

- ●含独立电源网络的等效变换
 - 电压源的串联

等效源的端电压等于相串联理想电压源端电压的代数和。 $u_s = u_{s1} \pm u_{s2}$

● 电流源的并联

等效源的输出电流等于相并联理想电流源输出电流的代数和。 $i_s = i_{s1} \pm i_{s2}$

• 电压源的并联

任意电路元件与理想电压源us并联?

● 电流源的串联

任意电路元件与理想电流源is串联。

(注意

> 对外等效

电路的等效变换只改变电路的内部结构,但保持其端口上的电压和电流的关系(VCR)不变;

> 对内不等效

对被变换的电路部分而言,与原电路的工作状态不同。

例7(P35例2-7)将下图等效简化为一个电压源或者电流源。

解: i_{S2} 与 i_{S3} 并联 $i_S = i_{S3} - i_{S2} = 2A$

解: i_{S2} 与 i_{S3} 并联

$$i_S = i_{S3} - i_{S2} = 2A$$

$$i_{S2} = 1A \qquad i_{S1} = 2A$$

$$R_1$$

$$i_{S3} = 3A \qquad u_S = 2V$$

$$+$$

$$i_{S4} = 6A \qquad R_2$$

 u_S 与 i_{S1} , R_1 并联 故等效为原电压源 u_S

第2步

i_{S4} 与 R_2 串联

故等效为原电流源 i_{S4}

第3步

i_S 与 u_S 串联

故等效为原电流源 is

第4步

 i_S 与 i_{S4} 串联 故等效为电流源 4A

第5步

例8 (P35例2-8)求所示电路中各元件功率。

解:
$$P_{R_L} = u_S^2 / R_L = 4W, i = 2A$$
 $P_{u_S} = -u_S \cdot i' = -2W$ $P_{R_1} = i_S^2 \cdot R_1 = 2W$ $P_{i_S} = u_x \cdot i_S = (-u_S - i_S R_1) \cdot 1 = -4W$ $i' = i - i_S = 1A$ 或由 $P_{i_S} + P_1 + P_2 + P_{u_S} = 0$ 得 $P_{i_S} = -4W$