Coursera Dong-Bang Tsai

Probabilistic Graphical Models

Daphne Koller, Kevin Murphy

About

Feedback

Winter 2011-2012

Home

Quizzes

Theory Problems

Assignments

Assignment Questions

Video Lectures

Discussion Forums

Octave Installation

Lecture Slides

Course Schedule

Course Logistics

Course Information

Course Staff

Feedback — Template Models

You achieved a score of 6.75 out of 7.00

Please check our grading policy under "Course Logistics" before submitting the quiz. The quiz isn timed - you can save your answers halfway and come back again later.

Question 1

Markov Assumption. If a dynamic system X satisfies the Markov assumption for all time $t \geq 0$, whi the following statements must be true?

Your Answer		Score	Explanation
$ \ \ (X^{(t+1)} \perp X^{(0:(t-1))}) $	•	0.33	
	•	0.33	
$ullet (X^{(t+1)} \perp X^{(0:(t-1))} X^{(t)})$	₩	0.33	
Total		1.00	

Question 2

Independencies in DBNs. In the following DBN, which of the following independence assumptions a true?

Your Answer		Score	Explanation
$(O^{(t)} \perp X^{(t-1)} \mid X^{(t)})$	×	0.00	When $X^{(t)}$ is known, there is no active trail from $O^{(t)}$ any other node in the network.
$(X^{(t-1)}\perp X^{(t+1)}\mid X^{(t)})$	✓	0.25	When $X^{(t)}$ is known, there is no active trail from $X^{(t-1)}$ to any other node in the network that is from a later tin point.
$(O^{(t)}\perp O^{(t-1)}\mid X^{(t)})$	~	0.25	When $X^{(t)}$ is known, there is no active trail from $O^{(t)}$ any other node in the network.

1/23/12

$\bullet \ (O^{(t)} \perp O^{(t-1)})$	✓ 0.25	$(O^{(t)}\perp O^{(t-1)})$ is wrong because there is an active from $O^{(t)}$ to $O^{(t-1)}$ through $X^{(t)}$ and $X^{(t-1)}$.
Total	0.75	

Question 3

Feedback

Applications of DBNs. For which of the following applications might one use a DBN (i.e. the Markov assumption is satisfied)? (You may select more than option.)

Your Answer		Score	Explanation
✓ Modeling time-series data, where the events at each time-point are influenced by only the events at the one time-point directly before it	₩	0.25	This perfectly satisfies the Markov assumption.
✓ Modeling the behavior of people, where a person's behavior is influenced by only the behavior of people in the same generation and the people in his/her parents' generation.	₩	0.25	Consider each generation to be a time-slice, and this data satisifes Markov assumption.
• Modeling data taken at different locations along a road, where the data at each location is influenced by the data at many other locations.	₩	0.25	The data at each location is not independent of the data at other locations, given the data at one location away in any direction, so Markov assumption is violated.
• Modeling time-series data, where the events at each time-point are influenced by the events at many other time-points.	₩	0.25	This violates the Markov assumpt because knowing the events at th time point right before a given tim point is not sufficient to understar the events at the given time-point
Total		1.00	

Question 4

Plate Semantics. "Let A and B be random variables inside a common plate indexed by i. Which of the following statements must be true? You may select more than one option.

Your Answer		Score	Explanation
▼ There is an instance of A and an instance of B for every i.	•	0.25	
For each i, A(i) and B(i) are independent.	✔	0.25	
For each i, A(i) and B(i) have the same CPDs.	*	0.25	The CPDs may not be the same for every item. Think about courses as items, with A representing your grade in class and I representing the overall class performance. The CPDs for A ar do not have to be the same for every course.

1/23/12

For each i, A(i) and B(i) are not independent.	✓	0.25				
Total		1.00				

Question 5

Feedback

*Plate Interpretation. Consider the plate model below (with edges removed). Which of the following might a given instance of X possibly represent in the grounded model? (You may choose more than option. Keep in mind that this question addresses the variable's semantics, not its CPD.)

Your Answer		Score	Explanation
None of these options can represent X in the grounded model	❖	0.20	At least one option could represent X.
• Whether someone with expertise E taught something of difficulty D at school S	*	0.20	In the grounded model, there will be an instance of X for each combination of Teacher and Class, and there is a combination I this for each School. Thus, we are looking at a random variable that will say something about a specific teacher, class, and school combination, not a particular expertise, difficulty, and school combination.
Whether a specific teacher T taught a specific course C at school S	✓	0.20	In the grounded model, there will be an instance of X for each combination of Teacher, Course, and School. Thus, we are look at a random variable that will say something about a specific teacher, class, and school combination. The correct answer is tonly one that does this.
Whether a teacher with	*	0.20	In the grounded model, there will be an instance of \boldsymbol{X} for each combination of Teacher and Class, and there is a combination I

1/23/12

Feedback	
expertise E taught a course of difficulty D	this for each School. Thus, we are looking at a random variable that will say something about a specific teacher and class and ν also incorporate the school.
■ Whether a ✓ 0.20 specific course C is boring	In the grounded model, there will be an instance of X for each combination of Teacher and Class, and there is a combination I this for each School. Thus, this model also incorporates teacher and schools.

Question 6

Total

Grounded Plates. Using the same plate model, now assume that there are s schools, t teachers, ar courses. How many instances of the Location variable are there?

Your Answer		Score	Explanation	
S	✓ 1.00	1.00	There is a variable for every school.	
Total		1.00		

Question 7

Grounded Plates. Which of the following is a valid grounded model for the plate shown? You may s 1 or more options (or none of them, if you think none apply).

1.00

		Feedbac	k
Your Answer		Score	Explanation
(b)	~	0.33	(b) is incorrect because there are no arrows connecting nodes within the plate.
	✓	0.33	(c) is correct because θ is outside the plate and has edges from it to the nodes in the plate, and none of the nodes within the plate share edges we each other.
• (a)	~	0.33	(a) is incorrect because only the variables in the plate get replicated whe the plate model is grounded, and θ is not in the plate.
Total		1.00	