NGUYÊN HÀM VÀ TÍCH PHÂN

Bài 1. NGUYÊN HÀM

A. TÓM TẮT LÝ THUYẾT

B. KIẾN THỰC CẦN NẮM

1. Định nghĩa nguyên hàm

Cho hàm số f(x) xác định trên khoảng K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu F'(x) = f(x) với mọi $x \in K$.

Nhận xét: Nếu F(x) là một nguyên hàm của f(x) thì F(x) + C, $(C \in \mathbb{R})$ cũng là nguyên hàm của f(x).

Ký hiệu $\int f(x) dx = F(x) + C$.

2. Một số tính chất của nguyên hàm

3. Một số nguyên hàm cơ bản

Nguyên hàm của hàm số cơ bản	Nguyên hàm mở rộng
$\int a \cdot \mathrm{d}x = ax + C, a \in \mathbb{R}$	
$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$	$\int (ax+b)^{\alpha} dx = \frac{1}{a} \cdot \frac{(ax+b)^{\alpha+1}}{\alpha+1} + C$
$\int \frac{\mathrm{d}x}{x} = \ln x + C, x \neq 0$	$\int \frac{\mathrm{d}x}{ax+b} = \frac{1}{a} \cdot \ln ax+b + C$ $\int \frac{\mathrm{d}x}{\sqrt{ax+b}} = \frac{2}{a} \sqrt{ax+b} + C, x > 0$
$\int \frac{\mathrm{d}x}{\sqrt{x}} = 2\sqrt{x} + C, x > 0$	$\int \frac{\mathrm{d}x}{\sqrt{ax+b}} = \frac{2}{a}\sqrt{ax+b} + C, x > 0$
$\int \frac{\mathrm{d}x}{x^2} = -\frac{1}{x} + C, x \neq 0$	$\int \frac{\mathrm{d}x}{(ax+b)^2} = -\frac{1}{a} \cdot \frac{1}{ax+b} + C$
$\int \frac{\mathrm{d}x}{x^{\alpha}} = -\frac{1}{(\alpha - 1)x^{\alpha - 1}} + C$	$\int \frac{\mathrm{d}x}{(ax+b)^{\alpha}} = -\frac{1}{a} \cdot \frac{1}{(\alpha-1)} \cdot (ax+b)^{\alpha-1} + C$ $\int e^{ax+b} \mathrm{d}x = \frac{1}{a} \cdot e^{ax+b} + C$
$\int e^x \mathrm{d}x = e^x + C$	$\int e^{ax+b} dx = \frac{1}{a} \cdot e^{ax+b} + C$
$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C$	$\int a^{\alpha x+\beta} dx = \frac{1}{\alpha} \cdot \frac{a^{\alpha x+\beta}}{\ln a} + C$
$\int \cos x \mathrm{d}x = \sin x + C$	$\int \cos(ax+b) \mathrm{d}x = \frac{1}{a} \cdot \sin(ax+b) + C$
$\int \sin x \mathrm{d}x = -\cos x + C$	$\int \sin(ax+b) \mathrm{d}x = -\frac{1}{a} \cdot \cos(ax+b) + C$
$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$	$\int \frac{1}{\cos^2(ax+b)} \mathrm{d}x = \frac{1}{a} \cdot \tan(ax+b) + C$
$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$	$\int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cdot \cot(ax+b) + C$

Nhận xét: $[F(ax+b)]' = af(ax+b) \Rightarrow \int f(ax+b) dx = \frac{1}{a}F(ax+b) + C.$

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK	NOTE	7
QUIUN	\mathbf{I}	5

ລແ	IICK	NC	
711	ш. к	MC	ЯΓ

C. PHÂN LOAI VÀ PHƯƠNG PHÁP GIẢI BÀI TÂP

🗁 Dạng 1. Sử dụng định nghĩa nguyên hàm và bảng nguyên hàm

1. Các ví du

VÍ DU 1. Tìm họ nguyên hàm của các hàm số sau

a)
$$f(x) = 4x^3 + x + 5$$
.

b)
$$f(x) = 3x^2 - 2x$$
.

c)
$$f(x) = \frac{1}{x^5} + x^2$$
.

d)
$$f(x) = \frac{1}{x^3} + x^2 - 1$$
.

VÍ DU 2. Tính

a)
$$I = \int (x^2 - 3x)(x+1)dx$$
. b) $I = \int (x-1)(x^2+2)dx$. c) $I = \int (2x+1)^5 dx$

d)
$$I = \int (2x - 10)^{2020} dx$$
. e) $I = \int \left(3x^2 + \frac{1}{x} - 2\right) dx$. f) $I = \int \left(3x^2 - \frac{2}{x} - \frac{1}{x^2}\right) dx$.

g)
$$I = \int \frac{x^2 - 3x + 1}{x} dx$$
. h) $I = \int \frac{2x^2 - 6x + 3}{x} dx$. i) $I = \int \frac{1}{2x - 1} dx$.

j)
$$I = \int \frac{2}{3 - 4x} dx$$
. k) $I = \int \frac{1}{(2x - 1)^2} dx$. l) $I = \int \left[\frac{12}{(x - 1)^2} + \frac{2}{2x - 3} \right] dx$.

m)
$$I = \int \frac{3}{4x^2 + 4x + 1} dx$$
. n) $I = \int \frac{4}{x^2 + 6x + 9} dx$. o) (*) $I = \int \frac{2x - 1}{(x + 1)^2} dx$.

VÍ DU 3. Tìm họ nguyên hàm của các hàm số sau

a)
$$I = \int (\sin x - \cos x) dx$$
. b) $I = \int (3\cos x - 2\sin x) dx$. c) $I = \int (2\sin 2x - 3\cos 6x) dx$.

d)
$$I = \int \sin x \cos x \, dx$$
. e) $I = \int \cos \left(\frac{x}{2} + \frac{\pi}{6}\right) \, dx$. f) $I = \int \sin \left(\frac{\pi}{3} - \frac{x}{3}\right) \, dx$.

g)
$$I = \int (\sin x - \cos x)^2 dx$$
. h) $I = \int (\cos x + \sin x)^2 dx$.

VÍ DU 4. Tìm họ nguyên hàm của các hàm số sau

a)
$$I = \int \frac{1}{\sin^2 x} dx$$
. b) $I = \int \frac{6}{\cos^2 3x} dx$.

c)
$$I = \int (\tan x + \cot x)^2 dx$$
.

d)
$$I = \int \sin^2 x \, dx$$
. e) $I = \int \cos^2 2x \, dx$.

e)
$$I = \int \cos^2 2x \, \mathrm{d}x$$

f)
$$I = \int \sin 4x \cos x \, dx$$
.

VÍ DU 5. Tìm họ nguyên hàm của các hàm số sau

a)
$$I = \int e^{2x} dx$$
. b) $I = \int e^{1-2x} dx$.

b)
$$I = \int e^{1-2x} dx$$

c)
$$I = \int (2x - e^{-x}) dx$$
.

d)
$$I = \int e^x (1 - 3e^{-2x}) dx$$
. e) $I = \int (3 - e^x)^2 dx$.

f)
$$I = \int (2 + e^{3x})^2 dx$$
.

g)
$$I = \int 2^{2x+1} \, \mathrm{d}x$$
.

h)
$$I = \int 4^{1-2x} \, \mathrm{d}x$$
.

i)
$$I = \int 3^x \cdot 5^x \, \mathrm{d}x$$
.

j)
$$I = \int 4^x \cdot 3^{x-1} dx$$
. k) $I = \int \frac{dx}{e^{2-5x}}$.

$$k) I = \int \frac{\mathrm{d}x}{\mathrm{e}^{2-5x}}$$

$$I) \quad I = \int \frac{\mathrm{d}x}{2^{3-2x}}.$$

m)
$$I = \int \frac{4^{x+1} \cdot 3^{x-1}}{2^x} dx$$
. n) $I = \int \frac{4^{2x-1} \cdot 6^{x-1}}{3^x} dx$.

$$I = \int \frac{4^{2x-1} \cdot 6^{x-1}}{3^x} \, \mathrm{d}x$$

2. Câu hỏi trắc nghiệm

CÂU 1. Cho hàm số F(x) là một nguyên hàm của hàm số f(x) trên K. Các mệnh đề sau,

$$\mathbf{B}\left(\int f(x)\,\mathrm{d}x\right)' = f(x).$$

$$\bigcirc \left(\int f(x) \, \mathrm{d}x \right)' = f'(x).$$

CÂU 2. Họ tất cả các nguyên hàm của hàm số f(x) = 2x + 6 là

$$(\mathbf{A})x^2 + C.$$

(B)
$$x^2 + 6x + C$$
.

$$(\mathbf{C})2x^2 + C.$$

$$(\mathbf{D})2x^2 + 6x + C.$$

CÂU 3. $\int x^2 dx$ bằng

$$\mathbf{A}$$
 $2x + C$.

