CGT 520 Computer Graphics

Computer Graphics Technology Dept.

Purdue University

<u>Outline</u>

- Introduction
- Light sources
- The Phong reflection model

Object Appearance

• Problem:

Real object appearance is influenced by complex light and material interactions.

Direct and indirect illumination

Goal: Develop simple (fast) light models based loosely on physical reality.

Global Illumination

• In reality: object appearance depends on **all** other objects in the scene (interreflections, shadows, light scattering)

Global illumination effects

• Solution by solving for global energy balance: radiosity, ray tracing. But not yet possible in real time for complex scenes.

Materials

• Light-surface interaction governs object appearance

Diffuse, shiny and reflective materials.

Material properties

 Material properties determine what happens to light rays after they strike a surface

Reflective, diffuse, transparent surfaces.

Simplified models for real time rendering

 Local illumination: Assume object appearance only depends on local material and geometric properties

Simplified models for real time rendering

• We will use a combination of 3 terms (ambient, diffuse and specular) to compute the final appearance

Ambient term

• Indirect lighting, due to global illumination effects

• Simplification: Constant illumination term which does not depend on surface position or orientation

Diffuse term

Direct lighting on a rough surface which reflects light in all directions

Simplification: appearance depends only on surface orientation and

light direction

Specular term

• Direct lighting on a smooth, reflective surface

• Simplification: appearance depends on surface orientation, light direction and viewer position

Real light sources

Illumination function $I(x, y, z, \theta, \phi, \lambda)$

- The emitted light is a function of
 - Position: x, y, z
 - Direction: ϕ , θ
 - Wavelength: λ

Simplified light sources

 We will use the tristimulus theory of human vision to simplify the wavelength dependence of the illumination function

• Light sources are characterized by rgb color ${\it I}=\begin{bmatrix} I_r \\ I_g \\ I_b \end{bmatrix}$

Ambient light source

- Ambient light sources represent light which seems to come from "everywhere"
- Ambient light sources have no position or directional dependence
- Ambient light sources can be described with only a color:

$$I_a = \begin{bmatrix} I_{ar} \\ I_{ag} \\ I_{ab} \end{bmatrix}$$

Point light source

- Point light sources have no area (light is emitted from a single point)
- Light is emitted equally in all directions (no directional dependence)

$$I(\mathbf{p_0}) = \begin{bmatrix} I_r(p_0) \\ I_g(p_0) \\ I_b(p_0) \end{bmatrix}$$

Point light source

- The light intensity received at the surface is less than the light emitted
- Inverse square law: Light received at p is inversely proportional to the squared distance to the light source

•
$$i(p, p_0) = \frac{1}{||p-p_0||^2} I(p_0)$$

The inverse square law

- Even though the inverse square law is a physically accurate description of light attenuation, it can lead to problems
 - harsh lighting
 - very dim objects far away from lights
- One solution: place many light sources in the scene
- Another solution: tweak the attenuation equation
 - The quadratic attenuation model

The inverse square law

- Let the distance from light to the surface be $d = \|p p_0\|$
- Instead of $1/d^2$ use the quadratic attenuation term

$$\frac{1}{a+bd+cd^2}$$

• Where a, b, c are chosen by the artist/designer/programmer

Directional light sources

- No positional dependence, characterized by a direction
- All light rays are parallel
- Models a point light at an infinite distance (like the sun)

Spot light

- A point light that emits light within a cone
- Has position, direction, cone angle, color

Phong reflection model

- A local lighting model which depends on the following vectors when computing the color of point p
 - I: direction to the light source
 - n: normal (perpendicular) to the surface
 - v: direction to the viewer / camera
 - r: reflection direction (depends on n and l)

Phong: 3 types of light-material interaction

The Phong model combines the lighting contributions from

- Ambient
- Diffuse
- Specular

using a quadratic attenuation model

The ambient term

The ambient color of every point on a surface is constant

- $I_a = kaLa$
- k_a must be positive
- The 3 color components of k_a are referred to as the "ambient color" of the surface
- L_a is the ambient light color

The diffuse term

- A perfectly diffusion surface (Lambertian) reflects light equally in all directions
- A point, p, on a surface looks the same to all viewers
- Diffuse reflectance R_d does not depend on v (view direction)
- However, R_d does depend on n and l

Lambert's law

Lambert's law states that

$$R_d \propto cos\theta$$

where θ is the angle between the light direction and the surface normal

- If *n* and *l* are unit vectors then $cos\theta = n \cdot l$
- Then we can choose a diffuse coefficient k_d and let

$$R_d = k_d(n \cdot l)$$

Taking attenuation into account we have

$$R_d = \frac{k_d}{a + bd + cd^2} (n \cdot l)$$

The diffuse term

 Since it is meaningless to reflect a negative fraction of incoming light, we clamp the cosine term

$$R_d = \frac{k_d}{a + bd + cd^2} \max((n \cdot l), 0)$$

• The diffuse intensity is then given by

$$I_d = \frac{k_d}{a + hd + cd^2} \max((n \cdot l), 0) L_d$$

ullet k_d is the diffuse material color, and L_d is the diffuse light color

The specular term

• Smooth specular surfaces act like a mirror. The reflection term, $R_{\rm s}$, depends on the reflection vector, r.

$$I_s = k_s L s \cos^{\alpha} \phi$$

- k_s : specular material color
- L_s : specular light color
- α : shininess
- ϕ : angle between r and v

The specular term

ullet As the exponent lpha increases the specular highlight becomes smaller

and sharper

• If r and v are normalized, we can use the dot product here too

$$I_s = k_s Ls \max(0, r \cdot v)^{\alpha}$$

Warning

$$I_s = k_s Ls \max(0, r \cdot v)^{\alpha}$$

- Be careful, the book and several other resources get this wrong
- They instead write

$$I_s = k_s Ls \max(0, (r \cdot v)^{\alpha})$$

What is the difference?

The Phong model

$$I = ka La + \frac{1}{a + bd + cd^2} (k_d Ld \max(0, n \cdot l) + k_s Ls \max(0, r \cdot v)^{\alpha})$$

• For multiple light sources, sum up the contributions from each light

In glsl

- Relevant functions in glsl
 - dot (u, v): dot product between u and v
 - pow(x, y): return x^y
 - Undefined if x<0 or if x=0 and y <= 0
 - max(x, y): return maximum of x and y
 - reflect(I, N): computes the reflection vector
 - I is incident (incoming) light vector. This opposite of what we assume in Phong derivation
 - N is surface normal
 - Call vec3 r = reflect(-1, n) for outward facing vectors

How is reflection vector computed?

- Assume ideal reflection: angle of incidence = angle of reflection θ
- $L + S = N \cos\theta$
- $N\cos\theta + S = R$
- From the first equation: $S = N \cos\theta L$
- Plugging into the second eqn: $N \cos\theta + N \cos\theta L = R$
- Then $R = 2N \cos\theta L$
- Since N and L are unit vectors: $R = 2N(N \cdot L) L$