LECTURE 4. INTRODUCTION TO COMPLEX ANALYSIS

DANIEL BALLESTEROS CHÁVEZ

Contents

1.	Sequences and limits	1
2.	Continuity	4
3.	Basic topology of \mathbb{C}	6

1. Sequences and limits

Definition 1. A sequence in \mathbb{C} is a function $\varphi : \mathbb{N} \to \mathbb{C}$. We use the notation $z_n = \varphi(n)$ and $\{z_n\}_{n=1}^{\infty}$ for the image $\varphi(\mathbb{N})$.

Definition 2. Let $\{z_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{C} . We say that the sequence converges to $z_0 \in \mathbb{C}$ if for every $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$, such that for every $n \geq n_0$ it holds that $|z_n - z_0| < \epsilon$. In this case z_0 is called the limit of the sequence $\{z_n\}_{n=1}^{\infty}$ and we write

$$\lim_{n\to\infty} z_n = z_0.$$

Proposition 1. If a sequence converges to a limit, this is unique.

Proof. Supose that the sequence $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}$ has two limits z_0 and w_0 . Then for any $\epsilon > 0$ choose $n \in \mathbb{C}$ such that for any $n \geq n_0$, we have simultaneously

$$|z_n - z_0| < \frac{\epsilon}{2}$$
, and $|z_n - w_0| < \frac{\epsilon}{2}$.

Then

$$|z_0 - w_0| = |z_0 - z_n + z_n - w_0| \le |z_n - z_0| + |z_n - w_0| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since $\epsilon > 0$ is arbtrary, this happens only if $|z_0 - w_0| = 0$. Then $z_0 = w_0$.

Proposition 2. Let $\{z_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{C} , with $z_n = x_n + iy_n$, and $z_0 = x_0 + iy_0$. Then the sequence converges to z_0 if and only if the sequences of real numbers $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ converge respectively to x_0 and y_0 . Equivalently

$$\lim_{n \to \infty} z_n = z_0 \iff \lim_{n \to \infty} x_n = x_0 \text{ and } \lim_{n \to \infty} y_n = y_0.$$

Proof. Let $\epsilon > 0$. Then there exists $n_0 \in \mathbb{N}$, such that for any $n \geq n_0$ the following holds:

$$|x_n - x_0| = |\text{Re}(z_n - z_0)| \le |z_n - z_0| < \epsilon.$$

This shows that $\lim_{n\to\infty} x_n = x_0$. The second part follows from a similar argument on the imaginary part of the sequence.

Date: <2021-03-12 Fri>.

Proposition 3. Every convergent sequence $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}$ is bounded, i.e., there exists a positive real number M > 0, such that $|z_n| \leq M$ for all $n \in \mathbb{N}$.

Proof. Let $\epsilon = 1$. By convergence, there exists $n_0 \in \mathbb{N}$ such that whenever $k \geq n_0$ it holds that

$$|z_k - z_0| < 1.$$

Now consider $M = \max\{|z_1|+1, |z_2|+1, \dots, |z_{k-1}|+1, |z_0|+1\}$. Then it is clear that

$$|z_n| \leq M$$
, for all $n \in \mathbb{N}$.

Remark The converse of last proposition is false. Discuss an example.

Theorem 1. (Bolzano-Weierstrass) Every bounded sequence in \mathbb{C} has a convergent sub-sequence.

Proof. The proof relies on the same result known for sequences of Real numbers. Let $\{z_n\}_{n=1}^{\infty}$ a bounded sequence where $z_n=x_n+iy_n$. Since the sequence is bounded we note that

$$|x_n| \le |z_n| \le M, \quad n \in \mathbb{N}.$$

Then the sequence of real numbers $\{x_n\}_{n=1}^{\infty}$ is bounded. There exists a convergent subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ with limit $x_0 \in \mathbb{R}$. Now consider the corresponding subsequence of complex numbers $\{z_{n_k}\}_{k=1}^{\infty}$, where $z_{n_k} = x_{n_k} + iy_{n_k}$. Since the sequence of complex numbers is bounded, we conclude that $\{y_{n_k}\}_{k=1}^{\infty}$ is also a bounded sequence of Real numbers. Then there exists a convergent subsequence $\{y_{n_{k_j}}\}_{j=1}^{\infty}$ with limit y_0 . Recall that any subsequence of a convergent sequence is also convergent to the same limit, and conclude that $\{x_{n_{k_j}}\}_{j=1}^{\infty}$ has limit x_0 . Then

$$\lim_{j\to\infty} z_{n_{k_j}} = \lim_{j\to\infty} \left(x_{n_{k_j}} + iy_{n_{k_j}}\right) = x_0 + iy$$

is a convergent subsequence of $\{z_n\}_{n=1}^{\infty}$.

