CSEE-VS 算例-用户指南

CSEE-VS 算例是由中国电机工程学会(Chinese Society for Electrical Engineering)发布的新型电力系统标准算例,具体包括<u>电压崩溃场景的潮流计算文件 VC.dat 及其稳定计算文件 VC.swi、持续低电压场景的潮流计算文件 CLV.dat 及其对应稳定计算文件 CLV.swi,相关模型及数据均发表于《中国电机工程学报》(引文信息: 赵兵,徐式蕴,兰天楷,等. 新型电力系统标准算例(3): 电压稳定 CSEE-VS [J/OL]. 中国电机工程学报,1-13)。</u>

CSEE-VS 算例以 500kV 为主网架,总节点数为 66,其中 500kV 节点数为 20,交流线路数为 36,直流线路数为 1。该算例着重刻画了 500kV 主网以及直流逆变站、新能源场站附近 0.4kV~220kV 的交流升压网络,新能源出力占比超过 50%,较为全面地反映了机电暂态尺度下的电压崩溃、持续低电压等失稳特性,可作为高比例新能源场景下直流受端电网电压稳定分析的基础平台,节省科研人员在算例设计方面的精力投入,有利于不同成果的横向比较。

本用户指南旨在为读者提供一个详尽且易于理解的 CSEE-VS 算例操作手册,帮助大家轻松掌握算例的使用方法,从环境配置到潮流计算,再到暂态计算,以及仿真结果查看,每一步都进行了详细的解读。通过本指南,读者可以系统地学习如何利用 CSEE-VS 算例进行相关仿真。我们相信,这份指南将成为您学习和参考的宝贵资料,助您快速上手该算例,顺利展开仿真工作,并聚焦自己的研究需求,取得丰硕的成果。

目录

目录		1
	环境配置	
第二章	潮流计算	3
第三章	稳定计算	5
第四章	仿真结果分析	7

第一章 环境配置

1)本算例基于电力系统仿真软件(PSD-BPA)开发,打开 PSDEdit 仿真应用智能集成平台,点击界面左上方的【查看】,点击后弹出菜单栏,点击菜单栏中的【环境配置】。上述过程见图 1。

图 1 环境配置

2)点击菜单栏中的【环境配置】选项后,开始配置潮流计算分析程序 PFNT 和稳定计算程序 SWNT。点击【...】选择您电脑中二者程序文件.exe 对应的路径即可,如图 2 所示。

图 2 潮流和稳定计算程序配置

第二章 潮流计算

1)以电压崩溃场景为例,利用 PSDEdit 打开 VC.dat 文件。点击【执行潮流或稳定计算】进行潮流计算,如图 3 所示。

图 3 执行潮流计算

若需要修改算例的任意参数,可以选择对应卡片和对应参数位置进行修改,以满足仿真需求。以修改新能源场站 WT19-01 的有功功率为例,点击对应 B 卡,在界面左侧填写设定的有功功率值,即可完成修改,如图 4 所示。

2) 潮流计算后会自动弹出 PFO 文件,并将潮流结果存储在当前文件夹下的 BSE 文件,用于后续的稳定计算,如图 5 所示。该文件展示了潮流计算结果,可以从中分析当前算例的潮流收敛情况以及更多相关细节。

VC. PFO	本号: 4.6.5	发布日期:	2022-10-	-19 * *	* 潮流程序F	PSD-PF * *	*			ì	算时间: 20	24-04-0
直流节点	— <u>—</u>	京排的值── (kV)	— 初始值 (mw)	直 — 换 (kV)	流器节点	另一	侧直流节点	桥数	VDO (kV)			
DN-01 DN-02	210.0 800		800.0	500.0 B2 492.0 B1					547.871 514.001			
	210.0 800 199.0 0	.0 500.0 .0 0.0		500.0 B2 492.0 B1					547.871 514.001			
潮流方式名:	TEST I	程名: TEST300		* *	* 迭代收敛性	性 * * *				ì	算时间: 20	24-04-0
计算结果	欠 敛											
	88 节点					91 支路						
	88 节点 可区元可息 3 0 0 0 0 0 2	製工工具 製工工具 製工工具 工具 工具 工具 工具 工具 工具 工具 工具 工具 工具 工具 工具				4 —	带负荷调压 直流系统 理想调相机					
iteration	3 一 可 0 一 元 0 一 可 0 一 可 1 0 0 一 平 1	Q	IE ERROR S XFMRS	AREA		4 — 2 — 0 — VOLTAGE	直流系统 理想调相机 ———UNSO AUT	LVED	C SLN	STMENTS- BUS	MATRIX	
ITERATION	3 一可以		ie error 5	AREA		4 — 2 — 0 — VOLTAGE	直流系统 理想调相机 UNSO	LVED	C SLN	BUS	JACOBIAN MATRIX STORAGE	

图 5 潮流结果统计

第三章 稳定计算

1)利用 PSDEdit 打开 VC.swi 文件,如图 6 所示。通过 FLT 卡设置故障,算例默认故障为线路 B01-B11 在第 50 周波发生三相短路故障,故障位置为 25%处,故障持续时间为 7.8 周波。FF 卡可设置仿真步长和时长。B 卡可设置所需元件的变量输出。

图 6 设置故障

2) 首次点击【执行潮流或稳定计算】需要选择 BSE 文件的存储路径,如图 6 所示。选定路径后自动进行稳定计算,并在 SWI 文件的首行自动生成路径的指令,后续重复计算将无需反复选择 BSE 文件的存储路径,如图 7 所示。

图 7 选定路径

3)稳定计算过程中会自动弹出稳定曲线,如图 8 所示。图中展现了仿真过 程中最大发电机功角差、最低母线电压和最低母线频率等电气量的变化,初步观 测当前故障下系统的稳定情况。

图 8 稳定曲线

4) 稳定计算过程结束后,自动弹出 VC.OUT 文件,如图 9 所示。该文件中 详细描述了暂态过程中系统的动态变化,例如故障发生后新能源机组的低电压穿 越状态、切机和脱网容量等详细情况。

图9OUT 提示

第四章 仿真结果分析

1)稳定计算过程结束后,可点击【多曲线比较程序】查看任意元件的动态变化曲线,该模块记为 Mychart。在 Mychart 界面下,点击所需元件的曲线,相关变量会自动绘制于界面右侧的折线图中,以方便进行相关分析,如图 10 所示。同时,当前文件夹下会生成 SWX 文件,该文件存储了仿真过程中的全部变量。

图 10 多曲线比较

2) 若需要将数据导出进行后续的研究,在 Mychart 界面下点击【导出】,选择将仿真数据导出为数据/图片/文档等格式,选择后点击【导出文件】,相应文件则会输出至当前文件夹下,如图 11 所示。

图 11 数据导出