Uncertainty

Chapter 13 of AIMA

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport "t" minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. leads to conclusions that are too weak for decision making:

" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

(A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

- Default or nonmonotonic logic:
 - Assume my car does not have a flat tire
 - Assume A_{25} works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
 - $A_{25}/\rightarrow_{0.3}$ get there on time
 - Sprinkler /→ _{0.99} WetGrass
 - WetGrass /→ 0.7 Rain
- Issues: Problems with combination, e.g., *Sprinkler* causes *Rain*??
- Probability
 - Model agent's degree of belief
 - Given the available evidence,
 - A₂₅ will get me there on time with probability 0.04

Probability

Probabilistic assertions **summarize** effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

• Probabilities relate propositions to agent's own state of knowledge e.g., $P(A_{25} \mid \text{no reported accidents}) = 0.06$

These are **not** assertions about the world

Probabilities of propositions change with new evidence: e.g., $P(A_{25} \mid \text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

```
P(A<sub>25</sub> gets me there on time | ...) = 0.04
P(A<sub>90</sub> gets me there on time | ...) = 0.70
P(A<sub>120</sub> gets me there on time | ...) = 0.95
P(A<sub>1440</sub> gets me there on time | ...) = 0.9999
```

- Which action to choose?
 - Depends on my preferences for missing flight vs. time spent waiting, etc.
 - Utility theory is used to represent and infer preferences
 - Decision theory = probability theory + utility theory

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables

 e.g., Cavity (do I have a cavity?)
- Discrete random variables
 e.g., Weather is one of < sunny, rainy, cloudy, snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as ¬cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny \(\times \) Cavity = false

Syntax

 Atomic event: A complete specification of the state of the world about which the agent is uncertain

E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct atomic events:

```
Cavity = false \ Toothache = false
Cavity = false \ Toothache = true
Cavity = true \ Toothache = false
Cavity = true \ Toothache = true
```

Atomic events are mutually exclusive and exhaustive

Axioms of probability

- For any propositions *A*, *B*
 - $0 \le P(A) \le 1$
 - P(true) = 1 and P(false) = 0
 - $P(A \vee B) = P(A) + P(B) P(A \wedge B)$

Prior probability

- Prior or unconditional probabilities of propositions
 e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:
 P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
 P(Weather, Cavity) = a 4 × 2 matrix of values:

Weather =	sunny	rainy	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution

Conditional probability

- Conditional or posterior probabilities
 - e.g., P(*cavity* | *toothache*) = 0.8 i.e., given that *toothache* is all I know
- (Notation for conditional distributions:
 P(Cavity | Toothache) = 2-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have
 P(cavity | toothache, cavity) = 1
- New evidence may be irrelevant, allowing simplification, e.g.,
 P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

- Definition of conditional probability:
 P(a | b) = P(a ∧ b) / P(b) if P(b) > 0
- Product rule gives an alternative formulation:
 P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)
- A general version holds for whole distributions, e.g.,
 P(Weather, Cavity) = P(Weather / Cavity) P(Cavity)
- (View as a set of 4 × 2 equations, not matrix mult.)
- Chain rule is derived by successive application of product rule:

$$\mathbf{P}(X_{1}, ..., X_{n}) = \mathbf{P}(X_{1}, ..., X_{n-1}) \mathbf{P}(X_{n} \mid X_{1}, ..., X_{n-1})$$

$$= \mathbf{P}(X_{1}, ..., X_{n-2}) \mathbf{P}(X_{n-1} \mid X_{1}, ..., X_{n-2}) \mathbf{P}(X_{n} \mid X_{1}, ..., X_{n-1})$$

$$= ...$$

$$= \Pi_{i=1}^{n} \mathbf{P}(X_{i} \mid X_{1}, ..., X_{i-1})$$

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega \mid \phi} P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega \neq \phi} P(\omega)$
- $P(toothache \lor cavity) = 0.108 + 0.012 + 0.016 + 0.064 + .072 + .008 = .28$

• Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity \mid toothache) = P(\neg cavity \land toothache)$$

$$= 0.016 + 0.064$$

$$0.108 + 0.012 + 0.016 + 0.064$$

$$= 0.4$$

Normalization

	tooi	hache	¬ too	othache
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant a

$$P(\textit{Cavity | toothache}) = \alpha$$
, $P(\textit{Cavity,toothache})$
= α , $[P(\textit{Cavity,toothache,catch}) + P(\textit{Cavity,toothache,}\neg \textit{catch})]$
We can imagine similar equations for the \neg *Cavity* case. Combining the two sets of equations for *Cavity* and \neg *Cavity* we can write (more compactly) = α , $[<0.108,0.016> + <0.012,0.064>]$
= α , $<0.12,0.08> = <0.6,0.4>$

General idea: compute distribution on **query variable** (Cavity) by fixing **evidence variables** (toothache) and summing over **hidden variables** (catch)

Inference by enumeration, contd.