Definition 3. A sequence $\{z_n\}_{n=1}^{\infty}$ is called Cauchy sequence if for every $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that, if $n, m \geq n_0$ then $|z_n - z_m| < \epsilon$.

Theorem 2. A sequence $\{z_n\}_{n=1}^{\infty}$ converges if and only if $\{z_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Proof. By writing $z_n = x_n + iy_n$ and from the inequalities

$$|x_n - x_m| \le |z_n - z_m|,$$

and

$$|y_n - y_m| \le |z_n - z_m|,$$

it follows that The sequence $\{z_n\}_{n=1}^{\infty}$ of complex numbers is Cauchy if and only if $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy sequences of Real numbers if and only if the sequences of real numbers $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are convergent if and only if $\{z_n\}_{n=1}^{\infty}$ is a convergent sequence.

Proposition 4. Let $\{z_n\}_{n=1}^{\infty}$ and $\{w_n\}_{n=1}^{\infty}$ two convergent sequences, with $\lim_{n\to\infty} z_n = z_0$ and $\lim_{n\to\infty} w_n = w_0$. Then the following identities hold:

(1)
$$\lim_{n\to\infty} (z_n + w_n) = z_0 + w_0,$$

- (2) $\lim_{n \to \infty} (z_n w_n) = z_0 w_0,$
- $(3) \lim_{n \to \infty} |z_n| = |z_0|,$

(4) If
$$w_n \neq 0$$
 for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} \left(\frac{z_n}{w_n} \right) = \frac{z_0}{w_0}$.

Proof. Proof of 1. It follows from the triangle inequality and the definition. Let $\epsilon > 0$, then there exists $n_0 \in \mathbb{N}$ such that for any $n \geq n_0$ it simultaneously holds $|z_n - z_0| < \frac{\epsilon}{2}$ and $|w_n - w_0| < \frac{\epsilon}{2}$, then

$$|(z_n + w_n) - (z_0 + w_0)| = |(z_n - z_0) + (w_n - w_0)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

That is $\lim_{n\to\infty} (z_n + w_n) = z_0 + w_0$.

Proof of 2. It follows also from the definition, the triangle inequality and the fact that every convergent sequence is bounded. Since $\{z_n\}_{n=1}^{\infty}$ is convergent, there is $M_1 > 0$ such that $|z_n| < M_1$ for all $n \in \mathbb{N}$ and the same for $\{w_n\}_{n=1}^{\infty}$, there is $M_2 > 0$ such that $|w_n| < M_1$ for all $n \in \mathbb{N}$. Take $M = \max\{M_1, M_2\}$, and then M > 0 is a bound for both sequences. Let $\epsilon > 0$, then there exists $n_0 \in \mathbb{N}$ such that for any $n \geq n_0$ it simultaneously holds $|z_n - z_0| < \frac{\epsilon}{2M}$ and $|w_n - w_0| < \frac{\epsilon}{2M}$. Then

$$\begin{split} |z_n w_n - z_0 w_0| &= |z_n w_n - z_n w_0 + z_n w_0 - z_0 w_0| \\ &\leq |z_n w_n - z_n w_0| + |z_n w_0 - z_0 w_0| \\ &= |z_n| |w_n - w_0| + |w_0| |z_n - z_0| \\ &\leq M |w_n - w_0| + M |z_n - z_0| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

That is $\lim_{n \to \infty} (z_n w_n) = z_0 w_0$.

Proof of 3. It follows from a version of the triangle inequality. Let $\epsilon > 0$, then there exists $n_0 \in \mathbb{N}$ such that for any $n \geq n_0$ it holds $|z_n - z_0| < \epsilon$. Note then that

$$||z_n| - |z_0|| \le |z_n - z_0| < \epsilon.$$

That is $\lim_{n\to\infty} |z_n| = |z_0|$.

Proof of 4. Let $\epsilon_1 = \frac{|w_0|}{2}$, then there exists $n_0 \in \mathbb{N}$ such that for any $n \geq n_0$ it holds $|w_n - w_0| < \frac{|w_0|}{2}$. First note that

$$\left| \frac{1}{w_n} - \frac{1}{w_0} \right| = \left| \frac{w_0 - w_n}{w_n w_0} \right| = \frac{|w_0 - w_n|}{|w_n| |w_0|}.$$

On the other hand by the triangle inequality

$$|w_0| - |w_n| \le ||w_0| - |w_n|| \le |w_0 - w_n| < \frac{|w_0|}{2},$$

this implies

$$\frac{|w_0|}{2} \le |w_n|,$$

or equivalently

$$\frac{1}{|w_n|} \le \frac{2}{|w_0|}.$$

Then we get

$$\left| \frac{1}{w_n} - \frac{1}{w_0} \right| \le \frac{|w_0 - w_n|}{|w_n| \, |w_0|} \le \frac{2|w_0 - w_n|}{|w_0|^2}.$$

For any $\epsilon > 0$ define $\epsilon_2 = \frac{|w_0|^2 \epsilon}{2}$, then there exists $m_0 \in \mathbb{N}$ such that for any $n \geq m_0$ it holds $|w_n - w_0| < \frac{|w_0|^2 \epsilon}{2}$. Take $N_0 = \max\{n_0, m_0\}$. Then we can improve our last inequality, for any $n \geq N_0$ it holds

$$\left| \frac{1}{w_n} - \frac{1}{w_0} \right| \le \frac{|w_0 - w_n|}{|w_n| |w_0|} \le \frac{2|w_0 - w_n|}{|w_0|^2} < \epsilon.$$

This shows that $\lim_{n\to\infty}\frac{1}{w_n}=\frac{1}{w_0}$. Finally applying (2) of this proposition we have

$$\lim_{n \to \infty} \frac{z_0}{w_n} = \lim_{n \to \infty} z_n \frac{1}{w_n} = \lim_{n \to \infty} z_n \lim_{n \to \infty} \frac{1}{w_n} = \frac{z_0}{w_0}$$

Recall from real analysis, that every monotone and bounded sequence of real numbers is convergent.

• If the sequence $\{a_n\}_{n=1}^{\infty}$ is increasing then $\lim_{n\to\infty} a_n = \sup\{a_n | n \in \mathbb{N}\}.$

• If the sequence $\{a_n\}_{n=1}^{\infty}$ is decreasing then $\lim_{n\to\infty} a_n = \inf\{a_n | n \in \mathbb{N}\}.$

Definition 4. We say that $\lim_{n\to\infty} z_n = \infty$ if $\lim_{n\to\infty} |z_n| = \infty$. In other words, if for every M > 0 there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ then $|z_n| > M$.

Definition 5. Let $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be a sequence. A complex number $w_0 \in \mathbb{C}$ is called a limit point of the sequence $\{z_n\}_{n=1}^{\infty}$ if there exists a subsequence $\{z_n\}_{k=1}^{\infty}$ of $\{z_n\}_{n=1}^{\infty}$ such that

$$\lim_{k \to \infty} z_{n_k} = w_0.$$

2. Continuity

Definition 6. The function f(z) is said to have the limit $w_0 \in \mathbb{C}$ as z tends to $a \in \mathbb{C}$, if for every $\epsilon > 0$ there exists a number $\delta = \delta(\epsilon) > 0$ with the property that if $|z - a| < \delta$ then it holds $|f(z) - w_0| < \epsilon$, and in that case we write

$$\lim_{z \to a} f(z) = w_0.$$

Definition 7. The function f(z) is said to be continuous at z_0 if for if for every $\epsilon > 0$ there exists a number $\delta = \delta(\epsilon) > 0$ with the property that if $|z - a| < \delta$ then it holds $|f(z) - f(a)| < \epsilon$, and in that case we write

$$\lim_{z \to a} f(z) = f(a).$$

Examples

• Let $f: \mathbb{C} \setminus \{1\} \to \mathbb{C}$ the function given by

$$f(z) = \frac{z^2 - 4}{z - 2},$$

then $\lim_{z\to 2} f(z) = 4$.

• Let $f: \mathbb{C} \to \mathbb{C}$ be the conjugate function $f(z) = \bar{z}$. Then f(z) is continuous at every $z_0 \in \mathbb{C}$. To show this, first note that $|z| = |\bar{z}|$. Let $\epsilon > 0$ and choose $0 < \delta = \epsilon$. Then, for any $z \in \mathbb{C}$ such that $|z - z_0|$ we can estimate

$$|f(z) - f(z_0)| = |\bar{z} - \bar{z_0}| = |\bar{z} - z_0| = |z - z_0| < \delta = \epsilon.$$

.

Proposition 5. Let $U \subset \mathbb{C}$, $f: U \to \mathbb{C}$ and $a \in U$. Then the following three statements are equivalent:

- (1) f is continuous at a.
- (2) For every $\epsilon > 0$ there exists a number $\delta > 0$ such that $f(B_{\delta}(a) \cap U) \subseteq B_{\epsilon}(f(a))$.
- (3) For every sequence $\{z_n\}_{n=1}^{\infty} \subseteq U$ such that $\lim_{n\to\infty} z_n = a$, we have

$$\lim_{n \to \infty} f(z_n) = f(a).$$

Proof. $(1 \Rightarrow 2)$ Let $\epsilon > 0$, then there is a number $\delta > 0$ such that for every $z \in U$ with $|z - a| < \delta$ then $|f(z) - f(a)| < \epsilon$. This implies that if $z \in B_{\delta}(a) \cap U$ then $f(B_{\delta}(a) \cap U) \subseteq B_{\epsilon}(f(a))$.

 $(2 \Rightarrow 1)$ Let $\epsilon > 0$, then there is a number $\delta > 0$ such that $f(B_{\delta}(a) \cap U) \subseteq B_{\epsilon}(f(a))$. This means that for every $z \in B_{\delta}(a) \cap U$ we have $f(z) \in B_{\epsilon}(f(a))$. This means that for every $z \in U$ with $|z - a| < \delta$ it holds $|f(z) - f(a)| < \epsilon$.

 $(1 \Rightarrow 3)$ Let f(z) be continuous at $a \in U$ and $\{z_n\}_{n=1}^{\infty} \subseteq U$ with limit a. For any $\epsilon > 0$ there exists a number $\delta > 0$ such that for every $z \in U$ with $|z - a| < \delta$ it holds $|f(z) - f(a)| < \epsilon$. For that $\delta > 0$ there is a $n_0 \in \mathbb{N}$ such that for any $n \ge n_0$ we have $|z_n - a| \le \delta$. Then by continuity this implies that $|f(z_n) - f(a)| < \epsilon$. This shows that $\lim_{n \to \infty} f(z_n) = f(a)$.

 $(3\Rightarrow 1)$ Let $a\in U$ and assume that for any $\{z_n\}_{n=1}^\infty\subseteq U$ with limit a we have $\lim_{n\to\infty} f(z_n)=f(a)$. Suppose on the contrary, that f is not continuous at a. Then there exists a positive $\epsilon>0$ such that for every $\delta>0$ there is a point $z\in U$ with $|z-a|<\delta$ but $|f(z)-f(a)|\geq \epsilon$. Note that this implies that for any $n\in \mathbb{N}$ we can choose $\delta=\frac{1}{n}$ and $z_n\in U$ such that $|z_n-a|<\frac{1}{n}$, but $|f(z_n)-f(a)|\geq \epsilon$. In this way we have constructed a sequence $\{z_n\}_{n=1}^\infty$ such that $\lim_{n\to\infty} z_n=a$ but $\lim_{n\to\infty} f(z_n)\neq f(a)$ which is a contradiction to our initial assumptions.

 $(1 \Rightarrow 3)$ Let f(z) be continuous at a. Consider any sequence $\{z_n\}_{n=1}^{\infty} \subseteq U$ such that $\lim_{n\to\infty} z_n = a$. Then for $\epsilon > 0$ there is a number $\delta > 0$ such that for all $z \in U$ with $|z-a| < \delta$ we have $|f(z)-f(a)| < \epsilon$. Also for such $\delta > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ we have $|z_n - a| < \delta$, which then implies $|f(z_n) - f(a)| < \epsilon$.

