model: 24
Covariance Type: nonrobust

	========					
	coef	std err	t	P> t	[0.025	0.975]
ID	8.988e-07	2.87e-07	3.134	0.002	3.37e-07	1.46e-06
LIMIT_BAL	-1.901e-08	2.39e-08	-0.796	0.426	-6.58e-08	2.78e-08
SEX	0.0208	0.005	4.563	0.000	0.012	0.030
EDUCATION	-0.0015	0.003	-0.475	0.634	-0.008	0.005
MARRIAGE	0.0319	0.004	8.211	0.000	0.024	0.040
AGE	0.0048	0.000	20.909	0.000	0.004	0.005
PAY_0	0.0949	0.003	30.728	0.000	0.089	0.101
PAY_2	0.0242	0.004	6.490	0.000	0.017	0.031
PAY_3	0.0129	0.004	3.239	0.001	0.005	0.021
PAY_4	0.0006	0.004	0.132	0.895	-0.008	0.009
PAY_5	0.0088	0.005	1.830	0.067	-0.001	0.018
PAY_6	0.0001	0.004	0.036	0.971	-0.008	0.008
BILL_AMT1	-6.467e-07	1.26e-07	-5.115	0.000	-8.95e-07	-3.99e-07
BILL_AMT2	5.492e-08	1.79e-07	0.307	0.759	-2.96e-07	4.06e-07
BILL_AMT3	1.194e-07	1.72e-07	0.693	0.488	-2.18e-07	4.57e-07
BILL_AMT4	-1.197e-07	1.75e-07	-0.683	0.495	-4.63e-07	2.24e-07
BILL_AMT5	6.354e-08	2.07e-07	0.307	0.758	-3.42e-07	4.69e-07
BILL_AMT6	1.086e-07	1.65e-07	0.660	0.510	-2.14e-07	4.31e-07
PAY_AMT1	-7.898e-07	2.01e-07	-3.929	0.000	-1.18e-06	-3.96e-07
PAY_AMT2	-3.2e-07	1.68e-07	-1.903	0.057	-6.5e-07	9.54e-09
PAY_AMT3	-1.77e-07	1.85e-07	-0.959	0.337	-5.39e-07	1.85e-07
PAY_AMT4	-4.86e-07	2.08e-07	-2.340	0.019	-8.93e-07	-7.89e-08
PAY_AMT5	-2.654e-07	2.15e-07	-1.235	0.217	-6.86e-07	1.56e-07
PAY_AMT6	-1.47e-07	1.52e-07	-0.969	0.333	-4.44e-07	1.5e-07
Omnibus:		3680	OEO D	======= bin-Watson:		2.007
					١.	
Prob(Omnib	ous):			que-Bera (JB);	5678.303
Skew:				b(JB):		0.00 6.12e+05
Kurtosis:	.========	ح==========	.194 Con	d. No. ======		0.12e+U5

Notes:

- [1] R^{2} is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 6.12e+05. This might indicate that there are strong multicollinearity or other numerical problems. Optimization terminated successfully.

Current function value: 0.462521 Iterations 7

Logistic Ridge Regression Model Summary:

Logit Regression Results

=====

Dep. Variable: default.payment.next.month No. Observations:

24000

Model: Logit Df Residuals:

23976

Method: MLE Df Model:

23

Date: Sun, 03 Mar 2024 Pseudo R-squ.:

0.1247

Time: 23:35:14 Log-Likelihood:

-11101.

converged: True LL-Null:

-12682.

Covariance Type: nonrobust LLR p-value:

