

Application Note

Synaptic Labs' HBMC with External PLL

1.0 S/Labs' HBMC with external PLL Configuration

S/Labs' HBMC IP can be configured in Platform Designer GUI window.

Double Click on S/Labs HBMC IP and locate the Clock and PLL configuration Tab.

S/Labs' HBMC use an internal PLL to generate the different Avalon-MM master/slave clocks and Hyperbus Clocks. To disable the internal PLL and use an external PLL, select the External PLL configuration as shown below.

With the external PLL configuration, S/Labs HBMC IP requires 4 clocks:

- **i_hbus_clk_0** : clock driving the Hyperbus controller
- **i_hbus_clk_90**: clock for driving some Hyperbus I/O Signals. It operates at the same frequency as **i_hbus_clk_0** but is phase shifted 90 degrees
- i_hbus_clk_180: clock for driving some Hyperbus I/O Signals. It operates at the same frequency as i_hbus_clk_0 but is phase shifted 180 degrees.
- **i_iavs0_clk**: clock driving the Avalon-MM interface. When S/Labs HBMC IP is configured to run at a single clock speed, this clock is connected to **i_hbus_clk_0** clock.

2.1 Option A – Same Clock for the Hyperbus memory channel an Avalon-MM channel.

This configuration shows how to connect S/Labs' HBMC IP so that the Hyperbus memory channel operates at the same frequency as the Avalon-MM bus interface. The advantage of this configuration is lower circuit area.

2.1.1 Clocking (PLL) Wizard Configuration

The figure below shows a typical example of configuring the Clocking wizard . In this case, the clocks for the Hyperbus channel and Avalon-MM interface channels are all set to 100 Mhz.

2.1.2 S/Labs' HBMC Configuration

In this example, S/Labs' HBMC IP is configured with:

AXI/Hyperbus Clock Dependency: External PLL

• AXI/Hyperbus Clock Dependency: One clock

2.1.3 S/Labs' HBMC wiring

Ensure that the PLL name is altpll_0

Altera PLL output clock 0 (c0)

- Connect to i_hbus_clk_0 and i_iavs0_clk on S/LABS HBMC IP
- Connect to other Avalon-MM slaves and masters clock sinks

Altera PLL output clock 1 (c1)

Connect to i_hbus_clk_90 on S/LABS HBMC IP

Altera PLL output clock 2 (c2)

Connect to i hbus clk 180 on S/LABS HBMC IP

Note how i_hbus_clk_0 and i_iavs0_clk are connected to the same clock.

2.2 Option B – Different Clocks for the Hyperbus memory channel and AXI channel.

This configuration shows how to connect S/Labs' HBMC IP so the Hyperbus memory channel operates at a different clock frequency then the Avalon-MM bus interface.

2.2.1 Clocking Wizard Configuration

The figure below shows a typical example of configuring the Clocking wizard . In this case, the clocks for the Hyperbus channel are all set to 150 Mhz, while the clock for the Avalon-MM interface channel is set to 100 Mhz.

2.2.2 S/Labs' HBMC Configuration

In this example, S/Labs' HBMC IP is configured with:

AXI/Hyperbus Clock Dependency: External PLL

AXI/Hyperbus Clock Dependency: Two clocks

2.1.3 S/Labs' HBMC wiring

Ensure that the PLL name is altpll_0

Altera PLL output clock 0 (c0)

Connect to i hbus clk 0 on S/LABS HBMC IP

Altera PLL output clock 1 (c1)

Connect to i hbus clk 90 on S/LABS HBMC IP

Altera PLL output clock 2 (c2)

Connect to i_hbus_clk_180 on S/LABS HBMC IP

Altera PLL output clock 3 (c3)

- Connect to i_iavs0_clk on S/LABS HBMC IP
- Connect to other Avalon-MM slaves and masters clock sinks

Note how i_hbus_clk_0 and i_iavs0_clk are connected to a different clock.

Important:

Please note that S/Labs HBMC contains a script that sets timing constraints for the Hyperbus IO signals. For the external PLL configuration, this script assumes that in Qsys, Altera PLL's instance name is altpll_0.