OMEGA ACADEMY, CURSO DE MÉTODOS NUMÉRICOS.

Erika Jissel Gutiérrez Beltrán
Daniel Fernández Delgado
Frank Edward Daza González
Johanna Arias
Freddy Sebastián García

Profesor:

Walter German Magaña

Materia:

Métodos Numéricos

Universidad de San Buenaventura Cali 2014

Guía de métodos numéricos.

UNIDAD TRECE

Método de Montecarlo

Consiste en identificar el número total de puntos marcados dentro del área del rectángulo N_T , solo algunos puntos quedan dentro del área de la integral N_E

$$0 < \int_a^b f(x) dx < M(b-a)$$

Imagen 1: Gráfica Método Montecarlo

Guía de métodos numéricos.

$$\int_a^b f(x)dx \to \text{\'A}rea\ de\ Integraci\'on$$

$$M(b-a) \rightarrow \text{Área del Rectángulo}$$

Así que:

$$\int_{a}^{b} f(x)dx = \frac{NE}{NT} * M(b - a)$$

NE = número de puntos de éxito

NT = número de puntos totales

Para hallar los respectivos valores de x_i , y_i se proporcionan valores randomicos.

$$Xi = random1 (b-a)+a$$

Así que para saber si el punto encontrado es exitoso o no, se realiza la siguiente comparación

$$yi \le f(xi)$$

Aplicando el método en la función y= x^2

Guía de métodos numéricos.

Imagen 2 = Gráfica de la función $y=x^2$

$$A = 1 \qquad \qquad B = 2 \qquad \qquad M = 4$$

En este ejercicio se determinaron los siguientes valores randomicos para ser reemplazados en la fórmula

$$Xi = 0.153$$

$$Yi = 0.2501$$

Guía de métodos numéricos.

Ahora, se reemplazan los valores en sus respectivas fórmulas

$$Xi = 0.1523(2-1)+1 = 1.1523$$

$$Yi = 0.2501 (4) = 1.0004$$

Se reemplaza el resultado obtenido en xi en la función original.

$$F(xi) = f(1.1523) = (1.1523)^2 = 1.3278$$

Comparamos;

$$1.0004 \le f(1.1523)$$

El punto encontrado es exitoso.

Guía de métodos numéricos.

