Modelos de Regressão:

aplicações em dados de contagem e proporções

08 de agosto de 2017

André F. B. Menezes

Departamento de Estatística Universidade Estadual de Maringá – UEM

Modelos de Regressão André F. B. Menezes

Introdução

Modelos de Regressão

Modelos para dados de contagem Modelos para dados no intervalo unitário Critérios para comparação de modelos

Materiais

Recursos computacionais

Conjuntos de dados

Número de publicações produzidas por Ph.D. em Bioquímica Votação presidencial de 2010

Resultados e Discussões

Análise do número de publicações produzidas por Ph.D.

em Bioquímica

Análise da votação presidencial de 2010

Referências

Modelos de Regressão André F. B. Menezes

Introdução

Motivação e Objetivos

- Trabalho final para a disciplina Modelos Lineares Generalizados:
- Realizar a modelagem de dois conjuntos de dados:
 - Discreto: número de publicações dos Ph.D. em Bioquímica (LONG, 1990);
 - 2. Contínuo: proporção de votos da ex-presidenta Dilma na eleição de 2010 no Paraná.

Modelos de Regressão

Modelos de Regressão André F. B. Menezes

Modelos de Regressão

Conceito

Permitem a inclusão de variáveis independentes (covariáveis) para:

- Descrever a relação entre a variável resposta e as variáveis preditoras;
- Realizar predições por meio do modelo estabelecido.

Um modelo de regressão pode ser expresso por:

$$\begin{array}{l}
Y \mid \mathbf{X} \sim f(\theta) \\
Q(Y \mid \mathbf{X}) = g(\mathbf{X} \mid \beta)
\end{array} \tag{1}$$

Modelos Lineares Generalizados

Modelos de Regressão André F. B. Menezes

Introdução

Modelos de Regressão

Madalaana

contagem

Modelos para dados n

Critérios para comparaça

Resultados

Discussões

D. . . Italia

Definição

Dada uma amostra aleatória de n observações (y_i, \mathbf{x}_i) , em que $\mathbf{x}_i = (x_{i1}, \dots, x_{in})^{\top}$, os MLG's são definidos por:

(i) Componente aleatório:

$$f(y_i \mid \theta_i, \phi) = \exp\left\{\frac{1}{a(\phi)} \left[y_i \phi + b(\theta_i)\right] + c(y_i, \phi)\right\}$$
 (2)

(ii) Componente sistemático:

$$\eta_i = \sum_{i=1}^p x_{ij} \, \beta_j = \boldsymbol{x}_i^{\top} \, \boldsymbol{\beta} \quad \text{ou} \quad \boldsymbol{\eta} = \boldsymbol{X} \, \boldsymbol{\beta}$$
 (3)

(iii) Função de ligação:

$$\eta_i = g(\mu_i) \tag{4}$$

Modelos de Regressão André F. B. Menezes

.....

Regressão

Modelos para dados de contagem

Modelos para dados no intervalo unitário

Critérios para comparaç de modelos

ivialeriais

Resultados Discussões

Referência

Modelos considerados

- ▶ Modelo Poisson;
- ► Modelo Quase-Poisson;
- Modelo Binomial Negativo.

Modelos alternativos

- ► Poisson Generalizada;
- ▶ COM-Poisson;
- Gamma-Count;
- Weibull discreta;
- Lindley discreta.

Modelos de Regressão André F. B. Menezes

Modelos para dados de

Modelo Poisson

Função massa de probabilidade:

$$P(Y = y \mid \mu) = \frac{\mu^y e^{-\mu}}{y!}, \qquad y = 0, 1, 2, \dots$$
 (5)

Especificação:

$$Y_i \mid \mathbf{x}_i \sim \mathsf{Poisson}(\mu_i) \quad \mathsf{com} \quad \mathsf{log}(\mu_i) = \eta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta} \quad (6)$$

Função log-verossimilhança:

$$\ell(\boldsymbol{\beta} \mid \boldsymbol{y}_i, \boldsymbol{x}_i) = \sum_{i=1}^n y_i \, \boldsymbol{x}_i^{\top} \, \boldsymbol{\beta} - \exp\left(\boldsymbol{x}_i^{\top} \, \boldsymbol{\beta}\right) - \log(y_i!)$$
 (7)

