PROCESSOR ARCHITECTURE PRACTICAL 2

Division/Batch: B/B1 Branch: Computer Engineering

SAP ID	Name of Student	Date of Experiment	Date of Submission	Remarks
60004200107	Kartik Jolapara	27/9/22	3/10/22	

Aim

To study and implement restoring and non-restoring division algorithm.

Restoring Division

Theory

A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Division algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow division include restoring, non-performing restoring, non-restoring, and SRT division. Fast division methods start with a close approximation to the final quotient and produce twice as many digits of the final quotient on each iteration. Newton—Raphson and Goldschmidt algorithms fall into this category.

Restoring Division Algorithm is used to divide two unsigned integers. This algorithm is used in Computer Organization and Architecture. This algorithm is called restoring because it restores the value of Accumulator(A) after each or some iterations. There is one more type i.e., Non-Restoring Division Algorithm in which value of A is not restored.

First the registers are initialized with corresponding values (Q = Dividend, M = Divisor, A = 0, n = number of bits in dividend). Here, register <math>Q contain quotient and register A contain remainder. Here, n-bit dividend is loaded in Q and divisor is loaded in M. Value of Register is initially kept Q and this is the register whose value is restored during

iteration due to which it is named Restoring.

Algorithm

Restoring division operates on fixed-point fractional numbers and depends on the assumption 0 < D < N. The basic algorithm for binary (radix 2) restoring division is:

```
R := N
D := D << n
                  -- R and D need twice the word width of N and Q
-- Trial subtraction from shifted value
 R := 2 * R - D
 if R ≥ 0 then
   q(i) := 1
                  -- Result-bit 1
 else
  q(i) := 0 -- Result-bit 0

R := R + D -- New partial remainder is (restored) shifted value
 end
end
```

In simpler terms, let the dividend be Q and the divisor be M and the accumulator A = 0. Therefore:

- 1. At each step, left shift the dividend by 1 position.
- 2. Subtract the divisor from A(A M).
- 3. If the result is positive, then the step is said to be successful. In this case, the quotient bit will be "1" and the restoration is not required.

- 4. If the result is negative, then the step is said to be unsuccessful. In this case, the quotient bit will be "0" and restoration is required.
- 5. Repeat the above steps for all the bits of the dividend.

Example

Problem: 13/4	M=0100	Q=1101	-M=1100	N=4
N	M	A	Q	Operation
4	0100	0000	1101	Initialization
	0100	0001	101-	LS, N=N-1
	0100	1101	101-	A=A-B
	0100	0001	1010	A=A+B
3	0100	0001	1010	
	0100	0011	010-	LS, N=N-1
	0100	1111	010-	A=A-B
	0100	0011	0100	A=A+B
2	0100	0011	0100	
	0100	0110	100-	LS, N=N-1
	0100	0010	100-	A=A-B
	0100	0010	1001	
1	0100	0010	1001	
	0100	0101	001-	LS, N=N-1

