Math 201B, Homework 4 (Metric and Normed Spaces, Baire Cathegory)

Problem1. Let $\{B_n\}$ be a nested sequence of closed balls in a normed space X, where

$$B_n = \bar{B}_{r_n}(x_n)$$
, with $r_n \ge r > 0$ for all $n \in \mathbb{N}$.

1. Is it true that

$$\bigcap_{n=1}^{\infty} B_n \neq \emptyset$$

2. Is it true that

$$B \subset \bigcap_{n=1}^{\infty} B_n$$

for some closed ball B with radius r?

Problem2. Construct a Lebesgue-measurable set $A \subset [0,1]$ such that m(A) = 1 and A is of Baire first category in [0,1].

Problem3. Let $f:(0,1)\to\mathbb{R}$ be continuous. Prove that if $\lim_{n\to\infty} f(\frac{x}{n})=0$ for all $x\in(0,1)$, then $\lim_{x\to 0} f(x)=0$.

Problem4. Let X be a real normed space and let C be a closed convex set such that $\bar{B}_{1+\epsilon}(0) \subset C + \bar{B}_1(0)$ for some $\epsilon > 0$. Does it follow that C has a nonempty interior?

Remark.

- 1. A set $A \subset X$ is convex if $x, y \in A$ implies $\lambda x + (1 \lambda)y \in A$ for all $\lambda \in [0, 1]$.
- 2. The sum of two sets $A,B\subset X$ is defined as $A+B=\{a+b\ :\ a\in A,b\in B\}.$