Performance-Portable Implicit Scale-Resolving Compressible Flow Using libCEED

SIAM CSE 2023

James Wright February 27, 2023

Ann and H.J. Smead Department of Aerospace Engineering Sciences

Outline

- 1. What is libCEED?
- 2. A (Very) Brief Finite Element Refresher
- 3. libCEED Overview
- 4. Fluid Simulations with libCEED

· C library for element-based discretizations

- · C library for element-based discretizations
 - Bindings for Fortran, Rust, Python, and Julia available

- · C library for element-based discretizations
 - · Bindings for Fortran, Rust, Python, and Julia available
- Designed for matrix-free operator evaluation

- · C library for element-based discretizations
 - · Bindings for Fortran, Rust, Python, and Julia available
- · Designed for matrix-free operator evaluation
- · Capable of running on GPU/Accelerator hardware

- · C library for element-based discretizations
 - · Bindings for Fortran, Rust, Python, and Julia available
- · Designed for matrix-free operator evaluation
- · Capable of running on GPU/Accelerator hardware
 - · Code that runs on CPU also runs on GPU without changes

- · C library for element-based discretizations
 - · Bindings for Fortran, Rust, Python, and Julia available
- Designed for matrix-free operator evaluation
- · Capable of running on GPU/Accelerator hardware
 - · Code that runs on CPU also runs on GPU without changes
 - Computational backend selectable at runtime via JIT compilation

- · C library for element-based discretizations
 - · Bindings for Fortran, Rust, Python, and Julia available
- Designed for matrix-free operator evaluation
- · Capable of running on GPU/Accelerator hardware
 - · Code that runs on CPU also runs on GPU without changes
 - Computational backend selectable at runtime via JIT compilation
- · Geared toward high-order element discretizations

A (Very) Brief Finite Element Refresher

Given the homogenous Poisson equation in weak form: Find $u \in \mathcal{S}$ such that

$$\int_{\Omega} v_{,x} u_{,x} d\Omega = \int_{\Omega} v f d\Omega \quad \forall v \in \mathcal{V}$$

Given the homogenous Poisson equation in weak form: Find $u \in \mathcal{S}$ such that

$$\int_{\Omega} v_{,x} u_{,x} d\Omega = \int_{\Omega} v f d\Omega \quad \forall v \in \mathcal{V}$$

Approximate $S \approx S^h = \operatorname{span}(\{\phi^i\}_i^{n_{\operatorname{dof}}})$ and $\mathcal{V} \approx \mathcal{V}^h = \operatorname{span}(\{\phi^j\}_i^{n_{\operatorname{dof}}})$

Given the homogenous Poisson equation in weak form: Find $u \in \mathcal{S}$ such that

$$\int_{\Omega} v_{,x} u_{,x} d\Omega = \int_{\Omega} v f d\Omega \quad \forall v \in \mathcal{V}$$

Approximate
$$\mathcal{S} pprox \mathcal{S}^h = \mathrm{span}(\{\phi^i\}_i^{n_{\mathrm{dof}}})$$
 and $\mathcal{V} pprox \mathcal{V}^h = \mathrm{span}(\{\phi^j\}_j^{n_{\mathrm{dof}}})$

$$Ax = b$$

Given the homogenous Poisson equation in weak form: Find $u \in \mathcal{S}$ such that

$$\int_{\Omega} v_{,x} u_{,x} d\Omega = \int_{\Omega} v f d\Omega \quad \forall v \in \mathcal{V}$$

Approximate $S \approx S^h = \operatorname{span}(\{\phi^i\}_i^{n_{\text{dof}}})$ and $\mathcal{V} \approx \mathcal{V}^h = \operatorname{span}(\{\phi^j\}_i^{n_{\text{dof}}})$

$$Ax = b$$

$$u = \sum_{i=1}^{n_{\text{dof}}} \phi^i x_i \in \mathcal{S}^h, \quad A_{ij} = \int_{\Omega} \phi^i_{,x} \phi^j_{,x} \, d\Omega, \quad b_j = \int_{\Omega} \phi^j f \, d\Omega$$

