Bagging Application Methodology

- 1. Bagging is applied on Perceptron learning algorithm that uses gradient descent.
- 2. Training data is sampled and the model is trained on it which is then used to generate predictions on the test data.
- 3. Based on the number of bags specified this process is repeated and the class labels for each test data are stored.
- 4. Majority count on the test data are taken with respect to results stored by bagging and final class label on the test data are assigned accordingly.

Experiments:

The experiments are done manually specifying k and training & test file along with learning rate and number of iterations at each step.

Results:

General Perceptron Learning Algorithm (HW3)

#Accuracy					
# Learning Rate = 0.5 Iterations= 1000					
	1	No Bagging	K=50	K=100	K=200
# Training file	Testing file	Accuracy	Accuracy	Accuracy	Accuracy
# train.dat	train.dat	93.33%	93.33%	93.33%	93.33%
# train.dat	test.dat	85.71%	85.71%	85.71%	85.71%
# train2.dat	train2.dat	85.75%	86.00%	85.75%	85.75%
# train2.dat	test2.dat	80.00%	81.00%	79.00%	79.00%
# train3.dat	train3.dat	100.00%	100.00%	100.00%	100.00%
# train3.dat	test3.dat	100.00%	100.00%	100.00%	100.00%
# train4.dat	train4.dat	87.00%	89.00%	91.00%	90.00%
# train4.dat	test4.dat	70.00%	68.50%	68.50%	69.25%
#					

Discussion:

- 1. As seen from the above accuracy readings it can be clearly understood that Bagging rarely reduces the accuracy.
- 2. Some datasets do show an increase in accuracy such as train2 on training & test data, train4 on training data. While train 4 gives reduction in accuracy on the test data. (Due to small dataset size)
- 3. Other datasets such as train3(small size) maintain their perfect accuracies.
- 4. Even dataset train maintains it's accuracy over training and test set.
- 5. It can be inferred that we can apply bagging and then select k which gives best accuracy for any dataset by mapping k versus accuracy plots.
- 6. Hence, bagging is an effective procedure to increase the accuracy of an unstable algorithm.