Bonus .

-0

d) design	
d	avg. distance
	0.792
2	1.247
+	1.873
8	2.742
16	3.918
3 2	5.618
64	7.951
128	11.279

As d increases, average distance increases.

We can infer that for k-means clustering, it won't work or it has bad performance for a high dimensional space since the volume of the space increases at a great rate relative to increase of dimensions. Average distance to means (centroid) could be too large.

e) the ratio is $(1-E)^d$, (0-E-1)As d gets large, the ratio becomes small

and $(1-E)^d = 0$, the volume of $d \to \infty$ d-dimensional hyperable with side length 1-E

has nearly 0 volume.

For high d, if side length, here distance to the origin is less than I, samples will be clustered in a very small volume. While the distance is larger than I, samples will be distributed in a large volume. For random generated multivariate Gaussian samples in such large volume, average distance will increase as d increases since P(-0.5 < x(1.5)) for at Gaussian Normal is only 28.3%