EXPERIMENT-6

AIM

Implement a classification problem based on logistic regression.

SOFTWARE USED

Google Colab Platform - Python Programming Language

PROGRAM CODE

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt # data visualization
import seaborn as sns # statistical data visualization
%matplotlib inline
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
 for filename in filenames:
    print(os.path.join(dirname, filename))
# Any results you write to the current directory are saved as output.
data = '/kaggle/input/weather-dataset-rattle-package/weatherAUS.csv'
df = pd.read_csv(data)
# view dimensions of dataset
df.shape
# preview the dataset
df.head()
col_names = df.columns
col_names
# find categorical variables
categorical = [var for var in df.columns if df[var].dtype=='0']
print('There are {} categorical variables\n'.format(len(categorical)))
print('The categorical variables are :', categorical)
# view the categorical variables
```

```
df[categorical].head()
X = df.drop(['RainTomorrow'], axis=1)
y = df['RainTomorrow']
# split X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_{train}, X_{test}, y_{train}, y_{test} = train_{test}, y_{test}, y_{test}
# check the shape of X_train and X_test
X_train.shape, X_test.shape
# train a logistic regression model on the training set
from sklearn.linear_model import LogisticRegression
# instantiate the model
logreg = LogisticRegression(solver='liblinear', random_state=0)
# fit the model
logreg.fit(X_train, y_train)
y_pred_test = logreg.predict(X_test)
y_pred_test
# probability of getting output as 0 - no rain
logreg.predict_proba(X_test)[:,0]
# probability of getting output as 1 - rain
logreg.predict_proba(X_test)[:,1]
from sklearn.metrics import accuracy_score
print('Model accuracy score: {0:0.4f}'. format(accuracy_score(y_test, y_pred_test)))
y_pred_train = logreg.predict(X_train)
y_pred_train
print('Training-set accuracy score: {0:0.4f}'. format(accuracy_score(y_train, y_pred_train)))
```

OUTPUT

DISCUSSION and CONCLUSION

The logistic regression model has been applied and executed successfully on the classification problem over the weather dataset of Australia.

CRITERIA	TOTAL MARKS	MARKS OBTAINED	COMMENTS
Concept (A)	2		
Implementation (B)	2		
Performance (C)	2		
Total	6		