INTEGRATED CIRCUIT

TA7698AP

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT
SILICON MONOLITHIC

TENTATIVE

VIDEO-CHROMA-DEFLECTION SYSTEM FOR A COLOR TELEVISION (PAL, NTSC)

The TA7698AP combines a PAL/NTSC Video—Chroma subsystem and a Deflection combination on a single monolithic integrated circuit to provide a PAL or PAL/NTSC color television.

This device includes a Video amplifier, PAL and NTSC color demodulator these are designed to provide color differential signal outputs, and improved Sync-separator, Horizontal oscillator with saw tooth wave type AFC, Horizontal pre-driver with X'ray protection circuit, Vertical oscillator and Vertical pre-driver in a 42 leads dual-in-line type plastic package.

FEATURES:

Video-Chroma Section

- . Simple PAL/NTSC System switch (Demodulator, Flip-flop, Tint control for NTSC)
- . Suitable to a Multi-CTV System :

TA7698AP ... PAL/NTSC Dual System

TA7698AP + SECAM combination ... 3 or more system

- . Minimum Numbers of External Parts Required.
- . Stabilized with Respect to Variation of Temperature and Supply Voltage.
- . A Few Initial Adjustment Required.

Deflection Section

- . Excellent Temperature Stability of Horizontal Oscillator.
- . Exact 50% Duty Cycle Outupt Due to the 2-fH Oscillator and Flip-Flop Circuit.
- . Excellent Inter-race.

■ 9097247 0019726 3T5

^1A12(1)

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TA7698AP-1 1988-10-25

TA7698AP

'MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VCC MAX	15	V
Horiz. Supply Current	ICC MAX	40	mA
Max. Input Signal Level	eIN3,5,14,15,17, 19,28,37,39	5	Vp-p
Max. Control Terminal Voltage	V _{4MAX} , V _{5MAX} , V _{7MAX} , V _{9MAX}	v _{CC}	V
Term. 1 Max. Output Current	I _{1 MAX}	4	mA
Term. 8 Max. Output Current	I8 MAX	10	πA
Term. 10 Max. Output Current	I _{10 MAX}	4	mΑ
Term. 13 Max. Output Current	I ₁₃ MAX	4	πA
Min. Load Resistance	R _{LD}	1.8	kΩ
Term. 23 Max. Output Current	I _{23 MAX}	4	mA
Vertical Stage Output Current	I 24 MAX	20	mA
Term. 25 Max. Output Current	I 25 MAX	4	mA
Term. 26 Max. Input Voltage	V26 MAX	v _{CC}	V
Term. 27 Max. Output Current	I 27 MAX	20	mA
Term. 30 MAX. Input Current	-I30 MAX	1	mA
Horiz. Max. Sink Current	-I24 MAX	30	mA
Horiz. Ave. Sink Current	-124	15	mA
Term. 35 Max. Input Voltage	V35 MAX	v _{CC}	v
Term. 36 Max. Voltage	V36 MAX	VCC	V
Term. 38 Max. Input Voltage	V38 MAX	5	V
Term. 40 Max. Output Current	I40 MAX	5	πA
Term. 42 Max. Sink Current	-I42 MAX	4	mA
Max. Power Dissipation	P _D MAX	2.2	W
Operating Temperature	Topr	-20~65	°C
Storage Temperature	Tstg	-55~150	°C

Note: Derated above Ta=25°C in the proportion of 17.6mW/°C.

TA7698AP-2 1988-10-25 TOSHIBA CORPORATION

BLOCK DIAGRAM

INTEGRATED CIRCUIT TOSHIBA TECHNICAL DATA

TA7698AP

UNIT Vp-p > фB фB % 필 фB MAX. 13.2 106 0.5 2.5 11 1 ı TYP. -1.5 12 82 9 70 0 1 -3.5 MIN. 10.8 5.0 -2.5 9 \sim 40 63 (Multi Burst) "39:2.5Vp-p 10 STEP APL 10%~90% $dGV_f = 20 log(v_{23} dMz/v_{23} 500kHz)$ X 100 v39:500kHz lVp-p(Multi Burst) v39:500kHz lVp-p(Multi Burst) $V_C=10V\sim 2V$, $V_X=4.25V$, $V_Z=4.0V$ $dG_V=20log(v_{23MAX}, v_{23MIN})$ $V_{C}=10V$, $V_{X}=4.25V$, $V_{Z}=4.0V$ $V_{C}=10V$, $V_{X}=4.25V$, $V_{Z}=4.0V$ v39:500kHz, 4.0MHz 1Vp-p 4v 23 pedestal) v 23 100% APL "39:No Signal 10% to 90% of Variation TEST CONDITION VX:Pedestal #39=3.25V $CV = 20 log(v_{23}/v_{39})$ VX=4.25V, VZ=4.0V $V_C=10V$, $V_Z=4.0V$ Ta=-20°C~65°C "39:No Signal VX=4.25V, ı $VZ=2V\sim 7V$ J H SW 4B NO NO NO ON NO No OFF OFF OFF OFF OFF OFF SW 4A NO OFF SW 41 NO NO No NO OFF OFF OFF OFF OFF OFF 36 36 TEST 2 23 23 23 23 23 23 TEST CCT 7 Н 7 2 N ~ 7 v 23 MAX 0V23/0T SYMBOL Vcc1 Icc14 GV£ √GV GΩ \simeq VIDEO SECTION (1) CHARACTERISTIC Supply Voltage Video Frequency Characteristics /ideo DC Output Co-effici Recommendable Contrast Gain Control Range Restoration Video Gain 12V Supply Max. Video Current Output Ratio erm.

