	حرا
班级:	紩

西安电子科技大学

考试时间 120 分钟

题	号	 =	三.1	三.2	三.3	三.4	三.5	三.6	总 分
得	分			Tary 1	* 20* G)		

- 1. 考试形式: 闭卷; 2. 本试卷共三大题, 满分 100 分; 3. 考试日期: 2019.1
- 一. 单项选择题(每小题 4 分, 共 20 分)
- 1. 下面关于随机事件 A, B, C表述正确的是 [].
 - (A) A-BC = AB-AC

- (B) P(A) + P(A) = 1
- (C) 不相容事件相互对立
- (D) $\overline{A \cap B} = \overline{A} \cap \overline{B}$
- 2. 一个盒子中有5件产品,其中2件正品,3件次品。 现从盒中任取两件,则至少取 到一件正品的概率为 [1.
 - (A) $\frac{3}{10}$

].

- 3. 连续型随机变量 X 的分布函数和概率密度函数分别为 F(x) 和 f(x) ,则 [
 - (A) $0 \le f(x) \le 1$

(B) $\int_{0}^{\infty} f(x) dx = 1$

(C) $f(x) \le F(x)$

- **(D)** $0 \le \int_0^1 f(x) dx \le 1$
- 4. 随机变量 X 和 Y 相互独立, Z 和 Y 相互独立,且它们的期望和方差都存在,则一定 有结论「
 - (A) D(X+Z) = DX + DZ
- (B) E(X+Z) = EX + EZ
- (C) X和Z相互独立
- (D) D(X+Y+Z) = DX + DY + DZ
- 5. 设某事件在一次试验中发生的概率为p,在n次独立重复试验中,该事件发生了k次, 则「
 - (A) 若 n = 50, k = 30, 则 p 的矩估计值为 $\frac{3}{5}$ (B) 由大数定律, $p = \frac{k}{3}$
 - (C) p 的矩估计量和极大似然估计量不相同 (D) p 的矩估计值不能为零
- 二. 填空题(每小题 4 分, 共 20 分)
- 1. 某三口之家患一种疾病的概率如下:孩子患该病的概率为 0.6; 已知孩子患该病, 则父亲患该病的概率为 0.5;已知父亲和孩子患该病,则母亲患该病的概率为 0.4。 那么父亲和孩子同时患该病但母亲却没有患该病的概率=[___
- 2. 掷一次两颗完全一样的骰子,记出现的点数中较大者为N,则N有分布律

第1页共4页

- 4. 设X是某个总体, \overline{X} 是其样本均值,若 $EX = \mu$,则 $E(X \overline{X}) =$ [_____]。
- 5. 设 X_1, X_2, X_3 是来自某总体 X 的一个简单样本, $\hat{\mu}_1 = \frac{1}{2} X_1 + \frac{1}{4} X_2 + \frac{1}{4} X_3$ 和 $\hat{\mu}_2 = \frac{1}{5} X_1 + \frac{2}{5} X_2 + \frac{2}{5} X_3$ 是总体均值 μ 的无偏统计量,则[_____]较[____]有效。

三. 解答题 (每小题 10 分, 共 60 分)

- 1. (10分) 已知 XD 学校的英语考试学生最多有两次机会,一次考试分数超过(严格大于) 55 分即最终成绩判定为合格;若第一次低于(含等于) 55 分则需要考第二次,若两次都低于 55 分则最终成绩判定为不合格。假设学生 A 第一次考试就合格的概率为 68%,而若第一次不合格时,第二次仍然不合格的概率为 30%,求
- (1) 若学生 A 最终成绩为合格, 求其第一次考试超过 55 分的概率; (保留两位小数)
- (2)用 X=0 表该生最终成绩不合格,X=1 为最终成绩合格,求 $\frac{1}{X+1}$ 的分布函数 F(x) 。

2. (10 分) 已知 X 服从区间 [2, 3] 上的均匀分布,当 X = x 时, Y 的条件概率密度为

$$f_{Y|X}(y|x) = \begin{cases} 1, & 1 \le y \le 2 \\ 0, & 其他 \end{cases}$$

求(1) Y的概率密度函数 $f_{y}(y)$; (2) X和Y的协方差 cov(X,Y)。

3. (10分) 设总体 X 的概率密度为 $f(x) = \begin{cases} \mathrm{e}^{\theta - x}, & x \geq \theta \\ 0, & x < \theta \end{cases}$ 其中 θ 为非负未知参数, X_1, X_2, \cdots, X_n 是总体的一个简单样本,求参数 θ 的极大似然估计量 $\hat{\theta}$ 。

4. $(10 \, f)$ 设正态总体 X 的方差为 1,有容量为 100 的来自该总体的一个简单样本,其样本均值的观测值为 5,试求 X 的数学期望的置信水平为 0.95 的置信区间。

 $(z_{0.05} = 1.645, z_{0.025} = 1.96)$

5. (10 分) 假设一只股票的价格(单位:元)随时间近似服从正态分布,均值5.35,方差0.01。某证券公司对该只股票进行了长期跟踪分析,发现一个时段内股票的价格可能存在异常,观察的价格数据如下:

5.05 5.33 5.55 5.67 5.10 5.54 5.24 5.32 5.50 试问在显著性水平 $\alpha=0.5\%$ 下可否认为该时段的股票价格波动显著增大? (要求写出原假设、备择假设、检验统计量以及接受域, $\chi^2_{0.005}(9)=23.59$)

装

6. $(10 \, \text{分})$ 某种 Led 灯的寿命服从均值为 5×10^4 小时的指数分布,现有 36 只独立工作的这种 Led 灯。 求这 36 只灯的总寿命大于 1.92×10^6 小时的概率。($\Phi(0.4) = 0.66$)

订

结