

2022-2023

HS VIRTUAL CHALLENGE MEET #4

MATHEMATICS

DO NOT OPEN TEST UNTIL TOLD TO DO SO

The Virtual Challenge Meets™

\$8.95, The ta	, the #11 spec ax rate in W	cial plat ichita F	te for \$8.75, g	guacamo 6, Carla	ole to share for	r \$4.65	, and two dri	14 special platenks for \$2.25 eand she paid	each.
(A)	\$15.16	(B)	\$15.29	(C)	\$17.14	(D)	\$15.60	(E) \$15.48	8
	er the line so			ts A(-5	, 3) and B(6, 1). Wh	ich of the foll	owing is an eq	uation of
(A)	2x + 11y = 2	1 (B)	22x - 4y = 3	(C) 23	x + 11y = 23 (D) 22.	x - 4y = 19 (E	2x - 11y =	23
3. Lynn pilots her plane for 320 miles against the wind in 2 hours. The same flight would have taken 1 hr 36 min if she flew with a tailwind of the same speed. Find the speed of the plane in still air.									
(A)	180 mph	(B)	162 mph	(C)	198 mph	(D)	150 mph	(E) 172 m	ıph
4. Ilia has a large irrigation water tank in the shape of an inverted cone with a base diameter of 6 ft and a height of 10 ft. If she started with the tank completely empty, and added 400 gallons of water, what was the depth of the water in the tank? (nearest inch)									
(A)	6 ft 8 in	(B)	7 ft 2 in	(C)	7 ft 11 in	(D)	8 ft 3 in	(E) 8 ft 9	in
_	_	_	dratic equation value of <i>c</i> is		•	compl	eting the squa	are. Her secor	ıd step is
(A)	25	(B)	16	(C)	$\frac{25}{4}$	(D)	$\frac{25}{2}$	$(E) \frac{16}{25}$	
_	rimeter of tr st tenth)	riangle A	ABC show on	the rig	ht is		54	B	
(A)	27.2 (B)	27.5	(C) 27.9	(D)	28.3 (E)	28.8	2 1		
7. The ar	ea of triangl	e ABC i	is (no	earest to	enth)		-1 -2 -3		
(A)	38.5 (B)	37.2	(C) 35.5	(D)	40 (E)	38	-4 -5 -7 -6 -5 -4 -	3 -2 -1 1 2 3 A	4 5 6 7
	ordinates of st tenth)	the mic	$\mathbf{lpoint\ of\ }\overline{\mathbf{BC}}$	are (a,t	$\mathbf{a} + \mathbf{b} = \underline{}$	•	Pr	oblems 6, 7, 8	
(A)	2	(B)	2.1	(C)	2.5	(D)	2.8	(E) 3	
9. Find th	2. Find the number that is $\frac{1}{3}$ of the way from $-4\frac{7}{9}$ and $2\frac{1}{2}$.								

(A) $-\frac{127}{27}$ (B) $-\frac{71}{54}$ (C) $-\frac{127}{54}$ (D) $-\frac{16}{27}$ (E) $-\frac{16}{54}$

10. If $f(x) = x + 1$ and $g(x) = \frac{3}{x}$, find $g(f^{-1}(x))$.										
(A)	$\frac{x-1}{x+3}$	(B)	$\frac{3}{x-1}$	(C)	$\frac{3}{x+3}$	(D)	$\frac{x+3}{x-1}$	(E)	$\frac{x+3}{x}$	
	_		r of 237 m and nilar triangle is			A simi	lar triangle has	s a pe	rimeter of	
(A)	38	(B)	19	(C)	110	(D)	114	(E)	57	
Problems 12-13. The base of a pyramid is square with each side equal to 20 cm. The slant height is 18 cm.										
12. The lateral surface area of the pyramid iscm². (nearest whole number)										
(A)	360	(B)	748	(C)	352	(D)	374	(E)	720	
13. The '	volume of the p	yrami	id iscm³	³ . (nea	rest whole nur	nber)				
(A)	1729	(B)	1200	(C)	1248	(D)	1996	(E)	1800	
	14. There are two possible triangles ABC such that $m\angle A = 30^{\circ}$, $AB = 12$ cm and $BC = 8$ cm. The area of the smaller triangle iscm ² . (nearest tenth)									
(A)	15.3	(B)	55.4	(C)	13.9	(D)	41.6	(E)	47.1	
			24 in has a cente arest tenth inch		he point Q. Ho	ow fai	from Q is a cl	ord o	of the circle that	
(A)	10.9 in	(B)	26.5 in	(C)	23.5 in	(D)	13.3 in	(E)	21.8 in	
	_		wall in 20 min times as long a				e six workers a	t the s	ame individual	
(A)	40 min	(B)	60 min	(C)	120 min	(D)	90 min	(E)	180 min	
			es per gallon in on 23 gallons of							
(A)	260	(B)	204	(C)	205	(D)	261	(E)	212	
			the figure con lands in the sh					a circ	le as shown.	
(A)	0.173 (B)	0.346	(C) 0.209	(D)	0.413 (E)	0.827				

