Regular expressions, languages, and the pumping lemma for regular languages

Textbook: 1.3 and 1.4

Regular languages

Def: Regular languages. A language is said to be "regular" iff there exists a DFA recognizing it and only it.

Corollary: Since DFA are closed under the regular operations, so to are regular languages.

Corollary: Since DFA and NFA are equivalent, a language is regular iff there exists an NFA recognizing it.

Corollary: All finite sets are regular. Since the language consisting of exactly one string is trivially decidable by a DFA and regular languages are closed under union, any finite set of strings is regular.

Regular expressions

- ► Invented by Kleene (of the Kleene star, Kleene plus, and Kleene recursion theorem)
- ► Formal notation for expressing DFAs
- Commonly used in non-theoretical computer science

Formal definition of regular expressions

Def: Regular expressions. We say R is a regular expression on alphabet Σ if R is:

- 1) a character $\in \Sigma$
- 2) the **empty string** ϵ
- 3) the **empty set** \emptyset
- 4) $(R_1 \cup R_2)$ where R_1, R_2 are regular expressions
- 5) $(R_1 \circ R_2)$ where R_1, R_2 are regular expressions
- 6) $(R_1)^*$ (zero or more repetitions of R_1) where R_1 is a regular expression

RegEx shorthands

- ▶ For convenience, $A \circ B$ is written AB
- ▶ A^+ is shorthand for $A \circ A^*$
- ▶ **Informally,** $A \cup B$ is given by (A|B). This is used in real life, but not here
- Σ is usually inferred

Thm: Regular expressions and NFA are equivalent. This will be informally proved after this slide.

Corollary: A language is regular iff there exists a regular expression recognizing it.

RegEx-NFA equivalence pt. 1

Figure 1: a for some $a \in \Sigma$

Figure 2: ϵ

Figure 3: \emptyset

RegEx-NFA equivalence pt. 2

Figure 4: $(R_1 \cup R_2)$

Figure 5: $(R_1 \circ R_2)$

Figure 6: R_1^*

GNFAs pt. 1

- We can use the previous diagrams to convert REs to NFAs (and thus to DFAs)
- How do we convert NFAs to REs?

Def: Generalized nondeterministic finite automata (**GNFAs**). A GNFA is a NFA where edges are allowed to be any RE, rather than a character $a \in \Sigma$ for alphabet Σ . For convenience, we make the following assumptions:

- 1) The start state has transition arrows going to every other state but no arrows coming in from any other state
- 2) There is only a single accept state, and it has arrows coming in from every other state but no arrows going to any other state
- 3) The accept state is not the start state
- 4) Except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself

GNFAs pt. 2

▶ It is trivial to show that any NFA can be converted to an equivalent one in this form

Figure 7: A generalized nondeterministic finite automaton

GNFA reduction

- Want to reduce a GNFA to a single regular expression
- ▶ Will reduce the graph to an equivalent one of size 2, with one entry node and one acceptance node
- **>** By definition, this will have one edge $(q_0
 ightarrow q_f)$
- ► The label of this edge will be a regular expression equivalent to the GNFA

Algorithm: GNFA to RE.

- ▶ Take in some GNFA
- ► For as long as the GNFA is larger than 2 nodes:
 - Select a state which is not the entry or accepting state
 - Rip that node out
 - Repair the GNFA so that it recognizes the same language while maintaining the aforementioned GNFA assumptions
- Once we are at 2 nodes, output the label of the edge connecting them

Non-regular languages

- Not all languages are regular
- Ex: The set of all properly-matched series of parenthesis
 - ► Like (()(()())), but not like ())(
 - ► This takes a potentially infinite amount of information to decide, meaning it cannot be encoded into a DFA/NFA/RegEx
- We can prove that a language is, but how do we prove that a language isn't?

The pumping lemma for regular languages

- For a regular language \mathcal{L} , if a string $s \in \mathcal{L}$ is greater than some special length (the **pumping length**), they can be "pumped"
- ▶ A string can be "pumped" if it contains a section that can be repeated *any number* of times while keeping the string $\in \mathcal{L}$

$$(\mathcal{L} \text{ is regular}) o (\mathcal{L} \text{ can be pumped})$$
 $eg(\mathcal{L} \text{ can be pumped}) o
eg(\mathcal{L} \text{ is regular})$

Pumping lemma (formally)

Def: If A is a regular language, then there exists a natural number p (the pumping length) where, if $s \in A$ such that $|s| \ge p$, then s may be divided into three pieces, s = xyz such that the following conditions are met.

- 1) For each $i \ge 0$, $xy^iz \in A$
- 2) |y| > 0
- 3) $|xy| \leq p$

Either x or z can be ϵ , but condition 2 implies $y \neq \epsilon$.

Pumping lemma (informal proof)

From the textbook (page 79):

FIGURE 1.72 Example showing how the strings x, y, and z affect M

Example: Proving nonregularity

Ex: Consider the language $B = \{0^n 1^n : n \ge 0\}$. We will assume B is regular, then apply the pumping lemma to derive a contradiction (proving B is nonregular).

Assume B is regular. Let p be the pumping length guaranteed by the pumping lemma. We will examine $s=0^p1^p$. Since |s|>p, there must exist some s=xyz where:

- 1) For each $i \ge 0$, $xy^iz \in A$
- 2) |y| > 0
- 3) $|xy| \leq p$

Condition 3 imposes that $xy=0^j$ for some $1\leq j\leq p$. Since x can be ϵ but y cannot, we can say $y=0^k, 1\leq k\leq p$. However, the removal or addition of any nonzero number of 0s causes the resulting string $\notin B$: Thus, condition 1 is always violated when the others are applied. This is a contradiction, proving B is not regular. End of proof.

Next up: Context-free grammars

Although his last name is commonly pronounced KLEE-nee or KLEEN, Kleene himself pronounced it KLAY-nee. His son, Ken Kleene, wrote: "As far as I am aware this pronunciation is incorrect in all known languages. I believe that this novel pronunciation was invented by my father." (From Wikipedia)