## Deflating profitability

# Accruals, cash flows, and operating profitability in the cross section of stock returns

Ball, Ray, Joseph Gerakos, Juhani T. Linnainmaa, Valeri V. Nikolaev. Journal of Financial Economics, 2015, 2016

解读者: 屠雪永

2021.09.12

#### **Outline**

- Introduction
- Data and variable definitions
- Empirical study
  - Fama and MacBeth regressions
  - Portfolio Sorts
- Conclusion

#### 1. Introduction-- Motivation

- Earnings: income before extraordinary items the book value of equity
  - (Ball and Brown, 1968; Novy-Marx, 2013)
- Gross profitability: gross profit (revenue minus cost of goods sold)
   the book value of total assets
  - (Novy-Marx, 2013)
- Operating profitability: (Revenue Cost of goods sold –Reported sales, general, and administrative expenses)/ the book value of total assets
  - (Ball, Gerakos, Linnainmaa and Nikolaev (2015)
- Cash-based operating profitability: (Operating profitability- Accounts receivable –Inventory - Prepaid expenses+ Deferred revenue + Trade accounts payable)/ the book value of total assets

#### 1. Introduction-- Questions

- Why gross profitability predicts future returns better than net income,
   Is it because of differences in deflators?
  - Yes
- Why net income and gross profit have the similar predictive power when they are consistently deflated?
  - The items farther down the income statement are not pure noise.- Operating profitability
- Can cash-based operating profitability better explain the cross section of expected returns than gross profitability, operating profitability, and net income, all of which include accruals?
  - Yes

#### 1. Introduction-- Content

- Earnings
  - (Ball and Brown, 1968; Novy-Marx, 2013)
- Gross profitability
  - (Novy-Marx, 2013)
- Operating profitability
  - (Ball, Gerakos, Linnainmaa and Nikolaev (2015)
- Cash-based operating profitability:
  - (Ball, Gerakos, Linnainmaa and Nikolaev (2016)

#### 1. Introduction-- Contribution

- **Explain the puzzle** that the similar predictive power of net income and gross profit when they are consistently deflated
- Operating profitability better explains the cross section of expected returns than gross profitability, and net income
- Cash-based operating profitability better explains the cross section of expected returns than operating profitability, gross profitability, and net income

#### 2. Data

- Data: monthly stock returns from CRSP and annual accounting data from Compustat.
- Period: 1963.07~ 2013.12(2014.12)
- Exclude financial firms
- Variables: Earnings、 Gross profitability、 Operating profitability、 Cash-based operating profitability measure

## 3.1 Differences in deflators(Fama and MacBeth rearessions) $t_{value} = \frac{\mu}{t_{value}} = \sqrt{T} Sharpe$

|                                      |                   |                   |                   | Accounting vari   | iables deflated by | 0 / \ 1           |                   |
|--------------------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|
|                                      |                   | Total a           | Total assets      |                   | equity             | Market equity     |                   |
| Explanatory variable                 | (1)               | (2)               | (3)               | (4)               | (5)                | (6)               | (7)               |
| Panel A: All-but-microcap            | S                 |                   |                   |                   |                    |                   |                   |
| Gross profit                         |                   | 0.834<br>(5.46)   |                   | 0.272<br>(4.45)   |                    | 0.350<br>(3.74)   |                   |
| Income before<br>extraordinary items |                   |                   | 3.335<br>(5.80)   |                   | 1.259<br>(3.78)    |                   | 1.766<br>(3.11)   |
| log(BE/ME)                           | 0.291<br>(3.87)   | 0.380<br>(4.88)   | 0.376<br>(4.71)   | 0.346<br>(4.36)   | 0.336<br>(4.14)    | 0.208<br>(2.71)   | 0.244<br>(3.43)   |
| log(ME)                              | -0.070 $(-1.79)$  | -0.061 $(-1.55)$  | -0.082 $(-2.18)$  | -0.066 $(-1.70)$  | -0.082 $(-2.17)$   | -0.061 $(-1.59)$  | -0.075 $(-1.96)$  |
| r <sub>1,1</sub>                     | -3.223<br>(-7.30) | -3.307<br>(-7.63) | -3.239<br>(-7.46) | -3.366<br>(-7.79) | -3.273<br>(-7.52)  | -3.353<br>(-7.70) | -3.308<br>(-7.59) |
| r <sub>12,2</sub>                    | 1.019<br>(5.52)   | 1.039<br>(5.70)   | 1.061<br>(5.77)   | 1.015<br>(5.63)   | 1.037<br>(5.67)    | 1.024<br>(5.67)   | 1.032<br>(5.66)   |
| Adjusted R <sup>2</sup>              | 5.35%             | 5.89%             | 5.84%             | 5.80%             | 5.77%              | 5.74%             | 5.80%             |
| Difference in<br>Sharpe ratios       |                   |                   | 0.049<br>(0.37)   |                   | -0.094<br>(-0.51)  |                   | -0.089<br>(-0.42) |

- Gross profit and income before extraordinary items have similar
   explanatory power when they are constructed using the same deflator.
- T-values are largest when the book value of total assets is the deflator.

2021/9/12 8

### 3.1 Differences in deflators(portfolio sorts)

Panel A: Gross profit and income before extraordinary items deflated by book value of total assets

Sort by gross profit / total assets

|                        |                                   | Three-factor model |                   |                    |                    |  |  |  |  |  |  |  |
|------------------------|-----------------------------------|--------------------|-------------------|--------------------|--------------------|--|--|--|--|--|--|--|
| Portfolio              | Average<br>return                 | α                  | $b_{ m mkt}$      | $b_{ m smb}$       | $b_{ m hml}$       |  |  |  |  |  |  |  |
| High – low (deciles)   | 0.358<br>(2.64)                   | 0.551<br>(4.18)    | -0.040<br>(-1.30) | -0.101<br>(-2.28)  | -0.392<br>(-8.27)  |  |  |  |  |  |  |  |
| High – low (quintiles) | 0.296<br>(2.45)                   | 0.523<br>(4.77)    | -0.051<br>(-1.97) | -0.051 $(-1.40)$   | -0.503<br>(-12.73) |  |  |  |  |  |  |  |
|                        | Sort by net income / total assets |                    |                   |                    |                    |  |  |  |  |  |  |  |
|                        |                                   |                    | Three-fa          | ctor model         |                    |  |  |  |  |  |  |  |
|                        | Average return                    | α                  | $b_{ m mkt}$      | $b_{ m smb}$       | $b_{ m hml}$       |  |  |  |  |  |  |  |
|                        | 0.082<br>(0.47)                   | 0.539<br>(4.11)    | -0.293<br>(-9.46) | -0.784<br>(-17.88) | -0.300<br>(-6.37)  |  |  |  |  |  |  |  |
|                        | 0.038<br>(0.29)                   | 0.429<br>(4.18)    | -0.233<br>(-9.58) | -0.550<br>(-16.00) | -0.363 $(-9.83)$   |  |  |  |  |  |  |  |
|                        |                                   |                    |                   |                    |                    |  |  |  |  |  |  |  |

#### 3.2 Deflator effects

Christie (1987)

$$\begin{split} r_{i,t} &= \alpha + \beta \frac{\mathsf{GP}_{i,t-1}}{\mathsf{AT}_{i,t-1}} + \varepsilon_{i,t}, \\ \frac{\Delta \mathsf{ME}_{i,t} + \mathsf{D}_{i,t}}{\mathsf{ME}_{i,t-1}} &= \alpha + \beta \left( \frac{\mathsf{GP}_{i,t-1}}{\mathsf{ME}_{i,t-1}} \right) \left( \frac{\mathsf{ME}_{i,t-1}}{\mathsf{AT}_{i,t-1}} \right) + \varepsilon_{i,t}. \\ r_{i,t} &= \alpha + \beta \left( \frac{\mathsf{GP}_{i,t-1}}{\mathsf{BE}_{i,t-1}} \right) \left( \frac{\mathsf{BE}_{i,t-1}}{\mathsf{AT}_{i,t-1}} \right) + \varepsilon_{i,t}. \end{split}$$

GP: the gross profit

D: dividends

ME: market value of equity

BE: book value of equity

AT: the book value of total assets

#### 3.2 Deflator effects

$$\frac{\Delta \mathsf{ME}_{i,t} + \mathsf{D}_{i,t}}{\mathsf{ME}_{i,t-1}} = \alpha + \beta \left(\frac{\mathsf{GP}_{i,t-1}}{\mathsf{ME}_{i,t-1}}\right) \left(\frac{\mathsf{ME}_{i,t-1}}{\mathsf{AT}_{i,t-1}}\right) + \varepsilon_{i,t}.$$

