

Properties of regular languages, pumping lemma for regular languages Chapter - 2: Regular languages and finite automata

Prof. Riddhi Atulkumar Mehta Assistant Professor Department of Computer Science and Engineering

Content

1.	Introduction	.1
2.	Properties of Regular Languages	.2
3.	Example – Closure Under Union	.3
	Decidability Properties	
	Pumping Lemma – Formal Statement	
6.	Pumping Lemma – Example	.6
	Key Takeaways	

Introduction

- Regular languages are the simplest type of languages recognized by finite automata
- We study:
 - Closure properties
 - Decidability properties
 - Pumping lemma a method to prove a language is not regular.

Properties of Regular Languages

Regular languages are closed under the following operations:

Operation	Meaning
Union	If L₁ and L₂ are regular, L₁ U L₂ is regular
Concatenation	L ₁ ·L ₂ is regular
Kleene Star	L* is regular
Intersection	L₁ ∩ L₂ is regular
Complementation	¬L is regular
Difference	L ₁ - L ₂ is regular
Reversal	L ^R is regular
Homomorphism	h(L) is regular

Example – Closure Under Union

Let:

- L₁ = strings over {a, b} with even number of a's
- L₂ = strings that end with b

Then $L_1 \cup L_2$ is also regular Construct DFA for L_1 , DFA for L_2 , and combine them using product construction

Decidability Properties

Problem	Decision Method
Emptiness	Check for reachable final state
Finiteness	Check for cycles in FA
Membership (w ∈ L?)	Simulate input in DFA
Equivalence of two DFAs	Minimize and compare
Subset $(L_1 \subseteq L_2?)$	Use difference and emptiness test

Pumping Lemma – Formal Statement

Theorem:

If L is a regular language, then there exists a constant p > 0 (pumping length), such that any string $s \in L$ with $|s| \ge p$, can be divided into 3 parts:

s = xyz, such that:

$$1. |y| > 0 (y \neq \epsilon)$$

3. For all $i \ge 0$, $x \cdot y^i \cdot z \in L$

Pumping Lemma – Example

Proving a Language is Not Regular:

Language:

$$L = \{ a^n b^n \mid n \ge 0 \}$$

Claim: L is not regular

Proof by contradiction using Pumping Lemma:

- 1. Assume L is regular
- 2.Let p be the pumping length
- 3.Choose $s = a^p b^p \in L$
- 4.s = xyz, with $|xy| \le p \rightarrow x$ and y contain only a's
- 5. Pump y (repeat i times): $x \cdot y^i \cdot z = a^(p+i \cdot |y|) b^p$
- 6.Unequal number of a's and b's \Rightarrow not in L
- ✓ Contradiction → L is not regular

Key Takeaways

- Regular languages are closed under many operations
- Decidability is strong for regular languages
- Pumping Lemma is a powerful proof technique
 - Proves that a language is not regular
 - Works by contradiction
 - Focuses on the inability to pump a string without violating language rules

https://paruluniversity.ac.in/

