

در این روش در ابتدا شبیه ساز را بر روی dc sweep تنظیم میکنیم و سپس همانند مدار دو پروب را قرار میدهیم و شبیه ساز را اجرا میکنیم. برای حاصل شدن نمودار پایین که مشخصه ی جریان بر حسب ولتاژ دیود میباشد کافی است که بر روی نقطه چین نمودار کلیک کردن و از قسمت setting محور افقی را به V(D1:1) تغییر دهیم.

همانگونه که انتظار داشتیم نموداری داریم که رشد آن نمایی است و میشود گفت از ولتاژ تقریبا 0.7 به بعد رشد نمودار نمایی میشود و این 0.7 ولت ولتاژ آستانه یا treshold دیود میباشد.

در روش دیگر در ابتدا همانند جدول پابین ولتاژ و جریان دیود را بر حسب مقدار Vs محاسبه میکنیم و سپس نمودار جریان برحسب ولتاژ دیود را با نقطه گذاری رسم میکنیم.

Vs	0	0.2	0.4	0.6	1	3	5	7	9	10	15
Id(mili/	A) 0	0	0.012	0.118	0.431	2.23	4.42	6.5	8.58	9.58	14.59
Vd(mili	V) 9	200	395	479	539	608	638	656	668	672	691

محاسبه ي مقاومت ديناميكي:

مقاومت دینامیکی در یک نقطه از نمودار بالا برابر است با 1 تقسیم بر شیب نمودار در آن نقطه.

حال دو نقطه از جدول بالا را انتخاب ميكنيم و مقاومت ديناميكي را بدست مي أوريم:

$$r_{\rm d} = \frac{\Delta V}{\Delta I}$$
rd = (638-608)/(4.42-2.23) = 14.42 oh

همانطور که گفته شد مقاومت دینامیکی در یک نقطه از نمودار برابر است با 1 نقسیم بر شیب نمودار. نتیجه میشود که با افزایش شیب نمودار مقدار مقاومت دینامیکی کاهش پیدا کند که دو مقدار مقاومت دینانیکی که بالا به دست آوردیم نیز همین موضوع را نشان می دهد.

سایر نمودار های مربوط به مشخصه های ولتاژ و جریان دیود:

-2

از مدار های Clamp برای تغییر سطح DC سیگنال استفاده می شود. در این مدار ها شکل موج ثابت می ماند و فقط مقدار DC آن جابجا خواهد شد. می توانیم با استفاده از این مدار ها سطح DC سیگنال را افزایش و یا کاهش دهیم کاملاً مشخص است که برای رسیدن به این هدف در این نوع مدار های دیودی، از خازن استفاده می شود. در ادامه به تحلیل آن میپردازیم:

با توجه به جهت دیود، دیود در سیکل مثبت روشن میشود.در این سیکل به دلیل اینکه مقاومت دینامیکی دیود مقدار کوچکی میباشد خازن سریعا شارژ میشود. در سیکل منفی که دیود خاموش است، خازن به وسیله ی مقاومت 100کیلو دشارژ میشود. با توجه به اینکه مدت زمان دشارژ شدن خازن بر ابر با 5تاو میباشد که بر ابر با 5RC میباشد(در اینجا ۵۰۰میلی ثانیه). ولی با توجه به اینکه مقدار مقاومت خیلی بزرگ است و همچنین با توجه به فرکانس منبع که بر ابر با 10هر تز است، مدت زمانی که به خازن فرصت دشارژ داده میشود(سیکل منفی) بر ابر با 50 میلی ثانیه میباشد و خازن فرصت کامل بر ای دشارژ شدن را ندارد.

در این حالت ولتاژ خروجی برابر است با ولتاژ ورودی منهای ولتاژ خازن. پس انتظار داریم که در نمودار ما سطح ولتاژ خروجی نسبت به ولتاژ ورودی پایینتر باشد. میدانیم که خازن پس از شارژ شدن ولتاژ آن به 4 ولت میرسد. سپس کمی شروع به دشارژ میکند؛ پس تقریبا به اندازه ی ولتاژ خازن که گفته شد سطح ولتاژ خروجی پایین میرود.

در سیکل مثبت که دیود روشن میشود و ولتاژی که در آن روشن میشود برابر با 0.7 میباشد. در نتیجه در ولتاژ 0.7 برش اتفاق میوفتد.هرچه فرکانس زیادتر شود خازن فرصت کمتری برای دشارژ شدن دارد و در نتیجه برش کمتری داریم.

