

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 32 00 448 A 1

(51) Int. Cl. 3:
G 01 L 9/06

(21) Aktenzeichen: P 32 00 448.6
(22) Anmeldetag: 9. 1. 82
(43) Offenlegungstag: 21. 7. 83

(71) Anmelder:
Philips Patentverwaltung GmbH, 2000 Hamburg, DE

(72) Erfinder:
Uden, Edward, 2202 Barmstedt, DE

Behördeneigentum

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Halbleiterdruckwandleranordnung

Halbleiterdruckwandleranordnung zur Messung von Absolut- oder Differenzdruck mit einem Halbleiterdruckwandler, dessen elektrische Anschlüsse durch einen Leiterrahmen mit mindestens zwei äußeren Anschlüssen realisiert sind und der druckdicht in einem Kunststoffgehäuse angeordnet ist, das aus einem oberen und einem unteren Deckelteil und aus unterhalb und oberhalb des Leiterrahmens sich erstreckenden, gegenüberliegenden Rahmen, an denen die Deckelteile druckdicht befestigt sind, besteht.
(32 00 448)

Fig. 1

PATENTANSPRÜCHE:

1. Halbleiterdruckwandleranordnung mit einem, einen Hohlraum aufweisenden Gehäuse, mit einem aus einem auf einer Trägerplatte vakuumdicht befestigten Membranteil mit einer Membran mit einer ersten und einer zweiten Hauptfläche bestehenden Halbleiterdruckwandler innerhalb des Gehäuses, wobei der Membranteil auf der Trägerplatte so befestigt ist, daß zwischen der zweiten Hauptfläche und der Trägerplatte eine Kammer gebildet ist und
- 5 mit den Halbleiterdruckwandler kontaktierenden Anschlußleitern,
- 10 dadurch gekennzeichnet, daß die Anschlußleiter (19, 21) durch einen Leiterrahmen (23) mit mindestens zwei äußeren Anschläßen (59) realisiert sind, daß die Trägerplatte (5)
- 15 auf einer im Zentrum des Leiterrahmens liegenden, mit einer fensterartigen Öffnung (27) versehenen Trägerfläche (25) befestigt ist,
- daß durch einen mehrteiligen Gehäuseaufbau zwei von- 20 einander getrennte Hohlräume (33, 35) im Gehäuse gebildet sind, derart, daß unterhalb und oberhalb des Leiterrahmens einander gegenüberliegende, den Halbleiterdruckwandler (1) umgebende Rahmen (37, 39) aus einem elektrisch isolieren- 25 den Material druckdicht befestigt sind und daß an diesen Rahmen jeweils ein erster und ein zweiter Deckelteil (29, 31) druckdicht befestigt sind, wovon mindestens der erste, dem Membranteil (3) gegenüber- liegende Deckelteil (29) einen Anschlußstutzen (41) mit einer Bohrung (43) aufweist.

- 2 -

2. **Halbleiterdruckwandleranordnung**
 nach Anspruch 1 zur Messung eines Absolutdruckes,
dadurch gekennzeichnet, daß die erste Hauptfläche (11)
 der Membran (7) des Halbleiterdruckwandlers (1) an den
 durch den ersten Deckelteil (29) mit dem Anschluß-
 stutzen (41) begrenzten Hohlraum (33) angrenzt und
 dessen Kammer (9) evakuiert und vakuumdicht ver-
 schlossen ist.
- 10 3. **Halbleiterdruckwandleranordnung**
 nach Anspruch 1 zur Messung eines Differenzdruckes,
dadurch gekennzeichnet, daß die erste Hauptfläche (11)
 der Membran (7) an den durch den ersten Deckelteil (29)
 begrenzten Hohlraum (33) angrenzt und dessen Kammer (9)
 über die fensterartige Öffnung (27) in der Träger-
 fläche (25) des Leiterrahmens (23) und über eine mit
 der Öffnung in der Trägerfläche fluchtende Öffnung (49)
 in der Trägerplatte (5) mit dem durch den zweiten,
 eine Öffnung aufweisenden Deckelteil (31) begrenzten
 Hohlraum (35) in Verbindung steht, wobei zwischen dem
 Leiterrahmen und den den Halbleiterdruckwandler (1) um-
 gebenden Rahmen (37, 39) mindestens eine druckabsperrende
 Folie (51, 53) oder dünne Platte befestigt ist (sind),
 die eine mit der fensterartigen Öffnung in der Träger-
 fläche und der Öffnung in der Trägerplatte fluchtende
 Öffnung(en) (55, 57) aufweist (aufweisen).
4. **Halbleiterdruckwandleranordnung**
 nach Anspruch 3,
dadurch gekennzeichnet, daß die Öffnung im zweiten
 Deckelteil (31) als Anschlußstutzen (45) mit einer
 Bohrung (47) ausgebildet ist.