0.000

========								
	coef	std err	z	P> z	[0.025	0.975]		
ID	-2.789e-06	1.92e-06	 -1.453	0.146	-6.55e-06	9.73e-07		
LIMIT_BAL	-8.233e-07	1.74e-07	-4.742	0.000	-1.16e-06	-4.83e-07		
SEX	-0.2088	0.030	-6.954	0.000	-0.268	-0.150		
EDUCATION	-0.1399	0.023	-6.164	0.000	-0.184	-0.095		
MARRIAGE	-0.2766	0.026	-10.711	0.000	-0.327	-0.226		
AGE	0.0024	0.002	1.592	0.111	-0.001	0.005		
PAY_0	0.5611	0.020	28.426	0.000	0.522	0.600		
PAY_2	0.1021	0.022	4.545	0.000	0.058	0.146		
PAY_3	0.0746	0.025	2.973	0.003	0.025	0.124		
PAY_4	0.0123	0.028	0.439	0.661	-0.043	0.067		
PAY_5	0.0470	0.030	1.574	0.115	-0.012	0.106		
PAY_6	0.0106	0.025	0.429	0.668	-0.038	0.059		
BILL_AMT1	-5.511e-06	1.28e-06	-4.296	0.000	-8.03e-06	-3e-06		
BILL_AMT2	1.203e-06	1.75e-06	0.688	0.491	-2.22e-06	4.63e-06		
BILL_AMT3	1.862e-06	1.58e-06	1.181	0.238	-1.23e-06	4.95e-06		
BILL_AMT4	1.363e-07	1.56e-06	0.087	0.931	-2.93e-06	3.2e-06		
BILL_AMT5	7.997e-07	1.73e-06	0.461	0.645	-2.6e-06	4.2e-06		

```
BILL_AMT6
           5.29e-07
                     1.38e-06
                                 0.384
                                            0.701
                                                  -2.17e-06
                                                               3.23e-06
PAY_AMT1
        -1.442e-05
                      2.7e-06
                                 -5.346
                                            0.000 -1.97e-05 -9.14e-06
PAY_AMT2
         -1.016e-05
                     2.35e-06
                                 -4.319
                                            0.000 -1.48e-05 -5.55e-06
PAY_AMT3
         -4.604e-06
                                 -2.211
                                            0.027 -8.69e-06
                                                              -5.23e-07
                     2.08e-06
PAY AMT4
                                            0.003 -1.1e-05 -2.23e-06
         -6.596e-06
                     2.23e-06
                                 -2.962
PAY_AMT5
         -3.086e-06
                     1.99e-06
                                 -1.554
                                            0.120
                                                  -6.98e-06
                                                              8.06e-07
PAY AMT6
         -2.713e-06
                     1.47e-06
                                 -1.842
                                            0.065
                                                    -5.6e-06
                                                               1.74e-07
```

Improve on finding best model

```
[]: from sklearn.model_selection import GridSearchCV
     # Define a range of penalty values
     penalty_values = [0.001, 0.01, 0.1, 1, 10] # Trial values
     # Define parameter grid
     param_grid = {'C': penalty_values} # C is the inverse of regularization_
      \hookrightarrowstrength
     # Initialize Logistic Regression model
     logistic_regression = LogisticRegression(penalty='12', solver='liblinear')
     # Initialize GridSearchCV
     grid_search = GridSearchCV(logistic_regression, param_grid, cv=5,_
      ⇔scoring='accuracy')
     # Perform grid search
     grid_search.fit(X_train, y_train)
     # Get best parameter
     best_penalty = grid_search.best_params_['C']
     # Get best model
     best_model = grid_search.best_estimator_
     # Print best penalty value
     print("Best Penalty Value:", best_penalty)
     # Print best model
     print("\nBest Model:")
     print(best_model)
    Best Penalty Value: 0.001
```

Best Model:
LogisticRegression(C=0.001, solver='liblinear')
cross-validated accuracy plot

```
[]: import numpy as np
     import matplotlib.pyplot as plt
     # Get mean cross-validated accuracy for each penalty value
     mean_scores = grid_search.cv_results_['mean_test_score']
     # Plot mean cross-validated accuracy for each penalty value
     plt.figure(figsize=(10, 6))
     plt.plot(penalty values, mean scores, marker='o')
     plt.xlabel('Penalty Value (C)')
     plt.ylabel('Mean Cross-Validated Accuracy')
     plt.title('Mean Cross-Validated Accuracy vs. Penalty Value')
     plt.xscale('log') # Use logarithmic scale for penalty values
     plt.grid(True)
     plt.show()
     # Compare the performance of the best model with other models
     model_comparison = {'Penalty Value': penalty_values, 'Mean Accuracy': __
      →mean_scores}
     model_comparison_df = pd.DataFrame(model_comparison)
     plt.figure(figsize=(10, 6))
    plt.bar(model_comparison_df['Penalty Value'], model_comparison_df['Mean_
      →Accuracy'], color='skyblue')
     plt.axhline(y=model_comparison_df['Mean Accuracy'].max(), color='red',__
      ⇔linestyle='--', label='Best Model')
     plt.xlabel('Penalty Value (C)')
     plt.ylabel('Mean Cross-Validated Accuracy')
     plt.title('Comparison of Mean Cross-Validated Accuracy for Different Penalty⊔

√Values')
     plt.xscale('log') # Use logarithmic scale for penalty values
     plt.legend()
     plt.grid(True)
     plt.show()
```


