more quickly and effectively collect field data. Pollinating bees have critical roles in both ecology and agriculture, and diseases like colony collapse disorder threaten these species. Identifying different species of bees in the wild means that we can better understand the prevalence and growth of these important insects. A bumble bee (Bombus). After loading and pre-processing images, this notebook walks through building a model that can automatically detect honey bees and bumble bees. In [193]: # used to change filepaths import os import matplotlib as mpl import matplotlib.pyplot as plt from IPython.display import display %matplotlib inline import pandas as pd import numpy as np # import Image from PIL from PIL import Image from skimage.feature import hog from skimage.color import rgb2grey from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA # import train_test_split from sklearn's model selection module from sklearn.model_selection import train_test_split # import SVC from sklearn's svm module from sklearn.svm import SVC # import accuracy_score from sklearn's metrics module from sklearn.metrics import roc_curve, auc, accuracy_score In [194]: | %%nose def test_task_1(): assert 'Image' in globals(), \ 'Did you forget to import `Image` from `PIL`?' def test_task_2(): assert 'train_test_split' in globals(), \ 'Did you forget to import `train_test_split` from `sklearn.model_sel ection`?' def test_task_3(): assert 'SVC' in globals(), \ 'Did you forget to import `SVC` from `sklearn.svm`?' def test_task_4(): assert 'accuracy_score' in globals(), \ 'Did you forget to import `accuracy_score` from `sklearn.metrics`?' Out[194]: 4/4 tests passed 2. Display image of each bee type Now that we have all of our imports ready, it is time to look at some images. We will load our labels.csv file into a dataframe called labels, where the index is the image name (e.g. an index of 1036 refers to an image named 1036.jpg) and the genus column tells us the bee type. genus takes the value of either 0.0 (Apis or honey bee) or 1.0 (Bombus or bumble bee). The function get_image converts an index value from the dataframe into a file path where the image is located, opens the image using the <u>Image</u> object in Pillow, and then returns the image as a numpy array. We'll use this function to load the sixth Apis image and then the sixth Bombus image in the dataframe. In [195]: # load the labels using pandas labels = pd.read_csv("datasets/labels.csv", index_col=0) # show the first five rows of the dataframe using head display(labels.head) def get_image(row_id, root="datasets/"): Converts an image number into the file path where the image is locat ed, opens the image, and returns the image as a numpy array. filename = "{}.jpg".format(row_id) file_path = os.path.join(root, filename) img = Image.open(file_path) return np.array(img) # subset the dataframe to just Apis (genus is 0.0) get the value of the sixth item in the index apis_row = labels[labels.genus == 0.0].index[5] # show the corresponding image of an Apis plt.imshow(get_image(apis_row)) plt.show() # subset the dataframe to just Bombus (genus is 1.0) get the value of th e sixth item in the index bombus_row = labels[labels.genus == 1.0].index[5] # show the corresponding image of a Bombus plt.imshow(get_image(bombus_row)) plt.show() <bound method NDFrame.head of</pre> genus id 520 1.0 3800 1.0 3289 1.0 2695 1.0 4922 1.0 1934 1.0 3704 1.0 4017 1.0 3331 1.0 173 1.0 2983 1.0 116 1.0 4938 1.0 3524 1.0 346 1.0 631 1.0 3588 1.0 3321 1.0 2237 1.0 1180 1.0 1725 1.0 4067 1.0 2675 1.0 728 1.0 1815 1.0 1722 1.0 1377 1.0 432 1.0 1506 1.0 1705 1.0 3229 0.0 2157 0.0 0.0 3926 3515 0.0 4645 0.0 1106 0.0 2851 0.0 630 0.0 938 0.0 2794 0.0 4612 0.0 3644 0.0 3001 0.0 3464 0.0 4618 0.0 2142 0.0 1087 0.0 2220 0.0 0.0 701 1279 0.0 134 0.0 3680 0.0 3987 0.0 2113 0.0 3015 0.0 650 0.0 3782 0.0 4026 0.0 1347 0.0 807 0.0 [500 rows x 1 columns] >20 20 40 60 80 In [196]: %%nose def test_task2_0(): assert (bombus_row == 1934), \ 'Did you get the sixth row of the index of the subsetted dataframe (labels[labels.genus == 0.0])?'Out[196]: 1/1 tests passed 3. Image manipulation with rgb2grey scikit-image has a number of image processing functions built into the library, for example, converting an image to greyscale. The rgb2grey function computes the luminance of an RGB image using the following formula Y = 0.2125 R + 0.7154 G + 0.0721 B. Image data is represented as a matrix, where the depth is the number of channels. An RGB image has three channels (red, green, and blue) whereas the returned greyscale image has only one channel. Accordingly, the original color image has the dimensions 100x100x3 but after calling rgb2grey, the resulting greyscale image has only one channel, making the dimensions 100×100×1. In [197]: # load a bombus image using our get_image function and bombus_row from t he previous cell bombus = get_image(bombus_row) # print the shape of the bombus image print('Color bombus image has shape: ', bombus.shape) # convert the bombus image to greyscale grey_bombus = rgb2grey(bombus) # show the greyscale image plt.imshow(grey_bombus, cmap=mpl.cm.gray) # greyscale bombus image only has one channel print('Greyscale bombus image has shape: ', grey_bombus.shape) Color bombus image has shape: (100, 100, 3) Greyscale bombus image has shape: (100, 100) 20 40 60 80 In [198]: %%nose import numpy def test_task3_0(): assert 'bombus' in globals() and bombus.shape == (100, 100, 3), \ 'Did you load the image corresponding to `bombus_row` using the `get _image` function and assign it to `bombus`?' def test_task3_1(): assert grey_bombus.shape == (100, 100) and grey_bombus.max() <= 1, \setminus 'Did you convert `bombus` to greyscale using `rgb2grey`?' Out[198]: 2/2 tests passed 4. Histogram of oriented gradients Now we need to turn these images into something that a machine learning algorithm can understand. Traditional computer vision techniques have relied on mathematical transforms to turn images into useful features. For example, you may want to detect edges of objects in an image, increase the contrast, or filter out particular colors. We've got a matrix of pixel values, but those don't contain enough interesting information on their own for most algorithms. We need to help the algorithms along by picking out some of the salient features for them using the histogram of oriented gradients (HOG) descriptor. The idea behind **HOG** is that an object's shape within an image can be inferred by its edges, and a way to identify edges is by looking at the direction of intensity gradients (i.e. changes in luminescence). Input image Histogram of Oriented Gradients An image is divided in a grid fashion into cells, and for the pixels within each cell, a histogram of gradient directions is compiled. To improve invariance to highlights and shadows in an image, cells are block normalized, meaning an intensity value is calculated for a larger region of an image called a block and used to contrast normalize all cell-level histograms within each block. The HOG feature vector for the image is the concatenation of these cell-level histograms. In [199]: # run HOG using our greyscale bombus image hog_features, hog_image = hog(grey_bombus, visualize=True, block_norm='L2-Hys', pixels_per_cell=(16, 16)) # show our hog_image with a grey colormap plt.imshow(hog_image, cmap=mpl.cm.gray) Out[199]: <matplotlib.image.AxesImage at 0x7fbadf221d68> 20 40 60 80 20 40 60 In [200]: \%\nose def test_task4_0(): assert all(hog_image[0] == np.array([0] * 100)), $\$ 'Did you call `hog` on `grey_bombus`?' def test_task4_1(): assert '_' in globals() and isinstance(globals()['_'], mpl.image.Axe 'Did you forget to call `plt.imshow` on `hog_image`?' Out[200]: 2/2 tests passed 5. Create image features and flatten into a single row Algorithms require data to be in a format where rows correspond to images and columns correspond to features. This means that all the information for a given image needs to be contained in a single row. We want to provide our model with the raw pixel values from our images as well as the HOG features we just calculated. To do this, we will write a function called create_features that combines these two sets of features by flattening the three-dimensional array into a onedimensional (flat) array. In [201]: def create_features(img): # flatten three channel color image color_features = np.ndarray.flatten(img) # convert image to greyscale grey_image = rgb2grey(img) # get HOG features from greyscale image hog_features = hog(grey_image, block_norm='L2-Hys', pixels_per_cell= # combine color and hog features into a single array flat_features = np.hstack((color_features, hog_features)) return flat_features bombus_features = create_features(bombus) # print shape of bombus_features print(bombus_features.shape) (31296,)In [202]: %%nose def test_task5_0(): assert bombus_features[29999] == 118.0 and round(bombus_features[300 $00], 3) == 0.053, \setminus$ 'Did you pass color_features and hog_featuers into the np.hstack fun ction in this order?' def test_task5_1(): assert bombus_features.shape == (31296,), \ '`bombus_features` does not have the correct shape. Did you setup th e `create_features` function properly?' Out[202]: 2/2 tests passed 6. Loop over images to preprocess Above we generated a flattened features array for the bombus image. Now it's time to loop over all of our images. We will create features for each image and then stack the flattened features arrays into a big matrix we can pass into our model. In the create_feature_matrix function, we'll do the following: Load an image Generate a row of features using the create_features function above Stack the rows into a features matrix In the resulting features matrix, rows correspond to images and columns to features. In [203]: | def create_feature_matrix(label_dataframe): features_list = [] for img_id in label_dataframe.index: # load image img = get_image(img_id) # get features for image image_features = create_features(img) features_list.append(image_features) # convert list of arrays into a matrix feature_matrix = np.array(features_list) return feature_matrix # run create_feature_matrix on our dataframe of images feature_matrix = create_feature_matrix(labels) In [204]: | %%nose def test_task6_0(): assert feature_matrix[0, -1] != feature_matrix[1, -1], \ 'Did you call `create_features` on `img`?' def test_task6_1(): assert feature_matrix.shape == (500, 31296), \ 'Did you call `create_feature_matrix` on the dataframe `labels`?' Out[204]: 2/2 tests passed 7. Scale feature matrix + PCA Our features aren't quite done yet. Many machine learning methods are built to work best with data that has a mean of 0 and unit variance. Luckily, scikit-learn provides a simple way to rescale your data to work well using StandardScaler. They've got a more thorough explanation of why that is in the linked docs. Remember also that we have over 31,000 features for each image and only 500 images total. To use an SVM, our model of choice, we also need to reduce the number of features we have using principal component analysis (PCA). PCA is a way of linearly transforming the data such that most of the information in the data is contained within a smaller number of features called components. Below is a visual example from an image dataset containing handwritten numbers. The image on the left is the original image with 784 components. We can see that the image on the right (post PCA) captures the shape of the number quite effectively even with only 59 components. 95% of Explained Variance 85% of Explained Variance Original Image 59 Components 784 Components 154 Components In our case, we will keep 500 components. This means our feature matrix will only have 500 columns rather than the original 31,296. In [205]: # get shape of feature matrix print('Feature matrix shape is: ', feature_matrix.shape) # define standard scaler ss = StandardScaler() # run this on our feature matrix bees_stand = ss.fit_transform(feature_matrix) $pca = PCA(n_components=500)$ # use fit_transform to run PCA on our standardized matrix bees_pca = pca.fit_transform(bees_stand) # look at new shape print('PCA matrix shape is: ', bees_pca.shape) Feature matrix shape is: (500, 31296) PCA matrix shape is: (500, 500) In [206]: | %%nose def test_task7_0(): assert round(bees_stand[0, 0], 3) == 0.097, \setminus 'Did you pass in `feature_matrix` to `ss.fit_transform`?' def test_task7_1(): assert round(bees_pca[0, 0], 3) == 19.335, \ 'Did you pass in `bees_stand` to `pca.fit_transform`?' def test_task7_2(): assert bees_pca.shape == (500, 500), \ 'Did you pass in `bees_stand` to `pca.fit_transform`?' Out[206]: 3/3 tests passed 8. Split into train and test sets Now we need to convert our data into train and test sets. We'll use 70% of images as our training data and test our model on the remaining 30%. Scikit-learn's train test split function makes this easy. In [207]: X_train, X_test, y_train, y_test = train_test_split(bees_pca, labels.genus.values, test_size=.3, random_state=1234123 # look at the distrubution of labels in the train set pd.Series(y_train).value_counts() Out[207]: 0.0 175 1.0 175 dtype: int64 In [208]: %%nose def test_task8_0(): assert '_' in globals() and isinstance(globals()['_'], pd.Series), \ 'Did you forget to forget to look at the distribution of labels usin g `pd.Series(y_train).value_counts()`?' def test_task8_1(): assert $X_{train.shape} == (350, 500), \$ 'Did you pass `bees_pca` as X into train_test_split?' def test_task8_2(): assert $y_{train.shape} == (350,)$ and $(np.unique(y_{train}) == [0.,$ 1.,]).all(), \ 'Did you pass `labels.genus.values` as y into train_test_split?' Out[208]: 3/3 tests passed 9. Train model It's finally time to build our model! We'll use a support vector machine (SVM), a type of supervised machine learning model used for regression, classification, and outlier detection." An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall." Here's a visualization of the maximum margin separating two classes using an SVM classifier with a linear kernel. -10Since we have a classification task -- honey or bumble bee -- we will use the support vector classifier (SVC), a type of SVM. We imported this class at the top of the notebook. In [209]: # define support vector classifier svm = SVC(kernel='linear', probability=True, random_state=42) # fit model svm.fit(X_train,y_train) Out[209]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='linea max_iter=-1, probability=True, random_state=42, shrinking=True, tol=0.001, verbose=False) In [210]: | %%nose def test_task9_0(): assert svm.kernel == 'linear' and svm.probability == True, \ 'Did you assign define an SVC with a linear kernel and set probabili ty equal to True?' Out[210]: 1/1 tests passed 10. Score model Now we'll use our trained model to generate predictions for our test data. To see how well our model did, we'll calculate the accuracy by comparing our predicted labels for the test set with the true labels in the test set. Accuracy is the number of correct predictions divided by the total number of predictions. Scikit-learn's <u>accuracy_score</u> function will do math for us. Sometimes accuracy can be misleading, but since we have an equal number of honey and bumble bees, it is a useful metric for this problem. In [211]: # generate predictions y_pred = svm.predict(X_test) # calculate accuracy accuracy = accuracy_score(y_pred, y_test) print('Model accuracy is: ', accuracy) Model accuracy is: 0.68 In [212]: %%nose def test_task9_1(): assert pd.Series(y_pred).value_counts()[0] == 79, \ 'Did you generate predictions using `svm.predict(X_test)`?' def test_task9_2(): assert round(accuracy, 2) == 0.68, \ 'Did you calculate accuracy using `accuracy_score(y_test, y_pred)`?' Out[212]: 2/2 tests passed

11. ROC curve + AUC

curves and AUC.

Above, we used svm.predict to predict either 0.0 or 1.0 for each image in X_test. Now, we'll use svm.predict_proba to get the probability that **each class** is the true label. For example, predict_proba returns [0.46195176, 0.53804824] for the first image, meaning there is a 46% chance the bee in the image is an Apis (0.0) and a 53% chance the bee in the image is a

Using the default settings, probabilities of 0.5 or above are assigned a class label of 1.0 and those below are assigned a 0.0. However, this threshold can be adjusted. The <u>receiver operating</u> <u>characteristic curve</u> (ROC curve) plots the false positive rate and true positive rate at different thresholds. ROC curves are judged visually by how close they are to the upper lefthand corner.

The <u>area under the curve</u> (AUC) is also calculated, where 1 means every predicted label was correct. Generally, the worst score for AUC is 0.5, which is the performance of a model that

randomly guesses. See the scikit-learn documentation for more resources and examples on ROC

Bombus (1.0). Note that the two probabilities for each image always sum to 1.

In [213]: # predict probabilities for X_test using predict_proba
probabilities = svm.predict_proba(X_test)

select the probabilities for label 1.0

y_proba = probabilities[:, 1]

1. Import Python libraries

Can a machine identify a bee as a honey bee or a bumble bee? These bees have different behaviors and appearances, but given the variety of backgrounds, positions, and image

Being able to identify bee species from images is a task that ultimately would allow researchers to

resolutions, it can be a challenge for machines to tell them apart.

A honey bee (Apis).