Asymmetric Equilibria in Symmetric Multiplayer Prisoners' Dilemma Supergames

Davidson Cheng

33rd International Conference on Game Theory, Stony Brook

July 19th, 2022

Outline

- Model a supergame as a finite state automaton (FSA)
- Propose a solution concept on **FSA**s
- Derive properties of such FSAs

Definition

A **supergame** is an infinitely repeated game without discounting, whereas the utility of each player is calculated as the limit of their mean payoff [Aumann, 1994].

Definition

A **supergame** is an infinitely repeated game without discounting, whereas the utility of each player is calculated as the limit of their mean payoff [Aumann, 1994].

This implies we are assuming

Definition

A **supergame** is an infinitely repeated game without discounting, whereas the utility of each player is calculated as the limit of their mean payoff [Aumann, 1994].

This implies we are assuming

• the game will eventually reach equilibrium

Definition

A **supergame** is an infinitely repeated game without discounting, whereas the utility of each player is calculated as the limit of their mean payoff [Aumann, 1994].

This implies we are assuming

- the game will eventually reach equilibrium
- we care about the equilibrium payoff only [Rubinstein, 1979]

We don't expect anything to go on forever, so why supergames?

We don't expect anything to go on forever, so why supergames?

Sometimes finitely repeating a game won't produce interesting equilibria [Benoit, 1984]

We don't expect anything to go on forever, so why supergames?

Sometimes finitely repeating a game won't produce interesting equilibria [Benoit, 1984]

• Prisoners' Dilemma

We don't expect anything to go on forever, so why supergames?

Sometimes finitely repeating a game won't produce interesting equilibria [Benoit, 1984]

- Prisoners' Dilemma
- The "chainstore paradox" [Selten, 1978]

We don't expect anything to go on forever, so why supergames?

Sometimes finitely repeating a game won't produce interesting equilibria [Benoit, 1984]

- Prisoners' Dilemma
- The "chainstore paradox" [Selten, 1978]

On the other hand, infinitely repeated games may contain a larger set of equilibria [Folk Theorem].

What is it?

What is it?

• A mathematical model for computation

What is it?

- A mathematical model for computation
- Abstracts computation to transitions between **states**

What is it?

- A mathematical model for computation
- Abstracts computation to transitions between **states**
- deterministic or non-deterministic (quantum computation)

Model

We consider infinitely repeated multiplayer prisoners' dilemma without discounting.

Definition

Let the stage game G be defined as

$$G = < \{0, 1\}, S_n, u >,$$

whereas S_n are all **states** of the game.

all intermediate/final outcomes of the game.

all intermediate/final outcomes of the game.

Example						
Two Player Prisoner's Dilemma						
		Prisoner 1				
		Cooperate	Defect			
Prisoner 2	Cooperate Defect	3,3	0,5			
	Defect	5,0	1,1			
			•			

We use the number of defective agents to denote a state, and we use this number to establishing an ordering of states

Leading and Chaining

Definition

For some $s_i, s_j \in S_n$, we use $s_i \to s_j$ to denote " s_i leads to s_j ", which means

- one and only one agent in s_i is able to by themself improve and maximize their limit of the means payoff through inducing a state switch from s_i to s_j ,
- or $s_i = s_j$ and s_i is an equilibrium.

Definition

For $s_i, s_j \in S_n$, $s_i \Rightarrow s_j$ denotes " s_i is chained to s_j ", which means for some $s_i, s_l, s_m, ..., s_o, s_j \in S_n, s_i \rightarrow s_l, s_l \rightarrow s_m, ..., s_o \rightarrow s_j$.

This means a state can only lead to itself or its neighbors.

Stage Game Properties

Definition

The game *G* is **locally non-cooperative** if

- for any state with utility defined for both defective and cooperative agents, defective agents have higher payoff.
- for any $b \in \{0, 1, 2, ..., n-1\}$,

$$u(1, [b+1]) > u(0, [b]).$$

Definition

The supergame G^* has **monotonously decreasing** utility function if for any s, $s' \in S_n$ such that s' > s, the utility function satisfy

$$u(0,s') < u(0,s)$$
, and

Theorem

If G^* has monotonously decreasing utility function and is locally non-cooperative, then every state leads to exactly one state.

Theorem

If G^* has monotonously decreasing utility function and is locally non-cooperative, then every state leads to exactly one state.

The FSA is deterministic.

Theorem

If G* has monotonously decreasing utility function and is locally non-cooperative, then every state leads to exactly one state.

The FSA is deterministic.

Corollary

If G^* has ..., then the sequence of state switches for G^* contains exactly one cycle, and such cycle can only contain one state.

Theorem

If G^* has monotonously decreasing utility function and is locally non-cooperative, then every state leads to exactly one state.

The FSA is deterministic.

Corollary

If G^* has ..., then the sequence of state switches for G^* contains exactly one cycle, and such cycle can only contain one state.

Equilibria are stationary

Lemma

Suppose G^* has ..., then for any $b \in \{0, 1, ..., n\}$,

- $[b] \rightarrow [b-1]$ implies there exists some state [e] such that $e \le b-1$, $[e] \rightarrow [e]$, and for any $d \in \{b, b-1, ..., e+1\}$, u(0, [e]) > u(1, [d]);
- $[b] \rightarrow [b+1]$ implies

Lemma

Suppose G^* has ..., then for any $b \in \{0, 1, ..., n\}$,

- $[b] \rightarrow [b-1]$ implies there exists some state [e] such that $e \le b-1$, $[e] \rightarrow [e]$, and for any $d \in \{b, b-1, ..., e+1\}$, u(0, [e]) > u(1, [d]);
- $[b] \rightarrow [b+1]$ implies

Lemma

If G^* has ..., then the state [n] is an equilibrium.

Theorem

If G^* has ..., then for some state $[b] \in S_n$ such that u(1, [n]) > u(0, [b]), it must be true that $[b] \Rightarrow [n]$.

Example

Consider an instance of G^* with three players and stage game payoff function defined as below.

State

Action

	[0]	[1]	[2]	[3]
0 (Cooperate)	6	3	1	-
1 (Defect)	-	7	5	4

Symmetric Equilibria Example

Example

Consider an instance of G^* with three players and stage game payoff function defined as below.

State

Action

	[0]	[1]	[2]	[3]
0 (Cooperate)	6	3	1	-
1 (Defect)	-	7	5	1.5

Mechanism Design Implication

Don't give everyone the same grade for a group assignment.

Mechanism Design Implication

Don't give everyone the same grade for a group assignment.

State Action [0] [1] [2] [3] 0 (Cooperate) 6 3 1 1 (Defect) 7 5 1.5

Tit for Tat

		Prisoner 1		
		Cooperate	Defect	
Prisoner 2	Cooperate	3,3	0,5	
	Defect	5,0	1,1	

Tit for Tat

		Prisoner I		
		Cooperate	Defect	
Prisoner 2	Cooperate	3,3	0,5	
	Defect	5,0	1,1	
[2]	[0]		[1] (0, 5)	

Ongoing work

- Generalizing two examples provided
- Identiy when equilibria are symmetric, when asymmetric
- Define subgames

Thank You

Thank You!

Come talk to me about related stuff I am working on now!

Davidson Cheng

email: d_cheng@coloradocollege.edu Paper is on arxiv under

2205.13772

