

مقارنة التوابع

• تعرف عملية مقارنة تابعين بأنها دراسة سلوك تابع بالنسبة لتابع آخر

- \blacksquare التابع الحقيقي هو تابعُ منطلقه ومستقره مجموعتين جزئيتين من
- تكون قيمة التابع في جوار نقطة التماس قريبة من قيم تابع المماس وهذا ما ندعوه بالتقريب الخطي لتابع عند نقطة التماس.
 - جوار النقطة هو أي مجال اختياري a, b [تنتمي إليه هذه النقطة $\varepsilon = \frac{b-a}{2}$ في مركز الجوار ونصف قطره x_0 غالبا تكون x_0 في مركز الجوار ونصف قطره

تكافؤ تابعين في جوار نقطة

• نقول إن التابعين f, g متكافئان في جوار النقطة a إذا وجد تابع a معرف في جوار a بحيث يكون:

$$\lim_{x \to a} \delta(x) = 1 \land f(x) = \delta(x) \cdot g(x)$$

حيث تكون قيم f قريبة جدا من قيم g في جوار a، ونعبر عن ذلك كالآتي

$$f \sim g$$

وفي حال كان التابع g لا ينعدم في جوار α ، فإن التعريف السابق يكافئ

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

كما يمكننا أن نكتب

ونقول أنه في جوار بسيط للنقطة a تكون قيم g,f متساوية تقريباً

$$\forall x \in]a - \varepsilon, a + \varepsilon [\Rightarrow f(x) \approx g(x)]$$

• يمكن أن يكون التابع أكثر من مكافئ في جوار نقطة a لكن التابع الذي يكون احتمالية تكافؤه مع التابع f مساويا للواحد هو تابع المماس في النقطة a وذلك لأن المماس يشترك مع التابع a في النقطة a، وتكون نهاية تابع المماس مساوية للواحد في جوار نقطة a).

$$y-y_0=m(x-x_0)$$
 هي a عند النقطة $y=f'(a).(x-a)+f(a)$

• الفائدة من إيجاد تابع مكافئ تابع هي إيجاد قيم تقريبية (صورة نقطة) لتوابع معقدة

a = 0.0001 عند النقطة $f(x) = e^x$ عند النقطة •

$$f(x) = e^x : \Re \rightarrow \Re^{+*}$$

- g(x) = x + 1 هي (التابع المكافئ) هي معادلة المماس
 - ونلاحظ أن المماس يمر بالنقطة (0,1)
- $g(x) \sim f(x)$ و يكون g مكافئ لـ f في جوار الصفر
 - أي أن g هو تقريب للتابع f في جوار الصفر

ملاحظة هامة

$$f(0) = e^{0.0001} \approx g(0) = 0.0001 + 1 = 1.0001$$

• لكن كلما ابتعدنا عن الصفر تبتعد قيم التابعين

$$x = 1 \longrightarrow e^1 = 2.7$$

$$x + 1 = 2$$

و إذاً التقريب يكون في مجال صغير حول a ومن أجل $\varepsilon > 0$ صغيرة كفاية

0 هل التابيان التاليين متكافئين
$$g(x) = \sin x$$
 , $g(x) = x$ في جوار النقطة •

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$f(x) \sim g(x)$$

$$\sin x \approx x$$

التوابع المحدودة (تابع محدود أمام تابع آخر)

• ما هو التابع المحدود؟

يكون التابع M(x) محدود من الأعلى على المجال I إذا وفقط إذا وجد عدد حقيقي M يحقق:

Aوعندها يسمى M عنصرا راجحاً على المجال $X \in I \; ; \; M(x) \leq M$

ان M عنصرا راجحاً على مجال I فإن كل عدد حقيقي أكبر من M هو عنصر راجح على هذا المجال M

التوابع المحدودة (تابع محدود أمام تابع آخر)

يحقق: M(x) محدود من الأدنى على المجال I إذا وفقط إذا وجد عدد حقيقي m يحقق: $\forall x \in I$, $M(x) \geq m$ عنصرا قاصراً على المجال $M(x) \geq m$

