

Computer Vision

Agenda

01 The What

02 The How

The Huh?

04 The Why

The "Oh Cool!"

The What

The What

1. Understand the image

		165	187	209	58	7
	14	1 25	233	201	98	159
253	144	120	251	41	147	204
67	100	32	241	23	165	30
209	118	124	27	59	201	79
210	236	105	169	19	218	156
35	178	199	197	4	14	218
115	104	34	111	19	196	
32	69	231	203	74		

- 1. Understand the image
- 2. Apply filters

- 1. Understand the image
- 2. Apply filters

		165	187	209	58	7			
	14	125	233	201	98	159			
253	144	120	251	41	147	204			
67	100	32	241	23	165	30			
209	118	124	27	59	201	79			
210	236	105	169	19	21 8	156			
35	178	199	197	4	14	218			
115	104	34	111	19	196				
32	69	231	203	74					

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

 5×5 - Image matrix

 3×3 - Filter matrix

1. Understand the image

2. Apply filters

Different filters detect different features or manipulate an image different ways.

Edges, curves, textures, blurring, sharpening, etc.

Resulting matrix: a likelihood that the filters pattern is present at that location

- 1. Understand the image
- 2. Apply filters
- 2. Downsample by pooling

Downsampling reduces the volume of information to process, while pooing preserves the import features.

- 1. Understand the image
- 2. Apply filters
- 2. Downsample by pooling

The Huh?

The Huh? INPUT LAYER HIDDEN LAYERS OUTPUT LAYER

Use Cases? - Distrobuten Monitor - Health care / Diagnosis - Retail/shelf Analytics - Plant recognition - Customer Ex/Journey - Med, A.d/ Devices - Huto. Driving - Aug. Reality/Gammy - Facial Recog. - Safety in Montacturns - Alertmy - Moint/Monitor

Use Cases

Image Classification

- **Product Categorization:** Sorting products in e-commerce platforms (apparel, electronics, groceries) for better search and recommendations.
- Quality Control: Inspecting manufactured goods for defects (e.g., cracks in machinery parts, blemishes on food).
- **Medical Imaging:** Analyzing X-rays, MRIs, and CT scans to detect abnormalities (tumors, fractures).
- Remote Sensing: Classifying land cover (forests, urban areas, water bodies) from satellite imagery.

Project Manager/Business Analyst Perspective:

- **Increased Efficiency:** Automate tasks that previously required manual inspection, saving time and resources.
- **Improved Accuracy:** Reduce human error in classification tasks, leading to more reliable and consistent outcomes.
- Data-Driven Insights: Gain valuable insights from visual data that can inform business decisions (e.g., market trends, customer behavior).

Use Cases

Object Detection

- Autonomous Vehicles: Detecting pedestrians, vehicles, and traffic signs for safe navigation.
- Surveillance Systems: Identifying and tracking objects of interest (e.g., suspicious activity, missing persons).
- **Retail:** Analyzing customer behavior in stores (e.g., identifying product interactions, counting customers) to optimize store layout and marketing strategies.
- Agriculture: Monitoring crop health, detecting pests and diseases in plants.

Project Manager/Business Analyst Perspective:

- Enhanced Safety: Improve safety in various applications (e.g., autonomous vehicles, industrial settings).
- **Improved Efficiency:** Automate tasks that require visual inspection and object identification.
- Data-Driven Decision Making: Gain valuable insights from visual data to optimize business processes and improve
 operational efficiency.

The "Oh Cool!"

The What

Time to give it a try!

https://revachat.azurewebsites.net

"Vision" page in the navbar

250121AIUpskill

Limited to .png, .jpg, .jpeg, and .gif format

Thank You!

