Ime i prezime	Br.ind.

Univerzitet u Nišu Elektronski fakultet

10.02.2022.

Ispit iz predmeta Računarske mreže

- 1. Navedeni iskazi označavaju protokol ili pojam ili mehanizam koji se koristi u računarskim mrežama. Označiti kako se zove protokol/mehanizam/pojam koji odgovara navedemom iskazu.
 - a)Sprečava gubitak podataka zato što je bafer prijemnika pun. Kontrola toka
 - b)Koristi se za raportiranje o graškama i slanje upita u IP baziranim mrežama. ICMP
 - c)Vrši retransmisiju TCP segmenta pre isteka timeouta. Brza retransmisija
 - d)Mehanizam za detekciju grešaka baziran na binarnoj polinomskoj aritmetici. CRC
 - e) Podela IP paketa na manje delove koji se reasembliraju u odredištu. Fragmentiranje
 - f) Transportni protokol koji se koristi za slanje DNS upita i odgovora. UDP
 - g) Obavlja prevođenje IP adresa u adrese data link nivoa. ARP
 - h) Distribuirani servis koji obavlja preslikavanje imena hosta u IP adresu. DNS
 - i) Protokol rutiranja kod koga je oznaka za beskonačno 16. RIP
- 2. Navesti osnovne karakteristike IPv4 i MAC adresa.

IPv4 32-bitne	MAC 48-bitne	
Logičke adrese	Fizičke adrese	
Na mrežnom nivou se koriste	Adrese data link nivoa	
Hijerarhijske i zato se koriste za rutiranje	Ravne i ne mogu se koristiti za rutiranje	
Softverski se dodeljuju	Dodeljuje ih proizvođač	
Lokalno jedinstvene	Globalno jedinstvene	

3. Navesti dve promene koje su izvršene u zaglavlju IPv6 u odnosu na IPv4 koje su doprinele bržem procesiranju i rutiranju paketa u odnosu na IPv4. Kratko objasniti kako su te promene doprinele bržem radu IPv6 u odnosu na IPv4.

Uklanjanje fragmentacije i checksum polja obezbeđuje brže procesiranje i rutiranje paketa. Checksuma se kod IPv4 mora preračunavati u svakom ruteru. Kod IPv4 fragmentiranje obavljaju ruteri a to je vremenski zahtevna operacija.

4. Slika prikazuje dve mreže sa ruterima koji implementiraju NAT i udaljeni server E sa javnom IP adresom.

Desno su prikazana dijagrami zaglavlja poruka za paket sa hosta u levoj mreži, koji ide na server E. Prvi prikazuje zaglavlje kada paket stigne na ruter, drugi prikazuje kada paket napusti ruter. Dodajti odgovarajući ulaz u levu NAT tabelu koji je u skladu sa ova dva zaglavlja paketa.

 src adr
 dest adr
 src port
 dest port

 10.1.1.1
 4.3.2.1
 5555
 3333

 3.7.5.7
 4.3.2.1
 8888
 3333

Koja je javna IP <u>adresa lev</u>og rutera? 3.7.5.7

Na slici desno su prikazani dijagrami zaglavlja paketa koji potiče sa hosta iz desnog dela mreže, i prenosi se hostu u levom delu mreže. Popuniti prazna polja u zaglavljima paketa. Dodati odgovarajuće ulaze u NAT tabelama oba rutera koji su konzistentni sa ovim zaglavljima paketa.

		src port	dest port
10.1.1.4	3.7.5.7	1212	7878
5.3.5.2	3.7.5.7	5454	7878

 5.3.5.2
 3.7.5.7
 5454
 7878

 5.3.5.2
 10.1.1.2
 5454
 6565

Koja je javna IP adresa desnog rutera?

5.3.5.2

5. TCP stalno prikuplja informacije o RTT (kružnom vremenu propagacije). Za šta se koristi ova informacija?

Za dinamičko određivanje dužine Timeout intervala.

- 6. STP protocol razmenjuje konfiguracione poruke (BPDU Bridge Protocol Data Units) koje sadrže sledeće informacije:
 - identifikator root mosta
 - rastojanje do root mosta
 - identifikator mosta koji šalje BPDU

pri čemu treća informacija sadrži dva dela: identifikator mosta koji šalje BPDU i identifikator porta sa koga je poslat BPDU.

- a) Selektovati sve BPDU koje su bolje od [R=123, C=17, T=15.4]
 - a. [R=123, C=11, T=16.9]
 - b. [R=123, C=17, T=25.1]
 - c. [R=126, C=11, T=6.9]
 - d. {R=123, C=17, T=12.19]

Razmotrimo sada Ethernet mrežu prikazanu na slici dole

Most B32 je primio sledeće BPDU od svojih suseda

[R=9, C=21, T=19.2]

[R=9, C=12, T=42.1]

[R=25, C=5, T=25.2]

[R=9, C=5, T=46.3]

Koja će biti BPDU mosta 32 pod pretpostavkom da je cena veze do svakog suseda jednaka 1:

[R=9, C=6, T=19.32]

[R=9, C=6, T=32]

b) Neka je nakon toga most B32 primio slede'e konfiguracione poruke od svojih suseda:

Koja od sledećih tvrdnji o stanju portova mosta 32 je tačna:

- i. port prema mostu B25 je root port, a portovi prema mostovima B42, B19 i B46 su blokirani
- ii. port prema mostu B25 je root port, a portovi prema mostovima B46, B42 i B25 su ovlašćeni
- iii. port prema mostu B19 je root port, port prema mostu B46 je blokiran, a portovi prema mostovima B42 i B25 su ovlašćeni.

7. a) Pristigao je paket u kome je MF bit postavljen na 0. Da li je to prvi fragment, poslednji fragment ili neki fragment u sredini? Da li se na osnovu primljenog paketa može zaključiti da li je bilo fragmentiranja?

To je poslednji fragment (ako je bilo fragmentiranja) Može se zaključiti dali je bilo fragmentiranja na osnovu vrednosti u polju fragment offset. Ako je fragment offset =0, nije bilo fragmentiranja, u protivnom da.

b) Pristigao je paket u kome je MF bit postavljen na 1. Da li je to prvi fragment, poslednji fragment ili neki fragment u sredini? Da li je paket bio fragmentiran?

Pošto je MF=1, bilo je fragmentiranja. To može biti prvi fragment, ako je u polju offset vrednost = 0, ili neki fragment u sredini ako je u polju offset vrednost \neq 0.

c) Pristigao je paket u kome je MF bit postavljen na 1 a fragment offset na 0. Da li je to prvi fragment, poslednji fragment ili neki fragment u sredini?

To je prvi fragment, jer je offset=0.

d) Pristigao je paket kod koga je offset postavljen na 100, vrednost u polju HLEN je 5, a vrednost u polju total length (ukupna dužina) je 100. Koji je redni broj prvog i poslednjeg bajta ovog paketa?

Hlen govori kolika je veličina zaglavlja IP datagrama izražena u 32-bitnim rečima. To znači da je veličina zaglavlja 20 byte. Ukupna dužina je 100 byte, pa je dužina podataka 100-20=80 byte.

Pošto je dužina fragmenta umnožak od 8 byte, to znači da je redni broj prvog byte 800 a poslednjeg 879.