# **EPC User's Guide**

Editor: EURECOM

Deliverable nature: Public

Due date: July, 2015

Delivery date: July, 2015

Version: 0.7

Total number of pages: 37

Reviewed by:

Keywords: EPC, LTE, MME, S-GW, HSS, S1AP, DIAMETER

# Abstract

The deliverable presents the EPC developed by EURECOM.

The document presents the deployment scenarios of the EPC, its configuration, installation testing and running.

# List of authors

| Company    | Authors                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------|
| EURECOM    | Christian BONNET, Lionel GAUTHIER, Rohit GUPTA, Florian KALTENBERGER, Raymond KNOPP, Navid NIKAIEN, Cedric ROUX. |
| OPEN CELLS | Laurent THOMAS.                                                                                                  |
|            |                                                                                                                  |
|            |                                                                                                                  |

Page 2 of (37)

# History

| Modified by     | Date       | Version | Comments                                                                                           |
|-----------------|------------|---------|----------------------------------------------------------------------------------------------------|
| Lionel GAUTHIER | 09/06/2015 | 0.1     | Initial Draft                                                                                      |
| Lionel GAUTHIER | 11/06/2015 | 0.2     | Minor corrections                                                                                  |
| Lionel GAUTHIER | 20/07/2015 | 0.3     | Changes in dir and file names for git repo                                                         |
| Lionel GAUTHIER | 29/07/2015 | 0.4     | Minor corrections (build, get sources from git)                                                    |
| Lionel GAUTHIER | 09/09/2015 | 0.5     | Minor corrections (build_epc script)                                                               |
| Lionel GAUTHIER | 21/09/2015 | 0.6     | History, GTP-U installation for EPC                                                                |
| Lionel GAUTHIER | 14/12/2015 | 0.7     | Removed epc config file when eNB and EPC are co-located, added description of S1AP scenario replay |

Page 3 of (37)

# **Table of Contents**

| History                                      | 3  |
|----------------------------------------------|----|
| Table of Contents                            | 4  |
| List of Figures                              | 6  |
| List of tables                               | 7  |
| Abbreviations                                | 8  |
| 1 Introduction                               | 9  |
| 1.1 Overview                                 | 9  |
| 1.2 Deployment scenarios                     | 9  |
| 1.2.1 Separate EPC platform                  |    |
| 1.2.2 All in one EPC platform                |    |
| 2 EPC Installation                           |    |
| 2.1 Operating system                         |    |
| 2.2 EPC source code                          |    |
| 2.2.1 Get the code without login             |    |
| 2.2.2 Get the code with login (contributors) |    |
| 2.3 Additional software, initial steps.      |    |
| 2.3.1 Mysql server installation details      |    |
| 2.3.2 Phpmyadmin installation details        |    |
| 3 EPC Configuration                          |    |
| 3.1 MME GW                                   |    |
| 3.1.1 Fully Qualified Domain name            |    |
| 3.1.2 Configuration files                    |    |
| 3.2 MME                                      |    |
| 3.3 SP GW                                    |    |
| <del>-</del>                                 |    |
| 3.4 MME configuration content                |    |
|                                              |    |
|                                              |    |
| 3.4.3 S1AP section                           |    |
| 3.4.4 S6A section                            |    |
| 3.4.5 NAS section                            |    |
| 3.4.6 INTERTASK_INTERFACE section            |    |
| 3.4.7 Network interfaces section             |    |
| 3.5 S-GW configuration content               |    |
| 3.6 P-GW configuration content               |    |
| 3.6.1 Main section                           |    |
| 3.6.2 Network interfaces section             |    |
| 3.6.3 IP Address Pool section                |    |
| 3.7 HSS                                      |    |
| 3.7.1 Fully Qualified Domain name            |    |
| 3.7.2 Configuration files                    |    |
| 3.7.3 HSS database content                   |    |
| 3.7.4 Configuring your HSS                   |    |
| Adding your MME                              | 25 |
| Adding a user                                | 25 |
| 4 Building and running                       | 27 |
| 4.1 MME GW                                   |    |
| 4.1.1 Configuration files                    |    |
| 4.1.2 Building EPC                           |    |
| 4.1.3 Running EPC                            |    |
| 5 Supported scenarios in EPC                 |    |
| 5.1 E-UTRAN Initial attach                   |    |
| 5.1.1 Attach with IMSI                       |    |
| 5.1.1 1 1000H WHI HVIGI                      | 20 |

| 5.1.2 Attach with GUTI                                  | 28 |
|---------------------------------------------------------|----|
| 5.2 Tracking Area Update procedures                     | 28 |
| 5.3 Routing Area Update procedures                      | 28 |
| 5.4 Service Request procedures                          | 28 |
| 5.4.1 UE triggered Service Request                      |    |
| 5.4.2 Network triggered Service Request                 |    |
| 5.5 S1 Release procedure                                | 28 |
| 5.6 GUTI Reallocation procedure                         | 28 |
| 5.7 Detach procedure                                    |    |
| 5.7.1 UE-Initiated Detach procedure for E-UTRAN         | 28 |
| 5.7.2 MME-Initiated Detach procedure for E-UTRAN        |    |
| 5.7.3 HSS-Initiated Detach procedure for E-UTRAN        |    |
| 5.8 HSS User Profile management function procedure      |    |
| 5.9 Bearer deactivation                                 |    |
| 5.9.1 PDN GW initiated bearer deactivation              |    |
| 5.9.2 MME initiated Dedicated Bearer Deactivation       |    |
| 5.10 Intra E-UTRAN handover                             |    |
| 6 Annex A: Tools for observing, debugging.              |    |
| 6.1 Itti_analyzer                                       | 30 |
| 6.1.1 Installation                                      |    |
| 6.1.2 Execution                                         |    |
| 6.2 Wireshark/tshark                                    |    |
| 6.3 Mscgen                                              |    |
| 6.4 S1AP scenario replay                                |    |
| 6.4.1 Overall process                                   |    |
| 6.4.2 Flowchart of step1: Network trace capture on S1-C |    |
| 6.4.3 Build a generic scenario                          |    |
| 6.4.4 Replay a S1AP generic scenario                    | 37 |
|                                                         |    |