19.	The a	rea of a 30°- 60	0°- 90	° triangle is 432	2 in ² .	The length of t	the sh	orter leg is	in. (nearest tenth)
	(A)	22.3	(B)	24.7	(C)	23.1	(D)	21.8	(E)	22.0
20.		tes, how many		on my car is 27 utions will each				_		_
	(A)	76349	(B)	8483	(C)	25450	(D)	7736	(E)	8231
21.	Find t	the eccentricity	of th	the ellipse $x^2 + 4$	y^2-6	6x - 16y - 11 =	0. (no	earest hundred	lth)	
	(A)	0.71	(B)	0.87	(C)	0.35	(D)	0.43	(E)	0.82
22.	If $f(.$	$(x) = \sqrt{x}$, then	f(x +	$\frac{h(h) - f(x)}{h} = \underline{\qquad}$						
	(A)	$\frac{1}{\sqrt{x+h}-\sqrt{x}}$	(B)	$\frac{h}{2\sqrt{x}}$	(C)	$\frac{1}{\sqrt{x+h} + \sqrt{x}}$	(D)	$\frac{1}{2\sqrt{x}}$	(E)	$\frac{-h}{\sqrt{x+h}-\sqrt{x}}$
23.	If log	$9 = P$ and $\log 3$	5 = Q	, then $\log 0.6 =$		•				
	(A)	$\frac{PQ}{2}$	(B)	2PQ	(C)	$\frac{\sqrt{P}}{Q}$	(D)	$\log \frac{\sqrt{P}}{Q}$	(E)	$\frac{P-2Q}{2}$
24.		ner child, Paul,		ren in a large fa he same numb	-			-		
	(A)	4	(B)	5	(C)	6	(D)	7	(E)	8
25.	$\sum_{k=0}^{12} 2k$	$x(k+3) = \underline{\hspace{1cm}}$	•							
	(A)	1768	(B)	884	(C)	2184	(D)	1807	(E)	1416
26.	$\frac{1-\cos \alpha}{\sin \alpha}$	$\frac{s 2\theta}{2\theta} = \underline{\hspace{1cm}}$								
	(A)	$\tan 2\theta$	(B)	$\csc 2\theta$	(C)	$\sec \theta$	(D)	an heta	(E)	$\cos \theta$
27.	If sec	$\theta = -3$ and sin	$\theta > 0$, then $\tan \theta = 1$		_•				
	(A)	-2	(B)	$2\sqrt{2}$	(C)	$\frac{8}{3}$	(D)	$-2\sqrt{2}$	(E)	2
28.				split between terest of \$1400.				_		

(C) \$2666.66

(D) \$867.00

(E) \$8667.00

(A) \$1444.00

(B) \$9333.33

29.		• •		ve couples be se bles do not need			e if th	e men and wor	nen w	ant to sit
	(A)	144	(B)	1440	(C)	288	(D)	576	(E)	2880
30.	If <i>x</i> –	y = 7 and xy	=3,t	hen $x^3 - y^3 = _{-}$		_•				
	(A)	385	(B)	427	(C)	343	(D)	112	(E)	406
31.	If (3-	$(-5i)^2 - (2+5i)^2$	$a^3 = a - a$	+bi, then $a+b$	=	·				
	(A)	-47	(B)	161	(C)	-253	(D)	-45	(E)	126
32.	Multi	$\operatorname{ply}\left(5\operatorname{cis}\frac{\pi}{6}\right)\left(\sqrt{\frac{\pi}{6}}\right)$	$\sqrt{2}$ cis $\frac{3}{2}$	$\left(\frac{\pi}{2}\right)$ and express	the r	esult in rectang	gular	form.		
	(A)	$\frac{5\sqrt{2}}{2} - \frac{5\sqrt{6}}{2}i$	(B)	$\frac{5\sqrt{2}}{2} - \frac{5\sqrt{3}}{2}i$	(C)	$-\frac{5\sqrt{2}}{2}+\frac{5\sqrt{6}}{2}$	<i>i</i> (D)	$\frac{5\sqrt{2}}{2} - \frac{5\sqrt{2}}{2}i$	(E)	$\frac{5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2}i$
33.	The p	oint (-8, <i>b</i>) lie	s on t	he curve define	ed by	the parametric	equa	tions $ x = 6 - t $ $ y = t + 9 $	b = _	·
	(A)	23	(B)	-5	(C)	14	(D)	5	(E)	-9
34.	Find 1	the total numb	er of	diagonals that o	can bo	e drawn from t	he ve	rtices of a regu	lar do	decagon.
	(A)	78	(B)	66	(C)	72	(D)	36	(E)	54
				e point (4, –1, 2						
	(A)	1	(B)	6	(C)	2	(D)	3	(E)	$\frac{\sqrt{3}}{3}$
			_	$+8xy+4y^2-7$						
	(A)	Hyperbola	(B)	Cartoid	(C)	Parabola	(D)	Ellipse	(E)	Circle
37.	Park expor	has increased t	from in the	ation efforts, th 1300 in 1995 to e habitat can ac 30.	8870	in 2022. Assur	ne th	at the population	on is g	growing
	(A)	14728	(B)	15209	(C)	15669	(D)	15831	(E)	16207
38.	Two	of the zeros of	f(x):	$= x^4 + bx^3 + cx^2$	^2+dx	$-5 \text{ are } 1 + \sqrt{2}$	and	2+i. $f(-1) =$		_•
	(A)	15	(R)	20	(C)	22	(D)	25	(E)	30

