Agenda

- 1) Introduction
- 2) Deliverable 1 Risk Score Model
- 3) Deliverable 2 Accident Severity Prediction
- 4) Conclusions and Next Steps

Deliverable 1

CRSS Dataset - Pedestrian Risk Score Model

CRSS - Crash Report Sampling System

"CRSS is a sample of police-reported crashes involving all types of motor vehicles, pedestrians, and cyclists, ranging from property-damage-only crashes to those that result in fatalities."

Non-Motorist Datasets

Distracted

Safety Equipment

Crossing

Accident Dataset (27.6K Cases) 2017-2022

Pedestrian Safety (Dependent Variable)

- Minor/No Injury (21.4K)
- Serious Injury (4.8K)
- Fatal Injury (1.4K)
- Weather
- Work Zone
- Interstate Highway
- Light Condition
- Junction
- Intersection type etc.

Vehicle Dataset

- Roadway alignment (straight, curved)
- Traffic Signal
- Speeding
- Number of Lanes
- Traffic Control Device
- Speed Limit etc.

CRSS - Approach 1

- Binary Dependent Variable -> 0 for minor/no injury and 1 for fatal/severe injury
- Removed majority of the missing values: Size dropped from 27.5K cases to 14.3K
- One hot encoded all categorical variables

Model Results

+ Model - Test Dataset	+ F1 Score	AUC score
Logistic Regression - balanced	0.52	0.73
Decision Tree w/ Depth 10	j 0.3 j	0.69
Bagging	0.32	0.68
Random Forest	0.32	0.69
Random Forest - balanced subsamples	0.47	0.68
Random Forest - Upsampling	0.49	0.68
Random Forest - Downsampling	0.48	0.67
Gradientboost-Upsampled	0.52	0.72
Support Vector Machine-Upsampled	0.48	0.71
+	++	+

CRSS - Approach 1

CRSS - Approach 2

- Ternary Dependent Variable:
 - 0 for minor or no injury
 - 1 for severe injury
 - o 2 for fatal
- Instead of removing missing values in approach 1, they were imputed

Model	Test Accuracy
Random Forest Non-SMOTE	77.63% ★
Random Forest SMOTE	75.42%
Neural Network Non-SMOTE	77.18%
Neural Network SMOTE	62.36%

Approach 2: Neural Network Models

- Configuration:
 - 2 dense layers
 - 1 batch normalization layer in between
- Non-SMOTE Model:
 - Predicted classes 1 & 2 poorly
- SMOTE Model:
 - Better at predicting classes 1 & 2
- Both versions predicted class 0 better than classes 1 & 2

Layer (type) 	Output Shape	Param #
dense (Dense)	(None, 32)	928
<pre>batch_normalization (BatchN ormalization)</pre>	(None, 32)	128
dense_1 (Dense)	(None, 3)	99

Deliverable 2

Accident Severity Prediction:

Part 1: FARS Dataset - Pedestrian Injury
 Prediction

FARS - Fatality Analysis Reporting System

Variable: Number

of fatalities

FARS Dataset: Provides yearly data on fatal injuries in Vehicles CSV Files vehicle-to-vehicle accidents Time Period 1 1975 - 2022 1975 - 1981 Time Period 2 Hit/run accident? Drunk driver(s)? 1982 - 1990 Inner join on Car year Accidents + Time Period 3 common field: manufactured Vehicles Data 1991 - 2000 "State Case 1975 - 2022 Time Period 4 Number" **Accidents CSV Files** 2001 - 2007 1975 - 2022 Time Period 5 2008 - 2014 State/city/county Weather/light Time Period 6 conditions 2015 - 2022 Work zone? Dependent

FARS Variable Importance Chart: 2015 - 2022

Part 2 - Vehicle-to-Vehicle Traffic Severity Modeling

- Dependent Variable "Severity" -> classes
 1 4
- Datetime Breakdown -> Datetime becomes year, month, day, hour, minute columns
- Encode categorical variables
- Removed redundant columns
 - Windchill, when we already have temperature
 - End Latitude
- Scaled numerical values

Model	Accuracy	Precision	Recall	F1	
LightGBM	0.75	0.75	0.75	0.75	33
XGB	0.76	0.76	0.76	0.76	-
MLP	0.72	0.7152	0.7204	0.716	355
KNN	0.48	0.47	0.48	0.47	255
LSTM	0.62	0.62	0.63	0.62	3.51
GRU	0.63	0.64	0.64	0.64	- 10

Model Results for Downsampled Data

Conclusions

- 1. Overall Impact Deliverable 1:
- CRSS models identified key factors that impact accident severity using variable importance plots
- Models can predict accident risks, urging organizations to improve road safety
- Recommendations:
 - Decrease speed limit for high risk roads
 - Increase lighting on rural highways. The lighting condition was ranked 2nd most important

Conclusions

1. Overall Impact - Deliverable 2A:

- a. Like CRSS models, FARS models' variable importance plots are crucial to predicting the number of fatalities, so organizations can prioritize certain factors
- b. **Recommendations:** Keep US fleet up to date, year of manufacture and mile marker (specific section) on the road were important factors.

2. Overall Impact - Deliverable 2B:

- Advanced models like XGBoost revealed critical predictive road features such as 'Amenities', Traffic Signal', and 'Station'
- b. **Recommendations**: Improve traffic signals and infrastructure near high-traffic amenities to reduce severe accidents.