Lecture 13. Convolutional Neural Networks

COMP90051 Statistical Machine Learning

Lecturer: Zahra Dasht Bozorgi

This lecture

- Convolution operator
 - * Convolutions
 - Convolution layers in a neural network
- Convolutional neural networks
 - LeNet, ResNet (2d images)
 - * CNN (1d language)

Motivating example

- Image classification X vs $\sqrt{}$
 - instance is matrix of pixels

- How can we apply a neural net?
 - flatten into vector, then use fully connected network

9x9

Fully-connected net, no spatial invariance

Disadvantage: must learn same concept again & again!

 Translation invariance: architecture that activates on the same pattern even if "translated" spatially

Use more depth?

 Inefficient, requires huge numbers of parameters with more hidden layers. Could overfit.

Missed opportunity: sharing weights for these (effectively identical or very similar) input configurations

Convolutional Neural Network (CNN)

- In computer vision, filters are small square patterns such as line segments or textures, used as features
- Need ways to: match filters against image (next); learn filters
- Key idea: learn translation invariant filters parameter sharing

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86.11 (1998): 2278-2324.

Convolution operator

Allows us to match a small filter across multiple patches of a 2D image or range of a 1D input

Convolution

- Concept from signal processing, with wide-spread application
 - Defined as

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

- * Measures how the shape of one function matches the other as it slides along.
- ConvNets use this idea applied to discrete inputs

Convolution in 1D

A.k.a. "time delay" neural network

Convolution in 1D

^{*}Unrelated to definition of kernel (for SVMs) seen in subject, as a function representing a dot product

Convolution on 2D images

Convolution in 2D

 Use filter/kernel to perform element-wise multiplication and sum for every local patch

Image decomposes into local patches

- Different local patches include different patterns
 - we can first extract local features (local patterns) and then combine local features for classification

Convolutional filters (aka kernels)

Filters/kernels can identify different patterns

 When input and kernel have the same pattern: high activation response

Different kernels identify different patterns

Convolution in 2D example (MNIST)

Response map (Feature map) for single kernel

 Different kernels identify different patterns: use several filters in each layer of network

Convolution parameters

- Filters are parameters themselves to be learned (next time)
- Key hyperparameters in convolution
 - Kernel size: size of the patches
 - Number of filters: depth (channel) of the output
 - Stride: how far to "slide" patch across input
 - Padding of input boundaries with zeros (black here)

Convolution on Multiple-channel input

Mini Summary

- Convolution operator
 - Convolutions in 1D, 2D
 - * Convolution layers in a neural network

Next: CNNs in practice

Convolutional Neural Networks (CNN)

Deep networks combining convolutional filters, pooling and other techniques

CNN for computer vision

LeNet-5 sparked modern deep models of vision

Turing * "C" = convolution, "S" = down-sampling, **Award** "F" = fully connected Inside C3: f. maps 16@10x10 C1: feature maps S4: f. maps 16@5x5 **INPUT** 6@28x28 32x32 S2: f. maps C5: layer F6: layer OUTPUT 6@14x14

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86.11 (1998): 2278-2324.

Gaussian

Full connection

Components of a CNN

- Convolutional layers
 - Complex input representations based on convolution operation
 - Filter weights are learned from training data
- Downsampling, usually via Max Pooling
 - * Re-scales to smaller resolution, limits parameter explosion
- Fully connected parts and output layer
 - Merges representations together

Downsampling via max pooling

- Special type of processing layer. For an $m \times m$ patch $v = \max(u_{11}, u_{12}, ..., u_{mm})$
- Strictly speaking, not everywhere differentiable. Instead, gradient is defined according to "sub-gradient"
 - * Tiny changes in values of u_{ij} that is not max do not change v
 - * If u_{ij} is max value, tiny changes in that value change v linearly
 - * Use $\frac{\partial v}{\partial u_{ij}}=1$ if $u_{ij}=v$, and $\frac{\partial v}{\partial u_{ij}}=0$ otherwise
- Forward pass records maximising element, which is then used in the backward pass during back-propagation

Convolution + Max Pooling → Translation invariance

- Consider shift input image
 - * exact same kernels will activate, with same responses
 - max-pooling over the kernel outputs gives same output
 - * size of max-pooling patch limits the extent of invariance
- Can include padding around input boundaries

Convolution as a regulariser

Conv Nets learn hierarchical patterns

Stacking several layers of convolution:
 larger size of receptive field (more of input is seen)

Inspecting learned kernels

Kernels (grey) and some images that strongly activate each kernel

Zeiler, M., and R. Fergus. "Visualizing and understanding convolutional networks." *European conference on computer vision*. 2014

ConvNets in Computer Vision

- ResNet represents modern state-of-the-art
 - Up to 151 layers (!)
 - mixture of convolutions, pooling, fully connected layers
- Critical innovation is the "residual connection"
 - linear copy of input to output
 - easier to optimise despite depth,
 solving gradient vanishing problem

 Standard practise to pretrain big model on large dataset, then fine-tune (continue training) on small target task

ConvNets for Language

- Application of 1d kernels to word sequences
 - capture patterns of nearby words

This lecture

- Convolutional Neural Networks
 - Convolution operator
 - * 1d vs 2d convolutions
 - * Elements of a convolution-based networks
 - ConvNets in practice for vision & language

Next lecture: Recurrent Neural Networks (RNNs)