STAT 346/446 Review for Final Exam

Material

- Lectures 1 12
 - Skip slides 9-18 of Lecture 8 and slides 21-24 of Lecture 11
- Chapters 5, 6, 7, 8, and 10
 - Chapter 5: Section 5.5 (Convergence, CLT, Slutsky, delta method...)
 - Chapter 6: Sections 6.1 and 6.2
 - Chapter 7: All, except 7.2.4 (EM algorithm)
 - Chapter 8: All, except 8.3.3 and 8.3.4 (Sizes of UIT/IUT and p-values)
 - Chapter 10: 10.1.1

Bring 2 cheat sheets and a calculator

Lecture 1 - Review

Sections 5.1-5.4

- Random samples and statistics
- The χ^2_{ν} , t_p , and $F_{p,q}$ distributions and their relationship to the normal distribution
- Make sure you know the facts on slides 15 18
- Order Statistics
 - Distribution of order statistics
 - Formula for the pdf of order statistics from a continuous distribution
 - $X_{(1)}$ and $X_{(n)}$ most used

Lecture 2 - Convergence concepts 1/2

Sections 5.5.1 - 5.5.3

- Convergence in probability and in distribution
- Understand difference
 - $X_n \xrightarrow{p} X$: $\lim_{n \to \infty} P(|X_n X| \ge \epsilon) = 0$
 - $X_n \stackrel{D}{\longrightarrow} X$: $\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \ \forall x \text{ where } F(x) \text{ is continuous}$
- Connections and results
 - $\bullet \ \ X_n \stackrel{p}{\longrightarrow} X \quad \Rightarrow \quad X_n \stackrel{D}{\longrightarrow} X$
 - $X_n \xrightarrow{D} a \Rightarrow X_n \xrightarrow{p} a$ if a is a constant
- $\bullet \xrightarrow{p}$ and continuous functions:

$$X_n \stackrel{p}{\longrightarrow} X \quad \Rightarrow \quad h(X_n) \stackrel{p}{\longrightarrow} h(X)$$

Lecture 2 - Convergence concepts 2/2

Sections 5.5.1 - 5.5.3

Weak law of large numbers (WLLN):

$$\overline{X}_n \stackrel{p}{\longrightarrow} \mu$$

STAT 446: Convergence almost surely and SLLN:

$$\overline{X}_n \stackrel{\mathsf{as}}{\longrightarrow} \mu$$

•
$$X_n \xrightarrow{as} X$$
: $P(\lim_{n\to\infty} |X_n - X| < \epsilon) = 1$

Lecture 3 - Convergence theorems 1/2

Sections 5.5.3 and 5.5.4

- Slutsky's Theorem: If $X_n \stackrel{D}{\longrightarrow} X$ and $Y_n \stackrel{p}{\longrightarrow} a$ then
 - $X_n Y_n \stackrel{D}{\longrightarrow} aX$
 - $X_n + Y_n \stackrel{D}{\longrightarrow} X + a$
- Central Limit theorem

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{D}{\longrightarrow} N(0, \sigma^2)$$
 as $n \to \infty$

Delta Method

$$\sqrt{n}(g(\overline{X}_n) - g(\mu)) \stackrel{D}{\longrightarrow} N(0, \sigma^2 g'(\mu)^2)$$
 as $n \to \infty$

STAT 446: Second order Delta Method

$$\sqrt{n}(g(\overline{X}_n) - g(\mu)) \xrightarrow{D} \sigma^2 \frac{g''(\mu)}{2} \chi_1^2 \quad \text{as } n \to \infty$$

Lecture 3 - Convergence theorems 2/2

Sections 5.5.3 and 5.5.4

- Approaching asymptotic problems:
 - Remember that the CLT only applies to the sample mean \overline{X}_n .

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{\mathcal{D}}{\longrightarrow} N(0, \sigma^2)$$
 as $n \to \infty$

• If instead of \overline{X}_n you have some $g(\overline{X}_n)$ think: delta method

$$\sqrt{n}(g(\overline{X}_n) - g(\mu)) \stackrel{D}{\longrightarrow} N(0, \sigma^2 g'(\mu)^2)$$
 as $n \to \infty$

- If you need further massaging of the left hand side think:
 - Slutsky
 - WLLN
 - $\bullet \xrightarrow{p}$ and continuous functions
- See e.g. problem 2 (c) on the midterm (346 and 446).

