

Va32Ta2_2

Ver. 0.1

March 2003

Va32Ta2 2 2 General

1 General

Description:

32 channel low-noise/low power high dynamic range charge sensitive fast triggering circuit of the VATA family, with simultaneous sample-and-hold and calibration facilities.

For the rest of the this text, dummy shaper is referred to as reference shaper.

The preamplifier-shaper subcircuit provides a multiplexed current and voltage readout with a global 5-bit DAC trimmed reference.

The chip includes for each channel a fast CR-RC shaper followed by a level-sensitive discriminator. The trigger signals from each channel are wire-or'ed together onto one common trigger output. To reduce threshold-spread, this version has 4-bit trim-DACs on each discriminator and an additional global threshold

5-bit trim DAC.

All biases are internally generated with each being optionally adjustable externally from corresponding overriding pads.

It's possible to test a channel while the rest of the channels are performing direct measurement.

2 Physical

• Process: 0.8 μm N-well CMOS, double-poly, double metal.

• Die size: 6300 μm x 3310 μm (including scribe)

Thickness: ~ 600 μm

• Input/ Output Single row.

bonding pads: Pad size: 50 µm x 200 µm

Pad pitch: 100 μm

• Output, control Single row.

and power pads: Pad size: 90 µm x 90 µm

Pad pitch: 140 µm

Page 2 of 20 Ideas ASA

Electrical Va32Ta2 2 2

3 Electrical

To be confirmed by measurements.

Power rails: Vdd = +2 V, Vss = -2 V

Each with separate connections for analog (avdd and avss) and

digital sections (dvdd, dvss) of the chip.

Back contact: metalized, connect to avss (-2V)

Current draw: dvdd 2.88 mA (Quiescent, dvss -2.88 mA typical values) avdd 500 μA pre bias 10.84 mA -28.38 mA avss 500 μA pre bias 500 μA pre bias 17.54 mA gnd

obuf_bi: 1 mA
(Ibuf and obuf_bi active only during mux readout)

Peaking time: Nominal: Slow shaper: 2µs

Fast shaper: 75ns

Power dissipation: Quiescent: 96 mW (3 mW/channel)

(Typical values)

ESD Protection: Inputs: diode

Control:

 $\sim 600 \Omega$ series resistor and protection diodes to Vdd and Vss,

except for the following signals: *cal, outp, outm, v outp, vthr.*

Input stage: Input device: PMOS referenced to gnd

Signal input potential: \sim -1.2 V to -1.3 V

Gain: 0.8 mV/fC and 0.8 μA/fC for multiplexed output

Linear range: \pm 139 MIPs (can handle both signal polarities)

(1 MIP = 3.6 fC)

Ideas ASA Page 3 of 20

Va32Ta2 2 2 Electrical

Noise (ENC): Typical values: (to be confirmed through measurement)

 $710 + 3 / pF e^{-} @ 2 \mu s$

Readout: The analog readout is controlled via 32-bit (output) shift

register.

Analog outputs (outp, outm) of two or more chips can be connected in parallel to drive the inputs of an external, differential, transimpedance amplifier. An additional analog

voltage output (vout p) is available.

The triggering section's 32-channel wire-or'ed output circuitry generates a chip-global trigger signal on t_a and t_b , and width-adjustable through the twbi analog control signal.

Calibration/test: Voltage step applied via external 1.8 pF capacitor to the cal-

input. 2 mV step represents 1 MIP (=22400 e⁻ or 3.6 fC). Some additional noise has to be taken into account in test mode. Calibration signal can be given to one channel in a given chip at any time. The channel is selected via a 32-bit

(input) shift register.

Page 4 of 20 Ideas ASA

Pad description Va32Ta2_2_2

4 Pad description

4.1 List of pads

The output, control and power pads are listed clockwise from upper left corner (see chip plot). Positive current direction into the chip.

