Python avancé

Revoir les bases du langage Découvrir des notions avancées du langage Introduction à la data-science et au machine learning avec Python

Intervenant

Alexandre Chevalier - formateur depuis 2018

- Ingénieur développement web
 - Depuis plus de 9 ans
 - En ESN et en start-up
 - 100% freelance depuis 2021
- Compétences principales :
 - Back **Java** (Spring)
 - Front JavaScript (Vue, React)
 - M dev.alexandre.chevalier@gmail.com
 - https://www.linkedin.com/in/alexandre-chevalier-610555ba
 - alexandrechevalier.fr

Contacts

dev.alexandre.chevalier@gmail.com

4lexandre#8029

@AlexandreChevalier

@alexandre.chevalier

Références et ressources

- Documentation officielle
 - https://docs.python.org/fr/3/
- Documentations simples pour Python, ML, numpy, Django, etc.
 - http://www.python-simple.com/
- Cours Python pour la data-science
 - https://www.pythonds.linogaliana.fr/
- Actualité Python (payant)
 - https://realpython.com/

Références ML

- Vidéo d'introduction au machine learning
 - https://www.youtube.com/watch?v=UGPOauhD7Ks
- Cours sur OpenClassrooms
 - https://openclassrooms.com/fr/courses/4011851-initiez-vous-au-machine-learning
- Les bases du machine learning
 - https://machinelearnia.com/machine-learning/
 - o Avec Python: https://machinelearnia.com/python-machine-learning/
- Introduction au ML avec Python
 - https://www.data-transitionnumerique.com/machine-learning-python/
- Modèles ML
 - o https://moncoachdata.com/blog/modeles-de-machine-learning-expliques/
- Apprentissage supervisé ou non
 - https://experiences.microsoft.fr/articles/intelligence-artificielle/apprentissage-supervise-et-non-supervise-quelles-differences/
- Classification
 - https://datascientest.com/algorithme-de-classification-definition-et-principaux-modeles
- Deep Learning
 - o https://datascientest.com/deep-learning-definition
 - https://www.wikiwand.com/fr/Apprentissage_profond

Objectifs de la semaine

- Approfondir Python pour la data-science
- Suivre le cours suivant :
 - https://www.pythonds.linogaliana.fr/

- Découvrir des notions de machine learning
- Tester des librairies comme scikit-learn (ou autres) :
 - https://scikit-learn.org/stable/

Machine Learning

Références et ressources

Machine Learning

- Introduction au machine learning
 - https://www.youtube.com/watch?v=PeMlggyqz0Y

Deep Learning

- Vidéo de vulgarisation sur le deep learning
 - https://www.youtube.com/watch?v=trWrEWfhTVq
- Formation en vidéo sur le deep learning
 - https://www.youtube.com/playlist?list=PLO_fdPEVlfKoanjvT Jblbd9V5d9Pzp8Rw

Machine learning ou deep learning?

- Intelligence artificielle
 - Ensemble des techniques
 permettant de simuler
 l'intelligence du vivant
- Machine learning
 - Apprentissage automatique
- Deep learning
 - Spécialisation du ML en utilisant les réseaux de neurones

Pourquoi faire du ML?

- Quand les données sont abondantes (relativement)
- Mais les connaissances peu accessibles ou peu développées

Classification

- Construire un modèle de classement
- Classer des données dans des catégories

Prédiction

- Modéliser sur des valeurs connues
- "Deviner" quelles pourraient être des valeurs inconnues

A quoi ça sert?

- Objectif global : généraliser à partir du jeu de test
- Classification : classer des données
 - Cette image représente tel animal
 - Détection de visages sur une photo
 - Ce texte parle de tel sujet
- **Prédiction** : imaginer un résultat
 - Autocomplétion de ChatGPT
 - Ce dessin ressemble à telle photo
 - Recommendations Youtube ou Tiktok

Notions de base

- Les algorithmes d'apprentissage
 - Les procédures qu'on entraîne sur les données
 - Pour produire un modèle

Les données :

Des exemples pour entraîner les algorithmes

• L'entraînement :

- Exécuter un algorithme d'apprentissage
- Sur un jeu de données exemple

Un modèle

- L'objectif du ML est d'obtenir un modèle
- Un modèle c'est quoi ?
 - Un algorithme customisé (entraîné)
 - Il est entraîné (customisé) sur des données d'exemples
 - Pour apprendre les relations entre :
 - Les données d'entrée
 - Les données en sortie
 - Quand on lui donnera une nouvelle entrée :
 - Il prédira un résultat probable
 - D'après ce sur quoi il a été entraîné

Quels types de problèmes ?

- Qu'on ne sait pas résoudre classiquement
- Qu'on sait résoudre
 - Mais on ne sait pas formaliser les algorithmes
- Qu'on sait résoudre
 - Mais les techniques classiques sont trop lourdes
 - Trop gourmandes en ressources
 - Exemple : simulations physiques

Programme classique

- Un programme :
 - En entrée : des données
 - En sortie : des résultats
 - C'est comme une fonction
- Programmé explicitement pour produire ce résultat
 - Il n'est pas capable de s'adapter à un nouveau contexte

Apprentissage

- Modification d'un comportement
 - Sur la base d'une expérience
- Apprentissage automatique
- On souhaite faire un programme qui apprend automatiquement
 - Sur une base de données exemple
- Il modifiera son comportement
 - En se basant sur des exemples
 - Mais aussi sur les résultats produits

Machine Learning

- Un programme "apprend" automatiquement
 - Sans être explicitement programmé pour
- Sur des tâches précises et simples
- A partir de données sur lesquelles s'entraîner
- C'est une boîte noire
 - On ne sait pas expliciter mais on sait construire
 - Voir plus tard réseaux de neurones en deep learning
- Problème mathématique d'optimisation (descente de gradient)

Machine Learning

- Branche de l'IA
 - o Il n'y a <u>pas</u> d'intelligence
 - Simulation d'intelligence
 - Une IA ne sait pas inventer
 - Tout ce qu'elle sait, elle l'a déjà vu
- Exemples connus :
 - Reconnaissance d'images
 - Traitement du langage naturel
 - Conduite autonome
 - 0 ...

Types de machine learning

Plusieurs sous-catégories

Voir https://moncoachdata.com/blog/modeles-de-machine-learning-expliques/

Apprentissage supervisé ou non

- Apprentissage supervisé
 - Des exemples annotés (étiquetés ou labellisés)
 - Sont la base d'apprentissage
 - o But : **généraliser** à partir d'exemples
 - Régression et classification
- Apprentissage non supervisé
 - Données non annotées
 - But : découvrir des structures dans ces données
 - Plus complexes et moins prévisibles (voire inattendu ou indésirable)
 - Association et clustering
- Apprentissage semi-supervisé
 - Avec des données étiquetées et non étiquetées

Apprentissage supervisé

- Apprendre une fonction de prédiction
 - A partir d'exemples annotés (supervision)
- Deux grandes familles de problèmes
 - Problèmes de régression
 - Trouver une valeur numérique
 - Problèmes de classification (ou de classement)
 - Classer dans des catégories
- Régression → variables quantitatives
- Classification → variables qualitatives

Qualitative ou quantitative?

- Classification: trouver la variable qualitative
 - Définit une qualité, une caractéristique, un attribut ontologique
 - Répond à une question du style : c'est quoi ?
 - Exemples : espèce animale, forme, type d'aliment, ...
- Régression : trouver la variable quantitative
 - Définit une quantité, un attribut numérique
 - Répond à une question du style : c'est combien ?
 - Exemples : prix, quantité, surface, date, altitude, ...

Classification

- Famille d'algorithmes permettant de classer des données
 - Dans plusieurs catégories
- Beaucoup de modèles différents
- Eager learner (impatient) :
 - Le modèle est entraîné sur la donnée dès le début
 - Exemples : arbres de décision, SVM, réseaux de neurones
 - Use cases : reconnaissance d'images, classifieurs classiques
- Lazy learner (paresseux) :
 - Le modèle s'entraîne sur de la donnée entrante
 - Exemples: K-means, KNN, perceptron
 - Use cases : recommandations Netflix ou Amazon, détection de spam...

Régression

- Méthode d'approximation d'une donnée à partir d'exemples
 - Mathématiquement avec la <u>Méthode des moindres carrés</u>
- La plus connue : la régression linéaire
 - Dans un ensemble de points : trouver une droite
 - Qui passe le mieux et en moyenne par le plus de points

Régression linéaire

- Exemple : trouver une relation dans les données, entre :
 - L'altitude (d'une station de ski)
 - La température dehors
 - \circ En imaginant qu'une telle relation existe : température = f(altitude) = ax+b
- Objectif
 - o **Prédire** la température grâce à l'altitude de la station
- Limites
 - Modélisation approximative sur un seul phénomène
 - Soumise à l'imprécision de la mesure des données
 - Trop simplificatrice (la relation n'est peut-être pas linéaire)

Régression linéaire

- Exemple : trouver une relation dans les données, entre :
 - Le prix d'une maison dans une ville donnée
 - La superficie de la maison
 - \circ En imaginant qu'une telle relation existe : prix = f(superficie) = ax+b
- Objectif
 - Prédire le prix d'une maison grâce à sa superficie
- Limites
 - Modélisation approximative sur un seul phénomène
 - Soumise à l'imprécision de la mesure des données
 - Trop simplificatrice (la relation n'est peut-être pas linéaire)

Régressions non linéaires

- Plusieurs techniques
 - K-NN, SVM, random forest, paramétrique, polynomiale, ...
- Le deep learning est parfois plus efficace

Régression non linéaire obtenue par réseau de neurones

Apprentissage par renforcement

- Agent autonome : programme autonome, comme un robot
- Apprend par l'échec avec optimisation jusqu'à la réussite
- Un peu comme dans un jeu de type "die and retry"
- L'agent (algorithme ou robot) essaie par itération
- Si l'essai est meilleur → meilleure récompense
- Et il retente jusqu'à réussir
 - En partant de la meilleure itération précédente
- But : maximiser les récompenses
 - Jusqu'à la réussite

Surapprentissage (overfitting)

- Quand l'algorithme apprend les erreurs statistiques
 - Dans son modèle
- Trop entraîné sur un jeu de données précis

Time

Deep learning

- Machine learning à base de réseaux de neurones
- Imiter le cerveau avec des "neurones" artificiels
 - Réseaux de plusieurs couches de "neurones"
 - Chaque couche essaye d'identifier une caractéristique à reconnaître

Deep learning

- Pendant l'apprentissage :
 - Ajuster les poids (valeurs) des neurones
 - Pour minimiser l'écart entre le résultat obtenu et le résultat attendu
 - o C'est une boîte noire, les poids ne représentent rien pour un humain

Neurone

- Peut être vu comme une fonction
 - Prend un vecteur en entrée et renvoie une valeur
 - Déterminée par son poids et un seuil d'activation
- Ces données sont modifiées et apprises
 - Pendant l'entraînement du modèle

