Advanced Computer Architecture

[HW2] 102062111 林致民

PART II

(a) Study the effect of the size of L2 Cache

這裡我選了一些L2 cache szie,分別是 [1 2 4 8 16 32 64 128 256],這些size都是2的次方數

• L2 Cache Miss Rate

其實可以發現到,L2 Cache miss rate 在 2MB \sim 4MB 有些微的減少,但是在8MB之後,都沒有減少cache miss rate 的跡象。

• L2 Cache average miss latency

變化最劇烈的部分在 1MB 的L2 Cache Size --> 2MB 的L2 Cache Size,增加L2 cache 的確可以減少miss latency。但是從2MB增加到4MB,latency 反而會上升,之後就沒變化,

Sim seconds

這個實驗有趣的地方在於sim seconds 除了從1 MB的 L2 cahce增加到2MB的 L2 cache 會見少以外,其他的sim seconds 都是一樣的數值,L2 cache 持續增大依舊不能減少sim_seconds。

(b) Calculate the average memory access time ofr L1 Cache

從(a)跑出來的數據中,抓出L1 cacache(d_cache & i_cache)的miss rate和total access,目的是要計算L1 cache的average miss rate,L1 cache average miss rate 的計算方式如下:

L1 cache average miss rate =
$$\frac{d_access \times d_miss_rate + i_access \times i_miss_rate}{d_access + i_access}$$

再來就是L1 cache 的 Average memory access time(以下簡稱AMAT), AMAT的計算方式如下:

$AMAT = hit + miss \ rate \times miss \ penalty$

當L1 cache miss的時候,這時候情況會分為兩種:(a) L2 cache hit (b) L2 cache miss。所以L1 cache的*miss penalty*取決於L2 cache 的**AMAT**,所以修正L1 Cache AMAT的計算方式:

$$L2_AMAT = L2 \ hit + L2 \ miss \ rate \times L2 \ miss \ penalty$$

$$L1_AMAT = L1 \ hit + L1 \ miss \ rate \times L2 \ AMAT$$

以下是所有跑出來的數據:

L2 cache(MB)	d_access	d_miss_rate	i_access	i_miss_rate	L1_miss_rate	L1 AMAT
1	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1907933725607434
2	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.189887912391144
4	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144
8	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144
16	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144
32	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144
64	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144
128	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144
256	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144
512	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144
1024	2665101.0	0.005937	11248307.0	0.002112	0.00284468	1.1898772448585144

在 L2 Cache 從 1MB 增加到 4MB,L1 Cache 的 AMAT 會變少,之後還是一樣維持不變,不過造成這個現象的原因是, L1 cache 的miss rate *並沒有因為 L2 cache size 而改變*,反倒是因為L2 Cache miss rate 改變才會造成 L1 AMAT 的數據變化。

(c) Study the effects of the associativity of L2 cache.