# Algorithms

Arthur J. Redfern arthur.redfern@utdallas.edu
Feb 11, 2019

### Outline

- Motivation
- Sorting
- Application to xNNs
- References

### Disclaimer

- This set of slides is more accurately titled "A brief refresher of a subset of algorithms for people already somewhat familiar with the topic followed by it's specific application to xNN related items needed by the rest of the course"
- However, that's not very catchy so we'll just stick with "Algorithms"
- In all seriousness, recognize that algorithms is a very broad and deep topic that has and will continue to occupy many lifetimes of work; if interested in learning more, please consult the references to open a window into a much larger world

# Motivation

### Layers And Post Processing

- An algorithm is a set of rules for solving a problem
  - An exceedingly brief look at ~ 1 example for 1 problem is covered here
  - So in addition to the earlier disclaimer, calling this set of slides "Algorithms" was still optimistic by 1 letter too many
- Max is a a key component of a common CNN layer and a subset of sorting
  - Max pooling
  - Also as part of spatial pyramid and region of interest pooling variants
- Sorting is a key component of common post processing methods
  - Median and rank order filtering
  - Non maximal suppression

# Sorting

### Definition

• From Wikipedia: arranging items in a sequence which is ordered based on some criteria

### Comparison Sort

- A type of sorting algorithm that applies a comparison operator to elements in a list
- The comparison operator satisfies 2 properties

• Transitivity: if  $a \le b$  and  $b \le c$  then  $a \le c$ 

• Totalness:  $\forall$  a, b either a  $\leq$  b or b  $\leq$  a

### Comparison Sort

- Optimal comparison sorts (in the sense of minimizing the number of comparisons) require  $O(N \log_2(N))$  comparisons where N is the length of the sequence
- A standard (quasi) proof
  - There are N! possible arrangements of a sequence of length N
  - C comparisons can distinguish between 2<sup>C</sup> different arrangements
  - To distinguish between all possible arrangements requires  $2^{C} \ge N!$ 
    - $C \ge \log_2(N!)$   $\approx N \log_2(N) N \log_2(e) + O(\log_2(N))$ , via Stirling's approximation  $= O(N \log_2(N))$

### Comparison Sort

- An information theory based (quasi) proof of the same bound
  - There are N! possible arrangements of a sequence of length N
  - View the arrangements as a random variable X(s)
    - The probability of each arrangement is 1/N!
    - Uniform probability mass function with support of size N!
  - The entropy (information) of a realization of this random variable
    - $H(X(s)) = -\sum (1/N!) \log_2(1/N!) = \log_2(N!)$
  - Each comparison in a comparison sort gives at most 1 bit of information
  - To reduce the entropy to 0 with C comparisons need  $\log_2(N!) C \le 0$ 
    - $C \ge \log_2(N!) \approx O(N \log_2(N))$

### Sequential Merge Sort

- The previous slides discussed comparison sorts and bounds on the minimum number of comparisons in theory
- The sequential merge sort is an example sorting algorithm that achieves the bound in practice
  - Exploits that 2 sorted lists of size N/2 can be merged into a sorted list of size N using N – 1 comparisons
  - Recursively divides a list into 1/2 size lists then applies the exploit
  - It's a divide and conquer style algorithm a la the FFT



### Sequential Merge Sort

- The number of comparisons in sequential merge sort
  - Depth

$$D = log_2(N)$$

$$d = 0, ..., D - 1$$

$$M_d = 2^{d+1}$$

$$M_d - 1$$

$$(N/M_d) (M_d - 1) = N (M_d - 1) / M_d \approx N$$

$$O(N D) = O(N \log_2(N))$$

### Going Faster: Exploit Information

- It's possible to sort a list faster than a comparison sort using **less than**  $O(N \log_2(N))$  comparisons if there's known information about the list that's exploitable
  - Remember that a uniform distribution is an entropy maximizing distribution
  - Thinking about sorting from an information theoretic approach, if the probability of the N! possible arrangements is not uniform then  $H(X(s)) < \log_2(N!)$  and fewer operations are needed to reduce the information to below 0
  - Maybe apply the known information exploit recursively
  - Maybe clean up approximate arrangement at the end with a comparison sort

