Chapter 18: Concurrency Control

(Slides by Hector Garcia-Molina, http://www-db.stanford.edu/~hector/cs245/notes.htm)

Chapter 18

Chapter 18 Concurrency Control

Chapter 18

Example:

T1: Read(A) T2: Read(A) $A \leftarrow A+100 \qquad A \leftarrow A\times 2$ Write(A) Write(A) Read(B) $B \leftarrow B+100 \qquad B \leftarrow B\times 2$ Write(B) Write(B)

Constraint: A=B

Chapter 18

<u></u>		Α	В
T1	T2	25	25
Read(A); A ← A+100 Write(A); Read(B); B ← B+100;		125	
Write(B);			125
	Read(A);A \leftarrow A \times 2;		
	Write(A);	250	
	Read(B);B \leftarrow B \times 2; Write(B);		250
	(-7/	250	250

Schedule B			
		Α	В
	T2	25	25
	Read(A); $A \leftarrow A \times 2$; Write(A); Read(B); $B \leftarrow B \times 2$; Write(B);	50	50
Read(A); A ← A+100 Write(A); Read(B); B ← B+100;		150	150
Write(B);		4.50	150
		150	150
Chapter 18			5

Schedule C		Α	В
T1	T2	25	25
Read(A); A ← A+100			
Write(A);		125	
	Read(A); $A \leftarrow A \times 2$;		
	Write(A);	250	
Read(B); B ← B+100;	<i>\(71</i>		
Write(B);			125
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Read(B);B \leftarrow B \times 2;		
	Write(B);		250
,	wille(D),	250	250

Schedule D			
<u> </u>		Α	В
_T1	T2	25	25
Read(A); A ← A+100			
Write(A);		125	
	Read(A);A \leftarrow A \times 2;		
	Write(A);	250	
	Read(B);B \leftarrow B \times 2;		
	Write(B);		50
Read(B); B ← B+100;	,		
Write(B);			150
		250	150
Chapter 18			7

Schedule E	Same as Schedule D but with new T2'		
		Α	В
_T1	T2'	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A ← A×1;		
	Write(A);	125	
	Read(B);B \leftarrow B \times 1;		
	Write(B);		25
Read(B); $B \leftarrow B+100$;			
Write(B);			125
() /		125	125
Chapter 18			8

Want schedules that are "good",
 regardless of
 - initial state and
 - transaction semantics
 Only look at order of read and writes
 Example:
 Sc=r₁(A)w₁(A)r₂(A)w₂(A)r₁(B)w₁(B)r₂(B)w₂(B)

Returning to Sc Sc= $r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$	
$T_1 \rightarrow T_2$ $T_1 \rightarrow T_2$	
no cycles ⇒ Sc is "equivalent" to a serial schedule (in this case T ₁ ,T ₂)	
Chapter 18 13	
	1
<u>Concepts</u>	
Transaction: sequence of $ri(x)$, $wi(x)$ actions Conflicting actions: $ri(A)$ $wi(A)$	
Schedule: represents chronological order in which actions are executed Serial schedule: no interleaving of actions	
or transactions	
Chapter 18 14	
Definition	
<u>Definition</u>	
S ₁ , S ₂ are <u>conflict equivalent</u> schedules if S ₁ can be transformed into S ₂ by a series of swaps on non-conflicting actions.	
Chapter 18	

<u>Definition</u>	
A schedule is <u>conflict serializable</u> if it is conflict equivalent to some serial schedule.	
scriedule.	
Chapter 18 16	
	1
Precedence graph P(S) (S is schedule)	
Nodes: transactions in S Arcs: $Ti \rightarrow Tj$ whenever	
- $p_i(A)$, $q_i(A)$ are actions in S	
$-p_i(A) <_S q_i(A)$	
- at least one of p_i , q_j is a write	
Chapter 18 17	
	1
Exercise:	
• What is P(S) for S = w ₃ (A) w ₂ (C) r ₁ (A) w ₁ (B) r ₁ (C) w ₂ (A) r ₄ (A) w ₄ (D)	
• Is S serializable?	
Chapter 18 18	

<u>Lemma</u>	
S_1 , S_2 conflict equivalent $\Rightarrow P(S_1)=P(S_2)$	
Chapter 18	
	1
Note: $P(S_1)=P(S_2) \not \Rightarrow S_1$, S_2 conflict equivalent	
Counter example:	
$S_1=w_1(A) r_2(A) w_2(B) r_1(B)$	
$S_2=r_2(A) w_1(A) r_1(B) w_2(B)$	
Chapter 18 20	
<u>Theorem</u>	
$P(S_1)$ acyclic \iff S_1 conflict serializable	
Chapter 18 21	

How to enforce serializable schedules?

Option 1: run system, recording P(S); at end of day, check for P(S) cycles and declare if execution was good

Chapter 18

How to enforce serializable schedules?