Lecture 4: Point estimators

Sections 7.1 and 7.2.1-7.2.3

- Method of Moments (MOM), Maximum Likelihood Estimators (MLE)
- Invariance of the MLE
 - If $\hat{\theta}$ is the MLE of θ then $\tau(\hat{\theta})$ is the MLE of $\tau(\theta)$
- Bayesian estimation
 - Bayes Estimator = Posterior mean
 - How to find the posterior distribution (proportionality argument):

$$\pi(\theta \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \theta)\pi(\theta)}{m(\mathbf{x})} \quad \propto f(\mathbf{x} \mid \theta)\pi(\theta)$$

If $f(\mathbf{x} \mid \theta)\pi(\theta)$ is recognizable as the kernel of a known distribution (remember that now θ is the random variable, not \mathbf{X}) then that is the posterior distribution

Lecture 5: Evaluation of point estimators 1/2

Sections 7.3.1-7.3.2

- Unbiased: $E(W_n) = \theta$
 - Bias: Bias(W_n) = $E(W_n) \theta$
- Mean Square Error (MSE):

$$\mathrm{MSE}(W_n) = E((W_n - \theta)^2) = \mathrm{Var}(W_n) + \mathrm{Bias}(W_n)^2$$

- Best Unbiased estimator
 - = Uniformly minimum variance unbiased estimator (UMVUE)
- Cramer-Rao lower bound (Fisher Information)
 - How to calculate (shortcuts for iid and for exponential families)
 - How to use to show that an estimator is UMVUE

Lecture 5: Evaluation of point estimators 2/2

Cramer-Rao lower bound for Var(W(X)):

CRLB:
$$\frac{\left(\frac{d}{d\theta}E(W(\mathbf{X}))\right)^{2}}{E\left(\left(\frac{d}{d\theta}\log(f(\mathbf{X}\mid\theta))\right)^{2}\right)}$$

Fisher Information - shortcuts:

$$I(\theta) = E\left(\left(\frac{d}{d\theta}\log(f(\mathbf{X}\mid\theta))\right)^{2}\right)$$

$$= nE\left(\left(\frac{d}{d\theta}\log(f(X\mid\theta))\right)^{2}\right) \quad \text{if iid}$$

$$= -nE\left(\frac{d^{2}}{d\theta^{2}}\log(f(X\mid\theta))\right) \quad \text{if exponential family}$$

Lecture 6 - Data Reduction

Sections 6.1 and 6.2

- Sufficient Statistics how to identify
 - Factorization Theorem
 - Exponential Family
- Complete Statistic how to identify
 - Exponential Family
- For exponential families:

$$f(x \mid \theta) = h(x)c(\theta) \exp\left(\sum_{j=1}^{k} w_j(\theta)t_j(x)\right)$$
The statistic
$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is sufficient and complete (for full exponential families)

Lecture 7 - Sufficiency and Unbiasedness 1/2

Section 7.3.3

- Lehmann Scheffé
 - A complete sufficient statistic is the UMVUE of its expected value
 - Another way to prove that we have a UMVUE (i.e. other than Cramer-Rao)
- Rao-Blackwell
 - Conditioning on a sufficient statistic always gives a better estimator (lower variance) with the same expected value.

Lecture 7 - Sufficiency and Unbiasedness 2/2

- A way to construct a UMVUE of $\tau(\theta)$
- Rao-Blackwell + Lehmann-Scheffé:
 - Find a complete statistic T. If unbiased of $\tau(\theta)$, then we are done
 - If not unbiased, find a simple unbiased estimator W and set

$$\phi(T) = E(W \mid T)$$

then $\phi(T)$ is unbiased and based only on a complete sufficient statistic. Therefore $\phi(T)$ is the best unbiased estimator of $\tau(\theta)$

- Often the simple unbiased estimator W is based on only one observation, e.g. X_1
- See for example Exercise 7.57 (HW 4)

Lecture 8 - Asymptotic results for point estimation

Section 10.1.1

- Consistent estimator if $W_n \stackrel{P}{\longrightarrow} \theta$
 - $Var(W_n) \rightarrow 0$ and $bias(W_n) \rightarrow 0$
 - Most MLEs

Lecture 9 - Hypothesis Testing methods 1/2

Sections 8.1 and 8.2

Likelihood ratio tests (LRT): Reject if

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta \mid \mathbf{x})}{\sup_{\theta \in \Theta} L(\theta \mid \mathbf{x})} = \frac{\sup_{\theta \in \Theta_0} L(\theta \mid \mathbf{x})}{L(\hat{\theta} \mid \mathbf{x})} \le c \qquad 0 \le c \le 1$$

