Modeling Pedal Electric Bike's Electric Motor Support with Simulink

Ugur Bolat

Embedded Systems Master Program

Simulink Model of Pedelec

Power Calculation Subsystem

 $P_{Pedelec}(s_i) = P_{Acceleration}(s_i) + P_{RollingFriction}(s_i) + P_{DownhillSlope}(s_i) + P_{AirDrag}(s_i).$

Uphill Motion

Power for Acceleration

$$P_{Acceleration}(s_i) = a_i \cdot (m_{Pedelec} + m_{Driver}) \cdot v_i$$

Power for Rolling Friction

$$P_{RollingFriction}(s_i) = c_r \cdot cos(\alpha_i) \cdot g \cdot (m_{Pedelec} + m_{Driver}) \cdot v_i$$

Power for Uphill!

$$P_{DownhillSlope}(s_i) = sin(\alpha_i) \cdot g \cdot (m_{Pedelec} + m_{Driver}) \cdot v_i$$

Power for Air Drag

Power Support Subsystem

Power Support Based On Speed

Power Distribution Between Driver and Motor

Maximum Power Support Capacity Based on Velocity

Power – MTB vs Racing Bike

Energy Consumption Subsystem

$$W_{Track} = \sum_{i=1}^{n_t - 1} W(s_i) = \sum_{i=1}^{n_t - 1} P(s_i) \cdot t_i.$$

Energy – MTB vs Racing Bike