Option 2: prevent P(S) cycles from occurring

Chapter 18

A locking protocol

Two new actions:

lock (exclusive): li (A) ui (A)

unlock:

T1 | |T2 lock scheduler table

Chapter 18

24

23

Rule #1: Consistent transactions Ti: ... li(A) ... pi(A) ... ui(A) ... Chapter 18 Rule #2 Legal scheduler S = li(A) ui(A)no lj(A) Chapter 18 Exercise: • What schedules are legal? What transactions are consistent? $S1 = l_1(A)l_1(B)r_1(A)w_1(B)l_2(B)u_1(A)u_1(B)$ r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) $S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$ $l_2(B)r_2(B)w_2(B)l_3(B)r_3(B)u_3(B)$ $S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$ l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

27

Chapter 18

Schedule G		
T1 l1(A);Read(A) A+A+100;Write(A) l1(B); u1(A)	T2 delayed	
Read(B);B ← B+100 Write(B); u1(B)	l2(A);Read(A) A Ax2;Write(A)(12(B)	
(,, (,	l ₂ (B); u ₂ (A);Read(B) B ← Bx2;Write(B);u ₂ (B);	
Chapter 18	34	

Schedule H (T2 reversed)		
T1 l₁(A); Read(A) A ← A+100; Write(A) (I₁(B)) delayed	T2 l₂(B); Read(B) B +Bx2; Write(B) (l₂(A)) delayed	
deadlock		
Chapter 18	35	

- Assume deadlocked transactions are rolled back - They have no effect

 - They do not appear in schedule

E.g., Schedule H on previous slide

Chapter 18

We can show that rules $\#1,2,3 \Rightarrow \text{conflict-serializable}$ schedules

(see textbook)

Chapter 18

37

38

- Beyond this simple 2PL protocol, it is all a matter of improving performance and allowing more concurrency....
 - Shared locks
 - Multiple granularity
 - Inserts, deletes and phantoms
 - Other types of C.C. mechanisms

Chapter 18

Shared locks

So far:

$$S = ...l_1(A) r_1(A) u_1(A) ... l_2(A) r_2(A) u_2(A) ...$$
Do not conflict

Instead:

$$S=...\ |S_1(A)\ r_1(A)\ |S_2(A)\ r_2(A)\\ uS_1(A)$$

$$uS_2(A)$$

Chapter 18

39

-	

Last satts	
<u>Lock actions</u>	
l-t _i (A): lock A in t mode (t is S or X)	
u-t(A): unlock t mode (t is S or X)	
Shorthand:	
u(A): unlock whatever modes	
Ti has locked A	
Chapter 18 40	
	1
What about transactions that read and	
write same object?	
Option 1: Request exclusive lock	
$T_1 = I - X_1(A) r_1(A) w_1(A) u_1(A)$	
$11 - \dots \land 1(A) \dots 11(A) \dots w_1(A) \dots u_1(A) \dots$	
Chap ter 18 41	
]
What about transactions that read and	
write same object?	
Outro 2 Hannada	
Option 2: Upgrade	
(E.g., need to read, but don't know if will write)	
Ti= l-S1(A) r1(A) l-X1(A)w1(A)u1(A)	
The same as:	
- Getting 2nd lock on A, or	
- Dropping S, getting X lock	
Chapter 18 42	
L	·

Compatibility matrix	
Comp <u> S X </u>	
S true false X false false	
Chapter 18 43	
	1
Lock types beyond S/X	
Examples: (1) increment lock	
(see textbook)	
(2) update lock	
Chapter 18 44	
	1
<u>Upgrate locks</u>	
Common deadlock problem with upgrades: T1 T2	
I-S ₁ (A)	
I-X ₁ (A)	
Deadlock	
Chapter 18 45	

	<u>Solution</u>	
	If Ti wants to read A and knows it	
	may later want to write A, it requests	
	<u>update</u> lock (not shared)	
	Chapter 18 46	
		,
	How does locking work in practice?	
	Every system is different	
	(E.g., may not even provide	
	CONFLICT-SERIALIZABLE schedules)	
	• But here is one (simplified) way	
	Chapter 18 47	
	Chapter 10 +7	
		1
	Cample Legislan Costano	
	Sample Locking System:	
	(1) Don't trust transactions to request/release locks	
	(2) Hold all locks until transaction	
	commits	
	#	
	locks time	
	une	
	Chapter 18 48	
- 1		1

What are the objects we lock? Tuple A Disk Relation A Tuple B block Α Tuple C Relation B Disk ? block В ÷ DΒ DB DB Chapter 18

- Locking works in any case, but should we choose <u>small</u> or <u>large objects?</u>
- If we lock <u>large</u> objects (e.g., relations)
 - Need few locks
 - Low concurrency
- If we lock small objects (e.g., tuples, fields)
 - Need more locks
 - More concurrency

Chapter 18

53

Summary

Have looked at 2PL, a concurrencycontrol mechanism commonly used in practice

Others (in the textbook):

- Multiple granularity
- Tree (index) protocols
- Timestamping
- Validation

Chapter 18

54

1	0
Т	o