Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Artem Gorodilov Naměřeno: 28. dubna 2023

Obor: Astrofyzika **Skupina:** Pá 10:00 **Testováno:** uznano

Úloha č. 9: Měření elektrického napětí a proudu

 $T=20,1~^{\circ}\mathrm{C}$ $p=990~\mathrm{hPa}$

 $\varphi = 34, 2 \%$

1. Zadání

1.1. Analogová část

Pomocí Ohmova zákona a substituční metody určit odpor ampérmetru.

Zvětšit rozsah ampérmetru pomocí bočníku.

Vytvořit voltmetr s rozsahem 5 V a 10 V pomocí předřadníku.

1.2. Digitální část

Určit číselný rozsah 8-bitového a 16-bitového D/A převodníku.

U 8-bitových a 16-bitových převodníků D/A určit reálný rozsah napětí, kvantizační krok, rozlišovací schopnost, chybu offsetu a chybu zesílení.

Určit číslo, při kterém bylo na 16bitovém převodníku napětí 3.2~V.

Určit vliv vzorkovací frekvence na kvalitu analogového signálu.

Určit kvantizační krok A/D převodníku.

2. Teorie

2.1. Analogová část

2.1..1 Odpor ampérmetru

Pro určení odporu ampérmetru s rozsahem 100 μA připojíme ampérmetr ke zdroji proudu a pomocí voltmetru změříme úbytek napětí.

Potom pomocí Ohmova zákona určíme odpor ampérmetru podle následujícího vzorce:

$$R = \frac{U}{I} \tag{1}$$

kde U je měřené napětí, I je proud na ampérmetru a R_V je vnitřní odpor voltmetru.

Pro určení odporu substituční metodou připojíme ampérmetr ke zdroji proudu a pomocí odporové dekády zvolíme takový odpor, aby proud na ampérmetru klesl na polovinu.

2.1..2 Rozsah ampérmetru pomocí bočníku

Pro určení rozsahu ampérmetru pomocí bočníku zapojíme bočník podle obrázku 1. Potom změnou proudu v ampéru určíme odpor na bočníku podle vzorce:

$$R_B = \frac{R_A I_A}{I_B} \tag{2}$$

kde R_A je odpor ampérmetru, I_A je proud ampérmetru a I_B je proud protékající bočníkem.

Obrázek 1: Určení odporu substituční metodou

${\bf 2.1..3}$ Voltmetr s rozsahem 5 Va 10 Vpomocí předřadníku

Pro vytvoření voltmetru v rozsahu 5 V a 10 V pomocí předřadníku zapojíme předřadník k voltmetru podle obrázku 2.

Poté vypočítejte potřebný odpor předřadníku podle vzorce:

$$R_P = (\frac{U_N}{U_A} - 1)R_A \tag{3}$$

kde U_N je napětí zdroje, U_A je dříve získané napětí ampérmetru a R_A je dříve získaný odpor ampérmetru.

Obrázek 2: Určení odporu pomocí předřadníku

2.2. Digitální část

2.2..1 Číselný rozsah 8-bitového a 16-bitového D/A převodníku

Číselný rozsah 8-bitového a 16-bitového převodníku lze určit podle vzorce:

$$2^n - 1 \tag{4}$$

kde n je počet bitů.

2.2..2 Reálný rozsah napětí, kvantizační krok, rozlišovací schopnost, chybu offsetu a chybu zesílení

Pro určení reálného rozsahu napětí, kantizačního kroku, rozlišovací schopnosti, chyby offsetu a chyby zesílení změříme napětí pro různé hodnoty bitů a použijeme následující vzorce:

$$U_C = U_{max} - U_0 \tag{5}$$

$$U_q = \frac{U_c}{2^n - 1} \tag{6}$$

$$\delta_0 = \frac{\Delta U_0}{U_r} \tag{7}$$

$$\delta_{max} = \frac{\Delta U_{max} - \Delta U_0}{U_r} \tag{8}$$

kde U_r je nominální napětí

2.2..3 Číslo, při kterém bylo na 16bitovém převodníku napětí 3.2 V

Abychom zjistili hodnotu bitu, při které je napětí na převodníku $3.2\ V$, je nutné vykreslit graf závislosti napětí na nastavené hodnotě bitu, přičemž předpokládáme, že je lineární, a najít požadovanou hodnotu bitu.