0100	0001	001-	A=A-B
0100	0001	0011	Termination

Result: Quotient: 0011 Remainder: 0001

Flowchart

Code

```
// Non-restoring division

#include <bits/stdc++.h>

using namespace std;

vector<bool> oneSComplement(vector<bool> num)
{
   for (int i = 0; i < num.size(); i++)
   {
      num[i] = !num[i];
   }
   return num;</pre>
```

```
vector<bool> twoSComplement(vector<bool> num)
                num = oneSComplement(num);
                if (num[num.size() - 1])
                {
                                num[num.size() - 1] = 0;
                                num[num.size() - 2] = 1;
                }
                else
                {
                                num[num.size() - 1] = 1;
                return num;
vector<bool> binaryAddition(vector<bool> a, vector<bool> b, int n)
                vector<bool> ans(n);
                bool carry = 0;
                for (int i = n - 1; i >= 0; i--)
                                if (a[i] == 1 \&\& b[i] == 1 \&\& carry)
                                                 ans[i] = 1;
                                                carry = 1;
                                else if ((a[i] == 1 \&\& b[i] == 1) || (((a[i] == 1) || (b[i] == 1)) || (b[i] == 1) || (b[i] == 
1)) && carry))
                                {
                                                 ans[i] = 0;
                                                carry = 1;
                                }
                                else
                                                 ans[i] = a[i] + b[i] + carry;
                                                carry = 0;
                                 }
                return ans;
bool arithmeticRightShift(vector<bool> &a, vector<bool> &g)
               bool kachra = q[q.size() - 1], prev = a[0], temp;
```

```
for (int i = 1; i < a.size(); i++)
    {
        temp = a[i];
        a[i] = prev;
        prev = temp;
    }
    temp = q[0];
    q[0] = prev;
    prev = temp;
    for (int i = 1; i < q.size(); i++)
    {
        temp = q[i];
        g[i] = prev;
        prev = temp;
    }
    return kachra;
void arithmeticLeftShift(vector<bool> &a, vector<bool> &q)
    bool kachra = q[q.size() - 1], prev = a[0], temp;
    for (int i = 0; i < a.size() - 1; i++)
    {
        a[i] = a[i + 1];
    a[a.size() - 1] = q[0];
    for (int i = 0; i < q.size() - 1; i++)
    {
        q[i] = q[i + 1];
    }
int main()
    string qtemp, mtemp;
    vector<bool> q, m, a, negM;
    bool qNeg = 0;
    cout << "Enter m(divisor): ";</pre>
    cin >> mtemp;
    cout << "Enter q(dividend): ";</pre>
    cin >> qtemp;
```

```
int n;
n = qtemp.length();
int count = n;
for (int i = 0; i < n + 1; i++)
{
    a.push_back(0);
}
int mtempNum = (n + 1) - mtemp.length();
while (mtempNum > 0)
{
    m.push_back(0);
    mtempNum--;
}
for (int i = 0; i < qtemp.length(); i++)</pre>
{
    if (qtemp[i] == '1')
        q.push_back(1);
    else
        q.push_back(0);
}
for (int i = 0; i < mtemp.length(); i++)</pre>
    if (mtemp[i] == '1')
        m.push_back(1);
    else
        m.push_back(0);
}
negM = twoSComplement(m);
vector<bool> ans = binaryAddition(m, q, n);
```

```
cout << "\nA\tQ\tn\tAction\n\n";</pre>
while (count)
{
    for (auto x : a)
        cout << x;
    cout << "\t";
    for (auto x : q)
        cout << x;
    cout << "\t" << count << "\t"
         << "Init"
         << "\n";
    arithmeticLeftShift(a, q);
    for (auto x : a)
        cout << x;
    cout << "\t";
    int tempCount = 0;
    for (auto x : q)
    {
        tempCount++;
        cout << ((tempCount == n) ? "_" : to_string(x));</pre>
    cout << "\t" << count << "\t"
         << "Shift LEFT"
         << "\n";
    a = binaryAddition(a, negM, n + 1);
    for (auto x : a)
        cout << x;
    cout << "\t";
    tempCount = 0;
    for (auto x : q)
        tempCount++;
        cout << ((tempCount == n) ? "_" : to_string(x));</pre>
    cout << "\t" << count << "\t"
         << "A-M"
         << "\n";
```

```
if (a[0])
    {
        q[q.size() - 1] = 0;
        a = binaryAddition(a, m, n + 1);
        for (auto x : a)
            cout << x;
        cout << "\t";
        for (auto x : q)
        {
            cout << x;
        cout << "\t" << count << "\t"
             << "Q0<-0, A-M"
             << "\n";
    }
    else
    {
        q[q.size() - 1] = 1;
        for (auto x : a)
            cout << x;
        cout << "\t";
        for (auto x : q)
            cout << x;
        cout << "\t" << count << "\t"
             << "Q0<-1"
             << "\n";
    }
    cout << "\n";
    count--;
};
cout << "Quotient: ";</pre>
for (auto x : q)
    cout << x;
```

```
cout << "\n";
cout << "Remainder: ";
for (auto x : a)
        cout << x;
return 0;
}</pre>
```

