Metro Interstate Traffic Volume

Chen Lou and Josef Pishek (Group 4)
MA 5790 Predictive Modeling

UCI Machine Learning Repository Dataset of Hourly Minneapolis-St Paul, MN traffic volume for westbound I-94. Includes weather and holiday features from 2012-2018.

<u>Outline</u>

Background: Automatic Traffic Recorders

Objective

Initial Data Structure

Preprocessing

Response Variables

Splitting Data

Training Resampling

Regression Models

Classification Models

Conclusion

References

Automatic Traffic Recorders (ATR)

One of several methods for collecting data on traffic volume.

Permanent installations with varying levels of technology to continuously monitor traffic volume, additional types of data depending upon their equipment and sensors.

This project's data is from one of 70+ active devices in Minnesota-- 30+ in the seven-county metro area and 35+ in greater Minnesota.

Find more information about <u>Traffic</u>
Forecasting and Analysis from the
Minnesota Department of Transportation
(MNDoT).

Objective

Predict the response variable "traffic_volume" from a collection of numerical and categorical predictors by:

- Preprocessing Data
- Fitting and Evaluating Predictive Models
 - Regression
 - Classification

Initial Data Structure

holiday	Categorical US National holidays plus regional holiday, Minnesota State Fair		
temp	Numeric Average temp in kelvin		
rain_1h	Numeric Amount in mm of rain that occurred in the hour		
snow_1h	Numeric Amount in mm of snow that occurred in the hour		
clouds_all	Numeric Percentage of cloud cover		
weather_main	Categorical Short textual description of the current weather		
weather_description	Categorical Longer textual description of the current weather		
date_time	DateTime Hour of the data collected in local CST time		
*traffic_volume	Numeric Hourly I-94 ATR 301 reported westbound traffic volume		

- Categorical variables:
 - holiday (12 levels)
 - weather_main (11 levels)
 - weather_description (38 levels)
- Numerical variables:
 - temp
 - o rain 1h
 - o snow 1h
 - clouds all
 - *traffic volume
- Date and Time variables:
 - date_time
- Sample size: 9 variables with 48,204 observations
- *Response variable: traffic volume
- Source notes: MNDoT ATR station 301, roughly midway between Minneapolis and St Paul, MN.
 Weather data from OpenWeatherMap.

Preprocessing - Overview

Initial Preprocessing Observations

Filtering Duplicate Observations

 There are 40,575 unique date_time values of the initial 48,204 observations

Remove "nearZeroVariance" Predictors

- holiday
- rain_1h
- Snow_1h

Remove 10 Observations for unreasonable temp values

40,565 observations left

Dummy Variables for Categorical Predictors

- weather_main, weather_description, year, month, day of week, hour
- With temp and clouds_all (98 Predictors)

Further Preprocessing Observations

Remove **year** and **month** Predictor

- Shows little variation with response
- Injects noise into future predictions

Remove weather_description Predictor

 Noisy, sparse, correlated, and summarized by weather_main

"nearZeroVariance" needs to be repeated with dummy variables (freqCut = 25/1)

- Maintains hour
- Removes several from weather_main_...

"findCorrelation" needs to be repeated with dummy variables (cutoff = .3).

 Removes clouds_all and weather_main_Clear (keeps weather_main_Clouds) (36 Predictors)

Preprocessing - Categorical Predictors by Response

Preprocessing - Near Zero Variance Predictors

Regression Response Variable

Histogram of traffic_volume

Categorical Response Variable

Categorical Response Variable

Data Splitting

Data has been split into the following dimensions:

trainX has **32452** observations, and **36** predictors

trainY has 32452 observations

testX has 8113 observations, and 36 predictors

testY has 8113 observations

The first 80% of observations will be used for training, and the last 20% will be held-out for testing

- Maintain Chronological Order
- Random splitting produces poor results for time-series data
 - More realistic predictive approach
- Essentially use traffic_volume from 2012-2017 to predict 2018

Training Data 80%

Testing Data 20%

32452

10565

Training Resampling

Rolling Forecasting Origin -

"Timeslice" Method:

- Parameters
 - o fixedWindow = TRUE,
 - horizon = 168,
 - initialWindow = 672,
 - o skip = 167
- These were chosen for computational efficiency, several types available:

Regression Performance Summary

Model	Train RMSE	Train R ²	Train Time (sec)	Test RMSE	Test R ²
PLS	814.33	0.84	3	792.56	0.84
ENET	834.94	0.83	68	794.17	0.84
LARS	813.24	0.84	5	792.56	0.84
NNET	673.14	0.89	13797	569.76	0.92
MARS	617.58	0.90	843	548.61	0.92
SVM	820.23	0.84	2412	476.93	0.94
KNN	584.25	0.91	57	544.60	0.92

Neural Network Regression

Model	Train RMSE	Train R ²	Train Time (sec)	Test RMSE	Test R ²
NNET	673.14	0.89	13797	569.76	0.92

Tuning parameter 'bag' was held constant at a value of FALSE RMSE was used to select the optimal model using the smallest value. The final values used for the model were size = 6, decay = 8 and bag = FALSE.

nnetPred Testing Prediction

Multivariate Adaptive Regression Splines

Model	Train RMSE	Train R ²	Train Time (sec)	Test RMSE	Test R ²
MARS	617.58	0.90	843	548.61	0.92

 $\ensuremath{\mathsf{RMSE}}$ was used to select the optimal model using the smallest value.

