

Метод отображения

Е.А. Мирончик, МБНОУ "Лицей № 111", г. Новокузнецк Самым трудным и одновременно самым интересным заданием ЕГЭ является задание на решение системы логических уравнений. Метод отображений позволяет не только определить ответ в задании В15, но и предлагает компактное в оформлении и простое в объяснении решение заданий более сложных, чем в ЕГЭ. К сожалению, эти задания находятся в части В, и школьники, владеющие приемами решения, получат за задание ноль баллов, в случае арифметической ошибки в одном из нескольких десятков действий.

Задание 1. Сколько решений имеет система:

$$\begin{cases} (x_1 \to x_2) + (x_1 \to x_3) = 1\\ (x_2 \to x_3) + (x_2 \to x_4) = 1\\ & \cdots\\ (x_8 \to x_9) + (x_8 \to x_{10}) = 1 \end{cases}$$

Все уравнения, включенные в систему, однотипны, и в каждое уравнение включено три переменных. Зная x_1 и x_2 , можем найти все возможные значения x_3 , удовлетворяющие первому уравнению. Рассуждая аналогичным образом, из известных x_2 и x_3 можем найти x_4 , удовлетворяющее второму уравнению. То есть, зная пару (x_1, x_2) и определив значение x_3 , мы найдем одну или две пары (x_2, x_3) , которые, в свою очередь, приведут к парам (x_3, x_4) , и так далее. На каждом шаге имеем множество исходных пар из набора (00, 01, 10, 11) и множество полученных пар из такого же набора (00, 01, 10, 11). Исходное множество пар отображается само в себя. Построим такое отображение.

Сначала построим таблицу, в которой в первых двух столбцах переберем все варианты x_1 , x_2 , а в третий столбец впишем только такие значения x_3 , которые приведут первое уравнение к верному равенству. По таблице строим правило отображения множества пар само в себя.

19

\boldsymbol{x}_1	\boldsymbol{x}_2	x_3
	0	0
0	U	1
0	1	0
	1	1
	0	1
1	1	0
	1	1

Пара 00 дает две пары — пару 00 и пару 01. Пара 01 также приводит к двум парам — 10 и 11. Пара 10 даст только одну пару 01. И из пары 11 получается две пары — 10 и 11. На каждом следующем шаге пары будут образовываться по такому же правилу. Получаем ориентированный граф.

Задача стала напоминать задачу о количестве путей от города A до города K. На каждом этапе количество пар 01 будет определяться суммой количества пар 00 и 10 на предыдущем этапе. Пусть F() — это функция, вычисляющая количество пар на следующем шаге. Получаем:

F(00) = F(00), в пару 00 входит одна стрелка от 00.

F(01) = F(00) + F(10), в пару 01 входят стрелки, ведущие от 00 и 10.

F(10) = F(01) + F(11), в пару 10 входят стрелки, ведущие от 01 и 11.

F(11) = F(01) + F(11), в пару 11 входят стрелки, ведущие от 01 и 11.

Остается построить таблицу для вычисления количества пар на каждом этапе.

-		Количество пар								
Пара	x_{1}, x_{2}	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}, x_{9}	x_{9}, x_{10}	
00	1	1	1	1	1	1	1	1	1	
01	1	2	3	5	8	13	21	34	55	
10	1	2	4	7	12	20	33	54	88	
11	1	2	4	7	12	20	33	54	88	

На последнем шаге получили одну пару 00, 55 пар 01, по 88 пар 10 и 11. Итого: 1+55+88+88=232 набора $x_1, x_2, x_3, \dots x_{10}$, на которых система логических уравнений имеет решение.

Ответ: 232 решения.

Можем добавить дополнительный вопрос: "Привести одно из решений системы, если $x_1=1, x_2=0$ ". Следуя стрелкам, записываем набор значений: $x_1=1, x_2=0, x_3=1, x_4=1, x_5=1, x_6=0, x_7=1, x_8=0, x_9=1, x_{10}=1$.

Если разрешить использовать электронные таблицы, то можем не ограничиваться десятью неизвестными.

Применение метода отображения для систем с особыми случаями

Еще интереснее получается решение такой же системы, если в нее включить дополнительные уравнения. Например, рассмотрим такое задание:

Задание 2. Сколько решений имеет система:

$$\begin{cases} (x_1 \to x_2) + (x_1 \to x_3) = 1 \\ (x_2 \to x_3) + (x_2 \to x_4) = 1 \\ & \cdots \\ (x_8 \to x_9) + (x_8 \to x_{10}) = 1 \\ x_1 \equiv 0 \end{cases}$$

При заполнении первого столбика, там, где указываем количество пар x_1 , x_2 , надо поставить значение пар 10 и пар 11 равным 0, далее решение ничем не отличается.

Пар	a		Количество пар							
		x_{1}, x_{2}	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}, x_{9}	x_{9}, x_{10}
00		1	1	1	1	1	1	1	1	1
01		1	1	2	3	5	8	13	21	34
10		0	1	2	4	7	12	20	33	54
11		0	1	2	4	7	12	20	33	54

На выходе имеем одну пару 00, 34 пары 01 и по 54 пары 10 и 11. 1 + 34 + 54 + 54 = 143.

Ответ: 143 решения.

Изменим в системе последнее уравнение:

Задание 3. Сколько решений имеет система:

$$\begin{cases} (x_1 \to x_2) + (x_1 \to x_3) = 1 \\ (x_2 \to x_3) + (x_2 \to x_4) = 1 \\ & \dots \\ (x_8 \to x_9) + (x_8 \to x_{10}) = 1 \\ x_5 \oplus x_6 = 1 \end{cases}$$

По добавленному уравнению значения x_5 и x_6 должны быть разными. Это значит, что в таблице в столбце x_5 , x_6 необходимо обнулить значения, соответствующие парам 00 и 11.

-		Количество пар									
Пара	x_{1}, x_{2}	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}, x_{9}	x_{9}, x_{10}		
00	1	1	1	1	0	0	0	0	0		
01	1	2	3	5	8	12	8	20	28		
10	1	2	4	7	12	8	20	28	48		
11	1	2	4	7	0	8	20	28	48		

На выходе имеем 28 пар 01 и по 48 пар 10 и 11. 28 + 48 + 48 = 124.

Ответ: 124.

Задание 4. Сколько решений имеет система:

$$\begin{cases} (x_1 \to x_2) + (x_1 \to x_3) = 1\\ (x_2 \to x_3) + (x_2 \to x_4) = 1\\ & \cdots\\ (x_8 \to x_9) + (x_8 \to x_{10}) = 1\\ x_0 = 0 \end{cases}$$

Переменная x_9 участвует в столбцах x_8 , x_9 и x_9 , x_{10} . В столбце x_8 , x_9 пары 01 и 11 и в столбце x_9 , x_{10} пары 10 и 11 соответствуют значению $x_9=1$ и, значит, не удовлетворяют решению системы. Замена на ноль этих значений в том или другом случае приводит к одному результату.

-		Количество пар								
Пара	x_{1}, x_{2}	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}, x_{9}	x_{9}, x_{10}	
00	1	1	1	1	1	1	1	1	1	
01	1	2	3	5	8	13	21	0	55	
10	1	2	4	7	12	20	33	54	0	
11	1	2	4	7	12	20	33	0	0	

На выходе имеем 1 пару 00 и 55 пар 01. 1 + 55 = 56.

Ответ: 56 решений.

Задание 5. Сколько решений имеет система:

$$\begin{cases} (x_1 \to x_2) + (x_1 \to x_3) = 1 \\ (x_2 \to x_3) + (x_2 \to x_4) = 1 \\ & \dots \\ (x_8 \to x_9) + (x_8 \to x_{10}) = 1 \\ x_1 \equiv x_5 = 1 \end{cases}$$

		Количество пар									
Пара	x_{1}, x_{2}	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}, x_{9}	x_9, x_{10}		
00	1	1	1	1	1	1	1	1	1		
01	1	1	2	0	5	1	6	7	13		
10	0	1	2	4	0	5	6	12	19		
11	0	1	2	0	0	5	6	12	19		

На выходе имеем 52 решения при $x_1=0$ (1 + 13 + 19 + 19 = 52). Построим вторую таблицу при $x_1=1$ и $x_5=1$.

