

Modèles simplifiés : un compartiment unique

La membrane comme élément de circuit

La membrane cellulaire est une bicouche lipidique avec des inclusions (protéines), et qui a certains <u>propriétés electrophysiologiques</u>:

- sépare des charges extra- et intracellulaires → capacitance
- laisse traverser quelques charges par des pores (canaux)
 - ---- conductance électrique

capacité spécifique = $I \mu F/cm^2$ capacité totale = capacité spécifique x surface

- Le potentiel de membrane V_m varie en fonction de l'ouverture/ fermeture des différents types de canaux ioniques.
- La membrane est "active": Les conductances (l'ouverture) des canaux ioniques varient en fonction du potentiel de la membrane!

- Le potentiel de membrane V_m varie en fonction de l'ouverture/ fermeture des différents types de canaux ioniques.
- La membrane est "active": Les conductances (l'ouverture) des canaux ioniques varient en fonction du potentiel de la membrane!

- Le potentiel de membrane V_m varie en fonction de l'ouverture/ fermeture des différents types de canaux ioniques.
- La membrane est "active": Les conductances (l'ouverture) des canaux ioniques varient en fonction du potentiel de la membrane!

- Le potentiel de membrane V_m varie en fonction de l'ouverture/ fermeture des différents types de canaux ioniques.
- La membrane est "active": Les conductances (l'ouverture) des canaux ioniques varient en fonction du potentiel de la membrane!

Modèle Hodgkin-Huxley : le potentiel d'action

Modèle Hodgkin-Huxley le potentiel d'action

Modèle Hodgkin-Huxley : le potentiel d'action

Modèle Hodgkin-Huxley : le potentiel d'action

Modèle Hodgkin-Huxley : injection de courant

Modèle Hodgkin-Huxley : courbe f-I

Après Hodgkin-Huxley: Plus compliqué ou plus simple?

Hodgkin-Huxley

modèle "complète" de la génération des PA et la dynamique du potentiel membranaire

Le détail souhaité dépend de l'échelle étudiée !

Le détail souhaité dépend de l'échelle étudiée !

Le détail souhaité dépend de l'échelle étudiée !

Propagation de courant dans un neurone

Comment est-ce que les courants synaptiques dépolarisent la membrane aus soma ?

La polarisation de la membrane dendritique obéit les mêmes lois physiques que le soma :

$$I_1 + I_2 + I_3 + \dots = 0$$
, $I = \frac{\Delta V}{R}$

■ Considérer le courant circulant dans les branches dendritiques !

Modèles multi-compartiments

Idée: approximer la morphologie d'un neurone par de compartiments isopotentiels, couplés par des résistances

- Les courants entre compartiments peuvent facilement être calculés numériquement.
- La dynamique peut tenir compte de conductances actives.

Modèles multi-compartiments

Idée: approximer la morphologie d'un neurone par de compartiments isopotentiels, couplés par des résistances

- Les courants entre compartiments peuvent facilement être calculés numériquement.
- La dynamique peut tenir compte de conductances actives.

Modèles multi-compartiments

Idée: approximer la morphologie d'un neurone par de compartiments isopotentiels, couplés par des résistances

- Les courants entre compartiments peuvent facilement être calculés numériquement.
- La dynamique peut tenir compte de conductances actives.

Neuron simulator

Après Hodgkin-Huxley: Plus compliqué ou plus simple?

Hodgkin-Huxley

modèle "complète" de la génération des PA et la dynamique du potentiel membranaire

Les équations complètes du modèle Hodgkin-Huxley

$$C \frac{dV}{dt} = g_L(E_L - V) + \bar{g}_{Na}m(t)^3h(t)(E_{Na} - V) + \bar{g}_{K}n(t)^4(E_K - V) + I_{stim}$$

$$\tau_n \frac{\mathrm{d}n}{\mathrm{d}t} = n_\infty - n$$

$$\tau_n = \frac{1}{\alpha_n + \beta_n}$$

$$n_\infty = \frac{\alpha_n}{\alpha_n + \beta_n}$$

$$\frac{dn}{dt} = n_{\infty} - n \qquad \tau_m \frac{dm}{dt} = m_{\infty} - m \qquad \tau_h \frac{dh}{dt} = h_{\infty} - h$$

$$\tau_n = \frac{1}{\alpha_n + \beta_n} \qquad \tau_m = \frac{1}{\alpha_m + \beta_m} \qquad \tau_h = \frac{1}{\alpha_h + \beta_h}$$

