A. Reflection

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

For each positive integer n consider the integer $\psi(n)$ which is obtained from n by replacing every digit a in the decimal notation of n with the digit (9 - a). We say that $\psi(n)$ is the *reflection* of n. For example, reflection of n equals n0. Note that leading zeros (if any) should be omitted. So reflection of n0 equals n0, reflection of n1 equals n2.

Let us call the *weight* of the number the product of the number and its reflection. Thus, the weight of the number 10 is equal to 10.89 = 890.

Your task is to find the maximum weight of the numbers in the given range [l, r] (boundaries are included).

Input

Input contains two space-separated integers l and r ($1 \le l \le r \le 10^9$) — bounds of the range.

Output

Output should contain single integer number: maximum value of the product $n \cdot \psi(n)$, where $l \le n \le r$.

Please, do not use %11d specificator to read or write 64-bit integers in C++. It is preferred to use cout (also you may use %164d).

Examples

input	
3 7	
output	
20	

input	
1 1	
output	
8	

input		
8 10		
output		
890		

Note

In the third sample weight of 8 equals $8 \cdot 1 = 8$, weight of 9 equals $9 \cdot 0 = 0$, weight of 10 equals 890.

Thus, maximum value of the product is equal to 890.