Rec'd PCT/PTC 14 DEC 2004

PCT/EP03/06273

Novel herbicides

The present invention relates to novel, herbicidally active nicotinoyl derivatives, to processes for their preparation, to compositions comprising such compounds, and to their use in the control of weeds, especially in crops of useful plants, or in the inhibition of plant growth.

-1-

Nicotinoyl derivatives having herbicidal action are described, for example, in WO 00/15615, WO 00/39094 and WO 01/94339. Novel nicotinoyl derivatives having herbicidal and growthinhibiting properties have now been found.

The present invention accordingly relates to compounds of formula I

wherein

L is either a direct bond, an -O-, -S-, -S(O)-, -SO₂-, -N(R_{5a})-, -SO₂N(R_{5b})-, -N(R_{5b})SO₂-, -C(O)N(R_{sc})- or -N(R_{sc})C(O)- bridge, or a C₁-C₄alkylene, C₂-C₄alkenylene or C₂-C₄alkynylene chain which may be mono- or poly-substituted by R_s and/or interrupted once or twice by an -O-, -S-, -S(O)-, -SO₂-, -N(R_{5d})-, -SO₂N(R_{5e})-, -N(R_{5e})SO₂-, -C(O)N(R_{5l})- and/or -N(R_{5l})C(O)bridge, and when two such bridges are present those bridges are separated at least by one carbon atom, and W is bonded to L by way of a carbon atom or a -N(R_{sa})SO₂- or -N(R_{s1})C(O)- bridge when the bridge L is bonded to the nitrogen atom of W;

W is a 4- to 7-membered, saturated, partially saturated or unsaturated ring system U

which contains a ring element U₁, and may contain from one to four further ring nitrogen atoms, and/or two further ring oxygen atoms, and/or two further ring sulfur atoms and/or one or two further ring elements U2, and the ring system U may be mono- or poly-substituted at a saturated or unsaturated ring carbon atom and/or at a ring nitrogen atom by a group R₈, and two substituents R₈ together are a further fused-on or spirocyclic 3- to 7-membered ring system which may be unsaturated, partially saturated or fully saturated and may in turn be

substituted by one or more groups R_{8a} and/or interrupted once or twice by a ring element -O-, -S-, -N(R_{8b})- and/or -C(=O)-; and

 U_1 and U_2 are each independently of the other(s) -C(=O)-, -C(=S)-, -C(=NR₆)-, -(N=O)-, -S(=O)- or -SO₂-;

 R_3 and R_4 are each independently of the other C_1 - C_3 alkyl, C_1 - C_3 alkoxy- C_1 - C_3 alkyl, hydrogen, hydroxy, mercapto, halogen, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylsulfonyl, C_1 - C_3 alkylsulfonyloxy;

 R_5 is halogen, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkoxy- C_1 - C_3 - C_3 Alkoxy- C_1 - C_2 - C_3 Alkoxy- C_1 - C_3 Alkoxy-

 R_{5a} , R_{5b} and R_{5e} are independently hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl or C_1 - C_3 alkyl;

 R_{5d} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_3 alkoxy- C_1 - C_3 alkyl, benzyl, cyano, formyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylsulfonyl or phenylsulfonyl, it being possible for the phenyl-containing groups to be substituted by R_7 ;

R_{5c} and R_{5f} are each independently of the other hydrogen or C₁-C₃alkyl;

 R_6 is C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkoxy, cyano or nitro;

 R_7 is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

each R_8 independently is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, hydroxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, mercapto, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfonyloxy, C_1 - C_6 alkylsulfonyloxy, C_3 - C_6 alkylsulfonyloxy, C_3 - C_6 alkynylthio, amino, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, C_1 - C_3 alkoxy- C_1 - C_3 alkyl, formyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, benzyloxycarbonyl, C_1 - C_4 alkylthiocarbonyl, carboxy, cyano, carbamoyl, phenyl, benzyl, heteroaryl or heterocyclyl, it being possible for the phenyl, benzyl, heteroaryl and heterocyclyl groups to be mono- or poly-substituted by R_{7a} ;

each R_{7a} independently is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

each R_{8a} independently is halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, hydroxy, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy,

mercapto, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, cyano or nitro;

 R_{8b} is hydrogen, C_1 - C_3 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or benzyl, it being possible for the phenyl group to be substituted by R_{7b} ;

 R_{7b} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

p is 0 or 1;

r is 1, 2, 3, 4, 5 or 6;

with the provisos that

- a) R₈ and R_{8a} as halogen or hydrogenmercapto cannot be bonded to a nitrogen atom,
- b) U_1 as -C(=O)- or -C(=S)- does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group by way of a C_1 - C_4 alkylene, C_2 - C_4 alkenylene or C_2 - C_4 alkynylene chain L that is interrupted by -O-, -S-, -S(O)-, -SO₂-, -N(R_{50})-, -SO₂N(R_{5e})- or -N(R_{5e})SO₂-,
- c) U_1 as -C(=S)- does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group by way of a -CH=CH- or -C=C- bridge L or by way of a C_1 - C_4 alkylene chain L that is interrupted by -O-, -S-, -S(O)-, -SO₂- or -N(C_1 - C_4 alkyl)-,
- d) U_1 as -C(=S)- or $-C(=NR_6)$ wherein R_6 is C_1 - C_6 alkyl or C_1 - C_6 alkoxy does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group directly or by way of a C_1 - C_4 alkylene chain L;

either

Q is a group Q₁

$$\begin{array}{c}
X_1 \\
A_1 \\
A_2 \\
A_3
\end{array}$$

$$O$$

$$(Q_1),$$

wherein

 A_1 is $C(R_{11}R_{12})$ or NR_{13} ;

 A_2 is $C(R_{14}R_{15})_m$, C(O), oxygen, NR_{16} or $S(O)_q$;

 A_3 is $C(R_{17}R_{18})$ or NR_{19} ;

with the proviso that A_2 is other than $S(O)_q$ when A_1 is NR_{13} and/or A_3 is NR_{19} ;

 X_1 is hydroxy, $O^{-}M^{+}$, wherein M^{+} is a metal cation or an ammonium cation; halogen or $S(O)_nR_9$,

wherein

m is 1 or 2;

q, n and k are each independently of the others 0, 1 or 2;

 R_9 is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} allenyl, C_3 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} alkenyl, C_5 - C_{12} alkenylene, wherein the alkylene or alkenylene chain may be interrupted by -O-, -S(O)_k- and/or -C(O)- and/or mono- to penta-substituted by R_{20} ; or phenyl, which may be mono- to penta-substituted by R_{70} ;

 R_{7c} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

 R_{10} is halogen, cyano, rhodano, hydroxy, C_1 - C_6 alkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkenylthio, C_2 - C_6 alkynylthio, C_1 - C_6 alkylsulfonyloxy, phenylsulfonyloxy, C_1 - C_6 alkylcarbonyloxy, benzoyloxy, C_1 - C_4 alkoxycarbonyl, benzoyl, aminocarbonyl, C_1 - C_4 alkylcarbonyl, benzoyl, aminocarbonyl, C_1 - C_4 alkylcarbonyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; it being possible for the phenyl-containing groups in turn to be substituted by R_{70} ;

R_{7d} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

 R_{20} is hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, carbamoyl, carboxy, C_1 - C_4 alkoxycarbonyl or phenyl; it being possible for phenyl to be substituted by R_{7e} ;

 R_{7e} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

 R_{11} and R_{17} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkylsulfonyloxy, hydroxy- C_1 - C_4 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_4 alkyl, halogen, cyano or nitro;

or, when A_2 is $C(R_{14}R_{15})_m$, R_{17} together with R_{11} forms a direct bond or a C_1 - C_3 alkylene bridge;

 R_{12} and R_{18} are each independently of the other hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl;

or R_{12} together with R_{13} , and/or R_{18} together with R_{17} form a C_2 - C_5 alkylene chain which may be interrupted by -O-, -C(O)-, -O- and -C(O)- or -S(O)_t-;

 R_{13} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or C_1 - C_4 alkoxy;

 R_{14} is hydrogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 hydroxyalkyl, C_1 - C_4 alkoxy- C_1 - C_3 -alkyl, C_1 - C_4 alkylthio- C_1 - C_3 alkyl, C_1 - C_4 alkylcarbonyloxy- C_1 - C_3 alkyl, tosyloxy- C_1 - C_3 alkyl, di(C_1 - C_4 alkoxy)- C_1 - C_3 alkyl, C_1 - C_4 alkoxycarbonyl, C_3 - C_5 -oxacycloalkyl, C_3 - C_5 thiacycloalkyl, C_3 - C_4 dioxacycloalkyl, C_3 - C_4 dithiacycloalkyl, C_3 - C_4 oxa-thiacycloalkyl, formyl, C_1 - C_4 alkoxyiminomethyl, carbamoyl, C_1 - C_4 alkylaminocarbonyl or di- $(C_1$ - C_4 alkyl)aminocarbonyl;

or R_{14} together with R_{11} , R_{12} , R_{13} , R_{15} , R_{17} , R_{18} or R_{19} or, when m is 2, also together with R_{14} forms a direct bond or a C_1 - C_4 alkylene bridge;

R₁₅ is hydrogen, C₁-C₃alkyl or C₁-C₃haloalkyl;

 R_{16} is hydrogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylcarbonyl or N,N-di(C_1 - C_4 alkyl)aminocarbonyl;

or

Q is a group Q2

wherein

R₂₁ and R₂₂ are hydrogen or C₁-C₄alkyl;

 X_2 is hydroxy, O M+, wherein M+ is an alkali metal cation or ammonium cation; halogen, C_1 - C_{12} alkylsulfonyloxy, C_1 - C_{12} alkylthio, C_1 - C_{12} alkylsulfinyl, C_1 - C_{12} alkylsulfonyl, C_1 - C_{12} haloalkylsulfinyl, C_1 - C_1 -alkoxy- C_1 - C_1 -alkylsulfonyl, C_1 - C_1 -alkylsulfonyl, benzyloxy or phenylcarbonylmethoxy; it being possible for the phenyl-containing groups to be substituted by R_{76} :

 R_{71} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

or

Q is a group Q₃

wherein

R₃₁ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl or halo-substituted C₃-C₆cycloalkyl;

R₃₂ is hydrogen, C₁-C₄alkoxycarbonyl, carboxy or a group S(O)_sR₃₃;

 R_{33} is C_1 - C_6 alkyl or C_1 - C_3 alkylene, which may be substituted by halogen, C_1 - C_3 alkoxy, C_2 - C_3 alkenyl or by C_2 - C_3 alkynyl; and

s is 0, 1 or 2;

or

Q is a group Q₄

$$O = \begin{pmatrix} R_{41} \\ Q_4 \end{pmatrix},$$

wherein

 R_{41} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl or halo-substituted C_3 - C_6 cycloalkyl; and to the agrochemically acceptable salts and to all stereoisomers and tautomers of compounds of formula I.

The alkyl groups appearing in the substituent definitions may be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl and the branched isomers thereof. Alkoxy, alkenyl and alkynyl radicals are derived from the mentioned alkyl radicals. The alkenyl and alkynyl groups may be mono- or poly-unsaturated, C₂-C₁₂alkyl chains having one or more double or triple bonds also being included. Alkenyl is, for example, vinyl, allyl, isobuten-3-yl, CH₂=CH-CH₂-CH=CH₂-, CH₂-CH-CH₂-CH=CH₂- or

CH₃-CH=CH-CH₂-CH=CH-. A preferred alkynyl is, for example, propargyl, and CH₂=C=CH₂- is a preferred allenyl.

An alkylene chain may be substituted by one or more C_1 - C_3 alkyl groups, especially by methyl groups; such alkylene chains and alkylene groups are preferably unsubstituted. The same applies to all groups containing C_3 - C_6 cycloalkyl, C_3 - C_5 oxacycloalkyl, C_3 - C_5 thiacycloalkyl, C_3 - C_4 dioxacycloalkyl, C_3 - C_4 dithiacycloalkyl or C_3 - C_4 oxaathiacycloalkyl.

An alkylene chain uninterrupted or interrupted by oxygen, $S(O)_k$, $-S(O)_l$, $-NR_5$ - or by carbonyl and especially a C_1 - C_4 alkylene chain L which can be unsubstituted or substituted one or more times (up to five times) by R_5 and/or uninterrupted or interrupted once or twice by -O-, $-S(O)_l$ -, $-N(R_{5d})$ -, $-SO_2N(R_{5e})$ -, $-N(R_{5e})SO_2$ -, $-C(O)N(R_{5l})$ - or $-N(R_{5l})C(O)$ -, the latter being separated at least by one carbon atom, and W is bonded to L by way of a carbon atom or a $-N(R_{5e})SO_2$ - or $-N(R_{5l})C(O)$ - bridge when the bridge L is bonded to the nitrogen atom of W; is to be understood as being, for example, a chain $-CH_2$ -, $-CH_2CH_2$ -, $-CH_2CH_2CH_2$ -, $-CH_2CH_2CH_2$ -, $-CH_2CH(CH_3)$ -, $-CH_2CH_2$ -

A C_2 - C_4 alkenylene chain which can be uninterrupted or interrupted by oxygen is accordingly to be understood as being, for example, $-CH=CH-CH_2$ -, $-CH=CH-CH_2$ - or $-CH=CHCH_2$ OCH₂-, and a C_2 - C_4 alkynylene chain which can be uninterrupted or interrupted by oxygen is to be understood as being, for example, $-C=CCH_2$ -, $-C=CCH_2$ -, $-C=CCH_2$ - or $-C=CCH_2$ - or $-C=CCH_2$ -.

An alkylene chain which can be mono- or poly-substituted by R_5 in C_1 - C_4 alkylene or by R_{20} in R_{10} - C_1 - C_{12} alkylene can be substituted, for example, up to five times. Two such substituents as C_1 - C_3 alkyl can together also form a 3- to 8-membered ring, the groups in question being located at the same carbon atom or at adjacent atoms.

W as a 4- to 7-membered, saturated, partially saturated or unsaturated ring system U

is to be understood as being especially a heterocyclic ring system U which contains a ring element U_1 and which may contain from one to four further ring nitrogen atoms, and/or one or two further ring oxygen atoms, and/or one or two further ring sulfur atoms and/or one or two further ring elements U_2 , and which may be substituted one or more times (e.g. up to six times) at a saturated or unsaturated ring carbon atom and/or at a ring nitrogen atom by a group R_8 , and in which two radicals R_8 together may be a further fused-on or spirocyclic 3- to 7-membered ring system, which may likewise be unsaturated, partially saturated or fully saturated and may itself be substituted by one or more groups R_{8a} ; and wherein U_1 and U_2 are each independently of the other -C(=O)-, -C(=S)-, $-C(=NR_6)$ -, -(N=O)-, -S(=O)- or $-SO_2$ -. Such ring systems U are, for example,

wherein R_{54} , R_{56} , R_{59} , R_{62} , R_{62} , R_{66} , R_{67} , R_{68} and R_{69} as sub-groups of selected substituents R_8 have the definitions and preferred meanings indicated hereinbelow.

Preferably W as a 4- to 7-membered, saturated, partially saturated or unsaturated ring system U is a heterocyclic group U₀

$$(H_8)r \qquad (U_0),$$

wherein R_1 together with R_2 , by way of the nitrogen atom and the ring element U_1 , forms the corresponding ring system U, which may additionally contain up to 3 nitrogen atoms, a further oxygen atom, a further sulfur atom or a further group U_2 and which may additionally be substituted one or more times (for example up to six times) at a saturated or unsaturated

ring carbon atom and/or at a ring nitrogen atom by a group R_8 , and in which two substituents R_8 together may be a further fused-on or spirocyclic 3- to 7-membered ring system, which may likewise be unsaturated, partially saturated or unsaturated and may itself be substituted by one or more groups R_{8a} . W is especially a heterocycle selected from the groups

wherein R₅₁, R₅₃, R₅₆, R₆₅ are each independently of the others hydrogen, halogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₁-C₃alkoxy-C₁-C₃alkyl, C₁-C₆alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C_3 - C_6 alkenylthio or C_3 - C_6 alkynylthio; R_{52} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C₃-C₆cycloalkyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₁-C₆alkoxy, amino, or phenyl which may in turn be substituted by R₇₀; R₅₄, R₅₅, R₆₀ are hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆alkenyl, C_3 - C_6 alkynyl or C_3 - C_6 cycloalkyl; R_{57} , R_{63} , R_{66} , R_{67} , R_{68} , R_{69} are C_1 - C_6 alkyl, or phenyl which may in turn be substituted by R₇₀; R₆₄ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl, C₃-C₆alkenyl, C3-C6alkynyl, or phenyl which may in turn be substituted by R70; R58, R61 are hydrogen, halogen, C₁-C₆alkyl or C₁-C₆haloalkyl; R₅₉ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₃alkoxy-C₁-C₃alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl; R₆₂ is hydrogen, C₁-C₆alkyl, C₁-C₄alkoxycarbonyl or C1-C4alkylthiocarbonyl; or R51 together with R52, or R54 together with an adjacent group R₅₆, or R₅₈ together with an adjacent group R₅₉, or R₆₀ together with an adjacent group R₆₁, or, when r is 2, two adjacent groups R₅₆ or two adjacent groups R₆₁ together may form a saturated or unsaturated C₁-C₅alkylene or C₃-C₄alkenylene bridge which may in turn be substituted by a group R₇₀ or interrupted by oxygen, sulfur or nitrogen; each R₇₀ independently is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro; X is oxygen, sulfur or NR6; X3, X4 and X5 are oxygen or sulfur; X6 and X7 are oxygen or S, S(O), SO₂; and X₈ is CH₂, oxygen, S, S(O), SO₂ or NR₇₁, wherein R₇₁ is hydrogen or C₁-C₆alkyl.

Two substituents R_8 as hydroxy may be a further carbonyl group when they are located at the same carbon atom, and two substituents R_8 that together form a further 3- to 7-membered ring system can be located at the same carbon atom to form a spiro ring or at two adjacent carbon and/or nitrogen atoms to form a fused ring system, such as, for example, in the case of the groups:

The provisos that U_1 as either -C(=O)- or -C(=S)- or $-C(=NR_{5d})$ - does not form a tautomeric form with a substituent R_8 as hydrogen are to be understood as meaning especially that an

enol form is not formed under physiological conditions in a pH range of from about 2 to about 11. Accordingly, the present invention likewise relates, for example, to compounds of formulae

$$\bigcup_{N}^{CH_3} \bigcup_{U_{1,009a}}^{O} \bigcup_{N}^{N} \bigcup_{U_{1,012a}} \text{ and } \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{U_{1,028a}}^{O} \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{N}^{N} \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{N}^{N} \bigcup_{N}^{N} \bigcup_{U_{1,028a}}^{N} \bigcup_{U_{1,028a$$

Halogen is generally fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine. The same is true of halogen in conjunction with other meanings, such as haloalkyl, haloalkoxy or halophenyl.

Haloalkyl groups having a chain length of from 1 to 6 carbon atoms are, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1-fluoroethyl, 2-fluoroethyl, 2-fluoroprop-2-yl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl and 2,2,2-trichloroethyl, pentafluoroethyl, heptafluoro-n-propyl, perfluoro-n-hexyl. Preferred haloalkyl groups in the definitions R to R_x , and particularly the group R_3 , are fluoromethyl, difluoromethyl, difluorochloromethyl, trifluoromethyl and pentafluoroethyl.

As haloalkenyl there come into consideration alkenyl groups mono- or poly-substituted by halogen, halogen being fluorine, chlorine, bromine or iodine, and especially fluorine or chlorine, for example 1-chlorovinyl, 2-chlorovinyl, 2,2-difluoro-vinyl, 2,2-difluoro-prop-1-en-2-yl, 2,2-dichloro-vinyl, 3-fluoroprop-1-enyl, chloroprop-1-en-1-yl, 3-bromoprop-1-en-1-yl, 3-iodoprop-1-en-1-yl, 2,3,3-trifluoroprop-2-en-1-yl, 2,3,3-trichloroprop-2-en-1-yl and 4,4,4-trifluoro-but-2-en-1-yl.

As haloalkynyl there come into consideration, for example, alkynyl groups mono- or polysubstituted by halogen, halogen being bromine, iodine and especially fluorine or chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl and 4,4,4-trifluoro-but-2-yn-1-yl.

A C₃-C₆cycloalkyl group may likewise be mono- or poly-substituted by halogen, for example 2,2-dichlorocyclopropyl, 2,2-dibromocyclopropyl, 2,2,3,3-tetrafluorocyclobutyl or 2,2-difluoro-3,3-dichlorocyclobutyl.

Alkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy or a pentyloxy or hexyloxy isomer; preferably methoxy or ethoxy.

