复变函数与积分变换

张神星

合肥工业大学

2022 年秋季学期

第四章 级数

1, 3, 4, 6, 8, 11, 12, 15, 16, 19

3/74

第四章 级数

- 1 复数项级数
- 2 幂级数
- 3 泰勒级数
- 4 洛朗级数

复数项级数

复数域上的级数与实数域上的级数并无本质差别.

复数项级数

复数域上的级数与实数域上的级数并无本质差别.

定义

定义

■ 设 $\{z_n\}_{n\geqslant 1}$ 是一个复数列.

定义

■ 设 $\{z_n\}_{n\geq 1}$ 是一个复数列. 表达式 $\sum_{n=1}^{\infty} z_n$ 称为复数项无穷级数.

定义

- 设 $\{z_n\}_{n\geq 1}$ 是一个复数列. 表达式 $\sum_{n=1}^{\infty} z_n$ 称为复数项无穷级数.
- 称

$$s_n = z_1 + z_2 + \dots + z_n$$

为该级数的部分和.

定义

- 设 $\{z_n\}_{n\geq 1}$ 是一个复数列. 表达式 $\sum_{n=1}^{\infty} z_n$ 称为复数项无穷级数.
- 称

$$s_n = z_1 + z_2 + \dots + z_n$$

为该级数的部分和.

■ 如果部分和数列 $\{s_n\}_{n\geqslant 1}$ 极限存在, 则称 $\sum\limits_{n=1}^{\infty}z_n$ 收敛, 并记 $\sum\limits_{n=1}^{\infty}z_n=\lim\limits_{n\to\infty}s_n$ 为它的和.

定义

- 设 $\{z_n\}_{n\geq 1}$ 是一个复数列. 表达式 $\sum_{n=1}^{\infty} z_n$ 称为复数项无穷级数.
- 称

$$s_n = z_1 + z_2 + \dots + z_n$$

为该级数的部分和.

■ 如果部分和数列 $\{s_n\}_{n\geqslant 1}$ 极限存在,则称 $\sum\limits_{n=1}^{\infty}z_n$ 收敛,并记 $\sum\limits_{n=1}^{\infty}z_n=\lim\limits_{n\to\infty}s_n$ 为它的和. 否则称之发散.

定理

$$\sum_{n=1}^{\infty} z_n = a + bi$$
 当且仅当
$$\sum_{n=1}^{\infty} x_n = a, \sum_{n=1}^{\infty} y_n = b.$$

定理

$$\sum_{n=1}^{\infty} z_n = a + bi$$
 当且仅当
$$\sum_{n=1}^{\infty} x_n = a, \sum_{n=1}^{\infty} y_n = b.$$

证明.

设
$$\sum_{n=1}^{\infty} x_n$$
 的部分和为 $\sigma_n = x_1 + x_2 + \cdots + x_n$, 设 $\sum_{n=1}^{\infty} y_n$ 的部分和

为
$$\tau_n = y_1 + y_2 + \cdots + y_n$$
,

定理

$$\sum_{n=1}^{\infty} z_n = a + bi$$
 当且仅当
$$\sum_{n=1}^{\infty} x_n = a, \sum_{n=1}^{\infty} y_n = b.$$

证明.

设
$$\sum_{n=1}^{\infty} x_n$$
 的部分和为 $\sigma_n = x_1 + x_2 + \cdots + x_n$, 设 $\sum_{n=1}^{\infty} y_n$ 的部分和

为
$$\tau_n = y_1 + y_2 + \cdots + y_n$$
, 则 $\sum_{n=1}^{\infty} z_n$ 的部分和为

$$s_n = z_1 + z_2 + \dots + z_n = \sigma_n + i\tau_n.$$

定理

$$\sum_{n=1}^{\infty} z_n = a + bi$$
 当且仅当
$$\sum_{n=1}^{\infty} x_n = a, \sum_{n=1}^{\infty} y_n = b.$$

证明.

设
$$\sum_{n=1}^{\infty} x_n$$
 的部分和为 $\sigma_n = x_1 + x_2 + \cdots + x_n$, 设 $\sum_{n=1}^{\infty} y_n$ 的部分和

为
$$\tau_n = y_1 + y_2 + \cdots + y_n$$
, 则 $\sum_{n=1}^{\infty} z_n$ 的部分和为

$$s_n = z_1 + z_2 + \dots + z_n = \sigma_n + i\tau_n.$$

由复数列的敛散性判定条件可知

$$\lim_{n \to \infty} s_n = a + bi \iff \lim_{n \to \infty} \sigma_n = a, \quad \lim_{n \to \infty} \tau_n = b.$$

定理

$$\sum_{n=1}^{\infty} z_n = a + bi$$
 当且仅当
$$\sum_{n=1}^{\infty} x_n = a, \sum_{n=1}^{\infty} y_n = b.$$

证明.

设
$$\sum_{n=1}^{\infty} x_n$$
 的部分和为 $\sigma_n = x_1 + x_2 + \cdots + x_n$, 设 $\sum_{n=1}^{\infty} y_n$ 的部分和

为
$$\tau_n = y_1 + y_2 + \cdots + y_n$$
, 则 $\sum_{n=1}^{\infty} z_n$ 的部分和为

$$s_n = z_1 + z_2 + \dots + z_n = \sigma_n + i\tau_n.$$

由复数列的敛散性判定条件可知

$$\lim_{n \to \infty} s_n = a + bi \iff \lim_{n \to \infty} \sigma_n = a, \quad \lim_{n \to \infty} \tau_n = b.$$

由此命题得证

如果 $\sum\limits_{n=1}^{\infty}z_n$ 收敛, 则它的实部级数和虚部级数都收敛,

如果 $\sum\limits_{n=1}^{\infty}z_n$ 收敛, 则它的实部级数和虚部级数都收敛, 从而

$$x_n, y_n \to 0$$
,

如果 $\sum\limits_{n=1}^{\infty}z_n$ 收敛, 则它的实部级数和虚部级数都收敛, 从而

$$x_n, y_n \to 0$$
, $z_n = x_n + iy_n \to 0$.

如果 $\sum\limits_{n=1}^{\infty}z_n$ 收敛, 则它的实部级数和虚部级数都收敛, 从而

 $x_n, y_n \to 0$, $z_n = x_n + iy_n \to 0$. 因此 $z_n \to 0$ 是 $\sum_{n=1}^{\infty} z_n$ 收敛的必要条件.

如果 $\sum\limits_{n=1}^{\infty}z_n$ 收敛, 则它的实部级数和虚部级数都收敛, 从而

 $x_n, y_n \to 0, z_n = x_n + iy_n \to 0.$ 因此 $z_n \to 0$ 是 $\sum_{n=1}^{\infty} z_n$ 收敛的必要条件.

定理

如果实数项级数

$$\sum_{n=1}^{\infty} |z_n| = |z_1| + |z_2| + \cdots$$

收敛, 则 $\sum_{n=1}^{\infty} z_n$ 也收敛, 且 $\left|\sum_{n=1}^{\infty} z_n\right| \leqslant \sum_{n=1}^{\infty} |z_n|$.

证明.

因为 $|x_n|, |y_n| \leq |z_n|$, 由比较判别法可知实数项级数 $\sum_{n=1}^{\infty} x_n$,

 $\sum_{n=1}^{\infty} y_n$ 绝对收敛, 从而收敛.

证明.

因为 $|x_n|, |y_n| \leq |z_n|$, 由比较判别法可知实数项级数 $\sum_{n=1}^{\infty} x_n$,

 $\sum\limits_{n=1}^{\infty}y_n$ 绝对收敛, 从而收敛. 故 $\sum\limits_{n=1}^{\infty}z_n$ 也收敛.

证明.

因为 $|x_n|, |y_n| \leq |z_n|$, 由比较判别法可知实数项级数 $\sum_{n=1}^{\infty} x_n$,

 $\sum\limits_{n=1}^{\infty}y_n$ 绝对收敛,从而收敛。故 $\sum\limits_{n=1}^{\infty}z_n$ 也收敛。 由三角不等式可知

用个专工刊和

$$\left| \sum_{k=1}^{n} z_k \right| \leqslant \sum_{k=1}^{n} |z_k|.$$

证明.

因为 $|x_n|, |y_n| \leq |z_n|$, 由比较判别法可知实数项级数 $\sum_{n=1}^{\infty} x_n$,

 $\sum\limits_{n=1}^{\infty}y_n$ 绝对收敛,从而收敛。故 $\sum\limits_{n=1}^{\infty}z_n$ 也收敛。 由三角不等式可知

$$\left| \sum_{k=1}^{n} z_k \right| \leqslant \sum_{k=1}^{n} |z_k|.$$

两边同时取极限即得级数的不等式关系

$$\left|\sum_{n=1}^{\infty} z_n\right| = \left|\lim_{n \to \infty} \sum_{k=1}^n z_k\right| = \lim_{n \to \infty} \left|\sum_{k=1}^n z_k\right| \leqslant \lim_{n \to \infty} \sum_{k=1}^n |z_k| = \sum_{n=1}^{\infty} |z_n|,$$

证明.

因为 $|x_n|, |y_n| \leq |z_n|$, 由比较判别法可知实数项级数 $\sum_{n=1}^{\infty} x_n$,

 $\sum\limits_{n=1}^{\infty}y_n$ 绝对收敛, 从而收敛. 故 $\sum\limits_{n=1}^{\infty}z_n$ 也收敛.

由三角不等式可知

$$\left| \sum_{k=1}^{n} z_k \right| \leqslant \sum_{k=1}^{n} |z_k|.$$

两边同时取极限即得级数的不等式关系

$$\left|\sum_{n=1}^{\infty} z_n\right| = \left|\lim_{n \to \infty} \sum_{k=1}^n z_k\right| = \lim_{n \to \infty} \left|\sum_{k=1}^n z_k\right| \leqslant \lim_{n \to \infty} \sum_{k=1}^n |z_k| = \sum_{n=1}^{\infty} |z_n|,$$

其中第二个等式是因为绝对值函数 |z| 连续.

定义

定义

1 如果级数 $\sum\limits_{n=1}^{\infty}|z_n|$ 收敛, 则称 $\sum\limits_{n=1}^{\infty}z_n$ 绝对收敛.

定义

- **1** 如果级数 $\sum_{n=1}^{\infty} |z_n|$ 收敛, 则称 $\sum_{n=1}^{\infty} z_n$ 绝对收敛.
- 2 称收敛但不绝对收敛的级数条件收敛.

定义

- **1** 如果级数 $\sum\limits_{n=1}^{\infty}|z_n|$ 收敛, 则称 $\sum\limits_{n=1}^{\infty}z_n$ 绝对收敛.
- 2 称收敛但不绝对收敛的级数条件收敛.

定理

 $\sum_{n=1}^{\infty} z_n$ 绝对收敛当且仅当它的实部和虚部级数都绝对收敛.

定义

- **1** 如果级数 $\sum_{n=1}^{\infty} |z_n|$ 收敛, 则称 $\sum_{n=1}^{\infty} z_n$ 绝对收敛.
- 2 称收敛但不绝对收敛的级数条件收敛.

定理

 $\sum_{n=1}^{\infty} z_n$ 绝对收敛当且仅当它的实部和虚部级数都绝对收敛.

证明.

必要性由前一定理的证明已经知道,

定义

- **1** 如果级数 $\sum_{n=1}^{\infty} |z_n|$ 收敛, 则称 $\sum_{n=1}^{\infty} z_n$ 绝对收敛.
- 2 称收敛但不绝对收敛的级数条件收敛.

定理

 $\sum_{n=1}^{\infty} z_n$ 绝对收敛当且仅当它的实部和虚部级数都绝对收敛.

证明.

必要性由前一定理的证明已经知道, 充分性由 $|z_n| \leq |x_n| + |y_n|$ 可得.

	$\sum_{n=1}^{\infty} x_n$ 发散	$\sum_{n=1}^{\infty} x_n$ 条件收敛	$\sum\limits_{n=1}^{\infty}x_{n}$ 绝对收敛
$\sum\limits_{n=1}^{\infty}y_{n}$ 发散	$\sum\limits_{n=1}^{\infty}z_{n}$ 发散	$\sum\limits_{n=1}^{\infty}z_{n}$ 发散	$\sum\limits_{n=1}^{\infty}z_{n}$ 发散
$\sum\limits_{n=1}^{\infty}y_n$ 条件收敛	$\sum\limits_{n=1}^{\infty}z_{n}$ 发散	$\sum\limits_{n=1}^{\infty}z_{n}$ 条件收敛	$\sum\limits_{n=1}^{\infty}z_{n}$ 条件收敛
$\sum\limits_{n=1}^{\infty}y_{n}$ 绝对收敛	$\sum\limits_{n=1}^{\infty}z_{n}$ 发散	$\sum\limits_{n=1}^{\infty}z_{n}$ 条件收敛	$\sum\limits_{n=1}^{\infty}z_{n}$ 绝对收敛

绝对收敛的复级数各项可以任意重排次序而不改变其绝对收敛性,且不改变其和.

11 / 74

绝对收敛的复级数各项可以任意重排次序而不改变其绝对收敛性, 且不改变其和.

一般的级数重排有限项不改变其敛散性与和, 但如果重排无限项则可能会改变其敛散性与和.

4.1 复数项级数

11/74

绝对收敛的复级数各项可以任意重排次序而不改变其绝对收敛性, 且不改变其和.

一般的级数重排有限项不改变其敛散性与和, 但如果重排无限项则可能会改变其敛散性与和.

思考

什么时候
$$\left|\sum_{n=1}^{\infty} z_n\right| = \sum_{n=1}^{\infty} |z_n|$$
?

绝对收敛和条件收敛

绝对收敛的复级数各项可以任意重排次序而不改变其绝对收敛性, 且不改变其和.

一般的级数重排有限项不改变其敛散性与和, 但如果重排无限项则可能会改变其敛散性与和.

思考

什么时候
$$\left|\sum_{n=1}^{\infty} z_n\right| = \sum_{n=1}^{\infty} |z_n|$$
?

答案

当且仅当非零的 z_n 的辐角全都相同时成立.

例

级数
$$\sum_{n=1}^{\infty} \frac{1+i^n}{n}$$
 发散、条件收敛、还是绝对收敛?

例

级数 $\sum_{n=1}^{\infty} \frac{1+i^n}{n}$ 发散、条件收敛、还是绝对收敛?

解.

由于实部级数

$$\sum_{n=1}^{\infty} x_n = 1 + \frac{1}{3} + \frac{2}{4} + \frac{1}{5} + \frac{1}{7} + \frac{2}{8} + \cdots$$

发散, 所以该级数发散.

例

级数 $\sum_{n=1}^{\infty} \frac{1+i^n}{n}$ 发散、条件收敛、还是绝对收敛?

解.

由于实部级数

$$\sum_{n=1}^{\infty} x_n = 1 + \frac{1}{3} + \frac{2}{4} + \frac{1}{5} + \frac{1}{7} + \frac{2}{8} + \cdots$$

发散, 所以该级数发散.

事实上,它的虚部级数

$$\sum_{n=1}^{\infty} y_n = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

是条件收敛的.

例

级数
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n} + \frac{i}{2^n} \right]$$
 发散、条件收敛、还是绝对收敛?

例

级数
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n} + \frac{i}{2^n} \right]$$
 发散、条件收敛、还是绝对收敛?

解.

因为实部级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 条件收敛,

例

级数
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n} + \frac{i}{2^n} \right]$$
 发散、条件收敛、还是绝对收敛?

解.

因为实部级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 条件收敛, 虚部级数 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 绝对收敛,

例

级数
$$\sum_{n=1}^{\infty}\left[\frac{(-1)^n}{n}+\frac{i}{2^n}\right]$$
 发散、条件收敛、还是绝对收敛?

解.

因为实部级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 条件收敛, 虚部级数 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 绝对收敛, 所以该级数条件收敛.

例

级数
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n} + \frac{i}{2^n} \right]$$
 发散、条件收敛、还是绝对收敛?

解.

因为实部级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 条件收敛, 虚部级数 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 绝对收敛, 所

以该级数条件收敛.

例

级数 $\sum_{n=1}^{\infty} \frac{i^n}{n}$ 发散、条件收敛、还是绝对收敛?

解.

因为它的实部和虚部级数

$$\sum_{n=1}^{\infty} x_n = -\frac{1}{2} + \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \cdots$$

解.

因为它的实部和虚部级数

$$\sum_{n=1}^{\infty} x_n = -\frac{1}{2} + \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \cdots$$

$$\sum_{n=1}^{\infty} y_n = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

均条件收敛,

解.

因为它的实部和虚部级数

$$\sum_{n=1}^{\infty} x_n = -\frac{1}{2} + \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \cdots$$

$$\sum_{n=1}^{\infty} y_n = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

均条件收敛, 所以原级数条件收敛.

对
$$1/(1+x^2) = 1 - x^2 + x^4 - x^6 + \cdots$$
 逐项积分可得

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

对
$$1/(1+x^2) = 1 - x^2 + x^4 - x^6 + \cdots$$
 逐项积分可得

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

可以证明 x=1 时该级数的余项趋于 0, 因此

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \arctan 1 = \frac{\pi}{4}.$$

对
$$1/(1+x^2) = 1 - x^2 + x^4 - x^6 + \cdots$$
 逐项积分可得

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

可以证明 x=1 时该级数的余项趋于 0, 因此

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \arctan 1 = \frac{\pi}{4}.$$

同理

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln(1+x)|_{x=1} = \ln 2.$$

对
$$1/(1+x^2) = 1 - x^2 + x^4 - x^6 + \cdots$$
 逐项积分可得

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

可以证明 x=1 时该级数的余项趋于 0, 因此

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \arctan 1 = \frac{\pi}{4}.$$

同理

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln(1+x)|_{x=1} = \ln 2.$$

从而

$$\sum_{n=1}^{\infty} \frac{i^n}{n} = -\frac{1}{2} \ln 2 + \frac{\pi i}{4}.$$

对
$$1/(1+x^2) = 1 - x^2 + x^4 - x^6 + \cdots$$
 逐项积分可得

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

可以证明 x=1 时该级数的余项趋于 0, 因此

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \arctan 1 = \frac{\pi}{4}.$$

同理

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln(1+x)|_{x=1} = \ln 2.$$

从而

$$\sum_{n=1}^{\infty} \frac{i^n}{n} = -\frac{1}{2} \ln 2 + \frac{\pi i}{4}.$$

事实上, 左侧是复变函数 $-\ln(1+z)$ 在 z=-i 处的泰勒级数.

例

级数
$$\sum_{n=0}^{\infty} \frac{(8i)^n}{n!}$$
 发散、条件收敛、还是绝对收敛?

例

级数 $\sum_{n=0}^{\infty} \frac{(8i)^n}{n!}$ 发散、条件收敛、还是绝对收敛?

解.

因为
$$\left| \frac{(8i)^n}{n!} \right| = \frac{8^n}{n!}$$
, $\sum_{n=0}^{\infty} \frac{8^n}{n!} = e^8$ 收敛, 所以该级数绝对收敛.

16 / 74

例

级数 $\sum_{n=0}^{\infty} \frac{(8i)^n}{n!}$ 发散、条件收敛、还是绝对收敛?

解.

因为
$$\left| \frac{(8i)^n}{n!} \right| = \frac{8^n}{n!}, \sum_{n=0}^{\infty} \frac{8^n}{n!} = e^8$$
 收敛, 所以该级数绝对收敛.

实际上, 它的实部和虚部级数分别为

$$1 - \frac{8^2}{2!} + \frac{8^4}{4!} - \frac{8^6}{6!} + \dots = \cos 8, \ 8 - \frac{8^3}{3!} + \frac{8^5}{5!} - \frac{8^7}{7!} + \dots = \sin 8,$$

例

级数 $\sum_{n=0}^{\infty} \frac{(8i)^n}{n!}$ 发散、条件收敛、还是绝对收敛?

解.

因为
$$\left| \frac{(8i)^n}{n!} \right| = \frac{8^n}{n!}$$
, $\sum_{n=0}^{\infty} \frac{8^n}{n!} = e^8$ 收敛, 所以该级数绝对收敛.

实际上,它的实部和虚部级数分别为

$$1 - \frac{8^2}{2!} + \frac{8^4}{4!} - \frac{8^6}{6!} + \dots = \cos 8, \ 8 - \frac{8^3}{3!} + \frac{8^5}{5!} - \frac{8^7}{7!} + \dots = \sin 8,$$

因此

$$\sum_{n=0}^{\infty} \frac{(8i)^n}{n!} = \cos 8 + i \sin 8 = e^{8i}.$$

对于正项级数 $\sum_{n=0}^{\infty} x_n$, 我们有若干判别法来判断它的敛散性.

由此可得: 设

对于正项级数 $\sum_{n=0}^{\infty} x_n$, 我们有若干判别法来判断它的敛散性.

由此可得: 设

1 达朗贝尔判别法 (比值法): $\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$ (假设存在);

对于正项级数 $\sum_{n=0}^{\infty} x_n$, 我们有若干判别法来判断它的敛散性.

由此可得: 设

- 1 达朗贝尔判别法 (比值法): $\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$ (假设存在);
- 2 柯西判别法 (根式法): $\lambda = \lim_{n \to \infty} \sqrt[n]{|z_n|}$ (假设存在);

对于正项级数 $\sum_{n=0}^{\infty} x_n$, 我们有若干判别法来判断它的敛散性.

由此可得: 设

- **I** 达朗贝尔判别法 (比值法): $\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$ (假设存在);
- 2 柯西判别法 (根式法): $\lambda = \lim_{n \to \infty} \sqrt[n]{|z_n|}$ (假设存在);
- ③ 柯西-Hadamard 判别法: $\lambda = \overline{\lim_{n \to \infty}} \sqrt[n]{|z_n|}$ (所有子数列中极限的最大值).

对于正项级数 $\sum_{n=0}^{\infty} x_n$, 我们有若干判别法来判断它的敛散性.

由此可得:设

- I 达朗贝尔判别法 (比值法): $\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$ (假设存在);
- 2 柯西判别法 (根式法): $\lambda = \lim_{n \to \infty} \sqrt[n]{|z_n|}$ (假设存在);
- ③ 柯西-Hadamard 判别法: $\lambda = \overline{\lim_{n \to \infty}} \sqrt[n]{|z_n|}$ (所有子数列中极限的最大值).

则当 $\lambda < 1$ 时, $\sum_{n=0}^{\infty} z_n$ 绝对收敛;

对于正项级数 $\sum_{n=0}^{\infty} x_n$, 我们有若干判别法来判断它的敛散性.

由此可得:设

- **I** 达朗贝尔判别法 (比值法): $\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$ (假设存在);
- 2 柯西判别法 (根式法): $\lambda = \lim_{n \to \infty} \sqrt[n]{|z_n|}$ (假设存在);
- 3 柯西-Hadamard 判别法: $\lambda = \overline{\lim_{n \to \infty}} \sqrt[n]{|z_n|}$ (所有子数列中极限的最大值).

则当 $\lambda < 1$ 时, $\sum\limits_{n=0}^{\infty} z_n$ 绝对收敛; 当 $\lambda > 1$ 时, $\sum\limits_{n=0}^{\infty} z_n$ 发散.

对于正项级数 $\sum\limits_{n=0}^{\infty}x_n$, 我们有若干判别法来判断它的敛散性.

由此可得:设

- I 达朗贝尔判别法 (比值法): $\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$ (假设存在);
- 2 柯西判别法 (根式法): $\lambda = \lim_{n \to \infty} \sqrt[n]{|z_n|}$ (假设存在);
- 3 柯西-Hadamard 判别法: $\lambda = \overline{\lim_{n \to \infty}} \sqrt[n]{|z_n|}$ (所有子数列中极限的最大值).

则当 $\lambda < 1$ 时, $\sum_{n=0}^{\infty} z_n$ 绝对收敛; 当 $\lambda > 1$ 时, $\sum_{n=0}^{\infty} z_n$ 发散. 其证明主要是通过将该级数与相应的等比级数做比较得到.

对于正项级数 $\sum_{n=0}^{\infty} x_n$, 我们有若干判别法来判断它的敛散性.

由此可得: 设

- I 达朗贝尔判别法 (比值法): $\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$ (假设存在);
- 2 柯西判别法 (根式法): $\lambda = \lim_{n \to \infty} \sqrt[n]{|z_n|}$ (假设存在);
- 图 柯西-Hadamard 判别法: $\lambda = \overline{\lim_{n \to \infty}} \sqrt[n]{|z_n|}$ (所有子数列中极限的最大值).

则当 $\lambda < 1$ 时, $\sum\limits_{n=0}^\infty z_n$ 绝对收敛; 当 $\lambda > 1$ 时, $\sum\limits_{n=0}^\infty z_n$ 发散. 其证明主要是通过将该级数与相应的等比级数做比较得到. 如果 $\lambda = 1$, 则无法使用该方法判断.

对于正项级数 $\sum\limits_{n=0}^{\infty}x_n$, 我们有若干判别法来判断它的敛散性.

由此可得: 设

I 达朗贝尔判别法 (比值法):
$$\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$$
 (假设存在);

- 2 柯西判别法 (根式法): $\lambda = \lim_{n \to \infty} \sqrt[n]{|z_n|}$ (假设存在);
- 3 柯西-Hadamard 判别法: $\lambda = \overline{\lim_{n \to \infty}} \sqrt[n]{|z_n|}$ (所有子数列中极限的最大值).

则当 $\lambda < 1$ 时, $\sum\limits_{n=0}^\infty z_n$ 绝对收敛; 当 $\lambda > 1$ 时, $\sum\limits_{n=0}^\infty z_n$ 发散. 其证明主要是通过将该级数与相应的等比级数做比较得到. 如果 $\lambda = 1$, 则无法使用该方法判断.

另解.

因为
$$\lim_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right| = \lim_{n\to\infty} \left| \frac{8}{n+1} \right| = 0$$
,所以该级数绝对收敛.

第四章 级数

- 1 复数项级数
- 2 幂级数
- 3 泰勒级数
- 4 洛朗级数

19 / 74

定义

定义

■ 设 $\{f_n(z)\}_{n\geq 1}$ 是一个复变函数列,其中每一项都在区域 D 上有定义.

定义

■ 设 $\{f_n(z)\}_{n\geqslant 1}$ 是一个复变函数列, 其中每一项都在区域 D 上有定义. 表达式 $\sum_{j=1}^{\infty} f_n(z)$ 称为复变函数项级数.

定义

- 设 $\{f_n(z)\}_{n\geqslant 1}$ 是一个复变函数列, 其中每一项都在区域 D 上有定义. 表达式 $\sum_{n=1}^{\infty} f_n(z)$ 称为复变函数项级数.
- 对于 $z_0 \in D$, 如果级数 $\sum_{n=1}^{\infty} f_n(z_0)$ 收敛, 则称 $\sum_{n=1}^{\infty} f_n(z)$ 在 z_0 处收敛, 相应级数的值称为它的和.

复变函数级数与实变量函数级数也是类似的.

定义

- 设 $\{f_n(z)\}_{n\geqslant 1}$ 是一个复变函数列, 其中每一项都在区域 D 上有定义. 表达式 $\sum\limits_{n=1}^{\infty}f_n(z)$ 称为复变函数项级数.
- 对于 $z_0 \in D$, 如果级数 $\sum_{n=1}^{\infty} f_n(z_0)$ 收敛, 则称 $\sum_{n=1}^{\infty} f_n(z)$ 在 z_0 处收敛, 相应级数的值称为它的和.
- 如果 $\sum_{n=1}^{\infty} f_n(z)$ 在 D 上处处收敛,则它的和是一个函数,称为和函数.

定义 称形如 $\sum_{n=0}^{\infty} c_n (z-a)^n$ 的函数项级数为幂级数.

定义

称形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的函数项级数为幂级数.

我们只需要考虑 a=0 情形的幂级数, 因为二者的收敛范围与和函数只是差一个平移.

定义

称形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的函数项级数为幂级数.

我们只需要考虑 a=0 情形的幂级数, 因为二者的收敛范围与和函数只是差一个平移.

对于复变函数幂级数, 我们也有阿贝尔定理.

定义

称形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的函数项级数为幂级数.

我们只需要考虑 a=0 情形的幂级数,因为二者的收敛范围与和函数只是差一个平移.

对于复变函数幂级数, 我们也有阿贝尔定理.

定理 (阿贝尔定理)

定义

称形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的函数项级数为幂级数.

我们只需要考虑 a=0 情形的幂级数,因为二者的收敛范围与和函数只是差一个平移.

对于复变函数幂级数, 我们也有阿贝尔定理.

定理 (阿贝尔定理)

1 如果 $\sum_{n=0}^{\infty} c_n z^n$ 在 $z_0 \neq 0$ 处收敛, 那么对任意 $|z| < |z_0|$ 的 z, 该级数必绝对收敛.

定义

称形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的函数项级数为幂级数.

我们只需要考虑 a=0 情形的幂级数,因为二者的收敛范围与和函数只是差一个平移.

对于复变函数幂级数, 我们也有阿贝尔定理.

定理 (阿贝尔定理)

- **1** 如果 $\sum_{n=0}^{\infty} c_n z^n$ 在 $z_0 \neq 0$ 处收敛, 那么对任意 $|z| < |z_0|$ 的 z, 该级数必绝对收敛.
- 2 如果 $\sum_{n=0}^{\infty} c_n z^n$ 在 $z_0 \neq 0$ 处发散, 那么对任意 $|z| > |z_0|$ 的 z, 该级数必发散.

从阿贝尔定理我们可以得到幂级数的收敛域.

从阿贝尔定理我们可以得到幂级数的收敛域. 回忆一下实数 理论中的确界原理: 实数集的子集 S 若有上界, 则一定有最小的 上界,即上确界 $\sup S$.

从阿贝尔定理我们可以得到幂级数的收敛域. 回忆一下实数理论中的确界原理: 实数集的子集 S 若有上界,则一定有最小的上界,即上确界 $\sup S$. 没有上确界时记 $\sup S = +\infty$.

从阿贝尔定理我们可以得到幂级数的收敛域. 回忆一下实数理论中的确界原理: 实数集的子集 S 若有上界,则一定有最小的上界,即上确界 $\sup S$. 没有上确界时记 $\sup S = +\infty$. 设

$$R = \sup \left\{ |z| : \sum_{n=0}^{\infty} c_n z^n$$
 收敛 $\right\}.$

从阿贝尔定理我们可以得到幂级数的收敛域. 回忆一下实数理论中的确界原理: 实数集的子集 S 若有上界,则一定有最小的上界,即上确界 $\sup S$. 没有上确界时记 $\sup S = +\infty$. 设

$$R = \sup \left\{ |z| : \sum_{n=0}^{\infty} c_n z^n$$
 收敛 $\right\}.$

■ 如果 R = +∞, 则由阿贝尔定理可知该幂级数处处绝对收敛.

从阿贝尔定理我们可以得到幂级数的收敛域. 回忆一下实数理论中的确界原理: 实数集的子集 S 若有上界,则一定有最小的上界,即上确界 $\sup S$. 没有上确界时记 $\sup S = +\infty$. 设

$$R = \sup \left\{ |z| : \sum_{n=0}^{\infty} c_n z^n$$
 收敛 $\right\}.$

- 如果 $R = +\infty$,则由阿贝尔定理可知该幂级数处处绝对收敛.
- 如果 $0 < R < +\infty$, 那么该幂级数在 |z| < R 上绝对收敛, 在 |z| > R 上发散.

从阿贝尔定理我们可以得到幂级数的收敛域。回忆一下实数理论中的确界原理: 实数集的子集 S 若有上界,则一定有最小的上界,即上确界 $\sup S$. 没有上确界时记 $\sup S = +\infty$. 设

$$R = \sup \left\{ |z| : \sum_{n=0}^{\infty} c_n z^n$$
 收敛 $\right\}.$

- 如果 $R = +\infty$,则由阿贝尔定理可知该幂级数处处绝对收敛.
- 如果 $0 < R < +\infty$, 那么该幂级数在 |z| < R 上绝对收敛, 在 |z| > R 上发散.
- 如果 R = 0, 那么该幂级数仅在 z = 0 处收敛, 对任意 $z \neq 0$ 都发散.

从阿贝尔定理我们可以得到幂级数的收敛域。回忆一下实数理论中的确界原理: 实数集的子集 S 若有上界,则一定有最小的上界,即上确界 $\sup S$. 没有上确界时记 $\sup S = +\infty$. 设

$$R = \sup \left\{ |z| : \sum_{n=0}^{\infty} c_n z^n$$
 收敛 $\right\}.$

- 如果 $R = +\infty$,则由阿贝尔定理可知该幂级数处处绝对收敛.
- 如果 $0 < R < +\infty$, 那么该幂级数在 |z| < R 上绝对收敛, 在 |z| > R 上发散.
- 如果 R = 0, 那么该幂级数仅在 z = 0 处收敛, 对任意 $z \neq 0$ 都发散.

我们称 R 为该幂级数的收敛半径.

从阿贝尔定理我们可以得到幂级数的收敛域。回忆一下实数理论中的确界原理: 实数集的子集 S 若有上界,则一定有最小的上界,即上确界 $\sup S$. 没有上确界时记 $\sup S = +\infty$. 设

$$R = \sup \left\{ |z| : \sum_{n=0}^{\infty} c_n z^n$$
 收敛 $\right\}.$

- 如果 $R = +\infty$,则由阿贝尔定理可知该幂级数处处绝对收敛.
- 如果 $0 < R < +\infty$, 那么该幂级数在 |z| < R 上绝对收敛, 在 |z| > R 上发散.
- 如果 R = 0, 那么该幂级数仅在 z = 0 处收敛, 对任意 $z \neq 0$ 都发散.

我们称 R 为该幂级数的收敛半径. 这也等同于实幂级数 $\sum\limits_{n=0}^{\infty}|c_n|z^n$ 的收敛半径.

证明.

2可由1的逆否命题得到.

第四章 级数

证明.

2可由1的逆否命题得到.

我们来证明 1. 因为级数收敛, 所以 $\lim_{n\to\infty} c_n z_0^n = 0$.

证明.

2可由1的逆否命题得到.

我们来证明 1. 因为级数收敛, 所以 $\lim_{n\to\infty}c_nz_0^n=0$. 于是存在

M 使得 $|c_n z_0^n| < M$.

证明

2可由1的逆否命题得到.

我们来证明 1. 因为级数收敛, 所以 $\lim_{n\to\infty}c_nz_0^n=0$. 于是存在

M 使得 $|c_n z_0^n| < M$. 如果 $|z| < |z_0|$, 则

$$\sum_{n=0}^{\infty} |c_n z^n| = \sum_{n=0}^{\infty} |c_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n$$

发散

证明.

2可由1的逆否命题得到.

我们来证明 1. 因为级数收敛, 所以 $\lim_{n\to\infty}c_nz_0^n=0$. 于是存在

M 使得 $|c_n z_0^n| < M$. 如果 $|z| < |z_0|$, 则

$$\sum_{n=0}^{\infty} |c_n z^n| = \sum_{n=0}^{\infty} |c_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n \le M \sum_{n=0}^{\infty} \left| \frac{z}{z_0} \right|^n = \frac{M}{1 - |z/z_0|}.$$

第四章 级数

发散

证明.

2可由1的逆否命题得到.

我们来证明 1. 因为级数收敛, 所以 $\lim_{n\to\infty} c_n z_0^n = 0$. 于是存在 M 使得 $|c_n z_0^n| < M$. 如果 $|z| < |z_0|$, 则

$$\sum_{n=0}^{\infty} |c_n z^n| = \sum_{n=0}^{\infty} |c_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n \le M \sum_{n=0}^{\infty} \left| \frac{z}{z_0} \right|^n = \frac{M}{1 - |z/z_0|}.$$

所以级数在 z 处绝对收敛.

例

求幂级数
$$\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots$$
 的收敛半径与和函数.

例

求幂级数
$$\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots$$
 的收敛半径与和函数.

解.

如果幂级数收敛, 则由 $z^n \to 0$ 可知 |z| < 1.

例

求幂级数 $\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots$ 的收敛半径与和函数.

解.

如果幂级数收敛, 则由 $z^n \to 0$ 可知 |z| < 1. 当 |z| < 1 时, 和函数为

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - z^{n+1}}{1 - z} = \frac{1}{1 - z}.$$

例

求幂级数 $\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots$ 的收敛半径与和函数.

解.

如果幂级数收敛, 则由 $z^n \to 0$ 可知 |z| < 1. 当 |z| < 1 时, 和函数为

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - z^{n+1}}{1 - z} = \frac{1}{1 - z}.$$

因此收敛半径为 1.

由正项级数的相应判别法容易得到公式 $R=\frac{1}{r}$, 其中

由正项级数的相应判别法容易得到公式 $R=\frac{1}{r}$, 其中

I 达朗贝尔公式 (比值法): $r = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ (假设存在);

由正项级数的相应判别法容易得到公式 $R=\frac{1}{r}$, 其中

- I 达朗贝尔公式 (比值法): $r = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ (假设存在);
- 2 柯西公式 (根式法): $r = \lim_{n \to \infty} \sqrt[n]{|c_n|}$ (假设存在);

由正项级数的相应判别法容易得到公式 $R=rac{1}{r}$, 其中

- 1 达朗贝尔公式 (比值法): $r = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ (假设存在);
- 2 柯西公式 (根式法): $r = \lim_{n \to \infty} \sqrt[n]{|c_n|}$ (假设存在);
- 3 柯西-Hadamard 公式: $r = \overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|}$.

由正项级数的相应判别法容易得到公式 $R=rac{1}{r}$, 其中

- 1 达朗贝尔公式 (比值法): $r = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ (假设存在);
- 2 柯西公式 (根式法): $r = \lim_{n \to \infty} \sqrt[n]{|c_n|}$ (假设存在);
- 到 柯西-Hadamard 公式: $r = \overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|}$.

如果 r=0 或 $+\infty$, 则 $R=+\infty$ 或 0.

例

求幂级数 $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n}$ 的收敛半径, 并讨论 z=0,2 的情形.

例

求幂级数
$$\sum_{n=1}^{\infty} \frac{(z-1)^n}{n}$$
 的收敛半径, 并讨论 $z=0,2$ 的情形.

解.

由
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \frac{n}{n+1} = 1$$
 可知收敛半径为 1.

例

求幂级数 $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n}$ 的收敛半径, 并讨论 z=0,2 的情形.

由
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \frac{n}{n+1} = 1$$
 可知收敛半径为 1. 当 $z=2$ 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

当
$$z=2$$
 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

例

求幂级数 $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n}$ 的收敛半径, 并讨论 z=0,2 的情形.

由
$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} = 1$$
 可知收敛半径为 1.
当 $z = 2$ 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

当
$$z=2$$
 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

当
$$z=0$$
 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛.

例

求幂级数 $\sum_{n=0}^{\infty} \frac{(z-1)^n}{n}$ 的收敛半径, 并讨论 z=0,2 的情形.

由
$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} = 1$$
 可知收敛半径为 1.
当 $z = 2$ 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

当
$$z=2$$
 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

当
$$z=0$$
 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛.

事实上,收敛圆周上既可能处处收敛,也可能处处发散,也可 能既有收敛的点也有发散的点。

例

求幂级数 $\sum_{n=0}^{\infty} \cos(in) z^n$ 的收敛半径.

例

求幂级数 $\sum_{n=0}^{\infty} \cos(in) z^n$ 的收敛半径.

我们有
$$c_n = \cos(in) = \frac{e^n + e^{-n}}{2}$$
.

例

求幂级数 $\sum_{n=0}^{\infty} \cos(in)z^n$ 的收敛半径.

解.

我们有
$$c_n = \cos(in) = \frac{e^n + e^{-n}}{2}$$
. 由

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \frac{e^{n+1} + e^{-n-1}}{e^n + e^{-n}} = e \lim_{n \to \infty} \frac{1 + e^{-2n-2}}{1 + e^{-2n}} = e$$

可知收敛半径为 $\frac{1}{e}$.

例

求幂级数 $\sum_{n=0}^{\infty} (1+i)^n z^n$ 的收敛半径.

例

求幂级数 $\sum_{n=0}^{\infty} (1+i)^n z^n$ 的收敛半径.

解.

由

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = |1 + i| = \sqrt{2}$$

可知收敛半径为 $\frac{\sqrt{2}}{2}$.

例

求幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n^p}$ 的收敛半径并讨论在收敛圆周上的情形,其中 $p \in \mathbb{R}$.

例

求幂级数 $\sum\limits_{n=1}^{\infty}\frac{z^n}{n^p}$ 的收敛半径并讨论在收敛圆周上的情形,其中 $p\in\mathbb{R}$.

由
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \left(\frac{n}{n+1} \right)^p = 1$$
 可知收敛半径为 1.

例

求幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n^p}$ 的收敛半径并讨论在收敛圆周上的情形,其中 $p \in \mathbb{R}$.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^p=1$$
 可知收敛半径为 1. 设 $|z|=1$.

例

求幂级数 $\sum\limits_{n=1}^{\infty} \frac{z^n}{n^p}$ 的收敛半径并讨论在收敛圆周上的情形, 其中 $p \in \mathbb{R}$.

由
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \left(\frac{n}{n+1} \right)^p = 1$$
 可知收敛半径为 1. 设 $|z|=1$.

■ 若
$$p > 1$$
, $\sum_{n=1}^{\infty} \left| \frac{z^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛,

例

求幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n^p}$ 的收敛半径并讨论在收敛圆周上的情形, 其中 $p \in \mathbb{R}$.

解.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^p=1$$
 可知收敛半径为 1. 设 $|z|=1$.

■ 若 p > 1, $\sum_{n=1}^{\infty} \left| \frac{z^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛, 原级数在收敛圆周上处处 (绝对) 收敛.

例

求幂级数 $\sum\limits_{n=1}^{\infty} \frac{z^n}{n^p}$ 的收敛半径并讨论在收敛圆周上的情形, 其中 $p \in \mathbb{R}$.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^p=1$$
 可知收敛半径为 1. 设 $|z|=1$.

- 若 p > 1, $\sum_{n=1}^{\infty} \left| \frac{z^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛, 原级数在收敛圆周上处处 (绝对) 收敛.
- 若 $p \leqslant 0$, $\left| \frac{z^n}{n^p} \right| = \frac{1}{n^p} \not\to 0$,

例

求幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n^p}$ 的收敛半径并讨论在收敛圆周上的情形, 其中 $p \in \mathbb{R}$.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^p=1$$
 可知收敛半径为 1. 设 $|z|=1$.

- 若 p > 1, $\sum_{n=1}^{\infty} \left| \frac{z^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛, 原级数在收敛圆周上处处 (绝对) 收敛.
- 若 $p \le 0$, $\left| \frac{z^n}{n^p} \right| = \frac{1}{n^p} \not\to 0$, 原级数在收敛圆周上处处发散.

回忆狄利克雷判别法: 若 $\{a_n\}_{n\geqslant 1}$ 部分和有界, 实数项数列 $\{b_n\}_{n\geqslant 1}$ 单调趋于 0, 则 $\sum\limits_{n=1}^\infty a_nb_n$ 收敛.

回忆狄利克雷判别法: 若 $\{a_n\}_{n\geqslant 1}$ 部分和有界, 实数项数列 $\{b_n\}_{n\geqslant 1}$ 单调趋于 0, 则 $\sum\limits_{n=1}^{\infty}a_nb_n$ 收敛.

续解.

回忆狄利克雷判别法: 若 $\{a_n\}_{n\geqslant 1}$ 部分和有界, 实数项数列 $\{b_n\}_{n\geqslant 1}$ 单调趋于 0, 则 $\sum\limits_{n=1}^{\infty}a_nb_n$ 收敛.

续解.

■ 若 $0 , <math>\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散,

回忆狄利克雷判别法: 若 $\{a_n\}_{n\geqslant 1}$ 部分和有界, 实数项数列 $\{b_n\}_{n\geqslant 1}$ 单调趋于 0, 则 $\sum\limits_{n=1}^{\infty}a_nb_n$ 收敛.

续解.

■ 若 $0 , <math>\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散, 而在收敛圆周上其它点 $z \ne 1$ 处,

$$|z + z^2 + \dots + z^n| = \left| \frac{z(1 - z^n)}{1 - z} \right| \le \frac{2}{|1 - z|}$$

有界, 数列 $\{n^{-p}\}_{n\geqslant 1}$ 单调趋于 0,

回忆狄利克雷判别法: 若 $\{a_n\}_{n\geqslant 1}$ 部分和有界, 实数项数列 $\{b_n\}_{n\geqslant 1}$ 单调趋于 0, 则 $\sum\limits_{n=1}^{\infty}a_nb_n$ 收敛.

续解.

■ 若 $0 , <math>\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散, 而在收敛圆周上其它点 $z \ne 1$ 处,

$$|z + z^2 + \dots + z^n| = \left| \frac{z(1 - z^n)}{1 - z} \right| \le \frac{2}{|1 - z|}$$

有界, 数列 $\{n^{-p}\}_{n\geqslant 1}$ 单调趋于 0, 因此 $\sum_{n=1}^{\infty}\frac{z^n}{n^p}$ 收敛.

回忆狄利克雷判别法: 若 $\{a_n\}_{n\geqslant 1}$ 部分和有界, 实数项数列 $\{b_n\}_{n\geqslant 1}$ 单调趋于 0, 则 $\sum\limits_{n=1}^\infty a_nb_n$ 收敛.

续解.

■ 若 $0 , <math>\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散, 而在收敛圆周上其它点 $z \ne 1$ 处,

$$|z + z^2 + \dots + z^n| = \left| \frac{z(1 - z^n)}{1 - z} \right| \le \frac{2}{|1 - z|}$$

有界, 数列 $\{n^{-p}\}_{n\geqslant 1}$ 单调趋于 0, 因此 $\sum_{n=1}^{\infty}\frac{z^n}{n^p}$ 收敛. 故该级数在 z=1 发散. 在收敛圆周上其它点收敛.

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R_1, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n, |z| < R_2.$$

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R_1, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n, |z| < R_2.$$

那么当 $|z| < R = \min\{R_1, R_2\}$ 时,

$$(f \pm g)(z) = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n, \quad (fg)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) z^n.$$

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R_1, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n, |z| < R_2.$$

那么当 $|z| < R = \min\{R_1, R_2\}$ 时,

$$(f \pm g)(z) = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n, \quad (fg)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) z^n.$$

注意当 $R_1 = R_2$ 时, $f \pm g$ 或 fg 的收敛半径可以比 f, g 的大.

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R_1, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n, |z| < R_2.$$

那么当 $|z| < R = \min\{R_1, R_2\}$ 时,

$$(f \pm g)(z) = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n, \quad (fg)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) z^n.$$

注意当 $R_1 = R_2$ 时, $f \pm g$ 或 fg 的收敛半径可以比 f, g 的大. 在某些情形下, 我们只关心 fg 的某一幂次系数,

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R_1, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n, |z| < R_2.$$

那么当 $|z| < R = \min\{R_1, R_2\}$ 时,

$$(f \pm g)(z) = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n, \quad (fg)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) z^n.$$

注意当 $R_1 = R_2$ 时, $f \pm g$ 或 fg 的收敛半径可以比 f,g 的大. 在某些情形下, 我们只关心 fg 的某一幂次系数, 此时我们便可以用上述表达式来计算特定幂次系数.

