STEP 1: create visualization for SO2

```
import matplotlib.pyplot as plt
import pandas as pd
# Sample data (replace this with your actual SO2 dataset)
data = {
    'Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'],
    'SO2_Level': [15, 18, 12, 14, 16] # Replace with your SO2 data
}
# Create a DataFrame from the data
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date']) # Convert Date column to datetime format
# Plot the SO2 levels
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['SO2_Level'], marker='o', linestyle='-', color='b')
plt.title('SO2 Levels Over Time')
plt.xlabel('Date')
plt.ylabel('SO2 Level')
plt.grid(True)
# Format the x-axis to display dates nicely
plt.xticks(rotation=45)
# Show the plot
plt.tight_layout()
plt.show()
```


STEP 2: create visualization for NO2

```
import matplotlib.pyplot as plt
import pandas as pd

# Sample data (replace this with your actual NO2 dataset)
data = {
    'Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'],
    'NO2_Level': [20, 22, 18, 24, 19] # Replace with your NO2 data
}
```

```
# Create a DataFrame from the data
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date'])  # Convert Date column to datetime format

# Plot the NO2 levels
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['NO2_Level'], marker='o', linestyle='-', color='g')
plt.title('NO2 Levels Over Time')
plt.xlabel('Date')
plt.ylabel('Date')
plt.ylabel('NO2 Level')
plt.grid(True)

# Format the x-axis to display dates nicely
plt.xticks(rotation=45)

# Show the plot
plt.tight_layout()
plt.show()
```


STEP 3: create visualization for RSPM/PM10

```
import matplotlib.pyplot as plt

# Sample data (replace this with your actual RSPM/PM10 dataset)
categories = ['City A', 'City B', 'City C', 'City D']
rspm_pm10_levels = [45, 38, 52, 29]  # Replace with your RSPM/PM10 data

# Create a bar chart to visualize RSPM/PM10 levels
plt.figure(figsize=(10, 6))
plt.bar(categories, rspm_pm10_levels, color='skyblue')
plt.title('RSPM/PM10 Levels by City/Area')
plt.xlabel('City/Area')
plt.ylabel('RSPM/PM10 Level (µg/m³)')

# Add data labels above each bar
for i, level in enumerate(rspm_pm10_levels):
    plt.text(i, level + 1, str(level), ha='center', va='bottom')

# Show the plot
plt.tight_layout()
```

plt.show()


```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

STEP 4: grouping data

```
import pandas as pd
```

```
# Load your data into a Pandas DataFrame (replace 'data.csv' with your data file)
df = pd.read_csv('/content/drive/MyDrive/Excel_ 4.csv')
```

Group the data by the desired column (e.g., 'City' or 'Monitoring Station')
grouped_data = df.groupby('CITIES')

STEP 5: calculating average

```
# Calculate the average SO2, NO2, and RSPM/PM10 levels for each group
averages = grouped_data[['SO2', 'NO2', 'RSPM/PM10']].mean()
```

Display the calculated averages
print(averages)

	S02	NO2	RSPM/PM10
CITIES			
Chennai	9.433333	23.036667	145.640000
Dindigul	22.880000	23.753333	129.780000
Erode	18.900000	27.065000	165.580000
Kanniyakumari	27.790000	34.330000	148.680000
Kodaikanal	12.130000	38.050000	171.910000
Madurai	13.897500	26.727500	156.572500
Salem	11.100000	30.060000	160.976667
Thanjavur	3.650000	30.790000	145.180000
Vellore	16.726667	23.116667	141.240000
madurai	10.220000	30.910000	114.270000
salem	30.990000	29.050000	128.150000

Calculate the average SO2, NO2, and RSPM/PM10 levels for each group averages = grouped_data[['RSPM/PM10']].mean()

Display the calculated averages
print(averages)

	RSPM/PM10
CITIES	
Chennai	145.640000
Dindigul	129.780000
Erode	165.580000
Kanniyakumari	148.680000
Kodaikanal	171.910000
Madurai	156.572500
Salem	160.976667
Thanjavur	145.180000
Vellore	141.240000
madurai	114.270000
salem	128.150000