Pure Diffusion | Formulation

$$\begin{cases} -\psi'' = s & \text{in } \Omega =]x_{\text{lf}}, x_{\text{rg}} + \epsilon[\\ \psi = \psi_{\text{lf},0} & \text{on } x = x_{\text{lf}} \\ -\psi' = \psi_{\text{rg},1} & \text{on } x = x_{\text{rg}} + \epsilon \end{cases}$$

Mesh

- C_i cell i
- I number of cells
- $x_{i-\frac{1}{2}}$, $x_{i+\frac{1}{2}}$ boundary points of cell i
- h_i length of cell i
- m_i centroid of cell i

2/13

Polynomial Reconstructions | Inner Vertices

$$\psi_{i+\frac{1}{2},d}(x) = \sum_{\alpha=0}^{d} \mathcal{R}_{i+\frac{1}{2},\alpha}(x - x_{i+\frac{1}{2}})^{\alpha}$$

$$\min_{\mathcal{R}_{i+\frac{1}{2},0},...,\mathcal{R}_{i+\frac{1}{2},d}} \sum_{j \in \widehat{\mathcal{S}}_{i+\frac{1}{2}}} \omega_{j} \left[\frac{1}{h_{j}} \int_{c_{j}} \psi_{i+\frac{1}{2},d}(x) dx - \psi_{j} \right]^{2}$$

This will be needed to approximate $\mathbf{F}_{i+\frac{1}{2}} pprox \mathcal{F}_{i+\frac{1}{2}} = \widetilde{\psi}'_{i+\frac{1}{2}}(x_{i+\frac{1}{2}})$

Polynomial Reconstructions | Left Boundary

$$\psi_{\frac{1}{2},d}(x) = \sum_{\alpha=0}^d \mathcal{R}_{\frac{1}{2},\alpha}(x-x_{\mathsf{lf}})^{\alpha}$$

$$\begin{aligned} \min_{\mathcal{R}_{\frac{1}{2},0},\dots,\mathcal{R}_{\frac{1}{2},d}} \quad & \sum_{j \in \widehat{\mathcal{S}}_{\frac{1}{2}}} \omega_j \left[\frac{1}{h_j} \int_{c_j} \psi_{\frac{1}{2},d}(x) \mathrm{d}x - \psi_j \right]^2 \\ \text{s.t.} \quad & \psi_{\frac{1}{2},d}(x_{\mathsf{lf}}) = \psi_{\mathsf{lf},0} \end{aligned}$$

This will be needed to approximate $\mathbf{F}_{rac{1}{2}} pprox \mathcal{F}_{rac{1}{2}} = \psi'_{rac{1}{2}}(x_{ ext{lf}})$

Polynomial Reconstructions | Right Boundary

$$\psi_{I+rac{1}{2},\mathsf{d}}(x) = \sum_{lpha=0}^{\mathsf{d}} \mathcal{R}_{I+rac{1}{2},lpha}(x-x_{\mathsf{rg}})^{lpha}$$

$$\begin{aligned} \min_{\mathcal{R}_{I+\frac{1}{2},0},\dots,\mathcal{R}_{I+\frac{1}{2},\mathsf{d}}} \quad & \sum_{j \in \widehat{\mathcal{S}}_{I+\frac{1}{2}}} \omega_{j} \left[\frac{1}{h_{j}} \int_{c_{j}} \psi_{I+\frac{1}{2},\mathsf{d}}(x) \mathrm{d}x - \psi_{j} \right]^{2} \\ \mathrm{s.t.} \quad & -\psi'_{I+\frac{1}{2},\mathsf{d}}(x_{\mathsf{rg}} + \epsilon) = \psi_{\mathsf{rg},1} \end{aligned}$$

This will be needed to approximate $\mathbf{F}_{I+\frac{1}{2}} pprox \mathcal{F}_{I+\frac{1}{2}} = \widehat{\psi}'_{I+\frac{1}{2}}(x_{rg})$

Tests

In this test we will consider:

•
$$\overline{\Omega} = [0, 1 + \epsilon]$$

•
$$\psi(x) = \exp(x)$$

•
$$\psi(0) = 1$$

$$\bullet \ \varphi_{\text{n2}} = -\exp(1+\epsilon)$$

Tests | $\epsilon = 0$ | degree d

uniform mesh

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	1.09E-02	_
\mathbb{P}_1	20	2.68E-03	2.02
ш 1	30	1.19E-03	2.01
	40	6.67E-04	2.01
	10	4.93E-03	_
\mathbb{P}_2	20	1.38E-03	1.83
ш 2	30	8.01E-04	1.35
	40	3.88E-04	2.52
	10	2.99E-05	_
\mathbb{P}_3	20	1.93E-06	3.95
п.3	30	3.86E-07	3.97
	40	1.23E-07	3.98
	10	1.15E-05	_
\mathbb{P}_{4}	20	1.20E-06	3.26
IF4	30	2.00E-07	4.42
	40	6.69E-08	3.80
	10	9.53E-08	_
TID_	20	2.00E-09	5.58
\mathbb{P}_5	30	1.91E-10	5.79
	40	3.53E-11	5.86

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	2.18E-02	_
\mathbb{P}_1	20	5.50E-03	1.99
IF1	30	2.56E-03	1.88
	40	1.60E-03	1.64
	10	4.28E-03	_
\mathbb{P}_2	20	2.05E-03	1.06
IF 2	30	1.70E-03	0.45
	40	4.96E-04	4.29
	10	4.11E-05	_
\mathbb{P}_3	20	2.29E-06	4.16
ш3	30	7.21E-07	2.85
	40	1.76E-07	4.91
	10	1.07E-05	_
\mathbb{P}_{4}	20	8.77E-07	3.61
11-4	30	2.26E-07	3.34
	40	6.37E-08	4.40
	10	7.38E-07	_
TD	20	1.01E-08	6.20
\mathbb{P}_5	30	1.05E-09	5.58
	40	2.04E-10	5.69

Tests $|\epsilon = \frac{h}{2}|$ degree d

uniform mesh

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	1.22E-01	_
\mathbb{P}_1	20	6.44E-02	0.92
ш 1	30	4.37E-02	0.95
	40	3.31E-02	0.97
	10	5.10E-03	_
\mathbb{P}_2	20	8.54E-04	2.58
IF 2	30	4.07E-04	1.83
	40	1.33E-04	3.89
	10	1.33E-04	_
\mathbb{P}_3	20	1.02E-05	3.70
ш 3	30	2.16E-06	3.83
	40	7.08E-07	3.88
	10	1.62E-05	_
\mathbb{P}_{4}	20	9.43E-07	4.10
IF 4	30	9.41E-08	5.69
	40	2.36E-08	4.81
	10	3.29E-07	
ΠD	20	6.16E-09	5.74
\mathbb{P}_5	30	5.75E-10	5.85
	40	1.06E-10	5.89

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	1.22E-01	_
\mathbb{P}_1	20	6.44E-02	0.92
IF 1	30	4.37E-02	0.95
	40	3.30E-02	0.98
	10	4.58E-03	_
\mathbb{P}_2	20	2.19E-03	1.07
IF 2	30	1.83E-03	0.44
	40	1.46E-04	8.79
	10	6.19E-05	_
\mathbb{P}_3	20	5.52E-06	3.49
П3	30	7.02E-07	5.09
	40	2.41E-07	3.72
	10	6.79E-06	_
\mathbb{P}_4	20	3.29E-07	4.37
1174	30	5.89E-08	4.25
	40	1.03E-08	6.07
	10	5.66E-07	_
TID_	20	8.38E-09	6.08
\mathbb{P}_5	30	9.61E-10	5.34
	40	1.87E-10	5.68

Tests | $\epsilon = \frac{h}{2}$ | degree d+1

uniform mesh

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	9.06E-03	_
$\mathbb{P}_1/\mathbb{P}_2$	20	2.28E-03	1.99
II 1 / II 2	30	1.01E-03	2.00
	40	5.71E-04	2.00
	10	2.36E-03	_
$\mathbb{P}_2/\mathbb{P}_3$	20	3.87E-04	2.61
IF 2 / IF 3	30	2.44E-04	1.14
	40	6.54E-05	4.57
	10	1.91E-05	_
$\mathbb{P}_3/\mathbb{P}_4$	20	1.14E-06	4.07
113/114	30	2.21E-07	4.04
	40	6.94E-08	4.03
	10	5.81E-06	_
$\mathbb{P}_4/\mathbb{P}_5$	20	5.99E-07	3.28
114/115	30	3.38E-08	7.09
	40	7.70E-09	5.14
	10	1.50E-07	_
TD_ /TD .	20	2.73E-09	5.78
$\mathbb{P}_5/\mathbb{P}_6$	30	2.54E-10	5.86
	40	4.64E-11	5.90

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	2.02E-02	_
m /m	20	5.28E-03	1.94
$\mathbb{P}_1/\mathbb{P}_2$	30	2.45E-03	1.89
	40	1.46E-03	1.80
	10	3.29E-03	_
m /m	20	2.15E-03	0.61
$\mathbb{P}_2/\mathbb{P}_3$	30	1.82E-03	0.40
	40	1.30E-04	9.19
	10	4.21E-05	_
m /m	20	2.34E-06	4.17
$\mathbb{P}_3/\mathbb{P}_4$	30	7.18E-07	2.92
	40	1.77E-07	4.87
	10	5.24E-06	_
m /m	20	2.05E-07	4.68
$\mathbb{P}_4/\mathbb{P}_5$	30	6.60E-08	2.79
	40	1.22E-08	5.86
	10	5.45E-07	_
TD. /TD.	20	8.16E-09	6.06
$\mathbb{P}_5/\mathbb{P}_6$	30	9.52E-10	5.30
	40	1.86E-10	5.68

Tests | $\epsilon = h$ | degree d

uniform mesh

	I	$E_{0,\infty}$	O _{0,∞}
	10	2.61E-01	_
\mathbb{P}_1	20	1.33E-01	0.97
ш 1	30	8.94E-02	0.98
	40	6.73E-02	0.99
	10	9.72E-03	_
\mathbb{P}_2	20	1.38E-03	2.81
IF 2	30	5.72E-04	2.17
	40	2.01E-04	3.64
	10	1.78E-04	_
\mathbb{P}_3	20	1.30E-05	3.78
ш 3	30	2.70E-06	3.87
	40	8.78E-07	3.91
	10	1.90E-05	_
\mathbb{P}_{4}	20	1.03E-06	4.20
IF 4	30	1.05E-07	5.62
	40	2.63E-08	4.82
	10	4.00E-07	
ΠD	20	7.42E-09	5.75
\mathbb{P}_5	30	6.91E-10	5.86
	40	1.27E-10	5.90

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	2.66E-01	_
\mathbb{P}_1	20	1.34E-01	0.98
IF1	30	9.01E-02	0.99
	40	6.75E-02	1.00
	10	5.97E-03	_
\mathbb{P}_2	20	2.26E-03	1.40
IF2	30	1.84E-03	0.51
	40	1.90E-04	7.89
	10	8.01E-05	_
\mathbb{P}_3	20	6.90E-06	3.54
IF3	30	7.87E-07	5.35
	40	2.99E-07	3.37
	10	8.09E-06	_
\mathbb{P}_4	20	3.70E-07	4.45
IF 4	30	5.78E-08	4.58
	40	1.09E-08	5.80
	10	5.69E-07	_
\mathbb{P}_{5}	20	8.42E-09	6.08
ш 5	30	9.63E-10	5.35
	40	1.88E-10	5.69

Tests $| \epsilon = h |$ degree d+1

uniform mesh

non-uniform mesh

uniform mesh

	I	$E_{0,\infty}$	O _{0,∞}		I	$E_{0,\infty}$	O _{0,∞}		I	$E_{c,\infty}$	$O_{c,\infty}$
	10	8.99E-03	_		10	2.02E-02	_		10	7.64E-02	_
TD /TD	20	2.27E-03	1.98	$\mathbb{P}_1/\mathbb{P}_2$	20	5.27E-03	1.93	$\mathbb{P}_1/\mathbb{P}_2$	20	3.74E-02	1.03
$\mathbb{P}_1/\mathbb{P}_2$	30	1.01E-03	1.98 1.99	F1/F2	30	2.45E-03	1.89	F1/F2	30	2.48E-02	1.02
	40	5.71E-04	2.00		40	1.46E-03	1.80		40	1.85E-02	1.01
	10	2.42E-03	_		10	3.33E-03	_		10	1.10E-02	_
TD /TD	20	4.02E-04	2.59	$\mathbb{P}_2/\mathbb{P}_3$	20	2.15E-03	0.63	$\mathbb{P}_2/\mathbb{P}_3$	20	3.05E - 03	1.84
$\mathbb{P}_2/\mathbb{P}_3$	30	2.55E-04	1.13	F2/F3	30	1.83E-03	0.41	F2/F3	30	1.41E-03	1.91
	40	6.98E-05	4.50		40	1.31E-04	9.15		40	8.05E-04	1.94
	10	1.90E-05			10	4.22E-05	_		10	5.29E-04	
TD /TD	20	1.13E-06	4.07	m /m	20	2.35E-06	4.17	מוד/ מוד	20	6.13E-05	3.11
$\mathbb{P}_3/\mathbb{P}_4$	30	2.21E-07	4.04	$\mathbb{P}_3/\mathbb{P}_4$	30	7.18E-07	2.92	$\mathbb{P}_3/\mathbb{P}_4$	30	1.77E-05	3.06
	40	6.93E-08	4.02		40	1.77E-07	4.87		40	7.37E-06	3.04
	10	5.93E-06			10	5.23E-06			10	9.27E-05	
TD /TD	20	5.85E-07	3.34	m /m	20	2.07E-07	4.66	מוד/ מוד	20	5.12E-06	4.18
$\mathbb{P}_4/\mathbb{P}_5$	30	3.34E-08	7.06	$\mathbb{P}_4/\mathbb{P}_5$	30	6.60E-08	2.81	$\mathbb{P}_4/\mathbb{P}_5$	30	9.71E-07	4.10
	40	7.62E-09	5.13		40	1.24E-08	5.82		40	3.01E-07	4.07
	10	1.62E-07			10	5.45E-07			10	2.96E-06	
m /m	20	2.96E-09	5.78	$\mathbb{P}_5/\mathbb{P}_6$	20	8.16E-09	6.06	מוד/ מוד	20	8.15E-08	5.18
$\mathbb{P}_5/\mathbb{P}_6$	30	2.75E-10	5.86	IF5/IF6	30	9.52E-10	5.30	$\mathbb{P}_5/\mathbb{P}_6$	30	1.03E-08	5.10
	40	5.03E-11	5.90		40	1.86E-10	5.68		40	2.39E-09	5.07

Tests | $\epsilon = h^2$ | degree d

uniform mesh

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	1.51E-02	_
\mathbb{P}_1	20	3.95E-03	1.93
ш 1	30	1.78E-03	1.96
	40	1.01E-03	1.97
	10	2.56E-03	_
\mathbb{P}_2	20	9.50E-04	1.43
ш 2	30	6.20E-04	1.05
	40	2.93E-04	2.60
	10	6.39E-05	_
\mathbb{P}_3	20	4.51E-06	3.82
п.3	30	9.26E-07	3.91
	40	2.99E-07	3.93
	10	1.34E-05	_
\mathbb{P}_{4}	20	9.97E-07	3.75
IF 4	30	1.29E-07	5.05
	40	3.95E-08	4.11
	10	2.40E-07	_
\mathbb{P}_5	20	4.23E-09	5.83
ш 5	30	3.86E-10	5.90
	40	7.02E-11	5.93

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	1.94E-02	_
\mathbb{P}_1	20	5.19E-03	1.90
ш 1	30	2.43E-03	1.87
	40	1.45E-03	1.78
	10	3.10E-03	_
\mathbb{P}_2	20	1.95E-03	0.67
# 2	30	1.74E-03	0.27
	40	3.56E-04	5.53
	10	4.11E-05	_
\mathbb{P}_3	20	3.47E-06	3.56
п. 3	30	7.10E-07	3.91
	40	1.74E-07	4.90
	10	7.07E-06	_
\mathbb{P}_4	20	4.68E-07	3.92
IF 4	30	9.43E-08	3.95
	40	2.54E-08	4.55
	10	5.80E-07	
\mathbb{P}_{5}	20	8.49E-09	6.09
ш 5	30	9.69E-10	5.35
	40	1.89E-10	5.69

Tests | $\epsilon = h^2$ | degree d+1

uniform mesh

	I	$E_{0,\infty}$	$O_{0,\infty}$
	10	9.29E-03	_
מוד/ מוד	20	2.31E-03	2.01
$\mathbb{P}_1/\mathbb{P}_2$	30	1.02E-03	2.01
	40	5.75E-04	2.00
	10	2.89E-03	_
מוז לוו	20	7.20E-04	2.00
$\mathbb{P}_2/\mathbb{P}_3$	30	4.91E-04	0.95
	40	1.97E-04	3.17
	10	1.94E-05	_
$\mathbb{P}_3/\mathbb{P}_4$	20	1.15E-06	4.08
IF 3 / IF 4	30	2.22E-07	4.04
	40	6.98E-08	4.03
	10	6.57E-06	_
TD . /TD	20	7.40E-07	3.15
$\mathbb{P}_4/\mathbb{P}_5$	30	6.79E-08	5.89
	40	2.03E-08	4.20
	10	1.27E-07	_
מוד/ מוד	20	2.18E-09	5.86
$\mathbb{P}_5/\mathbb{P}_6$	30	1.98E-10	5.92
	40	3.57E-11	5.94

	I	$E_{0,\infty}$	$O_{0,\infty}$
$\mathbb{P}_1/\mathbb{P}_2$	10	2.06E-02	_
	20	5.34E-03	1.95
	30	2.46E-03	1.91
	40	1.47E-03	1.79
$\mathbb{P}_2/\mathbb{P}_3$	10	3.09E-03	_
	20	2.05E-03	0.60
	30	1.79E-03	0.33
	40	1.81E-04	7.97
$\mathbb{P}_3/\mathbb{P}_4$	10	4.20E-05	_
	20	2.34E-06	4.17
	30	7.18E-07	2.91
	40	1.77E-07	4.88
$\mathbb{P}_4/\mathbb{P}_5$	10	5.34E-06	_
	20	2.27E-07	4.55
	30	5.74E-08	3.39
	40	1.42E-08	4.85
$\mathbb{P}_5/\mathbb{P}_6$	10	5.53E-07	_
	20	8.23E-09	6.07
	30	9.56E-10	5.31
	40	1.87E-10	5.68