

Ultra low-drop voltage regulators with inhibit

Datasheet - production data

Features

- Ultra low dropout voltage (0.17 V typ. at 100 mA load, 7 mV typ. at 1 mA load)
- Very low quiescent current (80 μA typ. at no load in on mode; max 1 μA in off mode)
- Guaranteed output current up to 100 mA
- Logic-controlled electronic shutdown
- Output voltage of 2.5; 3.0; 3.3; 5.0 V
- Internal current and thermal limit
- ± 0.75% tolerance output voltage available (A version)
- Output low noise voltage 160 μVRMS
- Temperature range: -40 to 125 °C
- Small package SOT23-5L and SOT-89
- Fast dynamic response to line and load changes

Description

The LD2981 is a 100 mA fixed-output voltage regulator. The low-drop voltage and the ultra low quiescent current make them suitable for low noise, low power applications and in battery powered systems.

The quiescent current in sleep mode is less than 1 μ A when INHIBIT pin is pulled low. Shutdown logic control function is available on pin n° 3 (TTL compatible). This means that when the device is used as local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. The LD2981 is designed to work with low ESR ceramic capacitor. Typical applications are in cellular phone, palmtop/laptop computer, personal digital assistant (PDA), personal stereo, camcorder and camera.

C	$\boldsymbol{\wedge}$	n	4	Δ	n	+	c
	LJ			_			

1	Diagran	n	5
2	Pin con	nfiguration	6
3	Maximu	ım ratings	7
4		application	
5	Electric	cal characteristics	9
6	Typical	performance characteristics	12
7	Applica	ation notes	16
	7.1	External capacitors	16
	7.2	Input capacitor	16
	7.3	Output capacitor	16
	7.4	Important	16
	7.5	Inhibit input operation	16
	7.6	Reverse current	17
8	Packag	e information	18
	8.1	SOT-89 package information	18
	8.2	SOT-89 packing information	21
	8.3	SOT23-5L package information	22
	8.4	SOT23-5L packing information	24
9	Orderin	ng information	25
10	Revisio	on history	26

LD2981 List of tables

List of tables

Table 1: Pin description	6
Table 2: Thermal data	6
Table 3: Absolute maximum ratings	7
Table 4: Electrical characteristics for LD2981AB	9
Table 5: Electrical characteristics for LD2981C	10
Table 6: SOT-89 mechanical data	19
Table 7: SOT-89 carrier tape mechanical data	21
Table 8: SOT23-5L package mechanical data	22
Table 9: SOT23-5L tape and reel mechanical data	24
Table 10: Order codes	25
Table 11: Document revision history	26

List of figures

	1: Schematic diagram	
Figure	2: Pin connections (top view)	.6
	3: Application circuit	
Figure	4: Output voltage vs temperature	12
Figure	5: Dropout voltage vs temperature	12
Figure	6: Line regulation vs temperature	12
Figure	7: Load regulation vs temperature	12
Figure	8: Dropout voltage vs temperature	13
Figure	9: Quiescent current vs temperature	13
Figure	10: Quiescent current vs output current	13
	11: Off mode quiescent current vs temperature	
Figure	12: Quiescent current vs input voltage	13
	13: Dropout voltage vs output current	
	14: Inhibit input current vs temperature	
	15: Inhibit voltage vs temperature	
	16: Supply voltage rejection vs frequency	
	17: Noise voltage vs frequency	
	18: Best case: highest output version	
	19: Worst case: lowest output version	
	20: Load transient response	
	21: Line transient response	
	22: Reverse current test circuit	
	23: SOT-89 package outline	
	24: SOT-89 recommended footprint	
	25: SOT-89 carrier tape outline	
	26: SOT23-5L package outline2	
Figure	27: SOT23-5L recommended footprint2	23
Figure	28: SOT23-51, tane and reel outline	24

LD2981 Diagram

1 Diagram

Figure 1: Schematic diagram

Pin configuration LD2981

2 Pin configuration

Figure 2: Pin connections (top view)

Table 1: Pin description

Pin n° SOT23-5L	Pin n° SOT-89	Symbol	Name and function
1	3	VIN	Input port
2	2	GND	Ground pin
3		INHIBIT	Control switch ON/OFF. Inhibit is not internally pulled-up; it cannot be left floating. Disable the device when connected to GND or to a positive voltage less than 0.18 V
4		NC	Not connected
5	1	Vouт	Output port

Table 2: Thermal data

Symbol	Parameter	SOT23-5L	SOT-89	Unit
R _{thJC}	Thermal resistance junction-case	81	15	°C/W
R _{thJA}	Thermal resistance junction-ambient	255	110	°C/W

LD2981 Maximum ratings

3 Maximum ratings

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vı	DC input voltage	-0.3 to 16	V
VINH	INHIBIT input voltage	-0.3 to 16	V
lo	Output current	Internally limited	
P _D	Power dissipation	Internally limited	
T _{STG}	Storage temperature range	-55 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Typical application LD2981

4 Typical application

Figure 3: Application circuit

Inhibit pin is not internally pulled-up then it must not be left floating. Disable the device when connected to GND or to a positive voltage less than 0.18 V.

LD2981 Electrical characteristics

5 Electrical characteristics

(T_J = 25 °C, V_I = V_{O(NOM)} + 1 V, C_I = 1 μ F, C_O = 2.2 μ F, I_O = 1 mA, V_{INH} = 2 V, unless otherwise specified).

Table 4: Electrical characteristics for LD2981AB

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{OP}	Operating input voltage		2.5		16	V	
		Io = 1 mA	2.977	3	3.023	٧	
Vo	Output voltage	Io = 1 to 100 mA	2.97		3.03		
		$I_0 = 1 \text{ to } 100 \text{ mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C}$	2.925		3.075		
		Io = 1 mA	3.275	3.3	3.325		
Vo	Output voltage	Io = 1 to 100 mA	3.267		3.333	V	
		$I_0 = 1 \text{ to } 100 \text{ mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C}$	3.217		3.383		
		Io = 1 mA	4.962	5	5.038		
Vo	Output voltage	Io = 1 to 100 mA	4.95		5.05	V	
		$I_{O} = 1$ to 100 mA, $T_{J} = -40$ to 125 °C	4.875		5.125		
A\/	Line regulation	V _{O(NOM)} + 1 < V _{IN} < 16 V, I _O = 1 mA		0.003	0.014	0/ /\/	
ΔVo	Line regulation	T _J = -40 to 125 °C			0.032	%/V	
	Quiescent current ON MODE	I _O = 0		80	100	μΑ	
		I _O = 0, T _J = -40 to 125 °C			150		
		Io = 1 mA		100	150		
		I _O = 1 mA, T _J = -40 to 125 °C			200		
		Io = 25 mA		250	400		
ΙQ		Io = 25 mA, T _J = -40 to 125 °C			800		
		Io = 100 mA		1000	1300		
		Io = 100 mA, T _J = -40 to 125 °C			2600		
		V _{INH} < 0.3 V			0.8		
	OFF MODE	V _{INH} < 0.15 V, T _J = -40 to 125 °C			2		
		Io = 0		1	3		
		Io = 0, T _J = -40 to 125 °C			5		
		Io = 1 mA		7	10		
.,	Dropout	I _O = 1 mA, T _J = -40 to 125 °C			15	\ /	
V_{DROP}	voltage (1)	Io = 25 mA		70	100	mV	
		Io = 25 mA, T _J = -40 to 125 °C			150		
		Io = 100 mA		180	250		
		Io = 100 mA, T _J = -40 to 125 °C			375		
I _{SC}	Short circuit current	R _L = 0		150		mA	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
SVR	Supply voltage rejection	C _O = 10 μF, f = 1 KHz		63		dB
Vinh	Inhibit input logic low	LOW = Output OFF, T _J = -40 to 125 °C			0.18	V
V _{INL}	Inhibit input logic high	HIGH = Output ON, T _J = -40 to 125 °C	1.6			٧
l	Inhibit input	V _{INH} = 0 V, T _J = -40 to 125 °C		0	-1	
linh	current	V _{INH} = 5 V, T _J = -40 to 125 °C		5	15	μΑ
en	Output noise voltage	Bw = 300 Hz to 50 KHz, Co = 10 μF		160		μV _{RMS}
T _{SHDN}	Thermal shutdown			170		°C

Notes:

 $^{(1)}$ For Vo < 2.5 V dropout voltage can be calculated according to the minimum input voltage in full temperature range.

(T_J = 25 °C, V_I = V_{O(NOM)} +1 V, C_I = 1 μ F, C_O = 2.2 μ F, I_O = 1 mA, V_{INH} = 2 V, unless otherwise specified)

Table 5: Electrical characteristics for LD2981C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{OP}	Operating input voltage		2.5		16	٧
		Io = 1 mA	2.468	2.5	2.531	
Vo	Output voltage	Io = 1 to 100 mA	2.45		2.55	V
		Io = 1 to 100 mA, T _J = -40 to 125 °C	2.412		2.587	
		Io = 1 mA	2.962	3	3.037	
Vo	Output voltage	Io = 1 to 100 mA	2.94		3.06	V
		I _O = 1 to 100 mA, T _J = -40 to 125 °C	2.895		3.105	
		Io = 1 mA	3.258	3.3	3.341	
Vo	Output voltage	Io = 1 to 100 mA	3.234		3.366	V
		Io = 1 to 100 mA, T _J = -40 to 125 °C	3.184		3.415	
		Io = 1 mA	4.937	5	5.062	
Vo	Output voltage	Io = 1 to 100 mA	4.9		5.1	V
		$I_0 = 1 \text{ to } 100 \text{ mA}, T_J = -40 \text{ to } 125 \text{ °C}$	4.825		5.175	
۸۱/-	Line regulation	V _{O(NOM)} + 1 < V _{IN} < 16 V, I _O = 1 mA		0.003	0.014	
ΔVo	Line regulation	T _J = -40 to 125 °C			0.032	%/V

LD2981 Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		I _O = 0		80	100	
		I _O = 0, T _J = -40 to 125 °C			150	
		I _O = 1 mA		100	150	
	Quiescent current	$I_{O} = 1$ mA, $T_{J} = -40$ to 125 °C			200	
١.	ON MODE	I _O = 25 mA		250	400	
lα		$I_{O} = 25$ mA, $T_{J} = -40$ to 125 °C			800	μA
		I _O = 100 mA		1000	1300	
		I_O = 100 mA, T_J = -40 to 125 °C			2600	
	OFF MODE	V _{INH} < 0.3 V			0.8	
	OFF MODE	V _{INH} < 0.15 V, T _J = -40 to 125 °C			2	
		I _O = 0		1	3	
	Dropout voltage (1)	I _O = 0, T _J = -40 to 125 °C			5	mV
		Io = 1 mA		7	10	
		I _O = 1 mA, T _J = -40 to 125 °C			15	
V_{DROP}		I _O = 25 mA		70	100	
		I _O = 25 mA, T _J = -40 to 125 °C			150	
		Io = 100 mA		180	250	
		I _O = 100 mA, T _J = -40 to 125 °C			375	
I _{SC}	Short circuit current	R _L = 0		150		mA
SVR	Supply voltage rejection	C _O = 10 μF, f = 1 KHz		63		dB
VINH	Inhibit input logic low	LOW = Output OFF, T _J = -40 to 125 °C			0.18	V
VINL	Inhibit input logic high	HIGH = Output ON, T _J = -40 to 125 °C	1.6			V
	Inhibit input	V _{INH} = 0 V, T _J = -40 to 125 °C		0	-1	
I _{INH}	current	V _{INH} = 5 V, T _J = -40 to 125 °C		5	15	μF
e _N	Output noise voltage	Bw = 300 Hz to 50 KHz, C _O = 10 μF		160		μV _{RMS}
Tshdn	Thermal shutdown			170		°C

Notes:

 $^{^{(1)}}$ For Vo < 2.5 V dropout voltage can be calculated according to the minimum input voltage in full temperature range.

6 Typical performance characteristics

(T_J = 25 °C, V_I = V_{O(NOM)} +1 V, C_I = 1 μ F, C_O = 2.2 μ F, V_{INH} = 2 V, unless otherwise specified).

Figure 16: Supply voltage rejection vs frequency SVR(dB) 70 60 50 40 $I_0 = 100 \text{ m/s}$ 30 20 $V_1 = V_{O(NOM)} + 1V$ $C_0 = 10\mu F X7R$ V_{O(NOM)}+3\ 10 o └ 0.1 10 f(KHz) GIPD200120161166MT

Application notes LD2981

7 Application notes

7.1 External capacitors

Like any low-dropout regulator, the LD2981 requires external capacitors for regulator stability. This capacitor must be selected to meet the requirements of minimum capacitance and equivalent series resistance. We suggest to solder input and output capacitors as close as possible to the relative pins.

7.2 Input capacitor

An input capacitor whose value is 1 μ F is required with the LD2981 (amount of capacitance can be increased without limit). This capacitor must be located a distance of not more than 0.5" from the input pin of the device and returned to a clean analog ground. Any good quality ceramic, tantalum or film capacitors can be used for this capacitor.

7.3 Output capacitor

The LD2981 is designed specifically to work with ceramic output capacitors. It may also be possible to use Tantalum capacitors, but these are not as attractive for reasons of size and cost. By the way, the output capacitor must meet both the requirement for minimum amount of capacitance and ESR (equivalent series resistance) value. The *Figure 18: "Best case: highest output version"* and *Figure 19: "Worst case: lowest output version"* show the allowable ESR range as a function of the output capacitance. These curves represent the stability region over the full temperature and IO range. Due to the different loop gain, the stability improves for higher output versions and so the suggested minimum output capacitor value, if low ESR ceramic type is used, is 1 µF for output voltages equal or major than 3.8 V, 2.2 µF for output voltages from 2.85 to 3.3 V, and 3.3 µF for the other versions. However, if an output capacitor lower than the suggested one is used, it's possible to make stable the regulator adding a resistor in series to the capacitor (see *Figure 18: "Best case: highest output version"* and *Figure 19: "Worst case: lowest output version"* to choose the right value according to the used version and keeping in account that the ESR of ceramic capacitors has been measured @ 100 kHz).

7.4 Important

The output capacitor must maintain its ESR in the stable region over the full operating temperature to assure stability. Also, capacitor tolerance and variation with temperature must be considered to assure the minimum amount of capacitance is provided at all times. This capacitor should be located not more than 0.5" from the output pin of the device and returned to a clean analog ground.

7.5 Inhibit input operation

The inhibit pin can be used to turn OFF the regulator when pulled low, so drastically reducing the current consumption down to less than 1 μ A. When the inhibit feature is not used, this pin must be tied to VI to keep the regulator output ON at all times. To assure proper operation, the signal source used to drive the inhibit pin must be able to swing above and below the specified thresholds listed in the electrical characteristics section under V_{IH} V_{IL} . Any slew rate can be used to drive the inhibit.

