

NORTH SOUTH UNIVERSITY

EEE 321, ETE 321 – Introduction to Communication Systems

Experiment No: 7

Digital Modulation

Modulation Types – 2 Level ASK, FSK, PSK

Modulation Types – 4 Level ASK, FSK, PSK

	ASK	FSK	PSK
Bandwidth requirement	Less	More	Less
Data Rate	Low	High	High
Power Efficiency	Low	High	High
Noise Immunity (SNR)	Low	High	High
Application	Low data radio Optical fiber comm. Remote control	Radio comm. Bluetooth	Wi-Fi EDGE

Visit:

- 1. http://techiesms.com/explained/practical-application-modulation-techniques/
- 2. http://www.rfwireless-world.com/Terminology/ASK-vs-FSK-vs-PSK.html
 - to know more

MATLAB Program:

```
clc; clear all
b = [0 1 0 1 1 0 1 1]; % digital bits
n = length(b);
mt = [];
for i = 0: 1: n-1;
   mt( (i*100)+1 : 1 : ((i+1)*100)+1 ) = b(i+1);
end
t = 0 : (1/100) : n; % t = linspace(0, n, n*100);
fc = 5;
ct = sin(2*pi*fc*t);
                                         % carrier signal
ask = (1+mt).*ct;
                                         % ASK signal
f dev = 5;
fsk = sin(2*pi*(fc + f dev*mt).*t); % FSK signal
p dev = pi;
subplot (411)
plot(t, mt, 'k', 'linewidth',2); grid on;
title('Information [0 1 0 1 1 0 1 1]');
ylim([-0.5 1.5]);
subplot (412)
plot(t, ask, 'k', 'linewidth',2); grid on;
title('2-ASK or BASK Signal');
ylim([-2 2]);
subplot (413)
plot(t, fsk, 'k', 'linewidth',2); grid on;
title('2-FSK or BFSK Signal');
ylim([-1 1]);
subplot (414)
plot(t, psk, 'k', 'linewidth',2); grid on;
title('2-PSK or BPSK Signal');
ylim([-1 1]);
```