✓ • Neka je p prava čija je jednačina $p: x=3 \land y=3$. Napisati jedinični vektor prave $p: \vec{p}=({}^{\bigcirc}, {}^{\bigcirc}, {}^{\bigcirc}, {}^{\bigcirc})$ i koordinate tačke A prave p koja je najbliža koordinatnom početku O(0,0,0): A(3,3,0). \checkmark • Za ravan α : z=1 napisati jedan njen vektor normale $\vec{n}_{\alpha}=($ \bigcirc , \bigcirc , \checkmark) i koordinate jedne njene tačke A(5, 5, 1)(0,1,0) (0,1,0) (0,1,0) (0,1,0)**6)** (1,0,1) **6)** (0,0,0) (-1,0,1)9) (0,0,1)• Vektor normale ravni α : z = x je: **5**) (1, 1, 1) Koordinate jedne njene tačke su: (1,1,1) \bigvee • Neka je α ravan čija je jednačina x+y=1. Napisati jedan vektor normale ravni α : Neka je α ravan čija je jednačina z=3. Napisati jedan vektor normale ravni α : $\vec{n}_{\alpha} = (0, 0, 1)$, i koordinate jedne tačke ravni α : (2, 1, 3). Neka je \vec{r}_A vektor položaja tačke A, $|\overrightarrow{AB}| = d$. Odrediti \vec{r}_B u zavisnosti od \vec{r}_A , \vec{a} i d, ako je vektor \vec{a} istog pravca kao i vektor \overrightarrow{AB} , a suprotnog smera od vektora \overrightarrow{AB} . $\vec{r}_B =$ Neka je \vec{r}_A vektor položaja tačke A, $|\overrightarrow{AB}| = d$. Odrediti \vec{r}_B u zavisnosti od \vec{r}_A , \vec{a} i d, ako je vektor \vec{a} istog pravca kao i vektora \overrightarrow{AB} , a suprotnog smera od vektora \vec{AB} . $\vec{r}_B =$ Noja od sledećih tvrdnji je tačna za svaka dva slobodna vektora \vec{x} i \vec{a} : 1) $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \perp \vec{x}$ (2) $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \perp \vec{a}$ 3) $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \parallel \vec{x}$ 4) $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \parallel \vec{a}$ 5) ništa od prethodnog Koja od sledećih tvrdnji je tačna za svaka dva slobodna vektora \vec{x} i \vec{a} :

1) $(\vec{x} - \frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a}) \perp \vec{x}$ 2) $(\vec{x} - \frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a}) \perp \vec{a}$ 3) $(\vec{x} - \frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a}) \parallel \vec{x}$ 5) ništa od prethodnog $\begin{array}{c} \checkmark \bullet \text{ Neka je tačka } P \text{ presk ravni } \alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q \text{ i prave } a: \vec{r} = \vec{r}_A + t\vec{a} \text{ i } \vec{n}\vec{a} \neq 0. \text{ Tada je: } \underbrace{1}_{\bullet} \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{a}. \\ 2) \vec{r}_P = \vec{r}_Q + \underbrace{\frac{(\vec{r}_A - \vec{r}_Q)\vec{n}}{\vec{a}\vec{n}}} \vec{a}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{a}}{\vec{n}\vec{a}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{a}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{a}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{a}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{a}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_P = \vec{r}_A + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_Q = \vec{r}_Q + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}. \\ 2) \vec{r}_Q = \vec{r}_Q + \underbrace{\frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}} \vec{n}.$ ✓• Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ i $n: \frac{x-5}{-6} = \frac{y+1}{4} = \frac{z-5}{-10}$ važi: 1) mimoilazne su $(m \cap n = \emptyset \land m \not\mid n)$ paralelne su i različite $(m \mid\mid n \land m \neq n)$ 3 poklapaju se (m = n) 4) seku se $(m \cap n = \{M\})$ $\vec{d} \vec{a} \perp \vec{b}$ ako i samo ako: 1) $\vec{a} \times \vec{b} = 0$ 2) $\vec{a} \vec{b} = 0$ 3) $\vec{a} \times \vec{b} \neq 0$ 4) $\vec{a} (\vec{b} \times \vec{c}) = 0$ 5) $\vec{a} = 0$ 6) $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}|$ \checkmark • Trojka slobodnih vektora $(\vec{a}, \vec{b}, \vec{c})$ je komplanarna ako je ona trojka: (nije ekvivalencija!) 1) henula vektora 2) različitih vektora paralelnih vektora (4) vektora istoga pravca (5) za koju je $\vec{a}(\vec{b} \times \vec{c}) = 0$ (6) za koju je $\vec{a} \times \dot{\vec{b}} = 0$ (7) zavisnih vektora (8) vektora čiji pravci su paralelni istoj ravni $\vec{a} \parallel \vec{b} \text{ ako i samo ako:} \quad \vec{1}) \vec{a} \times \vec{b} = 0 \quad \vec{2}) \vec{a} \vec{b} = 0 \quad \vec{3}) \vec{a} \times \vec{b} \neq 0 \quad \vec{4}) \vec{a} (\vec{b} \times \vec{c}) = 0 \quad \vec{5}) \vec{a} = 0 \quad \vec{6}) |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}|$ • Ako su \vec{a} i \vec{b} različiti nekolinearni vektori, tada je neorijentisani, konveksni ugao između vektora $\vec{m} = a\vec{b} - b\vec{a}$ i $\vec{n} = \frac{\vec{a}}{a} + \frac{\vec{b}}{b}$: (1) (2) $\frac{\pi}{6}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{3}$ 6) π f• Neka su $\vec{x}, \vec{i}, \vec{j}, \vec{k}$ slobodni vektori i $\vec{i}, \vec{j}, \vec{k}$ jedinični međusobno normalni. Tada je: 1) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}$

 $\sqrt{\bullet}$ Za ravan $\alpha: x = 0$ napisati jedan njen vektor normale $\vec{n}_{\alpha} = (1, 0, 0, 0)$ i koordinate jedne njene tačke