Abstract

Disruptive innovation in higher education has garnered significant attention from policymakers and business interests alike. However, how technological innovation diffuses across various institutional types over time is not well understood. This paper employs hazard modeling to assess when and what factors contributed to the early adoption of Massive Open Online Courses to begin to understand variations in institutional response to disruptive innovations. I use a newly created dataset that combines data from the National Center for Education Statistics' Integrated Postsecondary Education Data System (n=3,826) with a publicly available MOOCs dataset. Controlling for time, results suggest prestigious and wealthy colleges have an estimated risk about 2.3 times higher of adopting MOOCs compared to poor or low-prestige schools, while being public or private did not seem to make a significant difference.

MOOCs were most likely to be adopted during 2013, about two years after the first MOOC was offered.

Introduction

The merits of whether technological disruptors of higher education are an effective solution to improved efficiency and productivity have been fiercely debated in recent years (Bass, 2012; C. Christensen, 2015; C. M. Christensen & Eyring, 2011; Christensen, Horn, Caldera, & Soares, 2011; Hixon, 2014; Meisenhelder, 2014). This debate continues to influence the direction of education policy (Yuan & Powell, 2013), and the roles of the private sector in higher education and related products like Massive Open Online Courses (MOOCs), Competency Based Education (CBE), or microcredentialing in the delivery of higher education (Mintz, 2014).

A cadre of disruptors, or tools that are designed to transform the whole postsecondary education system such that education is produced more efficiently and at a lower cost, are an emergent phenomenon (C. Christensen, 2015; Stack, 2014). Technological disruptors have garnered substantial support from the White House (Carey, 2013; Ferenstein, 2013) to well known higher education officials at universities such as Yale and Princeton (Bowen, 2015; The Economist, 2015). Although the types of disruptors rapidly change (Butin, 2015), the volume of reports discussing any disruptor suggests that these types of technological innovations will continue and increasingly impact US higher education (Levine, 2015).

To date, research on the impacts of disruptors on higher education focuses mostly on the impacts on student learning (Anderson, Boyles, & Rainie, 2012; Jaggars, 2014; Markov, 2013; Porto, 2013; Selingo, 2013; Tamim, Bernard, Borokhovski, Abrami, & Schmid, 2011). There appears to be broad consensus that new innovations intended to transform traditional education from campus-based to digital-based do not positively impact student learners, particularly those who need greater academic support (Jaggars, 2014; Parr, 2013; Stein, 2013).

Despite the prevalence of studies of disruptive technologies on student learning outcomes, only a few studies examine the impact of disruptive technologies of institutional behavior, including which types of institutions adopt these technologies and their goals (Derousie, 2014; Hollands & Tirthali, 2014; Yuan & Powell, 2013). Other research rooted in policy and the politics of higher education demonstrates the need to focus on institutional behavior around adopting and implementing new reforms (Dougherty & Reddy, 2013; Mettler, 2014; Slaughter & Leslie, 1997; Slaughter & Rhoades, 2004). For example, a large body of research demonstrates that decreases in state appropriations have lead to the privatization of higher education, which has shown to have the following unintended impacts on institutional performance: a steady increase in a restriction of admissions of students who require remedial assistance (Zusman, 2005; Ehrenberg, 2006); narrowing of academic mission (Lieberwitz, 2005); redistribution of institutional funds from less marketable areas to more marketable areas (e.g. from humanities to the biosciences) (Slaughter & Leslie, 1997); increased supply of instructors to match increased student enrollment, but a decline in tenure track opportunities to cut costs (Ehrenberg & Zhang, 2007). These institutional decisions impact the public by diminishing the capacities of public universities and colleges to serve low and moderate income Americans (Ehrenberg, 2006; Mettler, 2014). Other research shows that state and federal policy designed to increase accountability results in restriction of student services, institutional mission, and student admissions (Lahr et al., 2014). And research estimating the impacts of political favoritism for for-profit colleges has shown to significantly disadvantage open-access institutions (Mettler, 2014).

In almost certain terms, higher education must innovate to address the ever growing demand for a college degree at a reduced cost and to extract itself from the "crisis" it is so often

associated with (Carey, 2015; C. M. Christensen & Eyring, 2011; Dillon & Carey, 2009; Ebersole, 2014; Ferlie, Musselin, & Andresani, 2008). However, as prior research has demonstrated, adverse institutional responses have resulted from external pressures to address issues of accountability and decreased funding. This paper takes advantage of the rapid expansion of one recent technological innovation, Massive Open Online Courses (MOOCs) to start the empirical work needed to build the foundation for understanding how and when colleges and universities respond to the introduction of a disruptive innovation into its sphere. This paper employs a longitudinal quantitative analysis using a new administrative data set to investigate when colleges and universities first adopted MOOCs and what factors make certain colleges or universities more likely to adopt MOOCs.

Putting MOOCs into Context

MOOCs, designed to increase efficiency and productivity, were introduced in 2011 to avail students of free, online courses often provided by elite, US research institutions (Pappano, 2012). More than 500 institutions offer MOOCs, which combined offer more than 4, 200 courses to more than 35 million students worldwide (Shah, 2015). As fully online courses that are usually free of charge, non-credit-bearing and open to the public, MOOCs present an alternative to location-bound, proprietary forms of campus-based learning (Mazoue, 2013). MOOCS saw exponential growth in enrollment since their beginnings (Shah, 2015). The founder of the MOOC aggregator site Class Central, Dhahwal Shah, noted that by winter 2011, Coursera, the largest MOOC provider, had enrolled over 1.7 million students in more than 200 courses from 30 plus universities. By fall of 2012, edX the joint start-up from MIT and Harvard registered more than 370,000 students in its first official course (Pappano, 2012; Roth, 2012). Dr. Anant Agarwal, the president of edX, predicted that in just one year, campuses would award students credit for

edX certificates and eventually treat MOOC certificates as they currently treat AP coursework (ibid). At the close of 2015, more than 35 million students had signed up for at least one MOOC since 2011 and more than 550 colleges and universities world wide had begun to offer their own MOOCs via one of the emergent platform providers (Shah, 2015).

Of the works that examine institutional implementation or adoption of MOOCs, none to my knowledge have used empirical or theoretical frameworks to examine why or when colleges and universities decide to adopt MOOCs (Bowen, 2015; C. Christensen, 2015; Selingo, 2013). Only a few studies have explored why some institutions adopt MOOCs while others do not (Hollands & Tirthali, 2014; Yuan & Powell, 2013). Hollands and Tirthali (2014) found that institutions adopt MOOCs to maintain brand recognition, improve institutional efficiency, and increase revenue. A national survey by Allen and Seaman (2013) showed that public universities were more likely to offer MOOCs than were private and for-profit schools, which were more likely to be in the planning stages. Further, they show that large universities (with more than 15,000 students) were more likely to offer MOOCs; and that research/doctoral universities were almost twice as likely as other institutions to adopt MOOCs.

According to the popular and scholarly literature, MOOCs are a very controversial innovation in higher education (Rhoads, 2015; Wellen, 2013; CFHE, 2013). Lawmakers and political leaders want to control the spiraling public and private costs of enrolment increases, increased student debt, and anxiety related to the value of credentials (Cronin & Horton, 2009). Conversely, academics and theorists fear that online learning and its subsidiaries are manifestations of a neoliberal reform agenda of higher education where austerity and productivity are key (Jessop, 2012; Noble, 1998). Related to this last point, academics worry MOOCs as well as other online disruptors will further commoditize higher education, and

become "digital diploma mills" or the online analog to for-profit colleges, which have recently been investigated as a deceptive and exploitive industry (Fain, 2013; Smith, 2015). Additionally, decreases in state appropriations has meant a shrinkage of programs that are not able to be self-sufficient (e.g. the humanities) and/or increased partnerships with laboratories or corporations that oftentimes fund research departments conditional on the corporation's research agendas (Slaughter & Rhoades, 2004). Some fear the expansion of online learning could results in similar restriction or compromise important intangible qualities of higher education (Tilak, 2008), constrain faculty autonomy and research contributions from non-flagship universities (Benkler, 2008), or undermine the importance of academic community and strong governance needed in higher education (Bousquet, 2008; Delbanco, 2013).

Theories of Innovation in Higher Education

Higher education institutions are often perceived as highly resistant to change (Ansell, 2008; Diamond, 2006; Woodhouse, 2016). Yet the rapid uptake of MOOCs signals that higher education, however, does in fact change. Still, extant research on diffusion of innovations and argues institutional change needs additional rigorous research (Kezar & Eckel, 2002; Kezar & Eckel, 2004). Given this lack of research, this paper draws largely from the vast literature on innovation and diffusion rooted in political science and sociology to frame the study approach.

Political scientists have identified two main principles that drive the adoption of a new program or policy: *internal determinants* and *diffusion* (Berry & Berry, 1990, 2014). Internal determinants are political, economic, and social factors that move an organization to innovate. Diffusion of an innovation occurs when it is "communicated through certain channels over time among the members of a social system" (Rogers, 1983, p. 5). Hence, mechanisms of diffusion are interorganizational. Examples of common mechanisms of diffusion are *normative pressures*

(i.e., an institution adopts a policy because many organizations are adopting it); *imitation* (i.e., an institution adopts a policy because the perceived leader adopted it); and *competition* (i.e., an institution gains an economic advantage over competitors if it adopts a policy) (Berry & Berry, 2014; DiMaggio & Powell, 1983).

Diffusion scholars employ statistical models that use mechanisms of communication to justify why institutions emulate other institutions when adopting a policy (Berry & Berry, 2014). Often, they use event history analysis – a type of discrete-time hazard model – to identify when an even occurred and the factors associated with the first event as well as subsequent adoptions by neighboring states or districts (McLendon, Deaton, & Hearn, 2007; McLendon, Heller, & Young, 2005; Mintrom, 1997). The leader-laggard model assumes that certain institutions are leaders and that other institutions emulate them. This model incorporates multiple mechanisms; it makes the assumption that leadership is regional or national, if appropriate; and it assumes that the jurisdiction will take cues from one or more pioneers in its region when deciding to embrace a policy (Grupp & Richards, 1975; Rogers, 1983; Walker, 1969). This paper employs the leader-laggard model to frame the discussion and to select the internal determinants and associated mechanisms to estimate the odds that an institution will adopt a MOOC at a given point in time. Applying this theory, I focus on institutional prestige, institutional wealth, and whether the institution is publicly or privately controlled as the primary determinants because these are the elements that find the greatest support in the literature.

Key Measures of Innovation in Higher Education

Institutional prestige, also referred to as reputation, prestige, status, impression, stature and visibility, has not only been consistently linked to institutional change regardless of sector

(Cyert & March, 1963; DiMaggio & Powell, 1983; Rogers, 1983) but also to increased entrepreneurism in higher education (Clark, 2004; Goldman, Goldman, Gates, Brewer, & Brewer, 2004; Kezar, 2014; Marginson, 2006). Institutions with high levels of perceived prestige are those that command a global reputation for research, ability to produce PhD graduates, and an ingrained willingness to build on this research as a means for competing vigorously for more prestige and additional resources (Clark, 2004; Goldman et al., 2004)). Because organizations are resource dependent, they rely on improving or maintaining their perceived levels of prestige in order to secure critical sources of funding (Hearn, 1996). Measuring prestige, which is typically done using the Carnegie Classification or Barrron's selectivity index are highly controversial instruments (Kezar, 2013).

High levels of *institutional wealth* have also been found to be a strong predictor of institutional innovation (Damanpour, 1991; Mohr, 1969; Rogers, 1983), yet there is some discussion that the lack of resources also may lead organizations to change in order to become more efficient and cut costs (Schumpeter, 1934; Slaughter & Leslie, 1997). Everett Rogers the father of discourse on the diffusion of innovation, submits that organizational wealth may condition institutional change for either resource-rich or resource-poor institutions, generally less wealthy organizations will adopt an innovation last simply because they do not have the available resources to fund innovation or handle a loss (2003, p. 295).

A recent dissertation published in 2014, which examines the relationship between post secondary institutions and various innovations including MOOCs over a timespan of 25 years, does find evidence for a positive relationship between revenue and innovation (DeRousie, 2014). DeRousie finds that institutions that earned more revenue from tuition and fees compared to those who earned less had greater odds of adoption compared to institutions that charged less.

It is well known *innovation* strongly correlates with the *private sector* since commercial enterprises are required to be responsive to market pressures and to stay competitive (Cankar & Petkovsek, 2013; C. Christensen, 2015; West & Lu, 2009). In contrast, government agencies do not have to show a profit on their revenues and are not beholden to customers the way the commercial businesses are and therefore may be less likely to innovation. Additionally, because private entities are not regulated in the same ways as public organizations, they may enjoy higher degrees of autonomy, which is also strongly associated with innovation (Hartley, Sørensen, & Torfing, 2013).

Higher education institutions have been treated as if they were in the middle of the public-private continuum (Alpert, 1991; Berdahl, 1991; Birnbaum, 1991). Building on this, Kezar (2013) writes that higher education has benefitted from a degree of autonomy because no national ministry of higher education evolved and states have a tradition of giving the institutions their independence with very few local expectations. However, she goes on to note that different institutional types experience greater and lesser degrees of environmental independence (p. 65). For example, private institutions experience greater vulnerability to market forces, whereas public institutions tend be affected by state legislatures. Research on whether the noted emphasis on market forces has evened out public and private vulnerabilities to existing market forces.

Data and Method

Data Collection

Data for this study come from two independent data sets that I compiled. I used a subset of publicly available, administrative data from the federal National Center for Education Statistics, Institutional Post Secondary Education Data System (IPEDS) and combined these data with data from a website that aggregates key measures about MOOCs called Class Central (Class Central, 2016). IPEDS is a publicly available longitudinal data set with institutional data for

more than 7,000 colleges and universities in the United States (NCES, 2016). I used the following surveys collected for IPEDS for academic years 2010-11 through 2014-15: admissions, institutional characteristics, fall enrollment data, and graduation data.

Class Central provides an index of most of the MOOCs offered worldwide since their first occurrence in 2011. Data used from this site included course name, course description, course subject, course dates, course instructor, length of course, university or college that provides the course, and name of the technical platform provider or LMS (such as Coursera, edX, canvas.net, etc.). Because data from Class Central are not compiled in the traditional sense the way public data may be available, data collection from Class Central required using a web crawler to comb through or "crawl" a website with the desired data (Thornton, 2014). I, as the researcher, select the data I wish to use by "training" the crawler and then save the output in the appropriate form to then be read into statistical software. I used a freely available crawler called IMPORT.io (Import.io via www.import.io, 2016) to collect my data and then analyzed it using SPSS statistical software.

Since data from this website are collected by a third party from the MOOC providers, I interviewed the founder and CEO of Class Central, Dhawal Shah, to ensure data collection and data reliability and took a random sampling of courses to cross-examine them with the provider and institution websites to ensure the data matched.

To create the final data set, I merged two data sets using institutional names as the key matching variable. There was a 100 percent match rate between MOOC institutions and the IPEDS university and college identifiers. The analytic sample includes 3,825 nonprofit, Title IV–eligible two- and four-year institutions in the United States. The academic years (AY) examined include 2010–11 through 2014–15. One of the major contributions of this study is that this is the

first database of this kind to merge data for a higher education innovation with administrative postsecondary data; the emergent data set allows for many future analyses that can range in depth and breadth. Secondly, the data set can be expanded easily now that an algorithm exists for collecting MOOC data and because IPEDS data continue to be updated annually.

Measures

My primary dependent variable was a binary variable for MOOC adoption (1= yes; 0 = no). Since MOOCs are free and open courses that do not require students to have fulfilled any prerequisites to take the course, colleges and universities that offer online courses but also include admissions requirements or which are not free are not considered MOOC adopters. This study counts colleges and universities only as "adopters" if they began offering a MOOC starting from the beginning of the academic year 2011-2012 through the end of academic year 2014-15 (July 1, 2011-June 30, 2015), where academic years are those defined by IPEDS. In total, there were 140 colleges and universities that adopted MOOCs in this time period. Descriptive statistics are posted in Table 1 in the following section.

First, I use a log transformed measure of the college or university's yearly cash flow (*Incashflow*), which is calculated from total assets minus total liabilities and then log transformed in order to impose a normalized linear relationship to the outcome on this otherwise very skewed metric (Mertler & Vannatta, 2013).