9097247 0019729 004 📟

1988-10-25

T1A12(2)

V2=12V, Ta=25°C)

ELECTRICAL CHARACTERISTICS (Unless otherwise specified,

Be sure to visit ChipDocs site for more information http://www.chipdocs.com

TA7698AP-4

TA7698AP

VIDEO SECTION	(2)											
CHARACTERISTIC	SYMBOL	TEST	TEST	8W 36	SW 41	SW 4A	SW 4B	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Inverter Amp. Gain	GR	2	40	OFF	OFF	OFF		VX=4.25V v39:500kHz, 1Vp-p GR=20log(v40/v39)	2.2	3.5	4.6	dB
Inverter Amp. Differential	DGR	2	07	OFF	OFF	OFF	OFF	VX:3.3~5.3V v39:3.58MHz, 100mVp-p DGR=(v40MAX/v40MIN-1) X 100	ı	2.5	5	8
Inverter Amp. Differential Phase	DPR	2	07	OFF	OFF	OFF	OFF	VX:3.3~5.3V V39:3.58MHz, 100mVp-p DPR=\$40MAX-\$40MIN	ı	8	5	deg
Inverter Amp. Frequency Characteristics	4 GR£	2	07	OFF	OFF	OFF	OFF	$V_{X}=4.25V$ $v_{3}9=500kHz$, $4MHz$, $1V_{p}-p$ $dG_{R}f=20\ell og$ $(v_{4}0, 4MHz/v_{4}0, 500kHz)$	-3.5	-0.1	0.5	dB
Inverter Amp. 3.58MHz Linearity	в. г. з	2	39	OFF	OFF	OFF	OFF	VX=4.25V Measure #39 input level at #40 maximum output.	1.6	1	ı	Vp-p
Contrast Control Open Voltage	V41	Н	41	1	1	1	l		6.7	7.2	7.7	Λ
Color Control Open Voltage	V7	1	7	ı	ı	ı	ı		5.5	6.0	6.5	Λ
Tint Control Open Voltage	V9	Н	6	ı	ı	ı	1		5.5	6.0	6.5	Λ
Pedestal Amp. Gain	СР		23	OFF	NO	OFF	NO	VX=4.25V, VZ=4V v39=500kHz,1Vp-p(Multi Burst) Gp=20log(v23/v3)	9.5	12.0	13.5	dВ

= 9097247 0019730 826 **=**

1988-10-25
TOSHIBA CORPORATION

TA7698AP-5

TA7698AP

CHROMA (1) PAL	(Unless	otherwise	- 1	specified,	ifie		$V_C=10V$,		$V_S=10V$,	SW36:0N, SW10:0FF,	SW4A:ON,	, SW4B:ON)	ON)	
		9												
CHARACTERISTIC	SYMBOL	CCT	TEST PIN	SW 41	SW 7	MS 9	SW 12	SW 1.5	SW 20	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Max. Chroma Output Voltage	еСМъ	3	∞	NO	NO	OFF	c)	р	NO	^v 5:120mVp-p(B:C=1:1)	0.5	0.75	1.05	Vp-p
Burst Output Voltage	ebp	m	10	NO	NO	OFF	СQ	Ъ	ON	υ5:120mVp-p(B:C=1:1)	0.45	0.70	0.95	Vp-p
ACC Characteristics (1)	eap	3	∞	NO	ON	OFF	ъ	р	NO	v5:15mVp-p(B:C=1:1)	0.2	0.43	1	Vp-p
ACC Characteristics (2)	Ap	3	&	NO	ON	OFF	Ø	Ъ	ON	<pre>v5:100mVp-p, 300mVp-p</pre>	ı	1.0	1.3	l
Chroma Input Dynamic Range	eCIP	3	8	ON	ON	OFF	а	q	NO	v5=100mVp-p→800mVp-p	500	009	ı	mVp-p
Uni Color Control Range (1) (Uni Color) (Switch ON)	^{de} CU1P	3	8	NO	NO	OFF	ď	Ф	NO	$V_{C}=4\sim10V$, $V_{S}=10V$ $v_{S}=120\text{mVp-p(B:C=1:1)}$ $A_{CUp}=20\ell og \frac{v_{S}(v_{C}=10V)}{v_{S}(v_{C}=4V)}$	40	ı	l	dB
Uni Color Control Range (2) (Switch OFF)	^{⊿e} CU2P	3	8	NO	NO	OFF	cs.	.p	OFF	Same as above	ı	0	ı	фВ
Uni Color Control Phase Shift	$^{4 heta}_{ m DP}$	e	∞	NO	NO	OFF	ત્ય	q	NO	V _C =4V~10V, V _S =10V V _S =120mVp-p(B:C=1:1)	ı	ı	5	deg
Residual Color	CKP	3	8	NO	NO	OFF	a	р	NO	V _C =10V, V _S =0V V _S =120mVp-p(B:C=1:1)		1	3	шVр-р

1A12(2)

9097247 0019731 762

TA7698AP-6 1988-10-25

INTEGRATED CIRCUIT

TA7698AP

mV/deg d−d∧m UNIT mVp-p Hz/mV deg deg deg deg ΗZ MAX. 110 ŧ ı ı ı 1 ı 1 TYP. \sim 0 0 9 ±500 2.2 9 9 25 MIN. ±300 30 ı 1 ŧ ı ı ı Burst phase difference Change the burst level at pin 5 from 0 to at at at $v_5 = 120 \text{mVp} - p(B:C=1:1)$ Mesure burst level TEST CONDITION Change burst level Mesure burst level pin 10 when killer starts to operate. starts to operate. between pin 8 and pin 10 when ident "5:120mVp-p burst v5:120mVp-p burst "5:120mVp-p burst VC=10V, VS=2~10V pin 5 from o to 150mVp-p. 150mVp-p. pin 10. SW 20 NO NO No S NO NO O NO SW 15 Ъ Φ. م ಡ æ ď ď ø ದ ಡ SW 12 ಭ d ø OFF OFF OFF OFF OFF OFF S NO OFF OFF OFF NO NO NO NO NO S OFF OFF OFF OFF OFF SW 41 NO NO NO Ö TEST 8 10 PIN ∞ 10 10 80 16 18 13 16 18 21 10 13 TEST 3 3 α ന 3 3 α $^{4\, heta}_{
m bH1p}$ $^{4\theta}_{
m bH2p}$ SYMBOL $^{4 heta}_{
m PCP}$ $^{4\, heta}$ CCP $_{
m eIp}$ e_{KP} f_{PP} β_{P} FP CHARACTERISTIC Control ull-in Range 3urst-Chroma lint Control lint Control **Jistribution** Phase Shift Killer Det. Sensitivity Sensitivity ensitivity ensitivity)ifference Ident Det. hase Det. Control clor hase ange hase

