HW 5: PMATH 945

Due Mar. 7 at 11:59 pm

- (1) (a) Let X be a reduced locally Noetherian scheme. Describe how rational maps $X \dashrightarrow \mathbb{A}^1_{\mathbb{Z}}$ are the same thing as rational functions.
 - (b) Show that a rational map $\pi: X \dashrightarrow Y$ of integral schemes is dominant if and only if π sends the generic point of X to the generic point of Y.
 - (c) Let k be a field. Call an extension field $E \supset k$ finitely-generated if there is a finite subset of E contained in no proper subfield of E. Describe an equivalence between the categories:
 - (i) objects: finite type integral affine k-schemes; morphisms: dominant rational maps of k-schemes.
 - (ii) objects: finitely generated field extensions of k; morphisms: k-algebra homomorphisms in the opposite direction. (That is: take the opposite category to the obvious one.)
- (2) Let X be a \mathbb{F}_p -scheme. Explain how to define an endomorphism $F_X \colon X \to X$ such that:
 - (a) If $X = \operatorname{Spec} A$, then F_X is induced by the Frobenius map on A which sends $a \mapsto a^p$.
 - (b) For any morphism of \mathbb{F}_p -schemes $\pi \colon X \to Y$, we have $\pi \circ F_X = F_Y \circ \pi$. Prove that if X is locally of finite type over \mathbb{F}_p , then F is finite.
- (3) (a) Let Y_1 and Y_2 be closed subschemes of X. Prove that there is a unique smallest closed subscheme $Y_1 \cup Y_2$ containing Y_1 and Y_2 and that its underlying set is the union of the underlying sets of Y_1 and Y_2 .
 - (b) Fix a finitely generated A-module M and an element $m \in M$. Consider $V(\operatorname{Ann} m)$ as a closed subscheme of $\operatorname{Spec} A$; we call this the **scheme-theoretic support** of m. Show that $\operatorname{Supp} M = V(\operatorname{Ann} M)$ is the union of the closed subschemes $\operatorname{Supp} m$ and that the underlying set of this subscheme is the support as defined before (the closed subset where \tilde{M} has non-vanishing stalks).
 - (c) Show that for any coherent sheaf \mathcal{F} on X, this defines a closed subscheme structure on Supp \mathcal{F} (the closed subset where \mathcal{F} has non-vanishing stalks).
- (4) Consider $Y = \mathbb{P}_k^3 = \operatorname{Proj}(k[x, y, z, w])$ and the subscheme $X = V(wz xy, x^2 wy, y^2 xz)$. Show that $X \cong \mathbb{P}_k^1$.