Calculus BC Problem Set 1

Josh Davis

June 2022

Contents

0	Preface	1
1	Limits and Continuity	1
2	Differentiation: Definition and Fundamental Properties	3

0 Preface

I wrote this collection of problems in order to help student's master their ability to solve BC Calculus Problems. All problems should be solved without a calculator unless otherwise specified.

1 Limits and Continuity

Problem 1.1

Evaluate the following limits analytically (this means with algebra by hand). Do not use L'Hôpital's rule.:

i)

$$\lim_{x\to 3} \frac{x^2+9}{x-3}$$

ii)

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

iii)

$$\lim_{x \to -3} \frac{x^2 - 9}{x - 3}$$

iv)

$$\lim_{x \to -3} \frac{x^4 - 81}{x + 3}$$

Problem 1.2

Evaluate the following limit with the squeeze theorem:

$$\lim_{x \to 0} x \sin(x)$$

Problem 1.3

Evaluate the following limit analytically:

$$\lim_{x \to \pi^-} \frac{x^2 - \pi^2}{|x - \pi|}$$

Problem 1.4

Evaluate the following limit analytically:

$$\lim_{x \to \infty} \left(\frac{x^2 + 7x + 9}{x - 2} - x \right)$$

Problem 1.5

Consider a function f(x) that has the following property

$$-|x+5| \le f(x) \le |x+5|$$

for all real numbers. Evaluate the following limit:

$$\lim_{x \to -5} f(x)$$

Problem 1.6

Evaluate the following limits by using the squeeze theorem:

i)

$$\lim_{x \to 0} \frac{\sin(x)}{\ln(x^{-1})}$$

ii)

$$\lim_{x\to -\infty}\frac{\cos(x)\sin(3x)}{x^3}$$

iii)

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right)$$

Problem 1.7

Determine whether the following functions are continuous at x=3.

i)

$$f(x) = \frac{(x-4)(x-3)}{x}$$

ii)

$$f(x) = \begin{cases} \frac{x}{\ln(\frac{x}{3})} & \text{if } x \neq 3\\ 3 & \text{if } x = 3 \end{cases}$$

iii)
$$f(x) = \begin{cases} 2^x & \text{if } x \le 3\\ 7 + \sin(\frac{3\pi}{2}x) & \text{if } x > 3 \end{cases}$$

Problem 1.8

Come up with functions with the following properties:

- i) A removable discontinuity at x = 8.
- ii) A non-piece wise function, f(x), which satisfies (a) and (b). An example of a non-piece wise function is f(x) = 2x. An example of a piece wise function is the function in Problem 1.7, part ii.
 - (a) $\lim_{x\to\infty} f(x) = 7$
 - (b) $\lim_{x\to-\infty} f(x) = -7$
- iii) A function with vertical asymptotes at x = 1 and x = -5.
- iv) A function with the horizontal asymptotes y = 0 and y = 1.

Problem 1.9

Does the equation $x^2 + e^{\frac{x}{10}} = 102$ have a solution on the interval [0, 10].

Problem 1.10

Does the equation $2\sin(\frac{\pi}{2}x) + x = 3$ have a solution on [0, 2]

2 Differentiation: Definition and Fundamental Properties

Problem 2.1

Use the limit of the difference quotient (limit definition of the derivative) to find the derivative of the following functions

- i) f(x) = x
- *ii*) $f(x) = 2x^2$
- iii) $f(x) = \sin(x)$
- iv) $f(x) = \sqrt{x+1}$

Problem 2.2

Write the equation of the tangent line for each of the following functions at x = 2.

 $f(x) = x^2 + x$

 $ii) f(x) = 3\sin(x) + 2$

 $f(x) = e^x + 2^x$

$$f(x) = \sqrt{x+1} + \ln(x)$$

Problem 2.3

Find all values of a and b such that f(x) is differentiable at $x = \lambda \neq 0$.

$$f(x) = \begin{cases} ax^2 + bx - 1 & \text{if } x \le \lambda \\ ax & \text{if } x > \lambda \end{cases}$$

If $\lambda = 0$, are there values of a and b which make f(x) differentiable at x = 0.

Problem 2.4

- i) If $f(x) = \cos(x)$, what is f'(x)?
- ii) If $f(x) = \sin(x)$, what is f'(x)?
- iii) If $f(x) = \cos(x) + i\sin(x)$ what is f'(x)? What is $\frac{f'(x)}{i}$? Write an equation that relates f(x) to f'(x).

Problem 2.5

Find the first and second derivatives of the following functions. If you are familiar with the chain rule, do not use it.

- $f(x) = x\sin(x)$
- ii) $f(x) = x \ln(x) x$
- iii) $f(x) = e^x \sin(x)$
- iv) $f(x) = \sin(2x)$ *first derivative only*
- $v) f(x) = \ln(x^2)$
- vi) $f(x) = \ln(x^n)$ for $n \in \mathbb{N}$.

Problem 2.6

Find the derivatives of the following functions with the product rule or the quotient rule.

- $i) f(x) = \tan(x)$
- $ii) f(x) = \sec(x)$
- iii) $f(x) = \cot(x)$
- $iv) f(x) = \csc(x)$
- $v) \ f(x) = \sin^2(x)$
- $vi) f(x) = \sec^2(x)$
- vii) $f(x) = \tan(x)\sec(x)$

 $i = \sqrt{-1}$

Problem 2.7

Find the derivatives of the following functions with the product rule or the quotient rule.

- $i) f(x) = \ln(xe^x)$
- $ii) f(x) = x \sin(x) \cos(x)$
- $iii) f(x) = \frac{2x^2 + 3x + 7}{4x + 2}$
- iv) $f(x) = \frac{e^x}{1+e^x}$

Problem 2.8

Derive the product rule by evaluating the following limit:²

$$\frac{d}{dx}\left(f(x)\cdot g(x)\right) = \lim_{h\to 0}\frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

Problem 2.9

The position of a particle on a line is given by $p(t) = 3t^3 - t^2 + 4t$. What is the average rate of change of the position of the particle from t = 1 to t = 4.

Problem 2.10

For n > 1, find the derivative of e^{nx} with the power rule, given that $\frac{d}{dx}(e^{(n-1)x}) = (n-1)e^{(n-1)x}$.

²Hint: You first have to add and subtract f(x)g(x+h) to the numerator.