Property Tax Prediction Model

Load Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Load the dataset

```
In [2]: file_path = "../Task 1/cleaned_house_data.csv"
df = pd.read_csv(file_path)
```

Data Analysis

```
In [3]: print("Initial Dataset Info:")
        print(df.info())
       Initial Dataset Info:
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 3684 entries, 0 to 3683
      Data columns (total 16 columns):
       # Column
                           Non-Null Count Dtype
       --- -----
                           3684 non-null
       0 MLS
                                            int64
       1 sold_price
                          3684 non-null float64
       2 zipcode
                           3684 non-null int64
                         3684 non-null float64
3684 non-null float64
3684 non-null float64
       3 longitude
          latitude
       5 lot_acres
                           3684 non-null
                                            float64
       6 taxes
       7 year_built
                          3684 non-null
3684 non-null
                                            int64
          bedrooms
                                            int64
       9 bathrooms
                           3684 non-null float64
       10 sqrt ft
                           3684 non-null
                                            float64
                     3684 non-null
       11 garage
                                            float64
       12 kitchen_features 3684 non-null
                                            int64
       13 fireplaces 3684 non-null
                                            float64
       14 floor_covering
                                            int64
                            3684 non-null
                             3684 non-null
                                            float64
       dtypes: float64(10), int64(6)
       memory usage: 460.6 KB
      None
In [4]: df.head()
```

```
Out[4]:
               MLS sold_price zipcode
                                       longitude
                                                   latitude lot_acres
                                                                       taxes year_built
        0 21329440 1125000.0
                                85718 -110.883547 32.329763
                                                                1.33
                                                                      8654.00
                                                                                   1986
        1 21500337 1100000.0
                                85750 -110.866891 32.321968
                                                                1.17
                                                                      6565.93
                                                                                   1994
        2 21206450 1180000.0 85750 -110.868487 32.316324
                                                                1.30 9590.16
                                                                                   1993
        3 21224755 1175500.0
                                85718 -110.940650 32.347873
                                                                1.23 11674.00
                                                                                   2004
        4 21703603 1125478.0
                               85755 -110.973498 32.460529
                                                                1.71
                                                                      3171.39
                                                                                   2017
                                                                                    In [5]: df.isna().sum()
Out[5]: MLS
                            0
        sold_price
                            0
        zipcode
                            0
        longitude
                            0
        latitude
                            0
        lot_acres
                            0
        taxes
                            0
        year_built
                            0
        bedrooms
        bathrooms
                            0
        sqrt_ft
                            0
                            0
        garage
        kitchen_features
                            0
        fireplaces
                            0
        floor_covering
                            0
        HOA
                            0
        dtype: int64
In [6]: #df = df.drop(columns=['kitchen_features','floor_covering']) # ,'fireplaces','ba
```

In [6]: df

Out[6]:		M	ILS sold_pi	rice zipc	ode	longitu	de	latitud	de lot_a	cres	taxe	s year_k
	C	213294	40 112500	0.0 85	718	-110.8835	47	32.3297	63	1.33	8654.0	0 1
	1	215003	37 110000	0.0 85	750	-110.8668	91	32.3219	68	1.17	6565.9	3 1
	2	212064	50 118000	0.0 85	750	-110.8684	87	32.3163	24	1.30	9590.1	6 1
	3	212247	'55 117550	0.0 85	718	-110.9406	50	32.3478	73	1.23	11674.0	0 2
	4	1 217036	03 112547	78.0 85	755	-110.9734	98	32.4605	29	1.71	3171.3	9 2
	••	•		•••								
	3679	30564	50 52500	0.0 85	614	-110.9809	45	31.8242	87	3.01	5122.8	4 2
	3680	219083	58 56500	0.0 85	750	-110.8202	16	32.3076	46	0.83	4568.7	1 1
	3681	I 219093	53500	0.0 85	718	-110.9222	91	32.3174	96	0.18	4414.0	0 2
	3682	219085	55000	0.0 85	750	-110.8585	56	32.3163	73	1.42	4822.0	1 1
	3683	219005	515 55000	00.0 85	745	-111.0555	28	32.2968	71	1.01	5822.9	3 2
	3684	rows × 1	6 columns									
	4											
Tn [7].	۹۴۲،	tayor ca	ft'] = df['!+avas!]	1 d	lf['can+ f	C+!1					ŕ
III [/].	uil	caxes_sq	ic j = uit	taxes	<i>,</i> u	ii[Sqr·t_i	L]					
In [8]:	df.h	ead()										
Out[8]:		MLS	sold_price	zipcode	I	ongitude	la	titude	lot_acres		taxes y	/ear_built
	0 2	1329440	1125000.0	85718	-11	10.883547	32.3	29763	1.33	86	654.00	1986
	1 2	1500337	1100000.0	85750	-11	10.866891	32.3	21968	1.17	6	565.93	1994
	2 2	1206450	1180000.0	85750	-11	10.868487	32.3	16324	1.30	9!	590.16	1993
	3 2	1224755	1175500.0	85718	-11	10.940650	32.3	47873	1.23	116	674.00	2004
	4 2	1703603	1125478.0	85755	-11	10.973498	32.4	60529	1.71	3	171.39	2017
	4											•
In [116	df[['taxes_s	qft','pric	e zone',	'bed	rooms','b	oathr	rooms',	'lot acr	es',	'vear b	uil+'11

\cap		+	Γ	1	1	c	
U	u	L	П	_	_	O.	• •

	taxes_sqft	price_zone	bedrooms	bathrooms	lot_acres	year_built
0	1.722875	13.124431	4	5.0	1.33	1986
1	1.696623	12.827988	4	4.0	1.17	1994
2	1.906972	13.760933	4	3.0	1.30	1993
3	2.817765	13.713572	4	5.0	1.23	2004
4	0.922989	13.124343	3	4.0	1.71	2017
•••						
3679	1.458667	6.132175	3	3.0	3.01	2007
3680	1.624141	6.588921	4	3.0	0.83	1986
3681	2.095916	6.241396	3	2.0	0.18	2002
3682	2.080246	6.413994	4	3.0	1.42	1990
3683	1.563622	6.414368	4	4.0	1.01	2009

3684 rows × 6 columns

```
In [117... df_sorted = df.sort_values(by='taxes_sqft', ascending=True)
          print("Sorted DataFrame:")
          print(df_sorted)
```

```
Sorted DataFrame:
                MLS sold_price zipcode longitude latitude lot_acres \
       325
            21224893 1000000.0 85749 -110.736241 32.258951
                                                                 1.52
       2481 21620101 616755.0 85658 -111.106396 32.469242
                                                                 0.30
            21402357 780000.0 85749 -110.707938 32.272160
       952
                                                                 3.28
                    575359.5 85641 -110.687945 32.081978
       3387 21832887
                                                                 1.07
       2450 21626928 605000.0 85749 -110.799494 32.292655
                                                                 0.55
                                                                 . . .
                      ...
       . . .
                                            . . .
                                                  . . .
                     735480.0 85755 -110.976564 32.460364
       1004 21812907
                                                                 1.00
            21723890 775000.0 85755 -110.980627 32.459894
       771
                                                                 1.04
       223 21804547 900000.0 85755 -110.986178 32.475395
                                                                2.93
       636 21614519 786620.0 85619 -110.754519 32.443022
                                                               0.37
                    880000.0 85755 -111.010677 32.468029
       353
            21518331
                                                                 2.07
              taxes year_built bedrooms bathrooms ... garage \
             794.01
                                                          3.0
       325
                          2012 5
                                            5.0 ...
                                     3
                          2016
       2481
              459.53
                                              3.0 ...
                                                          3.0
       952
             540.00
                          1990
                                     4
                                              4.0 ...
                                                          3.0
                                     5
       3387
            625.00
                         2019
                                             36.0 ...
       2450
              612.25
                          2015
                                     3
                                              4.0 ...
                                                          3.0
                          . . .
                                              ... ...
       . . .
              . . .
                                     . . .
                                                          . . .
       1004 10923.39
                          2013
                                     4
                                              3.0 ...
                                                          2.0
                         2015
                                     3
                                              3.0 ...
       771
           10520.75
                                                          3.0
                                     3
                          2013
       223
            9215.41
                                              3.0 ...
                                                          3.0
       636
            9407.98
                          2005
                                     4
                                              3.0 ...
                                                          0.0
                                     3
       353 10722.00
                          2014
                                              3.0 ...
                                                          2.0
                                                       HOA taxes_sqft \
            kitchen_features fireplaces floor_covering
                                                  2
       325
                         3
                                  0.0
                                                      0.00
                                                              0.158802
       2481
                         4
                                  0.0
                                                  2 44.00
                                                              0.166738
       952
                         5
                                  3.0
                                                  2 137.00
                                                              0.167754
       3387
                         8
                                  1.0
                                                     56.00
                                                              0.168011
                         5
       2450
                                  0.0
                                                 3 105.00
                                                              0.172903
                                  . . .
                                                 . . .
                                                      . . .
                                                                . . .
       . . .
                        . . .
                                  2.0
                                                  2 213.00
       1004
                         14
                                                              3.637493
       771
                         2
                                  1.0
                                                  2 167.00
                                                              3.642919
       223
                         3
                                  0.0
                                                  2 213.88
                                                              3.646779
       636
                         5
                                  1.0
                                                  2 25.00
                                                              3.737775
                                                  3 166.00
       353
                         5
                                  1.0
                                                              3.786017
            cat qcut cat pdCut cat pdCut ls price zone
                                       1 11.661944
       325
                  1
                       1
       2481
                  1
                           1
                                       1
                                          7.200203
                          1
                                       1 9.096316
       952
                  1
       3387
                  1
                           1
                                      1 6.718272
                           1
                                       1 7.055476
       2450
                  1
                          . . .
       . . .
                 . . .
                                     . . .
                                              . . .
       1004
                 5
                          5
                                      5 8.576526
       771
                  5
                          5
                                       5 9.037374
                          5
                                      5 10.495015
       223
                  5
                  5
                           5
                                      5 9.187447
       636
       353
                  5
                                     5 10.261792
       [3684 rows x 21 columns]
In [10]: labels = [f'{i}' for i in range(1, 6)]
        labels
```

Out[10]: ['1', '2', '3', '4', '5']

```
In [11]: # Equal-sized bins
         df['cat_qcut'] = pd.qcut(df['taxes_sqft'], q=5, labels=labels)
         print("\nEqual Rows Category:\n", df[['taxes_sqft', 'cat_qcut']])
        Equal Rows Category:
               taxes_sqft cat_qcut
        0
                1.722875
        1
                1.696623
                                3
        2
                1.906972
                                4
        3
                2.817765
                                5
                0.922989
                                1
        3679 1.458667
                                2
        3680
                1.624141
                                2
        3681
               2.095916
                                4
        3682 2.080246
                                4
        3683 1.563622
                                2
        [3684 \text{ rows } x \text{ 2 columns}]
In [12]: df.head()
Out[12]:
                 MLS sold_price zipcode
                                           longitude
                                                       latitude lot_acres
                                                                           taxes year_built
          0 21329440 1125000.0
                                  85718 -110.883547 32.329763
                                                                    1.33
                                                                          8654.00
                                                                                       1986
          1 21500337 1100000.0
                                  85750 -110.866891 32.321968
                                                                    1.17
                                                                          6565.93
                                                                                       1994
          2 21206450 1180000.0
                                 85750 -110.868487 32.316324
                                                                    1.30
                                                                          9590.16
                                                                                       1993
          3 21224755 1175500.0
                                  85718 -110.940650 32.347873
                                                                    1.23 11674.00
                                                                                       2004
            21703603 1125478.0
                                  85755 -110.973498 32.460529
                                                                    1.71
                                                                          3171.39
                                                                                       2017
In [13]: # Categorize data into bins
         df['cat_pdCut'] = pd.cut(df['taxes_sqft'], bins=5, labels=labels, include_lowest
In [14]: bins = np.linspace(min(df['taxes_sqft']), max(df['taxes_sqft']), 6) # 20 bins w
In [15]: bins
Out[15]: array([0.158802 , 0.88424499, 1.60968798, 2.33513097, 3.06057396,
                 3.78601695])
In [16]: # Categorize data into bins
         df['cat_pdCut_ls'] = pd.cut(df['taxes_sqft'], bins=bins, labels=labels, include_
In [17]: df['cat_pdCut_ls']
```

```
Out[17]: 0
         1
                 3
         2
                 3
         3
                 4
                 2
         4
                . .
         3679
                 2
         3680
               3
         3681
                3
         3682
                3
         3683
                 2
         Name: cat_pdCut_ls, Length: 3684, dtype: category
         Categories (5, object): ['1' < '2' < '3' < '4' < '5']
In [18]: print(df)
```

```
MLS sold_price zipcode longitude latitude lot_acres \
    21329440 1125000.0 85718 -110.883547 32.329763
0
                                               1.33
   21500337 1100000.0 85750 -110.866891 32.321968
1
                                                   1.17
2
   21206450 1180000.0 85750 -110.868487 32.316324
                                                  1.30
   21224755 1175500.0 85718 -110.940650 32.347873
3
                                                  1.23
    21703603 1125478.0 85755 -110.973498 32.460529
4
3.01

      3680
      21908358
      565000.0
      85750 -110.820216
      32.307646

      3681
      21909379
      535000.0
      85718 -110.922291
      32.317496

                                                  0.83
                                                  0.18
3682 21908591 550000.0 85750 -110.858556 32.316373
                                                  1.42
3683 21900515 550000.0 85745 -111.055528 32.296871
                                                  1.01
      taxes year_built bedrooms bathrooms sqrt_ft garage \
0
    8654.00 1986 4 5.0 5023.0 3.0
                          4
1
    6565.93
                1994
                                  4.0 3870.0
                                               3.0
                          4
                                 3.0 5029.0 3.0
5.0 4143.0 3.0
                                  3.0 5029.0
                                               3.0
                1993
2
    9590.16
3
   11674.00
                2004
                          4
    3171.39
                          3
                2017
                                 4.0 3436.0 3.0
     ...
                                  ...
                . . .
                          . . .
                                              3.0
                                                . . .
                        3
              2007
1986
                                 3.0 3512.0
3679 5122.84
                          4
3680 4568.71
                                 3.0 2813.0 2.0
3681 4414.00
                2002
                          3
                                 2.0 2106.0
                                               2.0
                          4
                1990
                                 3.0 2318.0
3682 4822.01
                                               3.0
                          4
3683 5822.93
                2009
                                 4.0 3724.0
                                               3.0
    kitchen_features fireplaces floor_covering HOA taxes_sqft \
                            3 179.0
0
                6 3.0
                                               1.722875
1
                5
                        2.0
                                      2 58.0 1.696623
                5
2
                       3.0
                                      2 40.0 1.906972
                                      2 159.0 2.817765
3
                5
                        1.0
                2
4
                        1.0
                                      2 56.0 0.922989
                                     ...
                        . . .
                                    2 37.0 1.458667
3679
               8
                        1.0
                                      2 6.0 1.624141
3680
               10
                        2.0
                       1.0
                                     1 198.0 2.095916
3681
               10
3682
              10
                       1.0
                                     2 43.0 2.080246
3683
               9
                        1.0
                                     2 56.0 1.563622
   cat_qcut cat_pdCut cat_pdCut_ls
        3 3
1
        3
                3
                           3
                3
2
         4
                           3
                4
3
         5
                           4
        1
                2
                           2
       . . .
. . .
               . . .
                          . . .
               2
3679
        2
                           2
        2
                3
                          3
3680
3681
        4
                3
                           3
3682
        4
                 3
                           3
        2
3683
                 2
                           2
```

[3684 rows x 20 columns]

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3684 entries, 0 to 3683
Data columns (total 20 columns):
             Non-Null Count Dtype
# Column
--- -----
                  ----
0 MLS
                  3684 non-null
                                 int64
                 3684 non-null float64
1 sold_price
2 zipcode
                  3684 non-null int64
3 longitude
                  3684 non-null float64
                  3684 non-null float64
4
   latitude
5 lot_acres
                  3684 non-null float64
                  3684 non-null float64
6 taxes
7 year_built 3684 non-null int64
8 bedrooms 3684 non-null int64
                  3684 non-null float64
9 bathrooms
                  3684 non-null float64
10 sqrt_ft
                  3684 non-null float64
11 garage
12 kitchen_features 3684 non-null int64
13 fireplaces 3684 non-null float64
14 floor_covering 3684 non-null int64
                   3684 non-null float64
15 HOA
               3684 non-null float64
16 taxes_sqft
17 cat_qcut
                  3684 non-null category
18 cat_pdCut
                  3684 non-null category
19 cat_pdCut_ls
                   3684 non-null category
dtypes: category(3), float64(11), int64(6)
memory usage: 500.8 KB
```

Data Visualization

```
In [25]: plt.figure(figsize=(12, 8))
         sns.scatterplot(
             data=df,
             x='longitude',
             y='latitude',
             size='taxes_sqft',
             hue='cat_qcut',
             palette='viridis',
             sizes=(50, 500),
             alpha=0.7
         )
         plt.title('Visualization of Taxes/Sqft by Location and Category by qcut', fontsi
         plt.xlabel('Longitude', fontsize=12)
         plt.ylabel('Latitude', fontsize=12)
         plt.legend(title='Category', loc='upper left', bbox_to_anchor=(1, 1))
         plt.grid(True)
         plt.show()
```



```
In [26]:
         plt.figure(figsize=(12, 8))
         sns.scatterplot(
             data=df,
             x='longitude',
             y='latitude',
             size='taxes_sqft',
             hue='cat_pdCut',
             palette='viridis',
             sizes=(50, 500),
             alpha=0.7
         )
         plt.title('Visualization of Taxes/Sqft by Location and Category by pd cut', font
         plt.xlabel('Longitude', fontsize=12)
         plt.ylabel('Latitude', fontsize=12)
         plt.legend(title='Category', loc='upper left', bbox_to_anchor=(1, 1))
         plt.grid(True)
         plt.show()
```



