ECON 7710 TA Session

Week 9

Jiarui(Jerry) Qian

University of Virginia, Department of Economics arr3ra@virginia.edu

Oct 2023

Outline

- Question 1
- 2 Question 2
- Question 3
- 4 Question 4
- 6 Practice Question

2/13

• We know $X \sim N(0,1)$ and $Y \sim N(0,1)$ and X and Y are independent. We define $Z = \frac{X}{Y}$. CDF of Z is written as follows: $F_Z(z) = Pr(Z \le z) = Pr(\frac{X}{Y} \le z)$ $= Pr(X \le zY|Y > 0)Pr(Y > 0) + Pr(X \ge zY|Y < 0)Pr(Y < 0)$ $= Pr(X \le zY, Y > 0) + Pr(X \ge zY, Y < 0)$ $= \int_0^\infty \int_z^{zy} f(x)f(y)dxdy + \int_z^0 \int_z^\infty f(x)f(y)dxdy$

By Leibniz rule,

$$\frac{\partial}{\partial z} \int_{a(z)}^{b(z)} f(x,z) dx = f(b(z),z)b'(z) - f(a(z),z)a'(z) + \int_{a(z)}^{b(z)} \frac{\partial}{\partial z} f(x,z) dx$$

we know the PDF of Z is

$$f_{Z}(z) = \frac{\partial F_{Z}(z)}{\partial z} = \int_{0}^{\infty} yf(zy)f(y)dy - \int_{-\infty}^{0} yf(zy)f(y)dy = \underbrace{2\int_{0}^{\infty} yf(zy)f(y)dy}_{\text{f() is symmetric}}$$

$$f_Z(z) = 2 \int_0^\infty y f(zy) f(y) dy$$

- We know pdf for N(0,1) is $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in \mathbb{R}$, then $f_Z(z) = \frac{1}{\pi} \int_0^\infty y e^{-y^2(\frac{z^2+1}{2})} dy = \frac{1}{2\pi} \int_0^\infty 2y e^{-y^2(\frac{z^2+1}{2})} dy = \frac{1}{2\pi} \int_0^\infty e^{-y^2(\frac{z^2+1}{2})} dy^2$
- We know $f_Z(z) = \frac{1}{2\pi} \int_0^\infty e^{-y^2(\frac{z^2+1}{2})} dy^2$
- Denote $u = y^2$, $t = \frac{z^2+1}{2}$, then

$$f_Z(z) = \frac{1}{2\pi} \int_0^\infty e^{-tu} du = -\frac{1}{2\pi t} [e^{-tu}]_0^\infty = \frac{1}{2\pi t} = \frac{1}{\pi (z^2 + 1)}$$

- Clearly, this is a **standard Cauchy Distribution**. And we know none of n-moments exist for $n \ge 1$, $n \in \mathbb{N}$ in Cauchy distribution.
- Check *C&B* page 162 for another solution.

Question 2.a

We know $\{X_n\}_{n=1}^{\infty}$ and $X_n \xrightarrow{d} X$, where $X \sim N(0,1)$. We suppose $Y_n = X_n$ for all $n \geq 1$

a Since $Y_n = X_n, \forall n \geq 1$, we know $F_{X_n}(x) = F_{Y_n}(x), \forall n \geq 1, \forall x \in \mathbb{R}$. So we know since $X_n \stackrel{d}{\to} X$, we can derive:

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \forall x$$

We can also get

$$\lim_{n\to\infty} F_{Y_n}(x) = \lim_{n\to\infty} F_{X_n}(x) = F_X(x), \forall x$$

Therefore if we denote Y as the distribution limit of $\{Y_n\}_{n=1}^{\infty}$, we know $Y \sim \mathcal{N}(0,1)$.

- b $Y_n \xrightarrow{d} Y$. We claim that $X_n + Y_n \xrightarrow{d} X + Y$ doesn't always hold. Consider Y = -X. Then by symmetry of normal distribution, we can still have $F_Y = F_{-X} = F_X$ and now X + Y = 0.
 - For Y_n , still we have

$$\lim_{n\to\infty} F_{Y_n}(x) = \lim_{n\to\infty} F_{X_n}(x) = F_X(x) = F_Y(x), \forall x$$

, where Y = -X. We proved $Y_n \xrightarrow{d} Y$ still holds.

• Since $X_n + Y_n = 2X_n$ For $\lim_{n \to \infty} F_{2X_n}(x) = \lim_{n \to \infty} P(2X_n \le x) = \lim_{n \to \infty} P(X_n \le \frac{x}{2}).$ We know $X_n \stackrel{d}{\to} X$ So $\lim_{n \to \infty} P(X_n \le \frac{x}{2}) = F_X(\frac{x}{2}) = P(X \le \frac{x}{2}) = P(2X \le x).$ We know if $X \sim N(0,1)$, then $2X \sim N(0,4)$. So $X_n + Y_n \stackrel{d}{\to} Z$, $Z \sim N(0,4) \ne X + Y = 0$

Therefore, we found a counterexample when $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$, $Y_n = X_n, \forall n > 1$. $X_n + Y_n \xrightarrow{d} X + Y$ may fail as well.

Question 3.a

We define the median of the distribution of random variable X is the number $q_{0.5}$ that solves

$$\inf_{q} \{ P(X \le q) \ge \frac{1}{2} \}$$

We know there exists a numeric sequence a_n such that $X_n - a_n \stackrel{p}{\to} 0$. We let $q_{0.5}^n$ be the median of the distribution of X_n

a We already know that $X_n - a_n \stackrel{p}{\to} 0$.

$$\lim_{n\to\infty} P(|X_n-a_n|\geq \epsilon)=0 \Rightarrow \lim_{n\to\infty} P(X_n\geq \epsilon+a_n)+\lim_{n\to\infty} P(X_n\leq a_n-\epsilon)=0$$

- Since for any probability p, we have $0 \le p \le 1$, then we know $\lim_{n \to \infty} P(X_n \ge \epsilon + a_n) = 0$ and $\lim_{n \to \infty} P(X_n \le a_n \epsilon) = 0$ So the possible range of X_n is $(a_n - \epsilon, a_n + \epsilon)$. Then we will have the median $q_{0.5}^n \in (a_n - \epsilon, a_n + \epsilon)$
- In other words, $|q_{0.5}^n a_n| < \epsilon$. Since $\epsilon > 0$ is arbitrary, we know $\lim_{n \to \infty} (q_{0.5}^n a_n) = 0$ is proved.

Question 3.b

b For $\lim_{n\to\infty} (E[X_n] - a_n) = 0$, we claim it is false and a counterexample is given below:

$$X_n = \begin{cases} n & p = 1/n \\ 0 & p = 1 - 1/n \end{cases}$$

• Let $a_n = \{0, 0, 0, ...\}$, a numerical sequence only contains 0. Then:

$$\lim_{n\to\infty} P(|X_n-a_n|>\epsilon) = \lim_{n\to\infty} P(|X_n|>\epsilon) = \lim_{n\to\infty} \frac{1}{n} = 0$$

So we successfully formulated $X_n - a_n \stackrel{p}{\rightarrow} 0$.

- * By defination, $\lim_{n\to\infty} q_{0.5}^n = 0$.
- For $\lim_{n\to\infty}(E[X_n]-a_n)$. We know $\forall n, E[X_n]=n*\frac{1}{n}+0*(1-\frac{1}{n})=1$

$$\lim_{n\to\infty} (E[X_n] - a_n) = \lim_{n\to\infty} E[X_n] = 1$$

Then we found for X_n and a_n we constructed, $\lim_{n\to\infty} (E[X_n] - a_n) \neq 0$.

We know X_1, X_2 ...is a sequence of independent and identically distributed random variables. We also know $X_n \stackrel{p}{\to} X$. We want to prove that X has a degenerate distribution.

- We consider two subsequences of X_n , which are
 - $\{X_i\}$, i = 1, 3, 5...
 - $\{X_j\}, \quad j = 2, 4, 6...$

Since $X_n \xrightarrow{p} X$, we know $X_i \xrightarrow{p} X$ and $X_j \xrightarrow{p} X$.

We also know all X_n are i.i.d. Then we know for the characteristic function of X_i and X_j , we will have $\phi_{X_i+X_i}(t) = \phi_{X_i}(t)\phi_{X_i}(t)$.

