Module 5 Unit 2 Electro-Optic Sensors

Dr. Suren Patwardhan

The Electromagnetic Spectrum

The electromagnetic spectrum is the range of all frequencies of electromagnetic radiation.

Types of Electro-optic Sensors

- Radiation & particle detectors (gamma rays, X-rays, alpha particles, beta particles etc.)
- UV detectors (ultraviolet radiation)
- Optical detectors (visible light)
- IR detectors (infrared radiation, optical fibre communication, thermal imaging)
- Microwave detectors (communication signals, domestic appliances)
- Radio detectors (wifi, satellite communication, TV, FM communication)

Types of detectors	Used for
Scintillation counters, ionization chamber, GM counters, PMT, solid-state detectors based on Si/Ge, SiC, Cl-tank, Mass spectrograms,	Gamma radiation, X-rays, alpha, beta radiation and elementary particles such as neutrinos, mesons etc.
Photocells, solid-state detectors based on nitrites and phosphides	X-rays, UV rays
Photodiodes, phototransistors, CCD, CMOS	Visible and IR radiation
IMPATT diode, Tunnel diode, GUNN diode, CCD	Microwaves
Antennas, RADAR, Schottky diodes	Radio waves

IR and Image Sensors: Sub-Class of Electro-optic Sensors

IR Sensors

```
Thermal Sensors
   Bolometer/Thermistor
   Thermocouple/Thermopile
   Pyroelectric
Photon Sensors
   Photoconductive detectors
          Photodiodes
          Phototransistors
   Photovoltaic detectors
          Solar cells
```

Image Sensors

CCD CMOS

IR Spectrum

Topics to be Covered

IR Sensors
 Photodiodes (PIN photodiodes)

Image SensorsCCD

Thermal Sensors

Thermistor

Principle: Change of conductivity due to temperature

Thermal Sensors

Thermocouple/Thermopile

Principle: Seebeck effect

Types: Metallic, Semiconductor

$$V_{th} = \alpha_{S,AB} \Delta T$$

material B

 v_{th}

 v_{th}

 v_{th}

 $V = 3v_{th}$

 v_{th}

Thermal Sensors

Pyroelectric detectors

Principle: Pyro-electricity

Types: Special salts e.g. Tourmaline

$$I(t) = p \frac{dT}{dt}$$

Photon Sensors

Photoconductive detectors

Principle: Change in current due to light normally used in reverse biasing mode

Types: Photodiodes, Phototransistors

Principle: generation of voltage due to light

Used in zero-bias mode

Types: Solar cells

Photodiodes Types:

PN normal p-n junction diode

PIN: Broad un-doped region between P and N sides

APD: Avalanche photodiode

SPD: Schottky photodiode or metal-semiconductor diode

K J Somaiya College of Engineering

PIN Photodiode

General characteristics:

An intrinsic layer is placed between the two doped layers

This layer increases the electric field strength

The larger intrinsic layer also allows for a larger amount of photons

Response time reduces and speed of the photodiode increases

PIN Photodiode Equivalent Circuit and Biasing

Equivalent circuits gives major internal components active during its operation PIN photodiode is best operated in reserve biased mode

PIN Photodiode Parameters

Responsivity: ratio of photocurrent generated to the incident optical power. It measures sensitivity of the photodiode

$$R_{\lambda} = \frac{I_P}{P}$$

Total current is given by: $I_{TOTAL} = I_{SAT}(e^{\frac{qV_A}{k_BT}}-1) - I_P$

The photocurrent is given by: $I_P = \frac{q\eta AP}{h\upsilon}$

η: Quantum efficiency = number of electron-hole pairs generated per no of photons absorbed

P: Radiation power density (integrated)

Spectral Irradiance

Spectrum of Solar Radiation (Earth)

$$H=\int_0^\infty F(\lambda)d\lambda$$

$$=\sum_i F(\lambda)\Delta\lambda$$

PIN Photodiode I-V and light characteristics

Advantages and Disadvantages of a PIN Photodiode

- Advantages
- 1. High Sensitivity: they can capture weak optical signals effectively
- 2. Wide Spectral Response: they detect light across a broad range of wavelengths
- 3. Low Dark Current: Low dark current leads to higher signal-to-noise ratios
- 4. Fast Response Time: quickly converts light signals into electrical signals.
- 5. Low Noise: more accurate and reliable signal detection.
- 6. High Quantum Efficiency: efficiently convert incident photons into electrical current.
- Disadvantage:
- 1. Large Size: limits their use in applications in miniaturized designs (nanosensors)
- 2. Temperature Dependence: temperature affects the dark current and quantum efficiency
- 3. Power Consumption: a reverse bias consumes more power.

Applications of PIN Photodiode

- 1. Fibre optic communications: optical detectors and optical networks
- 2. Environmental sensing: light level detection, sensing and intensity monitoring
- 3. Automatic brightness control: ambient light sensors in smartphones and tablets
- 4. Imaging and Scanning: cameras, surveillance, and medical imaging, barcode readers
- 5. Automation: laser alignment, proximity detection
- 6. Detection of nuclear radiation

Materials for PIN Photodiodes

MATERIAL	WAVELENGTH SENSITIVITY (NM)
Silicon	190 - 1100
Germanium	800 - 1700
Indium gallium arsenide	800 - 2600
Lead sulphide	1000 - 3500

Comparison of Different Types of Photodiodes

APPLICATION	CRITERION	PN	PIN	APD
Power generation	Photovoltaic	Best	Good	Poor
Fibre optic receiver	Reverse biased	Good	Best	Good
Night Surveillance	Low light	Poor	Good	Best
Commercial product e.g. remote control	Cost	Best	Good	Poor
Scientific measurements	Low noise	Good	Best	Poor

Image Sensors

- 1. Image sensor converts light from an image to an electronic image
- 2. The light patterned and its order has to be preserved to reproduce image
- 3. This pattern is usually 2-D ordered matrix of intensity*
- 4. Unit in which conversion of patterned light to electrical signal occurs is called as pixel
- 5. Pixel is the smallest imaging element in an image sensor
- 6. Pixel density controls the quality of an image (such as HD, UHD, 4k etc.)

In some applications like holograms, 3rd dimension is recorded by capturing the phase of light waves

Basics Operation of CCD

imaged element of the scene

no electrical signal	little electrical signal	no electrical signal
little electrical signal	a lot of electrical signal	little electrical signal
no electrical signal	little electrical signal	no electrical signal

$$S[e^-] = \eta n T_{exp}$$
 (signal)

 η – quantum efficiency

n – photon irradiance per pixel

 T_{exp} – Exposure time

Image Sensing Process

CCD Readout Process

CMOS Sensor

25

Advantages of CCD

- 1. Higher sensitivity
- 2. Lower noise
- 3. Simple and robust design
- 4. Cost-effective

CCD Major Applications

- 1. Security cameras
- 2. Cellphone camera (CMOS CCD)
- 3. Raman Spectroscopy (molecular bonding)

