

40ns、微功耗、推挽输出比较器

查询样品: TLV3201, TLV3202

特性

- 低传播延迟: 40ns
- 低静态电流 每通道 40µA
- 输入共模扩展范围扩展到任一电源轨之上 200mV
- 低输入偏移电压: 1mV
- 推挽输出
- 电源范围: +2.7V 至 +5.5V
- 工业温度范围:
 - -40°C 至 +125°C
- 小型封装:

SC70-5、小外形尺寸晶体管封装 (SOT)23-5、小外 形尺寸集成电路封装 (SOIC)-8、微型小外形尺寸封 装 (MSOP)-8

应用范围

- 检测设备
- 测试和测量
- 高速采样系统
- 电信
- 便携式通信

说明

TLV3201 和 TLV3202 是单通道和双通道比较器,此 比较器能够在极小型封装内提供高速 (40ns) 和低功耗 (40µA) 的最终组合,此封装具有诸如轨到轨输入、低 偏移电压 (1mV)、和高输出驱动电流等特性。 在对响 应时间要求严格的多种应用中也可轻松执行此器件。

TLV320x 系列产品可提供单通道 (TLV3201) 和双通道 (TLV3202) 版本,这两个版本的器件都带有推挽输 出。 TLV3201 采用 SOT23-5 和 SC70-5 封装。 TLV3202 采用 SOIC-8 和 MSOP-8 封装。 所有器件 可在扩展的工业温度范围,即 -40°C 至 +125°C,内运 行。

相关产品

器件	说明
TLV3011	1.5mm x 1.5mm 微型封装内的 5μA(最大值)开漏 电流、具有集成电压基准的 1.8V 至 5.5V 电压
TLV3012	微型封装内的 5μA(最大值)推挽电流、具有集成电压基准的 1.8V 至 5.5V 电压
TLV3501	微型封装内的 4.5ns、轨到轨、推挽比较器
LMV7235	带有开漏输出的 75ns , 65μA , 2.7V 至 5.5V ,轨到轨输入比较器
REF3333	30ppm/°C 漂移、3.9μA、SOT23-3、SC70-3 电压基 准

DAND DGK PACKAGES SOIC-8 AND MSOP-8 (TOP VIEW)

DCK AND DBV PACKAGES SC70-5 AND SOT23-5 (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE ORDERING INFORMATION(1)

PRODUCT	PACKAGE-LEAD ⁽²⁾	PACKAGE DESIGNATOR	PACKAGE MARKING	ORDERING NUMBER
TI \/2204	SOT23-5	DBV	RAI	TLV3201AIDBV
TLV3201	SC70-5	DCK	SDP	TLV3201AIDCK
TI \/2200	SOIC-8	D	TL3202	TLV3202AID
TLV3202	MSOP-8	DGK	VUDC	TLV3202AIDGK

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and printed circuit board (PCB) design guidelines are available at www.ti.com/sc/package.

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature range, unless otherwise noted.

		VALUE	UNIT		
Supply voltage		7	V		
Cinnal innut to main als	Voltage ⁽²⁾	-0.5 to (V _{CC}) + 0.5	V		
Signal input terminals	Current ⁽²⁾	±10	mA		
Output short circuit (3)		100	mA		
Operating temperature range		-55 to +125	°C		
Storage temperature range, T _s	g	-65 to +150	°C		
Junction temperature, T _J		+150	°C		
Electrostatic discharge (ESD) ratings TLV3201	Human body model (HBM)	2000	V		
Electrostatic discharge (ESD) ratings TLV3202	Human body model (HBM)	1000	V		

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ All voltage values are with respect to the network ground terminal.

Short-circuit to ground.

ELECTRICAL CHARACTERISTICS: $V_{CC} = 5.0 \text{ V}$

At T_A = +25°C and V_{CC} = 5.0 V, unless otherwise noted.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET V	OLTAGE					ır.	
V _{IO}	Input offset voltage		$V_{CM} = V_{CC} / 2$		1	5	mV
*10	Input onoot voltago		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			6	mV
dV _{OS} /dT	Input offset voltage drift		$T_A = -40$ °C to +125°C		1	10	μV/°C
PSRR	Power-supply rejection ra	atio	$V_{CM} = V_{CC} / 2$, $V_{CC} = 2.5 \text{ V to } 5.5 \text{ V}$	65	85		dB
	Input hysteresis				1.2		mV
INPUT BIA	AS CURRENT						
I _{IB}	Input bias current		$V_{CM} = V_{CC} / 2$		1	50	pA
чв	input bias current		$T_A = -40$ °C to +125°C			5	nA
L	Input offset current		$V_{CM} = V_{CC} / 2$		1	50	pA
I _{IO}	input onset current		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			2.5	nA
INPUT VOI	LTAGE RANGE						
V _{CM}	Common-mode voltage r	range	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	$(V_{EE}) - 0.2$		$(V_{CC}) + 0.2$	V
CMRR	Common-mode rejection	ratio	$-0.2 \text{ V} < \text{V}_{\text{CM}} < 5.2 \text{ V}$	60	70		dB
INPUT IMP	PEDANCE						
	Common-mode				10 ¹³ 2		Ω pF
	Differential				10 ¹³ 4		Ω pF
SWITCHIN	IG CHARACTERISTICS			1			
			Input overdrive = 20 mV, C _L = 15 pF		47	50	ns
		Low to high	Input overdrive = 100 mV, C _L = 15 pF		43	50	ns
			$T_A = -40$ °C to +125°C			55	ns
t_{pd}	Propagation delay time		Input overdrive = 20 mV, C _L = 15 pF		45	50	ns
		High to low	Input overdrive = 100 mV, $C_L = 15 pF$		42	50	ns
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			55	ns
	Propagation delay skew		Input overdrive = 20mV, C _L = 15 pF		2		ns
	Propagation delay matching (TLV3202)	High to low, Low to High	Input overdrive = 20 mV, C _L = 15 pF			5	ns
t _r	Rise time		10% to 90%		2.9		ns
t _f	Fall time		10% to 90%		3.7		ns
OUTPUT						"	
			I _{SINK} = 4 mA		175	190	mV
V_{OL}		From lower rail	$T_A = -40$ °C to +125°C			225	mV
	Voltage output swing		I _{SOURCE} = 4 mA		120	140	mV
V _{OH}		From upper rail	$T_A = -40$ °C to +125°C			170	mV
	1	1	I _{SC} sinking	40	48		mA
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		See Typical Curve		mA
I _{SC}	Short-circuit current (per	comparator)	I _{SC} sourcing	52	60		mA
			$T_A = -40$ °C to +125°C		See Typical Curve		mA
POWER SI	UPPLY		-			L	
V _{CC}	Specified voltage			2.7		5.5	V
	0.1				40	50	μA
IQ	Quiescent current		$T_A = -40$ °C to +125°C			65	μA
TEMPERA	TURE		•			<u> </u>	
	Specified range			-40		+125	°C
	Storage range			-65		+150	°C

ELECTRICAL CHARACTERISTICS: V_{CC} = 2.7 V

At T_A = +25°C and V_{CC} = 2.7 V, unless otherwise noted.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET V	OLTAGE			1		1	
V _{IO}	Input offset voltage		$V_{CM} = V_{CC} / 2$		1	5	mV
*10	Input onoot voltago		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			6	mV
dV _{OS} /dT	Input offset voltage drift		$T_A = -40$ °C to +125°C		1	10	μV/°C
PSRR	Power-supply rejection ra	atio	$V_{CM} = V_{CC} / 2$, $V_{CC} = 2.5 \text{ V to } 5.5 \text{ V}$	65	85		dB
Input hysteresis				1.2		mV	
INPUT BIA	S CURRENT						
	Input bigg ourrent		$V_{CM} = V_{CC} / 2$		1	50	pA
I _{IB}	Input bias current		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			5	nA
	l		V _{CM} = V _{CC} / 2		1	50	pA
I _{IO}	Input offset current		$T_A = -40$ °C to +125°C			2.5	nA
INPUT VOL	LTAGE RANGE					·	
V _{CM}	Common-mode voltage r	ange	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	(V _{EE}) - 0.2		$(V_{CC}) + 0.2$	V
CMRR	Common-mode rejection	ratio	-0.2 V < V _{CM} < 2.9 V	56	68		dB
INPUT IMP	EDANCE					"	
	Common-mode				10 ¹³ 2		Ω pF
	Differential				10 ¹³ 4		Ω pF
SWITCHIN	G CHARACTERISTICS			I.			
			Input overdrive = 20 mV, C _L = 15 pF		47	50	ns
		Low to high	Input overdrive = 100 mV, C ₁ = 15 pF		42	50	ns
		3	$T_A = -40$ °C to +125°C			55	ns
t _{pd}	Propagation delay time		Input overdrive = 20 mV, C _L = 15 pF		40	50	ns
		High to low	Input overdrive = 100 mV, $C_L = 15 \text{ pF}$		38	50	ns
		i iigii te ieii	$T_A = -40$ °C to +125°C			55	ns
	Propagation delay skew		Input overdrive = 20mV, C _L = 15 pF		2		ns
	Propagation delay matching (TLV3202)	High to low, Low to High	Input overdrive = 20 mV, C _L = 15 pF			5	ns
t _r	Rise time		10% to 90%		4.8		ns
t _f	Fall time		10% to 90%		5.2		ns
OUTPUT				1			
			I _{SINK} = 4 mA		230	260	mV
V_{OL}		From lower rail	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			325	mV
	Voltage output swing		I _{SOURCE} = 4 mA		210	250	mV
V_{OH}		From upper rail	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			350	mV
			I _{SC} sinking	13	19		mA
			$T_A = -40$ °C to +125°C		See Typical Curve		mA
I _{SC}	Short-circuit current (per	comparator)	I _{SC} sourcing	15	21		mA
			$T_A = -40$ °C to +125°C		See Typical Curve		mA
POWER SI	UPPLY		1	1			
V _{CC}	Specified voltage			2.7		5.5	V
					36	46	μA
lQ	Quiescent current		$T_A = -40$ °C to +125°C			60	μA
TEMPERA	TURE						
	Specified range			-40		+125	°C
	Storage range			-65		+150	°C