5. Halbleiterdruckwandleranordnung

nach Anspruch 1,

dadurch gekennzeichnet, daß das Gehäuse (Deckelteile und Rahmen) aus Kunststoff besteht.

5

6. Halbleiterdruckwandleranordnung

nach Anspruch 5,

dadurch gekennzeichnet, daß die Deckelteile (29, 31), die Rahmen (37, 39) und der Leiterrahmen (23) miteinander verklebt sind.

10

7. Halbleiterdruckwandleranordnung

nach Anspruch 5,

dadurch gekennzeichnet, daß die Deckelteile (29, 31), die Rahmen (37, 39) und der Leiterrahmen (23) miteinander verschweißt sind.

20

8. Halbleiterdruckwandleranordnung

nach Anspruch 5,

dadurch gekennzeichnet, daß die Rahmen (37 und 39) einteilig miteinander verbunden durch Umpressen oder Umspritzen des Leiterrahmens (23) hergestellt sind.

25

9. Halbleiterdruckwandleranordnung

nach Anspruch 3,

dadurch gekennzeichnet, daß die Folie(n) (51, 53) selbstklebend auf dem Leiterrahmen (23) befestigt ist (sind).

30

10. Halbleiterdruckwandleranordnung

nach Anspruch 1,

dadurch gekennzeichnet, daß die Deckelteile (29, 31) im Bereich ihrer Auflagefläche auf die Rahmen (37, 39) je eine Stufe (69) aufweisen, die in die Rahmen einpaßbar ist.

09.01.82 3200448

14

PHD 82-001

- 4 -

11.

Halbleiterdruckwandleranordnung

nach Anspruch 1,
dadurch gekennzeichnet, daß mindestens einer der Hohlräume (33, 35) im Gehäuse mit einer den Halbleiterdruckwandler (1) vor aggressiven Medien schützenden, nicht druckabsperrenden Substanz ausgefüllt ist (sind).

12.

Halbleiterdruckwandleranordnung

nach Anspruch 11,
10 dadurch gekennzeichnet, daß die schützende Substanz ein Silicongel ist.

15

20

25

30

35

- 5 -

"Halbleiterdruckwandleranordnung"

Die Erfindung bezieht sich auf eine Halbleiterdruckwandleranordnung mit einem, einen Hohlraum aufweisenden Gehäuse, mit einem aus einem auf einer Trägerplatte vakuumdicht befestigten Membranteil mit einer Membran 5 mit einer ersten und einer zweiten Hauptfläche bestehenden Halbleiterdruckwandler innerhalb des Gehäuses, wobei der Membranteil auf der Trägerplatte so befestigt ist, daß zwischen der zweiten Hauptfläche und der Trägerplatte eine Kammer gebildet ist und mit den Halbleiterdruckwandler kontaktierenden Anschlußleitern.

Bekannte Halbleiterdruckwandler mit einer Membran aus z.B. einkristallinem Silicium sind so aufgebaut, daß eine Widerstandsmeßbrücke (Wheatstone'sche Brücke) als Druckmeßeinheit in der ersten Hauptfläche des Membranteils z.B. 15 durch Diffusion oder Ionenimplantation ausgebildet ist, deren Widerstandswerte in Abhängigkeit von den durch auf den druckempfindlichen Membranteil einwirkenden Druck auftretenden Dehnungen variieren.

