Inferring population sizes of bacterial populations a deep learning approach

MLMicrobial Genomics - ECML -2022

Jean Cury, Théophile Sanchez, Erik Bray, Jazeps Medina-Tretmanis, Maria Avila-Arcos, Emilia Huerta-Sanchez, Guillaume Charpiat, and Flora Jay

Bacterial population genetics

⇒ Focus on population size inference

Parental

Daughter cells

Add selection sign

Inference : Skyline Plot

- Using estimated coalescent time, it infers population size
- Non-parametric
- Does not require simulation
- Problem : does not work in bacteria

Project

End to end deep learning approach for bacterial popgen

- Problem: No ground truth data
- We need a population genetic simulator that is:
 - fast
 - Implement bacterial recombination (homologous HGT)
 - Demography, selection, etc..

MSA

ATGCGACAG
CTGCGTCAG
ATGAGTCAG
CTGCGTCAG
123456789

What we simulate

- → 50% with and 50% without selection
- → Variable parameters:
 - initial population size (~Ne)
 - mutation rate
 - recombination rate (ratio r/m)
 - coefficient of selection
 - time of selection
 - time of demographical change
 - strength of bottleneck/expansion
- \rightarrow Generated with a generalized Halton sequence

- → Fixed parameters:
 - chromosome size
 - mean size of gene conversion tracts
 - Number of generations

Using SLiM, adapted for Bacterial population (Cury et al., 2021)

Approach

- Use of dnadna, a package that help to reproduce, share and develop DL methods for population genetics
- Use of SPIDNA architecture
 - Invariant to permutation of individuals
 - Adaptive to input dimension
 - Good performance on human populations
- Add uncertainty estimation

dnadna: Package for DL in population genetics

Package that allow:

- Development of network
- Reuse of someone else's network
- Reproduce training/prediction
- → Without coding skill (YAML)

Inference of demography

Inference of demography

Example with 100 simulations with the same set of parameters

What about uncertainty?

DNN output a single value without

notion of uncertainty:

Aleatoric : due to the underlying process that is intrinsically stochastic

Epistemic : Your sample is out of the distribution of the simulations

Out of distribution

Training distribution

What about uncertainty?

 DNN output a single value without notion of uncertainty :

- Aleatoric: due to the underlying process that is intrinsically stochastic
- Epistemic : Your sample is out of the distribution of the simulations

Use of Gaussian Negative Log Likelihood Loss to learn a gaussian with parameters μ and σ^2

What about uncertainty?

 DNN output a single value without notion of uncertainty :

- Aleatoric: due to the underlying process that is intrinsically stochastic
- Epistemic : Your sample is out of the distribution of the simulations

Uncertainty estimation

Population size

Error on Test set (the lower the better)

Bad predictions for Expansion

Good prediction otherwise

Except for ancient times where predictions follows the prior of the training set.

Calibration of the Gaussian mixture

ancient DNA

- Increasing amount of aDNA sequenced as technology improves
- Can help palaeontologist / historian understand distant past
- Problem : low quality of sequences
 - Due to degradation of DNA
 - Higher rate of sequencing error
 - Poor coverage (small amount of DNA)

Uncertainty on ancient DNA

Summary

- Prediction of bacterial population size through time
 - Irrespective of the underlying selection regime and other parameters
- Using dnadna package → easy to reuse / reproduce
- Estimation of the aleatoric and epistemic uncertainties

- Transfer learning with aDNA
- Assess interest of transfer learning from other net trained on similar task
- Improve training procedure with SPIDNA (something else than 400 SNP)
- Test on real data

Thanks

- Flora Jay
- Theophile Sanchez
- Guillaume Charpiat
- Erik M. Bray
- Ben Haller

- Jazeps Medina-Tretmanis
- Maria Avila-Arcos
- Emilia Huerta-Sanchez
- Mathieu Michel