Modelos de Regressão André F. B. Menezes

introdução

Modelos de Regressão

Modelos para dados de contagem

intervalo unitário
Critérios para comparaç

Materiais

Resultados e

Referência

Modelo Quase-Poisson

Função quase-verossimilhança:

$$Q(\mu_i \mid y_i) = \int_{y_i}^{\mu_i} \frac{y_i - t}{\sigma^2 V(t)} dt.$$
 (8)

em que $E(Y_i) = \mu_i$ e $Var(Y_i) = \sigma^2 V(\mu_i)$.

► Estimação do parâmetro extra:

$$\widehat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(y_i - \widehat{\mu}_i)^2}{V(\widehat{\mu}_i)}$$
 (9)

Se σ^2 < 1 têm-se subdispersão e σ^2 > 1 têm-se superdispersão.

Modelos de Regressão André F. B. Menezes

Modelos para dados de

Modelo Binomial Negativo

Função massa de probabilidade:

$$P(Y = y \mid \mu, \theta) = \frac{\Gamma(\theta + y)}{\Gamma(y + 1)\Gamma(\theta)} \left(\frac{\mu}{\mu + \theta}\right)^{y} \left(\frac{\theta}{\mu + \theta}\right)^{\theta}, \tag{10}$$

- Foi utilizado a parametrização $\theta = \phi^{-1}$ sugerida por Lawless (1987).
- Acomoda casos de superdispersão, sendo caracterizado quando $\phi > 0$.
- Especificação:

$$Y_i \mid \mathbf{x}_i \sim \mathsf{BN}(\mu_i, \phi) \quad \mathsf{com} \quad g(\mu_i) = \eta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$$
 (11)

Modelos de Regressão André F. B. Menezes

Modelos para dados de

Observações

➤ A função log foi escolhida como função de ligação, isto é,

$$g(\mu_i) = \eta_i = \log\left(\mu_i\right) o \mu_i = \exp\left[\mathbf{\textit{x}}_i^{ op}eta
ight]$$

- ▶ No modelo Quase-Poisson temos que $V(\mu_i) = \mu_i$, logo $Var(Y_i) = \sigma^2 \mu_i$, portanto as estimativas serão idênticas.
- Propriedade dos modelos de quase-verossimilhança:

$$-E\left(\frac{\partial^{2}}{\partial \mu_{i}^{2}}Q(\mu_{i}\mid y_{i})\right)\leq -E\left(\frac{\partial^{2}}{\partial \mu_{i}^{2}}\ell(\mu_{i}\mid y_{i})\right) \qquad (12)$$

Modelos de Regressão André F. B. Menezes

introdução

Modelos de Regressão

Modelos para dados contagem

Modelos para dados no intervalo unitário

Critérios para comparaça de modelos

Materiais

Resultados Discussões

Referência

Distribuições consideradas

- ▶ Beta;
- ► Simplex.

Distribuições alternativas

- ► Kumarasawamy;
- ▶ Johnson S_B;
- ▶ unit-Logistic;
- ▶ unit-Gamma.

Modelos de Regressão André F. B. Menezes

Modelos para dados no intervalo unitário

Modelo de Regressão Beta

- ▶ Formalmente introduzido por Ferrari e Cribari-Neto (2004).
- Função densidade de probabilidade:

$$f(y \mid \mu, \phi) = \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1} (1-y)^{(1-\mu)\phi-1}$$
 (13)

Especificação:

$$Y_i \mid \mathbf{x}_i \sim \text{Beta}(\mu_i, \phi) \quad \text{com} \quad g(\mu_i) = \eta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$$
 (14)

