

WHAT IS CLAIMED IS:

- 1 1. A method for analyzing optical properties of optical signals comprising:
 - 2 receiving an input optical signal having input spectral peaks at
 - 3 different frequencies;
 - 4 providing a local optical signal having a central spectral peak and a
 - 5 side spectral peak; and
 - 6 combining and mixing said input optical signal and said local
 - 7 optical signal to construct output spectral peaks that include combinations of said
 - 8 input spectral peaks of said input optical signal.
- 1 2. The method of claim 1 further comprising deriving spectral phase
2 differences between said input spectral peaks of said input optical signal using
3 said output spectral peaks.
- 1 3. The method of claim 2 wherein said providing of said local optical signal
2 includes optically modulating a local oscillator signal with respect to one of
3 intensity and phase to produce said local optical signal.
- 1 4. The method of claim 3 wherein said optically modulating of said local
2 oscillator signal includes optically modulating said local oscillator signal such that
3 the frequency separation between said central spectral peak and said side spectral
4 peak is approximately equal to an integer times half of the frequency separation of
5 said input spectral peaks of said input optical signal.
- 1 5. The method of claim 4 wherein said optically modulating of said local
2 oscillator signal includes shifting the phase of an electrical modulation signal used
3 to phase modulate said local oscillator signal such that amplitudes of said output
4 spectral peaks are changed.

1 6. The method of claim 5 wherein said deriving of said spectral phase
2 differences includes computing said spectral phase differences between said input
3 spectral peaks of said input optical signal using said output spectral peaks
4 produced by said shifting of said phase of said electrical modulation signal.

1 7. The method of claim 4 wherein said optically modulating of said local
2 oscillator signal includes modulating the phase of an electrical signal used to
3 phase modulate said local oscillator signal.

1 8. The method of claim 7 wherein said deriving of said spectral phase
2 differences includes measuring amplitudes of different harmonics of the frequency
3 of said electrical signal.

1 9. The method of claim 8 wherein said deriving of said spectral phase
2 differences computing said spectral phase differences between said input spectral
3 peaks of said input optical signal using said amplitudes of even and odd
4 harmonics of said frequency of said electrical signal.

1 10. The method of claim 3 wherein said optically modulating of said local
2 oscillator signal includes optically modulating said local oscillator signal such that
3 the frequency separation between said central spectral peak and said side spectral
4 peak is equal to an integer times half of the frequency separation of said input
5 spectral peaks of said input optical signal offset by a reference frequency.

1 11. The method of claim 10 wherein said deriving of said phase differences
2 includes comparing said output spectral peaks with a reference signal having said
3 reference frequency to measure said spectral phase differences of said input
4 spectral peaks of said input optical signal.

1 12. An optical analyzer system comprising:
2 an input to receive an input optical signal having input spectral
3 peaks at different frequencies;
4 an optical signal generator configured to generate a local optical
5 signal having a central spectral peak and a side spectral peak;
6 an optical coupler configured to combine said input optical signal
7 and said local optical signal; and
8 an optical receiver configured to receive and mix said input optical
9 signal and said local optical signal to construct output spectral peaks that include
10 combinations of said input spectral peaks of said input optical signal.

1 13. The system of claim 12 further comprising a processing unit operatively
2 connected to said optical receiver, said processing unit being configured to derive
3 spectral phase differences between said input spectral peaks of said input optical
4 signals using said output spectral peaks.

1 14. The system of claim 13 wherein said optical signal generator includes an
2 optical local oscillator source to generate a local oscillator signal and an optical
3 modulator to modulate said local oscillator optical signal, said optical modulator
4 including one of an intensity modulator and a phase modulator.

1 15. The system of claim 14 wherein said phase modulator is configured to
2 optically modulate said local oscillator signal such that the frequency separation
3 between said central spectral peak and said side spectral peak is approximately
4 equal to an integer times half of the frequency separation of said input spectral
5 peaks of said input optical signal.

