Théorie de la Mesure et de l'Intégration

Exercices

E.1Prologue

Exercice 1 (À la grecque). On considère dans \mathbb{R}^2 la parabole \mathcal{P} d'équation $y=1-x^2$, puis on note $\mathcal S$ la région délimitée par $\mathcal P$ et l'axe des abscisses :

$$S = \{(x, y) \in [-1, 1] \times \mathbb{R} \mid 0 < y < 1 - x^2 \}.$$

1. Soit $(a,b) \in [0,1]^2$ avec a < b. On note T le triangle formé par les points de \mathcal{P} d'abscisses

 $a, \frac{a+b}{2}$ et b. Montrer que l'aire de T est $(b-a)^3/8$. **2.** Soit $n \in \mathbb{N}$. Pour $k \in [0, 2^n]$ $x_{n,k} = -1 + k2^{-n+1}$. Pour $k \in [1, 2^n]$ on note alors $T_{n,k}$ le triangle formé par les points de \mathcal{P} d'abscisses $x_{n,k-1}, \frac{x_{n,k-1}+x_{n,k}}{2}$ et $x_{n,k}$. Montrer que l'aire de $T_{n,k}$ vaut 2^{-3n} .

3. En déduire que l'aire de S est supérieure ou égale à $\sum_{n\in\mathbb{N}} 4^{-n}$.

4. Calculer l'aire de S à l'aide d'un intégrale et comparer à cette somme.

Exercice 2. Expliciter les parties de \mathbb{R} suivantes :

1. $([1,6] \cap [0,5]) \setminus [3,8]$

2. $[1,6] \cap ([0,5] \setminus [3,8])$

3. $([1,6] \cup [0,5]) \setminus [3,8]$

4. $[1,6] \cup ([0,5] \setminus [3,8])$

5. $\bigcup_{n \in \mathbb{N}^*} \left| -\frac{1}{n}, \frac{1}{n} \right|$

6. $\bigcap_{n \in \mathbb{N}^*} \left[-\frac{1}{n}, \frac{1}{n} \right]$

7. $\bigcup_{n \in \mathbb{N}^*} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right]$

8. $\bigcap_{n\in\mathbb{Z}}[n,+\infty[$

9. $\bigcap_{n \in \mathbb{N}^*} [0, \frac{1}{n}]$

10. $\bigcup_{q\in\mathbb{O}}]q-\varepsilon, q+\varepsilon[$, où $\varepsilon>0$

Exercice 3. Soit $a \in \mathbb{R}$. Donner l'image réciproque de $a, +\infty$ par la fonction f définie pour $x \in \mathbb{R} \text{ par}$:

1.
$$f(x) = x$$

2.
$$f(x) = -3x + 5$$

3.
$$f(x) = x^2$$

4.
$$f(x) = 1 \text{ si } x \ge 0 \text{ et } f(x) = -1 \text{ si } x < 0$$

5.
$$f(x) = x \text{ si } x \ge 0 \text{ et } f(x) = -x + 1 \text{ si } x < 0$$

6.
$$f(x) = 1$$
 si $x \in \mathbb{Q}$ et $f(x) = 0$ si $x \notin \mathbb{Q}$

Rappels d'intégration pour les fonctions continues

Exercice 4. Calculer les intégrales suivantes :

$$I_1 = \int_1^e \frac{\ln(x)^4}{x} dx, \quad I_2 = \int_1^e x^2 \ln(x) dx$$

Exercice 5. Soit f une fonction de classe C^1 sur $[0,1]^2$. Pour $x \in [0,1]$ on pose

$$F(x) = \int_0^x f(t, 1) dt, \quad G(x) = \int_0^1 f(t, x) dt, \quad H(x) = \int_0^x f(t, x) dt.$$

Montrer que F, G et H sont de classe C^1 sur [0,1] et calculer leurs dérivées. On pourra éventuellement commencer par considérer le cas $f(x_1,x_2)\mapsto\cos(x_1x_2)$ et faire des calculs explicites.

Exercice 6. Déterminer, en fonction de $\alpha \in \mathbb{R}$, la nature de l'intégrale $\int_0^{+\infty} \frac{t^{\alpha}}{1+t} dt$.

Exercice 7. Montrer que l'intégrale

$$\int_{-\infty}^{+\infty} x^3 e^{-x^2} \, dx$$

est convergente et donner sa valeur.

Exercice 8. Pour $n \in \mathbb{N}^*$ on pose

$$I_n = \int_0^{2\pi} \frac{\cos(nx)\sin(x)^2}{n} dx.$$

Étudier la limite éventuelle de la suite $(I_n)_{n\in\mathbb{N}^*}$.

Exercice 9. 1. Pour $n \in \mathbb{N}$ on considère sur \mathbb{R} la fonction f_n définie par

$$f_n(x) = \begin{cases} 1 & \text{si } n \leq x \leq n+1, \\ 0 & \text{sinon.} \end{cases}$$

- a. Pour $n \in \mathbb{N}$, dessiner le graphe de f_n .
- b. Montrer que pour tout $x \in \mathbb{R}$ on a :

$$f_n(x) \xrightarrow[n \to +\infty]{} 0.$$

- c. Montrer que l'intégrale « généralisée » $\int_{\mathbb{R}} f_n(x) dx$ est bien définie pour tout $n \in \mathbb{N}$, la calculer, et étudier sa limite quand n tend vers $+\infty$.
- **2.** Mêmes questions avec les fonctions g_n et h_n définies pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ par

$$g_n(x) = \begin{cases} 0 & \text{si } x < 0, \\ \frac{x}{n^2} & \text{si } 0 \leqslant x < n, \\ \frac{2}{n} - \frac{x}{n^2} & \text{si } n \leqslant x < 2n, \\ 0 & \text{si } x \geqslant 2n. \end{cases} \text{ et } h_n(x) = \begin{cases} 0 & \text{si } x < 0, \\ n^2 x & \text{si } 0 \leqslant x < \frac{1}{n}, \\ 2n - n^2 x & \text{si } \frac{1}{n} \leqslant x < \frac{2}{n}, \\ 0 & \text{si } x \geqslant \frac{2}{n}. \end{cases}$$

3. Sur le même modèle, donner des exemples de suites de fonctions (\tilde{f}_n) , (\tilde{g}_n) et (\tilde{h}_n) qui convergent ponctuellement vers 0 mais telles que les intégrales $\int_{\mathbb{R}} \tilde{f}_n dx$, $\int_{\mathbb{R}} \tilde{g}_n dx$ et $\int_{\mathbb{R}} \tilde{h}_n dx$ tendent vers $+\infty$ quand n tend vers $+\infty$.

Exercice 10. On note E l'espace vectoriel des fonctions continues de [-1,1] dans \mathbb{R} . Pour $f \in E$ on pose

$$N_1(f) = \int_{-1}^1 |f(x)| \ dx \text{ et } N_2(f) = \sqrt{\int_{-1}^1 |f(x)|^2 \ dx}.$$

- **1.** Montrer que N_1 et N_2 définissent des normes sur E.
- ${\bf 2.}$ Montrer que E muni de la norme N_2 est un espace pré-hilbertien.
- **3.** Pour $n \in \mathbb{N}^*$ et $x \in [-1, 1]$ on pose

$$\varphi_n(x) = \begin{cases} 0 & \text{si } -1 \leqslant x \leqslant 0, \\ nx & \text{si } 0 < x \leqslant \frac{1}{n}, \\ 1 & \text{si } \frac{1}{n} < x \leqslant 1. \end{cases}$$

Montrer que la suite $(\varphi_n)_{n\in\mathbb{N}^*}$ n'a pas de limite dans E pour la norme N_1 .

