Paper 14 | Text Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling by Peng Zhou et. al – published in 2016

Abstract

- 1. RNN can utilise distributed representations of words by first converting the tokens comprising each text into vectors, which form a matrix. This matrix includes two dimensions: time-step dimension and feature vector dimension
- 2. Most existing models usually utilise one-dimensional max pooling operation only on the time-step dimension to obtain a fixed-length vector and this is said to have destroy the structure of the feature representation as the features on the feature vector are not mutually independent
- 3. Therefore, this paper decides to use 2D pooling operation over the two dimensions in the hope to sample more meaningful features for sequence modelling tasks
- 4. This paper applies 2D max pooling to obtain a fixed-length representation of text and 2D convolution to sample more meaningful information of the matrix
- 5. Experiments are conducted on six text classification tasks, including:
 - Sentiment analysis
 - Question classification
 - Subjectivity classification
 - Newsgroup classification
- 6. One of the proposed models achieves highest accuracy on SST binary classification and fine-grained classification tasks

Introduction

- This paper proposes Bidirectional LSTM with 2D max pooling (BLSTM-2DPooling) to capture features on both the time-step dimension and the feature vector dimension. It first utilises BLSTM to transform text into vectors and then apply 2D max pooling to obtain a fixed-length vector
- 2. This paper also applies 2D convolution (BLSTM-2DCNN) to capture more meaningful features to represent the input text
- 3. To better understand the effect of 2D convolution and 2D max pooling, this paper conducts experiments on SST fine-grained task whereby it depicts the performance of the proposed models on different length of sentences and also conducts a sensitivity analysis of 2D filter and max pooling size

Model

Figure 1: A BLSTM-2DCNN for the seven word input sentence. Word embeddings have size 3, and BLSTM has 5 hidden units. The height and width of convolution filters and max pooling operations are 2, 2 respectively.

- 1. The overall model consists of 4 parts:
 - BLSTM layer
 - 2D Convolution layer
 - 2D Max-pooling layer
 - Output layer

2. BLSTM

 BLSTM is utilised to capture the past and the future information. The network contains two sub-networks for the forward and backward sequence context respectively. The output of ith word is the element-wise sum of both the forward and backward pass outputs

3. 2D CNN

- A convolution operation involves a 2D filter (k x d size) when it is applied to a window of k words and d feature vectors
- The convolution layer may have multiple filters for the same size filter to learn complementary features, or multiple kinds of filter with different size

4. 2D Max-pooling

• Utilised to obtain a fixed-length vector

5. Output layer

- The output of 2D Max-pooling is the whole representation of the input text S
- The output is passed to a softmax classifier layer to predict the semantic relation label from a discrete set of classes

$$\hat{p}(y|s) = softmax \left(W^{(s)}h^* + b^{(s)}\right)$$

$$\hat{y} = \arg\max_{y} \hat{p}(y|s)$$

Results

NN	Model	SST-1	SST-2	Subj	TREC	MR	20Ng
ReNN	RNTN (Socher et al., 2013)	45.7	85.4	-	-	-	-
	DRNN (Irsoy and Cardie, 2014)	49.8	86.6	-	-	-	-
CNN	DCNN (Kalchbrenner et al., 2014)	48.5	86.8	-	93.0	-	-
	CNN-non-static (Kim, 2014)	48.0	87.2	93.4	93.6	-	-
	CNN-MC (Kim, 2014)	47.4	88.1	93.2	92	-	-
	TBCNN(Mou et al., 2015)	51.4	87.9	-	96.0	-	-
	Molding-CNN (Lei et al., 2015)	51.2	88.6	-	-	-	-
	CNN-Ana (Zhang and Wallace, 2015)	45.98	85.45	93.66	91.37	81.02	-
	MVCNN (Yin and Schütze, 2016)	49.6	89.4	93.9	-	-	-
RNN	RCNN (Lai et al., 2015)	47.21	-	-	-	-	96.49
	S-LSTM (Zhu et al., 2015)	-	81.9	-	-	-	-
	LSTM (Tai et al., 2015)	46.4	84.9	-	-	-	-
	BLSTM (Tai et al., 2015)	49.1	87.5	-	-	-	-
	Tree-LSTM (Tai et al., 2015)	51.0	88.0	-	-	-	-
	LSTMN (Cheng et al., 2016)	49.3	87.3	-	-	-	-
	Multi-Task (Liu et al., 2016)	49.6	87.9	94.1	-	-	-
Other	PV (Le and Mikolov, 2014)	48.7	87.8	-	-	-	-
	DAN (Iyyer et al., 2015)	48.2	86.8	-	-	-	-
	combine-skip (Kiros et al., 2015)	-	-	93.6	92.2	76.5	-
	AdaSent (Zhao et al., 2015)	-	-	95.5	92.4	83.1	-
	LSTM-RNN (Le and Zuidema, 2015)	49.9	88.0	-	-	-	-
	C-LSTM (Zhou et al., 2015)	49.2	87.8	-	94.6	-	-
	DSCNN (Zhang et al., 2016)	49.7	89.1	93.2	95.4	81.5	-
ours	BLSTM	49.1	87.6	92.1	93.0	80.0	94.0
	BLSTM-Att	49.8	88.2	93.5	93.8	81.0	94.6
	BLSTM-2DPooling	50.5	88.3	93.7	94.8	81.5	95.5
	BLSTM-2DCNN	52.4	89.5	94.0	96.1	82.3	96.5

Table 2: Classification results on several standard benchmarks. RNTN: Recursive deep models for semantic compositionality over a sentiment treebank (Socher et al., 2013). DRNN: Deep recursive neural networks for compositionality in language (Irsoy and Cardie, 2014). DCNN: A convolutional neural network for modeling sentences (Kalchbrenner et al., 2014). CNN-nonstatic/MC: Convolutional neural networks for sentence classification (Kim, 2014). TBCNN: Discriminative neural sentence modeling by tree-based convolution (Mou et al., 2015). Molding-CNN: Molding CNNs for text: non-linear, non-consecutive convolutions (Lei et al., 2015). CNN-Ana: A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification (Zhang and Wallace, 2015). MVCNN: Multichannel variable-size convolution for sentence classification (Yin and Schütze, 2016). RCNN: Recurrent Convolutional Neural Networks for Text Classification (Lai et al., 2015). S-LSTM: Long short-term memory over recursive structures (Zhu et al., 2015). LSTM/BLSTM/Tree-LSTM: Improved semantic representations from tree-structured long short-term memory networks (Tai et al., 2015). LSTMN: Long short-term memory-networks for machine reading (Cheng et al., 2016). Multi-Task: Recurrent Neural Network for Text Classification with Multi-Task Learning (Liu et al., 2016). PV: Distributed representations of sentences and documents (Le and Mikolov, 2014). DAN: Deep unordered composition rivals syntactic methods for text classification (Iyyer et al., 2015). combine-skip: skip-thought vectors (Kiros et al., 2015). AdaSent: Self-adaptive hierarchical sentence model (Zhao et al., 2015). LSTM-RNN: Compositional distributional semantics with long short term memory (Le and Zuidema, 2015). C-LSTM: A C-LSTM Neural Network for Text Classification (Zhou et al., 2015). DSCNN: Dependency Sensitive Convolutional Neural Networks for Modeling Sentences and Documents (Zhang et al., 2016).

- 1. This paper implemented 4 models
 - BLSTM
 - BLSTM-Att
 - BLSTM-2DPooling
 - BLSTM-2DCNN
- 2. BLSTM-2DCNN achieves excellent performance on 4 out of 6 tasks, especially 52.4% and 89.5% test accuracies on SST-1 and SST-2 respectively
- 3. The paper tests the 4 models on document-level dataset 20Ng to assess whether it is possible to use the proposed models for datasets that have a substantial number of words. Results show that BLSTM-2DCNN achieved a comparable result relative to RCNN
- 4. Relative to RecNN, the proposed models do not depend on external language-specific features such as dependency parse trees
- 5. BLSTM-2DCNN is an extension of BLSTM-2DPooling and the results show that the former model can capture more dependencies in text
- 6. Compared to DSCNN, BLSTM-2DCNN outperforms it on five datasets
- 7. Sensitivity analysis on SST-1 dataset

- The paper found that both BLSTM-2DPooling and BLSTM-2DCNN outperform the other two models, suggesting that both 2D convolution and 2D max pooling are able to encode semantically-useful structural information
- Accuracies decline with the length of sentences increasing
- In terms of what is the best 2D filter and max pooling size to get better performance, the result shows that the best accuracy (52.6%) was achieved with 2D filter size (5, 5) and 2D max pooling size (5, 5)
- This shows that filter tuning can further improve the performance. A large filter can detect more features but will take up more storage space and consume more time

Conclusion

- 1. Introduced two combination models
 - a. BLSTM-2DPooling
 - b. BLSTM-2DCNN (extension of BLSTM-2DPooling)
- 2. Both models can hold information from the time-step and feature vector dimension
- 3. The experiments results demonstrate that BLSTM-2DCNN outperforms RecNN, RNN and CNN models as well as BLSTM-2Dpooling and DSCNN
- 4. BLSTM-2DCNN achieves highest accuracy on SST-1 and SST-2 datasets
- 5. The sensitivity analysis on SST-1 dataset shows that larger filter can detect more features which may lead to performance improvement