NCERT-discrete: 10.5.3 - 2

EE23BTECH11025 - Anantha Krishnan

I. QUESTION

Find the sums given below:

(i)
$$7 + 10\frac{1}{2} + 14 \dots + 84$$

(ii) $34 + 32 + 30 \dots + 10$

(ii)
$$34 + 3\cancel{2} + 30 \dots + 10$$

(iii)
$$-5 + -8 + -11 \dots -230$$

Symbols	Description	Values
d_i	Common Difference for <i>i</i> th AP	3.5
		-2
		-3
$x_i(n)$	n^{th} term for i^{th} Sequence	$(x_i(0) + nd_i)u_{(n)}$
$X_i(z)$	Z-Transform of $x_i(n)$	$zx_i(0)(z-1)^{-1} + d_iz(z-1)^{-2}$
$S_i(n)$	Sum of $(n+1)$ terms for i^{th} Sequence	$\frac{(n+1)u_{(u)}}{2}(2x_i(0)+kd_i)$
h(n)	Unit step function $(u_{(n)})$	$0 \ \forall n < 0, 1 \forall n \geq 0$
$x_i(0)$	First term for <i>i</i> th AP	7
		34
		-5

Table 1: Parameters, Descriptions And Values

Solutions:

(i)
$$7 + 10\frac{1}{2} + 14 \dots + 84$$
.

For number of terms:

$$x_i(n) = (x_i(0) + nd_i)u_{(n)}$$
 (1)

$$84 = 7 + \frac{7n}{2} \tag{2}$$

$$n = 22 \tag{3}$$

1) Calculating $S_1(22)$:

$$S_1(22) = \frac{23}{2}(14 + (22)\frac{7}{2})S_1(22) = 1046.5$$

2) Z-Transform of $x_1(n)$: By the Definition of Ztransform:

$$\sum_{n=-\infty}^{\infty} z^{-n} x_i(n) = X_i(z)$$
 (5)

Putting $x_1(n)$ in (5), we get

$$\sum_{n=-\infty}^{\infty} (x_1(0) + \frac{7n}{2}) u_{(n)} Z^{-n} = X_1(z)$$
 (6)

$$\sum_{n=-\infty}^{\infty} (7 + \frac{7n}{2}) u_{(n)} Z^{-n} = X_1(z)$$
 (7)

$$7z(z-1)^{-1} + 7z(2(z-1))^{-2} = X_1(z)$$
 (8)

$$\forall |z| > 1 \tag{9}$$

(19)

3) Z-Transform of $S_1(n)$: Using (1) and assuming

$$h(n) = u(n) \tag{10}$$

$$S_1(n) = x_1(n) * h(n)$$
 (11)

$$S_1(z) = X_1(z) * H_{(z)}$$
 (12)

Where $X_1(z)$ comes from (8). For H(z), it is Z-transform of unit-step function

$$H_1(z) = z(z-1)^{-1}$$
 (13)

For $S_1(z)$:

$$S_1(z) = (7z(z-1)^{-1} + 7z(2(z-1))^{-2})z(z-1)^{-1}$$

ROC:

$$|z| > 1 \tag{14}$$

4) Inversion of $S_1(z)$: By using partial fractions:

$$S_1(z) = (7(1-z^{-1})^{-1} + 7z^{-1}(1-z^{-1})^{-2} + (1.75)(z^{-2} + z^{-1})(1-z^{-1})^{-3} + (1.75)z^{-1}(1-z^{-1})^{-2}$$

$$(15)$$

Using (??), (??) and (13) for inverse Z-transforms:

$$S_1(n) = (7(n+1) + 1.75n(n+1))u(n)$$
 (16)

(ii) $34 + 32 + 30 \dots + 10$

In this bit $x_2(0) = 34$, $d_2 = -2$. Using equation (1)

$$10 = 34 - 2n$$

$$(17)$$
 (iii) $-5 + -8 + -11 \dots -230$

$$n = 12$$

(18) Here $x_3(0) = -5$, $d_3 = -3$ From (1)

For
$$x_2(n)$$

$$x_2(n) = x_2(0) - 2n (20)$$

1) Calculating $S_2(12)$: For calculating the sum , we use the table I

 $x_2(n) = x_2(0) + nd_2$

$$S_2(12) = \frac{13}{2}(64 + 11(-2)) \tag{21}$$

$$S_2(12) = 286. (22)$$

2) Z-Transform of $x_2(n)$: Using (5)

$$\sum_{n=-\infty}^{\infty} (x_2(0) - 2n)u_{(n)}Z^{-n} = X_2(z)$$
 (23)

For $X_2(z)$

$$34z(z-1)^{-1} - 2z((z-1))^{-2} = X_2(z)$$
 (24)

$$|z| > 1 \tag{25}$$

3) Z-Transform of $S_2(n)$: Using (1) and assuming

$$h[n] = u[n] \tag{26}$$

$$S_2(n) = x_2(n) * h(n)$$
 (27)

$$S_2(z) = X_2(z) * H(z)$$
 (28)

Where $X_2(z)$ comes from (24) and H(z) from (13). For $S_2(z)$:

$$S_2(z) = 34z(z-1)^{-1} - 2z((z-1))^{-2})z(z-1)^{-1}$$
(29)

ROC:

$$|z| > 1 \tag{30}$$

4) Inversion of $S_2(z)$: By using partial fractions

$$S_2(z) = 34(1 - z^{-1})^{-1} + 34z^{-1}(1 - z^{-1})^{-2} - (z^{-2} + z^{-1})(1 - z^{-1})^{-3} - z^{-1}(1 - z^{-1})^{-2}$$
(31)

Using (??), (??) and (13) for inverse Z-transforms:

$$S_2(n) = (34(n+1) - n(n+1))u(n)$$
 (32)

Graph:2 $x_2(n)$ vs n

$$-230 = -5 - 3n \tag{33}$$

$$n = 75 \tag{34}$$

For $x_3(n)$

$$x_3(n) = x_3(0) + nd_3 (35)$$

$$x_{3(n)} = x_3(0) - 3n (36)$$

1) Calculating $S_3(75)$: Using I:

$$S_3(75) = \frac{76}{2}(-10 + (76 - 1)(-3)) \tag{37}$$

$$S_3(75) = -8930 \tag{38}$$

2) Z-Transform of $x_3(n)$: Putting $x_3(n)$ in (5)

$$\sum_{n=-\infty}^{\infty} (x_3(0) - 3n)u_{(n)}Z^{-n} = X_3(z)$$
 (39)

For $X_3(z)$, we use the same process as in (i) bit

$$-5z(z-1)^{-1} - 3z((z-1))^{-2} = X_3(z)$$
 (40)

$$|z| > 1$$
 (41)

3) Z-Transform of $S_3(n)$: Using (1) and assuming

$$h(n) = u(n) \tag{42}$$

$$S_3(n) = x_3(n) * h(n)$$
 (43)

$$S_3(z) = X_3(z) * H(z)$$
 (44)

Where $X_3(z)$ comes from (40) and $H_{(Z)}$ from (13). For $S_3(z)$:

$$S_3(z) = (-5z(z-1)^{-1} - 3z((z-1))^{-2})z(z-1)^{-1}$$
(45)

ROC:

$$|z| > 1 \tag{46}$$

4) Inversion of $S_3(z)$:

$$S_3(z) = (-5(1-z^{-1})^{-1} - 5z^{-1}(1-z^{-1})^{-2} - (1.5)(z^{-2} + z^{-1})(1-z^{-1})^{-3} - (1.5)z^{-1}(1-z^{-1})^{-2}$$

$$(47)$$

Using (??), (??) and (13) for inverse Z-transforms:

$$S_3(n) = (-5(n+1) - 1.5n(n+1))u(n)$$
 (48)

Graph: $3 x_3(n)$ vs n