Implementación de soluciones en la nube para el análisis de datos públicos a través de modelos de inteligencia artificial

Implementation of cloud solutions for public data analysis through artificial intelligence models

Trabajo de Fin de Master Curso 2024–2025

> Autor Cristian Molina Muñoz

Director
Jose Luis Vazquez-Poletti
Rubén Fuentes-Fernández

Máster en Ingeniería Informática Facultad de Informática Universidad Complutense de Madrid

Implementación de soluciones en la nube para el análisis de datos públicos a través de modelos de inteligencia artificial

Implementation of cloud solutions for public data analysis through artificial intelligence models

Trabajo de Fin de máster en Ingeniería Informática

Autor Cristian Molina Muñoz

Director Jose Luis Vazquez-Poletti Rubén Fuentes-Fernández

Convocatoria: Septiembre 2025 Calificación:

Máster en Ingeniería Informática Facultad de Informática Universidad Complutense de Madrid

28 de agosto de 2025

Autorización de difusión

El abajo firmante, matriculado en el Master en Ingeniería en Informática de la Facultad de Informática, autoriza a la Universidad Complutense de Madrid (UCM) a difundir y utilizar con fines académicos, no comerciales y mencionando expresamente a sus autores el presente Trabajo Fin de Master: "Implementación de soluciones en la nube para el análisis de datos públicos a través de modelos de inteligencia artificial", realizado durante el curso académico 2024-2025 bajo la dirección de Jose Luis Vazquez-Poletti y Rubén Fuentes-Fernández, y a la Biblioteca de la UCM a depositarlo en el Archivo Institucional E-Prints Complutense con el objeto de incrementar la difusión, uso e impacto del trabajo en Internet y garantizar su preservación y acceso a largo plazo.

Cristian Molina Muñoz

28 de agosto de 2025

Dedicatoria

A mis padres, por hacer posible todo esto. Por su esfuerzo

Agradecimientos

Agradecer a todas las personas que han aportado su granito de arena a la persona que soy, y por extensión, a este mismo trabajo. Sobretodo a profesores y compañeros de estudio y trabajo, de los que tanto he aprendido.

Resumen

[TODO 250 palabras sobre datos, cloud y IA] [Se redacta en pasado y no debe incluir abreviaturas, referencias a figuras o tablas ni citas bibliográficas. Tampoco se debe incluir información que no aparezca en el proyecto.]

Los ficheros de GitHub se encuentran en el siguiente repositorio:

https://github.com/crismo04/TFM-cloud-soliutions-to-public-data/

Palabras clave

Tratamiento de datos, Cloud, Big data, inteligencia Artificial, [TODO mas sobre clouds, se mencionan en orden alfabético]

Abstract

[TODO three paragraphs on data, cloud and AI].

The GitHub files can be found in the following repository:

https://github.com/crismo04/TFM-cloud-soliutions-to-public-data/

${\bf Keywords}$

Data processing, Cloud, Big data, Artificial intelligence, TODO something else about clouds.

Índice

1.	Intr	oducción 1
	1.1.	Motivación
	1.2.	Objetivos y alcance
	1.3.	Elementos principales
	1.4.	Plan de trabajo
	1.5.	Estructura de esta memoria
1.	Intr	oduction 3
	1.1.	Motivation
	1.2.	Work plan
2.	Esta	ado de la Cuestión
	2.1.	Datos
		2.1.1. Obtención de datos públicos
		2.1.2. Trabajos anteriores
		2.1.3. Conjuntos de datos
		2.1.4. Gobierno de los datos
	2.2.	Nubes
		2.2.1. Principales Proveedores de Nube y sus Capas Gratuitas 12
		2.2.2. Otras herramientas útiles
		2.2.3. Trabajos anteriores
	2.3.	Inteligencia Artificial
		2.3.1. Trabajos anteriores
3.	Mat	teriales y métodos 23
	3.1.	Metodos
		3.1.1. Utilización de la solución
		3.1.2. Aplicación de la gobernanza de datos como método 24
	3.2.	Datos
	3.3.	Materiales

3.3.1. Lenguajes	26
3.3.2. Herramientas	27
3.3.3. Herramientas descartadas	28
4. Resultados	29
5. Manual de usuario y casos de uso	31
6. Conclusiones y Trabajo Futuro	33
6. Conclusions and Future Work	35
A. Definiciones y acornimos	37
A.0.1. Definiciones	37
A.0.2. Acronimos	48
B. Manual de usuario y casos de uso	51
Bibliografía	53

Índice de figuras

A.1.	Capas de gobierno del dato, fuente: (OECD, 2019)	42
A.2.	Distintos tipos de cloud, fuente: (Albert Barron)	45

Introducción

"We can only see a short distance ahead, but we can see plenty there that needs to be done."

— Alan Turing

1.1. Motivación

Empezaremos por el principio, definiendo que son los tres principales elementos de este proyecto [TODO]

1.2. Objetivos y alcance

El alcance de este proyecto es, por un lado [TODO]

1.3. Elementos principales

Datos

Nube

Inteligencia artificial

1.4. Plan de trabajo

Una vez definido el alcance, me gustaría destacar las cinco fases en las que se ha dividido el proyecto, que se han ido iterando para la creación de varios prototipos funcionales:

- 1. Fase de investigación académica: Búsqueda de estudios o trabajos a cerca del estado actual de los datos abiertos, las tecnologías en la nube y modelos o herramientas de inteligencia artificial.
- 2. Fase de investigación técnica: Búsqueda de información a cerca de diferentes fuentes publicas de datos, tecnologías en la nube y modelos o herramientas de IA que nos ayuden a tratar, filtrar y entender todos los datos públicos recopilados.
- 3. Fase de análisis de requisitos: [TODO]
- 4. Fase de implementación: [TODO]
- 5. Fase de pruebas: [TODO]
- 6. **Memoria:** Elaboración de este documento, plasmando las fases anteriores en texto y especificando el desarrollo del proyecto y los resultados del mismo.

1.5. Estructura de esta memoria

Toda esta memoria se ha construido con \LaTeX [3.3.1] y ayuda de la plantilla \Tau EXIS, El resto de la memoria se estructurara por capítulos de esta manera:

Capitulo 2 Estado de la cuestión, donde se plasmaran las conclusiones de las primeras dos fases de investigación.

Capitulo 3 Materiales y métodos [TODO]

Capitulo 4 Resultados [TODO]

En próximos capítulos y para evitar la excesiva longitud de ciertos apartados, algunas definiciones se han movido al Anexo 1 "Definiciones y acornimos" A y aparecen en el texto de la siguiente manera ->[D 1]. En este apartado se podrán encontrar los Acronimos que aparecen durante todo el trabajo (A.0.2). También aclarar que esta memoria utilizara las palabras en español o sus anglicismos correspondientes indistintamente, debido a su popularización y uso en esta rama.

Introduction

"We can only see a short distance ahead, but we can see plenty there that needs to be done."

— Alan Turing

1.1. Motivation

We will start at the beginning by defining what the three main elements of this project are, [TODO]

The scope of this project is, on the one hand [TODO]

1.2. Work plan

Having defined the scope, I would like to highlight the five phases in which the project has been partitioned, which have been iterated for the creation of several functional prototypes:

- 1. Research phase. Search for information about different public data sources, cloud technologies and AI models or tools that help us to treat, filter and understand all the public data collected.
- 2. Requirements analysis phase: [TODO].
- 3. Implementation phase: [TODO]
- 4. Testing phase: [TODO]

5. **Memory phase:** [TODO] The elaboration of this document, translating the previous phases into text and specifying the development of the project and its results.

Estado de la Cuestión

"Somos una generación frontera. La única que ha conocido la vida antes y después de la hiperconectividad y los dispositivos móviles. [...] La última que pudo abarcar toda la tecnología de su tiempo."
— Jaime Gómez-Obregón

_

En este apartado expondremos el estado actual de los puntos principales de nuestro proyectos, así como los trabajos o artículos relacionados con los temas a tratar: trabajos relacionados con los principales proveedores Cloud y su comparación, trabajos que traten con grandes volúmenes de datos públicos o que estudien los datos públicos, o trabajos que utilicen diferentes IAs para el tratamiento de datos y la obtención de conclusiones a partir de estos. No es una tarea fácil, ya que los artículos relacionados en Google Scholar se cuentan por millones al buscar "data", .Artificial Inteligence.º çloud computing", por lo que, aunque también usaremos conjuntos de datos, estudios y aplicaciones de otras partes del globo, nos intentaremos centrar en datos del territorio español, de esta manera acotaremos el alcance del proyecto y contribuiremos a aprovechar datos que no han sido tan explotados y explorados como pueden ser los datos abiertos de Google (Google, 2025) o Amazon (Amazon, 2025).

2.1. Datos

Llevamos mucho tiempo escuchando que vivimos en la era de la información o de los dato, desde la invención del transistor en 1947 (Wikipedia, 2025), pasando la primera vez que se acuño en 2005 el termino "web 2.0" y "Big data" (Press, 2013), así como su rápido crecimiento y adopción en todas las esferas (Brown et al., 2011), hasta el presente, donde los datos y su tratamiento a

través de múltiples herramientas, incluyendo la recientemente omnipresente Inteligencia Artificial, llegaran a generan, según proyecciones, la asombrosa cifra de 149 Zettabytes de datos en 2024, ¡23 ceros en bytes! (Taylor, 2025) & (Pangarkar, 2025). Esta evolución no ha sido lineal ni uniforme, sino que ha estado marcada por distintos enfoques, motivaciones y metodologías en todo el mundo en lo que se denominan las tres olas de datos abiertos [D 5], diferentes etapas evolutivas por las que ha transitado el movimiento de apertura de datos

En España, los datos también muestran un aumento significativo, según los datos de telecomunicaciones del CNMC, los cuales se han analizado con este mismo proyecto (CNMC, 2025)

el uso de datos generales en las principales empresas es de 0.092 Zettabytes de datos en 2024. Esto es solo un 0.06 % del volumen global, lo cual no cuadra del todo con otras estimaciones (Insights + Analytics, 2024), que por volumen de mercado sitúan a España en un 0.9 % del volumen global, lo cual se puede explicar debido a que el CNMC solo toma en cuenta datos de las principales empresas de telecomunicaciones. Aún con estas discrepancias en cuanto a números, lo que esta claro es que el mercado de los datos no para de crecer año tras año y cada vez resulta más difícil separar la información relevante del ruido, evitando la "infoxicación" o sobrecarga informativa (Cornella, 2000). En este escenario, tecnologías como la computación en la nube e inteligencia artificial pueden ser claves para encontrar los patrones o llegar a conclusiones.

Mencionar también brevemente que los "datos" no suelen aparecer en formatos consistentes, y para este trabajo se han tratado diferentes formatos: CSV, JSON, bases de datos diversas, excel, APIs, etc. (Khan y Alam, 2019). Esto es así porque queríamos que las fuentes de datos fueran heterogéneas y no excluir datos por que su extracción o tratamiento fueran complejos, ya que este es el caso para la mayoría de aplicaciones en el mundo real. Esto se explicara más en detalle en el apartado de Materiales y métodos 3

2.1.1. Obtención de datos públicos

Lo primero para la realización de este proyecto, es la obtención de datos públicos, o datos abiertos [D 4]. Esto presenta tres grandes complicaciones a tener en cuenta:

La primera es que **no todos los datos que deberían ser públicos lo son**, y cuando lo son, su acceso y tratamiento es complicado, ya sea a conciencia o por indolencia. Según la OECD (OECD, 2023), sólo el 48 % de los conjuntos de datos de gran valor están disponibles como datos abiertos en los países estudiados, datos que bajan al 30 % cuando se trata de datos financieros. y estudios de otras partes del mundo también avalan esta reticencia a la

2.1. Datos 7

correcta apertura de información publica (Soledad De la Torre, 2023), (Jorge y Herrera, 2023).

La segunda causa es la regulación, el tratamiento de datos en Europa debe seguir la RGPD de 2016 y las regulaciones propias de cada estado (Ramos-Simón, 2017) & (Union Europea, 2016), así como la más reciente Ley de Gobernanza de Datos (Union Europea, 2023) & (Julián Valero Torrijos, 2022). Para cumplir con estas normativas, en este proyecto nos centraremos en el uso de datos oficiales abiertos, evitando técnicas como el "scraping" que pueden estar sujetas a controversia a la vista de estas regulaciones. También se verificarán las licencias de todos los datos y modelos utilizados para asegurarnos de que no incumplimos ninguna de las regulaciones existentes.

En cuanto a datos de otros países fuera de la Unión Europea, tenemos panoramas diversos los cuales vale la pena mencionar, desde una regulación más laxa en Estados Unidos, hasta un control estricto en países como China. Estos datos no se utilizaran en este trabajo por temas de alcance, ya que se prefiere dar prioridad a fuentes de datos nacionales, pero las herramientas desarrolladas serian aplicables a estos mismos datos cumpliendo sus normativas.

En Estados Unidos, el panorama es sobretodo abierto, pero fragmentado. Cuentan con regulaciones sectoriales, como la "Health Insurance Portability and Accountability Act" (HIPAA) para datos médicos (Congreso de los Estados Unidos de America, 1996) y regulaciones estatales como la "California Consumer Privacy Act" (CCPA) (Estado de California, 2018) para proteger derechos individuales. También existe una legislación nacional que promueve los datos abiertos, la "OPEN Government Data Act" (2019) (Congreso de los Estados Unidos de America, 2019), que establece que los datos gubernamentales deben ser abiertos y utilizables.

Por su parte, China ha establecido un marco regulatorio estricto con leyes como la "Personal Information Protection Law" (PIPL) (Standing Committee of the National People's Congress, 2021b), que habla de principios de consentimiento y derechos del individuo, y la "Data Security Law" (DSL) (Standing Committee of the National People's Congress, 2021a), que prioriza la seguridad nacional y el control sobre los datos generados en el país.

Por ultimo, la tercera causa es la tecnología, como ya hemos hablado, los datos pueden estar en formatos diferentes, y la cantidad de herramientas para su tratamiento va en aumento, y hay que tener en cuenta también la integración, el procesamiento escalable a la cantidad de datos en aumento y el gobierno de los flujos de datos y modelos en un entorno "cloud" que está en evolución constante. Por ello, en este trabajo se ha optado por emplear herramientas ampliamente extendidas, soportadas, y principalmente abiertas, así como intentar hacer del conjunto de ellas lo más amplio posible, para

estudiar y comparar un amplio abanico de soluciones.

2.1.2. Trabajos anteriores

A parte de todas las referencias ya incluidas en esta sección, nos gustaría destacar todo el trabajo de Jaime Gómez-Obregón para liberar y hacer accesibles los datos de España (Gómez-Obregón, 2025a), con acciones como publicar las subvenciones a las empresas en España a través del portal ministerial y hacerlas accesibles (Gómez-Obregón, 2025c), o estudios sobre donaciones sospechosas de corrupción (Gómez-Obregón, 2025b). Todo este trabajo ha guiado también a este proyecto hacia un uso ético de los datos.

Sobre "Big data" y datos públicos, han surgido trabajos en España desde sus inicios (Ferrer-Sapena A., 2011) [D 2] desde diversos campos como las Ciencias de la Información, y uno de los más completos que he podido encontrar en nuestro territorio es (Herrera Capriz, 2024), un reciente y extenso trabajo sobre los datos abiertos en España donde, partiendo de una extensa experiencia en la administración pública, la autora busca combinar dos campos con demandas complementarias bajo el marco teórico de la "Teoría de la Ventana" [D 6] y estudios anteriores de valor público (Meynhardt, 2009):

- Los Estudios de **Valor Público** [D 3]: Carecen de una extensa evidencia empírica sólida.
- La transparencia y los Datos Abiertos [D 4]: Carecen de medición del valor final que generan para los ciudadanos.

La autora trata de medir el valor real que la transparencia y los datos abiertos generan para los ciudadanos, más allá de su mera publicación. Para ello propone un marco metodológico que permite cuantificar el valor de los datos abiertos a través de la percepción de los usuarios. Este enfoque consigue identificar que las dimensiones utilitaria y hedonista (relacionadas con la funcionalidad y la experiencia de usuario) reciben puntuaciones altas, mientras que las dimensiones político-social y moral-ética (relacionadas con la generación de comunidad, equidad y trato justo) lastran el valor potencial, y detectando también que determinantes clave como la frecuencia de uso y el tipo de datos (geoespacial, movilidad, turismo) son factores condicionantes para maximizar el valor.

Destaco la gran labor de investigación sobre datos abiertos del trabajo, que ha sido clave como base para la realización de este mismo proyecto y la utilidad de los resultados, que influenciara en la utilización de los datos públicos de este proyecto.

En cuanto a trabajos más práctico-tecnológicos, hay muchos de ellos donde destacar, la Unión Europea en sus estudios de casos de uso sobre datos 2.1. Datos 9

públicos, tiene más de 600 casos estudiados, 150 con impacto significativo, 30 participaron en el estudio del volumen 1 (Giulia Carsaniga, 2022) y finalmente 13 en el volumen dos del mismo (Nijssen, 2022), de los cuales nos gustaría destacar 3 españoles y uno Francés:

- UniversiDATA: Un portal que integra seis universidades españolas para el análisis avanzado y dinámico de datos abiertos con el objetivo de crear resultados interactivos y en tiempo real, facilitando el uso compartido de recursos y mejorando la comprensión de datos abiertos (UniversiDATA, 2025). El equipo también fomentaba el uso de sus datos con diferentes análisis propios (UniversiDATA, 2020) o el lanzamiento de eventos centrados en datos (o "Datathones" [D 7] (UniversiDATA, 2024) de los cuales hablaremos a continuación). También resuelven dudas de usuarios e investigadores en los conjuntos de datos o análisis a través de comentarios, fomentando aún más la comprensión de los datos
- Tangible Data: Transforma datos espaciales digitales en esculturas físicas accesibles.
- Planttes: Aplicación que informa sobre la floración de plantas y su impacto en las alergias al polen, combinando datos abiertos con aportaciones de usuarios, fomentando la concienciación, información y educación sobre alergias (Concepción De Linares, 2025b).
- Planttes: Aplicación que informa sobre la floración de plantas y su impacto en las alergias al polen, combinando datos abiertos con aportaciones de usuarios, fomentando la concienciación, información y educación sobre alergias (Concepción De Linares, 2025b).
- Open Food Facts: Aplicación que informa sobre detalles de productos de supermercado, queriendo nombrarla por la enorme cantidad de datos que ha conseguido recopilar de usuarios de todo el mundo y lo intuitiva que es a la hora de usar toda esta cantidad de datos (más de 1 millón de productos). (Concepción De Linares, 2025a).

Como ya hemos comentado otra fuente importante de proyectos relacionados con datos serian los "Datathones" [D 7], de los cuales pueden salir decenas de proyectos relacionados con datos abiertos en muy poco tiempo y que seria inabarcable mencionar este proyecto debido a los más de 20 Datathones diferentes encontrados y los múltiples proyectos que hay en cada uno, pero si que nos gustaría mencionar iniciativas como la del gobierno de España (Gobierno de España, 2025b) y (Gobierno de España, 2025a) con más de 40 eventos sobre datos a fecha de publicación de este trabajo.

Por ultimo, también mencionaremos trabajos académicos de compañeros que han implementado soluciones con datos públicos, que aunque son algo anti-

guos, siguen aportando valor:

- "Auditoría y metodología de implantación de open data para smart cities" (Melendrez Moreto, 2016): Donde el autor hace un análisis extensivo de los datos abiertos, de los indices y métricas para evaluar el valor de estos datos y de herramientas como "CKAN" para la gestión de los datos. Audita diversas fuentes de datos nacionales dejando todas dentro del umbral de datos abiertos según AENOR.
- "Uso de geolocalización y de fuentes de datos abiertas para la creación de servicios turísticos por la ciudad de Madrid" (LLamocca Portela, 2016): El cual utiliza datos abiertos de geolocalización en Madrid para buscar sitios cercanos en una app móvil.
- "Integración y visualización de datos abiertos medioambientales" (Arellano Bruno, 2019): También hace un análisis extensivo de los datos abiertos, de las definiciones para evaluar estos datos y de herramientas como "CKAN". Además, comenta iniciativas de limpieza de datos interesantes como "Data Tamer" o "Data Wrangler". Finalmente, crea una aplicación para el uso de datos medioambientales en tiempo real.

2.1.3. Conjuntos de datos

habiendo revisado toda la documentación posible, y volviendo a recalcar la prioridad de este proyecto en conjuntos de datos cercanos, quisiera resaltar algunos de los conjuntos encontrados:

A nivel institucional, Europa tiene su propio portal para acceder a datos públicos (Union Europea, 2025), y a nivel nacional, el Instituto Nacional de Estadística (INE) y la Agencia Tributaria han sido actores clave en la liberación de datos abiertos y el fomento de su reutilización para la investigación e innovación, impulsando proyectos como el Portal de Transparencia del Gobierno de España y las iniciativas de datos abiertos de comunidades autónomas y ayuntamientos (Gobierno de España, 2025c); (Ayuntamiento de Madrid, 2025) & (Registradores de España, 2025), los cual se esfuerzan por hacer públicos datos de alto valor [D 1]. También destacar iniciativas que fomentan su transparencia, como InfoParticipa (Universitat Autònoma de Barcelona, 2025) o iniciativas privadas para la recolección de datos públicos (Esri España, 2025). Por ultimo, también añadir a la interminable lista de datos públicos disponibles iniciativas individuales como "Awesome public datasets" (Awesome data, 2025) que se dedica a recopilar fuentes de datos fiables (aunque en este caso principalmente de Estados Unidos), o iniciativas ya mencionadas como UniversiDATA (UniversiDATA, 2025).

2.2. Nubes 11

Todos estos portales y aplicaciones son de gran importancia y constituyen la base material sobre la que se sustentan trabajos como el presente. Los conjuntos de datos escogidos se detallan en el apartado 3.2 Datos.

2.1.4. Gobierno de los datos

Por ultimo, y teniendo claro todo explicado sobre los datos, destacaremos la importancia de la gobernanza [D 8] de los mismos como uno de los desafíos fundamentales al manejarlos (Theodorakopoulos Leonidas, 2024). En el marco europeo llevamos años promulgando mecanismos para aumentar la confianza para un mayor y mejor intercambio de datos (European Parliament, 2022). El reglamento tres vías principales: la reutilización segura de datos protegidos del sector público, la intermediación neutral de datos y la cesión altruista de datos para el interés general. Estos mecanismos operativos materializan los principios de la gobernanza: calidad, seguridad, interoperabilidad y confianza.

Para la gestión de datos en este proyecto, adoptaremos un marco de gobernanza de datos basado en el modelo de tres capas propuesto por la OCDE (Estratégica, Táctica y Operativa) (OECD, 2019), integrado con el resto de normativas europeas vigentes, (como "Data Governance Act" (European Parliament, 2022) o el Reglamento General de Protección de Datos (Union Europea, 2016)). La aplicación de este marco se articulara en el capitulo 3.1.2.

2.2. Nubes

La capacidad real de extraer valor de los volúmenes masivos de datos abiertos detallados en la sección anterior está intrínsecamente ligada a la disponibilidad de recursos computacionales potentes, escalables y económicamente accesibles. Y aunque se lleva años hablando de soluciones como las nubes distribuidas [D 9], el paradigma de la computación en la nube gestionada (o publica, que no abierta) (cloud computing), con planeas gratuitos, es muy relevante para democratizar este acceso, permitiendo a investigadores, startups e instituciones públicas superar las limitaciones del hardware local.

Estas nubes gestionadas nos proporcionan unidades de procesamiento gráfico (GPUs) y tensorial (TPUs) bajo demanda, además de un ecosistema completo de servicios gestionados diseñados específicamente para el ciclo de vida completo de los datos y la IA, con la seguridad propia de estas soluciones. Para este trabajo se ha optado por esta solución, ya las fuentes de datos a tratar se han seleccionado para evitar datos sensibles. Otra opción posible sería la nube híbrida, , que combina el control de una infraestructura privada ("On premise") con la escalabilidad y economía de la nube pública. Esto es

ideal para cargas con datos sensibles, pero complicaría en enfoque de este proyecto. Para ayudarnos mejor a valorar todas las opciones, vamos a listar la oferta gratuita de algunas de las nubes estudiadas (Microsoft, a), (Lisdorf, 2021).

En el panorama nacional, Eurostat muestra que el 35.8 % de las empresas españolas usaban tecnologías cloud en 2024, tendencia que va en aumento (pronosticando un 17 % más para los próximos años: Market report analytics), pero que se encuentra por debajo en comparación con Europa, donde se usa en más del 45 % de las empresas (Eurostat). de cara al futuro, mientras la estrategia europea el edge computing frente a la cloud privada para ganar autonomía tecnológica y soberanía de datos (European Commission, a), el enfoque del Plan de Digitalización español (Gobierno de España, 2021b) no se aleja de la nube pública, sino que aboga por un modelo híbrido soberano usando NubeSARA (plataforma híbrida que, por sus precios (Eurostat), e información encontrada (Gobierno de España), (PreparaTIC) no vamos a utilizar en este estudio).

También hay alternativas para usar cloud en el territorio europeo y español, como pueden ser (clouding.io), (GmbH) o (Gigas), en las cuales se podría desplegar maquinas virtuales para la ejecución de modelos y tratamiento de datos, pero que al no tener infraestructura especializada en Inteligencia artificial y carecer en su mayoría de capa gratuita, se han excluido del estudio. También seria interesante utilizar herramientas europeas como BDTI (European Commission, b), (Gobierno de España, 2021a) la cual brinda infraestructura gratuita, pero solo a petición de organismos públicos para proyectos como este, o SIMPL (European Commission, c), un framework tecnológico, un middleware para construir sobre diferentes proveedores cloud y edge. Teléfonica Tech también vende una especie de nube pública basada en VMware, pero principalmente son servicios gestionados multi-cloud (Telefónica). Por ultimo, nombrar dos herramientas europeas que si pueden resultar utiles, y que analizaremos en la próxima sección, "OVHcloud" (proveedor de cloud francés) y "OpenNebula" (plataforma española open-source para gestionar clouds).

2.2.1. Principales Proveedores de Nube y sus Capas Gratuitas

A continuación detallaremos las pruebas gratuitas de los principales proveedores de servicios en la nube, información crucial para la selección tecnológica de este proyecto. (R.I.Pienaar, 2025).

2.2. Nubes 13

Google Cloud Platform

Ecosistema de servicios en la nube Google con infraestructura escalable, herramientas de análisis y soluciones de inteligencia artificial gestionadas que cubre todo el ciclo de vida de los datos y aplicaciones. A parte de las aplicaciones listadas y muchas mas que se pueden encontrar en su Lista completa: https://cloud.google.com/free, Google también ofrece 300€ para exceder estos limites los primeros 3 meses de prueba, lo cual puede ayudar enormemente a proyectos de tamaño medio.

Servicios específicos:

- **App Engine**: 28 horas/día de ejecución "frontend", 9 horas/día de ejecución "backend".
- Cloud Firestore: 1GB almacenamiento, 50.000 lecturas, 20.000 escrituras, 20.000 borrados por día.
- Compute Engine: 1 e2-micro no susceptible de interrupción, 30GB disco duro, 5GB de instantáneas, con regiones restringidas.
- Cloud Storage: 5GB, 1GB de tráfico de salida de red.
- Cloud Shell: Terminal Linux basado en web con 5GB de almacenamiento persistente. Límite de 60 horas/semana.
- Cloud Pub/Sub: 10GB de mensajes por mes.
- Cloud Functions: 2 millones de invocaciones por mes.
- Cloud Run: 2M de peticiones por mes, 360.000 GB/segundos de memoria, 180.000 segundos de CPU virtual.
- Google Kubernetes Engine: Sin tarifa de gestión de clústeres para un clúster zonal.
- BigQuery: 1 TB de consultas por mes, 10 GB de almacenamiento.
- Cloud Build: 120 minutos de construcción por día.
- Cloud Source Repositories: Hasta 5 usuarios, 50 GB de almacenamiento, 50 GB de tráfico de salida.
- Google Colab: Entorno gratuito de desarrollo con "Jupyter Notebooks".

Amazon Web Services

Plataforma de cloud computing más usada a nivel empresarial, con una enorme cantidad de servicios, desde cómputo básico hasta servicios de IA, ma-

chine learning, IoT, etc. Tiene una capa gratuita de 12 meses, aquí se puede consultar la Lista completa de servicios: https://aws.amazon.com/free/

Servicios específicos:

- CloudFront: 1TB de tráfico de salida por mes y 2M invocaciones de funciones.
- CloudWatch: 10 métricas personalizadas y 10 alarmas.
- CodeBuild: 100min de tiempo de ejecución por mes.
- CodeCommit: 5 usuarios activos, 50GB almacenamiento, 10000 peticiones por mes.
- CodePipeline: 1 pipeline activo por mes.
- DynamoDB: 25GB base de datos NoSQL.
- EC2: 750 horas/mes de t2.micro o t3.micro, 12 meses.
- EBS: 30GB por mes de SSD propósito general o magnético, 12 meses.
- Elastic Load Balancing: 750 horas por mes, 12 meses.
- **RDS**: 750 horas/mes de db.t2.micro, 20GB almacenamiento SSD, 12 meses.
- **S3**: 5GB almacenamiento estándar, 20K peticiones Get, 2K peticiones Put, 12 meses.
- Glacier: 10GB almacenamiento a largo plazo.
- Lambda: 1 millón de peticiones por mes.
- SNS: 1 millón de publicaciones por mes.
- SES: 3.000 mensajes por mes, 12 meses.
- SQS: 1 millón de peticiones de colas de mensajería.

Microsoft Azure

Ecosistema cloud de Microsoft, muy integrado con todas sus herramientas empresariales y de desarrollo, como la suite de DevOps, copilot y más soluciones de IA, enfoque en el lenguaje .NET. También tiene una capa gratuita de 12 meses, Aquí se puede consultar la Lista completa de servicios: https://azure.microsoft.com/free/

Servicios específicos:

• Virtual Machines: 1 B1S Linux VM, 1 B1S Windows VM, 12 meses.

2.2. Nubes 15

■ **App Service**: 10 aplicaciones web, móviles o de API, con 60 minutos CPU/día.

- Functions: 1 millón de peticiones por mes.
- DevTest Labs: Entornos de desarrollo y pruebas.
- Active Directory: 500.000 objetos.
- Azure DevOps: 5 usuarios activos, repositorios Git privados ilimitados.
- Azure Pipelines: 10 trabajos paralelos con minutos ilimitados para código abierto.
- Microsoft IoT Hub: 8.000 mensajes por día.
- Load Balancer: 1 IP pública con balanceo de carga gratuita.
- Notification Hubs: 1 millón de notificaciones "push".
- Ancho de banda: 15GB de entrada y 5GB de salida por mes, 12 meses.
- Cosmos DB: 25GB almacenamiento y 1000 unidades de solicitud de rendimiento
- Static Web Apps: Aplicaciones estáticas con SSL, autenticación y dominios personalizados
- Storage: 5GB almacenamiento de archivos o "blobs" con redundancia local, 12 meses.
- Cognitive Services: APIs de IA/ML con transacciones limitadas.
- Cognitive Search: Búsqueda basada en IA, para 10.000 documentos.
- Azure Kubernetes Service: Servicio Kubernetes gestionado, gestión de clústeres.
- Event Grid: 100K operaciones/mes.