20 Messungen von Druck und Kraft gewinnen zunehmend an Bedeutung. Es ist daher im Hinblick auf Großserienfertigungen wünschenswert, Halbleiterdruckwandleranordnungen so rationell wie möglich zu fertigen.

25 Für Halbleiterdruckwandler der beschriebenen Art sind derzeit erst Gehäuse bekannt, die aufgrund der für sie verwendeten Werkstoffe - Metall oder Kunststoff gemeinsam mit Metall und Glas oder Keramik (vgl. z.B. Electronics 30 November 6, 1980, Seite 116) - einen hohen Aufwand

09.01.82

2

PHD 82-001

- 6 -

bei ihrer Herstellung erfordern, aus diesem Grund
also kostenaufwendig sind.

- Der Erfindung liegt die Aufgabe zugrunde, ein Gehäuse
5 für Halbleiterdruckwandler zu schaffen, das besonders
für eine automatisierte Großserienfertigung geeignet
ist, das es ermöglicht, die elektrische Kontaktierung
des Halbleiterdruckwandlers auf für eine Automatisierung
besonders geeignete Weise zu erreichen und das ohne
10 aufwendige Abwandlungen für unterschiedliche Typen von
Druckwandleranordnungen, z.B. sowohl für die Messung
von Absolutdruck als auch für die Messung von Differenz-
druck, gleichermaßen verwendet werden kann.
- 15 Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß
die Anschlußleiter durch einen Leiterrahmen mit minde-
stens zwei äußeren Anschlägen realisiert sind, daß die
Trägerplatte auf einer im Zentrum des Leiterrahmens
liegenden, mit einer fensterartigen Öffnung versehenen
20 Trägerfläche befestigt ist, daß durch einen mehrteiligen
Gehäuseaufbau zwei voneinander getrennte Hohlräume im
Gehäuse gebildet sind, derart, daß unterhalb und ober-
halb des Leiterrahmens einander gegenüberliegende, den
Halbleiterdruckwandler umgebende Rahmen aus einem elek-
25 trisch isolierenden Material druckdicht befestigt sind
und daß an diesen Rahmen jeweils ein erster und ein
zweiter Deckelteil druckdicht befestigt sind, wovon
mindestens der erste, dem Membranteil gegenüberliegende
Deckelteil einen Anschlußstutzen mit einer Bohrung
30 aufweist.

Nach einer vorteilhaften Weiterbildung der Erfindung
ist eine Halbleiterdruckwandleranordnung zur Messung
eines Absolutdruckes dadurch gekennzeichnet, daß die
35 erste Hauptfläche des Membranteils des Halbleiter-

druckwandlers an den durch den ersten Deckelteil mit dem Anschlußstutzen begrenzten Hohlraum angrenzt und dessen Kammer evakuiert und vakuumdicht verschlossen ist.

5

Nach einer weiteren vorteilhaften Ausbildung der Erfindung ist eine Halbleiterdruckwandleranordnung zur Messung eines Differenzdruckes dadurch gekennzeichnet, daß die erste Hauptfläche des Membranteils an den durch den ersten Deckelteil begrenzten Hohlraum angrenzt und dessen Kammer über die fensterartige Öffnung in der Trägerfläche des Leiterrahmens und über eine mit der Öffnung in der Trägerfläche fluchtende Öffnung in der Trägerplatte mit dem durch den zweiten, eine Öffnung aufweisenden Deckelteil begrenzten Hohlraum in Verbindung steht, wobei zwischen dem Leiterrahmen und den den Halbleiterdruckwandler umgebenden Rahmen mindestens eine druckabsperrende Folie oder dünne Platte befestigt ist(sind), die mit der fensterartigen Öffnung in der Trägerfläche und eine der Öffnung in der Trägerplatte fluchtende Öffnung (en) aufweist (aufweisen).

