CSE 417T Introduction to Machine Learning

Lecture 6

Instructor: Chien-Ju (CJ) Ho

Recap

Theory of Generalization

• Learning from finite hypothesis set: learn $g \in \{h_1, \dots, h_M\}$

$$\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

- What can we say about infinite hypothesis set with $M \to \infty$
- Counting "effective" # hypothesis
 - Dichotomies
 - Informally, consider a dichotomy as "data-dependent" hypothesis
 - Characterized by both H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, ... \vec{x}_N) = \{h(\vec{x}_1), ..., h(\vec{x}_N) | h \in H\}$$

- The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, \dots, \vec{x}_N$
- Growth function
 - Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1, \dots, \vec{x}_N)} |H(\vec{x}_1, \dots, \vec{x}_N)|$$

Why Growth Function?

- Growth function $m_H(N)$
 - Largest number of "effective" hypothesis H can induce on N data points
 - A more precise "complexity" measure for H
 - Goal: Replace M in finite-hypothesis analysis with $m_H(N)$

• With prob at least
$$1 - \delta$$
, $E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} ln \frac{2M}{\delta}}$

• VC Generalization Bound (VC Inequality, 1971) With prob at least $1-\delta$

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{8}{N} ln \frac{4m_H(2N)}{\delta}}$$

Bounding Growth Functions

- More definitions....
 - Shatter
 - *H* shatters $(\vec{x}_1, ..., \vec{x}_N)$ if $|H(\vec{x}_1, ..., \vec{x}_N)| = 2^N$
 - *H* can induce all label combinations for $(\vec{x}_1, ..., \vec{x}_N)$
 - Break point
 - k is a break point for H if no data set of size k can be shattered by H
 - k is a break point for $H \leftrightarrow m_H(k) < 2^k$
 - VC Dimension: $d_{vc}(H)$ or d_{vc}
 - The VC dimension of H is the largest N such that $m_H(N) = 2^N$
 - Equivalently, if k^* is the smallest break point for H, $d_{vc}(H) = k^* 1$

Examples

$m_H(N)$

	N=1	N=2	N=3	N=4	N=5	Break Points	VC Dimension
Positive Rays	2	3	4	5	6	k = 2,3,4,	1
Positive Intervals	2	4	7	11	16	k = 3,4,5,	2
Convex Sets	2	4	8	16	32	None	∞
2D Perceptron	2	4	8	14	?	k = 4,5,6,	3

Positive Rays

Positive Intervals

Convex Sets

2D Perceptron

Bounding Growth Functions

- Theorem statement:
 - If there is no break point for H, then $m_H(N) = 2^N$ for all N.
 - If k is a break point for H, i.e., if $m_H(k) < 2^k$ for some value k, then

$$m_H(N) \leq \sum_{i=0}^{k-1} {N \choose i}$$

- Rephrase the 2nd statement of the above theorem
 - If k is a break point for H, the following statements are true
 - $m_H(N) \le N^{k-1} + 1$ [Can be proven using induction from above. See LFD Problem 2.5]
 - $m_H(N) = O(N^{k-1})$
 - $m_H(N)$ is polynomial in N
 - If d_{vc} is the VC dimension of H, then
 - $m_H(N) \leq \sum_{i=0}^{d_{vc}} {N \choose i}$
 - $m_H(N) \leq N^{d_{vc}} + 1$
 - $m_H(N) = O(N^{d_{vc}})$

If d_{vc} is the VC dimension of H, $d_{vc} + 1$ is a break point for H

Vapnik-Chervonenkis (VC) Bound

• VC Generalization Bound With prob at least $1-\delta$

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{8}{N}} ln \frac{4m_H(2N)}{\delta}$$

• Let d_{vc} be the VC dimension of H, we have $m_H(N) \leq N^{d_{vc}} + 1$. Therefore, With prob at least $1-\delta$

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{8}{N} ln \frac{4((2N)^{d_{vc}+1)}}{\delta}}$$

• If we treat δ as a constant, then we can say, with high probability

$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

Discussion on the VC Bound

- Think about the high-level tradeoff of choosing d_{VC} and its dependency on N
- The approximation-generalization trade-off

How well g approximates f in training data

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Recall: Theorem in Bounding Growth Function

- Theorem statement:
 - If there is no break point for H, then $m_H(N) = 2^N$ for all N.
 - If k is a break point for H, i.e., if $m_H(k) < 2^k$ for some value k, then

$$m_H(N) \leq \sum_{i=0}^{k-1} {N \choose i}$$

- You are asked to take this as a fact last lecture
- Will provide proof sketch now

Proof Sketch

[See LFD Section 2.1.2 for the formal proof]

[Safe to Skip] (This proof won't appear in exams/homework)

Key Intuitions

- When there exist a break point k
 - No datasets of size k can be shattered
 - It also imposes strong constraints on dataset of size k' > k
 - No subset of data with size k can be shattered
 - This leads to the bound $m_H(N) = O(N^{k-1})$

Proof Intuitions

Max # dichotomies can you list on 2 points when no 2 points can be shattered

Proof Intuitions

Max # dichotomies can you list on 4 points when no 2 points can be shattered

\vec{x}_1	\vec{x}_2	\vec{x}_3	\vec{x}_4
+1	+1	+1	+1
+1	+1	+1	-1
+1	+1	-1	+1
+1	-1	+1	+1
-1	+1	+1	+1

Can you add an additional dichotomy?

Proof Intuitions

• How "no 2 points can be shattered" impacts the scenario with 4 points?

_	\vec{x}_1	\vec{x}_2	$\vec{\chi}_3$	\vec{x}_4	$(\vec{x}_1, \vec{x}_2, \vec{x}_3)$ appear twice, with different \vec{x}_4
	+1	+1	+1	+1	No 1 points can be shattered
	+1	+1	+1	-1	
	+1	+1	-1	+1	
	+1	-1	+1	+1	$(\vec{x}_1,\vec{x}_2,\vec{x}_3)$ appear once (including one in each of the pair above)
	-1	+1	+1	+1	No 2 points can be shattered

Proof Intuitions

Max # dichotomies can you list on 4 points when no 2 points can be shattered

No 1 point can be shattered

\vec{x}_2	\vec{x}_3	\vec{x}_4	
+1	+1	+1	
+1	+1	-1	
+1	-1	+1	
-1	+1	+1	
+1	+1	+1	
	+1 +1 +1 -1	+1 +1 +1 +1 +1 -1 -1 +1	+1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1 -1 +1 +1

No 2 points can be shattered

B(N, k): max # dichotomies on N points when no k points are shattered

A recursive definition:

$$B(N,k) \leq B(N-1,k) + B(N-1,k-1)$$

Sauer's Lemma: $B(N, k) \leq \sum_{i=0}^{k-1} {N \choose i}$

Can be proved by induction

 $B(N, k) \le \sum_{i=0}^{k-1} {N \choose i}$ is the bound of $m_H(N)$ for H with break point k

Bounding Growth Function using Break Points

- Theorem statement:
 - If there is no break point for H, then $m_H(N) = 2^N$ for all N.
 - If k is a break point for H, i.e., if $m_H(k) < 2^k$ for some value k, then

$$m_H(N) \leq \sum_{i=0}^{k-1} {N \choose i}$$

- Rephrase the above theorem
 - If k is a break point for H, the following statements are true
 - $m_H(N) \le N^{k-1} + 1$ [Can be proven using induction. See LFD Problem 2.5]
 - $m_H(N) = O(N^{k-1})$
 - $m_H(N)$ is polynomial in N
 - If d_{vc} is the VC dimension of H, then
 - $m_H(N) \leq \sum_{i=0}^{d_{vc}} {N \choose i}$
 - $m_H(N) \leq N^{d_{vc}} + 1$
 - $m_H(N) = O(N^{d_{vc}})$

If d_{vc} is the VC dimension of H, $d_{vc}+1$ is a break point for H

Bias-Variance Decomposition

Another theory of generalization

Real-Value Target and Squared Error

- So far, we focus on binary target function and binary error
 - Binary target function $f(\vec{x}) \in \{-1,1\}$
 - Binary error $e(h(\vec{x}), f(\vec{x})) = \mathbb{I}[h(\vec{x}) \neq f(\vec{x})]$
- Real-value functions ["regression"] and squared error?
 - Real-value target function $f(\vec{x}) \in \mathbb{R}$
 - Square error $e(h(\vec{x}), f(\vec{x})) = (h(\vec{x}) f(\vec{x}))^2$

Real-Value Target and Square Error

- Real-value functions [called "regression"] and squared error?
 - Real-value target function $f(\vec{x}) \in \mathbb{R}$
 - Square error $e(h(\vec{x}), f(\vec{x})) = (h(\vec{x}) f(\vec{x}))^2$
- Errors:
 - In-sample error: $E_{in}(g) = \frac{1}{N} \sum_{n=1}^{N} e(h(\vec{x}_n), f(\vec{x}_n)) = \frac{1}{N} \sum_{n=1}^{N} (h(\vec{x}_n) f(\vec{x}_n))^2$
 - Out-of-sample error: $E_{out}(g) = \mathbb{E}_{\vec{x}}[e(h(\vec{x}), f(\vec{x}))] = \mathbb{E}_{\vec{x}}[(g(\vec{x}) f(\vec{x}))^2]$
- Theory of generalization: What can we say about $E_{out}(g)$?

- Note that g is learned by some algorithm on the dataset D
 - We'll make the dependency on D explicit and write it as $g^{(D)}$ here.
 - [In VC theory, we consider the worst-case D through the definition of growth function $m_H(N)$]

•
$$E_{out}(g^{(D)}) = \mathbb{E}_{\vec{x}}[(g^{(D)}(\vec{x}) - f(\vec{x}))^2]$$

• $\mathbb{E}_D[E_{out}(g^{(D)})]$

$$= \mathbb{E}_D \left[\mathbb{E}_{\vec{x}} \left[\left(g^{(D)}(\vec{x}) - f(\vec{x}) \right)^2 \right] \right]$$

$$= \mathbb{E}_{\vec{x}} \left| \mathbb{E}_D \left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) + \bar{g}(\vec{x}) - f(\vec{x}) \right)^2 \right] \right|$$

$$= \mathbb{E}_{\vec{x}} \left[\mathbb{E}_D \left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) + \bar{g}(\vec{x}) - f(\vec{x}) \right)^2 \right] \right]$$

$$= \mathbb{E}_{\vec{x}} \left[\mathbb{E}_{D} \left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) \right)^{2} + \left(\bar{g}(\vec{x}) - f(\vec{x}) \right)^{2} + 2 \left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) \right) \left(\bar{g}(\vec{x}) - f(\vec{x}) \right) \right] \right]$$

• Note that
$$\mathbb{E}_D\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)\left(\bar{g}(\vec{x}) - f(\vec{x})\right)\right] = \left(\bar{g}(\vec{x}) - f(\vec{x})\right)\mathbb{E}_D\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)\right] = 0$$

Define "expected" hypothesis $\bar{g}(\vec{x}) = \mathbb{E}_D \big[g^{(D)}(\vec{x}) \big]$

$\bar{g}(\vec{x}) = \mathbb{E}_D \big[g^{(D)}(\vec{x}) \big]$

Finishing Up

•
$$\mathbb{E}_{D}\left[E_{out}(g^{(D)})\right]$$

$$= \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2} + \left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right]\right]$$

$$= \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right]$$

- $= \mathbb{E}_{\vec{x}} \left[\text{Variance of } g^{(D)}(\vec{x}) + \text{Bias of } \bar{g}(\vec{x}) \right]$
- = Variance + Bias

Bias-Variance Decomposition

X: a random variable μ : the mean of X

Variance of X: $Var(X) = \mathbb{E}[(X - \mu)^2]$

$$\operatorname{Bias}(\vec{x}) \qquad \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- This is a conceptual decomposition
 - Both \bar{g} and f are unknown
 - We can't really calculate bias and variance in practice
- However, it provides a conceptual guideline in decreasing E_{out}

- Fitting a sine function
 - $f(x) = \sin(\pi x)$
 - x is drawn uniformly at random from [0,2]
- Two hypothesis set
 - H_0 : h(x) = b
 - H_1 : h(x) = ax + b

Assume our algorithm finds g with minimum in-sample error

$$H_0$$
: $h(x) = b$

$$H_1$$
: $h(x) = ax + b$

$$\mathbb{E}_{D}\left[E_{out}(g^{(D)})\right] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

Discussion:

If N = 2, would you choose H_0 or H_1 ? Why?

If N = 5, would you choose H_0 or H_1 ? Why?

What's the change of biases/variances for H_0/H_1 from N=2 to N=5.

$$H_0$$
: $h(x) = b$

$$H_1: h(x) = ax + b$$

$$H_0: h(x) = b$$

$$H_1: h(x) = ax + b$$

 H_0 : h(x) = b

N=2

Bias of $\bar{g}(\vec{x}) \approx 0.50$ Variance of $g_{\mathcal{D}}(\vec{x}) \approx 0.25$ $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] \approx 0.75$

Bias of $\bar{g}(\vec{x}) \approx 0.21$ Variance of $g_{\mathcal{D}}(\vec{x}) \approx 1.74$ $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] \approx 1.95$

What if we increase *N* to 5?

$$H_0$$
: $h(x) = b$

Bias of
$$\bar{g}(\vec{x}) \approx 0.50$$

Variance of $g_{\mathcal{D}}(\vec{x}) \approx 0.10$
 $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] \approx 0.60$

$$H_1$$
: $h(x) = ax + b$

Bias of $\bar{g}(\vec{x}) \approx 0.21$ Variance of $g_{\mathcal{D}}(\vec{x}) \approx 0.21$ $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] \approx 0.42$

$$\operatorname{Bias}(\vec{x}) \qquad \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- Increasing the number of data points N
 - Biases roughly stay the same
 - Variances decrease
 - Expected E_{out} decreases

$$\operatorname{Bias}(\vec{x}) \qquad \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- Increasing the complexity of H
 - Bias goes down (more likely to approximate f)
 - Variance goes up (The stability of $g^{(D)}$ is worse)

Very small model

Very large model

$$\operatorname{Bias}(\vec{x}) \qquad \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- This is a conceptual decomposition
 - Both \bar{g} and f are unknown
 - We can't really calculate bias and variance for practical problems
- However, it provides a conceptual guidelines in decreasing E_{out}

Example

- Will talk about this in details in the 2nd half of the semester
- Decision tree
 - A low bias but high variance hypothesis set
 - Practical performance is not ideal

- Random forest
 - Trying to reduce the variance while not sacrificing bias
 - Idea: Generate many trees randomly and average them

Two Theories of Generalization

VC Generalization Bound

$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

Bias-Variance Tradeoff

$$\mathbb{E}_{D}\left[E_{out}\left(g^{(D)}\right)\right] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

Bias-Variance Analysis

Number of Data Points, N