B
$$\frac{1}{2}x^3 + C$$
.

$$\mathbf{C}$$
 $x^3 + C$.

$$(\mathbf{D})3x^3 + C.$$

B
$$\frac{x^3}{2} + x + C$$

$$(\mathbf{C})6x + C$$

CÂU 5. Nguyên hàm của hàm số $f(x) = x^3 + x$ là

B
$$3x^2 + 1 + C$$
.

$$(\mathbf{C})x^3 + x + C.$$

CÂU 6. Nguyên hàm của hàm số $f(x) = x^4 + x^2$ là

$$(A) \frac{1}{5}x^5 + \frac{1}{3}x^3 + C. \quad (B) x^4 + x^2 + C. \quad (C) x^5 + x^3 + C.$$

$$\mathbf{C}$$
 $x^5 + x^3 + C$

CÂU 7. Hàm số nào trong các hàm số sau đây không là nguyên hàm của hàm số $y=x^{2022}$?

$$\mathbf{A} \frac{x^{2023}}{2023} + 1.$$

B
$$\frac{x^{2023}}{2023}$$

CÂU 8. Nguyên hàm của hàm số $f(x) = \frac{1}{3}x^3 - 2x^2 + x - 2024$ là

$$\mathbf{A} \frac{1}{12}x^4 - \frac{2}{3}x^3 + \frac{x^2}{2} + C$$

$$\begin{array}{c} \textbf{(B)} \, \frac{1}{9} x^4 - \frac{2}{3} x^3 + \frac{x^2}{2} - 2024 x + C. \\ \textbf{(D)} \, \frac{1}{9} x^4 + \frac{2}{3} x^3 - \frac{x^2}{2} - 2024 x + C. \end{array}$$

CÂU 9. Tìm nguyên F(x) của hàm số f(x) = (x + 1)(x + 2)(x + 3)?

$$\mathbf{A}F(x) = \frac{x^4}{4} - 6x^3 + \frac{11}{2}x^2 - 6x + C.$$

$$\mathbf{B}F(x) = x^4 + 6x^3 + 11x^2 + 6x + C.$$

$$\mathbf{C}$$
 $F(x) = \frac{x^4}{4} + 2x^3 + \frac{11}{2}x^2 + 6x + C.$

CÂU 10. Tìm nguyên hàm của hàm số $f(x) = (5x+3)^5$.

$$(\mathbf{A})(5x+3)^6 + C.$$
 $(\mathbf{B})(5x+3)^4 + C.$

B
$$(5x+3)^4+C$$

$$\bigcirc \frac{(5x+3)^6}{30} + C$$

$$(5x+3)^6 + C.$$
 $(5x+3)^4 + C.$

CÂU 11. Tìm nguyên hàm của hàm số $f(x) = x^2 + \frac{2}{x^2}$.

(A)
$$\int f(x) dx = \frac{x^3}{3} + \frac{1}{x} + C$$
.

B
$$\int f(x) dx = \frac{x^3}{3} - \frac{2}{x} + C.$$

$$\mathbf{C} \int f(x) \, \mathrm{d}x = \frac{x^3}{3} - \frac{1}{x} + C.$$

CÂU 12. Tính $\int \sqrt{x\sqrt{x\sqrt{x}}} dx$.

B
$$\frac{8}{15}x\sqrt[15]{x^7} + C$$

$$\bigcirc \frac{8}{15}x \sqrt[15]{x} + C$$

$$\bigcirc \frac{4}{15}x \sqrt[15]{x} + C.$$

CÂU 13. Tính $\int \frac{\sqrt{x} - 2\sqrt[3]{x^2} + 1}{\sqrt[4]{x}} dx$.

$$\mathbf{\hat{A}} x \sqrt[5]{x} - 2x \sqrt[17]{x^5} + \sqrt[4]{x^3} + C.$$

B
$$\frac{4}{5}x\sqrt[5]{x} - \frac{24}{17}x\sqrt[17]{x^5} + \frac{4}{2}\sqrt[4]{x^3} + C$$

$$\mathbf{C}$$
 $x\sqrt[5]{x} - \frac{24}{17}x\sqrt[17]{x^5} + \sqrt[4]{x^3} + C.$

CÂU 14. Cho hàm số $f(x) = x^2 + 4$. Mệnh đề nào sau đây đúng?

QUICK NOTE

(C)	$\int f(x) \mathrm{d}x =$	$\frac{x^3}{2}$	+4x+C.
	3 ()	3	

CÂU 15. Trên khoảng $(0; +\infty)$, cho hàm số $f(x) = x^{\frac{3}{2}}$. Mệnh đề nào sau đây đúng?

CÂU 16. Cho hàm số $f(x) = \frac{x^4 + 2}{x^2}$. Mệnh đề nào sau đây đúng?

(A)
$$\int f(x) dx = \frac{x^3}{3} - \frac{1}{x} + C$$
.

B
$$\int_{C} f(x) dx = \frac{x^3}{3} + \frac{2}{x} + C.$$

$$\mathbf{C} \int f(x) \, \mathrm{d}x = \int \left(x^2 + \frac{2}{x^2}\right) \, \mathrm{d}x.$$

CÂU 17. Các mệnh đề sau đây đúng hay sai

Mệnh đề	Ð	S
a) $\int (\sqrt[3]{x^2} + x - 2) dx = \frac{3}{5} \sqrt[3]{x^5} + \frac{1}{2}x^2 - 2x + C.$		
b) $\int \frac{1}{2023x^{2024}} \mathrm{d}x = \frac{1}{2023^2x^{2023}} + C.$		
c) $\int (2x - 2024)^2 dx = x - 1012 + C$.		
d) $\int \left(\frac{1}{4}x^4 + 4x^3\right) dx = \frac{1}{20}x^5 + \frac{4}{3}x^4 + C.$		

CÂU 18. Cho các mệnh đề sau đây

Mệnh đề	Ð	S
a) $F(x) = \frac{x^4}{4} - \frac{3}{2}x^2 + \ln x + C$ là nguyên hàm của hàm số $f(x) = \frac{x^4}{4} - \frac{3}{2}x^2 + \ln x + C$ là nguyên hàm của hàm số $f(x) = \frac{x^4}{4} - \frac{3}{2}x^2 + \ln x + C$		
$x^3 - 3x + \frac{1}{x}$.		
b) $F(x) = \frac{(5x+3)^6}{6} + C$ là nguyên hàm của hàm số $f(x) = (5x+3)^5$.		
c) $F(x) = \frac{3}{2}x\sqrt{x} + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C$ là nguyên hàm của hàm số		
$f(x) = \sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x}.$		
d) $F(x) = \frac{1}{3}x^3 - 2024x + C$ là nguyên hàm của hàm số $f(x) =$		
$\frac{x^3 - 2024x}{}$.		
\perp		

CÂU 19. Hệ số của x^2 trong nguyên hàm F(x) của hàm số $f(x) = \frac{2}{\sqrt{x}} + 3^x + 3x - 2$ là KQ:

CÂU 20. Hệ số của x^3 trong nguyên hàm F(x) của hàm số $f(x)=mx^3-3x^2+\frac{4m}{x^3}+\frac{5}{2x}-7m$ (m là tham số) là

KQ:

CÂU 21. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{1}{\sqrt{x}} - \frac{2}{\sqrt[3]{x}}$. Tổng hệ số của biến x là

KQ:

CÂU 22. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{(x^2 - 1)^2}{x^2}$. Tổng hệ số của bậc 3 và bậc 1 là (làm tròn đến hàng phần chục).

KQ:				
-----	--	--	--	--

CÂU 23. Tính $\int \left(\frac{(1-x)^3}{\sqrt[3]{x}}\right) dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến hàng phần trăm).

	VNPmath - 0962940819 V
KQ:	QUICK NOTE
CÂU 24. Tính $\int \left(\sqrt[3]{x^2} - \sqrt[4]{x^3} + \sqrt[5]{x^4}\right) dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến	
hàng phần trăm). KQ:	
CÂU 25. Tính $\int (\sqrt{x} + 1) (x - \sqrt{x} + 1) dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến hàng phần chục).	
KQ:	
CÂU 26. Tính $\int \left(2\sqrt{x} - \frac{3}{\sqrt[3]{x}}\right) dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến hàng phần chục).	
KQ:	
CÂU 27. Tính $\int \frac{1}{\sqrt{2x} + \sqrt{3x}} dx = a \left(\sqrt{b} - \sqrt{c} \right) \sqrt{x}$. Giá trị của tổng $a + b + c$ là	
KQ: $$ $ \text{CÂU 28. Tính } \int \frac{1}{\sqrt{5x} - \sqrt{3x}} \mathrm{d}x = \left(\sqrt{a} + \sqrt{b}\right) \sqrt{x} + C. \text{ Giá trị } a + b \text{ bằng} $	
$\int \sqrt{5x} - \sqrt{3x} dx = (\sqrt{u} + \sqrt{v}) \sqrt{x} + C. \text{ Glastiff } u + v \text{ bands}$ KQ:	
CÂU 29. Tính $\int (x^2-1)^3 dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến hàng phần	
chục). KQ:	
CÂU 30. Tính $\int (2-x^2)^4 dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến hàng phần chục).	
KQ:	
CÂU 31. Tính $\int (x-\sqrt[3]{x})^2 dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến hàng phần chục).	
KQ:	
CÂU 32. Tính $\int \left(\frac{x^2 + 2\sqrt[3]{x}}{x}\right)^2 dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến hàng phần chục).	
KQ:	
CÂU 33. Tìm m để $F(x) = mx^3 + (3m+2)x^2 - 4x + 3$ là một nguyên hàm của hàm số $f(x) = 3x^2 + 10x - 4$.	
KQ:	
$f(x) = (x-2)\sqrt{x^2-4x}$. Giá trị biểu thức $a+b+c$ bằng.	
CÂU 35. Tìm a,b,c để $F(x)=(ax^2+bx+c)\sqrt{2x-3}$ là một nguyên hàm của hàm số	
$f(x) = \frac{20x^2 - 30x + 7}{\sqrt{2x - 3}}$. Giá trị biểu thức $a + b + c$ bằng	
KQ:	

CÂU 36. Hàm số $F(x)=\cot x$ là một nguyên hàm của hàm số nào dưới đây trên khoảng $\left(0;\frac{\pi}{2}\right)$

ဩ	ш	_	Ν	$\boldsymbol{-}$	т	
71	T.	•	N	u	ш	

$$\mathbf{B} f_1(x) = -\frac{1}{\cos^2 x}$$

$$\mathbf{C}f_4(x) = \frac{1}{\cos^2 x}$$

 $(\textbf{A}) f_2(x) = \frac{1}{\sin^2 x}. \qquad (\textbf{B}) f_1(x) = -\frac{1}{\cos^2 x}. \qquad (\textbf{C}) f_4(x) = \frac{1}{\cos^2 x}. \qquad (\textbf{D}) f_3(x) = -\frac{1}{\sin^2 x}.$

CÂU 37. Cho hàm số $f(x) = 1 + \sin x$. Khẳng định nào dưới đây đúng?