Oracle Cloud

Nube especializada en bases de datos de alto rendimiento (Oracle Database), aplicaciones Java, y soluciones de analytics. Ofrece una capa gratuitia con recursos que no expiran, aquí se puede consultar la **Lista completa** de servicios: https://www.oracle.com/cloud/free/

Servicios específicos:

- Compute: 2 máquinas virtuales AMD con 1/8 OCPU y 1 GB memoria cada una.
- Block Volume: 2 volúmenes, 200 GB total para computación.
- Object Storage: 10 GB.
- Load Balancer: 1 instancia con 10 Mbps.
- Databases: 2 bases de datos, 20 GB cada una.
- Monitoring: 500 millones de puntos de ingesta de datos, 1 millardo de recuperación.
- Ancho de banda: 10 TB de tráfico de salida por mes, velocidad limitada a 50 Mbps.
- IP Pública: 2 IPv4 para máquinas virtuales, 1 IPv4 para balanceador de carga.
- Notifications: 1 millón de opciones de entrega por mes, 1000 emails enviados por mes.

IBM Cloud

Plataforma centrada en la transformación digital de grandes empresas con necesidades híbridas y multicloud, aunque también con una capa gratuita. Se puede consultar la **Lista completa** de servicios aquí: https://www.ibm.com/cloud/free/

Servicios específicos:

- Cloudant database: 1 GB de almacenamiento de datos.
- **Db2** database: 100MB de almacenamiento de datos.
- **API Connect**: 50.000 llamadas API por mes.
- Availability Monitoring: 3 millones de puntos de datos por mes.
- Log Analysis: 500MB de registros diarios.

Cloudflare

Plataforma especializada en rendimiento web, seguridad y confiabilidad. Aunque no es una nube generalista, sino más bien una red global que acelera y protege sitios web, APIs y aplicaciones mediante su CDN, DNS, servicios de seguridad, etc. De todas formas tambien tiene capa gratuita, la Lista completa se encuentra en: https://www.cloudflare.com/plans/free/

2.2. Nubes 17

■ **Application Services**: DNS, Protección DDoS, CDN con SSL, Firewall de aplicaciones web.

- Zero Trust & SASE: Hasta 50 usuarios, 24 horas de registro de actividad.
- Cloudflare Tunnel: Exponer puertos HTTP locales a través de túnel.
- Workers: Desplegar código sin servidor 100k peticiones diarias.
- Workers KV: 100k lecturas diarias, 1000 escrituras diarias, 1 GB datos almacenados.
- **R2**: 10 GB por mes, 1 millón operaciones por mes.
- **D1**: 5 millones de filas leídas por día, 100k filas escritas por día, 1 GB almacenamiento.
- Pages: Desplegar aplicaciones web 500 despliegues mensuales, 100 dominios personalizados.
- Queues: 1 millón de operaciones por mes.
- TURN: 1TB de tráfico saliente por mes.

OVHcloud

Proveedor de cloud francés con un fuerte compromiso con la soberanía de los datos y el RGPD. Ofrece una gama completa de servicios de infraestructura (IaaS) y plataforma (PaaS) desde sus centros de datos. Ofreces 200€ en creditos para probar el servicio durante un mes, aunque tiene una Lista completa de servicios: https://www.ovhcloud.com/en/public-cloud/prices/, los disponibles en el plan gratuito son los siguientes (OVHCloud):

- Despliegue de un e-commerce: con 2 servidores B2-7, 1 base de datos MySQL, 1 IP adicional, 1 Balanceador de Carga y 10 GB de Almacenamiento de Objetos.
- Prueba de Kubernetes y escalado: 3 servidores B2-15 durante 1 mes y 12 horas de picos de tráfico en 10 servidores C2-30.
- Desarrollo y Entrenamiento de IA: 1 TB de Almacenamiento de Objetos, 35 horas de IA Notebook (AI1-1-GPU) y 5 horas de entrenamiento de IA en 4 nodos AI1-1-GPU.

2.2.2. Otras herramientas útiles

También, aunque no son nubes propiamente dichas, hemos querido añadir en esta sección otras herramientas que tienen interés para el proyecto:

Hugging Face Spaces

■ **Tipo**: Plataforma para desplegar, compartir y descubrir modelos de Aprendizaje Automático (MLOps). Esencial para proyectos de IA. Permite desplegar demostraciones de modelos con interfaz web de forma sencilla.

• Capa Gratuita - CPU:

- 2 CPUs virtuales por espacio.
- 16 GB de RAM.
- Espacio de almacenamiento: 50 GB (para modelos, datos y código).
- Ancho de banda: 100 MB/hora para CPUs.
- Apagado automático: Los espacios se suspenden tras 48 horas de inactividad para ahorrar recursos, reactivándose con la siguiente visita.

■ Capa Gratuita - GPU (T4):

- Acceso a una GPU NVIDIA T4 por espacio.
- 16 GB de RAM.
- Espacio de almacenamiento: 50 GB.
- Ancho de banda: 30 MB/hora para GPUs.
- Uso: Hasta 30 horas de uso de GPU por mes, pero sujeto a disponibilidad.
- **Apagado automático**: Las GPU se apagan automáticamente tras 1 hora de inactividad.
- Enfoque: Despliegue, demostración y compartición de modelos de IA. Integración nativa con el Hub de modelos y conjuntos de datos.
- URL: https://huggingface.co/spaces

2.2. Nubes 19

Kaggle Kernels/Notebooks

■ **Tipo**: Entorno de ejecución para cuadernos "Jupyter" en la nube. Proporciona acceso gratuito a aceleradores hardware de gama alta, eliminando la barrera de entrada para entrenar modelos complejos.

- Capa Gratuita Sesiones de Ejecución:
 - GPU (NVIDIA Tesla P100): Hasta 30 horas por semana (4.3h/día aprox.).
 - TPU (v3): Hasta 20 horas por semana (2.8h/día aprox.).
 - **CPU**: 20 horas de tiempo total por semana, sin límite de sesiones concurrentes.
- Límites por Sesión:
 - **Tiempo máximo de ejecución**: 12 horas por sesión. Tras este tiempo, el kernel se detiene automáticamente.
 - Internet: Los cuadernos deben tener la opción de Internet activada manualmente para acceder a datos externos o instalar librerías.
 - Almacenamiento Volátil: 20 GB de espacio temporal de disco. Los datos no persisten entre sesiones, aunque se puede usar el sistema de conjuntos de datos de Kaggle para almacenamiento persistente.
- Enfoque: Análisis exploratorio de datos, competiciones de ML y, crucialmente, entrenamiento de modelos que requieran GPU/TPU.
- URL: https://www.kaggle.com/code

Open Data Editor

Herramienta de código abierto https://okfn.org/en/projects/open-data-editor/diseñada para la gestión y publicación de datos abiertos. Desarrollada por la "Open Knowledge Foundation", facilita la creación, validación y limpieza de conjuntos de datos en formatos abiertos, con un enfoque en la usabilidad para usuarios no técnicos, para garantizar la calidad y accesibilidad de los datos públicos. Funcionalidades clave:

- Creación y edición tabular de datos.
- Validación de esquemas y meta datos.
- Integración con plataformas de datos abiertos (CKAN, S3, etc.).
- Exportación a formatos estandarizados (CSV, JSON, XLSX).

Nubes descentralizadas

Herramientas como (Golem Network), (Akash) ó (Render Network) podrían ser útiles en proyectos con exceso de potencia de computación, ya que se podría alquilar esta a cambio de tokens que mas tarde se podría usar para las tareas intensivas cuando fuera necesario [D 9].

2.2.3. Trabajos anteriores

La literatura referente a la computación en la nube es muy extensa, a aprte de toda la literatura ya citada hasta ahora, citare algunos ejemplos mas, como el libro "Cloud Computing Technology" (Huawei Technologies Co., Ltd., 2023), aunque su traducción al ingles no es excelente, agrupa todos los conceptos de el panorama cloud actual, así como los elementos que todas las nubes comparten entre si, y da un panorama de la situación cloud en china, lo cual amplia los horizontes del conocimiento cloud. También el trabajo de (Nigro, 2022), que estudia las oportunidades, desafíos y antecedentes de la computación en la nube, o el trabajo de (Bommala et al., 2024), que tiene un enfoque muy interesante, denominando al ecosistema "cloud verse" y enfocándose en las innovaciones de los últimos años (infraestructuras de nube híbrida, modelos de computación sin servidor o "serverless", "edge computing", integración de IA, etc.) con un interesante enfoque en seguridad y cumplimiento de normativas, la integración de "blockchain" y el énfasis en la computación en la nube "verdez sostenible.

También querría destacar trabajos de compañeros como "Optimización de infraestructuras de Cloud Computing basadas en máquinas virtuales" (Sánchez de Paz, 2023), el cual hace una excelente labor de investigación de todo lo relacionado con la computación en la nube para predecir el consumo futuro de recursos en máquinas virtuales de Azure (con sus datos públicos), y así mejorar la eficiencia y la gestión de la infraestructura.

2.3. Inteligencia Artificial

[TODO]

El mencionado edge computing es A.2 es especialmente importante en el uso de aplicaciones de IA,

Tener en cuenta también la nueva normativa que la Unión Europea ha establecido con el Reglamento de Inteligencia Artificial (Union Europea, 2024), el cual se ha tenido de base para el uso de IA en este proyecto, intentando aplicar buenas practicas al uso de las mismas, así como documentar las fuentes de datos, métodos de anonimización y posibles sesgos.

2.3.1. Trabajos anteriores

Materiales y métodos

[TODO, importante a tener en cuenta: - detallarse cada paso que se ha dado para llegar a los resultados describiendo, en orden lógico y expresado con claridad, los materiales y recursos empleados. - No avanzar resultados y redactarse en pasado

1

En este capítulo vamos a describir el proceso que se ha seguido en la realización del trabajo, las distintas tecnologías, lenguajes de programación, conjuntos de datos y herramientas, incluso algunos de los valorados pero descartados. También se definirán los métodos de desarrollo y modelo de trabajo.

