Creación de videojuegos – I Ciclo 2019 – Examen 1 – 22/5/2019

Nombre y Carné:
Name and Student ID:

Question	Part	Points	Max
1			30
2	a		20
2	b		20
3	a		20
3	b		20
4	a		15
4	b		20
4	С		15
5	a		30
5	b		10
Sum			200

1. (30 Puntos) ¿En su opinion, es un set de LEGO un juego? ¿Por qué, o por qué no? In your opinion, is a LEGO set a game? Why, or why not?

2. Game Design

- (a) (20 Puntos) Escriba un pitch para el juego que está haciendo para su proyecto. Write a pitch for the game you are making for your project.
- (b) (20 Puntos) Nombre al menos 4 objetos y 4 atributos de su juego. Name at least 4 objects and 4 attributes of your game.

3. Unity.

- (a) (20 Puntos) ¿Qué es un TileMap en Unity? What is a TileMap in Unity?
- (b) (20 Puntos) ¿Cómo se puede exponer un campo de dato de un MonoBehaviour para ser editable en el inspector de Unity?

 How can you expose an attribute of a MonoBehavior to be editable in the Unity inspector?

- 4. Dado un triángulo $v_1 = (-6, -4, -12), \ v_2 = (6, 4, 12), \ v_3 = (18, -12, -24), \ y$ coordenadas baricéntricas $\theta = \frac{3}{12}, \phi = \frac{4}{12}$ de un punto p. Given a triangle $v_1 = (-6, -4, -12), \ v_2 = (6, 4, 12), \ v_3 = (18, -12, -24), \ and the barycentric coordinates <math>\theta = \frac{3}{12}, \phi = \frac{7}{12}$ of a point p.
 - (a) (15 Puntos) Calcule la otra coordenada baricéntrica ψ , tal que $p = \theta v_1 + \phi v_2 + \psi v_3$, y calcule p.

 Determine the missing barycentric coordinate ψ , such that $p = \theta v_1 + \phi v_2 + \psi v_3$, and calculate p.
 - (b) (20 Puntos) ¿Cuando v_1 tiene el color (144, 192, 36), v_2 tiene el color (96, 108, 12), y v_3 tiene el color (240, 120, 60), qué color tiene p?

 If v_1 has the color (144, 192, 36), v_2 has the color (96, 108, 12), and v_3 has the color (240, 120, 60), which color does p have?
 - (c) (15 Puntos) Calcule el coseno del angulo entre el vector de v_1 a v_2 y el vector de v_1 a v_3 .

 Calculate the cosine of the angle between the vector from v_1 to v_2 and the vector from v_1 to v_3 .

1
$8^2 = 64$
$12^2 = 144$
$16^2 = 256$
$20^2 = 400$
$24^2 = 576$
$28^2 = 784$
$32^2 = 1024$
$36^2 = 1296$
$40^2 = 1600$

5. Coordenadas homogéneas.

Homogenenous coordinates

- (a) (30 Puntos) Calcule una matriz que rote un vector por 30 grados alrededor del eje y, y luego muevalo por $\frac{1}{2}$ en la dirección x. Calculate a matrix that rotates a vector by 30 degrees around the y axis, and then translates it by $\frac{1}{2}$ in x direction.
- (b) (10 Puntos) Aplique esta matriz al vector \vec{v} . Apply this matrix to the vector \vec{v}

$$\vec{v} = \begin{pmatrix} -1\\1\\\frac{\sqrt{3}}{2} \end{pmatrix}, \sin(30) = \frac{1}{2}, \cos(30) = \frac{\sqrt{3}}{2}$$