Multiple testing (in R)

Catalina Vallejos (The Alan Turing Institute and UCL) Aaron Lun (Cancer Research UK - Cambridge Institute)

Outline for the course

- Introduction to statistics
- Hypothesis testing (in R)
- Regression analysis (in R)
- Multiple testing (in R)

Often, the aim of the analysis is not only **estimation**.

For example,

- ▶ Is the treatment effective?
- Is a gene differentially expressed?
- ► Is there an association between genotype and phenotype?

These questions can be translated as hypothesis testing problems

No test is exact:

	Null hypothesis does not hold	Null hypothesis holds
Reject null	Correct	Wrong
hypothesis	True positive	False positive
Do not reject	Wrong	Correct
null hypothesis	False negative	True negative

No test is exact:

	Null hypothesis does not hold			Null hypothesis holds		
Reject null hypothesis		1 - β			α	
Do not reject null hypothesis		β			1 - α	

No test is exact:

	Null hypothesis does not hold			Null hypothesis holds		
Reject null hypothesis		1 - β			α	
Do not reject null hypothesis		β			1 - α	

What happens when we run more than one test?

There are many examples were **multiple tests** are required:

There are many examples were **multiple tests** are required:

For example, Genome Wide Association Studies (GWAS):

Is there an association between genotype and phenotype?

There are many examples were **multiple tests** are required:

For example, Genome Wide Association Studies (GWAS):

Is there an association between genotype and phenotype?

- Usually framed as a regression problem
- ▶ Outcome: disease (yes/no), biomarker value, height, etc.
- Covariates: SNPs in the genome (millions!)

One approach to GWAS is to perform one-at-the-time-tests

One approach to GWAS is to perform *one-at-the-time-tests* Notation:

- \triangleright Y_i : response variable (e.g. biomarker value) for person i
- $x_i^{(j)}$: observed value for SNP j, person i

One approach to GWAS is to perform *one-at-the-time-tests*Notation:

- \triangleright Y_i : response variable (e.g. biomarker value) for person i
- $\triangleright x_i^{(j)}$: observed value for SNP j, person i

This can be formulated using simple linear regressions:

$$Y_i = \alpha_j + \beta_j x_i^{(j)} + \epsilon_i, \quad j = 1, \dots, J$$

One approach to GWAS is to perform *one-at-the-time-tests*Notation:

- \triangleright Y_i : response variable (e.g. biomarker value) for person i
- $x_i^{(j)}$: observed value for SNP j, person i

This can be formulated using simple linear regressions:

$$Y_i = \alpha_j + \beta_j x_i^{(j)} + \epsilon_i, \quad j = 1, \dots, J$$

Is there a significant association between SNP j and the outcome?

Is there a significant association between SNP j and the outcome?

This can be formulated as the following hypothesis test:

$$H_0: \beta_j = 0$$
 vs $H_1: \beta_j \neq 0$

Is there a significant association between SNP j and the outcome?

This can be formulated as the following hypothesis test:

$$H_0: \beta_j = 0$$
 vs $H_1: \beta_j \neq 0$

There are as many tests as SNPs in the genome!

No test is exact:

	Null hypothesis does not hold			Null hypothesis holds		
Reject null hypothesis		1 - β			α	
Do not reject null hypothesis		β			1 - α	

What happens to these errors when we run more multiple tests?

What is the probability of obtaining 1 or more false positives (i.e. Reject H_0 when H_0 is true) among T independent tests?

P(At least 1 FP in T tests)

What is the probability of obtaining 1 or more false positives (i.e. Reject H_0 when H_0 is true) among T independent tests?

```
P(At least 1 FP in T tests)
```

= 1 - P(No FPs in T tests)

```
P(At least 1 FP in T tests)
```

- = 1 P(No FPs in T tests)
- $= 1 P(No FP in test 1) \times \cdots \times P(No FP in test T)$

```
P(\text{At least 1 FP in } T \text{ tests})
= 1 - P(\text{No FPs in } T \text{ tests})
= 1 - P(\text{No FP in test 1}) \times \cdots \times P(\text{No FP in test } T)
= 1 - (1 - \alpha) \times \cdots \times (1 - \alpha)
```

```
P(At least 1 FP in T tests)

= 1 - P(No FPs in T tests)

= 1 - P(No FP in test 1) \times \cdots \times P(No FP in test T)

= 1 - (1 - \alpha) \times \cdots \times (1 - \alpha)

= 1 - (1 - \alpha)^T
```

P(At least 1 FP in
$$T$$
 tests) = $1 - (1 - \alpha)^T$; $\alpha = 0.05$

1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100

Number of tests

For T=100 tests, the probability of at least 1 FP is almost 1!

What is the probability of obtaining 1 or more false positives (i.e. Reject H_0 when H_0 is true) among T independent tests?

We need to correct for multiple testing to control error rates

To control the **Family-Wise Error Rate** (FWER)

$$FWER = P(At least 1 FP in T tests)$$

Idea: for T tests with significance level α , it can be shown that

$$\mathsf{FWER} \leq \mathit{T}\alpha$$

To control the **Family-Wise Error Rate** (FWER)

$$FWER = P(At least 1 FP in T tests)$$

Idea: for T tests with significance level α , it can be shown that

$$\mathsf{FWER} \leq T\alpha$$

Bonferroni's solution is to use:

$$\alpha^* = \min\{\alpha/T, 1\}$$

Doing this for each test ensures that FWER $\leq \alpha$

Bonferroni's correction:

$$\alpha^* = \min\{\alpha/T, 1\}$$

For example, for 1 million tests and $\alpha = 0.05$, this leads to

$$\alpha^* = 5 \times 10^{-8}$$

This is commonly used as a p-value threshold in GWAS

Bonferroni's correction:

$$\alpha^* = \min\{\alpha/T, 1\}$$
1.0
0.8
0.6
0.4
0.2
0 20 40 60 80 100

Number of tests

▶ It can be too conservative ⇒ too many false negatives

► Holm's method is less conservative while still controlling FWER

Is FWER the right quantity to control?

- ▶ Yes, if we only care about false positives
- ▶ No, if we care about false negatives (at the cost of false positives)

Is FWER the right quantity to control?

- ▶ Yes, if we only care about false positives
- ▶ No, if we care about false negatives (at the cost of false positives)

An alternative idea is to control the False Discovery Rate (FDR)

$$FDR = \frac{FP}{Positives}$$

Is FWER the right quantity to control?

- ▶ Yes, if we only care about false positives
- ▶ No, if we care about false negatives (at the cost of false positives)

An alternative idea is to control the False Discovery Rate (FDR)

$$FDR = \frac{FP}{Positives} = \frac{FP}{FP + TP}$$

Is FWER the right quantity to control?

- Yes, if we only care about false positives
- ▶ No, if we care about false negatives (at the cost of false positives)

An alternative idea is to control the False Discovery Rate (FDR)

$$FDR = \frac{FP}{Positives} = \frac{FP}{FP + TP}$$

Do not confuse with the False Positive Rate! FPR = $\frac{FP}{True\ positives}$

Is FWER the right quantity to control?

- Yes, if we only care about false positives
- ▶ No, if we care about false negatives (at the cost of false positives)

An alternative idea is to control the **False Discovery Rate** (FDR)

$$FDR = \frac{FP}{Positives} = \frac{FP}{FP + TP}$$

Do not confuse with the False Positive Rate! FPR $=\frac{FP}{True\ positives}$

Benjamini and Hochberg's method controls the FDR