Only depend on sufficient statistics: Reject if

$$\lambda(t) = \frac{\sup_{\theta \in \Theta_0} L(\theta \mid t)}{\sup_{\theta \in \Theta} L(\theta \mid t)} \le c \qquad 0 \le c \le 1$$

- \bullet Constrained optimization is easier if we can show that the likelihood function is a monotone or unimodal function of θ
- Simplifying the decision rule is often easier if we can show that $\lambda(t)$ is a monotone or unimodal function of t

Lecture 9 - Hypothesis Testing methods 2/2

Union-Intersection Test (UIT) and Intersection-Union Test (IUT)

- $H_0: \bigcap_k \Theta_k \Rightarrow \text{rejection region: } \bigcup_k R_k$
- $H_0: \bigcup_k \Theta_k \Rightarrow \text{rejection region: } \bigcap_k R_k$
- Bayesian Test: Reject if

$$P(\theta \in \Theta_0^c \mid \mathbf{X}) > \frac{1}{2}$$

Have to find the posterior distribution of θ

Lecture 10 - Evaluation of Hypothesis Tests 1/2

Section 8.3.1

Power function

$$\beta(\theta) = P_{\theta}(\text{ reject } H_0) = P_{\theta}(\mathbf{X} \in R)$$

- Type I and Type II errors:
 - Type I: Reject H₀ when it is true
 - Type II: Don't reject H_0 when it is false
- Power function and types of error:
 - $\beta(\theta)$ = probability of type I error for $\theta \in \Theta_0$
 - 1 $-\beta(\theta)$ = probability of type II error for $\theta \in \Theta_0^c$

Lecture 10 - Evaluation of Hypothesis Tests 2/2

Size of a test:

$$\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$$

Largest probability of type I error

- The constrained maximization is easier if we can show that $\beta(\theta)$ is a monotone or unimodal function of θ
- A test is a level α test if

$$\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$$

- A size α test is also a level α test
 - A size 0.01 test is also a level 0.01 test
 - A size 0.01 test is also a level 0.05 test
- LRT: the constant c determines the size of the test

Lecture 11 - Most powerful tests 1/2

Section 8.3.2

Uniformly Most Powerful (UMP) tests

$$\beta_{\delta}(\theta) \ge \beta_{\delta^*}(\theta) \qquad \forall \theta \in \Theta_0^c$$

• Neyman-Pearson Lemma for simple hypotheses $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ UMP level α test rejects if

$$\frac{g(t\mid\theta_1)}{g(t\mid\theta_0)}>k\quad k\geq 0$$

where $\alpha = \beta(\theta_0) = P_{\theta_0}$ (reject H_0)

- Only depends on sufficient statistics
- The k determines α (or vice versa)

Lecture 11 - Most powerful tests 2/2

• Monotone likelihood ratio (MLR) families: For every $\theta_2 > \theta_1$

$$LR(t) = \frac{g(t \mid \theta_2)}{g(t \mid \theta_1)}$$

is a monotone function of t

- MLR + sufficient statistic T: Karlin-Rubin Theorem
 - $H_0: \theta \le \theta_0 \text{ vs. } H_1: \theta > \theta_0$
 - UMP level α test rejects if $T > t_0$
 - where $\alpha = \beta(\theta_0) = P_{\theta_0}$ (reject H_0) = P_{θ_0} ($T > t_0$)
 - $H_0: \theta \geq \theta_0$ vs. $H_1: \theta < \theta_0$
 - UMP level α test rejects if $T < t_0$
 - where $\alpha = \beta(\theta_0) = P_{\theta_0}$ (reject H_0) = P_{θ_0} ($T < t_0$)
 - The t_0 determines α (or vice versa)

Lecture 12 - Decision Theory

Sections 7.3.4 and 8.3.5

- Action space \mathcal{A} and action rule $a = \delta(\mathbf{x}) : \mathcal{X} \to \mathcal{A}$
- Loss function: $L(\theta, a) : \Theta \times A \rightarrow \mathbb{R}^+$
- Risk function: $R(\theta, \delta) = E_{\theta}(L(\theta, \delta(\mathbf{X})))$
- Point estimation as a decision problem
 - Minimizing risk (over all θ) under a squared error (or absolute error) loss
 - Bayes risk: $\int_{\Theta} R(\theta, \delta) \pi(\theta) d\theta$ and Bayes rule
- Hypothesis testing as a decision problem
 - (Generalized) 0-1 loss
 - Risk functions and relationship to power function