P, NP, and Beyond

Hengfeng Wei

hfwei@nju.edu.cn

May 01 \sim May 04, 2017

1 / 29

P, NP, and Beyond

- 1 Concepts: Computational Complexity Classes
- 2 Reductions: Tetris is NP-complete

Ρ

$$\mathsf{P} = \bigcup_{c>0} \mathsf{DTIME}(n^c)$$

TC 34.1-5

$$f(n) = O(n^c)$$
 $t(n) = O(n^d)$

$$T(n) = kf(n) + t(n)$$

$$T_k(n) = \sum_{i=1}^k f^{(i)}(n) + t(n)$$

$$k = O(1)$$
 vs. $k = \Theta(n^{O(1)})$ O vs. Θ, Ω

NP

Definition (NP)

 $L \in \mathsf{NP}$ if \exists polynomial-time $\mathit{verifier}\ V(x,c)$ such that $\forall x \in \{0,1\}^*$,

$$x \in L \iff \exists c \in \{0,1\}^*, V(x,c) = 1.$$

NP-problems has short certificates that are easy to verify.

TC 34.2-6

 $HAM-PATH \in NP$

NP

TC 34.2-4

NP is closed under \cup , \cap , \cdot , *.

$$L_1 \in \mathsf{NP}, L_2 \in \mathsf{NP} \implies L = L_1 \circ L_2 \in \mathsf{NP}$$

Question:

Is NP-complete closed under \cup , \cap , \cdot , *?

NP

Theorem

NP is closed under "*".

$$c = c_1 \# c_2 \# \dots \# c_k \# m_1 \& m_2 \& \dots \& m_{k-1}$$

$$A^*(x,y) : \forall 1 \le k \le |x|$$

$$c = c_1 \# c_2 \# \dots \# c_k \# m_1 \& m_2 \& \dots \& m_{k-1}$$

$$\bigwedge \wedge_{i=1}^{i=k} A(x_i, c_i)$$

$$x \in L^* \iff \exists c, A(x, c) = 1$$

Reference

http://www.dei.unipd.it/~geppo/AA/DOCS/NPC.pdf

coNP

$$L \in \mathsf{NP} \stackrel{?}{\Longrightarrow} \overline{L} \in \mathsf{NP}$$

$$\overline{\mathsf{SAT}} = \{\phi : \phi \text{ is not satisfiable}\}$$

$$\mathsf{TAUT} = \{\phi : \phi \text{ is a tautology}\}\$$

$$\mathsf{coNP} = \{L : \bar{L} \in \mathsf{NP}\}$$

Definition (coNP)

 $L \in \mathsf{coNP}$ if \exists polynomial-time $\mathit{verifier}\ V(x,c)$ such that $\forall x \in \{0,1\}^*$,

$$x \in L \iff \forall c \in \{0,1\}^*, V(x,c) = 1.$$

NP vs. coNP

$$\mathsf{coNP} \neq \{0,1\}^* \setminus \mathsf{NP}$$

$$P\subseteq NP\cap coNP$$

$$P = NP \implies NP = coNP$$

$$NP \neq coNP \implies P \neq NP$$

NP-hard and NP-complete

$$\forall L \in \mathsf{NP}, L \leq_p L' \implies L' \text{ is NP-hard}$$

NP-complete = $NP \cap NP$ -hard

NP-hard and NP-complete

TC 34.5-6

HAM-PATH is NP-complete.

 $\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_p \mathsf{HAM}\text{-}\mathsf{PATH}$

 \leq_p : split v into v_1, v_2 ; add $s, t, (s, v_1), (v_2, t)$

Question:

 $\mathsf{HAM}\text{-}\mathsf{PATH} \leq_p \mathsf{HAM}\text{-}\mathsf{CYCLE}$

 \leq_p : add v'; $(v', v), \forall v \in V$

P vs. NP

solve vs. verify

exhaustive search avoidable?

$$P \neq NP \implies P \neq NP$$
-complete

Theorem (NP-intermediate: Ladner's theorem, 1975)

$$P \neq NP \implies \exists L \in NP \setminus P \land L \notin NP$$
-complete

Factoring, Graph (group) isomorphism (vs. Subgraph isomorphism)

EXP

$$\begin{aligned} \mathsf{EXP} &= \bigcup_{c>0} \mathsf{DTIME}(2^{n^c}) \\ \mathsf{P} &\subseteq \mathsf{NP} \subseteq \mathsf{EXP} \end{aligned}$$

Time Hierarchy Theorem

$$\mathsf{P} \subsetneqq \mathsf{EXP}$$

Theorem (Time Hierarchy Theorem, 1965)

$$f(n)\log f(n) = o(g(n)) \implies \mathsf{DTIME}(f(n)) \subsetneqq \mathsf{DTIME}(g(n))$$

