FICHE DE COURS 1

ÉVOLUTION D'UN SYSTÈME VERS L'ÉQUILIBRE CHIMIQUE

Ce que je dois être capable de faire après avoir appris mon cours

Distinguer les notions d'entités, d'espèces et de constituants chimique.
Déterminer à partir d'un énoncé si le réacteur est constitué d'un mélange ou d'un corps pur.
Déterminer à partir de sa formule brute si une espèce chimique est un corps pur simple ou composé.
Donner des exemples de grandeurs extensives et de grandeurs intensives.
Donner l'allure générale du diagramme d'état d'un corps pur en positionnant le point triple et le point critique.
Distinguer les changements d'état physique, les réactions chimiques et les réaction nucléaires.
Connaître le nom de chacun des changement d'état physique entre les trois états classiques de la matière solide liquide et gaz.
Connaitre les relations définissant les paramètres de composition d'un système : fraction molaire, concentration pression partielle.
Utiliser la notion d'avancement et d'avancement volumique pour construire un tableau d'avancement.
Établir la composition finale d'un système dans le cas d'une réaction totale à partir de la notion de réactif limitant.
Exprimer l'activité d'un constituant chimique dans un mélange réactionnel donné.
Donner l'expression du quotient de réaction associé à l'équation de réaction d'un système réactionnel donné.
Utiliser la loi d'action des masses pour établir la composition finale d'un système dans le cas d'un équilibre chimique.

Les relations sur lesquelles je m'appuie pour développer mes calculs

- ☐ Paramètres de composition :
 - * Fraction molaire: il s'agit du quotient x_i de n_i par n_{tot} : $x_i = \frac{n_i}{n_1 + n_2 + ... + n_N} = \frac{n_i}{n_{\text{tot}}}$

$$x_i = \frac{n_i}{n_1 + n_2 + \dots + n_N} = \frac{n_i}{n_{\text{tot}}}$$

* Concentration molaire : notée C_i ou $[B_i]$, elle est la quotient de n_i par V : $[B_i] = C_i = \frac{n_i}{V}$

$$[\mathbf{B_i}] = C_i = \frac{n_i}{V}$$

 \star Pression partielle : soit un mélange de constituants gazeux, la pression partielle p_i du constituants gazeux B_i est la pression qu'il exercerait sur les parois de ce récipient s'il s'y trouvait seul. Si le gaz est décrit par l'équation des gaz parfaits, on a :

$$p_i = n_i \frac{RT}{V}$$

 \star Loi de Dalton : dans un mélange idéal de gaz de parfaits, la pression totale est la somme des pressions partielles de tous les gaz présents :

$$P = \sum_{i} p_{i} = \left(\sum_{i} n_{i}\right) \frac{RT}{V} = n_{\text{tot}} \frac{RT}{V} \quad \text{et} \quad p_{i} = x_{i}P$$

☐ Activité d'un constituant :

	Solvant	Soluté B_i en solution diluée $([B_i] \leq 0, 1 \ mol. L^{-1})$	Solide ou liquide pur	Gaz ou mélange gazeux
Activité a_i	1	$\frac{[\mathrm{B_i}]}{C^{\circ}}$	1	$\frac{p_i}{P^{\circ}}$

□ Quotient de réaction :

$$Q = \prod_{i} (a_i)^{\nu_i}$$

☐ Loi d'action des masses :

$$Q_{eq} = K(T) = \prod_{i} (a_{i,eq})^{\nu_i}$$