Biomaterials & Immune System Responses

Ankita Kamath (Virginia Tech) Natalie DiCostanzo (University of Connecticut) BDSiC 2025

Quick Definitions

- 1. **Biomaterials** an engineered material to interact with the human body
- 2. **Foreign Objects** the medical devices: titanium knee, silicone implants, etc.
 - 3. **Immune System** protect the body fight infections and viruses

Medical Devices

Examples

Joint Replacements

Artificial implants that replace damages and restore mobility

Pacemakers

Devices implanted in the chest to regulate heart rhythms

Stents

Small mesh tubes inserted into blood vessels to keep them open and maintain blood flow

Introduction

WHAT?

What is the current problem?

QUESTIONS

What do we want to know?

Materials Currently Used

Titanium

- Ideal for bone integration
- Lightweight

Silicon

- Extremely Flexible
- Used primarily in implants

Collagen

- Natural Protein
- Wound Healing

Immune Response

ACCEPT

REJECT

- Non-threatening
- Triggers healing-oriented immune reaction
 - Healing cytokines
 - Tissue integrates
 - Minimal inflammation
 - Long-term stability

- Seen as a foreign invader
- Activates strong response
- Inflammatory cytokines are released
 - Leads to tissue damage, fibrosis, or scarring
 - Increases risk of implant failure

Common Genes

TLR4

-recognizes foreign or damaged material -triggers strong innate immune activation

IL6

-cytokine protein -inflammation and immune response

STAT1

-activated by interferons
-often elevated in response to foreign materials like implants

CD86

-activates T cells and initiates adaptive immune response High potential for implant rejection

CCL2

-attracts immune
cells
-involved in
inflammation
-can promote tissue
remodeling

RELA

-regulates
inflammatory
responses
-switch in both
immune activation
and resolution

IFIT1

-interferon stimulated gene Can signal immune stress after implant exposure

NFKB1

-regulator of immune response Balances pro and anti-inflammatory signaling-

STAT6

-promotes
anti-inflammatory
macrophage
activity
-support tissue
repair

Implant Strategies

Traditional

- -Immune Rejection
 - -Treats implant as threat
 - -Leads to damage
- **-SOLUTION**: immunosuppressants
 - -Temporarily reduce Immune response
- RISKS
 - -Organ damage
 - -Complications

Current Focus

- -Engineering Better Implants
 - Materials that cooperate with Immune cells
 - Inspired by natural biomaterials
 - -Lower rejection, promote healing

Future Vision

- -Immune-informed Design
 - Predictive models to guide implant development
 - Fully personalized and adaptive biomaterials

National Library of Medicine

All Databases >

NCBI Home

Resource List (A-Z)

Chemicals & Bioassays

Data & Software

Domains & Structures

Genetics & Medicine

Genomes & Maps

Welcome to NCBI

The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.

Submit

Develop

into NCBI databases

Download Learn

This feet at a log of the lo

Analyze

data analysis task

Research

Learn

Popular Resources

Bookshelf PubMed Central

Nucleotide Genome

Protein

PubChem

NCBI News & Blog

Beta Now Live! New & Improved d

Rejection of Titanium -Implants

Macrophages - a type of white blood that works in the immune system

 Helps the body fight bacterial or viral infections

Two discs treated 3 ways

- 1. Control
- 2. Interferon Gamma (IFN-y)
 - a. stimulate the inflammatory or pre rejection environment
- 3. Interleukin 4 (IL-4)
 - a. body accepts the implant

Tang, K., Wu, H., Xie, X., Sun, D., Yang, Z., Zhang, S., ... & Fan, H. (2022). Management of periprosthetic joint infection after tumor prosthesis replacement around the knee: A retrospective comparative study. BMC Musculoskeletal Disorders, 23, 803.

50 Randomly Selected Genes

Heatmap- shows magnitude of values based on colors

Higher gene expression → light color (yellow)

50 Highest Variance Genes

Variance - how spread out the gene expressions are

$$s^2 = (1 / (n - 1)) \times \Sigma(x_i - x)^2$$

50 Highest Variance Genes

Porous Titanium Disc

Topography Reactions

Topography - the surface of a material

 Can affect the effectiveness and acceptance of the medical device or implant

Research tested genes when exposed to a rough titanium surface and a smoother fluoride treated titanium surface

de Avila, E. D., Avila-Campos, M. J., Vergani, C. E., & Spolidorio, D. M. P. (2020). Effect of surface treatments on titanium surface roughness and oral biofilm formation. International Journal of Implant Dentistry, 6, 45.

Immune Cell Profiling

Peripheral blood mononuclear cell - type of white blood cell

Essential to immune response

Performed RNA sequencing to more accurately measure gene expression in these cells

Genes of Interest

TLR4

-recognizes foreign or damaged material -triggers strong innate immune activation

IL6

-cytokine protein -inflammation and immune response

STAT1

-activated by interferons
-often elevated in response to foreign materials like implants

CD86

-activates T cells and initiates adaptive immune response High potential for implant rejection

CCL2

-attracts immune
cells
-involved in
inflammation
-can promote tissue
remodeling

RELA

-regulates
inflammatory
responses
-switch in both
immune activation
and resolution

IFIT1

-interferon stimulated gene Can signal immune stress after implant exposure

NFKB1

-regulator of immune response Balances pro and anti-inflammatory signaling-

STAT6

-promotes
anti-inflammatory
macrophage
activity
-support tissue
repair

Clustered Map of Gene Expression

- Genes on y axis selected from topography study
- Gene expression data from immune systems profiling study
- Sampled & predicted cell type on x axis
 - Found computationally

- Shows which genes look different between the surfaces
- STAT1 is a key transcription factor that gets activated cytokines, and stress or inflammation
- CD86 has one of the lowest expression levels

- Shows which differences are likely real using Kruskal-Wallis Test
- Would need more samples to confirm possible treatment effect

Methods

Find the datasets - we found GEO the most helpful

Read the study, identify variables, what can this study show us?

Clean the data organize ideas, find the best way to display it

Analyze the graph in the context of the study, what does this show?

Results

Gene Expression

Genes react to varied materials and varied stimulations

High Variance

Variance can be related to immune systems activity

Topography

Rough surface can spike inflammatory genes like STAT1

Early Detection

Genes can help observe acceptance or rejection of implants

Next Steps

- Find more data
- Expand material analyzation
- Create tests that can trace certain genes to a negative or positive reaction

What would we do if we had more time?

Future Plans

Thank you!

Any questions?

References

- MICROARRAY-BASED GENE EXPRESSION ANALYSIS OF HUMAN OSTEOBLASTS IN RESPONSE TO ROUGHNESS AND FLUORIDE TREATMENT OF TITANIUM IMPLANTS. Refine.bio. (n.d.). https://www.refine.bio/experiments/GSE22217/microarray-based-
- 2. U.S. National Library of Medicine. (2021, February 10). *Geo accession viewer*. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99445
- 3. JH, E. (2021, December 1). *Geo accession viewer*. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182633&utm_source
- 4. U.S. Department of Health and Human Services. (2023, October 23). *New insight into the immune response forges a path toward improved medical implants*. National Institute of Biomedical Imaging and Bioengineering. https://www.nibib.nih.gov/news-events/newsroom/new-insight-immune-response-forges-path-toward-improved-medical-implants
- 5. Kim A;Downer MA;Berry CE;Valencia C;Fazilat AZ;Griffin M;, A. M. C. C. A. M. (2023, December 11). *Investigating immunomodulatory biomaterials for preventing the foreign body response*. Bioengineering (Basel, Switzerland). https://pubmed.ncbi.nlm.nih.gov/38136002/
- MICROARRAY-BASED GENE EXPRESSION ANALYSIS OF HUMAN OSTEOBLASTS IN RESPONSE TO ROUGHNESS AND FLUORIDE TREATMENT OF TITANIUM IMPLANTS. Refine.bio. (n.d.). https://www.refine.bio/experiments/GSE22217/microarray-based-
- 7. August 7, 2024 Portland. (2024, August 7). *Une's Eva Rose Balog delivers "genius" presentation to audience of Maine Science Enthusiasts*. University of New England. https://www.une.edu/news/2024/unes-eva-rose-balog-delivers-genius-presentation-audience-maine-science-enthusiasts

Current Research Findings

- Natural Biomaterials are Showing Promise
- Problems with Synthetic Materials
- Advanced Modeling of Immune Response

Gene Expression & Variance

How do they relate and how did we calculate?

Variance - how spread out the gene expressions are

$$s^2 = (1 / (n - 1)) \times \Sigma(x_i - x)^2$$

- s² is the sample variance
- n is the number of observations
- x_i is each individual value
- x is the mean of all values
- Σ means "sum over all"

Coding:

#caculate the variance of each row

#sorted gene variance from highest to lowest

#took top 50 from there

50 Highest Variance Genes

#data is still gene expression

#values are just selected to only be the genes with highest variance

Statistical Analysis

Statistical Analysis

- Some immune-related genes (like STAT1, IL6) look more active with certain treatments
- But visual differences in gene expression can be misleading
- To confirm if these differences are real, we ran a Kruskal-Wallis test
- This test compares the average expression levels of each gene across the three treatment groups (polished, rough, fluoride-treated)

Studies with these datasets

Mapping of γ/δ T cells reveals V δ 2+ T cells resistance to senescence

- To explore how aging affects T cell subsets
 - stress response
- These T cells are uniquely resilient to age-associated decline
- Used RNA-Seq data enabled analysis of gene expression variousT cells

Xu W, Monaco G, Wong EH, Tan WLW, Kared H, Simoni Y, Tan SW, How WZY, Tan CTY, Lee BTK, Carbajo D, K G S, Low ICH, Mok EWH, Foo S, Lum J, Tey HL, Tan WP, Poidinger M, Newell E, Ng TP, Foo R, Akbar AN, Fülöp T, Larbi A. Mapping of γ/δ T cells reveals Vδ2+ T cells resistance to senescence. EBioMedicine. 2019 Jan;39:44-58. doi: 10.1016/j.ebiom.2018.11.053. Epub 2018 Dec 7. PMID: 30528453; PMCID: PMC6354624.

Limitations

- Not all datasets included results or the informations that we thought they would
- We had to narrow down our question to be completed in the 1 week timeslot
- Finding datasets that displayed data that was relevant