Secondly, I included a variable that is a proxy measure for prestige based on the Carnegie rankings provided by IPEDs. Often researchers use Barron's selectivity index to estimate college and university prestige, which is a restricted NCES data set. I chose not to use this measure and instead relied on the publicly provided Carnegie ranking for two reasons. First, the Barron's index does not provide a rank for all colleges and universities in my study and secondly the data are restricted such that I cannot share my data with reviewers without prior consent from NCES.

The basic Carnegie ranking includes more than 10 subgroups that I simplified into a binary variable coded 1 for colleges with high levels of prestige approximated by using the Carnegie rankings (*prestige*).

The last variable of interest is *public*, which denotes whether a university is publicly or privately controlled.

Time-invariant variables include the size of institution (*instsize 2*), which denotes whether an institution is larger than 10,000 students and whether or not the institution is a four-year or two-year institution (four-year).

The number of periods examined is four and the number of total events included equal 140. I excluded international colleges and universities, which are subject to different political and economic influences as well as university systems that adopted MOOCs because they have different administration concerns that cannot be captured in my data set. I also excluded forprofit colleges because as of March 2014, there was only one for-profit that had adopted a MOOC in the dataset. Time invariant control measures include whether the institution is a four-year institution (1 = four-year, 0 = 2year) and the institutional size (1 = more than 10,000 students).

${\bf Empirical\ Strategy:\ Discrete-Time\ Hazard\ Modeling\ of\ Institutional\ Adoption\ of\ MOOCs\ as\ a\ Time-Varying\ Event}$

To address the question of whether prestige, public ownership, or wealth corresponded to an institution's increased risk of adopting a MOOC—I used discrete-time hazard models using logit regression (Singer & Willett, 2003; Allison, 1982). A review of the literature showed that a few political scientists have specifically targeted the diffusion of education policy solutions from state government to state government using discrete-time hazard modeling (McLendon, Deaton,

Hearn 2007; Mokher 2008; Doyle, 2006; Mintrom, 1997; McLendon et al 2005), but to my knowledge none have examined the diffusion of innovation between institutions themselves or outside of the government's purview. The application of a large national study using discrete-time hazard to model diffusion of innovation in higher education is one of the major contributions of this study.

Discrete-time hazard modeling is commonly used by social scientists to ascertain when and why an individual or group does something while another does not (Allison, 1982; Singer & Willett, 2003). The data are in the form of an event history, which is a record of when events occurred to a sample (Allison, 1982; Tuma and Hannan, 19878). For example, if a sample consists of women of childbearing age, each woman's event history might consist of the birthdates of her children (Allison 1982, p. 62). In this study, data are reported in long-form such that each institution's data is spread across multiple records where each record describes a specific time period (Singer & Willet, 2003, p.352). This is often referred to as the "person-period" data set, but in the case of the current paper is an "institution-period" data set. Because we are only concerned about the first "event" happening, the data set only grows in length and not width. In particular, records increase for each year until an institution adopts a MOOC; at this point, data stops being recorded for the individual (or institution).

Discrete-time hazard models make it possible to incorporate both time-varying and time invariant explanatory variables and allows for the impact of categorical predictors to be estimated by using log-linear approaches that are not well estimated using traditional ordinary least squares (OLS) (Allison, 1982). In this study, the time-varying predictors that have been linked to institutional innovation are *prestige* and *cashflow*; the variable *public*, conversely, is time invariant. As controls for the model, I use the size of the institution (*instsize2*) and whether

or not the institution is a four-year or two-year (*fouryear*). In addition to these types of variables, discrete-time hazard modeling also permits the inclusion of time effects within the equation. This means we can control for the discrete nature of time due to the fact that MOOCs data are only reported in large units of time (e.g. month and year) (Allison, 1982).

The discrete-time hazard model is useful for identifying the probability of an occurrence in a specific period of time, provided that the event has never occurred before (Singer & Willett, 2003). Specifically, the result called the *hazard* is the conditional probability that individual *i* will experience the event in time period *j*, given that he or she did not experience it in any earlier time period (Singer & Willett, 2003, p. 330). Conditionality is important because it ensures that the hazard represents the probability of event occurrence among those individuals *eligible* to experience the event occurrence in that time period -- the *risk set*. The hazard function results in maximum likelihood estimates of the discrete-time hazard function for the risk-set (Singer & Willett, 2003). In this study, the risk set comprises institutions that had never adopted MOOCs before and are therefore "at risk" of adoption.

One disadvantage of the discrete-time hazard modeling that is not an issue in OLS is bias introduced by censored data, which occurs when a researcher does not know an individual's event time (Singer & Willet, 2003; Allison, 1982). If an event time is never observed this is referred to as *right censoring* and is not as concerning as when an event time is not known because the beginning of time is not observed, referred to as *left censoring* (see Singer & Willett, 2003, p. 316-318). For practical purposes, in this study the beginning of time is 2011 and no event occurred before this time, eliminating any concern about left censoring. However, as illustrated in the results section many institutions have still not adopted MOOCs highlighting the high degree of right censoring.

Discrete-time hazard modeling is a common strategy for political scientists who investigate the diffusion of policy across states (e.g. Shilpan & Volden, 2008; Berry & Berry 1990; Mintrom, 1997). This study examines the diffusion of a technological innovation across higher education institutions, and while states are not the same as institutions of higher education, discrete-time hazard modeling seems an appropriate match to model diffusion. One technical advantage of this model is that it allows for a dichotomous outcome variable, the appropriate handling of data through censoring, and the ability to include the effect of time in the equation (Bowers, 2010).

Drawing from the recommendations of scholars of longitudinal analyses, the institution-level data set was converted into an institution-level data set, with *event* defined as the first institutional adoption MOOCs from academic year 2011-12 until the time when the latest institutional data is available from IPEDS, AY 2014-15. Institutions that had not adopted MOOCs by the end of the AY 2014-15 were censored from the data. No institutions were left censored.

The basic equation presented below is estimated with a cross-sectional time series logit model, and the results are presented as maximum likelihood estimates.

$$ADOPT_{i,t} = a_1D_1 + a_2D_2 + a_3D_3 + a_4D_4 + B_1(FOURYEAR)_{i,t} + B_2(INSTSIZE2)_{i,t}$$

$$+ B_3(PUBLIC)_{i,t} + B_4(PRESTIGE)_{i,t} + B_5(LNCASHFLOW)_{i,t}$$

In this equation, $ADOPT_{i,t}$ is the conceptual dependent variable (hazard rate), which are the odds that an institution i will adopt a MOOC in year t, given that the state has not adopted a MOOC the year prior. A constant $a_1D_1 - a_4D_4$ denotes each of the four time periods (AY 2011-12, 2012-13, 2013-14, 2014-15). FOURYEAR is a binary variable that indicates whether a the college or university is a four-year institution. INSTSIZE2 is a binary indicator for whether a school has a total

student enrollment that exceeds 10,000 students. *PUBLIC* is a binary variable that denotes whether an institution is public. *Prestige* is a binary measure based on Carnegie rankings for doctoral/research institution, where the top-ranked universities are research universities (Research I and Research II). *LNCASHFLOW* is a continuous measure of the fiscal health of an institution calculated by taking subtracting the total liabilities from total assets.

A discrete-time hazard model was fit to the data by estimating parameters for each time period and for each of the three variables using logistic regression (, 2010). As mentioned previously, because no institutions adopted MOOCs prior to 2011 making it so there were no intercept parameters for prior years, the beginning of time is 2011. As the literature suggests, the model begins by conducting a test of significance of multiple pseudointercepts for each time point, which effectively models the effect of time in the analysis of an institution's risk of adopting a MOOC (Singer & Willet, 2003; Bowers, 2010). Then the additional parameters are added to the model as β estimates, and then the model fit is assessed. Table 4 presents odds-ratios for seven discrete-time hazard models, as well as parameter estimates and significance levels, standard errors (in parentheses), the overall N of the institution-period data set at each time point and the tests of model goodness of fit, including -2 Log likelihood, chi square, and Cox & Snell pseudo R^2 .

Finally, as mentioned before, in the time since MOOCs first launched, there have been 140 instances of adoption (i.e. 140 events). That is, of the institutions included in this study, 140 began offering at least one MOOC between fall 2011 and summer 2015. This number is comparatively small compared to the total population of eligible MOOC adopters. The recommended guidelines for determining the minimum sample size required for survival analysis, a priori power analysis calculations assume a power of 0.8 (α =.05); however, no prediction rate

from the literature on the rate at which higher education institutions adopt a technological innovation has been established and so determining the power is beyond the scope of the paper.

Results

Descriptive Results

Table 1 presents the descriptive statistics for variables used in this study. On average, more colleges and universities have less than 10,000 students; there are more four-year than two year colleges; roughly half of the schools are public; fewer than 10 percent of the schools are highly prestigious, and there is very little variation about the mean in terms of available cash flow.¹

Table 1: Descriptive Statistics

	-	_		-	Std.
	N	Minimum	Maximum	Mean	Deviation
instsize2	3,825	0	1	.29	.454
fouryear	3,825	0	1	.65	.477
public	3,825	0	1	.49	.500
prestige	3,825	0	1	.07	.255
lncashflow	3,825	0	24.36	17.62	1.83
Valid N	3,825				
(listwise)					

A preliminary multiple regression was conducted to calculate the Mahalanobis distance to identify outliers and examine multiple collinearity among the model predictors (*instsize2*, *fouryear*, *public*, *prestige*, and *lncashflow*). Data screening led to the elimination of 4 cases, which exceeded the critical chi-square value (df = 9, critical chi-square criterion = 27.877, p < .001). Although not required in logistic regression, evaluation of linearity justified a natural log transformation of the only continuous variable in this study (*cashflow*) into *lncashflow*.

¹ Should the Ns be the same for this table? Some of these colleges do not report their financial data and so it is hard to get this total number. I'd have to go entirely with listwise deletion which would limit my sample. Please advise.

According to the results in the coefficients table, all tolerance statistics exceed .1, indicating there are no issues of multicollinearity (see Table 2).

Table 2: Coefficients^a

	Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics		
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	096	.011		-9.063	.000		
	d2	.008	.003	.034	3.156	.002	.671	1.491
	d3	.018	.003	.074	6.781	.000	.671	1.489
	d4	.013	.003	.055	5.095	.000	.673	1.485
	instsize2	.003	.003	.014	1.236	.217	.586	1.707
	fouryear	003	.003	015	-1.255	.209	.561	1.783
	public	008	.003	038	-2.976	.003	.493	2.030
	lncashflow	.005	.001	.095	8.747	.000	.673	1.486
	prestige	.063	.004	.164	15.925	.000	.741	1.349

a. Dependent Variable: event

The Lifetable (Table 3) summarizes the sample distribution of event occurrence. The data represent study findings, which tracked the adoption of Massive Open Online Courses of 3,825 colleges and universities over four years (2011-12 to 2014-15). This is a full-population study and no colleges closed during the study; however, 3,685 institutions were right censored at the end of the study. At the start of the study 100 percent of the colleges and universities had not adopted MOOCs; by the end of the study, 96 percent of colleges and universities still had not adopted any MOOC. The hazard rate, which is the conditional probability that a college or university will experience the event in a given time period, given that it did not experience it in any earlier time period, was the highest during year three (1.6 percent). In comparison, the survival rate, the cumulative risk associated with event occurrence at each period, was the lowest point in year three (97.4 percent).

Table 3: Life Table^a

		Number of	colleges and	Proportion of colleges and universities		
Year	Time Interval	That did not adopt MOOCs	That adopted MOOCs	Censored at the end of the year	That adopted MOOCs during the year	That did not adopt MOOCs during the year
0	[0,1)	3825	0	0	-	1.0000
2011	[1,2)	3825	7	0	0.0018	0.9982
2012	[2,3)	3818	32	0	0.0084	0.9898
2013	[3,4)	3786	59	0	0.0156	0.9744
2014	[4,5)	3727	42	3,685	0.0113	0.9634

a. Median survival time is 4.0

Figure 1 includes a graph of the hazard and survival curves for the sample. After the peak in year three, the figure on the left depicts a decline in the adoption of MOOCs since they initially entered the higher education landscape. Though we do not have enough years of data to confirm this, the trend in the data conjure Gartner's hype cycle – a five-step process of "initial trigger", "inflated expectations", and "trough of disillusionment" which precede more reportedly productive periods called the "slope of enlightenment" and "plateau of productivity", when the technology's broad applicability prompts widespread mainstream adoption (McPherson & Bacow, 2014; Gartner, 2015). In this case, it appears the initial period of innovation is analogous to the "innovation trigger." The following period characterized by a rapid increase is the "peak of inflated expectations," which is followed by a sizeable decrease that might be evidence of the beginning of the "trough of disillusionment."

Figure 1. Estimated hazard function (left) and estimated survival function (right) from study on the timing of adoption of post-secondary adoption of Massive Open Online Courses (MOOCs).

Analytic Results

Table 4 reports the logit results converted to odds ratios for seven discrete-time hazard models for the year the institution first adopted a MOOC, where D1-D4 are a set of time indicators representing each year of the model. Model A includes only the main effect of time; Model B includes the main effects of time plus *instsize2*; Model C includes the main effects of time plus *fouryear*; Model D includes the main effects of time *public*; Model E includes the main effects of time plus *lncashflow*, a measure of the total assets minus total liabilities; Model F includes the main effects of time plus *prestige*; and, Model G includes the main effects of time plus all the substantive predictors: *instsize2*, *fouryear*, *public*, *lncashflow*, and *prestige*.

Not accounting for any differences caused by the substantive predictors, Model A reports that the likelihood that an institution will adopt a MOOC increases from year one to year three, but then begins to taper in year four. For example, the estimated odds institutions will adopt MOOCs in year one is approximately .1 times higher compared to previous years but rises to 1.9

time higher in year three and then falls slightly to 1.4 times more likely in year four. These values are similar to those presented in the column which reports survival rates in the Lifetable (Table 3). The baseline for Model A is the entire sample since it does not include any substantive predictors.

Model B reports on the risk of MOOC adoption after introducing the first exogenous predictor, institutional size (instsize2) and the main effect of time. Similar to Model A, the results suggest an increase in the risk of MOOC adoption until after year three when the risk begins to decline slightly. In this group, the baseline for the α 's in this group is Instsize2 = 0. Colleges and universities that are larger, therefore, have an increased risk of adopting MOOCs compared to smaller colleges and universities. The estimated odds large colleges and universities (enrollment >= 10,000 students) will adopt MOOCs is almost eight times greater than small colleges and universities.

Model C reports that the risk of adopting MOOCs after introducing the substantive predictor *fouryear* (baseline *fouryear* = 0) to the main effect of time illustrates again a constant increase in the risk of adopting MOOCs until the end of year three but a decrease in year four. Controlling for the effects of time, the odds four year institutions adopt MOOCs is almost six times higher than two-year institutions to adopt MOOCs.

Model D shows the risk of adopting MOOCs after introducing the variable *public*, an indicator for whether the school is public versus private (baseline = 0), to the main effect of time. This variable is not statistically significant, suggesting there is no difference in the risk of adopting MOOCs between public and private colleges and universities.

Model E introduces the measure *prestige* to the main effect of time and reports that very prestigious universities (Research I and Research II colleges according to the Carnegie ratings)

have a risk 20 times higher than non-prestigious colleges and universities of adopt MOOCs, controlling for time. Again the risk for adoption increases with time until year four, at which point it stars to decrease.

Model F introduces the last substantive predictor, the logged cashflow variable (*Incashflow*) to the main effect of time. This model illustrates the same pattern of changes over time, but also shows that the estimated odds of first adopting a MOOC are approximately 6 times higher for colleges and universities with more positive cash flow than colleges and universities with presumably less disposable income.

Model G indicates that when all predictors are included that in addition to time being significant, the risk of adopting MOOCs is significantly higher for prestigious and financially well off colleges and universities compared to those that are not. Specifically, after controlling for time, prestigious colleges and universities that benefit from a higher, positive cash flow have an estimated risk of about 2.3 times higher of adopting MOOCs than less prestigious and poorer colleges and universities.

