Common-Base Amplifier

- -- alternate method of modulating VBE!
- rather than couple is to the base and "ground" the emitter we couple is to the emitter and ground the base!
 - this configuration suffers from very by RIN;

 ~ re = \frac{1}{9m}, thus it is not often

 Used by itself, but as part of compound

 amplifier called the cascode.

Mid-Frequency SSM of CB Amplifier

- note Ri and Rz are now gone from model!

-- not quite so simple to determine input and output gains

.. node voltage to the rescue!

- 955 ume ro is "large" and may be neglected

from the emitter terminal (-ube):

$$\frac{-Vbe - Vs}{Rs} + \frac{-Vbe - 0}{RE} + \frac{-Vbe - 0}{rb} + \frac{-gmVbe}{rb} = 0$$

$$-Vbe \left(\frac{1}{Rs} + \frac{1}{RE} + \frac{1}{rb} + gm\right) = \frac{Vs}{Rs}$$

$$Av_{1} = \frac{Vbe}{Vs} = \frac{-1}{Rs} \left(\frac{1}{Rs} + \frac{1}{rb} + gm\right)$$

$$Av_{1} = -\frac{(Rs)[RE][rb][gm]}{Rs}$$

define
$$re' = RE ||rb|| \frac{1}{gm}$$

then $Av_1 = -\frac{Rs||re'|}{Rs} = -\frac{Rs||re'|}{(Rs+re')Rs}$
 $Av_1 = \frac{-re'}{Rs+re'} \leftarrow voltage division$
between re'
and $Rs!$
 \cdots clearly shows that $RiN = re'$

we already know
$$g_{m} = 92.05 \text{ mA/V}$$
 $R_{F} = 1 \text{ ks2}$
 $r_{b} = 2.173 \text{ ks2}$
 $R_{S} = 58.52$
 $\frac{1}{9m} = \frac{1}{92.05} = 0.01086 \text{ ks2}$

or
$$10.8652$$
 $re' = \frac{1}{9} \| R_E \|_{rb} \approx \frac{1}{9} = 10.8652$ 1111

Av₁ =
$$\frac{-re'}{R_S + re'}$$

= $\frac{-10.86}{50 + 10.86}$ = -0.1784

or $-15dB$ (inverting)

not much of an amplifier yet!

node voltage from the collector terminal, again neglecting is:

gmube + $\frac{Vair - 0}{Ric}$ + $\frac{Vour - 0}{Ric}$ = O

Vout ($\frac{1}{Ric}$ + $\frac{1}{Ric}$) = $-gm$ (bee

Av₂ = $\frac{Vout}{Vbe}$ = $-gm$ ($\frac{1}{Ric}$ + $\frac{1}{Ric}$)

Av₂ = $-gm$ ($\frac{1}{Ric}$ | \frac

$$AV = AV_1 \times AV_2 = -0.1784 - -2924$$

$$= +52.45 \text{ or } 34 \text{ JB}$$
Non-inverting.

So CB configuration has less gain and much lower RIN than CE

LF Response of CB Amplifier

- -- good nows: capacitor to ground at bace no longer creates high-pass filter
- The capacitor at the collector (Car) does the same thing in CB as it does in CE; thus,

- now CE creates high-pass filter with Rs and re

HF Response of CB Amplifier . this is where things get interesting! HF SSM: g m Vbe Rs 3 tb RE CBE--- Note that we don't have any capacitance between input and output > No Miller Time III - Mst two simple low-pass filters! FHIN = 1 271. CBE (Rs || re') = = gm 271 · 18 ×10-12 (50 /1 10.86) from previous lecture! > = 9.922.52 - Compare this to fun = 991 MHZ 111 2.97 MHZ of CE, WOW!

-- So despite lower gain and much lower RIN, CB has superior HF response to the CE configuration -- We'll combine the two into the best of both worlds!