THERMAL INFORMATION

		TLV:	3201	TLV		
	THERMAL METRIC ⁽¹⁾	DBV (SOT23)	DCK (SC70)	D (SOIC)	DGK (MSOP)	UNITS
		5 PINS	5 PINS	8 PINS	8 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	237.8	281.9	146.3	201.9	
θ_{JCtop}	Junction-to-case (top) thermal resistance	108.7	97.6	97.2	92.5	
θ_{JB}	Junction-to-board thermal resistance	64.1	68.3	84.2	123.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	12.1	2.6	45.5	23.0	*C/VV
Ψ_{JB}	Junction-to-board characterization parameter	63.3	67.3	83.7	121.6	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	

(1) 有关传统和全新热度量的更多信息,请参阅 IC 封装热度量 应用报告 (文献号:SPRA953)。

PIN CONFIGURATIONS

SOIC-8 AND MSOP-8 (TOP VIEW)

D AND DGK PACKAGES

DCK AND DBV PACKAGES SC70-5 AND SOT23-5 (TOP VIEW)

PIN DESCRIPTIONS: D, DGK

NAME	NO.	DESCRIPTION
1IN-	2	Negative input, comparator 1
1IN+	3	Positive input, comparator 1
1OUT	1	Output, comparator 1
2IN-	6	Negative input, comparator 2
2IN+	5	Positive input, comparator 2
2OUT	7	Output, comparator 2
GND	4	Negative supply, ground
V _{CC}	8	Positive supply

PIN DESCRIPTIONS: DCK, DBV

NAME	NO.	DESCRIPTION
OUT	1	Output
GND	2	Negative supply, ground
IN+	3	Positive input
V _{CC}	5	Positive supply
IN-	4	Negative input

TYPICAL CHARACTERISTICS

At T_A = +25°C, V_{CC} = +5 V, and input overdrive (V_{OD}) = 20 mV, unless otherwise noted.

Figure 4.

OFFSET VOLTAGE vs POWER SUPPLY

TYPICAL CHARACTERISTICS (continued)

At $T_A = +25$ °C, $V_{CC} = +5$ V, and input overdrive $(V_{OD}) = 20$ mV, unless otherwise noted.

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs TEMPERATURE

9....

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs COMMON-MODE INPUT VOLTAGE

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs COMMON-MODE INPUT VOLTAGE

QUIESCENT CURRENT DISTRIBUTION

Figure 11.

QUIESCENT CURRENT vs SUPPLY VOLTAGE

Figure 12.

TYPICAL CHARACTERISTICS (continued)

At $T_A = +25$ °C, $V_{CC} = +5$ V, and input overdrive $(V_{OD}) = 20$ mV, unless otherwise noted.

QUIESCENT CURRENT vs SWITCHING FREQUENCY

Figure 13.

SHORT-CIRCUIT CURRENT vs TEMPERATURE

Figure 14.

OUTPUT VOLTAGE vs OUTPUT CURRENT

Figure 15.

OUTPUT VOLTAGE vs OUTPUT CURRENT

Figure 16.

