Лабораторная работа №3.3.4 Эффект Холла в полупроводниках Джокер Бэтмен, Б02-000, 25.09.2021

Введение

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником иптания GPR, батарейка 1,5 B, амперметр, реостат, цифровой вольтмет B7-78/1, милливеберметр, образцы легированного германия.

Теоретическая справка

Эффект Холла

Во внешнем магнитном поле \vec{B} на заряды действует сила Лоренца:

$$\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}.$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с \vec{E} . Действительно, траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лорнеца. Возникновение попречного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Мостик Холла

Для исследования завиисимости проводимости среды от магнитного поля используют т.н. мостик Холла. В данной схеме (см. рисунок 1) ток вынуждают течь по оси x вдоль плоской пластинки (ширина пластинки a, толщина h, длина l). Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, "прибивает"носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холловское напряжение) равно $U_{\perp} = E_y a$, где

$$E_y = \frac{j_x B}{nq}.$$

Плотность тока, текущего через образец, равна $j_x = \frac{I}{ah}$, где I – полный ток, ah – поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{nqh}I = R_H \frac{B}{h}I,$$

где константу

$$R_H = \frac{1}{nq}$$

Рис. 1 — Схема мостика Холла

называют *постоянной Холла*. Знак постоянной Холла определяется знаком заряда носителей.

Продольная напряжённость электрического поля равна

$$E_x = \frac{j_x}{\sigma_0},$$

и падение напряжения $U_{\parallel}=E_x l$ вдоль пластинки определяется омическим сопротивлением образца $R_0=\frac{l}{\sigma_0 ah}$:

$$U_{\parallel} = IR_0.$$

Интересно отметить, что немотря на то, что тензор проводимости явно зависит от B, продольное сопротивление образца в данной геометрии от магнитного поля ne saeucum.

Экспериментальная установка

Электрическая схема установки для измерения ЭДС Холла представлена на рисунке 2.

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметров источника питания A_1 . Разъём K_1 позволяет менять направление тока в обмотках электромагнита.

Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе, подключается к батарее ($\approx 1,5$ В). При замыкании ключа K_2

Рис. 2 — Схема установки для исследования эффекта Холла в полупроводниках

вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью пифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом – их разности. В этом случае ЭДС Холла $\varepsilon_{\rm X}$ может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре. Знак измеряемого напряжения высвечивается на цифровом табло вольтметра.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла: $\varepsilon_{\rm X} = U_{34} \pm U_0$. При таком способе измерения нет неообходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку $\varepsilon_{\rm X}$ можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля. Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная пара-

метры образца, рассчитать проводимость материала образца по очевидной формуле:

 $\sigma = \frac{IL_{35}}{U_{35}al},$

где L_{35} – расстояние между контактами 3 и 5, a – толщина образца, l – его ширина.

Ход работы

Параметры образца германия, используемого в работе: толщина a=2,2 мм, ширина l=7 мм, расстояние между контактами 3 и 5 $L_{35}=6,0$ мм.

0.1 І. Градуировка электромагнита

С помощью милливеберметра снимем зависимость магниного потока $\Phi,$ пронизывающего пробную катушку, находящуюся в зазоре, от тока I_M ($\Phi=$ BSN, где значение $SN=72~{
m cm}^2=7, 2\cdot 10^{-3}~{
m m}^2$ – произведение площади сечения пробной катушки на число витков в ней – указано на установке (погрешностью его пренебрежём)). Для измерения магнитного потока необходимо сначала поместить пробную катушку в зазор электромагнита и записать показания милливеберметра Φ_1 при этом. Затем её нужно очень быстро убрать из зазора и записать показания милливеберметра Ф2. Разность $\Phi_1 - \Phi_2$ и будет определять величину магнитного потока Φ через пробную катушку, откуда с лёгкостью можно найти соответствующую величину магнитного поля В. Проведём измерения при 8 различных значениях тока I_M вдполь до макисмального $I_{Mmax} = 1,65$ A. Все полученные данные занесём в таблицу 1. В дальнейшем будем учитывать также погрешность милливеберметра. При измерении $\Phi=\Phi_1-\Phi_2$ погрешность равна $\sigma_{\Phi} = \sqrt{\sigma_{\Phi_1}^2 + \sigma_{\Phi_2}^2} = \sqrt{2}\Delta\Phi$, откуда погрешность определения индукции магнитного поля равна $\sigma_B=\frac{\sigma_\Phi}{SN}=\frac{\sqrt{2}\Delta\Phi}{SN}\approx 0,01$ Тл. Погрешность измерения тока будет равна $\sigma_I=0,005I+0,02$ А, также внесём её в таблицу.

