DNS Cache Poisoning Attack: Resurrections with Side Channels

Keyu Man Xin'an Zhou Zhiyun Qian

- Background
 - DNS Cache Poisoning
 - Threat Model
 - Attack Overview
- ICMP-Based Port Scan
- Evaluation
- Defenses
- Conclusion
- Disclosure

DNS Cache Poisoning

Threat Model

- Off-path attacker
- Attacker can trigger request
 - Wi-Fi router (1)
 - Coffee shop 🔮
 - Airport
 - 8.8.8.8
 - 9.9.9.9
 - Campus/ISP DNS server _____

Forwarders

Resolvers

Attack Overview

- Background
- ICMP-Based Port Scan
 - ICMP Processing Logic
 - Public-facing Port Scan
 - Private-facing Port Scan
 - Colliding IP Inference
- Evaluation
- Defenses
- Conclusion
- Disclosure

ICMP Processing Logic

- Why ICMP has to do with DNS attack?
 - It can piggyback port info!

```
Ethernet II, Src: , Dst:
Internet Protocol Version 4, Src: , Dst:
Internet Control Message Protocol

Type: 3 (Destination unreachable)
Code: 3 (Port unreachable)
Checksum: 0x89b3 [correct]
[Checksum Status: Good]
Unused: 00000000

Internet Protocol Version 4, Src: , Dst:
User Datagram Protocol, Src Port: , Dst Port:
```

ICMP Processing Logic

How is the port info used?

5.5.5.5->10.0.0.1

ICMP Frag Needed: max MTU=800

Original packet:

10.0.0.1:34568->5.6.7.8:53

DNS Request

Socket table:

10.0.0.1:34567->5.6.7.8:53 CONNECTED

:

Side Channel!

ICMP Processing Logic

ICMP Fragment Needed & ICMP Redirect

- The only ICMP errs modifying the shared resources
 - i.e., update routing table
- Frag needed
 - Packet exceeds MTU
 - PMTU for a host is updated in routing table
- Redirect (more details in the paper)
 - Better routes available
 - Next hop to a host is updated in routing table

```
if (type == ICMPV6 PKT TOOBIG) {
   ip6_sk_update_pmtu(skb, sk, info)
}
if (type == NDISC REDIRECT) {
   ip6_sk_redirect(skb, sk);
}
```

Public-facing Port Scan

- listen()ing ephemeral ports
 - No check on IP during socket matching
 - Only port #!
 - Alter PMTU of any IP!
 - "public-facing"
 - dnsmasq
- Idea
 - Try lowering attacker's own PMTU
 - Check fragments

Public-facing Port Scan

ICMP Header

Keys: D=Destination IP, S=Source IP, M=PMTU, SP=Source Port, MF=More Fragment

Private-facing Port Scan

- connect()ed ephemeral ports
 - Complete 4-tuple is checked
 - Only NS' PMTU can be modified
 - Unknown to the attacker directly
 - "private-facing"
 - BIND, Unbound, ...
- How to observe the change of NS' PMTU?
 - Next Hop Exception (fnhe) Cache

fnhe Cache

Private-facing Port Scan

fnhe Cache

Buckets

...

2046

2047

Slots

ICMP caused route changes

- i.e., PMTU & next hop
- Unexpected
- "next hop exceptions" (fnhe)
- fnhe
 - Cached
 - 2048-bucket hash table
 - 5 slots per bucket to solve collision
 - Random seed as hash key
 - H(): IP addr->bucket
 - Garbage collected
 - Overwrite the oldest slot when bucket is full

756 2001::1 H(2001::1, key) = 7562002::2 H(2002::2,key)=756 2003::3 H(2003::3,key)=756 2004::4 H(2004::4,key)=7562005::5 H(2005::5,key)=756

2001::1 and 3001::1 are colliding IPs

Private-fa Port Scan Results

Private-fa Port Scan Port

Next slide: How to choose c1-c5

Buckets ... n ...

