Informatique Théorique

Sémantique: Interprétation et validité

(MAM3-SI3)

September 28, 2021

1 Vrai/Faux

Soient les formules:

- a) $p(a,b) \wedge \neg p(f(a),b)$
- b) $\exists y \ p(y,b)$
- c) $\exists y \exists x \ p(y,x)$
- d) $\forall x \exists y \ p(x,y)$
- e) $\forall x \ p(x,x)$
- f) $\exists y \forall x \ p(x,y)$
- g) $\exists y \ ((p(y,a) \lor p(f(y),b))$
- 1. Les formules précédentes sont elles vraies dans l'interprétation I_1 ? Interprétation I_1 :
 - \bullet le domaine est l'ensemble ${\bf N}$ des entiers naturels
 - a est l'entier 0
 - b est l'entier 1
 - f est la fonction successeur
 - p est la relation <
- 2. Même question pour l'interprétation I_2 :
 - domaine : les listes de longueur quelconque contenant des 0 et des 1
 - a est la liste vide
 - b est la liste [1, 1, 1, 1, 1]
 - ullet f est la fonction $cons_1$ qui ajoute un 1 en tête d'une liste
 - p est la relation length(x) < length(y)
- 1. Dans I_1 , on se place dans \mathbf{N} , les formules s'interprètent alors comme
 - (a) $(0 < 1) \land \neg (1 < 1)$). Cette formule est vraie
 - (b) $\exists y \ (y < 1)$ Cette formule est vraie (on peut choisir y = 0, c'est d'ailleurs le seul choix possible)
 - (c) $\exists y \exists x \ y < x$. Cette formule est vraie.
 - (d) $\forall x \exists y \ x < y \ \text{qui est vraie}$ (car on peut choisir pour y l'entier successeur de x).
 - (e) $\forall x \ x < x$ est une formule fausse car < est un ordre strict dans N
 - (f) $\exists y \forall x \ x < y$ est une formule fausse car de toutes façons on n'a pas y<y.
 - (g) $\exists y \ (y < 0 \lor y + 1 < 1)$ est une formule fausse, car il n'existe aucun entier naturel négatif.
- 2. Dans la seconde interprétation I_2 , on se place dans l'ensemble des listes de longueur quelconque contenant des 0 et des 1, les formules s'interprètent alors comme

- (a) $0 < 5 \land \neg (1 < 5)$, cette formule est fausse
- (b) $\exists y \ (length(y) < 5)$ cette formule est vraie (par exemple en choisissant pour y la liste vide)
- (c) $\exists y \exists x \ length(y) < length(x) \ est \ vraie.$
- (d) $\forall x \exists y \ length(x) < length(y)$ cette formule est vraie dans I_2 on peut choisir y = f(x)
- (e) $\forall x \ length(x) < length(y)$ formule fausse, car fausse pour x=y.
- (f) $\exists y \ \forall x length(x) < length(y)$ formule fausse, car x peut prendre la valeur y.
- (g) $\exists y \ ((length(y) < 0 \lor length(cons_1(y)) < 5))$. Cette formule est vraie, par exemple en choisissant pour y la liste vide, car 1 < 5

2 Interprétation

1. Trouver (si possible) une interprétation I_1 qui prouve que la formule

$$\Phi_1 \left[(\exists x \ p(x)) \land (\exists x \ q(x)) \right] \Leftrightarrow \left[\exists x \ (p(x) \land q(x)) \right]$$

n'est pas universellement valide et une interprétation I_2 où la formule Φ_1 est vraie.

2. Même question en remplaçant dans Φ_1 tous les \wedge par des \vee , c'est à dire : Trouver (si possible) une interprétation I_3 qui prouve que la formule

```
\Phi_2 [(\exists x \ p(x)) \lor (\exists x \ q(x))] \Leftrightarrow [\exists x \ (p(x) \lor q(x))]
```

n'est pas universellement valide et une interprétation I_4 où la formule Φ_2 est vraie.

3. Même question en remplaçant dans Φ_2 tous les \exists par des \forall , c'est à dire : Trouver (si possible) une interprétation I_5 qui prouve que la formule

```
\Phi_3 \left[ (\forall x \ p(x)) \lor (\forall x \ q(x)) \right] \Leftrightarrow \left[ \forall x \ (p(x) \lor q(x)) \right]
```

n'est pas universellement valide et une interprétation I_4 où la formule Φ_2 est vraie.

4. Même question en remplaçant dans Φ_3 tous les \vee par des \wedge , c'est à dire : Trouver (si possible) une interprétation I_7 qui prouve que la formule

```
\Phi_4 [(\forall x \ p(x)) \land (\forall x \ q(x))] \Leftrightarrow [\forall x \ (p(x) \land q(x))]
```

n'est pas universellement valide et une interprétation I_8 où la formule Φ_4 est vraie.

- 5. Dans tous les cas précédents, si la formule n'est pas universellement valide qu'en est il si on remplace le \Leftrightarrow par \Leftarrow ou \Rightarrow ?
- 6. Trouver une interprétation I dans laquelle la formule : $(\forall x \exists y \ p(x,y)) \land (\forall x \ \neg p(x,x))$ est vraie. Cette formule peut-elle être vraie pour une interprétation dont le domaine a un seul élément ?

1. C'est possible

• Pour I_1 on peut choisir comme domaine les entiers naturels, pour p(x) le prédicat "x est inférieur à 5" et pour q(x) " x est supérieur à 6". La formule $((\exists x \ p(x)) \land (\exists x \ q(x)))$ peut se réécrire comme $((\exists x_1 \ p(x_1)) \land (\exists x_2 \ q(x_2)))$. Elle est vraie par exemple en choisissant $x_1 = 3$ et $x_2 = 9$

Dans I_1 , la formule $(\exists x \ (p(x) \land q(x)))$ est fausse, aucun entier n'étant à la fois inférieur à 5 et supérieur à 6.

 Φ_1 n'est donc pas vraie pour l'interprétation I_1 .

 Φ_1 n'est donc pas universellement valide.

- Pour I_2 , on peut choisir un domaine dans lequel il n'y a qu'un seul élément et p et q deux prédicats quelconques, ou on peut choisir n'importe quel domaine et p=q. On aura alors $I_2 \models \Phi_1$
- 2. Ce n'est pas possible car Φ_2 est universellement valide. C'est à dire que pour toute interprétation I_4 , on a $I_4 \models \Phi_2$.

En effet dans toute interprétation

- Si $((\exists x \ p(x)) \lor (\exists x \ q(x)))$ alors
 - soit $((\exists x \ p(x)))$ et alors soit x_1 tel que $p(x_1)$. On a aussi $p(x_1) \lor q(x_1)$ donc $(\exists x (p(x) \lor q(x)))$
 - soit $((\exists x \ q(x)))$ et alors soit x_2 tel que $q(x_2)$. On a aussi $p(x_2) \lor q(x_2)$ donc $(\exists x (p(x) \lor q(x)))$

```
Dans les deux cas, on a bien (\exists x(p(x) \lor q(x))).
Réciproquement,
si (\exists x(p(x) \lor q(x))), soit x_1 tel que (p(x_1) \lor q(x_1)) alors
— soit p(x_1) et donc ((\exists x \ p(x)) et donc ((\exists x \ p(x)) \lor (\exists x \ q(x)))
— soit q(x_1) et donc ((\exists x \ q(x)) et donc ((\exists x \ p(x)) \lor (\exists x \ q(x)))
Dans les deux cas, on a bien ((\exists x \ p(x)) \lor (\exists x \ q(x))).
```

