Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Carsten Gräser, Lasse Hinrichsen

1. Übung zur Vorlesung

Computerorientierte Mathematik I

WS 2019/2020

http://numerik.mi.fu-berlin.de/wiki/WS_2019/CoMaI.php

Abgabe: Fr., 8. November 2019, 12:00 Uhr

1. Aufgabe (4 TP)

Bestimmen Sie nachvollziehbar (d. h. mit Zwischenschritten) die Darstellung der gegebenen natürlichen Zahlen in der jeweils angegebenen Basis:

a)
$$5453_6 = (\dots)_2$$
, b) $72_{10} = (\dots)_3$, c) $654_7 = (\dots)_9$, d) $17HAI_{26} = (\dots)_{36}$.

Um Missverständnisse zu vermeiden: Sie sollen beispielsweise für Aufgabe a) die Zahl 5453₆, die im Hexalsystem angegeben ist, zur Basis 2 angeben, also als Binärzahl.

2. Aufgabe (4 TP)

Seien $q, k \in \mathbb{N} \setminus \{0\}$ und $r := q^k$. Gegeben sei die Darstellung

$$(a_n a_{n-1} \dots a_1 a_0)_r$$

einer natürlichen Zahl zur Basis r mit Ziffern $a_i \in \mathcal{Z}_r = \{0, 1, \dots, r-1\}$ und $a_n \neq 0$. Wie sieht die Darstellung dieser Zahl zur Basis q aus, also in der Form

$$(b_m b_{m-1} \dots b_1 b_0)_a$$

mit Ziffern $b_i \in \mathcal{Z}_q = \{0, 1, \dots, q-1\}$ und $b_m \neq 0$? Begründen Sie Ihre Antwort. **Hinweis:** Es könnte helfen, sich zu überlegen, warum $m \leq (n+1)k$ gilt.

3. Aufgabe (8 PP)

In dieser Aufgabe sollen Sie in Python eine Funktion implementieren, die ganze Zahlen im Dezimalsystem als Zahlen im Dualsystem darstellt. Gehen Sie dabei in mehreren Schritten vor:

a) Implementieren Sie eine Funktion ntobasetwo(n, c), die eine natürliche Zahl $n \in \mathbb{N}$ in eine Binärzahl der Länge c umwandelt.

Als Rückgabewert wird ein Vektor b der Länge c erwartet, sodass

$$n = \sum_{i=1}^{c} b_i 2^{i-1}$$

sowie $b_i \in \{0,1\}$ für alle $i \in \{1,\ldots,c\}$ gilt.

Für den Fall, dass n nicht als Binärzahl der Länge c dargestellt werden kann, soll Ihr Programm das Ergebnis entsprechend abschneiden. Sprich, falls $n = \sum_{i=1}^{m} b_i 2^{i-1}$ mit m > c gilt, sollen nur die b_i mit $i \in \{1, \ldots, c\}$ zurückgegeben werden.

Hinweis: Sie dürfen hier und im Folgenden frei wählen, ob Sie den Rückgabewert als numerischen oder als logischen Vektor realisieren.

- b) Implementieren Sie eine Funktion complement(b), die das Zweierkomplement einer Binärzahl entsprechend der Vorlesung berechnet. Dabei wird als Eingabe ein Vektor b erwartet mit $b_i \in \{0,1\}$. Der Rückgabewert soll auch ein Vektor \hat{b} mit $\hat{b}_i \in \{0,1\}$ sein, sodass b und \hat{b} dieselbe Länge haben.
- c) Implementieren Sie eine Funktion ztobasetwo(z, c), die eine ganze Zahl $z \in \mathbb{Z}$ in eine Binärzahl der Länge c umwandelt, wobei negative Zahlen mit Hilfe des Zweierkomplements realisiert werden. Verwenden Sie dabei die Funktionen aus den vorangegangenen Teilaufgaben.

Als Rückgabewert wird jeweils ein Vektor b der Länge c mit $b_i \in \{0, 1\}$ erwartet.

Wichtig: Verwenden Sie keine der in Python (oder Python-Bibliotheken) vordefinierten Funktionen zur direkten Umwandlung zwischen Zahlensystemen.

Hinweis: Eventuell sind die Funktionen np.mod, np.floor und np.ceil aus der Num-PY-Bibliothek für Sie hilfreich. Außerdem sollten Sie mit if-Abfragen und for-Schleifen vertraut sein.

Allgemeine Hinweise

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.