Teamwork for the final optimization

- A group of two is recommended
- Special cases:
 - Work alone
 - A group of three
- Teamwork starts from the session 6
- Plagiarism checks

Final presentation – time and place

Room: 0406

Date (tentative):

1st round: Tue, 04.02.2020, 3pm-5pm

2nd round: Tue, 11.02.2020, 2pm-4pm

3rd round: Tue, 24.03.2020, 2pm-4pm

Final presentation - prerequisites

- Please hand in or email to us the following items at the lastest the day before your presentation.
 - Scan of the signature page
 - Source codes of the optimized codec
 - Presentation slides
 - Outline of implemented techniques
 - Signed originality statement

Final presentation - requirements

- 20 minutes talk + 10 minutes discussion
- Focus on the final optimization part
 - Pick up one or two topics you are really interested in and go deeper
- Show the RD curve for the "foreman" sequence
 - RD curves before and after the optimization
 - Calculate PSNR for the RGB images
 - When trying advanced algorithms, HD sequences may be helpful.

Example RD-Curve results

- Individual plots for all optimizations + combinations
- Which sequence is adopted
- Label axes, large plots & font-size, distinctive colors, legend, clear curves, line-width

Chap. 6 Codec Optimization

- Ideas source (how to come up with optimization ideas)
- Example topics from standard techniques (H.261, H.263, H.264, HEVC, VVC) and recent publications
- Forbidden topics

Ideas Source

IVC lecture notes and recordings

Many more techniques introduced in the lecture which we do not implement in the lab

Scientific papers (IEEE Xplore, Google scholar, ArXiv)

- Sullivan, G.J.; Ohm, J.R.; Han, W.; Wiegand, T.; , "Overview of the high efficiency video coding(HEVC) standard," IEEE Transactions on Circuits and Systems for Video Technology, vol.22, no.12, pp.1649-1668, Dec. 2012. [Link]
- Chen, Yue, et al. "An overview of core coding tools in the AV1 video codec." 2018
 Picture Coding Symposium (PCS). IEEE, 2018. [Link]

Website

- https://www.vcodex.com/hevc-an-introduction-to-high-efficiency-coding/
- https://bitmovin.com/vvc-video-codec/
- https://www.hhi.fraunhofer.de/en/departments/vca/research-groups/imagevideo-coding/research-topics.html

Example Topics (1)

- Color space (RGB -> YCbCr -> other color spaces)
 - Li, Ming, et al. "A Better Color Space Conversion Based on Learned Variances For Image Compression." CVPR workshops 2019. [Link]
 - Strutz, Tilo, and Alexander Leipnitz. "Adaptive colour-space selection in high efficiency video coding." 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017. [Link]
 - Alexander Suhre, Kivanc Kose, Ahmet E. Cetin, and Metin N. Gurcan "Content-adaptive color transform for image compression," Optical Engineering 50(5), 057003 (1 May 2011). [Link]

•

Example Topics (2)

- Bit-depth Adaptation
 - Zhang, A., Afonso, M., & Bull, D. "Enhanced Video Compression Based on Effective Bit Depth Adaptation". ICIP 2019. [Link1] [Link2]
- Chroma subsampling and reconstruction
 - Zhu, Shuyuan, et al. "Efficient Chroma Sub-Sampling and Luma Modification for Color Image Compression." IEEE Transactions on Circuits and Systems for Video Technology (2019). [Link]
 - Korhonen, Jari. "Improving image fidelity by luma-assisted chroma subsampling." 2015 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2015. [Link]

Example Topics (3)

- Quantization
 - Adaptive quantization table
 - Fu, Qiming, et al. "A novel deblocking quantization table for luminance component in baseline JPEG." J Comm 10.8 (2015): 629-637. [Link]
 - Vector quantization
 - Valin, Jean-Marc, and Timothy B. Terriberry. "Perceptual vector quantization for video coding." Visual Information Processing and Communication VI. Vol. 9410. International Society for Optics and Photonics, 2015. [Link1][Link2]

.....

Example Topics (4)

- Techniques from standard video coding
 - Adaptive partitioning (HEVC, Quadtree) [Link]
 - Block-wise mode decision (H.264, HEVC)
 - Adaptive decision function J=D+λR [Link]
 - Multiple reference frames (bidirectional motion estimation)
- In-loop and Post-filtering
 - H.264, HEVC (in-loop filtering, deblocking, SAO) [Link1] [Link2]
 - Deep-learning based post filtering and in-loop filtering
 - Zhang, Kai, et al. "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising." IEEE Transactions on Image Processing 26.7 (2017): 3142-3155. [Link]
 - Yang, Ren, Mai Xu, and Zulin Wang. "Decoder-side HEVC quality enhancement with scalable convolutional neural network." 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017. [Link]

Example Topics (5)

- DWT
 - JPEG2000, Embedded Zerotree Wavelet [Link]
- Perceptual driven coding
 - Guetzli: Perceptually Guided JPEG Encoder by Google, 2017 [Link]
- Downsampling and super-resolution based
 - Jiang, Feng, et al. "An end-to-end compression framework based on convolutional neural networks." IEEE Transactions on Circuits and Systems for Video Technology 28.10 (2017): 3007-3018. [Link]
- Pure deep learning based
 - Rippel, Oren, and Lubomir Bourdev. "Real-time adaptive image compression." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017. [Link]
 - Minnen, David, Johannes Ballé, and George D. Toderici. "Joint autoregressive and hierarchical priors for learned image compression." Advances in Neural Information Processing Systems. 2018. [Link]

Forbidden topics (These are NOT considered as your workload)

- I-frame: DC/AC, DPCM
- Simple chroma subsampling with resample
- Arithmetic coding
- ME of fractional-pel accuracy

Wish you a great success!