

Universidade Estadual de Campinas

ES663 - Eletrônica para Automação Industrial Relatório de Motores DC

Nome
Matheus G. A. Sasso
Iuri Mandello

RA 158257 170214

Sumário

	•	
		2
1.2		2
	*	2
	1.2.2 Ciclo de operação	4
Exe	rcício 1	5
2.1	Dados Iniciais	5
2.2	Velocidade de operação desejada para o motor	5
2.3		5
2.4		6
		6
		6
		7
	8 ()	7
	• ()	8
		8
2.5	a ()	9
2.0		9
		9
26		9
2.0	Corrente necessaria para manter a rotação constante com B = 0.11 mis/ra	
Exe	rcício 2	10
3.1	Simulação para B = 0.1	10
	3.1.1 w(t) x t	10
	3.1.2 $E_g(t)$ x t	11
	3.1.3 $V_t(t) \times t$	11
	3.1.4 $\delta x t \dots \dots$	12
	3.1.5 $I_a(t) \times t$	12
3.2	Simulação para B = 0.01	13
	3.2.1 $\hat{\mathbf{w}}(\hat{\mathbf{t}}) \times \hat{\mathbf{t}}$	13
		13
	3.2.3 $V_t(t) \times t$	14
	1()	14
	3.2.5 $I_a(t) \times t$	15
Refe	erências Bibliográficas	16
	1.1 1.2 Exe 2.1 2.2 2.3 2.4 2.5 Exe 3.1	1.2 Descrição da modelagem do controle do Motor DC para um conversor classe A 1.2.1 Descrição dos parâmetros 1.2.2 Ciclo de operação Exercício 1 2.1 Dados Iniciais 2.2 Velocidade de operação desejada para o motor 2.3 Tempo necessário para atingir tal velocidade 2.4 Modelo no Simulink 2.4.1 Explicação do modelo 2.4.2 w(t) x t 2.4.3 $E_g(t)$ -x t 2.4.4 $V_t(t)$ x t 2.4.5 δ x t 2.4.5 δ x t 2.5.1 Ciclo crítico de trabalho e a trajetória percorrida no plano δxV_t 2.5.1 Ciclo crítico de trabalho 2.5.2 Trajetória percorrida no plano δxV_t 2.6 Corrente necessária para manter a rotação constante com B = 0.1Nms/rd Exercício 2 3.1 Simulação para B = 0.1 3.1.1 w(t) x t 3.1.2 $E_g(t)$ x t 3.1.3 $V_t(t)$ x t 3.1.4 δ x t 3.1.5 $I_a(t)$ x t 3.2 Simulação para B = 0.01 3.2.1 w(t) x t 3.2.2 $E_g(t)$ x t 3.2.3 $V_t(t)$ x t 3.2.3 $V_t(t)$ x t 3.2.3 $V_t(t)$ x t 3.2.4 δ x t 3.2.3 $V_t(t)$ x t 3.2.4 δ x t 3.2.5 δ x δ

1 Descrição Conceitual

1.1 Descrição da modelagem do motor DC

O Motor DC, em termos elétricos e mecânicos pode ser visto na imagem a seguir:

Figura 1: Modelo Eletromecânico

No qual a equação de modelagem elétrica é dada por:

$$v_t(t) = E_g + R_a \cdot i_a(t) + L_a \cdot \frac{d \cdot i_a(t)}{d_t}$$
(1)

A equação de de modelagem mecânica é dada por:

$$T(t) = J \cdot \frac{d}{d_t} \omega(t) + B \cdot \omega(t) + T_w(t)$$
(2)

E as equações de conversão eletromecânica são:

$$T_{em} = K_t \cdot I_a \tag{3}$$

$$E_g = K_e \cdot w_m \tag{4}$$

1.2 Descrição da modelagem do controle do Motor DC para um conversor classe A

1.2.1 Descrição dos parâmetros

Primeiramente é necessário ter a função de transferência do motor que vem da seguinte malha

Figura 2: Modelagem do motor DC

Logo, ela é dada por:

$$\frac{\boldsymbol{\omega}(s)}{T_w(s)} = \frac{(R_a + s \cdot L_a)}{(R_a + s \cdot L_a)(B + s \cdot J) + (K\Phi)^2}$$
 (5)

Que pode ser simplificadas de modo a termos uma separação enter a constante elétrica e magnética:

$$\frac{\omega(s)}{T_w(s)} \cong \frac{1}{(1 + \tau_m \cdot s)(1 + \tau_a \cdot s) + (K\Phi)^2} \tag{6}$$

Sendo τ_a :

$$\tau_a = \frac{L_a}{R_a} \tag{7}$$

E sendo τ_m :

$$\tau_m = \frac{J \cdot R_a}{(K\Phi)^2} \tag{8}$$

Tendo em vista o modelo do conversor classe A:

A.png

Figura 3: Conversor Classe A

Pode-se observar que a tensão média é dada por:

$$V_t = E \cdot \delta + E_g \cdot \frac{t_x}{T} \tag{9}$$

No qual, os componentes que o compõe tem o seguinte comportamento ao longo tempo:

Figura 4: Comportamento dos componentes do conversor classe A

Para a corrente Ia temos que no período de 0 a t1, fazendo aproximações de primeira ordem temos que:

$$i_a(t) = I_0(1 - \frac{t}{\tau_a}) + \frac{(E - E_g)}{R_a} \cdot \frac{t}{\tau_a}$$
 (10)

e para o período de t1 a t2:

$$i_a(t) = I_1(1 - \frac{(t-t1)}{\tau_a}) + \frac{(E - E_g)}{R_a} \cdot \frac{(t-t1)}{\tau_a}$$
 (11)

Sendo a variação do ripple ΔI descrita de forma linearizada pela equação:

$$\Delta I = \frac{2 \cdot E \cdot \delta \cdot T \cdot (1 - \delta)}{R_a \cdot (2 \cdot \tau_a - \delta \cdot T)} \tag{12}$$

1.2.2 Ciclo de operação

Um motor conversor classe A com que o acionamento do motor de corrente contínua ocorra apenas quando

- *Torque* > 0
- $I_a > 0$
- $\omega > 0$
- $E_g > 0$

Como resumo, eles irão operar no primeiro quadrante para ambos os gráficos a seguir

Figura 5: Quadrantes de operação do Motor DC

2 Exercício 1

2.1 Dados Iniciais

Os parâmetros dados pelo exercício são:

Tabela 1: Parâmetros do motor CC para ligação em paralelo sem carga

Parâmetro	Variável	Valor
Potência Nominal	P	1kw
Amortecimento Viscoso	В	0 Nms
Inercia	J	$1 \text{ kg} \cdot m^2$
Resistência de armadura	Ra	1Ω
Indutância de armadura	La	10mH
Constante de Tensão	Ke	1
Constante de Torque	Kt	1

Além disso, as seguintes imposições foram dadas pelo exercício:

- 1. Motor acionado por recortador classe A, a partir de uma fonte de 100V operando em MLP(PWM).
- 2. O sistema de controle possui malha interna que limita corrente de armadura em 10A para manter o torque limitado ao seu valor nominal.
- 3. Motor acelerado sob torque máximo até atingir 50% da velocidade base que quando for atingida é mantida por ação do regulador.

2.2 Velocidade de operação desejada para o motor

Para motores DC de Imã permanente com fluxo ϕ f constante em regime permanente, tendo a corrente limitada em 10A temos que:

$$V_t = E_g + R_a \cdot I_a - - > E_g = 90V \tag{13}$$

Como a constante $K_e = 1$ e o motor é acelerado até atingir torque máximo de 50%, temos:

$$\omega_m = \frac{K_e \cdot E_g}{2} = 45rad \tag{14}$$

2.3 Tempo necessário para atingir tal velocidade

Integrando a equação mecânica temos que:

$$\int_{t_f}^{t_i} T_{em} \cdot d_t = \int_{\omega_f}^{i} J \cdot d_{\omega} \tag{15}$$

Como partimos do repouso em ti = 0 temos que:

$$t_f = \frac{J \cdot \omega_f}{T_{em}} = \frac{1 \cdot 45}{10} = 4.5s \tag{16}$$

2.4 Modelo no Simulink

Figura 6: Modelo construído no Simulink

2.4.1 Explicação do modelo

2.4.2 $w(t) \times t$

Figura 7: Gráfico com a velocidade do motor

Podemos notar que a velocidade do motor cresce de forma linear, devido à limitação da corrente e consequentemente do torque à um valor fixo, como demonstrado no item 2.3.

2.4.3 $E_g(t)$ -x t

Figura 8: Tensão $E_g domotor$

Devido ao coeficiente de velocidade (K_v) unitário, a curva de tensão E_g segue os mesmos valores da velocidade w.

2.4.4 $V_t(t) \times t$

Figura 9: Tensão de entrada V_t

A tensão de entrada cresce linearmente devido à corrente da armadura ter valor máximo de 10A. Após o valor de rotação setado ser atingido, a tensão se mantém em 45V devido à tensão E_g gerada no motor.

Figura 10: Ciclo de trabalho gerado pelo controlador

O controlador proporcional inicia com ciclo de trabalho máximo devido à aceleração do motor. Vale notar, porém, que a tensão fornecida ao motor não é máxima devido ao limitador de corrente. Após a estabilização de sua rotação, a saída do controlador tende a zero.

2.4.6 $I_a(t) \times t$

Figura 11: Corrente de armadura do motor

A corrente inicia limitada à 10A até a aceleração máxima do motor. Após a estabilização de sua velocidade, como não há perdas nem carga dissipativa, a corrente tende a zero.

2.5 Determinar o ciclo crítico de trabalho e a trajetória percorrida no plano δxV_t

2.5.1 Ciclo crítico de trabalho

Sabendo que para que o ciclo de trabalho crítico, t_x deve ser igual a 0, como pode ser observado na figura 4:

$$\delta \cong \frac{E_g}{E} = \frac{45}{100} = 0.45 \tag{17}$$

2.5.2 Trajetória percorrida no plano δxV_t

Figura 12: Trajetória no plano delta x Vt

2.6 Corrente necessária para manter a rotação constante com B = 0.1Nms/rd

Em regime permanente, desconsiderando a ação de um torque externo, podemos calcular o torque mecânico atuante no sistema:

$$T_{em} = Bw_m \implies T_{em} = 4.5Nm \tag{18}$$

E, por consequência, a potência mecânica do mesmo:

$$P_m = T_{em} w_m \implies P_m = 202.5W \tag{19}$$

Como não há perdas e o sistema já se encontra em regime permanente, a potência mecânica pode ser considerada igual à elétrica, assim:

$$P_m = P_e \implies e_a i_a = 202.5W \implies i_a = 4.5A \tag{20}$$

Portanto, a corrente de armadura nessa situação seria de 4.5A. Este valor é comprovado no próximo exercício, através de simulações.

3 Exercício 2

Para o segundo exercício, foi construído o diagrama de blocos abaixo no Simulink. Nele, além dos blocos referentes ao comportamento do motor, temos um controle PID que alimenta o duty cycle de um gerador de PWM, além de um sistema para limitar a corrente em 10A.

Figura 13: Modelo construído no Simulink

3.1 Simulação para B = 0.1

3.1.1 $w(t) \times t$

Figura 14: Velocidade do motor

Comparativamente com o caso anterior em que B = 0, agora temos uma curva de aceleração não linear devido à perda ocorrida. Além disso, o motor leva agora mais tempo para atingir a velocidade desejada.

3.1.2 $E_g(t) \times t$

Figura 15: Gráfico da tensão Eg

3.1.3 $V_t(t) \times t$

Figura 16: Gráfico da tensão Vt

A tensão Vt se estabiliza em uma média de 49.5V. Isso pode ser inferido devido à corrente de armadura já calculada no exercício anterior de ia = 4.5A, assim:

$$Vt = Eg + R_a I_a \implies Vt = 45 + 1 * 4.5 \implies Vt = 49.5V$$
(21)

3.1.4 $\delta x t$

Figura 17: Gráfico do ciclo de trabalho do PID

O ciclo de trabalho não vai a 0 em regime permanente como no primeiro exercício, pois agora temos perdas no sistema. Assim, o mesmo se estabiliza em 0.495 para manter a tensão $V_t = 49.5$ V.

3.1.5 $I_a(t) \times t$

Figura 18: Gráfico da corrente Ia

Como já calculado anteriormente no exercício 1, a corrente de armadura média necessária para manter o motor à 45rad/s com B = 0.1 é de Ia = 4.5A. Isso pode ser comprovado pelo gráfico gerado na simulação.

3.2 Simulação para B = 0.01

Este caso foi simulado com o mesmo modelo do caso acima, apenas sendo alterada sua variável B. Seus resultados apresentam um caso intermediário entre B=0 e B=0.1.

3.2.1 $w(t) \times t$

Figura 19: Velocidade do motor

Assim como no caso de B=0.1, a curva de aceleração do motor é não linear, porém este leva um tempo intermediário entre os casos de B=0 e B=0.1.

3.2.2 $E_g(t) \times t$

Figura 20: Gráfico da tensão Eg

3.2.3 $V_t(t) \times t$

Figura 21: Gráfico da tensão Vt

Após a aceleração do motor a tensão de entrada média se estabiliza em $V_t = 45.45V$, como pode ser verificado:

$$Vt = Eg + R_a I_a \implies Vt = 45 + 1 * 0.45 \implies Vt = 45.45V$$
 (22)

3.2.4 $\delta x t$

Figura 22: Gráfico do ciclo de trabalho do PID

O ciclo de trabalho, para alimentar o motor à tensão V_t , se estabiliza em 0.4545.

3.2.5 $I_a(t) \times t$

Figura 23: Gráfico da corrente Ia

Com B = 0.01, temos o torque $T_m = w_m B \implies T_m = 0.45Nm$, assim $I_a = 0.45A$.

4 Referências Bibliográficas

SEN, P.C. "Principles of Electric Machines and Power Electronics" Wiley India Pvt. Limited, Second Edition, 2007.

POMILLO, J.A. "Eletrônica de Potência - Cap4" DSE-FEEC-UNICAMP, 2014.