Dashboard
Assessments
Premium Bootcamps
Free Courses
Webinar & Events
Career Paths
Messages

Data Engineering Diploma Program

SS
SanyaSyed
sanyashireen@gmail.com
Programs Settings
Sign Out

Notes
Video
Wark as Complete

Mini Project--ETL and Data Loads

Data Engineering Diploma

Content developed by: WeCloudData Academy

1. Project Requirements

Step 1 - Load The Original Dataset

You have a set of data. The dataset includes tables store, product, inventory, sales and calendar. These are the tables from operational databases.

Store		product		Inventory		sales		calendar	
store_key	integer	prod_key	integer	cal_dt	date	trans_id	date	cal_dt	date
store_num	varchar(30)	prod_name	varchar(30)	store_key	int	prod_key	int	cal_type_desc	varchar(30)
addr	varchar(500)	vol	number(38,2)	prod_key	int	store_key	int	day_of_wk_num integer	
city	varchar(50)	wgt	number(38,2)	inventory_on_hand_qty	number(38,2)	trans_dt	date	day_of_wk_desc varchar(3	
region	varchar(100)	brand_name	varchar(100)	inventory_on_order_qty	number(38,2)	trans_time	int	yr_num	integer
entry_cd	varchar(30)	status_code	varchar(30)	out_of_stock_flg	boolean	sales_qty	number(38,2)	wk_num	integer
entry_nm	varchar(30)	status_code_name	varchar(30)	waste_qty	number(38,2)	sales_price	number(38,2)	yr_wk_num	integer
postal_zip_cd	varchar(10)	category_key	integer	promotion_flg	boolean	sales_amt	number(38,2)	mnth_num	integer
prov_state_desc	varchar(30)	category_name	varchar(30)	next_delivery_dt	date	discount	number(38,2)	yr_mnth_num	integer
orov_state_cd	varchar(30)	subcategory_key	integer			sales_cost	number(38,2)	qtr_num	integer
store_type_cd	varchar(30)	subcategory_name	varchar(30)			sales_mgrn	number(38,2)	yr_qtr_num	integer
store_type_desc	varchar(100)					ship_cost	number(38,2)		
frnchs_flg	boolean								
store_size	numeric								
market_key	integer								
market_name	varchar(150)								
submarket_key	integer								
submarket_nam	varchar(150)								
atitude	numeric(19, 6)								
ongitude	numeric(19, 6)								

You need to download the dataset from this link and load the data into a schema of the Snowflake data warehouse. (It is easier to load the csv files from DBeaver)

You can use this script to build the schema for the original system dataset tables.

Step 2 - Read and Understand the Business Requirements and data model

We have create the data model. You need to populate the data from the original schema to the data model schema.

First of all, The data model has 3 dimensions: store, date, product.

For the fact table, we need 2 fact tables:

- Daily fact table: On the daily level, the row grain is date + store + product. In the daily fact table, in addition to the existing columns from the sales and inventory tables, in the fact table we need one more column called "low stock fig". This flag is True when sales day in the sales table lower than the stock on hand day in the inventory at that date.
- "low_stock_fig". This flag is True when sales_qty in the sales table lower than the stock_on_hand_qty in the inventory at that date.

 Weekly fact table: We need the second fact table on weekly base. This week table contains all the aggregate values from the daily fact table and also includes some new columns:

9/18/25, 5:15 PM WeCloudData

- o eop_stock_on_hand_qty: This is the on hand stock qty at the end of week (Saturday), which means the on hand stock qty of the last day in the week. So you can't simply aggregate it.

 - eop_stock_on_order_qty: This is the on order stock qty at the end of week (Saturday).
 out_of_stock_times: During one week, how many times when the out_of_stock_flg is True.
 - in_of_stock_times: During one week, how many times when the in_of_stock_flg is True.
 - low_stock_times: During one week, how many times when the low_stock_flg is True.

So to wrap up, the data model of the project has 3 dimension tables and 2 fact tables (one for daily, one for weekly). The data model can be found from here.