39.	Assume that the earth rotates about its axis every 23 hours, 56 minutes and 4 seconds. Find the linear
	speed of a person sitting in a chair at 10° north latitude. The radius of the earth is 3960 miles.
	(nearest whole number)

- (A) 1036 mph
- (B) 968 mph
- (C) 1016 mph
- (D) 1040 mph
- (E) 1024 mph

40. Find the acute angle between the line 3y = x - 7 and 2y = 3 - 4x. (nearest tenth)

- (A) 81.9°
- (B) 79.8°
- (C) 80.7°
- (D) 81.2°
- (E) 82.1°

41. Find the length of the latus rectum of the parabola shown on the right.

- (A) $\frac{1}{16}$ (B) $\frac{1}{8}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$ (E) 1

- (A) 0
- (B) -18

- (C) -22 (D) -24 (E) -30
- 43. Find the angle between the vectors $v_1 = \langle -3, 2 \rangle$ and $v_2 = \langle 5, -11 \rangle$. (nearest degree)
 - (A) 32°
- (B) 122°
- (C) 77°
- **(D)** 148°
- **(E)** 103°

- 44. Evaluate $\lim_{\theta \to 0} \frac{\sin(2\theta)}{5\theta}$

- (A) $\frac{1}{5}$ (B) $\frac{2}{5}$ (C) 1 (D) $\frac{5}{2}$ (E) does not exist
- 45. Given: $x^2 + y^2 = 64$, find the value of $\frac{d^2x}{dy^2}$ at the point $(2, -2\sqrt{15})$. (nearest hundredth)
 - (A) 0.11
- (B) -0.14
- (C) 0.14
- (D) -0.12
- (E) -0.18

- $46. \frac{d}{d\theta} \sin(3\theta^2) = \underline{\qquad}.$

- (A) $-3\cos(6\theta)$ (B) $6\theta\cos(3\theta^2)$ (C) $\cos(6\theta)$ (D) $3\theta\cos(3\theta^2)$ (E) $-3\theta\cos(3\theta^2)$

47.	47. Find the area of the bounded region. (nearest tenth)														
	(A)	18.0		(B)	16.3		(C)	16.7		(D)	17.2		(E)	17.7	
48.		he volun est whole			id gener	ated b	y revo	olving th	ie spec	ified r	egion a	bout tl	ne line	y = -3	•
	(A)	115		(B)	82		(C)	259		(D)	362		(E)	278	
49.	49. A Ferris wheel is built so that the bottom is at ground level. It has a radius of 10 m is rotating at a rate of one revolution every 2 minutes. When a rider is 18 m above the ground on his way up, he is rising at a rate of m/min.														
	(A)	20.5π		(B)	16π		(C)	15π		(D)	6π		(E)	8π	
50.	50. If $P_4(x)$ is the fourth degree Maclaurin polynomial for $f(x) = \cos x$, then $f\left(\frac{\pi}{3}\right) - P_4\left(\frac{\pi}{3}\right) = $														
	(neare	est ten-th		·											
	(A)	-0.0016		(B)	-0.0018	3	(C)	-0.001	9	(D)	-0.002	22	(E)	-0.00	25
51.	When	evaluati	ng ∫- \	$\frac{x}{\sqrt{1-4x}}$	$\frac{1}{x^2}dx$ us	sing <i>u</i> -	substi	tution, 1	the bes	t choic	ce for <i>u</i>	is	•		
	(A)	$\sqrt{1-4x}$	2	(B)	$4x^2$		(C)	$1-4x^2$	2	(D)	x		(E)	x^2	
	~				1	1									
	Game	e 3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Points		55	5 73	6 52	7 68	8 64	35	10 47	11 37	12 45	13 27	14 42	15 17	16 52
	Points		55 re for j	73	52 ems 52,	68 53 and	64	35	47	37	45	27	42	17	
The	Points	s 49	55 re for p	73 proble	52 ems 52, sores for	68 53 and 2022 5	64 54. 5A Foo	35 otball Se	47	37	45 on Tear	27	42	. 17	52
The	Points	s 49 able above shows the difference of the diff	55 re for p	73 proble	52 ems 52, sores for he mean	68 53 and 2022 5	64 54. 5A Foo	35 otball So	47	37	45 on Tear	27	42	. 17	52
The 52.	Points the ta table What (A)	s 49 able above shows the difference of the diff	55 re for j ne seas	73 proble son sc ce in t (B)	52 ems 52, sores for he mean	68 53 and 2022 5	64 54. 5A Foo and t	35 otball So	47	37 nampio re, a p	45 on Tear	27	42 Aledo	17	52
The 52.	Points the ta table What (A) Find t	s 49 able above shows the different 1.7	55 re for j ne seas	73 proble son sc ce in t (B)	52 ems 52, sores for the mean 0.2 ge of the	68 53 and 2022 5	64 54. 5A Foo and t	35 otball So	47	37 nampio re, a p	45 on Tear ositive 1.1	27	42 Aledo	17	52

47-48. Consider the region bounded by the graphs of $y_1 = 0.5x^2 - 3$ and $y_2 = x + 1$.