In addition to the coefficients presented in Table 4, there are a number of other values that can be used to analyze and understand how well the model fits the data. The log-likelihood is not really useful on its own but is useful for computing the deviance statistic, which is commonly used to assess model fit (Singer & Willett, 2003, p. 398). However, better modeling does result in increasing LL values for each added parameter, which is the case in my table. Deviance measures how much worse the model is in comparison to the best possible model that could be fit. That is, the better the fit of the model the smaller the deviance will be. In this case, Model G has the most parameters (6) and the smallest deviance (1016.63), while Model A has the fewest parameters (4) and the greatest deviance. However, Model D, which focuses on

whether a university is public is only marginally smaller (1405.41). When the difference in deviance is small compared to the critical chi-square value, researchers fail to reject the null hypothesis, which indicates the reduced model is not substantively worse than the less parsimonious model (i.e., the model with more parameters). Both the deviance-based hypothesis tests and the Wald-Chi Square statistics (df = 1, critical chi-square at p < .001 = 10.83) demonstrate the null model should be rejected in favor of the more parameterized models (see p. 398-399).

Because the LL statistic inevitably increases with each addition new parameter, we use the AIC and BIC to correct for this effect. The AIC and BIC essentially penalize the LL statistic for the number of parameters present in the model. When we cannot calculate the deviance for non-nested parameters we also use the AIC and BIC to assess the benefit of a fully saturated model. Model G has the smallest AIC and BIC values, suggesting that again Model G has the best fit of any of the other models even though it has the greater number of parameters (AIC = 1028.63; BIC = 1045.97).

Finally, the Cox & Snell R^2 is a rough indicator of the amount of variance explained by the model (Bowers, 2010). In logistic equations, it is well known that the R^2 is not a true approximation of the variance explained by the equation (Aldrich & Nelson, 1984). However, Model G appears to explain substantially more variance (97.1 percent) in the probability of an institution adopting MOOCs compared to other models which hover around 70 percent, providing further evidence that Model G is the best model on which to explain the patterns of MOOC adoption in the early years.

Table 4: Discrete-Time Hazard Models Fitted to the Year of First Adoption of Massive Open Online Courses (n = 3,825, $n \ events = 140$)

Open Online				,	N 115	M 115		
	Model A	Model B	Model C	Model D	Model E	Model F	Model G	
Parameter Estimates and Asymptotic Standard Errors								
D_1	0.002***	0.001***	0.000^{***}	0.001***	0.001***	0.000^{***}	0.000^{***}	
	(0.448)	(0.476)	(0.552)	(0.457)	(0.465)	(1.427)	(1.715)	
D_2	0.010^{***}	0.003***	0.002^{***}	0.009^{***}	0.004^{***}	0.000^{***}	0.000^{***}	
	(0.183)	(0.244)	(0.371)	(0.205)	(0.220)	(1.318)	(1.631)	
D_3	0.019^{***}	0.006^{***}	0.004^{***}	0.018^{***}	0.008^{***}	0.000^{***}	0.000^{***}	
	(0.134)	(0.207)	(0.349)	(0.161)	(0.174)	(1.284)	(1.610)	
D_4	0.014^{***}	0.005***	0.003***	0.013***	0.006^{***}	0.000^{***}	0.000^{***}	
	(0.157)	(0.222)	(0.359)	(0.181)	(0.191)	(1.285)	(1.609)	
instsize2		7.737***					1.501	
		(0.206)					(0.298)	
fouryear			5.972***				1.246	
			(0.346)				(0.406)	
public				0.824			0.885	
=				(0.175)			(0.216)	
prestige					20.146***		2.342***	
1 0					(0.183)		(0.286)	
lncashflow					, ,	2.962	2.323***	
v						(0.064)	(0.085)	
			0			(/	(******)	
Goodness-of-fit								
LL	-703.32	-642.21	-681.08	-702.71	-579.39	-519.04	-508.32	
Deviance	1406.63	1284.41	1362.15	1405.41	1158.77	1038.07	1016.63	
n parameters	4	5	5	5	5	5	9	
AIC	1414.63	1294.41	1372.15	1415.41	1168.77	1048.07	1028.63	
BIC	1426.19	1308.86	1386.60	1429.86	1183.22	1062.52	1045.97	
$Cox & Snell R^2$	0.719	0.722	0.720	0.719	0.725	0.727	0.971	
	0.719	01,722	0.720	01,15	0.725	0.727	0.57.1	
Deviance-based	Hypothesis To	ests						
H_0 : $\beta_{instsz} = 0$	J P 0 11 10 10 1	122.22***					_	
H_0 : $\beta_{\text{foury.}} = 0$		122.22	44.48***				_	
H_0 : $\beta_{\text{public}} = 0$			11.10	1.22			_	
H_0 : $\beta_{\text{prest.}} = 0$				1.22	247.86***		_	
H_0 : $\beta_{lncas} = 0$					247.00	368.56***	-	
11 ₀ . p _{lncas.} – 0			_			300.30	=	
Wald Hypothesis Tests								
• 1	16212	98.23***					1 055	
H_0 : $\beta_{instsz} = 0$		98.23	26.60***				1.855	
H_0 : $\beta_{\text{foury.}} = 0$			26.69***	1 221			0.29	
H_0 : $\beta_{\text{public}} = 0$				1.221	270 07***		0.32	
H_0 : $\beta_{prest.} = 0$					270.05***	200 20***	8.88	
H_0 : $\beta_{lncas.} = 0$						290.38***	97.96***	

[~]p <.10, *p <.05; **p <.01; *** p <.001

Discussion and Concluding Remarks

The results from Table 4 demonstrate that the most prestigious and wealthiest of universities are the most likely to adopt MOOCs. Specifically, universities with the highest distinction of research according to Carnegie rankings and those with positive cash flow are both associated with higher risks of adopting MOOCs compared to colleges and universities that are not Research I or Research II institutions or which are more financially constrained. There is no evidence supporting the claim that public institutions may be more likely to innovate than private colleges and universities, calling into question whether financial motivation plays a significant role in innovation to increase revenue. I also find that once cash flow and prestige are introduced into the model, the size of an institution and whether or not it is a four-year institution become non-significant. Finally, I also find that universities had the highest risk of adopting MOOCs in year three, after which the risk of adoption began to decline.

There are several implications for these findings. For one, that wealthier institutions have higher hazard rates than poorer institutions is not surprising; as the literature points out, it is these institutions that are the least risk averse because of their greater financial cushion.

Additionally, because MOOCs are quite expensive to produce, it may be that these wealthier institutions are the only organizations capable of producing them – even if poorer institutions were inclined to adopt MOOCs and market themselves to a global audience. Regarding the null finding for public universities, it is surprising indeed that there is no statistically significant result, either positive or negative. The privatization literature suggests that more market-oriented education organizations will be more innovative than those more heavily oriented to the public service mission. Extrapolating out from this theory, we would expect to find either lesser resourced public institutions have a higher rate of adoption compared to their private counterparts; or the opposite, private colleges and universities that have less regulatory oversight

and more autonomy to innovate.

These findings help to clarify what really happened in the initial frenzy of MOOCs. While the hype of MOOCs has receded somewhat in the media and critics and advocates have become more tempered in their reviews over the last year or so, the findings of this study suggest the early attention paid to their rapid rise and disruptive force in higher education may have been accelerated or exaggerated. The scale at which the innovation expanded is in fact quite small as is illustrated by the hazard rate of 1.6 percent during year three, the year with the highest risk associated with adoption. It is important to keep in mind that the majority of colleges and universities in the United States have not adopted MOOCs and the risk for adoption remains very small. Nonetheless, there was a noticeable and statistically significant trend associated with the diffusion of MOOCs at a very early point in their history. Some theorists suggest this may be an early indication of influential incremental change that could lead to sustained, transformative change in the future (Thelen & Mahoney, 2010).

Because of the nature of MOOCs and their novelty in higher education as well as our limited general understanding about transformative versus incremental change in higher education, there are many questions still unanswered by this study. What factors distinguish early adopters from late adopters? To what extent do these actions reflect institutional response to political and economic pressures environmental pressures to change? Or alternatively, were there inter-institutional politics that catalyzed or suppressed institutional adoption? What about the impacts of the external but rapidly developing higher education market on the decisions to adopt MOOCs or not? For example, as the market for STEM degrees continues to flourish, are colleges and universities more likely to offer STEM courses over humanities? With regards to looking toward the market for revenue replacement, what relationships do we see between for-

profit providers and different types of colleges and universities?

Establishing the initial rates of adoption as well as the influence of some substantive political and economic predictors of institutional change are first steps to understanding higher education response to the emergence of a technological innovation. Next steps in the study will be to interact these terms to generate better nuanced explanations of difference in innovation across institution type.

Comment [AJB1]: REVISION: This is an excellent revision.

There's a few formatting issues still throughout, with a few missing citations and some footnotes, etc that appear to be notes to me.

In looking at Table 2, I may have missed this in the last version, but I'm not sure what the standardized coefficients are. These should be odds ratios. So I'm not sure how the "beta" was calculated. The unstandardized are logits, or at least should be.

Also, Table 2 is not in APA format. Please see previous DTHM papers for correct APA format.

Table 4 has much of what you need though, and it's well formatted. A few issues though. One should not have 0 as a coefficient as you do here. I know that the probability is really low, but it's significant and so there's no way it's zero, which is what you're reporting with 0.000.

Overall though, this is an excellent revision.

Final grade on Midterm A+ (99%).

A

P

P E

N D

I

 \mathbf{X}

A

T A

В

L E

S

A N

D

F I

 $\mathbf{G} \\ \mathbf{U}$

R

E S

Figure 2. Histogram demonstrating normality of logged cash flow (lncashflow) variable.

A P P E N D I

В

S y n

X

&

O u t p u t

Syntax

- * Encoding: UTF-8.
- ** Lara Pheatt
- ** Purpose: Preliminary MOOCs Hazard Modeling for Bowers Midterm, Spring 2016
- ** Data used: Derived/hazmod_institution_period_clean.xlsx, originally cleaned in STATA
- ** Life Table, p. 327 of S & W, 2003. Chapter 10.

GET DATA /TYPE=TXT

/FILE='/Users/Lara/Dropbox/TC - General/PhD Ideas/Quant/Data/Derived/hazmod_institution_level_clean.txt' /DELCASE=LINE /DELIMITERS=","

```
/ARRANGEMENT=DELIMITED
/FIRSTCASE=2
/IMPORTCASE=ALL
/VARIABLES=
 id F3.0
 time F1.0
 censor F1.0.
CACHE.
Execute.
** Makes Life Table
procedure output outfile= '/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean1.txt'.
survival table = time
/interval = thru 4 by 1
/status = censor(0)
/write=tables.
** AUTHOR IMPORTANT TO READ & DO: edit hazard model in .txt to get it into spss
acceptable format --> hazmod_institution_level_clean2.csv
get data
/type = txt
/file = '/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean2.csv'
/delimiters = ","
/arrangement = delimited
/variables =
v1 f5.2
v2 f7.2
v3 f6.2
v4 f6.2
v5 f6.2.
execute.
save outfile '/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean3.sav'
/drop v4
/rename v1=year v2=begin v3=censored v5=left.
```

```
get file '/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean3.sav'.
compute p1 = left/begin.
do if casenum = 1.
compute p2 = 1.
else.
compute temp = lag(p2).
compute p2 = (1-p1)*temp.
format p1 p2 (f6.4) year begin left (f4.0) censored (f4.0).
end if.
if $casenum = 1 p1 =$sysmis.
list year begin left censored p1 p2.
save outfile '/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean4.sav'.
GGRAPH
 /GRAPHDATASET NAME="graphdataset" VARIABLES=year
MEAN(p1)[name="MEAN_p1"] MISSING=LISTWISE
  REPORTMISSING=NO
 /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
 SOURCE: s=userSource(id("graphdataset"))
 DATA: year=col(source(s), name("year"), unit.category())
 DATA: MEAN_p1=col(source(s), name("MEAN_p1"))
 GUIDE: axis(dim(1), label("Years of Non-Adoption of MOOCs"))
 GUIDE: axis(dim(2), label("Estimated hazard probability"))
 SCALE: linear(dim(2), include(0))
 ELEMENT: line(position(year*MEAN_p1), missing.wings())
END GPL.
GGRAPH
 /GRAPHDATASET NAME="graphdataset" VARIABLES=year
MEAN(p2)[name="MEAN_p2"] MISSING=LISTWISE
  REPORTMISSING=NO
 /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
 SOURCE: s=userSource(id("graphdataset"))
```

DATA: year=col(source(s), name("year"), unit.category())
DATA: MEAN_p2=col(source(s), name("MEAN_p2"))

GUIDE: axis(dim(1), label("Years of Non-Adoption of MOOCs"))

GUIDE: axis (dim (2), label ("Estimated survival probability"))

SCALE: linear(dim(2), include(0))
ELEMENT: line(position(year*MEAN_p2), missing.wings())

END GPL.

** Begin Chap 11 of S&W, 2003

GET DATA /TYPE=XLSX

/FILE='/Users/Lara/Dropbox/TC - General/PhD

Ideas/Quant/Data/Derived/hazmod_institution_period_clean.xlsx'

/SHEET=name 'Sheet1'

/CELLRANGE=full

/READNAMES=on

/ASSUMEDSTRWIDTH=32767.

EXECUTE.

FREQUENCIES

VARIABLES= id

/FORMAT=limit(10)

/statistics=stddev MINIMUM MAXIMUM MEAN MEDIAN MODE SKEWNESS SESKEW

KURTOSIS SEKURT

/HISTOGRAM NORMAL

/order= analysis .

execute.

FREQUENCIES

VARIABLES= lncashflow

/FORMAT=limit(10)

/statistics=stddev MINIMUM MAXIMUM MEAN MEDIAN MODE SKEWNESS SESKEW KURTOSIS SEKURT

/HISTOGRAM NORMAL

/order= analysis .

execute.

descriptives event instsize2 fouryear public prestige lncashflow.

- ** note that degree granting institutions are eliminated when I use listwise deletion.
- ** also note that I transformed cashflow to lncashflow when cleaning data in stata because it was not normally distributed.

crosstabs

/tables=period by event /format=avalue tables /statistics=chisq /cells=count row column total /count round cell.

** descriptives for event by lncashflow, binary outcome & continuous predictor = ttest

T-test

Groups= event (0,1) /missing=Analysis /variables=lncashflow /criteria=CI(.95).

** descriptives for event by lncashflow, binary outcome & binary predictors = chisquare

crosstabs

/tables=event by instsize2 /format=avalue tables /statistics=chisq /cells=count row column total /count round cel.

crosstabs

/tables=event by fouryear /format=avalue tables /statistics=chisq /cells=count row column total /count round cel.

crosstabs

/tables=event by public

/format=avalue tables

/statistics=chisq

/cells=count row column total

/count round cel.

crosstabs

/tables=event by prestige

/format=avalue tables

/statistics=chisq

/cells=count row column total

/count round cel.

** check for outliers

REGRESSION

/MISSING PAIRWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT id

/METHOD=ENTER lncashflow

/SAVE MAHAL.

EXAMINE VARIABLES=MAH_1

/PLOT BOXPLOT STEMLEAF

/COMPARE GROUPS

/STATISTICS DESCRIPTIVES EXTREME

/CINTERVAL 95

/MISSING LISTWISE

/NOTOTAL.

USE ALL.

COMPUTE filter_\$=(MAH_1 <= 27.877).

VARIABLE LABELS filter_\$ 'MAH_1 <= 27.877 (FILTER)'.

VALUE LABELS filter_\$ 0 'Not Selected' 1 'Selected'.

FORMATS filter_\$ (f1.0).

^{**} Drop outlier cases: # 12789, 12797, 13204, 14481

FILTER BY filter_\$. EXECUTE.

** Check for initial predictor significance, NEED HELP HERE: I don't understand why my values are significant in STATA but not in SPSS.

```
REGRESSION
```

/DESCRIPTIVES MEAN STDDEV SIG N

/MISSING PAIRWISE

/STATISTICS COEFF OUTS R ANOVA COLLIN TOL

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT event

/METHOD=ENTER d1 d2 d3 d4 instsize2 fouryear public lncashflow prestige

/SAVE MAHAL.