Model metrics

```
[]: from sklearn.metrics import accuracy_score, precision_score, recall_score,

¬f1_score, roc_auc_score
     # Initialize lists to store metric values for each model
     accuracy_values = []
     precision_values = []
     recall values = []
     f1_values = []
     roc_auc_values = []
     # Calculate metrics for each model
     for penalty in penalty_values:
         # Initialize Logistic Regression model with current penalty value
         logistic_regression = LogisticRegression(penalty='12', C=penalty,_
      ⇔solver='liblinear')
         # Fit the model on the training data
         logistic_regression.fit(X_train, y_train)
         # Predict on the test data
         y_pred = logistic_regression.predict(X_test)
         # Calculate metrics
         accuracy = accuracy_score(y_test, y_pred)
         precision = precision_score(y_test, y_pred)
         recall = recall_score(y_test, y_pred)
         f1 = f1_score(y_test, y_pred)
         roc_auc = roc_auc_score(y_test, y_pred)
         # Append metric values to lists
         accuracy_values.append(accuracy)
         precision_values.append(precision)
         recall_values.append(recall)
         f1 values.append(f1)
         roc_auc_values.append(roc_auc)
     # Print metric values for each model
     print("Penalty Value\tAccuracy\tPrecision\tRecall\t\tF1 Score\tROC AUC")
     for i, penalty in enumerate(penalty_values):
         print(f"{penalty}\t\t{accuracy_values[i]:.4f}\t\t{precision_values[i]:.
      4f\t\t{recall_values[i]:.4f}\t\t{f1_values[i]:.4f}\t\t{roc_auc_values[i]:.

4f}")
    c:\ProgramData\anaconda3\Lib\site-
    packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
    Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
    `zero_division` parameter to control this behavior.
```

_warn_prf(average, modifier, msg_start, len(result))

```
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\ classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
'zero division' parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\ classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
```

Penalty Value	Accuracy	Precision	Recall	F1 Score
ROC AUC 0.001	0.7788	0.0000	0.0000	0.0000
0.5000	0.1700	0.0000	0.0000	0.0000
0.01	0.7788	0.0000	0.0000	0.0000
0.5000	0.7700	0.0000	0.0000	0.0000
0.1 0.5000	0.7788	0.0000	0.0000	0.0000
1	0.7788	0.0000	0.0000	0.0000
0.5000				
10 0.5000	0.7788	0.0000	0.0000	0.0000
0.5000				

Resampling to check if there is error

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score,

of1_score, roc_auc_score

# Function to perform penalty test and calculate metric values
def perform_penalty_test(X_train, y_train, X_test, y_test, penalty_values):
    # Initialize lists to store metric values for each model
    accuracy_values = []
    precision_values = []
```

```
recall_values = []
   f1_values = []
   roc_auc_values = []
   # Calculate metrics for each model
   for penalty in penalty_values:
        # Initialize Logistic Regression model with current penalty value
       logistic_regression = LogisticRegression(penalty='12', C=penalty,__
 ⇔solver='liblinear')
        # Fit the model on the training data
        logistic_regression.fit(X_train, y_train)
        # Predict on the test data
       y_pred = logistic_regression.predict(X_test)
        # Calculate metrics
       accuracy = accuracy_score(y_test, y_pred)
       precision = precision_score(y_test, y_pred)
       recall = recall_score(y_test, y_pred)
       f1 = f1 score(y test, y pred)
       roc_auc = roc_auc_score(y_test, y_pred)
        # Append metric values to lists
        accuracy_values.append(accuracy)
       precision_values.append(precision)
       recall_values.append(recall)
       f1_values.append(f1)
        roc_auc_values.append(roc_auc)
   return accuracy_values, precision_values, recall_values, f1_values, __
 →roc_auc_values
# Function to visualize the performance of different models
def visualize_performance(penalty_values, metric_values, metric_name):
   plt.figure(figsize=(10, 6))
   for i, penalty in enumerate(penalty_values):
        plt.plot(penalty_values, metric_values[i], label=f'Penalty {penalty}')
   plt.xlabel('Penalty Value (C)')
   plt.ylabel(metric_name)
   plt.title(f'{metric_name} vs. Penalty Value')
   plt.xscale('log')
   plt.legend()
   plt.show()
# Resample the original dataset into five samples
num samples = 5
```