یکون: M(x) محدود علی I إذا وفقط إذا وجد العدد $m\in\mathbb{R}^{*+}$ بحیث یکون:

$$\forall x \in I ; |M(x)| \leq m$$

$$-m \le M(x) \le m$$

تعریف

نقول أنّ التابع g يهيمن على التابع f في جوار النقطة a أو أن التابع f محدود أمام التابع g إذا وجد تابع m معرف ومحدود في جوار m بحيث يكون:

$$f(x) = M(x)g(x)$$

$$\lim_{X \to a} M(X) = L \quad : \quad L \in R$$

حيث

ونعبر عن ذلك بالصيغة التالية:

$$f = O(g)$$

ملاحظات هامة

- g اي أن قيم f لا تتجاوز قيم g اي أن قيم f الا g
- إذا كان تابع محدود أمام تابع آخر فليس بالضرورة أن يكون مكافئا له.
- a إذا كان g لا ينعدم في جوار a فإن التعريف السابق يكافئ القول أن التابع $\frac{f(x)}{g(x)}$ محدود في جوار -

ويمكن أن نستنتج أنه

إذا كان التابع f محدوداً أمام التابع g في جوار V للنقطة a فإنّ التعريف السابق يكافئ الشرط التالي: m>0 يوجد العدد الحقيقي m>0 بحيث m>0 بحيث يوجد العدد الحقيقي m>0

$$x \cdot \sin x = O(x)$$

$$f(x) = x \cdot \sin x$$
$$g(x) = x$$
$$M(x) = \sin x$$

نعلم أن M(x) تابع محدود في جوار الصفر وذلك لأن:

$$\forall x \in]-\infty, +\infty[\Rightarrow -1 \le \sin x \le 1 \Rightarrow |\sin x| \le 1$$
$$x \cdot \sin x = O(x)$$

. إذا كان
$$f = G \left(g
ight)$$
 فإن $f = O \left(g
ight)$ و $g = O \left(f
ight)$ ولكن العكس غير صحيح بالضرورة.

$$\sqrt{t+1} \stackrel{=}{{}_0} 1 + O(t)$$

$$\sqrt{t+1} = 1 + O(t)$$

$$\sqrt{t+1} - 1 = 0(t)$$

$$f(t) = \sqrt{t+1} - 1$$

$$f(t) = \frac{(\sqrt{t+1}-1).(\sqrt{t+1}+1)}{\sqrt{t+1}+1} = \frac{t+1-1}{\sqrt{t+1}+1} = \frac{t}{\sqrt{t+1}+1} = t.\frac{1}{\sqrt{t+1}+1}$$

$$M(t) = \frac{1}{\sqrt{t+1}+1}$$

$$\lim_{t\to 0} M(t) = \frac{1}{2}$$

$$\sqrt{t+1} - 1 = 0(t)$$

$$\sqrt{t+1} = 1 + O(t)$$

• ولكن

$$\lim_{t\to 0} M(t) = \frac{1}{2} \neq 1$$
 وذلك لأن $\sqrt{t+1} - 1 = t$

تابع مهمل أمام تابع تعریف

نقول إن التابع f مهمل أمام التابع g إذا وجد تابع $\delta(x)$ معرف في جوار $\delta(x)$ بحيث: $f(x) = \delta(x)g(x)$ lim $\delta(x) = 0$ حيث $\delta(x) = 0$

$$f = o(g)$$
 eight •

وينتج من التعريف

 $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ عندما في جوار a فإن التعريف السابق يكافيء $g \neq 0$ عندما أي

$$x . \ln x = o(x)$$
 أثبت أن

$$f(x) = x \cdot \ln x$$

$$g(x) = x$$

$$g(x) = \varepsilon(x)$$
 وحیث ویکون

$$\varepsilon(x) = \ln x$$

$$\lim_{x \to 1} \varepsilon(x) = \lim_{x \to 1} \ln x = 0$$

9

$$x \cdot \ln x = o(x)$$

• أي أن

بعض خواص التوابع المهملة أمام توابع أخرى

$$f = o(g) \Rightarrow f = O(g)$$

• ولكن العكس غير صحيح بالضرورة

بعض خواص التوابع المهملة أمام توابع أخرى

$$f = o(g) \Rightarrow g \sim (f + g)$$

2