Optimization for Data Science Stochastic Gradient Methods

Lecturer: Robert M. Gower & Alexandre Gramfort

Tutorials: Quentin Bertrand, Nidham Gazagnadou

Master 2 Data Science, Institut Polytechnique de Paris (IPP)

Solving the Finite Sum Training Problem

Recap

Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w) =: f(w)$$

L(w)

General methods

 $\min f(w)$

• Gradient Descent

Two parts

 $\min L(w) + \lambda R(w)$

- Proximal gradient (ISTA)
- Fast proximal gradient (FISTA)

Optimization Sum of Terms

A Datum Function

$$f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$$

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} f_i(w) =: f(w)$$

Can we use this sum structure?

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla \left(\frac{1}{n} \sum_{i=1}^{n} f_i(w) \right) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w)$$

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 0, 1, 2, ..., T - 1$

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$$
Output w^T

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 0, 1, 2, ..., T$

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$$
Output w^T

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w) = \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

EXE: Let
$$\sum_{i=1}^{n} p_i = 1$$
 and $j \sim p_j$. Show $\mathbb{E}[\nabla f_j(w)/(np_j)] = \nabla f(w)$

SGD 0.0 Constant stepsize Set $w^0 = 0$, choose $\alpha > 0$ for t = 0, 1, 2, ..., T - 1 sample $j \in \{1, ..., n\}$ $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$ Output w^T

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

$$\mathbb{E}_{i}[||\nabla f_{i}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

$$\mathbb{E}_{i}[||\nabla f_{i}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Complexity / Convergence

Theorem

If $0 < \alpha \le \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha\lambda)^t ||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda}B^2$$

Complexity / Convergence

Theorem

If $0 < \alpha \le \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha\lambda)^t ||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda}B^2$$

Shows that $\alpha \approx \frac{1}{\lambda}$

Complexity / Convergence

Theorem

If $0 < \alpha \le \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha\lambda)^t ||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda}B^2$$

Shows that $\alpha \approx \frac{1}{\lambda}$

Shows that $\alpha \approx 0$

Proof:

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \alpha \nabla f_j(w^t)||_2^2$$
$$= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f_j(w^t), w^t - w^* \rangle + \alpha^2 ||\nabla f_j(w^t)||_2^2.$$

Taking expectation with respect to j

Unbiased estimator

Bounded

Stoch grad

$$\mathbb{E}_{j} \left[||w^{t+1} - w^{*}||_{2}^{2} \right] = ||w^{t} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha^{2} \mathbb{E}_{j} \left[||\nabla f_{j}(w^{t})||_{2}^{2} \right]$$

$$\leq ||w^{t} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha^{2} B^{2}$$

Strong conv. $\leq (1-\alpha\lambda)||w^t-w^*||_2^2+\alpha^2B^2$

Taking total expectation

$$\mathbb{E}\left[||w^{t+1} - w^*||_2^2\right] \leq (1 - \alpha\lambda)\mathbb{E}\left[||w^t - w^*||_2^2\right] + \alpha^2 B^2$$

$$= (1 - \alpha\lambda)^{t+1}||w^0 - w^*||_2^2 + \sum_{i=0}^t (1 - \alpha\lambda)^i \alpha^2 B^2$$

Using the geometric series sum $\sum_{i=0}^{\infty} (1 - \alpha \lambda)^{i} = \frac{1 - (1 - \alpha \lambda)^{t+1}}{\alpha \lambda} \le \frac{1}{\alpha \lambda}$

$$\mathbb{E}\left[||w^{t+1} - w^*||_2^2\right] \le (1 - \alpha\lambda)^{t+1}||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda}B^2$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

$$\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

$$\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

$$\mathbb{E}_{i}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

$$\mathbb{E}_{i}[||\nabla f_{i}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Let
$$A \in \mathbb{R}^{n \times d}$$
, $f_j(w) = (A_{j:w} - b_j)^2$. $\max_{w} \mathbb{E}_{j \sim \frac{1}{n}} [\|\nabla f_j(w)\|^2] = ?$

Realistic assumptions for Convergence

Strongly quasi-convexity

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\lambda}{2} ||w^* - w||_2^2, \quad \forall w$$

Each f_i is convex and L_i smooth

$$f_i(y) \le f_i(w) + \langle \nabla f_i(w), y - w \rangle + \frac{L_i}{2} ||y - w||_2^2, \quad \forall w$$

$$L_{\max} := \max_{i=1,\dots,n} L_i$$

Definition: Gradient Noise

$$\mathbb{E}_j[||\nabla f_j(w^*)||_2^2] \le \sigma^2$$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

$$\nabla^2 f_i(w) \leq L_i I \quad \Leftrightarrow \quad v^{\top} \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n}||Aw - y||_2^2 + \frac{\lambda}{2}||w||_2^2$$

$$\nabla^2 f_i(w) \leq L_i I \quad \Leftrightarrow \quad v^{\top} \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_{i:}^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$$
$$= \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n}||Aw - y||_2^2 + \frac{\lambda}{2}||w||_2^2$$

$$\nabla^2 f_i(w) \leq L_i I \quad \Leftrightarrow \quad v^{\top} \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_{i:}^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$$
$$= \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$\nabla^2 f_i(w) = A_{i:} A_{i:}^{\top} + \lambda \quad \preceq \quad (||A_{i:}||_2^2 + \lambda)I \quad = \quad L_i I$$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n}||Aw - y||_2^2 + \frac{\lambda}{2}||w||_2^2$$

$$\nabla^2 f_i(w) \leq L_i I \quad \Leftrightarrow \quad v^{\top} \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_i^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$$
$$= \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$\nabla^2 f_i(w) = A_{i:} A_{i:}^{\top} + \lambda \quad \leq \quad (||A_{i:}||_2^2 + \lambda)I \quad = \quad L_i I$$

$$L_{\max} = \max_{i=1,\dots,n} (||A_{i:}||_2^2 + \lambda) = \max_{i=1,\dots,n} ||A_{i:}||_2^2 + \lambda$$

EXE: Calculate the L_i 's and L_{max} for

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

EXE: Calculate the L_i 's and L_{max} for

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

EXE: Calculate the L_i 's and L_{max} for

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

$$\nabla f_i(w) = \frac{-y_i a_i e^{-y_i \langle w, a_i \rangle}}{1 + e^{-y_i \langle w, a_i \rangle}} + \lambda w$$

$$\nabla^{2} f_{i}(w) = a_{i} a_{i}^{\top} \left(\frac{(1 + e^{-y_{i} \langle w, a_{i} \rangle}) e^{-y_{i} \langle w, a_{i} \rangle}}{(1 + e^{-y_{i} \langle w, a_{i} \rangle})^{2}} - \frac{e^{-2y_{i} \langle w, a_{i} \rangle}}{(1 + e^{-y_{i} \langle w, a_{i} \rangle})^{2}} \right) + \lambda I$$

$$= a_{i} a_{i}^{\top} \frac{e^{-y_{i} \langle w, a_{i} \rangle}}{(1 + e^{-y_{i} \langle w, a_{i} \rangle})^{2}} + \lambda I \quad \preceq \quad \left(\frac{||a_{i}||_{2}^{2}}{4} + \lambda \right) I = L_{i} I$$

Relationship between smoothness 37 constants

EXE: Let f be differentiable and convex. Show that f(w) is L-smooth with

$$L = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))$$

Thus
$$f_i(w)$$
 is L_i -smooth with $L_i = \max_{w \in d} \lambda_{\max}(\nabla^2 f_i(w))$ show that
$$L \leq \frac{1}{n} \sum_{i=1}^n L_i \leq L_{\max} := \max_{i=1,...,n} L_i$$

Relationship between smoothness constants

EXE: Let f be differentiable and convex. Show that f(w) is L-smooth with

$$L = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))$$

Thus
$$f_i(w)$$
 is L_i -smooth with $L_i = \max_{w \in d} \lambda_{\max}(\nabla^2 f_i(w))$ show that
$$L \leq \frac{1}{n} \sum_{i=1}^n L_i \leq L_{\max} := \max_{i=1,...,n} L_i$$

Proof: From the Hessian definition of smoothness

$$\nabla^2 f(w) \leq \lambda_{\max}(\nabla^2 f(w))I \leq \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))I$$

Furthermore

$$\lambda_{\max}(\nabla^2 f(w)) = \lambda_{\max}\left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(w)\right) \le \frac{1}{n}\sum_{i=1}^n \lambda_{\max}(\nabla^2 f_i(w)) \le \frac{1}{n}\sum_{i=1}^n L_i$$

The final result now follows by taking the max over w, then max over i

Theorem

If $0 < \alpha \le \frac{1}{2L_{\text{max}}}$ then the iterates of the SGD 0.0 satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha\lambda)^t ||w^0 - w^*||_2^2 + \frac{2\alpha}{\lambda}\sigma^2$$

EXE: The steps of the proof are given in the SGD_proof exercise list for homework!

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik (2019) ICML 2019

SGD: General Analysis and Improved Rates.

Stochastic Gradient Descent $\alpha = 0.5$

Stochastic Gradient Descent $\alpha = 0.5$

1) Start with big steps and end with smaller steps

Stochastic Gradient Descent $\alpha = 0.5$

1) Start with big steps and end with smaller steps

2) Try averaging the points

SGD shrinking stepsize

SGD 1.0: Descreasing stepsize

Set
$$w^0 = 0$$

Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
Output w^T

Shrinking Stepsize

SGD shrinking stepsize

SGD 1.0: Descreasing stepsize

Set
$$w^0 = 0$$

Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
for $t = 0, 1, 2, \dots, T - 1$

$$\text{sample } j \in \{1, \dots, n\}$$

$$w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$$
Output w^T

How should we sample j?

Shrinking Stepsize

How fast $\alpha_t \to 0$?

Does this converge?

SGD with shrinking stepsize Compared with Gradient Descent

SGD with shrinking stepsize Compared with Gradient Descent

Theorem for shrinking stepsizes

Let $\mathcal{K} := L_{\text{max}}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\text{max}}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \geq 4[\mathcal{K}]$, then SGD 1.0 satisfies

$$\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$$

$$O\left(\frac{1}{t}\right)$$
Iteration complexity $O\left(\frac{1}{\epsilon}\right)$

$$O\left(\frac{1}{t}\right)$$

Theorem for shrinking stepsizes

Let $\mathcal{K} := L_{\text{max}}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\text{max}}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \geq 4[\mathcal{K}]$, then SGD 1.0 satisfies

$$\alpha^t = O(1/(t+1))$$

$$\alpha^{t} = C[\mathcal{K}], \text{ then SGD 1.0 satisfies}$$

$$\mathbb{E}\|w^{t} - w^{*}\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t} + \frac{16}{e^{2}} \frac{[\mathcal{K}]^{2}}{t^{2}} \|w^{0} - w^{*}\|^{2}$$

$$O\left(\frac{1}{t}\right)$$

 $O\left(\frac{1}{t}\right)$ Iteration complexity $O\left(\frac{1}{\epsilon}\right)$

Theorem for shrinking stepsizes

Let $\mathcal{K} := L_{\text{max}}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\text{max}}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \geq 4\lceil \mathcal{K} \rceil$, then SGD 1.0 satisfies

$$\alpha^t = O(1/(t+1))$$

$$\alpha^{t} = C(1/(t+1))$$

$$\mathbb{E}\|w^{t} - w^{*}\|^{2} \le \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t} + \frac{16}{e^{2}} \frac{\lceil \mathcal{K} \rceil^{2}}{t^{2}} \|w^{0} - w^{*}\|^{2}$$

$$O\left(\frac{1}{t}\right)$$

 $O\left(\frac{1}{t}\right)$ Iteration complexity $O\left(\frac{1}{\epsilon}\right)$

In practice often $\alpha^t = C/(t+1)$ where C is tuned

Stochastic Gradient Descent Compared with Gradient Descent

SGD with (late start) averaging

SGDA 1.1

Set
$$w^0 = 0$$

Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)

Acceleration of stochastic approximation by averaging

SGD with (late start) averaging

SGDA 1.1

Set
$$w^0 = 0$$

Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$

This is not efficient. How to make this efficient?

Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)

Acceleration of stochastic approximation by averaging

Stochastic Gradient Descent With and without averaging

Stochastic Gradient Descent With and without averaging

Stochastic Gradient Descent Averaging the last few iterates

convex

SGD

GD

Iteration complexity

$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

convex

SGD

GD

Iteration complexity

$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

Cost of an interation

O(n)

convex

SGD

GD

Iteration complexity

$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

Cost of an interation

 $\begin{array}{c} \textbf{Total} \\ \textbf{complexity}^* \end{array}$

$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(n\log\left(\frac{1}{\epsilon}\right)\right)$$

convex

SGD

GD

Iteration complexity

$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

Cost of an interation

Total complexity*

$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(n\log\left(\frac{1}{\epsilon}\right)\right)$$

convex

SGD

GD

Iteration complexity

$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

Cost of an interation

 $\begin{array}{c} \textbf{Total} \\ \textbf{complexity}^* \end{array}$

$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(n\log\left(\frac{1}{\epsilon}\right)\right)$$

What happens if ϵ is small?

What happens if n is big?

^{*}Total complexity = (Iteration complexity) \times (Cost of an iteration)

M. Schmidt, N. Le Roux, F. Bach (2016)

Mathematical Programming

M. Schmidt, N. Le Roux, F. Bach (2016)

Mathematical Programming

M. Schmidt, N. Le Roux, F. Bach (2016)

Mathematical Programming

M. Schmidt, N. Le Roux, F. Bach (2016)

Mathematical Programming

Practical SGD for Sparse Data

Finite Sum Training Problem

L2 regularizor + linear hypothesis

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is s-sparse, how many operations does each SGD step cost?

Finite Sum Training Problem

L2 regularizor + linear hypothesis

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is s-sparse, how many operations does each SGD step cost?

$$w^{t+1} = w^t - \alpha_t \left(\ell'(\langle w^t, x^i \rangle, y^i) x^i + \lambda w^t \right)$$

= $(1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

Finite Sum Training Problem

L2 regularizor + linear hypothesis

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is s-sparse, how many operations does each SGD step cost?

$$w^{t+1} = w^{t} - \alpha_{t} \left(\ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i} + \lambda w^{t} \right)$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$$

$$= (1 - \lambda \alpha_{t}) w^{t} + \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{$$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}$, $z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}$, $z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$
$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}$, $z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t}x^i\right)$$

$$\beta_{t+1}$$

$$z^{t+1}$$

$$\beta_{t+1} = (1 - \lambda \alpha_t)\beta_t, \quad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^t \rangle, y^t)}{(1 - \lambda \alpha_t)\beta_t} x^t$$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}$, $z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t}x^i\right)$$
The particular shows a sign of the particular shows a sign of

O(1) scaling + O(s) sparse add = O(s) update

$$\beta_{t+1} = (1 - \lambda \alpha_t)\beta_t, \quad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda \alpha_t)\beta_t} x^i$$

Why Machine Learners like SGD

Though we solve:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

We want to solve:

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation

$$\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$$

SGD can solve the statistical learning problem!

Why Machine Learners like SGD

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation

$$\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$$

SGD $\infty.0$ for learning

Set
$$w^0 = 0, \alpha > 0$$

for $t = 0, 1, 2, ..., T - 1$
sample $(x, y) \sim \mathcal{D}$
calculate $v_t \in \partial \ell(h_{w^t}(x), y)$
 $w^{t+1} = w^t - \alpha v_t$
Output $\overline{w}^T = \frac{1}{T} \sum_{t=1}^T w^t$

Exercise List time! Please solve:

stoch_ridge_reg_exe SGD_proof_exe

Appendix

Proof SGDA Part I:

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \alpha_t \nabla f_j(w^t)||_2^2$$
$$= ||w^t - w^*||_2^2 - 2\alpha_t \langle \nabla f_j(w^t), w^t - w^* \rangle + \alpha_t^2 ||\nabla f_j(w^t)||_2^2.$$

Taking expectation with respect to j

Unbiased estimator

$$\mathbb{E}_{j} \left[||w^{t+1} - w^{*}||_{2}^{2} \right] = ||w^{t} - w^{*}||_{2}^{2} - 2\alpha_{t} \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha_{t}^{2} \mathbb{E}_{j} \left[||\nabla f_{j}(w^{t})||_{2}^{2} \right]$$

$$\leq ||w^{t} - w^{*}||_{2}^{2} - 2\alpha_{t} \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha_{t}^{2} B^{2}$$

Convexity $\leq ||w^t - w^*||_2^2 - 2\alpha (f(w^t) - f(w^*)) + \alpha_t^2 B^2$

Bounded Stoch grad

Taking total expectation and re-arranging

$$\mathbb{E}\left[f(w^{t})\right] - f(w^{*}) \leq \frac{1}{2\alpha_{t}} \mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] - \frac{1}{2\alpha_{t}} \mathbb{E}\left[||w^{t+1} - w^{*}||_{2}^{2}\right] + \frac{\alpha_{t}}{2} B^{2}$$

Summing up for 1 to T

$$\sum_{t=1}^{T} (\mathbb{E}[f(w^{t})] - f(w^{*})) \leq \frac{1}{2\alpha_{1}} ||w^{1} - w^{*}||_{2}^{2} + \frac{1}{2} \sum_{t=1}^{T-1} \left(\frac{1}{\alpha_{t+1}} - \frac{1}{\alpha_{t}}\right) \mathbb{E}[||w^{t} - w^{*}||_{2}^{2}]$$
$$-\frac{1}{2\alpha_{T+1}} \mathbb{E}[||w^{T+1} - w^{*}||_{2}^{2}] + \frac{B^{2}}{2} \sum_{t=1}^{T} \alpha_{t}$$

Proof Part II:

$$\sum_{t=1}^{T} (\mathbb{E}\left[f(w^{t})\right] - f(w^{*})) \leq \frac{1}{2\alpha_{1}} ||w^{1} - w^{*}||_{2}^{2} + \frac{1}{2} \sum_{t=1}^{T-1} \left(\frac{1}{\alpha_{t+1}} - \frac{1}{\alpha_{t}}\right) \mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] - \frac{1}{2\alpha_{T+1}} \mathbb{E}\left[||w^{T+1} - w^{*}||_{2}^{2}\right] + \frac{B^{2}}{2} \sum_{t=1}^{T} \alpha_{t}$$

$$||w||_{2}^{2} \leq r^{2}$$

$$\leq \frac{2r^{2}}{\alpha_{1}} + 2r^{2} \sum_{t=1}^{T-1} \left(\frac{1}{\alpha_{t+1}} - \frac{1}{\alpha_{t}} \right) + \frac{B^{2}}{2} \sum_{t=1}^{T} \alpha_{t}$$

$$= \frac{2r^{2}}{\alpha_{T}} + \frac{B^{2}}{2} \sum_{t=1}^{T} \alpha_{t}$$

Finally let $\overline{w}^T = \frac{1}{T} \sum_{t=1}^T w^t$ and dividing by T, using $\alpha_t = \frac{\alpha_0}{\sqrt{t}}$

$$\mathbb{E}[f(\bar{w}_T)] - f(w^*)) \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[f(w_t)] - f(w^*)) \leq \frac{r^2 \sqrt{T}}{T\alpha_0} + \frac{B^2}{2T} \sum_{t=1}^{T} \frac{\alpha_0}{\sqrt{t}}$$

$$\leq \frac{1}{\sqrt{T}} \left(\frac{2r^2}{\alpha_0} + \alpha_0 B^2 \right)$$

Minimizing in α_0 gives $\alpha_0 = \sqrt{2}r/B$ and thus

$$\mathbb{E}[f(\bar{w}_T)] - f(w^*)) \leq \frac{1}{\sqrt{T}} \left(\sqrt{2rB} + \sqrt{2rB} \right) \leq \frac{3rB}{\sqrt{T}}$$

SGD with averaging for nonsmooth and strongly convex functions

Complexity for strongly convex

Theorem (Shrinking stepsize)

Output \overline{w}^T

If
$$f(w)$$
 is λ -strongly convex, $\overline{w}^T = \frac{2}{T(T+1)} \sum_{t=0}^{T-1} tw^t$ and $\alpha_t = \frac{2}{\lambda(t+1)}$ then SGD1.2 satisfies
$$\mathbb{E}[f(\overline{w}^T)] - f(w^*) \leq \frac{2B^2}{\lambda(T+1)}$$

SGD 1.2 for Strongly Convex Set $w^0 = 0$, $\alpha_t = \frac{2}{\lambda(t+1)}$, for t = 0, 1, 2, ..., T-1sample $j \in \{1, ..., n\}$ $w^{t+1} = \operatorname{proj}_D(w^t - \alpha_t \nabla f_j(w^t))$

Complexity for strongly convex

Theorem (Shrinking stepsize)

If
$$f(w)$$
 is λ -strongly convex, $\overline{w}^T = \frac{2}{T(T+1)} \sum_{t=0}^{T-1} tw^t$ and $\alpha_t = \frac{2}{\lambda(t+1)}$ then SGD1.2 satisfies
$$\mathbb{E}[f(\overline{w}^T)] - f(w^*) \leq \frac{2B^2}{\lambda(T+1)}$$
Faster Sublinear convergence

SGD 1.2 for Strongly Convex $Set \ w^0 = 0, \ \alpha_t = \frac{2}{\lambda(t+1)},$ $for \ t = 0, 1, 2, \dots, T-1$ $sample \ j \in \{1, \dots, n\}$ $w^{t+1} = \operatorname{proj}_D (w^t - \alpha_t \nabla f_j(w^t))$ Output \overline{w}^T

SGD for non-smooth functions

SGD Theory for non-smooth

Assumptions

- f(w) is convex
- Subgradients bounded $\mathbb{E}_j ||\nabla f_j(w^t)||_2 \leq B$
- There exists $r \in \mathbb{R}_+$ such that $w^* \in D := \{w : ||w|| \le r\}$

SGD 1.1 theoretical Set $w^1 = 0$, $\alpha_t \in \mathbb{R}_+$, $\alpha_t \underset{t \to \infty}{\to} 0$ for t = 1, 2, ..., T sample $j \in \{1, ..., n\}$ $w^{t+1} = \operatorname{proj}_D(w^t - \alpha_t \nabla f_j(w^t))$ Output w^T

Convergence for Convex

Theorem for non-smooth (Shrinking stepsize)

If f(w) is convex,

and
$$\alpha_t = \frac{\alpha_0}{\sqrt{t}}$$
 then SGD1.1 satisfies

$$\mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\sqrt{T}}\right)$$

Convergence for Convex

Theorem for non-smooth (Shrinking stepsize)

If f(w) is convex,

and
$$\alpha_t = \frac{\alpha_0}{\sqrt{t}}$$
 then SGD1.1 satisfies

$$\mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\sqrt{T}}\right) < \bullet$$

Sublinear convergence

Complexity for Strong. Convex

Theorem for non-smooth (Shrinking stepsize)

If f(w) is λ -strongly convex,

and
$$\alpha_t = \frac{\alpha_0}{\lambda t}$$
 then SGD1.1 satisfies

$$\mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\lambda T}\right)$$

Complexity for Strong. Convex

Theorem for non-smooth (Shrinking stepsize)

If f(w) is λ -strongly convex,

and
$$\alpha_t = \frac{\alpha_0}{\lambda t}$$
 then SGD1.1 satisfies

$$\mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\lambda T}\right)$$

Faster
Sublinear
convergence

Solving the Finite Sum Training Problem