CHROMA (2) PAL

🖿 9097247 0019732 bT9 🖿

TA7698AP-7

TOSHIBA CORPORATION

INTEGRATED CIRCUIT TECHNICAL DATA

TA7698AP

CHROMA (3) PAL	: تــ													
		E C E												
CHARACTERISTIC	SYMBOL	CCT	IESI PIN	SW 41	SW 7	MS 6	SW 12	SW 15	SW 20	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Color	$^{ m e}0{ m Rp}$		21					· · · · · · · · · · · · · · · · · · ·		v17, v19:100mVp-p	1.8	2.4	3.0	
Differential	50a	က	20	NO	NO	OFF	æ	rd	NO	4.443618MHz	ı	ı	ı	Vp-p
Output Voltage	$e0B_{\mathbf{p}}$		22							20101010101000000000000000000000000000	3.2	4.2	5.4	
Max. Color	eormp		21							v17, v19:500mVp-p	3.8	5.5	ı	
Differential	еосмр	3	20	NO	Ñ	OFF	В	ď	NO	4.43618MHz	ı	ı	ı	Vp-p
output vortage	еОВМр		22					-		CW:4,433618MHz	3.8	5.5		
Relative	R-Y/B-YP	3	21/ 22	1/ 22 ON	NO	OFF	ď	ď	NO	vl7:200mVp-p	97.0	0.56	99.0	ı
Amplitude	G-Y/B-Yp		20/ 22							4.443010HZ CW:4.433618MHz	0.24	0.34	0.44	•
Relative	$\theta_{ m R-Yp}$	c	21/		ā	Ē	,		2			06	100	-
Phase	$^{ m \theta}$ G-AP	n .	20/	 5	Š	1 1 1	d	.d	 5		220	230	240	deg
t	ercRP		21				-							
kesiduai Carrier	ercGP	e.	20	NO	NO	OFF	ď	rd	NO		ı	1	300	d-d/m
	fBRp		21				 						ć i	
Demodulator Bandwidth	fBGP	က	20	NO	NO	OFF	Ŋ	ਲ	NO	v_{17} : 200mVp-p	1.1	2.1	3.2	MHz
	$f_{ m BBp}$		22						•					<u> </u>
Demo. Output	EORP		21					ļ						
DC Voltage	E0GP	Н	20	OFF	OFF	OFF	αţ	 	NO		8.9	7.4	8.0	Λ
	EOBP		22									- V. J.		
Demo. Output	E0(R-G)P		21											
DC Voltage	E0(R-B)P	Н	20	OFF	OFF OFF	OFF	G	-	NO	v_{17} , v_{19} no input	-0.2	0	0.2	Λ
Ullierence	E0(B-G)P		22											
								ļ						

CHROMA (3) PAL

~1A12(2)

9097247 0019733 535

TA7698AP-8 1988-10-25

DSHIBA INTEGRATED CIRCUIT TECHNICAL DATA

TA7698AP

Ē			ာ			ာ့				<u> </u>		>	
TIMI			mV/°C			mV/°C						Λm	
MAX			2			2				3.6		100	
түр			-3 -0.5			0				m		0	-
MIN			-3			-2				2.4		-100	
TEST CONDITION			Ta=-20~65°C			Ta=-20°C~65°C			v17:200mVp-p	4.443618MHz CW:4.433618MHz		/217:200mVp-p	
MS	20		NO			NO				NO	ļ	No	
MS	15		٩			q				൧		م	
MS	12		ಣ			ซ				ದ		a	
MS	6		OFF OFF OFF			OFF OFF				OFF OFF		OFF OFF OFF	
MS.	7		OFF			OFF				OFF		OFF	
MS	41		OFF			OFF				OFF		OFF	
	PIN	21	20	22	21	20	22			19	21	20	22
TEST	22					H			,	ო		3	
SYMBOL		4 EOR 9P	$^{4}\mathrm{Eog}_{\theta\mathrm{P}}$	4EOB θ	E0(R-G) 9P	E0(R-B) 9P	$E_{O(B-G)\theta}$			$^{ m V}$ thS	⁴ E0R	4E0G	4E0B
CHARACTERISTIC		Demo.Output	UC Voltage Therm.	Co-effic.	Demo. Output	Diffence Voltage	Therm.	יח_בודדכי	Svstem SW	Threshold		DC Change by System SW	

9097247 0019734 471

TA7698AP-9 1988-10-25 TOSHIBA CORPORATION

^1A12(2)

INTEGRATED CIRCUIT

TA7698AP

	H	d	T a.	Q,	1		Ţ		1	
	UNIT	Vp-p	d-dA	Vp-p		d-d/m	dB	dB	deg	mVp-p
SW4B:ON)	MAX.	1.05	0.95	ľ	1.3	i	ı	ł	5	3
	TYP.	0.75	0.70	0.43	1.0	009	1	0	1	ı
SW4A:ON,	MIN.	0.5	0.45	0.2	ı	500	70	ı	ı	ı
VS=10V, SW36:0N, SW10:0FF, S	TEST CONDITION	v5:120mVp−p(B:C=1:1)	v5:120mVp−p(B:C=1:1)	^v 5:15mVp~p(B:C=1:1)	$v_5:100\text{mVp-p}$, 300mVp-p(B:C=1:1) Ap = $\frac{v_8(v_5=300\text{mVp-p})}{v_8(v_5=100\text{mVp-p})}$	v5=100mVp-p→800mVp-p	$V_{C}=4\sim10V$, $V_{S}=10V$ $v_{S}=120\text{mVp-p}(B:C=1:1)$ $A_{C}U_{P}=20\ell \log \frac{v_{S}(v_{C}=10V)}{v_{S}(v_{C}=4V)}$		V _C =4V~10V, V _S =10V V _S =120mVp-p(B:C=1:1)	V _C =10V, V _S =0V V _S =120mVp-p(B:C=1:1)
	SW 20	NO	NO	NO	ON	NO	ON	OFF	NO	NO
V _C =10V,	SW 15	Ф	Ą	Ф	ф	Ф	Ф	٩	q	ф
^C=	SW 12	ಚ	ď	es es	es.	ď	æ	a	ď	co.
ed,	MS 6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
cifi	SW 7	NO	NO	NO	ON	NO	NO	NO	NO	NO
e specified,	SW 41	NO	NO	NO	NO	ON	NO	NO	NO	NO
otherwise	TEST	8	10	8	8	φ.	∞	8	∞	ω
	TEST	7	7	7	7	7	7	7	7	4
SC (Unless	SYMBOL	есми	Nqə	ean	AN	ecin	4eCU1 _N	4 eCU2 _N	40 UN	eCKN
CHROMA (4) NTSC	CHARACTERISTIC	Max. Chroma Output Voltage	Burst Output Voltage	ACC Characteristics (1)	ACC Characteristics (2)	Chroma Input Dynamic Range	Uni Color Control Range (1) (Uni Color SW)	Uni Color Control Range (2) (SW OFF)	Uni Color Control Phase Shift	Residual Color

9097247 0019735 308 **3**

TA7698AP-10 1988-10-25 TOSHIBA CORPORATION

INTEGRATED CIRCUIT

TA7698AP

CINCIA (C) NISC	2														
CHARACTERISTIC	SYMBOL	TEST	TEST PIN	SW 41	SW 7	6 MS	SW 12	SW 15	SW 20	TEST CONDITION	ITION	MIN.	TYP.	MAX.	UNIT
Color Control Phase Shift	η _θ cc _N	7	80	NO	NO	OFF	a	٩	No.	V _C =10V, V _S =2~10V V _S =120mVp-p(B:C=1:1)	10V :C=1:1)	I	က	7	gəp
Burst-Chroma Phase Difference	$^{J heta}$ bc _N	4	8 10	ON	ON	OFF	ď	ф	NO			1	09	I	deg
Tint Control	74.47	7	10	NO	N	2	q	-ب	NO	$V_{C}=10V$ $V_{T}=2\sim10V$	f=4.43MHz	75	95	110	50
Range	NT HG	r	2	5	5		đ	3	<u> </u>	^v 5=120mVp-p (B:C=1:1)	f=3.58MHz	100	120	140	S D
Tint Control	46,111	7	C	NO	2	2	a	.4	NO	V _C =10V v _S =120mVp-p	f=4.43MHz	34	L [†] 7	62	200
Distribution	N749	r	2	5	5	<u></u>	3	<u> </u>		(B:C=1:1) v7	f=3.58MHz	45	09	80	20 U
Killer Det. Sensitivity	eKN	7	8 10	OFF	NO	OFF	ro -	rd .	NO			15	30	75	mVp-p
APC Pull-in Range	$_{ m IPN}$	7	13	OFF	OFF	OFF	rg	ro	NO			+300	±500	ı	Hz
Phase Det. Sensitivity	Nπ	7	16 18	OFF	OFF	OFF	rg	ပ	NO			1	25	1	mV/
Control Sensitivity	$^{eta}_{ m N}$	7	13 16 18	OFF	OFF	OFF	Ø	ß	NO			ı	2.2	ı	Hz/mV
						1			1						

CHROMA (5) NTSC

T1A12(2)

9097247 0019736 244 📼

TA7698AP-11 1988-10-25

INTEGRATED CIRCUIT TECHNICAL DATA

TA7698AP

CHROMA (6) NTSC	SC													
CHARACTERISTIC	SYMBOL	TEST CCT	TEST PIN	SW 41	WS 7	MS 6	SW 12	SW 15	SW 20	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Calor	eorn		21							v ₁₇ :100mVp-p	3.0	4.1	5.3	
Differential	e0G _N	7	20	No	NO	OFF	ď	В	NO O	4.443618MHz	1.0	1.6	2.2	Vp-p
Output Voltage	eOBN		22							CW:4.433618MHz	3.0	4.1	5.3	
Max. Color	eorm		21							v17:500mVp-p	4.5	5.5	ı	
Differential	e0GM _N	7	20	No	No	OFF	ď	g	NO	4.443618MHz	1.4	1.8	ı	Vp-p
Output Voltage	$_{\rm eobM_N}$		22							CW:4.433618MHz	4.5	5.5	i	
Relative	R-Y/B-YN	7	21/ 22	2	N	7.10	a	G	Ž	v17:100mVp-p	0.88	1.00	1.1	i
Amplitude	$G-Y/B-Y_N$	+	20/				t		 5	4.443618MHz CW:4.433618MHz	0.28	0.38	0.48	1
Relative	θ R-Y _N	7	21/	NO	2	1111			Ž		ı	105	,	50
Phase	θ G-YN	r	20/ 22				ರ		 5		l	235	ı	ສ ນ ປ
-	ercRN		21											
kesiduai Carrier	$^{ m ercGN}$	4	20	NO	NO	OFF	a	ಡ	NO NO		ı	ı	300	d-d∧m
	ercBN		22											
, cmo	fBRN		21											
Demodurator Band Width	$^{\mathrm{f}}\mathrm{BGN}$	4	20	NO	NO	OFF	В	С	NO.	"17:100mVp-p,10kHz~5MHz	1.1	2.1	3.2	MHz
	f_{BBN}		22											
	EORN		21					-						
Demo. Uutput DC Voltage	EOGN	-	20	OFF	OFF	OFF	В	-	NO	<i>v</i> ₁₇ :	8.9	7.4	8.0	Λ
)	EOBN		22										·	-
Demo, Output	E0(R-G)N		21											
DC Voltage	E0(G-B)N	-	20	OFF	OFF OFF	OFF	ц	Ą	NO	<i>v</i> 17:	-0.3	0	0.3	Δ
Ullerence	E0(B-G) _N		22									•		