25

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß der Aufbau des Gehäuses für den Halbleiterdruckwandler und die Art der gewählten Anschlußleiter automatisierungsfreundlich, d.h. außerordentlich gut für eine automatisierte Großserienfertigung geeignet sind und damit zu kostengünstigen Bauelementen führen.

30

Anhand der Zeichnung werden Ausführungsbeispiele der Erfindung beschrieben und in ihrer Wirkungsweise erläutert.

09.01.82

4

PHD 82-001

-8.

Es zeigen

Fig. 1 Schnitt durch eine Halbleiterdruckwandlernordnung zur Absolutdruckmessung,

5

Fig. 2 Schnitt durch eine Halbleiterdruckwandlernordnung zur Differenzdruckmessung,

10

Fig. 3 Draufsicht auf eine zur elektrischen Kontaktierung mehrerer Halbleiterdruckwandler vorgesehene Leiterrahmenfolge,

15

Fig. 4 Draufsicht auf einen Leiterrahmen mit einem Halbleiterdruckwandler und einer integrierten Schaltung.

In Fig. 1 ist im Schnitt ein Gehäuse für einen Halbleiterdruckwandler 1 dargestellt; der Halbleiterdruckwandler 1 besteht aus einem Membranteil 3 und einer vakuumdicht mit dem Membranteil 3 verbundenen Trägerplatte 5. Der Membranteil 3 ist bei dem hier dargestellten Beispiel aus einer einkristallinen Siliciumscheibe hergestellt, die in ihrem als Membran 7 wirkenden Mittelteil auf eine Dicke von etwa 10 μm ausgeätzt wurde. Die vakuumdichte Verbindung zwischen dem dicken Randbereich des Membranteils 3 und der Trägerplatte 5 kann durch Zusammenschmelzen mit einem niedrig schmelzenden Glas erfolgen. Die Kammer 9 wird während des Zusammenschmelzprozesses evakuiert. In der ersten Hauptfläche 11 der Membran 7 ist eine nicht dargestellte Widerstandsmeßbrücke (Wheatstone'sche Brücke) als Dehnungsmeßeinheit durch Diffusion ausgebildet, die über durch z.B. Ultraschall befestigte Kontaktdrähte 15 und 17 mit Anschlußleitern 19 und 21 eines Leiterrahmens 23 elektrisch verbunden

ist. Die Trägerplatte 5 ist auf einer im Zentrum des Leiterrahmens 23 liegenden, mit einer fensterartigen Öffnung 27 versehenen Trägerfläche 25 fest angebracht, beispielsweise durch Kleben. Um im Zusammenwirken mit einem ersten Deckelteil 29 und einem zweiten Deckelteil 31 zwei durch den Leiterrahmen 23 mit dem auf ihm angebrachten Halbleiterdruckwandler 1 voneinander getrennte Hohlräume 33 und 35 zu schaffen, sind mit dem Leiterrahmen 23 einerseits und den Deckelteilen 29 und 31 andererseits je ein Rahmen 37 und 39 druckdicht verbunden, beispielsweise durch Kleben. In diesem Fall eignet sich als Material für die Deckelteile 29 und 31 und für die Rahmen 37 und 39 ein duroplastischer Kunststoff, z.B. Epoxidharz. Die Rahmen 37 und 39 können jedoch auch gleichzeitig durch einen Spritzpreßprozeß hergestellt und dabei mit dem Leiterrahmen 23 verbunden werden, wenn als Material für den Rahmen ein thermoplastischer Kunststoff, z.B. Polyvinylcarbazol, verwendet wird. Auch bei Verwendung eines duroplastischen Kunststoffes wie Epoxidharz können die beiden Rahmen 37 und 39 gleichzeitig durch einen Preßprozeß hergestellt und dabei mit dem Leiterrahmen 23 verbunden werden. Das Spritzpressen und das Pressen der Rahmen 37 und 39 um den Leiterrahmen 23 führt zu besonders dichten Verbindungen. Die Deckelteile 29 und 31 können ebenfalls aus einem thermoplastischen Kunststoff hergestellt werden; sie können dann mit den Rahmen 37 und 39 durch Verschweißen verbunden werden. Der erste Deckelteil 29 hat einen mit einer Bohrung 43 versehenen Anschlußstutzen 41, über den, beispielsweise durch Überstülpen eines nicht dargestellten Anschlußschlauches, die Membran 7 mit Druck beaufschlagt wird. In dem hier dargestellten Beispiel wird ein Absolutdruck gemessen, der Membranteil 3 wirkt zusammen mit der evakuierten Kammer 9

