## Predicate Logic – Part I

CSX2008 Mathematics Foundation for Computer Science

Kwankamol Nongpong, Ph.D.
Department of Computer Science
Vincent Mary School of Science and Technology
Assumption University

### Big Picture

- Where are we at the moment?
  - Study of Logical Statements and Forms
    - Propositional Logic
    - Predicate Logic
- Before the break: Intro. To Predicate Logic
  - Predicate as Open Sentence with Variables
  - Ways to turn Predicates to Statements
    - Substituting specific values for Predicate Variables
    - Quantification
      - Universal
      - Existential
  - Checking the Validity of Quantified Statements

### **Session Outline**

- Predicate Logic (Continued)
  - Negating Quantified Statements
  - Universal Conditional Statements
  - Multiply-Quantified Statements
  - Valid and Invalid Forms of Quantified Statements

## **Negation of Universal Statements**

Let S: "All mathematicians wear glasses".

What's the ~S? (The negation of S)

- No mathematicians wear glasses?
- Mathematicians do not wear glasses?
- It's not the case that "All mathematicians wear glasses"
- ~S: "There is at least one mathematician who does not wear glasses."

### Negation of Universal Statements

- Be careful with possible ambiguity in English.
  - All mathematicians do not wear glasses.
    - What! You say that all mathematicians wear glasses? Nonsense! All mathematicians do NOT wear glasses!
      - It's not the case that all mathematicians wear glasses.
  - All mathematicians do not wear glasses.
    - No mathematicians wear glasses.
- Don't just insert the word "not" to negate a quantified statement!
- Use "It's not the case that"

### Negation of Universal Statements

 $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \text{ such that } \sim P(x)$ 

- "It's not the case that for all x in D, P(x)" is logically equivalent to "There exists (at least one) x in D such that  ${}^{\sim}P(x)$ "
- The negation of a universal statement is logically equivalent to an existential statement.

# Example: Negation of Universal Statements

- All mathematicians wear glasses.
  - ∀ mathematicians x, x wear glasses
- It's not the case that all mathematicians wear glasses.
  - ~(∀ mathematicians x, x wear glasses)
  - ≡∃ mathematician x such that x does not wear glasses
  - ≡ There exists at least one mathematician who does not wear glasses.

### Negation of Existential Statements

 $\sim (\exists x \in D \text{ such that } P(x)) \equiv \forall x \in D, \sim P(x)$ 

- "It's not the case that there exists x in D such that P(x)" is logically equivalent to "For all x in D, ~P(x)"
- The negation of an existential statement is logically equivalent to a universal statement.

# Example: Negation of Existential Statements

- Some snowflakes are the same
  - $\blacksquare$  3 snowflakes x, y such that x and y are the same.
- It's not the case that some snowflakes are the same
  - $\sim$ ( $\exists$  snowflakes x, y such that x and y are the same)  $\equiv$
  - ∀ snowflakes x and y, x is not the same as y
- Not a single snowflake is the same as any other
- No snowflakes are the same
- All snowflakes are different.

Write formal negations for the following statements:

- $\forall$  primes p, p is odd.
  - $\exists$  a prime p such that p is not odd
- $\exists$  a triangle T such that the sum of the angles of T equals 200°.
  - $\forall$  triangles T, the sum of the angles of T does not equal 200°

Write formal and informal negations of the following statements.

- No politicians are honest
- All computer programs are finite.
- Some computer hackers are over 40.
- The number 1,357 is divisible by some integer between 1 and 37.

## Negation of Universal Conditional Statements

#### Week #2:

•  $\sim (p \rightarrow q) \equiv p \land \sim q$ 

#### Predicate Logic:

•  $\sim (P(x) \rightarrow Q(x)) \equiv P(x) \land \sim Q(x)$ 

#### Just Now:

- $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \text{ such that } \sim P(x)$
- $\therefore$   $\sim$  ( $\forall x \in D$ ,  $P(x) \rightarrow Q(x)$ )  $\equiv \exists x \in D$  such that ( $P(x) \land \sim Q(x)$ )
- "It's not the case that for All x in D if P(x) then Q(x)" is logically equivalent to "There is at least one x in D such that P(x) and ~Q(x)"

What's the negation of the following statement?

• ∀ people p, if p is blond, then p has blue eyes.

Write an informal negation of the following statement:

 If a computer program has more than 100,000 lines, then it contains a bug.

- Extra Exercise for your workbook
  - Write the original statement above in a formal way
  - Write a formal negation of the original statement

## Quantified Statements as Propositions

- Be reminded that by quantifying predicates, we turn predicates into statements (propositions)
- If Q(x) is a predicate and the domain D of x is the set  $\{x_1, x_2, \ldots, x_n\}$ , then the statement

 $\exists x \in D$  such that Q(x)

is logically equivalent to

 $Q(x_1) \vee Q(x_2) \vee ... \vee Q(x_n)$ 

## Negations of Quantified Statements (De Morgan's Laws)

$$\sim$$
(  $Q(x_1) \land Q(x_2) \land ... \land Q(x_n)$ )  $\equiv \sim Q(x_1) \lor \sim Q(x_2) \lor ... \lor \sim Q(x_n)$ 

•  $\sim (\forall x \in D, Q(x)) \equiv \exists x \in D \text{ such that } \sim Q(x)$ 

$$\sim$$
  $(Q(x_1) \lor Q(x_2) \lor ... \lor Q(x_n)) \equiv \sim Q(x_1) \land \sim Q(x_2) \land ... \land \sim Q(x_n)$ 

•  $\sim (\exists x \in D \text{ such that } Q(x)) \equiv \forall x \in D, \sim Q(x)$ 

### Vacuous Truth of Universal





#### All the balls in the bowl are blue

• True or false?

What if the bowl is empty? True or False? Why?

- A statement is false iff its negation is true.
- Negation of "All the balls in the bowl are blue" is
  - "There exists a ball in the bowl that is not blue".
  - "There is at least one non-blue ball in the bowl."
- "There exists a ball in the bowl that is not blue" can be true only if there actually is at least one non-blue ball in the bowl.
  - But there is none in the bowl. The bowl is empty.
  - So the negation is false;
- Therefore, the statement "All the balls in the bowl are blue" is true
- This logic is the essence of Vacuous Truth or True by Default.

#### Vacuous Truth

#### Vacuous Truth of Conditional Statements

- If Chiangmai is the capital city of Korea then "Se Won Kim" is handsome
  - Is the statement True or False?
  - The statement (as a whole) is true by default because the antecedent (hypothesis) is false.
    - Whether "Se Won Kim" is handsome or not is irrelevant to the truth value of the whole statement

#### Vacuous Truth of Universally Quantified Statements

- $\forall x \in D$ , P(x) is vacuously true when D is empty
- $\forall x \in D, P(x) \to Q(x)$  is vacuously true when D is empty or P(x) is false for every x in D (i.e.,  $\forall x \in D, {}^{\sim}P(x)$ )
- Asserts that all members of the empty set have a certain property.

Determine if each of the following statements are true or false. Explain why.

- If you are President of the US, then I am Father Christmas!
- All mobile phones in the room are turned off.
  - 3 phones are turned off and 2 turned on
- Assume there are no phones at all in the room
  - All mobile phones in the room are turned off
  - All mobile phones in the room are turned on
  - All mobile phones in the room are turned on and off
  - All mobile phones in the room are turned on or off.

## Inverse, Converse and Contrapositive of Conditional Statements

First, review of what we learned on Conditional Statement.

- Let S be  $p \rightarrow q$
- Inverse of S

$$(p \rightarrow q \not\equiv ^{\sim}p \rightarrow ^{\sim}q)$$

Converse of S

$$q \rightarrow p$$

$$(p \rightarrow q \not\equiv q \rightarrow p)$$

Contrapositive of S

$$(p \rightarrow q \equiv ^{\sim}q \rightarrow ^{\sim}p)$$

## Inverse, Converse and Contrapositive of Universal Conditional Statements

#### Extension to Universal Conditional Statement

- Let S be  $\forall x \in D$ ,  $P(x) \rightarrow Q(x)$
- Inverse of S
  - $\forall x \in D, {}^{\sim}P(x) \rightarrow {}^{\sim}Q(x)$
  - Note that  $\forall x \in D$ ,  $P(x) \rightarrow Q(x) \not\equiv \forall x \in D$ ,  $^{\sim}P(x) \rightarrow ^{\sim}Q(x)$
- Converse of S
  - $\forall x \in D, Q(x) \rightarrow P(x)$
  - Note that  $\forall x \in D$ ,  $P(x) \rightarrow Q(x) \not\equiv \forall x \in D$ ,  $Q(x) \rightarrow P(x)$
- Contrapositive of S
  - $\forall x \in D, \ ^{\sim}Q(x) \rightarrow \ ^{\sim}P(x)$
  - Note that  $\forall x \in D$ ,  $P(x) \rightarrow Q(x) \equiv \forall x \in D$ ,  $\sim Q(x) \rightarrow \sim P(x)$

Write a formal and an informal contrapositive, converse, and inverse for the following statement:

- If a real number is greater than 2, then its square is greater than
   4.
- First write it formally:  $\forall x \in \mathbb{R}$ , if x > 2 then  $x^2 > 4$ .
- Contrapositive:
  - $\forall x \in \mathbf{R}$ , if  $x^2 \le 4$  then  $x \le 2$
  - If the square of a real number is less than or equal to 4, then the number is less than or equal to 2.
  - Verify that the statement and its contrapositive are logically equivalent!

## Exercise (Cont'd)

• Formal Statement:  $\forall x \in \mathbb{R}$ , if x > 2 then  $x^2 > 4$ .

#### Converse:

- $\forall x \in \mathbf{R}$ , if  $x^2 > 4$  then x > 2.
- If the square of a real number is greater than 4, then the number is greater than 2.
- Verify that the converse is not logically equivalent to the statement by giving a counterexample

#### Inverse:

- $\forall x \in \mathbb{R}$ , if  $x \le 2$  then  $x^2 \le 4$
- If a real number is less than or equal to 2, then the square of the number is less than or equal to 4.
- Verify that the inverse is not logically equivalent to the statement by giving a counterexample

## Alternative Expressions for Universal Conditional Statements

```
∀x, P(x) is a sufficient condition for Q(x)
∀x, P(x) → Q(x) (∀x, if P(x) then Q(x))
∀x, P(x) is a necessary condition for Q(x)
∀x, ¬P(x) → ¬Q(x) (∀x, if ¬P(x) then ¬Q(x))
∀x, Q(x) → P(x) (∀x, if Q(x) then P(x))
∀x, P(x) only if Q(x)
Q(x) is a necessary condition for P(x)
∀x, ¬Q(x) → ¬P(x) (∀x, if ¬Q(x) then ¬P(x))
∀x, P(x) → Q(x) (∀x, if P(x) then Q(x))
```

Rewrite the following statements as quantified conditional statements.

Squareness is a sufficient condition for rectangularity

 Being at least 35 years old is a necessary condition for being President of the United States

Rewrite the following statement as quantified conditional statements.

• A product of two numbers is 0 only if one of the number is 0.