## **Naïve Discriminative Learning:**

#### Theoretical and Experimental Observations

Stefan Evert<sup>1</sup> & Antti Arppe<sup>2</sup>

<sup>1</sup>Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany stefan.evert@fau.de

> <sup>2</sup>University of Alberta, Edmonton, Canada arppe@ualberta.ca

QITL-6, Tübingen, 6 Nov 2015





Tübingen, 6 Nov 2015 1 / 63

Naïve Discriminative Learning

#### Outline

- Introduction
  - Naïve Discriminative Learning
  - An example
- Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- Insights
  - Theoretical insights
  - Empirical observations
  - Conclusion

#### Outline

- Introduction
  - Naïve Discriminative Learning
  - An example
- Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- Insights
  - Theoretical insights
  - Empirical observations
  - Conclusion

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 2 / 63

Naïve Discriminative Learning

## **Objectives**

- Present the mathematic underpinnings of NDL in one place, in a systematic way
- High-light the theoretical similarities of NDL with linear/logistic regression and perceptron
- Present some empirical simulations of NDL, in light of the theory

Tübingen, 6 Nov 2015 3 / 63

Tübingen, 6 Nov 2015 4 / 63

Naïve Discriminative Learning

Naïve Discriminative Learning

#### Naive Discriminative Learning

- Baayen et al. 2011; Baayen 2011
- Rescorla-Wagner (1972) incremental learning equations
- Danks (2003) equilibrium equations
- Implementation as an R package ndl: Arppe et al. 2011; Shaoul et al. 2013

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 5 / 63

Tübingen, 6 Nov 2015 6 / 63

Naïve Discriminative Learning

#### Danks (2003) equilibrium equations – verbally

- presume an ideal 'adult/stable' state where all the cue-outcome associations have been fully learnt – any more data points bring nothing 'new' to learn, i.e. have zero impact on the cue-outcome associations.
- make it possible to estimate the weights for a system using relatively simple matrix algebra.
- provide a convenient short-cut to calculating the consolidated cue-outcome association weights resulting from incremental learning.
- the learning parameters of the Rescorla-Wagner equations drop out of the equilibrium equations.
- circumvent the problem that a simulation of an Rescorla-Wagner learner does not converge to a single state unless the learning rate is gradually decreased.

## Rescorla-Wagner equations (1972) - verbally

Represent incremental learning and subsequently on-going adjustments to an accumulating body of knowledge: Changes in association strengths:

- If a cue is not present in the input, no change
- Increased when the cue and outcome co-occur
- Decreased when the cue occurs without the outcome.
- The more cues are present simultaneously, the smaller the adjustments are

Only the results of the incremental adjustments to the cue-outcome associations are kept - no need for remembering the individual adjustments, however many there are.

Naïve Discriminative Learning

#### Naive Discriminative Learning

- Naive: cue-outcome associations estimatated separately for each outcome (this simplifying assumption of independence similar to a naive Bayesian classifier).
- Discriminative: direct associations with each outcome given a set of cues.
- Learning: based on incremental learning.

Tübingen, 6 Nov 2015

Introductio

Naïve Discriminative Learning

# Rescorla-Wagner equations – traditional vs. linguistic applications

- traditionally: simple controlled experiments on item-by-item learning, with only a couple of cues and some perfect associations.
- natural language: full of choices among multiple possible alternatives – phones, words, or constructions – which are influenced by a large number of contextual factors, and which rather exhibit asymptotic, imperfect tendencies favoring one or more of the alternatives, instead of single, categorical, perfect choices.
- these messy, complex types of problems as a key area of interest in modeling and understanding language use.
- the application of the Rescorla-Wagner equations in the form of a Naive Discriminative Learning classifier to such linguistic phenomena of considerable utility.

S Evert & A Arnne

NDL: Theory & Experiments

Tübingen, 6 Nov 2015

9 / 63

#### Simple vs. complex settings - QITL-01 revisited

- Arppe & Järvikivi (2002, 2007)
- Person (FIRST PERSON SINGULAR or not) and Countability (COLLECTIVE or not) of AGENT/SUBJECT of Finnish verb synonym pair miettiä vs. pohtia 'think, ponder':

| Forced-choice<br>Dispreferred | Preferred                  | Frequency<br>(relative) | Unacceptable | Acceptability<br>Acceptable |
|-------------------------------|----------------------------|-------------------------|--------------|-----------------------------|
| Ø                             | miettiä+SG1<br>pohtia+COLL | Frequent                | Ø            | miettiä+SG1<br>pohtiaä+COLL |
| miettiä+COLL<br>pohtia+SG1    | Ø                          | Rare                    | miettiä+COLL | pohtia+SG1                  |

Introduction

An example

#### Outline

- Introduction
  - Naïve Discriminative Learning
  - An example
- Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- Insights
  - Theoretical insights
  - Empirical observations
  - Conclusion

6. Evert & A. Arppe

NDL: Theory & Experiment

Fübingen, 6 Nov 2015

10 / 63

Introductio

An examp

#### QITL-1 through the lenses of NDL: 1/4



Evert & A Arpne

NDL: Theory & Experiments

Tübingen, 6 Nov 2015

11 / 63

S. Evert & A. Arppe

NDL: Theory & Experiments

Tübingen, 6 Nov 2015

5 12 / 63

## QITL-1 through the lenses of NDL: 2/4



An example

## QITL-1 through the lenses of NDL: 4/4



## QITL-1 through the lenses of NDL: 3/4



An example

## QITL-01: Linguistic production vs. judgments

| Forced-choice | D.C.      | Frequency  |              | Acceptability |
|---------------|-----------|------------|--------------|---------------|
| Dispreferred  | Preferred | (relative) | Unacceptable | Acceptable    |
| Ø             | +         | Frequent   | Ø            | +             |
| +             | Ø         | Rare       | +            | +             |

Frequency ⇒ Acceptability

 $Unacceptability \Rightarrow Rarity$ 

 $\neg(Acceptability \Rightarrow Frequency)$ 

 $\neg(Rarity \Rightarrow Unacceptability)$ 

Introduction

An example

## QITL-01 through the lenses of QITL-6

(courtesy of Dagmar Divjak)



Introduction

An example

# QITL-4 revisited – comparison of NDL with statistical methods – Classification Accuracy & Recall

|                                      | ١                    |                        | Λ αστικά στ |
|--------------------------------------|----------------------|------------------------|-------------|
|                                      | $\lambda$ prediction | $	au_{classification}$ | Accuracy    |
| Polytomous logistic regression       | 0.447                | 0.516                  | 0.646       |
| (One-vs-rest)                        |                      |                        |             |
| Polytomous mixed logistic regression |                      |                        |             |
| (Poisson reformulation)              |                      |                        |             |
| 1—Register                           | 0.435                | 0.505                  | 0.638       |
| 1—Genre                              | 0.433                | 0.504                  | 0.637       |
| 1—Lexeme                             | 0.428                | 0.499                  | 0.634       |
| 1—Register $+$ $1$ —Lexeme           | 0.431                | 0.502                  | 0.636       |
| Support Vector Machine               | 0.414                | 0.487                  | 0.625       |
| Memory-Based Learning                | 0.287                | 0.376                  | 0.543       |
| (TiMBL)                              |                      |                        |             |
| Random Forests                       | 0.445                | 0.515                  | 0.645       |
| Naive Discriminative Learning        | 0.442                | 0.511                  | 0.642       |

Table: Classification diagnostics for five models fitted to the English data set (n = 909).

Introductio

An examp

## Simple vs. complex settings – QITL-2 revisited





Mathematic

The Rescorla-Wagner equations

#### Outline

- Introduction
  - Naïve Discriminative Learning
  - An example
- 2 Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- Insights
  - Theoretical insights
  - Empirical observations
  - Conclusion

5. Evert & A. Arppe NDL: Theory & Experiments Tübingen, 6 Nov 2015 19 / 63 S. Evert & A. Arppe NDL: Theory & Experiments Tübingen, 6 Nov 2015 20 / 63

The Rescorla-Wagner equations

## The Rescorla-Wagner equations

- Goal of naïve discriminative learner: predict an outcome O based on presence or absence of a set of cues  $C_1, \ldots, C_n$
- An event (c, o) is formally described by indicator variables

$$c_i = egin{cases} 1 & ext{if } C_i ext{ is present} \\ 0 & ext{otherwise} \end{cases} \quad o = egin{cases} 1 & ext{if } O ext{ results} \\ 0 & ext{otherwise} \end{cases}$$

• Given cue-outcome associations  $\mathbf{v} = (V_1, \dots, V_n)$  of learner, the activation level of the outcome O is

$$\sum_{j=1}^{n} c_j V_j$$

• Associations  $\mathbf{v}^{(t)}$  as well as cue and outcome indicators  $(\mathbf{c}^{(t)}, o^{(t)})$  depend on time step t

Tübingen, 6 Nov 2015 22 / 63

The Rescorla-Wagner equations

#### The Widrow-Hoff rule

• The W-H rule (Widrow and Hoff 1960) is a widely-used simplification of the R-W equations:

$$\Delta V_{i} = \begin{cases} 0 & \text{if } c_{i} = 0\\ \beta \left(1 - \sum_{j=1}^{n} c_{j} V_{j}\right) & \text{if } c_{i} = 1 \land o = 1\\ \beta \left(0 - \sum_{j=1}^{n} c_{j} V_{j}\right) & \text{if } c_{i} = 1 \land o = 0 \end{cases}$$
$$= c_{i}\beta \left(o - \sum_{j=1}^{n} c_{j} V_{j}\right)$$

with parameters

target activation level for outcome O  $\lambda = 1$  $\alpha_i = 1$ salience of cue  $C_i$ 

 $\beta_1 = \beta_2$ global learning rate for positive and  $=\beta>0$ negative events

## The Rescorla-Wagner equations

• Rescorla and Wagner (1972) proposed the R-W equations for the change in associations given an event  $(\mathbf{c}, o)$ :

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0\\ \alpha_i \beta_1 \left(\lambda - \sum_{j=1}^n c_j V_j\right) & \text{if } c_i = 1 \land o = 1\\ \alpha_i \beta_2 \left(0 - \sum_{j=1}^n c_j V_j\right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

with parameters

 $\lambda > 0$ target activation level for outcome O

 $\alpha_i > 0$ salience of cue C;

 $\beta_1 > 0$ learning rate for positive ovents (o = 1)

learning rate for negative ovents (o = 0)  $\beta_2 > 0$ 

The Rescorla-Wagner equations

## A simple example: German noun plurals

| t  | word     | o<br>pl? | <i>c</i> <sub>1</sub> − <i>e</i> | c <sub>2</sub> –n | <i>c</i> <sub>3</sub> | c <sub>4</sub><br>umlaut | c <sub>5</sub> dbl cons | c <sub>6</sub> |
|----|----------|----------|----------------------------------|-------------------|-----------------------|--------------------------|-------------------------|----------------|
| 1  | Bäume    | 1        | 1                                | 0                 | 0                     | 1                        | 0                       | 1              |
| 2  | Flasche  | 0        | 1                                | 0                 | 0                     | 0                        | 0                       | 1              |
| 3  | Baum     | 0        | 0                                | 0                 | 0                     | 0                        | 0                       | 1              |
| 4  | Gläser   | 1        | 0                                | 0                 | 0                     | 1                        | 0                       | 1              |
| 5  | Flaschen | 1        | 0                                | 1                 | 0                     | 0                        | 0                       | 1              |
| 6  | Latte    | 0        | 1                                | 0                 | 0                     | 0                        | 1                       | 1              |
| 7  | Hütten   | 1        | 0                                | 1                 | 0                     | 1                        | 1                       | 1              |
| 8  | Glas     | 0        | 0                                | 0                 | 1                     | 0                        | 0                       | 1              |
| 9  | Bäume    | 1        | 1                                | 0                 | 0                     | 1                        | 0                       | 1              |
| 10 | Füße     | 1        | 1                                | 0                 | 0                     | 1                        | 0                       | 1              |

The Rescorla-Wagner equations

| M | a | tł | ne | m | ıa | t١ | c |
|---|---|----|----|---|----|----|---|
|   |   |    |    |   |    |    |   |

## A simple example: German noun plurals

| t<br>10 | $\begin{array}{c c} \sum c_j V_j \\ .882 \end{array}$ | <i>V</i> ₁ .077       | V <sub>2</sub><br>.217 | <i>V</i> <sub>3</sub> 070 | .464           | <i>V</i> <sub>5</sub> 038 | V <sub>6</sub><br>.340 |
|---------|-------------------------------------------------------|-----------------------|------------------------|---------------------------|----------------|---------------------------|------------------------|
| Füße    | 1 0                                                   | 1                     | 0                      | 0                         | 1              | 0                         | 1                      |
|         | 0                                                     | <i>C</i> <sub>1</sub> | <b>C</b> 2             | <b>C</b> 3                | C <sub>4</sub> | <i>C</i> 5                | <b>C</b> 6             |



The Rescorla-Wagner equations

#### A stochastic NDL learner

Effect of the learning rate  $\beta$ 



#### A stochastic NDL learner

- A specific event sequence  $(\mathbf{c}^{(t)}, o^{(t)})$  will only be encountered in controlled experiments
- For applications in corpus linguistics, it is more plausible to assume that events are randomly sampled from a population of event tokens  $(\mathbf{c}^{(k)}, o^{(k)})$  for  $k = 1, \dots, m$ 
  - event types listed repeatedly proportional to their frequency
- I.i.d. random variables  $\mathbf{c}^{(t)} \sim \mathbf{c}$  and  $o^{(t)} \sim o$ 
  - distributions of **c** and *o* determined by population
- NDL can now be trained for arbitrary number of time steps, even if population is small (as in our example)
  - study asymptotic behaviour of learners
  - ► convergence → stable "adult" state of associations

Tübingen, 6 Nov 2015 26 / 63

Mathematics

The Danks equilibrium

#### Outline

- Introduction
  - Naïve Discriminative Learning
  - An example
- 2 Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- - Theoretical insights
  - Empirical observations
  - Conclusion

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 28 / 63

#### Mathematics

## Expected activation levels

• Since we are interested in the general behaviour of a stochastic NDL, it makes sense to average over many individual learners to obtain expected associations  $\mathrm{E}[V_i^{(t)}]$ 

$$\mathrm{E}\big[V_{j+1}^{(t)}\big] = \mathrm{E}\big[V_{j}^{(t)}\big] + \mathrm{E}\big[\Delta V_{j}^{(t)}\big]$$

$$E[\Delta V_j^{(t)}] = E\left[c_i\beta(o - \sum_{j=1}^n c_j V_j^{(t)})\right]$$
$$= \beta \cdot \left(\Pr(C_i, O) - \sum_{j=1}^n \Pr(C_i, C_j) E[V_j^{(t)}]\right)$$

- ullet  $c_i$  and  $c_j$  are independent from  $V_i^{(t)}$
- indicator variables:  $E[c_i o] = Pr(C_i, O)$ ;  $E[c_i c_j] = Pr(C_i, C_j)$

S. Evert & A. Arppe

NDL: Theory & Experiments

The Danks equilibrium

Tübingen, 6 Nov 2015

29 / 63

## Expected activation levels

$$\mathrm{E} igl[ \Delta V_j^{(t)} igr] = eta \cdot igl( \mathrm{Pr}(C_i, O) - \sum_{j=1}^n \mathrm{Pr}(C_i, C_j) \mathrm{E} igl[ V_j^{(t)} igr] igr)$$



Mathemat

The Danks equilibrium

## The Danks equilibrium

• If  $\mathrm{E}[V_i^{(t)}]$  converges, the asymptote  $V_i^* = \lim_{t \to \infty} \mathrm{E}[V_i^{(t)}]$  must satisfy the Danks equilibrium conditions  $\mathrm{E}[\Delta V_i^*] = 0$ , i.e.

$$\Pr(C_i, O) - \sum_{j=1}^n \Pr(C_i, C_j) V_j^* = 0$$

(Danks 2003, p. 113)

- Now there is a clear interpretation of the Danks equilibrium as the stable average associations reached by a community of stochastic learners with input from the same population
  - allows us to compute the "adult" state of NDL without carrying out a simulation of the learning process

## The Danks equilibrium



#### Matrix notation

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} \Pr(C_1, O) \\ \vdots \\ \Pr(C_n, O) \end{bmatrix} = \frac{1}{m} \boldsymbol{X}^T \boldsymbol{z} \quad \begin{bmatrix} \Pr(C_1, C_1) & \cdots & \Pr(C_1, C_n) \\ \vdots & & \vdots \\ \Pr(C_n, C_1) & \cdots & \Pr(C_n, C_n) \end{bmatrix} = \frac{1}{m} \boldsymbol{X}^T \boldsymbol{X}$$

Danks equilibrium:  $X^Tz = X^TXw^*$ 

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 33 / 63

#### Matrix notation: German noun plurals

$$\mathbf{X} = egin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{z} = egin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{w} = egin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} .3 \\ .2 \\ .0 \\ .5 \\ .1 \\ .6 \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z} \qquad \begin{bmatrix} .5 & .0 & .0 & .3 & .1 & .5 \\ .0 & .2 & .0 & .1 & .1 & .2 \\ .0 & .0 & .1 & .0 & .0 & .1 \\ .3 & .1 & .0 & .5 & .1 & .5 \\ .1 & .1 & .0 & .1 & .2 & .2 \\ .5 & .2 & .1 & .5 & .2 & 1 \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

NDL vs. the Perceptron vs. least-squares regression

#### Outline

- Introduction
  - Naïve Discriminative Learning
  - An example
- 2 Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- Insights
  - Theoretical insights
  - Empirical observations
  - Conclusion

NDL vs. the Perceptron vs. least-squares regression

## The single-layer perceptron (SLP)

SLP (Rosenblatt 1958) is most basic feed-forward neural network

- numeric inputs  $x_1, \ldots, x_n$
- output activation h(y) based on weighted sum of inputs

$$y = \sum_{j=1}^{n} w_j x_j$$

- h = Heaviside step function intraditional SLP
- even simpler model: h(y) = y
- cost wrt. target output z:

$$E(\mathbf{w}, \mathbf{x}, z) = \left(z - \sum_{j=1}^{n} w_j x_j\right)^2$$



inputs weights

## SLP training: the delta rule

• SLP weights are learned by gradient descent training: for a single training item  $(\mathbf{x}, z)$  and learning rate  $\delta > 0$ 

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$

$$= 2\delta x_i \left( z - \sum_{j=1}^n x_j w_j \right)$$

$$= \beta c_i \left( o - \sum_{j=1}^n c_j V_j \right)$$

• Perfect correspondence to W-H rule with

$$V_i = w_i$$
  $c_i = x_i$   $o = z$   $\beta = 2\delta$ 

S. Evert & A. Arppe

Tübingen, 6 Nov 2015

NDL vs. the Perceptron vs. least-squares regression

#### Linear least-squares regression

• Matrix formulation of the linear least-squares problem:

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \left( z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$
$$= \frac{1}{m} (\mathbf{z} - \mathbf{X} \mathbf{w})^T (\mathbf{z} - \mathbf{X} \mathbf{w})$$

• Minimum of  $E(\mathbf{w})$ , the  $L_2$  solution, must satisfy  $\nabla E(\mathbf{w}^*) = \mathbf{0}$ , which leads to the normal equations

$$\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$$

- Normal equations = Danks equilibrium conditions
- Regression theory shows that batch training / stochastic NLP converges to the unique\* solution of the L2 problem

#### Batch training

- Neural networks often use batch training, where all training data are considered at once instead of one item at a time
- The corresponding batch training cost is

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} E(\mathbf{w}, \mathbf{x}^{(k)}, z^{(k)})$$
$$= \frac{1}{m} \sum_{k=1}^{m} \left( z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$

- Similar to stochastic NDL, batch training computes the expected weights  $E[\mathbf{w}^{(t)}]$  for SLP with stochastic input
- Minimization of  $E(\mathbf{w}) = \text{linear least-squares regression}$

NDL vs. the Perceptron vs. least-squares regression

#### What have we learned?

stochastic = batch = 
$$L_2$$
 regression  
NDL = SLP

These equivalences also hold for the general R-W equations with arbitrary values of  $\alpha_i$ ,  $\beta_1$ ,  $\beta_2$  and  $\lambda$  (see paper)

#### Outline

- - Naïve Discriminative Learning
  - An example
- Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- Insights
  - Theoretical insights
  - Empirical observations
  - Conclusion

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 41 / 63

S. Evert & A. Arppe

Theoretical insights

#### What about logistic regression?

Logistic regression is the standard tool for predicting a categorical response from binary features

- can be expressed as SLP with probabilistic interpretation
- uses logistic activation function

$$h(y) = \frac{1}{1 + e^{-y}}$$



• and Bernoulli cost

$$E(\mathbf{w}, \mathbf{x}, z) = \begin{cases} -\log h(y) & \text{if } z = 1\\ -\log(1 - h(y)) & \text{if } z = 0 \end{cases}$$

## Effects of R-W parameters

 $\beta > 0$ : learning rate  $\rightarrow$  convergence of individual learners

 $\lambda \neq 1$ : linear scaling of association / activation (obvious)

 $\alpha_i \neq 1$ : salience of cue  $C_i$  determines how fast associations are learned, but does not affect the final stable associations (same  $L_2$  regression problem)

 $\beta_1 \neq \beta_2$ : different positive/negative learning rates do affect the stable associations; closely related to prevalence of positive and negative events in the population

Theoretical insights

#### What about logistic regression?

• Gradient descent training leads to delta rule that corresponds to a modified version of the R-W equations

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0\\ \beta \left( 1 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 1\\ \beta \left( 0 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

- Same as original R-W, except that activation level is now transformed into probability h(y)
- But no easy way to analyze stochastic learning process (batch training  $\neq$  expected value of single-item training)
- Less robust for highly predictable outcomes → w diverges

Tübingen, 6 Nov 2015

#### Outline

- Introduction
  - Naïve Discriminative Learning
  - An example
- Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- Insights
  - Theoretical insights
  - Empirical observations
  - Conclusion

S. Evert & A. Arppe

Empirical observations

#### Non-equivocal positive assoc.: convergence



## **Empirical questions**

- How much data is needed for R-W learning convergence with the Danks equilibria
- Are there cases where we observe non-convergence between the R-W learning associations and Danks equilibria - if yes, why?
- Does NDL accuracy always improve with increasing cues? If not, why?

Empirical observations

#### Non-equivocal positive assoc.: convergence with 1x data



Tübingen, 6 Nov 2015

Insights

Empirical observations

Insight

Empirical observation

## Non-equivocal negative assoc.: convergence with 1x data



Insights Empirical observations

## Near-perfect neg. assoc.: non-convergence with 1x data



## Near-perfect positive assoc.: non-convergence with 1x data



Insights

Empirical observations

## Near-perfect positive assoc.: convergence with 5x data



Empirical observations

Empirical observations

## Near-perfect negative assoc.: convergence with 5x data



Empirical observations

## Perfect association – convergence



## Convergence vs. non-convergence – artificial data: plurals

| ${\sf WordForm}$ | Frequency | Outcomes         | Cues        |
|------------------|-----------|------------------|-------------|
| hand             | 10        | $hand_NIL$       | h_a_n_d     |
| hands            | 20        | $hand\_PLURAL$   | h_a_n_d_s   |
| land             | 8         | $land_NIL$       | $l_a_n_d$   |
| lands            | 3         | $land_{-}PLURAL$ | $l_a_n_d_s$ |
| and              | 35        | $and_{-}NIL$     | a_n_d       |
| sad              | 18        | $sad_NIL$        | s_a_d       |
| as               | 35        | $as_NIL$         | a_s         |
| lad              | 102       | $lad_NIL$        | l_a_d       |
| lad              | 54        | $lad_PLURAL$     | l_a_d       |
| lass             | 134       | lass_NIL         | l_a_s_s     |

Tübingen, 6 Nov 2015 54 / 63

Empirical observations

## Non-equivocal positive association – non-convergence



Tübingen, 6 Nov 2015 56 / 63

Insight

Empirical observations

## Non-equivocal positive association – convergence



nsights

Conclusion

#### Outline

- Introduction
  - Naïve Discriminative Learning
  - An example
- 2 Mathematics
  - The Rescorla-Wagner equations
  - The Danks equilibrium
  - NDL vs. the Perceptron vs. least-squares regression
- Insights
  - Theoretical insights
  - Empirical observations
  - Conclusion

#### Insights

Empirical observations

# $Non-equivocal\ negative\ association-non-convergence$



Insights

Conclusion

## Summary

$${\sf stochastic} = {\sf batch} = {\sf L}_2 \ {\sf regression}$$
 ${\sf NDL} = {\sf SLP}$ 

S. Evert & A. Arppe NDL: Theory & Experiments Tübingen, 6 Nov 2015 59 / 63 S. Evert & A. Arppe NDL: Theory & Experiments Tübingen, 6 Nov 2015 60 / 63

Conclusion

## Acknowledgements 1/2



The mathematical analysis was fuelled by large amounts of coffee and cinnamon rolls at Cinnabon, Harajuku, Tokyo

Tübingen, 6 Nov 2015 61 / 63

## Acknowledgements 2/2



The empirical analyses were conducted in the natural environment of Ninase, Saaremaa, Estonia.

Conclusion

#### References I

Danks, David (2003). Equilibria of the Rescorla-Wagner model. Journal of Mathematical Psychology, 47, 109-121.

Rescorla, Robert A. and Wagner, Allen R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black and W. F. Prokasy (eds.), Classical Conditioning II: Current Research and Theory, chapter 3, pages 64–99. Appleton-Century-Crofts, New York.

Rosenblatt, Frank (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408.

Widrow, Bernard and Hoff, Marcian E. (1960). Adaptive switching circuits. In IRE WESCON Convention Record, pages 96-104, New York. IRE.

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 63 / 63

Tübingen, 6 Nov 2015 62 / 63