Haloalkoxy groups preferably have a chain length of from 1 to 6 carbon atoms, e.g. fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy and 2,2,2-trichloroethoxy; preferably fluoromethoxy, difluoromethoxy, 2-chloroethoxy and trifluoromethoxy.

Alkylthio groups preferably have a chain length of from 1 to 8 carbon atoms.

Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio or ethylthio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl, tert-butylsulfinyl; preferably methylsulfinyl or ethylsulfinyl.

Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl; preferably methylsulfonyl or ethylsulfonyl.

Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or a butylamine isomer. Dialkylamino is, for example, dimethylamino, methylethylamino, diethylamino, n-propylmethylamino, dibutylamino or diisopropylamino. Alkylamino groups having a chain length of from 1 to 4 carbon atoms are preferred.

Alkoxyalkyl groups preferably have from 2 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl. Alkoxy-alkoxyalkyl groups preferably have from 3 to 8 carbon atoms, e.g. methoxymethoxymethyl, methoxyethoxymethyl, ethoxymethoxymethyl, ethoxymethyl, bi(C_1 - C_4 alkoxy)- C_1 - C_4 alkyl is to be understood as being, for example, dimethoxymethyl or diethoxymethyl.

Alkylthioalkyl groups preferably have from 2 to 6 carbon atoms. Alkylthioalkyl is, for example, methylthiomethyl, methylthioethyl, ethylthiomethyl, ethylthioethyl, n-propylthioethyl, isopropylthioethyl, isopropylthioethyl, butylthiomethyl, butylthioethyl or butylthiobutyl.

Alkylcarbonyl is preferably acetyl or propionyl. Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl or tert-butoxycarbonyl; preferably methoxycarbonyl, ethoxycarbonyl or tert-butoxycarbonyl.

Phenyl, including as part of a substituent such as phenoxy, benzyl, benzyloxy, benzyl, phenylalkyl, phenoxyalkyl or tosyl, can be in mono- or poly-substituted form. The

substituents can in that case be as desired, preferably with a substituent having a meaning of R_7 in the ortho-, meta- and/or para-position.

Heteroaryl is to be understood as being a 5- or 6-membered group containing both nitrogen and oxygen and/or sulfur, for example furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, triazinyl, pyrrolyl, pyrazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, 4,5-dihydro-isoxazole, 2-pyranyl, 1,3-dioxol-2-yl, oxiranyl, 3-oxetanyl, tetrahydrofuranyl, tetrahydropyranyl or one of the groups U₁ defined above.

Heterocyclyl is to be understood as being a ring system containing, in addition to carbon atoms, at least one hetero atom, such as nitrogen, oxygen and/or sulfur. It can be saturated or unsaturated. Heterocyclyl ring systems in the context of the present invention can also be substituted. Suitable substituents are, for example, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, cyano, nitro, C₁-C₄alkylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄alkylthio and C₃-C₆cycloalkyl.

The present invention relates also to the salts which the compounds of formula I and especially the compounds of formula la are able to form with amines, alkali metal and alkaline earth metal bases or quaternary ammonium bases. Among the alkali metal and alkaline earth metal bases as salt formers, special mention should be made of the hydroxides of lithium, sodium, potassium, magnesium and calcium, but especially the hydroxides of sodium and potassium. Examples of amines suitable for ammonium salt formation include ammonia as well as primary, secondary and tertiary C₁-C₁₈alkylamines, C₁-C₄hydroxyalkylamines and C2-C4alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four butylamine isomers, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methylethylamine, methylisopropylamine, methylhexylamine, methylnonylamine, methylpentadecylamine, methyloctadecylamine, ethylbutylamine, ethylheptylamine, ethyloctylamine, hexylheptylamine, hexyloctylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-n-amylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2-amine, dibutenyl-2amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, for example pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary arylamines, for example anilines, methoxyanilines, ethoxyanilines, o-, mand p-toluidines, phenylenediamines, naphthylamines and o-, m- and p-chloroanilines; but

especially triethylamine, isopropylamine and diisopropylamine. Quaternary ammonium bases suitable for salt formation are, for example, $[N(R_a\,R_b\,R_c\,R_d)]^\dagger OH^\dagger$ wherein R_a , R_b , R_c and R_d are each independently of the others C_1 - C_4 alkyl. Further suitable tetraalkylammonium bases with other anions can be obtained, for example, by anion exchange reactions. M^\dagger is preferably an ammonium salt, especially NH_4^\dagger , or an alkali metal, especially potassium or sodium.

Depending upon the preparation process, the compounds of formula I may be obtained in various tautomeric forms, such as, for example, in Form A shown below or in Form B or in Form C, preference being given to Form A, as shown by way of example for compounds of formula IA wherein Q is a group Q₁ and the group -L-W is in the 2-position.

$$A_{2}$$
 A_{3}
 A_{2}
 A_{3}
 A_{4}
 A_{2}
 A_{3}
 A_{2}
 A_{3}
 A_{4}
 A_{2}
 A_{3}
 A_{4}
 A_{4}
 A_{5}
 A_{1}
 A_{2}
 A_{3}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5

When X₁ is hydroxy, the structure of formula I can also be represented by the tautomeric Form D

IA, Form D $(X_1=hydroxy)$

as shown likewise by way of the example of compounds of formula IA wherein Q is a group Q_1 and the group -L-W is in the 2-position. Compounds of formula I wherein Q is a group Q_2 or a group Q_4 -can accordingly be present in the tautomeric forms A, B, C or D. When a C=N or C=C double bond is present in compounds of formula I, the compounds of formula I, when asymmetric, may be in the E form or the Z form. When a further asymmetric centre is present, for example an asymmetric carbon atom, chiral R or S forms may occur. The present invention therefore relates also to all such stereoisomeric and tautomeric forms of the compound of formula I.

Of the compounds of formula I, the formulae IA, IB, IC, ID, IE, IF, IG and IH are preferred.

Special preference is given to the compounds of formula IA.

Of the compounds of formula I, special preference is given to those wherein W, as a 4- to 7-membered, saturated, partially saturated or unsaturated ring system U

$$-(R_8)r$$
 (U),

is a group bonded to L by way of the nitrogen atom adjacent to the ring element U_1 and is accordingly a cyclic group U_0 mono- or poly-substituted by R_8

$$(U_0)$$
, (R_8) r (U_0) ,

wherein R_1 together with R_2 , by way of the nitrogen atom and the group U_1 , forms the corresponding ring system U and wherein U_1 , R_8 and r are as defined above.

Of the compounds of formula I and especially of the compounds of formula IA, special preference is given in turn to those groups wherein:

- a) Q is a group Q₁, A₁ is CR₁₁R₁₂ and R₁₁ is hydrogen, methyl, ethyl, propargyl, methoxy-carbonyl, ethoxycarbonyl, methylthio, methylsulfinyl or methylsulfonyl and R₁₂ is hydrogen or methyl, or R₁₁ together with R₁₂ forms an ethylene bridge -(CH₂)₂-;
- b) Q is a group Q₁ and A₂ is CR₁₄R₁₅ or an ethylene bridge -(CH₂)₂-, and R₁₄ is hydrogen, methyl or trifluoromethyl and R₁₅ is hydrogen or methyl, or R₁₄ together with R₁₁, or R₁₄ together with R₁₇ forms a direct bond or a methylene bridge;
- c) Q is a group Q_1 and A_2 is C(O) and R_{11} , R_{12} , R_{17} and R_{18} are each methyl;
- d) Q is a group Q₁ and A₂ is oxygen and R₁₁, R₁₂, R₁₇ and R₁₈ are each hydrogen or methyl;
- e) Q is a group Q_1 and A_3 is $CR_{17}R_{18}$ and R_{17} and R_{18} are hydrogen or methyl, or R_{17} together with R_{11} forms a methylene or ethylene bridge;
- f) Q is a group Q_1 and X_1 is hydroxy;
- g) Q is a group Q2 and R21 is methyl or ethyl and R22 is hydrogen or methyl;
- h) Q is a group Q_2 and X_2 is hydroxy;
- i) Q is a group Q₃ or Q₄ and R₃₂ is hydrogen, methylthio or methylsulfinyl, and R₃₁ and R₄₁ are cyclopropyl;
- j) p is 0;
- k) R₄ is hydrogen, methyl, chlorine or trifluoromethyl, especially hydrogen;
- I) R₃ is C₁-C₃haloalkyl, especially difluoromethyl, chlorodifluoromethyl or trifluoromethyl;
- m) L is either a direct bond or an unsubstituted C₁-C₃alkylene group or a C₁-C₃alkylene group uninterrupted or interrupted by oxygen, such as especially a methylene group -CH₂- or an ethylenemethoxymethylene group -CH₂OCH₂CH₂-;
- n) R₁ and R₂ in the group -N(R₂)U₁R₁ form a 4- to 6-membered, saturated or partially saturated ring system which may additionally be substituted from one to three times by

-N(R_{8b})-, once by oxygen, once by sulfur, sulfinyl or sulfonyl and/or once by a further carbonyl group;

o) . U_1 is preferably a -C(=O)- group, a -C(=S)- group, a $-C(=NR_6)$ - group or a $-SO_2$ - group;

p) the group
$$-N(R_2)U_1R_1$$
 is $N - N - R_{51}$

q) the group
$$-N(R_2)U_1R_1$$
 is $N = N_{53}$

r) the group
$$-N(R_2)U_1R_1$$
 is $(R_{56})^r$ $(U_{1.003})^2$;

s) the group
$$-N(R_2)U_1R_1$$
 is $(R_{56})^r$ $(U_{1.004})$

t) the group
$$-N(R_2)U_1R_1$$
 is $(R_{56})r$ $(U_{1.005})$:

u) the group
$$-N(R_2)U_1R_1$$
 is $(R_{56})^r$ $(U_{1.006})^r$

$$V$$
) the group $-N(R_2)U_1R_1$ is V

w) the group
$$-N(R_2)U_1R_1$$
 is a group selected from $(U_{1.008})$,

$$(U_{1.009}), \qquad (V_{1.010}) \text{ and } \qquad (V_{1.011})$$

the group -N(R₂)U₁R₁ is $(U_{1.012})$, wherein X_6 is oxygen or sulfur;

y) the group
$$-N(R_2)U_1R_1$$
 is $(U_{1.013})$, wherein X_7 is oxygen or sulfur;

z) the group
$$-N(R_2)U_1R_1$$
 is $(U_{1.014})$, wherein X is oxygen or sulfur and X_8 is $-CH_2$ -;

aa) the group
$$-N(R_2)U_1R_1$$
 is $(U_{1.022})$;

bb) the group –N(R₂)U₁R₁ is
$$R_{62}$$
 (U_{1.025});

Cc) the group
$$-N(R_2)U_1R_1$$
 is $(U_{1.028});$

dd) the group
$$-N(R_2)U_1R_1$$
 is $(U_{1.029})$; or

ee) the group
$$-N(R_2)U_1R_1$$
 is R_{65} $(U_{1.030})$.

Special preference is given to the compounds of formula IA

wherein Q, L, U_1 , R_1 , R_2 , R_8 and r are as defined above and R_3 is difluoromethyl, chlorodifluoromethyl or trifluoromethyl, R_4 is hydrogen and p is 0.

The compounds of formula I can be prepared by means of processes known *per se*, as described below using the example of compounds of formula IA

wherein W is a heterocyclic group Uo

$$\begin{array}{c} V_{1} \\ V_{1} \\ N_{R_{2}} \end{array} \rightarrow \begin{array}{c} (R_{8})r & \text{or, simplified,} & V_{1} \\ N_{R_{2}} \\ \end{array} (U_{0})$$

and wherein the group $-L-N(R_2)U_1R_1$ is located in the 2-position of the nicotinoyl group. In a preferred process, for example for the preparation of a compound of formula IA

$$Q = \begin{pmatrix} V_1 & & & \\ V_1 & & & \\ & & &$$

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and Q is a group Q_1 , Q_2 or Q_4 , a compound of formula IIA

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and Y is chlorine or cyano, is reacted in the presence of a base with a keto compound of formula IIIa, IIIb or IIId

(IIIa), (IIIb) or
$$R_{21}$$
 (IIId), R_{22}

wherein A_1 , A_2 , A_3 , R_{21} , R_{22} and R_{41} are as defined above, thus yielding the compound of formula IA directly *in situ* or yielding a compound of formula IVA

$$Q_0$$
 P_1
 P_2
 P_3
 P_4
 P_3
 P_4
 P_4
 P_4
 P_5
 P_5

wherein L, U₁, R₁, R₂, R₃, R₄ and p are as defined above and Q₀ is accordingly the group Q linked to oxygen, which compound, especially when Y is chlorine, is then rearranged in the presence of an additional amount of cyanide ions, e.g. potassium cyanide, trimethylsilyl cyanide or acetone cyanohydrin, and in the presence of a base, e.g. triethylamine, to form a C-C-linked compound IA.

That process is illustrated by way of example with respect to compounds of formula IA wherein Q is a group Q_1 , that is to say with respect to compounds of formula IAa, in Scheme 1.

Scheme 1:

In a variant of that process, for example for the preparation of a compound of formula IA

$$Q = \begin{pmatrix} V_1 & & & \\ V_1 & & & \\ & & &$$

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and Q is a group Q_1 , Q_2 or Q_4 , a compound of formula IIAd

$$R_0$$
 R_2
 R_3
 R_3
 R_3

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and R_0 is hydroxy, is reacted with the aid of a coupling reagent, for example dicyclohexylcarbodiimide, (1-chloro-2-methyl-propenyl)-dimethylamine or 2-chloro-1-methylpyridinium iodide, in the presence of a base,

e.g. triethylamine or Hünig base, with a keto compound of formula IIIa, IIIb or IIId, respectively,

(IIIb) or
$$O$$

$$A_{2}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{5}$$

$$A_{7}$$

wherein A_1 , A_2 , A_3 , R_{21} , R_{22} and R_{41} are as defined above, optionally *via* an intermediate of an activated ester of formula IIAe

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and the meaning of Ye depends upon the coupling reagent used, to form a compound of formula IVA

wherein L, U₁, R₁, R₂, R₃, R₄ and p are as defined above and Q₀ is accordingly the group Q linked to oxygen, and that compound is then, after isolation in a second reaction step or directly *in situ*, rearranged in the presence of a base, e.g. triethylamine, and a catalytic amount of cyanide ions, e.g. potassium cyanide or acetone cyanohydrin, or a catalytic amount of dimethylaminopyridine, to form a C-C-linked compound IA.

That process is illustrated by way of example with respect to compounds of formula IA wherein Q is a group Q_1 , that is to say with respect to compounds of formula IAa, in Scheme 2.

Scheme 2:

In a further process for the preparation of compounds of formula IA, a compound of formula VA

wherein L, U₁, R₂, R₃, R₄ and p are as defined above and T is chlorine, bromine, iodine or trifluoromethanesulfonyloxy, is reacted under carbonylation conditions, as described, for example, in Tetrahedron Letters, 31, 2841, 1990 and in WO 02/16305, in the presence of noble metal catalysts and suitable phosphine ligands, e.g. Pd(PPh₃)₄ or Pd(PPh₃)₂Cl₂, and suitable bases, e.g. triethylamine, with a compound of formula III, for example of formula IIIa or IIIb

(IIIa) or O (IIIb),
$$A_{2}$$
 A_{1} O R_{21} N R_{22}

wherein A_1 , A_2 , A_3 , R_{21} and R_{22} are as defined above, as illustrated in Scheme 3 for compounds of formula IAa wherein X_1 is hydroxy.

Scheme 3:

Compounds of formula IA

$$Q \xrightarrow{\text{I}_{1}} \begin{array}{c} \text{I}_{1} \\ \text{I}_{1} \\ \text{N} \\ \text{R}_{2} \\ \text{N} \\ \text{(IA)} \\ \text{R}_{3} \end{array}$$

wherein L, U₁, R₁, R₂, R₃, R₄ and p are as defined above and Q is a group Q₃

that is to say compounds of formula IAc, can likewise be prepared analogously to known procedures (for example analogously to the procedures described in WO 00/15615,

WO 00/39094 and WO 01/94339), for example as follows: when X_3 is oxygen and R_{32} is a group $S(O)_0R_{33}$ wherein R_{33} is as defined above, a compound of formula IIA

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and Y is chlorine is converted in a Claisen condensation with a ketocarboxylic acid salt of formula XIV

$$R_{31}C(O)CH_2COO^{-}M^{+}$$
 (XIV)

or with a trialkyl silyl ester of formula XIVa

wherein R₃₁ is as defined above and M⁺ is a metal salt cation, e.g. Li⁺ or K⁺, and R', R", R" are an alkyl group, e.g. methyl, into a compound of formula IIAa

$$V_1$$
 R_1
 N
 R_2
 N
 R_3
 R_4
(IIAa),

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and Ya is $CH_2C(O)R_{31}$, that compound is then treated in the presence of a base with carbon disulfide and an alkylating reagent of formula XV

$$R_{33}Y_2$$
 (XV),

wherein R_{33} is as defined for formula I and Y_2 is a leaving group, such as halogen or sulfonyloxy, and converted into a compound of formula IIAb

wherein L, U₁, R₁, R₂, R₃, R₄ and p are as defined above and Yb is a group Yb

and then the compound of formula IIAb is cyclised with hydroxylamine hydrochloride and optionally in a solvent and in the presence of a base, for example sodium acetate, to form isomeric compounds of formula IAc and/or IAe, and the latter are then, when n is 1 or 2, oxidised with an oxidising agent, e.g. with a peracid, such as meta-chloroperbenzoic acid (m-CPBA) or peracetic acid, to form corresponding sulfoxides (n = 1) or sulfones (n = 2) of formula IAc

and IAe

$$R_{32}$$
 N_{O}
 $N_{R_{2}}$
 $N_{R_{3}}$
 $N_{R_{4}}$
 $N_{R_{3}}$
 $N_{R_{3}}$
 $N_{R_{3}}$
 $N_{R_{4}}$

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 , R_{31} and p are as defined above and R_{32} is a group $S(O)_n R_{33}$. That process is illustrated in Scheme 4.

Scheme 4:

Compounds of formula IAc

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 , R_{31} and p are as defined above and R_{32} is hydrogen, C_1 - C_4 -alkoxycarbonyl or carboxy, can likewise be prepared analogously to known procedures (e.g. analogously to the procedures described in WO 97/46530), for example as follows: a compound of formula IIAa

$$Ya \xrightarrow{V_1}^{R_1} R_2$$

$$V_1 = 0$$

$$V_1 = 0$$

$$V_1 = 0$$

$$V_2 = 0$$

$$V_3 = 0$$

$$V_4 = 0$$

$$V_1 = 0$$

$$V_1 = 0$$

$$V_1 = 0$$

$$V_2 = 0$$

$$V_3 = 0$$

$$V_4 = 0$$

$$V_$$

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and Ya is $CH_2C(O)R_{31}$, is converted in the presence of a base with an ortho ester of formula XVI

$$R_{32}C(OR")_2Y_3$$
 (XVI)

or with a cyanic acid ester of formula XVII

wherein R_{32} is hydrogen, Y_3 is a leaving group, such as C_1 - C_4 alkoxy or di(C_1 - C_4 alkoxy, into a compound of formula IIAc

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and Yc is a group Yc

wherein R_{31} is as defined above and R_{32} is hydrogen or C_1 - C_4 alkoxycarbonyl and Y_3 is a leaving group, such as C_1 - C_4 alkoxy or di(C_1 - C_4 alkyl)amino, or hydroxy, and then the compound of formula IIAc is cyclised with hydroxylamine hydrochloride and optionally in a solvent and in the presence of a base, for example sodium acetate, to form isomeric compounds of formula IAc and/or IAe, and the latter are then, when R_{32} is carboxyl or hydrogen, treated with a hydrolysing agent, e.g. with potassium hydroxide followed by a mineral acid, such as hydrochloric acid, to yield compounds of formula IAc

and/or IAe

$$R_{32} \xrightarrow{N_{O}} R_{2}$$

$$R_{31} \xrightarrow{R_{A}} R_{3}$$

$$R_{3}$$

$$R_{3}$$

$$R_{3}$$

$$R_{3}$$

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 , R_{31} and p are as defined above and R_{32} is hydrogen, C_1 - C_4 -alkoxycarbonyl or carboxy. That process is illustrated in Scheme 5.

Scheme 5:

The isomeric compounds of formula IAc and IAe can be separated and purified, for example by means of column chromatography and a suitable eluant. In addition, compounds of formula IAe represent a sub-group of compounds of formula IA and accordingly the present invention relates likewise thereto.

Compounds of formula IA

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and X_1 or X_2 in the group Q_1 or Q_2 , as the case may be, is $S(O)_n R_9$ can likewise be prepared in accordance with known procedures by reacting a compound of formula IA wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and X_1 or X_2 in the group Q_1 or Q_2 , respectively, is hydroxy, with a chlorinating agent, e.g. with oxalyl chloride, and then reacting the resulting compound of formula IA wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and X_1 or X_2 in the group Q_1 or Q_2 , respectively, is chlorine, with a thio compound of formula VI

or with a salt of formula VIa

M⁺SR₉ (VIa),

wherein R_9 is as defined above, and optionally with an additional base, e.g. triethylamine, sodium hydride, sodium hydrogen carbonate or potassium carbonate, and for the preparation of a compound of formula IA wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and X_1 or X_2 in the group Q_1 or Q_2 , respectively, is $S(O)_nR_9$ and n is 1 or 2, treating the resulting compound of formula IA wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and X_1 or X_2 in the group Q_1 or Q_2 , respectively, is SR_9 , with an oxidising agent, e.g. sodium perbromate, sodium iodate, peracetic acid or m-chloroperbenzoic acid. That process sequence is illustrated in Scheme 6 using the example of compounds of formula IAa as defined above.

Scheme 6:

The compounds of formula IA

$$Q \xrightarrow{V_1^R}_{N_{R_2}}$$
 $Q \xrightarrow{N_{R_2}}_{N_{R_3}}$
 $Q \xrightarrow{N_{R_3}}_{R_3}$
 $Q \xrightarrow{N_{R_4}}_{R_3}$

wherein Q, L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above can also be prepared by reacting a compound of formula XIIA

$$Q = \begin{pmatrix} Y_0 \\ N'(O)p \\ R_3 \end{pmatrix}$$
 (XIIA),

wherein Q, L, R_3 , R_4 and p are as defined above and Y_0 is a leaving group, such as chlorine, bromine, mesyloxy or tosyloxy, with a corresponding amine compound of formula VIII

or with a salt of formula VIIIa

$$M^{+} N(R_2)U_1R_1$$
 (VIIIa)

wherein R_1 , R_2 and U_1 are as defined above and M^+ is a metal cation, it being possible to add a base, such as potassium carbonate, sodium hydride, sodium hydroxide, lithium hexamethyldisilazane or lithium diisopropylamide. That general process is illustrated in Scheme 7.

Scheme 7:

The compounds of formula IIA

$$\begin{array}{cccc}
V_1^{R_1} \\
V_1^{N_{R_2}} \\
V_1^{O)p} \\
R_4
\end{array}$$
(IIA)

wherein L, U_1 , R_1 , R_2 , R_3 , R_4 and p are as defined above and Y is chlorine or cyano can be prepared by known methods from compounds of formula IIA wherein Y is hydroxy, C_1 - C_4 -alkoxy, benzyloxy, phenoxy or allyloxy, that is to say from compounds of formula IIAd

wherein L, U₁, R₀, R₁, R₂, R₃, R₄ and p are as defined above.

Such compounds of formula IIAa can be prepared, for example, from compounds of formula VIIA

$$R_0 \longrightarrow 0$$
 $R_0 \longrightarrow 0$
 $R_0 \longrightarrow 0$
 R_3
(VIIA),

wherein L, R_0 , R_3 , R_4 and p are as defined above and Y_0 is a leaving group, such as chlorine, bromine, mesyloxy or tosyloxy, with a corresponding amino compound of formula VIII

or with a salt of formula VIIIa

$$M^{+}N(R_2)U_1R_1$$
 (Villa)

wherein R₁, R₂ and U₁ are as defined above and M⁺ is a metal cation, it being possible to add a base, such as potassium carbonate, sodium hydride, sodium hydroxide, potassium hydroxide, lithium hexamethyldisilazane or lithium diisopropylamide. That general process is illustrated in Scheme 8.

Scheme 8:

Compounds of formulae IIA and IIAa

$$V_1$$
 R_2
 N
 R_2
 R_3
 R_4
(IIA), (IIAa Y=OR₀)

wherein L, U_1 , R_0 , R_1 , R_2 , R_4 and p are as defined above and R_3 is C_1 - C_3 haloalkyl can also be prepared by reacting a compound of formula IX

wherein L, U_1 , R_0 , R_1 and R_2 are as defined above, with an enamine of formula X

wherein R_4 is as defined above and R_3 is C_1 - C_3 haloalkyl, yielding a corresponding compound of formula IIAd

$$R_0$$
 R_0
 R_2
 R_3
 R_4
(IIAd)

wherein L, U_1 , R_0 , R_1 , R_2 and R_4 are as defined above and R_3 is C_1 - C_3 haloalkyl and p is 0, and that compound is then reacted further by generally known reaction methods for the conversion of the group R_0 -O into a meaning of Y and optionally oxidation of the pyridyl nitrogen atom to the pyridyl-N-oxide, thus yielding a corresponding compound as defined above for formula IIA. That process is illustrated in Scheme 9.

Scheme 9:

Compounds of formula IX can be prepared by reacting an acetoacetic acid ester of formula XI

$$R_0OC(O)CH_2C(O)CH_2Y_0$$
 (XI),

wherein Y_0 is especially chlorine or bromine and R_0 is C_1 - C_4 alkoxy, with a corresponding amino compound of formula VIII-

or with a salt of formula VIIIa

$$M^{+}N(R_2)U_1R_1$$
 (VIIIa),

wherein R₁, R₂ and U₁ are as defined above and M⁺ is a metal cation, the reaction advantageously being carried out in the presence of potassium carbonate, sodium hydride, sodium

hydroxide, lithium hexamethyldisilazane or lithium diisopropylamide as acid-binding agent and base. That process is illustrated in Scheme 10.

Scheme 10:

$$R_0$$
 V_0
 V_1
 V_1
 V_1
 V_2
 V_1
 V_1
 V_2
 V_3
 V_4
 V_4
 V_4
 V_5
 V_6
 V_7
 V_8
 V_8

The compounds of formulae IIA, IIAa, IIAb, IIAc, IIAd, IVA and VA are valuable intermediates in the preparation of compounds of formula IA wherein R_3 is C_1 - C_3 haloalkyl and accordingly the present invention relates also thereto.

Those intermediates according to the invention are represented by the formula II

$$R_4$$
 R_3
(II)

wherein Y is chlorine, cyano, hydroxy, C₁-C₄alkoxy, benzyloxy, phenoxy, allyloxy, a group

$$(Ya)$$
, R_{33} (Yb) (Yc) , (Yc) , (Yc)

or a group Q_0 , wherein Q_0 is accordingly a group Q linked to oxygen and Q, L, U_1 , R_1 , R_2 , R_3 , R_4 , R_{31} , R_{32} , R_{33} and p are as defined above for formula I.

The compounds of formula VII and especially compounds of formula VIIA are either known or can be prepared analogously to the methods described in WO 00/15615, WO 00/39094 and WO 01/94339. The compounds of formula XII and especially of formula XIIA are likewise known from the patent specifications mentioned above or can be prepared in accordance with the processes described therein.

The compounds of formula III used as starting materials are known or can be prepared in accordance with generally described methods, e.g. as described in the references

PCT/EP03/06273

mentioned above. The compounds of formula VIII are either known or can be prepared analogously to known methods, e.g. according to WO 99/18089.

All other compounds of formula I, such as especially those of formulae IB, IC, ID, IE, IF, IG and IH, can be prepared analogously to the processes described above.

The reactions to form compounds of formula I are advantageously carried out in aprotic, inert organic solvents. Such solvents are hydrocarbons, such as benzene, toluene, xylene or cyclohexane, chlorinated hydrocarbons, such as dichloromethane, trichloromethane, tetrachloromethane or chlorobenzene, ethers, such as diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran or dioxane, nitriles, such as acetonitrile or propionitrile, amides, such as N,N-dimethylformamide, diethylformamide or Nmethylpyrrolidinone. The reaction temperatures are preferably from -20°C to +120°C. If the reactions proceed slightly exothermically, they can generally be carried out at room temperature. In order to shorten the reaction time or to initiate the reaction, brief heating, up to the boiling point of the reaction mixture, can be carried out. The reaction times can likewise be shortened by the addition of suitable bases as reaction catalysts. As bases there are used especially the tertiary amines, such as trimethylamine, triethylamine, quinuclidine, 2-methyl-4-ethylpyridine, dimethylaminopyridine, 1,4-diazabicyclo[2.2.2]octane, 1,5-diazabicyclo-[4.3.0]non-5-ene or 1,5-diazabicyclo[5.4.0]undec-7-ene. It is also possible, however, to use as bases inorganic bases, such as hydrides, e.g. sodium or calcium hydride, hydroxides, e.g. dry sodium or potassium hydroxide, carbonates, e.g. sodium or potassium carbonate, or hydrogen carbonates, e.g. sodium or potassium hydrogen carbonate.

According to Reaction Schemes 6, 8 and 9, the compounds of formulae I and II are prepared using a chlorinating agent, e.g. thionyl chloride, phospene, phosphorus pentachloride, phosphorus oxychloride or preferably oxalyl chloride. The reaction is preferably carried out in an inert organic solvent, for example in aliphatic, halogenated aliphatic, aromatic or halogenated aromatic hydrocarbons, for example n-hexane, benzene, toluene, xylenes, dichloromethane, 1,2-dichloroethane or chlorobenzene, at reaction temperatures in the range from -20°C up to the reflux temperature of the reaction mixture, preferably at about from +40 to +100°C, and in the presence of a catalytic amount of N,N-dimethylformamide.

For the preparation of compounds of formulae I and IV according to Reaction Scheme 1 or with the aid of a coupling reagent, for example dicyclohexylcarbodiimide, (1-chloro-2-methyl-propenyl)-dimethylamine or 2-chloro-1-methylpyridinium iodide, according to Reaction Scheme 2, reaction is preferably likewise carried out in one of the inert organic solvents mentioned above at temperatures from about –20°C to about +100°C, preferably from about +5°C to about +50°C.

The end products of formula I can be isolated in conventional manner by concentration or evaporation of the solvent and purified by recrystallisation or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons, by distillation or by means of column chromatography or by means of the HPLC technique using a suitable eluant.

The sequence in which the reactions should be carried out in order as far as possible to avoid secondary reactions will also be familiar to the person skilled in the art. Unless the synthesis is specifically aimed at the isolation of pure isomers, the product may be obtained in the form of a mixture of two or more isomers, for example chiral centres in the case of alkyl groups or cis/trans isomerism in the case of alkenyl groups or <E> or <Z> forms, e.g. in respect of a $-C(=NR_6)$ - group. All such isomers can be separated by methods known *per se*, for example chromatography, crystallisation, or produced in the desired form by means of a specific reaction procedure.

Compounds of formula I wherein p is 1, that is to say the corresponding pyridyl-N-oxides of formula I, can be prepared by reacting a compound of formula I wherein p is 0 with a suitable oxidising agent, for example with the H_2O_2 urea adduct in the presence of an acid anhydride, e.g. the trifluoroacetic anhydride. That reaction can be carried out either with compounds of formula I or at the stage of compounds of formula II, V, VII or XII.

For the use according to the invention of the compounds of formula I, or of compositions comprising them, there come into consideration all methods of application customary in agriculture, for example pre-emergence application, post-emergence application and seed dressing, and also various methods and techniques such as, for example, the controlled release of active ingredient. For that purpose a solution of the active ingredient is applied to mineral granule carriers or polymerised granules (urea/formaldehyde) and dried. If required, it is additionally possible to apply a coating (coated granules), which allows the active ingredient to be released in metered amounts over a specific period of time.

The compounds of formula I can be used as herbicides in unmodified form, that is to say as obtained in the synthesis, but they are preferably formulated in customary manner together with the adjuvants conventionally employed in formulation technology e.g. into emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, suspensions, mixtures of a suspension and an emulsion (suspoemulsions), wettable powders, soluble powders, dusts, granules or microcapsules. Such formulations are described, for example, on pages 9 to 13 of WO 97/34485. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, wetting, scattering or pouring, are selected

in accordance with the intended objectives and the prevailing circumstances.

The formulations, that is to say the compositions, preparations or mixtures comprising the compound (active ingredient) of formula I or at least one compound of formula I and, usually, one or more solid or liquid formulation adjuvants, are prepared in known manner, e.g. by homogeneously mixing and/or grinding the active ingredients with the formulation adjuvants, for example solvents or solid carriers. Surface-active compounds (surfactants) may also be used in addition in the preparation of the formulations. Examples of solvents and solid carriers are given, for example, on page 6 of WO 97/34485.

Depending upon the nature of the compound of formula I to be formulated, suitable surfaceactive compounds are non-ionic, cationic and/or anionic surfactants and surfactant mixtures having good emulsifying, dispersing and wetting properties.

Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, on pages 7 and 8 of WO 97/34485.

In addition, the surfactants conventionally employed in formulation technology, which are described, *inter alia*, in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna 1981, and M. and J. Ash, "Encyclopedia of Surfactants", Vol. I-III, Chemical Publishing Co., New York, 1980-81, are also suitable for the preparation of the herbicidal compositions according to the invention.

The compositions according to the invention can additionally include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters thereof or mixtures of such oils and oil derivatives.

The amounts of oil additive in the composition according to the invention is generally from 0.01 to 2 %, based on the spray mixture. For example, the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared.

Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, such as AMIGO® obtainable from Rhône-Poulenc Canada Inc., alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow. A preferred additive contains as active components essentially 80 % by weight alkyl esters of fish oils and 15 % by weight methylated rapeseed oil, and also 5 % by weight of customary emulsifiers and pH modifiers.

Especially preferred oil additives comprise alkyl esters of higher fatty acids (C₈-C₂₂), especially the methyl derivatives of C₁₂-C₁₈fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid. Those esters are known as methyl laurate (CAS-111-82-0), methyl palmitate (CAS-112-39-0) and methyl oleate (CAS-112-62-9). A preferred fatty acid methyl ester derivative is Emery® 2230 and 2231 (Henkel subsidiary Cognis GMBH, DE)

The application and action of the oil additives can be improved by combining them with surface-active substances, such as non-ionic, anionic or cationic surfactants. Examples of suitable anionic, non-ionic and cationic surfactants are listed on pages 7 and 8 of WO 97/34485.

Preferred surface-active substances are anionic surfactants of the dodecylbenzylsulfonate type, especially the calcium salts thereof, and also non-ionic surfactants of the fatty alcohol ethoxylate type. Special preference is given to ethoxylated C₁₂-C₂₂fatty alcohols having a degree of ethoxylation of from 5 to 40. Examples of commercially available, preferred surfactants are the Genapol types (Clariant AG, Muttenz, Switzerland). Also preferred for use as surface-active substances are silicone surfactants, especially polyalkyl-oxide-modified heptamethyltrisiloxanes, such as are commercially available as e.g. Silwet L-77®, and also perfluorinated surfactants. The concentration of surface-active substances in relation to the total additive is generally from 1 to 30 % by weight.

Examples of oil additives that consist of mixtures of oils or mineral oils or derivatives thereof with surfactants are Edenor ME SU®, Turbocharge® (Zeneca Agro, Stoney Creek, Ontario, CA) and Actipron® (BP Oil UK Limited, GB).

The addition of an organic solvent to the oil additive/surfactant mixture can also bring about a further enhancement of action. Suitable solvents are, for example, Solvesso® (ESSO) and Aromatic Solvent® (Exxon Corporation) types.

The concentration of such solvents can be from 10 to 80 % by weight of the total weight.

Such oil additives, which are also described, for example, in US-A-4 834 908, are suitable for the composition according to the invention. A commercially available oil additive is known by the name MERGE®, is obtainable from the BASF Corporation and is essentially described, for example, in US-A-4 834 908 in col. 5, as Example COC-1. A further oil additive that is preferred according to the invention is SCORE® (Novartis Crop Protection Canada.)

In addition to the oil additives listed above, in order to enhance the action of the compositions according to the invention it is also possible for formulations of alkyl pyrrolidones, such as are commercially available e.g. as Agrimax®, to be added to the spray mixture. Formulations of synthetic latices, such as, for example, polyacrylamide, polyvinyl compounds or poly-

WO 03/106448

1-p-menthene, such as are commercially available as e.g. Bond®, Courier® or Emerald®, can also be used to enhance action. Solutions that contain propionic acid, for example Eurogkem Pen-e-trate®, can also be added as action-enhancing agent to the spray mixture.

- 42 -

The herbicidal formulations generally contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of herbicide, from 1 to 99.9 % by weight, especially from 5 to 99.8 % by weight, of a solid or liquid formulation adjuvant, and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations. The compositions may also comprise further ingredients, such as stabilisers, for example vegetable oils or epoxidised vegetable oils (epoxidised coconut oil, rapeseed oil or soybean oil), anti-foams, for example silicone oil, preservatives, viscosity regulators, binders, tackifiers, and also fertilisers or other active ingredients.

The compounds of formula I are generally applied to plants or the locus thereof at rates of application of from 0.001 to 4 kg/ha, especially from 0.005 to 2 kg/ha. The concentration required to achieve the desired effect can be determined by experiment. It is dependent on the nature of the action, the stage of development of the cultivated plant and of the weed and on the application (place, time, method) and may vary within wide limits as a function of those parameters.

The compounds of formula I are distinguished by herbicidal and growth-inhibiting properties, allowing them to be used in crops of useful plants, especially cereals, cotton, soybeans, sugar beet, sugar cane, plantation crops, rape, maize and rice, and also for non-selective weed control.

The term "crops" is to be understood as including also crops that have been rendered tolerant to herbicides or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors) as a result of conventional methods of breeding or genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones, e.g. Imazamox, by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola). Examples of crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®.

The weeds to be controlled may be both monocotyledonous and dicotyledonous weeds, such as, for example, Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis,

Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica.

The following Examples further illustrate the invention but do not limit the invention.

Preparation Example P1: 2-[6-(Chloro-difluoro-methyl)-3-(2-hydroxy-6-oxo-cyclohex-1-ene-carbonyl)-pyridin-2-ylmethyl]-4-methyl-5-trifluoromethyl-2,4-dihydro-[1.2.4]triazol-3-one:

65 mg (0.17 mmol) of 6-(chloro-difluoro-methyl)-2-(4-methyl-5-oxo-3-trifluoromethyl-4,5-dihydro-[1.2.4]triazol-1-ylmethyl)-nicotinic acid (Preparation Example P6) are heated at 50°C for 30 minutes in 5 ml of hexane with 0.02 ml of oxalyl chloride and a catalytic amount of dimethylformamide. The mixture is then concentrated by evaporation and taken up in 1 ml of acetonitrile, and the 6-(chloro-difluoro-methyl)-2-(4-methyl-5-oxo-3-trifluoromethyl-4,5-dihydro[1.2.4]triazol-1-ylmethyl)-nicotinic acid chloride so prepared is transferred into a solution of 60 mg (0.15 mmol) of cyclohexane-1,3-dione and 40 mg (0.4 mmol) of triethylamine in 2 ml of acetonitrile. After 40 minutes' stirring at room temperature, 1 drop of acetone cyanohydrin is added and stirring is continued for a further 2 hours. The reaction product is then taken up in ethyl acetate and washed once with dilute hydrochloric acid and once with sodium chloride solution, concentrated and purified by chromatography using the HPLC technique. Pure 2-[6-(chloro-difluoro-methyl)-3-(2-hydroxy-6-oxo-cyclohex-1-ene-carbonyl)-pyridin-2-ylmethyl]-4-methyl-5-trifluoromethyl-2,4-dihydro-[1.2.4]triazol-3-one is thus obtained in the form of a resin; ¹H-NMR (CDCl₃ in ppm relative to TMS): 16.96, b, 1H; 7.60, m, 2H; 5.18, s, 2H; 3.33, s, 3H; 2.82, m, 2H; 2.50, m, 2H; 2.19, m, 2H.

WO 03/106448 PCT/EP03/06273

Preparation Example P2: 3-[3-(2-Hydroxy-6-oxo-cyclohex-1-enecarbonyl)-6-trifluoromethyl-pyridin-2-ylmethyl]-5-methyl-3H-[1.3.4]oxadiazol-2-one:

514 mg (1.694 mmol) of 2-(5-methyl-2-oxo-[1.3.4]oxadiazol-3-ylmethyl)-6-trifluoromethyl-nicotinic acid (Preparation Example P4) are introduced into 20 ml of dry methylene chloride. At 0°C, 0.264 ml (1.864 mmol) of (1-chloro-2-methyl-propenyl)-dimethyl-amine are squirted in and the mixture is then stirred at 20°C for 2 hours. At 0°C, 0.190 g (1.694 mmol) of cyclohexane-1,3-dione and 0.354 ml (2.542 mmol) of triethylamine are then added and the mixture is stirred at 20°C for 2 hours. The mixture is concentrated by evaporation and taken up in 20 ml of anhydrous acetonitrile, and 0.354 ml (2.542 mmol) of triethylamine and 0.155 ml (1.694 mmol) of acetone cyanohydrin are added to the reaction mixture. The reaction mixture is stirred at 20°C for a further 20 hours and then concentrated by evaporation. The residue is purified by chromatography. The fractions are combined and concentrated. 0.570 g (84.7 %) of pure 3-[3-(2-hydroxy-6-oxo-cyclohex-1-enecarbonyl)-6-trifluoromethyl-pyridin-2-ylmethyl]-5-methyl-3H-[1.3.4]oxadiazol-2-one is thus obtained in the form of a beige solid; ¹H-NMR (CDCl₃ in ppm relative to TMS): 17.6, b, 1H; 7.65, m, 2H; 4.98, s, 2H; 2.84, m, 2H; 2.48, m, 2H; 2.20, s, 3H; 2.08, m, 2H.

<u>Preparation Example P3: 3-{2-[3-(2-Hydroxy-4-oxo-bicyclo[3.2.1]oct-2-ene-3-carbonyl)-6-trifluoromethyl-pyridin-2-ylmethoxy]-ethyl}-5-methyl-3H-[1.3.4]thiadiazol-2-one:</u>

71 mg (1.635 mmol) of sodium hydride in the form of a 55 % dispersion in oil are introduced into 2 ml of dry DMF. At 0°C, a solution of 300 mg (0.743 mmol) of 3-[2-(2-chloro-ethoxy-methyl)-6-trifluoromethyl-pyridine-3-carbonyl]-4-hydroxy-bicyclo[3.2.1]oct-3-en-2-one in 4 ml of anhydrous DMF is added dropwise. The reaction mixture is stirred at room temperature

for 2 hours. In parallel, a further 71 mg (1.635 mmol) of sodium hydride in the form of a 55 % dispersion in oil are introduced into a second flask and, at 0°C, 95 mg (0.817 mmol) of 5-methyl-3H-[1.3.4]thiadiazol-2-one are added. This mixture is also stirred at room temperature for 2 hours. Then, at the same temperature, the contents of the second flask are rapidly added to the reaction mixture in the first flask. The combined reaction mixture is then stirred at 20°C for 4 hours and at 80°C for 16 hours. The reaction product is poured into water and extracted with ethyl acetate. The organic phases are washed once with sodium chloride solution, dried over sodium sulfate and concentrated. The residue is purified by chromatography. 200 mg (55.7 %) of pure 3-{2-[3-(2-hydroxy-4-oxo-bicyclo[3.2.1]oct-2-ene-3-carbonyl)-6-trifluoromethyl-pyridin-2-ylmethoxy]-ethyl}-5-methyl-3H-[1.3.4]thiadiazol-2-one are thus obtained in the form of a resin; 'H-NMR (CDCI₃ in ppm relative to TMS): 16.9, b, 1H; 7.6, m, 2H; 4.72, s, 2H; 3.87, t, 2H; 3.62, t, 2H; 3.15, m, 1H; 2.87, m, 1H; 2.35, s, 3H; 2.3-2.0, m, 4H; 1.75, m, 2H.

Preparation Example P4: 2-(5-Methyl-2-oxo-[1.3.4]oxadiazol-3-ylmethyl)-6-trifluoromethylnicotinic acid:

500 mg (1.509 mmol) of 2-(5-methyl-2-oxo-[1.3.4]oxadiazol-3-ylmethyl)-6-trifluoromethyl-nicotinic acid ethyl ester (Preparation Example P5) are introduced into 40 ml of a 1:1 mixture of THF/water at room temperature. At 0°C, 69.7 mg (1.66 mmol) of LiOH•H₂O are added. The reaction mixture is then stirred at the same temperature for 30 minutes. The reaction product is then extracted with ethyl acetate, washed with saturated sodium chloride solution, dried over sodium sulfate and concentrated by evaporation, yielding 420 mg (92 %) of 2-(5-methyl-2-oxo-[1.3.4]oxadiazol-3-ylmethyl)-6-trifluoromethyl-nicotinic acid in the form of a white solid; ¹H-NMR (CD₃CN in ppm relative to-TMS): 8.55, d, 1H; -7.82, d, 1H; 5.39, s, 2H; 2.20, s, 3H.

Preparation Example P5: 2-(5-Methyl-2-oxo-[1.3.4]oxadiazol-3-ylmethyl)-6-trifluoromethyl-nicotinic acid ethyl ester:

2.0 g (7.45 mmol) of 2-chloromethyl-6-trifluoromethyl-nicotinic acid ethyl ester are introduced into 8 ml of dry DMF at room temperature, and 1.0 g (8.19 mmol) of the sodium salt of 5-methyl-3H-[1.3.4]oxadiazol-2-one is added. The reaction mixture is then stirred at the same temperature for 20 hours. The reaction product is then diluted with water and extracted with ethyl acetate. The organic phases are washed once with sodium chloride solution, dried over sodium sulfate and concentrated. The residue is concentrated by evaporation and purified by chromatography, yielding 2.04 g (82 %) of 2-(5-methyl-2-oxo-[1.3.4]oxadiazol-3-ylmethyl)-6-trifluoromethyl-nicotinic acid ethyl ester in the form of a white powder; ¹H-NMR (CDCl₃ in ppm relative to TMS): 8.48, d, 1H; 7.67, d, 1H; 5.45, s, 2H; 4.42, q, 2H; 2.26, s, 3H; 1.43, t, 3H.

<u>Preparation Example P6: 2-(3-Methyl-imidazolidin-2-on-1-ylmethyl)-6-trifluoromethylnicotinic</u> acid:

1.66 g (16.6 mmol) of 1-methyl-2-imidazolidinone are introduced into 50 ml of dry tetrahydrofuran. At room temperature, 0.96 g (16.6 mmol) of pulverulent potassium hydroxide and 0.15 g (0.55 mmol) of 1,4,7,10,13,16-hexaoxacyclooctadecane are added thereto. The reaction mixture is stirred at room temperature for 2.5 hours. Then 1.48 g (5.53 mmol) of 2-chloromethyl-6-trifluoromethylnicotinic acid ethyl ester in 10 ml of dry tetrahydrofuran are added dropwise at room temperature in the course of 20 minutes. The reaction mixture is stirred at the same temperature for 22 hours. The reaction product is then diluted with water

and extracted with ethyl acetate. The organic phases are washed with water. The aqueous phases are combined and rendered acidic with HCl (1M solution). The aqueous phase is then extracted with ethyl acetate and the organic phases from the acidic extraction are combined, dried over sodium sulfate and concentrated. The residue is concentrated by evaporation, diluted with 8 ml of tetrabutyl methyl ether (TBME), stirred, filtered, concentrated, and dried under a high vacuum. 1.09 g of 2-(3-methyl-imidazolidin-2-on-1-ylmethyl)-6-trifluoromethylnicotinic acid are obtained in the form of a light-beige solid; ¹H-NMR (CD₃OD in ppm relative to TMS): 8.52, d, 1H; 7.78, d, 1H; 4.94, s, 2H; 3.65-3.35, 2xm, 2x2H; 2.82, s, 3H.

Preparation Example P7: 6-(Chloro-difluoro-methyl)-2-(4-methyl-5-oxo-3-trifluoromethyl-4,5-dihydro-[1.2.4]triazol-1-ylmethyl)-nicotinic acid:

1 g (30 mmol) of 90 % 4-(4-methyl-5-oxo-3-trifluoromethyl-4,5-dihydro-[1.2.4]triazol-1-yl)-3-oxo-butyric acid ethyl ester (Preparation Example P7) and 0.52 g (31 mmol) of 4-amino-1-chloro-1,1-difluoro-but-3-en-2-one are together heated at boiling temperature for 8 hours in 30 ml of toluene in the presence of 0.14 ml (1.8 mmol) of trifluoroacetic acid. The reaction product is then taken up in ethyl acetate and washed once with sodium hydrogen carbonate solution and once with sodium chloride solution. The residue is concentrated by evaporation and purified by chromatography, and 6-(chloro-difluoro-methyl)-2-(4-methyl-5-oxo-3-trifluoro-methyl-4,5-dihydro-[1.2.4]triazol-1-ylmethyl)-nicotinic acid ethyl ester is thus obtained in the form of an 80 % product; ¹H-NMR (CDCl₃ in ppm relative to TMS): 8.45, d, 1H; 7.62, d, 1H; 5.65, s, 2H; 4.38, q, 2H; 3.45, s, 3H; 1.44, t, 3H.

The product is then hydrolysed in the presence of 1.4 equivalents of potassium hydroxide in a 1:1 mixture of dioxane/water at room temperature. The organic solvent and neutral secondary components are removed with diethyl ether and the aqueous phase is then acidified with hydrochloric acid and extracted with ethyl acetate. Pure 6-(chloro-difluoro-methyl)-2-(4-methyl-5-oxo-3-trifluoromethyl-4,5-dihydro-[1.2.4]triazol-1-ylmethyl)-nicotinic acid is thus obtained in the form of a crystalline product; ¹H-NMR (CDCl₃ in ppm relative to TMS): 10.42, b, 1H; 8.42, d, 1H; 7.61, d, 1H; 5.72, s, 2H; 3.50, s, 3H.

Preparation Example P8: 4-(4-Methyl-5-oxo-3-trifluoromethyl-4,5-dihydro-[1.2.4]triazol-1-yl)-3-oxo-butyric acid ethyl ester:

1.35 g (31 mol) of sodium hydride in the form of a 55 % dispersion in oil are introduced into 30 ml of tetrahydrofuran. 2.55 g (15 mmol) of solid 4-methyl-5-trifluoromethyl-2,4-dihydro-[1.2.4]triazol-3-one hydroiodide are stirred in at room temperature and the mixture is briefly heated to 40°C to complete the evolution of hydrogen. 1.95 ml (13.8 mmol) of 4-chloro-acetoacetic acid ethyl ester are then added dropwise to the resulting viscous suspension at a temperature of 20°C; 4 drops of 15-crown-5 are added and the mixture is stirred at the same temperature for 16 hours. The reaction product is then poured into water and adjusted to pH 3 with hydrochloric acid, extracted with diethyl ether, washed with saturated sodium chloride solution and concentrated by evaporation. The residue is purified by chromatography (ethyl acetate/hexane gradient), 4-(4-methyl-5-oxo-3-trifluoromethyl-4,5-dihydro-[1.2.4]triazol-1-yl)-3-oxo-butyric acid ethyl ester being obtained in the form of a viscous oil; ¹H-NMR (CDCl₃ in ppm relative to TMS): 4.83, s, 2H; 4.22, q, 2H; 3.55, s, 2H; 3.39, s, 3H; 1.28, t, 3H.

All further compounds of formula I can be prepared analogously to the preparation methods and Examples described above.

In the following Tables, the linkage site of the individual structures of the group the substituent L is the nitrogen atom located at the same geometric position, as indicated in each case.

For example, the linkage site of the group

The free valencies in these structures are terminal CH₃ groups,

such as, for example, in the case of the structure N

which can also be represented as follows:

Table A1: Compounds of formula IAa1:

Comp.
$$R_3$$
 L P_{R_3} (IAa₁)

No. R_2 data

A1.001 CF_2CI CH_2 P_{R_3} resin

(P1)

A1.002 CF_2H CH_2 P_{R_3} P_{R_2} resin

A1.003 CF_3 CH_2 P_{R_3} P_{R_4} P_{R_5} P_{R_5}

Comp.	R ₃	L	V1 R 1 N R 2	Phys. data
A1.006	CHF ₂	CH₂OCH₂CH₂	O F F F F F	
A1:007	CF ₃	CH ₂	O CH ₃ CH ₃	solid
A1.008	CF ₂ CI	CH₂	O CH ₃	
A1.009	CHF ₂	CH ₂	O CH ₃ CH ₃	
A1.010	CF ₃	CH ₂ OCH ₂ CH ₂	O CH ₃	
A1.011	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH ₃	•
A1.012	CHF ₂	CH₂OCH₂CH₂	O CH3 CH3	
A1.013	CF ₃	CH ₂	O CH ₃	
A1.014	CF ₂ CI	CH₂	O CH ₃	
A1.015	CHF ₂	CH ₂	CH ₃	
A1.016	CF ₃	CH ₂ OCH ₂ CH ₂	CH ₃ CH ₃	
A1.017	CF ₂ CI	CH₂OCH₂CH₂˙	O CH,	
A1.018	CHF ₂	CH ₂ OCH ₂ CH ₂	CH ₃	
A1.019	CF ₃ -	-CH ₂ · -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-solid-
A1.020	CF ₂ CI	CH₂		
A1.021	CHF ₂	CH₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
A1.022	CF ₃	CH₂OCH₂CH₂		

Comp.	R ₃	L	U ^R 1 N R ₂	Phys. data
A1.023	CF₂CI	CH₂OCH₂CH₂	o + 1 - 0	
A1.024	CHF ₂	CH₂OCH₂CH₂	o T N O	
A1.025	CF ₃	CH ₂		solid
A1.026	CF₂CI	CH ₂		
A1.027	CHF₂	CH₂		
A1.028	CF₃	CH ₂ OCH ₂ CH ₂	o No. No.	
A1.029	CF₂CI	CH₂OCH₂CH₂	ot so	
A1.030	CHF ₂	CH ₂ OCH ₂ CH ₂	o + 500	
A1.031	CF ₃	CH ₂		solid
A1.032	CF₂CI	CH ₂		
A1.033	CHF ₂	CH₂		
A1.034	CF ₃	CH₂OCH₂CH₂		
A1.035	CF₂CI	CH₂OCH₂CH₂		
A1.036	CHF ₂	CH₂OCH₂CH₂		
A1.037	CF ₃	CH ₂		solid

Comp.	R ₃	L	V_R,	Phys.
No.			N R ₂	data
A1.038	CF₂CI	CH ₂	ot > -	
A1.039	CHF ₂	CH₂		
A1.040	CF ₃	CH ₂ OCH ₂ CH ₂		
A1.041	CF₂CI	CH₂OCH₂CH₂		
A1.042	CHF ₂	CH ₂ OCH ₂ CH ₂		
A1.043	CF ₃	CH₂		resin
A1.044	CF ₂ CI	CH ₂		
A1.045	CHF ₂	CH ₂		
A1.046	CF ₃	CH ₂ OCH ₂ CH ₂		
A1.047	CF₂CI	CH ₂ OCH ₂ CH ₂		
A1.048	. CHF ₂	CH ₂ OCH ₂ CH ₂		
A1.049	CF ₃	CH ₂		resin
A1.050	CF₂CI	CH ₂		
A1.051	CHF ₂	CH ₂		
A1.052	CF₃	CH₂OCH₂CH₂		

Comp. No.	R ₃	L	V ^R 1 N R ₂	Phys. data
A1.053	CF₂CI	CH₂OCH₂CH₂		
A1.054	CHF ₂	CH ₂ OCH ₂ CH ₂		
A1.055	CF ₃	CH ₂		resin
A1.056	CF₂CI	CH₂		
A1.057	CHF ₂	CH₂	N-N-S	
A1.058	CF₃	CH₂OCH₂CH₂		
A1.059	CF₂CI	CH₂OCH₂CH₂		
A1.060	CHF ₂	CH₂OCH₂CH₂		
A1.061	CF ₃	CH ₂		
A1.062	CF₂CI	CH₂		
A1.063	CHF₂	CH₂		
A1.064	CF₃	CH₂OCH₂CH₂		
A1.065	CF₂CI	CH₂OCH₂CH₂		

Comp.	R ₃	L	U ^R 1 N _{R2}	Phys. data
A1.066	CHF ₂	CH ₂ OCH ₂ CH ₂		
A1.067	CF ₃	CH ₂	N. N.	
A1.068	CF ₂ CI	CH ₂	H.N.	
A1.069	CHF ₂	CH ₂	N. N.	
A1.070	CF ₃	CH₂OCH₂CH₂		
A1.071	CF₂CI	CH₂OCH₂CH₂		
A1.072	CHF ₂	CH₂OCH₂CH₂		
A1.073	CF ₃	CH ₂	o-1/2	m.p.: 140°C
A1.074	CF₂CI	CH ₂	o Th	m.p.: 125-127°C
A1.075	CHF ₂	CH ₂		
A1.076	CF₃	CH ₂ OCH ₂ CH ₂		
A1.077	CF₂CI	CH ₂ OCH ₂ CH ₂		
A1.078	CHF ₂	CH ₂ OCH ₂ CH ₂	~~~~.	
A1.079	CF ₃	CH ₂	O+s	amorphous
A1.080	CF₂CI	CH ₂	0 \rightarrow \sigma_{N-N}	orystais
A1.081	CHF ₂	CH ₂	O TS	
A1.082	CF ₃	CH₂OCH₂CH₂	O S	resin
A1.083	CF ₂ Cl	CH₂OCH₂CH₂	O S	

Comp.	R_3	L	Vi N	Phys. data
A1.084	CHF ₂	CH ₂ OCH ₂ CH ₂	O S	Guid
A1.085	CF₃	CH₂		amorphous crystals
A1.086	CF ₂ Cl	CH ₂	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,
A1.087	CHF ₂	CH ₂	OTS 9=0	
A1.088	CF ₃	CH ₂ OCH ₂ CH ₂	O T S = 0	
A1.089	CF ₂ Cl	CH ₂ OCH ₂ CH ₂	ors 9=0	
A1.090	CHF ₂	CH ₂ OCH ₂ CH ₂		
A1.091	CF ₃	CH ₂	oris N-N-0	resin
A1.092	CF ₂ Cl	CH ₂	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	•
A1.093	CHF ₂	CH ₂	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
A1.094	CF ₃	CH ₂ OCH ₂ CH ₂	° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
A1.095	CF₂CI	CH ₂ OCH ₂ CH ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
A1.096	CHF ₂	CH ₂ OCH ₂ CH ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
A1.097 (P2)	CF₃	CH₂		amorphous crystals
A1.098	CF₂CI	CH₂		m.p.: 130-132°C
A1.099	CHF ₂	CH₂	°+->-	
· A1.100	CF ₃	CH₂OCH₂CH₂	°+-N-	resin -
A1.101	CF₂CI	CH₂OCH₂CH₂		
A1.102	CHF ₂	CH₂OCH₂CH₂	0 N-N	
A1.103	CF ₃	CH₂	O F N-N-F	resin
A1.104	CF₂CI	CH ₂	O F N-N-F	

Comp. No.	R ₃	L	V1 R 1	Phys. data
A1.105	CHF ₂	CH ₂	O F N-N F	
A1.106	CF ₃	CH ₂ OCH ₂ CH ₂	O F N-N F	
A1.107	CF₂CI	CH ₂ OCH ₂ CH ₂	O F N N F	
A1.108	CHF ₂	CH ₂ OCH ₂ CH ₂	O F N-N F	
A1.109	CF ₃	CH₂	O No. S	resin
A1.110	CF₂CI	CH ₂	° N-s	
A1.111	CHF ₂	CH ₂	° N-s	
A1.112	CF ₃	CH ₂ OCH ₂ CH ₂		
A1.113	CF₂CI	CH ₂ OCH ₂ CH ₂	° Y	
A1.114	CHF ₂	CH ₂ OCH ₂ CH ₂	° N-S	
A1.115	CF₃	CH ₂	O CI	resin
A1.116	CF₂CI	CH ₂	O CI	
A1.117	CHF ₂	CH ₂	O CI	
A1.118	CF ₃	CH ₂ OCH ₂ CH ₂	O CI	
A1.119	CF₂CI	CH ₂ OCH ₂ CH ₂	O CI	
A1.120	CHF ₂	CH ₂ OCH ₂ CH ₂	O CI	
A1.121	CF ₃	CH ₂	. N-5	
A1.122	CF₂CI	CH ₂	°Y	
A1.123	CHF ₂	CH ₂	° 1	
A1.124	CF ₃	CH ₂ OCH ₂ CH ₂	° 1	
A1.125	CF₂CI	CH₂OCH₂CH₂	~~~ ·	
			~	

Comp.	R ₃	L	U R 1
A1.126	CHF ₂	CH₂OCH₂CH₂	O N-S
A1.127	CF ₃	CH ₂	o N-s
A1.128	CF ₂ CI	CH ₂	o No.
A1.129	CHF ₂	CH ₂	ons.
A1.130	CF ₃	CH₂OCH₂CH₂	ON-S
A1.131	CF₂CI	CH ₂ OCH ₂ CH ₂	o No.
A1.132	CHF ₂	CH ₂ OCH ₂ CH ₂	ON ST
A1.133	CF₃	CH ₂	
A1.134	CF₂CI	CH ₂	O N-S
A1.135	CHF ₂	CH ₂	° N. S.
A1.136	CF ₃	CH ₂ OCH ₂ CH ₂	
A1.137	CF ₂ CI	CH ₂ OCH ₂ CH ₂	o Name of the second
A1.138	CHF ₂	CH ₂ OCH ₂ CH ₂	O No. SI O
A1.139	CF₃	CH₂	O N-O
A1.140	CF₂CI	CH ₂	O_N_O
A1.141	CHF ₂	CH ₂	O N-0
A1.142	CF ₃	CH ₂ OCH ₂ CH ₂	0 N-0

Comp.	R ₃	L	U R 1	Phys. data
A1.143	CF₂CI	CH₂OCH₂CH₂	N-0	
A1.144	CHF ₂	CH₂OCH₂CH₂	° 1	
A1.145	CF ₃	CH₂	° No	
A1.146	CF ₂ Cl	CH₂ ·	° 1	
A1.147	CHF ₂	CH₂	° 1	
A1.148	CF ₃	CH₂OCH₂CH₂	°	
A1.149	CF₂CI	CH₂OCH₂CH₂	° ,	
A1.150	CHF ₂	CH₂OCH₂CH₂	ON NO	
A1.151	CF ₃	CH ₂	CH,	
A1.152	CF ₂ CI	CH ₂	CH ₃ O N N O CH ₃ O CH ₃	
A1.153	CHF ₂	CH₂	CH, ON CH,	
A1.154	CF ₃	CH ₂ OCH ₂ CH ₂	O CH ₃	
A1.155	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH ₃	
A1.156	CHF ₂	CH₂OCH₂CH₂	о Сн ₃	
A1.157	CF₃	CH₂	CHF ₂ CH ₃	
A1.158	ĈF₂ĈI	CH₂	O CH ₂ CH ₂ CH ₃	
A1.159	CHF ₂	CH ₂	CHF,	
A1.160	CF ₃	CH ₂ OCH ₂ CH ₂	CHF ₂ O N CH ₃	
A1.161	CF₂CI	CH₂OCH₂CH₂	CHF ₂	

Comp.	R ₃	L	Y1 R 2	Phys. data
A1.162	CHF ₂	CH ₂ OCH ₂ CH ₂	O CHF ₂ CH ₃	
A1.163	CF₃	CH ₂		
A1.164	CF₂CI	CH ₂		
A1.165	CHF ₂	CH ₂		
A1.166	CF ₃	CH ₂ OCH ₂ CH ₂		
A1.167	CF₂CI	CH₂OCH₂CH₂		
A1.168	CHF ₂	CH₂OCH₂CH₂		
A1.169	CF ₃	CH₂	° 	
A1.170	CF ₂ CI	CH ₂		
A1.171	CHF ₂	CH ₂		
A1.172	CF₃	CH₂OCH₂CH₂		
A1.173	CF₂CI	CH₂OCH₂CH₂		

Comp.	R ₃	L	U1 R 1 N R 2	Phys. data
A1.174	CHF ₂	CH₂OCH₂CH₂		
A1.175	CF₃	CH ₂		m.p.: 141°C
A1.176	CF₂CI	CH₂		
A1.177	CHF ₂	CH ₂		
A1.178	CF ₃	CH₂OCH₂CH₂		
A1.179	CF₂CI	CH ₂ OCH ₂ CH ₂		
A1.180	CHF ₂	CH ₂ OCH ₂ CH ₂		
A1.181	CF ₃	CH₂		m.p.: 151°C
A1.182	CF₂CI	CH₂		
A1.183	CHF ₂	CH ₂		
A1.184	CF ₃	CH₂OCH₂CH₂		
A1.185	CF₂Cl	CH₂OCH₂CH₂		

Comp. No.	R ₃	L	VIR 1	Phys. data
A1.186	CHF ₂	CH₂OCH₂CH₂		
A1.187	CF ₃	CH ₂	о Сн,	
A1.188	CF₂CI	CH₂	о СН,	
A1.189	CHF ₂	CH ₂	о СН,	
A1.190	CF ₃	CH ₂ OCH ₂ CH ₂	O CH,	
A1.191	CF ₂ CI	CH ₂ OCH ₂ CH ₂	O CH ₃	
A1.192	CHF ₂	CH ₂ OCH ₂ CH ₂	O CH ₃	
A1.193	CF ₃	CH ₂		solid
A1.194	CF₂CI	CH ₂		
A1.195	CHF ₂	CH ₂		
A1.196	CF ₃	CH₂OCH₂CH₂		
A1.197	CF ₂ CI	CH₂OCH₂CH₂		
A1.198	CHF ₂	CH₂OCH₂CH₂		
A1.199	CF ₃	CH₂	° To	solid
A1.200	CF₂CI	CH₂	o Lo	
A1.201	CHF ₂	CH ₂	o Lo	
A1.202	CF ₃	CH ₂	S CH ₃	solid
A1.203	CF ₂ CI	CH ₂	S CH3	

Comp.	R ₃	L	V ^R 1 N _{R2}	Phys. data
A1.204	CHF ₂	CH ₂	SH3	
A1.205	CF ₃	CH₂OCH₂CH₂	S CH ₃	
A1.206	CF ₂ Cl	CH₂OCH₂CH₂	S CH ₃	
A1.207	CHF ₂	CH₂OCH₂CH₂	S CH ₃	
A1.208	CF ₃	CH ₂		resin
A1.209	CF₃	CH₂	O CH CH,	resin
A1.210	CHF ₂	CH ₂	CH, CI CH,	•
A1.211	CF₃	CH₂	CH, V-CH,	solid
A1.212	CHF₂	CH₂	CH, N—CH,	
A1.213	CF ₃	CH ₂	CH,	solid
A1.214	CF₂CI	CH₂	o h	
A1.215	CHF ₂ -	CH ₂ · · · ·	O N- N-	-
A1.216	CF ₃	CH ₂ OCH ₂ CH ₂	o h	
A1.217	CF₂CI	CH ₂ OCH ₂ CH ₂	O N CH,	
A1.218	CHF ₂	CH ₂ OCH ₂ CH ₂	O N CH ₃	

Comp.	R ₃	Ľ	U1 R 1 N R 2	Phys. data
A1.219	CF ₃	CH ₂		solid
A1.220	CF ₃	CH₂OCH₂CH₂		resin
A1.221	CF₃	CH ₂		resin
A1.222	CF₃	CH ₂	° \	solid
A1.223	CF ₃	CH ₂		solid
A1.224	CF ₃	CH₂		
A1.225	CCIF ₂	CH ₂	°\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
A1.226	CCIF ₂	CH ₂		
A1.227	CCIF ₂	CH₂		
A1.228	CCIF ₂	CH ₂		,
A1.229	CCIF ₂	CH₂		
A1.230	CHF ₂	CH ₂		
A1.231	CHF ₂	CH ₂		
A1.232	CHF ₂	CH ₂		
A1:233	CHF ₂	CH ₂	⁰	
A1.234	CHF₂	CH₂		
A1.235	CF₃	CH₂	O N N CF3	m.p.: 181°C
A1.236	CHF ₂	CH ₂	° N N CF,	

Comp. No.	R ₃	L	V ^R 1	Phys. data
A1.237	CF ₃	CH₂	O	m.p.: 182°C
A1.238	CHF ₂	CH ₂	O N N CI	
A1.240	CF ₃	CH₂	ONN CF ₃	m.p.: 157°C
A1.241	CHF ₂	CH₂	ONN CF3	
A1.242	CF₃	CH₂	O N N N	
A1.243	CF ₃	CH ₂	O N CH ₃	
A1.244	CF ₃	CH ₂	ONO	
A1.245	CF ₃	CH ₂	ONS CH3	resin; p=1 (N-oxide)

Table A2: Compounds of formula IAa2:

$$V_1$$
 R_2 (IAa_2) R_3

Comp.
$$R_3$$
 L $V_1^{R_1}$ Phys. data

A2.001 CF_3 CH_2 $O_{N_N}^{CH_3}$ CH_3 $O_{N_N}^{CH_3}$ $O_{N_N}^{CH_3}$

Comp.	R ₃	L	U R 1	Phys. data
A2.003	CF ₃	CH ₂	P ₂ CH ₃	
A2.004	CF ₃	CH₂	CH,	
A2.005	CF ₃	CH₂	CH,	
A2.006	CF ₃	CH₂	CH, ONNOCH,	
A2.007	CF ₃	CH₂	O CHF ₂ CH ₃	
A2.018	CF ₃	CH ₂	O CH3	
A2.019	CF ₃	CH ₂	O S CH,	
A2.010	CF ₃	CH ₂	O S O CH,	
A2.011	CF ₃	CH ₂	O S CH ₃	
A2.012	CF ₃	CH ₂	O N N N	
A2.013	CF ₃	CH₂	O CH ₃	
A2.014	CF ₃	CH₂	O CH ₃	
A2.015	CF ₃	CH ₂	CH₃ S N	
A2.016	CF ₃	CH₂	O CH ₃	
A2.017	CF₃	CH₂	O N N N N N N N N N N N N N N N N N N N	

Comp. No.	R ₃	L	U ^R ,
A2.018	CF₃	CH ₂	ONO
A2.019	CF ₃	CH ₂	O_N_O
A2.020	CF ₃	CH ₂	
A2.021	CF₃	CH ₂	ON
A2.022	CF₃	CḤ₂	O CH ₃
A2.023	CF ₃	CH ₂	\bigcup_{N}^{O}

Table A3: Compounds of formula IAa3:

Comp.	R ₃	L	V1 R 1 N R 2
A3.014	CF ₃	CH₂	S CH ₃
A3.015	CF₃	CH ₂	O N CH ₃
A3.016	CF₃	CH₂	O CH3
A3.017	CF₃	CH₂	CH ₃
A3.018	CF ₃	CH ₂	
A3.019	CF ₃	CH ₂	° N-O
A3.020	CF ₃	CH ₂	
A3.021	CF ₃	CH ₂	
A3.022	CF₃	CH₂	O CH ₃
A3.023	CF ₃	CH ₂	° N

Table A4: Compounds of formula IAa4:

Comp. No.	R ₃	L	VI N R ₂
A4.014	CF₃	CH ₂	S CH ₃
A4.015	CF ₃	CH ₂	O CH ₃
A4.016	CF₃	CH₂	O CH₃
A4.017	CF₃	CH₂	O N N N
A4.018	CF ₃	CH ₂	
A4.019	CF ₃	CH ₂	O N-O
A4.020	CF ₃	CH ₂	O .
A4.021	CF ₃	CH ₂	° N
A4.022	CF ₃	CH ₂	O CH ₃
A4.023	CF ₃	CH ₂	ON

Table A5: Compounds of formula IAa₅:

Comp.	R ₃	L	V ₁ ^R ,	Phys.
A5.001	CF ₃	CH ₂	O CH,	
A5.002	CF₂H	CH ₂	CH ₃ ONNCH ₃	
A5.003	CF ₃	CH₂	O CH ₃	
A5.004	CF₃	CH₂	O CH ₃ O CH ₃	
A5.005	CF ₃	CH ₂	CH,	
A5.006	CF ₃	CH₂	CH, OCH,	
A5.007	CF ₃	CH ₂	CHF ₂ ON CH ₃	
A5.008	CF ₃	CH₂	° → ° → ° CH₃	
A5.009	CF ₃	CH ₂	° N-N CH₃	
A5.010	CF ₃	CH ₂	O S S S O CH	
A5.011	CF ₃	CH ₂	O S CH ₃	
A5.012	CF ₃	CH ₂	O N N	
A5.013	CF ₃	CH ₂	O N N N CH ₃	
A5.014	CF ₃	. CḤ₂	. S CH ₃	
A5.015	CF ₃	CH ₂	O CH ₃	
A5.016	CF₃	CH ₂	O N CH ₃	

WO 03/106448

Comp. No.	R ₃	L	V1 N R ₂	Phys. data
A5.017	CF ₃	CH ₂	O N N	
A5.018	CF ₃	CH₂	ONO	
A5.019	CF ₃	CH₂	0	
A5.020	CF ₃	CH ₂		
A5.021	CF ₃	CH ₂	O	
A5.022	CF ₃	CH ₂	O CH ₃	
A5.023	CF ₃	CH ₂		

Table A6: Compounds of formula IAa6:

Comp.	R ₃	L	V ^R 1 N _{R2}
A6.005	CF₂CI	CH₂OCH₂CH₂	O H ₃ F N-N F
A6.006	CHF ₂	CH ₂ OCH ₂ CH ₂	O N F F F F F
A6.007	CF ₃	CH ₂	O CH3 CH3
A6.008	CF ₂ CI	CH ₂	O CH3
A6.009	CHF ₂	CH ₂	O CH3 CH3
A6.010	CF ₃	CH ₂ OCH ₂ CH ₂	O CH3 CH3
A6.011	CF₂CI	CH₂OCH₂CH₂	O CH,
A6.012	CHF₂	CH₂OCH₂CH₂	O CH3 CH3
A6.013	CF ₃	CH ₂	O CH ₃
A6.014	CF₂CI	CH ₂	O CH,
A6.015	CHF ₂	CH ₂	O CH ₃
A6.016	CF ₃	CH ₂ OCH ₂ CH ₂	CH ₃
A6.017	CF₂CI	CH ₂ OCH ₂ CH ₂	O N CH
A6.018	CHF ₂ .	CH₂OCH₂CH₂	CH, CH,
A6.019	CF ₃	CH₂ .	
A6.020	CF₂CI	CH₂	O N-N
A6.021	CHF ₂	CH₂	or hand

Comp. No.	R ₃	L	V1 R 2
A6.022	CF ₃	CH₂OCH₂CH₂	
A6.023	CF₂CI	CH₂OCH₂CH₂	
A6.024	CHF ₂	CH₂OCH₂CH₂	0 / N / O
A6.025	CF ₃	CH ₂	
A6.026	CF₂Cl	CH₂	o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A6.027	CHF ₂	CH ₂	0 N N
A6.028	CF ₃	CH₂OCH₂CH₂	° NNN
A6.029	CF ₂ Cl	CH₂OCH₂CH₂	O N N O
A6.030	CHF ₂	CH₂OCH₂CH₂	O N N O
A6.031	CF₃	CH ₂	
A6.032	CF₂CI	CH ₂	
A6.033	CHF ₂	CH₂	
A6.034	CF₃ -	CH₂OCH₂CH₂ -	
A6.035	CF₂CI	CH₂OCH₂CH₂	
A6.036	CHF ₂	CH₂OCH₂CH₂	

Comp.	R ₃	L	VIR 2
A6.037	CF ₃	CH ₂	
A6.038	CF ₂ Cl	CH ₂	0 N-N
A6.039	CHF ₂	CH ₂	0 N-N-0
A6.040	CF ₃	CH₂OCH₂CH₂	
A6.041	CF ₂ Cl	CH ₂ OCH ₂ CH ₂	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
A6.042	CHF ₂	CH ₂ OCH ₂ CH ₂	0 X N X X
A6.043	CF ₃	CH₂	
A6.044	CF₂Cl	CH ₂	
A6.045	CHF ₂	CH₂	
A6.046	CF ₃	CH ₂ OCH ₂ CH ₂	o No.
A6.047	CF₂CI	CH ₂ OCH ₂ CH ₂	o
A6.048	CHF ₂	CH ₂ OCH ₂ CH ₂	°
A6.049	CF ₃	CH ₂	
A6.050	CF₂CI	CH ₂	
A6.051	CHF ₂	CH ₂	
			,,_N

Comp.	R ₃	L	V1	Phys. data
A6.052	CF ₃	CH₂OCH₂CH₂		
A6.053	CF ₂ Cl	CH₂OCH₂CH₂		
A6.054	CHF ₂	CH ₂ OCH ₂ CH ₂		
A6.055	CF₃	CH₂	ON NO S	resin
A6.056	CF₂CI	CH ₂	N-N-S	
A6.057	CHF ₂	CH ₂		
A6.058	CF₃	CH₂OCH₂CH₂		
A6.059	CF₂CI	CH₂OCH₂CH₂		
A6.060	CHF ₂	CH₂OCH₂CH₂		
A6.061	CF₃	CH ₂		
A6.062	CF₂CI	CH₂		
A6.063	CHF ₂	CH₂		
A6.064	CF₃	CH₂OCH₂CH₂		

•

Comp.	R ₃	L	V1 R 1 N R 2	Phys. data
A6.065	CF₂CI	CH₂OCH₂CH₂		
A6.066	CHF₂ .	CH₂OCH₂CH₂		
A6.067	CF ₃	CH ₂		
A6.068	CF ₂ Cl	CH ₂		
A6.069	CHF ₂	CH ₂	H.	
A6.070	CF ₃	CH ₂ OCH ₂ CH ₂	N. N.	
A6.071	CF ₂ CI	CH ₂ OCH ₂ CH ₂		
A6.072	CHF ₂	CH ₂ OCH ₂ CH ₂	H.N.	
A6.073	CF ₃	CH ₂	o Tw	resin
A6.074	CF₂CI	CH ₂	o Tin	
A6.075	CHF ₂	CH ₂	o Tri	
A6.076	CF ₃	CH₂OCH₂CH₂	o Th	
A6.077	CF₂CI	CH ₂ OCH ₂ CH ₂	O TW	
A6.078	CHF ₂	CH₂OCH₂CH₂-	· 0 - N ·	
A6.079	CF ₃	CH ₂	°×××	amorphous crystals
A6.080	CF ₂ CI	CH ₂	O S	or your
A6.081	CHF ₂	CH₂	O S	

Comp.	R ₃	L	V, R,	Phys. data
			™ ₂ Os	
A6.082	CF ₃	CH ₂ OCH ₂ CH ₂	N-N	resin
(P3) A6.083	CF₂CI	CH ₂ OCH ₂ CH ₂	° S	
A6.084	CHF ₂	CH₂OCH₂CH₂	° XS	
A6.085	CF ₃	CH ₂		amorphous crystals
A6.086	CF₂CI	CH₂ .	O S P	,
A6.087	CHF ₂	CH ₂	O S S O	
A6.088	CF ₃	CH₂OCH₂CH₂	O S O S O	
A6.089	CF ₂ Cl	CH₂OCH₂CH₂	O S P	
A6.090	CHF ₂	CH ₂ OCH ₂ CH ₂	O S O S	
A6.091	CF ₃	CH ₂	O S O	resin
A6.092	CF₂CI	CH ₂	O S O	
A6.093	CHF ₂	CH ₂	° S O	
A6.094	CF ₃	CH₂OCH₂CH₂	o s	
A6.095	CF₂CI	CH₂OCH₂CH₂	o s	
A6.096	CHF ₂	CH₂OCH₂CH₂	O S O	
A6.097	CF ₃	CH ₂	O N N N N N N N N N N N N N N N N N N N	amorphous
A6.098	CF₂CI	CH ₂		crystals
A6.099	CHF ₂	CH₂	° NNN	
A6.100	CF ₃	CH ₂ OCH ₂ CH ₂	o To	resin
A6.101	CF₂CI	CH ₂ OCH ₂ CH ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Comp. No.	R ₃	L	U R 1 N R 2
A6.102	CHF ₂	CH₂OCH₂CH₂	° NN
A6.103	CF ₃	CH ₂	O F N N F
A6.104	CF₂CI	CH₂	ON FF
A6.105	CHF ₂	CH₂	O F N-N F
A6.106	CF ₃	CH₂OCH₂CH₂	O F N N F
A6.107	CF₂CI	CH₂OCH₂CH₂	ON FF
A6.108	CHF ₂	CH₂OCH₂CH₂	O F N-N F
A6.109	CF₃	CH ₂	° N-S
A6.110	CF ₂ CI	CH ₂	° N-S
A6.111	CHF ₂	CH ₂	O N-S
A6.112	CF ₃	CH₂OCH₂CH₂	° N-S
A6.113	CF₂CI	CH ₂ OCH ₂ CH ₂	° N-S
A6.114	CHF ₂	CH ₂ OCH ₂ CH ₂	O N-S
A6.115	CF ₃	CH ₂	O CI
A6.116	CF₂CI	CH ₂	O CI
A6.117	CHF ₂	CH ₂	O CI
A6.118	CF ₃	CH ₂ OCH ₂ CH ₂	O CI
A6.119	CF ₂ Cl	CH₂OCH₂CH₂	O CI
A6.120	CHF ₂	CH₂OCH₂CH₂	O N-S
A6.121	CF ₃	CH ₂	° N-S
A6.122	CF₂CI	CH ₂	° N-S

WO 03/106448

Comp.	R ₃	L	V1 R 1
A6.123	CHF ₂	CH ₂	O N-S
A6.124	CF ₃	CH₂OCH₂CH₂	O N-S
A6.125	CF₂CI	CH₂OCH₂CH₂	O N-S
A6.126	CHF ₂	CH ₂ OCH ₂ CH ₂	O N-S
A6.127	CF ₃	CH ₂	ON-S
A6.128	CF₂Cl	CH ₂	O N-5.
A6.129	CHF ₂	CH₂	ON-S.
A6.130	CF ₃	CH ₂ OCH ₂ CH ₂	O No.
A6.131	CF₂CI	CH ₂ OCH ₂ CH ₂	ON-S
A6.132	CHF ₂	CH₂OCH₂CH₂	o No. si.
A6.133	CF ₃	CH ₂	O N S N S N O
A6.134	CF₂CI	CH ₂	
A6.135	CHF ₂	CH₂	o No.
A6.136	CF ₃	CH ₂ OCH ₂ CH ₂ -	ON SIO
A6.137	CF₂CI	CH₂OCH₂CH₂	o N.S.
A6.138	CHF ₂	CH₂OCH₂CH₂	o Name
A6.139	CF ₃	CH ₂	o N. O

Comp.	R ₃	L	V ^R ₁ N _{R₂}
A6.140	CF ₂ CI	CH ₂	°N-°
A6.141	CHF ₂	CH ₂	, N-0
A6.142	CF ₃	CH ₂ OCH ₂ CH ₂	
A6.143	CF ₂ CI	CH ₂ OCH ₂ CH ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A6.144	CHF ₂	CH ₂ OCH ₂ CH ₂	
A6.145	CF ₃	CH ₂	°~~
A6.146	CF ₂ CI	CH ₂	° No
A6.147	CHF ₂	CH ₂	°~~
A6.148	CF ₃	CH ₂ OCH ₂ CH ₂	°
A6.149	CF₂CI	CH ₂ OCH ₂ CH ₂	
A6.150	CHF ₂	CH ₂ OCH ₂ CH ₂	° 100
A6.151	CF ₃	CH ₂	O CH ₃
A6.152	CF ₂ CI	CH ₂	CH,
A6.153	CHF ₂	CH₂	CH,
A6.154	CF ₃	CH₂OCH₂CH₂	CH,
A6.155	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH ₃
A6.156	CHF ₂	CH ₂ OCH ₂ CH ₂	O CH ₃
A6.157	CF ₃	CH ₂	O CH ₂ CH ₃
A6.158	CF₂CI	CH ₂	O CHF ₂ CH ₃

Comp.	R ₃	L	V1 R 1
A6.159	CHF ₂	CH ₂	CHF ₂ O N CH ₃
A6.160	CF ₃	CH₂OCH₂CH₂	CHF ₂ ON CH ₃
A6.161	CF ₂ CI	CH ₂ OCH ₂ CH ₂	CHF ₂ O N CH ₃
A6.162	CHF ₂	CH ₂ OCH ₂ CH ₂	CHF ₂ O N CH ₃
A6.163	CF ₃	CH ₂	
A6.164	CF₂CI	CH₂	
A6.165	CHF₂	CH₂	****
A6.166	CF₃	CH₂OCH₂CH₂	
A6.167	CF₂CI	CH₂OCH₂CH₂	
A6.168	CHF₂	CH₂OCH₂CH₂	N. C.
A6.169	CF ₃	ÇH₂ .	
A6.170	CF₂CI	CH ₂	°+
A6.171	CHF₂	CH ₂	

Comp.	R ₃	L	U1 R 1 N R 2	Phys. data
A6.172	CF₃	CH₂OCH₂CH₂		
A6.173	CF₂CI	CH₂OCH₂CH₂		
A6.174	CHF ₂	CH₂OCH₂CH₂		
A6.175	.CF ₃	CH₂		
A6.176	CF₂CI	CH₂		
A6.177	CHF ₂	CH₂		
A6.178	CF ₃	CH ₂ OCH ₂ CH ₂		ı
A6.179	CF₂CI	CH ₂ OCH ₂ CH ₂		
A6.180	CHF ₂	CH ₂ OCH ₂ CH ₂		
A6.1 <u>8</u> 1	CF₃	CH ₂		m.p.:134°C
A6.182	CF₂CI	CH₂		
A6.183	CHF ₂	CH₂		

Comp. No.	R ₃	L	Y ^R 1 N _{R2}
A6.184	CF ₃	CH₂OCH₂CH₂	
A6.185	CF ₂ Cl	CH₂OCH₂CH₂	
A6.186	CHF ₂	CH₂OCH₂CH₂	
A6.187	CF ₃	CH ₂	О СН,
A6.188	CF₂Cl	CH ₂	о Сн,
A6.189	CHF ₂	CH ₂	O CH ₃
A6.190	CF ₃	CH ₂ OCH ₂ CH ₂	ON CH,
A6.191	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH,
A6.192	CHF ₂	CH ₂ OCH ₂ CH ₂	о СН,
A6.193	CF ₃	CH ₂	
A6.194	CF₂CI	CH₂	
A6.195	CHF ₂	CH ₂	
A6.196	CF ₃	CH ₂ OCH ₂ CH ₂	
A6.197	CF₂CI	CH₂OCH₂CH₂	
A6.198	CHF ₂	CH ₂ OCH ₂ CH ₂	o 100
A6.199	CF ₃	CH ₂	
A6.200	CF₂CI	CH ₂	o CI

Comp.	R ₃	L	U R 1 N R 2	Phys. data
A6.201	CHF ₂	CH ₂	o To	
A6.202	CF ₃	CH ₂	S N	
A6.203	CF ₂ CI	CH ₂	S CH,	
A6.204	CHF ₂	CH₂	S CH,	
A6.205	CF ₃	CH₂OCH₂CH₂	s h	
A6.206	CF ₂ CI	CH ₂ OCH ₂ CH ₂	S CH3	
A6.207	CHF ₂	CH ₂ OCH ₂ CH ₂	S N SH3	
A6.208	CF ₃	CH ₂		resin
A6.209	CF₃	CH₂	O CH,	
A6.210	CHF₂	CH₂	CH ₃ CI CH ₃ N N N	
A6.211	CF ₃	CH ₂	ch, N-ch,	
A6.212	CHF ₂	CH₂	O CH ₃ O N-CH ₃ ·····	
A6.213	CF ₃	CH₂	o CH,	
A6.214	CF₂Cl	CH₂	O N CH,	
A6.215	CHF ₂	CH₂	O N	

Comp.	R ₃	L	U1 R 1 N R 2
A6.216	CF ₃	CH₂OCH₂CH₂	O CH
A6.217	CF ₂ CI	CH₂OCH₂CH₂	CH ₃
A6.218	CHF ₂	CH ₂ OCH ₂ CH ₂	O CH,
A6.219	CH ₂	CF ₃	O CH ₃
A6.220	CH ₂	CF₂CI	OCH,
A6.221	CH ₂	CHF ₂	CH ₃
A6.222	CH ₂ OCH ₂ CH ₂	CF ₃	CH ₃
A6.223	CH ₂ OCH ₂ CH ₂	CF ₂ CI	CH ₃
A6.224	CH ₂ OCH ₂ CH ₂	CHF ₂	CH ₃
A6.225	CF ₃	CH ₂	o \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
A6.226	CF ₃	CH₂OCH₂CH₂	°
A6.227	CF ₃	CH ₂	
A6.228	CF ₃	CH ₂	N_ N_ N_
A6.229	CF ₃	CH ₂	°\.
A6.230	CCIF ₂	CH ₂	° X
A6.231	CCIF ₂	CH ₂	
A6.232	CCIF ₂		~ <u>~</u>

Comp. No.	R ₃	L	U₁ R 1 N	Phys. data
			R ₂	
A6.233	CCIF ₂		, , , , , , , , , , , , , , , , , , ,	
A6.234	CHF ₂			
A6.235	CHF ₂		N N	
A6.236	CHF ₂		° \	
A6.237	CHF ₂			
A6.238	CF ₃	CH ₂	ON NOTE OF S	resin
A6.239	CHF ₂	CH ₂	O N CF3	
A6.240	CF ₃	CH₂	0 N_N-{_C1	m.p.: 113°C
A6.241	CHF ₂	CH ₂	O N CI	
A6.242	CF ₃	CH₂	ONN N-CF3	resin
A6.243	CHF ₂	CH ₂	O N N CF,	
A6.244	CF₃	CH ₂	O N N N	
A6.245	CF₃	CH₂	O N N N N N N N N N N N N N N N N N N N	
A6.246	CF ₃	CH₂		
A6.247	CF ₃	CH₂OCH₂CH₂	ON-N-CH3	resin; p=1 (N-oxide)

Table A7: Compounds of formula IAa₇:

Comp.	R ₃	L	V ^R 1 N _{R2}	Phys. data
A7.014	CF ₃	CH ₂	O CH ₃	
A7.015	CF₃	CH ₂	O CH ₃	
A7.016	CF ₃	CH₂	S CH ₃	
A7.017	CF ₃	CH ₂	O CH ₃	
A7.018	CF ₃	CH₂	O N CH₃	
A7.019	CF₃	CH₂	O CH ₃	
A7.020	CF ₃	CH ₂		
A7.021	CF ₃	CH₂	0	
A7.022	CF ₃	CH₂		
A7.023	CF ₃	CH₂	ON	
A7.024	CF₃	CH ₂	O CH ₃	
A7.025	CF ₃	CH₂	ON	
A7.026	CF ₃	CH₂	O S CH ₃	resin; p=1 (N-oxide)

Table A8: Compounds of formula IAa8:

Comp.	R ₃	L	V1 N
A8.015	CF₂H	CH₂	O CH ₃
A8.016	CF ₃	CH₂OCH₂CH₂	CH ₃ F F F
A8.017	CF₂CI	CH₂OCH₂CH₂	ON F F
A8.018	CHF ₂	CH₂OCH₂CH₂	O CH ₃ F F
A8.019	CF₂CI	CH₂	O CH ₃
A8.020	CF ₃	CH₂OCH₂CH₂	O CH3
A8.021	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH,
A8.022	CHF ₂	CH ₂ OCH ₂ CH ₂	O N-N-CH,
A8.023	CF₂CI	CH ₂	O SH, CH,
A8.024	CHF ₂	CH ₂	CH ₃
A8.025	CF ₃	CH ₂ OCH ₂ CH ₂	CH ₃
A8.026	CF₂Cl	CH ₂ OCH ₂ CH ₂	CH, CH,
A8.027	CHF ₂	CH₂OCH₂CH₂	O N-N CH
- A8.028	CF₂CI	. CH ₂	0 1 N
A8.029	CHF ₂	CH₂	° 1 / 1
A8.030	CF ₃	CH ₂ OCH ₂ CH ₂	
A8.031	CF₂CI	CH₂OCH₂CH₂	

Comp.	R ₃	L	V R 1	Phys. data
A8.032	CHF ₂	CH ₂ OCH ₂ CH ₂		
A8.033	CF₃	CH ₂		
A8.034	CF₂CI	CH ₂		
A8.035	CHF ₂	CH ₂		
A8.036	CF₃	CH ₂ OCH ₂ CH ₂		
A8.037	CF₂CI	CH ₂ OCH ₂ CH ₂		
A8.038	CHF ₂	CH₂OCH₂CH₂		
A8.039	CF ₃	CH ₂		
A8.040	CF₂CI	CH₂		
A8.041	CHF ₂	CH₂		
A8.042	CF₃	CH₂OCH₂CH₂		
A8.043	CF₂CI	CH₂OCH₂CH₂		
A8.044	CHF₂	CH₂OCH₂CH₂		
A8.050	CF ₃	CH₂		
A8.051	CF₂CI	CH ₂		

Comp.	R ₃	L	V1 R 1 N R 2	Phys. data
A8.052	CHF ₂	CH₂		
A8.053	CF ₃	CH₂OCH₂CH₂	O N-N	
A8.054	CF₂CI	CH₂OCH₂CH₂		
A8.055	CHF ₂	CH₂OCH₂CH₂		
A8.056	CF ₃	CH₂		
A8.057	CF ₂ Cl	CH₂		
A8.058	CHF ₂	CH₂		
A8.059	CF ₃	CH₂OCH₂CH₂		
A8.060	CF ₂ CI	CH₂OCH₂CH₂	o	
A8.061	CHF ₂	CH₂OCH₂CH₂		
A8.062	CF₃	CH ₂		resin
A8.063	€F₂€I	·CH₂	N N S	
A8.064	CHF ₂	CH₂		
A8.065	CF ₃	CH ₂ OCH ₂ CH ₂		

Comp.	R ₃	L	V R 1	Phys.
A8.066	CF₂CI	CH₂OCH₂CH₂	o The state of the	
A8.067	CHF₂	CH ₂ OCH ₂ CH ₂		
A8.068	CF ₃	CH ₂		
A8.069	CF₂CI	CH₂		
A8.070	CHF₂	CH ₂		
A8.071	CF₃	CH₂OCH₂CH₂		
A8.072	CF₂CI	CH₂OCH₂CH₂		
A8.073	CHF₂	CH₂OCH₂CH₂		
A8.074	CF ₃	CH ₂		
A8.075	CF₂CI	CH ₂		
A8.076	CHF ₂	CH ₂	₩, N	
A8.077	CF ₃	CH₂OCH₂CH₂		
A8.078	CF₂Cl	CH₂OCH₂CH₂		
A8.079	CHF ₂	CH₂OCH₂CH₂		

Comp.	R ₃	L	Yı Rı	Phys. data
A8.080	CF ₃	CH ₂	O N	resin
A8.081	CF₂CI	CH ₂		
A8.082	CHF ₂	CH ₂	o Tw	
A8.083	CF ₃	CH ₂ OCH ₂ CH ₂	O TN	
A8.084	CF₂CI	CH ₂ OCH ₂ CH ₂		
A8.085	CHF ₂	CH ₂ OCH ₂ CH ₂		
A8.086	CF ₂ CI	CH ₂	° LS	
A8.087	CHF ₂	CH ₂	°TS-	
A8.088	CF₂CI	CH ₂ OCH ₂ CH ₂	°\s	
A8.089	CHF ₂	CH ₂ OCH ₂ CH ₂	°\s	
A8.090	CF₂CI	CH ₂	°\s\s\s\s\s	
A8.091	CHF ₂	CH₂	ors of s	
A8.092	CF ₃	CH₂OCH₂CH₂	°\s\s\°	
A8.093	CF₂CI	CH₂OCH₂CH₂	ors of second	
A8.094	CHF ₂	CH₂OCH₂CH₂	ors go	
A8.095	CF ₃	CH ₂	O S O .	resin
A8.096	CF₂CI	CH ₂	ors-o	
A8.097	CHF ₂	CH₂	°TS-Q	
A8.098	CF ₃	CH₂OCH₂CH₂	°TS-Q	
A8.099	CF₂CI	CH₂OCH₂CH₂	°\s_0	

Comp.	R ₃	L	V ^R , N _R	Phys. data
A8.100	CHF₂	CH ₂ OCH ₂ CH ₂	°\-\s\-\cdot\	
A8.101	CF₂CI	CH ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
A8.102	CHF ₂	CH ₂	O T O T O T O T O T O T O T O T O T O T	
A8.103	CF₂CI	CH₂OCH₂CH₂		
A8.104	CHF ₂	CH₂OCH₂CH₂	O N-N	
A8.105	CF ₃	CH₂	O F N-N F	
A8.106	CF₂CI	CH₂	O F N-N F	
A8.107	CHF ₂	CH₂	O F N-N F	
A8.108	CF ₃	CH₂OCH₂CH₂	O N-N F	
A8.109	CF₂Cl	CH₂OCH₂CH₂	O F N-N F	
A8.110	CHF ₂	CH₂OCH₂CH₂	O F N-N F	
A8.111	CF ₃	CH ₂	° To	
A8.112	CF₂CI	CH ₂	° Nas	
A8.113	CHF ₂	CH₂	° N-s	
A8.114	CF ₃	CH₂OCH₂CH₂	° N-S	
A8.115	CF₂CI	CH₂OCH₂CH₂	° N-S	
A8.116	CHF ₂	CH ₂ OCH ₂ CH ₂	° N-S	
A8.117	CF ₃	CH₂	O N-S	
A8.118	CF₂CI	CH ₂	O N-S	
A8.119	CHF₂	CH ₂	o N-S	
A8.120	CF ₃	CH ₂ OCH ₂ CH ₂	°_a	

Comp. No.	R ₃	L	U ^R 1 N _{R₂}
A8.121	CF ₂ Cl	CH ₂ OCH ₂ CH ₂	o To
A8.122	CHF ₂	CH₂OCH₂CH₂	O C
A8.123	CF ₃	CH ₂	N-S-
A8.124	CF₂Cl	CH ₂	N-S-
A8.125	CHF ₂	CH₂	N-Si-
A8.126	CF ₃	CH₂OCH₂CH₂	N-S'-
A8.127	CF₂CI	CH₂OCH₂CH₂	N-s'-
A8.128	CHF ₂	CH₂OCH₂CH₂	N-si-
A8.129	CF ₃	CH ₂	N-SI-0
A8.130	CF₂CI	CH₂	
A8.131	CHF ₂	CH ₂	N.S.O
A8.132		CH₂OCH₂CH₂	N.S.
A8.133	CF₂CI	CH₂OCH₂CH₂	N. S. O
A8.134	CHF₂	CH₂OCH₂CH₂	N. S.
A8.135	CF₃	CH ₂	
A8.136	CF ₂ CI	CH ₂	
A8.137	CHF ₂	CH ₂	

Comp.	R ₃	L	V R 1	Phys. data
A8.138	CF₃	CH ₂ OCH ₂ CH ₂	ON-O	
A8.139	CF₂CI	CH₂OCH₂CH₂	N-0	
A8.140	CHF ₂	CH₂OCH₂CH₂	O N-0	
A8.141	CF₂CI	CH ₂	O CH,	
A8.142	CHF ₂	CH ₂	CH,	
A8.143	CF₃	CH ₂ OCH ₂ CH ₂	CH,	
A8.144	CF ₂ CI	CH₂OCH₂CH₂	CH,	
A8.145	CHF₂	CH ₂ OCH ₂ CH ₂	CH,	
A8.146	CF₂CI	CH₂	O CH ₃	
A8.147	CHF ₂	CH₂	O CH,	
A8.148	CF₃	CH₂OCH₂CH₂	о сн,	
A8.149	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH,	
A8.150	CHF ₂	CH ₂ OCH ₂ CH ₂	O CH ₃	
A8.151	CF₂CI	CH₂	O CH ₂ O CH ₃	
A8.152	CHF ₂	CH₂	O CHF ₂ CH ₃	
A8.153	CF ₃	CH ₂ OCH ₂ CH ₂	O CHF2 CH3	
A8.154	CF₂CI	CH₂OCH₂CH₂	CHF ₂ O N CH,	

9 4

Comp. No.	R ₃	L	V, R 1
A8.155	CHF₂	CH ₂ OCH ₂ CH ₂	CHF ₂
A8.156	CF₃	CH₂	
A8.157	CF₂CI	CH₂	
A8.158	CHF₂	CH₂	
A8.159	CF₃	CH₂OCH₂CH₂	
A8.160	CF ₂ CI	CH ₂ OCH ₂ CH ₂	
A8.161	CHF ₂	CH ₂ OCH ₂ CH ₂	
A8.162	CF₃	CH₂	
A8.163	CF₂CI	CH₂	
A8.164	CHF₂	CH₂	
A8.165	CF₃	CH ₂ OCH ₂ CH ₂	
A8.166	CF₂CI	CH₂OCH₂CH₂	

Comp.	R ₃	L	U R 1 N R 2	Phys. data
A8.167	CHF ₂	CH₂OCH₂CH₂		
A8.168	CF₃	CH₂		m.p.: 65°C
A8.169	CF₂CI	CH₂		
A8.170	CHF ₂	CH ₂		
A8.171	CF ₃	CH ₂ OCH ₂ CH ₂		
A8.172	CF₂CI	CH ₂ OCH ₂ CH ₂		
A8.173	CHF ₂	CH ₂ OCH ₂ CH ₂		
A8.174	CF₃	CH ₂		resin
A8.175	CF ₂ CI	CH₂		
A8.176	CHF ₂	CH ₂	~~~-	
A8.177	CF ₃	CH₂OCH₂CH₂		
A8.178	CF₂CI	CH₂OCH₂CH₂		·

WO 03/106448

PCT/EP03/06273

- 101 -

Comp.	R ₃	L	U ^R ,	Phys. data
A8.179	CHF ₂	CH ₂ OCH ₂ CH ₂		
A8.180	CF ₃	CH ₂	ON CH ₃	
A8.181	CF ₂ CI	CH ₂	ON CH ₃	
A8.182	CHF ₂	CH₂	O CH ₃	
A8.183	CF ₃	CH ₂ OCH ₂ CH ₂	O CH ₃	
A8.184	CF₂CI	CH₂OCH₂CH₂	ОСН	
A8.185	CHF₂	CH ₂ OCH ₂ CH ₂	о сн,	
A8.186	CF ₃	CH ₂		
A8.187	CF ₂ CI	CH₂		
A8.188	CHF ₂	CH₂		
A8.189	CF ₃	CH₂OCH₂CH₂		
A8.190	CF ₂ Cl	CH₂OCH₂CH₂		
A8.191	CHF₂	CH₂OCH₂CH₂		
A8.192	CF ₃	CH₂	N CI	
A8.193	ÇF₂CI	CH ₂	- N- CI	
A8.194	CHF ₂	CH ₂		
A8.195	CF ₃	CH ₂	S CH,	
A8.196	CF₂CI	CH₂	S CH,	

Comp.	R ₃	L	V ₁ ^R 1 N _R 2	Phys. data
A8.197	CHF ₂	CH ₂	S CH,	
A8.198	CF ₃	CH₂OCH₂CH₂	S CH ₃	
A8.199	CF₂CI	CH ₂ OCH ₂ CH ₂	S CH,	
A8.200	CHF ₂	CH ₂ OCH ₂ CH ₂	S CH ₃	
A8.201	CF₃	CH ₂	° \	
A8.202	CF₂CI	CH ₂	o	
A8.203	CHF ₂	CH ₂	O N-O	
A8.204	CF ₃	CH₂		resin
A8.205	CF ₃	CH ₂		
A8.206	CF ₃	CH ₂ OCH ₂ CH ₂		
A8.207	CF ₃	CH ₂		
A8.208	CF ₃	CH ₂	° \	
A8.209	CF ₃	CH ₂	O N	
A8.210	- CCIF ₂ -	- CH₂	- ° -	
A8.211	CCIF ₂	CH ₂		
A8.212	CCIF ₂	CH₂	° \	
A8.213	CCIF ₂	CH₂		

Comp.	R ₃	L	U ₁ ^R 1 N _{R₂}	Phys. data
A8.214	CHF ₂	CH ₂	° X	
A8.215	CHF ₂	CH ₂		
A8.216	CHF ₂	CH ₂		
A8.217	CHF ₂	CH ₂		
A8.218	CF ₃	CH ₂	O CF ₃	resin
A8.219	CHF ₂	CH₂	O CF ₃	
A8.220	CF ₃	CH ₂	O	m.p.: 69°C
A8.221	CHF ₂	CH ₂	O	
A8.222	CF ₃	CH ₂	O CF,	
A8.223	CHF ₂	CH ₂	O CF ₃	
A8.224	CF ₃	CH₂	O N N N CH3	
A8.225	CF₃	CH₂	O N N	
A8.226	CF ₃	CH ₂	O	

Table A9: Compounds of formula IAa9:

Comp.	R ₃	L	U1 R 1 N R 2
A9.014	CF ₃	CH ₂	S N
A9.015	CF ₃	CH₂	O CH ₃
A9.016	CF₃	CH ₂	CH ₃
A9.017	CF ₃	CH ₂	O CH ₃
A9.018	CF ₃	CH ₂	O N O
A9.019	CF ₃	CH ₂	0
A9.020	CF ₃	CH ₂	
A9.021	CF ₃	CH ₂	
A9.022	CF ₃	CH ₂	O CH ₃
A9.023	CF ₃	CH₂	

Table A10: Compounds of formula IAa₁₀:

Comp.	R ₃	L	Vi ^R 1	Phys. data
A10.001	CF ₃	CH ₂	CH ₃	
A10.002	CF₂H	CH₂	O CH ₃	
A10.003	CF ₃	CH₂	CH ₃	
A10.004	CF ₃	CH ₂	CH,	
A10.005	CF ₃	CH ₂	O CH,	
A10.006	CF ₃	CH ₂	CH,	
A10.007	CF ₃	CH ₂	CHF ₂ O N CH ₃	
A10.008	CF ₃	CH ₂	O CH,	
A10.009	CF ₃	CH ₂	о у _{N-N} сн,	
A10.010	CF ₃	CH ₂	O S CH _s	
A10.011	CF ₃	CH ₂	CH³	
A10.012	CF ₃	CH ₂	CH₃ NNN N-NN	
A10.013	CF ₃	CH ₂	S N CH ₃	
A10.014	CF ₃	CH ₂	O CH ₃	
A10.015	CF ₃	CH ₂	O N CH ₃	

Phys.

data

Phys.

data

solid

L Comp. R_3 No. A10.016 CF₃ CH₂ A10.017 CF₃ CH₂ A10.018 CF₃ CH₂ A10.019 CF₃ CH₂ CH₂ A10.020 CF₃ A10.021 CF₃ CH₂ A10.022 CF₃ CH₂

Table B1: Compounds of formula IAb₁:

$$H_3C-N$$
 R_2
(IAb₁)

Comp. R₃ L
No.
B1.001 CF₃ CH₂
B1.002 CF₂H CH₂
B1.003 CF₃ CH₂

Comp.	R ₃	L	V R 1 N _	Phys. data
			R ₂ ρμ,	
B1.004	CF₃	CH₂	O CH,	solid
B1.005	CF₃	CH₂	O CH,	solid
B1.006	CF₃	CH ₂	O CH ₃	
B1.007	CF ₃	CH ₂	CHF ₂ CH ₃	
B1.008	CF ₃	CH ₂	O CH ₃	m.p.: 173°C
B1.009	CF ₃	CH ₂	о такий по	
B1.010	CF ₃	CH ₂	O S O S O CH ₃	
B1.011	CF ₃	CH ₂ OCH ₂ CH ₂	ON-N-CH3	
B1.012	CF ₃	CH ₂ OCH ₂ CH ₂	O S CH ₃	
B1.013	CF₃	CH ₂	O P F F F	
B1.014	CF₂CI	CH ₂	O PH3 F F F F F F F F F F F F F F F F F F F	
B1.015	CF₂H	CH ₂	O CH ₃ F F F F F F F F F F F F F F F F F F F	
B1.016	CF ₃	CH ₂ OCH ₂ CH ₂	O F F F F F	
B1.017	CF₂CI	CH ₂ OCH ₂ CH ₂	O F F F F	
B1.018	CHF₂		O F F	
B1.019	CF₂CI	CH₂	O CH ₃	
B1.020	CF₃	CH₂OCH₂CH₂	O CH ₃	
B1.021	CF₂CI	CH₂OCH₂CH₂	CH,	

Comp.	R ₃	L	V ^R 1 N _{R2}	Phys. data
B1.022	CHF ₂	CH₂OCH₂CH₂	O CH,	
B1.023	CF₂CI	CH ₂	O CH ₃	
B1.024	CHF ₂	CH ₂	O CH ₃	
B1.025	CF ₃	CH₂OCH₂CH₂	O CH3	
B1.026	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH3	
B1.027	CHF ₂	CH ₂ OCH ₂ CH ₂	CH3 CH3	
B1.028	CF₂CI	CH₂		
B1.029	CHF ₂	CH₂		
B1.030	CF ₃	CH ₂ OCH ₂ CH ₂		
B1.031	CF₂Cl	CH ₂ OCH ₂ CH ₂		
B1.032	CHF ₂	CH ₂ OCH ₂ CH ₂		
B1.033	CF ₃	CH₂	O N-N-O	solid
B1.034	CF₂CI	CH₂		
B1.035	CHF ₂	CH ₂		
B1.036	CF ₃	CH₂OCH₂CH₂		
B1.037	CF₂CI	CH ₂ OCH ₂ CH ₂		

Comp. No.	R ₃	L	V1 R 1	Phys. data
B1.038	CHF ₂	CH₂OCH₂CH₂		
B1.039	CF ₃	CH₂		solid
B1.040	CF₂CI	CH₂		
B1.041	CHF₂	CH₂		
B1.042	CF ₃	CH₂OCH₂CH₂		
B1.043	CF ₂ CI	CH ₂ OCH ₂ CH ₂		
B1.044	CHF ₂	CH ₂ OCH ₂ CH ₂		
B1.050	CF₃	CH ₂	° The second sec	solid
B1.051	CF₂CI	CH ₂	O N N O	
B1.052	CHF₂	CH ₂		
B1.053	CF₃	CH₂OCH₂CH₂		
B1.054	CF₂CI	ÇH₂QCḤ₂CḤ₂	O N N N N N N N N N N N N N N N N N N N	
B1.055	CHF ₂	CH₂OCH₂CH₂		
B1.056	CF ₃	CH₂		solid

Comp.	R ₃	L	V1 R 1 N R 2	Phys. data
B1.057	CF₂Cl	CH₂		
B1.058	CHF ₂	CH ₂		
B1.059	CF ₃	CH₂OCH₂CH₂		
B1.060	CF ₂ CI	CH₂OCH₂CH₂		
B1.061	CHF ₂	CH ₂ OCH ₂ CH ₂		
B1.062	CF ₃	CH ₂	N-N-S	m.p.: 173°C
B1.063	CF₂CI	CH ₂		
B1.064	CHF ₂	CH ₂		
B1.065	CF ₃	CH₂OCH₂CH₂	N-N-S	
B1.066	CF₂CI	CH ₂ OCH ₂ CH ₂		
B1.067	CHF₂	CH ₂ OCH ₂ CH ₂		
B1.068	CF₃	CH ₂		
B1.069	CF₂CI	CH₂		

Comp.	R ₃	Ĺ	VIR 1 NR 2	Phys. data
B1.070	CHF₂	CH₂		
B1.071	CF ₃	CH ₂ OCH ₂ CH ₂		
B1.072	CF₂CI	CH₂OCH₂CH₂		
B1.073	CHF₂	CH₂OCH₂CH₂		
B1.074	CF₃	CH ₂		
B1.075	CF₂CI	CH ₂		
B1.076	CHF ₂	CH₂		
B1.077	CF ₃	CH₂OCH₂CH₂		
B1.078	CF₂CI	CH ₂ OCH ₂ CH ₂		
B1.079	CHF ₂	CH₂OCH₂CH₂		
B1.080	CF ₃	CH ₂	OTN	solid
B1.081	CF ₂ Cl	CH ₂	O T N N	
B1.082	CHF ₂	CH ₂	O N.	
B1.083	CF ₃	CH₂OCH₂CH₂	o Tw	
B1.084	CF₂CI	CH₂OCH₂CH₂	O N N	
B1.085	CHF₂	CH₂OCH₂CH₂	o Tin	

Comp.	R ₃	L	V ₁ ^R , N _{R₂}	Phys. data
B1.086	CF₂CI	CH₂	O TS	
B1.087	CHF₂	CH ₂	O S	
B1.088	CF ₃	CH₂OCH₂CH₂	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
B1.089	CF₂CI	CH₂OCH₂CH₂	O S	
B1.090	CHF ₂	CH₂OCH₂CH₂	O TS	
B1.091	CF₂CI	CH ₂	0 N-N 5=0	
B1.092	CHF ₂	CH ₂	0 - S - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
B1.093	CF₃	CH₂OCH₂CH₂	0 N-N 5=0	
B1.094	CF₂CI	CH₂OCH₂CH₂	OLS BO	
B1.095	CHF ₂	CH₂OCH₂CH₂	0 - S - S = 0	
B1.096	CF ₃	CH₂	0 - S - O	solid
B1.097	CF₂CI	CH₂	0 - S - O	
B1.098	CHF ₂	CH₂	° LS O	
B1.099	CF ₃	CH₂OCH₂CH₂	° L'S	
B1.100	CF₂CI	CH₂OCH₂CH₂	0 TS - 0	
B1.101	CHF ₂	CH₂OCH₂CH₂	° TS O	
B1.102	CF₂CI	CH₂		
B1.103	CHF ₂	CH₂		
B1.104	CF₃	CH₂OCH₂CH₂	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	
B1.105	CF ₂ CI	CH₂OCH₂CH₂	°+->-	
B1.106	CHF ₂	CH ₂ OCH ₂ CH ₂		

WO 03/106448

			∠R.
Comp. No.	R ₃	L	N N R ₂
B1.107	CF₃	CH ₂	ON F N-N F
B1.108	CF ₂ CI	CH₂	ON FF
B1.109	CHF ₂	CH₂	O F F
B1.110	CF ₃	CH₂OCH₂CH₂	O F N-N F
B1.111	CF₂CI	CH₂OCH₂CH₂	O F N-N F
B1.112	CHF ₂	CH₂OCH₂CH₂	ON F
B1.113	CF ₃	CH₂	O N-S
B1.114	CF ₂ Cl	CH ₂	O N-S
B1.115	CHF ₂	CH ₂	° N-S
B1.116	CF ₃	CH₂OCH₂CH₂	° N-S
B1.117	CF ₂ Cl	CH ₂ OCH ₂ CH ₂	° N-S
B1.118	CHF ₂	CH ₂ OCH ₂ CH ₂	O N-S
B1.119	CF ₃	CH ₂	O N-S
B1.120	CF ₂ CI	CH ₂	O CI
B1.121	CHF ₂	CH ₂	O CI
B1.122	CF ₃		O N-S
B1.123	₋CF₂CI		0 . N-S-CI
B1.124	CHF ₂	CH₂OCH₂CH₂	O CI
B1.125	CF₃	CH₂	0 N-5.
B1.126	CF₂CI	CH₂	

- 115 -

Comp.	R ₃	L	U R 1 I N R 2	Phys. data
B1.127	CHF ₂	CH ₂	N-9'-	
B1.128	CF ₃	CH₂OCH₂CH₂	N-S-	
B1.129	CF₂CI	CH ₂ OCH ₂ CH ₂	N-S	
B1.130	CHF ₂	CH ₂ OCH ₂ CH ₂	N-s	
B1.131	CF₃	CH ₂		
B1.132	CF₂CI	CH ₂	o X	
B1.133	CHF ₂	CH ₂	N. S.	
B1.134	CF₃	CH₂OCH₂CH₂	ON-SEO	
B1.135	CF₂CI	CH₂OCH₂CH₂	O N-S-O	
B1.136	CHF₂	CH ₂ OCH ₂ CH ₂	o To	
B1.137	CF ₃	CH₂	° 1	
B1.138	CF ₂ Cl	CH ₂		
B1.139	CHF ₂	CH ₂	O N-0	
B1.140	CF ₃	CH₂OCH₂CH₂	N-S	
B1.141	CF ₂ CI	CH ₂ OCH ₂ CH ₂		
B1.142	CHF ₂	CH ₂ OCH ₂ CH ₂	N-O	
B1.143	CF₂CI	CH ₂	CH ₃	

Comp.	R ₃	L	V1 N R ₂	Phys. data
B1.144	CHF ₂	CH₂	O CH ₃	
B1.145	CF ₃	CH₂OCH₂CH₂	O CH ₃	
B1.146	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH ₃	
B1.147	CHF₂	CH ₂ OCH ₂ CH ₂	O CH,	
B1.148	CF₂CI	CH ₂	O CH ₃	
B1.149	CHF ₂	CH₂	CH ₃	
B1.150	CF₃	CH ₂ OCH ₂ CH ₂	O CH ₃	
B1.151	CF₂CI	CH ₂ OCH ₂ CH ₂	O CH ₃	
B1.152	CHF₂	CH₂OCH₂CH₂	O CH ₃	
B1.153	CF₂CI	CH ₂	O CHF ₂ CH ₃	
B1.154	CHF₂	CH ₂	O N N CH ₃	
B1.155	CF₃	CH₂OCH₂CH₂	O CHE2 CH3	
B1.156	CF₂CI	CH₂OCH₂CH₂	CHF ₂ CH ₃ CH ₃	
B1.157-	CHF₂	CH ₂ OCH ₂ CH ₂	CHF ₂ CH ₂ CH ₃	
B1.158	CF₃	CH ₂		resin

Comp.	R ₃	L	Vi N R ₂
B1.159	CF ₂ Cl	CH₂	
B1.160	CHF ₂	CH₂	
B1.161	CF₃	CH₂OCH₂CH₂	
B1.162	CF₂CI	CH₂OCH₂CH₂	
B1.163	CHF ₂	CH₂OCH₂CH₂	
B1.164	CF ₃	CH₂	**************************************
B1.165	CF₂CI	CH₂	· **
B1.166	CHF ₂	CH₂	-N-N-H
B1.167	CF ₃	CH₂OCH₂CH₂	· / · /
B1.168	CF₂CI	CH ₂ OCH ₂ CH ₂	

Comp.	R ₃	L	Vi N R ₂	Phys. data
B1.169	CHF ₂	CH₂OCH₂CH₂	~~~~	
B1.170	CF ₃	CH ₂		m.p.: 171°C
B1.171	CF ₂ CI	CH₂		
B1.172	CHF ₂	CH₂		
B1.173	CF ₃	CH₂OCH₂CH₂		
B1.174	CF₂CI	CH₂OCH₂CH₂		
B1.175	CHF₂	CH₂OCH₂CH₂	ot n	
B1.176	CF₃	CH₂		solid
B1.177	CF₂CI	CH₂		
B1.178	CHF ₂	CH₂		
B1.179	CF ₃	CH₂OCH₂CH₂		
B1.180	CF₂CI	CH₂OCH₂CH₂		

Comp.	R ₃	L	V ^R 1 N _{R 2}	Phys. data
B1.181	CHF ₂	CH₂OCH₂CH₂		
B1.182	CF ₃	CH₂	о сн,	
B1.183	CF₂CI	CH ₂	O_CH ₃	
B1.184	CHF ₂	CH ₂	о сн,	
B1.185	CF ₃	CH₂OCH₂CH₂	о сн,	
B1.186	CF₂CI	CH ₂ OCH ₂ CH ₂	о то сн,	
B1.187	CHF ₂	CH ₂ OCH ₂ CH ₂	O CH,	
B1.188	CF ₃	CH₂	O CH ₃	solid
B1.189	CF₂CI	CH ₂	O CH ₃	
B1.190	CHF ₂	CH₂	O CH ₃	
B1.191	CF ₃	CH₂OCH₂CH₂	OH ₃	
B1.192	CF₂CI	CH₂OCH₂CH₂	O CH ₃	
B1.193	CHF₂	CH₂OCH₂CH₂	O CH ₃	
B1.194	CF₃	CH₂ `		solid
B1.195	CF₂CI	CH₂		
B1.196	CHF₂	CH₂	o Lo	
B1.197	CF ₃	CH₂	S CH,	

Comp. No.	R ₃	L	V1 N R ₂	Phys. data
B1.198	CF₂CI	CH ₂	S S S S S S S S S S S S S S S S S S S	
B1.199	CHF ₂	CH ₂	S Y SH3	
B1.200	CF₃	CH₂OCH₂CH₂	S N N	
B1.201	CF₂CI	CH₂OCH₂CH₂	S N N N N N N N N N N N N N N N N N N N	
B1.202	CHF ₂	CH₂OCH₂CH₂	S N N	
B1.203	CF ₃	CH ₂		
B1.204	CF₂CI	CH ₂	° No	
B1.205	CHF ₂	CH₂	° 1	
B1.206	CF₃	CH ₂		
B1.207	CF₃	CH ₂	CI CH ₃ N N CH ₄	
B1.208	CHF₂	CH ₂	O CH,	
B1.209	CF₃	CH₂	ch, ch, n-ch,	
B1.210	CHF ₂	CH ₂	or N-ch,	
B1.211	CF ₃	CH ₂	o No CH3	solid
B1.212	CF₂CI	CH ₂	O CH3	

Comp.	R ₃	L	V ^R 1 N _{R2}	Phys. data
B1.213	CHF ₂	CH ₂	o Lory	
B1.214	CF ₃	CH ₂ OCH ₂ CH ₂	CH,	
B1.215	CF ₂ CI	CH ₂ OCH ₂ CH ₂	O CH ₃	
B1.216	CHF ₂	CH ₂ OCH ₂ CH ₂	O CH ₃	
B1.217	CH ₂	CF ₃	O NOCH,	
B1.218	CH ₂	CF₂CI	O NOCH,	
B1.219	CH₂	CHF ₂	O CH ₃	
B1.220	CH₂OCH₂CH₂	CF ₃	O CH ₃	
B1.221	CH₂OCH₂CH₂	CF₂CI	O NOCH,	
B1.222	CH₂OCH₂CH₂	CHF ₂	O NOCH,	
B1.223	CF₃	CH ₂		solid
B1.224	CF₃	CH ₂ OCH ₂ CH ₂		resin
B1.225	CF₃	CH ₂		solid
B1.226	CF₃	ŌH₂		solid
B1.227	CF ₃	CH ₂		solid
B1.228	CCIF ₂	CH ₂		
B1.229	CCIF ₂	CH₂		

Comp.	R ₃	L	V1 R 1. N R 2	Phys. data
B1.230	CCIF ₂	CH₂	°\\	
B1.231	CCIF ₂	CH₂		
B1.232	CHF ₂	CH ₂	°\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
B1.233	CHF ₂	CH₂		
B1.234	CHF ₂	CH ₂	°\\	
B1.235	CHF ₂	CH₂		
B1.236	CF ₃	CH₂	O CF ₃	resin
B1.237	CHF ₂	CH ₂	° N CF,	
B1.238	CF ₃	CH ₂	ON N-CI	solid
B1.239	CHF ₂	CH₂	O N N CI	
B1.240	CF₃	CH ₂	O N CF3	m.p.: 192°C
B1.241	CHF₂	CH ₂	ONNN-CF3	
B1.242	CF ₃	CH₂	CH₃ O N N-N	
B1.243	CF₃	CH₂	O N N CH3	
B1.244	CF ₃	CH₂		

B2.013 CF₃

Table B2: Compounds of formula IAb₂:

CH₂

Comp.	R ₃	L	VAI N R ₂
B2.014	CF₃	CH ₂	S CH ₃
B2.015	CF ₃	CH₂	O CH3
B2.016	CF ₃	CH ₂	O N CH3
B2.017	CF ₃	CH ₂	O N CH ₃
B2.018	CF ₃	CH₂	0
B2.019	CF ₃	CH ₂	O N-O
B2.020	CF ₃	CH₂	
B2.021	CF ₃	CH ₂	O
B2.022	CF ₃	CH₂	O CH ₃
B2.023	CF ₃	CH₂	ON

Table B3: Compounds of formula IAb₃:

OH O L
$$R_2$$

$$H_3C-N$$

$$CH_3$$

$$R_3$$

$$(IAb_3)$$

Comp.	R ₃	L	V1 R 1 N R 2	Phys. data
B3.001	CF ₃	CH ₂	O CH ₃	
B3.002	CF₂H	CH ₂	O CH ₃	
B3.003	CF ₃	CH ₂	O CH,	
B3.004	CF ₃	CH ₂	O CH,	
B3.005	CF ₃	CH ₂	O CH,	
B3.006	CF ₃	CH ₂	CH, N, O, CH,	
B3.007	CF₃	CH ₂	CHF ₂ O N CH ₃	
B3.008	CF ₃	CH ₂	O CH ₃	
B3.009	CF ₃	CH ₂	O S CH,	
B3.010	CF ₃	CH ₂	O S CH ₃	
B3.011	CF ₃	CH ₂	O CH ₃	
B3.012	CF ₃	CH ₂	O CH ₃	
B3.013	CF ₃	CH ₂	S CH ₃	
B3.014	CF₃	CH₂	O CH ₃	
B3.015	CF ₃	CH₂	O N CH3	

Comp.	R ₃	L	U R 1 N R 2
B3.016	CF ₃	CH ₂	O N N
B3.017	CF ₃	CH₂	
B3.018	CF ₃	CH ₂	o
B3.019	CF ₃	CH ₂	
B3.020	CF ₃	CH ₂	O
B3.021	CF ₃	CH ₂	O CH ₃
B3.022	CF ₃	CH₂	

Table C1: Compounds of formula IAc1:

•		
R ₃	L	N R 2
CF ₃	CH ₂	O CH3
CF₂H	CH ₂	O CH3 CH3
CF₃	CH ₂	O CH3
	R ₃ CF ₃ CF ₂ H CF ₃	CF ₂ H CH ₂

Comp.	R ₃	L	U R 1 N R 2
C1.004	CF ₃	CH ₂	ONN CH,
C1.005	CF ₃	CH ₂	O N N O CH,
C1.006	CF ₃	CH ₂	O CH,
C1.007	CF ₃	CH ₂	CHF ₂
C1.008	CF ₃	CH₂	о сн,
C1.009	CF ₃	CH ₂	ONS CH,
C1.010	CF ₃	CH ₂	S S OCH,
C1.011	CF ₃	CH ₂	O S CH ₃
C1.012	CF ₃	CH₂	O CH ₃
C1.013	CF ₃	CH₂	O N-N'N
C1.014	CF ₃	CH₂	S CH ₃
C1.015	CF ₃	CH₂	O CH ₃
C1.016	CF₃	CH₂	CH ₃
C1.017	CF₃	CH ₂	ONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
C1.018	CF ₃	CH₂	ONO

Comp.	R ₃	L	V R 1 N R 2
C1.019	CF ₃	CH ₂	O N-O
C1.020	CF ₃	CH ₂	
C1.021	CF ₃	CH ₂	° C
C1.022	CF ₃	CH₂	O CH ₃
C1.023	CF ₃	CH ₂	° N

Table C2: Compounds of formula IAc2:

	\vee	J	
Comp.	R ₃	L	VIR 2
C2.001	CF ₃	CH ₂	O CH ₃
C2.002	CF₂H	CH ₂	O CH3
C2.003	CF ₃	CH₂	O CH ₃
C2.004	CF ₃	CH ₂	O CH ₃
C2.005	CF ₃	CH ₂	O CH,
C2.006	CF ₃	CH ₂	O CH

Comp.	R ₃	L	V R 1 N R 2
C2.007	CF ₃	CH ₂	CHF ₂ O N CH,
C2.008	CF ₃	CH₂	O CH ₃
C2.009	CF ₃	CH ₂	° S N-N CH₃
C2.010	CF ₃	CH ₂	O N-N CH,
C2.011	CF₃	CH ₂	O N. N
C2.011	CF ₃	CH ₂	O S CH ₃
C2.012	CF ₃	CH ₂	O N N N
C2.013	CF ₃	CH ₂	CH₃ O N N N
C2.014	CF₃	CH ₂	S CH ₃
C2.015	CF₃	CH ₂	O N N
C2.016	CF ₃	CH₂	O CH ₃
C2.017	CF₃	CH ₂	CH ₃
C2.018	CF₃	CH₂	
C2.019	CF₃	CH₂	0
C2.020	CF ₃	CH ₂	

Comp. No.	R ₃	L	V ^R 1 N _{R2}	Phys. data
C2.021	CF ₃	CH ₂	O	
C2.022	CF ₃	CH₂	O CH ₃	
C2.023	CF ₃	CH₂	0	

Table D1: Compounds of formula IAd:

V	III N	R ₃		
-	R ₃	L	U1 R 1	Phys.
No.			R ₂	data
D1.001	CF₃	CH₂	ON CH3	
D1.002	CF₂H	CH ₂	O CH3 CH3	
D1.003	CF ₃	CH ₂	CH, N-N-CH,	
D1.004	CF ₃	CH ₂	CH, CH, CH,	
D1.005	CF ₃	CH₂	CH,	
D1.006	CF ₃	CH ₂	CH, CH, CH,	
D1.007	CF ₃	CH₂	CHF ₂	
D1.008	CF ₃	CH₂	O CH,	
D1.009	CF₃	CH ₂	O CH ₃	

Comp.	R ₃	L	U ₁ R ₁ N _{R₂}	Phys. data
D1.010	CF ₃	CH ₂	O S P S O CH,	
D1.011	CF ₃	CH₂	O S CH ₃	
D1.012	CF ₃	CH ₂	O N N N	
D1.013	CF ₃	CH ₂	O N N N N	
D1.014	CF ₃	CH ₂	S N N	
D1.015	CF ₃	CH ₂	O CH ₃	
D1.016	CF₃	CH ₂	O N CH3	
D1.017	CF₃	CH₂	O CH ₃ O N	
D1.018	CF ₃	CH₂		
D1.019	CF₃	CH ₂	0	
D1.020	CF ₃	CH ₂		
D1.021	- CF ₃	CH₂	O	
D1.022	CF ₃	CH₂	O CH ₃	
D1.023	CF ₃	CH₂		

Table S1: Compounds of formula II:

		3			
Comp. No.	Υ	R ₃	L	ν ^R 1 Ν _R	Phys.
S1.001 (P7)	ОН	CF₂CI	CH ₂	O P F F F F	amorphous crystals
\$1.002	OC₂H₅	CF ₃	CH₂	O_N,O CH,	132-133 °C
S1.003	ОН	CF ₃	CH ₂	O S CH,	amorphous crystals
S1.004 (P4)	ОН	CF ₃	CH ₂	ON-N-CH,	amorphous crystals
S1.005	OC₂H₅	CF ₃	CH ₂	° N-s	solid
S1.006	ОН	CF ₃	CH ₂	0 N-s	solid
S1.007	OC ₂ H ₅	CF ₃	CH ₂	O N N	solid
S1.008	ОН	CF ₃	CH ₂	O N N	m.p.: 210°C
S1.009	OC ₂ H ₅	CF ₃	CH ₂	о сн,	solid
\$1.010	ОН	CF ₃	CH ₂	o ch,	m.p.: 145°C
S1.011	OC₂H₅	CF₃	CH₂		solid
				•	

Comp. No.	Υ	R ₃	L	N R 2	Phys. data
\$1.012	ОН	CF ₃	CH₂		m.p.: 189°C
S1.013	OC ₂ H ₅	CF ₃	CH ₂	N O	m.p.: 91°C
S1.014	ОН	CF ₃	CH ₂	N O	solid
S1.015	OC ₂ H ₅	CF ₃	CH₂		m.p.: 109°C
S1.016 ·	ОН	CF₃	CH₂		m.p.: 191°C
S1.017	OC ₂ H ₅	CF₃	CH₂	CH ₃	waxy
S1.018	ОН	CF₃	CH₂	CH ₃	solid
S1.019	OC ₂ H ₅	CF₃	CH₂	ors o	m.p.: 82°C
S1.020	ОН	CF₃	CH ₂	° S O	m.p.: 142°C
S1.021	OC ₂ H ₅	CF ₃	CH ₂	O. N-S-CI	resin
S1.022	ОН	CF ₃	CH ₂	O CI	solid
S1.023	OC₂H₅	CF ₃	CH ₂		m.p.: 114°C
S1.024	ОН	CF₃	CH ₂		m.p.: 165°C
S1.025	OC₂H₅	CF ₃	CH ₂ ·	O CF,	

Comp. No.	Y	R ₃	L	V1 R 1	Phys. data
S1.026	ОН	CF ₃	CH₂	O CF,	m.p.: 128°C
S1.027	OC₂H₅	CF ₃	CH₂		m.p.: 123°C
S1.028	ОН	CF ₃	CH ₂		m.p.: 166°C
S1.029	OC ₂ H ₅	CF₃	CH ₂	ONN	m.p.: 116°C
S1.030	ОН	CF₃	CH₂		m.p.: 174°C
S1.031	OC ₂ H ₅	CF₃	CH ₂	s / N	solid
S1.032	ОН	CF ₃	CH₂	s / N	m.p.: 184°C
S1.033	OC ₂ H ₅	CF ₃	CH₂	O N N O	solid
S1.034	ОН	CF ₃	CH₂	of No.	solid
S1.035	OC₂H₅	CF ₃	CH ₂	o 1 / 1 -	solid
S1.036	ОН	CF ₃	CH₂		solid
S1.037	OC₂H₅	CF₃	CH₂		solid
S1.038	ОН	CF₃	CH₂	° CI	solid
S1.039	OC₂H₅	CF ₃	CH ₂	o None	solid
S1.040	ОН	CF₃	CH ₂	o	solid

Comp. No.	Υ	R ₃	L	Ui ^R 1	Phys. data
				R ₂	
S1.041	OC₂H₅	CF₃	CH₂	° NN	solid
S1.042	ОН	CF₃	CH₂	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	solid
S1.043	OC ₂ H ₅	CF ₃	CH ₂	N CI	solid
S1.044	ОН	CF ₃	CH ₂	N CI	solid
S1.045	OC₂H₅	CF ₃	CH ₂	0 N N N	solid
S1.046	ОН	CF ₃	CH₂	0 1 N Q	solid
S1.047 (P6)	ОН	CF₃	CH ₂		solid
S1.048	ОН	CF₃	CH ₂		solid
S1.049	ОН	CF₃	CH₂	O N CF3	crystalline
S1.050	OC ₂ H ₅	CCIF ₂	CH ₂	ONN N	m.p.: 87-88°C
S1.051	ОН	CCIF ₂	CH ₂	O N N N	m.p.: 180-182°C
S1.052	OC ₂ H ₅	CCIF ₂	CH₂	N-N	
S1.053	ОН	CCIF ₂	CH ₂	· NN	m.p.: 173-174°C
S1.054	OC ₂ H ₅	CCHF ₂	CH ₂	O N N	
S1.055	ОН	CCHF ₂	CH₂	O N N	
S1.056	OC ₂ H ₅	CCHF ₂	CH ₂		resin
S1.057	ОĤ	CCHF ₂	CH ₂		

Comp. No.	Υ	R ₃	L	V R 1 N R 2	Phys. data
S1.058	OC₂H₅	CCHF ₂	CH ₂	CH,	
S1.059	ОН	CF ₃	CH₂	ON	solid
S1.060	ОН	CF ₃	CH₂OCH₂CH₂	ON	solid
S1.061	ОН	CF ₃	CH ₂		solid
S1.062	ОН	CF ₃	CH ₂	°\	solid
S1.063	ОН	CF ₃	CH ₂		solid
S1.064	ОН	CCIF ₂	CH ₂		
S1.065	ОН	CCIF ₂	CH ₂		
S1.066	ОН	CCIF ₂	CH ₂	°\	
S1.067	ОН	CCIF ₂	CH₂		
S1.068	ОН	CHF ₂	CH₂	°	
S1.069	ОН	CHF ₂	CH₂		
S1.070	OH.	CHF ₂ -	CH₂⁻	°, '.	
S1.071	ОН	CHF ₂	CH ₂		
S1.072	OC₂H₅	CF ₃	CH ₂	O CF ₃	m.p.: 122°C

Comp. No.	Υ .	R ₃	L	U1 R 1 N R 2	Phys. data
S1.073	ОН	CF ₃	CH ₂	O N CF,	m.p.: 182°C
S1.074	OC ₂ H ₅	CF ₃	CH ₂	ONN-CI	m.p.: 132°C
S1.075	ОН	CF ₃	CH ₂	ON N-CI	m.p.: 255°C
S1.076	OC₂H₅	CF ₃	CH ₂	O N N CF ₃	m.p.: 113°C
S1.077	ОН	CF ₃	CH ₂	O N O CF,	m.p.: 228°C
S1.078 (P5)	OC ₂ H ₅	CF ₃	CH ₂		amorphous crystals
S1.079 (P7)	OC₂H₅	CF ₂ CI	CH ₂	ONN FF	resin

Biological Examples

Example B1: Herbicidal action prior to emergence of the plants (pre-emergence action) Monocotyledonous and dicotyledonous test plants are sown in standard soil in plastic pots. Immediately after sowing, the test compounds, in the form of an aqueous suspension (prepared from a 25 % wettable powder (Example F3, b) according to WO 97/34485) or in the form of an emulsion (prepared from a 25 % emulsifiable concentrate (Example F1, c)), are applied by spraying in a concentration corresponding to 125 g or 250 g of active ingredient/ha (500 litres of water/ha). The test plants are then grown in a greenhouse under optimum conditions. After a test duration of 3 weeks, the test is evaluated in accordance with a scale of nine ratings (10 = total damage, 0 = no action). Ratings of from 10 to 7 (especially from 10 to 8) indigate good to very good herbicidal action.

- 138 -

Table B1: Pre-emergence action of compounds of formula I:

			Echino-					Ama-	Cheno-
Ex.No.	gr. a.i./ha	Panicum	chloa	Cyperus	Scirpus	Sida	Abutilon	ranthus	podium
A1.055	250	9	10	10	9	10	10	0	10
A1.073	250	10	3	10	10	9	10	10	10
A1.079	250	9	5	8	10	10	10	4	8
A1.091	250	4	9	8	9	7	10	8	9
A6.073	250	10	0	7	10	9	10	9	10
A6.079	250	9	7	6	9	6	10	7	10
A6.100	250	10	10	6	10	10	10	10	10
A8.008	250	10	10	0	0	10	10	nt '	1.0
A8.080	250	9	10	0	8	9	10	0	10
B1.008	250	10	9	9	10	9	10	10	10
B1.080	250	10	10	9	9	0	8	0	10
B1.096	250	7	nt	7	7	7	10	10	10
B1.170	250	9	9	8	9	9	9	9	10

Example B2: Post-emergence herbicidal action

In a greenhouse, monocotyledonous and dicotyledonous test plants are grown in standard soil in plastic pots and at the 4- to 6-leaf stage are sprayed with an aqueous suspension of the test compounds of formula I prepared from a 25 % wettable powder (Example F3, b) according to WO 97/34485) or with an emulsion of the test compounds of formula I prepared from a 25 % emulsifiable concentrate (Example F1, c) according to WO 97/34485), in a concentration corresponding to 125 g or 250 g of active ingredient/ha (500 litres of water/ha). The test plants are then grown on in a greenhouse under optimum conditions. After a test duration of about 18 days, the test is evaluated in accordance with a scale of nine ratings (10 = total damage, 0 = no action). Ratings of from 10 to 7 (especially from 10 to 8) indicate good to very good herbicidal action. The compounds of formula I exhibit a strong herbicidal action in this test.

- 139 -

Table B2: Post-emergence action of compounds of formula I:

		Echino-	Euphor-			Amaran-	Cheno-			
Ex.No	gr. a.i./ha	chloa	bia	Xanthium	Ipomea	thus	podium	Sinapis	Stellaria	
A1.001	125	4	4	8	8	8	9	8	8	
A1.007	250	8	4	9	9	9	10	8	7	
A1.019	250	8	9	9	9	9	9	8	8	
A1.031	250	7	8	9	9	9	10	8	9	
A1.037	250	4	8	9	9	9	9	8	8	
A1.043	250	7	7	9	9	9	9	6	9	
A1.049	250	8	9	9	9	9	8	8	8	
A1.073	250	9	9	9	10	10	10	10	10	
A1.079	250	7	8	7	8	9	9	9	9	
A1.091	250	9	8	9	9	9	10	8	10	
A1.109	250	8	10	9	9	9	10	3	5	
A1.115	250	7	8	9	7	9	9	3	9	
A1.181	250	4	8	8	8	9	8	5	7	
A1.202	250	8	9	9	9	9	8	8	7	
A6.073	250	9	9	9	10	10	10	10	9	
A6.082	250	7	7	7	8	8	9	5	9	
A6.091	250	9	8	9	8	8	9	8	9	
A6.097	250	7	7	7	7	7	9	8	9	
A6.100	250		. 7	. 7	. 9	. 9	. 10_	8	. 9	
A7.008	250	7	7	8	7	5	9	9	9	
A7.009	250	7	7	7	7	4	9	8	7	
A8.008	250	8	8	9	9	9	8	7	6	
A8.062	250	9	9	0	8	9	10	9	5	
A8.080	250	9	9	8	10	9	10	10	10	

- 140 -

		Echino-	Euphor-			Amaran-	Cheno-		
Ex.No	gr. a.i./ha	chloa	bia	Xanthium	Ipomea	thus	podium	Sinapis	Stellaria
A8.095	250	9	0	8	9	9	5	8	7
A8.174	250	0	7	7	8	8	9	7	7
B1.004	250	8	9	9	8	8	9	10	8
B1.005	250	4	9	6	8	9	9	9	8
B1.008	250	9	8	nt	9	9	10	7	8
B1.039	250	9	9	8	8	6	8	9	9
B1.050	250	4	9	8	7	9	9	9	7
B1.056	250	9	9	0	10	9	8	8	7
B1.062	250	4	9	6	7	9	9	8	8
B1.080	250	9	10	8	10	10	10	10	10
B1.096	250	6	7	8	7	7	10	9	8
B1.158	250	4	7	5	8	7	8	7	7
B1.170	250	9	7	6	0	9	9	9	9
B1.194	250	9	9	9	7	9	9	7	8

In a different test arrangement, the Examples according to Table B3 likewise exhibit good to very good post-emergence action on selected test plants.

Table B3:

Ex.No	gr. a.i./ha	Amaranthus	Solanum	Nasturtium	Stellaria
A1.025	250	9	9	9	9
A1.097	250	9	9	10	9
A1.175	250	7	9	8	7
A1.209	250	7	9	9	7

- 141 -

Ex.No	gr. a.i./ha	Amaranthus	Solanum	Nasturtium	Stellaria
A1.211	250	9	9	10	7
A1.213	250	9	9	9	9
A1.219	250	9	9	10	. 10
A1.220	250	9	9	10	10
A1.221	250	9	9	10	9
A1.222	250	9	9	10	9
A1.223	250	8	9	10	9
A1.237	250	9	10	9	7
B1.211	250	9	9	10	8
B1.223	250	8	9	10	10
B1.225	250	8	9	10	10
B1.226	250	8	9	10	9
B1.238	250	9	9	8	7
B1.297	250	9	9	10	9