3.1. Metodos

Para llegar a nuestro objetivo de diseño, hemos dividido la implementación en diferentes módulos:

- búsqueda y almacenamiento de datos.
- Tratamiento básico de los datos.
- Estudio con modelos de IA en diferentes nubes
- Comparación y estudio de resultados.

3.1.1. Utilización de la solución

3.1.2. Aplicación de la gobernanza de datos como método

Como ya hemos definido en la sección 2.1.4, La gobernanza de datos en este proyecto se implementará adoptando este modelo de tres capas (Estratégica, Táctica y Operativa o de entrega). El objetivo es garantizar que el proceso de análisis, adquisición y almacenamiento de datos públicos y la obtención de valor mediante IA, se realice de forma ética, segura, y en pleno cumplimiento del marco regulatorio actual. En cuanto a las tres capas, aunque cobran mayor importancia en proyectos grandes con múltiples equipos y no en trabajos de una sola persona, si que me gustaría adaptarlas a mi trabajo por la estructura metodológica que proponen y la utilidad en cuanto a la gestión de datos y procesos:

1. Capa Estratégica: Liderazgo y Visión

En esta capa se definen los objetivos generales y principios de la gobernanza de datos en el proyecto.

- Visión: Convertir los datos abiertos en generadores de conocimiento mediante técnicas de inteligencia artificial y tecnologías cloud.
- Seguridad y soberanía: Aunque se utilizarán servicios de nubes públicas por su acceso gratuito, capas de seguridad y capacidades en IA, se configurarán para operar preferentemente dentro de la UE.
- Transparencia y reproducibilidad: Todo el proceso (origen de datos, transformaciones, código, y resultados de modelos) se documentará en este mismo documento para garantizar la transparencia y la posibilidad de auditar o reproducir el análisis.

2. Capa Táctica: Capacidades de Implementación y Marco Normativo

Esta capa detalla cómo se implementará la estrategia a través de políticas, procesos. directrices, etc:

■ Uso del dato: Se priorizarán datos públicos abiertos de administraciones españolas y de la Unión Europea, prestando especial atención a las licencias para asegurar la legalidad de su reutilización y evitando el uso de datos sensibles. Respecto a datos sensibles se aplicará un principio de precaución: cualquier conjunto de datos con riesgo de contener información sensible será filtrado, descartado o anonimizado.

3.1. Metodos 25

Gestión de accesos y credenciales: Como único usuario, se gestionarán las credenciales de acceso a los servicios cloud con el máximo nivel de seguridad, evitando su filtración a repositorios públicos o terceros.

- Competencias y coordinación: Todas las funciones son asumidas por un único investigador, esto centraliza la toma de decisiones y facilita el cumplimiento normativo y la trazabilidad de todo el proceso. De todas formas se utilizaran herramientas como "Git" o "Trello" para auto-organizarse.
- Selección de proveedores y servicios: Para la selección de plataformas cloud se evaluara la capacidad para proporcionar entornos de procesamiento seguro y la localización de sus centros de datos para asegurar el cumplimiento normativo. En cuanto a la IA, también se revisaran sesgos en los datos de entrenamiento.

3. Capa Operativa: Infraestructura, Integración del Ciclo de Valor y Arquitectura

Esta ultima capa, corresponde a la implementación práctica de la estrategia, la gestión diaria del ciclo de valor de los datos para integrarlo con la infraestructura técnica.

- Infraestructura: Se emplearán servicios en la nube principalmente para el almacenamiento, procesamiento y análisis de los datos. Los entornos estarán configurados con mecanismos de seguridad estándar. También se usaran dispositivos on-premise (computador personal) para la ingesta de datos y posterior almacenamiento en cloud cuando esto facilite el proceso.
- Arquitectura de datos y ciclo de valor: Se diseñará un flujo simple de trabajo centrado en cloud y basado en la ingesta de datos abiertos de fuentes oficiales que cubra todo el ciclo de vida del dato:
 - Adquisición: Descarga de conjuntos de datos abiertos, registrando metadatos sobre origen, licencia, calidad, formato y condiciones de uso.
 - Almacenamiento y gestión: Organización en buckets con estructura clara siguiendo la arquitectura de medalla [D 11]. Este enfoque facilita la exploración, el modelado y la generación de valor con herramientas nativas como BigQuery.
 - Procesamiento y transformación: Limpieza, anonimización y feature engineering en entornos gestionados como Dataflow o Ver-

tex AI Workbench. Se mantendrá un registro de los experimentos realizados (hipótesis, parámetros, versiones de modelos) para asegurar reproducibilidad y transparencia.

- Uso/compartición: uso de diversas técnicas de IA para la identificación de patrones en los datos, incluyendo encoders para la representación eficiente de datos complejos, algoritmos de k-Nearest Neighbors (k-NN) para clasificación o regresión basados en similitud, o incluso la aplicación de modelos de IA generativa para explorar la estructura subyacente de los datos o aportar perspectivas. Publicación de resultados bajo licencias abiertas, priorizando la transparencia.
- Optimización y sostenibilidad: Se monitorizará el uso de recursos en las diferentes nubes para mantener el proyecto dentro del coste cero, también se optimizaran las configuraciones de los servicios para asegurar la eficiencia tanto económica como ecológica del proyecto.

3.2. Datos

[TODO] https://docta.ucm.es/rest/api/core/bitstreams/814f787a-82d4-45cf-9030-bb9d2b3600de/content?authentication-token=eyJhbGciOiJIUzI1NiJ9.eyJlaWQiOiI3YTI41 seccion2.3 to 2.5

3.3. Materiales

[TODO, herramientas, programas y material utilizado, incluyendo por ejemplo los tipos de IA]

3.3.1. Lenguajes

PYTHON

Python es un lenguaje de programación interpretado y centrado en la legibilidad de su código. Se trata de un lenguaje de programación multiparadigma, ya que soporta parcialmente la orientación a objetos, programación imperativa y, en menor medida, programación funcional. [TODO] uso en ia]

3.3. Materiales 27

\mathbf{SQL}

SQL es un lenguaje de dominio específico utilizado en programación, diseñado para administrar, y recuperar información de sistemas de gestión de bases de datos relacionales. Es un sistema que facilita el tratamiento de datos, así como la separación de estos datos del programa principal, permitiendo tener más modularidad. Utilizamos SQL para almacenar información, así como para extraer esta misma información, tratarla y almacenarla ya tratada en la base de datos.

LATEX

LATEX es un sistema de composición tipográfica de alta calidad que incluye funcionalidades diseñadas para la producción de documentación técnica y científica. Es el estándar de facto para la comunicación y publicación de documentos científicos, el cual nos ha permitido desarrollar una memoria profesional y facilitar el diseño sin tener que preocuparnos por la forma cada vez que añadíamos cambios. Hemos usado LATEX para desarrollar este documento en la aplicación de TeXstudio y el compilador MikteX.

3.3.1.1. Lenguajes descartados

[TODO]

3.3.2. Herramientas

Visual Studio Code

Visual Studio Code es un editor de código fuente desarrollado por Microsoft para Windows, Linux y MacOS. Incluye soporte para la depuración, control integrado de GIT, resaltado de sintaxis, finalización inteligente de código, fragmentos y refactorización de código entre muchas otras funciones.

Utilizamos Visual Studio Code como entorno de desarrollo software por la gran comunidad que tiene detrás, la cual mantiene extensiones y tutoriales al día, lo que nos facilita mucho la programación y la integración con otras aplicaciones. También destacar su intérprete, para probar pequeños fragmentos de código, lo cual nos ha ahorrado tiempo en depuración de errores.

Github

GitHub es una plataforma para alojar proyectos utilizando el sistema de control de versiones GIT, que se utiliza principalmente para la creación, almacenamiento y control de código fuente.

[TODO]

TeXstudio y MiKTeX

TeXstudio es un editor de LATEX de código abierto y Multiplataforma con una interfaz amigable, es un IDE que proporciona un soporte moderno de escritura, como la corrección ortográfica interactiva, plegado de código y resaltado de sintaxis, por lo que se ha considerado ideal para la elaboración de este documento. Mientras que MiKTeX es el gestor de paquetes integrado, que instala los paquetes que hacen falta para el correcto funcionamiento de TeXstudio y para la compilación y estructuración de este documento.

3.3.3. Herramientas descartadas

[TODO]

Resultados

[TODO, importante a tener en cuenta: Aquí se recogen los nuevos conocimientos que el proyecto aporta al conocimiento científico, redactarse en pasado. utilizando recursos gráficos.]

Manual de usuario y casos de uso

Conclusiones y Trabajo Futuro

[TODO, importante a tener en cuenta: Señalar los principios y relaciones que indican los resultados (qué es lo que se ha sacado en claro con la investigación, futuras implicaciones que se pueden extraer, etc.). Relacionar los resultados con otros trabajos publicados. Hay que mencionar también las excepciones, faltas de correlación o aspectos no resueltos. Indicar futuras líneas de trabajo]

Trabajo futuro

Añadir al estudio un coste ecológico de las tecnologías.

Contactar con responsables de algunos de los estudios citados y conducir una encuesta a los usuarios para comprender la utilidad de los datos.

Contactar con las nubes privadas europeas y españolas, ya que aunque es normal que en su mayoría no ofrezcan planes gratuitos para evitar su abuso, es posible que contactando como entidad investigadora dieran acceso a las cloud para poder comprobar su utilidad en este estudio. También con las iniciativas como BDTI de la Unión Europea (European Commission, b) para probar proyectos como este.

Conclusions and Future Work

[TODO]

Definiciones y acornimos

"Saber dónde encontrar la información y cómo usarla. Ese es el secreto del éxito" — Albert Einstein

Dedicaremos este apéndice a la explicación de conceptos en mas extensión, ya sea conceptos mas generales o la explicación del significado de los Acronimos de esta memoria.

A.0.1. Definiciones

Separaremos este apartado, de la misma manera que se ha hecho en otras partes de la memoria, en los tres grandes elementos que conforman esta memoria, definiciones referentes a datos, a nubes y a Inteligencia artificial.

