

静电场与物质的相互作用2

电介质

通过本部分的学习,您将:

- 掌握极化现象的微观解释;
- 掌握极化强度的定义;
- 掌握极化强度与极化电荷的关系;
- 掌握有介质存在的高斯定理和环路定理;
- 会求解相关问题。

§ 2. 2 电介质

电场对于没有自由移动电荷的电介质能否产生作用?

实验真相:

$$U = \frac{U_0}{\varepsilon_r},$$

结论: 电介质的引入改变了电容器中的电场

不含自由移动的电荷的电介质是如何影响电场的呢?

物理模型

$$\vec{p} = q\vec{r}_0$$

一、电场中的电偶极子

电偶极子在电场中受到的力矩是多少?

在力矩的作用下, 电偶极子会发生什么样的运动?

这里对电偶极子在外电场中的行为进行分析:

力矩:

$$\vec{M} = \vec{p} \times \vec{E}$$

外电场总是使电偶极子 \vec{P} 与 \vec{E} 的方向趋于一致

二、介质极化

从微观角度,借助电偶极子模型解释实验现象。

II

非极性分子(无极分子)

极性分子

$$\vec{p} = 0$$

$$\vec{p} = q\vec{l}$$

无外场时(热运动)

(非极性分子电介质)

整体对外 不显电性

(极性分子电介质)

有外场时

• 非极性分子电介质

有外场时:

- (a) 有极分子电介质, 主要是**取向极化**, 也有位移极化。
- (b) 无极分子介质,只有(电子) 位移极化。

外电场越强, 电偶极矩矢量和越大。

关于电介质极化的说明:

- (a) 对于均匀电介质,极化电荷只出现在表面上;
- (b) 极化电荷与导体的自由电荷不同,极化电荷属于束缚电荷;
- (c) 两种极化微观机制不同, 宏观效果相同, 在研究宏观问题时不必加以区分。

束缚电荷:由于极化,在介质表面积累的净电荷

退极化场: 在电介质内附加电场 \vec{E}' 总是与外电场方向相反,使外加电场减弱,阻碍电介质的极化,故把附加电场叫做退极化场。

由束缚电荷提供的电场,与原来的电场方向相反,因此,介质内的电场强度减小。电场强度减小。

电极化强度矢量

极化强度反映物质极化的强弱

■ 从微观角度阐述: 极化强度与极化的面电荷联系起来 (极化电荷面密度)

■ 从宏观角度阐述: 极化强度与电场联系起来(电极化率)

2 电极化强度矢量及面电荷密度

(1) 电极化强度矢量 P

在电介质中取一宏观无限小微观无限大的体积元AV

定义电极化强度:
$$\vec{P} = \lim_{\Delta V \to 0} \frac{\sum_{i} p_{i}}{\Delta V}$$

非极性分子: $\vec{P} = n\vec{p}_i$

 \bar{p}_i 是每个分子的电偶极矩

电极化强度: 度量电介质极化状态的物理量。

电介质

各向同性电介质: 电介质性质不因电场矢量方向改变 而改变

对于各向同性电介质:

$$\vec{P} = \chi \varepsilon_0 \vec{E}$$

 χ 叫做电介质的电极化率; 一般而言,它的大小与E的大小相关;

E是介质内总的电场

线性电介质: 电介质的电极化率与总电场无关, 由介质自身性质决定, 此电介质叫做线性电介质

$$\vec{P} = \chi \varepsilon_0 \vec{E}$$

 χ 为常数,其大小不随电场变化

