CHAPTER 10 Graphs

- 10.1 Graphs and Graph Models
- 10.2 Graph Terminology and Special Types of Graphs
- 10.3 Representing Graphs and Graph Isomorphism
- 10.4 Connectivity
- 10.5 Euler and Hamilton Paths
- 10.6 Shortest Path Problems
- 10.7 Planar Graphs
- 10.8 Graph Coloring

66

10.7 Planar Graphs

[Definition] A graph is called *planar* if it can be drawn in the plane without any edges crossing.

Such a drawing is called a *planar representation* of the graph.

Understanding planar graph is important:

- Any graph representation of maps is planar.
- Electronic circuits usually represented by planar graphs.

1. Euler's Formula

Region

-- A region is a part of the plane completely disconnected off from other parts of the plane by the edges of the graph.

Bounded region
Unbounded region

Note:

There is one unbounded region in a planar graph.

70

Theorem 1 Euler's formula

Let G be a *connected planar simple* graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then r=e-v+2.

Proof:

First, we specify a planar representation of G. We will prove the theorem by constructing a sequence of subgraphs $G_1, G_2, \dots, G_e = G$, successively adding an edge at each stage.

The constructing method: Arbitrarily pick one edge of G to obtain G_1 . Obtain G_n from G_{n-1} by arbitrarily adding an edge that is incident with a vertex already in G_{n-1} , adding the other vertex incident with this edge if it is not already in G_{n-1}

Let r_n , e_n , and v_n represent the number of regions, edges, and vertices of the planar representation of G_n induced by the planar representation of G, respectively.

74

10.7 Planar Graphs

- (1) The relationship $r_1 = e_1 v_1 + 2$ is true for G_1 , since $e_1 = 1$, $v_1 = 2$, and $r_1 = 1$.
- (2) Now assume that $r_n = e_n v_n + 2$. Let $\{a_{n+1}, b_{n+1}\}$ be the edge that is added to G_n to obtain G_{n+1} .
- Both a_{n+1} and b_{n+1} are already in G_n .

These two vertices must be on the boundary of a common region R, or else it would be impossible to add the edge $\{a_{n+1}, b_{n+1}\}$ to G_n without two edges crossing (and G_{n+1} is planar).

The addition of this new edge splits R into two regions.

Consequently, $r_{n+1} = r_n + 1$, $e_{n+1} = e_n + 1$, and $v_{n+1} = v_n$. Thus, $r_{n+1} = e_{n+1} - v_{n+1} + 2$.

10.7 Planar Graphs

• One of the two vertices of the new edge is not already in G_n . Suppose that a_{n+1} is in G_n but that b_{n+1} is not. a_{n+1}

Adding this new edge does not produce any new regions, since b_{n+1} must be in a region that has a_{n+1} on its boundary.

Consequently, $r_{n+1} = r_n$. Moreover, $e_{n+1} = e_n + 1$ and $v_{n+1} = v_n + 1$. Hence, $r_{n+1} = e_{n+1} + 1 - v_{n+1} - 1 + 2$.

....

Note:

- 1) The Euler's formula is a necessary condition.
- 2) How about unconnected simple planar graph?

76

10.7 Planar Graphs

Example 3 Suppose that a connected planar simple graph has 20 vertices, each of degree 3. How many regions does this planar graph have?

Solution:

By handshaking theorem,

$$3v = 2e \implies e = 30$$

From Euler's formula, the number of regions is

$$r = e - v + 2 = 30 - 20 + 2 = 12$$

10.7 Planar Graphs

Definition Suppose R is a region of a connected planar simple graph, the number of the edges on the boundary of R is called the *Degree of* R.

Notation: Deg(R)

For example,

$$Deg(R_1) = 12$$

$$Deg(R_2) = 4$$

78

10.7 Planar Graphs

Corollary 1 If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, then $e \le 3v-6$

Proof:

Suppose that a connected planar simple graph divides the plane into r regions, the degree of each region is at least 3.

Since $2e = \sum \deg(R_i) \ge 3r$,

it imply $r \le (2/3)e$

Using Euler's formula e-v+2=r, we obtain

 $e-v+2 \le (2/3)e$, this shows that

 $e \leq 3v-6$

Note:

- **♦** The equality holds if and only if every region has exactly three edges.
- For unconnected planar simple graph, $e \le 3v 6$ also holds.

Since for a component, $e_i \le 3v_i - 6$

$$e = \sum e_i \le \sum (3v_i - 6) < 3\sum v_i - 6 = 3v - 6$$

80

10.7 Planar Graphs

[Corollary 2] If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

Proof:

- (1) G has one or two vertices
- (2) G has at least three vertices

 By Corollary 1 , we know that e≤3v-6 , so 2e≤6v-12

If the degree of every vertex were at least six, then $2e \ge 6v$

Corollary 3 If a connected planar simple graph has e edges and v vertices with $v \ge 3$ and no circuits of length 3, then $e \le 2v-4$.

Generally, if every region of a connected planar simple graph has at least k edges, then

$$e \le \frac{(v-2)k}{k-2}$$

$$r=e-v+2$$

82

10.7 Planar Graphs

[[Example 4]] Show that k_5 , $k_{3,3}$ are nonplanar.

Proof:

The graph k_5 has 5 vertices and 10 edges.

However, the inequality $e \le 3v$ -6 is not satisfied for this graph since e=10 and 3v-6=9.

Therefore, k_5 is not planar.

10.7 Planar Graphs

(2)

 $k_{3,3}$ has 6 vertices and 9 edges.

Since $k_{3,3}$ has no circuits of length 3 (this is easy to see since it is bipartite), Corollary 3 can be used.

Since e=9 and 2v-4=8, corollary 3 shows that $k_{3,3}$ is nonplanar.

84

10.7 Planar Graphs

$\begin{tabular}{ll} \mathbb{Z} Example 5 \mathbb{Z} The construction of Dodecahedron . \\ \end{tabular}$

Solution:

Since the degree of every vertex is 3 and the degree of every region is 5. Then

$$\begin{cases}
2e = 3v \\
2e = 5r \\
r = e - v +
\end{cases}$$

It follows that v=20, e=30 and r=12.

2. KURATOWSKI'S THEOREM

Elementary subdivision

Homeomorphic

-- The graph $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision.

86

10.7 Planar Graphs

For example,

Theorem 2 A graph is nonplanar if and only if it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Homework:

Sec. 10.7 7, 20, 22, 23, 25

92

CHAPTER 10 Graphs

- 10.1 Graphs and Graph Models
- 10.2 Graph Terminology and Special Types of Graphs
- 10.3 Representing Graphs and Graph Isomorphism
- 10.4 Connectivity
- 10.5 Euler and Hamilton Paths
- 10.6 Shortest Path Problems
- 10.7 Planar Graphs
- 10.8 Graph Coloring

10.8 Graph Coloring

The problem of coloring a map, can be reduced to a graphtheoretic problem.

Each map in the plane can be represented by a graph, namely the dual graph of the map.

- Each region of the map is represented by a vertex.
- An edge connect two vertices if the regions represented by these vertices have a common border.
- Two regions that touch at only one point are not considered adjacent.

For example,

Terminologies:

coloring

-- A *coloring* of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.

The chromatic number of a graph

-- is the least number of colors needed for a coloring of this graph, denoted by x(G)

For example,

106

10.8 Graph Coloring

Theorem 1 The Four Color Theorem

The chromatic number of a planar graph is no greater than four.

- **♦** Any planar map of regions can be depicted using 4 colors so that no two regions with a common border have the same color.
- **♦** The four color theorem was originally proposed as a conjecture in 1850s.
- ◆ Proof by Haken and Appel used exhaustive computer search in 1976.
- **♦** The four color theorem applies only to planar graphs. Nonplanar graphs can have arbitrarily large chromatic numbers.

1. The chromatic numbers of some simple graphs

Show that the chromatic numbers of a graph is n.

- Show that the graph can be colored with *n* colors. Method: constructing such a coloring.
- Show that the graph cannot be colored using fewer than *n* colors.

The chromatic numbers of some simple graphs:

(1) The graph G contains only some isolated vertices.

$$x(G) = 1$$

108

10.8 Graph Coloring

(2) The graph G is a path containing no circuit.

$$x(G) = 2$$

(3) C_n

$$\begin{cases} x(G) = 2 & \text{if } n \text{ is even} \\ x(G) = 3 & \text{if } n \text{ is odd} \end{cases}$$

 $(4) \quad K_n$

$$x(G) = n$$

(5) A simple graph with a chromatic number of 2 is bipartite. A connected bipartite graph has a chromatic number of 2.

110

10.8 Graph Coloring

- 2. Applications of graph colorings
- (1) Scheduling Exams

How can the exams at a university be scheduled so that no student has two exams at the same time?

Solution:

This scheduling problem can be solved using a graph model, with vertices representing courses and with an edge between two vertices if there is a common student in the courses they represent.

Each time slot for a final exam is represented by a different color.

A scheduling of the exams corresponds to a coloring of the associated graph.

10.8 Graph Coloring

For example, Suppose we want to schedule some final exams for CS courses with following code numbers:

1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156

Suppose also that there are no common students in the following pairs of courses because of prerequisites:

1007-3137

1007-3157, 3137-3157

1007-3203

1007-3261, 3137-3261, 3203-3261

1007-4115, 3137-4115, 3203-4115, 3261-4115

1007-4118, 3137-4118

1007-4156, 3137-4156, 3157-4156

How many exam slots are necessary to schedule exams?

112

10.8 Graph Coloring

Turn this into a graph coloring problem.

-- Vertices are courses, and edges connect courses which *cannot* be scheduled simultaneously because of possible common students in both courses

2. Applications of graph colorings

(2) Set up natural habitats of animals in a zoo

Solution:

Let the vertices of a graph represent the animals.

Draw an edge between two vertices if the animals they represent cannot be in the same habitat because of their eating habits.

A coloring of this graph gives an assignment of habitats.

124

Homework:

Sec. 10.8 3, 8, 9, 10, 17

