Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних

циклічних алгоритмів»

Варіант 3

Виконав студент <u>ІП-15, Борисик Владислав Тарасович</u> (шифр, прізвище, ім'я, по батькові)

Перевірила <u>Вєчерковська Анастасія Сергіївна</u> (прізвище, ім'я, по батькові)

Лабораторна робота №5 Дослідження складних циклічних алгоритмів

Мета — дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 3

Задача

Дано натуральне число п. Серед чисел 1, ..., п знайти такі, запис яких співпадає з останніми цифрами запису їх квадрату. Наприклад, 6 ($6^2 = 36$), 25 ($25^2 = 625$) і т.д.

Постановка задачі

За умовою задачі потрібно знайти числа, запис яких співпадає з останніми цифрами запису їх квадрату.

Результатом розв'язку ϵ значення цих чисел.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Кількість чисел	Цілий	n	Початкове дане
Лічильник циклу	Цілий	i	Проміжне дане
Кількість цифр у числі	Цілий	numLength	Проміжне дане
Коефіцієнт	Цілий	k	Проміжне дане
Квадрат лічильника циклу	Цілий	square	Проміжне дане
Дільник	Цілий	divisor	Проміжне дане
Умова	Цілий	condition	Результат

Для цілочисельного ділення будемо використовувати оператор /.

Для остачі від ділення ділення будемо використовувати оператор %.

Для конкатенації рядків будемо використовувати оператор +.

Для піднесення числа до степеня будемо використовувати функцію pow().

1) Створюємо змінну п.

- 2) Просимо користувача ввести кількість чисел (n) і присвоюємо це значення змінній n.
- 3) За допомогою арифметичного циклу ітеруємось через числа від 1 до n включно з кроком 1.
- 4) В тілі арифметичного циклу створюємо змінні numLength, k і присвоюємо їм значення numLength = 0, k = i (i лічильник циклу). Також, створюємо ітераційний цикл з передумовою.
- 5) В тілі ітераційного циклу з передумовою ділимо коефіцієнт на 10 і додаємо до кількості цифр одиницю поки здійснюється умова k >= 1.
- 6) Після виходу з ітераційного циклу з передумовою створюємо змінні square, divisor, condition і присвоюємо їм значення

square = pow(i, 2),

divisor = pow(10, numLength),

condition = square % divisor.

7) За допомогою умовної форми оператору вибору виводимо користувачу число, якщо воно задовільняє умову: і == condition.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії
- Крок 2. Створення змінної п.
- Крок 3. Просимо користувача ввести кількість чисел (n) і присвоєння цього значення змінній n.
- Крок 4. За допомогою арифметичного циклу ітеруємось через числа від 1 до п включно з кроком 1.
- *Крок 5*. В тілі арифметичного циклу створюємо змінні numLength, k і присвоюємо їм значення numLength = 0, k = i (i π) лічильник циклу).
- Крок 6. Також, створюємо ітераційний цикл з передумовою.
- Крок 7. В тілі ітераційного циклу з передумовою ділимо коефіцієнт на 10 і

додаємо до кількості цифр одиницю поки здійснюється умова $k \ge 1$.

Крок 8. Після виходу з ітераційного циклу з передумовою створюємо змінні square, divisor, condition і присвоюємо їм значення

square = pow(i, 2), divisor = pow(10, numLength), condition = square % divisor.

Крок 9. За допомогою умовної форми оператору вибору виводимо користувачу число, якщо воно задовільняє умову: i == condition.

Псевдокод

Крок 1

Початок

Створення змінної п.

Введення п.

Ітеруємось через числа від 1 до п включно з кроком 1.

Створюємо змінні numLength, k і присвоюємо їм значення numLength = 0, k = i .

Створюємо ітераційний цикл з передумовою.

Ділимо змінну k на 10 і додаємо до numLength одиницю поки здійснюється умова k >= 1.

Створюємо змінні square, divisor, condition і присвоюємо їм значення square = pow(i, 2), divisor = pow(10, numLength), condition = square % divisor. Виводимо користувачу число, якщо воно задовільняє умову: i == condition.

Кінець

Крок 2

Початок

n

Введення п.

Ітеруємось через числа від 1 до п включно з кроком 1.

Створюємо змінні numLength, k і присвоюємо їм значення numLength = 0, k = i .

Створюємо ітераційний цикл з передумовою.

Ділимо змінну k на 10 і додаємо до numLength одиницю поки здійснюється умова k >= 1.

Створюємо змінні square, divisor, condition і присвоюємо їм значення square = pow(i, 2), divisor = pow(10, numLength), condition = square % divisor. Виводимо користувачу число, якщо воно задовільняє умову: i == condition.

Кінець

Крок 3

Початок

n

Введення п

Ітеруємось через числа від 1 до п включно з кроком 1.

Створюємо змінні numLength, k і присвоюємо їм значення numLength = 0, k = i .

Створюємо ітераційний цикл з передумовою.

Ділимо змінну k на 10 і додаємо до numLength одиницю поки здійснюється умова k >= 1.

Створюємо змінні square, divisor, condition і присвоюємо їм значення square = pow(i, 2), divisor = pow(10, numLength), condition = square % divisor. Виводимо користувачу число, якщо воно задовільняє умову: i == condition.

Кінець

Крок 4

Початок

n

Введення п

повторити

для і від 1 до п

Створюємо змінні numLength, k і присвоюємо їм значення numLength = 0, k=i .

Створюємо ітераційний цикл з передумовою.

Ділимо змінну k на 10 і додаємо до numLength одиницю поки здійснюється умова $k \ge 1$.

Створюємо змінні square, divisor, condition і присвоюємо їм значення square = pow(i, 2), divisor = pow(10, numLength), condition = square % divisor.

Виводимо користувачу число, якщо воно задовільняє умову: і == condition.

все повторити

Кінець

Крок 5

Початок

n

Введення п

повторити

для і від 1 до п

numLength := 0

k := i

Створюємо ітераційний цикл з передумовою.

Ділимо змінну k на 10 і додаємо до numLength одиницю поки здійснюється умова $k \ge 1$.

Створюємо змінні square, divisor, condition і присвоюємо їм значення square = pow(i, 2), divisor = pow(10, numLength), condition = square % divisor.

Виводимо користувачу число, якщо воно задовільняє умову: і == condition.

все повторити

```
Кінець
```

k := i

```
Крок 6
Початок
  n
  Введення п
  повторити
  для і від 1 до п
    numLength := 0
    k := i
    повторити
    поки k >= 1
         Ділимо змінну k на 10 і додаємо до numLength одиницю поки
         здійснюється умова k \ge 1.
     все повторити
    Створюємо змінні square, divisor, condition і присвоюємо їм значення
    square = pow(i, 2), divisor = pow(10, numLength), condition = square %
    divisor.
    Виводимо користувачу число, якщо воно задовільняє умову: і
    == condition.
  все повторити
Кінець
Крок 7
Початок
  n
  Введення п
  повторити
  для і від 1 до п
    numLength := 0
```

```
повторити
    поки k >= 1
       k := k / 10
      numLength := numLength + 1
    все повторити
    Створюємо змінні square, divisor, condition і присвоюємо їм значення
    square = pow(i, 2), divisor = pow(10, numLength), condition = square %
    divisor.
    Виводимо користувачу число, якщо воно задовільняє умову: і
    == condition.
  все повторити
Кінець
Крок 8
Початок
  n
  Введення п
  повторити
  для і від 1 до п
    numLength := 0
    k := i
    повторити
    поки k >= 1
       k := k / 10
      numLength := numLength + 1
    все повторити
    square := pow(i, 2)
    divisor := pow(10, numLength)
    condition := square % divisor.
    Виводимо користувачу число, якщо воно задовільняє умову: і
    == condition.
```

все повторити

Кінець

Кінець

```
Крок 9
Початок
  n
  Введення п
  повторити
  для і від 1 до п
    numLength := 0
    k := i
    повторити
    поки k >= 1
       k := k / 10
       numLength := numLength + 1
    все повторити
    square := pow(i, 2)
    divisor := pow(10, numLength)
    condition := square % divisor.
    якщо i == condition
      T0
         Вивід: i + " = " + square
  все повторити
```

Блок-схема алгоритму

Випробування алгоритму

Блок	Дія	
	Початок	
1	Введення n = 10000	
2	i = 1	
3	numLenght = 1	
4	square = 1	
5	divisor = 10	
6	condition = 1	
7	1 == 1	
8	Виведення: 1 = 1	
9	i = 2	
10	numLenght = 1	
11	square = 4	
12	divisor = 10	
13	condition = 4	
14	2 == 4	
15	i = 3	
16	numLenght = 1	
17	square = 9	
18	divisor = 10	
19	condition = 9	
20	3 == 9	
30	i = 6	
31	numLenght = 1	
32	square = 36	
33	divisor = 10	
34	condition = 6	

35	6 == 36
36	Виведення: 6 = 36
125	i = 25
126	numLenght = 2
127	square = 625
128	divisor = 100
129	condition = 25
130	25 == 625
131	Виведення: 25 = 625
380	i = 76
381	numLenght = 2
382	square = 5776
383	divisor = 100
384	condition = 76
385	76 == 5776
386	Виведення: 76 = 5776
1880	i = 376
1881	numLenght = 3
1882	square = 141376
1883	divisor = 1000
1884	condition = 376
1885	376 == 141376
1886	Виведення: 376 = 141376
3125	i = 625
3126	numLenght = 3

3127	square = 390625
3128	divisor = 1000
3129	condition = 625
3130	625 == 390625
3131	Виведення: 625 = 390625
46880	i = 9376
46881	numLenght = 4
46882	square = 87909376
46883	divisor = 10000
46884	condition = 9376
46885	9376 == 87909376
46886	Виведення: 9376 = 87909376
	Кінець

Висновок

Протягом п'ятої лабораторної роботи я дослідив особливості роботи складних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання роботи я отримав алгоритм, який знаходить числа, запис яких співпадає з останніми цифрами запису їх квадрату.