Introduction to Differential Equations Assignment # 4

Date Given: May 2, 2022 Date Due: May 9, 2022

P1. (1 point) Find the general solution of the differential equation y'' + 5y' = 0.

Solution: The characteristic equation is $r^2 + 5r = 0$, with the roots r = 0, -5. Therefore the general solution is $y = c_1 + c_2 e^{-5t}$.

P2. (2 points) Find the solution of the initial value problem y'' + 4y' + 3y = 0, y(0) = 2, y'(0) = -1. Sketch the graph of the solution and describe its behavior as t increases.

Solution: The characteristic equation is $r^2 + 4r + 3 = 0$, with the roots r = -1, -3. Therefore the general solution is $y(t) = c_1 e^{-t} + c_2 e^{-3t}$ and $y'(t) = -c_1 e^{-t} - 3c_2 e^{-3t}$. From y(0) = 2 we get $c_1 + c_2 = 2$, and from y'(0) = -1 we get $-c_1 - 3c_2 = -1$. Solving for the constants, one obtains $c_1 = 5/2$ and $c_2 = -1/2$. Hence the specific solution is

$$y(t) = 5e^{-t}/2 - e^{-3t}/2.$$

The solution clearly converges to 0 as $t \to \infty$ (see Figure 1).

Figure 1: Illustration to problem P2.

P3. (1 point) Find a differential equation whose general solution is $y = c_1 e^{2t} + c_2 e^{-3t}$.

Solution: An algebraic equation with roots 2 and -3 is $(r-2)(r+3) = r^2 + r - 6 = 0$. This is the characteristic equation for the differential equation y'' + y' - 6y = 0.

P4. (2 points) Determine the values of α , if any, for which all solutions of the differential equation $y'' + (3 - \alpha)y' - 2(\alpha - 1)y = 0$ tend to zero as $t \to \infty$; also determine the values of α , if any, for which all (nonzero) solutions become unbounded as $t \to \infty$.

Solution: The characteristic equation is $r^2 + (3 - \alpha)r - 2(\alpha - 1) = 0$, with the roots $r = \alpha - 1, -2$. Therefore the general solution is $y = c_1 e^{(\alpha - 1)t} + c_2 e^{-2t}$.

- In order for all solutions to tend to zero, we need $\alpha 1 < 0$. Therefore, the solutions will all tend to zero as long as $\alpha < 1$.
- Due to the term c_2e^{-2t} , we can never guarantee that all solutions will become unbounded as $t \to \infty$ (that is, solutions for which $c_1 = 0$ are always bounded)
- **P5.** (2 points) Verify that the functions $y_1(x) = x$ and $y_2(x) = xe^x$ are solutions of the differential equation $x^2y'' x(x+2)y' + (x+2)y = 0$, x > 0. Do they constitute a fundamental set of solutions?

Solution:

- For $y_1 = x$, $y_1' = 1$, and $y_1'' = 0$. Therefore $x^2y_1'' x(x+2)y_1' + (x+2)y_1 = -x(x+2) + (x+2)x = 0$. Next, for $y_2 = xe^x$, $y_2' = (1+x)e^x$, and $y_2'' = (2+x)e^x$. Therefore $x^2y_2'' - x(x+2)y_2' + (x+2)y_2 = x^2(2+x)e^x - x(x+1)(x+2)e^x + x(x+2)e^x = 0$.
- Further, $W(x, xe^x) = x^2e^x \neq 0$ for x > 0. Therefore, the solutions form a fundamental set.
- **P6.** (2 points) If the differential equation $ty'' + 2y' + te^t y = 0$ has y_1 and y_2 as a fundamental set of solutions and if $W(y_1, y_2) = 2$ at t = 1, find the value of $W(y_1, y_2)$ at t = 5.

Solution: The expression for Wronskian (see textbook, Chapter 3.2, Abel's Theorem), we have $W(y_1, y_2)(t) = ce^{-\int p(t)dt}$, where p(t) = 2/t from the differential equation. Thus $W(y_1, y_2)(t) = c/t^2$. We identify c = 2 from $W(y_1, y_2)(1) = 2$ and then find

$$W(y_1, y_2)(5) = 2/25.$$