Finite Element Method

Discretize the domain Ω into elements Ω^e

$$\Omega^h = \bigcup_{e=0}^{n_{\rm elm}} \Omega^e \approx \Omega$$

Finite Element Method

Discretize the domain Ω into elements Ω^e

$$\Omega^h = igcup_{e=0}^{n_{
m elm}} \Omega^e pprox \Omega$$

Approximate the integrals over elements via quadrature

$$\int g(x) \, \mathrm{d}x \approx \sum_{k}^{n_{\text{quad}}} w^k g(\xi^k)$$

Finite Element Method

Discretize the domain Ω into elements Ω^e

$$\Omega^h = \bigcup_{e=0}^{n_{\rm elm}} \Omega^e \approx \Omega$$

Approximate the integrals over elements via quadrature

$$\int g(x) \, \mathrm{d}x \approx \sum_{k}^{n_{\text{quad}}} w^k g(\xi^k)$$

Thus the final problem can be stated as: Find $x \in \mathbb{R}^{n_{\mathrm{dof}}}$ in Ax = b for

$$A_{ij} = \sum_{e}^{n_{\text{elm}}} \sum_{k}^{n_{\text{quad}}} \left[w^k \phi_{,x}^i(\xi^k) \phi_{,x}^j(\xi^k) \right]_{\Omega^e}, \quad b_j = \sum_{e}^{n_{\text{elm}}} \sum_{k}^{n_{\text{quad}}} \left[w^k \phi^j(\xi^k) f(\xi^k) \right]_{\Omega^e}$$

libCEED Overview

$$A = \mathcal{P}^T \mathcal{E}^T B^T D B \mathcal{E} \mathcal{P}$$

global domain all (shared) dofs

T-vector

$$A = \mathcal{P}^T \mathcal{E}^T B^T D B \mathcal{E} \mathcal{P}$$

$$A = \mathcal{P}^T \mathcal{E}^T B^T D B \mathcal{E} \mathcal{P}$$

$$A = \mathcal{P}^T \mathcal{E}^T B^T DB \mathcal{E} \mathcal{P}$$

$$A = \mathcal{P}^T \mathcal{E}^T B^T DB \mathcal{E} \mathcal{P}$$

Note

libCEED implements the operators matrix-free; None of the libCEED Objects store a matrix

CeedElemRestriction

 Defined by element connectivity and the number of components

CeedElemRestriction

 Defined by element connectivity and the number of components

CeedBasis

- Defined by the basis functions and the quadrature rule
- Built-in options for common basis functions and guadrature rules

CeedFlemRestriction

 Defined by element connectivity and the number of components

CeedBasis

- · Defined by the basis functions and the quadrature rule
- Built-in options for common basis functions and quadrature rules

CeedQFunction

- C function
- · Common operators available (mass. poisson, identity, etc.)
- User defined QFunctions also possible

CeedFlemRestriction

 Defined by element connectivity and the number of components

CeedBasis

- Defined by the basis functions and the quadrature rule
- Built-in options for common basis functions and quadrature rules

CeedQFunction

- C function
- Common operators available (mass. poisson, identity, etc.)
- User defined OFunctions also possible

CeedOperator

- Computation backend defined at runtime
- Full L operator (can be) JITed to the desired backend (CUDA, HIP, CPU, etc.)

