

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Meiosis Overview

Meiosis Overview

morooro io a ariiqao foriii or oon a	livision in which one	cell (a cell v	with 2 copies of each
chromosome) undergoes	rounds of division to produ	ce	cells
(cells with 1 copy of each chromo	osome).		
In most sexually reproducing org combine during fertilisation to for		are made. T	wo of these cells then
Items:			

Part B Meiosis I

meiosis II. Ea	ach of these are similar to mitosis, but with a few differences.
During	, homologous chromosomes bind to each other at points along the chromosomes
called	Regions of one chromosome may then switch with the same regions on the other
chromosome	, in a process called " ".
During	, chromosomes line up in homologous pairs, rather than as individual
	s. And during , the homologous chromosomes are then pulled apart (instead
	matids being pulled apart).
During	the nuclear membranes form around the double-chromatid chromosomes at
	s of the cell (which uncoil into chromatin), and then the cell splits into two by cytokinesis
Items:	
prophase I	crossing over anaphase I telophase I centromeres metaphase I
nondisjunct	ion chiasmata
Meiosis II is r During the cells as ir during	much more similar to mitosis. the chromatin condenses into chromosomes. These then line up in the middle of adividual chromosomes during, and are pulled apart into sister chromatids (though, because of crossing over during meiosis I, the sister chromatids of each may not be identical to each other).
Meiosis II is r During the cells as ir during chromosome	much more similar to mitosis. the chromatin condenses into chromosomes. These then line up in the middle of adividual chromosomes during, and are pulled apart into sister chromatids (though, because of crossing over during meiosis I, the sister chromatids of each
Meiosis II is r During the cells as ir during chromosome	the chromatin condenses into chromosomes. These then line up in the middle of adividual chromosomes during, and are pulled apart into sister chromatids (though, because of crossing over during meiosis I, the sister chromatids of each may not be identical to each other). the nuclear membranes form around the single-chromatid chromosomes at
Meiosis II is r During the cells as ir during chromosome During opposite end	the chromatin condenses into chromosomes. These then line up in the middle of adividual chromosomes during, and are pulled apart into sister chromatids (though, because of crossing over during meiosis I, the sister chromatids of each may not be identical to each other). the nuclear membranes form around the single-chromatid chromosomes at

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Mitosis vs Meiosis

Mitosis vs Meiosis

Part A	Meiosis functions
Wh	nich of the following describe meiosis in humans?
	the fusion of two gametes to form a zygote
	cell division of a zygote to form an embryo
	producing haploid cells from diploid cells
	asexual reproduction
	tissue growth & repair
	producing gametes

Part B DNA & division

Figure 1: The mean mass of DNA of a population of cells dividing at the same time, measured in femtograms ($10^{-15}\,\mathrm{g}$) per cell.

Which of these processes are shown in Figure 1? Select all that apply.

mitosis
DNA replication
fertilisation
cytokinesis
interphase

meiosis

Part C True or false?

In the table below, identify which events occur during mitosis, meiosis I, and meiosis II. Fill in every box with either a tick (event occurs) or a cross (event does not occur).

	Mitosis	Meiosis I	Meiosis II
homologous chromosomes pair up			
crossing over occurs			
chromatids separate			

н	te	m	10	•
ı	ιC	П	ıo	•

Question elements adapted with permission from NSAA 2020 Section 2 Q55 & OCR January 2002 Science Modular Biology Foundation Q1

Gameboard:

STEM SMART Biology Week 10

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Stages of Meiosis

Stages of Meiosis

The images below represent different stages of meiosis I, for an organism with a diploid chromosome number of 8.

Α

В

D

Е

F

Put the stages above in the correct order, and match the name to each stage.

Order	Stage
-------	-------

Α	interphase
E	cytokinesis
ems:	
B C D F anaphase I metaphase I	prophase I telophase I

Part B Meiosis II

The images below represent different stages of meiosis II, for an organism with a diploid chromosome number of 8.

Α

В

D

Ε

Put the stages above in the correct order, and match the name to each stage.