Dimensions	:					Fact tables					
calendar_dim		store_dim	2	product_dim		Daily Fact			Weekly Fact		
cal_dt	date	store_key	integer	prod_key	integer	sales_inv_store_dy		Explanation	sales_inv_store_wk		
cal_type_name	varchar(30)	store_name	varchar(150)	prod_name	varchar(30)	cal_dt	date		yr_num	integer	
day_of_wk_num	integer	status_code	varchar(10)	vol	number(38,2)	store_key	integer		wk_num	integer	
year_num	integer	status_cd_name	varchar(50)	wgt	number(38,2)	prod_key	integer		store_key	integer	
week_num	integer	addr	varchar(50)	brand_name	varchar(30)	sales_qty	number(38,2)	sum(sales_qty) per day	prod_key	integer	
year_wk_num	integer	city	varchar(100)	status_code	integer	sales_price	number(38,2)	avg(sales_price) per day	wk_sales_qty	number(38,2)	sum(sales_qty) per week
month_num	integer	region	varchar(30)	status_code_name	varchar(30)	sales_amt	number(38,2)	sum(sales_amt) per day	avg_sales_price	number(38,2)	avg(sales_price) per week
year_month_num	integer	cntry_cd	integer	category_key	integer	discount	number(38,2)	avg(discount) per day	wk_sales_amt	number(38,2)	sum(sales_amt) per week
qtr_num	integer	cntry_nm	varchar(30)	category_name	varchar(30)	sales_cost	number(38,2)	sum(sales_cost) per day	wk_discount	number(38,2)	avg(discount) per week
yr_qtr_num	integer	postal_zip_cd	integer	subcategory_key	integer	sales_mgrn	number(38,2)	sum(sales_mgm) per day	wk_sales_cost	number(38,2)	sum(sales_cost) per week
update_time	timestamp	prov_name	varchar(50)	subcategory_name	varchar(30)	stock_on_hand_qty	number(38,2)	stock on hand gty of the date	wk_sales_mgrn	number(38,2)	sum(sales_mgrn) per week
		prov_code	integer	tlog_active_flg	boolean	ordered_stock_qty	number(38,2)	stock_ordered_qty of the date	eop_stock_on_hand_qty	number(38,2)	the on hand stock of the last day in the wee
		market_key	integer	start_date	date	out_of_stock_flg	boolean	out_of_stock_flg of the date	eop_ordered_stock_qty	number(38,2)	the on order stock of the last day in the wee
		market_name	varchar(150)	end_date	date	in_stock_flg	boolean	in_stock_flg of the date	out_of_stock_times	integer	count(out_of_stock_flg) per week
		submarket_key	integer	update_time	timpstemp	low_stock_flg	boolean	true when sales_qty > stock_on_hand_qty of the date	in_stock_times	integer	count(in_stock_fig) per week
		submarket_name	varchar(150)			update_time	timestamp		low_stock_times	integer	count(low_stock_flg) per week
		latitude	number(38,2)						update_time	timestamp	
		longitude	number(38,2)								
		tlog_active_flg	boolean								
		start_dt	date								
		end_dt	date								
		update_time	timpstamp								

Step 3 - Create data model in Snowflake schema and Populate data in the data model for the first time.

- · Create a schema on Snowflake
- · Create physical data model tables in the schema
- Create ETL script to populate data from the original dataset to the data model.
- Be aware of your ETL scripts, make sure they are also available for the later Delta data loading.

Step 4 - Update the original dataset with the following scripts.

```
Update FACT raw tables
INSERT INTO walmart.SALES
 VALUES
VALUES (302836,540260,3220,'2012-12-31',18,37.80,3.58,129.42,0.01,300.72,-150.37,5.47), (312076,399912,3220,'2013-01-01',7,29.00,145.45,3773.59,0.02,3486.71,731.32,17.85), (337584,135665,1104,'2013-01-02',18,11.00,41.32,447.09,0.09,365.40,89.03,8.66);
INSERT INTO walmart.INVENTORY
VALUES (2012-12-31',1103,540260,26.46,75.60,1,0.00,'FALSE','2012-12-31'), ('2012-12-31',1103,904715,27.09,21.07,0,1.00,'FALSE','2012-12-31'), ('2013-01-01',1104,135665,11.00,14.30,1,0.00,'FALSE','2012-12-31'), ('2013-01-01',1104,200147,6.72,5.88,0,0.00,'TRUE','2012-12-31'), ('2013-01-02',1104,399912,7.83,46.98,1,1.00,'TRUE','2012-12-31');
Update DIM table product
UPDATE walmart.PRODUCT SET PROD_NAME='CHANGE-1' WHERE PROD_KEY=657768;
UPDATE walmart.PRODUCT SET PROD_NAME='CHANGE-2' WHERE PROD_KEY=293693;
INSERT INTO walmart.PRODUCT VALUES (999999,'ADD-1',2.22, 88.88, 'brand-999', 1, 'active', 4, 'category-4', 1, 'subcategory-1');
```

Step 5 - Check if the raw data has been updated.

Step 6 - Run script again to load data from the original dataset to the data model tables. Check the result sample with the following queries:

SELECT min(cal_Dt), MAX(cal_dt) FROM walmart_anl.sales_inv_store_dy; SELECT * FROM walmart_anl.product_dim WHERE PROD_KEY=657768;

5. Help

```
If you are facing big challenges please find help from here.
Course Index
×
All
Lecture
Recordings
Practices
Bookmarked
ORIENTATION
□~
Chapter overview
Orientation Video
Orientation Video
PHASE ONE: ANALYTICAL ENGINEERING
Chapter overview
Introduction
Project Description
Syllabus
Syllabus
[Week 1] <Data Ingestion> Linux and AWS Foundation \square \blacktriangleright
Chapter overview
```

```
Week Plan
 [Week Plan] W1
 Lectures and Lab
 [Lecture] 1 : Linux (2023-07-25)
 [Lecture] 2 : AWS Basics (2023-07-27)
[Lab] 1 : AWS and Linux Workshop (2023-07-29)
 Practice
 [Exercises] 42 Linux Exercises
[Exercise] Hackerrank Linux Practice
 [Workshop] AWS EC2
[Workshop] AWS S3
[Workshop] DBT Installation

□✓
[Lab] EC2 and Linux
Self Study
[Slides] Advanced Linux
Mini Project] 1: Linux -- Toronto Climate Data

□ ✓
Mini Project Solution
 Previous Videos
1.1 Linux System

| July | L.2 Linux Commands and Shell Scripts | L.2 Linux Commands | L.2 Li
[Lecture] 2 AWS S3 and EC2 (2023-03-11)
Chapter ove
Week Plan
[Week Plan] W2
Lectures and Lab
[Lecture] Docker Basic (2023-08-01)
| <u>[Lecture] Docker Compose and Demo(2023-08-03)</u>
Practice
[Workshop] Docker Compose --Flask
[Workshop] Docker Compose -- Spark Cluster
[Exercise] 2: Install Zepplin with Docker
 [Lab] Install Airbyte and Metabase with Docker
Self Study
[Learning Material] Dockerfile □✓
 -

[Mini Project] Build Docker container to Process data

□✓
Docker Cheat Sheet
Previous Videos
[Lecture] 2 Dockerfile and Docker Compose (Sat 2023-03-04))
[Week 3] <Data Ingestion> Python in Data Engineering and Cloud □▼
 Chapter overview
Week Plan
 [Week Plan] W3
 Lectures and Lab
```

[Lecture] Python in DE (2023-08-08)

```
[Lecture] AWS Lambda (2023-08-10)
[Lab] Lambda
Practice
[Mini Project]: Python in Cloud □✓
[Workshop] Lambda
[Mini Project] Lambda Project

□
Self Study
Previous Videos
3.1 Python Libraries

\[
\sum_{\sum \text{2.3.33 AWS Lambda}}
\]
[Week 4] <Data Ingestion> Airbyte, Data Ingestion and Snowflake □▼
Chapter overview
Week Plan
.
[Week Plan] W4
Lectures and Lab
[Lecture] Snowflake (2023-08-15)
[Lecture] Airbyte, Lambda and Project Data Ingestion(2023-08-17).

□✓
[Lab] Project part one
Practice
[Exercise] Snowflake Exercise
[Workshop] ∆irbyte

□✓
[Exercise] Lambda Function Ingest Data

□
✓
[Lab] Project Capstone 1: Data Ingestion
Self Study
Previous Videos
[Lecture] 2 Snowflake (WED 2023-05-10)
[Week 5] <Data Transformation> Data Warehouse □
Chapter overview
Week Plan
[Week Plan] W5
Lectures and Lab
[Lecture] Data Model and ETL (2023-08-24)
[Lab] Data Model and ETL
Practice
Self Study
Previous Videos
.

[Lecture] 1 Data Warehouse Intro (SAT 2023-05-06)
[Lecture] 3 Data Modeling and ETL Design (SAT 2023-05-13)
[Week 6] <Data Transformation> SQL in ETL and Data Loading □▼
Chapter overview
Week Plan
[Week Plan] W6
Lectures and Lab
```

