TD: Groupes quotients et sous-groupes normaux

Vincent Boulard

October 23, 2023

Exercice 1 (sous-groupe normal, quotient, rappels)

Soit G un groupe et $H \subset G$ un sous-groupe de G, on dit que H est distingué (ou normal) dans G si

$$\forall q \in G, \ \forall h \in H, \ qhq^{-1} \in H.$$

Et dans ce cas on note $H \triangleleft G$.

- 1. Montrer que la définition précédente équivaut à $\forall g \in G, \ gH = Hg$.
- 2. On note G/H l'ensemble des gH avec $g \in G$. Montrer que G/H est l'ensemble des classes d'équivalence pour la relation suivante \sim_H définie par

$$\forall q, q' \in G, \ q \sim_H q' \iff q^{-1}q' \in H$$

Ainsi on notera $\overline{g} = gH$ la classe d'équivalence de g pour cette relation. Montrer alors que si $H \triangleleft G$ l'application $(\overline{g}, \overline{g'}) \mapsto \overline{gg'}$ est bien définie¹, et que munie de celle-ci G/H est un groupe. On dit que c'est le groupe quotient de G par H.

Exercice 2 (questions en vrac)

- 1. Soit k un corps, montrer que $SL_n(k) \triangleleft GL_n(k)$ et que $GL_n(k)/SL_n(k) \simeq k^*$.
- 2. On note S_n le groupe symétrique de degré n. Soit $H \triangleleft S_n$ tel que H contienne une transposition, montrer alors que $H = S_n$.

Exercice 3 (centre)

Soit G un groupe, on appelle centre de G la partie suivante

$$Z(G) = \{ x \in G \mid \forall g \in G, \ gx = xg \}.$$

Et pour tout $g \in G$ on pose $f_g : x \mapsto gxg^{-1}$ et on note $Int(G) = \{f_g, g \in G\}$.

- 1. Montrer que Int(G) est un groupe pour la composition et que Z(G) est un sous-groupe normal de G.
- 2. Montrer que $G/Z(G) \simeq \operatorname{Int}(G)$.
- 3. Montrer que si G/Z(G) est monogène (i.e. engendré par un élément) alors G est abélien.³

Exercice 4 (décomposition directe)

Soit G un groupe et $K \triangleleft G$ et $H \triangleleft G$ tels que HK = G et $H \cap K = \{e\}$. Montrer que $G \simeq H \times K$.

Exercice 5 (groupe dérivé)

 $^{^1}$ C'est une application de $G/H \times G/H$ dans G/H or elle est définie via des représentants. Ainsi il faut vérifier que quand H est normal dans G, la définition de celle-ci dépend uniquement des classes de g et g'.

 $^{{}^2}G_1 \simeq G_2$ signifie que G_1 est isomorphe à G_2 .

 $^{^3}$ Cette question est indépendante du lien entre les automorphismes intérieurs et Z(G) .

Soit G est groupe. Soit $x,y \in G$, on appelle commutateur de x et y l'élément suivant $[x,y] = xyx^{-1}y^{-1}$ (il mesure le défaut de commutation car $[x,y] = e \iff xy = yx$), puis le sous-groupe D(G) engendré par tous les commutateurs est appelé groupe dérivé de G.

- 1. Montrer que $D(G) \triangleleft G$.
- 2. Soit $H \triangleleft G$, montrer que G/H est abélien si et seulement si $D(G) \subseteq H$, autrement dit, D(G) est le plus petit sous-groupe normal tel que G/D(G) soit abélien.

Exercice 6 (groupe résoluble, Galois?)

Un groupe G est dit résoluble s'il existe G_0, \ldots, G_n des sous-groupes de G tels que

$$\{e\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_n = G,$$

et tels que G_{i+1}/G_i soit abélien.⁴

- 1. Montrer que si G est abélien alors il est résoluble.
- 2. On pose $D^0(G) = G$ et pour tout $n \in \mathbb{N}$, $D^{n+1}(G) = D(D^n(G))$. Montrer via l'exercice précédent que G est résoluble si et seulement si la suite $(D^n(G))_{n \in \mathbb{N}}$ stationne à $\{e\}$.
- 3. On se donne un sous-groupe H de G.
- 3.a Montrer que si G est résoluble alors H aussi.
- 3.b Montrer que si $H \triangleleft G$ et que G est résoluble, alors G/H l'est aussi.
- 3.c Montrer que si $H \triangleleft G$ et que H et G/H sont résolubles, alors G est résoluble.

Exercice 7 (exemples de groupes résolubles)

- 1. Montrer que S_1, S_2 et S_3 sont résolubles.
- 2. On note $D_n = \{e, r, r^2, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}$ le groupe diédral d'ordre $2n^5$. Montrer que D_n est résoluble (indication : montrer que $D(D_n)$ est engendré par r^2).

Exercice 8 (groupe simple)

On dit qu'un groupe G est simple s'il admet uniquement deux sous-groupe distingués distincts. 6

- 1. Quels sont les groupes abéliens simples?
- 2. Soit G un groupe simple et résoluble, montrer alors qu'il existe un nombre premier p tel que $G \simeq C_p$.

Exercice 9 (produit semi-direct)

Soit N et H deux groupes, $f: H \to \operatorname{Aut}(N)$ un morphisme de H dans le groupe des automorphismes de N. On munit le produit $N \times H$ de la loi suivante

$$((n,h),(n',h')) \mapsto (nf(h)(n'),hh')$$

On dit alors que $N \times H$ est le produit semi-direct de N par H suivant f et on note ce groupe $N \times H$.

- 1. Vérifier que la loi définie respecte les axiomes d'une loi de groupe.
- 2. On considère les sous-groupes $H = \{e, s\}$ et $N = \{e, r, \dots, r^{n-1}\}$ de D_n , on pose alors $f : H \to \operatorname{Aut}(N)$ tel que $f(e)(r^k) = r^k$ et $f(s)(r^k) = r^{-k}$. En déduire que $D_n \simeq N \rtimes H$ et donc que $D_n \simeq C_n \rtimes C_2$.
- 3. Soit V un espace vectoriel, on note GA(V) le groupe des automophismes affines de V^9 , montrer alors que $GA(V) = V \rtimes GL(V)$.

 $^{^4 {\}rm Intuitivement},$ un groupe résoluble est un groupe "pas trop loin" d'un groupe abélien.

⁵Le groupe de symétrie d'un n-gone régulier centré en 0 dans le plan, r est la rotation directe d'angle $\frac{2\pi}{n}$ et s la symétrie axiale par rapport à la droite passant par le centre et 1.

⁶Ainsi on remarque que $\{e\}$ n'est pas simple.

⁷ C_p est le groupe cyclique d'ordre p, ainsi il est isomorphe à $\mathbb{Z}/p\mathbb{Z}$.

⁸En toute rigueur on devrait souligner d'avantage le rôle de f pour définir ce groupe, en notant par exemple \rtimes_f au lieu de \rtimes , mais en pratique on ne le fait pas.

 $^{^{9}}$ C'est à dire les automorphismes de V composés par une translation à gauche.

Exercice 10 (décomposition semi-directe)

Soit G un groupe, H un sous-groupe de G et $N \triangleleft G$ avec NH = G et $N \cap H = \{e\}$. Montrer alors que $G \simeq N \rtimes H$, comparer avec l'exercice 4.

Indication : pour définir f, penser aux automorphismes intérieurs.

Exercice 11 (théorème 5/8)

Soit G un groupe fini de cardinal n, on note z le cardinal de son centre. On veut montrer que si l'on tire au hasard deux éléments g_1 et g_2 de G (i.e. selon une loi uniforme sur G^2), la probabilité qu'ils commutent est toujours inférieure ou égale à $\frac{5}{8}$.

- 1. Montrer que le nombre de couple commutant est inférieur à $\frac{zn}{2} + \frac{n^2}{2}$. 2. En utilisant la dernière question de l'exercice 3, montrer que $z \leq \frac{n}{4}$.
- 3. Conclure.