Pad name	Type	Description	Nominal value
Gnd	p	signal ground	0 V
Dvdd	p	digital vdd	+2 V
Dvss	p	digital vss	-2 V
hold	di	used to hold analog data, see fig.1	Logical
dummy (holdb)	di	*)	Logical
dreset	di	reset of digital part	Logical
dummy (dresetb)	di	*)	Logical
Shift_in_b	di	start pulse for read-out	Logical
dummy (ck)	di	*)	Logical
Ckb	di	clock for read-out register, see fig.1	Logical
Shift_out_b	do	Signalling end of read-out. Can be	Logical
		used as shift_in_b for next chip.	
test_on	di	Turns chip into test-mode	Logical
Refbi2	ai	Bias for Vref-DAC	-365 mV
			160μΑ
Avdd	р	Anaolg vdd	+2 V
Avss	p	Analog vss (+ chip backplane)	-2 V
Dgnd	p	Ground	0 V
Sbi	ai	Bias current for fast shaper-	-611 mV
		amplifiers.	70 µA
Dvss	p	digital vss	-2 V
Dvdd	p	digital vdd	+2 V
Twbi	ai	Bias adjust for trigger width	529 mV
		Default: approx. 100 ns	32 μΑ
Та	ao	Trigger out	current
Tb	ao	Trigger out inverted	current
regout	do	Output of the disable register	Logical
RegIn	di	Input to the disable register	Logical
ClkIn	di	Clock Input for disable register	Logical
Obi	ai	Bias current to Discriminator	-876 mV
			144 μΑ
Vthr	ai	Discriminator threshold	± 50mV (e.g)
Refbi	ai	Bias for trim-DACs	-816 mV
			16 μΑ
Refbi3	ai	Bias for global threshold DAC	-816 mV
			32 μA

Ideas ASA Page 5 of 20

Va32Ta2 2 2 Pad description

Vrc	ai	Control voltage for High-pass filter resistor (NMOS) in front of Discrim.	1.4 V
Vfsf	ai	Control voltage for feedback resistor (NMOS) in fast shaper	850 mV
Avdd	p	Anaolg vdd	+2 V
Avss	p	Analog vss (+ chip backplane)	-2 V
Gnd	p	Ground	0 V
V_outp	Ao	Output from analog output voltage buffer	Voltage
Obuf_bi	ai	Bias current for voltage output buffer	-502 mV 1 mA
Folbias	ai	Bias current for preamplifier buffer	891 mV 90 μA
Vfpp	ai	Bias voltage for vfp, positive charges	-1.85 V
Avdd	р	Anaolg vdd	+2 V
Pre_bias	ai	Bias current for pre-amplifiers.	-438 mV
Sha_bias	ai	Bias current for shaper-amplifiers.	500 μA -620 mV
Vref	ao	Internally generated reference voltage for the current output buffer.	22 μA -836 mV
Ibuf	ai	Bias-current for output-buffer.	440 mV 220 μA
Outm	ao	Negative output signal (current)	•
Outp	ao	Positive output signal (current)	
Vfs	ai	Control voltage to feedback	Pos. Q:
		resistance in shaper-amplifier	-550mV
			Neg.Q:
			-450mV
Vfp	ai	Control voltage to feedback	-220 mV
		resistace in pre-amplifier, negative	
		charges. For pos. Q see vfpp.	
Cal	ai	Test input signal	1 MIP
Gnd	p	signal ground	0 V
Avss	p	Analog vss (+ chip backplane)	-2 V

p = power, di = digital in, do = digital out, ai = analog in, ao = analog out

Table 1: Listing of input and output pads.

Page 6 of 20 Ideas ASA

^{*)} Unused pads which can be used to connect complementary signals to the effective ones in order to minimise clock-feedthrough. These 'dummy' signals are recommended for high performance.

Pad description Va32Ta2 2 2

4.2 Chip plot

Fig. 1 VA32TA2 chip plot (Chip size: 6300μm * 3310 μm)

Ideas ASA Page 7 of 20

Va32Ta2 2 2 Pad description

Fig. 2 Chip geometry & pad placement (Not to scale - all dimensions in μm. Please note that the referred co-ordinates are layout co-ordinates. Add 50 μm -100 μm on each side for scribe/cutting tolerances).

Page 8 of 20 Ideas ASA

Functional Description Va32Ta2 2 2

5 Functional Description

As shown in Fig. 3 the chip consists of 32 identical parallel charge sensitive amplifiers.

The output of all amplifiers enters corresponding inputs of a 32 channel multiplexer. The switches in the multiplexer are controlled by a bit-register that runs in parallel. The output of the mux goes directly out of the chip via the output current buffer (signal = 'outp' - 'outm') and via an additional voltage buffer (signal = 'v_outp'). Only one of the switches in the mux can be "on " at a time. That is, one amplifier (channel) at a time can be seen on the output of the chip. The bit in the register ripples in sequence from the top- to the bottom- channel by clocking 'ckb'. The clock can be stopped at any point, which will maintain the connection between the current channel and the output, which remains enabled.

Fig 3. VA32TA2 Architecture, VA-part

Ideas ASA Page 9 of 20

The concept of the Ta-part is shown in Fig.4 and 5, The TA and VA parts share the same preamplifier, which is located in the VA-part. The inputs of TA are directly coupled to corresponding outputs of these preamplifiers.

Fig 4. The VA-TA principle

Page 10 of 20 Ideas ASA

Functional Description Va32Ta2_2_2

Fig 5. VA32TA2 Architecture, VA and TA parts

Ideas ASA Page 11 of 20

As shown in Fig.6 the TA part consists of 32 identical parallel channels. Each channel includes a fast CR-RC 75ns shaper which again is followed by a level-sensitive discriminator. The discriminator is preceded by a High-Pass filter (not shown) with a very low cut-off frequency in order to reduce offset-spread across chip. Each discriminator has individual offset adjustment that can be programmed through 4-bit DACs located on the negative input of each discriminator. An additional degree of freedom is added by a 5-bit trim DAC to adjust the global threshold voltage(vthr).

Fig 6. TA Architecture

Following the discriminator, which threshold is externally adjustable (*vthr*), is a circuitry which makes it possible to select between positive and negative input signals.

Page 12 of 20 Ideas ASA

Functional Description Va32Ta2 2 2

Following this circuitry is an edge-trigged monostable flip-flop that gives a fixed pulse-width which is externally adjustable (*trigWbias*). At the end of the channel is a pull-down transistor that serves as one input to all 32 channels wire-or circuitry.

Whenever a signal in any of the channels is rising above the discriminator threshold the wire-or'ed output will cause a chip-global trigger output on \mathbf{t}_a end \mathbf{t}_b .

5.1 Control register

The VA32TA2 chip contains a 175 bits long shift register which can be loaded serially using *RegIn* (serial data) and *ClkIn* (clock). A more thorough description of the contents of the register is found below and in figure 7.

Figure 7: The sequence of the serial shift register mask. The sequence numbers are shown at the top of the boxes. Bit 0 is the first bit to be loaded. The channel numbers are indicated inside the boxes for the channel disable register and the channel threshold DAC register.

The following description starts with the last bit pushed into the register.

The serial shift register is shown in figure 7. The first 5 bits in the control register options or functions as shown in Table 2:

State logic)	(pos.	Calc	Nside	Vfpc	vfsc	sel
High		Floating cal.	Positive input	Negative input	Positive input	Negative
		line	signal	signal	signal	input signal
Low		Cal. line at	Negative input	Positive input	Negative input	Positive
		AVDD	signal	signal	signal	input signal

Table 2: Control settings for polarity and calibration input line.

Ideas ASA Page 13 of 20

The next 5 bits are reserved for trimming the reference shaper output voltage.

The next 32 bits inhibit triggering when set to "1", making possible selective trigger reading.

Next, a bit frame of 32 x 4-bits allows DAC trimming of the threshold voltage locally in each channel.

The last 5 bits in the register are applied to the 5-bit threshold DAC to tune the discriminator threshold globally. The correspondence between DAC-bits and nominal values, and the effect of the programming of the DACs are shown in table 3 to 5.

The first of the bits to be loaded into these DACs represents the MSB and will be referred to as bit1.

Page 14 of 20 Ideas ASA

Functional Description Va32Ta2_2_2

Reference shaper DAC:

This 5-bit DAC allows adjustment of the reference voltage of the reference shaper (dummy shaper).

Bit1	Bit2	Bit3	Bit4	Bit5	Reference offset(mV)
0	0	0	0	0	None
0	0	0	0	1	- 10
0	0	0	1	0	- 20
0	0	0	1	1	- 30
0	0	1	0	0	- 40
0	0	1	0	1	- 50
0	0	1	1	0	- 60
0	0	1	1	1	- 70
0	1	0	0	0	- 80
0	1	0	0	1	- 90
0	1	0	1	0	- 100
0	1	0	1	1	- 110
0	1	1	0	0	- 120
0	1	1	0	1	- 130
0	1	1	1	0	- 140
0	1	1	1	1	- 150
1	0	0	0	0	None
1	0	0	0	1	+ 10
1	0	0	1	0	+ 20
1	0	0	1	1	+ 30
1	0	1	0	0	+ 40
1	0	1	0	1	+ 50
1	0	1	1	0	+ 60
1	0	1	1	1	+ 70
1	1	0	0	0	+ 80
1	1	0	0	1	+ 90
1	1	0	1	0	+ 100
1	1	0	1	1	+ 110
1	1	1	0	0	+ 120
1	1	1	0	1	+ 130
1	1	1	1	0	+ 140
1	1	1	1	1	+ 150

Table 3: The correspondance between the DAC bits and the resulting reference shaper voltage.

Ideas ASA Page 15 of 20

Threshold DACs:

Table 4 applies to the channel trim DACs, table 5 to the global threshold DAC. Be aware that if the netsum of the \pm currents in the channel threshold trim DACs is non-zero, a common term offset will occur on the global threshold voltage.

Bit1	Bit2	Bit3	Bit4	Offset change (mV), (R=500Ω)
0	0	0	0	None
0	0	0	1	-1
0	0	1	0	-2
0	0	1	1	-3
0	1	0	0	-4
0	1	0	1	-5
0	1	1	0	-6
0	1	1	1	-7
1	0	0	0	None
1	0	0	1	+1
1	0	1	0	+2
1	0	1	1	+3
1	1	0	0	+4
1	1	0	1	+5
1	1	1	0	+6
1	1	1	1	+7

Table 4: The correspondance between the DAC bits and the resulting threshold voltage offset in the channels.

Page 16 of 20 Ideas ASA

Functional Description Va32Ta2_2_2

Bit1	Bit2	Bit3	Bit4	Bit5	Threshold (mV)
0	0	0	0	0	None
0	0	0	0	1	-1
0	0	0	1	0	-2
0	0	0	1	1	-3
0	0	1	0	0	-4
0	0	1	0	1	-5
0	0	1	1	0	-6
0	0	1	1	1	-7
0	1	0	0	0	-8
0	1	0	0	1	-9
0	1	0	1	0	-10
0	1	0	1	1	-11
0	1	1	0	0	-12
0	1	1	0	1	-13
0	1	1	1	0	-14
0	1	1	1	1	-15
1	0	0	0	0	None
1	0	0	0	1	+1
1	0	0	1	0	+2
1	0	0	1	1	+3
1	0	1	0	0	+4
1	0	1	0	1	+5
1	0	1	1	0	+6
1	0	1	1	1	+7
1	1	0	0	0	+8
1	1	0	0	1	+9
1	1	0	1	0	+10
1	1	0	1	1	+11
1	1	1	0	0	+12
1	1	1	0	1	+13
1	1	1	1	0	+14
1	1	1	1	1	+15

Table 5: The correspondance between the DAC bits and the resulting on-chip global threshold.

Ideas ASA Page 17 of 20

5.2 Bias connections to the chip

All biases are internally generated. However, all of them are available through external pads for adjustment.

The bias currents and voltages are generated through an array of resistor voltage dividers to generate voltages, and by diode connected MOSFETs and transistors to produce the desired currents. These currents are then mirorred to the appropriate network.

Fig. 8 shows a resistor voltage divider and a diode connected MOSFET.

Fig. 8 Voltage divider and MOSFET-resistor current generator

The following tables provide a listing of all internally generated bias voltages for overriding purposes.

	R1(kΩ)	R2(kΩ)	vh - vl
Vfpn	1.1	8.9	GND - AVDD
Vfpp	9.25	0.75	GND - AVDD
Vfsp	2.75	7.25	GND - AVDD
Vfsn	2.25	7.75	GND - AVDD
Vfsf	5.75	4.25	AVDD - GND
Vrc	3	7	AVDD - GND

Table 6: Resistive biases and their power terminals

Page 18 of 20 Ideas ASA

	R(k\O)	Terminal (vh / vl)
Pre_bias	4.9	AVDD
Sha_bias	28.2	GND
Sbi	37.3	AVDD
folbias	9.8	GND
Obi	20	DVDD
Twbi	15	GND
Ref_bi	50.2	GND
Ref_bi2	2.3	GND
Ref_bi3	25.1	GND
Ibuf	7.2	AVDD
Obuf	2.5	AVDD

Table 7: Current bias generating resistors and their power terminals.

Other signals

cal is connected directly to the test register. When desired, set the chip in test-mode, select a channel (see earlier) and apply a proper voltage step on cal to emulate a charge input signal in one channel (only one at a time). When high, the calc in the control register leaves the cal line floating. Otherwise, cal is connected to AVDD. This allows testing of a channel together with real measurements.

ClkIn and RegIn are the clock and input for the shift register respectively. Logic values. Data at RegIn is sampled by the clock on the falling edge. The rise and fall time of the clock should not exceed 100ns. For daisy-chaining of chips, RegIn should only be connected to the first chip in the chain. For the others, RegIn should be fed from RegOut of the previous chip.

6 Normal mode of operation

The normal mode of operation is that the 32 inputs are connected to a detector from where the charge signal comes. After the physics event, each channel will integrate its eventual signal for up to 2µs. Usually, after the peak is reached (2µs), an external 'holdb' signal should be applied to sample the value. Immediately after this a sequential read-out can be performed by activating the output bit-register using 'shift_in_b' and 'ckb'. See fig. 9 for an example of the timing in this mode. The logic part of the chip can be reset either by applying the 'dreset' or, simply by running through a normal read-out once.

Ideas ASA Page 19 of 20

Va32Ta2 2 2 Operation in test mode

Fig 9. Read-out timing of VA32TA2

7 Operation in test mode

Each of the inputs of the amplifiers can be accessed via the input pads on the left side, see Fig. 3. In test mode, it is not necessary to connect any of these. Instead, the test facility of the chip can be turned on ('test-on'). This will enable another mux./bit-register on the input to run exactly in parallel with the output mux./bit-register. This input mux. connects all the inputs to the 'cal' pad via a switch controlled by the bit-register. Also, in this case, only one connection at a time is possible and this connection will always correspond to the same channel as is connected in the output mux.

The register is reset by 'dreset' and only when 'test-on' is high. This keeps the test register intact while the chip is reset under normal measurement operation, giving access to a "test channel" under normal operation as well.

- Document Nr. VA32TA2_2 version 0.1 date 14.03.03 last update 14.03.03
- The information in this catalogue is subject to change without prior notice.
- Information given by Ideas ASA is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission.

Page 20 of 20 Ideas ASA