

A Comparison of Path Tracing based Sampling Strategies for Global Illumination Methods

• Ruixin Tang

CONTENTS

Introduction

PART ONE

- Ray Tracing
- Problem
- Research Question

Ray Tracing

Ray Tracing

a rendering technique for generating an image by tracing the light as pixels in an image plane and simulating the effects of its encounters with virtual objects.

Problem

Problem

Research Question

Background

Q 2 PART TWO

- Illumination
- Path Tracing
- Bidirectional Path Tracing
- Next Event Estimation
- Energy Redistribution Path Tracing

Path Tracing in the world

Path Tracing

Shoot rays

Shooting rays from camera to pixels

Path

Create a reflection path

Bidirectional Path Tracing

Next Event Estimation

Energy Redistribution Path Tracing

Conclusion

Result

Mutation

Conclusion

Result

Introduction **Background** Setup Result Conclusion **Energy Redistribution Path Tracing Redistribution** distribute the energy if mutation succeeds

Setup

- References
- Code arrangement
- Features
- Output method

Reference

References

[1]Peter Shirley, Ray Tracing in One Weekend, Version 3.1.1, 2020-05-16

[2] Peter Shirley, Ray Tracing: The Next Week, Version 3.1.1, 2020-05-16

[3]Matt Pharr, Wenzel Jakob, and Greg Humphreys, Physically Based Rendering: From Theory To Implementation, 2004

[4]David Cline, Justin Talbot, Parris Egbert, Energy redistribution path tracing, ACM SIGGRAPH2005 pp.1186-1195, July 2005

[5]Eric veach, Robust Monte Carlo methods for light transport simulation, chapter 10 'bidirectional path tracing', Stanford University, 1997

[6]Kajiya J. T. 1986. The Rendering Equation. In SIGGRAPH 1986.

[7]Z.Liu, The study of path tracing based Energy Redistribution Global Illumination Method, Tianjin University, June 2007

[8]Jacco Bikker, INFOMAGR - Advanced Graphics in Utrecht University, 2016

Code Arrangement

Features

Light transport

- Diffuse Inter-reflection
- Soft Shadow
- Color Bleeding

4 different algorithms

In order to compare the performance between different tracing algorithms

Multi-threading

Using multi-threading to accelerate the programme process

Texture

Texture that maps to the surface of an object

Result

ImprovementComparison PART FOUR

Left: path tracer / 15 seconds Right: BDPT / 28 seconds

Left: path tracer / 4 seconds Right: BDPT / 8 seconds

Left: path tracer / 14 seconds Right: BDPT / 27 seconds

Background Setup

Output NEE against PT

Result

Conclusion

16 samples per pixel

Left: path tracer / 18 seconds Right: with NNE / 20 seconds

Left: path tracer / 20 seconds Right: with NNE / 27 seconds

Left: path tracer / 14 seconds Right: ERPT(10 mutations) / 99 seconds

Left: path tracer / 13 seconds Right: ERPT(10 mutations) /87 seconds

Conclusion

Left: path tracer / 4 seconds Right: ERPT(10 mutations) / 26 seconds

Introduction Background Setup Result Conclusion Output Multiple objects 800 seconds **Bidirectional Path Path tracing** tracing

Introduction Background

Setup

Result

Conclusion

Result
Output

Conclusion

Multiple objects 800 seconds

Setup

Output

Output

Result

Conclusion

Multiple objects 800 seconds

Conclusion

05
PART FIVE

Answer & Reflection

Thank you for watching