

Octr iraad

₁₂ A Terinzagelegging ₁₁ 8700890

	Nederland	19	NŁ
54	Transformatie van <u>Lactobacillus</u> , daarbij bruikbare recombinante plasmiden, getransformeerde <u>Lactobacillus</u> species en gebruik daarvan.		
5 1	Int.Cl4.: C12N 15/00, A23C 9/123.		-
71)	Aanvrager: Nederlandse Centrale Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek te 's-Gravenhage.		
73	Gem.: Ir. Th.A.H.J. Smulders c.s. Vereenigde Octrooibureaux Nieuwe Parklaan 107 2587 BP 's-Gravenhage.	-	
<u></u>	Aanvrage Nr. 8700890.		
22	Ingediend 15 april 1987.		
32	12.2		
33			
31)			
62			

43 Ter inzage gelegd 1 november 1988.

De aan dit blad gehechte stukken zijn een afdruk van de oorspronkelijk ingediende beschrijving met conclusie(s) en eventuele tekening(en).

Titel: Transformatie van <u>Lactobacillus</u>, daarbij bruikbare recombinante plasmiden, getransformeerde <u>Lactobacillus</u> species en gebruik daarvan.

De uitvinding heeft betrekking op een werkwijze voor het transformeren van <u>Lactobacillus</u> bacteriën, op daarbij bruikbare recombinante plasmiden, op getransformeerde <u>Lactobacillus</u> bacteriën en hun gebruik bij de bereiding van voedingsmiddelen of bestanddelen daarvan (zoals polysacchariden), de bereiding van veevoeders of de valorisatie van landbouwafval, met inbegrip van de daarbij verkregen produkten.

produkten. Sinds mensenheugenis worden stammen van het 10 geslacht Lactobacillus toegepast bij de bereiding van voedingsmiddelen. Heden ten dage wordt bij de bereiding van kaas, yoghurt en dranken, de conservering van vlees en groenten en de productie van chemicaliën zoals melkzuur gebruik gemaakt van Lactobacillus. De bereiding vindt 15 soms plaats met gebruikmaking van Lactobacillus alleen, soms met een combinatie van micro-organismen waaronder Pediococcus, Leuconostoc, Streptococcus, gisten en schimmels. Het gebruik van Lactobacillus voor de voedingsindustrie ontleent zijn waarde o.a. aan de gewenste smaakstoffen 20 die door het organisme worden gevormd en aan de bijdrage in de structuur van het product. Daarnaast leveren lactobacillen ook een belangrijke bijdrage aan het voorkomen van contaminatie en bederf van voedsel door andere micro-organismen en aan de eliminatie van anti-nutritionele factoren

25 zoals phytaten, die door fermentatie worden gevormd. De preventieve werking is o.a. gebaseerd op de vorming van een zuur milieu alsmede, in een aantal gevallen, op de vorming van anti-microbiële stoffen door <u>Lactobacillus</u> species. Bovendien verhoogt <u>Lactobacillus</u> in een aantal

30 gevallen de voedingswaarde van het voedsel. Door middel van fermentatieve processen worden de hoeveelheid, beschik-

8766 C

baarheid en verteerbaarheid van essentiële nutriënten, zoals aminozuren verhoogd.

Voor de grootschalige bereiding van voedingsmiddelen wordt een inoculum van <u>Lactobacillus</u> bacteriën toegevoegd 5 aan de te fermenteren grondstoffen. Zulke startercultures worden heden ten dage op industriële schaal geproduceerd. Door uit te gaan van een goed gedefinieerde cultuur van bacteriën kan het fermentatie proces alsmede de kwaliteit van het gevormde product beter onder controle worden gehouden.

10 Lactobacillus speelt een essentiële rol bij de bereiding van veevoeders en bij de valorisatie van landbouwafval. Naast Streptococcus melkzuur bacteriën neemt Lactobacillus plantarum de belangrijkste plaats in als "microbieel additief" in het silage proces. L. 15 plantarum wordt verantwoordelijk geacht voor de conserverende werking (o.a. uitsluiting van Clostridium), verbetering van de voedingswaarde, toename van de stabiliteit en veiligheid van het gevormde product. Op grond van de aanwezigheid van enzymen in Lactobacillus species die polymeren afbreken 20 zoals cellulose of zetmeel, alsmede suikers zoals xylose (tussenproduct gevormd uit xylaan, dat een belangrijk bestanddeel vormt van landbouwafval), kan dit organisme tevens met succes worden toegepast bij de aanmaak van waardevolle producten uit landbouwafval. Gelet op hun 25 specifieke eigenschappen bieden deze organismen ook goede perspectieven voor de bestrijding van phytopathogene bacteriën. Uit recent onderzoek is o.a. gebleken dat m.n. L. plantarum de vermeerdering op planten tegengaat van phytopathogene organismen zoals Xanthomonas campestris, Erwinia carotovora 30 en Pseudomonas syringae.

Om bovengenoemde processen gericht en controleerbaar uit te kunnen voeren is het nodig meer inzicht te hebben in de genetische kenmerken verantwoordelijk voor de specifieke eigenschappen van het organisme. Voor stamver-35 betering van het organisme, bijv. voor het verbeteren van de opbrengst van fermentatie producten wordt tot op

heden gebruik gemaakt van de techniek van mutatie en selectie. Dit proces heeft veelal een empirisch karakter, omdat het onmogelijk is op gerichte wijze een mutatie aan te brengen in het organisme door behandeling met een mutageen 5 agens. Methoden om op gerichte wijze veranderingen aan te brengen, die bij andere organismen waaronder een aantal Gram-negatieve bacteriën met succes zijn toegepast, zijn (nog) niet bruikbaar gebleken voor toepassing in de Gram-positieve bacterie Lactobacillus. Zo zijn er geen voorbeelden 10 bekend van de overdracht van genetische informatie via transductie, terwijl overdracht via conjugatie beperkt is gebleven tot de overdracht van een plasmide uit Streptococcus faecalis dat de eigenschap draagt voor resistentie tegen erythromycine. Dit plasmide kon worden overgedragen 15 tussen een aantal Lactobacillus species (Gibson, E.M. et al., J. Bacteriol. 137, 614-619 (1979)). Ook een uit L. caseï afkomstig plasmide kon via conjugatie worden overgedragen naar andere Lactobacillus stammen (Chassy en Rokaw, "Conjugal transfer of lactose plasmids in Lactobacil-20 <u>lus caseï</u>", blz. 590 in Levy, Clowes en Koenig (eds) Molecular Biology, pathogenesis and ecology of bacterial plasmids, Plenum Press, New York, 1981). De frequentie waarmee dit proces plaatsvindt is echter zeer laag en de mogelijkheden om de gewenste genetische informatie mee over te brengen 25 zijn beperkt. Recente ontwikkelingen in de moleculaire biologie, m.n. de recombinant DNA (recDNA) technieken bieden echter goede perspectieven om zulke veranderingen (mutaties) wel gericht aan te brengen. Verwacht mag worden, wanneer het mogelijk is Lactobacillus genetisch te manipuleren 30 dat stamverbetering van het organisme gerealiseerd kan worden o.a. door vermindering van de opbrengst aan ongewenste bijproducten, door de productie van anti-microbiële stoffen, door het combineren van gewenste eigenschappen uit meer dan één organisme in één organisme enz..

