Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works¹

Emma Brunskill

CS234 Reinforcement Learning

Winter 2019

¹Material builds on structure from David SIlver's Lecture 4: Model-Free Prediction. Other resources: Sutton and Barto Jan 1 2018 draft Chapter/Sections: 5.1; 5.5; 6:1-6:3

Today's Plan

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Recall

- Definition of Return, G_t (for a MRP)
 - Discounted sum of rewards from time step t to horizon $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$
- Definition of State Value Function, $V^{\pi}(s)$
 - Expected return from starting in state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots |s_t = s]$$

- Definition of State-Action Value Function, $Q^{\pi}(s, a)$
 - \bullet Expected return from starting in state s, taking action a and then following policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | s_t = s, a_t = a]$$

= $\mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s, a_t = a]$

4 □ ▶ ◆ □ ▶ ◆ □ ▶ ○ □
 9 ○ ○

- Initialize $V_0^{\pi}(s) = 0$ for all s
- For k = 1 until convergence

$$\|V_{k}^{\pi} - V_{k\gamma}^{\pi}\| < \epsilon$$

• For all s in S

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

Dynamic Programming for Policy π , Value Evaluation

- Initialize $V_0^{\pi}(s) = 0$ for all s
- For k = 1 until convergence
 - For all s in S

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

- $V_k^\pi(s)$ is exact value of k-horizon value of state s under policy π
- ullet $V_k^\pi(s)$ is an estimate of infinite horizon value of state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$$

6 / 62

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2019

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$^{\uparrow}$$
 p(s'ls, $\pi(s)$)

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

Expectation

Bootstrapping: Update for V uses an estimate

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

ullet Bootstrapping: Update for V uses an estimate

Policy Evaluation: $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- Dynamic Programming
 - $V^{\pi}(s) \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$
 - Requires model of MDP M
 - Bootstraps future return using value estimate
 - Requires Markov assumption: bootstrapping regardless of history
- What if don't know dynamics model P and/ or reward model R?
- Today: Policy evaluation without a model
 - Given data and/or ability to interact in the environment
 - ullet Efficiently compute a good estimate of a policy π

This Lecture Overview: Policy Evaluation

- Dynamic Programming
- Evaluating the quality of an estimator
- Monte Carlo policy evaluation
 - Policy evaluation when don't know dynamics and/or reward model
 - Given on policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Monte Carlo (MC) Policy Evaluation

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{T \sim \pi}[G_t | s_t = s]$
 - ullet Expectation over trajectories T generated by following π
- Simple idea: Value = mean return
- If trajectories are all finite, sample set of trajectories & average returns

Monte Carlo (MC) Policy Evaluation

- If trajectories are all finite, sample set of trajectories & average returns
- Does not require MDP dynamics/rewards
- No bootstrapping
- Does not assume state is Markov
- Can only be applied to episodic MDPs
 - Averaging over returns from a complete episode
 - Requires each episode to terminate

Monte Carlo (MC) On Policy Evaluation

- ullet Aim: estimate $V^\pi(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- MC computes empirical mean return
- Often do this in an incremental fashion
 - ullet After each episode, update estimate of V^π

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **first** time *t* that state *s* is visited in episode *i*
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Bias, Variance and MSE

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x $\hat{\theta} = f(x)$
 - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\mathit{Bias}_{ heta}(\hat{ heta}) = \underbrace{\mathbb{E}_{\mathsf{x}| heta}[\hat{ heta}]}_{\mathsf{x}| heta} - \underbrace{ heta}_{\mathsf{x}| heta}$$

• Definition: the variance of an estimator $\hat{\theta}$ is:

$$Var(\hat{\theta}) = \mathbb{E}_{x|\theta}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2]$$

ullet Definition: mean squared error (MSE) of an estimator $\hat{ heta}$ is:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias_{\theta}(\hat{\theta})^2$$

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **first** time *t* that state *s* is visited in episode *i*
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- ullet V^π estimator is an unbiased estimator of true $\mathbb{E}_\pi[G_t|s_t=s]$
- ullet By law of large numbers, as $N(s) o \infty$, $V^\pi(s) o \mathbb{E}_\pi[G_t | s_t = s]$

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **every** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For every time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- V^{π} every-vist MC estimator is an **biased** estimator of V^{π}
- But consistent estimator and often has better MSE

Incremental Monte Carlo (MC) On Policy Evaluation

After each episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots$ as return from time step t onwards in ith episode
- For state s visited at time step t in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Update estimate

$$V^{\pi}(s) = V^{\pi}(s) \frac{N(s)-1}{N(s)} + \frac{G_{i,t}}{N(s)} = V^{\pi}(s) + \frac{1}{N(s)}(G_{i,t} - V^{\pi}(s))$$

Incremental Monte Carlo (MC) On Policy Evaluation, Running Mean

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For state s visited at time step t in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Update estimate

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

- $\alpha = \frac{1}{N(s)}$: identical to every visit MC
- $\alpha > \frac{1}{N(s)}$: forget older data, helpful for non-stationary domains

Check Your Understanding: MC On Policy Evaluation

Initialize
$$N(s) = 0$$
, $G(s) = 0 \ \forall s \in S$ $\bigvee "(s) = O \ \forall S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- For each state s visited in episode i
 - For **first or every** time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Example:

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma \equiv 1$ any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state?

$$V(s_i) = (V(s_i) = |V(s_3) = |V(s_4) = 0) |V(s_5) = 0$$
 $V(s_6) = 0$
 $V(s_6) = 0$

Every visit MC estimate of s₂?

 $V(s_2) = 1$

•

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

= Expectation

□ = Terminal state

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

MC updates the value estimate using a same of the return to approximation of the return to approximation.

= Expectation

□ = Terminal state

Monte Carlo (MC) Policy Evaluation Key Limitations

- Generally high variance estimator
 - Reducing variance can require a lot of data
- Requires episodic settings
 - Episode must end before data from that episode can be used to update the value function

Monte Carlo (MC) Policy Evaluation Summary

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest) or reweighted empirical average (importance sampling)
- Updates value estimate by using a sample of return to approximate the expectation
- No bootstrapping
- Converges to true value under some (generally mild) assumptions

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Temporal Difference Learning

- "If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning."
 Sutton and Barto 2017
- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Bootstraps and samples
- Can be used in episodic or infinite-horizon non-episodic settings
- ullet Immediately updates estimate of V after each (s,a,r,s') tuple

Temporal Difference Learning for Estimating V

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Recall Bellman operator (if know MDP models)

$$B^{\pi}V(s) = r(s,\pi(s)) + \gamma \sum_{s' \in S} p(s'|s,\pi(s))V(s')$$

 In incremental every-visit MC, update estimate using 1 sample of return (for the current ith episode)

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(\mathcal{C}_{\bullet} V^{\pi}(s))$$

• Insight: have an estimate of V^{π} , use to estimate expected return

$$V^{\pi}(s) = V^{\pi}(s) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s))$$

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2019 32 / 62

Temporal Difference [TD(0)] Learning

- ullet Aim: estimate $V^\pi(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- Simplest TD learning: update value towards estimated value $\sum_{s, \ p \in s'} |s_s| \leq \sqrt{\underline{r}(s_t)}$ $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] V^{\pi}(s_t))$

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

TD target

 $\sim \text{Var}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$

TD error:

$$\delta_t = r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

Temporal Difference [TD(0)] Learning Algorithm

```
Input: \alpha
Initialize V^{\pi}(s) = 0, \forall s \in S
  oop \pi(S_t)
• Sample tuple (s_t, a_t, r_t, s_{t+1})
Loop
```

- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]} V^{\pi}(s_t))$ TD target

Check Your Understanding: TD Learning

Input:
$$lpha$$

Initialize $V^\pi(s)=$ 0, $orall s\in S$
Loop

$$V(s_3) = 0$$
 $s_3 a_1 0 s_2$
 $V(s_2) = 0$ $s_2 a_1 0 s_2$
 $V(s_2) = 0$ $s_2 a_1 0 s_2$
 $V(s_1) = 0$ $s_2 a_1 0 s_2$

• Sample **tuple**
$$(s_t, a_t, r_t, s_{t+1})$$

•
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{t+1} - V^{\pi}(s_t))$$

Example:

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- Every visit MC estimate of V of s2? 1
- TD estimate of all states (init at 0) with $\alpha = 1$?

Temporal Difference Policy Evaluation

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s_t))$$

= Expectation

□ = Terminal state

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
 - Given off-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Check Your Understanding: For Dynamic Programming, MC and TD Methods, Which Properties Hold?

