<> text needs to be removed and replaced by the necessary input! No <> symbols should remain in the code!

Plotting a One-Variable Bar Plot with Counts

Note: This bar plot has the variable names on the x-axis. If the names are squished, then you should use $\mathbf{y} = \mathbf{x}$ instead of $\mathbf{x} = \mathbf{x}$.

Plotting a One-Variable Bar Plot with Proportions

Note: This bar plot has the variable names on the x-axis. If the names are squished, then you should use $\mathbf{y} = \mathbf{x}$ instead of $\mathbf{x} = \mathbf{x}$.

Plotting a Two-Variable Bar Plot

Note: You should fill by whichever variable has **fewer** values.

Note: If you want a side-by-side bar plot you need to change position to "dodge". If you want a filled bar plot, you need change position to "fill".

Creating a Summary Table of Observations of One Variable

```
<NAME OF DATASET> %>%
group_by(<NAME OF VARIABLE>) %>%
summarize( n = n() )
```

<> text needs to be removed and replaced by the necessary input! No <> symbols should remain in the code!

Creating a Summary Table of Observations from Two Variables

```
<NAME OF DATASET> %>%
group_by(<NAME OF VARIABLE 1>, <NAME OF VARIABLE 2>) %>%
summarize( n = n() )
```

Performing a Chi-Squared Goodness-of-Fit Test (One Variable)

Performing a Chi-Squared Independence / Homogeneity Test (Two Variables)

Obtaining the Sample X-Squared Statistic

Note: This step must be done before you find your p-value!

Obtaining 1000 Permuted X-Squared Statistics – Assuming the Null Hypothesis is True

<> text needs to be removed and replaced by the necessary input! No <> symbols should remain in the code!

Plotting the Simulated Null Distribution

Note: This step *must* come after you have obtained the permuted differences in means!

Obtaining a p-value from a Null Distribution

Note: This step **must** come after you have obtained the bootstrapped differences in means **and** the observed difference in means!

Note: In a Chi-Squared test we always use a greater than alternative, since we only look in the right tail!