Ciencia de los materiales

Propiedades magnéticas de los materiales

Medida del ciclo de histéresis

Gabriel Simón López

Indice

Introducción teórica

Tipos de reacción a un campo magnético aplicado

Histéresis

- Montaje Experimental
- Datos y Resultados

Medidas

Análisis Datos

- Preguntas
- Adendas
- Bibliografía

Introducción teórica

Tipos de reacción a un campo magnético aplicado

Fenomenológico

Diamagnétismo

Paramagnetismo

"Ferromagnetismo"

Introducción teórica

Ciclo de Histéresis

¿Qué es un ciclo de histéresis?

Resistencia de los dominios a ser rotados y/o

desplazados

¿Qué son los dominios?

Regiones orientadas al azar compuestas por dipolos atómicos

Limitadas por balance energético

¿Qué información del material nos aporta?

Estrecho Blandos Transformadores

Ancho Duros Imanes permanentes

Montaje Experimental

Medidas

Análisis de muchos datos

Salvación

```
24 def recolectador(nombre):
      with open('{}.txt'.format(nombre), 'r') as f:
26
          # Leer el contenido del archivo
          lines = f.readlines()
28
29
          # Encontramos en que punto esta alguna informacion interesante
30
          Encabezado = [i for i, line in enumerate(lines) if "Waveform Data" in line]
          irho = [i for i, line in enumerate(lines) if "Vertical Scale" in line]
32
          nrho = 0
          if irho != []:
34
              partes = lines[irho[0]].split(',')
              valor, potencia = partes[-2].split('E')
              nrho = float(valor) * pow(10, int(potencia))
          # sacamos los valores de la tabla
38
          inicio = Encabezado[0] + 1
          primera = []
40
      for line in lines[inicio:-1]:
          partes = line.split()
          for j in range(len(partes)):
43
              numero = float(partes[0].replace(',', '.'))
44
              if j == 0:
                  primera.append(numero)
      return np.array(primera)* (nrho/25)
```

Análisis datos- Resumen

Calculamos potencia disipada con $P = A \cdot V \cdot f$ [J/m^3]

(3)^{*}

Las fórmulas (1), (2) y (3) deducidas en las adendas

Análisis datos-Voltajes

Anillo Toroidal Fe

Ciclo histéresis en formación

Anillo Toroidal Ferrita

Ciclo histéresis ya formado

Análisis datos- Campos H-B

Anillo Toroidal Fe

Campo remanencia $B_{0R} \approx 0.22 [T]$

Campo coercitivo $H_{C0} \approx 35 \text{ [A/m]}$

Anillo Toroidal Ferrita

Campo remanencia $B_{0R} \approx 0.25 [T]$

Campo coercitivo $H_{C0} \approx 25 \text{ [A/m]}$

Análisis datos- Curva Conmutación

Anillo Toroidal Fe

Curva conmutación completa

Parabólico (1)

Lineal (2)

Codo (3)

Saturada (4)

Anillo Toroidal Ferrita

Parte Codo curva conmutación

Análisis datos- Curva Permeabilidad

Anillo Toroidal Fe

Perm. Mag. 0 = 0.0051

Perm. Mag. Max. = 0.0061

4056.45 [SI] μ_0

5000 [SI] 4854.23 [SI]

Curva permeabilidad

Anillo Toroidal Ferrita

Perm. Mag. 0 = 0.0058 [SI]

4615.49 [SI]

Por solo tomar la parte saturada solo podemos determinar la "inicial"

Análisis datos-Potencia disipada

```
133 def area_encerrada(x_coords, y_coords):
134
135
136
       Calcula el área encerrada por una gráfica dadas dos listas
        de coordenadas (x,y) utilizando el método del trapecio.
138
139
       area = 0.0
140
       n = len(a15)
141
142
        for i in range(n-1):
           x1, y1 = a15[i], a16[i]
x2, y2 = a15[i+1], a16[i+1]
143
144
146
            # Área del trapecio
            a = (x2 - x1) * (y1 + y2) / 2.0
148
            if a > 0:
149
                area += a
150
            else:
151
                area -= a
152
       return abs(area)
```

Área Ciclo Toroide Fe [m²]

Área Ciclo Toroide Ferrita [m²]

$$A_{Fe} = 34.78$$

 $A_{\text{Ferrita}} = 0.73$

$$P = A \cdot V \cdot f [J/m^3]$$

$$P_{Fe} = 0.41$$

 $P_{Ferrita} = 0.01$

Dudas y Preguntas

Adenda l

Deducción (1)

Despreciamos la I_B dado que la impedancia suministrada a B es muy grande, y entonces $I = I_H$

$$H(t) = \frac{Np \cdot V_{H(t)}}{Lm \cdot r}$$

Medimos una onda proporcional a H(t)

H(t) será proporcional a I_H
Y midiendo la diferencia de
potencial de R

Adenda 2

Deducción (2)

Adenda 3

Deducción (3)

La energía comunicada por la fuente al solenoide en dt será: $dE = V(t) \cdot I(t) dt$

 $Con V(t) = N \cdot S \cdot dB/dt$

Si se realiza un ciclo de histéresis completo, el área encerrada por este será la energía acumulada en el material por unidad de volumen y de ciclo

 $V(t) \cdot I(t)dt = S \cdot L \cdot H dB$

Teniendo en cuenta las dos ec. anteriores y la Ley de Ampère para el solenoide

 $P = f \cdot S \cdot L \cdot (\text{área BH}) = \overline{A \cdot V \cdot f}$

Núcleo Fe en U

Bibliografía

- [1] https://personales.unican.es/rodrigma/PDFs/Circuitos%20magn.pdf
- [2] https://www.fisicarecreativa.com/informes/infor_em/HisteresisUF2007.pdf
- [3] https://fhuesogonzalez.mgh.harvard.edu/carrera/3o/teem/p8histeresistransformadores.pdf
- [4] https://ikastaroak.ulhi.net/edu/es/IEA/E/E04/es_IEA_E04_Contenidos/website_2_ permeabilidad_magntica.html
- [5] Guión Prácticas Ciencia de los Materiales 2022/2023
- [6] Apuntes Propiedades Magnéticas de los Materiales Tema 2- Magnetismo