Lecture 20

Searching & Sorting

Linear Search

```
def linear search(v,b):
   """Returns: first occurrence of v in b (-1 if not found)
   Precond: b a list of number, v a number
   *****
  # Loop variable
  i = 0
  while i < len(b) and b[i] != v:
     i = i + 1
  if i = len(b): # not found
     return -1
  return i
```

How many entries do we have to look at?

Linear Search

```
def linear search(v,b):
   """Returns: first occurrence of v in b (-1 if not found)
   Precond: b a list of number, v a number
   *****
  # Loop variable
  i = 0
  while i < len(b) and b[i] != v:
     i = i + 1
  if i = len(b): # not found
     return -1
```

return i

How many entries do we have to look at?

All of them!

Linear Search

Equals -1 if not found

return i

How many entries do we have to look at?

All of them!

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

Binary Search

```
def binary_search(v,b):
  # Loop variable(s)
  i = 0, j = len(b) - 1
  while i \le j:
     mid = (i+j)//2
```

Binary Search

def binary_search(v,b): # Loop variable(s) i = 0, j = len(b) - 1while $i \le j$: mid = (i+j)//2if b[mid] < v: i = mid + 1elif b[mid] > v: j = mid-1else:

return mid

return -1 # not found

Requires that the data is sorted!

But few checks!

Observation About Sorting

- Sorting data can speed up searching
 - Sorting takes time, but do it once
 - Afterwards, can search many times
- Not just searching. Also speeds up
 - Duplicate elimination in data sets
 - Data compression
 - Physics computations in computer games
- Why it is a major area of computer science

The Sorting Challenge

- Given: A list of numbers
- Goal: Sort those numbers using only
 - Iteration (while-loops or for-loops)
 - Comparisons (< or >)
 - Assignment statements
- Why? For proper analysis.
 - Methods/functions come with hidden costs
 - Everything above has no hidden costs
 - Each comparison or assignment is "1 step"

This Requires Some Notation

- As the list is sorted...
 - Part of the list will be sorted
 - Part of the list will not be sorted
- Need a way to refer to portions of the list
 - Notation to refer to sorted/unsorted parts
- And have to do it without slicing!
 - Slicing makes a copy
 - Want to sort original list, not a copy

This Requires Some Notation

- As the list is sorted...
 - Part of the list will be sorted
 - Part of the list will not be sorted
- Need a way to refer to portions of the list
 - Notation to refer to sorted/unsorted parts
- And have to do it without slicing!
 - Slicing makes a copy
 - Want to sort original list, not a copy

Recall: Range Notation

- m..n is a range containing n+1-m values
 - **2...5** contains 2, 3, 4, 5.
 - **2..4** contains 2, 3, 4.
 - **2...3** contains 2, 3.
 - **2...2** contains 2.
 - **2..1** contains ???

- Contains 5+1-2=4 values
- Contains 4+1-2=3 values
- Contains 3+1-2=2 values
- Contains 2+1-2=1 values

- The notation m..n, always implies that $m \le n+1$
 - So you can assume that even if we do not say it
 - If m = n+1, the range has 0 values

Recall: Range Notation

- m..n is a range containing n+1-m values
 - 2..5 contains 2, 3, 4, 5.
 - 2..4 contains 2, 3, 4.
 - 2..3 contains 2, 3.
 - **2...2** contains 2.
 - 2..1 contains ???

- Contains 5+1-2=4 values
- Contains 4+1-2=3 values
- Contains 3+1-2=2 values
- Contains 2+1-2=1 values

- The notation m..n, always implies that $m \le n+1$
 - So you can assume that even if we do not say it
 - If m = n+1, the range has 0 values

Horizontal Notation

- Want a pictoral way to visualize this sorting
 - Represent the list as long rectangle
 - We saw this idea in divide-and-conquer

• Do **not** show individual boxes

- Just dividing lines between regions
- Label dividing lines with indices
- But index is either left or right of dividing line

Horizontal Notation

- Label regions with properties
 - **Example:** Sorted or ???

	0	k	n
b	sorted	???	

- b[o..k–1] is sorted
- b[k.n-1] unknown (might be sorted)
- Picture allows us to track progress

Visualizing Sorting

Insertion Sort

Remember the restrictions!

```
i = 0
while i < n:
  push_down(b,i)
  i = i+1
def push_down(b, i):
   j = i
   while j > 0:
                           swap shown in the
     if b[j-1] > b[j]:
                           lecture about lists
        swap(b,j-1,j)
     j = j-1
```

```
i = 0
while i < n:
  push_down(b,i)
  i = i+1
def push_down(b, i):
   j = i
  while j > 0:
     if b[j-1] > b[j]:
        swap(b,j-1,j)
     j = j-1
```

