CHEM 30100 (Advanced Inorganic Chemistry I) Notes

Steven Labalme

October 3, 2022

Weeks

1	A Rigorous Definition of Symmetry					
	1.1 Symmetry: Symmetry Elements and Operations	1				
	1.2 Point Groups	3				
2	Introduction to Representation Theory	5				
	2.1 Matrix Representations of Symmetry Operations	5				

List of Figures

1.1	Stereographic projections of the elementary symmetry operations	
2.1	C_3 matrix representation setup	

List of Tables

1.1 Symbols for stereographic projections			projections.	stereographic	Symbols for	1.1
---	--	--	--------------	---------------	-------------	-----

Week 1

A Rigorous Definition of Symmetry

1.1 Symmetry: Symmetry Elements and Operations

9/28: • Dr. Anna Wuttig (AH-nuh WUH-tig).

- Teaches exclusively on the blackboard.
- Will record lectures, however; if there is a technical error, she will upload last year's lecture.
- Syllabus.
 - PSets graded on completion, not accuracy.
 - Two exams: One on the first half of the course; one on the second half of the course.
 - Cumulativeness: You'll need to understand the first half to do the second half, but there won't be questions specifically targeted to first-half material.
 - No final.
 - Participation. Showing up to class and working in groups.
- Chris, Dan, Amy, Matt, Jintong, Yibin, Ben, Sara, Ryan, Joe, Owen, Isabella, Pierce are the people.
 - People come from a diversity of chemistry subfields (physical, inorganic, organic, materials, biological).
- Every day will have a handout that we will write on (in pencil).
- Study the learning objectives!
- (Local) symmetry of a molecule helps us predict and describe bonding, spectroscopic properties, and reactivity.
 - We describe symmetry with group theory.
- **Symmetry operation**: An operation which moves a molecule into a new orientation equivalent to its original one (geometrically indistinguishable).
 - Symmetry operations that can be applied to an object always form a **group**.
- Symmetry element: A point, line, or plane about which a symmetry operation is applied.
- Symmetry operations.
 - 1. Identity operation (E): Do nothing; null operation.
 - 2. Reflection through a plane (σ) : Subdivided into...

- $-\sigma_d$: dihedral mirror planes, which contain the principle C_n axis and bisect the angles formed between adjacent C_2 axes;
- $-\sigma_h$: horizontal mirror planes, in which the mirror plane is perpendicular to the principal C_n axis;
- $-\sigma_v$: vertical mirror planes, which contain the C_n axis and are not dihedral mirror planes.
- 3. Rotation about an axis (C_n) : A clockwise^[1] rotation about the C_n axis.
- 4. Improper rotation (S_n) : A two-step symmetry operation consisting of a C_n followed by a σ that is perpendicular to C_n (i.e., σ_h).
- 5. Inversion (i): Take any point with coordinates (x, y, z) to (-x, -y, -z).
- To describe the operations, we'll introduce stereographic projections.

Table 1.1: Symbols for stereographic projections.

- We have a working area (the plane of the page is the xy-plane). It is useful to draw quadrants.
- We describe a general point which experiences our symmetry operation.
 - When the point reflects through the working area, we denote the image with an "X" instead of a circle.
- We need a gear symbol in the middle for rotations and improper rotations (see Table 1.1).
 - Must stereographic projections be drawn one at a time because it seems that the squares should not be in a reflection?
 - No the symbols are to help us and should be included somewhere, but there are no hard-and-fast rules.
- Stereographic projections for each of the five elementary symmetry operations.

Figure 1.1: Stereographic projections of the elementary symmetry operations.

- Principal C_n axis: The C_n axis for which n is the highest.
 - In a stereographic projection, the C_n axis is the one that is perpendicular to the working area (goes in/out of the page).

¹Really?

- Example: Give the symmetry elements of NH₃.
 - C_3 axis, 3 σ_v mirror planes (denoted σ_v , σ'_v , and σ''_v).
 - The symmetry operations are E, C_3 , C_3^2 , σ_v , σ_v' , and σ_v'' . These operations form the C_{3v} point group.
- Direct products of symmetry operations: YX = Z means "operation X is carried out first and then operation Y," giving the same net effect as would the carrying out of the single operation Z.
 - If YX = XY = Z, then the two operations Y and X commute.
- What is the direct product of C_2 and σ_h ?
 - $-\sigma_h C_2 = S_2 = i$. They do commute.
- Do C_4 and $\sigma_{x,z}$ commute? Take the plane of this page as xy.
 - They do not (determine by drawing out both sets of stereographic projections).
- Don't get careless, Steven. This is easy, but it's also easy to make easy mistakes.
- New symmetry operations of your group are generated by taking the direct product of two.

