Ve203 Discrete Mathematics

Runze Cai

University of Michigan - Shanghai Jiao Tong University Joint Institute

Spring 2023

Part II

Counting and Algorithms

Table of Contents

- 1		D		1000	
1.	Linear	Recurrence	Re	lations	S

2. Formal Power Series

3. Binomial Theorem

4. Partition of Sets

5. Inclusion-Exclusion Principle

A sequence $(a_n)=(a_0,a_1,a_2,\dots)$ satisfies a (homogeneous) linear recurrence relation of order d if there exists constants c_1,c_2,\dots,c_d with $c_d\neq 0$ such that

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_d a_{n-d}$$

for all $n \geq d$.

Example

Fibonacci numbers. $F_0 = 0$, $F_1 = 1$.

$$F_n = F_{n-1} + F_{n-2}, \qquad n \ge 2$$

Lucas numbers. $F_0 = 2$, $F_1 = 1$.

$$F_n = F_{n-1} + F_{n-2}, \qquad n \ge 2$$

▶ Geometric progression. $a_n = c_1 a_{n-1} = \cdots = c_1^n a_0$.

Consider the second order case when d=2: $a_n=c_1a_{n-1}+c_2a_{n-2}, n\geq 2$, $c_2\neq 0$. We call $\chi(t)=t^2-c_1t-c_2$ the **characteristic polynomial** of the linear recurrence relation. Let r_1 and r_2 be roots of χ , i.e., $\chi(t)=(t-r_1)(t-r_2)$, or

$$r_{1,2} = \frac{c_1 \pm \sqrt{c_1^2 - 4c_2}}{2}$$

Note that $r_1 \neq 0$ and $r_2 \neq 0$.

Theorem

If $r_1 \neq r_2$, then there exist constants α_1 , α_2 such that $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$

Remark

To solve for α_1 and α_2 , plug in the values for n = 0, 1, and solve

$$a_0 = \alpha_1 + \alpha_2$$

$$a_1 = \alpha_1 r_2 + \alpha_2 r_2$$

Example

Consider the Fibonacci numbers, with $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$. The characteristic polynomial is given by $\chi(t) = t^2 - t - 1$, with roots

$$r_{1,2} = \frac{1 \pm \sqrt{5}}{2}$$

hence

$$F_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Plug in n = 0 and n = 1, we have

$$0 = \alpha_1 + \alpha_2$$
$$1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2}\right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2}\right)$$

Example (Cont.)

Thus we have $\alpha_1 = 1/\sqrt{5}$, and $\alpha_2 = -1/\sqrt{5}$. Hence

$$F_n = rac{1}{\sqrt{5}} igg(rac{1+\sqrt{5}}{2}igg)^n + rac{1}{\sqrt{5}} igg(rac{1-\sqrt{5}}{2}igg)^n$$

Example

Consider a 2-periodic sequence

$$(a_n)_{n=0}^{\infty}=(x,y,x,y,\dots)$$

which satisfies the lienar recurrence relation $a_n = a_{n-2}$ for $n \ge 2$.

The characteristic polynomial is given by $\chi(t)=t^2-1=(t+1)(t-1)$. Thus

$$a_n = \alpha_1 1^n + \alpha_2 (-1)^n$$

for some constants α_1 , α_2 . We plug in the initial conditions and get

$$\alpha_1 = \frac{x+y}{2}, \qquad \alpha_2 = \frac{x-y}{2}$$

Thus

$$a_n = \frac{x+y}{2} + \frac{x-y}{2}(-1)^n$$

Proof (Formal Power Series).

Let

$$A(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n>0} a_n x^n$$

then

$$A(x) = a_0 + a_1 x + \sum_{n \ge 2} a_n x^n = a_0 + a_1 x + \sum_{n \ge 2} (c_1 a_{n-1} + c_2 a_{n-2}) x^n$$

$$= a_0 + a_1 x + c_1 \sum_{n \ge 2} a_{n-1} x^n + c_2 \sum_{n \ge 2} a_{n-2} x^n$$

$$= a_0 + a_1 x + c_1 x \sum_{n \ge 2} a_{n-1} x^{n-1} + c_2 x^2 \sum_{n \ge 2} a_{n-2} x^{n-2}$$

$$= a_0 + a_1 x + c_1 x \sum_{m \ge 1} a_m x^m + c_2 x^2 \sum_{m \ge 0} a_m x^m$$

$$= a_0 + a_1 x + c_1 x \sum_{m \ge 1} a_m x^m + c_2 x^2 \sum_{m \ge 0} a_m x^m$$

Proof (Formal Power Series, Cont.)

Hence $A(x) = a_0 + a_1x + c_1x(A(x) - a_0) + c_2x^2A(x)$, hence

$$A(x) = \frac{a_0 + a_1 x - c_1 a_0 x}{1 - c_1 x - c_2 x^2} = \frac{a_0 + a_1 x - c_1 a_0 x}{(1 - r_1 x)(1 - r_2 x)}$$

We can use partial fraction to get (recall that $r_1 \neq r_2$)

$$A(x) = \frac{\alpha_1}{1 - r_1 x} + \frac{\alpha_2}{1 - r_2 x} = \alpha_1 \sum_{n \ge 0} (r_1 x)^n + \alpha_2 \sum_{n \ge 0} (r_2 x)^n$$

that is,

$$\sum_{n\geq 0} a_n x^n = \sum_{n\geq 0} (\alpha_1 r_1^n + \alpha_2 r_2^n) x^n$$

Compare coefficients, we get $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \ge 0$.