- **4.** Montrer que l'espace vectoriel normé (E, N_1) n'est pas complet.
- 5. Montrer que l'espace pré-hilbertien (E, N_2) n'est pas un espace de Hilbert.

Exercice 11. On considère la fonction $f:[0,5]\to\mathbb{R}$ qui à x associe

$$f(x) = \begin{cases} x & \text{si } 0 \leqslant x \leqslant 1, \\ 1 & \text{si } 1 \leqslant x \leqslant 4, \\ 5 - x & \text{si } 4 \leqslant x \leqslant 5. \end{cases}$$

On cherche à calculer l'aire \mathcal{A} comprise entre le graphe de f, l'axe des abscisses et les droites d'équations x=0 et x=5 en encadrant f par des fonctions constantes par morceaux.

- **1.** Soient $N \in \mathbb{N}^*$ et $\delta = \frac{1}{N}$.
 - a. Soit $k \in [0, 5N 1]$. Donner un encadrement de f sur l'intervalle $[k\delta, (k+1)\delta]$.
- b. En déduire un encadrement de l'aire A_k comprise entre le graphe de f, l'axe des abscisses et les droites d'équations $x = k\delta$ et $x = (k+1)\delta$.
 - c. En déduire un encadrement de \mathcal{A} et conclure.
- **2.** Soient $N \in \mathbb{N}^*$ et $\delta = \frac{1}{N}$. Pour $k \in [0, N-1]$ on note

$$B_k = f^{-1}(|k\delta, (k+1)\delta|).$$

- a. Calculer B_k . On constatera que B_k est une union finie d'intervalles deux à deux disjoints et on notera ℓ_k la somme des longueurs de ces intervalles.
 - b. Vérifier que

$$\sum_{k=0}^{N-1} \ell_k k \delta \leqslant \mathcal{A} \leqslant \sum_{k=0}^{N-1} \ell_k (k+1) \delta,$$

et en déduire la valeur de A.

E.3 Dénombrabilité

Exercice 12. Parmi les ensembles suivants, lequels sont dénombrables :

- (i) $\{2^n, n \in \mathbb{N}\},$
- (ii) $\{2^{-n}, n \in \mathbb{N}\},\$
- (iii) $\mathbb{N} \times \mathbb{R}$,
- (iv) $\{a+b\sqrt{2}, a, b \in \mathbb{Q}\},\$
- (v) l'ensemble des nombres premiers,
- (vi) l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} .

Exercice 13. On dit qu'une suite $(u_n)_{n\in\mathbb{N}}\in\mathbb{N}^N$ est presque nulle s'il existe $N\in\mathbb{N}$ tel que $u_n=0$ pour tout $n\geqslant N$. On dit qu'elle est stationnaire s'il existe $N\in\mathbb{N}$ tel que $u_n=u_m$ pour tous $n,m\geqslant N$.

- 1. Montrer que l'ensemble des suites presques nulles à valeurs dans N est dénombrable.
- 2. L'ensemble des suites stationnaires à valeurs dans N est-il dénombrable?

Exercice 14. Soit E un ensemble. Montrer que $\mathcal{P}(E)$ est fini ou indénombrable.

Exercice 15. Soit A un ensemble et $(I_{\alpha})_{\alpha \in A}$ une famille d'intervalles de \mathbb{R} ouverts, non vides, et deux à deux disjoints. Montrer que A est dénombrable.

Exercice 16. 1. Soit U un ouvert de \mathbb{R} .

a. Soit $x \in U$. Montrer qu'il existe $q \in \mathbb{Q}$ et $n \in \mathbb{N}^*$ tels que

$$x \in \left[q - \frac{1}{n}, q + \frac{1}{n} \right] \subset U.$$

- b. Montrer que U est union dénombrable d'intervalles ouverts.
- **2.** On munit \mathbb{R}^d d'une norme quelconque. Montrer que tout ouvert de \mathbb{R}^d est union dénombrable de boules ouvertes de \mathbb{R}^d . Même question en remplaçant « boule ouverte » par « boule fermée ».

Exercice 17. On dit d'un réel x qu'il est algébrique s'il existe $d \in \mathbb{N}^*$ et $a_0, \ldots, a_d \in \mathbb{Z}$ tels que

$$\sum_{k=0}^{d} a_k x^k = 0.$$

Montrer qu'il existe des réels qui ne sont pas algébriques.

Exercice 18. 1. Montrer que \mathbb{R}^d s'écrit comme union dénombrable de parties compactes. **2.** Soient $(\mathcal{V}_j)_{j\in J}$ une famille d'ouverts de \mathbb{R}^d telle que $\mathbb{R}^d = \bigcup_{j\in J} \mathcal{V}_j$. Montrer qu'il existe une suite $(j_n)_{n\in\mathbb{N}}$ d'éléments de J tels que $\mathbb{R}^d = \bigcup_{n\in\mathbb{N}} \mathcal{V}_{j_n}$. Autrement dit, de tout recouvrement ouvert de \mathbb{R}^d on peut extraire un recouvrement dénombrable.

E.4 Tribus et mesures

Exercice 19. Montrer que les mesures sur $(X, \mathcal{P}(X))$ données en exemple sont effectivement des mesures.

Exercice 20. On modélise les résultats d'un jet de deux dés par l'ensemble $C = [1, 6] \times [1, 6]$. On munit C de la mesure uniforme μ . Pour $(j, k) \in C$ on pose f(j, k) = j + k. On note S l'ensemble [2, 12]. Pour $B \in \mathcal{P}(S)$ on pose

$$\nu(B) = \mu(f^{-1}(B)) = \frac{\operatorname{Card}\left\{(j,k) \in [\![1,6]\!]^2 \,|\, j+k \in B\right\}}{\operatorname{Card}(C)}.$$

- **1.** Montrer que $\nu(S) = 1$.
- **2.** Calculer $\nu(\{s\})$ pour tout $s \in S$.
- **3.** Calculer $\nu(\{2,4,6,8,10,12\})$.

Exercice 21. Soit $(a_k)_{k\in\mathbb{N}}$ une suite de réels positifs telle que la série $\sum_{k=0}^{+\infty} a_k$ converge. Réinterpréter en terme de mesure le fait que

$$\sum_{k=-\infty}^{+\infty} a_k \xrightarrow[n \to +\infty]{} 0.$$

Exercice 22. Soit \mathcal{M} une tribu de X et $E \in \mathcal{P}(X)$. Montrer que

$$\mathcal{M}_E := \{A \cap E, A \in \mathcal{M}\}$$

est une tribu de E. On dira que \mathcal{M}_E est la tribu induite par \mathcal{M} sur E.

Exercice 23. Déterminer la tribu de \mathbb{R} engendrée par $\{[0,2],[1,3]\}$.

Exercice 24. Soit X un ensemble. Soit $n \in \mathbb{N}^*$ et A_1, \ldots, A_n des parties deux à deux disjointes de X telles que $X = \bigcup_{k=1}^n A_k$. Déterminer le nombre d'éléments de la tribu de X engendrée par $\{A_1, \ldots, A_n\}$.

Exercice 25. Soit X un ensemble.

- 1. Déterminer la tribu engendrée par les singletons de X.
- 2. Déterminer la tribu engendrée par les parties de X contenant deux éléments.

Exercice 26. Soient X un ensemble et A une partie de X. Déterminer la tribu engendrée par les parties de X contenant A.

Exercice 27. Soit X un ensemble. Soient \mathcal{M}_1 et \mathcal{M}_2 deux tribus de X. Déterminer les tribus engendrées par $\mathcal{M}_1 \cap \mathcal{M}_2$ et par $\mathcal{M}_1 \cup \mathcal{M}_2$.

