

SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

2017

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 14 pages. Hierdie nasienriglyne bestaan uit 14 bladsye.

1.1 $\mathsf{D}\,\checkmark\checkmark$ (2)

1.2 $\mathsf{D}\,\checkmark\checkmark$ (2)

1.3 B ✓ ✓ (2)

1.4 A $\checkmark\checkmark$ (2)

 $1.5 C \checkmark \checkmark (2)$

1.6 A $\checkmark\checkmark$ (2)

1.7 B ✓ ✓ (2)

1.8 D ✓ ✓ (2)

1.9 C ✓ ✓ (2)

 $1.10 \quad C \checkmark \checkmark \tag{2}$

QUESTION/VRAAG 2

2.1 A bond / an atom / a group of atoms ✓ that <u>determine(s) the</u> (physical and chemical) <u>properties</u> of a group of organic compounds. ✓ 'n Binding / 'n atoom / 'n groep atome <u>wat die</u> (fisiese en chemiese) <u>eienskappe</u> van 'n groep organiese verbindings <u>bepaal</u>. (2)

2.2.2 Carboxyl (group) / karboksiel(groep) ✓ (1)

2.3 2.3.1 Ketones / *Ketone* ✓ (1)

2.3.2 H H O H H H H
H—C — C — C — C — H | Marking criteria/Nasienriglyne:

H—C — C — C — C — H | Functional group/
Funksionele groep korrek ✓

• Whole structure correct/
Hele struktuur korrek: $\frac{3}{3}$

Two methyl substituents/

Twee metielsubstituente ✓

(3)

[20]

2.4.1 5-bromo-4-ethyl-2,2-dimethylhexane 5-bromo-4-etiel-2,2-dimetielheksaan

Marking criteria/Nasienriglyne:

- Correct stem i.e. <u>hexane</u>./Korrekte stam d.i. <u>heksaan</u>. ✓
- All substituents (bromo, ethyl and dimethyl) correctly identified./Alle substituente (bromo, etiel en dimetiel) korrek geïdentifiseer. ✓
- IUPAC name completely correct including numbering, sequence, hyphens and commas./IUPAC-naam heeltemal korrek insluitende volgorde, koppeltekens en kommas . ✓

(3)

OR/OF

4-methyl-2-pentyne / 4-metiel-2-pentyn

NOTE/LET WEL

4-methyl / 4-metiel ✓ pent-2-yne / pent-2-yn ✓

IUPAC name correct but hyphens omitted / IUPAC naam korrek maar koppeltekens uitgelaat: 1/2

(2) **[13]**

QUESTION/VRAAG 3

3.1 3.1.1

Marking criteria/Nasienriglyne:

- Functional group√
 Funksionele groep korrek
- Methyl substituent on C-2√ Metielsubstituent op C-2
- Whole structure correct Hele struktuur korrek: 3/3

Accept/Aanvaar:

-OH as condensed -OH as gekondenseerd

(3)

3.1.2 D ✓

Accept/Aanvaar:

butan-1-ol (1)

3.1.3 G ✓

Accept/Aanvaar

2-methylpropan-2-ol / 2-metielpropan-2-ol (1)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

3.2.1 (Increase in) chain length / molecular size / molecular mass/ number of C-atoms/ surface area / contact area / number of electrons ✓ (Toename in) kettinglengte / molekulêre grootte / molekulêremassa / aantal C-atome (reaksie)oppervlakte / kontakopperlakte / aantal elektrone

(1)

3.2.2 London forces / dispersion forces / induced dipole forces ✓ Londonkragte / dispersiekragte / geïnduseerde dipoolkragte

(1)

3.3

3.3.1 108 (°C) ✓

(1)

- 3.3.2 Compare compound F with compounds C and D: Vergelyk verbinding F met verbindings C en D:
 - Compound <u>F</u> has a larger molecular mass / molecular size / surface area/contact area / number of C-atoms / number of electrons / <u>than compound C</u>. ✓

