Trabalho 1 - GABARITO

Exercício 1: (1 ponto) Converter para sistema decimal:

 $(101100101)_2 = 357$

Exercício 2: (1 ponto) Converter para sistema decimal:

 $(10001101,101)_2 = 141,625$

Exercício 3: (1 ponto) Converter para sistema binário

 $(327,125)_{10} = 101000111,001$

Exercício 4: (4 pontos) Determine a solução positiva da equação $f(x) = x^3 - x - 1 = 0$ no intervalo [-5, 5] com a tolerância e = 0,001 usando os métodos

- a) método da bisseção
- b) método falsa posição
- c) método de Newton

Os valores numéricos devem ser apresentados com a precisão de 4 dígitos depois do ponto decimal.

Compare os resultados. Os resultados devem ser apresentadas nas tabelas no formato apresentado a seguir.

Tabela A - Método da bisseção

Número de iterações estipulado	9,97
Número de iterações efetuadas	10 (ou 9)
Intervalo considerado	[1;2]
Resultado final x'	1,3248
f(x')	0,000349908992

N de iteração	Х	Tolerância alcançada
1.	1,5000	0,50000
2.	1,2500	0,25000
3.	1,3750	0,12500
4.	1,3125	0,06250
5.	1,3438	0,03125
6.	1,3282	0,01565
7.	1,3204	0,00785
8.	1,3243	0,00390
9.	1,3263	0,00195
10.	1,3253	0,00100
11.	1,3248	0,00050

Tabela B – Método de falsa posição

Número de iterações efetuadas	9
Intervalo considerado	[1;2]
Resultado final x'	1,3246
f(x')	-0,000556897301478

N de iteração	X	Tolerância alcançada
1.	1,16667	0,5787
2.	1,25327	0,2848
3.	1,29339	0,1297
4.	1,31109	0,0574
5.	1,31887	0,0248
6.	1,32229	0,0103
7.	1,32356	0,0049
8.	1,32441	0,0013
9.	1,32459	0,0006

Tabela C – Método de Newton

f'(x)	3x²-1
f''(x)	6x
Número de iterações efetuadas	5
Valor inicial (x_0)	xi = 2
Resultado final x'	1,32472
f(x')	xi = 2: 4,657E-06

N de iteração	X	Tolerância alcançada
1.	1,545455	0,45455
2.	1,359615	0,18584
3.	1,325801	0,03381
4.	1,324719	0,00108
5.	1,324718	0,00000

Tabela D – Analise comparativa

	Bisseção	Falsa posição	Newton
Dados iniciais	[1;2]	[1;2]	xi = 2
x'	1,3248	1,3246	1,32472
f(x')	0,000349908992	-0,000556897301478	4,657E-06
Erro em x'	-0,000349908992 ou 0,00050	-0,000556897301478 ou 0,0006	-4,657E-06
Numero de iterações	10	9	5

Exercício 5: (3 pontos)

Determine a solução positiva da equação $f(x) = 5x^3 + 25 x^2 - 5x - 30 = 0$ no intervalo [-5, 5] usando o método de Newton para Zeros de Polinômios com a tolerância e = 0,004. Os valores numéricos devem ser apresentados com a precisão de 4 dígitos depois do ponto decimal.

Os resultados para todos os passos devem ser apresentadas nas tabelas no formato apresentado a seguir.

Passo 1		$x_i = 1,5$		
b3		b2	b1	b0 (P)
	5,0000	32,500	43,7500	35,6250
с3		c2	c1 (P')	
	5,0000	40,000	103,7500	
$x_{i+1} = 1,1566$			Erro = 0,3434	

Passo 2		x _i = 1,1566		
b3		b2	b1	b0 (P)
	5,0000	30,7831	30,6046	5,3981
сЗ		c2	c1 (P')	
	5,0000	36,5663	72,8981	
x _{i+1} = 1,0826			Erro = 0,0740	

Passo 3	x _i = 1,0826		
b3	b2	b1	b0 (P)
5,0000	30,4129	27,9243	0,2302
с3	c2	c1 (P')	
5,0000	35,8258	66,7084	

$x_{i+1} = 1,0791$		Erro = 0,0035	
--------------------	--	---------------	--

Resultado final:

x =	1,0791	P(x)=	0,0005
	_,	- ()	-1