Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Final MN

Student:	Grupa:	

Descriere curs:	MN, An I, Semestrul II	F	Rezultate Examen		
Titlu curs:	Metode Numerice	Sub	oiect	Punctaj	
Profesor:	Florin POP	1		/2	
Durata examenului:	120 minute	2		/2	
Tip Examen: Materiale Aditionale:	Closed Book Nu! Fara telefoane mobile!!!	3		/3	
		4		/3	
Numar pagini:		$-\int \sum_{i} $		/10	

Subjecte (1)

2 punct ϵ	•
--------------------	---

1. Pentru functia $f:[0,2\pi]\to R, f(x)=xcos(x)$ determinati polinomul trigonometric $P(x)=\frac{a_0}{\sqrt{2}}+a_1cos(x)+a_2sin(x)$ care realizeaza aproximarea continua conform principiului celor mai mici patrate.

2 puncte

2. Formula de integrare Gauss-Radau are forma $\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} \approx \sum_{i=0}^{N} A_i f(x_i)$ si este exacta pentru polinoame de grad $\leq 2N$. Aceasta utilizeaza ca abscise x_i zerourile polinomului $T_{N+1}(x) - T_N(x)$. Dezvoltati o formula de integrare de acest tip cu N=2.

3 puncte

- 3. Pentru rezolvarea problemei diferentiale $y' = f(x, y), y(x_0) = y_0$ se foloseste metoda Runge-Kutta de ordin 4.
 - a) Scrieti relatiile corespunzatoare.
 - b) Scrieti relatiile pentru un sistem de doua ecuatii diferentiale.
 - c) scrieti o functie MATLAB care integreaza sistemul de ecuatii diferentiale prin metoda RK_{44} , avand semnatura: function [y1,y2] = RK44(a,b,n,'f1','f2',y10,y20).

3 puncte

4. Determinati valorile proprii si vectorii proprii, valorile singulare si vectorii singulari la dreapta si la stanga pentru matricea $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

SUPLIMENTAR [1p] Explicati de ce sunt folosite polinoamele ortogonale in cuadraturile Gaussiene, pentru integrarea numerica a functiilor.