Performance of scintillator tiles with different doping concentrations after irradiation

Geng-Yuan Jeng^{a,*}, Alberto Belloni^a, Sarah C. Eno^a, Kenichi Hatakeyama^d, Christopher Tully^e

^aDept. Physics, U. Maryland, College Park MD 30742 USA
^bEljen Technology, 1300 W. Broadway, Sweetwater, Tx 79556 USA
^cFermi National Accelerator Laboratory, Batavia, IL, USA
^dBaylor University, Waco, Texas, USA
^ePrinceton University, Princeton, NJ, USA

Abstract

The performance of plastic scintillator degrades when exposed to radiation. We present results on degradation of the light output of scintillator tiles when irradiated by a ⁶⁰Co source for a variety of concentrations of the primary and secondary dopant. Tiles made from a blue scintillator with blue-to-green wavelength shifting fiber and for green scintillator with green-to-orange wavelength shifting fiber are presented.

Keywords: organic scintillator, radiation hardness, calorimetry

1. Introduction

ampling calorimeters using plastic scintillator tiles with wave length shifting fibers, such as the CDF plug calorimeter [?], are popular due to their low cost and ease of construction.

Email address: Geng-Yuan.Jeng@cern.ch (Geng-Yuan Jeng)

^{*}Corresponding author

5 2. Conclusions

3. Acknowledgements

This work was supported in part by U.S. Department of Energy Grant YYYYYY.

References