Exercise 2: The following table shows decimal numbers

a	-1609.5
b	-938.8125

1. Write down the binary representation of the decimal number, assuming the IEEE 754 **single** precision format.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s				expo	nen	t		fraction																							
1 bit				8 b	oits														2	3 bit	S										

2. Write down the binary representation of the decimal number, assuming the IEEE 754 **double** precision format.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	exponent fraction																														
1 bit	bit 11 bits 20 bits																														
	fraction (continued)																														

32 bits

Answer:

```
a)
-1609.5 = -11001001001.1_{2}
= -1.110010010011 \times 2^{10}
```

1. Biểu diễn theo độ chính xác đơn

```
sign = -1
exponent = 10 + 127 = 137 = 10001001_2
fraction = 110010010011
```

1	1	(0	0	1	0	0	1	1	1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
S		ex	por	ien	t (8	3 b	its)										fr	act	tion	1 (2	23	bits	s)								

2. Biểu diễn theo độ chính xác kép

```
sign = -1
exponent = 10 + 1023 = 1033 = 10000001001_2
fraction = 110010010011
```

1	1 0 0 0 0 0 0 1 0 0 1	1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0													
S	Exponent (11 bits)	Fraction (52 bits													
	Với 12 bits cao = 110010010011														
		40 bits thấp còn lại = 0 toàn bộ)													

```
b)
-938.8125 = -1110101010.1101 \times 2^{0}
= -1.1101010101101 \times 2^{9}
```

1. Biểu diễn theo đô chính xác đơn

```
sign = -1
exponent = 9 + 127 = 136 = 10001000_2
fraction = 1101010101101_2
```

1	1	0	0	0	1	0	0	0	1	1	0	1	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0
S		exp	on	ent	3)	B bi	its)										fr	act	ion	1 (2	23 1	oits	(3)								

2. Biểu diễn theo độ chính xác kép

```
sign = -1
exponent = 9 + 1023 = 1032 = 10000001000_2
fraction = 1101010101101_2
```

1	1	0	0	0	0	0	0	1	0	0	0	1	1	0	1	0	1	0	1	0	1	1	0	1	0	0	0	0	0	 0
S			Ex	po	nei	nt ([11	bi	ts)										Fra	ecti	on	(5	2 b	its)					
															•	Vớ	i 1	3 b	its	ca	0 =	= 1	101	101	01	01	10	1		
																	3	9 b	its	thá	âp	còi	ı lạ	ii =	0	toà	ın l	oộ)		

Exercise 3: Let's look in more detail at division. We will use the decimal numbers in the following table.

	A	В
A	13	20
В	30	9

- 1. Calculate A divided by B using the hardware described in Figure 1 and the algorithm shown in Figure 2. You should show the contents of each register on each step. Assume A and B are unsigned 6-bit integers.
- 2. Calculate A divided by B using the hardware described in Figure 3. You should show the contents of each register on each step. Assume A and B are unsigned 6-bit integers.

Exercise 4: The following table shows decimal numbers

a	5.00736125 x 10 ⁵
b	-2.691650390625 x 10 ⁻²

- 1. Write down the binary representation of the decimal number, assuming the IEEE 754 **single** precision format.
- 2. Write down the binary representation of the decimal number, assuming the IEEE 754 **double** precision format.

Answer:

a)

1. Biểu diễn theo độ chính xác đơn

```
sign = 0
exponent = 18 + 127 = 145 = 10010001<sub>2</sub>
fraction = 11101001000000000001<sub>2</sub>
```

0	1	0	0	1	0	0	0	1	1	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
S		exp	on	en	t (8	3 b	its)										fr	act	ior	ı (2	23 1	oits	(3)								

3. Biểu diễn theo độ chính xác kép

```
\begin{array}{l} sign = -1 \\ exponent = 18 + 1023 = 1032 = 10000010001_2 \\ fraction = 11101001000000000001_2 \end{array}
```

0	1	0	0	0	0	0	1	0	0	0	1	1110100100000000000010000000	
S	S Exponent (11 bits) Fraction (52 bits)												
	với:												
	21 bits cao =111010010000000000001												
	31 bits thấp còn lại bằng 0												

```
b)
-2.691650390625 \times 10^{-2} = 0.02691650390625 = 441/2^{14} = 110111001 \times 2^{-14}
= 1.10111001 \times 2^{-6}
```

