# COMP 64101 Reasoning and Learning under Uncertainty

#### Omar Rivasplata

Department of Computer Science, University of Manchester Manchester Centre for AI Fundamentals

Lecture 4 - Part 1





# Topics: Bayesian Neural Networks

I know it's [Tuesday]. It's a good day for math!

—Inspired by Max Mintz, UPenn.

- Intro (§ 17.1), NNs, BNNs
- Priors for BNNs (§ 17.2)
- Posteriors for BNNs (§ 17.3)
- Generalization in Bayesian deep learning (§ 17.4)
- Online inference (§ 17.5), Hierarchical BNNs (§ 17.6)

**Nota bene:** Section numbers refer to Murphy (2023).

# (Pre-) Introduction: Neural Networks



- Neural networks (NNs) are are computational models defined via successive compositions of linear and non-linear functions.
- The classical NN model corresponds to a graph consisting of nodes and a set of edges that link some pairs of nodes.

# (Pre-) Introduction: A single neural unit

• The figure shows the computation at a single node of the graph:



 This computational model is called a perceptron, and it can be considered to be the basic building block for neural networks.

# (Pre-) Introduction: A single neural network layer

- ullet A single 'neural network layer' is a mapping  $\mathbb{R}^{d_{\ell-1}} o \mathbb{R}^{d_\ell}$  formed by
  - linear operations: some (affine) linear mapping defined by a matrix  $\mathbf{A} \in \mathbb{R}^{d_\ell \times d_{\ell-1}}$  and bias vector  $\mathbf{b} \in \mathbb{R}^{d_\ell}$ ; this mapping therefore takes in an input  $\mathbf{x} \in \mathbb{R}^{d_{\ell-1}}$  and produces a vector output  $\mathbf{A}\mathbf{x} + \mathbf{b} \in \mathbb{R}^{d_\ell}$ .
  - nonlinear operations: the previous linear operations are followed by coordinate-wise application of a non-linear function  $\sigma(\cdot): \mathbb{R} \to \mathbb{R}$ .

The resulting output of the layer being a vector with components

$$\sigma((\mathbf{A}\mathbf{x}+\mathbf{b})_1), \ \sigma((\mathbf{A}\mathbf{x}+\mathbf{b})_2), \ \ldots, \ \sigma((\mathbf{A}\mathbf{x}+\mathbf{b})_{d_\ell})$$

- Neural network models are then defined by stacking layers of this kind.
- Notice:  $(\mathbf{A}\mathbf{x} + \mathbf{b})_i = \sum_{j=1}^{d_{\ell-1}} A_{i,j} x_j + b_i$
- Each  $\sigma((\mathbf{A}\mathbf{x} + \mathbf{b})_i)$  is a **perceptron**.

# (Pre-) Introduction: Fully Connected Feed Forward NN

- Suppose a neural network model is defined by stacking L layers.
- Formally, this is a composition of functions:

$$\mathbb{R}^{d_0} \to \mathbb{R}^{d_1} \to \cdots \to \mathbb{R}^{d_{\ell-1}} \to \mathbb{R}^{d_\ell} \to \cdots \to \mathbb{R}^{d_{L-1}} \to \mathbb{R}^{d_L}$$

#### where

- $d_0$  is the input dimension (data inputs).
- $d_{\ell}$  is the dimension (number of neurons) for layer  $\ell$ .
- each layer  $\ell$  has its own matrix  $\mathbf{A}^{(\ell)}$ , bias  $\mathbf{b}^{(\ell)}$ , and nonlinearity  $\sigma^{(\ell)}$ . (It is common to use the same nonlinearity  $\sigma^{(\ell)} = \sigma$  for all layers.)
- ullet layer  $\ell$  takes in  $\mathbf{x}^{(\ell-1)} \in \mathbb{R}^{d_{\ell-1}}$  and outputs a vector  $\mathbf{x}^{(\ell)} \in \mathbb{R}^{d_\ell}$
- The trainable parameters of this model consist of all the entries of all the matrices and bias vectors for all layers. Called weights.
  - **N.B.:** This model is also called a **multilayer perceptron** (MLP).