T1A12(2)

■ 9097247 0019737 180 ■

TA7698AP-12 1988-10-25 TOSHIBA CORPORATION

INTEGRATED CIRCUIT

TA7698AP

CHRUMA (6) NISC	<u>ع</u> ر													
		1												
CHARACTERISTIC	SYMBOL	TEST		SW 41	NS.	SW SW SW SW 7 9 12 15	SW 12	SW 15	SW 20	TEST CONDITION	MIN.	MIN. TYP. MAX. UNIT	MAX.	UNIT
Demo. Output	^Δ EORθN		21			ļ								
DC Voltage Therm.	$^{4}\mathrm{E}_{\mathrm{OG}\theta\mathrm{N}}$	Н	20	OFF OFF OFF	OFF	OFF	В	p	NO	Ta=-20 ~ 65°C	-3	0	2	2 mV/°C
Co-effic.	$^{4}\mathrm{EOB}_{\theta}\mathrm{N}$		22								.,			
Demo. Output	4 EO (R-G) $_{\theta}$ N		21											
Diff. Voltage Therm.	4 EO(R-B) $_{\theta N}$	Н	20	OFF OFF	OFF	OFF	a	م	NC	Ta=-20~65°C	-2	0	2	2 mV/°C
Co-effic.	4 EO (B-G) θN		22											

■ 9097247 0019738 O17 **■**

TA7698AP-13 1988-10-25 TOSHIBA CORPORATION

INTEGRATED CIRCUIT

TA7698AP

	UNIT	Λ	mA	kHz	zH	Λ	mA	mA	Λ	%	Λ
	MAX.	9.0	30	16.125	230	5.1	5.0	5.0	0.3	55	4.0
	TYP.	8.2	26	15.625	70	4.5	3.7	4.0	ı	50	I
	MIN.	7.4	22	14.725	06-	3.9	2.7	2.7	l	45	ı
SW29:a)	TEST CONDITION			VH=4V	V _H =4V Ta=-20~60°C	SW1:a, SW2:a	SW1:a, SW2:b	SW1:a, SW2:c	VH=4V Saturation Voltage of #32	VH=4V T032=Duty cycle of H period.	VB:Variable Measure min VB which provides 150% duty output to #32
SW2	SW 32			æ	æ	В	a	ß	СG	rd	ď
۰	SW 37	ı		Ф	Ф	1	1	ı	р	Ф	Ф
OFF,	SW 36	-		OFF	OFF	1	ı	ı	OFF	OFF	OFF
SW28:	SW 35	ı		OFF	OFF	ı	ı	ı	OFF	OFF OFF	OFF
	SW 34	l		OFF	OFF	l	ı	ı	OFF	OFF	OFF
SW27,	TEST PIN	33	33	34	34	35	35	35	32	32	33
(SW24,	TEST	1	5	5	5	7	Н	П	5	5	'n
SECTION (1) (SYMBOL	V33	133	ΗJ	4fHT	VCL	IIN35	1035	V0L32	T032	V33 START
HORIZONTAL SEC	CHARACTERISTIC	Horizontal Regulated Voltage	Recommendable Supply Current	Horizontal Free Running Frequency	f _H Thermal Drift	AFC Clamping Voltage	AFC Sink Current	AFC Source Current	Horiz. Drive Residual Voltage	Horiz, Output Pulse Duty	Horiz. Osc. Starting Voltage
									Ī	ጥአ 76	98AP-14

