CSC 2221: Algorithms

Lecture 2

Supta Richard Philip Lecturer

Department of CSE American International University(AIUB).

AIUB, January 2023

- Algorithm
- Characteristics of Algorithm
- Analyzing algorithms: RAM Model
- 4 Loop invariant
- 5 Growth of Functions-Asymptotic notation
 - O -notation
 - Big Theta -notation
 - Omega notation
- Growth Rate
- References

- Algorithm
- Characteristics of Algorithm
- 3 Analyzing algorithms: RAM Model
- 4 Loop invariant
- Growth of Functions-Asymptotic notation
 - O -notation
 - Big Theta -notation
 - Omega notation
- Growth Rate
- References

What is Algorithm?

- Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.[1]
- An algorithm is a sequence of computational steps that transform the input into the output.
- An algorithm as a tool for solving a well-specified computational problem.

Example of Algorithm

- Formally define the **sorting problem**:
- **Input:** A sequence of n number $(a_1, a_2, ...a_n)$
- **Output:** A permutation (reordering) $a'_1, a'_2, ..., a'_n$ of the input sequence such that $a'_1 \leq a'_2 \leq ... \leq a'_n$
- An input sequence (31, 41, 59, 26, 41, 58) is called an instance of the sorting problem.
- Sorting algorithm returns as output the sequence (26, 31, 41, 41, 58, 59)

AIUB 2020

What kinds of problems are solved by algorithms?

- The Human Genome Project: identifying all the 100,000 genes in human DNA. determining the sequences of the 3 billion chemical base pairs that make up human DNA(A,G,C,T) and developing tools for data analysis.
- Network and Graph algorithm: The Internet enables people all around the world to quickly access and retrieve large amounts of information.
- **E-commerce**: depends on the privacy of information such as credit card numbers, bank statements that depends on public-key cryptography and digital signatures, which are based on numerical algorithms and number theory.

- Algorithm
- Characteristics of Algorithm
- Analyzing algorithms: RAM Model
- 4 Loop invariant
- Growth of Functions-Asymptotic notation
 - O -notation
 - Big Theta -notation
 - Omega notation
- Growth Rate
- References

Characteristics of Algorithm

- Unambiguity: A perfect algorithm is defined as unambiguous, which means that its instructions should be clear and straightforward.
- Finiteness: An algorithm must be finite. Finiteness in this
 context means that the algorithm should have a limited number
 of instructions, i.e., the instructions should be countable.
- **Effectiveness:** Because each instruction in an algorithm affects the overall process, it should be adequate.

- Algorithm
- Characteristics of Algorithm
- Analyzing algorithms: RAM Model
- 4 Loop invariant
- Growth of Functions-Asymptotic notation
 - O -notation
 - Big Theta -notation
 - Omega notation
- Growth Rate
- References

Analyzing algorithms: RAM Model

- Analyze an algorithm, we must have a model of the implementation technology that we will use, including a model for the resources of that technology and their costs.
- We shall assume a generic one processor, random-access machine (RAM) model of computation as our implementation technology and understand that our algorithms will be implemented as computer programs.
- In the RAM model, instructions are executed one after another, with no concurrent operations.

- Algorithm
- Characteristics of Algorithm
- Analyzing algorithms: RAM Model
- 4 Loop invariant
- Growth of Functions-Asymptotic notation
 - O -notation
 - Big Theta -notation
 - Omega notation
- Growth Rate
- References

Find max from List

end if

9: end procedure

return currentMax

Algorithm 2 Find Max from List 1: procedure FINDMAX(A, n)2: $currentMax \leftarrow A[0]$ \triangleright 2 steps 3: for i = 0; i < n; i + + do \triangleright i initialize 1, comparison n+1 and i increments n steps 4: if currentMax < A[i] then \triangleright 2*n steps 5: currentMax = A[i] \triangleright 2*n steps

- Sum of all, f(n) = 2 + 1 + (n+1) + n + 2n + 2n + 1 = 6n + 5
- Drop lower order polynomial and coefficient. Time complexity is O(n)
- $f(n) = 2n^2 + 5n + 100$, Time complexity = $O(n^2)$

◆□▶ ◆圖▶ ◆圖▶ ◆團▶

 $\triangleright 1$ steps

For Loop

Algorithm 1 For Loop

```
1: procedure ALGO1(A, n)

2: for i = 0; i < n; i + + do \triangleright i initialize 1 times, comparison n+1 times

3: //statement \triangleright i increments n times and smt execute n times

4: end for

5: end procedure
```

