有机化学基础·考点·「有机推断」

根据 反应条件 确定官能团

- 1. 「NaOH 水 溶液、加热」为 -X 、酯基、酰胺基的水解反应
- 2. 「NaOH 醇 溶液、加热」为 -X 的消去反应
- 3. 「浓 HNO_3 、浓 H_2SO_4 、加热」为苯环上的硝化反应
- 4. 「浓 $\mathrm{H}_2\mathrm{SO}_4$ 、加热」为 $\mathrm{R}\mathrm{-OH}$ 的消去反应或酯化反应
- 5. 「浓 H_2SO_4 、加热」为酯(R-COO-R')的水解反应
- 6. 「Cl₂/Fe 或 FeCl₃、Br/Fe 或 FeBr₃」 为苯环上的取代反应
- 7. 「 $\mathrm{Cl}_2/$ 光照」优先想到烷烃或烷基(如 $-\mathrm{CH}_3$)的氯代、苯的同系物(如甲苯)侧链烷基上的氯代等
- 8. 「 O_2/Cu 、 \triangle 」为醇羟基的催化氧化或醛基的催化氧化
- 9. 「 $\mathrm{Ag}(\mathrm{NH})_2\mathrm{OH}/\triangle$ 」或「新制的 $\mathrm{Cu}(\mathrm{OH})_2/\triangle$ 」为醛基的氧化反应
- 10. 「 $m H_2/Ni$ 」:碳碳双键、碳碳三键、醛基、羰基、苯环与氢气的加成反应

根据 实际或特征现象 确定官能团

使 $\mathrm{KMnO_4(H^+)}$ 褪色的有机化合物

褪色原理一般为发生了氧化反应

- 1. 分子中含有 碳碳双键、碳碳三键 的不饱和有机化合物
- 2. 苯的同系物(与苯环直接相连的碳上有氢原子)
- 3. 与醛类等有 醛基 的有机物(如醛、甲酸、葡萄糖、麦芽糖等)发生氧化还原反应
- 4. 与羟基直接相连的碳原子上有氢原子的醇类物质, 如甲醇、乙醇等
- 5. 酚类物质(由于其氧化产物也可能有颜色, 所以其褪色不一定明显)

与具有还原性的无机还原剂(如 H_2S 、 SO_2 、KI、 $FeSO_4$ 、HCl 等)发生反应,使高锰酸钾溶液褪色

使溴水褪色的有机化合物

- 1. 分子中含有 碳碳双键、碳碳三键 的不饱和有机化合物
- 2. 含有 醛基 的物质,如醛类、糖类
- 3. 酚羟基所连碳原子的邻、对位上有氢原子的酚类物质
- 4. 萃取
 - 密度大于1的溶剂(水在上层):四氯化碳、氯仿、溴苯、二硫化碳等
 - 密度小于1的溶剂(水在下层):液态的饱和烃、直馏汽油、苯及其同系物、液态环烷烃、液态饱和酯

使溴水褪色等同于使溴的四氯化碳溶液褪色,但 醛基 不能使溴的四氯化碳溶液褪色 ${\rm ZH}_3{\rm CHO} + {\rm Br}_2 + {\rm H}_2{\rm O} = {\rm CH}_3{\rm COOH} + 2\,{\rm HBr} \;,\;\; {\rm EMB}_3{\rm CHO} + {\rm CH}_3{\rm CHO}$

- 与碱性溶液(如 ${
 m NaOH}$ 、 ${
 m Na}_2{
 m CO}_3$ 溶液等)反应,使溴水褪色
- 与较强的无机还原剂(如 H_2S 、 SO_2 、KI、 $FeSO_4$ 等)发生反应,使溴水褪色
- 其它:石油产品(裂化气、裂解气、裂化石油等),天然橡胶等

其他

- 1. 与 H_2 发生加成反应:碳碳双键、碳碳三键、醛基、酮羰基、苯
- 2. 遇 FeCl_3 溶液发生显色反应,或加入饱和溴水出现白色沉淀: $-\operatorname{OH}(\mathbb{R})$
- 3. 加入新制的 $\mathrm{Cu}(\mathrm{OH})_2$,加热有砖红色沉淀生成或加入银氨溶液,加热有银镜生成: $-\mathrm{CHO}$ 、 $\mathrm{HCOO}-$ (甲酸酯基)
- 5. 加入 NaOH 溶液并加热放出 NH_3 : $\stackrel{O}{=}_{C-NH}$
- 6. 遇 I₂ 变蓝: 淀粉
- 7. 遇浓硝酸变黄: 含有苯环结构的蛋白质
- 8. 加入茚三酮溶液并加热,溶液显紫蓝色:蛋白质、 α 氨基酸

