Department of Computer Science

CS 201 – Data Structures

Mid Term II (Spring 2014)

Instructors: Adnan Waheed & Sara Saleem

April 8, 2014

Total Marks: 40	Time Allowed: 60 minute		
Instructions:			
(1) Understanding the question is part of e			

(4) Use permanent ink pens only.

(3) Write neat & clean.

- (5) Poor programming approaches will decrease your marks.
- (6) Think about the boundary conditions.

Roll	No.	Name:	Section:	

Question No.	1	2	3	4	5	6	7	8	Total
Marks	3	5	2	5	5	6	5	9	40

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 1: Marks 3

```
Consider following Node structure
struct Node
{
    int value;
    Node *Next;
};
```

Write a function which accepts a linear linked list **List** and converts it to a circular linked list. Where **List** is a pointer to the front of the list.

```
Node *Convert( Node *List)
{
    if(List==NULL)
        return NULL;
    Node *curr = List;
    while (curr->Next!=NULL)
{
        curr= curr->Next;
}
curr->Next=List;
return curr;
}
}
```


Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Figure: List before deleting Node with String "X"

Figure: List after deleting Node with String "X"

Write some code segment for the following situation: Delete the "current" node from a double-linked list, as indicated in the picture below. You do not have to provide a complete method or class, nor do you need to worry about special cases such as deleting the last, first, or only Node in a list. Note: each node has three fields, prior, next, and data, and the constructor of the Node class takes one argument of type char

```
current.prev.next = current.next;
current.next.prev = current.prev;
Node *p = current;
current = current.prev;
delete p;
```


Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 3: Marks 2

What will be the output of following code?

```
int [] values = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19 };
Stack s = new Stack( );

for (int 1 = 0; i < values.length; i++)
    s.push( values[ i ] );

int n = 25;
for (int i = 0; i < 4; i++)
    {
        n += s.pop( );
    }
    for (int i = 0; i < 2; i++)
    {
        n -= s.pop( );
    }
Cout<<"\n"<<endl;</pre>
```

```
69
```


Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 4:	Marks 5
Using only the operations of the stack, write a fu	nction that determines if a string is a palindrome
(i.e. reads the same backward and forward; e.g. "	'level"). e.g. "maham" is a palindrome your
function should return true.	
The prototype for this function is given below.	
haal icDalindnama(Stwing theStwing).	
<pre>bool isPalindrome(String theString);</pre>	

struct PLAYER

int PID;

National University

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 5: Marks 5

Write a function in C++ to insert in a circular Queue containing

Players information(represented with the help of array of structure PLAYER).

Consider following definition of Node

```
char Pname[20]
NODE *Next
};

void QUESINSERT(PLAYER P[ ], int Front, int &Rear, int N])
{
    if (Friont-1=Rear)||(Front==0 && Rear=N-1)
        cout<<"Overflow!! Queue full"<<end;
    else
        {
            Rear=(Rear+1)%N;
            cout<<"Enter Player ID"
            cin>>P[Rear].PID;
            cout<<"Enter Player name";
            gets(P[Rear).Pname;
            }
}</pre>
```


Question 6:

National University

Marks 3+3

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Convert the expression into postfix notation and	I then verify if it is correct or not, direct answers			
	to negative marking for verification take dummy			
values for each variable.				
a+b*(c/d-e)%(f+g*h)-i				
Postfix notation abcd/e-%fgh*+*+i-	Verification			

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 7: Marks 5

Write a non-recursive function for post order traversal for following prototype

void postOrderIterative(Node* root)

```
void postOrderIterative(struct Node* root)
    if (root == NULL)
     return;
  do
        while (root)
          if (root->right)
          push(stack, root->right);
          push(stack, root);
          root = root->left;
        root = pop(stack);
    if (root->right && peek(stack) == root->right)
       pop(stack); // remove right child from stack
       push(stack, root); // push root back to stack
       root = root->right; // change root so that the right
                    // child is processed next
     else // Else print root's data and set root as NULL
       printf("%d ", root->data);
       root = NULL;
  } while (!isEmpty(stack));
```


Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 8:	Marks 2.5+1.5+1.5+0.5+3=9
Draw the binary search tree that results from ins	erting the integers 57, 85, 35, 9, 47, 20, 26, 99,
93, 10, 50, 51, 52 starting with 57 and ending wi	ith 1.
	_
1. What is the pre-order traversal of your tre	e
2. What is the post-order traversal of your tr	ee
3. What is the in-order traversal of your tree	
4. True / False (circle one). Inserting into a	binary search tree always inserts a leaf node

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

5.	Write an iterative (non-recursive) BinarySearchTree method named min that returns the smallest value in a binary search tree.

You are not expected to do this ©

