(Q10)

(a) False.

As a counterexample, let a = -a and b = -b. Then a + a = 0 = b + b, while a and b are not necessarily equal.

(b) False.

Let \mathbb{F} be a field with the following addition table:

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

In this field, $char(\mathbb{F}) = 2$, which is prime, but \mathbb{F} is not \mathbb{Z}_2 .

(c) False.

Let $p(x) = (x^2 + 1)^2 = x^4 + 2x^2 + 1$ in \mathbb{R} . p is reducible, but has no solutions in \mathbb{R} .

(d) True.

Proof. Suppose for the sake of contradiction that p is irreducible and p has solutions. Then $\exists a: p(x) = (x-a)q(x)$, where q is another polynomial.

Then $\deg p > 1 \implies \deg q \ge 1$, which implies that p is in fact reducible, thus forming a contradiction.