LD2981 Application notes

7.6 Reverse current

The power transistor used in the LD2981 has not an inherent diode connected between the regulator input and output. If the output is forced above the input, no current will flow from the output to the input across the series pass transistor. When a V_{REV} voltage is applied on the output, the reverse current measured, according to the test circuit in *Figure 22:* "Reverse current test circuit", flows to the GND across the two feedback resistors. This current typical value is 160 μ A. R_1 and R_2 resistors are implanted type; typical values are, respectively, 42.6 $k\Omega$ and 51.150 $k\Omega$.

V₁ — 1 V_{NNH} — CS12830

GIPD210120160956MT

Figure 22: Reverse current test circuit

Package information LD2981

Package information 8

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 23: SOT-89 package outline

SOT-89 package information 8.1

H BOTTOM VIEW

SIDE VIEW

C1

7098166_REV_F

LD2981 Package information

Table 6: SOT-89 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	1.40		1.60
В	0.44		0.56
B1	0.36		0.48
С	0.35		0.44
C1	0.35		0.44
D	4.40		4.60
D1	1.62		1.83
D3		0.90	
Е	2.29		2.60
е	1.42		1.57
e1	2.92		3.07
Н	3.94		4.25
H1	2.70		3.10
K	1°		8°
L	0.89		120
R		0.25	
β		90°	

Figure 24: SOT-89 recommended footprint

LD2981 Package information

8.2 SOT-89 packing information

Figure 25: SOT-89 carrier tape outline

Table 7: SOT-89 carrier tape mechanical data

Dim.	mm	
	Value	Tolerance
Ao	4.91	± 0.10
Во	4.52	± 0.10
Ko	1.90	± 0.10
F	5.50	± 0.10
E	1.75	± 0.10
W	12	± 0.30
P2	2	± 0.10
Po	4	± 0.10
P1	8	± 0.10
Т	0.30	± 0.10
D	Ø 1.55	± 0.05
D1	Ø 1.60	± 0.10

Package information LD2981

8.3 SOT23-5L package information

Figure 26: SOT23-5L package outline

Table 8: SOT23-5L package mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А	0.90		1.45
A1	0		0.15
A2	0.90		1.30
b	0.30		0.50
С	0.09		0.20
D		2.95	
Е		1.60	
е		0.95	
Н		2.80	
L	0.30		0.60
θ	0°		8°

Figure 27: SOT23-5L recommended footprint

Dimensions are in mm

Package information LD2981

8.4 SOT23-5L packing information

Figure 28: SOT23-5L tape and reel outline

Table 9: SOT23-5L tape and reel mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А			180
С	12.8	13.0	13.2
D	20.2		
N	60		
Т			14.4
Ao	3.13	3.23	3.33
Во	3.07	3.17	3.27
Ko	1.27	1.37	1.47
Po	3.9	4.0	4.1
Р	3.9	4.0	4.1

LD2981 Ordering information

9 Ordering information

Table 10: Order codes

AB version		C version		Output voltage
SOT23-5L	SOT-89	SOT23-5L	SOT-89	Output voltage
		LD2981CM25TR		2.5 V
LD2981ABM30TR		LD2981CM30TR		3.0 V
LD2981ABM33TR	LD2981ABU33TR	LD2981CM33TR	LD2981CU33TR	3.3 V
LD2981ABM50TR	LD2981ABU50TR	LD2981CM33TR	LD2981CU50TR	5.0 V

Revision history LD2981

10 Revision history

Table 11: Document revision history

Date	Revision	Changes
25-Jul-2006	12	Order codes updated.
14-Feb-2008	13	Added: Table 1 on page 1.
14-Jul-2008	14	Modified: Table 1 on page 1 and Table 10 on page 23.
25-Nov-2013	15	Document name changed from LD2981ABxx and LD2981Cxx to LD2981. Updated Table 4 and Table 5. Updated Section 8: Package information and Section 8.4: SOT-89 packing information. Minor text changes in title, in features and description in cover page.
16-Mar-2015	16	Updated Section 8: Package information. Minor text changes.
01-Apr-2016	17	Updated Section 8: "Package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