Remark

In general,
$$\sum_{n\geq 0} a_{n+k} x^n = \frac{1}{x^k} \left[A(x) - \sum_{n=0}^{k-1} a_n x^n \right]$$
 for $k \in \mathbb{N} \setminus \{0\}$.

Theorem

For the second order linear recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, if the characteristic polynomial χ has repeated roots r, i.e., $\chi(t) = (t-r)^2$, then there exist constants α_1 and α_2 such that $a_n = (\alpha_1 + \alpha_2 n) r^n$ for all $n \ge 0$.

Proof.

Same as before, we get

$$A(x) = \frac{a_0 + (a_1 - c_0 a_1 x)}{(1 - rx)^2}$$

Then by partial fraction, there exist constants β_1 , β_2 such that

$$A(x) = \frac{\beta_1}{1 - rx} + \frac{\beta_2}{(1 - rx)^2}$$
$$= \beta_1 \sum_{n \ge 0} (rx)^n + \beta_2 \sum_{n \ge 0} (n+1)(rx)^n$$

Proof.

Then by comparing coefficients, we have

$$a_n = \beta_1 r^n + \beta_2 (n+1) r^n = (\beta_1 + \beta_2) r^n + \beta_2 n r^n$$

Finally, let
$$\alpha_1 = \beta_1 + \beta_2$$
 and $\alpha_2 = \beta_2$.

Linear Recurrence Relations of Higher order

Consider $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_d a_{n-d}$, $n \ge d$, with characteristic polynomial

$$\chi(t) = t^{d} - c_{1}t^{d-1} - c_{2}t^{d-2} - \dots - c_{d-1}t - c_{d}$$

= $(t - r_{1})(t - r_{2}) \cdots (t - r_{d}).$

▶ If all r_1, \ldots, r_d are distinct, then there exist $\alpha_1, \ldots, \alpha_d$ such that

$$a_n = \alpha_1 r_1^n + \dots + \alpha_d r_d^n$$

If the root r_i appears with multiplicity m_i , then we have solutions

$$r_i^n, nr_i^n, n^2r_i^n, \ldots, n^{m_i-1}r_i^n$$

The final solution is obtained by taking their linear combinations.

General Homogeneous Recurrence Relations

Example

Consider a linear recurrence relations

$$(T-1)^5(T+1)^3(T-3)^2(T+8)(T-9)^4a_n=0$$

where T is the *translation operator* such that $(Ta)_n = a_{n+1}$. The general solution is given by

$$a_{n} = \alpha_{1} + \alpha_{2}n + \alpha_{3}n^{2} + \alpha_{4}n^{3} + \alpha_{5}n^{4}$$

$$+ (\alpha_{6} + \alpha_{7}n + \alpha_{8}n^{2})(-1)^{n}$$

$$+ (\alpha_{9} + \alpha_{10}n)3^{n}$$

$$+ \alpha_{11}(-8)^{n}$$

$$+ (\alpha_{12} + \alpha_{13}n + \alpha_{14}n^{2} + \alpha_{15}n^{3})9^{n}$$

with constants $\alpha_1, \alpha_2, \ldots, \alpha_{15}$.

Inhomogeneous/Nonhomogeneous Equations

General Strategy

Homogeneous solution + (any) particular solution

Example

Find the general solution to

$$(T+2)(T-6)a_n=3^n$$

- ▶ Homogeneous solution: $a_n^{(h)} = \alpha_1(-2)^n + \alpha_2 6^n$.
- ▶ Particular solution: Try $a_n^{(p)} = d3^n$. ($\Rightarrow d = -1/15$)

General solution

$$a_n = \alpha_1(-2)^n + \alpha_2 6^n - \frac{1}{15} 3^n$$

Inhomogeneous/Nonhomogeneous Equations

Example (Cont.)

We can also try to use the generating function. Ignore the initial conditions (Set $a_0 = a_1 = 0$), and let $A(x) = \sum_{n \ge 0} a_n x^n$, we have

$$(x^{-1}+2)(x^{-1}-6)A^{(p)}(x) = \sum_{n\geq 0} 3^n x^n = \frac{1}{1-3x}$$

thus

$$A^{(p)}(x) = \frac{x^2}{(1-3x)(1+2x)(1-6x)} = \frac{-1/15}{1-3x} + \frac{\cdots}{1+2x} + \frac{\cdots}{1-6x}$$

hence a particular solutions is given by

$$a_n^{(p)} = -\frac{1}{15}3^n$$

Table of Contents

1. Linear Recurrence Relations

2. Formal Power Series

3. Binomial Theorem

4. Partition of Sets

5. Inclusion-Exclusion Principle

Definition

A formal power series is an expression

$$A(x) = \sum_{n > 0} a_n x^n$$

which is called the **generating function** of the sequence (a_n) , where x is usually called the **variable** or **indeterminate**. Specifically, we identify x with the sequence $(0,1,0,0,\ldots)$. We also write the scalar coefficients as $[x^n]A(x) = a_n$. In general, the scalar coefficients could be taken as elements of a ring.

Properties of Formal Power Series

Let
$$A(x) = \sum_{n \ge 0} a_n x^n$$
, $B(x) = \sum_{n \ge 0} b_n x^n$, $C(x) = \sum_{n \ge 0} c_n x^n$,

- ▶ Equality: $A(x) = B(x) \Leftrightarrow a_n = b_n$ for all $n \ge 0$.
- Addition: $A(x) + B(x) = \sum_{n>0} (a_n + b_n)x^n$
 - ightharpoonup commutative: A(x) + B(x) = B(x) + A(x)
 - associative: (A(x) + B(x)) + C(x) = A(x) + (B(x) + C(x))
 - ▶ additive identity: 0 + A(x) = A(x) for all A(x), where $0 = \sum_{n \ge 0} 0x^n$.
 - ▶ additive inverse: A(x) + (-A(x)) = 0, where $(-A)(x) := \sum_{n>0} (-a_n)x^n$

Properties of Formal Power Series (Cont.)

- ► Multiplication: $A(x)B(x) = \sum_{n\geq 0} \left(\sum_{i=0}^{n} a_i b_{n-i}\right) x^n$.
 - ightharpoonup commutative: A(x)B(x)=B(x)A(x)
 - ▶ associative: (A(x)B(x))C(x) = A(x)(B(x)C(x))
 - multiplicative identity: $1 \cdot A(x) = A(x)$ for all A(x), where $1 = 1 + 0x + 0x^2 \cdots$
- ▶ Distributivity: A(x)(B(x) + C(x)) = A(x)B(x) + A(x)C(x)

To summarize, formal power series forms a commutative ring.

Example

Let

$$A(x) = B(x) = \sum_{n > 0} x^n$$

then

$$A(x) + B(x) = \sum_{n \ge 0} 2x^n$$

$$A(x)B(x) = \sum_{n \ge 0} \left(\sum_{i=0}^n 1 \cdot 1\right) x^n = \sum_{n \ge 0} (n+1)x^n$$

Definition

A formal power series A(x) is *invertible* if there exists B(x) such that A(x)B(x)=1.

Remark

If B(x) exists, then it is unique, and B(x)A(x) = 1. We usuall write

$$B(x) = A(x)^{-1} = \frac{1}{A(x)}$$

Example (Geometric Series)

Let

$$A(x) = \sum_{n>0} x^n, \qquad B(x) = 1 - x$$

Recall that

$$A(x)B(x) = \sum_{n\geq 0} \left(\sum_{i=0}^{n} a_i b_{n-i}\right) x^n$$

- ▶ If n = 0: $\sum_{i=0}^{0} a_i b_{0-i} = a_0 b_0 = 1$.
- ▶ If $n \ge 1$: $\sum_{i=0}^{n} a_i b_{n-i} = 1 1 = 0$.

So overall, A(x)B(x) = 1 and B(x)A(x) = 1. We write

$$\frac{1}{1-x} = \sum_{n>0} x^n$$

Theorem

A formal power series A(x) is invertible iff $a_0 \neq 0$.

Remark

Note that A(x) = x is NOT invertible.

Definition

Let A(x) and B(x) be formal power series, $a_0 = 0$ or B is a polynomial, then the *composition* is given by

$$(B \circ A)(x) = B(A(x)) = \sum_{n \geq 0} b_n A(x)^n$$

Definition

Let $A(x) = \sum_{n \ge 0} a_n x^n$ be a formal power series, then the **formal derivative** of A(x) is given by

$$DA(x) = \sum_{n \ge 0} na_n x^{n-1} = \sum_{n \ge 0} (n+1)a_{n+1} x^n$$

A Few Properties

Given A(x) and B(x) formal power series, then

- ▶ $D(\alpha A + \beta B) = \alpha DA + \beta DB$, where α, β are scalars
- \triangleright D(AB) = (DA)B + A(DB)
- ▶ $D(B \circ A) = (DB \circ A)(DA)$ given $a_0 = 0$
- $D(1/A) = -DA/A^2 \text{ given } a_0 \neq 0$
- $D(A^n) = nA^{n-1}(DA)$

Table of Contents

1. Linear Recurrence Relations

2. Formal Power Series

3. Binomial Theorem

4. Partition of Sets

5. Inclusion-Exclusion Principle

Lemma

Let A(x) be a formal power series such that A(0) = 1, $d \in \mathbb{N} \setminus \{0\}$. Then there exists a **unique** formal power series B(x) such that B(0) = 1 and $B(x)^d = A(x)$. We write $B(x) = A(x)^{1/d}$.

Remark

A consequence of the *uniqueness* of the *d*th root of a power series is that for $c \in \mathbb{Z} \setminus \{0\}$, $d \in \mathbb{N} \setminus \{0\}$, the expression $A(x)^{c/d}$ is well-defined, by either $(A(x)^{1/d})^c$ or $(A(x)^c)^{1/d}$. Also cf., Baby Rudin, Chapter 1, exercise 6.

Definition

Let $m \in \mathbb{Q}$, define $\binom{m}{0} := 1$, and

$$\binom{m}{k} := \frac{m(m-1)\cdots(m-k+1)}{k!}$$

where $k \in \mathbb{N} \setminus \{0\}$. Note that if $m \in \mathbb{N} \setminus \{0\}$, then $\binom{m}{k} = \frac{m!}{k!(m-k)!}$.

Theorem (Binomial Theorem)

Let $m \in \mathbb{Q}$, then

$$(1+x)^m = \sum_{n>0} \binom{m}{n} x^n$$

Lemma

Let $m \in \mathbb{Q}$, and A(0) = 1, then $D(A(x)^m) = m \cdot (DA)(x) \cdot A(x)^{m-1}$

Proof.

Let m = p/q, with $p \in \mathbb{Z}$, $q \in \mathbb{Z}_+$, then

$$p \cdot (DA)(x) \cdot A(x)^{p-1} = D(A(x)^p) = D((A(x)^m)^q)$$

= $q \cdot (A(x)^m)^{q-1} \cdot D(A(x)^m)$

thus

$$D(A(x)^{m}) = \frac{p \cdot D(A)(x) \cdot A(x)^{p-1}}{q \cdot (A(x)^{m})^{q-1}} = m \cdot (DA)(x) \cdot A(x)^{m-1}$$

Proof of Binomial Theorem.

By previous lemma,

$$D((1+x)^m) = m(1+x)^{m-1}$$

thus (by induction, say)

$$D^{n}((1+x)^{m}) = m(m-1)\cdots(m-n+1)(1+x)^{m-n}$$

Then the theorem follows by noting that

$$[x^n](1+x)^m = \frac{D^n(1+x)^m(0)}{n!} = \frac{m(m-1)\cdots(m-n+1)}{n!} = {m\choose n}$$

Example

If A(0)=1, $m\in \mathbb{Q}$, then

$$A(x)^{m} = (1 + (A(x) - 1))^{m} = \sum_{n \ge 0} {m \choose n} (A(x) - 1)^{n}$$

Example

Let $m \in \mathbb{N} \setminus \{0\}$, then $\binom{m}{n} = 0$ for n > m, hence

$$(1+x)^m = \sum_{n>0} {m \choose n} x^n = \sum_{n=0}^m {m \choose n} x^n$$

Example

If m = -1, then

$$(1+x)^{-1} = \sum_{n\geq 0} {\binom{-1}{n}} x^n = \sum_{n\geq 0} (-1)^n x^n$$

where we have calculated

$$\binom{-1}{n} = \frac{(-1)(-2)\cdots(-1-n+1)}{n!} = \frac{(-1)^n(1)(2)\cdots(n)}{n!} = (-1)^n$$

Or we can compose the geometric series

$$(1-x)^{-1} = \sum_{n>0} x^n$$

with -x (as usually done in analysis).

Example

Let
$$m = -d$$
, $d \in \mathbb{N} \setminus \{0\}$,

$$\binom{-d}{n} = \frac{(-d)(-d-1)\cdot(-d-n+1)}{n!} = \frac{(-1)^n d(d+1)\cdots(d+n-1)}{n!}$$

$$= (-1)^n \frac{(d+n-1)!}{(d-1)!n!} = (-1)^n \binom{d+n-1}{n}$$

thus

$$(1+x)^{-d} = \sum_{n\geq 0} {\binom{-d}{n}} x^n = \sum_{n\geq 0} (-1)^n {\binom{d+n-1}{n}} x^n$$
$$(1-x)^{-d} = \sum_{n\geq 0} {\binom{-d}{n}} (-x)^n = \sum_{n\geq 0} {\binom{d+n-1}{n}} x^n$$

The following two identities are worth mentioning,

$$(1+x)^n = \sum_{k\geq 0} \binom{n}{k} x^k$$

$$= \sum_{k=0}^n \binom{n}{k} x^k \quad \text{if } n \in \mathbb{N}$$

$$\frac{x^k}{(1-x)^{k+1}} = \sum_{n\geq 0} \binom{n}{k} x^n = \sum_{n\geq k} \binom{n}{k} x^n$$

where $k \in \mathbb{N}$.

Example

We show that

$$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

where $m, n \in \mathbb{N}$.

Proof 1.

We show

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} {k \choose m} x^{n} = \sum_{n=0}^{\infty} {n+1 \choose m+1} x^{n}$$

Indeed, note that by interchanging the order of summation,

LHS =
$$\sum_{k=0}^{\infty} {k \choose m} \sum_{n \ge k} x^n = \sum_{k=0}^{\infty} {k \choose m} \frac{x^k}{1-x} = \frac{1}{1-x} \sum_{k=0}^{\infty} {k \choose m} x^k$$

= $\frac{1}{1-x} \cdot \frac{x^m}{(1-x)^{m+1}} = \frac{x^m}{(1-x)^{m+2}}$
RHS = $\frac{1}{x} \sum_{n=0}^{\infty} {n+1 \choose m+1} x^{n+1} = \frac{1}{x} \cdot \frac{x^{m+1}}{(1-x)^{m+2}} = \frac{x^m}{(1-x)^{m+2}}$

and we are done.

Proof 2.

We show

$$\sum_{m=0}^{\infty} \sum_{k=0}^{n} {k \choose m} x^{m} = \sum_{m=0}^{\infty} {n+1 \choose m+1} x^{m}$$

Indeed, again by interchanging the order of summation,

LHS =
$$\sum_{k=0}^{n} \sum_{m=0}^{k} {k \choose m} x^m = \sum_{k=0}^{n} (1+x)^k$$

= $\frac{1 - (1+x)^{n+1}}{1 - (1+x)} = \frac{(1+x)^{n+1} - 1}{x}$
RHS = $\frac{1}{x} \sum_{m+1>1}^{\infty} {n+1 \choose m+1} x^{m+1} = \frac{(1+x)^{n+1} - 1}{x}$

and we are done.

Counting Subsets

Proposition

Given $[n] = \{1, 2, ..., n\}$, the number of subsets of [n] of size k is $\binom{n}{k}$.

Proof.

Expand $(1+x)^n$ as $(1+x)(1+x)\cdots(1+x)$. For each 1+x, choosing 1 represents not in the subset, and choosing x represents in the subset. Thus the number of subsets of [n] of size k is given by

$$[x^k](1+x)^n = \binom{n}{k}$$

Pascal's Identity

Proposition

For positive natural numbers n and k,

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Proof.

