四、中断控制指令

四、中断指令

■ 中断的概念

▼ 中断源

某种异常或随机事件使处理器暂时停止正在运行的程序, 转去执行一段特殊处理程序,并在处理结束后返回原程序 被中断处继续执行的过程。

■ 中断指令:

■ 引起CPU产生一次中断的指令

中断与过程调用:

■ 相似点:

从一个正在执行的过程转向另一个过程(处理程序),并在执行 完后返回原程序继续执行

■ 区别:

- 中断是随机事件或异常事件引起,调用是事先已在程序中安排好;
- 调用指令在指令中直接给出子程序入口地址,中断指令只给出中断向量码,入口地址则在向量码指向的内存单元中。
- 调用可以是近过程调用或远过程调用,中断处理程序均为远过程;
- 响应中断请求不仅要保护断点地址,还要保护FLAGS内容。

1. 中断指令

中断指令的执行过程

- ① 将FLAGS压入堆栈;
- ② 将INT指令的下一条指令的CS、IP压栈;
- ③ 由n×4得到存放中断向量的地址;
- ④ 将中断向量(中断服务程序入口地址)送CS和IP寄存器;
- 5 转入中断服务程序。

中断指令的执行过程

中断指令例

中断指令例

- 执行INT 21H指令后
 - IP=[21Hx4]
 - CS==[(21Hx4) +2]

2. 中断返回指令

- 格式:
 - IRET
- 中断服务程序的最后一条指令,负责:
 - 恢复断点
 - 恢复标志寄存器内容

