

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance

Kimia Nadjahi¹ Alain Durmus² Umut Şimşekli^{1,3} Roland Badeau¹

¹ Télécom Paris ² ENS Paris-Saclay ³ University of Oxford

Minimum Distance Estimation

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{D}(\hat{\boldsymbol{\mu}}_n, \boldsymbol{\mu}_{\theta})$$

D: distance between distributions

 $\hat{\mu}_n$: empirical distribution of data points Y_1, \dots, Y_n i.i.d from μ_{\star}

 μ_{θ} : distribution parametrized by $\theta \in \Theta$

Minimum Distance Estimation

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{D}(\hat{\boldsymbol{\mu}}_n, \boldsymbol{\mu}_{\theta})$$

D: distance between distributions

 $\hat{\mu}_n$: empirical distribution of data points Y_1, \dots, Y_n i.i.d from μ_{\star}

 μ_{θ} : distribution parametrized by $\theta \in \Theta$

Minimum Expected Distance Estimation

Directly optimizing μ_{θ} is often **not possible** (e.g. GANs)

$$\hat{\theta}_{n,m} = \operatorname{argmin}_{\theta \in \Theta} \mathbb{E} \left[\mathbf{D}(\hat{\boldsymbol{\mu}}_{n}, \hat{\boldsymbol{\mu}}_{\theta,m}) \mid Y_{1:n} \right]$$

 $\hat{\mu}_{\theta,m}$: empirical distribution of a sample Z_1,\ldots,Z_m i.i.d. from μ_{θ}

Minimum Wasserstein Estimation

Choose $\mathbf{D} = \mathbf{W}_p$ (Wasserstein distance of order $p \ge 1$)

- ✓ Robust and increasingly popular estimators: Wasserstein GAN [1], Wasserstein auto-encoders [2]
- ✓ Asymptotic guarantees [3]
- [1] Arjovsky et al., 2017 [2] Tolstikhin et al., 2018 [3] Bernton et al., 2019

Minimum Wasserstein Estimation

Choose $\mathbf{D} = \mathbf{W}_p$ (Wasserstein distance of order $p \ge 1$)

- ✓ Robust and increasingly popular estimators: Wasserstein GAN [1], Wasserstein auto-encoders [2]
- ✓ Asymptotic guarantees [3]
- [1] Arjovsky et al., 2017 $\quad [2]$ Tolstikhin et al., 2018 $\quad [3]$ Bernton et al., 2019
 - \times **W**_p: expensive + curse of dimensionality
 - × Central limit theorem in [3] valid in 1D

Sliced-Wasserstein distance

In 1D, \mathbf{W}_p has an analytical form \Rightarrow Motivates a practical alternative:

$$\mathbf{SW}_p^p(oldsymbol{\mu}, oldsymbol{
u}) = \int_{\mathbb{S}^{d-1}} \mathbf{W}_p^p(oldsymbol{u}_\sharp^\star oldsymbol{\mu}, oldsymbol{u}_\sharp^\star oldsymbol{
u}) \mathrm{d}oldsymbol{\sigma}(oldsymbol{u})$$

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. K. Nadiahi, A. Durmus, U. Simsekli, R. Badeau

Minimum Sliced-Wasserstein Estimation

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{SW}_p(\hat{\mu}_n, \mu_{\theta})$$

$$\hat{\theta}_{n,m} = \operatorname{argmin}_{\theta \in \Theta} \mathbb{E} \left[\mathbf{SW}_p(\hat{\mu}_n, \hat{\mu}_{\theta,m}) \mid Y_{1:n} \right]$$

Successful in generative modeling applications (e.g., SW-GAN, Deshpande et al., 2018)

Minimum Sliced-Wasserstein Estimation

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{SW}_p(\hat{\mu}_n, \mu_{\theta})$$

$$\hat{\theta}_{n,m} = \operatorname{argmin}_{\theta \in \Theta} \mathbb{E} \left[\mathbf{SW}_p(\hat{\mu}_n, \hat{\mu}_{\theta,m}) \mid Y_{1:n} \right]$$

Successful in generative modeling applications (e.g., SW-GAN, Deshpande et al., 2018)

___ Our contributions: ____

- Convergence in $\mathbf{SW}_p \Rightarrow$ weak convergence of probability measures
- Existence and consistency of $\hat{\theta}_n$, $\hat{\theta}_{n,m}$
- Central limit theorem for $\hat{\theta}_n$: \sqrt{n} convergence rate for any dimension

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. K. Nadiahi, A. Durmus, U. Simsekli, R. Badeau

Thank you!

Our Poster: East Exhibition Hall B + C #226