0 i
2 4 4 6 6 7 5
0 i
2 4 4 6 6 5 7

swap shown in the lecture about lists

```
i = 0
while i < n:
  push_down(b,i)
  i = i+1
def push_down(b, i):
   j = i
                                                   0
   while j > 0:
                           swap shown in the
     if b[j-1] > b[j]:
                           lecture about lists
        swap(b,j-1,j)
     j = j-1
```



```
i = 0
while i < n:
                                                 2 4 4 6 6 7
  push_down(b,i)
  i = i+1
def push_down(b, i):
  j = i
                                                 2 4 4 6 5 6
  while j > 0:
                          swap shown in the
     if b[j-1] > b[j]:
                          lecture about lists
        swap(b,j-1,j)
     j = j-1
```

The Importance of Helper Functions

```
i = 0
while i < n:
  push_down(b,i)
  i = i+1
                                   VS
def push_down(b, i):
   j = i
  while j > 0:
     if b[j-1] > b[j]:
        swap(b,j-1,j)
     j = j-1
```

```
Can you understand
             all this code below?
i = 0
while i < n:
  j = i
  while j > 0:
     if b[j-1] > b[j]:
        temp = b[j]
        b[j] = b[j-1]
        b[j-1] = temp
     j = j-1
  i = i + 1
```

Measuring Performance

- Performance is a tricky thing to measure
 - Different computers run at different speeds
 - Memory also has a major effect as well
- Need an independent way to measure
 - Measure in terms of "basic steps"
 - **Example:** Searching counted # of checks
- For sorting, we measure in terms of swaps
 - Three assignment statements
 - Present in all sorting algorithms

Insertion Sort: Performance

def push_down(b, i):

```
"""Push value at position i into sorted position in b[o..i-1]"""
j = i
while j > 0:

| if b[j-1] > b[j]:
| swap(b,j-1,j)
| j = j-1
```

- b[0..i-1]: i elements
- Worst case:
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps
- Pushdown is in a loop
 - Called for i in 0..n
 - i swaps each time

Total Swaps: $0 + 1 + 2 + 3 + ... (n-1) = (n-1)*n/2 = (n^2-n)/2$

Insertion Sort: Performance

def push_down(b, i):

```
"""Push value at position i into sorted position in b[o.i-1]"""
j = i
while j > 0:
| if b[j-1] > b[j]:
| swap(b,j-1,j)
| j = j-1
```

• b[0..i-1]: i elements

Worst case:

• i = 0: 0 swaps

• i = 1: 1 swap

• i = 2: 2 swaps

- Pushdown is in a loop
 - Called for i in 0..n
 - i swaps each time

Insertion sort is an n² algorithm

Total Swaps: $0 + 1 + 2 + 3 + ... (n-1) = (n-1)*n/2 = (n^2-n)/2$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	n=10	n=100	n=1000
log n	0.003 s	0.006 s	0.01 s
n	0.01 s	0.1 s	1 s
n log n	0.016 s	0.32 s	4.79 s
n^2	0.1 s	10 s	16.7 m
n^3	1 s	16.7 m	11.6 d
2 ⁿ	1 s	$4x10^{19} y$	$3x10^{290} y$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	D' C 1	n=100	n=1000
log n	Binary Search	0.006 s	0.01 s
n	Lineal Selasch	0.1 s	1 s
n log n	0.016 s	0.32 s	4.79 s
n^2	Insertion Sort	10 s	16.7 m
n^3	1 8	16.7 m	11.6 d
2 ⁿ	1 s	$4x10^{19} y$	$3x10^{290} y$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	n=10	n=100	n=1000
log n	0.003 s	0.006 s	0.01 s
n	0.0 s	0.1 s	1 s
n log n	0.016 s	0.32 s	4.79 s
n^2	0.1 s	10 s	16.7 m
n^3	1 s	16.7 m	11.6 d
2 ⁿ	1 s	$4x10^{19} y$	$3x10^{290} y$

Insertion Sort is Not Great

- Typically n² is okay, but not great
 - Will perform horribly on large data
 - Very bad when performance critical (games)
- We would like to do better than this
 - Can we get n swaps (no)?
 - How about n log n (maybe)
- This will require a new algorithm
 - Let's return to horizontal notation

A New Algorthm

In-Progress: b
$$0$$
 i n $b[i...]$ $b[0..i-1]$

First segment always contains smaller values

Selection Sort

$$\begin{array}{c|cc} 0 & i & n \\ \hline b & sorted, \leq b[i..] & \geq b[0..i-1] \end{array}$$

Remember the restrictions!

Selection Sort

How fast is this?

Selection Sort

This is also n²!

What is the Problem?

- Both insertion, selection sort are nested loops
 - Outer loop over each element to sort
 - Inner loop to put next element in place
 - Each loop is n steps. $n \times n = n^2$
- To do better we must *eliminate* a loop
 - But how do we do that?
 - What is like a loop? Recursion!
 - Will see how to do this next lecture