

| in Spheincal coordinates.                                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------|--|
| Solution                                                                                                                |  |
| Replacing 22 + y2 + 22 by p2, we obtain                                                                                 |  |
| $\beta^{\sim} = a^{\sim}$                                                                                               |  |
| if $g = a$ which is the equation of                                                                                     |  |
| the sphere zity + zi = ai in                                                                                            |  |
| Spherical condinates. Il Ans.                                                                                           |  |
| Ex2: Write an equation of the cone $z = \sqrt{x^2 + y^2}$ in spherical                                                  |  |
| condinates.                                                                                                             |  |
| Solution                                                                                                                |  |
| Replacing 2 by pos of and $\sqrt{2^2+y^2}$ by $r$ ( $r=g\sin\phi$ )                                                     |  |
| into $z = \sqrt{z^2 + y^2}$ , we obtain                                                                                 |  |
| $g \omega s \phi = g \sin \phi$<br>$\sin \phi$                                                                          |  |
| $\frac{\sin \phi}{\omega s \phi} = 1$                                                                                   |  |
| $tan \phi = 1$                                                                                                          |  |
| $ \frac{1}{1} = \frac{1}{1}  \text{which is an equation of the} \\ \text{cone in spherical coordinates. } \ A_{m_s}\  $ |  |
|                                                                                                                         |  |
| Ex3: Describe in wads the surface whose equation is                                                                     |  |
| $9^2 - 39 + 2 = 0$                                                                                                      |  |
| Solution                                                                                                                |  |
| (g-1)(g-2)=0                                                                                                            |  |
| $\Rightarrow \beta = 1  \text{a Sphere of nadius } 1$ $\alpha  \beta = 2  \text{a Sphere of nadius } 2$                 |  |
| of J = 2 a sphere of radius c                                                                                           |  |
| This is a union of his spheres, $p = 1$ and $g = 2$ . // Ans.                                                           |  |
| Ex4: Identify the surface whose equation is                                                                             |  |
| $\beta = \cos \phi$                                                                                                     |  |
| Solution                                                                                                                |  |
| Using the equations of transformation,                                                                                  |  |
| $\sqrt{2^2 + y^2 + 2^2} = \frac{2}{\sqrt{x^2 + y^2 + 2^2}}$                                                             |  |
|                                                                                                                         |  |
| $\therefore  \chi^2 + \chi^2 + \xi^2 = \xi$ $\chi^2 + \chi^2 + \xi^2 - \xi = 0$                                         |  |
| $2^{2} + y^{2} + z^{2} - 2(z)(\frac{1}{2}) = 0$                                                                         |  |
| $\therefore  \chi^2 + \gamma^2 + z^2 - 2(z)(\frac{1}{2}) + (\frac{1}{2})^2 = (\frac{1}{2})^2$                           |  |
|                                                                                                                         |  |
| $\left(2-\frac{1}{2}\right)^2$                                                                                          |  |
| $\therefore \qquad \chi^{2} + y^{2} + \left(z - \frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2}$                  |  |
| which is a sphere centered (2) $(0,0,\frac{1}{2})$ and radius $\frac{1}{2}$ .                                           |  |
|                                                                                                                         |  |





| V = 4 5 2                               | Solo P2 Sind de de                                                                                  | βdθ                                                             |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Symmetry                                |                                                                                                     |                                                                 |
| = 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | $\int_{0}^{2} \sin \phi \left( \frac{\rho^{3}}{3} \right) \left  \frac{1}{3} \right  d\phi d\theta$ |                                                                 |
|                                         |                                                                                                     |                                                                 |
| 0 )                                     | $\int_{0}^{4} \sin \phi  (a^{3}) d\phi d\theta$                                                     |                                                                 |
| $=\frac{4}{3}a^3\left(\int_c$           | $\frac{11/2}{J\theta}$ $\left(\int_{0}^{\infty} \sin \phi \ d\phi\right)$                           |                                                                 |
|                                         | ) (-cos d)   «                                                                                      |                                                                 |
| , , , , , , , , , , , , , , , , , , , , | (- cu(d +1) // Ams.                                                                                 |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         | $d = \frac{\pi}{2}$ $\Rightarrow$ the cone $\chi_{y}$ -plane), then $\chi_{y}$                      |                                                                 |
|                                         | hemisphere                                                                                          | ecomes the volume                                               |
| Vo                                      | $= \frac{2a^3\pi}{3} \left(-\cos\frac{\pi}{2}+1\right)$                                             | 2 Ta 3                                                          |
|                                         |                                                                                                     |                                                                 |
| Vsphere =                               | $= 2 \text{ Vienosphane} = 2 \left(\frac{2\pi}{3}\right)$                                           | $\left(\frac{a^{3}}{3}\right) = \frac{4}{3}\pi a^{3} / A_{ms}.$ |
|                                         | fee you on Friday!                                                                                  |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |
|                                         |                                                                                                     |                                                                 |