스프링과댐퍼

동명대학교 강영민

스프링 댐퍼(Spring and damper)

- * 스프링 댐퍼 모델
 - * 두입자의 상호작용
 - * 두입자를 연결하는 스프링의 힘
 - * 스프링 힘
 - * 스프링 운동에 의한 에너저 소산
 - * 댐핑힘

스프링힘

- * 스프링힘
 - * 후크(Hooke)의 법칙
 - * 스프링에 작용하는 힘의 크기
 - * 변형된길이에비례 $l-l_0$
 - * 스프링 상수에 비례 (스프링의 고유한 특성): k_s
 - * 스프링 힘의 방향
 - * 스프링 방향

스프링힘의계산

* 힘의 크기

$$|\mathbf{f}_s| = k_s |l - l_0|$$

* 힘의 방향

$$\frac{\mathbf{x}_2 - \mathbf{x}_1}{|\mathbf{x}_2 - \mathbf{x}_1|}$$

스프링힘

* 계산 방법

$$\mathbf{f}_s^i = k_{ij}(l - l_0) \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{x}_j - \mathbf{x}_i|}$$

$$\mathbf{f}_s^j = -\mathbf{f}_s^i$$

댐핑

- * 스프링 진동은 서서히 멈춘다
 - ◈ 에너지를 잃게 만들어야 함
- * 간단한 댐핑
 - * 속도의 반대 방향으로 감속

$$\mathbf{f}_d^i = -k_d \mathbf{v}^i$$

- * 문제점
 - * 스프링에 의해 소실되는 에너지가 아니라 공기저항 같은 효과
- * 개선방법
 - * 연결된 두 입자의 상대속도에 댐핑 적용
 - * 입자가 현재 상태를 바꾸려고 하는 운동에 대해서 저항

$$\mathbf{f}_d^i = k_d(\mathbf{v}^j - \mathbf{v}^i)$$

최종모델

$$\mathbf{f}_{ij}^{i} = k_{ij}(l - l_0) \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{x}_j - \mathbf{x}_i|} + k_d(\mathbf{v}_j - \mathbf{v}_i)$$

$$\mathbf{f}_{ij}^{j} = -\mathbf{f}_{ij}^{i}$$

