Hradlové sítě

 $\mbox{\bf Příklad}$ 1: Dokažte, že $n\mbox{-bitov}\acute{\mbox{y}}$ OR nelze spočítat v menší než logaritmické bloubce

Příklad 2: Sestrojte hradlovou síť počítající majoritní funkci 4 bitů.

Příklad 3: Navrhněte hradlovou výhybku, tedy obvod s 2^i k-bitovými vstupy x_1, \ldots, x_{2^i} , jedním i-bitovým vstupem p a jedním k-bitovým výstupem na který vydá x_p .

Příklad 4: Ukažte, že libovolnou funkci skvstupy lze počítat hradlovou sítí o hloubce O(k).

Příklad 5: Analyzujte hradlovou síť pro sčítání n-bitových čísel v hloubce O(logn).

Příklad 6: Navrněte hradlovou síť počítající součet m n-bitových čísel v hloubce $\mathcal{O}(\log(n) + \log(m))$

Komparátorové sítě

Příklad 7: Navrhněte obecnou konstrukci komparátoru.

Příklad 8: Navrhněte a analyzujte komparátorový insert-sort a bubble-sort.

Příklad 9: Dokažte, že třídící síť je korektní právě tehdy když správně funguje pro všechny 0/1-vstupy.

Domácí úkol 4: komparátorová síť

Pro obecné n navrhněte efektivní koparátorovou síť, která mezinvstupy nalezne minimum a maximum.

Analyzujte hloubku a počet hradel sítě.

Nezapomeňte, že \boldsymbol{n} nemusí být hezké číslo.