Theorem 3. Let $U \subseteq \mathbb{C}$ and $f, g: U \to \mathbb{C}$ be two continuous functions at $a \in U$. Then $f \pm g$, $f \cdot g$ are continuous in a. If $g(a) \neq 0$ then $\frac{f}{g}$ is also continuous at a.

Theorem 4. Let $U_1, U_2 \subseteq \mathbb{C}$, and $f: U_1 \to \mathbb{C}$, $g: U_2 \to \mathbb{C}$, such that $f(U_1) \subseteq U_2$. If f is continuous at $z_0 \in U_1$ and g is continuous at $w_0 = f(z_0) \in U_2$, then the composition $g \circ f$ is continuous at z_0 .

Proof. Consider any sequence $\{z_n\}_{n=1}^{\infty} \subseteq U_1$ such that $\lim_{n\to\infty} z_n = z_0$. Then define $w_n = f(z_n) \in U_2$. Since f is continuous at z_0 , then $\lim_{n\to\infty} f(z_n) = \lim_{n\to\infty} w_n = w_0 = f(z_0)$. Since f is continuous at f0 then $\lim_{n\to\infty} g(w_n) = g(w_0)$. Note that on the left hand side $g(w_n) = g(f(z_n)) = (g \circ f)(z_n)$, and on the right hand side $g(w_0) = g(f(z_0)) = (g \circ f)(z_0)$. This shows that $\lim_{n\to\infty} (g \circ f)(z_n) = (g \circ f)(z_0)$.

Definition 8. Let $U \subseteq \mathbb{C}$ and consider a function $f: U \to \mathbb{C}$. f is called uniformly continuous if for every $\epsilon > 0$ there exists $\delta > 0$ such that for any $z, w \in U$ such that $|z - w| < \delta$ then we have $|f(z) - f(w)| < \epsilon$.

Example. Consider $f: A \to \mathbb{C}$, $f(z) = z^2$ in the following cases:

•
$$A = \{z \in \mathbb{C} \mid |z| \le 1\}.$$

In this case f is unifrmly continuous in A. Let $\epsilon > 0$ and take $\delta = \epsilon/2$. Then, for any $z, w \in A$ such that $|z - w| < \delta$ we have

$$|f(z) - f(w)| = |z^2 - w^2| = |z - w||z + w| \le |z - w|(|z| + |w|) \le 2|z - w| < \epsilon.$$

•
$$A = \mathbb{C}$$
.

In this case f is not uniformly continuous. Take $\epsilon = 1$. For every $\delta > 0$ there exists $n \in \mathbb{N}$ such that $n\delta > 1$. Now consider z = n and $w = n + \delta/2$. Note that we have $|z - w| = \delta/2 < \delta$, but

$$|f(z) - f(w)| = |n^2 - \left(n + \frac{\delta}{2}\right)^2| = n\delta + \frac{\delta^2}{4} > n\delta > 1 = \epsilon.$$

3. Basic topology of \mathbb{C}

The open and closed disks (balls) already defined, are basic subsets that may be used to build a topological structure of the complex plane. A topology allows us to define several notions of continuity.

$$B_r(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < r \}.$$

$$\bar{B}_r(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| \le r \}.$$

Definition 9. A set $A \subseteq \mathbb{C}$ is called open if $\forall z \in A$ there exists a real number $r_z > 0$ such that $B_{r_z}(z) \subseteq A$.

Theorem 5. The following sentences are true

- (1) The sets \mathbb{C} , \emptyset , $B_r(z)$ (for any r > 0) and any $z \in \mathbb{C}$, are open sets.
- (2) If U_1, \ldots, U_n is a finite collection of open sets, then $\bigcap_{k=1}^n U_k$ is an open set.
- (3) If $\{U_{\alpha}\}_{{\alpha}\in I}$ is a family of open sets, then $\cup_{{\alpha}\in I}U_{\alpha}$ is an open set.

Proof. \mathbb{C} is open. For any $z \in \mathbb{C}$, take r = 1 and evidently $B_1(z) \subset \mathbb{C}$.

 \emptyset is open. If this wasn't true, there would exists $z \in \emptyset$ such that for any r > 0, $B_r(z) \not\subseteq \emptyset$. Then the statement is vacuously true.

