Intelligence Artificielle – TD 6 et 7

Agents logiques et inférence en logique propositionnelle

Exercice 1

Soit un vocabulaire ne comportant que 4 propositions A, B, C et D. Combien il y a-t-il de modèles pour les énoncés suivants?

1.
$$(A \land B) \Rightarrow (C \lor D)$$

2.
$$(A \land B) \lor (B \land C)$$
 3. $A \lor B$ 4. $(A \Leftrightarrow B) \Leftrightarrow C$

3.
$$A \vee B$$

$$4. (A \Leftrightarrow B) \Leftrightarrow C$$

Exercice 2

Décidez si chacun des énoncés suivants est valide, satisfiable ou insatisfiable.

- 1. $Fumee \Rightarrow Fumee$
- 2. $Fumee \Rightarrow Feu$
- 3. $(Fumee \Rightarrow Feu) \Rightarrow (\neg Fumee \Rightarrow \neg Feu)$
- 4. $Fumee \lor Feu \lor \neg Feu$
- 5. $Fumee \land Feu \land \neg Feu$
- 6. $((Fumee \land Chaleur) \Rightarrow Feu) \Leftrightarrow ((Fumee \Rightarrow Feu) \lor (Chaleur \Rightarrow Feu))$
- 7. $(Fumee \Rightarrow Feu) \Rightarrow ((Fumee \land Chaleur) \Rightarrow Feu)$

Exercice 3

1. Montrez que la formule suivante est une tautologie :

$$(p \wedge q) \vee r \vee (\neg q \wedge \neg r) \vee (\neg p \wedge \neg r)$$

- 2. Pour chacun des trois ensembles de formules suivants, indiquez s'il est inconsistant. Dans le cas contraire, donnez-en un modèle
 - (a) $\{p \lor q, p \Rightarrow q, \neg q\}$
 - (b) $\{p \Rightarrow q, q \Rightarrow r, r \Rightarrow \neg p\}$
 - (c) $\{p \Rightarrow q, q \Rightarrow r, r \Rightarrow \neg p, p \lor \neg s, s\}$

Exercice 4

On rappelle que $\alpha \models \beta$ ssi β est vraie dans tous modèles dans lesquels α est vraie. Prouver les énumérations suivantes :

- 1. α est valide si et seulement si $Vrai \models \alpha$
- 2. Pour tout α , $Faux \models \alpha$
- 3. $\alpha \models \beta$ si et seulement si l'énoncé $(\alpha \Rightarrow \beta)$ est valide
- 4. $\alpha \models \beta$ si et seulement si l'énoncé $(\alpha \land \neg \beta)$ est insatisfiable

Exercice 5

Soit le vocabulaire suivant :

t: La musique est triste r: La musique est rythmée e: Il écoute de la musique

d: Il danse b: Il baille j: Il est joyeux

Traduire en logique propositionnelle les phrases suivantes :

- 1. La musique n'est ni triste ni rythmée
- 2. Il ne baille pas, il est même joyeux.
- 3. Quand il écoute de la musique rythmée, il est joyeux et il danse.
- 4. S'il danse en baillant, c'est qu'il n'est pas joyeux.
- 5. Il écoute en ce moment de la musique triste sans bailler.
- 6. S'il écoute de la musique et qu'il danse, c'est qu'il est joyeux.

Exercice 6

Définir le vocabulaire, et traduire en logique propositionnelle les phrases suivantes :

- 1. Mon père et ma mère ont les yeux marrons et j'ai les yeux bleus
- 2. J'ai les yeux bleus si et seulement si je porte le gène ABleu et le gène BBleu
- 3. Je porte le gène ABleu si et seulement si ma mère le porte, et le gène BBleu si et seulement si mon père le porte.
- 4. Ma mère a les yeux marrons si elle porte le gène ABleu et le gène BMarron

Exercice 7

Appliquez la résolution pour prouver la relation de conséquences suivante :

$$\{p \lor q \lor r, \neg p \lor q \lor r, \neg q \lor r\} \models r$$

Exercice 8

Appliquez la résolution pour prouver la relation de conséquences suivante :

$$\{p \vee \neg r \vee \neg t, r, t \vee \neg p \vee \neg r, t \vee \neg q, \neg p \vee \neg q \vee \neg r\} \models \neg q$$

Exercice 9

Soit la base de connaissances suivante :

- 1. $(\neg p \Rightarrow q) \land (q \Rightarrow t)$
- 2. $(\neg q \Rightarrow s) \land (\neg p \Rightarrow s)$
- 3. $(t \Rightarrow r) \land (p \Rightarrow r)$

Transformez cette base de connaissances en bases de clauses BC, et utilisez la résolution pour prouver que $BC \models r$

Exercice 10

Soit la base de connaissances suivante :

- 1. $b \Rightarrow (a \land d)$
- 2. $(g \Rightarrow b) \land (g \Rightarrow h)$
- 3. $a \wedge b \wedge d \wedge h \Rightarrow e \wedge c$
- 4. $c \wedge d \wedge e \Rightarrow f$

Transformez cette base de connaissances en bases de clauses BC, et utilisez la résolution pour prouver que $BC \models (\neg g \lor f)$

Exercice 11

Traduire en logique propositionnelle les phrases suivantes :

- 1. Jules n'est jamais en vacances quand il lit le journal.
- 2. Pour que Jules soit à la mer, il suffit qu'on soit en été.
- 3. Si Jules est à la mer mais qu'il n'est pas en forme alors il lit le journal.
- 4. Quand Jules n'est pas en vacances alors il ne lit pas le journal.

Utilisez le principe de résolution pour prouver que Jules est toujours en forme en été.

Exercice 12

Soit la base de connaissance suivante :

- 1. $B \wedge D \wedge E \Rightarrow F$
- 2. $G \wedge D \Rightarrow A$
- 3. $C \wedge F \Rightarrow A$
- $4. B \Rightarrow X$
- 5. $D \Rightarrow E$
- 6. $X \wedge A \Rightarrow H$

- 7. $C \Rightarrow D$
- 8. $X \wedge C \Rightarrow A$
- 9. $X \wedge B \Rightarrow D$
- 10. B
- 11. C

Peut-on conclure sur H en chaînage avant? En chaînage arrière?

Exercice 13

Soit la base de connaissance suivante :

- 1. $E \wedge B \Rightarrow C$
- 2. $B \wedge D \Rightarrow A$
- 3. $I \wedge H \Rightarrow B$
- 4. $D \wedge E \Rightarrow B$

- 5. $B \wedge D \Rightarrow F$
- 6. $E \wedge F \Rightarrow O$
- 7. E
- 8. F

Peut-on conclure sur C en chaînage arrière?