Output

Enter m(divisor): 11 Enter q(dividend): 1011				
Α	Q	n	Action	
00000	1011	4	Init	
00001	011_	4	Shift LEFT	
11110	_	4	A-M	
00001	0110	4	Q0<-0, A-M	
00001	0110	3	n	
	110_		Shift LEFT	
	110_		A-M	
00010	_	3	Q0<-0, A-M	
00010	1100		n	
00101	100_	2	Shift LEFT	
00010	100_	2	A-M	
00010	1001	2	Q0<-1	
00010	1001	1	n	
00101			Shift LEFT	
00010	_	1	A-M	
00010	_		Q0<-1	
Quotient: 0011 Remainder: 00010				

	m(diviso q(divide			
Α	Q	n	Action	
00001	1101 101_	4	Init Shift LEFT	
	101_ 1010		A-M Q0<-0, A-M	
	1010 010_		n Shift LEFT	
	010_	3	A-M Q0<-0, A-M	
	0100		N	
00001	100_ 100_ 1001	2	Shift LEFT A-M Q0<-1	
	1001		n	
11110		1	A-M	
	0010		Q0<-0, A-M	
Quotient: 0010 Remainder: 00011				

Non-Restoring Division

Theory

Non-Restoring Division Algorithm is used to divide two unsigned integers. This algorithm is used in Computer Organization and Architecture The algorithm is more complex but has the advantage when implemented in hardware that there is only one decision and addition/subtraction per quotient bit; there is no restoring step after the subtraction, which potentially cuts down the numbers of operations by up to half and lets it be executed faster.

First the registers are initialized with corresponding values (Q = Dividend, M = Divisor, A = 0, n = number of bits in dividend). Here, register <math>Q contain quotient and register A contain remainder. Here, n-bit dividend is loaded in Q and divisor is loaded in M. Value of Register is initially kept Q. Non-restoring division uses the digit set Q the quotient digits instead of Q and Q and Q are Q to Q the quotient digits instead of Q and Q are Q to Q and Q are Q and Q are Q and Q are Q are Q and Q are Q and Q and Q are Q and Q are Q are Q are Q are Q and Q are Q are Q and Q are Q are Q and Q are Q are Q are Q are Q and Q are Q are Q and Q are Q are Q and Q are Q and Q are Q are Q and Q are Q are Q and Q are Q and Q are Q are Q and Q are Q and Q are Q are Q and Q are Q and Q are Q are Q are Q and Q are Q and Q are Q are Q and Q are Q are Q are Q are Q and Q are Q are Q and Q are Q and Q are Q and Q are Q and Q are Q are

Algorithm

The basic algorithm for binary (radix 2) non-restoring division of non-negative numbers is:

In simpler terms, let the dividend be Q and the divisor be M and the accumulator A=0. Therefore:

- 1. First the registers are initialized with corresponding values
- 2. Check the sign bit of register A
- 3. If it is 1 shift left content of AQ and perform A = A+M, otherwise shift left AQ and perform A = A-M
- 4. If sign bit of register A is 1 Q[0] become 0 otherwise Q[0] become 1

Q=1101

- 5. Decrements value of N by 1, If N is not equal to zero go to Step 2
- 6. If sign bit of A is 1 then perform A = A+M

M=0100

Example

Problem: 13/4

		•		
N	M	A	Q	Operation
4	0100	0000	1101	Initialization
	0100	0001	101-	LS, N=N-1
	0100	1101	101-	A=A-M
	0100	1101	1010	
3	0100	1101	1010	

-M=1100

N=4

	0100	1011	010-	LS, N=N-1
	0100	1111	010-	A=A+B
	0100	1111	0100	
2	0100	1111	0100	
	0100	1110	100-	LS, N=N-1
	0100	0010	100-	A=A+B
	0100	0010	1001	
1	0100	0010	1001	
	0100	0101	001-	LS, N=N-1
	0100	0001	001-	A=A-B
	0100	0001	0011	Termination

Result: Quotient: 0011 Remainder: 0001

Flowchart

Code

```
Write up
4. Output
#include <bits/stdc++.h>
using namespace std;
vector<bool> oneSComplement(vector<bool> num)
    for (int i = 0; i < num.size(); i++)
        num[i] = !num[i];
    return num;
vector<bool> twoSComplement(vector<bool> num)
    num = oneSComplement(num);
    if (num[num.size() - 1])
        num[num.size() - 1] = 0;
        num[num.size() - 2] = 1;
    }
    else
        num[num.size() - 1] = 1;
    return num;
vector<bool> binaryAddition(vector<bool> a, vector<bool> b, int n)
    vector<bool> ans(n);
    bool carry = 0;
    for (int i = n - 1; i >= 0; i--)
```

```
if (a[i] == 1 \&\& b[i] == 1 \&\& carry)
                                {
                                                ans[i] = 1;
                                               carry = 1;
                                else if ((a[i] == 1 \&\& b[i] == 1) || (((a[i] == 1) || (b[i] == 1
1)) && carry))
                               {
                                                ans[i] = 0;
                                                carry = 1;
                                }
                                else
                                {
                                                ans[i] = a[i] + b[i] + carry;
                                                carry = 0;
                                }
                }
                return ans;
bool arithmeticRightShift(vector<bool> &a, vector<bool> &g)
                bool kachra = q[q.size() - 1], prev = a[0], temp;
                for (int i = 1; i < a.size(); i++)
                {
                                temp = a[i];
                               a[i] = prev;
                               prev = temp;
                temp = q[0];
                q[0] = prev;
                prev = temp;
                for (int i = 1; i < q.size(); i++)
                {
                               temp = q[i];
                               q[i] = prev;
                                prev = temp;
                return kachra;
void arithmeticLeftShift(vector<bool> &a, vector<bool> &q)
                bool kachra = q[q.size() - 1], prev = a[0], temp;
                for (int i = 0; i < a.size() - 1; i++)
```

```
{
        a[i] = a[i + 1];
    a[a.size() - 1] = q[0];
    for (int i = 0; i < q.size() - 1; i++)
        q[i] = q[i + 1];
    }
int main()
    string qtemp, mtemp;
    vector<bool> q, m, a, negM;
    bool qNeg = 0;
    cout << "Enter m: ";</pre>
    cin >> mtemp;
    cout << "Enter q: ";</pre>
    cin >> qtemp;
    int n;
    n = qtemp.length();
    int count = n;
    for (int i = 0; i < n + 1; i++)
    {
        a.push_back(0);
    }
    int mtempNum = (n + 1) - mtemp.length();
    while (mtempNum > 0)
    {
       m.push_back(0);
```

```
mtempNum--;
}
for (int i = 0; i < qtemp.length(); i++)</pre>
    if (qtemp[i] == '1')
        q.push_back(1);
    else
        q.push_back(0);
for (int i = 0; i < mtemp.length(); i++)</pre>
{
    if (mtemp[i] == '1')
        m.push_back(1);
    else
        m.push_back(0);
}
// Calculating the -M
negM = twoSComplement(m);
vector<bool> ans = binaryAddition(m, q, n);
cout << "\nA\tQ\tn\tAction\n\n";</pre>
while (count)
{
    for (auto x : a)
        cout << x;
    cout << "\t";
    for (auto x : q)
        cout << x;
    cout << "\t" << count << "\t"
         << (count == n ? "Init" : "n--")
         << "\n";
    arithmeticLeftShift(a, q);
    for (auto x : a)
        cout << x;
    cout << "\t";
    int tempCount = 0;
    for (auto x : q)
    {
        tempCount++;
```

```
cout << ((tempCount == n) ? "_" : to_string(x));</pre>
}
cout << "\t" << count << "\t"
     << "Shift LEFT"
     << "\n";
if (a[0])
{
    a = binaryAddition(a, m, n + 1);
    // --- A+M Printing format ---
    for (auto x : a)
        cout << x;
    cout << "\t";
    tempCount = 0;
    for (auto x : q)
    {
        tempCount++;
        cout << ((tempCount == n) ? "_" : to_string(x));</pre>
    cout << "\t" << count << "\t"
         << "A+M"
         << "\n";
    // --- A+M Printing format ---
}
else
{
    a = binaryAddition(a, negM, n + 1);
    for (auto x : a)
        cout << x;
    cout << "\t";
    tempCount = 0;
    for (auto x : q)
    {
        tempCount++;
        cout << ((tempCount == n) ? "_" : to_string(x));</pre>
    cout << "\t" << count << "\t"
         << "A-M"
         << "\n";
}
q[q.size() - 1] = !a[0];
for (auto x : a)
```

```
cout << x;
    cout << "\t";
    tempCount = 0;
    for (auto x : q)
    {
        tempCount++;
        cout << x;
    }
    cout << "\t" << count << "\t"
         << "Q0<-!A(MSB)"
        << "\n\n";
    count--;
};
if (a[0])
{
    a = binaryAddition(a, m, n + 1);
    for (auto x : a)
        cout << x;
    cout << "\t";
    int tempCount = 0;
    for (auto x : q)
    {
        tempCount++;
        cout << x;
    }
    cout << "\t" << count << "\t"
        << "A<0, A+M"
         << "\n\n";
}
cout << "Quotient: ";</pre>
for (auto x : q)
    cout << x;
cout << "\n";
cout << "Remainder: ";</pre>
for (auto x : a)
    cout << x;
return 0;
```

