Retroalimentación Actividad 2 - Sistema sensorial

Kjartan Halvorsen

2021-02-25

Actividad 2

Propósito

- 1. Identificar cuales serían las variables físicas más relevantes para un mejor control del proceso y en base a esto definir las métricas funcionales que debe cumplir el sistema sensorial.
- 2. Seleccionar un conjunto de equipos que cumpla con los requerimientos establecidos, además de observar los aspectos económicos y de seguridad.

Análisis de un sistema mecatrónico

Requisitos / criterios de diseño

Identificar y describir elementos del sistem

- mecanismo
- actuadores
- sensores
- sistema de control

Requisitos / criterios de diseño

Fig. 1. Engineering design process.

S.F. Love (1969) Modern design methods for electronics, IEEE tr systems science and cybernetics

Estudiantes contra expertos

Figure 3. Mean time each group spent in playground design stages.

Fig. 1. Engineering design process.

Fig 3 de Atman et al. Engineering design processes: A comparison of students and expert practitioners. Journal of engineering education, 2007.

Sistema mecatrónico del AC75

- Proceso Aquí es un sistema mecanico o mecanismo
- Actuador Conversión de una señal de información a fuerza/torque/flujo/energía
- ► Sensores Conversión de una variable física a una señal de información
- Controlador Computadora o microcontrolador o PLC, recibe señales, ejecuta el algoritmo de control, manda acción de control (señales) a los actuadores.

Variables físicas

- displacamiento (masa total) 7.6 t
- masa de cada ala 1.2 t
- altura del mástil 28m Parámetros, no variables
- $\bullet\,$ área de vela 235 sqm
- profundidad máxima con alas 5m

Variables físicas

- Posición angular continua del brazo/ala
- Presión hydraulica
- Estado de cargo de las pilas

Posición del ala - Requisitos

Rango

Gira de 0° (posición más abajo) hasta 110° (ala más arriba).

Resolución

Asumiendo resolución deseada de $\epsilon_a=5~\mathrm{mm}$ en la posición de la ala.

En posición angular del brazo

$$\epsilon_b = \frac{\epsilon_a}{r} = \frac{5}{3500} \text{ rad} = 0.08^{\circ}$$

En posición lineal del pistón hidraulico

$$\epsilon_p = ? \text{ mm}$$

Posición del ala - Alternativ comercial 1

Fuente: SIKO GmbH

Modelo	Rango [mm]	Resolución DA	Resolución [mm]
SGH10-500	500	12 bit	0.12
SGH10-1000	1000	12 bit	0.24

Posición del ala - Alternativ comercial 2

Encoder absoluto

Encoder de cuatro bits.

Resolución requerida para el angula del brazo: $\epsilon_b = 0.08^\circ$ Actividad individual Cual sería el número de bits necesario para un encoder absoluto montado directamente en el eje del brazo?

Posición del ala - Alternativ comercial 2

AX70/AX71 Optical Absolute Encoder

ATEX and IECEx Rated Explosion Proof Absolute Encoder with High 22 Bit Single-Turn Resolution

- Up to 17 bit of Single-turn, 12 bit of True Multi-turn Absolute Positioning
- ATEX Certification for Explosion Proof Requirements
- · Stainless Steel or Aluminum Housing
- Multiple Communication Options

Fuente: Dynapar.com