** Begin analysis for time using survival modeling

```
logistic regression var = event
```

/method = enter d1 d2 d3 d4

/method = enter d1 d2 d3 d4 instsize2

/method = enter d1 d2 d3 d4 fouryear

/method = enter d1 d2 d3 d4 public

/method = enter d1 d2 d3 d4 prestige

/method = enter d1 d2 d3 d4 lncashflow

/method = enter d1 d2 d3 d4 instsize2 fouryear public prestige lncashflow /origin.

** ALTERNATIVE CODE from UCLA website

** model a

logistic regression var = event /method = enter d1 d2 d3 d4 /origin.

** model b

logistic regression var = event

```
/method = enter d1 d2 d3 d4 instsize2
/origin.
** model c
logistic regression var = event
/method = enter d1 d2 d3 d4 fouryear
/origin.
** model d
logistic regression var = event
/method = enter d1 d2 d3 d4 public
/origin.
** model e
logistic regression var = event
/method = enter d1 d2 d3 d4 prestige
/origin.
** model f
logistic regression var = event
/method = enter d1 d2 d3 d4 lncashflow
/origin.
** model g
logistic regression var = event
/method = enter d1 d2 d3 d4 instsize2 fouryear public prestige lncashflow
/origin.
Output
** note that degree granting institutions are eliminated when I use listwise deletion.
* Encoding: UTF-8.
** Lara Pheatt
** Purpose: Preliminary MOOCs Hazard Modeling for Bowers Midterm, Spring 2016
** Data used: Derived/hazmod_institution_period_clean.xlsx, originally cleaned in STATA
```

```
** Life Table, p. 327 of S & W, 2003. Chapter 10.
GET DATA /TYPE=TXT
/FILE='/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean.txt'
/DELCASE=LINE
/DELIMITERS=","
/ARRANGEMENT=DELIMITED
/FIRSTCASE=2
/IMPORTCASE=ALL
/VARIABLES=
 id F3.0
 time F1.0
 censor F1.0.
CACHE.
Execute.
** Makes Life Table
procedure output outfile= '/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean1.txt'.
```

Survival Analysis

survival table = time /interval = thru 4 by 1 /status = censor(0) /write=tables.

Notes

Output Created Comments

28-MAR-2016 00:09:21

Input	Data	/Users/Lara/Dropbox/TC - General/PhD Ideas/Quant/Data/Derived/haz mod_institution_level_clean.t xt
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	3825
	Working Data File	
Missing Value	Definition of Missing	User-defined missing values
Handling		are treated as missing.
	Cases Used	Cases with missing values on a variable are excluded from any calculation involving that variable.
Syntax		survival table = time
·		/interval = thru 4 by 1
		/status = censor(0)
		/write=tables.
Resources	Processor Time	00:00:00.01
	Elapsed Time	00:00:00.00
File Saved	Life Table Output File	/Users/Lara/Dropbox/TC -
		General/PhD
		Ideas/Quant/Data/Derived/haz
		$mod_institution_level_clean 1.$
		txt

Survival Variable: time

Life Table^a

	_	Numbe	_	_	_	_			
	Numbe	r	Numbe	Numbe					
	r	Withdr	r	r of	Proport	Proport			
Interval	Enterin	awing	Expose	Termin	ion	ion			
Start	g	during	d to	al	Termin	Survivi			
Time	Interval	Interval	Risk	Events	ating	ng			
0	3825	0	3825.0	0	.00	1.00			
			00						
1	3825	0	3825.0	7	.00	1.00			
			00						
2	3818	0	3818.0	32	.01	.99			
			00						
3	3786	0	3786.0	59	.02	.98			
			00						
4	3727	3685	1884.5	42	.02	.98			
			00						

		I	Life Table ^a			
	-	Std. Error of	_		_	
	Cumulative	Cumulative				
	Proportion	Proportion		Std. Error of		
	Surviving at	Surviving at	Probability	Probability		Std. Error of
Interval Start Time	End of Interval	End of Interval	Density	Density	Hazard Rate	Hazard Rate
0	1.00	.00	.000	.000	.00	.00
1	1.00	.00	.002	.001	.00	.00
2	.99	.00	.008	.001	.01	.00
3	.97	.00	.015	.002	.02	.00
4	.95	.00	.000	.000	.00	.00

a. The median survival time is 4.00

** AUTHOR IMPORTANT TO READ & DO: edit hazard model in .txt to get it into spss acceptable format --> hazmod_institution_level_clean2.csv

get data

/type = txt

/file = '/Users/Lara/Dropbox/TC - General/PhD

Ideas/Quant/Data/Derived/hazmod_institution_level_clean2.csv'

```
/delimiters = ","
/arrangement = delimited
/variables =
v1 f5.2
v2 f7.2
v3 f6.2
v4 f6.2
v5 f6.2.
execute.
save outfile '/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean3.sav'
/drop v4
/rename v1=year v2=begin v3=censored v5=left.
get file '/Users/Lara/Dropbox/TC - General/PhD
Ideas/Quant/Data/Derived/hazmod_institution_level_clean3.sav'.
compute p1 = left/begin.
do if casenum = 1.
compute p2 = 1.
else.
compute temp = lag(p2).
compute p2 = (1-p1)*temp.
format p1 p2 (f6.4) year begin left (f4.0) censored (f4.0).
end if.
if $casenum = 1 p1 =$sysmis.
list year begin left censored p1 p2.
```

List

Notes

Output Created Comments

28-MAR-2016 00:09:22

Input	Data	/Users/Lara/Dropbox/TC - General/PhD
		Ideas/Quant/Data/Derived/haz
		mod_institution_level_clean3.
		sav
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	5
	Working Data File	
Syntax		list year begin left censored p1
		p2.
Resources	Processor Time	00:00:00.00
	Elapsed Time	00:00:00.00

 $/Users/Lara/Dropbox/TC - General/PhD \\ Ideas/Quant/Data/Derived/hazmod_institution_level_clean 3.sav$

year begin left censored p1 p2

0 3825 0 0 . 1.0000 1 3825 7 0 .0018 .9982 2 3818 32 0 .0084 .9898 3 3786 59 0 .0156 .9744 4 3727 42 3685 .0113 .9634

Number of cases read: 5 Number of cases listed: 5

save outfile '/Users/Lara/Dropbox/TC - General/PhD Ideas/Quant/Data/Derived/hazmod_institution_level_clean4.sav'.

GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=year

 $MEAN(p1)[name="MEAN_p1"] \ MISSING=LISTWISE$

REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: year=col(source(s), name("year"), unit.category())

DATA: MEAN_p1=col(source(s), name("MEAN_p1"))

GUIDE: axis(dim(1), label("Years of Non-Adoption of MOOCs"))

GUIDE: axis(dim(2), label("Estimated hazard probability"))

SCALE: linear(dim(2), include(0))

ELEMENT: line(position(year*MEAN_p1), missing.wings())

END GPL.

GGraph

	Notes	5
Output Create	d	28-MAR-2016 00:09:22
Comments		
Input	Data	/Users/Lara/Dropbox/TC -
		General/PhD
		Ideas/Quant/Data/Derived/haz
		mod_institution_level_clean4.
		sav
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	5
	Working Data File	

Syntax GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=year

MEAN(p1)[name="MEAN_p 1"] MISSING=LISTWISE REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE. BEGIN GPL

SOURCE:

 $s \!\!=\!\! user Source (id ("graph dataset$

"))

DATA: year=col(source(s), name("year"), unit.category())

DATA:

MEAN_p1=col(source(s), name("MEAN_p1")) GUIDE: axis(dim(1),

label("Years of Non-Adoption

of MOOCs"))

GUIDE: axis(dim(2), label("Estimated hazard

probability"))

SCALE: linear(dim(2),

include(0))
ELEMENT:

line(position(year*MEAN_p1)

, missing.wings())

END GPL.

Resources Processor Time

00:00:00.16

Elapsed Time

00:00:00.00

 $/Users/Lara/Dropbox/TC - General/PhD \\ Ideas/Quant/Data/Derived/hazmod_institution_level_clean4.sav$

GGRAPH /GRAPHDATASET NAME="graphdataset" VARIABLES=year MEAN(p2)[name="MEAN_p2"] MISSING=LISTWISE REPORTMISSING=NO /GRAPHSPEC SOURCE=INLINE. BEGIN GPL SOURCE: s=userSource(id("graphdataset"))

DATA: year=col(source(s), name("year"), unit.category())
DATA: MEAN_p2=col(source(s), name("MEAN_p2"))

GUIDE: axis(dim(1), label("Years of Non-Adoption of MOOCs"))

GUIDE: axis(dim(2), label("Estimated survival probability"))

SCALE: linear(dim(2), include(0))

ELEMENT: line(position(year*MEAN_p2), missing.wings())

END GPL.

GGraph

	Note	S
Output Create	d	28-MAR-2016 00:09:22
Comments		
Input	Data	/Users/Lara/Dropbox/TC -
		General/PhD
		Ideas/Quant/Data/Derived/haz
		mod_institution_level_clean4.
		sav
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	5
	Working Data File	

Syntax GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=year

MEAN(p2)[name="MEAN_p 2"] MISSING=LISTWISE REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE. BEGIN GPL

SOURCE:

 $s \!\!=\!\! user Source (id ("graph dataset$

"))

DATA: year=col(source(s), name("year"), unit.category())

DATA:

MEAN_p2=col(source(s), name("MEAN_p2"))

GUIDE: axis(dim(1),

label("Years of Non-Adoption

of MOOCs"))

GUIDE: axis(dim(2), label("Estimated survival

probability"))

SCALE: linear(dim(2),

include(0))
ELEMENT:

line(position(year*MEAN_p2)

, missing.wings())

END GPL.

Resources Processor Time

00:00:00.16

Elapsed Time

00:00:00.00

^{**} Begin Chap 11 of S&W, 2003

GET DATA /TYPE=XLSX

/FILE='/Users/Lara/Dropbox/TC - General/PhD

 $Ideas/Quant/Data/Derived/hazmod_institution_period_clean.xlsx'$

/SHEET=name 'Sheet1'

/CELLRANGE=full

/READNAMES=on

/ASSUMEDSTRWIDTH=32767.

EXECUTE.

FREQUENCIES

VARIABLES = id

/FORMAT=limit(10)

/statistics=stddev MINIMUM MAXIMUM MEAN MEDIAN MODE SKEWNESS SESKEW

KURTOSIS SEKURT

/HISTOGRAM NORMAL

/order= analysis .

Frequencies

	Notes	
Output Created		28-MAR-2016 00:09:23
Comments		
Input	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	14841
	Working Data File	
Missing Value	Definition of Missing	User-defined missing values
Handling		are treated as missing.
	Cases Used	Statistics are based on all cases with valid data.

Syntax		FREQUENCIES
		VARIABLES= id
		/FORMAT=limit(10)
		/statistics=stddev MINIMUM
		MAXIMUM MEAN
		MEDIAN MODE
		SKEWNESS SESKEW
		KURTOSIS SEKURT
		/HISTOGRAM NORMAL
		/order= analysis .
Resources	Processor Time	00:00:00.25
	Elapsed Time	00:00:00.00

Statistics

	D ************************************	
id		
N	Valid	14841
	Missing	0
Mean		1892.59
Median		1891.00
Mode		2 ^a
Std. Dev	viation	1089.737
Skewne	SS	.002
Std. Err	or of Skewness	.020
Kurtosis	S	-1.190
Std. Err	or of Kurtosis	.040
Minimu	m	1
Maximu	ım	3826

a. Multiple modes exist. The smallest value is shown

execute.

FREQUENCIES

 $VARIABLES \!\!= lncashflow$

/FORMAT=limit(10)

/statistics=stddev MINIMUM MAXIMUM MEAN MEDIAN MODE SKEWNESS SESKEW

KURTOSIS SEKURT

/HISTOGRAM NORMAL

/order= analysis .

Frequencies

	Notes	
Output Created		28-MAR-2016 00:09:23
Comments		
Input	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	14841
	Working Data File	
Missing Value	Definition of Missing	User-defined missing values
Handling		are treated as missing.
	Cases Used	Statistics are based on all
		cases with valid data.
Syntax		FREQUENCIES
		VARIABLES= lncashflow
		/FORMAT=limit(10)
		/statistics=stddev MINIMUM
		MAXIMUM MEAN
		MEDIAN MODE
		SKEWNESS SESKEW
		KURTOSIS SEKURT
		/HISTOGRAM NORMAL
		/order= analysis .
Resources	Processor Time	00:00:00.47
	Elapsed Time	00:00:01.00

Statistics Incashflow N Valid 11997

Missing	2844
Mean	17.62069082804
	6570
Median	17.73265266418
	4570
Mode	19.12526702880
	85940 ^a
Std. Deviation	1.826085543696
	751
Skewness	630
Std. Error of Skewness	.022
Kurtosis	2.542
Std. Error of Kurtosis	.045
Minimum	.0000000000000
	000
Maximum	24.35724830627
	44140

a. Multiple modes exist. The smallest value is shown

execute.

descriptives event instsize2 fouryear public prestige lncashflow.

Descriptives

	Notes	
Output Created		28-MAR-2016 00:09:24
Comments		
Input	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	14841
	Working Data File	
Missing Value	Definition of Missing	User defined missing values
Handling		are treated as missing.
	Cases Used	All non-missing data are used.
Syntax		descriptives event instsize2
		fouryear public prestige
		lncashflow.
Resources	Processor Time	00:00:00.01
	Elapsed Time	00:00:00

Descriptive Statistics						
	N	Minimum	Maximum	Mean	Std. Deviation	
event	14841	0	1	.01	.097	
instsize2	14483	0	1	.29	.454	
fouryear	14841	0	1	.65	.477	
public	14841	0	1	.49	.500	
prestige	14841	0	1	.07	.255	
lncashflow	11997	.0000000000000	24.35724830627	17.62069082804	1.826085543696	
		000	44140	6556	740	
Valid N (listwise)	11993					

^{**} note that degree granting institutions are eliminated when I use listwise deletion.

crosstabs

/tables=period by event

^{**} also note that I transformed cashflow to lncashflow when cleaning data in stata because it was not normally distributed.

/format=avalue tables /statistics=chisq /cells=count row column total /count round cell.

Crosstabs

Notes

	11000	
Output Created		28-MAR-2016 00:09:24
Comments		
Input	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	14841
	Working Data File	
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are
		based on all the cases with
		valid data in the specified
		range(s) for all variables in
		each table.
Syntax		crosstabs
		/tables=period by event
		/format=avalue tables
		/statistics=chisq
		/cells=count row column total
		/count round cell.
Resources	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.00
	Dimensions	2
	Requested	
	Cells Available	524245

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
period * event	14841	100.0%	(0.0%	14841	100.0%

period * event Crosstabulation

			even	t	
			0	1	Total
period	1	Count	3702	7	3709
		% within period	99.8%	0.2%	100.0%
		% within event	25.2%	5.0%	25.0%
		% of Total	24.9%	0.0%	25.0%
	2	Count	3678	32	3710
		% within period	99.1%	0.9%	100.0%
		% within event	25.0%	22.9%	25.0%
		% of Total	24.8%	0.2%	25.0%
	3	Count	3666	59	3725
		% within period	98.4%	1.6%	100.0%
		% within event	24.9%	42.1%	25.1%
		% of Total	24.7%	0.4%	25.1%
	4	Count	3655	42	3697
		% within period	98.9%	1.1%	100.0%
		% within event	24.9%	30.0%	24.9%
		% of Total	24.6%	0.3%	24.9%
Total		Count	14701	140	14841
		% within period	99.1%	0.9%	100.0%
		% within event	100.0%	100.0%	100.0%
		% of Total	99.1%	0.9%	100.0%

Chi-Square Tests

em-square resis						
			Asymptotic Significance (2-			
	Value	df	sided)			
Pearson Chi-Square	40.687 ^a	3	.000			
Likelihood Ratio	48.891	3	.000			
Linear-by-Linear	25.242	1	.000			
Association						
N of Valid Cases	14841					

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 34.88.

** descriptives for event by lncashflow, binary outcome & continuous predictor = ttest

T-test Groups= event (0,1) /missing=Analysis /variables=lncashflow /criteria=CI(.95).

T-Test

Notes						
Output Created		28-MAR-2016 00:09:	24			
Comments						
Input	Filter	<none></none>				
	Weight	<none></none>				
	Split File	<none></none>				
	N of Rows in	148	41			
	Working Data File					

Missing Value Handling	Definition of Missing	User defined missing values are treated as missing.
C	Cases Used	Statistics for each analysis are
		based on the cases with no missing or out-of-range data
		for any variable in the
		analysis.
Syntax		T-test
		Groups= event $(0,1)$
		/missing=Analysis
		/variables=lncashflow
		/criteria=CI(.95).
Resources	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.00

Group Statistics

	event	N	Mean	Std. Deviation	Std. Error Mean
lncashflow	0	11864	17.58982724309	1.802417131790	.0165477799718
			0480	307	54
	1	133	20.37381542894	1.831758347603	.1588335924965
			1770	016	60

	Independent Samples Test								
		Levene's	Test for						
		Equal	ity of						
		Varia	nces	t-te	est for Ec	quality of M	1 eans		
							Mean		
						Sig. (2-	Differenc		
		F	Sig.	t	df	tailed)	e		
lncashfl	Equal	1.801	.180	-	11995	.000	-		
ow	variances			17.711			2.783988		
	assumed						1858512		
							93		

61

Equal	-	134.88	.000	-		
variances	17.433	1		2.783988		
not assumed				1858512		
				93		

Independent Samples Test						
		t-test for Equality of Means				
		95% Confidence Interval of the Difference				
		Std. Error Difference	Lower	Upper		
lncashflow	Equal variances assumed	.157191357996785	-3.092108677287715	-2.475867694414870		
	Equal variances not assumed	.159693265754572	-3.099814847053851	-2.468161524648735		

^{**} descriptives for event by lncashflow, binary outcome & binary predictors = chisquare

crosstabs
/tables=event by instsize2
/format=avalue tables
/statistics=chisq
/cells=count row column total
/count round cel.

Crosstabs

Notes					
Output Created		28-MAR-2016 00:09:24			
Comments					
Input	Filter	<none></none>			
	Weight	<none></none>			
	Split File	<none></none>			

	N of Rows in	14841
	Working Data File	
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		crosstabs /tables=event by instsize2 /format=avalue tables /statistics=chisq /cells=count row column total /count round cel.
Resources	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.00
	Dimensions Requested	2
	Cells Available	524245

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
event * instsize2	14483	97.6%	358	2.4%	14841	100.0%

event * instsize2 Crosstabulation

			instsize	-	
			0	1	Total
event	0	Count	10241	4102	14343
		% within event	71.4%	28.6%	100.0%
		% within instsize2	99.7%	97.4%	99.0%
		% of Total	70.7%	28.3%	99.0%

	1	Count	32	108	140
		% within event	22.9%	77.1%	100.0%
		% within instsize2	0.3%	2.6%	1.0%
		% of Total	0.2%	0.7%	1.0%
Total		Count	10273	4210	14483
		% within event	70.9%	29.1%	100.0%
		% within instsize2	100.0%	100.0%	100.0%
		% of Total	70.9%	29.1%	100.0%

Chi-S	quare	Tests
-------	-------	-------

	-		Asymptotic		
			Significance (2-	Exact Sig. (2-	Exact Sig. (1-
	Value	df	sided)	sided)	sided)
Pearson Chi-Square	158.457 ^a	1	.000		
Continuity	156.111	1	.000		
Correction ^b					
Likelihood Ratio	139.876	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	158.446	1	.000		
Association					
N of Valid Cases	14483				

- a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 40.70.
- b. Computed only for a 2x2 table

crosstabs

/tables=event by fouryear

/format=avalue tables

/statistics=chisq

/cells=count row column total

/count round cel.

Crosstabs

Notes					
Output Created		28-MAR-2016 00:09:24			
Comments					
Input	Filter	<none></none>			
	Weight	<none></none>			
	Split File	<none></none>			
	N of Rows in	14841			
	Working Data File				
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.			
	Cases Used	Statistics for each table are			
		based on all the cases with			
		valid data in the specified			
		range(s) for all variables in			
		each table.			
Syntax		crosstabs			
		/tables=event by fouryear			
		/format=avalue tables			
		/statistics=chisq			
		/cells=count row column total			
		/count round cel.			
Resources	Processor Time	00:00:00.02			
	Elapsed Time	00:00:00.00			
	Dimensions	2			
	Requested				
	Cells Available	524245			

Case Processing Summary						
	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
event * fouryear	14841	100.0%		0.0%	14841	100.0%

event * fourvear Crosstabulation

	event * fouryear Crosstabulation						
			fourye	ar			
			0	1	Total		
event	0	Count	5195	9506	14701		
		% within event	35.3%	64.7%	100.0%		
		% within fouryear	99.8%	98.7%	99.1%		
		% of Total	35.0%	64.1%	99.1%		
	1	Count	10	130	140		
		% within event	7.1%	92.9%	100.0%		
		% within fouryear	0.2%	1.3%	0.9%		
		% of Total	0.1%	0.9%	0.9%		
Total		Count	5205	9636	14841		
		% within event	35.1%	64.9%	100.0%		
		% within fouryear	100.0%	100.0%	100.0%		
		% of Total	35.1%	64.9%	100.0%		

Chi-Square Tests

			1		
	Value	df	Asymptotic Significance (2- sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	48.413 ^a	1	.000	·	
Continuity	47.183	1	.000		
Correction ^b					
Likelihood Ratio	61.653	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	48.410	1	.000		
Association					
N of Valid Cases	14841				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 49.10.

b. Computed only for a 2x2 table

crosstabs

/tables=event by public /format=avalue tables /statistics=chisq /cells=count row column total /count round cel.

Crosstabs

Notes					
Output Created		28-MAR-2016 00:09:24			
Comments					
Input	Filter	<none></none>			
	Weight	<none></none>			
	Split File	<none></none>			
	N of Rows in	14841			
	Working Data File				
Missing Value	Definition of Missing	User-defined missing values			
Handling		are treated as missing.			
	Cases Used	Statistics for each table are			
		based on all the cases with			
		valid data in the specified			
		range(s) for all variables in			
		each table.			
Syntax		crosstabs			
		/tables=event by public			
		/format=avalue tables			
		/statistics=chisq			
		/cells=count row column total			
		/count round cel.			
Resources	Processor Time	00:00:00.02			
	Elapsed Time	00:00:00			

Dimensions 2
Requested
Cells Available 524245

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
event * public	14841	100.0%	0	0.0%	14841	100.0%

event * public Crosstabulation

			publi	С	
			0	1	Total
event	0	Count	7559	7142	14701
		% within event	51.4%	48.6%	100.0%
		% within public	99.2%	98.9%	99.1%
		% of Total	50.9%	48.1%	99.1%
	1	Count	64	76	140
		% within event	45.7%	54.3%	100.0%
		% within public	0.8%	1.1%	0.9%
		% of Total	0.4%	0.5%	0.9%
Total		Count	7623	7218	14841
		% within event	51.4%	48.6%	100.0%
		% within public	100.0%	100.0%	100.0%
		% of Total	51.4%	48.6%	100.0%

Chi-Square Tests						
	Value	df	Asymptotic Significance (2- sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)	
Pearson Chi-Square	1.806 ^a	1	.179			

Continuity	1.585	1	.208		
Correction ^b					
Likelihood Ratio	1.806	1	.179		
Fisher's Exact Test				.202	.104
Linear-by-Linear	1.806	1	.179		
Association					
N of Valid Cases	14841				

- a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 68.09.
- b. Computed only for a 2x2 table

crosstabs

/tables=event by prestige

/format=avalue tables

/statistics=chisq

/cells=count row column total

/count round cel.

Crosstabs

Notes						
Output Created		28-MAR-2016 00:09:24				
Comments						
Input	Filter	<none></none>				
	Weight	<none></none>				
	Split File	<none></none>				
	N of Rows in	14841				
	Working Data File					
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.				

	Cases Used	Statistics for each table are based on all the cases with
		valid data in the specified
		range(s) for all variables in
		each table.
Syntax		crosstabs
		/tables=event by prestige
		/format=avalue tables
		/statistics=chisq
		/cells=count row column total
		/count round cel.
Resources	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.00
	Dimensions	2
	Requested	
	Cells Available	524245

Case Processing Summary

	Cases						
	Valid		Missing		Total		
	N Percent		N	·	Percent	N	Percent
event * prestige	14841	100.0%		0	0.0%	14841	100.0%

event * prestige Crosstabulation

			prestig	ge	
			0	1	Total
event	0	Count	13746	955	14701
		% within event	93.5%	6.5%	100.0%
		% within prestige	99.6%	91.8%	99.1%
		% of Total	92.6%	6.4%	99.1%
	1	Count	55	85	140
		% within event	39.3%	60.7%	100.0%
		% within prestige	0.4%	8.2%	0.9%
		% of Total	0.4%	0.6%	0.9%

Total	Count	13801	1040	14841
	% within event	93.0%	7.0%	100.0%
	% within prestige	100.0%	100.0%	100.0%
	% of Total	93.0%	7.0%	100.0%

Chi-Square Tests						
	Value	df	Asymptotic Significance (2- sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)	
Pearson Chi-Square	625.581 ^a	1	.000	,	,	
Continuity	617.288	1	.000			
Correction ^b						
Likelihood Ratio	278.318	1	.000			
Fisher's Exact Test				.000	.000	
Linear-by-Linear	625.538	1	.000			
Association						
N of Valid Cases	14841					

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 9.81.

REGRESSION

/MISSING PAIRWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT id

/METHOD=ENTER lncashflow

/SAVE MAHAL.

Regression

b. Computed only for a 2x2 table

^{**} check for outliers

Notes

	Hotes	_
Output Created		28-MAR-2016 00:09:24
Comments		
Input	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	14841
	Working Data File	
Missing Value	Definition of Missing	User-defined missing values
Handling		are treated as missing.
_	Cases Used	Correlation coefficients for
		each pair of variables are
		based on all the cases with
		valid data for that pair.
		Regression statistics are based
		on these correlations.
Syntax		REGRESSION
•		/MISSING PAIRWISE
		/STATISTICS COEFF
		OUTS R ANOVA
		/CRITERIA=PIN(.05)
		POUT(.10)
		/NOORIGIN
		/DEPENDENT id
		/METHOD=ENTER
		lncashflow
		/SAVE MAHAL.
Resources	Processor Time	00:00:00.03
	Elapsed Time	00:00:00.00
	Memory Required	2832 bytes
	Additional Memory	0 bytes
	Required for Residual	•
	Plots	
Variables Created or	MAH_1	Mahalanobis Distance
Modified	_	

Variables Entered/Removed^a

	Variables	Variables	
Model	Entered	Removed	Method
1	lncashflow ^b		Enter

- a. Dependent Variable: id
- b. All requested variables entered.

Model Summarv^b

Wiodei Bullillary						
· <u> </u>			Adjusted R	Std. Error of the		
Model	R	R Square	Square	Estimate		
1	.205ª	.042	.042	1066.541		

- a. Predictors: (Constant), lncashflow
- b. Dependent Variable: id

ANOVA^a

mon										
Model		Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	601142982.085	1	601142982.085	528.473	.000 ^b				
	Residual	13644430532.47 3	11995	1137509.840						
	Total	14245573514.55 9	11996							

- a. Dependent Variable: id
- b. Predictors: (Constant), lncashflow

Coefficients^a

Coefficients										
		- 		Standardized	_					
		Unstandardized Coefficients		Coefficients						
Model		В	Std. Error	Beta	t	Sig.				
1	(Constant)	4052.680	94.467		42.900	.000				

73

lncashflow -122.588 5.333 -.205 -22.989 .000

a. Dependent Variable: id

Residuals Statistics^a

	I	residuais Stati	SHCS		
	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	1066.76	4052.68	1892.59	223.857	11997
Std. Predicted Value	-3.689	9.649	.000	1.000	11997
Standard Error of	9.737	94.467	12.987	4.580	11997
Predicted Value					
Adjusted Predicted	1066.51	4059.00	1892.58	223.855	11997
Value					
Residual	-2529.958	2200.886	-72.272	1028.823	11997
Std. Residual	-2.372	2.064	068	.965	11997
Stud. Residual	-2.373	2.064	068	.965	11997
Deleted Residual	-2532.260	2201.396	-72.266	1029.003	11997
Stud. Deleted	-2.374	2.064	068	.965	11997
Residual					
Mahal. Distance	.000	93.112	1.000	2.131	11997
Cook's Distance	.000	.003	.000	.000	11997
Centered Leverage	.000	.008	.000	.000	11997
Value					

a. Dependent Variable: id

EXAMINE VARIABLES=MAH_1
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES EXTREME
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

Explore

Notes					
Output Created		28-MAR-2016 00:09:24			
Comments					
Input	Filter	<none></none>			
	Weight	<none></none>			
	Split File	<none></none>			
	N of Rows in	14841			
	Working Data File				
Missing Value	Definition of Missing	User-defined missing values			
Handling		for dependent variables are			
		treated as missing.			
	Cases Used	Statistics are based on cases			
		with no missing values for any			
		dependent variable or factor			
		used.			
Syntax		EXAMINE			
		VARIABLES=MAH_1			
		/PLOT BOXPLOT			
		STEMLEAF			
		/COMPARE GROUPS			
		/STATISTICS			
		DESCRIPTIVES EXTREME			
		/CINTERVAL 95			
		/MISSING LISTWISE			
		/NOTOTAL.			
Resources	Processor Time	00:00:00.63			
	Elapsed Time	00:00:01.00			

Case Processing Summary						
Cases						
_	Valid Missing Total					tal
	N Percent N Percent				N	Percent
Mahalanobis Distance	11997	80.8%	2844	19.2%	14841	100.0%

	I	Descriptives		
			Statistic	Std. Error
Mahalanobis Distance	Mean		.9999166	.01945434
	95% Confidence	Lower Bound	.9617830	
	Interval for Mean	Upper Bound	1.0380503	
	5% Trimmed Mean		.7094967	
	Median		.3122464	
	Variance		4.541	
	Std. Deviation		2.13085011	
	Minimum		.00000	
	Maximum		93.11156	
	Range		93.11156	
	Interquartile Range		1.00130	
	Skewness		15.986	.022
	Kurtosis	-	598.328	.045

Extreme Values

			Case Number	Value
Mahalanobis Distance	Highest	1	12789	93.11156
		2	12797	93.11156
		3	13204	36.66228
		4	14481	28.67441
		5	9083	23.35196
	Lowest	1	6357	.00000
		2	1087	.00000
		3	14366	.00000
		4	583	.00000
		5	11225	.00000

Mahalanobis Distance

Mahalanobis Distance Stem-and-Leaf Plot

```
Frequency Stem & Leaf
```

3663.00 0.


```
77778888899999
1313.00
            1. 00001111222333444555666777888999
 929.00
           2 \;.\; 00011122334445566778899
 678.00
           3. 0011223344556677889
 528.00
           4\;.\;\;00123456789
 457.00
           5.0123456789
           6.0123456789
 397.00
 348.00
           7. 0123456789
 263.00
           8.0123456789
 258.00
           9.0123456789
 233.00
          10.125679&&
```

163.00 11.458&&

149.00 12.16&&&

158.00 13.56&&&

145.00 14.1&&&

15. &&&& 147.00

16. &&&

123.00

17. &&& 121.00

84.00 18. &&

73.00 19. &&

81.00 20. &&

21. && 69.00

22. && 84.00

66.00 23. &&

69.00 24. &&

51.00 25. &

1347.00 Extremes (>=2.57)

Stem width: .10000 Each leaf: 40 case(s) & denotes fractional leaves.

^{**} Drop outlier cases: # 12789, 12797, 13204, 14481

USE ALL.

COMPUTE filter_\$=(MAH_1 <= 27.877).

VARIABLE LABELS filter_\$ 'MAH_1 <= 27.877 (FILTER)'.

VALUE LABELS filter_\$ 0 'Not Selected' 1 'Selected'.

FORMATS filter_\$ (f1.0).

FILTER BY filter_\$.

EXECUTE.

** Check for initial predictor signficance, NEED HELP HERE: I don't understand why my values are signficant in STATA but not in SPSS.

REGRESSION

/DESCRIPTIVES MEAN STDDEV SIG N

/MISSING PAIRWISE

/STATISTICS COEFF OUTS R ANOVA COLLIN TOL

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT event

/METHOD=ENTER d1 d2 d3 d4 instsize2 fouryear public lncashflow prestige /SAVE MAHAL.

Regression

Notes						
Output Created		28-MAR-2016 00:09:25				
Comments						
Input	Filter	MAH_1 <= 27.877 (FILTER)				
	Weight	<none></none>				
	Split File	<none></none>				
	N of Rows in	11993				
	Working Data File					
Missing Value	Definition of Missing	User-defined missing values				
Handling		are treated as missing.				

Syntax	Cases Used	Correlation coefficients for each pair of variables are based on all the cases with valid data for that pair. Regression statistics are based on these correlations. REGRESSION /DESCRIPTIVES MEAN STDDEV SIG N /MISSING PAIRWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL /CRITERIA=PIN(.05)
		POUT(.10) /NOORIGIN /DEPENDENT event /METHOD=ENTER d1 d2
		d3 d4 instsize2 fouryear public
		lncashflow prestige
		/SAVE MAHAL.
Resources	Processor Time	00:00:00.07
	Elapsed Time	00:00:00.00
	Memory Required	9824 bytes
	Additional Memory	0 bytes
	Required for Residual Plots	
Variables Created or Modified	MAH_2	Mahalanobis Distance

Descriptive Statistics

	2 esemper e	S 444 415 41 415	
	Mean	Std. Deviation	N
event	.01	.105	11993
d1	.25	.435	11993
d2	.25	.434	11993
d3	.25	.433	11993
d4	.24	.429	11993
instsize2	.31	.463	11989

80

fouryear	.70	.458	11993
public	.47	.499	11993
lncashflow	17.62536660797	1.807132576554	11993
	7096	185	
prestige	.08	.275	11993

Correlations

							instsize	fouryea		
		event	d1	d2	d3	d4	2	r	public	
Sig. (1-	event	•	.000	.238	.000	.041	.000	.000	.141	
tailed)	d1	.000		.000	.000	.000	.026	.243	.358	
	d2	.238	.000		.000	.000	.209	.439	.350	
	d3	.000	.000	.000		.000	.343	.398	.414	
	d4	.041	.000	.000	.000		.009	.385	.296	
	instsize2	.000	.026	.209	.343	.009		.000	.000	
	fouryear	.000	.243	.439	.398	.385	.000		.000	
	public	.141	.358	.350	.414	.296	.000	.000		
	lncashflo	.000	.278	.409	.433	.423	.000	.000	.000	
	W									
	prestige	.000	.059	.098	.390	.005	.000	.000	.000	
N	event	11993	11993	11993	11993	11993	11989	11993	11993	
	d1	11993	11993	11993	11993	11993	11989	11993	11993	
	d2	11993	11993	11993	11993	11993	11989	11993	11993	
	d3	11993	11993	11993	11993	11993	11989	11993	11993	
	d4	11993	11993	11993	11993	11993	11989	11993	11993	
	instsize2	11989	11989	11989	11989	11989	11989	11989	11989	
	fouryear	11993	11993	11993	11993	11993	11989	11993	11993	
	public	11993	11993	11993	11993	11993	11989	11993	11993	
	lncashflo	11993	11993	11993	11993	11993	11989	11993	11993	
	W	11//3	11//3	11//3	11//3	11//3	11709	11//3	11//3	
	prestige	11993	11993	11993	11993	11993	11989	11993	11993	

Corre	lations

Correlations				
		lncashflow	prestige	
Sig. (1-tailed)	event	.000	.000	

	d1	.278	.059
	d2	.409	.098
	d3	.433	.390
	d4	.423	.005
	instsize2	.000	.000
	fouryear	.000	.000
	public	.000	.000
	lncashflow		.000
	prestige	.000	
N	event	11993	11993
	d1	11993	11993
	d2	11993	11993
	d3	11993	11993
	d4	11993	11993
	instsize2	11989	11989
	fouryear	11993	11993
	public	11993	11993
	Incashflow	11993	11993
	prestige	11993	11993

Variables Entered/Removed^a

	Variables	Variables	
Model	Entered	Removed	Method
1	prestige, d3, public, d4, lncashflow, d2, instsize2, fouryear ^b		Enter

a. Dependent Variable: event

b. Tolerance = .000 limit reached.

Model Summary^b

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.230 ^a	.053	.052	.102

a. Predictors: (Constant), prestige, d3, public, d4, lncashflow, d2, instsize2,

fouryear

b. Dependent Variable: event

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6.938	8	.867	83.417	.000 ^b
	Residual	124.544	11980	.010		
	Total	131.481	11988			

a. Dependent Variable: event

b. Predictors: (Constant), prestige, d3, public, d4, lncashflow, d2, instsize2, fouryear

\sim	effi	•		a
T O	etti	C16	mı	C.
\sim		\cdot		w

		Unstandardize	d Coefficients	Standardized Coefficients	_		Collinearity	Statistics
Mode	1	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	096	.011		-9.063	.000		
	d2	.008	.003	.034	3.156	.002	.671	1.491
	d3	.018	.003	.074	6.781	.000	.671	1.489
	d4	.013	.003	.055	5.095	.000	.673	1.485
	instsize2	.003	.003	.014	1.236	.217	.586	1.707
	fouryear	003	.003	015	-1.255	.209	.561	1.783
	public	008	.003	038	-2.976	.003	.493	2.030
	lncashflow	.005	.001	.095	8.747	.000	.673	1.486
	prestige	.063	.004	.164	15.925	.000	.741	1.349

a. Dependent Variable: event

Excluded \	Variables ^a
------------	------------------------

	Lifettada (tillable)										
		_		=	Collinearity Statistics						
					Partial		,	Minimum			
Mode	el	Beta In	t	Sig.	Correlation	Tolerance	VIF	Tolerance			
1	d1	, b				-1.781E-12	-	-1.781E-12			
							561356964934.				
							887				

a. Dependent Variable: event

b. Predictors in the Model: (Constant), prestige, d3, public, d4, lncashflow, d2, instsize2, fouryear

Collinearity Diagnostics^a

			Variance Proportions								
Mod	Dimensi	Eigenval	Condition	(Consta				instsize	fourye		
el	on	ue	Index	nt)	d2	d3	d4	2	ar		
1	1	4.602	1.000	.00	.01	.01	.01	.01	.01		
	2	1.032	2.112	.00	.03	.00	.16	.06	.01		
	3	1.000	2.145	.00	.12	.33	.05	.00	.00		
	4	.983	2.164	.00	.19	.01	.14	.04	.00		
	5	.781	2.428	.00	.00	.00	.00	.05	.05		
	6	.313	3.837	.00	.03	.03	.03	.65	.06		
	7	.209	4.697	.00	.54	.54	.54	.09	.08		
	8	.077	7.728	.02	.07	.07	.07	.01	.78		
	9	.004	34.953	.97	.00	.00	.00	.10	.02		

Collinearity Diagnostics^a

	Variance Proportions							
Model	Dimension	public	Incashflow	prestige				
1	1	.01	.00	.01				
	2	.01	.00	.22				
	3	.00.	.00	.00				
	4	.00	.00	.11				
	5	.12	.00	.28				

6	.16	.00	.29
7	.13	.00	.00
8	.56	.02	.02
9	.00	.98	.06

a. Dependent Variable: event

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	05	.12	.01	.024	11989
Std. Predicted Value	-2.395	4.342	.000	1.000	11989
Standard Error of	.002	.006	.003	.001	11989
Predicted Value					
Adjusted Predicted	05	.11	.01	.024	11989
Value					
Residual	110	1.003	.000	.102	11989
Std. Residual	-1.079	9.838	.000	1.000	11989
Stud. Residual	-1.080	9.841	.000	1.000	11989
Deleted Residual	110	1.004	.000	.102	11989
Stud. Deleted	-1.080	9.880	.000	1.004	11989
Residual					
Mahal. Distance	4.004	39.079	7.999	3.781	11989
Cook's Distance	.000	.019	.000	.001	11989
Centered Leverage	.000	.003	.001	.000	11989
Value					

a. Dependent Variable: event

** Begin analysis for time using survival modeling

logistic regression var = event

/method = enter d1 d2 d3 d4

/method = enter d1 d2 d3 d4 instsize2

/method = enter d1 d2 d3 d4 fouryear

/method = enter d1 d2 d3 d4 public

/method = enter d1 d2 d3 d4 prestige

/method = enter d1 d2 d3 d4 lncashflow /method = enter d1 d2 d3 d4 instsize2 fouryear public prestige lncashflow /origin.

Logistic Regression

	Notes	
Output Created		28-MAR-2016 00:09:25
Comments		
Input	Filter	MAH_1 <= 27.877 (FILTER)
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	11993
	Working Data File	
Missing Value	Definition of Missing	User-defined missing values
Handling		are treated as missing
Syntax		logistic regression var = event
		/method = enter d1 d2 d3 d4
		/method = enter d1 d2 d3 d4
		instsize2
		/method = enter d1 d2 d3 d4
		fouryear
		/method = enter d1 d2 d3 d4
		public
		/method = enter d1 d2 d3 d4
		prestige
		/method = enter d1 d2 d3 d4
		Incashflow
		/method = enter d1 d2 d3 d4
		instsize2 fouryear public
		prestige lncashflow
		/origin.
Resources	Processor Time	00:00:00.31

Elapsed Time

00:00:00.00

Case Processing Summary

	-		
Unweighted Cases ^a		N	Percent
Selected Cases	Included in Analysis	11989	100.0
	Missing Cases	4	.0
	Total	11993	100.0
Unselected Cases		0	.0
Total		11993	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
0	0
1	1

Block 0: Beginning Block

Classification Table a,b,c

				Predicted		
			event		Percentage	
	Observed		0	1	Correct	
Step 0	event	0	0	11856	.0	
		1	0	133	100.0	
	Overall I	Percentage	•		1.1	

a. No terms in the model.

b. Initial Log-likelihood Function: -2 Log Likelihood = 16620.283

c. The cut value is .500

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	d1	3022.033	1	.000
		d2	2907.190	1	.000
		d3	2772.338	1	.000
		d4	2763.299	1	.000
	Overall Stat	tistics	11464.859	4	.000

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	15213.723	4	.000
	Block	15213.723	4	.000
	Model	15213.723	4	.000

Model Summary

'	-	Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1406.560 ^a	.719	.959

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

	Observed		_	Predicte	d	
			event		Percentage	
			0	1	Correct	
Step 1	event	0	11856	0	100.0	
		1	133	0	.0	
	Overall I	Percentage			98.9	

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-6.409	.448	205.051	1	.000	.002
	d2	-4.604	.183	629.555	1	.000	.010
	d3	-3.943	.134	869.233	1	.000	.019
	d4	-4.253	.157	731.337	1	.000	.014

a. Variable(s) entered on step 1: d1, d2, d3, d4.

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	122.154	1	.000
	Block	122.154	1	.000
	Model	15335.877	5	.000

Model Summary

1710del Sullillary					
		Cox & Snell R	Nagelkerke R		
Step	-2 Log likelihood	Square	Square		

1	1284.406 ^a	.722	.962

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

	=			Predicted			
			event	event			
	Observed		0	1	Percentage Correct		
Step 1	event	0	11856	0	100.0		
		1	133	0	.0		
	Overall F	Percentage	•		98.9		

a. The cut value is .500

Variables in the Equation

	WILLIAM III ME ZI WATON							
		В	S.E.	Wald	df	Sig.	Exp(B)	
Step 1 ^a	d1	-7.566	.476	252.163	1	.000	.001	
	d2	-5.735	.244	552.329	1	.000	.003	
	d3	-5.045	.207	594.460	1	.000	.006	
	d4	-5.328	.222	578.109	1	.000	.005	
	instsize2	2.046	.206	98.230	1	.000	7.739	

a. Variable(s) entered on step 1: d1, d2, d3, d4, instsize2.

Block 3: Method = Enter

Omnibus Tests of Model Coefficients

Chi aguara	10	C:-
Cni-square	ar	Sig.

Step 1	Step	67.477	1	.000
	Block	67.477	1	.000
	Model	15403.354	6	.000

Model Summary

		Cox & Snell R	Nagelkerke R	
Step	-2 Log likelihood	Square	Square	
1	1216.929 ^a	.723	.964	

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

Classification 1 asic							
	-			Predicte	d		
	Observed		event	Percentage			
			0	1	Correct		
Step 1	event	0	11856	0	100.0		
		1	133	0	.0		
	Overall I	Percentage	•		98.9		

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-9.453	.583	262.659	1	.000	.000
	d2	-7.628	.415	337.045	1	.000	.000
	d3	-6.919	.392	310.783	1	.000	.001
	d4	-7.200	.401	322.963	1	.000	.001
	instsize2	2.240	.207	116.583	1	.000	9.397
	fouryear	2.134	.348	37.687	1	.000	8.448

a. Variable(s) entered on step 1: d1, d2, d3, d4, fouryear.

Block 4: Method = Enter

Omnibus Tests of Model Coefficients

Olimbus Tests of Model Coefficients						
		Chi-square	df	Sig.		
Step 1	Step	5.516	1	.019		
	Block	5.516	1	.019		
	Model	15408.869	7	.000		

Model Summary

		Cox & Snell R	Nagelkerke R	
Step	-2 Log likelihood	Square	Square	
1	1211.414 ^a	.723	.965	

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

				d	
			event		Percentage
	Observed		0	1	Correct
Step 1	event	0	11856	0	100.0
		1	133	0	.0
	Overall I	Percentage			98.9

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-9.216	.594	240.999	1	.000	.000
	d2	-7.386	.430	294.387	1	.000	.001
	d3	-6.675	.408	267.006	1	.000	.001
	d4	-6.953	.417	278.602	1	.000	.001
	instsize2	2.511	.235	114.440	1	.000	12.316
	fouryear	1.947	.359	29.455	1	.000	7.004
	public	491	.207	5.624	1	.018	.612

a. Variable(s) entered on step 1: d1, d2, d3, d4, public.

Block 5: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	83.640	1	.000
	Block	83.640	1	.000
	Model	15492.509	8	.000

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1127.774 ^a	.725	.967

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table

Observed	Predicted

	-		event		Percentage
			0	1	Correct
Step 1	event	0	11856	0	100.0
		1	133	0	.0
	Overall I	Percentage	•		98.9

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-8.458	.598	200.309	1	.000	.000
	d2	-6.599	.436	229.322	1	.000	.001
	d3	-5.839	.414	198.489	1	.000	.003
	d4	-6.077	.422	207.124	1	.000	.002
	instsize2	1.404	.282	24.769	1	.000	4.073
	fouryear	.959	.389	6.068	1	.014	2.608
	public	427	.209	4.157	1	.041	.653
	prestige	2.029	.242	70.150	1	.000	7.603

a. Variable(s) entered on step 1: d1, d2, d3, d4, prestige.

Block 6: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	111.147	1	.000
	Block	111.147	1	.000
	Model	15603.656	9	.000

Model Summary

		•	
		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1016.627 ^a	.728	.971

a. Estimation terminated at iteration number 10 because parameter estimates changed by less than .001.

Classification Table^a

	-			Predicted			
			event	Percentage			
	Observed	i	0	1	Correct		
Step 1	event	0	11851	5	100.0		
		1	128	5	3.8		
	Overall I	Percentage			98.9		

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-23.405	1.715	186.194	1	.000	.000
	d2	-21.387	1.631	171.938	1	.000	.000
	d3	-20.502	1.606	162.948	1	.000	.000
	d4	-20.743	1.609	166.272	1	.000	.000
	instsize2	.406	.298	1.855	1	.173	1.501
	fouryear	.220	.406	.293	1	.588	1.245
	public	122	.216	.316	1	.574	.886
	prestige	.851	.286	8.881	1	.003	2.343
	Incashflow	.843	.085	97.964	1	.000	2.323

a. Variable(s) entered on step 1: d1, d2, d3, d4, lncashflow.

