CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search for GPUs

Hiroyuki Ootomo · Akira Naruse · Corey Nolet · Ray Wang · Tamas Feher · Yong Wang Nvidia Corporation ICDE 2024

Presenter: Lim Yuan Jee

National Cheng Kung University

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - o Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Introduction

- The paper introduces CAGRA, a novel algorithm for graph construction and ANNS specifically optimized for NVIDIA GPUs.
- Limitations of Existing ANNS Approaches for Large Datasets
 - o On large datasets, computational costs become prohibitive
 - ANNS offers a viable solution by striking a balance between throughput and accuracy
- At the end of the paper, we will be able to see:
 - How does it work?
 - How much performance improvement? (compared to CPU)

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Why Graph Based ANNS

- Approach: Constructing a proximity graph
 - o represents similarity relationships between data points
- Graph Transversal
 - find the k closest nodes to the input query

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Challenges

- Existing graph-based methods are not optimised for modern hardware like
 GPUs
- Existing graph-based methods are not optimised for GPUs

- Introduction
- Why Graph Based ANNS
 - Challenges

CAGRA

- Key feature
- Search Algorithm
- Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

CAGRA

- CAGRA (Cuda Anns GRAph-based)
 - a novel parallel computing hardware-based proximity graph and search algorithm designed for GPUs.
- Addresses the limitations of existing methods by:
 - offering a proximity graph and search implementation optimized for NVIDIA GPUs.

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

CAGRA: Key Features

- Fixed out-degree (d)
 - o Parallelism of GPU is utilized effectively
 - Allows expansion of search space
- Directional
- No hierarchy

•CAGRA: Key Features(cont.)

- Two-Stage Construction
 - Building an initial k-NN graph with NN-descent
 - Optimizing the graph through edge reordering and reverse edge

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

CAGRA: Search Algorithm

- Key idea
 - Traverse a highly optimized proximity graph in parallel
 - Use multiple threads to explore different parts of the graph simultaneously.

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

CAGRA: Search Algorithm Optimization

- Warp Splitting
 - Splits each warp into smaller teams of threads
- Hash Table for Visited Nodes
 - Ensuring that distances are only calculated once per node
- Forgettable Hash Table Management
 - Reduces memory usage
- Top-M Calculation Optimization
 - Small buffer size: warp-level bitonic sort
 - Large buffer size: radix sort using shared memory
- Multi-CTA Mode
 - Multiple CTAs collaboratively process a single query

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - o Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Evaluation: Build Performance

- Speedup Over CPU-Based Methods:
 - CAGRA is 2.2–27× faster than HNSW
- Speedup Over GPU-Based Methods:
 - CAGRA outperforms GGNN by
 1.1–31× and GANNS by
 1.0–6.1×
- Vs NSSG:
 - Faster knn build time and GraphOptimization

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - o Results
 - Further Benchmarks
- Conclusion

Evaluation: Search Performance

- Throughput Advantage:
 - 33–77× higher throughput compared to HNSW (CPU-based) and 3.8–8.8× higher throughput compared to GPU-based methods (GGNN, GANNS)
- Recall vs Throughput:
 - Maintains a balance between high recall and high throughput

Dataset	Dimension	Batch Size	Recall (%)	Throughput (QPS) - CAGRA	Throughput (QPS) - HNSW	Speedup
SIFT-1M	128	10,000	95	1.5M	19.4K	77×
GIST-1M	960	10,000	90	148K	4.4K	33×
GloVe- 200	200	10,000	95	355K	45K	8×
NYTimes	256	10,000	90	685K	61K	11×

Evaluation: Search Performance(cont.)

- Throughput Advantage at single query:
 - o 3.4–53× faster performance than HNSW (CPU) at 95% recall
- Multi-CTA mode for small batches:
 - Single query is processed by multiple thread blocks (CTAs) on the GPU

Dataset	Dimension	Recall (%)	Throughput (QPS) – CAGRA	Throughput (QPS) – HNSW	Speedup
SIFT-1M	128	95	3.5K	66	53×
GIST-1M	960	90	142	8	18×
GloVe- 200	200	95	418	39	11×
NYTimes	256	90	633	83	7.6×

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Evaluation: Scalability

- Graph construction time and search performance scale linearly with dataset size
- CAGRA maintains high throughput and recall

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Benchmark

- cuVS-bench provides a tool for us to perform benchmark on different algorithms (notably CAGRA)
- A benchmark was ran on these two setups on the same system:

CPU

- Database Used: Milvus (HNSW)
- Dataset: wiki-all-1m
- Entries: 1M
- Dimension: 768-dim
- Page Size(k): 10

GPU

- Database Used: rapids-cuVS (CAGRA)
- Dataset: wiki-all-1m
- Entries: 1M
- Dimension: 768-dim
- Page Size(k): 10
- Graph degree: 64

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Results

	CPU(Milvus-HNSW)	GPU(cuVS-CAGRA)	
Build Time	00:18:9.50	00:00:12.37	
QPS	249	16848	

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Further Benchmarks

- Another benchmark is performed to see:
 - The effect of graph degree towards recall and QPS
- Takeaway:
 - Higher graph degrees improve recall but reduces QPS

- Introduction
- Why Graph Based ANNS
 - Challenges
- CAGRA
 - Key feature
 - Search Algorithm
 - Search Algorithm Optimization
- Evaluation
 - Build Performance
 - Search Performance
 - Scalability
- Benchmark
 - Results
 - Further Benchmarks
- Conclusion

Conclusion

- This paper presents a new alternative to existing vector database algorithms. Heavily focusing on GPU usage and optimization.
- Future Work:
 - Multi-GPU Environments
 - Memory Efficiency Improvements
 - Broadening Use Cases
- Personal takeaways:
 - CAGRA sets a new benchmark for GPU applications for VDBMS.
 - Possible integration with other databases for persistent storage (as cuVS does not support persistence)