

FACULDADE DE ENGENHARIA DEPARTAMENTO DE CADEIRAS GERAIS

Experiência Laboratorial Nº 6 – **Densidade dos Corpos Sólidos e Líquidos. Lei de Arquímedes**

Unidade curricular: Física I Ano: 2023 1º Semestre

Objectivos

- 1. Estudar o empuxo em função do volume submerso.
- 2. Verificar o princípio de Arquimedes.
- 3. Utilizar o princípio de Arquimedes para determinar as densidades de uma amostra sólida e de uma amostra líquida.

Resumo teórico

(a) Flutuabilidade e princípio de Arquimedes

Quando um objeto é submerso em um fluído, ele experimenta uma força de empuxo B. Esta força flutuante é a resultante das forças baseadas em pressão nas superfícies do objeto submerso. A pressão é maior em profundidades maiores no fluído e, portanto, a força de empuxo é direcionada para cima.

Figura 1. – O empuxo B é o resultado das forças de pressão

O princípio de Arquimedes, afirma que a magnitude da força de empuxo é igual ao peso do fluído deslocado pelo objeto submerso.

$$B = W_{fluido-deslocado} = m_{fluido-deslocado} = \rho_{fluido}.V_{fluido-deslocado}.g$$

Se o objeto estiver completamente submerso no fluído, o volume deslocado do fluído é igual ao volume do objecto submerso: $V_{fluido-deslocado} = V_{objecto}$, então,

$$B = \rho_{fluido} V_{objecto}.g$$

Se o objeto estiver parcialmente submerso no fluído $V_{fluido-deslocado} =$ volume parcial do objeto que está submerso. Para um objeto sólido cilíndrico de seção transversal uniforme (A), se o cilindro estiver imerso em um fluído ao longo do eixo do cilíndro e h for a altura do objeto no fluído, entao,

$$B = \rho_{fluido}.V_{imerso}.g = \rho_{fluido}Ag$$

(b) Efeito da flutuabilidade nas medições de massa

Quando um objeto é pendurado em uma balança, a leitura da balança, $m_{aparente}$, é baseada na tensão no fio que conecta o objeto à balança: $W_{aparente} = m_{aparente}$. $g = T_{arrame}$, normalmente, $T_{arrame} = W_{objecto} = m_{objecto}g$, e a leitura da balança, $m_{aparente}$, é uma medida precisa da $m_{objecto}$.

No entanto, se o objeto for pendurado na balança enquanto submerso em um fluído, então $T_{arrae} < W_{objecto}$ por causa da contribuição da força de empuxo \vec{B} . especificamente, anotando o equilíbrio das forças no objeto (veja a Figura 2)

$$0 = \sum F_y = T_{arrame} + B + W_{objecto}$$

Figura 2. - O equilíbrio de forças sobre um objeto pendurado em uma balança enquanto submerso

Uma vez que a leitura da balança é sempre baseada em T_{arrme} .

$$W_{aparente} = T_{arrame} = W_{objecto} - B$$

$$B = W_{objecto} - W_{aparente}$$

O peso aparente de um objeto submerso é menor que seu peso real, e a diferença entre esses pesos é a força de empuxo.

O que acontecerá com o peso aparente se o objeto estiver parcialmente submerso.

Neste laboratório vamos medir o peso aparente dos objetos em diferentes condições para verificar o princípio de Arquimedes, bem como usar este princípio para determinar a densidade e amostras líquidas.

Material necessário

- ✓ Balança;
- ✓ Proveta de cilíndro alto graduado;
- ✓ Base tripe Suporte;
- ✓ Paquímetro/ Régua;
- ✓ Sólido irregular;
- ✓ Bloco de alumínio (sólido regular)
- ✓ Copo;
- ✓ Líquidos (Água e gasolina);
- ✓ Absorventes para secar.

Procedimento experimental

I. Bloco de alumínio (sólido regular)

- 1. Usando na balança, meça a massa do bloco de alumínio sólido;
- 2. Meça as dimensões com ajuda do paquimetro ou régua;
- 3. Detrminar o volume do sólido com base na fórmula: $V_C = C \times l \times h$;
- 4. Determinar a massa específica do corpo com base na fórmula;
- 5. Mergulhar totalmente o bloco de alumínio na proveta e determinar o seu volume com base na fórmula;
- 6. Compare os resultados 3 e 5;
- 7. Tire conclusões

Fig 3. – Sólido regular submerso.

II. Sólido irregular (Pedra)

- 1. Pesar o corpo sólido;
- 2. Mergulhar o corpo na proveta e determinar o seu volume com ajuda da fórmula; Utilizando a fórmula da definição de densidade, calcule;
- 3. Repetir três vezes os procedimentos 1 á 3 e preencher a tabela;
- 4. Determinar o erro da experiência e tirar as conclusões;

Tabela 1. – Preenchimento das alturas do liquido deslocado

Procedimento	Volume (cm ³)	Massa (g)	Densidade (g/cm^3)
1			
2			
3			

Figura 4. – Proveta e Sólido irregular submerso

III. Densidade da Gasolina

a) Procedimentos Experimentais

- 1. Encher o tubo em forma de *U* de água, até aproximadamente 5 cm;
- 2. Encher o tubo com um bocado de gasolina, que deve ter uma altura aproximadamente igual a 3 cm;
- 3. Medir a altura h_1 , h_2 e h_3 ;
- 4. Aumentar de cada vez, aproximadamente 2 cm a coluna de gasolina e medir de novo os valores de h_1 , h_2 e h_3 . Preencher a tabela que contenha as alturas;
- 5. Explicar como é possível calcular h_a ;
- 6. Explicar como é possível calcular h_a ;
- 7. Preencher uma tabela que contenha h_a e h_g ;
- 8. Construir o gráfico de $h_a h_g$;
- 9. Determinar a inclinação do gráfico do item 8.
- 10. Explique como é possivel determinar a massa específica da gasolina a partir do item 8;
- 11. Calculara a massa específica da gasolina.

Figura 5. – Tubo em forma de U com líquidos não miscíveis

Tabela 2. – Preenchimento das alturas do liquido deslocado

N° de procedimentos	$h_1(cm)$	$h_2(cm)$	$h_3(cm)$
1			
2			

IV. Verificar a lei de Arquimedes

a) Procedimentos:

- 1. Dividir a situação do bloco em 4 partes iguais através da linha escritas no bloco;
- 2. Calcular com o Dinamómetro a F_g que actua no bloco;
- 3. Mergular $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$ e $\frac{4}{4}$ da altura do bloco na água e medir de cada vez com um dinamômetro a força que actua na mola e preencher a Tabela;
- 4. Explicar como podemos calcular o peso da água a partir da água deslocada;
- 5. Explicar como podemos calcular a força de impressão a partir de leitura do dinamómetro.

Figura 6. – Bloco de alumínio introduzido numa proveta

Tabela 3. – Determinação de Volumes e Força

Parte mergulhada do bloco	Volume do bloco mergulhado (l)	Volume da água deslocada (ml)	$F_{mola}(N)$