Block 7: Method = Enter

Omnibus Tests of Model Coefficients

CHIMIDAD TOSES OF INTOACT COCHIECTED					
		Chi-square	df	Sig.	
Step 1	Model	15603.656	9	.000	

Model Summary

	-	Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1016.627 ^a	.728	.971

a. Estimation terminated at iteration number 10 because parameter estimates changed by less than .001.

Classification Table^a

Classification Table						
	-			Predicted		
			event		Percentage	
	Observed	i	0	1	Correct	
Step 1	event	0	11851	5	100.0	
		1	128	5	3.8	
	Overall I	Percentage			98.9	

a. The cut value is .500

Variables in the Equation

variables in the Education							
		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-23.405	1.715	186.194	1	.000	.000
	d2	-21.387	1.631	171.938	1	.000	.000

•			1			
d3	-20.502	1.606	162.948	1	.000	.000
d4	-20.743	1.609	166.272	1	.000	.000
instsize2	.406	.298	1.855	1	.173	1.501
fouryear	.220	.406	.293	1	.588	1.245
public	122	.216	.316	1	.574	.886
prestige	.851	.286	8.881	1	.003	2.343
Incashflow	.843	.085	97.964	1	.000	2.323

a. Variable(s) entered on step 1: d1, d2, d3, d4, instsize2, fouryear, public, prestige, lncashflow.

** ALTERNATIVE CODE from UCLA website

logistic regression var = event /method = enter d1 d2 d3 d4 /origin.

Logistic Regression

	Notes							
Output Created		28-MAR-2016 00:09:25						
Comments								
Input	Filter	MAH_1 <= 27.877 (FILTER)						
	Weight	<none></none>						
	Split File	<none></none>						
	N of Rows in	11993						
	Working Data File							
Missing Value	Definition of Missing	User-defined missing values						
Handling		are treated as missing						

^{**} model a

Syntax		logistic regression var = event
		/method = enter d1 d2 d3 d4
		/origin.
Resources	Processor Time	00:00:00.06
	Elapsed Time	00:00:00.00

Case Processing Summary

Unweighted Cases ^a		N	Percent
Selected Cases	Included in Analysis	11993	100.0
	Missing Cases	0	.0
	Total	11993	100.0
Unselected Cases		0	.0
Total		11993	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
0	0
1	1

Block 0: Beginning Block

Classification Table^{a,b,c}

Clussification Tubic						
				Predicted		
			ever	nt	Percentage	
	Observed	d	0	1	Correct	
Step 0	event	0	0	11860	.0	

	1	0	133	100.0
Overall Per	centage	•		1.1

- a. No terms in the model.
- b. Initial Log-likelihood Function: -2 Log Likelihood = 16625.828
- c. The cut value is .500

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	d1	3024.033	1	.000
		d2	2907.190	1	.000
		d3	2773.336	1	.000
		d4	2764.298	1	.000
	Overall Stati	stics	11468.857	4	.000

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	15219.195	4	.000
	Block	15219.195	4	.000
	Model	15219.195	4	.000

Model Summary

	-	Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1406.633 ^a	.719	.959

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

	-			Predicted	d
			event	Percentage	
	Observed		0	1	Correct
Step 1	event	0	11860	0	100.0
		1	133	0	.0
	Overall I	Percentage			98.9

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-6.410	.448	205.093	1	.000	.002
	d2	-4.604	.183	629.555	1	.000	.010
	d3	-3.943	.134	869.389	1	.000	.019
	d4	-4.254	.157	731.460	1	.000	.014

a. Variable(s) entered on step 1: d1, d2, d3, d4.

** model b

logistic regression var = event /method = enter d1 d2 d3 d4 instsize2 /origin.

Logistic Regression

Notes				
Output Created		28-MAR-2016 00:09:25		
Comments				
Input	Filter	MAH_1 <= 27.877 (FILTER)		
	Weight	<none></none>		
	Split File	<none></none>		
	N of Rows in	11993		
	Working Data File			
Missing Value	Definition of Missing	User-defined missing values		
Handling		are treated as missing		
Syntax		logistic regression var = event		
		/method = enter d1 d2 d3 d4		
		instsize2		
		/origin.		
Resources	Processor Time	00:00:00.07		
	Elapsed Time	00:00:00.00		

Case Processing Summary

Unweighted Cases ^a	N	Percent	
Selected Cases	Included in Analysis	11989	100.0
	Missing Cases	4	.0
	Total	11993	100.0
Unselected Cases		0	.0
Total		11993	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
0	0
1	1

Block 0: Beginning Block

Classification Table^{a,b,c}

Classification Table ***							
	-			Predicted			
	Observed		eve	ent	Percentage		
			0	1	Correct		
Step 0	event	0	0	11856	.0		
		1	0	133	100.0		
	Overall I	Percentage			1.1		

a. No terms in the model.

b. Initial Log-likelihood Function: -2 Log Likelihood = 16620.283

c. The cut value is .500

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	d1	3022.033	1	.000
		d2	2907.190	1	.000
		d3	2772.338	1	.000
		d4	2763.299	1	.000
		instsize2	3324.184	1	.000
	Overall Stat	istics	11470.734	5	.000

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

	Online 1 CStS of Wiodel Coefficients					
		Chi-square	df	Sig.		
Step 1	Step	15335.877	5	.000		
	Block	15335.877	5	.000		
	Model	15335.877	5	.000		

Model Summary

	-	Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1284.406 ^a	.722	.962

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

Classification Table					
	-		Predicted		
			event	event	
Observed		0	1	Correct	
Step 1	event	0	11856	0	100.0
		1	133	0	.0
	Overall I	Percentage			98.9

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-7.566	.476	252.163	1	.000	.001
	d2	-5.735	.244	552.329	1	.000	.003
	d3	-5.045	.207	594.460	1	.000	.006
	d4	-5.328	.222	578.109	1	.000	.005
	instsize2	2.046	.206	98.230	1	.000	7.739

a. Variable(s) entered on step 1: d1, d2, d3, d4, instsize2.

** model c

logistic regression var = event /method = enter d1 d2 d3 d4 fouryear /origin.

Logistic Regression

Notes				
Output Created		28-MAR-2016 00:09:25		
Comments				
Input	Filter	MAH_1 <= 27.877 (FILTER)		
	Weight	<none></none>		
	Split File	<none></none>		
	N of Rows in	11993		
	Working Data File			
Missing Value	Definition of Missing	User-defined missing values		
Handling		are treated as missing		
Syntax		logistic regression var = event		
		/method = enter d1 d2 d3 d4		
		fouryear		
		/origin.		
Resources	Processor Time	00:00:00.07		
	Elapsed Time	00:00:00		

Case Processing Summary

Unweighted Cases ^a		N	Percent
Selected Cases	Included in Analysis	11993	100.0

	Missing Cases	0	.0
	Total	11993	100.0
Unselected Cases		0	.0
Total		11993	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
0	0
1	1

Block 0: Beginning Block

Classification Table a,b,c

	-		Predicted				
			event			Percentage	
	Observed	i	0		1	Correct	
Step 0	event	0	=	0	11860	.0	
		1		0	133	100.0	
	Overall I	Percentage				1.1	

- a. No terms in the model.
- b. Initial Log-likelihood Function: -2 Log Likelihood = 16625.828
- c. The cut value is .500

Variables	not in	the	Equation

		Score	df	Sig.
--	--	-------	----	------

Step 0	Variables	d1	3024.033	1	.000
		d2	2907.190	1	.000
		d3	2773.336	1	.000
		d4	2764.298	1	.000
		fouryear	7900.332	1	.000
	Overall Statistics		11470.359	5	.000

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	15263.677	5	.000
	Block	15263.677	5	.000
	Model	15263.677	5	.000

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1362.151 ^a	.720	.960

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

	Ciussiicutoii Iusic						
Pre					d		
			event		Percentage		
	Observe	d	0	1	Correct		
Step 1	event	0	11860	0	100.0		

1	133	0	.0
 Overall Percentage			98.9

a. The cut value is .500

Variables in the Equation

	-	В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-7.903	.552	205.321	1	.000	.000
	d2	-6.102	.371	270.389	1	.000	.002
	d3	-5.440	.349	243.172	1	.000	.004
	d4	-5.752	.359	257.031	1	.000	.003
	fouryear	1.787	.346	26.688	1	.000	5.974

a. Variable(s) entered on step 1: d1, d2, d3, d4, fouryear.

logistic regression var = event /method = enter d1 d2 d3 d4 public /origin.

Logistic Regression

Notes				
Output Created		28-MAR-2016 00:09:25		
Comments				
Input	Filter	MAH_1 <= 27.877 (FILTER)		
	Weight	<none></none>		
	Split File	<none></none>		

^{**} model d

	N of Rows in	11993
	Working Data File	
Missing Value	Definition of Missing	User-defined missing values
Handling		are treated as missing
Syntax		logistic regression var = event
		/method = enter d1 d2 d3 d4
		public
		/origin.
Resources	Processor Time	00:00:00.07
	Elapsed Time	00:00:00

Case Processing Summary

Unweighted Cases ^a	l	N	Percent
Selected Cases	Included in Analysis	11993	100.0
	Missing Cases	0	.0
	Total	11993	100.0
Unselected Cases		0	.0
Total		11993	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
0	0
1	1

Block 0: Beginning Block

Classification $Table^{a,b,c}$

	-		Predicted			
			event		Percentage	
Observed		0	1	Correct		
Step 0	event	0	0	11860	.0	
		1	0	133	100.0	
	Overall I	Percentage			1.1	

- a. No terms in the model.
- b. Initial Log-likelihood Function: -2 Log Likelihood = 16625.828
- c. The cut value is .500

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	d1	3024.033	1	.000
		d2	2907.190	1	.000
		d3	2773.336	1	.000
		d4	2764.298	1	.000
		public	5394.361	1	.000
	Overall Stat	istics	11468.910	5	.000

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	15220.417	5	.000
	Block	15220.417	5	.000
	Model	15220.417	5	.000

Model Summary

	Woder Summary						
	-	Cox & Snell R	Nagelkerke R				
Step	-2 Log likelihood	Square	Square				
1	1405.411 ^a	.719	.959				

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

Classification Table								
	-		Predicted					
		event	Percentage					
	Observed		0	1	Correct			
Step 1	event	0	11860	0	100.0			
		1	133	0	.0			
	Overall I	Percentage			98.9			

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-6.506	.457	202.830	1	.000	.001
	d2	-4.700	.205	525.671	1	.000	.009
	d3	-4.039	.161	625.728	1	.000	.018
	d4	-4.349	.181	575.650	1	.000	.013
	public	.193	.175	1.221	1	.269	1.213

a. Variable(s) entered on step 1: d1, d2, d3, d4, public.

logistic regression var = event /method = enter d1 d2 d3 d4 prestige /origin.

^{**} model e

Logistic Regression

Notes						
Output Created		28-MAR-2016 00:09:25				
Comments						
Input	Filter	MAH_1 <= 27.877 (FILTER)				
	Weight	<none></none>				
	Split File	<none></none>				
	N of Rows in	11993				
	Working Data File					
Missing Value	Definition of Missing	User-defined missing values				
Handling		are treated as missing				
Syntax		logistic regression var = event				
		/method = enter d1 d2 d3 d4				
		prestige				
		/origin.				
Resources	Processor Time	00:00:00.07				
	Elapsed Time	00:00:00.00				

Case Processing Summary

Unweighted Cases ^a		N	Percent
Selected Cases	Included in Analysis	11993	100.0
	Missing Cases	0	.0
	Total	11993	100.0
Unselected Cases		0	.0
Total		11993	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
0	0
1	1

Block 0: Beginning Block

Classification Table^{a,b,c}

Ciussification 14510									
	-		<u>-</u>	Predicted					
				even	Percentage				
	Observed	l	0		1	Correct			
Step 0	event	0	<u>-</u>	0	11860	.0			
		1		0	133	100.0			
	Overall I	Percentage	•	•		1.1			

a. No terms in the model.

b. Initial Log-likelihood Function: -2 Log Likelihood = 16625.828

c. The cut value is .500

Variables not in the Equation

, without not in the Equation							
			Score	df	Sig.		
Step 0	Variables	d1	3024.033	1	.000		
		d2	2907.190	1	.000		
		d3	2773.336	1	.000		
		d4	2764.298	1	.000		
		prestige	693.482	1	.000		
	Overall Statistics		11490.648	5	.000		

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	15467.058	5	.000
	Block	15467.058	5	.000
	Model	15467.058	5	.000

Model Summary

	<u>-</u>	Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1158.770 ^a	.725	.966

a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Classification Table^a

Classification Table									
	-			Predicted					
			event	event					
	Observed		0	1	Correct				
Step 1	event	0	11860	0	100.0				
		1	133	0	.0				
	Overall I	Percentage			98.9				

a. The cut value is .500

Variables in the Equation

	В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a d1	-7.401	.465	253.369	1	.000	.001

d2	-5.553	.220	639.619	1	.000	.004
d3	-4.804	.174	764.082	1	.000	.008
d4	-5.053	.191	702.867	1	.000	.006
presti	ge 3.003	.183	270.050	1	.000	20.155

a. Variable(s) entered on step 1: d1, d2, d3, d4, prestige.

logistic regression var = event /method = enter d1 d2 d3 d4 lncashflow /origin.

Logistic Regression

	Notes	
Output Created		28-MAR-2016 00:09:26
Comments		
Input	Filter	MAH_1 <= 27.877 (FILTER)
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	11993
	Working Data File	
Missing Value	Definition of Missing	User-defined missing values
Handling		are treated as missing
Syntax		logistic regression var = event
		/method = enter d1 d2 d3 d4
		lncashflow
		/origin.
Resources	Processor Time	00:00:00.07
	Elapsed Time	00:00:00.00

^{**} model f

Case Processing Summary

Unweighted Cases ^a		N	Percent
Selected Cases	Included in Analysis	11993	100.0
	Missing Cases	0	.0
	Total	11993	100.0
Unselected Cases		0	.0
Total		11993	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
0	0
1	1

Block 0: Beginning Block

Classification Table^{a,b,c}

Classification Table						
	_		Predicted			d
			event Percentage		Percentage	
	Observed	i	0		1	Correct
Step 0	event	0	-	0	11860	.0
		1		0	133	100.0
	Overall I	Percentage		-		1.1

- a. No terms in the model.
- b. Initial Log-likelihood Function: -2 Log Likelihood = 16625.828
- c. The cut value is .500

Variables not in the Equation

variables not in the Equation					
			Score	df	Sig.
Step 0	Variables	d1	3024.033	1	.000
		d2	2907.190	1	.000
		d3	2773.336	1	.000
		d4	2764.298	1	.000
		lncashflow	11267.486	1	.000
	Overall Stat	istics	11482.459	5	.000

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	15587.762	5	.000
	Block	15587.762	5	.000
	Model	15587.762	5	.000

Model Summary

	-	Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1038.066 ^a	.727	.970

a. Estimation terminated at iteration number 10 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted		d
			event Pe		Percentage
	Observed	l	0	1	Correct
Step 1	event	0	11856	4	100.0
		1	128	5	3.8
	Overall F	Percentage			98.9

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-27.464	1.427	370.626	1	.000	.000
	d2	-25.413	1.318	371.571	1	.000	.000
	d3	-24.556	1.284	365.621	1	.000	.000
	d4	-24.835	1.285	373.725	1	.000	.000
	lncashflow	1.086	.064	290.382	1	.000	2.962

a. Variable(s) entered on step 1: d1, d2, d3, d4, lncashflow.

logistic regression var = event

/method = enter d1 d2 d3 d4 instsize2 fouryear public prestige lncashflow /origin.

