A partition $\{A_j, j \ge 1\}$ of Ω : any finite or countably infinite collection of pairwise disjoint sets, $A_i \cap A_j = \emptyset$ if $i \ne j$, and such that $\bigcup_j A_j = \Omega$.

A partition $\{A_j, j \ge 1\}$ of Ω : any finite or countably infinite collection of pairwise disjoint sets, $A_i \cap A_j = \emptyset$ if $i \ne j$, and such that $\bigcup_i A_j = \Omega$.

$$1 = \mathbf{P}(\Omega) = \mathbf{P}\left(\bigcup_{j} A_{j}\right) = \sum_{j} \mathbf{P}(A_{j})$$

A partition $\{A_j, j \ge 1\}$ of Ω : any finite or countably infinite collection of pairwise disjoint sets, $A_i \cap A_j = \emptyset$ if $i \ne j$, and such that $\bigcup_j A_j = \Omega$.

$$1 = \mathbf{P}(\Omega) = \mathbf{P}\left(\bigcup_{j} A_{j}\right) = \sum_{j} \mathbf{P}(A_{j})$$

A special case. If A is any event then $\{A, A^c\}$ partitions Ω :

A partition $\{A_j, j \ge 1\}$ of Ω : any finite or countably infinite collection of pairwise disjoint sets, $A_i \cap A_j = \emptyset$ if $i \ne j$, and such that $\bigcup_i A_j = \Omega$.

$$1 = \mathbf{P}(\Omega) = \mathbf{P}\left(\bigcup_{j} A_{j}\right) = \sum_{j} \mathbf{P}(A_{j})$$

$$\mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{A}^{c}) = 1$$

