Assignment2

STAT380

```
###
library(tree)
###
library(ISLR)
#attach(Carseats)
library(rattle)
library(rpart.plot)
## Loading required package: rpart
library(RColorBrewer)
library(partykit)
```

The data set `Carseats' is a simulated data set containing sales of child car seats at 400 different stores of a specific departmental store over a period of a few months. For the different activities in this assignment, we consider a categorical binary variable, that we call 'High_Sales'. We consider the sales amount is high, i.e., High_Sales=1, if the number of car sets that are sold is greater than 8 in the particular store.

Problem A

A1. (3 points) Create a new binary categorical variable called High_Sales' which is defined as follows: \$ \text{High_Sales}='High' \text{ if }Sales'>8 \$ and \$ =0'Low' `Sales' \$

A2. (2 points) Add the new variable to the dataset 'Carseats'.

A3. (5 points) Build a classification tree where the response is 'High_Sales' and the predictors are all the other variables except 'Sales' and 'High_Sales'.

A3.

A4 (5 points) Plot the fitted tree

```
# A4 Plot the regression tree

#you may use fancyRpartPlot(fit_object, caption = NULL) # Nicer plot but need
Libraries `RColorBrewer', `rattle' and `rpart.plot'
```

Training and Testing Set

A5.1. (1+4+2 =7points) Now, set a seed. Create a training set and a testing set, use a training set (70% in the training Set and 30% in test set). Print the dimension of the Training and Testing set

A5.1:

A5.2. (5+3=8 points) Fit the Classification Tree in the Training set and Plot the tree ### A5.2.

plot the fitted tree you may use: fancyRpartPlot(fit_object, caption =
NULL)

A6.1(5+2=7 points) Print the summary, cross-validated cp values and plot the cp values. Comment on the Error Rate in the validation part.

A6.2 (3 points) Identify an optimal value for complexity parameter `cp'.

Note: cp = "value" is an assigned numeric value that will determine how tall a tree is to be grown the smaller value (closer to 0) leads to the larger the trees. The default value is 0.01.

```
### A6.1

### A6.2

#bestcp <-fit_train$cptable[which.min(fit_train$cptable[,"xerror"]),"CP"]</pre>
```

A7. (5 points) Obtain a Pruned tree based on to the optimal value of `cp' that you have obtained in A6.

Pruned tree

A7.

A8.1 (3 points) Predict on the Testing set with the pruned tree

A8.2 (3 points) Predict on the Testing set with the entire tree fitted using the training set ### A8.1

A8.2

A9.1 (2 points) Create the classification tables of the errors using the Predicted values from the pruned tree

A9.2 (2 points) Create A classification Tables of the errors using the Predicted values from entire tree fitted using the training set

```
#A9.1

#A9.2

## Write a Conclusion of your finding
```

A10. (5 points) Compare the classification performance of the tree and the pruned tree.

#Problem B (Fitting Regression Trees)

We will use the regression trees for the Boston Housing data

Load the data from the github course page using: BostonH<-read.csv(url("https://raw.githubusercontent.com/subhadippal2019/STAT380UAEU/main/BostonHousing.csv"))

```
BostonH<-
read.csv(url("https://raw.githubusercontent.com/subhadippal2019/STAT380UAEU/m
ain/BostonHousing.csv"))
names(BostonH)
## [1] "CRIM"
                    "ZN"
                                 "INDUS"
                                             "CHAS"
                                                          "NOX"
                                                                      "RM"
## [7] "AGE"
                    "DIS"
                                 "RAD"
                                             "TAX"
                                                          "PTRATIO"
                                                                      "LSTAT"
                    "CAT..MEDV"
## [13] "MEDV"
```

B1 (4+1=5 points) Split the data in Training and Testing Set. Use a 60%/40% split for the Training and Testing Set. Print the dimension of the Testing and the Training set.

```
#### A5.1:
set.seed(1234)
#
```

B2.(5 points)

Fit a regression tree on the Training Set using the MEDV', the median price of houses in a region, as the response variable while all the other variables EXCEPT the CAT..MEDV' as the covariates. Display/plot the fitted tree.

```
### B2.
# plot fitted tree# You may use fancyRpartPlot(fitted_object, caption = NULL)
```

B3.(3 points) Print the summary and the tables containing the crossvalidated `cp' and plot the `crossvalidatedcp'. Comment on the Error Rate in the validation part. (summary, printcp, plotcp)

(2 points) Identify an optimal value for the complexity parameter `cp'.

B3.

B4.(2+3=5 points) Find the optimal value of `cp' and Prune the regression tree.
B4.
#bestcp <-fit_train\$cptable[which.min(fit_train\$cptable[,"xerror"]),"CP"]

B5.1 (3+2=5 points) Predict on the Testing set with the pruned tree. Plot the predicted values vs the response values in the test set.

B5.2 (3+2=5 points) Predict on the Testing set with the Entire tree fitted to the training set. Plot the predicted values vs the response values in the test set.

```
### B5.1
##Plot

### B5.2
##Predict:

##Plot
```

```
B6 (4+4+2=10 points) Calculate the MSE for prediction using both the trees, the pruned tree, and the entire tree based on the Training set. compare their MSE. Comment on your findings.

### B6

#mean((Predicted_response - Response_in_Test )^2)

#Calculate the MSE for prediction using both the trees

#Compare their MSE. Comment on your findinsg.
```