

- Swarming robots area a group of autonomous robots that are programmed to work together in a coordinated manner to achieve common goal.
- These robots communicate with each other to coordinate their movement and actions, allowing the to operate as a single entity with many different parts.
- Swarming robots can be used for a variety of tasks such as search and rescue missions, environmental monitoring and military operations.
- Swarming robots is their ability to adapt to changing environments and situations as they can communicate with each other, hence they can quickly adjust their behavior in response to new information or changing conditions.

- One of the earliest examples of swarming robots was developed in the 1990s by roboticist at MIT.
- The robots were called "Cogbots", designed to mimic the behavior of insects, with each robot performing a specific task and communicating with its neighbors to achieve a common goal.
- Researchers have explored various algorithms for coordinating swarms, including behavior-based approaches, artificial neural networks, and particle swarm optimization.
- Swarming robots have been used widely, including disaster response, environmental monitoring, and precision agriculture.
- It also used for military purposes, such as surveillance and reconnaissance.

History

	Years		Events
	1980s		researchers began to apply this idea to artificial systems, developing algorithms and strategies to enable groups of robots to work together in a coordinated and intelligent manner.
	1993s		C. Ronald Kube and Hong Zohng constructed a multi-robot system inspired by the collective behaviors of natural swarms.
	1997s		One of the earliest examples of swarming robots was the "RoboCup," an annual international competition began
			Over time, the scope of the competition expanded to include other tasks, such as rescue and exploration missions.
	2000s		Researchers began to focus on developing swarming robots that could be used for military applications, such as surveillance, reconnaissance, and search-and-rescue missions.
Y			The Defense Advanced Research Projects Agency (DARPA) launched several initiatives to develop these types of robots, including the Swarm Robotics program and the Distributed Robotics program.
	Nowadays		Today, swarming robots continue to evolve and improve, with researchers exploring new algorithms, communication strategies, and hardware designs to enable even

more sophisticated and effective swarm behavior.

Applications

	Missions	Description
	Search and rescue missions	Search for survivors in disaster zones, where human rescuers may not be able to safely enter.
_	Environmental monitoring	Monitor pollution levels, track wildlife populations, and gather other data on the environment.
	Agriculture	Automate tasks such as planting, watering, and harvesting crops. They can work together to cover large areas quickly and efficiently.

Applications

Inventory management and assembly tasks. They can work together to move

Industrial automation products and materials around the facility.

Surveillance and reconnaissance missions. They can work together to cover large Military applications areas and provide real-time information

to military personnel. Work on large construction projects. They can work together to move materials, lay Construction bricks, and perform other tasks.

Swarming robots can be used in entertainment, such as drone light shows Entertainment or synchronized robotic dance performances.

Main Components Design Locomotion **Navigation Data Data Power Transmission Collection Management**

i. Design

Swim

Use fins or propellers for propulsing and are suitable for operating in underwater environments

Wheeled

Suitable for operating on flat surfaces.

Flying

Suitable for operating in aerial environments.

Hybrid

Combine multiple types of locomotion to achieve greater versatility and adaptability.

ii. Locomotion System

- *
- Wheels are driven by motors and provide movement on flat surfaces.
- Fast and efficient and its speed can be controlled easily
- Used in rough terrains such as forests, mountains, or disaster zones.
- Slower than wheeled robots, but can navigate difficult terrain.
- The legs can be designed to walk, crawl or climb.
- Flying swarm robots use propellers or rotors to generate lift and thrust for flight.
- Efficient and fast, and can operate in aerial environments such as skied or indoor spaces.

ii. Locomotion System

Fins

- Swimming swarm robots use fins or propellers to generate propulsion in water.
 - Slower than wheeled of flying robots, but can operate underwater.

Hybrid

 Some swarm robots use a combination of propulsion systems to achieve greater versatility and adaptability

iii. Navigation & Control System

Navigation System

Sensing

cameras, lidar, radar, and ultrasonic sensors.

Communication

Bluetooth or Wi-Fi

Decision-making algorithm

use algorithms to make decisions about their movements

Centralized or decentralized control

Centralized = entire swarm following one robot

decision

Decentralized = allrobot makes it own

Path planning

find the best route through a given environment.

Data Collection Hardwares

Sensors

- Cameras
- LiDaR
- Inertial Measurement Units (IMUs)
- Proximity Sensors
- Microphones

Actuators

- Legs
- Tentacles -Can be used to manipulate objects.
- Pneumatic/ Hydraulic systems
- Gripper
- Electrostatic Adhesion -Can be used to stick to surfaces.

i. ROS

Data Collection Software

ii. SwarmSwim

Data Collection Software

iii. MatLab

Data Collection Software

iv. SLAM

v. Data Transmission

vi. Power Management

small and lightweight, and can provide high energy density.

Batteries

Lightweight and require no fuel, but may not be able to provide sufficient power in low light conditions

Solar Panel

used to recharge swarm robots without the need for physical

Wireless Charge

Fuel Cells

Can power the robot longer than batteries

Energy Harvesting

can be used to generate power from environment

