# Casos Particulares en SIMPLEX Clase 18

Investigación Operativa UTN FRBA 2021

Elaborado por Docente: Rodrigo Maranzana

Curso: I4051 (Prof. Martin Palazzo)

 $Max Z = 3X_1 + 3X_2$ sujeto a:

 $Y_1$ :  $6X_1 + 16X_2 \le 48$ 

 $Y_2$ :  $12X_1 + 6X_2 \le 42$ 

 $Y_3$ :  $9X_1 + 9X_2 \le 36$ 

$$X_1, X_2 \geq 0$$



$$Max Z = 3X_1 + 3X_2$$
  
 $sujeto a$ :  
 $Y_1: 6X_1 + 16X_2 \le 48$   
 $Y_2: 12X_1 + 6X_2 \le 42$ 

 $Y_3$ :  $9X_1 + 9X_2 \le 42$ 

$$X_1, X_2 \geq 0$$



$$Max Z = 3X_1 + 3X_2$$
  
 $sujeto a$ :  
 $Y_1$ :  $6X_1 + 16X_2 + X_3 = 48$   
 $Y_2$ :  $12X_1 + 6X_2 + X_4 = 42$   
 $Y_3$ :  $9X_1 + 9X_2 + X_5 = 36$ 

 $X_1, X_2 \ge 0$ 

 $Max Z = 3X_1 + 3X_2$ sujeto a:  $Y_1$ :  $6X_1 + 16X_2 + X_3 = 48$  $Y_2$ :  $12X_1 + 6X_2 + X_4 = 42$  $Y_3$ :  $9X_1 + 9X_2 + X_5 = 36$ 

 $X_1, X_2 \ge 0$ 



**Modelo Extendido Matricial** 

 $Max Z = C^T X$ sujeto a: AX = b

X > 0

Valores de matrices:

$$A = \begin{bmatrix} 6 & 16 & 1 & 0 & 0 \\ 12 & 6 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}$$

$$b = \begin{bmatrix} 48 \\ 42 \\ 3 \end{bmatrix}$$

$$Max \ Z = 3X_1 + 3X_2$$
 $sujeto \ a$ :
 $Y_1: \ 6X_1 + 16X_2 + X_3 = 48$ 
 $Y_2: \ 12X_1 + 6X_2 + X_4 = 42$ 
 $Y_3: \ 9X_1 + 9X_2 + X_5 = 36$ 
 $X_1, X_2 \ge 0$ 

$$Max Z = C^T X$$
 $A = \begin{bmatrix} 6 & 16 & 1 & 0 & 0 \\ 12 & 6 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 \end{bmatrix}$ 
 $AX = b$ 
 $X \ge 0$ 
 $b = \begin{bmatrix} 48 \\ 42 \\ 36 \end{bmatrix} C = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \end{bmatrix} X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ Y \end{bmatrix}$ 

| $C_{j}$             |                     | 3     | 3                     | 0     | 0     | 0     | D //                  |                |
|---------------------|---------------------|-------|-----------------------|-------|-------|-------|-----------------------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base | $B_k$ | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | <i>X</i> <sub>5</sub> | $B_k / A_{ij}$ |
| 0                   | $X_3$               | 48    | 6                     | 16    | 1     | 0     | 0                     |                |
| 0                   | $X_4$               | 42    | 12                    | 6     | 0     | 1     | 0                     |                |
| 0                   | $X_5$               | 36    | 9                     | 9     | 0     | 0     | 1                     |                |
| Z                   | $Z_j - C_j$         |       |                       |       |       |       |                       |                |

| $C_{j}$             |             |                    | 3     | 3     | 0     | 0     | 0     | D //         |
|---------------------|-------------|--------------------|-------|-------|-------|-------|-------|--------------|
| C <sub>j</sub> Base | $X_j$ Base  | $\boldsymbol{B}_k$ | $X_1$ | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $B_k/A_{ij}$ |
| 0                   | $X_3$       | 48                 | 6     | 16    | 1     | 0     | 0     |              |
| 0                   | $X_4$       | 42                 | 12    | 6     | 0     | 1     | 0     |              |
| 0                   | $X_5$       | 36                 | 9     | 9     | 0     | 0     | 1     |              |
| 0                   | $Z_j - C_j$ |                    | -3    | -3    | 0     | 0     | 0     |              |

Resolvemos  $Z_i - C_j$  y valor del funcional Z

Existen variables no básicas con  $Z_j - C_j$  negativo, ¡Z puede mejorar!

 $X_1$  y  $X_2$  igual  $Z_j - C_j$ , elegimos  $X_1$  arbitrariamente para entrar a la base

|                     | $C_{j}$               |       |                       | 3     | 0     | 0     | 0                     | D //           |
|---------------------|-----------------------|-------|-----------------------|-------|-------|-------|-----------------------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $B_k$ | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | <i>X</i> <sub>5</sub> | $B_k / A_{ij}$ |
| 0                   | $X_3$                 | 48    | 6                     | 16    | 1     | 0     | 0                     | 8              |
| 0                   | $X_4$                 | 42    | 12                    | 6     | 0     | 1     | 0                     | 3,5            |
| 0                   | <i>X</i> <sub>5</sub> | 36    | 9                     | 9     | 0     | 0     | 1                     | 4              |
| 0                   | $Z_j - C_j$           |       | -3                    | -3    | 0     | 0     | 0                     |                |

Resolvemos  $B_k / A_{ij}$ 

Mínimo positivo  $B_k / A_{ij}$  en  $X_4$ 

Sale  $X_4$ , entra  $X_1$ 



Tabla iteración 0

|                     | $C_{j}$               |                      |                       | 3     | 0     | 0     | 0                     | $B_k$              |
|---------------------|-----------------------|----------------------|-----------------------|-------|-------|-------|-----------------------|--------------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $\boldsymbol{B}_{k}$ | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | <i>X</i> <sub>5</sub> | $/A_{ij}^{\kappa}$ |
| 0                   | $X_3$                 | 48                   | 6                     | 16    | 1     | 0     | 0                     | 8                  |
| 0                   | $X_4$                 | 42                   | 12                    | 6     | 0     | 1     | 0                     | 3,5                |
| 0                   | <i>X</i> <sub>5</sub> | 36                   | 9                     | 9     | 0     | 0     | 1                     | 4                  |
| 0                   | $Z_j - C_j$           |                      | -3                    | -3    | 0     | 0     | 0                     |                    |

0

0

 $C_{j}$ C<sub>i</sub> Base X<sub>i</sub> Base  $/A_{ij}$  $B_k$  $X_1$  $X_2$  $X_3$  $X_4$  $X_5$ 27,0 13 -0,5 0 0  $X_3$ 0 3,5 0,5 80,0 3  $X_1$ 1 0 0 0  $X_5$ 4,5 0 4,5 0 -0,75 1 -1,5 0,25  $Z_i - C_i$ 0 0 0

3

Tabla iteración 1

| $C_{j}$             |                     | 3     | 3                     | 0     | 0     | 0     | D //                  |              |
|---------------------|---------------------|-------|-----------------------|-------|-------|-------|-----------------------|--------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base | $B_k$ | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | <i>X</i> <sub>5</sub> | $B_k/A_{ij}$ |
| 0                   | $X_3$               | 27,0  | 0                     | 13    | 1     | -0,5  | 0                     |              |
| 3                   | $X_1$               | 3,5   | 1                     | 0,5   | 0     | 0,08  | 0                     |              |
| 0                   | $X_5$               | 4,5   | 0                     | 4,5   | 0     | -0,75 | 1                     |              |
| 10,5                | $10,5 	 Z_j - C_j$  |       | 0                     | -1,5  | 0     | 0,25  | 0                     |              |

Resolvemos el valor del funcional Z

Existen variables no básicas con  $Z_j - C_j$  negativo, ¡Z puede mejorar!

 $X_2$  debe entrar a la base

| $C_{j}$             |                     | 3                      | 3     | 0                     | 0     | 0     | D //  |                |
|---------------------|---------------------|------------------------|-------|-----------------------|-------|-------|-------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base | $\boldsymbol{B}_{k}$   | $X_1$ | <i>X</i> <sub>2</sub> | $X_3$ | $X_4$ | $X_5$ | $B_k / A_{ij}$ |
| 0                   | $X_3$               | 27,0                   | 0     | 13                    | 1     | -0,5  | 0     | 2,076          |
| 3                   | $X_1$               | 3,5                    | 1     | 0,5                   | 0     | 0,08  | 0     | 7,000          |
| 0                   | $X_5$               | 4,5                    | 0     | 4,5                   | 0     | -0,75 | 1     | 1,000          |
| 10,5                | $Z_j$ –             | - <i>C<sub>j</sub></i> | 0     | -1,5                  | 0     | 0,25  | 0     |                |

Resolvemos  $B_k / A_{ij}$ 

Mínimo positivo  $B_k / A_{ij}$  en  $X_5$ 

Sale  $X_5$ , entra  $X_2$ 



Tabla iteración 1

| $c_j$               |                       | 3                | 3                     | U                     | U                     | U     |                       |                |
|---------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-------|-----------------------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $B_k$            | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | $X_4$ | <i>X</i> <sub>5</sub> | $B_k / A_{ij}$ |
| 0                   | $X_3$                 | 27,0             | 0                     | 13                    | 1                     | -0,5  | 0                     | 2,076          |
| 3                   | <i>X</i> <sub>1</sub> | 3,5              | 1                     | 0,5                   | 0                     | 0,08  | 0                     | 7,000          |
| 0                   | <i>X</i> <sub>5</sub> | 4,5              | 0                     | 4,5                   | 0                     | -0,75 | 1                     | 1,000          |
| 10,5                | $Z_j$ –               | - C <sub>j</sub> | 0                     | -1,5                  | 0                     | 0,25  | 0                     |                |

 $C_{j}$ C<sub>i</sub> Base  $X_i$  Base  $B_k$  $X_5$  $X_1$  $X_2$  $X_3$  $X_4$ 14,0 0  $X_3$ 0 0 1 1,67 -2,88 3,0 0.16 3 1 0 0 -0,11  $X_1$ 3 1,0  $X_2$ 0 0 -0,16 0,23  $Z_j - C_j$ 0 0 0 0 0,33

Tabla iteración 2

| $C_{j}$             |                       | 3     | 3                     | 0     | 0     | 0     | - · · |                |
|---------------------|-----------------------|-------|-----------------------|-------|-------|-------|-------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $B_k$ | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $B_k / A_{ij}$ |
| 0                   | $X_3$                 | 14,0  | 0                     | 0     | 1     | 1,67  | -2,88 |                |
| 3                   | <i>X</i> <sub>1</sub> | 3,0   | 1                     | 0     | 0     | 0,16  | -0,11 |                |
| 3                   | $X_2$                 | 1,0   | 0                     | 1     | 0     | -0,16 | 0,23  |                |
| 12                  | $Z_j - C_j$           |       | 0                     | 0     | 0     | 0     | 0,33  |                |

Resolvemos el valor del funcional Z

No existen variables no básicas con  $Z_j - C_j$  negativo, ¡pero sí con 0 alternativo (0\*)!

Encontramos caso particular de soluciones alternativas

| $C_{j}$             |                       | 3     | 3     | 0     | 0     | 0     | 5.44                  |                |
|---------------------|-----------------------|-------|-------|-------|-------|-------|-----------------------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $B_k$ | $X_1$ | $X_2$ | $X_3$ | $X_4$ | <i>X</i> <sub>5</sub> | $B_k / A_{ij}$ |
| 0                   | <i>X</i> <sub>3</sub> | 14,0  | 0     | 0     | 1     | 1,67  | -2,88                 | 8,383          |
| 3                   | <i>X</i> <sub>1</sub> | 3,0   | 1     | 0     | 0     | 0,16  | -0,11                 | 18,750         |
| 3                   | <i>X</i> <sub>2</sub> | 1,0   | 0     | 1     | 0     | -0,16 | 0,23                  | -6,250         |
| 12                  | $Z_j - C_j$           |       | 0     | 0     | 0     | 0     | 0,33                  |                |

Resolvemos  $B_k / A_{ij}$ 

Mínimo positivo  $B_k / A_{ij}$  en  $X_5$ 

Sale  $X_3$ , entra  $X_4$  (por el 0\*). Las dos son variables Slack.



Tabla iteración 2

| $c_{j}$             |                       | 3     | 3                     | 0     | 0     | 0                     |                       |                |
|---------------------|-----------------------|-------|-----------------------|-------|-------|-----------------------|-----------------------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $B_k$ | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | <i>X</i> <sub>4</sub> | <i>X</i> <sub>5</sub> | $B_k / A_{ij}$ |
| 0                   | <i>X</i> <sub>3</sub> | 14,0  | 0                     | 0     | 1     | 1,67                  | -2,88                 | 8,383          |
| 3                   | <i>X</i> <sub>1</sub> | 3,0   | 1                     | 0     | 0     | 0,16                  | -0,11                 | 18,750         |
| 3                   | $X_2$                 | 1,0   | 0                     | 1     | 0     | -0,16                 | 0,23                  | -6,250         |
| 12                  | $Z_j - C_j$           |       | 0                     | 0     | 0     | 0                     | 0,33                  |                |

Tabla iteración 3

| $C_{j}$             |                       | 3     | 3                     | 0     | 0      | 0     |       |                |
|---------------------|-----------------------|-------|-----------------------|-------|--------|-------|-------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $B_k$ | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$  | $X_4$ | $X_5$ | $B_k / A_{ij}$ |
| 0                   | $X_4$                 | 8,38  | 0                     | 0     | 0,6    | 1     | -1,72 |                |
| 3                   | <i>X</i> <sub>1</sub> | 1,66  | 1                     | 0     | -0,096 | 0     | 0,17  |                |
| 3                   | <i>X</i> <sub>2</sub> | 2,34  | 0                     | 1     | 0,096  | 0     | -0,05 |                |
|                     | $Z_j - C_j$           |       | 0                     | 0     | 0      | 0     | 0,33  |                |

| $C_{j}$             |                     | 3     | 3                     | 0     | 0      | 0     |                       |                |
|---------------------|---------------------|-------|-----------------------|-------|--------|-------|-----------------------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base | $B_k$ | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$  | $X_4$ | <i>X</i> <sub>5</sub> | $B_k / A_{ij}$ |
| 0                   | $X_4$               | 8,38  | 0                     | 0     | 0,6    | 1     | -1,72                 |                |
| 3                   | $X_1$               | 1,66  | 1                     | 0     | -0,096 | 0     | -2,6                  |                |
| 3                   | $X_2$               | 2,34  | 0                     | 1     | 0,096  | 0     | -0,05                 |                |
| 12                  | $ 2_j - C_j $       |       | 0                     | 0     | 0      | 0     | 0,33                  |                |

Resolvemos el valor del funcional Z

 $X_3$  con 0 alternativo (0\*), la solución de la iteración anterior

La solución se mantiene igual Z = 12



¿Cómo se escribe la solución?

$$Z^* = 12$$

Combinación lineal de las soluciones en los vértices:

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} = \alpha \begin{bmatrix} 3,00 \\ 1,00 \\ 14,00 \\ 0,00 \\ 0,00 \end{bmatrix} + (1-\alpha) \begin{bmatrix} 1,66 \\ 2,34 \\ 0,00 \\ 8,38 \\ 0,00 \end{bmatrix} \qquad 0 \le \alpha \le 1$$

Ej: 
$$\alpha = 0.5$$

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} 2.33 \\ 1.67 \\ 7.00 \\ 4.19 \end{bmatrix}$$

 $\boldsymbol{X_1}$ 

## Puntos degenerados

$$Max Z = 12X_1 + 4X_2$$
  
 $sujeto a$ :  
 $10X_1 + 4X_2 \le 35$   
 $12X_1 + 6X_2 \le 42$   
 $9X_1 + 9X_2 \le 36$ 

 $X_1, X_2 \ge 0$ 



$$Max Z = 12X_1 + 4X_2$$
  
 $sujeto a$ :  
 $10X_1 + 4X_2 \le 35$   
 $12X_1 + 6X_2 \le 42$   
 $9X_1 + 9X_2 \le 36$ 

 $X_1, X_2 \geq 0$ 

Modelo Extendido

$$Max Z = 12X_1 + 4X_2$$
  
 $sujeto a$ :  
 $Y_1: 10X_1 + 4X_2 + X_3 = 35$   
 $Y_2: 12X_1 + 6X_2 + X_4 = 42$   
 $Y_3: 9X_1 + 9X_2 + X_5 = 36$ 

$$X_1, X_2 \geq 0$$

Max 
$$Z = 12X_1 + 4X_2$$
  
sujeto a:  
 $Y_1: 10X_1 + 4X_2 + X_3 = 35$   
 $Y_2: 12X_1 + 6X_2 + X_4 = 42$   
 $Y_3: 9X_1 + 9X_2 + X_5 = 36$   
 $X_1, X_2 \ge 0$ 



**Modelo Extendido Matricial** 

 $Max Z = C^T X$ sujeto a: AX = b

X > 0

Valores de matrices:

$$A = \begin{bmatrix} 10 & 4 & 1 & 0 & 0 \\ 12 & 6 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 12 \\ 4 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}$$

$$b = \begin{bmatrix} 35 \\ 42 \end{bmatrix}$$

$$Max \ Z = 12X_1 + 4X_2$$
  
 $sujeto \ a$ :  
 $Y_1: 10X_1 + 4X_2 + X_3 = 35$   
 $Y_2: 12X_1 + 6X_2 + X_4 = 42$   
 $Y_3: 9X_1 + 9X_2 + X_5 = 36$   
 $X_1, X_2 \ge 0$ 

|                     | $C_{j}$             |                        |                       | 4     | 0     | 0     | 0     | D /4         |
|---------------------|---------------------|------------------------|-----------------------|-------|-------|-------|-------|--------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base | $\boldsymbol{B}_{k}$   | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $B_k/A_{ij}$ |
| 0                   | $X_3$               | 35                     | 10                    | 4     | 1     | 0     | 0     |              |
| 0                   | $X_4$               | 42                     | 12                    | 6     | 0     | 1     | 0     |              |
| 0                   | $X_5$               | 36                     | 9                     | 9     | 0     | 0     | 1     |              |
| Z                   | $Z_j$ -             | - <i>C<sub>j</sub></i> |                       |       |       |       |       |              |

|                     | $C_{j}$             |                        |       | 4     | 0     | 0     | 0     | D //         |
|---------------------|---------------------|------------------------|-------|-------|-------|-------|-------|--------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base | $B_k$                  | $X_1$ | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $B_k/A_{ij}$ |
| 0                   | $X_3$               | 35                     | 10    | 4     | 1     | 0     | 0     |              |
| 0                   | $X_4$               | 42                     | 12    | 6     | 0     | 1     | 0     |              |
| 0                   | $X_5$               | 36                     | 9     | 9     | 0     | 0     | 1     |              |
| 0                   | $Z_j$ -             | - <i>C<sub>j</sub></i> | -12   | -4    | 0     | 0     | 0     |              |

Resolvemos  $Z_i - C_i$  y valor del funcional Z

Existen variables no básicas con  $Z_j - C_j$  negativo, ¡Z puede mejorar!

 $X_1$  con menor  $Z_j - C_j$ , para entrar a la base

|                     | $C_{j}$               |                        |                       | 4     | 0     | 0     | 0     | D //           |
|---------------------|-----------------------|------------------------|-----------------------|-------|-------|-------|-------|----------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $B_k$                  | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $B_k / A_{ij}$ |
| 0                   | <i>X</i> <sub>3</sub> | 35                     | 10                    | 4     | 1     | 0     | 0     | 3,5            |
| 0                   | $X_4$                 | 42                     | 12                    | 6     | 0     | 1     | 0     | 3,5            |
| 0                   | $X_5$                 | 36                     | 9                     | 9     | 0     | 0     | 1     | 4              |
| 0                   | $Z_j$ -               | - <i>C<sub>j</sub></i> | -12                   | -4    | 0     | 0     | 0     |                |

Resolvemos  $B_k / A_{ij}$ 

Mínimo positivo  $B_k$  / $A_{ij}$  en  $X_3$  y  $X_4$ , elegimos arbitrariamente  $X_3$ .

Sale  $X_3$ , entra  $X_1$ 



Tabla iteración 0

| $\mathcal{C}_{j}$   |                                              | 12                     | 4                     | U           | U           | U           | $B_k$                 |           |
|---------------------|----------------------------------------------|------------------------|-----------------------|-------------|-------------|-------------|-----------------------|-----------|
| C <sub>j</sub> Base | ase $X_j$ Base                               | $\boldsymbol{B}_{k}$   | <i>X</i> <sub>1</sub> | $X_2$       | $X_3$       | $X_4$       | <i>X</i> <sub>5</sub> | $/A_{ij}$ |
| 0                   | $X_3$                                        | 35                     | 10                    | 4           | 1           | 0           | 0                     | 3,5       |
| 0                   | <i>X</i> <sub>4</sub>                        | 42                     | 12                    | 6           | 0           | 1           | 0                     | 3,5       |
| 0                   | <i>X</i> <sub>5</sub>                        | 36                     | 9                     | 9           | 0           | 0           | 1                     | 4         |
| 0                   | $Z_j$ -                                      | - <i>C<sub>j</sub></i> | -12                   | -4          | 0           | 0           | 0                     |           |
| 0 0                 | X <sub>3</sub> X <sub>4</sub> X <sub>5</sub> | 35<br>42<br>36         | 10<br>12<br>9         | 4<br>6<br>9 | 1<br>0<br>0 | 0<br>1<br>0 | 0 0 1                 | 3,5       |

 $C_{i}$ 12 0  $B_k$  $/A_{ij}$ C<sub>i</sub> Base X<sub>i</sub> Base  $\boldsymbol{B_k}$  $X_1$  $X_2$  $X_3$  $X_4$  $X_5$ 12 3,5 0,4 0,1 0 0  $X_1$ 1,2 0  $X_4$ 0 -1,2 0 0  $X_5$ 4,5 5,4 -0,9 0 0 8,0 1,2  $Z_i - C_i$ 0 0 0

Tabla iteración 1

|                     | $C_{j}$             |                        |                       | 4     | 0     | 0     | 0     | D //         |
|---------------------|---------------------|------------------------|-----------------------|-------|-------|-------|-------|--------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base | $\boldsymbol{B}_{k}$   | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $B_k/A_{ij}$ |
| 12                  | $X_1$               | 3,5                    | 1                     | 0,4   | 0,1   | 0     | 0     |              |
| 0                   | $X_4$               | 0                      | 0                     | 1,2   | -1,2  | 1     | 0     |              |
| 0                   | $X_5$               | 4,5                    | 0                     | 5,4   | -0,9  | 0     | 1     |              |
| 42                  | $Z_j$ –             | - <i>C<sub>j</sub></i> | 0                     | 0,8   | 1,2   | 0     | 0     |              |

Resolvemos  $Z_i - C_i$  y valor del funcional Z

Es el óptimo.

 $X_4$  es básica y tiene valor 0, solución degenerada.



Volvemos al punto donde teníamos dos  $B_k$  / $A_{ij}$  iguales:

| $C_{j}$             |                       |                        | 12                    | 4     | 0     | 0     | 0     | D //         |
|---------------------|-----------------------|------------------------|-----------------------|-------|-------|-------|-------|--------------|
| C <sub>j</sub> Base | X <sub>j</sub> Base   | $\boldsymbol{B}_{k}$   | <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $B_k/A_{ij}$ |
| 0                   | <i>X</i> <sub>3</sub> | 35                     | 10                    | 4     | 1     | 0     | 0     | 3,5          |
| 0                   | $X_4$                 | 42                     | 12                    | 6     | 0     | 1     | 0     | 3,5          |
| 0                   | $X_5$                 | 36                     | 9                     | 9     | 0     | 0     | 1     | 4            |
| 0                   | $Z_j$ –               | - <i>C<sub>j</sub></i> | -12                   | -4    | 0     | 0     | 0     |              |

Computacionalmente aplicamos un algoritmo heurístico para evitar el ciclo:

- 1. Aislamos las filas de los candidatos a salir.
- 2. Dividimos la fila por el pivote de cada candidato
- 3. De izquierda a derecha, ante la primera desigualdad entre los dos conservamos el mínimo.

1- Aislamos las filas de los candidatos a salir.

| C <sub>j</sub> Base | X <sub>j</sub> Base | $B_k$ | $X_1$ | $X_2$ | $X_3$ | $X_4$ | $X_5$ |     |
|---------------------|---------------------|-------|-------|-------|-------|-------|-------|-----|
| 0                   | $X_3$               | 35    | 10    | 4     | 1     | 0     | 0     | 3,5 |
| 0                   | $X_4$               | 42    | 12    | 6     | 0     | 1     | 0     | 3,5 |

2- Dividimos la fila por el pivote de cada candidato

| C <sub>j</sub> Base | X <sub>j</sub> Base | $\boldsymbol{B}_{k}$ | $X_1$ | $X_2$ | $X_3$ | $X_4$ | $X_5$ |  |
|---------------------|---------------------|----------------------|-------|-------|-------|-------|-------|--|
| 0                   | $X_3$               | 3,5                  | 1     | 0,4   | 0,1   | 0     | 0     |  |
| 0                   | $X_4$               | 3,5                  | 1     | 0,5   | 0     | 0,08  | 0     |  |

3- De izquierda a derecha, ante la primera desigualdad entre los dos conservamos el mínimo.

| C <sub>j</sub> Base | X <sub>j</sub> Base | $\boldsymbol{B}_{k}$ | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | $X_3$ | $X_4$ | <i>X</i> <sub>5</sub> |  |
|---------------------|---------------------|----------------------|-----------------------|-----------------------|-------|-------|-----------------------|--|
| 0                   | $X_3$               | 3,5                  | 1                     | 0,4                   | 0,1   | 0     | 0                     |  |
| 0                   | $X_4$               | 3,5                  | 1                     | 0,5                   | 0     | 0,08  | 0                     |  |

-> Debe salir X<sub>3</sub>