

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Facultad de Ingeniería

Ingeniería en Ciencias de la Computación

INVESTIGACIÓN DE OPERACIONES 1 M2 - 3.10 Actividad: Método M

Trabajo de: ADRIAN ALEJANDRO GONZÁLEZ DOMÍNGUEZ [359834]

Asesora: OLANDA PRIETO ORDAZ

Desarrolle los siguientes ejercicios:

A) En el siguiente problema, determine la nueva fila Z para la tabla inicial considerando las variables artificiales para aquellas restricciones que no tengan holgura. Determine por el método simplex si existe una solución óptima y argumente el resultado.

$$MaxZ = 3x_1 + 2x_2 + 5x_3$$

Sujeto a

$$x_1 + 2x_2 + x_3 = 430$$

$$3x_1 + 2x_3 <= 460$$

$$x_1 + 4x_2 > = 420$$

$$x_1, x_2 >= 0$$

Dadas las restriciones:

Definición de ecuaciones

Identificamos las restricciones que poseen holgura. Identificamos las restricciones que no poseen holgura, a estás les agregaremos variables artificiales.

$$Z - 3x_1 - 2x_2 - 5x_3 + MR_1 + 0s_1 - 0S_1 + MR_2 = 0$$

$$x_1 + 2x_2 + x_3 + R_1 = 430$$

$$3x_1 + 2x_3 + s_1 = 460$$

$$x_1 + 4x_2 - S_1 + R_2 = 420$$

m = numero de ecuaciones

n = numero de variables

Para calcular la cantidad de puntos de esquina

$$C_m^n = rac{n!}{m(n-m)!}$$

$$m = 3, n = 7$$

$$C_m^n = \frac{7!}{3(7-3)!} = 70$$

Identificar variables básicas (V_B) y variables no básicas (V_{NB})

Las variables básicas para el primer punto son las holguras.

Para el punto A todas las holguras son son nuestras V_B , es decir: R_1, s_1, R_2

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
Z	1	-3	-2	-5	0	0	0	0	0
R_1	0	1	2	2	1	0	0	0	430
s_1	0	3	0	2	0	1	0	0	460
R_2	0	1	4	0	0	0	-1	1	420

Seleccionamos una M lo suficientemente grande para penalizar nuestra función objetivo.

$$M = 100$$

$$Z - 3x_1 - 2x_2 - 5x_3 + MR_1 + MR_2 = 0$$

$$Z = 3x_1 + 2x_2 + 5x_3 - MR_1 - MR_2$$

$$Z = 3x_1 + 2x_2 + 5x_3 - 100R_1 - 100R_2$$

$$Z = 0 \neq 3(0) + 2(0) + 5(0) - 100(430) - 100(420) = -85000$$

Corregir la ecuación de Z

Tenemos que nivelar la función Z por que es incongruente. Para esto evaluaruemos las variables artificiales en terminos de las variables (y superávits), y sustituiremos sus valores en la ecuación Z.

De
$$x_1 + 2x_2 + x_3 + R_1 = 430$$
 :

$$R_1 = -x_1 - 2x_2 - x_3 + 430$$
\$

De
$$x_1 + 4x_2 - S_1 + R_2 = 420$$

$$R_2 = -x_1 - 4x_2 + S_1 + 420$$

Sustituyendo en $Z-3x_1-2x_2-5x_3+MR_1+MR_2=0$

$$Z - 3x_1 - 2x_2 - 5x_3 + 100(-x_1 - 2x_2 - x_3 + 430) + 100(-x_1 - 4x_2 + S_1 + 420) = 0$$

$$Z - 3x_1 - 2x_2 - 5x_3 - 100x_1 - 200x_2 - 100x_3 + 43000 - 100x_1 - 400x_2 + 100S_1 + 42000 = 0$$

$$Z - 203x_1 - 602x_2 - 105x_3 + 85000 + 100S_1 = 0$$

Una vez que obtenemos la nueva ecuación de Z, la colocamos en su lugar en la tabla.

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
Z	1	-203	-602	-105	0	0	100	0	-85000
R_1	0	1	2	1	1	0	0	0	430
s_1	0	3	0	2	0	1	0	0	460
R_2	0	1	4	0	0	0	-1	1	420

Realizamos el método SIMPLEX.

Primera iteración

Seleccionar variable de entrada (V_E)

¿Qué variable de mi función Z afecta más a mi modelo?

El modelo busca maximizar, por esto la variable que afecta más es la más negativa.

$$V_E=x_2$$

V_B	Columna V_E	Columna Solución	Relación mínima	Válida
R_1	2	430	$\frac{430}{2} = 215$	Sí
s_1	0	460	$\frac{460}{0} = \infty$	No
R_2	4	420	$\frac{420}{4} = 105$	Sí

 ${\it R}_{\rm 2}$ es nuestra variable pivote (${\it V}_{\it P}$)

Actualizar la fila de la variable pivote (V_P)

$$M_{V_P,V_E}=4$$
.

$$M_{V_P}, j = rac{M_{V_P,j}}{M_{V_P,V_E}}$$

$$R_2
ightarrow x_2$$

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
x_2	0	$\frac{1}{4}$	$\frac{4}{4} = 1$	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	$\frac{420}{4} = 105$
V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
Z	1	-203	-602	-105	0	0	100	0	-85000

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
R_1	0	1	2	1	1	0	0	0	430
s_1	0	3	0	2	0	1	0	0	460
x_2	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105

Actualizar las demás filas respecto a la fila pivote

Para todas las filas M_i :

$$M_i = M_i - M_{i,V_E} \cdot M_{V_P}$$

Actualizar Z

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
Z	1	-203	-602	-105	0	0	100	0	-85000
x_2	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105
$-602x_2$	0	$\frac{-301}{2}$	-602	0	0	0	$\frac{301}{2}$	$\frac{-301}{2}$	-63210
$Z=Z-\left(-602x_{2} ight)$	1	$\frac{-105}{2}$	0	-105	0	0	$\frac{-101}{2}$	$\frac{301}{2}$	-21790

Actualizar R_1

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
R_1	0	1	2	1	1	0	0	0	430
x_2	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105
$2x_2$	0	$\frac{1}{2}$	2	0	0	0	$\frac{-1}{2}$	$\frac{1}{2}$	210
$R_1=R_1-2x_2$	0	$\frac{1}{2}$	0	1	1	0	$\frac{1}{2}$	$\frac{-1}{2}$	220

Actualizar s_1

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
s_1	0	3	0	2	0	1	0	0	460
x_2	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105
$0x_2$	0	0	1	0	0	0	0	0	0
$s_1 = s_1 - 0x_2$	0	3	0	2	0	1	0	0	460

Actualizar tabla con las filas actualizadas

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
Z	1	$\frac{-105}{2}$	0	-105	0	0	$\frac{-101}{2}$	$\frac{301}{2}$	-21790
R_1	0	$\frac{1}{2}$	0	1	1	0	$\frac{1}{2}$	$\frac{-1}{2}$	220
s_1	0	3	0	2	0	1	0	0	460
x_2	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105

Esté PE es B, donde $x_1=0, x_2=105, x_3=0$ y obtenemos una Z de -21790

Segunda iteración

Seleccionar variable de entrada (V_E)

$$V_E=x_3$$

V_B	Columna V_E	Columna Solución	Relación mínima	Válida
R_1	1	220	$\frac{220}{1} = 220$	Sí
s_1	2	460	$\frac{460}{2} = 230$	sí
x_2	0	105	$\frac{105}{0} = \infty$	No

 R_1 es nuestra variable pivote (V_P)

Actualizar la fila de la variable pivote (V_P)

$$M_{V_P,V_E}=1$$
.

$$M_{V_P}, j = rac{M_{V_P,j}}{M_{V_P,V_E}}$$

$$R_1 o x_3$$

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
x_3	0	$\frac{1}{2}$	0	1	1	0	$\frac{1}{2}$	$\frac{-1}{2}$	220
V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
Z	1	$\frac{-105}{2}$	0	-105	0	0	$\frac{-101}{2}$	$\frac{301}{2}$	-21790
x_3	0	$\frac{1}{2}$	0	1	1	0	$\frac{1}{2}$	$\frac{-1}{2}$	220
s_1	0	3	0	2	0	1	0	0	460
x_2	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105

Actualizar Z

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
Z	1	$\frac{-105}{2}$	0	-105	0	0	$\frac{-101}{2}$	$\frac{301}{2}$	-21790
x_3	0	$\frac{1}{2}$	0	1	1	0	$\frac{1}{2}$	$\frac{-1}{2}$	220
$-105x_3$	0	$\frac{-105}{2}$	0	-105	-105	0	$\frac{-105}{2}$	$\frac{105}{2}$	-23100
$Z=Z-\left(-105x_{3} ight)$	1	0	0	0	105	0	2	98	1310

Actualizar s_1

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
s_1	0	3	0	2	0	1	0	0	460
x_3	0	$\frac{1}{2}$	0	1	1	0	$\frac{1}{2}$	$\frac{-1}{2}$	220
$2x_3$	0	1	0	2	2	0	1	-1	440
$s_1=s_1-2x_3$	0	2	0	0	-2	1	-1	1	20

Actualizar x_2

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
x_2	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105
x_3	0	$\frac{1}{2}$	0	1	1	0	$\frac{1}{2}$	$\frac{-1}{2}$	220
$0x_3$	0	0	0	0	1	0	0	0	0
$x_2 = x_2 - 0x_3$	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105

Actualizar tabla con las filas actualizadas

V_B	Z	x_1	x_2	x_3	R_1	s_1	S_1	R_2	Solución
Z	1	0	0	0	105	0	2	98	1310
x_3	0	$\frac{1}{2}$	0	1	1	0	$\frac{1}{2}$	$\frac{-1}{2}$	220
s_1	0	2	0	0	-2	1	-1	1	20
x_2	0	$\frac{1}{4}$	1	0	0	0	$\frac{-1}{4}$	$\frac{1}{4}$	105

Esté PE es B, donde $x_1=0, x_2=105, x_3=220$ y obtenemos una Z de 1310. Dado que ya no hay más variables que

impacten en nuestro modelo, está es la ${\it Z}$ máxima.