

Chaos Game Optimization: a novel metaheuristic algorithm

Siamak Talatahari^{1,2} · Mahdi Azizi¹

Published online: 22 June 2020 © Springer Nature B.V. 2020

Abstract

In this paper, a novel metaheuristic algorithm called Chaos Game Optimization (CGO) is developed for solving optimization problems. The main concept of the CGO algorithm is based on some principles of chaos theory in which the configuration of fractals by chaos game concept and the fractals self-similarity issues are in perspective. A total number of 239 mathematical functions which are categorized into four different groups are collected to evaluate the overall performance of the presented novel algorithm. In order to evaluate the results of the CGO algorithm, three comparative analysis with different characteristics are conducted. In the first step, six different metaheuristic algorithms are selected from the literature while the minimum, mean and standard deviation values alongside the number of function evaluations for the CGO and these algorithms are calculated and compared. A complete statistical analysis is also conducted in order to provide a valid judgment about the performance of the CGO algorithm. In the second one, the results of the CGO algorithm are compared to some of the recently developed fractal- and chaos-based algorithms. Finally, the performance of the CGO algorithm is compared to some state-of-the-art algorithms in dealing with the state-of-the-art mathematical functions and one of the recent competitions on single objective real-parameter numerical optimization named "CEC 2017" is considered as numerical examples for this purpose. In addition, a computational cost analysis is also conducted for the presented algorithm. The obtained results proved that the CGO is superior compared to the other metaheuristics in most of the cases.

Keywords Metaheuristic · Statistical analysis · Chaos Game Optimization

1 Introduction

Most of the design problems in the nature can be considered as optimization problems which request some proper optimization techniques and algorithms to be dealt with. In these days, the design problems have become extremely complex in which the classical optimization algorithms based on the mathematical principles are incapable of providing some satisfactory results in a reasonable period of time. The gradient-based algorithms

Siamak Talatahari siamak.talat@gmail.com

Department of Civil Engineering, University of Tabriz, Tabriz, Iran

Engineering Faculty, Near East University, North Cyprus, Mersin 10, Turkey

which utilize the gradient of the objective function for configuration of the optimization problem is one of these mathematical algorithms. Over the past few decades, dealing with the deficiencies of classical optimization algorithms and introducing new efficient optimization algorithms have been of great concern. Based on the recent advances of the technology, there is an increasing interest in introducing new optimization algorithms which prepare a high efficiency, great accuracy and increased speed rate in dealing with difficult optimization problems. Besides, some other concerns in dealing with other specific issues such as the local optima problems alongside the non-smoothness and non-convexity of the search spaces have been of great concerns in this regard.

These concerns about the optimization algorithms have led the researchers and experts to present new algorithms for solving different optimization problems called "Metaheuristic". Glover (1986) firstly proposed this term in 1986 which is comprised of one main word (Heuristics) and a suffix (Meta) which have origins from the Greek words. The term "heuristic" comes from the "heuriskein" which is an old Greek word with a meaning of discovering new rules (strategies) in dealing with different problems while the term "meta" denotes on some upper level methodologies in nature. The metaheuristics are some special kinds of solution techniques which use some higher-level strategies to perform a searching process considering some special capabilities (such as avoiding local optimum results) for finding appropriate solutions.

As presented by Sörensen et al. (2018), the history of utilizing metaheuristics as the solution algorithms for dealing with real world problems can be categorized into five distinct periods. In the first period which is named as the "pre-theoretical" period (until 1940), there was not any formal presentation of heuristics and metaheuristics algorithms. Despite that, these algorithms had been used for solving some simple optimization problems in this period. In the second period or "early" period, from 1940 to 1980, some studies had been conducted on heuristics which was the first formal introduction in this field. In the third period, so-called "method-centric" period (1980–2000), different metaheuristics had been proposed and developed for specific applications which extended the field of heuristics and metaheuristics. Started from 2000 as the "framework-centric" period, developing and applying metaheuristics as an important frameworks of many algorithms has been considered widely. In the fifth or last period, the "scientific" or "future" period, the design and introduction of different new metaheuristics will turn into a matter of science rather than art. A brief summary of these historical periods is presented in Table 1.

On the other hand, four classifications can be made in terms of these algorithms inspiration as "evolutionary algorithms", "swarm intelligence-based algorithms", "physical laws-based approaches" and "humans and animals life style-based techniques". A brief summary of these metaheuristic algorithms is presented in Table 2 while some other challenges in developing, upgrading or hybridizing these algorithms have also been achieved (Talatahari and Azizi 2020; Azizi et al. 2019a, b, 2020; Talatahari et al. 2019).

In this paper, a novel metaheuristic so-called Chaos Game Optimization (CGO) is proposed. The main concept of the CGO algorithm is based on some principles of chaos theory in which the configuration of fractals by chaos game methodology alongside the fractals self-similarity issues are in perspective. The fractals have been utilized as the main or sub concept of different metaheuristic algorithms such as Stochastic Fractal Search (SFS) algorithm proposed by Salimi (2015), Fractal-Based Algorithm (FBA) developed by Kaedi (2017), Fractal Decomposition-Based Algorithm (FDA) presented by Nakib et al. (2017), and Fractal Triangle Search (FTS) algorithm proposed by Rodrigues et al. (2018). In addition, some other improved versions of metaheuristic algorithms have been proposed in which the chaos theory is embedded in the general formulation of these algorithms with

Table 1	Table 1 The brief summary of historical periods of metaheuristics evolution	l periods of metaheuristic	s evolution
No.	Name	Duration	Major concern
1	Pre-theoretical	Until 1940	No formal presentation with limited applications
2	Early	1940–1980	Heuristics was formally introduced and discussed
3	Method-centric	1980-2000	Multiple metaheuristics had been proposed and developed for specific applications
4	Framework-centric	2000 until now	The methodology of utilizing metaheuristics as the frameworks alongside the algorithms had been successfully presented
5	Scientific or future	Future	The design and introduction of different new metaheuristics will turn into a matter of science rather than art

 Table 2
 The brief summary of the metaheuristic algorithms

INDICATION OF THE INCIDENCE AND THE INCIDENCE AN	Suc algorithms	
Classification	Metaheuristic algorithm	Main references
Evolution	Memetic algorithm (MA)	Moscato (1989)
	Genetic algorithm (GA)	Holland (1992)
	Genetic programming (GP)	Koza (1992)
	Differential evolution (DE)	Storn and Price (1997)
	Evolution strategies (ES)	Beyer and Schwefel (2002)
	Biogeography-based optimizer (BBO)	Simon (2008)
	Covariance matrix adaptation evolution strategy (CMA-ES)	Hansen et al. (2003)
Swarm intelligence	Particle swarm optimization (PSO)	Eberhart and Kennedy (1995)
	Ant colony optimization (ACO)	Dorigo et al. (1996)
	Artificial bee colony (ABC)	Basturk (2006)
	Cat swarm optimization (CSA)	Chu et al. (2006)
	Firefly algorithm (FA)	Yang (2010a)
	Krill Herd (KH) algorithm	Gandomi and Alavi (2012)
	Slap swarm algorithm (SSA)	Mirjalili et al. (2017)
	Yellow Saddle Goatfish Algorithm (YSGA)	(Zaldivar et al. 2018)

_
ਚ
ō
Ξ
Ë
$\overline{}$
5
્ૅ
_
7
Ð
<u>e</u>
Ð

Classification	Metaheuristic algorithm	Main references
Physical laws	Simulated annealing (SA)	Kirkpatrick et al. (1983)
	HARMONY search (HS)	Geem et al. (2001)
	Big-Bang Big-Crunch (BBBC)	Erol and Eksin (2006)
	Small-world optimization algorithm (SWOA)	Du et al. (2006)
	Central force optimization (CFO)	Formato (2007)
	Magnetic optimization algorithm (MOA)	Tayarani-N and Akbarzadeh-T (2008)
	Gravitational search algorithm (GSA)	Rashedi et al. (2009)
	Charged system search (CSS)	Kaveh and Talatahari (2010)
	Galaxy-based search algorithm (GBSA)	Shah-Hosseini (2011)
	Artificial chemical reaction optimization algorithm (ACROA)	Alatas (2011)
	Curved space optimization (CSO)	Moghaddam et al. (2012)
	Ray optimization algorithm (ROA)	Kaveh and Khayatazad (2012)
	Black hole (BH) algorithm	Hatamlou (2013)
	Colliding bodies optimization (CBO)	Kaveh and Mahdavi (2014)
	Multi verse algorithm (MVO)	Mirjalili et al. (2016)

Table 2 (continued)		
Classification	Metaheuristic algorithm	Main references
Life style	Bees algorithm (BA)	Pham et al. (2005)
	Imperialistic competitive algorithm (ICA)	Atashpaz-Gargari and Lucas (2007)
	Cuckoo search algorithm (CSA)	Yang and Deb (2009)
	Teaching-learning-based optimization (TLBO)	Rao et al. (2011)
	Grey wolf optimizer (GWO)	Mirjalili et al. (2014)
	Symbiotic organisms search (SOS)	Cheng and Prayogo (2014)
	Moth-flame optimization (MFO)	Mirjalili (2015)
	Sine cosine algorithm (SCA)	Mirjalili (2016)
	Whale optimization algorithm (WOA)	Mirjalili and Lewis (2016)

different purposes. Some of these approaches are Chaos-embedded Particle Swarm Optimization (C-PSO) (Alatas et al. 2009), Chaotic Krill Herd (C-KH) (Wang et al. 2014), Firefly Algorithm (FA) with chaos (Gandomi et al. 2013a), Chaotic Whale Optimization Algorithm (C-WOA) (Kaur and Arora 2018), Chaotic Harmony Search (C-HS) (Alatas 2010), Chaotic Grey Wolf Optimizer (C-GWO) (Yu et al. 2016), Chaotic Slap Swarm Algorithm (C-SSA) (Sayed et al. 2018), Imperialistic Competitive Algorithm (ICA) combined with chaos (Talatahari et al. 2012), Chaos-based Differential Evolution (C-DE) (Liang et al. 2006), Chaotic enhanced Colliding Bodies Optimization (C-CBO) (Kaveh et al. 2018), Chaotic Teaching-Learning-Based Optimization (C-TLBO) (He et al. 2016), Cuckoo Search Algorithm (CSA) with chaotic maps (Wang and Zhong 2015), Chaos-integrated Symbiotic Organisms Search (C-SOS) (Saha and Mukherjee 2018), Chaotic-based Big-Bang Big-Crunch (C-BB-BC) (Jordehi 2014), Chaos-enhanced Accelerated PSO (CA-PSO) (Gandomi et al. 2013b), Charged System Search (CSS) with chaos (Talatahari et al. 2011), and Chaotic Swarming of Particles (CSP) (Kaveh et al. 2014). Based on the provided literature review, it should be noted that the methodology of the CGO algorithm is completely different from the previous works. In the CGO algorithm, the chaos game theory is utilized as the main concept of the algorithm and the general formulation of the algorithm is based on the game theory.

In order to evaluate the performance of the CGO algorithm, a total number of 239 mathematical functions which are categorized into four different groups are collected. These mathematical functions have different characteristics and have been categorized based on the dimensions of the variables. The first group is consisting of 117 functions which have 2–10 dimensions, each of the second and third groups include 58 functions which have 50 and 100 dimensions, respectively and the fourth group is consisting of 6 composite and hybrid functions. In order demonstrate the capability of the novel CGO algorithm in dealing with different optimization problems, three comparative analysis with different characteristics are conducted. In the first approach, six different metaheuristic algorithms are selected from the literature while the minimum, mean and standard deviation values alongside the number of function evaluations for the CGO and these algorithms for a tolerance of 1×10^{-12} are calculated and compared. A complete statistical analysis is also conducted by utilization of the Kolmogorov–Smirnov (K–S) test, Mann–Whitney U (M–W) test, Wilcoxon signed-rank (W) test, Kruskal–Wallis (K–W) test and the post-hoc (P-H) analysis in order to provide a valid judgment on the performance of the novel CGO algorithm. As the second comparative step, the results of the CGO algorithm are compared to the algorithms which has been developed based on the fractals concept, containing three metaheuristics which use the chaos theory in their main framework and two other metaheuristics which have been recognized as the most competitive approaches in recent years. In the third step, the performance of the CGO algorithm is compared to some state-of-the-art algorithms in dealing with difficult mathematical functions of "CEC 2017" competition (Awad et al. 2016). In addition, a computational cost and complexity analysis is also conducted for the CGO algorithm by utilization of the "Big O notation". A brief summary of this paper is as follows:

In Sect. 2, the inspiration of the proposed CGO algorithm alongside the mathematical model of the optimization algorithm based on the new algorithm are presented. In Sect. 3, some mathematical functions with different characteristics are presented for further utilization for testing the presented metaheuristic algorithm as well as some other approaches. In Sect. 4, a brief explanation of the selected metaheuristic algorithms are presented. The results are presented in Sect. 5 while a comprehensive statistical analysis is conducted in Sect. 6. Section 7 compares the results of the CGO algorithm with fractal- and chaos-based

approaches. In Sect. 8, the results of the CGO algorithm for the CEC 2017 competition problems are presented. In Sect. 9, the results of the computational cost and complexity analysis for the CGO algorithm are presented and finally, the main findings of this paper including the conclusion alongside the suggestions for the future challenges are presented accordingly in Sect. 10.

2 Chaos Game Optimization (CGO)

In this section, the inspiration of the novel metaheuristic algorithm (CGO) and its mathematical model are presented.

2.1 Inspiration

Chaos theory is a branch of mathematics concentrating on the specific characteristics of dynamical systems which are extremely sensitive to initial conditions. Considering the randomness of these dynamical systems, chaos theory denotes on the existence of some primary patterns such as similar loops, repeated templates, fractals and multiple sub-systems in the behavior of these systems which represent them as self-similar and self-organized dynamical systems. The chaos theory demonstrates that some small changes in the initial conditions of a dynamical system will result in some extreme differences in the upcoming conditions of these systems due to the dependence of them to the initial conditions. Based on this theory, the present state of a system could determine the later state of this system while the approximate present state of a system does not approximately determine the later state of this system.

Most of the chaotic processes have graphical shapes of fractals. In mathematics, a fractal is a subset of Euclidian space in which a specific geometric pattern is repeated in multiple scales. Fractals have approximately similar shapes in different scales which represent them as self-similar systems. One of the famous fractals is the Mandelbrot set which represent an elaborate infinitive boundary in which multiple recursive details are progressively demonstrated in different scales. In Fig. 1, the self-similarity of Mandelbrot set is presented in different scales.

In mathematics, the chaos game is the methodology of creating fractals utilizing an initial polygon shape and a randomly selected initial point. The main purpose is to create a sequence of points in an iterative manner in order to achieve a sketch which has similar shape in different scales. In this regard, the vertices of a polygon which is considered as the main shape of the fractal should be firstly positioned properly. Then, an initial random point is selected as the starting point for creating fractal. Based on this initial point, the next point in the sequence is determined as a fraction of the distance between the initial point and one of the vertices of the polygon which is selected randomly in each iteration. By repeating this process continuously with consideration of the random initial point and the random vertex selection in each iteration, a fractal is created. By utilizing three vertices with the factor of 1/2, a Sierpinski triangle is created. As the number of initial vertices for the fractal is increased to N, a Sierpinski Simplex with N – 1 dimensions can be created.

As a simple example, the step by step creation of a Sierpinski triangle by the methodology of chaos game is presented. At first, three vertices are selected in order to create the main shape of the fractal which results in a triangle shape in this case. Each of the selected vertices is marked by one of the red, blue and green colors. A dice is taken

Fig. 1 Self-similarity of Mandelbrot set in different scales

which has two red faces, two blue faces and two green faces. An initial random point is selected as the starting point of the fractal which is considered as a seed in this example. As the dice is rolled, based on which color comes up, the seed in the initial point is moved toward the related vertex half the distance between the seed and the vertex. The new position of the seed is utilized in the next iteration as the starting point in which the dice is rolled again and the seed is moved to the intended vertex accordingly. By rolling the dice many times, the Sierpinski triangle is achieved as the final shape. The schematic view of the presented methodology is depicted in Fig. 2 while the final shape of the Sierpinski triangle and its self-similarity in different scales is presented in Fig. 3.

Fig. 2 The methodology of chaos game for creating Sierpinski triangle

Fig. 3 The final shape and self-similarity of the Sierpinski triangle in different scales

2.2 Mathematical model

In this section, an optimization algorithm is proposed based on the presented principles of the chaos theory. The basic concepts of the fractals and chaos game are utilized in order to formulate a mathematical model for the CGO algorithm. Because of the fact that many of the natural evolution algorithms maintain a population of solutions which are evolved through random alterations and selection, the CGO algorithm considers a number of solution candidates (X) in this purpose which represent some eligible seeds inside a Sierpinski triangle. In this algorithm, each solution candidate (X_i) consists of some decision variables $(x_{i,j})$ which represent the position of these eligible seeds inside a Sierpinski triangle. The Sierpinski triangle is considered as the search space for solution candidates in the optimization algorithm. The mathematical presentation of these aspects is as follows:

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_i \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_i^1 & x_i^2 & \cdots & x_i^j & \cdots & x_n^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n^1 & x_n^2 & \cdots & x_n^j & \cdots & x_n^d \end{bmatrix}, \quad \begin{cases} i = 1, 2, \dots, n. \\ i = 1, 2, \dots, d. \end{cases}$$
 (1)

where n is the number of eligible seeds (solution candidates) inside the Sierpinski triangle (search space), and d is the dimension of these seeds.

The initial positions of these eligible seeds are determined randomly in the search space as follows:

$$x_{i}^{j}(0) = x_{i,min}^{j} + rand.(x_{i,max}^{j} - x_{i,min}^{j}),$$

$$\begin{cases} i = 1, 2, \dots, n. \\ j = 1, 2, \dots, d. \end{cases}$$
 (2)

where $x_i^j(0)$ determines the initial position of the eligible seeds; $x_{i,min}^j$ and $x_{i,max}^j$ are the minimum and maximum allowable values for the *jth* decision variable of the *ith* solution candidate; *rand* is a random number in the interval of [0,1].

As previously described, the principles of chaos theory concern the existence of some primary patterns in the behavior of dynamical systems which represent them as the self-similar and self-organized systems. The created initial seeds (eligible seeds), represent the primary patterns of the dynamical systems based on the chaos theory. The eligibility of these seeds to be as the primary patterns (the self-similarity) can be modeled with solution candidates (X) for an optimization problem. The solution candidates with the highest and lowest eligibility levels are equivalent to the best and worst fitness values, respectively.

The main concept of this mathematical model is to create different eligible seeds inside the search space in order to complete the overall shape of a Sierpinski triangle. In this regard, the methodology of creating new seeds inside a Sierpinski triangle is utilized as well. For each of the eligible seeds in the search space (X_i) , a temporary triangle is drawn with three seeds as follows:

- The position of the so far found Global Best (GB),
- The position of the Mean Group (MG_i) ,
- The position of the *ith* solution candidate (X_i) as the selected seed.

The GB refers to the so far found best solution candidate which have highest eligibility levels and the MG_i refers to the mean values of some randomly selected eligible seeds with equal probability of including the current considered initial eligible seed (X_i) . The GB and MG_i alongside the selected eligible seed (X_i) are considered as three vertices of a Sierpinski triangle. As mentioned before, for each of the initial eligible seeds in the search space, a temporary triangle is created with the purpose of creating some new seeds inside the search space which could be considered as new eligible seeds for completing the Sierpinski triangle. The schematic view of the creating temporary triangles is depicted in Fig. 4a while the detailed schematic description of this aspect is presented in Fig. 4b.

The main purpose of creating temporary triangles is to create new eligible seeds in the search space as described in the following. To fulfill this aim, four approaches are developed. The *ith* temporary triangle (*i*th iteration) contains the *n* available eligible seeds obtained in the previous iteration and three vertices of a Sierpinski triangle [the GB (green seed), MG_i (red seed) and X_i (blue seed)]. In this temporary triangle, 3 seeds and a dice are utilized for creating new seeds regarding the chaos game methodology. The first seed is positioned in the X_i , the second one is located in the GB and the third one is placed in the MG_i . For the first seed, a dice with three green faces and three red faces is utilized. The dice is rolled and based on which color comes up (green or red), the seed in the X_i is moved toward the GB (green face) or the MG_i (red face). This aspect is modeled through some random integer generation function which creates only two integers as 0 and 1 for the possibility of selecting green or red faces. If the green face comes up, the seed positioned in the X_i is moving toward the GB but if the red face comes up, the seed positioned in the X_i is moving toward the MG_i . Regardless of the fact that each of the green or red faces have equal possibility of coming up in the game, the possibility of creating two similar random integers for both of the GB and the MG_i are also considered in which the seed in the X_i moves toward a point of the connected lines between the GB and the MG_i . Based on the fact that the movement of the seeds in the search space should be limited due to the chaos game methodology, some randomly generated factorials are utilized in this purpose in order to control this aspect. A schematic presentation of the described process for the first seed is presented in Fig. 5a while the mathematical presentation of this process is as follows:

$$Seed_i^1 = X_i + \alpha_i \times (\beta_i \times GB - \gamma_i \times MG_i), \quad i = 1, 2, \dots, n.$$
 (3)

where X_i is the *ith* solution candidate, GB is the so far found global best, and MG_i is the mean values of some selected eligible seeds. α_i is the randomly generated factorial for modelling the movement limitations of the seeds while each of the β_i and γ_i represent a random integer of 0 or 1 for modelling the possibility of rolling a dice.

Fig. 4 a The schematic view of creating temporary triangles, b temporary triangles in the search space

For the second seed (GB), a dice with three blue and three red faces is utilized. The dice is rolled and based on which color comes up (blue or red), the seed in the GB is moved toward the X_i (blue face) or the MG_i (red face). This aspect is modeled as described for the first seed. If the blue face comes up, this seed is moving toward the X_i but if the red face comes up, the seed moves toward the MG_i . Similar to the moving process of the first seed, the second seed can move towards a point of the connected lines between the X_i and the MG_i and this movement is limited using some randomly generated factorials. A schematic presentation of the described process for the second seed is presented in Fig. 5b while the mathematical presentation of this process is as follows:

$$Seed_i^2 = GB + \alpha_i \times (\beta_i \times X_i - \gamma_i \times MG_i), \quad i = 1, 2, \dots, n.$$
 (4)

where α_i is the randomly generated factorial for modelling the movement limitations of the seeds while each of the β_i and γ_i represent a random integer of 0 or 1 for modelling the possibility of rolling a dice. The other parameters are as described for the first seed.

 MG_i as the third seed, a dice has blue and green faces and it is rolled and based on which color comes up (blue or green), the seed moves toward the X_i (blue face) or the

Fig. 5 The schematic view of position update for a first, b second, c third and d fourth seed in the search space

GB (green face). This aspect is modeled through some random integer generation function which creates only two integers as 0 and 1 for the possibility of selecting blue or green faces. It should be noted that the seed can move along the direction of the connected lines between the X_i and the GB, as well. Some random factorials are also utilized to fulfill this aim, as:

$$Seed_i^3 = MG_i + \alpha_i \times (\beta_i \times X_i - \gamma_i \times GB), \quad i = 1, 2, \dots, n.$$
 (5)

A schematic presentation of the described process for the third seed is presented in Fig. 5c.

In order to implement the mutation phase in the position updates of the eligible seeds in the search space, another process is also utilized to generated the fourth seed. The position updates for this seed is conducted based on some random alterations in the randomly chosen decision variables. A schematic presentation of the described process for the fourth seed is presented in Fig. 5d while this aspect is mathematically modelled as follows:

$$Seed_i^4 = X_i(x_i^k = x_i^k + R), \quad k = [1, 2, ..., d].$$
 (6)

where k is a random integer in the interval of [1, d] and R is a uniformly distributed random number in the interval of [0,1].

In order to control and adjust the exploration and exploitation rate of the CGO algorithm, four different formulations are presented for α_i which controls the movement limitations of the seeds:

$$\alpha_{i} = \begin{cases} Rand \\ 2 \times Rand \\ (\delta \times Rand) + 1 \\ (\varepsilon \times Rand) + (\sim \varepsilon) \end{cases}$$
 (7)

where *Rand* is a uniformly distributed random number in the interval of [0,1], while δ and ε are random integers in the interval of [0,1].

Based on the self-similarity issues in the fractals, the eligibility of the available seeds alongside the new ones should be considered together in order to decide whether or not the new seeds should be included in the overall eligible seeds in the search space. The quality of new solution candidates is compared to the available ones and the better ones is kept and the seeds with worst fitness values is eliminated corresponding to the worst self-similarity levels. It should be noted that the substitution process in the mathematical approach is implemented in order to decrease the complexity of the mathematical model. In reality, all of the so far found eligible seeds in the search space is utilized in order to complete the overall shape of the Sierpinski triangle.

In order to deal with the solution variables (x_i^j) violating the boundary conditions of the variables, a mathematical flag is defined in which for the x_i^j outside the variables range, the flag orders a boundary change for the violating variables. The terminating criterion is considered based on the maximum number of iterations in which the optimization process is terminated after a fixed number of iterations. The step by step procedure of the CGO algorithm is as follows while the pseudo-code of the algorithm is presented in Fig. 6.

- Step 1 The initial positions of solution candidates (X) or the initial eligible seeds in the search space are defined randomly.
- Step 2 The fitness values of the initial solution candidates based on the self-similarity of the initial eligible seeds are calculated.
- Step 3 The Global Best (GB) related to the seed with highest levels of eligibility is determined.
- Step 4 For each eligible seed (X_i) in the search space, a Mean Group (MG_i) is determined.
- Step 5 For each eligible seed (X_i) in the search space, a temporary triangle is determined with three vertices of X_i, GB, and MG_i.
- Step 6 For each of the temporary triangles, α_i , β_i , and γ_i values are calculated.
- Step 7 For each of the temporary triangles, four seeds are created based on the Eqs. 3-6.
- Step 8 For the new seeds with ta variable outside the range, a boundary condition check is conducted.
- Step 9 The fitness values of the new seeds based on the self-similarity issues are calculated
- Step 10 The available eligible seeds with worst fitness values corresponding to worst self-similarity levels are substituted by the new seeds.
- Step 11 The terminating criterion is checked.


```
procedure Chaos Game Optimization (CGO) Algorithm
           Create random values for initial positions (x_i^j) of eligible seeds (X_i)
           Evaluate fitness values for each eligible seed
           Find GB, So far found best eligible seed
           while (t \le maximum number of iterations)
                for i=1: number of initial eligible seeds
                 Find MGi
                 Create temporary triangles with X_i, GB, and MG_i
                 Calculate the \alpha_i, \beta_i, and \gamma_i values
                 Create new seeds by Eqs. 3 to 6.
                    if new seeds violate boundary conditions
                       Control the position constraints for new seeds and amend it
                    end if
                 Evaluate the fitness values for new seeds
                    if new seeds have better fitness values than the worst initial eligible seeds
                       Substitute the worst initial eligible seeds by the new seeds
                 Update GB if a better solution is found
                 end for
                 t=t+1
           end while
           return GB
end procedure
```

Fig. 6 The pseudo-code of the CGO algorithm

3 Mathematical test functions

In this section, almost all of well-known mathematical functions are considered in order to utilize as test functions for performance evaluation of the CGO algorithm. A total number of 239 mathematical functions categorized into four different groups based on their specific characteristics are utilized (Jamil and Yang 2013; Jamil et al. 2013; Momin and Yang 2013; Yang 2010a; Liang et al. 2005) in which different mathematical functions with different characteristics is reviewed and prepared for utilizing in validation of the present algorithm. Many available works in the optimization field utilize their algorithm for solving a high number of functions while, they select and report just the best one. In the other words, the worst results and problems were not reported and investigated at all and the advantage and disadvantages of algorithms remain unclear. Obviously, this is not a correct manner for evaluating an algorithm. We believe that for having a fair evaluation of the performance of an algorithm, different problems with various properties should be considered. As a result, we gathered and solved almost all of the classic and new mathematical optimization functions in this paper. Also, the bad results as well as the good ones are reported. Hopefully, this work opens new era for the future researches in presenting all results to discover all good or bad properties of algorithms.

In the first group, 117 mathematical functions are presented which have minimum and maximum dimensions of 2 and 10, respectively. Among these functions which are named as F_1 to F_{117} , the first 90 functions have 2 dimensions while the other 27 functions have dimensions of 3–10, accordingly. The second group of mathematical functions consist of

58 test functions in which the dimensions of these functions are variable due to the specific formulation and are called as N dimensional test functions. In this regard, the maximum dimensions of 50 is considered in dealing with these functions (fifty dimensional (50D) functions) as F_{118} to F_{175} . For the third group, the mathematical functions of the second group are considered with the maximum dimension of 100 (100D) as F_{175} to F_{233} . For the fourth group, three composite and three hybrid mathematical functions are considered which are named as F_{233} to F_{239} . The specific characteristics of the mentioned mathematical functions in these groups are all presented in Table 3. In this table, C, NC, D, ND, S, NS, Sc, NSc, U and M denote on Continuous, Non-Continuous, Differentiable, Non-Differentiable, Separable, Non-Separable, Scalable, Non-Scalable, Unimodal and Multi-modal respectively. In addition, R, D and Min represent the variables range, variables dimension and the global minimum of the functions.

4 Alternative metaheuristics for comparison

In order to evaluate the overall performance of the CGO algorithm, some different optimization algorithms ae utilized as alternative approaches which provide a valid comparative study. The utilized metaheuristics in this purpose are the FA, GWO, ICA, SOS, TLBO, and the WOA. Based on the fact that some of the selected optimization algorithms are recently proposed or developed for special purposes, the most recent and improved versions of these algorithms are used in this paper. It should be noted that the internal parameters of the optimization algorithms have the most vital role in the convergence performance of these algorithms. In this purpose, a parameter summary of the selected algorithms is presented in Table 4. The values of these parameters have been determined utilizing the reference-based parameter identification process in which the internal parameters of these algorithms are selected based on the previously published research papers. It should be noted that some of the utilized metaheuristics are parameter free such as the GWO, SOS, TLBO, and the WOA which are not mentioned in this table.

5 Numerical results

In this section, the obtained results of the optimization run for the CGO algorithm alongside the other metaheuristic approaches in dealing with the mathematical test functions are presented. The optimization problem in all of these metaheuristics are formulated in which the maximum population size is taken as 50 and the maximum number of Function Evaluation (FE) is selected as 150,000 for all of the metaheuristics. The maximum number of iterations in each algorithm is adjusted based on the selected maximum number of FE. Based on the fact that collecting quantitative results are of great importance in dealing with different optimization problems, each of the CGO and the other metaheuristic algorithms is used to solve the mathematical functions 100 times, separately and the mean and standard deviation (Std) of the final best solutions are reported. The tolerance of 1×10^{-12} is also determined as the terminating criterion in which the optimization run is stopped if so-far best result of the algorithm is in this tolerance of the Global Best of the problem. Then, the number of FEs is calculated based on the pre-selected tolerance. In this section, the minimum, mean and the standard deviation of the 100 optimization runs for the selected algorithms in dealing with different mathematical functions are presented. In Table 5, the

