BERT

CONTENTS

01

02

03

04

05

기존모델과 차이점 **Preprocessing**

BERT 구조

Experiment

참고자료

- ELMo
- OpenAl GPT
- BERT

- Segmentation
- Next sentence
- Length&Mask
- 학습되는데이터

- BERT구조
- Attention
- Masking

- GLUE
- SQuADv1.1
- 참고자료
- 질문

* NLP에서 Pre-training model을 사용하는 방법 2가지

- 1. Feature based ELMo
- Task-specific한 architecture
- Pre-train한 representation을 additional feature로 넣는 방법 (=2개의 network를 붙여서 사용)
- 2. fine-tuning-OpenAI GPT
- BERT 이전 SOTA를 달성한 model인 GPT가 사용한 방법
- Task-specific한 parameter를 최소화하여 fine-tuning
- bidirectional하려고 노력했으나, 결국은 [단방향 concat 단방향]

BERT

- → 이전의언어모델과는 달리,
 unlabeled data(wiki, book data 등)으로 model을 pre-training한 후
 특정 Task를 가진 labeled data로 fine-tuning
- → 특정 Task를 위한 network 붙일 필요 X
- → pre-trained BERT Model은 1개의 output layer로 fine-tuning할수있다

BERT

- 1) unidirectional이아닌 bidirectional
- 2) pretraining의새로운 방법론 2가지 제시
- 3) 대규모 dataset으로 pre-training, 적은 양의 labeled dataset에 대해 fine-tuning

- 1) unidirectional이아닌 bidirectional
 - -기존
 - : 앞의 단어 n개의 단어를 가지고 뒤의 단어를 예측 → unidirectional
 - -BERT
 - : 주변 단어들을 보고 Masked 단어를 예측 → bidirectional
- 2) BERT의 Pre-training의 새로운 방법론 2가지
 - 1. Masked Language Model
 - : 주변 단어들을 보고 Masked 단어를 예측
 - 2. Next Sentence Prediction Task
 - :문장들 사이의 관계를 학습하기 위해 "다음 문장이라는 Label" 추가

2-1. Masked Language Model

- : input에서 random하게 몇 개의 Token을 Mask
- :Mask처리한 sequence를 Transformer의 Encoder에 넣어서 <u>주변 단어</u>

Context를보고 Mask 된 Token을 예측하는 Model

2-2. Next Sentence Prediction Task

- : 두 문장을 Pre-training때함께 넣어서 두 문장이 이어지는 문장인지 아닌지 맞추게 하는
- : Pre-training시,

실제로이어지는 두 문장:랜덤한게 추출한 두 문장 = 50:50

2.1. Segmentation

:input은Token의집합

→ 한 batch에서 Token A, Token B 2가지로 나뉘어서 input으로!

: sequence에는 [CLS],[SEP],[SEP]이 포함되어야함

- → [CLS]: Task-specific한정보를 주기위한 Token
- → [SEP]: Token A,B를 구분하는 Token
- → [SEP]: Token A, B의 끝을 알리는 Token

2. Preprocessing

* index

: positional encoding할 때 사용되는 index

→ 어느 부분이 masked token인지(예측해야 하는 부분)알 수 있다

*Seg_ID

: Token A \rightarrow 0, Token B \rightarrow 1

2-2. Next Sentence

 Token
 CLS
 Token
 MASK
 Token
 MASK
 WASK
 <

- is_next
 - : True → 다음 문장인지 아닌지
- Masked_P
 - : 4, 10 → MASK된 Token의 index
- Label
 - : Single, double

2.3 Length & Mask

Mask Prediction

: 15%를 Mask 하지만 예측할 Mask는 최대 20개로 설정

of masks = Min(20, Max(1, (# of Tokens) x 0.15))

