CSE 122: Homework 4A

1. Prove
$$T(n) = 5n^4 + 6n^2 + 2n + 4$$
 is $O(n^4)$
 $5n^4 + 6n^2 + 2n + 4 < 5n^4 + 6n^4 + 2n^4 + 4n^4 = 17n^4$
Let $c = 17$ and $c_0 = 1$

2. Prove
$$T(n)=1^2+2^2+\cdots+n^2$$
 is $O(n^4)$
$$1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n<\frac{1}{3}n^3+\frac{1}{2}n^3+\frac{1}{6}n^3=n^3$$
 Let $c=1$ and $n_0=1$

3. Prove
$$T(n) = 2^{n+1}$$
 is $O(2^n)$

$$2^{n+1} = 2 * 2^n$$

Let c = 2 and $n_0 = 0$

4. If $T(n) = O(n\log(n))$, if n is doubled then...

Let
$$t_1 = nlog(n)$$
 and $t_2 = 2nlog(2n)$

$$\frac{t_2}{t_1} = \frac{2nlog_2(2n)}{nlog_2(n)} = 2 * (\frac{\log_2(2)}{\log_2(n)} + 1) = 2 + \frac{2}{\log_2(n)}$$

If n is doubled, then the running time increases by $2+2/\log_2(n)$, where n is the original n.

5. The tabulated data for the seconds to execute an algorithm of size n of the given Big-O is the following:

n = 10

$$O(logn) = 3/10^{-12}$$

 $O(n) = 10^{-11}$
 $O(nlogn) = 3 * 10^{-11}$
 $O(n^2) = 10^{-10}$
 $O(n^3) = 10^{-9}$
 $O(2^n) = 10^{-9}$
 $O(n!) = 4 * 10^{-6}$

n =
$$10^3$$

 $O(logn) = 10^{-11}$
 $O(n) = 10^{-9}$
 $O(nlogn) = 10^{-8}$
 $O(n^2) = 10^{-6}$
 $O(n^3) = 10^{-3}$
 $O(2^n) = 10^{288}$
 $O(n!) = 4 * 10^{2555}$

n =
$$10^6$$

 $O(logn) = 2 * 10^{-11}$
 $O(n) = 10^{-6}$

$$O(nlogn) = 2*10^{-5}$$

$$O(n^2) = 1$$

$$O(n^3) = 10^6$$

$$O(2^n) = 10^{299988}$$

$$O(n!) = 8 * 10^{5565696}$$

$$n = 10^9$$

$$O(logn) = 3*10^{-11}$$

$$O(n)=10^{-3}$$

$$O(nlogn) = 3 * 10^{-2}$$

$$O(n^2) = 10^6$$

$$O(n^3) = 10^{15}$$

$$O(2^n) = 10^{3*10^8 - 1}$$

$$O(n!) = 10^{8565705522}$$

$$n = 10^{12}$$

$$O(logn) = 4*10^{-1}$$

$$O(n) = 1$$

$$O(nlogn) = 40$$

$$O(n^2) = 10^{12}$$

$$O(n^3) = 10^{24}$$

$$O(2^n) = 10^{3*10^{11} - 1}$$

$$O(n!) = 10^{11565705518091}$$

$$n = 10^{15}$$

$$O(logn) = 5 * 10^{-11}$$

$$O(n) = 10^3$$

$$O(nlogn) = 5 * 10^4$$

$$O(n^2) = 10^{18}$$

$$O(n^3) = 10^{33}$$

$$O(2^n) = 10^{3*10^{14} - 12}$$

$$O(n!) = 10^{10^{16} - 12}$$

$$n = 10^{18}$$

$$O(logn) = 6*10^{-11}$$

$$O(n) = 10^6$$

$$O(nlogn) = 6 * 10^7$$

$$O(n^2) = 10^{24}\,$$

$$O(n^3) = 10^{42}$$

$$O(2^n) = 10^{3*10^{17} - 12}$$

$$O(n!) = 10^{10^{19} - 12}$$

$$n = 10^{21}$$

$$O(logn) = 7*10^{-11}$$

$$O(n) = 10^{9}$$

$$O(nlogn) = 7 * 10^{10}$$

$$O(n^{2}) = 10^{30}$$

$$O(n^{3}) = 10^{51}$$

$$O(2^{n}) = 10^{3*10^{20}-12}$$

$$O(n!) = 10^{10^{22}-12}$$

- 6. All of the values of n = 10 will complete under a second, and all values of n for O(logn). For n = 10^3 , functions will also complete under a second except for O(2^n) and O(n!). For n = 10^6 , O(n), O(nlogn), and O(n^2) will complete under second, as well as n = 10^9 for O(n), O(nlogn) and for n = 10^{12} O(n) will complete under a second. For n = 10^{12} O(nlogn) will complete under a second. For n = 10^{15} O(n) and O(nlogn) will complete in under a day. For n = 10^6 for O(n^3), for n = 10^9 for O(n^2) and n = 10^{18} for O(n) will complete in under 10 days. For n = 10^{18} for O(nlogn) and n = 10^{21} for O(n) and O(nlogn) will take several years. The functions that will take longer than the age of the universe are all O(n^2) and O(n^2) and O(n^2) for all n >= 10^{12} .
- 7. The cost table for the given code is the following:

	_	
Line #	cost	# of times
1	C_1	1
2	C_2	n+1
3	C_3	n
4	C_4	$\frac{n(n+1)}{2}-1$
5	C_5	$\frac{n(n+1)}{2}$
6	C_6	n

$$T(n) = \frac{1}{2}n^{2}(C_{4} + C_{5}) + n\left(C_{2} + C_{3} + \frac{3}{2}C_{4} + \frac{1}{2}C_{5} + C_{6}\right) + C_{1} + C_{2}$$

$$Big - O: O(n)$$

8. The cost table for the given code is the following:

Line #	Cost	# of times
1	C_1	1
2	C_2	n+1
3	C_3	n
4	C_4	1

$$T(n) = n(C_2 + C_3) + C_1 + C_2 + C_4$$

 $Big - O: O(n)$

9. It would be better to use Horner's Rule, because of algorithms of O(n) of n large will take significantly less time than algorithms of $O(n^2)$.

10. The cost table for the code p	provided by questi	on 10 is the following:
-----------------------------------	--------------------	-------------------------

Line #	Cost	Best Case # of times	Worst Case # of times
1	\mathcal{C}_1	n	n
2	C_2	$\frac{(n+1)(n+2)}{2}-3$	$\frac{(n+1)(n+2)}{2}-3$
3	C_3	$\frac{n(n+1)}{2}-1$	$\frac{n(n+1)}{2}-1$
4	C_4	N/a	$\frac{n(n+1)}{2}-1$
5	C_5	N/a	$\frac{n(n+1)}{2}-1$
6	C_6	N/a	$\frac{n(n+1)}{2}-1$

Best Case:
$$T(n) = \frac{1}{2}n^2(C_2 + C_3) + n\left(C_1 + \frac{3}{2}C_2 + \frac{1}{2}C_3\right) - 2C_2 - C_3$$

Best Case Big $-0: O(n^2)$

Worst Case:
$$T(n)$$

$$= \frac{1}{2}n^{2}(C_{2} + C_{3} + C_{4} + C_{5} + C_{6}) + n\left(C_{1} + \frac{3}{2}C_{2} + \frac{1}{2}C_{3} + \frac{1}{2}C_{4} + \frac{1}{2}C_{5} + \frac{1}{2}C_{6}\right) - 2C_{2}$$

$$-C_{3} - C_{4} - C_{5} - C_{6}$$
Worst Case Big $-O:O(n^{2})$
best case and the worst case are both Big-O of $O(n^{2})$, we can say that the average case

Worst Case Big
$$-0:O(n^2)$$

Because both the best case and the worst case are both Big-O of O(n2), we can say that the average case must also be $O(n^2)$.

11. The cost table for the code provided with question 11 is the following:

	-		
Line #	Cost	Best Case # of Times	Worst Case # of Times
1	C_1	n	n
2	C_2	n-1	n-1
3	C_3	$\frac{n(n+1)}{2}-1$	$\frac{n(n+1)}{2}-1$
4	C_4	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$
5	C_5	N/a	$\frac{n(n-1)}{2}$
6	C_6	n-1	n-1
7	C ₇	N/a	n-1
8	<i>C</i> ₈	N/a	n-1
9	C_9	N/a	n-1

Best Case:
$$T(n) = \frac{1}{2}n^2(C_3 + C_4) + n\left(C_1 + C_2 + \frac{1}{2}C_3 - \frac{1}{2}C_4 + C_6\right) - C_2 - C_3 - C_6$$

Big $-0: O(n^2)$

Worst Case:
$$T(n)$$

$$= \frac{1}{2}n^{2}(C_{3} + C_{4}) + n\left(C_{1} + C_{2} + \frac{1}{2}C_{3} - \frac{1}{2}C_{4} - \frac{1}{2}C_{5} + C_{6} + C_{7} + C_{8} + C_{9}\right) - C_{2} - C_{3} - C_{6} - C_{7} - C_{8} - C_{9}$$

$$Big - 0: O(n^2)$$

Because both the best case and the worst case are Big-O of O(n²), we can say the average case must also be $O(n^2)$.