Ball and Beam Control

INCHAN RYU 21500233
YEIN KIM 21600116
YOONKYOUNG SONG 21600372
SANHOON LEE 21700507

Table of Contents

1. Classical Control

- 1-1. Motor Modeling.
- 1-2. System Control Loop and Controller Design.
- 1-3. Experimental Results.

2. Modern Control

- 2-1. System Dynamics. Modeling with State Space Equation.
- 2-2. LQ Servo Control Loop and Design.
- 2-3. Experimental Results.

3. Conclusion

4. Appendix

1-1. Motor Modeling

Figure 1. Static Characteristic and Linearization of Motor

Table 1. Static Characteristic

Vccw ^{deadzone}	Vcw ^{deadzone}	Vccw ^{saturation}	Vcw ^{saturation}
-1.4[V]	1.4[V]	-3.5[V]	3.5084[V]

Table 2. Linearized Characteristic

Vccw ^{deadzone}	Vcw ^{deadzone}	Vccw ^{saturation}	Vcw ^{saturation}
-0.585[V]	0.5[V]	-2.2609[V]	2.27[V]

Linearization process is done with 2nd order mapping function with adding additional mid point in determining mapping function.

1-1. Motor Modeling

Figure 2. Motor Modeling Validation

Table 3. 2nd order Motor Modeling parameters

Motor Bandwidth	DC gain	
4.7741 [<i>Hz</i>]	53.7786 [$deg/s \cdot V$]	

With estimated bandwidth of 6.5Hz, modeled motor using frequency sweep method sweeping frequency from

$$\frac{1}{10}f_{est} \sim \frac{1}{3}f_{est}$$

$$\frac{W(s)}{V(s)} = \frac{48390}{s^2 + 58.28s + 899.8}[deg/s \cdot V]$$

> System approximation

$$\frac{W(s)}{V(s)} \approx \frac{53.7786}{0.0333s + 1}$$

Table 4. 1st order Motor Modeling parameters

Time Constant	DC gain	
0.0333[s]	$53.7786 [deg/s \cdot V]$	

1-2. System Control Loop and Controller Design

Figure 3. Classical Control loop Structure

1-2. System Control Loop and Controller Design

> Inner Loop Controller Design

Figure 4. Inner Loop Control loop Structure

$$G_{cl_i}(s) = \frac{\theta(s)}{\theta_c(s)} = \frac{K_m K_{di} K_{pi}}{\tau_m s^2 + (1 + K_m K_{di}) s + K_m K_{di} K_{pi}} [-] \longrightarrow Eq (1)$$

 K_m : motor gain

 $K_{di}: p \ controller \ gain \ of \ \omega$ $K_{pi}: p \ controller \ gain \ of \ \theta$

1-2. System Control Loop and Controller Design

➤ Inner Loop Controller Design
Table 5. Inner Loop Specifications

Motor Specification			
Stop rosponso	T_r	2.2441[sec]	
Step response	%OS	0.0[%]	
margin	GM	Inf[dB]	
margin	PM	47.3[deg]	
D	esired Specification	n	
Cton recogness	$T_r \leq 0.15[sec]$		
Step response	% <i>OS</i> ≤	$\%OS \leq 20[\%]$	
margin	$GM \ge 6[dB]$		
margin $PM \ge 45[deg]$			
calculate ζ , ω_n with step response specification			
$\zeta \ge 0.4559[-]$ $\omega_n \ge 20.1695[rad/s]$			

Table 6. Design Parameters

Determined ζ, ω_n		
ζ 0.7000[-]		
ω_{ci}	38.0000[rad/s]	
Determined K_p , K_d		
K_{pi} 62.2324[-]		
K_{di}	0.8241[-]	

from Eq (1),

$$\Delta_{in} = s^{2} + 2\zeta\omega_{ci}s + \omega_{ci}^{2}$$

$$= \tau_{m}s^{2} + (1 + K_{m}K_{di})s + K_{m}K_{di}K_{pi}$$

$$K_{di} = \frac{2\zeta\omega_{ci}\tau_{m} - 1}{K_{m}}$$

$$K_{pi} = \omega_{ci}^{2}\tau_{m}/K_{m}K_{di}$$

1-2. System Control Loop and Controller Design

> Inner Loop Controller Design

Figure 5. pole-zero map of inner loop

Figure 6. Nyquist of inner loop

1-2. System Control Loop and Controller Design

> Outer Loop Controller Design

Figure 7. Outer Loop Control loop Structure

$$G_{cl_o} = \frac{x(s)}{x_c(s)} = \frac{K_{do}s + K_{po}}{\frac{1}{a_3}s^2 + K_{do}s + K_{po}} [-] \longrightarrow Eq (2)$$

