INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

MACHINE LEARNING ASSIGNMENT 3 SUPPORT VECTOR MACHINE CLASSIFIER

Prepared by:

Samar Pratap Singh (19EE10069)

Sawale Saurabh Suresh (19CS10054)

Group No.: 47 (E)

Running the Code:

The .ipynb along with the dataset diabetes.csv file is already attached in the zip folder, which can be downloaded and run on Google Colab.

The code is recommended to run on Colab to avoid problems with installation packages or version incompatibility due to outdated versions.

The view link code is written on the Google colab and the link for the same is here: https://colab.research.google.com/drive/1RbNe7gHiQJerfr8KrdBtgecCybhynGHn

Importing Dataset

- The dataset used is https://www.kaggle.com/mathchi/diabetes-data-set
- 2. We have split the dataset as **70:10:20 splits as train, validation and test set** respectively.

3. Attribute Information:

- -- 1. Pregnancies: Number of times pregnant
- -- 2. Glucose : Plasma glucose concentration 2 hours in an oral glucose tolerance test
 - -- 3 BloodPressure: Diastolic blood pressure (mm Hg)
 - -- 4. SkinThickness: Triceps skin fold thickness (mm)
 - -- 5. Insulin: 2-Hour serum insulin (mu U/ml)
 - -- 6. BMI: Body mass index (weight in kg/(height in m)^2)
 - -- 7. DiabetesPedigreeFunction: Diabetes pedigree function
 - -- 8. Age: Age (years)

Value to be predicted(having diabetes or not):

-- 9. Outcome : Class variable (0 or 1) where class value 1 is interpreted as "tested positive for diabetes"

Splitting Dataset for training and validation:

We split the data set into 70:10:20 splits for training, validation and testing, respectively, using the **train_valid_test_split** function which uses **sklearn**'s **train_test_split** function twice to get the required 70:10:20 split of the dataset.

Data Cleaning:

- For missing data, we replaced the missing data with the mean value of that feature. For this, we used the pandas function: df.fillna(df.mean()).
 Although our dataset didn't have any missing features. We have just mentioned the function as caution.
- 2. We normalized the data using sklearn's MinMaxScalar().

Functions used in the project:

1. **train_valid_test_split**: this function splits the dataset as 70:10:20 split for training validation and testing respectively

For all the plotting functions, we have used **plotly.express** library. For min, max functions, we have directly used Python's min() and max() functions. We have used other python libraries as well in this project.

Theory:

• PCA(principal component analysis):

- Principal Component Analysis is an unsupervised learning algorithm that is used for dimensionality reduction in machine learning.
- It is a statistical process that converts the observations of correlated features into a set of linearly uncorrelated features with the help of orthogonal transformation. These new transformed features are called the Principal Components.
- Steps involved in PCA:
 - Standardize the range of continuous initial variables
 - Compute the covariance matrix to identify correlations
 - Compute the eigenvectors and eigenvalues of the covariance matrix to identify the principal components
 - Create a feature vector to decide which principal components to keep
 - Recast the data along the principal components axes.

SVM(Support Vector machine):

- Support vector machine (SVM) is a supervised machine learning algorithm that can be used for both classification or regression challenge
- SVM is mostly used in classification problems
- SVM are simply the coordinates of individual observation. The SVM classifier is the frontier that best segregates the two classes (hyper plane/line).

• LDA (Linear Discriminant analysis):

- Linear Discriminant Analysis or Normal Discriminant Analysis or Discriminant Function Analysis is a dimensionality reduction technique that is commonly used for supervised classification problems
- It is used for modelling differences in groups, i.e. separating two or more classes.
- It is used to project the features in higher dimension space into a lower dimension space.
- LDA is like PCA, but it focuses on maximizing the separation among the known categories.

Implementation and results:

• Get training, validation and testing sets for operations:

- Get the training, validation and Testing sets for operations by calling the train_test_valid_split function.
- o since, random rows have been selected... we need to reset the indices so that the training, tests and validation X and Y are aligned w.r.t each other.

• Using PCA (principal component analysis) to reduce dimensions:

- We have reduced the feature dimensions of the given data to two-dimensional feature space using PCA (principal component analysis), that is, we have reduced features from 8 to 2.
- We have used sklearn.decomposition and imported PCA from it in the code.
- o Operations done in our code while doing dimension reduction using PCA::
 - Checking the size of X_train before applying PCA
 - Fit the training set with PCA with n_components = 2.
 - Stored the PCA metrics generated to transform our validation and test data as we had to do PCA only once and generate PCA metrics using that metrics only we had to transform our validation and test dataset.
 - See the variance ratio contributed by PC1 and PC2.
 - Then we converted the fitted train set using the X-train back into Dataframe for plotting and computational purposes.
 - For observing the obtained data: Concatenate the Y_train data frame to get a combined dataframe with PC1, PC2 and the Y_train for plotting the reduced dimensional graph.

