Cours de Convergence, Intégration, Probabilités et Equations aux Dérivées Partielles

Mesures et intégrales. Intégrale de Lebesgue. Espaces de probabilité

Séance 6 - Probabilités sur \mathbb{R} , variables aléatoires réelles

CentraleSupélec - Cursus ingénieur

3 octobre 2019

Amphis CIP 6, 7, 8 et 9

Hervé MOUTARDE
 Institut de recherche sur les lois fondamentales de l'univers (IRFU), CEA, Université Paris-Saclay
 Orme des Merisiers, Bât. 703
 herve.moutarde@cea.fr

- Analyse théorique de données expérimentales :
 - Interaction forte, récemment ondes gravitationnelles.
 - Modélisation (structure du proton).
 - Analyse statistique de données.
 - Développement de codes de calcul scientifique.
- Dans le cursus CentraleSupelec :
 - 1A CIP et EDP.
 - 3A Théorie quantique du champ.

Des questions?

daskit.com/cip19-20 puis section "Amphi 6".

Délégués de cours de CIP modalité normal :

- Alix CHAZOTTES,
- Laure COQUELET,
- Simon MARTEL,
- Guillaume RIPERT,
- Damien TASSO.

Support

- Support amphi 6 en version vierge disponible dès à présent sur edunao.
- Support amphi 6 en version annotée disponible ultérieurement.
- Enregistrement vidéo disponible sur la web tv après validation.

Quelques éléments des CM et TD précédents

- Tribu (def. 3.3) et tribu des événements (def. 3.25).
- Mesure (def. 3.21) et mesure de probabilité (def. 3.26).
- Fonction mesurable (**def. 3.10**) et variable aléatoire *discrète* (**def. 3.38**).
- Loi d'une variable aléatoire discrète (def. 3.39).
- Formalisme homogène pour les cas discrets et continus (TD Exercice IV.1).
- $\mathcal{B}(\mathbb{R}) = \sigma(\{] \infty, a[/a \in \mathbb{R}\})$ (TD Exercice III.2).
- ullet Construction de l'intégrale relativement à une mesure $\mu.$
- Espaces $L^p(\Omega)$ (prop. 4.20).

Programme

- Construction d'une mesure de probabilité
 - Exemples de mesure de probabilité
 - ullet Mesure de probabilité sur ${\mathbb R}$
- Variables aléatoires
 - Loi d'une variable aléatoire
 - Intégration, moments
 - Moments d'ordre n > 1
- 3 Exemples de lois de probabilité

Objectifs de la séance

- je maîtrise les notions d'espace de probabilité, de variable aléatoire, de loi;
- je suis capable de calculer la probabilité d'un événement, lorsque la mesure de probabilité est donnée;
- je maîtrise les notions de fonction de répartition et de densité de probabilité;
- je sais déterminer la loi d'une variable aléatoire;
- je suis capable de vérifier qu'une variable aléatoire donnée est mesurable par rapport à une sous-tribu;
- je suis capable de calculer l'espérance et la variance d'une variable aléatoire, lorsqu'elles existent;
- je maîtrise l'application du théorème de transfert (calculs, détermination de lois).

Deux exemples de mesure de probabilité sur (Ω, \mathcal{F})

- **1** Mesure discrète de support $\{a_n; n \in \mathbb{N}\}$: $\mathbf{P} = \sum_{n=0}^{\infty} \alpha_n \delta_{a_n}$, où
 - pour tout $n \in \mathbb{N}$, δ_{a_n} est la mesure de Dirac en a_n ;
 - $\forall n, \alpha_n \geq 0 \text{ et } \sum_{n=0}^{\infty} \alpha_n = 1.$
- 2 La mesure $P = f.\mu$, où
 - ullet μ est une mesure sur (Ω,\mathcal{F})
 - et $f \colon (\Omega, \mathcal{F}) \to (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ une application mesurable, intégrable par rapport à μ et telle que $\int_{\Omega} \mathit{f}(\mathit{x}) \; \mu(\mathit{dx}) = 1$,

définie par

$$\forall A \in \mathcal{F}, \quad \mathbf{P}(A) = \int_A f(x) \ \mu(dx) := \int_{\Omega} f(x) \ \mathbf{1}_A(x) \ \mu(dx).$$

En général : pour un espace d'état Ω non dénombrable

La définition d'une mesure de probabilité sur une tribu \mathcal{F} est impossible de manière directe (si \mathcal{F} est trop grande).

En général : pour un espace d'état Ω non dénombrable

La définition d'une mesure de probabilité sur une tribu \mathcal{F} est impossible de manière directe (si \mathcal{F} est trop grande).

On utilise alors la définition de \mathcal{F} comme tribu engendrée par une partie $\mathcal{I} \subset \mathcal{P}(\Omega)$.

- Comment définir une mesure de probabilité $\mathbf{P}: \mathcal{F} \to [0,1]$, à partir des valeurs sur \mathcal{I} ?
- Existence et unicité de l'extension de \mathcal{I} à \mathcal{F} ?
- Conditions sur \mathcal{I} : algèbre de Boole et π -système.

Définition VI.1.1 (π -système)

Une classe $\mathcal I$ de sous-ensembles de Ω est appelée π -système sur Ω si elle est stable par intersection finie.

Lemme VI.1.2 (Admis)

Si deux mesures de probabilité coincident sur un π -système \mathcal{I} , alors elles coincident aussi sur la tribu $\sigma(\mathcal{I})$ engendrée par \mathcal{I} .

Définition VI.1.3 (Algèbre de Boole)

Une famille de parties de Ω est appelée algèbre de Boole si :

- (i) Elle contient Ω .
- (ii) Elle est stable par passage au complémentaire.
- (iii) Elle est stable par union finie.

Théorème VI.1.4 (Carathéodory, admis)

Soit \mathcal{F}_0 une algèbre de Boole sur Ω et $\mathcal{F} = \sigma(\mathcal{F}_0)$.

- $Si \ \mu_0 : \mathcal{F}_0 \to [0, +\infty]$ est une fonction σ -additive, alors il existe une mesure μ sur (Ω, \mathcal{F}) telle que $\mu = \mu_0$ sur \mathcal{F}_0 .
- Si de plus $\mu_0(\Omega) < +\infty$, alors cette extension est unique.

Définition VI.1.5 (Fonction de répartition)

Dans l'espace de probabilité $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbf{P})$, où $\mathcal{B}(\mathbb{R})$ est la tribu de Borel de \mathbb{R} , la fonction de répartition de \mathbf{P} est l'application

$$F: \mathbb{R} \to [0,1]$$

 $x \mapsto F(x) = \mathbf{P}(] - \infty, x]).$

Définition VI.1.5 (Fonction de répartition)

Dans l'espace de probabilité $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbf{P})$, où $\mathcal{B}(\mathbb{R})$ est la tribu de Borel de \mathbb{R} , la fonction de répartition de \mathbf{P} est l'application

$$F: \mathbb{R} \to [0, 1]$$

 $x \mapsto F(x) = \mathbf{P}(] - \infty, x].$

Théorème VI.1.6

Sur l'espace de probabilité $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbf{P})$, la mesure de probabilité \mathbf{P} est caractérisée par sa fonction de répartition F.

Théorème VI.1.7 (Partiellement admis)

Une fonction F est la fonction de répartition d'une mesure de probabilité sur $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ si et seulement si les 3 conditions suivantes sont vérifiées :

- (i) F est croissante;
- (ii) F est continue à droite;
- (iii) $\lim_{x\to-\infty} F(x) = 0$ et $\lim_{x\to+\infty} F(x) = 1$.

Proposition VI.1.8

Soit F la fonction de répartition d'une mesure de probabilité ${\bf P}$ sur $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Pour tout réel x, on a

$$\mathbf{P}\left(\left\{x\right\}\right) = F(x) - F(x-).$$

Cas particulier : densité de probabilité

Définition VI.1.9 (Densité de probabilité)

Si une application $f: \mathbb{R} \to \mathbb{R}$ est positive, intégrable par rapport à la mesure de Lebesgue λ et $\int_{\mathbb{R}} f(x) . \lambda(dx) = 1$, alors l'application

$$F: x \mapsto F(x) = \int_{]-\infty,x]} f(t).\lambda(dt)$$

est la fonction de répartition d'une mesure de probabilité \mathbf{P} sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

La fonction f est appelée densité de P.

 ${f P}$ est dite absolument continue par rapport à la mesure de Lebesgue λ .

