3.1 Ideal Block Cipher and Feistel Cipher Structure

Modern Symmetric Block Ciphers

- Provide confidentiality/authentication services
- Focus on data encryption standard (DES)

Block vs Stream Ciphers

• Stream ciphers: process messages a bit or byte at a time when en/decrypting.

Figure 1: Example of a stream cipher

• Block ciphers: process messages in blocks each of which is then en/decrypted.

Figure 2: Example of block cipher

- Many current ciphers are block ciphers
 - Better analyzed
 - Broader range of applications

Most symmetric block ciphers are based on a Feistel Cipher Structure

Motivation for the Feistel cipher structure:

- Block ciphers:
 - n bits plaintext \rightarrow n bits ciphertext
 - 2ⁿ possible plaintext/ciphertext blocks
- Reversible (non-singular) transformation
 - Each unique plaintext block \rightarrow a unique ciphertext block
 - 2ⁿ! Reversible transformation
- Feistel refers to an n-bit general substitution as an ideal block cipher
 - It allows for the maximum number of possible encryption mappings from the plaintext to ciphertext block.

Problems of Ideal Block Cipher

The block size n must be very large to thwart attacks

• Statistical analysis of plaintext, due to small block size

Straightforward mapping are not practical from an implementation and performance point of view

- In general, key length = $n2^n$ bits
- For a 64-bit block, key length = $64*2^{64} = 2^{70} = 10^{21}$ bits
- That a lot of needed bits

Poorly confined mapping (to a subset of 2ⁿ! reversible transformation) may be vulnerable to cryptanalysis.

Example of confined mapping:

• Mapping in terms of a set of linear equations

$$y_1 = k_{11}x_1 + k_{12}x_2 + k_{13}x_3 + k_{14}x_4$$

$$y_1 = k_{21}x_1 + k_{22}x_2 + k_{23}x_3 + k_{24}x_4$$

$$y_1 = k_{31}x_1 + k_{32}x_2 + k_{33}x_3 + k_{34}x_4$$

$$y_1 = k_{41}x_1 + k_{42}x_2 + k_{43}x_3 + k_{44}x_4$$

- Key length = n^2 (16 in this case)
- This is vulnerable to cryptanalysis (This is essentially a hill cipher)

Feistel Cipher

Feistel's observation: an approximation to the ideal block cipher system for large n, built up out of components that are easily realizable is needed.

Feistel Cipher idea:

- Approximate the ideal block cipher using a product cipher
 - The execution of two or more simpler ciphers in sequence
 - The final result or product is cryptographically stronger than any of the component ciphers.
- Essence of the approach
 - Key lengths k bits, block length n bits, 2^k instead of $2^n!$ transformation, k large for thwarting brute force attacks.
 - Alternate substitutions and permutations (transpositions) to defend against cryptanalytic attacks
 - Practical application of the Claude Shannon's proposal

Claude Shannon and Substitution-Permutation Ciphers

Claude Shannon idea: substitution-permutation (S-P) networks. S-P nets are based on the two primitive cryptographic operations:

- 1. Substitution (S-box)
- 2. Permutation (P-box)

Provide confusion and diffusion of message and key. Thwart cryptanalysis based on statistical analysis

Confusion and Diffusion

Cipher needs to completely obscure statistical properties of original message

Combining S & P elements to obtain:

• Diffusion: make the statistical relationship between the plaintext and ciphertext as complex as possible

- Achieved by repeated permutation followed by a function (transposition, P-Box)
- Having each ciphertext digit be affected by many plaintext digits
- Confusion: make the statistical relationship between ciphertext and key as complex as possible
 - Achieved by complex substitution (S-Box

Feistel Cipher Structure

Feistel Cipher: partition input block into two halves

- Process through multiple rounds which...
- Perform a substitution on left half data based on round function of right half & subkey
- Then have permutation swapping halves

Figure 3: Example of Encryption and Decryption for Feistel Cipher

3.2 Data Encryption Standard (DES)

DES Design Controversy

- Although DES standard is public, considerable controversy over design
 - Choice of 56-bit key (vs Lucifer 128-bit)
 - Design criteria (S-boxes) were classified

DES Encryption Overview

Figure 4: DES Encryption diagram

Plaintext side: Three Phases

- Initial Permutation
- 16 Rounds
 - Each round: key dependent round function with S and P
- Inverse Initial Permutation

Key function side:

- PC-1: Gets rid of 8 bits (56 bits)
- LCS: Cut key in half, perform bit shift(1 or 2 bit shift) on both half (independently)
- PC-2: Gets rid of 8 bits (48 bits)

Size of input: 64

Effective key length: 56

Initial Permutation and Inverse (IP)

Figure 5: Example of IP and IP⁻¹ tables

IP (64 bits): split in half. 32 bits each.

- The 1st position in the plaintext (bit 1) is now placed in the 40th position as per the IP table.
- The inverse shows 40 bit = in the bit 1 position.

Single Round Function

Figure 6: Example of a single round in the DES Algorithm

Consists of four steps:

- 1. Expansion (E table): take outer bits from two adjacent groups (Shown in figure 6)
 - This makes it so that the length of bits is now 48, allowing you to XOR with the key bits (also 48 bits)
- 2. XOR (KEY): simple XOR operation on all bits in from the E table and from the key
- 3. Substitution choice (S-Box): takes in 6 bits at a time and outputs given the s-box table
 - changes back to 32 bits
- 4. Permutation (P table): Same concept as IP except use the 8x4 table in figure 6
- 5. XOR (LEFT RIGHT): Take the table from step 4 and XOR with the old left side. Then take the old right side and make that the new left side.