Modelos de Regressão André F. B. Menezes

Introduçã

Modelos d Regressão

Modelos para dados

Modelos para dados no intervalo unitário

Critérios para comparaç de modelos

Materia

Resultados Discussões

Referência

Modelo de Regressão Simplex

- ► Proposto por Barndorf-Nielsen e Jørgensen (1991).
- ► Função densidade de probabilidade:

$$f(y \mid \mu, \phi) = \left[2\pi \phi^2 \{y (1 - y)\}^3\right]^{-1/2} \exp\left\{-\frac{1}{2\phi^2} d(y; \mu)\right\}$$

em que

$$d(y; \mu) = \frac{(y - \mu)^2}{y(1 - y)\mu^2(1 - \mu)^2}$$

► Especificação:

$$Y_i \mid \mathbf{x}_i \sim \text{Simplex}(\mu_i, \phi) \quad \text{com} \quad g(\mu_i) = \eta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$$
 (15)

 \blacktriangleright Vantagem: os parâmetros μ e ϕ são ortogonais.

Modelos de Regressão André F. B. Menezes

Introdução

Modelos de Regressão

Modelos para dados

Modelos para dados no intervalo unitário

Critérios para comparação de modelos

Materiais

Resultados e

Referência

Observações

 $\blacktriangleright\,$ A função $\mathit{logit}\,$ foi escolhida como função de ligação, isto é,

$$g(\mu_i) = \eta_i = \log\left(rac{\mu_i}{\mathsf{1} - \mu_i}
ight)
ightarrow \mu_i = rac{e^{oldsymbol{x}_i^ op oldsymbol{eta}}}{\mathsf{1} + e^{oldsymbol{x}_i^ op oldsymbol{eta}}}$$

► Os parâmetros de precisão (Beta) e dispersão (Simplex) foram considerados constantes.

Critérios para comparação de modelos

Modelos de Regressão André F. B. Menezes

Introduçã

Modelos de

Modelos para dados

Modelos para dados r

Modelos para dados no intervalo unitário

Critérios para comparação 14

de modelos

Materiai

Resultados Discussões

Referência

Teste da razão de verossimilhanças (deviance):

$$\mathcal{S}_{LR} = 2\left[\ell(\widehat{ heta}_q \mid y_i) - \ell(\widehat{ heta}_p \mid y_i)\right]$$

$$\mathcal{S}_{LR} \sim \chi_{p-q}^2$$

Critério de Informação de Akaike:

$$AIC = 2k - 2\ell(\widehat{\theta} \mid y_i)$$

Critério de Informação de Bayesiano:

$$BIC = \log(n) k - 2 \ell(\widehat{\theta} \mid y_i)$$

► Análise dos resíduos via gráfico normal de probabilidades com envelope simulado.

Critérios para comparação de modelos

Modelos de Regressão André F. B. Menezes

Introdução

Modelos de Regressão

Modelos para dados

contagem

Modelos para dados

intervalo unitário
Critérios para comparação 15

de modelos

Resultados e Discussões

Referências

▶ H₀: modelos são equivalentes.

$$T_{LR,NN} = \frac{1}{\widehat{\omega}^2 \sqrt{n}} \sum_{i=1}^n \log \frac{f(y_i \mid \mathbf{x}_i, \widehat{\boldsymbol{\theta}})}{g(y_i \mid \mathbf{x}_i, \widehat{\boldsymbol{\gamma}})}$$

em que

$$\widehat{\omega}^2 = \frac{1}{n} \sum_{i=1}^n \left(\log \frac{f(y_i \mid \mathbf{x}_i, \widehat{\boldsymbol{\theta}})}{g(y_i \mid \mathbf{x}_i, \widehat{\boldsymbol{\gamma}})} \right)^2 - \left(\frac{1}{n} \sum_{i=1}^n \left(\log \frac{f(y_i \mid \mathbf{x}_i, \widehat{\boldsymbol{\theta}})}{g(y_i \mid \mathbf{x}_i, \widehat{\boldsymbol{\gamma}})} \right) \right)^2$$

$$T_{IB,NN} \stackrel{D}{\rightarrow} N(0,1)$$

- ▶ Rejeita-se \mathcal{H}_0 se $|T_{LR,NN}| < z_{\alpha/2}$.
- ► $f(y_i \mid \mathbf{x}_i, \widehat{\boldsymbol{\theta}})$ sendo "melhor"("pior") do que $g(y_i \mid \mathbf{x}_i, \widehat{\boldsymbol{\gamma}})$ se $T_{IBNN} > z_{\alpha}$ (ou $T_{IBNN} < -z_{\alpha}$).