1. Biểu diễn theo độ chính xác đơn

```
sign = -1
exponent = -6 + 127 = 121 = 1111001_2
fraction = 10111001_2
```

1	0	1	1	1	1	0	0	1	1	0	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S		exp	on	en	t (8	B bi	its)										fr	act	ior	ı (2	23 1	bits	s)								

2. Biểu diễn theo độ chính xác kép

```
sign = -1
exponent = -6 + 1023 = 1014 = 1111111001_2
fraction = 10111001_2
```

1	0	1	1	1	1	1	1	1	0	0	1	1	0	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0		0
S	s Exponent (11 bits) Fraction (52 bits)																														
	8 bits cao =10111001																														
						4	4 t	its	th	âр	còı	n lạ	ai t	oàn	g ()															

Exercise 5: The following table shows bit patterns expressed in hexademical notation.

a	0x24A60004
b	0xAFBF0000

- 1. What decimal number does the bit pattern represent if it is a two's complement integer? An unsigned integer?
- 2. If this bit pattern is placed into the Instruction Register, what MIPS instruction will be executed?
- 3. What decimal number does the bit pattern represent if it is a floating point number? Use the IEEE 754 standard.

Answers:

Đề bài cho một chuỗi số 8 chữ số đang biểu diễn trong hệ 16 (tương ứng với chuỗi 32 bits trong hệ 2)

- 1. Nếu 32 bits này là số nguyên có dấu bù 2, thì đó là số nào? Nếu là không dấu, thì đó là số nào?
- 2. Nếu chuỗi 32 bits này là lệnh MIPS thì đây là lệnh gì?
- 3. Nếu đây là số dấu chấm động (floating-point) thì là bao nhiều?

Đáp số:

1. a)

Nếu đây là số có dấu dạng bù 2, số tương ứng = -1346437120 Nếu đây là số có không dấu, số tương ứng = 2948530176

2. a)

b) $0xAFBF0000 = 1010\ 1111\ 1011\ 1111\ 0000\ 0000\ 0000\ 0000$ Nếu đây là lệnh assemply, lệnh tương ứng: $sw\ \$31$, 0(\$29) Hay $sw\ \$ra$, 0(\$sp)

3. a)

<mark>0**01001001**</mark>0100110 0000 0000 0000 0100

Bit thứ 31 = 0, là bit dấu của số floating-point → số floating-point này là số dương

Bit thứ 30 tới $23 = 01001001 = 73_{(10)}$, là phần mũ của số floating-point sau khi đã cộng thêm $127 \rightarrow$ số floating-point này có số mũ = 73 - 127 = -54

Bit thứ 22 tới 0 = 0100110 0000 0000 0000 0100, là phần thập phân của floatingpoint

 \Rightarrow số floating-point = 1.0100110 0000 0000 0000 0100 x 2⁻⁵⁴

b)

$0xAFBF0000 = 1010\ 1111\ 1011\ 1111\ 0000\ 0000\ 0000\ 0000$

Nếu đây là số floating-point với độ chính xác đơn \Rightarrow số floating-point = -1.011 1111 x 2⁻³²

Exercise 6:

The following table shows pairs of decimal numbers

Sửa lại thành	
-1.278×10^3	

	A	В
a.	-1278 x 10 ³	-3.90625 x 10 ⁻¹
b.	2.3109375 x 10 ¹	6.391601562 x 10 ⁻¹

- 1. Calculate the sum of A and B by hand, assuming that we keep 11 bits of significand and 5 bits of the exponent. (Rounding rule: add 1 if the bits to the right of the desired point is larger or equal to $100_{(2)}$). Show all the steps.
- 2. Calculate the sum of A and B by hand, assuming A and B are stored in the IEEE-754 single precision format. Show all the steps.

Answer:

1. Đề bài yêu cầu tính tổng A và B bằng tay (tức chạy từng bước) với giả sử số floating-point chỉ cho phép dùng 11 bits cho phần significand và 5 bits cho phần exponent

a)

$$A = -1.278 \times 10^{3} = -1278 = -100111111110$$
$$= -1.00111111110 \times 2^{10}$$

(kiểm tra số floating-point A đã đúng chuẩn chưa:

10 nằm trong phạm vi số 5 bits của phần mũ

và phần significand '1.0011111110' đúng 11 bits cho phép

→ Đúng chuẩn)

B =
$$-3.90625 \times 10^{-1}$$
 = $-0.390625 = -25/2^6 = -11001 \times 2^{-6}$
= -1.1001×2^{-2}

(kiểm tra số floating-point B này đã đúng chuẩn chưa:

-2 nằm trong phạm vi số 5 bits của phần mũ

và phần significand '1.1001' cũng không vượt quá 11 bits

→ Đúng chuẩn)

A + B = -
$$(1.00111111110 \times 2^{10} + 1.1001 \times 2^{-2})$$

= - $(1.00111111110 \times 2^{10} + 0.0000000000011001 \times 2^{10})$
= -1.00111111110011001 x 2¹⁰

Do phần significand chỉ được phép chứa 11 bits, nên A + B phải được làm tròn, phần cắt bỏ là $011001_{(2)} > 100_{(2)}$ nên $1.00111111110011001 \approx 1.0011111111$

Vậy A + B = -1.00111111111 x
$$2^{10}$$

= -100111111111₍₂₎ = 1279

b)

$$A = 2.3109375 \times 10^{1} = 23.109375$$

$$= 23 + 7/2^{6}$$

$$= 10111.000111_{(2)}$$

$$= 1.0111000111 \times 2^{4}$$

(kiểm tra số floating-point A đã đúng chuẩn chưa:

4 nằm trong phạm vi số 5 bits của phần mũ

và phần significand '1.0111000111' cũng không vượt quá 11 bits

→ Đúng chuẩn)

B =
$$6.391601562 \times 10^{-1} = 0.6391601562$$

= $1309/2^{11} = 10100011101 \times 2^{-11}$
= $1.0100011101 \times 2^{-1}$

(kiểm tra số floating-point B này đã đúng chuẩn chưa:

-1 nằm trong phạm vi số 5 bits của phần mũ

và phần significand '1.0100011101' cũng không vượt quá 11 bits

→ Đúng chuẩn)

$$A + B = 1.0111000111 \times 2^{4} + 1.0100011101 \times 2^{-1}$$

$$= 1.0111000111 \times 2^{4} + 0.000010100011101 \times 2^{4}$$

$$= 1.0111101111111101 \times 2^{4}$$

 $= 23.75_{(10)}$

2. Đề bài yêu cầu tính tổng A và B bằng tay (tức chạy từng bước) với giả sử số floating-point dùng format IEEE độ chính xác đơn

a)
$$A = -1.278 \times 10^3 = -1278 = -100111111110 = -1.00111111110 \times 2^{10}$$

(kiểm tra số floating-point A đã đúng chuẩn chưa:

(10 + 127) nằm trong phạm vi số 8 bits của phần mũ

và phần fraction '0011111110' cũng không vượt quá 23 bits

→ Đúng chuẩn)

B =
$$-3.90625 \times 10^{-1}$$
 = $-0.390625 = -25/2^6 = -11001 \times 2^{-6}$
= -1.1001×2^{-2}

(kiểm tra số floating-point B này đã đúng chuẩn chưa:

(-2 + 127) nằm trong phạm vi số 8 bits của phần mũ và phần fraction '1001' cũng không vượt quá 23 bits

→ Đúng chuẩn)

A + B = -
$$(1.00111111110 \times 2^{10} + 1.1001 \times 2^{-2})$$

= - $(1.00111111110 \times 2^{10} + 0.000000000011001 \times 2^{10})$
= -1.00111111110011001 x 2^{10}

Phần fraction này chứa 16 bits, không vượt quá 23 bits của IEEE độ chính xác đơn, nên:

Vây A + B = $-1.00111111110011001 \times 2^{10}$

b)

$$A = 2.3109375 \times 10^{1} = 23.109375$$

$$= 23 + 7/2^{6}$$

$$= 10111.000111_{(2)}$$

$$= 1.0111000111 \times 2^{4}$$

(kiểm tra số floating-point A đã đúng chuẩn chưa:

(4 + 127) nằm trong phạm vi số 8 bits của phần mũ

và phần fraction '0111000111' cũng không vươt quá 23 bits

→ Đúng chuẩn)

Exercise 7:

The following table shows pairs of decimal numbers

	A	В
a.	5.66015625 x 10 ⁰	8.59375 x 10 ⁰
b.	6.18 x 10 ²	5.796875 x 10 ¹

- 1. Calculate A x B by hand, assuming that we keep 11 bits of significand and 5 bits of the exponent. (Rounding rule: add 1 if the bits to the right of the desired point is larger or equal to 100(2)). Show all the steps.
- 2. Calculate A x B by hand, assuming A and B are stored in the IEEE-754 single precision format. Show all the steps.

