Curs 4

Cuprins

Logica de ordinul I (recap.)

Substituţii şi unificare

Logica de ordinul I (recap.)

☐ Sloganul programării logice:

Un program este o teorie într-o logică formală, iar execuția sa este o deducție în teorie.

- Programarea logică folosește un fragment din logica de ordinul l (calculul cu predicate) ca limbaj de reprezentare.
- ☐ În această reprezentare, programele sunt teorii logice mulțimi de formule din calculul cu predicate.
- □ Reamintim că problema constă în căutarea unei derivări a unei întrebări (formule) dintr-un program (teorie).

Limbaje de ordinul I

```
Un limbaj \mathcal{L} de ordinul I este format din:

o mulțime numărabilă de variabile V = \{x_n \mid n \in \mathbb{N}\}

conectorii \neg, \rightarrow, \land, \lor

paranteze

cuantificatorul universal \forall și cuantificatorul existențial \exists

o mulțime \mathbf{R} de simboluri de relații

o mulțime \mathbf{F} de simboluri de funcții

o mulțime \mathbf{C} de simboluri de constante

o funcție aritate ar: \mathbf{F} \cup \mathbf{R} \rightarrow \mathbb{N}^*
```

- \square \mathcal{L} este unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, \mathit{ari})$
- $\ \square \ au$ se numește signatura (vocabularul, alfabetul) lui $\mathcal L$

- \square \mathcal{L} este unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
- \square au se numește signatura (vocabularul, alfabetul) lui $\mathcal L$

Exemplu

Un limbaj \mathcal{L} de ordinul I în care:

- \square $\mathbf{R} = \{P, R\}$
- \Box **F** = {*f*}
- \Box **C** = {*c*}
- \square ari(P) = 1, ari(R) = 2, ari(f) = 2

Sintaxa Prolog

Atenție!

- ☐ În sintaxa Prolog
 - termenii compuși sunt predicate: father(eddard, jon_snow)
 - operatorii sunt funcții: +, *, mod
- Sintaxa Prolog nu face diferență între simboluri de funcții și simboluri de predicate!
- □ Dar este important când ne uităm la teoria corespunzătoare programului în logică să facem acestă distincție.

```
Termenii lui \mathcal{L} sunt definiți inductiv astfel:
```

- □ orice variabilă este un termen;
- □ orice simbol de constantă este un termen;
- \square dacă $f \in \mathbf{F}$, ar(f) = n și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.

Notăm cu $Trm_{\mathcal{L}}$ mulțimea termenilor lui \mathcal{L} .

Termenii lui \mathcal{L} sunt definiți inductiv astfel:

- orice variabilă este un termen;
- □ orice simbol de constantă este un termen;
- \square dacă $f \in \mathbf{F}$, ar(f) = n și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.

Notăm cu $Trm_{\mathcal{L}}$ mulțimea termenilor lui \mathcal{L} .

Exemplu

$$c, x_1, f(x_1, c), f(f(x_2, x_2), c)$$

Formulele atomice ale lui \mathcal{L} sunt definite astfel:

□ dacă $R \in \mathbf{R}$, ar(R) = n și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.

Formulele atomice ale lui \mathcal{L} sunt definite astfel:

□ dacă $R \in \mathbf{R}$, ar(R) = n și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.

Exemplu

$$P(f(x_1,c)), R(c,x_3)$$

Formulele lui \mathcal{L} sunt definite astfel:

- orice formulă atomică este o formulă
- \square dacă φ este o formulă, atunci $\neg \varphi$ este o formulă
- \square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
- \square dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi$, $\exists x \varphi$ sunt formule

Formulele lui \mathcal{L} sunt definite astfel:

- orice formulă atomică este o formulă
- \square dacă φ este o formulă, atunci $\neg \varphi$ este o formulă
- \square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
- \square dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi$, $\exists x \varphi$ sunt formule

Exemplu

$$P(f(x_1, c)), P(x_1) \vee P(c), \forall x_1 P(x_1), \forall x_2 R(x_2, x_1)$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R}=\{<\}$, $\mathbf{F}=\{s,+\}$, $\mathbf{C}=\{0\}$ și $ari(s)=1$, $ari(+)=ari(<)=2$.