- Usable when no models of current domain
- Handles continuing (non-episodic) domains
- Handles Non-Markovian domains Consistant
 - Converges to true value in limit ¹ (Markov)
 - Unbiased estimate of value

¹For tabular representations of value function. More on this in later lectures

Some Important Properties to Evaluate Policy Evaluation Algorithms

- Usable when no models of current domain
 - DP: No MC: Yes TD: Yes
- Handles continuing (non-episodic) domains
 - DP: Yes MC: No TD: Yes
- Handles Non-Markovian domains
 - DP: No MC: Yes TD: No
- Converges to true value in limit ²
 - DP: Yes MC: Yes TD: Yes
- Unbiased estimate of value
 - DP: NA MC: Yes TD: No

²For tabular representations of value function. More on this in later-lectures

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Bias/variance characteristics
- Data efficiency
- Computational efficiency

Bias/Variance of Model-free Policy Evaluation Algorithms

- Return G_t is an unbiased estimate of $V^{\pi}(s_t)$
- ullet TD target $[r_t + \gamma V^\pi(s_{t+1})]$ is a biased estimate of $V^\pi(s_t)$
- But often much lower variance than a single return G_t
- Return function of multi-step sequence of random actions, states & rewards
- TD target only has one random action, reward and next state
- MC
 - Unbiased
 - High variance
 - Consistent (converges to true) even with function approximation
- TD
 - Some bias
 - Lower variance
 - TD(0) converges to true value with tabular representation
 - TD(0) does not always converge with function approximation

s_1	<i>S</i> ₂	s_3	S_4	s_5	<i>s</i> ₆	S ₇
$R(s_1) = +1$ Okay $Field\ Site$	$R(s_2) = 0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_5) = 0$		$R(s_7) = +10$ Fantastic Field Site

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- Every visit MC estimate of V of s_2 ? 1
- ullet TD estimate of all states (init at 0) with lpha=1 is $[1\ 0\ 0\ 0\ 0\ 0]$
- TD(0) only uses a data point (s, a, r, s') once
- Monte Carlo takes entire return from s to end of episode

Batch MC and TD

- Batch (Offline) solution for finite dataset
 - Given set of *K* episodes
 - Repeatedly sample an episode from K
 - Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0 × r
 - B,1 (observed 6 times)
 - B.0

(s, a, r, s')
$$= (-\alpha)V + (s, a, r, s')$$

$$\mathcal{U}(\text{estimen})$$

are
$$V(A)$$
, $V(B)$! AC estimate
$$V(B) = \frac{3}{4} = \frac{6}{8}$$

$$TD \qquad V(B) = \frac{6}{8} = \frac{3}{4}$$

$$MC \qquad TD$$

$$V(A) = 0 \qquad \frac{3}{4}$$

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - B, 0
- V(B) = 0.75 by TD or MC
- What about V(A)?

Batch MC and TD: Converges

- Monte Carlo in batch setting converges to min MSE (mean squared error)
 - Minimize loss with respect to observed returns
 - In AB example, V(A) = 0
- TD(0) converges to DP policy V^{π} for the MDP with the maximum likelihood model estimates
 - Maximum likelihood Markov decision process model

$$P(B(A) = f$$

$$t+1 = s')$$

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

$$\text{pute } V^{\pi} \text{ using this model}$$

- Compute V^{π} using this model
- In AB example, V(A) = 0.75

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Data efficiency & Computational efficiency
- In simplest TD, use (s, a, r, s') once to update V(s)
 - \bullet O(1) operation per update
 - In an episode of length L, O(L)
- In MC have to wait till episode finishes, then also O(L)
- MC can be more data efficient than simple TD
- But TD exploits Markov structure
 - If in Markov domain, leveraging this is helpful

Alternative: Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

ullet Compute V^π using MLE MDP 3 (e.g. see method from lecture 2)

 $^{^{3}}$ Requires initializing for all (s, a) pairs

Alternative: Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

- Compute V^{π} using MLE MDP ⁴ (e.g. see method from lecture 2)
- Cost: Updating MLE model and MDP planning at each update $(O(|S|^3)$ for analytic matrix solution, $O(|S|^2|A|)$ for iterative methods)
- Very data efficient and very computationally expensive
- Consistent
- Can also easily be used for off-policy evaluation

s_1	<i>s</i> ₂	S ₃	S_4	s_5	s ₆	<i>S</i> ₇
$R(s_1) = +1$ Okay $Field\ Site$	$R(s_2)=0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_5) = 0$		$R(s_7) = +10$ Fantastic Field Site

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- Every visit MC estimate of V of s_2 ? 1
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1\ 0\ 0\ 0\ 0\ 0]$
- What is the certainty equivalent estimate?