 $B_r(z)$ is open. Let $w \in B_r(z)$. Take $\delta = r - |w - z|$, and note that $\delta > 0$. To show that $B_\delta(w) \subset B_r(z)$ we need to show that any $\xi \in B_\delta(w)$ is also in $B_r(z)$. If $\xi \in B_\delta(w)$ then $|\xi - w| < \delta$. Since $|\xi - z| = |\xi - w + w - z| \le |\xi - w| + |w - z| < \delta + |w - z| = r - |w - z| + |w - z| = r$. Then $\xi \in B_r(z)$.

 $\bigcap_{k=1}^n U_k$ is open if each U_i is open. Let $z \in \bigcap_{k=1}^n U_k$. Then for each $1 \le k \le n$ there exists $r_k > 0$ such that $B_{r_k}(z) \subseteq U_k$. Take $r = \min\{r_1, \ldots, r_k\}$, and hence $B_r(z) \subset U_k$ for every $1 \le k \le n$. Hence $B_r(z) \subset \bigcap_{k=1}^n U_k$.

 $\bigcup_{\alpha \in I} U_{\alpha}$ is open if each U_{α} is open. Let $z \in \bigcup_{\alpha \in I} U_{\alpha}$. Then there exists $\beta \in I$ such that $z \in U_{\beta}$. Since U_{β} is open, there is r > 0 such that $B_r(z) \subset U_{\beta} \subset \bigcup_{\alpha \in I} U_{\alpha}$. \square

Definition 10. A set $G \subseteq \mathbb{C}$ is called closed if its complement $\mathbb{C} \setminus G$, is an open set.

Proposition 6. The following sentences are true

- (1) The sets \mathbb{C} , \emptyset , are closed sets.
- (2) If G_1, \ldots, G_n is a finite collection of closed sets, then $\bigcup_{k=1}^n G_k$ is a closed set
- (3) If $\{G_{\alpha}\}_{{\alpha}\in I}$ is a family of closed sets, then $\cap_{{\alpha}\in I}G_{\alpha}$ is a closed set.

Definition 11. Let $A \subset \mathbb{C}$. Then we define the following sets

- The interior of A: $Int(A) = \bigcup \{U \mid U \subset A, \text{ and } U \text{ is an open set}\}.$
- The closure of A: $Cl(A) = \bigcap \{G \mid A \subset G, \text{ and } G \text{ is a closed set}\}.$
- The boundary of A: $\partial A = Cl(A) \cap Cl(\mathbb{C} \setminus A)$.

Proposition 7. Let $A, B \subseteq \mathbb{C}$. Then following statements are true

- $Int(A) \subset A$.
- $A \subset Cl(A)$.
- $\partial A \subseteq Cl(A)$.
- A is open if and only if A = Int(A).
- A is closed if and only if A = Cl(A).
- $Cl(A \cup B) = Cl(A) \cup Cl(B)$.
- $Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$, but in general they are not equal.
- $Int(A \cap B) = Int(A) \cap Int(B)$.
- $Int(A \cup B) \supseteq Int(A) \cup Int(B)$, but in general they are not equal.
- $z_0 \in Int(A) \Leftrightarrow \exists r > 0$, such that $B_r(z_0) \subseteq A$.
- $z_0 \in Cl(A) \Leftrightarrow \forall r > 0$, it holds $B_r(z_0) \cap A \neq \emptyset$.
- $z_0 \in \partial(A) \Leftrightarrow \forall r > 0$, it holds $B_r(z_0) \cap A \neq \emptyset$ and $B_r(z_0) \cap (\mathbb{C} \setminus A) \neq \emptyset$.

The topological structure of $\mathbb C$ induces in a natural way a topological structure in any subset $A\subset \mathbb C$.

Definition 12. Let $A \subset \mathbb{C}$. The set $B \subseteq A$ is called open (closed) in A, if there is an open (closed) set U of \mathbb{C} such that $B = A \cap U$.

Proposition 8. Let $A \subseteq \mathbb{C}$. Then the following sentences are true

- (1) The sets A, \emptyset , are open sets and closed sets in A.
- (2) If the set $B \subseteq A$ is open in A, then $A \setminus B$ is closed in A.
- (3) If the set $B \subseteq A$ is closed in A, then $A \setminus B$ is open in A.
- (4) If U_1, \ldots, U_n is a finite collection of open sets in A, then $\bigcap_{k=1}^n U_k$ is an open set in A.
- (5) If $\{U_{\alpha}\}_{{\alpha}\in I}$ is a family of open sets in A, then $\cup_{{\alpha}\in I}U_{\alpha}$ is an open set A.
- (6) If G_1, \ldots, G_n is a finite collection of closed sets in A, then $\bigcup_{k=1}^n G_k$ is a closed set in A.
- (7) If $\{G_{\alpha}\}_{{\alpha}\in I}$ is a family of closed sets in A, then $\cap_{{\alpha}\in I}G_{\alpha}$ is a closed set in A

Proposition 9. Let $A \subset \mathbb{C}$. $z_0 \in Cl(A)$ if and only if there exists a sequence $\{z_n\}_n^{\infty} \subset A$ such that $\lim_{n\to\infty} z_n = z_0$.

Proof. By the previous proposition, since $z_0 \in Cl(A)$, we have that for every $n \in \mathbb{N}$ we can take $r_n = \frac{1}{n} > 0$, and it holds

$$B_{r_n}(z_0) \cap A \neq \emptyset$$
.

Then for each n we can choose $z_n \in B_{r_n}(z_0) \cap A$. Clearly we have

$$|z_n - z_0| < \frac{1}{n},$$

for all $n \in \mathbb{N}$, which implies $\lim_{n \to \infty} z_n = z_0$.

Definition 13. (1) The set $A \subset \mathbb{C}$ is called **disconnected**, if there are two open sets U, V in \mathbb{C} such that

(a)
$$(A \cap U) \neq \emptyset$$
 and $(A \cap V) \neq \emptyset$.

- (b) U and V are disjoint in A: $(A \cap U) \cap (A \cap V) = \emptyset$
- (c) $A \subseteq U \cup V$.
- (2) The set A is called **connected** if it is not disconnected.

Proposition 10. The set A is connected if and only if only the sets A and \emptyset are the only sets that are both, open and closed in A.

Proof. (\Rightarrow) Let A be connected and suppose on the contrary that there is a set $B \subset A$, that is both, open and closed, and different from A and \emptyset . Then B and $A \setminus B$ are open sets in A. Then, there are open sets $U, V \subseteq \mathbb{C}$ such that $B = A \cap U$ and $A \setminus B = A \cap V$. then we have:

- (1) $(A \cap U) \neq \emptyset$ and $(A \cap V) \neq \emptyset$.
- $(2) (A \cap U) \cap (A \cap V) = B \cap (A \setminus B) = \emptyset.$
- (3) $A = B \cup (A \setminus B) = (A \cap U) \cup (A \cap V) = A \cap (U \cup V)$ which implies that $A \subseteq U \cup V$.

These three points are a contradiction since A is assumed connected.

(⇐) Let A and \emptyset the only sets that are both, open and closed in A. Suppose on the contrary that A is disconnected. Then there are two open sets in $U, V \subset \mathbb{C}$ satisfying the definition above. Put $B_1 = A \cap U$ and $B_2 = A \cap V$. Then B_1 and B_2 are non-empty open sets in A. Since $B_1 \cap B_2 = \emptyset$, and $A = B_1 \cup B_2$. Then $A \setminus B_1 = B_2$, which implies that B_2 is also closed. Moreover, since $B_1 \neq \emptyset$, $B_2 \neq A$, which is a contradiction. Then A is connected.

Definition 14. Let $A \subset \mathbb{C}$. By a curve γ in A we mean a continuous map γ : $[0,1] \to A$. We say that A is called **arc-connected** or **path-connected** if for any two points $z_1, z_2 \in \mathbb{C}$ there exists a curve γ in A such that $\gamma(0) = z_1$ and $\gamma(1) = z_2$.

Theorem 6. Let $A \subset \mathbb{C}$.

- (1) If A is arc-connected then A is connected.
- (2) If A is open and connected then A is arc-connected.

Here is an example of a connected set which fails to be arc-connected Example. A domain $\Omega \subseteq \mathbb{C}$ is an open connected set.