Note that $(1+x)^n = (1+x)^{n-1}(1+x)$, thus by comparing coefficients

$$[x^k](1+x)^n = [x^k](1+x)^{n-1}(1+x)$$

which is the identity.

Multinomial Theorem

Definition

Given $k_1 + k_2 + \cdots + k_d = n$, $k_i \in \mathbb{N}$, $i = 1, \dots, d$, the *multinomial coefficient* is given by

$$\binom{n}{k_1, k_2, \dots, k_d} = \frac{n!}{k_1! k_2! \cdots k_d!}$$

Theorem (Multinomial Theorem)

Let x_1, \ldots, x_d be variables, then

$$(x_1 + \dots + x_d)^n = \sum_{k_1 + \dots + k_d = n} {n \choose k_1, k_2, \dots, k_d} x_1^{k_1} \cdots x_d^{k_d}$$

Multinomial Theorem

Proof.

Induction on d. Base case: d=1. Both sides are x_1^n . Inductive case: d>1, assume the IH that the theorem holds for d-1 variables. Let $x=x_1+\cdots+x_{d-1}$ and $y=x_d$, then by binomial theorem and IH,

$$(x_1 + \dots + x_d)^n = \sum_{m=0}^n \binom{n}{m} (x_1 + \dots + x_{d-1})^m x_d^{n-m}$$
$$= \sum_{m=0}^n \binom{n}{m} \sum_{k_1 + \dots + k_{d-1} = m} \binom{m}{k_1, k_2, \dots, k_{d-1}} x_1^{k_1} \dots x_{d-1}^{k_{d-1}} x_d^{n-m}$$

The rest follows by setting $k_d = n - m$, and note that

$$\binom{n}{n-k_d} \binom{m}{k_1, k_2, \dots, k_{d-1}} = \frac{n!}{(n-k_d)! k_d!} \cdot \frac{(n-k_d)!}{k_1! \cdots k_{d-1}!}$$
$$= \binom{n}{k_1, k_2, \dots, k_d}$$

Counting Multisets

Proposition

The number of multisets of [n] of size k is $\binom{n+k-1}{k}$.

Proof.

Expand $(1 + x + x^2 + \cdots)^n$ and calculate the coefficient of x^k . Thus

$$[x^{k}](1+x+x^{2}+\cdots)^{n} = [x^{k}] \left(\sum_{\ell \geq 0} x^{\ell}\right)^{n} = [x^{k}](1-x)^{-n}$$
$$= (-1)^{k} {n \choose k} = {n+k-1 \choose k}$$

Counting Integer Solutions

Example

Consider

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 538$$

What are the number of integer solutions if

- 1. $x_i > 0$ and = holds;
- 2. $x_i \ge 0$ and = holds;
- 3. $x_i > 0$ and < holds;
- 4. $x_i \ge 0$ and < holds;
- 5. $x_i \ge 0$.

Remark

Counting Integer Solutions

Example

How many nonnegative integer solutions to the equation

$$x_1 + x_2 + x_3 + x_4 = 63$$

such that $x_1, x_2 \ge 0$, $2 \le x_3 \le 5$, $x_4 > 0$.

The solution is given by

$$[x^{63}](1+x+x^2+\cdots)^2(x^2+x^3+x^4+x^5)(x+x^2+x^3+\cdots)$$

$$=[x^{63}]\frac{x^3+x^4+x^5+x^6}{(1-x)^3}$$

How many lattice paths from (0,0) to (n,n) that never go above the diagonal? $C_n = \binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}$.

Mountain Range/Dyck Paths

Noncrossing Handshakes

Paired Parentheses

Polygon Triangulation

Full Binary Trees

Matrix Chain Multiplication

- \blacksquare ((AB)C)D \blacksquare (A(BC))D \blacksquare (AB)(CD)
- *A*((*BC*)*D*)
- *A*(*B*(*CD*))

Segner's recurrence relation

We can establish the following recurrence relation starting with $C_0 = 1$, and

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k} \text{ for } n \ge 0,$$

We recognize the RHS is a convolution. Now consider the following generating function

$$c(x) := \sum_{n > 0} C_n x^n$$

then $c(x) = 1 + xc(x)^2$, and

$$c(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x} = \frac{1 \pm (1 - 2x - 2x^2 + \cdots)}{2x}$$

Since x is not invertible, the numerator must have vanishing constant term.

Segner's recurrence relation (Cont.)

Thus we have

$$c(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

which we expand as

$$c(x) = \frac{1}{2x} (1 - \sqrt{1 - 4x}) = \frac{1}{2x} \left[1 - \sum_{n \ge 0} {1/2 \choose n} (4x)^n \right]$$

$$= \frac{1}{2x} \cdot 2 \sum_{n \ge 1} \frac{(-1)^n}{4^n} {2n - 2 \choose n - 1} \frac{(-4x)^n}{n} = \sum_{n \ge 1} {2n - 2 \choose n - 1} \frac{x^{n-1}}{n}$$

$$= \sum_{n \ge 0} {2n \choose n} \frac{x^n}{n+1} = \sum_{n \ge 0} C_n x^n.$$

Twelvefold Way

Distribute k balls into n urns. $(f: B \rightarrow U, |B| = k, |U| = n)$

Balls (domain)	Urns (codomain)	unrestricted (any function)	≤ 1 (injective)	≥ 1 (surjective)
labeled	labeled	n ^k	n <u>k</u>	$n! {k \choose n}$
unlabeled	labeled	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$
labeled	unlabeled	$\sum_{i=1}^{n} \binom{k}{i}$	$[k \le n]$	$\binom{k}{n}$
unlabeled	unlabeled	$\sum_{i=1}^n p_i(k)$	$[k \le n]$	$p_n(k)$