$$\eta_\infty = \frac{\alpha_n}{\alpha_n + \beta_n} \qquad \eta_\infty = \frac{\alpha_m}{\alpha_m + \beta_m} \qquad \eta_\infty = \frac{\alpha_h}{\alpha_h + \beta_h}$$

$$\tau_h \frac{\mathrm{d}h}{\mathrm{d}t} = h_\infty - h$$

$$\tau_h = \frac{1}{\alpha_h + \beta_h}$$

$$h_\infty = \frac{\alpha_h}{\alpha_h + \beta_h}$$

Taux de réaction (paramètres identifiés pour l'axon du calamar géant) :

$$\alpha_n(V) = \frac{(0.1 - 0.01V)}{e^{1 - 0.1V} - 1} \qquad \alpha_m(V) = \frac{(2.5 - 0.1V)}{e^{2.5 - 0.1V} - 1} \qquad \alpha_h(V) = 0.07 e^{-\frac{V}{20}}$$

$$\beta_n(V) = 0.125 e^{-\frac{V}{80}} \qquad \beta_m(V) = 4e^{-\frac{V}{18}} \qquad \beta_h(V) = \frac{1}{e^{3 - 0.1V} + 1}$$

- Dans le modèle Hodgkin-Huxley, les conductances actives (Na+ et K+) expliquent la génération du PA et la répolarisation de la membrane. Le modèle permet deux observations :
 - Le franchissement d'un seuil est suivi par la génération d'un PA.
 La forme du PA est stéréotypé et ne contient pas d'information sur le signal.
 - 2. Loin du seuil, les conductances actives sont essentiellement fermées.
- → Modèle "integrer-et-tirer": garder la dynamique passive sous-seuil, incorporer la génération des PA sans se soucier du mécanisme...

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = g_L(E_L - V) + g_{\mathrm{Na}}(E_{\mathrm{Na}} - V) + g_{\mathrm{K}}(E_{\mathrm{K}} - V) + I_{\mathrm{stim}}$$

- Dans le modèle Hodgkin-Huxley, les conductances actives (Na+ et K+) expliquent la génération du PA et la répolarisation de la membrane. Le modèle permet deux observations :
 - Le franchissement d'un seuil est suivi par la génération d'un PA.
 La forme du PA est stéréotypé et ne contient pas d'information sur le signal.
 - 2. Loin du seuil, les conductances actives sont essentiellement fermées.
- → Modèle "integrer-et-tirer": garder la dynamique passive sous-seuil, incorporer la génération des PA sans se soucier du mécanisme...

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = g_L(E_L - V) + g_{\mathrm{Na}}(F_{\mathrm{Na}} - V) + g_{\mathrm{K}}(E_{\mathrm{K}} - V) + I_{\mathrm{stim}}$$

- Dans le modèle Hodgkin-Huxley, les conductances actives (Na+ et K+) expliquent la génération du PA et la répolarisation de la membrane. Le modèle permet deux observations :
 - Le franchissement d'un seuil est suivi par la génération d'un PA.
 La forme du PA est stéréotypé et ne contient pas d'information sur le signal.
 - 2. Loin du seuil, les conductances actives sont essentiellement fermées.
- → Modèle "integrer-et-tirer": garder la dynamique passive sous-seuil, incorporer la génération des PA sans se soucier du mécanisme...

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = g_L(E_L - V) + g_{\mathrm{Na}}(F_{\mathrm{Na}} - V) + g_{\mathrm{K}}(F_{\mathrm{Na}} - V) + I_{\mathrm{stim}}$$

- Dans le modèle Hodgkin-Huxley, les conductances actives (Na+ et K+) expliquent la génération du PA et la répolarisation de la membrane. Le modèle permet deux observations :
 - Le franchissement d'un seuil est suivi par la génération d'un PA.
 La forme du PA est stéréotypé et ne contient pas d'information sur le signal.
 - 2. Loin du seuil, les conductances actives sont essentiellement fermées.
- → Modèle "integrer-et-tirer": garder la dynamique passive sous-seuil, incorporer la génération des PA sans se soucier du mécanisme...