Exercice 28. Soit X un ensemble non vide. On appelle algèbre de X une famille \mathcal{A} de parties de X telle que $X \in \mathcal{A}$ et pour tous $A, B \in \mathcal{A}$ on a $X \setminus A \in \mathcal{A}$ et $A \cup B \in \mathcal{A}$.

- **1.** Soit P une partie non vide de $\mathcal{P}(X)$. Montrer qu'il existe une plus petite algèbre (au sens de l'inclusion) contenant P.
- **2.** Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'algèbres de X telle que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$. Montrer que la réunion $\bigcup_{n\in\mathbb{N}}A_n$ est une algèbre de X.
- **3.** Que dire de la question précédente si on remplace « algèbre » par « σ -algèbre »? On pourra par exemple considérer $X = \mathbb{N}$ et, pour tout $n \in \mathbb{N}$, $\mathcal{A}_n = \sigma(\{0\}, \dots, \{n\})$.

Exercice 29. Soient (X, \mathcal{M}) un espace mesurable, Y un ensemble et φ une fonction de X dans Y.

- **1.** Montrer que $\mathcal{N} = \{B \mid \varphi^{-1}(B) \in \mathcal{M}\}$ est une tribu sur Y. On l'appelle tribu image de \mathcal{M} par φ .
- **2.** Expliciter \mathcal{N} lorsque $\mathcal{M} = \mathcal{P}(X)$. Même question lorsque $\mathcal{M} = \{\emptyset, X\}$.
- **3.** On suppose que φ est une bijection. Montrer que \mathcal{M} est la tribu image de \mathcal{N} par φ^{-1} .

Exercice 30. Soient X un ensemble, (Y, \mathcal{N}) un espace mesurable et φ une fonction de X dans Y. Montrer que

$$\mathcal{M} = \{ \varphi^{-1}(B), B \in \mathcal{N} \}$$

est une tribu sur X.

Exercice 31. Soient X et Y deux ensembles. Soit φ une application de X dans Y.

1. Soit \mathcal{F} une famille de parties de Y. On note

$$\varphi^{-1}(\mathcal{F}) = \{ \varphi^{-1}(F), F \in \mathcal{F} \}.$$

On définit de même $\varphi^{-1}(\sigma(\mathcal{F}))$. Montrer que $\sigma(\varphi^{-1}(\mathcal{F})) = \varphi^{-1}(\sigma(\mathcal{F}))$.

2. On suppose que X et Y sont des ouverts de \mathbb{R}^d et que φ est un homéomorphisme de X dans Y. Montrer que la tribu image de la tribu borélienne $\mathcal{B}(X)$ par φ est la tribu borélienne $\mathcal{B}(Y)$ de Y.

Exercice 32. Montrer que $\mathcal{B}(\mathbb{R})$ est engendré par l'ensemble des intervalles de la forme $]a, +\infty[$ avec $a \in \mathbb{Q}$.

Exercice 33. Soit X un espace topologique, muni de sa tribu borélienne $\mathcal{B}(X)$. Soit F une partie de X, muni de la topologie induite et de la tribu borélienne $\mathcal{B}(F)$ correspondante.

1. Montrer que

$$\mathcal{B}(F) = \{ A \cap F, A \in \mathcal{B}(X) \}.$$

2. Montrer que si F est un borélien de X alors $\mathcal{B}(F)$ est simplement l'ensemble des boréliens de X inclus dans F.

Exercice 34. On considère une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues de \mathbb{R} dans \mathbb{R} . Montrer que les ensembles suivants sont des boréliens de \mathbb{R} .

- (i) L'ensemble des réels x tels que $f_n(x) \xrightarrow[n \to \infty]{} 0$.
- (ii) L'ensemble des réels x tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ converge.
- (iii) L'ensemble des réels x tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ a 0 pour valeur d'adhérence.

Exercice 35. 1. Montrer que pour tout $A \in \mathcal{B}(\mathbb{R})$ on a $A \times \mathbb{R} \in \mathcal{B}(\mathbb{R}^2)$.

2. Montrer que pour $A, B \in \mathcal{B}(\mathbb{R})$ on a $A \times B \in \mathcal{B}(\mathbb{R}^2)$.

Exercice 36. On note P l'ensemble des pavés de \mathbb{R}^d de la forme

$$\prod_{j=1}^{d} \left[\frac{n_j}{2^{-k}}, \frac{n_j+1}{2^{-k}} \right],$$

où $k \in \mathbb{N}$ et $n_1, \ldots, n_d \in \mathbb{Z}$.

- 1. Montrer que P est un ensemble dénombrable de parties de \mathbb{R}^d .
- **2.** Montrer que tout ouvert de \mathbb{R}^d est union d'éléments de P.
- **3.** Montrer que $\mathcal{B}(\mathbb{R}^d) = \sigma(P)$.
- **4.** Montrer que $\mathcal{B}(\mathbb{R}^d)$ est engendré par l'ensemble des boules euclidiennes ouvertes (repectivements fermées).
- **5.** Montrer que $\mathcal{B}(\mathbb{R}^d)$ est engendré par les demi-espaces de la forme

$$\mathbb{R}^{j-1} \times]a, +\infty[\times \mathbb{R}^{d-j},$$

avec $j \in [1, d]$ et $a \in \mathbb{R}$.

Exercice 37. Soient X un ensemble et \mathcal{F} une famille de parties de X. Montrer que pour tout $A \in \sigma(\mathcal{F})$ il existe une famille dénombrable \mathcal{D} d'éléments de \mathcal{F} telle que $A \in \sigma(\mathcal{D})$. Indication : on pourra montrer que l'ensemble des A dans $\sigma(\mathcal{F})$ vérifiant cette propriété est une tribu sur X.

Exercice 38. Montrer qu'une tribu contient toujours un nombre fini ou indénombrable d'éléments.

Exercice 39. Pour $A \in \mathcal{P}(\mathbb{R})$ on note m(A) = 0 si A est au plus dénombrable et $m(A) = +\infty$ sinon. L'application m ainsi définie est-elle une mesure sur $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$?

Exercice 40. Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle. Soit $(p_n)_{n\in\mathbb{N}}$ une suite de réels positifs tels que $\sum_{n=0}^{+\infty} p_n = 1$. Montrer que l'application

$$m = \sum_{n=0}^{+\infty} p_n \delta_{x_n}$$

définit une mesure de probabilité sur $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$.

Exercice 41. Soient (X, \mathcal{M}, μ) un espace mesuré et $E \in \mathcal{M}$. On note \mathcal{M}_E la tribu induite sur E (voir Exercice 22).

- 1. Montrer que tout $A \in \mathcal{M}$ est également dans \mathcal{M} .
- **2.** Pour $A \in \mathcal{M}_E$ on note

$$\mu_E(A) = \mu(A \cap E) = \mu(A).$$

Montrer que cela définit une mesure μ_E sur E.

Exercice 42. Soient (X, \mathcal{M}) un espace mesurable, Y un ensemble et φ une fonction de X dans Y. On note \mathcal{N} la tribu image de \mathcal{M} par φ (voir l'exercice 21). Pour $B \in \mathcal{N}$ on pose

$$\nu(B) = \mu(\varphi^{-1}(B)).$$

- 1. Montrer que cela définit une mesure ν sur (Y, \mathcal{N}) . Elle est appelée mesure image de μ par f.
- **2.** Expliciter ν lorsque $\mathcal{M} = \mathcal{P}(X)$ et $\mu = \delta_{x_0}$, où x_0 est un élément de X.

