

MOSFET

600V CoolMOS™ G7 SJ Power Device

The C7 GOLD series (G7) for the first time brings together the benefits of the C7 GOLD CoolMOS™ technology, 4 pin Kelvin Source capability and the improved thermal properties of the TOLL package to enable a possible SMD solution for high current topologies such as PFC up to 3kW

Features

- C7 Gold gives best in class FOM R_{DS(on)}*E_{oss} and R_{DS(on)}*Q_g.
 Suitable for hard and soft switching (PFC and high performance LLC)
- C7 Gold technology enables best in class R_{DS(on)} in smallest footprint.
- TOLL package has inbuilt 4th pin Kelvin Source configuration and low parasitic source inductance (~1nH).
- TOLL package is MSL1 compliant, total Pb-free and has easy visual inspection grooved leads.
- TOLL SMD package combined with lead free die attach process enables improved thermal performance R_{th}.

Benefits

- C7 Gold FOM $R_{DS(on)}^*Q_g$ is 15% better than previous C7 600V enabling faster switching leading to higher efficiency.
- Increased economies of scale by use in PFC and PWM topologies in the application
- C7 Gold can reach $28m\Omega$ in in TOLL $115mm^2$ footprint, whereas previous BIC C7 600V was $40 \text{m}\Omega$ in 150mm^2 D²PAK footprint.
- Reducing parasitic source inductance by Kelvin Source improves efficiency by faster switching and ease of use due to less ringing.
- TOLL package is easy to use and has the highest quality standards.
- Improved thermals enable SMD TOLL package to be used in higher current designs than has been previously possible.

Potential applications

PFC stages and PWM stages (TTF, LLC) for high power/performance SMPS e.g. Computing, Server, Telecom, UPS and Solar.

Product validation

Fully qualified according to JEDEC for Industrial Applications

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Table 1 Key performance parameters

Parameter	Value	Unit
V _{DS} @ T _{j,max}	650	V
R _{DS(on),max}	28	mΩ
$Q_{g.typ}$	123	nC
I _{D,pulse}	245	А
I _{D,continuous} @ T _j <150°C	87	А
E _{oss} @400V	14.7	μЈ
Body diode di/dt	1000	A/μs

Part number	Package	Marking	Related links
IPT60R028G7	PG-HSOF-8	60R028G7	see Appendix A

Public

600V CoolMOS™ G7 SJ Power Device IPT60R028G7

Table of contents

Description	
Maximum ratings	
Thermal characteristics	
Electrical characteristics	5
Electrical characteristics diagrams	
Test circuits	
Package outlines	12
Appendix A	
Revision history	
Trademarks	17
Disclaimor	17

1 Maximum ratings at $\hat{\Pi} = 25^{\circ}\text{C}$, unless otherwise specified

Maximum ratings Table 2

Davamatav	Symphol		Values		Linit	N. 1. /= 1. 1515	
Parameter	Symbol	Min.	Тур.	Max.	Onit	Note / Test condition	
Cantinua durin aumant 1)	,			75	А	T _c =25°C	
Continuous drain current ¹⁾	l _D	-	-	47		T _C =100°C	
Pulsed drain current ²⁾	$I_{D,pulse}$	-	-	245	Α	T _C =25°C	
Avalanche energy, single pulse	E _{AS}			288	ml	1 -7 74.\/ -E0\/: coo table 10	
Avalanche energy, repetitive	E _{AR}]	-	1.44	11113	I _D =7.7A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	7.7	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	120	V/ns	V _{DS} =0400V	
Gate source voltage (static)	$V_{\rm GS}$	-20	-	20	V	static;	
Gate source voltage (dynamic)	$V_{\rm GS}$	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	391	W	T _C =25°C	
Storage temperature	$T_{\rm stg}$	-55		150	°C		
Operating junction temperature	$T_{\rm j}$	-55	-	150	°C	-	
Mounting torque	-	-		n.a.	Ncm		
Continuous diode forward current	$I_{\rm S}$			75	A	T =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	245		T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt			25	V/ns	V _{DS} =0400V, I _{SD} ≤11.8A, T _i =25°C	
Maximum diode commutation speed	di _f /dt	-	-	1000	A/μs	see table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, <i>t</i> =1min	

 $^{^{1)}}$ Limited by $T_{j max}$.

