Visualizando la Vida: Exploración Intuitiva de Datos Clínicos en UCI Cardiovasculares

INTEGRANTE

Roy Angel Choquehuanca Anconeyra

Introducción

- El análisis de registros electrónicos de salud (EHR) es clave en la investigación y monitoreo de pacientes críticos en UCI cardiovasculares.
- Los EHR contienen grandes volúmenes de datos heterogéneos, útiles para entender el estado de salud del paciente y apoyar decisiones clínicas.
- Uno de los retos principales es presentar esta información de forma comprensible y útil para los médicos.
- Los médicos requieren visualizaciones claras, rápidas e interactivas para extraer conclusiones relevantes.
- Entornos como Jupyter Notebooks permiten integrar código, resultados y visualizaciones, mejorando el análisis exploratorio clínico.
- A pesar de estas ventajas, todavía se requieren conocimientos técnicos avanzados, lo que limita la adopción de estas herramientas por personal no técnico.
- Muchas tareas (visualización, detección de anomalías, análisis de tendencias) aún son manuales, propensas a errores y rompen el flujo de trabajo clínico.

Introducción

- Han surgido herramientas que automatizan y simplifican el análisis exploratorio:
 - Lux: Sugiere visualizaciones automáticamente al mostrar un DataFrame.
 - Mage: Integra manipulaciones gráficas de datos con código.
 - AutoProfiler: Realiza perfilado continuo con resúmenes visuales e interactivos.
- Estas tecnologías nos podría permitir más otras herramientas:
 - Representar automáticamente tendencias clínicas (frecuencia cardíaca, presión arterial, etc.).
 - Mejorar la calidad del análisis de datos clínicos.
 - Aumentar la productividad del personal médico y técnico.
 - Facilitar la toma de decisiones médicas rápidas e informadas.
- Su impacto puede ser especialmente relevante en:
 - Monitoreo, predicción y prevención de reingresos a UCI en pacientes cardiovasculares.

Problema

- Visualizar datos clínicos complejos y multidimensionales
- El análisis exploratorio de datos clínicos consume hasta el 50% del tiempo de los científicos de datos en proyectos de salud.
- Esto entorpece el flujo de trabajo clínico, especialmente para médicos que requieren retroalimentación visual inmediata para evaluar condiciones críticas.


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId
               891 non-null int64
Survived
               891 non-null int64
              891 non-null int64
Pclass
              891 non-null object
Name
Sex
               891 non-null object
               714 non-null float64
Age
               891 non-null int64
SibSp
              891 non-null int64
Parch
              891 non-null object
Ticket
              891 non-null float64
Fare
              204 non-null object
Cabin
              889 non-null object
Embarked
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
```

Objetivos

- Evaluar el uso de AutoProfiler como herramienta complementaria a los notebooks computacionales para facilitar la exploración visual de registros electrónicos de salud en pacientes cardiovasculares en UCI.
- Proporcionar visualizaciones automáticas y recomendadas de signos vitales, tratamientos y evolución clínica sin requerir instrucciones explícitas del usuario.
- Permitir a los médicos e investigadores alternar entre interacciones gráficas y programación en notebooks, incrementando la adaptabilidad del análisis clínico.
- Implementar mecanismos de perfilado continuo de datos clínicos que generen resúmenes visuales interactivos en tiempo real, permitiendo detectar patrones críticos o anomalías que puedan indicar riesgo de reingreso o complicaciones

Data

Columna	Descripción	Tipo	Naturaleza	Límites	Unidad de	% de datos
subject_id	Identificador único y anonimizado del paciente. Permite rastrear registros individuales a lo largo del tiempo sin revelar su identidad.	int / str	Discreto, categórico	1000 – 1499	*	0%
date	Fecha en la que se registraron los signos vitales o exámenes clínicos. Formato: YYYY-MM- DD.	fecha	Discreto temporal (2,191 fechas únicas)	2001-03-31 – 2007-03-29	*	0%
time	Hora del día en que se tomó la muestra o se midió el dato clínico.	hora	Discreto temporal (1,440 valores	00:00:00 – 23:59:00	*	0%
age	Edad del paciente al momento del registro.	int	Discreto (puede tratarse como	19 – 89	años	0%
gender	Sexo biológico del paciente.	str / categórico	Nominal (2	M, F	*	0%
temperature	Temperatura corporal del paciente. Indicador de infecciones o respuesta inflamatoria.	float	Continuo	36.0 – 40.0	°C	0%
abp_systolic	Presión arterial sistólica	float	Continuo	70.0 – 170.0	mmHg	0%
abp_diastolic	Presión arterial diastólica	float	Continuo	30.0 – 80.0	mmHg	0%
abp_mean	Presión arterial media, muy importante en UCI para evaluar perfusión.	float	Continuo	43.4 – 110.0	mmHg	0%

Columna	Descripción	Tipo	Naturaleza	Límites	Unidad de	% de datos
heart_rate	Frecuencia cardíaca en latidos por minuto.	float	Continuo	50.0 – 157.0	bpm (latidos por minuto)	0%
oxygen_saturatio n	Saturación de oxígeno en sangre	float	Continuo	90.0 – 100.0	%	0%
weight	Peso del paciente	float	Continuo (con	-329.0 – 157.0	kg	0%
creatine	Nivel de creatinina en sangre	float	Continuo	0.40 - 2.60	mg/dL o µmol/L	0%
ph	Medida del pH sanguíneo. El valor normal está entre 7.35 y 7.45	float	Continuo	6.8 – 7.7	adimensional	0%
sodium	Concentración de sodio en sangre	float	Continuo	117.0 – 166.0	mEq/L	0%
potassium	Nivel de potasio en sangre	float	Continuo	2.0 – 8.8	mEq/L	0%
hematocrit	Porcentaje de volumen de glóbulos rojos en la sangre	float	Continuo	8.9 – 53.3	%	0%
bilirubin	Nivel de bilirrubina en sangre	float	Continuo	0.1 – 45.0	mg/dL o µmol/L	0%

Automatización del Análisis Exploratorio en Ciencia de Datos con AutoProfiler

INTEGRANTES

Roy Angel Choquehuanca Anconeyra