Solutions: Class 03/02, Balanced Trees

Copyright (c) 2016 Dan Suthers. All rights reserved. These solution notes may only be used by students in ICS 311 Spring 2016 at the University of Hawaii.

Insert 6:

- ← (a) RBT after insert
- (b) no property is violated
- (c) no remedy needed
- (d) RBT after fixup is the same.
- (e) $(2,4): \to$

Insert 5:

- ← (a) RBT after insert
- (b) **no** property violated
- (c) **no** remedy needed
- (d) RBT after fixup is the same.
- (e) $(2,4): \rightarrow$

6, 5

Insert 4:

- ← (a) RBT after insert
- (b) double red =

incorrect representation

(c) black uncle (sibling of red parent): restructure

(d,e) RBT and (2,4): \rightarrow

4, 5, 6

(You may leave out the black leaf nodes in the remainder. Show them only when they are the "uncle")

Insert 2:

- ← (a) RBT after insert
- (b) double red = overflow
- (c) red uncle: recolor
- (d,e) RBT and (2,4): \rightarrow

Note: 5 stays black because it is the root!

Insert 3:

- ← (a) RBT after insert
- (b) double red = incorrect representation
- (c) black uncle: restructure
- (d,e) RBT and (2,4): \rightarrow

Solutions: Class 03/02, Balanced Trees

Copyright (c) 2016 Dan Suthers. All rights reserved. These solution notes may only be used by students in ICS 311 Spring 2016 at the University of Hawaii.

DELETION

Delete 6:

(b): double black at r, corresponding to underflow

(c): <u>Case 3</u>: sibling "3" is red: perform RBT <u>adjustment</u>. (Another case will then apply.)

New Case:

(b): still double black at r, corresponding to underflow, but now ... (c): Case 2: sibling "4" is black with black children: perform RBT recoloring, equivalent

(Essentially, push the blackness of both 4 and r up to parent 5.)

to 2-4 fusion.

Now we are good. A red node absorbed the extra black by turning black.

(if 5 had been black the double black violation would propagate up the tree, potentially O (lg n) times.)

Delete 5:

BST deletion says when there is one child, replace it with its child.
RBT deletion says the child should take on its parent's color.
All is good.

