

List of Banach spaces

In the <u>mathematical</u> field of <u>functional analysis</u>, <u>Banach spaces</u> are among the most important objects of study. In other areas of <u>mathematical analysis</u>, most spaces which arise in practice turn out to be Banach spaces as well.

Classical Banach spaces

According to <u>Diestel (1984</u>, Chapter VII), the **classical Banach spaces** are those defined by <u>Dunford & Schwartz (1958</u>), which is the source for the following table.

Glossary of symbols for the table below:

- \mathbb{F} denotes the field of real numbers \mathbb{R} or complex numbers \mathbb{C} .
- *K* is a compact Hausdorff space.
- $p,q \in \mathbb{R}$ are <u>real numbers</u> with $1 < p,q < \infty$ that are <u>Hölder conjugates</u>, meaning that they satisfy $\frac{1}{q} + \frac{1}{p} = 1$ and thus also $q = \frac{p}{p-1}$.
- Σ is a σ -algebra of sets.
- \blacksquare is an algebra of sets (for spaces only requiring finite additivity, such as the ba space).
- μ is a <u>measure</u> with <u>variation</u> $|\mu|$. A positive measure is a real-valued positive set function defined on a σ -algebra which is countably additive.

Classical Banach spaces										
	Dual space	Reflexive	weakly sequentially complete		<u>Norm</u>	Notes				
<u>F</u> ⁿ	\mathbb{F}^n	Yes	Yes	$\ x\ _2$	$= \left(\sum_{i=1}^n x_i ^2\right)^{1/2}$	Euclidean space				
ℓ_p^n	ℓ_q^n	Yes	Yes	$\ x\ _p$	$= \left(\sum_{i=1}^n x_i ^p\right)^{\frac{1}{p}}$					
ℓ_{∞}^n	ℓ_1^n	Yes	Yes	$\ x\ _{\infty}$	$= \max_{1 \leq i \leq n} x_i $					
<u>ℓ</u> ^p	ℓ^q	Yes	Yes	$\ x\ _p$	$= \left(\sum_{i=1}^{\infty} \left x_i\right ^p\right)^{\frac{1}{p}}$					
$\underline{\ell^1}$	ℓ^∞	No	Yes	$\ x\ _1$	$= \sum_{i=1}^\infty x_i $					
ℓ^{∞}	ba	No	No	$\ x\ _{\infty}$	$= \sup\nolimits_i x_i $					
<u>c</u>	ℓ^1	No	No	$\ x\ _{\infty}$	$= \sup_i x_i $					
<u>c</u> 0	ℓ^1	No	No	$\ x\ _{\infty}$	$= \sup_i x_i $	Isomorphic but not isometric to c .				
$\underline{\mathbf{b}}\mathbf{v}$	ℓ^∞	No	Yes	$\ x\ _{bv}$	$= x_1 + \sum_{i=1}^\infty x_{i+1} - x_i $	Isometrically isomorphic to ℓ^1 .				
<u>bv</u> 0	ℓ^∞	No	Yes	$\ x\ _{bv_0}$	$=\sum_{i=1}^{\infty} x_{i+1}-x_i $	Isometrically isomorphic to ℓ^1 .				
<u>bs</u>	ba	No	No	$\ x\ _{bs}$	$= \sup\nolimits_n \left \sum_{i=1}^n x_i \right $	Isometrically isomorphic to ℓ^{∞} .				
cs	ℓ^1	No	No	$\ x\ _{bs}$	$=\sup_n \left \sum_{i=1}^n x_i ight $	Isometrically isomorphic to c.				
$B(K,\Xi)$	$\mathrm{ba}(\Xi)$	No	No	$\ f\ _B$	$= \sup\nolimits_{k \in K} f(k) $					
C(K)	rca(K)	No	No	$\ x\ _{C(K)}$	$= \max\nolimits_{k \in K} f(k) $					
ba(Ξ)	?	No	Yes	$\ \mu\ _{ba}$	$= \sup\nolimits_{S \in \Xi} \mu (S)$					
$\operatorname{\underline{ca}}(\Sigma)$?	No	Yes	$\ \mu\ _{ba}$	$= \operatorname{sup}_{S \in \Sigma} \mu (S)$	A closed subspace of $ba(\Sigma)$.				
$\underline{\operatorname{rca}(\Sigma)}$?	No	Yes	$\ \mu\ _{ba}$	$= \sup_{S \in \Sigma} \mu (S)$	A closed subspace of $ca(\Sigma)$.				
$L^p(\mu)$	$L^q(\mu)$	Yes	Yes	$\ f\ _p$	$= \left(\int \left f\right ^p d\mu\right)^{\frac{1}{p}}$					
$\underline{L^1(\mu)}$	$L^\infty(\mu)$	No	Yes	$\ f\ _1$	$=\int f d\mu$	The dual is $L^{\infty}(\mu)$ if μ is $\underline{\sigma}$ -finite.				
$\mathrm{BV}([a,b])$?	No	Yes	$\ f\ _{BV}$	$= V_f([a,b]) + \lim_{x \to a^+} f(x)$	$V_f([a,b])$ is the total variation of				

						f
$\overline{\mathrm{NBV}([a,b])}$?	No	Yes	$\ f\ _{BV}$	$=V_f([a,b])$	$egin{aligned} \mathbf{NBV}([a,b]) \ & ext{consists of} \ & \mathbf{BV}([a,b]) \ & ext{functions such} \ & ext{that} \ & ext{lim}_{x ightarrow a^+} \ f(x) = 0 \end{aligned}$
$\operatorname{AC}([a,b])$	$\mathbb{F} + L^{\infty}([a,b])$	No	Yes	$\ f\ _{BV}$	$= V_f([a,b]) + \operatorname{lim}_{x \to a^+} f(x)$	Isomorphic to the Sobolev space $\overline{W^{1,1}([a,b])}$.
$\underline{C^n([a,b])}$	$\operatorname{rca}([a,b])$	No	No	$\ f\ $	$= \sum_{i=0}^n \operatorname{sup}_{x \in [a,b]} \left f^{(i)}(x) \right $	Isomorphic to $\mathbb{R}^n \oplus C([a,b]),$ essentially by Taylor's theorem.

Banach spaces in other areas of analysis

- The Asplund spaces
- The Hardy spaces
- The space **BMO** of functions of bounded mean oscillation
- The space of functions of bounded variation
- Sobolev spaces
- The Birnbaum-Orlicz spaces $L^A(\mu)$.
- Hölder spaces $C^k(\Omega)$.
- Lorentz space
- ba space

Banach spaces serving as counterexamples

- <u>James' space</u>, a Banach space that has a <u>Schauder basis</u>, but has no <u>unconditional Schauder</u> Basis. Also, James' space is isometrically isomorphic to its double dual, but fails to be reflexive.
- Tsirelson space, a reflexive Banach space in which neither ℓ^p nor c_0 can be embedded.
- W.T. Gowers construction of a space X that is isomorphic to $X \oplus X \oplus X$ but not $X \oplus X$ serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem^[1]

See also

- <u>List of mathematical spaces</u> Mathematical set with some added structure
- <u>List of topologies</u> List of concrete topologies and topological spaces
- Minkowski distance Mathematical metric in normed vector space

Notes

1. W.T. Gowers, "A solution to the Schroeder–Bernstein problem for Banach spaces", *Bulletin of the London Mathematical Society*, **28** (1996) pp. 297–304.

References

- Diestel, Joseph (1984), <u>Sequences and series in Banach spaces</u> (https://archive.org/details/sequencesseriesi0000dies), Springer-Verlag, ISBN 0-387-90859-5.
- Dunford, N.; Schwartz, J.T. (1958), *Linear operators, Part I*, Wiley-Interscience.

Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_Banach_spaces&oldid=1236868354"