Exercice 43. On considère une mesure sur l'espace mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On note \mathcal{O} l'union de tous les ouverts de \mathbb{R} de mesure nulle. Montrer que \mathcal{O} est un ouvert de mesure nulle. En déduire qu'il existe un plus grand ouvert de \mathbb{R} (au sens de l'inclusion) de mesure nulle.

Exercice 44. On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$. Montrer que pour tout $\varepsilon > 0$ il existe un ouvert \mathcal{O} dense dans \mathbb{R} et tel que

$$\lambda(\mathcal{O}) \leqslant \varepsilon$$
.

Exercice 45. Soit μ une mesure sur les boréliens de \mathbb{R} , finie sur les compacts. Soit $x_0 \in \mathbb{R}$. Pour $x \in \mathbb{R}$ on pose

$$F(x) = \begin{cases} \mu(]x_0, x] & \text{si } x > x_0, \\ -\mu(]x, x_0] & \text{si } x \leqslant x_0. \end{cases}$$

- **1.** Montrer que cela définit une fonction F de \mathbb{R} dans \mathbb{R} , croissante et continue à droite en tout point.
- **2.** Montrer que F est continue en $x \in \mathbb{R}$ si et seulement si $\mu(\{x\}) = 0$.
- **3.** Montrer que l'ensemble des $x \in \mathbb{R}$ tels que $\mu(\{x\}) > 0$ est dénombrable.

Exercice 46. Soient (X, \mathcal{M}, μ) un espace mesuré et $(A_n)_{n \in \mathbb{N}}$ une suite de parties mesurables. On note B l'ensemble des $x \in X$ tel que $x \in A_n$ pour une infinité d'indices n.

- **1.** Montrer que B est mesurable.
- **2.** On suppose que la série $\sum_{n\in\mathbb{N}} \mu(A_n)$ converge. Montrer que $\mu(B)=0$.

Exercice 47. 1. Soit f une fonction continue de \mathbb{R} dans \mathbb{R} . Montrer que le graphe de f est de mesure nulle dans \mathbb{R}^2 (muni de la mesure de Lebesgue).

2. Soit f une fonction de classe C^1 de \mathbb{R} dans \mathbb{R}^2 . Montrer que $f(\mathbb{R})$ est de mesure nulle dans \mathbb{R}^2 (toujours muni de la mesure de Lebesgue). Le résultat est-il encore vrai si f est seulement continue?

Exercice 48. Donner un exemple de mesure μ qui est σ-finie sur \mathbb{R} et telle que $\mu(]-n,n[)=+\infty$ pour tout $n\in\mathbb{N}^*$.

E.5 Fonctions mesurables

Exercice 49. La fonction $\mathbb{1}_{\mathbb{O}}$ est-elle borélienne sur \mathbb{R} ?

Exercice 50. Soit (X, \mathcal{M}) un espace mesurable.

1. Vérifier que si $\mathcal{M} = \mathcal{P}(X)$ alors toute fonction de X dans n'importe quel espace mesurable est mesurable.

2. On suppose maintenant que $\mathcal{M} \neq \mathcal{P}(X)$. Donner un exemple de fonction $f: X \to \mathbb{R}$ qui n'est pas mesurable mais telle que |f| l'est.

Exercice 51. Montrer que la réciproque d'une bijection mesurable n'est pas nécessairement mesurable.

Exercice 52. 1. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer directement (*i.e.* sans utiliser le cours) que les fonctions $f_+ = \max(f, 0)$ et $f_- = \max(-f, 0)$ sont mesurables.

2. Soit $f: X \to \mathbb{C}$ une fonction mesurable. Montrer que les fonctions Re(f) et Im(f) sont des fonctions mesurables de X dans \mathbb{R} .

Exercice 53. Montrer qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ croissante est mesurable.

Exercice 54. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue à droite.

1. Soit $n \in \mathbb{N}^*$. On considère sur \mathbb{R} la fonction f_n telle que, pour $x \in \mathbb{R}$,

$$f_n(x) = \begin{cases} 0 & \text{si } x \leqslant -n, \\ f\left(\frac{p}{n}\right) & \text{si } x \in]-n, n] \text{ et } \frac{p-1}{n} < x \leqslant \frac{p}{n}, \text{ avec } p \in \mathbb{Z}, \\ 0 & \text{si } x > n. \end{cases}$$

Montrer que la fonction f_n ainsi définie est mesurable.

2. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers f.

3. En déduire que f est mesurable.

4. Montrer qu'une fonction $g: \mathbb{R} \to \mathbb{R}$ continue à gauche est mesurable.

Exercice 55. Soient (X, \mathcal{M}) un espace mesurable et $f: X \to \mathbb{C}$ une fonction mesurable. Montrer qu'il existe une fonction mesurable $\omega: X \to \mathbb{C}$ telle que pour tout $x \in X$ on a $|\omega(x)| = 1$ et $f(x) = |f(x)| \omega(x)$.

E.6 Intégration

Exercice 56. Soit X un ensemble non vide, muni de la tribu triviale $\mathcal{P}(X)$. Soit $x_0 \in X$. On considère sur X la mesure de Dirac δ_{x_0} . Montrer que toute fonction $f: X \to \mathbb{R}$ est mesurable et que

$$\int_{Y} f(x) d\delta_{x_0}(x) = f(x_0).$$

Exercice 57. Soient (X, \mathcal{M}, μ) un espace mesuré et $E \in \mathcal{M}$. On considère sur E la tribu \mathcal{M}_E induite par \mathcal{M} sur E et la mesure μ_E induite par μ (voir les exercices 22 et 41). Soit f une fonction intégrable de X dans \mathbb{R} . Montrer que la restriction $f_{|E}$ de f à E est intégrable et

$$\int_E f_{|E|} d\mu_E = \int_X \mathbb{1}_E f d\mu.$$

Exercice 58 (Théorème de changement de variables). Soient (X, \mathcal{M}, μ) un espace mesuré, Y un ensemble, et φ une fonction de X dans Y. On munit Y de la tribu image \mathcal{N} de \mathcal{M} par f et de la mesure image ν de μ par φ .

1. Soit $f: Y \to [0, +\infty]$ une fonction mesurable.

a. Montrer que $f \circ \varphi$ est une fonction mesurable de X dans $[0, +\infty]$.

b. Soit $A \in \mathcal{N}$. Montrer que $\mathbb{1}_A \circ \varphi = \mathbb{1}_{\varphi^{-1}(A)}$.

c. Montrer que

$$\int_Y f \, d\nu = \int_X (f \circ \varphi) \, d\mu.$$

2. Soit $f: Y \to \mathbb{R}$ une fonction mesurable.

- a. Montrer que $f \circ \varphi$ est une fonction mesurable de X dans \mathbb{R} .
- b. Montrer que f est intégrable sur Y si et seulement si $f \circ \varphi$ est intégrable sur X.
- c. Montrer que si f est intégrable sur Y on a

$$\int_{Y} f \, d\nu = \int_{Y} (f \circ \varphi) \, d\mu.$$

Exercice 59. Soient (X, \mathcal{M}, μ) un espace mesuré et f une fonction intégrable de X dans \mathbb{R} .

