UNIVERSITY OF LILLE 1 DOCTORAL SCHOOL OF ENGINEERING SCIENCE

PHD THESIS

to obtain the title of

PhD of Science

of the University of Lille 1

Specialty: Computer Science

Defended by Olivier COMAS

Real-time Soft Tissue Modelling on GPU for Medical Simulation

Thesis Advisor: Stéphane COTIN

prepared at

INRIA Lille, SHAMAN Team and CSIRO ICT Brisbane, EAHRC

DRAFT - Wed $14^{\rm th}$ of July 2010 at 15:38

Jury:

Reviewers: Bernard - INRIA (Shaman)

Bernard - INRIA (Shaman)

Advisor: Stéphane COTIN - INRIA (Shaman)
President: Bernard - INRIA (Shaman)
Examinators: Bernard - INRIA (Shaman)

Bernard - INRIA (Shaman)
Bernard - INRIA (Shaman)

Contents

C	Contents				
Ι	\mathbf{Int}	roduction	1		
1	Me	dical simulation	3		
	1.1	General context and goal: medical training, patient-specific planning and per-operative guidance	3		
	1.2	Challenges (trade-off between accuracy and real-time)	3		
2	One	e key point in medical simulation: soft-tissue modelling	5		
	2.1	Necessary background in continuum mechanics	5		
		2.1.1 Deformation tensor and strain tensor	5		
		2.1.2 Stress and constitutive laws	5		
	2.2	Tissue characterisation	5		
		anisotropic)	5		
		2.2.2 Measure/estimation of model parameters	5		
3	Main principles of Finite Element Method (or how to solve equa-				
	tion	ns of continuum mechanics from previous section)	7		
	3.1	Discretisation	7		
	3.2	Derivation of element equations	7		
	3.3	Assembly of element equations	7		
	3.4	Solution of global problem	7		
II	So	olid organs modelling	9		
4	Sta	te of art: FEM	11		
5	Lin	${ m ear}$ not accurate $=>$ Non-linear FEM $=>$ Introduction of	f		
	TLI	$\mathbf{E}\mathbf{D}$	13		
	5.1	Differences with classic FEM and reasons of its efficiency	13		
	5.2	Visco-elasticity and anisotropy added (MICCAI 2008; MedIA 2009) .	13		
6	GP	U implementation of TLED	15		
	6.1	What is GPGPU	15		
	6.2	Re-formulation of the algorithm for its Cg implementation	15		
	6.3	CUDA implementation/optimisations (ISBMS 2008a)	15		

ii Contents

7	Implementation in SOFA 7.1 Presentation of SOFA project and architecture	17 17 17		
II	Hollow organs modelling	19		
8	State of art: hollow structures	21		
	8.1 Non-physic approaches (computer graphics stuff)	21 21		
9	Colonoscopy simulator project	23		
	9.1 Project introduction	23		
	9.2 $$ Mass-spring model for colon implemented on GPU (ISBMS 2008b) $$.	23		
10	10 More accurate: a co-rotational triangular shell model (ISBMS 2010)			
	10.1 Model description	25		
	10.2 Validation	25		
	10.3 Application to implant deployment simulation in cataract surgery	25		
11 'Shell meshing' technique (MICCAI 2010)				
	11.1 State of art: reconstruction/simplification	27 27		
	11.2 Our method	27		
12	12 Applications to medical simulation			
	12.1 Nice medical stuff to show	29		
	12.2 Interaction solid/hollow organs	29		
$\mathbf{I} \mathbf{V}$	Conclusion	31		
Re	References			

Part I

Introduction

Ot gift

Medical simulation

- 1.1 General context and goal: medical training, patientspecific planning and per-operative guidance
- 1.2 Challenges (trade-off between accuracy and real-time)

Orall Jersion

One key point in medical simulation: soft-tissue modelling

- 2.1 Necessary background in continuum mechanics
- 2.1.1 Deformation tensor and strain tensor
- 2.1.2 Stress and constitutive laws
- 2.2 Tissue characterisation
- 2.2.1 Material models for organs (non-linear, visco-elastic and anisotropic)
- 2.2.2 Measure/estimation of model parameters

Main principles of Finite Element Method (or how to solve equations of continuum mechanics from previous section)

- 3.1 Discretisation
- 3.2 Derivation of element equations
- 3.3 Assembly of element equations
- 3.4 Solution of global problem

Part II

Solid organs modelling

State of art: FEM

Orall Jersjoin

$\begin{array}{c} {\rm Linear~not~accurate} => \\ {\rm Non\text{-}linear~FEM} => {\rm Introduction} \\ {\rm of~TLED} \end{array}$

- 5.1 Differences with classic FEM and reasons of its efficiency
- 5.2 Visco-elasticity and anisotropy added (MICCAI 2008; MedIA 2009)

Ordit Jersjon

GPU implementation of TLED

- 6.1 What is GPGPU
- 6.2 Re-formulation of the algorithm for its Cg implementation
- 6.3 CUDA implementation/optimisations (ISBMS 2008a)

Orall Jersion

Implementation in SOFA

- 7.1 Presentation of SOFA project and architecture
- 7.2 Implementation in SOFA and TLED released in open-source

Orall Jersion

Part III

Hollow organs modelling

State of art: hollow structures

- 8.1 Non-physic approaches (computer graphics stuff)
- 8.2 Physically accurate approches (plates/shells)

Orall Jersion

Colonoscopy simulator project

- 9.1 Project introduction
- 9.2 Mass-spring model for colon implemented on GPU (ISBMS 2008b)

Ordit Jerejon

More accurate: a co-rotational triangular shell model (ISBMS 2010)

- 10.1 Model description
- 10.2 Validation
- 10.3 Application to implant deployment simulation in cataract surgery

Orall Jersion

'Shell meshing' technique (MICCAI 2010)

- 11.1 State of art: reconstruction/simplification
- 11.2 Our method

Orall Jersjoil

Applications to medical simulation

- 12.1 Nice medical stuff to show
- 12.2 Interaction solid/hollow organs

Orak Jersjon

Part IV

Conclusion

Ordin

References

Orall Jerejoin