CMIP6 Model Documentation

Institute: BCC

Model: BCC-CSM2-HR Atmosphere

Doc. Generated: 2018-12-16

Doc. Seeded From: N/A

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	10
4	Radiation	16
5	Turbulence Convection	29
6	Microphysics Precipitation	34
7	Cloud Scheme	36
8	Observation Simulation	40
9	Gravity Waves	43
10	Natural Forcing	47

1 Key Properties

Atmosphere key properties

1	.1.1	Top	level	pro	perties

Allicospilete neu propertie	Atmospi	here	key	propertie.
-----------------------------	---------	------	-----	------------

1.1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

Enter TEXT:

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPERATED list:

1.1.1.3 Overview *

Overview of atmos model.

Enter TEXT:

1.1.1.4 Model Family *

 $Type\ of\ atmospheric\ model.$

Select	SINGLE	option:

AGCM - Atmospheric General Circulation Model
ARCM - Atmospheric Regional Climate Model
Other - please specify:

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

Select MULTIPLE options:

Ш	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
	Hydrostatic
	Quasi-hydrostatic
П	Other - please specify:

1.2.1 Resolution

Characteristics of the model resolution

1.2.1.1 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

Enter TEXT:

1.2.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

Enter TEXT:

1.2.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Enter TEXT:

1.2.1.4 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

Enter INTEGER value:

1.2.1.5 High Top *

Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top above the stratopause.

Sele	ct either	TRUE or	FALSE:
	True		False

1.3.1 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1.1 Timestep Dynamics *

Timestep for the dynamics in seconds

Enter INTEGER value:

1.3.1.2 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

Enter INTEGER value:

1.3.1.3 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

1.4.1 Orography

Characteristics of the model orography

1 1 1 1	True *		
1.4.1.1	Type *		
Type of o	rographic representation.		
Selec	t SINGLE option:		
	Fixed: present day		
	Fixed: modified - Provide details of modification below		
	Other - please specify:		
1.4.1.2	Modified		
If the orography type is modified describe the adaptation.			
Selec	t MULTIPLE options:		
	Related to ice sheets		
	Related to tectonics		
	Modified mean		
	Modified variance if taken into account in model (cf gravity waves)		
	Other - please specify:		

1.4.1.3 Time-varying

 $Describe\ any\ time\ varying\ orographic\ change$

Enter TEXT:

1.5.1 Tuning Applied

 $Tuning\ methodology\ for\ atmospheric\ component$

1.5.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.1.2 Global Mean Metrics Used

 $List\ set\ of\ metrics\ of\ the\ global\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

1.5.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

1.5.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPERATED list:

2 Grid

 $Atmosphere\ grid$

2.1.1 Top level properties

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.1.2 Overview

Overview of grid in atmos model.

Enter TEXT:

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1 Scheme Type *

 $Horizontal\ discretisation\ type$

Spectral
Fixed grid
Other - please specify:

Select SINGLE option:

2.1.2.2 Scheme Method *

 $Horizontal\ discretisation\ method$

Select SINGLE option:

Finite elements

Finite volumes

Finite difference

Centered finite difference

2.1.2.3 Scheme Order *

 $Horizontal\ discretisation\ function\ order$

Select SINGLE option:

	Second					
	Third					
	Fourth					
	Other - please specify:					
2.1.2.4	Horizontal Pole					
Horizonta	l discretisation pole singularity treatment					
Select	t SINGLE option:					
	Filter					
	Pole rotation					
	Artificial island					
	Other - please specify:					
2125	Grid Type *					
	· -					
	Horizontal grid type Select SINGLE option:					
Selec						
	Gaussian					
	Latitude-Longitude					
	Cubed-Sphere					
	Icosahedral					
	Other - please specify:					
2.1.3 V	Vertical					
	there discretisation in the vertical					
21011103p11	and discretisations in the vertical					
2.1.3.1	Coordinate Type *					
Type of vertical coordinate system						
Select MULTIPLE options:						
	Isobaric - Vertical coordinate on pressure levels					
	Sigma - Allows vertical coordinate to follow model terrain					
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above					
	Hybrid pressure					
	Vertically lagrangian					

Other - please specify:

Dynamical Core 3

Characteristics of the dynamical core

3.	1	.1	Top	level	pro	perties

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

3.1.1.2 Overview

Overview of characteristics of the dynamical core in atmos model.