: 15% 중에서, 80%→ MASK

10%→ random Token으로 대체

10%→ 원래 Token

Preprocessing

- → [CLS]: Task-specific한정보를주기위한 Token
- → [SEP]: Token A,B를 구분하는 Token
- → [SEP]: Token A, B의 끝을 알리는 Token
- →[MASK] : 예측하는 Target

▶ 3가지의 Embedding

- 1) Input embedding
- 2) Positional embedding
- 3) Segment embedding

03

2) Positional encoding

: 각 단어의 위치정보를 저장하기 위해

: 단어의 embedding vector+위치정보

: position에 대한 one-hot vector를

Weight matrix와 곱한다

[CLS] I am looking for happiness [SEP] B type sentence [SEP]

3th position

Embed size

0 0.1 0.4 0.7 0.1

i 0.0 0.3 0.7 0.0

2 0.1 0.1 0.9 0.1

i

5 0.2 0.0 0.7 0.2

3th position embedding 0.1 0.1 0.9 0.1

Input embedding 결과

- + Positional embedding 결과
- + Segment embedding 결과
- → Encoder의 입력

Attention (transformer)

: decoder에서 매 시점마다 Encoder의 전체 입력문장을 다시한번 참고하는 것

: 문장 전체 참고 X → 해당 시점에서 예측해야 할 단어와 연관이 있는 부분만

Self-Attention

: attention을 자기 자신에게 수행하는 것

: 효과→ self-attention은 입력문장내의 단어들끼리 유사도를 구할 수 있음

- 각 Q 벡터는 모든 K벡터에 대한 Attention Score 계산→ Attention distribution
 계산→ 모든 V 벡터를 가중합 계산→ Attention value(context vector) 계산
- 각 단어에 대한 Q, K, V vector를 구해야 하는데, 이를 <mark>행렬연산</mark>으로 동시에 구할 수 있다.

문장 행렬에 가중치 행렬을 곱해서 Q, K, V 행렬을 구함

Attention score 계산

 $Q \times K^{T} \rightarrow$ 각 단어의 Q 벡터와 K 벡터의 내적이 각 행렬의 원소가 되는 행렬

: 이 행렬의 값에 전체적으로 \sqrt{dk} 를 나누어 주면 각 행, 열이 Attention score를 가지게 됨

: $dk \rightarrow d_{model}/num_{heads}$

Attention distribution 계산

: 이를 이용해 모든 단어에 대한 Attention 값을 구해야 함

: Attention Score에 Softmax를 적용하면 그 결과가 Attention distribution

Attention value Matrix 계산

: Attention distribution에 V행렬을 곱하면 그 결과가 Attention Value Matrix

Multi-head Attention

- : 한번의 Attention보다 여러 번 하는 것이 더 효율적
- : dmodel의 차원을 num_heads개로 나누어 (dmodel/num_heads)차원을 가지는 Q, K, V에 대해 num_heads개의 병렬 Attention을 수행
- : 가중치 행렬 W^Q , W^K , W^V 도 Attention head마다 다 다름

- Multi-head Attention
 - : 병렬 Attention을 모두 수행했으면 모든 Attention head를 concatenate

concatenate

- Concat한 행렬을 또 다른 가중치 W^0 와 곱한다
 - : 그 결과 행렬이 Multi Attention matrix

Multi-head attention matrix

- : [PAD]인 부분은 0, [PAD]가 아닌 부분은 1로 Masking
- : Transformer에서는 Key, Query에 Masking

BERT에서는 Key에만 Masking

- : Key Masking한 결과 = [PAD]가 아닌 부분만 1인 matrix
- : 이 matrix를 scaled attention weight에 적용
- : 0인 부분에 큰 음수를 넣어준다 → softmax를 할때 0과 가깝게 나오게 하기 위해
- : 그 결과에 residual Dropout → attention에 대한 weight를 다양하게 하기 위해

