Férmions de Majorana

Um estudo inicial

Mardônio França

Orientação : Dr. Carlos Alberto Almeida

física ufc

sumário

anedota

antecedentes históricos

mec quântica e relatividade restrita

equação de dirac

formulação de majorana

neutrinos

fios quânticos

anedota

- 1:

Existe na natureza partículas de Majorana?

anedota

- 1:

Existe na natureza partículas de Majorana?

- 2:

anedota

- 1:

Existe na natureza partículas de Majorana?

- 2:

O que aconteceu com Majorana depois da sua viagem de navio de Palermo a Nápoles?

antecedentes históricos

Linha do Tempo

1900	1905	1924	1925	1925	1926	1926	1928	1937
Físicos Teóricos								
Planck	Einstein	De Broglie	Pauli	Heisenberg	Schrodinger	Fermi	Dirac	Majorana
Conceitos								
Quanta	Efeito Fotoelétrico	Dualidade Onda-Matéria	Spin	Mecânica Matricial	Mecânica Ondulatória	Férmions	Quântica Relativ.	Férmions de Majorana

mecânica quântica

alguns postulados

O **estado** é representado por uma função complexa da posição ou do momento linear de cada partícula que compõe o sistema.

É possível representar o **estado** por um vetor num **espaço vetorial complexo**.

O estado de um sistema físico é definido pelo conjunto de todas as informações que podem ser extraídas desse sistema ao se efetuar alguma medida.

relatividade restrita

postulados

- 1º O princípio da Relatividade: As Leis Físicas devem ser as mesmas em quaisquer referenciais inerciais.
- **2° A Constância da Velocidade da Luz:** A velocidade da luz no vácuo tem o mesmo valor, quando medida a partir de qualquer referencial inercial. Esse valor independe da velocidade do observador ou da fonte emissora de Luz.

equação de dirac \ proposta Hamiltoniano

$$H = \vec{\alpha} \cdot (-i\nabla) + \beta m$$

equação de dirac \ proposta Hamiltoniano

$$H = \vec{\alpha} \cdot (-i\nabla) + \beta m$$

$$i\frac{\partial \Psi}{\partial t} = [\vec{\alpha} \cdot (-i\nabla) + \beta m]\Psi$$

equação de dirac \ relatividade / quântica

$$(\vec{\alpha} \cdot \vec{p} + \beta m)(\vec{\alpha} \cdot \vec{p} + \beta m)\Psi = [p^2 + m^2]\Psi$$

Equação de Dirac

Na mecânica quântica, equação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron.

$$(i\gamma^{\mu}\partial_{\mu}-m)\Psi=0$$

equação de dirac

Consequências

- Spin

- Antipartícula

matrizes de pauli

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij}$$

representação de Dirac-Pauli

$$\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 0 & \sigma \\ -\sigma & 0 \end{pmatrix}$$

$$\gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

representação supersimétrica

$$\beta_s = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\alpha_s = \begin{pmatrix} 0 & \sigma \\ -\sigma & 0 \end{pmatrix}$$

$$(\gamma_5)_s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

representação de Weyl

$$\beta_w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\alpha_w = \begin{pmatrix} \sigma & 1 \\ 0 & -\sigma \end{pmatrix}$$

$$(\gamma_5)_w = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

representação de Majorana

$$\beta_m = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

$$(\alpha_m)_{1,3} = \begin{pmatrix} \sigma_{1,3} & 0\\ 0 & -\sigma_{1,3} \end{pmatrix}$$

$$(\alpha_m)_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$(\gamma_5)_m = \begin{pmatrix} 0 & \sigma_2 \\ \sigma_2 & 0 \end{pmatrix}$$

Majorana \ Heisenberg [núcleo atômico]

A primeira proposta para explicar a estabilidade do núcleo por meio de uma força atrativa mais intensa que a força repulsiva eletromagnética foi feita de forma independente pelos físicos **Dimitri Iwanenko**, da Rússia, **Wener Heisenberg**, da Alemanha e Ettore Majorana, da Itália, quando, em 1932, propuseram que o núcleo apresentava seus componentes (prótons e nêutrons) como partículas únicas chamadas núcleons.

o Majorana viu passar o nêutron

- Foi descoberto pelo físico inglês James Chadwick em 1932, que recebeu o Prêmio Nobel de Física em 1935 por essa descoberta

- Irene Curie (1897-1956), filha de Marie Curie, e seu marido Frederic Joliot (1900-1958) realizaram, no ano de 1934, experimentos de transmutação artificial, no quais bombardearam o alumínio $_{13}^{27}$ Al com partículas alfa (24 α) e conseguiram obter um isótopo do fósforo ($_{15}^{30}$ P) e um nêutron.