Enter TEXT:

3.1.1.3 Timestepping Type *

Divergence/curl

Tim

Timestepping framework type				
Select SINGLE option:				
	Adams-Bashforth			
	Explicit			
	Implicit			
	Semi-implicit			
	Leap frog			
	Multi-step			
	Runge Kutta fifth order			
Runge Kutta second order				
Runge Kutta third order				
	Other - please specify:			
3.1.1.4 Prognostic Variables *				
List of the model prognostic variables				
Select	t MULTIPLE options:			
	Surface pressure			
	Wind components			

	Temperature
	Potential temperature
	Total water
	Water vapour
	Water liquid
	Water ice
	Total water moments
	Clouds
	Radiation
	Other - please specify:
3.2.1	Top Boundary
	boundary layer at the top of the model
2 2 1 1	Top Boundary Condition *
	dary condition
Sele	ct SINGLE option:
	Sponge layer
	Radiation boundary condition
	Other - please specify:
3.2.1.2	Top Heat *
Top bour	ndary heat treatment
Ente	er TEXT:
3.2.1.3	Top Wind *
Top bour	ndary wind treatment
Ente	er TEXT:
3.3.1	Lateral Boundary
Type of	lateral boundary condition (if the model is a regional model)
3.3.1.1	Condition
Type of l	ateral boundary condition
Sele	ct SINGLE option:

	Sponge layer Radiation boundary condition Other - please specify:
	Diffusion Horizontal
Horizonta	Scheme Name diffusion scheme name TEXT:
Horizonta	Scheme Method * diffusion scheme method E SINGLE option: Iterated Laplacian Bi-harmonic Other - please specify:
3.4.2 T Tracer a	racers dvection scheme
Tracer adv	Scheme Name vection scheme name s SINGLE option: Heun Roe and VanLeer Roe and Superbee Prather UTOPIA Other - please specify:
Tracer adv	Scheme Characteristics * vection scheme characteristics the MULTIPLE options:

	Eulerian
	Modified Euler
	Lagrangian
	Semi-Lagrangian
	Cubic semi-Lagrangian
	Quintic semi-Lagrangian
	Mass-conserving
	Finite volume
	Flux-corrected
	Linear
	Quadratic
	Quartic
	Other - please specify:
	Conserved Quantities * vection scheme conserved quantities
Tracer ad	Conserved Quantities * vection scheme conserved quantities t MULTIPLE options:
Tracer ad	vection scheme conserved quantities
Tracer ad	vection scheme conserved quantities t MULTIPLE options:
Tracer ad	vection scheme conserved quantities t MULTIPLE options: Dry mass
Selection	vection scheme conserved quantities t MULTIPLE options: Dry mass Tracer mass Other - please specify:
Selection Select	t MULTIPLE options: Dry mass Tracer mass
Selection Select	t MULTIPLE options: Dry mass Tracer mass Other - please specify: Conservation Method *
Selection Select	t MULTIPLE options: Dry mass Tracer mass Other - please specify: Conservation Method * vection scheme conservation method
Selection Select	t MULTIPLE options: Dry mass Tracer mass Other - please specify: Conservation Method * vection scheme conservation method t SINGLE option:
Selection Select	t MULTIPLE options: Dry mass Tracer mass Other - please specify: Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer

 $Momentum\ advection\ scheme$

3.4.3.1 Scheme Name Momentum advection schemes name Select SINGLE option: VanLeer Janjic SUPG (Streamline Upwind Petrov-Galerkin) Other - please specify: 3.4.3.2 Scheme Characteristics * $Momentum\ advection\ scheme\ characteristics$ Select MULTIPLE options: 2nd order 4th order Cell-centred Staggered grid Semi-staggered grid Other - please specify: 3.4.3.3 Scheme Staggering Type * Momentum advection scheme staggering type Select SINGLE option: Arakawa B-grid Arakawa C-grid Arakawa D-grid Arakawa E-grid Other - please specify: 3.4.3.4 Conserved Quantities * Momentum advection scheme conserved quantities Select MULTIPLE options: Angular momentum

