

$$f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$$

$$Df = I\left[\frac{x}{x} + \frac{x^{2}}{y^{2}}\right], \forall f = \begin{bmatrix}\frac{x^{2}}{y^{2}}\end{bmatrix}$$

$$E_{1}: \quad f(x, y) = Co(x \text{ ty}). \quad Calcula \quad d_{1}(0, 0)$$

$$Sol: \quad Queenos \quad calcula \quad todos \quad |m| \quad \text{segudos}, \quad dalvados$$

$$de \quad f \quad en \quad (0, 0)$$

$$\frac{2^{2}}{2x^{2}}(x) \quad \frac{2^{2}}{2^{2}}(x)$$

$$\frac{2^{2}}{2x^{2}}(x) \quad \frac{2^{2}}{2^{2}}(x)$$

$$\frac{2^{2}}{2^{2}}(x) \quad \frac{2^{2}}{2^{2}}(x)$$

$$\frac{2^$$

$$\begin{array}{l}
f(\vec{x}) = f(\vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{a}) \cdot (\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{x} - \vec{a}) + Df(\vec{x} - \vec{a}) + \\
f(\vec{$$

f(0,0) = 1 $Df(0,0) = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{2}{2}f(0,0) \\ \frac{2}{2}f(0,0) \end{bmatrix}$

En el caso 2x2 es mas facil
Teorema: [a b] = A [b c] = A
Si a $\neq 0$ y det(A) >0 => A >0
Si a/o y det(A) >0 => A >0 Si a/o y det(A) >0 => A <0
Si det(A) <0 => A tree w valu popio >0
y el oto <0
Teorema: (Critio de la seguda divada)
dea f: IK -> IK ma prun escalar
Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ ma proof escalar dos veus difuciable con continuidad en (a,b) Suponga que $\nabla/f(a,b) = \overline{0}$.
Superga que $\nabla/f(a,b) = \vec{0}$.
Calculanus
A
$\mathcal{L}(a,b) = \mathcal{L}(a,b)$
(1) S: A>0 y det(H,(a,5))>0 =>
(a,5) es m minimo local.
(a,5) es minimo local.
(2) Si A <0 y det (H(as))>0 =>
(2) Si A <0 y det (H _f (a,b))>0 => (a,b) es un máximo local
· 1

(3) Si det (H(a,5)) <0 => (a,5) es desilla

(4) Si dit(ly(a,5))=0=> NI i DEA.