Slots c1

c2

c3

c4

c5

Legend:
Data
IP Header
UDP Header
ICMP Header

n

au

*c*2

c3

*c*4

*c*5

Buckets

Internal

State

Change

Slots

Colliding IP Inference

- How to choose c1-c5?
 - Collide with NS' IP (au)
 - Collide with each other
 - Attacker controls c1
- Idea: Hash key inference->calculate c1-c5

5 Plant Packets

D=r M=1200 S=r, D=cn PONG

fnhe Cache:

*c*1->*c*2->*c*3->*c*4->*c*5

Key Inference

Colliding IP Inference

Key Inference

1. Control 1500

			•					
y Inference	Buckets	0	1	•••	756		2046	2047
					2001::6	Frag	2001::66	Frag
Control 1500 IPs					2001::2	Frag	2001::22	Frag
 Easy for IPv6 (/64) 					2001::3	Frag	2001::33	Frag
 AWS if IPv4 (1500 nano instances) 					2001::4	Frag	2001::44	Frag

2001::5

2. Send 1500 ICMP frag neededs

• 1500*\$0.0042/hr

- Some entries will be replaced
- 3. Send 1500 PINGs
 - Log IPs (evicted IPs) replying no frags
- 4. Brute-force key by simulating 2&3 locally
 - Key=0, key=1,..., key=0xffffffff
 - Check if the evicted IPs match
 - Only 2-min guess after distributing to 1500 nano instances

Evited: 2001::1 2001::11

Frag

Non-frag Non-frag

2001::55

Frag

- Background
- ICMP-Based Port Scan
- Evaluation
 - Comparison with SADDNS
 - End-to-end Attacks
 - Vulnerable Population
- Defenses
- Conclusion
- Disclosure

Comparison with SADDNS

- + Novel port inference method
 - ICMP vs. UDP
- + New dimension of the shared resource
 - Spatial vs. temporal
 - fnhe cache hash table vs. ICMP rate limit counter
- + Fast port scan speed
 - Unlimited vs. 1000 pps
- + Resistant to noise
 - No time sync vs. 50-ms time sync
- Preparation of the attack
 - Inferring colliding IPs (hash key)

End-to-end Attacks

Attack Results

- Average success time: 80-900s
 - Time varies due to slightly different setup (more details in the paper)
- Other attacks:
 - Forwarder attack: 13s
 - Real public resolver attack: 105s avg.

Attack Results

```
keyu@ubuntu:~$ dig @ a.xiaofengtest.net
; <<>> DiG 9.10.3-P4-Ubuntu <<>> @
a.xiaofengtest.net
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59301
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0,
ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;a.xiaofengtest.net.
                                ΙN
;; ANSWER SECTION:
a.xiaofengtest.net.
                       28
                                ΙN
                                       Α
                                                6.6.6.6
;; Query time: 190 msec
                 #53(
;; SERVER:
;; WHEN: Fri Sep 24 17:11:34 EDT 2021
;; MSG SIZE rcvd: 63
```

```
keyu@ubuntu:~$ dig @ a.xiaofengtest.net
; <<>> DiG 9.10.3-P4-Ubuntu <<>> @
a.xiaofengtest.net
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57535
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0,
ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;a.xiaofengtest.net.
                                ΙN
;; ANSWER SECTION:
                        500
a.xiaofengtest.net.
                                ΙN
                                        Α
                                                1.2.3.4
;; Query time: 448 msec
;; SERVER:
                 #53(
;; WHEN: Fri Sep 24 17:11:36 EDT 2021
;; MSG SIZE rcvd: 63
```

Vulnerable Population

Open-source Software

- Vulnerability in both OS and DNS software
 - Varies among diff. kernel and software combinations.
- OS
 - Linux: 3.6-5.14
- DNS
 - BIND: 9.3-9.16
 - Unbound: <1.13
 - dnsmasq: any (at the time of testing)

Vulnerable Population

Open Resolvers

- Open resolvers
 - 14% of backend IPs
 - 38% of frontend IPs
- Public resolvers
 - 6 out of 12

- Background
- ICMP-Based Port Scan
- Evaluation
- Defenses
- Conclusion
- Disclosure

Defenses

- Defeat off-path attacks
 - 0x20 eNcoDinG
 - DNS cookie
 - DNSSEC
- Mitigate the side channel
 - Set IP_PMTUDISC_OMIT socket option
 - Randomize fnhe caching
 - Eviction policy, bucket depth...

- Background
- ICMP-Based Port Scan
- Evaluation
- Defenses
- Conclusion
- Disclosure

Conclusion

- A novel side channel from next hop exception cache
- ICMP-based port scan
- Poison the cache of DNS in minutes
- Update Linux kernel to mitigate the attack

- Background
- ICMP-Based Port Scan
- Evaluation
- Defenses
- Conclusion
- Disclosure

Disclosure

Thank you!