Horizontal momentum

Ш	Enstrophy
	Mass
	Total energy
	Vorticity
	Other - please specify:
3.4.3.5	Conservation Method *
Momentu	$m\ advection\ scheme\ conservation\ method$
Selec	et SINGLE option:
	Conservation fixer
	Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Enter TEXT:

4.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ atmosphere\ radiation\ process\ in\ atmos\ model.$

Enter TEXT:

4.1.1.3 Aerosols *

Aerosols whose radiative effect is taken into account in the atmosphere model

Select MULTIPLE options:		
	Sulphate	
	Nitrate	
	Sea salt	
	Dust	
	Ice	
	Organic	
	BC - Black carbon / soot	
	SOA - Secondary organic aerosols	
	POM - Particulate organic matter	
	Polar stratospheric ice	
	NAT - Nitric acid trihydrate	
	NAD - Nitric acid dihydrate	
	STS - Supercooled ternary solution aerosol particle	
П	Other - please specify:	

4.2.1 Shortwave Radiation

 $Properties \ of \ the \ shortwave \ radiation \ scheme$

Commonly used name for the shortwave radiation scheme		
Enter	TEXT:	
4.2.1.2	Spectral Integration *	
Shortwave	radiation scheme spectral integration	
Selec	t SINGLE option:	
	Wide-band model	
	Correlated-k	
	Exponential sum fitting	
	Other - please specify:	
4.2.1.3	Transport Calculation *	
Shortwave	e radiation transport calculation methods	
Selec	t MULTIPLE options:	
	Two-stream	
	Layer interaction	
	Bulk - Highly parameterised methods that use bulk expressions	
	Adaptive - Exploits spatial and temporal correlations in optical characteristics	
	Multi-stream	
	Other - please specify:	
4.2.1.4	Spectral Intervals *	
Shortwave	radiation scheme number of spectral intervals	
Enter	NTEGER value:	
4.2.1.5	General Interactions *	
General re	adiative interactions e.g. with aerosols, cloud ice and cloud water	
Selec	t MULTIPLE options:	
	Emission/absorption,	
	Scattering	
	Other - please specify:	

4.2.1.1 Name

4.3.1 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	t MULTIPLE options:	
	CO2 - Carbon Dioxide	
	CH4 - Methane	
	N2O - Nitrous Oxide	
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11	
equivalenc	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a $CFC-12$ ee concentration	
concentrat	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion	
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons	
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $	
	O3	
	H2O	
	Other - please specify:	
4.3.1.2 ODS Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model		
Selec		
	t MULTIPLE options:	
	t MULTIPLE options: CFC-12 - CFC	
	CFC-12 - CFC	
	CFC-12 - CFC CFC-11 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC	

	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	rinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC

	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 \$	Shortwave Cloud Ice
Shortwa	ve radiative properties of ice crystals in clouds
4.4.1.1	Physical Representation *
Physical 1	representation of cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
typically l	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
	Optical Methods *
-	ethods applicable to cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

4.5.1.1	Physical Representation *
Physical 1	representation of cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2 $$
	Other - please specify:
4.5.1.2	Optical Methods *
Optical m	sethods applicable to cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.6.1 \$	Shortwave Cloud Inhomogeneity
Cloud in	phomogeneity in the shortwave radiation scheme
4.6.1.1	Cloud Inhomogeneity *
Method fo	or taking into account horizontal cloud inhomogeneity
Selec	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:

4.7.1 Shortwave Aerosols

 $Shortwave\ radiative\ properties\ of\ aerosols$

4.7.1.1 Physical Representation *		
Physical representation of aerosols in the shortwave radiation scheme		
Selec	t MULTIPLE options:	
	Number concentration	
	Effective radii	
	Size distribution	
	Asymmetry	
	Aspect ratio	
	Mixing state - For shortwave radiative interaction	
	Other - please specify:	
4.7.1.2	Optical Methods *	
Optical m	ethods applicable to aerosols in the shortwave radiation scheme	
Selec	t MULTIPLE options:	
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	
40 T	D. 11. (1	
	Longwave Radiation	
Properti	es of the longwave radiation scheme	
4.8.1.1	Name	
Commonly used name for the longwave radiation scheme.		
Enter TEXT:		
4.8.1.2 Spectral Integration *		
Longwave radiation scheme spectral integration		
Select SINGLE option:		
	Wide-band model	