Typically, we are interested in the posterior joint distribution of the query variables **Y** given specific values **e** for the **evidence variables E**

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y \mid E = e) = aP(Y,E = e) = a\Sigma_h P(Y,E = e, H = h)$$

- The terms in the summation are joint entries because **Y**, **E** and **H** together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Independence

• A and B are independent iff P(A/B) = P(A) or P(B/A) = P(B) or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather) = **P**(Toothache, Catch, Cavity) **P**(Weather)

- 32 entries reduced to 12; for *n* independent biased coins, $O(2^n) \rightarrow O(n)$
- Absolute independence powerful but unfortunately rare
- Dentistry is a large field with hundreds of variables, none of which are independent.
 What to do? We need a more refined idea of independence...

Conditional independence

- **P**(*Toothache, Cavity, Catch*) has $2^3 = 8$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - (1) $P(catch \mid toothache, cavity) = P(catch \mid cavity)$
- The same independence holds if I haven't got a cavity:
 - (2) $P(catch \mid toothache, \neg cavity) = P(catch \mid \neg cavity)$
- Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:

```
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
```

P(Toothache, Catch | Cavity) = **P**(Toothache | Cavity) **P**(Catch | Cavity)

Conditional independence contd.

- Write out full joint distribution using chain rule:
 - **P**(*Toothache, Catch, Cavity*)
 - = **P**(*Toothache* / *Catch, Cavity*) **P**(*Catch, Cavity*)
 - = **P**(*Toothache | Catch, Cavity*) **P**(*Catch | Cavity*) **P**(*Cavity*)
 - = **P**(*Toothache | Cavity*) **P**(*Catch | Cavity*) **P**(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

- Product rule P(a∧b) = P(a | b) P(b) = P(b | a) P(a)
 ⇒ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)
- or in distribution form $P(Y|X) = P(X|Y) P(Y) / P(X) = \alpha P(X|Y) P(Y)$
- Useful for assessing diagnostic probability from causal probability:
 - P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
 - E.g., let M be meningitis, S be stiff neck: $P(m|s) = P(s|m) P(m) / P(s) = 0.8 \times 0.0001 / 0.1 = 0.0008$
 - Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

P(*Cavity* / *toothache* ∧ *catch*)

- = a**P**(toothache ∧ catch / Cavity) **P**(Cavity)
- = aP(toothache / Cavity) P(catch / Cavity) P(Cavity)
- This is an example of a naïve Bayes model:
 P(Cause, Effect₁, ..., Effect_n) = P(Cause) π_iP(Effect_i|Cause)

• Total number of parameters is **linear** in *n*

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide additional tools to reduce the size of the analysis to be performed

Bayesian networks

AIMA Chapter 14

Outline

- Syntax
- Semantics

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:

$$P(X_i | Parents(X_i))$$

 In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

Topology of network encodes conditional independence assertions:

- *Weather* is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call, but not every time because she listens to loud music
 - The alarm can cause John to call too, but not every time because he is sometimes confused by the phone ringing
 - John and Mary do not have any way to communicate or coordinate their calling

Example contd.

Conditional Probability Tables (CPTs)

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)

- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5-1 = 31$)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i \mid Parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

= $P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \dots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from $X_1, ..., X_{i-1}$ such that

$$P(X_i | Parents(X_i)) = P(X_i | X_1, ... X_{i-1})$$

This choice of parents guarantees:

$$P(X_{1}, ..., X_{n}) = \pi_{i=1}^{n} P(X_{i} / X_{1}, ..., X_{i-1}) \text{ (chain rule)}$$
$$= \pi_{i=1}^{n} P(X_{i} / Parents(X_{i})) \text{ (by construction)}$$

Intuitively: connect the variables that DIRECTLY influence each other using arrows. Identify absolutely independent variables. Then, focus on conditional independence

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct