testing WriteTEXElementTableByGenerator:

switching to the finite field \mathbb{F}_{2^4} with defining polynomial $x^4 + x^3 + 1$, where

 α is a root of $x^4 + x^3 + 1$

elm	given basis B				
order	β_0	β_1	β_2	β_3	α^{i}
-	0	0	0	0	0
1	1	0	0	0	1
3	1	1	0	1	α^5
3	0	1	0	1	α^{10}
15	0	1	1	0	α^{13}
15	1	0	1	1	α^{11}
5	1	0	1	0	α^9
15	1	1	1	0	α^7
5	0	0	0	1	α^3
15	0	1	0	0	α
15	0	0	1	1	α^{14}
5	1	1	0	0	α^{12}
15	0	1	1	1	α^8
5	1	1	1	1	α^6
15	1	0	0	1	α^4
15	0	0	1	0	α^2

Table 2: Element table for \mathbb{F}_{2^4} using basis $B = [\beta_i] = [1, \alpha, \alpha^2, \alpha^3]$ with generator α is a root of $x^4 + x^3 + 1$.