Recursos Computacionais

Modelos de Regressão André F. B. Menezes

Introducão

Modelos de Regressão

Materiais

Recursos computacionais 16

Conjuntos de dados Número de publicações

Bioquímica Votação presidencial de

2010

Discussões

Referência

Software SAS® 9.4

Procedimentos utilizados:

- ▶ PROC GENMOD: ajuste dos modelos Poisson e Binomial Negativo;
- ► PROC COUNTREG: ajuste dos modelos Poisson, Binomial Negativo, ZIP e ZINB;
- ▶ PROC GLIMMIX: ajuste dos modelos Quase-Poisson e Beta;
- ▶ PROC NLMIXED: ajuste dos modelos Beta e Simplex;

Recursos Computacionais

Modelos de Regressão André F. B. Menezes

Introduçã

Modelos de Regressão

Materiais

Recursos computacionais

Conjuntos de dados Número de publicações

Bioquímica Votação presidencial de

Votação presidencial o 2010

Resultados Discussões

Referência

Software R, versão 3.3.2

Bibliotecas auxiliares:

- betareg: ajuste do modelo Beta;
- simplexreg: ajuste do modelo Simplex;
- ▶ hnp: gráficos (meio) normais com envelope simulado;
- ggplot2: recursos gráficos;

Conjuntos de dados

Modelos de Regressão André F. B. Menezes

ntroduçã

Modelos d Regressão

Materiais

Recursos computaciona Conjuntos de dados

Número de publicações produzidas por Ph.D. em Bioquímica

Votação presidencial de

2010

Discussõe

Referenci

Número de publicações produzidas por Ph.D. em Bioquímica

- ► Inicialmente analisado por Long (1990) consiste de um estudo observacional;
- A população foi definida como todos os bioquímicos que receberam o título de Ph.D. nos EUA durante 1956–1958 e 1961–1963;
- Principal objetivo foi identificar os efeitos de determinadas covariáveis sobre a produtividade dos bioquímicos durante seu Ph.D.

Conjuntos de dados

Modelos de Regressão André F. B. Menezes

ntroduçã

Modelos de Regressão

Materiais

Conjuntos de dados

Número de publicações

produzidas por Ph.D. em Bioquímica

Votação presidencial de

Resultado: Discussõe

Referência

Número de publicações produzidas por Ph.D. em Bioquímica

Levantamento contou com 915 observações contendo informações das seguintes variáveis:

Variável	Definição
art	Número de publicações em revistas cientificas nos últimos três anos do Ph.D.
fem	Sexo do individuo
mar	Estado civil (casado ou solteiro)
kid5	Número de filhos menores que 6 anos
phd	Prestigio do programa de Ph.D.
ment	número de artigos publicados pelo orientador nos últimos três anos

Modelos de Regressão André F. B. Menezes

ntroducão

Modelos de Regressão

Materiais

Recursos computacionais

Número de publicações produzidas por Ph.D. em Bioquímica

Votação presidencial de

Resultado

Referência

Modelos de Regressão André F. B. Menezes

ntrodução

Modelos de Regressão

Materiais

Recursos computaciona

Número de publicações produzidas por Ph.D. em

Votação presidencial de 2010

Resultados Discussões

neierendia

Medidas amostrais do número de publicações dos(as) bioquímicos(as) Ph.D. conforme gênero e estado civil.

Gênero	Estado Civil	N	Mínimo	Máximo	Média	Variância	CV (%)
Homem	Solteiro	113	0	7	1.9469	4.0507	103.3766
	Casado	381	0	19	1.8635	4.9655	119.5775
Mulher	Solteira	196	0	7	1.3878	2.2796	108.7979
	Casada	225	0	10	1.5422	2.5172	102.8751

Modelos de Regressão André F. B. Menezes

ntroducão

Modelos de

Materiais

Conjuntos de dados

Número de publicações

produzidas por Ph.D. em Bioquímica Votação presidencial de

2010

Resultados Discussões

neierendia

Medidas amostrais do número de publicações dos(as) bioquímicos(as) Ph.D. conforme número de filhos.

N° de Filhos	N	Mínimo	Máximo	Média	Variância	CV (%)
0	599	0	19	1.7212	3.7365	112.3057
1	195	0	12	1.7590	4.1942	116.4298
2	105	0	11	1.5429	3.0198	112.6320
3	16	0	3	0.8125	0.8292	112.0721

Conjuntos de dados

Modelos de Regressão André F. B. Menezes

Introdução

Modelos de Regressão

Materiai

Recursos computacional Conjuntos de dados Número de publicações

Votação presidencial de 2010

Resultados Discussões

Referência

Votação presidencial de 2010

- Variáveis relacionadas a eleição de 2010 → Furriel (2017).
- ► Variáveis demográficas do censo de 2010 → http://www.atlasbrasil.org.br.
- Objetivo: verificar quais foram os fatores que influenciaram o percentual de votos recebidos por Dilma no estado do Paraná no segundo turno da eleição de 2010.

Conjuntos de dados

Modelos de Regressão André F. B. Menezes

ntroducă

Modelos de Regressão

Materia

Recursos computacional Conjuntos de dados

Bioquímica
Votação presidencial de 24

2010 Resultados Discussões

Discussoes

Referência

Votação presidencial de 2010

Os dados cobrem 395 municípios do Paraná.

Variável	Definição
pt2010 pt2006 gini idhm_e idhm_l idhm_r urb des	Proporção de votos válidos do PT no segundo turno da eleição de 2010 Proporção de votos válidos do PT no segundo turno da eleição de 2006 Índice de Gini Índice de Desenvolvimento Humano Municipal – Dimensão Educação Índice de Desenvolvimento Humano Municipal – Dimensão Longevidade Índice de Desenvolvimento Humano Municipal – Dimensão Renda Proporção da população vivendo em áreas urbanas Proporção da PEA com 18 ou mais de idade em 2010 que estava desocupada PIB per capita do município

Votação presidencial de 2010

Modelos de Regressão André F. B. Menezes

Introducão

Modelos de

Materiais

Recursos computaciona

Número de publicações produzidas por Ph.D. en

Votação presidencial de 2010

Resultados

Referências

Votação presidencial de 2010

Modelos de Regressão André F. B. Menezes

Votação presidencial de 26 2010

Estatísticas descritivas das variáveis consideradas.

,	Variável	Mínimo	Q _{0.25}	Mediana	Média	Q _{0.75}	Máximo	CV%
	pt2010	0.1877	0.3995	0.4784	0.4782	0.5492	0.8098	21.5757
) 1	pt2006	0.1426	0.3611	0.4271	0.4291	0.5063	0.7539	22.8908
	gini	0.3300	0.4300	0.4700	0.4657	0.5000	0.6600	12.2630
	idhm_e	0.3620	0.5760	0.6210	0.6110	0.6550	0.7680	10.2870
	idhm_l	0.7650	0.8050	0.8210	0.8205	0.8360	0.8700	2.5558
	idhm_r	0.5700	0.6690	0.6920	0.6919	0.7150	0.8500	5.5289
	urb	0.0935	0.5527	0.7190	0.6839	0.8423	1.0000	29.6121
	des	0.0036	0.0289	0.0392	0.0410	0.0501	0.1013	40.6904
	pib	5.8737	10.4045	12.9056	14.6271	16.2779	103.8509	57.5005

Modelos de Regressão André F. B. Menezes

Introducă

Modelos d Regressão

Materia

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Referências

Modelagem

► Preditor considerado:

$$\log(\mu_i) = \beta_0 + \beta_1 \text{ fem} + \beta_2 \text{ mar} + \beta_3 \text{ kid5} + \beta_4 \text{ phd} + \beta_5 \text{ ment.}$$

- ► Modelos considerados:
 - Poisson(μ_i);
 - ► Quase-Poisson(μ_i, σ²);
 - ▶ Binomial Negativo(μ_i , ϕ).

Modelos de Regressão André F. B. Menezes

Introducã

Modelos o

Matariai

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Análise da votação

Referência

Estimativas e Erro Padrão

	Poisson		Quase-Po	oisson	Binomial Negativo	
Parâmetro	Estimativa	EP	Estimativa	EP	Estimativa	EP
β_0	0.0800	0.0986	0.0800	0.1334	0.0397	0.1328
eta_1	0.2246	0.0546	0.2246	0.0739	0.2164	0.0727
β_2	0.1552	0.0614	0.1552	0.0830	0.1505	0.0821
eta_3	-0.1849	0.0401	-0.1849	0.0543	-0.1764	0.0531
eta_4	0.0128	0.0264	0.0128	0.0357	0.0153	0.0360
eta_5	0.0255	0.0020	0.0255	0.0027	0.0291	0.0035
σ^2, ϕ	1.0000	_	1.8290	_	0.4416	0.0530

Modelos de Regressão André F. B. Menezes

Introducã

Modelos d Regressão

Motorioio

Resultados

Discussões

Análise do número de

publicações produzidas por Ph.D. em Bioquímica Análise da votação

presidencial de 2010

Referências

Avaliação e Comparação entre Modelos

Modelo	G.I. Deviance	Pearson χ^2	ℓ	AIC	BIC	
Poisson	909	1634.3710	1662.5466	-642.0261	3314.1126	3343.
Binomial Negativo	909	1004.2815	944.5494	-551.9281	3135.9167	3169.
Quase-Poisson	909	1284.0522	1296.0522	_	_	-

Modelos de Regressão André F. B. Menezes

Introduçã

Regressão

Materiais

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica Análise da votação

Referência.

Modelo considerado

$$Y_i \mid \pmb{x}_i \sim \mathsf{BN}(\mu_i, \phi)$$

$$\log(\mu_i) = \beta_0 + \beta_1 \text{ fem} + \beta_2 \text{ mar} + \beta_3 \text{ kid5} + \beta_4 \text{ ment.}$$

Modelos de Regressão André F. B. Menezes

ntroducã

Modelos d Regressão

Materiai

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

presidencial de

Ajuste modelo Binomial Negativo

Pa	ırâmetro	Estimativa	EP	LI-Wald	LS-Wald	S_W	$P(S_W > \chi^2)$
β_0		0.0867	0.0731	-0.0566	0.2299	1.41	0.2359
β_1		0.2167	0.0727	0.0742	0.3591	8.89	0.0029
β_2		0.1469	0.0817	-0.0131	0.3070	3.24	0.0720
β_3		-0.1768	0.0531	-0.2808	-0.0728	11.10	0.0009
β_4		0.0294	0.0034	0.0228	0.0360	75.98	<.0001
φ		0.4417	0.0530	0.3491	0.5587	_	_

ntroducão

Modelos de

Materiais

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Análise da votaçã

presidencial de a

Modelos de Regressão André F. B. Menezes

ntroducão

Modelos de Regressão

Materiais

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Análise da votação

presidencial de 20

Modelos de Regressão André F. B. Menezes

ntroducão

Modelos de Regressão

Materiais

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Análise da votação

. . . .

Modelos de Regressão André F. B. Menezes

Introduçã

Modelos d Regressão

Material

Discussõe

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Análise da votação presidencial de 2010

Referência

Modelos de Regressão André F. B. Menezes

Introduçã

Modelos d Regressão

Materiais

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Análise da votação presidencial de 2010 Discriminação entre modelos

Modelo	np	AIC	BIC	Vuong (valor-p)
BN	6	3134	3163	_
Poisson	5	3312	3336	4.3423 (< 0.001)
ZIP	10	3230	3278	2.4882 (0.0128)
ZINB	12	3122	3175	-6.5000 (0.6916)

Materiais

Resultados Discussões

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Análise da votação presidencial de 2010

Departamento de Estatística UEM

Referênci:

Rejeita-se a hipótese nula do teste RESET.

Modelos de Regressão André F. B. Menezes

ntroducão

Modelos d

Materiais

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

Análise da votação

Doforôpois

Modelos de Regressão André F. B. Menezes

ntroducão

Modelos d Regressão

Materiais

Resultados

Análise do número de publicações produzidas por

Ph.D. em Bioquímica Análise da votação

Referência

Modelos de Regressão André F. B. Menezes

ntroducã

Modelos d Regressão

Materiai

Resultados

Análise do número de publicações produzidas por Ph.D. em Bioquímica

presidencial de 20

Referências

Considerações Finais

- É esperado que o número de publicações dos homens seja exp(0.2167) ≈ 1.2394 maior do que das mulheres;
- Relação negativa entre o número médio de publicações e o número de filhos;
- Número de artigos publicados pelo orientador nos últimos três anos tem efeito positivo na produtividade do pesquisador;
- Modelos alternativos devem ser avaliados, uma vez que o modelo Binomial Negativo não apresentou um ajuste adequado.

Modelos de Regressão André F. B. Menezes

Introduçã

Regressã

Matariaia

Resultados

Análise do número de publicações produzidas por

Análise da votação presidencial de 2010

Referência

Modelagem

► Preditor considerado:

$$\begin{split} \text{logit}(\mu_i) &= \beta_0 + \beta_1 \, \text{pt2006} + \beta_2 \, \text{gini} + \beta_3 \, \text{idhm_e} + \beta_4 \, \text{idhm_l} \\ &+ \beta_5 \, \text{idhm_r} + \beta_6 \, \text{urb} + \beta_7 \, \text{des} + \beta_8 \, \text{pib} \end{split}$$

- ► Modelos considerados:
 - ▶ Beta(μ_i, φ);
 - Simplex (μ_i, ϕ^2)

Modelos de Regressão André F. B. Menezes

ntroducão

Modelos d

Materi

Resultados

Discussões

Análise do número de publicações produzidas

Análise da votação presidencial de 2010

Referência

Estimativas e Erro Padrão (EP)

	Beta	a	Simplex		
Parâmetro	Estimativa	EP	Estimativa	EP	
β_0	-1.1352	0.5211	-1.1305	0.5161	
β_1 (pt2006)	3.0309	0.1255	3.0343	0.1205	
β_2 (gini)	-0.7275	0.2634	-0.7397	0.2632	
eta_3 (idhm_e)	-0.9978	0.3041	-0.9828	0.2998	
β_4 (idhm_1)	0.0316	0.6582	0.0597	0.6556	
$eta_5 (\mathtt{idhm_r})$	1.8597	0.6001	1.8277	0.5966	
eta_6 (urb)	-0.7461	0.0933	-0.7621	0.0922	
eta_7 (des)	-2.4220	0.8331	-2.3907	0.8244	
eta_8 (pib)	-0.0008	0.0015	-0.0009	0.0015	
ϕ	78.5775	5.5570	0.4719	0.0168	

Modelos de Regressão André F. B. Menezes

Introduçã

Modelos de Regressão

Materiais

Resultado

Análise do número de publicações produzidas p

Análise da votação presidencial de 2010

Referência

Discriminação ente Modelos

Modelo	-2 <i>î</i>	AIC	BIC	Vuong	
Beta	-1169.4060	-1149.4060	-1109.6172	_	
Simplex	-1171.3461	-1151.3461	-1111.5573	-0.8206 (0.7940)	

Modelos de Regressão André F. B. Menezes

ntroducão

Modelos de Regressão

Materiais

Resultados

Análise do número de publicações produzidas po Ph.D. em Bioquímica

Ph.D. em Bioquimica

Análise da votação
presidencial de 2010

Referênci:

Modelos de Regressão André F. B. Menezes

Introduçã

Regressão

Materiais

Resultados

Análise do número de publicações produzidas po

Análise da votação presidencial de 2010

Referência

Modelo considerado

$$Y_i \mid \mathbf{x}_i \sim \text{Simplex}(\mu_i, \phi)$$

$$logit(\mu_i) = \beta_0 + \beta_1 pt2006 + \beta_2 gini + \beta_3 idhm_e + \beta_4 idhm_r + \beta_5 urb + \beta_6 des$$

