Detección de spam

From: selena.casas@sespa.es

Reply-to: sgtclark0654@hotmail.com

Subject: Oportunidad Única!

Tengo una propuesta comercial que podría interesarte. Notifícame si estás interesado en más detalles.

Detección de spam

From: selena.casas@sespa.es

Reply-to: sgtclark0654@hotmail.com

Subject: Oportunidad Única!

Tengo una propuesta comercial que podría interesarte. Notifícame si estás interesado en más detalles.

Detección de sentimiento

@juanma25

Que bien que estoy!

Empanadas + Netflix , infalible!

De que país es este tweet?

@amiguis90

Orale!! A armar el proyecto final chamacos y chamacas!!!

Idea general

Métodos:

Opción 1

- Uso de reglas y expresiones regulares

Opción 2

Supervised Machine Learning

Supervised Machine Learning

Input
$$\longrightarrow \{ (d_1,c_1),(d_2,c_2),(d_3,c_3),...,(d_n,c_n) \}$$

- d₁ @nos_paso_a_todos
 Odio al heladero! Me puso
 casi todo de americana!
- $C_1 = \bigcirc$

- Q @mary_de_recoleta Muy buena peliiiii, Las quiero amiguiiis!
- $c_2 =$

d₃ @juan_marlain
Malisimo! Ya termino
GOT! odio la vida : (

 $c_3 =$

...

@señor_de_la_plaza76
Mi Vieja mula ya
no es lo que era

- Input $\longrightarrow \{ (d_1,c_1),(d_2,c_2),(d_3,c_3),...,(d_n,c_n) \}$
- Dado un nuevo (d,?), estima P(pos|d) y P(neg|d)

- Input $\longrightarrow \{ (d_1,c_1),(d_2,c_2),(d_3,c_3),...,(d_n,c_n) \}$
- Dado un nuevo (d,?), estima P(pos|d) y P(neg|d)
- Selecciona la clase de mayor probabilidad (Maximum A Posteriori)

$$c_{MAP} = \mathop{argmax}\limits_{c \in C = \{pos, neg\}} P(c|d)$$

$$egin{array}{lll} c_{MAP} &=& argmax & P(c|d) \ c \in C = \{pos, neg\} \end{array}$$

Teorema de Bayes

$$P(c|d) = rac{P(d|c)P(c)}{P(d)}$$

- P(c|d): Probabilidad de que el documento d sea de la clase c (posterior)
- P(d|c): Probabilidad de obtener el documento
 "d" dado que es de la clase c (likelihood)
- *P(c):* Probabilidad de la clase *c* (prior)
- P(d): Probabilidad de de obtener un documento d

$$egin{array}{lll} c_{MAP} &=& argmax & P(c|d) \ c \in C = \{pos, neg\} \end{array}$$

$$= \mathop{argmax}\limits_{c \in C = \{pos, neq\}} rac{P(d|c)P(c)}{P(d)}$$

Teorema de Bayes

$$P(c|d) = rac{P(d|c)P(c)}{P(d)}$$

- P(c|d): Probabilidad de que el documento d sea de la clase c (posterior)
- P(d|c): Probabilidad de obtener el documento
 "d" dado que es de la clase c (likelihood)
- P(c): Probabilidad de la clase c (prior)
- P(d): Probabilidad de de obtener un documento d

$$egin{array}{lll} c_{MAP} &=& argmax & P(c|d) \ c \in C = \{pos, neg\} \end{array}$$

$$= \mathop{argmax}\limits_{c \in C = \{pos, neq\}} P(d|c)P(c)$$

Teorema de Bayes

$$P(c|d) = rac{P(d|c)P(c)}{P(d)}$$

- P(c|d): Probabilidad de que el documento d sea de la clase c (posterior)
- P(d|c): Probabilidad de obtener el documento
 "d" dado que es de la clase c (likelihood)
- P(c): Probabilidad de la clase c (prior)
- P(d): Probabilidad de de obtener un documento d

$$egin{array}{lll} c_{MAP} &=& argmax & P(d|c)P(c) \ &c \in C = \{pos,neg\} \ \end{array} \ &=& argmax & P(x_1,x_2,x_3,\ldots,x_m|c)P(c) \ &c \in C = \{pos,neg\} \end{array}$$

Set de entrenamiento

$$c_1 =$$

 d_2

@mary_de_recoleta Muy **buena** peliiiii, Las **quiero amiguiiis!**

...