گزارش کار آزمایش۸ دیود | ۱۹۸۳۱۰۶۷ علی نوروزی

همانگونه که مشاهده میکنیم با افزایش مقدار فرکانس برش کمتری داریم و ولتاژ خروجی کاملتر جابه جا میشود.

گزارش کار آزمایش۸ دیود | ۹۸۳۱۰۶۷] علی نوروزی

عملکرد مدار های پابین همانند مدار بالا میباشد ولی تفاوت آن این است که در اینجا جهت دیود عوض شده و دیود در سیکل منفی جریان را از خود عبور میدهد در نتیجه انتظار داریم که برش در قسمت منفی اتفاق بیوفتد و نمودار به سمت بالا جابجا شود. همچنین همانند قبل با افزایش فرکانس منبع برش کمتری داریم.

در این مدار در سیکل منفی دیود روشن میشود و اگر در هنگام روشن بودن دیود یعنی سیکل منفی یک ادا بنویسیم داریم:

 $-4-2+0.7+Vc=0 \rightarrow Vc = 5.3V$

در نتیجه ولتاژ خروجی برابر است با ولتاژ ورودی به علاوه ی 5.3 . یعنی انتظار داریم که سیگنال خروجی به اندازه 5.3 ولت بالا برود.

نمودار بالا صحت موضوعي كه گفته شد را تابيد ميكند.

در این مدار نیز همانند مدار قبل دیود در سیکل منفی روشن میشود. در نتیجه اگر یک kvl بنویسیم داریم:

 $-4+2+0.7+Vc=0 \rightarrow Vc = 1.3V$

در نتیجه ولتاژ خروجی برابر است با ولتاژ ورودی به علاوه ی 1.3 . یعنی انتظار داریم که سیگنال خروجی به اندازه 1.3 ولت بالا برود.

Clipper:

از این نوع مدارها هنگامی استفاده می کنیم که می خواهیم قسمتی از شکل موج را انتقال بدهیم و قسمتی را حذف کنیم. مدارهای آزمایش قبل شکل موج ورودی را در خروجی حفظ می کردند در حالی که در مدارهای Clipper شکل موج ورودی بریده می شود و در خروجی نمایش داده می شود. معمولا در این نوع مدارها از ولتاژهای مرجع برای سطح برش استفاده می شود.

به شرح آزمایش میپردازیم.

مدار طوری بسته شده که در سیکل مثبت جریان را از خود عبور میدهد پس در هنگامی که دیود روشن است ولتاژ خروجی تقریبا برابر با ولتاژ ورودی میباشد.(یک مقدار افت ولتاژ داریم به علت ولتاژ دو سر دیود.)

حال بررسی میکنیم که دیود در چه زمانی خاموش میشود. فرض میکنیم که دیود خاموش است پس آن را مدارباز در نظر میگیریم و ولتاژ خروجی در این حالت برابر با 2 ولت میباشد. درنتیجه برای روشن شدن دیود با توجه به ولتاژ آستانه که تقریبا برابر با 0.7 است، ولتاژ ورودی باید از 2.7 ولت بیشتر باشد تا دیود روشن شود. پس دیود در ولتاژ های کمتر از 2.7 ولت خاموش میباشد و در این حالت مقدار ولتاژ خروجی برابر با 2ولت میباشد.

در این مدار برای اینکه دیودها روشن شوند باید دیود بایاس مستقیم شود و دیود زنر نیز به ناحیه ی شکست زنری برود.

با توجه به اینکه ولتاژ شکست زنر 3.3 میباشد و ولتاژ آستانه ی دیود نیز 0.7 میباشد پس در مجموع هنگامی که دیود روشن است ولتاژ خروجی برابر با 4 ولت است. پس در حالتی که ولتاژ ورودی تقریبا کمتر از 4 ولت باشد دیود خاموش میشود و در نتیجه مدارباز میشود و ولتاژ ورودی و خروجی با هم برابر میشوند.

در مدار پایین در ابتدا فرض میکنیم که دیود روشن میباشد. در این حالت ولتاژ خروجی برابر با 2.3-=0.7+3- میباشد. در حالت هایی که ولتاژ ورودی تقریبا کمتر از منفی2.3 میباشد دیود خاموش میباشد و در نتیجه مدارباز میشود و ولتاژ خروجی برابر با ولتاژ ورودی میباشد.

همانطور که گفته شد در حالاتی که ولتاژ ورودی تقریبا بیشتر از منفی2.3 میباشد دیود روشن میباشد و ولتاژ خروجی برابر با منفی2.3 میباشد و در حالاتی که منبع مقداری کمتر ازمنفی 2.3 دارد دیود خاموش است و مقدار ولتاژ خروجی و ورودی برابرند.