|                                                               |                   | Regression        |                  |                 |                   |  |  |  |  |  |
|---------------------------------------------------------------|-------------------|-------------------|------------------|-----------------|-------------------|--|--|--|--|--|
| Explanatory variable                                          | (1)               | (2)               | (3)              | (4)             | (5)               |  |  |  |  |  |
| Panel A: All-but-microcaps<br>GP/ME                           | 0.287<br>(3.63)   | 0.066<br>(0.78)   |                  |                 | 0.017<br>(0.76)   |  |  |  |  |  |
| ME/AT                                                         | -0.011<br>(-0.66) | -0.010<br>(-0.59) |                  |                 |                   |  |  |  |  |  |
| GP/BE                                                         |                   |                   | 0.104<br>(4.03)  | 0.045<br>(1.65) | -0.007<br>(-0.08) |  |  |  |  |  |
| BE/AT                                                         |                   |                   | 0.274<br>(1.60)  | 0.013<br>(0.07) |                   |  |  |  |  |  |
| $GP/AT$ = $(GP/ME) \times (ME/AT)$ = $(GP/BE) \times (BE/AT)$ |                   | 0.667<br>(4.69)   |                  | 0.612<br>(4.19) | 0.713<br>(5.09)   |  |  |  |  |  |
| log(BE/ME)                                                    | 0.178<br>(2.59)   | 0.298<br>(4.13)   | 0.316<br>(4.64)  | 0.347<br>(4.99) | 0.355<br>(4.60)   |  |  |  |  |  |
| log(ME)                                                       | -0.054 (-1.47)    | -0.057 (-1.55)    | -0.057 $(-1.55)$ | -0.058 (-1.58)  | -0.053 $(-1.45)$  |  |  |  |  |  |

 Gross profitability deriving a large part of its explanatory power from the interaction of several components.

## 3.3 Components between gross profit and income before extraordinary items

- Income before extraordinary items (IB)=Revenue
  - Cost of goods sold
  - Selling, general, and administrative expenses
  - Depreciation and amortization
  - Interest
  - Taxes
  - Nonoperating income
  - Special items
  - Minority interest income

## 3.3 Components between gross profit and income

|                                            |                 |                   | Regression           |                 |                 |
|--------------------------------------------|-----------------|-------------------|----------------------|-----------------|-----------------|
| Explanatory variable                       | (1)             | (2)               | (3)                  | (4)             | (5)             |
| Panel A: All-but-microcaps<br>Gross profit | 0.794<br>(5.27) | 2.914<br>(3.46)   | 2.117<br>(2.44)      |                 |                 |
| Operating profit<br>(Compustat SG&A)       |                 |                   |                      | 2.349<br>(6.00) |                 |
| Operating profit (reported SG&A)           |                 |                   |                      |                 | 3.134<br>(8.92) |
| Depreciation and amortization              |                 | 1.785<br>(1.33)   | 2.540<br>(1.89)      |                 |                 |
| Compustat SG&A expenses                    |                 |                   | -1.636<br>(-1.82)    |                 |                 |
| Reported SG&A                              |                 | -2.568<br>(-2.94) |                      |                 |                 |
| Research and development                   |                 | 1.324<br>(0.88)   |                      |                 |                 |
| Interest                                   |                 | 1.977<br>(0.97)   | -0.614<br>(-0.27)    |                 |                 |
| Taxes                                      |                 | -0.681<br>(-0.42) | -0.041<br>(-0.03)    |                 |                 |
| Other expenses                             |                 | -1.406<br>(-1.63) | - 1.101<br>( - 1.27) |                 |                 |

- Operating profitability(reported SG&A): Revenue Cost of goods sold
  - -Reported sales, general, and administrative expenses

## 3.4 Operating profitability in portfolio tests

|                           |                 |                 | Three-factor model |                       |                    |  |  |  |  |
|---------------------------|-----------------|-----------------|--------------------|-----------------------|--------------------|--|--|--|--|
| Portfolio                 | Average return  | α               | $b_{ m mkt}$       | $b_{smb}$             | $b_{ m hml}$       |  |  |  |  |
| High – low<br>(deciles)   | 0.290<br>(1.95) | 0.739<br>(6.25) | -0.244<br>(-8.71)  | - 0.564<br>( - 14.24) | -0.493<br>(-11.59) |  |  |  |  |
| High – low<br>(quintiles) | 0.209<br>(1.89) | 0.543<br>(5.87) | -0.160<br>(-7.30)  | -0.287<br>(-9.27)     | -0.485<br>(-14.55) |  |  |  |  |

 When we compare three-factor model alphas, operating profitability significantly outperforms gross profitability

#### 4. Cash-based operating profitability

- Operating profitability: (Revenue Cost of goods sold

   Reported sales, general, and administrative expenses)/ the
   book value of total assets
  - (Ball, Gerakos, Linnainmaa and Nikolaev (2015)
- Cash-based operating profitability: (Operating profitability-Accounts receivable –Inventory - Prepaid expenses+ Deferred revenue + Trade accounts payable)/ the book value of total assets
  - (Ball, Gerakos, Linnainmaa and Nikolaev (2016)

