15

20

CLAIMS

1.

- An oral vaccine comprising a nucleic acid operatively encoding
- an antigen complexed with or entrapped within liposomes formed from liposome forming components including
- a) at least one cationic compound having the general formula I, $R^{1}OCH_{2}CH(OR^{2})CH_{2}R^{5}X^{1}R^{6},$

in which R^1 and R^2 are the same or different and are selected from groups of the formula $CH_3(CH_2)_a(CH=CH-CH_2)_b(CH_2)_c(CO)_{d}$

in which b is 0 to 6, a and c are each selected from 0-23 and (a + c + 10 3b) is in the range 12-23 and d is 0 or 1;

R⁵ is a bond or a C₁-8 alkanediyl group;

X¹ is N, P or S;

n is 3 where X1 is N or P and is 2 where X1 is S; and

the groups R^6 are the same or different and are selected from hydrogen, C_{1-8} alkyl, C_{6-12} aryl or aralkyl, or two or three of the groups R^6

together with X¹ may form a saturated or unsaturated heterocyclic group having 5 to 7 ring atoms;

h) at least o

b) at least one zwitteronic phospholipid having the general formula II

R¹³COOCH₂CH(OCOR¹⁴)CH₂O·P—Y¹—R¹⁷ X³R¹⁸_p III

in which R³ and R⁴ are the same or different and are selected from groups of the formula CH₃(CH₂)e(CH=CH-CH₂)f(CH₂)g-

in which f is 0 to 6, each of e and g are 0 to 23 and e + g + 3f is in the range 12 to 23;

R⁷ is a C₁₋₈ alkanediyl group;

Y is -O- or a bond:

 X^2 is N, P or S;

m is 3 when X2 is N or P and is 2 when X2 is S; and

20

25

the groups R⁸ are the same or different and are selected from the group consisting of hydrogen, C₁₋₈ alkyl, C₆₋₁₁ aryl or aralkyl, or two or three of the groups R⁸ together with X³ may form a saturated or unsaturated heterocyclic group having 5 to 7 ring atoms;

provided that in at least one of the groups R^1 , R^2 , R^3 and R^4 , b or f, as the case may be, is 0.

- 2. A vaccine according to claim 1 in which R¹=R² and R³=R⁴.
- 3. A vaccine according to claim 2 in which R¹ and R² represent a different group to R³ and R⁴.
- 4. A vaccine according to claim 2 and claim 3 in which in R¹ and R² b=1 and in which (a + c) is in the range 10-20.
 - 5. A vaccine according to any of claims 2 to 4 in which d = 0.
 - 6. A vaccine according to any of claims 2 to 5 in which f = 0.
- 7. A vaccine according to any preceding claim in which X¹ is N
 15 and in which the R⁶ groups are all C₁₄ alkyl.
 - 8. A vaccine according to any preceding claim which comprises two zwitterionic phospholipids each having the formula II, in which Y is O, and X² is N, and the groups R³ of the first phospholipid are all hydrogen and the groups R³ of the second phospholipid and all C₁₋₄ alkyl, preferably methyl.
 - 9. A vaccine according to claim 8 in which, in each phospholipid Y is O and R⁷ is (CH₂), in which h is 2 or 3.
 - 10. A vaccine according to claim 8 or claim 9 in which the groups \mathbb{R}^3 and \mathbb{R}^4 of the first phospholipid are the same and each is a group in which f=1 and (e + g) is in the range 10 to 20, preferably 12 to 14.
 - 11. A vaccine according to any of claims 8 to 10 in which the groups R³ and R⁴ of the second phospholipid are the same and each is a group in which f=0 and e + g is in the range 15 to 23, preferably 15-17.
- 12. An oral vaccine comprising a nucleic acid encoding an antigen complexed to or entrapped within liposomes formed from liposome forming components including at least one glycerolipid, at least one cationic

10

15

20

25

30

compound and at least one zwitterionic phospholipid characterised in that at least one glycerolipid is an O'O-dialkanoyl or O,O'-dialkyl phospholipid.

- 13. A vaccine according to claim 12 in which the glycerolipid is a compound of the general formula II defined in claim 1 in which f is 0 in both R³ and R⁴.
- An oral vaccine comprising a nucleic acid encoding an antigen complexed to and/or entrapped within liposomes formed from liposome forming components including at least one cationic compound and at least one zwitterionic phospholipid characterised in that the liposome forming components include at least 25 mole%, preferably at least 50 mole%, of components which individually have a transition temperature of more than 40°C. Z
- 15. A vaccine according to any of claims 12 to 14 in which the zwitterionic phospholipid is selected from the group consisting of distearoylphosphatidylcholine, distearoylphosphatidylethanolamine, diplamitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine and mixtures thereof.
- 16. A vaccine according to any of claims 12 to 15 in which the cationic compound is a compound of the general formula I as defined in claim 1.
- 17. A vaccine according to any of claims 12 to 15 in which the cationic compound is DC-cholesterol.
- 18. A method in which a human or a non-human animal is vaccinated by administering a vaccine according to any preceding claim orally whereby an immune response to the encoded antigen is generated.
- 19. A method of entrapping polynucle otide into liposomes involving the steps of:
- i) forming an aqueous suspension comprising naked polynucleotide, which operatively encodes an immunogenic polypeptide useful to induce a desired immune response in a human or animal subject, and preformed liposomes formed of

liposome forming components as defined in claim 1, claim 12 or claim 14,

- ii) freeze-drying or spray-drying the suspension, and
- iii) rehydrating the product of step ii) to form dehydration/rehydration vesicles.
- 20. A method according to claim 19 comprising the further steps of:
- iv) subjecting the aqueous suspension of dehydration/rehydration vesicles from step iii to microfluidization to control their size; and
- v) optionally separating non entrapped polynucleotide from liposomes.