Answers to Exercises

Introduction to Computational Science:

Modeling and Simulation for the Sciences, 2nd Edition

Angela B. Shiflet and George W. Shiflet

Wofford College

© 2014 by Princeton University Press

Chapter 4

Module 4.1

- **1. a.** dW/dt = aW bWB, dB/dt = cB dWB, $W_0 = 20$, $B_0 = 15$
 - **b.** a = bB and c = dW, where b and d are any nonnegative real numbers Answer correction courtesy of Naiyf S. Alsaud
 - Ph.D. Candidate in Astrophysics

University of Edinburgh, UK, at the Royal Observatory

- 2. One possible model: $dW/dt = (1 W/M_W)(aW bWB)$, $dB/dt = (1 B/M_B)(cB dWB)$, $W_0 = 20$, $W_0 = 15$, where $W_0 = 15$ are the carrying capacities for the respective populations
 - **b.** a = bB and c = dW, where b and d are any nonnegative real numbers Answer correction courtesy of Naiyf S. Alsaud Ph.D. Candidate in Astrophysics University of Edinburgh, UK, at the Royal Observatory
- 3. a. higher
 - **b.** lower
 - **c.** lower
 - **d.** lower

Module 4.2

- 1. For equilibrium in (1) or (2), ds/dt = dh/dt = 0 implies $k_s = hk_{hs} = (3000)k_{hs}$ and $k_h = sk_{sh} = (500)k_{sh}$. One solution: $k_s = 0.6$, $k_{hs} = 0.0002$, $k_h = 0.1$, $k_{sh} = 0.0002$. Another solution: $k_s = 0.9$, $k_{hs} = 0.0003$, $k_h = 0.5$, $k_{sh} = 0.001$ (Correction courtesy of Naiyf S. Alsaud)
- 2. $\Delta s = k_s * s(t \Delta t) k_{hs} * h(t \Delta t) * s(t \Delta t)$ and $\Delta h = k_{sh} * s(t \Delta t) * h(t \Delta t) k_{sh} * s(t \Delta t) * h(t \Delta t)^2 / M$ or $ds/dt = k_s s k_{hs} hs$ and $dh/dt = k_{sh} sh k_{sh} sh^2 / M$ Alternative model: $\Delta s = k_s * s(t \Delta t) k_{hs} * h(t \Delta t) * s(t \Delta t)$ and $\Delta h = (k_{sh} * s(t \Delta t) * h(t \Delta t) k_{sh} * h(t \Delta t)) (h(t \Delta t) / M) (k_{sh} * s(t \Delta t) * h(t \Delta t) k_{sh} * h(t \Delta t))$

or
$$ds/dt = k_s s - k_{hs} h s$$
 and $dh/dt = (k_{sh} s h - k_{sh} h) - (h/M)(k_{sh} s h - k_{sh} h)$

3. Where s is the number of krill and h is the number of blue whales, $\Delta s = (k_s * s(t - \Delta t) * (1 - s(t - \Delta t)/M_s) - k_{hs} * h(t - \Delta t) * s(t - \Delta t)) * \Delta t \text{ and}$ $\Delta h = k_{sh} * h(t - \Delta t) (1 - h(t - \Delta t) / (k * s(t - \Delta t)))) * \Delta t, \text{ where } k \text{ is a constant}$

Module 4.3

- 1. dS/dt = -0.0058SI, dI/dt = 0.0058SI 0.04I, dR/dt = 0.04I
- **2.** $dS_O/dt = qk(1 b)I_US/N_0 uS_O$
- 3. $dE/dt = kb(1 q)I_US/N_0 pE$
- **4.** $dE_O/dt = qkbI_US/N_0 pE_O$
- **5.** $dS/dt = uS_0 kb(1 q)I_U dS/N_{0-} qkbI_U S/N_{0-} qk(1 b)I_U S/N_0$
- **6.** $dI_U/dt = pE wI_U mI_U vI_U$
- 7. $dI_D/dt = wI_U + wI_O vI_D mI_D$
- **8.** $dI_O/dt = pE_O mI_O vI_O wI_O$
- **9.** $d (recovered_immune)/dt = vI_D + vI_U + vI_O$
- **10.** $dD/dt = mI_Q + mI_D + mI_U$
- **11. a.** $3^{10} = 59,049$
 - **b.** all
 - **c.** $3^{15} = 14,348,907$
 - **d.** all

Module 4.4

- 1. Heat, humidity, poverty, lack of mosquito netting, insecticides, remoteness
- 2. d(human_hosts)/dt = (prob_bit)(prob_vector)(uninfected_humans) (recovery_rate)(human_hosts) (malaria_induced_death_rate)(human_hosts) (immunity_rate)(human_hosts)
- **3.** d(uninfected_mosquitoes)/dt = (mosquito_birth_rate)(mosquitoes) (prob_bite_human)(uninfected_mosquitoes)(human_hosts / humans) (mosquito_death_rate)(uninfected_mosquitoes)

4. $d(vectors)/dt = (prob_bite_human)(uninfected_mosquitoes)(human_hosts / humans) - (mosquito_death_rate)(vectors)$

Module 4.5

1.
$$d[E]/dt = -d[ES]/dt$$

2.
$$v = \frac{v_{\text{max}}[S]}{K_m + [S]} \approx \frac{v_{\text{max}}K_m}{K_m + K_m} = \frac{v_{\text{max}}}{2}$$

3. a.
$$d[E]/dt = k_3[ES] - k_1[E][S]$$

b.
$$d[ES]/dt = k_1[E][S] - (k_2 + k_3)[ES]$$

c.
$$d[P]/dt = k_3[ES]$$

d.
$$v = d[P]/dt$$

e. [E][S] =
$$(k_3 / k_1)$$
[ES]

f. [E][S] =
$$K_m$$
[ES]

g.
$$K_m = [E][S] / [ES]$$

h.
$$[E] = [E_0] - [ES]$$

i.
$$[ES] = [E_0][S] / (K_m + [S])$$

j.
$$d[P]/dt = k_3[E_0][S] / (K_m + [S])$$

k.
$$d[P]/dt$$
 approaches v_{max} and $k_3[E_0]$

1.
$$v = v_{max}[S] / (K_m + [S])$$

- **4.** $d[ES]/dt = k_1[E][S] (k_2 + k_3)[ES]$, which by Assumption 4 (see Exercise 3 h) and the assumption that $d[ES]/dt \approx 0$, is $d[ES]/dt = k_1([E_0] [ES])[S] (k_2 + k_3)[ES] \approx 0$. Thus, solving for [ES], we have the approximation [ES] = $k_1[E_0][S]/((k_2 + k_3) + k_1[S])$. Dividing each term of the numerator and denominator by k_1 , we have [ES] = $[E_0][S]/((k_2 + k_3)/k_1 + [S]) = [E_0][S]/(K + [S])$, where $K = (k_2 + k_3)/k_1$. Thus $d[P]/dt = k_3[ES] = k_3[E_0][S]/(K + [S])$.
- 5. $v = v_{max}[S] / (K_m + [S]) \Rightarrow 1/v = (K_m + [S])/(v_{max}[S]) = K_m/(v_{max}[S]) + [S]/(v_{max}[S]) \Rightarrow \frac{1}{v} = \frac{K_m}{v_{max}} \left(\frac{1}{[S]}\right) + \frac{1}{v_{max}}$

6. a.
$$d[S]/dt = -k_1[E][S]^n + nk_2[ES]$$

b.
$$d[E]/dt = -k_1[E][S]^n + k_2[ES] + k_3[ES]$$

c.
$$d[P]/dt = k_3[ES]$$

d.
$$d[ES]/dt = k_1[E][S]^n - (k_2 + k_3)[ES] = -d[E]/dt$$

7.
$$d[P]/dt = k_3[E_0][S]^n / (K_m + [S]^n) = v_{max}[S]^n / (K_m + [S]^n)$$