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = g_L(E_L - V) + g_{\mathrm{Na}}(F_{\mathrm{Na}} - V) + g_{\mathrm{K}}(F_{\mathrm{Na}} - V) + I_{\mathrm{stim}}$$

- Dans le modèle Hodgkin-Huxley, les conductances actives (Na+ et K+) expliquent la génération du PA et la répolarisation de la membrane. Le modèle permet deux observations :
 - Le franchissement d'un seuil est suivi par la génération d'un PA.
 La forme du PA est stéréotypé et ne contient pas d'information sur le signal.
 - 2. Loin du seuil, les conductances actives sont essentiellement fermées.
- → Modèle "integrer-et-tirer": garder la dynamique passive sous-seuil, incorporer la génération des PA sans se soucier du mécanisme...

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = g_L(E_L - V) + g_{\mathrm{Na}}(F_{\mathrm{Na}} - V) + g_{\mathrm{K}}(F_{\mathrm{A}} - V) + I_{\mathrm{stim}}$$

$$V(t) > V_{
m seuil}:$$
 spike + reset

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

$$I(t) = \sum_{j} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

$$I(t) = \sum_{j} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

$$I(t) = \sum_{j} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

$$I(t) = \sum_{i} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

$$I(t) = \sum_{j} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

$$I(t) = \sum_{i} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

$$I(t) = \sum_{i} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

$$I(t) = \sum_{i} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

- Plus correctement : "Leaky Integrate-and-Fire" (LIF)
- Temps caractéristique d'intégration des entrées synaptiques : $\tau_m = C/g_L$
- La simplicité du LIF permet de calculer analytiquement par ex. le taux de décharge dans des régimes déterministes et stochastiques.

réseaux!

$$I(t) = \sum_{i} I_{\text{syn},j}(t) \longrightarrow I(t) = I_0 + \sigma \xi(t)$$

Statistiques des trains de potentiels d'action

- Train de "spikes" (PA):
 - une séquence de temps de spikes t^k
- Intervalle inter-spike (ISI):

$$T_{\mathrm{ISI},k} = t^{k+1} - t^k$$

- Taux de décharge :
 - nombre de spikes / temps
 - moyenne temporelle de S :

$$r = \langle S(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, S(t)$$

Rappels mathématiques

- Distribution de Dirac, $\delta(t-t_0)$:
 - valeur infinie en t₀ et zéro partout ailleurs, tel que l'intégral vaut l
 - abstraction mathématique d'une charge ponctuelle, d'une masse concentré dans un point

■ Moyenne:

x discret (x_1, x_2, x_3, \ldots)

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

■ Écart-type :

$$\sigma_x = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^2}$$

x continu (x(t))

$$\bar{x} = \frac{1}{T} \int_0^T \mathrm{d}t \, x(t)$$

Statistiques des trains de potentiels d'action

- Train de "spikes" (PA):
 - une séquence de temps de spikes t^k
 - $\qquad \qquad \text{un signal} \quad S(t) = \sum_k \delta(t-t^k)$
- Intervalle inter-spike (ISI):

$$T_{\mathrm{ISI},k} = t^{k+1} - t^k$$

- Taux de décharge :
 - nombre de spikes / temps
 - moyenne temporelle de S :

$$r = \langle S(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, S(t)$$

- Coefficient de variation (CV) :
 - rapport de l'écart-type à la moyenne des ISI

$$CV = \frac{\sigma_{\text{ISI}}}{\overline{\text{ISI}}}$$

 mesure la régularité d'un train de spike

Les trains de spike sont (souvent) irréguliers

- Coefficient de variation (CV) :
 - rapport de l'écart-type à la moyenne des ISI
 - mesure la régularité d'un train de spike

 $CV = \frac{\sigma_{\text{ISI}}}{\overline{\text{ISI}}}$

- En général (dans le cortex in vivo), les trains de spikes sont irréguliers (CV ~ I) et varient d'un essai à l'autre :
 - → description probabiliste!

Modèle à taux de décharge

Description phénoménologique de la fonction entrée-sortie

- Souvent utilisé pour décrire des "unités" dans un réseaux de neurones récurrent (RNN) en apprentissage machine.
- Peut être interprété comme un modèle d'une population de neurones, représentant leur taux de décharge moyen.

Pour des courants constants, le taux de décharge est donné par la fonction f-l:

Pour des courants qui varient dans le temps, le taux de décharge suit une dynamique de relaxation :

$$\tau \frac{\mathrm{d}r(t)}{\mathrm{d}t} = f(I(t)) - r(t)$$

avec par ex.

$$f(I) = \begin{cases} 0 & I \leq I_{\text{seuil}} \\ c I & I_{\text{seuil}} < I \leq I_{\text{max}} \\ c I_{\text{max}} & I > I_{\text{max}} \end{cases}$$

