Support Vector Machines

Ch. 15

Linear classifiers: Which Hyperplane?

- Lots of possible solutions for a, b, c.
- Some methods find a separating hyperplane, but not the optimal one [according to some criterion of expected goodness]
 - E.g., perceptron
- Support Vector Machine (SVM) finds an optimal* solution.
 - Maximizes the distance between the hyperplane and the "difficult points" close to decision boundary
 - One intuition: if there are no points near the decision surface, then there are no very uncertain classification decisions

This line represents the decision boundary: ax + by - c = 0

Another intuition

 If you have to place a fat separator between classes, you have fewer choices

Support Vector Machine (SVM)

- SVMs maximize the margin around the separating hyperplane.
 - A.k.a. large margin classifiers
- The decision function is fully specified by a subset of training samples, the support vectors.
- Solving SVMs is a quadratic programming problem
- Seen by many as the most successful current text classification method*

Lagrange Multipliers

Constrained Optimization

Want to minimize some function f(x), but there are some *constraints* on the values of x.

Method 1 (Dual Problem)

Solve a *dual optimization problem* where the constraints are nicer, and where it is easier to implement gradient descent.

Method 2 (Exact Solution)

Solve the *Lagrangian* system of equations.

Equality Constraints

Problem.

minimize f(x)subject to $h_1(x) = 0, ..., h_l(x) = 0$

Lagrangian.

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Example.

minimize
$$f(x) = n_1 \log x_1 + \dots + n_d \log x_d$$

subject to $h(x) = x_1 + \dots + x_d - 1 = 0$
 $L(x, \lambda) = n_1 \log x_1 + \dots + n_d \log x_d + \lambda(x_1 + \dots + x_d - 1)$

Two-Player Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Rules.

- You get to choose the value of x. Your goal is to minimize $L(x, \lambda)$.
- Your adversary gets to choose the value of λ . His goal is to maximize $L(x, \lambda)$.

Primal Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Primal Game. You go first.

Your Strategy.

- Ensure that $h_1(x) = 0, ..., h_l(x) = 0$.
- Find x that minimizes f(x).

Final Score. $p^* = \min_{x} \max_{\lambda} L(x, \lambda)$

The optimal x^* , λ^* are saddle points of $L(x, \lambda)$.

Dual Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Dual Game. You go second.

Adversary's Strategy.

- For each λ , compute $\ell(\lambda) = \min_{x} L(x, \lambda)$
- Find λ that maximizes $\ell(\lambda)$.

Final Score.
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

Max-Min Inequality

Primal.
$$p^* = \min_{\mathbf{r}}$$

Dual.

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

"you do better if you have the last say"

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

$$\geq \max_{\lambda} \min_{x} L(x, \lambda) = d^*$$

If $p^* = d^*$, we can solve the primal by solving the dual.

MAX-MIN INEQUALITY

Example.

	x = 1	x = 2
$\lambda = 1$	1	4
$\lambda = 2$	3	2

Primal.
$$p^* = \min_{x} \max_{\lambda} L(x, \lambda) = 3$$

Dual. $d^* = \max_{\lambda} \min_{x} L(x, \lambda) = 2$

EXACT SOLUTION

Problem.

minimize
$$f(x)$$

subject to $h_1(x) = 0, ..., h_l(x) = 0$

Lagrange multipliers.

1. Write down the Lagrangian.

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

2. Solve for critical points x, λ .

$$\nabla_{x}L(x,\lambda) = 0, \quad h_{1}(x) = 0, \dots, h_{l}(x) = 0$$

3. Pick critical point which gives global minimum.

Example

minimize
$$f(x) = n_1 \log x_1 + \dots + n_d \log x_d$$

subject to $h(x) = x_1 + \dots + x_d - 1 = 0$

Lagrangian

$$L(x, \lambda) = n_1 \log x_1 + \dots + n_d \log x_d + \lambda (x_1 + \dots + x_d - 1)$$

Critical points

$$0 = x_1 + \dots + x_d - 1$$

$$0 = n_i/x_i + \lambda$$

$$\Rightarrow (-\lambda) = n_1 + \dots + n_d$$

$$x_i = n_i/(-\lambda)$$

Inequality Constraints (Primal-Dual)

Primal Problem.

minimize f(x)subject to $g_1(x) \le 0, ..., g_m(x) \le 0$

Lagrangian.

$$L(x,\alpha) = f(x) + \alpha_1 g_1(x) + \dots + \alpha_m g_m(x)$$

Dual Problem.

maximize $\ell(\alpha)$ where $\ell(\alpha) = \min_{x \in \mathbb{R}^d} L(x, \alpha)$ subject to $\alpha_1 \geq 0, \dots, \alpha_m \geq 0$

Box constraints are easier to work with!

Inequality Constraints (Exact Soln)

minimize
$$f(x)$$

subject to $g_1(x) \le 0, ..., g_m(x) \le 0$

Lagrangian.

$$L(x,\alpha) = f(x) + \alpha_1 g_1(x) + \dots + \alpha_m g_m(x)$$

Solve for x, α satisfying

- 1. $\nabla_{x}L(x,\alpha)=0$
- 2. $g_1(x) \le 0, ..., g_m(x) \le 0$
- 3. $\alpha_1 \ge 0, ..., \alpha_m \ge 0$
- 4. $\alpha_1 g_1(x) = 0, ..., \alpha_m g_m(x) = 0$

Karush-Kuhn-Tucker (KKT) Conditions

Complementary Slackness

Maximum Margins

Computing the Margin

Computing the Margin

Maximum Margin

Unfortunately, this only applies to data that is linearly separable.

