250840125020_Python_8

October 10, 2025

```
[114]: PRNs=[250840125020,250840125052] print(PRNs)
```

[250840125020, 250840125052]

1 Assignment 8

Note: use appropriate labels, title and legend for each chart

```
[26]: import matplotlib.pyplot as plt import pandas as pd import numpy as np
```

1.1 Q1.

```
[27]: df=pd.read_csv('Population.csv')
df.head()
```

```
[27]:
        Year Population Yearly % Change Yearly Change Median Age \
      0 1955
                387700887
                                    2.29%
                                                 8284413
                                                                19.7
                                                                19.2
      1 1960
                435990338
                                    2.38%
                                                 9657890
      2 1965
                                    2.37%
                                                                18.5
                490140146
                                                10829962
      3 1970
                545864268
                                    2.18%
                                                                18.1
                                                11144824
      4 1975
                611309535
                                    2.29%
                                                13089053
                                                                18.4
```

	Fertility Rate	${ t Density}$	Urban Pop %	Urban Population	Country's Share
0	5.91	130	18.60%	71958495	14.15%
1	5.92	147	18.50%	80565723	14.46%
2	5.94	165	19.10%	93493844	14.70%
3	5.62	184	20.00%	109388950	14.77%
4	5.20	206	21.70%	132533810	15.02%

\

World Population
0 2740213792
1 3015470894
2 3334533703
3 3694683794
4 4070735277

Draw line & bar charts to show urban and rural population of India over the years using population.csv [rural population is the difference between total population and urban population][For bar chart consider 8 yrs data]

```
[28]: df['Rural Population']=df['Population']-df['Urban Population']
      df.head()
               Population Yearly % Change
[28]:
         Year
                                           Yearly Change
                                                           Median Age
                387700887
                                     2.29%
                                                                  19.7
         1955
                                                  8284413
                                     2.38%
                                                                  19.2
      1
         1960
                435990338
                                                  9657890
      2
        1965
                490140146
                                     2.37%
                                                 10829962
                                                                  18.5
                                     2.18%
      3 1970
                545864268
                                                 11144824
                                                                  18.1
      4 1975
                611309535
                                     2.29%
                                                 13089053
                                                                  18.4
                         Density Urban Pop % Urban Population Country's Share
         Fertility Rate
      0
                   5.91
                             130
                                       18.60%
                                                       71958495
                                                                          14.15%
      1
                   5.92
                             147
                                       18.50%
                                                       80565723
                                                                          14.46%
      2
                   5.94
                             165
                                       19.10%
                                                       93493844
                                                                          14.70%
                   5.62
                             184
                                       20.00%
                                                                          14.77%
      3
                                                       109388950
                                       21.70%
                                                                          15.02%
      4
                   5.20
                             206
                                                       132533810
         World Population
                           Rural Population
               2740213792
                                   315742392
      0
      1
               3015470894
                                   355424615
      2
               3334533703
                                   396646302
      3
               3694683794
                                   436475318
      4
               4070735277
                                   478775725
[29]: plt.figure(figsize=(10,6))
      plt.plot(df['Year'],df['Urban Population'],label='Urban Population')
      plt.plot(df['Year'],df['Rural Population'],label='Rural Population')
      plt.legend()
      plt.title('Urban Population vs Rural Population')
      plt.grid(True, linestyle='--', alpha=0.2)
      plt.show()
```


<pre>[30]: bar_df=df.tail(8) bar_df</pre>									
0]:		Year	Population	Yearly	% Change	Yearly Change	Median Age	\	
	10	2005	1154676322		1.77%	19350718	22.2		
	11	2010	1243481564	:	1.49%	17761048	23.6		
	12	2015	1328024498	}	1.32%	16908587	25.3		
	13				1.10%	14918639	27.0		
	14			!	0.81%	11402759	27.7		
	15	2023	1438069596	;	0.89%	12646384	28.1		
	16				0.89%	12866195	28.4		
	17			•	0.89%	12929734	28.8	28.8	
				Density	Urban Pop S	% Urban Popula	ation Country	's Share	\
	10		2.96	388	29.00	% 3344	79406	17.53%	
	11		2.60	418	30.60	% 38074	14554	17.71%	
	12		2.29	447	32.30	% 4290e	39459	17.78%	
	13		2.05	472	34.40	% 4830s	98640	17.78%	
	14		1.99	479	35.50%	% 50630	04869	17.77%	
	15		1.98	484	36.00	% 51823	39122	17.77%	
	16		1.96	488	36.60%	% 53038	37142	17.78%	
	17		1.94	492	37.10	% 54274	12539	17.78%	

World Population Rural Population

```
10
          6586970132
                               820196916
11
          7021732148
                               862737010
12
          7470491872
                               898955039
13
          7887001292
                               919519055
14
          8021407192
                               919118343
15
          8091734930
                               919830474
16
          8161972572
                               920548649
17
          8231613070
                               921122986
```