- 9097247 0019739 T53

TA7698AP-14 1988-10-25 TOSHIBA CORPORATION

INTEGRATED CIRCUIT

TA7698AP

			,					
UNIT	mA	Hz	HZ	Hz/V	Λ	μА	η	Λ
MAX.	8.8	1	ı	I	1.1	1.0	1.0	9.5
TYP.	6.7	006+	1800	1900	0.93	0.18	0.18	8.6
MIN.	9.6	I	ı	I	0.75	0.05	0.05	7.1
TEST CONDITION	VB=4V Measure I33	VH:Variable Observe #32 and #37 waveform. S37 a→b, Measure the frequency difference.	Same as above	V _A =4.5V, Set V _H so that fH will be 15.75kHz. Then, change V _A 4V+0.5V, Measure fH difference.	Apply variable DC voltage to #30(V30).	when #32 output disappers.	Apply variable DC voltage to #32 through lkΩ resistor. Measure V32 and I32 just before V32 goes down.	
SW 32	ф	a	ď	a	a	a	p	q
SW 37	.p	o, ← a	a •to	Ъ	ф	Ъ	Ъ	.p
36	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
SW 35		NO	NO	OFF	OFF	OFF	OFF	OFF OFF
SW 34	OFF	ON	NO	OFF	OFF	OFF	OFF	OFF
TEST PIN	33	32	32	32	30	30	32	32
TEST CCT	5	5	2	5	2	2	5	5
SYMBOL	I33 START	JfH PULL	атон нд₽	$_{\beta'}^{\mathcal{H}}$	VIN30	1 IN30	1 _{IN32}	VIN32
CHARACTERISTIC	4V Supply Current	AFC Pull-in Range	AFC Hold Range	AFC Voltage Sensitivity	X'ray Protector Voltage Sensitivity	X'ray Protector Current Sensitivity	H. Drive Output Excess Voltage Protector Current Sens.	Excess Voltage Protector Voltage Sens.
	SYMBOL TEST TEST SW SW SW SW SW TEST CONDITION MIN. TYP. MAX.	ERISTIC SYMBOL CCT PIN 34 35 36 37 32 TEST CONDITION MIN. TYP. MAX. Current I33 START 5 33 OFF OFF OFF b a Measure I33 4.6 6.7 8.8	ERISTIC SYMBOL TEST SW SW SW SW SW TEST CONDITION MIN. TYP. MAX. Current 133 START 5 33 OFF OFF OFF b a Weasure 133 Range JfH PULL 5 37 37 A SW SW SW SW SW SW SW	ERISTIC SYMBOL TEST TEST SW SW SW SW SW TEST CONDITION MIN. TYP. MAX. Current 133 START 5 33 OFF OFF OFF Weasure 133 Aft PULL 5 37 ON ON OFF Trequency difference. Aft HOLD 5 32 ON ON OFF 5 3 Same as above - time - ti	Current I33 START 5 33 OFF OFF b a Weaver 133	ERISTIC SYMBOL CCT PIN 34 35 36 37 32 TEST CONDITION MIN. TYP. MAX. Current 133 START 5 33 OFF OFF OFF b a Measure 133 4.6 6.7 8.8 Lange JfH PULL 5 37 ON ON OFF b a Same as above 15.75kHz. Lage JH HOLD 5 32 OFF OFF OFF F b a Then, change VA 4440.5V, respectively. TOTAL CHARGE AFH OFF OFF OFF OFF B a Then, change VA 4440.5V, respectively. TOTAL CHARGE AFH OFF OFF OFF OFF OFF OFF B a Then, change VA 4440.5V, respectively. TOTAL CHARGE COURT OFF OFF OFF OFF B a Then, change LA 430(V30). TOTAL CHARGE COURT OFF OFF OFF OFF B a VOLLage to #30(V30). TOTAL CHARGE COURT OFF OFF OFF OFF B A THEN CHARGE TO #AGASURE V30 and 130.	ERISTIC SYMBOL CCT PIN 34 35 36 37 32 TEST CONDITION MIN. TYP. MAX. Current 133 START 5 33 OFF OFF OFF WHAS UP 133 4.6 6.7 8.8 Range JfH PULL 5 37 ON ON OFF TEST CONDITION MIN. TYP. MAX. Range JfH HOLD 5 37 OFF OFF OFF WHAS UP 11 be 15.75kHz. VILY AH HOLD 5 30 OFF OFF OFF WHAS UP 13 OFF OFF OFF WAS UP 13 OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Page Page

T1A12(2)

9097247 0019740 775

TA7698AP-15 1988-10-25

INTEGRATED CIRCUIT TECHNICAL DATA

TA7698AP

	UNIT	HZ	изес	HZ		тА	Λ	Λ
	MAX.	54.1	850	11.0	9.2	50	ı	3.7
	TYP.	50	069	10.0	8.5	27	1	2.8
	MIN.	47	450	9.0	7.7	15	11.9	I
	TEST CONDITION		H period of #27 output pulse	Set fy to 50Hz at SW28:0FF ;f0SC28 Measure fy at SW28:0N ;f0SC'28 ⁴ fy PULL=f0SC28-f0SC'28	SW29:0N, SW4:0FF	SW29:ON, SW4:ON	V27=6 → 12V	V27=6 → 0V
	SW 29	၁	ပ	Ф	1	Į.	æ	n
	SW 28	OFF	OFF	ON , OFF	1	1	OFF	OFF
	SW 26	OFF	OFF	OFF	1	ı	NO	NO
	SW 24	OFF	OFF	OFF	ı	1	NO	NO
	TEST PIN	27	27	27	27	27	26	26
	TEST	5	5	5	1	Н	5	5
NOI	SYMBOL	fγ	${ m Tr}$	Jfv Pull	V ₀₂₇	I027	VIH26	V1L26
VERTICAL SECTION	CHARACTERISTIC	Vertical Frequency	Retrace Time	fy Pull-in Range	Term. 27 Max. Output Voltage	Term. 27 Max. Output Current	Max. Common Mode Input Voltage	Min. Common Mode Input Voltage

| 9097247 0019741 601 🚥

TA7698AP-16 1988-10-25

INTEGRATED CIRCUIT TECHNICAL DATA

TA7698AP

_	<u>.</u> I						7
	UNIT	η	п	Λ	Λ	Λ	HZ
	MAX.	4.5	6.3	8.7	0.3	4.1	2.0
	TYP.	1.0	1.0	8.0	ı	3.9	0
	MIN.	0.25	0.18	7.3	ı	3.7	-1.0
	TEST CONDITION	V27=6V	V27=6V			I ₂₅ =-0.2mA	Ta=-20~60°C
	SW 29	В	В	р	ģ		၁
	SW 28	OFF	OFF	OFF	OFF		OFF OFF
	SW 26	ON	NO	NO	OFF		OFF
	SW 24	ON	NO	OFF	OFF		OFF
	TEST	27	26	24	24	25	27
	TEST TEST CCT PIN	5	5	2	2	5	5
NO	SYMBOL	1127	1126	V _{ОН24}	V0L24	V25	4 fvT
VENTION SECTION	CHARACTERISTIC	Term. 27 Input Current	Term. 26 Input Current	Max. Drive Output Voltage	Min. Drive Output Voltage	Term. 25 Bias Voltage	fy Thermal Drift