# (Pre-) Introduction: Classical Neural Network Training

- Input data are feature vectors  $\mathbf{x}_1, \dots, \mathbf{x}_N$
- Supervised learning: need labels  $y_1, \ldots, y_N$
- Train NN parameters via Empirical Risk Minimisation (ERM).
- This is a form of maximum likelihood estimation.
- Can use penalisation (regularisation).
- Loss is a weight-dependent and data-dependent function.
- Optimise the loss w.r.t weights using gradient descent methods.
- Stochastic Gradient Descent (SGD): Use random mini-batches.
- **Result:** A fixed setting of the trainable parameters (weights), corresponding to a single function from input features to labels.

# 17.1 Introduction: Bayesian Neural Networks (BNNs)

- A given neural network architecture can represent many functions, corresponding to different settings of the parameters (weights).
- Many parameter settings can fit the training data well, yet exhibit different properties outside the training data.
- Considering all of these different models together can lead to improved accuracy and uncertainty representation.
- Choices to consider:
  - Prior distribution
  - Likelihood
- Posterior distribution is defined by these choices.

#### 17.2 Priors for BNNs

• In case of interest, a good review:

# PRIORS IN BAYESIAN DEEP LEARNING: A REVIEW Vincent Fortuin Department of Computer Science ETH Zürich Zürich, Switzerland fortuin@inf.ethz.ch

- Contains a lot more than BNNs
   (e.g. Deep Gaussian Processes, VAEs, neural processes.)
- Section 4 therein is specifically about priors in BNNs.
- And Section 5 therein is about "learning the prior"

# 17.2.1 Gaussian priors (for MLPs)

ullet One hidden layer with activation function arphi and "linear" output layer:

$$f(\mathbf{x}, \boldsymbol{\theta}) = \mathbf{W}_2 \varphi(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2$$

To specify the prior:

$$\boldsymbol{W}_{\ell} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_{weights\_\ell}), \quad \boldsymbol{b}_{\ell} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_{bias\_\ell}), \quad \ \ell = 1, 2.$$

- Notes:
  - Covariance matrices of the corresponding dimensions.
  - $\bullet$   $b_\ell$  is random vector, so  $\pmb{\Sigma}_{\mathsf{bias}\_\ell}$  is the covariance matrix for  $b_\ell$  as usual.
  - $\mathbf{W}_1, \mathbf{W}_2$  are matrices! So then the interpretation of  $\mathbf{\Sigma}_{\text{weights}\_1}, \mathbf{\Sigma}_{\text{weights}\_2}$  is the covariance matrices corresponding to their *flattened* versions.
- Commonly used simplifications:
  - Covariance is diagonal (which corresponds to independent weights!)
  - Covariance is a multiple of the identity (same variance for all weights).

ullet L hidden layers with activation function arphi and "linear" output layer:

$$f(\mathbf{x}, \boldsymbol{\theta}) = \mathbf{W}_{L}\varphi(\mathbf{W}_{L-1}\varphi(\cdots \mathbf{W}_{2}\varphi(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2})\cdots + \mathbf{b}_{L-1}) + \mathbf{b}_{L}$$

To specify the prior:

$$\mathbf{W}_{\ell} \sim \mathcal{N}(\mathbf{0}, \alpha_{\ell}^2 \mathbf{I}), \quad \mathbf{b}_{\ell} \sim \mathcal{N}(\mathbf{0}, \beta_{\ell}^2 \mathbf{I}), \quad \ell = 1, \dots, L.$$

• Weight initialization:

• Xavier Glorot: 
$$\alpha_\ell^2 = \frac{2}{n_{\rm in} + n_{\rm out}}$$
  $n_{\rm in} = d_{\ell-1}$  (fan-in)  $n_{\rm out} = d_\ell$  (fan-out)

• Question: What parameters does parameter vector  $\theta$  represent?

- The Gaussian prior over weights (and biases), formally speaking, depends on the chosen mean parameters and variance parameters.
- It is common choice to set the mean to **0** as in the previous slide.
- The prior variance parameter for the bias parameters of a given layer is the same as for the weight parameters in the same layer.
- In this case, the Gaussian prior parameters are called hyperparameters.
- Always ask what the word 'parameters' represents in a given context!

ullet One hidden layer with activation function arphi and "linear" output layer:

$$f(\mathbf{x}, \boldsymbol{\theta}) = \mathbf{W}_2 \varphi(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2$$

• To specify the prior:

$$\mathbf{W}_{\ell} \sim \mathcal{N}(\mathbf{0}, \alpha_{\ell}^2 \mathbf{I}), \quad \mathbf{b}_{\ell} \sim \mathcal{N}(\mathbf{0}, \beta_{\ell}^2 \mathbf{I}), \quad \ell = 1, 2.$$

