Learning the Optimal Step Size for Gradient Descent on Convex Quadratics

Alexandr Andoni, Daniel Hsu, Tim Roughgarden, **Kiran Vodrahalli**

Columbia University

NYAS ML Symposium, March 2020

A Distribution on Optimization Problems

Given: Distribution *D* over (f, x_0) :

 $f \colon \mathbb{R}^d \to \mathbb{R}$ is convex quadratic

Learning Gradient Descent Step Size

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$
 After L steps: $x_L(\eta, x_0)$

Goal: Learn optimal *single* step size η for distribution D.

$$\eta_L^* = \underset{\eta}{\operatorname{argmin}} \mathbb{E}_{f,x_0 \sim D} [f(x_L(\eta, x_0))]$$

Motivation

 Gupta + Roughgarden '17: Sample complexity of learning step size of GD

How much does learning the step size help performance?

Push the limits of performance of a single step size

Convex Quadratic Loss

$$f(x_L(\eta, x_0)) = ||Ax_L(\eta, x_0) - b||_2^2$$

Convex Quadratic Loss

$$f(x_L(\eta, x_0)) = ||Ax_L(\eta, x_0) - b||_2^2$$

$$= \sum_{i=1}^{d} \sigma_i^2 z_i^2 \left(1 - \eta \sigma_i^2\right)^{2L}$$

Convex Quadratic Loss

$$f(x_L(\eta, x_0)) = ||Ax_L(\eta, x_0) - b||_2^2$$

$$= \sum_{i=1}^{d} \sigma_i^2 z_i^2 (1 - \eta \sigma_i^2)^{2L}$$

$$A = U\Sigma V^T \in \mathbb{R}^{n\times d}$$
; $n \ge d$; $z = V^T(x_0 - x^*)$; $Ax^* = b$

$$\mathbf{spectrum}(AA^T) = \sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_d^2 > 0$$

spectral ratio: $c = \frac{\sigma_1^2}{\sigma_2^2} > 1$

Worst Case

As $C \rightarrow \infty$: No benefit over regular GD!

Worst Case

spectral ratio:
$$c = \frac{\sigma_1^2}{\sigma_2^2} > 1$$

condition number:
$$\kappa = \frac{\sigma_1^2}{\sigma_d^2} > 1$$

As $C \rightarrow \infty$: No benefit over regular GD!

But: If $c \to \infty$, with $L = \alpha \cdot c$, $\alpha \in \mathbb{R}$:

$$f\left(x_L(\eta_L^*, x_0)\right) - f(x^*) \le \exp\left(-L\left(\frac{2}{c} + \frac{1}{\kappa}\right)\right) \left(f(x_0) - f(x^*)\right)$$

Worst Case

spectral ratio:
$$c = \frac{\sigma_1^2}{\sigma_2^2} > 1$$

condition number:
$$\kappa = \frac{\sigma_1^2}{\sigma_d^2} > 1$$

As $C \rightarrow \infty$: No benefit over regular GD!

But: If $c \to \infty$, with $L = \alpha \cdot c$, $\alpha \in \mathbb{R}$:

$$f\left(x_L(\eta_L^*, x_0)\right) - f(x^*) \le \exp\left(-L\left(\frac{2}{c} + \frac{1}{\kappa}\right)\right) \left(f(x_0) - f(x^*)\right)$$

Improvement in the limit for large L! ($c < \kappa$)

Main Theorem

spectral ratio:
$$c = \frac{\sigma_1^2}{\sigma_2^2} > 1$$
 condition number: $\kappa = \frac{\sigma_1^2}{\sigma_d^2} > 1$

Theorem (informal): For L large enough, for fixed f, x_0 :

$$f(x_L(\eta_L^*, x_0)) - f(x^*) \le \exp\left(-L\left(2\log(1 + 1/c) + \frac{1}{\kappa}\right)\right)(f(x_0) - f(x^*))$$

Main Theorem

spectral ratio:
$$c = \frac{\sigma_1^2}{\sigma_2^2} > 1$$
 condition number: $\kappa = \frac{\sigma_1^2}{\sigma_d^2} > 1$

Theorem (informal): For L large enough, for fixed f, x_0 :

$$f(x_L(\eta_L^*, x_0)) - f(x^*) \le \exp\left(-L\left(2\log(1 + 1/c) + \frac{1}{\kappa}\right)\right)(f(x_0) - f(x^*))$$

Generalizes to expectations over $(f, x_0) \sim D$

Main Theorem

spectral ratio:
$$c = \frac{\sigma_1^2}{\sigma_2^2} > 1$$
 condition number: $\kappa = \frac{\sigma_1^2}{\sigma_d^2} > 1$

Theorem (informal): For L large enough, for fixed f, x_0 :

$$f(x_L(\eta_L^*, x_0)) - f(x^*) \le \exp\left(-L\left(2\log(1 + 1/c) + \frac{1}{\kappa}\right)\right)(f(x_0) - f(x^*))$$

Generalizes to expectations over $(f, x_0) \sim D$

Efficient to learn η^* :

constant pseudo-dim

binary search ERM to find η^*

Key Bound – Single Problem Instance

$$\left(\frac{Z_{\alpha}^{\frac{1}{2L-1}} \frac{2L+1}{c^{\frac{2L-1}{2L-1}}}}{1+Z_{\alpha}^{\frac{1}{2L-1}} \frac{2L+1}{c^{\frac{2L-1}{2L-1}}}}\right)^{2L-1} \leq \frac{f\left(x_{L}(\eta^{*}, x_{0})\right)}{f\left(x_{L}(1/\sigma_{1}^{2}, x_{0})\right)} \leq \left(\frac{Z_{\beta}^{\frac{1}{2L-1}} \frac{2L+1}{c^{\frac{2L-1}{2L-1}}}}{1+Z_{\beta}^{\frac{1}{2L-1}} \frac{2L+1}{c^{\frac{2L-1}{2L-1}}}}\right)^{2L-1}$$

$$Z_{\alpha}=rac{z_1^2}{\sum_{i>1}z_i^2}$$
; $Z_{\beta}=rac{z_1^2}{z_2^2}$ Spectral ratio $c=rac{\sigma_1^2}{\sigma_2^2}>1$