MATH2701: Abstract Algebra and Fundamental Analysis

Test

Name: Keegan Gyoery zID: z5197058

1. For functions $f(x), g(x), f(x) = \Theta(g(x))$ as $x \to \infty$ if f(x) = O(g(x)) and g(x) = O(f(x)) as $x \to \infty$. Thus, we break this proof into two parts, firstly proving

$$\sum_{n=N}^{\infty} \frac{1}{n^3} = O\left(\frac{1}{N^2}\right) \dots (A),$$

and secondly proving

$$\frac{1}{N^2} = O\left(\sum_{n=N}^{\infty} \frac{1}{n^3}\right) \dots (B).$$

In order to prove result (A), we must show there exists some $M_2 \neq 0$, and N_2 , such that for all $N > N_2$,

$$\left| \sum_{n=N}^{\infty} \frac{1}{n^3} \right| \le M_2 \left| \frac{1}{N^2} \right|.$$

Working with Riemann Sums, its clear that for N>1, we have

$$\begin{split} \sum_{n=N}^{\infty} \frac{1}{n^3} & \leq \int_{N-1}^{\infty} \frac{1}{x^3} dx \\ & = \lim_{k \to \infty} \int_{N-1}^{k} \frac{1}{x^3} dx \\ & = \lim_{k \to \infty} \left[\frac{-1}{2x^2} \right]_{N-1}^{k} \\ & = \lim_{k \to \infty} \left[\frac{-1}{2k^2} + \frac{-1}{2(N-1)^2} \right] \\ & = \frac{1}{2(N-1)^2} \\ & \leq \frac{10}{N^2} \text{ for } N > 1 \\ \sum_{n=0}^{\infty} \frac{1}{n^3} | \leq 10 \left| \frac{1}{N^2} \right| \text{ as } N > 1. \end{split}$$

$$\left| \therefore \left| \sum_{n=N}^{\infty} \frac{1}{n^3} \right| \le 10 \left| \frac{1}{N^2} \right| \text{ as } N > 1.$$

Clearly, $M_2 = 10$, $N_2 = 1$, and so

$$\sum_{n=N}^{\infty} \frac{1}{n^3} = O\left(\frac{1}{N^2}\right).$$

To prove result (B), it is equivalent to showing there exists some $M_1 \neq 0$, and N_1 , such that for all $N>N_1$,

$$\left| \sum_{n=N}^{\infty} \frac{1}{n^3} \right| \ge M_1 \left| \frac{1}{N^2} \right|.$$

Working with Riemann Sums again, its clear that for N > 1, we have

$$\sum_{n=N}^{\infty} \frac{1}{n^3} \ge \int_N^{\infty} \frac{1}{x^3} dx$$

$$= \lim_{k \to \infty} \int_N^k \frac{1}{x^3} dx$$

$$= \lim_{k \to \infty} \left[\frac{-1}{2x^2} \right]_{N-1}^k$$

$$= \lim_{k \to \infty} \left[\frac{-1}{2k^2} + \frac{-1}{2N^2} \right]$$

$$= \frac{1}{2N^2}$$

$$\therefore \left| \sum_{n=N}^{\infty} \frac{1}{n^3} \right| \ge \frac{1}{2} \left| \frac{1}{N^2} \right| \text{ as } N > 1.$$

Clearly, $M_1=\frac{1}{2}$, $N_1=1$, and so

$$\frac{1}{N^2} = O\left(\sum_{n=N}^{\infty} \frac{1}{n^3}\right).$$

Thus,

$$\sum_{n=N}^{\infty} \frac{1}{n^3} = \Theta\left(\frac{1}{N^2}\right).$$

2. We shall prove that $\|\cdot\|_X$ is the dual norm of $\|\cdot\|_Y$. By definition, for fixed $\mathbf{x} \in \mathbb{R}^{\mathbf{n}}$, the dual norm of $\|\cdot\|_Y$ is

$$\|\mathbf{x}\|_X = \sup_{\mathbf{y} \in \mathbb{R}^{\mathbf{n}}} \frac{|\mathbf{x} \cdot \mathbf{y}|}{\|\mathbf{y}\|_V}.$$

Thus, it suffices to show that $\|\mathbf{x}\|_X$ is an upper bound for $\frac{|\mathbf{x} \cdot \mathbf{y}|}{\|\mathbf{y}\|_Y}$ and that equality is attained for some $\mathbf{y} \in \mathbb{R}^n$. By the first property of the norms provided,

$$\begin{aligned} |\mathbf{x} \cdot \mathbf{y}| &\leq \|\mathbf{x}\|_X \|\mathbf{y}\|_Y \\ \therefore \|\mathbf{x}\|_X &\geq \frac{|\mathbf{x} \cdot \mathbf{y}|}{\|\mathbf{y}\|_Y}. \end{aligned}$$