```
In [28]:
         plt.figure(figsize=(12, 8))
         sns.scatterplot(
             data=df,
             x='longitude',
             y='latitude',
             size='taxes_sqft',
             hue='cat_pdCut_ls',
             palette='viridis',
             sizes=(50, 500),
             alpha=0.7
         )
         plt.title('Visualization of Taxes/Sqft by Location and Category by pd cut with 1
         plt.xlabel('Longitude', fontsize=12)
         plt.ylabel('Latitude', fontsize=12)
         plt.legend(title='Category', loc='upper left', bbox_to_anchor=(1, 1))
         plt.grid(True)
         plt.show()
```



```
In [29]: lat_min, lat_max = 31.50, 33.0
long_min, long_max = -111.20, -110.6

df_filtered = df[
        (df['latitude'] >= lat_min) & (df['latitude'] <= lat_max) &
        (df['longitude'] >= long_min) & (df['longitude'] <= long_max)
]</pre>
```

```
In [30]: plt.figure(figsize=(12, 8))
         sns.scatterplot(
             data=df_filtered,
             x='longitude',
             y='latitude',
             size='taxes_sqft',
             hue='cat_qcut',
             palette='viridis',
             sizes=(50, 500),
             alpha=0.7
         plt.title('Visualization of Taxes/Sqft by Location and Category by qcut', fontsi
         plt.xlabel('Longitude', fontsize=12)
         plt.ylabel('Latitude', fontsize=12)
         plt.legend(title='Category', loc='upper left', bbox_to_anchor=(1, 1))
         plt.grid(True)
         plt.show()
```



```
In [131...
          # Scatter plot: Price per sqft vs Latitude/Longitude
          plt.figure(figsize=(12, 8))
          sns.scatterplot(
              data=df_filtered,
              x='longitude',
              y='latitude',
              size='taxes_sqft',
              hue='cat_pdCut',
              palette='viridis',
              sizes=(50, 500),
              alpha=0.7
          plt.title('Visualization of Price/Sqft by Location and Category by pdCut', fonts
          plt.xlabel('Longitude', fontsize=12)
          plt.ylabel('Latitude', fontsize=12)
          plt.legend(title='Category', loc='upper left', bbox_to_anchor=(1, 1))
          plt.grid(True)
          plt.show()
```



```
In [118...
          # Scatter plot: Price per sqft vs Latitude/Longitude
          plt.figure(figsize=(12, 8))
          sns.scatterplot(
              data=df_filtered,
              x='longitude',
              y='latitude',
              size='taxes_sqft',
              hue='cat_pdCut_ls',
              palette='viridis',
              sizes=(50, 500),
              alpha=0.7
          plt.title('Visualization of Taxes/Sqft by Location and Category by pd cut with
          plt.xlabel('Longitude', fontsize=12)
          plt.ylabel('Latitude', fontsize=12)
          plt.legend(title='Category', loc='upper left', bbox_to_anchor=(1, 1))
          plt.grid(True)
          plt.show()
```


KNN Regression Model

```
In [32]: class KNNClassifier():
             def fit(self, X, y):# lazy learner just perform operation
                 self.X = X
                 self.y = y
             def predict(self, X, K , epsilon=1e-1):
                 N = len(X) #number of observations
                 y_hat = np.zeros(N) #
                 for i in range(N):
                     dist2 = np.sum((self.X - X[i])**2,axis =1)
                     idxt = np.argsort(dist2)[:K] # give a list of index from lowest dist
                     gamma_k = 1/(np.sqrt(dist2[idxt] + epsilon))
                     y_hat[i] =np.bincount(self.y[idxt],weights=gamma_k).argmax() # to gi
                 return y_hat # return outside for loop
In [33]:
         def accuracy(y, y_hat):
             return np.mean(y==y_hat)
In [34]:
         knn_instance = KNNClassifier()
In [35]: df
```

Out[35]:		MLS	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_k
	0	21329440	1125000.0	85718	-110.883547	32.329763	1.33	8654.00	1
	1	21500337	1100000.0	85750	-110.866891	32.321968	1.17	6565.93	1
	2	21206450	1180000.0	85750	-110.868487	32.316324	1.30	9590.16	1
	3	21224755	1175500.0	85718	-110.940650	32.347873	1.23	11674.00	2
	4	21703603	1125478.0	85755	-110.973498	32.460529	1.71	3171.39	2
	•••								
	3679	3056450	525000.0	85614	-110.980945	31.824287	3.01	5122.84	2
	3680	21908358	565000.0	85750	-110.820216	32.307646	0.83	4568.71	1
	3681	21909379	535000.0	85718	-110.922291	32.317496	0.18	4414.00	2
	3682	21908591	550000.0	85750	-110.858556	32.316373	1.42	4822.01	1
	3683	21900515	550000.0	85745	-111.055528	32.296871	1.01	5822.93	2
	3684 rd	ows × 20 cc	olumns						
	4 (•
In [36]:	Cols	= ["longit	ude","lati	tude"]					
<pre>X_f = df_filtered[Cols].values</pre>									
<pre>y_f=df_filtered["cat_qcut"].astype(int).values</pre>									
	y_hat	_f = knn_i	nstance.pr	edict(X_f	F, K=3)				
	accur	acy(y_f,y_	hat_f)						
Out[36]:	np.fl	oat64(0.80	01032889372	112)					
In [37]:	<pre>Cols = ["longitude","latitude"] X = df[Cols].values X</pre>								
	y=df[y	"cat_qcut"].astype(i	nt).value	25				
	_	nstance.fi = knn_ins	t(X,y)	ict(X,K=3	3)				
In [38]:	accur	acy(y,y_ha	it)						
Out[38]:	np.fl	oat64(0.80	01302931596	0912)					
In [39]:	ytest ytest cm =	_actu = pd _pred = pd pd.crossta	ize=(10,7) .Series(y, .Series(y_l b(ytest_act p(cm, anno	name='Ac hat, name tu, ytest	e='Predicted' _pred)	')			

```
plt.ylabel('True label')
plt.xlabel('Predicted label')
```

Out[39]: Text(0.5, 47.72222222222, 'Predicted label')

In [44]: plt.figure(figsize=(10,7))

ytest_actu1 = pd.Series(y1, name='Actual')

cm = pd.crosstab(ytest_actu1, ytest_pred1)

ytest_pred1 = pd.Series(y_hat1, name='Predicted')

```
ax = sns.heatmap(cm, annot=True, fmt="d")
plt.ylabel('True label')
plt.xlabel('Predicted label')
```

Out[44]: Text(0.5, 47.72222222222, 'Predicted label')


```
In [45]: y2=df["cat_pdCut_ls"].astype(int).values
    y2
    knn_instance.fit(X,y2)
    y_hat2 = knn_instance.predict(X,K=3)

In [46]: accuracy(y2,y_hat2)

Out[46]: np.float64(0.8070032573289903)

In [47]: plt.figure(figsize=(10,7))
    ytest_actu2 = pd.Series(y2, name='Actual')
    ytest_pred2 = pd.Series(y_hat2, name='Predicted')
    cm = pd.crosstab(ytest_actu2, ytest_pred2)
    ax = sns.heatmap(cm, annot=True, fmt="d")
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
```

Out[47]: Text(0.5, 47.72222222222, 'Predicted label')

Simple Linear Regression

```
In [121...
          class SimpleLinearReg():
            def fit(self,X,y):
              self.y=y
              self.denominator = np.mean(X**2) - np.mean(X)**2
              self.w1= (np.mean(X*y)-(np.mean(X)*np.mean(y))) / self.denominator
              self.w0 = (np.mean(y)*np.mean(X**2) - np.mean(X)*np.mean(X*y))/self.denomina
            def predict(self, X, show=0):
              y_hat = self.w1 * X + self.w0
              if show:
                plt.figure()
                plt.scatter(X, self.y, s=8)
                plt.plot(X, y_hat,color="#FF0070")
                plt.xlabel('Taxes per Square Foot')
                plt.ylabel('Price Zone')
                plt.title('Scatter Plot with Linear Regression')
                plt.legend()
              return y_hat
```

Model Fit

```
In [122... df['price_zone'] = df['sold_price'] / df['zipcode']
In [123... df
```

0	[422
Out	I 123

year_k	taxes	lot_acres	latitude	longitude	zipcode	sold_price	MLS	
1	8654.00	1.33	32.329763	-110.883547	85718	1125000.0	21329440	0
1	6565.93	1.17	32.321968	-110.866891	85750	1100000.0	21500337	1
1	9590.16	1.30	32.316324	-110.868487	85750	1180000.0	21206450	2
2	11674.00	1.23	32.347873	-110.940650	85718	1175500.0	21224755	3
2	3171.39	1.71	32.460529	-110.973498	85755	1125478.0	21703603	4
								•••
2	5122.84	3.01	31.824287	-110.980945	85614	525000.0	3056450	3679
1	4568.71	0.83	32.307646	-110.820216	85750	565000.0	21908358	3680
2	4414.00	0.18	32.317496	-110.922291	85718	535000.0	21909379	3681
1	4822.01	1.42	32.316373	-110.858556	85750	550000.0	21908591	3682
2	5822.93	1.01	32.296871	-111.055528	85745	550000.0	21900515	3683

3684 rows × 21 columns

```
In [124... #Cols = ["longitude","latitude"]
X = df['taxes_sqft'].values
X

y=df["price_zone"].values
y
```

Out[124... array([13.12443127, 12.82798834, 13.76093294, ..., 6.24139621, 6.41399417, 6.41436818], shape=(3684,))

```
In [125... slr = SimpleLinearReg()
    slr.fit(X,y)
```

In [126... y_hat = slr.predict(X,show=1)

C:\Users\Vaishali\AppData\Local\Temp\ipykernel_2816\3840397035.py:18: UserWarnin
g: No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.
plt.legend()

Scatter Plot with Linear Regression

Ordinary Least Square (OLS) Metric

```
In [75]: def OLS(Y,Y_hat):
    N = Y_hat.shape[0]
    return ((1/(2*N))*np.sum((Y-Y_hat)**2))

In [76]: OLS(y,y_hat)

Out[76]: np.float64(1.20207561022373)
```

Known Function

```
y = w1 * F(X) + w0
In [77]: y2=y**2
In [78]: s1r\_known = SimpleLinearReg() s1r\_known.fit(X,y2)
In [79]: y\_hat2 = s1r\_known.predict(X)
In [127... p1t.figure() p1t.scatter(X,y,s=8) p1t.plot(X,np.sqrt(y\_hat2),color="#00FF00", alpha=0.8) p1t.plot(X,y\_hat,color="#FF0070") p1t.xlabel('Taxes per Square Foot') p1t.ylabel('Price Zone square')
```

```
plt.title('Scatter Plot with Linear Regression')
plt.legend()
```

C:\Users\Vaishali\AppData\Local\Temp\ipykernel_2816\1900821809.py:8: UserWarning: No artists with labels found to put in legend. Note that artists whose label sta rt with an underscore are ignored when legend() is called with no argument. plt.legend()

<matplotlib.legend.Legend at 0x23cf46785c0> Out[127...


```
In [81]: OLS(y,np.sqrt(y_hat2))
```

Out[81]: np.float64(1.2176200462033464)

KNN Regressor Class

```
In [86]:
         class KNNRegressor():
           def fit(self, X, y):
             self.X = X
             self.y = y
           def predict(self, X,K, epsilon = 1e-3):
             N = len(X)
             y_hat = np.zeros(N)
             for i in range(N):
               dist2 = np.sum((self.X-X[i])**2, axis =1)
               idxt = np.argsort(dist2)[:K]
               gamma_k = np.exp(-dist2[idxt])/(np.exp(-dist2[idxt]).sum()+epsilon)
               y_hat[i] = gamma_k.dot(self.y[idxt])
```

Prediction using KNN Regressor

OLS Regressor with Gradient Descent

```
In [185...
    def MAE(Y,Y_hat):
        return np.sum(np.abs((Y-Y_hat)))/len(Y)

def R2(Y,Y_hat):
        N=len(Y)
        return 1-((np.sum((Y-Y_hat)**2)/np.sum((Y_hat-np.mean(Y))**2)))

def OLS(Y, Y_hat,N):
    return ((1/(2*N))*np.sum((Y-Y_hat)**2))
```

OLS Multivariante Linear Regression Class

```
In [186...
          class MVLinearRegression():
            def fit(self, X, y, eta=1e-3, epochs=1e3, show_curve=True):
              epochs= int(epochs)# eta or lr as learning rate
              N,D=X.shape
              Y=y
              #Begin Optimizationwith SGD
              self.W = np.random.randn(D)
              self.J= np.zeros(epochs)
              # Start Gradient Descent Progression
              for epoch in range(epochs):
                Y_hat = self.predict(X)
                self.J[epoch] = OLS(Y,Y_hat,N)
                # Weight Update Rule
                self.W -= eta * (1/N) * (X.T@(Y_hat-Y))
              if show curve:
                 plt.figure()
                 plt.plot(self.J)
                 plt.xlabel("epoches")
                 plt.ylabel("J")
                 plt.title("Training Curve")
```

