4.12

习题 4. 12

本习题讨论流水线对处理器时钟周期的影响。表中给出了敷据通路中不同阶段延迟的两种情况,试根据这两种情况分别回答下列问题。

		IF	ID	EX	MEM	WB
	a.	300 ps	400 ps	350 ps	500 ps	100 ps
-	b.	200 ps	150 ps	120 ps	190 ps	140 ps

- 4.12.1 [5] < 4.5 > 流水线处理器与非流水线处理器的时钟周期分别是多少?
- 4.12.2 [10] <4.5 > 1w 指令在流水线处理器和非流水线处理器中的总延迟分别是多少?
- 4.12.3 [10] <4.5>如果可以将原流水线敷据通路的一级划分为两级,每级的延迟是原级的一半,那么你会选择哪一级进行划分? 划分后处理器的时钟周期为多少?

假设处理器执行的指令比例如下表两种情况所示, 试根据每种情况分别回答下列问题。

	ALU	beq	lw	sw
a .	50%	25%	15%	10%
b.	30%	25%	30%	15%

- 4.12.4 [10] <4.5>假设没有阻塞和冒险,数据存储器的利用率是多少(占总周期数的百分比)?
- 4.12.5 [10] < 4.5 > 假设没有阻塞和冒险,寄存器堆的写寄存器端口的利用率是多少?
- 4.12.6 [30] <4.5>假设一种多周期的处理器设计,其中每条指令需要多个时钟周期完成,但上一条指令完成前不取下一条指令。在这种设计中,指令仅经过其所需的阶段(例如,存储指令仅需4个时钟周期,因为其不需要WB阶段)。比较单周期设计、多周期设计和流水线设计三者的时钟周期和总执行时间。

习题 4.13

本习题讨论数据相关如何影响 4.5 节中基本五级流水线的运行。试根据下表的两种指令序列情况分别回答下列问题。

指令序列		指令序列
lw \$1,40 (\$6) add \$6, \$2, \$2 sw \$6,50 (\$1)	b .	lw \$5, -16(\$5) sw \$5, -16(\$5) add \$5, \$5,

- 4.13.1 [10] < 4.5 > 指出指令序列中存在的相关及其类型。
- 4.13.2 [10] <4.5> 假设该流水线处理器没有转发,指出指令序列中存在的冒险并加入 nop 指令以消除冒险。
- 4.13.3 [10] <4.5>假设该流水线处理器中有充分的转发。指出指令序列中存在的冒险并加入 nop 指令以消除冒险。

根据下表的两种时钟周期情况,分别回答下列问题。

	无转发	充分的转发	仅 ALU 至 ALU 的转发
a .	300 ps	400 ps	360 ps
_ b	200 ps	250 ps	220 ps

4.13.4 [10] < 4.5 > 该指令序列在无转发和有充分的转发时总执行时间分别是多少?后者相对于前者的加

速比是多少?

- 4.13.5 [10] <4.5 > 如果仅有 ALU 至 ALU 的转发 (没有从 MEM 到 EX 的转发),如何加入 nop 指令以消除可能的冒险?
- **4.13.6** [10] < 4.5 > 该指令序列在仅有 ALU 至 ALU 的转发时总执行时间分别是多少? 与无转发的情况相比,加速比是多少?

习题 4.16

试根据表中的两条 MIPS 指令分别回答下列问题。

	指令		
a.	lw	\$1,40(\$6)	
b.	add	\$5, \$5, \$5	

- 4.16.1 [5] <4.6>指令执行时,两级流水线之间的寄存器中的内容是什么?
- 4.16.2 [5] < 4.6 > 哪些寄存器是需要读的?实际上读了哪些寄存器?
- 4.16.3 [5] < 4.6 > 这条指令在 EX 级和 MEM 级分别做了什么?

根据下表的两个循环分别回答下列问题。假设分支被完美地预测(没有因控制冒险导致的阻塞),没 有延迟时间槽,而且流水线有完全的转发支持,并且循环在退出前运行了很多次。

	循环		循环
a.	Loop: lw \$1,40(\$6) add \$5,\$5,\$8 add \$6,\$6,\$8 sw \$1,20(\$5) beq \$1,\$0,Loop	b.	Loop: add \$1, \$2, \$3 sw \$0,0(\$1) sw \$0,4(\$1) add \$2, \$2, \$4 beq \$2, \$0, Loop

- 4.16.4 [10] < 4.6 > 画出循环第三次执行的流水线图,从取出循环的首条指令开始至取出下次循环的首条指令结束。给出这段时间内流水线中的所有指令。
- 4.16.5 [10] <4.6 > 在这段时间内有百分之多少五级流水线都在做有用的工作?
- 4.16.6 [10] < 4.6 > 在第三次循环的首条指令被取指时,IF/ID 寄存器中的内容是什么?

习题 4.18

下表给出了流水线(参见图 4-51)中执行的指令、时钟周期、ALU 延迟和 Mux 延迟的两种情况。试根据表中两种情况分别回答下列问题。

	指令	时钟周期	ALU 延迟	多选器延迟
a.	add \$1,\$2,\$3	100 ps	80 ps	10 ps
b.	slt \$2, \$1, \$3	80 ps	50 ps	20 ps

- 4.18.1 [10] < 4.6 > 每个流水级的控制信号值是多少?
- 4.18.2 [10] < 4.6, 4.7 > 控制单元需要在多长时间内产生控制信号 ALUSre? 与单周期实现进行比较。
- 4.18.3 对这条指令而言,PCSrc 控制信号的值应是多少?这个信号在 MEM 级中产生(仅使用了一个与门),为什么不在 EX 级才产生这个信号?

下表给出两个信号的两种情况, 试根据每种情况分别回答下列问题。

	信号 1	信号2
a.	RegDst	RegWrite
b.	MemRead	RegWrite

- 4.18.4 [5] < 4.6 > 这两个控制信号分别是在哪个流水级生成,又在哪个流水级使用的?
- 4.18.5 [5] <4.6 > 对哪些 MIPS 指令,这两个信号都设置为 1?
- 4.18.6 [10] <4.6 > 这两个信号中哪一个沿流水线反向传输? 这是一个时间旅行悖论吗? 为什么?

4.20.1-2

习题 4.20

试根据下表的两个指令序列分别回答下列问题。

	指令序列		指令序列
	lw \$1,40(\$2) add \$2,\$3,\$3 add \$1,\$1,\$2 sw \$1,20(\$2)	b. sw	\$1,\$2,\$3 \$2,0(\$1) \$1,4(\$2) \$2,\$2,\$1

4.20.1 [5] < 4.7 > 找出指令序列中的数据相关。

4.20.2 [10] < 4.7 > 分别对有转发和无转发的五级流水线找出指令序列中的冒险。

4.21.1

习题 4.21

本习题讨论转发、冒险检测和指令集设计之间的关系。分别根据下表的两个指令序列回答下列问题。假设其在一个五级流水线上执行。

	指令序列		指令序列
a.	lw \$1,40(\$6) add \$2,\$3,\$1 add \$1,\$6,\$4 sw \$2,20(\$4)	ъ.	add \$1, \$5, \$3 sw \$1,0(\$2) lw \$1,4(\$2) add \$5, \$5, \$1
	and \$1, \$1, \$4	1	sw \$1,0(\$2)

4.21.1 [5] < 4.7 > 如果没有转发或冒险检测电路, 请插人 nop 指令以保证正确执行。