	(A)	0.081	(B)	0.171	(C)	0.041	(D)	0.091	(E)	0.909
56.				n a standard 52 the third is bla		l deck. What is	s the j	probability tha	t the f	ïrst is an ace,
	(A)	$\frac{25}{2652}$	(B)	$\frac{1}{104}$	(C)	$\frac{613}{66300}$	(D)	$\frac{469}{66300}$	(E)	$\frac{13}{1275}$
57.	A fair	coin is tossed	six tir	nes. What is th	ie pro	bability of toss	ing at	least four cons	secuti	ve heads?
	(A)	$\frac{11}{32}$	(B)	$\frac{3}{32}$	(C)	$\frac{11}{21}$	(D)	$\frac{15}{64}$	(E)	$\frac{1}{8}$
58.	_					speeds of 90 mph.		• ' •	, 110	mph and 103
	(A)	100.6	(B)	100.4	(C)	100.2	(D)	100.0	(E)	100.8
59.		•				rm of casino ga nos and lottery.		0,		•
	(A)	1	(B)	2	(C)	3	(D)	4	(E)	5
60.	groces the po	ry budgets in J	anua	ry. Ôf the sam	ple, 6	ay grocery shop 75 said "yes." would say "ye	Const	truct a 95% coi	nfiden	ce interval for
	(A)	(.8048,.8813)	(B)	(.8186,.8689)	(C)	(.8116,.8758)	(D)	(.8142,.8693)	(E)	(.8205,.8536)

(C) 15.0

55. Over time, Cyd establishes that her commute times are normally distributed with a mean of 32 minutes and a standard deviation of 6 minutes. What is the probability that on a single day her

(D) 14.9

(E) 15.2

(A) 14.8

(B) 15.4

commute will take longer than 40 minutes?

2022-2023

Virtual Challenge Meet #4 Mathematics – Student Answer Sheet

C	Q 1
Contestant Name	Grade

Score 1:	Score 2:
Score 3:	Final Score:

1	21	41
2	22	42
3	23	43
4	24	44
5	25	45
6	26	46
7	27	47
8	28	48
9	29	49
10	30	50
11	31	51
12	32	52
13	33	53
14	34	54
15	35	55
16	36	56
17	37	57
18	38	58
19	39	59
20	40	60

2022-2023 VIRTUAL CHALLENGE MEET #4 MATHEMATICS - KEY

1.	D	21. B	41. D
2.	В	22. C	42. D
3.	A	23. E	43. D
4.	D	24. D	44. B
5.	C	25. A	45. C
6.	E	26. D	46. B
7.	A	27. D	47. A
8.	C	28. C	48. D
9.	C	29. E	49. D
10.	В	30. E	50. B
11.	В	31. B	51. C
12.	E	32. C	52. E
13.	D	33. A	53. B
14.	A	34. E	54. D
15.	C	35. D	55. D
16.	C	36. A	56. A
17.	В	37. C	57. B
18.	C	38. B	58. C
19.	A	39. E	59. D
20.	D	40. A	60. B

2022-2023
HS Virtual Challenge Meet #4

Applications

DO NOT OPEN THE TEST UNTIL INSTRUCTED TO BEGIN

- I. Calculator Applications rules and scoring-See UIL Constitution
- II. How to write the answers
 - A. For all problems except stated problems as noted below-write three significant digits.
 - 1. Examples (* means correct but not recommended)

Correct: 12.3, 123, 123.*, 1.23x10*, $1.23x10^0*$ $1.23x10^1$,

 1.23×10^{01} , .0190, 0.0190, 1.90×10^{-2}

Incorrect: 12.30, 123.0, $1.23(10)^2$, $1.23\cdot10^2$, $1.230x10^2$,

 $1.23*10^2$, 0.19, $1.9x10^{-2}$, $19.0x10^{-3}$, 1.90E-02

RIVER

- 2. Plus or minus one digit error in the third significant digit is permitted.
- B. For stated problems
- 1. Except for integer, dollar sign, and significant digit problems, as detailed below, answers to stated problems should be written with three significant digits.
- 2. Integer problems are indicated by (integer) in the answer blank. Integer problems answers must be exact, no plus or minus one digit, no decimal point or scientific notation.
- 3. Dollar sign (\$) problems should be answered to the exact cent, but plus or minus one cent error is permitted. The decimal point and cents are required for exact-dollar answers.
- 4. Significant digit problems are indicated by underlined numbers and by (SD) in the answer blank. See the UIL Constitution and Contest Manual for details.
- III. Some symbols used on the test
 - A. Angle measure: rad means radians; deg means degrees.
 - B. Inverse trigonometric functions: arcsin for inverse sine, etc.
 - C. Special numbers: π for 3.14159 ...; e for 2.71828 ...
 - D. Logarithms: Log means common (base 10); In means natural (base e); $\exp\left(u\right) \text{ means } e^{u}.$