Cas particulier : densité de probabilité

P est définie par

$$\forall A \in \mathcal{B}(\mathbb{R}), \quad \mathbf{P}(A) = \int_A f(x) \ \lambda(dx) = \int_\Omega f(x) \ \mathbf{1}_A(x) \ \lambda(dx).$$

Cas particulier : densité de probabilité

P est définie par

$$\forall A \in \mathcal{B}(\mathbb{R}), \quad \mathbf{P}(A) = \int_A f(x) \ \lambda(dx) = \int_\Omega f(x) \ \mathbf{1}_A(x) \ \lambda(dx).$$

Théorème VI.1.10

 $f: \mathbb{R} \to \mathbb{R}_+$ borélienne est une densité de probabilité si et seulement si $\int_{\mathbb{R}} f(x) \ \lambda(dx) = 1$.

La mesure de probabilité est alors entièrement déterminée par f.

Variable aléatoire

Définition VI.2.1

Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilité et E un espace muni d'une tribu \mathcal{E} . On appelle **variable aléatoire** à valeurs dans E toute application mesurable $X: \Omega \to E$, i. e. telle que

$$\forall A \in \mathcal{E}, \quad X^{-1}(A) \in \mathcal{F}.$$

Variable aléatoire

Définition VI.2.1

Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilité et E un espace muni d'une tribu \mathcal{E} . On appelle **variable aléatoire** à valeurs dans E toute application mesurable $X: \Omega \to E$, i. e. telle que

$$\forall A \in \mathcal{E}, \quad X^{-1}(A) \in \mathcal{F}.$$

Définition VI.2.2

Soit $X:(\Omega,\mathcal{F})\to (E,\mathcal{E})$ une variable aléatoire. La sous-tribu $X^{-1}(\mathcal{E})=\left\{X^{-1}(A);\ A\in\mathcal{E}\right\}$ de \mathcal{F} est appelée **tribu engendrée** par X, et est notée $\sigma(X)$.

Loi d'une variable aléatoire

Définition VI.2.3

Soit $X: (\Omega, \mathcal{F}) \to (\mathcal{E}, \mathcal{E})$ une variable aléatoire. L'application $P_X: \mathcal{E} \to [0, 1]$ telle que

$$\forall A \in \mathcal{E}, \quad P_X(A) = \mathbf{P}(\{\omega : X(\omega) \in A\}) = \mathbf{P}(X^{-1}(A))$$

définit une mesure de probabilité sur l'espace (E, \mathcal{E}) , appelé mesure image de $\mathbf P$ par X.

La mesure de probabilité P_X est appelée distribution ou loi de X.

On note $\mathbf{P}(X \in A)$ la quantité $P_X(A)$.

Construction de $\mathcal{I}_{\mathbf{P}}(X) = \int_{\Omega} X(\omega) \ \mathbf{P}(d\omega)$ pour une variable aléatoire réelle $X: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

• Pour $X = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}$, où $A_i \in \mathcal{F}$ et $\alpha_i \in \mathbb{R}_+$ pour tout $1 \le i \le n$,

$$\mathcal{I}_{\mathbf{P}}(X) = \int_{\Omega} X(\omega) \ \mathbf{P}(d\omega) = \sum_{i=1}^{n} \alpha_{i} \ \mathbf{P}(A_{i}).$$

• Pour tout $X:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ mesurable **positive**,

$$\mathcal{I}_{\mathbf{P}}(\mathit{X}) = \sup \left\{ \mathcal{I}_{\mathbf{P}}(\varphi); \; \varphi \; \text{\'etag\'ee telle que } \varphi \leq \mathit{X} \right\}.$$

• Pour tout $X:(\Omega,\mathcal{F})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ mesurable,

$$X \in L^1(\Omega, \mathcal{F}, \mathbf{P}) \Leftrightarrow \mathcal{I}_{\mathbf{P}}(|X|) < +\infty.$$

On pose
$$\mathcal{I}_{\mathbf{P}}(X) = \mathcal{I}_{\mathbf{P}}(X^+) - \mathcal{I}_{\mathbf{P}}(X^-)$$
, où $X^+ = \max(X, 0)$ et $X^- = -\min(X, 0)$.

Soit X une variable aléatoire réelle telle que $\int_{\Omega} |X(\omega)| \cdot \mathbf{P}(d\omega) < \infty$ $(\Leftrightarrow X \in \mathbf{L}^1(\Omega, \mathcal{F}, \mathbf{P}))$.

