CS446: Machine Learning, Fall 2018, Homework 0

Name: Aahan Agrawal (agrawl10)

Collaborated with Some Person (sperson2), Another Person (aperson3)

Problem (1)

(a)

Note that both H_1 and H_{-1} are parallel hyperplanes, since their normal vectors are equal. It follows that to find the distance between both planes, given a point x_1 lying on H_1 , the closest point on H_{-1} to x_1 is the point x_2 obtained from intersecting the line $\{x_1+wt|t\in\mathbb{R}\}$ with H_{-1} . That is $x_2=x_1+wt$. We seek to find $\|wt\|$. Note that $w^Tx_1=1$ and $w^Tx_2=-1$. Hence:

$$\begin{aligned} x_2 - x_1 &= wt \\ \Rightarrow w^T (x_2 - x_1) &= (w^t w) t \\ \Rightarrow -2 &= \|w\|^2 t \\ \Rightarrow t &= \frac{-2}{\|w\|^2} \\ \Rightarrow \|wt\| &= \left\| \left[w \left(\frac{-2}{\|w\|^2} \right) \right] \right\| \\ &= \frac{2}{\|w\|} \end{aligned}$$

(b)

We prove this by contradiction. Suppose that there is a better maximum margin classifier $w' \neq w$ for the set (X^*, Y^*) . We will show that w' is also the maximum margin classifier for (X, Y) then, which is a contradiction, since we assumed that w was the maximum margin classifier and the maximum margin classifier is unique ¹

By assumption, since w' is a better classifier for (X^*, Y^*) ,

$$y^i(w')Tx^i \ge 1$$
 for all $i \in \mathcal{N}$ and
$$\frac{2}{\|w'\|} \ge \frac{2}{\|w\|}$$

Thus, to prove that w' is the maximum margin classifier for (X,Y), we need to show that

¹Solving for the maximum margin classifier in the separable case is a strictly convex problem and, hence, the minimizer to the problem is unique.

$$y^{j}(w')^{T}x^{j} \ge 1$$
 For all $j \notin \mathcal{N}$

Let $H_1=\{(x,1)\in(\mathbb{R}^n,\mathbb{R}^n)|(1)w^Tx=1\}$. Without loss of generality, consider any (x^j,y^j) for $j\notin\mathcal{N}$ such that $y^j=1$. There exists some $(z,1)\in H_1$ such that $z+\alpha w=x^j$, where $\alpha>0$. Thus

$$y^{j}(w')^{T}x^{j} = y^{j}\alpha(w')^{T}(z+w)$$

$$= y^{j}(w')^{T}z + y^{j}\alpha(w')^{T}w$$

$$\geq 1 + y^{j}\alpha(w')^{T}w$$

$$= 1 + \alpha(w')^{T}w$$

It suffices to show that $(w')^T w \ge 0$, to prove that (x^j, y^j) is correctly classified using w'.

Observe that for any $\beta > 0$, we must have that βw is classified using the maximum margin classifier under w, which we label \mathcal{A}_w , as having label 1. For if q is the label of βw , then

$$\mathcal{A}_w(\beta w) = q(w^T(\beta w)) > 0 \implies q = 1$$

Thus, in particular, there exists some $\beta'>0$ such that $\mathcal{A}_w(\beta'w)=1$, meaning that $\beta'w$ lies on H_1 and we must have, by construction, $(w')^T(\beta'w)>0 \implies (w')^Tw\geq 0$.

Thus w' correctly classifies even (x^j,y^j) . Since $j \notin \mathcal{N}$ was arbitrary, \mathcal{A}'_w correctly classifies all $j \notin \mathcal{N}$. \mathcal{A}'_w already correctly classified those $(x^i,y^i) \in \mathcal{N}$ and $\frac{2}{\|w'\|} \geq \frac{2}{\|w\|}$, so we conclude that w' is a better classifier than w for (X,Y), which is a contradiction.