Definition 15. Let $A \subseteq \mathbb{C}$. An open cover of A is a family $\{U_{\alpha}\}_{{\alpha}\in I}$ of open subsets of \mathbb{C} , such that $A \subset \bigcup_{{\alpha}\in I} U_{\alpha}$.

A finite subcover is a collection $\{U_{\alpha_1}, \ldots, U_{\alpha_k}\}$ such that $A \subseteq \bigcup_{j=1}^k U_{\alpha_j}$.

Definition 16. The set $K \subset \mathbb{C}$ is called **compact** if any open cover of K, has a finite subcover.

Theorem 7. (Heine-Borel). The set $K \subset \mathbb{C}$ is compact if and only K is closed and bounded.

Proof. (\Rightarrow) .

If K is compact then K is closed. Supose there is $z_0 \in \operatorname{cl}(K)$ such that $z_0 \notin K$, and consider the following sets: All balls $B_r(z_0)$ and for each $z \in K$ choose a ball $U_z := B_{r_z}(z)$ such that $r_z > 0$ is small enough to not intersect one of the $B_r(z_0)$. Note now that the collection $\{U_z\}_{z \in K}$ is an open cover of K but clearly any finite choice of U_z 's fails to cover K.

If K is compact then K is bounded. For each $z \in K$ consider the set $U_z = B_1(z)$. Clearly $\{U_z\}_{z\in K}$ is an open cover of K, and then there is a finite open subcover

 U_{z_1},\ldots,U_{z_n} . Take $M=\max\{|z_1|+1,\ldots,|z_k|+1\}$. Then $K\subset \bigcup_{k=1}^n U_{z_k}\subseteq B_M$, i.e. K is bounded.

 (\Leftarrow) . Exercise. *Hint*. Show first that any closed subset of a compact set is also compact. Use the bounded property to show that K must be contained in a square of the form $G = [-r, r] \times [-r, r]$ and show that show that G is compact. \square

Theorem 8. $K \subset \mathbb{C}$ is compact if and only if for every sequence $\{z_n\}_{n=1}^{\infty} \subset K$ has a convergent subsequence, i.e., $\{z_{n_k}\}_{k=1}^{\infty}$ such that $\lim_{k\to\infty} z_{n_k} = z_0$ for some $z_0 \in K$.

- *Proof.* (\Rightarrow) Let $K \subset \mathbb{C}$ compact. If $\{z_n\}_{n=1}^{\infty} \subset K$ is a bounded sequence since K is bounded. By Bolzano-Weierstrass' Theorem, the sequence has a convergent subsequece, say to a limit point $z_0 \in \mathrm{Cl}(K)$. Since K is closed then $z_0 \in K$.
- (\Leftarrow) Suppose that any $\{z_n\}_{n=1}^{\infty} \subset K$ has a convergent subsequece. IF K is not bounded, then we can construct a sequence $\{z_n\}_{n=1}^{\infty}$ such that $|z_n| > n$ for all $n \in \mathbb{N}$. But this sequence has no convergent subsequence, which is a contratiction. Then K should be bounded.

Now take any $z_0 \in \operatorname{Cl}(K)$. By a previous proposition, we can construct a sequence $\{z_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} z_n = z_0$. By our hypotesis, the sequence $\{z_{n_k}\}_{k=1}^{\infty}$ such that $\lim_{k\to\infty} z_{n_k} = w_0$, for some $w_0 \in K$. By the uniqueness of the limit, $z_0 \in K$. We he have shown $\operatorname{Cl}(K) \subseteq K$, which implies $\operatorname{Cl}(K) = K$, i.e., K is closed.

Proposition 11. Let $f: A \to \mathbb{C}$ be a function. Then the following sentences are equivalent

- f is continuous in A.
- For every open set $V \subset \mathbb{C}$, the set $f^{-1}(V)$ is open in A.
- For every closed set $G \subset \mathbb{C}$, the set $f^{-1}(G)$ is closed in A.

Proposition 12. Let $K \subset \mathbb{C}$ be compact and $f: K \to \mathbb{C}$ continuous. Then f(K) is also compact.

Proposition 13. Let $A \subset \mathbb{C}$ be connected and $f: A \to \mathbb{C}$ continuous. Then f(A) is also connected.

Proposition 14. Let $K \subset \mathbb{C}$ be a compact set, $f: K \to \mathbb{C}$ continuous. Then f is uniformly continuous.