[Lecture] SQL in ETL (2023-08-29)

Week Plan

```
9/18/25, 5:15 PM
   [Lecture] Data Loading(2023-08-31)
  Practice
  [Mini Project] Walmart data - ETL and Data Loads

□✓
   [Mini Project] - Solution - ETL Data Loading
  Self Study
  CTE (Common Table Expression)
   Previous Videos
  [Lecture] 4 SQL IN ETL (WED 2023-05-17)
  [Lecture] 5 Data Loads (WED 2023-05-24)
  [Week 7] <Data Transformation> Data Modeling and ETL in the Project □▼
   Chapter overview
Week Plan
  [Week Plan] W7
   Lectures and Lab
  Lecture] Data Modelling in the project (2023-09-05). □
  [Lecture] ETL in the project(2023-09-07)
  [Lab] Data Transformation with SQL in the project
  Practice
  [Lab] Build Data Model and ETL for Your Project
  Self Study
  Previous Videos
  [Week 8] <Data Transformation> DBT for ETL □
  Chapter ove
Week Plan
  [Week Plan] W8
  Lectures and Lab
  .
[Lecture] DBT (2023-09-12)
  [Lecture] DBT in Project (2023-09-14)
  Practice
  [Lab] Data Model and ETL for Project with DBT
  Self Study
  [Week 9] <Data Analyzation> Data Analyzation with Metabase and Project Summary
   Week Plan
   .
✓
[Week Plan] W9
  Lectures and Lab
  [Lecture] Metabase (2023-09-19)
  ☐ (Lecture) Project Wrap Up (Data Analyzation) (2023-09-21)
  [Lab] Project TA
   Practice
  [Lab] Metabase in the project
   12
  [Week 10] <Final Project> Project Week □
  Project
```

```
9/18/25, 5:15 PM
  Project Submission
  Project Presentation
  PHASE TWO : BIG DATA
  Chapter overview
Introduction
  Project Description
  Syllabus
  Schedule
  . :
[Week 1]<Data Ingestion> Azure Basics, Virtual Machine and Storage
□
  Chapter overview
Week Plan
  .
[Week Plan] W1
□
  Lectures and Lab
  [Lecture] Azure Intro 2023-10-17
  [Lecture] Azure Virtural Machine and Storage 2023-10-19
  [Lab] Azure VM and Storage 2023-10-21
  Practice
  [Exercise] Azure basics
  [Workshop] Virtual Machine
  [Workshop] Azure Storage
  Mini Project: Azure VM and Storage

☐
  Self Study
  [Week 2] <Data Ingestion> Azure Data Factory

□
  Chapter ove
Week Plan
  Week 2 Pla2

☐
  Lectures and Lab
  [Lecture] Azure Data Factory 2023-10-24
  [Lecture] ADF in the Project
  [Lab] Azure Data Factory
  Practice
  [Exercise] Azure Data Factory Exercise
  Lab ADF in Project
  Self Study
  16
  Week Plan
  [Week Plan] W3
  Lectures and Lab
  .
[Lecture] BigData Intro 2023-10-31
  [Lecture] Databricks 2023-11-02
```