Answer:

1. Đề bài yêu cầu tính A x B bằng tay (tức chạy từng bước) với giả sử số floatingpoint chỉ cho phép dùng 11 bits cho phần significand và 5 bits cho phần exponent a)

```
Exponent của A x B = 2 + 3 = 5
Significand
```

Do phần significand chỉ được phép chứa 11 bits, nên significand của A x B phải được làm tròn, phần cắt bỏ là $1000101100_{(2)} > 100_{(2)}$ nên $1.1000010100_{1000101100_{(2)}} \approx 1.1000010101$ Vây A x B = 1.1000010101 x 2^5

b)

	A	В
a.	5.66015625 x 10 ⁰	8.59375 x 10 ⁰
b.	6.18 x 10 ²	5.796875 x 10 ¹

$$A = 6.18 \times 10^2 = 618 = 1001101010_{(2)}$$

= 1.001101010 x 2⁹

(kiểm tra số floating-point A đã đúng chuẩn cho phep chưa:

→ Đúng chuẩn)

$$B = 5.796875 \times 10^{1} = 57.96875 = 1.11001111111 \times 2^{5}$$

(kiểm tra số floating-point B này đã đúng chuẩn cho phép chưa:

→ Đúng chuẩn)

A x B =
$$(1.001101010 \times 2^9) \times (1.11001111111 \times 2^5)$$

Exponent của A x B = $9 + 5 = 14$
Significand

```
1.0011010100
               \times 1.1100111111
                   10011010100
                  10011010100
                 10011010100
               10011010100
              10011010100
             10011010100
           0000000000
          00000000000
        10011010100
       10011010100
      10011010100
    10001011111110000101100
Significand của A x B = 10.001011111110000101100 \rightarrow \text{phải chuẩn hóa lại}
A \times B = 10.0010111111110000101100 \times 2^{14}
     = 1.00010111111110000101100 \times 2^{15}
Do phần significand chỉ được phép chứa 11 bits, nên significand của A x B phải
được làm tròn, phần cắt bỏ là
                                           10000101100_{(2)} > 100_{(2)} nên
1.000101111111100001011100_{(2)} \approx 1.0001100000
Vây A x B = 1.0001100000 \times 2^{15}
Đề bài yêu cầu tính A x B bằng tay (tức chạy từng bước) với giả sử số floating-
```

2. point dùng format IEEE độ chính xác đơn

```
A = 5.66015625 \times 10^{0} = 1.0110101001 \times 2^{2}
(kiểm tra số floating-point A đã đúng chuẩn cho phép chưa:
    → Đúng chuẩn)
B = 8.59375 \times 10^{0} = 1.0001001100 \times 2^{3}
(kiểm tra số floating-point B này đã đúng chuẩn cho phép chưa:
    → Đúng chuẩn)
A \times B = (1.0110101001 \times 2^{2}) \times (1.0001001100 \times 2^{3})
Exponent của A \times B = 2 + 3 = 5
Significand
```

Do phần fraction được phép chứa 23 bits, nên fraction của A x B từ kết quả trên thỏa mãn, không cần làm tròn

Vậy A x B = $1.10000101001001011100 \times 2^5$

b)

	A	В
a.	5.66015625 x 10 ⁰	8.59375 x 10 ⁰
b.	6.18 x 10 ²	5.796875 x 10 ¹

$$A = 6.18 \times 10^{2} = 618 = 1001101010_{(2)}$$
$$= 1.001101010 \times 2^{9}$$

(kiểm tra số floating-point A đã đúng chuẩn cho phep chưa:

→ Đúng chuẩn)

$$B = 5.796875 \times 10^{1} = 57.96875 = 1.11001111111 \times 2^{5}$$

(kiểm tra số floating-point B này đã đúng chuẩn cho phép chưa:

→ Đúng chuẩn)

```
A x B = (1.001101010 \times 2^9) \times (1.11001111111 \times 2^5)
Exponent của A x B = 9 + 5 = 14
Significand
```

```
1.0011010100
               × 1.1100111111
                   10011010100
                  10011010100
                10011010100
               10011010100
              10011010100
            10011010100
           00000000000
         00000000000
        10011010100
       10011010100
     10011010100
    10001011111110000101100
Significand của A x B = 10.001011111110000101100 → phải chuẩn hóa lại
A x B = 10.001011111110000101100 \times 2^{14}
= 1.0001011111110000101100 \times 2^{15}
```

Do phần fraction được phép chứa 23 bits, nên fraction của A x B trên hop lệ Vậy A x B = 1.00010111111110000101100 x 2^{15}