Contents

- Homework 4 #2 Introduction
- Establishing variables and parameters
- Forming each n-dimensional matrix A
- Computing other values

Homework 4 #2 Introduction

```
% Geneva Porter, 2019.11.07
% Homework 4, Problem 2, Math 693A
% Professor Uduak George, SDSU

% This assignment applies the standard conjugate gradient method to solve
% the linear systems describing the Hilbert matrix in 5, 8, 12, and 20
% dimensions. The residual norms and eigenvalue spreads are plotted.
% Condition factors for CG and steepest descent methods are compared.
```

Establishing variables and parameters

```
clear
clc
format short

Dimension = [5, 8, 12, 20]';
Condition_Number = zeros(4,1);
```

Forming each n-dimensional matrix A

```
subplot(1,2,1);
r_norm = cg_standard(A,b,x,"no");
plot_cg(r_norm, Dimension(k));

% Plotting the spread of the eigenvalues
subplot(1,2,2);
plot_eg(A);
end
```

Computing other values

Dimension	Condition_Number	CG_Condition_Factor	SD_Condition_Factor
5	4.7661e+05	0.99711	1
8	1.5258e+10	0.99998	1
12	1.6212e+16	1	1
20	2.1065e+18	1	1