A.0.1.1. Referente a datos

1. El gobierno de España define los datos de alto valor como "documentos cuya reutilización está asociada a considerables beneficios para la sociedad, el medio ambiente y la economía, en particular debido a su idoneidad para la creación de servicios de valor añadido, aplicaciones y puestos de trabajo nuevos, dignos y de calidad, y al número de beneficiarios potenciales de los servicios de valor añadido y aplicaciones basados en tales conjuntos de datos" Esta definición nos ofrece varias pistas sobre la manera en la que se prevé que se identifiquen esos conjuntos de datos de alto valor a través de una serie de indicadores que incluirían:

- Su potencial para generar beneficios sociales o medioambientales significativos.
- Su potencial para generar beneficios económicos y nuevos ingresos.
- Su potencial para generar servicios innovadores.
- Su potencial en cuanto a número de usuarios beneficiados, con atención particular a las PYMEs.
- Su capacidad para ser combinados con otros conjuntos de datos
- 2. El open government o gobierno abierto es una forma de comunicación abierta, permanente y bidireccional entre la administración y los ciudadanos, basada en la transparencia por parte de la administración y la participación y colaboración con la sociedad civil y las empresas. Teniendo como punto clave el movimiento open data o datos abiertos, esta estructura y formatos abiertos permiten que los datos puedan reutilizarse proporcionando nuevos servicios a ciudadanos y empresas. En Europa sus orígenes se sitúan en la Directiva 2003/98/CE del Parlamento y del Consejo Europeos sobre el acceso y la reutilización de la información del sector público. (Ferrer-Sapena A., 2011)
- 3. El **Valor Público** se puede definir de muchas maneras y depende de la perspectiva de muchos autores:
 - Para Mark Moore, su creador, consiste en conocer y satisfacer los deseos de la gente, un valor que lo público debe crear de forma análoga a como el sector privado crea valor económico. (Moore, 1995)
 - Bozeman lo define desde una perspectiva ciudadana como el consenso sobre los derechos y obligaciones de los ciudadanos, asi como los principios sobre los que debe basarse el gobierno (BOZEMAN, 2007). A menudo se refiere a "valores públicos", en plural, para destacar su diversidad, tema que seria llevado mas en profundidad por Talbot, que sugiere que a veces estos son contradictorios entre sí, reflejando la combinación de las diversas y conflictivas preferencias del público (Talbot, 2011).
 - Benington lo vincula directamente con la "esfera pública", argumentando que el valor público no es solo lo que el público valora individualmente, sino también aquello que agrega valor a este espacio colectivo. (Benington, 2009)
 - Finalmente, **Timo Meynhardt** lo conceptualiza como un fenómeno relacional que surge de las percepciones. El valor público se crea en la relación entre el individuo y la sociedad, y depende de cómo las acciones de las organizaciones públicas impactan en la

satisfacción de las necesidades básicas de las personas: morales, sociales, utilitarias y hedonistas (Meynhardt, 2009).

En un intento de resumirlo, el valor publico surge de las evaluaciones y percepciones que los individuos y colectivos realizan sobre cómo las acciones, servicios o políticas de las organizaciones públicas (y otras entidades) impactan en la satisfacción de sus diversas necesidades básicas dentro de un marco relacional que involucra a la esfera pública. Valor creado para y por la sociedad.

4. Los **Datos Abiertos** se refieren a conjuntos de datos digitales que se publican bajo una filosofía de apertura, garantizando y facilitando el libre acceso, uso, modificación, reutilización y redistribución por parte de cualquier persona o entidad, en cualquier momento, lugar y con cualquier finalidad. Una parte especifica y importante para este trabajo son los Datos Abiertos de Gobierno, aquellos datos que se originan, producen, encargan o publican los gobiernos u organismos públicos en el ejercicio de sus funciones. Estos datos buscan, como fin último, fomentar la transparencia, la creación de valor público, la colaboración intersectorial y la resolución de problemas.

La materialización de esta filosofía de apertura se concreta en requisitos técnicos y jurídicos específicos, cuya interpretación puede variar ligeramente entre las entidades que los definen. Desde el Grupo de Trabajo sobre Datos Abiertos "Open Knowledge Foundation" (OKF), "El conocimiento está abierto si alguien tiene la libertad de acceder a él, usarlo, modificarlo y compartirlo, sujeto, como máximo, a medidas que preserven su procedencia y su apertura" (Open Knowledge Foundation, 2025). El Portal Europeo de Datos y el "Open Data Charter", por su parte, enfatizan las condiciones de acceso y las libertades de uso, incluyendo la gratuidad y la ausencia de limitaciones, detallando la necesidad de características técnicas y jurídicas para que los datos sean libremente reutilizables y redistribuibles (Portal Europeo de Datos, 2025), (Open Data Charter). Todo esto subraya la complejidad y la multifuncionalidad de los Datos abiertos como catalizador para la innovación y el desarrollo socioeconómico, con implicaciones legales y técnicas que deben ser gestionadas cuidadosamente para maximizar su potencial.

5. Las **Tres olas del "Open Data"** representan las diferentes etapas evolutivas por las que ha transitado el movimiento de apertura de datos. La **Primera Ola** (1990s-2000s) se fundamentó principalmente en Estados Unidos, dirigido a periodistas, abogados y activistas que solicitaban datos específicos bajo el modelo de "derecho a saber", enfrentando riesgos de secretismo gubernamental y requiriendo auditores de información. La **Segunda Ola** (2000s-2010s) evolucionó hacia la aper-

tura por defecto con alcance internacional, expandiendo su audiencia a agencias gubernamentales, empresas tecnológicas y organizaciones comunitarias, pero generando desafíos de privacidad que impulsaron la creación de portales de datos abiertos y responsables. La **Tercera Ola** (2010s-presente) representa la madurez del movimiento con colaboración intersectorial y flujos transfronterizos, dirigiéndose a ONGs, instituciones académicas, pequeñas empresas y gobiernos, estableciendo marcos de responsabilidad en materia de datos. Esta evolución se visualiza en la siguiente tabla comparativa:

Tabla A.1: Resumen de las principales características de las denominadas olas de datos abiertos.

	Primera ola	Segunda ola	Tercera ola emergente
Concepto	Libertad de información	Datos públicos abiertos	Reutilización de datos públicos y privados
Propuesta de valor	Transparencia	Transparencia y resolu- ción de problemas	 Elaboración de políticas basadas en pruebas Innovación e iniciativa empresarial
Método	Datos a petición (dere- cho a saber)	Abierto por defecto (de- recho a compartir)	Publicar con propósito
Enfoque	Enfoque de impulso	Enfoque de atracción	Asociaciones (colaboraciones con datos)
Énfasis geográ- fico	Nacional	Internacional y nacional	Subnacional y local Flujo transfronterizo de datos con fines específi- cos
Audiencia / Demanda	 Periodistas Abogados y activistas Tecnólogos cívicos y "data geeks" 	 Agencias gubernamentales Empresas, start-up tecnológicas Organizaciones comunitarias 	 ONG, derechos humanos y justicia social Instituciones académicas Pequeñas empresas y start-ups Gobierno
Riesgos y políticas	Secretismos y ofusca- ción	Privacidad – Efecto mo- saico, información de- mográfica identificable (DII)	Marco de responsabilidad y derechos en materia de datos
Respuestas institucionales	Auditores de informa- ción	 Responsable de datos Portales de datos abiertos 	■ Director de datos ■ Intermediarios

Fuente: Traducción propia de Verhulst et al. (2020).

6. La **Teoría de la Ventana** (Matheus y Janssen, 2020) es un marco conceptual que analiza la transparencia generada por los Datos Abiertos de Gobierno, concibiéndola como una "ventana" que el gobierno abre para que el público vea su funcionamiento interno. Postulando que la

transparencia es una construcción diversa y continua, cuyo objetivo principal es facilitar la transferencia de información entre el gobierno y sus públicos. Su materialización está influenciada por factores que la facilitan o impiden, clasificados en características de los datos, del sistema, de la organización y del uso individual, y genera consecuencias intencionadas o no, como la rendición de cuentas, la participación cívica, la eficiencia o la afectación a la privacidad.

- 7. Un "Datathon" (Anslow et al., 2016) es un evento colaborativo o competitivo intensivo centrado en datos, y derivado de los términos "data" y "maratón", donde equipos de expertos y otros individuos se reúnen para analizar grandes volúmenes de estos datos con el fin de encontrar soluciones innovadoras a problemas específicos. Esto va desde desarrollar aplicaciones para sacar partido a estos datos, hasta la optimización de procesos o la creación de modelos predictivos, las posibilidades son amplias.
- 8. "Data Governance" (Gobierno del Dato) se define como un marco integral de políticas, estrategias, estándares, roles y procesos que rigen toda la gestión del ciclo de vida completo de los datos (desde su creación y recopilación hasta su almacenamiento, procesamiento, uso, compartición, archivado y "finalmente, eliminación) con el objetivo de garantizar su calidad, integridad, seguridad, accesibilidad, interoperabilidad y confiabilidad (Herrera Capriz (2024), pg 241). La OECD propone que un modelo de "Data Governance" exitoso integra tres capas: una capa estratégica (liderazgo y visión); una capa táctica (capacidades de implementación y normativa: comités, formación, directrices, etc.); y una capa de entrega o operativa (de infraestructura y arquitectura: estándares, catálogos de datos, ciclo de valor, etc.) (OECD, 2019).

Figura A.1: Capas de gobierno del dato, fuente: (OECD, 2019).

A.0.1.2. Referente a Cloud

9. La "Computación distribuida" / "Nube distribuida" es un paradigma que aprovecha la capacidad de cálculo de miles o millones de dispositivos conectados a internet, creando una red de computación masiva, paralela y descentralizada. Los usuarios solo necesitan instalar un cliente de software que, cuando su dispositivo no está en uso, se encarga de descargar un pequeño fragmento de datos, procesarlo y devolver el resultado a un servidor central que coordina todas las tareas y ensambla los resultados finales. Este es un enfoque especialmente adecuado para problemas altamente paralelizables. Uno de los primeros productos en llevar la idea a cabo fue BOINC (Anderson, 2004) para ayudar al cómputo de proyectos científicos. Actualmente, nubes como AWS o GCP se han apropiado del termino Nube distribuida, teniendo centros de datos en diferentes localizaciones para distribuir su trabajo a localizaciones mas cercanas o llevar la propia infraestructura y servicios de la nube fuera de sus data centres (Google Cloud). Esta idea evolucionó hasta la llamada "Computación Voluntaria" (Nov et al., 2010), donde dispositivos personales de voluntarios se usaban para este fin (ahora BOINC, cuyo software aún está disponible seria considerado computación voluntaria), y también se puede considerar que este paradigma se usa de forma malintencionada con varios casos famosos de ataques DDoS distribuidos (radwere), (Danysoft) que usan dispositivos infectados para conseguir su propósito.