Some Important Properties to Evaluate Policy Evaluation Algorithms

- Robustness to Markov assumption
- Bias/variance characteristics
- Data efficiency
- Computational efficiency

Summary: Policy Evaluation

- Dynamic Programming
- Monte Carlo policy evaluation
 - Policy evaluation when we don't have a model of how the world works
 - Given on policy samples
 - Given off policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
 - Given off-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

MC Off Policy Evaluation

- Sometimes trying actions out is costly or high stakes
- Would like to use old data about policy decisions and their outcomes to estimate the potential value of an alternate policy

Monte Carlo (MC) Off Policy Evaluation

- Aim: estimate value of policy π_1 , $V^{\pi_1}(s)$, given episodes generated under behavior policy π_2
 - $s_1, a_1, r_1, s_2, a_2, r_2, \dots$ where the actions are sampled from π_2
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- ullet Have data from a different policy, behavior policy π_2
- If π_2 is stochastic, can often use it to estimate the value of an alternate policy (formal conditions to follow)
- Again, no requirement that have a model nor that state is Markov

Monte Carlo (MC) Off Policy Evaluation: Distribution Mismatch

• Distribution of episodes & resulting returns differs between policies

Importance Sampling

- Goal: estimate the expected value of a function f(x) under some probability distribution p(x), $\mathbb{E}_{x \sim p}[f(x)]$
- Have data x_1, x_2, \dots, x_n sampled from distribution q(s)
- Under a few assumptions, we can use samples to obtain an unbiased estimate of $\mathbb{E}_{x \sim q}[f(x)]$

$$\mathbb{E}_{x \sim q}[f(x)] = \int_{x} q(x)f(x)$$

Importance Sampling (IS) for Policy Evaluation

• Let h_i be episode j (history) of states, actions and rewards

$$h_j = (s_{j,1}, a_{j,1}, r_{j,1}, s_{j,2}, a_{j,2}, r_{j,2}, \dots, s_{j,L_j(terminal)})$$

Importance Sampling (IS) for Policy Evaluation

• Let h_i be episode j (history) of states, actions and rewards

$$h_j = (s_{j,1}, a_{j,1}, r_{j,1}, s_{j,2}, a_{j,2}, r_{j,2}, \dots, s_{j,L_j(terminal)})$$

$$p(h_{j}|\pi, s = s_{j,1}) = p(a_{j,1}|s_{j,1})p(r_{j,1}|s_{j,1}, a_{j,1})p(s_{j,2}|s_{j,1}, a_{j,1})$$

$$p(a_{j,2}|s_{j,2})p(r_{j,2}|s_{j,2}, a_{j,2})p(s_{j,3}|s_{j,2}, a_{j,2}) \dots$$

$$= \prod_{t=1}^{L_{j}-1} p(a_{j,t}|s_{j,t})p(r_{j,t}|s_{j,t}, a_{j,t})p(s_{j,t+1}|s_{j,t}, a_{j,t})$$

$$= \prod_{t=1}^{L_{j}-1} \pi(a_{j,t}|s_{j,t})p(r_{j,t}|s_{j,t}, a_{j,t})p(s_{j,t+1}|s_{j,t}, a_{j,t})$$

Importance Sampling (IS) for Policy Evaluation

ullet Let h_j be episode j (history) of states, actions and rewards, where the actions are sampled from π_2

$$h_j = (s_{j,1}, a_{j,1}, r_{j,1}, s_{j,2}, a_{j,2}, r_{j,2}, \dots, s_{j,L_j(terminal)})$$

$$V^{\pi_1}(s) pprox \sum_{j=1}^n rac{p(h_j|\pi_1,s)}{p(h_j|\pi_2,s)} G(h_j)$$

Importance Sampling for Policy Evaluation

- Aim: estimate $V^{\pi_1}(s)$ given episodes generated under policy π_2
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π_2
- Have access to $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π_2
- Want $V^{\pi_1}(s) = \mathbb{E}_{\pi_1}[G_t|s_t = s]$
- IS = Monte Carlo estimate given off policy data
- Model-free method
- Does not require Markov assumption
- Under some assumptions, unbiased & consistent estimator of V^{π_1}
- Can be used when agent is interacting with environment to estimate value of policies different than agent's control policy
- More later this quarter about batch learning

Today's Plan

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation when don't have a model of how the world works
- Next Time:
 - Control when don't have a model of how the world works