1. Montrer que pour tout a > 0 on a

$$\mu\big(\left\{x\in X\,|\, |f(x)|\geqslant a\right\}\big)\leqslant \frac{1}{a}\int_X |f|\ d\mu.$$

2. Montrer que

$$a\mu(\lbrace x \in X \mid |f(x)| \geqslant a \rbrace) \xrightarrow[a \to +\infty]{} 0.$$

Exercice 60. Soient (X, \mathcal{M}, μ) un espace mesuré et f une fonction intégrable de X dans \mathbb{R} . Montrer que pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que pour tout $A \in \mathcal{M}$ on a

$$\mu(A) \leqslant \delta \implies \int_A |f| \ d\mu \leqslant \varepsilon.$$

E.7 Passage à la limite sous l'intégrale

Exercice 61. Étudier la limite éventuelle de la suite $(I_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^{+\infty} \frac{1}{1+x^n} \, dx.$$

Exercice 62. Soit f une fonction borélienne de [0,1] dans \mathbb{R}_+ . On suppose qu'il existe $M \geqslant 0$ tel que

$$\forall n \in \mathbb{N}, \quad \int_{[0,1]} e^{nx} f \, d\lambda(x) \leqslant M.$$

- **1.** Montrer que f = 0 p.p.
- **2.** On suppose de plus que f est continue. Montrer que f = 0.

Exercice 63. On munit [-1,1] de la mesure de Lebesgue λ . Pour $n \in \mathbb{N}$ on note $f_n = \mathbb{1}_{[0,1]}$ si n est pair et $f_n = \mathbb{1}_{[-1,0]}$ si n est impair.

- **1.** Vérifier que f_n est mesurable pour tout $n \in \mathbb{N}$.
- 2. Calculer

$$\int_{[-1,1]} \liminf_{n \to \infty} f_n \, d\lambda \quad \text{et} \quad \liminf_{n \to \infty} \int_{[-1,1]} f_n \, d\lambda.$$

Exercice 64. Soit f une fonction intégrable sur \mathbb{R}_+ . Étudier la limite éventuelle de la suite $(I_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^{+\infty} e^{-n\sin(x)^2} f(x) dx.$$

Exercice 65. Étudier la limite éventuelle de la suite $(I_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^{+\infty} \frac{x^n}{1 + x^{n+2}} dx.$$

Exercice 66. Étudier la limite éventuelle de la suite $(I_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad I_n = \int_1^{+\infty} \frac{n \sin\left(\frac{x}{n}\right)}{x^3} dx.$$

Exercice 67. 1. Montrer que

$$\sum_{n \in \mathbb{N}} \int_0^1 x^{2n} (1 - x) \, dx = \int_0^1 \frac{1}{1 + x} \, dx.$$

2. En déduire que

$$\sum_{n\in\mathbb{N}} \frac{(-1)^n}{1+n} = \ln(2).$$

Exercice 68. Soit μ une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Étudier la limite éventuelle de la suite $(I_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^{+\infty} \cos(\pi x)^n d\mu(x).$$

On commencera par vérifier que I_n est bien définie pour tout $n \in \mathbb{N}$.

Exercice 69. Soit $(a_{j,k})_{j,k\in\mathbb{N}}$ une famille de réels positifs. Montrer que

$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{j,k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} a_{j,k}.$$

Exercice 70. Étudier la limite

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{x}{n}\right)^n dx.$$

Exercice 71. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$. On suppose qu'il existe $a,b\in\mathbb{R}$ avec a< b tels que la série trigonométrique

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

converge simplement vers 0 pour tout $x \in [a, b]$. On veut montrer que a_n et b_n tendent vers 0 quand n tend vers $+\infty$.

1. Montrer que pour tout $n \in \mathbb{N}^*$ il existe $\varphi_n \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \quad a_n \cos(nx) + b_n \sin(nx) = r_n \cos(nx + \varphi_n),$$

où $r_n = \sqrt{a_n^2 + b_n^2}$.

- **2.** On suppose pour cette question que la fonction $x \mapsto r_n \cos(nx + \varphi_n)$ converge uniformément vers 0 sur [a, b] quand n tend vers $+\infty$. Montrer que $r_n \to 0$ quand $n \to 0$.
- **3.** On suppose que r_n ne tend pas vers 0. Montrer qu'il existe une suite $(n_k)_{k\in\mathbb{N}}$ d'entiers qui tend vers $+\infty$ et telle que

$$\int_{a}^{b} \cos(n_k x + \varphi_{n_k})^2 dx \xrightarrow[k \to +\infty]{} 0.$$

4. Montrer que

$$\int_{a}^{b} \cos(nx + \varphi_n)^2 dx \xrightarrow[n \to +\infty]{} \frac{b - a}{2}$$

et conclure.

Exercice 72. On cherche à montrer que

$$\int_0^1 \frac{1}{x^x} \, dx = \sum_{n \in \mathbb{N}^*} \frac{1}{n^n}.$$

- 1. Montrer que les deux membres de l'égalité sont bien définis.
- **2.** Pour $p, q \in \mathbb{N}$ on note $I(p,q) = \int_0^1 x^p \ln(x)^q dx$.

- a. Montrer que l'intégrale I(p,q) est bien définie pour tous $p,q \in \mathbb{N}$.
- b. Calculer I(p,0) pour tout $p \in \mathbb{N}$.
- c. En déduire la valeur de I(p,q) pour tous $p,q \in \mathbb{N}$.
- **3.** En développant $\frac{1}{x^x}$ en série, montrer que

$$\int_0^1 \frac{1}{x^x} dx = \sum_{n \in \mathbb{N}} \frac{(-1)^n}{n!} I(n, n).$$

4. Conclure.

Exercise 73. Soit $f \in \mathcal{L}^1([0,1])$. On suppose que pour tout $x \in [0,1]$ on a

$$\int_0^x f(t) \, dt = 0.$$

Montrer que f = 0 presque partout.

E.8 Intégrales à paramètres

Exercice 74. Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. Étudier la limite

$$\lim_{n \to \infty} \int_0^1 f(t^n) \, dt.$$

Exercice 75. Étudier la limite

$$\lim_{n \to \infty} \int_0^{+\infty} e^{-x} \sin(x)^n \, dx.$$

Exercice 76. Pour $(t,x) \in \mathbb{R} \times \mathbb{R}_+$ on pose

$$f(t,x) = \cosh\left(\frac{t}{1+x}\right) - 1.$$

1. Montrer que pour tout $t \in \mathbb{R}$ la fonction $f(t,\cdot)$ est intégrable sur \mathbb{R}_+ . On note alors

$$F(t) = \int_{\mathbb{R}_+} f(t, \cdot) \, d\lambda = \int_0^{+\infty} f(t, x) \, dx.$$

2. Montrer que la fonction F et continue et dérivable, et donner une expression de F'.

Exercice 77. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction localement intégrable sur \mathbb{R} (intégrable sur tout segment de \mathbb{R}). Soit $a \in \mathbb{R}$. Pour $x \in \mathbb{R}$ on pose

$$F(x) = \int_0^x f(t) dt = \begin{cases} \int_{[a,x]} f d\lambda & \text{si } x \geqslant a, \\ -\int_{[x,a]} f d\lambda & \text{si } x < a. \end{cases}$$

Montrer que F est bien définie et est continue sur \mathbb{R} .

Exercice 78. On considère les deux fonctions $f, g : \mathbb{R} \to \mathbb{R}$ définies par

$$f(x) = \int_0^x e^{-t^2} dt \qquad \text{et} \qquad g(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt.$$

- **1.** Montrer que g est dérivable sur \mathbb{R} .
- **2.** Montrer que la fonction $h(x) = g(x) + f^2(x)$ est constante. **3.** Montrer que l'intégrale $\int_0^{+\infty} e^{-t^2} dt$ est convergente et vaut $\frac{\sqrt{\pi}}{2}$.

Exercice 79. 1. Soit $x \in \mathbb{R}$. Montrer que l'intégrale $\int_0^{+\infty} e^{-t^2} \cos(tx) dt$ est convergente. On note alors $\varphi(x)$ sa valeur.