```
sample_size = int(0.2 * len(X)) # 20% of original size
samples = [X.sample(sample_size, replace=False) for _ in range(num_samples)]
# Initialize lists to store metric values for each sample
accuracy_values_samples = []
precision_values_samples = []
recall values samples = []
f1_values_samples = []
roc_auc_values_samples = []
# Define penalty values
penalty_values = [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000]
# Perform penalty test for each sample
for sample in samples:
   X_train, X_test, y_train, y_test = train_test_split(sample, y[sample.
 →index], test_size=0.2, random_state=42)
    accuracy_values, precision_values, recall_values, f1_values, roc_auc_values_
 →= perform_penalty_test(X_train, y_train, X_test, y_test, penalty_values)
   accuracy_values_samples.append(accuracy_values)
   precision_values_samples.append(precision_values)
   recall_values_samples.append(recall_values)
   f1_values_samples.append(f1_values)
   roc_auc_values_samples.append(roc_auc_values)
# Print metric values for each sample
for i, (accuracy values, precision values, recall values, f1 values,
 oroc_auc_values) in enumerate(zip(accuracy_values_samples, ⊔
 ⇔precision_values_samples, recall_values_samples, f1_values_samples, ⊔
 →roc_auc_values_samples)):
   print(f"\nSample {i+1} Metrics:")
   print("Penalty Value\tAccuracy\tPrecision\tRecall\t\tF1 Score\tROC AUC")
   for j, penalty in enumerate(penalty_values):
       print(f"{penalty}\t\t{accuracy_values[j]:.4f}\t\t{precision_values[j]:.
 4f\t\t{recall_values[j]:.4f}\t\t{f1_values[j]:.4f}\t\t{roc_auc_values[j]:.

4f}")
# Visualize the performance of different models
visualize_performance(penalty_values, accuracy_values_samples, 'Accuracy')
visualize performance(penalty_values, precision_values_samples, 'Precision')
visualize_performance(penalty_values, recall_values_samples, 'Recall')
visualize performance(penalty values, f1 values samples, 'F1 Score')
visualize_performance(penalty_values, roc_auc_values_samples, 'ROC AUC')
```

c:\ProgramData\anaconda3\Lib\sitepackages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use

```
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
'zero division' parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
packages\sklearn\metrics\ classification.py:1344: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
c:\ProgramData\anaconda3\Lib\site-
```

packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

c:\ProgramData\anaconda3\Lib\site-

packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

c:\ProgramData\anaconda3\Lib\site-

packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

c:\ProgramData\anaconda3\Lib\site-

packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

c:\ProgramData\anaconda3\Lib\site-

packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Sample 1 Metrics:

Penalty Value ROC AUC	Accuracy	Precision	Recall	F1 Score
0.001	0.7617	0.0000	0.0000	0.0000
0.4989 0.01	0.7617	0.0000	0.0000	0.0000
0.4989				
0.1	0.7617	0.0000	0.0000	0.0000
0.4989 1	0.7617	0.0000	0.0000	0.0000
0.4989				
10 0.4989	0.7617	0.0000	0.0000	0.0000
100	0.7617	0.0000	0.0000	0.0000
0.4989				
1000 0.4989	0.7617	0.0000	0.0000	0.0000
10000	0.7617	0.0000	0.0000	0.0000
0.4989				

Sample 2 Metrics:

Penalty Value Accuracy Precision Recall F1 Score

ROC AUC 0.001	0.7983	0.0000	0.0000	0.0000
0.5000				
0.01 0.5000	0.7983	0.0000	0.0000	0.0000
0.1 0.5000	0.7983	0.0000	0.0000	0.0000
1 0.5000	0.7983	0.0000	0.0000	0.0000
10 0.5000	0.7983	0.0000	0.0000	0.0000
100 0.5000	0.7983	0.0000	0.0000	0.0000
1000 0.5000	0.7983	0.0000	0.0000	0.0000
10000 0.5000	0.7983	0.0000	0.0000	0.0000
Comple 2 Metric				
Sample 3 Metric Penalty Value ROC AUC	Accuracy	Precision	Recall	F1 Score
0.001 0.5073	0.7758	1.0000	0.0147	0.0289
0.01 0.5000	0.7725	0.0000	0.0000	0.0000
0.1 0.5000	0.7725	0.0000	0.0000	0.0000
1 0.5000	0.7725	0.0000	0.0000	0.0000
10 0.5000	0.7725	0.0000	0.0000	0.0000
100 0.5000	0.7725	0.0000	0.0000	0.0000
1000 0.5000	0.7725	0.0000	0.0000	0.0000
10000 0.5000	0.7725	0.0000	0.0000	0.0000
Sample 4 Metric	· s ·			
Penalty Value ROC AUC	Accuracy	Precision	Recall	F1 Score
0.001 0.5020	0.7900	1.0000	0.0040	0.0079
0.01 0.5020	0.7900	1.0000	0.0040	0.0079
0.1 0.5020	0.7900	1.0000	0.0040	0.0079
1	0.7900	1.0000	0.0040	0.0079

0.5020 10	0.7900	1.0000	0.0040	0.0079
0.5020 100	0.7900	1.0000	0.0040	0.0079
0.5020 1000	0.7900	1.0000	0.0040	0.0079
0.5020 10000	0.7900	1.0000	0.0040	0.0079
0.5020	0.7300	1.0000	0.0040	0.0073
Sample 5 Metric	ss:			
Penalty Value ROC AUC	Accuracy	Precision	Recall	F1 Score
0.001 0.5049	0.7725	0.7500	0.0109	0.0215
0.01 0.5049	0.7725	0.7500	0.0109	0.0215
0.1 0.5049	0.7725	0.7500	0.0109	0.0215
1 0.5049	0.7725	0.7500	0.0109	0.0215
10	0.7725	0.7500	0.0109	0.0215
0.5049 100	0.7725	0.7500	0.0109	0.0215
0.5049 1000	0.7725	0.7500	0.0109	0.0215
0.5049 10000 0.5049	0.7725	0.7500	0.0109	0.0215

