Real Analysis Lecture Notes

Metric Spaces

October 31 2016 Last update: December 4, 2017

1 Distance in Metric Spaces

What is a reasonable way of defining distance in some space? Suppose we are given some set A and points $x \notin A$ and $a \in A$. Clearly, under the definition of a metric we have

$$\rho(x,a) > 0$$

However, what is a good way of defining the distance from x to the entire set A? We typically evaluate this as

$$\rho(x,A) = \inf_{a \in A} \rho(x,a)$$

Suppose now that A is a circle given by

$$A = \{(x, y) : x^2 + y^2 \le 4\}$$

Then, under our definition for $\rho(x,A)$ we have

$$\rho((\text{origin}), A) = \rho((0, 0), A) = 0$$

Suppose $A = [1, 2) \subset \mathbb{R}$. We find that

$$\rho(3, A) = 1$$

$$\rho(2,A) = 0$$

Note that $\rho(2, A) = 0$ despite the fact that $\rho(2, a \in A) > 0$ since our distance $\rho(2, A)$ is given by the infimum $\inf_{a \in A} \rho(2, a)$.

Recall the sup metric between functions given by

$$\rho(f,g) = \sup_{x \in D} |f(x) - g(x)|$$

and consider the open "sphere" $B_{\sin x, \frac{1}{2}, \sup \text{metric}}$. This sphere defines a cloud around the function $\sin x$ with open boundaries given by $\sin x \pm \frac{1}{2}$. In particular, any function within these

bounds will lie within the open sphere $B_{\sin x, \frac{1}{2}, \sup \text{metric}}$.

Example: Let X be a metric space and let $A \subset X$, $A \neq \emptyset$. Let d be a metric on X and define the distance from set A by

$$d(x, A) = \inf_{a \in A} d(x, a) = f(x)$$

Claim: f is continuous. That is, $f: A \to \mathbb{R}^+$ given by $f(x) = d(x, A) = \inf_{a \in A} d(x, a)$ is continuous.

Proof. For all $a \in A$ and $\forall x, y \in X$ the distance f(y) is bound above by

$$f(y) = d(x, A) = \in_{a \in A} d(x, a) \le d(y, a)$$

by the definition of the infimum. Using the triangle inequality gives us

$$f(y) \le d(y, a)$$

$$\le d(y, x) + d(x, a)$$

Taking the infimum over A of both sides yields

$$\inf_{a \in A} f(y) = \inf_{a \in A} d(a, A)$$

$$= \inf_{a \in A} \left[\inf_{a \in A} d(x, a) \right]$$

$$= \inf_{a \in A} d(x, a)$$

$$= f(y)$$

$$\inf_{a \in A} d(y, x) = d(y, x)$$

$$\inf_{a \in A} d(x, a) = d(x, A)$$

$$= f(x)$$

Therefore, we may express our

$$f(y) \le d(y, x) + d(x, a)$$

as

$$f(y) \le d(y, x) + f(x)$$

$$\implies f(y) - f(x) \le d(y, x)$$

$$\iff f(x) - f(y) \le d(x, y)$$

$$\implies |f(x) - f(y)| \le d(x, y)$$

Hence, $\forall \epsilon > 0$, take the distance between points x and y to be bound above by $\delta = \epsilon$ so that $d(x,y) < \delta = \epsilon$. That is,

$$\forall \epsilon > 0, \ \exists \delta > 0, |x - y| < \delta \implies |f(x) - f(y)| \le d(x, y) < \delta = \epsilon$$

which is precisely the definition of continuity, as desired.

Proposition: A subspace of a metric space is a metric space. Consider some metric space X with metric d and some subspace $S \subset X$. Is the topology on S given by (S, d) also a metric space? Yes!

Proof. Recall the basic properties of a metric d, for all $x, y, z \in X$:

- 1. $d(x,y) \ge 0$
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) = 0 \iff x = y$
- 4. $d(x,z) \le d(x,y) + d(y,z)$

Therefore, if we take points $x, y, z \in S \subset X$ we see that all four properties hold under the metric space (X, d) by assumption. So, since x, y, z were arbitrary points from S we have that all four properties of a metric space (S, d) must be satisfied by inheritance from X. \square

Although we have just shown that $S \subset X$ inherits its metric from its superspace space X, potential ambiguities arise if we consider subtopologies (E,d) and (S,d) such that $E \subset S \subset X$. That is, when considering subspaces $E \subset S \subset X$ a natural question to ask is: How can we relate being *close in* X with being *closed in* S?

Example: Let $X = \mathbb{R}$ and let subspaces S and E be given by

$$S = (0, 1)$$
$$E = \left(0, \frac{1}{2}\right)$$

so that $E \subset S \subset X$. Clearly, the closure of E in \mathbb{R} is

$$\operatorname{cl}(E) = \overline{E} = \left[0, \frac{1}{2}\right]$$

However, the closure of E in S must be

$$\operatorname{cl}_S(E) = \overline{E}_S = \left(0, \frac{1}{2}\right]$$

Proposition: Let X be a metric space and E, S be subspaces $E \subset S \subset X$. The closure of E relative to S is

$$\operatorname{cl}_S(E) = \overline{E}_S = \overline{E} \cap S$$

where \overline{E} is the closure of E relative to the common parent space X. We say that subspace $A \subset S$ is closed in S if

$$A = S \cap F$$

for some closed set F which is closed in X. Analogously, subspace $A \subset S$ is open in S if

$$A = S \cap O$$

for some open set O which is open in X.

Let A be any subset of X, $A \subset X$ and S a subspace of X, $S \subset X$. To generate a subset of S we may perform the intersection $A \cap S$. That is, if $A \subset X$ then

$$A \cap S \subset S$$

If we want to produce open sets in S then suppose sets $O_i \subset X$ are open in X so that

$$O_i \cap S \subset S$$

In the next set of notes we will prove that by considering the intersection $O_i \cap S$ we will see that S inherits the relative topology from that defined in X.

Example: Let $X = \mathbb{R}$ and $S = \mathbb{Q}$, so that we are considering the subspace $\mathbb{Q} \subset \mathbb{R}$. What happens if we consider the intersection with the intervals $[e, \pi]$ and (e, π) ? Using our previous proposition we must conclude that these intersections

$$[e,\pi] \cap \mathbb{Q}$$
 is closed in \mathbb{Q} , but $(e,\pi) \cap \mathbb{Q}$ is open in \mathbb{Q} !

since the intersection with an open set is open and the intersection with a closed set is closed. However, since $e \notin \mathbb{Q}$ and $\pi notin\mathbb{Q}$ we find

$$[e,\pi]\cap\mathbb{Q}=(e,\pi)$$

Therefore, we must conclude that , unlike the set of reals \mathbb{R} , the set of rationals \mathbb{Q} contains sets that are *both closed and open!*