

Sistemas Distribuídos

Engenharia da Computação

Altamira de Souza Queiroz Bacharel em Sistemas de Informação Mestre em Engenharia Elétrica e Computação

(34) 999226799

altamira.uemg@gmail.com

Definição de SD

- "Um sistema distribuído é uma coleção de computadores autônomos conectados por uma rede e equipados com um sistema de software distribuído."
- "Um sistema distribuído é uma coleção de computadores independentes que aparenta ao usuário ser um computador único."

Outra definição de SD

 "Você sabe que tem um sistema distribuído quando a falha de um computador do qual você nunca ouviu falar faz com que você pare completamente de trabalhar." [Leslie Lamport]

Avanços tecnológicos

- Invenção de redes de computadores de alta velocidade (anos 70):
 - Rede local (Local Area Network LAN)
 - Rede global (Wide Area Network WAN)
- Desenvolvimento de microprocessadores potentes (anos 8o).

Estado da arte

- É relativamente fácil agrupar um grande número de CPUs, conectando-as por uma rede de alta velocidade.
- O software para sistemas distribuídos é completamente diferente do software para sistemas centralizados e está apenas começando a se desenvolver.

Exemplos de SD

Internet:

Através de um protocolo de comunicação relativamente simples, é possível realizar trocas de arquivos com música, vídeo e demais tipos de dados com computadores localizados em várias partes do planeta. Considerando que os sistemas distribuídos são compostos por várias fontes de processamento, armazenamento e transmissão de dados; os recursos referentes ao hardware necessário para possibilitar tal capacidade de processamento e propagação dos dados pelos sistemas distribuídos podem ser organizados de formas totalmente diferentes entre si.

Exemplos de SD

Internet:

Através de um protocolo de comunicação relativamente simples, é possível realizar trocas de arquivos com música, vídeo e demais tipos de dados com computadores localizados em várias partes do planeta. Considerando que os sistemas distribuídos são compostos por várias fontes de processamento, armazenamento e transmissão de dados; os recursos referentes ao hardware necessário para possibilitar tal capacidade de processamento e propagação dos dados pelos sistemas distribuídos podem ser organizados de formas totalmente diferentes entre si.

Exemplos de SD

- Sistema de reserva de passagens aéreas
- Sistema de controle de estoque, vendas e entregas numa cadeia de lojas
- Sistemas de acesso a recursos de multimídia e de conferência

Vantagens de SD sobre PCs independentes

- Compartilhamento de dados comuns entre usuários
- Compartilhamento de recursos de hardware e software
- Comunicação entre pessoas
- Flexibilidade na distribuição de tarefas de acordo com as aplicações

Desvantagens de SD

- Falta de software adequado
- Falhas e saturação da rede de comunicação podem eliminar as vantagens de SD
- Segurança pode ser comprometida: fácil acesso a dados e recursos reservados

Hardware em SD

Software básico em SD

	Acoplamento de hardware	Acoplamento de software
Sistemas operacionais de rede	Fraco	Fraco
Sistemas distribuídos «autênticos»	Fraco	Forte
Sistemas timesharing para multiprocessadores	Forte	Forte

Sistemas operacionais de rede

- Estações de trabalho conectadas por uma LAN
- Cada estação tem seu próprio sistema operacional
- Ferramentas para login remoto e cópia de arquivos entre estações
- Servidores de arquivos e ferramentas para causar aparência de arquivo local

Sistemas distribuídos autênticos

- A rede toda tem aparência de ser um único sistema timesharing: virtual uniprocessor, single-system image
- Mecanismo global para comunicação entre processos
- Gerenciamento de processos homogêneo
- Sistema de arquivos homogêneo

Sistemas timesharing para multiprocessadores

- Fila única de processos prontos para execução: melhor distribuição de carga
- CPUs especializadas em: executar processos, controlar periféricos, executar sistema operacional (gerenciar a memória global)

Comparação de SW para SD

	SO de rede	SO distribuído	SO para multiproc.
Parece um SC	Não	Sim	Sim
Mesmo SO	Não	Sim	Sim
Cópias de SO	N	N	1
Comunicação	Arquivos compartilhados	Mensagens	Memória compartilhada
Protocolos comuns	Sim	Sim	Não
Fila única de execução	Não	Não	Sim

Características básicas de SD

- Compartilhamento de recursos
- Extensibilidade (openness)
- Concorrência
- Escalabilidade (crescimento gradativo suave)
- Tolerância a falhas
- Transparência

Compartilhamento de recursos

- Componentes de hardware: discos, impressoras, ...
- Componentes de software: arquivos, bancos de dados, ...
- Modelos básicos:
 - Modelo cliente-servidor
 - Modelo baseado em objetos

Extensibilidade

- Extensões de hardware: periféricos, memória, interfaces de comunicação, ...
- Extensões de software: funções de SO, protocolos de comunicação,...
- Interfaces chaves são públicas (system calls)
- Mecanismo uniforme de comunicação entre processos

Concorrência

- Mais de um processo em execução a cada instante:
 - Atividades separadas de usuários
 - Independência de recursos
 - Localização de processos servidores em computadores distintos
- Acesso concorrente a recursos compartilhados requer sincronização

Escalabilidade

- Quantidade de trabalho envolvido no processamento de qualquer requisição de acesso a um recurso compartilhado independe do tamanho da rede
- Técnicas: replicação, caching, servidores múltiplos

Tolerância a falhas

- Falhas de hardware e software (em CPUs e redes): programas param ou produzem resultados errados
- Abordagens:
 - Redundância de hardware (Ex: banco de dados replicado em diversos servidores)
 - Recuperação por software: manter dados permanentes sempre consistentes

Transparência

- Esconder do usuário e do programador de aplicações a separação de componentes em um sistema distribuído, tal que este seja visto como um sistema centralizado
- Formas de transparência: acesso, localização, concorrência, replicação, falha, migração, desempenho e escala

Transparência de acesso

Operações de acesso a objetos de informação são idênticas para objetos locais e remotos

Exemplo:

Operação de envio de uma mensagem eletrônica especificando o destinatário através de seu endereço Internet

Transparência de localização

Acesso a um objeto ocorre sem que seja necessário o conhecimento de sua localização

Exemplo:

Operação de envio de uma mensagem eletrônica especificando o destinatário através de seu endereço Internet

Outras formas de transparência

- Concorrência: processos operam concorrentemente usando objetos de informação comuns sem interferência entre eles.
- Replicação: várias instâncias de um objeto de informação são usadas sem requerer o conhecimento das réplicas pelos usuários e aplicações.
- Falha: mascaramento de falhas de hardware e software.
- Migração: movimento de objetos de informação dentro do sistema não afeta a operação de usuários e aplicações.
- Desempenho: reconfiguração do sistema para melhorar desempenho conforme a carga varia.
- **Escala**: o sistema e as aplicações podem expandir em escala sem requerer modificações na estrutura do sistema ou nos algoritmos das aplicações.