```
IndexError
                                          Traceback (most recent call last)
Cell In[26], line 88
                print(f"{penalty}\t\t{accuracy_values[j]:.
 4f}\t\t{precision_values[j]:.4f}\t\t{recall_values[j]:.4f}\t\t{f1_values[j]:.
 4f\t\t{roc_auc_values[j]:.4f}")
     87 # Visualize the performance of different models
---> 88,
 wisualize_performance(penalty_values, accuracy_values_samples, 'Accuracy')
     89 visualize_performance(penalty_values, precision_values_samples,_

¬'Precision')
     90 visualize_performance(penalty_values, recall_values_samples, 'Recall')
Cell In[26], line 47, in visualize_performance(penalty_values, metric_values, __
 →metric_name)
     45 plt.figure(figsize=(10, 6))
     46 for i, penalty in enumerate(penalty_values):
```

```
---> 47 plt.plot(penalty_values, metric_values[i], label=f'Penalty_\(\frac{1}{2}\) \( \{\text{penalty}}' \) \( 48 \text{ plt.xlabel('Penalty Value (C)')} \) \( 49 \text{ plt.ylabel(metric_name)} \) \( \text{IndexError: list index out of range} \)
```


Cross validation check

Cross-Validation Scores: [0.779 0.77883333 0.77883333 0.77883333

0.77883333]

Mean CV Score: 0.77886666666668

visualize cross validation

```
[]: import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.model_selection import cross_val_score
     from sklearn.linear_model import LogisticRegression
     # Initialize logistic regression model
     logistic_regression = LogisticRegression(penalty='12', C=1.0,_
     ⇔solver='liblinear')
     # Perform cross-validation
     cv_scores = cross_val_score(logistic_regression, X, y, cv=5, scoring='accuracy')
     # Plot cross-validation scores
     plt.figure(figsize=(8, 6))
     plt.bar(np.arange(len(cv_scores)), cv_scores, color='skyblue')
     plt.xlabel('Fold')
     plt.ylabel('Accuracy')
     plt.title('Cross-Validation Scores')
     plt.ylim(0, 1) # Set y-axis limit from 0 to 1 for accuracy
     plt.xticks(np.arange(len(cv_scores)), np.arange(1, len(cv_scores) + 1))
     plt.grid(axis='y', linestyle='--', alpha=0.7)
     plt.show()
     # Print mean cross-validation score
     print("Mean CV Score:", np.mean(cv_scores))
```


Mean CV Score: 0.77886666666668