Table 3 Details of the 2D-100D mathematical functions

F. Ackley 2 Function Type R D Formulation Min. F. Ackley 2 Function C. D. NS. Sc. M [-33,35] 2 Jamil and Vaing (2013) -195.629 F. Ackley 3 Function C. D. NS. NSc. M [-1,21] and [-1,1] 2 Jamil and Vaing (2013) -195.629 F. Ackley 3 Function C. D. NS. NSc. M [-1,21] and [-1,1] 2 Jamil and Vaing (2013) -2.0218 F. Beacker Lago function C. D. NS. NSc. M [-4,5,4,5] 2 Jamil and Vaing (2013) 0 F. Beacker Lago function C. D. NS. NSc. M [-0,10] 2 Jamil and Vaing (2013) 0 F. Bird Function C. D. NS. NSc. M [-0,10] 2 Jamil and Vaing (2013) 0 F. Bohackevsky 1 Function C. D. NS. NSc. M [-10,10] 2 Jamil and Vaing (2013) 0 F. Bohackevsky 2 Function C. D. NS. NSc. M [-10,10] 2 Jamil and Vaing (2013) 0 F. Bohackevsky 2 Function C. D. NS. NSc. M [-10,10] 2 Jamil and Vaing (2013) 0 F. Bohackevsky 2 Function C. D. NS. NSc. M [-10,10] 2 Jamil and Vaing (2013) 0 F. Bohackev		- 1					
Ackley 2 Function C. D. NS. Sc, M [-35,35] 2 Inmil and Vang (2013) Ackley 3 Function C. D. NS. NSc, M [-32,32] 2 Inmil and Vang (2013) Addiman Function C. D. NS. NSc, M [-1,21] and [-1,11] 2 Inmil and Vang (2013) Bartels Come Function C. D. NS. NSc, M [-1,0,10] 2 Inmil and Vang (2013) Becker-Lago function S. D. NS. NSc, M [-10,10] 2 Inmil and Vang (2013) Bigs EXP2 Function C. D. NS. NSc, M [-10,10] 2 Inmil and Vang (2013) Bids checkevsky 1 Function C. D. NS. NSc, M [-10,10] 2 Inmil and Vang (2013) Bohachevsky 2 Function C. D. NS. NSc, M [-10,10] 2 Inmil and Vang (2013) Bohachevsky 3 Function C. D. NS. NSc, M [-10,10] 2 Inmil and Vang (2013) Bohachevsky 2 Function C. D. NS. NSc, M [-1,10,10] 2 Inmil and Vang (2013) Bohachevsky 2 Function C. D. NS. NSc, M [-1,10,10] 2 Inmil and Vang (2013) Bohachevsky 2 Function C. D. NS. NSc, M [-1,0,	Š	- 1	Type	~		Formulation	Min.
Ackley 3 Function C. D. NS, NSc, M [-32,33] 2 Jamil and Yang (2013) Adjiman Function C. D. NS, NSc, M [-1,1] 2 Jamil and Yang (2013) Bartels Com Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Bartels Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Biggs EXP2 Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Bidgs EXP2 Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Both chevsky 1 Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Both chevsky 2 Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Both chevsky 3 Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Both Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Both Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013)	$\overline{\mathbf{F}}_{1}$	Ackley 2 Function	C, D, NS, Sc, M	[-35, 35]	2	Jamil and Yang (2013)	- 200
Adjiman Function C, D, NS, NSc, M -1, 2 and -1, 1 2 Jamil and Yang (2013) Bartels Coun Function C, D, NS, NSc, M -50, 500 2 Jamil and Yang (2013) Bearles Function C, D, NS, NSc, M -45, 4.5 2 Jamil and Yang (2013) Becker-Lago function S -10, 10 2 Jamil and Yang (2013) Biggs EXP2 Function C, D, NS, NSc, M -10, 10 2 Jamil and Yang (2013) Bohachevsky J Function C, D, NS, NSc, M -100, 100 2 Jamil and Yang (2013) Bohachevsky J Function C, D, NS, NSc, M -100, 100 2 Jamil and Yang (2013) Both Function C, D, NS, NSc, M -10, 10 2 Jamil and Yang (2013) Both Function C, D, NS, NSc, M -5, 15 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M -5, 15 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M -5, 15 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M -5, 51	\mathbb{F}_2	Ackley 3 Function	C, D, NS, NSc, U	[-32, 32]	2	Jamil and Yang (2013)	-195.629
Bartels Com Function C, ND, NS, NSc, M I = 500, 500] 2 Jamil and Yang (2013) Beaker-Lago function S I = 10, 10] 2 Jamil and Yang (2013) Biggs EXP2 Function C, D, NS, NSc, M I = 10, 10] 2 Jamil and Yang (2013) Biggs EXP2 Function C, D, NS, NSc, M I = 100, 100] 2 Jamil and Yang (2013) Both Ehruction C, D, NS, NSc, M I = 100, 100] 2 Jamil and Yang (2013) Both Ehruction C, D, NS, NSc, M I = 100, 100] 2 Jamil and Yang (2013) Both Ehruction C, D, NS, NSc, M I = 10, 10] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M I = 10, 10] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M I = 15, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M I = 15, 15 2 Jamil and Yang (2013) Brakin Function C, D, NS, NSc, M I = 10, 10 2 Jamil and Yang (2013) Camel Function C, D, NS, NSc, M I = 5, 51 Jamil	F_3	Adjiman Function	C, D, NS, NSc, M	[-1, 2] and $[-1, 1]$	2	Jamil and Yang (2013)	-2.02181
Beatle Function C. D. NS, NSc, U [-45,45] 2 Jamil and Yang (2013) Becker-Lago function S [-10,10] 2 Jamil and Yang (2013) Biggs EXP2 Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Bird Punction C. D. NS, NSc, M [-100,100] 2 Jamil and Yang (2013) Boch chevsky J Function C. D. NS, NSc, M [-100,100] 2 Jamil and Yang (2013) Boch chevsky J Function C. D. NS, NSc, M [-100,100] 2 Jamil and Yang (2013) Boch chevsky J Function C. D. NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Boch Function C. D. NS, NSc, M [-5,10] and [0,15] 2 Jamil and Yang (2013) Brain R COS 2 Function C. D. NS, NSc, M [-5,10] and [0,15] 2 Jamil and Yang (2013) Brain R COS 2 Function C. D. NS, NSc, M [-5,10] and [0,15] 2 Jamil and Yang (2013) Brain R COS 2 Function C. D. NS, NSc, M [-15,-5] and [-3,3] 2 Jamil and Yang (2013) Camel Function C. D. NS, NSc, M [-15,	П	Bartels Conn Function	C, ND, NS, NSc, M	[-500, 500]	2	Jamil and Yang (2013)	1
Becker-Lago function S [-10, 10] 2 Jamil et al. (2013) Biggs EXP2 Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Bid Function C, D, NS, NSc, M [-10, 100] 2 Jamil and Yang (2013) Bohachevsky J Function C, D, NS, NSc, M [-10, 100] 2 Jamil and Yang (2013) Bohachevsky J Function C, D, NS, NSc, M [-10, 100] 2 Jamil and Yang (2013) Bohachevsky J Function C, D, NS, NSc, M [-10, 100] 2 Jamil and Yang (2013) Booth Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-16, 10] C, D, NS, NSc, M [-16, 10] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-10, 1	T ₅	Beale Function	C, D, NS, NSc, U	[-4.5, 4.5]	7	Jamil and Yang (2013)	0
Biggs EXP2 Function C, D, NS, NSc, M [0, 20] 2 Jamil and Yang (2013) Bird Function C, D, NS, NSc, M [-2π, π] 2 Jamil and Yang (2013) Bohachevsky 1 Function C, D, NS, NSc, M [-100, 100] 2 Jamil and Yang (2013) Bohachevsky 3 Function C, D, NS, NSc, M [-100, 100] 2 Jamil and Yang (2013) Bohachevsky 3 Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Boath Function C, D, NS, NSc, M [-5, 15] 2 Jamil and Yang (2013) Branin RCOS Punction C, D, NS, NSc, M [-5, 15] 2 Jamil and Yang (2013) Bukin 4 Function C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Bukin 6 Function C, D, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Cannel Function-Three Hump C, D, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Cannot ble function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chen Function C, D, NS, NSc, M [-10, 10] </td <td>ъ 9</td> <td>Becker-Lago function</td> <td>S</td> <td>[-10, 10]</td> <td>7</td> <td>Jamil et al. (2013)</td> <td>0</td>	ъ 9	Becker-Lago function	S	[-10, 10]	7	Jamil et al. (2013)	0
Brind Function C, D, NS, NSc, M [-2t, \pi] 2 Jamil and Yang (2013) Bohachevsky I Function C, D, S, NSc, M [-100, 100] 2 Jamil and Yang (2013) Bohachevsky 2 Function C, D, NS, NSc, M [-100, 100] 2 Jamil and Yang (2013) Booth Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 10] and [-3, 3] 2 Jamil and Yang (2013) Breath Function C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-5, 5]	\mathbf{F}_7	Biggs EXP2 Function	C, D, NS, NSc, M	[0, 20]	2	Jamil and Yang (2013)	0
Both achewsky I Function C, D, S,NSc, M [-100, 100] 2 Jamil and Yang (2013) Both achewsky 2 Function C, D, NS, NSc, M [-100, 100] 2 Jamil and Yang (2013) Both achewsky 2 Function C, D, NS, NSc, M [-100, 100] 2 Jamil and Yang (2013) Booth Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 10] and [-3, 3] 2 Jamil and Yang (2013) Brent Function C, D, NS, NSc, M [-5, 5] and [-3, 3] 2 Jamil and Yang (2013) Bukin 6 Function C, D, NS, NSc, M [-5, 5] and [-3, 3] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) 3 C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-6, 5] 2 Jamil and Yang (2013) <td< td=""><td>굔~</td><td>Bird Function</td><td>C, D, NS, NSc, M</td><td>$[-2\pi,\pi]$</td><td>2</td><td>Jamil and Yang (2013)</td><td>-106.765</td></td<>	굔~	Bird Function	C, D, NS, NSc, M	$[-2\pi,\pi]$	2	Jamil and Yang (2013)	-106.765
Bohachevsky 2 Function C, D, NS, NSc, M [-100, 100] 2 Jamil and Yang (2013) Bohachevsky 3 Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Booth Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Brent Function C, D, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Bukin 6 Function C, D, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-15, 5] 2 Jamil and Yang (2013) Camel Function C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Chen Bird Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chichinadza Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chichinadza Function C, D, NS, NSc, M <td>${ m F}_9$</td> <td>Bohachevsky 1 Function</td> <td>C, D, S, NSc, M</td> <td>[-100, 100]</td> <td>2</td> <td>Jamil and Yang (2013)</td> <td>0</td>	${ m F}_9$	Bohachevsky 1 Function	C, D, S, NSc, M	[-100, 100]	2	Jamil and Yang (2013)	0
Both behavenky 3 Function C, D, NS, NSc, M [-100, 100] 2 Jamil and Yang (2013) Booth Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Brent Function C, D, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Bukin 6 Function C, ND, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Camel Function-Three Hump C, ND, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function C, ND, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function C, D, NS, NSc, M [-6, 10] 2 Jamil and Yang (2013) Chen V Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chen V Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chichinadze Function C, D, NS, NSc, M [-10, 10]	\mathbf{F}_{10}	Bohachevsky 2 Function	C, D, NS, NSc, M	[-100, 100]	2	Jamil and Yang (2013)	0
Booth Function C, D, NS, NSc, U [-10, 10] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 10] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS Function C, D, NS, NSc, M [-5, 15] 2 Jamil and Yang (2013) Brent Function C, D, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Bukin 6 Function C, ND, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Camel Function-Three Hump C, DN, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Camel Function C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chen Bird Function C, D, NS, NSc, M [-30, 30] 2 Jamil and Yang (2013) Chen V Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chichinadze Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-10, 10] 2	\mathbf{F}_{11}	Bohachevsky 3 Function	C, D, NS, NSc, M	[-100, 100]	7	Jamil and Yang (2013)	0
Branin RCOS Function C, D, NS, NSc M [-5, 16] and [0, 15] 2 Jamil and Yang (2013) Branin RCOS 2 Function C, D, NS, NSc, M [-5, 15] 2 Jamil and Yang (2013) Brent Function C, D, NS, NSc, M [-16, -5] and [-3, 3] 2 Jamil and Yang (2013) Bukin 6 Function C, ND, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Camel Function-Three Hump C, ND, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Camel Function-Six Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Carrom table function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chen Bird Function C, D, NS, NSc, M [-30, 500] 2 Jamil and Yang (2013) Chichinadze Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-10, 10]	${\rm F}_{12}$	Booth Function	C, D, NS, NSc, U	[-10, 10]	7	Jamil and Yang (2013)	0
Branin RCOS 2 Function C, D, NS, NSc, M [-5, 15] 2 Jamil and Yang (2013) Brent Function C, D, NS, NSc, W [-10, 10] 2 Jamil and Yang (2013) Bukin 4 Function C, ND, S, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Bukin 6 Function C, ND, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-50, 50] 2 Jamil and Yang (2013) Chen Bird Function C, D, NS, NSc, M [-50, 50] 2 Jamil and Yang (2013) Chickiniadze Function C, D, S, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [-10, 10]	\mathbb{F}_{13}	Branin RCOS Function	C, D, NS, NSc M	[-5, 10] and [0, 15]	2	Jamil and Yang (2013)	0.397887
Bukin 4 Function C, D, NS, NSc, U [-10, 10] 2 Jamil and Yang (2013) Bukin 4 Function C, ND, S, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Bukin 6 Function C, ND, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function-Six Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Carrom table function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chen Bird Function C, D, NS, NSc, M [-30, 30] 2 Jamil and Yang (2013) Chichinadze Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chickinadze Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chick Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Chose-in-Tray Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [-20, 20]	\overline{F}_{14}	Branin RCOS 2 Function	C, D, NS, NSc, M	[-5, 15]	7	Jamil and Yang (2013)	5.559037
Bukin 6 Function C, ND, S, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Bukin 6 Function C, ND, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Carrom table function C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Chen Bird Function C, D, NS, NSc, M [-500, 500] 2 Jamil and Yang (2013) Chickinadze Function C, D, S, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cross-in-Tray Function C, D, S, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Deckkers-Aarts Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	F_{15}	Brent Function	C, D, NS, NSc, U	[-10, 10]	7	Jamil and Yang (2013)	0
Bukin 6 Function C, ND, NS, NSc, M [-15, -5] and [-3, 3] 2 Jamil and Yang (2013) Camel Function-Three Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Camel Function-Six Hump C, D, NS, NSc, M [-5, 5] 2 Jamil and Yang (2013) Carrom table function C, D, NS, NSc, M [-6, 5] 2 Jamil and Yang (2013) Chen Bird Function C, D, NS, NSc, M [-500, 500] 2 Jamil and Yang (2013) Chichinadze Function C, D, NS, NSc, M [-30, 30] 2 Jamil and Yang (2013) Cross-in-Tray Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Deckkers-Aarts Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	\mathbf{F}_{16}	Bukin 4 Function	C, ND, S, NSc, M	[-15, -5] and $[-3, 3]$	7	Jamil and Yang (2013)	0
Camel Function-Three Hump C, D, NS, NSc, M [-5,5] 2 Jamil and Yang (2013) Camel Function-Six Hump C, D, NS, NSc, M [-5,5] 2 Jamil and Yang (2013) Carrom table function C, D, NS, NSc, M [-10, 10] 2 Jamil et al. (2013) Chen Bird Function C, D, NS, NSc, M [-500, 500] 2 Jamil and Yang (2013) Chen V Function C, D, NS, NSc, M [-30, 30] 2 Jamil and Yang (2013) Chichinadze Function C, DS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Deckkers-Aarts Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	F_{17}	Bukin 6 Function	C, ND, NS, NSc, M	[-15, -5] and $[-3, 3]$	7	Jamil and Yang (2013)	0
Camel Function-Six Hump C, D, NS, NSc, M [-5,5] 2 Jamil and Yang (2013) Carrom table function NS [-10,10] 2 Jamil and Yang (2013) Chen Bird Function C, D, NS, NSc, M [-500,500] 2 Jamil and Yang (2013) Chen V Function C, D, NS, NSc, M [-30,30] 2 Jamil and Yang (2013) Cross-in-Tray Function C, D, NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, M [-10,10] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-10,10] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-20,20] 2 Jamil and Yang (2013)	\overline{F}_{18}	Camel Function-Three Hump	C, D, NS, NSc, M	[-5, 5]	7	Jamil and Yang (2013)	0
Carrom table function NS [-10, 10] 2 Jamil et al. (2013) Chen Bird Function C. D. NS, NSc, M [-500, 500] 2 Jamil and Yang (2013) Chen V Function C. D. NS, NSc, M [-30, 30] 2 Jamil and Yang (2013) Chichinadze Function C. D. S, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cross-in-Tray Function C. D. NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C. D. NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C. D. NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	F_{19}	Camel Function-Six Hump	C, D, NS, NSc, M	[-5, 5]	7	Jamil and Yang (2013)	-1.0316
Chen Bird Function C, D, NS, NSc, M [-500,500] 2 Jamil and Yang (2013) Chen V Function C, D, NS, NSc, M [-500,500] 2 Jamil and Yang (2013) Chichinadze Function C, D, S, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cross-in-Tray Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	F_{20}	Carrom table function	NS	[-10, 10]	7	Jamil et al. (2013)	-24.1568
Chen V Function C, D, NS, NSc, M [-500,500] 2 Jamil and Yang (2013) Chichinadze Function C, D, S, NSc, M [-30,30] 2 Jamil and Yang (2013) Cross-in-Tray Function C, NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, M [-10,10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [-20,20] 2 Jamil and Yang (2013) C, D, NS, NSc, M [-20,20] 2 Jamil and Yang (2013)	\mathbf{F}_{21}	Chen Bird Function	C, D, NS, NSc, M	[-500, 500]	7	Jamil and Yang (2013)	-2000
Chichinadze Function C, D, S, NSc, M [-30, 30] 2 Jamil and Yang (2013) Cross-in-Tray Function C, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, U [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [0, 14] 2 Jamil and Yang (2013) Deckkers-Aarts Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	\mathbf{F}_{22}	Chen V Function	C, D, NS, NSc, M	[-500, 500]	7	Jamil and Yang (2013)	-2000
Cross-in-Tray Function C, NS, NSc, M [-10, 10] 2 Jamil and Yang (2013) Cube Function C, D, NS, NSc, U [-10, 10] 2 Jamil and Yang (2013) 0 Damavandi Function C, D, NS, NSc, M [0, 14] 2 Jamil and Yang (2013) 0 Deckkers-Aarts Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013) 0	F_{23}	Chichinadze Function	C, D, S, NSc, M	[-30, 30]	7	Jamil and Yang (2013)	- 42.9444
Cube Function C, D, NS, NSc, U [-10, 10] 2 Jamil and Yang (2013) Damavandi Function C, D, NS, NSc, M [0, 14] 2 Jamil and Yang (2013) Deckkers-Aarts Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	F_{24}	Cross-in-Tray Function	C, NS, NSc, M	[-10, 10]	7	Jamil and Yang (2013)	-2.06261
Damavandi Function C, D, NS, NSc, M [0, 14] 2 Jamil and Yang (2013) Deckkers-Aarts Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	F_{25}	Cube Function	C, D, NS, NSc, U	[-10, 10]	7	Jamil and Yang (2013)	0
Deckkers-Aarts Function C, D, NS, NSc, M [-20, 20] 2 Jamil and Yang (2013)	F_{26}	Damavandi Function	C, D, NS, NSc, M	[0, 14]	7	Jamil and Yang (2013)	0
	\mathbf{F}_{27}	Deckkers-Aarts Function	C, D, NS, NSc, M	[-20, 20]	2	Jamil and Yang (2013)	-24,771.1

continued
Table 3
②

No.	Name	Type	R	D	Formulation	Min.
F ₂₈	Easom Function	C, D, S, NSc, M	[-100, 100]	2	Jamil and Yang (2013)	-1
\mathbf{F}_{29}	El-Attar-Vidyasagar-Dutta Function	C, D, NS, NSc, M	[-500, 500]	2	Jamil and Yang (2013)	1.7128
F_{30}	Egg Crate Function	C, D, NS, Sc, M	[-5, 5]	2	Jamil and Yang (2013)	0
\mathbf{F}_{31}	Exp 2 Function	S	[0, 20]	2	Jamil and Yang (2013)	0
\mathbf{F}_{32}	Freudenstein Roth Function	C, D, NS, NSc, M	[-10, 10]	2	Jamil and Yang (2013)	0
\mathbf{F}_{33}	Giunta Function	C, D, S, Sc, M	[-1, 1]	2	Jamil and Yang (2013)	0.060447
\mathbf{F}_{34}	Goldstein Price Function	C, D, NS, NSc, M	[-2, 2]	2	Jamil and Yang (2013)	3
\mathbf{F}_{35}	Hansen Function	C, D, S, NSc, M	[-10, 10]	2	Jamil and Yang (2013)	-165.953
F_{36}	Himmelblau Function	C, D, NS, NSc, M	[-5, 5]	2	Jamil and Yang (2013)	0
\mathbf{F}_{37}	Hosaki Function	C, D, NS, NSc, M	[0, 5] and [0, 6]	2	Jamil and Yang (2013)	-2.3458
F_{38}	Jennrich-Sampson Function	C, D, NS, NSc, M	[-1, 1]	7	Jamil and Yang (2013)	124.3612
F_{39}	Keane Function	C, D, NS, NSc, M	[0, 10]	2	Jamil and Yang (2013)	-0.67367
\mathbf{F}_{40}	Leon Function	C, D, NS, NSc, U	[-1.2, 1.2]	2	Jamil and Yang (2013)	0
\mathbf{F}_{41}	Levy 3 Function	S	[-10, 10]	7	Jamil et al. (2013)	-176.542
\mathbf{F}_{42}		NS	[-10, 10]	2	Jamil et al. (2013)	-176.138
\mathbf{F}_{43}	Matyas Function	C, D, NS, NSc, U	[-10, 10]	2	Jamil and Yang (2013)	0
\mathbf{F}_{44}	McCormick Function	C, D, NS, NSc, M	[-1.5, 4] and $[-3, 3]$	7	Jamil and Yang (2013)	-1.9133
\mathbf{F}_{45}	Mexican hat Function	NS	[-10, 10]	7	Jamil et al. (2013)	-19.6683
F_{46}		S	$[0,\pi]$	7	Jamil et al. (2013)	-1.8013
\mathbf{F}_{47}	Mishra 3 Function	C, D, NS, NSc, M	[-10, 10]	7	Jamil and Yang (2013)	-0.18465
\mathbf{F}_{48}	Mishra 4 Function	C, D, NS, NSc, M	[-10, 10]	7	Jamil and Yang (2013)	-0.19941
F_{49}	Mishra 5 Function	C, D, NS, NSc, M	[-10, 10]	2	Jamil and Yang (2013)	-1.01983
F_{50}	Mishra 6 Function	C, D, NS, NSc, M	[-10, 10]	7	Jamil and Yang (2013)	-2.28395
F_{51}	Mishra 8 Function	C, D, NS, NSc, M	[-10, 10]	7	Jamil and Yang (2013)	0
\mathbf{F}_{52}	Mishra 10 Function	C, D, NS, NSc, M	[-10, 10]	2	Jamil and Yang (2013)	0

Table 3 (continued)

No.	Name	Type	R	D	Formulation	Min.
\mathbf{F}_{53}	Parsopoulos Function	C, D, S, Sc, M	[-5, 5]	2	Jamil and Yang (2013)	0
\mathbf{F}_{54}	Pen Holder Function	C, D, NS, NSc, M	[-11, 11]	2	Jamil and Yang (2013)	-0.96354
\mathbf{F}_{55}	Periodic Function	S	[-10, 10]	2	Jamil and Yang (2013)	6.0
F_{56}	Price 1 Function	C, ND, S, NSc, M	[-500, 500]	2	Jamil and Yang (2013)	0
\mathbf{F}_{57}	Price 2 Function	C, D, NS, NSc, M	[-10, 10]	2	Jamil and Yang (2013)	6.0
F_{58}	Price 3 Function	C, D, NS, NSc, M	[-500, 500]	2	Jamil and Yang (2013)	0
F_{59}	Price 4 Function	C, D, NS, NSc, M	[-500, 500]	2	Jamil and Yang (2013)	0
F_{60}	Quadratic Function	C, D, NS, NSc	[-10, 10]	2	Jamil and Yang (2013)	-3873.72
\mathbf{F}_{61}	Ripple 1 Function	NS	[0, 1]	2	Jamil and Yang (2013)	-2.2
F_{62}	Ripple 25 Function	NS	[0, 1]	7	Jamil and Yang (2013)	-2
F_{63}	Rosenbrock Modified Function	C, D, NS, NSc, M	[-2, 2]	7	Jamil and Yang (2013)	34.3712
F_{64}	Rotated Ellipse Function	C, D, NS, NSc, U	[-500, 500]	2	Jamil and Yang (2013)	0
F_{65}	Rotated Ellipse 2 Function	C, D, NS, NSc, U	[-500, 500]	2	Jamil and Yang (2013)	0
\mathbf{F}_{66}	Rump Function	C, D, NS, NSc, U	[-500, 500]	7	Jamil and Yang (2013)	0
\mathbf{F}_{67}	Scahffer 1 Function	C, D, NS, NSc, U	[-100, 100]	2	Jamil and Yang (2013)	0
F_{68}	Scahffer 2 Function	C, D, NS, NSc, U	[-100, 100]	2	Jamil and Yang (2013)	0
F_{69}	Scahffer 3 Function	C, D, NS, NSc, U	[-100, 100]	2	Jamil and Yang (2013)	0.001567
F_{70}	Scahffer 4 Function	C, D, NS, NSc, U	[-100, 100]	7	Jamil and Yang (2013)	0.292579
\mathbf{F}_{71}	Schwefel 2.6 Function	C, D, NS, NSc, U	[-100, 100]	7	Jamil and Yang (2013)	0
F_{72}	Schwefel 2.36 Function	C, D, S, Sc, M	[0, 500]	7	Jamil and Yang (2013)	-3456
F_{73}	Table 1/Holder Table 1 Function	C, D, S, NSc, M	[-10, 10]	7	Jamil and Yang (2013)	-26.9203
F_{74}	Table 2/Holder Table 2 Function	C, D, S, NSc, M	[-10, 10]	2	Jamil and Yang (2013)	-19.2085
\mathbf{F}_{75}	Table 3/Carrom Table Function	C, D, NS, NSc, M	[-10, 10]	2	Jamil and Yang (2013)	-24.1568
${ m F}_{76}$	Testtube Holder Function	C, D, S, NSc, M	[-10, 10]	2	Jamil and Yang (2013)	-10.8723
\mathbf{F}_{77}	Trecanni Function	C, D, S, NSc, U	[-5, 5]	2	Jamil and Yang (2013)	0

<u>})</u>	lable 3 (confinited)				
Spri	No. Name	Type	R	D	Formulation
nge	T. T. Danklan Franchina	COLOL 7 M - PIN PIN CI O	10 101	,	V L I 1

No. Name Fig. Trefethen Function Fig. Ursem 1 Function Fig. Ursem 3 Function Fig. Ursem 4 Function Fig. Ursem 4 Function Fig. Ursem 4 Function Fig. Ursem 8 Function Fig. Ursem Waves Function Fig. Wayburn Seader 1 Function Fig. Wayburn Seader 2 Function Fig. Zirilli or Aluffi-Pentini's Function Fig. Zirilli Function Fig. Zirilli Function Fig. Zirilli Function Fig. Mishra 9 Function Fig. Mishra 9 Function Fig. Wolfe Function Fig. Colville Function				
	Туре	R	D Formulation	Min.
	C, D, NS, NSc, M	[-10, 10]	Jamil and Yang (2013)	-3.30687
	C, D, NS, NSc, M	[-100, 100]	Jamil and Yang (2013)	0
_	S	[-2.5, 3] and $[-2, 2]$	Jamil and Yang (2013)	-4.81681
_	SN	[-2, 2] and $[-1.5, 1.5]$	Jamil and Yang (2013)	-2.5
_	SN	[-2,2]	Jamil and Yang (2013)	-1.5
_	SN	[-0.9, 1.2] and $[-1.2, 1.2]$	Jamil and Yang (2013)	-7.307
_	on C, D, S, NSc	[-50, 50] 2	Jamil and Yang (2013)	- 400
_	C, D, NS, Sc, U	[-500, 500]	Jamil and Yang (2013)	0
_	C, D, NS, Sc, U	[-500, 500]	Jamil and Yang (2013)	0
_	C, D, NS, Sc, U	[-500, 500]	Jamil and Yang (2013)	21.35
_	C, D, NS, NSc, U	[-5, 10] 2	Jamil and Yang (2013)	-0.00379
_	C, D, S, NSc, U	[-10, 10]	Jamil and Yang (2013)	-0.3523
_	C, D, S, S, M	[-500, 500]	Jamil and Yang (2013)	0
_	C, D, NS, NSc, M	[0, 20]	Jamil and Yang (2013)	0
_	C, D, NS, NSc, M	[0.1, 100] and [0, 25.6] and [0, 6.5] 3	Jamil and Yang (2013)	0
_	C, D, NS, NSc, M	[0, 1]	Jamil and Yang (2013)	-3.86278
_	C, D, NS, Sc, M	[-10, 10]	Jamil and Yang (2013)	0
_	NS	[0, 1]	Jamil et al. (2013)	4.00E-05
_	C, D, NS, NSc, M	[-10, 10]	Jamil and Yang (2013)	0
_	C, D, S, Sc, M	[0, 2]	Jamil and Yang (2013)	0
_	C, D, NS, NSc, M	[0, 20]	Jamil and Yang (2013)	0
F ₁₀₀ Corana Function	C, D, NS, NSc, M	[-10, 10]	Jamil and Yang (2013)	0
	DC, ND, S, Sc, M	[-500, 500]	Jamil and Yang (2013)	0
F ₁₀₁ DeVilliers Glasser 1 Function	C, D, NS, NSc, M	[1, 100]	Jamil and Yang (2013)	0
F ₁₀₂ Gear Function	NS	[12, 60]	Jamil et al. (2013)	2.70E-12

Table 3 (continued)

No. Name	Type	R	D	Formulation	Min.
F ₁₀₃ Kowalik Function	SN	[-5, 5]	4	Jamil et al. (2013)	0.0000308
F ₁₀₄ Miele Cantrell Function	C, D, NS, NSc, M	[-1, 1]	4	Jamil and Yang (2013)	0
F ₁₀₅ Shekel 5	C, D, NS, Sc, M	[0, 10]	4	Jamil and Yang (2013)	-10.1532
F ₁₀₆ Shekel 7	C, D, NS, Sc, M	[0, 10]	4	Jamil and Yang (2013)	-10.4029
F ₁₀₇ Shekel 10	C, D, NS, Sc, M	[0, 10]	4	Jamil and Yang (2013)	-10.5364
F ₁₀₈ Biggs EXP5 Function	C, D, NS, NSc, M	[0, 20]	5	Jamil and Yang (2013)	0
F ₁₀₉ DeVilliers Glasser 2 Function	C, D, NS, NSc, M	[1, 60]	5	Jamil and Yang (2013)	0
F ₁₁₀ Dolan Function	C, D, NS, NSc, M	[-100, 100]	5	Jamil and Yang (2013)	-529.871
F ₁₁₁ Langerman-5 Function	C, D, NS, Sc, M	[0, 10]	S	Jamil and Yang (2013)	-0.965
F ₁₁₂ Biggs EXP6 Function	C, D, NS, NSc, M	[-20, 20]	9	Jamil and Yang (2013)	0
F ₁₁₃ Hartman 6 Function	C, D, NS, NSc, M	[0, 1]	9	Jamil and Yang (2013)	-3.32236
F ₁₁₄ Trid 6 Function	C, D, NS, NSc, M	[-36, 36]	9	Jamil and Yang (2013)	- 50
F ₁₁₅ Ann-XOR Function	NS	[-1, 1]	6	Jamil et al. (2013)	0.95979
F ₁₁₆ Paviani Function	C, D, NS, Sc, M	[2.0001, 10]	10	Jamil and Yang (2013)	-45.778
F ₁₁₇ Trid 10 Function	C, D, NS, NSc, M	[-100,100]	10	Jamil and Yang (2013)	-210
F ₁₁₈ Ackley 1 Function	C, D, NS, Sc,M	[-35, 35]	50	Jamil and Yang (2013)	0
F ₁₁₉ Alpine 1 Function	C, ND, S, NSc,U	[-10, 10]	20	Jamil and Yang (2013)	0
F ₁₂₀ Brown Function	C, D, NS, Sc, U	[-1, 4]	20	Jamil and Yang (2013)	0
F ₁₂₁ Chung Reynolds Function	C, D, PS, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₂₂ Csendes Function	C, D, S, Sc, M	[-1, 1]	50	Jamil and Yang (2013)	0
F ₁₂₃ Deb 1 Function	C, D, S, Sc, M	[-1, 1]	50	Jamil and Yang (2013)	-1
F ₁₂₄ Deb 3 Function	C, D, S, Sc, M	[0, 1]	20	Jamil and Yang (2013)	-1
F ₁₂₅ Dixon and Price Function	C, D, NS, Sc, U	[-10, 10]	50	Jamil and Yang (2013)	0
F ₁₂₆ Extended Easom Function	C, D, S, NSc, M	$[-2\pi, 2\pi]$	20	Jamil and Yang (2013)	
F ₁₂₇ Exponential Function	C, D, NS, Sc, M	[-1, 1]	20	Jamil and Yang (2013)	-1

<u> </u>	Table 3 (continued)				
Spri	No. Name	Type	R	D Fo	Forn
nge	F Griewank Eunction	M S SN C J	[- 100 100]	50 Iar	ime]

No. Name	Type	R	D	Formulation	Min.
F ₁₂₈ Griewank Function	C, D, NS, Sc, M	[-100,100]	50	Jamil and Yang (2013)	0
F ₁₂₉ Holzman 2 Function	S	[-10, 10]	50	Jamil et al. (2013)	0
F ₁₃₀ Hyper-ellipsoid Function	C, U	[-500, 500]	50	Jamil et al. (2013)	0
F ₁₃₁ Inverted cosine wave Function	NS	[-10, 10]	50	Jamil et al. (2013)	- 49
F ₁₃₂ Levy 8 Function	NS	[-10, 10]	50	Jamil et al. (2013)	0
F ₁₃₃ Mishra 1 Function	C, D, NS, Sc, M	[0, 1]	50	Jamil and Yang (2013)	2
F ₁₃₄ Mishra 2 Function	C, D, NS, Sc, M	[0, 1]	50	Jamil and Yang (2013)	2
F ₁₃₅ Mishra 7 Function	C, D, NS, NSc, M	[-10, 10]	50	Jamil and Yang (2013)	0
F ₁₃₆ Mishra 11 Function	C, D, NS, NSc, M	[-10, 10]	50	Jamil and Yang (2013)	0
F ₁₃₇ Pathological Function	C, D, NS, NSc, M	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₃₈ Pint'er Function	C, D, NS, Sc, M	[-10, 10]	50	Jamil and Yang (2013)	0
F ₁₃₉ Powell Singular Function	C, D, NS, Sc, U	[-4, 5]	50	Jamil and Yang (2013)	0
F ₁₄₀ Powell Singular 2 Function	C, D, NS, Sc, U	[-4, 5]	50	Jamil and Yang (2013)	0
F ₁₄₁ Powell Sum Function	C, D, S, Sc, U	[-1, 1]	50	Jamil and Yang (2013)	0
F ₁₄₂ Rastrigin Function	C, D, S, M	[-5.12, 5.12]	50	Yang (2010b)	0
F ₁₄₃ Qing Function	C, D, S, Sc, M	[-500, 500]	50	Jamil and Yang (2013)	0
F ₁₄₄ Quintic Function	C, D, S, NSc, M	[-10, 10]	50	Jamil and Yang (2013)	0
F ₁₄₅ Rosenbrock Function	C, D, NS, Sc, U	[-30, 30]	50	Jamil and Yang (2013)	0
F ₁₄₆ Salomon Function	C, D, NS, Sc, M	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₄₇ Schumer Steiglitz Function	C, D, S, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₄₈ Schwefel Function	C, D, PS, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₄₉ Schwefel 1.2 Function	C, D, NS, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₅₀ Schwefel 2.4 Function	C, D, S, NSc, M	[0, 10]	50	Jamil and Yang (2013)	0
F ₁₅₁ Schwefel 2.20 Function	C, ND, S, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
E Schwefel 2 21 Function	11 28 S CM 7	[-100, 100]	50	Jamil and Yang (2013)	0

ರ
О
=
п
Έ.
\equiv
0
\sim
$\underline{\mathbf{c}}$
٣
ى س
• • •
ē
<u>e</u>
<u>e</u>

No. Name	Type	R	D	Formulation	Min.
F ₁₅₃ Schwefel 2.22 Function	C, D, NS, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
	C, D, NS, Sc, U	[-10, 10]	50	Jamil and Yang (2013)	0
	C, D, S, NSc, M	[0, 10]	50	Jamil and Yang (2013)	0
F ₁₅₆ Schwefel 2.26 Function	C, D, S, Sc, M	[-500, 500]	50	Jamil and Yang (2013)	-418.983
F ₁₅₇ Sphere Function	C, D, S, Sc, M	[0, 10]	50	Jamil and Yang (2013)	0
	DC, ND, S, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₅₉ Step 2 Function	DC, ND, S, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₆₀ Step 3 Function	DC, ND, S, Sc, U	[-100, 100]	50	Jamil and Yang (2013)	0
F ₁₆₁ Stepint Function	DC, ND, S, Sc, U	[-5.12, 5.12]	50	Jamil and Yang (2013)	-275
F ₁₆₂ Streched V Sine Wave Function	C, D, NS, Sc, U	[-10, 10]	50	Jamil and Yang (2013)	0
F ₁₆₃ Sum Squares Function	C, D, S, Sc, U	[-10, 10]	50	Jamil and Yang (2013)	0
F ₁₆₄ Styblinski–Tang Function	C, D, NS, NSc, M	[-5,5]	50	Jamil and Yang (2013)	-1958.3
	C, D, NS, NSc, U	$[-D^{\Lambda}2,D^{\Lambda}2]$	50	Jamil and Yang (2013)	-22,050
F ₁₆₆ Trigonometric 1 Function	C, D, NS, Sc, M	$[0,\pi]$	50	Jamil and Yang (2013)	0
F ₁₆₇ Trigonometric 2 Function	C, D, NS, Sc, M	[-500, 500]	50	Jamil and Yang (2013)	1
F ₁₆₈ W/Wavy Function	C, D, S, Sc, M	$[-\pi,\pi]$	50	Jamil and Yang (2013)	0
F ₁₆₉ Xin-She Yang (Function 1)	DC, ND, NS, Sc, M	[-20, 20]	50	Momin and Yang (2013)	-1
F ₁₇₀ Xin-She Yang (Function 2)	DC, ND, NS, Sc, M [-10, 10]	[-10, 10]	50	Yang (2010b)	0
F ₁₇₁ Xin-She Yang (Function 3)	DC, ND, NS, Sc, M	$[-2\pi, 2\pi]$	50	Yang (2010b)	0
F ₁₇₂ Xin-She Yang (Function 4)	DC, ND, NS, Sc, M	[-5, 5]	50	Yang (2010b)	0
F ₁₇₃ Xin-She Yang (Function 5)	DC, ND, NS, Sc, M [-10, 10]	[-10, 10]	50	Yang (2010b)	-1
F ₁₇₄ Xin-She Yang (Function 6)	DC, ND, NS, Sc, M	[-5, 5]	50	Yang (2010b)	0
F ₁₇₅ Zakharov Function	C, D, NS, Sc, M	[-5, 10]	50	Jamil and Yang (2013)	0
F ₁₇₆ Ackley 1 Function	C, D, NS, Sc,M	[-35, 35]	100	Jamil and Yang (2013)	0
F ₁₇₇ Alpine 1 Function	C, ND, S, NSc,U	[-10, 10]	100	Jamil and Yang (2013)	0

Table 3 (continued)				
No. Name	Type	R	D Formulation	Min.
F ₁₇₈ Brown Function	C, D, NS, Sc, U	[-1, 4]	100 Jamil and Yang (2013)	0

No. Name	Type	R	D Formulation		Min.
F ₁₇₈ Brown Function	C, D, NS, Sc, U	[-1, 4]	100 Jamil and Yang (2013)	(2013)	0
F ₁₇₉ Chung Reynolds Function	C, D, PS, Sc, U	[-100, 100]	100 Jamil and Yang (2013)	(2013)	0
F ₁₈₀ Csendes Function	C, D, S, Sc, M	[-1, 1]	100 Jamil and Yang (2013)	(2013)	0
F ₁₈₁ Deb 1 Function	C, D, S, Sc, M	[-1, 1]	100 Jamil and Yang (2013)	(2013)	-1
F ₁₈₂ Deb 3 Function	C, D, S, Sc, M	[0, 1]	100 Jamil and Yang (2013)	(2013)	-1
F ₁₈₃ Dixon and Price Function	C, D, NS, Sc, U	[-10, 10]	100 Jamil and Yang (2013)	(2013)	0
F ₁₈₄ Extended Easom Function	C, D, S, NSc, M	$[-2\pi, 2\pi]$	100 Jamil and Yang (2013)	(2013)	-1
F ₁₈₅ Exponential Function	C, D, NS, Sc, M	[-1, 1]	100 Jamil and Yang (2013)	(2013)	-1
F ₁₈₆ Griewank Function	C, D, NS, Sc, M	[-100,100]	100 Jamil and Yang (2013)	(2013)	0
F ₁₈₇ Holzman 2 Function	S	[-10, 10]	100 Jamil et al. (2013)	3)	0
F ₁₈₈ Hyper-ellipsoid Function	C, U	[-500, 500]	100 Jamil et al. (2013)	3)	0
F ₁₈₉ Inverted cosine wave Function	NS	[-10, 10]	100 Jamil et al. (2013)	3)	- 66
F ₁₉₀ Levy 8 Function	NS	[-10, 10]	100 Jamil et al. (2013)	3)	0
F ₁₉₁ Mishra 1 Function	C, D, NS, Sc, M	[0, 1]	100 Jamil and Yang (2013)	(2013)	2
F ₁₉₂ Mishra 2 Function	C, D, NS, Sc, M	[0, 1]	100 Jamil and Yang (2013)	(2013)	2
F ₁₉₃ Mishra 7 Function	C, D, NS, NSc, M	[-10, 10]	100 Jamil and Yang (2013)	(2013)	0
F ₁₉₄ Mishra 11 Function	C, D, NS, NSc, M	[-10, 10]	100 Jamil and Yang (2013)	(2013)	0
F ₁₉₅ Pathological Function	C, D, NS, NSc, M	[-100, 100]	100 Jamil and Yang (2013)	(2013)	0
F ₁₉₆ Pint'er Function	C, D, NS, Sc, M	[-10, 10]	100 Jamil and Yang (2013)	(2013)	0
F ₁₉₇ Powell Singular Function	C, D, NS, Sc, U	[-4, 5]	100 Jamil and Yang (2013)	(2013)	0
F ₁₉₈ Powell Singular 2 Function	C, D, NS, Sc, U	[-4, 5]	100 Jamil and Yang (2013)	(2013)	0
F ₁₉₉ Powell Sum Function	C, D, S, Sc, U	[-1, 1]	100 Jamil and Yang (2013)	(2013)	0
F ₂₀₀ Rastrigin Function	C, D, S, M	[-5.12, 5.12]	100 Yang (2010b)		0
F ₂₀₁ Qing Function	C, D, S, Sc, M	[-500, 500]	100 Jamil and Yang (2013)	(2013)	0
F ₂₀₂ Quintic Function	C, D, S, NSc, M	[-10, 10]	100 Jamil and Yang (2013)	(2013)	0

