5. Из графика зависимости угла поворота кольца от времени видим, что центр кольца совершает затухающие колебания.

Найдем положения равновесия кольца, в котором сумма сил, действующих на кольцо равна нулю. Это условие имеет вид

$$N = mg\cos\varphi$$

$$F_{mp} = mg\sin\varphi \quad . \tag{1}$$

 $F_{mp} = mg \sin \phi \ . \ \ (1)$ Учитывая, что $F_{mp} = \mu N$, находим положение равновесия кольца

 $\mu = tg \, \phi_{\theta}$. Из графика закона $\varphi_0 = arctg \mu$, или движения находим $\phi_0 \approx 0.33$, $\mu \approx 0.34$.

Центр кольца в такой ситуации движется по окружности радиуса (R-r), поэтому сила нормальной реакции

$$N = m \frac{v_0^2}{R - r} \,, \qquad (2)$$

где $v_{\scriptscriptstyle 0}$ - скорость центра кольца. Сила трения (которая в данном является силой трения покоя), может принимать значения

$$F_{mp} < \mu N . \qquad (3)$$

Если кольцо остается на неизменной высоте, то выполняется условие

$$F_{mp} = mg. \qquad (4)$$

Из выражений (2)-(3) находим

$$v_{\theta} > \sqrt{\frac{g(R-r)}{\mu}}$$
, а скорость крайней (по отношению к стержню)

точки кольца, может быть найдена из простых геометрических построений, учитывающих, что кольцо вращается относительно оси стержня:

$$V = v_0 \frac{2R - r}{R - r}. (5)$$

Таким образом, окончательный ответ данной задачи определяется по формуле

$$V > \frac{2R - r}{R - r} \sqrt{\frac{g(R - r)}{\mu}} \approx 3.5 \text{ m/c}$$

11 класс.

1. Мощность тока в цепи двигателя IU (I-сила тока в цепи двигателя, U- напряжение контактной цепи) равна сумме механической мощности βv^2 (v- скорость движения трамвая, βv - сила сопротивления), затрачиваемой на преодоление сил сопротивления, и мощности джоулевых тепловых потерь I^2R (R- полное электрическое сопротивление цепи двигателя):

$$IU = \beta v^2 + I^2 R \,. \tag{1}$$

Заметим, что слагаемое βv^2 равно произведению силы тока на ЭДС индукции, возникающей в якоре электродвигателя при его вращении.

Выразим полезную мощность $P = \beta v^2$ из уравнения (1):

$$\beta v^2 = IU - I^2 R. \tag{2}$$

Из вида зависимости P(I) следует, что полезная мощность достигает максимального значения при $I=\frac{U}{2R}$, причем $P_{\text{max}}=\frac{U^2}{4R}$. При движении трамвая со скоростью $v_{\scriptscriptstyle 0}$, меньшей максимальной скорости, выполняется соотношение

$$\beta v_0^2 = I_0 U - I_0^2 R \,, \tag{3}$$

а при движении с максимальной скорость справедливо

$$\beta v_{max}^2 = \frac{U^2}{4R} \ . \tag{4}$$

Решив уравнения (3)-(4), определим сопротивление цепи

$$R = \frac{U}{2I_0} (1 \pm \sqrt{1 - \frac{v_0^2}{v_{max}^2}}).$$
 (5)

Два решения соответствую тому, что полезная мощность квадратично зависит от силы тока (см. уравнение (2)), следовательно, ее одно и то же значение может быть достигнуто при двух значениях сопротивления цепи..

При остановке трамвая сила тока в цепи двигателя станет равной