Бахышов Вахид, 409 группа

Отчёт по задаче "Численное интегрирование 1d".

1 Задача 1.

результаты работы программы.

Задача 1. Реализуйте метод Симпсона и метод Гаусса в виде функции с прототипом

double RectangleMethod (double a, double b, double (*f)(double)); double SimpsonMethod (double a, double b, double (*f)(double)); double GaussMethod (double a, double b, double (*f)(double));

где f — указатель на подинтегральную функцию. Проверьте выполнение указанных оценок погрешности для $f(x)=x^n, n=0,1,2,3,5,9, a=1,b=1.1.$

Решение. Реализацию программы см в разделе 1d. Ниже приведены результаты вычислений, выполненных в среде Wolfram Mathematica, и

Выражение	Wolfram Mathematica	Формула Симсона	Формула Гаусса
$\int_{1}^{1.1} dx$	0.1	0.1	0.1
$\int_{1}^{1.1} x dx$	0.105	0.105	0.105
$\int_{1}^{1.1} x^2 dx$	0.1103333333333333	0.1103333333333333	0.11025
$\int_{1}^{1.1} x^3 dx$	0.116025	0.116025	0.1157625
$\int_{1}^{1.1} x^5 dx$	0.1285935	0.1285939375	0.12762815625
$\int_{1}^{1.1} x^9 dx$	0.159374246	0.159387675915235	0.155132821597852

2 Задача 2.

Задача 2. Реализуйте составную квадратуру Симпсона и квадратуру Гаусса в виде функции

double CompositeRectangleMethod(double a, double b, double(*f)(double), int N); double CompositeSimpsonQuadrature(double a, double b, double(*f)(double), int N); double CompositeGaussianQuadrature(double a, double b, double(*f)(double), int N); где N — число разбиений отрезка интегрирования [a,b] на равные подотрезки. Выпишите явную асимптотику для погрешности составных квадратур Симпсона и Гаусса в форме $R_{N,n}^{[a,b]}(f) \approx C/N^p$. Сравните теорети-

$$\int_0^{\pi} \cos 100x dx = 0, \quad \int_0^1 \exp(-10x) dx \approx 10^{-1}, \quad \int_{-1}^1 \frac{dx}{\sqrt{1 - x^2}} = \pi.$$

ческие оценки с численными расчетами для следующих функций:

3 Метод квадратурных формул:

$$I^{[a,b]}(f) = \int_a^b f(x) \sim S_n^{[a,b]}(f) | = \sum_{i=1}^N c_i f(x_i)$$

4 Формула прямоугольников

$$S_1(f) = (b-a)f(\frac{a+b}{2})$$

Оценка погрешности:

для $f \in C^1[a,b]$: $R_1(f) = |\int_a^b f(x) - (b-a)f(\frac{a+b}{2})| \le ||f'||_{C[a,b]} \frac{(b-a)^2}{4}$ для $f \in C^2[a,b]$: $\tilde{R_1}(f) = |\int_a^b f(x) - (b-a)f(\frac{a+b}{2})| \le ||f'||_{C[a,b]} \frac{(b-a)^3}{24}$

Для составных квадратур:

для $f \in C^1[a,b]:$ $R_1^N(f) \leq ||f'||_{C[a,b]} \frac{(b-a)^2}{4 \cdot N} = \frac{C_1}{N}$ для $f \in C^2[a,b]:$ $\tilde{R}_1^N(f) \leq ||f'||_{C[a,b]} \frac{(b-a)^3}{24 \cdot N^2} = \frac{\tilde{C}_1}{N^2}$

5 Формула Симпсона (парабол)

$$S_3(f) = \frac{(b-a)}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b))$$

Оценка погрешности:

для $f \in C^3[a,b]$: $R_3(f) = ||f^{(3)}(x)|| \cdot \frac{(b-a)^4}{192}$ для $f \in C^4[a,b]$: $\tilde{R}_3(f) = ||f^{(4)}(x)|| \cdot \frac{(b-a)^5}{2880}$

Для составных квадратур:

для $f \in C^3[a,b]$ $R_3^N(f) \le |||f^{(3)}(x)|| \cdot \frac{(b-a)^4}{192 \cdot N^3} = \frac{C_3}{N^3}$ для $f \in C^4[a,b]$: $\tilde{R_3}^N(f) \le ||f^{(4)}(x)|| \cdot \frac{(b-a)^5}{2880 \cdot N^4} = \frac{\tilde{C_3}}{N^4}$

6 Формула Гаусса по 3 узлам

$$S_1(f)=rac{(b-a)}{18}(5f(x_-)+8f(x_0)+5f(x_+))$$
 где $x_0=rac{a+b}{2},x_\pm=rac{a+b}{2}\pmrac{b-a}{2}\cdot\sqrt{rac{3}{5}}$

Оценка погрешности:

$$R(f) \le ||f^{(6)}(x)|| \cdot \frac{(b-a)^7}{6! \cdot 2^{10}} = |f^{(6)}(x)|| \cdot \frac{(b-a)^7}{737280}$$
$$R^N(f) \le ||f^{(6)}(x)|| \cdot \frac{(b-a)^7}{737280 \cdot N^6} = \frac{C}{N^6}$$

7 Для интегралов с особенностью:

$$R=|I(f)-S(f)|=|\int_a^b f(x)-\int_a^\varepsilon f(x)\sim S^{[\varepsilon,b]}(f)|=|\int_\varepsilon^b f(x)-S^{[\varepsilon,b]}(f)|$$
 к примеру $\varepsilon=0,01,\ 0,0001$

Рис. 1: ошибки f(x) = 1/sqrt(x) на [0.010 , 1.000]

Рис. 2: показатель сходимости $f(x) = 1/\mathrm{sqrt}(x)$ на [0.010 , 1.000]

Рис. 3: ошибки $f(x) = 1/sqrt(1-x^2)$ на [-1.000, 1.000]

Рис. 4: показатель сходимости $f(x) = 1/sqrt(1-x^2)$ на [-1.000, 1.000]