 Verbinding <u>F</u> het 'n groter molekulêre massa/molekulêre grootte / (reaksie)oppervlakte /kontak area / aantal C-atome / aantal elektrone <u>as verbinding C</u>.
 - Compound <u>F is more branched than compound D.</u> ✓ Verbinding F is meer vertak as verbinding **D**.
 - Intermolecular forces in compound **F** are stronger than in compound **C** and weaker than in compound **D**. ✓
 Intermolekulêre kragte in verbinding **F** is sterker as in verbinding **C** en swakker as in verbinding **D**.
 - More energy needed to overcome intermolecular forces in compound F than in compound C and less energy needed to overcome (break) intermolecular forces in compound F than in compound D. ✓ Meer energie word benodig om intermolekulêre kragte in verbinding F te oorkom as in verbinding C, en minder energie word benodig om intermolekulêre kragte in verbinding F te oorkom / breek as in verbinding D.

3.4

Marking criteria/Nasienriglyne:	
At least one structural formula of methanol as shown. Ten minste een struktuurformule van metanol soos aangetoon.	✓
Dotted line drawn from O atom on one molecule to H atom bonded to an O atom in the second molecule. (H atom should be between two O atoms.) Stippellyn getrek van O-atoom op een molekuul na die H-atoom gebind aan 'n O-atoom in die tweede molekuul. (H-atoom moet tussen twee O-atome wees.)	✓
Accept/Aanvaar: -OH as condensed / -OH as gekondenseerd	

(2)

(4)

3.5.1 Esterification / Condensation ✓ Verestering / Esterifikasie / Kondensasie

(1)

3.5.2

Marking criteria/Nasienriglyne:

- Functional group/ Funksionele groep korrek ✓
- Whole structure correct/ Hele struktuur korrek: $\frac{2}{2}$

(2) [17]

QUESTION/VRAAG 4

4.1

4.1.1 Addition / hydrogenation ✓ Addisie / hidrogenering / hidrogenasie

(1)

Substitution / halogenation / chlorination ✓ 4.1.2 Substitusie / halogenering / halogenasie / chlorinering / chlorinasie

(1)

Elimination / dehydration ✓ 4.1.3 Eliminasie / dehidrasie / dehidrering (1)

2-bromopropane ✓ 4.2 2-bromopropaan

Note/Aantekening:

IF/INDIEN:

Bromopropane/bromopropaan

2-bromo√

propane√ (2)

4.3

4.3.1 Dehydrohalogenation / Dehydrobromination ✓ Dehidrohalogenering / dehidrohalogenasie / dehidrobrominering / dehidrobrominasie

(1)

- 4.3.2 Hot√ ethanolic strong base√
 - Concentrated strong base / NaOH / KOH✓ Gekonsentreerde sterk basis / NaOH / KOH

OR/OF

Strong base with no water / Sterk basis met geen water nie.

OR/OF

Strong base in (pure) ethanol as solvent. / Sterk basis in (suiwer) etanol as oplosmiddel.

Strongly heated or hot base / Sterk verhitte of warm basis

OR/OF

High temperature/heat strongly / Hoë temperatuur/sterk verhit

(2)

(1)

4.4.2

Notes/Aantekeninge:

- Ignore/Ignoreer ⇌
- Accept HCl and H2O as condensed./Aanvaar HCl en H2O as gekondenseerd.
- Any additional reactants and/or products

Enige addisionele reaktanse en/of produkte:

Max./Maks. $\frac{3}{4}$

Accept coefficients that are multiples.
 Aanvaar koëffisiënte wat veelvoude is.

Incorrect balancing/Verkeerde balansering:

Max./Maks. 3/

• Molecular/condensed formulae

Molekulêre/gekondenseerde formule:

Max./Maks. $\frac{2}{4}$

Accept/Aanvaar: -OH as condensed / -OH as gekondenseerd

(4) [**13**]

QUESTION/VRAAG 5

5.1

5.1.1 To measure volume / amount ✓ of gas/oxygen produced.

Om die volume van die gas / suurstof berei te meet.

(1)

5.1.2 Catalyst / Speeds up the reaction. / Increases reaction rate. ✓ Katalisator / Versnel die reaksie. / Verhoog die reaksietempo.