Correlated-k

	Exponential sum fitting
	Other - please specify:
	Transport Calculation *
Longwave	radiation transport calculation methods
Selec	t MULTIPLE options:
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
Ente	r INTEGER value:
4.8.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 I	Longwave GHG
Represer	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexis	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide

concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence ation of CFC-11
 equivalen	${ m CFC}$ -12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m eq}$ equivalence ation
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $
	O3
	H2O
	Other - please specify:
4019	ODS
4.9.1.2 Ozone de model	epleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	et MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br

	Other - please specify:
1013	Other Flourinated Gases
	urinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model
	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:

4.10.1 Longwave Cloud Ice

Longwave radiative properties of ice crystals in clouds

4.10.1.1 Physical Reprenstation *

 $Physical\ representation\ of\ cloud\ ice\ crystals\ in\ the\ longwave\ radiation\ scheme$

Selec	et MULTIPLE options:
typically	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area eres
	Ice water path - Integrated ice water path through the cloud kg m-2
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4.10.1.	2 Optical Methods *
Optical n	nethods applicable to cloud ice crystals in the longwave radiation scheme
Selec	et MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.11.1	Longwave Cloud Liquid
Longwa	ve radiative properties of liquid droplets in clouds
4.11.1.	1 Physical Representation *
Physical	representation of cloud liquid droplets in the longwave radiation scheme
Selec	et MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution

	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:
4.11.1.2	2 Optical Methods *
Optical m	nethods applicable to cloud liquid droplets in the longwave radiation scheme
Selec	et MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.12.1	Longwave Cloud Inhomogeneity
	phomogeneity in the longwave radiation scheme
4 10 1 1	Claud Juliana annita *
	Cloud Inhomogeneity * or taking into account horizontal cloud inhomogeneity
	et SINGLE option:
Selec	•
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
Ш	Other - please specify:
4.13.1	Longwave Aerosols
	ve radiative properties of aerosols
4 10 1 1	
	1 Physical Representation * representation of aerosols in the longwave radiation scheme
Selec	et MULTIPLE options:
	Number concentration
_	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
11	Mixing state - For shortwave radiative interaction

	Other - please specify:
	Optical Methods *
•	ethods applicable to aerosols in the longwave radiation scheme t MULTIPLE options:
Selec	•
Ш	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

 $Atmosphere\ Convective\ Turbulence\ and\ Clouds$

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

Enter TEXT:

5.1.1.2 Overview

 $Overview\ of\ atmosphere\ convective\ turbulence\ and\ clouds\ in\ atmos\ model.$

Enter TEXT:

5.2.1 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name

Select SINGLE option:

Boundary layer turbulence scheme name

	Mellor-Yamada
	Holtslag-Boville
	EDMF - Combined Eddy Diffusivity Mass-Flux
	Other - please specify:
5.2.1.2	Scheme Type *
Boundary	layer turbulence scheme type
Selec	t MULTIPLE options:
	TKE prognostic
	TKE diagnostic
	TKE coupled with water
	Vertical profile of Kz
	Non-local diffusion
	Monin-Obukhov similarity
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land

	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.1.3	Closure Order *
Boundary	y layer turbulence scheme closure order
Ente	r INTEGER value:
5.2.1.4	Counter Gradient *
Uses bour	ndary layer turbulence scheme counter gradient
Selec	et either TRUE or FALSE:
	True
5.3.1	Deep Convection
Propert	ies of the deep convection scheme
5.3.1.1	Scheme Name
Deep con	vection scheme name
Ente	r TEXT:
5.3.1.2	Scheme Type *
Deep con	vection scheme type
Selec	et MULTIPLE options:
	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:
5.3.1.3	Scheme Method *
Deep con	vection scheme method
Selec	et MULTIPLE options:
	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Rulk - A hulk mass flux scheme is used