- $\qquad \qquad \binom{n}{k} = C(n,k)$
- $(\binom{n}{k}) = \binom{n+k-1}{k}$

- $ightharpoonup p_n(k) = \#$ partition of k into n parts.
- ▶ $[k \le n]$: Iverson bracket

Table of Contents

1. Linear Recurrence Relations

2. Formal Power Series

3. Binomial Theorem

4. Partition of Sets

5. Inclusion-Exclusion Principle

Finite Calculus

Finite Calculus

- ▶ If $g = \Delta G$, then

$$\sum_{a}^{b} g(x) \, \delta x = G(x) \Big|_{a}^{b}$$
$$= G(b) - G(a)$$

Infinite Calculus

- $Df(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- ▶ If g = DG, then

$$\int_{a}^{b} g(x) dx = G(x) \Big|_{a}^{b}$$
$$= G(b) - G(a)$$

For integers $b \ge a$, we should put

$$\sum_{a}^{b} g(x) \, \delta x = \sum_{k=a}^{b-1} g(k) = \sum_{a \le k < b} g(k)$$

Then for integers $m, n \ge 0$, we have

Finite Calculus

Example

Note that $k^2 = k^2 + k^1$, then

$$\sum_{0 \le k \le n} k^2 = \frac{n^3}{3} + \frac{n^2}{2} = \frac{1}{3}n(n-1)(n-2+\frac{3}{2}) = \frac{1}{3}n(n-\frac{1}{2})(n-1)$$

► Note that $k^3 = k^{3} + 3k^{2} + k^{1}$, then

$$\sum_{a \le k < b} k^3 = \frac{n^4}{4} + n^3 + \frac{n^2}{2} \Big|_a^b$$

cf., Dijkstra, "Why numbering should start at zero".

We can always express ordinary powers using factorial powers via Stirling numbers, i.e., for $n \ge 0$,

$$x^n = \sum_{k=0}^n \binom{n}{k} x^{\underline{k}}$$

Definition

For $n, k \in \mathbb{N}$, $\binom{n}{k}$ is the number of ways to partition a set with n elements into k disjoint, nonempty subsets. $\binom{n}{k}$ is called a *Stirling number of the second kind*. Reads "n subset k".

Remark

The power conversion above can be proved by induction based on the following recurrence relation

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brack k}$$

Partition of A Set and Partition of A Number

Partition of A Set

- $\begin{cases} {4 \atop 3} \} = 6. \\ 12|3|4, 13|2|4, 14|2|3, 23|1|4, 24|1|3, 34|1|2. \end{cases}$

Partition of An Integer

A partition of the number k is a tuple of **positive** integers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ such that $\sum_{i=1}^n \lambda_i = k$ and $\lambda_1 \geq \lambda_2 \cdots \geq \lambda_n$. We use p(k) for the number of partitions of k, and $p_n(k)$ for the number of partitions of k into exactly n parts. Note that $p(k) = \sum_{i=1}^k p_i(k)$.

$$p_2(7) = 3.$$

$$7 = 6 + 1 = 5 + 2 = 4 + 3.$$

$$p_3(7) = 4.$$

$$7 = 5 + 1 + 1 = 4 + 2 + 1$$

$$= 3 + 3 + 1 = 3 + 2 + 2.$$

Particular Values of Stirling Number of the Second Kind

•
$${n \brace k} = 0$$
 if $k > n$. **•** ${n \brack 0} = 0$. **•** ${n \brack 1} = 1$. **•** ${n \brack n} = 1$. **•** ${n \brack n} = 1$.

n	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$	$\binom{n}{5}$	$\binom{n}{6}$	$\binom{n}{7}$	$\binom{n}{8}$	$\binom{n}{9}$
0	1									
1	0	1								
2	0	1	1							
3	0	1	3	1						
4	0	1	7	6	1					
5	0	1	15	25	10	1				
6	0	1	31	90	65	15	1			
7	0	1	63	301	350	140	21	1		
8	0	1	127	966	1701	1050	266	28	1	
9	0	1	255	3025	7770	6951	2646	462	36	1

By inclusion-exclusion principle (on this later),

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-j} \binom{k}{j} j^n$$

Theorem

For $n \ge k \ge 1$,

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brack k}$$

Proof by double counting.

- ▶ By definition, the LHS counts the ways of partitioning of an *n*-element set into *k* subsets.
- Consider whether the element n is alone in its own set.
 - ▶ If yes, then there are $\binom{n-1}{k-1}$ ways of partition the remaining n-1 elements into k-1 subsets.
 - If no, then there are $\binom{n-1}{k}$ ways of partition the remaining n-1 elements into k subsets, and there are k choices to insert the element n into any of the k subsets.

Theorem

For $m, n \geq 0$,

$$m^n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} m^{\underline{k}}$$

$$\begin{bmatrix}
n \end{bmatrix} \xrightarrow{f} \begin{bmatrix} m \end{bmatrix}$$

$$\downarrow q \\
\downarrow \tilde{f}$$

$$[k] \cong [n]/\sim$$

Proof by double counting (Method I).

- ▶ By definition, the LHS counts the number of functions from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$.
- Consider the partition of the domain induced by the function $f:[n] \to [m]$, the size of the partition ranges from 0 to n. Now for each fixed partition of size k, the induced function $\tilde{f}:[n]/\sim \to [m]$ is injective. There are $m^{\underline{k}}$ such injections, with $n \atop k$ choices of different domains of size k (Note that q is surjective).

