Proiect FC

Codul Hamming^{[1][2]}

Cuprins

- 1. Specificatii
- 2. Referinte interne
- 3. Referinte externe
- 4. Testbench public

Implementation

- 1. [SPEC] Numele modulului va fi ECC
- 2. [SPEC] Modulul va avea următoarele porturi:
 - 2.1. data_in intare 32 de biţi
 - 2.2. data_out iesire 32 de biţi
 - 2.3. err_2_bit iesire 1 bit
- 3. [SPEC] În cazul în care un singur bit este afectat de eroare, acesta va trebui corectat.
 - 3.1. Ieșirea data_out va avea valoarea intrării, corectata.
 - 3.2. Iesirea err_2_bit va fi 0
- 4. [SPEC] În cazul în care 2 biți sunt afectați de eroare, aceștia nu vor fi corect
 - 4.1. Iesirea data out va avea valoarea intrării, data in
 - 4.2. Iesirea err_2_bit va fi 1
- 5. [SPEC] În cazul în care niciun bit nu este afectat, nu se va face nimic.
 - 5.1. Ieșirea data_out va avea valoarea intrării, data_in
 - 5.2. Iesirea err_2_bit va fi 0
- 6. [INFO] Nu vor exista cazuri în care mai mult de 2 biți sunt afectați de eroare
- 7. [INFO] Pentru o vizualizare mai buna, vom considera biții asezati ca în tabelul următor, unde numerele din celula reprezinta pozitia bitilor in intrarea data_in:

7.1.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

8. [SPEC] Bitul de pe poziția 0 va reprezenta bitul de paritate peste toți biții din data_in:8.1.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

9. [SPEC] Bitul de pe poziția 1 va reprezenta bitul de paritate peste toți biții colorati cu albastru din tabelul de mai jos:

9.1.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

10. [SPEC] Bitul de pe poziția 2 va reprezenta bitul de paritate peste toți biții colorati cu albastru din tabelul de mai jos:

10.1.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

11. [SPEC] Bitul de pe poziția 4 va reprezenta bitul de paritate peste toți biții colorati cu albastru din tabelul de mai jos:

11.1.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

12. [SPEC] Bitul de pe poziția 8 va reprezenta bitul de paritate peste toți biții colorati cu albastru din tabelul de mai jos:

12.1.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

13. [SPEC] Bitul de pe poziția 16 va reprezenta bitul de paritate peste toți biții colorati cu albastru din tabelul de mai jos:

13.1.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

Referinte interne

Referinte externe

[1] 3Blue1Brown, Hamming codes, h
w to ov
rco
e n
ise.
https://www.youtube.com/watch?v=X8jsijhllIA

[2] 3Blue1Brown, Hamming codes part 2, the elegance of it all, https://www.youtube.com/watch?v=b3NxrZOu_CE

Testbench public

https://drive.google.com/drive/folders/1Mj7Nq4T2N17DTDR07c2Divt_cFyQM2C?usp=sharing

4