1.	Which approach ensures continual (never-ending) exploration? (Select all that apply)	1 point
	Exploring starts	
	On-policy learning with a deterministic policy	
	$lacksquare$ On-policy learning with an ϵ -soft policy	
	$lacksquare$ Off-Policy learning with an ϵ -soft behavior policy and a deterministic target policy	
	$lacksquare$ Off-Policy learning with an ϵ -soft target policy and a deterministic behavior policy	
2.	When can Monte Carlo methods, as defined in the course, be applied? (Select all that apply)	1 point
	When the problem is continuing and given a batch of data containing sequences of states, actions, and rewards	
	When the problem is continuing and there is a model that produces samples of the next state and reward	
	When the problem is episodic and given a batch of data containing sample episodes (sequences of states, actions, and rewards)	
	When the problem is episodic and there is a model that produces samples of the next state and reward	
3.	Which of the following learning settings are examples of off-policy learning? (Select all	1 point
•	that apply)	1 point
	Learning the optimal policy while continuing to explore	
	Learning from data generated by a human expert	
4.	If a trajectory starts at time t and ends at time T , what is its relative probability under the target policy π and the behavior policy b ?	e 1 point

Hint: pay attention to the time subscripts of A and S in the answers below.

Hint: Sums and products are not the same things!

- $igcirc \prod_{k=t}^{T-1} rac{\pi(A_k \mid S_k)}{b(A_k \mid S_k)}$
- $igcirc \sum_{k=t}^{T-1} rac{\pi(A_k \mid S_k)}{b(A_k \mid S_k)}$
- $igcap rac{\pi(A_{T-1} \mid S_{T-1})}{b(A_{T-1} \mid S_{T-1})}$
- $\bigcirc \ rac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$
- 5. When is it possible to determine a policy that is greedy with respect to the value functions v_π, q_π for the policy π ? (Select all that apply)

1 point

- lacksquare When state values v_π and a model are available
- lacksquare When state values v_π are available but no model is available.
- lacksquare When action values q_π and a model are available
- lacksquare When action values q_π are available but no model is available.
- **6.** Monte Carlo methods in Reinforcement Learning work by...

1 point

Hint: recall we used the term *sweep* in dynamic programming to discuss updating all the states systematically. This is **not** the same as visiting a state.

- O Planning with a model of the environment
- Averaging sample rewards
- Averaging sample returns
- O Performing **sweeps** through the state set

7.	Suppose the state s has been visited three times, with corresponding returns $8,4$, and 3 . What is the current Monte Carlo estimate for the value of s ?	1 point
	\bigcirc 3	
	O 15	
	O 5	
	\bigcirc 3.5	
8.	When does Monte Carlo prediction perform its first update?	1 point
	After the first time step	
	After every state is visited at least once	
	At the end of the first episode	
9.	For Monte Carlo Prediction of state-values, the number of updates at the end of an episode depends on	1 point
	Hint: look at the innermost loop of the algorithm	
	The length of the episode	
	The number of states	
	The number of possible actions in each state	
10	In an ϵ -greedy policy over ${\cal A}$ actions, what is the probability of the highest valued action if there are no other actions with the same value?	1 point
	$\bigcirc 1-\epsilon$	
	\bigcirc ϵ	
	$\bigcirc \ 1 - \epsilon + rac{\epsilon}{\mathcal{A}}$	
	$\bigcirc \frac{\epsilon}{A}$	
	••	