3T1A12(2)

9097247 0019742 548

TA7698AP-17 1988-10-25

TA7698AP

	CH CH CH	MS MS MS MS		
TEST CONI	35 36 37	34 35 36 37	PIN SW SW SW SW 34 35 36 37	34 35 36
#37 inpuss L level	OFF OFF c Wassure #37 input current when V36 goes L level to H.	ပ	OFF OFF C	36 OFF OFF OFF c
V36	NFF OFF C VS=2V Measure V36		OFF OFF C	36 OFF OFF C
V36	OFF OFF b Measure V36	OFF b	OFF OFF D	36 OFF OFF DF
V36=5V V38	FF OFF OFF b VD=12V, V36=5V Measure V38	٩	OFF OFF b	38 OFF OFF B
V38	FF OFF OFF b VD=12V Measure V38	Ą	OFF OFF b	38 OFF OFF OFF b
able 0~2V VD when V	FF OFF OFF b Measure Vp when V38 goes H to L.	 	OFF OFF b	38 OFF OFF b

SYNC SEPARATOR

9097247 0019743 484

TA7698AP-18 1988-10-25 TOSHIBA CORPORATION

INTEGRATED CIRCUIT

TA7698AP

T1A12(2)

9097247 0019744 310 📼

1988-10-25 TOSHIBA CORPORATION

TA7698AP

TA7698AP

INTEGRATED CIRCUIT

TA7698AP

9097247 0019750 614 **3**

TA7698AP-25 1988-10-25

TA7698AP

GT1A12(2)

TA7698AP-26 1988-10-25 TOSHIBA CORPORATION

TA7698AP

TERMINAL DESCRIPTION (1)

	TERMINAL	FUNCTION
1	Emitter Peaking	An Emitter-output of the contrast amplifier. Contrast gain and peaking characteristics are determine by a ratio of load impedances connected to #1 and #42 terminal.
2	V _{CC1}	Supply terminal for Video, Chroma, Sync Sep and vertical Deflection. 12V typ is recommended.
3	Pedestal Clamp Input	Delayed video signal is applied. The typical gain of the pedestal amplifier is 12.6dB.
4	Brightness Control*	Control terminal of Brightness (DC level of -Y output). The DC restoration ratio is adjustable by superposing video signal component from the pedestal clamp input.
5	Chroma Input	Chroma signal from a chroma take off coil is applied. The typical input level is 120mVp-p burst amplitude.
6	ACC Filter	Filter capacitor is connected.
7	Color Control* (Killer Output)	Control terminal of color saturation. Terminal voltage of #7 turns to low level when color Killer operates.
8	Chroma Output	Output terminal of chroma signal which is color controled, uni-color controled and burst gated.

9097247	0019752	497 I	

TA7698AP-27 1988-10-25 TOSHIBA CORPORATION

TA7698AP

TERMINAL DISCRIPTION (2)

	TERMINAL	FUNCTION
9	Tint (Hue) Control*	Control terminal of Tint (Hue). Burst phase is controled.
10	Burst Cleaning	Burst cleaner (tuned Tank) is connected. Burst signal at this terminal is already phase-shifted by Tint control(NTSC). It is possible to set a phase shift between burst signal and chroma signal by the tank circuit alingment.
11	GND 1	GND terminal for Video and Chroma section. Suitable de-coupling capacitor should be connected between $V_{\rm CC}$ 1 and GND 1.
12	Killer Ident Filter	A capacitor for an ident filter is connected. The terminal voltage is V_{CC} (color), 8V typ (B/W) and GND (Ident).
13	X'tal Drive	Terminals for a sub-carrier oscillator.
14	-45° Input	A X'tal is connected between #13 and #15 and a 45° $(\frac{\pi}{4})$
15	0° Input	phase shift circuit is between #15 and #14. Reference vectors for color demodulator, APC detector and Killer/Ident detector are composed from sub-carrier signals of #14 and #15.
16 18	APC Filter	APC Filter circuit is connected. Two terminals are provided for reducing internal off-set.
17	Direct Dig. Input	Chroma signal from #8 (chroma output) is attenuated and applied to this terminal. The input level is 0.25Vp-p typ. (Burst level). When PAL application, input levels of #17 and #19 should be the same. Internal PAL matrix circuit reduces crosstalk between the direct signal and delayed signal. When NTSC application, internal gain changes to keep the same demodulator outputs as PAL-application.

9097247 0019753 323

TA7698AP-28 1988-10-25 TOSHIBA CORPORATION

TA7698AP

	TERM]	INAL	ļ	FUNCTION				
19	Delayed	Signal In C System S	·	Chroma signal terminal throu 0.25Vp-p typ. PAL/NTSC Syste When #19 termi turns to NTSC To reduce exteshown below is	from #8 (Chr gh an 1H del (Burst level m SW Function nal voltage mode. ernal parts n	oma Output ay line.). n is below 2	The input	level is
				CUROMA L /	switch shunt		ed chroma	L: PAL H: NTSC
						· · · · · · · · · · · · · · · · · · ·		
		RELATIVE	PHASE	RELATIVE	E AMPLITUDE	MATRIX	TINT	FLIP·FLOP
		R-Y	G-Y	B-Y/R-Y	G-Y/B-Y		CONTROL	
	PAL	R-Y ±90°	G-Y 230°	B-Y/R-Y 1.78	G-Y/B-Y 0.58	PAL	CONTROL	ON
	PAL NTSC	R-Y	G-Y	B-Y/R-Y 1.78	G-Y/B-Y		CONTROL	

TA7698AP-29
1988-10-25
1097247 0019754 26T ■ TOSHIBA CORPORATION

R-Y demodulator output terminal.

B-Y demodulator output terminal.

T1A12(2)

21

22

R-Y Output

B-Y Output

TA7698AP

TERMINAL DISCRIPTION (4)

	TERMINAL	FUNCTION
23	-Y Output	Output terminal of -Y (Luminance) signal which is contrast/brightness controled.
24	Vertical Output	Vertical driver output terminal (Emitter follower).
		It is capable to drive SRPP output circuit directly.
25	Vertical Height	Constant current discharge rate of ramp capacitor
		connected #27 terminal is determined by a resistor valu
		which connected between this terminal and GND. (Vertica
		amplitude is in the propotion of the discharge rate).
26	NFB	NFB terminal for DC/AC.
		NFB wave form is compared with ramp wave form of #27
		terminal.
27	Ramp Capacitor	A ramp capacitor is connected. It should be stable and
		having low tan δ value. (2.2 μ F tantalum capacitor is
		recommended.)
		The ramp capacitor is charged to a reference voltage
		determined internally during retrace period, and
		discharged constantly to get required linearlity during
		trace period.
28	Vertical Sync Input	Composite sync signal from #36 (Sync Output) is
	(V. trig.)	integrated and applied to this terminal.
29	Vertical Oscillator	CR timing constant for vertical oscillator is connected
	Timing Constant	Vertical retrace time is determined the timing resistor
		value and internal discharge resistor value.
30	X-ray Protector	SCR type X-ray protector. The threshold is 0.9V typ.
		When X-ray protector operate, horizontal drive output
		#32 turns to low level. It also operates when #32
		voltage exceeds 9V (typ.).
31	GND 2	GND terminal for Vertical/Horizontal, AFC and Synce
		Separator. De-coupling capacitors from $V_{\hbox{\scriptsize CC1}}$ and $V_{\hbox{\scriptsize CC2}}$
		should be connected to this GND.

9097247 0019755 176

·T1A12(2)

TA7698AP-30 1988-10-25 TOSHIBA CORPORATION

TA7698AP

TERMINAL DISCRIPTION (5)

	TERMINAL	FUNCTION
32	H. Drive Output	Open collector output for Horizontal driver.
		External load resistor is required.
33	V _{CC2} (H. V _{CC})	Supply terminal for horizontal deflection circuit starting up.
		+B ₁ 120V +B ₂ 12V 22µF 16V +B
34	Horizontal Oscillator	2fH oscillator timing CR is connected.
	Timing Constant	Thermal co-efficient of this CR should be selected to
		compensate fH thermal drift which is specified.
35	AFC Output	I/O terminal of horizontal AFC circuit.
		The refference voltage of AFC is 4.5V typ
		AFC OUTPUT R403 R405 R407 OSC OUTPUT R402 R403 R407 OSC

9097247 0019756 032

T1A12(2)

TA7698AP-31 1988-10-25 TOSHIBA CORPORATION

TOSHIBA INTEGRATED CIRCUIT TECHNICAL DATA

TA7698AP

TERMINAL DISCRIPTION (6)

	TERMINAL	FUNCTION
36	Sync. Sep. Output	Output terminal of composite sync signal/Timing constant for gate pulse generation. Falling edge of the gate pulse (t2) is adjusted by external capacitor and resistor. Rising edge (t1) is internally determined. It adjustment of t1 is required, a capacitor which connected between #37 (Sync. Sep. Input) and GND will be changed to shift sync signal timing.
		COMPOSITE VIDEO SIGNAL
		# 37 OUTPUT $v_{th} = 4.2v$ INTERNAL GATE PULSE $v_{th} = 4.2v$
		Generated gate pulse is masked by flyback pulse from #38, and applied to the pedestal clamp circuit and the burst gate circuit.
37	Sync Sep. Input	Input terminal of the base-time constant type sync separator. Composite video signal from #40 (Inverter Output) is applied through sync sep. time constant circuit. Slice level of horizontal sync and vertical sync can be set independently.
		INVERTER OUTPUT R301 R302 D301 SYNC SEP. INPUT SYNC SEP. INPUT
		R206 : #40 load resistor R301,C302,R303 : Horizontal sync slice level R301,C301,R302 : Vertical sync slice level D301 : Timing constant separation C303 : Noise Filter/Gate pulse rising edge timing.
		To deepen the slice level Horizontal: R301 increase or R303 decrease Vertical: R301 increase or R302 decrease

TA7698AP-32 1988-10-25

9097247 0019757 T79 📟

T1A12(2)

TOSHIBA INTEGRATED CIRCUIT TECHNICAL DATA

TA7698AP

TERMINAL DISCRIPTION (7)

	TERMINAL	FUNCTION
38	Flyback Pulse Input	Input terminal of flyback pulse for flip-flop driving, horizontal blanking and gate pulse masking. Pulse height of flyback pulse should be less than 5V. #38 terminal voltage is clamped to 5V during gate pulse period. R FLYBACK PULSE 5V 1V ADJUST THE INPUT LEVEL OF #38 LESS THAN 5V
39	Inverter Amp. Input	Composite video signal from PIF is applied directly. Input dynamic range is 2.0V to 6.5V. (Sync negative composite video is required.)
40	Inverter Amp. Output	Output terminal of the inverter amplifier. The output signal is applied to the sync. separator and the chroma band pass circuit.
41	Contrast Control*	Contrast/Contrast.Uni-color control See #20
42	Contrast Amp. Output	Collector output of contrast amplifier. See #1. #42 terminal voltage (operating) should be above 6V.

^{*} Control sensitivity of each control terminal is adjustable by a series resister R.

TA7698AP-33 1988-10-25 TOSHIBA CORPORATION

= 9097247 0019758 905 **=**

INTEGRATED CIRCUIT

TA7698AP

INTEGRATED CIRCUIT

TA7698AP

INTEGRATED CIRCUIT

TA7698AP

