

24-bit Color FPD-Link III Serializer

General Description

The DS90UB301Q serializer, in conjunction with the DS90UB302Q deserializer, provides a complete solution for distribution of digital video and audio within automotive entertainment systems. This chipset translates a parallel RGB Video and I2S audio into a single pair high-speed serialized interface. The serial bus scheme, FPD-Link III, supports video and audio data transmission and full duplex control including I2C communication over a single differential link. Consolidation of video data and control over a single differential pair reduces the interconnect size and weight, while also eliminating skew issues with multiple differential pairs and simplifying system design.

The DS90UB301Q serializer embeds the clock, scrambles and DC balances the data payload, and level shifts the signals to a high-speed low voltage differential signal. Up to 24 RGB data bits are serialized along with three video control signals and three I2S data inputs.

The DS90UB301Q serializer has a 31-bit parallel LVCMOS input interface to accommodate the RGB, video control, and I2S audio data.

EMI is minimized by the use of low voltage differential signaling, data scrambling and randomization and spread spectrum clocking compatibility.

Applications Diagram

Features

- Bidirectional control interface channel interface with I2C compatible serial control bus
- RGB888 + VS, HS, DE and I2S audio supported
- 15 to 45MHz PCLK supported
- Single 3.3V Operation with 1.8V or 3.3V compatible LVCMOS I/O interface
- · AC-coupled STP Interconnect up to 10 meters
- Parallel LVCMOS video inputs
- DC-balanced & scrambled Data w/ Embedded Clock
- Supports repeater application
- Internal pattern generation
- Low power modes minimize power dissipation
- Automotive grade product: AEC-Q100 Grade 2 gualified
- >8kV HBM and ISO 10605 ESD rating

Applications

- Automotive Display for Navigation
- Rear Seat Entertainment Systems
- Automotive Drive Assistance
- Automotive Megapixel Camera Systems

TRI-STATE® is a registered trademark of National Semiconductor Corporation

DS90UB301Q Pin Diagram

Pin Descriptions

Pin Name	Pin #	I/O, Type	Description
LVCMOS Pa	rallel Interface		·
R[7:0]	34, 33, 32, 29,	I, LVCMOS	RED Parallel Interface Data Input Pins
[]	28, 27, 26, 25	w/ pull down	Leave open if unused
	-, , -, -		R0 can optionally be used as GPIO0 and R1 can optionally be used as GPIO1.
G[7:0]	42, 41, 40, 39,	I, LVCMOS	GREEN Parallel Interface Data Input Pins
[]	38, 37, 36, 35	w/ pull down	Leave open if unused
			G0 can optionally be used as GPIO2 and G1 can optionally be used as GPIO3.
B[7:0]	2, 1, 48, 47,	I, LVCOS	BLUE Parallel Interface Data Input Pins
' '	46, 45, 44, 43	w/ pull down	Leave open if unused
			B0 can optionally be used as GPO_REG4 and B1 can optionally be used as GPO_REG5.
HS	3	I, LVCMOS	Horizontal Sync Input Pin
		w/ pull down	Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the
			Control Signal Filter is enabled. There is no restriction on the minimum transition pulse
			when the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130
			PCLKs.
			See Table 6
VS	4	I, LVCMOS	Vertical Sync Input Pin
		w/ pull down	Video control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse width
	_		is 130 PCLKs.
DE	5	I, LVCMOS	Data Enable Input Pin
		w/ pull down	Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the
			Control Signal Filter is enabled. There is no restriction on the minimum transition pulse when the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130
			PCLKs.
			See Table 6
PCLK	10	I, LVCMOS	Pixel Clock Input Pin
. 5		w/ pull down	Strobe edge set by RFB configuration register. See <i>Table 6</i>
I2S_CLK,	13, 12, 11	I, LVCMOS	Digital Audio Interface Data Input Pins
12S_WC,	', ',	w/ pull down	Leave open if unused
I2S_DA			I2S_CLK can optionally be used as GPO_REG8, I2S_WC can optionally be used as
			GPO_REG7, and I2S_DA can optionally be used as GPO_REG6.
Optional Pa	rallel Interface	•	
GPIO[3:0]	36, 35, 26, 25	I/O,	General Purpose IOs
		LVCMOS	Available only in 18-bit color mode, and set by MODE_SEL pin or configuration register.
		w/ pull down	See Table 6
			Leave open if unused
			Shared with G1, G0, R1 and R0.
			Note: use of GPIO(s) on unused inputs must be enabled by register.
GPO_REG	13, 12, 11, 44,	O, LVCMOS	General Purpose Outputs
[8:4]	43	w/ pull down	These GPO must be set by configuration register. See <i>Table 6</i>
			Shared with I2S_CLK, I2S_WC, I2S_DA or B1, B0.
			Note: use of GPO(s) on unused inputs must be enabled by register.
Control	Ι.	l	
PDB	21	I, LVCMOS	Power-Down Mode Input Pin
		w/ pull-down	PDB = H, device is enabled (normal operation)
			Refer to "Power Up Requirements and PDB Pin" in the Applications Information Section.
			PDB = L, device is powered down.
			When the device is in the powered down state, the Driver Outputs are both HIGH, the PLL is shutdown, and IDD is minimized. Control Registers are RESET .
MODE SEL	04	I Apolos	-
MODE_SEL	24	I, Analog	Device Configuration Select. See <i>Table 1</i>

Pin #	I/O, Type	Description		
•	•			
6	I, Analog	I2C Serial Control Bus Device ID Address Select External pull-up to V _{DD33} is required under all conditions, DO NOT FLOAT. Connect to external pull-up and pull-down resistor to create a voltage divider. See Figure 17		
8	I/O, LVCMOS Open Drain	I2C Clock Input / Output Interface Must have an external pull-up to V_{DD33} , DO NOT FLOAT. Recommended pull-up: $4.7k\Omega$.		
9	I/O, LVCMOS Open Drain	I2C Data Input / Output Interface Must have an external pull-up to V_{DD33} , DO NOT FLOAT. Recommended pull-up: $4.7k\Omega$.		
•	•			
31	O, LVCMOS Open Drain	Interrupt INTB = H, normal INTB = L, Interrupt request Recommended pull-up: $4.7k\Omega$ to V_{DDIO}		
Serial Interface)			
20	O, LVDS	True Output The output must be AC-coupled with a 0.1µF capacitor.		
19	O, LVDS	Inverting Output The output must be AC-coupled with a 0.1µF capacitor.		
23	Analog	Common Mode Filter Connect 0.1µF to GND		
Ground				
22	Power	Power to on-chip regulator 3.0V - 3.6V . Requires 4.7µF to GND		
30	Power	LVCMOS I/O Power 1.71V - 1.89V OR 3.0V - 3.6V . Requires 4.7µF to GND		
DAP	Ground	DAP is the large metal contact at the bottom side, located at the center of the LLP package. Connect to the ground plane (GND) with at least 9 vias.		
apacitor	•			
17, 14	CAP	Decoupling capacitor connection for on-chip regulator. Requires a 4.7µF to GND at each CAP pin.		
7	CAP	Decoupling capacitor connection for on-chip regulator. Requires two 4.7μF to GND at this CAP pin.		
16	NC	Do not connect.		
18, 15	GND	Reserved. Tie to Ground.		
	6 8 9 31 Serial Interface 20 19 23 Ground 22 30 DAP apacitor 17, 14 7	8 I/O, LVCMOS Open Drain 9 I/O, LVCMOS Open Drain 31 O, LVCMOS Open Drain Serial Interface 20 O, LVDS 19 O, LVDS 23 Analog Around 22 Power 30 Power DAP Ground apacitor 17, 14 CAP 7 CAP		

The VDD (V $_{\rm DD33}$ and V $_{\rm DDIO}$) supply ramp should be faster than 1.5 ms with a monotonic rise.

Block Diagram

Ordering Information

NSID	Package Description	Quantity	SPEC	Package ID
DS90UB301Q SQE	48-pin LLP, 7.0 X 7.0 X 0.8 mm, 0.5 mm pitch	250	NOPB	SQA48A
DS90UB301Q SQ	48-pin LLP, 7.0 X 7.0 X 0.8 mm, 0.5 mm pitch	1000	NOPB	SQA48A
DS90UB301Q SQX	48-pin LLP, 7.0 X 7.0 X 0.8 mm, 0.5 mm pitch	2500	NOPB	SQA48A

Note: Automotive Grade (Q) product incorporates enhanced manufacturing and support processes for the automotive market, including defect detection methodologies. Reliability qualification is compliant with the requirements and temperature grades defined in the AEC Q100 standard. Automotive Grade products are identified with the letter Q. For more information go to http://www.ti.com/automotive.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

Supply Voltage – V _{DD33}	-0.3V to +4.0V
Supply Voltage – V _{DDIO}	-0.3V to +4.0V
LVCMOS I/O Voltage	-0.3V to (V _{DDIO} + 0.3V)
Serializer Output Voltage	-0.3V to +2.75V
Junction Temperature	+150°C
Storage Temperature	−65°C to +150°C
48L LLP Package	
Maximum Power Dissipation Capacity at 25°C	
Derate above 25°C	1/ θ _{JA} °C/W
θ_{JA}	35 °C/W
$\theta_{ m JC}$	5.2 °C/W
ESD Rating (IEC, powered-up only), $R_D = 330\Omega$, $C_S = 150pF$	
Air Discharge	
(D_{OUT_+}, D_{OUT})	≥±15 kV
Contact Discharge	
(D_{OUT+}, D_{OUT-})	≥±8 kV
ESD Rating (ISO10605), $R_D = 330\Omega$, $C_S = 150pF$	
Air Discharge	
$(D_{OUT_{+}}, D_{OUT_{-}})$	≥±15 kV
Contact Discharge	
(D_{OUT_+}, D_{OUT})	≥±8 kV
ESD Rating (ISO10605), $R_D = 2k\Omega$, $C_S = 150pF$ or 330pF	
Air Discharge	
(D_{OUT_+}, D_{OUT})	≥±15 kV
Contact Discharge	
(D _{OUT+} , D _{OUT-})	≥±8 kV
ESD Rating (HBM)	≥±8 kV
ESD Rating (CDM)	≥±1.25 kV
ESD Rating (MM)	≥±250 V
For soldering specifications: see products folder at www.ti.com and www.ti.com/lit/an/snoa549c/snoa549c.pdf	

Recommended Operating Conditions

	1	Min	Nom	Max	Units
Supply Voltage (V _{DD33})		3.0	3.3	3.6	V
LVCMOS Supply Voltage (V _{DDIO})	(3.0	3.3	3.6	V
OR	•	•			
LVCMOS Supply Voltage (V _{DDIO})	1	1.71	1.8	1.89	V
Operating Free Air Temperature (T _A)	-	-40	+25	+105	°C
PCLK Frequency		15		45	MHz
Supply Noise (Note 7)				100	mV _{P-P}

DC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified. (Note 2, Note 3, Note 4)

Symbol	Parameter	Condi	tions	Pin/Freq.	Min	Тур	Max	Units
	I/O DC SPECIFICATIONS			•		1		•
V _{IH}	High Level Input Voltage	$V_{DDIO} = 3.0 \text{ to } 3$	3.6V		2.0		$V_{\rm DDIO}$	V
V _{IL}	Low Level Input Voltage	$V_{\rm DDIO} = 3.0 \text{ to } 3.6 \text{V}$		PDB	GND		0.8	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{DDI}$		<u>.</u>	-10	±1	+10	μA
		$V_{DDIO} = 3.0 \text{ to } 3$			2.0		V _{DDIO}	V
V_{IH}	High Level Input Voltage	V _{DDIO} = 1.71 to	1.89V	R[7:0], G	0.65* V _{DDIO}		V _{DDIO}	V
		$V_{DDIO} = 3.0 \text{ to } 3$	3.6V	[7:0], B[7:0],	GND		0.8	V
V_{IL}	Low Level Input Voltage	$V_{\rm DDIO} = 1.71 \text{ to}$		HS, VS, DE, PCLK, I2S_CLK,	GND		0.35* V _{DDIO}	V
	land Comment	V _{IN} = 0V or	V _{DDIO} = 3.0 to 3.6V	12S_UC, 12S_WC, 12S_DA	-10	±1	+10	μΑ
I _{IN}	Input Current	V _{DDIO}	V _{DDIO} = 1.71 to 1.89V		-10	±1	+10	μА
V	High Level Output Voltage	I - 4mA	V _{DDIO} = 3.0 to 3.6V		2.4		V _{DDIO}	V
V _{OH}	High Level Output voltage	I _{OH} = -4mA	$V_{\rm DDIO} = 1.71$ to 1.89V		V _{DDIO} - 0.45		$V_{\rm DDIO}$	V
V	Low Level Output Voltage	I _{OL} = +4mA	$V_{DDIO} = 3.0$ to 3.6V	GPIO[3:0], GPO_REG -[8:4]	GND		0.4	V
V _{OL}	Low Level Output Voltage	IOL – THIIA	V _{DDIO} = 1.71 to 1.89V		GND		0.35	V
I _{os}	Output Short Circuit Current	V _{OUT} = 0V]		-50		mA
I_{OZ}	TRI-STATE® Output Current	$V_{OUT} = 0V \text{ or } V_{I}$	_{DDIO} , PDB = L,		-10		+10	μA
FPD-LINK	III CML DRIVER DC SPECIFIC	ATIONS						
V _{ODp-p}	Differential Output Voltage (DOUT+) - (DOUT-)	$R_L = 100\Omega$, Fig.	ure 1		1160	1250	1340	mV _{p-p}
ΔV_{OD}	Output Voltage Unbalance					1	50	mV
V _{OS}	Offset Voltage – Single-ended	$R_L = 100\Omega$, Fig.	ure 1	DOUT+,		2.5 -0.25 *V _{ODp-p}		V
ΔV _{OS}	Offset Voltage Unbalance Single-ended			DOUT-		1	50	mV
I _{os}	Output Short Circuit Current	DOUT+/- = 0V,	PDB = L or H			-38		mA
R _T	Internal Termination Resistor - Single ended				40	52	62	Ω
SUPPLY (CURRENT			•				
I _{DD1}	Cupply Current	Observe Day	V _{DD33} = 3.6V	V _{DD33}		130	150	mA
	Supply Current (includes load current)	Checker Board Pattern,	$V_{\rm DDIO} = 3.6V$			50	100	μΑ
I _{DDIO1}	$R_L = 100\Omega$, $f = 45MHz$	Figure 2	V _{DDIO} = 1.89V	V _{DDIO}		1	1.6	mA
I _{DDS1}			$V_{DD33} = 3.6V$	V _{DD33}		1.2	2.4	mA
	Supply Current Remote Auto	0x01[7] = 1, deserializer is	$V_{\rm DDIO} = 3.6V$			65	150	μA
I _{DDIOS1}	Power Down Mode	powered down	V _{DDIO} = 1.89V	V _{DDIO}		55	150	μΑ

Symbol	Parameter	Conditions		Pin/Freq.	Min	Тур	Max	Units
I _{DDS2}		PDB = L, all	$V_{DD33} = 3.6V$	V_{DD33}		1	2	mA
		LVCMOS	$V_{DDIO} = 3.6V$			65	150	μA
I _{DDIOS2}	Supply Current Power Down	inputs are floating or tied to GND	V _{DDIO} = 1.89V	V _{DDIO}		50	150	μА

AC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified. (Note 2, Note 3, Note 4)

Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units
GPIO BIT	RATE				•		
	Forward Channel Bit Rate		f = 15 -		0.25*f		Mbps
B _R	Pook Channel Pit Pote		45MHz GPIO[3:0]		75		kbps
RECOMM	ENDED TIMING FOR PCLK						
t _{TCP}	PCLK Period			22.222	Т	66.666	ns
t _{CIH}	PCLK Input High Time	(Note 8, Note 9)	PCLK	0.4*T	0.5*T	0.6*T	ns
t _{CIL}	PCLK Input Low Time			0.4*T	0.5*T	0.6*T	ns
+	PCLK Input Transition Time		f = 15MHz	1.3			ns
t _{CLKT}	Figure 3 (Note 8, Note 9)		f = 45MHz	0.5			ns
t _{IJIT}	PCLK Input Jitter Tolerance, Bit Error Rate ≤10-10	f / 40 < Jitter Freq < f / 20 (<i>Note 10</i> , <i>Note 8</i>)	f = 15 - 45MHz	0.4	0.6		UI
SWITCHII	NG CHARACTERISTICS	•		•	•	•	•
t _{LHT}	CML Output Low-to-High Transition Time	On a Simura 4	DOUT+,		80	130	ps
t _{HLT}	CML Output High-to-Low Transition Time	See Figure 4	DOUT-		80	130	ps
t _{DIS}	Data Input Setup to PCLK		R[7:0], G	2.0			ns
t _{DIH}	Data Input Hold from PCLK	See Figure 5	[7:0], B[7:0], HS, VS, DE, PCLK, I2S_CLK, I2S_WC, I2S_DA	2.0			ns
t _{PLD}	Serializer PLL Lock Time	Figure 6 (Note 5)	f = 15 - 45MHz		131*T		ns
t _{SD}	Delay — Latency		f = 15 - 45MHz		145*T		ns
t _{TJIT}	Output Total Jitter, Bit Error Rate ≥10 ⁻¹⁰ Figure 7 (Note 6, Note 8, Note 9)	$R_{L} = 100\Omega$ $f = 45MHz$	DOUT+, DOUT-		0.25	0.30	UI

Recommended Timing for the Serial Control Bus

Over 3.3V supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{SCL}	001 011-5	Standard Mode	0		100	kHz
	SCL Clock Frequency	Fast Mode	0		400	kHz
t _{LOW}	CCL Law Davied	Standard Mode	4.7			μs
	SCL Low Period	Fast Mode	1.3		μμ	μs
t _{HIGH}	CCL High Davidd	Standard Mode	4.0			μs
	SCL High Period	Fast Mode	0.6			μs
t _{HD;STA}	Hold Time for a start or a	Standard Mode	4.0			μs
,	repeated start condition Figure 8	Fast Mode	0.6			μs
t _{SU:STA}	Set Up Time for a start or a repeated start condition Figure 8	Standard Mode	4.7			μs
00.0171		Fast Mode	0.6			μs
t _{HD;DAT}	Data Hold Time Figure 8	Standard Mode	0		3.45	μs
		Fast Mode	0		0.9	μs
t _{SU;DAT}	Data Set Up Time	Standard Mode	250			ns
•	Figure 8	Fast Mode	100			ns
t _{SU;STO}	Set Up Time for STOP	Standard Mode	4.0			μs
	Condition, Figure 8	Fast Mode	0.6			μs
	Bus Free Time	Standard Mode	4.7			μs
t _{BUF}	Between STOP and START, Figure 8	Fast Mode	1.3			μs
+	SCL & SDA Rise Time,	Standard Mode			1000	ns
t _r	Figure 8	Fast Mode			300	ns
	SCL & SDA Fall Time,	Standard Mode			300	ns
t _f	Figure 8	Fast mode			300	ns

DC and AC Serial Control Bus Characteristics

Over 3.3V supply and temperature ranges unless otherwise specified. (Note 2, Note 3, Note 4)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IH}	Input High Level	SDA and SCL	0.7* V _{DDIO}		V _{DDIO}	V
V _{IL}	Input Low Level Voltage	el Voltage SDA and SCL			0.3* V _{DDIO}	V
V_{HY}	Input Hysteresis			>50		mV
V _{OL}		SDA, IOL = 1.25mA	0		0.36	٧
I _{in}		SDA or SCL, Vin = V _{DDIO} or GND	-10		+10	μΑ
t _R	SDA RiseTime – READ	ODA DDI 4010 OL 4400 F F		430		ns
t _F	SDA Fall Time – READ	SDA, RPU = $10k\Omega$, Cb $\leq 400pF$, Figure 8		20		ns
t _{SU;DAT}	Set Up Time – READ	Figure 8		560		ns
t _{HD;DAT}	Hold Up Time – READ	Figure 8		615		ns
t _{SP}	Input Filter			50		ns
C _{in}	Input Capacitance	SDA or SCL		<5		pF

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions at which the device is functional and the device should not be operated beyond such conditions.

Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 3: Typical values represent most likely parametric norms at V_{DD33} = 3.3V, Ta = +25°C, and at the Recommended Operating Conditions at the time of product characterization and are not quaranteed.

Note 4: Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD and ΔVOD, which are differential voltages.

Note 5: t_{PLD} is the time required by the device to obtain lock when exiting power-down state with an active PCLK.

Note 6: UI - Unit Interval is equivalent to one serialized data bit width 1UI = 1 / (35*PCLK). The UI scales with PCLK frequency.

Note 7: Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the V_{DD33} and V_{DDIO} supplies with amplitude = $100mV_{p-p}$ measured at the device V_{DD33} and V_{DDIO} pins. Bit error rate testing of input to the Ser and output of the Des with 10 meter cable shows no error when the noise frequency on the Ser is less than 50MHz.

Note 8: Specification is guaranteed by characterization and is not tested in production.

Note 9: Specification is guaranteed by design and is not tested in production.

Note 10: Jitter Frequency is specified in conjunction with DS90UB302Q PLL bandwidth.

AC Timing Diagrams and Test Circuits

FIGURE 1. Serializer VOD DC Output

FIGURE 2. Checkboard Data Pattern

FIGURE 3. Serializer Input Clock Transition Time

FIGURE 4. Serializer CML Output Load and Transition Time

FIGURE 5. Serializer Setup and Hold Times

FIGURE 6. Serializer Lock Time

FIGURE 7. Serializer CML Output Jitter

FIGURE 8. Serial Control Bus Timing Diagram

Functional Description

The DS90UB301Q serializer transmits a 35-bit symbol over a single serial FPD-Link III pair operating up to 1.575Gbps line rate. The serial stream contains an embedded clock, video control signals and DC-balanced video data and audio data which enhance signal quality to support AC coupling. The DS90UB301Q serializes video and audio data then transmits out through the FPD-Link III interface. The serializer is intended for use with the DS90UB302Q deserializer.

HIGH SPEED FORWARD CHANNEL DATA TRANSFER

The High Speed Forward Channel is composed of 35 bits of data containing RGB data, sync signals, I2C, and I2S audio transmitted from serializer to deserializer. *Figure 9* illustrates the serial stream per PCLK cycle. This data payload is optimized for signal transmission over an AC coupled link. Data is randomized, balanced and scrambled.

FIGURE 9. FPD-Link III Serial Stream

The device supports clocks in the range of 15MHz to 45MHz. The application payload rate is 1.575Gbps maximum (525Mbps minimum).

LOW SPEED BACK CHANNEL DATA TRANSFER

The Low-Speed Backward Channel of the DS90UB301Q provides bidirectional communication between the display and host processor. The information is carried back from the deserializer to the serializer per serial symbol. The back channel control data is transferred over the single serial link along with the high-speed forward data, DC balance coding and embedded clock information. This architecture provides a backward path across the serial link together with a high speed forward channel. The back channel contains the I2C, CRC, and 4 bits of standard GPIO information with 10Mbps line rate.

COMMON MODE FILTER PIN (CMF)

The serializer provides access to the center tap of the internal termination. A capacitor must be placed on this pin for additional common-mode filtering of the differential pair. This can be useful in high noise environments for additional noise rejection capability. A 0.1µF capacitor must be connected to this pin to Ground.

VIDEO CONTROL SIGNAL FILTER

When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following restrictions:

- Normal Mode with Control Signal Filter Enabled: DE and HS Only 2 transitions per 130 clock cycles are transmitted, the transition pulse must be 3 PCLK or longer.
- Normal Mode with Control Signal Filter Disabled: DE and HS Only 2 transitions per 130 clock cycles are transmitted, no
 restriction on minimum transition pulse.
- VS Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.

Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal can cause a visual display error. This feature allows for the chipset to validate and filter out any high frequency noise on the control signals. See *Figure 10*.

FIGURE 10. Video Control Signal Filter Waveform

EMI REDUCTION FEATURES

Input SSC Tolerance (SSCT)

The DS90UB301Q serializer is capable of tracking a triangular input spread spectrum clocking (SSC) profile up to +/-2.5% amplitude deviations (center spread), up to 35kHz modulation at 15-45MHz, from a host source.

LVCMOS $V_{\rm DDIO}$ OPTION

1.8V or 3.3V Inputs and Outputs are powered from a separate $V_{\rm DDIO}$ supply to offer compatibility with external system interface signals. Note: When configuring the $V_{\rm DDIO}$ power supplies, all the single-ended data and control input pins for device need to scale together with the same operating $V_{\rm DDIO}$ levels.

POWER DOWN (PDB)

The serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by the host or through the V_{DDIO} , where $V_{DDIO} = 3.0V$ to 3.6V or V_{DD33} . To save power disable the link when the display is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after V_{DD33} and V_{DDIO} have reached final levels; no external components are required. In the case of driven by the $V_{DDIO} = 3.0V$ to 3.6V or V_{DD33} directly, a $10k\Omega$ resistor to the $V_{DDIO} = 3.0V$ to 3.6V or V_{DD33} , and a $>10\mu F$ capacitor to the ground are required (See *Figure 21* Typical Connection Diagram).

REMOTE AUTO POWER DOWN MODE

The serializer features a remote auto power down mode. During the power down mode of the pairing deserializer, the serializer enters the remote auto power down mode. In this mode, the power dissipation of the serializer is reduced significantly. When the deserializer is powered up, the serializer enters the normal power on mode automatically. This feature is enabled through the register bit 0x01[7] *Table 6*.

INPUT PCLK LOSS DETECT

The serializer can be programmed to enter a low power SLEEP state when the input clock (PCLK) is lost. A clock loss condition is detected when PCLK drops below approximately 1MHz. When a PCLK is detected again, the serializer will then lock to the incoming PCLK. Note – when PCLK is lost, the Serial Control Bus Registers values are still RETAINED.

SERIAL LINK FAULT DETECT

The serial link fault detection is able to detect any of following seven (7) conditions

- 1) Cable open
- 2) "+" to "-" short
- 3) "+" short to GND
- 4) "-" short to GND
- 5) "+" short to battery
- 6) "-" short to battery
- 7) Cable is linked incorrectly

If any one of the fault conditions occurs, The Link Detect Status is 0 (cable is not detected) on bit 0 of address 0x0C, see Table 6.

PIXEL CLOCK EDGE SELECT (RFB)

The RFB control register bit selects which edge of the Pixel Clock is used. For the serializer, this pin determines the edge that the data is latched on. If RFB is *HIGH*, data is latched on the Rising edge of the PCLK. If RFB is *LOW*, data is latched on the Falling edge of the PCLK.

INTERRUPT PIN — FUNCTIONAL DESCRIPTION AND USAGE (INTB)

- 1. On DS90UB301Q, set register 0xC6[5] = 1 and 0xC6[0] = 1
- 2. DS90UB302Q deserializer INTB_IN (pin 16) is set LOW by some downstream device.
- 3. DS90UB301Q serializer pulls INTB (pin 31) LOW. The signal is active low, so a LOW indicates an interrupt condition.
- 4. External controller detects INTB = LOW: to determine interrupt source, read ISR register.
- 5. A read to ISR will clear the interrupt at the DS90UB301Q, releasing INTB.
- The external controller typically must then access the remote device to determine downstream interrupt source and clear the
 interrupt driving INTB_IN. This would be when the downstream device releases the INTB_IN (pin 16) on the DS90UB302Q.
 The system is now ready to return to step (1) at next falling edge of INTB_IN.

CONFIGURATION SELECT (MODE_SEL)

Configuration of the device may be done via the MODE_SEL input pin, or via the configuration register bit. A pull-up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the MODE_SEL input (V_{R4}) and V_{DD33} to select one of the other 4 possible selected modes. See *Figure 11* and *Table 1*.

FIGURE 11. MODE_SEL Connection Diagram

TABLE 1. Configuration Select (MODE_SEL)

#	Ideal Ratio	Ideal V _{R4}	Suggested	Suggested	Repeater	24/18-bit Mode
	V _{R4} /V _{DD33}	(V)	Resistor R3 kΩ	Resistor R4 kΩ		
			(1% tol)	(1% tol)		
1	0	0	Open	40.2 or Any	L	L
2	0.121	0.399	294	40.2	L	Н
3	0.152	0.502	280	49.9	Н	L
4	0.242	0.799	240	76.8	Н	Н

Repeater:

L = Repeater Off (Default)

H = Repeater On

24/18-bit Mode:

L = 24-bit RGB Mode (Default)

H = 18-bit RGB Mode. Note: use of GPIO(s) on unused inputs must be enabled by register.

GPIO[3:0] and GPO_REG[8:4]

In 18-bit RGB operation mode, the optional R[1:0] and G[1:0] of the DS90UB301Q can be used as the general purpose IOs GPIO [3:0] in either forward channel (Inputs) or back channel (Outputs) application.

GPIO[3:0] Enable Sequence

See Table 2 for the GPIO enable sequencing.

Step 1: Enable the 18-bit mode either through the configuration register bit *Table 6* on DS90UB301Q only. DS90UB302Q is automatically configured as in the 18-bit mode.

Step 2: To enable GPIO3 forward channel, write 0x03 to address 0x0F on DS90UB301Q, then write 0x05 to address 0x1F on DS90UB302Q.

TABLE 2. GPIO Enable Sequencing Table

#	Description	Device	Forward Channel	Back Channel
1	Enable 18-bit	DS90UB301Q	0x12 = 0x04	0x12 = 0x04
	mode	DS90UB302Q	Auto Load from DS90UB301Q	Auto Load from DS90UB301Q
2	GPIO3	DS90UB301Q	0x0F = 0x03	0x0F = 0x05
		DS90UB302Q	0x1F = 0x05	0x1F = 0x03
3	GPIO2	DS90UB301Q	0x0E = 0x30	0x0E = 0x50
		DS90UB302Q	0x1E = 0x50	0x1E = 0x30
4	GPIO1	DS90UB301Q	0x0E = 0x03	0x0E = 0x05
		DS90UB302Q	0x1E = 0x05	0x0E = 0x05
5	GPIO0	DS90UB301Q	0x0D = 0x93	0x0D = 0x95
		DS90UB302Q	0x1D = 0x95	0x1D = 0x93

GPO_REG[8:4] Enable Sequence

GPO_REG[8:4] are the outputs only pins. They must be programmed through the local register bits. See *Table 3* for the GPO_REG enable sequencing.

Step 1: Enable the 18-bit mode either through the configuration register bit on DS90UB301Q only. DS90UB302Q is automatically configured as in the 18-bit mode.

Step 2: To enable GPO_REG8 to output a HIGH, write 0x90 to address 0x11 on DS90UB301Q.

TABLE 3. GPO_REG Enable Sequencing Table

#	Description	Device	Local Access	Local Output
1	Enable 18-bit mode	DS90UB301Q 0x12 = 0x04		n/a
2	GPO_REG8	DS90UB301Q	0x11 = 0x90	HIGH
			0x11 = 0x10	LOW
3	GPO_REG7	DS90UB301Q	0x11 = 0x09	HIGH
			0x11 = 0x01	LOW
4	GPO_REG6	DS90UB301Q	0x10 = 0x90	HIGH
			0x10 = 0x10	LOW
5	GPO_REG5	DS90UB301Q	0x10 = 0x09	HIGH
			0x10 = 0x01	LOW
6	GPO_REG4	DS90UB301Q	0x0F = 0x90	HIGH
			0x0F = 0x10	LOW

12S TRANSMITTING

In normal 24-bit RGB operation mode, the DS90UB301Q supports 3 bits of I2S: I2S_CLK, I2S_WC and I2S_DA. The optionally encrypted and packetized audio information can be transmitted during the video blanking (data island transport) or during active video (forward channel frame transport). Note: The bit rates of any I2S bits must maintain one fourth of the PCLK rate.

Table 4 below covers the range of I2S sample rates.

TABLE 4. Audio Interface Frequencies

<u>_</u>								
Sample Rate (kHz)	I2S Data Word Size (bits)	I2S CLK (MHz)						
32	16	1.024						
44.1	16	1.411						
48	16	1.536						
96	16	3.072						
192	16	6.144						
32	24	1.536						
44.1	24	2.117						
48	24	2.304						
96	24	4.608						
192	24	9.216						
32	32	2.048						
44.1	32	2.822						
48	32	3.072						
96	32	6.144						
192	32	12.288						

REPEATER

When DS90UB301Q and DS90UB302Q are configured in repeater application, it provides a mechanism to extend transmission over multiple links to multiple display devices.

Repeater Configuration

In repeater application, in this document, the DS90UB301Q is referred to as the Transmitter or transmit port (TX), and the DS90UB302Q is referred to as the Receiver (RX). *Figure 12* shows the maximum configuration supported for repeater implementations using the DS90UB301Q (TX) and DS90UB302Q (RX). Two levels of repeaters are supported with a maximum of three Transmitters per Receiver.

FIGURE 12. Maximum Repeater Application

In a repeater application, the I2C interface at each TX and TX may be configured to transparently pass I2C communications upstream or downstream to any I2C device within the system. This includes a mechanism for assigning alternate IDs (Slave Aliases) to downstream devices in the case of duplicate addresses.

At each repeater node, the parallel LVCMOS interface fans out to up to three serializer devices, providing parallel RGB video data, HS/VS/DE control signals and, optionally, packetized audio data (transported during video blanking intervals). Alternatively, the I2S audio interface may be used to transport digital audio data between receiver and transmitters in place of packetized audio. All audio and video data is transmitted at the output of the Receiver and is received by the Transmitter.

Figure 13 provides more detailed block diagram of a 1:2 repeater configuration.

FIGURE 13. 1:2 Repeater Configuration

Repeater Connections

The repeater requires the following connections between the Receiver and each Transmitter Figure 14.

- 1) Video Data Connect PCLK, RGB and control signals (DE, VS, HS).
- 2) I2C Connect SCL and SDA signals. Both signals should be pulled up to V_{DD33} with 4.7k Ω resistors.
- 3) Audio Connect I2S_CLK, I2S_WC, and I2S_DA signals.
- 4) IDx pin Each Transmitter and Receiver must have an unique I2C address.
- 5) MODE_SEL pin All Transmitter and Receiver must be set into the Repeater Mode.
- 6) Interrupt pin Connect DS90UB302Q INTB_IN pin to DS90UB301Q INTB pin. The signal must be pulled up to V_{DDIO}.

FIGURE 14. Repeater Connection Diagram

BUILT IN SELF TEST (BIST)

An optional @Speed Built In Self Test (BIST) feature supports the testing of the high speed serial link and the low-speed back channel. This is useful in the prototype stage, equipment production, in-system test and also for system diagnostics.

BIST Configuration and Status

The BIST mode is enabled at the deseralizer by the Pin select (Pin 44 BISTEN and Pin 16 BISTC) or configuration register (Table 6) through the deserializer. The pin based configuration defaults to external PCLK or 33MHz internal Oscillator clock (OSC) frequency. In the absence of PCLK, the user can select the desired OSC frequency (default 33MHz or 25MHz) through the register bit.

When BISTEN of the descrializer is *HIGH*, the BIST mode enable information is sent to the serializer through the Back Channel. The serializer outputs a test pattern and drives the link at speed. The descrializer detects the test pattern and monitors it for errors. The PASS output pin toggles to flag any payloads that are received with 1 to 35 bit errors.

The BIST status is monitored real time on PASS pin. The result of the test is held on the PASS output until reset (new BIST test or Power Down). A *HIGH* on PASS indicates NO ERRORS were detected. A *LOW* on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width applied to the deserializer BISTEN pin. This BIST feature also contains a Link Error Count and a Lock Status. If the connection of the serial link is broken, then the link error count is shown in the register. When the PLL of the deserializer is locked or unlocked, the lock status can be read in the register. See *Table 6*.

Sample BIST Sequence

See Figure 15 for the BIST mode flow diagram.

Step 1:For the DS90UB301Q and DS90UB302Q FPD-Link III chipset, BIST Mode is enabled via the BISTEN pin of DS90UB302Q FPD-Link III deserializer. The desired clock source is selected through BISTC pin.

Step 2:The DS90UB301Q serializer is woken up through the back channel if it is not already on. The all zero pattern on the data pins is sent through the FPD-Link III to the deserializer. Once the serializer and the deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes *HIGH* and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the PASS pin will switch *LOW* for one half of the clock period. During the BIST test, the PASS output can be monitored and counted to determine the payload error rate.

Step 3:To Stop the BIST mode, the deserializer BISTEN pin is set *LOW*. The deserializer stops checking the data. The final test result is held on the PASS pin. If the test ran error free, the PASS output will be *HIGH*. If there was one or more errors detected, the PASS output will be *LOW*. The PASS output state is held until a new BIST is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the BISTEN signal.

Step 4:The Link returns to normal operation after the deserializer BISTEN pin is *LOW. Figure 16* shows the waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors. In most cases it is difficult to generate errors due to the robustness of the link (differential data transmission etc.), thus they may be introduced by greatly extending the cable length, faulting the interconnect, reducing signal condition enhancements (Rx Equalization).

FIGURE 15. BIST Mode Flow Diagram

Forward Channel and Back Channel Error Checking

While in BIST mode, the serializer stops sampling RGB input pins and switches over to an internal all-zero pattern. The internal all-zeroes pattern goes through scrambler, DC-balancing etc. and goes over the serial link to the deserializer. The deserializer on locking to the serial stream compares the recovered serial stream with all-zeroes and records any errors in status registers and dynamically indicates the status on PASS pin. The deserializer then outputs a SSO pattern on the RGB output pins.

The back-channel data is checked for CRC errors once the serializer locks onto back-channel serial stream as indicated by link detect status (register bit 0xOC[0]). The CRC errors are recorded in an 8-bit register. The register is cleared when the serializer enters the BIST mode. As soon as the serializer exits BIST mode, the functional mode CRC register starts recording the CRC errors. The BIST mode CRC error register is active in BIST mode only and keeps the record of last BIST run until cleared or enters BIST mode again.

FIGURE 16. BIST Waveforms

Internal Pattern Generation

The DS90UB301Q serializer supports the internal pattern generation feature. It allows basic testing and debugging of an integrated panel through the FPD-Link III output stream. The test patterns are simple and repetitive and allow for a quick visual verification of panel operation. As long as the device is not in power down mode, the test pattern will be displayed even if no parallel input is applied. If no PCLK is received, the test pattern can be configured to use a programmed oscillator frequency. For detailed information, refer to Application Note *AN-2198*.

Serial Control Bus

The DS90UB301Q is configured by the use of a serial control bus that is I2C protocol compatible. Multiple serializer devices may share the serial control bus since 16 device addresses are supported. Device address is set via R_1 and R_2 values on IDx pin. See *Figure 17* below.

The serial control bus consists of two signals and a configuration pin. The SCL is a Serial Bus Clock Input / Output. The SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external pull-up resistor to V_{DD33} . For most applications a $4.7 k\Omega$ pull-up resistor to V_{DD33} may be used. The resistor value may be adjusted for capacitive loading and data rate requirements. The signals are either pulled HIGH, or driven LOW.

FIGURE 17. Serial Control Bus Connection

The configuration pin is the IDx pin. This pin sets one of 16 possible device addresses. A pull-up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the IDx input (V_{R2}) and V_{DD33} to select one of the other 16 possible addresses. See *Table 5*.

Suggested Suggested **Ideal Ratio** Ideal V_{R2} Address 8'b Resistor R1 kΩ Resistor R2 kΩ Address 7'b **Appended** V_{R2} / V_{DD33} (V) (1% tol) (1% tol) 1 0 0 Open 40.2 or Any 0x0C 0x18 2 0.121 0.399 294 40.2 0x0D 0x1A 3 0.152 0.502 280 49.9 0x0E 0x1C 4 0.182 0.601 270 60.4 0x0F 0x1E 5 0.212 0.700 267 71.5 0x10 0x20 6 0.242 0.799 240 76.8 0x11 0x22 7 0.273 0.901 243 90.9 0x12 0x24 8 226 102 0x26 0.310 1.023 0x13 9 0.356 1.175 210 115 0x14 0x28 10 0.402 1.327 196 130 0x2A 0x15 182 147 0x2C 11 0.447 1.475 0x16 12 0.492 1.624 169 165 0x17 0x2E 13 0.538 1.775 154 180 0x18 0x30

137

124

90.9

191

210

243

0x19

0x1A

0x1B

TABLE 5. Serial Control Bus Addresses for IDx

0.583

0.629

0.727

1.924

2.076

2.399

14

15

16

0x32

0x34

0x36

The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when SCL transitions *LOW* while SDA is *HIGH*. A STOP occurs when SDA transitions *HIGH* while SCL is also *HIGH*. See *Figure 18*.

FIGURE 18. START and STOP Conditions

To communicate with a remote device, the host controller (master) sends the slave address and listens for a response from the slave. This response is referred to as an Acknowledge bit (ACK). If a slave on the bus is addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus *LOW*. If the address doesn't match a device's slave address, it Not-Acknowledges (NACKs) the master by letting SDA be pulled *HIGH*. ACKs also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after every data byte is successfully received. When the master is reading data, the master ACKs after every data byte is received to let the slave know it wants to receive another data byte. When the master wants to stop reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop condition. A READ is shown in *Figure 19* and a WRITE is shown in *Figure 20*.

If the Serial Bus is not required, the three pins may be left open (NC).

FIGURE 19. Serial Control Bus — READ

FIGURE 20. Serial Control Bus — WRITE

TABLE 6. Serial Control Bus Registers

ADD (dec)	ADD (hex)	Register Name	Bit(s)	Register Type	Default (hex)	Function	Description
0	0x00	I2C Device ID	7:1	RW		Device ID	7-bit address of serializer
			0	RW		ID Setting	1: Register I2C Device ID (Overrides IDx pin) 0: Device ID is from IDx pin
1	0x01	Reset	7	RW	0x00	Remote Auto Power Down	Remote Auto Power Down 1: Power down when no Bidirectional Control Channel link is detected 0: Do not power down when no Bidirectional Control Channel link is detected
			6:2				Reserved.
			1	RW		Digital RESET1	Reset the entire digital block including registers This bit is self-clearing. 1: Reset 0: Normal operation
			0	RW		Digital RESET0	Reset the entire digital block except registers This bit is self-clearing. 1: Reset 0: Normal operation
3	0x03	Configuration [0]	7	RW	0xD2	Back channel CRC Checker Enable	Back Channel Check Enable 1: Enable 0: Disable
			6				Reserved.
			5	RW		I2C Remote Write Auto Acknowledge	Automatically Acknowledge I2C Remote Write When enabled, I2C writes to the deserializer (or any remote I2C Slave, if I2C PASS ALL is enabled) are immediately acknowledged without waiting for the deserializer to acknowledge the write. This allows higher throughput on the I2C bus 1: Enable 0: Disable
			4	RW		Filter Enable	HS, VS, DE two clock filter When enabled, pulses less than two full PCLK cycles on the DE, HS, and VS inputs will be rejected 1: Filtering enable 0: Filtering disable
			3	RW		I2C Pass- through	I2C Pass-Through Mode 1: Pass-Through Enabled 0: Pass-Through Disabled
			2				Reserved
			1	RW		PCLK Auto	Switch over to internal OSC in the absence of PCLK 1: Enable auto-switch 0: Disable auto-switch
			0	RW		TRFB	Pixel Clock Edge Select 1: Parallel Interface Data is strobed on the Rising Clock Edge. 0: Parallel Interface Data is strobed on the Falling Clock Edge.

ADD (dec)	ADD (hex)	Register Name	Bit(s)	Register Type	Default (hex)	Function	Description
4	0x04	Configuration [1]	7	RW	0x80	Failsafe State	Input Failsafe State 1: Failsafe to <i>LOW</i> 0: Failsafe to <i>HIGH</i>
			6		1		Reserved
			5	RW		CRC Error Reset	Clear back channel CRC Error Counters This bit is NOT self-clearing. 1: Clear Counters
							0: Normal Operation
			4:0				Reserved
5	0x05	I2C Control	7:5		0x00		Reserved
			4:3	RW		SDA Output Delay	SDA output delay Configures output delay on the SDA output. Setting this value will increase output delay in units of 40ns. Nominal output delay values for SCL to SDA are 00: 240ns 01: 280ns 10: 320ns 11: 360ns
			2	RW		Local Write Disable	Disable remote writes to local registers Setting the bit to a 1 prevents remote writes to local device registers from across the control channel. It prevents writes to the serializer registers from an I2C master attached to the deserializer. Setting this bit does not affect remote access to I2C slaves at the serializer
			1	RW		I2C Bus Timer Speedup	Speed up I2C bus watchdog timer 1: Watchdog timer expires after ~50 ms. 0: Watchdog Timer expires after ~1 s
			0	RW		I2C Bus timer Disable	Disable I2C bus watchdog timer When the I2C watchdog timer may be used to detect when the I2C bus is free or hung up following an invalid termination of a transaction. If SDA is <i>HIGH</i> and no signalling occurs for ~1 s, the I2C bus assumes to be free. If SDA is low and no signaling occurs, the device attempts to clear the bus by driving 9 clocks on SCL
6	0x06	DES ID	7:1	RW	0x00	DES Device ID	7-bit deserializer Device ID Configures the I2C Slave ID of the remote deserializer. A value of 0 in this field disables I2C access to the remote deserializer. This field is automatically configured by the Bidirectional Control Channel once RX Lock has been detected. Software may overwrite this value, but should also assert the FREEZE DEVICE ID bit to prevent overwriting by the Bidirectional Control Channel.
			0	RW		Device ID Frozen	Freeze deserializer Device ID Prevents autoloading of the deserializer Device ID by the Bidirectional Control Channel. The ID will be frozen at the value written.

ADD (dec)	ADD (hex)	Register Name	Bit(s)	Register Type	Default (hex)	Function	Description
7	0x07	Slave ID	7:1	RW	0X00	Slave Device ID	7-bit Remote Slave Device ID Configures the physical I2C address of the remote I2C Slave device attached to the remote deserializer. If an I2C transaction is addressed to the Slave Device Alias ID, the transaction will be remapped to this address before passing the transaction across the Bidirectional Control Channel to the deserializer
			0				Reserved
8	0x08	Slave Alias	7:1	RW	0x00	Slave Device Alias ID	7-bit Remote Slave Device Alias ID Assigns an Alias ID to an I2C Slave device attached to the remote deserializer. The transaction will be remapped to the address specified in the Slave ID register. A value of 0 in this field disables access to the remote I2C Slave.
			0				Reserved
10	0x0A	CRC Errors	7:0	R	0x00	CRC Error LSB	Number of back channel CRC errors – 8 least significant bits
11	0x0B		7:0	R	0x00	CRC Error MSB	Number of back channel CRC errors – 8 most significant bits
12	0x0C	General Status	7:4		0x00		Reserved
			3	R		BIST CRC Error	Back channel CRC error during BIST communication with deserializer. The bit is cleared upon loss of link, restart of BIST, or assertion of CRC ERROR RESET in register 0x04.
			2	R		PCLK Detect	PCLK Status 1: Valid PCLK detected 0: Valid PCLK not detected
			1	R		DES Error	Back channel CRC error during communication with deserializer. The bit is cleared upon loss of link or assertion of CRC ERROR RESET in register 0x04.
			0	R		LINK Detect	LINK Status 1: Cable link detected 0: Cable link not detected (Fault Condition)

ADD (dec)	ADD (hex)	Register Name	Bit(s)	Register Type	Default (hex)	Function	Description
13	0x0D	Revision ID	7:4	R	0xA0	Rev-ID	Revision ID: 1010
		and GPIO0					Production Device
		Configuration	3	RW		GPIO0 Output	Local GPIO output value
						Value	This value is output on the GPIO pin when the
							GPIO function is enabled, the local GPIO
							direction is Output, and remote GPIO control is
							disabled.
			2	RW		GPIO0	Remote GPIO control
						Remote	1: Enable GPIO control from remote
						Enable	deserializer. The GPIO pin will be an output,
							and the value is received from the remote
							deserializer.
							0: Disable GPIO control from remote
							deserializer.
			1	RW		GPIO0	Local GPIO Direction
						Direction	1: Input
							0: Output
			0	RW		GPIO0	GPIO function enable
						Enable	1: Enable GPIO operation
							0: Enable normal operation

ADD	ADD	Register	Bit(s)	Register	Default	Function	Description
(dec)	(hex)	Name	Dit(5)	Туре	(hex)	Function	Description
14	0x0E	GPIO2 and	7	RW	0x0	GPIO2 Output	Local GPIO output value
		GPIO1				Value	This value is output on the GPIO pin when the
		Configurations					GPIO function is enabled, the local GPIO
							direction is Output, and remote GPIO control is
						00.00	disabled.
			6	RW		GPIO2	Remote GPIO control
						Remote	1: Enable GPIO control from remote
						Enable	deserializer. The GPIO pin will be an output, and the value is received from the remote
							deserializer.
							0: Disable GPIO control from remote
							deserializer.
			5	RW		GPIO2	Local GPIO Direction
						Direction	1: Input
							0: Output
			4	RW		GPIO2	GPIO function enable
						Enable	1: Enable GPIO operation
							0: Enable normal operation
			3	RW			Local GPIO output value
						Value	This value is output on the GPIO pin when the
							GPIO function is enabled, the local GPIO
							direction is Output, and remote GPIO control is disabled.
			2	RW		GPIO1	Remote GPIO control
				1100		Remote	1: Enable GPIO control from remote
						Enable	deserializer. The GPIO pin will be an output,
							and the value is received from the remote
							deserializer.
							0: Disable GPIO control from remote
							deserializer.
			1	RW		GPIO1	Local GPIO Direction
						Direction	1: Input
							0: Output
			0	RW		GPIO1	GPIO function enable
						Enable	1: Enable GPIO operation
	l						0: Enable normal operation

ADD	ADD	Register		Register	Default		
(dec)	(hex)	Name	Bit(s)	Type	(hex)	Function	Description
15	0x0F	GPO_REG4 and GPIO3 Configurations	7	RW	0x00	GPO_REG4 Output Value	Local GPO_REG4 output value This value is output on the GPO pin when the GPO function is enabled. (The local GPO direction is Output, and remote GPO control is disabled)
			6:5				Reserved
			4	RW		GPO_REG4 Enable	GPO_REG4 function enable 1: Enable GPO operation 0: Enable normal operation
			3	RW		GPIO3 Output Value	Local GPIO output value This value is output on the GPIO pin when the GPIO function is enabled, the local GPIO direction is Output, and remote GPIO control is disabled.
			2	RW		GPIO3 Remote Enable	Remote GPIO control 1: Enable GPIO control from remote deserializer. The GPIO pin will be an output, and the value is received from the remote deserializer. 0: Disable GPIO control from remote deserializer.
			1	RW		GPIO3 Direction	Local GPIO Direction 1: Input 0: Output
			0	RW		GPIO3 Enable	GPIO function enable 1: Enable GPIO operation 0: Enable normal operation
16	0x10	GPO_REG6 and GPO_REG5 Configurations	7	RW	0x00	GPO_REG6 Output Value	Local GPO_REG6 output value This value is output on the GPO pin when the GPO function is enabled. (The local GPO direction is Output, and remote GPO control is disabled)
			6:5				Reserved
			4	RW		GPO_REG6 Enable	GPO_REG6 function enable 1: Enable GPO operation 0: Enable normal operation
			3	RW		GPO_REG5 Output Value	Local GPO_REG5 output value This value is output on the GPO pin when the GPO function is enabled, the local GPO direction is Output, and remote GPO control is disabled.
			2:1				Reserved
			0	RW		GPO_REG5 Enable	GPO_REG5 function enable 1: Enable GPO operation 0: Enable normal operation

ADD (dec)	ADD (hex)	Register Name	Bit(s)	Register Type	Default (hex)	Function	Description
17	0x11	GPO_REG8 and GPO_REG7 Configurations	7	RW	0x00	GPO_REG8 Output Value	Local GPO_REG8 output value This value is output on the GPO pin when the GPO function is enabled. (The local GPO direction is Output, and remote GPO control is disabled)
			6:5				Reserved
			4	RW		GPO_REG8 Enable	GPO_REG8 function enable 1: Enable GPO operation 0: Enable normal operation
			3	RW		GPO_REG7 Output Value	Local GPO_REG7 output value This value is output on the GPO pin when the GPO function is enabled, the local GPO direction is Output, and remote GPO control is disabled.
			2:1				Reserved
			0	RW		GPO_REG7 Enable	GPO_REG7 function enable 1: Enable GPO operation 0: Enable normal operation
18	0x12	Data Path	7:6		0x00		Reserved
		Control	5	RW		DE Polarity	The bit indicates the polarity of the DE (Data Enable) signal. 1: DE is inverted (active low, idle high) 0: DE is positive (active high, idle low)
			4	RW		I2S Repeater Regen	I2S Repeater Regeneration 1: Repeater regenerate I2S from I2S pins 0: Repeater pass through I2S from video pins
			3	RW			Reserved
			2	RW		18/24-bit Video Select	18-bit video select 1: Select 18-bit video mode Note: use of GPIO(s) on unused inputs must be enabled by register 0: Select 24-bit video mode
			1:0				Reserved
19	0x13	Mode Status	7:5		0x10		Reserved
			4	R		MODE_SEL	MODE_SEL Status 1: MODE_SEL decode circuit is completed 0: MODE_SEL decode circuit is not completed
			3	R			Reserved
			2	R		Repeater Mode	Repeater Mode Status 1: Repeater mode <i>ON</i> 0: Repeater Mode <i>OFF</i>
			1:0	R			Reserved
20	0x14	OscillatorCloc k Source and BIST Status	7:3 2:1	RW	0x00	OSC Clock Source	Reserved OSC Clock Source 00: External Pixel Clock 01: 33MHz Oscillator 10: Reserved 11: 25MHz Oscillator
			0	R		BIST Enable Status	BIST status 1: Enabled 0: Disabled

ADD (dec)	ADD (hex)	Register Name	Bit(s)	Register Type	Default (hex)	Function	Description
22	0x16	BCC Watchdog Control	7:1	RW	0xFE	Timer Value	The watchdog timer allows termination of a control channel transaction if it fails to complete within a programmed amount of time. This field sets the Bidirectional Control Channel Watchdog Timeout value in units of 2 ms. This field should not be set to 0
			0	RW		Timer Control	Disable Bidirectional Control Channel Watchdog Timer 1: Disables BCC Watchdog Timer operation 0: Enables BCC Watchdog Timer operation
23	0x17	I2C Control	7	RW	0x5E	I2C Pass All	I2C Control 1: Enable Forward Control Channel pass- through of all I2C accesses to I2C Slave IDs that do not match the serializer I2C Slave ID. 0: Enable Forward Control Channel pass- through only of I2C accesses to I2C Slave IDs matching either the remote deserializer Slave ID or the remote Slave ID.
			6				Reserved
			5:4	RW		SDA Hold Time	Internal SDA Hold Time Configures the amount of internal hold time provided for the SDA input relative to the SCL input. Units are 40ns.
			3:0	RW		I2C Filter Depth	Configures the maximum width of glitch pulses on the SCL and SDA inputs that will be rejected. Units are 5ns.
24	0x18	SCL High Time	7:0	RW	0xA1	SCL High Time	I2C Master SCL High Time This field configures the high pulse width of the SCL output when the serializer is the Master on the local I2C bus. Units are 40ns for the nominal oscillator clock frequency. The default value is set to provide a minimum 5µs SCL high time with the internal oscillator clock running at 32.5MHz rather than the nominal 25MHz.
25	0x19	SCL Low Time	7:0	RW	0xA5	SCL Low Time	I2C SCL Low Time This field configures the low pulse width of the SCL output when the serializer is the Master on the local I2C bus. This value is also used as the SDA setup time by the I2C Slave for providing data prior to releasing SCL during accesses over the Bidirectional Control Channel. Units are 40ns for the nominal oscillator clock frequency. The default value is set to provide a minimum 5µs SCL low time with the internal oscillator clock running at 32.5MHz rather than the nominal 25MHz.
27	0x1B	BIST BC Error	7:0	R	0x00	BIST Back Channel CRC Error Counter	BIST Mode Back Channel CRC Error Counter This error counter is active only in the BIST mode. It clears itself at the start of the BIST run.

ADD	ADD	Register	Bit(s)	Register	Default	Function	Description
(dec)	(hex)	Name	Dit(o)	Туре	(hex)	T direction	Besonption
100	0x64	Pattern	7:4	RW	0x10	Pattern	Fixed Pattern Select
		Generator				Generator	This field selects the pattern to output when in
		Control				Select	Fixed Pattern Mode. Scaled patterns are
							evenly distributed across the horizontal or
							vertical active regions. This field is ignored
							when Auto-Scrolling Mode is enabled. The
							following table shows the color selections in
							non-inverted followed by inverted color mode
							0000: Reserved
							0001: White/Black
							0010: Black/White
							0011: Red/Cyan
							0100: Green/Magenta
							0101: Blue/Yellow
							0110: Horizontally Scaled Black to White/
							White to Black
							0111: Horizontally Scaled Black to Red/Cyan
							to White
							1000: Horizontally Scaled Black to Green/
							Magenta to White
							1001: Horizontally Scaled Black to Blue/Yellow
							to White
							1010: Vertically Scaled Black to White/White to
							Black
							1011: Vertically Scaled Black to Red/Cyan to
							White
							1100: Vertically Scaled Black to Green/
							Magenta to White
							1101: Vertically Scaled Black to Blue/Yellow to
							White
							1110: Custom color (or its inversion)
							configured in PGRS, PGGS, PGBS registers
							1111: Reserved
			3:1		•		Reserved
			0	RW		Pattern	Pattern Generator Enable
						Generator	1: Enable Pattern Generator
						Enable	0: Disable Pattern Generator

ADD (dec)	ADD (hex)	Register Name	Bit(s)	Register Type	Default (hex)	Function	Description
101	0x65	Pattern	7:5		0x00		Reserved
		Generator Configuration	4	RW		Pattern Generator 18/24-bit Select	18/24-bit Mode Select 1: Enable 18-bit color pattern generation. Scaled patterns will have 64 levels of brightness and the R, G, and B outputs use the six most significant color bits. 0: Enable 24-bit pattern generation. Scaled patterns use 256 levels of brightness.
			3	RW		Pattern Generator External Clock Select	Select External Clock Source 1: Selects the external pixel clock when using internal timing. 0: Selects the internal divided clock when using internal timing This bit has no effect in external timing mode (PATGEN_TSEL = 0).
			2	RW		Pattern Generator Timing Select	Timing Select Control 1: The Pattern Generator creates its own video timing as configured in the Pattern Generator Total Frame Size, Active Frame Size. Horizontal Sync Width, Vertical Sync Width, Horizontal Back Porch, Vertical Back Porch, and Sync Configuration registers. 0: the Pattern Generator uses external video timing from the pixel clock, Data Enable, Horizontal Sync, and Vertical Sync signals.
			1	RW		Pattern Generator Color Invert	Enable Inverted Color Patterns 1: Invert the color output. 0: Do not invert the color output.
			0	RW		Pattern Generator Auto-Scroll Enable	Auto-Scroll Enable: 1: The Pattern Generator will automatically move to the next enabled pattern after the number of frames specified in the Pattern Generator Frame Time (PGFT) register. 0: The Pattern Generator retains the current pattern.
102	0x66	Pattern Generator Indirect Address	7:0	RW	0x00	Indirect Address	This 8-bit field sets the indirect address for accesses to indirectly-mapped registers. It should be written prior to reading or writing the Pattern Generator Indirect Data register. See AN-2198
103	0x67	Pattern Generator Indirect Data	7:0	RW	0x00	Indirect Data	When writing to indirect registers, this register contains the data to be written. When reading from indirect registers, this register contains the read back value. See AN-2198
198	0xC6	ICR	7:6		0x00		Reserved
			5	RW		IS_RX_INT	Interrupt on Receiver interrupt Enables interrupt on indication from the Receiver. Allows propagation of interrupts from downstream devices
			4:1				Reserved
			0	RW		INT Enable	Global Interrupt Enable Enables interrupt on the interrupt signal to the controller.

ADD (dec)	ADD (hex)	Register Name	Bit(s)	Register Type	Default (hex)	Function	Description
199	0xC7	ISR	7:6		0x00		Reserved
			5	R		IS RX INT	Interrupt on Receiver interrupt Receiver has indicated an interrupt request from down-stream device
			4:1				Reserved
			0	R		INT	Global Interrupt Set if any enabled interrupt is indicated

Applications Information

DISPLAY APPLICATION

The DS90UB301Q, in conjunction with the DS90UB302Q, is intended for interface between a host (graphics processor) and a Display. It supports a 24-bit color depth (RGB888). It can receive a three 8-bit RGB stream with a pixel rate up to 45MHz together with three control bits (VS, HS and DE) and three I2S-bus audio stream with an audio sampling rate up to 192kHz.

TYPICAL APPLICATION CONNECTION

Figure 21 shows a typical application of the DS90UB301Q serializer for a 45MHz 24-bit Color Display Application. The CML outputs must have an external $0.1\mu\text{F}$ AC coupling capacitor on the high speed serial lines. The serializer has an internal termination. Bypass capacitors are placed near the power supply pins. At a minimum, six (6) $4.7\mu\text{F}$ capacitors (and two (2) additional $1\mu\text{F}$ capacitors should be used for local device bypassing. Ferrite beads are placed on the two (2) VDDs (V_{DD33} and V_{DDIO}) for effective noise suppression. The interface to the graphics source is with 3.3V LVCMOS levels, thus the V_{DDIO} pin is connected to the 3.3V rail. A RC delay is placed on the PDB signal to delay the enabling of the device until power is stable.

FIGURE 21. Typical Connection Diagram

POWER UP REQUIREMENTS AND PDB PIN

The VDDs (V_{DD33} and V_{DDIO}) supply ramp should be faster than 1.5ms with a monotonic rise. A large capacitor on the PDB pin is needed to ensure PDB arrives after all the VDDs have settled to the recommended operating voltage. When PDB pin is pulled to $V_{DDIO} = 3.0V$ to 3.6V or V_{DD33} , it is recommended to use a $10k\Omega$ pull-up and a >10µF cap to GND to delay the PDB input signal. All inputs must not be driven until V_{DD33} and V_{DDIO} has reached its steady state value.

PCB LAYOUT AND POWER SYSTEM CONSIDERATIONS

Circuit board layout and stack-up for the FPD-Link III devices should be designed to provide low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by using thin dielectrics (2 to 4 mils) for power/ground sandwiches. This arrangement provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the range of $0.01\mu\text{F}$ to $0.1\mu\text{F}$. Tantalum capacitors may be in the $2.2\mu\text{F}$ to $10\mu\text{F}$ range. Voltage rating of the tantalum capacitors should be at least 5X the power supply voltage being used.

Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power entry. This is typically in the 50µF to 100µF range and will smooth low frequency switching noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass capacitor will increase the inductance of the path.

A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. Its small body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20-30MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing the impedance at high frequency.

Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs.

Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML lines to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100 Ohms are typically recommended for CML interconnect. The closely coupled lines help to ensure that coupled noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.

Information on the LLP style package is provided in TI Application Note: AN-1187.

CML INTERCONNECT GUIDELINES

See AN-1108 and AN-905 for full details.

- Use 100Ω coupled differential pairs
- Use the S/2S/3S rule in spacings
 - -S =space between the pair
 - 2S = space between pairs
 - 3S = space to LVCMOS signal
- · Minimize the number of Vias
- Use differential connectors when operating above 500Mbps line speed
- · Maintain balance of the traces
- · Minimize skew within the pair

Additional general guidance can be found in the LVDS Owner's Manual - available in PDF format from the TI web site at: www.ti.com/lvds

Physical Dimensions inches (millimeters) unless otherwise noted

48-pin LLP Package (7.0 mm X 7.0 mm X 0.8 mm, 0.5 mm pitch) NS Package Number SQA48A

Notes

Notes