Een aanzienlijk verbetering van de mogelijkheid

om Lactobacillus genetisch te manipuleren zou kunnen worden

verkregen, wanneer een methode beschikbaar was om DNA rechtstreeks in te brengen in het organisme en het hierin te handhaven (transformatie). Transformatie methoden zijn beschreven voor een aantal micro-organismen. Voor Lactobacillus 5 is een dergelijke methode nog niet beschreven. Wel bekend is een methode (Shimizu-Kadota, M., Kudo, S., Agric. Biol. Chem. 48, 1105-1107 (1984) en EP-A-0133046) waarmee faag DNA ingebracht wordt in Lactobacillus door het in te pakken in zogenaamde liposomen. Deze methode laat geen conclusies 10 toe ten aanzien van eventuele transformatie omdat regeneranten, gezien de aard van de infectiecyclus van het gebruikte faag DNA, niet kunnen overleven. Een beter uitgangsmateriaal is plasmide DNA (met eventueel een selectiemarker) dat na inbrengen in het algemeen de gastheer niet doodt. Voor 15 het stabiel handhaven van ingebracht plasmide DNA is vereist dat op het ingebrachte DNA een nucleotide volgorde voorkomt die het mogelijk maakt dat het DNA molecuul autonoom repliceert in Lactobacillus. Een andere mogelijkheid houdt in dat het binnenkomende DNA geïntegreerd wordt in het 20 chromosoom van de bacterie en hierin stabiel gehandhaafd blijft. Voor het herkennen van de bacteriën die het DNA hebben opgenomen is het bovendien nodig dat op het DNA een kenmerk voorkomt (selectie marker) waarop de bacteriën geselecteerd kunnen worden.

Gelet op één van de doelstellingen van het toepassen van recDNA technieken voor genetische manipulatie, t.w. het vergroten van de opbrengst van een bepaald product, verdient het in het algemeen de voorkeur dat de ingebrachte genetische informatie voorkomt op een plasmide dat in een groot aantal copieën (multi-copy) voorkomt. In het algemeen zal n.l. de opbrengst aan product toenemen naarmate het aantal copieën toeneemt van het gen dat codeert voor het product.

Lactobacillus behoort tot de zogenaamde GRAS

35 (Generally Regarded As Safe) organismen. D.w.z. GRAS organismen en producten gemaakt door deze organismen worden als

veilig beschouwd en mogen daarom worden toegepast in de voedingsindustrie. Toepassingen van genetisch gemanipuleerde organismen zijn onderworpen aan wettelijke bepalingen. De algemene tendens van deze bepalingen is dat de kans

- De algemene tendens van deze bepalingen is dat de mans
 5 op toepasbaarheid van een micro-organisme, of het daaruit
 gevormde product, groter is naarmate het gemanipuleerde
 organisme minder afwijkt van het oorspronkelijke organisme.
 Het verdient daarom de voorkeur bij het overdragen van
 DNA naar Lactobacillus gebruik te maken van vector moleculen
- 10 (DNA moleculen die autonoom kunnen repliceren) die uit

 Lactobacillus afkomstig zijn of uit een organisme dat

 sterk verwant is aan Lactobacillus. Eenzelfde argumentatie
 geldt t.a.v. het gebruik van de selectie marker. M.a.w.
 een vector systeem dient bij voorkeur zo veel mogelijk
- 15 homoloog te zijn, te bestaan uit elementen die van nature voorkomen in <u>Lactobacillus</u>.

De uitvinding verschaft nu voor het eerst de mogelijkheid om <u>Lactobacillus</u> bacteriën te transformeren met plasmide DNA.

De uitvinding bestaat uit een werkwijze voor het transformeren van <u>Lactobacillus</u> bacteriën, waarbij de bacteriën aan een milde behandeling worden onderworpen ter verkrijging van sferoplasten, deze sferoplasten worden getransformeerd met plasmide DNA, dat voor de gastheer geschikte replicatiefuncties en ten minste één selectiemarker omvat, vervolgens de bacteriën worden geregenereerd en transformanten worden geselecteerd.

Meer in het bijzonder betreft de uitvinding
een uit 3 essentiële stappen bestaande transformatieprocedure
30 voor Lactobacillus bacteriën, nl. een eerste stap, welke
een milde behandeling van de bacteriën met bij voorkeur
lysozym ter vorming van sferoplasten inhoudt, een tweede
stap, welke de feitelijke transformatie met plasmide DNA
in tegenwoordigheid van bij voorkeur polyethyleenglycol
35 (PEG) inhoudt, en een derde stap, welke tot regeneratie
van de bacteriën leidt en waarin de gevormde transformanten

worden geselecteerd.

In de eerste stap worden de bacteriën "gesferoplasteerd" door een milde enzymbehandeling, waarbij de celwand van de bacteriën in zeer beperkte mate wordt verwijderd. 5 Een daarvoor geschikt enzym is vooral lysozym. De behandeling geschiedt in een osmotisch gestabiliseerd medium met een pH van bij voorkeur 6.0-6.6, liefst ca. 6.3. Met osmotisch gestabiliseerd wordt een zodanige concentratie van opgeloste stoffen bedoeld, dat de door de behandeling gevormde, 10 osmotisch gevoelige sferoplasten ongeschonden blijven. Lactose is voor dit doel een geschikte osmotische stabilisator. Als pH buffer wordt bij voorkeur natriummaleaat gekozen. Om een té vergaande sferoplastering te verhinderen en toch voldoende osmotische gevoeligheid te realiseren wordt 15 bij voorkeur een lysozym concentratie van 0.2-1.0 mg/ml, liefst 0.4-0.8 mg/ml toegepast, en laat men het lysozym bij voorkeur gedurende 10-100 minuten, liefst gedurende

20-60 minuten op de bacteriën inwerken bij een temperatuur van bij voorkeur 30-40°C, liefst ca. 36°C. Bij voorkeur 20 gebruikt men zodanige condities, dat ten minste 90%, liefst ten minste 99% van de bacteriën osmotisch gevoelig wordt, en dat ten minste 10%, liefst ten minste 40% van de sferoplasten geregenereerd kan worden.

In de tweede stap wordt de feitelijke transformatie
25 uitgevoerd met plasmide DNA in tegenwoordigheid van een
hulpmiddel, dat bij voorkeur bestaat uit polyethyleenglycol.
De transformatie vindt eveneens plaats in een osmotisch
gestabiliseerd medium bij een pH van bij voorkeur 6.0-6.6,
liefst ca. 6.3, waartoe weer natriummaleaat buffer kan
30 worden gebruikt. Voor goede resultaten is het aan te bevelen
om als osmotische stabilisator natriumsuccinaat te gebruiken,
dat tevens de lysozym werking remt. Een natriumsuccinaatconcentratie van 0.35M is optimaal gebleken. Het te gebruiken
plasmide DNA is een recombinant plasmide dat de replicatie35 functies (replicatie oorsprong) van een natuurlijk Lactobacillus plasmide, zoals p8014-2 of p8014-8 bevat. Daarnaast

bevat het plasmide ten minste één selecteerbare marker, zoals een chlooramfenicol resistentie gen, bijv. van het Staphylococcus aureus plasmide pC194, bij voorkeur echter een in lactobacillen voorkomende selectiemarker, zoals bet in L. caseï voorkomende trimethoprim (Tmp) resistentie gen. Ten behoeve van verdere toepassingen is in het recombinant plasmide bij voorkeur een DNA sequentie opgenomen die codeert voor een eigenschap welke de gastheer van nature mist of in mindere mate bezit.

In de derde stap worden de bacteriën geregenereerd op een voedingsbodem, die bij voorkeur een selectief regeneratiemedium bevat. Bij voorkeur geschiedt dit in twee stappen, een eerste stap met slechts een expressie inducerende, maar nog niet selectieve hoeveelheid van het selectie

15 antibioticum, en een tweede, tevens voor het selecteren van transformanten dienende stap met een wel selectieve hoeveelheid van dit antibioticum. Het regeneratiemedium heeft eveneens bij voorkeur een pH van 6.0-6.6, liefst ca. 6.3, waartoe natriummaleaat bij uitstek geschikt is,

20 en bevat een osmotische stabilisator, welke opnieuw bij voorkeur natriumsuccinaat is. Verder bevat het regeneratiemedium bij voorkeur 1-5% agar en 1-5% gelatine, liefst 2-3% agar en 3-4% gelatine.

De in de uitvinding beschreven transformatie

25 procedure omvat een methode om <u>Lactobacillus</u> toegankelijk
te maken voor het opnemen van DNA (sferoplast vorming),
een methode om de "gesferoplasteerde" bacteriën weer te
regenereren en een methode om DNA in <u>Lactobacillus</u> in
te brengen en het hierin stabiel te handhaven. Elk van

30 de methoden omvat elementen van andere methoden, toegepast
bij het ontwikkelen van transformatie protocollen voor
andere micro-organismen. Door combinatie en deductie werden
hieruit methoden ontwikkeld die het mogelijk maken <u>Lactobacillus</u>
te transformeren. De procedure is ontwikkeld voor de <u>L</u>.

35 plantarum stam ATCC 8041 maar blijkt ook toepasbaar voor

andere Lactobacillus species. De bij de transformatie

te gebruiken vectoren kunnen zijn afgel id van een in

L. plantarum stam ATCC 8014 voorkomend plasmide met een
molekuulgrootte van 1.8kb (p8014-2). Ze bevatten het replicon
van dit plasmide alsmede een selecteerbare marker, bijvoorbeeld

5 een uit L. caseï afkomstig gen coderend voor resistentie
tegen trimethoprim, of een gen afkomstig van de aan Lactobacillus
verwante bacterie Staphylococcus aureus, dat codeert voor
resistentie tegen chlooramfenicol (Cml). De uitvinding
omvat daarnaast het gebruik van vectoren afgeleid van

10 andere plasmiden van Lactobacillus species, bijv. een
8 kb plasmide uit L. plantarum stam 8014 (p8014-8) met
een replicon voor L. plantarum en een geschikte marker,
zoals het Tmp-resistentie gen of het Cml-resistentie gen.

Alle in het experimentele gedeelte beschreven

15 plasmiden bevatten nucleotide volgorden waardoor de plasmiden in Escherichia coli of Bacillus subtilis bacteriën kunnen worden gehandhaafd en vermeerderd. Voor deze opzet is gekozen omdat verdere genetische manipulatie van de plasmiden het gemakkelijkst uitgevoerd kan worden in deze bacterie.

20 De vectoren zijn echter zo geconstrueerd dat de E. coli volgorden er op relatief eenvoudige wijze uit verwijderd kunnen worden, teneinde te beschikken over een vector die zo veel mogelijk alleen uit Lactobacillus elementen bestaat.

25 Om bruikbaar te zijn als cloneringsvector, d.w.z. als vector waarmee de gewenste genetische informatie kan worden ingebracht in Lactobacillus, is het gewenst dat in het plasmide unieke nucleotide volgorden voorkomen die door een specifiek enzym (restrictie endonuclease)

30 herkend worden, zodat het plasmide op die plaats opengeknipt kan worden en een DNA fragment tussengevoegd kan worden. Zulke knipplaatsen (restrictie sites) dienen voor te komen op plaatsen in het plasmide die noch met het vermogen tot replicatie noch met de selectie marker samenvallen.

35 De in het experimentele gedeelte beschreven vectoren voldoen aan dit kriterium. Alle vectoren bevatten één of meer

unieke restrictie sites, die gebruikt kunnen worden om DNA fragmenten te kloneren en die niet samenvallen met het <u>Lactobacillus</u> replicon of het <u>E. coli</u> replicon, noch met de selectie markers voor <u>Lactobacillus</u> of <u>E. coli</u>.

Protoplastvorming/sferoplastvorming/regeneratie/transformatie

Om micro-organismen op een efficiënte wijze te kunnen transformeren is het nodig de organismen op 10 een zodanige wijze te behandelen dat ze in staat zijn om DNA op te nemen. Anderzijds moet de behandeling voldoende "mild" zijn dat de behandelde bacteriën weer in staat zijn te regenereren tot intacte bacteriën die zich kunnen vermenigvuldigen. Bij veel transformatie procedures wordt 15 het DNA in het micro-organisme naar binnen gebracht nadat de celwand van het organisme grotendeels of geheel verwijderd is met het enzym lysozym. Hierbij veranderen de organismen in bolvormige structuren, een proces dat kan worden gevolgd m.b.v. een lichtmikroscoop. Bolvormige celstructuren die 20 aantoonbaar geen celwand componenten meer bevatten worden protoplasten genoemd. Het aanwezig zijn van celwandresten, al dan niet samengaand met morfologisch waarneembare veranderingen van de structuur van de bacteriën, leidt tot celstructuren die sferoplasten worden genoemd. Bij de 25 in de uitvinding toegepaste procedure is essentieel dat de celwand van de Lactobacillus bacteriën op een zeer beperkt aantal plaatsen wordt verwijderd. Deze werkwijze leidt er toe dat geen morfologisch waarneembare veranderingen van structuur van de bacteriën plaatsvindt. De werkwijze 30 heeft als gevolg dat de bacteriën voldoende lek gemaakt zijn om DNA op te kunnen nemen maar anderzijds het vermogen hebben behouden om op efficiënte wijze te regenereren. Bij Lactobacillus neemt, in tegenstelling tot veel andere organismen, het vermogen tot regeneratie drastisch af 35 bij verdergaande verwijdering van de celwand.

Voor Gram-positieve bacteriën is een simpele

BNSDOCID: <NL___8700890A__I_>

CaCl₂ behandeling van de bacteriën (zoals de Gram-negatieve E. coli) in het algemeen niet bruikbaar om transformatie door (plasmide) DNA te kunnen bewerkstelligen. Protoplasten of sferoplasten van vele (maar zeker niet alle) Gram-posi-5 tieve bacteriën zijn in aanwezigheid van een hoge concentratie polyethyleen glycol (PEG) daarentegen wel redelijk tot zeer efficiënt te transformeren. De meeste transformatie procedures die voor deze organismen beschreven zijn, zijn dan ook gebaseerd op een PEG behandeling van bacteriën, 10 waarvan de celwand doorgaans geheel (protoplasten) of in exceptionele gevallen gedeeltelijk (sferoplasten) verwijderd is met behulp van een celwand afbrekend enzym (of een combinatie van enzymen). Hierbij dient te worden opgemerkt dat er a priori geen simpele relatie bestaat tussen de 15 efficientie van protoplast transformatie (en het vermogen tot regeneratie van de protoplasten) enerzijds en de mate waarin de celwand verwijderd wordt anderzijds. Zo berust de door Chang en Cohen (Mol. Gen. Genet. 166, 111-115 (1979)) beschreven procedure voor zeer efficiënte transformatie 20 van Bacillus subtilis op een complete protoplastering van cellen, terwijl voor transformatie van Brevibacterium lactofermentum bevorderlijk wordt geacht dat slechts een

M.D., et al., Appl. Environ. Microbiol. 51, 634-639 (1986)).
Dit laatste valt af te leiden uit de waarneming dat de behandelde bacteriën, alhoewel osmostisch gevoelig, morfologisch niet van onbehandelde bacteriën te onderscheiden zijn.

klein gedeelte van de celwand verwijderd wordt (Smith,

Ook de voor <u>Lactobacillus</u> ontwikkelde transformatie procedure volgens de uitvinding kan alleen met succes

30 worden toegepast op bacteriën die een milde lysozym behandeling hebben ondergaan. De methode berust op het volgende principe: Bacteriën van een vroeg logarithmische cultuur van de <u>Lactobacillus</u> stam van keuze worden geïncubeerd met een voor die stam optimale lysozym concentratie bij

35 pH 6.3 in, bij voorkeur door lactose osmotisch gestabiliseerde Na-maleaat buffer. DNA opname door met lysozym behandelde

bacteriën wordt bewerkstelligd door de bacteriën tezamen met DNA en PEG-4000 kort bij kamertemperatuur te incuberen. Tenslotte worden de bacteriën geregenereerd door ze uit te spatelen op een voedingsbodem die een selectief regeneratiemedium bevat. Transformanten kunnen in het algemeen na 4-8 dagen incubatie bij 30°C gedetecteerd worden. Belangrijke onderdelen in de beschreven procedure betreffen de volgende punten:

10 Keuze van de osmotische stabilisator in het regeneratiemedium (bij voorkeur 0.35 M Na-succinaat dat ook als remmer van het lysozym optreedt) met betrekking tot de regeneratie,

Concentratie en type van de agar in het regeneratie-15 medium (bij voorkeur 2.5% Daischin agar),

Zuurgraad waarbij sferoplastvorming plaatsvindt (bij voorkeur pH 6.3),

Aard van de buffer bij sferoplastvorming (bij voorkeur Na-maleaat),

20 Bij voorkeur aanwezigheid van gelatine in regeneratiemedium,

De methode van selectie van getransformeerde regeneranten, welke bij voorkeur in twee opeenvolgende fasen plaatsvindt. In het geval van een Cml marker, bij voorkeur een eerste selectie met 250 ng/ml chlooramfenicol, vervolgens verhoging van de selectiedruk tot 5 /ug/ml Cml. Deze methode houdt rekening met het gegeven dat de expressie van het gen coderend voor resistentie tegen Cml, net zoals in Staphylococcus <u>aureus</u>, allereerst door middel van een lage sub-inhibitoire concentratie Cml geïnduceerd moet worden (Horinouchi, S., Weisblum, B., J. Bacteriol. 150, 815-825 (1982)).

Vectoren

35

De meeste lactobacillen bevatten plasmiden (Nes,

I.F., FEMS Microbiol. Lett. <u>21</u>, 359-361 (1984)). Met name plasmiden met een groot copieaantal en van geringe grootte komen in aanmerking om als uitgangsmateriaal te dienen voor de ontwikkeling van vectoren.

In L. plantarum ATCC 8014 komt een cryptisch plasmide voor (p8014-2; fig. 1) dat aan bovenstaande kriteria voldoet. Om bruikbaar te zijn als vector dient echter allereerst een selecteerbaar, genetisch kenmerk in p8014-2 geïntroduceerd te worden. Hiervoor kan het gen worden gekozen dat codeert voor resistentie tegen chlooramfenicol. Van dit gen, oorspronkelijk afkomstig van het S. aureus plasmide pC194 (Horinouchi, S., Weisblum, B., J. Bacteriol. 150, 815-825 (1982)), is al bekend dat het tot expressie komt in een groot aantal, aan Lactobacillus verwante, 15 Gram-positieve bacteriën (Bacillus, Streptococcus, enz.).

Aan de beschreven procedure ligt de volgende strategie ten grondslag:

Het pC194 gen voor resistentie tegen chlooramfenicol is aanwezig in de <u>B. subtilis</u> "replicatie-screening" vector pHV60 (Michel, B., et al., Plasmid <u>10</u>, 1-10 (1983); fig. 2). Plasmide pHV60 kan repliceren in <u>E. coli</u>, heeft een gen voor Cml resistentie als marker voor <u>B. subtilis</u>, maar geen replicon voor deze bacterie. Als aangenomen wordt dat bij replicatie in <u>B. subtilis</u> en in <u>Lactobacillus</u> dezelfde functies betrokken zijn, kan na transformatie van p8014-2/pHV60 hybride plasmiden naar <u>B. subtilis</u> d.m.v. selectie op resistentie tegen Cml bepaald worden of het p8014-2 replicon na de clonering nog functioneel is.

In de beschreven transformatie procedure is
30 naast een van p8014-2 afgeleide vector tevens gebruik
gemaakt van pLB2, een van pUB110/pC194 afgeleide hybride
vector met de replicatie functies en het resistentie gen
tegen kanamycine van het <u>Staphylococcus aureus</u> plasmide
pUB110 en het gen voor resistentie tegen Cml van pC194
35 (Bron, S., Luxen, E., Plasmid <u>14</u>, 235-244 (1985); fig.
4).

BNSDOCID: <NL 8700890A 1 >

Toepassingen:

Pediococcus pentosaceus is een melkzuur bacterie die sterk verwant is aan L. plantarum en door sommige

onderzoekers zelfs als een Lactobacillus wordt beschouwd.

P. pentosaceus produceert een bacteriocine dat werkzaam is tegen alle geteste Gram-positieve bacteriën. Het gen dat codeert voor het bacteriocine is gelegen op een 13.6 Md plasmide (Daeschel, M.A. en Klaenhammer, T.R. Appl.

Environ. Microbiol. 50, 1538-1541 (1985)). Klonering van een DNA fragment dat codeert voor het bacteriocine in één van de unieke restrictie sites van pHV60/p8014-2 hybride plasmiden (fig. 3) en transformatie van L. plantarum ATCC 8041 met dit hybride plasmide leidt tot de vorming van een L. plantarum stam die in staat is ongewenste contaminaties in het voedsel van bijv. Clostridium of Staphylococcus te elimineren.

Een tweede toepassing omvat het gebruik van een genetisch gemanipuleerde L. plantarum ATCC 8041 stam 20 voor de valorisatie van landbouwafval. Deze stam die ook wel wordt aangeduid als L. pentosus bezit het vermogen om xylose af te breken. De genetische informatie voor deze eigenschap is waarschijnlijk plasmide gebonden. Overdracht van deze eigenschap naar een andere Lactobacillus 25 en/of vergroting van de productie aan xylose afbrekend enzym door vervanging van de expressiesignalen van het gen verantwoordelijk voor de afbraak van xylose door die van een efficiënte expressieeenheid, zou leiden tot Lactobacillus stammen die op efficiënte wijze xylose kunnen 30 afbreken. Omdat xylaan een belangrijk bestanddeel is van landbouwafval dat door micro-organismen wordt omgezet in xylose, zouden de aldus verkregen Lactobacillus stammen de opbrengst aan waardevolle voedingsstoffen uit landbouwafval kunnen vergroten.

Een v rd r vergroting van de toepasbaarheid

35

van deze gemanipuleerde Lactobacillus stam wordt verkregen door inbrengen van het gen dat codeert voor een xylaan afbrekend enzym (xylanase). Dit gen is in gekloneerde vorm voorhanden (Sipat, A. et al., Appl. Environ. Microbiol. 53, 477-481 (1987); Panbangred, W. et al., Mol. Gen. Genet. 192, 335-341 (1983)). Wanneer een Lactobacillus stam geconstrueerd is die xylaan afbreekt en het gevormde xylose verder kan omzetten tot waardevolle eindproducten, kan de valorisatie van landbouwafval onafhankelijk gemaakt worden van de aanwezigheid van van nature voorkomende bacteriën en op gerichte wijze worden gestuurd.

Een andere toepassing van genetisch gemanipuleerde Lactobacillus species betreft de productie van polysacchariden die in de gezondheidszorg (dextraan) of in de voedingsindustrie 15 worden toegepast o.a. als verdikkingsmiddel. L. bulgaricus en sommige L. plantarum stammen produceren dergelijke polysacchariden. Overdracht van DNA fragmenten die coderen voor de synthese van de polysacchariden op een plasmide en verdere vergroting van de productie door vervanging 20 van de expressiesignalen van de voor de synthese verantwoordelijke genen door expressiesignalen van efficiënte expressie eenheden, zou leiden tot Lactobacillus stammen die op efficiënte wijze polysacchariden produceren. Weer een andere toepassingsmogelijkheid van de uitvinding hangt 25 hiermee samen, dat <u>Lactobacillus</u> species, zoals <u>L. acidophilus</u> in staat zijn om de darmwand bij mens en dier te koloniseren (Christensen, G.D. et al., in Bacterial Adhesion, Mechanisms and Physiological Significance, Plenum Publishing Corp., New York 1985, pp 279-306). Door genetische manipulatie 30 kunnen Lactobacillus species verkregen worden die een specifiek antigeen produceren en daarmee in staat zijn in de darm een lokale immuniteit op te wekken. Dergelijke Lactobacillus stammen zouden kunnen worden toegepast voor vaccinatie programma's.

Ook kunnen genetisch gemanipuleerde Lactobacillus species worden gebruikt voor de microbiologische produktie van farmaca, vaccins, enzymen, chemicaliën, enz.

FIGUURBESCHRIJVING

Fig. 1 toont het plasmide p8014-2 met een grootte van ca. 1800 bp. Het DNA Sau3A-Sau3A segment van de baseparen 5 1250-1800 is voor replicatie niet essentieel en is derhalve een potentieel kloneringsgebied.

Fig. 2 toont het plasmide pHV60 met een grootte van ca. 5.8 kb. Het gearceerde gebied is afkomstig van het plasmide pC194, het resterende gedeelte van pBR322.

Fig. 3 toont het p8014-2/pHV60 hybride plasmide pLP825, waarbij de rechte lijn met <u>Bcl</u>I uiteinden het van p8014-2 afkomstige gedeelte aangeeft. In het niet getoonde hybride plasmide pLP829 is de <u>Bcl</u>I insertie in tegengestelde oriëntatie in de <u>Bam</u>HI positie van pHV60 ingebracht.

Fig. 4 toont het plasmide pLB2 met een grootte van ca. 3.6 kb. Het gearceerde gebied is afkomstig van het plasmide pC194, het resterende gedeelte van pUB110.

De figuren zijn niet op schaal getekend.

20

Voorbeeld 1

Voorbeeld voor het transformeren van <u>Lactobacillus</u>

plantarum ATCC 8041 (syn. <u>L. pentosus</u> ref. Dellaglio,

F. et al., Int. J. Syst. Bacteriol. <u>25</u>, 160-172 (1975))

met plasmide DNA.

Materialen en methoden

Bacteriestammen: Glycerol cultures van <u>L. plantarum</u>
ATCC 8041 worden bij -80°C bewaard. Voor de samenstelling
van het LCM medium wordt verwezen naar Efthymiou, C. et
al., J. Infect. Dis. <u>110</u>, 258-267 (1962). LCGM was LCM
waaraan glucose was toegevoegd tot een eindconcentratie
35 van 0.5%. M17 medium werd gemaakt volg ns aanwijzingen

van de fabrikant (Difco). M17G was M17 medium waaraan glucose was toegevoegd tot een eindconcentratie van 0.5%.

Regeneratie agarplaten waren gebaseerd op M17 medium waaraan was toegevoegd: glucose (0.5%), MgCl₂ (15 5 mM), CaCl₂ (15 mM), FeSO₄ (0.1 mM), MnSO₄ (0.7 mM), Na-succinaat (0.35 M; pH 6.6), gelatine (4%) en Daischin agar (2.5%). Cml-regeneratie agarplaten bevatten chlooramfenicol in een concentratie (250 ng/ml) die de celgroei niet remt maar wel inducerend werkt op de expressie van het Cml-resistentie gen (Winshell, E., Shaw, W.V., J. Bacteriol. 98, 1248-1257 (1969)).

Lysozym incubatiebuffer bevatte 0.7 M lactose, 20 mM Na-maleaat pH 6.5, 20 mM MgCl₂ en 1% runderserum albumine (BSA).

15

Vector constructie

Plasmide p8014-2 uit L. plantarum ATCC 8014, gelineariseerd met BclI, werd geligeerd met BamHI gelineari-20 seerd pHV60. Het ligatiemengsel werd gebruikt voor transformatie van E. coli JA221. Positieve transformanten werden geîdentificeerd door middel van insertionele inactivering van het tetracycline-resistentie gen. De aanwezigheid van pHV60/p8014-2 hybride plasmiden, pLP825 en pLP829 25 (fig. 3), in deze transformanten werd bevestigd door analyse van de plasmide inhoud. Plasmiden pLP825 en pLP829 onderscheiden zich van elkaar door een verschillende oriëntatie van de p8014-2 insertie in de pHV60 vector. Transformatie m.b.v. de recombinant plasmiden van B. subtilis leverde 30 chlooramfenicol resistente kolonies op die alle de uitgangsplasmiden pLP825 of pLP829 bevatten. Dit resultaat impliceert dat het replicatie mechanisme van het L. plantarum plasmide p8014-2 functioneert in B. subtilis.

35 Lysozym incubatie en regeneratie protocol

Dit protocol is gebaseerd op bevindingen met

L. plantarum ATCC 8041 (syn. L. pentosus). De methode is ook toepasbaar op de stammen L. plantarum ATCC 8014, L. plantarum ATCC 14917 en L. caseī ATCC 393 met dien verstande dat de concentratie van het celwand afbrekend enzym lysozym per stam dient te worden aangepast.

Van een overnachtkweek van L. plantarum ATCC 8041 in LCMG werd een 1 op 30 verdunning gemaakt in 50 ml M17G waarna de bacteriën werden gekweekt tot een optische dichtheid bij 695 nm van 0.3 was bereikt. Na afkoeling 10 van de bacteriekweek (10', in ijs) werden de bacteriën geoogst door centrifugatie (10' bij 10,000 x g). Bacteriën werden gewassen in 25 ml 20 mM MgCl2, 20 mM Na-maleaat pH 6.3, gecentrifugeerd (10' bij $10,000 \times g$) en vervolgens gesuspendeerd in 0.6 M lactose, 20 mM Na-maleaat pH 6.3, 15 20 mM MgCl₂ (eindvolume 2 ml). Aan 1.6 ml lysozym incubatiebuffer werd 0.4 ml celsuspensie toegevoegd en na 10' incubatie bij 36°C werd lysozym (0.6 mg, Sigma Chemical Company) toegevoegd en verder geïncubeerd bij 36°C. Uit dit enzym-cel reactiemengsel werden op verschillende tijdstippen monsters 20 genomen die, na uitverdunning in 20 mM Na-maleaat pH 6.3 (hypotone oplossing) op regeneratie agarplaten werden uitgespateld. De afname van het aantal kolonie vormende eenheden (CFU's) per plaat (na 3 dagen incubatie bij 30°C) is een maat voor de inwerkingssnelheid van het lysozym 25 op de celwand. Na 30, 60 en 120 min. incubatie van de

op de celwand. Na 30, 60 en 120 min. incubatie van de cellen met lysozym bedroeg het aantal osmotisch ongevoelige CFU's resp. 0.8, 0.4 en 0.2% van de CFU's in het reactiemengsel op t=0 min.

Verdunning van de met lysozym behandelde bacteriën

in isotone oplossing (20 mM CaCl₂, 20 mM MgCl₂, 20 mM

Na-maleaat pH 6.3, 0.35 M Na-succinaat pH 6.5) gevolgd

door uitspatelen op regeneratie agarplaten gaf na 4 dagen

incubatie bij 30°C osmotisch ongevoelige CFU's, alsmede

CFU's van osmotisch gevoelige cellen te zien. De regeneratie

efficiëntie werd v rkregen door het netto aantal regen ranten

te delen door het aantal CFU's op t=0; regen ratie frequentie

= [(CFU's isotone verdunning - CFU's hypotone verdunning)/CFU's
op t=0 min]x 100. Na 30 en 60 min. incubatie van de bacteriën
met lysozym regenereerde resp. 60 en 43% van de osmotisch
gevoelige bacteriën, terwijl na 120 min. incubatie het
percentage 1.6 bedroeg.

