

1. Linear Applications 1

Exercise 1 Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be the linear application defined by f(x,y) = (x+y, x+y, x+y).

- a) Compute the matrix of f referred to the standard basis \mathscr{B} and \mathscr{C} of \mathbb{R}^2 and \mathbb{R}^3 , respectively.
- b) Find out the matrix of f when we change to the basis $\mathcal{B} = \{(1,1), (-1,1)\}$ in \mathbb{R}^2 , and $\mathcal{C} = \{(1,1,1), (0,1,1), (0,0,2)\}$ in \mathbb{R}^3 .
- c) Find out the image of the vector $\vec{v} = (1,2)$.

Exercise 2 Considering $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by its matrix por $A = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$. Obtain the component functions that define f.

Exercise 3 Considering $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ defined by

$$f(1,1,0) = (3,2,0,1), \quad f(2,3,1) = (1,-2,1,1) \quad y \quad f(0,-2,1) = (4,0,1,2).$$

Give its matrix referred to the standard basis in both spaces, and compute the image of the vector $\vec{v} = (1,2,3)$.

Exercise 4 Let $f: \mathbb{R}_3[x] \longrightarrow \mathscr{M}_2(\mathbb{R})$ be the linear application defined by

$$f(a_3x^3 + a_2x^2 + a_1x + a_0) = \begin{pmatrix} 3a_3 - a_2 & a_1 \\ 2a_2 + a_0 & a_2 \end{pmatrix}.$$

Obtain the matrix of f referred to the basis:

$$B = \{1, 1+x, 1+x+x^2, 1+x+x^2+x^3\}$$

and

$$C = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right) \right\}.$$

Compute the image of the polynomial $p = 1 - x^3$.