Inteligencja roju / Inteligencja rozproszona SWARM INTELLIGENCE

Zbiór organizmów (nieskomplikowanych agentów) wchodzących ze sobą w interakcje

Proste zachowania osobników +

Mechanizm współdzielenia informacji (wiedzy o środowisku/problemie) =>

Złożone zachowanie całych zbiorowości (rojów)

Inteligencja roju / Inteligencja rozproszona

• Mrówki, ptaki, ławice ryb, pszczoły, osy, termity, świetliki, ...

- Stosunkowo prymitywne osobniki
- Bogate / złożone zachowanie roju
- Zachowanie emergentne

Algorytmy mrówkowe

Na podstawie pracy Marco Dorigo, Gianni Di Caro

Jedna z nowszych dyscyplin CI

- Sieci neuronowe 1943
- Algorytmy genetyczne / PE lata 1960 / 1975
- Logika rozmyta 1965
- Ant Colony Optimization lata 60-te obserwacja zachowań termitów, ujęcie algorytmiczne od 1991
- Particle Swarm Optimization 1995 / 1997

Inspiracja

- Obserwacja kolonii mrówek, w szczególności metody porozumiewania się w celu dotarcia do pożywienia.
- Pojedyncza mrówka przemieszcza się "losowo".
- Kolonia mrówek funkcjonuje w sposób zorganizowany potrafi więcej niż suma prosta poszczególnych osobników
 efekt synergii.
- Efekt globalny na bazie lokalnych interakcji.

Inspiracja

 Samoorganizacja o dużym poziomie złożoności odbywa się bez wyraźnego lidera.

- Modelowanie zachowania (społecznego) kolonii mrówek zorientowane na aspekt samoorganizacji może być pomocne przy konstruowaniu modeli rozproszonych rozwiązujących problemy optymalizacyjne – tzw. Swarm Optimization.
- Swarm Optimization najpopularniejsze: ACO & PSO. Ale także, BEES, flocks of BIRDS, schools of FISH, FIREFLIES

 Jacek Mańdziuk

Metody Sztucznej Inteligencji 2

Historia

 Goss i in. 1989, Deneuborg i in. 1990, eksperymenty z mrówkami – double bridge experiment

 Dorigo i in. 1991, zastosowanie do problemu najkrótszej ścieżki

• Aktualnie: meta-heurystyka do rozwiązywania dyskretnych problemów optymalizacyjnych.

Jacek Mańdziuk Metody Sztucznej Inteligencji 2

Droga do pożywienia

Przeszkoda

Krótsza ścieżka "zagęszcza się"

Dla uproszczenia: początkowo p_{Ai}=p_{Bi}=0.5

Metody Sztucznej Inteligencji 2

Nowa ścieżka do pożywienia

Adaptacja do zmian środowiska

Adaptacja do zmian środowiska

Double bridge experiment – znajdowanie najkrótszej ścieżki

- W drodze do pożywienia oraz w drodze powrotnej, zaznaczają ścieżkę (osadzają feromon).
- Mrówki wybierają ścieżki na podstawie stężenia feromonu.
- Po pewnym czasie najkrótsza ścieżka wybierana jest z największym prawdopodobieństwem.

Problem TSP

Definicja teoriografowa

Złożoność

Algorytm 2-OPT, 3-OPT, k-OPT

Warianty praktyczne TSP

ACO w problemie TSP

Każda mrówka samodzielnie (ale **nie niezależnie**) poszukuje rozwiązania.

Pełna iteracja składa się z następujących kroków:

- [1] Umieść losowo mrówki w miastach.
- [2] Iteracyjnie, dla każdej mrówki:

[2a] Wybierz miasto jeszcze nie odwiedzone, aż do momentu gdy droga jest kompletna (rozwiązanie syntaktycznie poprawne).

- [3] Uaktualnij wielkość feromonu na przebytej drodze.
- [4] Zastosuj schemat parowania feromonu.

ACO w problemie TSP

Resetuj feromon

```
For i=0 to Liczba_Iteracji
   Stwórz/resetuj mrówki
   Dla każdej mrówki:
   Znajdź rozwiązanie
   Jeśli jest lepsze od najlepszego, to zapamiętaj
Wyparuj część feromonu
Dla każdej mrówki:
   Rozłóż feromon proporcjonalnie do znalezionego rozwiązania
```

Zwróć najlepsze rozwiązanie Jacek Mańdziuk Metody Sztucznej Inteligencji 2

ACO w problemie TSP - wybór miasta

- Wiele mrówek poszukujących jednocześnie rozwiązania (m=n, zwykle każda mrówka w innym mieście).
- W każdym kroku każda mrówka wybiera kolejny etap drogi (kolejne miasto).
- Przejście z miasta i do j zależy od:
 - 1. Listy nie odwiedzonych (przez daną mrówkę) miast (możliwości wyboru kontynuacji).
 - 2. Odległości pomiędzy miastami. $1/d_{ij}$ reprezentuje lokalną informację heurystyczną "chęć" do odwiedzenia miasta j o ile mrówka znajduje się w mieście i.
 - 3. Wartości feromonu $\tau_{ij}(t)$; dla każdej krawędzi reprezentuje "nabytą chęć" odwiedzenia miasta j będąc w mieście i.

ACO w problemie TSP - wybór miasta

• Reguła przejścia: prawdopodobieństwo przejścia mrówki *k* z miasta *i* do miasta *j*:

$$p_{ij}^{k}(t) = \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}}{\sum_{\ell \in J_{i}^{k}} \left[\tau_{i\ell}(t)\right]^{\alpha} \cdot \left[\eta_{i\ell}\right]^{\beta}}; \qquad \eta_{ij} = \frac{1}{d_{ij}}$$

 \square α i β są odpowiednio dobranymi parametrami.

ACO w problemie TSP - wybór miasta

$$p_{ij}^{k}(t) = \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}}{\sum_{\ell \in J_{i}^{k}} \left[\tau_{il}(t)\right]^{\alpha} \cdot \left[\eta_{il}\right]^{\beta}}$$

- \square $\alpha = 0$: algorytm zachłanny,
- $\ \ \beta = 0$: wybór losowy drogi, która może nie być optymalna.
- Konieczne jest odpowiednie zrównoważenie tych tendencji.

ACO w problemie TSP – aktualizacja feromonu

- Po znalezieniu rozwiązania mrówki osadzają feromon.
- Wartość uaktualniania ścieżki feromonowej: Jeżeli $\mathbf{T}^{\mathbf{k}}(\mathbf{t})$ jest ścieżką (rozwiązaniem) mrówki \mathbf{k} w iteracji \mathbf{t} , $\mathbf{L}^{\mathbf{k}}(\mathbf{t})$ jest długością tego rozwiązania, \mathbf{Q} jest parametrem.

$$\Delta \tau_{ij}^k = Q/L^k(t)$$
 $gdy(i,j) \in T^k(t); 0$ $w.p.p.$

• Aktualizacja feromonu (uwzględniająca parowanie):

$$\tau_{ij}(t) = (1-\rho)\tau_{ij}(t) + \Delta\tau_{ij}(t)$$
 lub
$$\tau_{ij}(t) = (1-\rho)(\tau_{ij}(t) + \Delta\tau_{ij}(t))$$

ACO w problemie TSP - Podsumowanie

Idea bazowa:

- Budowanie (globalnego) rozwiązania na podstawie rozwiązań lokalnych agentów, przechowując w pamięci dobre rozwiązania częściowe.
- W celu uniknięcia przedwczesnej zbieżności zastosowanie schematu parowania feromonu.

ACO w problemie TSP - Implementacja

Kluczowe zagadnienia:

- Liczba iteracji
- Liczba mrówek
- Początkowa wartość feromonu na krawędziach
- Współczynnik parowania feromonu (ρ)
- Priorytet feromonów (α)
- Priorytet heurystyki (β)

ACO w problemie TSP

- Działa praktycznie bezbłędnie dla problemów do 30 miast
- Dla większych problemów wymaga "dokręcenia śrubek"
- Modyfikacje:
- Mrówki rozkładające feromony:
 - Wszystkie / kilka najlepszych / najlepsza
- Moment rozkładania feromonów:
 - Lokalnie (po każdym przejściu na nowy wierzchołek)
 - Globalnie (po znalezieniu rozwiązania)

ACO w problemie TSP

- Ilość rozkładanego feromonu:
 - Stała (zwykle dodatkowo, przy podejściu elitystycznym)
 - Proporcjonalna do jakości rozwiązania

- Sposób wyboru następnego wierzchołka:
 - Ruletka
 - Pseudo-ruletka:

$$p_{ij}^{k}(t) = \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}}{\sum_{\ell \in J_{i}^{k}} \left[\tau_{il}(t)\right]^{\alpha} \cdot \left[\eta_{il}\right]^{\beta}}; \qquad \eta_{ij} = \frac{1}{d_{ij}}$$

- Losujemy φ
- Jeśli $\varphi \ll \varphi^*$, to wybieramy najlepszego kandydata
- Jeśli $\varphi > \varphi^*$, to przeprowadzamy "klasyczną" ruletkę

Elitist Ant System

- Dorigo, 1992
- Mocne wzmacnianie najlepszego rozwiązania
- Po położeniu feromonu przez wszystkie mrówki następuje dodatkowe zwiększenie feromonu na krawędziach należących do najlepszego rozwiązania:

 $e \cdot Q_{best}$

e – ilość elitarnych mrówek;

Qbest – ilość feromonu na ścieżce najlepszej

DEMO - CVRP

- Standard 19 cities 212,66
- Elitist 19 cities

- Standard 50 cities 361,63
- Elitist 50 cities

Rank AS

- Bullnheimer, Hartl and Strauss, 1997
- σ mrówek zostawia feromony odwrotnie proporcjonalnie do swojej rangi μ :

$$(\sigma - \mu) \cdot Q_{\mu}$$

Qμ długość rozwiązania o numerze μ w hierarchii, μ=0,..., σ-1

ightharpoonupNajlepsze rozwiązanie jest wzmacniane: $\sigma \cdot Q_{\text{best}}$

Min-Max AS

- Stützle & Hoos, 1997
- Ograniczony zakres feromonów

$$au_{ij}$$
 \in $[au_{min}, au_{max}]$

• Tylko najlepsza mrówka w danej iteracji zostawia feromony.

• Początkowa wartość feromonów = τ_{max}

ACS w problemie TSP

- Dalsze modyfikacje w stosunku do AS:
- Nowa reguła uaktualniania feromonu:

$$\tau_{ij}(t) = (1 - \rho)\tau_{ij}(t) + \rho \Delta \tau_{ij}(t)$$

- Wykorzystanie listy "najbliższych" miast. Wybór spoza listy możliwy jest dopiero po jej wyczerpaniu.
- Połączenie z metodami lokalnego przeszukiwania (2-OPT, 3-OPT).

ACS w problemie TSP

ACS – metoda (średnio) porównywalna do GA,
 SA, EP dla problemów o wielkości od 50 do 100 miast.

• Dla większych problemów wyniki nieco słabsze, ale kompensowane szybkością metody

Wyniki – duże zbiory miast (TSPLIB)

Problem name	ACS-3-opt average (length)	ACS-3-opt average (sec)	ACS-3-opt % error	STSP-GA average (length)	STSP-GA average (sec)	STSP-GA % error
d198 (198-city problem)	15.781.7	238	0.01 %	15,780	253	0.00 %
lin318 (318-city problem)	42,029	537	0.00 %	42,029	2,054	0.00 %
alt532 (532-city problem)	27.718.2	810	0.11%	27,693.7	11,780	0.03 %
rat783 (783-city problem)	8,837.9	1,280	0.36 %	8,807.3	21,210	0.01 %

Quadratic Assignment Problem (best available heuristic)

Przyporządkowanie 1-1 pomiędzy elementami zbiorów (np. lokalizacje i zasoby) minimalizujące określoną funkcję kosztu. (NPH)

Inne problemy

- Problem plecakowy
- Problem kolorowania grafu
- •
- → Dyskretne Problemy Optymalizacyjne
- Problemy dynamiczne!
 - Routing w sieciach teleinformatycznych
 - DCVRP

CVRP

- Capacitated Vehicle Routing Problem (rozwinięcie TSP)
- *m* klientów z określonym zapotrzebowaniem
- jeden centralny magazyn
- n ciężarówek z ograniczoną pojemnością Q

CEL:

Dostarczyć towar wszystkim klientom minimalizując sumaryczny koszt całej trasy

CVRP

- G=(V,E); $V=\{v_0, v_1, ..., v_n\}$
- $E = \{(v_i, v_j) / v_i, v_j \in V, i < j\}$
- v_0 centralny magazyn.
- q_i zapotrzebowanie klienta w lokalizacji v_i ; $(q_i << Q)$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} \sum_{k=1}^{n} x_{ij}^{k}$$

$$x_{ij}^{k} = \begin{cases} 1, & (v_{i}, v_{j}) \text{ jest fragmentem drogi } k - tej \\ 0, & w \text{ p.p.} \end{cases}$$

CVRP

Rozwiązanie analogiczne do rozwiązania TSP

$$p_{ij}^{k}(t) = \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}}{\sum_{\ell \in J_{i}^{k}} \left[\tau_{il}(t)\right]^{\alpha} \cdot \left[\eta_{il}\right]^{\beta}}; \qquad \eta_{ij} = \frac{1}{d_{ij}}$$

- Elityzm
 - Rangi
- MinMix

Środowisko dynamiczne (DVRP)

- Zmiany strukturalne:
 - dodawanie / usuwanie wierzchołków

- Zmiany parametryzacji problemu:
 - zmiana zapotrzebowania
 - zmiana wagi krawędzi

Zmiany strukturalne, (+/- v)

 Modyfikacje algorytmu wyboru wierzchołka (krawędzi)

- większa liczba mrówek
- zmiana algorytmu parowania feromonu
- większy nacisk na heurystykę (eksploracja) w stosunku do "śladu feromonowego" (eksploatacja)
- inne modyfikacje (?)
- metoda UCT (?)

Zmiany parametryczne – wagi krawędzi → CVRPwTJ

- Symulacja korka różne "funkcje korka"
- Rozłożony feromon utrudnia szukanie nowych dróg
- Mechanizm "wyrównywania szans" zmiana rozkładu feromonu ale z zachowaniem monotoniczności
 - Słabe krawędzie mała zmiana
 - Silne krawędzie duża zmiana

PODEJŚCIE 1 - Wygładzanie feromonu

$$f_{ij} = f_0 \cdot \left(1 + \log_p \frac{f_{ij}}{f_0} \right)$$

 f_{ii} – ilość feromonu na wygładzanej krawędzi

 f_0 – minimalna ilość feromonu

p - podstawa logarytmu

Wygładzanie feromonu

Różnice między krawędziami są zmniejszone

→ Porządek jest zachowany

W dalszym ciągu najmocniejsza krawędź ma największe prawdopodobieństwo wyboru

Prawdopodobieństwa wyboru krawędzi zbliżyły się do siebie

→ Większa szansa wyboru objazdów

DEMO

Wygładzanie globalne vs. lokalne

- Dla dużego grafu wygładzenie globalne powoduje istotną utratę informacji
- Potrzebny jest mechanizm lokalnego wygładzania
 - zasięg
 - sąsiedztwo?
- Maksymalna odległość od korka
 - wygładzane są tylko te krawędzie, których odległość od korka jest mniejsza od [s * MaxDist], gdzie s ∈ [0,1]
 - s = 0 brak wygładzania
 - s = 1 globalne wygładzanie

Inne pomysły

$$f_{ij} = f_0 \cdot F\left(\frac{f_{ij}}{f_0}\right)$$

- Inne funkcje F
- Różne funkcje korka
 - trapez
 - stała
 - trójkąt
 - Gaussowska

PODEJŚCIE 2

(badania zrealizowane wspólnie z Maciejem Świechowskim)

Inspired by the classical algorithm to solve the TSP

Testing is performed via repeated run of the method for each benchmark set

• N repeats with various traffic conditions

Traffic is characterized by 3 distributions:

- Probability of encounter $p \in \{0.02, 0.05, 0.15\}$ //for each edge
- Length in steps **TTL** := uniform<int>(2,5)
- Intensity I := uniform < int > (10,20)

The method has no information of the traffic before it occurs, but has access to the probability distributions used to generate the traffic Jacek Mańdziuk

Metody Sztucznej Inteligencji 2

Modifications to the ant algorithm

Initialization at the start:

• static initial solution produces initial pheromone deposits (Clarke & Wright)

Initialization in each step of the main simulation:

• clear the best-found solution and reset the pheromone to the initial values (C&W)

The ant algorithm

Roulette selection (probability = 0.95, otherwise: greedy choice):

• Chose among the legal locations (unvisited customer, not exceeded vehicle capacity):

probability -
$$p_{ij} = \frac{\tau_{ij}^{\alpha} * \eta_{ij}^{\beta}}{\sum \left(\tau_{ij}^{\alpha} * \eta_{ij}^{\beta}\right)}$$
, $\eta_{ij} = \left(\frac{BASE}{d_{ij}}\right)^2$

 d_{ij} - current cost of the edge, $\alpha=2$ $\beta=3$

BASE: the length of the initial (static solution)

The pheromone values are updated after a completed iteration:

$$\tau_{ij}(t+1) = Conf(0.1 * \tau(t)_{ij} + \sum_{a \in Ants} (\delta_{ij} * Q_a)), \quad \delta_{ij} \in \{0,1,10\}$$

0 – nie należy do żadnego rozwiązania

Conf obcina do wartości [tau(min), tau(max)]

1 – należy ale nie do najlepszego (w tej iteracji)

Instance	P	Static (σ)	Ants (σ)	UCT (σ)	The comparison of the UCT method ,
P19	0.02	388.9 (214.9)	281.2 (46.9)	244.9 (10.9)	•
P19	0.05	612.0 (213.3)	311.8 (93.1)	269.3 (23.1)	Ant Colony Optimization and no
P19	0.15	1278.0 (358.9)	391.2 (155.9)	340.9 (61.3)	optimization.
P45	0.02	1007.7 (326.2)	607.6 (53.9)	601.0 (20.7)	optimization.
P45	0.05	1759.6 (411.9)	682.0 (74.4)	646.8 (35.7)	
P45	0.15	3299.5 (733.3)	949.7 (281.7)	781.8 (54.3)	
E51	0.02	989.2 (240.6)	614.1 (40.0)	615.6 (22.2)	The number of iterations of each ant
E51	0.05	1571.6 (386.3)	650.1 (50.4)	667.1 (40.5)	per step:
E51	0.15	3509.7 (824.7)	789.9 (174.8)	845.4 (70.2)	per step.
A54	0.02	1939.2 (542.7)	1338.7 (84.0)	1254.9 (41.3)	• 200 for n < 69
A54	0.05	3072.4 (887.7)	1456.4 (286.0)	1347.5 (77.9)	100 f
A54	0.15	6275.0 (1441.9)	1829.0 (519.4)	1647.6 (139.2)	• $100 \text{ for } n = 69$
A69	0.02	2005.7 (531.8)	1395.9 (96.7)	1265.2 (43.3)	• 75 for n > 69
A69	0.05	3235.4 (644.1)	1538.1 (294.5)	1377.3 (103.0)	75 101 H > 0)
A69	0.15	6631.7 (1437.4)	2096.4 (588.4)	1731.8 (173.1)	
E76	0.02	1318.7 (295.5)	746.0 (54.4)	779.0 (32.6)	
E76	0.05	2130.0 (460.4)	826.7 (159.9)	834.7 (39.8)	
E76	0.15	4536.7 (838.0)	1037.2 (264.3)	1085.6 (68.9)	
A80	0.02	2774.1 (625.2)	1907.1 (146.7)	1929.3 (58.4)	
A80	0.05	4100.6 (830.1)	2003.3 (442.6)	2063.8 (121.9)	
A80	0.15	9066.5 (1437.4)	3161.8 (829.6)	2588.4 (141.7)	
P101	0.02	1436.5 (262.6)	846.8 (69.2)	815.0 (25.4)	
P101	0.05	2552.0 (547.3)	893.8 (127.3)	891.6 (38.2)	
P101	0.15	5419.6 (801.5)	1375.0 (322.2)	1204.0 (81.9)	
C150D	0.02	1883.0 (368.8)	1297.0 (75.5)	1202.0 (39.1)	
C150D		3099.1 (587.5)			
C150D	0.15	6766.7 (840.1)	1987.5 (492.4)	1810.2 (110.6)	
Tai150b	0.02	4994.7 (1165.5)	4367.5 (515.0)	3021.5 (100.7)	
Tai150b	0.05	8751.9 (1936.7)	4834.3 (836.4)	3270.1 (176.3)	
Tai150b	0.15	18104.0 (2581.2)	7081.4 (1715.2)	4442.5 (285.5)	Jacek Mańdziuk
Best result	count	0 (0)	8 (0)	22 (30)	Metody Sztucznej Inteligencji 2

Podsumowanie DCVRP

- Parametry systemu (liczba mrówek, elityzm?, rangi?, ...)
- Parowanie feromonu
- Eksploracja vs. eksploatacja
- Adaptacja
- Zmiany strukturalne
- Zmiany parametryczne
- Różne funkcje korka
- Zasięg lokalnych modyfikacji (wygładzania)
- •
- Algorytm bazowy jest elastyczny ze swej natury

Cechy algorytmów mrówkowych ...

- Łatwość redefiniowania celu (adaptacja)
- Odporność na uszkodzenia poszczególnych elementów (agentów)
- Decentralizacja
- Samoorganizacja

Podsumowanie

- ACO (ACS) jest obiecującą heurystyką do rozwiązywania kombinatorycznych problemów optymalizacyjnych
- AMoże być stosowana jedynie do określonej grupy "problemów grafowych"
- Jest szczególnie polecana w przypadku zmienności struktury środowiska i/lub dynamicznie generowanych dodatkowych ograniczeń
- Stosunkowo mała podbudowa teoretyczna.

Porównanie ANT z PSO

• Podobieństwa:

- metoda heurystyczna,
- iteracyjny schemat działania,
- na zróżnicowanie populacji ma wpływ kilka parametrów, których dobór ma kluczowe znaczenie.

Porównanie ANT z PSO

• Różnice:

- dane wejściowe populacja losowych (PSO) / nielosowych (ANT) osobników,
- cząstki posiadają (PSO) / nie posiadają (ANT)
 pamięci o najlepszym dotychczasowym położeniu (rozwiązaniu),
- wymiana informacji poprzez interakcje z g/l best
 (PSO) vs wiedza całego zbiorowiska (ANT).

Pytania?