(1)

5.2 No gas / bubbles produced. / Geen gas / borrels word gevorm nie. ✓ **OR/OF**

Volume of gas in syringe remains constant. / The plunger stops moving. *Volume van gas in spuit bly konstant. / Die suier hou op beweeg.*

(1)

5.3 CuO / Copper(II) oxide / catalyst ✓ CuO / koper(II)oksied / katalisator

)oksied / katalisator (1)

- A catalyst provides an alternative pathway of <u>lower activation</u> energy. ✓ 'n Katalisator verskaf 'n pad van <u>laer aktiveringsenergie</u>.
 - More molecules have sufficient / enough kinetic energy. / Meer molekule het voldoende/genoeg kinetiese energie. ✓

OR/OF

More molecules have kinetic energy equal to or greater than the activation energy. Meer molekule het kinetiese energie gelyk aan of groter as die aktiveringsenergie.

- More effective collisions per unit time. / Frequency of effective collisions increases. ✓
 - <u>Meer effektiewe botsings per eenheidtyd</u>. / Frekwensie van effektiewe botsings neem toe.

(3)

5.5.1 Released / Vrygestel ✓

Products at lower (potential) energy than reactant. / Reaction is exothermic / $\Delta H < 0~\checkmark$

Produkte by laer (potensiële) energie as reaktans. / Reaksie is eksotermies. / $\Delta H < 0$

5.5.2 B ✓

(1)

(2)

5.6

 $n(O_2)_{produced} = \frac{V}{V_m}$ $= \frac{0.4}{25} \checkmark$ = 0.016 mol

Marking criteria/Nasienriglyne:

- Use 0,4 dm³ and 25 dm³ to calculate n(O₂).
 ✓
 Gebruik 0,4 dm³ en 25 dm³ om n(O₂) te bereken.
- Use/Gebruik n(H₂O₂) = 2n(O₂). ✓
- Substitute/Vervang 0,05 dm³ in a/'n relevant formula /relevante formula ✓
- Substitute ∆c/∆n in rate formula. ✓
 Vervang ∆c/∆n in tempoformule.
- Substitute ∆t in rate formula ✓ Vervang ∆t in tempoformule.
- Final answer/Finale antwoord:
 0,11 mol·dm⁻³·min⁻¹√
 Range/Gebied: 0,11 to 0,14 mol·dm⁻³·min⁻¹

OPTION/OPSIE 1

 $n(H_2O_2)_{used/gebruik} = 2(0,016) \checkmark$ = 0,032 mol $[H_2O_2] = \frac{n}{V} \checkmark$ $= \frac{0,032}{0,05} \checkmark$

= 0,64 mol·dm⁻³

$$Rate/tempo = -\frac{\Delta c}{\Delta t}$$

$$= -\frac{0 - 0,64}{5,8 - 0} \checkmark$$
= 0,11 (mol·dm⁻³·min⁻¹) \checkmark

Accept /Aanvaar: $\frac{0.64}{5.8}$ and -0.64

OPTION/OPSIE 2

Rate at which O_2 is formed: Tempo waarteen O_2 vorm:

rate = $\frac{\Delta n}{\Delta t}$ = $\frac{0.016 - 0}{5.8 - 0}$ = 2.76 x 10⁻³ mol·min⁻¹

Rate/tempo H₂O_{2 used} = 2(rate O_{2formed}) = $2(2.76 \times 10^{-3}) \checkmark$ = $5.52 \times 10^{-3} \text{ mol·min}^{-1}$

Rate/tempo =
$$\frac{5,52 \times 10^{-3}}{0,05} \checkmark$$

= 0,11 (mol·dm⁻³·min⁻¹) \checkmark

(6)

[16]

5.8

1
- 1

6.1.1 Products can be converted back to reactants. ✓ Produkte kan omgeskakel word na reaktanse.

OR/OF

Both forward and reverse reactions can take place. Beide voor-en terugwaartse reaksies kan plaasvind.

(1)

(1)

6.1.2 Endotr

6.1.3

∠ Endothermic/Endotermies ✓

K_c increases with increase in temperature. ✓
 K_c neem toe met toename in temperatuur.