Modelo	Descripción	Ejemplo destacado
Nube dis-	Infraestructura descentralizada, exten-	Gestión centralizada
tribuida	diendo servicios hacia el edge o centros lo-	con despliegue en ed-
	cales.	ge/localización (AWS
		CloudFront, Google
		Cloud CDN).
Computación	ul Uso de recursos ociosos de dispositivos	BOINC, SETI@home,
voluntaria	personales para cómputo distribuido vo-	HTCondor, Techila
	luntario.	Grid.
"Dew Com-	Combina almacenamiento local y en la nu-	Dropbox.
puting"	be, sincronizando datos y permitiendo dis-	
	ponibilidad offline.	
"Fog Com-	Procesamiento intermedio entre dispositi-	Aplicaciones IoT y ca-
puting"	vos y la nube, reduciendo latencia y uso	sos de baja latencia /
	de ancho de banda.	Vehículos autónomos.
"Edge	Procesamiento en dispositivos finales,	Procesamiento de ví-
Compu-	priorizando latencia y seguridad.	deo en tiempo real, re-
ting"		conocimiento facial en
		dispositivos móviles.
"BotNets"	Redes de dispositivos comprometidos que	Ataques DDoS (My-
	realizan tareas maliciosas de forma dis-	doom), spam masivo,
	tribuida, usando el mismo principio de	minería de criptomo-
	cómputo compartido pero con fines ilíci-	nedas no autorizada.
	tos.	

Tabla A.2: Comparación de modelos relacionados con la computación distribuida.

También han surgido modelos con estas ideas paradigmas como el "Dew computing" (Ray, 2018) donde los dispositivos personales se usan como almacenamiento, o plataformas de "fog computing" (que añade dispositivos intermedios en el calculo centralizado) o "edge computing" (Que ejecuta directamente en dispositivos finales) como SONM (SONM) o otros proyectos (Uriarte y De Nicola, 2018) que surgieron con el auge de las "Blockchains" y las usaban para poner en contacto usuarios que quisieran proporcionar potencia de cálculo con quienes querían usarla. En la actualidad, hay nubes que siguen activas como (Golem Network), (Akash) ó (Render Network) y que permiten comprar y vender potencia de computo.

En resumen, todo lo englobado a la computación distribuida que hemos comentado se puede ver en esta tabla:

 La clasificación de la Computación en Nube típicamente se puede dividir según dos dimensiones principales (Huawei Technologies Co., Ltd., 2023):

Por modelo de operación:

- Nube Pública: Infraestructura compartida y gestionada por proveedores externos (ej. AWS, Azure, Google Cloud), la cual ofrece acceso universal mediante pago por uso.
- Nube Privada: Infraestructura exclusiva para una organización, gestionada interna o externamente, y que tiene mayor control y seguridad.
- Nube Comunitaria: Compartida por varias organizaciones con intereses comunes (ej. instituciones académicas), y que presenta un equilibrio entre control y costes.
- Nube Híbrida: Combina nubes públicas y privadas, permitiendo mover cargas de trabajo según necesidades de seguridad, coste o escalabilidad.
- Nube Industrial: Especializada en sectores específicos (sanidad, automoción), con componentes optimizados para casos de uso particulares.

Por modelo de servicio:

- IaaS (Infraestructura como Servicio): Proporciona recursos fundamentales (máquinas virtuales, almacenamiento, redes). Ej: Amazon EC2, Google Compute Engine.
- PaaS (Plataforma como Servicio): Ofrece entornos de desarrollo y ejecución para aplicaciones. Ej: Google App Engine, Microsoft Azure App Services.
- SaaS (Software como Servicio): Software completo gestionado por el proveedor y accesible vía web. Ej: Gmail, Salesforce, Office 365.

En la figura ?? se pueden observar una tabla que simplifica todos estos modelos de cloud por servicio.

Figura A.2: Distintos tipos de cloud, fuente: (Albert Barron).

- 11. La "Arquitectura en medalla" es un patrón de diseño utilizado para gestionar el ciclo de vida de los datos en plataformas de datos, esta organiza y transforma datos en capas sucesivas: Bronce, Plata y Oro, y cada capa representa un nivel creciente de calidad y utilidad de los datos. Permite estructurar los datos para facilitar su ingestión, limpieza, enriquecimiento, análisis y consumo empresarial (Microsoft, b). Aunque lo hemos definido este nombre, quizás al lector le sea mas familiar otra forma de procesar datos en capas (Bobrov, 2025), ya que la idea no es nueva en la ingeniería de datos y muchas otras metodologías introducen conceptos similares:
 - Arquitectura Clásica de Data Warehouse (Inmon):
 - Staging Area (Etapa de Carga) \approx Capa Bronze
 - CIF (Corporate Information Warehouse) \approx Capa Silver
 - Data Marts (Almacenamiento de Industria) ≈ Capa Gold

■ "Data Vault":

• Staging Layer para procesamiento de flujos crudos \approx Capa Bronze

- Raw Vault (donde se almacenan los datos originales) ≈ Capa Silver
- Business Vault o Data Marts (transforman datos en métricas) ≈ Capa Gold
- Data Mesh (Concepto de Propiedad de Datos Distribuida):
 - Raw Domain Data \approx Capa Bronze
 - Aggregated Domain Data \approx Capa Silver
 - Consumer-Oriented Products \approx Capa Gold
- Patrón "Write-Audit-Publish":
 - Write (recolección de datos) \approx Capa Bronze
 - Audit (limpieza y procesamiento de datos) \approx Capa Silver
 - Publish (preparación para el uso) \approx Capa Gold

A.0.1.3. Referente a Inteligencia Artificial

A.0.2. Acronimos

AI Inteligencia Artificial (Artificial Intelligence)

API Interfaz de Programación de Aplicaciones (Application Programming Interface)

AWS Amazon Web Services

BOINC Berkeley Open Infrastructure for Network Computing

CCPA Ley de Privacidad del Consumidor de California (California Consumer Privacy Act)

CDN Red de Distribución de Contenidos (Content Delivery Network)

CNMC Comisión Nacional de los Mercados y la Competencia

CPU Unidad Central de Procesamiento (Central Processing Unit)

CSV Valores Separados por Comas (Comma-Separated Values)

D1 D1 Database (Base de datos de Cloudflare)

DDoS Ataque de Denegación de Servicio Distribuido (Distributed Denial of Service)

DNS Sistema de Nombres de Dominio (Domain Name System)

DSL Ley de Seguridad de Datos (Data Security Law) - China

EEUU Estados Unidos

EU Unión Europea

GCP Google Cloud Platform

GPU Unidad de Procesamiento Gráfico (Graphics Processing Unit)

HIPAA Ley de Portabilidad y Responsabilidad de Seguros de Salud (Health Insurance Portability and Accountability Act)

IBM International Business Machines

INE Instituto Nacional de Estadística

JSON Notación de Objetos de JavaScript (JavaScript Object Notation)

KV Key-Value (Almacenamiento Clave-Valor)

LGD Ley de Gobernanza de Datos

ML Aprendizaje Automático (Machine Learning)

MLOps Operaciones de Aprendizaje Automático (Machine Learning Operations)

NLP Procesamiento del Lenguaje Natural (Natural Language Processing)

OECD Organización para la Cooperación y el Desarrollo Económicos

OGDA Ley de Datos Abiertos del Gobierno (OPEN Government Data Act)

OCI Oracle Cloud Infrastructure

PIPL Ley de Protección de Información Personal (Personal Information Protection Law) - China

R2 R2 Storage (Almacenamiento de Cloudflare)

RAM Memoria de Acceso Aleatorio (Random Access Memory)

RGPD Reglamento General de Protección de Datos

SASE Acceso Seguro al Borde del Servicio (Secure Access Service Edge)

SSL Capa de Conexión Segura (Secure Sockets Layer)

SSD Disco de Estado Sólido (Solid State Drive)

TPU Unidad de Procesamiento Tensorial (Tensor Processing Unit)

TURN Traversal Using Relays around NAT

UE Unión Europea

Manual de usuario y casos de uso

Bibliografía

- AKASH. The decentralized cloud built for ai's next frontier. ????
- Albert Barron, T. P. C. M. Pizza as a service. ????
- AMAZON. Datos abiertos en aws. Disponible en https://aws.amazon.com/es/opendata/.
- Anderson, D. Boinc: a system for public-resource computing and storage. 2004.
- Anslow, C., Brosz, J., Maurer, F. y Boyes, M. Datathons: An experience report of data hackathons for data science education. página 615–620, 2016.
- Arellano Bruno, J. B. Uso de geolocalización y de fuentes de datos abiertas para la creación de servicios turísticos por la ciudad de madrid. 2019.
- AWESOME DATA. Awesome public datasets. Disponible en https://github.com/awesomedata/awesome-public-datasets.
- AYUNTAMIENTO DE MADRID. Portal de datos abiertos del ayuntamiento de madrid. 2025.
- BENINGTON, J. Creating the public in order to create public value? *International Journal of Public Administration*, vol. 32(3-4), Disponible en https://doi.org/10.1080/01900690902749578.
- Bobrov, K. Data engineering: Now with 30 2025.
- Bommala, H. et al. Cloud verse: mapping the new frontiers of cloud computing. vol. 392, página 01081, 2024.

BOZEMAN, B. Public Values and Public Interest: Counterbalancing Economic Individualism. Georgetown University Press, 2007. ISBN 9781589011779.

- BROWN, B., CHUI, M. y MANYIKA, J. Are you ready for the era of 'big data'. *McKinsey Quarterly*, vol. 4(1), páginas 24–35, 2011.
- CLOUDING.IO. clouding.io, infraestructura cloud a tu servicio. ?????
- CNMC. Telecomunicaciones anual datos generales cnmc. Disponible en https://data.cnmc.es/telecomunicaciones-y-sector-audiovisual/datos-anuales/datos-generales/telecomunicaciones-anual.
- CONCEPCIÓN DE LINARES, J. B. Open food facts. Disponible en https://fr-en.openfoodfacts.org/.
- CONCEPCIÓN DE LINARES, J. B. Planttes. Disponible en https://www.planttes.com/?lang=en.
- Congreso de los Estados Unidos de America. Health insurance portability and accountability act of 1996 (hipaa). 1996.
- Congreso de los Estados Unidos de America. Foundations for evidence-based policymaking act of 2018, title ii: Open government data act. 2019.
- Cornella, A. Conferencia cómo sobrevivir a la infoxicación. 2000.
- Danysoft. El ataque de los botnets. ????
- Esri España. Portal de datos abiertos de esri españa. 2025.
- ESTADO DE CALIFORNIA. California consumer privacy act (ccpa). 2018.
- EUROPEAN COMMISSION. Cloud computing. ????a.
- EUROPEAN COMMISSION. From hype to action using the big data test infrastructure (bdti). ????b.
- EUROPEAN COMMISSION. Simpl: Cloud-to-edge federations empowering eu data spaces. ????c.
- European Parliament, C. Regulation (eu) 2022/868 of the european parliament and of the council of 30 may 2022 on european data governance and amending regulation (eu) 2018/1724 (data governance act). Official Journal of the European Union, L 152, pp. 1-44, 2022. Accessed: 28 August 2025.
- EUROSTAT. Cloud computing services by size class of enterprise. ????

