Our Reference: KJD-100-A PATENT

APPARATUS AND METHOD FOR AUTOMATION OF LIQUID PHASE MICROEXTRACTION

BACKGROUND

[0001] The present invention relates, in general, to autosamplers for use with chemical separation and analysis methods which have means for identifying the separated components: gas chromatography, gas chromatography mass spectroscopy and high performance liquid chromatography, to name a few.

During the last eight years, a new concept for concentrating analytes for analysis has been developed. The most widely accepted generic term for this methodology is "Liquid Phase Microextraction or LPME". The technique involves the use of 1-5 microliters of solvent to concentrate chemicals present in water, air or the head space atmosphere above a liquid or solid sample. After the chemicals are concentrated from the medium into the solvent, the liquid is injected into an appropriate chromatography instrument for separation and analysis, or directly analyzed if component separation is not necessary.

[0003] The applications of this technique are wide-ranging and growing. The method has been used to analyze pharmaceuticals and environmental contaminants in blood, organic environmental chemicals in water, and solvents and impurities in solids, to name a few examples.

[0004] LPME can be used with almost any analytical method, including GG, GC/MS, HPLC, Capillary Electrophoresis separation-analysis methods, or without separation techniques using FTIR, UV/VIS, NMR or MS. LPME and Microdrop Head Space Analysis (or MDHA) techniques allow dilute or even relatively concentrated samples in complex sample matrices to be concentrated into a small solvent volume for analysis.

[0005] The general procedure for LPME involves the following steps: 1) a solvent is drawn into a sampling device, commonly a syringe or adapted syringe-like device, 2) a microdrop of the solvent is then forced out of the syringe onto the tip of the syringe needle and into the medium to be sampled, 3) the chemicals of interest

are partitioned into the solvent over a period of a few minutes, and 4) the solvent microdrop is withdrawn into the syringe and the sample concentrate then analyzed.

[0006]

The solvent microdrop can be exposed directly to the sample medium, or it can be encased in a polymeric hollow fiber or film which is immersed in the medium and into which the sample can also partition into. The latter method protects the microdrop from being removed from the needle tip during the sampling period. As with all sampling techniques, in order to obtain good reproducible analytical results with this method, the timing and precision of each of the above steps must be reproducible. To this point, this method has suffered from the lack of automated reproduction of these manual steps.

[0007]

A number of manufacturers sell autosamplers which can perform multiple injections in gas chromatography or liquid chromatography of varying sample volumes. However, such autosamplers and automation methods have been employed only with the insertion of the syringe into the sample and the extraction of a portion of the sample into the syringe. Heretofore, there has not been an automated method for liquid phase microextraction thereby requiring the manual ejecting of a microdrop of a solvent out of the syringe and onto the tip of the syringe needle in the head space above the sample or into the medium to be sampled. This is a tedious task when numerous samples must be analyzed and requires precise and continued plunger control to maintain the microdrop on the tip of the plunger for the sample period. This is a difficult manual task, especially for numerous samples.

[8000]

Thus, it would be desirable to provide automated reproduction of liquid phase microextraction methodology or process steps. It would also be desirable to provide an automated method for liquid phase microextraction which can be easily implemented in existing autosampling equipment.

SUMMARY

[0009]

The present invention is an apparatus and method for automation of liquid phase microextraction for use in gas chromatography and chemical separation and analysis methods such as gas chromatography, high performance liquid chromatography and mass chromatography mass spectroscopy (GC HPLC GC/MS).

[0010]	In one aspect, the present invention is a method for automatically
	performing liquid microextraction analysis of a plurality of samples in separate vials.
	The method comprises the steps of:
[0011]	controlling movement of a syringe in multiple axes,
[0012]	cleaning the syringe;
[0013]	drawing a carrier liquid into the syringe;
[0014]	moving the syringe to a sample vial;
[0015]	inserting a tip of the syringe into the vial;
[0016]	collecting a portion of the sample in the syringe;
[0017]	withdrawing the syringe from the sample vial;
[0018]	moving the syringe to an instrument injector;
[0019]	injecting the sample into the instrument injector for analysis of the
	sample; and
[0020]	repeating the prior steps on each of the plurality of samples.
[0021]	The step of inserting further comprises the steps of activating a syringe
	plunger to expel and hold a microdrop of the solvent on the tip of the syringe,
	holding the microdrop on the tip of the syringe in the sample vial for a period of time
	to collect the sample, and drawing the microdrop and the collected portion of the
	sample into the syringe.
[0022]	In another aspect, the method steps include placing a plurality of
	sample vials in a holder in established coordinate positions.
[0023]	In yet another aspect, the method steps include:
[0024]	providing a syringe cleaning solution in a known coordinate position;
[0025]	moving the syringe to the cleaning vial and withdrawing contents of the
	cleaning solution into the syringe; and
[0026]	expelling the cleaning solution from the syringe into a waste receptacle.
[0027]	In another aspect, the method includes the step of inserting the syringe
	into the sample vial to position the tip of the syringe in a head space above a liquid
	sample in the vial, or inserting the tip of the syringe into the liquid sample in the
	sample vial.
[0028]	The present apparatus also includes:

[0029]	an apparatus for automatically performing liquid microextraction
	analysis of a plurality of samples in separate vials, the apparatus comprises:
[0030]	means for controlling movement of a syringe in multiple axes;
[0031]	means for cleaning the syringe;
[0032]	means for drawing a carrier liquid into the syringe;
[0033]	means for moving the syringe to a sample vial;
[0034]	means for inserting a tip of the syringe into the vial;
[0035]	means for collecting a portion of the sample in the syringe;
[0036]	means for withdrawing the syringe from the sample vial;
[0037]	means for moving the syringe to an instrument injector,
[0038]	means for injecting the sample into the instrument injector for analysis
	of the sample.
[0039]	The apparatus and method of the present invention uniquely
	automates liquid phase microextraction of a plurality of samples.
	BRIEF DESCRIPTION OF THE DRAWING
[0040]	The various features, advantages and other uses of the present
	invention will become more apparent by referring to the following detailed
	description and drawing in which:
[0041]	Fig. 1 is a perspective view of a autosampler and gas chromotagraph
	which can be used to implement the present apparatus and method;
[0042]	Fig. 2 is an enlarged, partial perspective view of the injector of the
	autosampler shown in Fig. 1;
[0043]	Fig. 3 is an enlarged, partial, perspective view of the cleaning and
	carrier tray of the sample holder of the autosampler shown in Fig. 1;
[0044]	Figs. 4-6 are partial, enlarged, perspective views showing the sequence
	of movement of the injector between the cleaning and sample carrier vials shown in
	Figs. 1 and 3;
[0045]	Fig. 7 is an enlarged, partial, perspective view showing the injector
	engaged with one of the sample vials;
[0046]	Fig. 8 is a perspective view showing the engagement of the injector
	syringe with the injector port of the gas chromotagraph shown in Fig. 1;

[0047] Fig. 9 is an enlarged, partial, perspective view showing an alternate sample agitator/heater which can be used in the autosampler apparatus and method of the present invention; and

[0048] Fig. 10 is a perspective of an alternate autosampler which can implement the sampling apparatus and method of the present invention.

DETAILED DESCRIPTION

[0049] Refer now to the drawing, and to Figs. 1-9, in particular, there is depicted an apparatus 10 for performing automatic gas chromatography. The apparatus 10 includes a gas chromatograph 12 and an autosampler 14. The autosampler 14 is mounted on the gas chromatograph 12.

[0050] The autosampler 14 includes a frame 16 having support legs 18 attachable to the housing of the gas chromatograph 12. The frame 16 defines a horizontal track for an injector assembly 20. The injector assembly 20 includes a housing 22 supporting at least one injector, such as a syringe 24.

[0051] The autosampler 14 may be any suitable autosampler 14 used in gas chromatography or mass spectronomy. By example only, the autosampler 14 can be a Combi PAL manufactured by CTC Analytics, AG, Germany.

[0052] The injector assembly 20 is mounted on a track 25 for movement along a Y axis relative to the frame or horizontal track 16. The injector assembly 20 also contains controls and drive elements for moving the syringe 24 in a Z axis relative to the frame or horizontal track 16.

[0053] A control means or controller 26 is mounted on the frame 16 and includes suitable input devices and an output display for entering commands and displaying messages, sequence steps, etc., for controlling the operation of the autosampler 14. The controller 26 includes a central processing unit which executes instructions stored as macros in a memory for controlling the operation of the autosampler 14, as described hereafter.

[0054] Also supported on the frame 16 is a first tray 28 containing a plurality of vials, with four vials 30A, 30B, 30C, and 30D being shown by way of example only. The vials 30A-30D are provided for a sample carrier or solvent, and cleaning solutions as described hereafter.

[0055] Also mounted on the frame 16 is a second specimen or sample holder 32. The holder 32 is configured for holding a plurality of sample vials 34 which contain samples to be tested in the gas chromatograph 12.

[0056] In normal operation, the autosampler 14 operates to bring the injector assembly 20 to a position over one of the sample vials 34 in the holder 32. The syringe 24 is lowered to cause the tip of the syringe 24 to pierce the septum of one vial 34 to extract a sample from the material in the vial 34. This specific extraction technique will be described hereafter.

The injector assembly 24 then elevates the syringe 24 and traverses along the frame 16 and along the Y axis track 25, as necessary, to move the injector assembly 20 over one of the injectors 36 and 38 of the gas chromatograph 12. The syringe 24 is lowered to cause the tip of the injector 24 to pierce the septum on one of the injectors 36 and 38 of the gas chromotagraph 12 before the plunger of the syringe 24 is depressed to inject the contents of the syringe 24 into the injector 36 or 38 for analysis of the contents of the sample.

[0058] According to the present invention, the autosampler 14 includes a, such as the Combi PAL described above, a member of control programs or "macros" stored in a memory of the controller 26 for automating liquid microextraction of a plurality of samples in the holder 32 continuously and automatically until all of the samples are tested.

[0059] The macros can be non-permanently modified for an analysis. The controller 26 also stores information on any attachments, such as the first tray 28 and the holder 32, being used and their location.

[0060] A software program is also available which contain the actual macro programming capabilities to modify an auto-sampling method or to program the LPME method.

[0061] Various commands are available in the macro-programming software for controlling all aspects of the operation of the autosampler 14, including injector movement, injector volume and injector speed, agitation time, incubation time, wash cycle variables, etc. The available software commands are used to create the macro

program which implements the following method of operation of the autosampler 14 in automating liquid microextraction.

[0062] When operating, the software named Cycle Composer in the Combi PAL auto-sampler 14, the computer downloads all of the information stored in the controller 26 and takes direct control of the auto-sampler 14. Alternately, the complete LPME macro could be developed and stored in the controller 26.

[0063] The method employed by the present invention is executed by the macro program and involves a first step of cleaning the syringe 24. The syringe 24 is moved over the vial 30A, for example, in the first tray 28, and as shown in Fig. 3 extract lowered to a cleaning agent from the vial 30A.

[0064] The syringe 24 is then moved over the second vial 30B as shown in Fig. 4 wherein the cleaning agent and any remaining previous sample in the syringe 24 are expelled into the second vial 30B. The third vial 30C may be employed for an additional cleaning agent, if necessary. The use of any cleaning agent in the third vial 30C, Fig. 5, can be expelled into the second vial 30B as described above.

[0065] The fourth vial 30D contains sampling solvent in which a small volume of sample solvent, such as hexadecane by example only, is drawn into the syringe 24 for each sample sequence, as shown in Fig. 6.

[0066] The autosampler 14 then moves the entire injector assembly 20, as shown in Fig. 7, to a position locating the syringe 24 over one of the sample vials 34 in the holder 32. The syringe 24 lowers a prescribed distance to cause the tip of the syringe 24 to pierce the septum in the selected sample vial 34.

[0067] Next, the syringe plunger is activated to expel a microdrop of the solvent on the tip of the syringe 24. As occurs in liquid micro extraction, the microdrop is maintained on the tip of the syringe 24 and collects sample material in the head space above the fluid sample in the vial 34. The microdrop is maintained on the tip of the syringe 24 for a predetermined time period as set in the macroprogram. A three minute sample period can be used by way of example only.

[0068] Next, the microdrop is drawn back into the syringe 24 by movement of the syringe plunger.

[0069]

The injector assembly 20 is then moved over one of the injectors 36 or 38 of the gas chromotagraph 12 as shown in Fig. 8. The syringe 24 is lowered until the tip of the syringe 24 pierces the septum in the selected injector 36 or 38. The plunger is then depressed to expel at least a portion of the contents of the syringe 24 into the selected injector 36 or 38 of the gas chromatograph for analysis.

[0070]

The syringe 24 is then withdrawn from the injector 36 or 38 and the process repeated through cleaning, drawing in new solvent, liquid microextraction in the head space of the next sample vial 34, and injection into one of the gas chromatograph injectors 36 or 38.

[0071]

The above-described automated liquid microextraction process can also be modified for introducing a step into the automated process in which the contents of any vial 34 or any sample drawn into the syringe 24 may be agitated in an agitator device 40 shown in Fig. 9. The agitator device 40 is a commercially available agitator mounted by supports to the frame 16 of the autosampler 14.

[0072]

The present automated liquid microextraction process may also be used in other types of autosamplers, such as the autosampler 50 shown in Fig. 10. The autosampler 50 is an agilent 7683 Series injector, by example only.

[0073]

This type of autosampler 50 includes a carousel 52 containing a plurality of vials arranged in radially extending rows. A selector assembly 54 is mounted on the carousel 52 and contains a gripper 56 for selecting one of a plurality of vials 58 in the carousel 52. The gripper 52 is moveable along an axis from the carousel 52 to a rotary holder 60 positioned below an stationary injector assembly 62. The gripper 56 is operative to insert or withdraw one of the vials 58 into or out of the holder 60. Other vials 64 carried in the holder 60 contain cleaning media, sample solvent and a waste receptacle for cleaning the syringe carried in the injector assembly 62 in a similar manner as that described above.

[0074]

The control of the autosampler 50 is performed by a macro program in the control means which functions in a manner similar to the method described above to automate the liquid microextraction of multiple samples and an analysis of the samples in a gas chromotagraph, etc. [0075] In summary, the present invention is a method for automating liquid microextraction of multiple samples in chemical separation and analysis methods, such as GC HPLC GC/MS.