- We also know that convergence in probability implies convergence in distribution implies convergence of characteristic function. Therefore, we know:
 - $X_i \xrightarrow{p} X \Rightarrow X_i \xrightarrow{d} X \Rightarrow \lim_{i \to \infty} \phi_{X_i}(t) = \phi_X(t)$
 - $X_j \xrightarrow{p} X \Rightarrow X_j \xrightarrow{d} X \Rightarrow \lim_{j \to \infty} \phi_{X_j}(t) = \phi_X(t)$

So we found that $\lim_{(i,j)\to(\infty,\infty)}\phi_{X_i+X_j}(t)=[\phi_X(t)]^2$

• On the other hand, as $X_i \xrightarrow{p} X$ and $X_j \xrightarrow{p} X$, we know $X_i + X_j \xrightarrow{p} 2X$ Fix $\epsilon > 0$,

$$P(|X_i + X_j - 2X| \ge \epsilon) \le P(|X_i - X| + |X_j - X| \ge \epsilon)$$

$$\le \underbrace{P(|X_i - X| \ge \frac{\epsilon}{2})}_{\text{when } i \to \infty, \to 0} + \underbrace{P(|X_j - X| \ge \frac{\epsilon}{2})}_{\text{when } j \to \infty, \to 0}$$

Then we have $\lim_{(i,j)\to(\infty,\infty)}\phi_{X_i+X_j}(t)=\phi_{2X}(t)=\phi_X(2t)$

 Therefore we land on the conclusion that X's characteristic function must satisfy:

$$\phi_X(t)^2 = \phi_X(2t)$$

- For a degenerate distribution with probability P(X=c)=1. We know $\phi_X(t)=e^{itc}$. So we know: $\phi_X(t)^2=e^{2itc}$ and $\phi_X(2t)=e^{2itc}$.
- Then we found our conclusion holds for a degenerate distribution and we proved that X has a degenerate distribution.

Core 2020 June Q2

Suppose that X_n is a sequence of real-valued random variables and suppose that sequence $(X_n)^2$ (containing the squares of the original random variable) converges in probability while sequence X_n does not converge in probability or in distribution.

- a Characterize all possible limits X_*^2 of sequence of random variables $(X_n)^2$.
- b Formally describe an algorithm to construct a subsequence of X_n that does converge in probability and characterize its possible limits.

2020 Jun Q2.a

- a I claim that X_*^2 can be any positive real number as long as $X_*^2 \neq 0$ What we are given are:
 - X_n does not converge
 - $X_n^2 \xrightarrow{p} X_*^2$, $\lim_{n \to \infty} Pr(|X_n^2 X_*^2| > \epsilon) = 0$
- Continuous Mapping Theorem tells you

$$X_n^2 \xrightarrow{p} X_*^2 \Rightarrow \begin{cases} \sqrt{X_n^2} \xrightarrow{p} \sqrt{X_*^2} \\ -\sqrt{X_n^2} \xrightarrow{p} -\sqrt{X_*^2} \end{cases} \Rightarrow |X_n| \xrightarrow{p} X_*$$

- We know $X_n \not\xrightarrow{p} X_*$. So $X_* > 0$ but $X_* \neq 0$. Why 0 not work? We can prove if $|X_n| \xrightarrow{p} 0$, then $X_n \xrightarrow{p} 0$, $\Rightarrow \Leftarrow$
 - $|X_n| \xrightarrow{\rho} 0 \Rightarrow \lim_{n \to \infty} Pr(|a_n| 0 > \epsilon) = 0$ then we have $\lim_{n \to \infty} Pr(|X_n 0| > \epsilon) = 0 \Rightarrow X_n \xrightarrow{\rho} 0$
 - Or you can say if $X_* = 0$, then $\sqrt{X_*^2} = -\sqrt{X_*^2}$, which means we can remove the absolute value above...

2020 Jun Q2.b

- b Obviously, you just need to split the X_n into two parts Positive only or negative only.
- Formally, two algorithms to construct the subsequence:
 - Pick X_i from X_n such that all the $X_i > 0$
 - ullet Pick X_j from X_n such that all the $X_j < 0$
- Following the result in part a, the all possible limits are:
 - For X_i , we have $X_i \stackrel{p}{\rightarrow} |X_*|$
 - For X_j , we have $X_j \xrightarrow{p} -|X_*|$
- ullet Again, $|X_*|$ can be any positive real numbers but cannot be zero.