6 Joint Distributions and Conditional Expectation

With data coming from several groups, we should consider both *within* group variation and *between* group variation.

Using *conditional expectation*, we can predict the value of one random variable, given the information we have about other random variables.

6.1 Joint, marginal, and conditional distributions

We introduce multivariate analogs of the CDF, PMF, and PDF.

Key concepts:

- **Distribution** of RV **X** provides complete information about the probability of **X** into any subset of real line.
- **Joint distribution** of two RVs X and Y and provides complete information about the probability of the vector (X, Y).
- Marginal distribution of X is the individual distribution of X ignoring the value of Y.
- Conditional distribution of X given Y = y is the updated distribution of X after observing Y = y.

Discrete joint CDF, PMF:

The **joint CDF** of RVs X and Y is the function F_{XY} given by:

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

analogously for joint CDF of n RVs.

The **joint PMF** of discrete RVs X and Y is the function p_{XY} , given by:

$$p_{XY}(x,y) = P(X = x, Y = y)$$

analogously for joint PMF of n RVs.

We require valid joint PMF to be nonnegative and sum to 1:

$$\sum_x \sum_y P(X=x,Y=y) = 1.$$

Marginal PMF: For discrete RVs X and Y, the marginal PMF of X is:

$$P(X=x) = \sum_y P(X=x,Y=y)$$

The operation of summering over the possible values of Y in order to convert the joint PMF to marginal PMF is *marginalizing* out of Y.

Now: we observe the value of X and want to update the distribution of Y using this information. Using the marginal PMF isn't good idea because it doesn't take into account any info about X. Instead,

Conditional PMF:

$$P(Y=y|X=x)=rac{P(X=x,Y=y)}{P(X=x)}.$$

Where x is the observed value of X. The conditional PMF P(Y=y|X=x) is obtained by renormalizing the column of the joint PMF that is compatible with the event X=x.

We can also obtain the conditional distribution using Bayes' rule:

$$P(Y=y|X=x)=rac{P(X=x|Y=y)P(Y=y)}{P(X=x)}.$$

Using LOTP, we have another way to get the marginal PMF:

$$P(X=x) = \sum_y P(X=x|Y=y)P(Y=y)$$

Now we can revisit the definition of **independence**:

RVs X and Y are independent if $\forall x, y$,

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

If *X* and *Y* are discrete, it is equivalent to:

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

 $\forall x, y$ and it is also equivalent to:

$$P(Y = y | X = x) = P(Y = y)$$

 $\forall y$ and $\forall x$ such that P(X=x)>0.

For independent RVs, the *joint CDF* factors into the product of the *marginal CDFs*, or that the *joint PMF* factors into the product of the *marginal PMFs*.

Another way of looking at independence: *all the conditional PMFs* are the same as the *marginal PMFs*. In other words, starting with marginal PMF of Y, no updating is necessary when we condition on X = x, regardless of x. There is no event involving X that influences our distribution of Y.

Continuous joint CDF, PDF:

In order for X and Y to have a continuous joint distribution, we require that the joint CDF is:

$$F_{X,Y} = P(X \le x, Y \le y)$$

be differentiable with respect to x and y. The partial derivative with respect to x and y is called *the joint PDF*.

Joint PDF:

If X and Y are continuous with joint CDF $F_{X,Y}$, their joint PDF is:

$$f_{X,Y}(x,y) = rac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y).$$

As usual, we require valid joint PDFs to be nonnegative and integrate to 1.

How joint PDF of two RVs looks like:

Marginal PDF:

In continuous case, we get the marginal PDF of X by integrating over all possible values of Y:

For continuous RVs X and Y with joint PDF $f_{X,Y}$, the marginal PDF of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

If number of RVs is bigger, we can do the same, for example for four RVs X, Y, Z, W if we need the joint PDF of X, W:

$$f_{X,W}(x,w) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y,Z,W}(x,y,z,w) dy dz.$$

Computing the integral may be difficult!

How to update our distribution for Y after observing the value of X using the *conditional PDF*?

Conditional PDF:

For continuous RVs X and Y with joint PDF $f_{X,Y}$, the *conditional PDF* of Y given X=x is

$$f_{Y|X}(y|x) = rac{f_{X,Y}(x,y)}{f_X(x)}.$$

this is considered as a function of y for fixed x.

The conditional PDF $f_{Y|X}(y|x)$ is obtained by renormalizing the slice of the joint PDF at the fixed value x:

We can recover joint PDF $f_{X,Y}$ if we have conditional PDF $f_{Y|X}$:

$$f_{X,Y} = f_{Y|X}(y|x)f_X(x),$$

similarly for $f_{X|Y}$:

$$f_{X,Y} = f_{X|Y}(x|y)f_Y(y).$$

So we can develop Bayes' rule and LOTP for continuous case:

Continuous form of Bayes' rule and LOTP

For continuous RVs X and Y,

$$f_{Y|X}(y|x) = rac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}, \ f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y)f_Y(y)dy.$$

We now have versions of Bayes' rule and LOTP for two discrete RVs and for two continuous RVs, so we can create Bayes' rule and LOTP for different mixes of RVs.

Bayes' rule for continuous X and discrete Y:

$$P(Y=y|X=x)=rac{f_X(x|Y=y)P(Y=y)}{f_X(x)};$$

Bayes' rule for discrete X and continuous Y:

$$f_Y(y|X=x)=rac{P(X=x|Y=y)f_y(y)}{P(X=x)}.$$

LOTP for continuous X and discrete Y:

$$f_X(x) = \sum_y f_X(x|Y=y) P(Y=y);$$

LOTP for discrete X and continuous Y:

$$P(X=x)=\int_{-\infty}^{\infty}P(X=x|Y=y)f_{Y}(y)dy.$$

Finally, we can define the independence for continuous RVs:

Independence of continuous RVs:

RVs X and Y are independent if $\forall x,y$

$$F_{X,Y}(x,y) = F_X(x) F_Y(y),$$

if \boldsymbol{X} and \boldsymbol{Y} are continuous with joint PDF $f_{X,Y}$, this is equivalent to:

$$f_{X,Y}(x,y)=f_X(x)f_Y(y),$$

 $\forall x,y$, this is also equivalent to:

$$f_{X|Y}(y|x) = f_Y(x)$$

 $\forall y,x$ such that $f_X(x)>0$.

6.2 Covariance and correlation.