Lista 4: Niezależność i lemat Borela-Cantelliego

Zadania na ćwiczenia: 2025-03-17

Lista zadań w formacie PDF

Zadania do samodzielnego rozwiązania

- Maciek rzuca dwiema kośćmi. Pierwsza kość jest dobrze wyważona. Na drugiej szóstka wypada dwa razy częściej niż pozostałe liczby. Jakie jest prawdopodobieństwo, że suma oczek będzie większa niż 10? Odpowiedź 5/42
- 2. Losujemy punkt (x, y) z kwadratu $[0, 1]^2$. Niech $A = \{|x y| \le 1/3\}$, $B = \{x \le 1/2\}$ oraz $C = \{y \ge 1/2\}$. Czy zdarzenia A, B i C są niezależne? Czy są niezależne parami? Odpowiedź Zdarzenia nie są niezależne. Są niezależne parami.
- 3. Niech $\Omega=[-2,2]$ oraz $A_n=[(-1)^n-1/n,(-1)^n+1/n]$. Znajdź $\limsup_n A_n$ Odpowiedź $\{-1,1\}.$
- 4. Zdarzenia A_1,A_2,\dots,A_{2025} są niezależne i mają jednakowe prawdopodobieństwo p. Jaka jest szansa, że zajdzie dokładnie jedno? Odpowiedź $2025p(1-p)^{2024}$
- 5. Zdarzenia A_1, \ldots, A_n, \ldots są niezależne i mają równe prawdopodobieństwa. Jaka jest szansa, że zajdzie skończenie wiele zdarzeń A_n ? Odpowiedź Niech $\mathbb{P}[A_k] = p$. Jeżeli p > 0, to szukana szansa wynosi zero.
- 6. Rzucono 10 razy kostką. Jakie jest prawdopodobieństwo otrzymania
 - a. 6 oczek co najmniej raz?
 - b. 5 oczek dokładnie 3 razy?

Odpowiedź

a. 0.8385, b. 0.214

Zadania na ćwiczenia

- 7. Wykonujemy dwa eksperymenty: rzucamy kością, na której liczby parzyste wypadają dwa razy częściej niż liczby nieparzyste i losujemy liczbę z przedziału [0, 1]. Skonstruuj przestrzeń przestrzeń probabilistyczną opisująca wykonanie tych eksperymentów niezależnie. Jakie jest prawdopodobieństwo, że suma otrzymanych liczb jest mniejsza niż 5/2?
- 8. Pokaż, że zdarzenia A_1, \ldots, A_n są niezależne wtedy i tylko wtedy, gdy σ -ciała $\mathcal{F}_j = \sigma(A_j) = \{\emptyset, \Omega, A_j, A_j^c\}$ dla $j \in [n]$ są niezależne.
- 9. Niech $\Omega = [0, 1]$. Rozważmy zdarzenia

$$\begin{split} A_1 &= [0,1/2), \\ A_2 &= [0,1/4) \cup [1/2,3/4), \\ A_3 &= [0,1/8) \cup [2/8,3/8) \cup [4/8,5/8) \cup [6/8,7/8), \ldots. \end{split}$$

Pokaż, że zdarzenia $\{A_n\}_{n\in\mathbb{N}}$ są niezależne.

- 10. Student musi poprawić oceny niedostateczne z dwóch przedmiotów. Szansa poprawienia oceny z pierwszego przedmiotu w jednej próbie wynosi p, a z drugiego q. Żeby móc poprawić drugą ocenę, trzeba najpierw poprawić pierwszą. Poszczególne próby poprawiania są niezależne. Wiadomo, że po piętnastu próbach poprawiania oceny student jeszcze nie poprawił oceny z drugiego przedmiotu. Jaka jest szansa pod tym warunkiem że nie poprawił jeszcze oceny z pierwszego przedmiotu?
- 11. Rzucamy 2n razy symetryczną monetą. Niech O_{2n} (odpowiednio R_{2n}) oznacza liczbę orłów (odpowiednio reszek). Dla ustalonego k obliczyć

$$\lim_{n \to \infty} \mathbb{P}(|O_{2n} - R_{2n}| \le 2k).$$

- 12. Niech A_n będą zdarzeniami niezależnymi, przy czym $\mathbb{P}(A_n) = p_n \in (0,1)$. Wykaż, że zachodzi co najmniej jedno ze zdarzeń A_n wtedy i tylko wtedy, gdy z prawdopodobieństwem 1 zachodzi nieskończenie wiele zdarzeń A_n .
- 13. Rzucamy nieskończenie wiele razy monetą, w której orzeł wypada w prawdopodobieństwem $p \ge 1/2$. Niech A_n oznacza zdarzenie, że pomiędzy rzutem 2^n a 2^{n+1} otrzymano ciąg n kolejnych orłów. Pokaż, że zdarzenia A_n z prawdopodobieństwem 1 zachodzą nieskończenie wiele razy.
- 14. Niech $\{A_n\}_{n\in\mathbb{N}}$ będzie ciągiem zdarzeń.
 - a. Pokaż, że jeśli $\mathbb{P}(A_n) \to 0$ oraz

$$\sum_{n=1}^{\infty} P(A_n^c \cap A_{n+1}) < \infty,$$

to

$$\mathbb{P}(\limsup_{n} A_n) = 0.$$

b. Znajdź przykład ciągu zdarzeń A_n , do którego można zastosować wynik z punktu a, ale nie można zastosować lematu Borela-Cantellego.

Zadania dodatkowe

15. Rzucamy nieskończenie wiele razy symetryczną monetą. Niech A_n oznacza zdarzenie, że w pierwszych n rzutach było tyle samo orłów i reszek. Wykazać, że z prawdopodobieństwem 1 zachodzi nieskończenie wiele zdarzeń A_n .