novus novus novus novus

novus 20von

novus

novus

DOA 02

novus

novus novus

DOVUS

NOV US

novus

novus

NOVUS

novus

novus

NOVUS NOVUS

novus

novus

NOVUS

novus

NOVUS

novus

novus

DOVUS

DOVUS

novus

$$MV(t) = Kp \times \left[E(t) + Ki \times \int E(t) dt + Kd \times \frac{dE(t)}{dt} \right]$$

ARTIGO

CNICO

INTRODUÇÃO

Este artigo pretende criar no leitor uma percepção física do funcionamento de um controle PID, sem grandes análises e rigorismos matemáticos, visando introduzir a técnica aos iniciantes e aprimorar o conhecimento dos já iniciados, com a abordagem mais prática e simplificada possível.

Noções preliminares

Algumas definições de siglas e termos utilizados neste artigo:

PV: Process Variable ou variável de processo. Variável que é controlada no processo, como temperatura, pressão, umidade, etc.

SV ou SP: Setpoint. Valor desejado para a variável de processo.

MV: Variável Manipulada. Variável sobre a qual o controlador atua para controlar o processo, como posição de uma válvula, tensão aplicada a uma resistência de aquecimento, etc.

Erro ou Desvio: Diferença entre SV e PV. SV-PV para ação reversa e PV-SV para ação direta. **Ação de controle**: Pode ser reversa ou direta. Define genericamente a atuação aplicada à MV na ocorrência de variações da PV.

Ação Reversa: Se PV aumenta, MV diminui. Tipicamente utilizada em controles de aquecimento.

Ação Direta: Se PV aumenta, MV aumenta. Tipicamente utilizada em controles de refrigeração.

A técnica de controle PID consiste em calcular um valor de atuação sobre o processo a partir das informações do valor desejado e do valor atual da variável do processo. Este valor de atuação sobre o processo é transformado em um sinal adequado ao atuador utilizado (válvula, motor, relé), e deve garantir um controle estável e preciso.

De uma maneira bem simples, o PID é a composição de 3 ações quase intuitivas, conforme resume o quadro a seguir:

Р	CORREÇÃO PROPORCIONAL AO ERRO	A correção a ser aplicada ao processo deve crescer na proporção que cresce o erro entre o valor real e o desejado.
ı	CORREÇÃO PROPORCIONAL AO PRODUTO ERRO * TEMPO	Erros pequenos mas que existem há muito tempo requerem correção mais intensa.
D	CORREÇÃO PROPORCIONAL À TAXA DE VARIAÇÃO DO ERRO	Se o erro está variando muito rápido, esta taxa de variação deve ser reduzida para evitar oscilações.

Um pouco de matemática

A equação mais usual do PID é apresentada a seguir:

$$MV(t) = Kp \times \left[E(t) + Ki \times \int E(t)dt + Kd \times \frac{dE(t)}{dt} \right]$$

Onde Kp, Ki e Kd são os ganhos das parcelas P, I e D, e definem a intensidade de cada ação.

Equipamentos PID de diferentes fabricantes implementam esta equação de diferentes maneiras. É usual a adoção do conceito de "Banda Proporcional" em substituição a Kp, "Tempo derivativo" em substituição a Kd e "Taxa Integral" ou "Reset" em substituição a Ki, ficando a equação da seguinte forma.

$$MV(t) = \frac{100}{Pb} \times \left[E(t) + Ir \times \int E(t) dt + Dt \times \frac{dE(t)}{dt} \right]$$

Onde *Pb*, *Ir* e *Dt* estão relacionados a *Kp*, *Ki* e *Kd* e serão individualmente abordados ao longo deste texto.

CONTROLE PROPORCIONAL

No controle Proporcional, o valor de MV é <u>proporcional ao valor do desvio</u> (SV-PV, para ação reversa de controle), ou seja, para desvio zero (SV=PV), MV=0; à medida que o desvio cresce, MV aumenta até o máximo de 100%. O valor de desvio que provoca MV=100% define a Banda Proporcional (*Pb*). Com *Pb* alta, a saída MV só irá assumir um valor alto para corrigir o processo se o desvio for alto. Com *Pb* baixa, a saída MV assume valores altos de correção para o processo mesmo para pequenos desvios. Em resumo, quanto menor o valor de *Pb*, mais forte é a ação proporcional de controle.

A figura a seguir ilustra o efeito da variação de Pb no controle de um processo.

Figura 1 – Efeito da redução de PB no comportamento de PV

Em (1.A), com a banda proporcional grande, o processo estabiliza, porém muito abaixo do setpoint. Com a diminuição da banda proporcional (1.B), a estabilização ocorre mais próximo do setpoint, mas uma redução excessiva da banda proporcional (1.C) pode levar o processo à instabilidade (oscilação). O ajuste da banda proporcional faz parte do processo chamado de **Sintonia** do controle.

