Vector Spaces

Madiba Hudson-Quansah

CONTENTS

CHAPTER 1	VECTOR SPACES AND SUBSPACES	Page 2	
1.1	Introduction	2	
1.2	Subspaces Subspace Spanned by a Set -3	2	
1.3	Exercises	5	
Chapter 2	Null Space, Column Space, and Linear Transformations	Page 10	
2.1	The Null Space of a Matrix An Explicit Description of the Null Space of a Matrix -11	10	
2.2	The Column Space of a Matrix	12	
2.3	The Contrast between Nul A and Col A	12	
2.4	Kernel and Range of a Linear Transformation	13	

Chapter 1

Vector Spaces and Subspaces

1.1 Introduction

Definition 1.1.1: Vector Space

A vector space is a non empty set V of objects, called vectors, on which are defined two operations, addition and multiplication by scalars, e.g. real numbers, subject to the following axioms which must hold for all vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (u + v) + w = u + (v + w)
- 4. There is a zero vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. For each **u** in *V*, there is a vector $-\mathbf{u}$ in *V* such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1u = u

Using these axioms one can show that the zero vector in axiom 4 is unique, and the vector $-\mathbf{u}$, called the **negative** of \mathbf{u} in axiom 5 is unique for each \mathbf{u} in V, outlined in:

Theorem 1.1.1

$$0\mathbf{u} = \mathbf{0} \tag{1.1}$$

$$c\mathbf{0} = \mathbf{0} \tag{1.2}$$

$$-\mathbf{u} = (-1)\mathbf{u} \tag{1.3}$$

1.2 Subspaces

In many problems, a vector space consists of an appropriate set of vectors from a larger vector space. In this case only, three of the ten axioms need to be checked to determine if the subset is a vector space, the rest are satisfied automatically.

Definition 1.2.1: Subspace

A subset H of the vector space V, where:

- 1. The zero vector of V is in H.
- 2. *H* is closed under vector addition. That is for each \mathbf{u} and \mathbf{v} in *H*, the sum of $\mathbf{u} + \mathbf{v}$ is in *H*.
- 3. H is closed under scalar multiplication. That is for each \mathbf{u} in H and each scalar c, the scalar multiple $c\mathbf{u}$ is in H.

These properties guarantee that a subspace H of V is also a vector space, under the defined vector space operations. This means that every subspace is a vector space and conversely every vector space is a subspace (of itself and possibly of a larger vector space).

Example 1.2.1

Question 1

The vector space \mathbb{R}^2 is not a vector space of \mathbb{R}^3 because \mathbb{R}^2 is not even a subset of \mathbb{R}^3 . The set

$$H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s \text{ and } t \text{ are real} \right\}$$

is a subset of \mathbb{R}^3 that "looks" and "acts" like \mathbb{R}^2 even though it is logically distinct from \mathbb{R}^2 . Show that H is subset of \mathbb{R}^3

Solution:

- The zero vector is in H
- *H* is closed under vector addition and scalar multiplication as these operations on vectors in *H* always produce vectors whose third entry is zero and thus belong to *H*.

Thus *H* is as subspace of \mathbb{R}^3

1.2.1 Subspace Spanned by a Set

One way of describing a subspace is as a linear combination of vectors that span the subspace.

Example 1.2.2

Question 2

Given \mathbf{v}_1 and \mathbf{v}_2 in a vector space V, let $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Show that H is a subspace of V

Solution:

• The zero vector is in *H* as:

$$\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2$$

ullet To show that H is closed under vector addition and scalar multiplication, take two arbitrary vectors in H, say

$$\mathbf{u} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2$$
 and $\mathbf{w} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$

By axioms 2, 3, and 8 for the vector space V:

$$\mathbf{u} + \mathbf{w} = (s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2) + (t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2)$$

= $(s_1 + t_1) \mathbf{v}_1 + (s_2 + t_2) \mathbf{v}_2$

The result is still in H as it can still be spanned from Span $\{v_1, v_2\}$, with weights $(s_1 + t_1)$ and $(s_2 + t_2)$

Furthermore:

$$c\mathbf{u} = c (s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2)$$
$$= (cs_1) \mathbf{v}_1 + (cs_2) \mathbf{v}_2$$

therefore H is also closed under scalar multiplication.