1 16. The system of claim 15 wherein said optical signal generator includes a
2 modulation controller operatively connected to said phase modulator, said
3 modulation controller being configured to shift the phase of an electrical
4 modulation signal applied to said phase modulator to phase modulate said local
5 oscillator signal such that amplitudes of said output spectral peaks are changed.

1 17. The system of claim 16 wherein said processing unit includes a computer
2 that is configured to compute said spectral phase differences between said input
3 spectral peaks of said input optical signal using said output spectral peaks
4 produced by a shift of said phase of said electrical modulation signal.

1 18. The system of claim 14 wherein said optical signal generator includes a
2 modulation controller operatively connected to said phase modulator, said
3 modulation controller being configured to modulate the phase of an electrical
4 signal applied to said phase modulator to phase modulate said local oscillator
5 signal.

1 19. The system of claim 18 wherein said processing unit includes a phase
2 sensitive detector to measure amplitudes of different harmonics of the frequency
3 of said electrical signal.

1 20. The system of claim 19 wherein said processing unit further includes a
2 processor operatively connected to said phase sensitive detector, said processor
3 being configured to compute said spectral phase differences between said input
4 spectral peaks of said input optical signal using said amplitudes of even and odd
5 harmonics of said frequency of said electrical signal.

1 21. The system of 14 wherein said phase modulator is configured to optical
2 modulate said local oscillator signal such that the frequency separation between
3 said central spectral peak and said side spectral peak is equal to an integer times
4 half of the frequency separation of said input spectral peaks of said input optical
5 signal offset by a reference frequency.

1 22. The system of claim 21 wherein said processing unit includes a phase
2 sensitive detector to compare said output spectral peaks with a reference signal
3 having said reference frequency to measure said spectral phase differences of said
4 input spectral peaks of said input optical signal.

1 23. A method for analyzing optical properties of optical signals comprising:
2 receiving an input optical signal having input spectral peaks at
3 different frequencies;
4 providing a local oscillator signal;
5 combining and mixing said input optical signal and said local
6 oscillator optical signal to produce a heterodyne signal; and
7 electrically mixing said heterodyne signal with an electrical signal
8 to produce a mixed electrical signal having output spectral peaks that include
9 combinations of said input spectral peaks of said input optical signal.

1 24. The method of claim 23 further comprising comparing said mixed
2 electrical signal with a reference signal to measure spectral phase differences
3 between said input spectral peaks of said input optical signal.

1 25. The method of claim 23 further comprising reconstructing said input
2 spectral peaks of said input optical signal from said output spectral peaks.

1 26. The method of claim 23 wherein said reference signal has a frequency
2 defined by a frequency separation of said input spectral peaks of said input optical
3 signal and the frequency of said electrical signal.

1 27. An optical analyzer system comprising:
2 an input to receive an input optical signal having input spectral
3 peaks at different frequencies;
4 a local oscillator configured to generate a local oscillator signal;
5 an optical coupler configured to combine said input optical signal
6 and said local oscillator optical signal;
7 an optical receiver configured to receive and mix said input optical
8 signal and said local oscillator optical signal to produce a heterodyne signal; and
9 a mixer configured to mix said heterodyne signal with an electrical
10 signal to produce a mixed electrical signal having output spectral peaks that
11 include combinations of said input spectral peaks of said input optical signal.

- 1 28. The system of claim 27 further comprising a phase sensitive detector
- 2 configured to compare said mixed electrical signal with a reference signal to
- 3 measure phase differences between said spectral peaks of said input optical signal.

- 1 29. The system of claim 27 further comprising a calculator that is configured
- 2 to reconstruct said input spectral peaks of said input optical signal from said
- 3 output spectral peaks of said mixed electrical signal.

- 1 30. The system of claim 27 wherein said reference signal has a frequency
- 2 defined by a frequency separation of said input spectral peaks of said input optical
- 3 signal and the frequency of said electrical signal.