## 4.1 Cash-based operating profitability(FM)

| Panel A: All-but-microcaps         |         |         |         |            |             |         |         |  |  |
|------------------------------------|---------|---------|---------|------------|-------------|---------|---------|--|--|
| Explanatory                        |         |         |         | Regression |             |         |         |  |  |
| variable                           | (1)     | (2)     | (3)     | (4)        | (5)         | (6)     | (7)     |  |  |
| Operating profitability            | 2.99    | 2.55    |         | 2.55       |             |         | 0.80    |  |  |
|                                    | (8.86)  | (7.04)  |         | (7.09)     |             |         | (1.56)  |  |  |
| Accruals                           |         |         | -1.41   | -1.58      |             | 0.15    |         |  |  |
|                                    |         |         | (-3.90) | (-4.45)    |             | (0.34)  |         |  |  |
| Cash-based operating profitability |         |         |         |            | <b>2.60</b> | 2.54    | 1.91    |  |  |
|                                    |         |         |         |            | (9.69)      | (7.40)  | (5.27)  |  |  |
| log(BE/ME)                         | 0.42    | 0.36    | 0.21    | 0.33       | 0.33        | 0.32    | 0.33    |  |  |
|                                    | (5.80)  | (5.08)  | (3.28)  | (4.66)     | (4.76)      | (4.53)  | (4.73)  |  |  |
| log(ME)                            | -0.08   | -0.09   | -0.09   | -0.10      | -0.10       | -0.10   | -0.10   |  |  |
|                                    | (-2.07) | (-2.35) | (-2.24) | (-2.66)    | (-2.59)     | (-2.69) | (-2.59) |  |  |
| $r_{1, 1}$                         | -3.03   | -3.23   | -3.34   | -3.30      | -3.27       | -3.32   | -3.28   |  |  |
|                                    | (-6.97) | (-7.49) | (-7.76) | (-7.72)    | (-7.58)     | (-7.78) | (-7.66) |  |  |
| $r_{12, 2}$                        | 1.03    | 0.95    | 0.86    | 0.91       | 0.92        | 0.91    | 0.92    |  |  |
|                                    | (5.69)  | (5.30)  | (4.81)  | (5.12)     | (5.11)      | (5.08)  | (5.15)  |  |  |
| Adjusted $R^2$                     | 5.6%    | 5.5%    | 5.2%    | 5.7%       | 5.4%        | 5.6%    | 5.6%    |  |  |

- Cash-based operating profitability has the strongest predictive power.
- Cash-based operating profitability subsumes the accrual anomaly.

## 4.1 Cash-based operating profitability(PS)

| Panel A: | All stocks              |        |      |           |                  |           |       |        |                                    |      |  |
|----------|-------------------------|--------|------|-----------|------------------|-----------|-------|--------|------------------------------------|------|--|
|          | Operating profitability |        |      |           |                  | Accruals  |       |        | Cash-based operating profitability |      |  |
|          |                         | Excess | α    |           | Excess           | α         |       | Excess | Excess α                           |      |  |
|          | Portfolio               | return | CAPM | FF3       | return           | CAPM      | FF3   | return | CAPM                               | FF3  |  |
|          |                         |        | Mon  | thly exce | ess returns      | and alpha | s     |        |                                    |      |  |
| 10 - 1   |                         | 0.29   | 0.42 | 0.74      | -0.35            | -0.43     | -0.39 | 0.47   | 0.65                               | 0.89 |  |
|          |                         |        |      |           | <i>t</i> -values |           |       |        |                                    |      |  |
| 10 - 1   |                         | 1.84   | 2.81 | 5.98      | -2.55            | -3.15     | -2.98 | 3.17   | 4.74                               | 8.48 |  |

• Cash-based operating profitability has the strongest predictive power.

## 4.2 Cash-based operating profitability factor

|                                                                 |                       | Factor                |                      |                       |                      |                      |                      |  |  |  |
|-----------------------------------------------------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|--|--|--|
|                                                                 | MKT                   | SMB                   | HML                  | UMD                   | ACC                  | RMW <sub>OP</sub>    | RMW <sub>CbOP</sub>  |  |  |  |
| Average annualized return Annualized standard deviation t-value | 6.09<br>15.44<br>2.83 | 2.88<br>10.75<br>1.92 | 4.35<br>9.91<br>3.15 | 8.27<br>14.64<br>4.05 | 2.70<br>5.66<br>3.42 | 3.25<br>6.39<br>3.65 | 4.88<br>5.57<br>6.29 |  |  |  |

 The cash-based operating profitability factor has a substantially higher average annualized return and t-value than the operating profitability factor.