	Ensemble - Summation over an ensemble of convective clouds with differing characteristics	
sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-	
	$\label{thm:thm:mass} \mbox{TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer}$	
	Other - please specify:	
5.3.1.4	Processes *	
Physical p	processes taken into account in the parameterisation of deep convection	
Selec	t MULTIPLE options:	
	Vertical momentum transport	
	Convective momentum transport	
	Entrainment	
	Detrainment	
	Penetrative convection	
	Updrafts	
	Downdrafts	
	Radiative effect of anvils	
	Re-evaporation of convective precipitation	
	Other - please specify:	
	Microphysics	
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of rometeor and water vapor from updrafts	
Selec	t MULTIPLE options:	
	Tuning parameter based	
	Single moment	
	Two moment	
	Other - please specify:	
5.4.1 \$	Shallow Convection	
Properties of the shallow convection scheme		
5.4.1.1	Scheme Name	

Shallow convection scheme name

Ent	er TEXT:
5.4.1.2	Scheme Type *
Shallow	convection scheme type
Sele	ect MULTIPLE options:
	Mass-flux
	Cumulus-capped boundary layer
	Other - please specify:
	S Scheme Method * convection scheme method
	ect SINGLE option:
	Same as deep (unified)
	Included in boundary layer turbulence
	Separate diagnosis - Deep and Shallow convection schemes use different thermodynamic closure criteria
	Other - please specify:
Physical	Processes * processes taken into account in the parameterisation of shallow convection ect MULTIPLE options: Convective momentum transport
	Entrainment
	Detrainment
	Penetrative convection
	Re-evaporation of convective precipitation
	Other - please specify:
	Microphysics ysics scheme for shallow convection
Sele	ect MULTIPLE options:
	Tuning parameter based
	Single moment
	Two moment

Other - please specify:

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

 $Overview\ of\ large\ scale\ cloud\ microphysics\ and\ precipitation\ in\ atmos\ model.$

Enter TEXT:

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

Enter TEXT:

6.2.1.2 Hydrometeors *

Precipitating hydrometeors taken into account in the large scale precipitation scheme

Selec	elect MULTIPLE options:			
	Liquid rain			
	Snow			
	Hail			
	Graupel			
	Other - please specify:			

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

Commonly used name of the microphysics parameterisation scheme used for large scale clouds.

Enter TEXT:

Large scal	ge scale cloud microphysics processes		
Selec	t MULTIPLE options:		
	Mixed phase		
	Cloud droplets		
	Cloud ice		
	Ice nucleation		
	Water vapour deposition		
	Effect of raindrops		
	Effect of snow		
	Effect of graupel		

Other - please specify:

6.3.1.2 Processes *

7 Cloud Scheme

Characteristics of the cloud scheme

	7.	7.	1.1	Top	level	pro	pertie
--	----	----	-----	-----	-------	-----	--------

Characteristics of the cloud scheme

7.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Enter TEXT:

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Enter TEXT:

7.1.1.3 Scheme Type *

Describes the type(s) of cloud scheme: prognostic, diagnostic, other.

Select MULTIPLE options:		
	Prognostic	
	Diagnostic	
	Other - please specify:	

7.1.1.4 Uses Separate Treatment *

Description for when different cloud schemes are used for different types of clouds e.g. convective, stratiform and boundary layer)

Enter TEXT:

7.1.1.5 Processes *

Processes included in the cloud scheme

Select MULTIPLE options:		
	Entrainment	
	Detrainment	
	Bulk cloud	
	Other - please specify:	

7.1.1.6 Prognostic Variables

List the prognostic variables used by the cloud scheme, if applicable.

