UNIVERSIDADE FEDERAL DE PERNAMBUCO- UFPE ENGENHARIA ELETRÔNICA FÍSICA EXPERIMENTAL 2

RELATÓRIO 1

Henrique Pedro da Silva

Fevereiro de 2022

Este relatório se encontra em: https://github.com/Shapis/experimental_physics_2_FI122

Deslocamento por Velocidade Inicial Piso 1 Autor: Henrique Pedro da Silva

2.

$$Vi = 15m/s \rightarrow d = 23.21m$$

 $Vi = 21m/s \rightarrow d = 44.19m$

3.

Deslocamento por Velocidade Inicial^2 Piso 1 Autor: Henrique Pedro da Silva

Há uma relação linear entre a velocidade ao quadrado e o deslocamento.

Piso 1 =>
$$d = 0.102*Vi^2$$

5.

A relação contínua linear. Não depende do tipo de piso.

Piso 1 => $d = 0.102*Vi^2$ Piso 2 => $d = 0.078*Vi^2$ Piso 3 => $d = 0.063*Vi^2$ Piso 4 => $d = 0.050*Vi^2$

Deslocamento por Velocidade Inicial^2 Piso 2 Autor: Henrique Pedro da Silva

Deslocamento por Velocidade Inicial^2 Piso 3 Autor: Henrique Pedro da Silva

Deslocamento por Velocidade Inicial^2 Piso 4 Autor: Henrique Pedro da Silva

6.

O valor esperado para n é 2. e o obtido foi b = 1.983. Logo está bastante próximo e podemos considerar que há uma relação quadrática entre a velocidade inicial e o deslocamento.

Grafico di-log do deslocamento por velocidade Piso 4 Autor: Henrique Pedro da Silva

7.

A força de atrito é dada por F = u*N = u*m*g

Inserindo isso em F = ma temos que u*m*g = m*a

Convenientemente as massas se anulam e deixam u*g = a

E temos que $Vf^2 = Vi^2 + 2 * a * d$.

Já que nossa velocidade final é 0. e lembrando que nossa aceleração causada pelo atrito é sempre contrária ao movimento, logo, sinal oposto ao da velocidade inicial. Podemos reescrever como:

$$0 = Vi^2 - 2*a*d$$

$$d = Vi^2 / 2*a$$

$$d = Vi^2 / 2^*u^*g$$

8.

Temos

Piso 1 =>	$d = 0.102*Vi^2$
Piso 2 =>	$d = 0.078*Vi^2$
Piso 3 =>	$d = 0.063*Vi^2$
Piso 4 =>	$d = 0.050*Vi^2$

```
Vi^2 / 2^*u^*g = A^*Vi^2
```

1/2*u*g = A

2*u*g = 1 / A

u = 1 / A*g*2

u = 1 / A*9.8*2

u para o piso 1: 0.500 u para o piso 2: 0.654 u para o piso 3: 0.810 u para o piso 4: 1.020

9.

Observei que há uma relação quadrática entre o deslocamento e a velocidade inicial de lançamento. Também que a massa não importa. As únicas coisas que importam para o deslocamento são a velocidade inicial, a gravidade, e o coeficiente de atrito. E nenhum desses fatores altera o fato dessa relação ser quadrática.

Também vi que posso fazer ajuste de dados de várias maneiras com o SciDAVis. E posso deduzir numericamente relações que não seriam tão triviais de deduzir analiticamente.