# List of Figures

| Figure 1 EPC overview                                 | 9  |
|-------------------------------------------------------|----|
| Figure 2 EPC Deployment in MME SP-GW                  |    |
| Figure 3 EPC Deployment in MME_GW                     |    |
| Figure 4 Mysql installation root password             | 12 |
| Figure 5 Phpmyadmin installation conf DB              | 13 |
| Figure 6 Phpmyadmin installation DB password          | 13 |
| Figure 7 Phpmyadmin installation app password         | 13 |
| Figure 8 Phpmyadmin installation web server selection | 14 |
| Figure 9 MME_GW configuration files generation        | 15 |
| Figure 10 HSS configuration files generation          |    |
| Figure 11 ITTI Analyzer main window                   | 30 |
| Figure 12 ITTI Analizer select filter menu            | 31 |
| Figure 13 Mscgen output example                       | 32 |
| Figure 14 Workflow of scenario replay                 |    |
| Figure 15 Flowchart of scenario capture               | 34 |
| Figure 16 Build scenario detailed operations          | 36 |

# List of tables

| Table 1 MME configuration main section                           | 16 |
|------------------------------------------------------------------|----|
| Table 2 MME configuration subsection GUMMEI                      | 16 |
| Table 3 MME configuration subsection SCTP                        | 17 |
| Table 4 MME configuration subsection S1AP                        | 17 |
| Table 5 MME configuration subsection S6a                         | 17 |
| Table 6 MME configuration subsection NAS                         | 17 |
| Table 7 MME configuration subsection ITTI                        | 17 |
| Table 8 MME configuration subsection Network Interfaces          | 18 |
| Table 9 S-GW configuration main section                          | 18 |
| Table 10 P-GW configuration main section                         | 19 |
| Table 11 P-GW configuration subsection Network Interfaces        |    |
| Table 12 P-GW configuration subsection IP Address Pool Selection | 19 |
| Table 13 SQL Table structure mmeidentity                         |    |
| Table 14 SQL Table structure pdn                                 | 24 |
| Table 15 SQL Table structure users                               |    |
|                                                                  |    |

# **Abbreviations**

3GPP Third Generation Partnership Project.

APN Access Point Name.

CIDR Classless Inter-Domain Routing.

eNB e Node B.

EPC Evolved Packet Core.

EPS Evolved Packet System.

FQDN Fully qualified domain name.

HSS Home Subscriber Server.

IMEI International Mobile Station Equipment Identity.

IMEISV International Mobile Station Equipment Identity Software

Version.

LTE Long Term Evolution.

MME Mobility Management Entity.

MSISDN Mobile Station International Subscriber Directory Number.

NW Network.

P-GW PDN Gateway, Packet Data Network Gateway.

PDN Packet Data Network.

QoS Quality of Service.

SCTP Stream Control Transmission Protocol.

S-GW Serving Gateway.

SIM Subscriber Identity Module.

TCP Transmission Control Protocol.

USIM Universal Subscriber Identity Module.

Page 8 of (37)

# 1 Introduction

# 1.1 Overview

The EURECOM EPC is a bundle of software components that provides the MME, S+P-GW, HSS functions of the LTE core EPC architecture (<a href="http://www.3gpp.org/DynaReport/23002.htm">http://www.3gpp.org/DynaReport/23002.htm</a>).

Actually the SGW and the PGW are merged together, there is no S5 or S8 interface between the two functional entities.



Figure 1 EPC overview

# 1.2 Deployment scenarios

Two deployment scenarios are considered with the EURECOM EPC.

# 1.2.1 Separate EPC platform

Actually this deployment scenario is under development and cannot be demonstrated yet.



Figure 2 EPC Deployment in MME SP-GW

Page 9 of (37)

# 1.2.2 All in one EPC platform

The following picture depicts a EURECOM EPC providing MME and GW functions, and interact with the EURECOM HSS. In this deployment scenario, the S11 interface is virtual in the sense that S11 messages do not go through the network layer but through an inter-task interface message passing middleware (ITTI).



Figure 3 EPC Deployment in MME\_GW

The EPC can be deployed on the same EURECOM eNB host or on its own host.

The HSS can be deployed on the same EPC host, EURECOM eNB host or on its own host. Any combination of deployment with one, two or three host(s) is possible with the EURECOM eNB.

If a third party eNB is used, then it is preferable to run the EPC and HSS on one or two other hosts, indifferently.

Page 10 of (37)

# 2 EPC Installation

# 2.1 Operating system

The EPC software has only been tested on UBUNTU 14.04x64, and UBUNTU 14.10x64 LINUX distributions on Intel x86 64 bits platforms.

If you want to try another LINUX distribution, it is mandatory to have a 64 bits LINUX distribution.

#### **Important!**

In this document OPENAIRCN\_DIR is the path to the openair-cn working directory.

# 2.2 EPC source code

The OpenAirInterface core network software can be obtained from our git server. You will need a git client to get the sources.

If git is not installed on your computer, execute in a shell the following command (Ubuntu):

```
user@host:~ sudo apt-get install git
```

Configure git with your name/email address (only important if you are developer and want to checkin code to Git):

```
git config --global user.name "Your Name"
git config --global user.email "Your email address"
```

Add a certificate from gitlab.eurecom.fr to your Ubuntu 14.04 installation (you need to be root user):

```
echo -n | openssl s_client -showcerts -connect gitlab.eurecom.fr:443 2>/dev/null | sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' >> /etc/ssl/certs/ca-certificates.crt
```

#### 2.2.1 Get the code without login

In order to checkout the Git repository (for OAI Users without login to gitlab server) user@host:~ git clone https://gitlab.eurecom.fr/oai/openair-cn.git

#### 2.2.2 Get the code with login (contributors)

In order to check out the Git repository (for OAI Developers/admins with login to gitlab server)

Please send an email to openair\_tech@eurecom.fr to be added to the repository as a developer (only important for users who want to commit code to the repository). If you do not have account on gitlab.eurecom.fr, please register yourself to gitlab.eurecom.fr.

#### Checkout with using ssh keys:

You will need to put your ssh keys in https://gitlab.eurecom.fr/profile/keys to access to the git repo. Once that is done, checkout the git repository using:

```
git clone git@gitlab.eurecom.fr:oai/openair-cn.git
```

#### Checkout with user name/password prompt:

git clone <a href="https://YOUR\_USERNAME@gitlab.eurecom.fr/oai/openair-cn.git">https://YOUR\_USERNAME@gitlab.eurecom.fr/oai/openair-cn.git</a>

Page 11 of (37)

# 2.3 Additional software, initial steps.

Some software installations have to be done prior to build the EURECOM EPC and the EURECOM HSS.

In OPENAIRCN\_DIR/SCRIPTS directory, execute the following command:

```
user@host:~/openair-cn/SCRIPTS$ ./build_epc -i
```

This command will update the software source list of your Ubuntu installation. It will install miscellaneous software packages, mainly an openair-cn version (patched) of freeDiameter, an openair version (patched) of asn1c, and particularly mysql-server and phpmyadmin software, which steps are described below.

This command will also install the GTP-U kernel part of the GTP-U protocol layer of the S-GW. For licensing reasons, this code is located in another git repository: <a href="mailto:git@gitlab.eurecom.fr:oai/xtables-addons-oai.git">git@gitlab.eurecom.fr:oai/xtables-addons-oai.git</a>.

This kernel module requires the installation of a kernel version greater or equal to 3.19, this constraint is handled in the command build\_epc -I, or build\_epc -j (install only the xtables-addons-oai.git software): you are prompted if necessary to install a linux kernel and/or reboot your operating system on another linux kernel.

# 2.3.1 Mysql server installation details

Enter here the root password of your host.



Figure 4 Mysql installation root password



The mysql-server installation process ends here.

#### 2.3.2 Phpmyadmin installation details

You should prefer the easiest way

Page 12 of (37)



Figure 5 Phpmyadmin installation conf DB

Enter here the root password of your host:



Figure 6 Phpmyadmin installation DB password

Accordingly with the content of openair-cn configuration files, please, enter here admin



Figure 7 Phpmyadmin installation app password



Choose the web server that has to be configured: Apache.

Page 13 of (37)



Figure 8 Phpmyadmin installation web server selection

Page 14 of (37)

# 3 EPC Configuration

# 3.1 MME\_GW

# 3.1.1 Fully Qualified Domain name

A FQDN has to be set for the MME\_GW (freeDiameter constraint ACL about this may not exist anymore, to be checked). An easy way to do that is to fill this FQDN in the /etc/hosts file.

#### Example:

```
yang@yang:$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 yang.openair4G.eur yang
...
192.168.12.175 yin.openair4G.eur hss yin
...
```

# 3.1.2 Configuration files

Here is view of the build process of MME\_GW, we can see there when and how configuration files are generated. Inputs files and parameters are on the left part of the figure, the build process is in the center part and output configuration files are on the right of the figure.



Figure 9 MME\_GW configuration files generation

#### **Configuration file epc.conf and epc.local.enb.conf:**

Page 15 of (37)

These configuration files, since MME\_GW is an aggregation of a MME, a S-GW and a P-GW, aggregate three configuration sections: a MME, a S-GW, and a P-GW configuration section.

This configuration files follow the libconfig file syntax (<a href="http://www.hyperrealm.com/libconfig">http://www.hyperrealm.com/libconfig</a>).

These sections are described below.

# **Configuration file mme\_fd.conf:**

This configuration file is the input file for configuring the diameter protocol instance of the MME\_GW.

# 3.2 MME

Empty section, will be updated when a standalone MME will be released.

# 3.3 **SP\_GW**

Empty section, , will be updated when a standalone S+P-GW will be released.

# 3.4 MME configuration content

| Parameter                      | Type        |                                                                                                                                                                                                                                                         |
|--------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REALM                          | String      | Diameter realm of the MME                                                                                                                                                                                                                               |
| MAXENB                         | Num/Integer | Maximum number of eNB that can connect to MME.                                                                                                                                                                                                          |
| MAXUE                          | Num/Integer | For debug purpose, used to restrict the number of served UEs the MME can handle.                                                                                                                                                                        |
| RELATIVE_CAPACITY              | Num/Integer | Even though this parameter is not used by the MME for controlling the MME load balancing within a pool (at least for now), the parameter has to be forwarded to the eNB during association procedure. Values going from 0 to 255, (Default value is 15) |
| MME_STATISTIC_TIMER            | Num/Integer | Displayed statistic (stdout) period.                                                                                                                                                                                                                    |
| EMERGENCY_ATTACH_SUPPORTED     | String      |                                                                                                                                                                                                                                                         |
| UNAUTHENTICATED_IMSI_SUPPORTED | String      |                                                                                                                                                                                                                                                         |
| IP_CAPABILITY                  | String      | Choice between IPV4, IPV4V6, IPV4ORV6                                                                                                                                                                                                                   |

Table 1 MME configuration main section

# 3.4.1 GUMMEI section

| Parameter | Type                    |                                                                           |
|-----------|-------------------------|---------------------------------------------------------------------------|
| MME_CODE  | Array of Num/Integer    | List of a maximum of 256 values can be provided. MME code range is [0255] |
| MME_GID   | Array of Num/Integer    | List of maximum 65536 values. MME group id range is [065535]              |
| TAI       | Array of TAI (PLMN:TAC) | List of maximum 32 TAI. (TAI=MCC.MNC:TAC)                                 |

Table 2 MME configuration subsection GUMMEI

Page 16 of (37)

(C)

# 3.4.2 SCTP section

| Parameter       | Type        |                                                                                                                                                                                       |
|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCTP_INSTREAMS  | Num/Integer | Num streams for UE association signaling, note that stream with id =0 is reserved for non-Ue associated signaling. At least two streams should be used by the MME. (Default value=64) |
| SCTP_OUTSTREAMS | Num/Integer | Idem above                                                                                                                                                                            |

**Table 3 MME configuration subsection SCTP** 

# 3.4.3 S1AP section

| Parameter          | Type        |                                                                                                                                                                                                                                                                           |
|--------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S1AP_OUTCOME_TIMER | Num/Integer | Once an outcome is sent from MME to eNB, the MME locally starts a timer to abort the procedure and release UE context if the expected answer to this outcome is not received at the expiry of this timer. This timer is expressed in seconds. (Default value = 5 seconds) |

Table 4 MME configuration subsection S1AP

# 3.4.4 S6A section

| Parameter    | Type   |                      |
|--------------|--------|----------------------|
| S6A_CONF     | String | S6A config file path |
| HSS_HOSTNAME | String | HSS hostname         |

**Table 5 MME configuration subsection S6a** 

# 3.4.5 NAS section

| Parameter                                  | Type            |                                                                                                                                     |
|--------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| ORDERED_SUPPORTED_INTEGRITY_ALGORITHM_LIST | Array of String | Preference list in decreasing order of supported integrity algorithms, actually supported integrity algorithms are EIA0, EIA1, EIA2 |
| ORDERED_SUPPORTED_CIPHERING_ALGORITHM_LIST | Array of String | Preference list in decreasing order of supported integrity algorithms, actually supported integrity algorithms are EEA0, EEA1, EEA2 |

**Table 6 MME configuration subsection NAS** 

# 3.4.6 INTERTASK\_INTERFACE section

| Parameter       | Type        |                                                                                                                                                                                              |
|-----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITTI_QUEUE_SIZE | Num/Integer | Upper bound for the message queue size expressed in bytes (all messages exchanged by tasks have the same size). Restrict the number of messages in queues or detect a possible MME overload. |

**Table 7 MME configuration subsection ITTI** 

# 3.4.7 Network interfaces section

| Parameter                     | Type   |                                  |
|-------------------------------|--------|----------------------------------|
| MME_INTERFACE_NAME_FOR_S1_MME | String | Interface name for S1-MME (S1-C) |

Page 17 of (37)

| MME_IPV4_ADDRESS_FOR_S1_MME    | String, CIDR | Binded address for S1-MME                          |
|--------------------------------|--------------|----------------------------------------------------|
| MME_INTERFACE_NAME_FOR_S11_MME | String       | Interface name for S11, "none" if S11 unused       |
| MME_IPV4_ADDRESS_FOR_S11_MME   | String, CIDR | Binded address for S11, (0.0.0.0/xx) if S11 unused |

**Table 8 MME configuration subsection Network Interfaces** 

# 3.5 S-GW configuration content

| Parameter                            | Type                  |                                                          |
|--------------------------------------|-----------------------|----------------------------------------------------------|
| SGW_INTERFACE_NAME_FOR_S11           | String                | Interface name for S11, "none" if S11 unused             |
| SGW_IPV4_ADDRESS_FOR_S11             | String, CIDR notation | Binded address for S11, (0.0.0.0/xx) if S11 unused       |
| SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP | String                | Interface name for S1-U                                  |
| SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP   | String, CIDR notation | Binded address for S1-U                                  |
| SGW_IPV4_PORT_FOR_S1U_S12_S4_UP      | Num/Integer           | Port number for S1-U (IANA), Should be 2152              |
| SGW_INTERFACE_NAME_FOR_S5_S8_UP      | String,               | Interface name for S5 or S8, "none" because unused       |
| SGW_IPV4_ADDRESS_FOR_S5_S8_UP        | String, CIDR notation | Binded address for S5 or S8, (0.0.0.0/xx) because unused |

Table 9 S-GW configuration main section

Page 18 of (37)

# 3.6 P-GW configuration content

# 3.6.1 Main section

| Parameter                  | Type                     |                                                                  |
|----------------------------|--------------------------|------------------------------------------------------------------|
| DEFAULT_DNS_1_IPV4_ADDRESS | String, IPv4 dot decimal | IPv4 address of primary default DNS that can be queried by UEs   |
| DEFAULT_DNS_2_IPV4_ADDRESS | String, IPv4 dot decimal | IPv4 address of secondary default DNS that can be queried by UEs |

Table 10 P-GW configuration main section

# 3.6.2 Network interfaces section

| Parameter                    | Type                  |                                                                             |
|------------------------------|-----------------------|-----------------------------------------------------------------------------|
| PGW_INTERFACE_NAME_FOR_S5_S8 | String                | Interface name for S5 or S8, "none" because unused                          |
| PGW_IPV4_ADDRESS_FOR_S5_S8   | String, CIDR notation | Binded address for S5 or S8, (0.0.0.0/xx) because unused                    |
| PGW_INTERFACE_NAME_FOR_SGI   | String                | Interface name for SGi                                                      |
| PGW_IPV4_ADDRESS_FOR_SGI     | String, CIDR notation | Used IPv4 address for SGi, useful if UE traffic is masqueraded.             |
| PGW_MASQUERADE_SGI           | String                | Should outgoing UE IPv4 traffic be masqueraded (source NAT), "yes" or "no". |

**Table 11 P-GW configuration subsection Network Interfaces** 

# 3.6.3 IP Address Pool section

| Parameter | Туре                  |                                                                                 |
|-----------|-----------------------|---------------------------------------------------------------------------------|
| IPV4_LIST | String, CIDR notation | List of IPv4 netmasks that designate a list of available IPv4 addresses for UEs |
| IPV6_LIST | String, CIDR notation | List of IPv6 netmasks that designate a list of available IPv6 addresses for UEs |

Table 12 P-GW configuration subsection IP Address Pool Selection

Page 19 of (37)

# 3.7 HSS

# 3.7.1 Fully Qualified Domain name

A FQDN has to be set for the HSS. An easy way to do that is to fill this FQDN in the /etc/hosts file.

#### Example:

```
yin@yin:$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 yin.openair4G.eur yin
```

#### 3.7.2 Configuration files

Here is partial view of the build process of HSS, we can see there when and how configuration files are generated. Inputs files and parameters are on the left part of the figure, the build process is in the center part and output configuration files are on the right of the figure.



Figure 10 HSS configuration files generation

# **Configuration file hss.conf.in:**

This configuration file is the top configuration file containing all necessary parameters and links to other configuration files. This file do not need to be edited, all parameters passed to the build\_hss executable and also its default parameters are substituted in the right place in this config file.

