# **Predicting Survival Status of Pre-Paid SIM Card Users in Telecommunication Industry**

By: Vincent Adhi Handara

### Introduction

Objectives: To predict survival status for all PREPAID subscribers <u>after</u> 90 days gap by analyzing behavior usage during <u>inital</u> 14 days after <u>user real</u> <u>activation date</u>



### **Stratified Sampling Method**



### **Feature Engineering**

| Primary Variables                |
|----------------------------------|
| Days with Event (Voice/SMS/GPRS) |
| Number of Calls/SMS              |
| Minutes Usage                    |
| KB GPRS Usage                    |
| ARPU (Revenue)                   |
| Reload Amount                    |
| 20 more Variables                |

# Feature Engineered Variables (Voice) Initial 7 days of Voice Duration Last 7 days of Voice Duration Voice Duration Ratio b/w initial 7 days and overall 14 days Voice Revenue per Minutes Usage Days with Voice Ratio b/w initial 7 days and overall 14 days

### **Predictive Modeling Flowchart**



### **Normalization through BoxCox Transformation**

$$y_i^{(\lambda)} = egin{cases} rac{y_i^{\lambda} - 1}{\lambda} & ext{if } \lambda 
eq 0, \ \ln \left( y_i 
ight) & ext{if } \lambda = 0, \end{cases}$$



### Finding Important Variables (Boruta Package in R)



### **Removing Multicollinearity (Correlation > 0.7)**

## **Descendingly Sorted by Important Value Score**



|    | X1  | X2  | Х3  | X4   | X5   |  |
|----|-----|-----|-----|------|------|--|
| X1 | 1   | 0.5 | 0.8 | 0.4  | 0.1  |  |
| X2 | 0.5 | 1   | 0.6 | 0.3  | 0.2  |  |
| Х3 | 0.8 | 0.6 | 1   | 0.5  | 0.2  |  |
| X4 | 0.4 | 0.3 | 0.5 | 1    | 0.75 |  |
| X5 | 0.1 | 0.2 | 0.2 | 0.75 | 1    |  |

# **Logistic Regression Performance (ROC Curves and Confusion Matrix) on Testing Dataset**



| redicted Surviva<br>Status |     | No    | Yes   |
|----------------------------|-----|-------|-------|
| ted Si                     | No  | 90449 | 12832 |
| edict                      | Yes | 5523  | 11196 |
| Pr                         |     |       |       |

Accuracy

84.7%

Testing Subs = 120000

### **5 Fold Cross Validation**

| Iteration 1 | Test  | Train | Train | Train | Train |
|-------------|-------|-------|-------|-------|-------|
|             |       |       |       |       |       |
| Iteration 2 | Train | Test  | Train | Train | Train |
|             |       |       |       |       |       |
| Iteration 3 | Train | Train | Test  | Train | Train |
|             |       |       |       |       |       |
| Iteration 4 | Train | Train | Train | Test  | Train |
|             |       |       |       |       |       |
| Iteration 5 | Train | Train | Train | Train | Test  |

### **5 Fold Cross Validation**

| Cross Validati <b>3 ple</b> | Accuracy |
|-----------------------------|----------|
| 1                           | 84.60%   |
| 2                           | 84.50%   |
| 3                           | 84.60%   |
| 4                           | 84.40%   |
| 5                           | 84.80%   |

### **Gain Table for Testing Dataset - Logistic Regression**

| Testing | Vigintiles | Total_Subs | Survivor | Hit Rate | Contribution | Gains | Lift - Individual | ROI  |
|---------|------------|------------|----------|----------|--------------|-------|-------------------|------|
| 1       | 5          | 6,000      | 4,895    | 82%      | 20%          | 20%   | 407               | 4.07 |
| 2       | 10         | 6,000      | 4,272    | 71%      | 18%          | 38%   | 356               | 3.82 |
| 3       | 15         | 6,000      | 3,498    | 58%      | 15%          | 53%   | 291               | 3.51 |
| 4       | 20         | 6,000      | 2,642    | 44%      | 11%          | 64%   | 220               | 3.19 |
| 5       | 25         | 6,000      | 1,997    | 33%      | 8%           | 72%   | 166               | 2.88 |
| 6       | 30         | 6,000      | 1,437    | 24%      | 6%           | 78%   | 120               | 2.60 |
| 7       | 35         | 6,000      | 1,081    | 18%      | 4%           | 82%   | 90                | 2.36 |
| 8       | 40         | 6,000      | 841      | 14%      | 4%           | 86%   | 70                | 2.15 |
| 9       | 45         | 6,000      | 647      | 11%      | 3%           | 89%   | 54                | 1.97 |
| 10      | 50         | 6,000      | 590      | 10%      | 2%           | 91%   | 49                | 1.82 |
| 11      | 55         | 6,000      | 449      | 7%       | 2%           | 93%   | 37                | 1.69 |
| 12      | 60         | 6,000      | 353      | 6%       | 1%           | 94%   | 29                | 1.57 |
| 13      | 65         | 6,000      | 313      | 5%       | 1%           | 96%   | 26                | 1.47 |
| 14      | 70         | 6,000      | 276      | 5%       | 1%           | 97%   | 23                | 1.38 |
| 15      | 75         | 6,000      | 195      | 3%       | 1%           | 98%   | 16                | 1.30 |
| 16      | 80         | 6,000      | 156      | 3%       | 1%           | 98%   | 13                | 1.23 |
| 17      | 85         | 6,000      | 140      | 2%       | 1%           | 99%   | 12                | 1.16 |
| 18      | 90         | 6,000      | 96       | 2%       | 0%           | 99%   | 8                 | 1.10 |
| 19      | 95         | 6,000      | 96       | 2%       | 0%           | 100%  | 8                 | 1.05 |
| 20      | 100        | 6,000      | 54       | 1%       | 0%           | 100%  | 4                 | 1.00 |
|         |            | 120,000    | 24,028   | 20%      |              |       |                   |      |