Exemplu

Fie limbajul \mathcal{L}_1 cu $\mathbf{R}=\{<\}$, $\mathbf{F}=\{s,+\}$, $\mathbf{C}=\{0\}$ și ari(s)=1, ari(+)=ari(<)=2.

Exemple de termeni:

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

$$0, x, s(0), s(s(0)), s(x), s(s(x)), \ldots,$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemple de formule atomice:

$$<(0,0),<(x,0),<(s(s(x)),s(0)),\ldots$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemple de formule atomice:

$$<(0,0),<(x,0),<(s(s(x)),s(0)),\ldots$$

Exemple de formule:

$$\forall x \forall y < (x, +(x, y))$$
$$\forall x < (x, s(x))$$

Semantica

Pentru a stabili dacă o formulă este adevărată, avem nevoie de o interpretare într-o structură!

Modelarea unei lumi

Presupunem că putem descrie o lume prin: o mulțime de obiecte funcții relații unde funcțiile duc obiecte în obiecte relațiile cu n argumente descriu proprietățile a n obiecte

Modelarea unei lumi

Exemplu

Să considerăm o lume în care avem cutii:

□ Putem descrie lumea folosind obiecte

$$O = \{base, a, b, c, d, e\}.$$

□ Putem descrie ce obiect se află deasupra altui obiect folosind un predicat binar *on*:

$$on = \{(e, c), (c, a), (e, d), (d, b), (a, base), (b, base)\}$$

Structură

Definiție

- O structură este de forma $A = (A, \mathbf{F}^A, \mathbf{R}^A, \mathbf{C}^A)$, unde
 - ☐ A este o mulțime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
 - \square A se numește universul structurii A.
 - \Box f^A (respectiv R^A , c^A) se numește interpretarea lui f (respectiv R, c) in A.

Structură

Exemplu

Lumea în care avem cutii.

- \square Limbajul $\mathcal L$
 - \square $\mathbf{R} = \{on\}$
 - \square $\mathbf{F} = \emptyset$
 - \Box $\mathbf{C} = \emptyset$
 - \square ari(on) = 2
- □ O structură A:
 - \square $A = \{base, a, b, c, d, e\}$
 - \square $\mathbf{F}^{\mathcal{A}} = \emptyset$.
 - \Box $\mathbf{C}^{\mathcal{A}} = \emptyset$.
 - $\mathbb{R}^{A} = \{on^{A}\}, \text{ unde } on^{A} = \{(e, c), (c, a), (e, d), (d, b), (a, base), (b, base)\} \subseteq A^{2}.$

Structură

Exemplu

$$\mathcal{L}_1: \mathbf{R} = \{<\}, \; \mathbf{F} = \{s, +\}, \; \mathbf{C} = \{0\} \; \text{cu ari}(s) = 1, \; \textit{ari}(+) = \textit{ari}(<) = 2.$$

$$\mathcal{N} = (\mathbb{N}, \textit{s}^{\mathcal{N}}, +^{\mathcal{N}}, <^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde

- \square $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \quad s^{\mathcal{N}}(n):=n+1,$
- \square + $^{\mathcal{N}}$: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, + $^{\mathcal{N}}(n, m) := n + m$,
- $\square <^{\mathcal{N}} \subseteq \mathbb{N} \times \mathbb{N}, <^{\mathcal{N}} = \{(n, m) \mid n < m\},$
- \square $0^{\mathcal{N}} := 0$

Fie $\mathcal L$ un limbaj de ordinul I și $\mathcal A$ o ($\mathcal L$ -)structură.

Definiție

O interpretare a variabilelor lui ${\mathcal L}$ în ${\mathcal A}$ este o funcție

$$I: V \rightarrow A$$
.

Fie \mathcal{L} un limbaj de ordinul I și \mathcal{A} o (\mathcal{L} -)structură.