Output

Enter (n: 11 q: 1011			
Α	Q	n	Action	
00000	1011	4	Init	
00001	011_	4	Shift LEFT	
11110	011_	4	A-M	
11110	0110	4	Q0<-!A(MSB)	
11110	0110	3	n	
	110_		Shift LEFT	
11111			A+M	
11111	1100	3	Q0<-!A(MSB)	
	4400			
		2	n	
	100_		Shift LEFT	
00010	_		A+M	
00010	1001	2	Q0<-!A(MSB)	
00010	1001	1	n	
00101	001_	1	Shift LEFT	
00010	001_	1	A-M	
00010	0011	1	Q0<-!A(MSB)	
Quotient: 0011 Remainder: 00010				

Enter m	: 11				
Enter o	: 111				
Α	Q	n	Action		
0000	111	3	Init		
0001	11_	3	Shift LEFT		
1110	11_	3	A-M		
1110	110	3	Q0<-!A(MSB)		
1110	110	2	n		
1101	10_	2	Shift LEFT		
0000	10_	2	A+M		
0000	101	2	Q0<-!A(MSB)		
0000	101	1	n		
0001	01_	1	Shift LEFT		
1110	01_	1	A-M		
1110	010	1	Q0<-!A(MSB)		
0001	010	0	A<0, A+M		
Quotient: 010					
Remainder: 0001					

Conclusion

The restorative division algorithm is an efficient way to perform binary division compared to traditional subtractive based algorithms by using the faster processed bit shift commands in the CPU registers. The algorithm is simple enough to be implemented in hardware in equipment like Arithmometers while also generalising to complex modern day systems. The algorithm serves as a good example in showing that considering lower-level system dependencies and physical limitations can be used to optimize algorithms.

The non-restorative division algorithm is an efficient way to perform binary division compared to traditional subtractive based algorithms by using the faster processed bit shift commands in the CPU registers. The algorithm serves as a good example in showing that considering lower-level system dependencies and physical limitations can be used to optimize algorithms. Non-restorative algorithm is more efficient than restorative algorithm as it uses simpler commands in terms of addition and subtraction however it is slower than other algorithms.