Page 23X-1

23X-1. -7.66 + 1.28 - 9.17 ------ 1=_____

23X-2. (0.85 x 5.34) - (1.88 - 4.51) ------ 2=_____

23X-3. (-0.127 - 0.0937 - 0.127 + 0.0135) x (-0.603) ------ 3=_____

23X-4. {(31.3 - 27.1 + 236)(0.00909)(-0.0991)} - 0.0733 ------ 4=_____

23X-5. $1.64 + 0.897 - \pi + \frac{(-59000 + 16900)}{(-307)(210)}$ ----- 5=_____

23X-6. Cindy purchased \$5.17 worth of smoked turkey at \$8.50 per pound.

How much did she buy?----- 6= <u>oz</u>

23X-7. What is the reciprocal of the product of 17.5 and 43.6? ----- 7=________

23X-8. How many centimeters are in 2 miles?------ 8=_______

23X-9. TRAPEZOID

$$Area = ?$$

23X-10. CIRCLE

Circumference = ?

23X-10 =_____

23X-13.
$$\frac{(-0.0823)(812 - 668)\{0.00141 - (-0.0903)(-0.0147)\}}{(0.0302 + 0.0217)(-0.0665 - 0.284)} ------ 13 = \underline{\hspace{2cm}}$$

23X-14.
$$\frac{(50.4 + 46.2)(\pi + 22.5)(21.1 - 29.8)}{(-63.3 + 27)(29.4)\{(-90.6)/(-13.8)\}}$$
 ------ 14=_____

23X-15.
$$\frac{(42500 + 20800 - 33100)(0.164 - 0.0336 - 0.0347)}{(-0.04)(0.0332)(-0.0901)(6.72 + 2.12 + 4.69)} ------ 15 = \underline{\hspace{2cm}}$$

23X-16. If a pine tree needs 140 ft², how many trees can be planted in a 480-acre forest?------ 16=_____

23X-17. Erica invests \$15,000 in an account that earns 6.25% annual interest compounded monthly. How much is her account worth after 6 years?------ 17=\$

23X-18. What number when added to the numerator and denominator of $\frac{5}{8}$

yields 0.803? ----- 18=_____

23X-21.
$$\left[\frac{(0.279)(0.788)}{4.16} + 0.0127\right]^2 + \sqrt{1.65 \times 10^{-5}}$$
 ------ 21=______

$$23X-22. \left[\frac{\sqrt{0.954-0.874}}{-4.19} + \frac{(-0.00719)}{0.23} \right]^2 - \dots 22 = \dots 22 = \dots$$

23X-25.
$$\left[-72.9 + \sqrt{1270}\right]^2 \times \left[246 + 719\right]^2 \times \sqrt{32.5/69.1}$$
 ------ 25=_____

- - 20- <u>70(5D)</u>
- - 22V 29 A population of ante doubles eveny 24 days. If the initial count was

23X-29.

SPHERE

Volume = 733

Volume = 3900

deg?

23X-30 = _____

23X-31.
$$\left[\frac{-18.3}{-48+41.6} + \pi\right] \times \left\{249 + (-18)^2 - \sqrt{1.11 \times 10^5}\right\}$$
 ------ 31=_____

23X-32.
$$\sqrt{\frac{9.54}{\sqrt{99.7 + 94.4}}} \times \left[\frac{1}{(4.16 - 2.68)^2} + \frac{1}{(4.43 + \pi)^2} \right]$$
 ------ 32=_____

23X-33.
$$\frac{(9.00 \times 10^{5})^{2}(8.38 \times 10^{-13} + 2.80 \times 10^{-13})}{19.5 + (-0.224)(-115)} + \frac{1}{\frac{1}{0.00269} + \frac{1}{(-0.0167)}}$$
 33=______

23X-34.
$$\frac{\left[(248 - 240)(0.673/0.686)\right]^{1/2}}{(0.86)^2 + (0.401 + 0.703)^2 + 0.688}$$
 ------ 34=_____

23X-36. A painter needs 14 hours to paint an apartment. His assistant needs 18 hours to paint an apartment. If they work together, how long would it take them to paint 12 apartments? ------ 36=

23X-38. The graphs of $y_1 = -2x^2 - 4x + 8$ and $y_2 = 0.75x^2 + x - 4$ intersect

23X-39 =

23X-41.
$$\frac{10^{-(2.3-2.92)}}{-9.33\times10^7 + 9.21\times10^7}$$
 ------ 41=_____

23X-44.
$$(800 + 1400)^{-(0.961 + 0.416)}$$
 ------ 44=_____

23X-45.(deg)
$$\frac{\cos\{(79.5^{\circ})/(7.2)\}}{\sin\{109^{\circ} - 155^{\circ}\}}$$
 ------ 45=_____

23X-46. A 6-in-tall model of a pyramid weighs 1.46 lb. How much would a 200-ft-tall pyramid weigh if it is made of the same material? ------ 46= <u>lb</u>

23X-50.