d_n @señor_de_la_plaza76 Mi Vieja mula ya no es lo que era

$$C_n =$$

Quiero predecir

@juanma25 Que bien que estoy!

$$C_{MAP} = ?$$

estimación

$$\frac{\#c}{\#D}$$

$$egin{array}{lll} c_{MAP} & = & \mathop{argmax}\limits_{c \in C = \{pos, neg\}} P(d|c)P(c) \end{array}$$

$$= \mathop{argmax}\limits_{c \in C = \{pos, neg\}} P(x_1, x_2, x_3, \ldots, x_m | c) P(c)$$

Set de entrenamiento

$$c_1 = \bigcirc$$

@mary_de_recoleta
Muy buena peliiiii,
Las quiero amiquiiis!

...

d_n @señor_de_la_plaza76 Mi Vieja mula ya no es lo que era

$$C_n =$$

Quiero predecir

@juanma25 Que bien que estoy!

$$c_{MAP} = ?$$

estimación

Difícil de

$$c_{MAP} = egin{array}{ll} argmax & P(d|c)P(c) & ig| \ & c \in C = \{pos, neg\} \ \end{array} = egin{array}{ll} argmax & P(x_1, x_2, x_3, \ldots, x_m | c)P(c) \ & c \in C = \{pos, neg\} \ \end{array}$$

Set de entrenamiento

d₁ @nos_paso_a_todos
Odio al heladero! Me puso
casi todo de americana!

 d_2

@mary_de_recoleta Muy **buena** peliiiii, Las **quiero amiguiiis!**

...

d_n @señor_de_la_plaza76 Mi Vieja mula ya no es lo que era

$$C_n =$$

Quiero predecir

@juanma25 Que bien que estoy!

$$c_{MAP} = ?$$

estimación

$$c_{MAP} = egin{array}{ll} argmax & P(d|c)P(c) & ig| \ & = & argmax & P(x_1, x_2, x_3, \ldots, x_m|c)P(c) \ & = & c \in C = \{pos, neg\} \end{array}$$

Multinomial Naïve Bayes approximation

- Bag of words: La posición de las palabras no importa
- Independencia Condicional: P(x,|c) son independientes

$$P(x_1, x_2, ..., x_m | c) = P(x_1 | c). P(x_2 | c)... P(x_m | c)$$

Set de entrenamiento

$$c_1 =$$

$$c_2 = 6$$

• • • •

$$C_n =$$

Quiero predecir

$$c_{MAP} = ?$$

$$P(x_1, x_2, \dots, x_m | c) = P(Que|c)P(bien|c)P(que|c)P(estoy|c)P(!|c)$$

Difícil de

Multinomial Naïve Bayes

```
egin{array}{lcl} c_{MNB} &= lpha rgmax & P(x_1|c)P(x_2|c)\dots P(x_m|c)P(c) \ & c \in C = \{pos,neg\} \end{array} \ &= lpha rgmax & P(c)\prod_i P(x_i|c) \ & c \in C = \{pos,neg\} \end{array}
```

Estimations

$$egin{array}{lll} c_{MNB} &=& argmax & P(x_1|c)P(x_2|c)\dots P(x_m|c)P(c) \ &c\in C=\{pos,neg\} \end{array} \ &=& argmax & P(c)\prod_i P(x_i|c) \ &c\in C=\{pos,neg\} \end{array}$$

$$\hat{P}(c) = rac{N_c}{N_{doc}}$$

Fracción del training set con clase *c*

$$\hat{P}(w_i|c) = rac{count(w_i,c)}{\sum\limits_{w \in V} count(w,c)}$$

Fracción de apariciones de la palabra w_i entre todas las palabras de los documentos de clase c