• Equivalently:

$$\mathbf{W}_{\ell} \sim \alpha_{\ell} \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \mathbf{b}_{\ell} \sim \beta_{\ell} \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \ell = 1, 2.$$

- Define the random  $\eta_\ell \sim \mathcal{N}(\mathbf{0},\mathbf{I})$ , and similarly  $\epsilon_\ell \sim \mathcal{N}(\mathbf{0},\mathbf{I})$ .
- Can write:  $f(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \alpha_2 \boldsymbol{\eta}_2 \varphi(\alpha_1 \boldsymbol{\eta}_1 \mathbf{x} + \beta_1 \boldsymbol{\epsilon}_1) + \beta_2 \boldsymbol{\epsilon}_2$



Figure 17.1 in Murphy (2023).

# 17.2.2 Sparsity-promoting priors



Fig. 2. Training, Inference, and Sparsification examples.

More details about this, and more, in Hoefler et al. (2021).

# 17.2.3 Learning the prior

- Different priors on parameters correspond to priors on functions.
- Can in principle set hyperparameters (e.g.  $\alpha, \beta$  for Gaussian prior) using grid search to optimise the cross-validation loss.
- A problem: Cross-validation loss is a good estimate of the true loss for stable learning rules. The stability of NNs is an open problem.
- Another problem: Cross-validation can be computationally costly because it scales exponentially with number of hyperparameters.
- Workaround: Optimise the marginal likelihood (a.k.a. evidence)

$$p(\mathcal{D}|\alpha,\beta) = \int p(\mathcal{D}|\mathbf{w},\alpha,\beta)p(\mathbf{w}|\alpha,\beta)d\mathbf{w}$$

- This is called empirical Bayes or evidence maximisation.
- N.B.: There are other approaches for learning the prior.

# 17.2.4 Priors in function space

• **To do:** Read about this (Murphy (2023), p. 648).

### 17.2.5 Architectural priors

- **To do:** Read about this (Murphy (2023), p. 649).
- In particular, read the note about **neural architecture search** being a form of structural prior learning.

#### 17.3 Posteriors for BNNs

Most important thing to learn:

$$p(\mathbf{w}|\mathcal{D}, \boldsymbol{ heta}) = rac{p(\mathcal{D}|\mathbf{w}, oldsymbol{ heta})p(\mathbf{w}|oldsymbol{ heta})}{p(\mathcal{D}|oldsymbol{ heta})}$$

Let's make it easy to remember:

$$posterior = \frac{likelihood \times prior}{evidence}$$

• Where 'evidence' is the normalization:

$$p(\mathcal{D}|\boldsymbol{\theta}) = \int p(\mathcal{D}|\mathbf{w}, \boldsymbol{\theta}) p(\mathbf{w}|\boldsymbol{\theta}) d\mathbf{w}$$

# 17.3 Posteriors for BNNs - case of supervised learning

- Dataset  $\mathcal{D}$  is a list of pairs  $(\mathbf{x}, y)$ , with input features  $\mathbf{x}$  and labels y.
- Have discussed the posterior distribution over weights  $p(\mathbf{w}|\mathcal{D}, \theta)$ .
- Interest is on a posterior predictive distribution  $p(y|\mathbf{x}, \mathcal{D}, \theta)$ .

#### More on Posteriors for BNNs

- 17.3.1 Monte Carlo dropout
  - **To do:** Read about this (Murphy (2023), pp. 649 650).
- 17.3.2 Laplace approximation
  - To do: Read about this (Murphy (2023), pp. 650 651).
- 17.3.3 Variational inference
  - **To do:** Read about this (Murphy (2023), pp. 651 652).
- 17.3.4 Expectation propagation
  - **To do:** Read about this (Murphy (2023), p. 652).
- 17.3.5 Last layer methods
  - **To do:** Read about this (Murphy (2023), pp. 652 653).

#### Even more on Posteriors for BNNs

- 17.3.6 SNGP
  - **To do:** Read about this (Murphy (2023), p. 653).
- 17.3.7 MCMC methods
  - **To do:** Read about this (Murphy (2023), pp. 653 654).
- 17.3.8 Methods based on the SGD trajectory
  - **To do:** Read about this (Murphy (2023), pp. 654 655).
- 17.3.9 Deep ensembles
  - **To do:** Read about this (Murphy (2023), pp. 655 659).
- 17.3.10 Approximating the posterior predictive distribution
  - **To do:** Read about this (Murphy (2023), pp. 659 662).
- 17.3.11 Tempered and cold posteriors
  - To do: Read about this (Murphy (2023), pp. 662 663).