23X-49.

HEMISPHERE WITH HEMISPHERE
CAVITY

Total Surface Area = ?

Total Volume = 6.67

4.28

R = ?

Cones

min

23X-55.(rad)
$$\frac{\arcsin\{(608)(-828)/(-1.96x10^6)\}}{23400 + (-850)(-220)} ------ 55=$$

23X-56. Consider the graph of $3xy^3 - 6 = 0$. Find the slope of the line tangent to the graph at x = 4. ------ 56 =

23X-57. A cube with an original volume of 2744 cm³ began to expand at 12 cm³/s. At what rate is the surface area changing when each edge is 18 cm? ----- 57= cm²/s

23X-58. If $A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \\ -2 & 2 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 3 & 7 \\ -1 & -1 & 5 \end{bmatrix}$ then $det[A \cdot B] = ? ------ 58 = _$ 23X-59. SOLID OF REVOLUTION (x = -5)

23X-60. SQUARE AND ISOSCELES TRIANGLE

23X-59 =_____

23X-61. Find the product of the slopes of the lines passing through the origin that are tangent to the circle $(x + 6)^2 + (y - 8)^2 = 16$. ------ 61 =_____

23X-63. A runner accelerates from rest at 3.6 ft/s² over a distance of 45 ft. Then he continues at the velocity attained for one mile. How long did it take the runner to run the mile? ----- 63=____

min

ISOSCELES TRIANGLES

23X-65.

RECTANGLE AND EQUILATERAL TRIANGLE

Area of Rectangle = ?

23X-64 =____

23X-67. (rad) sin(5.8)cos(5.25) - cos(5.8)sin(5.25) ------ 67=_____

23X-68. (rad) $\frac{1}{(992)(0.111)} \ln\{(0.639) + (-0.362)\sin(3.95)\}$ ------ 68=_____

23X-70. $\frac{-6.25}{\sqrt{5.17}} \operatorname{Ln} \left[\frac{\sqrt{(\pi)^2 + (8.29)} + \sqrt{13}}{\sqrt{1.83} + (83.8)(0.00196)} \right]$ ----- 70=_____

2022-2023 HS Virtual Challenge Meet #4 - Key

23X-1	= -15.5 $= -1.55 \times 10^{1}$	23X-11	$= -0.396$ $= -3.96 \times 10^{-1}$	23X-21	$= 0.00836$ $= 8.36 \times 10^{-3}$
23X-2	$= 7.17$ $= 7.17 \times 10^{0}$	23X-12	$= -0.120$ $= -1.20 \times 10^{-1}$	23X-22	$= 0.00975$ $= 9.75 \times 10^{-3}$
23X-3	$= 0.202$ $= 2.02 \times 10^{-1}$	23X-13	$= 0.0538$ $= 5.38 \times 10^{-2}$		
23X-4	$= -0.290$ $= -2.90 \times 10^{-1}$	23X-14	= 3.08 = 3.08×10^{0}		= 4.07 $= 4.07 \times 10^{0}$
23X-5	$= 0.0484$ $= 4.84 \times 10^{-2}$	23X-15	= 1.79×10 ⁶	23X-25	= 8.87x10 ⁸
23X-6	=9.73 $=9.73\times10^{0}$		$=149,000$ $=1.49\times10^{5}$		=5.8 (2SD) = 5.8×10^{0}
23X-7	$=0.00131$ $=1.31\times10^{-3}$	23X-17	=\$21,803.64	23X-27	=192 $=1.92 \times 10^{2}$
23X-8	· · · · · · · · · · · · · · · · · · ·			23X-28	=239 = 2.39×10^2
23X-9	=260 $=2.60\times10^{2}$	23X-19	=152 = 1.52×10 ²	23X-29	=5.59 $=5.59 \times 10^{0}$
23X-10	=84.2 $=8.42 \times 10^{1}$	23X-20	$=1.02 =1.02 \times 10^{0}$	23X-30	=40.3 = 4.03×10^{1}