- Sum of all steps, f(n) = 1 + (n+1) + n + n
- Time functions, f(n) = 3n + 2
- Time complexity of the algorithm is O(n)

Nested For Loop

- Time functions, $f(n) = n^2 + n$
- Time complexity of the algorithm is $O(n^2)$

Exercise

- Matrix Sum
- Matrix multiplication

```
Algorithm 4 For Loop

1: procedure ALGO21(A, n, m)

2: for i \leftarrow 0, n do \Rightarrow n times

3: //statement

4: end for

5: for i \leftarrow 0, m do \Rightarrow m times

6: //statement

7: end for

8: end procedure
```


- Algorithm
- Characteristics of Algorithm
- Analyzing algorithms: RAM Model
- 4 Loop invariant
- 5 Growth of Functions-Asymptotic notation
 - O -notation
 - Big Theta -notation
 - Omega notation
- **6** Growth Rate
- References

O notation

• An asymptotic upper bound(Worst Case), we use O notation. For a given function g(n), O(g(n)) is defined as: $O(g(n)) = \{ f(n)$: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0 \}$. As an example, let's have a look at the following figure:

Big Theta notation

• An asymptotic tight bound(average Case), we use Θ notation. we denote by $\Theta(g(n))$, the set of functions $\Theta(g(n)) = \{ f(n) :$ there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1.g(n) \le f(n) \le c_2.g(n)$ for all $n \ge n_0 \}$. As an example, let's have a look at the following figure:

Big Omega notation

• An asymptotic lower bound(best Case), we use Ω notation. we denote by $\Omega(g(n))$, the set of functions $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } cand n_0 \text{ such that } 0 \le c.g(n) \le f(n) \text{ for all } n \ge n_0 \}.$

As an example, let's have a look at the following figure:

- Algorithm
- Characteristics of Algorithm
- Analyzing algorithms: RAM Model
- 4 Loop invariant
- Growth of Functions-Asymptotic notation
 - O -notation
 - Big Theta -notation
 - Omega notation
- 6 Growth Rate
- References

Growth Rate

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01~\mu \mathrm{s}$	$0.033~\mu \mathrm{s}$	$0.1~\mu \mathrm{s}$	$1 \mu s$	$3.63~\mathrm{ms}$
20	$0.004~\mu s$	$0.02~\mu \mathrm{s}$	$0.086~\mu { m s}$	$0.4~\mu s$	1 ms	77.1 years
30	$0.005~\mu \mathrm{s}$	$0.03~\mu \mathrm{s}$	$0.147~\mu s$	$0.9~\mu \mathrm{s}$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu \mathrm{s}$	$0.04~\mu \mathrm{s}$	$0.213~\mu s$	$1.6~\mu s$	18.3 min	
50	$0.006~\mu \mathrm{s}$	$0.05~\mu \mathrm{s}$	$0.282~\mu \mathrm{s}$	$2.5~\mu \mathrm{s}$	13 days	
100	$0.007~\mu s$	$0.1~\mu \mathrm{s}$	$0.644~\mu s$	10 μs	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010~\mu \mathrm{s}$	$1.00~\mu s$	$9.966~\mu s$	1 ms		
10,000	$0.013~\mu s$	$10 \ \mu s$	$130~\mu s$	100 ms		
100,000	$0.017~\mu s$	$0.10~\mathrm{ms}$	$1.67~\mathrm{ms}$	10 sec		
1,000,000	$0.020~\mu \mathrm{s}$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023~\mu \mathrm{s}$	$0.01 \sec$	$0.23 \sec$	$1.16 \mathrm{days}$		
100,000,000	$0.027~\mu s$	$0.10 \sec$	$2.66 \sec$	$115.7 \mathrm{days}$		
1,000,000,000	$0.030~\mu \mathrm{s}$	1 sec	$29.90 \sec$	31.7 years		

Growth rates of common functions measured in nanoseconds

- Algorithm
- Characteristics of Algorithm
- Analyzing algorithms: RAM Model
- 4 Loop invariant
- Growth of Functions-Asymptotic notation
 - O -notation
 - Big Theta -notation
 - Omega notation
- Growth Rate
- References

References

Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charle E. Leiserson, Ronald L. Rivest, Clifford Stein (clrs).

