Manuale - Analisi 1 Ingegneria Informatica

26 settembre 2025

Indice

Ι	Concetti di base	1
1	Derivate 1.1 Derivate fondamentali	2 2 2
2	Integrali 2.1 Indefiniti	2 2 3
ΙΙ	Studio di Funzione	3
3	Studio di Funzione3.1Dominio, simmetrie e segno Dominio Simmetrie3.2Punti di accumulazione, limiti e asintoti3.3Studio della continuità e derivabilità, monotònia3.4Derivata seconda e convessità3.5Grafico qualitativo di $f(x)$ $f(x) = x$ $f(x) = x^2$ $f(x) = x^3$ $f(x) = x $ $f(x) = x $ 	3 3 3 3 4 4 4 4 4 4 5 5 5 6 6 6 7 7 7 8 8
Π	II Studio della convergenza	8

Parte I

Concetti di base

1 Derivate

1.1 Derivate fondamentali

- $1. D[x^n] = nx^{n-1}$
- 2. D[x] = 1
- 3. $D\left[\frac{1}{x}\right] = -\frac{1}{x^2}$
- 4. $D[\sqrt{x}] = \frac{1}{2\sqrt{x}}$
- $5. \ D[a^x] = a^x * ln|a|$
- 6. $D[e^x] = e^x$
- 7. $D[log_a x] = \frac{1}{x*ln a}$
- 8. $D[\ln x] = \frac{1}{x}$
- 9. $D[\sin x] = \cos x$
- 10. $D[\cos x] = -\sin x$
- 11. $D[\tan x] = \frac{1}{\cos^2 x}$
- 12. $D[\cot x] = -\frac{1}{\sin^2 x}$
- 13. $D[arcsin x] = \frac{1}{\sqrt{1-x^2}}$
- 14. $D[arccos x] = -\frac{1}{\sqrt{1-x^2}}$
- 15. $D[arctan x] = \frac{1}{1+x^2}$

1.2 Regole di derivazione

- 1. D[f(x) + g(x)] = f'(x) + g'(x)
- 2. D[k * f(x)] = k * f'(x)
- 3. D[f(x) * g(x)] = f'(x) * g(x) + f(x) * g'(x)
- 4. $D\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)*g(x)-f(x)*g'(x)}{g(x)^2}$

2 Integrali

2.1 Indefiniti

- $1. \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c$
- $2. \int \frac{1}{x} dx = \ln|x| + c$
- $3. \int e^x dx = e^x + c$
- $4. \int a^x dx = \frac{a^x}{\ln a} + c$
- $5. \int \sin x \, dx = -\cos x + c$
- 6. $\int \cos x \, dx = \sin x + c$
- $7. \int \frac{1}{\sin^2 x} dx = -\cot x + c$
- 8. $\int \frac{1}{\cos^2 x} dx = \tan x + c$

9.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

10.
$$\int \frac{1}{\sqrt{1+x^2}} dx = \arctan x + c$$

11.
$$\int f(x)^{\alpha} * f'(x) dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + c$$

12.
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

13.
$$\int e^{f(x)} * f'(x) dx = e^{f(x)} + c$$

14.
$$\int a^{f(x)} * f'(x) dx = \frac{a^{f(x)}}{\ln a} + c$$

15.
$$\int \sin f(x) * f'(x) dx = -\cos f(x) + c$$

16.
$$\int \cos f(x) * f'(x) dx = \sin f(x) + c$$

17.
$$\int \frac{f'(x)}{\cos^2 f(x)} dx = \tan f(x) + c$$

18.
$$\int \frac{f'(x)}{\sin^2 f(x)} dx = -\cot f(x) + c$$

19.
$$\int \frac{f'(x)}{\sqrt{1-f(x)^2}} dx = \arcsin f(x) + c$$

20.
$$\int \frac{f'(x)}{1+f(x)^2} dx = \arctan f(x) + c$$

21.
$$\int f(x) * g'(x) dx = f(x) * g(x) - \int f'(x) * g(x) dx$$

22.
$$\int \frac{f'(x)}{k^2 + f(x)^2} dx = \frac{1}{k} arctan(\frac{f(x)}{k}) + c$$

Pils

Durante lo svolgimento potrei trovarmi i seguenti casi che sono più complessi, riassunti in 3 macro-casi possono essere risolti in modo più semplice.

Caso:

- Grado D < Grado N: Uso la divisione.
- Denominatore: 1° Grado: $\frac{f'(x)}{f(x)}$
- Denominatore 2° Grado: Dopo aver calcolato il Δ ho i tre seguenti casi:

$$-\Delta = 0$$
:

*
$$\int f'(x) * f(x)^{\alpha} dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + c$$

* Divisione A/B

$$-\Delta < 0$$
:

*
$$\int \frac{f'(x)}{k^2 + f(x)^2} dx = \frac{1}{k} arctan(\frac{f(x)}{k}) + c$$
 *
$$\int \frac{\text{numeratore} + a - a}{\text{denominatore}} dx$$

*
$$\int \frac{\text{numeratore} + a - a}{dx} dx$$

$$-\Delta > 0$$
:

$$*$$
 Divisione A/B

*
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

Parte II

Studio di Funzione

3 Studio di Funzione

3.1 Dominio, simmetrie e segno

Dominio

Per dominio si intende l'insieme dei valori di x per cui la funzione è definita. Casi tipici:

• Frazioni \rightarrow denominatore $\neq 0$.

• Radici pari \rightarrow argomento ≥ 0 .

• Logaritmi \rightarrow argomento > 0.

• Funzioni goniometriche con $Df(x) \neq \mathbb{R}$ (Esclusi frazioni con seni e coseni ad es. tangente):

$$-f(x) = \arcsin x \rightarrow Df(x) = [-1, 1]$$

$$-f(x) = \arccos x \rightarrow Df(x) = [-1, 1]$$

Esempio:
$$f(x) = \frac{x-3}{x+1} \Rightarrow \begin{cases} f(x) = 0 & \text{se } x = 3 \\ f(x) > 0 & \text{se } x < -10 \text{ } x > 3 \\ f(x) < 0 & \text{se } -1 < x < 3 \end{cases}$$

Simmetrie

• Parità:

$$-f(-x) = f(x) \rightarrow$$
Funzione pari (simmetria rispetto all'asse y)

$$-f(-x) = -f(x) \rightarrow$$
 Funzione dispari (simmetria rispetto all'origine)

Esempio: $f(x) = x^2 \Rightarrow f(-x) = (-x)^2 = x^2 \Rightarrow f$ pari.

NB. Per le funzioni fratte basta che numeratore e denominatore abbiano segno discorde.

3.2 Punti di accumulazione, limiti e asintoti

3.3 Studio della continuità e derivabilità, monotònia

3.4 Derivata seconda e convessità

3.5 Grafico qualitativo di f(x)

Alla fine dei calcoli svolti fino ad ora dovrebbe esser possibile tracciare un grafico qualitativo della funzione, di seguito si trovano le funzioni fondamentali.

$$f(x) = x$$

$$f(x) = x^2$$

 $f(x) = x^3$

f(x) = |x|

 $f(x) = \ln x$

 $f(x) = \frac{1}{\ln|x|}$

 $f(x) = \sqrt{x}$

 $f(x) = \sin x$

 $f(x) = \cos x$

 $f(x) = \tan x$

 $f(x) = \arcsin x$

 $f(x) = \arccos x$

 $f(x) = \arctan x$

Parte III Studio della convergenza