²⁾ Pulse width t_p limited by $T_{j,max}$

³⁾ Identical low side and high side switch

2 Thermal characteristics

Table 3 Thermal characteristics

Darameter	Symbol	Values			Limit	Note / Test can dition
Parameter	Syllibot	Min.	Тур.	Max.		Note / Test condition
Thermal resistance, junction - case	R_{thJC}	-	-	0.32	°C/W	-
Thermal resistance, junction - ambient	R_{thJA}	-	-	62	°C/W	device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version	R_{thJA}	-	35	45	1 ~ (/\//	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Soldering temperature, wave- & reflow soldering allowed	T_{sold}	-	-	260	°C	reflow MSL1

3 Electrical characteristics

at ΛÎ=25°C, unless otherwise specified

Table 4 Static characteristics

Parameter	Symphol	Values			l lmit	Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition	
Drain-source breakdown voltage	$V_{(BR)DSS}$	600	-	-	V	$V_{\rm GS}$ =0V, $I_{\rm D}$ =1mA	
Gate threshold voltage	$V_{\rm (GS)th}$	3	3.5	4	V	$V_{\rm DS} = V_{\rm GS}$, $I_{\rm D} = 1.44$ mA	
Zana anka walka na dunin numunk	,	-	-	1	μΑ	$V_{\rm DS}$ =600, $V_{\rm GS}$ =0V, $T_{\rm j}$ =25°C	
Zero gate voltage drain current	I _{DSS}		10	-	μΑ	$V_{\rm DS}$ =600, $V_{\rm GS}$ =0V, $T_{\rm j}$ =150°C	
Gate-source leakage current	I_{GSS}	-	-	100	nA	$V_{\rm GS}$ =20V, $V_{\rm DS}$ =0V	
Drain-source on-state resistance	D	-	0.024	0.028	Ω	$V_{\rm GS}$ =10V, $I_{\rm D}$ =28.8A, $T_{\rm j}$ =25°C	
	$R_{\rm DS(on)}$		0.060	-		$V_{\rm GS}$ =10V, $I_{\rm D}$ =28.8A, $T_{\rm j}$ =150°C	
Gate resistance	R_{G}	-	0.85	-	Ω	<i>f</i> =1MHz, open drain	

Table 5 Dynamic characteristics

Darameter	Symphol		Values			Nieto / Test son dition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition	
Input capacitance	C _{iss}		4820		рF	V _{GS} =0V, V _{DS} =400V, <i>f</i> =250kHz	
Output capacitance	$C_{\rm oss}$]	99	_	рг	V _{GS} -0V, V _{DS} -400V, 1-230K112	
Effective output capacitance, energy related ⁴⁾	$C_{\rm o(er)}$	-	184	-	pF	V _{GS} =0V, V _{DS} =0400V	
Effective output capacitance, time related ⁵⁾	$C_{\rm o(tr)}$	-	1900	-	pF	$I_{\rm D}$ =constant, $V_{\rm GS}$ =0V, $V_{\rm DS}$ =0400V	
Turn-on delay time	$t_{d(on)}$		28				
Rise time	t _r		9		nc	V_{DD} =400V, V_{GS} =13V, I_{D} =28.8A, R_{G} =1.	
Turn-off delay time	$t_{\sf d(off)}$]	100]-	ns	8Ω ; see table 9	
Fall time	t_{f}		2.8				

⁴⁾ $C_{\rm o(er)}$ is a fixed capacitance that gives the same stored energy as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400V

 $C_{\rm o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400V

Table 6 Gate charge characteristics

Parameter	Symbol		Values			Note / Test condition
	Syllibot	Min.	Тур.	Max.	Unit	Note / Test condition
Gate to source charge	Q_{gs}		24		nC	
Gate to drain charge	Q_{gd}		44		nC	
Gate charge total	$Q_{ m g}$	-	123	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =28.8A, $V_{\rm GS}$ =0 to 10V
Gate plateau voltage	$V_{ m plateau}$		5.0		V	

Table 7 Reverse diode characteristics

Parameter	Symbol	Values			Linit	Note / Test condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition
Diode forward voltage	$V_{\rm SD}$	-	0.8	-	V	$V_{\rm GS}$ =0V, $I_{\rm F}$ =28.8A, $T_{\rm j}$ =25°C
Reverse recovery time	t _{rr}		440		ns	
Reverse recovery charge	$Q_{\rm rr}$]-	8.7]-	1 110	$V_{\rm R}$ =400V, $I_{\rm F}$ =28.8A, d $I_{\rm F}$ /d t =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}		39		Α	isce table o

4 Electrical characteristics diagrams

5 Test circuits

Table 8 Diode characteristics

Table 9 Switching times (ss)

Table 10 Unclamped inductive load (ss)

6 Package outlines

PACKAGE - GROUP NUMBER:	PG-HSOF-8-U02						
DIMENSIONS	MILLIM	ETERS					
DIMENSIONS	MIN.	MAX.					
Α	2.20	2.40					
b	0.70	0.90					
b1	9.70	9.90					
b2	0.42	0.50					
С	0.40	0.60					
D	10.28	10.58					
D1	3.	30					
E	9.70	10.10					
E1	7.50						
E2	8.50						
E3	9.46						
е	1.20 (BSC)						
н	11.48	11.88					
H1	6.55 6.95						
H2	7.15						
Н3	3.59						
H4	3.26						
N	8						
K1	4.18						
L	1.40 1.80						
L1	0.50 0.90						
L2	0.50	0.70					
L3	1.00	1.30					
L4	2.62	2.81					

1) PARTIALLY COVERED WITH MOLD FLASH

Figure 1 Outline PG-HSOF-8, dimensions in mm

Figure 2 Footprint drawing PG-HSOF-8, dimensions in mm

Figure 3 Packaging variant PG-HSOF-8, dimensions in mm

7 Appendix A

Table 11 Related links

- IFX CoolMOS™ G7 Webpage
- IFX CoolMOS™ G7 application note
- IFX CoolMOS™ G7 simulation model
- IFX Design tools

Public

600V CoolMOS™ G7 SJ Power Device IPT60R028G7

Revision history

IPT60R028G7

Revision 2025-02-03, Rev. 2.2

Previous revisions

Revision	Date	Subjects (major changes since last revision)
2.0	2016-12-15	Release of final version
2.1	2020-10-27	Content update diagram 2,3,4,7,8 and format update
2.2	2025-02-03	Implementation of standardized Infineon Umbrella-Templates for package drawings. H1 Extension from 6.75 to 6.95 MAX

Public

600V CoolMOS™ G7 SJ Power Device IPT60R028G7

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2025 Infineon Technologies AG All Rights Reserved.

Important notice

The products which may also include samples and may be comprised of hardware or software or both ("Product") are sold or provided and delivered by Infineon Technologies AG and its affiliates ("Infineon") subject to the terms and conditions of the frame supply contract or other written agreement(s) executed by a customer and Infineon or, in the absence of the foregoing, the applicable Sales Conditions of Infineon. General terms and conditions of a customer or deviations from applicable Sales Conditions of Infineon shall only be binding for Infineon if and to the extent Infineon has given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of non-infringement of third-party rights and implied warranties such as warranties of fitness for a specific use/purpose or merchantability.

Infineon shall not be responsible for any information with respect to samples, the application or customer's specific use of any Product or for any examples or typical values given in this document.

The data contained in this document is exclusively intended for technically qualified and skilled customer representatives. It is the responsibility of the customer to evaluate the suitability of the Product for the intended application and the customer's specific use and to verify all relevant technical data contained in this document in the intended application and the customer's specific use. The customer is responsible for properly designing, programming, and testing the functionality and safety of the intended application, as well as complying with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products may not be used in any application where a failure of the Product or any consequences of the use thereof can reasonably be expected to result in personal injury. However, the foregoing shall not prevent the customer from using any Product in such fields of use that Infineon has explicitly designed and sold it for, provided that the overall responsibility for the application lies with the customer.

If the Product includes security features:

Because no computing device can be absolutely secure, and despite security measures implemented in the Product, Infineon does not guarantee that the Product will be free from intrusion, data theft or loss, or other breaches ("Security Breaches"), and Infineon shall have no liability arising out of any Security Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual property laws and treaties of the United States, Germany, and other countries worldwide. All rights reserved. Therefore, you may use the software only as provided in the software license agreement accompanying the software. If no software license agreement applies, Infineon hereby grants you a personal, non-exclusive, non-transferable license (without the right to sublicense) under its intellectual property rights in the software (a) for software provided in source code form, to modify and reproduce the software solely for use with Infineon hardware products, only internally within your organization, and (b) to distribute the software in binary code form externally to end users, solely for use on Infineon hardware products. Any other use, reproduction, modification, translation, or compilation of the software is prohibited.

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).