Logistic Regression

T.T	_	4
1.0	"	

^{**} model g

Comments		
Input	Filter	MAH_1 <= 27.877 (FILTER)
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in	11993
	Working Data File	
Missing Value	Definition of Missing	User-defined missing values
Handling		are treated as missing
Syntax		logistic regression var = event
		/method = enter d1 d2 d3 d4
		instsize2 fouryear public
		prestige lncashflow
		/origin.
Resources	Processor Time	00:00:00.08
	Elapsed Time	00:00:00.00

Case Processing Summary

Unweighted Cases	l .	N	Percent
Selected Cases	Included in Analysis	11989	100.0
	Missing Cases	4	.0
	Total	11993	100.0
Unselected Cases		0	.0
Total		11993	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent	Variable Encoding
Original Value	Internal Value

Original Value	Internal Value
0	0
1	1

Block 0: Beginning Block

Classification Table a,b,c

			mication 1				
	=		Predicted				
	event			t	Percentage		
	Observed		0	٠	1	Correct	
Step 0	event	0	_	0	11856	.0	
		1		0	133	100.0	
	Overall F	Percentage				1.1	

a. No terms in the model.

b. Initial Log-likelihood Function: -2 Log Likelihood = 16620.283

c. The cut value is .500

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	d1	3022.033	1	.000
		d2	2907.190	1	.000
		d3	2772.338	1	.000
		d4	2763.299	1	.000
		instsize2	3324.184	1	.000
		fouryear	7896.335	1	.000
		public	5394.361	1	.000
		prestige	693.482	1	.000
		lncashflow	11263.596	1	.000
	Overall Stat	istics	11490.663	9	.000

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

	Ommous resus of model eventering							
		Chi-square	df	Sig.				
Step 1	Step	15603.656	9	.000				
	Block	15603.656	9	.000				
	Model	15603.656	9	.000				

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	1016.627 ^a	.728	.971

a. Estimation terminated at iteration number 10 because parameter estimates changed by less than .001.

Classification Table^a

Classification Table								
	-			Predicted				
			event	event				
	Observed		0	1	Correct			
Step 1	event	0	11851	5	100.0			
		1	128	5	3.8			
	Overall I	Percentage			98.9			

a. The cut value is .500

Variables in the Equation

	_	В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	d1	-23.405	1.715	186.194	1	.000	.000
	d2	-21.387	1.631	171.938	1	.000	.000
	d3	-20.502	1.606	162.948	1	.000	.000
	d4	-20.743	1.609	166.272	1	.000	.000
	instsize2	.406	.298	1.855	1	.173	1.501

fouryear	.220	.406	.293	1	.588	1.245
public	122	.216	.316	1	.574	.886
prestige	.851	.286	8.881	1	.003	2.343
lncashflow	.843	.085	97.964	1	.000	2.323

a. Variable(s) entered on step 1: d1, d2, d3, d4, instsize2, fouryear, public, prestige, lncashflow.

References

- Alpert, D. (1991). Performance and paralysis: The organizational context of the American research university. In M. W. Peterson, E. E. Chaffee, and T. H. White (Eds.), ASHE Reader on Organization and Governance in Higher Education (4th ed.). Needham Heights, MA.: Ginn Press.
- Anderson, J. Q., Boyles, J. L., & Rainie, L. (2012). The Future Impact of the Internet on Higher Education: Experts Expect More Efficient Collaborative Environments and New Grading Schemes; They Worry about Massive Online Courses, the Shift Away from On-Campus Life. Pew Internet & American Life Project. Retrieved from http://eric.ed.gov/?id=ED534048
- Ansell, B. W. (2008). University Challenges: Explaining Institutional Change in Higher Education.

 World Politics, 60(2), 189–230.
- Bass, R. (2012). Disrupting ourselves: The problem of learning in higher education. *Educause Review*, 47(2), 23–33.
- Berry, F., & Berry, W. (2014). Innovation and diffusion models in policy research. In *Theories of the Policy Process* (Third Edition, Third Edition edition). Boulder, CO: Westview Press.
- Berry, F., & Berry, W. D. (1990). State lottery adoptions as policy innovations: An event history analysis. *American Political Science Review*, *84*(2), 395–415.
- Bowers, A. J. (2010). Grades and graduation: A longitudinal risk perspective to identify student dropouts. *The Journal of Educational Research*, 103(3), 191-207.
- Bowen, W. G. (2015). *Higher education in the digital age*. Princeton University Press. Retrieved from
 - https://books.google.com/books?hl=en&lr=&id=26MpBQAAQBAJ&oi=fnd&pg=PP1&dq=bowen+digital+age&ots=5CuDAzbeTb&sig=iGjCcqE64NgEiltPdXuRUto6hbU
- Bowers, A. J. (2010). Grades and graduation: A longitudinal risk perspective to identify student dropouts. *The Journal of Educational Research*, *103*(3), 191–207.

Comment [AJB2]: This should go before the appendix.

- Butin, D. (2015). The Future of The Future of Higher Education | Inside Higher Ed. Retrieved

 April 19, 2016, from https://www.insidehighered.com/blogs/higher-ed-beta/future-future-higher-education
- Cankar, S. S., & Petkovsek, V. (2013). Private and public sector innovation and the importance of cross-sector collaboration. *Journal of Applied Business Research*, *29*(6), 1597.
- Carey, K. (2013, February 13). Obama, Rubio Agree on One Thing: Technology Could Fix the Higher Ed Mess. *Slate*. Retrieved from http://www.slate.com/blogs/future_tense/2013/02/13/state_of_the_union_moocs_obama _rubio_agree_on_using_tech_to_fix_higher_ed.html
- Carey, K. (2015). The End of College: Creating the Future of Learning and the University of Everywhere. Penguin.
- Christensen, C. (2015). Disruptive Innovation. Retrieved from http://www.claytonchristensen.com/key-concepts/
- Christensen, C. M., & Eyring, H. J. (2011). *The Innovative University: Changing the DNA of Higher Education from the Inside Out* (1 edition). San Francisco: Jossey-Bass.
- Christensen, C. M., Horn, M. B., Caldera, L., & Soares, L. (2011). *Disrupting College: How Disruptive Innovation Can Deliver Quality and Affordability to Postsecondary Education.*Innosight Institute. Retrieved from http://eric.ed.gov/?id=ED535182
- Clark, B. R. (2004). Delineating the character of the entrepreneurial university. *Higher Education Policy*, *17*(4), 355–370.
- Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm (Vol. 2). Englewood Cliffs,

 NJ. Retrieved from

 https://books.google.com/books?hl=en&lr=&id=qqZ_FDFoDcMC&oi=fnd&pg=PA60&dq=

 Cyert+%26+march+1963&ots=9V0PLgxv6P&sig=y57Oe52K9loVyh5nEwSu1uJBZ4A
- Damanpour, F. (1991). Organizational innovation: A meta-analysis of effects of determinants and moderators. *Academy of Management Journal*, *34*(3), 555–590.

- Derousie, J. (2014). An Exploration of the Diffusion and Adoption of Four Innovations in Higher Education.
- Diamond, R. (2006, September 8). Why Colleges Are So Hard to Change | Inside Higher Ed.

 Retrieved April 20, 2016, from

 https://www.insidehighered.com/views/2006/09/08/diamond
- Dillon, E., & Carey, K. (2009). Drowning in Debt: The Emerging Student Loan Crisis. *Higher Education*.
- DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. *American Sociological Review*, 147–160.
- Dougherty, K. J., & Reddy, V. (2013). Performance Funding for Higher Education: What Are the Mechanisms What Are the Impacts: ASHE Higher Education Report, 39:2. John Wiley & Sons.
- Ebersole, J. (2014, January 13). Top Issues Facing Higher Education In 2014. Retrieved September 10, 2015, from http://www.forbes.com/sites/johnebersole/2014/01/13/top-issues-facing-higher-education-in-2014/
- Ehrenberg, R. G. (2006). The perfect storm and the privatization of public higher education.

 Change: The Magazine of Higher Learning, 38(1), 46–53.
- Fain, P. (2013, January 16). California looks at MOOCs in online push | Inside Higher Ed.

 Retrieved January 21, 2013, from

 http://www.insidehighered.com/news/2013/01/16/california-looks-moocs-online-push
- Ferenstein, G. (2013). Why Obama's Radical Education Plan Could Finally Disrupt College.

 Retrieved from http://social.techcrunch.com/2013/08/22/why-obamas-radical-education-plan-could-finally-disrupt-higher-education/
- Ferlie, E., Musselin, C., & Andresani, G. (2008). The Steering of Higher Education Systems: A Public Management Perspective. *Higher Education*, *56*(3), 325–348.

- Goldman, C. A., Goldman, C., Gates, S. M., Brewer, A., & Brewer, D. J. (2004). *In pursuit of prestige: Strategy and competition in US higher education.* Transaction Publishers.

 Retrieved from

 https://books.google.com/books?hl=en&lr=&id=NUUe4XUsd3gC&oi=fnd&pg=PR8&dq=B
 rewer+Gates+and+Goldman&ots=Dzm0uH5y6N&sig=gTgs4Pwpnvb69pmDbVs4aPryFo
- Grupp, F. W., & Richards, A. R. (1975). Variations in elite perceptions of American states as referents for public policy making. *American Political Science Review*, *69*(3), 850–858.
- Hartley, J., Sørensen, E., & Torfing, J. (2013). Collaborative Innovation: A Viable Alternative to Market Competition and Organizational Entrepreneurship. *Public Administration Review*, 73(6), 821–830. http://doi.org/10.1111/puar.12136
- Hearn, J. C. (1996). Transforming US higher education: An organizational perspective. *Innovative Higher Education*, 21(2), 141–154.
- Hixon, T. (2014, January 6). Higher Education Is Now Ground Zero For Disruption. Retrieved

 April 19, 2016, from http://www.forbes.com/sites/toddhixon/2014/01/06/higher-educationis-now-ground-zero-for-disruption/
- Hollands, F., & Tirthali, D. (2014). MOOCs: Expectations and reality. Full Report for the Center for Benefit-Cost Studies of Education. Teachers College, Columbia University.
- Jaggars, S. S. (2014). Choosing between online and face-to-face courses: Community college student voices. *American Journal of Distance Education*, *28*(1), 27–38.
- Kezar, A. J. (2014). *How colleges change: understanding, leading, and enacting change.* New York: Routledge.
- Lahr, H., Pheatt, L., Dougherty, K. J., Jones, S., Natow, R. S., & Reddy, V. (2014). Unintended impacts of performance funding on community colleges and universities in three states.

 Retrieved from http://academiccommons.columbia.edu/catalog/ac:180622

- Levine, A. (2015, September 14). Time Is Right for Colleges to Shift From Assembly-Line Education. *The Chronicle of Higher Education*. Retrieved from http://chronicle.com/article/Time-Is-Right-for-Colleges-to/233057/
- Marginson, S. (2006). Dynamics of National and Global Competition in. *Higher Education*, *52*(1), 1–39. http://doi.org/10.1007/s10734-004-7649-x
- Markov, J. (2013, January 17). Measuring the Success of Online Education. Retrieved January 20, 2013, from http://bits.blogs.nytimes.com/2013/01/17/measuring-the-success-of-online-education/
- McLendon, M. K., Deaton, S. B., & Hearn, J. C. (2007). The Enactment of Reforms in State

 Governance of Higher Education: Testing the Political Instability Hypothesis. *The Journal of Higher Education*, 78(6), 645–675.
- McLendon, M. K., Heller, D. E., & Young, S. P. (2005). State postsecondary policy innovation:

 Politics, competition, and the interstate migration of policy ideas. *The Journal of Higher Education*, *76*(4), 363–400.
- Meisenhelder, S. (2014, April 16). Online Higher Ed a Cost Savings for Students, Universities?

 Think Again. Retrieved April 19, 2016, from http://www.huffingtonpost.com/susan-meisenhelder/online-higher-ed-a-cost-s_b_4782301.html
- Mettler, S. (2014). Degrees of Inequality: How the Politics of Higher Education Sabotaged the American Dream.
- Mintrom, M. (1997). Policy entrepreneurs and the diffusion of innovation. *American Journal of Political Science*, 738–770.
- Mintz, S. (2014, September 30). The Future of Higher Education | Inside Higher Ed. Retrieved April 20, 2016, from https://www.insidehighered.com/blogs/higher-ed-beta/future-higher-education
- Mohr, L. B. (1969). Determinants of innovation in organizations. *American Political Science Review*, 63(1), 111–126.

- Not classy enough. (2015, March 28). *The Economist*. Retrieved from http://www.economist.com/news/special-report/21646986-online-learning-could-disrupt-higher-education-many-universities-are-resisting-it-not
- Pappano, L. (2012, November 2). Massive Open Online Courses Are Multiplying at a Rapid

 Pace. *The New York Times*. Retrieved from

 http://www.nytimes.com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.html
- Parr, C. (2013, March 10). New study of low MOOC completion rates. Retrieved December 1, 2015, from https://www.insidehighered.com/news/2013/05/10/new-study-low-mooccompletion-rates
- Porto, S. (2013, May 31). The Impact of Disruptive Technology-Based Innovations in Higher Education. Retrieved from http://evolllution.com/opinions/impact-disruptive-technology-based-innovations-higher-education/
- Rogers, E. M. (1983). Diffusion of innovations. New York: Free Press, 18(20), 271.
- Roth, C. (2012). Are the sleeping giants awake? Non-profit universities enter online education at scale. Parthenon Perspectives.
- Schumpeter, J. A. (1934). The theory of economic development: An inquiry into profits, capital, credit, interest, and the business cycle (Vol. 55). Transaction Publishers. Retrieved from http://books.google.com/books?hl=en&lr=&id=OZwWcOGeOwC&oi=fnd&pg=PR6&dq=Schumpeter,+J.+A.+(1934).+The+theory+of+ec onomic+development:+An+inquiry+into+profits,+capital,+credit,+interest,+and+the+busi ness+cycle+(Vol.+55).+Transaction+Publishers.&ots=iM3_q2uaB8&sig=Nnbrs5ideLQnO 0e5HgGNTHuMOek
- Selingo, J. J. (2013). College (Un)Bound: The Future of Higher Education and What It Means for Students. Houghton Mifflin Harcourt.

- Shah, D. (2015, December 21). By The Numbers: MOOCS in 2015. Retrieved March 29, 2016, from https://www.class-central.com/report/moocs-2015-stats/
- Slaughter, S., & Leslie, L. L. (1997). Academic Capitalism: Politics, Policies, and the

 Entrepreneurial University. The Johns Hopkins University Press, 2715 North Charles

 Street, Baltimore, MD 21218-4319 (\$39.95). Retrieved from

 http://eric.ed.gov/?id=ED409816
- Slaughter, S., & Rhoades, G. (2004). Academic capitalism and the new economy: Markets, state, and higher education. JHU Press. Retrieved from http://books.google.com/books?hl=en&lr=&id=Y-mlSmAUa38C&oi=fnd&pg=PR9&dq=slaughter+%26+Rhoades+2004&ots=E3s1nk8njc&sig=CV3mBvzhjjiOhRwVNpj6beomWM4
- Smith, A. (2015, July 15). The for-profit industry is struggling, but has not reached the end of the road | Inside Higher Ed. Retrieved December 1, 2015, from https://www.insidehighered.com/news/2015/07/15/profit-industry-struggling-has-not-reached-end-road
- Stack, B. (2014, July 1). Competency Education: The Next Great Disruptor in Education.

 Retrieved from http://connectedprincipals.com/archives/10582
- Stein, K. (2013, December 5). Penn GSE Study Shows MOOCs Have Relatively Few Active

 Users, With Only a Few Persisting to Course End | Penn GSE Press Room. Retrieved

 December 1, 2015, from http://www.gse.upenn.edu/pressroom/pressreleases/2013/12/penn-gse-study-shows-moocs-have-relatively-few-active-users-onlyfew-persisti
- Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What Forty Years of Research Says About the Impact of Technology on Learning: A Second-Order Meta-Analysis and Validation Study. Review of Educational Research, 81(1), 4–28. http://doi.org/10.3102/0034654310393361

- Walker, J. L. (1969). The diffusion of innovations among the American states. *American Political Science Review*, *63*(3), 880–899.
- West, D. M., & Lu, J. (2009). Comparing technology innovation in the private and public sectors.

 Governance Studies at Brookings. Retrieved from

 http://www.brookings.edu/~/media/Research/Files/Papers/2009/6/technology%20west/0
 6_technology_west.pdf
- Woodhouse, K. (2016, February 16). Author discusses new book on changes in higher education marketplace. Retrieved April 20, 2016, from https://www.insidehighered.com/news/2016/02/16/author-discusses-new-book-changes-higher-education-marketplace
- Yuan, L., & Powell, S. (2013). MOOCs and disruptive innovation: Implications for higher education. *eLearning Papers, In-Depth*, *33*(2), 1–7.