[Lab] Databricks 2023-11-04

[Lab] Databricks Workshop

Previous Videos

[Lecture] 1 Big Data Intro - 2023-05-31

Practice

```
[Lecture] 5 Databricks (2023-06-14)
[Week 4] <Data Transformation> Spark Dataframes and SQL □▼
Chapter overview
Week Plan
[Week Plan] W4
Lectures and Lab
[Lecture] Spark architecture and core components 2023-11-07
[Lecture] Spark SQL and Data Processing 2023-11-09
[Lab] Databricks 2023-11-11
Practice
[Exercise] PySpark Syntax Practice

□✓
[Lab] Mini Project-- CDR data with Databricks
Previous Videos
[Lecture] 2 PySpark Syntax (2023-06-03)
Self Study
. [Lecture] 3 Run Spark on Local and EMR
[Mini Project] I NYC Taxi Data with EMR
[Week 5] <Data Transformation> Spark Machine Learning Concepts □
Chapter overview
Week Plan
 [Week Plan] W5
Lectures and Lab
. [Lecture] Machine Learning 101 2023-11-14 □✓
[Lecture] Natural Language Processing (NLP) 2023-11-16
[Lab] Machine Learning Model Training
Practice
.
[Workshop], Mount Azure Storage to Azure Databricks

□✓
[Lab] Machine Learning Training
Self Study
[Crash course] Machine learning
[Week 6] <Data Transformation> Spark Machine Learning in Project □ ✓
Chapter overview
Week Plan
Week 6 Plan

☐
Lectures and Lab
[Lecture] Project -- ML O&A 2023-11-23
[Lab] ML
Practice
| Lab| NLP prediction in Project
Self Study
NLP Crash Course
[Week 7] <Data Visualization> Spark Optimization and Azure Synapse □ ✓
Week Plan
Week 7 Plan
```

Lectures and Lab

```
ure] Spark Performance Tuning and Optimization 2023-11-28
[Lecture] Synapse in Project 2023-11-30
[Lab] Synapse 2023-12-02
Practice
[Lab] Synapse in the Project
[Workshop] Synapse
 Previous Video
[Week 8] Project Review
Chapter overview
Week Plan
[Week Plan] W8
Lectures and Lab
[Lecture] Project Review 2023-12-05
Chapter overview
Project
Project Description

Week Plan
Project Submission
Presentation 23
 PHASE THREE : LAKEHOUSE AND STREAMING
Chapter overview
Syllabus
 Syllabus
 Phase 3 Intro
Intro

24
[Week 1] DataOps

□✓
 Chapter overview
 Lecture and Labs
[Lecture] Git 2024-01-09
[Lecture] Terraform 2024-01-11
 [Lab] a simple python project with CICD setup
 Practice
| Lab| a simple python project with CICD setup
[Week 2] NoSQL □
 Chapter overview
 Lecture and Lab
. [Lecture] NOSQL and DynamoDB 2014-01-16 □✓
[Lecture] Elasticsearch 2024-01-18
[Lab] Dynamo DB
Practice
 Previous Videos
[Lecture] 1 NoSQL and DynamoDB
[Lecture] 2 Elasticsearch
Self-Study
```

[DynamoDB] DynamoDB Basics

```
[Workshop] 1 Set an Elasticsearch database on AWS □✓
[Workshop] 2 Elasticsearch installation and practice □✓
[Tutorial] Elasticsearch Complete Tutorial with Python
[Week 3] Webscraping
Chapter overview
Lectures and Lab
[Lecture] Web scraping 2024-01-23
[Lecture] backend API, Python Web development 2024-01-25
[Lab] Mini project: web scraping ± elasticsearch + context search 2024-01-27
Practice
[Mini project] web scraping + elasticsearch + context search
[Week 4] Airflow □
Chapter overview
Lectures and Labs
.
[Lecture] Airflow 1 2024-01-30
[Lecture] Airflow 2 2024-02-01
[Lab Video Recording] Airflow
Practice
Ţ<u>[Workshop] Apache Airflow Installation</u> ☐✓
[Mini Project] Airflow
Previous Videos
[Lecture] 1 Apache Airflow 1
[Lecture] 2 Apache Airflow 2
Self-Study
Introduction of Airflow
[Week 5] Data Streaming □
Chapter overview
Lectures and Labs
[Lecture] Kafka 2024-02-06
[Lecture] Spark Streaming 2024-02-08
[Lab video] Kafka
Practice
[Mini Project] 1 Kafka for Wiki Media
Previous Videos
Kafka
□✓
Data Ingestion and Spark Streaming

☐
Self-study
 ≺
Kafka> Kafka in 30 Mins
✓<
<u>Kafka> Kafka on AWS Demo</u>

□
[Week 6] Lakehouse □
Lecture and videos
[Lecture] Lake house concept 2024-02-13 □✓
[Lecture] Lake house implementation with Databricks 2024-02-15
Practice
[Mini Project]: build a lake house pipeline w/ databricks
Previous Videos
```

9/18/25, 5:15 PM