Exercises for Section 1.2

kankanray

Exercise 1.2.1

- (a) $\phi \to MK\phi$.
- (b) $(M\phi \wedge M\psi) \to M(\phi \wedge \psi)$.
- (c) $K\phi \to M\phi$.
- (d) $MM\phi \to M\phi$.

Only (b) seems clear.

In my opinion, (b) (c) are plausible; (a) (d) are not.

Exercise 1.2.2

 $\Box \phi$ can be interpreted as 'it's not the case that the negation of ϕ is permissible', or equivalently 'the negation of ϕ is not permissible'.

Some formulas which seem plausible under this interpretation:

$$(\Diamond \phi \land \Diamond \psi) \leftrightarrow \Diamond (\phi \land \psi),$$
$$\Diamond (\phi \lor \psi) \rightarrow (\Diamond \phi \lor \Diamond \psi).$$

Finally, consider the Löb formula: $\Box(\Box p \to p) \to \Box p$. Assume $\Box(\Box p \to p)$ is true, then we know ' $\neg(\Box p \to p)$ is not permissible', which is ' $\Box p \land \neg p$ is not permissible'. Then we conclude that ' $\neg p$ is not permissible', which is just described by $\Box p$.

So the Löb formula may be plausible.

Exercise 1.2.3

```
'while \phi do \pi': (\phi?;\pi)^*; \neg \phi?.

'repeat \pi until \phi': \pi; (\neg \phi?;\pi)^*; \phi?.
```

Note that the 'programs' given above are only in an intuitive sense, since we have no semantics here.

Exercise 1.2.4

 $1^{\circ} \circ p \leftrightarrow p$ should be always true. $\otimes (p \circ q) \leftrightarrow \otimes q \circ \otimes p$ should be always true. $p \circ (q \circ r) \leftrightarrow (p \circ q) \circ r$ should be always true.

Exercise 1.2.5

Assume that χ is a substitution instance of ψ , then there is a substitution σ such that $\psi^{\sigma} = \chi$.

Assume also that ψ is a substitution instance of ϕ , then there is a substitution τ such that $\phi^{\tau} = \psi$.

```
Then consider \sigma \circ \tau, is also a substitution, and we have \bot^{\sigma \circ \tau} = \bot, p^{\sigma \circ \tau} = \sigma \circ \tau(p) = \sigma(\tau(p)) = (p^{\tau})^{\sigma}, (\neg \psi)^{\sigma \circ \tau} = \neg \psi^{\sigma \circ \tau}, by induction hypothesis, = \neg (\psi^{\tau})^{\sigma}, (\psi \lor \theta)^{\sigma \circ \tau} = \psi^{\sigma \circ \tau} \lor \theta^{\sigma \circ \tau}, by induction hypothesis, = (\psi^{\tau})^{\sigma} \lor (\theta^{\tau})^{\sigma}, (\triangle(\psi_1, ..., \psi_n))^{\sigma \circ \tau} = \triangle(\psi_1^{\sigma \circ \tau}, ..., \psi_n^{\sigma \circ \tau}), by induction hypothesis, = \triangle((\psi_1^{\tau})^{\sigma}, ..., (\psi_n^{\tau})^{\sigma}). As a conclusion, we have \phi^{\sigma \circ \tau} = (\phi^{\tau})^{\sigma} = \psi^{\sigma} = \chi, so \chi is a substitution of
```

 ϕ .