P425/2

APPLIED MATHS

Paper 2

2¹/₄ Hours

END OF YEAR EXAMINATIONS 2023

Uganda Advanced Certificate of Education S.5 APPLIED MATHEMATICS

Paper 2

2 Hour 15 Minutes

INSTRUCTIONS:

- Answer all the questions in section A and any four (04) questions from section B.
- Any additional question(s) answered shall **not** be marked.
- All the necessary working should be clearly shown.
- Begin each answer in section **B** on a **fresh** sheet of paper.
- Silent, non programmable scientific calculators and mathematical tables with a list of formulae may be used.
- Attach the question paper on your answer sheets.

SECTION A					SECTION B					TOTAL		
1	2	3	4	5	6	7	8	9	10	11	12	

SECTION A (30 MARKS)

Answer all questions in this section.

- 1. Two events A and B are such that $P(A) = \frac{8}{15}$, $P(B) = \frac{1}{3}$ and $p(A/B) = \frac{1}{5}$. Calculate the probability that;
 - (i) both events occur.

(ii) neither of the events occurs.

(05 marks)

- 2. Forces of magnitude 6N and PN are inclined to each other at 50° . If their resultant is 9.6N, find the;
 - (a) value of P.

(ii) direction of the resultant force.

(05 marks)

3. The table below shows the probability distribution of a random variable *X*.

x	0	1	2	3	4	5
P(X=x)	0.11	0.17	0.20	0.13	p	0.09

(a) Calculate the value of p.

(02 marks)

(b) Determine E(x).

(03 marks)

- 4. A commuter bus moving along a straight road charges $UG.X\ 2500$ for a person stopping at a point 16km away from the bus station and $UG.X\ 4000$ for a person stopping at a point $23\ km$ away from the bus station.
 - (a) Lucky is going to a point 8km away from the bus station. How much should she pay?
 - (b) How far from the bus station does the bus leave a person who pays UG.X 5000?

(05 marks)

5. The table below show the masses of bolts bought by a carpenter.

Mass(g)	98	99	100	101	102	103	104
Number of bolts	8	11	14	20	17	6	4

Calculate the;

(a) median mass of the bolts.

(03 marks)

(b) mean mass of the bolts.

(02 marks)

- 6. A stone is thrown vertically upwards with a velocity of $16ms^{-1}$ from a point Hm above a level ground. If the stone hits the ground 4s later, calculate the;
 - (a) value of H.
 - (b) velocity of the stone as it hits the ground.

(05 marks)

SECTION B (48 MARKS)

Attempt only four (04) questions from this section. All questions carry equal marks.

7. The table below gives the distribution of heights (in *cm*) of 400 children in a certain school.

Height(cm)	< 110	< 120	< 130	< 140	< 150	< 160	< 170
Frequency	27	58	130	105	50	25	5

- (a) Draw a cumulative frequency curve for the above data and hence estimate the;
 - (i) median.
 - (ii) interquartile range.
 - (iii) 10^{th} to 90^{th} percentile range.
- (b) Calculate the model height.

(12 marks)

- 8. (a) Particles of mass m_1 and m_2 are connected by a light inextensible string passing over a smooth fixed pulley. The particles hang vertically. If $m_2 > m_1$, show that when the particles are released from rest the acceleration of the system is $\frac{2(m_2 m_1)g}{m_1 + m_2}$ and that the tension in the string is $\frac{2m_1m_2g}{m_1 + m_2}$.
 - (b) Two particles A and B are connected by a light inextensible string passing over a smooth fixed pulley. The masses of A and B are $\frac{11}{2}m$ and $\frac{9}{2}$ respectively. With A and B hanging freely, the system is released from rest with particle A at a distance d above the floor. The time t elapses before A hits the floor. Show that $20d = t^2g$.

(12 marks)

- 9. (a) Use trapezium rule with 4 sub-intervals to estimate $\int_0^{\frac{\pi}{2}} \cos x dx$ to three decimal places. (05 marks)
 - (b) Show that there exists a root for the equation $x^3 6x^2 + 9x + 2$ between x = -1 and x = 0 hence use interpolation twice to estimate the root to 2 decimal places.

(07 marks)

- 10. (a) The numbers x and y are approximated as X and Y with errors Δx and Δy respectively. Show that the maximum relative error in $\frac{y^2}{x}$ is given by $\left|\frac{\Delta x}{x}\right| + 2\left|\frac{\Delta y}{y}\right|$. (05 marks)
 - (b) If x = 4.95 and y = 2.013 are each round to the given number of decimal places, calculate the;
 - (i) percentage error in $\frac{y^2}{x}$.
 - (ii) limits with in which the exact values of $\frac{y^2}{y-x}$ is expected to lies giving your answer to three decimal places.

(07 marks)

- 11. A fair coin is tossed 100 times. Determine the probability of obtaining;
 - (i) at most 53 heads.
 - (ii) at least 45 heads.
 - (iii) between 46 and 54 heads.

(12 marks)

- 12. A lift travels vertically upwards from rest at floor A to rest at flow B, 20m above floor A, in three stages. At first, the lift accelerates from A at $2ms^{-2}$ for 2s. It then travels at a constant speed before finally decelerating to rest at B after a total time of $6^{1}/2s$.
 - (a) Sketch the velocity-time graph for this motion.
 - (b) Find the magnitude of the constant deceleration.
 - (c) The mass of the lift and its contents is 500kg. Find the tension in the lift cable during the stage of motion when the lift is;
 - (i) accelerating upwards.
 - (ii) moving with constant speed.

(12 marks)

*** END ***