On dit alors que X admet un moment d'ordre 1, et on pose

$$\mathbf{E}[X] = \int_{\Omega} X(\omega).\mathbf{P}(d\omega) = \int_{\Omega} X.d\mathbf{P}$$

La quantité E[X] est appelée espérance (ou moyenne) de X.

Théorème VI.2.5

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles sur $(\Omega, \mathcal{F}, \mathbf{P})$.

• Convergence monotone : Si $X_n \ge 0$ pour tout n et X_n croît vers X p.s., alors

$$\lim_{n\to\infty}\mathbf{E}[X_n]=\mathbf{E}[X].$$

• Lemme de Fatou : $Si X_n \ge 0$ pour tout n, alors

$$\mathbf{E}\left[\liminf_{n\to\infty}X_n\right]\leq \liminf_{n\to\infty}\mathbf{E}[X_n].$$

• Convergence dominée : $Si \lim_{n\to\infty} X_n = X$ p.s. et s'il existe $Z \in L^1(\Omega, \mathcal{F}, \mathbf{P})$ telle que $|X_n| \leq Z$ pour tout n, alors

$$\lim_{n\to\infty}\mathbf{E}[X_n]=\mathbf{E}[X].$$

Proposition VI.2.6 (Inégalité de Markov)

Soit $X \in \mathbf{L}^1(\Omega, \mathcal{F}, \mathbf{P})$. Pour tout réel a > 0, on a

$$\mathbf{P}(|X| \ge a) \le \frac{\mathbf{E}[|X|]}{a}.$$

Théorème VI.2.7 (Théorème de transfert)

Soit $X:(\Omega,\mathcal{F})\to (E,\mathcal{E})$ une variable aléatoire. La loi de X est la mesure de probabilité P_X sur (E,\mathcal{E}) caractérisée par

$$\mathbf{E}[h(X)] = \int_{E} h(x) P_{X}(dx)$$

pour toute application mesurable $h: E \to \mathbb{R}$ bornée, ou telle que $h(X) \in \mathbf{L}^1(\Omega, \mathcal{F}, \mathbf{P})$.

Rem
$$\forall A \in \mathcal{F}, \quad \mathbf{P}(X \in A) = P_X(A) = \mathbf{E}[\mathbf{1}_{X \in A}]$$

Identification de loi de v.a. TD Exercice VI.1.2

Théorème VI.2.8

Soit X une v.a. réelle dont la loi P_X admet une densité f_X , et soit $h: \mathbb{R} \to \mathbb{R}$ mesurable telle que $\int_{\mathbb{R}} |h(x)| f_X(x) dx < \infty$. Alors, la variable aléatoire h(X) admet un moment d'ordre 1 et

$$\mathbf{E}[h(X)] = \int_{\mathbb{R}} h(x) \ f_X(x) \ \lambda(dx).$$

On dit qu'une v.a. réelle X sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ admet un moment d'ordre $n \geq 1$ si $\int_{\Omega} |X(\omega)|^n \mathbf{P}(d\omega) < \infty$. On note $X \in \mathbf{L}^n(\Omega, \mathcal{F}, \mathbf{P})$.

On dit qu'une v.a. réelle X sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ admet un moment d'ordre $n \geq 1$ si $\int_{\Omega} |X(\omega)|^n \mathbf{P}(d\omega) < \infty$. On note $X \in \mathbf{L}^n(\Omega, \mathcal{F}, \mathbf{P})$.

Proposition VI.2.10

Soient 0 .

On a l'inclusion $\mathbf{L}^q(\Omega, \mathcal{F}, \mathbf{P}) \subset \mathbf{L}^p(\Omega, \mathcal{F}, \mathbf{P})$, autrement dit, pour toute v.a. réelle X sur $(\Omega, \mathcal{F}, \mathbf{P})$,

$$\int_{\Omega} |X|^q d\mathbf{P} < \infty \Rightarrow \int_{\Omega} |X|^p d\mathbf{P} < \infty.$$

Si $X \in \mathbf{L}^2(\Omega, \mathcal{F}, \mathbf{P})$, alors on peut définir la variance de X

$$\operatorname{Var}(X) = \mathbf{E}[X^2] - (\mathbf{E}[X])^2 = \mathbf{E}\left[(X - \mathbf{E}[X])^2\right].$$

La quantité $\sqrt{\operatorname{Var}(X)}$ est appelée écart-type de X.