Quando a condição desejada (PV=SV) é atingida, o termo proporcional resulta em MV=0, ou seja, nenhuma energia é entregue ao processo, o que faz com que volte a surgir desvio. Por causa disto, um controle proporcional puro nunca consegue estabilizar com PV=SV.

Muitos controladores que operam apenas no modo Proporcional, adicionam um valor constante à saída de MV para garantir que na condição PV=SV alguma energia seja entregue ao sistema, tipicamente 50%. Este valor constante é denominado *Bias* (polarização), e quando ajustável permite que se obtenha uma estabilização de PV mais próxima a SV.

INCLUINDO O CONTROLEVNTEGRAL - PI

O integral não é, isoladamente, uma técnica de controle, pois não pode ser empregado separado de uma ação proporcional. A ação integral consiste em uma resposta na saída do controlador (MV) que é <u>proporcional à amplitude e duração do desvio</u>. A ação integral tem o efeito de eliminar o desvio característico de um controle puramente proporcional.

Para compreender melhor, imagine um processo estabilizado com controle P, conforme apresentado na figura 2.A.

Figura 2 – Efeito da inclusão do controle Integral - PI

Em 2.A, PV e MV atingem uma condição de equilíbrio em que a quantidade de energia entregue ao sistema (MV), é a necessária para manter PV no valor em que ela está. O processo irá permanecer estável nesta condição se nenhuma perturbação ocorrer. Apesar de estável, o processo não atingiu o setpoint (SV), existindo o chamado Erro em Regime Permanente.

Agora observe a figura 2.B, onde no instante assinalado, foi incluída a ação integral. Observe a gradual elevação do valor de MV e a consequente eliminação do erro em regime permanente. Com a inclusão da ação integral, o valor de MV é alterado progressivamente no sentido de eliminar o erro de PV, até que PV e MV alcançem um novo equilíbrio, mas agora com PV=SV.

A ação integral funciona da seguinte maneirà: À intervalos regulares, a ação integral corrige o valor de MV, somando a esta o valor do desvio SV-PV. Este intervalo de atuação se chama Tempo Integral, que pode também ser expresso por seu inverso, chamado Taxa Integral (*Ir*). O aumento da Taxa Integral – *Ir* – aumenta à atuação do Integral no controle do processo.

A ação integral tem como único objetivo eliminar o erro em regime permanente, e a adoção de um termo integral excessivamente atuante pode levar o processo à instabilidade. A adoção de um integral pouco atuante, retarda em demasia a estabilização PV=SV.

INCLUINDO O CONTROLE DERIVATIVO - PD

O derivativo não é, isoladamente, uma técnica de controle, pois não pode ser empregado separado de uma ação proporcional. A ação derivativa consiste em uma resposta na saída do controlador (MV) que é <u>proporcional à velocidade de variação do desvio</u>. A ação derivativa tem o efeito de reduzir a velocidade das variações de PV, evitando que se eleve ou reduza muito rapidamente.

O derivativo só atua quando há variação no erro. Se o processo está estável, seu efeito é nulo. Durante perturbações ou na partida do processo, quando o erro está variando, o derivativo sempre atua no sentido de atenuar as variações, sendo portanto sua principal função melhorar o desempenho do processo durante os transitórios.

A figura 3 compara respostas hipotéticas de um processo com controle P (A) e PD (B):

Figura 3 – Comparação de um controle P com um controle PD

No controle P (figura 3.A), se a banda proporcional é pequena, é bem provável que ocorra 'overshoot', onde PV ultrapassa SV antes de estabilizar. Isto ocorre pelo longo tempo em que MV esteve no seu valor máximo e por ter sua redução iniciada já muito próximo de SV, quando já é tarde para impedir o overshoot. Uma solução seria aumentar a banda proporcional, mas isto aumentaria o erro em regime permanente. Outra solução é incluir o controle derivativo (figura 3.B), que reduz o valor de MV se PV está crescendo muito rápido. Ao antecipar a variação de PV, a ação derivativa reduz ou elimina o overshoot e as oscilações no período transitório do processo.

Matematicamente, a contribuição do derivativo no controle è calculada da seguinte maneira: A intervalos regulares, o controlador calcula a variação do desvio do processo, somando à MV o valor desta variação. Se PV está aumentando, o desvio está reduzindo, resultando em uma variação negativa, que reduz o valor de MV e conseqüentemente retarda a elevação de PV. A intensidade da ação derivativa é ajustada variando-se o intervalo de cálculo da diferença, sendo este parâmetro chamado Tempo Derivativo – *Dt.* O aumento do valor de *Dt* aumenta a ação derivativa, reduzindo a velocidade de variação de PV.

CONTROLE PID

Ao unir as 3 técnicas conseguimos unir o controle básico do P com a eliminação do erro do I e com a redução de oscilações do D, mas se cria a dificuldade de ajustar a intensidade da cada um dos termos, processo chamado de sintonia do PID.

SINTONIA DO CONTROLE PID

A bibliografia de controle apresenta diversas técnicas para sintonia, tanto operando o processo em manual (malha aberta) quanto em automático (malha fechada). Foge ao objetivo deste artigo apresentar estas técnicas. A grande maioria dos controladores PID industriais incorporam recursos de "Auto Tune", em que o controlador aplica um ensaio ao processo e obtém o conjunto de parâmetros do PID (*Pb*, *Ir* e *Dt*). Para a maior parte dos processos, este cálculo é adequado, mas em muitos casos, é necessária a correção manual para atingir um desempenho de controle mais satisfatório (menos overshoot, estabilização mais rápida, etc.).

Para efetuar manualmente esta correção, é fundamental a compreensão dos princípios de funcionamento aqui expostos. A seguir são apresentadas diretrizes para otimização manual do desempenho de um controlador PID.

Corrigindo manualmente o PID

Em muitos casos é necessário ajuste da sintonia após a conclusão do Auto Tune. Este ajuste é manual e deve ser feito por tentativa e erro, aplicando uma alteração nos parâmetros PID e verificando o desempenho do processo, até que o desempenho desejado seja obtido. Para isto

é necessário conhecimento do efeito de cada parâmetro do PID sobre o desempenho do controle, além de experiência em diferentes processos.

As definições de um bom desempenho de controle são também bastante variadas, e muitas vezes o usuário espera de seu sistema uma resposta que ele não tem capacidade de atingir, independente do controlador utilizado. É comum o operador reclamar que a temperatura do forno demora muito a subir, mas o controlador está com MV sempre a 100%, ou seja, não tem mais o que fazer para acelerar. Também às vezes o operador quer velocidade mas não quer overshoot, o que muitas vezes é conflitante.

Na avaliação do desempenho do controlador, é importante analisar o comportamento da PV e MV, e verificar se o controlador está atuando sobre MV nos momentos adequados. Coloque-se no lugar do controlador e imagine o que você faria com a MV, e compare com a ação tomada pelo controlador. À medida que se adquire experiência, este tipo de julgamento passa a ser bastante eficiente.

A tabela 1 a seguir resume o efeito de cada um dos parâmetros sobre o desempenho do processo:

Parâmetro	Ao aumentar, o processo	Ao diminuir, o processo
	Torna-se mais lento.	Torna-se mais rápido
Pb	Geralmente se torna mais estável ou menos oscilante.	Fica mais instável ou mais oscilante
	Tem menos overshoot	
_	Torna-se mais rápido, atingindo rapidamente o setpoint	Torna-se mais lento, demorando para atingir o setpoint
lr	Fica mais instável ou mais oscilante	Fica mais estável ou mais oscilante.
	Tem mais overshoot	Tem menos overshoot.
Dt	Torna-se mais lentø.	Torna-se mais rápido.
Dl	Tem menos overshoot	Tem mais overshoot.

Tabela 1 – O efeito de cada parâmetro PID sobre o processo

A tabela 2 a seguir apresenta sugestões de alteração nos parâmetros PID baseadas no comportamento do processo, visando sua melhoria:

Se o desempenho do processo	Tente uma a uma as opções:
	Aumentar Pb em 20%
Está quase bom, mas o overshoot está um pouco alto	Diminuir <i>Ir</i> em 20%
	Aumentar Dt em 50%
tá quase bom, mas não tem overshoot e demora para atingir o tpoint	Diminuir Pb em 20%
	Aumentar Ir em 20%
- Solponit	Diminuir <i>Dt</i> em 50%
tá bom, mas MV está sempre variando entre 0% e 100% ou está	Diminuir <i>Dt</i> em 50%
variando demais.	Aumentar Pb em 20%
Está ruim. Após a partida, o transitório dura vários períodos de oscilação, que reduz muito lentamente ou não reduz.	Aumentar Pb em 50%
Está ruim. Após a partida avança lentamente em direção ao	Diminuir Pb em 50%
setpoint, sem overshoot. Ainda está longe do setpoint e MV já é	Aumentar Ir em 50%
menor que 100%	Diminuir <i>Dt</i> em 70%

Tabela 2 – Como melhorar o desempenho do processo

Copyright © 2003 - Novus Produtos Eletrônicos Ltda - Todos os direitos reservados