The final values used for the model were nprune = 36 and degree = 2.

Support Vector Machines Regression

Model	Train RMSE	Train R ²	Train Time (sec)	Test RMSE	Test R ²	
SVM	814.06	0.84	2432	475.43	0.94	

RMSE was used to select the optimal model using the smallest value.

The final values used for the model were sigma = 0.01136232 and C = 512.

svmPred Testing Prediction

K Nearest Neighbors Regression

Model	Train RMSE	Train R ²	Train Time (sec)	Test RMSE	Test R ²
KNN	584.25	0.91	57	544.60	0.92

Regression Variable Importance

1 Week of testY and Corresponsing Model Predictions

Regression Performance Summary

Model	Train RMSE	Train R ²	Train Time (sec)	Test RMSE	Test R ²
PLS	814.33	0.84	3	792.56	0.84
ENET	834.94	0.83	68	794.17	0.84
LARS	813.24	0.84	5	792.56	0.84
NNET	673.14	0.89	13797	569.76	0.92
MARS	617.58	0.90	843	548.61	0.92
SVM	820.23	0.84	2412	476.93	0.94
KNN	584.25	0.91	57	544.60	0.92

KNN Classification

Confusion Matrix and Statistics

Reference

Prediction Low Medium High Low 2337 113 0 Medium 104 1677 129

High 33 248 3472

Overall Statistics

Accuracy: 0.9227

95% CI: (0.9167, 0.9284)

No Information Rate : 0.4439 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.8799

Mcnemar's Test P-Value : 2.691e-15

Statistics by Class:

AUC was used to select the optimal model using the largest value. The final value used for the model was k = 6.

FDA Classification

Confusion Matrix and Statistics

Reference Prediction Low Medium High Low 1995 87 0 Medium 276 1425 20

203

Overall Statistics

High

Accuracy: 0.8629

526 3581

95% CI: (0.8553, 0.8703)

No Information Rate : 0.4439 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7834

Mcnemar's Test P-Value : < 2.2e-16

AUC was used to select the optimal model using the largest value. The final values used for the model were degree = 1 and nprune = 21.

Neural Network Classification

Confusion Matrix and Statistics

Reference

Prediction Low Medium High Low 2357 134 0 Medium 82 1630 85 High 35 274 3516

Overall Statistics

Accuracy: 0.9248

95% CI: (0.9189, 0.9305)

No Information Rate : 0.4439 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8828

Mcnemar's Test P-Value : < 2.2e-16

Tuning parameter 'bag' was held constant at a value of FALSE AUC was used to select the optimal model using the largest value. The final values used for the model were size = 6, decay = 0.5 and bag = FALSE.

SVM Classification

Confusion Matrix and Statistics

Reference

Prediction Low Medium High Low 2355 129 0 Medium 84 1627 68 High 35 282 3533

Overall Statistics

Accuracy: 0.9263

95% CI: (0.9204, 0.9319)

No Information Rate : 0.4439 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.885

Mcnemar's Test P-Value : < 2.2e-16

AUC was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.01136606 and C = 4.

Naive Bayes Classification

Confusion Matrix and Statistics

Reference
Prediction Low Medium High
Low 2463 1847 1209
Medium 0 0 0
High 11 191 2392

Overall Statistics

Accuracy: 0.5984

95% CI: (0.5877, 0.6091)

No Information Rate : 0.4439 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.3828

Mcnemar's Test P-Value : < 2.2e-16

Tuning parameter 'usekernel' was held constant at a value of TRUE AUC was used to select the optimal model using the largest value. The final values used for the model were fL = 5, usekernel = TRUE and adjust = 5.

Classification Summary

Model	Train Accuracy	Train Kappa	Train Time* (sec)	Test Accuracy	Test Kappa
KNN	0.8982	0.8430	74.31	0.9227	0.8799
FDA	0.8601	0.7817	1787.49	0.8629	0.7834
Neural Network	0.9116	0.8641	3117.12	0.9248	0.8828
SVM	0.9123	0.8654	517.05	0.9263	0.8850
Naive Bayes	0.6720	0.4882	658.08	0.5984	0.3828

Classification Variable Importance

Conclusion

Best Models

- Regression: Non-linear Methods
 - o KNN
 - o SVM
- Classiffication: Non-linear Methods
 - NNET
 - o SVM

Before over-fitting this dataset, explore data for another ATR location to see bias / variability

Questions?

References

Hogue, John. (2019). "Metro Interstate Traffic Volume Data Set". UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume

Hyndman, R.J. & Athanasopoulos, G (2018). *Forecasting: principles and practice*, 2nd edition, OTexts: Melbourne, Australia. https://otexts.com/fpp2/accuracy.html

Kuhn, M (2019). "Data Splitting for Time Series". *The caret package*. https://topepo.github.io/caret/data-splitting.html#data-splitting-for-time-series

Kuhn, M & Johnson, K (2013). Applied Predictive Modeling. Springer Science + Business Media.

MNDoT (2019). "Collection Methods". Traffic Forecasting and Analysis. St. Paul, MN. http://www.dot.state.mn.us/traffic/data/coll-methods.html

