Transformaciones Lineales

Tranformaciones Lineales

Pasaremos a comprender el objeto de estudio más importante del **algebra lineal** que son las llamadas transformaciones lineales. Que consisten en simplemente, crear una función con Espacios Vectoriales.

#Definición (Transformaciones Lineales) Sean $(V, +_V, \cdot_V)$ y $(W, +_W, \cdot_W)$ dos \mathbb{K} -Espacios Vectoriales. Una función $f: V \to W$ se le llama transformación lineal (u homomorfismo o simplemente morfismo) de V en W si cumple:

- 1. $f(v +_V v') = f(v) +_W f(v')$
- 2. $f(\lambda \cdot_V v) = \lambda \cdot_W f(v), \ \forall \lambda \in K, \forall v \in V.$

Notemos que el ejemplo más simple de transformación lineal es $0:V\to W$ o también llamada la transformación trivial, que consiste en tomar cualquier vector v del espacio vectorial V y multiplicarlo escalarmente por $0\in\mathbb{K}$ lo cual nos da el 0_W (el cero del espacio vectorial W), $0(v)=0_W$. Sabemos que esta es una transformación lineal porque cumple las dos propiedades:

- $-\ 0(v+_{V}v')=0_{\mathbb{K}}\cdot(v+_{V}v')=0_{\mathbb{K}}\cdot v+0_{\mathbb{K}}\cdot v'=0(v)+_{W}0(v')$
- $-\ 0(\lambda v)=0_{\mathbb{K}}\cdot\lambda\cdot_{V}v=\lambda\cdot_{V}0_{\mathbb{K}}\cdot v=\lambda\cdot_{W}0(v)$

Luego, está la transformación identidad $I:V \to V$ que es no hacerle ningún afecto al vector. Es decir I(v)=v.

Si $T:\mathbb{R}^2\to\mathbb{R}^2$ y la definimos como T(x,y)=(1+x,y) no es una transformación lineal pues $T((x_1,y_1)+(x_2,y_2))=T((x_1+x_2,y_1+y_2))=(x_1+x_2+1,y_1+y_2)$ y que no es igual a $T(x_1,y_1)+T(x_2,y_2)=(x_1+1,y_1)+(x_2+1,y_2)=(x_1+x_2+2,y_1+y_2)$. En general, cuando estamos operando con espacios vectoriales \mathbb{K}^n , sumar constantes a las coordenadas ya evita que pueda ser una transformación lineal, al igual que multiplicar las coordenadas entre si como T(x,y)=xy tampoco es una tranformación lineal (TL). Una forma fácil de comprobar que una función no es una transformación lineal es usando $T(0_V)=0_W$, en el ejemplo anterior T(x,y)=(1+x,y) tenemos que $T(0,0)=(1,0)\neq (0,0)$.

Las transformaciones lineales representan la estructura de un espacio vectorial. De hecho las tras propiedades que tienen que cumplir las TL son muy parecidas a las tres propiedades que tiene que cumplir un Subespacio Vectorial. De esta manera, podemos decir que estamos generando un subespacio en W al agarrar todos los vectores de V y "transformandolos". La siguiente proposición nos dice que podemos agarrar subespacios de un espacio V y usar la tranformación lineal para obtener subespacios de V y viceversa.

Proposición 1. Sea f:V o W una transformación lineal. Entonces,

- 1. Si S es un subespacio de V, entonces f(S) es un subespacio de W.
- 2. Si T es un subespacio de W, entonces $f^{-1}(W)$ es un subespacio de V.

Gracias a la definición de transformación lineal es obvio que estas son capaces de preservar combinaciones lineales de un espacio a otro. Es decir, teniendo una base de un subespacio $S\subset V$ que es $\beta=\{v_1,\ldots,v_n\}$ nos permite escribir de manera **única** los vectores del subespacio como una comb. lineal

por una proposición vista en <u>Bases Vectoriales</u>, tal que si $v \in S$ entonces existen a_i 's únicos de manera que $v = \sum_{i=1}^n a_i v_i$. Luego, $f(v) = f\left(\sum_{i=1}^n a_i v_i\right) = \sum_{i=1}^n a_i f(v_i)$ por la definición de TL. Por la proposición 1 tenemos que los $\{f(v_1), \dots, f(v_n)\}$ generan un subespacio en W.

Esto es útil si nos dan una base de un espacio vectorial de salida V y a donde se dirigen en la imagen de la función, se puede obtener una **transformación única** que cumpla esto. Las siguientes dos proposiciones demuestran lo dicho.

Proposición 2. Sean V y W dos \mathbb{K} -espacios vectoriales, V de dimensión finita. Sea $B=\{v_1,\ldots,v_n\}$ una base de V y sean $w_1,\ldots,w_n\in W$ vectores arbitrarios. Entonces existe una única transformación lineal $f:V\to W$ tal que $f(v_i)=w_i$ para cada $1\le i\le n$.

Se puede generalizar esta proposición para infinitos vectores que sean bases de un espacio vectorial V.

Monomorfismos, Epimorfismos e Isomorfismos

Como las tranformaciones lineales son operaciones entre conjuntos tiene sentido estudiar la validez de las propiedades usuales: inyectividad, suryectividad y biyectividad.

#Definición (-ismos 1) Sean V y W dos $\mathbb K$ espacios vectoriales y sea f:V o W una TL. Se dice que:

- 1. f es un monomorfismo si f es inyectiva.
- 2. f es un epimorfismo si f es suryectiva.
- 3. f es un isomorfismo si f es biyectiva.

#Definición (-ismos 2) Sea V un $\mathbb K$ espacio vectorial y sea $f:V\to V$ una TL, se llama endomorfismo y si además es un isomorfismo se le dice automorfismo.

Una observación que podemos observar de la proposición 1 es que como $\{0\} \subset W$ y es subespacio vectorial de este, entonces $f^{-1}(0)$ también debe ser un subespacio a este lo llamamos núcleo.

```
#Definición (Núcleo de una TL) Sean V y W dos \mathbb{K}-espacios vectoriales, y sea f:V	o W una TL. Se llama núcleo de f al conjunto \mathrm{Nu}(f)=\{v\in V:f(v)=0\}=f^{-1}(0_W)
```

El núcleo se puede usar para determinar si tenemos un **monoformismo** o no pues si existen otros valores que nos den 0_W además de $f(0_V) = 0_W$ entonces no va ser un monoformismo.

Proposición 3. Sea f:V o W una TL. Entonces, f es un monoformismo si y solo si $\mathrm{Nu}(f)=\{0\}$.