Таблица 1 — Зависимость индукции магнитного поля B в зазоре электромагнита от тока I_M через обмотки

I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,65
σ_I , A	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03
Φ_1 , мВб	5,1	6,2	7,1	7,0	7,9	7,7	8,1	8,4
Φ_2 , мВб	3,9	3,9	3,8	2,6	2,6	1,8	1,7	1,7
Ф, мВб	1,2	2,3	3,3	4,4	5,3	5,9	6,4	6,7
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,93

Пользуясь значениями из таблицы 1, построим теперь градуировочную кривую для электромагнита $B(I_M)$. Результат приведён ниже на графике 3.

Рис. 3 — Градуировочная кривая $B(I_M)$ для электромагнита. Сглаживающая кривая проведена с помощью кубических сплайнов

II. Измерение ЭДС Холла

Вставим держатель с образцом в зазор электромагнита. Установим по миллиамперметру минимальное значение тока через образец (в нашем случае $I_{min}-0,14$ мА). В отсутствие магнитного поля вольтметр будет показывать постоянное напряжение U_0 , вызванное несовершенством контактов 3, 4 и наводками. Будем в дальнейшем учитывать это значение и для каждого значения тока через образец принимать U_0 за начало отсчёта. Проведём измерения $U_{34}(I_M)$ для нескольких значений тока в диапазоне от I_{min} до $I_{max}=1,00$ мА. При максимальном токе также проведём измерения при другом направлении магнитного поля через образец. Вычислим по этим данным ЭДС Холла $\varepsilon_{\rm X}$. Все результаты занесём в таблицы 2 и 3.

Таблица 2 – Зависимость U_0 от I

	I,A	0,14	0,25	0,35	0,44	0,53	0,63	0,72	0,81	0,91	1,00
U	о,мкВ	-19	-36	-50	-64	-77	-92	-106	-119	-134	-148

По данным из таблицы 3 построим семейство характеристик $\varepsilon_{\rm X}(B)$ при разных значениях тока через образец (показано ниже на рисунке 4). Для измерений с обратной полярностью на максимальном токе построим модуль ЭДС Холла. Определим с помощью МНК угловые коэффициенты $K(I) \equiv \frac{\Delta \varepsilon}{\Delta B}$ полученных прямых. Для максимального тока возьмём среднее значение угловых коэффициентов. Внесём данные в таблицу 4.

Построим теперь график K(I), он представлен ниже на рисунке 5. Угловой коэффициент прямой на графике можно найти с помощью МНК. Он равен $\frac{\Delta K}{\Delta I}=(453,9\pm4,7)$ $\frac{\text{мкB}}{\text{мA}\cdot\text{Tл}}=(0,4539\pm0,0047)$ $\frac{\text{B}}{\text{A}\cdot\text{Tл}}.$ Тогда постоянную Холла можно найти как

$$R_{\rm X} = a \frac{\Delta K}{\Delta I} = (2,66 \pm 0,04) \cdot 10^{-1} \frac{{\rm M}^3}{{\rm K}_{\rm T}}.$$

Таблица 3 — Зависимость U_{34} от I_M при токах через образец, указанных в таблице 2

I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,60
U_{34} , мкВ	-8	1	11	19	26	30	33	35
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,93
ε_{X} , MKB	11	20	30	38	45	49	52	54
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,59
U_{34} , MKB	-16	3	20	35	47	55	60	63
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,93
$\varepsilon_{\rm X}$, MKB	20	39	56	71	83	91	96	99
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,59
U_{34} , мкВ	-23	4	27	50	67	77	85	89
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,93
$\varepsilon_{\rm X}$, мкВ	27	54	77	100	117	127	135	139
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,58
U_{34} , мкВ	-30	5	34	61	83	98	107	111
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,92
ε_{X} , мкВ	34	69	98	125	147	162	171	175
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,58
U_{34} , мкВ	-36	6	41	75	100	118	128	134
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,92
ε_{X} , мкВ	41	83	118	152	177	195	205	211
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,57
U_{34} , мкВ	-43	7	48	88	119	140	153	159
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,92
ε_{X} , мкВ	49	99	140	180	211	232	245	251
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,57
U_{34} , мкВ	-49	7	55	103	135	160	174	181
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,92
ε_{X} , мк B	57	113	161	209	241	266	280	287
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,55
U_{34} , мкВ	-57	7	62	115	154	178	196	202
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,92
ε_{X} , мкВ	62	126	181	234	273	297	315	321
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,55
U_{34} , мкВ	-63	8	69	128	171	198	220	228
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,92
ε_{X} , мкВ	71	142	203	262	305	332	354	362
I_M , A	0,20	0,41	0,61	0,82	1,03	1,24	1,44	1,55
U_{34} , мкВ	-72	8	76	140	188	219	241	250
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,92
ε_{X} , мкВ	76	156	224	288	336	367	389	398
I_M , A	-0,20	-0,41	-0,61	-0,82	-1,03	-1,24	-1,44	-1,55
U_{34} , мкВ	-238	-322	-393	-465	-518	-551	-572	-582
В, Тл	0,17	0,32	0,46	0,61	0,74	0,82	0,89	0,92
ε_{X} , мкВ	-75	-159	-230	-302	-355	-388	-409	-419

