

Parametric Approach

Parametric Approach: MNIST

- 10 labels
- 60,000 training images
- **10,000** test images
- Each image is an array of size
 28 x 28 = 784 numbers total

Parametric Approach: Linear Classifier

greatlearning Example with an Image with 4 Pixels, and 3 Classes (1/2/3)

Interpreting a Linear Classifier

$$f(x_i, \overline{W}, b) = Wx_i + b$$

Example trained weights of a linear classifier trained on MNIST:

Interpreting a Linear Classifier

$$f(x_i, W, b) = Wx_i + b$$

[28x28]
array of numbers 0...255
(784 numbers total)

We Defined a (Linear) Scoring Function:

$$f(x_i, W, b) = Wx_i + b$$

1	
	ı
	İ

2

3

Example class scores for 3 images, with a random W:

0	-3.45
1	3.15
2	5.3
3	-2.1
4	4.48
5	8.02
6	3.78
7	1.06
8	-0.36
9	-0.72

•
-0.51
1.1
4.6
2.0
-4.19
3.58
4.49
-4.37
-2.09
-2.93

	3.	42
	2.	3
	1.	9
-	3.	1
	2.	64
	5.	55
-	4.	34
-	1.	5
-	4.	79
	6.	14

Going forward: Loss function / Optimization

/

2

3

3.42 2.3

1.9

-3.1

2.64

5.55 -4.34

-1.5

-4.79

6.14

Example class scores for 3 images, with a random W:

_		
0	-3.45	-0.51
1	3.15	1.1
2	5.3	4.6
3	-2.1	2.0
4	4.48	-4.19
5	8.02	3.58
6	3.78	4.49
7	1.06	-4.37
8	-0.36	-2.09
9	-0.72	-2.93

 Define a loss function that quantifies our unhappiness with the scores across the training data.

2. Come up with a way of efficiently finding the parameters (**W**, **b**) that minimize the loss function. (optimization)

3 training examples, 3 classes: For some W the scores of f(x, W) = Wx are:

		2	3
one	3.15	1.1	2.3
two	5.3	4.6	1.9
three	-2.1	2.0	-3.1

Softmax Classifier (Multinomial Logistic Regression) greatlearning Learning for Life Softmax Classifier (Multinomial Logistic Regression)

one	3.15	scores =	
two	5.3	unnormalized log probabilities of th	
three	-2.1	classes	

GreatlearningSoftmax Classifier (Multinomial Logistic Regression)

greatlearning

Learning for Life

 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ where $s=f(x_i;W)$

Softmax function

one 3.15

5.3 two

three -2.1

> scores = unnormalized log probabilities of the classes

Softmax Classifier (Multinomial Logistic Regression) greatlearning Learning for Life Regression)

one 3.15

5.3 two

three -2.1

> scores = unnormalized log probabilities of the classes

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $s=f(x_i;W)$

(is 1 (and 0 otherwise) if and only if sample belongs to class

We would like to maximize the log likelihood of correct class, i.e. decrease the negative log likelihood of the correct class:

$$ig|L_i = -\log P(Y = y_i|X = x_i)ig|$$

In summary:
$$L_i = -y_i \cdot log \left(\frac{e^{s_i}}{\sum_j e^{s_j}} \right)$$
 $L = \sum_i L_i$

Softmax Classifier (Multinomial Logistic Regression) greatlearning Learning for Life Softmax Classifier (Multinomial Logistic Regression)

greatlearning Learning for Life

$$L_i = -y_i \cdot log\left(\begin{array}{c} e^{s_i} \\ \sum_j e^{s_j} \end{array} \right), \ y = [1,0,0]^T$$
 one
$$two \\ three \\ \begin{array}{c} 3.15 \\ 5.3 \\ -2.1 \end{array} \qquad \begin{array}{c} 23.33 \\ 200.3 \\ 12 \end{array} \qquad \begin{array}{c} 0.104 \\ 0.895 \\ 0.00 \end{array}$$
 unnormalized unnormalized probabilities probabilities

greatlearning Learning for Life

$$L_i = \begin{bmatrix} y = [1,0,0] \uparrow T \end{bmatrix}$$

$$L_i = \begin{bmatrix} -y_i \cdot log \left(\frac{e^{s_i}}{\sum_j e^{s_j}}\right), y = [1,0,0]^T \end{bmatrix}$$
one
$$two$$

$$5.3$$

$$-2.1$$

$$unnormalized$$

$$log$$

$$probabilities$$

$$probabilities$$

$$tog$$

$$probabilities$$

$$probabilities$$

$$probabilities$$

 $L_i = -\log(0.104) = 0.982$

Thank you!