PROPAGATION DELAY FALLING EDGE

Figure 17.

Figure 18.

TYPICAL CHARACTERISTICS (continued)

At $T_A = +25$ °C, $V_{CC} = +5$ V, and input overdrive $(V_{OD}) = 20$ mV, unless otherwise noted.

PROPAGATION DELAY vs COMMON-MODE VOLTAGE

Figure 21.

PROPAGATION DELAY vs COMMON-MODE VOLTAGE

PROPAGATION DELAY vs CAPACITIVE LOAD

Figure 24.

APPLICATION INFORMATION

The TLV3201 and TLV3202 are single- and dual-supply (respectively), push-pull comparators featuring 40 ns of propagation delay on only 40 μ A of supply current. This combination of fast response time and minimal power consumption make the TLV3201 and TLV3202 excellent comparators for portable, battery-powered applications as well as fast-switching threshold detection such as pulse-width modulation (PWM) output monitors and zero-cross detection.

COMPARATOR INPUTS

The TLV3201 and TLV3202 are rail-to-rail input comparators, with an input common-mode range that exceeds the supply rails by 200 mV for both positive and negative supplies. The devices are specified from 2.7 V to 5.5 V, with room temperature operation from 2.5 V to 5.5 V. The TLV3201 and TLV3202 are designed to prevent phase inversion when the input pins exceed the supply voltage. Figure 25 shows the TLV320x response when input voltages exceed the supply, resulting in no phase inversion.

Figure 25. No Phase Inversion: Comparator Response to Input Voltage (Prop Delay Included)

The electrostatic discharge (ESD) protection input structure of two back-to-back diodes and 1-k Ω series resistors are used to limit the differential input voltage applied to the precision input of the comparator by clamping input voltages that exceed V_{CC} beyond the specified operating conditions. If potential overvoltage conditions that exceed absolute maximum ratings are present, the addition of external bypass diodes and resistors is recommended, as shown in Figure 26. Large differential voltages greater than the supply voltage should be avoided to prevent damage to the input stage.

Figure 26. TLV3201 equivalent input structure

EXTERNAL HYSTERESIS

The TLV3201 and TLV3202 have a hysteresis transfer curve (shown in Figure 27) that is a function of the following three components:

- V_{TH}: the actual set voltage or threshold trip voltage
- V_{OS} : the internal offset voltage between V_{IN+} and V_{IN-} . This voltage is added to V_{TH} to form the actual trip point at which the comparator must respond in order to change output states.
- V_{HYST}: internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise.

Figure 27. TLV3201 Hysteresis Transfer Curve

Inverting Comparator With Hysteresis

The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply voltage (V_{CC}), as shown in Figure 28. When V_{IN} at the inverting input is less than V_A , the output voltage is high (for simplicity assume V_O switches as high as V_{CC}). The three network resistors can be represented as R1 || R3 in series with R2. The lower input trip voltage (V_{A1}) is defined by Equation 1:

$$V_{A1} = V_{CC} \times \frac{R2}{(R1 || R3) + R2}$$
 (1)

When V_{IN} is greater than $[V_A \times (V_{IN} > V_A)]$, the output voltage is low, very close to ground. In this case, the three network resistors can be presented as R2 || R3 in series with R1. The upper trip voltage (V_{A2}) is defined by Equation 2:

$$V_{A2} = V_{CC} \times \frac{R2 \parallel R3}{R1 + (R2 \parallel R3)}$$
 (2)

The total hysteresis provided by the network is defined by Equation 3:

$$\Delta V_{A} = V_{A1} - V_{A2} \tag{3}$$

Figure 28. TLV3201 in Inverting Configuration with Hysteresis

Noninverting Comparator with Hysteresis

A noninverting comparator with hysteresis requires a two-resistor network, as shown in Figure 29, and a voltage reference (V_{REF}) at the inverting input. When V_{IN} is low, the output is also low. For the output to switch from low to high, V_{IN} must rise up to V_{IN1} . V_{IN1} is calculated by Equation 4:

$$V_{IN1} = R1 \times \frac{V_{REF}}{R2} \times V_{REF} \tag{4}$$

When V_{IN} is high, the output is also high. In order for the comparator to switch back to a low state, V_{IN} must equal V_{REF} before V_A is again equal to V_{REF} . V_{IN} can be calculated by Equation 5:

$$V_{IN2} = \frac{V_{REF} (R1 + R2) - V_{CC} \times R1}{R2}$$
 (5)

The hysteresis of this circuit is the difference between V_{IN1} and V_{IN2}, as defined by Equation 6.

$$\Delta V_{IN} = V_{CC} \times \frac{R1}{R2} \tag{6}$$

Figure 29. TLV3201 in Noninverting Configuration with Hysteresis

CAPACITIVE LOADS

The TLV3201 and TLV3202 feature a push-pull output. When the output switches, there is a direct path between V_{CC} and ground, causing increased output sinking or sourcing current during the transition. Following the transition the output current decreases and supply current returns to 40 μ A, thus maintaining low power consumption. Under reasonable capacitive loads, the TLV3201 and TLV3202 maintain specified propagation delay (see the Typical Characteristics), but excessive capacitive loading under high switching frequencies may increase supply current, propagation delay, or induce decreased slew rate.

CIRCUIT LAYOUT

The TLV3201 and TLV3202 are fast-switching, high-speed comparators and require high-speed layout considerations. For best results, the following layout guidelines should be maintained:

- 1. Use a printed circuit board (PCB) with a good, unbroken low-inductance ground plane.
- 2. Place a decoupling capacitor (0.1-µF ceramic, surface-mount capacitor) as close as possible to V_{CC}.
- 3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback around the comparator. Keep inputs away from the output.
- 4. Solder the device directly to the PCB rather than using a socket.
- 5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less) placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some degradation to propagation delay when the impedance is low. The topside ground plane runs between the output and inputs.
- 6. The ground pin ground trace runs under the device up to the bypass capacitor, shielding the inputs from the outputs.

APPLICATIONS CIRCUITS

One of the benefits of ac coupling a single-supply comparator circuit is that it can block dc offsets induced by ground-loop offsets that could potentially produce either a false trip or a common-mode input violation. Figure 30 shows the TLV3201 configured as an ac-coupled comparator.

Figure 30. TLV3201 Configured as an AC-Coupled Comparator

Figure 31 shows a single-supply current monitor configured as a difference amplifier with a gain of 50. The OPA320 was chosen for this circuit because of its gain bandwidth (20 MHz), which allows higher speed triggering and monitoring of the current across the shunt resistor followed by the fast response of the TLV3201.

Figure 31. TLV3201 and OPA320 Configured as a Fast-Response Output Current Monitor

Figure 32 shows the TMP20 and TLV3201 designed as a high-speed temperature switch. The TMP20 is an analog output temperature sensor where output voltage decreases with temperature. The comparator output is tripped when the output reaches a critical trip threshold.

Figure 32. TLV3201 and TMP20 Configured as a Precision Analog Temperature Switch

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Ch	nanges from Original (March 2012) to Revision A	Pag	е
•	Changed 产品状态从生产数据到混合状态		1
•	Added 双通道器件		1

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
TLV3201AIDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	RAI	Samples
TLV3201AIDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	RAI	Samples
TLV3201AIDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	SDP	Samples
TLV3201AIDCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	SDP	Samples
TLV3202AID	ACTIVE	SOIC	D	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TL3202	Samples
TLV3202AIDGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	VUDC	Samples
TLV3202AIDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	VUDC	Samples
TLV3202AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TL3202	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

11-Apr-2013

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Aug-2014

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV3201AIDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV3201AIDBVT	SOT-23	DBV	5	250	178.0	8.4	3.3	3.2	1.4	4.0	8.0	Q3
TLV3201AIDCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV3201AIDCKT	SC70	DCK	5	250	178.0	8.4	2.4	2.5	1.2	4.0	8.0	Q3
TLV3202AIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV3202AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 18-Aug-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV3201AIDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV3201AIDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV3201AIDCKR	SC70	DCK	5	3000	190.0	190.0	30.0
TLV3201AIDCKT	SC70	DCK	5	250	190.0	190.0	30.0
TLV3202AIDGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
TLV3202AIDR	SOIC	D	8	2500	367.0	367.0	35.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4073253/P

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC MO-178.

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC MO-178.

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

重要声明

德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。

TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。

复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

买方和在系统中整合 TI 产品的其他开发人员(总称"设计人员")理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且应全权负责并确保应用的安全性,及设计人员的应用(包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何应用前,将彻底测试该等应用和和该等应用所用 TI 产品的功能而设计。

TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称"TI 资源"),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。

TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。

设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时,才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

TI 资源系"按原样"提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔偿,TI 概不负责。

除 TI 己明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担任何责任。

如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准而设计。设计人员不可将任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的所有医疗设备。

TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。

设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2018 德州仪器半导体技术(上海)有限公司