令和5年度1月第3週報告書

2024/1/16 報告書 No.42 M2 来代 勝胤

1 数値シミュレーションによる性能評価

1.1 一樣流

改善点

- 粒子位置計算プログラムの修正
- ▶ レーザーシートの厚み変更: 青色を 1.5 mm に変更

■ 流れ場

$$(u, v, w) = (250, 0, 0)$$
 [mm/s]

■ シミュレーション時間

$$t = 5.5 [s]$$

■ 粒子数密度

Table 1 Particle density

Case 1	$n = 3.0 \times 10^6$	[-/m]
Case 2	$n = 3.0 \times 10^7$	[-/m]
Case 3	$n = 3.0 \times 10^8$	[-/m]
Case 4	$n = 1.0 \times 10^7$	[-/m]
Case 5	$n = 2.0 \times 10^7$	[-/m]

■ 解析結果

(a) Velocity and vorticity

(b) Velocity

Fig.1 Calibrated image

1.2 数值評価

■ RMSE

Table 2 RMSE of velocity

	RMSE:u	RMSE:v	RMSE:w
Case 1	3.961	4.562	1.255
Case 2	2.030	3.182	1.253
Case 3	29.82	30.70	1.138
Case 4	3.052	3.790	1.219
Case 5	2.601	3.502	1.263

ただし,u,v,w は x,y,z 方向の速度成分である. 単位は $[\mathrm{mm/s}]$

■ 予測される誤差量について

これまでの数値シミュレーションより,粒子位置の検出および空間校正による y-z 平面内の誤差はおよそ $0.2~{
m pixel}$ であることがわかっている.また,粒子クラスタの生成の際に連なる粒子の数は $1~{
m D}$ つ分の変動を持つことがわかっている.例えば,厚み $T=3{
m mm}$ のレーザーシートを主流速度 $u=250{
m mm/s}$ で通過する粒子をフレームレート $f=800{
m fps}$ で撮影するとする.そのとき,粒子がレーザーシートを通過するフレーム数を Δn とすると,

$$\Delta n = \frac{T}{u} \times f = \frac{3}{250} \times 800 = 9.6$$

とあらわせる.すなわち,実際に粒子を撮影する場合,粒子クラスタは8 および9 個の粒子が撮影されるからである.そして,粒子クラスタには長いクラスタ n_l と短いクラスタ n_s が存在することがわかる.このとき,粒子クラスタのマッチングによる組み合わせは以下の4 パターンが考えられる.

Table 3 Pair of particle clusters

(1)	n_{1s}	n_{2s}	フレーム差は正しく計算
(2)	n_{1s}	n_{2l}	フレーム差は 0.5 枚分増加
(3)	n_{1l}	n_{2s}	フレーム差は 0.5 枚分増加
(4)	n_{1l}	n_{2l}	フレーム差は正しく計算

添え字はレーザーシートの番号を表す.

したがって, 粒子クラスタのマッチングによるフレー

$$\delta n = +0.5$$

となる.

また,粒子が 1 フレームごとに画像内を移動する距離は y 方向に 4 [pixel],z 方向に 0 [pixel] 程度であることがわかっている.すなわち,マッチングした粒子クラスタ中心がそれぞれ ± 0.2 pixel,マッチング時に生じるフレーム差の誤差 δn によって y 方向に $4 \times \delta n = +2$ pixel の誤差が生じると考えられる.したがって,マッチング時に生じる y 方向誤差 δe_y ,z 方向誤差 δe_z は

$$\delta e_y = 2 \pm 0.2$$
 [pixel] $\delta e_z = \pm 0.2$ [pixel]

ここで , 画像サイズと撮影範囲の比率を α とすると , 画像の横幅 $w=800 {
m pixel}$, 撮影範囲の横幅 $W=100 {
m mm}$ であるから ,

$$\alpha = \frac{W}{w} = 0.125 \text{ [mm/pixel]}$$

したがって,マッチング時に生じる誤差 δe_y , δe_z は

$$\delta e_y = 2 \pm 0.2 = 0.25 \pm 0.025 \text{ [mm]}$$

 $\delta e_z = \pm 0.2 \text{ [pixel]} = \pm 0.025 \text{ [mm]}$

とあらわすことができる.

また,一様流のとき,主流方向速度 u であるため, レーザーシート間距離 X を通過するのにかかる時刻を δt とすると,

$$\delta t = \frac{X}{u} = \frac{2.5}{250} = 0.01 \text{ [s]}$$

したがって , マッチング時に生じる誤差 δe から予測される速度誤差 δu は

$$\delta v = \frac{\delta e_y}{\delta t} = 25 \pm 2.5 \text{ [mm/s]}$$
$$\delta w = \frac{\delta e_z}{\delta t} = \pm 2.5 \text{ [mm/s]}$$

2 三角翼モデル

■ 数値シミュレーション

(a) Velocity and vorticity

(b) Velocity

Fig.2 Delta wing : Numerical simulation

■ 解析結果

(a) Velocity and vorticity

(b) Delta wing : Analysis

Fig.3 Calibrated image