

Error Analysis

Carrying out error analysis

Look at dev examples to evaluate ideas

Should you try to make your cat classifier do better on dogs?

Error analysis:

- Get ~100 mislabeled dev set examples.
- Count up how many are dogs.

"(eiling)

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats <
- Fix great cats (lions, panthers, etc..) being misrecognized <

• Improve performance on blurry images \leftarrow

	Image	Dog	Great Cats	Plury	Instagram	Comments
1	1	/			✓	Pitbull
	2			/	V	
	3		\checkmark	\checkmark		Rainy day at 200
J	:	:	: V	;	K	
	% of total	8 %	(430/-)	6/0/0) 12%	
			∼_	~		

Error Analysis

Cleaning up Incorrectly labeled data

Incorrectly labeled examples

DL algorithms are quite robust to <u>random errors</u> in the training set.

Systematic errors

Error analysis

•	Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments	
\uparrow							
	98				\checkmark	Labeler missed cat in background	\leftarrow
	99		✓				
\bigcup	100				\bigcirc	Drawing of a cat; Not a real cat.	\leftarrow
	% of total	8%	43%	$\underline{61\%}$	6%		
Overall dev set error							
Errors due incorrect labels 0.6./.							
Errors due to other causes 9.4% 1.4%							
				1		2.1./0	1.9./6

Goal of dev set is to help you select between two classifiers A & B.

Correcting incorrect dev/test set examples

- Apply same process to your dev and test sets to make sure they continue to come from the same distribution
- Consider examining examples your algorithm got right as well as ones it got wrong.
- Train and dev/test data may now come from slightly different distributions.

Error Analysis

Build your first system quickly, then iterate

Speech recognition example

- → Noisy background
 - Café noise
 - → Car noise
- Accent Guideline:

Young Build your first

Stutter system quickly,

then iterate

- → Set up dev/test set and metric
 - Build initial system quickly
 - Use Bias/Variance analysis & Error analysis to prioritize next steps.

Mismatched training and dev/test data

Training and testing on different distributions

Cat app example Data from webpages

(mr. 505,000

> 200,000 -

Option 2:

200K 7 1 10 210K 210K

Speech recognition example

Speak outistel rearries million-

Training

Purchased data

Smart speaker control

Voice keyboard

Dev/test

Speech activated rearview mirror

500,000 uteranes

Mismatched training and dev/test data

Bias and Variance with mismatched data distributions

Cat classifier example

Assume humans get $\approx 0\%$ error.

Training error 10%.

Dev error 10%.

Training-dev set: Same distribution as training set, but not used for training

Bias/variance on mismatched training and dev/test sets

Traing - des set error 10.1. Der error 12.1/0 data mismath 6.1/0 7 Test error 12.1/0 to der set. 6.1/0		40/0 Jaroidelle bias 70/0 Jaroidelle bias 10.1. Jariane 12.1/0 Jarta mismatch	4% 7% 10% 6% 6%
--	--	---	-----------------------------

More general formulation

Reasures millor

Mismatched training and dev/test data

Addressing data mismatch

Addressing data mismatch

 Carry out manual error analysis to try to understand difference between training and dev/test sets

 Make training data more similar; or collect more data similar to dev/test sets

Artificial data synthesis

Artificial data synthesis

Car recognition:

₩ <u>50</u> cm2

Learning from multiple tasks

Transfer learning

When transfer learning makes sense

Transh from A -> B

- Task A and B have the same input x.
- You have a lot more data for $\underbrace{Task A}_{\uparrow}$ than $\underbrace{Task B}_{\downarrow}$.
- Low level features from A could be helpful for learning B.

Learning from multiple tasks

Multi-task learning

Simplified autonomous driving example

Neural network architecture

When multi-task learning makes sense

• Training on a set of tasks that could benefit from having shared lower-level features.

• Usually: Amount of data you have for each task is quite

similar. A 1,000
A, 1,000
A, 1,000
A, 1,000
A, 1,000

• Can train a big enough neural network to do well on all the tasks.

End-to-end deep learning

What is end-to-end deep learning

What is end-to-end learning?

Speech recognition example

Face recognition

[Image courtesy of Baidu]

Andrew Ng

More examples

Machine translation

(X, y)
English -> text analysis -> --- -> French
English

English

English

Estimating child's age:

End-to-end deep learning

Whether to use end-to-end learning

Pros and cons of end-to-end deep learning

Pros:

• Let the data speak

Less hand-designing of components needed

Cons:

May need large amount of data

• Excludes potentially useful hand-designed components

Applying end-to-end deep learning

Key question: Do you have sufficient data to learn a function of the complexity needed to map x to y?

