Лабораторная работа № 3

СВЕДЕНИЕ МАТРИЧНОЙ ИГРЫ К ЗАДАЧЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Цель работы: приобретение практических навыков в определении доминируемых стратегий, сокращении размерности задачи и сведении матричной игры к задаче линейного программирования.

Задания

- 1. В заданной матрице игры определить, при каких значениях параметров можно исключить доминируемые стратегии и представить ее в виде, приемлемом для сведения матричной игры к задаче линейного программирования.
- 2. Найти решение матричной игры, сведя ее к двойственной задаче линейного программирования. Определить оптимальные стратегии игроков и цену игры.

№	Матрица выигрыша А	№	Матрица выигрыша А
1	$A = \begin{pmatrix} -1 & 3 & -9 & -7 \\ -7 & -2 & -2 & p \\ 7 & q & -4 & 4 \\ -2 & -7 & -10 & -10 \end{pmatrix}$	9	$A = \begin{pmatrix} -1 & 7 & -5 & 5 \\ 0 & p & -2 & 3 \\ 2 & 8 & -3 & q \\ 2 & 14 & -4 & 8 \end{pmatrix}$
2	$A = \begin{pmatrix} p & 5 & 5 & -1 \\ -2 & 5 & -6 & -9 \\ 1 & 9 & -5 & q \\ 11 & 7 & 6 & 3 \end{pmatrix}$	10	$A = \begin{pmatrix} 4 & p & -5 & 8 \\ 8 & 2 & -6 & 0 \\ q & 9 & 1 & 0 \\ 5 & 0 & -4 & 9 \end{pmatrix}$
3	$A = \begin{pmatrix} 0 & 5 & -5 & 4 \\ 2 & 7 & p & 4 \\ 8 & q & 9 & -5 \\ 0 & 10 & -7 & 8 \end{pmatrix}$	11	$A = \begin{pmatrix} 4 & p & 2 & 0 \\ 2 & 1 & -7 & -9 \\ 4 & 8 & -9 & q \\ 6 & 4 & 4 & -1 \end{pmatrix}$

4	$A = \begin{pmatrix} -3 & -9 & -8 & 5\\ 9 & p & -4 & 5\\ 2 & 7 & q & 0\\ 6 & -1 & -6 & 10 \end{pmatrix}$	12	$A = \begin{pmatrix} -4 & -2 & 0 & 3\\ 3 & 9 & -8 & -6\\ p & 6 & -7 & 1\\ -7 & 9 & q & 6 \end{pmatrix}$
5	$A = \begin{pmatrix} p & 2 & -2 & 6 \\ -9 & 4 & 5 & -8 \\ -6 & 4 & 9 & q \\ 2 & 5 & -4 & 11 \end{pmatrix}$	13	$A = \begin{pmatrix} 1 & 7 & 0 & 2 \\ p & 4 & -6 & -6 \\ 3 & 0 & -1 & q \\ -2 & -4 & -5 & 4 \end{pmatrix}$
6	$A = \begin{pmatrix} -1 & 6 & 6 & -9 \\ 2 & p & -7 & 9 \\ 3 & -3 & 2 & -8 \\ -2 & 2 & 4 & q \end{pmatrix}$	14	$A = \begin{pmatrix} -3 & -9 & -1 & -2 \\ p & -4 & -3 & 5 \\ -8 & q & 9 & -1 \\ -1 & 8 & 2 & -1 \end{pmatrix}$
7	$A = \begin{pmatrix} 5 & -9 & 8 & 2 \\ -2 & p & -7 & 3 \\ -4 & 4 & 0 & 8 \\ 1 & -13 & -6 & q \end{pmatrix}$	15	$A = \begin{pmatrix} -1 & -2 & -3 & -3 \\ 5 & 7 & -1 & 10 \\ p & -8 & -1 & 9 \\ -3 & 7 & -7 & q \end{pmatrix}$
8	$A = \begin{pmatrix} 3 & p & 0 & 9 \\ 0 & 1 & 9 & -9 \\ -5 & 6 & -1 & 7 \\ -1 & -9 & q & 5 \end{pmatrix}$	16	$A = \begin{pmatrix} -7 & 5 & -1 & -9 \\ 3 & p & -1 & 4 \\ 1 & 0 & -8 & q \\ 3 & -7 & -6 & 4 \end{pmatrix}$