

Guidance on Recall Strategy

FDA Recall
Health Impact
Severity

Moulya Naveena Choday

Daniel Rimdans

- US FDA -> United States Food & Drug Administration
- Founded 1906
- Agency under Department of Health & Human Services (HHS)
- The FDA regulates food, cosmetics, drugs, medical devices, tobacco, veterinary products, and biologics.
- A primary tool of regulation is **recalls**.

Why Should You Care?

- Do you live in the US and consume food, medication, cosmetics, tobacco, or utilize medical devices?
- If you live outside the US, in 2021 alone, the FDA oversaw **48.1** million imported products.

Project Structure

ETL \rangle EDA \rangle ML_1 \rangle NLP \rangle ML_2 \rangle Streamlit

Recalls Data Event Classification Percentages Frequency

Recalls by Product Type

Devices

Product Type

Product Classification Class II ■ Class I ■ Class III

<u>A1.1</u>

Data EDA Questions

- Product Type Grouped by Recall Classification/Severity
- What product class is being recalled most frequently?
- What class of recalled products has the most severe health impacts (Class I & II)?

Data EDA Questions

 What countries have the highest recalls?

<u>A3.1</u>

A3.2

Data EDA Questions

 What manufacturing firms have the highest recalls?

Machine Learning (1)

transformed dataframe with encoded 'Event Classification' and columns of interest filtered out
new_df = df[['Recalling Firm Name', 'Product Type', 'Recalling Firm Country', 'Reason for Recall', 'Product Description', 'Event
new df.head()

	Recalling Firm Name	Product Type	Recalling Firm Country	Reason for Recall	Product Description	Event Classification
0	ELITE CONFECTIONERY LTD	0.0	0.0	Potential contamination with Salmonella	Elite Hazelnut & Almond Milk Chocolate Bar Net	1
1	ELITE CONFECTIONERY LTD	0.0	0.0	Potential contamination with Salmonella	ELIE MILK CHOCOLATE BAR WITH STRAWBERRY CREAM	1

```
knn_fit = knn.fit(X_train,y_train)
rf_fit = rf.fit(X_train,y_train)
lr_fit = lr.fit(X_train,y_train)
```

```
knn_yhat = knn.predict(X_test)
rf_yhat = rf.predict(X_test)
lr_yhat = lr.predict(X_test)
```

```
print('KNN:',accuracy_score(y_test, knn_yhat))
print('RandomForest:', accuracy_score(y_test, rf_yhat))
print('LogisticRegression', accuracy_score(y_test, lr_yhat))

$\square$ 0.7s$
```

KNN: 0.2462056616643929

RandomForest: 0.7068980218281037

LogisticRegression 0.7068980218281037

Natural Language Processing (NLP)

df shape before NLP

Removing stopwords

```
#Cleaning the text column 'Reason for Recall'
stopwords = stopwords.words('english')
df['Reason_for_Recall'] = df['Reason for Recall'].apply(
    lambda x: ' '.join([w for w in x.split() if w not in (stopwords)]))
```

Removing digits

```
#replacing all digits in text column with none.
df['Reason_for_Recall'] = df['Reason_for_Recall'].str.replace('\d+', '')
```

Vectorization

NLP Output Dataframe

```
# Creating dataframe of vectorized variables
vect_df = pd.DataFrame(X.toarray(),columns=list_of_words)
vect_df.head(10)
```

√ 1.2s

	potential	contamination	salmonella	the	pump	may	welding	defect	lead	malfunction	•••	pgy	happened	supplie	vy	mozaik	murocel	aet
0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0

10 rows × 22730 columns

X data

Top 5 Word/Feature Importance

Word	Frequency ▼
hybrigel	20164
latching	19548
norian	18750
zeros	14618
cisatracurium	12279

Word	TF-IDF ▼
salmonella	0.6644346605
contamination	0.5801638956
potential	0.4711013015
zyto	0
zyston	0

Machine Learning.....again (2) after NLP

```
rf.fit(X_train,y_train)
knn.fit(X_train,y_train)
lor.fit(X_train,y_train)

knn_yhat = knn.predict(X_test)
    rf_yhat = rf.predict(X_test)
    lor_yhat = lor.predict(X_test)
```


KNN: 0.901944065484311
RandomForest 0.933705661664393
Logistic Regression 0.9074863574351978

Hyperparameter Tuning

- Grid search with cross validation.
- Balancing the data using Synthetic Minority

Over-sampling Technique (SMOTE)


```
rfc.fit(X_train,y_train)
knn.fit(X_train,y_train)
rf.fit(X_train,y_train)
```

```
knn_yhat = knn.predict(X_test)
rf_yhat = rf.predict(X_test)
lor_yhat = lor.predict(X_test)
```

```
c = Counter(y_train)
for k,v in c.items():
    dist = v/len(y)*100
    print(f"class={k},n={v} ({dist}%)")

class=1,n=33385 (42.555225554804906%)
class=2,n=33385 (42.555225554804906%)
class=3,n=33385 (42.555225554804906%)
```

```
# Model performance after hyperparameter tuning
# Metrics is accuracy score
print('KNN:',accuracy_score(y_test,knn_yhat), '\nRandomForest',accuracy_score(y_test, rf_yhat),
```

KNN: 0.7400975112329117 RandomForest 0.8883400783913833 Logistic Regression 0.8549122080239635

Streamlit Web Application

- Creating simple web applications using python programming language.
- Fastest way to create and deploy Web applications for Machine Learning and data science projects.

https://naveenachodayy-team-e-data606-streamlitproject-1kygzy.streamlitapp.com/

Github Repository Walkthrough

- https://github.com/aminrimdans/Naveena Daniel Data606
- https://github.com/NaveenaChodayy/TEAM E Data606

References

- U.S. Food & Drug Administration. (n.d.). FDA Dashboards—Recalls. Compliance Dashboards. Retrieved June 12, 2022, from https://datadashboard.fda.gov/ora/cd/recalls.htm
- Wikimedia Foundation. (2022, May 11). Food and Drug Administration.
 Wikipedia. Retrieved June 12, 2022, from https://en.wikipedia.org/wiki/Food_and_Drug_Administration
- https://docs.streamlit.io/library/get-started
- https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-inpython-using-scikit-learn-28d2aa77dd74

Questions