Thus, $\|\mathbf{x}\|_X$ is an upper bound for $\frac{|\mathbf{x}\cdot\mathbf{y}|}{\|\mathbf{y}\|_Y}$. By the second property, there exists a $\mathbf{y}\in\mathbb{R}^\mathbf{n}$ such that for all $\mathbf{x}\in\mathbb{R}^\mathbf{n}$,

$$\begin{aligned} |\mathbf{x} \cdot \mathbf{y}| &= \|\mathbf{x}\|_X \|\mathbf{y}\|_Y \\ \therefore \|\mathbf{x}\|_X &= \frac{|\mathbf{x} \cdot \mathbf{y}|}{\|\mathbf{y}\|_Y}. \end{aligned}$$

Thus, $\|\mathbf{x}\|_X$ is a least upper bound for $\frac{|\mathbf{x}\cdot\mathbf{y}|}{\|\mathbf{y}\|_Y}$, and so $\|\mathbf{x}\|_X$ is the dual norm of $\|\mathbf{y}\|_Y$. Recall that the dual norm of a dual norm is the original norm, so $\|\cdot\|_Y^* = \|\cdot\|_X$ implies that $\|\cdot\|_X^* = \|\cdot\|_Y$. If $\frac{1}{p} + \frac{1}{q} = 1$, then we can apply Hoelders Inequality, and its clear that $\|\cdot\|_p$ and $\|\cdot\|_q$ satisfy the

properties of the norms $\|\cdot\|_X$ and $\|\cdot\|_Y$. Thus, $\|\cdot\|_p$ and $\|\cdot\|_q$ are the dual norms of each other.

3. Consider $\mathbf{y}=(u,v,w)\in K^\circ$. By definition, $ux+vy+wz\leq 1$, for all $\mathbf{x}=(x,y,z)\in K$. From Cauchy-Schwarz,

$$ux + vy + wz \le (u^2 + v^2)^{1/2} (x^2 + y^2)^{1/2} + wz$$

$$\le \sqrt{u^2 + v^2} + wz.$$

Examining the condition for equality in the Cauchy-Schwarz inequality, we make the claim that $\sqrt{u^2+v^2} \leq 1-cz$. As $|z| \leq 1$, the previous result yields

$$\sqrt{u^2 + v^2} \le 1 - w$$
 and $\sqrt{u^2 + v^2} \le 1 + w$.

Clearly, our polar body is given by

$$K^{\circ} = \{(u, v, w) \in \mathbb{R}^3 \mid u^2 + v^2 \le \min\{(1 - w)^2, (1 + w^2)\}\}.$$

As K is a cylinder with radius 1 and height 2, $\operatorname{vol}(K) = 2\pi$. Considering K° as concentric circles of radius either $(1-w)^2$ or radius $(1+w^2)$, we have

$$\operatorname{vol}(K^{\circ}) = \int_{-1}^{0} \pi (1+w)^{2} dw + \int_{0}^{1} \pi (1-w)^{2} dw = \frac{2\pi}{3}.$$

Thus,
$$M(K) = \operatorname{vol}(K)\operatorname{vol}(K^{\circ}) = \frac{4\pi^2}{3}$$
.

- 4. Suppose $\beta \in \mathbb{R}$ is an upper bound for S. Since S is non-empty, there exists an $s \in S$ which is itself not empty. Since $s \subset \alpha$, α is non-empty. Further since $\alpha \subset \beta$, (as $s \subset \beta$ for every $s \in S$), $\alpha \neq \mathbb{Q}$. To show that α satisfies all properties of a cut, we fix $p \in \alpha$. Then we must have $p \in s_0$ for some $s_0 \in S$ and so for some q < p we have $q \in s_0$ and consequently $q \in \alpha$. Subsequently, if $r \in s$ is chosen so that p < r, which is possible since s_0 has no largest element, then $s_0 \in S$. Hence $s_0 \in S$. It is also clear that $s_0 \in S$ is an upper bound of $s_0 \in S$ since $s_0 \in S$. Suppose $s_0 \in S$ is the least upper bound of $s_0 \in S$. Hence $s_0 \in S$ is the least upper bound of the set $s_0 \in S$. This shows that the cut $s_0 \in S$ is the least upper bound of the set $s_0 \in S$.
- 5. To find the first four digits to the left of the decimal point of $(\dots 333.3)^2$, we perform the long multiplication $(\dots 333333) \times (\dots 333333)$, adding the decimal point back in at the end.

$$\begin{array}{c} \dots 333333\\ \times \dots 333333\\ \hline \dots 111104\\ + \dots 111040\\ + \dots 10400\\ + \dots 104000\\ + \dots 40000\\ \hline \dots 432044\\ = \dots 4320.44\\ \end{array}$$

Thus, the first four digits to the left of the decimal point are 4, 3, 2, and 0.