Table 3 (continued)

No. Name	Type	R	D I	Formulation	Min.
F ₂₀₃ Rosenbrock Function	C, D, NS, Sc, U	[-30, 30]	100 J	Jamil and Yang (2013)	0
F ₂₀₄ Salomon Function	C, D, NS, Sc, M	[-100, 100]	100 J	Jamil and Yang (2013)	0
F ₂₀₅ Schumer Steiglitz Function	C, D, S, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
F ₂₀₆ Schwefel Function	C, D, PS, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
F ₂₀₇ Schwefel 1.2 Function	C, D, NS, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
F ₂₀₈ Schwefel 2.4 Function	C, D, S, NSc, M	[0, 10]	100 J	Jamil and Yang (2013)	0
	C, ND, S, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
	C, ND, S, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
F ₂₁₁ Schwefel 2.22 Function	C, D, NS, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
	C, D, NS, Sc, U	[-10, 10]	100 J	Jamil and Yang (2013)	0
F ₂₁₃ Schwefel 2.25 Function	C, D, S, NSc, M	[0, 10]	100 J	Jamil and Yang (2013)	0
F ₂₁₄ Schwefel 2.26 Function	C, D, S, Sc, M	[-500, 500]	100 J	Jamil and Yang (2013)	-418.983
F ₂₁₅ Sphere Function	C, D, S, Sc, M	[0, 10]	100 J	Jamil and Yang (2013)	0
	DC, ND, S, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
F ₂₁₇ Step 2 Function	DC, ND, S, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
F ₂₁₈ Step 3 Function	DC, ND, S, Sc, U	[-100, 100]	100 J	Jamil and Yang (2013)	0
F ₂₁₉ Stepint Function	DC, ND, S, Sc, U	[-5.12, 5.12]	100 J	Jamil and Yang (2013)	-575
F ₂₂₀ Streched V Sine Wave Function	C, D, NS, Sc, U	[-10, 10]	100 J	Jamil and Yang (2013)	0
F ₂₂₁ Sum Squares Function	C, D, S, Sc, U	[-10, 10]	100 J	Jamil and Yang (2013)	0
F ₂₂₂ Styblinski-Tang Function	C, D, NS, NSc, M	[-5, 5]	100 J	Jamil and Yang (2013)	-3916.6
F ₂₂₃ Trid Function	C, D, NS, NSc, U	$[-D^{^{\wedge}}2,D^{^{\wedge}}2]$	100 J	Jamil and Yang (2013)	-171,600
F ₂₂₄ Trigonometric 1 Function	C, D, NS, Sc, M	$[0,\pi]$	100 J	Jamil and Yang (2013)	0
F ₂₂₅ Trigonometric 2 Function	C, D, NS, Sc, M	[-500, 500]	100 J	Jamil and Yang (2013)	1
F ₂₂₆ W/Wavy Function	C, D, S, Sc, M	$[-\pi,\pi]$	100 J	Jamil and Yang (2013)	0
F ₂₂₇ Xin-She Yang (Function 1)	DC, ND, NS, Sc, M [-20, 20]	<i>I</i> [-20, 20]	100	Momin and Yang (2013)	-1

ned)
(contin
Table 3
•

idole 3 (continued)					
No. Name	Type	R	D	Formulation	Min.
F ₂₂₈ Xin-She Yang (Function 2)	DC, ND, NS, Sc, M [-10, 10]	[-10, 10]	100	100 Yang (2010b)	0
F ₂₂₉ Xin-She Yang (Function 3)	DC, ND, NS, Sc, M $[-2\pi, 2\pi]$	$[-2\pi, 2\pi]$	100	Yang (2010b)	0
F ₂₃₀ Xin-She Yang (Function 4)	DC, ND, NS, Sc, M [-5, 5]	[-5, 5]	100	Yang (2010b)	0
F ₂₃₁ Xin-She Yang (Function 5)	DC, ND, NS, Sc, M [-10, 10]	[-10, 10]	100	Yang (2010b)	1
F ₂₃₂ Xin-She Yang (Function 6)	DC, ND, NS, Sc, M [-5, 5]	[-5, 5]	100	Yang (2010b)	0
F ₂₃₃ Zakharov Function	C, D, NS, Sc, M	[-5, 10]	100	Jamil and Yang (2013)	0
F_{234} Basic Functions: Sphere Function $f_1, f_2, f_3,, f_{10}$ = Sphere Function	Composite	[-5, 5]	10	(Liang et al. 2005)	0
$[\sigma_1, \sigma_2, \sigma_3,, \sigma_{10}] = [1, 1, 1,, 1]$ $[\lambda_1, \lambda_2, \lambda_3,, \lambda_{10}] = [5/100, 5/100, 5/100,, 5/100]$					
F ₂₃₅ Basic Functions: Griewank Function f ₁ , f ₂ , f ₃ ,, f ₁₀ = Griewank Function	Composite	[-5, 5]	10	10 (Liang et al. 2005)	0
$[\sigma_1, \sigma_2, \sigma_3,, \sigma_{10}] = [1, 1, 1,, 1]$ $[\lambda_1, \lambda_2, \lambda_3,, \lambda_{10}] = [5/100, 5/100, 5/100,, 5/100]$					
F ₂₃₆ Basic Functions: Griewank Function	Composite	[-5, 5]	10	(Liang et al. 2005)	0
$\{z_1, z_2, z_3,, z_{10} = \text{Ottowally Function} $ $\{\sigma_1, \sigma_2, \sigma_3,, \sigma_{10}\} = [1, 1, 1,, 1]$ $\{\lambda_1, \lambda_2, \lambda_3,, \lambda_{10}\} = [1, 1, 1,, 1]$					
, Weierstrass, Griewank, and	Hybrid	[-5, 5]	10	(Liang et al. 2005)	0
spliete Functions f ₁ , f ₂ =Ackley Function					
$f_3, f_4 = \text{Rastrigin Function}$					
f_5 , f_6 = Weierstrass Function					
$f_7, f_8 = Griewank$ Function					
$I_9, I_{10} = $ Sphere Function					
$[\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_{10}] = [1, 1, 1, \dots, 1]$ $[\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_{10}] = [5/32, 5.32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100,$					
5/100, 5/100]					

╗
_
·
$\underline{\mathbf{u}}$
٣
٣
٣
٣
٣
<u>ی</u> ۔۔
ى س
ى «
ب س
a
<u>ف</u>
<u>ف</u>
<u>e</u>
be
ble
be
ble

No. Name		Type	R	D	D Formulation	Min.
F_{238} Basic Functions: Ackley, Rastrigin, Weierstrass, Griewank, and Hybrid Sphere Functions f_1, f_2 = Rastrigin Function f_3, f_4 = Weierstrass Function f_5, f_6 = Griewank Function f_5, f_6 = Griewank Function f_5, f_6 = Griewank Function f_6, f_9 = Ackley Function f_9, f_0 = Sphere Function $[\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_{10}] = [1, 1, 1, \dots, 1]$ $[\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_{10}] = [1/5, 1/5, 5/0.5, 5/100, 5/100, 5/32, 5/100, 5/100]$	rigin, Weierstrass, Griewank, and 1] 5/0.5, 5/0.5, 5/100, 5/100, 5/32,	Hybrid	[-5, 5]	10	10 (Liang et al. 2005)	0
F ₂₃₉ Basic Functions: Ackley, Rastrigin, Weierstrass, Griewank, and Hybrid Sphere Functions f1, f2 = Rastrigin Function f3, f4 = Weierstrass Function f5, f6 = Griewank Function f7, f8 = Ackley Function f7, f8 = Ackley Function f0, f10 = Sphere Function f0, f10 = Sphere Function f01, α2, α3,, α10] = [0.1, α2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] [λ1, λ2, λ3,, λ10] = [0.1 × 1/5, 0.2 × 1/5, 0.3 × 5/0.5, 0.9 × 5/100, 1 × 5/100]	trigin, Weierstrass, Griewank, and 1.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1/5, 0.2 × 1/5, 0.3 × 5/0.5, × 5/100, 0.7 × 5/32, 0.8 × 5/32,	Hybrid	[-5, 5]	10	 (Liang et al. 2005) 	0

minimum and mean values of different optimization runs for 2D mathematical functions obtained by the CGO algorithm and the other selected metaheuristics are presented. The standard deviation of the final best result as well as the mean values of the maximum number of function evaluations are also presented in Table 6. In Table 7, the best and mean results of 50D mathematical functions are presented while their related standard deviations as well as the mean values of the maximum number of function evaluations are presented in Table 8. Tables 9 and 10 present these results for the 100D mathematical functions. For the composite mathematical functions, the mean values and standard deviation of different optimization runs are presented in Table 11.

6 Statistical analysis

In this section, the maximum error values of the optimization convergence data have been calculated and utilized for statistical analysis in which the difference between the known Global Best of the functions and the final obtained optimal values are considered as the error values. The provided details of different statistical analysis suggested by García et al. (2009) are utilized for this purpose. To fulfill this aim, five statistical tests have been conducted in which the Kolmogorov–Smirnov (K–S) test is conducted for normality issues, the Mann–Whitney U (M–W) test is implemented for comparing the summation of the ranks of the different metaheuristics in a one by one comparing manner, the Wilcoxon signed-rank (W) test is conducted for comparing the mean ranks of different metaheuristics, the Kruskal–Wallis (K–W) test is conducted for comparing the overall rankings of the metaheuristics by considering the mean of the ranks of algorithms, and the Post-Hoc (P-H) analysis is conducted based on the results of the K–W tests for additional purposes.

6.1 Kolmogorov–Smirnov test

There are two kinds of statistical tests which are applicable to the obtained statistical data from multiple application as the parametric and non-parametric statistical tests. One of the most important criteria which demonstrates the possibility of utilizing each algorithm in a specific situation is the Kolmogorov–Smirnov (K–S) test. This test shows that the distribution of data is either normal or non-normal in which the distribution of each sample among the statistical data are considered and checked accordingly. If the K–S test is rejected, the data are normally distributed, and there is the possibility of using parametric statistical tests for the research. Conversely, if the K–S test is confirmed, the data do not have a normal distribution, so the nonparametric tests can be used.

The Asymptotic Significance (Asymp. Sig.) values of the K–S test which are also known as *p* values in dealing with the error values of the minimum, mean, standard deviation and the maximum function evaluations of the optimization runs for the 2D, 50D, and the 100D functions are presented in Table 12. This test is conducted as a two-sample test in which the distributions of the CGO results are compared to the results obtained by the other metaheuristics. It should be noted that if the *p* values are less than 0.05, the presented data are not distributed normally so the non-parametric statistical tests should be conducted for further investigations. The obtained results of the K–S test demonstrate that the p- values are less than 0.05 in most of the cases and the non-parametric statistical tests can be utilized for further considerations. In this table, the maximum difference between the statistical results of the CGO and the other metaheuristics are also presented in order to

Table 4 Parameter summary of the alternative metaheuristic algorithms

Metaheuristic	Parameter	Description	Value
FA	N_{pop}	Number of fireflies (swarm size)	50
	γ	Light absorption coefficient	1
	β	Attraction coefficient base value	2
	α	Mutation coefficient	0.2
	α_{damp}	Mutation coefficient damping ratio	0.98
	δ	Uniform mutation range	±0.05
ICA	N_{pop}	Population size	50
	N_{emp}	Number of empires/imperialists	10
	α	Selection pressure	1
	β	Assimilation coefficient	1.5
	p_r	Revolution probability	0.05
	μ	Revolution rate	0.1
	ζ	Colonies mean cost coefficient	0.2

have a fair judgment about the obtained results of the CGO algorithm. The maximum and minimum differences of the results of the CGO algorithm with the other algorithms are presented as bolted and italicized, respectively. The bolded values demonstrate the algorithms which has the maximum difference with the CGO algorithm while the italicized values show the algorithms which has the minimum difference with the CGO algorithm among the other metaheuristics.

6.2 Mann-Whitney U test

The Mann–Whitney U (M–W) test is a nonparametric test that allows two groups of data to be compared in which the null hypothesis denotes that it is equally likely that a randomly selected value from one sample will be less than or greater than a randomly selected value from a second sample. This test can be used to investigate whether two independent samples were selected from populations having the same distribution. This test provides the summation of the ranks for two sets of statistical data which is considered for comparing analysis. As a main criterion, if the summation of the ranks for one sample has lower values than the other one, the one with smaller sum of ranks has better statistical results and the utilized metaheuristic is superior to the other one. The results of the M-W test for different mathematical functions based on the obtained results of utilized algorithms have been presented in Table 13. In these tables, the upper and lower values are the summation of the ranks related to the alternative metaheuristics and the CGO algorithm, respectively. Based on the statistical results, the CGO for the summation of the ranks in most of the cases are lower than the related values for the rest metaheuristics (bolded values in the table). The related p values of this test for different mathematical functions are also presented in Table 14.

It should be noted that the results of the CGO algorithm (summation of the ranks) are superior to the results of other metaheuristics considering the minimum, mean, standard deviation and function evaluation values in dealing with 2D functions while for the function evaluation, the results of the ACO and ICA are better than the results of the CGO which demonstrates the deficiencies of the CGO in this issue. For the 50D and 100D

Table 5 The minimum and mean values of the 2D mathematical functions for different metaheuristics

Fun. no.	Alternative	Alternative metaheuristic algorithms	algorithms											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
\overline{F}_1	- 199.99	- 199.923	-200	- 200	-200	-200	-200	-200	-200	-200	-200	-200	- 200	-200
F_2	-195.629	-195.627	-195.629	-195.629	-195.629	-195.629	-195.629	-195.629	-195.629	-195.629	-195.629	-195.629	-195.629	-195.629
F_3	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181
F_4	1.5259	30.37011	1	1	1		_	1	1	1	1	1	1	1
F_{5}	7.68E-09	3.87E-07	9.71E-12	2.95E-09	0	0	0	0	0	0	0	2.86E-14	0	0
${ m F}_{6}$	6.55E-08	5.35E-06	1.24E-10	2.60E-08	0	0	0	0	0	0	0	4.08E - 10	0	0
F_7	1.05E-09	1.05E - 06	1.31E-11	2.29E-09	0	0	0	0	0	0	0	9.01E-12	0	0
$_{8}^{\rm H}$	-106.765	-106.764	-106.765	-106.765	-106.765	-106.181	-106.765	-106.765	- 106.765	-106.765	-106.765	-106.765	-106.765	-106.765
${\rm F}_9$	0.001451	0.416159	0	0	0	0	0	0	0	0	0	0	0	0
F_{10}	0.004088	0.285438	0	0	0	0	0	0	0	0	0	0	0	0
F_{11}	0.002944	0.224658	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{12}	5.01E-09	1.29E-05	2.56E-11	7.56E-09	0	0	0	0	0	0	2.92E-09	8.51E-07	0	0
F_{13}	0.397887	0.397892	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887
F ₁₄	5.558987	5.634131	5.559037	6.651694	5.559037	5.952089	5.559037	5.559037	5.559037	5.846894	5.559037	6.481648	5.559037	5.559037
F_{15}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F_{16}	2.27E-07	1.43E - 05	1.07E-08	8.44E-07	0	0	0	0	0	0	2.00E-12	4.20E-07	0	0
\mathbf{F}_{17}	0.035705	0.186095	0.04515	0.103461	0.000451	0.028893	0.012301	0.07921	0.004926	0.035614	0.00047	0.028643	0.000526	0.028888
F ₁₈	5.14E-09	4.19E - 07	0	0	0	0	0	0	0	0	0	0	0	0
F_{19}	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316
F_{20}	-24.1568	-24.1567	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568
\mathbf{F}_{21}	- 1000	- 1000	-1999.8	-1027.89	-1000.03	-1000	-1000.57	-1000.01	- 1000	- 1000	-2000	-1999.96	- 2000	-2000
F_{22}	- 999.98	-91.357	-1999.77	-1017.98	-1000	-1000	- 999,999	-951.279	-10000.01	-999.834	- 1000	- 1000	- 2000	-1968.92
F_{23}	-42.9443	-42.9406	- 42.9444	- 42.9423	-42.9444	-42.9444	-42.9444	- 42.9444	-42.9444	- 42.9444	- 42.9444	-42.9056	- 42.9444	-42.9444
F_{24}	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261
\mathbf{F}_{25}	1.57E-07	4.73E-05	8.62E-11	2.11E-08	2.86E-10	0.00048	0	0	0	0	0	1.49E-08	0	0
F_{26}	0.001012	1.876688	4.20E-08	1.561132	2	2	0	0.004784	0	0.166709	0	7.64E-08	0	0.04

Table 5 (continued)

Fun. no.	Alternative 1	Alternative metaheuristic algorithms	algorithms											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
F_{27}	-24,771.1	-24,771.1	-24,771.1	- 24,771.1	-24,771.1	-24,771.1	-24,771.1	-24,771.1	-24,771.1	-24,771.1	-24,771.1	-24,771.1	- 24,771.1	-24,771.1
F ₂₈	-0.9976	-0.74896	1	- - -	-1	-1	1	1	-1	-1	1	-1	-1	-1
F_{29}	16.69464	9813.009	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128
F ₃₀	1.34E - 07	8.29E-06	0	0	0	0	0	0	0	0	0	0	0	0
F_{31}	2.36E-08	1.02E - 06	1.59E-11	2.04E-09	0	0	0	0	0	0	0	1.79E-11	0	0
F_{32}	1.47E-06	0.000271	1.92E-08	9.461207	0	0	0	0	0	0	6.12E-11	5.65E-05	0	0
F_{33}	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447
F ₃₄	3	3.000002	3	3	3	3	3	3	3	3	3	3	3	3
F ₃₅	-165.953	-165.953	-165.953	- 164.664	-165.953	-165.953	-165.953	-165.953	-165.953	-165.953	-165.953	-165.953	-165.953	-165.953
F_{36}	3.61E - 08	7.81E-06	1.50E-09	9.13E-07	0	0	0	0	0	0	0	4.13E-09	0	0
F ₃₇	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458
F ₃₈	124.3622	124.3622	124.3622	124.3622	124.3622	124.3622	124.3622	124.3622	124.3622	124.3622	124.3622	124.3688	124.3622	124.3622
F_{39}	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367
F_{40}	1.63E-10	9.51E - 09	4.17E-10	1.56E-08	0	1.84E-06	0	0	0	0	0	7.34E-09	0	0
F_{41}	-176.542	-176.53	-176.542	-175.012	-176.542	-176.542	-176.542	-176.542	-176.542	-176.542	-176.542	-176.542	-176.542	-176.542
F ₄₂	-176.137	-176.132	-176.138	-172.956	-176.138	-174.867	-176.138	-176.138	-176.138	-175.821	-176.138	-176.138	-176.138	-176.138
F_{43}	8.29E-09	4.30E-07	0	0	0	0	0	0	0	0	0	0	0	0
F ₄	-1.91322	-1.91322	-1.91322	-1.91322	-1.9133	-1.91323	-1.91322	-1.91322	-1.91322	-1.91322	-1.91322	-1.91322	-1.91322	-1.91322
F ₄₅	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683	-19.6683
F ₄₆	-1.8013	-1.8013	-1.8013	-1.79329	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.78527	-1.8013	-1.8013
F_{47}	-0.18425	-0.18119	-0.18434	-0.15555	-0.18465	-0.14896	-0.18465	-0.18459	-0.18465	-0.18463	-0.18465	-0.17718	-0.18465	-0.18465
F ₄₈	-0.19912	-0.19628	-0.19911	-0.1778	-0.19941	-0.16462	-0.19941	-0.19937	-0.19941	-0.19938	-0.19941	-0.19151	-0.19941	-0.19941
F ₄₉	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983
F ₅₀	-2.28395	-2.28394	-2.28395	-2.27136	-2.28395	-2.28395	-2.28395	-2.28395	-2.28395	-2.28395	-2.28395	-2.28395	- 2.28395	-2.28395

Table 5 (continued)

Fun. no.	Alternative	Alternative metaheuristic algorithms	algorithms											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
F _{S1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F_{52}	0	8.71E - 10	0	2.34E-11	0	0	0	3.20E-11	0	0	0	0	0	0
F_{53}	6.89E - 09	3.77E-07	2.14E-12	1.41E-06	0	0	0	5.47E-11	0	0	0	2.72E-10	0	0
F_{S_4}	-0.96353	-0.96353	-0.96353	-0.96353	-0.96354	-0.96354	-0.96353	-0.96353	-0.96353	-0.96353	-0.96353	-0.96353	-0.96353	-0.96353
F_{55}	6.0	0.900005	6.0	6.0	6.0	0.918	6.0	6.0	6.0	6.0	6.0	0.913	6.0	6.0
F_{56}	0.006839	7.265038	1.91E-10	2.71E-08	0	0	0	0	0	0	0	1.38E - 10	0	0
F_{57}	6.0	0.900005	6.0	6.0	6.0	0.918	6.0	6.0	6.0	6.0	6.0	0.913	6.0	6.0
F ₅₈	0.65479	75,037.07	8.69E-11	0.002818	0	0	0	0	0	0.000167	0	0.001734	0	0.001928
F ₅₉	0.000885	47,660.31	0	6.49E-12	0	2.20E-07	0	2.30E-12	0	1.09E-11	0	1.79E-07	0	0
F ₆₀	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72
F_{61}	-2.2	-2.19999	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	-2.19912	-2.2	-2.2
F_{62}	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
F_{63}	34.3712	35.95635	34.3712	69.24454	34.3712	64.09282	34.3712	34.3712	34.3712	53.78931	34.3712	34.3712	34.3712	34.3712
F ₆₄	5.306884	212.2401	0	0	0	0	0	0	0	0	0	0	0	0
F_{65}	0.080101	24.566	0	0	0	0	0	0	0	0	0	0	0	0
F ₆₆	0.549318	81,320.38	0	7.21E-09	0	0	0	0	0	1.73E-12	0	1.59E-07	0	0
F_{67}	4.86E-11	6.23E - 05	0	0	0	0	0	0	0	0	0	0	0	0
F ₆₈	8.72E-09	0.000364	0	0	0	0	0	0	0	0	0	0	0	0
F ₆₉	0.001584	0.002703	0.001567	0.001567	0.001567	0.001567	0.001567	0.001567	0.001567	0.001567	0.001567	0.001568	0.001567	0.001567
F_{70}	0.292492	0.293369	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579
\mathbf{F}_{71}	0.004079	0.286967	3.14E-06	7.24E-05	0	2.81E-09	0	0	0	0	9.80E-05	0.01327	0	0
F_{72}	-3455.48	-703.783	-3456	-3456	-3456	-3456	-3456	-3456	-3456	-3283.2	-3456	-2315.52	-3456	-3456
\mathbf{F}_{73}	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203
F_{74}	-19.2085	-19.2084	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085

Table 5 (continued)

Fun. no.	Alternative	Alternative metaheuristic algorithms	algorithms											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
F ₇₅	-24.1568	-24.1567	-24.1568	- 24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	- 24.1568	-24.1568
F_{76}	-10.8723	-10.8723	-10.8723	-10.8643	-10.8723	-10.8648	-10.8723	-10.8723	-10.8723	-10.8723	-10.8723	-10.867	-10.8723	-10.8723
${ m F}_{77}$	1.80E - 08	6.06E - 07	0	1.65E-09	0	0	0	0	0	0	0	5.65E-09	0	0
F ₇₈	-3.30679	-3.28198	-3.30687	-3.25464	-3.30687	-3.22729	-3.30687	-3.30687	-3.30687	-3.30684	-3.30687	-3.26623	-3.30687	-3.29403
F_{79}	0.02442	0.276014	1.54E-05	0.651549	0	90.0	0	0.017727	0	0	7.60E-06	0.441524	0	0.01
F_{80}	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681
F_{81}	-2.49999	-2.49991	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5
F ₈₂	-1.49999	-1.49994	-1.5	- 1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	- 1.5	-1.5
F ₈₃	-7.307	-7.307	-7.307	-7.30576	-7.307	-7.307	-7.307	-7.3062	-7.307	-7.30684	-7.307	-7.30431	-7.307	-7.30631
Fg	-400	- 399.997	- 400	- 400	-400	-400	-400	-400	-400	-400	-400	-400	- 400	-400
F ₈₅	3.223916	3.5E+08	1.35E-09	4.41E-06	0	7.01E-12	0	0	0	0	1.07E-05	0.005194	0	0
F_{86}	18.48875	23,150.16	0	1.92E-08	0	1.68E-09	0	0	0	0	0	7.23E-06	0	0
F ₈₇	21.63851	1416.965	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35
F ₈₈	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379
F ₈₉	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523
F ₉₀	0.106125	20.70758	0	0	0	0	0	0	0	0	0	0	0	0
F_{91}	8.22E-07	1.91E - 05	3.51E-10	1.13E-08	0	0	0	0	0	0	0	1.11E-10	0	0
F_{92}	2.10E - 05	0.000346	1.29E-08	1.77E-06	1.38E-09	2.21E-05	0	0	0	0	6.66E - 07	0.002308	0	0
F_{93}	-3.86278	-3.86278	-3.86278	-3.8623	-3.86278	-3.86278	-3.86278	-3.86278	-3.86278	-3.86278	-3.86278	-3.86205	-3.86278	-3.86278
F_{94}	1.26E - 07	7.91E-05	3.01E-11	5.71E-08	0	4.02E-06	0	1.33E-08	0	9.76E-14	0	8.40E - 06	0	0
F_{95}	0.024536	0.024536	0.024536	0.024536	4.51E-05	0.000148	0.024536	0.024536	0.024536	0.024536	0.024536	0.024536	0.024536	0.024536
F_{96}	1.02E-11	3.44E-07	0	1.53E-06	0	0	0	6.84E-11	0	0	0	4.20E-08	0	0
F_{97}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F ₉₈	8.45E-06	0.000171	3.62E-09	0.001005	1.36E-09	0.003382	0	0	0	0	1.23E-06	0.008834	0	0

Table 5 (continued)

Fun. no.	Alternative	Alternative metaheuristic algorithms	algorithms											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
F ₉₉	0.000817	0.065175	1.25E-07	0.52241	2.98E-07	0.163367	0	0	0	0.03676	2.11E-05	5.092655	0	0
F_{100}	383,413.3	1,501,111	0	0	0	0	0	0	0	0	0	0	0	0
F_{101}	735.4406	3914.083	0.000786	15.93805	0	2.21E-12	0	0.023545	0	1.54E-07	3.880078	9790.16	0	7.22E-09
F_{102}	2.70E-12	2.24E-11	2.70E-12	5.14E-11	2.70E-12	1.94E - 09	2.70E-12	1.19E-10	2.70E-12	4.18E-11	2.70E-12	5.02E-10	2.70E-12	1.01E-10
F_{103}	0.000346	0.000584	0.000308	0.004165	0.0000308	0.000509	0.000308	0.0000308	0.000308	0.000309	0.000309	0.000515	0.0000308	0.000419
F ₁₀₄	0	0	0	0	0	3.99E-14	0	0	0	0	0	0	0	0
F ₁₀₅	-10.1524	-9.96915	-10.1532	-9.49407	-10.1532	-9.6743	-10.1532	-9.74536	-10.1532	-10.1532	-10.1532	-10.1532	-10.1532	-9.89921
F_{106}	-10.4028	-10.394	-10.4029	-10.2966	-10.4029	-9.61895	-10.4029	-10.2966	-10.4029	-10.2966	-10.4029	-10.3497	-10.4029	-10.1771
F_{107}	-10.5357	-10.5275	-10.5364	-10.3746	-10.5364	-9.46476	-10.5364	-10.4282	-10.5364	-10.417	-10.5364	-10.4282	-10.5364	-10.1995
F ₁₀₈	3.29E-05	0.005536	3.22E-06	0.008677	1.63E-06	0.013395	1.98E-07	0.001867	2.79E-05	0.007951	2.32E-06	0.01277	0	0.004049
F_{109}	12.50226	199.6639	0.250057	1604.8	0	107.7299	2.52E-07	11.49758	4.28E-06	16.54835	40.63317	4196.345	0	1.122848
F_{110}	-529.485	-524.122	-529.87	-519.428	-529.871	-529.871	-529.871	-529.87	-529.871	-529.865	-529.871	-529.18	-529.871	-529.865
\mathbf{F}_{111}	-0.965	-0.965	-0.965	-0.93382	-0.965	-0.79213	-0.965	-0.95994	-0.965	-0.95817	-0.965	-0.7702	-0.965	-0.95343
F_{112}	0.003661	0.008535	2.04E-05	0.004182	1.72E-05	0.005065	2.48E-06	0.001033	1.71E-05	0.002266	1.55E-05	0.028219	0	0.003141
F ₁₁₃	-3.32236	-3.29177	-3.32236	-3.27028	-3.32236	-3.31759	-3.32236	-3.26991	-3.32236	-3.31822	-3.32236	-3.24167	-3.32236	-3.27706
F ₁₁₄	-49.7715	-48.7025	-50	- 50	-50	-50	-50	-50	-50	-50	-50	-50	- 50	-50
F ₁₁₅	0.95979	0.964521	0.95979	0.96812	0.95979	0.95979	0.95979	0.965342	0.95979	0.963269	0.95979	0.967555	0.95979	0.96519
F ₁₁₆	-45.776	-45.7725	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778
\mathbf{F}_{117}	-36.1947	468.218	-210	-187.832	-210	-210	-210	-210	-210	-210	-210	-210	-210	-210

Table 6 The standard deviation (Std. Dev.) and mean of function evaluations (Fun. Evl.) for 2D mathematical functions

Fun no.	Alternative metaheuristic algorithms													
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
$\overline{\mathrm{F}}_{1}$	0.043876	150,000	0	2126.5	0	7085.809	0	8112	0	7599	0	27191	0	4739.639
\mathbb{F}_2	0.001822	150,000	4.57E-13	21,551	4.57E-13	1131.947	4.57E-13	3548	4.57E-13	2312	4.57E-13	1972.5	4.57E-13	2783.422
\overline{F}_3	2.32E-13	150,000	8.32E-14	150,000	3.57E-15	119.0143	2.23E-15	150,000	2.23E-15	150,000	1.85E-15	150,000	2.23E-15	150,000
\mathbf{F}_{4}	27.92913	150,000	0	1842	0	5521.321	0	6942	0	5513	0	24,476.5	0	4078.376
F_5	3.75E-07	150,000	3.08E-09	150,000	0	35,139.11	0	10,734	0	6353	2.04E-13	45,705.5	0	6183.991
${ m F}_{6}$	6.04E - 06	150,000	2.28E-08	150,000	0	2618.315	0	18,780	0	7550	1.36E-09	11,2853	0	29,731.28
\mathbf{F}_7	1.25E-06	150,000	2.45E-09	150,000	0	2975.358	0	9802	0	3138	2.71E-11	108,212.5	0	3669.285
ъ 8	9.37E - 05	150,000	1.95E-06	150,000	3.335263	150,000	5.58E-14	150,000	5.56E-14	150,000	9.29E - 09	150,000	5.47E-14	150,000
${ m F}_9$	0.213791	150,000	0	1265	0	3544.74	0	5004	0	4122	0	7994.5	0	2888.703
\mathbf{F}_{10}	0.131701	150,000	0	1277	0	4785.739	0	5222	0	4610	0	9272.5	0	3258.189
\mathbf{F}_{11}	0.147322	150,000	0	1448	0	58,536.7	0	6532	0	5749	0	27,831.5	0	3748.997
\mathbf{F}_{12}	1.25E-05	150,000	8.25E-09	150,000	0	13,480.6	0	8832	0	4050	7.65E-07	150,000	0	4574.699
F_{13}	5.30E-06	150,000	6.65E-08	150,000	1.06E-15	150,000	1.06E - 15	150,000	1.06E-15	150,000	5.43E-09	150,000	1.06E-15	150,000
F_{14}	0.298728	102,682.9	0.540671	142,156	0.578127	49,056.45	7.14E-15	7536	0.529347	43,274	0.571001	110,567.5	7.14E-15	7529.078
\mathbf{F}_{15}	0	1256.098	0	101	0	164.6278	0	202	0	103	0	100	0	50.13369
\mathbf{F}_{16}	9.02E-06	150,000	9.30E-07	150,000	0	4124.607	0	10,876	0	4569	5.78E-07	150,000	0	5486.631
\mathbf{F}_{17}	0.088395	150,000	0.041041	150,000	0.016875	150,000	0.044072	150,000	0.015599	150,000	0.014523	150,000	0.017325	150,000
\mathbf{F}_{18}	3.92E-07	150,000	0	987.5	0	3126.879	0	3784	0	3293	0	5832.5	0	2360.795
F_{19}	1.56E-15	64,646.34	1.56E-15	4581.5	1.56E-15	714.6103	1.56E-15	2186	1.56E-15	1551	1.56E-15	1232	1.56E-15	1775.234
F_{20}	0.000132	150,000	2.21E-06	149,997.5	3.57E-15	156.2391	3.57E-15	8566	3.57E-15	4093	1.46E-06	108,026.5	3.57E-15	9456.217
\mathbf{F}_{21}	0	150,000	171.9491	150,000	0.003296	150,000	0.058308	150,000	3.08E-09	150,000	0.096132	150,000	9.14E-13	66,227.11
\mathbf{F}_{22}	199.916	150,000	140.9966	150,000	5.87E-07	150,000	135.5187	150,000	1.162674	150,000	3.78E-06	150,000	171.2863	13,9636.4
\mathbf{F}_{23}	0.003496	150,000	0.010369	150,000	5.01E-14	150,000	5.00E - 14	150,000	5.00E-14	150,000	0.121991	150,000	5.00E-14	150,000
\mathbf{F}_{24}	9.12E-07	150,000	2.14E-10	150,000	2.68E-15	150,000	2.68E - 15	150,000	2.68E-15	150,000	1.32E-12	150,000	2.68E-15	150,000

Table 6 (continued)

2	delle (commuce)													
Fun no.		Alternative metaheuristic al	tic algorithms	Sı										
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₂₅	4.00E-05 150,000	150,000	2.88E-08	150,000	0.001539	150,000	0	63,534	0	30,414	3.98E-08 146,135	146,135	0	24,286.76
F_{26}	0.466089	150,000	0.777145	150,000	0	150,000	0.036065	114,958	0.360281	148,065	2.27E-07	149,117	0.281411	46,829.88
\mathbf{F}_{27}	0.022115	90,658.54	0	921	0	607.1304	0	1660	0	1147	0	813.5	0	1465.408
\mathbf{F}_{28}	0.368956	150,000	1.47E-08	150,000	0	1440.231	0	11,130	0	7309	3.16E - 10	139,885	0	6023.061
F_{29}	21,626.32	150,000	2.45E-15	140,972	2.45E-15	9795.351	2.45E-15	5646	2.45E-15	3431	2.45E-15	36,047.5	2.45E-15	3776.07
F_{30}	7.85E-06	150,000	0	1089.5	0	2543.341	0	4376	0	3910	0	4771	0	2684.158
F_{31}	1.07E-06 150,000	150,000	1.76E-09	150,000	0	2946.522	0	7018	0	3143	6.43E-11	103,976	0	3663.269
\mathbf{F}_{32}	0.000288	150,000	19.63336	150,000	0	7443.901	0	9918	0	7170	0.000179	150,000	0	6806.15
F_{33}	4.60E-10 150,000	150,000	2.08E-10	150,000	8.91E-17	150,000	8.59E-17	150,000	1.04E-16	150,000	1.78E-11	150,000	1.04E-16	150,000
\mathbf{F}_{34}	1.99E - 06	150,000	5.63E-07	150,000	0	3774.904	0	8806	0	4282	3.24E-07	150,000	0	4804.813
F ₃₅	0.000267	81,073.17	5.090788	31,677	5.71E-14	867.7036	5.71E-14	7710	5.71E-14	5641	5.71E-14	1813	5.71E-14	9650.234
F_{36}	8.13E - 06	150,000	6.81E-06	150,000	0	3728.242	0	15,438	0	7885	1.26E-08	130,172.5	0	23,950.37
\mathbf{F}_{37}	2.68E-15	11,975.61	2.68E-15	71,088	2.68E-15	566.2356	2.68E-15	1734	2.68E-15	1020	2.68E - 15	1604.5	2.68E - 15	916.4439
F_{38}	5.44E-06	150,000	9.60E-07	150,000	1.57E-13	150,000	1.45E-13	150,000	1.44E-13	150,000	0.00667	150,000	1.44E-13	150,000
F_{39}	2.92E-11	150,000	1.79E-09	150,000	1.12E-06	150,000	8.93E - 16	150,000	8.93E-16	150,000	6.58E - 08	150,000	8.93E-16	150,000
F_{40}	1.02E-08	150,000	1.73E-08	150,000	7.26E-06	14,6731	0	40,970	0	18,887	2.32E-08	143,110	0	15,120.82
F_{41}	0.010656	150,000	7.930173	150,000	2.38E-13	150,000	1.69E - 09	150,000	2.32E-13	150,000	6.69E-07	150,000	2.45E-13	150,000
F_{42}	0.006086	150,000	9.591822	143,906	6.255525	13,378.36	3.43E-13	7854	3.161241	5832	3.43E-13	5866	3.43E-13	6647.727
F_{43}	4.18E - 07	150,000	0	1131.5	0	19,759.52	0	4728	0	3856	0	2431.5	0	2896.725
F_{44}	6.47E - 08	150,000	1.29E-09	150,000	1.52E-05	144,013.1	4.02E - 15	150,000	4.02E-15	150,000	1.42E-11	150,000	4.02E-15	150,000
F ₄₅	3.21E-14	2048.78	3.21E-14	279	3.21E-14	382.7333	3.21E-14	558	3.21E-14	491	3.21E-14	259.5	3.21E-14	297.7941
F_{46}	1.56E-15	35,865.85	0.08013	141,591	1.56E-15	1.56E-15 1030.758	1.56E-15	3004	1.56E-15	1609	0.112747	8374	1.56E-15	1773.73
F_{47}	0.001612	150,000	0.052615	150,000	0.031644	13,4968.5	0.000103	98,226	9.95E-05	61,574	0.018672	144,838.5	5.58E-17	66,274.73

 Table 6 (continued)

 Fun no. Alternative metaheuristic algorithms

	FA		GWO		ICA		SOS		TLBO		WOA		090	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₄₈	0.001653	150,000	0.04844	150,000	0.037396	125,801.8	6.17E-05	109,696	7.65E-05	85,096	0.020491	149,222.5	4.18E-16	55,840.91
\mathbf{F}_{49}	3.35E-10 150,000	150,000	1.43E-11	150,000	8.93E-16	465.0472	1.79E-15	150,000	1.79E-15	150,000	1.79E-15	150,000	1.79E-15	150,000
F_{50}	1.30E-05	150,000	0.071941	150,000	2.72E-15	150,000	2.68E-15	150,000	2.68E-15	150,000	1.39E-08	150,000	2.68E-15	150,000
F_{51}	0	2317.073	0	336.5	0	211.2898	0	570	0	422	0	334	0	332.8877
F_{52}	1.91E - 09	1.91E-09 14,4646.3	2.13E-10	113,626.5	0	807.41	1.37E-10	118,782	0	39,046	0	21,375	0	16,217.75
F_{53}	4.42E-07	150,000	1.01E-05	150,000	0	2198.357	5.42E - 10	58,166	0	12,603	8.70E - 10	111,612	0	44,189.84
\mathbf{F}_{54}	1.93E-07	150,000	1.36E-06	150,000	1.34E-15	110.6257	2.34E-15	150,000	2.34E-15	150,000	2.40E - 10	150,000	2.34E-15	150,000
F_{55}	4.64E-06 150,000	150,000	7.81E-16	3254.5	0.038612	31,492.14	7.81E-16	11,290	7.81E-16	13,714	0.0338	27,126.5	7.81E-16	12,715.91
F_{56}	6.217954	150,000	2.90E-08	150,000	0	3646.452	0	18,196	0	220	4.90E-10	108,033.5	0	19,505.51
\mathbf{F}_{57}	4.64E-06 150,000	150,000	7.81E-16	3254.5	0.038612	31,492.14	7.81E-16	11,290	7.81E-16	13,714	0.0338	27,126.5	7.81E-16	12,715.91
F ₅₈	12,9654.2	150,000	0.003617	150,000	0	46,593.32	0	24,288	0.001057	20,408	0.003289	106,303.5	0.003269	54,750
F_{59}	174,515.5	150,000	1.46E-11	109,673	1.99E-06	44,659.73	8.07E - 12	89,620	3.08E-11	106,511	1.00E-06	11,5472.5	0	18,658.26
F_{60}	0.000557	150,000	1.09E-08	150,000	8.25E-12	150,000	8.23E-12	150,000	8.23E-12	150,000	4.12E - 08	150,000	8.23E-12	150,000
${ m F}_{61}$	8.34E-06	150,000	2.09E-06	150,000	4.02E-15	5360.888	4.02E-15	28,688	4.02E-15	12,290	0.001442	150,000	4.02E-15	20,657.59
F_{62}	2.05E-08	150,000	5.86E-09	150,000	0	3486.543	0	10,676	0	5929	3.10E-10	144,795.5	0	6994.652
F_{63}	7.804749	12,560.98	12.94271	132,403.5	17.24623	112,709.2	3.57E-14	4612	19.91024	75,139	3.57E-14	2030.5	3.57E-14	2977.941
F_{64}	227.1377	150,000	0	1381	0	9813.702	0	5232	0	4300	0	8152.5	0	3092.246
F_{65}	21.71972	150,000	0	1293.5	0	7901.608	0	4864	0	4033	0	6499.5	0	2925.301
F_{66}	262,168.6	150,000	1.53E-08	51,927	0	4075.323	0	18,858	1.55E-11	44,961	1.51E-06	135,264	0	20,969.42
${ m F}_{67}$	0.000206	150,000	0	644	0	1879.063	0	3404	0	3240	0	1740.5	0	2014.372
F_{68}	0.000857	150,000	0	825	0	20,608.88	0	5136	0	4749	0	10,822	0	2930.816
F_{69}	0.001055	150,000	9.50E-09	150,000	2.60E-17	150,000	2.72E-17	150,000	1.81E-17	150,000	3.94E-06	150,000	1.60E-17	150,000
${ m F}_{70}$	0.000993	144,707.3	0	788.5	0	3114.296	0	3188	0	3015	0	2643	0	1990.809

Table 6 (continued)

Fun no.		Alternative metaheuristic al	stic algorithms	SI										
	FA		GWO		ICA		sos		TLBO		WOA		OĐO	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
\mathbf{F}_{71}	0.139554	150,000	4.38E-05	E-05 150,000	1.82E-08	91,328.56	0	23,456	0	9906	0.014428	150,000	0	10,989.81
${ m F}_{72}$	1348.218	150,000	2.45E-06	150,000	0	69.73086	0	12,372	757.0123	13,903	1633.242	150,000	0	8890.207
F_{73}	7.37E-05	150,000	1.23E-06	150,000	3.57E-15	161.482	4.19E-14	150,000	4.12E-14	150,000	8.15E-07	150,000	4.12E-14	150,000
\mathbf{F}_{74}	7.28E-05	148,073.2	0.000423	148,882.5	2.86E-14	116.9172	2.86E - 14	8074	2.86E-14	3535	2.86E-14	5793	2.86E - 14	9033.59
\mathbf{F}_{75}	0.000132	150,000	2.21E-06	149,997.5	3.57E-15	156.2391	3.57E-15	8566	3.57E-15	4093	1.46E - 06	108,026.5	3.57E-15	9456.217
F_{76}	2.62E-05	150,000	0.009727	78,742.5	0.009663	60,748.69	1.79E-15	15,966	1.79E-15	13,928	0.008838	58,813.5	1.79E-15	17,636.53
\mathbf{F}_{77}	6.05E-07	150,000	4.94E-09	32,487.5	0	2340.965	0	4800	0	4735	2.95E-08	68,515	0	8035.929
\mathbf{F}_{78}	0.027406	150,000	0.107615	150,000	0.11077	150,000	2.77E-15	150,000	0.000293	150,000	0.090871	150,000	0.03337	150,000
F_{79}	0.142678	150,000	0.716219	150,000	0.238683	13,738.55	0.125755	39,488	0	26,018	0.623702	150,000	0.1	35,728.28
F_{80}	3.45E - 08	150,000	6.36E-09	150,000	1.16E-14	2376.617	1.16E-14	8659	1.16E-14	3036	6.92E - 09	146,051.5	1.16E-14	3322.36
F_{81}	4.58E-05	150,000	0	1864	0	5074.1	0	7406	0	6390	0	21,929	0	4522.059
F_{82}	3.36E - 05	150,000	0	1817.5	0	5299.546	0	7020	0	6020	0	22,152.5	0	4272.894
F_{83}	4.38E-08	150,000	0.001371	150,000	1.07E-14	1647.85	0.001209	93,056	0.000587	27,552	0.000386	148,999	0.001194	79,580.21
F_{84}	0.003509	150,000	0	1127	0	2618.315	0	4852	0	4210	0	5573	0	2996.491
F_{85}	1.96E + 09	150,000	3.00E-05	150,000	6.60E-11	102,906	0	21,958	0	10,803	0.016538	150,000	0	21,629.18
F_{86}	40,729.86	150,000	9.46E-08	149,993.5	9.62E-09	138,874.5	0	19,144	0	2086	3.61E - 05	141,033	0	13,265.37
F_{87}	2530.442	150,000	4.28E-14	410	4.28E-14	698.8815	4.28E-14	1130	4.28E-14	1009	4.28E-14	806	4.28E-14	637.7005
F ₈₈	1.07E-06	144,878	6.97E-18	867.5	6.97E - 18	1616.393	6.97E - 18	2300	6.97E-18	1729	6.97E - 18	2014	6.97E - 18	1518.048
F_{89}	3.35E-16	48,792.68	3.35E-16	829	3.35E-16	603.9846	3.35E-16	1382	3.35E-16	1025	3.35E-16	814.5	3.35E-16	787.0989
F_{90}	19.68525	150,000	0	1278.5	0	3641.734	0	4696	0	3919	0	9159.5	0	2741.31
F_{91}	1.22E-05	150,000	8.48E-09	150,000	0	37,803.04	0	12,676	0	6131	2.53E-10	141,195.5	0	7370.655
F_{92}	0.000209	150,000	2.52E-06	150,000	5.17E-05	150,000	0	64,252	0	31,121	0.002065	150,000	0	22,263.87
F_{93}	1.07E-08	150,000	0.001838	150,000	5.79E-15 150,000	150,000	5.77E-15 150,000	150,000	5.75E-15 150,000	150,000	0.002047	150,000	5.74E-15 150,000	150,000

 Table 6 (continued)

 Fun no. Alternative metaheuristic algorithms

OII IID.T	WICH HALLW	run no. Ancinanye inetaneursue argorumns	argoriam	27										
	FA		GWO		ICA		SOS		TLBO		WOA		090	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₉₄	8.44E-05	150,000	6.57E-08	150,000	3.40E-05	77,858.44	1.06E-07	139,428	5.59E-13	909,09	4.50E-05	141,912	0	70,003.68
F_{95}	6.08E-15	150,000	1.04E-12	150,000	6.88E-05	150,000	1.05E-17	150,000	1.05E-17	150,000	6.31E-18	150,000	1.05E-17	150,000
F_{96}	6.29E-07	150,000	9.27E-06	148,532	0	1772.108	6.35E - 10	73,988	0	24,941	4.15E-07	121,938.5	0	46,074.36
F_{97}	0	2829.268	0	155	0	370.6746	0	200	0	101	0	102	0	50.13369
F_{98}	9.59E - 05	150,000	0.00707	150,000	0.009727	150,000	0	41,874	0	25,056	0.014423	150,000	0	26,218.92
F_{99}	0.037731	150,000	1.255673	150,000	0.514559	150,000	0	88,972	0.3676	53,513	9.346715	150,000	0	42,200.53
\mathbf{F}_{100}	711,166.5	150,000	0	1795.5	0	7417.686	0	3546	0	3795	0	13,098.5	0	3409.592
\mathbf{F}_{101}	811.3904	150,000	75.068	150,000	1.14E-11	105,211.3	0.186754	105,128	9.74E-07	77,353	11,958.47	150,000	4.05E-08	11,0008.4
\mathbf{F}_{102}	8.81E-11	119,292.7	1.93E-10	103,094.5	3.33E-09	147,734	2.88E - 10	109,172	1.70E-10	74,164	6.33E - 10	129,992.5	2.47E-10	111,937
F_{103}	0.000122	150,000	0.007888	147,687	0.000234	149,870	1.63E-19	39,658	8.63E-06	53,334	0.000325	150,000	0.000302	41,811.5
\mathbf{F}_{104}	0	7146.341	0	804.5	2.32E-13	85,236.28	0	1608	0	1042	0	2315.5	0	459.2246
\mathbf{F}_{105}	1.02275	150,000	1.713648	150,000	1.547523	150,000	1.390021	150,000	0.000184	150,000	1.21E-05	150,000	1.112699	150,000
\mathbf{F}_{106}	0.00491	150,000	0.74788	149,975.5	2.053979	23,168.47	0.747881	15,140	0.747881	12,130	0.531522	49,464	1.118363	14,738.8
\mathbf{F}_{107}	0.004752	150,000	0.924479	150,000	2.412304	29,241.87	0.760923	14,186	0.843924	10,921	0.760921	86,482	1.345665	18,152.91
\mathbf{F}_{108}	0.006858	150,000	0.006924	150,000	0.004784	150,000	0.004814	150,000	0.007312	150,000	0.009761	150,000	0.006554	13,2420.1
F_{109}	81.17334	150,000	2646.08	150,000	1077.299	17,732.09	18.46546	150,000	31.49175	150,000	3816.799	150,000	4.750317	148,610.8
F_{110}	2.980047	150,000	35.64045	150,000	1.37E-12	1114.121	0.011818	86,958	0.062868	82,913	1.2937	146,796.5	0.025498	79,443.35
F_{111}	7.06E-06	7158.537	0.076281	102,969.5	0.159289	116,325.8	0.015794	22,588	0.016525	48,922	0.182781	127,875.5	0.020829	61,147.56
F_{112}	0.001729	150,000	0.002264	150,000	0.007437	150,000	0.001708	150,000	0.002285	150,000	0.028604	150,000	0.00279	149,507.7
F_{113}	0.051999	109,146.3	0.067312	149,422.5	0.023476	9324.013	0.059466	72,696	0.021089	28,826	0.119349	97,058.5	0.058149	59,152.74
F_{114}	0.527168	150,000	3.74E-06	150,000	5.94E-13	114,349.7	0	17,468	0	10,897	1.47E-07	150,000	0	9504.846
F_{115}	0.002829	117,402.4	0.005267	138,605.5	8.93E-16	2817.546	0.003035	12,4816	0.00299	91,631	0.003681	145,747	0.003405	120,581.6
F_{116}	0.001423	150,000	6.43E - 14	E-14 149,844.5	6.43E - 14	3134.219	6.43E - 14	7058	6.43E - 14	9689	6.43E - 14	36,549	6.43E-14	5325.702

Table 6 (continued)

Fun no	Fun no. Alternative metaheuristic algor	metaheuris	stic algorithn	us										
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev. Fun. Evl.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₁₁₇	176.0505	176.0505 150,000	40.11871	150,000	40.11871 150,000 5.49E-06 150,000 0	150,000	0	27,788	1.68E-12	96,074	27,788 1.68E-12 96,074 0.000224 150,000 1.19E-12 32,827.04	150,000	1.19E-12	32,827.04

Table 7 The minimum and mean values of the 50D mathematical functions for different metaheuristics

	FA		GWO		ICA		SOS		TLBO		WOA		ODO	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
H ×II	20.381235	20.50565	0	0	5.04E-11	1.12E-08	0	0	0	0.426474	0	0	0	0
F ₁₁₉	5.4233419	8.546599	0	1.15E-07	0	1.11E-07	0	0	0	0	0	0	0	0
F ₁₂₀	0.0360813	0.050099	0	0	0	0	0	0	0	0	0	0	0	0
F ₁₂₁	1.087E + 09	1.72E+09	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{122}	3.27E-12	1.11E-11	0	0	0	0	0	0	0	0	0	0	0	0
F_{123}	-0.993424	-0.990587	-0.999702	-0.910992	-1	-0.997473	-0.93148	-0.882864	-0.999889	-0.898661	-0.999859	-0.858739	-0.890149	-0.840595
\mathbf{F}_{124}	-0.999628	-0.997335	-0.999725	-0.92839	-1	-1	-0.976282	-0.916823	-1	-0.996733	-0.999997	-0.943559	-0.901522	-0.858192
F_{125}	264.90199	490.3996	0.6666667	0.666667	0.6666667	3.949027	0.6666667	0.666667	0.6666667	0.666667	0.6666669	0.66667	0.6666667	0.666667
F_{126}	-0.208962	-0.01718	-1.03E-10	-1.03E-12	-1	-0.39	-1	-0.950159	-3.41E-23	-1.02E-24	-0.999641	-0.990955	-1	-0.970096
\mathbf{F}_{127}	-0.999744	-0.999668	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
F_{128}	9.2437303	11.31371	0	0.000304	0	0.022023	0	0	0	0	0	0.000762	0	0
F_{129}	25.451383	82.16855	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{130}	2.29E+18	8.73E+18	0	0	633,739.93	19,547,079	0	0	0	0	0	0	0	0
F_{131}	-13.54793	-10.03256	-49	-48.45589	-32.97777	-27.96647	-49	- 45.24404	-35.63975	-29.11456	-49	-49	- 49	-40.64257
\mathbf{F}_{132}	1.836757	2.660342	1.452947	2.284753	0	0.000895	0.1790565	0.593572	0.6266978	1.265034	0.0006725	0.027819	0	0.323198
\mathbf{F}_{133}	2.0193696	2.024891	2.0600683	1137.398	2	2	2	2	2	2	2	2	2	2
F_{134}	2.01904	2.02534	2.0788286	1412.075	2	2	2	2	2	2	2	2	2	2
F_{135}	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128	9.25E+128
F_{136}	2.69E-07	8.95E-07	0	1.01E - 12	0	0	0	2.08E-05	0	9.92E-15	0	0	0	0
\mathbf{F}_{137}	11.706461	13.12133	8.4603009	17.52603	10.694567	12.63216	6.4003225	8.64812	8.8077372	10.67097	0	0.00327	0	0.740721
F_{138}	4403.9404	5395.454	0	0	1422.6431	6768.277	0	0	0	0	0	0	0	0
F_{139}	4.2539444	9.935475	1.53E-11	3.36E-06	0.0237504	0.045578	0	0	0	5.70E-08	0	7.22E-09	0	0
\mathbf{F}_{140}	19.103824	27.68775	0	0	1.54E-08	2.17E-05	0	0	0	0	0	0	0	0
\mathbf{F}_{141}	1.39E-09	1.28E-08	0	0	0	0	0	0	0	0	0	0	0	0
F_{142}	112.68122	155.6537	0	0	54.723095	91.89453	0	0	0	13.6032	0	0	0	0.000235
F ₁₄₃	2.672E+11	3.74F±11	3149.4241	7897.126	0	0	0	0	1.89E-12	6.58E-06	37.994795	412.4954	U	12.14012

 Table 7 (continued)

 Fun no. Alternative metaheuristic algorithms

	FA		GWO		ICA		SOS		TLBO		WOA		090	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
F ₁₄₄	116.11819	150.026	16.167052	37.32237	0	1.20E-11	3.28E-09	0.037474	1.82E-06	0.075992	2.5175229	12.92886	9.28E-08	0.169231
F ₁₄₅	968,483.34	186,4485	44.89665	46.58408	2.2465077	139.5909	33.166918	36.48892	36.836742	40.74561	44.998504	45.61452	29.900335	36.01464
\mathbf{F}_{146}	18.116479	21.19853	0.0998733	0.150418	0.8998733	1.268004	0.0998733	0.099873	0.0998733	0.148452	0	0.125882	0	0.055929
\mathbf{F}_{147}	53,770,073	1.11E+08	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{148}	1.29E+27	5.52E+27	0	0	0	0	0	0	0	0	0	0	0	0
F_{149}	5.35E-11	2.54E-05	2.01E-12	4.39E-08	0	0	9.64E-11	3.81E-06	0	1.65E-06	0	0	0	5.64E-11
\mathbf{F}_{150}	1.7913223	2.475727	5.3483658	13.42373	1.92E-05	5.19E-05	5.46E-07	0.000108	0.0017685	0.022515	0.0045706	5.206693	9.35E-12	6.43E-10
F ₁₅₁	979.14111	1096.032	0	0	0	1.55E-11	0	0	0	0	0	0	0	0
F_{152}	71.563828	83.56584	0	0	1.3707849	2.601344	0	0	0	0	6.81E-08	44.72021	0	0
F ₁₅₃	1.58E+51	3.62E+56	0	0	2.80E-12	1.11E-10	0	0	0	0	0	0	0	0
F ₁₅₄	0.3598278	7.798554	0	0	0	0	0	0	0	0	0	0	0	0
F ₁₅₅	1.8337912	2.573681	6.8771565	13.47726	4.33E-05	0.00011	9.14E-07	0.00146	0.0034109	0.067705	0.0047254	4.97904	2.22E-11	2.13E-09
F_{156}	-156.5671	-133.7004	-231.2476	-181.6286	-380.0135	-309.7157	-384.589	-316.6897	-304.6938	-256.6237	-418.9827	-409.6193	-289.1935	-260.9953
\mathbf{F}_{157}	0.0540401	0.078156	0	0	0	0	0	0	0	0	0	0	0	0
F ₁₅₈	981	1076.81	0	0	0	0	0	0	0	0	0	0	0	0
F_{159}	30,456	41,443.82	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{160}	31,922	41,086.85	0	0.01	0	0	0	0.07	0	0.22	0	0	0	0
\mathbf{F}_{161}	-275	-273.9	-254	-231.15	-275	-275	-275	-272.73	-275	-272.2	-275	-275	-275	-275
\mathbf{F}_{162}	20.076561	27.23315	0.0024305	0.074509	10.187035	13.05764	0.0005524	0.017441	0.0574294	0.218473	0	0.366565	0	1.2087
\mathbf{F}_{163}	114.47094	153.5335	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{164}	-1867.043	-1770.141	-1678.529	-1443.208	-1774.531	-1774.531 -1677.129	-1958.3	-1949.524	-1816.941	- 1690.969	-1958.3	-1949.453	-1958.306	-1937.367
\mathbf{F}_{165}	43,784,778	63,850,282	-1046.745	-345.1535	-13,175.21 $14,770.75$	14,770.75	-4475.024	-3084.629	-2853.152	-2224.325	-18,926.11	-18,926.11 $-13,919.19$	-21,988.17 -18,301.1	-18,301.1
\mathbf{F}_{166}	0.3701119	3.836854	0	0	2.2137688	66.35352	0	0	0	0	0	0	0	0
F_{167}	2,482,350.9 3,002,533	3,002,533	31.917057	53.58512		1.426401	13.722952 73.97508	73.97508	19.386726	31.21802	5.4566182	76.41341	20.281137	37.93278

 Table 7 (continued)

 Fun no. Alternative metaheuristic algorithms

	FA		GWO		ICA		sos		TLBO		WOA		CGO	
	Minimum	Mean	Minimum	Mean	Minimum Mean	Mean	Minimum Mean	Mean	Minimum Mean	Mean	Minimum Mean	Mean	- Minimum Mean	Mean
F ₁₆₈	0.318961 0.39861	0.39861	0	0	0.140724 0.20046	0.20046	0	0	0.07501	0.177383	0	0	0	0.074077
F_{169}	0	0	0	6.76E-217	0	0	0	0	0	0	-1	-0.22	-1	-0.167991
F_{170}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{171}	0	8.89E-14	0	2.74E-13	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{172}	0.0005211	2.869414	1.48E-12	7.32E-06	330,772.96 1.96E+15	1.96E+15	0	4.78E-08	4.78E-08 1.84E-11	4.07E-08	0	6.74E+17	0	3.34E-06
F_{173}	4.08E-21	5.62E-21	5.62E-21 2.07E-25	3.71E-24	1.56E-44	1.06E-36	4.39E-46	4.04E-33	3.71E-24 1.56E-44 1.06E-36 4.39E-46 4.04E-33 1.82E-33	2.18E-23	-1	-0.22	-1	-0.676587
F ₁₇₄	9.05E-07	9.05E-07 0.000714	7.00E-07	0.000629	1.01E-05 0.000664	0.000664	3.02E-06	0.000571	3.02E-06 0.000571 1.09E-05	0.00064	1.24E-06	0.000752	3.94E-05	0.000802
F ₁₇₅	43.057427	43.057427 99.40362	0	0	1.046464	8.283508	0	0	0	0	588.59277	834.1466	0	0

Table 8 The standard deviation (Std. Dev.) and mean of function evaluations (Fun. Evl.) for 50D mathematical functions

	FA		GWO		ICA		SOS		TLBO		WOA		090	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₁₁₈	0.0502242	150,000	0	15,589	7.26E-08	150,000	0	21,110	1.2778323	33,729	0	35,359	0	44,081.45
F ₁₁₉	1.5091166	150,000	1.15E-06	17,454.5	7.06E-07	149,988.5	0	20,338	0	15,893	0	33,364.5	0	33,463.66
F_{120}	0.0055062	150,000	0	8806.5	0	67,845.51	0	10,690	0	8339	0	21,161.5	0	15,810.78
F ₁₂₁	303,655,817	150,000	0	6968.5	0	46,243.62	0	8408	0	6451	0	12,861	0	12,523.81
F ₁₂₂	5.55E-12	150,000	0	4288.5	0	25,494.23	0	3746	0	2811	0	4093.5	0	5020.05
F ₁₂₃	0.00111142	150,000	0.0695635	150,000	0.0165183	63,556.8	0.0162111	150,000	0.0979795	150,000	0.0721503	150,000	0.0188715	150,000
F ₁₂₄	0.0057492	150,000	0.0660064	150,000	0	4419.783	0.0246438	150,000	0.0089068	149,697	0.0584204	150,000	0.0189725	150,000
F ₁₂₅	102.69093	150,000	1.74E-07	150,000	2.7936929	150,000	4.63E-15	150,000	1.44E-12	150,000	5.42E-06	150,000	1.49E - 15	150,000
F_{126}	0.0502911	150,000	1.03E-11	150,000	0.4902071	134,058.9	0.2183445	105,020	5.84E - 24	150,000	0.0048422	150,000	0.1708999	107,827.1
F_{127}	3.13E-05	150,000	0	7914	0	55,353.2	0	9696	0	7436	0	18,365	0	14,496.24
F ₁₂₈	0.9322215	150,000	0.0023868	12,752	0.0269142	124,642.1	0	11,976	0	6116	0.0037646	30,607	0	18,972.43
F ₁₂₉	21.963345	150,000	0	7298.5	0	50,846.38	0	7350	0	5581	0	11,684	0	10,655.39
F ₁₃₀	2.24E+18	150,000	0	15,071	25,555,416	150,000	0	21,866	0	16,776	0	35,850	0	33,477.44
F ₁₃₁	1.2734135	150,000	2.981015	27,450	2.3406331	150,000	7.9192416	66,992	3.2433096	150,000	0	27,622	7.1608731	131,423.6
F ₁₃₂	0.3589449	150,000	0.3017913	150,000	0.0089528	119,584.2	0.2093464	150,000	0.2665134	150,000	0.0600299	150,000	0.1598958	149,339.6
F_{133}	0.0022817	150,000	4475.1206	150,000	0	7383.083	0	44,948	0	57,472	0	197.5	0	142.8571
F ₁₃₄	0.0022788	150,000	7945.5179	150,000	0	7401.957	0	46,684	0	58,078	0	195.5	0	142.8571
F_{135}	7.73E+113	150,000	7.73E+113	150,000	7.73E+113	150,000	7.73E+113	150,000	7.73E+113	150,000	1.21E+114	150,000	2.71E+114	150,000
F_{136}	2.37E-07	150,000	2.13E-12	149,743.5	0	24,247.47	0.000208	20,082	9.92E-14	7458	0	258.5	0	255.6391
F_{137}	0.4582672	150,000	2.4164374	150,000	0.8432095	150,000	1.0860518	150,000	0.8644548	150,000	0.0126245	130,393	1.3275984	82,187.97
F ₁₃₈	411.36205	150,000	0	12,483	2289.4916	150,000	0	14,712	0	11,486	0	28,595	0	22,032.58
F_{139}	2.8237858	150,000	8.08E-06	150,000	0.0100069	150,000	0	14,230	1.56E-07	13,7572	5.84E-08	58,066.5	0	25,556.39
F_{140}	3.2700471	150,000	0	16,862	7.62E-06	150,000	0	12,512	0	8096	0	26,631.5	0	18,754.39
F_{141}	9.39E-09	150,000	0	2776.5	0	11,760.4	0	3576	0	2860	0	5493	0	6754.386
F_{142}	15.836323	150,000	0	13,689	15.18284	150,000	0	16,548	11.299551	107,789	0	27,595.5	0.0023517	36,982.46
F ₁₄₃	3.781E+10	150,000	2285.1069	150,000	0	110,279.1	0	94,522	3.87E-05	150,000	333.85131	150,000	62.594012	147,562.7

Table 8 (continued)
Fin no Alternative m

Fun no.	Alternative metaheuristic algorithms	netaheuristic a	algorithms											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₁₄₄	13.014069	150,000	9.8463404	150,000	1.94E-11	149,840.1	0.1692307	150,000	0.4710474	150,000	7.4427843	150,000	1.495165	150,000
F ₁₄₅	435,984.7	150,000	0.8583632	150,000	118.44994	150,000	1.4995873	150,000	1.0381569	150,000	0.2641631	150,000	1.459143	150,000
F ₁₄₆	0.8220206	150,000	0.049999	150,000	0.1523753	150,000	4.54E-10	150,000	0.0498513	150,000	0.0645244	142,321.5	0.0498256	126,602.8
\mathbf{F}_{147}	18,359,676	150,000	0	8175.5	0	60,235.93	0	8398	0	6375	0	16,516.5	0	12,340.85
F ₁₄₈	2.72E+27	150,000	0	4598	0	25,769.49	0	5330	0	4131	0	4587	0	7656.642
F ₁₄₉	7.88E-05	150,000	1.12E-07	150,000	0	1288.71	6.65E-06	150,000	3.34E-06	145,840	0	108,944.5	2.84E-10	86,010.03
\mathbf{F}_{150}	0.266992	150,000	2.7424309	150,000	2.62E-05	150,000	0.0003368	150,000	0.0443137	150,000	8.6844085	150,000	1.48E - 09	150,000
F_{151}	46.30883	150,000	0	15,086	8.29E-11	148,686.1	0	22,916	0	17,816	0	35,281.5	0	35,953.63
\mathbf{F}_{152}	4.7471357	150,000	0	28,445	0.7344186	150,000	0	27,604	0	20,469	34.196865	150,000	0	42,665.41
F ₁₅₃	9.27E+56	150,000	0	15,292	3.05E-10	150,000	0	23,818	0	18,281	0	35,218.5	0	39,768.17
\mathbf{F}_{154}	5.4097314	150,000	0	5214	0	32,977.46	0	4086	0	3041	0	5108.5	0	5667.92
F ₁₅₅	0.3082883	150,000	2.7609375	150,000	4.40E-05	150,000	0.0118753	150,000	0.2756654	150,000	8.3596718	150,000	3.68E-09	150,000
F ₁₅₆	6.3690482	150,000	26.967055	150,000	24.835349	150,000	23.103259	150,000	20.841874	150,000	21.293816	150,000	11.119107	150,000
\mathbf{F}_{157}	0.0109852	150,000	0	6018.5	0	24,807.41	0	930	0	3862	0	176	0	661.6541
F ₁₅₈	39.589738	150,000	0	2802.5	0	21,020.97	0	3194	0	2509	0	4724	0	4503.759
\mathbf{F}_{159}	3587.5477	150,000	0	3604	0	39,728.24	0	3690	0	2876	0	3721.5	0	5016.291
F ₁₆₀	3547.0089	150,000	0.1	10,773	0	41,537.05	0.2564324	32,866	0.4623174	54,652	0	5950	0	26,840.85
\mathbf{F}_{161}	0.745356	149,195.1	9.2467576	150,000	0	10,550.33	1.469247	141,308	3.931227	109,593	0	204.5	0	9127.82
\mathbf{F}_{162}	2.7633682	150,000	0.4066735	150,000	1.1510244	150,000	0.0103176	150,000	0.6609536	150,000	1.0231986	91,658.5	1.6991519	116,977.4
\mathbf{F}_{163}	15.234952	150,000	0	9869.5	0	80,473.09	0	12,472	0	9553	0	26,869	0	18,340.85
F ₁₆₄	48.112958	150,000	82.121655	150,000	43.925051	150,000	10.575646	138,762	49.17714	150,000	33.090213	139,289	33.272057	143,714.3
\mathbf{F}_{165}	6,532,202.5	150,000	184.38304	150,000	19,442.377	150,000	590.36613	150,000	211.58439	150,000	1312.2997	150,000	2598.8445	150,000
\mathbf{F}_{166}	3.2023366	150,000	0	7714.5	45.844919	150,000	0	096	0	2754	0	179.5	0	730.5764
\mathbf{F}_{167}	203,135.86	150,000	9.9327909	150,000	1.4897637	145,242.6	25.571569	150,000	5.122057	150,000	36.883061	150,000	20.422169	150,000

Table 8 (continued)

Fun no.	Fun no. Alternative metaheuristic algorith	netaheuristic .	algorithms											
	FA		GWO		ICA		SOS		TLBO		WOA		OD)	
	Std. Dev.	Fun. Evl. Std. Dev.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Fun. Evl. Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₁₆₈	0.0313466	0.0313466 150,000	0	15,023	0.022912	150,000	0	26,304	0.0436488	150,000	0	22,232.5	0.0574611	138,759.4
F_{169}	0	150,000	0	150,000	0	150,000	0	150,000	0	150,000	0.4163332	128,166	0.3735783	139,037.6
F_{170}	0	1219.512	0	50	0	52.42922	0	200	0	100	0	50	0	125.3133
\mathbf{F}_{171}	3.68E-13	96,743.9	1.63E-12	56,106.5	0	1137.19	0	2580	0	191	0	103.5	0	125.3133
\mathbf{F}_{172}	10.93318	150,000	2.23E-05	150,000	1.93E+16	150,000	2.27E-07	141,998	9.06E-08	150,000	4.64E+18	146,100	9.78E-06	147,280.7
\mathbf{F}_{173}	6.27E - 22	150,000	2.09E-23	150,000	7.38E-36	150,000	4.01E-32	150,000	1.77E-22	150,000	0.4163332	124,637	0.2711994	137,743.1
\mathbf{F}_{174}	0.0006792	150,000	0.0005986	150,000	0.0006581	150,000	0.0005028	150,000	0.0006213	150,000	0.0008318	150,000	0.0008051	150,000
F_{175}	21.948499	150,000	0	28,495	5.1567128	150,000	0	866,66	0	116,969	145.36549	150,000	0	115,467.4

Table 9 The minimum and mean values of the 100D mathematical functions for different metaheuristics.

Finance Alternative metaheuristic alcorithms

Fun no.	Alternative metaheuristic algorithms	etaneurisuc aig	OUTILITIES											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
F ₁₇₆	20.586604	20.718846	0	0	1.431615	12.31205	0	0	0	1.143617	0	0	0	0
\mathbf{F}_{177}	50.405563	64.109332	0	4.56E-07	0.002751	0.028801	0	0	0	0	0	0	0	0
F ₁₇₈	0.4772714	0.6804868	0	0	0	3.34E-13	0	0	0	0	0	0	0	0
F ₁₇₉	1.78E+10	2.286E+10	0	0	0	0	0	0	0	0	0	0	0	0
F ₁₈₀	6.10E-06	3.20E-05	0	0	0	0	0	0	0	0	0	0	0	0
F ₁₈₁	-0.96588	-0.950316	-0.9197	-0.85527	-1	-0.99489	-0.80803	-0.76742	-0.97195	-0.80501	-0.99991	-0.8224	-0.76477	-0.72196
F_{182}	-0.997313	-0.990482	-0.98654	-0.90918	-1	-	-0.99612	-0.83238	-0.99993	-0.97698	-1	-0.93357	-0.79327	-0.74487
F_{183}	29,900.156	55,885.031	0.666667	0.666667	2.831224	24.74766	0.666667	0.666667	0.666667	0.666667	0.666667	0.66667	0.666667	0.666667
F ₁₈₄	0	0	0	0	0	0	0	0	0	0	-0.99151	-0.95805	0	0
F ₁₈₅	-0.996165	-0.993911	-	-1	-1	-1		-1		-		-1	-1	-1
F ₁₈₆	34.352598	38.765115	0	0.000207	0	0.008733	0	0	0	0	0	0.000593	0	0
F ₁₈₇	6058.917	13693.944	0	0	0	0	0	0	0	0	0	0	0	0
F ₁₈₈	2.58E+33	1.03E+34	0	0	5.24E+18	1.76E+21	0	0	0	0	0	0	0	0
F ₁₈₉	-15.43269	-10.68408	- 66	-98.287	-41.5804	-35.5744	- 66	-85.1954	-62.571	-51.7626	66-	-98.6672	66-	-81.9432
F_{190}	35.389796	57.928454	5.350569	6.133826	19.01878	77.51377	1.969623	3.258554	2.32782	3.71216	0.0184	0.10947	1.074365	2.193779
F_{191}	2.0982297	2.1162261	228438.4	2.05E+22	2	2	2	2	2	2	2	2	2	2
\mathbf{F}_{192}	2.1052274	2.1175193	12975012	4.68E + 20	2	2	2	2	2	2	2	2	2	2
\mathbf{F}_{193}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{F}_{194}	1.11E-05	3.20E-05	0	0	0	0	0	9.64E - 07	0	1.92E-08	0	0	0	0
F ₁₉₅	27.907562	30.328962	26.20246	41.39556	29.62579	32.504	17.7514	22.89792	20.31474	24.0459	0	0.014734	0	1.042993
F ₁₉₆	42,154.219	50,103.324	0	0	35,735.5	50,791.51	0	0	0	0	0	0	0	0
\mathbf{F}_{197}	117.6082	206.06059	3.89E-10	2.68E - 06	0.331522	0.665042	0	0	0	0	0	0	0	0
F ₁₉₈	284.41418	471.64742	0	0	2.71E-06	0.000209	0	0	0	0	0	0	0	0
F_{199}	3.73E-08	1.50E-07	0	0	0	0	0	0	0	0	0	0	0	0
F ₂₀₀	522.08913	610.80144	0	0	284.5577	462.9585	0	0	0	0.054343	0	0	0	0
F_{201}	6.567E+11	8.868E+11	80,312.3	121,658.9	1.87E-07	4.28E-06	0.000376	23.54445	2.142336	1056.635	3026.633	13,397.27	0.008689	4650.467

Table 9 (continued)

	(
Fun no.	Alternative m	Alternative metaheuristic algor	orithms											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean	Minimum	Mean
F_{202}	613.33009	1013.8289	124.1739	157.1621	4.97E-06	0.103038	0.616641	7.63817	0.486121	9.675635	13.14432	31.25526	0.190459	4.484061
F_{203}	36,057,720	61,493,505	95.06887	96.9346	124.0419	347.5509	84.29788	88.95276	91.02669	93.11738	95.09095	95.67857	82.73053	87.48213
F_{204}	35.728656	39.577622	0.099873	0.197873	2.299873	2.924874	0.099873	0.099873	0.199873	0.199873	0	0.131882	0	0.056928
F_{205}	538,327,823	698,836,295	0	0	0	0	0	0	0	0	0	0	0	0
F_{206}	5.64E+30	1.22E+31	0	0	0	0	0	0	0	0	0	0	0	0
F_{207}	2.90E-09	4.35E-05	4.23E-12	6.78E-08	0	0	8.54E-10	5.48E-06	9.78E-11	4.00E-06	0	1.60E-13	0	4.27E-10
F_{208}	15.437678	19.820979	34.57359	44.35066	0.062136	0.137295	0.238105	1.595233	1.226237	3.795858	0.282725	14.60447	0.007558	0.079592
F_{209}	2779.6739	2976.7993	0	0	8.69E-07	1.87E - 05	0	0	0	0	0	0	0	0
F_{210}	92.82625	95.754961	0	0	15.44394	24.65842	0	0	0	0	0.004299	66.81846	0	0
\mathbf{F}_{211}	5.34E+118	8.37E+126	0	0	0.000492	0.667995	0	0	0	0	0	0	0	0
F_{212}	113,932.46	777,593.76	0	0	0	0	0	0	0	0	0	0	0	0
F ₂₁₃	16.003313	19.521313	33.08182	43.6676	0.085316	0.184241	0.248299	1.674584	1.074701	4.063953	0.736897	14.51532	0.006548	0.085683
F ₂₁₄	-108.9406	-96.67194	-203.5	-166.817	-275.176	-247.671	-323.521	-243.441	-279.378	-228.29	-418.982	-407.921	-220.435	-191.575
F ₂₁₅	0.5276357	0.6688825	0	0	0	0	0	0	0	0	0	0	0	0
F ₂₁₆	2681	2936.95	0	0	0	0.01	0	0	0	0	0	0	0	0
F_{217}	12,9887	149,515.44	0	0	0	0.28	0	0	0	0	0	0.01	0	0
F_{218}	13,0660	148,673.85	0	0.1	0	0.26	0	2.19	0	2.98	0	0.03	0	2.08
F_{219}	-563	-557.62	-452	-394.95	-575	-575	-572	-561.03	-575	-561.19	-575	- 575	-575	-575
F_{220}	70.470914	82.893324	0.005697	0.053734	24.53558	29.99663	2.32E-06	0.020105	0.033113	0.066364	0	0.00031	0	1.838743
F_{221}	2382.5386	3193.669	0	0	4.09E-11	9.99E-10	0	0	0	0	0	0	0	0
F_{222}	-3505.919	-3347.853	-2805.38	-2476.86	-3478.38	-3305.2	-3817.19	-3682.41	-3534.51	-3300.96	-3916.6	- 3904.09	-3765.07	-3592.18
F_{223}	1.996E + 09	2.39E+09	-654.126	-208.763	147,572.8	1,095,234	-2994.74	-2325.87	-1825.32	-1418.01	-48,365.5	-39,875.4	-23,507	-13,483.4
F_{224}	23.702927	103.74066	0	0	128.3375	615.7201	0	0	0	0	0	0	0	0
F225	5,588,992.9	6,702,583.6	112.2197	162.2476	23.00566	67.61354	86.12778	260.447	52.15774	81.48437	66.26364	183.3127	55.26998	103.272

Table 9 (continued)

Fun no.	Fun no. Alternative metaheuristic algorithms	netaheuri stic alg	gorithms											
	FA		GWO		ICA		SOS		TLBO		WOA		CGO	
	Minimum	Mean	Minimum Mean	Mean	Minimum	Mean	Minimum Mean	Mean	Minimum Mean	Mean	Minimum Mean	Mean	Minimum Mean	Mean
F ₂₂₆	0.4708199	0.4708199 0.541511	0	0	0.380988	0.435385	0	0	0.121418	0.258575	0	0	0	0.068812
F227	0	0	0	0	0	0	0	0	0	0	-1	- 0.01	-1	-0.11
F_{228}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F ₂₂₉	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F_{230}	58,691,612	6.901E+14	0	7.32E-06	7.32E-06 3.87E+20 7.70E+38	7.70E+38	0	1.34E-08	1.34E-08 1.12E-12 1.69E-08 5.65E-11	1.69E-08	5.65E-11	1.78E+48	0	8.20E-07
F ₂₃₁	9.53E-41	5.52E-40	1.14E-42	3.06E-41	1.14E-42	1.14E-42	1.14E-42	1.14E-42	1.14E-42 3.06E-41 1.14E-42 1.14E-42 1.14E-42 1.14E-42 1.14E-42 1.30E-42 1.30E-42		-1	-0.25	-1	-0.54305
F_{232}	2.35E-05	0.0014437		0.001191	2.65E-05 0.001191 2.81E-05 0.001734 1.51E-05 0.001508	0.001734	1.51E-05	0.001508	8.77E-06	8.77E-06 0.001628	2.30E-07 0.001156	0.001156	3.41E-05 0.001812	0.001812
F_{233}	603.08682	831.89671 0	0	0	86.79895	241.4952	2.21E-09	4.20E-06	86.79895 241.4952 2.21E-09 4.20E-06 7.47E-05 0.001364 1333.962 1691.183	0.001364	1333.962	1691.183	0	6.01E-07

Table 10 The standard deviation (Std. Dev.) and mean of function evaluations (Fun. Evl.) for 100D mathematical functions

Fun no.	Alternative metaheuristic algorithms	etaheuristic a	ulgorithms											
	FA		GWO		ICA		sos		TLBO		WOA		OĐO	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₁₇₆	0.0339569	150,000	0	22,349	7.557597	150,000	0	22,166	1.924839	54,872	0	35,901.5	0	46,119.05
\mathbf{F}_{177}	5.932246	150,000	3.23E-06	23,989.5	0.048226	150,000	0	21,390	0	16,682	0	34,011.5	0	34,293.23
F ₁₇₈	0.101094	150,000	0	13,474	8.85E - 13	144,647.5	0	11,506	0	8932	0	22,504.5	0	17,195.49
F ₁₇₉	2.033E+09	150,000	0	10,894.5	0	97,618.49	0	9124	0	6931	0	14,405.5	0	13,299.5
F ₁₈₀	2.69E-05	150,000	0	7711.5	0	60,046.14	0	4102	0	3037	0	4022	0	5457.393
F ₁₈₁	0.0068974	150,000	0.0269	150,000	0.034602	132,728.8	0.019791	150,000	0.110787	150,000	0.102061	150,000	0.017099	150,000
F_{182}	0.0070677	150,000	0.052672	150,000	0	2004.893	0.062164	150,000	0.023255	150,000	0.060665	150,000	0.019847	150,000
F ₁₈₃	13,236.319	150,000	3.43E-08	150,000	9.926055	150,000	1.20E-11	150,000	4.66E-11	150,000	1.84E-06	150,000	1.88E-11	150,000
F ₁₈₄	0	150,000	0	150,000	0	150,000	0	150,000	0	150,000	0.025808	150,000	0	150,000
F ₁₈₅	0.0011067	150,000	0	12,215.5	0	117,743.4	0	10,494	0	0962	0	19,782	0	15,392.23
F ₁₈₆	1.6862662	150,000	0.001457	16,981.5	0.015275	149,552.3	0	12,616	0	9585	0.004218	28,442.5	0	19,347.12
F ₁₈₇	3880.8462	150,000	0	11,963	0	109,146.6	0	8084	0	6023	0	13,310.5	0	11,476.19
F ₁₈₈	2.80E+33	150,000	0	27,181	3.82E+21	150,000	0	33,416	0	25,514	0	41,346.5	0	51,765.66
F ₁₈₉	1.50344	150,000	4.429801	31,074.5	2.892269	150,000	26.17784	65,630	6.373321	150,000	3.327879	29,384	12.20145	140,394.7
F_{190}	11.455529	150,000	0.41391	150,000	26.33093	150,000	0.507665	150,000	0.540065	150,000	0.149237	150,000	0.382965	150,000
F_{191}	0.0066603	150,000	2.04E+23	150,000	0	12,063.44	3.84E-13	93,804	5.20E-13	111,463	0	214.5	0	159.1479
F_{192}	0.0051334	150,000	2.69E+21	150,000	0	12,394.79	3.11E-13	93,178	4.49E-13	114,755	0	215.5	0	157.8947
F_{193}	0	150,000	0	150,000	0	150,000	0	150,000	0	150,000	0	150,000	0	150,000
F_{194}	1.33E-05	150,000	0	120,699	0	46,941.98	9.64E-06	70,544	1.11E-07	89,143	0	259.5	0	328.3208
F ₁₉₅	0.7153455	150,000	3.508229	150,000	1.281088	150,000	1.88645	150,000	1.210444	150,000	0.101184	121,770.5	2.163753	85,948.62
F ₁₉₆	2908.1072	150,000	0	18,288	7284.559	150,000	0	15,906	0	12,312	0	29,865.5	0	24,180.45
F_{197}	43.234391	150,000	9.25E-06	150,000	0.170813	150,000	0	13,312	0	12,003	0	27,131.5	0	19,788.22
F_{198}	90.610204	150,000	0	19,732.5	0.00013	150,000	0	13,416	0	10,228	0	27,793	0	20,045.11
F_{199}	8.03E-08	150,000	0	6419	0	18,130.02	0	3740	0	2849	0	5733	0	7660.401
F_{200}	35.616087	150,000	0	18,339	55.72744	150,000	0	15,778	0.543433	15,536	0	28,237	0	26,860.9
F_{201}	6.969E+10	150,000	15,685.24	150,000	1.92E-05	150,000	139.3809	150,000	2162.643	150,000	5299.9	150,000	7502.695	150,000

Table 10 (continued)
Fun no. Alternative metaheuristic algorithms

run no.	Alternative metaneuristic algorithms	etaniem isuc ;	ugommis											
	FA		GWO		ICA		SOS		TLBO		WOA		OĐO	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₂₀₂	298.45565	150,000	15.65079	150,000	1.002643	150,000	5.382007	150,000	5.728631	150,000	14.4403	150,000	4.294693	150,000
F_{203}	11,188,416	150,000	0.880912	150,000	217.5971	150,000	1.604963	150,000	1.153092	150,000	0.311334	150,000	1.593047	150,000
F ₂₀₄	0.9873711	150,000	0.034757	150,000	0.245105	150,000	7.20E-10	150,000	1.26E-08	150,000	0.06174	142,418.5	0.049694	123,912.3
F ₂₀₅	58,432,546	150,000	0	13,107	0	125,095.6	0	8606	0	6791	0	17,249	0	13,086.47
F_{206}	3.24E+30	150,000	0	7557	0	55,765.29	0	5884	0	4506	0	4754	0	8278.195
\mathbf{F}_{207}	8.61E - 05	150,000	1.45E-07	150,000	0	1400.384	9.53E-06	150,000	7.25E-06	150,000	8.19E-13	12,0767	1.26E-09	119,036.3
F_{208}	1.451369	150,000	3.758966	150,000	0.034201	150,000	1.248085	150,000	1.381343	150,000	16.07992	150,000	0.135719	150,000
F_{209}	68.734707	150,000	0	21,382.5	6.40E - 05	15,0000	0	24,222	0	18,900	0	36,039.5	0	38,451.13
F_{210}	1.031102	150,000	0	53,689	4.078716	150,000	0	30,258	0	21,672	29.8041	150,000	0	44,120.3
F_{211}	2.42E+127	150,000	0	21,521.5	3.362426	150,000	0	24,768	0	19,165	0	35,990	0	41,540.1
F_{212}	497,836.36	150,000	0	9376.5	0	70,436.04	0	4576	0	3286	0	5619	0	5984.962
F_{213}	1.4601584	150,000	4.184353	150,000	0.041578	150,000	1.388724	150,000	1.840684	150,000	15.83864	150,000	0.14199	150,000
F_{214}	3.8393077	150,000	18.06028	150,000	14.00817	150,000	22.72475	150,000	24.66386	150,000	18.47507	150,000	9.652136	150,000
F ₂₁₅	0.0580323	150,000	0	9243	0	56,510.31	0	1592	0	5561	0	191	0	1195.489
F ₂₁₆	76.98529	150,000	0	4826	0.1	63,363.86	0	3516	0	2700	0	4115	0	4946.115
F_{217}	7204.3127	150,000	0	6355	0.514045	122,390.8	0	4042	0	3071	0.1	5855.5	0	5511.278
F_{218}	7049.1499	150,000	0.362372	32,044	0.504925	118,454.9	1.447359	14,3534	2.34835	14,6539	0.171447	11,636	1.685829	13,8130.3
F_{219}	1.9631967	150,000	15.8378	150,000	0	16,580.22	5.580368	150,000	11.00936	147,936	0	220	0	48,085.21
F_{220}	4.8369888	150,000	0.129323	150,000	2.192558	150,000	0.022185	150,000	0.028711	150,000	0.001771	49,846	2.526459	128,730.6
F_{221}	380.13745	150,000	0	151,45	1.83E-09	150,000	0	13,658	0	10,376	0	28,206	0	20,423.56
\mathbf{F}_{222}	62.421035	150,000	128.5537	150,000	58.28286	150,000	49.86395	150,000	86.09474	150,000	53.78904	145,875	108.3805	150,000
\mathbf{F}_{223}	157,878,662	150,000	101.7254	150,000	663,038.7	150,000	300.9213	150,000	132.6016	150,000	3293.196	150,000	3424.112	150,000
F ₂₂₄	55.168355	150,000	0	11,434	325.9464	150,000	0	1654	0	5494	0	192.5	0	1246.867
F ₂₂₅	337,357.68	150,000	15.48844	150,000	23.12218	150,000	50.6982	150,000	9.529613	150,000	54.11003	150,000	70.13358	150,000

Table 10 (continued)

Fun no.	Fun no. Alternative metaheuristic algorithms	etaheuristic a	algorithms											
	FA		GWO		ICA		sos		TLBO		WOA		OD)	
	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.	Std. Dev.	Fun. Evl.
F ₂₂₆	0.0242259	150,000	0	18,422	0.024887	150,000	0	22,506	0.073102	150,000	0	22,684.5	0.0538	136,917.3
F_{227}	0	150,000	0	150,000	0	150,000	0	150,000	0	150,000	0.1	148,963.5	0.314466	140,294.5
F_{228}	0	1219.512	0	50	0	150,000	0	200	0	100	0	50	0	125.3133
F ₂₂₉	0	1219.512	0	66	0	106.9556	0	200	0	100	0	66	0	125.3133
F_{230}	4.86E+15	150,000	2.64E-05	144,137	4.63E+39	150,000	7.15E-08	144,764	3.82E-08	150,000	1.76E+49	150,000	1.57E-06	139,121.6
F_{231}	4.11E-40	150,000	7.09E-41	150,000	1.28E-48	150,000	2.23E-45	150,000	8.20E-43	150,000	0.435194	121,244.5	0.327413	133,388.5
F_{232}	0.0011401	150,000	0.001172	150,000	0.001664	150,000	0.001142	150,000	0.001349	150,000	0.001268	150,000	0.001756	150,000
F_{233}	74.331983	150,000	0	67,208	68.90903	150,000	9.54E-06	150,000	0.001661	150,000	177.0925	150,000	1.41E-06	136,701.8

 Table 11
 The mean and standard deviation (Std. Dev.) of the composite mathematical functions for different metaheuristics

2	THE INCHIA			er and composite (:	ration (but, Det.) of the composite manifestations for different metallications	different incompany			
Fun no.		ABC	DE (Mirjalili et al. 2014)	FA (Mirjalili 2015) GA (Mirjalili 2015)	GA (Mirjalili 2015)	GWO (Mirjalili et al. 2014)	GWO (Mirjalili PSO (Mirjalili 2015) et al. 2014)	WOA (Mirjalili and Lewis 2016)	CGO
F_{234}	Mean	8.813585	6.75E-02	175.9715	92.13909	43.83544	137.7789	0.568846	50.00025
	Std. Dev	16.62675	1.11E-01	86.928	27.90131	69.86146	116.3128	0.505946	64.35362
F_{235}	Mean	71.4911	28.759	353.6269	96.70927	91.80086	166.6643	75.30874	49.56733
	Std. Dev	16.32421	8.6277	103.423	9.703147	95.5518	164.3894	43.07855	67.33909
F_{236}	Mean	280.0985	144.41	308.0516	369.1036	61.43776	394.507	55.65147	149.7654
	Std. Dev	29.50073	19.401	37.435	42.84275	68.68816	121.949	21.87944	43.30166
\mathbf{F}_{237}	Mean	347.8401	324.86	548.5276	450.829	123.1235	468.3534	53.83778	308.7539
	Std. Dev	11.24064	14.784	162.8993	31.54446	163.9937	67.31685	21.621	57.15233
F_{238}	Mean	41.11309	10.789	175.1975	95.92017	102.1429	256.5258	77.8064	31.58148
	Std. Dev	15.01647	2.604	83.15078	53.79146	81.25536	200.3816	52.02346	44.96027
F_{239}	Mean	548.5086	490.94	829.5929	523.7037	43.14261	790.1284	57.88445	489.6279
	Std. Dev		39.461	157.2787	22.92001	84.48573	189.4915	37.4460	31.1774

functions, the results of the CGO algorithm are superior to the results of other metaheuristics considering the minimum, mean, standard deviation and function evaluation values except for the function evaluation of the 100D functions that the results of the WOA is better than the results of the CGO.

6.3 Wilcoxon singed-rank test

The Wilcoxon (W) singed-rank test is a statistical nonparametric test for examining the differences between different samples in a one by one manner. As a main criterion, if the mean ranks for one sample has lower values than the other one, the sample with smaller mean of ranks has better statistical results and the utilized metaheuristic is superior to the other one. The results of the W test for different mathematical functions based on the obtained results of the optimization runs have been presented in Table 15. In this table, the upper and lower values are the mean of the ranks related to the CGO algorithm and the other metaheuristics, respectively. Based on the statistical results, related vales for the mean of the ranks for the CGO are lower than those of the other metaheuristics in most of the cases. The related p values of this test for different mathematical functions are also presented in Table 16.

6.4 Kruskal-Wallis test

The Kruskal-Wallis (K-W) test is a non-parametric algorithm for testing whether or not different statistical samples are originated from the same distribution. It is used for comparing two or more independent samples of equal or different sample sizes. It extends the Mann-Whitney U test, which is used for comparing only two groups. A significant K–W test indicates that at least one sample stochastically dominates one other sample. This test provides the mean of the ranks for multiple sets of statistical data which are considered for comparing analysis. As a main criterion, if the mean of the ranks for one sample has lower values than the other ones, the one with smaller mean of ranks has better statistical results. The results of the K-W test for different mathematical functions are presented in Table 17. Based on the statistical results, the superiority of the CGO algorithms is proved. In this table, the bolded values are related to the better metaheuristic while the vales related to the CGO algorithm are all italicized. It should be noted that the CGO algorithm is the best in the ranking in dealing with 2D functions for the minimum, mean and standard deviation while it is second for the function evaluation. Considering 50D functions, the CGO algorithm is on the first place in the ranking considering the minimum, mean and function evaluation while for the standard deviation, the CGO is second best algorithm. For the 100D functions, the proposed CGO algorithm is on the first place in the ranking determining the minimum and mean while for the standard deviation and the function evaluation, the CGO is second best algorithm.

6.5 Post-hoc analysis

Post-hoc is a Latin phrase, meaning "after this" or "after the event". In a scientific study, Post-hoc (P-H) analysis consists of statistical analyses that were not specified before the data was seen. A P-H analysis involves looking at the data after a study has

 Table 12
 The K-S test results including difference between data (Diff.) and p values for different algorithms

Main algorithm Function type Data type	Function type	Data type		metaheur	Alternative metaheuristic algorithms	smı								
			FA		GWO		ICA		SOS		TLBO		WOA	
			p values	Diff.	p values	Diff.	p values	Diff.	p values	Diff.	p values	Diff.	p values	Diff.
CGO	2D	Min.	4.80E-22	0.6410	6.92E-07	0.3504	4.80E-22 0.6410 6.92E-07 0.3504 1.00E+0 0.0427 1.00E+0	0.0427	1.00E+0		0.0427 9.97E-01 0.0513	0.0513	4.04E-02	0.1795
		Mean	8.43E-20	0.6068	3.30E-08	0.3846	4.43E - 01	0.11111	9.97E - 01	0.0513	7.68E-01	0.0855	6.92E - 07	0.3504
		Std.	7.49E-29	0.7350	3.36E-15	0.5299	1.85E-02	0.1966	9.97E-01	0.0513	6.58E - 01	0.0940	1.77E-12	0.4786
		Fun. Evl.	8.26E - 24	0.6667	3.20E-11	0.4530	1.14E-01	0.1538	1.14E-01	0.1538	6.58E-01	0.0940	3.30E-08	0.3846
	50D	Min.	1.09E-15	0.7586	3.37E-02	0.2586	1.92E-02	0.2759	4.54E-01	0.1552	1.46E-01	0.2069	7.65E-01	0.1207
		Mean	1.54E - 09	0.5862	4.54E-01	0.1552	3.24E-01	0.1724	9.99E-01	0.0690	7.65E-01	0.1207	9.77E-01	0.0862
		Std.	5.31E-08	0.5345	7.65E-01	0.1207	6.07E-01	0.1379	9.77E-01	0.0862	9.99E-01	0.0690	8.99E-01	0.1034
		Fun. Evl.	5.30E-15	0.7414	1.92E-02	0.2759	1.05E-02	0.2931	7.65E-01	0.1207	1.46E-01	0.2069	9.77E-01	0.0862
	100D	Min.	4.87E-13	0.6897	2.22E-01	0.1897	2.85E-03 0.3276	0.3276	6.07E - 01	0.1379	3.24E-01	0.1724	1.00E+0	0.0517
		Mean	5.20E-09	0.5690	7.65E-01	0.1207	3.37E-02	0.2586	9.99E-01	0.0690	8.99E-01	0.1034	9.77E-01	0.0862
		Std.	1.61E-07	0.5172	8.99E-01	0.1034	5.70E-02	0.2414	9.99E-01	0.0690	9.77E-01	0.0862	7.65E-01	0.1207
		Fun. Evl.	4.87E-13 0.6897	0.6897	2.22E-01	0.1897	2.22E-01 0.1897 1.35E-04 0.3966 3.24E-01	0.3966	3.24E-01	0.1724	0.1724 1.46E-01 0.2069	0.2069	7.65E-01 0.1207	0.1207

Table 13 The M–W test results (summation of the ranks) for 2D, 50D and 100D mathematical functions

Main	Function	Data type	Alternative	algorithms				
algorithm	type		FA	GWO	ICA	SOS	TLBO	WOA
CGO	2D	Min.	18,321.00	15,962.00	14,017.00	14,053.50	14,074.00	14,960.00
			9174.00	11,533.00	13,478.00	13,441.50	13,421.00	12,535.00
		Mean	18,147.00	16,284.00	14,607.00	13,966.50	14,307.50	16,027.50
			9348.00	11,211.00	12,888.00	13,528.50	13,187.50	11,467.50
		Std.	18,558.00	16,998.00	14,943.00	14,017.50	14,318.00	16,658.00
			8937.00	10,497.00	12,552.00	13,477.50	13,177.00	10,837.00
		Fun. Evl.	18,534.00	16,040.00	13,391.00	14,438.00	13,922.00	16,029.00
			8961.00	11,455.00	14,104.00	13,057.00	13,573.00	11,466.00
CGO	50D	Min.	4734.00	3840.00	3852.00	3593.50	3714.00	3540.50
			2052.00	2946.00	2934.00	3192.50	3072.00	3245.50
		Mean	4568.00	3655.00	3697.00	3392.00	3555.00	3459.00
			2218.00	3131.00	3089.00	3394.00	3231.00	3327.00
		Std.	4423.00	3563.00	3619.00	3313.00	3446.00	3464.00
			2363.00	3223.00	3167.00	3473.00	3340.00	3322.00
		Fun. Evl.	4657.00	3608.00	3940.00	3468.00	3547.00	3420.00
			2129.00	3178.00	2846.00	3318.00	3239.00	3366.00
CGO	100D	Min.	4708.00	3717.00	3963.50	3610.00	3678.00	3431.50
			2078.00	3069.00	2822.50	3176.00	3108.00	3354.50
		Mean	4547.50	3549.50	3845.50	3472.50	3554.50	3447.00
			2238.50	3236.50	2940.50	3313.50	3231.50	3339.00
		Std.	4404.00	3486.50	3804.50	3393.00	3482.50	3516.00
			2382.00	3299.50	2981.50	3393.00	3303.50	3270.00
		Fun. Evl.	4523.00	3577.00	4086.00	3509.00	3523.00	3361.00
			2263.00	3209.00	2700.00	3277.00	3263.00	3425.00

Table 14 The M–W test results (p values) for 2D, 50D and 100D mathematical functions

Main	Function	Data	Alternative	Algorithms				
algo- rithm	type	type	FA	GWO	ICA	SOS	TLBO	WOA
CGO	2D	Min.	3.66E-21	5.72E-07	4.58E-01	3.99E-01	3.68E-01	2.72E-03
		Mean	2.70E-18	2.09E-07	5.90E-02	6.22E-01	2.14E-01	2.74E-06
		Std.	5.44E-22	1.24E-11	5.94E-03	5.05E-01	1.70E-01	9.46E-10
		Fun. Evl.	4.99E-23	5.93E-06	4.90E-01	1.81E-01	7.36E-01	8.62E-06
	50D	Min.	1.39E-14	3.38E-03	2.61E-03	1.56E-01	2.93E-02	2.86E-01
		Mean	5.34E-11	1.24E-01	7.62E-02	9.98E-01	3.39E-01	6.92E-01
		Std.	8.20E-09	3.15E-01	1.85E-01	6.27E-01	7.53E-01	6.70E-01
		Fun. Evl.	8.19E-15	2.27E-01	2.09E-03	6.78E-01	3.90E-01	8.83E-01
	100D	Min.	6.59E-14	3.51E-02	4.60E-04	1.52E-01	6.39E-02	7.90E-01
		Mean	1.04E-10	3.53E-01	9.26E-03	6.37E-01	3.42E-01	7.48E-01
		Std.	1.28E-08	5.73E-01	1.67E-02	1E+00	5.93E-01	4.60E-01
		Fun. Evl.	8.69E-13	2.99E-01	6.11E-05	5.15E-01	4.64E-01	8.60E-01

been concluded, and trying to find patterns that were not primary objectives of the study. In these kinds of analyses, a new analyze for new objectives, which were not planned before the experiment is planned. In this section, the P-H analysis is conducted in order to derive the overall rankings of the metaheuristic algorithms for all of the 2D, 50D and the 100D mathematical functions based on the achieved results of the K–W test. The overall rankings of the metaheuristics obtained by the P-H analysis are presented in Table 18. It should be noted that the CGO algorithms provides a success estimation of 100% in outranking the other metaheuristics which demonstrates the superiority of the proposed novel optimization algorithm. It should be noted that the CGO algorithm is the best one in the ranking in dealing with 2D, 50D and 100D functions for the minimum, mean, standard deviation and function evaluation.

Table 15 The W test results (mean of the ranks)

Main algorithm	Function type	Data type	Alterna	tive algor	ithms			
			FA	GWO	ICA	SOS	TLBO	WOA
CGO	2D	Min.	4656	1953	104	45	55	565
			0	0	86	0	0	30
		Mean	5394	3347	1370	402	417	2724
			492	139	341	264	286	357
		Std.	5192	3219	1172	327	366	2703
			694	267	368	339	375	457
		Fun. Evl.	4631	4162	3028	3790	2431	4532
			25	494	2123	866	2225	124
CGO	50D	Min.	1510	353	393	118	238	91
			30	25	103	53	62	45
		Mean	1622	534	587	251	382	269
			31	96	154	184	114	196
		Std.	1404	381	453	176	207	278
			249	249	288	259	289	187
		Fun. Evl.	1081	548	1091	414	676	563
			0	533	184	667	452	518
CGO	100D	Min.	1462	281	503	184	237	91
			23	19	127	69	63	80
		Mean	1459	401	690	266	358	238
			26	95	171	169	138	197
		Std.	1315	305	559	197	242	215
			170	191	302	238	254	220
		Fun. Evl.	903	486	875	413	503	480
			0	417	115	490	400	466

Table 16 The W test results (*p* values)

Main	Function	Data type	Alternative	algorithms				
algorithm	Type		FA	GWO	ICA	SOS	TLBO	WOA
CGO	2D	Min.	1.78E-17	7.58E-12	7.17E-01	3.91E-03	1.95E-03	4.80E-06
		Mean	5.79E-14	3.28E-13	6.79E-05	2.78E-01	3.23E-01	3.75E-09
		Std.	5.44E-12	2.07E-11	7.57E-04	9.25E-01	9.48E-01	4.06E-08
		Fun. Evl.	3.90E-17	2.06E-11	1.25E-01	9.16E-08	7.07E-01	8.01E-16
	50D	Min.	5.64E-10	8.14E-05	4.49E-03	1.57E-01	1.19E-02	2.34E-01
		Mean	2.61E-10	3.34E-04	1.69E-03	4.69E-01	8.64E-03	4.53E-01
		Std.	4.47E-06	2.80E-01	2.32E-01	3.70E-01	4.22E-01	3.49E-01
		Fun. Evl.	3.52E-09	9.35E-01	1.20E-05	1.67E-01	2.36E-01	8.06E-01
	100D	Min.	5.83E-10	1.82E-04	2.07E-03	6.19E-02	1.29E-02	8.11E-01
		Mean	6.86E-10	2.72E-03	7.72E-04	2.94E-01	3.11E-02	6.58E-01
		Std.	8.25E-07	2.64E-01	9.59E-02	6.58E-01	9.06E-01	9.57E-01
		Fun. Evl.	1.65E-08	6.66E-01	9.22E-06	6.30E-01	5.20E-01	9.33E-01

7 Comparing to fractal- and chaos-based algorithms

In this section, the results of the CGO algorithm in dealing with the 2D, 50D and 100D mathematical functions are compared to Stochastic Fractal Search (SFS) developed based on the fractals concept (Salimi (2015)) as well as three other metaheuristics containing Chaos-embedded Particle Swarm Optimization (C-PSO) proposed by Alatas et al. (2009), Firefly Algorithm (FA) with chaos (C-FA) proposed by Gandomi et al. (2013a, b), and Imperialistic Competitive Algorithm (ICA) combined with chaos (C-ICA) proposed by Talatahari et al. (2012), in which the chaos theory is included in the general formulation of these algorithms. In addition, two other metaheuristics as Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen et al. 2003) and Yellow Saddle Goatfish Algorithm (YSGA) (Zaldivar et al. 2018) are also utilized for comparative purposes. In Table 19, the minimum values of the selected mathematical functions obtained by the mentioned metaheuristics and the proposed CGO algorithm are presented. It is clear that the results of the CGO algorithm is better than the results of other metaheuristic.

8 Comparing to CEC 2017 competition results

In order to evaluate the overall performance of the proposed CGO algorithm with the state-of-the-art algorithms in dealing with the state-of-the-art mathematical test functions, one of the recent competitions on single objective real-parameter numerical

Table 17 The K-W test results (mean of the ranks)

Rankings	Min.		Mean		Std.		Fun. Evl.	
	Algorithms	Mean of ranks						
	2D							
1	090	333.9103	CCO	317.2265	090	298.8248	ICA	317.0427
2	ICA	349.9872	SOS	327.9829	SOS	311.7991	090	325.6496
3	SOS	353.2265	TLBO	349.7564	TLBO	331.6453	TLBO	336.9444
4	TLBO	354.8932	ICA	370.1068	ICA	369.359	SOS	359.2735
5	WOA	404.9487	WOA	447.0256	WOA	465.2479	WOA	447.2051
9	GWO	457.4274	GWO	465.1538	GWO	489.641	GWO	471.765
7	FA	615.6068	FA	592.7479	FA	603.4829	FA	612.1197
Chi-sq.	169.1482		133.7584		180.959		153.2064	
Prob > Chi-sq.	6.82E - 34		2.08E - 26		2.12E-36		1.62E-30	
	50D							
1	090	153.2241	090	169.569	sos	168.931	090	164.1552
2	WOA	169.3103	SOS	169.6724	090	178.1552	WOA	171.2241
3	SOS	174.7759	WOA	179.7414	TLBO	183.8621	SOS	176.4052
4	TLBO	189.8879	TLBO	187.5086	WOA	188.0862	TLBO	185.6293
5	GWO	206.181	GWO	200.5086	GWO	197.6379	GWO	195.3966
9	ICA	208.75	ICA	205.5086	ICA	205.6034	ICA	224.1293
7	FA	322.3707	FA	311.9914	FA	302.2241	FA	307.5603
Chi-sq.	96.05921		67.92103		56.77908		69.04072	
Prob > Chi-sq.	1.66E - 18		1.09E-12		2.03E-10		6.43E - 13	
	100D							
1	090	156.0862	090	168.0086	SOS	172.6034	WOA	165.0862
2	WOA	159.6293	SOS	175.0345	090	173.6983	090	165.2069
3	SOS	178.6724	WOA	175.4569	TLBO	182.7845	SOS	181.431
4	TLBO	186.8793	TLBO	185.5259	GWO	184.5603	TLBO	183.8276

 Table 17 (continued)

Rankings	Min.		Mean		Std.		Fun. Evl.	
	Algorithms	Mean of ranks	Algorithms	Mean of ranks	Algorithms	Algorithms Mean of ranks	Algorithms	Mean of ranks
5	GWO	196.5172	GWO	188.0259	WOA	189.2586	GWO	190.9828
9	ICA	223.5431	ICA	221.2241	ICA	222.9914	ICA	242.2241
7	FA	323.1724	FA	311.2241	FA	298.6034	FA	295.7414
Chi-sq.	97.43246		69.34553		56.74194		67.15812	
Prob > Chi-sq.	8.61E - 19		5.57E-13		2.06E-10		1.56E-12	

Table 18 The P-H analysis results for all of the mathematical functions

Mean of Ranks Mean of Ranks Std. Fun. EvI. 643.2575 CGO 662.2232 CGO 661.4678 CGO 714.0472 SOS 682.2768 SOS 662.0429 TLBO 727.9077 TLBO 732.502 TLBO 708.2253 SOS 740.5987 WOA 791.1094 ICA 805.0472 WOA 795.618 ICA 805.2296 WOA 828.1803 ICA 851.1288 GWO 840.7554 GWO 857.3197 GWO 1239.442 FA 1197.903 FA 1189.717 FA 1.98E-45 6.47E-48 6.47E-48 5.45E-49	Rankings	2D and 50D and 100D	nd 100D						
Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms A		Min.		Mean		Std.		Fun. Evl.	
CGO 643.2575 CGO 662.233 CGO 661.4678 CGO SOS 714.0472 SOS 682.2768 SOS 662.0429 TLBO WOA 727.9077 TLBO 732.5022 TLBO 708.2253 SOS TLBO 740.5987 WOA 791.1094 ICA 805.0472 WOA ICA 795.618 ICA 805.2296 WOA 828.1803 ICA GWO 851.1288 GWO 840.7554 GWO 857.3197 GWO FA 1239.442 FA 1197.903 FA 1189.717 FA 209.102 223.3791 1.98E-45 647E-48 5.45E-49 5.45E-49		Algorithms	Mean of Ranks	Algorithms	Mean of Ranks	Algorithms	Mean of Ranks	Algorithms	Mean of Ranks
SOS 714.0472 SOS 682.2768 SOS 662.0429 TLBO WOA 727.9077 TLBO 732.5022 TLBO 708.2253 SOS TLBO 740.5987 WOA 791.1094 ICA 805.0472 WOA ICA 795.618 ICA 805.2296 WOA 828.1803 ICA GWO 851.1288 GWO 840.7554 GWO 857.3197 GWO FA 1239.442 FA 1197.903 FA 1189.717 FA 309.102 223.3791 1.98E-45 6.47E-48 5.45E-49	1	090	643.2575	090	662.2232	090	661.4678	090	651.7082
WOA 727.9077 TLBO 732.5022 TLBO 708.2253 SOS TLBO 740.5987 WOA 791.1094 ICA 805.0472 WOA ICA 795.618 ICA 805.2296 WOA 828.1803 ICA GWO 851.1288 GWO 840.7554 GWO 857.3197 GWO FA 1239.442 FA 1197.903 FA 1189.717 FA 309.102 223.3791 1.98E-45 6.47E-48 5.45E-49	2	SOS	714.0472	SOS	682.2768	SOS	662.0429	TLBO	703.3369
TLBO 740.5987 WOA 791.1094 ICA 805.0472 WOA ICA 795.618 ICA 805.2296 WOA 828.1803 ICA GWO 851.1288 GWO 840.7554 GWO 857.3197 GWO FA 1239.442 FA 1197.903 FA 1189.717 FA 309.102 223.3791 235.0263 240.0594 Chi-sq. 9.16E-64 1.98E-45 6.47E-48 5.45E-49	3	WOA	727.9077	TLBO	732.5022	TLBO	708.2253	SOS	711.97
ICA 795.618 ICA 805.2296 WOA 828.1803 ICA GWO 851.1288 GWO 840.7554 GWO 857.3197 GWO FA 1239.442 FA 1197.903 FA 1189.717 FA 309.102 223.3791 235.0263 240.0594 Chi-sq. 9.16E-64 1.98E-45 6.47E-48 5.45E-49	4	TLBO	740.5987	WOA	791.1094	ICA	805.0472	WOA	780.8348
GWO 851.1288 GWO 840.7554 GWO 857.3197 GWO 87.3197 GWO 87.3197 GWO 87.3197 GWO 87.3197 GWO 87.3197 FA 309.102 223.3791 235.0263 240.0594 240.0594 Chi-sq. 9.16E-64 1.98E-45 6.47E-48 5.45E-49	5	ICA	795.618	ICA	805.2296	WOA	828.1803	ICA	783
FA 1239.442 FA 1197.903 FA 1189.717 FA 309.102 223.3791 235.0263 240.0594 Chi-sq. 9.16E-64 1.98E-45 6.47E-48 5.45E-49	9	GWO	851.1288	GWO	840.7554	GWO	857.3197	GWO	869.9871
309.102 223.3791 235.0263 Chi-sq. 9.16E-64 1.98E-45 6.47E-48	7	FA	1239.442	FA	1197.903	FA	1189.717	FA	1211.163
9.16E-64 1.98E-45 6.47E-48 :	Chi-sq.	309.102		223.3791		235.0263		240.0594	
	Prob > Chi-sq.	9.16E-64		1.98E-45		6.47E-48		5.45E-49	

Table 19 Minimum values of the mathematical functions obtained by the fractal- and chaos-based algorithms

No.	SFS	C-PSO	C-FA	C-ICA	CMA-ES	YSGA	CGO
F_1	-200	-200	-200	-200	-200	-200	-200
F_2	-195.629	- 195.629	- 195.629	- 195.629	- 195.629	- 195.629	- 195.629
F_3	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181	-2.02181
F_4	1	1	1	1	1	1	1
F_5	0	0	0	0	0	0	0
F_6	0	1.70E-08	0	0	0	0	0
F_7	0	2.21E-10	0	0	0	0	0
F_8	-106.765	-106.765	-106.765	-106.765	-106.765	-106.765	-106.765
F_9	0	0	0	9.83E-12	0	0	0
F_{10}	0	0	0	6.75E-11	0	0	0
F_{11}	0	0	0	2.09E-11	0	0	0
F ₁₂	0	0	0	0	0	0	0
F ₁₃	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887	0.397887
F ₁₄	5.559037	6.810589	5.681669	6.810589	5.559037	5.559037	5.559037
F ₁₅	0	0	0	0	0	0	0
F ₁₆	0	0	0	4.63E-11	0	2500	0
F ₁₇	1.32E-05	229.1788	0.000489	0.023954	0.000158	229.1788	0.000526
F ₁₈	0	0	0	0	0	0	0
F ₁₉	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316
F ₂₀	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568
F ₂₁	-2000	-1000	- 1999.99	-1000	-1000	-1000	-2000
F ₂₂	-2000	- 999.999	- 1999.97	-1000	-2000	- 1993.22	-2000
F ₂₃	-42.9444	-42.9444	-42.9444	-42.9444	-42.9444	-42.9444	-42.9444
F ₂₄	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261	-2.06261
F ₂₅	0	5.00E-12	0	0	0	0	0
F ₂₆	0	4.64E-06	2	2	2	0	0
F ₂₇	-24771.1	-24771.1	-24771.1	-24771.1	-24771.1	-24771.1	-24771.1
F ₂₈	-1	-1	-1	-1	-1	-1	-1
F ₂₉	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128	1.7128
F ₃₀	0	0	0	0	0	0	0
F ₃₁	0	0	0	0	0	0	0
F ₃₂	0	0	0	0.07796	0	0	0
F ₃₃	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447	0.06447
F ₃₄	3	3	3	3	3	3	3
F ₃₅	-165.953	- 165.953	- 165.953	-165.953	- 165.953	- 165.953	-165.953
F ₃₆	0	2.38E-08	0	0	0	0	0
F ₃₇	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458
F ₃₈	124.3622	124.3622	124.3622	124.3622	124.3622	124.3622	124.3622
F ₃₉	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367	-0.67367
F ₄₀	0	4.58E-08	0	0	0	0	0
F ₄₁	-176.542	-176.542	-176.542	-176.542	-176.542	-176.542	-176.542
F ₄₂	-176.138	-176.138	-176.138	-176.138	-176.138	-176.138	-176.138
F ₄₃	0	0	0	0	0	0	0

Table 19 (continued)

No.	SFS	C-PSO	C-FA	C-ICA	CMA-ES	YSGA	CGO
F ₄₅	-19.6683	- 19.6683	- 19.6683	- 19.6683	- 19.6683	- 19.6683	- 19.6683
F_{46}	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013
F_{47}	-0.18465	-0.18465	-0.18465	-0.18426	-0.18465	-0.18465	-0.18465
F_{48}	-0.19941	-0.19923	-0.19938	-0.16649	-0.19941	-0.19941	-0.19941
F_{49}	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983	-1.01983
F_{50}	-2.28395	-2.28395	-2.28395	-2.28395	-2.28395	-2.28395	-2.28395
F_{51}	0	0	0	0	0	0	0
F_{52}	0	0	0	0	0	0	0
F_{53}	0	2.17E-09	0	0	0	0	0
F ₅₄	-0.96353	-0.96353	-0.96353	-0.96353	-0.96354	-0.96353	-0.96353
F ₅₅	0.9	0.9	0.9	0.9	0.9	0.9	0.9
F ₅₆	0	4.50E-10	0	1.70E-10	0	0	0
F ₅₇	0.9	0.9	0.9	0.9	0.9	0.9	0.9
F ₅₈	0	0	2.15E-12	1.48E-09	0	0	0
F_{59}	0	0	0	1.03E-12	0	0	0
F_{60}	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72	-3873.72
F_{61}	-2.2	-2.19915	-2.2	-2.2	-2.2	-2.2	-2.2
F_{62}	-2	-2	-2	-2	-2	-2	-2
F_{63}	34.3712	34.3712	34.3712	74	36.26407	34.3712	34.3712
F_{64}	0	0	1.82E-12	3.75E-10	0	0	0
F ₆₅	0	0	0	8.97E-11	0	0	0
F ₆₆	0	0	6.35E-10	1.20E-08	0	0	0
F ₆₇	0	0	0	0	0	0	0
F_{68}	0	0	0	0	0	0	0
F_{69}	0.001567	0.001567	0.001567	0.001567	0.001567	0.001567	0.001567
F ₇₀	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579
F ₇₁	0	8.01E-05	3.09E-07	2.35E-06	0	2.00E-07	0
F ₇₂	-3456	-3456	-3456	-3456	-3456	-3456	-3456
F_{73}	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203	-26.9203
F ₇₄	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085
F ₇₅	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568	-24.1568
F ₇₆	-10.8723	-10.8723	-10.8723	-10.8723	-10.8723	-10.8723	-10.8723
F ₇₇	0	0	0	0	0	0	0
F_{78}	-3.30687	-3.30687	-3.30687	-3.30687	-3.30687	-3.30687	-3.30687
F ₇₉	0	0	8.06E-08	2.000001	0	0	0
F_{80}	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681	-4.81681
F_{81}	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5
F_{82}	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5
F_{83}	-7.307	-7.30426	-7.307	-6.37186	-7.307	-7.30426	-7.307
F_{84}	-400	-400	-400	-400	-400	-400	-400
F ₈₅	0	1.99E-08	3.17E-12	2.30E-10	0	0	0
F ₈₆	0	2.23E-09	0	1.27E-11	0	0	0
F ₈₇	21.35	21.35	21.35	21.35	21.35	21.35	21.35
F_{88}	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379	-0.00379

Table 19 (continued)

No.	SFS	C-PSO	C-FA	C-ICA	CMA-ES	YSGA	CGO
F ₈₉	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523	-0.3523
F_{90}	0	0	0	3.66E-11	0	0	0
F_{91}	0	0	0	0	0	0	0
F_{92}	0	0	0	0	0	0	0
F_{93}	-3.86278	-3.86278	-3.86278	-3.86278	-3.86278	-3.86278	-3.86278
F_{94}	0	6.75E-08	0	0	0	0	0
F_{95}	0.024536	0.024536	0.024536	0.024536	4.36E-05	0.024536	0.024536
F_{96}	0	1.70E-06	0	0	0	0	0
F_{97}	0	0	0	0	0	0	0
F_{98}	0	0	0	0	0	0	0
F_{99}	0	4.72E-08	5.17E-12	2.11E-11	0	1.24E-09	0
F_{100}	0	0	0	0	0	0	0
F ₁₀₁	0	1659.363	43.36581	6739.838	0	0	0
F ₁₀₂	2.70E-12	2.70E-12	2.70E-12	2.31E-11	2.70E-12	2.70E-12	2.70E-12
F ₁₀₃	0.000308	0.000308	0.000308	0.000436	0.000308	0.000308	0.000308
F ₁₀₄	0	0	0	0	0	0	0
F ₁₀₅	-10.1532	-5.10071	-10.1532	-10.1532	-5.0552	-10.1532	-10.1532
F ₁₀₆	-10.4029	-10.4027	-10.4029	-10.4029	-5.08767	-10.4029	-10.4029
F ₁₀₇	-10.5364	-5.12848	-10.5364	-10.5364	-5.12848	-10.5364	-10.5364
F ₁₀₈	0	0.000119	0.000323	0.015173	0	3.70E-07	0
F ₁₀₉	0.333839	193.818	1048.496	3404.998	0	115.2022	0
F ₁₁₀	-529.871	-529.834	-529.241	-517.305	-529.871	-529.871	-529.871
F ₁₁₁	-0.965	-0.93981	-0.965	-0.965	-0.908	-0.965	-0.965
F ₁₁₂	2.71E-08	4.01E-05	2.52E-05	0.005186	0	5.79E-06	0
F ₁₁₃	-3.32236	-3.32236	-3.32236	-3.32236	-3.32236	-3.32236	-3.32236
F ₁₁₄	-50	-50	-50	-50	-50	-50	-50
F ₁₁₅	0.95979	0.965652	0.95979	0.973866	0.95979	0.95979	0.95979
F ₁₁₆	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778	-45.778
F ₁₁₇	-210	-210	-210	-210	-210	-210	-210
F ₁₁₈	0.000461	19.98176	6.31E-05	9.35E-05	1.11E-08	0	0
F ₁₁₉	0.159407	0	0.002818	0.019217	5.86E-08	0	0
F ₁₂₀	3.12E-08	0	1.34E-10	2.90E-10	0	0	0
F ₁₂₁	9.19E-12	0	0	0	0	0	0
F ₁₂₂	0	0	0	5.66E-11	0	0	0
F ₁₂₃	-0.98368	-0.94192	-1	-0.96155	-0.60948	-0.96507	-0.890149
F ₁₂₄	-0.99456	-0.94984	-1	-0.98	-1	-0.98302	-0.901522
F ₁₂₅	0.666774	0.666667	0.666977	0.886176	0.666667	0.666667	0.6666667
F ₁₂₆	-1	-0.99991	-1	0	0	-0.99997	-1
F_{127}	-1	-1	-1	- 1	-1	-1	- 1
F ₁₂₈	1.24E-07	0	6.05E-08	1.91E-07	0	0	0
F ₁₂₉	3.83E-11	0	0	0	0	0	0
F ₁₃₀	7721.368	0	8.34E+14	6.36E+15	1.37E+11	0	0
F_{131}	-33.7053	-21.3991	-23.976	- 16.5792	-7.74406	-49	- 49
	5.95E-07	0.093212	1.05E-09	1.64E-05	0	0.000795	0
F_{132}	J.93E-07	0.073414	1.05E-09	1.0+E-03	<u> </u>	0.000793	U

Table 19 (continued)

F_{133}	2.308767	2	2.139347	3.418983	2	2	2
F_{134}	2.35998	2	2.057896	2.950725	2	2	2
F_{135}	9.25E+128	9.25E+128	9.25E+128	9.25E+128	1.29E+118	9.25E+128	9.25E+128
F_{136}	3.64E-07	0	0	0	1.68E-11	0	0
F_{137}	14.49504	4.837566	17.39229	20.40403	21.45182	4.827224	0
F_{138}	1.165205	0	226.2443	782.9157	1.03E-11	0	0
F_{139}	0.013356	0	0.375701	1.039234	0.012943	0	0
F_{140}	5.16E-06	0	0.000639	0.179056	1.00E-09	0	0
F_{141}	0	0	1.62E-09	5.28E-08	3.71E-12	0	0
F_{142}	19.52312	0	28.85381	39.79834	2.984878	0	0
F_{143}	117.2885	0.55414	0.012039	0.041672	2.80E-10	0.513762	0
F_{144}	9.34938	5.185671	1.208168	10.68099	2.31E-06	3.749134	9.28E-08
F ₁₄₅	27.40189	45.42774	45.14793	47.70977	32.41107	44.80675	29.900335
F_{146}	0.699873	0.099873	0.299873	0.499873	0.199873	0.099873	0
F ₁₄₇	3.04E-08	0	0	0	0	0	0
F_{148}	0	0	0	0	0	0	0
F ₁₄₉	0	0	0	0	4.15E-10	0	0
F ₁₅₀	0.01691	7.17E-06	4.30E-09	0.000503	5.97E-10	3.86E-06	9.35E-12
F ₁₅₁	0.003798	0	0.012102	0.137038	6.48E-07	0	0
F ₁₅₂	2.096802	4.814532	0.021372	0.063408	9.87E-06	0.946046	0
F ₁₅₃	0.113246	0	0.027789	0.169955	3.04E-06	0	0
F ₁₅₄	0	0	0	0	0	0	0
F ₁₅₅	0.037215	6.24E-05	2.90E-08	7.35E-05	1.65E-09	2.43E-06	2.22E-11
F ₁₅₆	-402.159	-208.463	-280.802	-236.186	-418.983	-259.116	-289.1935
F ₁₅₇	0.023207	0	1.10E-10	3.86E-10	0	0	0
F ₁₅₈	0	0	0	0	0	0	0
F ₁₅₉	0	0	0	0	0	0	0
F ₁₆₀	0	0	0	0	0	0	0
F ₁₆₁	-261	-275	-267	-262	-275	-275	-275
F ₁₆₂	9.971167	18.32459	2.230903	4.057409	0.241673	3.468084	0
F ₁₆₃	7.38E-07	0	0.000288	0.137184	0	0	0
F ₁₆₄	-1958.3	-1707.2	-1831.08	-1760.39	- 1958.3	- 1944.1	- 1958.306
F ₁₆₅	-11856.9	- 15337.3	- 19040.4	-3161.65	-22050	-18027.5	-21988.17
F ₁₆₆	8.62313	0	23.64303	59.97822	5.19E-06	0	0
F ₁₆₇	22.30567	52.7867	11.2818	17.71482	1	29.55507	20.281137
F ₁₆₈	0.058698	0.330326	0.192104	0.335612	0.725947	0	0
F ₁₆₉	0	0	0	3.96E-302	0	0	-1
F ₁₇₀	0	0	0	0	0	0	0
F ₁₇₁	0	0	0	0	0	0	0
F ₁₇₂	9.00E-07	0	7.55E-10	0.036634	9.90E-10	0	0
F ₁₇₃	3.93E-22	7.11E-24	1.23E-30	1.99E-30	3.02E-36	6.70E-24	- 1
F ₁₇₄	0.544635	0.000578	9.31E-05	0.766646	1.96E-05	6.49E-06	3.94E-05
F ₁₇₅	1.3852	4.000674	10.33676	56.3906	0	0.179843	0
- 1/5	0.08615	0	0.004096	0.007012	8.53E-05	0.177043	0

Table 19 (continued)

No.	SFS	C-PSO	C-FA	C-ICA	CMA-ES	YSGA	CGO
F ₁₇₇	4.379913	0	0.032822	0.200821	0.000429	0	0
F_{178}	0.007307	0	7.17E-05	0.001279	1.01E-09	0	0
F ₁₇₉	0.015678	0	1.61E-08	1.59E-07	0	0	0
F_{180}	1.32E-09	0	1.66E-07	4.50E-07	0	0	0
F_{181}	-0.93484	-0.85014	-0.95442	-0.90918	-0.5065	-0.85639	-0.76477
F_{182}	-0.95923	-0.86829	-0.94893	-0.89262	-1	-0.89451	-0.79327
F_{183}	9.880318	0.666667	1.260284	1.575497	0.666671	0.666667	0.666667
F ₁₈₄	0	-0.9457	0	0	0	-0.99262	0
F_{185}	-0.99999	- 1	-0.99998	-0.99954	- 1	-1	-1
F ₁₈₆	0.001949	0	0.000317	0.000443	3.12E-07	0	0
F ₁₈₇	0.004133	0	7.83E-06	4.71E-05	0	0	0
F_{188}	1.58E+19	0	2.22E+30	2.03E+31	9.08E+29	0	0
F ₁₈₉	-42.7897	-35.5648	-40.0709	-33.6686	-8.85399	- 99	-99
F ₁₉₀	0.030605	109.573	0.000123	0.000182	6.66E-09	0.020334	1.074365
F_{191}	217.2778	2	14.49823	113.1912	2	2	2
F ₁₉₂	183.2298	2	19.39233	245.8696	2	2	2
F ₁₉₃	0	0	0	0	0	0	0
F ₁₉₄	2.31E-05	0	0	0	1.71E-07	0	0
F ₁₉₅	36.58503	9.919996	37.57346	42.38333	45.47596	9.840136	0
F ₁₉₆	2307.331	0	2050.333	8585.416	35.22131	0	0
F ₁₉₇	0.697279	0	2.473221	7.759918	0.017962	0	0
F_{198}	0.073885	0	0.0317	0.48086	6.61E-07	0	0
F ₁₉₉	0	0	2.93E-09	1.92E-08	9.25E-11	0	0
F ₂₀₀	133.2975	0	80.68107	183.111	19.0865	0	0
F ₂₀₁	26335	735.0315	3.479846	24.13042	0.337952	10.89645	0.008689
F ₂₀₂	58.43503	18.73577	15.72721	23.92143	0.028356	13.92349	0.190459
F_{203}	295.4997	95.00197	95.75061	95.75061	92.2158	94.88555	82.73053
F ₂₀₄	2.599883	0.099873	0.599873	0.799873	0.299877	0.099873	0
F ₂₀₅	2.193827	0	1.81E-08	2.09E-07	0	0	0
F_{206}	3.85E-06	0	0	0	0	0	0
F ₂₀₇	0	7.76E-11	0	0	1.08E-09	0	0
F_{208}	17.92924	0.001787	0.027415	0.17144	2.21E-07	0.000883	0.007558
F_{209}	1.09529	0	0.558277	1.374292	0.007242	0	0
F ₂₁₀	11.9985	48.88828	0.147203	0.246815	0.02252	37.61164	0
F ₂₁₁	46.12763	0	0.825046	81.46816	0.031502	0	0
F ₂₁₂	0.000817	0	0	0	0	0	0
F ₂₁₃	23.95181	0.001401	0.03632	0.281402	2.35E-07	0.001056	0.006548
F ₂₁₄	-329.162	-182.698	-246.843	-225.326	-418.983	-217.456	-220.435
F ₂₁₅	5.84239	0	5.08E-05	0.000551	1.11E-09	0	0
F ₂₁₆	0	0	0	0	0	0	0
F ₂₁₇	0	0	0	0	0	0	0
F ₂₁₈	0	0	0	0	0	0	0
F ₂₁₉	-495	-575	-538	-527	-575	-575	-575
F ₂₂₀	27.35396	13.20605	9.544515	17.33387	4.108229	0	0

No.	SFS	C-PSO	C-FA	C-ICA	CMA-ES	YSGA	CGO
F ₂₂₁	0.042785	0	0.515799	1.148726	2.08E-06	0	0
F_{222}	-3877.11	-3378.76	-3619.74	-3393.55	-3874.21	-3548.52	-3765.07
F_{223}	404,319.5	-33,857.6	-33,908.6	129,466.8	-162,687	-57,736.9	-23,507
F_{224}	554.9544	0	479.2063	625.8056	4.847024	0	0
F_{225}	283.0328	141.2464	81.48305	143.8316	1.318782	104.7021	55.26998
F_{226}	0.229959	0	0.179456	0.268773	0.834146	0	0
F_{227}	0	0	0	0	0	0	-1
F_{228}	0	0	0	0	0	0	0
F_{229}	0	0	0	0	0	0	0
F_{230}	0.000511	0	2.47E-05	0.061411	5.52E-08	0	0
F_{231}	1.39E-42	1.15E-42	1.14E-42	1.14E-42	3.68E-48	8.23E-44	-1
F_{232}	0.241987	0.000867	0.013485	0.189038	2.39E-07	1.66E-05	3.41E-05
F ₂₃₃	46.22346	466.6365	240.8251	316.8896	1663.062	225.3411	0

optimization named "CEC 2017" is considered in this section. In this regard, a list of 30 mathematical functions are considered and presented in Table 20 while the mathematical details of these functions have been presented by the CEC 2017 competition committee (Awad et al. 2016). These mathematical functions are consisting of 10 shifted and rotated functions, 10 hybrid functions and 10 composite functions. These test functions are considered in four dimensions of 10, 30, 50 and 100 and the optimization process is conducted for four different scenarios.

The statistical results of the CGO algorithm in dealing with these test functions with 10, 30, 50 and 100 dimensions are presented in Tables 21, 22, 23 and 24, respectively; the results of three other successful algorithms (Kumar et al. 2017; Awad et al. 2017; Sallam et al. 2017) are also presented. It should be noted that the error values are only considered in this competition and the statistical results are based on the best error values of 51 independent runs. The results show that the proposed CGO algorithm is capable of providing very acceptable results in dealing with these test functions with different dimensions.

In order to evaluate the computational time and complexity of the proposed CGO algorithm in dealing with the provided mathematical test functions by the CEC 2017 competition, the complexity assessment is also conducted for the CGO method based on the provided complexity scenario by Awad et al. (2016). In this scenario, four different computational times $(T_0, T_1, T_2 \text{ and } \hat{T}_2)$ are considered based on the four specific mathematical procedures. The T_0 refers to the running time of the mathematical procedure presented in Fig. 7.

The T_1 refers to the computational time for evaluation of the G_{18} test function considering 200,000 function evaluations for each of the 10, 30, 50 and 100 dimensions. The T_2 refers to the computational time of the considered metaheuristic algorithm (CGO in this paper) for evaluation of the G_{18} test function considering 200,000

Table 20 Summary of the CEC 2017 Test Functions (Awad et al. 2016)

Function type	Fun. no.	Function detail	Fun. Min.
Unimodal Functions	G_1	Shifted and Rotated Bent Cigar Function	100
	G_2	Shifted and Rotated Sum of Different Power Function	200
	G_3	Shifted and Rotated Zakharov Function	300
Simple Multimodal Functions	G_4	Shifted and Rotated Rosenbrock's Function	400
	G_5	Shifted and Rotated Rastrigin's Function	500
	G_6	Shifted and Rotated Expanded Scaffer's F6 Function	600
	G_7	Shifted and Rotated Lunacek Bi_Rastrigin Function	700
	G_8	Shifted and Rotated Non-Continuous Rastrigin's Function	800
	G_9	Shifted and Rotated Levy Function	900
	G_{10}	Shifted and Rotated Schwefel's Function	1000
Hybrid Functions	G_{11}	Hybrid Function 1 (N=3)	1100
	G_{12}	Hybrid Function 2 (N=3)	1200
	G_{13}	Hybrid Function 3 (N=3)	1300
	G_{14}	Hybrid Function 4 (N=4)	1400
	G_{15}	Hybrid Function 5 (N=4)	1500
	G_{16}	Hybrid Function 6 (N=4)	1600
	G_{17}	Hybrid Function 6 (N=5)	1700
	G_{18}	Hybrid Function 6 (N=5)	1800
	G_{19}	Hybrid Function 6 (N=5)	1900
	G_{20}	Hybrid Function 6 (N=6)	2000
Composition Functions	G_{21}	Composition Function 1 (N=3)	2100
	G_{22}	Composition Function 2 (N=3)	2200
	G_{23}	Composition Function 3 (N=4)	2300
	G_{24}	Composition Function 4 (N=4)	2400
	G_{25}	Composition Function 5 (N=5)	2500
	G_{26}	Composition Function 6 (N=5)	2600
	G_{27}	Composition Function 7 (N=6)	2700
	G_{28}	Composition Function 8 (N=6)	2800
	G_{29}	Composition Function 9 (N=3)	2900
	G_{30}	Composition Function 10 (N=3)	3000
Search range: [-100,100] ^D			

function evaluations for each of the 10, 30, 50 and 100 dimensions. The \hat{T}_2 refers to the mean values of five different assessment of T_2 . In Table 25, the comparative complexity results of the CGO method with the three other metaheuristics which have participated in the CEC 2017 competition are presented. The computational times are calculated and presented in seconds. It should be noted that the proposed CGO method is capable of providing very competitive results comparing to other metaheuristics.

Table 21 Comparative results of the CEC 2017 test functions with 10 dimensions

Fun.	Metaheuristics	s								
	EBO with CM	EBO with CMAR (Kumar et al. 2017)	1. 2017)			LSHADE-cnl	LSHADE-cnEpSin (Awad et al. 2017)	1. 2017)		
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
\mathbf{G}_2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ű	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G _s	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.99E+00	1.99E+00	1.69E+00	7.53E-01
ဗိ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_7	1.04E+01	1.10E + 01	1.05E+01	1.06E + 01	1.75E-01	1.06E + 01	1.29E+01	1.20E+01	1.20E + 01	4.80E-01
ర్	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.70E-03	2.99E+00	1.99E+00	1.80E + 00	7.71E-01
ලී	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_{10}	1.25E-01	2.17E+02	1.36E + 01	3.72E+01	5.39E + 01	3.71E-01	1.55E+02	1.51E+01	4.30E+01	5.57E+01
G_{11}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_{12}	0.00E+00	2.37E+02	1.18E + 02	9.02E+01	7.44E+01	2.08E-01	2.38E+02	1.19E+02	1.01E+02	7.30E+01
G_{13}	0.00E+00	7.95E+00	3.13E-02	2.17E+00	2.53E+00	0.00E+00	8.32E+00	4.84E+00	3.66E + 00	2.66E+00
G_{14}	0.00E+00	9.95E - 01	0.00E+00	6.05E-02	2.36E-01	0.00E+00	9.95E-01	0.00E+00	7.80E-02	2.70E-01
G_{15}	3.81E - 05	5.00E-01	3.07E-02	1.09E-01	1.74E-01	7.03E-06	5.00E-01	4.91E-01	3.24E-01	2.16E-01
G_{16}	2.62E - 02	9.35E-01	4.43E-01	4.17E-01	1.98E - 01	3.92E-03	1.08E+00	4.98E-01	5.37E-01	2.93E-01
G_{17}	1.00E-02	1.01E+00	4.94E-02	1.47E-01	2.03E-01	2.66E - 03	2.63E+00	3.23E-01	3.07E - 01	3.81E-01
G_{18}	3.92E-04	2.00E+01	4.09E-01	7.00E-01	2.77E+00	2.22E-04	2.05E+01	4.62E-01	3.86E + 00	7.63E+00
G_{19}	0.00E+00	1.22E-01	1.79E-02	1.50E-02	1.88E - 02	0.00E+00	1.50E+00	1.97E-02	4.47E - 02	2.09E-01
G_{20}	0.00E+00	3.12E-01	0.00E+00	1.47E-01	1.57E-01	0.00E+00	6.24E-01	3.12E-01	2.57E-01	2.31E-01
G_{21}	1.00E + 02	2.02E+02	1.00E+02	1.14E+02	3.52E+01	1.00E + 02	2.04E+02	1.00E+02	1.46E + 02	5.17E+01
G_{22}	2.17E+01	1.00E + 02	1.00E+02	9.85E+01	1.10E+01	1.00E + 02	1.00E+02	1.00E+02	1.00E + 02	6.80E - 02
G_{23}	3.00E + 02	3.03E + 02	3.00E + 02	3.00E+02	7.07E-01	3.00E + 02	3.05E+02	3.03E+02	3.02E+02	1.64E+00
G_{24}	1.00E+02	3.30E+02	1.00E+02	1.66E+02	9.97E+01	1.00E+02	3.32E+02	3.30E+02	3.16E+02	5.45E+01

Table 21 (continued)

Fun.	Metaheuristics	SX								
	EBO with CN	EBO with CMAR (Kumar et al. 2017)	1. 2017)			LSHADE-cnl	LSHADE-cnEpSin (Awad et al. 2017)	1. 2017)		
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_{25}	3.98E+02	4.43E+02	3.98E+02	4.12E+02	2.12E+01	3.98E+02	4.43E+02	4.43E+02	4.26E+02	2.24E+01
G_{26}	2.00E+02	3.00E+02	3.00E+02	2.65E+02	4.74E+01	3.00E+02	3.00E+02	3.00E+02	3.00E+02	0.00E+00
G_{27}	3.90E+02	3.95E+02	3.90E+02	3.92E+02	2.40E+00	3.84E+02	3.95E+02	3.89E+02	3.89E+02	1.96E + 00
G_{28}	0.00E+00	5.84E+02	3.00E+02	3.07E+02	7.18E+01	3.00E+02	6.11E+02	3.00E+02	3.85E+02	1.19E + 02
G_{29}	2.27E+02	2.45E+02	2.30E+02	2.31E+02	3.77E+00	2.26E+02	2.33E+02	2.28E+02	2.28E+02	1.72E+00
G_{30}	3.95E+02	4.43E+02	3.95E+02	4.07E+02	1.78E+01	3.39E+02	4.65E+05	4.07E+02	1.76E+04	8.61E + 04
Fun.	Metaheuristics	SS								
	MM_OED (S	MM_OED (Sallam et al. 2017)				CGO (present study)	: study)			
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.37E-05	1.62E+01	3.29E-01	1.94E+00	3.52E+00
\mathbf{G}_2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E+00	0.00E+00	7.84E-02	2.72E-01
Ğ,	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.26E-01	1.12E-05	5.46E - 03	3.17E-02
G ₅	0.00E+00	2.99E+00	9.95E-01	1.11E+00	7.35E-01	2.12E+00	2.09E+01	8.73E+00	8.85E+00	4.36E+00
ပိ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.55E-05	1.17E-01	4.12E-03	1.13E-02	1.94E - 02
G_7	1.04E+01	1.31E+01	1.15E+01	1.15E+01	6.71E-01	7.74E+00	3.50E+01	1.87E+01	2.00E+01	4.87E+00
ర్త	0.00E+00	2.99E+00	9.95E-01	1.11E+00	9.68E - 01	1.99E + 00	1.99E+01	8.95E+00	8.48E+00	4.10E+00
ලී	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.73E+00	8.95E-02	5.47E-01	8.89E - 01
G_{10}	2.50E - 01	1.42E+02	6.83E + 00	1.79E+01	3.64E + 01	1.52E+01	9.70E+02	3.04E+02	3.47E + 02	2.21E+02
G_{11}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.85E-07	1.27E+01	2.99E+00	3.95E+00	2.93E + 00
G_{12}	0.00E+00	2.64E + 02	1.19E+02	1.02E+02	5.96E+01	7.28E+01	8.81E+03	6.24E+02	1.44E+03	1.82E+03

Table 21 (continued)

Worst Median Mean 9.63E+00 5.05E+00 4.19E+00 1.03E+00 0.00E+00 8.80E-02 5.00E-01 2.13E-02 6.71E-02 8.80E-01 2.13E-02 6.71E-02 8.80E-01 2.16E-01 2.53E-01 8.80E-01 2.16E-01 2.53E-01 8.80E-01 1.97E-02 5.64E-02 2.00E+01 9.00E-02 9.69E-01 1.94E-02 0.00E+02 9.69E-01 1.94E-02 1.00E+02 1.04E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.04E+02 3.08E+02 3.03E+02 2.98E+02 2.01E+02 1.00E+02 1.04E+02 3.00E+02 3.90E+02 3.90E+02 3.90E+02 3.30E+02 3.36E+02 2.48E+02 2.34E+02 2.36E+02											
Best Worst Median Mean 6.82E-05 9.63E+00 5.05E+00 4.19E+00 0.00E+00 1.03E+00 0.00E+00 8.80E-02 2.00E-05 5.00E-01 2.13E-02 6.71E-02 2.11E-02 8.80E-01 2.16E-01 2.53E-01 0.00E+00 3.76E-01 1.97E-02 5.64E-02 1.11E-04 2.00E+01 9.00E-02 9.69E-01 0.00E+00 1.94E-02 0.00E+00 3.80E-03 0.00E+00 1.94E-02 0.00E+00 3.80E-02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 2.01E+02 1.00E+02 2.98E+02 1.00E+02 3.08E+02 3.90E+02 3.90E+02 2.30E+02 3.90E+02 3.30E+02 2.3E+02 2.30E+02 2.34E+02 2.36E+02		MM_OED (Sa					CGO (present study)	t study)			
6.82E-05 9.63E+00 5.05E+00 4.19E+00 0.00E+00 0.00E+00 8.80E-02 2.00E-05 5.00E-01 2.13E-02 6.71E-02 2.11E-02 8.80E-01 2.16E-01 2.53E-01 0.00E+00 3.76E-01 1.97E-02 5.64E-02 1.11E-04 2.00E+01 9.00E-02 9.69E-01 0.00E+00 1.94E-02 0.00E+00 3.80E-03 0.00E+00 1.94E-02 1.00E+02 3.98E+02 3.98E+02 3.98E+02 3.90E+02 3.90E+02 3.90E+02 3.90E+02 3.90E+02 3.90E+02 3.30E+02 2.36E+02 2.30E+02 2.3		Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
0.00E+00 1.03E+00 0.00E+00 8.80E-02 2.00E-05 5.00E-01 2.13E-02 6.71E-02 2.11E-02 8.80E-01 2.16E-01 2.53E-01 0.00E+00 3.76E-01 1.97E-02 5.64E-02 1.11E-04 2.00E+01 9.00E-02 9.69E-01 0.00E+00 1.94E-02 0.00E+00 3.80E-03 0.00E+00 6.24E-01 0.00E+00 6.73E-02 1.00E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 3.08E+02 3.98E+02 2.98E+02 1.00E+02 1.00E+02 1.04E+02 2.01E+02 2.00E+02 3.00E+02 3.90E+02 3.90E+02 3.00E+02 3.90E+02 3.30E+02 2.36E+02 2.30E+02 2.34E+02 2.36E+02		5.82E-05	9.63E+00	5.05E+00	4.19E+00	2.66E+00	3.28E+00	4.20E+01	1.17E+01	1.17E+01	6.17E+00
2.00E-05 5.00E-01 2.13E-02 6.71E-02 2.11E-02 8.80E-01 2.16E-01 2.53E-01 0.00E+00 3.76E-01 1.97E-02 5.64E-02 1.11E-04 2.00E+01 9.00E-02 9.69E-01 0.00E+00 1.94E-02 0.00E+00 3.80E-03 0.00E+00 6.24E-01 0.00E+00 6.73E-02 1.00E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 3.08E+02 3.98E+02 2.98E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 2.01E+02 3.08E+02 3.98E+02 2.94E+02 3.98E+02 3.90E+02 3.90E+02 3.90E+02 3.00E+02 2.34E+02 2.36E+02 2.30E+02 2.34E+02 2.36E+02	•).00E+00	1.03E + 00	0.00E+00	8.80E - 02	2.74E-01	2.59E-07	7.46E+00	2.15E+00	2.92E+00	1.95E+00
2.11E-02 8.80E-01 2.16E-01 2.53E-01 0.00E+00 3.76E-01 1.97E-02 5.64E-02 1.11E-04 2.00E+01 9.00E-02 9.69E-01 0.00E+00 1.94E-02 0.00E+00 3.80E-03 0.00E+00 6.24E-01 0.00E+00 6.73E-02 1.00E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 3.08E+02 3.03E+02 2.98E+02 2.00E+02 3.00E+02 3.90E+02 3.90E+02 3.89E+02 3.90E+02 3.90E+02 3.90E+02 3.00E+02 2.36E+02 3.37E+02 2.30E+02 2.36E+02 2.36E+02		2.00E-05		2.13E-02	6.71E-02	1.19E-01	6.66E - 01	7.09E+00	2.51E+00	2.80E+00	1.56E+00
0.00E+00 3.76E-01 1.97E-02 5.64E-02 1.11E-04 2.00E+01 9.00E-02 9.69E-01 0.00E+00 1.94E-02 0.00E+00 3.80E-03 0.00E+00 6.24E-01 0.00E+00 6.73E-02 1.00E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.08E+02 3.03E+02 2.98E+02 1.00E+02 2.01E+02 1.00E+02 1.04E+02 3.98E+02 3.98E+02 4.14E+02 2.00E+02 3.00E+02 3.90E+02 3.90E+02 3.90E+02 3.90E+02 2.30E+02 2.36E+02 2.30E+02 2.36E+02		2.11E-02		2.16E-01	2.53E-01	2.01E-01	4.56E-01	2.87E+02	3.81E+01	6.47E+01	7.57E+01
1.11E-04 2.00E+01 9.00E-02 9.69E-01 0.00E+00 1.94E-02 0.00E+00 3.80E-03 0.00E+00 6.24E-01 0.00E+00 6.73E-02 1.00E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02 3.08E+02 2.98E+02 1.04E+02 1.00E+02 2.01E+02 1.00E+02 1.04E+02 3.98E+02 4.43E+02 3.98E+02 4.14E+02 2.00E+02 3.00E+02 3.90E+02 3.90E+02 3.00E+02 3.90E+02 3.37E+02 2.30E+02 2.36E+02 2.36E+02).00E+00	3.76E-01	1.97E-02	5.64E-02	1.13E-01	5.68E-01	6.76E+01	1.78E+01	1.61E+01	1.50E+01
0.00E+00 1.94E-02 0.00E+00 3.80E-03 0.00E+00 6.24E-01 0.00E+00 6.73E-02 1.00E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.03E+02 2.98E+02 2 1.00E+02 2.01E+02 1.00E+02 1.04E+02 2 1.00E+02 2.01E+02 1.00E+02 1.04E+02 2 3.98E+02 4.43E+02 3.98E+02 4.14E+02 2 2.00E+02 3.00E+02 3.90E+02 2 3.00E+02 3.90E+02 3.90E+02 1 2.30E+02 2.34E+02 2.34E+02 4	18	1.11E-04	2.00E+01	9.00E-02	9.69E-01	3.89E+00	2.18E+00	2.41E+01	8.25E+00	1.03E+01	6.10E + 00
0.00E+00 6.24E-01 0.00E+00 6.73E-02 1.00E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.03E+02 2.98E+02 2 1.00E+02 2.01E+02 1.00E+02 1.04E+02 3.98E+02 4.43E+02 3.98E+02 4.14E+02 2.00E+02 3.00E+02 3.90E+02 2.94E+02 3.89E+02 3.90E+02 3.90E+02 1.06E+02 3.00E+02 3.90E+02 3.90E+02 1.06E+02 2.30E+02 2.48E+02 2.34E+02 1.36E+02).00E+00	1.94E - 02	0.00E+00	3.80E-03	7.49E-03	1.08E - 01	2.87E+00	1.18E+00	1.13E+00	7.91E-01
1.00E+02 2.03E+02 1.00E+02 1.04E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.03E+02 2.98E+02 2.98E+02 1.00E+02 2.01E+02 1.00E+02 1.04E+02 2.00E+02 3.98E+02 4.14E+02 2.01E+02 2.00E+02 3.00E+02 3.90E+02 2.94E+02 3.90E+02 3.90E+02 3.90E+02 1.06E+02 3.00E+02 3.90E+02 3.37E+02 1.05E+02 2.30E+02 2.34E+02 2.36E+02 4.48E+02).00E+00	6.24E - 01	0.00E+00	6.73E-02	1.57E-01	0.00E+00	1.50E+01	9.95E-01	3.49E+00	5.03E+00
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.08E+02 3.03E+02 2.98E+02 2.98E+02 1.00E+02 2.01E+02 1.00E+02 1.04E+02 2 3.98E+02 4.43E+02 3.98E+02 4.14E+02 2 2.00E+02 3.00E+02 3.90E+02 2 3.90E+02 3.00E+02 3.90E+02 3.90E+02 3.37E+02 1 2.30E+02 2.48E+02 2.34E+02 2.36E+02 4	, i	1.00E+02	2.03E + 02	1.00E+02	1.04E+02	1.99E + 01	1.00E + 02	2.21E+02	1.00E+02	1.09E+02	3.01E + 01
1.00E+02 3.08E+02 3.03E+02 2.98E+02 2 1.00E+02 2.01E+02 1.00E+02 1.04E+02 1 3.98E+02 4.43E+02 3.98E+02 4.14E+02 2 2.00E+02 3.00E+02 3.90E+02 2 3.96E+02 2 3.89E+02 3.90E+02 3.90E+02 3.90E+02 1 3.37E+02 1 2.30E+02 2.36E+02 2.34E+02 2.36E+02 4 4	122	1.00E+02	1.00E + 02	1.00E+02	1.00E+02	6.88E - 02	2.23E+01	1.10E+02	1.01E+02	1.00E+02	1.12E+01
1.00E+02 2.01E+02 1.00E+02 1.04E+02 1 3.98E+02 4.43E+02 3.98E+02 4.14E+02 2 2.00E+02 3.00E+02 3.00E+02 2 2 3.98E+02 3.90E+02 3.90E+02 2 3 3.00E+02 3.90E+02 3.37E+02 1 2.30E+02 2.48E+02 2.34E+02 2.36E+02 4	, i	1.00E+02	3.08E+02	3.03E+02	2.98E+02	2.84E+01	3.00E+02	3.44E+02	3.13E+02	3.14E + 02	7.33E+00
3.98E+02 4.43E+02 3.98E+02 4.14E+02 2 2.00E+02 3.00E+02 3.00E+02 2.94E+02 2 3.89E+02 3.90E+02 3.90E+02 1 3.00E+02 3.00E+02 3.37E+02 1 2.30E+02 2.48E+02 2.34E+02 2.36E+02 4	. 124	1.00E+02	2.01E+02	1.00E+02	1.04E + 02	1.97E + 01	2.93E+01	3.56E+02	3.40E + 02	3.07E+02	8.81E + 01
2.00E+02 3.00E+02 3.00E+02 2.94E+02 2 3.89E+02 3.90E+02 3.90E+02 1 3.00E+02 6.47E+02 3.00E+02 3.37E+02 2.30E+02 2.48E+02 2.34E+02 4		3.98E+02	4.43E+02	3.98E+02	4.14E+02	2.19E+01	3.98E+02	4.50E+02	4.45E+02	4.34E+02	2.10E+01
3.89E+02 3.90E+02 3.90E+02 3.90E+02 1 3.00E+02 6.47E+02 3.00E+02 3.37E+02 1 2.30E+02 2.48E+02 2.34E+02 4		2.00E+02	3.00E + 02	3.00E + 02	2.94E+02	2.38E+01	2.00E+02	4.46E+02	3.00E+02	3.25E+02	6.04E + 01
3.00E+02 6.47E+02 3.00E+02 3.37E+02 1 2.30E+02 2.48E+02 2.34E+02 2.36E+02 4		3.89E+02	3.90E + 02	3.90E + 02	3.90E+02	1.22E-01	3.89E + 02	4.73E+02	3.93E+02	3.96E+02	1.48E+01
2.30E+02 2.48E+02 2.34E+02 2.36E+02		3.00E+02	6.47E+02	3.00E+02	3.37E+02	1.02E + 02	3.00E+02	6.12E + 02	4.16E + 02	4.61E+02	1.42E+02
		2.30E+02	2.48E + 02	2.34E+02	2.36E+02	4.19E+00	2.35E+02	3.46E + 02	2.54E+02	2.63E+02	2.46E + 01
G ₃₀ 3.95E+02 1.25E+06 3.95E+02 5.69E+04 2.34E		3.95E+02	1.25E+06	3.95E + 02	5.69E+04	2.34E+05	4.22E+02	8.18E + 05	8.00E + 02	1.91E+05	3.44E+05

LSHADE-cnEpSin: Ensemble Sinusoidal Differential Covariance Matrix Adaptation with Euclidean Neighborhood EBO with CMAR: Effective Butterfly Optimizer with Covariance Matrix Adapted Retreat

MM_OED: Multi-Method Based Orthogonal Experimental Design

 Table 22
 Comparative results of the CEC 2017 test functions with 30 dimensions

	FBO with CM							(2100)		
	LDO WILL CIVI	EBO with CMAR (Kumar et al. 2017)	. 2017)			LSHADE-cnE	LSHADE-cnEpSin (Awad et al. 2017)	L. 2017)		
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G ³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_{4}	0.00E+00	6.41E+01	5.86E+01	5.65E+01	1.11E+01	3.48E + 01	5.01E+01	4.25E+01	4.23E+01	3.07E+00
G _S	0.00E+00	7.96E+00	2.98E+00	2.78E+00	1.74E+00	5.55E+00	1.74E+01	1.25E+01	1.23E+01	2.34E+00
G_{6}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_7	3.17E + 01	3.60E + 01	3.34E+01	3.35E+01	8.37E - 01	3.89E + 01	4.81E + 01	4.33E+01	4.33E+01	2.17E+00
ď	0.00E+00	5.97E+00	1.99E+00	2.02E+00	1.32E+00	5.44E+00	1.73E+01	1.34E+01	1.29E + 01	2.86E+00
ලී	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_{10}	9.84E+02	1.94E+03	1.38E+03	1.41E+03	2.15E+02	8.44E + 02	1.72E+03	1.42E+03	1.39E + 03	2.10E+02
G_{11}	0.00E+00	6.40E + 01	1.99E+00	4.49E+00	8.77E+00	1.72E+00	5.90E+01	3.96E+00	1.35E+01	1.94E+01
G_{12}	1.50E + 01	1.10E + 03	4.35E+02	4.63E+02	2.63E + 02	1.32E+02	9.35E+02	3.44E+02	3.72E+02	2.01E+02
G_{13}	1.38E+00	2.66E+01	1.66E+01	1.49E+01	6.25E+00	2.03E+00	7.96E+01	1.71E+01	1.73E+01	1.02E+01
G_{14}	2.52E+00	2.80E+01	2.21E+01	2.19E+01	3.84E+00	7.61E+00	2.40E+01	2.20E+01	2.16E+01	2.26E+00
G_{15}	2.79E-01	1.02E+01	3.39E+00	3.69E+00	2.15E+00	5.75E-01	9.82E+00	2.86E+00	3.24E+00	1.98E + 00
G_{16}	3.25E+00	2.57E+02	2.11E+01	4.26E+01	5.69E + 01	3.98E+00	1.46E + 02	1.45E+01	2.29E+01	3.07E+01
G_{17}	9.95E+00	4.32E+01	3.10E+01	2.98E+01	7.50E+00	1.58E+01	3.95E+01	2.88E+01	2.86E + 01	5.56E+00
G_{18}	2.04E+01	2.55E+01	2.20E+01	2.21E+01	1.09E+00	2.02E+01	2.35E+01	2.13E+01	2.11E+01	7.52E-01
G_{19}	3.95E+00	1.33E + 01	8.14E+00	8.04E+00	2.28E+00	2.96E+00	1.19E+01	5.84E+00	5.83E+00	1.92E+00
G_{20}	2.34E+01	6.56E+01	3.49E+01	3.57E+01	7.50E+00	1.31E + 01	5.34E+01	3.04E+01	3.03E+01	7.35E+00
G_{21}	1.00E + 02	2.07E+02	2.03E+02	1.99E+02	2.02E+01	2.07E+02	2.16E + 02	2.12E+02	2.12E+02	2.56E+00
G_{22}	1.00E + 02	1.00E + 02	1.00E+02	1.00E+02	0.00E+00	1.00E + 02	1.00E+02	1.00E+02	1.00E + 02	1.00E-13
G_{23}	3.45E+02	3.60E + 02	3.51E+02	3.51E+02	3.51E+00	3.45E+02	3.65E+02	3.56E+02	3.56E+02	3.73E+00
G_{24}	1.00E+02	4.28E+02	4.24E+02	4.18E+02	4.55E+01	4.18E+02	4.34E+02	4.29E+02	4.28E+02	2.95E+00

Table 22 (continued)

ļ										
Fun.	Metaheuristics	Š								
	EBO with CIV	EBO with CMAR (Kumar et al. 2017)	2017)			LSHADE-cnl	LSHADE-cnEpSin (Awad et al. 2017)	1. 2017)		
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_{25}	3.83E+02	3.87E+02	3.87E+02	3.87E+02	7.56E-01	3.87E+02	3.87E+02	3.87E+02	3.87E+02	8.90E-03
G_{26}	2.00E+02	9.28E+02	3.00E+02	5.37E+02	3.06E + 02	8.46E+02	1.03E+03	9.55E+02	9.49E + 02	4.60E+01
G_{27}	4.93E+02	5.11E+02	5.03E+02	5.02E+02	4.03E+00	4.88E+02	5.16E+02	5.05E+02	5.04E+02	6.70E+00
G_{28}	3.00E + 02	4.14E+02	3.00E+02	3.08E+02	2.88E + 01	3.00E+02	4.14E+02	3.00E + 02	3.15E+02	3.86E + 01
G_{29}	4.07E+02	4.60E+02	4.34E+02	4.33E+02	1.13E + 01	4.18E+02	4.53E+02	4.35E+02	4.35E+02	7.36E+00
G_{30}	1.94E + 03	2.10E + 03	1.97E+03	1.99E+03	4.21E+01	1.94E+03	2.13E+03	1.97E+03	1.98E + 03	4.17E+01
Fun.	Metaheuristics	ş								
	MM_OED (Sallam et al.	allam et al. 2017)				CGO (present study)	: study)			
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.73E-05	3.82E+03	7.04E+02	3.86E+02	8.71E+02
G_2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.71E+04	8.26E+12	5.46E+11	6.31E+08	1.54E+12
Ğ,	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.41E+01	2.76E+02	8.63E + 01	5.70E+01	7.15E+01
G_4	0.00E+00	6.41E + 01	0.00E+00	1.17E+01	2.37E+01	1.41E - 02	8.82E+01	5.91E+01	6.66E + 01	2.65E+01
G_5	0.00E+00	2.49E + 01	3.98E+00	4.23E+00	3.37E+00	2.69E + 01	1.94E + 02	5.99E+01	5.07E+01	3.23E + 01
G_{ϵ}	0.00E+00	1.37E-07	0.00E+00	2.68E - 09	1.92E - 08	3.46E-02	1.87E+00	5.53E-01	4.58E-01	4.07E-01
G_7	3.23E + 01	4.14E+01	3.41E+01	3.44E + 01	1.66E + 00	7.14E+01	2.38E+02	1.38E + 02	1.28E+02	5.02E+01
g G	0.00E+00	9.95E+00	3.98E+00	4.57E+00	2.36E + 00	2.98E+01	1.77E+02	6.21E+01	5.13E+01	3.59E + 01
G ₉	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.03E+00	2.78E+02	8.24E+01	5.31E+01	6.71E+01
G_{10}	5.54E+02	3.76E+03	1.82E+03	2.05E+03	6.48E + 02	3.65E+03	7.18E+03	6.05E+03	6.33E+03	8.57E+02
G_{11}	1.99E + 00	6.69E + 01	6.97E+00	1.23E+01	1.59E + 01	2.86E + 01	1.99E+02	8.05E+01	7.46E+01	3.43E + 01
G_{12}	3.74E+02	1.80E+03	1.03E+03	1.05E+03	3.66E+02	4.30E+03	7.16E+04	2.43E+04	2.04E+04	1.60E+04

Table 22 (continued)

Fun.	Metaheuristics	s.								
	MM_OED (Sallam et al	allam et al. 2017)				CGO (present study)	study)			
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_{13}	2.99E+00	3.03E+01	1.85E+01	1.80E+01	6.32E+00	1.76E+02	6.05E+04	1.64E+04	4.17E+03	2.01E+04
G_{14}	3.98E+00	3.00E+01	2.40E+01	2.31E+01	4.86E+00	5.92E+01	1.18E + 02	8.56E+01	8.37E + 01	1.23E+01
G_{15}	1.49E+00	1.11E+01	4.47E+00	5.42E+00	2.71E+00	5.65E+01	5.31E+03	7.80E+02	2.07E + 02	1.30E+03
G_{16}	2.78E+00	7.98E+02	2.67E+01	1.34E+02	1.71E+02	3.75E+01	1.31E+03	5.99E+02	5.79E+02	3.24E+02
G_{17}	2.15E+01	8.05E + 01	4.57E+01	4.67E + 01	1.14E+01	4.38E+01	4.32E+02	2.15E+02	2.06E + 02	1.04E + 02
G_{18}	1.42E+01	2.95E+01	2.31E+01	2.33E+01	2.28E+00	6.40E+02	1.88E + 04	2.54E+03	1.85E + 03	2.78E+03
G_{19}	4.78E+00	1.01E+01	7.23E+00	7.15E+00	1.30E+00	3.46E + 01	4.56E+03	5.58E+02	6.71E + 01	1.12E+03
\mathbf{G}_{20}	1.69E + 01	1.92E+02	3.97E + 01	4.55E+01	2.99E + 01	4.02E+01	4.10E+02	2.17E+02	1.92E + 02	9.79E+01
G_{21}	1.00E+02	2.10E+02	1.00E+02	1.31E+02	4.87E+01	2.28E+02	3.31E+02	2.54E+02	2.48E + 02	2.43E + 01
\mathbf{G}_{22}	1.00E + 02	1.00E + 02	1.00E+02	1.00E + 02	1.40E - 13	1.00E+02	1.05E+02	1.01E+02	1.00E + 02	1.19E + 00
G_{23}	3.47E + 02	3.77E+02	3.56E+02	3.57E+02	6.14E+00	3.80E+02	5.27E+02	4.12E+02	4.07E+02	2.17E+01
G_{24}	2.00E+02	4.35E+02	4.30E+02	3.94E + 02	8.45E + 01	4.50E+02	5.90E+02	5.02E+02	4.94E + 02	3.54E+01
G_{25}	3.87E+02	3.87E+02	3.87E+02	3.87E+02	2.84E - 02	3.83E+02	4.25E+02	3.88E+02	3.88E+02	5.57E+00
G_{26}	3.00E+02	1.18E+03	1.00E+03	9.43E + 02	2.23E+02	3.00E+02	2.32E+03	1.78E+03	1.77E+03	3.19E + 02
G_{27}	4.92E+02	5.19E+02	5.08E+02	5.08E+02	5.04E+00	5.02E+02	5.80E+02	5.30E+02	5.26E+02	1.73E+01
G_{28}	3.00E+02	4.52E+02	3.00E + 02	3.29E + 02	5.00E + 01	3.00E+02	4.83E+02	3.58E+02	3.17E + 02	6.32E + 01
G_{29}	4.14E + 02	4.80E+02	4.40E+02	4.39E+02	1.50E+01	3.85E+02	1.22E+03	7.17E+02	6.99E + 02	1.83E + 02
G_{30}	1.94E + 03	2.21E+03	1.97E+03	2.00E+03	6.62E + 01	2.30E+03	1.27E+04	5.07E+03	4.65E+03	2.35E+03

Table 23 Comparative results of the CEC 2017 test functions with 50 dimensions

Fun.	Metaheuristics	s								
	EBO with CMAR (Kum	1AR (Kumar et al	nar et al. 2017)			LSHADE-cnF	LSHADE-cnEpSin (Awad et al. 2017)	1. 2017)		
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
\mathbf{G}_2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E+01	1.00E+00	1.57E+00	1.93E + 00
Ğ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_{4}	0.00E+00	1.42E+02	2.85E+01	4.29E+01	3.32E + 01	7.86E+00	1.40E+02	2.61E+01	5.14E+01	4.43E+01
G ₅	2.98E+00	1.45E+01	6.96E+00	7.58E+00	2.42E+00	1.33E + 01	3.56E+01	2.64E+01	2.52E+01	6.44E+00
Ç	0.00E+00	4.31E-07	4.79E-08	8.54E-08	1.14E-07	4.79E-08	6.15E-06	5.87E-07	9.16E-07	1.07E-06
G_7	5.53E + 01	6.25E+01	5.79E+01	5.79E+01	1.53E + 00	6.69E + 01	8.80E + 01	7.48E+01	7.66E+01	6.06E+00
؈ۜ	3.98E + 00	1.39E + 01	7.96E+00	7.91E+00	2.47E+00	1.28E + 01	3.61E+01	2.89E+01	2.63E+01	6.59E+00
ලී	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_{10}	2.14E + 03	3.94E+03	3.16E + 03	3.11E+03	4.01E+02	2.25E+03	3.75E+03	3.25E+03	3.20E+03	3.40E + 02
G_{11}	1.93E + 01	3.31E+01	2.62E+01	2.64E+01	3.36E + 00	1.61E + 01	2.56E+01	2.18E+01	2.14E+01	2.09E+00
G_{12}	1.23E+03	6.90E+03	1.78E+03	1.94E+03	8.34E + 02	6.43E + 02	2.26E+03	1.43E+03	1.48E + 03	3.65E + 02
G_{13}	7.96E+00	1.22E+02	4.49E+01	4.14E+01	2.48E + 01	9.27E+00	1.28E+02	5.11E+01	6.94E + 01	3.45E + 01
G_{14}	2.50E+01	4.09E+01	3.09E+01	3.12E+01	3.52E+00	2.28E+01	3.57E+01	2.63E+01	2.65E+01	2.49E+00
G_{15}	9.59E+00	4.07E+01	2.93E+01	2.94E+01	5.20E+00	2.01E+01	3.94E+01	2.46E+01	2.56E+01	4.06E+00
G_{16}	1.25E+02	5.91E+02	3.44E + 02	3.46E + 02	1.46E + 02	1.38E + 02	4.81E+02	2.74E+02	2.75E+02	9.97E + 01
G ₁₇	6.28E + 01	4.65E+02	2.61E+02	2.75E+02	8.63E + 01	7.12E+01	3.85E+02	2.34E+02	2.07E+02	7.31E+01
G_{18}	2.25E+01	4.94E+01	3.05E + 01	3.20E+01	5.99E+00	2.05E + 01	3.16E + 01	2.42E+01	2.43E+01	2.12E+00
G_{19}	1.71E+01	3.11E+01	2.44E+01	2.45E+01	3.94E + 00	1.24E + 01	2.30E+01	1.73E+01	1.74E+01	2.47E+00
G_{20}	5.76E+01	3.50E+02	1.21E+02	1.47E+02	7.44E+01	7.24E+01	2.88E+02	1.09E+02	1.14E + 02	3.55E + 01
G_{21}	2.02E+02	2.22E+02	2.10E+02	2.11E+02	4.06E+00	2.17E+02	2.41E+02	2.25E+02	2.27E+02	7.06E+00
G_{22}	1.00E + 02	3.97E+03	1.00E+02	3.65E+02	9.24E + 02	1.00E + 02	3.95E+03	1.25E+02	1.59E + 03	1.67E+03
G_{23}	4.15E+02	4.64E+02	4.34E+02	4.34E+02	8.16E + 00	4.28E+02	4.56E+02	4.40E+02	4.39E+02	6.90E+00
G_{24}	4.99E+02	5.16E+02	5.06E + 02	5.06E + 02	3.85E + 00	5.04E + 02	5.23E+02	5.12E+02	5.13E + 02	5.59E+00

Table 23 (continued)

Fun.	Metaheuristics	s								
	EBO with CN	EBO with CMAR (Kumar et al. 2017)	1. 2017)			LSHADE-cnl	LSHADE-cnEpSin (Awad et al. 2017)	1. 2017)		
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_{25}	4.80E+02	5.63E+02	4.80E+02	4.89E+02	2.47E+01	4.80E+02	4.88E+02	4.80E+02	4.80E+02	1.08E+00
\mathbf{G}_{26}	3.00E+02	1.31E+03	9.06E+02	7.06E+02	4.06E+02	9.79E+02	1.39E+03	1.24E+03	1.20E + 03	1.19E + 02
G_{27}	5.03E+02	5.40E+02	5.23E+02	5.22E+02	7.75E+00	5.08E+02	5.50E+02	5.25E+02	5.25E+02	9.21E+00
G_{28}	4.59E+02	5.08E+02	4.59E+02	4.67E+02	1.79E + 01	4.53E+02	5.07E+02	4.56E+02	4.59E + 02	1.19E+01
G_{29}	3.09E+02	4.06E+02	3.45E+02	3.47E+02	1.97E+01	3.33E+02	3.80E+02	3.53E+02	3.53E + 02	9.78E+00
G_{30}	5.79E+05	6.89E + 05	6.14E + 05	6.18E+05	3.62E+04	5.78E+05	8.74E+05	6.46E + 05	6.58E + 05	7.24E+04
Fun.	Metaheuristics	ş						-		
	MM_OED (S	MM_OED (Sallam et al. 2017)				CGO (present study)	study)			
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.14E-02	2.64E+04	3.73E+03	1.69E+03	4.87E+03
\mathbf{G}_2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.05E+17	3.58E+29	8.04E+27	2.77E+23	5.02E+28
Ğ,	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.20E+03	1.41E+04	7.24E+03	6.79E + 03	2.48E + 03
G_4	0.00E+00	1.42E + 02	3.99E+00	3.75E+01	4.99E+01	9.77E+00	2.04E+02	9.11E+01	9.68E + 01	5.02E+01
G ₅	3.98E+00	2.39E+01	1.09E+01	1.12E+01	3.70E + 00	7.76E+01	3.09E+02	1.42E + 02	1.37E + 02	3.96E + 01
G_6	0.00E+00	4.85E-07	4.79E-08	7.44E-08	1.06E-07	1.39E+00	1.07E+01	3.23E+00	2.58E + 00	1.85E + 00
G_7	5.60E + 01	6.41E+01	5.82E+01	5.89E+01	1.93E+00	1.90E + 02	5.17E+02	2.91E+02	2.80E + 02	7.43E+01
$ m \ref{c}$	3.98E+00	3.28E+01	9.95E+00	1.03E+01	4.26E+00	8.46E + 01	2.36E+02	1.40E + 02	1.33E + 02	3.15E+01
G _o	0.00E+00	8.95E-02	0.00E+00	1.76E-03	1.25E-02	4.10E+02	6.12E+03	2.38E+03	2.37E+03	1.21E+03
G_{10}	1.63E+03	6.74E+03	3.67E+03	3.82E+03	1.12E+03	9.52E+03	1.38E+04	1.20E+04	1.20E + 04	9.12E+02
G_{11}	2.32E+01	5.90E+01	4.11E+01	4.04E+01	8.71E+00	6.49E + 01	2.50E+02	1.60E + 02	1.60E + 02	4.28E+01
G_{12}	1.09E+03	3.31E+03	2.09E+03	2.14E+03	5.05E+02	3.34E+04	7.38E+05	2.90E+05	2.39E+05	1.89E+05

Table 23 (continued)

Fun.	Metaheuristics	SS								
	MM_OED (Sallam et al	Sallam et al. 2017)				CGO (present study)	study)			
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_{13}	8.96E+00	1.27E+02	4.43E+01	4.64E+01	2.55E+01	1.19E+02	3.74E+04	6.28E+03	2.87E+03	8.44E+03
G_{14}	2.70E+01	4.59E + 01	3.79E+01	3.71E+01	5.07E+00	1.63E + 02	3.61E + 02	2.51E+02	2.49E+02	4.72E+01
G_{15}	2.43E+01	6.10E + 01	4.00E+01	4.09E+01	9.16E + 00	1.19E + 02	3.15E+04	7.91E+03	7.92E+03	6.56E+03
G_{16}	1.31E+02	1.59E + 03	6.07E+02	6.77E+02	3.65E+02	2.63E+02	2.57E+03	1.38E+03	1.35E+03	4.43E+02
G_{17}	1.81E + 02	1.13E + 03	4.64E+02	4.81E+02	2.08E+02	5.00E+02	1.82E + 03	9.70E+02	9.39E+02	2.69E + 02
G_{18}	2.20E+01	7.12E+01	3.83E + 01	3.86E + 01	9.75E+00	1.35E+03	5.69E+04	1.58E+04	1.12E+04	1.36E + 04
G_{19}	2.01E+01	8.15E + 01	3.64E+01	4.12E+01	1.61E+01	1.15E+02	3.63E + 04	1.46E + 04	1.47E+04	1.01E+04
G_{20}	3.70E + 01	9.86E+02	2.73E+02	3.02E+02	2.30E+02	9.36E+01	1.46E + 03	7.04E+02	6.84E+02	3.35E+02
G_{21}	2.03E + 02	2.24E+02	2.12E+02	2.12E+02	4.18E+00	2.64E+02	4.82E+02	3.29E+02	3.18E+02	3.93E+01
\mathbf{G}_{22}	1.00E + 02	5.52E+03	1.00E+02	6.80E + 02	1.40E + 03	1.00E + 02	1.43E + 04	1.01E+04	1.25E+04	5.07E+03
G_{23}	4.32E+02	4.68E+02	4.45E+02	4.45E+02	8.27E+00	5.17E+02	7.29E+02	5.95E+02	5.87E+02	4.27E+01
G_{24}	5.06E + 02	5.27E+02	5.16E + 02	5.17E+02	4.09E+00	5.93E+02	8.18E + 02	7.02E+02	6.91E + 02	6.36E + 01
G_{25}	4.78E+02	4.92E+02	4.80E+02	4.82E+02	4.10E+00	4.61E+02	5.92E+02	5.33E+02	5.53E+02	3.95E + 01
\mathbf{G}_{26}	1.08E + 03	1.42E + 03	1.23E+03	1.24E+03	7.24E+01	3.00E+02	6.66E + 03	3.02E+03	2.92E+03	1.05E+03
G_{27}	5.17E+02	6.40E + 02	5.32E+02	5.40E+02	2.23E+01	5.15E+02	1.09E+03	7.80E+02	7.66E+02	1.56E+02
G_{28}	4.59E + 02	5.08E+02	4.59E+02	4.82E+02	2.46E + 01	4.59E+02	5.88E+02	4.97E+02	4.99E + 02	2.66E+01
G_{29}	2.98E + 02	4.25E+02	3.60E + 02	3.62E+02	2.58E+01	6.38E+02	2.45E+03	1.08E+03	9.93E+02	3.43E+02
G_{30}	5.79E+05	8.41E + 05	6.49E+05	6.64E + 05	7.80E+04	6.25E+05	1.47E+06	8.55E+05	8.16E+05	1.85E + 05

 Table 24
 Comparative results of the CEC 2017 test functions with 100 dimensions

Fun.	Metaheuristics	S,								
	EBO with CN	EBO with CMAR (Kumar et al. 2017)	ıl. 2017)			LSHADE-cnl	LSHADE-cnEpSin (Awad et al. 2017)	. 2017)		
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_1	0.00E+00	5.15E-08	0.00E+00	1.33E-09	7.52E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_2	0.00E+00	3.78E+11	95166	1.27E+10	5.99E+10	4.00E+00	4.40E+12	6.70E+03	9.57E+10	6.18E+11
G³	7.61E-08	5.20E-06	1.86E-07	2.99E-07	7.04E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
\mathbb{G}_4	0.00E+00	2.18E+02	1.97E + 02	1.93E + 02	3.09E+01	1.80E + 02	2.07E+02	1.93E+02	1.98E + 02	8.30E+00
G _s	1.79E+01	4.28E + 01	2.79E+01	2.87E+01	5.28E+00	4.46E+01	1.14E+02	5.51E+01	5.59E+01	9.91E+00
$^{9}_{ m C}$	5.13E-06	3.41E - 05	1.47E - 05	1.63E-05	7.13E-06	2.31E-05	1.31E-04	5.55E-05	6.02E - 05	2.18E-05
G_7	1.16E + 02	1.38E + 02	1.21E+02	1.22E+02	4.47E+00	1.42E + 02	1.93E + 02	1.62E + 02	1.62E + 02	7.91E+00
Ğ	1.79E+01	4.68E + 01	2.79E+01	2.97E+01	7.48E+00	4.21E+01	6.75E + 01	5.39E + 01	5.35E+01	5.39E+00
G	0.00E+00	8.95E - 02	0.00E+00	1.76E-03	1.25E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_{10}	6.77E+03	1.34E + 04	9.50E+03	9.91E + 03	1.91E+03	8.50E + 03	1.13E + 04	1.04E+04	1.03E+04	5.21E+02
G_{11}	3.38E + 01	1.42E + 02	6.15E + 01	6.56E + 01	2.00E+01	2.17E+01	1.15E+02	3.41E + 01	4.92E+01	3.02E+01
G_{12}	2.45E+03	6.06E + 03	4.13E+03	4.19E + 03	7.89E+02	2.93E+03	6.00E + 03	4.63E+03	4.62E+03	6.48E+02
G_{13}	1.19E + 02	5.50E + 02	2.14E+02	2.45E+02	8.84E+01	5.13E+01	2.23E+02	1.28E + 02	1.25E+02	3.65E+01
G_{14}	8.17E + 01	2.06E + 02	1.36E+02	1.38E + 02	2.96E+01	3.71E+01	6.91E + 01	4.80E + 01	4.97E+01	8.17E+00
G_{15}	8.60E + 01	2.70E + 02	1.63E + 02	1.65E+02	3.87E+01	4.62E+01	1.54E+02	8.32E+01	8.99E+01	2.83E+01
G_{16}	7.86E+02	2.53E+03	1.36E+03	1.41E+03	3.76E+02	7.12E+02	1.73E+03	1.23E+03	1.22E+03	2.36E+02
G_{17}	5.35E+02	1.69E + 03	1.18E + 03	1.21E+03	2.57E+02	5.82E+02	1.22E+03	9.44E + 02	9.32E+02	1.74E+02
G_{18}	1.08E + 02	4.05E + 02	2.31E+02	2.37E+02	5.94E+01	4.46E+01	1.18E+02	7.63E+01	7.79E+01	1.99E+01
G_{19}	8.16E + 01	1.72E+02	1.12E+02	1.15E + 02	1.88E + 01	4.24E+01	6.98E + 01	5.59E+01	5.55E+01	6.05E+00
G_{20}	7.80E+02	2.09E+03	1.35E+03	1.36E + 03	3.09E+02	4.75E+02	1.45E+03	1.12E + 03	1.08E+03	2.16E+02
G_{21}	2.44E+02	3.15E + 02	2.58E+02	2.60E+02	1.06E + 01	2.61E+02	2.92E+02	2.77E+02	2.77E+02	6.94E+00
G_{22}	1.00E + 02	1.44E+04	1.02E+04	1.02E + 04	2.70E+03	8.72E+03	1.13E+04	1.05E + 04	1.04E + 04	5.30E+02
G_{23}	5.50E+02	6.23E + 02	5.76E+02	5.77E+02	1.31E+01	5.76E+02	6.16E + 02	5.98E+02	5.98E+02	7.69E+00
G_{24}	8.99E+02	9.74E+02	9.16E+02	9.19E+02	1.32E+01	8.99E+02	9.64E+02	9.14E+02	9.17E+02	1.34E+01

Table 24 (continued)

								i		
	BO with CM.	EBO with CMAR (Kumar et al. 2017)	. 2017)			LSHADE-cnl	LSHADE-cnEpSin (Awad et al. 2017)	. 2017)		
	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
	5.77E+02	7.74E+02	7.05E+02	7.16E+02	3.71E+01	5.76E+02	7.73E+02	6.97E+02	6.84E+02	4.34E+01
G_{26} 3	3.00E+02	3.53E+03	3.19E + 03	2.77E+03	1.08E + 03	2.92E+03	3.41E+03	3.11E+03	3.11E+03	1.22E+02
	5.48E+02	6.19E + 02	5.86E+02	5.88E+02	1.53E + 01	5.59E+02	6.13E + 02	5.87E+02	5.89E+02	1.31E+01
	3.00E+02	5.77E+02	5.19E + 02	5.10E + 02	6.01E + 01	4.77E+02	5.71E+02	5.16E+02	5.15E+02	2.20E+01
	8.61E+02	1.84E + 03	1.28E+03	1.28E + 03	2.42E + 02	8.99E + 02	1.47E + 03	1.11E+03	1.12E+03	1.49E+02
	2.18E+03	2.79E+03	2.36E + 03	2.40E+03	1.51E+02	2.08E+03	2.82E+03	2.35E+03	2.36E+03	1.44E+02
Fun. N	Metaheuristics							-		
· «	MM_OED (Sallam et al.	llam et al. 2017)				CGO (present study)	: study)			
1 14	Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
G_1 0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.20E+08	3.31E+09	1.16E+09	9.40E+08	6.68E+08
G_2 1	1.00E+00	8.57E+06	8.87E+04	5.21E+05	1.40E + 06	3.41E+86	1.98E+102	6.39E+100	3.70E+94	2.96E+101
	2.45E-06	2.24E+00	1.93E - 02	1.46E - 01	3.52E-01	1.19E + 05	1.99E + 05	1.57E+05	1.56E+05	1.79E+04
G_4 9	9.70E+01	2.50E+02	1.08E + 02	1.18E + 02	2.78E + 01	5.00E+02	9.22E+02	6.81E + 02	6.73E + 02	1.00E+02
	L89E+01	5.17E+01	2.99E+01	3.01E + 01	5.68E + 00	4.57E+02	9.93E + 02	6.25E+02	6.07E + 02	1.11E+02
	8.79E-07	1.67E-02	3.80E - 04	1.48E - 03	3.00E - 03	2.70E+01	5.40E + 01	3.95E+01	3.89E + 01	5.34E+00
	1.17E+02	1.31E+02	1.24E+02	1.24E + 02	3.37E+00	1.09E+03	1.72E+03	1.37E+03	1.35E+03	1.45E+02
G_8 2	2.09E+01	4.38E+01	2.79E+01	2.91E+01	4.90E+00	4.34E+02	1.03E+03	6.16E + 02	5.76E+02	1.25E+02
G ₉ 0	0.00E+00	3.36E+00	6.33E - 01	9.58E - 01	8.54E - 01	2.20E+04	4.84E+04	2.92E+04	2.86E + 04	7.32E+03
	3.61E + 03	1.12E+04	6.64E + 03	6.80E + 03	1.61E+03	2.46E+04	3.01E + 04	2.82E+04	2.82E+04	1.24E+03
G_{11} 2	2.38E+02	5.94E+02	3.44E+02	3.52E+02	7.26E+01	4.43E+03	1.46E + 04	7.05E+03	6.76E+03	1.80E+03
G ₁₂ 2	2.80E+03	5.81E+03	4.11E+03	4.07E+03	6.60E+02	5.12E+07	3.85E+08	1.69E+08	1.63E+08	5.91E+07

Table 24 (continued)

Worst Median Mean Std 6.25E+02 3.15E+02 3.45E+02 9.41E+01 4.01E+02 2.64E+02 2.65E+02 9.41E+01 4.01E+02 2.72E+02 2.78E+02 9.41E+01 3.72E+02 2.72E+02 2.78E+02 5.62E+01 2.77E+03 9.90E+02 1.05E+03 4.61E+02 2.26E+03 1.05E+03 1.11E+03 4.81E+02 4.33E+02 2.80E+02 2.84E+02 5.79E+01 2.75E+02 2.07E+02 2.84E+02 3.69E+01 2.75E+02 2.07E+02 2.84E+02 3.59E+01 2.75E+02 2.58E+02 5.34E+02 3.59E+01 2.71E+02 2.58E+02 5.38E+02 6.53E+02 2.71E+02 2.58E+02 5.98E+02 6.53E+02 9.93E+03 5.84E+03 5.98E+02 1.1E+01 7.82E+02 7.01E+02 7.07E+02 4.01E+01 3.53E+03 3.27E+03 3.27E+03 3.53E+02 5.00E+02 5.00E+02 5.00E+02	Fun.	Metaheuristics	s								
Best Worst Median Mean Std 2.00E+02 6.25E+02 3.15E+02 3.45E+02 9.41E+01 1.82E+02 4.01E+02 2.64E+02 2.65E+02 4.11E+01 1.82E+02 3.72E+02 2.78E+02 5.62E+01 3.17E+02 2.77E+03 9.90E+02 1.05E+03 4.61E+02 2.64E+02 2.26E+03 1.05E+03 4.61E+02 2.64E+02 2.26E+03 1.05E+03 4.81E+02 1.82E+02 2.36E+02 2.79E+01 1.82E+02 4.33E+02 2.07E+02 2.84E+02 3.13E+02 2.75E+02 2.07E+02 3.59E+01 3.13E+02 2.71E+02 2.58E+02 6.53E+02 2.41E+02 2.71E+02 2.58E+02 6.36E+02 3.93E+03 5.98E+03 1.31E+03 5.65E+02 6.26E+02 7.01E+02 2.7E+02 6.15E+02 2.66E+02 2.70E+02 1.17E+01 8.90E+02 9.40E+02 9.17E+02 1.17E+02 8.90E+02		MM_OED (S					CGO (present study)	t study)			
2.00E+02 6.25E+02 3.15E+02 3.45E+02 9.41E+01 1.82E+02 4.01E+02 2.64E+02 2.65E+02 4.11E+01 1.41E+02 3.72E+02 2.72E+02 2.78E+02 5.62E+01 3.17E+02 2.77E+03 9.90E+02 1.05E+03 4.61E+02 2.64E+02 2.26E+03 1.05E+03 1.11E+03 4.81E+02 1.82E+02 2.26E+03 1.05E+03 1.11E+03 4.81E+02 1.82E+02 2.75E+02 2.07E+02 2.84E+02 5.79E+01 1.18E+02 2.75E+02 2.07E+02 2.03E+02 3.69E+01 3.13E+02 2.40E+03 8.96E+02 1.04E+03 5.34E+02 2.41E+02 2.71E+02 2.58E+02 6.53E+02 3.93E+03 9.93E+03 5.84E+03 1.11E+03 5.65E+02 6.26E+02 2.78E+02 1.17E+01 8.90E+02 9.93E+03 5.84E+03 1.12E+02 8.90E+02 9.40E+02 7.01E+02 1.17E+01 6.15E+02 7.82E+02 7.01E+02 1.12E+02 5.00E+02 5.00E+02 5.00E+02 4.		Best	Worst	Median	Mean	Std	Best	Worst	Median	Mean	Std
1.82E+02 4.01E+02 2.64E+02 2.65E+02 4.11E+01 1.41E+02 3.72E+02 2.72E+02 2.78E+02 5.62E+01 3.17E+02 2.77E+03 9.90E+02 1.05E+03 4.61E+02 2.64E+02 2.26E+03 1.05E+03 4.61E+02 5.79E+01 2.64E+02 2.26E+03 1.05E+03 4.81E+02 5.79E+01 1.82E+02 4.33E+02 2.80E+02 2.84E+02 5.79E+01 1.18E+02 2.75E+02 2.07E+02 2.03E+02 5.34E+02 3.13E+02 2.40E+03 8.96E+02 1.04E+03 5.34E+02 2.41E+02 2.71E+02 2.58E+02 6.53E+02 3.93E+03 5.98E+03 1.31E+03 5.65E+02 6.26E+02 5.98E+03 1.1E+03 5.65E+02 6.26E+02 5.98E+03 1.1E+03 8.90E+02 9.40E+02 9.17E+02 1.17E+01 8.90E+02 7.01E+02 7.07E+02 4.01E+01 8.90E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 4.98E+02 7.7E+03 </th <th>G_{13}</th> <th>2.00E+02</th> <th>6.25E+02</th> <th>3.15E+02</th> <th>3.45E+02</th> <th>9.41E+01</th> <th>7.90E+03</th> <th>5.11E+04</th> <th>2.12E+04</th> <th>1.93E+04</th> <th>9.06E+03</th>	G_{13}	2.00E+02	6.25E+02	3.15E+02	3.45E+02	9.41E+01	7.90E+03	5.11E+04	2.12E+04	1.93E+04	9.06E+03
1.41E+02 3.72E+02 2.72E+02 2.78E+02 5.62E+01 3.17E+02 2.77E+03 9.90E+02 1.05E+03 4.61E+02 2.64E+02 2.26E+03 1.05E+03 1.11E+03 4.61E+02 2.64E+02 2.26E+03 1.05E+03 1.11E+03 4.61E+02 1.82E+02 4.33E+02 2.80E+02 2.84E+02 5.79E+01 1.18E+02 2.75E+02 2.07E+02 2.03E+02 5.34E+02 3.13E+02 2.74E+02 2.58E+02 6.53E+02 2.41E+02 2.71E+02 2.58E+02 6.53E+02 3.93E+03 9.93E+03 5.84E+03 5.98E+03 1.31E+03 5.65E+02 6.26E+02 7.01E+02 9.17E+02 1.17E+01 8.90E+02 9.94E+03 5.98E+03 1.1E+03 5.06E+02 7.01E+02 7.07E+02 4.01E+01 6.15E+02 7.82E+02 7.07E+02 4.01E+01 8.90E+02 5.00E+02 5.00E+02 5.00E+02 4.98E+02 5.00E+02 5.00E+02 5.00E+02 4.98E+02 4.76E+00 7.24E+03 1.54E+03 1.7	G_{14}	1.82E+02	4.01E+02	2.64E+02	2.65E+02	4.11E+01	1.74E+05	1.51E+06	5.56E+05	5.25E+05	2.50E+05
3.17E+02 2.77E+03 9.90E+02 1.05E+03 4.61E+02 2.64E+02 2.26E+03 1.05E+03 1.11E+03 4.81E+02 1.82E+02 2.80E+02 2.84E+02 5.79E+01 1.18E+02 2.75E+02 2.80E+02 2.84E+02 5.79E+01 2.13E+02 2.40E+03 2.07E+02 2.03E+02 3.69E+01 3.13E+02 2.40E+02 2.38E+02 2.88E+02 2.38E+02 2.38E+03 2.3E+02 2.3E+02 2.3E+02 2.3E+03 2.3E+02 2.3E+02 2.3E+03 2.3E+02 2.3E+03 2.3	G_{15}	1.41E+02	3.72E+02	2.72E+02	2.78E + 02	5.62E + 01	1.02E+03	1.65E+04	3.81E+03	2.33E+03	3.40E+03
2.64E+02 2.26E+03 1.05E+03 1.11E+03 4.81E+02 1.82E+02 4.33E+02 2.80E+02 2.84E+02 5.79E+01 1.18E+02 2.75E+02 2.07E+02 2.03E+02 3.69E+01 3.13E+02 2.40E+03 8.96E+02 1.04E+03 5.34E+02 2.41E+02 2.71E+02 2.58E+02 6.53E+00 3.93E+03 9.93E+03 5.84E+03 1.31E+03 5.65E+02 6.26E+02 5.83E+02 5.84E+02 1.18E+01 8.90E+02 9.40E+02 9.17E+02 9.17E+02 1.17E+01 8.90E+02 9.40E+02 9.17E+02 9.17E+02 4.01E+01 8.90E+02 7.82E+02 7.07E+02 4.01E+01 8.90E+02 3.53E+03 3.27E+03 1.12E+02 9.10E+03 3.53E+03 3.27E+03 1.3E+02 1.01E+03 2.36E+03 1.54E+03 3.53E+02 2.24E+03 3.53E+03 1.77E+03	G_{16}	3.17E + 02	2.77E+03	9.90E + 02	1.05E+03	4.61E + 02	2.64E+03	7.48E+03	4.53E+03	4.40E+03	1.11E+03
1.82E+02 4.33E+02 2.80E+02 2.84E+02 5.79E+01 1.18E+02 2.75E+02 2.07E+02 2.03E+02 3.69E+01 3.13E+02 2.40E+03 8.96E+02 1.04E+03 5.34E+02 2.41E+02 2.71E+02 2.58E+02 2.58E+02 6.53E+00 3.93E+03 9.93E+03 5.84E+03 1.31E+03 5.65E+02 6.26E+02 5.83E+02 1.18E+01 8.90E+02 9.40E+02 9.17E+02 1.17E+01 6.15E+02 7.82E+02 7.07E+02 4.01E+01 3.10E+03 3.53E+03 3.27E+03 1.12E+02 5.00E+02 5.00E+02 5.00E+02 4.98E+02 1.3E-04 4.88E+02 5.00E+02 5.00E+02 4.98E+02 4.76E+00 1.01E+03 2.36E+03 1.54E+03 3.53E+02	G_{17}	2.64E+02	2.26E+03	1.05E+03	1.11E+03	4.81E+02	1.99E + 03	4.45E+03	3.17E+03	3.29E+03	6.00E + 02
1.18E+02 2.75E+02 2.07E+02 2.03E+02 3.69E+01 3.13E+02 2.40E+03 8.96E+02 1.04E+03 5.34E+02 2.41E+02 2.71E+02 2.58E+02 6.53E+00 3.93E+03 9.93E+03 5.84E+03 1.31E+03 5.65E+02 6.26E+02 5.84E+03 1.18E+01 8.90E+02 9.40E+02 9.17E+02 1.18E+01 8.90E+02 9.40E+02 9.17E+02 9.17E+02 6.15E+02 7.82E+02 7.01E+02 4.01E+01 3.10E+03 3.53E+03 3.27E+03 1.12E+02 5.00E+02 5.00E+02 5.00E+02 4.98E+02 4.76E+00 1.01E+03 2.36E+03 1.45E+03 3.53E+03 1.77E+03	G_{18}	1.82E + 02	4.33E+02	2.80E+02	2.84E + 02	5.79E+01	3.50E+05	1.77E+06	9.12E+05	8.39E+05	3.64E + 05
3.13E+02 2.40E+03 8.96E+02 1.04E+03 5.34E+02 2.41E+02 2.71E+02 2.58E+02 2.58E+02 6.53E+00 3.93E+03 9.93E+03 5.84E+03 5.98E+03 1.31E+03 5.65E+02 6.56E+02 5.84E+03 5.98E+03 1.31E+03 5.65E+02 6.26E+02 5.84E+02 1.18E+01 8.90E+02 9.40E+02 9.17E+02 9.17E+02 1.17E+01 6.15E+02 7.01E+02 7.07E+02 7.07E+02 1.17E+01 3.53E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+03 1.54E+03 3.53E+02 7.24E+03 3.53E+03 7.77E+03 7.7	G_{19}	1.18E + 02	2.75E+02	2.07E+02	2.03E+02	3.69E + 01	5.35E+02	1.31E+04	3.27E+03	1.95E+03	2.79E+03
2.41E+02 2.71E+02 2.58E+02 2.58E+02 6.53E+00 3.93E+03 9.93E+03 5.84E+03 5.98E+03 1.31E+03 5.65E+02 6.26E+02 5.84E+03 5.98E+03 1.31E+03 5.65E+02 6.26E+02 5.84E+02 5.84E+02 1.18E+01 8.90E+02 9.40E+02 9.17E+02 9.17E+02 1.17E+01 6.15E+02 7.82E+02 7.01E+02 7.07E+02 7.07E+02 4.01E+01 3.53E+03 3.27E+03 3.2	\mathbf{G}_{20}	3.13E + 02	2.40E+03	8.96E + 02	1.04E+03	5.34E+02	1.77E+03	4.45E+03	3.10E + 03	3.11E+03	5.87E+02
3.93E+03	G_{21}	2.41E+02	2.71E+02	2.58E+02	2.58E + 02	6.53E + 00	7.12E+02	1.32E+03	9.11E+02	8.74E+02	1.45E+02
5.65E+02 6.26E+02 5.83E+02 5.84E+02 1.18E+01 8.90E+02 9.40E+02 9.17E+02 9.17E+02 1.17E+01 6.15E+02 7.82E+02 7.01E+02 4.01E+01 3.10E+03 3.53E+03 3.27E+03 1.12E+02 5.00E+02 5.00E+02 5.00E+02 1.38E-04 4.88E+02 5.00E+02 5.00E+02 4.98E+02 4.76E+00 1.01E+03 2.36E+03 1.45E+03 1.54E+03 3.53E+02 2.34E+03 3.16E+03 2.41E+03 2.45E+03 1.77E+07	G_{22}	3.93E+03	9.93E+03	5.84E+03	5.98E + 03	1.31E+03	2.51E+04	3.09E+04	2.91E+04	2.93E+04	1.15E+03
8.90E+02 9.40E+02 9.17E+02 9.17E+02 1.17E+01 (6.15E+02 7.82E+02 7.01E+02 7.07E+02 4.01E+01 3.10E+03 3.53E+03 3.27E+03 3.27E+03 1.12E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 4.98E+02 4.76E+00 1.01E+03 2.36E+03 1.45E+03 1.54E+03 3.53E+02 2.24E+03 3.01E+03 2.41E+03 2.45E+03 1.77E+02	G_{23}	5.65E+02	6.26E + 02	5.83E+02	5.84E+02	1.18E + 01	8.98E+02	1.34E+03	1.11E+03	1.12E+03	1.02E+02
6.15E+02 7.82E+02 7.01E+02 7.07E+02 4.01E+01 3.10E+03 3.53E+03 3.27E+03 3.27E+03 1.12E+02 5.00E+02 5.00E+02 5.00E+02 1.38E-04 4.88E+02 5.00E+02 5.00E+02 4.98E+02 4.76E+00 1.01E+03 2.36E+03 1.45E+03 1.54E+03 3.53E+02 2.24E+03 3.01E+03 2.41E+03 2.45E+03 1.77E+02	G_{24}	8.90E + 02	9.40E + 02	9.17E+02	9.17E + 02	1.17E + 01	1.46E + 03	2.07E+03	1.78E+03	1.74E+03	1.52E+02
3.10E+03 3.53E+03 3.27E+03 1.12E+02 1.12E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02 1.38E-04 4.88E+02 5.00E+02 5.00E+02 4.98E+02 4.76E+00 1.01E+03 2.36E+03 1.45E+03 1.54E+03 3.53E+02 2.24E+03 3.01E+03 2.41E+03 2.45E+03 1.77E+02	G_{25}	6.15E + 02	7.82E+02	7.01E+02	7.07E+02	4.01E+01	9.96E+02	1.50E+03	1.28E+03	1.30E+03	1.12E+02
5.00E+02 5.00E+02 5.00E+02 5.00E+02 1.38E-04 4.88E+02 5.00E+02 4.98E+02 4.76E+00 1.01E+03 2.36E+03 1.45E+03 1.54E+03 3.53E+02 2.24E+03 3.01E+03 2.41E+03 2.45E+03 1.77E+02	G_{26}	3.10E + 03	3.53E+03	3.27E+03	3.27E+03	1.12E + 02	8.30E + 03	1.97E+04	1.19E + 04	1.12E+04	2.53E+03
4.88E+02 5.00E+02 5.00E+02 4.98E+02 4.76E+00 1.01E+03 2.36E+03 1.45E+03 1.54E+03 3.53E+02 2.34E+03 3.01E+03 2.41E+03 2.45E+03 1.77E+02	G_{27}	5.00E+02	5.00E+02	5.00E+02	5.00E + 02	1.38E - 04	7.60E+02	1.27E+03	1.00E+03	9.84E + 02	1.13E+02
1.01E+03 2.36E+03 1.45E+03 1.54E+03 3.53E+02 3.24E+03 3.01E+03 2.41E+03 2.45E+03 1.77E+02	G_{28}	4.88E+02	5.00E+02	5.00E+02	4.98E + 02	4.76E+00	8.46E + 02	1.51E+03	1.05E+03	1.04E+03	1.03E+02
3 01F±03 2 41F±03 2 45F±03 1 77F±02	G_{29}	1.01E+03	2.36E+03	1.45E+03	1.54E + 03	3.53E + 02	3.10E + 03	5.71E+03	4.22E+03	4.32E+03	5.96E+02
201717.1 C01717.2 C01717.2 C01717.0	G_{30}	2.24E+03	3.01E+03	2.41E+03	2.45E+03	1.77E+02	2.05E+05	2.05E+06	6.46E+05	6.08E+05	3.24E+05

Fig. 7 Mathematical process for T_0 assessment

```
Procedure T_0 Assessment
x=0.55;
for i=1:1000000
x=x+x;
x=x/2;
x=x\times x;
x=sqrt(x);
x=log(x);
x=exp(x);
x=x/(x+2);
end
end procedure
```

9 Computational cost and complexity analysis

In order to evaluate the overall performance of a new optimization algorithm from different points of view, the computational cost and complexity analysis can be conducted. In computer sciences, the "Big O notation" is a mathematical notation which represents the required running time and memory space of an algorithm by considering the growth rate in dealing with different inputs.

For the presented CGO algorithm, the random selection process in the initialization phase of the algorithm have computational complexity of O(NP*D) in which the NP is the initial population size related to the number of initial eligible seeds and D is the dimension of the problem. The computational complexity of the objective function evaluation in the initialization phase of the algorithm is calculated as O(NP)*O(F(x)) in which the F(x) demonstrates the objective function value. After the initialization phase, the main loop of the algorithm is started based on the previously determined maximum number of iterations (MaxIter). By consideration of a worst case scenario, each line has a computational complexity of MaxIter in the main loop of the algorithm. In this loop, four new seeds are created for each of the eligible seeds so the position updating process in this matter has computational complexity of O(MaxIter*NP*D*4). In addition, the objective function evaluation in the main loop has computational complexity of O(MaxIter*NP*D*4)*O(F(x)).

It should be noted that the CGO algorithm is a parameter-free metaheuristic approach in which there is no any internal parameter to be defined throughout the optimization process. In other words, one of the most remarkable aspects of this algorithm is its parameter-free framework in which the exploration and exploitation phases of the algorithm are adjusted through the main loop of the algorithm. In addition, the position updating process in this algorithm is conducted in four separate phases in which the global and local searching of the search space is satisfied in a more sensitive way which results in excellent responses.

 Table 25
 Computational complexity of the CGO method alongside other metaheuristics

 Dim. Metaheuristics

	EBO wi 2017)	ith CMAI	EBO with CMAR (Kumar et 2017)	et al.	LSHADI 2017)	LSHADE-cnEpSin (Awad et al. 2017)	in (Awad		MM_OED	MM_OED (Sallam et al. 2017)	al. 2017)	-	CGO (pres	CGO (present study)		
	TO	T1	\hat{T}_2	$\frac{\hat{T}_2 - T1}{T0}$	TO) T1 \hat{T}_2	$\hat{\mathbb{T}}_2$	$\frac{\hat{T}_2 - T1}{T0}$	TO	T1	\hat{T}_2	$\frac{\hat{T}_2 - T1}{T0}$	TO	T1	\hat{T}_2 1	$\frac{\hat{T}_2 - T1}{T0}$
0	0.0413	0.8218	0.0413 0.8218 7.5794	163.6223	0.1093	0.8391	2.1835	12.30009	2.157784	0.146416	6.704923	163.6223 0.1093 0.8391 2.1835 12.30009 2.157784 0.146416 6.704923 3.039417 0.022579 0.13228	0.022579	0.13228	3.168108 134.4536	34.453
0		1.1507	1.1507 6.591	131.7264		1.0570	3.6724	1.0570 3.6724 23.92864		0.592848	20.84485	9.385555		0.539586	4.438477 172.6778	72.677
		1.8792	.8792 8.7886	167.2978		1.4338		3.7066 20.79414		1.606688	38.51665	17.10549		1.251754	5.628126 193.8249	93.824
2		5.6887	5.6887 18.4969	310.1259		3.0237	7.7564	3.0237 7.7564 43.30009		5.776893	5.776893 72.62159 15.80554	15.80554		5.310247	5.310247 10.65569 236.7441	36.744

10 Conclusion

This paper develops Chaos Game Optimization algorithm based on some principles of chaos theory. The mathematical model of this algorithm is formulated based on chaos game methodology by considering the eligible configurations of fractals alongside the fractals self-similarity issues. Four groups of mathematical test functions have been selected in order to evaluate the performance of the new algorithm with a total number of six different metaheuristic algorithms. A complete statistical analysis is conducted in order to provide a valid judgment about the performance of the new algorithm. Some of the important results of this paper is as follows:

- The CGO algorithm is superior to other metaheuristics in converging to the global bests of the mathematical functions based on the selected tolerance.
- The results of the K-S test demonstrated that the maximum difference between the CGO algorithm and the other metaheuristics are about FA in most of the cases.
- The results of the M–W test showed that the summation of the ranks for the CGO algorithm in most of the cases are lower than the other metaheuristics.
- The results of the W test showed that the mean of the ranks for the CGO algorithm in most of the cases are lower than the other metaheuristics.
- The results of the K–W test proved that the CGO algorithm is successful in outranking the other metaheuristics for 2D functions in all of the cases such as the minimum, mean and standard deviation values except for the number of function evaluations.
- The results of the K-W test showed that the CGO algorithm has the first ranking in the minimum, mean and function evaluation values of the 50D test functions while the SOS outranks the CGO in the standard deviation values. For the 100D functions, SOS and WOA outranks the CGO in standard deviation and function evaluation respectively.
- The overall comparing of the CGO and the other metaheuristics considering all of the 2D, 50D and the 100D test functions demonstrate that the CGO the best algorithm in all of the cases.
- The comparative results of the CGO algorithm in dealing with the test functions provided by the CEC 2017 competition demonstrates that CGO is capable of providing very acceptable results in dealing with these test functions with different dimensions comparing to the other equipped algorithms.

For the future challenges, the different applications of the presented algorithm can be considered based on the fact that the capability of this algorithm should be checked in dealing with difficult other problems. Besides, the new configurations of this algorithm can be considered based on the fact that the researches may have different opinions about the presented methodology of the CGO.

Acknowledgements This research is supported by a research grant of the University of Tabriz (Number: 1105).

Funding This study was funded by the University of Tabriz (Grant Number 1105).

Compliance with ethical standards

Conflict of interest Authors have received research grant from the University of Tabriz (Grant Number 1105).

Appendix

Matlab code for the CGO algorithm.

```
% Chaos Game Optimization (CGO) source codes version 1.0
% Programmers and Authors: Siamak Talatahari & Mahdi Azizi
% E-mails: siamak.talat@gmail.com & mehdi.azizi875@gmail.com
clc; clear all;
%% Get Required Problem Information
ObjFuncName = @(x) Sphere(x); % @Cost Function
Var Number = 10; % Number of variables;
LB = -10 *ones(1, Var_Number); % Lower bound of variable;
UB = 10 *ones(1, Var Number); % Upper bound of variable;
%% Get Required Algorithm Parameters
MaxIter = 100; % Maximum number of generations;
Seed Number = 25; % Maximum number of initial eligible points;
%% Outputs:
% BestSeed (Best solution);
% BestFitness (final Best fitness)
% Conv History (Convergence History Curve)
%% Initialization
for i=1:Seed Number
    % Initializing the Position of initial eligible points
    Seed(i,:) = unifrnd(LB, UB);
    % Initializing the fitness of initial eligible points
    Fun eval(i,:)=feval(ObjFuncName, Seed(i,:));
end
%% Search Process of the CGO
for Iter=1:MaxIter
    for i=1:Seed Number
        % Update the best Seed
        [~,idbest]=min(Fun eval);
        BestSeed=Seed(idbest,:);
        %% Generate New Solutions
        % Random Numbers
        I=randi([1,2],1,12); % For Beta and Gamma
        Ir=randi([0,1],1,5); % For Alpha
        % Random Groups
        RandGroupNumber=randperm(Seed Number, 1);
        RandGroup=randperm(Seed Number, RandGroupNumber);
        % Mean of Random Group
        MeanGroup=mean(Seed(RandGroup,:)).*(length(RandGroup)~=1)...
            +Seed (RandGroup (1,1),:) * (length (RandGroup) ==1);
        % New Seeds
        Alpha(1,:)=rand(1, Var Number);
        Alpha(2,:) = 2*rand(1, Var Number) - 1;
        Alpha(3,:) = (Ir(1) * rand(1, Var Number) + 1);
        Alpha(4,:) = (Ir(2)*rand(1,Var_Number)+(~Ir(2)));
        ii=randi([1,4],1,3);
        SelectedAlpha= Alpha(ii,:);
        NewSeed(1,:) = Seed(i,:) + SelectedAlpha(1,:).*(I(1)*BestSeed-
I(2) *MeanGroup);
        NewSeed(2,:)=BestSeed+SelectedAlpha(2,:).*(I(3)*MeanGroup-
I(4) *Seed(i,:));
```



```
NewSeed(3,:)=MeanGroup+SelectedAlpha(3,:).*(I(5)*BestSeed-
I(6) *Seed(i,:));
        NewSeed(4,:)=unifrnd(LB,UB);
        for j=1:4
            % Checking/Updating the boundary limits for Seeds
            NewSeed(j,:)=bound(NewSeed(j,:),UB,LB);
            % Evaluating New Solutions
            Fun evalNew(j,:)=feval(ObjFuncName, NewSeed(j,:));
        Seed=[Seed; NewSeed];
        Fun eval=[Fun eval; Fun evalNew];
    end
    % Update the best Seed
    [Fun eval, SortOrder] = sort(Fun eval);
    Seed=Seed (SortOrder,:);
    [BestFitness,idbest]=min(Fun eval);
    BestSeed=Seed(idbest,:);
    Seed=Seed(1:Seed Number,:);
    Fun eval=Fun eval(1:Seed Number,:);
    % Store Best Cost Ever Found
    Conv History(Iter) = BestFitness;
    % Show Iteration Information
    disp(['Iteration ' num2str(Iter) ': Best Cost = '
num2str(Conv History(Iter))]);
end
%% Boundary Handling
function x=bound(x,UB,LB)
x(x>UB)=UB(x>UB); x(x<LB)=LB(x<LB);
end
%% Objective Function
function z=Sphere(x)
    z=sum(x.^2);
```

References

Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216(9):2687–2699

Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38(10):13170–13180

Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734

Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. IEEE, pp 4661–4667

Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Technical report, Nanyang Technological University, Singapore

Awad NH, Ali MZ, Suganthan PN (2017) Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 372–379

Azizi M, Ejlali RG, Ghasemi SAM, Talatahari S (2019a) Upgraded whale optimization algorithm for fuzzy logic based vibration control of nonlinear steel structure. Eng Struct 192:53–70. https://doi. org/10.1016/j.engstruct.2019.05.007

- Azizi M, Ghasemi SAM, Ejlali RG, Talatahari S (2019b) Optimal tuning of fuzzy parameters for structural motion control using multiverse optimizer. Struct Des Tall Spec Build 28(13):e1652. https://doi.org/10.1002/tal.1652
- Azizi M, Ghasemi SAM, Ejlali RG, Talatahari S (2020) Optimum design of fuzzy controller using hybrid ant lion optimizer and Jaya algorithm. Artif Intell Rev 53(3):1553–1584. https://doi.org/10.1007/s1046 2-019-09713-8
- Basturk B (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, Indianapolis, IN, USA, 2006
- Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52 Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112
- Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Pacific Rim international conference on artificial intelligence. Springer, Berlin, pp. 854–858
- Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41
- Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: International conference on natural computation. Springer, Berlin, pp 264–273
- Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43
- Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37(2):106-111 Formato RA (2007) Central force optimization. Prog Electromagn Res 77:425-491
- Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845
- Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013a) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98
- Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013b) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18(2):327–340
- García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization. J Heuristics 15(6):617
- Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68
- Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549
- Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18
- Hatamlou A (2013) Black hole: A new heuristic optimization approach for data clustering. Inf Sci 222:175–184
- He X, Huang J, Rao Y, Gao L (2016) Chaotic teaching-learning-based optimization with Lévy flight for global numerical optimization. Comput Intell Neurosci 2016:1–12
- Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge
- Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. arXiv preprint arXiv:1308.4008
- Jamil M, Yang XS, Zepernick HJ (2013) Test functions for global optimization: a comprehensive survey. In: Swarm intelligence and bio-inspired computation. Elsevier, Amsterdam, pp 193–222
- Jordehi AR (2014) A chaotic-based big bang-big crunch algorithm for solving global optimisation problems. Neural Comput Appl 25(6):1329–1335
- Kaedi M (2017) Fractal-based algorithm: a new metaheuristic method for continuous optimization. Int J Artif Intell 15(1):76–92
- Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5(3):275-284
- Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294
- Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27
- Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3-4):267-289

- Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M (2014) Chaotic swarming of particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147
- Kaveh A, Dadras A, Montazeran AH (2018) Chaotic enhanced colliding bodies algorithms for size optimization of truss structures. Acta Mech 229(7):2883–2907
- Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680
- Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, Cambridge
- Kumar A, Misra RK, Singh D (2017) Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 1835–1842
- Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings 2005 IEEE swarm intelligence symposium, 2005. SIS 2005. IEEE, pp 68–75
- Liang F, Xiang JL, Zhao N (2006) Chaos-based differential evolution algorithm. Comput Simul 10:2378 Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249
- Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133
- Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
- Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46-61
- Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513
- Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191
- Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv:1208.2214
- Momin JAMIL, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. J Math Model Numer Optim 4(2):150–194
- Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P report, 826, 1989
- Nakib A, Ouchraa S, Shvai N, Souquet L, Talbi EG (2017) Deterministic metaheuristic based on fractal decomposition for large-scale optimization. Appl Soft Comput 61:468–485
- Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical note. Manufacturing Engineering Centre, Cardiff University, Cardiff
- Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315
- Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248
- Rodrigues EO, Liatsis P, Satoru L, Conci A (2018) Fractal triangular search: a metaheuristic for image content search. IET Image Proc 12(8):1475–1484
- Saha S, Mukherjee V (2018) A novel chaos-integrated symbiotic organisms search algorithm for global optimization. Soft Comput 22(11):3797–3816
- Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl Based Syst 75:1-18
- Sallam KM, Elsayed SM, Sarker RA, Essam DL (2017) Multi-method based orthogonal experimental design algorithm for solving CEC2017 competition problems. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 1350–1357
- Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48(10):3462–3481
- Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6(1–2):132–140
- Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702-713
- Sörensen K, Sevaux M, Glover F (2018) A history of metaheuristics. In: Martí R, Pardalos P, Resende M (eds) Handbook of heuristics. Springer, Berlin, pp 1–18
- Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359
- Talatahari S, Azizi M (2020) Optimal design of real-size building structures using quantum-behaved developed swarm optimizer. Struct Des Tall Spec Build. https://doi.org/10.1002/tal.1747
- Talatahari S, Kaveh A, Sheikholeslami R (2011) An efficient charged system search using chaos. Int J Optim Civil Eng 1(2):305–332

Talatahari S, Azar BF, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17(3):1312–1319

Talatahari S, Motamedi P, Farahmand Azar B, Azizi M (2019) Tribe-charged system search for parameter configuration of nonlinear systems with large search domains. Eng Optim. https://doi.org/10.1080/0305215X.2019.1696786

Tayarani-N MH, Akbarzadeh-T MR (2008) Magnetic optimization algorithms a new synthesis. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, pp 2659–2664

Wang L, Zhong Y (2015) Cuckoo search algorithm with chaotic maps. Math Probl Eng 2015:1-14

Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17-34

Yang XS (2010a) Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

Yang XS (2010b) Test problems in optimization. arXiv preprint arXiv:1008.0549

Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214

Yu H, Yu Y, Liu Y, Wang Y, Gao S (2016) Chaotic grey wolf optimization. In: 2016 International conference on progress in informatics and computing (PIC). IEEE, pp 103–113

Zaldivar D, Morales B, Rodriguez A, Valdivia-G A, Cuevas E, Perez-Cisneros M (2018) A novel bioinspired optimization model based on Yellow Saddle Goatfish behavior. Biosystems 174:1–21

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