Poisson CeedQFunction

```
\sum_{k}^{n_{	ext{quad}}} \left[ w^k u_{,x}(\xi^k) v_{,x}(\xi^k) 
ight]_{\Omega^e} \ B^T D B
```

```
CEED QFUNCTION(Poisson1DApply)(void *ctx, const CeedInt Q,
                                   const CeedScalar *const *in.
                                  CeedScalar *const *out) {
     // in[0] is gradient u. size (0)
     // in[1] is quadrature data. size (0)
     const CeedScalar *ug = in[0]. *g data = in[1];
     // out[0] is output to multiply against gradient v. size (0)
     CeedScalar *vg = out[0]:
10
11
     // Quadrature point loop
     CeedPragmaSIMD
     for (CeedInt i=0: i<0: i++) {
13
       vg[i] = ug[i] * q_data[i];
14
15
     } // End of Ouadrature Point Loop
16
17
     return CEED ERROR SUCCESS:
18
```

Poisson CeedOFunction

$$\sum_{k}^{n_{ ext{quad}}} \left[w^k u_{,x}(\xi^k) v_{,x}(\xi^k)
ight]_{\Omega^e} \ B^T D B$$

• ug=
$$u_{,x}(\xi^k) = {\color{red} B} u^e$$

```
CEED QFUNCTION(Poisson1DApply)(void *ctx, const CeedInt Q,
                                   const CeedScalar *const *in.
                                   CeedScalar *const *out) {
     // in[0] is gradient u. size (0)
     // in[1] is quadrature data. size (0)
     const CeedScalar *ug = in[0]. *g data = in[1];
     // out[0] is output to multiply against gradient v. size (0)
     CeedScalar *vg = out[0]:
10
11
     // Quadrature point loop
     CeedPragmaSIMD
12
     for (CeedInt i=0: i<0: i++) {
13
14
       vg[i] = ug[i] * q data[i]:
15
     } // End of Ouadrature Point Loop
16
17
     return CEED ERROR SUCCESS:
18 }
```

Poisson CeedQFunction

$$\sum_{k}^{n_{ ext{quad}}} \left[w^k u_{,x}(\xi^k) v_{,x}(\xi^k)
ight]_{\Omega^e} \ B^T D B$$

• ug=
$$u_{,x}(\xi^k) = Bu^e$$

• q_data=
$$w^{ka}$$

^aalong with jacobian determinant

```
CEED QFUNCTION(Poisson1DApply)(void *ctx, const CeedInt Q,
                                   const CeedScalar *const *in.
                                   CeedScalar *const *out) {
     // in[0] is gradient u. size (0)
     // in[1] is quadrature data. size (0)
     const CeedScalar *ug = in[0]. *g data = in[1];
     // out[0] is output to multiply against gradient v. size (0)
     CeedScalar *vg = out[0]:
10
11
     // Quadrature point loop
     CeedPragmaSIMD
12
     for (CeedInt i=0: i<0: i++) {
13
       vg[i] = ug[i] * q_data[i];
14
15
     } // End of Ouadrature Point Loop
16
17
     return CEED ERROR SUCCESS:
18
```

Poisson CeedQFunction

$$\sum_{k}^{n_{\text{quad}}} \left[w^k u_{,x}(\xi^k) v_{,x}(\xi^k) \right]_{\Omega^e}$$

$$B^T D B$$

• ug=
$$u_{,x}(\xi^k) = Bu^e$$

• q data=
$$w^{ka}$$

•
$$\operatorname{vg} = w^k u_{,x}(\xi^k) = D B u^e$$

```
CEED OFUNCTION(Poisson1DApply)(void *ctx. const CeedInt O.
                                   const CeedScalar *const *in.
                                  CeedScalar *const *out) {
     // in[0] is gradient u. size (0)
     // in[1] is quadrature data, size (0)
     const CeedScalar *ug = in[0]. *g data = in[1];
     // out[0] is output to multiply against gradient v. size (0)
     CeedScalar *vg = out[0]:
10
11
     // Quadrature point loop
     CeedPragmaSIMD
     for (CeedInt i=0: i<0: i++) {
13
14
       vg[i] = ug[i] * q data[i]:
15
     } // End of Ouadrature Point Loop
16
17
     return CEED ERROR SUCCESS:
18
```

^aalong with jacobian determinant

Poisson CeedOFunction

$$\begin{split} \sum_{k}^{n_{\mathrm{quad}}} \left[w^k u_{,x}(\xi^k) v_{,x}(\xi^k) \right]_{\Omega^e} \\ B^T D B \\ \cdot \ \mathsf{ug=} \ u_{,x}(\xi^k) = B u^e \end{split}$$

• ug=
$$u_{,x}(\xi^k) = Bu$$

• q data=
$$w^{ka}$$

•
$$vg = w^k u_{,x}(\xi^k) = DBu^e$$

•
$$w^k u_{,x}(\xi^k) v_{,x}(\xi^k) = B^T D B u^e$$

```
CEED OFUNCTION(Poisson1DApply)(void *ctx. const CeedInt O.
                                   const CeedScalar *const *in.
                                  CeedScalar *const *out) {
     // in[0] is gradient u. size (0)
     // in[1] is quadrature data, size (0)
     const CeedScalar *ug = in[0]. *g data = in[1];
     // out[0] is output to multiply against gradient v. size (0)
     CeedScalar *vg = out[0]:
10
11
     // Quadrature point loop
     CeedPragmaSIMD
     for (CeedInt i=0: i<0: i++) {
14
       vg[i] = ug[i] * q data[i]:
15
     } // End of Ouadrature Point Loop
16
17
     return CEED ERROR SUCCESS:
18
```

^aalong with jacobian determinant

Fluid Simulations with libCEED

Compressible Navier-Stokes

$$\boldsymbol{U}_{,t} + \boldsymbol{F}_{i,i}(\boldsymbol{U}) - S(\boldsymbol{U}) = 0$$

for

$$\boldsymbol{U} = \begin{bmatrix} \rho \\ \rho u_i \\ E \equiv \rho e \end{bmatrix}, \quad \boldsymbol{F}_i(\boldsymbol{U}) = \underbrace{\begin{pmatrix} \rho u_i \\ \rho u_i u_j + p \delta_{ij} \\ (\rho e + p) u_i \end{pmatrix}}_{\boldsymbol{F}^{\text{addy}}} + \underbrace{\begin{pmatrix} 0 \\ -\sigma_{ij} \\ -\rho u_i \sigma_{ij} - kT_{,i} \end{pmatrix}}_{\boldsymbol{F}^{\text{diff}}}, \quad S(\boldsymbol{U}) = -\begin{pmatrix} 0 \\ \rho \boldsymbol{g} \\ 0 \end{pmatrix}$$

Compressible Navier-Stokes for FEM

Find $U \in \mathcal{S}^h$

$$\int_{\Omega} \boldsymbol{v} \cdot (\boldsymbol{U}_{,t} - \boldsymbol{S}(\boldsymbol{U})) d\Omega - \int_{\Omega} \boldsymbol{v}_{,i} \cdot \boldsymbol{F}_{i}(\boldsymbol{U}) d\Omega + \int_{\partial\Omega} \boldsymbol{v} \cdot \boldsymbol{F}_{i}(\boldsymbol{U}) \cdot \hat{\boldsymbol{n}} d\partial\Omega$$

Compressible Navier-Stokes for FEM

Find $\boldsymbol{U} \in \mathcal{S}^h$

$$\int_{\Omega} \boldsymbol{v} \cdot (\boldsymbol{U}_{,t} - \boldsymbol{S}(\boldsymbol{U})) \, d\Omega - \int_{\Omega} \boldsymbol{v}_{,i} \cdot \boldsymbol{F}_{i}(\boldsymbol{U}) \, d\Omega$$

$$+ \int_{\partial\Omega} \boldsymbol{v} \cdot \boldsymbol{F}_{i}(\boldsymbol{U}) \cdot \hat{\boldsymbol{n}} \, d\partial\Omega$$

$$+ \int_{\Omega} \mathcal{P}(\boldsymbol{v})^{T} \, (\boldsymbol{U}_{,t} + \boldsymbol{F}_{i,i}(\boldsymbol{U}) - \boldsymbol{S}(\boldsymbol{U})) \, d\Omega = 0 \,, \, \forall \boldsymbol{v} \in \mathcal{V}^{h}$$
SUPG

Compressible Navier-Stokes for FEM

Find $oldsymbol{U} \in \mathcal{S}^h$

$$\int_{\Omega} \boldsymbol{v} \cdot (\boldsymbol{U}_{,t} - \boldsymbol{S}(\boldsymbol{U})) \, d\Omega - \int_{\Omega} \boldsymbol{v}_{,i} \cdot \boldsymbol{F}_{i}(\boldsymbol{U}) \, d\Omega$$

$$+ \int_{\partial \Omega} \boldsymbol{v} \cdot \boldsymbol{F}_{i}(\boldsymbol{U}) \cdot \hat{\boldsymbol{n}} \, d\partial\Omega$$

$$+ \int_{\Omega} \mathcal{P}(\boldsymbol{v})^{T} \, (\boldsymbol{U}_{,t} + \boldsymbol{F}_{i,i}(\boldsymbol{U}) - \boldsymbol{S}(\boldsymbol{U})) \, d\Omega = 0 \,, \, \forall \boldsymbol{v} \in \mathcal{V}^{h}$$

$$\underbrace{ \text{SUPG}}$$

Further simplified into residual form:

$$\mathcal{G}(\boldsymbol{U}_{,t},\boldsymbol{U})=0$$

Code Architecture

- · PETSc used for handling everything libCEED doesn't
 - $\mathcal{P}, \mathcal{P}^T$ (Partition global-to-local operations)
 - · Time integration, linear, non-linear equation solving
 - · Strong boundary conditions

Code Architecture

- PETSc used for handling everything libCEED doesn't
 - $\cdot \mathcal{P}, \mathcal{P}^T$ (Partition global-to-local operations)
 - Time integration, linear, non-linear equation solving
 - Strong boundary conditions
- PETSc calls a libCEED operator when it needs the residual evaluation

Code Architecture

- PETSc used for handling everything libCEED doesn't
 - $\cdot \mathcal{P}, \mathcal{P}^T$ (Partition global-to-local operations)
 - Time integration, linear, non-linear equation solving
 - Strong boundary conditions
- PETSc calls a libCEED operator when it needs the residual evaluation
- libCEED Operator based on user-implemented CeedQFunctions (D)
 - Use different CeedQFunctions for volume vs boundary integrals
 - · Combined into a single **CeedOperator** to represent $\mathcal{G}(U_t, U)$

1. PETSc gets $oldsymbol{U}^L = {oldsymbol{\mathcal{P}}} oldsymbol{U}^G$ from current solution

- 1. PETSc gets $U^L = \mathcal{P}U^G$ from current solution
- 2. PETSc calls libCEED to get $G^L = \underbrace{\mathcal{E}^T B^T DB \mathcal{E}}_{} U^L$

- 1. PETSc gets $m{U}^L = \mathcal{P} m{U}^G$ from current solution
- 2. PETSc calls libCEED to get $G^L = \underbrace{\mathcal{E}^T B^T DB \mathcal{E}}_{} U^L$
- 3. PETSc gets $G^G = \mathcal{P}^T G^L$

- 1. PETSc gets $m{U}^L = \mathcal{P} m{U}^G$ from current solution
- 2. PETSc calls libCEED to get $G^L = \underbrace{\mathcal{E}^T B^T DB\mathcal{E}}_{} U^L$
- 3. PETSc gets $G^G = \mathcal{P}^T G^L$
- 4. PETSc uses G^G to compute new solution value

- 1. PETSc gets $oldsymbol{U}^L = \mathcal{P} oldsymbol{U}^G$ from current solution
- 2. PETSc calls libCEED to get $G^L = \underbrace{\mathcal{E}^T B^T DB\mathcal{E}}_{} U^L$
- 3. PETSc gets $G^G = \mathcal{P}^T G^L$
- 4. PETSc uses $m{G}^G$ to compute new solution value ...or whatever else it wants

Other Misc Things

Other features not discussed/shown that are in the libCEED-Fluids example

- Primitive variables
- · Synthetic turbulence inflow boundary conditions
- Shock capturing

Questions?