

#### Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke

# **MIKROELEKTRONIKA, VIEEAB00**

Térvezérelt tranzisztorok II.

**MOS-FET tranzisztorok** 

Dr. Bognár György, Dr. Poppe András

# **MOS-FET** tranzisztorok



#### Térvezérelt tranzisztorok 2

MOSFET: Metal-Oxide-Semiconductor FET



Első alaptípus: kiürítéses (depletion mode)

**Legfontosabb paraméter: U**<sub>0</sub> **elzáródási feszültség** 



#### Térvezérelt tranzisztorok 3

#### Jelölések:



#### MOSFET-ek

■ Növekményes MOSFET "realisztikusabb" keresztmetszeti rajza:



#### MOSFET-ek működése

- A működés legegyszerűbb (logikai) modellje (logikai kapcsolások):
  - nem vezet (off) / vezet (on)



#### MOSFET-ek működése

- n-csatornás eszköz:
  - elektronok vezetnek
- p-csatornás eszköz:
  - lyukak vezetnek
  - működés elve u.a., mint az n-csatornás eszközök esetében; előjel váltás
- Normally OFF device: 0 vezérlőfeszültség esetén "szakadásban" (növekményes tranzisztor)
- Normally ON device: 0 vezérlőfeszültség esetén "vezetésben" (kiürítéses tranzisztor)

# MOSFET típusok áttekintése



# MOSFET tranzisztorok folyamatos fejlődése

**2007/2008**, Intel



Modernebb megvalósításokkal MSc-n foglalkozunk!

# Hogyan készül?









Fotolitográfia a kulcskérdés!

# Fém gate-es MOS tranzisztor

A mélységi struktúra: Drain Gate Source adalékolás Vékony oxid adalékolás Layout rajzolat: Source **Gondok:** Drain fém gate − nagy V<sub>T</sub> kontaktus pontos maszkillesztés kell!

# Poli-Si gate-es MOS tranzisztor

A mélységi struktúra:

Layout rajzolat:

#### Előnyei

- kisebb V<sub>T</sub>
- önillesztés



- Kiindulás: p típusú szubsztrát (Si szelet)
  - tisztítás,
    - majd vastag SiO<sub>2</sub> (field oxide) növesztése



- Aktív zóna kialakítása fotolitográfiával
  - fotoreziszt felvitele,
    - exponálás UV fénnyel maszkon keresztül,
    - előhívás, exponált reziszt eltávolítása
    - SiO<sub>2</sub> kémiai marása, fotoreziszt maradékénak eltávolítása



M1: aktív zóna



#### Gate kialakítása:

- vékony oxid növesztése
- poli-Si leválasztása
- poli-Si mintázat kialakítása fotolitográfiával (reziszt, exponálás, előhívás)
- poli-Si marása, exponált reziszt eltávolítása, vékony oxid marása



M2: poli-Si mintázat

- S/D adalékolás (implantáció)
  - az oxid (vastag) és a gate maszkolja az adalékolást
  - megvalósul a gate önillesztése
- Foszfor-szilikát üveg (PSG) leválasztása: passziválás





- Kontaktusablakok nyitása
  - fotolitográfia (reziszt, mintázat fényképezése, előhívás)
  - marás (mintázat átvitele)



M3: kontaktus-mintázat

- Fémezés kialakítás
  - Al leválasztása
  - fotolitográfia, marás, tisztítás



M4: fémezés-mintázat

- A technológia receptje kötött, a mélységi struktúrát egyértelműen meghatározzák az egymást követő maszkok
- Elegendő a maszkon kialakítandó alakzatokat megadni
  - az egymást követő maszkokon kialakítandó rajzolatok együttesét layoutnak nevezzük

# Poli-Si gate-es tranzisztor



## Egy kiürítéses inverter layout rajza



- Layout = az egymást követő maszkokon kialakítandó 2D-s alakzatok együttese
- Minden egyes maszkhoz színkódot rendelünk:

aktív terület: piros

• poli-Si: zöld

kontaktusok: fekete

• fémezés: kék

Maszk == layout sík (réteg)

Inverter működés: lásd később

Hol van tranzisztor? Adalékolt régiók között csatorna van

CHANNEL = ACTIVE AND POLY

# Egy önillesztő poli-Si gate-es MOS technológia

1) Ablaknyitás az aktív területnek

1. Maszk

- Fotolitográfia, oxidmarás
- 2) Vékony oxid növesztése
- 3) Bújtatott kontaktusok kialakítása A következőkben leválasztandó poli-Si réteg a hordozóval érintkezik. Adalékolás után az aktív réteggel kontaktusba kerül.

2. Maszk

- 3) Poli-Si leválasztás
- 4) Poli-Si mintázat kialakítása

3. Maszk

5) Ablaknyitás a vékony oxidon át

# Egy önillesztő poli-Si gate-es MOS technológia

- 6) n+ adalékolás:
  - Source és drain valamint diffúziós vezetékek kialakítása.
  - Bújtatott kontaktusnál a poli-Si-ot a diffúziós réteghez köti.
- Foszfor-szilikát üveg (PSG) szigetelő réteg leválasztása
- 8) Kontaktus ablakok nyitása a PSG-n

4. Maszk

- 9) Fémezés felvitele
- 10) Fémezés mintázat kialakítása

5. Maszk

#### AMS 0.35 µm CMOS technológia

 A pontos process steps, layer-ek/maszkok listája, a keresztmetszeti kép, stb. szigorúan bizalmasan kezelendő! Nagyon ritkán érhető el

nyilvánosan!

# **Confidental information**

**PDK** 



Libor Rufer, "Fabless Approach to the Fabrication of Electroacoustic Micro-transducers", CFA 2016 / VISHNO, April 2016

## AMS 0.35 µm CMOS technológia

- Maszkok száma az igényelt kiegészítőktől is függ
  - Alap: p<sup>-</sup> hordozó, 1 polySi, 3 fémréteg, 3.3V V<sub>DD</sub>
  - Kiegészítő lehetőségek: polySi-polySi C, 5V V<sub>DD</sub> mid-oxid, nagy ellenállású polySi, 4. fémréteg, fém-fém precíziós kapacitás, alacsonyabb V<sub>th</sub>, stb.

| Process<br>name | No. of reticles | Core<br>module | PIP<br>capacitor<br>module | 5V<br>gate<br>module | high<br>resistive<br>poly<br>module | low TC<br>poly<br>module | Metal 4<br>module | Thick<br>metal<br>module | MIM<br>capacitor<br>module | Low<br>VT<br>module |
|-----------------|-----------------|----------------|----------------------------|----------------------|-------------------------------------|--------------------------|-------------------|--------------------------|----------------------------|---------------------|
| C35A3B0         | 13              | Х              |                            |                      |                                     |                          |                   |                          |                            |                     |
| C35B3C0         | 14              | Х              | Х                          |                      |                                     |                          |                   |                          |                            |                     |
| C35B3C1         | 17              | Х              | Х                          | Х                    |                                     |                          |                   |                          |                            |                     |
| C35B3C3         | 18              | Х              | Х                          | Х                    | X                                   |                          |                   |                          |                            |                     |
| C35B3L3         | 20              | Х              | Х                          | Х                    | Х                                   |                          |                   |                          |                            | Х                   |
| C35B4C0         | 16              | Х              | Х                          |                      |                                     |                          | Х                 |                          |                            |                     |
| C35B4C3         | 20              | Х              | Х                          | X                    | X                                   |                          | Х                 |                          |                            |                     |
| C35B4T1         | 20              | Х              | Х                          | X                    |                                     |                          |                   | X                        |                            |                     |
| C35B4M3         | 22              | Х              | Х                          | X                    | X                                   |                          |                   | Х                        | Х                          |                     |
| C35B4M6         | 18              | Х              | Х                          |                      | X                                   |                          | Х                 |                          | Х                          |                     |
| C35B4Z1         | 20              | Х              | X                          | Х                    |                                     | Х                        | X                 |                          |                            |                     |

## AMS 0.35 µm CMOS technológia

- Layout tervezés során alkalmazott rétegek (layer)
  - Process layers
    - Az adott rétegen tervezett rajzolatból ténylegesen maszk készül
    - Pl.: diffúzió, n-zseb, polySi, fém, kontaktus / VIA
  - Definition layers
    - Ezek a rétegek nem kerülnek alkalmazásra a chip gyártása során
    - A tervező rendszernek szükségesek (DRC, LVS, stb.)
    - Pl.: CAPDEF, IPDEF (IP), METRES, RESDEF, stb.
  - Structures
    - Különböző rétegeken megtervezett rajzolatok logikai kapcsolatából definiált struktúrák.
    - Készülhet belőlük valóságos, a gyártáshoz szükséges maszk.
    - Pl.: GATE: DIFF and POLY (aktív terület kialakításához), DIFFCON: CONT and DIFF (kontaktus a diffúzióhoz)
  - Elements
    - Felismert alkatrészek
    - A tervező rendszer szolgáltatása (LVS, Extract)
    - Pl.: NMOS: NGATE & PSUB; RDIFFN: NDIFF & RESDEF, RPOLY: POLY & RESDEF



#### **UC Berkeley Marwell Nanolab**

- Pontos process leírások, kísérleti eredmények, nyilvánosan elérhető
  - Vörös Katalin 25 éven át vezette a Berkeley mikroelektronikai technológia laboratóriumát (Microfabrication Laboratory)
  - Rengeteg magyar kutató, postdoc dolgozott itt
  - MEMS & CMOS integráció, tesztstruktúrák tervezése, stb.
  - 0.35 μm CMOS technológia, 22 maszk
    <u>Laszlo Petho and Anita Pongracz, 0.35 μm CMOS PROCESS ON SIX-INCH WAFERS, Baseline Report VI.</u>
  - https://nanolab.berkeley.edu/public/process/baseline/baseline.shtml



#### Szelettisztítás







Vastagoxid-növesztés (ún. field oxide)

# P-csatornás monolit IC kerese



Fotolitográfia: reziszt cseppentés, felpörgetés





Fotolitográfia: maszkillesztés



Fotolitográfia: megvilágítás



Fotolitográfia: előhívás





Fotolitográfia: Oxidmarás, mintázat átmásolása



Fotolitográfia: lakkeltávolítás



Bórdiffúzió szilárd fázisból, elődiffúzió





#### Bórüveg eltávolítása









Kéholityigxádvá kihololluletősi tihéjátétjáta ésnéik kszáláháána a









Kétzlistográfúa a fékk veltzeték tét éz at kialakítása



Darabolás, eutektikus kötés, termokompresszió

#### P-csatornás monolit IC & napelem készítése

- Akit érdekel, érdeklődhet
  Plesz Balázsnál & Neumann Péternél
- Lehetőségek:
  - Monolit IC készítése
  - Napelem készítés

#### választható tárgyak,

#### valamint:

- TDK (érdeklődni: Bognár Györgynél)
- Önálló labor és Szakdolgozat témák, érdeklődni lehet a tanszéki honlapon és Bognár Györgynél





## High-K fém gate-es MOS tranzisztor

#### A mélységi struktúra:

#### **Gate engineering:**

- Többrétegű dielektrikum szerkezet (High-K)
- Összetett, többrétegű "fém" gate elektróda

#### Előnyei

- kisebb V<sub>T</sub>
- továbbra is önillesztett
- kisebb szivárgási áram
- gyorsabb tranzisztorok

#### 45 nm HK + MG