幂级数的代换运算

定理

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R,$$

设函数 $\varphi(z)$ 在 |z| < r 上解析且 $|\varphi(z)| < R$,

幂级数的代换运算

定理

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R,$$

设函数 $\varphi(z)$ 在 |z| < r 上解析且 $|\varphi(z)| < R$, 那么当 |z| < r 时,

$$f[\varphi(z)] = \sum_{n=0}^{\infty} a_n [\varphi(z)]^n.$$

定理

设幂级数 $\sum\limits_{n=0}^{\infty}c_nz^n$ 的收敛半径为 R, 则在 |z|< R 上:

定理

设幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R, 则在 |z| < R 上:

1 它的和函数 $f(z) = \sum_{n=0}^{\infty} c_n z^n$ 解析,

定理

设幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R, 则在 |z| < R 上:

- I 它的和函数 $f(z) = \sum_{n=0}^{\infty} c_n z^n$ 解析,
- $f'(z) = \sum_{n=1}^{\infty} nc_n z^{n-1}$,

定理

设幂级数 $\sum\limits_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R, 则在 |z| < R 上:

- **1** 它的和函数 $f(z) = \sum_{n=0}^{\infty} c_n z^n$ 解析,
- $f'(z) = \sum_{n=1}^{\infty} nc_n z^{n-1}$,
- $\int_{a}^{z} f(z) dz = \sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}.$

定理

设幂级数 $\sum\limits_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R, 则在 |z| < R 上:

- I 它的和函数 $f(z) = \sum_{n=0}^{\infty} c_n z^n$ 解析,
- $f'(z) = \sum_{n=1}^{\infty} nc_n z^{n-1}$,
- $\int_{a}^{z} f(z) dz = \sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}.$

也就是说, 在收敛圆内, 幂级数的和函数解析, 且可以逐项求导, 逐项积分.

定理

设幂级数 $\sum\limits_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R, 则在 |z| < R 上:

- I 它的和函数 $f(z) = \sum_{n=0}^{\infty} c_n z^n$ 解析,
- $f'(z) = \sum_{n=1}^{\infty} nc_n z^{n-1}$,
- $\int_{a}^{z} f(z) dz = \sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}.$

也就是说, 在收敛圆内, 幂级数的和函数解析, 且可以逐项求导, 逐项积分.

尽管幂级数在收敛圆周上有可能处处收敛, 但它的和函数在收敛圆周上一定有奇点.

定理

设幂级数 $\sum\limits_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R, 则在 |z| < R 上:

- I 它的和函数 $f(z) = \sum_{n=0}^{\infty} c_n z^n$ 解析,
- $f'(z) = \sum_{n=1}^{\infty} nc_n z^{n-1}$,
- $\int_{a}^{z} f(z) dz = \sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}.$

也就是说, 在收敛圆内, 幂级数的和函数解析, 且可以逐项求导, 逐项积分.

尽管幂级数在收敛圆周上有可能处处收敛, 但它的和函数在收敛圆周上一定有奇点. 这是因为一旦在收敛圆周上处处解析, 该和函数就可以在一个半径更大的圆域上作泰勒展开.

例题: 幂级数展开

例

把函数
$$\frac{1}{z-b}$$
 表成形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的幂级数, 其中 $a \neq b$.

例题: 幂级数展开

例

把函数 $\frac{1}{z-b}$ 表成形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的幂级数, 其中 $a \neq b$.

$$\frac{1}{z-b} = \frac{1}{(z-a)-(b-a)} = \frac{1}{a-b} \cdot \frac{1}{1-\frac{z-a}{b-a}}$$

例题: 幂级数展开

例

把函数 $\frac{1}{z-b}$ 表成形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的幂级数, 其中 $a \neq b$.

$$\frac{1}{z-b} = \frac{1}{(z-a) - (b-a)} = \frac{1}{a-b} \cdot \frac{1}{1 - \frac{z-a}{b-a}}$$
$$= \frac{1}{a-b} \sum_{n=0}^{\infty} \left(\frac{z-a}{b-a}\right)^n = -\sum_{n=0}^{\infty} \frac{(z-a)^n}{(b-a)^{n+1}},$$

例题: 幂级数展开

例

把函数 $\frac{1}{z-b}$ 表成形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的幂级数, 其中 $a \neq b$.

解.

$$\frac{1}{z-b} = \frac{1}{(z-a) - (b-a)} = \frac{1}{a-b} \cdot \frac{1}{1 - \frac{z-a}{b-a}}$$
$$= \frac{1}{a-b} \sum_{n=0}^{\infty} \left(\frac{z-a}{b-a}\right)^n = -\sum_{n=0}^{\infty} \frac{(z-a)^n}{(b-a)^{n+1}},$$

收敛半径为 |b-a|.

例

求幂级数 $\sum\limits_{n=0}^{\infty}(n+1)z^n$ 的收敛半径与和函数.

例

求幂级数
$$\sum_{n=0}^{\infty} (n+1)z^n$$
 的收敛半径与和函数.

由
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \frac{n+1}{n} = 1$$
 可知收敛半径为 1.

例

求幂级数 $\sum_{n=0}^{\infty} (n+1)z^n$ 的收敛半径与和函数.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\frac{n+1}{n}=1$$
 可知收敛半径为 1. 由于

$$\int_0^z \sum_{n=0}^\infty (n+1)z^n \, \mathrm{d}z = \sum_{n=0}^\infty z^{n+1} = \frac{z}{1-z} = -1 - \frac{1}{z-1},$$

例

求幂级数 $\sum_{n=0}^{\infty} (n+1)z^n$ 的收敛半径与和函数.

解.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\frac{n+1}{n}=1$$
 可知收敛半径为 1. 由于

$$\int_0^z \sum_{n=0}^\infty (n+1)z^n \, \mathrm{d}z = \sum_{n=0}^\infty z^{n+1} = \frac{z}{1-z} = -1 - \frac{1}{z-1},$$

因此

$$\sum_{n=0}^{\infty} (n+1)z^n = \left(-\frac{1}{z-1}\right)' = \frac{1}{(z-1)^2}, \quad |z| < 1.$$

例

求幂级数 $\sum_{n=1}^{\infty} (2^n - 1)z^{n-1}$ 的收敛半径与和函数.

例

求幂级数 $\sum_{n=1}^{\infty} (2^n - 1) z^{n-1}$ 的收敛半径与和函数.

由
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \frac{2^{n+1}-1}{2^n-1} = 2$$
 可知收敛半径为 $\frac{1}{2}$.

例

求幂级数 $\sum_{n=1}^{\infty} (2^n - 1) z^{n-1}$ 的收敛半径与和函数.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\frac{2^{n+1}-1}{2^n-1}=2$$
 可知收敛半径为 $\frac{1}{2}$. 当 $|z|<\frac{1}{2}$ 时, $|2z|<1$.

例

求幂级数 $\sum_{n=1}^{\infty} (2^n - 1) z^{n-1}$ 的收敛半径与和函数.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\frac{2^{n+1}-1}{2^n-1}=2$$
 可知收敛半径为 $\frac{1}{2}$. 当 $|z|<\frac{1}{2}$ 时, $|2z|<1$. 从而

$$\sum_{n=1}^{\infty} (2^n - 1)z^{n-1} = \sum_{n=1}^{\infty} 2^n z^{n-1} - \sum_{n=1}^{\infty} z^{n-1}$$

例

求幂级数 $\sum_{n=1}^{\infty} (2^n - 1) z^{n-1}$ 的收敛半径与和函数.

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\frac{2^{n+1}-1}{2^n-1}=2$$
 可知收敛半径为 $\frac{1}{2}$. 当 $|z|<\frac{1}{2}$ 时, $|2z|<1$. 从而

$$\sum_{n=1}^{\infty} (2^n - 1)z^{n-1} = \sum_{n=1}^{\infty} 2^n z^{n-1} - \sum_{n=1}^{\infty} z^{n-1}$$
$$= \frac{2}{1 - 2z} - \frac{1}{1 - z} = \frac{1}{(1 - 2z)(1 - z)}. \quad \blacksquare$$

例

求
$$\oint_{|z|=\frac{1}{2}} \left(\sum_{n=-1}^{\infty} z^n\right) dz$$
.

例

求
$$\oint_{|z|=\frac{1}{2}} \left(\sum_{n=-1}^{\infty} z^n\right) \mathrm{d}z.$$

当
$$|z| < \frac{1}{2}$$
 时, $\sum_{n=-1}^{\infty} z^n$ 收敛且

$$\sum_{n=-1}^{\infty} z^n = \frac{z^{-1}}{1-z} = \frac{1}{z(1-z)} = \frac{1}{z} - \frac{1}{z-1}.$$

例

当
$$|z| < \frac{1}{2}$$
 时, $\sum_{n=-1}^{\infty} z^n$ 收敛且

$$\sum_{n=-1}^{\infty} z^n = \frac{z^{-1}}{1-z} = \frac{1}{z(1-z)} = \frac{1}{z} - \frac{1}{z-1}.$$

当
$$|z| < \frac{1}{2}$$
 时, $|2z| < 1$.

例

求
$$\oint_{|z|=\frac{1}{2}} \left(\sum_{n=-1}^{\infty} z^n\right) dz$$
.

当
$$|z| < \frac{1}{2}$$
 时, $\sum_{n=-1}^{\infty} z^n$ 收敛且

$$\sum_{n=-1}^{\infty} z^n = \frac{z^{-1}}{1-z} = \frac{1}{z(1-z)} = \frac{1}{z} - \frac{1}{z-1}.$$

当
$$|z| < \frac{1}{2}$$
 时, $|2z| < 1$. 故

$$\oint_{|z|=\frac{1}{2}} \left(\sum_{n=-1}^{\infty} z^n \right) dz = \oint_{|z|=\frac{1}{2}} \left(\frac{1}{z} - \frac{1}{z-1} \right) dz = 2\pi i.$$

第四章 级数

- 1 复数项级数
- 2 幂级数
- 3 泰勒级数
- 4 洛朗级数

在实变函数中我们知道,一个函数即使在一点附近无限次可导,它的泰勒级数也未必收敛到原函数.

在实变函数中我们知道,一个函数即使在一点附近无限次可导,它的泰勒级数也未必收敛到原函数.例如

$$f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

在实变函数中我们知道,一个函数即使在一点附近无限次可导,它的泰勒级数也未必收敛到原函数.例如

$$f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

它处处可导, 但是它在 0 处的泰勒级数是 0.

在实变函数中我们知道,一个函数即使在一点附近无限次可导,它的泰勒级数也未必收敛到原函数.例如

$$f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

它处处可导, 但是它在 0 处的泰勒级数是 0.

而即使是泰勒级数能收敛到原函数的情形, 它成立的区间也 很难从函数本身读出.

在实变函数中我们知道,一个函数即使在一点附近无限次可导,它的泰勒级数也未必收敛到原函数.例如

$$f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

它处处可导, 但是它在 0 处的泰勒级数是 0.

而即使是泰勒级数能收敛到原函数的情形, 它成立的区间也很难从函数本身读出. 例如

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots, \quad |x| < 1.$$

在实变函数中我们知道,一个函数即使在一点附近无限次可导,它的泰勒级数也未必收敛到原函数.例如

$$f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

它处处可导, 但是它在 0 处的泰勒级数是 0.

而即使是泰勒级数能收敛到原函数的情形, 它成立的区间也 很难从函数本身读出. 例如

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots, \quad |x| < 1.$$

这可以从 x = -1 是奇点看出.

在实变函数中我们知道,一个函数即使在一点附近无限次可导,它的泰勒级数也未必收敛到原函数.例如

$$f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

它处处可导, 但是它在 0 处的泰勒级数是 0.

而即使是泰勒级数能收敛到原函数的情形, 它成立的区间也很难从函数本身读出. 例如

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots, \quad |x| < 1.$$

这可以从 x=-1 是奇点看出. 而

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots, \quad |x| < 1$$

却并没有奇点.

泰勒级数

为什么 $\frac{1}{1+x^2}$ 在 0 处的泰勒级数成立的开区间也是 (-1,1)?

上一节中我们已经知道,幂级数在它的收敛域内的和函数是一个解析函数.

上一节中我们已经知道, 幂级数在它的收敛域内的和函数是一个解析函数. 反过来, 解析函数是不是也一定可以在一点展开成幂级数呢? 也就是说是否存在泰勒级数展开?

上一节中我们已经知道, 幂级数在它的收敛域内的和函数是 一个解析函数. 反过来, 解析函数是不是也一定可以在一点展开成 幂级数呢? 也就是说是否存在泰勒级数展开?

设函数 f(z) 在区域 D 解析, $z_0 \in D$.

上一节中我们已经知道, 幂级数在它的收敛域内的和函数是一个解析函数. 反过来, 解析函数是不是也一定可以在一点展开成幂级数呢? 也就是说是否存在泰勒级数展开?

设函数 f(z) 在区域 D 解析, $z_0 \in D$. 设 $|z - z_0|$ 小于 z_0 到 D 边界的距离 d, 则存在 $|z - z_0| < r < d$.

上一节中我们已经知道, 幂级数在它的收敛域内的和函数是一个解析函数. 反过来, 解析函数是不是也一定可以在一点展开成幂级数呢? 也就是说是否存在泰勒级数展开?

设函数 f(z) 在区域 D 解析, $z_0 \in D$. 设 $|z - z_0|$ 小于 z_0 到 D 边界的距离 d, 则存在 $|z - z_0| < r < d$. 设 $K: |\zeta - z_0| = r$, 则 K 和它的内部包含在 D 中.

上一节中我们已经知道, 幂级数在它的收敛域内的和函数是一个解析函数. 反过来, 解析函数是不是也一定可以在一点展开成幂级数呢? 也就是说是否存在泰勒级数展开?

设函数 f(z) 在区域 D 解析, $z_0 \in D$. 设 $|z - z_0|$ 小于 z_0 到 D 边界的距离 d, 则存在 $|z - z_0| < r < d$. 设 $K: |\zeta - z_0| = r$, 则 K 和它的内部包含在 D 中. 由于 $\left|\frac{z - z_0}{\zeta - z_0}\right| < 1$, 因此

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}.$$

$$f(z) = \frac{1}{2\pi i} \oint_K \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$f(z) = \frac{1}{2\pi i} \oint_K \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_K f(\zeta) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} d\zeta$$

$$f(z) = \frac{1}{2\pi i} \oint_K \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_K f(\zeta) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} d\zeta$$
$$= \sum_{n=0}^{N-1} \left[\frac{1}{2\pi i} \oint_K \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n + R_N(z),$$

$$f(z) = \frac{1}{2\pi i} \oint_K \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_K f(\zeta) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} d\zeta$$
$$= \sum_{n=0}^{N-1} \left[\frac{1}{2\pi i} \oint_K \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n + R_N(z),$$
$$= \sum_{n=0}^{N-1} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n + R_N(z),$$

其中

$$R_N(z) = \frac{1}{2\pi i} \oint_K f(\zeta) \left[\sum_{n=N}^{\infty} \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} \right] d\zeta.$$

泰勒展开

由于 $f(\zeta)$ 在 $D \supseteq K$ 上解析, 从而在 K 上连续且有界.

泰勒展开

由于 $f(\zeta)$ 在 $D\supseteq K$ 上解析, 从而在 K 上连续且有界. 设 $|f(\zeta)|\leqslant M,\zeta\in K$,

$$|R_N(z)| \leqslant \frac{M}{2\pi} \oint_K \left| \sum_{n=N}^{\infty} \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} \right| ds$$

$$|R_N(z)| \leqslant \frac{M}{2\pi} \oint_K \left| \sum_{n=N}^{\infty} \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} \right| ds$$
$$\leqslant \frac{M}{2\pi} \oint_K \sum_{n=N}^{\infty} \left| \frac{1}{\zeta-z} \cdot \left(\frac{z-z_0}{\zeta-z_0} \right)^N \right| ds$$

$$|R_N(z)| \leqslant \frac{M}{2\pi} \oint_K \left| \sum_{n=N}^{\infty} \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} \right| ds$$

$$\leqslant \frac{M}{2\pi} \oint_K \sum_{n=N}^{\infty} \left| \frac{1}{\zeta-z} \cdot \left(\frac{z-z_0}{\zeta-z_0} \right)^N \right| ds$$

$$\leqslant \frac{M}{2\pi} \cdot \frac{1}{r-|z-z_0|} \cdot \left| \frac{z-z_0}{\zeta-z_0} \right|^N \cdot 2\pi r \to 0 \quad (N \to \infty).$$

$$|R_N(z)| \leqslant \frac{M}{2\pi} \oint_K \left| \sum_{n=N}^{\infty} \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} \right| ds$$

$$\leqslant \frac{M}{2\pi} \oint_K \sum_{n=N}^{\infty} \left| \frac{1}{\zeta-z} \cdot \left(\frac{z-z_0}{\zeta-z_0} \right)^N \right| ds$$

$$\leqslant \frac{M}{2\pi} \cdot \frac{1}{r-|z-z_0|} \cdot \left| \frac{z-z_0}{\zeta-z_0} \right|^N \cdot 2\pi r \to 0 \quad (N \to \infty).$$

故

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad |z - z_0| < d.$$

泰勒展开的成立范围

由于幂级数在收敛半径内的和函数是解析的, 因此解析函数的泰勒展开成立的圆域不包含奇点.

泰勒展开的成立范围

由于幂级数在收敛半径内的和函数是解析的,因此解析函数的泰勒展开成立的圆域不包含奇点. 由此可知,解析函数在 z_0 处泰勒展开成立的圆域的最大半径是 z_0 到最近奇点的距离.

42 / 74

由于幂级数在收敛半径内的和函数是解析的,因此解析函数的泰勒展开成立的圆域不包含奇点. 由此可知,解析函数在 z_0 处泰勒展开成立的圆域的最大半径是 z_0 到最近奇点的距离. 需要注意的是,泰勒级数的收敛半径是有可能比这个半径更大的,例如

$$f(z) = \begin{cases} e^z, & z \neq 1; \\ 0, & z = 1. \end{cases}$$

泰勒展开的成立范围

由于幂级数在收敛半径内的和函数是解析的,因此解析函数的泰勒展开成立的圆域不包含奇点。由此可知,解析函数在 z_0 处泰勒展开成立的圆域的最大半径是 z_0 到最近奇点的距离。需要注意的是,泰勒级数的收敛半径是有可能比这个半径更大的,例如

$$f(z) = \begin{cases} e^z, & z \neq 1; \\ 0, & z = 1. \end{cases}$$

若 f(z) 在 z_0 附近展开为 $\sum\limits_{n=0}^{\infty} c_n(z-z_0)^n$, 则由幂级数的逐项 求导性质可知

$$f^{(n)}(z_0) = \sum_{k=n}^{\infty} \frac{k!c_k}{(k-n)!} (z-z_0)^{k-n} \Big|_{z=z_0} = n!c_n.$$

泰勒展开的成立范围

由于幂级数在收敛半径内的和函数是解析的,因此解析函数的泰勒展开成立的圆域不包含奇点。由此可知,解析函数在 z_0 处泰勒展开成立的圆域的最大半径是 z_0 到最近奇点的距离。需要注意的是,泰勒级数的收敛半径是有可能比这个半径更大的,例如

$$f(z) = \begin{cases} e^z, & z \neq 1; \\ 0, & z = 1. \end{cases}$$

若 f(z) 在 z_0 附近展开为 $\sum\limits_{n=0}^{\infty} c_n(z-z_0)^n$, 则由幂级数的逐项 求导性质可知

$$f^{(n)}(z_0) = \sum_{k=n}^{\infty} \frac{k! c_k}{(k-n)!} (z-z_0)^{k-n} \Big|_{z=z_0} = n! c_n.$$

所以解析函数的幂级数展开是唯一的.

现在我们来看
$$f(z) = \frac{1}{1+z^2}$$
.

现在我们来看 $f(z) = \frac{1}{1+z^2}$. 它的奇点为 $\pm i$, 所以它的麦克 劳林展开 (即 0 处的泰勒展开) 成立的半径是 1.

现在我们来看 $f(z)=\frac{1}{1+z^2}$. 它的奇点为 $\pm i$, 所以它的麦克 劳林展开 (即 0 处的泰勒展开) 成立的半径是 1. 这就解释了为什么函数 $f(x)=\frac{1}{1+x^2}$ 的麦克劳林展开成立的开区间是 (-1,1).

现在我们来看 $f(z)=\frac{1}{1+z^2}$. 它的奇点为 $\pm i$, 所以它的麦克 劳林展开 (即 0 处的泰勒展开) 成立的半径是 1. 这就解释了为什 么函数 $f(x) = \frac{1}{1+x^2}$ 的麦克劳林展开成立的开区间是 (-1,1). 解析函数的泰勒展开既可以直接求出各阶导数得到,也可

以利用幂级数的运算法则得到.

现在我们来看 $f(z)=\frac{1}{1+z^2}$. 它的奇点为 $\pm i$, 所以它的麦克劳林展开 (即 0 处的泰勒展开) 成立的半径是 1. 这就解释了为什么函数 $f(x)=\frac{1}{1+x^2}$ 的麦克劳林展开成立的开区间是 (-1,1). 解析函数的泰勒展开既可以直接求出各阶导数得到, 也可

解析函数的泰勒展开既可以直接求出各阶导数得到,也可以利用幂级数的运算法则得到.

例

由于
$$(e^z)^{(n)}(0) = e^z|_{z=0} = 1$$
,

现在我们来看 $f(z)=\frac{1}{1+z^2}$. 它的奇点为 $\pm i$, 所以它的麦克劳林展开 (即 0 处的泰勒展开) 成立的半径是 1. 这就解释了为什么函数 $f(x)=\frac{1}{1+x^2}$ 的麦克劳林展开成立的开区间是 (-1,1). 解析函数的泰勒展开既可以直接求出各阶导数得到, 也可

解析函数的泰勒展开既可以直接求出各阶导数得到,也可以利用幂级数的运算法则得到.

例

由于
$$(e^z)^{(n)}(0) = e^z|_{z=0} = 1$$
, 因此

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad \forall z.$$

例

由于

$$(\cos z)^{(n)} = \cos\left(z + \frac{n\pi}{2}\right),\,$$

由于

$$(\cos z)^{(n)} = \cos\left(z + \frac{n\pi}{2}\right),\,$$

$$(\cos z)^{(2n)}(0) = (-1)^n, \quad (\cos z)^{(2n+1)}(0) = 0,$$

由于

$$(\cos z)^{(n)} = \cos\left(z + \frac{n\pi}{2}\right),\,$$

$$(\cos z)^{(2n)}(0) = (-1)^n, \quad (\cos z)^{(2n+1)}(0) = 0,$$

因此

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad \forall z.$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n=0}^{\infty} \frac{(iz)^n + (-iz)^n}{2i \cdot n!}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n=0}^{\infty} \frac{(iz)^n + (-iz)^n}{2i \cdot n!}$$
$$= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n=0}^{\infty} \frac{(iz)^n + (-iz)^n}{2i \cdot n!}$$
$$= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad \forall z.$$

例

函数 $f(z) = (1+z)^{\alpha}$ 的主值为 $\exp[\alpha \ln(1+z)]$.

例

函数 $f(z) = (1+z)^{\alpha}$ 的主值为 $\exp[\alpha \ln(1+z)]$. 它在去掉射线 $z = x \le -1$ 的区域内解析.

函数 $f(z) = (1+z)^{\alpha}$ 的主值为 $\exp\left[\alpha \ln(1+z)\right]$. 它在去掉射线 $z = x \leqslant -1$ 的区域内解析. 由于

$$f^{(n)}(0) = \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!} \exp\left[(\alpha - n)\ln(1 + z)\right]\Big|_{z=0}$$

函数 $f(z) = (1+z)^{\alpha}$ 的主值为 $\exp\left[\alpha \ln(1+z)\right]$. 它在去掉射线 $z = x \leqslant -1$ 的区域内解析. 由于

$$f^{(n)}(0) = \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!} \exp[(\alpha - n)\ln(1 + z)]\Big|_{z=0}$$
$$= \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}.$$

例

函数 $f(z) = (1+z)^{\alpha}$ 的主值为 $\exp\left[\alpha \ln(1+z)\right]$. 它在去掉射线 $z = x \leqslant -1$ 的区域内解析. 由于

$$f^{(n)}(0) = \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!} \exp\left[(\alpha - n)\ln(1 + z)\right]\Big|_{z=0}$$
$$= \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}.$$

因此

$$(1+z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2}z^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}z^{3} + \cdots$$
$$\sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}z^{n}, \quad |z| < 1.$$

将 $\frac{1}{(1+z)^2}$ 展开成 z 的幂级数.

将
$$\frac{1}{(1+z)^2}$$
 展开成 z 的幂级数.

由于
$$\frac{1}{(1+z)^2}$$
 的奇点为 $z=-1$, 因此它在 $|z|<1$ 内解析.

将
$$\frac{1}{(1+z)^2}$$
 展开成 z 的幂级数.

由于
$$\frac{1}{(1+z)^2}$$
 的奇点为 $z=-1$,因此它在 $|z|<1$ 内解析. 由于 $\frac{1}{1+z}=1-z+z^2-z^3+\cdots=\sum_{n=0}^{\infty}(-1)^nz^n$,

将
$$\frac{1}{(1+z)^2}$$
 展开成 z 的幂级数.

由于
$$\frac{1}{(1+z)^2}$$
 的奇点为 $z=-1$,因此它在 $|z|<1$ 内解析. 由于
$$\frac{1}{1+z}=1-z+z^2-z^3+\cdots=\sum_{n=0}^{\infty}(-1)^nz^n,$$
 因此

$$\frac{1}{(1+z)^2} = -\left(\frac{1}{1+z}\right)'$$

例

将
$$\frac{1}{(1+z)^2}$$
 展开成 z 的幂级数.

由于
$$\frac{1}{(1+z)^2}$$
 的奇点为 $z=-1$,因此它在 $|z|<1$ 内解析. 由于
$$\frac{1}{1+z}=1-z+z^2-z^3+\cdots=\sum_{n=0}^{\infty}(-1)^nz^n,$$
 因此

$$\frac{1}{(1+z)^2} = -\left(\frac{1}{1+z}\right)' = -\sum_{n=1}^{\infty} (-1)^n nz^{n-1}$$

例

将 $\frac{1}{(1+z)^2}$ 展开成 z 的幂级数.

由于
$$\frac{1}{(1+z)^2}$$
 的奇点为 $z=-1$,因此它在 $|z|<1$ 内解析. 由于
$$\frac{1}{1+z}=1-z+z^2-z^3+\cdots=\sum_{n=0}^{\infty}(-1)^nz^n,$$
 因此

$$\frac{1}{(1+z)^2} = -\left(\frac{1}{1+z}\right)' = -\sum_{n=1}^{\infty} (-1)^n nz^{n-1}$$
$$= \sum_{n=0}^{\infty} (-1)^n (n+1)z^n, \quad |z| < 1. \quad \blacksquare$$

将 $\frac{1}{3z-2}$ 展开成 z 的幂级数.

将 $\frac{1}{3z-2}$ 展开成 z 的幂级数.

由于
$$\frac{1}{3z-2}$$
 的奇点为 $z=\frac{2}{3}$, 因此它在 $|z|<\frac{2}{3}$ 内解析.

将 $\frac{1}{3z-2}$ 展开成 z 的幂级数.

由于
$$\frac{1}{3z-2}$$
 的奇点为 $z=\frac{2}{3}$, 因此它在 $|z|<\frac{2}{3}$ 内解析. 于是

$$\frac{1}{3z-2} = -\frac{1}{2} \cdot \frac{1}{1-3z/2}$$

将 $\frac{1}{3z-2}$ 展开成 z 的幂级数.

解.

由于
$$\frac{1}{3z-2}$$
 的奇点为 $z=\frac{2}{3}$, 因此它在 $|z|<\frac{2}{3}$ 内解析. 于是

$$\frac{1}{3z-2} = -\frac{1}{2} \cdot \frac{1}{1-3z/2} = -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{3z}{2}\right)^n$$

将 $\frac{1}{3z-2}$ 展开成 z 的幂级数.

解.

由于
$$\frac{1}{3z-2}$$
 的奇点为 $z=\frac{2}{3}$, 因此它在 $|z|<\frac{2}{3}$ 内解析. 于是

$$\begin{split} \frac{1}{3z-2} &= -\frac{1}{2} \cdot \frac{1}{1-3z/2} = -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{3z}{2}\right)^n \\ &= -\sum_{n=0}^{\infty} \frac{3^n}{2^{n+1}} z^n, \quad |z| < \frac{2}{3}. \quad \blacksquare \end{split}$$

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

解.

由于 $\ln(1+z)$ 在去掉射线 $z=x\leqslant -1$ 的区域内解析,

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

解.

由于 $\ln(1+z)$ 在去掉射线 $z=x\leqslant -1$ 的区域内解析, 因此它在 |z|<1 内解析.

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

解.

由于 $\ln(1+z)$ 在去掉射线 $z=x\leqslant -1$ 的区域内解析, 因此它在 |z|<1 内解析. 由

$$[\ln(1+z)]' = \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \quad |z| < 1$$

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

解.

由于 $\ln(1+z)$ 在去掉射线 $z=x\leqslant -1$ 的区域内解析, 因此它在 |z|<1 内解析. 由

$$[\ln(1+z)]' = \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \quad |z| < 1$$

$$\ln(1+z) = \int_0^z \frac{1}{1+\zeta} \,\mathrm{d}\zeta$$

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

解.

由于 $\ln(1+z)$ 在去掉射线 $z=x\leqslant -1$ 的区域内解析, 因此它在 |z|<1 内解析. 由

$$[\ln(1+z)]' = \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \quad |z| < 1$$

$$\ln(1+z) = \int_0^z \frac{1}{1+\zeta} d\zeta = \int_0^z \sum_{n=0}^\infty (-1)^n \zeta^n$$

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

解.

由于 $\ln(1+z)$ 在去掉射线 $z=x\leqslant -1$ 的区域内解析, 因此它在 |z|<1 内解析. 由

$$[\ln(1+z)]' = \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \quad |z| < 1$$

$$\ln(1+z) = \int_0^z \frac{1}{1+\zeta} d\zeta = \int_0^z \sum_{n=0}^\infty (-1)^n \zeta^n$$
$$= \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1}$$

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

解.

由于 $\ln(1+z)$ 在去掉射线 $z=x\leqslant -1$ 的区域内解析, 因此它在 |z|<1 内解析. 由

$$[\ln(1+z)]' = \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \quad |z| < 1$$

$$\ln(1+z) = \int_0^z \frac{1}{1+\zeta} d\zeta = \int_0^z \sum_{n=0}^\infty (-1)^n \zeta^n$$
$$= \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1} = \sum_{n=1}^\infty \frac{(-1)^{n+1} z^n}{n}, \quad |z| < 1. \quad \blacksquare$$

将 $\frac{e^z}{1+z}$ 展开成 z 的幂级数.

将
$$\frac{e^z}{1+z}$$
 展开成 z 的幂级数.

解.

由于
$$\frac{e^z}{1+z}$$
 的奇点为 -1 , 因此它在 $|z|<1$ 内解析.

将 $\frac{e^z}{1+z}$ 展开成 z 的幂级数.

解.

由于 $\frac{e^z}{1+z}$ 的奇点为 -1, 因此它在 |z|<1 内解析. 由

$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n, \quad \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n$$

典型例题: 泰勒展开的计算

例

将
$$\frac{e^z}{1+z}$$
 展开成 z 的幂级数.

解.

由于 $\frac{e^z}{1+z}$ 的奇点为 -1, 因此它在 |z|<1 内解析. 由

$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n, \quad \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n$$

得

$$\frac{e^z}{1+z} = \sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} \frac{(-1)^{n-k}}{k!} \right| z^n = 1 + \frac{1}{2}z^2 - \frac{1}{3}z^3 + \cdots, \quad |z| < 1. \quad \blacksquare$$

典型例题: 泰勒展开的计算

练习

将 $\cos^2 z$ 展开成 z 的幂级数.

练习

将 $\cos^2 z$ 展开成 z 的幂级数.

答案.

$$\cos^2 z = \frac{1}{2} (1 + \cos 2z) = \frac{1}{2} \left[1 + \sum_{n=0}^{\infty} (-1)^n \frac{(2z)^{2n}}{(2n)!} \right]$$
$$= 1 + \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n-1}}{(2n)!} z^n, \quad \forall z.$$

练习

将 $\cos^2 z$ 展开成 z 的幂级数.

答案.

$$\cos^2 z = \frac{1}{2} (1 + \cos 2z) = \frac{1}{2} \left[1 + \sum_{n=0}^{\infty} (-1)^n \frac{(2z)^{2n}}{(2n)!} \right]$$
$$= 1 + \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n-1}}{(2n)!} z^n, \quad \forall z.$$

思考

奇函数和偶函数的麦克劳林展开有什么特点?

典型例题: 泰勒展开的计算

练习

将 $\cos^2 z$ 展开成 z 的幂级数.

答案.

$$\cos^2 z = \frac{1}{2} (1 + \cos 2z) = \frac{1}{2} \left[1 + \sum_{n=0}^{\infty} (-1)^n \frac{(2z)^{2n}}{(2n)!} \right]$$
$$= 1 + \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n-1}}{(2n)!} z^n, \quad \forall z.$$

思考

奇函数和偶函数的麦克劳林展开有什么特点?

答案.

奇函数 (偶函数) 的麦克劳林展开只有奇数次项 (偶数次项).

第四章 级数

- 1 复数项级数
- 2 幂级数
- 3 泰勒级数
- 4 洛朗级数

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰勒级数.

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰勒级数. 如果 f(z) 在 z_0 处不解析呢?

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰勒级数. 如果 f(z) 在 z_0 处不解析呢? 此时 f(z) 一定不能展开成 $z-z_0$ 的幂级数,

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰勒级数. 如果 f(z) 在 z_0 处不解析呢? 此时 f(z) 一定不能展开成 $z-z_0$ 的幂级数, 然而它却可能可以展开为双边幂级数

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰勒级数. 如果 f(z) 在 z_0 处不解析呢? 此时 f(z) 一定不能展开成 $z-z_0$ 的幂级数, 然而它却可能可以展开为双边幂级数

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰勒级数. 如果 f(z) 在 z_0 处不解析呢? 此时 f(z) 一定不能展开成 $z-z_0$ 的幂级数, 然而它却可能可以展开为双边幂级数

为了保证双边幂级数的收敛范围有一个好的性质以便于我们使用,我们对它的敛散性作如下定义:

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰 勒级数. 如果 f(z) 在 z_0 处不解析呢? 此时 f(z) 一定不能展开成 $z - z_0$ 的幂级数, 然而它却可能可以展开为双边幂级数

$$\sum_{n=-\infty}^{\infty} c_n (z - z_0)^n = \underbrace{\sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}}_{\text{5.5}} + \underbrace{\sum_{n=0}^{\infty} c_n (z - z_0)^n}_{\text{1.5}}.$$

为了保证双边幂级数的收敛范围有一个好的性质以便于我们 使用. 我们对它的敛散性作如下定义:

定义

如果双边幂级数的正幂次部分和负幂次部分作为函数项级数都收 敛. 则我们称这个双边幂级数收敛.

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰勒级数. 如果 f(z) 在 z_0 处不解析呢? 此时 f(z) 一定不能展开成 $z-z_0$ 的幂级数, 然而它却可能可以展开为双边幂级数

$$\sum_{n=-\infty}^{\infty} c_n (z - z_0)^n = \underbrace{\sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}}_{\text{5.5}} + \underbrace{\sum_{n=0}^{\infty} c_n (z - z_0)^n}_{\text{1.5}}.$$

为了保证双边幂级数的收敛范围有一个好的性质以便于我们 使用, 我们对它的敛散性作如下定义:

定义

如果双边幂级数的正幂次部分和负幂次部分作为函数项级数都收敛,则我们称这个双边幂级数收敛. 否则我们称之为发散.

双边幂级数的敛散性

注意双边幂级数的敛散性不能像幂级数那样通过部分和

$$s_n(z) = \sum_{k=-n}^{n} c_k (z - z_0)^k,$$

形成的数列的极限来定义.

注意双边幂级数的敛散性不能像幂级数那样通过部分和

$$s_n(z) = \sum_{k=-n}^{n} c_k (z - z_0)^k,$$

形成的数列的极限来定义. 例如双边幂级数

$$\cdots + z^{-2} + z^{-1} - 1 - z - z^2 - \cdots = \sum_{n=1}^{\infty} z^{-n} - \sum_{n=0}^{\infty} z^n,$$

双边幂级数的敛散性

注意双边幂级数的敛散性不能像幂级数那样通过部分和

$$s_n(z) = \sum_{k=-n}^{n} c_k (z - z_0)^k,$$

形成的数列的极限来定义. 例如双边幂级数

$$\cdots + z^{-2} + z^{-1} - 1 - z - z^2 - \cdots = \sum_{n=1}^{\infty} z^{-n} - \sum_{n=0}^{\infty} z^n,$$

当 z = -1 时,

$$s_n(-1) = -1 + \sum_{k=1}^n \left[(-1)^{-k} - (-1)^k \right] = -1$$

收敛,

双边幂级数的敛散性

注意双边幂级数的敛散性不能像幂级数那样通过部分和

$$s_n(z) = \sum_{k=-n}^{n} c_k (z - z_0)^k,$$

形成的数列的极限来定义. 例如双边幂级数

$$\cdots + z^{-2} + z^{-1} - 1 - z - z^2 - \cdots = \sum_{n=1}^{\infty} z^{-n} - \sum_{n=0}^{\infty} z^n,$$

当 z = -1 时,

$$s_n(-1) = -1 + \sum_{k=1}^n \left[(-1)^{-k} - (-1)^k \right] = -1$$

收敛, 但这个双边幂级数在 z = -1 并不收敛.

设 $\sum\limits_{n=0}^\infty c_n(z-z_0)^n$ 的收敛半径为 R_2 , 则它在 $|z-z_0| < R_2$ 内收敛, 在 $|z-z_0| > R_2$ 内发散.

设 $\sum\limits_{n=0}^{\infty}c_{n}(z-z_{0})^{n}$ 的收敛半径为 R_{2} , 则它在 $|z-z_{0}| < R_{2}$ 内

收敛, 在 $|z-z_0|>R_2$ 内发散. 对于负幂次部分,令 $\zeta=\frac{1}{z-z_0}$,那么负幂次部分是 ζ 的一个

幂级数 $\sum_{n=1}^{\infty} c_{-n} \zeta^n$.

设 $\sum\limits_{n=0}^{\infty}c_n(z-z_0)^n$ 的收敛半径为 R_2 , 则它在 $|z-z_0| < R_2$ 内收敛, 在 $|z-z_0| > R_2$ 内发散.

对于负幂次部分,令 $\zeta = \frac{1}{z-z_0}$,那么负幂次部分是 ζ 的一个

幂级数 $\sum_{n=1}^{\infty} c_{-n} \zeta^n$. 设该幂级数的收敛半径为 R, 则它在 $|\zeta| < R$ 内

收敛, 在 $|\zeta| > R$ 内发散.

设 $\sum\limits_{n=0}^{\infty}c_n(z-z_0)^n$ 的收敛半径为 R_2 , 则它在 $|z-z_0|< R_2$ 内收敛, 在 $|z-z_0|>R_2$ 内发散.

对于负幂次部分,令 $\zeta = \frac{1}{z-z_0}$,那么负幂次部分是 ζ 的一个

幂级数 $\sum\limits_{n=1}^{\infty}c_{-n}\zeta^{n}$. 设该幂级数的收敛半径为 R, 则它在 $|\zeta|< R$ 内

收敛, 在 $|\zeta| > R$ 内发散. 设 $R_1 := \frac{1}{R}$, 则 $\sum_{n=1}^{\infty} c_{-n}(z-z_0)^{-n}$ 在 $|z-z_0| > R_1$ 内收敛, 在 $|z-z_0| < R_1$ 内发散.

设 $\sum\limits_{n=0}^{\infty}c_n(z-z_0)^n$ 的收敛半径为 R_2 , 则它在 $|z-z_0|< R_2$ 内收敛, 在 $|z-z_0|>R_2$ 内发散.

对于负幂次部分,令 $\zeta = \frac{1}{z-z_0}$,那么负幂次部分是 ζ 的一个

幂级数 $\sum\limits_{n=1}^{\infty}c_{-n}\zeta^{n}$. 设该幂级数的收敛半径为 R, 则它在 $|\zeta|< R$ 内

收敛, 在 $|\zeta| > R$ 内发散. 设 $R_1 := \frac{1}{R}$, 则 $\sum\limits_{n=1}^{\infty} c_{-n}(z-z_0)^{-n}$ 在 $|z-z_0| > R_1$ 内收敛, 在 $|z-z_0| < R_1$ 内发散.

1 如果 $R_1 > R_2$,则该双边幂级数处处不收敛.

设 $\sum\limits_{n=0}^{\infty}c_n(z-z_0)^n$ 的收敛半径为 R_2 , 则它在 $|z-z_0| < R_2$ 内收敛, 在 $|z-z_0| > R_2$ 内发散.

对于负幂次部分,令 $\zeta = \frac{1}{z-z_0}$,那么负幂次部分是 ζ 的一个

幂级数 $\sum\limits_{n=1}^{\infty}c_{-n}\zeta^{n}$. 设该幂级数的收敛半径为 R, 则它在 $|\zeta|< R$ 内

收敛, 在 $|\zeta| > R$ 内发散. 设 $R_1 := \frac{1}{R}$, 则 $\sum_{n=1}^{\infty} c_{-n}(z-z_0)^{-n}$ 在 $|z-z_0| > R_1$ 内收敛, 在 $|z-z_0| < R_1$ 内发散.

- 1 如果 $R_1 > R_2$,则该双边幂级数处处不收敛.
- 2 如果 $R_1 = R_2$, 则该双边幂级数只在圆周 $|z z_0| = R_1$ 上可能有收敛的点.

设 $\sum\limits_{n=0}^{\infty}c_n(z-z_0)^n$ 的收敛半径为 R_2 , 则它在 $|z-z_0| < R_2$ 内收敛, 在 $|z-z_0| > R_2$ 内发散.

对于负幂次部分,令 $\zeta = \frac{1}{z-z_0}$,那么负幂次部分是 ζ 的一个

幂级数 $\sum\limits_{n=1}^{\infty}c_{-n}\zeta^{n}$. 设该幂级数的收敛半径为 R, 则它在 $|\zeta|< R$ 内

收敛, 在 $|\zeta| > R$ 内发散. 设 $R_1 := \frac{1}{R}$, 则 $\sum_{n=1}^{\infty} c_{-n}(z-z_0)^{-n}$ 在 $|z-z_0| > R_1$ 内收敛, 在 $|z-z_0| < R_1$ 内发散.

- 1 如果 $R_1 > R_2$,则该双边幂级数处处不收敛.
- 2 如果 $R_1 = R_2$, 则该双边幂级数只在圆周 $|z z_0| = R_1$ 上可能有收敛的点. 此时没有收敛域.

设 $\sum\limits_{n=0}^{\infty}c_n(z-z_0)^n$ 的收敛半径为 R_2 , 则它在 $|z-z_0| < R_2$ 内收敛, 在 $|z-z_0| > R_2$ 内发散.

对于负幂次部分,令 $\zeta = \frac{1}{z-z_0}$,那么负幂次部分是 ζ 的一个

幂级数 $\sum\limits_{n=1}^{\infty}c_{-n}\zeta^{n}$. 设该幂级数的收敛半径为 R, 则它在 $|\zeta|< R$ 内

收敛, 在 $|\zeta|>R$ 内发散. 设 $R_1:=rac{1}{R}$, 则 $\sum\limits_{n=1}^{\infty}c_{-n}(z-z_0)^{-n}$ 在 $|z-z_0|>R_1$ 内收敛, 在 $|z-z_0|< R_1$ 内发散.

- 1 如果 $R_1 > R_2$,则该双边幂级数处处不收敛.
- 2 如果 $R_1 = R_2$, 则该双边幂级数只在圆周 $|z z_0| = R_1$ 上可能有收敛的点. 此时没有收敛域.
- ③ 如果 $R_1 < R_2$, 则该双边幂级数在 $R_1 < |z z_0| < R_2$ 内收敛,在 $|z z_0| < R_1$ 或 $> R_2$ 内发散,在圆周 $|z z_0| = R_1$ 或 R_2 上既可能发散也可能收敛.

因此双边幂级数的收敛域为圆环域 $R_1 < |z-z_0| < R_2$.

敛,

因此 $_{ extbf{X}}$ 因此 $_{ extbf{X}}$ 表现是一个 $_{ extbf{X}}$ 是一个 $_{ ext$

因此<mark>双边幂级数的收敛域为圆环域 $R_1 < |z-z_0| < R_2$.</mark> 双边幂级数的正幂次部分和负幂次部分在收敛圆环域内都收敛, 因此它们的和函数都解析, 且可以逐项求导、逐项积分.

因此<mark>双边幂级数的收敛域为圆环域 $R_1 < |z-z_0| < R_2$.</mark> 双边幂级数的正幂次部分和负幂次部分在收敛圆环域内都收敛,因此它们的和函数都解析,且可以逐项求导、逐项积分. 从而双边幂级数的和函数也是解析的,且可以逐项求导、逐项积分.

因此双边幂级数的收敛域为圆环域 $R_1 < |z-z_0| < R_2$. 双边幂级数的正幂次部分和负幂次部分在收敛圆环域内都收敛,因此它们的和函数都解析,且可以逐项求导、逐项积分. 从而双边幂级数的和函数也是解析的,且可以逐项求导、逐项积分. 当 $R_1 = 0$ 或 $R_2 = +\infty$ 时,圆环域的形状会有所不同.

因此双边幂级数的收敛域为圆环域 $R_1 < |z - z_0| < R_2$. 双边幂级数的正幂次部分和负幂次部分在收敛圆环域内都收 敛, 因此它们的和函数都解析, 且可以逐项求导、逐项积分. 从而 双边幂级数的和函数也是解析的, 且可以逐项求导、逐项积分. 当 $R_1 = 0$ 或 $R_2 = +\infty$ 时, 圆环域的形状会有所不同.

 $0 < |z - z_0| < R_2$

因此双边幂级数的收敛域为圆环域 $R_1 < |z - z_0| < R_2$.

双边幂级数的正幂次部分和负幂次部分在收敛圆环域内都收 敛, 因此它们的和函数都解析, 且可以逐项求导、逐项积分, 从而 双边幂级数的和函数也是解析的, 且可以逐项求导、逐项积分. 当 $R_1 = 0$ 或 $R_2 = +\infty$ 时, 圆环域的形状会有所不同.

$$0 < |z - z_0| < R_2$$

 $0 < |z - z_0| < R_2$ $R_1 < |z - z_0| < +\infty$

因此双边幂级数的收敛域为圆环域 $R_1 < |z - z_0| < R_2$.

双边幂级数的正幂次部分和负幂次部分在收敛圆环域内都收 敛, 因此它们的和函数都解析, 且可以逐项求导、逐项积分, 从而 双边幂级数的和函数也是解析的, 且可以逐项求导、逐项积分. 当 $R_1 = 0$ 或 $R_2 = +\infty$ 时, 圆环域的形状会有所不同.

$$0 < |z - z_0| < R_2$$
 $R_1 < |z - z_0| < +\infty$ $0 < |z - z_0| < +\infty$

$$0<|z-z_0|<+\infty$$

例

求双边幂级数 $\sum_{n=1}^{\infty} \frac{a^n}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{b^n}$ 的收敛域与和函数, 其中 a,b 为非零复数.

例

求双边幂级数 $\sum_{n=1}^{\infty} \frac{a^n}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{b^n}$ 的收敛域与和函数, 其中 a,b 为非零复数.

解.

由于
$$\sum_{n=0}^{\infty} \frac{z^n}{b^n}$$
 的收敛半径为 $|b|$, $\sum_{n=0}^{\infty} (az)^n$ 的收敛半径为 $\frac{1}{|a|}$,

例

求双边幂级数 $\sum_{n=1}^{\infty} \frac{a^n}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{b^n}$ 的收敛域与和函数, 其中 a,b 为非零复数.

解.

由于 $\sum\limits_{n=0}^\infty \frac{z^n}{b^n}$ 的收敛半径为 |b|, $\sum\limits_{n=0}^\infty (az)^n$ 的收敛半径为 $\frac{1}{|a|}$, 因此该双边幂级数的收敛域为 |a|<|z|<|b|.

例

求双边幂级数 $\sum_{n=1}^{\infty} \frac{a^n}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{b^n}$ 的收敛域与和函数, 其中 a,b 为非零复数.

解.

由于 $\sum\limits_{n=0}^{\infty}\frac{z^n}{b^n}$ 的收敛半径为 |b|, $\sum\limits_{n=0}^{\infty}(az)^n$ 的收敛半径为 $\frac{1}{|a|}$, 因此该双边幂级数的收敛域为 |a|<|z|<|b|. 当 |b|<|a| 时, 没有收敛域.

例

求双边幂级数 $\sum_{n=1}^{\infty} \frac{a^n}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{b^n}$ 的收敛域与和函数, 其中 a,b 为非零复数.

解.

由于 $\sum_{n=0}^{\infty} \frac{z^n}{b^n}$ 的收敛半径为 |b|, $\sum_{n=0}^{\infty} (az)^n$ 的收敛半径为 $\frac{1}{|a|}$, 因此该双边幂级数的收敛域为 |a| < |z| < |b|. 当 |b| < |a| 时, 没有收敛域. 当 |a| < |z| < |b| 时,

$$\sum_{n=1}^{\infty} \frac{a^n}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{b^n} = \frac{a/z}{1 - a/z} + \frac{1}{1 - z/b} = \frac{(a-b)z}{(z-a)(z-b)}.$$

反过来,在圆环域内解析的函数也一定能展开为双边幂级数,被称为<mark>洛朗级数</mark>.

反过来, 在圆环域内解析的函数也一定能展开为双边幂级数, 被称为<mark>洛朗级数</mark>.

例如
$$f(z) = \frac{1}{z(1-z)}$$
 在 $z = 0, 1$ 以外解析.

反过来, 在圆环域内解析的函数也一定能展开为双边幂级数, 被称为<mark>洛朗级数</mark>.

例如 $f(z)=\frac{1}{z(1-z)}$ 在 z=0,1 以外解析. 在圆环域 0<|z|<1 内,

$$f(z) = \frac{1}{z} + \frac{1}{1-z} = \frac{1}{z} + 1 + z + z^2 + z^3 + \cdots$$

反过来, 在圆环域内解析的函数也一定能展开为双边幂级数, 被称为<mark>洛朗级数</mark>.

例如 $f(z) = \frac{1}{z(1-z)}$ 在 z=0,1 以外解析. 在圆环域 0<|z|<1 内,

$$f(z) = \frac{1}{z} + \frac{1}{1-z} = \frac{1}{z} + 1 + z + z^2 + z^3 + \cdots$$

在圆环域 0 < |z - 1| < 1 内,

$$f(z) = \frac{1}{z} + \frac{1}{1-z} = -\frac{1}{z-1} + 1 - (z-1) + (z-1)^2 - (z-1)^3 + \cdots$$

现在我们来证明洛朗级数的存在性并得到洛朗展开式。

现在我们来证明洛朗级数的存在性并得到洛朗展开式. 设f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内处处解析.

现在我们来证明洛朗级数的存在性并得到洛朗展开式. 设f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内处处解析. 设

$$K_1: |z-z_0| = r$$
, $K_2: |z-z_0| = R$, $R_1 < r < R < R_2$.

是该圆环域内的两个圆周.

现在我们来证明洛朗级数的存在性并得到洛朗展开式. 设f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内处处解析. 设

$$K_1: |z - z_0| = r$$
, $K_2: |z - z_0| = R$, $R_1 < r < R < R_2$.

是该圆环域内的两个圆周. 对于 $r < |z - z_0| < R$, 由柯西积分公式,

$$f(z) = \frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

$$\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

可以表达为幂级数的形式.

$$\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

可以表达为幂级数的形式. 对于 $\zeta \in K_1$, 由于 $\left| \frac{\zeta - z_0}{z - z_0} \right| < 1$,

$$\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

可以表达为幂级数的形式. 对于 $\zeta \in K_1$, 由于 $\left| \frac{\zeta - z_0}{z - z_0} \right| < 1$, 因此

$$-\frac{1}{\zeta - z} = \frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{\zeta - z_0}{z - z_0}} = \sum_{n=1}^{\infty} \frac{(z - z_0)^{-n}}{(\zeta - z_0)^{-n+1}},$$

$$\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

可以表达为幂级数的形式. 对于 $\zeta \in K_1$, 由于 $\left| \frac{\zeta - z_0}{z - z_0} \right| < 1$, 因此

$$-\frac{1}{\zeta - z} = \frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{\zeta - z_0}{z - z_0}} = \sum_{n=1}^{\infty} \frac{(z - z_0)^{-n}}{(\zeta - z_0)^{-n+1}},$$

$$-\frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=1}^{\infty} \frac{(z - z_0)^{-n}}{(\zeta - z_0)^{-n+1}} d\zeta.$$

$$R_N(z) = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=N}^{\infty} \frac{(z - z_0)^{-n}}{(\zeta - z_0)^{-n+1}} d\zeta.$$

$$R_N(z) = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=N}^{\infty} \frac{(z-z_0)^{-n}}{(\zeta-z_0)^{-n+1}} d\zeta.$$

由于 $f(\zeta)$ 在 $D \supseteq K_1$ 上解析, 从而在 K_1 上连续且有界.

$$R_N(z) = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=N}^{\infty} \frac{(z - z_0)^{-n}}{(\zeta - z_0)^{-n+1}} d\zeta.$$

由于 $f(\zeta)$ 在 $D\supseteq K_1$ 上解析,从而在 K_1 上连续且有界. 设 $|f(\zeta)|\leqslant M,\zeta\in K_1$,

$$R_N(z) = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=N}^{\infty} \frac{(z-z_0)^{-n}}{(\zeta-z_0)^{-n+1}} d\zeta.$$

由于 $f(\zeta)$ 在 $D\supseteq K_1$ 上解析,从而在 K_1 上连续且有界. 设 $|f(\zeta)|\leqslant M,\zeta\in K_1$,那么

$$|R_N(z)| \le \frac{M}{2\pi} \oint_{K_1} \left| \sum_{n=N}^{\infty} \frac{(z-z_0)^{-n}}{(\zeta-z_0)^{-n+1}} \right| ds$$

$$R_N(z) = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=N}^{\infty} \frac{(z-z_0)^{-n}}{(\zeta-z_0)^{-n+1}} d\zeta.$$

由于 $f(\zeta)$ 在 $D\supseteq K_1$ 上解析,从而在 K_1 上连续且有界. 设 $|f(\zeta)|\leqslant M,\zeta\in K_1$,那么

$$|R_N(z)| \le \frac{M}{2\pi} \oint_{K_1} \left| \sum_{n=N}^{\infty} \frac{(z-z_0)^{-n}}{(\zeta-z_0)^{-n+1}} \right| ds$$

$$= \frac{M}{2\pi} \oint_{K_1} \left| \frac{1}{\zeta-z} \cdot \left(\frac{\zeta-z_0}{z-z_0} \right)^{N-1} \right| ds$$

$$R_N(z) = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=N}^{\infty} \frac{(z-z_0)^{-n}}{(\zeta-z_0)^{-n+1}} d\zeta.$$

由于 $f(\zeta)$ 在 $D\supseteq K_1$ 上解析,从而在 K_1 上连续且有界. 设 $|f(\zeta)|\leqslant M,\zeta\in K_1$,那么

$$|R_N(z)| \leqslant \frac{M}{2\pi} \oint_{K_1} \left| \sum_{n=N}^{\infty} \frac{(z-z_0)^{-n}}{(\zeta-z_0)^{-n+1}} \right| ds$$

$$= \frac{M}{2\pi} \oint_{K_1} \left| \frac{1}{\zeta-z} \cdot \left(\frac{\zeta-z_0}{z-z_0}\right)^{N-1} \right| ds$$

$$\leqslant \frac{M}{2\pi} \cdot \frac{1}{|z-z_0|-r} \cdot \left[\frac{r}{|z-z_0|}\right]^{N-1} \cdot 2\pi r \to 0 \quad (N \to \infty).$$

故

$$f(z) = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

$$+ \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{-n+1}} \right] (z - z_0)^{-n},$$

其中 $r < |z - z_0| < R$.

故

$$f(z) = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

+
$$\sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{-n+1}} \right] (z - z_0)^{-n},$$

其中 $r < |z - z_0| < R$. 由复合闭路定理, K_1, K_2 可以换成任意一条在圆环域内绕 z_0 的闭路 C.

故

$$f(z) = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

$$+ \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{-n+1}} \right] (z - z_0)^{-n},$$

其中 $r < |z-z_0| < R$. 由复合闭路定理, K_1, K_2 可以换成任意一条在圆环域内绕 z_0 的闭路 C. 从而我们得到 f(z) 在以 z_0 为圆心的圆环域的洛朗展开

$$f(z) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2\pi i} \oint_C \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n,$$

其中 $R_1 < |z - z_0| < R_2$.

洛朗展开的性质

我们称 f(z) 洛朗展开的正幂次部分为它的解析部分,负幂次部分为它的主要部分.

我们称 f(z) 洛朗展开的正幂次部分为它的解析部分,负幂次部分为它的主要部分。

设在圆环域 $R_1 < |z-z_0| < R_2$ 内的解析函数 f(z) 可以表达为双边幂级数

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n,$$

洛朗展开的性质

我们称 f(z) 洛朗展开的正幂次部分为它的解析部分,负幂次部分为它的主要部分。

设在圆环域 $R_1 < |z-z_0| < R_2$ 内的解析函数 f(z) 可以表达为双边幂级数

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n,$$

则

$$\oint_C \frac{f(\zeta) \,\mathrm{d}\zeta}{(\zeta - z_0)^{n+1}} = \sum_{k=-\infty}^{\infty} c_k \oint_C (\zeta - z_0)^{k-n-1} \,\mathrm{d}\zeta = 2\pi i c_n.$$

我们称 f(z) 洛朗展开的正幂次部分为它的解析部分,负幂次部分为它的主要部分。

设在圆环域 $R_1 < |z-z_0| < R_2$ 内的解析函数 f(z) 可以表达为双边幂级数

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n,$$

则

$$\oint_C \frac{f(\zeta) \,\mathrm{d}\zeta}{(\zeta - z_0)^{n+1}} = \sum_{k = -\infty}^{\infty} c_k \oint_C (\zeta - z_0)^{k-n-1} \,\mathrm{d}\zeta = 2\pi i c_n.$$

因此 f(z) 在圆环域内的双边幂级数展开是唯一的,它就是洛朗级数.

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项.

如果 f(z) 在圆环域 $R_1 < |z - z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数.

如果 f(z) 在圆环域 $R_1 < |z - z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z - z_0| < R_2$ 内解析, 且在圆环域上等于 f(z).

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z-z_0| < R_2$ 内解析, 且在圆环域上等于 f(z). 反过来, 如果 f(z) 在 $|z-z_0| < R_2$ 内解析,

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z-z_0| < R_2$ 内解析, 且在圆环域上等于 f(z).

反过来, 如果 f(z) 在 $|z-z_0| < R_2$ 内解析, 则 f(z) 可以展开为泰勒级数.

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z-z_0| < R_2$ 内解析, 且在圆环域上等于 f(z).

反过来, 如果 f(z) 在 $|z-z_0| < R_2$ 内解析, 则 f(z) 可以展开为泰勒级数. 由洛朗级数的唯一性可知此时泰勒级数就是洛朗级数.

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z-z_0| < R_2$ 内解析, 且在圆环域上等于 f(z).

反过来, 如果 f(z) 在 $|z-z_0| < R_2$ 内解析, 则 f(z) 可以展开为泰勒级数. 由洛朗级数的唯一性可知此时泰勒级数就是洛朗级数.

由此可知, f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数有负幂次项, 当且仅当 f(z) (或适当延拓) 在 $|z-z_0| \leqslant R_1$ 内有奇点 (未必是 z_0).

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z-z_0| < R_2$ 内解析, 且在圆环域上等于 f(z).

反过来, 如果 f(z) 在 $|z-z_0| < R_2$ 内解析, 则 f(z) 可以展开为泰勒级数. 由洛朗级数的唯一性可知此时泰勒级数就是洛朗级数.

由此可知, f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数有负幂次项, 当且仅当 f(z) (或适当延拓) 在 $|z-z_0| \leqslant R_1$ 内有奇点 (未必是 z_0). 例如

$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z-z_0| < R_2$ 内解析, 且在圆环域上等于 f(z).

反过来, 如果 f(z) 在 $|z-z_0| < R_2$ 内解析, 则 f(z) 可以展开为泰勒级数. 由洛朗级数的唯一性可知此时泰勒级数就是洛朗级数.

由此可知, f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数有负幂次项, 当且仅当 f(z) (或适当延拓) 在 $|z-z_0| \leqslant R_1$ 内有奇点 (未必是 z_0). 例如

$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!}.$$

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z-z_0| < R_2$ 内解析, 且在圆环域上等于 f(z).

反过来, 如果 f(z) 在 $|z-z_0| < R_2$ 内解析, 则 f(z) 可以展开为泰勒级数. 由洛朗级数的唯一性可知此时泰勒级数就是洛朗级数.

由此可知, f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数有负幂次项, 当且仅当 f(z) (或适当延拓) 在 $|z-z_0| \leqslant R_1$ 内有奇点 (未必是 z_0). 例如

$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!}.$$

可以看出,右侧是一个幂级数,所以它在 z=0 处也解析.

如果 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数没有负幂次项. 那么该洛朗级数是一个幂级数. 因此它的和函数在 $|z-z_0| < R_2$ 内解析, 且在圆环域上等于 f(z).

反过来, 如果 f(z) 在 $|z-z_0| < R_2$ 内解析, 则 f(z) 可以展开为泰勒级数. 由洛朗级数的唯一性可知此时泰勒级数就是洛朗级数.

由此可知, f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内展开的洛朗级数有负幂次项, 当且仅当 f(z) (或适当延拓) 在 $|z-z_0| \leqslant R_1$ 内有奇点 (未必是 z_0). 例如

$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!}.$$

可以看出,右侧是一个幂级数,所以它在 z=0 处也解析. 如果我们补充定义 f(0)=1,则 f(z) 处处解析.

将 $f(z)=rac{e^z}{z^2}$ 展开为以 0 为中心的洛朗级数.

将 $f(z) = \frac{e^z}{z^2}$ 展开为以 0 为中心的洛朗级数.

解.

由于 0 是奇点, f(z) 在 $0 < |z| < +\infty$ 内解析.

将 $f(z) = \frac{e^z}{z^2}$ 展开为以 0 为中心的洛朗级数.

解.

由于 0 是奇点, f(z) 在 $0 < |z| < +\infty$ 内解析. 我们有

$$c_n = \frac{1}{2\pi i} \oint_C \frac{e^{\zeta}}{\zeta^{n+3}} \,\mathrm{d}\zeta,$$

其中 C 为圆环域内的闭路.

将 $f(z) = \frac{e^z}{z^2}$ 展开为以 0 为中心的洛朗级数.

解.

由于 0 是奇点, f(z) 在 $0 < |z| < +\infty$ 内解析. 我们有

$$c_n = \frac{1}{2\pi i} \oint_C \frac{e^{\zeta}}{\zeta^{n+3}} \,\mathrm{d}\zeta,$$

其中 C 为圆环域内的闭路. 当 $n \leqslant -3$ 时, 被积函数处处解析, 因此由柯西-古萨基本定理, $c_n = 0$.

将 $f(z) = \frac{e^z}{z^2}$ 展开为以 0 为中心的洛朗级数.

解.

由于 0 是奇点, f(z) 在 $0 < |z| < +\infty$ 内解析. 我们有

$$c_n = \frac{1}{2\pi i} \oint_C \frac{e^{\zeta}}{\zeta^{n+3}} \,\mathrm{d}\zeta,$$

其中 C 为圆环域内的闭路. 当 $n\leqslant -3$ 时, 被积函数处处解析, 因此由柯西-古萨基本定理, $c_n=0$. 当 $n\geqslant -2$ 时, 由柯西积分公式

$$c_n = \frac{1}{2\pi i} \oint_C \frac{e^{\zeta}}{\zeta^{n+3}} d\zeta = \frac{1}{(n+2)!} (e^z)^{(n+2)}|_{z=0} = \frac{1}{(n+2)!}.$$

因此

$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n, \quad 0 < |z| < +\infty.$$

因此

$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n, \quad 0 < |z| < +\infty.$$

实际上,由洛朗级数的唯一性,我们可以直接从 e^z 的泰勒展开通过代数运算来得到洛朗级数。

因此

$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n, \quad 0 < |z| < +\infty.$$

实际上,由洛朗级数的唯一性,我们可以直接从 e^z 的泰勒展开通过代数运算来得到洛朗级数. 这种做法会简便得多.

因此

$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n, \quad 0 < |z| < +\infty.$$

实际上, 由洛朗级数的唯一性, 我们可以直接从 e^z 的泰勒展开通过代数运算来得到洛朗级数. 这种做法会简便得多. 因此我们一般不用直接法, 而是用双边幂级数的代数、求导、求积分运算来得到洛朗级数.

续解

因此

$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n, \quad 0 < |z| < +\infty.$$

实际上, 由洛朗级数的唯一性, 我们可以直接从 e^z 的泰勒展开通过代数运算来得到洛朗级数. 这种做法会简便得多. 因此我们一般不用直接法, 而是用双边幂级数的代数、求导、求积分运算来得到洛朗级数.

另解.

$$\frac{e^z}{z^2} = \frac{1}{z^2} \left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots \right)$$

续解

因此

$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n, \quad 0 < |z| < +\infty.$$

实际上, 由洛朗级数的唯一性, 我们可以直接从 e^z 的泰勒展开通过代数运算来得到洛朗级数. 这种做法会简便得多. 因此我们一般不用直接法, 而是用双边幂级数的代数、求导、求积分运算来得到洛朗级数.

另解.

$$\frac{e^z}{z^2} = \frac{1}{z^2} \left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots \right) = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n. \quad \blacksquare$$

在下列圆环域中把 $f(z) = \frac{1}{(z-1)(z-2)}$ 展开为洛朗级数.

在下列圆环域中把
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 展开为洛朗级数. (1) $0 < |z| < 1$, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

在下列圆环域中把
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 展开为洛朗级数. (1) $0 < |z| < 1$, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

解.

由于 f(z) 的奇点为 z=1,2,因此在这些圆环域内 f(z) 都可以展开为洛朗级数.

例

在下列圆环域中把
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 展开为洛朗级数. (1) $0 < |z| < 1$, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

解

例

在下列圆环域中把
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 展开为洛朗级数. (1) $0 < |z| < 1$, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

解.

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z}$$

例

在下列圆环域中把
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 展开为洛朗级数. (1) $0 < |z| < 1$, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

解.

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{1-z/2}$$

例

在下列圆环域中把
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 展开为洛朗级数. (1) $0 < |z| < 1$, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

解.

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{1-z/2}$$
$$= \sum_{n=0}^{\infty} z^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$$

例

在下列圆环域中把
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 展开为洛朗级数. (1) $0 < |z| < 1$, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

解.

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{1-z/2}$$
$$= \sum_{n=0}^{\infty} z^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n$$

例

在下列圆环域中把
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 展开为洛朗级数. (1) $0 < |z| < 1$, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

解

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{1-z/2}$$
$$= \sum_{n=0}^{\infty} z^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n$$
$$= \frac{1}{2} + \frac{3}{4}z + \frac{7}{8}z^2 + \cdots$$

(2) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{z}{2} \right| < 1,$$

(2) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{z}{2} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z}$$

(2) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{z}{2} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} - \frac{1}{2} \cdot \frac{1}{1-z/2}$$

(2) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{z}{2} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} - \frac{1}{2} \cdot \frac{1}{1-z/2}$$
$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$$

(2) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{z}{2} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} - \frac{1}{2} \cdot \frac{1}{1-z/2}$$
$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = -\sum_{n=-\infty}^{-1} z^n - \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} z^n$$

续解

(2) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{z}{2} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} - \frac{1}{2} \cdot \frac{1}{1-z/2}$$

$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = -\sum_{n=-\infty}^{-1} z^n - \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} z^n$$

$$= \cdots - \frac{1}{z^2} - \frac{1}{z} - \frac{1}{z} - \frac{1}{2} - \frac{1}{4} z - \frac{1}{8} z^2 - \cdots$$

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1,$$

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z}$$

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} + \frac{1}{z} \cdot \frac{1}{1-2/z}$$

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} + \frac{1}{z} \cdot \frac{1}{1-2/z}$$
$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n + \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n$$

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} + \frac{1}{z} \cdot \frac{1}{1-2/z}$$
$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n + \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n = \sum_{n=0}^{\infty} (2^n - 1)z^{-n-1}$$

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} + \frac{1}{z} \cdot \frac{1}{1-2/z}$$

$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n + \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n = \sum_{n=0}^{\infty} (2^n - 1)z^{-n-1}$$

$$= \frac{1}{z^2} + \frac{3}{z^3} + \frac{7}{z^4} + \cdots$$

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} + \frac{1}{z} \cdot \frac{1}{1-2/z}$$
$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n + \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n = \sum_{n=0}^{\infty} (2^n - 1)z^{-n-1}$$
$$= \frac{1}{z^2} + \frac{3}{z^3} + \frac{7}{z^4} + \cdots$$

同一个函数在不同的圆环域内有不同的洛朗展开,这和洛朗展开的唯一性并不矛盾.

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-1/z} + \frac{1}{z} \cdot \frac{1}{1-2/z}$$

$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n + \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n = \sum_{n=0}^{\infty} (2^n - 1)z^{-n-1}$$

$$= \frac{1}{z^2} + \frac{3}{z^3} + \frac{7}{z^4} + \cdots$$

同一个函数在不同的圆环域内有不同的洛朗展开, 这和洛朗展开的唯一性并不矛盾. 因为洛朗展开的唯一性是指在固定的一个圆环域上.

将 $f(z) = \frac{1}{z(z-2)}$ 在 2 的去心邻域内展开成洛朗级数.

将
$$f(z) = \frac{1}{z(z-2)}$$
 在 2 的去心邻域内展开成洛朗级数.

解.

将
$$f(z) = \frac{1}{z(z-2)}$$
 在 2 的去心邻域内展开成洛朗级数.

解.

$$f(z) = \frac{1}{z(z-2)} = \frac{1}{z-2} \cdot \frac{1}{2+z-2}$$

将
$$f(z) = \frac{1}{z(z-2)}$$
 在 2 的去心邻域内展开成洛朗级数.

解.

$$f(z) = \frac{1}{z(z-2)} = \frac{1}{z-2} \cdot \frac{1}{2+z-2}$$
$$= \frac{1}{2(z-2)} \cdot \frac{1}{1+(z-2)/2}$$

将
$$f(z) = \frac{1}{z(z-2)}$$
 在 2 的去心邻域内展开成洛朗级数.

解.

$$f(z) = \frac{1}{z(z-2)} = \frac{1}{z-2} \cdot \frac{1}{2+z-2}$$
$$= \frac{1}{2(z-2)} \cdot \frac{1}{1+(z-2)/2} = \frac{1}{2(z-2)} \sum_{n=0}^{\infty} \left(-\frac{z-2}{2}\right)^n$$

将
$$f(z) = \frac{1}{z(z-2)}$$
 在 2 的去心邻域内展开成洛朗级数.

解.

$$f(z) = \frac{1}{z(z-2)} = \frac{1}{z-2} \cdot \frac{1}{2+z-2}$$

$$= \frac{1}{2(z-2)} \cdot \frac{1}{1+(z-2)/2} = \frac{1}{2(z-2)} \sum_{n=0}^{\infty} \left(-\frac{z-2}{2}\right)^n$$

$$= \frac{1}{2(z-2)} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{n+2}} (z-2)^n, \quad 0 < |z-2| < 2.$$

练习

将 $z^3 \exp\left(\frac{1}{z}\right)$ 在 $0 < |z| < +\infty$ 内展开成洛朗级数.

练习

将
$$z^3 \exp\left(\frac{1}{z}\right)$$
 在 $0 < |z| < +\infty$ 内展开成洛朗级数.

答案.

$$z^{3} \exp\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{1}{n! z^{n-3}} = \sum_{n=1}^{\infty} \frac{1}{(n+3)! z^{n}} + \frac{1}{6} + \frac{z}{2} + z^{2} + z^{3}$$
$$= \dots + \frac{1}{24z} + \frac{1}{6} + \frac{z}{2} + z^{2} + z^{3}, \quad 0 < |z| < +\infty.$$

注意到当 n=-1 时, 洛朗级数的系数

$$c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) \,\mathrm{d}\zeta,$$

注意到当 n = -1 时,洛朗级数的系数

$$c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) \,\mathrm{d}\zeta,$$

因此洛朗展开可以用来帮助计算函数的积分,

注意到当 n = -1 时,洛朗级数的系数

$$c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) \,\mathrm{d}\zeta,$$

因此洛朗展开可以用来帮助计算函数的积分, 它就是所谓的留数.

注意到当 n=-1 时, 洛朗级数的系数

$$c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) \,\mathrm{d}\zeta,$$

因此洛朗展开可以用来帮助计算函数的积分, 它就是所谓的留数.

例

求
$$\oint_{|z|=3} \frac{1}{z(z+1)^2} \,\mathrm{d}z.$$

注意到当 n=-1 时, 洛朗级数的系数

$$c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) \,\mathrm{d}\zeta,$$

因此洛朗展开可以用来帮助计算函数的积分, 它就是所谓的留数.

例

求
$$\oint_{|z|=3} \frac{1}{z(z+1)^2} \,\mathrm{d}z.$$

解.

注意到闭路 |z| = 3 落在 $1 < |z| < +\infty$ 内.

注意到当 n = -1 时,洛朗级数的系数

$$c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) \,\mathrm{d}\zeta,$$

因此洛朗展开可以用来帮助计算函数的积分, 它就是所谓的留数.

例

求
$$\oint_{|z|=3} \frac{1}{z(z+1)^2} \,\mathrm{d}z.$$

解.

注意到闭路 |z|=3 落在 $1<|z|<+\infty$ 内. 我们在这个圆环域内 求 $f(z)=\frac{1}{z(z+1)^2}$ 的洛朗展开.

$$f(z) = \frac{1}{z(z+1)^2} = -\frac{1}{z} \left[\frac{1}{z+1} \right]'$$

$$f(z) = \frac{1}{z(z+1)^2} = -\frac{1}{z} \left[\frac{1}{z+1} \right]' = -\frac{1}{z} \left[\frac{1}{z} \cdot \frac{1}{1+1/z} \right]'$$

$$f(z) = \frac{1}{z(z+1)^2} = -\frac{1}{z} \left[\frac{1}{z+1} \right]' = -\frac{1}{z} \left[\frac{1}{z} \cdot \frac{1}{1+1/z} \right]'$$
$$= -\frac{1}{z} \left[\frac{1}{z} \cdot \left(1 - \frac{1}{z} + \frac{1}{z^2} + \dots \right) \right]'$$

$$f(z) = \frac{1}{z(z+1)^2} = -\frac{1}{z} \left[\frac{1}{z+1} \right]' = -\frac{1}{z} \left[\frac{1}{z} \cdot \frac{1}{1+1/z} \right]'$$
$$= -\frac{1}{z} \left[\frac{1}{z} \cdot \left(1 - \frac{1}{z} + \frac{1}{z^2} + \cdots \right) \right]'$$
$$= -\frac{1}{z} \left[\frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right]'$$

$$f(z) = \frac{1}{z(z+1)^2} = -\frac{1}{z} \left[\frac{1}{z+1} \right]' = -\frac{1}{z} \left[\frac{1}{z} \cdot \frac{1}{1+1/z} \right]'$$

$$= -\frac{1}{z} \left[\frac{1}{z} \cdot \left(1 - \frac{1}{z} + \frac{1}{z^2} + \cdots \right) \right]'$$

$$= -\frac{1}{z} \left[\frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right]'$$

$$= -\frac{1}{z} \left[-\frac{1}{z^2} + \frac{2}{z^3} - \frac{3}{z^4} + \cdots \right]$$

$$f(z) = \frac{1}{z(z+1)^2} = -\frac{1}{z} \left[\frac{1}{z+1} \right]' = -\frac{1}{z} \left[\frac{1}{z} \cdot \frac{1}{1+1/z} \right]'$$

$$= -\frac{1}{z} \left[\frac{1}{z} \cdot \left(1 - \frac{1}{z} + \frac{1}{z^2} + \cdots \right) \right]'$$

$$= -\frac{1}{z} \left[\frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right]'$$

$$= -\frac{1}{z} \left[-\frac{1}{z^2} + \frac{2}{z^3} - \frac{3}{z^4} + \cdots \right] = \frac{1}{z^3} - \frac{2}{z^4} + \cdots$$

$$f(z) = \frac{1}{z(z+1)^2} = -\frac{1}{z} \left[\frac{1}{z+1} \right]' = -\frac{1}{z} \left[\frac{1}{z} \cdot \frac{1}{1+1/z} \right]'$$

$$= -\frac{1}{z} \left[\frac{1}{z} \cdot \left(1 - \frac{1}{z} + \frac{1}{z^2} + \cdots \right) \right]'$$

$$= -\frac{1}{z} \left[\frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right]'$$

$$= -\frac{1}{z} \left[-\frac{1}{z^2} + \frac{2}{z^3} - \frac{3}{z^4} + \cdots \right] = \frac{1}{z^3} - \frac{2}{z^4} + \cdots$$

故

$$\oint_C f(z) \, \mathrm{d}z = 2\pi i c_{-1} = 0.$$

例

求
$$\oint_{|z|=2} \frac{z \exp(1/z)}{1-z} \,\mathrm{d}z$$

例

求
$$\oint_{|z|=2} \frac{z \exp(1/z)}{1-z} \,\mathrm{d}z.$$

解.

注意到闭路 |z| = 2 落在 $1 < |z| < +\infty$ 内.

例

求
$$\oint_{|z|=2} \frac{z \exp(1/z)}{1-z} \,\mathrm{d}z$$

解.

例

解.

$$f(z) = -\frac{\exp(1/z)}{1 - 1/z}$$

例

解.

$$f(z) = -\frac{\exp(1/z)}{1 - 1/z} = -\left(1 + \frac{1}{z} + \frac{1}{z^2} + \cdots\right)\left(1 + \frac{1}{z} + \frac{1}{2z^2} + \cdots\right)$$

例

解.

$$f(z) = -\frac{\exp(1/z)}{1 - 1/z} = -\left(1 + \frac{1}{z} + \frac{1}{z^2} + \cdots\right) \left(1 + \frac{1}{z} + \frac{1}{2z^2} + \cdots\right)$$
$$= -\left(1 + \frac{2}{z} + \frac{5}{2z^2} + \cdots\right)$$

例

解.

注意到闭路 |z|=2 落在 $1<|z|<+\infty$ 内. 我们在这个圆环域内求被积函数 f(z) 的洛朗展开.

$$f(z) = -\frac{\exp(1/z)}{1 - 1/z} = -\left(1 + \frac{1}{z} + \frac{1}{z^2} + \cdots\right) \left(1 + \frac{1}{z} + \frac{1}{2z^2} + \cdots\right)$$
$$= -\left(1 + \frac{2}{z} + \frac{5}{2z^2} + \cdots\right)$$

故

$$\oint_C f(z) \, \mathrm{d}z = 2\pi i c_{-1} = -4\pi i.$$