Theorem

For $m, n \geq 0$,

$$m^n = \sum_{k=0}^n \binom{n}{k} m^{\underline{k}}$$

Proof by double counting (Method II).

- ▶ By definition, the LHS counts the number of functions from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$.
- For each function $f:[n] \to [m]$, we can write $f = i \circ s$, where $s:[n] \to \operatorname{im} f$ is surjective, and $i:\operatorname{im} f \hookrightarrow [m]$ is injective (called an inclusion map). For each $\operatorname{im} f$ of fixed size k, the number of surjection s is given by $k!\binom{n}{k}$, and the choice of $\operatorname{im} f \subset [m]$ is given by $\binom{m}{k} = m^{\underline{k}}/k!$. \square

Table of Contents

1. Linear Recurrence Relations

2. Formal Power Series

3. Binomial Theorem

4. Partition of Sets

5. Inclusion-Exclusion Principle

```
primes = filterPrime [2..] where
  filterPrime (p:xs) = p : filterPrime [x | x <- xs, x `mod` p /= 0]</pre>
```

- ▶ 2 sets: $|A \cup B| = |A| + |B| |A \cap B|$
- ▶ 3 sets: $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |C \cap A|$

 $+ |A \cap B \cap C|$

Applications

- Sieve of Eratosthenes
- ► Euler's totient function
- **>** ...

Notation

Given $I \subset [n]$, we let

$$A_I := \bigcap_{i \in I} A_i,$$

where $A_i \subset X$ for all $i \in I$. For example, $A_{\{1,2,4\}} = A_1 \cap A_2 \cap A_4$. In particular, $A_{\varnothing} = X$. Or equivalently, take

$$A_I := \bigcap \left(\{X\} \cup \bigcup_{i \in I} \{A_i\} \right)$$

to justify the notation A_{\varnothing} . For example,

$$A_{\{1,2,4\}} = \bigcap \{X, A_1, A_2, A_4\} = A_1 \cap A_2 \cap A_4$$

and

$$A_{\varnothing} = \bigcap \{X\} = X$$

Theorem (Inclusion-Exclusion Principle)

Let A_1, \ldots, A_n be subsets of X. Then the number of elements of X which lie in none of the subsets A_i is

$$\sum_{I\subset [n]} (-1)^{|I|} |A_I| = \sum_{r\geq 0} (-1)^r \sum_{|I|=r} |A_I|$$

Proof.

Note that there is a one-to-one correspondence between a set A and its indicator function $\mathbf{1}_A$, where

$$1_A(x) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Proof.

Thus

$$egin{aligned} 1_{(A_1 \cup \cdots \cup A_n)^c} &= \prod_{i=1}^n 1_{A_i^c} = \prod_{i=1}^n (1_X - 1_{A_i}) \ &= 1_X - \sum_{1 \leq i \leq n} 1_{A_i} + \sum_{1 \leq i < j \leq n} 1_{A_i} 1_{A_j} \ &- \sum_{1 \leq i < j < k \leq n} 1_{A_i} 1_{A_j} 1_{A_k} + \cdots + (-1)^n 1_{A_1} \cdots 1_{A_n} \ &= 1_X - \sum_{1 \leq i \leq n} 1_{A_i} + \sum_{1 \leq i < j \leq n} 1_{A_i \cap A_j} \ &- \sum_{1 \leq i < j < k \leq n} 1_{A_i \cap A_j \cap A_k} + \cdots + (-1)^n 1_{A_1 \cap \cdots \cap A_n} \end{aligned}$$

Proof.

Note that $|A_I|$ represents the number of elements are in **at least** A_i 's where $i \in I$ (possibly also in other A_i where $i \notin I$). Let $J_x := \{i \in [n] \mid x \in A_i\}$, then $x \in A_i$ iff $i \in J_x$, i.e., $x \in A_I$ iff $I \subset J_x$ (or $I \in \mathcal{P}(J_x)$). Also

$$egin{aligned} N_r &:= \sum_{|I|=r} |A_I| = \sum_{|I|=r} \sum_{x \in X} \mathbf{1}_{A_I}(x) = \sum_{x \in X} \sum_{|I|=r} \mathbf{1}_{\mathcal{P}(J_x)}(I) \ &= \sum_{x \in X} inom{|J_x|}{r} = \sum_{t \geq 0} inom{t}{r} \sum_{\substack{x \in X \ |J_x|=t}} \mathbf{1} = \sum_{t \geq 0} inom{t}{r} e_t \end{aligned}$$

where $e_t := |\{x \in X \mid |J_x| = t\}|$ represents the number of elements that are in *exactly* t subsets A_i 's where $i \in J_x$. Now let

$$N(x) := \sum_{r>0} N_r x^r$$
 and $E(x) := \sum_{t>0} e_t x^t$

Proof (Cont.)

Thus

$$N(x) = \sum_{r \ge 0} \sum_{t \ge 0} {t \choose r} e_t x^r = \sum_{t \ge 0} e_t \sum_{r \ge 0} {t \choose r} e^r$$
$$= \sum_{t \ge 0} e_t (x+1)^t = E(x+1)$$

Hence E(x) = N(x-1), so for $j \ge 0$, we get the **sieve formula** (cf., Gallier, Theorem 4.4),

$$e_j = \frac{E^{(j)}(0)}{j!} = \frac{N^{(j)}(-1)}{j!} = \sum_{t>0} (-1)^{t-j} \frac{(n)_j}{j!} N_t = \sum_{t>0} (-1)^{t-j} \binom{t}{j} N_t$$

and in particular,

$$e_0 = E(0) = N(-1) = \sum_{t>0} (-1)^t N_t$$

Proof (Not by induction).

