$\langle\!\langle Analysis\ of\ Financial\ Time\ Series\rangle\!\rangle$

 $\langle\!\langle Analysis\ of\ Financial\ Time\ Series \rangle\!\rangle$

Deep learning models for Time Series Analysis

May 26, 2023

Outline

- Deep learning models for Time Series Analysis
 - RNN
 - LSTM
 - GRU
 - Real Data: Bike Sharing Demand

RNN

- Recurrent Neural Network (RNN) is a type of neural network designed to handle sequential data.
- RNN have connections that loop back on themselves, allowing them to maintain a sort of "memory" of past inputs.
- The figure shows the structure of RNN with hidden node size $n_h=4.$

where ϕ is an activation function, and $W_{hh}, W_{xh}, b_h, W_{hy}, b_y$ are the parameters to be estimated.

Activation functions

Logistics

$$\phi(x) := \frac{1}{1 + \exp\left(-x\right)}$$

Hyperbolic Tangent (tanh)

$$\phi(x) := \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$

Rectified Linear Unit (ReLU)

$$\phi(x) := \max(0, x)$$

Both the logistics and hyperbolic tangent functions are examples of sigmoid functions, which have an "S"-shaped curve.

Loss function

- The parameters can be estimated by minimizing a given loss function.
- For continuous response variables, Mean Square Error (MSE) is a common loss function, defined below:

$$MSE(\boldsymbol{W}) = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_t(\boldsymbol{W}))^2$$
$$= \frac{1}{T} \sum_{t=1}^{T} L_t(\boldsymbol{W}),$$

where W is the parameters that need to estimate, y_t is the actual value and $\hat{y}_i(W)$ is the predicted value.

Parameters update

 Gradient descent is an optimization algorithm. In the presence of a non-convex function, its convergence to a local minimum is guaranteed. Its update equation is defined as follows:

$$\boldsymbol{W}^{(k+1)} = \boldsymbol{W}^{(k)} + \eta \nabla \mathsf{MSE}\left(\boldsymbol{W}^{(k)}\right),$$

where
$$\nabla \mathsf{MSE}(oldsymbol{W}) = \Big(rac{\partial \mathsf{MSE}(oldsymbol{W})}{\partial oldsymbol{W}_1}, rac{\partial \mathsf{MSE}(oldsymbol{W})}{\partial oldsymbol{W}_2}, \ldots, rac{\partial \mathsf{MSE}(oldsymbol{W})}{\partial oldsymbol{W}_p} \Big)'.$$

• When the sample size T is large, the computational time required to compute $\nabla \mathsf{MSE}\left(\boldsymbol{W}^{(k)}\right)$ can become significant for one iteration.

 Stochastic gradient descent (SGD) lowers the computational time by replacing the actual gradient by the gradient of a single observation.

$$\boldsymbol{W}^{(k,t)} = \boldsymbol{W}^{(k,t-1)} + \eta \nabla \mathsf{L}_t \left(\boldsymbol{W}^{(k,t-1)} \right), \quad t = 1, \dots T$$
$$\boldsymbol{W}^{(k+1,0)} = \boldsymbol{W}^{(k,T)}$$

 There are many other improved optimization algorithm based on SGD, for example, AdaGrad, RMSProp and Adam.

LSTM

- Long short-term memory (LSTM) was first proposed by Hochreiter and Schmidhuber in 1997.
- LSTM includes a module for selectively remembering or forgetting information in its memory cell.
- LSTM has been widely used in handwriting recognition, speech recognition, and translation.
- Notable achievements using LSTM include:
 - Google researchers used LSTM for speech recognition on Google Voice and reduced transcription errors by 49% in 2015.
 - Google researchers used LSTMs to reduce translation errors by 60% in 2016.

- The output of a sigmoid function used in LSTM needs to be within the range (0,1).
- The logistic function is a commonly used sigmoid function used in LSTM.

• LSTM has three gates: Forget gate (F_t) , input gate (I_t) and output gate (O_t) .

$$F_{t} = \sigma(H_{t-1}W_{hf} + X_{t}W_{xf} + b_{f})$$

$$I_{t} = \sigma(H_{t-1}W_{hi} + X_{t}W_{xi} + b_{i})$$

$$O_{t} = \sigma(H_{t-1}W_{ho} + X_{t}W_{xo} + b_{o})$$

• F_t controls the information forgotten from C_{t-1} . I_t controls the information added to C_t from \tilde{C}_t (input node).

$$\begin{split} \tilde{C}_t &= \tanh(H_{t-1}W_{hc} + X_tW_{xc} + b_c) \\ C_t &= \underbrace{F_t \otimes C_{t-1}}_{\text{Forget information}} + \underbrace{I_t \otimes \tilde{C}_t}_{\text{Input new information}} \end{split}$$

ullet O_t control the information need to output to H_t from C_t .

$$H_t = O_t \otimes \tanh(C_t)$$
$$y_t = H_t W_{hy} + b_y$$

GRU

- The gated recurrent unit (GRU) was first proposed by Kyunghyun Cho et al in 2014.
- The GRU simplified the architecture of LSTM to speed up computation time.
- Compare to LSTM, GRU often achieves comparable performance with faster computation time.

 \sqsubseteq_{GRU}

ullet GRU has two gates: Reset gate (R_t) , and update gate (Z_t) .

$$R_t = \sigma(H_{t-1}W_{hr} + X_tW_{xr} + b_r)$$

$$Z_t = \sigma(H_{t-1}W_{hz} + X_tW_{xz} + b_z)$$

• R_t control the information need to remember from H_{t-1} .

$$\tilde{H}_t = \tanh((R_t \otimes H_{t-1})W_{hh} + X_tW_{xh} + b_h)$$

• Z_t determines the proportion of the multiplication of H_{t-1} and \tilde{H}_t to get H_t .

$$H_t = \underbrace{Z_t \otimes H_{t-1}}_{ ext{Forget information}} + \underbrace{(1-Z_t) \otimes \tilde{H}_t}_{ ext{Input new information}}$$

Output

$$y_t = H_t W_{hy} + b_y$$

Real Data: Bike Sharing Demand

Real Data: Bike Sharing Demand

- The data records the demand for City Bike rentals in Kaohsiung per hour from January 2017 to March 2019.
- To create data for RNN, LSTM, and GRU models, use the following structure.

The data is split into three sets: training (60%), validation (20%), and test (20%).

- The training set is used to train the model.
- The validation set is used to prevent overfitting and stop the training procedure early.
- The test set is used to evaluate the performance of the model.

Real Data: Bike Sharing Demand

Figure: RMSE of validation set for each epoch.

 The figure shows that, compared to the simple RNN, both LSTM and GRU reach lower RMSE.

$\langle\!\langle Analysis\ of\ Financial\ Time\ Series\rangle\!\rangle$

Deep learning models for Time Series Analysis

∟_{Real Data: Bike Sharing Demand}

Table: RMSE of test set.

	test RMSE (log)	test RMSE
SimpleRNN	0.259	117.222
LSTM	0.267	108.754
GRU	0.241	104.935
SARIMA	0.273	114.618

 The table indicates that the GRU model has the lowest test RMSE among all the models.