Some Class Random Examples

Your Name

Contents

Chapter 1	Apuntes	Page 2
1.1	12-04-23	2
	Transformaciones de Legendre — 2	

Chapter 1

Apuntes

1.1 12-04-23

Para este segundo caso tenemos que

Example 1.1.1

Para dos fluidos con u_1 y u_2 deseamos minimizar la energía por lo tanto escriba el diferencial total y encuentre la condición de equilibrio

Solution:

Para este caso lo primero que nos interesa es la derivada por lo que debemos tomar U_1 y U_2 y derivarlos con respecto a cada una de sus variables. El resultado es

$$dU = \frac{\partial U_1}{\partial S_1} dS_1 + \frac{\partial U_1}{V_1} dV_1 + \frac{\partial U_1}{N_1} + \frac{\partial U_2}{\partial S_2} dS_2 + \frac{\partial U_2}{V_2} dV_2 + \frac{\partial U_2}{N_2}.$$

Sin embargo, dadas las condiciones del problema nos queda

$$dU = \frac{\partial U_1}{\partial U_2} dS_1 - \frac{\partial U_2}{\partial S_2}$$
$$= \frac{\partial U_1}{\partial S_1} - \frac{\partial U_2}{\partial S_2} dS_1 = 0$$
$$T_1 = T_2.$$

Ahora bien en el ejemplo uno se trabaja con S sin embargo, esto es una cosa suprema mente incomoda para el laboratorio. Por lo tanto queremos traducirlo a U(T,V,N) y U(T,P,N). Para esto utilizaremos las transformaciones de Legendre

1.1.1 Transformaciones de Legendre

Partamos desde una función

$$y = y(x) = x^2 + 2$$
;

pero entonces podemos desarrollar de la siguiente manera

$$= \frac{dy}{dx} = 2x \to x = \frac{p}{2}.$$

Sin embargo, con esto no podemos distinguir entre funciones con distinto intercepto. Por lo tanto, vamos a tomar la pendiente y su intersección por lo tanto nos queda

$$\psi(p) = y(p) + px(p).$$