- **2.** Montrer que cela définit une fonction φ de classe C^1 sur \mathbb{R} .
- **3.** Montrer que $\varphi'(x) = -\frac{x\varphi(x)}{2}$ pour tout $x \in \mathbb{R}$.
- **4.** En déduire (avec l'exercice précédent) que $\varphi(x) = \frac{\sqrt{\pi}}{2}e^{-x^2/4}$.

Exercice 80. Pour $x \ge 0$, on pose

$$\psi(x) = \int_0^{+\infty} \frac{e^{-(t^2+1)x}}{t^2+1} dt.$$

- **1.** Montrer que ψ est bien définie sur $[0, +\infty[$.
- **2.** Montrer que ψ est continue sur $[0, +\infty[$
- **3.** Montrer que ψ est de classe C^1 sur $]0, +\infty[$.
- **4.** Calculer $\psi(0)$ et étudier la limite de ψ en $+\infty$. **5.** Montrer que pour tout $x \in \mathbb{R}$ on a $\psi'(x) = -\frac{e^{-x}}{\sqrt{x}} \int_0^{+\infty} e^{-s^2} ds$.
- **6.** Montrer que pour tout $x \in \mathbb{R}$ on a $\int_0^{+\infty} \psi'(x) dx = -2 \left(\int_0^{+\infty} e^{-s^2} ds \right)^2$.
- 7. En déduire que $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$.

Exercice 81. (Fonction Gamma) Pour $x \in]0, +\infty[$, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$. La fonction Γ est bien définie sur $\mathbb{R}_{+}^{*} = \{x \in \mathbb{R} \mid x > 0\}.$

- **1.** Étudier les limites de Γ en 0 et en $+\infty$.
- **2.** Montrer que Γ est de classe C^1 sur \mathbb{R}^*_+ et calculer sa dérivée.
- **3.** Soit $k \in \mathbb{N}^*$. Montrer que Γ est de classe C^k et calculer $\Gamma^{(k)}$.

E.9Intégrales multiples

Exercice 82. Soient (X_1, \mathcal{M}_1) et (X_2, \mathcal{M}_2) deux espaces mesurables. Montrer qu'en général l'ensemble des rectangles mesurables de $X_1 \times X_2$ n'est pas une tribu.

Exercice 83. Soient (X, \mathcal{M}) et (Y, \mathcal{N}) deux espaces mesurables.

1. Montrer que $\mathcal{M}_1 \otimes \mathcal{M}_2$ est la plus petite tribu sur $X_1 \times X_2$ qui rende mesurables les projections canoniques

$$\pi_1: \left\{ \begin{array}{ccc} X_1\times X_2 & \to & X_1 \\ (x_1,x_2) & \mapsto & x_1 \end{array} \right. \quad \text{et} \quad \pi_2: \left\{ \begin{array}{ccc} X_1\times X_2 & \to & X_2 \\ (x_1,x_2) & \mapsto & x_2 \end{array} \right.$$

2. Soient (Z, \mathcal{T}) un espace mesurable et f une fonction de (Z, \mathcal{T}) dans $(X \times Y, \mathcal{M} \otimes \mathcal{N})$. Montrer que f est mesurable si et seulement si $\pi_1 \circ f : (Z, \mathcal{M}) \to (X, \mathcal{M})$ et $\pi_2 \circ f : (Z, \mathcal{T}) \to$ (Y, \mathcal{N}) le sont.

Exercice 84. Soient X_1 et X_2 deux espaces topologiques, munis de leurs tribus boréliennes.

- **1.** Montrer que $\mathcal{B}(X_1) \otimes \mathcal{B}(X_2) \subset \mathcal{B}(X_1 \times X_2)$.
- **2.** Montrer que si X_1 et X_2 sont des espaces métriques séparables, alors $\mathcal{B}(X_1) \otimes \mathcal{B}(X_2) =$ $\mathcal{B}(X_1 \times X_2).$

Exercice 85. Soient μ_1 et μ_2 deux mesures σ -finies non nulles sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On suppose

$$(\mu_1 \otimes \mu_2)(\mathbb{R}^2 \setminus \Delta) = 0,$$

où on a noté $\Delta = \{(x, x), x \in \mathbb{R}\}.$

- **1.** Montrer que $\mathbb{R}^2 \setminus \Delta$ est dans $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
- **2.** Montrer que si $A_1, A_2 \in \mathcal{B}(\mathbb{R})$ sont tels que $\mu_1(A_1) > 0$ et $\mu_2(A_2) > 0$ alors $A_1 \cap A_2 \neq \emptyset$.
- **3.** En ré-écrivant l'égalité $(\mu_1 \otimes \mu_2)(\mathbb{R}^2 \setminus \Delta) = 0$, montrer que pour μ_1 -presque tout $x \in \mathbb{R}$ on a $\mu_2(\mathbb{R} \setminus \{x\}) = 0$.
- **4.** En déduire qu'il existe $a_2 \in \mathbb{R}$ et $\alpha_2 > 0$ tels que $\mu_2 = \alpha_2 \delta_{a_2}$.
- **5.** Montrer qu'il existe $a \in \mathbb{R}$, et $\alpha_1, \alpha_2 \in]0, +\infty[$ tels que $\mu_1 = \alpha_1 \delta_a$ et $\mu_2 = \alpha_2 \delta_a$.

Exercice 86. Montrer que les ensembles suivants sont des boréliens de \mathbb{R}^2 et calculer leurs mesures de Lebesgue.

- (i) $T = \{(x, y) \in [0, 1]^2 \mid x + y \le 1\}.$
- (ii) $C = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| < 1\}.$
- (iii) Le disque de centre 0 et de rayon 1.
- (iv) Le disque de centre $(x_0, y_0) \in \mathbb{R}^2$ et de rayon R > 0.

(v)
$$A = \{(x, y) \in \mathbb{R}^2 \mid |x| \le e^{-|y|} \}.$$

Exercice 87. Pour $(x,y) \in [0,1]^2$ on pose

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & \text{si } (x,y) \neq 0, \\ 0 & \text{si } (x,y) = 0. \end{cases}$$

- 1. Montrer que cela définit une fonction borélienne de $[0,1]^2$ dans \mathbb{R}
- 2. Calculer (en justifiant)

$$\int_{x=0}^{1} \left(\int_{y=0}^{1} f(x,y) \, dy \right) dx \quad \text{et} \quad \int_{y=0}^{1} \left(\int_{x=0}^{1} f(x,y) \, dx \right) dy.$$

Indication: on pourra dériver par rapport à y l'expression $y/(x^2+y^2)$.

3. Commenter.

Exercice 88 (Intégrales sur des rectangles). Après en avoir justifié l'existence, calculer les intégrales suivantes :

$$I_1 = \int_{[-1,1]\times[1,2]} \frac{x^2}{y} dx dy, \qquad I_2 = \int_{[0,\frac{\pi}{2}]\times[0,\frac{\pi}{2}]} \sin(x+y) dx dy,$$
$$I_3 = \int_{[3,7]\times[-2,2]} \frac{x}{\sqrt{1+xy+x^2}} dx dy.$$

Exercice 89. On note $D = \{(x, y) \in \mathbb{R}^2 \mid x \geqslant 0, y \geqslant 0, x + y \leqslant 1\}$. Calculer

$$I_1 = \int_D 1 \, dx \, dy, \quad I_2 = \int_D (x^2 + y^2) \, dx \, dy, \quad I_3 = \int_D xy(x+y) \, dx \, dy.$$

Exercice 90. Calculer $\iint_{\mathcal{D}} f(x,y) dx dy$ dans les cas suivants :

- $\begin{array}{ll} \textbf{1.} & f(x,y) = x+y, & D = \{(x,y) \in \mathbb{R}^2 \,|\, 1 \geqslant x \geqslant 0, \, x^2 \leqslant y \leqslant x\}, \\ \textbf{2.} & f(x,y) = \frac{1}{(x+y)^3}, & D = \{(x,y) \in \mathbb{R}^2 \,|\, 3 > x > 1, \, y > 2, \, x+y < 5\}, \\ \textbf{3.} & f(x,y) = \cos(xy), & D = \{(x,y) \in \mathbb{R}^2 \,|\, 2 \geqslant x \geqslant 1, \, 0 \leqslant xy \leqslant 2\}, \\ \textbf{4.} & f(x,y) = x, & D = \{(x,y) \in \mathbb{R}^2 \,|\, y \geqslant 0, \, x-y+1 \geqslant 0, \, x+2y-4 \leqslant 0\}, \\ \textbf{5.} & f(x,y) = xy, & D = \{(x,y) \in \mathbb{R}^2 \,|\, x \geqslant 0, \, y \geqslant 0, \, xy+x+y \leqslant 1\}. \end{array}$

Exercice 91. Calculer l'intégrale de la fonction $(x, y) \mapsto e^{x+y}$ sur le domaine

$$D = \{(x, y) \in \mathbb{R}^2 \mid |x + y| < 1, |x - y| < 1\}.$$

Exercice 92. Calculer les aires des domaines suivants :

$$D_1 = \{(x,y) \in \mathbb{R}^2 \mid -1 \le x \le 1, \ x^2 \le y \le 4 - x^3\}, D_2 = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le \pi, -\sin(x) \le y \le \sin(x)\}, D_3 = \{(x,y) \in \mathbb{R}^2 \mid y \ge 0, \ x - y + 1 \ge 0, \ y \le -x^2 + 2x + 1\}.$$

$$D_3 = \{(x,y) \in \mathbb{R}^2 \mid y \ge 0, x-y+1 \ge 0, y \le -x^2+2x+1\}.$$

Exercice 93. On note $D = \{(x, y) \in \mathbb{R}^2 \mid x, y \in [0, 1], x^2 + y^2 \ge 1\}$. Calculer

$$I = \iint_D \frac{xy}{1 + x^2 + y^2} \, dx \, dy.$$

Exercice 94. Calculer

$$\iiint_D x\,dx\,dy\,dz,\quad \text{où}\quad D=\{(x,y,z)\in\mathbb{R}^3\,|\,x\geqslant0,\,y\geqslant0,\,z\geqslant0,x+y+z\leqslant1\}.$$

Exercice 95. Pour $(x,y) \in \mathbb{R}^2$ on pose

$$f(x,y) = \frac{1}{1 + x^2 + y^2}.$$

- **1.** Montrer que pour tout $x \in \mathbb{R}$ la fonction $y \mapsto f(x,y)$ est intégrable sur \mathbb{R} .
- **2.** Montrer que pour tout $y \in \mathbb{R}$ la fonction $x \mapsto f(x,y)$ est intégrable sur \mathbb{R} .
- **3.** Vérifier que f est mesurable à valeurs positives. Calculer $\iint_{\mathbb{R}^2} f(x,y) \, dx \, dy$.

E.10Changements de variables

Exercice 96. En passant aux coordonnées polaires, calculer l'aire du domaine

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{1}{2} < x^2 + y^2 < 3 \text{ et } y > 0 \right\}$$

(et vérifier qu'on obtient bien le résultat attendu).

Exercice 97. Soit $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \leqslant x, 0 \leqslant y, 0 < x^2 + y^2 \leqslant 1\}$. Calculer

$$\iint_D \frac{1}{1+x^2+y^2} \, dx \, dy.$$

Exercice 98. Calculer $\iint_D \frac{xy}{x^2+y^2} dx dy$, où on a noté $D = \{(x,y) \in \mathbb{R}^2 \mid x \geqslant 0, y \geqslant 0, 1 \leqslant 0\}$ $x^2 + y^2 \leqslant 4\}.$

Exercice 99. On considère le domaine D borné délimité par les droites d'équations x=0, y = x + 2 et y = -x. Calculer l'intégrale $\iint_D (x + y) dx dy$

1. par calcul direct,

2. en effectuant le changement de variable (u, v) = (x + y, x - y).

Exercice 100. Calcular $\iint_D \sqrt{x^2 + y^2} \, dx \, dy$, où $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 - 2x \leq 0\}$.

Exercice 101. Calculer $\iiint_{\mathbb{R}} f(x, y, z) dx dy dz$ dans les cas suivants :

1.
$$f(x, y, z) = \cos x$$
, $D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\}$,

1.
$$f(x,y,z) = \cos x$$
, $D = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\}$, **2.** $f(x,y,z) = \frac{z}{\sqrt{x^2 + y^2}}$, $D = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 4, \ 0 \le z \le 2\}$.

Exercice 102. Calculer l'intégrale de la fonction $f:(x,y)\mapsto (y^2-x^2)^{xy}(x^2+y^2)$ sur le domaine $D=\left\{(x,y)\in\mathbb{R}^2\,|\,0< x< y, a< xy< b, y^2-x^2<1\right\}$, où b>a>0. On pourra effectuer le changement de variables $u=xy,\,v=y^2-x^2$.

Exercice 103. Soit D un domaine de \mathbb{R}^2 . On rappelle que le centre de gravité de D est le point $(x_G, y_G) \in \mathbb{R}^2$ défini par

$$(x_G, y_G) = \frac{1}{\operatorname{Aire}(D)} \left(\iint_D x \, dx \, dy, \iint_D y \, dx \, dy \right).$$

- **1.** Déterminer le centre de gravité du disque $D=\{(x,y)\in\mathbb{R}^2\,|\,x^2+y^2\leqslant 1\}.$ **2.** Pour $k\in\mathbb{N}^*$, on considère le trapèze $D_k\subset\mathbb{R}^2$ de sommets $(0,0),\ (1,0),\ (1,1)$ et (0,k).Déterminer le centre de gravité (x_G, y_G) de D_k . 3. Considérons l'application affine $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$, définie par

$$\varphi(x, y) = (x + 3y, x - y) + (2, 3).$$

- Soit (x'_G, y'_G) le centre de gravité du domaine $\varphi(D)$. Montrer que $(x'_G, y'_G) = \varphi(x_G, y_G)$. 4. Plus généralement, montrer que pour toute application affine (inversible) $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$, le centre de gravité de $\varphi(D)$ est $\varphi(x_G, y_G)$.
- 5. Déduire de la question précédente que si D est symétrique par rapport à l'axe des abscisses et par rapport à l'axe des ordonnées alors son centre de gravité est l'origine.

Exercice 104. Soient a et b des réels positifs. On définit le domaine $D = \{(x,y) \in \mathbb{R}^2 \mid x \geq$ 0, $y \ge 0$, $\frac{x^2}{a} + \frac{y^2}{b} \le 1$ }. 1. Calculer $\iint_D (2x^3 - y) dx dy$.

- **2.** Calculer les coordonnées du centre de gravité de D.

Exercice 105. Soient a>0, b>0 et c>0. Calculer le volume de l'ellipsoïde $\mathcal{E}\subset\mathbb{R}^3$ d'équation

$$\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} < 1.$$

E.11 Espaces de Lebesgue

Exercice 106. Soient (X, \mathcal{M}, μ) un espace mesuré et (Y, \mathcal{N}) un espace mesurable. On note \mathcal{F} l'ensemble des fonctions mesurables de X dans Y et on considère sur \mathcal{F} la relation \mathcal{R} définie par

$$\forall f, g \in \mathcal{F}, \quad f\mathcal{R}g \iff f(x) = g(x) \text{ pour presque tout } x \in X.$$

Montrer que \mathcal{R} est une relation d'équivalence sur \mathcal{F} .

