Parallelism in RL

Overview

- 1. We learned about a number of policy search methods
- 2. These algorithms have all been sequential
- 3. Is there a natural way to parallelize RL algorithms?
 - Experience sampling vs learning
 - Multiple learning threads
 - Multiple experience collection threads

Today's Lecture

- 1. What can we parallelize?
- 2. Case studies: specific parallel RL methods
- 3. Tradeoffs & considerations
- Goals
 - Understand the high-level anatomy of reinforcement learning algorithms
 - Understand standard strategies for parallelization
 - Tradeoffs of different parallel methods

High-level RL schematic

Which parts are slow?

real robot/car/power grid/whatever:
1x real time, until we invent time travel

MuJoCo simulator: up to 10000x real time

trivial to parallelize

Which parts can we parallelize?

Helps to group data generation and training (worker generates data, computes gradients, and gradients are pooled)

High-level decisions

- 1. Online or batch-mode?
- 2. Synchronous or asynchronous?

Relationship to parallelized SGD

fit a model/ estimate the return

improve the policy

Dai et al. '15

- 1. Parallelizing model/critic/actor training typically involves parallelizing SGD
- 2. Simple parallel SGD:
 - 1. Each worker has a different slice of data
 - 2. Each worker computes gradients, sums them, sends to parameter server
 - 3. Parameter server sums gradients from all workers and sends back new parameters
- 3. Mathematically equivalent to SGD, but not asynchronous (communication delays)
- 4. Async SGD typically does not achieve perfect parallelism, but lack of locks can make it much faster
- 5. Somewhat problem dependent

Simple example: sample parallelism with PG

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$
- 3. compute $\nabla_i = \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^i | \mathbf{s}_t^i)\right) (r_i b)$
- 4. update: $\theta \leftarrow \theta + \alpha \sum_{i} \nabla_{i}$

Simple example: sample parallelism with PG

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$
- 3. compute $\nabla_i = \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^i | \mathbf{s}_t^i)\right) (r_i b)$
- 4. update: $\theta \leftarrow \theta + \alpha \sum_{i} \nabla_{i}$

Simple example: sample parallelism with PG

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$
- 3. compute $\nabla_i = \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^i | \mathbf{s}_t^i)\right) (r_i b)$
- 4. update: $\theta \leftarrow \theta + \alpha \sum_{i} \nabla_{i}$

Dai et al. '15

What if we add a critic?

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$
- 3. update $\hat{A}_{\phi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$ with regression to target values \leftarrow see John's actor-critic lecture for what the options here are
- 4. compute $\nabla_i = \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^i | \mathbf{s}_t^i)\right) \hat{A}_\phi(\mathbf{s}_t^i, \mathbf{a}_t^i)$
- 5. update: $\theta \leftarrow \theta + \alpha \sum_{i} \nabla_{i}$

What if we add a critic?

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$
- 3. update $\hat{A}_{\phi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$ with regression to target values \leftarrow see John's actor-critic lecture for what the options here are
- 4. compute $\nabla_i = \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^i | \mathbf{s}_t^i)\right) \hat{A}_\phi(\mathbf{s}_t^i, \mathbf{a}_t^i)$
- 5. update: $\theta \leftarrow \theta + \alpha \sum_{i} \nabla_{i}$

What if we run online?

- 1. collect sample $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')$ by running $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ for 1 step
- 2. compute $r_i = r(\mathbf{s}_i, \mathbf{a}_i)$
- 3. update $\hat{A}_{\phi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$ with regression to target values
- 4. compute $\nabla_i = \nabla_\theta \log \pi_\theta(\mathbf{a}^i|\mathbf{s}^i) \hat{A}_\phi(\mathbf{s}^i,\mathbf{a}^i)$
- 5. update: $\theta \leftarrow \theta + \alpha \sum_{i} \nabla_{i}$ only the parameter update requires synchronization (actor + critic params)

Actor-critic algorithm: A3C

- 1. collect sample $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')$ by running $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ for 1 step
- 2. compute $r_i = r(\mathbf{s}_i, \mathbf{a}_i)$
- 3. update $\hat{A}_{\phi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$ with regression to target values
- 4. compute $\nabla_i = \nabla_\theta \log \pi_\theta(\mathbf{a}^i|\mathbf{s}^i) \hat{A}_\phi(\mathbf{s}^i,\mathbf{a}^i)$
- 5. update: $\theta \leftarrow \theta + \alpha \sum_{i} \nabla_{i}$ (only do this every n steps)

- Some differences vs DQN, DDPG, etc:
 - No replay buffer, instead rely on diversity of samples from different workers to decorrelate
 - Some variability in exploration between workers
- Pro: generally much faster in terms of wall clock
- Con: generally must slower in terms of # of samples (more on this later...)

Actor-critic algorithm: A3C

DDPG:

Model-based algorithms: parallel GPS

- 1. get N samples τ_i by running $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ N times for each initial state \mathbf{s}_0^j
- 2. fit local models for each initial state
- 3. use LQR to get updated local policies $p_j(\mathbf{a}_t|\mathbf{s}_t)$ for each initial state \mathbf{s}_0^j
- 4. update policy $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ by imitating all $p_j(\mathbf{a}_t|\mathbf{s}_t)$

[parallelize sampling]
[parallelize dynamics]

[parallelize LQR]

[parallelize SGD]

Model-based algorithms: parallel GPS

Real-world model-free deep RL: parallel NAF

$$Q(\mathbf{x}, \mathbf{u}|\boldsymbol{\theta}^{Q}) = A(\mathbf{x}, \mathbf{u}|\boldsymbol{\theta}^{A}) + V(\mathbf{x}|\boldsymbol{\theta}^{V})$$

$$A(\mathbf{x}, \mathbf{u}|\boldsymbol{\theta}^{A}) = -\frac{1}{2}(\mathbf{u} - \boldsymbol{\mu}(\mathbf{x}|\boldsymbol{\theta}^{\mu}))^{T} \boldsymbol{P}(\mathbf{x}|\boldsymbol{\theta}^{P})(\mathbf{u} - \boldsymbol{\mu}(\mathbf{x}|\boldsymbol{\theta}^{\mu}))$$

Simplest example: sample parallelism with off-policy algorithms