根据 有机反应中的定量关系 推断 官能团的数目

- 1. 烃和卤素单质的取代:取代 $1 \, \mathrm{mol}$ 氢原子,消耗 $1 \, \mathrm{mol}$ 卤素单质(X_2)
- 2. 碳碳双键的加成:与 H_2 、 Br_2 、HCl、 H_2O 等加成时按物质的量之比为 1:1 反应
- 3. 含 $-\mathrm{OH}$ (醇、酚) 的有机物与 Na 反应时: $2\,\mathrm{mol}\ -\mathrm{OH}$ 生成 $1\,\mathrm{mol}\ \mathrm{H}_2$
- 4. 1 mol-COOH、-OH(醇、酚) 与 Na₂CO₃ 溶液产生 0.5 mol H₂
- 5. 1 mol-COOH、-OH(酚) 与 Na₂CO₃ 溶液产生 0.5 mol CO₂
- 6. 1 mol-COOH、-OH(酚) 与 NaHCO₃ 溶液产生 1 mol CO₂
- 7. 醛基(CHO) 的定量关系
 - 1.1 mol -CHO 与 2 mol [Ag(NH₃)₂]OH 反应, 生成 2 mol Ag
 - 2. 1 mol -CHO 与 2 mol Cu(OH)₂ 反应, 生成 1 mol Cu₂O
 - $3.1\,\mathrm{mol}$ 甲醛含 $2\,\mathrm{mol}$ $-\mathrm{CHO}$,其余定量关系和上述相同
- 8. 有机物与 $Cu(OH)_2$ 的定量关系
 - 水解: $1 \operatorname{mol} \operatorname{CHO} \longrightarrow 2 \operatorname{mol} \operatorname{Cu}(\operatorname{OH})_2$
 - 中和: $1 \operatorname{mol} \operatorname{COOH} \longrightarrow 1 \operatorname{mol} \operatorname{Cu}(\operatorname{OH})_2$
- 9. 有机物与 NaOH 的定量关系
 - 中和:
 - 1. $1 \, \mathrm{mol} \mathrm{COOH} \longrightarrow 1 \, \mathrm{mol} \, \mathrm{NaOH}$
 - $2.1 \, \mathrm{mol} \mathrm{OH}(\mathbf{R}) \longrightarrow 1 \, \mathrm{mol} \, \mathrm{NaOH}$
- 水解:
 - 1. 1 mol ____ → 1 mol NaOH (酯基水解)
 - 2. $1 \, \mathrm{mol}$ $\overset{\mathrm{O}}{=}_{\mathrm{C-NH}_2}^{\mathrm{O}} \longrightarrow 1 \, \mathrm{mol} \, \mathrm{NaOH}$ (酰胺基水解)
 - 3.1 mol C—x → 1 mol NaOH (碳卤键水解)

注意酚酯等有多个符合条件的元素, 既有水解又有中和, 如:

最多与 $2 \operatorname{mol} \operatorname{NaOH}$ 反应

 $(1 \, \text{mol} \, \text{酯基水解用去} \, 1 \, \text{mol} \, \text{NaOH} \, , \, \, \text{水解后生成} \, 1 \, \text{mol} \, \text{的酚羟基再消耗} \, 1 \, \text{mol} \, \text{NaOH})$

- 若卤素原子取代在苯环上,碳卤键水解后能还能进行酚的中和,消耗 $2 \, \mathrm{mol} \, \mathrm{NaOH} \, \mathrm{反应}$
 - $\mathrm{Ph}\mathrm{-Br} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Ph}\mathrm{-ONa} + \mathrm{NaBr} + \mathrm{H}_2\mathrm{O}$
- 10. 苯酚与浓溴水: $1 \, \mathrm{mol}$ 反应,酚羟基的邻位与对位上的 -H 被 -Br 取代;若是含酚羟基的物质,其邻位或对位若被 H 以外的原子占据了,则无法发生取代

最多可以和 $4\,\mathrm{mol}\,\,\mathrm{Br}_2$ 发生取代反应

- 11. 物质转化过程中相对分子质量的变化(M 代表第一种有机物的相对分子质量)

 - $ext{RCH}_2 ext{OH} \quad \xrightarrow{ ext{CH}_3 ext{COOH}} \quad ext{CH}_3 ext{COOCH}_2 ext{R}$ (乙酸的酯化反应)

 $lpha_{
m H_2SO_4,\Delta}$ (乙酸的酯化反应M-42

3. $ext{RCHOOH} \quad rac{ ext{CH}_3 ext{CH}_2 ext{OH}}{ imes ext{H}_2 ext{SO}_4, \Delta} \quad ext{RCOOCH}_2 ext{CH}_3 \quad ext{(乙醇的酯化反应)}$

根据 特征产物 推断 碳骨架结构和官能团位置

- 1. 若醇能被氧化为醛或羧酸:含 $-CH_2OH$ 结构
- 3. 若醇不能被催化氧化:含 ——C—OH 结构
- 5. 由取代产物的种类可确定碳骨架结构
- 6. 由加氢或加溴后的碳骨架结构可确定 c=c 或 -C=C- 的位置
- 7. 由有机化合物发生酯化反应能生成环酯或高聚酯,可确定该有机化合物中含 $-\mathrm{OH}$ 和 $-\mathrm{COOH}$,并根据酯环的大小,确定 $-\mathrm{OH}$ 与 $-\mathrm{COOH}$ 的相对位置

根据 特殊的转化关系 推断 有机物类型

- 1. 醇 → 醛 → 羧酸
- 2. 酯 ^{无机酸或碱} В & C
- 3. 有机三角 🖍 ,分别是醇、烯烃、卤代烃