Exercice 107. A quelle condition sur $\alpha \in \mathbb{R}$ et $p \in [1, \infty]$ la fonction $x \mapsto x^{\alpha}$ est-elle dans $L^p([0,1])$? Dans $L^p([0,1])$? Dans $L^p([0,\infty[)]$?

Exercice 108. Soit $p \in [1, +\infty]$. Soit $\lambda > 0$. Soit $\alpha \in \mathbb{R}$. On considère l'application Θ_{λ} qui à $u \in L^p(\mathbb{R}^d)$ associe

$$\Theta_{\lambda}u: x \mapsto \alpha u(\lambda x).$$

- 1. Montrer que Θ_{λ} définit bien une application de $L^p(\mathbb{R}^d)$ dans lui-même.
- **2.** Déterminer α pour que Θ_{λ} soit une isométrie de $L^p(\mathbb{R}^d)$ (c'est-à-dire que $\|\Theta_{\lambda}u\|_p = \|u\|_p$ pour tout $u \in L^p(\mathbb{R}^d)$).

Exercice 109. On se place sur l'espace mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On note λ la mesure de Lebesgue et, pour $a \in \mathbb{R}$, on note δ_a la mesure de Dirac en a. Soit $\alpha > 0$. Pour $A \in \mathcal{B}(\mathbb{R})$ on note

$$\mu(A) = \alpha \int_{[0,1] \cap A} e^{-\alpha x} d\lambda(x) + e^{-\alpha} \delta_1(A)$$

et

$$\nu(A) = \int_{[0,+\infty[\cap A} e^{-\alpha x} d\lambda(x) + \sum_{k=0}^{+\infty} \frac{\alpha^k}{k!} \delta_k(A).$$

- **1.** a. Montrer que μ et ν sont des mesures sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
 - b. Sont-elles finies?
- **2.** Pour $x \in \mathbb{R}$ on note f(x) = x et $g(x) = e^{\alpha x}$.
 - a. Montrer que f et g sont mesurables.
 - b. Sont-elles intégrables par rapports à μ ? par rapport à ν ? Si oui, calculer leurs intégrales.

Exercice 110. Dans le chapitre sur les espaces de Lebesgue, où a-t-on utilisé le fait que $p \ge 1$?

Exercice 111. Soit $p \in [1, +\infty[$.

- **1.** Montrer que si $f \in C^0(\mathbb{R}) \cap L^p(\mathbb{R})$ admet une limite en $+\infty$ alors cette limite est nulle.
- **2.** Montrer qu'il existe $f \in C^0(\mathbb{R}) \cap L^p(\mathbb{R})$ qui ne tend pas vers 0 en $+\infty$.
- **3.** Montrer que si $f \in L^p(\mathbb{R})$ est uniformément continue alors elle tend vers 0 en $+\infty$.

Exercice 112. Soit f une fonction mesurable de (X, \mathcal{M}, μ) dans \mathbb{R} . Montrer que

$$||f||_{\infty} = \sup_{\substack{A \in \mathcal{M} \\ \mu(A) > 0}} \inf_{x \in A} |f(x)|.$$

Exercice 113. Soit $p \in [1, +\infty]$. On note

$$\Omega_p = \{ f \in L^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda) \mid f \geqslant 0 \text{ p.p.} \}.$$

Montrer que Ω_p est d'intérieur vide dans $L^p(\mathbb{R})$ pour $p < +\infty$ et d'intérieur non vide si $p = +\infty$. Indication : on pourra commencer par montrer qu'une fonction $f \in \Omega_p$ bornée n'est pas dans l'intérieur de Ω_p si $p < +\infty$.

Exercice 114. Soit (X, \mathcal{M}, μ) un espace mesuré. Soient $p, q, r \in [1, \infty]$ tels que $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$. Montrer que pour $f \in L^p(X, \mathcal{M}, \mu)$, $g \in L^q(X, \mathcal{M}, \mu)$ et $h \in L^r(X, \mathcal{M}, \mu)$ on a $fgh \in L^1(X, \mathcal{M}, \mu)$ et

$$\left\|fgh\right\|_{L^1(X,\mathcal{M},\mu)}\leqslant \left\|f\right\|_{L^p(X,\mathcal{M},\mu)}\left\|g\right\|_{L^q(X,\mathcal{M},\mu)}\left\|h\right\|_{L^r(X,\mathcal{M},\mu)}.$$

Exercice 115. Soit $f \in L^1_{loc}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ telle que

$$\forall \phi \in C_c^0(\mathbb{R}), \quad \int_{\mathbb{R}} f \phi \, d\lambda = 0.$$

Montrer que f=0 p.p. (la question peut être traitée directement dans le cas général, mais on peut procéder par étapes en considérant successivement les cas où f est elle même continue à support compact, où $f \in L^2$, où $f \in L^1$ et enfin le cas général).

Exercice 116. Soit (X, \mathcal{M}, μ) un espace mesuré. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions dans $L^1(X, \mathcal{M}, \mu) \cap L^{\infty}(X, \mathcal{M}, \mu)$. On suppose que cette suite est bornée dans $L^{\infty}(X, \mathcal{M}, \mu)$ et converge dans $L^1(X, \mathcal{M}, \mu)$ vers une fonction f. Montrer que f_n converge vers f dans $L^p(X, \mathcal{M}, \mu)$ pour tout $p \in [1, +\infty]$.

Exercice 117 (Inégalité de Hardy). Soient $p \in]1, \infty[$ et $f \in L^p(\mathbb{R}_+)$. Pour x > 0 on note

$$F(x) = \frac{1}{x} \int_0^x f(t) dt.$$

On cherche à montrer l'inégalité de Hardy

$$||F||_p \leqslant \frac{p}{p-1} ||f||_p.$$

- **1.** Montrer que F(x) est bien défini pour tout x > 0.
- **2.** On suppose que f est continue à support compact dans \mathbb{R}_+^* et à valeurs positives.
 - a. Montrer que F est de classe C^1 sur \mathbb{R}_+^* et que pour tout $x \in \mathbb{R}_+^*$ on a

$$F(x) = -xF'(x) + f(x).$$

b. À l'aide d'une intégration par parties, montrer que pour tout A > 0 on a

$$\frac{p-1}{p} \int_0^A F(x)^p \, dx \leqslant \int_0^A F(x)^{p-1} f(x) \, dx.$$

- c. Montrer l'inégalité de Hardy pour f continue à valeurs positives.
- **3.** En déduire l'inégalité de Hardy pour f continue à support compact dans \mathbb{R}_+^* .
- 4. En déduire l'inégalité de Hardy dans le cas général.
- **5.** Montrer que la constante $\frac{p}{p-1}$ est optimale (on pourra par exemple considérer pour tout $n \in \mathbb{N}$ la fonction $f_n : x \mapsto x^{-\frac{1}{p}} \mathbb{1}_{[1,n]}(x)$).
- **6.** Examiner les cas p = 1 et $p = \infty$.

Exercice 118. Soit $p \in [1, \infty[$.

- **1.** Donner une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ dans $L^p(\mathbb{R})$ qui converge simplement presque partout vers une fonction g mais qui ne converge pas vers g dans L^p .
- **2.** Donner une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ dans $L^p(\mathbb{R})$ qui converge dans L^p vers une fonction f mais qui ne converge pas simplement presque partout vers f.
- **3.** Montrer que si une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ dans $L^p(\mathbb{R})$ converge dans $L^p(\mathbb{R})$ vers une fonction f et converge simplement presque partout vers une fonction g, alors f=g presque partout.