Figure 7: Example of 8 S-boxes, each accepting 6 bits, and outputs 4 bits

Substitution/choice (eight S-boxes, each accepts 6 bits, outputs 4 bits)

• Each S-box: 4 rows, from the 6 bit input, the last and first bit from input decides which row will be used. The middle 4 bits from input will determine the column

S-Boxes Example

	$S_\mathtt{1}$															
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
ОууууО	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0уууу1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
1уууу0	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
1уууу1	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Input: 011001

• 0xxxx1 = row 2

• x1100x = column 13

Each row of an S-box defines a general 4-bit reversible substitution (ideal block cipher)

 $\bullet\,$ The only nonlinear part of DES

DES 32 total ideal block cipher mapping

DES Key Schedule

The steps for key scheduling encryption is as follow:

- 1. Permuted Choice 1: use table to reorder bits and remove 8 of them
- 2. Left Circular Shift: more ciphering. One copy gets sends to permuted choice 2 for a round and the other goes to another left circular shift for the next key generation for the next round.
- 3. Permuted Choice 2: use table to reorder bits and remove 8 more of them (create a 48 bit key for the round to use)

Permuted Choice One (PC-1)

	57	49	41	33	25	17	9
	1	58	50	42	34	26	18
	10	2	59	51	43	35	27
	19	11	3	60	52	44	36
	63	55	47	39	31	23	15
D	7	62	54	46	38	30	22
D ¬	14	6	61	53	45	37	29
	21	13	5	28	25 34 43 52 31 38 45 20	12	4

Permuted Choice Two (PC-2)

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

PC-1: Every eighth bit is discarded (8,16,32,64,24,40,48,56)

PC-2: Eight more bits are discarded

DES Decryption

Same as Feistel: DES decryption uses the same algorithm as encryption

Do encryption steps again using subkeys in reverse order.

Avalanche Effect

Avalanche effect: where a change of one input or key bit results in changing approximately half output bits. (DES exhibits strong avalanche)

Strength of DES - Key Size

56 bits have 2^{56} values

Strength of DES - Cryptanalytic

Utilize some deep characteristics of the cipher

- By gathering information about encryptions
- Can eventually recover some/all of the sub-key bits
- If necessary, exhaustive search the rest

Generally these are statistical attacks:

- Differential cryptanalysis: observe pairs of text blocks evolving along each round
- Linear cryptanalysis: find linear approximation to the transformations
- Related key attacks: observe the operation of a cipher under several related keys

Theoretical estimation; brute-force is practical concern

Strength of DES - Timing Attacks

Attack actual implementation of a cipher

Information about the key or the plaintext is obtained by observing how long it takes a given implementation to perform decryptions on various ciphertext.

• Specifically use fact that calculations can take varying times

DES Design Criteria

7 criteria for S-boxes provided for

- Non-linearity
- Resistance to differential cryptanalysis
- Good confusion

3 criteria for permutation P provide for

• Increase diffusion

7 Criteria for S-Boxes

3 out of 7:

- 1. No output bit of any S-box should be too close a linear function of the input bits.
 - Specifically if we select any output bit and any subset of the six input bits
 - Fraction of inputs for which this output bit equals the XOR of these input bits should not be close to 0 or 1, but rather should be near 1 or 2
- 2. Each row of an S-box (determined by a fixed value of the leftmost and rightmost input bits) should include all 16 possible output bit combinations
- 3. If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits.

3 Criteria for Permutation

2 out of 3:

- 1. The four output bits from each S-box at round i are distributed so that two of them affect (provide input for) "middle bits" of round (i+1) (next round) and the other two affect end bits.
 - The two middle bits of input to an S-box are not shared with adjacent S-boxes. The end bits are the two left-hand bits and the two right-hand bits, which are shared with adjacent S-boxes
- 2. The four output bits form each S-box affect six different S-boxes on the next round, and no two affect the same S-box

Block Cipher Design

Number of rounds: more is better

- Average Brute force time takes 2^{55}
- With DES 16 rounds it takes 2^{55.1} (Just beating brute force average)
- Make known cryptanalytic attack require greater effort than simple brute-force key search attacks (discourage them)

Round function f:

- Provide "confusion", nonlinear, avalanche, bit independence
- Has issues of how S-boxes are selected
- Strict avalanche criterion (SAC)
 - Any output bit j of an S-box should change with probability 1/2 when any single input bit i is inverted for all i,j.
 - A similar criterion could be applied to F as a whole
- Bit independence criterion (BIC)
 - Output bits j and k should change independently when any single input bit i is inverted for all i, j, and k
- S-Box (n x m) Design
 - Larger S-boxes are more resistant to cryptanalysis, but need larger lookup table and are more difficult to design properly
 - n limited tp 8~10

Key schedule:

- Complex subkey creation, key avalanche
- Use the main key to generate subkey for each round:
 - Maximize the difficulty of deducing individual subkeys
 - Maximize the difficulty of working back to the main key
 - Guarantee key/ciphertext meet SAC and BIC