Booklet of Figures for STAD29/STA 1007 Midterm Exam

List of Figures in this document by page:

List of Figures

1	Packages
2	ICU data (some)
3	ICU model 1
4	ICU model 2
5	ICU data summary
6	ICU predictions (probability of dying) 6
7	Income data
8	Income data: fitted model
9	Income data: predictions
10	Disease data (some)
11	Disease data: tidied dates
12	Ready
13	Survival analysis and output
14	Pain relief times data
15	Pain relief analyses of variance
16	Pain relief further analysis 1
17	Pain relief further analysis 2
18	Programming data (in data frame prog)
19	Programming study ANCOVA 1
20	Programming study ANCOVA 2
21	Programming study: further analysis
22	Disease data survival curve plot
23	Pain relief interaction plot
24	Programming study graph

```
library(MASS)
library(lubridate)
library(tidyverse)
library(broom)
library(survival)
library(survminer)
```

Figure 1: Packages

```
## # A tibble: 200 x 7
##
          id sta
                      age can
                                  cpr
                                         inf
                                               race
##
       <int> <fct> <int> <fct> <fct> <fct> <fct> <fct>
##
    1
           4 Died
                       87 No
                                         Yes
                                               White
                                  No
    2
##
           8 Lived
                       27 No
                                  No
                                        Yes
                                               White
    3
##
          12 Lived
                       59 No
                                  No
                                         No
                                               White
##
    4
          14 Lived
                       77 No
                                  No
                                        No
                                               White
    5
          27 Died
##
                       76 No
                                  No
                                         Yes
                                               White
##
    6
          28 Lived
                       54 No
                                  No
                                        Yes
                                               White
    7
##
          32 Lived
                       87 No
                                  No
                                         Yes
                                               White
##
    8
          38 Lived
                       69 No
                                         Yes
                                               White
                                  No
    9
##
          40 Lived
                       63 No
                                  No
                                         No
                                               White
##
  10
          41 Lived
                       30 No
                                               White
                                  No
                                         No
##
  11
          42 Lived
                       35 No
                                  No
                                        No
                                               Black
## 12
          47 Died
                       78 No
                                  No
                                         Yes
                                               White
##
   13
          50 Lived
                       70 Yes
                                  No
                                        No
                                               White
## 14
                                               White
          51 Lived
                       55 No
                                  No
                                        Yes
## 15
          52 Died
                       63 No
                                               White
                                  No
                                        Yes
## 16
          53 Lived
                       48 Yes
                                  No
                                         No
                                               Black
## 17
          58 Lived
                       66 No
                                  No
                                        No
                                               White
##
  18
          61 Lived
                       61 No
                                               White
                                  No
                                         No
##
  19
                                        No
          73 Lived
                       66 No
                                               White
                                  No
   20
##
          75 Lived
                       52 No
                                  No
                                         Yes
                                               White
## 21
          82 Lived
                       55 No
                                  No
                                        Yes
                                               White
##
  22
          84 Lived
                       59 No
                                  No
                                         Yes
                                               White
##
  23
          92 Lived
                       63 No
                                  No
                                         No
                                               White
   24
##
          96 Lived
                       72 No
                                  No
                                         No
                                               White
##
   25
          98 Lived
                       60 No
                                  Yes
                                         Yes
                                               White
   26
                                  No
##
         100 Lived
                       78 No
                                         No
                                               White
##
  27
         102 Lived
                       16 No
                                  No
                                         No
                                               White
## 28
         111 Lived
                       62 No
                                         No
                                               White
                                  No
## 29
         112 Lived
                       61 No
                                  No
                                         Yes
                                               White
## 30
         127 Died
                       19 No
                                  No
                                         No
                                               White
## # ... with 170 more rows
```

Figure 2: ICU data (some)

```
icu.1=glm(sta~age+can+cpr+inf+race, family=binomial, data=icu)
summary(icu.1)
##
## Call:
## glm(formula = sta ~ age + can + cpr + inf + race, family = binomial,
     data = icu)
##
## Deviance Residuals:
## Min 1Q Median 3Q
## -1.3703 -0.6823 -0.5421 -0.3082
                                     Max
                                  2.5124
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
1.64650 0.62341 2.641 0.00826 **
## cprYes
## infYes
             0.68067 0.38042 1.789 0.07357 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
     Null deviance: 200.16 on 199 degrees of freedom
## Residual deviance: 179.30 on 193 degrees of freedom
## AIC: 193.3
## Number of Fisher Scoring iterations: 5
drop1(icu.1, test="Chisq")
## Single term deletions
## Model:
## sta \tilde{} age + can + cpr + inf + race
##
       Df Deviance AIC
                          LRT Pr(>Chi)
## <none> 179.30 193.30
## age
             185.63 197.63 6.3305 0.011868 *
         1
         1 179.45 191.45 0.1521 0.696555
## can
## cpr
         1 186.14 198.14 6.8360 0.008934 **
## inf
         1 182.53 194.53 3.2263 0.072463 .
## race
         2 180.41 190.41 1.1069 0.574959
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 3: ICU model 1

```
icu.2 <- step(icu.1)</pre>
```

```
summary(icu.2)
##
## Call:
## glm(formula = sta ~ age + cpr + inf, family = binomial, data = icu)
##
## Deviance Residuals:
      Min 1Q
                    Median
                                  3Q
                                          Max
## -1.3633 -0.6810 -0.5524 -0.3091
                                       2.4868
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                          0.77306 -4.626 3.73e-06 ***
## (Intercept) -3.57604
## age
               0.02792
                          0.01136
                                    2.458 0.01397 *
## cprYes
               1.63066
                          0.61553
                                    2.649 0.00807 **
               0.69708
## infYes
                          0.37750
                                    1.847 0.06481 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 200.16 on 199 degrees of freedom
## Residual deviance: 180.51 on 196 degrees of freedom
## AIC: 188.51
## Number of Fisher Scoring iterations: 5
```

Figure 4: ICU model 2

```
##
   id
                      sta
                                                         cpr
                                                                   inf
                                                                              race
                                    age
                                               can
##
   Min. : 4.0
                   Lived:160
                               Min. :16.00
                                              No :180
                                                        No :187
                                                                  No :116
                                                                            White:175
##
   1st Qu.:210.2
                   Died : 40
                               1st Qu.:46.75
                                              Yes: 20
                                                        Yes: 13
                                                                  Yes: 84
                                                                            Black: 15
   Median :412.5
                               Median :63.00
                                                                            Other: 10
##
   Mean
         :444.8
                               Mean
                                    :57.55
##
   3rd Qu.:671.8
                               3rd Qu.:72.00
## Max. :929.0
                               Max. :92.00
```

Figure 5: ICU data summary

```
rowid type predicted std.error conf.low conf.high
        1 response 0.09357968 0.02869834 0.05050719 0.1669266 46.75 No
## 1
## 2
        2 response 0.17170188 0.04839832 0.09616344 0.2876904 46.75 No Yes
## 3
        3 response 0.34524029 0.14429291 0.13111672 0.6481838 46.75 Yes No
## 4
        4 response 0.51425833 0.15016833 0.24578739 0.7747457 46.75 Yes Yes
## 5
        5 response 0.17283618 0.04243829 0.10456819 0.2721284 72.00 No No
## 6
        6 response 0.29554942 0.05745944 0.19631342 0.4188083 72.00 No Yes
## 7
        7 response 0.51624519 0.16335833 0.22845505 0.7936490 72.00 Yes
## 8
        8 response 0.68180517 0.13170056 0.39466548 0.8756540 72.00 Yes Yes
```

Figure 6: ICU predictions (probability of dying)

```
incomes
## # A tibble: 14 x 3
##
     year income counts
     <fct> <ord> <dbl>
##
##
  1 1960 0-3
                     65
   2 1960 3-5
                     82
##
   3 1960 5-7
                    113
                    235
##
   4 1960
          7-10
##
   5 1960 10-12
                   156
   6 1960
          12-15
                   127
##
  7 1960 15+
                    222
   8 1970 0-3
                    43
  9 1970 3-5
                     60
## 10 1970 5-7
                    77
## 11 1970 7-10
                    132
## 12 1970 10-12
                    105
                    163
## 13 1970 12-15
## 14 1970 15+
                    421
```

Figure 7: Income data

```
tidy(income.1)
##
## Re\text{-}fitting to get Hessian
## # A tibble: 7 x 5
## term estimate std.error statistic coef.type
## 1 year1970 0.795
   <chr>
             <dbl> <dbl> <dbl> <chr>
##
              0.795 0.0811
                                9.81 coefficient
                      0.104 -24.5 scale
                      0.0749 -21.6
## 3 3-5|5-7
              -1.62
                                      scale
              -0.928 0.0635 -14.6 scale
## 4 5-7|7-10
## 5 7-10|10-12 -0.0295 0.0586 -0.503 scale
8.69 scale
                              17.9 scale
drop1(income.1, test="Chisq")
## Single term deletions
##
## Model:
## income ~ year
## Df AIC
                 LRT Pr(>Chi)
## <none> 7081.2
## year
       1 7176.9 97.762 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 8: Income data: fitted model

```
##
## Re\text{-}fitting to get Hessian
## # A tibble: 7 x 3
##
   income `1960` `1970`
    <chr>
            <dbl> <dbl>
## 1 0-3
           0.0732 0.0344
## 2 3-5
           0.0925 0.0479
## 3 5-7
           0.118 0.0691
## 4 7-10
          0.209 0.153
## 5 10-12 0.135 0.128
## 6 12-15 0.135 0.159
## 7 15+ 0.238 0.408
```

Figure 9: Income data: predictions

		le: 100 x 8				loo+ follow w	lost follow 4	1 6-11
##	trt	status <chr></chr>	enrolled.m <chr></chr>	enrolled.d <dbl></dbl>		<pre>last_follow.m <chr></chr></pre>	last_follow.d <dbl></dbl>	last_follow.y <dbl></dbl>
##	1 C	recurrence	Apr	30	2018		2	2019
##	2 B	recurrence	Nov	18	2018		20	2019
##	3 D	recurrence	Oct	27		-	3	2019
##	4 C	no recurrence		14	2019		29	2020
##	5 B	recurrence	May	9	2018		5	2019
##	6 B	recurrence	Aug	3	2019		24	2020
##	7 A	recurrence	Mar	22			19	2019
##	8 C	recurrence	Jul	17		0	27	2019
##	9 D	recurrence	Feb	1		*	3	2019
	10 C	recurrence	Aug	23	2018		22	2019
	11 B	recurrence	May	21	2018		17	2019
	12 B	recurrence	Jan	12			15	2019
	13 D	recurrence	Sep	25	2019	-	8	2020
	14 D	recurrence	Oct	29	2018		2	2019
	15 D	recurrence	Sep	13	2018	0	12	2019
	16 B	recurrence	Jun	1			10	2019
	17 A	recurrence	Jul	24	2018	0	5	2019
	18 B	recurrence	Jan	25	2019	*	28	2019
	19 D	recurrence	Aug	2			29	2019
	20 A	recurrence	Sep	6	2018	9	17	2019
##	21 D	recurrence	Nov	10	2018	Aug	28	2019
##	22 B	recurrence	Dec	10	2018	0	20	2019
##	23 C	recurrence	Feb	5	2019	Feb	9	2019
##	24 B	recurrence	Sep	2	2019	Jan	27	2020
##	25 B	recurrence	Mar	11	2019	Jan	5	2020
##	26 C	recurrence	Apr	26	2019	Feb	20	2020
##	27 B	recurrence	Aug	27	2019	Feb	2	2020
##	28 D	no recurrence	May	28	2019	Feb	29	2020
##	29 B	recurrence	Sep	4	2019	Feb	3	2020
##	30 C	recurrence	Mar	31	2019	Jan	21	2020
##	31 D	recurrence	Mar	26	2019	Sep	5	2019
##	32 C	recurrence	Mar	27	2019	Jan	12	2020
##	33 D	recurrence	Apr	18	2019	Feb	12	2020
##	34 A	recurrence	Nov	22	2018	Mar	11	2019
##	35 B	recurrence	Dec	26	2018	Oct	14	2019
##	36 B	recurrence	Sep	17	2018	Jan	3	2019
##	37 B	no recurrence	Sep	23	2019	Feb	29	2020
##	38 D	recurrence	Aug	13	2018	Jan	14	2019
##	39 A	no recurrence	May	5	2019	Feb	29	2020
##	40 C	recurrence	Nov	20	2018	Sep	9	2019
##	# wi	th 60 more rows	S					

Figure 10: Disease data (some)

```
disease1
## # A tibble: 100 x 4
##
     trt
           status
                       enrolled
                                  last_follow
##
     <chr> <chr>
                       <date>
                                  <date>
  1 C recurrence 2018-04-30 2019-02-02
##
##
  2 B
         recurrence 2018-11-18 2019-04-20
          recurrence 2018-10-27 2019-02-03
##
   3 D
         no recurrence 2019-05-14 2020-02-29
## 4 C
## 5 B
         recurrence 2018-05-09 2019-03-05
## 6 B
          recurrence 2019-08-03 2020-01-24
## 7 A
          recurrence 2019-03-22 2019-08-19
## 8 C
          recurrence 2019-07-17 2019-09-27
                       2019-02-01 2019-05-03
## 9 D
          recurrence
## 10 C
                        2018-08-23 2019-01-22
          recurrence
## # ... with 90 more rows
```

Figure 11: Disease data: tidied dates

```
disease
## # A tibble: 100 x 3
   trt
           status
                       days
     <chr> <chr>
##
                        <dbl>
##
   1 C
          recurrence
                        278
##
  2 B
                         153
         recurrence
##
  3 D
                          99
         recurrence
##
  4 C
          no recurrence 291
##
   5 B
                          300
          recurrence
## 6 B
                         174
         recurrence
## 7 A
                         150
          recurrence
## 8 C
                          72
          recurrence
## 9 D
                          91
          recurrence
## 10 C
                          152
           recurrence
## # ... with 90 more rows
```

Figure 12: Disease data ready for survival analysis

```
disease.1 <- coxph(y~trt, data=disease)</pre>
summary(disease.1)
## Call:
## coxph(formula = y ~ trt, data = disease)
##
##
   n= 100, number of events= 93
##
##
          coef exp(coef) se(coef)
                                      z Pr(>|z|)
## trtB 0.7318 2.0789
                          0.2958 2.474
                                        0.0133 *
## trtC 0.5084
               1.6626
                                         0.1098
                          0.3179 1.599
## trtD -0.1544
                 0.8570 0.3071 -0.503
                                         0.6152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
       exp(coef) exp(-coef) lower .95 upper .95
##
## trtB
         2.079
                  0.4810
                            1.1643
                                        3.712
           1.663
## trtC
                    0.6015
                              0.8917
                                        3.100
## trtD
           0.857
                    1.1669
                              0.4694
                                        1.564
## Concordance= 0.63 (se = 0.031)
## Likelihood ratio test= 12.06 on 3 df, p=0.007
              = 12.16 on 3 df, p=0.007
## Wald test
## Score (logrank) test = 12.68 on 3 df,
                                        p=0.005
drop1(disease.1, test="Chisq")
## Single term deletions
##
## Model:
## y ~ trt
                     LRT Pr(>Chi)
     Df
              AIC
## <none> 675.61
          3 681.67 12.059 0.007183 **
## trt
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 13: Survival analysis and output

```
joint %>% print(n=30)
## # A tibble: 30 x 3
##
      treatment sex
                         time
##
      <chr>>
                <chr>
                        <dbl>
##
                male
                           12
   1 A
##
    2 A
                female
                           21
##
   3 A
                           15
                male
##
   4 A
                female
                           19
##
   5 A
                           16
                male
   6 A
                female
                           18
   7 A
##
                male
                           17
##
   8 A
                female
                           24
##
  9 A
                male
                           14
## 10 A
                           25
                female
## 11 B
                male
                           14
## 12 B
                female
                           21
## 13 B
                male
                           17
## 14 B
                female
                           20
## 15 B
                           19
                male
## 16 B
                female
                           23
## 17 B
                           20
                male
## 18 B
                female
                           27
## 19 B
                male
                           17
## 20 B
                           25
                female
## 21 C
                male
                           25
## 22 C
                female
                           37
## 23 C
                male
                           27
## 24 C
                female
                           34
## 25 C
                male
                           29
## 26 C
                female
                           36
## 27 C
                male
                           24
## 28 C
                 female
                           26
## 29 C
                male
                           22
## 30 C
                           29
                 female
```

Figure 14: Pain relief times data

```
joint.1 <- aov(time~treatment*sex, data=joint)</pre>
summary(joint.1)
##
               Df Sum Sq Mean Sq F value Pr(>F)
## treatment
               2 651.5 325.7 34.84 8.0e-08 ***
## sex
               1 313.6
                          313.6 33.54 5.7e-06 ***
## treatment:sex 2 1.9
                           0.9
                                 0.10 0.905
## Residuals 24 224.4
                            9.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
joint.2 <- update(joint.1, .~.-treatment:sex)</pre>
summary(joint.2)
                                      Pr(>F)
             Df Sum Sq Mean Sq F value
             2 651.5 325.7 37.43 2.22e-08 ***
## treatment
             1 313.6 313.6 36.04 2.44e-06 ***
## sex
            26 226.3
## Residuals
                         8.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 15: Pain relief analyses of variance

```
joint %>% filter(sex=="female") -> females
females.1 <- aov(time~treatment, data=females)</pre>
summary(females.1)
##
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
                2 348.1 174.07
                                  13.12 0.000955 ***
## treatment
## Residuals
               12 159.2
                           13.27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(females.1)
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = time ~ treatment, data = females)
##
## $treatment
      diff
                  lwr
                            upr
                                    p adj
## B-A 1.8 -4.345745 7.945745 0.7210392
## C-A 11.0 4.854255 17.145745 0.0012146
## C-B 9.2 3.054255 15.345745 0.0046858
joint %>% filter(sex=="male") -> males
males.1 <- aov(time~treatment, data=males)</pre>
summary(males.1)
##
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
## treatment
               2 305.2 152.60
                                   28.09 2.97e-05 ***
## Residuals
               12
                  65.2
                            5.43
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(males.1)
     Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = time ~ treatment, data = males)
##
## $treatment
##
       diff
                  lwr
                            upr
                                    p adj
## B-A 2.6 -1.333026 6.533026 0.2229758
## C-A 10.6 6.666974 14.533026 0.0000304
## C-B 8.0 4.066974 11.933026 0.0004165
```

Figure 16: Pain relief further analysis 1

```
TukeyHSD(joint.2)
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = time ~ treatment + sex, data = joint)
##
## $treatment
       diff
                 lwr
                            upr
                                   p adj
## B-A 2.2 -1.078283 5.478283 0.2365089
## C-A 10.8 7.521717 14.078283 0.0000000
## C-B 8.6 5.321717 11.878283 0.0000019
##
## $sex
##
                    diff
                              lwr
                                        upr
                                             p adj
## male-female -6.466667 -8.680866 -4.252467 2.4e-06
```

Figure 17: Pain relief further analysis $2\,$

##	# 1	A tibble	e: 36 x 4	ļ	
##				- familiar	program
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	a1	a	14	29
##		a2	a	10	24
##		a3	a	7	14
##		a4	a	18	27
##		a5	a	14	27
##		a6	a	16	28
##		a7	a	13	27
##		a8	a	15	32
##		a9	a	5	13
##		a10	a	18	35
##		a11	a	16	32
##		a12	a	10	17
##	13		b	6	15
##		b2	b	16	28
##		b3	b	9	13
##		b4	b	19	36
##	17		b	13	29
##	18		b	14	27
##		b7	b	15	31
##		b8	b	18	33
##	21		b	17	32
##		b10	b	8	15
		b10	b	15	30
##		b12	b	16	26
##	25		С	15	32
##		c2	С	9	27
##	27		С	7	15
##		c4	С	12	23
##	29		С	12	26
##	30			9	17
##	31		С	12	25
		c8	С		
##			С	3	14
##	33		С	13	29
##		c10	С	10	22
##		c11	С	11	30
##	30	c12	С	8	25

Figure 18: Programming data (in data frame prog)

```
prog.1 <- lm(program~familiar*method, data=prog)</pre>
anova(prog.1)
## Analysis of Variance Table
##
## Response: program
               Df Sum Sq Mean Sq F value
## familiar
                1 1237.72 1237.72 120.5920 4.949e-12 ***
## method
                2 74.50 37.25
                                   3.6292
                                            0.03877 *
## familiar:method 2 6.18 3.09
                                  0.3010 0.74229
## Residuals 30 307.91 10.26
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 19: Programming study ANCOVA 1

```
prog.2 <- lm(program~familiar+method, data=prog)</pre>
anova(prog.2)
## Analysis of Variance Table
##
## Response: program
##
   Df Sum Sq Mean Sq F value
                                         Pr(>F)
## familiar 1 1237.72 1237.72 126.101 1.234e-12 ***
           2 74.50 37.25
                              3.795 0.03319 *
## method
## Residuals 32 314.09
                         9.82
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 20: Programming study ANCOVA 2

```
prog %>% group_by(method) %>%
 summarize(n=n(), mean_program=mean(program), sd_program=sd(program),
          mean_familiar=mean(familiar), sd_familiar=sd(familiar))
## # A tibble: 3 x 6
## method n mean_program sd_program mean_familiar sd_familiar
##
   <chr> <int> <dbl>
                                       <dbl>
                                                        <dbl>
                               <dbl>
       12
## 1 a
                                             13
                      25.4
                                 7.15
                                                         4.18
## 2 b
            12
                      26.2
                                 7.69
                                             13.8
                                                        4.11
## 3 c
            12
                      23.8
                                 5.83
                                             10.1
                                                         3.18
prog.3 <- lm(program~method, data=prog)</pre>
anova(prog.3)
## Analysis of Variance Table
##
## Response: program
           Df Sum Sq Mean Sq F value Pr(>F)
##
           2 38.89 19.444 0.4042 0.6708
## method
## Residuals 33 1587.42 48.104
```

Figure 21: Programming study: further analysis

```
trts <- c("D", "C", "B", "A")
new <- tibble(trt=trts)
new

## # A tibble: 4 x 1
## trt
## <chr>
## 1 D
## 2 C
## 3 B
## 4 A

s <- do.call(survfit, list(formula=disease.1, newdata=new, data=disease))
ggsurvplot(s, conf.int=F)</pre>
```


Figure 22: Disease data survival curve plot

```
## Warning: 'fun.y' is deprecated. Use 'fun' instead.
## 'fun.y' is deprecated. Use 'fun' instead.
```


Figure 23: Pain relief interaction plot

Figure 24: Programming study graph