#### Example

- Consider sorting 1M last names of random Dallas residents
- Approximate statistics are known ahead of time as to where a given last name will end up in the final list

### Going Faster: Parallel Comparisons

- It's possible to sort a list faster than a comparison sort using **more than**  $O(N \log_2(N))$  comparisons (whaaaaat?)
- A few comments on the direct parallelization of sequential merge sort
  - Separate merges at a given depth are disjoint and can run in parallel (good)
  - Within a merge operation comparisons are done sequentially (bad)
  - Put another way the elements involved in a comparison are dependent on the input (still bad)
- Strategy for going faster on hardware that is optimized for parallel computation: instead
  of optimizing to minimize the number of comparisons, now optimize to minimize the
  number of sequential dependencies

### Parallel Merge Sort Network

- Sorting networks
  - Loosely: a fixed structure of comparisons (with swaps) that sorts inputs
  - Cookbook rules for creation of some types
  - No input dependence
  - Prove correctness via sorting all 0 / 1 sequences



- A merge sort style sorting network
- O(N log<sub>2</sub>(N) log<sub>2</sub>(N)) comparisons
  - More than a sequential merge sort
- $\log_2(N) (\log_2(N) + 1) / 2$  sequential steps
  - Less than a sequential merge sort, this is the key
  - If time: story of Gauss and a misbehaving class



### Parallel Merge Sort Network



# Application To xNNs

- It's common in the encoder portion of CNNs to gradually reduce spatial resolution to increase the receptive field size and reduce the data volume (complexity)
  - CNN style 2D convolution with down sampling (striding) is 1 common way of doing this
  - Pooling is another common way of doing this
- Pooling is a spatial operation that works on individual feature maps (not across feature maps) and maps inputs to down sampled outputs
  - Some variants use max operations and finding the max is a subset of sort hence it's inclusion here
- Common pooling layers (pooling size / stride)
  - Max pooling 3 x 3 / 2 and 2 x 2 / 2
  - Average pooling
     3 x 3 / 2 and 2 x 2 / 2 // doesn't need sorting
  - Global average pooling  $L_r \times L_c / L_r \times L_c$  // doesn't need sorting
  - Spatial pyramid pooling  $R_r \times R_c / D_r \times D_c$  to produce a fixed number of  $(R_r/D_r)(R_c/D_c)$  elements

| 31 | 21 | 33 | 34 | 5  | 2  | 15 |
|----|----|----|----|----|----|----|
| 10 | 29 | 32 | 6  | 27 | 16 | 13 |
| 7  | 4  | 28 | 20 | 24 | 30 | 26 |
| 25 | 18 | 14 | 35 | 22 | 1  | 3  |
| 17 | 23 | 12 | 8  | 19 | 9  | 11 |







| 31 | 21 | 33 | 34 | 5  | 2  | 15 |
|----|----|----|----|----|----|----|
| 10 | 29 | 32 | 6  | 27 | 16 | 13 |
| 7  | 4  | 28 | 20 | 24 | 30 | 26 |
| 25 | 18 | 14 | 35 | 22 | 1  | 3  |
| 17 | 23 | 12 | 8  | 19 | 9  | 11 |



| 33 | 34 | 30 |
|----|----|----|
| 28 | 35 | 30 |





| 29 | 68 | 53 |
|----|----|----|
| 66 | 58 | 26 |

| 31 | 21 | 33 | 34 | 5  | 2  | 15 |
|----|----|----|----|----|----|----|
| 10 | 29 | 32 | 6  | 27 | 16 | 13 |
| 7  | 4  | 28 | 20 | 24 | 30 | 26 |
| 25 | 18 | 14 | 35 | 22 | 1  | 3  |
| 17 | 23 | 12 | 8  | 19 | 9  | 11 |



