

Lecture 16-17: Support Vector Machines (SVMs)

COMP90049
Knowledge Technology

Sarah Erfani and Vinh Nguyen, CIS

Semester 2, 2017

- Assuming the data is linearly separable
- Aim: find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another Possible Solution

Other Possible Solutions

- Which one is better? B1 or B2?
- How do you define better?

Support Vector Machines: Large Margin Classifiers

- Find hyperplane maximises the margin => B1 is better than B2
- Margin: sum of shortest distances from the planes to the positive/negative samples

Why Large Margin?

Why Large Margin?

Why Large Margin?

- Small margin separating planes:
 - are more fragile to noise
 - may over-fit the data
- Large margin separating planes:
 - are more robust to noise
 - From statistical learning theory: large margin planes generalises better to unseen data

Linear Classifiers Formulation

$$\{ \mathbf{x}_i, y_i \}$$
 where $i = 1 \dots L, y_i \in \{-1, 1\}, \mathbf{x}_i \in \mathbb{R}^D$

This hyperplane can be described by $\mathbf{x} \cdot \mathbf{w} + b = 0$ where:

- w is normal to the hyperplane.
- $\frac{b}{\|\mathbf{w}\|}$ is the perpendicular distance from the hyperplane to the origin.

Linear Classifiers Formulation

$$\{ \mathbf{x}_i, y_i \}$$
 where $i = 1 \dots L, y_i \in \{-1, 1\}, \mathbf{x}_i \in \mathbb{R}^D$

This hyperplane can be described by $\mathbf{x} \cdot \mathbf{w} + b = 0$ where:

- w is normal to the hyperplane.
- $\frac{b}{\|\mathbf{w}\|}$ is the perpendicular distance from the hyperplane to the origin.

Classification rule

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{x} \cdot \mathbf{w} + b) = \begin{cases} +1 & \text{if } \mathbf{x} \cdot \mathbf{w} + b \ge 0 \\ -1 & \text{if } \mathbf{x} \cdot \mathbf{w} + b < 0 \end{cases}$$

Find w and b such that:

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge 0 \text{ for } y_i = +1$$

 $\mathbf{x}_i \cdot \mathbf{w} + b \le 0 \text{ for } y_i = -1$
for all $i = 1 \dots L$

Training objective

Linear Support Vector Machines: Need to Consider Margin

Requirement for margin:

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge +1$$
 for $y_i = +1$
 $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ for $y_i = -1$

Linear Support Vector Machines Formulation

$$\max \frac{2}{\|\mathbf{w}\|}$$

Subject to:

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge +1 \text{ for } y_i = +1$$

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1 \text{ for } y_i = -1$$

Note that:

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge +1$$
 for $y_i = +1$

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1$$
 for $y_i = -1$

These equations can be combined into:

$$y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0 \ \forall_i$$

Linear Support Vector Machines Equivalent Formulations

(1)
$$\max \frac{2}{\|\mathbf{w}\|}$$
 s.t. $y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0 \quad \forall i$

(2)
$$\min \|\mathbf{w}\|$$
 s.t. $y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0 \ \forall_i$

(3)
$$\min \frac{1}{2} \|\mathbf{w}\|^2$$
 s.t. $y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0 \quad \forall_i$

Linear SVM Feasibility

$$\min \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \geq 0 \quad \forall_i$$
 linearly separable
$$\min \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \geq 0 \quad \forall_i$$

- For linearly separable data: a max-margin solution is guaranteed to exist
- For non- linearly separable data: a solution does not exist

Solving the Optimization Problem

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$
 s.t. $y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0 \ \forall_i$

- Need to optimize a quadratic function subject to linear constraints.
- Convex quadratic optimization problem
- Convex objective: any local minimum is also a global minimum

Solving the Optimization Problem: Duality Formulation

Primal problem: solve for **w** and b

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$
 s.t. $y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0 \ \forall_i$

Solving the Optimization Problem: Duality Formulation

Primal problem: solve for **w** and b

$$\min \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0 \quad \forall_i$$

Equivalent dual problem formulation: solve for $\alpha_1...\alpha_L$: Lagrange multipliers for each data point

$$\max_{\alpha} \sum_{i=1}^{L} \alpha_i - \frac{1}{2} \sum_{i=1}^{L} \sum_{j=1}^{L} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

s.t.

More convenient to solve

$$\alpha_i \ge 0$$

$$\sum_{i=1}^{L} \alpha_i y_i = 0$$

See Ref. [1] for derivation

Solution: Dual to Primal

• Given a solution $\alpha_1...\alpha_L$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need w explicitly):

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point \mathbf{x} and the support vectors \mathbf{x}_i we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^T \mathbf{x}_i$ between all training points.

Solution: Support Vectors

Classification function:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Only support vectors matter; other training examples are ignorable.

Soft Margin Classification

What if the training set is mostly, but not exactly, linearly separable?

The (hard) linear SVM problem is **infeasible** here.

Soft Margin Classification

• **Slack variables** ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called *soft*.

Soft Margin Classification Mathematically

The old formulation (hard SVM):

Find w and b such that
$$\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$$
 is minimized and for all (\mathbf{x}_i, y_i) , $i=1..L$: $y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

Modified formulation incorporates slack variables (soft SVM):

Find w and b such that
$$\mathbf{\Phi}(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} + C\Sigma \xi_{i} \text{ is minimized}$$
 and for all $(\mathbf{x}_{i}, y_{i}), i=1..L$: $y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}$, $\xi_{i} \geq 0$

• **Parameter C** can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Soft Margin Classification – Solution

Dual problem is identical to separable case:

Find $\alpha_1...\alpha_L$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i
- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the primal problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } k \text{ s.t. } \alpha_k > 0$$

Again, we don't need to compute w explicitly for classification:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Linear SVMs: Review

- The classifier is a separating hyperplane
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i .
- Model complexity depends on #support vectors.
- Both in the dual formulation of the problem and in the solution, training points appear only inside inner products:

Find $\alpha_1...\alpha_L$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i \mathbf{x}_i^T \mathbf{x}_j$$
 is maximized and

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

(1)
$$\sum \alpha_i y_i = 0$$

(2)
$$0 \le \alpha_i \le C$$
 for all α_i

Overfitting - Underfitting

Underfitting: model not expressive enough to capture patterns in the data

Overfitting: model too complicated; capture noise in the data

Just right: model captures essential patterns in the data

Non-Linear SVM Motivation

Linear model underfitting: model not expressive enough to capture patterns in the data

Soft-Margin (linear) SVM can cater for a small number of training errors

But is still a linear model

Non-Linear SVM Motivation—

Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Non-linear SVMs Overview

- Turn linear SVM into a non-linear model
- By mapping the original data into a high dimensional space where the data is hopefully linearly separable

Non-linear SVMs Overview

 General idea: the original feature space can be mapped to some higherdimensional feature space where the training set is separable:

 Higher-dimensional space still has intrinsic dimensionality d, but linear separators in it correspond to non-linear separators in original space.

Turning Linear SVM into Non-linear SVM

Find $\alpha_1...\alpha_L$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 is maximized and

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i
- The linear SVM classifier relies on inner product between vectors $\mathbf{x}_i^\mathsf{T}\mathbf{x}_j$ (pair-wise dot products between all data points)
- If every data point is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \to \phi(\mathbf{x})$, the inner product becomes:

$$\mathbf{\phi}(\mathbf{x}_i)^{\mathsf{T}}\mathbf{\phi}(\mathbf{x}_i)$$

Turning Linear SVM into Non-linear SVM

Explicit mapping & Plug

$$\mathbf{\phi}(\mathbf{x}_i)^{\mathsf{T}}\mathbf{\phi}(\mathbf{x}_j)$$

In place of

$$\mathbf{x}_i^{\mathsf{T}}\mathbf{x}_j$$

Find $\alpha_1...\alpha_L$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum_{i=1}^{n} \alpha_{i}^{L} - \frac{1}{2} \sum_{i=1}^{n} \sigma \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{\varphi}(\mathbf{x}_{i})^{T} \boldsymbol{\varphi}(\mathbf{x}_{j})$$
is maximized and

$$f(\mathbf{x}) = \sum \alpha_i y_i \left[\varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j) + b \right]$$

(1)
$$\sum \alpha_i y_i = 0$$

(2)
$$0 \le \alpha_i \le C$$
 for all α_i

What if we can by-pass this explicit mapping step?

The "Kernel Trick": The Dot Product

- SVM does not need direct access to the original feature space, i.e., original data representation x
- It only requires access to the dot products x_i^Tx_j
- The inner products

$$K(\mathbf{x}_i^T \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

$$K(\mathbf{x}_i^T \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$$

Can be regarded as a measure of similarity between data points (think cosine similarity)

Find $\alpha_1...\alpha_L$ such that $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sigma \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$ is maximized and

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b$$

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i

The "Kernel Trick": Implicit Mapping

• What if we have a function that compute the inner product $K(\mathbf{x}_i, \mathbf{x}_j)$ directly without explicitly performing the mapping $\Phi: \mathbf{x} \to \phi(\mathbf{x})$

Find $\alpha_1...\alpha_L$ such that $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sigma \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$ is maximized and

(1)
$$\sum \alpha_i y_i = 0$$

(2)
$$0 \le \alpha_i \le C$$
 for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b$$

Kernel Functions

- A kernel function is a function that is equivalent to an inner product in some feature space.
- Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\phi(x)$ explicitly).
- Why implicit mapping?
 - Save computational cost
 - The target space can have very high dimensionality

Kernel Example

- 2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$
- Let: $K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^2$
- What mapping is this?
- Need to show that $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{\phi}(\mathbf{x}_i)^T \mathbf{\phi}(\mathbf{x}_i)$ for some $\mathbf{\phi}$

where
$$\phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1^2 & \sqrt{2} & x_1 x_2 & x_2^2 & \sqrt{2} x_1 & \sqrt{2} x_2 \end{bmatrix}$$

Kernel Functions

Not all 'similarity' measures are proper kernels

$$K(\mathbf{x}_i,\mathbf{x}_j)=(1+\mathbf{x}_i^\mathsf{T}\mathbf{x}_j)^2$$

$$K(\mathbf{x}_{i},\mathbf{x}_{j})=(1+\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j})^{3}$$
 ???

• For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^\mathsf{T} \varphi(\mathbf{x}_j)$ can be cumbersome.

What Functions are Kernels?

Mercer's theorem:

Every positive semi-definite symmetric function is a kernel

 Positive semi-definite symmetric functions correspond to a positive semidefinite symmetric Gram matrix:

	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$	 $K(\mathbf{x}_1,\mathbf{x}_n)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$	$K(\mathbf{x}_2,\mathbf{x}_n)$
K=				
	$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	 $K(\mathbf{x}_n,\mathbf{x}_n)$

Non examinable

Examples of Kernel Functions

Linear:

$$K(\mathbf{x}_i,\mathbf{x}_i) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_i$$

- Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is \mathbf{x} itself

Polynomial of power p:

$$K(\mathbf{x}_i,\mathbf{x}_i) = (1 + \mathbf{x}_i^\mathsf{T} \mathbf{x}_i)^p$$

- Mapping Φ: $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ has $\begin{pmatrix} d+p \\ p \end{pmatrix}$ dimensions

Examples of Kernel Functions

Gaussian (Radial-Basis Function (RBF)):

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{\frac{-\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}}$$

- Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to *a function* (a Gaussian)

Non-linear SVMs Mathematically

Dual problem formulation:

Find $\alpha_1...\alpha_L$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 is maximized and

(1)
$$\sum \alpha_i y_i = 0$$

(2)
$$C \ge \alpha_i \ge 0$$
 for all α_i

The classifier function is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b$$

• Optimization techniques for finding α_i 's remain the same!

In Practice

- Are we guaranteed that the kernel trick will make the data linearly separable?
 - No
 - But usually work
- How to find the suitable kernel function and its parameters?
 - Method: Using M-fold cross-validation error rate

Multi-class Extension

- SVM is inherently a binary classifier
- Extension to multiclass:
 - One-versus-all: build M classifiers for M classes. Choose class with largest margin for test data
 - One-versus-one: one classifier per pair of classes (M(M-1)/2 classifiers in total), choose class selected by most classifiers

SVM Applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97], principal component analysis [Schölkopf et al. '99], etc.
- Most popular optimization algorithms for SVMs use *decomposition* to hill-climb over a subset of α_i 's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

References

- [1]https://static1.squarespace.com/static/58851af9ebbd1a30e98fb283/t/ 58902fbae4fcb5398aeb7505/1485844411772/SVM+Explained.pdf
- [2] A Tutorial on Support Vector Machines for Pattern Recognition
- [3] Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo/
 - (Note: C is the inverse penalty in this app)
- [4] Demo: http://www.cmsoft.com.br/download/SVMDemo.zip

Summary

- What is the intuition of Support Vector Machines (SVMs)?
- How to formulate and solve SVM?
- What is linear and non-linear SVM?