Equação de Dirac

Majorana analisou a equação de Dirac

$$(i\gamma^{\mu}\partial_{\mu}-m)\Psi=0$$

Majorana ao investigar a Equação de Dirac analisou que resultado encontraria se a equação tivesse apenas soluções reais.

Equação de Dirac

Majorana analisou a equação de Dirac

$$(i\gamma^{\mu}\partial_{\mu}-m)\Psi=0$$

Majorana ao investigar a Equação de Dirac analisou que resultado encontraria se a equação tivesse apenas soluções reais.

Nesta situação a partícula seria igual a sua anti-partícula.

operação de carga

Realizando operação de conjugação de Carga, para Férmions de Majorana, a seguinte relação

$$(\psi_R)^{(c)} = \psi_L$$

operação de carga

ou seja, o Ψ'Left Hand' é igual ao Ψ'Right Hand'

$$(\psi_R)^{(c)} = \psi_L$$

operação de carga

$$\psi^{(C)} = C\psi^*$$

onde C é uma matriz unitária 4×4 que satizfaz $C^{\dagger}\gamma^{\mu}C = -(\gamma^{\mu})^*$ com ψ sendo o espinor de Majorana, e L e R, representando a helicidade dos espinores.

neutrinos

Experimento Double Chooz

Este experimento se dedica a medir oscilações de neutrinos com precisão jamais atingidas, ao observar antineutrinos produzidos num reator nuclear próximo.

Apesar de esta ser a interpretação corrente, alguns cientistas acreditam que não exista um antineutrino, mas que os neutrinos são suas próprias antipartículas

fios quânticos

- Em Física da matéria condensada, modos de Majorana são quasipartículas que representam suas próprias anti-quasipartículas, ou seja, são descritos por uma superposição equivalente de estados de **elétrons** e **buracos**
- Este fato torna natural a procura destes modos em sistemas supercondutores, onde as funções de onda das quasipartículas de Bogoliubov possuem componentes de partícula e buraco como graus de liberdade igualmente relevantes

fios quânticos

- A forma mais comum de acoplamento em supercondutores é do tipo **onda-s**, onde os pares de Cooper são formados de pares de elétrons num estado singleto
- modos de Majorana isolados podem ser produzidos em superfícies de supercondutores de **onda-p**, nos quais a função de onda possui s = 1, o que significa que os pares de Cooper são formados por elétrons num estado tripleto
- Esta forma de acoplamento foi prevista para o estado fundamental do supercondutor $Sr_2 RuO_4$ (altamente sensível à desordem)

bibliografia

[1] Lima 2010 - Mecanismos de Geração de Massa para Neutrinos - Dibartolomei A. P. de Lima Dissertação de Mestrado, Defesa apresentada na Universidade Federal da Paraíba como requisito parcial para a obtenção do título de Mestre em Física João Pessoa, PB 2010

[2] Silva 2015 Férmions de Majorana em fios quânticos supercondutores topológicos - Joelson Fernandes Silva Technical Report https://www.researchgate.net/publication/304954722 Uberlândia, MG, 2015

bibliografia

[[3] Wilczek 2009 - Majorana Returns - Frank Wilczek . Em: Nature Physics 5, 614–618 (2009) (2009).

[4] Grasso 2017 Ettore Majorana: un breve sogno tra destino e metafora Mario Salvatore Grasso

- Editora Youcanprint 2017, 44 páginas, ISBN-10 8892641859, ISBN-13 978-8892641853

[5] Morcelle 2006 - Ettore Majorana: O Drama de Consciência de um Jovem Cientista V. Morcelle , V. Campbell , O. A. P. Tavares , N. V. Vugman http://cbpfindex.cbpf.br/publication_pdfs/CS00406.2006_07_27_14_09_47.pdf - acessado em 19/08/2021

bibliografia

[7] Kitaev 2013 - Yu Kitaev 2013 Physcs - USP. 44 131. Em: Physics - Uspekhi (2013)

[8] The Dirac Equation - Bernd Thaller 1992 - Berlin Heidelberg New York - Spring - Verlag - ISBN 3 -540-54883-1

WHAŢIF

se Majorana não tivesse desaparecido?