Transformatie

- incubatie bij kamertemperatuur werd het transformatiemengsel,
 na voorzichtig mengen met 3 ml MMCS, gecentrifugeerd (13',
 bij 700 x g). De celpellet werd opgenomen in 1.2 ml MMCS
 en van deze suspensie werd 100 /ul uitgespateld op chlooramfenicol
- bevattende regeneratie agarplaten. Na 2 uur incubatie bij 30°C werd de selectieve hoeveelheid chlooramfenicol aangebracht. Dit gebeurde door de agarlaag (volume 25 ml) in de petrischaal op te lichten en hieronder 0.7 ml chlooramfenicol oplossing (120 /ug in bidest water) aan
- 25 te brengen. Na diffusie zal de eindconcentratie van het chlooramfenicol ongeveer 5 /ug per ml agar bedragen.

Een andere toegepaste, succesvolle selectiemethode was de regeneratie agarlaag te bedekken met een tweede agarlaag ("overlay" techniek) met daarin de selectieve concentratie chlooramfenicol. Deze bovenlaag (volume 6 ml: 0.8% agar, 1% gelatine, 1% glucose, 4mM L-cysteïne, 0.7 mM MnSO4 in M17 medium) bevatte 150 /ug chlooramfenicol, zodat na diffusie de hoeveelheid chlooramfenicol per ml agar ongeveer 5 /ug bedraagt. Na incubatie bij 30°C verschenen na 4-6 dagen transformanten. Met deze transformanten procedure werden per /ug plasmide DNA 3-4 transformanten

verkregen.

Isolatie en karakterisatie van plasmide DNA van transformanten

5

De kolonie vormende eenheden op de regeneratie agarplaten met selectieve chlooramfenicol concentraties werden onderzocht op plasmide inhoud. Kolonies werden overgebracht in 2 ml Ml7G medium met Na-succinaat (0.3M 10 pH 6.6) voorzien van 1.2 /ug chlooramfenicol. Na 2 uur incubatie bij 30°C werd 0.5 ml van de cultuur verdund in 12 ml M17G medium/Na-succinaat (+ chlooramfenicol, eindconcentratie 3.5 /ug per ml). De cultuur werd verder geIncubeerd bij 30°C tot de stationaire fase was bereikt, 15 waarna de bacteriën door centrifugeren (10', bij 8,000 x g) werden verzameld. De celpellet werd opgenomen in 0.6 ml 20 mM TRIS HCl pH 8 en overgebracht naar een Eppendorf reactievaatje. Na centrifugatie (2', 8,000 x g) werden de bacteriën gesuspendeerd in 0.3 ml 20 mM TRIS HCl pH 20 8, waarna 650 /ul 24% PEG-200 en 0.3 ml lysozym (1 mg; Boehringer) werden toegevoegd. Na incubatie (1 uur bij 37°C) werden de bacteriën door centrifugeren (2', 8,000 x g) verzameld en gesuspendeerd in 0.4 ml TE buffer (10 mM TRIS HCl pH 8, 1mM EDTA). De bacteriën werden door 25 toevoeging van 48 /ul 10% SDS gelyseerd. Na 10 min. incubatie bij 37°C werden 38 /ul lN NaOH toegevoegd, dat na 10 min. incubatie geneutraliseerd werd door toevoeging van 76 /ul 2M TRIS HCl pH 7.0. Vervolgens werd NaCl toegevoegd tot een eindconcentratie van 0.5 M, waarna geëxtraheerd 30 werd met een gelijk volume chloroform. De nucleïnezuren in de waterige fase werden geprecipiteerd door toevoeging van een gelijk volume isopropanol en incubatie bij -20°C (1 uur). Het precipitaat werd verzameld door centrifugeren, gewassen met 96% ethanol, gedroogd en opgenomen in 80 /ul TE. Electroforetische analyse op agarosegelen van hetzij met restrictieenzym afgebroken, hetzij onafgebroken

- '

plasmide DNA gaf uitsluitsel over de identiteit van de plasmide DNA inhoud van de op selectieve chlooramfenicol regeneratie agarplaten verkregen regeneranten. Deze bacteriën bevatten zonder uitzondering of pVH60/p8014-2 hybride plasmiden of pLB2 en kunnen daarom als transformanten worden beschouwd.

Voorbeeld 2

Transformatie van <u>L. plantarum</u> ATCC 8014 : De in voorbeeld 1 beschreven procedure is eveneens toepasbaar op <u>L. plantarum</u> ATCC 8014. Per /ug DNA werden enkele Cml-resistente kolonies gevonden.

15 Voorbeeld 3

Transformatie van <u>L. plantarum</u> ATCC 14917:

De in voorbeeld l beschreven procedure is eveneens toepasbaar op <u>L. plantarum</u> ATCC 14917. Per /ug DNA werden enkele

20 Cml-resistente kolonies gevonden.

Voorbeeld 4

Transformatie van <u>L. case</u> ATCC 393 : De in voorbeeld l beschreven procedure is eveneens toepasbaar op <u>L. case</u>. Per /ug DNA werden enkele Cml-resistente kolonies gevonden.

CONCLUSIES

- 1. Werkwijze voor het transformeren van <u>Lactobacillus</u> bacteriën, waarbij de bacteriën aan een milde behandeling worden onderworpen ter verkrijging van sferoplasten, deze sferoplasten worden getransformeerd met plasmide DNA,
- dat voor de gastheer geschikte replicatiefuncties en ten minste één selectiemarker omvat, vervolgens de bacteriën worden geregenereerd en transformanten worden geselecteerd.
- Werkwijze volgens conclusie 1, waarbij de sferoplastvorming wordt uitgevoerd met het enzym lysozym in
 een osmotisch gestabiliseerd medium.
 - 3. Werkwijze volgens conclusie 2, waarbij de lysozymbehandeling wordt uitgevoerd bij een pH van 6.0-6.6, bij voorkeur ca. 6.3.
 - 4. Werkwijze volgens conclusie 2 of 3, waarbij
- 15 natriummaleaat als buffer wordt toegepast.
 - 5. Werkwijze volgens een van de conclusies 2-4, waarbij lactose als osmotische stabilisator wordt toegepast.
- 6. Werkwijze volgens een van de conclusies 2-5, waarbij een lysozym concentratie van 0.2-1.0 mg/ml, bij 20 voorkeur 0.4-0.8 mg/ml wordt toegepast.
 - 7. Werkwijze volgens een van de conclusies 2-6, waarbij de bacteriën gedurende 10-100 minuten, bij voorkeur 20-60 minuten, met lysozym worden geïncubeerd.
 - Werkwijze volgens een van de conclusies 2-7,
- waarbij de sferoplastvorming wordt uitgevoerd bij een temperatuur van 30-40°C, bij voorkeur ca. 36°C.
 - 9. Werkwijze volgens een van de conclusies 2-8, waarbij de sferoplastvorming onder zodanige condities wordt uitgevoerd, dat ten minste 90%, bij voorkeur ten
- 30 minste 99% van de bacteriën in osmotisch gevoelige sferoplast n wordt omgezet.
 - 10. Werkwijz volg ns een van de conclusi s 2-9, waarbij d sferoplastvorming ond r zodanige condities

经净存在 宣传

wordt uitgevoerd, dat ten minste 10%, bij voorkeur ten minste 40% van de sferoplasten kan worden geregenereerd.

- 11. Werkwijze volgens een van de conclusies 1-10, waarbij de transformatie wordt uitgevoerd in tegenwoordigheid van polyethyleenglycol.
 - 12. Werkwijze volgens een van de conclusies 1-11, waarbij de transformatie wordt uitgevoerd met een recombinant plasmide dat de replicatiefuncties van een natuurlijk Lactobacillus plasmide bevat.
- 10 13. Werkwijze volgens conclusie 12, waarbij een recombinant plasmide wordt gebruikt dat de replicatiefuncties van het plasmide p8014-2 of het plasmide p8014-8 bevat.
 - 14. Werkwijze volgens een van de conclusies 1-11, waarbij de transformatie wordt uitgevoerd met een plasmide
- 15 dat de replicatiefuncties bevat van niet van nature in Lactobacillus species voorkomende plasmiden.
 - 15. Werkwijze volgens conclusie 14, waarbij een recombinant plasmide wordt gebruikt dat de replicatiefuncties van het plasmide pLB2 bevat.
- 20 16. Werkwijze volgens een van de conclusies 12-15, waarbij een recombinant plasmide wordt toegepast dat het chlooramfenicol resistentie gen van het Staphylococcus aureus plasmide pC194 bevat.
 - 17. Werkwijze volgens een van de conclusies 12-15,
- 25 waarbij een recombinant plasmide wordt toegepast dat een in Lactobacillus voorkomende selectiemarker bevat.
 - 18. Werkwijze volgens conclusie 17, waarbij een recombinant plasmide wordt toegepast dat het in <u>Lactobacillus</u> <u>caseī</u> voorkomende trimethoprim resistentie gen bevat.
- 30 19. Werkwijze volgens een van de conclusies 12-18, waarbij een recombinant plasmide wordt toegepast, dat een ingevoegde DNA sequentie bevat welke voor een eigenschap codeert die de gastheer van nature mist.
 - 20. Werkwijze volgens een van de conclusies 1-19,
- 35 waarbij de transformatie wordt uitgevoerd in een osmotisch gestabiliseerd medium bij een pH van 6.0-6.6, bij voorkeur

- ca. 6.3.
- 21. Werkwijze volgens conclusie 20, waarbij natrium-maleaat als buffer wordt toegepast.
- 22. Werkwijze volgens conclusie 20 of 21, waarbij
- 5 natriumsuccinaat als osmotische stabilisator wordt toegepast. 23. Werkwijze volgens een van de conclusies 1-22,
 - waarbij de bacteriën worden geregenereerd op een voedingsbodem welke een regeneratiemedium bevat.
 - 24. Werkwijze volgens conclusie 23, waarbij een
- regeneratiemedium met een pH van 6.0-6.6, bij voorkeur ca. 6.3 wordt toegepast, dat natriummaleaat als buffer en natriumsuccinaat als osmotische stabilisator bevat.
 - 25. Werkwijze volgens conclusie 23 of 24, waarbij een regeneratiemedium wordt toegepast dat 1-5% agar en
- 15 1-5% gelatine, bij voorkeur 2-3% agar en 3-4% gelatine bevat.
- 26. Werkwijze volgens een van de conclusies 23-25,
 waarbij een regeneratiemedium wordt toegepast dat een
 niet-selectieve, maar wel expressie inducerende hoeveelheid
 20 bevat van het selectie antibioticum.
 - 27. Werkwijze volgens een van de conclusies 1-26, waarbij de transformanten worden geselecteerd door incubatie van de geregenereerde bacteriën op een voedingsbodem welke een selectieve hoeveelheid van het selectie antibioticum
- 25 bevat.
 - 28. <u>Lactobacillus</u> bacteriën, verkregen onder toepassing van de transformatiemethode volgens een van de conclusies 1-27.
- 29. <u>Lactobacillus plantarum</u>, verkregen onder toepassing 30 van de transformatiemethode volgens een van de conclusies 1-27.
 - 30. <u>Lactobacillus case</u>T, verkregen onder toepassing van de transformatiemethode volgens een van de conclusies 1-27.
- 35 31. Gebruik van <u>Lactobacillus</u> bacteriën volgens een van de conclusies 28-30 bij de bereiding van voedings-

- 13 i

middelen of bestanddelen daarvan, de bereiding van veevoeders, de valorisatie van landbouwafval, als vaccin, of voor de bereiding van farmaca, vaccins, enzymen en chemische stoffen in het algemeen.

- 5 32. Produkten, verkregen bij het gebruik volgens conclusie 31.
 - Recombinante plasmiden, geschikt voor toepassing in de werkwijze volgens een van de conclusies 1-27, omvattende de replicatiefuncties van een natuurlijk <u>Lactobacillus</u>
- plasmide, zoals die van het plasmide p8014-2 of het plasmide p8014-8, een voor <u>Lactobacillus</u> geschikte selectiemarker, zoals het trimethoprim resistentiegen van <u>Lactobacillus</u> caseī of het chlooramfenicol resistentie gen van <u>Staphylococcus aureus</u>, en een ingevoegde DNA sequentie welke voor
- 15 een gewenste eigenschap van Lactobacillus bacteriën codeert.

FIG.1

FIG. 2

FIG. 3

Hpa II

Kmr

Hpa II

Cmr

pLB 2

ori
110

Taq I

FIG. 4

. 3

. Se., C.

.

.