Převoditelnost problémů nezávislé množiny na problém hamiltonovského cyklu

() IS ⊲ HC

Cíle prezentace

- seznámit s problémem nezávislé množiny
- seznámit s problémem hamiltonovského cyklu
- seznámit s převodem problému P1 na problém P2 (P1 ⊲ P2)
- prezentovat polynomiální převod problému nezávislé množiny na problém hamiltonovského cyklu.

IS - Independent Set (nezávislá množina)

Nezávislá množina (IS): Je taková podmnožina množiny vrcholů grafu G, že žádná dvojice v této podmnožině netvoří hranu v grafu G.

Problém nezávislé množiny:

- Vstup: neorientovaný graf G (o n vrcholech); číslo k $(k \le n)$.
- Otázka: existuje v G nezávislá množina velikosti k (tj. množina k vrcholů, z nichž žádné dva nejsou spojeny hranou)?

pro k=3, existuje v G IS pro k=4, neexistuje v G IS

pro k=3, existuje v G IS pro k=4, neexistuje v G IS

HC - Hamiltonian Circuit (hamiltonovský cyklus)

Hamiltonovský cyklus (HC): HC je uzavřená smyčka v grafu, která prochází každým vrcholem právě jednou.

Problém hamiltonovského cyklu:

- Vstup: orientovaný graf G.
- Otázka: existuje v G hamiltonovský cyklus (tj. uzavřená orientovaná cesta, procházející každým vrcholem právě jednou)?

existuje HC

neexistuje HC

Definice převodu problémů P1 na problém P2

Problém P1 je polynomiálně převeditelný na problém P2, označme P1 \triangleleft P2, jestliže existuje Turingův stroj M s polynomiální časovou složitostí, který pro libovolný vstup w problému P1 sestrojí vstup w' problému P2, přičemž platí, že odpověď na otázku problému P1 pro vstup w je stejná jako odpověď na otázku problému P2 pro vstup w'.

Polynomiální převod problému IS na problém HC (IS⊲ HC)

 $\mathbf{graf} \ \ \textit{G}\text{, \'c\'islo} \ \ \textit{k} \ \rightarrow \ \mathbf{algoritmus} \ \ \mathbf{p\'revodu} \ \rightarrow \ \mathbf{graf} \ \ \textit{H}$

()

Polynomiální převod problému IS na problém HC (IS HC)

- Algoritmus pro jakýkoliv neorientovaný graf G (o n vrcholech) s číslem k≤n, vytvoří orientovaný graf H, přičemž je zaručeno, že v G existuje nezávislá množina vrcholů (vrcholy nemají společnou hranu) velikosti k, pravě když graf H obsahuje hamiltonovský cyklus (uzavřenou cestu mezi vrcholy tak, že každý vrchol projde právě jednou).
- Převod lze uskutečnit pomocí polynomiálního algoritmu.

() IS ⊲ HC

Je dán graf G o n vrcholech a číslo k (první část konstrukce grafu H je nezávislá na číslu k). Tento graf G převedme na graf H, ve kterém existuje Hamiltonovský cyklus.

Nejprve vytvoříme orientovaný graf H. Vrcholy grafu H jsou trojice (v,e,i), kde $v \in V(G)$, hrana e je incidentní s v a i je 1 nebo 0.

Je dán graf G o n vrcholech a číslo k (první část konstrukce grafu H je nezávislá na číslu k). Tento graf G převedme na graf H, ve kterém existuje Hamiltonovský cyklus.

Nejprve vytvoříme orientovaný graf H. Vrcholy grafu H jsou trojice (v,e,i), kde $v \in V(G)$, hrana e je incidentní s v a i je 1 nebo 0.

Je dán graf G o n vrcholech a číslo k (první část konstrukce grafu H je nezávislá na číslu k). Tento graf G převedme na graf H, ve kterém existuje Hamiltonovský cyklus.

Nejprve vytvoříme orientovaný graf H. Vrcholy grafu H jsou trojice (v,e,i), kde $v \in V(G)$, hrana e je incidentní s v a i je 1 nebo 0.

()

Je dán graf G o n vrcholech a číslo k (první část konstrukce grafu H je nezávislá na číslu k). Tento graf G převedme na graf H, ve kterém existuje Hamiltonovský cyklus.