Bolsa de palabras de todos los documentos de clase *c*

Palabras	Frec.
а	1921
arriba	121
zebra	3

$$egin{array}{lcl} \hat{P}(c) & = & rac{N_c}{N_{doc}} & c_{MNB} & = & rgmax P(x_1|c)P(x_2|c)\dots P(x_m|c)P(c) \ \hat{P}(w_i|c) & = & rac{count(w_i,c)}{\sum\limits_{v\in V} count(w,c)} & = & rgmax P(c)\prod_i P(x_i|c) \ c\in C=\{pos,neg\} \end{array}$$

$$C_3 = C_3$$
 Estoy triste y con hambre

d_{test} estoy con hambre
$$c_{test} = \frac{1}{2}$$

$$P(neg|d_{test}) \quad \alpha \quad P(neg) \big[P(estoy|neg) P(hambre|neg) \big]$$

$$egin{array}{lcl} \hat{P}(c) & = & rac{N_c}{N_{doc}} & c_{MNB} & = & rgmax P(x_1|c)P(x_2|c)\dots P(x_m|c)P(c) \ \hat{P}(w_i|c) & = & rac{count(w_i,c)}{\sum\limits_{v\in V} count(w,c)} & = & rgmax P(c)\prod_i P(x_i|c) \ c\in C=\{pos,neg\} \end{array}$$

$$d_1$$
 Estoy feliz $C_1 = C_1$

Estoy triste y con hambre
$$C_3 = C_3$$

$$P(neg|d_{test}) \quad lpha \quad P(neg)ig[P(estoy|neg)P(hambre|neg)ig] \ \qquad lpha \quad rac{2}{\pi}ig[\quad ig]$$

$$egin{array}{lll} \hat{P}(c) & = & rac{N_c}{N_{doc}} \ \hat{P}(w_i|c) & = & rac{count(w_i,c)}{\sum_{count(w,c)}} \end{array}$$

Palabras	Frec.
estoy	2
triste	2
mojado	1
hambre	1

$$d_1$$
 Estoy feliz $c_1 =$

Estoy triste y con hambre
$$C_3 = C_3$$

d_{test} estoy con hambre
$$c_{test} = 2$$

$$P(neg|d_{test}) \quad \alpha \quad P(neg) \big[P(estoy|neg) P(hambre|neg) \big]$$

$$lpha$$
 $rac{2}{3}[$ $]$

$$egin{array}{lll} \hat{P}(c) & = & rac{N_c}{N_{doc}} \ \hat{P}(w_i|c) & = & rac{count(w_i,c)}{\sum \ count(w,c)} \end{array}$$

$$C_1$$
 Estoy feliz C_2

$$d_2$$
 Estoy triste y mojado c_2

$$C_3 = C_3$$
 Estoy triste y con hambre

BoW de todos los documentos de clase *neg*

Palabras	Frec.
estoy	2
triste	2
mojado	1
hambre	1

$$P(neg|d_{test}) \quad \alpha \quad P(neg)[P(estoy|neg)P(hambre|neg)]$$

$$\alpha \quad \frac{2}{3} \left[\frac{2}{6} \cdot \frac{1}{6} \right] = \frac{1}{27}$$

BoW de todos los documentos de clase *neg*

BoW de todos los documentos de clase *pos*

$\hat{P}(c)$	=	$rac{N_c}{N_{doc}}$
$\hat{P}(w_i c)$	=	$rac{count(w_i, c)}{\sum\limits_{w \in V} count(w, c)}$

Palabras	Frec.
estoy	2
triste	2
mojado	1
hambre	1

Palabras	Frec.
estoy	1
feliz	1

$$d_1$$
 Estoy feliz $c_1 = 0$

d₂ Estoy triste y mojado c₂ =

Estoy triste y con hambre $C_3 =$

$$P(neg|d_{test})$$

$$egin{array}{ll} lpha & P(neg)ig[P(estoy|neg)P(hambre|neg)ig] \ lpha & rac{2}{3}ig[rac{2}{6},rac{1}{6}ig] = rac{1}{27} \end{array}$$

$$P(pos|d_{test})$$

$$P(pos)igl[P(estoy|pos)P(hambre|pos)igr]$$

BoW de todos los documentos de clase *neg*

BoW de todos los documentos de clase *pos*

$\hat{P}(c)$	=	$rac{N_c}{N_{doc}}$
$\hat{P}(w_i c)$	=	$rac{count(w_i, c)}{\sum\limits_{w \in V} count(w, c)}$

Palabras	Frec.
estoy	2
triste	2
mojado	1
hambre	1

Palabras	Frec.
estoy	1
feliz	1

$$d_1$$
 Estoy feliz $C_1 = C_1$

$$C_3 = C_3 = C_3$$

$$P(neg|d_{test})$$

$$P(pos|d_{test})$$

$$egin{array}{ccc} lpha & rac{2}{3}ig[rac{2}{6}.rac{1}{6}ig] = rac{1}{27} \ lpha & P(pos)ig[P(ess)] \end{array}$$

$$\alpha \quad \frac{1}{3} \left[\frac{1}{2} \cdot 0 \right] = 0$$

$$\alpha P(pos)[P(estoy|pos)P(hambre|pos)]$$

 $\alpha P(neg)[P(estoy|neg)P(hambre|neg)]$

estoy con hambre
$$C_{test} =$$

Laplace (add-1) smoothing

$$egin{array}{lll} \hat{P}(w_i|c) &=& rac{count(w_i,c)+1}{\sum\limits_{w\in V}count(w,c)+1} \ &=& rac{count(w_i,c)+1}{\left[\sum\limits_{w\in V}count(w,c)
ight]+|V|} \end{array}$$

add-α smoothing

$$egin{array}{lll} \hat{P}(w_i|c) &=& rac{count(w_i,c)+lpha}{\sum\limits_{w\in V}count(w,c)+lpha} \ &=& rac{count(w_i,c)+lpha}{\left[\sum\limits_{w\in V}count(w,c)
ight]+lpha|V|} \end{array}$$

Bolsa de palabras de todos los documentos de clase *c*

Palabras	Frec.
а	1921+1
arriba	121+1
zebra	3+1

Palabras	Frec.
а	1921 + α
arriba	121 + α
zebra	3 + α

Ejercicio: ahora con smoothing (α =0.1)

$$\hat{P}(c) = rac{N_c}{N_{doc}}$$

$$\hat{P}(w_i|c) = rac{count(w_i,c) + lpha}{ig[\sum\limits_{w \in V} count(w,c)ig] + lpha|V|}$$

Palabras	Frec.
estoy	2
triste	2
mojado	1
hambre	1

neg

Palabras	Frec.
estoy	1
feliz	1

$$d_1$$
 Estoy feliz $C_1 = C_1$

Estoy triste y con hambre
$$C_3 = C_3$$

$$C^3 =$$

$$P(pos|d_{test})$$

 $P(neg|d_{test})$

$$\alpha$$

 α

$$\alpha P(neg)[P(estoy|neg)P(hambre|neg)]$$

$$\alpha$$

Ahora con smoothing (α =0.1)

$$\hat{P}(c) = rac{N_c}{N_{doc}}$$

$$\hat{P}(w_i|c) = rac{count(w_i,c) + lpha}{ig[\sum\limits_{w \in V} count(w,c)ig] + lpha|V|}$$

neg

Palabras	Frec.
estoy	2
triste	2
mojado	1
hambre	1

pos

Palabras	Frec.
estoy	1
feliz	1

$$d_1$$
 Estoy feliz $C_1 = C_1$

$$d_2$$
 Estoy triste y mojado c_2

$$\sigma$$

 $P(neg|d_{test}) \quad \alpha \quad P(neg) \lceil P(estoy|neg) P(hambre|neg) \rceil$

 $\alpha = \frac{2}{3} \left[\frac{2.1}{6.4} \cdot \frac{1.1}{6.4} \right] \approx 0,038$

Estoy triste y con hambre

$$c_3 = 0$$

 $P(pos|d_{test}) \quad \alpha \quad P(pos)[P(estoy|pos)P(hambre|pos)]$

estoy con hambre

 α

28

Ahora con smoothing (α =0.1)

$$\hat{P}(c) = rac{N_c}{N_{doc}}$$

$$\hat{P}(w_i|c) = rac{count(w_i,c) + lpha}{ig[\sum\limits_{w \in V} count(w,c)ig] + lpha|V|}$$

neg	
-----	--

Palabras	Frec.
estoy	2
triste	2
mojado	1
hambre	1

pos

Palabras	Frec.
estoy	1
feliz	1

$$d_1$$
 Estoy feliz $C_1 = C_1$

$$P(neg|d_{test})$$

$$P(neg|d_{test}) \quad \alpha \quad P(neg) \big[P(estoy|neg) P(hambre|neg) \big]$$