Forward reaction is favoured. / Concentration of products increases. /
Concentration of reactants decreases. ✓
Voorwaartse reaksie word bevoordeel. / Konsentrasie van produkte neem
toe. / Konsentrasie van reaktanse neem af.

Increase in temperature favours an endothermic reaction. ✓
 Toename in temperatuur bevoordeel 'n endotermiese reaksie.

(3)

- 6.1.4 Increases / Vermeerder ✓
- 6.1.5 Remains the same / Bly dieselfde ✓

(1)

(1)

6.2

6.2.1 Marking criteria/Nasienriglyne:

- (a) Use 48 g·mol⁻¹ to calculate n(Ti). ✓
 Gebruik 48 g·mol⁻¹ om n(Ti) te bereken.
- (b) Use 71 g·mol⁻¹ to calculate $n(Cl_2)$. \checkmark Gebruik 71 g·mol⁻¹ om $n(Cl_2)$ te bereken.
- (c) Use mole ratio/Gebruik molverhouding: $n(Cl_2) = 2n(Ti)$.
- (d) $n(C\ell_2)_{\text{equilibrium/ewewig}} = n(C\ell_2)_{\text{initial/aanvanklik}} n(C\ell_2)_{\text{reacted/reageer}}$.
- (e) Divide by volume/Deel deur volume. ✓
- (f) K_c expression/K_c uitdrukking. ✓
- (g) Substitution of $c(Cl_2)$ in $K_c/Vervanging van <math>c(Cl_2)$ in K_c .
- (h) Final answer/Finale antwoord: 0,25 ✓

 $= 0.25 \checkmark (h)$

OPTION/OPSIE 1			
	Cl ₂	Ti	
Initial quantity (mol) Aanvangshoeveelheid (mol)	6 √ (t	o) 7 √(a)	
Change (mol)/Verandering (mol)	2	1	─ Use mole ratio✔(— <i>Gebruik</i>
Quantity at equilibrium (mol) Hoeveelheid by ewewig (mol)	4 √(0	d) 6 (a)	molverhouding
Equilibrium concentration (mol·dm ⁻³)	2		Divide by 2√(e) Deel deur 2
$K_c = \frac{1}{\left[Cl_2\right]^2} \checkmark (f)$	No K _C expres	,	e K _c -uitdrukking:
$(2)^2$	ong K_c express. $\frac{5}{8}$	ssion/Verkeerd	le K _c -uitdrukking:

OPTION/OPSIE 2 $\overline{n(Ti)_{reacted/reageer}} = \frac{m}{M} = \frac{336 - 288}{48 \checkmark} = 1 \text{ mol}$ $n(C\ell_2)_{reacted/reageer} = 2n(Ti) = 2(1) \checkmark = 2 \text{ mol}$ $n(C\ell_2)_{initial/aanvanklik} = \frac{m}{M} = \frac{426}{71} = 6 \text{ mol}$ $n(C\ell_2)_{equilibrium/ewewig} = 6 - 2 \checkmark = 4 \text{ mol}$ $c = \frac{n}{V} = \frac{4}{2} \checkmark$ No K_C expression/*Verkeerde K_c-uitdrukking*: $= \frac{1}{2} \text{ mol} \cdot \text{dm}^{-3}$ Max./Maks. $\frac{7}{8}$ Wrong K_C expression/*Verkeerde K_c-uitdrukking*: Max./Maks. $\frac{5}{8}$

Remains the same / Bly dieselfde ✓ 6.2.2

(1) [16]

(8)

7.1

7.1.1 Weak (acid) / Swak (suur) ✓ (1)

7.1.2 pH = $-\log[H_3O^{\dagger}] \checkmark$ $4 \checkmark = -\log[H_3O^{\dagger}]$ $[H_3O^+] = 1 \times 10^{-4} \text{ mol} \cdot \text{dm}^{-3} \checkmark$ (3)

7.2

7.2.1 A substance that produces hydroxide ions / OH⁻ in water. ✓ ✓ 'n Stof wat hidroksiedione / OH in water vorm.

NOTE/LET WEL:

If water is omitted/Indien water weggelaat is: $\frac{1}{2}$ (2)

7.2.2 Marking guidelines/Nasienriglyne:

- Formula/Formule: $c = \frac{n}{V}/n = cV/\frac{c_a \times V_a}{c_b \times V_b} = \frac{n_a}{n_b}$
- Use mol ratio/Gebruik molverhouding: 1:1 ✓
- Substitution of/Vervanging van: 0,16 x 25 /0,16 x 0,025 ✓
- Use/Gebruik V_b = 12,5 cm³/0,0125 dm³ ✓
- Use/Gebruik 56 g·mol¹ ✓
- Substitute/Vervang V = 0,25 dm³ ✓
- Final answer/Finale antwoord: 4,48 g ✓

OPTION/OPSIE 1 **OPTION/OPSIE 2 OPTION/OPSIE 3** $\overline{c}_a \times V_a = \underline{n}_a \checkmark$ $\frac{c_a \times V_a}{c_b \times V_b} = \frac{n_a}{n_b} \checkmark$ $n(acid)_{used} = cV \checkmark$ $= (0,16)(0,025) \checkmark$ $c_h \times V_h - n_h$ $= 4 \times 10^{-3} \text{ mol}$ $\frac{0.16 \times 25}{c_b \times 12.5} \sqrt{\frac{1}{7}} \frac{1}{1} \sqrt{\frac{1}{1}}$ $0,16 \times 25 \checkmark 1$ $\overline{c_h \times 12.5} \sqrt{1}$ $n(KOH) = 4 \times 10^{-3} \text{ mol } \checkmark$ $c_b = 0.32 \text{ mol} \cdot \text{dm}^{-3}$ $c_b = 0.32 \text{ mol} \cdot \text{dm}^{-3}$ In 12,5 cm 3 : \checkmark $n(KOH) = 4 \times 10^{-3} \text{ mol}$ In 250 cm³ $n(KOH) = \frac{250}{12.5} \times 4 \times 10^{-3} \checkmark \checkmark$ n = 0.08 mol $m = 4,48 g \checkmark$ = 0.08 mol $m(KOH) = \dot{n}M$ $= 0.08 \times 56 \checkmark$ = 80.0 $= 4.48 \, \text{g} \, \checkmark$ $m = 4,48 g \checkmark$

- 7.2.3 Greater than 7 / Groter as 7 ✓
- 7.2.4 $CH_3COO^{-}(aq) + H_2O(\ell) \checkmark \rightleftharpoons CH_3COOH(aq) + OH^{-}(aq) \checkmark$

Due to formation of (OH⁻) the solution is <u>basic</u> / alkaline ✓ As gevolg van die vorming van (OH) is die oplossing basies / alkalies

Notes/Aantekeninge

- Reactants ✓ Products ✓ Ignore balancing
 Reaktanse Produkte Ignoreer balansering
- Ignore/Ignoreer → and phases/en fases.
- Marking rule 6.3.10/Nasienreël 6.3.10

(3) **[17]**

(7)

(1)

O. I		
8.1.1	Emf / Emk ✓	(1)

8.2 Marking criteria/Nasienriglyne: Dependent and independent variables correctly identified. Afhanklike en onafhanklike veranderlikes korrek geïdentifiseer. Relationship between the independent and dependent variables correctly stated./Verwantskap tussen die afhanklike en onafhanklike veranderlikes korrek genoem.

Examples/Voorbeelde:

<u>Emf</u> increases as <u>concentration</u> (of oxidising agent) increases. <u>Emk</u> neem toe soos wat <u>konsentrasie</u> (van die oksideermiddel) toeneem.

NOTE/LET WEL:

IF/INDIEN: Emf is directly proportional to concentration.

Emk is direk eweredig aan konsentrasie.
$$\frac{1}{2}$$
 (2)

X = Copper/Cu/koper ✓

Accept/Aanvaar:

Cu/Cu²⁺ half reaction / half-reaksie

(5)

8.4 $Cu^{2+}(aq) + Zn(s) \checkmark \rightarrow Zn^{2+}(aq) + Cu(s) \checkmark$ Bal. \checkmark

Accept/Aanvaar:

- $X^{2+}(aq) + \overline{Zn}(s) \rightarrow Zn^{2+}(aq) + X(s)$
- Any metal identified in QUESTION 8.3 of which the ion has a +2 charge. Enige metaal geïdentifiseer in VRAAG 8.3 waarvan die ioon 'n +2-lading het.