R

$$R = DTIME(< \infty)$$

#undecidable $\gg \#$ decidable

$$\#\mathsf{algs} = \mathbb{N}$$

$$\#\mathsf{problems} = 2^{\mathbb{N}} = \mathbb{R}$$

PSPACE

$$\mathsf{PSPACE} = \bigcup_{c>0} \mathsf{SPACE}(n^c)$$

 $P \subset PSPACE$

 $\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{EXP}$

PSPACE-complete

Definition (QBF: Quantified Boolean Formula)

$$Q_1x_1Q_2x_2\cdots Q_nx_n\varphi(x_1,x_2,\ldots,x_n)$$

$$Q_i: \forall, \exists$$

$$TQBF = \{True \ QBF\} \in PSPACE\text{-complete}$$

$$\mathsf{SAT}: \phi = \exists x_1, \dots, x_n \varphi(x_1, x_2, \dots, x_n) \in \mathsf{NP}\text{-complete}$$

TAUT :
$$\phi = \forall x_1, \dots, x_n \varphi(x_1, x_2, \dots, x_n) \in \text{coNP-complete}$$

PSPACE-complete

The QBF game

$$\varphi(x_1,x_2,\ldots,x_{2n})$$

Player 1 wins $\iff \varphi(x_1, x_2, \dots, x_{2n})$ is true.

Does player 1 has a winning strategy?

$$\exists x_1 \forall x_2 \exists x_3 \forall x_4 \cdots \forall x_{2n} \varphi(x_1, x_2, \dots, x_{2n})$$

NP vs. PSPACE

$$NP \stackrel{?}{=} PSPACE$$

Short certificate for winning strategy?

PH

Definition (Polynomial Hierarchy)

 $L\in \sum_i^p$ if \exists polynomial-time decidable $\mathit{relation}\ R(x,u_1,u_2,\ldots,u_i)$ such that $\forall x\in \{0,1\}^*$,

$$x \in L \iff \exists u_1 \in \{0, 1\} \forall u_2 \in \{0, 1\} \cdots Q_i u_i \in \{0, 1\}$$

 $R(x, u_1, u_2, \dots, u_i) = 1$

$$\prod_1^p = \cos \sum_1^p$$
 $\sum_1^p = \mathsf{NP}$ $\prod_1^p = \mathsf{coNP}$ $\mathsf{PH} = \bigcup_i \sum_i^p$ $\mathsf{Unique}\text{-SAT} \in \sum_2^p$

Summary

$$\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PH}\subseteq\mathsf{PSPACE}\subseteq\mathsf{EXP}$$

$$\mathsf{P} \subsetneqq \mathsf{EXP}$$

References

- "Computational Complexity A Modern Approach" by Arora and Barak (the first 5 chapters)
- "Computer and Intractability A Guide to the Theory of NP-Completeness" by Garey and Johnson

If HAM-CYCLE ∈ P

TC 34.2-3

$\mathsf{HAM}\text{-}\mathsf{CYCLE} \in \mathsf{P} \implies \mathsf{HAM}\text{-}\mathsf{CYCLE}\text{-}\mathsf{LIST} \in \mathsf{P}$

- 1. starting from v
- 2. removing each edge e on v
- 3. checking $G \setminus e$
- 4. restoring and marking the critical edge e = (v, u)
- 5. v = u

Reference

http://www.cs.wustl.edu/~pless/441/hw3soln.pdf

Question

remove $e \in E$ in arbitrary order if $(G \setminus e) \in \mathsf{HAM}\text{-CYCLE}$?

$G^3 \in \mathsf{HAM}\text{-CYCLE}$

TC 34.2–11 (Karaganis, 1968)

$$G^3 \in \mathsf{HAM}\text{-}\mathsf{CYCLE}$$

Theorem

Let T=(V,E) be a tree. For any edge $e\in E$, there is a Hamilton cycle on T^3 that contains e.

References

- ▶ "On the Cube of a Graph" by Jerome J. Karaganis, 1968
- ► "The Cube of Every Connected Graph is 1-Hamiltonian" by Gary Chartrand and S. F. Kapoor, 1968
- http://www.aco.gatech.edu/sites/default/files/ documents/comp-fa14sol.pdf

P, NP, and Beyond

- Concepts: Computational Complexity Classes
- 2 Reductions: Tetris is NP-complete

Tetris is NP-complete

References

- ▶ "6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs", by Prof. Erik Demaine, Fall 2014 (Lecture 03, from 00:51:00)
- ► "Tetris is Hard, Made Easy" by Ron Breukelaar, Hendrik Jan Hoogeboom, and Walter A. Kosters, 2003

Tetris

TETRIS

Definition (TETRIS: The Tetris Problem)

 $\mathsf{TETRIS} \in \mathsf{NP}$

3-PARTITION

Definition (3-PARTITION)

3-PARTITION \leq_p TETRIS: the initial board

3-PARTITION \leq_p TETRIS: the piece sequence

First for every a_i ∈ A the sequence (in this order):

2. Then to fill the top of all the s buckets the 'subset fillers':

3. Then the T-shape to unlock the 'lock':

4. And to clear the whole board by filling the 'fill area':

$$5T + 16$$
 times

3-PARTITION \leq_p TETRIS: " \Longrightarrow "

3-PARTITION \leq_p TETRIS: " \Longleftarrow "