Definiție

O interpretare a variabilelor lui ${\mathcal L}$ în ${\mathcal A}$ este o funcție

$$I: V \rightarrow A$$
.

Definiție

Inductiv, definim interpretarea termenului t în A sub $I(t_I^A)$ prin:

- \square dacă $t = x_i \in V$, atunci $t_i^A := I(x_i)$
- \square dacă $t = c \in \mathbf{C}$, atunci $t_1^A := c^A$
- lacksquare dacă $t=f(t_1,\ldots,t_n)$, atunci $t_I^{\mathcal A}:=f^{\mathcal A}((t_1)_I^{\mathcal A},\ldots,(t_n)_I^{\mathcal A})$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea I astfel:

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea $\mathit I$ astfel:

$$\square$$
 $A, I \models P(t_1, \ldots, t_n)$ dacă $P^A((t_1)_I^A, \ldots, (t_n)_I^A)$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea I astfel:

- \square $\mathcal{A}, I \models P(t_1, \dots, t_n)$ dacă $P^{\mathcal{A}}((t_1)_I^{\mathcal{A}}, \dots, (t_n)_I^{\mathcal{A}})$
- \square \mathcal{A} , $\mathbf{I} \models \neg \varphi$ dacă \mathcal{A} , $\mathbf{I} \not\models \varphi$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea $\mathit I$ astfel:

- \square $A, I \models P(t_1, \ldots, t_n)$ dacă $P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\square \ \mathcal{A}, I \models \neg \varphi \ \mathsf{dac} \ \mathcal{A}, I \not\models \varphi$
- $\ \square \ \mathcal{A}, \mathit{I} \models \varphi \lor \psi \ \mathsf{dac} \ \widecheck{\mathcal{A}}, \mathit{I} \models \varphi \ \mathsf{sau} \ \mathcal{A}, \mathit{I} \models \psi$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea I astfel:

- $\square \mathcal{A}, I \models P(t_1, \ldots, t_n) \text{ dacă } P^{\mathcal{A}}((t_1)_I^{\mathcal{A}}, \ldots, (t_n)_I^{\mathcal{A}})$
- $\square \mathcal{A}, I \models \neg \varphi \text{ dacă } \mathcal{A}, I \not\models \varphi$
- $\square \ \mathcal{A}, \mathit{I} \models \varphi \lor \psi \ \mathsf{dac} \ \mathcal{A}, \mathit{I} \models \varphi \ \mathsf{sau} \ \mathcal{A}, \mathit{I} \models \psi$
- $\square \ \mathcal{A}, I \models \varphi \wedge \psi \ \mathsf{dac} \ \mathcal{A}, I \models \varphi \ \mathsf{si} \ \mathcal{A}, I \models \psi$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea I astfel:

- $\square A, I \models P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\square \mathcal{A}, I \models \neg \varphi \text{ dacă } \mathcal{A}, I \not\models \varphi$
- $\square \mathcal{A}, I \models \varphi \lor \psi \text{ dacă } \mathcal{A}, I \models \varphi \text{ sau } \mathcal{A}, I \models \psi$
- $\ \square \ \mathcal{A}, \mathit{I} \models \varphi \wedge \psi \ \mathsf{dac} \ \widecheck{\mathcal{A}}, \mathit{I} \models \varphi \ \mathsf{si} \ \mathcal{A}, \mathit{I} \models \psi$
- $\square \ \mathcal{A}, \mathit{I} \models \varphi \rightarrow \psi \ \mathsf{dac} \ \mathcal{A}, \mathit{I} \not\models \varphi \ \mathsf{sau} \ \mathcal{A}, \mathit{I} \models \psi$

Definim inductiv faptul că o formulă este adevărată în \mathcal{A} sub interpretarea I astfel:

- $\square A, I \models P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_1^A, \ldots, (t_n)_1^A)$
- $\square \mathcal{A}, I \models \neg \varphi \text{ dacă } \mathcal{A}, I \not\models \varphi$
- \square $A, I \models \varphi \lor \psi$ dacă $A, I \models \varphi$ sau $A, I \models \psi$
- \square $A, I \models \varphi \land \psi$ dacă $A, I \models \varphi$ și $A, I \models \psi$
- \square $A, I \models \varphi \rightarrow \psi$ dacă $A, I \not\models \varphi$ sau $A, I \models \psi$
- \square $\mathcal{A}, I \models \forall x \varphi$ dacă pentru orice $a \in A$ avem $\mathcal{A}, I_{x_i \leftarrow a} \models \varphi$
- \square $A, I \models \exists x \varphi$ dacă există $a \in A$ astfel încât $A, I_{x_i \leftarrow a} \models \varphi$

unde pentru orice
$$a \in A$$
, $I_{x \leftarrow a}(y) = \begin{cases} I(y) & \text{dacă } y \neq x \\ a & \text{dacă } y = x \end{cases}$

- \square O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \models \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare.
 - Spunem că \mathcal{A} este model al lui φ .
- \square O formulă φ este adevărată în logica de ordinul I, notat $\models \varphi$, dacă este adevărată în orice structură.

Exempli

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Exemple

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Fie structura $\mathcal{N}=(\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}}:=1$ și

- \square $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$
- \square $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că $\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N}, \mathbf{s}^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$$

Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N}, \textit{s}^{\mathcal{N}}, \textit{P}^{\mathcal{N}}, 0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că $\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$

Fie $I:V\to\mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$$

Fie $I:V\to\mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \models \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N}, \textit{s}^{\mathcal{N}}, \textit{P}^{\mathcal{N}}, 0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$$

Fie $I:V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \models \forall x (P(x) \rightarrow P(s(x))) \text{ dacă}$$

$$\mathcal{N}, I_{x \leftarrow n} \models P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N}, \textit{s}^{\mathcal{N}}, \textit{P}^{\mathcal{N}}, 0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$$

Fie $I:V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, \mathit{I} \models \forall x (\mathit{P}(x) \rightarrow \mathit{P}(\mathit{s}(x)))$$
 dacă

$$\mathcal{N}, I_{x \leftarrow n} \models P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

$$\mathcal{N}, I_{x \leftarrow n} \not\models P(x)$$
 sau $\mathcal{N}, I_{x \leftarrow n} \models P(s(x))$ oricare $n \in N$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$. Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) \to \mathbb{N}$ este impar $\mathbb{N} \to \mathbb{N}$ o interpretare. Observăm că $\mathbb{N} \to \mathbb{N}$ o interpretare. Observăm că $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ o interpretare. Observăm că $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ o interpretare. Observăm că $\mathbb{N} \to \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ o interpretare. Observăm că $\mathbb{N} \to \mathbb{N} \to \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ o interpretare. Observăm că $\mathbb{N} \to \mathbb{N} \to \mathbb$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$. Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\mathbb{S}^{\mathcal{N}} : \mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\mathbb{N}^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$ Demonstrați că $\mathcal{N} \models \forall x (P(x) \to P(s(x)))$. Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar. $I(x) \models \forall x (P(x) \to P(s(x)))$ oricare $I(x) \models P(x) \mapsto P(x)$ oricare $I(x) \mapsto P(x)$ ori

Exemple

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$$

Fie
$$I:V \to \mathbb{N}$$
 o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \models \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

$$\mathcal{N}, I_{x \leftarrow n} \models P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

$$\mathcal{N}, I_{x \leftarrow n} \not\models P(x)$$
 sau $\mathcal{N}, I_{x \leftarrow n} \models P(s(x))$ oricare $n \in N$

$$I_{x \leftarrow n}(x)$$
 nu este impar sau $I_{x \leftarrow n}(s(x))$ este impar oricare $n \in \mathbb{N}$ n este par sau n^2 este impar oricare $n \in \mathbb{N}$

ceea ce este întodeauna adevărat.

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1,\ldots,\varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\models\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A}\models arphi_1$$
 și \dots și $\mathcal{A}\models arphi_{\mathit{n}}$, atunci $\mathcal{A}\models arphi$

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1, \ldots, \varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\models\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A}\models arphi_1$$
 și \dots și $\mathcal{A}\models arphi_n$, atunci $\mathcal{A}\models arphi$

Problemă semidecidabilă!

Nu există algoritm care să decidă mereu dacă o formula este sau nu consecință logică a altei formule în logica de ordinul I!

Logica clauzelor definite

Alegem un fragment al logicii de ordinul I astfel:

- ☐ Renunțăm la cuantificatori (dar păstrăm variabilele)
- \square Renunțăm la \neg , \vee (dar păstrăm \wedge , \rightarrow)
- □ Singurele formule admise sunt de forma:
 - \square $P(t_1,\ldots,t_n)$, adică formule atomice
 - \square $\alpha_1 \wedge \ldots \wedge \alpha_n \rightarrow \alpha$, unde $\alpha_1, \ldots, \alpha_n, \alpha$ sunt formule atomice.

Astfel de formule se numesc clauze definite (sau clauze Horn).

Acest fragment al logicii de ordinul I se numește logica clauzelor definite (sau logica clauzelor Horn).

Programare logica

- \square Presupunem că putem reprezenta cunoștințele ca o mulțime de clauze definite Δ și suntem interesați să aflăm răspunsul la o întrebare de forma $\alpha_1 \wedge \ldots \wedge \alpha_n$, unde toate α_i sunt formule atomice.
- Adică vrem să aflăm dacă

$$\Delta \models \alpha_1 \wedge \ldots \wedge \alpha_n$$

- \square Variabilele din \triangle sunt considerate ca fiind cuantificate universal!
- □ Variabilele din $\alpha_1, \ldots, \alpha_n$ sunt considerate ca fiind cuantificate existențial!

Logica clauzelor definite

```
Fie următoarele clauze definite:

father(jon, ken).

father(ken, liz).

father(X, Y) \rightarrow ancestor(X, Y)

dauther(X, Y) \rightarrow ancestor(Y, X)

ancestor(X, Y) \wedge ancestor(Y, Z) \rightarrow ancestor(X, Z)

Putem întreba:

ancestor(jon, liz)

ancestor(Q, ken) adică \exists Q ancestor(Q, ken)
```

Logica clauzelor definite

Exemplu

```
Fie următoarele clauze definite:

father(jon, ken).

father(ken, liz).

father(X, Y) \rightarrow ancestor(X, Y)

dauther(X, Y) \rightarrow ancestor(Y, X)

ancestor(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)

Putem întreba:

ancestor(jon, liz)

ancestor(Q, ken) adică \exists Q ancestor(Q, ken)
```

Răspunsul la întrebare este dat prin unificare!

Substituții și unificare

Definiție

O subtituție σ este o funcție (parțială) de la variabile la termeni, adică

$$\sigma: V \rightarrow \mathit{Trm}_{\mathcal{L}}$$

Exemplu

În notația uzuală, $\sigma = \{x/a, y/g(w), z/b\}$.

- □ Substituțiile sunt o modalitate de a înlocui variabilele cu alți termeni.
- □ Substituțiile se aplică simultan pe toate variabilele.

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- ☐ Substituţiile se aplică simultan pe toate variabilele.

- \square substituția $\sigma = \{x/a, y/g(w), z/b\}$
- \square $\sigma(P(x,g(x),y)) =$

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- ☐ Substituţiile se aplică simultan pe toate variabilele.

- \square substituția $\sigma = \{x/a, y/g(w), z/b\}$

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- ☐ Substituţiile se aplică simultan pe toate variabilele.

- \square substituția $\sigma = \{x/a, y/g(w), z/b\}$
- $\square \ \sigma(P(x,g(x),y)) = P(a,g(a),g(w))$
- \square substituția $\phi = \{x/y, y/g(a)\}$
- $\Box \phi(f(x)) \neq f(g(a))$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

$$\square t = P(u, v, x, y, z)$$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

- $\square \ t = P(u, v, x, y, z)$
- $\square \ \tau = \{x/f(y), \ y/f(a), \ z/u\}$
- $\square \mu = \{ y/g(a), u/z, v/f(f(a)) \}$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

$$\Box t = P(u, v, x, y, z)$$

$$\Box \tau = \int v/f(y) \cdot v/f(z) \cdot \tau/t$$

$$\square \ \tau = \{x/f(y), \ y/f(a), \ z/u\}$$

$$\square \ \mu = \{ y/g(a), \ u/z, \ v/f(f(a)) \}$$

$$\Box (\tau; \mu)(t) = \mu(\tau(t)) = \mu(P(u, v, f(y), f(a), u)) = = P(z, f(f(a)), f(g(a)), f(a), z)$$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Exempli

$$\square t = P(u, v, x, y, z)$$

$$\square \ \tau = \{x/f(y), \ y/f(a), \ z/u\}$$

$$\square \ \mu = \{ y/g(a), \ u/z, \ v/f(f(a)) \}$$

$$\Box (\tau; \mu)(t) = \mu(\tau(t)) = \mu(P(u, v, f(y), f(a), u)) = P(z, f(f(a)), f(g(a)), f(a), z)$$

$$\Box (\mu; \tau)(t) = \tau(\mu(t)) = \tau(P(z, f(f(a)), x, g(a), z))$$

$$= P(u, f(f(a)), f(y), g(a), u)$$

Unificare

- Doi termeni t_1 și t_2 se unifică dacă există o substituție θ astfel încât $\theta(t_1) = \theta(t_2)$.
- \square În acest caz, θ se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.

Unificare

- Doi termeni t_1 și t_2 se unifică dacă există o substituție θ astfel încât $\theta(t_1) = \theta(t_2)$.
- \square În acest caz, θ se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.
- Un unificator ν pentru t_1 și t_2 este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator ν' pentru t_1 și t_2 , există o substituție μ astfel încât

$$\nu' = \nu; \mu.$$

$$\Box t = x + (y \star y) = +(x, \star (y, y))$$

- $\Box t = x + (y \star y) = +(x, \star (y, y))$
- $\Box t' = x + (y \star x) = +(x, \star (y, x))$
- $\square \ \nu = \{x/y, y/y\}$

 - \square ν este cgu

Exemple

□ t = x + (y * y) = +(x, *(y, y))□ t' = x + (y * x) = +(x, *(y, x))□ $\nu = \{x/y, y/y\}$ □ $\nu(t) = y + (y * y)$ □ $\nu(t') = y + (y * y)$ □ ν este cgu □ $\nu' = \{x/0, y/0\}$ □ $\nu'(t) = 0 + (0 * 0)$ □ $\nu'(t') = 0 + (0 * 0)$

Exempli

```
\Box t = x + (y \star y) = +(x, \star(y, y))
\Box t' = x + (y \star x) = +(x, \star (y, x))
\square \nu = \{x/y, y/y\}
      \square \nu(t) = y + (y \star y)
      \nu(t') = y + (y \star y)
      \square \nu este cgu
\nu' = \{x/0, y/0\}
      \nu'(t) = 0 + (0 \star 0)
      \nu'(t') = 0 + (0 \star 0)
      \nu' = \nu; {v/0}
```

Exempli

```
\Box t = x + (y \star y) = +(x, \star (y, y))
\Box t' = x + (y \star x) = +(x, \star (y, x))
\square \nu = \{x/y, y/y\}
      \square \nu(t) = y + (y \star y)
      \square \nu(t') = y + (y \star y)
      \square \nu este cgu
\nu' = \{x/0, y/0\}
      \nu'(t) = 0 + (0 \star 0)
      \nu'(t') = 0 + (0 \star 0)
      \nu' = \nu; {v/0}
      \square \nu' este unificator, dar nu este gcu
```

Algoritmul de unificare

- Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.

- Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - Lista soluție: *S*
 - ☐ Lista de rezolvat: *R*

- Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - ☐ Lista soluție: *S*
 - ☐ Lista de rezolvat: R
- ☐ Iniţial:
 - Lista soluție: $S = \emptyset$
 - Lista de rezolvat: $R = \{t_1 = t_2, \dots, t_{n-1} = t_n\}$

- Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - ☐ Lista soluție: *S*
 - ☐ Lista de rezolvat: R
- □ Iniţial:
 - \square Lista soluție: $S = \emptyset$
 - Lista de rezolvat: $R = \{t_1 = t_2, \dots, t_{n-1} = t_n\}$
- este un simbol nou care ne ajută sa formăm perechi de termeni (ecuații).

- □ SCOATE
 - \square orice ecuație de forma $t = t \operatorname{din} R$ este eliminată.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- □ DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ RF70IVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

In R există o ecuație de forma

$$f(t_1,\ldots,t_n)=g(t_1',\ldots,t_k')$$
 cu $f\neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$	
SCOATE	S	R', $t = t$	
	S	R'	
DESCOMPUNE	S	R' , $f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t'_1,\ldots,t'_n)$	
	5	R' , $t_1 \stackrel{.}{=} t'_1, \ldots t_n \stackrel{.}{=} t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	x = t, $S[x/t]$	R'[x/t]	
Final	S	Ø	

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

Exemplu

[S	R	
	Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	

Exemplu

S	R	
Ø	$g(y) \stackrel{.}{=} x$, $f(x, h(x), y) \stackrel{.}{=} f(g(z), w, z)$	REZOLVĂ

Exemplu

S	R	
Ø	$g(y) = x, \ f(x, h(x), y) = f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y), h(g(y)), y) = f(g(z), w, z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	REZOLVĂ

Exempli

S	R	
Ø	$g(y) = x, \ f(x, h(x), y) = f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	REZOLVĂ
$w \stackrel{.}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{\cdot}{=} h(g(z))$		

Exempli

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, f(x, h(x), y) \stackrel{.}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \doteq x$, $f(x, h(x), y) \doteq f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{\cdot}{=} h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \stackrel{.}{=} h(g(z))$		

 \square $\nu = \{y/z, x/g(z), w/h(g(z))\}$ este cgu.

Exemplu

Exempli

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(y), y) \stackrel{.}{=} f(g(z), b, z)\}$ au gcu?

S	R	
Ø	$g(y) \doteq x$, $f(x, h(y), y) \doteq f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y), h(y), y) = f(g(z), b, z)	DESCOMPUNE
x = g(y)	g(y) = g(z), h(y) = b, y = z	- EŞEC -

Exempli

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(y), y) \stackrel{.}{=} f(g(z), b, z)\}$ au gcu?

S	R	
Ø	$g(y) \doteq x$, $f(x, h(y), y) \doteq f(g(z), b, z)$	REZOLVĂ
$\dot{x} = g(y)$	f(g(y), h(y), y) = f(g(z), b, z)	DESCOMPUNE
x = g(y)	g(y) = g(z), h(y) = b, y = z	- EŞEC -

- ☐ *h* și *b* sunt simboluri de operații diferite!
- \square Nu există unificator pentru ecuațiile din U.

Exemplu

 \square Ecuațiile $\{g(y) \doteq x, f(x, h(x), y) \doteq f(y, w, z)\}$ au gcu?

Exempli

□ Ecuațiile $\{g(y) \stackrel{.}{=} x, f(x, h(x), y) \stackrel{.}{=} f(y, w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y), h(g(y)), y) = f(y, w, z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, f(x, h(x), y) \stackrel{.}{=} f(y, w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y), h(g(y)), y) = f(y, w, z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \doteq y$, variabila y apare în termenul g(y).
- \square Nu există unificator pentru ecuațiile din U.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Demonstrație

- Notăm cu
 - N₁: numărul variabilelor care apar în R
 - \square N_2 : numărul aparițiilor simbolurilor care apar în R
- □ Este suficient să arătăm că perechea (N_1, N_2) descrește strict în ordine lexicografică la execuția unui pas al algoritmului:

```
dacă la execuția unui pas (N_1, N_2) se schimbă în (N'_1, N'_2), atunci (N_1, N_2) \ge_{lex} (N'_1, N'_2)
```

Demonstrație (cont.)

Fiecare regulă a algoritmului modifică N_1 și N_2 astfel:

	N_1	N_2
SCOATE	2	>
DESCOMPUNE	=	>
REZOLVĂ	>	

- \square N_1 : numărul variabilelor care apar în R
- \square N_2 : numărul aparițiilor simbolurilor care apar în R

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

□ SCOATE: evident

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- □ SCOATE: evident
 - DESCOMPUNE: Trebuie să arătăm că

$$\nu$$
 unificator pt. \Leftrightarrow ν unificator pt.

$$\Leftrightarrow$$
 ν unificator p

$$f(t_1,\ldots,t_n)\stackrel{.}{=} f(t_1',\ldots,t_n')$$
 $t_i\stackrel{.}{=} t_i'$, or. $i=1,\ldots,n$.

$$= t'_i$$
, or. $i = 1, \ldots, n$

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- □ SCOATE: evident
 - □ DESCOMPUNE: Trebuie să arătăm că

$$u$$
 unificator pt. \Leftrightarrow u unificator pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad t_i = t'_i, \text{ or. } i = 1, \ldots, n.$
 u unif. pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad \Leftrightarrow
u(f(t_1, \ldots, t_n)) =
u(f(t'_1, \ldots, t'_n)) \qquad \Leftrightarrow
f(
u(t_1), \ldots,
u(t_n)) = f(
u(t'_1), \ldots,
u(t'_n)) \qquad \Leftrightarrow
u(t_i) =
u(t'_i), \text{ or. } i = 1, \ldots, n$
 $\Leftrightarrow
u$ unificator pt. $t_i = t'_i, \text{ or. } i = 1, \ldots, n$

Demonstrație (cont.)

☐ REZOLVĂ:

 \square Se observă că or. unificator ν pt. reuniunea ecuațiile din R și S, atât înainte cât și după aplicarea regulii REZOLVĂ, trebuie să satisfacă:

$$\nu(x)=\nu(t).$$

 \square Pt. or. unificator μ pt. x = t observăm că:

$$(x \leftarrow t); \mu = \mu$$

unde $(x \leftarrow t)(x) = t$ și $(x \leftarrow t)(y) = y$ pentru orice $y \neq x \in V$.

$$((x \leftarrow t); \mu)(x) = \mu(t) = \mu(x)$$

$$((x \leftarrow t); \mu)(y) = \mu(y), \text{ or. } y \neq x$$

Deci,

 μ este un unificator pt. ec. din R și S înainte de REZOLVĂ

$$\Leftrightarrow$$

 μ este un unificator pt. ec. din R și S după REZOLVĂ

Lema 2

Variabilele care apar în partea stângă a ecuațiilor din S sunt distincte două câte două și nu mai apar în altă parte în S și R.

Lema 2

Variabilele care apar în partea stângă a ecuațiilor din S sunt distincte două câte două și nu mai apar în altă parte în S și R.

Demonstrație

Exercițiu!

- \square Pres. că algoritmul de unificare se termină cu $R = \emptyset$.
- \square Fie $x_i \stackrel{.}{=} t_i$, i = 1, ..., k, ecuațiile din S.
- Definim substituţia:

$$\nu(x_i) = t_i$$
, or. $i = 1, \ldots, k$.

- \square ν este corect definită (vezi Lema 2).
- □ Cum variabilele x_i nu apar în termenii t_i , deducem că $\nu(t_i) = t_i = \nu(x_i)$, or. i = 1, ..., k.
- \square Deci ν este unificator pentru U (vezi Lema 1).

Lema 3

u definit mai sus cf. algoritmului de unificare este cgu pentru U.

Lema 3 ν definit mai sus cf. algoritmului de unificare este cgu pentru U. Demonstrație Exercițiu!

Pe săptămâna viitoare!