TransMix: Attend to Mix for Vision Transformers

CVPR 2021

Jie-Neng Chen^{1*} Shuyang Sun^{2*} Ju He¹ Philip Torr² Alan Yuille¹ Song Bai³

¹Johns Hopkins University ²University of Oxford ³ByteDance Inc.

- Motivation
- Preliminary
- Methodology
- Experiment

Not all pixels are created equal!

Cat:0 Dog:1

Cat:0.3 Dog:0.7

Cat:1 Dog:0

But actually this is almost an image of merely cat.

A new method considering the importance of a pixel is needed

Preliminary: How to measure importance?

ViT divides an image to patches, and applies attention to those patches.

Source: Google AI blog

Preliminary: How to measure importance?

Remember ViT could assign an attention map to the picture?

Figure 6: Representative examples of attention from the output token to the input space. See Appendix D.7 for details.

Preliminary: How to measure importance?

Use the attention value to represent the importance

Methodology

Methodology

Algorithm 1 Pseudocode of TransMix in a PyTorch-like style.

```
H, W: the height and width of the input image
# p: number of patches
# M: 0-initialized mask with shape (H, W)
# downsample: downsample from length (H*W) to (p)
# (bx1, bx2, by1, by2): bounding box coordinate
for (x, y) in loader: # load a minibatch with N pairs X:
   # CutMix image in a minibatch
  M[bx1:bx2, by1:by2] = 1
   x[:,:,M==1] = x.flip(0)[:,:,M==1]
  M = downsample(M.view(-1))
                                                 X.flip(0):
   # attention matrix A: (N, p)
   logits, A = model(x)
   # Mix labels with the attention map
   lam = matmul(A, M) —
   y = (1-lam) * y + lam * y.flip(0)
   CrossEntropyLoss(logits, y).backward()
```

Mark the replaced part

Reverse in batch dimension

• • • • • •

• • • • •

Convert the mark to token format [original patch, original patch,,replaced patch,......]

Calculate the attention value of the replaced part

Experiment

- Basic Classification
- Downstream Task
 - Semantic Segmentation
 - Object Detection
 - Instance Segmentation
- Robustness

Experiment

Dataset: ImageNet1k

Basic classification

Models	Params	FLOPs	Top-1 Acc	+TransMix
			(%)	Top-1 Acc (%)
DeiT-T [42]	5.7M	1.6G	72.2	72.6
PVT-T [51]	13.2M	1.9 G	75.1	75.5
XCiT-T [15]	12M	2.3G	79.4	80.1
CaiT-XXS[43]	17.3M	3.8G	79.1	79.8
DeiT-S [42]	22.1M	4.7G	79.8	80.7
PVT-S [51]	24.5M	3.8G	79.8	80.5
XCiT-S [15]	26M	4.8G	82.0	82.3
PVT-M [51]	44.2M	6.7G	81.2	82.1
PVT-L [51]	61.4M	9.8G	81.7	82.4
XCiT-M [15]	84M	16.2G	82.7	83.4
DeiT-B [42]	86.6M	17.6G	81.8	82.4
XCiT-L	189M	36.1G	82.9	83.8

Experiment

Occlusion