und der Trägerplatte 5 als Druckmeßdose.

Soll ein Differenzdruck gemessen werden, wird die Halbleiterdruckwandleranordnung (Fig. 2) so ausgebildet, daß die erste Hauptfläche 11 der Membran 7 und die zweite Hauptfläche 13 der Membran 7 unterschiedlichen Drucken aussetzbar sind. Die erste Hauptfläche 11 der Membran 7 ist dabei über den Anschlußstutzen 41 dem einen Druck, die zweite Hauptfläche 13 der Membran 7 ist über einen im zweiten Deckelteil 31 angebrachten Anschlußstutzen 45 mit einer Bohrung 47 dem anderen Druck aussetzbar. Zu diesem Zweck ist die Kammer 9 des Halbleiterdruckwandlers 1 über eine fensterartige Öffnung 27 in der Trägerfläche 25 des Leiterrahmens 23 und über eine mit der Öffnung 27 fluchtende Öffnung 49 in der Trägerplatte 5 geöffnet. Um sicherzustellen, daß die Medien, deren Drucke zu vergleichen sind, auf die erste und die zweite Hauptfläche 11 und 13 der Membran 7 gelangen und nicht über Schlitze im Leiterrahmen 23 entweichen, ist zwischen dem Leiterrahmen 23 und mindestens einem der den Halbleiterdruckwandler 1 umgebenden Rahmen 37 und/oder 39 mindestens eine druckabsperrende Folie 51 und/oder 53, z.B. aus Polyimid, oder mindestens eine dünne Platte druckdicht befestigt, die mit der fensterartigen Öffnung 27 in der Trägerfläche 25 und der Öffnung 49 in der Trägerplatte 5 fluchtende Öffnungen 55 und 57 aufweisen.

Ein Differenzdruck kann auch z.B. der Referenzdruck eines zu messenden Mediums zum atmosphärischen Druck sein. Zu diesem Zweck wird eine Anordnung, wie in Fig. 2 dargestellt, eingesetzt, jedoch braucht der zweite Deckelteil 31 keinen Anschlußstutzen, sondern er muß nur eine Öffnung aufweisen, die die zweite Hauptfläche 13

der Membran 7 dem atmosphärischen Druck zugänglich macht. Diese Ausführungsform ist zeichnerisch nicht dargestellt.

- 5 Um zu verhindern, daß die Meßeinheit in Form der Widerstandsmeßbrücke auf dem Halbleiterdruckwandler beschädigt wird, falls der Druck aggressiver Medien gemessen werden soll, kann der Hohlraum 33 mit einer schützenden druckabsperrenden Substanz, z.B. Silicongel,
10 ausgefüllt sein.

In Fig. 3 ist eine zur elektrischen Kontaktierung mehrerer Halbleiterdruckwandler vorgesehene Leiterrahmenfolge in Draufsicht dargestellt, die auf eine sehr
15 rationelle automatisierte Verarbeitung ausgelegt ist. Die Trägerflächen 25 weisen Öffnungen 27 auf, die zum Einsatz kommen, wenn der auf ihr befestigte Halbleiterdruckwandler für die Messung eines Differenz- oder Referenzdruckes eingesetzt werden soll. Für jeweils
20 einen Leiterrahmen 23 sind jeweils sechs Anschlußleiter 19, 21 vorgesehen, deren äußere Anschlüsse 59 interdigital versetzt angeordnet sind, was zu Materialersparnis führt.