: 자기 자신에 대한 Attention을 하고 그 결과를 concat

: concat한 결과 → Multi-Head Attention의 결과

03 Add & Norm Feed Forward :(Multi-Attention head결과 matrix X linear projection) N× + 원래의 input Multi-Head Attention : 위의 결과 matrix에 layer_normalization Segment Positional embedding Encoding Residual Dropout Input Concat linear projection dense Embedding × Inputs Trainable variables 1 1 1 1 Residual Dropout dense am looking + happiness </5> (1, 6,14) layer_normalization

Inputs

03 Add & Norm : dropout한 후 이전의 Add&Norm에서 나온 값과 더함 Feed Forward : 더한 결과에 layer_normalization N× Add & Norm Multi-Head Attention **Residual Dropout** Linear Segment Positional Encoding embedding Input Embedding

(1, 6,14)

layer_normalization

4.1 GLUE

: GLUE에 fine-tuning하는 방식 그림 ↓

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

4.1 GLUE

: 첫번째 input Token([CLS])에 해당하는 final hidden vector C를 aggregate representation으로 사용

: 이 C에 Classification loss를 계산

: BERT_LARGE의 경우 small data set에 안정적이지 않아, 여러 번 random restart하여 dev set에 가장 성능이 좋은 모델 선택

: 결과

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

4.2 SQuAD v1.1

- : paragraph와 question pair가 주어지면 정답을 포함하는 text span을 찾는 문제
- : question과 paragraph을 각각의 single sentence로 보고 (즉, 각각 A, B embedding으로 구분한다.)
- : 새롭게 학습되는 parameter→start vector S, end vector E
- : ith input token의 마지막 hidden vector를 Ti라 할때, ith token이 start일 확률은 softmax로 구해짐
- : answer span의 end도 위와 같이 구함

4.2 SQuAD v1.1

: 결과

System	Dev		Test		
	EM	F1	EM	F1	
Leaderboard (Oct	8th, 2	018)			
Human	-	-	82.3	91.2	
#1 Ensemble - nlnet	-	-	86.0	91.7	
#2 Ensemble - QANet	-	-	84.5	90.5	
#1 Single - nlnet	-	-	83.5	90.1	
#2 Single - QANet	-	-	82.5	89.3	
Publishe	ed				
BiDAF+ELMo (Single)	-	85.8	-	-	
R.M. Reader (Single)	78.9	86.3	79.5	86.6	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERT _{LARGE} (Single)	84.1	90.9	-	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	→ TriviaQA data를 추가하여
BERT _{LARGE} (Ens.+TriviaQA)		92.2			성능을 높임

김동화-Transformer & BERT

https://www.youtube.com/watch?v=xhY7m8QVKjo

Wikidocs- 딥러닝을 이용한 자연어처리 입문

https://wikidocs.net/31379

https://vanche.github.io/NLP_Pretrained_Model_BERT(2)/

- 우리의 질문
 - 1) Pre-training~Fine-tuning할 때
 Mismatch를 최소화하기 위해 sequence length를 임의적으로(10%) 짧게 수정했다
 고 하는데 왜?
 - → 영상에선 길이가 짧은 문장들 사이에서 교집합을 찾는게 더 쉽기때문이라고 함
 - → 이해 X
 - 2) SQuAD v1.1로 fine-tuning을 할때 왜 start 부분 찾는 과정을 Question도 포함해서 하는지 paragraph만 하면 되는 거 아닌가?

THANK YOU

2.4 학습되는 데이터

- Placeholder for data
 - sequence length = 128
 - 최대 masking 개수=20

Placeholde	Size	
input_ids	128	Vocab에서 해당 token이 어느 위치에 있는지
input_mask	128	Padding인지 아닌지 구분하는
segment_ids	128	Token A인지 B인지(0/1)
masked_Im_positions	20	Sequence에서 mask의 위치
masked_Im_ids	20	Vocab에서 해당 token이 어느 위치에 있는지
masked_Im_weights	20	Padding인지 아닌지 구분하는
next_sentence_labels	1	연속된 문장인지(True/Flase)