

SmartLens: Sensing Eye Activities Using Zero power Contact Lens

Liyao Li¹, Yaxiong Xie², Jie Xiong³, Ziyu Hou¹, Yingchun Zhang¹, Qing We¹, Fuwei Wang¹, Dingyi Fang¹, Xiaojiang Chen¹

¹Northwest University ²University at Buffalo The State University of New York ³University of Massachusetts Amherst

MobiCom 2022

Human-Computer Interaction

Meta/Virtual Reality

Message Typing

Driver Fatigue

Nervous System Dieases

Prior works

Non-Contact based

EyeLink1000 Plus [1]

Tobii Pro X2-30^[2]

BlinkListener^[3]

- ◆ Limit the user's freedom ◆ Affected by the illumination ◆ Signal granularity

- [1]. https://www.sr-research.com/zh/eyelink-1000-plus/
- [2]. https://www.tobiipro.cn/product-listing/tobii-pro-x2/
- [3]. BlinkListener: "Listen" to Your Eye Blink Using Your Smartphone. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5.2 (2021)

Prior works

Contact based

Samsung Gear VR [4]

The Eye Tribe^[5]

NIR LEDs [6]

- periods
- ◆ Uncomfortable over long ◆ Limited the view of sight
 - Requires additional battery supply

^[4] www.samsungmobilepress.com

^[5] https://en.wikipedia.org/wiki/The_Eye_Tribe

^[6] Battery-free eye tracker on glasses. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. 2018.

SmartLens: A passive, low-cost and battery-free eye movement sensing systems

SmartLens: A passive, low-cost and battery-free eye movement sensing systems

View blocking

The Lapyper boundaget of the Simantlens

View blocking

The budget of the Smartlens

The space budget of the SmartLens is extremely limited

Communication and sensing range

Require a certain communication distance

Tag antenna design significantly affects the backscattering efficiency

How can we design a tag that has similar size as contact lens and at the same time supports meter-level communication range?

Communication and sensing range

Impedance matching

Matching the impedance between the RF chip and tag antenna

Step one: selecting the basic shape

Step one: selecting the basic shape

The budget of the Smartlens

Step one: selecting the basic shape

Step two: increase the physical length of the antenna

Limited by the space budget, we cannot increase the radius of the circle infinitely

Step two: increase the physical length of the antenna

Step three: Fine tuning the antenna structure

Step three: Fine tuning the antenna structure

The width and gap of the loop will significantly affect the impedance of antenna

loops

SmartLens antenna model.

Resistance

$$R = R_o \cdot \frac{d}{\delta (1 - e^{-\frac{d}{\delta}}) \cdot \frac{w + d}{w}}$$

$$\delta = \sqrt{\frac{1}{\pi \sigma \mu f}}$$

$$R_o = \frac{1}{\sigma} \left(\frac{l}{wd} \right)$$

Resistance related to: the length and width of the antenna

Inductance

Inductance related to: the number of loops, the width and gap of antenna, and the diameter of the inner and outer radius of the antenna

Capacitance

Capacitance

Capacitance related to: The length of the antenna, the line width of each loop, the gap between loops and the permittivity of the eyes

Overall parameter affecting antenna impedance

Seven parameters that affect antenna impedance

Solving the impedance matching equation

$$Z_a = Z_g$$

Tag fabrication

Iterative refinement

Compensating engineering error

The simulation impedance of the tag : $Z_{simulation}$

The fabrication tag : Z_{tag}

$$\Delta Z = |Z_{simulation} - Z_{tag}|$$

How to detect the eye movement?

Smartlens attempts to detect the eyes movement based on phase information

Sensing the blink

Sensing the eye movement

The phase variations caused by polarization direction mismatch

Sensing the eye movement

Sensing the eye movement

Deploy another antenna on the elevation plane to remove the ambiguity and identify four direction of eyeball rotation

Sensing the single direction

Sensing the rotation

Rotation from up to right

Rotation from right to down

Rotation from down to left

Rotation from left to up

Sensing the single direction and rotation

The type of eye movement

Signal received by the reader

How to eliminate the interference?

Elimination of environmental interference

By adding reference tags:

Implementation

End-to-end performance

Version 1

End-to-end performance

Version 1

Version 2

/

End-to-end performance

Version 1

Version 2

Version 3

End-to-end performance

Version 1

Version 2

Version 3

Smartlens Version 8

It is necessary of optimizing the structure of tag antenna

End-to-end performance

1.87 times greater than the commercial tags

	0.976									0.024
		0.972	0.008	0.002						0.018
0		0.002	0.93	0.002						0.066
		0.006		0.944						0.05
	0.0498	0.0015	0.0173	0.0016	0.9286					0.0012
	0.0536	0.0002		0.0222		0.9228				0.0012
		0.046	0.0003	0.0224			0.9305			0.0008
		0.0433	0.0157	0.0013				0.9389		0.0008
0									0.89	0.11
								•		null

89% and 92% detection accuracy

Evaluation setup

Experimental scenarios

Subtle movement

Moderate movement Highly dynamic movement

Sensing accuracy under different distance

Biological Impact on the Performance

The impact of pig eyes and eyeball shapes.

The performance is stable

Biological Impact on the Performance

The impact of pig eyes and eyeball shapes.

94.61 % detection accuracy

Case study: Controlling the Cursor

SmartLens: Sensing Eye Activities Using Zero-power Contact Lens

In Mobicom 2022, Sydney, Australia, October 17-21