CÂU 38. Tìm nguyên hàm F(x) của hàm số $f(x) = \cos^2 \frac{x}{2}$

$$\mathbf{B}F(x) = \frac{1}{2}(1 + \sin x) + C.$$

$$\mathbf{D}F(x) = \frac{1}{2}(1 - \sin x) + C.$$

$$\mathbf{C}F(x) = 2\sin\frac{x}{2} + C.$$

$$\mathbf{D}F(x) = \frac{1}{2}(1 - \sin x) + C$$

CÂU 39. Cho hàm số $f(x) = 1 - \frac{1}{\cos^2 x}$. Khẳng định nào dưới đây đúng?

$$\mathbf{D} \int f(x) \mathrm{d}x = x - \cot x + C.$$

CÂU 40. Họ nguyên hàm của hàm số $f(x) = \cos x + 6x$ là

$$\mathbf{B} - \sin x + 3x^2 + C.$$

$$(\mathbf{\hat{C}})\sin x + 6x^2 + C$$

$$(\mathbf{D}) - \sin x + C$$

CÂU 41. Tìm nguyên hàm của hàm số $f(x) = 2\sin x + 3x$.

(A)
$$\int (2\sin x + 3x) dx = -2\cos x + \frac{3}{2}x^2 + C$$
.

B
$$\int (2\sin x + 3x) dx = 2\cos x + 3x^2 + C.$$

CÂU 42. Tính $\int (x - \sin x) dx$.

$$\mathbf{A}\frac{x^2}{2} + \sin x + C$$

$$\mathbf{B}\frac{x^2}{2} - \cos x + C$$

$$\mathbf{A} \frac{x^2}{2} + \sin x + C.$$
 $\mathbf{B} \frac{x^2}{2} - \cos x + C.$ $\mathbf{C} \frac{x^2}{2} - \sin x + C.$ $\mathbf{D} \frac{x^2}{2} + \cos x + C.$

$$\mathbf{D}\frac{x^2}{2} + \cos x + C.$$

CÂU 43. Họ nguyên hàm của hàm số $f(x) = 3x^2 + \sin x$ là

$$\mathbf{C}x^3 - \cos x + C.$$

$$(\mathbf{D})6x - \cos x + C.$$

CÂU 44. Họ nguyên hàm của hàm số $f(x) = \frac{1}{x} + \sin x$ là

$$\mathbf{B} - \frac{1}{x^2} - \cos x + C.$$

$$\mathbf{C} \ln|x| + \cos x + C.$$

$$\mathbf{\widehat{D}} \ln |x| - \cos x + C.$$

CÂU 45. Cho $\int f(x) dx = -\cos x + C$. Khẳng định nào dưới đây đúng?

$$\mathbf{\hat{A}}f(x) = -\sin x.$$

$$\mathbf{C}f(x) = \sin x.$$

$$(\mathbf{D})f(x) = \cos x.$$

CÂU 46. Cho hàm số $f(x) = \int \cos \frac{x}{2} \sin \frac{x}{2}$. Khẳng định nào dưới đây đúng?

$$\int \cos \frac{x}{2} \sin \frac{x}{2} = -\frac{1}{2} \sin x + C.$$

CÂU 47. Các mệnh đề sau đây đúng hay sai?

	Mệnh đề	Ð	S
	a) $\int (2 + \cot^2 x) \mathrm{d}x = x - \cot x + C.$		
1	b) $\int \left(1 - \cos^2 \frac{x}{2}\right) dx = \frac{1}{2} (x + \sin x) + C.$		

QUICK NOTE

Mệnh đề	Ð	S
c) $\int \left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2 dx = x + \cos x + C.$		
d) $\int \left(\sin\frac{x}{2} - \cos\frac{x}{2}\right)^2 dx = x - \cos x + C.$		

CÂU 48. Tìm nguyên hàm F(x) của hàm số $f(x) = 2024 - 2\sin^2\frac{x}{2}$. Hệ số của biến x là

CÂU 49. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{1}{\sin^2 \frac{x}{2} \cdot \cos^2 \frac{x}{2}} = a \cot x + C$. Giá trị

a là

CÂU 50. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{1}{3}x^2 - 2x + \frac{1}{2}\tan^2 x = \frac{x^3}{a} + bx^2 + \frac{1}{c}x + \frac{1}{c}x + \frac{1}{2}\tan^2 x = \frac{x^3}{a} + \frac{x$ $d \tan x + C$. Giá trị của a + b + c + d là

CÂU 51. Tính $I = \int x \left(1 - \frac{\sin^2 \frac{x}{2}}{2}\right) dx$. Hệ số của hạng tử $\cos x$ của I là

CÂU 52. Tính $\int x^2 \left(1 + \frac{1}{x} - \frac{\tan^2 x}{x^2}\right) dx = \frac{x^m}{n} + \frac{x^p}{q} + x + r \tan x + C$. Giá trị biểu thức $P = \frac{m}{m} + \frac{p}{a} + 2r \text{ là}$

CÂU 53. Tính $T = \int x \left(2024 - \frac{1}{x^3} + \frac{\sin x}{x} \right) dx$. Hệ số của hạng tử $\cos x$ của T là

CÂU 54. Tính $R = \int x^3 \left[\frac{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2}{x^3} - 2x + \frac{1}{x^{2024}} \right] dx = ax + b\cos x + cx^5 - ax + b\cos x + b\cos x + cx^5 - ax + b\cos x + b\cos x + cx^5 - ax + b\cos x + b\cos x + cx^5 - ax + b\cos x + b\cos x + cx^5 - ax + b\cos x + b\cos x$

 $\frac{1}{d \cdot x^{2020}} + C.$ Giá trịa + b + c + d + 7 là (làm tròn đến hàng đơn vị)

CÂU 55. Tính $\int x^2 \left| \frac{1}{x^2 \sin^2 \frac{x}{2} \cdot \cos^2 \frac{x}{2}} + \frac{3}{x^3} - \frac{4}{x^4} \right| dx = a \cot x + b \ln |x| + \frac{c}{x} + C$. Giá trị a+b+c là

CÂU 56. Họ nguyên hàm của hàm số $f(x) = e^{3x}$ là hàm số nào sau đây?

$$\mathbf{A} 3e^x + C.$$

B
$$\frac{1}{3}e^{3x} + C$$
. **C** $\frac{1}{3}e^x + C$.

$$\mathbf{C} \frac{1}{2}e^x + C$$

$$\bigcirc 3e^{3x} + C$$

CÂU 57. Nguyên hàm của hàm số $y=e^{2x-1}$ là

$$\mathbf{A}$$
 $2e^{2x-1} + C$.

B)
$$e^{2x-1} + C$$
.

(A)
$$2e^{2x-1} + C$$
. **(B)** $e^{2x-1} + C$. **(C)** $\frac{1}{2}e^{2x-1} + C$. **(D)** $\frac{1}{2}e^x + C$.

$$\mathbf{D} \frac{1}{2}e^x + C.$$

CÂU 58. Cho hàm số $f(x) = e^x + 2$. Khẳng định nào dưới đây là **đúng**?

CÂU 59. Cho hàm số $f(x) = e^x + 2x$. Khẳng định nào dưới đây **đúng**?

					_
Q		CK	Ν	\sim	1
	UI	CK	1	v	15

				- 1	
ΔШ	CK	\mathbf{M}		- 1	
SU	$-\kappa$	INC		- 1	
,	\sim	7		- 1	

$$\int f(x) \, \mathrm{d}x = e^x - x^2 + C.$$

CÂU 60. Tìm nguyên hàm của hàm số $f(x) = 7^x$ $\oint 7^x dx = \frac{7^x}{\ln 7} + C.$

B
$$\int 7^x \, \mathrm{d}x = 7^{x+1} + C.$$

$$\bigcirc \int 7^x \, \mathrm{d}x = \frac{7^{x+1}}{x+1} + C.$$

CÂU 61. Nguyên hàm của hàm số $f(x) = 2^x$ là

$$\bigcirc \int 2^x \, \mathrm{d}x = \frac{2^x}{\ln 2} + C.$$

CÂU 62. Tất cả các nguyên hàm của hàm số $f(x) = 3^{-x}$ là

$$(\mathbf{A}) - \frac{3^{-x}}{\ln 3} + C.$$
 $(\mathbf{B}) - 3^{-x} + C.$

B
$$-3^{-x} + C$$
.

$$\mathbf{C}$$
 $-3^{-x} \ln 3 + C$. $\mathbf{D} \frac{3^{-x}}{\ln 2} + C$.

$$\mathbf{D} \frac{3^{-x}}{\ln 3} + C.$$

CÂU 63. Tìm nguyên hàm của hàm số $f(x) = 3^x + 2x$.

$$\mathbf{C} \int (3^x + 2x) \, \mathrm{d}x = \frac{3^x}{\ln 3} + x + C$$

$$(\mathbf{D}) \int (3^x + 2x) \, \mathrm{d}x = 3^x \ln 3 + x + C$$

CÂU 64. Họ nguyên hàm của hàm số $f(x) = e^x$ -

$$\frac{1}{x+1}e^x - x^2 + C.$$

$$(\mathbf{D})e^x - 2 + C.$$

CÂU 65. Tìm nguyên hàm của hàm số $f(x) = e^x \left(2017 - \frac{2018e^{-x}}{r^5} \right)$.

B
$$\int f(x) dx = 2017e^x + \frac{2018}{x^4} + C$$

$$\int f(x) dx = 2017e^x - \frac{504.5}{x^4} + C$$

CÂU 66. Họ nguyên hàm của hàm số $y = e^x \left(2 + \frac{e^{-x}}{\cos^2 x} \right)$ là

(A)
$$2e^x + \tan x + C$$
. **(B)** $2e^x - \tan x + C$. **(C)** $2e^x - \frac{1}{\cos x} + C$. **(D)** $2e^x + \frac{1}{\cos x} + C$.

$$\mathbf{C} 2e^x - \frac{1}{\cos^x} + C$$

$$\mathbf{D} 2e^x + \frac{1}{\cos x} + C$$

CÂU 67. Tìm họ nguyên hàm của hàm số $y = x^2 - 3^x + \frac{1}{2}$

$$\mathbf{\hat{A}} \frac{x^3}{3} - \frac{3^x}{\ln 3} - \frac{1}{x^2} + C, C \in \mathbb{R}$$

$$\mathbf{B} \frac{x^3}{3} - 3^x + \frac{1}{x^2} + C, C \in \mathbb{R}.$$

$$\mathbf{B} \frac{x^3}{3} - 3^x + \frac{1}{x^2} + C, C \in \mathbb{R}.$$

$$\mathbf{D} \frac{x^3}{3} - \frac{3^x}{\ln 3} - \ln|x| + C, C \in \mathbb{R}.$$

CÂU 68. Khẳng định nào dưới đây đúng?

CÂU 69. Cho hàm số $f(x) = 1 + e^{2x}$. Khẳng định nào dưới đây **đúng**?

$$\int f(x) dx = x + \frac{1}{2}e^{2x} + C.$$

CÂU 70. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
$\mathbf{a)} \int \frac{1}{x} \mathrm{d}x = \ln x + C.$		
$\mathbf{b)} \int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + $ $C.$		

Mệnh đề	Ð	\mathbf{S}
$\mathbf{c}) \int \sin x \mathrm{d}x = -\cos x + $		
$\frac{C}{\mathbf{d}} \int e^x \mathrm{d}x = e^x + C.$		

QUICK NOTE

CÂU 71. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	\mathbf{S}
$\mathbf{a)} \int \cos x \mathrm{d}x = \sin x + C.$		
b) $\int x^e dx = \frac{x^{e+1}}{e+1} + C.$		

Mệnh đề	Đ	S
$\mathbf{c)} \int \frac{1}{x} \mathrm{d}x = \ln x + C.$		
d) $\int e^x \mathrm{d}x = \frac{e^{x+1}}{x+1} + C.$		

CÂU 72. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) $\int 2^x dx = 2^x \ln 2 + C$.		
b) $\int e^{2x} dx = \frac{e^{2x}}{2} + C.$		
c) $\int e^x (e^x - 1) dx = \frac{1}{2}e^{2x} + e^x + C.$		
d) $\int e^{3x} \cdot 3^x dx = \frac{(3e^3)^x}{3 + \ln 3} + C.$		

CÂU 73. Biết rằng $\int (2^x + 3^x) dx = \frac{2^x}{\ln a} + \frac{3^x}{\ln b} + C$, $a, b \in \mathbb{Z}$. Tính P = a + b.

CÂU 74. Cho $\int e^{3x+2024} dx = \frac{a}{b}e^{cx+d} + C$ với $a,b,c,d \in \mathbb{Z}$ và $\frac{a}{b}$ là phân số tối giãn . Tính giá trị của biểu thức P = a+b-c+d.

CÂU 75. Biết rằng $\int 3^{x+2} \cdot 2^{2x+1} \, \mathrm{d}x = \frac{a \cdot 12^x}{b \ln 2 + c \ln 3} + C \text{ với } a,b,c \in \mathbb{Z}.$ Tính giá trị của biểu thức $P = \frac{a}{b+c}.$

KQ:

CÂU 76. Biết rằng $\int (3^x + 5^x)^2 dx = \frac{9^x}{a \ln 3} + \frac{30^x}{b \ln 5 + c \ln 2 + d \ln 3} + \frac{25^x}{e \ln 5} + C$. Tính giá trị của biểu thức P = a + b + c + d + e.

KQ:

CÂU 77. Cho $\int \frac{e^{3x}+1}{e^x+1} \, \mathrm{d}x = \frac{a}{b}e^{2x}+ce^x+dx+C \text{ với } a,b,c,d \in \mathbb{Z} \text{ và } \frac{a}{b} \text{ là phân số tối giãn. Tính giá trị của biểu thức } P=a^2+b^2+c^2+d^2.$

KQ:

CÂU 78. Biết rằng $\int (e^x + e^{-x})^2 dx = \frac{1}{m}e^{2x} + \frac{1}{n}e^{-2x} + px + C$ với $m, m, p \in \mathbb{Z}$. Tính giá trị của biểu thức P = m + n + p.

KQ:

CÂU 79. Biết rằng $\int \frac{e^{2x}-1}{1-e^{-x}} dx = \frac{1}{m}e^{nx} + pe^x + C$ với $m,m,p \in \mathbb{Z}$. Tính giá trị của biểu thức P=m+n-p.

KQ:

CÂU 80. Biết rằng $F(x) = (ax+b) \cdot e^x$ là một nguyên hàm của hàm số $f(x) = (4x-1) \cdot e^x$. Tính giá trị biểu thức P = a + b.

KQ:

CÂU 81. Biết rằng $F(x)=8e^x+\frac{na^x}{\ln a}+p\cos x$ (với $m,n,p\in\mathbb{Z}$) là một nguyên hàm của hàm số $f(x)=me^x+2a^x-2\sin x$. Tính giá trị của biểu thức P=m+n+p.

KQ:

QUICK NOTE	CÂU 82. Biết rằng $F(x) = (a + b)$ số $f(x) = (-2x^2 + 8x - 7)e^{-2x}$	$ax^2 + bx + c)e^{-2x}$ ($ax^2 + bx + c$) $ax^2 + bx + c$	(với $a,b,c \in \mathbb{R}$) là một ểu thức $P=a+b+c$; nguyên hàm của hàm
		. Timi gia di bie	KC	
				·
	🗁 Dạng 2. Tìm	nguyên hàm kh	ni biết giá trị nguyêr	n hàm
	Phương pháp: Tìm $F(x) = \frac{1}{2}$	$\int f(r) dr$ Sau đó	dra vào $F(r_0) = a d$	$\mathring{\hat{\mathrm{e}}}$ suv ra C
		j j (w) dw. Sau do		c say ta c.
	CÂU 1. Hàm số $F(x)$ là một	nguyên hàm của	n hàm số $f(r) = \frac{1}{r}$ ti	rên (−∞:0) thỏa mãn
	F(-2) = 0. Khẳng định nào s		$\int \int $	∞ , ω , ω those man
	$\mathbf{A} F(x) = \ln\left(-\frac{x}{2}\right), \forall x \in ($			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		mêt dê thực hết là	
			mọt so thực bat ki.	
	$\mathbf{D}F(x) = \ln x + \ln 2, \ \forall x \in \mathbf{D}$ $\mathbf{D}F(x) = \ln(-x) + C, \ \forall x \in \mathbf{D}$		là một cố thực bất kì	
	_			
	CÂU 2. Biết $F(x)$ là một ng $F(\ln 3)$ bằng	uyên hàm của hà	$\mathbf{m} \mathrm{so} f(x) = e^{2x} \mathrm{va} .$	F(0) = 0. Giá trị của
	(A) 2. (B) 6.	,	(C)8.	(D) 4.
	CÂU 3. Cho $F(x)$ là một ngư $F(-1)$ bằng	uyên ham của $f(x)$	$(x) = 2^x + x + 1$. Biet	F(0) = 1. Giả trị của
		($\mathbf{R}(-1) = \frac{1}{1} = \frac{1}{1}$	_
	$ \mathbf{A} F(-1) = \frac{1}{2 \ln 2}. $ $ \mathbf{C} F(-1) = 1 + \frac{1}{2 \ln 2}. $	\	B $F(-1) = \frac{1}{2} - \frac{1}{2 \ln x}$ D $F(-1) = \frac{1}{2} - \frac{1}{\ln x}$	2.
	$\mathbf{C}F(-1) = 1 + \frac{1}{2\ln 2}.$	($\mathbf{D})F(-1) = \frac{1}{2} - \frac{1}{\ln 2}$	
	CÂU 4. Tìm nguyên hàm $F(x)$	x) của hàm số $f(x)$	$(x) = \sin x + \cos x $ thoả	$a \text{man} F\left(\frac{\pi}{2}\right) = 2.$
			$\mathbf{B}F(x) = -\cos x + \sin x$	`='
	$\mathbf{C}F(x) = -\cos x + \sin x $		$\mathbf{D}F(x) = \cos x - \sin x$	
				2
	CÂU 5. Cho $F(x)$ là một ng	uyên hàm của hà	$m \operatorname{so} f(x) = e^x + 2x$	thỏa mãn $F(0) = \frac{3}{2}$.
	Tîm $F(x)$.			5
	$(A)F(x) = e^x + x^2 + \frac{1}{2}.$	($\mathbf{B})F(x) = e^x + x^2 + $	$\frac{3}{2}$.
	$ \mathbf{A} F(x) = e^x + x^2 + \frac{1}{2}. $ $ \mathbf{C} F(x) = e^x + x^2 + \frac{3}{2}. $	($\mathbf{B} F(x) = e^x + x^2 + \mathbf{D} F(x) = e^x + x^2 - \mathbf{D} F(x)$	$\frac{1}{2}$.
	CÂU 6. Cho hàm số $f(x) = -\frac{1}{2}$	$3x^2-2$ khi x	$\stackrel{\leq}{\sim} 1$, giả sử F là ngư	yên hàm của f trên $\mathbb R$
	thỏa mãn $F(0) = 2$. Giá trị củ	`		
	A 9. B 15		© 11.	D 6.
		$(2x+3)$ khi $x \ge$	<u> </u>	,
	CÂU 7. Cho hàm số $f(x) = \frac{1}{2}$	$3x^2 + 2$ khi $x < 3$	$\stackrel{-}{<}$ Giả sử F là nguy $\stackrel{-}{<}$ 1.	vên hàm của hàm số f
	trên \mathbb{R} thỏa mãn $F(0) = 2$. Gi	iá trị của $F(-1)$ +	+2F(2) bằng	
	A 23. B 11	1.	C 10.	D 21.
		$(2x+2)$ khi $x \ge$	≥1	. 1. 2 1. 4 0
	CÂU 8. Cho hàm số $f(x) = \frac{1}{2}$	$3x^2 + 1$ khi $x < 3x^2 + 1$	< 1. Giả sử F là nguy	rên hàm của hàm số f
	trên \mathbb{R} thỏa mãn $F(0) = 2$. Gi	iá trị của $F(-1)$ +	+2F(2) bằng	
	A 18. B 20). (© 9.	D 24.
	CÂU 9. Cho hàm số $y = f(x)$			$\in \mathbb{R}$ và $f(1) = 3$. Biết
	F(x) là nguyên hàm của $f(x)$	thỏa mãn $F(0) =$	= 2, khi đó $F(1)$ bằng	
	(A) -3. $(B) 1.$		(C)2.	D 7.
	CÂU 10. Cho hàm số $f(x)$ th	hỏa mãn $f'(x) =$	$3 - 5\sin x \text{ và } f(0) =$	10. Mệnh đề nào dưới
	l đây đúng ?			

(A) $f(x) = 3x - 5\cos x + 15$. (C) $f(x) = 3x + 5\cos x + 5$.

 $\mathbf{B}f(x) = 3x - 5\cos x + 2.$ $\mathbf{D}f(x) = 3x + 5\cos x + 2.$ **CÂU 11.** Hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và $f'(x) = 2e^{2x} + 1, \forall x; f(0) = 2$. Hàm

$$\mathbf{A} y = 2e^x + 2x.$$

$$\mathbf{B}y = 2e^x + 2$$

B
$$y = 2e^x + 2$$
. **C** $y = e^{2x} + x + 2$. **D** $y = e^{2x} + x + 1$.

CÂU 12. Cho hàm số f(x) thỏa mãn $f'(x) = 2 - 5 \sin x$ và f(0) = 10. Mệnh đề nào dưới đây đúng?

$$(A) f(x) = 2x + 5\cos x + 3.$$

B)
$$f(x) = 2x - 5\cos x + 15$$
.

$$\mathbf{C}$$
 $f(x) = 2x + 5\cos x + 5.$

$$(\mathbf{D})f(x) = 2x - 5\cos x + 10.$$

CÂU 13. Cho hàm số f(x) thỏa mãn $f'(x) = ax^2 + \frac{b}{x^3}$, f'(1) = 3, f(1) = 2, $f\left(\frac{1}{2}\right) = -\frac{1}{12}$.

Khi đó 2a + b bằng

$$\bigcirc -\frac{3}{2}$$
.

$$(\mathbf{B})_0.$$

$$\bigcirc \frac{3}{2}$$
.

CÂU 14. Tìm một nguyên hàm F(x) của hàm số $f(x) = ax + \frac{b}{x^2}$ $(x \neq 0)$, biết rằng

$$F(-1) = 1, F(1) = 4, f(1) = 0.$$

$$\mathbf{A}F(x) = \frac{3}{2}x^2 + \frac{3}{4x} - \frac{7}{4}.$$

$$\mathbf{C}F(x) = \frac{3}{4}x^2 + \frac{3}{2x} + \frac{7}{4}.$$

$$\mathbf{B}F(x) = \frac{3}{4}x^2 - \frac{3}{2x} - \frac{7}{4}.$$

$$\mathbf{C}F(x) = \frac{2}{3}x^2 + \frac{3}{2x} + \frac{4}{7}.$$

CÂU 15. Cho hàm số f(x) xác định trên $\mathbb{R}\setminus\{0\}$ thỏa mãn $f'(x)=\frac{x+1}{x^2}, f(-2)=\frac{3}{2}$ và

 $f(2) = 2 \ln 2 - \frac{3}{2}$. Giá trị của biểu thức f(-1) + f(4) bằng $\underbrace{6 \ln 2 - 3}_{4}.$ $\underbrace{6 \ln 2 + 3}_{4}.$ $\underbrace{6 \ln 2 + 3}_{4}.$

$$\mathbf{c} \frac{8 \ln 2 + 3}{4}$$

CÂU 16. Cho hàm số $f(x) = 2x + e^x$. Một nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 2024. Biết $F(x) = ax^2 + be^x + c$, giá trị của a + b + c là

KQ:

CÂU 17. Cho F(x) là một nguyên hàm của hàm số $f(x) = \sin x + 1$ biết $F\left(\frac{\pi}{6}\right) = 0$. Tính giá trị của $F(\pi)$. (Làm tròn đến chữ số thập phân thứ hai)

KQ:

CÂU 18. Cho F(x) là một nguyên hàm của $f(x) = (5x+3)^5$. Biết F(1) = 0. Tính giá trị của $\sqrt{|F(0)|}$. (Làm tròn đến chữ số thập phân thứ nhất)

KQ:

CÂU 19. Cho F(x) là một nguyên hàm của $f(x) = x^3 - 4x + 5$. Biết F(1) = 3. Tính |F(0)|.

KQ:

CÂU 20. Cho F(x) là một nguyên hàm của $f(x) = 3 - 5\cos x$. Biết $F(\pi) = 2$. Tính $F\left(\frac{\pi}{2}\right)$. (Làm tròn đến chữ số thập phân thứ nhất)

KQ:

CÂU 21. Cho F(x) là một nguyên hàm của $f(x) = \frac{3-5x^2}{x}$. Biết F(e) = 1. Tính F(2). (Làm tròn đến chữ số thập phân thứ hai)

KQ:

CÂU 22. Cho F(x) là một nguyên hàm của $f(x) = \frac{x^2+1}{x}$. Biết $F(1) = \frac{3}{2}$. Tính F(-1).

CÂU 23. Cho F(x) là một nguyên hàm của hàm số $f(x) = \frac{x^3 - 1}{x^2}$. Biết F(-2) = 0. Tính giá trị của F(2).

KQ:

QUICK NOTE	CÂU 24. Cho $F(x)$ là một nguyên hàm của hàm số $f(x) = x\sqrt{x} + \frac{1}{\sqrt{x}}$	<u>.</u> . Ві	iết $F(1$	-1) = -2	2.
	Tính $F(0)$. KQ:				_
	CÂU 25. Cho $F(x)$ là một nguyên hàm của hàm số $f(x) = \sin x + 1$. Biế	t <i>F</i> ($\left(\frac{\pi}{6}\right) =$: 0. Tín	h
	F(-1). (Làm tròn đến chữ số thập phân thứ nhất) $\mbox{KQ:} \left \lceil \right.$				_
	CÂU 26. Cho $F(x)$ là một nguyên hàm của $f(x) = 2024 - \sin^2 \frac{x}{2}$. Bi Tính $\sqrt{ F(0) }$. (Làm tròn đến chữ số thập phân thứ nhất)	lết F	$r\left(\frac{\pi}{2}\right)$	= 2025	í.
	KQ:				
	CÂU 27. Cho $F(x)$ là một nguyên hàm của $f(x) = \sin^2 \frac{x}{4} \cdot \cos^2 \frac{x}{4}$. Biế giá trị của $F(\pi)$. (Làm tròn đến chữ số thập phân thứ hai)	t <i>F</i> ($\left(\frac{\pi}{3}\right) =$	0. Tín	h
	KQ:				
	CÂU 28. Cho hàm số $f(x) = \begin{cases} 2x+5 & \text{khi } x \geq 1 \\ 3x^2+4 & \text{khi } x < 1. \end{cases}$ Giả sử F là nguyên thỏa mãn $F(0) = 2$. Giá trị của $F(-1) + 2F(2)$.	ı hàn	n của j	$f \ { m tr} { m en} \ { m I}$	R
	KQ:				
	CÂU 29. Gọi $F(x)$ là một nguyên hàm của hàm số $f(x)=2^x$, thỏa mã trị biểu thức $T=F(0)+F(1)+\cdots+F(2018)+F(2019)$ có dạng $\frac{2^{2020}}{\ln x}$		-		
	là KQ:	<i>b</i>			'
	CÂU 30. Cho $F(x)$ là một nguyên hàm của hàm số $f(x) = \frac{1}{\cos^2 x}$. Biể với mọi $k \in \mathbb{Z}$. Tính giá trị của biểu thức $T = F(0) + F(\pi) + F(2\pi) + \cdots$ KQ:	it F $\frac{\cdot + \cdot}{ }$	$\frac{\left(\frac{\pi}{4} + h\right)}{F(10\pi)}$	$k\pi$) = $\frac{1}{1}$	k
	CÂU 31. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = 2024 - 2x$ $f\left(\frac{\pi}{2}\right) = \frac{2023\pi}{2}$. Tính giá trị của $f(0)$.	\sin^2	$\frac{1}{x}, \forall x;$		_
	KQ:				_
	CÂU 32. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = 1 + e^{2x}$, giá trị của $f(2)$. (Làm tròn đến số thập phân thứ nhất)	$\forall x;$	f(0) =	2. Tín	h
	KQ:				_
	CÂU 33. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = 2^x + 3^x$ Tính giá trị của $f(1)$. (Làm tròn đến số thập phân thứ hai)	$^{c}, \forall x$	c; f(0)	$=\frac{1}{\ln 3}$	•
	KQ:				_
	CÂU 34. Hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb R$ và $f'(x)=\mathrm{e}^{3x-1}$ $f(-675)=1$. Giá trị của $f(-674)$ bằng	⊦2024	$\forall x$ t	thoå m	ã
	KQ:				_
	CÂU 35. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = 3^{x+2} \cdot 2^x$ $f(0) = $	2x+1	$\forall x \text{ th}$	1	
	Giá trị của $f(1)$ bằng			$2 \ln 2$	_
	KQ:		i l		

QUICK NOTE

......

.........

......

.........

.....

CÂU 36. Hàm số f(x) có đạo hàm liên tục trên $\mathbb R$ và $f'(x)=(3^x+5^x)^2, \ \forall x$ thoả mãn $f(0)=\frac{1}{\ln 5+\ln 3+\ln 2}.$ Giá trị của f(1) bằng

KQ:

ե Dạng 3. Ứng dụng trong bài toán thực tiễn

Giả sử v(t) là vận tốc của vật M tại thời điểm t và s(t) là quãng đường vật đi được sau khoảng thời gian t tính từ lúc bắt đầu chuyển động. Ta có mối liên hệ giữa s(t) và v(t)như sau.

- Θ Đạo hàm của quãng đường là vận tốc s'(t) = v(t).
- $\ensuremath{\mathbf{\Theta}}$ Nguyên hàm của vận tốc là qu
ãng đường $s(t) = \int v(t) \, \mathrm{d}t.$

Nếu gọi a(t) là gia tốc của vật M thì ta có mối liên hệ giữa v(t) và a(t) như sau.

- Θ Đạo hàm của vận tốc là gia tốc v'(t) = a(t).
- $oldsymbol{\Theta}$ Nguyên hàm của gia tốc là vận tốc $v(t) = \int a(t) dt$.

CẦU 1. Một ô tô đang chạy với vận tốc 20 m/s thì người lái đạp phanh. Sau khi đạp phanh, ô tô chuyển động chậm dần đều với vận tốc v(t) = -40t + 20 m/s, trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Gọi s(t) là quãng đường xe ô tô đi được trong thời gian t (giây) kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

(**A**)5 cm.

(B)7,5 m.

 $\bigcirc \frac{5}{2}$ m.

CÂU 2. Bạn Minh Hiền ngồi trên máy bay đi du lịch thế giới với vận tốc chuyển động của máy báy là $v(t) = 3t^2 + 5$ (m/s). Quãng đường máy bay bay từ giây thứ 4 đến giây thứ 10

(**A**)36 m.

(B)252 m.

(**C**)1134 m.

(**D**)966 m.

CÂU 3. Một ô tô đang chạy với vận tốc 12 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = -6t + 12 (m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi ô tô dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?

(**A**)24 m.

(B)12 m.

(C)6 m.

 $(\mathbf{D})_{0,4} \text{ m}.$

CÂU 4. Một ô tô đang chạy với vận tốc 36 km/h thì tăng tốc chuyển động nhanh dần đều với gia tốc $a(t) = 1 + \frac{t}{3} \text{ (m/s}^2)$ tính quãng đường ô tô đi được sau 6 giây kể từ khi ô tô bắt đầu tăng tốc.

(A)S = 90 m.

 $(\mathbf{B})S = 246 \text{ m}.$

 $(\mathbf{D})S = 100 \text{ m}.$

CÂU 5. Một ca nô đang chạy trên hồ Tây với vận tốc 20 m/s thì hết xăng; từ thời điểm đó, ca nô chuyển động chậm dần đều với vận tốc v(t) = -5t + 20 (m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc hết xăng. Hỏi từ lúc hết xăng đến lúc ca nô dừng hẳn thì ca nô đi được bao nhiều mét?

(**A**)10 m.

(B)20 m.

(**C**)30 m.

(**D**)40 m.

CÂU 6. Một vật chuyển động với vận tốc 10 m/s thì tăng tốc với gia tốc được tính theo thời gian t là $a(t)=3t+t^2$ (m²/s). Tính quãng đường vật đi được trong 10s kể từ khi bắt đầu tăng tốc.

 $\bigcirc A \frac{130}{3} \text{ m}.$

B $\frac{310}{3}$ m. **C** $\frac{3400}{3}$ m. **D** $\frac{4300}{3}$ m.

QUICK NOTE	CÂU 7. Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 m so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật $v(t) = 10t - t^2$, trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, $v(t)$ được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là \mathbf{A} 5 m/p. \mathbf{B} 7 m/p. \mathbf{C} 9 m/p. \mathbf{D} 3 m/p.
	CÂU 8. Một viên đạn được bắn lên theo phương thẳng đứng với vận tốc ban đầu là 25 m/s, gia tốc trọng trường là 9,8 m/s². Quãng đường viên đạn đi được từ lúc bắn cho đến khi chạm đất gần bằng kết quả nào nhất trong các kết quả sau? (A) 30,78 m. (B) 31,89 m. (C) 32,43 m. (D) 33,88 m.
	CÂU 9. Trong một đợt xả lũ, nhà máy thủy điện đã xả lũ trong 40 phút với tốc độ lưu lượng nước tại thời điểm t giây là $h'(t) = 10t + 500 \text{ (m}^3/\text{s)}$. Hỏi sau thời gian xả lũ trên thì hồ thoát nước của nhà máy đã thoát đi một lượng nước là bao nhiêu? A $5 \cdot 10^4 \text{ m}^3$. B $4 \cdot 10^6 \text{ m}^3$. C $3 \cdot 10^7 \text{ m}^3$. D $6 \cdot 10^6 \text{ m}^3$.
	CÂU 10. Một bác thợ xây bơm nước vào bể chứa nước. Gọi $h(t)$ là thể tích nước bơm được sau t giây. Cho $h'(t) = 3at^2 + bt$ (m³/s) và ban đầu bể không có nước. Sau 5 giây thì thể tích nước trong bể là 150 m³. Sau 10 giây thì thể tích nước trong bể là 1100 m³. Hỏi thể tích nước trong bể sau khi bơm được 20 giây là bao nhiêu. (A) 8400 m³. (B) 7400 m³. (C) 6000 m³. (D) 4200 m³.
	CÂU 11. Gọi $h(t)$ (m) là mực nước ở bồn chứa sau khi bơm nước được t giây. Biết rằng
	$h'(t) = \frac{1}{5}\sqrt[3]{t}$ (m/s) và lúc đầu bồn không có nước. Tìm mức nước ở bồn sau khi bơm nước được 6 giây (<i>làm tròn kết quả đến hàng phần trăm</i>).
	(A) 2,64 m. (B) 1,22 m. (C) 2,22 m. (D) 1,64 m. (CÂU 12. Sự sản sinh vi rút Zika ngày thứ t có số lượng là $N(t)$ con, biết $N'(t) = \frac{1000}{t}$ và
	lúc đầu đám vi rút có số lượng 250,000 con. Tính số lượng vi rút sau 10 ngày. (A) 272304 con. (B) 212302 con. (C) 242102 con. (D) 252302 con.
	CÂU 13. Một chiếc ô tô đang chạy với vận tốc 15 m/s thì nhìn thấy chướng ngại vật trên đường cách đó 50 m , người lái xe hãm phanh khẩn cấp. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc $v(t) = -3t + 15 \text{ (m/s)}$, trong đó $t \text{ (giây)}$. Gọi $s(t)$ là quãng đường xe ô tô đi được trong thời gian $t \text{ (giây)}$ kể từ lúc đạp phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô di chuyển được bao nhiêu mét?
	KQ:
	CÂU 14. Một chiếc ô tô đang chạy với vận tốc 72 km/h thì nhìn thấy chướng ngại vật trên đường cách đó 40 m, người lái xe hãm phanh khẩn cấp. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc $v(t) = -10t + 20 \text{ (m/s)}$, trong đó t tính bằng giây. Gọi $s(t)$
	là quãng đường xe ô tô đi được trong thời gian t (giây) kể từ lúc đạp phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô di chuyển được bao nhiều mét?
	KQ:
	CÂU 15. Một viên đạn được bắn lên theo phương thẳng đứng từ mặt đất. Tại thời điểm
	t giây vận tốc của nó được cho bởi công thức $v(t) = 24.5 - 9.8t$ (m/s). Tính quãng đường viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng đơn vi</i>).
	KQ:
	CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay đổi trong suốt một
	ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy triều lên (như hình
	vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) = \frac{1}{90} (t^2 - 17t + 60)$,
	trong đó t tính bằng giờ $(0 \le t \le 24)$, $h'(t)$ tính bằng mét/giờ. Tại thời điểm $t = 0$, mực nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu?
	KQ:
	CÂU 17. Gọi $h(t)$ là chiều cao của cây keo (tính theo mét) sau khi trồng t năm. Biết rằng
	năm đầu tiên cây cao 1,5 m, trong những năm tiếp theo, cây phát triển với tốc độ $h'(t) = \frac{1}{\sqrt[4]{t}}$
	main dau tiên cây cao 1,5 m, trong main tiếp theo, cây phát triển với tốc dự $n(t) = \sqrt[4]{t}$ (mét/năm). Sau bao nhiều năm cây cao được 3 m (kết quả làm tròn tới hàng phần trăm).
	(mer, nam). Sad sao mired nam cay cao duye s in (net qua tum tron tot many phant trum).

CÂU 18. Người ta bơm nước vào một bồn chứa, lúc đầu bồn không chứa nước, mức nước ở bồn chứa sau khi bơm phụ thuộc vào thời gian bơm nước theo một hàm số h = h(t) trong đó h tính bằng cm, t tính bằng giây. Biết rằng $h'(t) = \sqrt[3]{2t}$ (cm/s). Mức nước ở bồn sau khi bơm được 13 giây là bao nhiêu? (kết quả làm tròn tới hàng đơn v_i).

CÂU 19. Khi quan sát một đám vi khuẩn trong phòng thí nghiệm người ta thấy tại ngày thứ t có số lượng là N(t). Biết rằng $N'(t) = \frac{1500}{t}$ và tại ngày thứ nhất số lượng vi khuẩn là 5000 con. Tính số lượng vi khuẩn tại ngày thứ 12 (*làm tròn đến hàng đơn vị*).

i i i i i i i i i i i i i i i i i i i	g word	, 00).	
KQ:			

CÂU 20. Vi khuẩn HP (Helicobacter pylori) gây đau dạ dày, tại ngày thứ t với số lượng là F(t). Biết $F'(t)=\frac{600}{t}$ và ban đầu bệnh nhân có 2000 con vi khuẩn. Sau 15 ngày bệnh nhân phát hiện ra bị bệnh. Hỏi khi đó có bao nhiều con vi khuẩn trong dạ dày (lấy xấp xỉ tới hàng đơn vị)? Biết rằng nếu phát hiện sớm khi số lượng không vượt quá 4000 con thì bệnh nhân sẽ được cứu chữa.

KΩ·		
11Q.		

D. NGUYÊN HÀM HÀM ẨN

Cần nhớ các công thức đạo hàm của hàm hợp

- $f'(x) \cdot g(x) + f(x) \cdot g'(x) = [f(x) \cdot g(x)]'$
- $\frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{g^2(x)} = \left[\frac{f(x)}{g(x)}\right]'$
- $\frac{f'(x)}{f(x)} = \left[\ln f(x)\right]'$
- $-\frac{f'(x)}{f^2(x)} = \left[\frac{1}{f(x)}\right]'$
- $-\frac{f'(x)}{f^n(x)} = \left[\frac{1}{(n-1)[f(x)]^{n-1}}\right]'$
- $n \cdot f'(x) \cdot f^{n-1}(x) = [f^n(x)]'$
- $\frac{f'(x)}{\sqrt{f(x)}} = \left[2\sqrt{f(x)}\right]'$

Dang 4.

1. Điều kiện hàm ẩn có dạng

$$\begin{bmatrix} f'(x) = g(x) \cdot h[f(x)] \\ f'(x) \cdot h[f(x)] = g(x). \end{bmatrix}$$

Phương pháp giải

$$f'(x) = g(x) \Leftrightarrow \int \frac{f'(x)}{h[f(x)]} dx = \int g(x) dx \Leftrightarrow \int \frac{d[f(x)]}{h[f(x)]} = \int g(x) dx.$$

Chú ý: Ngoài việc nguyên hàm hai vế, ta có thể lấy tích phân hai vế (tùy câu hỏi của bài toán)

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•	•	•	•													•	•	•	•												

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	

•		•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

		_			_
Ω	Ш	\sim ν	N	\mathbf{O}	
•	u	CK	N	w	_

2. Điều kiên hàm ẩn có dang

$$u(x)f'(x) + u'(x)f(x) = h(x)$$

Phương pháp giải Dễ dàng thấy rằng u(x)f'(x) + u'(x)f(x) = [u(x)f(x)]'. Do dó $u(x)f'(x) + u'(x)f(x) = h(x) \Leftrightarrow [u(x)f(x)]' = h(x).$ Suy ra $u(x)f(x) = \int h(x)dx$.

Từ đây ta dễ dàng tính được f(x).

 $\textbf{CÂU 1.} \ \text{Cho hàm số} \ f(x) \ \text{thỏa mãn} \ f\left(\frac{\pi}{4}\right) = 0 \ \text{và} \ f'(x) \sin^2\frac{x}{2} \cos^2\frac{x}{2} = 1. \ \text{Tính} \ f\left(\frac{\pi}{2}\right).$ $\textbf{(A)} \ f\left(\frac{\pi}{2}\right) = 1. \qquad \textbf{(B)} \ f\left(\frac{\pi}{2}\right) = -1. \qquad \textbf{(C)} \ f\left(\frac{\pi}{2}\right) = 2. \qquad \textbf{(D)} \ f\left(\frac{\pi}{2}\right) = 4.$

$$\mathbf{A}f\left(\frac{\pi}{2}\right) = 1$$

$$\mathbf{B}f\left(\frac{\pi}{2}\right) = -1.$$

$$\mathbf{C}f\left(\frac{\pi}{2}\right) = 2.$$

$$\mathbf{D}f\left(\frac{\pi}{2}\right) = 4.$$

CÂU 2. Cho hàm số y = f(x) thỏa mãn $f'(x) \cdot f(x) = x^4 + x^2$. Biết f(0) = 2. Tính $f^2(2)$. **(a)** $f^2(2) = \frac{313}{15}$. **(b)** $f^2(2) = \frac{323}{15}$. **(c)** $f^2(2) = \frac{324}{15}$.

B
$$f^2(2) = \frac{332}{15}$$
.

$$\mathbf{C}f^2(2) = \frac{324}{15}.$$

$$D f^2(2) = \frac{323}{15}.$$

CÂU 3. Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [-2;1] thỏa mãn f(0) = 3 và $(f(x))^2 \cdot f'(x) = 3x^2 + 4x + 2$. Giá trị f(1) là

$$(A)$$
 2 $\sqrt[3]{42}$.

(B)
$$2\sqrt[3]{15}$$
.

$$(\mathbf{C})\sqrt[3]{42}$$
.

$$(\mathbf{D})\sqrt[3]{15}.$$

CÂU 4. Cho hàm số f(x) thỏa mãn $f(2)=-\frac{1}{3}$ và $f'(x)=x\left[f(x)\right]^2$ với mọi $x\in\mathbb{R}$. Giá trị

(a)
$$f(1)$$
 bang $f(1) = -\frac{2}{3}$.

(B)
$$f(1) = -\frac{2}{9}$$
. **(C)** $f(1) = -\frac{7}{6}$. **(D)** $f(1) = -\frac{11}{6}$.

$$\mathbf{C}f(1) = -\frac{7}{6}.$$

$$\mathbf{D}f(1) = -\frac{11}{6}.$$

CÂU 5. Cho hàm số f(x) thỏa mãn $f(2)=-\frac{1}{25}$ và $f'(x)=4x^3\left[f(x)\right]^2$ với mọi $x\in\mathbb{R}$. Giá

B
$$-\frac{1}{40}$$
.

$$\bigcirc$$
 $-\frac{41}{400}$

$$\bigcirc -\frac{1}{10}$$
.

CÂU 6. Cho hàm số f(x) thỏa mãn $f(2) = -\frac{1}{5}$ và $f'(x) = x^3 [f(x)]^2$ với mọi $x \in \mathbb{R}$. Giá trị của f(1) bằng

$$igar{A} - rac{4}{35}.$$

B
$$-\frac{71}{20}$$
.

$$\bigcirc -\frac{79}{20}.$$

$$\bigcirc -\frac{4}{5}$$

CÂU 7. Cho hàm số y=f(x) thỏa mãn $f(2)=-\frac{4}{19}$ và $f'(x)=x^3f^2(x)$ $\forall x\in\mathbb{R}$. Giá trị

$$\mathbf{A} - \frac{2}{3}$$
.

B
$$-\frac{1}{2}$$

$$(c)$$
 -1

$$\bigcirc$$
 $-\frac{3}{4}$

CÂU 8. Cho hàm số f(x) > 0 xác định và liên tục trên \mathbb{R} đồng thời thỏa mãn $f(0) = \frac{1}{2}$, $f'(x) = -\mathrm{e}^x f^2(x), \, \forall x \in \mathbb{R}.$ Tính giá trị của $f(\ln 2)$

$$(1 n 2) = \frac{1}{4}.$$

$$\mathbf{B}f(\ln 2) = \frac{1}{3}.$$

$$\bullet f(\ln 2) = \ln 2 + \frac{1}{2}.$$

$$D f(\ln 2) = \ln^2 2 + \frac{1}{2}.$$

CÂU 9. Cho hàm số $f(x) \neq 0$ thỏa mãn điều kiện $f'(x) = (2x+3)f^2(x)$ và $f(0) = -\frac{1}{2}$. Biết rằng tổng $f(1) + f(2) + f(3) + \dots + f(2024) + f(2025) = \frac{a}{b}$ với $(a \in \mathbb{Z}, b \in \mathbb{N}^*)$ và $\frac{a}{b}$ là

$$\mathbf{A} \frac{a}{b} < -1$$

$$\mathbf{B}\frac{a}{b} > 1.$$

$$(c)a + b = 1010.$$

$$\mathbf{D}b - a = 1519.$$

CÂU 10. Cho hàm số y=f(x) đồng biến trên $(0;+\infty);\ y=f(x)$ liên tục, nhận giá trị dương trên $(0; +\infty)$ và thỏa mãn $f(3) = \frac{4}{9}$ và $[f'(x)]^2 = xf(x)$. Tính f(8).

$$(A) f(8) = \frac{43 - 24\sqrt{3}}{9}.$$

$$B f(8) = \frac{43 + 24\sqrt{3}}{9}.$$

$$\mathbf{C}f(8) = \frac{43 - \sqrt{3}}{3}.$$

$$D f(8) = \frac{43 + \sqrt{3}}{3}.$$

CÂU 11. Cho hàm số f(x) > 0 với mọi $x \in \mathbb{R}$, f(0) = 1 và $f(x) = \sqrt{x} \cdot f'(x)$ với mọi $x \in \mathbb{R}$. Mệnh đề nào dưới đây đúng?

MGUYÊN HÀM -	TÍCH PHÂN			♥ VNPmath - 0962940819
(A) f(3) < 2.	B $2 < f(3) < 4$.	© $f(3) > 6$.	D $4 < f(3) < 6$.	QUICK NOTE
	số $f(x)$ có đạo hàm cấp, $f'(x) < 0$, $[f'(x)]^2 = f'$ B $(-2;0)$.		1] đồng thời thỏa mãn các trị $f'(2)$ thuộc khoảng \bigcirc $(-3;-2).$	
	số $f(x)$ đồng biến có đạo $f(x) + [f'(x)]^2 = 0$. Biết $f(0) = 0$.		rên đoạn $[0;2]$ và thỏa mãn hi đó $f(1)$ bằng \bigcirc \mathbf{D} \mathbf{e}^2 .	
	á trị của $T=f^2(2)$ bằng		$= x^3 - 2x, \ \forall x \in \mathbb{R} \ \text{và}$ $\bigcirc \frac{26}{15}.$	
CÂU 15. Cho hàm $f(0) = f'(0) = 3$. Giá	số $f(x)$ thỏa mãn $[f'(x)]$ thủa trị của $[f(1)]^2$ bằng	$f(x) = \frac{1}{2} \left[f(x) \cdot f''(x) \right]$	$= 2x^2 - x + 1, \ \forall x \in \mathbb{R} \ \text{và}$	
(A) 28.	B)22.	$\bigcirc \frac{19}{2}$.	(D) 10.	
CÂU 16. Cho hàm quả làm tròn đến hàn		$y' = xy^2$ và $f(-1) =$	= 1. Tính giá trị $f(2)$. (Kết	
			KQ:	
	số $f(x) \neq 0$, liên tụ i $\forall x \in [1; 2]$. Tính $f(2)$.	c trên đoạn $[1;2]$	và thỏa mãn $f(1) = 3$, KQ:	
trên khoảng $(0; +\infty)$	thỏa mãn $f'(x) = (2x)^{-1}$	$+1)f^2(x), \forall x > 0$	có đạo hàm $f'(x)$ liên tục và $f(1) = -\frac{1}{2}$. Tính giá trị quả làm tròn đến hàng đơn	
			KQ:	
	số $f(x)$ thỏa mãn $f(0) = g$ bao nhiêu? ($K\acute{e}t$ $qu\emph{a}$ b		$=2^x\left[f(x)\right]^2$ với mọi $x\in\mathbb{R}$. hần trăm).	
	$\sin y = f(x)$ đồng biến và $f(0) = 2$. Tính $f(2)$. (Kớ		trên $\mathbb R$ thỏa mãn $\left(f'(x)\right)^2=$	
			trên $(0; +\infty)$ và thỏa mãn tả làm tròn đến hàng phần	
CÂU 22. Cho hàm	số $f(x)$ có đạo hàm trêi	n $\mathbb R$ thỏa mãn $\mathrm{e}^{f(x)}$	KQ: $\frac{x}{f'(x)} = 0, \forall x \in \mathbb{R}. \text{ Biết}$	
	(kết quả làm tròn đến h		f'(x) 0, we can see	
	số $f(x)$ nhận giá trị dươn tết quả làm tròn đến hàn		$= 1, (f'(x))^3 = e^x (f(x))^2,$	
	số $y = f(x)$ có đạo l $ -1 \Big]^4 = 0, \forall x \in \mathbb{R} \text{ và } f$		KQ:	

CÂU 25. Cho hàm số f(x) thỏa mãn $[xf'(x)]^2 + 1 = x^2 [1 - f(x).f''(x)]$ với mọi x dương. Biết f(1) = f'(1) = 1. Tính giá trị $f^2(2)$ (kết quả làm tròn đến hàng phần trăm).

KQ:

വ്വ	CK	NIC	М	E
\mathbf{u}			-41	5

KQ:					
-----	--	--	--	--	--

Dang 5.

1. Điều kiện hàm ẩn có dạng

$$A(x)f(x) + B(x)f'(x) = h(x) \quad (1)$$

Phương pháp giải

 $igoplus ext{Ta}$ cần nhân thêm một lượng u(x) vào (1) để tạo thành $u'(x)f(x)+u(x)f'(x)=u(x)\cdot h(x)$ và lúc này.

$$u'(x)f(x) + u(x)f'(x) = u(x) \cdot h(x) \Leftrightarrow [u(x)f(x)]' = u(x) \cdot h(x)$$

$$\Rightarrow \int [u(x)f(x)] dx = \int u(x) \cdot h(x)dx \Rightarrow u(x)f(x) = \int u(x) \cdot h(x) dx$$

$$\Rightarrow f(x) = \frac{\int u(x) \cdot h(x) dx}{u(x)}$$

- \odot Cách tìm u(x).
 - u(x) được chọn sao cho $\begin{cases} u'(x) = A(x) \\ u(x) = B(x). \end{cases}$

Suy ra

$$\frac{u'(x)}{u(x)} = \frac{A(x)}{B(x)} \Rightarrow \int \frac{u'(x)}{u(x)} dx = \int \frac{A(x)}{B(x)} dx$$
$$\Rightarrow \ln|u(x)| = \int \frac{A(x)}{B(x)} dx \Rightarrow u(x) = e^{\int \frac{A(x)}{B(x)} dx}$$

Tóm lại phương pháp giải A(x)f(x) + B(x)f'(x) = h(x) (1) như sau.

- **9** Buốc 1. Tìm u(x). $u(x) = e^{\int \frac{A(x)}{B(x)} dx}$.
- $m{\Theta}$ Bước 2. Nhân u(x) vào (1) suy ra $f(x) = \frac{\int u(x) \cdot h(x) \, \mathrm{d}x}{u(x)}$

Môt số dang đặc biệt của (1).

a) Điều kiện hàm ẩn có dạng $\begin{cases} f'(x) + f(x) = h(x) \\ f'(x) - f(x) = h(x). \end{cases}$

Phương pháp giải.

 $\mathbf{\Theta} f'(x) + f(x) = h(x).$ Nhân hai vế với \mathbf{e}^x ta được

$$e^x \cdot f'(x) + e^x \cdot f(x) = e^x \cdot h(x) \Leftrightarrow [e^x \cdot f(x)]' = e^x \cdot h(x).$$

Suy ra $e^x \cdot f(x) = \int e^x \cdot h(x) dx$. Từ đây ta dễ dàng tính được f(x).

 $\mathbf{\Theta}$ f'(x) - f(x) = h(x). Nhân hai vế với e^{-x} ta được

$$e^{-x} \cdot f'(x) - e^{-x} \cdot f(x) = e^{-x} \cdot h(x) \Leftrightarrow [e^{-x} \cdot f(x)]' = e^{-x} \cdot h(x).$$

Suy ra $e^{-x} \cdot f(x) = \int e^{-x} \cdot h(x) dx$. Từ đây ta dễ dàng tính được f(x).

b) Điều kiện hàm ẩn có dạng $f'(x) + p(x) \cdot f(x) = h(x)$.

Phương pháp giải.

Nhân hai vế với $e^{\int p(x) dx}$ ta được

$$f'(x) \cdot e^{\int p(x) dx} + p(x) \cdot e^{\int p(x) dx} \cdot f(x) = h(x) \cdot e^{\int p(x) dx}$$

$$\Leftrightarrow \left[f(x) \cdot e^{\int p(x) dx} \right]' = h(x) \cdot e^{\int p(x) dx}.$$

Suy ra $f(x) \cdot e^{\int p(x) dx} = \int e^{\int p(x)ex} h(x) dx$. Từ đây ta dễ dàng tính được f(x). **CÂU 1.** Cho hàm số f(x) thỏa mãn $f(x) + f'(x) = e^{-x}$, $\forall x \in \mathbb{R}$ và f(0) = 2. Tất cả các nguyên hàm của $f(x)e^x$ là

$$(\mathbf{A})x^2 + x + C.$$

B)
$$2x^2 + 2x + C$$

$$\bigcirc 2x^2 + x + C$$

(B)
$$2x^2 + 2x + C$$
. **(C)** $2x^2 + x + C$. **(D)** $\frac{1}{2}x^2 + 2x + C$.

CÂU 2. Cho hàm số y = f(x) liên tục trên $\mathbb R$ thỏa mãn $f'(x) + 2x \cdot f(x) = e^{-x^2}$, $\forall x \in \mathbb R$ và f(0) = 0. Tính f(1).

B
$$f(1) = -\frac{1}{6}$$
.

$$\bigcirc f(1) = \frac{1}{e^2}.$$

$$\mathbf{D} f(1) = \frac{1}{e}.$$

CÂU 3. Cho hàm số y=f(x) liên tục trên $\mathbb{R}\setminus\{-1;0\}$ thỏa mãn điều kiện $f(1)=-2\ln 2$ và $x \cdot (x+1) \cdot f'(x) + f(x) = x^2 + x$. Biết $f(2) = a + b \cdot \ln 3$ $(a, b \in \mathbb{Q})$. Giá trị $2(a^2 + b^2)$

$$\frac{1}{4}$$

$$\bigcirc \frac{3}{4}$$
.

$$\bigcirc \frac{9}{2}$$
.

CÂU 4. Cho hàm số y = f(x) liên tục trên $\mathbb{R} \setminus \{-1, 0\}$ thỏa mãn $f(1) = 2 \ln 2 + 1$, $x(x + 1) + 2 \ln 2 + 1$ $1)f'(x) + (x+2)f(x) = x(x+1), \forall x \in \mathbb{R} \setminus \{-1, 0\}.$ Biết $f(2) = a + b \ln 3$, với a, b là hai số hữu tỉ. Tính $T = a^2 - b$.

(B) $T = \frac{3}{16}$.

(C) $T = \frac{3}{2}$.

B
$$T = \frac{21}{16}$$
.

$$\bigcirc T = \frac{3}{2}.$$

CÂU 5. Cho hàm số y = f(x) có đạo hàm liên tục trên $(0; +\infty)$ thỏa mãn $f'(x) + \frac{f(x)}{x} = 4x^2 + 3x$ và f(1) = 2. Phương trình tiếp tuyến của đồ thị hàm số y = f(x)tại điểm có hoành độ x=2 là

$$\mathbf{B}y = 16x - 20.$$

$$\mathbf{D}y = -16x + 20.$$

CÂU 6. Cho hàm số y = f(x) liên tục trên $(0; +\infty)$ thỏa mãn $2xf'(x) + f(x) = 3x^2\sqrt{x}$. Biết $f(1) = \frac{1}{2}$. Tính f(4).

$$\mathbf{C}$$
4.

$$\bigcirc$$
16

CÂU 7. Cho hàm số f(x) thỏa mãn f(1) = 4 và $f(x) = xf'(x) - 2x^3 - 3x^2$ với mọi x > 0. Giá trị của f(2) bằng

$$\bigcirc 5.$$

$$\bigcirc$$
 10.

$$\bigcirc$$
20.

f(x) liên tục trên $(0; +\infty)$ thỏa mãn **CÂU 8.** Cho hàm số y= $3x \cdot f(x) - x^2 \cdot f'(x) = 2f^2(x)$, với $f(x) \neq 0$, $\forall x \in (0; +\infty)$ và $f(1) = \frac{1}{3}$. Gọi M, mlần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [1;2]. Tính

M + m. $\frac{9}{10}$

B
$$\frac{21}{10}$$
.

$$\bigcirc \frac{5}{3}$$
.

$$\bigcirc \frac{7}{3}$$
.

CÂU 9. Cho F(x) là một nguyên hàm của hàm số $f(x) = e^{x^2} (x^3 - 4x)$. Hàm số $F(x^2 + x)$ có bao nhiêu điểm cực tri?

(**A**)6.

•		
1	$\overline{}$	
	B)	K
	•	U,
_	\sim	

$$\bigcirc$$
4.

CÂU 10. Cho $h{
m am}$ $s{
m \^o}$ của Đồ $_{
m thi}$ hàm y = f'(x) trên [-5; 3] như hình vẽ (phần cong của đồ thị là một phần của parabol $y = ax^2 + bx + c$). Biết f(0) = 0, giá trị của 2f(-5) + 3f(2) bằng \bigcirc (A) 33. (B) \bigcirc (C) \bigcirc (35) \bigcirc (C) \bigcirc (35) \bigcirc (B) \bigcirc (C) \bigcirc (35) \bigcirc (C) \bigcirc (B) \bigcirc (C) \bigcirc (C) \bigcirc (D) \bigcirc (D) (D) \bigcirc (D) \bigcirc

 • • • •	 	

IGUYÊN HÀM VÀ T	ΓÍCH PHÂN	1
Bài 1.	NGUYÊN HÀM	1
A	Tóm tắt lý thuyết	1
B	Kiến thức cần nắm	1
Ö	Phân loại và phương pháp giải bài tập	2
	Dạng 1.Sử dụng định nghĩa nguyên hàm và bảng nguyên hàm	2
	Dạng 2.Tìm nguyên hàm khi biết giá trị nguyên hàm	10
	► Dạng 3.Ứng dụng trong bài toán thực tiễn	13
	NGUYÊN HÀM HÀM ẨN	15
	► Dang 4.	15
	Dang 5.	18

