

Opening new horizons

What is AI?

Series of techniques to extract information from data

The more data we have, the more we trade insight for predictive power

Case studies

Computer vision

Glass

Materials discovery

Manufacturing

Sensor data

Steel plate defects

Multi-step pipeline

Can we make a model that classifies the raw image directly?

Neural networks

Inspired by nature

Artificial neurons or perceptrons

A perceptron is equal to linear or logistic regression

Activation functions

Relu

Using non-linear activations any function can be approximated

Convolutional layers

Convolutions allow us to filter using less parameters and have symmetry!

Deep learning

Source: NVIDIA Deep learning training

Features are engineered for you! but need lots of data... or do you?

Transfer learning

Source: NVIDIA Deep learning training

With transfer learning we train on large datasets and finetune on small ones

Residual networks

Normalization and skip connections stabilize training

This session

- Analyze the images
- Choose a model
- Optimize the model
- Evaluate the results
- Interpret with explainable Al

Part of the pipeline needs to run in production

Training a neural network

Batches should contain enough variation

Augmentation

Adding some distortion to images improves our model's robustness

Loss functions

Regression

MSE (L2)

$$\frac{\sum_{N}(target - pred)^{2}}{N}$$

MAE (L1)

$$\frac{\sum_{N}|target - pred|}{N}$$

- Custom weights
- •/\\...

Classification

• (Binary) Cross entropy,

$$-target * log(prob pred) (target=1)$$
$$+(1-target) * log(1-prob pred) (target=0)$$

Summed over classes if multiclass

- For segmentation applied per pixel
- •

The right metric guides the optimizer to the right goal

Loss surfaces

https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b0 50b6c9067c67f663b915-Paper.pdf

Loss functions have complex surfaces with millions of parameters

Optimizing

3blue1brown - https://mlfromscratch.com/optimizers-explained/#/

Gradient descent allows us to stepwise optimize our parameters for our loss

More on optimizers

- https://distill.pub/2017/momentum/ try this yourself
- https://ruder.io/optimizing-gradient-descent/
- https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
- https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

Adding some distortion to images improves our model's robustness

Regularization

Dropout

Randomly delete neurons doing training

Weight decay

Add the norm of weights to loss

Metrics

Metrics can, but don't have to be the same as a loss function (no backprop)

Predicted Actual Loss Probability Sc/ln / 2.82 / 0.94

The best guess is not necessarily a good guess

Softmax

Always gives the best prediction

Sigmoid

Gives probability per class

SHAP

Our input features are pixels, can we trace them to the output?

https://github.com/slundberg/shap

Yes, by comparing to baseline images we can approximate shap values using grads

Scratch is clearly highlighted

SHAP: large defects

Both dark and light regions used

SHAP: distributed defects

Distributed activation regions

Detecting problems with SHAP

Edges seem more important than they should be

INVESTEERT IN JOUW TOEKOMST

View more online

https://ai4mi.epotentia.com