Theorem 1.2.1

If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in vector space V, then $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

We can call Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ the subspace spanned by $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$. Therefore given any subspace H of V, a spanning set for H is a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in H such that $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

Example 1.2.3

Question 3

Let H be the set of all vectors of the form (a-3b,b-a,a,b), where a and b are arbitrary scalars. That is let $H = \{(a-3b,b-a,a,b) : a \text{ and } b \text{ in } \mathbb{R}\}$. Show that H is a subspace of \mathbb{R}^4

Solution:

$$H = \begin{bmatrix} a - 3b \\ b - a \\ a \\ b \end{bmatrix}$$
$$= a \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
$$= a\mathbf{v}_1 + b\mathbf{v}_2$$

Thus H is a subspace of \mathbb{R}^4 by theorem 1.2.1

Example 1.2.4

Question 4

For what value(s) of h will y be in the subspace of \mathbb{R}^3 spanned by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, if

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$

Solution: The subspace of \mathbb{R}^3 Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. \mathbf{y} will be in the subspace if the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ contains \mathbf{y} , that is if \mathbf{y} can be written

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{y}$$

And thus the matrix equation:

$$A\mathbf{x} = \mathbf{y}$$

Where
$$A = \begin{bmatrix} 1 & 5 & -3 \\ -1 & -4 & 1 \\ -2 & -7 & 0 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ -1 & -4 & 1 & 3 \\ -2 & -7 & 0 & h \end{bmatrix}$$

$$-R_1 - R_2 \rightarrow R_2$$

$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ -2 & -7 & 0 & h \end{bmatrix}$$

$$-2R_2 + R_3 \rightarrow R_3$$

$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & -3 & 6 & 8 - h \end{bmatrix}$$

$$-3R_2 - R_3 \rightarrow R_3$$

:. The system A**x** = **y** is only consistent if h = 5, and thus **y** is in the subspace spanned by Span{**v**₁, **v**₂, **v**₃} if and only if h = 5

 $\begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & -5 + h \end{bmatrix}$

1.3 Exercises

Question 5

Show that the set H of all points in \mathbb{R}^2 of the form (3s, 2+5s) is not a vector space, by showing that it is not closed under scalar multiplication. (Find a specific vector \mathbf{u} in H and a scalar c such that $c\mathbf{u}$ is not in H)

Solution: Let $\mathbf{u} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$ and c = 2. Then:

$$2\mathbf{u} = 2\left(\begin{bmatrix} 3\\7 \end{bmatrix}\right)$$
$$= \begin{bmatrix} 6\\14 \end{bmatrix}$$

This implies there is some s such that $\begin{bmatrix} 3s \\ 2+5s \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$, but for this to be true s would need to be equal to 2 and 2.4 which is impossible. Therefore H is not closed under scalar multiplication and thus is not a vector space.

Question 6

Let $W = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, where $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V. Show that \mathbf{v}_k is in W for $1 \le k \le p$.

Solution: If $W = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, then the contents of W for example \mathbf{v}_1 can be written as linear combination of the spanned vectors, that is:

$$\mathbf{v}_1 = 1\mathbf{v}_1 + 0\mathbf{v}_2 + \ldots + 0\mathbf{v}_p$$

Therefore if $1 \le k \le p$, then \mathbf{v}_k is in W because:

$$\mathbf{v}_k = 0\mathbf{v}_1 + \ldots + 0\mathbf{v}_{k-1} + 1\mathbf{v}_k + 0\mathbf{v}_{k+1} + \ldots + 0\mathbf{v}_n$$

Question 7

An $n \times n$ matrix A is said to be *symmetric* if $A = A^T$. Let S be the set of all 3×3 symmetric matrices. Show that S is a subspace of $M_{3\times3}$, the vector space of all 3×3 matrices.

Solution: To prove that *S* is a subspace of $M_{3\times 3}$, I must show:

The Zero vector Is in S Since the zero vector is symmetric S contains the zero vector as:

$$\mathbf{0} = \mathbf{0}^T$$

S is closed under vector addition Let A and B be in S, hence $A = A^T$ and $B = B^T$

$$(A+B)^T = A^T + B^T$$
$$= A + B$$

Thus A + B is symmetric and is in S

S is closed under scalar multiplication Let A be in S and c be a scalar

$$(cA)^T = c(A)^T$$
$$= cA$$

Thus *cA* is symmetric and is in *S*

 \therefore S is a subspace of $M_{3\times3}$

Question 8

Let V be the first quadrant in the xy-plane; that is, let

$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0 \text{ and } y \ge 0 \right\}$$

- 1. If **u** and **v** are in V, is $\mathbf{u} + \mathbf{v}$ in V? Why?
- 2. Find a specific vector \mathbf{u} in V and specific scalar c such that $c\mathbf{u}$ is not in V.

Solution:

- 1. If **u** and **v** are V, then indeed **u** + **v** are in V, because the sum of these two vectors will always have positive x and y components and will therefore always be in the first quadrant of the xy-plane.
- 2. For $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and c = -2

$$-2\mathbf{u} = -2\left(\begin{bmatrix} 3\\4 \end{bmatrix}\right)$$
$$= \begin{bmatrix} -6\\-8 \end{bmatrix}$$

Question 9

Determine if the given sets are subspaces of \mathbb{P}_n for an appropriate value of n. Justify your answers.

- 1. All polynomials in the form $\mathbf{p}(t) = at^2$, where $a \in \mathbb{R}$.
- 2. All polynomials in the form $\mathbf{p}(t) = a + t^2$, where $a \in \mathbb{R}$
- 3. All polynomials of degree at most 3, with integers as coefficients.
- 4. All polynomials in \mathbb{P}_n such that $\mathbf{p}(0) = 0$

Solution:

1. Yes this is a subspace of \mathbb{P}_n as:

Contains the zero vector When a = 0, $\mathbf{p}(t) = 0t^2 = 0$.

Closed under vector additon Let w and q be polynomials in the appropriate form

$$\mathbf{w} + \mathbf{q} = (wt^2) + (qt^2)$$
$$= (w + q) t^2$$
Let $w + q = a$, then
$$= at^2$$

Closed under scalar multiplication Let **w** be a polynomial in the appropriate form and c be a scalar.

$$c\mathbf{w} = c (wt^2)$$

= $(cw) t^2$
Let $cw = a$, then
= at^2

2. No this is not a subspace of \mathbb{P}_n as:

Does not contain the zero vector There is no value of a for which $a + t^2 = 0$

3. Yes this is a subspace of \mathbb{P}_n as:

Contains the zero vector When a = 0:

$$\mathbf{p}(t) = 0t^{1}$$
$$= 0$$
$$\mathbf{p}(t) = 0t^{2}$$

$$\mathbf{p}\left(t\right) = 0t^{3}$$
$$= 0$$

= 0

Closed under vector addition Let w and q be vectors of the appropriate form in each case:

$$\mathbf{w} + \mathbf{q} = wt^{1} + qt^{1}$$
$$= (w + q) t^{1}$$
$$\text{Let } w + q = a$$
$$= at^{1}$$

$$\mathbf{w} + \mathbf{q} = wt^{2} + qt^{2}$$
$$= (w + q) t^{2}$$
$$\text{Let } w + q = a$$
$$= at^{2}$$

$$\mathbf{w} + \mathbf{q} = wt^{3} + qt^{3}$$
$$= (w + q) t^{3}$$
$$\text{Let } w + q = a$$
$$= at^{3}$$

Closed under scalar multiplication Again let w and be a vector of the appropriate form in each case:

$$c\mathbf{w} = c (wt^1)$$

= $(cw) t^1$
Let $cw = a$

 $= at^1$

$$c\mathbf{w} = c (wt^2)$$

= $(cw) t^2$
Let $cw = a$
= at^2

$$c\mathbf{w} = c (wt^3)$$

= $(cw) t^3$
Let $cw = a$
= at^3

4. Yes this is not a subspace of \mathbb{P}_n as:

Contains the zero vector $\forall a \in \mathbb{R}$:

$$\mathbf{p}(0) = a \times 0$$
$$= 0$$

Closed under vector addition Let \boldsymbol{w} and \boldsymbol{q} be vectors of the appropriate form

$$\mathbf{w} + \mathbf{q} = w \times 0 + t \times 0$$
$$= 0$$

Closed under scalar multiplication Let \mathbf{w} be a vector of appropriate form

$$c\mathbf{w} = c\left(w \times 0\right)$$
$$= 0$$

Chapter 2

Null Space, Column Space, and Linear Transformations

2.1 The Null Space of a Matrix

Definition 2.1.1: Null Space

The *null space* of an $m \times n$ matrix A, denoted by Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation:

Nul $A = \{ \mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$

Example 2.1.1

Question 10

Let A be the matrix $\begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$, and let $\mathbf{u} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$. Determine if \mathbf{u} belongs to the null space of A.

Solution: This is basically asking us to verify if **u** satisfies the equation $A\mathbf{u} = \mathbf{0}$

$$\begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 5 - 9 + 4 \\ -25 + 27 - 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 \therefore **u** is in the null space of *A*.

Theorem 2.1.1

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n , equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

2.1.1 An Explicit Description of the Null Space of a Matrix

There is no obvious relation between the vectors in Nul A and the entries A. We say that Nul A is defined implicitly, as it is defined by a condition that must be checked. However solving the equation $A\mathbf{x} = \mathbf{0}$ amounts to producing an explicit description of Nul A.

Example 2.1.2

Question 11

Find a spanning set for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Solution: The first step is to find the general solution of $A\mathbf{x} = \mathbf{0}$ in terms of free variables. Therefore:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$x_1 - 2x_2 - x_4 + 3x_5 = 0$$
$$x_3 + 2x_4 - 2x_5 = 0$$
$$x_2 = x_2$$
$$x_4 = x_4$$
$$x_5 = x_5$$

$$x_{1} = 2x_{2} + x_{4} - 3x_{5}$$

$$x_{2} = x_{2}$$

$$x_{3} = -2x_{4} + 2x_{5}$$

$$x_{4} = x_{4}$$

$$x_{5} = x_{5}$$

$$\mathbf{x} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
$$= x_2 \mathbf{u} + x_4 \mathbf{v} + x_5 \mathbf{w}$$

Every linear combination of \mathbf{u} , \mathbf{v} , and \mathbf{w} is an element of Nul A and vice versa. Thus $\{\mathbf{u}$, \mathbf{v} , $\mathbf{w}\}$ is a spanning set for Nul A.

Two points are made apparent by the previous example:

- 1. The spanning set produced by the general solution of $A\mathbf{x} = \mathbf{0}$ is automatically linearly independent because the free variables are weights on the spanning vectors.
- 2. When Nul *A* contains non-zero vectors, the number of vectors in the spanning set for Nul *A* equals the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$

2.2 The Column Space of a Matrix

Definition 2.2.1: The Column Space of a Matrix

The column space of an $m \times n$ matrix A, denoted by Col A, is the set of all linear combinations of the columns of A. If $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$, then

$$\operatorname{Col} A = \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

Since Span $\{a_1, \ldots, a_n\}$ is a subspace, by theorem 1.2.1, the next theorem follows from the definition of Col A and the fact that the columns of A are in \mathbb{R}^m .

Theorem 2.2.1

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Example 2.2.1

Question 12

Find a matrix A such that $W = \operatorname{Col} A$.

$$W = \left\{ \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

Solution:

We first write W as a set of linear combinations:

$$W = \left\{ a \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix} + b \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} : a, b \in \mathbb{R} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Then we create a matrix A with these columns:

$$\begin{bmatrix} 6 & -1 \\ 1 & 1 \\ -7 & 0 \end{bmatrix}$$

Theorem 2.2.2

The column space of an $m \times n$ matrix A is all of \mathbb{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^m

2.3 The Contrast between Nul A and Col A

Example 2.3.1

Question 13

Let

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$

- 1. If the column space of A is a subspace of \mathbb{R}^k , what is k?
- 2. If the null space of A is a subspace of \mathbb{R}^k , what is k?

Solution:

- 1. The columns if A each have three entries so Col A is a subspace of \mathbb{R}^k , where k=3
- 2. A vector **x** such that A**x** is defined must have four entries, so Nul A is a subspace of \mathbb{R}^k where k=4

When a matrix is not square as with the example above the vectors in Col A and Nul A live in different "universes", for example no linear combination of vectors in \mathbb{R}^3 can produce a vector in \mathbb{R}^4 . When A is square Nul A and Col A have the zero vector in common, and in special cases can also have some nonzero vectors in common.

Example 2.3.2

Question 14

With the same A find a nonzero vector Col A and a nonzero vector in Nul A

Solution:

$$\operatorname{Col} A = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$

Nul A

$$A\mathbf{x} = \mathbf{0}$$

$$[A \mid \mathbf{0}] \sim \begin{bmatrix} 1 & 0 & 9 & 0 & 0 \\ 0 & 1 & -5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Thus, if **x** satisfies A**x** = **0**, then $x_1 = -9x_3$, $x_2 = 5x_3$, $x_4 = 0$, and x_3 is free. Assigning a nonzero value to x_3 , like 1, we obtain a vector in Nul A, **x** = (-9, 5, 1, 0)

2.4 Kernel and Range of a Linear Transformation