Für den elektrischen Außenanschluß des Halbleiterdruckwandlers allein wären zwei äußere Anschlüsse ausreichend, es kann aber erforderlich sein, für andere Zwecke weitere äußere Anschlüsse zur Verfügung zu haben; aus diesem Grund ist ein Leiterrahmen mit sechs äußeren Anschläßen vorgesehen.

- 25 Die Trägerflächen 25 der Leiterrahmen 23 liegen auf einer gemeinsamen Mittellinie, sind also nicht gegenüber versetzt; auf diese Weise sind Halbleiterdruckwandler auf den Trägerflächen 25 unkompliziert in einem automatisierten Prozeß anzubringen.
30 Die innerhalb des Gehäuses liegenden Teile 61 der

- 13 -

Anschlußleiter 19, 21 sind mit Rücksicht auf eine gut automatisierbare Drahtkontakteierung zwischen dem Halbleiterdruckwandler 1 und den Anschlußleitern 19, 21 ebenfalls in einer Ebene angeordnet, sie folgen 5 also nicht der versetzten Anordnung der äußeren Anschlüsse. Die Leiterrahmenfolge von Leiterrahmen 23 ist im Rahmen eines Bandes durch Seitenstreifen 63 gehalten, in denen Löcher 65 vorgesehen sind, in die z.B. Stifte zum automatischen Transport des Bandes 10 und auch zur Positionierung der einzelnen Leiterrahmen eingreifen können.

In Fig. 4 ist in Draufsicht ein Leiterrahmen 23 dargestellt, auf dessen Trägerfläche 25 neben einem Halbleiterdruckwandler 1 eine integrierte Schaltung 67 angebracht ist, die mit dem Halbleiterdruckwandler 1 elektrisch z.B. über Anschlußdrähte verbunden ist und beispielsweise zur Spannungsstabilisierung und zur Temperaturkompensation dient und die elektrischen Ausgangsgrößen des Halbleiterdruckwandlers 1 weiterverarbeitet. 15 20

Ein Beispiel für die Anwendung der vorliegenden Halbleiterdruckwandleranordnung sind Druckmeßfühler für Kraftfahrzeuge zur Luftdruckmessung in der Luftansaugleitung. 25

Bezugszeichenliste

1	Halbleiterdruckwandler
3	Membranteil
5	Trägerplatte
7	Membran
5 9	Kammer
11	erste Hauptfläche der Membran
13	zweite Hauptfläche der Membran
15 } 17 }	Kontaktdraht
10 19 } 21 }	Anschlußleiter
23	Leiterrahmen
25	Trägerfläche
27	Öffnung in 25
15 29	erster Deckelteil
31	zweiter Deckelteil
33 } 35 }	Hohlraum
37 } 20 39 }	Rahmen
41	Anschlußstutzen in 29
43	Bohrung in 41
45	Anschlußstutzen in 31
47	Bohrung in 45
25 49	Öffnung in 5
51 } 53 }	druckabsperrende Folie
55	Öffnung in 51
57	Öffnung in 53
30	

09.01.82 3200448

10

PHD 82-001

- 14 -

- 59 äußere Anschlüsse von 19, 21
- 61 Teil von 19, 21
- 63 Seitenstreifen
- 65 Loch in 63
- 5 67 integrierte Schaltung
- 69 Stufe in 29, 31

10

15

20

25

30

35

-15.
Leerseite

-19.

Nummer:
Int. Cl.³:
Anmeldetag:
Offenlegungstag:

3200448
G 01 L 9/06
9. Januar 1982
21. Juli 1983

1/4

Fig. 1

09.01.82
- 16 -

3200448

- 16 -

214

Fig. 2

Fig.3

09.01.62 3200448

- 18 -

4/4

Fig.4