Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Examen - 7 de febrero de 2019. Duración: 210 minutos

N° de examen	Cédula	Apellido y nombre								

Para cada pregunta o ejercicio, deben presentar claramente el razonamiento y cálculos realizados para obtener su respuesta final. Si una implicancia es válida debido a algún resultado visto en el curso, deben especificarlo enunciando el resultado que usan. Presentar una respuesta final a la pregunta sin justificación carece de validez.

Ejercicio 1.

- a. Sean (G, *, e) un grupo y sea $g \in G$. Definir orden de g en G (que se anota o(g) o bien |g|), sea finito o infinito.
- **b.** Dados un grupo finito (G,*), y elementos $x,y \in G$, tales que xy = yx, con o(x) = a, o(y) = b, m=mcm(a,b) y d=mcd(a,b), entonces, probar que o(xy)|m, y que $\frac{m}{d}|o(xy)$.
- c. Considerar el grupo U(19) (también se usa la notación U(19) = \mathbb{Z}_{19}^*) y calcular el orden de 4, 18 y 4 × 18, usando la parte anterior.

Ejercicio 2.

- a. Definir cuándo dos enteros, $x, y \in \mathbb{Z}$ son congruentes módulo $n \in \mathbb{N}^*$. Enunciar el Teorema de Euler y el Teorema de Fermat.
- **b**. Sean p, a, b naturales tales que p es primo, $b \equiv 0 \mod(p-1)$ y p no divide a a. Encontrar (en función de p) el menor natural x que satisface las siguientes condiciones:

$$a^b x^3 + 8x \equiv 5x^2 + 4 \mod(p);$$

 $x \not\equiv 1 \mod(p);$
 $x > p.$

(Sug.: Factorizar el polinomio: $g(x) = x^3 - 5x^2 + 8x - 4$).

c. Sea x el natural hallado en la parte anterior. Calcular $(x-p)^{10325}$ mód(35).

Ejercicio 3.

- a. i) Definir raíz primitiva.
 - ii) Probar que 2 y 22 son raíces primitivas en U(53) (también se usa la notación U(53) = \mathbb{Z}_{53}^*).
- b. Andrea y Basilio acuerdan comunicarse estableciendo una clave privada mediante el método de Diffie-Hellman. Deciden usar el módulo primo p=53 y como base g=22. Andrea elige el entero m=5, enviándole a Basilio g^m mód(53), mientras que Basilio envía a Andrea $20 \equiv g^n$ mód(53).
 - i) ¿Cuál es la clave privada que acuerdan Andrea y Basilio?
 - ${\it ii}$) ¿Es la clave acordada una raíz primitiva en U(53)? Jusitfique su respuesta.
- c. Andrea le envía a Basilio el siguiente mensaje:

LA GATA GATINA

Y Basilio le responde con un mensaje encriptado utilizando la clave hallada en b. i), y usando el método de cifrado César, con el alfabeto

P	E	C	D	Е	F	G	Н	Ι	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	٧	W	Х	Y	Z	_
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

EGRDMYWRDSMCCS

¿Cuál fue la respuesta de Basilio?