#### hss.conf.in content:

```
## MySQL mandatory options
MYSQL_server = "@MYSQL_server@";
MYSQL_user = "@MYSQL_user@";
MYSQL_pass = "@MYSQL_pass@";
MYSQL_db = "@MYSQL_db@";

## HSS options
OPERATOR_key = "@OPERATOR_key@";
```

Page 20 of (37)

```
RANDOM = "@RANDOM_boolean@";
## Freediameter options
FD_conf = "@FREEDIAMETER_PATH@/../etc/freeDiameter/hss_fd.conf";
The following is an example of the resulting config file hss.conf:
## MySQL mandatory options
MYSQL_server = "127.0.0.1";
           = "hssadmin";
MYSQL_user
MYSQL_pass
          = "admin";
           = "oai_db";
MYSQL_db
## HSS options
RANDOM = "FALSE";
## Freediameter options
FD_conf = "/usr/lib/../etc/freeDiameter/hss_fd.conf";
```

#### **Configuration file hss\_fd.conf.in:**

This configuration file is the input file for configuring the diameter protocol instance of the HSS.

All parameters values between '@' are filled by the cmake process. These parameters are set with the help of input parameters passed to the build\_hss executable, and with the help of default values set in the OPENAIRCN DIR/BUILD/HSS/CMakeLists.txt file.

You can see here what are default values defined in OPENAIRCN\_DIR/BUILD/HSS/CMakeLists.txt and set your own:

```
set(MYSQL_server
                    "127.0.0.1"
                                     CACHE STRING "Database server IP address")
set(MYSQL_admin
                    root
                                     CACHE STRING "Database admin login")
set(MYSQL_admin_pass
                    linux
                                     CACHE STRING
                                                  "Database admin password")
                                     CACHE STRING "Database username login")
set(MYSQL_user
                    hssadmin
                    admin
                                     CACHE STRING "Database username password")
set(MYSQL_pass
                                     CACHE STRING "Database name")
set(MYSQL_db
                    oai_db
set(TRANSPORT_option "#No_TCP"
                                     CACHE STRING "No_TCP or No_SCTP or comment string,
FreeDiameter config option")
set(TRANSPORT_PREFER_TCP_option "#Prefer_TCP"
                                              CACHE STRING "Prefer_TCP or comment string,
FreeDiameter config option")
set(AppServThreads
                                     CACHE STRING "FreeDiameter AppServThreads config
option")
set(OPERATOR_key
                                     CACHE STRING "LTE operator clear text key (hex bytes)
set(RANDOM_boolean
                    "true"
                                     CACHE STRING "If false, random function returns always
0, else random as usual.")
set(REMOTE_PEER_WHITELIST "*.${REALM}" CACHE STRING "Remote peer whitelist (separated by
spaces), for freediameter acl.conf config file")
```

#### hss\_fd.conf.in content:

```
# ------ Local ------
# The first parameter in this section is Identity, which will be used to
# identify this peer in the Diameter network. The Diameter protocol mandates
# that the Identity used is a valid FQDN for the peer. This parameter can be
# omitted, in that case the framework will attempt to use system default value
# (as returned by hostname --fqdn).
Identity = "@HSS_FQDN@";

# In Diameter, all peers also belong to a Realm. If the realm is not specified,
# the framework uses the part of the Identity after the first dot.
Realm = "@REALM@";

# This parameter is mandatory, even if it is possible to disable TLS for peers
# connections. A valid certificate for this Diameter Identity is expected.
TLS_Cred = "@FREEDIAMETER_PATH@/../etc/freeDiameter/hss.cert.pem",
"@FREEDIAMETER_PATH@/../etc/freeDiameter/hss.key.pem";
```

Page 21 of (37)

```
TLS_CA = "@FREEDIAMETER_PATH@/../etc/freeDiameter/hss.cacert.pem";
# Disable use of TCP protocol (only listen and connect in SCTP)
# Default : TCP enabled
@TRANSPORT_option@;
# This option is ignored if freeDiameter is compiled with DISABLE_SCTP option.
# Prefer TCP instead of SCTP for establishing new connections.
# This setting may be overwritten per peer in peer configuration blocs.
# Default : SCTP is attempted first.
@TRANSPORT_PREFER_TCP_option@;
# Disable use of IPv6 addresses (only IP)
# Default : IPv6 enabled
No_IPv6;
# Overwrite the number of SCTP streams. This value should be kept low,
# especially if you are using TLS over SCTP, because it consumes a lot of
# resources in that case. See tickets 19 and 27 for some additional details on
# this.
# Limit the number of SCTP streams
SCTP streams = 3;
# By default, freeDiameter acts as a Diameter Relay Agent by forwarding all
# messages it cannot handle locally. This parameter disables this behavior.
TLS_old_method;
# Number of parallel threads that will handle incoming application messages.
# This parameter may be deprecated later in favor of a dynamic number of threads
# depending on the load.
AppServThreads = @AppServThreads@;
# Specify the addresses on which to bind the listening server. This must be
# specified if the framework is unable to auto-detect these addresses, or if the
# auto-detected values are incorrect. Note that the list of addresses is sent
# in CER or CEA message, so one should pay attention to this parameter if some
# adresses should be kept hidden.
@ListenOn@;
@DIAMETER_PORT@;
@DIAMETER SEC PORT@;
# ----- Extensions -----
# Uncomment (and create rtd.conf) to specify routing table for this peer.
#LoadExtension = "rt_default.fdx" : "rtd.conf";
# Uncomment (and create acl.conf) to allow incoming connections from other peers.
LoadExtension = "acl_wl.fdx" : "@FREEDIAMETER_PATH@/../etc/freeDiameter/acl.conf";
# Uncomment to display periodic state information
#LoadExtension = "dbg_monitor.fdx";
# Uncomment to enable an interactive Python interpreter session.
# (see doc/dbg_interactive.py.sample for more information)
#LoadExtension = "dbg_interactive.fdx";
# Load the RFC4005 dictionary objects
#LoadExtension = "dict_nasreq.fdx";
LoadExtension = "dict_nas_mipv6.fdx";
LoadExtension = "dict_s6a.fdx";
# Load RFC4072 dictionary objects
#LoadExtension = "dict_eap.fdx";
# Load the Diameter EAP server extension (requires diameap.conf)
#LoadExtension = "app_diameap.fdx" : "diameap.conf";
```

Page 22 of (37)

```
# Load the Accounting Server extension (requires app_acct.conf)
#LoadExtension = "app_acct.fdx" : "app_acct.conf";

# ------ Peers ------

# The framework will actively attempt to establish and maintain a connection
# with the peers listed here.
# For only accepting incoming connections, see the acl_wl.fx extension.

#ConnectPeer = "ubuntu.localdomain" { ConnectTo = "127.0.0.1"; No_TLS; };
@ConnectPeer@ = "@MME_FQDN@" { ConnectTo = "@MME_IP@"; Realm = "@REALM@"; No_IPv6; No_TLS; port = 3870; };
```

#### **Configuration file acl.conf.in:**

**TODO** 

# 3.7.3 HSS database content

SQL operations (display, update, export, etc) can be done easily with the help of phpMyAdmin, you have to open the following URL with your browser: <a href="http://yourhsshost/phpmyadmin">http://yourhsshost/phpmyadmin</a>.