#### 4.2 Cash-based operating profitability factor

| Panel | A: | S | panning | regressions |
|-------|----|---|---------|-------------|
|       |    | - | 0       |             |

| Dependent variable |        |                 |        |       |       |       |       |  |
|--------------------|--------|-----------------|--------|-------|-------|-------|-------|--|
|                    | RMV    | V <sub>OP</sub> | RMW    | СЬОР  | ACC   |       |       |  |
| t-values           |        |                 |        |       |       |       |       |  |
| $\alpha$           | 7.01   | -1.15           | 10.09  | 7.08  | 3.34  | 4.96  | 1.69  |  |
| b(MKT)             | -3.82  | 2.25            | -6.86  | -6.09 | -1.67 | -2.63 | -0.62 |  |
| b(SMB)             | -7.47  | -2.02           | -7.93  | -3.24 | -3.33 | -5.04 | -2.05 |  |
| b(HML)             | -13.65 | -6.87           | -11.44 | -1.24 | 4.78  | 1.37  | 5.97  |  |
| $b(RMW_{OP})$      |        |                 |        | 30.14 |       | -6.08 |       |  |
| $b(RMW_{CbOP})$    | 30.14  | 30.14           |        |       |       |       | 3.79  |  |
| Adjusted $R^2$     | 26.2%  | 70.2%           | 25.3%  | 69.9% | 8.3%  | 13.4% | 10.3% |  |

Panel B: Pairwise model comparisons

| Model 1                       | Model 2                   | ΔΑΙC  | Relative likelihood of<br>Model 1 to Model 2 |
|-------------------------------|---------------------------|-------|----------------------------------------------|
| FF3 + RMW <sub>OP</sub>       | FF3 + RMW <sub>CbOP</sub> | 47.25 | 0.000                                        |
| FF3 + RMW <sub>OP</sub> + ACC | FF3 + RMW <sub>CbOP</sub> | 24.98 | 0.000                                        |

• Data overwhelmingly favor the threefactor model augmented with the cash-based operating profitability factor.

## 4.3 Maximum ex post Sharpe ratios

|   | Optimal weights |     |     |     |     |                   |                     |       |  |  |
|---|-----------------|-----|-----|-----|-----|-------------------|---------------------|-------|--|--|
| # | MKT             | SMB | HML | UMD | ACC | RMW <sub>OP</sub> | RMW <sub>CbOP</sub> | ratio |  |  |
| 1 | 100%            |     |     |     |     |                   |                     | 0.39  |  |  |
| 2 | 27%             | 20% | 54% |     |     |                   |                     | 0.75  |  |  |
| 3 | 21%             | 12% | 41% | 26% |     |                   |                     | 1.06  |  |  |
| 4 | 17%             | 11% | 28% | 19% | 26% |                   |                     | 1.12  |  |  |
| 5 | 11%             | 11% | 30% | 10% |     | 38%               |                     | 1.40  |  |  |
| 6 | 9%              | 11% | 21% | 6%  | 33% | 20%               |                     | 1.54  |  |  |
| 7 | 11%             | 11% | 24% | 5%  |     |                   | 48%                 | 1.67  |  |  |
| 8 | 11%             | 11% | 22% | 5%  | 7%  |                   | 45%                 | 1.69  |  |  |

 The ex post maximum Sharpe ratio is 1.54 if the investor traded the base factors along with the cash-based operating profitability factor.

### 5. Increasing the predictive horizon

Panel A: Operating profitability



Panel B: Cash-based operating profitability



The persistent predictive power is consistent with the profitability variables and expected returns sharing common economic determinants such as risk that are relatively stationary over time.

## 5. Increasing the predictive horizon

Panel D: Comparison of t-values



Panel E: Differences in Sharpe ratios between cash-based operating profitability and operating profitability



An investor would do significantly better with cash-based operating profitability than operating profitability over at least a four-year horizon.

#### 6. Conclusion

- **Explain the puzzle** that the similar predictive power of net income and gross profit when they are consistently deflated
- Operating profitability better explains the cross section of expected returns than gross profitability, and net income
- Cash-based operating profitability better explains the cross section of expected returns than operating profitability, gross profitability, and net income

#### Reflection

 Which profit indicator is the most representative in the Chinese market? the best forecast for earnings? Is it consistent with foreign countries?