Notes/Aantekeninge

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse Produkte Balansering
- Ignore phases./Ignoreer fases.
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10/Nasienreël 6.3.10.

(3) **[15]**

QUESTION/VRAAG 9

- 9.1 Electrolytic (cell) / Elektrolitiese (sel) ✓ (1)
- 9.2 P ✓ (1)

9.3

9.3.1 Au(s) \rightarrow Au³⁺(aq) + 3e⁻ \checkmark \checkmark

Ignore phases / Ignoreer fases

Notes/Aantekeninge

$$Au^{3+} + 3e^{-} \leftarrow Au$$
 $(\frac{2}{2})$ $Au^{3+} + 3e^{-} = Au$ $(\frac{0}{2})$

$$Au = Au^{3+} + 3e^{-}$$
 $(\frac{1}{2})$ $Au^{3+} + 3e \rightarrow Au$ $(\frac{0}{2})$

- 9.3.2 (+)3 ✓ (1)
- 9.3.3 <u>Electrical energy (is converted) to chemical energy</u>. ✓ *Elektriese energie (omgeskakel) na chemiese energie.* (1)
- 9.3.4 Becomes smaller / thinner / eroded / decrease in mass.

 Word kleiner / dunner / weggevreet / afname in massa.

 (1)
- 9.4 **ANY ONE/ENIGE EEN:**
 - Increase in value. / Neem toe in waarde. ✓
 - Protection against rust. / Beskerming teen roes.

(1)

(2)

- 9.5 **ANY ONE/ENIGE EEN:**
 - Replace Au³⁺(aq) / electrolyte with Ag⁺(aq) / silver(I) solution / use a silver solution

Vervang $Au^{3+}(aq)$ / elektroliet met $Ag^{+}(aq)$ / silwer(I)-oplossing / gebruik 'n silwer oplossing

Replace P / anode / gold with Ag(s) / silver
 Vervang P / anode / goud met Ag(s) / silwer.

(1) **[9]**

SCE/SSE - Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 10

10.1

- 10.1.1 B/air/lug ✓ & C/methane/metaan ✓ (2)
- 10.1.2 Nitric acid / HNO₃ / salpetersuur ✓ (1)
- 10.1.3 A / Sulphur / Swael / S ✓ (1)
- 10.1.4 $2NH_3(g) + H_2SO_4 \checkmark \rightarrow (NH_4)_2SO_4 \checkmark$ Bal. \checkmark

Notes/Aantekeninge

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse Produkte Balansering
- Marking rule 6.3.10/Nasienreël 6.3.10
- 10.1.5 D / potassium chloride / kalium chloried√ (1)

10.2

10.2.1 | **OPTION/OPSIE 1**:

%P =
$$\frac{3}{7}$$
 x 22%
= 9,43%
∴ m(P) = $\frac{9,43}{100}$ × 2 kg ✓
= 0,19 kg ✓

OPTION/OPSIE 2:

$$\therefore m(P) = \frac{3}{7} \checkmark (0,44) \checkmark (\frac{22}{100} \times 2 = 0,44)$$

= 0,19 kg \left\frac{1}{2}

10.2.2 | **OPTION/OPSIE 1**

m(fertiliser/kunsmis) =
$$\frac{22}{100}$$
 x 2 \checkmark
= 0,44 kg

m(filler/bindstof) =
$$\frac{2 - 0.44}{1.56}$$
 ×

OPTION/OPSIE 2

%filler/bindstof =
$$\frac{100 - 22}{78\%}$$

m(filler/bindstof) =
$$(78 \times 2)$$

= 1,56 kg \checkmark

TOTAL/TOTAAL: 150

Copyright reserved/Kopiereg voorbehou

[14]

(3)

(3)

(3)