Nejprve vytvoříme orientovaný graf H. Vrcholy grafu H jsou trojice (v,e,i), kde $v \in V(G)$, hrana e je incidentní s v a i je 1 nebo 0.

IS ⊲ HC 7 / 10

Je dán graf G o n vrcholech a číslo k (první část konstrukce grafu H je nezávislá na číslu k). Tento graf G převedme na graf H, ve kterém existuje Hamiltonovský cyklus.

Nejprve vytvoříme orientovaný graf H. Vrcholy grafu H jsou trojice (v,e,i), kde $v \in V(G)$, hrana e je incidentní s v a i je 1 nebo 0.

()

Pravidlo 1

 \bullet ((v,e,0),(v,e,1)), kde v \in e \in E(G)

Pravidlo 1

 $\qquad \qquad ((v,e,0),(v,e,1)), \text{ kde } v{\in}e{\in}E(G)$

Pravidlo 1

 $\qquad \qquad ((v,e,0),(v,e,1)), \text{ kde } v{\in}e{\in}E(G)$

Pravidlo 1

 $\qquad \qquad ((v,e,0),(v,e,1)), \text{ kde } v{\in}e{\in}E(G)$

Pravidlo 1

 $\qquad \qquad \bullet \quad ((v,e,0),(v,e,1)), \text{ kde } v{\in}e{\in}E(G)$

Pravidlo 2

• ((v,e,i),(w,e,i)), kde $e=(v,w)\in E(G), i=0,1$

Pravidlo 2

• ((v,e,i),(w,e,i)), kde $e=(v,w)\in E(G), i=0,1$

Pravidlo 2

• ((v,e,i),(w,e,i)), kde $e=(v,w)\in E(G), i=0,1$

Pravidlo 3

• $((v,E_{v,j},1),(v,E_{v,j+1},0)),v\in V(G),1\leq j<\deg(v)$

Pravidlo 3

• $((v,E_{v,j},1),(v,E_{v,j+1},0)),v\in V(G),1\leq j<\deg(v)$

Pravidlo 3

• $((v,E_{v,j},1),(v,E_{v,j+1},0)),v\in V(G),1\leq j<\deg(v)$

Byla dokončena pravidla nezávislá na čísle k.

Nyní se přidá n-k vrcholů.

Pravidlo 4

• Pro přehlednost bude čtvrté pravidlo použito jen na vrchol a1.

Pravidlo 4

 $(a_p,(v,E_{v,1},0)),v\in V(G),1\leq p\leq n-k$

Pravidlo 5

• Pro přehlednost bude páté pravidlo použito jen na vrchol a1.

Pravidlo 5

• $((v,E_{v,d},1),a_p),v \in V(G),1 \le p \le n-k, d = deg(v)$

V grafu vytvoříme cestu začínající ve vrcholu a₁. Z vrcholu a_p se lze dostat do kteréhokoliv vstupního vrcholu každého
podgrafu množiny Y (vrcholy grafu, které nepatří do nezávislé množiny).

Přejdeme do libovolného vrcholu a dostaneme se do podgrafu patřícího do Y. Jím projdeme nejkratším možným způsobem až k výstupnímu vrcholu podgrafu.

• Takto lze projít všechny vrcholy v podgrafu z množiny Y a nakonec se vrátit do a_1 a vytvořit cyklus.

Pokud začleníme do vytvořené cesty zbylé vrcholy, vytvoříme tím postupně hamiltonovský cyklus v grafu H.

Nalezení IS v grafu G

Vytržením vrcholů a₁,...,a_{n-k}, dostaneme n-k orientovaných cest. V každé z těchto cest je vždy na začátku vrchol tvaru (v,E_{v,1},0). Tento vrchol v se nazývá vedoucí vrchol.

Nalezení IS v grafu G

lacktriangle Určujících vrcholů je n-k a jelikož je uvažovaný cyklus hamiltonovský, musí mít každá hrana původního grafu G alespoň jeden vrchol určující. Množina vrcholů, které nejsou určující, tedy vytváří nezávislou množinu o k prvcích grafu G.

()