

Representation Theory

Author: Hui Sun **Date:** October 9, 2023

Contents

| 0.1 | Introduction . |
 | | 1 |
|-----|----------------|------|------|------|------|------|------|------|------|------|--|---|

What is representation theory

0.1 Introduction

We would like to represent abstract algebraic concepts using linear objects. We will start with an example of a specific type of representation.

Definition 0.1 (Representation on a vector space)

A representation π of a group G on a \mathbb{K} -vector space V is a mapping:

$$\pi:G\to Aut(V)=GL(V)$$

It assigns every element in G with an invertible linear map on V.

We will categorize some interesting features of a representation.

Definition 0.2 (faithful representation)

A representation is called faithful if it is injective, i.e., for $g_1, g_2 \in G$, we have

$$\pi(g_1) = \pi(g_2)$$
 implies $g_1 = g_2$

Remark This means that there is "no loss."

Definition 0.3 (Trivial representation)

The trivial representation of G on V is such that

$$\pi(q) = I$$

Or $\pi(g)v = v$ for all $v \in V$.

Example 0.1 For the \mathbb{R} -vector space \mathbb{C}^4 , we have a faithful representation of a group order 8, with each g sent to each one of the following linear maps:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Now we introduce "equivalent" representations.

Definition 0.4 (Intertwiner)

For two representations $(\pi_1, V_1), (\pi_2, V_2)$ of G, a linear isomorphism $\phi: V_1 \to V_2$ is called an Intertwiner if it "intertwines" the action of G:

$$\phi(\pi_1(g)v) = \pi_2(g)(\phi(v))$$

Remark We can think of ϕ as the isomorphism between V_1 and V_2 such that the following diagram commutes:

$$V_1 \xrightarrow{\pi_1(g)} V_1$$

$$\downarrow^{\phi} \qquad \downarrow^{\phi}$$

$$V_2 \xrightarrow{\phi_2(g)} V_2$$

Now we find the building blocks of representations: invariant subspaces, and irreducible representations.

Definition 0.5 (Invariant subspaces

Let (π, V) be a representation of G, and let $K \subset V$, then K is called a G-invariant subspace if for all $w \in W$,

$$\pi(g)w \in W$$
, for all $g \in G$

Definition 0.6 (Irreducible representations

A representation (π, V) of G is called irreducible if it contains no proper G-invariant subspaces. (And is call totally reducible if it can be written as a direct sum of irreducible subspaces).