2022-2023 HS Virtual Challenge Meet #4 - Key

23X-31	$= 1440 = 1.44 \times 10^3$	23X-41	$= -3.47 \times 10^{-6}$	23X-51	$= 0.222$ $= 2.22 \times 10^{-1}$	23X-61	=2.40 $=2.40 \times 10^{0}$
23X-32	$= 0.392$ $= 3.92 \times 10^{-1}$	23X-42	= 1.31 = 1.31×10^{0}	23X-52	= -299 = -2.99×10^2	23X-62	$=3.70\times10^{-6233}$
23X-33	$= 0.0232$ $= 2.32 \times 10^{-2}$	23X-43	$= -2.06$ = -2.06x10 0	23X-53	$= -0.0425$ $= -4.25 \times 10^{-2}$	23X-63	=4.89 = 4.89×10^0
23X-34	$= 1.06$ $= 1.06 \times 10^{0}$	23X-44	$= 2.50 \times 10^{-5}$	23X-54	= 191 = 1.91×10^2	23X-64	=16.5 $=1.65 \times 10^{1}$
23X-35	$= 1.72 \times 10^{-14}$	23X-45	= -1.36 = -1.36×10^{0}	23X-55	$= 1.23 \times 10^{-6}$	23X-65	=180 $=1.80 \times 10^{2}$
23X-36	=94.5 $=9.45 \times 10^{1}$	23X-46	$=9.34\times10^{7}$	23X-56	$=-0.0661$ $=-6.61\times10^{-2}$	23X-66	$= 9.67 \times 10^{-5}$
23X-37	=13.4 = 1.34×10^{1}	23X-47	=312 = 3.12×10^2	23X-57	=2.67 $=2.67 \times 10^{0}$	23X-67	$= 0.523$ $= 5.23 \times 10^{-1}$
23X-38	=4.85 = 4.85×10^{0}	23X-48	=1.93 $=1.93 \times 10^{0}$	23X-58	=-800 = -8.00×10^2	23X-68	$= -0.000949$ $= -9.49 \times 10^{-4}$
23X-39	=49.1 = 4.91×10^{1}	23X-49	$=2,280,000$ $=2.28\times10^{6}$	23X-59	=252 = 2.52×10^2	23X-69	$= 0.254$ $= 2.54 \times 10^{-1}$
23X-40	=81.6 = 8.16×10^{1}	23X-50	$=1.22 =1.22 \times 10^{0}$	23X-60	=23.4 = 2.34×10^{1}	23X-70	= -4.52 = -4.52×10^{0}

The Virtual Challenge Meets HS Number Sense Test • VCM #4 • 2022–2023

Contestant's Name					Final				
School					2 nd				
Contestant's Grade 9	10	11	12		1 st				
Read directions carefully before beginning test				FOLD THIS SHEET OLD TO BEGIN	Score	Initials			
Solve accurately and quickly as m MENTALLY. Make no calculati	nany as you ca ons with paper uire approxima I correct; all ot	n in the or r and per ate integr ther prob	order in which cil. Write of all answers; allems require these directions.		TO BE SOLVED he end of each proble	em.			
(1) 2023 × 8 =				*(20) 437124 ÷ 146 =					
(2) 347 – 743 =			(21) 3157 ÷ 11 has a remainder of						
(3) 0.875 =	(com	mon fr							
(4) $16 \div 3\frac{2}{3} = $	(impr	oper fr							
(5) 20.23 + 202.3 + 2023 =									
(6) $12^1 + 9^2 - 11.5^0 =$									
(7) 32 ² =				(26) 24 × 95 =					
(8) $17 \times 25 + 27 \times 25 =$				$(27) \ \ 43_{10} = \underline{\hspace{1cm}}$					
(9) 824 ÷ 4 ÷ 2 =				(28) 58 × 58 =					
* (10) 13142 + $(278 \times 283) = _{-}$			(29) 44137 ÷ 101 =						
(11) 85 × 85 =			*(30) $\sqrt{74125}$ =						
(12) The LCM of 25 and 60 is_									
(13) 37 × 45 =				(31) 2023 × 17 =					
(14) 1 + 2 + 3 + + 59 =				(32) Let $A = 4$, $B = -6$, $C = 5$,					
(15) 5 square yards =square feet				(33) 56 has					
(16) 18% of 42 is 14% of				$(34) (24^3 - 1) \div (24 - 1) =$					
(17) $(3^2 + 5 \times 7 - 11) \div 9$ has a				(35) If $x + y = 8$ and $x^2 - y^2 = 3$	12.8, then x – y	=			
(18) $39^2 - 26^2 = 5 \times $				$(36) \ \ 4\frac{7}{9} \times 4\frac{2}{9} = \underline{\hspace{1cm}}$	(mix	ed number			
$(19) (1+3+5+7+9+\cdots+3)$				(37) If $(4x-3)^3 = ax^3 + bx^2 + c$ then $a - b + c - d = $					

_____(mixed number)

- (38) $[25 + 21 \times 22 11^2] \div 4$ has a remainder of_____
- (39) If 18 people have orange juice, 23 have grape juice and 12 people have both, then how many people are there?
- *(40) 148 × 152 × 72 =_____
- $(41) 14^{-2} \div 7^{-2} \times 3.5^{-2} = \underline{\hspace{1cm}}$
- (42) If $\frac{a}{11}$ has a remainder of 6 and $\frac{b}{11}$ has a remainder of 3, then $\frac{5ab}{11}$ has a remainder of
- (43) Find the smaller root of $6x^2 13x 5 = 0$.
- (44) The coefficient of the x^3y^3 term of $(2x + 5y)^6$ is _____
- (45) 107 × 108 =_____
- (46) If y varies inversely with x and y = 30 when x = 12, then y =_____ when x = 8
- (47) A dodecagon has ______ distinct diagonals
- (48) The product of the roots of $6x^3 + 9x^2 11x + 20 = 0$ is______
- (49) If x < 0, and |4x + 3| = 27, then x =
- *(50) 833.33 × 359 = _____
- (51) 0.3838... + 0.2222... =_____ (fraction)
- (52) $3\frac{9}{m} \times n\frac{4}{7} = 6$, where *m* and *n* are natural numbers. Find m + n.
- (53) (6-2i)(1+3i) = a + bi. Find a + b.
- (54) 9+6+4+...=____
- (55) 37 × 1111 =____
- (56) $log_4\sqrt{2} =$
- (57) The vertex of $f(x) = 4x^2 8x + 3$ is (h, k). $k = ______$
- (58) $\sum_{k=1}^{44} (-1)^k (k)^2 =$
- (59) $12^{33} \div 17$ has a remainder of _____
- * $(60) \sqrt{2400} \times 286 =$

- (61) $\frac{9!+10!}{7!} =$
- (62) $(5x^3 6x^2 + kx + 14) \div (x 2)$ has a remainder of 0. k =
- (63) The harmonic mean of the roots of $5x^2 11x 13 = 0$ is_____
- (64) $|10 + 5i\sqrt{5}| =$
- (65) The measure of the exterior angle of a regular nonagon is how much less than its interior angle? ______
- (66) $19 \times \frac{16}{15} =$ _____ (mixed number)
- (67) Let $f(x) = x^2 + 16x + 64$ and $g(x) = \sqrt{4x 3}$. f(g(13)) =
- (68) $433_5 \times 111_5 = _____5$
- (69) If $\sqrt{10} + \sqrt{90} = \sqrt{x}$, then x =_____
- *(70) The radius of a sphere is 6.

 The volume is_______
- (71) The area of the ellipse $4x^2 + 9y^2 = 144$ is $k\pi$, find k._____
- (72) $\lim_{x \to 3} \frac{5x 15}{x^2 9} = \underline{\hspace{1cm}}$
- (73) $\left(14, \frac{4\pi}{3}\right)$ are the polar coordinates for the point (x, y) in rectangular coordinates. $y = a\sqrt{b}$, find a + b.
- (74) The graph of $y = \frac{3x-2}{9x^2-4}$ has _____asymptotes
- (75) If xy = 5 and x + y = 6, then $x^3 + y^3 =$ _____
- (76) $\int_2^4 (2x^3) dx =$ _____
- (77) 0.42222...₇ = _____(base 7 fraction)
- (78) How many distinguishable permutations can be made using the letters, T, O, P, P, S?_____
- (79) The seventh decagonal number is _____
- *(80) 8.8888... × 27 × 260 = _____

2022-2023 Virtual Challenge Meet #4 • HS Number Sense - Key

- (1) 16184
- (2) -396
- $(3) \frac{7}{8}$
- $(4) \frac{48}{11}$
- (5) 2245.53
- (6) 92
- (7) 1024
- (8) 1100
- (9) 103
- *(10) 87226 96406
- (11) 7225
- (12) 300
- (13) 1665
- (14) 1770
- (15) 45
- **(16) 54**
- **(17)** 6
- (18) 169
- (19) $11\frac{1}{9}$

- *(20) 2845 3143
- (21) 0
- (22) 180
- $(23) \frac{31}{125}$
- (24) 40.50
- (25) 1600
- (26) 2280
- (27) 133
- (28) 3364
- (29) 437
- *(30) 259 285
- (31) 34391
- $(32) \frac{24}{25} or -.96$
- (33) 8
- (34) 601
- (35) 1.6, $\frac{8}{5}$ or $1\frac{3}{5}$
- $(36) \ 20\frac{14}{81}$

- (37) 343
- (38) 2
- (39) 29
- *(40) 1538727 1700697
- $(41) \frac{1}{49}$

- (42) 2
- $(43) -\frac{1}{3}$
- (44) 20000
- (45) 11556
- (46) 45
- (47) 54
- $(48) -\frac{10}{3}, -3\frac{1}{3}$
- $(49) -\frac{15}{2}, -7\frac{1}{2}$
- *(50) 284208 314123
- $(51) \frac{20}{33}$

(53) 28

(52) 12

- (54) 27
- (55) 41107
- (56) $\frac{1}{4}$ or .25
- (57) 1
- (58) 990
- (59) 12
- *(60) 13311-14711

- (61) 792
- (62) 15
- $(63) \frac{26}{11}$
- (64) 15
- (65) 100
- (66) $20\frac{4}{15}$
- (67) 225
- (68) 104113
- (69) 160
- *(70) 860 950
- (71) 24
- $(72) \frac{5}{6}$
- (73) 4
- (74) 2
- **(75)** 126
- (76) 120
- $(77) \frac{16}{30}$
- (78) 60
- (79) 175
- *(80) 59280 65520