

30 minuti con... Pandas

Corso di **Quality Outsourcing Management** Lezione 1 di 3

Roberto Nai (Dipartimento di Informatica – UNITO)

8 Agenda

- Introduzione alla libreria Pandas
- Utilità della libreria Pandas
- Esempi pratici con Python in Google Colaboratory (Colab)
 - Leggere dati da file (CSV) tramite la libreria Pandas e creare un dataset (DataFrame)
 - Visualizzare i dati contenuti nel dataset
 - Panoramica dei dati contenuti nel dataset
- Conclusioni

Materiale della lezione: https://github.com/roberto-nai/SUISS_22-23

Pandas, chi era costui?

- Pandas è una libreria di Python utilizzata per lavorare con i big data (organizzati in dataset).
- Il nome "Pandas" fa riferimento sia a "Panel Data" che a "Python Data Analysis" ed è stato creato da Wes McKinney nel 2008.

Pandas, perché?

- Pandas permette di analizzare i dataset e trarre conclusioni basate su teorie statistiche.
- Pandas può inoltre ripulire i dataset disordinati (rumorosi) e renderli leggibili e rilevanti.
- I dati rilevanti sono molto importanti in Data Science.

Data Science: è una branca dell'Informatica in cui si studia come memorizzare, utilizzare e analizzare i dati per ricavarne informazioni.

Pandas, cosa fai?

- Pandas fornisce risposte sui dati. Ad esempio:
 - Esiste una correlazione tra due o più colonne?
 - o Qual è il valore medio?
 - Qual è il valore massimo?
 - Qual è il valore minimo?
 - o Qual è la moda?

Pandas, cosa fai?

 Pandas è anche in grado di eliminare o correggere le righe che non sono rilevanti o che contengono valori errati, come valori mancanti (detti nulli o NaN). Questa operazione si chiama data cleaning.

In Informatica, NaN significa Not a Number ed è un particolare valore che indica un dato indefinito (mancante) o non rappresentabile (es.: il risultato di 0 diviso 0).

Pandas, cosa leggi?

- Un modo semplice per archiviare grandi dataset è utilizzare i file CSV (Comma Separated Values).
- I file CSV contengono testo semplice e sono un formato ben noto che può essere letto da molte applicazioni (app), compreso Pandas.
- Nella prima lezione verrà utilizzato un file CSV chiamato "data.csv".

I file CSV possono essere letti e/o creati tramite varie applicazioni per ufficio tra cui Excel, Numbers, Calc, ecc. nonché dalle varie app che si utilizzano tutti i giorni.

Pandas, cosa leggi?

- Il file CSV chiamato "data.csv" preso in considerazione per questa lezione contiene i dati sulle pulsazioni e calorie consumate, registrati da uno smartwatch durante sessioni di corsa che hanno avuto una specifica durata (in minuti).
- I dati sono separati da una virgola (si possono utilizzare altri simboli).

```
1 durata, pulsazione, pulsazione_max, calorie
2 60,110,130,409.1
3 60,117,145,479.0
4 60,103,,340.0
5 45,109,175,282.4
6 45,117,148,406.0
```


Pandas, cosa leggi?

DataFrame

	durata	pulsazione	pulsazione_max	calorie
0	60	110	130	409.1
1	60	117	145	479.0
2	60	103	NaN	340.0
3	•••		•••	

- Se sul proprio computer sono già installati Python (e PIP),
 l'installazione della libreria Pandas è molto semplice.
- Dal prompt dei comandi (o terminale), digitare
 - o pip install pandas (in alternativa pip3 install pandas)

```
robertonai@macbook-rnai ~ % pip3 install pandas
```


Python è scaricabile a questo indirizzo: https://www.python.org/downloads/ Per scrivere programmi in Python, si consigliano **Sublime Text** o **Visual Studio Code**.

- Una volta installata la libreria Pandas, importarla nelle applicazioni aggiungendo la parola chiave import:
 - o import pandas (in alternativa import pandas as pd)

Alias: in Python gli alias sono un metodo alternativo per riferirsi alla stessa cosa, utilizzando la parola chiave as.

- In alternativa, Python e Pandas possono essere utilizzati tramite Google Colaboratory (detto anche Colab), che permette di scrivere ed eseguire codice (o script) Python nel browser senza alcuna configurazione necessaria.
 - https://colab.research.google.com/
 - È necessario avere un account Google in quanto Colab salva il codice su Drive.

 Dal proprio account di Google Drive, creare un nuovo file di Python tramite Colab.

- Prime operazioni da eseguire:
 - 1) dare un nome al programma che conterrà il codice Python;
 - 2) caricare il file di dati (data.csv) nella cartella sample_data.

 Nello spazio per il codice Python, importare la libreria Pandas ed eseguire l'istruzione premendo il tasto play / esegui cella.

Aggiungere una riga di codice premendo il pulsante + Codice

Pandas, leggi un CSV

• Il metodo read_csv() di Pandas permette di leggere un file CSV e salvarlo in memoria (nello specifico, viene letto il file e creato un oggetto di tipo DataFrame);

```
caso 1: df = pd.read_csv('data.csv')
caso 2: df = pd.read_csv('sample_data/data.csv')
caso 3: df = pd.read_csv('sample_data/data.csv', sep = ';')
```

- Il file CSV deve essere nella stessa cartella (caso 1) del file con il codice Python, oppure in una sotto-cartella (caso 2).
- Nel caso 3 viene utilizzato anche il parametro sep per indicare qual è
 il separatore utilizzato nel CSV ('; ' o ', ', ecc.).

Pandas, leggi un CSV

Tutti i metodi di Pandas devono essere eseguiti dalla libreria (digitando pd.metodo()) o dal DataFrame (dataset) creato (digitando df.metodo()).

Tutti gli attributi di un DataFrame (dataset) si richiamano senza parentesi () (digitando df.attributo).

Pandas, leggi un CSV

Leggere un file CSV per creare un DataFrame (dataset) chiamato df.

```
DataFrame | # Legge il file 'data.csv' salvato in 'sample_data' e lo salva in df (DataFrame) | df = pd.read_csv('sample_data/data.csv')
```


Commenti: in Python è possibile inserire commenti al proprio codice tramite il simbolo cancelletto #

Pandas, visualizza un DataFrame

- Dopo aver letto un file CSV ed averlo memorizzato in un DataFrame, uno dei metodi più utilizzati per ottenere una rapida panoramica dei dati è head().
- Di default, il metodo head() mostra le prime cinque righe del dataset.
- È possibile modificare il numero di righe da mostrare definendolo all'interno delle parentesi del metodo head ();
 - o head (10) mostra le prime dieci righe.

```
[13] # Mostra le prime cinque righe del DataFrame
    df.head()
```


Pandas, visualizza un DataFrame

Pandas, visualizza un DataFrame

- Come nel metodo head(), è possibile visualizzare le ultime righe di un dataset con il metodo tail().
- Di default, il metodo tail() mostra le ultime cinque righe del dataset.
- È possibile modificare il numero di righe da mostrare definendolo all'interno delle parentesi del metodo tail();
 - o tail (10) mostra le ultime dieci righe.

```
# Mostra le ultime cinque righe del DataFrame
df.tail()
```


- Sul dataset creato è possibile applicare il metodo chiamato info(), che fornisce importanti informazioni sul dataset stesso (numero di righe, numero di colonne, campi vuoti, tipologia delle colonne, ecc.).
- Per eseguirlo, scrivere df.info().

- Ogni dataset creato dispone di alcune attributi (proprietà), tra cui:
 - shape che mostra il numero di righe e colonne;
 - shape[0] che mostra il numero di righe;
 - shape[1] che mostra il numero di colonne;
 - size che mostra il numero di celle (righe x colonna);
 - columns che mostra i nomi delle colonne;
 - index che mostra l'intervallo delle righe presenti.


```
# Mostra il numero di righe e colonne
  df.shape
   (169, 4)
l # Mostra il numero di righe
  df.shape[0]
  169
# Mostra il numero di colonne
  df.shape[1]
# Mostra il numero totale di celle (righe x colonne)
  df.size
  676
  # Mostra la lista delle colonne
  df.columns
  Index(['durata', 'pulsazione', 'pulsazione_max', 'calorie'], dtype='object')
  # Mostra le righe (indici) presenti
  df.index
  RangeIndex(start=0, stop=169, step=1)
```


Conclusioni

- In questa lezione si è visto come gestire un dataset in formato CSV tramite la libreria Pandas di Python.
- I dataset (detti DataFrame in Pandas), possono essere creati in Python partendo dal CSV corrispondente, tramite il metodo read_csv().
- I dataset possono essere visualizzati tramite i metodi head() e tail().
- I dataset, spesso, contengono dati mancanti; è possibile avere una visione dei valori *nulli* (o NaN) tramite il metodo info(), che mostra anche il numero di righe e colonne presenti nel dataset.

 Python for Data Analysis: Data Wrangling With Pandas, Numpy, and Jupyter, 3a edizione, Wes McKinney, O'Reilly.

- Pandas Introduzione
 - O https://pandas.pydata.org/pandas-docs/stable/index.html
- Pandas Installazione
 - O https://pandas.pydata.org/pandas-docs/stable/getting_started/index.html#getting-started
- Pandas Leggere un file CSV
 - O https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
- Pandas metodo head ()
 - O https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.head.html
- Pandas metodo tail()
 - https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.tail.html
- Pandas metodo info()
 - O https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.info.html

- Pandas attributo shape
 - https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shape.html
- Pandas attributo size
 - O https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.size.html
- Pandas attributo columns
 - O https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.columns.html
- Pandas attributo index
 - https://pandas.pydata.org/docs/reference/api/pandas.Index.html

- Python
 - O https://www.python.org
- SublimeText (programma per sviluppare codice in Python)
 - O https://www.sublimetext.com
- Visual Studio Code (programma per sviluppare codice in Python)
 - O https://code.visualstudio.com
- Google Colaboratory (Colab):
 - O https://colab.research.google.com

Fine presentazione

Grazie per l'attenzione