Selec	t MULTIPLE options:
	Cloud amount
	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.1.7	Atmos Coupling
Atmosphe	re components that are linked to the cloud scheme
Selec	t MULTIPLE options:
	Atmosphere_radiation
	$Atmosphere_microphysics_precipitation$
	Atmosphere_turbulence_convection
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
7.2.1	Optical Cloud Properties
Optical o	cloud properties
7.2.1.1	Cloud Overlap Method
$Method\ fo$	r taking into account overlapping of cloud layers
Selec	t SINGLE option:
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
П	Other - please specify:

7.2.1.2 Cloud	Inhomogeneity
$Method\ for\ taking$	$into\ account\ cloud\ inhomogeneity$

Enter TEXT:

7.3.1 Sub Grid Scale Water Distribution

7.3.1.1 Type * Sub-grid scale water distribution type Select SINGLE option: Prognostic Diagnostic		
7.3.1.2 Function Name *		
Sub-grid scale water distribution function name		
Enter TEXT:		
7.3.1.3 Function Order *		
Sub-grid scale water distribution function type Enter INTEGER value:		
7.3.1.4 Convection Coupling * Sub-grid scale water distribution coupling with convection		
Select MULTIPLE options:		
Coupled with deep		
Coupled with shallow		
☐ Not coupled with convection		
7.4.1 Sub Grid Scale Ice Distribution Sub-grid scale ice distribution		
7.4.1.1 Type *		
Sub-grid scale ice distribution type		
Select SINGLE option:		
Prognostic		

Diagnostic		
7.4.1.2 Function Name * Sub-grid scale ice distribution function name		
Enter TEXT:		
7.4.1.3 Function Order *		
Sub-grid scale ice distribution function type		
Enter INTEGER value:		
7.4.1.4 Convection Coupling *		
$Sub\mbox{-}grid\ scale\ ice\ distribution\ coupling\ with\ convection$		
Select MULTIPLE options:		
Coupled with deep		
Coupled with shallow		
Not coupled with convection		

8 Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

 ${f Enter\ TEXT}:$

8.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

 $Cloud\ simulator\ ISSCP\ top\ height\ estimation\ method\ Uo$

Select MULTIPLE options:	
	No adjustment
	IR brightness
	Visible optical depth
	Other - please specify:

8.2.1.2 Top Height Direction

 $Cloud\ simulator\ ISSCP\ top\ height\ direction$

Select SINGLE option:		
	Lowest altitude level	
	Highest altitude level	
	Other - please specify:	

8.3.1 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1 Run Configuration		
Cloud simulator COSP run configuration		
Select SINGLE option:		
☐ Inline		
Offline		
Other - please specify:		
8.3.1.2 Number Of Grid Points		
Cloud simulator COSP number of grid points		
Enter INTEGER value:		
8.3.1.3 Number Of Sub Columns Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability		
Enter INTEGER value:		
8.3.1.4 Number Of Levels		
Cloud simulator COSP number of levels		
Enter INTEGER value:		
8.4.1 Radar Inputs		
Characteristics of the cloud radar simulator		
8.4.1.1 Frequency		
Cloud simulator radar frequency (Hz)		
Enter FLOAT value:		
8.4.1.2 Type		
Cloud simulator radar type		
Select SINGLE option:		
Surface		
Space borne		
Other - please specify:		

8.4.1.3	Gas Ab	sorptio	n
Cloud sin	nulator rad	ar uses g	$as\ absorption$
Selec	t either I	TRUE or	FALSE:
	True		False
	Effective		
	nulator raa et either T		ffective radius
	True		False
8.5.1 l	Lidar I	nputs	
Charact	eristics o	f the clo	ud lidar simulator
8.5.1.1	Ice Typ	es	
Cloud sin	nulator lide	ır ice type	2
Selec	t SINGL	E option	:
	Ice sphere	es	
	Ice non-s	pherical	
	Other - p	lease spec	cify:
8.5.1.2	Overlap	1	
Cloud sin	nulator lide	ır overlap	
Selec	t MULTI	PLE opt	tions:
	Max		
	Random		
	Other - n	lesse sne	rify:

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

 $Characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources$

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

Overview of characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources in atmos model.