Order	Stage
С	cytokinesis

Items:

A | B | D |

E anaphase II

metaphase II

prophase II

telophase II

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Recombination

Recombination

Recombination is the process of producing gametes with different allele combinations from those of the parents' gametes. This is the major cause of variation between parents and offspring (and among offspring). Recombination happens during meiosis in two main ways: independent assortment and crossing over.

Part A Independent assortment

In the images below, blue chromosomes represent paternally-inherited chromosomes and red chromosomes represent maternally-inherited chromosomes.

Α

В

D

Ε

F

Which of the images above illustrate independent assortment during meiosis I of a cell with a diploid chromosome number of 6? Select all that apply.

В
C
E
<pre>F</pre>
Part B Crossing over
Independent assortment causes recombination of genes found on chromosomes,
whereas crossing over causes recombination of genes found on chromosomes. Crossing
over (swapping) of chromosome regions can happen when chromosomes bind to each
other (during of meiosis) at points along the chromosomes called .
Items:
prophase 1 chiasmata homologous non-homologous

Part C Gamete possibilities

An individual is heterozygous for two genes (gene 1 and gene 2), which are located on different chromosomes (chromosome 1 and chromosome 2, respectively). The individual inherited allele $\bf A$ for gene 1 and allele $\bf B$ for gene 2 from its father, and inherited allele $\bf a$ for gene 1 and allele $\bf b$ for gene 2 from its mother. Its genotype for these two genes is $\bf AaBb$.

	owing genotypes could be found in gametes produced by this individual?
AB	
ab	
аВ	
Ab	
	owing genotypes could be found in gametes produced by this individual if no
ecombination o	
ecombination o	
ecombination o	

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 10

Home Gameboard Biology Cell Biology Meiosis Meiosis Mathematics

Meiosis Mathematics

Part A How many haploid cells?

Figure 1: The four steps in human sperm production. For each step, one complete division (i.e. one full round of the process) takes place.

Assuming no mutations and that all of the cells survive, what will be the maximum number of haploid cells originating from a single early spermatogonium (see Figure 1)?

Part B Chromosome numbers

Humans have a diploid chromosome number of 46 (i.e. 2n=46). Fill in the correct numbers and types of chromosomes present in a germ cell (reproductive cell) after each stage of meiosis, as well as the ploidy of each cell (haploid or diploid).

	after meiosis I	after meiosis II
number of chromosomes		
number of chromatids per chromosome		
ploidy (haploid or diploid)		

Items:

23	$oxed{46}$	$\fbox{92}$	[1]	$oxed{2}$	$oxed{3}$	$oxed{4}$	haploid	diploid
----	------------	-------------	-----	-----------	-----------	-----------	---------	---------

Part C Chromosome combinations

During meiosis, independent assortment ensures that each gamete inherits a combination of some paternal chromosomes and some maternal chromosomes. How many possible combinations are there for a human gamete?

Question elements adapted with permission from NSAA 2018 Section 1 Q60

Gameboard:

STEM SMART Biology Week 10

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Meiosis Mistakes

Meiosis Mistakes

Figure 1: Two cells are shown, each from an organism with a diploid chromosome number of 12. The cell on the left is undergoing meiosis I, and the cell on the right is undergoing meiosis II. Both cells show something going wrong during their respective stages.

Part A Meiosis stages

Which stages are shown in Figure 1?						
prophase I						
prophase II						
metaphase I						
metaphase II						
anaphase I						
anaphase II						
telophase I						
telophase II						

Part B	Diagnosis					
Wh	What is the name for what has gone wrong in Figure 1?					
Part C	Consequences					
Wh	Which of the following are conditions caused by what is shown in Figure 1?					
	sickle cell anaemia					
	monosomy (one less chromosome) e.g. Turner Syndrome (XO)					
	trisomy (one extra chromosome) e.g. Down Syndrome					
	haemophilia					
	cystic fibrosis					

Created for isaacphysics.org by Lewis Thomson