University of Koblenz–Landau, Germany

Modeling the Evolution of Networks as Shrinking Structural Diversity

Jérôme Kunegis

based on work with Damien Fay, Sergej Sizov, Julia Perl, Felix Schwagereit

Everyone likes good things:

Or even better: Diversity!

Structural Diversity

(1) Length of paths

Diversity

"Large world"

No diversity

"Small world"

90-percentile effective diameter $\delta_{0.9}$

(Leskovec, Kleinberg & Faloutsos 2007)

Outline

- (A) How can structural diversity be measured?
- (B) How does diversity change?

(A) How to Measure Diversity in a Network?

- (1) Length of paths
- (2) Numbers of neighbors
- (3) Size of communities
- (4) Random walks
- (5) Controllability

(2) Number of neighbors

Diversity

 $d(i) \approx d(j)$

No diversity

 $d(i) \ll d(j)$

(3) Size of communities

Diversity

No diversity

Fractional Rank

Spectrum of the graph = $\{\lambda_1, \lambda_2, \lambda_3, \ldots\}$

$${\rm rank}_F = \sum_k (\lambda_k \ / \ \lambda_1)^2 = (\|{\bf A}\|_F \ / \ \|{\bf A}\|_2)^2 = 2|E| \ / \ \lambda_1^2$$

(4) Random walks

Diversity

 $P_{\mathrm{ret}}(L)$ large

No diversity

 $P_{
m ret}(L)$ small

Weighted Spectral Distribution

$$P_{\text{ret}}(L) = \Sigma_{(i, j, \dots k)} (d(i) \ d(j) \dots d(k))^{-1}$$

$$= \text{tr}(\mathbf{N}^{L})$$

$$= \Sigma_{k} \lambda_{k}^{L}$$

where λ_k are eigenvalues of $\mathbf{N}=\mathbf{D}^{-1/2}~\mathbf{A}~\mathbf{D}^{-1/2}$.

Here: Use L=4 and $k\leq R$

(5) Controllability

Diversity

No diversity

(Liu, Slotine & Barabási 2011)

Find a maximal directed 2-matching

#Knobs needed = $|V| - \max |M|$

(B) Experiments

27 networks from konect.uni-koblenz.de

	Measure	Observ	ed trends Connected	Predicted trends	Monotonicity Connected
	d	(24) Up	(27) Up		Up
Pref. att.	G J γ H_{er}	(24) Up (23) Up (21) Down (19) Down	(17) — (20) Up (25) Down (12) —	Up Down Down Down	
Connect.	$ \begin{array}{c c} \delta_{0.9} \\ \vartheta_r(n) \\ C_r \\ a \end{array} $	(18) Down (10) — (12) — (15) —	(26) Down (22) Down (22) Down (27) Up	Down Down Down Up	Down Down Up
L. pred.	$c \\ \mathrm{rank_F} \\ lpha$	$(7) - {}^{a}$ $(13) - {}^{(19)}$ Up	(10) Up ^a (19) Down (23) Up	Up Down Up	

^a For the clustering coefficient, the total number of networks is 13, since bipartite networks are excluded.

Thank! You!

Jérôme Kunegis Sergej Sizov Julia Perl Felix Schwagereit Damien Fay @kunegis

University of Koblenz-Landau, Germany Bournemouth University, UK

konect.uni-koblenz.de

Networks Used

		Network	Flags	V	E
[64]	ben	Wikibooks, English	В	167,525	1,164,576
[64]	bfr	Wikibooks, French	В	30,997	201,727
[10]	DG	Digg	U M	30,398	87,627
[64]	el	Wikipedia, Greek	В	149,904	1,837,141
[43]	EL	Wikipedia elections	UM	8,297	107,071
[33]	EN	Enron	U M	87,273	1,148,072
[47]	EP	Epinions trust	U M	131,828	841,372
[56]	Fc	Filmtipset	В	75,360	1,266,753
[9]	HA	Haggle	U	274	28,244
[29]	HY	Hypertext 2009	U	113	20,818
[29]	IF	Infectious	U	410	17,298
[19]	M1	MovieLens 100k	В	2,625	100,000
[19]	M2	MovieLens 1M	В	9,746	1,000,209
[19]	Mti	MovieLens tag-movie	В	24,129	95,580
[19]	Mui	MovieLens user-movie	В	11,610	95,580
[19]	Mut	MovieLens user-tag	В	20,537	95,580
[64]	nen	Wikinews, English	В	173,772	901,416
[64]	nfr	Wikinews, French	В	26,546	193,618
[61]	OI	Facebook friendships	U	63,731	1,545,686
[61]	Ow	Facebook wall posts	U M	63,891	876,993
[64]	qen	Wikiquote, English	В	116,363	549,210
[13]	RM	Reality Mining	U	96	1,086,404
[20]	SD	Slashdot threads	U M	51,083	140,778
[54]	SX	Sexual escorts	В	16,730	50,632
[67]	TO	Internet topology	U	34,761	171,403
[52]	UC	UC Irvine messages	U M	1,899	59,835
[53]	UF	UC Irvine forum	В	1,421	33,720

U Unipartite network

B Bipartite network

M Network with multiple edges

Questions

Did you try the power law exponent instead of the Gini coefficient?

→ Yes, but see (Kunegis & Preusse 2012)

Did you try the absolute value instead of the square in rank_F?

→ Yes, it leads to the nuclear norm instead of the Frobenius norm, which is harder to compute and highly correlates with it

Isn't it hard to find a maximal directed 2-matching?

 \rightarrow It takes a runtime of $O(|V|^{1/2} |E|)$, we use Boost Graph Lib

How is the approximation using only r eigenvalues for the WSD justified?

→ By observing that all eigenvalues shrink in unison

References

- J. Kunegis, S. Sizov, F. Schwagereit, D. Fay. Diversity Dynamics in Online Networks. Proc. Conf. on Hypertext and Social Media, 2012.
- J. Kunegis, J. Preusse. Fairness on the Web: Alternatives to the Power Law. Proc. Web Science Conf., 2012.
- Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási. Controllability of Complex Networks. Nature, 473:167–173, May 2011.
- J. Leskovec, J. Kleinberg, C. Faloutsos. Graph Evolution: Densification and Shrinking Diameters. ACM Trans. Knowledge Discovery from Data, 1(1):1–40, 2007.
- A.-L. Barabási, R. Albert. Emergence of Scaling in Random Networks. Science, 286(5439):509–512, 1999.

Credits

http://www.shewearsshortshorts.com/2012/01/downside.html

https://twitter.com/#!/justinbieber

http://www.iconspedia.com/icon/nerd-4255.html

http://hk.digikey.com/1/3/index1227.html