Enter TEXT:

9.1.1.3 Sponge Layer *		
Sponge la	yer in the upper levels in order to avoid gravity wave reflection at the top.	
Selec	t SINGLE option:	
	Rayleigh friction	
	Diffusive sponge layer	
	Other - please specify:	

9.1.1.4 Background *

Background wave distribution

Select SINGLE option:		
	Continuous spectrum	
	Discrete spectrum	
	Other - please specify:	

9.1.1.5 Subgrid Scale Orography *

 $Subgrid\ scale\ orography\ effects\ taken\ into\ account.$

Select MULTIPLE options:		
	Effect on drag	
	Effect on lifting	

	Enhanced topography - To enhance the generation of long waves in the atmosphere
	Other - please specify:
	Orographic Gravity Waves waves generated due to the presence of orography
Gravity	waves generated due to the presence of orography
9.2.1.1	Name
Common	ly used name for the orographic gravity wave scheme
Ente	r TEXT:
9.2.1.2	Source Mechanisms *
Orograph	ic gravity wave source mechanisms
Selec	t MULTIPLE options:
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
Orograph	ic gravity wave calculation method
Selec	t MULTIPLE options:
	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.1.4	Propagation Scheme *
Orograph	ic gravity wave propogation scheme
Selec	t SINGLE option:
	Linear theory
	Non-linear theory
	Includes boundary layer ducting
	Other - please specify:

9.2.	1.5 Dissipation Scheme *
Orog	raphic gravity wave dissipation scheme
S	Select SINGLE option:
	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
9.3	1 Non Orographic Gravity Waves
Grav	vity waves generated by non-orographic processes.
9.3.	1.1 Name
Com	monly used name for the non-orographic gravity wave scheme
F	Enter TEXT:
9.3.	1.2 Source Mechanisms *
Non-	orographic gravity wave source mechanisms
S	Select MULTIPLE options:
	Convection
	Precipitation
	Background spectrum
[Other - please specify:
9.3.	1.3 Calculation Method *
Non-	orographic gravity wave calculation method
S	select MULTIPLE options:
	Spatially dependent
[Temporally dependent
9.3.	1.4 Propagation Scheme *
Non-	orographic gravity wave propogation scheme
S	Select SINGLE option:

	Linear theory
	Non-linear theory
	Other - please specify:
9.3.1.5	Dissipation Scheme *
Non-orogr	raphic gravity wave dissipation scheme
Selec	t SINGLE option:
	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:

10 Natural Forcing

Natural	forcing:	solar	and	volcanic.

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

Commonly used name for the natural forcing in atmos model.

Enter TEXT:

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

Ш	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper
atmospher	e, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.

10.3.1 Solar Constant

Other - please specify:

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type \ast

Time adaptation of the solar constant.

Select	SINGLE	option
--------	--------	--------

Fixed

Transient

If the solar constant is fixed, enter the value of the solar constant (W m-2).		
Enter FLOAT value:		
10.3.1.3 Transient Characteristics		
Solar constant transient characteristics (W m-2)		
Enter TEXT:		
10.4.1 Orbital Parameters		
$Orbital\ parameters\ and\ top\ of\ atmosphere\ insolation\ characteristics$		
10.4.1.1 Type *		
Type of orbital parameter		
Select SINGLE option:		
Fixed		
Transient		
10.4.1.2 Fixed Reference Date		
Reference date for fixed orbital parameters (yyyy)		
Enter INTEGER value:		
10.4.1.3 Transient Method		
Description of transient orbital parameters		
Enter TEXT:		
10.4.1.4 Computation Method		
Method used for computing orbital parameters.		
Select SINGLE option:		
Berger 1978		
☐ Berger 1978 ☐ Laskar 2004		

10.5.1 Insolation Ozone

10.3.1.2 Fixed Value

Impact of solar insolation on stratospheric ozone

10.5.1.1	Solar Ozone Impact
Does top	of atmosphere insolation impact on stratospheric ozone?
Select	t either TRUE or FALSE:
	True
10.6.1	Volcanoes Treatment
Characte	eristics and treatment of volcanic forcing in the atmosphere
10.6.1.1	Volcanoes Characteristics *
Descriptio	on of how the volcanic forcing is taken into account in the atmosphere.
Enter	TEXT:
10.6.1.2	Volcanoes Implementation *
How volca	nic effects are modeled in the atmosphere.
Select	t SINGLE option:
	High frequency solar constant anomaly
	Stratospheric aerosols optical thickness
	Other - please specify: