Modeling canopy fluxes and optical properties using CliMA Land

presented by WANG, Yujie from Caltech

CliMA Land SPAC Module

Key components (sub-modules):

- Canopy radiation
- Photosynthesis
- Plant hydraulics
- Stomatal models
- Soil-Plant-Air Continuum

Supported canopy RT models

- Broadband two leaf model
 - Sunlit fraction
 - Shaded fraction
- Hyperspectral multilayer model >> canopy optical properties
 - Angular distribution
 - Sunlit fraction
 - Shaded fraction

Supported photosynthesis+fluorescence models

- C3 model (FvCB model)
 - vdT fluorescence model
- C4 model (Collaz model)
 - vdT fluorescence model
- C3 cytochrome model (JB model)
 - JB fluorescence model

Supported plant hydraulics models

- Multiple roots
- Optional trunk
- Multiple branches (matching canopy RT model)
- Drought legacy enabled
- Steady state and non-steady state options

- 1. Hydraulic traits such as vulnerability curve and maximum conductance impact water transport, and thus stomatal behavior.
- **2. Canopy traits** such as leaf area index and clumping index impact light penetration to lower canopy, and reflected light and solar-induced chlorophyll fluorescence (SIF) escaping from lower canopy.
- 3. Leaf angular distributions impact light scattering within the canopy.
- **4. Leaf biophysical traits** such as chlorophyll and carotenoid contents impact leaf level reflectance, transmittance, and SIF spectra.
- 5. Leaf physiological traits such as maximum carboxylation rate impact leaf gas exchange.
- **6. Environmental conditions** such as soil moisture and atmospheric humidity impact plant's physiological responses.

Supported stomatal models

- Empirical models
 - Ball Berry model
 - Leuning model
 - Medlyn model
 - Various BETA functions
- Optimality models
 - Wolf-Anderegg-Pacala model
 - Sperry model
 - Eller model
 - Wang model

Freely customized model

Example 1: SPAC model selection

- Hyperspectral canopy RT model
- C3 FvCB photosynthesis + vdT fluorescence model
- Multiple roots + trunk + multiple branches hydraulics model
- Stomtal models
 - Optimality model (Wang)
 - Empirical models (Ball Berry, Medlyn)

Example 1

Example 2: Canopy RT complexity

- N = 1, K = 1
- N = 1, K = 2
- N = X, K = 1
- N = X, K = 2
- N = X, K = I*J + 1

Example 2

Global simulations

Model selection

- Hyperspectral canopy RT
- C3 FvCB photosynthesis + vdT fluorescence model
- Multiple roots + trunk + multiple branches hydraulics model
- Medlyn model
- BETA function using soil water content

CliMA Land GPP on a rotating Earth.

Site level hourly simulation

Global scale pattern of GPP

Global scale pattern of SIF₆₈₃

Global scale pattern of SIF₇₄₀

Global scale pattern of SIF₇₅₇

Global scale pattern of NDVI

Global scale pattern of NIRv

Thanks