Коллаборативная фильтрация на MapReduce. Описание решения

Пацация Александр, 317 группа

23 мая 2022 г.

1 Описание задания

В задании требуется реализовать один из подходов в организации рекомендательных систем – коллаборативную фильтрацию в парадигме MapReduce. Выборка представляет из себя набора $(u, i, r_{ui}, \text{ где } u-\text{ пользователь}, i-\text{ фильм}, r_{ui}-\text{ рейтинг}.$

Для каждой пары і, ј определена мера близости:

$$sim(i,j) = \frac{\sum_{u \in U_{ij}} (r_{ui} - \overline{r_u})(r_{uj} - \overline{r_u})}{\sqrt{\sum_{u \in U_{ij}} (r_{ui} - \overline{r_u})^2} \sqrt{\sum_{u \in U_{ij}} (r_{uj} - \overline{r_u})^2}}$$
(1)

где U_{ij} — множество пользователей оценивших фильмы i и j, $\overline{r_u}$ — средний рейтинг пользователя u.

Имея значения sim(i,j), рейтинги для неизвестных фильмов определяются по следующей формуле:

$$\hat{r}_{ui} = \frac{\sum_{j \in I_u} sim(i,j) r_{uj}}{\sum_{j \in I_u} sim(i,j)}$$
(2)

где I_u — множество фильмов, которые оценил пользователь и. В задании предполагается работа с small версией датасета MovieLens. Датасет состоит из файлов:

- 1. ratings.csv, в каждой строке которого записаны идентификатор пользователя, идентификатор фильма и временная метка (не понадобится)
- 2. movies.csv, в которой каждому идентификатору фильма ставится в соответствие полное название.

2 Шаг 1

2.1 маппер

На первом шаге маппер получает на вход тройки (u,i,r) и выдает (u,(i,r)) с ключом u. Сложность по числу операций соответствует, количеству строк в файле ratings.csv — $O(\alpha \frac{UI}{M})$, где U— количество пользователей, I— количество фильмов, α — доля известных оценок, M— количество мапперов. Сложность по памяти — O(1), так как маппер ничего оне сохраняет.

2.2 редьюсер

Редьюсер, получая на вход (u,(i,r)), просто агрегирует все значения (i,r) по ключу u, то есть а выходе мы получаем $(u,(i_1,..,i_n),(r_{ui_1},..,r_{ui_n}))$. Обозначим $items=(i_1,..,i_n),$ $ratings=(r_{ui_1},r_{ui_n})$ для сокращения записи. Сложность по числу операций – $O(\alpha \frac{UI}{R})$), где R— количество редьюсеров. Для каждого пользователя редьюсер сохраняет все фильмы, которые он смотрел, поэтому сложность по памяти – $O(\beta \frac{I}{R})$, где β — средня доля оцененных фильмов для всех пользователей.

3 Шаг 2

3.1 маппер

На втором шаге, маппер, получая на вход выход редьюсера предыдущего шага, центрирует значения $ratings = (r_{ui_1},..,r_{ui_n}) \to (r_{ui_1}-\hat{r}_u,..,r_{ui_n}-\hat{r}_u) = ratings_c$ и для каждого i выдает $(i,r_{ui_1}-\hat{r}_u,items,ratungs_c)$ с ключом і. Сложность по числу операций опять же $-O(\alpha \frac{UI}{M})$. На одной итерации мапера хранится $O(\beta \frac{I}{M})$ значений, что и соответствует сложности по памяти.

3.2 редьюсер

Редьюсер, собрав по ключу і все значения, для каждого j собирает множество U_{ij} и подсчитывает значение sim(i,j) по формуле (1) и выдает $(i,(j_1,...j_n),(sim(i,j_1),...,sim(i,j_n)))$ по ключу i. Сложность по числу операций – $O((\alpha I)^2 \frac{U}{R})$, так как такова сложность выхода маппера. Пусть γ — средняя доля пользователей смотревших какой-либо фильм, тогда сложность по памяти составляет – $O(\gamma \frac{UI}{R})$

4 Шаг 3

4.1 маппер

Маппер получает на вход выход предыдущего шага и снова данные из файла ratings.csv. Выходы предыдущего шага преобразуются в (i, j, sim(i, j)) с ключом i, данные из файла ratings.csv преобразуются в (i, u, r_{ui}) . Редьюсеры предыдущего шага выводят $O(\zeta I^2)$, где ζ — количество ненулевых sim(i, j), поэтому сложность по времени $O(\frac{(\alpha I)^2 + \alpha UI)}{M}$. Сложность по памяти O(I).

4.2 редьюсер

Редьюсер на данном шаге собирает все необходимое для предсказания рейтингов по формуле (2). Собрав все выход маппера по ключу i, редьюсер выдает $((u,i),(sim(i,j),(r_{uj})))$ для всех j. Сложность по времени $O(\frac{(\zeta I)^2 + \alpha UI)}{R}$. В памяти редьюсер хранит все что касается идентификатора i, поэтому сложность по памяти – $O(\frac{\gamma U + \beta I}{R})$

5 Шаг 4

5.1 маппер

Маппер, помимо выхода предыдущего шага, получает на вход снова ratings.csv. Выходы предыдущего шага остаются без изменений, строки ratings.csv преобразуются в строки с ключом (u, i). Сложность по времени – $O(\alpha \frac{I^3}{M})$, сложность по памяти O(1).

5.2 редьюсер

Редьюсер данного шага считает оценки \hat{r}_{ui} параллельно отсеивая пары (u,i), для которых уже известны оценки. Для этого в процессе агрегации значений по ключу (u,i), если редьюсеру попадается строка из файла ratings.csv, пара (u,i) признается ненужной и все поступающие значения по данному ключу игнорируются. Для остальных ключей подсчитывается \hat{r}_{ui} по формуле (2) и выдается (u,\hat{r}_{ui},i) . Сложность по времени $O(\alpha \frac{I^3+UI}{R})$, сложность по памяти $O(\beta \frac{I}{R})$.

6 Шаг 5

6.1 маппер

Маппер преобразуют тройки (u, \hat{r}_{ui}, i) в $(u, \hat{r}_{ui}, title_i)$, где $title_i$ — название фильма с идентификатором i. Для этого маппер считывает файл movies.csv (так как он имеет небольшой размер), и ставит каждому поступающему значению i его название. Выход редьюсеров предыдущего шага имеет сложность O(UI), поэтому сложность по времени маппера — $O(\frac{UI}{M})$

6.2 редьюсер

На выходе редьюсера мы должны получить для каждого пользователя топ 100 фильмов с наивысшей предсказанной оценкой. Для этого, перед тем как подать данные редьюсеру, проведем сортировку для всех элементов $(u, \hat{r}_{ui}, title_i)$. Для u, \hat{r}_{ui} сортировка численная (для \hat{r}_{ui} сортировка по убыванию), а для $title_i$ — лексикографическая. Далее, редьюсер для каждого пользователя u отбирает и выводит первые 100 фильмов. Сложность по времени $O(\frac{UI}{R})$. Сложность по памяти константная — O(1), так как редьюсеры не хранят больше 100 значений фильмов. Сложность выхода составляет O(U), снова из-за того, что для каждого пользователя мы выводим только 100 фильмов с наивысшей оценкой.

Общее время работы MapReduce задачи ≈ 40 минут.