 We have used plotly.express library for plotting the reduced dimensional data into a 2-D place where all data points of a single class have the same color and data points from different classes have different colors.

o Result:

- X_{train} dimension before applying PCA = (537, 8)
- X train dimension after applying PCA = (537, 2)
- Explained variance ratio = [0.31411269 0.21153548]
- Table after reducing to two dimensions:

	PC1	PC2	Outcome
0	-0.095965	0.207448	0
1	-0.254032	0.068722	1
2	0.192237	-0.136709	1
3	-0.153368	-0.053380	1
4	-0.334383	-0.234876	0
532	0.163619	0.007829	1
533	-0.266531	0.078115	0
534	-0.167429	0.047636	0
535	-0.026553	-0.157012	0
536	-0.186370	-0.139380	0

537 rows × 3 columns

Graph of PC1 vs PC2

Plot of reduced dimensional data. All data points of a single class have the same color and data points from different classes have different colors.

Training SVM Classifier on the reduced dimension by PCA:

- We have trained an SVM classifier on reduced dimensional data generated above, for which we have used the sklearn.svm and imported SVC from that.
- o Steps performed for this process:
 - create a list of hyperparameters 'C', 'gamma' and the 'degree' for a list of kernel values(linear, ploy, rbf and sigmoid) to find out the combination giving the maximum accuracy on the validation set.
 - Create a list to store the scores for different combinations.
 - generating and storing scores by iterating over the hyperparameters for different kernel types.
 - convert the score list into a dataframe for better visualization.
 - getting the row(details of parameters) with the maximum validation score.
 - storing the best model in the list for testing the test_set.
- Validation accuracy for each combination is shown in a tabular form.
- o Some parts of the obtained result are attached:

						т —					1						
	kernel	c	gamma	degree	validation score	64	poly	5	1	3	0.649351	420	phi	0	3	1	0.600
0	linear		1	1	0.688312	65	poly	5	1	5	0.649351	129	rbf				0.688
1	linear		1	3	0.688312	66	poly	5	3	1	0.688312	130	rbf		3	3	0.688
2	linear		1	5	0.688312	67	poly	5	3	3	0.688312	131	rbf		3	5	0.688
3	linear		3	1	0.688312	68	poly	5	3	5	0.649351	132	rbf	9	5	1	0.662
4	linear		3	3	0.688312	69	poly	5	5	1	0.688312	133	rbf	9	5	3	0.662
5	linear		3	5	0.688312	70	poly	5	5	3	0.727273	134	rbf	9	5	5	0.662
6	linear		5	1	0.688312	71	poly	5	5	5	0.675325	135	sigmoid	1	1	1	0.688
7	linear		5	3	0.688312	72	poly		1	1	0.688312	136	sigmoid	1	1	3	0.688
8	linear		5	5	0.688312	73	poly		1	3	0.649351	137	sigmoid	1	1	5	0.688
9	linear		1	1	0.701299	74	poly		1	5	0.649351	138	sigmoid	1	3	1	0.688
10	linear		1	3	0.701299	75	poly		3	1	0.688312	139	sigmoid	1	3	3	0.688
11	linear		1	5	0.701299	76	poly		3	3	0.714286		sigmoid		3	5	0.688
12	linear		3	1	0.701299	77 78	poly		3 5	5	0.662338 0.688312		sigmoid		5	1	0.584
13	linear		3	3	0.701299	79	poly		5	3	0.666312		sigmoid		5	3	0.584
14	linear		3	5	0.701299	80	poly		5	5	0.688312		sigmoid		5	5	0.584
15	linear		5	1	0.701299	81	poly	9	1	1	0.688312		-				
16	linear		5	3	0.701299	82	poly		1	3	0.662338		sigmoid		1	1	0.701
17	linear		5	5	0.701299	83	poly	9	1	5	0.649351		sigmoid		1	3	0.701
18	linear		1	1	0.688312	84	poly		3	1	0.688312	146	sigmoid	3	1	5	0.701
19	linear		1	3	0.688312	85	poly	9	3	3	0.727273	147	sigmoid	3	3	1	0.584
20	linear		1	5	0.688312	86	poly	9	3	5	0.662338	148	sigmoid	3	3	3	0.584
21	linear		3	1	0.688312	87	poly	9	5	1	0.688312	149	sigmoid	3	3	5	0.584
22	linear		3	3	0.688312	88	poly	9	5	3	0.714286	150	sigmoid	3	5	1	0.597
23	linear		3	5	0.688312	89	poly	9	5	5	0.688312	151	sigmoid	3	5	3	0.597
24	linear		5	1	0.688312	90	rbf	1	1	1	0.688312	152	sigmoid	3	5	5	0.597
25	linear		5	3	0.688312	91	rbf	1	1	3	0.688312	153	sigmoid	5	1	1	0.688
26	linear		5	5	0.688312	92	rbf	1	1	5	0.688312	154	sigmoid	5	1	3	0.688
27	linear		1	1	0.688312	93	rbf	1	3	1	0.675325	155	sigmoid	5	1	5	0.688
28	linear		1	3	0.688312	94	rbf	1	3	3	0.675325		sigmoid		3	1	0.584
29	linear		1	5	0.688312	95	rbf	1	3	5	0.675325		sigmoid		3	3	0.5844
30	linear		3	1	0.688312	96	rbf	1	5	1	0.688312		_		3	5	0.584
50	micai		,		0.000012								sigmoid				
													sigmoid		5	1	0.5974
												160	sigmoid	5	5	3	0.5974

o We have chosen the kernel for which validation accuracy is highest

o Result is:

```
Maximum validation score is obtained for

: kernel poly
C 3
gamma 5
degree 3
model SVC(C=3, break_ties=False, cache_size=200, cla...
validation score 0.727273
```

Accuracy on the test set based on the max validation parameters:

0.6818181818181818

Name: 61, dtype: object

• Using LDA(Linear Discriminant Analysis) for reducing dimensions:

- We have reduced the feature dimension of the above data into a one dimensional feature space using Linear Discriminant Analysis (LDA), for which we used sklearn.discriminant_analysis and imported LDA from it.
- We have done following things
 - Updated X_train dimensions after applying the LDA to reduce its dimensions
 - See the variance ratio contributed by LD1
 - converting the X_train_LDA back into Dataframe for computational purposes
 - Concatenate the Y_train data frame to get a combined dataframe with LD1 and the Y_train for plotting and further usage.
- Table after reducing the dimension:

	LD1	Outcome
0	0.723125	0
1	-1.087577	1
2	1.454740	1
3	0.754996	1
4	-0.302462	0
532	-0.213644	1
533	0.170812	0
534	-0.895499	0
535	-1.080423	0
536	-1.450775	0

537 rows x 2 columns

o Graph after reducing dimensions:

Plot of reduced dimensional data. All data points of a single class have the same color and data points from different classes have different colors.

• Training SVM Classifier on the reduced dimension by LDA:

- We have trained an SVM classifier on reduced dimensional data generated above, for which we have used sklearn.svm and imported SVC from that.
- Steps performed are:
 - create a list of hyperparameters 'C', 'gamma' and the 'degree' for a list of kernel values(linear, ploy, rbf and sigmoid) to find out the combination giving the maximum accuracy on the validation set.
 - Create a list to store the scores for different combinations.
 - generating and storing scores by iterating over the hyperparameters for different kernel types.
 - convert the score list into a dataframe for better visualization.
 - getting the row(details of parameters) with the maximum validation score.
 - storing the best model in the list for testing the test_set.
- o validation accuracy for each combination is shown in a tabular form.
- Some parts of the obtained result are attached :

	kernel	C	gamma	degree	validation score	127	poly	7	0.5	3	0.740260	223	rbf		0.9	3	0.792208
0	linear	1	0.1	1	0.779221	128	poly	7	0.5	5	0.701299	224	rbf	9	0.9	5	0.792208
1	linear	1	0.1	3	0.779221	129	poly	7	0.7	1	0.779221	225	sigmoid	1	0.1	1	0.792208
2	linear	1	0.1	5	0.779221	130	poly	7	0.7	3	0.740260	226	sigmoid	1	0.1	3	0.792208
3	linear	1	0.3	1	0.779221	131	poly	7	0.7	5	0.701299	227	sigmoid	1	0.1	5	0.792208
4	linear	1	0.3	3	0.779221	132	poly	7	0.9	1	0.779221	228	sigmoid	1	0.3	1	0.701299
5	linear	1	0.3	5	0.779221	133	poly	7	0.9	3	0.740260	229	sigmoid	1	0.3	3	0.701299
6	linear	1	0.5	1	0.779221	134	poly	7	0.9	5	0.701299	230	sigmoid	1	0.3	5	0.701299
7	linear	1	0.5	3	0.779221	135	poly	9	0.1	1	0.779221	231	sigmoid	1	0.5	1	0.675325
8	linear	1	0.5	5	0.779221	136	poly	9	0.1	3	0.727273	232	sigmoid	1	0.5	3	0.675325
9	linear	1	0.7	1	0.779221	137	poly	9	0.1	5	0.701299	233	sigmoid	1	0.5	5	0.675325
10	linear	1	0.7	3	0.779221	138	poly	9	0.3	1	0.779221	234	sigmoid	1	0.7	1	0.675325
11	linear	1	0.7	5	0.779221	139	poly	9	0.3	3	0.740260	235	sigmoid	1	0.7	3	0.675325
12	linear	1	0.9	1	0.779221	140	poly	9	0.3	5	0.701299	236	sigmoid	1	0.7	5	0.675325
13	linear	1	0.9	3	0.779221	141	poly	9	0.5	1	0.779221	237	sigmoid	1	0.9	1	0.675325
14	linear	1	0.9	5	0.779221	142	poly	9	0.5	3	0.740260	238	sigmoid	1	0.9	3	0.675325
15	linear	3	0.1	1	0.779221	143	poly	9	0.5	5	0.701299	239	sigmoid	1	0.9	5	0.675325
16	linear	3	0.1	3	0.779221	144	poly	9	0.7	1	0.779221	240	sigmoid	3	0.1	1	0.753247
17	linear	3	0.1	5	0.779221	145	poly	9	0.7	3	0.740260	241	sigmoid	3	0.1	3	0.753247
18	linear	3	0.3	1	0.779221	146	poly	9	0.7	5	0.701299	242	sigmoid	3	0.1	5	0.753247
19	linear	3	0.3	3	0.779221	147	poly	9	0.9	1	0.779221	243	sigmoid	3	0.3	1	0.688312
20	linear	3	0.3	5	0.779221	148	poly	9	0.9	3	0.740260	244	sigmoid	3	0.3	3	0.688312
21	linear	3	0.5	1	0.779221	149	poly	9	0.9	5	0.701299	245	sigmoid	3	0.3	5	0.688312
22	linear	3	0.5	3	0.779221	150	rbf	1	0.1	1	0.792208	246	sigmoid	3	0.5	1	0.675325
23	linear	3	0.5	5	0.779221	151	rbf	1	0.1	3	0.792208	247	sigmoid	3	0.5	3	0.675325
24	linear	3	0.7	1	0.779221	152	rbf	1	0.1	5	0.792208	248	sigmoid	3	0.5	5	0.675325
25	linear	3	0.7	3	0.779221	153	rbf	1	0.3	1	0.792208	249	sigmoid	3	0.7	1	0.662338
26	linear	3	0.7	5	0.779221	154	rbf	1	0.3	3	0.792208	250	sigmoid	3	0.7	3	0.662338
27	linear	3	0.9	1	0.779221	155	rbf	1	0.3	5	0.792208	251	sigmoid	3	0.7	5	0.662338
28	linear	3	0.9	3	0.779221	156	rbf	1	0.5	1	0.792208	252	sigmoid	3	0.9	1	0.675325
29	linear	3	0.9	5	0.779221	157	rbf	1	0.5	3	0.792208	253	sigmoid	3	0.9	3	0.675325
30	linear	5	0.1	1	0.779221	158	rbf	1	0.5	5	0.792208	254	sigmoid	3	0.9	5	0.675325

• We have chosen the kernel for which validation accuracy is highest

o Result is:

```
Maximum validation score is obtained for

: kernel poly
C 1
gamma 0.1
degree 1
model SVC(C=1, break_ties=False, cache_size=200, cla...
validation score 0.792208
Name: 75, dtype: object
```

Accuracy on the test set based on the max validation parameters :0.7857142857142857

Analysis:

Checking if there are any specific difference between final test accuracy of step 3 (Applying SVM on the reduced dimension by PCA) and step 5 (Applying SVM on the reduced dimension by LDA):

- For step 3 (Applying SVM on the reduced dimension by PCA):
 - o accuracy on the test set based on the max validation parameters:

0.6818181818181818

Validation score : 0.727273

- For step 5 (Applying SVM on the reduced dimension by LDA):
 - o accuracy on the test set based on the max validation parameters

:0.7857142857142857

Validation score: 0.792208

- For most of the validation test scores: there isn't a significant difference between the accuracy scores.
- However, there are minor changes in test accuracy which are expected as the number of components in both the cases are different.
- The best Kernel obtained most of the time is either **poly** or **rbf**.
- We can see that there is not much significant change before(i.e. only PCA) and after performing only LDA.
- This might be because one of the components(PC1 or PC2) in particular play a major role in determining the classification, and the single component LD1 covers the maximum margin/variation in the data.
- The 2-dimension PCA identifies the two most significant dimensions. If one
 component does not contribute much to the maximum split, the other
 component can play its role and lead to a better split, Hence, while training an
 SVM classifier it tries to find a maximum margin split and 2.-component helps in
 the same.
- In case of LDA, the SVM classifier has to rely on the single component along which the variance is maximum to get the maximum margin, as The 1-component LDA does not have any such liberty as compared to the 2-component PCA described.
- However, we can see that the accuracy values in both the cases are nearly the same.

Conclusion:

 In this assignment, we have learned to use several dimensionality reduction techniques(using PCA and LDA) to reduce the feature dimension of a data and understand the impact of dimensionality reduction of data on accuracy.