Our goal is to

maximize $1/\|\theta\|$

subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Or equivalently,

minimize $\frac{1}{2} \|\theta\|^2$

subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Lagrangian

minimize
$$\frac{1}{2} \|\theta\|^2$$

subject to $y(\theta^T x) \ge 1$ for all data (x, y)

Drop θ_0 for now

Lagrangian.
$$L(\theta, \alpha) = \frac{1}{2} \|\theta\|^2 + \sum_{(x,y)} \alpha_{x,y} (1 - y(\theta^T x))$$

To find $\ell(\alpha) = \min_{\theta} L(\theta, \alpha)$, we solve

$$0 = \nabla_{\theta} L(\theta, \alpha) = \theta - \sum_{(x,y)} \alpha_{x,y} yx$$

to get $\theta = \sum_{(x,y)} \alpha_{x,y} yx$. Substituting into $L(\theta, \alpha)$ gives

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} \, - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \, \alpha_{x',y'} y y'(x^{\mathsf{T}} x').$$

Primal-Dual

It can be shown that the primal and dual problems are equivalent (strong duality).

Primal.

minimize
$$\frac{1}{2} \|\theta\|^2$$

subject to $y(\theta^T x) \ge 1$ for all data (x, y)

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy'(x^{\mathsf{T}}x')$$
 subject to $\alpha_{x,y} \geq 0$ for all (x,y)

After solving the dual to get the optimal $\alpha_{x,y}$'s, we obtain the optimal θ using $\theta = \sum_{(x,y)} \alpha_{x,y} yx$.

Support Vectors

Complementary Slackness.

$$\hat{\alpha}_{x,y} > 0$$
: $y(\hat{\theta}^{\top}x) = 1$
 $\hat{\alpha}_{x,y} = 0$: $y(\hat{\theta}^{\top}x) > 1$

 $y(\hat{\theta}^{\mathsf{T}}x) > 1$

Support Vectors Non-Support

Sparsity

Vectors

Since very few data points are support vectors, most of the $\hat{\alpha}_{x,y}$ will be zero.

Kernel Trick

Learning.

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy' (x^{\mathsf{T}}x')$$

Prediction.

$$h(x; \theta) = \operatorname{sign}(\theta^{\mathsf{T}} x) = \operatorname{sign}\left(\sum_{(x', y')} \alpha_{x', y'} y'(x^{\mathsf{T}} x')\right)$$

For the dual, we don't need the feature vectors x, x'. Knowing just the dot products (x^Tx') is enough.

Recall that (x^Tx') is a measure of similarity between x and x'. This similarity function is also called a *kernel*.

Extensions

SVM with OFFSET

Primal.

minimize
$$\frac{1}{2} \|\theta\|^2$$

subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y' (x^{\mathsf{T}} x')$$
 subject to
$$\alpha_{x,y} \geq 0 \text{ for all } (x,y)$$

$$\sum_{(x,y)} \alpha_{x,y} y = 0$$

Parameters.
$$\hat{\theta} = \sum_{(x,y)} \alpha_{x,y} yx$$
 $\hat{\theta}_0 = y - \hat{\theta}^{\mathsf{T}} x$ where (x,y) is a support vector

Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \xi_{x,y}$$
 subject to
$$y(\theta^{\mathsf{T}} x + \theta_0) \ge 1 - \xi_{x,y} \text{ for all data } (x,y)$$

$$\xi_{x,y} \ge 0 \qquad \qquad \text{for all data } (x,y)$$

Slack variables allow constraints to be violated for a cost.

Linearly Separable.

Not Linearly Separable.

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y' (x^{\mathsf{T}} x')$$
 subject to
$$1/\lambda \ge \alpha_{x,y} \ge 0 \text{ for all } (x,y)$$

$$\sum_{(x,y)} \alpha_{x,y} y = 0$$

Putting limits on what the adversary can do.

There are many efficient solvers for quadratic problems with box constraints.

Summary

- Lagrange Multipliers
 - Lagrangian
 - Primal-Dual Problems
 - Inequality Constraints
 - Complementary
 Slackness
- Support Vector Machines
 - Maximum Margins
 - Dual Problem
 - Support Vectors
 - Kernel Trick

- Regularization
 - Slack Variables
 - Regularized Hinge Loss
 - Bounded Multipliers

Intended Learning Outcomes

Support Vector Machines

- Write down the primal problem, and explain how it is derived from the maximum margin problem.
- Write down the dual problem, and identify the kernel. Describe how the optimal θ is derived from the $\alpha_{x,y}$'s. Describe in terms of the $\alpha_{x,y}$'s, how to do prediction.
- Define support vectors, both geometrically and in terms of the $\alpha_{x,y}$'s. Recognize that most of the $\alpha_{x,y}$'s are zero.

Intended Learning Outcomes

Extensions

- Describe the dual problem for the SVM with offset.
- Describe the primal problem for SVM with slack variables. Show that the primal is equivalent to regularized hinge loss. Explain how the regularizing parameter λ affects the margins. Describe the dual problem in terms of box constraints.