1.2 Point Groups

9/30:

- The symmetry operations that apply to a given molecule collectively possess the properties of a mathematical **group**.
- Group: A set of symmetry operations that satisfy the following conditions.
 - Closure: All binary products must be in the group, i.e., the product of any two operators must also be a member of the group.
 - *Identity*: Must contain an identity, i.e., E must be part of the group.
 - Inverse: All elements must have an inverse in the group, and they must commute with their inverse.
 - Associativity: The associative law $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ must hold.
- Abelian (group): A group in which all direct products commute.
 - Not all groups are Abelian.
- Question: Do C_3 and σ_v form a group?
 - No: No identity (for example).
 - Wuttig draws out a stereographic projection for $C_3 \cdot \sigma_v$ and overlays the first and last picture, showing that $C_3 \cdot \sigma_v$ is a reflection over a new mirror plane σ'_v .
 - C_3 and σ_v do **generate** the set of operations $E, C_3, C_3^2, \sigma_v, \sigma_v', \sigma_v''$, which collectively form the **point group** C_{3v} .
- To prove something on a pset or exam, it's probably a good idea to do it in terms of stereographic projections!
- Point group: A group such that at least one point in space is invariant to all operations in the group.
- Group order: The number of symmetry operations in the group. Given by h.
- Table activity: Finding E, principal C_n , σ , $C_2 \perp C_n$, C_n position relative to σ (collinear or perpendicular), and i for various point groups.

- These properties are the ones that distinguish each point group from every other point group.
- Notes on the pedagogy: Animations and/or tangible models should be used to discuss this stuff. PowerPoint slides are definitely the way to go far more tangible tools; blackboard should be a supplement. It is key to be careful what you say (element and operation must be consistently used). Dr. Wuttig is skipping a lot of key points (like naming point groups).
- Developing a flow chart that distinguishes between D_{nh} , D_{nd} , D_n , C_{nh} , C_{nv} , C_n , and S_n .

Week 2

Introduction to Representation Theory

2.1 Matrix Representations of Symmetry Operations

- 10/3: Tools for identifying symmetry elements.
 - Chem 3D (visualization).
 - Otterbein University symmetry gallery (examples of molecules that satisfy all of the point groups).
 - Gives examples of molecules that satisfy the high-symmetry point groups.
 - $-C_{\infty v}$: CO.
 - $-D_{\infty h}$: CO₂.
 - $-T_d$: CH₄.
 - $T_h: [Co(NO_2)_6]^{3+}.$
 - T_h is T_d with σ_h symmetry.
 - $O_h: [Co(NH_3)_6]^{3+}$
 - $-I_h$: N/a.
 - 120 symmetry elements in total; we will not be asked to identify all of these!
 - $-K_h: N/a.$
 - Symmetry of the sphere.
 - -T, O, I are subgroups of T_h, O_h, I_h , respectively, and only have proper (not improper) rotations. These are very rare point groups. An example of a molecule in the T point group is $[Ca(THF)_6]^{2+}$.
 - Learn T, O, I from Otterbein University example and ask questions!
 - Low symmetry: C_1, C_i, C_s .
 - The mirror plane in a C_s molecule is denoted by σ (no subscript).
 - Vector: A series of numbers which we write in a row or a column.
 - Matrix: Any rectangular array of numbers set between two brackets.
 - Basics of matrix multiplication: $A \cdot \vec{x} = \vec{y}$ given in terms of matrix multiplication, e.g., if A is $n \times m$ and $\vec{x} \in \mathbb{R}^m$, then

$$y_i = \sum_{j=1}^m a_{ij} x_j$$

for i = 1, ..., n.

- Matrix representations:
 - E: What matrix A satisfies $A \cdot \vec{x} = \vec{x}$ for all \vec{x} ? The 3×3 matrix I does.
 - i: What matrix A satisfies $A \cdot \vec{x} = -\vec{x}$ for all \vec{x} ? The 3×3 matrix -I does.
 - $-\sigma_{xy}$: What matrix A flips the sign of the z-coordinate of \vec{x} ? The 3×3 matrix diag(1,1,-1) does.
 - C_2 : What matrix A flips the sign of the x, y-coordinates of \vec{x} ? The 3×3 matrix diag(-1, -1, 1) does.
 - C_3 : Consider a C_{3v} molecule.

Figure 2.1: C_3 matrix representation setup.

Instead of describing a rotation in \mathbb{R}^3 using radians, we can think of a rotation as a permutation of the numbered atoms. So in this example,

$$\underbrace{\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}}_{G_2} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

- We will only be asked for matrix representations of very simple things, e.g., these or 90° or 180° turns.
- The above matrices form a mathematical group, which obeys the same multiplication table as the operations.
 - For example,

$$\underbrace{\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{C_2} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}}_{\sigma_h} = \underbrace{\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}}_{i}$$

- The matrix representations given above are not the "simplest" way of describing these symmetry operations.
 - The simplest way is using the **character**.
 - We find the character using a similarity transformation to take our matrix representations to block-diagonalized forms and then compute the characters of the blocks from there.
 - Recall that analogous blocks multiply in a block-diagonal matrix.
- Character (of a symmetry operation): The trace (sum of the diagonal elements) of the matrix representation of that operation. Denoted by χ .
- Similarity transformation (matrix): The matrix which, when conjugated with a matrix representation of a symmetry operation, yields the block-diagonalized form of that matrix. *Denoted by* **R**.
 - We don't need to know how to compute these.

• Similarity transformation example: The C_3 matrix representation given above is not block diagonal, but there exists a matrix R (that we don't have to know how to find) such that

$$RC_3R^{-1} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2}\\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

- The characters of the blocks of the above matrix are 1 and -1, respectively. The character of the overall matrix is still 0.