1-2. System Control Loop and Controller Design

> Outer Loop Controller Design

Table 7. Outer Loop Specifications

Desired Specification		
Ston rosponso	$T_r \leq 0.15[sec]$	
Step response	$\%OS \leq 20[\%]$	
	$GM \ge 6[dB]$	
margin	$PM \ge 60[deg]$	
calculate ζ, ω_n with step response specification		
$\zeta \ge 0.4559[-]$ $\omega_n \ge 11.7809[rad/s]$		

Table 8. Design Parameters

Determined ζ,ω_n		
ζ 0.7000[–]		
ω_{co} 3.5000[rad/s]		
Determined K_p , K_d		
K_{po} 3.5710[-]		
K_{do} 1.0000[-]		

from Eq(2),

$$\Delta_{out} = s^2 + 2\zeta \omega_{co} s + \omega_{co}^2 = \frac{1}{a_3} s^2 + K_{do} s + K_{po}$$

$$K_{do} = 2\zeta \omega_{co} / a3$$

$$K_{po} = \omega_{co}^2 / a3$$

1-2. System Control Loop and Controller Design

> Outer Loop Controller Design

Figure 8. a) Nyquist of Outer loop (Inner Loop with 1st order motor)

Figure 8. b) Nyquist of Outer loop (inner loop \cong 1)

1-2. System Control Loop and Controller Design

> Outer Loop Controller Design

$$p = -23.9 \pm j \ 24.5, -2.72 \pm 2.78, z = -2.5$$

Figure 9. Nyquist of Outer loop

1-3. Experimental Results

> Inner Loop

Table 9. Performance of Inner Loop

	simulation	actual
t _r (rising time)	0.0718[sec]	0.1853[sec]
%OS (overshoot)	4.5730[%]	4.2120[%]
e_{ss} (steady – state error)	0.0000[deg]	0.2547[deg]

Figure 10. Step Response of Inner Loop

1-3. Experimental Results

Outer Loop

Table 10. Performance of Outer Loop

	simulation	actual
t _r (rising time)	0.2502[<i>sec</i>]	0.4655[<i>sec</i>]
%OS (overshoot)	26.0480[%]	26.0173[%]
e_{ss} (steady – state error)	0.0000[cm]	0.2845[cm]

1-3. Experimental Results

Outer Loop

Figure 12. Position controller simulation result

About Sim-real gap

- Simulation model = design model (ideal)
- In simulation, we didn't consider about a2 term from figure 3. (disturbance torque derived from inertia)
- Effect of a2 gets bigger when position of ball is far from operating point

2-1. System Modeling with State Space Equation

Motor Characteristic Linearization

Figure 13. Motor Block Diagram

$$\frac{W(s)}{V(s)} = \frac{\frac{K_m}{L_m s + R_m} \cdot \frac{1}{J s + B_m}}{1 + \frac{K_m}{L_m s + R_m} \cdot \frac{1}{J_m s + B_m} \cdot K_e}$$

$$= \frac{K_m}{L_m J s^2 + (R_m J + L_m B_m) s + (R_m B_m + K_m K_e)}$$

$$= \frac{K_m}{R_m J s + K_m K_e}$$

$$= \frac{\frac{K_m}{R_m J s + K_m K_e}}{\frac{K_m K_e}{K_m K_e}}, K_e \cong K_m$$

$$K_{m1} = \frac{1}{K_e} \to K_e = \frac{1}{K_{m1}} \longrightarrow Eq (3)$$

$$\tau_{m1} = \frac{R_m J}{K_e^2} \to R_m = \frac{\tau_{m1} K_e^2}{J} \longrightarrow Eq (4)$$

2-1. System Modeling with State Space Equation

Ball and Beam Dynamics

Figure 14. Ball and Beam Dynamics

Two major equation in ball and beam system can be driven

$$\Sigma F_x = mg \sin\theta = F translation + F ball rotation = F_T + F_T$$

$$mg \sin \theta = F_T + F_R = \frac{7}{5} m\ddot{x}$$
$$\therefore \ddot{x} = \frac{5}{7} g \sin \theta$$

$$\Sigma M = T_{motor} + T_{ball} = T_m + T_b$$

$$J_{beam} \ddot{\theta} = T_m + T_b = K_m I - J_m \ddot{\theta} - b_m \dot{\theta} - m_b g \cos\theta$$

$$\ddot{\theta} = \frac{\frac{K_m}{R_m} V_{cmd} - \left(\frac{K_m K_e}{R_m} + b_m\right) \dot{\theta} - x m_b g cos \theta}{J_{beam} J_m}$$

2-1. System Modeling with State Space Equation

> State Space Equation

By small angle approximation $(\cos\theta \approx 1, \sin\theta \approx \theta)$,

$$\dot{X} = AX + Bu, \quad u = V$$

$$X = \begin{bmatrix} \theta \\ \dot{\theta} \\ x \\ \dot{x} \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & a1 & a2 & 0 \\ 0 & 0 & 0 & 1 \\ a3 & 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ b1 \\ 0 \\ 0 \end{bmatrix}$$

$$= -\left(\frac{K_m K_e}{JR_m}\right), \quad a2 = -\frac{m_b g}{J}, \quad a3 = \frac{5g}{7}, \quad b1 = \frac{K_m}{JR_m} \longrightarrow Eq (5)$$

2-1. System Modeling with State Space Equation

Table 11. Parameters

Motor parameters	value
L_m	0 [H]
B_m	$0[N \cdot m \cdot s/rad]$
K_e	$1.0654 [V \cdot s/rad]$
K_m	$1.0654 \left[N \cdot m/A\right]$
R_m	$15.3775[\Omega]$
J	$0.0025[\text{kg} \cdot m^2]$
SSE parameters	value
a1	-29.9967
a2	-44.7628
аЗ	7.0071
b1	28.1553
DТ	28.1553

approximation to zero approximation to zero calculated by Eq (3) $K_e \cong K_m$ calculated by Eq (4)

superposition of Moments of Inertia
$$J = \frac{1}{12} m_{beam} L_{beam}^2 + \frac{2}{5} m_{ball} R_{ball}^2 + m_{ball} (L_{beam} + R_{ball})$$

drived by parallel axis theorem Assume the ball is at the end of the beam

calculated by Eq (5)

2-2. LQ Servo Controller Loop and Design

> Fading Memory Filter

Figure 16. a) Angular Velocity Estimation from FMF

Figure 16. b) Velocity Estimation from FMF

2-2. LQ Servo Controller Loop and Design

Fading Memory Filter

beta $\downarrow \rightarrow$ gain $\uparrow \rightarrow$ bandwidth $\uparrow \rightarrow$ noise amplification \uparrow beta $\uparrow \rightarrow$ gain $\downarrow \rightarrow$ bandwidth $\downarrow \rightarrow$ noise amplification \downarrow

Figure 17. Transient Response of FMF Depending on Beta

Figure 18. Bode Diagram of FMF depending on Beta

Bandwidth of fading memory filter should be larger than system bandwidth about 5 times

Even if we take high beta, bandwidth of it is fast enough compared to system bandwidth.

When we take low beta, it amplifies noise of gyro, which leads oscillation

Therefore, we choose beta = 0.9 to minimize effect of noise amplification

2-2. LQ Servo Controller Loop and Design

> LQ Servo Controller Loop

Figure 19. LQ Servo Controller Loop

2-2. LQ Servo Controller Loop and Design

Chosen Parameters

$$Q = \begin{bmatrix} 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

$$R = 0.01, R_I = 200$$

$$cost function = J_{LQR} = \int_{0}^{\infty} (x^{T}Qx + u^{T}Ru)dt$$

- Values of Q matrix and R, R_I are chosen with considering system state, input, and dissipating energy performance which is represented in the cost function. Also, designer's heuristic of the system is added in the consideration.
- We have put more weight on the x state for tracking performance when deciding weighting value of Q. Weight on θ and \dot{x} is slightly added to consider angle and velocity of ball. Also R and R_I is chosen in the concept of penalty.

2-2. LQ Servo Controller Loop and Design

> Relative Margin Check

$$GMR = -12.6[dB]$$
, $PM = 62.7[deg]$

Figure 20. Nyquist of LQ Servo Controller

2-2. LQ Servo Controller Loop and Design

> Experimental Result

Figure 21. Result of LQ Servo controller

Table 12. Performance of LQ Servo Controller

	Simulation	Actual
t _r (rising time)	1.76 [sec]	1.24 [sec]
%OS (overshoot)	0[%]	7.7[%]
e_{ss} (steady – state error)	0.000[cm]	0.024[cm]

Sim-real gap:

About overshoot : effect of model reduction of motor (2nd motor -> 1st order), break of small angle approximation

3. Conclusion

- This experiment was held to compare classical method and modern method of control in ball and beam system.
- Main difference between classical control and modern control method is that in classical control, the frequency separation, which can be observed through inner loop and outer loop control of ball and beam system, is necessary to control the system properly. Which is means, classical control method is more conservative control method.
- > In classical method control system, multi control loop and PD controller was used to control ball and beam system.
 - \rightarrow Step response result : t_r = 0.4655[sec], %OS = 26.0173[%], e_{ss} = 0.2845[cm]
- For modern control method, LQ servo was used to control system to control ball and beam system.
 - → Step response result : t_r =1.24 [sec], %OS = 7.7[%], e_{ss} = 0.024[cm]
- Analyzing time response of experiment results, classical method using PD controller showed 0.7844[sec] faster rising time than LQ servo. But in a sense of percent overshoot and steady state error, LQ servo showed 18.3173[%], 0.2605[cm] better performance respectively.

4. Appendix

Video 1. Classical Control (PD Controller) Result Video

4. Appendix

Video 1. Modern Control (LQ Servo) Result Video

THANK YOU!