| 33 | 34 | 30 |
|----|----|----|
| 28 | 35 | 30 |

| 32 | 36 | 68 | 56 | 72 | 48 |
|----|----|----|----|----|----|
| 8  | 40 | 64 | 84 | 80 | 12 |
| 28 | 96 | 92 | 76 | 16 | 4  |
| 52 | 88 | 44 | 20 | 60 | 24 |



| 29 | 68 | 53 |
|----|----|----|
| 66 | 58 | 26 |

| 31 | 21 | 33 | 34 | 5  | 2  | 15 |
|----|----|----|----|----|----|----|
| 10 | 29 | 32 | 6  | 27 | 16 | 13 |
| 7  | 4  | 28 | 20 | 24 | 30 | 26 |
| 25 | 18 | 14 | 35 | 22 | 1  | 3  |
| 17 | 23 | 12 | 8  | 19 | 9  | 11 |







### Median And Rank Order Filtering

- 1D and 2D convolution (correlation)
  - Define filter coefficients  $h(\tau)$ ,  $\tau = 0$ , ..., L 1
  - Generate outputs y(n) from inputs x(n) for the 1D correlation case as

$$y(n) = \sum_{\tau} h(\tau) x(n + \tau), n = 0, ..., N - L$$

- Linear filter with trainable parameters
- 1D and 2D rank order filtering
  - Define filter length L and rank R
  - Generate outputs y(n) from inputs x(n) for the 1D rank order case as

$$y(n) = select_R(sort(x(n), ..., x(n + L - 1))), n = 0, ..., N - L$$

• Nonlinear filter with 1 parameter R that selects the Rth element from the sorted array

### Median And Rank Order Filtering

- Mathematical morphology
  - Erosion
    - 2D rank order filtering where the smallest element is selected
    - Most commonly used on binary images but also applicable to gray scale images
  - Dilation
    - 2D rank order filtering where the largest element is selected
    - Most commonly used on binary images but also applicable to gray scale images
  - Opening
    - Erosion followed by dilation
  - Closing
    - Dilation followed by erosion

### Non Maximal Suppression

Note: non maximal suppression will be covered in more detail in the vision application slides

#### Vision

- Multiple object detection networks frequently have a common convolutional tail and body of a network that takes inputs and generates strong features and 2 heads that work together to do multiple object detection
- Head 1 to produce region proposals
  - Box coordinates vs anchors and a score indicating likelihood of an object of any class
  - Non maximal suppression can be applied here to keep R best region proposals
- Head 2 to classifies the R best region proposals each to 1 of C classes
  - Could use spatial pyramid pooling to extract
  - Class 0 ends up with  $R_0$  possibilities (box coordinates + class probability)
  - Class 1 ends up with R<sub>1</sub> possibilities (box coordinates + class probability)
  - ...
  - Non maximal suppression can be applied here to each class individually to keep the  $N_c$  best estimates for that class
  - A minimum probability threshold for each class is typically also used

### Non Maximal Suppression

Note: non maximal suppression will be covered in more detail in the vision application slides

- Non maximal suppression algorithm
  - Inputs contain scores and box locations
  - Create a score list by sorting the entries based on the score
    - This is why non maximal suppression is being discussed here
  - Repeat the following until no more entries with scores above a threshold are in the score list
    - Start with the entry with the best score on the score list
    - Remove other entries (suppress non maximals) from the score list with significant overlap
    - Add the best entry from the score list to the prediction list
    - Remove the best entry from the score list

#### Variants

- Can play games like averaging a few together, instead of removing others penalize them by reducing their score, ...
- A difficulty is finding balance between suppressing windows and detecting close together objects (overlap parameter choice)

# References

### Sorting

- Sorting networks and their applications
  - https://dl.acm.org/citation.cfm?id=1468121
- Batcher's odd-even merging network
  - http://bekbolatov.github.io/sorting/
- Batcher's odd-even merging network
  - http://sparkydots.blogspot.com/2015/05/batchers-odd-even-merging-network.html

### Application To xNNs

- Soft-NMS Improving Object Detection With One Line of Code
  - https://arxiv.org/abs/1704.04503
- Learning non-maximum suppression
  - https://arxiv.org/pdf/1705.02950.pdf