FERRER-SAPENA A., A.-B. R., PESET F. Acceso a los datos públicos y su reutilización: Open data y open government. *El Profesional de la Información*, páginas 260–269, 2011.

- GIGAS. Gigas cloud hosting solutions. ????
- GIULIA CARSANIGA, D. R., JOCHEM DOGGER. The use case observatory a 3-year monitoring of 30 reuse cases to understand the economic, governmental, social and environmental impact of open data volume i. *Publications Office of the European Union*, 2022.
- GMBH, N. Nextcloud your own private cloud. ????
- GÓMEZ-OBREGÓN, J. Jaime gómez-obregón. Disponible en https://github.com/awesomedata/awesome-public-datasets.
- GÓMEZ-OBREGÓN, J. La donación jaime gómez-obregón. Disponible en https://github.com/JaimeObregon/subvenciones/tree/main/files.
- GÓMEZ-OBREGÓN, J. Subvenciones jaime gómez-obregón. Disponible en https://github.com/JaimeObregon/subvenciones/tree/main/files.
- Gobierno de España. Nubesara. ????
- Gobierno de España. Big data test infrastructure: Un entorno gratuito para que las aa.pp experimenten con sus datos abiertos. 2021a.
- Gobierno de España. Plan de digitalización de las administraciones públicas 2021-2025. 2021b.
- GOBIERNO DE ESPAÑA. Eventos datathon gobierno de españa. Disponible en https://datos.gob.es/es/event-tags/datathon.
- GOBIERNO DE ESPAÑA. Eventos datos abiertos gobierno de españa. Disponible en https://datos.gob.es/es/eventos/etiquetas/datos-abiertos-1918.
- Gobierno de España. Portal de datos abiertos. 2025c.
- Golem Network. Golem network. ????
- GOOGLE. Data commons. Disponible en https://docs.datacommons.org/custom_dc/.
- GOOGLE CLOUD. Amplía la infraestructura y la ia de google cloud onpremise. ????
- HERRERA CAPRIZ, M. E. El valor intangible de la transparencia: un análisis de los datos abiertos de españa en el marco de la corriente "valor público". 2024. Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias de la Información, leída el 08/05/2024.

HUAWEI TECHNOLOGIES CO., LTD. Cloud Computing Technology. Springer and Posts & Telecom Press, Singapore and Beijing, 2023. ISBN 978-981-19-3026-3. Open access book.

- INSIGHTS + ANALYTICS, E. Datos para espaÑa y mundiales de investigación de mercados 2023. Disponible en https://ia-espana.org/wp-content/uploads/2024/10/NdpdatosEncuentro_16102024.pdf.
- Jorge, R. y Herrera, R. Aumenta la negativa a abrir datos públicos: Informa inai tendencia de 4t a opacidad. llama presidenta a ciudadanos a iniciar defensa de ente autónomo. 2023. Copyright Copyright Editora El Sol, S.A. de C.V. Mar 24, 2023; Última actualización 2023-03-24.
- Julián Valero Torrijos, R. M. G. *DATOS ABIERTOS Y REUTI-LIZACIÓN DE LA INFORMACIÓN DEL SECTOR PÚBLICO*. CRC Press, 2022. ISBN 978-84-1369-269-2.
- Khan, S. y Alam, M. File formats for big data storage systems. *Internatio*nal Journal of Engineering and Advanced Technology (IJEAT) Volume-9 Issue-1, 2019.
- LISDORF, A. Cloud Computing Basics: A Non-Technical Introduction. Apress, 2021. ISBN 978-1-4842-6921-3. Accessed: 2025-08-27.
- LLAMOCCA PORTELA, P. Integración y visualización de datos abiertos medioambientales. 2016. Máster en Ingeniería Informática, curso 2015-2016.
- MARKET REPORT ANALYTICS. Spain cloud computing market market's growth blueprint. ????
- Matheus, R. y Janssen, M. A systematic literature study to unravel transparency enabled by open government data: The window theory. *Public Performance & Management Review*, vol. 43(3), páginas 503–534, 2020.
- MELENDREZ MORETO, I. Auditoría y metodología de implantación de open data para smart cities. 2016. Máster en Ingeniería Informática, curso 2015-2016, a destacar: gran compilacion de datasets, conceptos interesantes como cinco estrellas del Open Data, manual de CKAN.
- MEYNHARDT, T. Public value inside: What is public value creation? *International Journal of Public Administration*, vol. 32(3-4), páginas 192–219, 2009.
- MICROSOFT. Cloud computing terminology. ????a.
- MICROSOFT. What is the medallion lakehouse architecture? ????b.

MOORE, M. Creating public value: Strategic management in government. 1995.

- NIGRO, H. Cloud computing: Retos y oportunidades. Rev. Ingeniería, Matemáticas y Ciencias de la Información, vol. 9(18), páginas 11–16, 2022.
- NIJSSEN, D. The use case observatory a 3-year monitoring of 30 reuse cases to understand the economic, governmental, social and environmental impact of open data volume ii. *Publications Office of the European Union*, 2022.
- Nov, O., Anderson, D. y Arazy, O. Volunteer computing: A model of the factors determining contribution to community-based scientific research. Proceedings of the 19th International Conference on World Wide Web, WWW '10, páginas 741–750, 2010.
- OECD. The Path to Becoming a Data-Driven Public Sector. OECD Digital Government Studies. OECD Publishing, 2019.
- OECD. 2023 oecd open, useful and re-usable data ourdataindex: Results and key findings. OECD Public Governance Policy Papers, No. 43, OECD Publishing, Paris, 2023.
- OPEN DATA CHARTER. ¿qué son los datos abiertos? ????
- OPEN KNOWLEDGE FOUNDATION. Open definition. Disponible en https://opendefinition.org/.
- OVHCLOUD. Public cloud free trial ovhcloud. ????
- PANGARKAR, T. Big data statistics 2025 by patterns in the dimensions. Disponible en https://scoop.market.us/big-data-statistics/.
- SÁNCHEZ DE PAZ, M. Optimización de infraestructuras de cloud computing basadas en máquinas virtuales. 2023. Trabajo de Fin de Máster en Ingeniería Informática, Curso 2022/2023.
- PORTAL EUROPEO DE DATOS. ¿qué son los datos abiertos? 2025.
- Preparatic. Servicio nubesara. casos prácticos y ejemplos de aplicación.
- PRESS, G. A very short history of big data. Disponible en https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/.
- RADWERE. What is mydoom malware? ????

RAMOS-SIMÓN, L. F. El uso de las licencias libres en los datos públicos abiertos. Revista Espanola de Documentacion Científica, vol. 40(3), páginas 1–16, 2017. Copyright - Copyright Consejo Superior de Investigaciones Científicas Jul/Sep 2017; Última actualización - 2017-10-04.

- RAY, P. P. An introduction to dew computing: Definition, concept and implications. *IEEE Access*, vol. 6, páginas 723–737, 2018.
- REGISTRADORES DE ESPAÑA. Portal de datos abiertos de los registradores de españa. 2025.
- RENDER NETWORK. The distributed gpu render network. ????
- R.I.PIENAAR. Free for devs. Disponible en https://github.com/ripienaar/free-for-dev.
- SONM. Sonm whitepaper. ????
- STANDING COMMITTEE OF THE NATIONAL PEOPLE'S CONGRESS. Data security law of the people's republic of china. 2021a.
- STANDING COMMITTEE OF THE NATIONAL PEOPLE'S CONGRESS. Personal information protection law of the people's republic of china. 2021b.
- Talbot, C. Paradoxes and prospects of 'public value'. Public Money & Management, vol. 31(1), 2011.
- TAYLOR, P. Big data statistics and facts. Disponible en https://www.statista.com/topics/1464/big-data/#topicOverview.
- Telefónica tech cloud platform. ????
- Theodorakopoulos Leonidas, S. Y., Theodoropoulou Alexandra. A state-of-the-art review in big data management engineering: Real-life case studies, challenges, and future research directions. *Eng*, vol. 5(3), página 1266, 2024. Copyright © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License; Última actualización 2024-09-27.
- SOLEDAD DE LA TORRE, S. N. Transparencia en la administración pública municipal del ecuador. *Estudios de la Gestión*, (14), páginas 53–73, 2023. Copyright Copyright null 2023; Última actualización 2024-12-12; SubjectsTermNotLitGenreText Ecuador.

UNION EUROPEA. Data protection under gdpr. Disponible en https://europa.eu/youreurope/business/dealing-with-customers/data-protection/data-protection-gdpr/index_en.htm.

- UNION EUROPEA. Explicación de la ley de gobernanza de datos. Disponible en https://digital-strategy.ec.europa.eu/es/policies/data-governance-act-explained.
- UNION EUROPEA. Reglamento de inteligencia artificial. Disponible en https://eur-lex.europa.eu/eli/reg/2024/1689.
- Union Europea. Portal de datos abiertos. 2025.
- UNIVERSIDATA. Análisis de desplazamientos interurbanos en estudiantes. Disponible en https://www.universidata.es/analisis/%C2%BFqu%C3% A9-distancia-tienen-que-recorrer-los-estudiantes-para-ir-clase.
- UNIVERSIDATA. Ii datathon universidata. Disponible en https://www.universidata.es/datathon/.
- UNIVERSIDATA. Universidata. Disponible en https://www.universidata.es/.
- Universitat Autònoma de Barcelona. infoparticipa. 2025.
- URIARTE, R. B. y DE NICOLA, R. Blockchain-based decentralised cloud/fog solutions: Challenges, opportunities and standards. *IEEE Communications Standards Magazine*, 2018.
- Verhulst, S., Young, A., Zahuranec, A., Calderon, A., Gee, M. y Aaronson, S. The emergence of a third wave of open data: How to accelerate the re-use of data for public interest purposes while ensuring data rights and community flourishing. *International Journal of Public Administration*, página 8, 2020.
- WIKIPEDIA. Information age. Disponible en https://en.wikipedia.org/wiki/Information_Age.