2.2..4 Vliv vzorkovací frekvence na kvalitu analogového signálu

Chcete-li určit vliv vzorkovací frekvence na kvalitu analogového signálu, použijte generátor signálu a měřicí systém ISES k pozorování průběhu při frekvencích 20 kHz, 2 kHz, 1 kHz, 1.1 kHz a 100 kHz. Poté vyhodnoť te, jak sinusový signál vypadá.

2.2..5 Kvantizační krok A/D převodníku

Kvantizační krok A/D převodníku zjistím podle vzorce (6)

3. Měření

Charakteristika měřicích přístrojů:

1. Ampermetr: třída přesnosti je 1.5,

2. Multimetr Keysight U3401A: rozsah je 500 mV, přesnost je (± 0.02% + 4 dgt), rozlišení je 10 μA a vnitřní odpor je 10 $M\Omega$

3.1. Analogová část

3.1..1 Odpor ampérmetru

Byly získány následující hodnoty elektrického proudu a napětí:

$$I = 100 \ \mu A, \ u_C(I) = 1.5 \ \mu A,$$

 $U = 158.04 \ mV, \ u_C(U) = 0.07 \ mV,$

Ze vzorce (1) zjistíme odpor ampérmetru:

$$R = 1580 \ \Omega, \ u_C(R) = 20 \ \Omega$$

Metoda substituce nám poskytla následující výsledky:

$$R = 1584(1) \Omega$$

3.1..2 Rozsah ampérmetru pomocí bočníku

Pomocí vzorce (2) získáme následující výsledky:

0.5
$$mA$$
: $R_{B1} = 316.0(1) \Omega$
1 mA : $R_{B2} = 158.0(1) \Omega$
1.5 mA : $R_{B3} = 105.0(1) \Omega$
2 mA : $R_{B4} = 79.0(1) \Omega$

${\bf 3.1..3}$ Voltmetr s rozsahem 5Va 10Vpomocí předřadníku

Pomocí vzorce (3) získáme výsledek:

$$R_{P1} = 48.4 \ k\Omega, \ u_C(R_{P1}) = 1 \ k\Omega, R_{P2} = 98.4 \ k\Omega, \ u_C(R_{P1}) = 2 \ k\Omega$$

Zkontrolujme výsledek s dekádou odporu:

$$R_{P1} = 47650 \ \Omega$$
$$R_{P2} = 96850 \ \Omega$$

3.2. Digitální část

3.2..1 Číselný rozsah 8-bitového a 16-bitového D/A převodníku

Pomocí vzorce (4) získáme následující výsledky:

8-bitový D/A převodník: 0-255, 16-bitový D/A převodník: 0-65535

3.2..2 Reálný rozsah napětí, kvantizační krok, rozlišovací schopnost, chybu offsetu a chybu zesílení

Naměřené údaje:

	U_0 [V]	$U_{max}[V]$	$U_r[V]$
8-bitový D/A převodník	0.001242734	9.8788577	10
16-bitový D/A převodník	-10.674076	10.696812	21.4

Pomocí vzorců (5), (6), (7) a (8) získáme následující výsledky:

	$U_C[V]$	$U_q[V]$	δ_0	δ_{max}
8-bitový D/A převodník	9.877614966	0.0387357	1.24E-4	0.01199
16-bitový D/A převodník	21.37	3.26E-4	1.211E-3	1.36E-3

${\bf 3.2..3}$ Číslo, při kterém bylo na 16
bitovém převodníku napětí ${\bf 3.2}~V$

Vykreslíme rozsah napětí jako funkci bitů:

Obrázek 3: Rozsah napětí jako funkci bitů

Z toho můžeme zjistit bod, ve kterém je hodnota napětí $3.2\ V$:

 $3.2\ V$: 42545

3.2..4 Vliv vzorkovací frekvence na kvalitu analogového signálu

Po získání vizuálních údajů o chování analogového signálu při různých hodnotách frekvence byly získány následující výsledky:

Frekvence $[kHz]$	Sinusový	Period $[s]$
20	Ano	0.001
2	Ano	0.001
1	Ne	undef
1.1	Ano	0.01
100	Ne	undef

3.2..5 Kvantizační krok A/D převodníku

Pomocí vzorce (6) získáme hodnotu:

$$U_q = 1.22 \ mV$$

K výpočtu chyb byl použit následující kód:

```
import pandas as pd
import numpy as np
import uncertainties as u
from uncertainties import ufloat
from uncertainties.umath import *
from uncertainties import unumpy
I_{-1} = ufloat(100*10**(-6), 1.5*10**(-6))
U_{-1} = ufloat(158.04*10**(-3), 0.07*10**(-3))
R_{-1} = U_{-1} / (I_{-1} - (U_{-1} / (10**10)))
\mathbf{print}(R_{-}1)
R_B_1 = (R_1 * I_1) / (0.5002*10**(-3))
R_{-}B_{-}2 = (R_{-}1 * I_{-}1) / (1.0006*10**(-3))
R_B_3 = (R_1 * I_1) / (1.5002*10**(-3))
R_B_4 = (R_1 * I_1) / (2*10**(-3))
\mathbf{print}(R_-B_-1)
\mathbf{print}(R_-B_-2)
print (R_B_3)
print (R_B_4)
R_{-}P_{-}1 = ((5 / U_{-}1) - 1) * R_{-}1
R_{-}P_{-}2 = ((10 / U_{-}1) - 1) * R_{-}1
\mathbf{print}(R_-P_-1)
\mathbf{print}(R_-P_-2)
```

4. Závěr

4.1. Analogová část

V této části jsem získal následující hodnotu odporu ampérmetru: $R=1580~\Omega.$ Výsledek jsem potvrdil pomocí substituční metody: $R=1584~\Omega.$

Dále jsem určil rozsah ampérmetru pomocí bočníku: 0.5 $mA: R_{B1} = 316.(1) \Omega$, 1 $mA: R_{B2} = 158.(1) \Omega$, 1.5 $mA: R_{B3} = 105.(1) \Omega$, 2 $mA: R_{B4} = 79.(1) \Omega$.

Nakonec jsem vyrobil voltmetr v rozsahu 5 V a 10 V a určil jeho odpor: $R_{P1}=47650~\Omega,~R_{P2}=96850~\Omega.$

4.2. Digitální část

Zde jsem definoval řadu 8-bitových a 16-bitových převodníků: 8-bitový: 0-255, 16-bitový: 0-65535 Pak jsem našel reálný napěťový rozsah, kvantizační krok, chybu ofsetu a chybu měřítka: 8-bitový: $U_C=9.88~V,~U_q=0.04~V,~\delta_0=1.24\text{E-4},~\delta_{max}=0.012,~16\text{-bitový}:~U_C=21.4~V,~U_q=3.26\text{E-4}~V,~\delta_0=1.21\text{E-3},~\delta_{max}=1.36\text{E-3}.$

Pak jsem našel hodnotu bta, při které bude napětí 3.2 V: 3.2 V: 42545.

Poté jsem určil kvalitu analogového signálu pro různé frekvence. Z toho vyplynulo, že při frekvencích 1.1 kHz, 20 kHz a 2 kHz byl signál správný a při frekvencích 1 kHz a 100 kHz byl signál nesprávný. Z toho vyplývá, že frekvence musí být nejméně dvakrát vyšší než frekvence signálu.

Pak jsem našel kvantizační krok A/D převodníku: $U_q=1.22\ mV$