6. (a) We can write k! as a product, which can be rewritten to involve p,

$$k! = 1 \times 2 \times \cdots \times (k-1) \times k = 1 \times 2 \times \cdots \times p \times \cdots \times 2p \times \cdots \times ap \times k$$

for some $a\in\mathbb{Z}$. Clearly, this gives the p-adic absolute value of k! as $|k!|_p=p^{-a}$. As $a\in\mathbb{Z}$, we can write $a=\left\lfloor\frac{k}{p}\right\rfloor$. Note that,

$$\begin{split} \left\lfloor \frac{k}{p} \right\rfloor &= \left\lfloor \frac{k}{p-1} - \frac{k}{p(p-1)} \right\rfloor \\ &\geq \left\lfloor \frac{k}{p-1} \right\rfloor - \left\lfloor \frac{k}{p(p-1)} \right\rfloor \\ &= \frac{k}{p-1} + c - \left\lfloor \frac{k}{p(p-1)} \right\rfloor \text{ for some } c \in [0,1) \\ \therefore -a &\leq -\frac{k}{p-1} - c + \left\lfloor \frac{k}{p(p-1)} \right\rfloor \\ \therefore -a &= -\frac{k}{p-1} + O(\log k) \\ \therefore |k!|_p &= p^{\left(-\frac{k}{p-1} + O(\log k)\right)}. \end{split}$$

(b) For $x\in\mathbb{Q}$ we have $x=\frac{p^lb}{c}$, with $l\in\mathbb{Z}$, and $p\nmid bc$. Using the results provided in the question, and the previous part, we have,

$$\begin{aligned} \left| \frac{x^k}{k!} \right|_p &= \frac{\left| \frac{p^{kl}b^k}{c^k} \right|_p}{|k!|_p} \\ &= \frac{p^{-kl}}{p^{-\frac{k}{p-1}} + O(\log k)} \\ &= p^{-kl + \frac{k}{p-1} - O(\log k)}. \end{aligned}$$

Consider first the case where p = 2. The above result gives,

$$\begin{aligned} \left| \frac{x^k}{k!} \right|_2 &= 2^{-kl + \frac{k}{2-1} - O(\log k)} \\ &= 2^{-kl + k - O(\log k)} \\ &= 2^{-k(l-1) - O(\log k)}. \end{aligned}$$

Taking the limit of the LHS as $k \to \infty$,

$$\lim_{k\to\infty} \left|\frac{x^k}{k!}\right|_2 = \lim_{k\to\infty} 2^{-k(l-1)-O(\log k)},$$

which is equal to 0 when $(l-1) \ge 0$, or equivalently $l \ge 1$. Examining the second case, where $p \ge 3$, we have,

$$\begin{aligned} \left| \frac{x^k}{k!} \right|_p &= p^{-kl + \frac{k}{p-1} - O(\log k)} \\ &= p^{-k\left(l - \frac{1}{p-1}\right) - O(\log k)} \end{aligned}$$

Taking the limit of the LHS as $k \to \infty$,

$$\lim_{k\to\infty} \left|\frac{x^k}{k!}\right|_p = \lim_{k\to\infty} p^{-k\left(l-\frac{1}{p-1}\right)-O(\log k)},$$

which is equal to 0 when $\left(l-\frac{1}{p-1}\right)\geq 0.$ As $p\geq 3$,

$$\left(l - \frac{1}{p-1}\right) \ge \left(l - \frac{1}{3-1}\right)$$
$$= \left(l - \frac{1}{2}\right).$$

The condition for the limit to be equal to 0 now becomes $\left(l-\frac{1}{2}\right)\geq 0$, or equivalently $l\geq 1$, as $l\in\mathbb{Z}.$ Thus,

$$\lim_{k \to \infty} \left| \frac{x^k}{k!} \right|_p = 0$$

iff $l \ge 1$ for $p \ge 3$ and $l \ge 2$ for p = 2.