Re-wirte the sum as

$$\sum_{I \subset [n]} (-1)^{|I|} |A_I| = \sum_{I \subset [n]} \sum_{x \in A_I} (-1)^{|I|} = \sum_{x \in X} \sum_{I: x \in A_I} (-1)^{|I|}$$

Let $J_x := \{i \in [n] \mid x \in A_i\}$, then $x \in A_i$ iff $i \in J_x$, i.e., $x \in A_I$ iff $I \subset J_x$.

- ▶ If $x \in X \bigcup_{i=1}^n A_i$, then $J_x = \emptyset$. Hence $\sum_{I \subset J_x} (-1)^{|I|} = \sum_{I = \emptyset} (-1)^0 = 1$.
- ▶ Otherwise, $J \neq \emptyset$. Thus by binomial theorem,

$$\sum_{I \subset J_{x}} (-1)^{|I|} = \sum_{i=0}^{|J_{x}|} {|J_{x}| \choose i} (-1)^{i} = (1-1)^{|J_{x}|} = 0$$

Sum the terms and we are done.

Corollary

Let A_1, \ldots, A_n be a sequence of (not necessarily distinct) sets, then

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{\varnothing \neq I \subset [n]} (-1)^{|I|+1} |A_I|.$$

Proof.

Take the complement of both sides of previous therem within the set $X = A_{\varnothing}$, that is,

$$|A_1 \cup \dots \cup A_n| = |A_{\varnothing}| - \sum_{I \subset [n]} (-1)^{|I|+1} |A_I|$$
$$= \sum_{\varnothing \neq I \subset [n]} (-1)^{|I|+1} |A_I|$$

Special Case

The formula is a lot simpler when

$$|I|=|J|\Rightarrow |A_I|=|A_J|,$$

that is, $|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}|$ depends only on k, where $I = \{i_1, i_2, \dots, i_k\}$. Now the formula becomes

$$|A_1 \cup \cdots \cup A_n| = \sum_{|I|=1}^n (-1)^{|I|+1} \binom{n}{|I|} |A_I|$$

Derangement

Definition

A permutation $\sigma \in S_n$ over the set [n] is called a derangement if $\sigma(i) \neq i$ for all i = 1, ..., n.

Theorem

The number of derangements of the set [n] is given by

$$d_n = \sum_{i=0}^n (-1)^i \binom{n}{i} (n-i)! = n! \sum_{i=0}^n \frac{(-1)^i}{i!}$$

Proof.

Take $A_i := \{ \sigma \in S_n \mid \sigma(i) = i \}$, thus $|A_i| = (n-1)!$. Note that for general set $I \subset \{1, 2, \ldots, n\}$, $|A_I| = (n-|I|)!$. The rest follows by inclusion-exclusion principle and

$$\binom{n}{i}(n-i)! = \frac{n!}{i!(n-i)!}(n-i)! = \frac{n!}{i!}$$

Derangement

Asymptotics

Assume that each $\sigma \in S_n$ happens equally likely, what is the probability that σ is a derangement? Note that $|S_n| = n!$, thus

$$\lim_{n \to \infty} \frac{d_n}{n!} = \lim_{n \to \infty} \sum_{i=0}^n \frac{(-1)^i}{i!} = e^{-1} = \frac{1}{e} \approx \frac{1}{3}$$

Counting Surjections

Theorem

Let $k \ge n$. The number of surjections $f : [k] \to [n]$ is given by

$$S_{k,n} = \sum_{i=0}^{n-1} (-1)^i \binom{n}{i} (n-i)^k$$

Proof.

Take
$$A_i = \{f \mid f(j) \neq i \text{ for all } j\} = \{f \mid i \not\in \text{im } f\}.$$

Counting Surjections

Example

What is $S_{5,3} = |\{f : [5] \rightarrow [3] \mid f \text{ surjective}\}|$?

Method I.

$$S_{5,3} = \binom{3}{0}(3-0)^5 - \binom{3}{1}(3-1)^5 + \binom{3}{2}(3-2)^5 - \underbrace{\binom{3}{3}(3-3)^5}_{=0}$$

Method II.

We first calculate that

thus
$$S_{5,3} = 3! {5 \brace 3} = 150.$$

Dimension of Vector Spaces

Given finite dimensional vector spaces U, V, and W, then?

- $\operatorname{dim}(U+V) = \operatorname{dim} U + \operatorname{dim} V \operatorname{dim}(U \cap V).$

Maximum-minimums Identity

Let $S = \{x_1, x_2, ..., x_n\}$, then

$$\max\{x_1, x_2, \dots, x_n\} = \sum_{i=1}^n x_i - \sum_{i < j} \min\{x_i, x_j\} + \sum_{i < j < k} \min\{x_i, x_j, x_k\} - \dots + (-1)^{n+1} \min\{x_1, x_2, \dots, x_n\},$$

or similarly,

$$\min\{x_1, x_2, \dots, x_n\} = \sum_{i=1}^n x_i - \sum_{i < j} \max\{x_i, x_j\} + \sum_{i < j < k} \max\{x_i, x_j, x_k\} - \dots$$

$$\dots + (-1)^{n+1} \max\{x_1, x_2, \dots, x_n\}.$$