Previously, we Found the volume of a solid of revolution using <u>Planes</u>.

We can also find the volume using cylindrical shells

Question: why do we need a different method?

EX Let R be the region bdd by $f(x) = \sin(x^2)$

We can try using washers we would need $y = \sin(x^2)$ in form x = ... to get r_{in} . That will be difficult to find

Instead we'll use slices that are cylinders.

Lecture # 04: Volume by Thella

Pate: Wed. 9/19/18

In aD:

Straight line (planar) Slices

Circular slices like rings of a tree

Slicing are "sine bowl" Using a Cylinder gives

which essentially splits the bowl into infinely many concentric, nested shells

Lecture # 04: Volume by Thella

Pate: Wed. 9/19/18

Question: Can we calculate the one of this shell?

area = 2 Trh

So, we need to know a things For each shew the radius & the neight

The vertical line segment generates the snew

$$\Gamma = x$$
, $h = \sin(x^2)$
 $=$ area = $a\pi rh$

$$= 2\pi \times \sin(x^2)$$

Since X is keeping track of the shells \$ the range of X - values is O to $\frac{\pi}{2}$:

Volume =
$$\int_{0}^{\frac{\pi}{4}} 2\pi x \sin(x^{2}) dx$$
onea of shell

Date: Wed. 9/19/18

Lecture # 04: Volume by Thella

Volume =
$$\int_{0}^{\frac{\pi}{2}} 2\pi x \sin(x^{2}) dx$$

$$\mu = \int_{0}^{\infty} 2\pi x \sin(x^{2}) dx$$

$$= 2\pi \int_{0}^{\infty} x \sin(x^{2}) dx$$

$$du = 2 \times dx \implies \frac{1}{2} du = x dx$$

$$X = \sqrt{\frac{\pi}{2}}$$

$$X = 0$$

$$U = (\sqrt{\frac{\pi}{2}})^2 = \frac{\pi}{2}$$

$$U = (0)^2 = 0$$

$$\Rightarrow V = 2\pi \int_{0}^{\pi/2} \sin(u) \left(\frac{1}{2} du\right)$$

$$= \pi \int_{0}^{\pi/2} \sin(u) du$$

$$= -\pi \cos(u) \int_{0}^{\pi/2}$$

Lecture # 04: Volume by Thella

Pate: Wed. 9/19/18

Ex) Find the volume of the solid Formed when the region bdd by $y = \sin(x)$ 4 $y = 1 - \sin(x)$ when $x = \frac{\pi}{6}$ a $x = \frac{5\pi}{6}$ is revolved about the x-axis

which type or slice should we use?

Vertical washers?

Horizontal Shells

