DETECTING STRESS USING MACHINE LEARNING TECHNIQUES

Student Name: Reshma S Masterclass Batch-19

SERIAL	TITLE OF PAPER	NAME OF AUTHOR	PUBLISHED	REMARKS
NO.			YEAR	
1.	Machine Learning and IoT for Prediction and Detection and Stress	Purunendu Shekhar Pandey	2017	 It is difficult to predict the age from heartrate as it is non-linear, but we can predict whether the person is healthy or unhealthy based on his heartbeat. Based on heartbeat, we can predict whether the person is stressed or not. ML is used to predict the condition of the patient and IoT(Remote Stress Detector) is used to communicate the patience about his/her acute stress condition. Components used are: Node MCU(Supports micropython), Pulse Sensor, Server. Supervised Learning, Support Vector Machine(SVM). Test Accuracy: 66%-68%. Algorithms Used: VF-15, Naïve Bayes approach. SVM and Logistic Regression show improvement over Naïve Bayes and VF-15.
2.	Predicting Anxiety, Depression and Stress in Modern Life using machine Learning algorithms	Anu Priya, Shruthi Garg, Neha Prerna Tigga	2019	 Data were collected from employed and unemployed individuals across different cultures and communities through the Depression, Anxiety and Stress Scale questionnaire. After applying different methods, it was found

					that classes were
					imbalanced in the
					confusion matrix.
				•	F1 score model was
					added, which helped to
					identify the best
					accuracy model among
					all the algo applied
					model.
				•	Algorithms used:
					Random Forest Tree,
					Support Vector Machine,
					Convolution Neural
					Network, K-Nearest Neighbour.
					Best results were
					provided when
					Convolution Neural
					Network was applied
					with the accuracy of
					78%.
3.	A Review On Mental	Shruthi Gedam,		•	Includes sensory devices
	Stress Detection	Sanchitha Paul	2021		like wearable sensors,
	using Wearable				ECG, EEG, PPG.
	Sensors and Machine			•	Symptoms considered
	Learning Techniques				are: Cognitive, Physical, Emotional, Behavioral.
					Uses Frequency Domain
					Indices and Non-Linear
					Indices and Non Emedi
				•	Algorithms used: Fuzzy
					Logic Algorithm, K-
					Nearest Neighbor
					Algorithm, SVM, logistic
					Regression, Decision
					Tree Algorithm, Naïve
					Bayes, Artificial Neural
					Network, Random Forest
				_	Algorithm.
				•	It is observed that HR and GSR were the most
					regularly used sensory
					signals because they
					gave the most promising
					results and high
					accuracy for detecting
					stress and its levels.

