# Uebungsblatt 02

Truong (Hoang Tung Truong, 3080216), Testfran (Minh Kien Nguyen, 3157116), Hamdash

## Aufgabe 1 und 2



## Aufgabe 3

- a. Sei T(Fm) Schachtelungstiefe einer Formel Fm:
- 1. T(Fm) := 0 Falls Fm eine atomare Formel ist
- 2.  $T(Fm) := 1 + Max(T(Fm_1), T(Fm_2))$  falls
  - $Fm = (Fm_1 \vee Fm_2)$  oder
  - $Fm = (Fm_1 \wedge Fm_2)$  oder
  - $Fm = (Fm_1 \to Fm_2)$  oder
  - $Fm = (Fm_1 \leftrightarrow Fm_2)$
- 3.  $T(Fm) := T(Fm_1)$  falls  $Fm = \neg Fm_1$
- b. **Behauptung:** Die Anzahl der Klammern in einer aussagenlogischen Formel ist stets gerade.

Definiere für beliebige Formel Fm:

K(Fm) = Anzahl der Klammern in der Formel Fm:

- 1. K(Fm) := 0 Falls Fm eine atomare Formel ist
- 2.  $K(Fm) := 2 + K(Fm_1) + K(Fm_2)$  falls
  - $Fm = (Fm_1 \vee Fm_2)$  oder
  - $Fm = (Fm_1 \wedge Fm_2)$  oder

$$Fm = (Fm_1 \to Fm_2) \text{ oder}$$
  
 $Fm = (Fm_1 \leftrightarrow Fm_2)$ 

3.  $K(Fm) := K(Fm_1)$  falls  $Fm = \neg Fm_1$ 

**Behauptung:**  $\forall Fm \text{ gilt } 2|K(Fm)$ 

Hier 
$$E(Fm) := (2|K(Fm))$$

#### Beweis:

- 1. Ist Fm = A atomar, dann gilt K(A) = 0 und daraus 2|K(A), also es gilt E(A)Annahme: Seien  $Fm_1, Fm_2$  beliebige Formel Es gelten  $E(Fm_1)$  und  $E(Fm_2)$  also  $(2|K(Fm_1))$  und  $(2|K(Fm_2))$
- 2. Induktionsschritt: Für  $Fm = Fm_1 \vee Fm_2$  gilt:

$$K(Fm) = 2 + K(Fm_1) + K(Fm_2)$$
  
Aus  $2|2, 2|K(Fm_1)$  und  $2|K(Fm_2)$  folgt  $2|K(Fm)$ , d.h es gilt  $E(Fm)$   
analog mit  $(\land), (\rightarrow)$  und  $(\leftrightarrow)$ 

3. Für 
$$Fm = \neg Fm_1$$
 gilt  $K(Fm) = K(Fm_1)$   
Aus  $2|K(Fm_1)$  folgt  $2|K(Fm)$ , d.h es gilt  $E(Fm)$ 

Also  $\forall Fm \text{ gilt } 2|K(Fm)$ 

## Aufgabe 4

**Behauptung:** Für alle F mit  $A \notin Var(F)$  und jede Belegung  $\alpha$  gilt  $\hat{\alpha}_{[A \mapsto 0]}(F) = \hat{\alpha}(F)$ **Beweis:** 

1. Ist F = At atomar, dann gilt

$$RHS = \hat{\alpha}(F) = \hat{\alpha}(At) = \alpha(At)$$
 
$$LHS = \hat{\alpha}_{[A\mapsto 0]}(F) = \hat{\alpha}_{[A\mapsto 0]}(At) = \alpha_{[A\mapsto 0]}(At) = \alpha(At) \text{ (da } A \notin Var(F) \Rightarrow A \neq At)$$
 also  $\hat{\alpha}_{[A\mapsto 0]}(At) = \hat{\alpha}(At)$ 

Annahme: Seien  $F_1, F_2$  beliebige Formel mit  $A \notin Var(F_1)$  und  $A \notin Var(F_2)$ Es gelten  $\hat{\alpha}_{[A \mapsto 0]}(F_1) = \hat{\alpha}(F_1)$  und  $\hat{\alpha}_{[A \mapsto 0]}(F_2) = \hat{\alpha}(F_2)$ 

#### 2. Induktionsschritt:

• Für 
$$F = F_1 \vee F_2$$
 gilt:  $LHS = \hat{\alpha}_{[A \mapsto 0]}(F) = \hat{\alpha}_{[A \mapsto 0]}(F_1 \vee F_2)$   
 $= \hat{\alpha}_{[A \mapsto 0]}(F_1) \mid \hat{\alpha}_{[A \mapsto 0]}(F_2)$   
 $= \hat{\alpha}(F_1) \mid \hat{\alpha}(F_2)$   
 $= \hat{\alpha}(F_1 \vee F_2) = \hat{\alpha}(F) = RHS$ 

• Für 
$$F = F_1 \wedge F_2$$
 gilt:  
 $LHS = \hat{\alpha}_{[A \mapsto 0]}(F_1 \wedge F_2)$   
 $= \hat{\alpha}_{[A \mapsto 0]}(F_1) \& \hat{\alpha}_{[A \mapsto 0]}(F_2)$   
 $= \hat{\alpha}(F_1)\&\hat{\alpha}(F_2)$   
 $= \hat{\alpha}(F_1 \wedge F_2) = \hat{\alpha}(F) = RHS$ 

- Für  $\leftrightarrow \rightarrow analog$
- 3. Für  $F = \neg F_1$  gilt:

$$LHS = \hat{\alpha}_{[A \mapsto 0]}(F) = \hat{\alpha}_{[A \mapsto 0]}(\neg F_1)$$
  
=!\hat{\alpha}\_{[A \ho 0]}(F\_1)  
=!\hat{\alpha}(F\_1) = \hat{\alpha}(\neg F\_1) = \hat{\alpha}(F) = RHS

Also: Für alle F mit  $A\notin Var(F)$  und jede Belegung  $\alpha$  gilt  $\hat{\alpha}_{[A\mapsto 0]}(F)=\hat{\alpha}(F)$