Correction - Évaluation n°1

(Calculatrice autorisée)

Cette évaluation est composée de 3 exercices indépendants.

Exercice 1

- **1**. \overrightarrow{u} est coplanaire à \overrightarrow{v} et \overrightarrow{w} s'il existe $\lambda, \mu \in \mathbb{R}$ tels que $\overrightarrow{u} = \lambda \overrightarrow{v} + \mu \overrightarrow{w}$.
- **2**. Pour $q \in]-1,1[$, on a $\lim_{n \to \infty} q^n = 0$.

Exercice 2 1. On a
$$\overrightarrow{AB} \begin{pmatrix} -4 \\ -1 \\ -1 \end{pmatrix}$$
, $\overrightarrow{AC} \begin{pmatrix} -4 \\ -2 \\ -2 \end{pmatrix}$ et $\overrightarrow{AD} \begin{pmatrix} -2 \\ -3 \\ -3 \end{pmatrix}$

- **2**. Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires et donc A, B et C ne sont pas alignés.
- **3**. (Comment trouver les facteurs λ et μ) Soient $\lambda, \mu \in \mathbb{R}$, on a :

$$\overrightarrow{AB} = \lambda \overrightarrow{AC} + \mu \overrightarrow{AD} \iff \begin{pmatrix} -4 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4\lambda - 2\mu \\ -2\lambda - 3\mu \\ -2\lambda - 3\mu \end{pmatrix}$$

$$\iff \begin{cases} -4\lambda - 2\mu &= -4 \\ -2\lambda - 3\mu &= -1 \\ -2\lambda - 3\mu &= -1 \end{cases}$$

$$\iff \begin{cases} -4\lambda &= -4 + 2\mu \\ -2\lambda - 3\mu &= -1 \end{cases}$$

$$\iff \begin{cases} \lambda &= 1 - \frac{1}{2}\mu \\ -2\lambda - 3\mu &= -1 \end{cases}$$

$$\iff \begin{cases} \lambda &= 1 - \frac{1}{2}\mu \\ -2\lambda - 3\mu &= -1 \end{cases}$$

$$\iff \begin{cases} \lambda &= 1 - \frac{1}{2}\mu \\ -2\mu &= 1 \end{cases}$$

$$\iff \begin{cases} \lambda &= 1 + \frac{1}{4}\mu \\ \mu &= -\frac{1}{2} \end{cases}$$

$$\iff \begin{cases} \lambda &= \frac{5}{4} \\ \mu &= -\frac{1}{2} \end{cases}$$

On en déduit que $\overrightarrow{AB} = \frac{5}{4}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AD}$. Donc les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont coplanaires.

- 4. On a \overrightarrow{CD} $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ et ce vecteur n'est pas colinéaire avec \overrightarrow{AB} donc les droites (AB) et (CD) ne sont pas parallèles.
- 5. Puisque les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont coplanaires, alors les points A, B, C et D sont sur le même plan.

Ainsi les droites (AB) et (CD) sont coplanaires. Puisqu'elles ne sont pas parallèles, elles sont donc sécantes.

Exercice 3 1. a. Pour tout $n \in \mathbb{N}$, on pose $P_n : \langle T_n \geq 20 \rangle$. Procédons par récurrence : Initialisation : $T_0 = 180 \geq 20$ donc P_0 est vraie.

Hérédité : Supposons qu'il existe $n \in \mathbb{N}$ tel que P_n soit vraie, c'est à dire que $T_n \ge 20$. Montrons que P_{n+1} est vraie.

$$T_n \geqslant 20 \iff 0,955 \times T_n \geqslant 0,955 \times 20$$
 car $0,955 \geqslant 0$
 $\iff 0,955T_n \geqslant 19,1$
 $\iff 0,955T_n+0,9\geqslant 19,1+0,9$
 $\iff 0,955T_n+0,9\geqslant 20$
 $\iff T_{n+1} \geqslant 20$

Donc P_{n+1} est vraie et (P_n) est héréditaire.

Conclusion : P_0 est vraie et (P_n) est héréditaire donc P_n est vraie pour tout $n \in \mathbb{N}$. **b.** Soit $n \in \mathbb{N}$, on a :

$$T_{n+1} - T_n = 0,955T_n + 0,9 - T_n$$

$$= -0,045T_n + 0,9$$

$$= -0,045\left(T_n - \frac{0,9}{0,045}\right)$$

$$= -0,045(T_n - 20)$$

Or d'après la question précédente, on a $T_n \ge 20$, donc $T_n - 20 \ge 0$. Ceci montre alors que $T_{n+1} - T_n \le 0$ et donc (T_n) est décroissante.

- c. La suite $(T_n)_{n\in\mathbb{N}}$ est donc décroissante et minorée par 20. Donc d'après le théorème de convergence monotone, la suite $(T_n)_{n\in\mathbb{N}}$ converge vers une limite finie supérieure ou égale à 20.
- **2**. Pour tout $n \in \mathbb{N}$, on note $u_n = T_n 20$.

a. Soit $n \in \mathbb{N}$, on a :

$$u_{n+1} = T_{n+1} - 20 = 0,955 \times T_n + 0,9 - 20$$

$$= 0,955 T_n - 19,1$$

$$= 0,955 \left(T_n - \frac{19,1}{0,955}\right)$$

$$= 0,955(T_n - 20)$$

$$= 0,955 u_n$$

Ainsi, pour tout $n \in \mathbb{N}$, on a $u_{n+1} = 0,955u_n$, donc la suite (u_n) est géométrique de raison 0,955 et de premier terme $u_0 = T_0 - 20 = 160$.

- **b.** Soit $n \in \mathbb{N}$, on a $u_n = u_0 \times q^n = 160 \times 0,955^n$. Ainsi, puisque $u_n = T_n - 20$ alors $T_n = u_n + 20 = 160 \times 0,955^n + 20$.
- **c.** $\lim_{n \to +\infty} 0,955^n = 0 \text{ car } 0,955 \in]-1 ; 1[. \text{ Donc } \lim_{n \to +\infty} T_n = 20.$