Proposition VI.2.12

- Pour tous réels a et b, $Var(aX + b) = a^2Var(X)$.
- Pour tout réel a > 0, on a

$$\mathbf{P}(|X - \mathbf{E}[X]| \ge a) \le \frac{\mathrm{Var}(X)}{a^2}.$$

C'est l'inégalité de Bienaymé-Tchebychev.

• X est constante p.s. si et seulement si Var(X) = 0.

Variable aléatoire constante

X est constante s'il existe $c \in \mathbb{R}$ tel que

$$\mathbf{P}(X=c)=1.$$

La loi P_X est alors la **distribution de Dirac** δ_c , $\mathbf{E}[X] = c$ et $\mathrm{Var}(X) = 0$.

Variable aléatoire constante

X est constante s'il existe $c \in \mathbb{R}$ tel que

$$\mathbf{P}(X=c)=1.$$

La loi P_X est alors la **distribution de Dirac** δ_c , $\mathbf{E}[X] = c$ et $\mathrm{Var}(X) = 0$.

Loi uniforme

X suit une **loi uniforme** sur $[a,b]\subset\mathbb{R}$ si sa loi admet la densité de probabilité $f\colon\mathbb{R}\to\mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a, b]; \\ 0 & \text{sinon.} \end{cases}$$

Loi exponentielle

X suit une **loi exponentielle** $\mathcal{E}(\lambda)$ ($\lambda>0$) si elle admet la densité de probabilité $f\colon\mathbb{R}\to\mathbb{R}$

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0; \\ 0 & \text{sinon.} \end{cases}$$

On a alors $\mathbf{E}[X] = \frac{1}{\lambda}$ et $\mathrm{Var}(X) = \frac{1}{\lambda^2}$.

Loi exponentielle

X suit une **loi exponentielle** $\mathcal{E}(\lambda)$ ($\lambda>0$) si elle admet la densité de probabilité $f\colon\mathbb{R}\to\mathbb{R}$

$$\forall x \in \mathbb{R}, \quad f(x) = \left\{ \begin{array}{ll} \lambda e^{-\lambda x} & \text{si } x \ge 0; \\ 0 & \text{sinon.} \end{array} \right.$$

On a alors $\mathbf{E}[X] = \frac{1}{\lambda}$ et $\mathrm{Var}(X) = \frac{1}{\lambda^2}$.

Loi gamma

X suit une **loi gamma** $\gamma(p,\lambda)$ (p>0 et $\lambda>0)$ si sa densité est

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{\lambda}{\Gamma(\rho)} (\lambda x)^{\rho - 1} e^{-\lambda x} & \text{si } x \ge 0; \\ 0 & \text{sinon.} \end{cases}$$

On a alors $\mathbf{E}[X] = \frac{p}{\lambda}$ et $\mathrm{Var}(X) = \frac{p}{\lambda^2}$.

Loi normale ou gaussienne

X suit une **loi normale** $\mathcal{N}(m,\sigma^2)$ $((m,\sigma)\in\mathbb{R}\times\mathbb{R}_+)$ si elle admet la densité de probabilité $f\colon\mathbb{R}\to\mathbb{R}$

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-m)^2}{2\sigma^2}\right].$$

On a alors $\mathbf{E}[X] = m$ et $Var(X) = \sigma^2$.

Retour sur les objectifs de la séance

- je maîtrise les notions d'espace de probabilité, de variable aléatoire (def. VI.2.1), de loi (def. VI.2.3);
- je suis capable de calculer la probabilité d'un événement, lorsque la mesure de probabilité est donnée;
- je maîtrise les notions de fonction de répartition (def. VI.1.5) et de densité de probabilité (def. VI.1.9);
- je sais déterminer la loi d'une variable aléatoire;
- je suis capable de vérifier qu'une variable aléatoire donnée est mesurable par rapport à une sous-tribu;
- je suis capable de calculer l'espérance (def. VI.2.4) et la variance (def. VI.2.11) d'une variable aléatoire, lorsqu'elles existent;
- je maîtrise l'application du théorème de transfert (Th. VI.2.7) (calculs, détermination de lois).