Рис. 4 — Семейство характеристик $\varepsilon_{\rm X}(B)$ при различных значениях тока через образец. Прямые проведены с помощью МНК

Таблица 4 – Зависимость K от I

	$_{I,\mathrm{A}}$	0,14	0,25	0,35	0,44	0,53	0,63	0,72	0,81	0,91	1,00
ĺ	$K, \frac{MKB}{TJ}$	60,5	112,3	157,1	198,6	239,8	285,4	327,4	366,9	412,0	463,6
ĺ	$\sigma_K, \frac{MKB}{TJI}$	3,2	3,4	3,6	3,7	3,9	4,0	4,2	4,3	4,5	4,6

Теперь можем рассчитать концентрацию носителей тока в образце по формуле

$$n = \frac{1}{eR_{\rm X}} = (2,35\pm0,03)\cdot10^{19}~{\rm m}^{-3} = (2,35\pm0,03)\cdot10^{13}~{\rm cm}^{-3},$$

что в пределах погрешности совпадает с табличным значением $n=2,33\cdot 10^{13}~{\rm cm}^{-3}.$

III. Определение характера проводимости

Определим знак носителей заряда. Это можно сделать, зная направление тока через образец, направление магнитного поля и знак ЭДС Холла. Направление тока в образце показано знаками + и — на его держателе. Направление тока в обмотках электромагнита покзано стрелкой не его торце. Отсюда можно определить направление магнитного поля в зазоре электромагнита, затем по правилу векторного произведения определить номер клеммы, к которой движутся холловские частицы. В нашем случае это клемма 3.

Подадим на образец небольшой ток и сравним показания вольтметра без магнитного поля и с полем. Видим, что знак ЭДС Холла – +. Отсюда следует, что направление движения холловских частиц противоположно направлению напряжённости, вызванной эффектом Холла.

Значит, знак носителей заряда -.

Рис. 5 — Зависимость углового коэффициента K характеристики от тока I через образец. Прямая проведена с помощью МНК

IV. Определение удельной проводимости

Выключим источник питания и удалим держатель с образцом из зазора. Подключим к клеммам вольтметра потенциальные концы 3 и 5 и измерим падение напряжения при токе $I=(1,000\pm0,005)$ мА. Оно равно $U_{3,5}=(2,494\pm0,015)$ мВ. Тогда удельная проводимость σ германия может быть найдена по формуле

$$\sigma = \frac{IL_{35}}{U_{35}al} = (1,982 \pm 0,019) \cdot 10^3 \; \frac{1}{\Omega \cdot \mathbf{m}},$$

что в пределах погрешности совпадает с табличным значением $\sigma=2,0\cdot 10^3~\frac{1}{\Omega_{\rm cr}}$.

Зная концентрацию и проводимость германия, можно вычислить подвижность носителей тока по формуле

$$b = \frac{\sigma}{en} = (3,86 \pm 0,05) \cdot 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

Это с хорошей точностью совпадает со справочным значением $b=3,9\cdot 10^3~{\rm \frac{cm^2}{B\cdot c}}.$

Вывод

В данной работе был исследован эффект Холла в германии и были измерены подвижность и концентрация носителей заряда в полупроводниках.

В первой части работы была проведена градуировка используемого в работе электромагнита с помощью милливеберметра.

Во второй части работы были проведены измерения ЭДС Холла при различных величинах магнитного поля и тока через образец. В результате обработки данных получены линейные зависимости, совпадающие с теоретическими. По ним определена концентрация носителей заряда в германии.

Она равна $n=(2,35\pm0,03)\cdot10^{13}~{\rm cm^{-3}},$ что в пределах погрешности совпадает со справочным значением $n=2,33\cdot10^{13}~{\rm cm^{-3}}.$

В третьей части работы был определён характер проводимости. Знак носителей заряда в германии -.

В четвёртой части была найдена удельная проводимость германия. Она оказалась равна $\sigma=(1,982\pm0,019)\cdot 10^3~\frac{1}{\Omega\cdot\mathrm{m}}$, что в пределах погрешности совпадает со справочным значением $\sigma=2,0\cdot 10^3~\frac{1}{\Omega\cdot\mathrm{m}}$. Также была вычислена проводимость носителей тока как $b=(3,86\pm0,05)\cdot 10^3~\frac{\mathrm{cm}^2}{\mathrm{B}\cdot\mathrm{c}}$, что в пределах погрешности совпадает со справочным значением $b=3,9\cdot 10^3~\frac{\mathrm{cm}^2}{\mathrm{B}\cdot\mathrm{c}}$.

Относительно небольшие погрешности полученных значений и совпадение их со справочными говорит о корректности проведения эксперимента, правильности метода и исправной работе оборудования.