Exercise 2

Deadline: 28. November, 2021

Please send your results as a zip file either to **tewodros_amberbir.habtegebrial@dfki.de** or **torben.fetzer@dfki.de**.

Use the Latex template provided in Exercise_0 for the report.

Hand-written results will not be accepted!

Theory

1. Homography Definition

In the lecture a planar homography was introduced as $h: \mathbb{P}^2 \to \mathbb{P}^2$.

- (a) Give the definition for a general homography $h: \mathbb{P}^n \to \mathbb{P}^n$.
- (b) How many degrees of freedom does it have?

2. Line Preservation

Let \mathbf{x}_1 , \mathbf{x}_2 , $\mathbf{x}_3 \in \mathbb{P}^2$ be three points on a line. Show that a non-singular matrix $\mathbf{H} \in \mathbb{R}^{3\times 3}$ that maps the points in projective space preserves this property.

(Hint: Use the implicit definition of a line ax + by + c = 0, thus $\mathbf{l}^\mathsf{T} \mathbf{x}_i = 0$ with $\mathbf{l} = (a, b, c)^\mathsf{T}$.)

3. Camera Center in Wold Coordinates

We are following the convention that a point \mathbf{X}_W in homogeneous world coordinates is transformed to camera coordinates as follows: $\mathbf{X}_C = [\mathbf{R} \mid \mathbf{t}] \mathbf{X}_W$.

The camera center in world coordinates \mathbf{C}_W can be expressed in terms of the extrinsic camera parameters by

$$\mathbf{C}_W = -\mathbf{R}^\mathsf{T} \mathbf{t}.$$

- (a) Prove this property. (Hint: Where is the camera center in camera coordinates?)
- (b) In this context, illustrate the meaning of $\mathbf{t} = -\mathbf{RC}_W$, i.e. from where to where does this vector point?

1

Practical Part

For the following tasks, you find the required intrinsic parameters of the camera $(\alpha_x, \alpha_y, x_0, y_0, s)$ and the homographies \mathbf{H}_i in the file data/ex2.mat.

1. Relative Rotation Estimation from Homography

A homography between two images taken with the same camera can be used to compute the relative rotation \mathbf{R}_{rel} when the camera has undergone a pure rotation, i.e. no translation between the two views. Homography \mathbf{H}_1 (from ex2.mat) was obtained from a perfect pure rotation, whereas \mathbf{H}_2 was computed after imperfect (manual) rotation of the camera. Write a function compute_relative_rotation that:

- (a) loads a homography from ex2.mat
- (b) computes \mathbf{R}_{rel} and prints it to the console
- (c) checks whether \mathbf{R}_{rel} fulfills the properties of a rotation matrix
- (d) if necessary, corrects \mathbf{R}_{rel} and prints the new rotation matrix to the console

Apply compute_relative_rotation to \mathbf{H}_1 and \mathbf{H}_2 . Why does the rotation matrix computed from \mathbf{H}_2 need correction?

2. Camera Pose Estimation from Homography

- (a) A homography between a plane in the world coordinate system and a camera image can be used to compute rotation **R** and translation **t** of the camera. Homography **H**₃ was computed from the corners of a (fully visible) checkerboard. The checkerboard lies in the xy-plane of the world coordinate system centered around the origin. Write a function compute_pose to determine **R** and **t** from **H**₃ and print them to the console.
- (b) The third element of **t** in part (a) above might be negative. What does this mean in this particular case (consider the location of the checkerboard corners)? Why can this happen?

Remark:

Make sure your code executes the tasks above sequentially by simply calling python main.py (include ex2.mat alongside main.py in your .zip file).

Good Luck!