DIMOSTRAZIONE TEOREMA PITAGORA

Marco Esposto

February 2022

1 Enunciato

Enunciato 1 In ogni triangolo rettangolo, il quadrato costruito sull'ipotenusa è uguale alla somma dei quadrati costruiti sui cateti.

La segeunte dimostrazione è una delle molte proposte di Larry Hoehn (The Mathematics Teacher , 88 (1995), p. 168.).

1.1 Ipotesi

 $\left\{ \stackrel{\triangle}{ABC} \ triangolo \ rettangolo \ \\$

$$\left\{c^2 = a^2 + b^2\right\}$$

1.3 Costruzione preliminare

Parto da un triangolo rettangolo \widehat{ABC} , prolungo il lato AC di un segmento AD. Traccio la bisettrice dell'angolo \widehat{BAD} e la faccio incontrare con la perpendicolare a D nel punto E. Collego i punti E e B con il segmento EB. Infine traccio la perpendicolare a E e la perpendicolare a B, esse si incontrano nel punto F.

1.4 Dimostrazione

Considero i triangoli $\stackrel{\triangle}{ABE}$ e $\stackrel{\triangle}{ADE}$, essi hanno:

- $BÂE \cong DÂE$ per costruzione;
- $AE \cong AE$ per la proprietà riflessiva della congruenza (assioma);
- BA \cong AD per costruzione;

Quindi i triangoli $\stackrel{\triangle}{ABE}$ e $\stackrel{\triangle}{ADE}$ sono congruenti per il primo criterio di congruenza tra triangoli (assioma). In particolare ED \cong EB, e $\stackrel{\triangle}{EBA}$ è retto.

Quindi nei triangoli rettangoli $\stackrel{\triangle}{ABC}$ e $\stackrel{\triangle}{BEF}$ gli angoli $\stackrel{\triangle}{ABC}$ e $\stackrel{\triangle}{EBF}$ sommano fino a 90°; ne segue direttamente la congruenza tra gli angoli $\stackrel{\triangle}{ABC} = \stackrel{\triangle}{BEF}$ e $\stackrel{\triangle}{BAC} = \stackrel{\triangle}{EBF}$.

Considerando ora i triangoli $\stackrel{\triangle}{ABC}$ e $\stackrel{\triangle}{BEF}$, essi hanno:

- $B\widehat{A}C \cong E\widehat{B}F$ perché precedentemente dimostrato;
- $A\widehat{B}C \cong B\widehat{E}F$ perché precedentemente dimostrato;

• $E\widehat{F}B \cong B\widehat{C}A$ per costruzione ;

I due triangoli sono simili per il primo criterio di similitudine fra i triangoli (teorema).

La dimostrazione diventa ora di tipo algebrico perché possiamo porre i lati in proporzione (per quello appena dimostrato):

$$x/a = u/b = y/c$$

Ma EF \cong CD, quindi x = b+c, possiamo allora ricavarci x e y: u=b(b+c)/a y=c(b+c)/a

Osserviamo però che anche ED \cong FC (sempre per costruzione) da cui y=u+a

Possiamo infine riscrivere il rapporto tra i lati nel seguente modo: c(b+c)/a = b(b+c)/a + a risolvendo l'equazione troviamo che $c^2 = a^2 + b^2$.

Abbiamo così dimostrato il rapporto tra i lati di un triangolo rettangolo.

c.v.d