3. C'est possible

- Pour I_3 on peut choisir comme domaine les entiers naturels, pour p(x) le prédicat "x est pair" et pour q(x) " x est impair". La formule $((\forall x \ p(x)) \lor (\forall x \ q(x)))$ s'interprète alors comme tous les entiers sont pairs ou tous les entiers sont impairs, ce qui est faux
 - La formule $(\forall x \ (p(x) \lor q(x)))$ s'interprète comme chaque entier est soit pair soit impair ce qui est vrai
 - Φ_3 n'est donc pas vraie pour l'interprétation I_3
- Pour I_4 , on peut choisir un domaine dans lequel il n'y a qu'un seul élément et p et q deux prédicats quelconques, ou on peut choisir n'importe quel domaine et p=q
- 4. Ce n'est pas possible car Φ_4 est universellement valide. C'est à dire que pour toute interprétation I_8 , on a $I_8 \models \Phi_4$
- 5. L'interprétation I_1 donnée pour prouver que Φ_1 n'est pas universellement valide, prouve en fait que la formule $\Phi_{1\Rightarrow} ((\exists x \ p(x)) \land (\exists x \ q(x))) \Rightarrow (\exists x (p(x) \land q(x)))$ n'est pas vraie dans I_1 . En revanche $\Phi_{1\Leftarrow} ((\exists x \ p(x)) \land (\exists x \ q(x))) \Leftarrow (\exists x (p(x) \land q(x)))$ est universellement valide.
 - L'interprétation I_3 donnée pour prouver que Φ_3 n'est pas universellement valide, prouve en fait que la formule $\Phi_{3\Leftarrow}$ ($(\forall x\ p(x)) \lor (\forall x\ q(x))$) \Leftarrow ($\forall x\ (p(x) \lor q(x))$) n'est pas vraie dans I_1 . En revanche $\Phi_{3\Rightarrow}$ ($(\forall x\ p(x)) \lor (\forall x\ q(x))$) \Rightarrow ($\forall x\ (p(x) \lor q(x))$) est universellement valide.
- 6. Pour I, on peut choisir comme domaine les entiers naturels pour p la relation <
 - Cette formule n'est jamais vraie si le domaine contient un unique élément a, car on devrait alors avoir $p(a, a) \land \neg (p(a, a), \text{ ce qui est impossible})$

3 Interprétation et véracité

Soit le langage:

• variables : x , y

• symboles fonctionnels : f (arité 2), a (arité 0)

• symboles de prédicat : p (arité 2)

Soit l'interprétation I :

- domaine : les entiers positifs
- f est la fonction somme, a la constante 0
- p est l'égalité

Caractériser la véracité des formules suivantes :

- 1. $\Phi_1: \exists y \forall x \ p(f(x,y),x)$
- 2. $\Phi_2: (\forall x \exists y \ p(f(x,y),x))) \Rightarrow (\exists x \exists y \ p(f(x,y),x))$
- 3. $\Phi_3 : \forall x \exists y \ p(f(x,y),a)$
- 4. $\Phi_4: \forall x \forall y \ p(f(x,y), f(y,x))$

Sur le domaine des entiers naturels et dans l'interprétation donnée les formules peuvent se réécrire.

• Φ_1 : $\exists y \forall x \ x + y = x$. Cette formule est vraie.

- Φ_2 : $(\forall x \exists y \ x + y = x))) \Rightarrow (\exists x \exists y \ x + y = x))$. Non seulement $I \models \Phi_2$, mais Φ_2 est universellement valide. En fait plus généralement la formule $\Psi : (\forall x \Phi) \Rightarrow (\exists x \Phi)$ est vraie quelque soit l'interprétation [le domaine est toujours non vide]. On a donc $\models \Psi$
- Φ_3 : $\forall x \exists y \ x + y = 0$ est faux pour les entiers naturels. On a $I \not\models \Phi_3$. En revanche l'interprétation I' ou l'on changerait simplement le domaine de $\mathbf N$ en $\mathbf Z$ serait un modèle de Φ_3 .
- Φ_4 : $\forall x \ \forall y \ (x+y=y+x) \ I$ est un modèle pour Φ_4 , Φ_4 est valide dans $I, \ I \models \Phi_4$. Dans ce modèle, Φ_4 exprime la commutativité de l'addition dans $\mathbf N$