Otherwise you can use any other MySQL tool, script compatible with MySQL.

#### **Table mmeidentity:**

#### Structure:

| Field           | Туре         | Null | Key | Default | Extra          |
|-----------------|--------------|------|-----|---------|----------------|
| idmmeidentity   | int(11)      | NO   | PRI | NULL    | auto_increment |
| mmehost         | varchar(255) | YES  |     | NULL    |                |
| mmerealm        | varchar(200) | YES  |     | NULL    |                |
| UE-Reachability | tinyint(1)   | NO   |     | NULL    |                |

Table 13 SQL Table structure mmeidentity

Column idmmeIdentity is the primary key of a MME.

Column mmehost contains the FQDN of a MME.

Column mmerealm contains the realm of a MME.

# Example of content:

| +               | +                                                                         | +                                               | ++              |
|-----------------|---------------------------------------------------------------------------|-------------------------------------------------|-----------------|
| idmmeidentity   | mmehost                                                                   | mmerealm                                        | UE-Reachability |
| 2<br>  1<br>  3 | yang.openair4G.eur<br>  ng40-erc.openair4G.eur<br>  ABEILLE.openair4G.eur | openair4G.eur<br>openair4G.eur<br>openair4G.eur | 0   0           |

Page 23 of (37)

# Table pdn:

This table contains mainly the association between a user and a APN, and its QOS parameters.

#### Structure:

| Field             | Туре                                                               | Null | Key | Default   | Extra           |
|-------------------|--------------------------------------------------------------------|------|-----|-----------|-----------------|
| id                | int(11)                                                            | NO   | PRI | NULL      | auto_increment  |
| apn               | varchar(60)                                                        | NO   |     | NULL      |                 |
| pdn_type          | enum('IPv4','IPv6','IPv4v6','IPv4_or_IPv6')                        | NO   |     | NULL      |                 |
| pdn_ipv4          | varchar(15)                                                        | YES  |     | NULL      | 0.0.0.0         |
| pdn_ipv6          | varchar(45)                                                        | YES  |     | NULL      | 0:0:0:0:0:0:0:0 |
| aggregate_ambr_ul | int(10) unsigned                                                   | YES  |     | 50000000  |                 |
| aggregate_ambr_dl | int(10) unsigned                                                   | YES  |     | 100000000 |                 |
| pgw_id            | int(11)                                                            | NO   | PRI | NULL      |                 |
| users_imsi        | varchar(15)                                                        | NO   | PRI |           |                 |
| qci               | tinyint(3) unsigned                                                | NO   |     | 9         |                 |
| priority_level    | tinyint(3) unsigned                                                | NO   |     | 15        |                 |
| pre_emp_cap       | enum('ENABLED','DISABLED')                                         | YES  |     | DISABLED  |                 |
| pre_emp_vul       | enum('ENABLED','DISABLED')                                         | YES  |     | DISABLED  |                 |
| LIPA-Permissions  | <pre>enum('LIPA-prohibited','LIPA-only','LIPA- conditional')</pre> | YES  |     | LIPA-only |                 |

Table 14 SQL Table structure pdn

Column id is the primary key of a pdn entry.

Column pdn\_type contains the type of PDN, actually only IPv4 is supported.

Column pdn\_ipv4 contains the IPv4 address of the PDN (unused).

Column pdn\_ipv6 contains the IPv6 address of the PDN (unused).

Column aggregate\_ambr\_ul TODO

Column aggregate\_ambr\_dl TODO

Column pgw\_id TODO

Column users\_imsi TODO

Column qci TODO

Column priority\_level TODO

Column pre\_emp\_capability TODO

Column pre\_emp\_vulnerability TODO

Column LIPA\_Permissions TODO

# **Table users**

# Structure:

| Field   | Туре        | Null | Key | Default | Extra |
|---------|-------------|------|-----|---------|-------|
| imsi    | varchar(15) | NO   | PRI | NULL    |       |
| msisdn  | varchar(46) | YES  |     | NULL    |       |
| imei    | varchar(15) | YES  |     | NULL    |       |
| imei_sv | varchar(2)  | YES  |     | NULL    |       |

Page 24 of (37)

| ms_ps_status              | enum('PURGED','NOT_PURGED')  | YES |     | PURGED    |  |
|---------------------------|------------------------------|-----|-----|-----------|--|
| rau_tau_timer             | int(10) unsigned             | YES |     | 120       |  |
| ue_ambr_ul                | bigint(20) unsigned          | YES |     | 50000000  |  |
| ue_ambr_dl                | bigint(20) unsigned          | YES |     | 100000000 |  |
| access_restriction        | int(10) unsigned             | YES |     | 60        |  |
| mme_cap                   | int(10) unsigned zerofill    | YES |     | NULL      |  |
| mmeidentity_idmmeidentity | int(11)                      | NO  | PRI | 0         |  |
| key                       | varbinary(16)                | NO  |     | 0         |  |
| RFSP-Index                | smallint(5) unsigned         | NO  |     | 1         |  |
| urrp_mme                  | tinyint(1)                   | NO  |     | 0         |  |
| sqn                       | bigint(20) unsigned zerofill | NO  |     | NULL      |  |
| rand                      | varbinary(16)                | NO  |     | NULL      |  |
| OPc                       | varbinary(16)                | YES |     | NULL      |  |

**Table 15 SQL Table structure users** 

TODO column description.

# 3.7.4 Configuring your HSS

# **Adding your MME**

With the help of phpmyadmin: in your database (default is oai\_db), in table mmeidentity add your MME:

mmeidentity.idmmeidentity= your MME new key (unique id in 1..N)

mmeidentity.mmehost= your MME fqdn

mmeidentity.mmerealm= your MME realm (should be your MME FQDN without the host name) mmeidentity.UE-Reachability= 0

# Adding a user

```
In table users add your user informations:
```

user.imsi=IMSI of your USIM.

user.msisdn= MSISDN of your USIM (unused).

users.imei=NULL

users.imei\_sv=NULL

users.ms\_ps\_status='PURGED'

users.rau\_tau\_timer=120

users.ue\_ambr\_ul=50000000

users.ue\_ambr\_dl=100000000

users.access\_restriction=47

users.mme\_cap=0

users.mmeidentity\_idmmeidentity='your MME key'

users.RFSP-Index=1

users.urrp\_mme=0

Page 25 of (37)

users.sqn='your USIM programmed SQN'

users.rand=0

users.OPc='the OPc key' (can be computed by the oai\_hss executable when using -k option in build\_hss script)

In table pdn allow your user to be served by a APN: Insert a new record and fill all column like other records except for users\_imsi column.

Page 26 of (37)

# 4 Building and running

The EURECOM EPC interact mainly with two other entities: the eNB and the HSS. Depending on the location of the HSS entity, on the same host or not, the building and running options differ:

- When EPC and HSS run on the same host, TCP must be selected as the underlying protocol for DIAMETER on the S6a interface. If EPC and HSS run on separate hosts, SCTP can be selected as the underlying protocol for DIAMETER on the S6a interface. Choosing SCTP instead of TCP makes the network capture of S1-MME traffic easier.

We recommend to follow the step described below, unless you know what you are doing.

# 4.1 MME\_GW.

Your EURECOM MME\_GW host and your EURECOM HSS host (may be the same host)

#### 4.1.1 Configuration files

Configuration files have to be filled prior to compilation.

Fill OPENAIRCN\_DIR/BUILD/EPC/epc.conf.in configuration file.

#### 4.1.2 Building EPC

In a shell go to your OPENAIRCN\_DIR/SCRIPTS directory:

If MME GW and the HSS run on the same host, execute the following commands:

Else, execute the following command:

- On MME\_GW host:

user@mmegwhost:~/openair-cn/SCRIPTS\$ ./build\_epc --remote-hss **yourhssfqdn** (optional parameter --clean)

- On HSS host:

#### 4.1.3 Running EPC

In a shell go to your OPENAIRCN\_DIR/SCRIPTS directory:

Execute the following commands:

```
On MME_GW host or HSS host:
user@host:~/openair-cn/SCRIPTS$ ./run_hss
On MME_GW host:
user@mmegwhost:~/openair-cn/SCRIPTS$ ./run_epc
```

Have a look at all these executables options (-h option)

Page 27 of (37)

| 5                  | Supported scenarios in EPC                            |
|--------------------|-------------------------------------------------------|
| 5.1                | E-UTRAN Initial attach                                |
| 5.1.1              | Attach with IMSI                                      |
| TBD                |                                                       |
| 5.1.2              | Attach with GUTI                                      |
| TBD                |                                                       |
| 5.2                | Tracking Area Update procedures                       |
| TBD                |                                                       |
| 5.3                | Routing Area Update procedures                        |
| Not supported yet. |                                                       |
| 5.4                | Service Request procedures                            |
| 5.4.1              | UE triggered Service Request                          |
| TBD                |                                                       |
| 5.4.2              | Network triggered Service Request                     |
| Not supported ye   | et.                                                   |
| 5.5                | S1 Release procedure                                  |
| TBD                |                                                       |
| 5.6                | <b>GUTI Reallocation procedure</b>                    |
| 5.7                | Detach procedure                                      |
| 5.7.1              | UE-Initiated Detach procedure for E-UTRAN             |
| 5.7.2              | MME-Initiated Detach procedure for E-UTRAN            |
| 5.7.3              | HSS-Initiated Detach procedure for E-UTRAN            |
| Not supported.     |                                                       |
| 5.8                | <b>HSS User Profile management function procedure</b> |
| Not supported.     |                                                       |
| 5.9                | Bearer deactivation                                   |
| 5.9.1              | PDN GW initiated bearer deactivation                  |
| Not supported      |                                                       |
| 5.9.2              | MME initiated Dedicated Bearer Deactivation           |
| TBD                |                                                       |

Page 28 of (37)

# 5.10 Intra E-UTRAN handover

Not supported yet

Page 29 of (37)

# 6 Annex A: Tools for observing, debugging.

# 6.1 Itti\_analyzer

Itti\_analyzer takes a dump of messages exchanges between the executable (mme\_gw or eNB, UE) tasks as input and display these messages in a human readable and comprehensible way. This tool can take as input a file whose content is the XML dump of ITTI messages exchanged between tasks or can act as a server and listen on a socket that a openair executable connects and dump messages in pseudo real-time. Trace messages are also displayed with the tool, but in a second view, that means not interlaced with ITTI messages.

#### **Important:**

Prior to use itti\_analyzer, you have to instruct the openair-cn executable to dump the ITTI messages to a file with the argument -K path\_to\_file.

#### **6.1.1** Installation

In OPENAIRCN\_DIR/COMMON/ITTI\_ANALYZER directory, execute the following command:

```
user@host:~ autoreconf -i
user@host:~ ./configure
user@host:~ make
user@host:~ sudo make install
```

The itti\_analyzer executable is now installed on the computer (/usr/local/bin)

#### 6.1.2 Execution

In a shell, execute the following command:

user@host:~ itti\_analyzer

The GUI displayed:



Figure 11 ITTI Analyzer main window

Page 30 of (37)

For filter selection, please use filters\_mme.xml:



Figure 12 ITTI Analizer select filter menu

#### You can also use options for fastest operations:

```
user@host:~itti_analyzer -h
Usage: itti_analyser [options]
Options:
  -d DISSECT
               write DISSECT file with message types parse details
  -f FILTERS
               read filters from FILTERS file
  -h
               display this help and exit
  -i IP
               set ip address to IP
  -1 LEVEL
               set log level to LEVEL in the range of 2 to 7
  -m MESSAGES
               read messages from MESSAGES file
  -p PORT
               set port to PORT
```

# 6.2 Wireshark/tshark

You can launch wireshark instances on S1 (filter s1ap, gtpu), S6A (filter diameter, if TCP is the undelying protocol, you can select a TCP packet relative to the DIAMETER exchange and the select decode as DIAMETER).