Modelos de Regressão André F. B. Menezes

Introduçã

Modelos d Regressão

Materiai

Resultado

Análise do número de publicações produzidas po

Análise da votação presidencial de 2010

Referência

Ajuste Modelo Simplex

Parâmetro	Estimativa	EP	LI	LS	t	P(T > t)
β_0	-1.0463	0.2685	-1.5725	-0.5201	-3.8974	0.0001
β_1 (pt2006)	3.0302	0.1202	2.7947	3.2658	25.2130	<0.000
β_2 (gini)	-0.7283	0.2628	-1.2434	-0.2131	-2.7708	0.0056
eta_3 (idhm_e)	-0.9832	0.2984	-1.5681	-0.3984	-3.2951	0.0010
eta_4 (idhm_r)	1.7495	0.5684	0.6355	2.8635	3.0780	0.0021
eta_5 (urb)	-0.7558	0.0915	-0.9352	-0.5765	-8.2599	<0.000
eta_6 (des)	-2.4523	0.8190	-4.0575	-0.8471	-2.9943	0.0028
ϕ	0.4722	0.0168	0.4392	0.5051	_	_

Não rejeita-se a hipótese nula do teste RESET.

Modelos de Regressão André F. B. Menezes

Introducão

Modelos de Regressão

Materiais

Resultados Discussões

Análise do número de publicações produzidas p

Análise da votação presidencial de 2010

Referênci:

ntroducão

Modelos de Regressão

Materiais

Resultados

Análise do número de publicações produzidas p

Análise da votação presidencial de 2010

Referênci:

ntrodução

Modelos d Regressão

Materiais

Resultados

Análise do número de publicações produzidas p

Análise da votação presidencial de 2010

Referência

Modelos de Regressão André F. B. Menezes

ntroduçã

Regress

Materiais

Resultados

Análise do número de publicações produzidas po

Ph.D. em Bioquímica

Análise da votação

presidencial de 2010

Considerações Finais

- Ambos os modelos Beta e Simplex apresentaram ajuste satisfatório;
- ► Conforme critérios discutidos escolheu-se pelo modelo Simplex;
- ► As covariáveis gini, idhm_e, urb e des exercem efeito negativo sobre a proporção de votos;
- ► Tiveram uma influencia positiva na proporção de votos da Dilma as covariáveis pt2006 e idhm_r.

Modelos de Regressão André F. B. Menezes

ntroduçã

Regressão

Resultado

Referências

[1] BARNDORFF-NIELSEN, O.; JØRGENSEN, B. Some parametric models on the Simplex. *Journal of Multivariate Analysis*, v. 39, n. 1, p. 106–116, 1991.

[2] FERRARI, S.; CRIBARI-NETO, F. Beta regression for modelling rates and proportions. *Journal of Applied Statistics*, v. 31, n. 7, p. 799–815, 2004.

[3] FURRIEL, O. W. Determinantes do voto à presidência: análise espacial das eleições gerais no Brasil no período de 1994 a 2014. 2017. PIC – Universidade Estadual de Maringá.

[4] LONG, J. S. The origins of sex differences in science. *Social Forces*, Oxford University Press, v. 68, n. 4, p. 1297–1316, 1990.

Modelos de Regressão André F. B. Menezes

Introducã

Modelos o Regressã

Resultados

Referências

[6] MIYASHIRO, E. S. *Modelos de regressão Beta e Simplex para a análise de proporções*. Dissertação (Mestrado) — Universidade de São Paulo - USP, 2008.

[7] NELDER, J. A.; WEDDERBURN, R. W. M. Generalized linear models. *Journal of the Royal Statistical Society. Series A (General)*, [Royal Statistical Society, Wiley], v. 135, n. 3, p. 370–384, 1972.

[8] RAMSEY, J. B. Tests for specification errors in classical linear least-squares regression analysis. *Journal of the Royal Statistical Society. Series B (Methodological)*, [Royal Statistical Society, Wiley], v. 31, n. 2, p. 350–371, 1969.

[9] VUONG, Q. H. Likelihood ratio tests for model selection and non-nested hypotheses. *Econometrica*, [Wiley, Econometric Society], v. 57, n. 2, p. 307–333, 1989.