```
def predict(self,X):
               return X@self.W
In [187...
          df.columns
          Index(['MLS', 'sold_price', 'zipcode', 'longitude', 'latitude', 'lot_acres',
Out[187...
                  'taxes', 'year_built', 'bedrooms', 'bathrooms', 'sqrt_ft', 'garage',
                  'kitchen_features', 'fireplaces', 'floor_covering', 'HOA', 'taxes_sqft',
                  'cat_qcut', 'cat_pdCut', 'cat_pdCut_ls', 'price_zone'],
                 dtype='object')
          X=df[['taxes_sqft','price_zone','bedrooms','bathrooms','lot_acres','year_built']
In [188...
In [189...
          y=X[:,0]
          X=X[:,1:]
          X_{scaled} = (X - X_{min}(axis=0)) / (X_{max}(axis=0) - X_{min}(axis=0))
In [190...
In [191...
Out[191...
           array([1.72287478, 1.69662274, 1.90697156, ..., 2.09591643, 2.0802459,
                  1.56362245], shape=(3684,))
In [196...
          my_reg = MVLinearRegression()
          my_reg.fit(X,y,eta=1e-8,epochs=1e3)
```


Inference Function

```
In [220...
def predict_house(X_test,model):
    y_Out = model.predict(X_test)
```

```
print("The Tax of the home is predicted to be ",round(y_Out[0],2))
             return y_Out
           col = ["taxes_sqft","price_zone","bedrooms","bathrooms","lot_acres", "year_built
In [198...
In [199...
           df.columns
           Index(['MLS', 'sold_price', 'zipcode', 'longitude', 'latitude', 'lot_acres',
Out[199...
                   'taxes', 'year_built', 'bedrooms', 'bathrooms', 'sqrt_ft', 'garage',
                   'kitchen_features', 'fireplaces', 'floor_covering', 'HOA', 'taxes_sqft',
                   'cat_qcut', 'cat_pdCut', 'cat_pdCut_ls', 'price_zone'],
                  dtype='object')
          df[col].head()
In [200...
Out[200...
              taxes_sqft price_zone bedrooms bathrooms lot_acres year_built
           0
                1.722875
                          13.124431
                                              4
                                                         5.0
                                                                  1.33
                                                                            1986
                                                         4.0
           1
                1.696623
                          12.827988
                                              4
                                                                  1.17
                                                                            1994
           2
               1.906972
                          13.760933
                                              4
                                                         3.0
                                                                  1.30
                                                                            1993
                2.817765
                          13.713572
                                                         5.0
                                                                  1.23
                                                                            2004
           3
                                              4
           4
                0.922989 13.124343
                                              3
                                                         4.0
                                                                  1.71
                                                                            2017
In [221...
           #'taxes_sqft','price_zone','bedrooms','bathrooms','lot_acres','year_built'
           X_{\text{test}} = \text{np.array}([[13.124431,4,5.0,1.33,1986]])
In [222...
          float(my_reg.predict(X_test)[0])
Out[222...
          2.571645594320823
In [223...
           predict house(X test,my reg)
          The Tax of the home is predicted to be 2.57
Out[223... array([2.57164559])
In [224...
           PredictedTax = t sq * 5023.0
In [225...
          PredictedTax
Out[225... array([57868799.67615443])
In [226...
          X \text{ test1} = np.array([[13.124431,4,5.0,1.33,1986]])
           X_{\text{test2}} = \text{np.array}([[12.827988,4,4.0,1.17,1994]])
           X_{\text{test3}} = \text{np.array}([[13.760933,4,3.0,1.30,1993]])
           X_{\text{test4}} = \text{np.array}([[13.713572,4,5.0,1.23,2004]])
           X_{\text{test5}} = \text{np.array}([[13.124343,3,4.0,1.71,2017]])
          float(my_reg.predict(X_test1)[0])
In [227...
Out[227... 2.571645594320823
In [228...
          predict_house(X_test1,my_reg)
          The Tax of the home is predicted to be 2.57
```

```
Out[228... array([2.57164559])
In [229...
          float(my_reg.predict(X_test2)[0])
          predict_house(X_test2,my_reg)
         The Tax of the home is predicted to be 1.93
Out[229...
          array([1.92747161])
In [230...
          float(my_reg.predict(X_test3)[0])
          predict_house(X_test3,my_reg)
         The Tax of the home is predicted to be 1.31
Out[230...
         array([1.31464421])
In [231...
         float(my_reg.predict(X_test4)[0])
          predict_house(X_test4,my_reg)
         The Tax of the home is predicted to be 2.53
         array([2.52677025])
Out[231...
         float(my_reg.predict(X_test5)[0])
In [232...
          predict_house(X_test5,my_reg)
         The Tax of the home is predicted to be 1.83
Out[232... array([1.82934706])
 In [ ]: #[2.57164559,1.92747161,1.31464421,2.52677025,1.82934706]
 In [ ]:
```