```
In [1]: # Import necessary libraries
import pandas as pd # Pandas for data manipulation
import matplotlib.pyplot as plt # Matplotlib for basic plotting
import seaborn as sns # Seaborn for statistical data visualization
```

```
In [2]: # Read the CSV file into a DataFrame
df = pd.read_csv("all_seasons.csv")
```

```
In [4]: # Display the first few rows of the DataFrame
df.head()
```

Out[4]:

ght	weight	college	country	draft_year	draft_round	 avg_pts	avg_reb	avg_ast	
1.04	94.800728	Louisiana State	USA	1996	2	 3.9	1.5	2.4	
).50	86.182480	Northwestern Oklahoma	USA	1994	2	 3.8	1.3	0.3	
1.20	103.418976	North Carolina	USA	1993	1	 8.3	6.4	1.9	
1.20	102.058200	Florida State	USA	1989	1	 10.2	2.8	1.7	
1.36	119.748288	UCLA	USA	1995	1	 2.8	1.7	0.3	

```
In [15]: # Top Scorers
NumTopScorers = 10
top_scorers_names = df.groupby(['name'])['pts'].sum().sort_values(asc
top_scorers_names
```

In [25]: # Display the first 10 rows of data
df.head(11)

Out[25]:

1996
1994
1993
1989
1995
1985
1993
1989
1994
1994
1995
19 19 19 19 19

11 rows × 28 columns

In [39]: # Display the last few rows of the data df.tail()

Out [39]:

	Unnamed: 0	name	team	age	height	weight	college	country	draft_year
12839	12839	Joel Embiid	PHI	29.0	213.36	127.005760	Kansas	Cameroon	2014
12840	12840	John Butler Jr.	POR	20.0	213.36	86.182480	Florida State	USA	Undrafted
12841	12841	John Collins	ATL	25.0	205.74	102.511792	Wake Forest	USA	2017
12842	12842	Jericho Sims	NYK	24.0	208.28	113.398000	Texas	USA	2021
12843	12843	JaMychal Green	GSW	33.0	205.74	102.965384	Alabama	USA	Undrafted

5 rows × 28 columns

```
In [6]: # Calculate cumulative sums for points, rebounds, and assists
    df['total_pts'] = df.groupby('name')['pts'].cumsum()
    df['total_reb'] = df.groupby('name')['reb'].cumsum()
    df['total_ast'] = df.groupby('name')['ast'].cumsum()
```

```
In [7]: # Display the first few rows of the DataFrame for Kyrie Irving
df[df['name']=='Kyrie Irving'].head()
```

Out[7]:

е	team	age	height	weight	college	country	draft_year	draft_round	•••	usg_pct	ts_pct
e g	CLE	20.0	190.5	86.636072	Duke	Australia	2011	1		0.281	0.566
e g	CLE	21.0	190.5	86.636072	Duke	Australia	2011	1		0.298	0.553
e g	CLE	22.0	190.5	87.543256	Duke	Australia	2011	1		0.280	0.533
e g	CLE	23.0	190.5	87.543256	Duke	Australia	2011	1		0.260	0.583
e g	CLE	24.0	190.5	87.543256	Duke	Australia	2011	1		0.293	0.540

```
In [30]: # Calculate Total Points, Rebounds, and Assists
    df['pts'] = (df['gp']*df['avg_pts']).astype(int)
    df['reb'] = (df['gp']*df['avg_reb']).astype(int)
    df['ast'] = (df['gp']*df['avg_ast']).astype(int)
```

```
In [31]: # Display first few rows
df.head()
```

Out[31]:

am	age	height	weight	college	country	draft_year	draft_round	 usg_pct	ts_pc
OU	22.0	193.04	94.800728	Louisiana State	USA	1996	2	 0.169	0.48
'AS	28.0	190.50	86.182480	Northwestern Oklahoma	USA	1994	2	 0.174	0.49
AN	26.0	203.20	103.418976	North Carolina	USA	1993	1	 0.175	0.51
.AL	30.0	203.20	102.058200	Florida State	USA	1989	1	 0.206	0.52
EN	23.0	213.36	119.748288	UCLA	USA	1995	1	 0.195	0.50

In [35]: df.hist(['avg_pts']); # Histograms for Average Points


```
In [32]: # Average Rebounds
df.hist(['avg_reb']);
```



```
In [36]: # Average Assists
df.hist(['avg_ast']);
```



```
In [38]: # Usage Percentage
df.hist(['usg_pct']);
```


In [8]: # Create a DataFrame containing mean points for the top 10 players
pts_data = pd.DataFrame(df.groupby('name')['pts'].mean().sort_values(

In [9]: # Display the resulting DataFrame
pts_data

Out[9]:

	name	pts
0	Michael Jordan	1948.500000
1	LeBron James	1932.050000
2	Luka Doncic	1818.800000
3	Trae Young	1797.200000
4	Kevin Durant	1792.400000
5	James Harden	1763.285714
6	Damian Lillard	1762.090909
7	Allen Iverson	1741.142857
8	Karl Malone	1697.875000
9	Donovan Mitchell	1694.166667

```
In [11]: # Create a bar plot for the top 10 players with the highest mean poin
plt.figure(figsize = (11,9) , dpi = 100)
sns.barplot(data = pts_data , x = 'name' , y = 'pts')
plt.xticks(rotation = 45);
```


In []: