2.1)

Total clock cycles = 45,000 + 64,000 + 30,000 + 16,000 = 155,000 cycles Effective CPI = Total instructions/Total clock cycles = 155,000/100,000 = 1.55

So, the effective CPI is 1.55 cycles per instruction.

 $F = 40MHz = 40 \times 10^6Hz = 40,000,000 \text{ cycles/second}$

Execution time (T) = Total clock cycles / Frequency = 155,000/40,000,000 seconds 0.003875seconds $\times 1000 = 3.875$ milliseconds(ms)

So, the **execution time** is **3.875 ms**.

 $MIPS = Frequency / CPI \times 10^{6}$

MIPS = $(40 \times 10^6)/(1.55 \times 10^6) = 40/1.5540$

MIPS ≈ 25.8

Final Answers:

• Effective CPI: 1.55 cycles per instruction

• MIPS rate: 25.8 million instructions per second

• Execution time: 3.875 milliseconds

2.2)

Metric	Machine A	Machine B		
Instruction mix	8 M ALU, 4 M LS, 2 M BR, 4 M Other	10 M ALU, 8 M LS, 2 M BR, 4 M Other		
Total instructions	8+4+2+4 = 18 M	10+8+2+4 = 24 M		
Total cycles	$8 \cdot 1 + 4 \cdot 3 + 2 \cdot 4 + 4 \cdot 3 = 40 \text{ M}$	$10 \cdot 1 + 8 \cdot 2 + 2 \cdot 4 + 4 \cdot 3 = 46 \text{ M}$		
Effective CPI	$40 \text{ M} / 18 \text{ M} \approx 2.22$	46 M / 24 M ≈ 1.92		
MIPS rating	$200 \text{ MHz} / 2.22 \approx 90 \text{ MIPS}$	$200 \text{ MHz} / 1.92 \approx 104 \text{ MIPS}$		
Execution time	40 M cycles / (200 M cycles/s) = 0.20 s	46 M cycles / (200 M cycles/s) = 0.23 s		

Comment on the results:

- Machine B has the lower CPI (1.92 vs. 2.22) and so boasts a higher MIPS rating (\approx 104 MIPS vs. 90 MIPS).
- **However**, it also requires more instructions (24 M vs. 18 M), so its total execution time (0.23 s) is actually **longer** than Machine A's (0.20 s).

• **Takeaway:** MIPS (or CPI alone) can be misleading when comparing different ISAs or code mixes. The true performance metric is **wall-clock time**, which depends on both **instruction count** and **CPI**.

2.7)

Instr. class	Mix	Orig. CPI	New CPI
Arithmetic & logic		1	1
Load/store (cache hit)		2	2
Branch		4	4
Memory reference (cache miss)		8	12

a. Average CPI

$$\mathbf{CPI_{avg}} = 1 \times 0.60 + 2 \times 0.18 + 4 \times 0.12 + 12 \times 0.10 = 0.60 + 0.36 + 0.48 + 1.20 = 2.64$$

b. MIPS rate

MIPS = clock(MHz) /
$$CPI_{avg} = 2.64400 \approx 151.5 MIPS$$

c. Speedup factor

• Single-core time

$$T_1 = IC \ / \ MIPS_{orig} \times 106 = 178 \times 1062000000 \approx 0.01124s$$

• **Eight-core time**: each core executes

$$T_8 = 400 \times 106 \times 275000 \ / \ CPI_{avg} = 400 \times 1062.64 \times 275000 \approx 0.001815 s$$

• Speedup

$$S = T_1 / T_8 \approx 0.01124 / 0.001815 \approx 6.19$$

d. Amdahl's-law comparison

With perfect parallelism (no overhead), an 8-core system would give an ideal S = 8. Here the actual speedup is ≈ 6.19 , i.e. about 77 % of the theoretical maximum. This loss comes from extra coordination instructions and increased memory-access latency under contention.

2.9)

By Little's Law ($L = \lambda W$), the average time in system is

 $W = L / \lambda = 8$ customers/(18 customers/hour) = 0.444hours \approx 26.7minutes.

So on average each customer spends about 26 minutes 40 seconds in the shop.