	20240318_Business_Intelligence_WIN6
	Datasets can be classified in 2 groups:
	S (. EUCLIDEAN DATASETS
9.4	Knowledge (• NON-EUCLIDEAN DATASETS Valve
D	
	Examples of Datasets: One dimensional time-series. EUCLIDEAN DATASET.
1) · N one limensional time-series. EUCLIDEAN DATASET.
	KPI, KPI2 KPI3 KPIN
	o
	1
	2
	1000
	1D × N For 2D (N=2)
	111 d= (x-x2)+(y1-y2)
	VECTOR X H EUCLIDE AT
	DISTANCE
	The hypothesis is that the underlying structure of the
	The hypothesis is that the underlying structure of the dataset allows for the calculation of a distance. This implies there is a way to measure distance between points in the space.
•	This implies there is a way to measure . distance between
	points in the space.

3 KENNZAHLEN UM NETZWERKE MEBBAR ZU MACHEN
AVERAGE PATH LENGTH
Average distance (steps) between nodes in the network. HN $N(N-1)$: Maximum # of relationships in the network. APL = $\frac{1}{N(N-1)}$ $\sum_{i=1}^{N} \sum_{j=1}^{N} dij$ network. So dij : Sum of all nothes
11 to # manixam: (1-11)H
APL = 1 [S di; relationships in the
N(N-1) $i=i,j=1\leq \leq 1 \leq \leq 1$
$APL = \frac{1}{6.5} \begin{bmatrix} d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\ 1 & + 1 & + 2 & + 2 & + 3 \end{bmatrix} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$
APL= 1
6.5
- d21 d23 d24 d25 d267 - 3 4)->(6)
1 + 1 + 2 + 2 + 3 +
3- d31 d32 d34 d35 d367
1 + 1 + 1 + 2 +
1 du duz dus dus du67
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 ds1 ds2 ds3 ds4 ds67
2 + 2 + 1 + 1 + 2 +
F de1 de2 de3 de4 de5]
$3+3+2+1+2 = \cdots$
J

When we compare two Networks, the one with the stortest APL would be usually faster more effective.

CLUSTERING GEFFICIENT

are created in the network!

$$cc = \frac{1}{N} \cdot \sum_{i=1}^{N} \frac{2 \cdot Li}{K_i(k_i-1)}$$

Li = Number of relationships
between the neighbours
of mode ...

Ki = Number of neighbours of
node ...

$$CC = \frac{1}{6} \cdot \left[\frac{2 \cdot 1}{2 \cdot (2-1)} + \frac{2 \cdot 1}{2(2-1)} + \frac{2 \cdot 1}{$$

L1=0; L2=1; L3=1; L4=0; L5=1

the higher the clustering wellicient the better the communication between the elements of the network.

