

TENSOR.BY

ML-course

2. Regression in Python Scikit-learn

Kate Miniukovich (Data Scientist), miniukovich@rocketscience.ai

Reference

An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, http://www-

bcf.usc.edu/~gareth/ISL/ (available online for free)

RocketScience.ai ML-course. Regression

Reference

Jake VanderPlas

Python Data Science Handbook

https://jakevdp.github.io/PythonDataScienceHandbook/

Video

https://www.youtube.com/watch?v=L7R4HUQ-eQ0&t=6033s

ML-course. Regression RocketScience.ai

O'REILLY

Jupyter

Data Science

Jake VanderPlas

Handbook

Reference

Home

Installation Documentation -

Examples

Search

FOX THE ON

Documentation of scikit-learn 0.19.1

Quick Start

A very short introduction into machine learning problems and how to solve them using scikit-learn. Introduced basic concepts and conventions.

User Guide

The main documentation. This contains an in-depth description of all algorithms and how to apply them.

Other Versions

- · Development version
- All available versions
- · PDF documentation

Tutorials

Useful tutorials for developing a feel for some of scikit-learn's applications in the machine learning field.

API

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed features for all functions, and all parameters available for the algorithms.

Additional Resources

Talks given, slide-sets and other information relevant to scikit-learn.

http://scikit-learn.org

Supervised vs. Unsupervised Learning

Supervised

Data:

- 1) n observations;
- 2) p variables X1, X2, . . .,Xp, measured on each observation;
- 3) response Y measured on same n observations

Continuous Regression

Discrete Classification

Unsupervised

Data:

- 1) n observations;
- 2) p variables X1, X2, . . .,Xp, measured on each observation

Clustering...

Regression / Classification Problem

Steps to solve

Working with data

Modeling

Representation of data in Scikit-learn

• X

two-dimensional **numpy array** shape - (n_samples, m_features)

Y

one-dimensional **numpy array** shape - (n_samples,)

Modeling

- Choose a class of model
- Fit the model to data
- Validate the model and optimize hyperparameters
- Predict for unknown data

Mathematical model

$$Y = f(X) + \epsilon$$

f is some fixed but unknown function of $X1, \ldots, Xp$, and e is a random error term, which is independent of X and has mean zero. In this formulation, f represents the systematic information that X provides about Y.

We can predict Y using our estimate for f

$$\hat{Y} = \hat{f}(X)$$

RocketScience.ai **ML-course.** Regression

Bias-Variance Trade-Off

Underfitting (high bias) - algorithm is missing the relevant relations between features and target outputs

Overfitting (high variance) - modeling the random noise in the training data, rather than the intended outputs.

Model validation

Data

- train + test (e.g. 75% + 25%)
- train + valid + test (e.g. 60% + 20% + 20%)
- train with cross-validation + test (e.g. 80% + 20%)

Metrics

Regression: R², MSE, MAE,...

http://scikitlearn.org/stable/modules/classes.html#sklearn-metricsmetricsmodel.score()

Model validation via cross-validation

Some models for Regression in Python scikit-learn

- Generalized Linear Models
 - Linear Regression
 - Ridge Regression
 - Lasso Regression

example of Linear, Ridge and Lasso Regressions in regression.ipynb

Ensemble methods

- Random Forests
- Gradient Tree Boosting

Linear Regression with one variable

 (x_i,y_i) , i=1,n - number of observations (red points)

$$\hat{y} = ax + b$$

$$\hat{y} = \theta_0 + \theta_1 x_1 = \theta_0 x_0 + \theta_1 x_1, \quad x_0 = 1$$

 θ_0 - intercept, θ_1 - slope

The method of least squares

$$Cost = J(\theta_0, \theta_1) = \sum_{i=1}^{n} (\hat{y}^i - y^i)^2 = \sum_{i=1}^{n} (\theta_0 x_0^i + \theta_1 x_1^i - y^i)^2$$

Our aim - $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Gradient descent to find $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Need to choose

 α – learning rate (step size) (θ_0, θ_1) - start point

Repeat until convergence

$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - 2\alpha \sum_{i=1}^n (\theta_0 x_0^i + \theta_1 x_1^i - y^i) x_0^i$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - 2\alpha \sum_{i=1}^n (\theta_0 x_0^i + \theta_1 x_1^i - y^i) x_1^i$$

Gradient descent (example)

Linear Regression with multiple variables

m variables, **n** observations

$$\hat{y} = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_m x_m, \qquad x_0 = 1$$

$$X = [1, x_1, \dots, x_m] \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_m \end{bmatrix} \qquad \hat{y} = \mathbf{h}_{\theta}(X) = X\boldsymbol{\theta}$$

Dataset for training:
$$X^{(i)} = [1, x_1^{(i)}, ..., x_m^{(i)}], y^{(i)}, i = 1, ..., n$$

$$Cost = J(\theta) = \sum_{i=1}^{n} (h_{\theta}(X^{(i)}) - y^{(i)})^{2}$$
 Our aim - $\min_{\theta} J(\theta)$

Repeat until convergence:

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) = \theta_j - 2\alpha \sum_{i=1}^n (h_\theta(X^{(i)}) - y^{(i)}) x_j^{(i)}$$

Cost functions for Linear Regression, Ridge and Lasso in scikit-learn

m variables, **n** observations

$$\hat{y} = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_m x_m, \qquad x_0 = 1$$

$$X = [1, x_1, ..., x_m] \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_{01} \\ ... \\ \theta_m \end{bmatrix} \qquad \hat{y} = \mathbf{h}_{\theta}(X) = X\boldsymbol{\theta}$$

Linear Regression

$$Cost = J(\theta) = \sum_{i=1}^{n} (X^{(i)}\theta - y^{(i)})^2$$

Ridge (regularization 12)
$$Cost = J(\theta) = \sum_{i=1}^{n} (X^{(i)}\theta - y^{(i)})^2 + \alpha \sum_{j=0}^{m} \theta_j^2$$

Lasso (regularization **11**) $Cost = J(\theta) = \sum_{i=1}^{n} (X^{(i)}\theta - y^{(i)})^2 + \alpha \sum_{i=0}^{m} |\theta_i|$

RocketScience.ai ML-course. Regression

Regression metrics

R² score, the coefficient of determination

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{n} (y^{(i)} - \bar{y})^{2}}, \quad where \quad \bar{y} = \frac{\sum_{i=1}^{n} y^{(i)}}{n}$$

Mean squared error

$$MSE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

Mean absolute error

$$MAE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$

http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

Bias-Variance Trade-Off

- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set (but the performance is worse than for appropriate fitting).
- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.

RocketScience.ai ML-course. Regression

Bias-Variance Trade-Off

What to do in case of high-bias or high variance?

Change

- Model complexity (e.g. via regularization)
- Quantity of training samples
- Set of features

Reading

Jake VanderPlas **Python Data Science Handbook** (05.03-Hyperparameters-and-Model-Validation)

Andrew Ng ML: Advice for Applying Machine Learning

Ways to fix high bias/variance in linear models

High bias (underfitting)	High variance (overfitting)	
Add more featuresAdd polynomial features	More training examplesSmaller set of features	
	 Use regularization Increase regularization strength (coefficient) 	

Choose the best model

Models	R^2	
	train	test
LinearRegression()		
LinearRegression(normalize = True)		
LinearRegression with PolynomialFeatures		
n=2		
n=3		
Ridge with Polynomial Features, n=2		
a=0.1		
a=1		
a=10		
a=100		
Lasso with Polynomial Features, n=2		
a=0.1		
a=1		
a=10		
a=100		

Q & A

Thank you!

