Countablishity {1,2,3} {0,1,2,3,...} N fis a Bijection letween S,T 1) fis an Injection S→T (one-to-one) $f(s_1) = f(s_2) => s_1 = s_2$ 5= {1,2} 5= {1,2} s, #s2 => f(s) + f(s2) T= {3,4,5} T= {3,43 (2) fisa Swigertion S-T f= {(1,3), (2,4)} ing = {(1,3), (2,4)} (onto) $f = \{(1,3), (2,3)\}$ not a surjection {(1,4),(2,5)} YteT, JseS: f(s)=t Swj = No swy S→T f={(1,4)} neither sevy, nor ing {(1,3),(0,4),(0,5)} Not a func!

https://tinyurl.com/sagnick-8a

CS 70 Fall 2020 Discrete Mathematics and Probability Theory

DIS 8A

1 Graph Isomorphic

In graph theory, an isomorphism of graphs G and H is a bijection between the vertex sets of G and H

$$f:V(G)\to V(H)$$

such that any two vertices u, v of G are adjacent in G if and only if f(u), f(v) are adjacent in H. Prove the following:

- 1. The degrees of corresponding nodes u, f(u) are the same.
- 2. There is a bijection between edges.
- 3. If G is connected, then H is also connected.

2 Countability Practice

- (a) Do (0,1) and $\mathbb{R}_+ = (0,\infty)$ have the same cardinality? If so, either give an explicit bijection (and prove that it is a bijection) or provide an injection from (0,1) to $(0,\infty)$ and an injection from $(0,\infty)$ to (0,1) (so that by Cantor-Bernstein theorem the two sets will have the same cardinality). If not, then prove that they have different cardinalities.
- (b) Is the set of strings over the English alphabet countable? (Note that the strings may be arbitrarily long, but each string has finite length. Also the strings need not be real English words.) If so, then provide a method for enumerating the strings. If not, then use a diagonalization argument to show that the set is uncountable.
- (c) Consider the previous part, except now the strings are drawn from a countably infinite alphabet \mathscr{A} . Does your answer from before change? Make sure to justify your answer.
- 3 Python Functions

Prove that the set of all functions from N to $\{0,1\}$ is uncountable.

- (a) The set $F = \{f : \mathbb{N} \to \{0,1\}\}$ is not countable. $f(x) = [x] \mod 2$ f(x) = 0 f(x) = 1 (b) Prove that the set of all python functions that output $\{0,1\}$ is countable. (Python functions
- (b) Prove that the set of all python functions that output $\{0,1\}$ is countable. (Python functions have the same power as Turing machines, but people are more familiar with python.)

$$f(x) = if x = 0: - eif x = 1: - older = 1:$$

CS 70, Fall 2020, DIS 8A

```
The set of all 00- kights
        010110100101110100001 .--
                                           bit strings is uncountable!
        00100111 0101110 00001 .--
        0101101001011100001 .--
        010[101000110100001 .--
        01011011001011010001 .--
        01011010111011011111010
       0101101010101010001 .--
     -> 1110010 --- = s'
         diff from every string in this enumeration
          s' is diff from the nth string
          s'[n] = nthe string [n]
Must write down a Python func.
Every Python func is a finite string.
def f(n):
                               01001010000---
   if n=== or n== 4 or n== 6:
      return |
   else:
```

WTS Sis count.

find inj g:F>N

lý g:N→F

3c Python femes are finite-length strings.

def /s f(n): In if /s n== 1/s - - .

CS 70, Fall 2020, DIS 8A 2