# 6.3 Mscgen

Extract from <a href="http://www.mcternan.me.uk/mscgen/">http://www.mcternan.me.uk/mscgen/</a>: "Mscgen is a small program that parses Message Sequence Chart descriptions and produces PNG, SVG, EPS or server side image maps (ismaps) as the output. Message Sequence Charts (MSCs) are a way of representing entities and interactions over some time period"..." Mscgen aims to provide a simple text language that is clear to create, edit and understand, which can also be transformed into common image formats for display or printing."...

Openair use mscgen to offer another view of events (SDUs, timers, etc) that happens inside an executable and also (still under development) PDUs exchanged between protocol entities.

Openair HSS do not have the msgen feature.

#### Important:

Check that mscgen traces are configured for being generated (CFLAG MESSAGE\_CHART\_GENERATOR set to true in OPENAIRCN\_DIR/BUILD/EPC/CMakeLists.template)

Page 31 of (37)

You have to instruct the openair mme\_gw executable to dump the ITTI messages to a file with the argument -m path\_to\_directory. The mscgen files will be located under the specified directory, in a directory containing the time of the generated traces (text and png files).

# Example:



Page 32 of (37)

# 6.4 S1AP scenario replay

This tool is available in the **openairinterface5g** git repository, branch "Feature-6-fix\_test\_core\_network\_with\_scenarios". This branch will be merged in the develop branch as soon as possible.

The aim of this tool is for development, non-regression test, debug purpose, it allows to replay without the help of any eNB(s) or UE(s). a S1AP scenario previously captured as a pcap dumped file.

# 6.4.1 Overall process



Figure 14 Workflow of scenario replay

In order to replay a scenario, a scenario has to be played/captured (step 1), then the captured artefacts have to processed in order to generate a generic scenario (step 2) ready to be replayed on any other testbed (step 3).

The first step consists in capturing a network trace on S1-C network, the second step consists in building a scenario file that is generic, meaning there is no specific testbed references (IP addresses). The last step is the replaying of the scenario on a openair-cn testbed.

# 6.4.2 Flowchart of step1: Network trace capture on S1-C

The goal of this step is to capture a SCTP/S1AP trace that we want to be able to replay.

The red items in the following flowchart figure are part of the "scenario resource files".

It is highly recommended to create a dedicated resource directory (\$RESOURCE\_SCENARIO\_DIR) for **each** created scenario.

Page 33 of (37)



Figure 15 Flowchart of scenario capture

Page 34 of (37)

# Step 1: build HSS

The HSS database has first to be configured for not generating randoms in security algorithms, otherwise we will not be able to replay trace coming from UE(s).

The argument that has to be passed to the build\_hss script is: --random false

# Step 2: run MME-GW

No change here compared to standard case.

# Step 3: run HSS

In order to be able to replay the scenario in the same conditions, the initial content of the database has to be saved.

The argument that has to be passed to the run\_hss script is: --export-db \$RESOURCE\_SCENARIO\_DIR/scenario.sql

# Step 4: start a pcap-ng capture on S1-C

This step is not automated, you have to start on your own a tool to capture the network traffic on the S1-C network. (you can use wireshark or tshark)

# Step 5: start the eNB(s)

The eNB config files will be used later to make a scenario independent of IP addresses.

# Step 6: run your scenario

At the end of this process you will have to save in a directory dedicated to your scenario:

- The eNB config files
- The exported database SQL file.
- The pcap-ng file containing all SCTP and S1AP traffic occurred on S1-C network.

Page 35 of (37)

# 6.4.3 Build a generic scenario

#### **Prerequisites:**

1) Build scenario builder

In openairinterface5g repository

(https://twiki.eurecom.fr/twiki/bin/view/OpenAirInterface/GetSources):

#cd openairinterface5g
#source ./oaienv
#cd cmake\_targets
#tools/build\_test\_epc\_tools --debug -clean

The executable /usr/local/bin/test\_epc\_generate\_scenario should be generated. (The executable /usr/local/bin/test\_epc\_play\_scenario should also be generated.)

2) In your dedicated scenario resource directory(\$RESOURCE\_SCENARIO\_DIR), you should have the three files listed in previous section: the eNB(s) configuration file, the exported database SQL file, the pcap-ng file.

For building a generic scenario, follow the steps described below(assuming the EPC has been built on this host):

```
# test_epc --test-dir $RESOURCE_SCENARIO_DIR --old-enb-config-file enb.conf --pcap-file
my_test.pcap --build-test
```

This will generate the files my\_test.pdml, my\_test.xml in the \$RESOURCE\_SCENARIO\_DIR directory.

my\_test.pdml file is the xml dump of the pcap file my\_test.pcap, it has served as input for building the generic scenario file my\_test.xml.

The following figure shows the inner operations of last test\_epc command:



Figure 16 Build scenario detailed operations

Page 36 of (37)

# 6.4.4 Replay a S1AP generic scenario

#### **Prerequisites:**

1) Build scenario player (step done in 6.4.3)

In openairinterface5g repository

(https://twiki.eurecom.fr/twiki/bin/view/OpenAirInterface/GetSources):

```
#cd openairinterface5g
#source ./oaienv
#cd cmake_targets
#tools/build_test_epc_tools --debug -clean
```

The executable /usr/local/bin/test\_epc\_play\_scenario should be generated.

(The executable /usr/local/bin/test\_epc\_generate\_scenario should also be generated.)

- 2) In your dedicated scenario resource directory(\$RESOURCE\_SCENARIO\_DIR), you should have almost three mandatory files:
  - a. the eNB(s) configuration file for your running testbed (may be different from the original enb.conf file if capture testbed and running testbeds are not the same).
  - b. The exported database SQL file.
  - c. The generic scenario xml file.

For running a generic scenario, follow the steps described below:

Please note that the eNB(s) emulator "test\_epc\_play\_scenario" can be run exactly like an eNB, from the deployment point of view, it can be run on any EPC host (mme\_gw, HSS, or both) or on another host.

```
# test_epc --test-dir $RESOURCE_SCENARIO_DIR --enb-config-file my_new_enb.conf --scenario-file
my_test.xml --run
```

Page 37 of (37)