1.2 Q2.

Using gapminder.csv show life expectancy of top 10 highly populated countries from Asia

```
df.sort_values(by='pop', ascending=False).head(10)
[42]:
                 country
                                   pop continent
                                                  lifeExp
                                                              gdpPercap
      24
                   China 1.318683e+09
                                            Asia
                                                   72.961
                                                            4959.114854
                                                   64.698
      58
                   India 1.110396e+09
                                            Asia
                                                            2452.210407
      134
          United States 3.011399e+08
                                        Americas
                                                   78.242
                                                           42951.653090
               Indonesia 2.235470e+08
      59
                                            Asia
                                                   70.650
                                                            3540.651564
      14
                  Brazil 1.900106e+08
                                        Americas
                                                   72.390
                                                            9065.800825
      97
                Pakistan 1.692706e+08
                                                   65.483
                                                            2605.947580
                                            Asia
                                                   64.062
      8
              Bangladesh 1.504483e+08
                                            Asia
                                                            1391.253792
      94
                 Nigeria 1.350312e+08
                                          Africa
                                                   46.859
                                                            2013.977305
                                                   82.603
      66
                   Japan 1.274680e+08
                                            Asia
                                                           31656.068060
      82
                  Mexico
                         1.087009e+08
                                        Americas
                                                   76.195
                                                          11977.574960
     1.3
          Q3.
     Using a pie chart show distribution of top six selling cars [Create data as required]
[45]: cardata = {
      'Model': ['Ford F-150', 'Chevrolet Silverado', 'Toyota Camry', 'Honda CR-V', |

¬'Tesla Model Y',
                'Nissan Rogue', 'GMC Sierra', 'Ram 1500/2500/3500', 'Toyota RAV4', U
       'Sales': [787000, 523000, 375000, 361000, 385000, 333000, 289000, 545000, 
       →434000, 259000]}
      df = pd.DataFrame(cardata)
      df.head()
[45]:
                       Model
                               Sales
      0
                  Ford F-150 787000
        Chevrolet Silverado
                              523000
      2
                Toyota Camry
                              375000
                  Honda CR-V
      3
                              361000
               Tesla Model Y 385000
[47]: top6 = df.sort_values(by='Sales',ascending=False).head(6)
      top6
[47]:
                       Model
                               Sales
      0
                  Ford F-150
                              787000
      7
         Ram 1500/2500/3500
                              545000
      1
         Chevrolet Silverado
                              523000
      8
                 Toyota RAV4
                              434000
      4
               Tesla Model Y
                              385000
      2
                Toyota Camry
                              375000
```

[42]: df=pd.read_csv('gapminder2007.csv')

Top selling Cards

1.4 Q4.

Using Histogram show distribution of developers by their experience [use survey_data_sample.csv]

```
[72]: df=pd.read_csv('survey_results_sample.csv') df.head()
```

[72]:	ResponseId		Age	YearsCode	CompTotal	${\tt ConvertedCompYearly}$
0	1	18-24 years	old	NaN	NaN	NaN
1	2	25-34 years	old	18	285000.0	285000.0
2	3	45-54 years	old	27	250000.0	250000.0
3	4	25-34 years	old	12	156000.0	156000.0
4	5	25-34 years	old	6	1320000.0	23456.0

```
[73]: df['YearsCode'].unique()
[73]: array([nan, '18', '27', '12', '6', '21', '4', '5', '20', '14', '10', '15',
              '11', '3', '24', '8', '13', 'Less than 1 year', '16', '33', '22',
              '30', '32', '7', '35', '28', '40', '17', '29', '19',
              'More than 50 years', '9', '38', '26', '34', '25', '2', '45', '23',
              '31', '43', '1', '48', '41', '50', '39', '42', '37', '36', '44',
              '46', '49', '47'], dtype=object)
[93]: df['YearsCode']=df['YearsCode'].replace('Less than 1 year','0')
       df['YearsCode']=df['YearsCode'].replace('More than 50 years','50')
       df['YearsCode']=pd.to numeric(df['YearsCode'], downcast='signed')
       df=df.dropna()
       df.head()
[93]:
         ResponseId
                                       YearsCode
                                                  CompTotal ConvertedCompYearly
                                  Age
      1
                   2 25-34 years old
                                              18
                                                   285000.0
                                                                        285000.0
       2
                   3 45-54 years old
                                              27
                                                   250000.0
                                                                        250000.0
                  4 25-34 years old
       3
                                              12
                                                   156000.0
                                                                        156000.0
       4
                  5 25-34 years old
                                               6 1320000.0
                                                                         23456.0
                   6 35-44 years old
       5
                                              21
                                                    78000.0
                                                                         96828.0
[111]: plt.hist(df['YearsCode'],
                bins=12,
                edgecolor='black',
                alpha=0.7)
       plt.title("Years of Developer's Experience")
       plt.xlabel("Years")
       plt.ylabel("Developers")
       plt.show()
```


[]: