Class 10: Spatial Regression

Jonathan Tannen

Agenda

- Spatial Regressions
- Mid-Point Presentations

Looking Ahead

Next Week: Code Review (or Implementation Review) for two projects. Phila Dept of Public Health Presenting.

April 8: World Resources Institute Presenting.

April 15/22: Final Presentations

April 29: Final Project Due

High-Level notes from Mid-Points

- Use the Literature Review to help the reader understand why your topic is important.
 - Include the *findings* of the papers.
- Do a lot explaining the why behind your methods.
 - What is the purpose of your controls?
 - What is the challenge in your risk score?
- Include a lot more summary stats and overall plots of your data.
 - Don't jump into regression too soon!

Consider the linear regression equation:

$$Y = X\beta + \epsilon$$

Consider the linear regression equation:

$$Y = X\beta + \epsilon$$

- ϵ contains all unobserved variables not in X.
- Estimation requires the following (strong) assumptions. . .
 - $E[\epsilon|X] = 0$
 - aka ϵ is not independent of X.
 - Introduces "Omitted Variable Bias".

Consider the linear regression equation:

$$Y = X\beta + \epsilon$$

- ε contains all unobserved variables not in X.
- Estimation requires the following (strong) assumptions...
 - $E[\epsilon|X] = 0$
 - aka ϵ is not independent of X.
 - Introduces "Omitted Variable Bias".
 - $Cov(\epsilon_i, \epsilon_i) = 0$
 - When this is due to i and j being close, this is spatial autocorrelation.
 - · You actually have fewer observations than you think.

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

• What would be good to include in *X*?

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

- What would be good to include in X?
- Suppose we only used features of the house as X. Would the epsilons be correlated? Why?

$$Y = X\beta + \epsilon$$

What are the solutions to spatial autocorrelation?

The answer hinges on whether you care about (a) estimating coefficients correctly, or (b) getting good predictions.

The three options:

- Introduce features that explain away the spatial correlation.
- Aggregate up to a granularity at which there is no spatial correlation.
- Use a fancy regression technique that corrects standard errors for autocorrelation.

What is your unit of analysis?

- Points
- Polygons

What is your unit of analysis?

- Points
- Polygons

This has implications for...

- What you control for (and how).
- How you specify spatial covariances.

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

"What is the value of adding air conditioning?"

- What is the X we care about?
- Why would ϵ be correlated with it?
- What should we control for?

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

"What is the value of adding air conditioning?"

- What is the X we care about?
- Why would ϵ be correlated with it?
- What should we control for?

All we care about is "controlling away" the spatial correlations.

Diagnosing Autocorrelation

$$Y = X\beta + \epsilon$$

Once we fit this model, is there evidence that $Cov(\epsilon_i, \epsilon_i)$ depends on distance?

- Variogram: Plot the covariance between values as a function of distance.
- Moran's I: $\hat{Cov}_W(\epsilon_i, \epsilon_j) / \hat{Cov}(\hat{epsilon})$

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

Solutions:

- Add controls that explain the spatial correlation.
 - Proximity to schools? Neighborhood parks?
 - Question: Should we control for median income?

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

Solutions:

- Add controls that explain the spatial correlation.
 - Proximity to schools? Neighborhood parks?
 - Question: Should we control for median income?
- Use "Fixed Effects" (e.g. at Census Tracts) to blanket control for spatial patterns.
 - Add a dummy variable for each Census Tract.
 - $Y = X\beta + \gamma_0\delta_0 + \gamma_1\delta_1 + \dots + \epsilon$
 - Pros: Blanket tool to control for unobserved variables that vary within tracts.
 - Cons:
 - · Limits analysis to only within-tract comparisons.

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

Solutions:

- Add controls that explain the spatial correlation.
 - Proximity to schools? Neighborhood parks?
 - Question: Should we control for median income?
- Use "Fixed Effects" (e.g. at Census Tracts) to blanket control for spatial patterns.
 - Add a dummy variable for each Census Tract.
 - $Y = X\beta + \gamma_0\delta_0 + \gamma_1\delta_1 + \dots + \epsilon$
 - Pros: Blanket tool to control for unobserved variables that vary within tracts.
 - Cons:
 - Limits analysis to only within-tract comparisons.
- Random Effects, or Hierarchical Model
 - Allows you to add tract-level variables, estimates standard errors correctly.
 - $Y = X\beta + \gamma Z_{Tract} + \epsilon$
 - in R: rmle package.

Aggregating up to higher level of granularity

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

"What is the value of a school?"

- What is the X we care about?
- Why would ϵ be correlated with it?
- What should we control for?

Aggregating up to higher level of granularity

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

"What is the value of a school?"

- What is the X we care about?
- Why would ϵ be correlated with it?
- What should we control for?

All schools in a given catchment will receive the same school effect. Do analysis at the school level rather than the house level.

True autocorrelation: Smarter Regression Models

Consider an example: Trying to predict the sales price of a house.

$$Y = X\beta + \epsilon$$

Solution: Methods that simultaneously check and remove autocorrelation.

- Simultaneous Auto Regression (SAR) and Conditional Auto Regression methods.
- package spatialreg in R.

Crime in Philadelphia (McClellan 2022)

- Is there spatial autocorrelation?
- Is there omitted variable bias?
- How should we control spatial unobserved features?

Crime in Philadelphia (McClellan 2022)

- Is there spatial autocorrelation?
- Is there omitted variable bias?
- How should we control spatial unobserved features?

Demo

Mid-Point Presentations

Room A: Here Room B: 323

Add your na	ame to a slot below.			
	Room A		Room B	
	Mar 18	Mar 25	Mar 18	Mar 25
Slot 1	Anran Zheng	Rui Jiang	Hanyu Gao	Lechuan Huang
Slot 2		Hasa	Ben Aiken	Ziyi Yang
Slot 3	Sean McClellan	Jonathon Sun	Yebei Yao	Aidan Cole
Slot 4	Chi Zhang	Will Friedrichs	Gianluca Mangiapane	Yuehui Gong
Slot 5	Jiamin Tan	Ziyuan Cai		Elisabeth Ericson
Slot 6		Tristan Grupp		Alex Nelms
Slot 7		xiaoyi		Hanpu Yao