PSY 501: Sampling and Control

Week 7

Outline

Sampling

Experimental Control

Some poorly designed experiments

Outline

Sampling

Experimental Contro

Some poorly designed experiments

Sampling

- Why do we care about sampling methods?
 - Can't test everybody!
- ▶ **Population**: everybody that the research tries to make conclusions about
- ► **Sample**: the subset of the population that actually participates in the research.

Sampling

Goals:

Maximize:

Representativeness: to what extent do the characteristics of those in the sample reflect those in the population?

Reduce:

▶ <u>Bias</u>: a systematic difference between those in the sample and those in the population

Sampling Methods

- Type 1: Probability sampling
 - 1. Simple random sampling
 - 2. Systematic sampling
 - 3. Stratified sampling

Type 2: Non-probability sampling

- 1. Convenience sampling
- 2. Quota sampling

Probability sampling

- 1. Simple random sampling every individual has an equal and independent chance of being selected from the population
- 2. Systematic sampling selecting every n^{th} person
- 3. Stratified sampling identify groups, then randomly select from each group

Non-probability sampling

- Convenience sampling use the participants who are easy to get
- 2. Quota sampling identify specific subgroups, then take from each group until desired number of individuals

Outline

Sampling

Experimental Control

Some poorly designed experiments

Experimental Control

Goal:

- to test how the variability in our IV affects our DV
- Control is used to minimize excessive variability
- Need to minimize possible confounds
 - ▶ if there are other variables that influence our DV, how do we know that the observed differences are due to our IV and not some other variable?

Experiment: Color and Words

- 1. Divide into two groups:
 - Men
 - Women
- Instructions: Read <u>aloud</u> the <u>COLOR</u> that the words are presented in. When done, raise your hand.
- 3. Women go first...

List 1

Blue Red Purple Purple Blue Red Blue Red

Experiment: Color and Words

- Now it is time for the men to go...
- ► Remember, read <u>aloud</u> the <u>COLOR</u> that the words are presented in. When done, raise your hand
- ► Ready?

List 2

Green Purple Yellow Blue Red Yellow Red Green

Our results

- So, why the difference between men and women?
- Is this support for a theory that proposes:
 - "Women are good color identifiers, men are not"
 - ▶ Why or why not? Let's look at the two lists.

List comparison

List 1 List 2 Men Women Blue Green Red Purple Purple Yellow Matched Mis-Matched Purple Blue Blue Red Red Yellow Blue Red Red Green

List comparison

- What resulted in our performance difference?
 - Our manipulated IV (men vs women)?
 - ► The other variable (match vs mismatch)?
- Because the two variables are <u>perfectly correlated</u> we can't tell
- ► This is the problem with **confounds**

List comparison

- What DIDN'T result in the performance differences?
- Extraneous variables
 - Control
 - ▶ # words on the list
 - The actual words that were printed
 - Random
 - Age of participants in groups
 - Majors, class level, seating in classroom, ...
- ► These are not confounds, because they do not <u>co-vary</u> with the IV

Experimental Control

Our goal:

 To test the possibility of a systematic relationship between the variability in our IV and how that affects the variability of our DV

A little math...

Total (T) variability can be expressed as follows:

$$T = NonRandom_{exp} + NonRandom_{other} + Random$$

- NonRandom_{exp} → variance due to manipulation in independent variables (IVs)
 - Our hypothesis is that changes in the IV will result in changes in the DV
- ▶ $NonRandom_{other}$ → extraneous variables (EV) which covary with IV
 - ► other variables that also vary along with the changes in the IV, which may in turn influence changes in the DV
- ▶ Random → random variability
 - imprecision in manipulation (IV) and/or measurement (DV)
 - randomly varying extraneous variables (EV)

A little math...

Total (T) variability can be expressed as follows:

$$T = NR_{exp} + NR_{other} + R$$

- ▶ Our goal is to reduce R and NR_{other} so that we can **detect** NR_{exp} .
- ► That is, so we can see the changes in the DV that are due to the changes in the IV

A weight-based analogy

Imagine the different sources of variability as weights:

Treatment group

Control group

A weight-based analogy

If NR_{other} and R are **large** relative to NR_{exp} , then detecting a difference may be difficult.

A weight-based analogy

But if we reduce the size of NR_{other} and R relative to NR_{exp} , detecting the difference becomes **much** easier

- 1. Comparison
- 2. Production
- 3. Constancy/Randomization

Comparison:

- An experiment always makes a comparison, so it must have at least two groups
 - Control group + experimental (treatment) group
 - ightharpoonup Groups ightarrow range of values of IV
 - e.g., low anxiety, moderate anxiety, high anxiety

Production:

- ► The experimenter selects specific values of the IVs
 - as opposed to allowing the levels to freely vary as in observation studies
- Need to do this carefully
 - Suppose that you don't find a difference in the DV across your different groups?
 - ▶ Is this because IV and DV aren't related?
 - Or, were your levels of IV not different enough?

Constancy/Randomization:

- ▶ If there is a variable that may be related to the DV that you can't (or don't want to) manipulate, then you should either
 - hold it constant across all experimental conditions
 - let it vary randomly across all experimental conditions

Potential Problems with Experimental Control

- 1. Excessive random variability
- 2. Confounding
- 3. Dissimulation

Potential Problems

Excessive random variability

- ▶ If control procedures are not applied, then R component of data will be excessively large, and this may make NR_{exp} undetectable
- So, try to minimize this by using good measures of DV, good manipulations of IV, etc.

Potential Problems

Confounding

- ▶ If relevant EV covaries with IV, then *NR* component of data will be significantly large, and this may lead to misattribution of effect to IV
- ► Hard to detect the effect of NR_{exp} because the effect looks like it could be from NR_{exp}, but is really (mostly) due to NR_{other}

Potential Problems

Dissimulation

- If EV which interacts with IV is held constant, then effect of IV is known only for that level of EV, which may lead to overgeneralization of IV effect.
- ► Ex: Math students with high working memory capacity do worse in high pressure situations than in low pressure situations ("choking under pressure").
 - Generalization? high pressure negatively affects math performance
 - BUT: Participants with low working memory capacity don't tend to choke!

Outline

Sampling

Experimental Contro

Some poorly designed experiments

Example: Does standing close to somebody cause them to move?

► So, you stand closely to people and see how long before they move.

Example: Does standing close to somebody cause them to move?

- ► So, you stand closely to people and see how long before they move.
- ► Problem: no control group to establish the comparison group (this is sometimes called a "one-shot case study design")

Example: Does a relaxation program decrease the urge to smoke?

- One group pretest-posttest design
 - 1. Pretest (rate desire to smoke)
 - 2. Give treatment (relaxation program)
 - 3. Posttest (rate desire to smoke)

Example: Does a relaxation program decrease the urge to smoke?

- One group pretest-posttest design
 - 1. Pretest (rate desire to smoke)
 - 2. Give treatment (relaxation program)
 - 3. Posttest (rate desire to smoke)
- Problems include:
 - History
 - Maturation
 - Instrument decay
 - Statistical regression
 - ► Etc.

Example: Smoking example again, but with <u>two</u> groups. Subjects get to choose which group (relaxation or no treatment) to be in.

Example: Smoking example again, but with <u>two</u> groups. Subjects get to choose which group (relaxation or no treatment) to be in.

- Groups are likely not equal with respect to extraneous variables (selection bias)
- Need to do random assignment to groups to "average out" the non-experimental variance

The key to well-designed experiments

Which measurement scenario do you want as a scientist?

Regardless of the overall design (which we'll cover next week), you'll want to minimize (control) the extraneous variability in your experiment.

Thus, a well-designed experiment must include random group assignment.