$$\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H} \mid \mathbf{A}) \, \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{H} \mid \mathbf{A}^{c}) \, \mathbf{P}(\mathbf{A}^{c})$$

Sample space Ω: set of triples (coin toss; first face, second face); generic sample point $\omega = (x; y_1, y_2), x \in \{1, 2\}, y_1, y_2 \in \{R, W\}.$

• The events of interest:

 $R_1 := \text{first throw shows red} = \{ (x; y_1, y_2) : y_1 = R \}.$

 $R_2 := second throw shows red = \{(x; y_1, y_2) : y_2 = R\}.$

A := first die is chosen = $\{(x; y_1, y_2) : x = 1\}.$

- **•** Implicit probability measure **P**:
 - Random selection of die: $P(A) = P(A^c) = 1/2$.
 - Conditional probabilities for a given die:

$$P(R_1 \mid A) = 5/6,$$
 $P(R_1 \mid A^c) = 1/6,$

 $P(R_1 \cap R_2 \mid A) = 5^2/6^2 = 25/36$, $P(R_1 \cap R_2 \mid A^c) = 1^2/6^2 = 1/36$.

$$\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H} \mid \mathbf{A}) \, \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{H} \mid \mathbf{A}^{c}) \, \mathbf{P}(\mathbf{A}^{c})$$

Sample space Ω : set of triples (coin toss; first face, second face); generic sample point $\omega = (x; y_1, y_2), x \in \{1, 2\}, y_1, y_2 \in \{R, W\}.$

• The events of interest:

 $R_1 := \text{first throw shows red} = \{ (x; y_1, y_2) : y_1 = R \}.$ $R_2 := \text{second throw shows red} = \{ (x; y_1, y_2) : y_2 = R \}.$ $A := \text{first die is chosen} = \{ (x; y_1, y_2) : x = 1 \}.$

- **№** Implicit probability measure **P**:
 - Random selection of die: $P(A) = P(A^c) = 1/2$.
- Conditional probabilities for a given die: $P(R_1 \mid A) = 5/6, \qquad P(R_1 \mid A^c) = 1/6, \\ P(R_1 \cap R_2 \mid A) = 5^2/6^2 = 25/36, \quad P(R_1 \cap R_2 \mid A^c) = 1^2/6^2 = 1/36.$

$$\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H} \mid \mathbf{A}) \, \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{H} \mid \mathbf{A}^{c}) \, \mathbf{P}(\mathbf{A}^{c})$$

Sample space Ω: set of triples (coin toss; first face, second face); generic sample point $\omega = (x; y_1, y_2), x \in \{1, 2\}, y_1, y_2 \in \{R, W\}.$

• The events of interest:

 $R_1 := \text{first throw shows red} = \{ (x; y_1, y_2) : y_1 = R \}.$ $R_2 := \text{second throw shows red} = \{ (x; y_1, y_2) : y_2 = R \}.$ $A := \text{first die is chosen} = \{ (x; y_1, y_2) : x = 1 \}.$

- **№** Implicit probability measure **P**:
 - Random selection of die: $P(A) = P(A^c) = 1/2$.
- Conditional probabilities for a given die: $P(R_1 \mid A) = 5/6, \qquad P(R_1 \mid A^c) = 1/6, \\ P(R_1 \cap R_2 \mid A) = 5^2/6^2 = 25/36, \quad P(R_1 \cap R_2 \mid A^c) = 1^2/6^2 = 1/36.$

$$P{(1; R, R)} = P(A \cap R_1 \cap R_2) = P(R_1 \cap R_2 \mid A) P(A)$$

$$\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H} \mid \mathbf{A}) \, \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{H} \mid \mathbf{A}^{c}) \, \mathbf{P}(\mathbf{A}^{c})$$

Sample space Ω : set of triples (coin toss; first face, second face); generic sample point $\omega = (x; y_1, y_2), x \in \{1, 2\}, y_1, y_2 \in \{R, W\}.$

The events of interest:

 $R_1 := \text{first throw shows red} = \{ (x; y_1, y_2) : y_1 = R \}.$ $R_2 := \text{second throw shows red} = \{ (x; y_1, y_2) : y_2 = R \}.$

A := first die is chosen = $\{(x; y_1, y_2) : x = 1\}.$

- **•** Implicit probability measure **P**:
 - Random selection of die: $P(A) = P(A^c) = 1/2$.
- Conditional probabilities for a given die: $P(R_1 \mid A) = 5/6, \qquad P(R_1 \mid A^c) = 1/6,$ $P(R_1 \cap R_2 \mid A) = 5^2/6^2 = 25/36, \qquad P(R_1 \cap R_2 \mid A^c) = 1^2/6^2 = 1/36.$

$$P{(1; R, R)} = P(A \cap R_1 \cap R_2) = P(R_1 \cap R_2 \mid A) P(A) = \frac{25}{36} \cdot \frac{1}{2} = \frac{25}{72}$$

$$\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H} \mid \mathbf{A}) \, \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{H} \mid \mathbf{A}^{c}) \, \mathbf{P}(\mathbf{A}^{c})$$

Sample space Ω : set of triples (coin toss; first face, second face); generic sample point $\omega = (x; y_1, y_2), x \in \{1, 2\}, y_1, y_2 \in \{R, W\}.$

• The events of interest:

 $R_1 :=$ first throw shows red = { $(x; y_1, y_2) : y_1 = R$ }.

 $R_2 := second throw shows red = \{ (x; y_1, y_2) : y_2 = R \}.$

A := first die is chosen = $\{(x; y_1, y_2) : x = 1\}.$

- **•** Implicit probability measure **P**:
 - Random selection of die: $P(A) = P(A^c) = 1/2$.
 - Conditional probabilities for a given die:

$$P(R_1 \mid A) = 5/6,$$
 $P(R_1 \mid A^c) = 1/6,$ $P(R_1 \cap R_2 \mid A) = 5^2/6^2 = 25/36.$ $P(R_1 \cap R_2 \mid A^c) = 1^2/6^2 = 1/36.$

$$P(R_1 \cap R_2 \mid A) = 5^2/6^2 = 25/36$$
, $P(R_1 \cap R_2 \mid A^c) = 1^2/6^2 = 1/36$.

$$P{(1; R, R)} = P(A \cap R_1 \cap R_2) = P(R_1 \cap R_2 \mid A) P(A) = \frac{25}{36} \cdot \frac{1}{2} = \frac{25}{72}$$

$$P{(2; R, W)} = P(A^c \cap R_1 \cap R_2^c) = P(R_1 \cap R_2^c \mid A^c) P(A^c) = \frac{1 \cdot 5}{36} \cdot \frac{1}{2} = \frac{5}{72}$$

Atom	Probability
{(1; R, R)}	25/72
{(1; R, W)}	5/72
{(1; W, R)}	5/72
{(1; W, W)}	1/72
{(2; R, R)}	1/72
{(2; R, W)}	5/72
{(2; W, R)}	5/72
{(2; W, W)}	25/72

$$\mathbf{P}\{(1; \mathbf{R}, \mathbf{R})\} = \mathbf{P}(\mathbf{A} \cap \mathbf{R}_1 \cap \mathbf{R}_2) = \mathbf{P}(\mathbf{R}_1 \cap \mathbf{R}_2 \mid \mathbf{A}) \, \mathbf{P}(\mathbf{A}) = \frac{25}{36} \cdot \frac{1}{2} = \frac{25}{72}$$

$$P{(2; R, W)} = P(A^c \cap R_1 \cap R_2^c) = P(R_1 \cap R_2^c \mid A^c) P(A^c) = \frac{1 \cdot 5}{36} \cdot \frac{1}{2} = \frac{5}{72}$$

$$\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H} \mid \mathbf{A}) \, \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{H} \mid \mathbf{A}^{c}) \, \mathbf{P}(\mathbf{A}^{c})$$

Sample space Ω : set of triples (coin toss; first face, second face); generic sample point $\omega = (x; y_1, y_2), x \in \{1, 2\}, y_1, y_2 \in \{R, W\}.$

• The events of interest:

 $R_1 :=$ first throw shows red = { $(x; y_1, y_2) : y_1 = R$ }.

 $R_2 := second throw shows red = \{ (x; y_1, y_2) : y_2 = R \}.$

A := first die is chosen = $\{(x; y_1, y_2) : x = 1\}.$

- Implicit probability measure P:
 - Random selection of die: $P(A) = P(A^c) = 1/2$.
 - Conditional probabilities for a given die:

$$P(R_1 \mid A) = 5/6,$$

$$P(R_1 \mid A) = 5/6,$$
 $P(R_1 \mid A^c) = 1/6,$

$$P(R_1 \cap R_2 \mid A) = \frac{5^2}{6^2} = \frac{25}{36}, \quad P(R_1 \cap R_2 \mid A^c) = \frac{1^2}{6^2} = \frac{1}{36}.$$