# Next: Generalisation in deep learning

- Generalisation is about out-of-sample performance.
- Here "sample" can be a training data or testing data.
- I know how my NN did on training data and on testing data.
   Question: How will it do on yet unseen data?
- Need guarantees of predictive performance for unseen data.
- Ideally: guarantees that hold at distribution level.

# Different settings require different approaches

- In-distribution generalisation:
  - Training data from distribution *P*.
  - Testing data from distribution *P*.
  - All future data to come from distribution *P*.
  - Did well on training and testing data.
  - Want to ensure doing well on future data.
- Out-of-distribution generalisation
  - Training data from distribution  $P_0$ .
  - Testing data from distribution  $P_0$ .
  - Future data may come from distribution  $P_1$ .
  - Did well on training and testing data.
  - Want to ensure doing well on future data.

# 17.4 Generalisation in Bayesian deep learning

- Bayesian methods are principled and generally interpretable.
- Arguments that Bayesian methods improve predictive accuracy and generalisation performance.
- However: Bayesian methods can be computationally expensive!

# 17.4.1 [Flat vs sharp] minima



Figure 17.10 in Murphy (2023).

# 17.4.2 Mode connectivity and the loss landscape

- NN loss surfaces can have many near-zero loss solutions.
- Mode connectivity: The observation that any two independently trained SGD solutions connected by a curve (in some subspace of weight space) along which the training loss remains near-zero!



Figure 17.11 in Murphy (2023).

# 17.4.3 Effective dimensionality of a model

• 
$$N_{\text{eff}}(\mathbf{H}, c) = \sum_{i=1}^{k} \frac{\lambda_i}{\lambda_i + c}$$

- Where  $\lambda_i$  are the eigenvalues of the Hessian matrix **H** at a local mode.
- c > 0 is a regularisation parameter.



Figure 17.12 in Murphy (2023).

# 17.4.4 The hypothesis space of DNNs

- Observations of Zhang et al. (2017) showed that CNNs can fit CIFAR-10 images with random labels with zero training error, but can still generalize well on the noise-free test set.
- It was claimed that this observation apparently contradicts the classical understanding of generalization.



Figure 17.13 in Murphy (2023).

# 17.4.5 PAC-Bayes

- PAC-Bayes bounds
- A kind of statistical learning bounds
   (a.k.a. generalization bounds, risk bounds)
- Can be used for
  - Certification: Evaluating a bound value for a randomised classifier defined by some probability distribution over classifiers.
  - Optimisation: Using the bound as learning objective to get a probability distribution over classifiers (e.g. over NN weights).
- See Pérez-Ortiz et al. (2021) for more details on this.
- Ask me about this if you're interested.
   (i.e. don't trust Murphy (2023) on this!)

# More on PAC-Bayes: Figure 3 in Pérez-Ortiz et al. (2021)



# More on PAC-Bayes: Figure 1 in Pérez-Ortiz et al. (2021)



# 17.4.6 Out-of-distribution generalization for BNNs

Various (B)NNs when presented with the training data 'blue vs red.'
 The green blob is an example of some OOD inputs



Figure 17.15 in Murphy (2023).

# More topics in Chapter 17

- 17.4.7 Model selection for BNNs
  - **To do:** Read about this (Murphy (2023), p. 669).
- 17.5 Online inference
  - **To do:** Read about this (Murphy (2023), pp. 670 675).
  - 17.5.1 Sequential Laplace for DNNs
  - 17.5.2 Extended Kalman filtering for DNNs
  - 17.5.3 Assumed density filtering for DNNs
  - 17.5.4 Online variational inference for DNNs
- 17.6 Hierarchical Bayesian neural networks
  - **To do:** Read about this (Murphy (2023), pp. 675 678).

# 17.6.1 Example: multimoons classification



Figure 17.17 in Murphy (2023).

#### References

- Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. *Journal of Machine Learning Research*, 22(241):1–124, 2021.
- Kevin P. Murphy. *Probabilistic Machine Learning: Advanced Topics*. MIT Press, 2023. URL http://probml.github.io/book2.
- María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk certificates for neural networks. *Journal of Machine Learning Research*, 22(227):1–40, 2021.
- Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. *ICLR*, 2017. Preprint version arXiv:1611.03530.