Estoy triste y con hambre
$$C_3 = C_3$$

$$lpha = rac{2}{3} \left[rac{2.1}{6.4} . rac{1.1}{6.4}
ight] pprox 0,038$$

$$_{st})$$
 α

$$P(pos|d_{test}) \quad \alpha \quad P(pos)[P(estoy|pos)P(hambre|pos)]$$

$$\alpha \frac{1}{3} \left[\frac{1.1}{2.2} \cdot \frac{0.1}{2.2} \right] \approx 0,008$$

estoy con hambre

29

Problemas numéricos

$$c_{MNB}= rgmax P(x_1|c)P(x_2|c)\dots P(x_m|c)P(c)$$
 La productoria de muchos números muy $c\in C=\{pos,neg\}$ muchos números muy chicos da un número muy muy muy muy chico

Problemas numéricos

$$c_{MNB}= rgmax P(x_1|c)P(x_2|c)\dots P(x_m|c)P(c)$$
 La productoria de $c\in C=\{pos,neg\}$ muchos números muy chicos da un número $c\in C=\{pos,neg\}$ muy muy muy chico

Solución:

La clase con mayor probabilidad, también tendrá mayor log(probabilidad)

$$egin{array}{lll} c_{MNB} &=& lpha rgmax & logig[P(c)\prod_i P(x_i|c)ig] \ &=& lpha rgmax & log\,P(c) + \sum_i log\,P(x_i|c) \ &=& c\in C=\{pos,neg\} \end{array}$$

Cómo mejorar (o quizas no) un sistema de clasificación de texto:

- Normalización:
 - Colapso de tokens (números, fechas, nombres)

Cómo mejorar (o quizas no) un sistema de clasificación de texto:

- > Normalización:
 - Colapso de tokens (números, fechas, nombres)
 - Lematizar o hacer stemming
- > Aumentar el peso de ciertos tokens (duplicar tokens):
 - Tokens del título (Cohen & Singer 1996)
 - Primera oración de cada párrafo (Murata, 1999)
 - En oraciones que contienen palabras del título (Ko, 2002)

Se pueden descartar las palabras muy poco frecuentes o las muy frecuentes

- Se pueden descartar las palabras muy poco frecuentes o las muy frecuentes
- Se pueden descartar stopwords ("de", "la", "los", "que",...)

35

- Se pueden descartar las palabras muy poco frecuentes o las muy frecuentes
- > Se pueden descartar **stopwords** ("de", "la", "los", "que",...)
- Para el sentiment analysis se pueden propagar negaciones Por ejemplo:

Esto no está bueno ni rico. En la casa de...

Esto no no está no bueno no ni no rico En la casa de...

Tips

Se pueden extraer n-gramas

"Esto no está bueno ni rico."

- Unigramas: ["Esto", "no", "está", "bueno", "ni", "rico", "."]
- Bigramas: ["Esto no", "no está", "está bueno", "bueno ni", "ni rico", "rico ."]
- Trigramas: ["Esto no está", "no está bueno", "está bueno ni", ...]

Clasificación de Textos

Naïve Bayes:

- No tiende a over-fitear, high-bias, (Ng and Jordan, 2002)
- No tiene muchos parámetros a ajustar
- Es intuitivo
- Es rapido

Clasificación de Textos

Naïve Bayes:

- No tiende a over-fitear, high-bias, (Ng and Jordan, 2002)
- No tiene muchos parámetros a ajustar
- Es intuitivo
- Es rapido

Pero:

- Es un primer algoritmo a probar, es probable que otros métodos de clasificación supervisada funcionen mejor, como: SVM, NNs

Detección de hate speech en twitter

Evaluación de los métodos

Identificación de mensajes con hate speech: Sobre el test set

	Eran <i>hate</i>	Eran <i>no-hate</i>
Identificados como hate	8 (tp)	8 (fp)
Identificados como no-hate	2 (fn)	92 (tn)

Matriz de confusión

Notar que estoy evaluando la capacidad de identificar los posteos de **hate**, y no la capacidad de identificar los de **no-hate**

Precision y Recall

Precision: fracción de los identificados como *hate* que fueron correctamente clasificados

Recall: fracción de los que eran *hate*, que efectivamente fueron identificados como *hate*

	Eran <i>hate</i>	Eran no-hate
Identificados como hate	8 (tp)	8 (fp)
Identificados como no-hate	2 (fn)	92 (tn)

$$egin{array}{lll} Precision & = & rac{tp}{tp+fp} = rac{8}{16} pprox 0.5 \ Recall & = & rac{tp}{tp+fn} = rac{8}{10} pprox 0.8 \end{array}$$

Precision y Recall

Casos límites:

Clasifico siempre como hate

	Eran <i>hate</i>	Eran no-hate
Identificados como <i>hate</i>	10 (tp)	100 (fp)
Identificados como <i>no-hate</i>	0 (fn)	0 (tn)

Clasifico como hate solo si estoy muuuy seguro

	Eran <i>hate</i>	Eran <i>no-hate</i>
Identificados como hate	3 (tp)	1 (fp)
Identificados como no-hate	7 (fn)	99 (tn)

$$egin{array}{lll} Precision & = & rac{tp}{tp+fp} = rac{10}{110} pprox 0.09 \ Recall & = & rac{tp}{tp+fn} = rac{10}{10} pprox 1 \end{array}$$

$$Precision = rac{tp}{tp+fp} = rac{3}{4} pprox 0.75$$

$$Recall = rac{tp}{tp+fn} = rac{3}{10} pprox 0.3$$

F-measure

El F-measure (F1-score) es un trade off entre el Precision y el Recall y se calcula como el promedio armónico entre ambos

$$F=rac{2}{rac{1}{P}+rac{1}{R}}=rac{2PR}{P+R}$$

$$egin{array}{lll} Precision & = & rac{tp}{tp+fp} = rac{8}{16} pprox 0.5 \ Recall & = & rac{tp}{tp+fn} = rac{8}{10} pprox 0.8 \end{array} \hspace{0.5cm} ag{F=0.616}$$

Macro vs Micro averaging

Cuando no hay una clase privilegiada

	Eran bot	Eran troll	Eran normal
Clasif: bot	10	20	0
Clasif: troll	10	40	0
Clasif: normal	0	0	1000

bot	eran pos	eran neg
Clasif: pos	10 (tp)	20 (fp)
Clasif: neg	10 (fn)	1040 (tn)

troll	eran pos	eran neg
Clasif: pos	40 (tp)	10 (fp)
Clasif: neg	20 (fn)	1010 (tn)

normal	eran: pos	eran: neg
Clasif: pos	1000 (tp)	0 (fp)
Clasif: neg	0 (fn)	80 (tn)

Macro vs Micro averaging

crisis	eran pos	eran neg
Clasif: pos	10 (tp)	20 (fp)
Clasif: neg	10 (fn)	1040 (tn)

red	eran pos	eran neg
Clasif: pos	40 (tp)	10 (fp)
Clasif: neg	20 (fn)	1010 (tn)

green	eran: pos	eran: neg
Clasif: pos	1000 (tp)	0 (fp)
Clasif: neg	0 (fn)	80 (tn)

precision = 0.5

precision = 0.67

precision = 1

Macro-averaging precision = (0.5 + 0.67 + 1)/3 = 0.72

Macro vs Micro averaging

crisis	eran pos	eran neg
Clasif: pos	10 (tp)	20 (fp)
Clasif: neg	10 (fn)	1040 (tn)

red	eran pos	eran neg
Clasif: pos	40 (tp)	10 (fp)
Clasif: neg	20 (fn)	1010 (tn)

green	eran: pos	eran: neg
Clasif: pos	1000 (tp)	0 (fp)
Clasif: neg	0 (fn)	80 (tn)

precision = 0.5

precision = 0.67

precision = 1

Macro-averaging precision = (0.5 + 0.67 + 1)/3 = 0.72

Micro-averaging table

Total	eran pos	eran neg
Clasif: pos	1050 (tp)	30 (fp)
Clasif: neg	30 (fn)	2130 (tn)

Micro-averaging precision = 1050/1080=0.97

Training - Evaluation sets

Training set 80%

Eval. set 20%

Opción 1

Cross Validation (5-fold CV)

Training set 80%

Eval. set 20%

5-Fold Cross-Validation

Opción 1

Opción 2

Y si quiero probar muchos modelos?

Evalúo muchos modelos y elijo el mejor

Modelos

- 1) f-score=0.56
- 2) f-score=0.61
- 351) f-score=0.83
- 9581) f-score=0.59
- 9582) f-score=0.66

Y si quiero probar muchos modelos?

Evalúo muchos modelos y elijo el mejor

Modelos

- 1) f-score=0.56
- 2) f-score=0.61

351) f-score=0.83

9581) f-score=0.59

9582) f-score=0.66

Y si quiero probar muchos modelos?

Evalúo muchos modelos y elijo el mejor

Cross Validation + Test set

FIN