Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1+i)^2 = 1 + 2i + i^2 = 2i$	3 p
	$z^2 - 2i = 2i - 2i = 0$	2 p
2.	f(3) = 0	2p
	$(g \circ f)(3) = g(f(3)) = g(0) = 2015$	3 p
3.	$x^2 - 5x = 3 - 3x \Leftrightarrow x^2 - 2x - 3 = 0$	3 p
	$x_1 = -1$ și $x_2 = 3$	2p
4.	$C_5^4 = \frac{5!}{4! \cdot 1!} =$	3 p
	=5	2 p
5.	Panta dreptei d este egală cu 2	2p
	Ecuația dreptei d este $y = 2x + 4$	3p
6.	$\mathcal{A}_{\Delta MNP} = \frac{12 \cdot 3 \cdot \sin 30^{\circ}}{2} = \frac{6 \cdot 3}{2} =$	3p
	= 9	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} =$	2p
	$=1\cdot 1-0\cdot 0=1$	3 p
b)	$\det(A(a)) = \begin{vmatrix} 1 & -a \\ -a & 1 \end{vmatrix} = 1 - a^2$	3 p
	$1 - a^2 = 0 \Leftrightarrow a_1 = -1 \text{i} a_2 = 1$	2 p
c)	$A(a)A(b) = \begin{pmatrix} 1+ab & -b-a \\ -a-b & ab+1 \end{pmatrix}, \ A(a+b) = \begin{pmatrix} 1 & -a-b \\ -a-b & 1 \end{pmatrix}, \ abI_2 = \begin{pmatrix} ab & 0 \\ 0 & ab \end{pmatrix}$	3 p
	$A(a+b)+abI_2 = \begin{pmatrix} 1+ab & -a-b \\ -a-b & 1+ab \end{pmatrix} = A(a)A(b)$, pentru orice numere reale a și b	2 p
2.a)	$f(0) = 0^3 - m \cdot 0 + 2 =$	3 p
	=0-0+2=2	2 p
b)	Restul este $(3-m)X$	3 p
	$3-m=0 \Leftrightarrow m=3$	2 p
c)	$x_1 + x_2 + x_3 = 0$	2p
	$x_1^3 + x_2^3 + x_3^3 = m(x_1 + x_2 + x_3) - 6 = m \cdot 0 - 6 = -6$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	2p
	$f'(x) = e^x - 1$ şi $f'(0) = 0 \Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0$	3 p
b)	$e^x \le 1 \Leftrightarrow x \le 0$	2 p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci f este descrescătoare pe intervalul $(-\infty, 0]$	3 p
c)	$f'(0) = 0$ și $f'(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe intervalul $[0, +\infty)$	2p
	Cum f este descrescătoare pe intervalul $(-\infty,0]$, obținem $f(x) \ge f(0) \Rightarrow e^x \ge x+1$, pentru orice număr real x	3 p
2.a)	$\int_{0}^{1} (f(x) + 2x - 5) dx = \int_{0}^{1} (x^{2} - 2x + 5 + 2x - 5) dx = \int_{0}^{1} x^{2} dx =$	2p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	3p
b)	$\int_{0}^{2} \frac{f'(x)}{f(x)} dx = \ln\left(x^{2} - 2x + 5\right) \Big _{0}^{2} =$	3 p
	$= \ln 5 - \ln 5 = 0$	2p
c)	$f(x) = (x-1)^2 + 4 \ge 4$, pentru orice număr real x	2 p
	$\int_{2014}^{2015} \frac{1}{f(x)} dx \le \int_{2014}^{2015} \frac{1}{4} dx = \frac{1}{4} x \left \frac{2015}{2014} \right = \frac{1}{4}$	3 p