-		Количество пар								
Пара	x_{1}, x_{2}	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}, x_{9}	x_9, x_{10}	
00	0	0	0	0	0	0	0	0	0	
01	0	1	1	2	0	5	5	10	15	
10	1	1	2	0	5	5	10	15	25	
11	1	1	2	3	5	5	10	15	25	

На выходе имеем 65 решений при $x_1 = 1$ (0 + 15 + 25 + 25 = 65).

Итого: 52 + 65 = 117. Ответ: 117 решений.

Также можно рассмотреть систему, в которой будут меняться правила перехода от одной пары к другой. **Задание 6.** Сколько решений имеет система:

$$\begin{cases} (x_1 \to x_2) + (x_1 \to x_3) = 1 \\ x_2 \cdot x_3 + (x_2 = x_4) = 0 \\ (x_3 \to x_4) + (x_3 \to x_5) = 1 \\ & \dots \\ (x_7 \to x_8) + (x_7 \to x_9) = 1 \\ x_8 \cdot x_9 + (x_8 = x_{10}) = 0 \end{cases}$$

Правило для первого уравнения, а также для всех уравнений, стоящих на нечетных местах, у нас уже построено, построим правило для второго уравнения, которому будем следовать для всех четных уравнений. В первых двух столбцах переберем все варианты x_2, x_3 , а в третий столбец впишем только такие значения x_4 , которые приведут второе уравнение к верному равенству. По полученным данным строим правило отражения множества пар само в себя. Пара 00 приводит к паре 01. Пара 01 приводит к паре 11. Пара 10 даст только одну пару 00. Пара 11 не приводит к решению.

x_2	x_3	x_4
0	0	1
U	1	1
1	0	0
1	1	-

Для всех четных уравнений получаем:

F(00) = F(10), в пару 00 входит одна стрелка от 10.

F(01) = F(00), в пару 01 входит стрелка, ведущая от 00.

F (10) = 0, у пары 10 нет входящих стрелок.

F(11) = F(01), в пару 11 входит стрелка, ведущая от 01.

Граф будет выглядеть следующим образом:

Остается выполнить вычисления:

П		Количество пар								
Пара	x_{1}, x_{2}	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}, x_{9}	x_{9}, x_{10}	
00	1	1	2	2	3	3	4	4	6	
01	1	2	1	2	2	3	3	4	4	
10	1	2	0	3	0	4	0	6	0	
11	1	2	2	3	2	4	3	6	4	

На выходе имеем 6 пар 00 и по 4 пары 01 и 11. 6 + 4 + 4 = 14.

Ответ: 14 решений.

Рассмотрим систему с однотипной левой частью уравнений и чередованием правой части.

Задание 7. Сколько решений имеет система:

$$\begin{cases} \overline{x_{1}} \cdot (\overline{x_{2}} + x_{3}) + x_{1} \cdot \overline{x_{2}} = 1 \\ \overline{x_{2}} \cdot (\overline{x_{3}} + x_{4}) + x_{2} \cdot \overline{x_{3}} = 0 \\ \overline{x_{3}} \cdot (\overline{x_{4}} + x_{5}) + x_{3} \cdot \overline{x_{4}} = 1 \\ \cdots \\ \overline{x_{7}} \cdot (\overline{x_{8}} + x_{9}) + x_{7} \cdot \overline{x_{8}} = 1 \\ \overline{x_{8}} \cdot (\overline{x_{9}} + x_{10}) + x_{8} \cdot \overline{x_{9}} = 0 \end{cases}$$

Таблица решения первого уравнения.

x_1	x_2	x_3
	0	0
0	0	1
	1	1
	0	0
1	0	1
	1	

Отображение для второго уравнения можно построить, имея отображение первого уравнения. В правой части уравнений может стоять только два значения — 1, 0. Если при решении первого уравнения от пары 00 идут две стрелки к парам 00 и 01, то эта пара не имеет решения при равенстве 0. От пары 01 в первом уравнении идет одна стрелка к паре 11, значит, для второго уравнения будет стрелка от пары 01 к паре 10. Пара 10 первого уравнения имеет две стрелки к парам 00 и 01, поэтому во втором уравнении от пары 10 не будет стрелок. Пара 11 первого уравнения не имеет стрелок, следовательно, для второго уравнения надо провести обе стрелки, приводящие к 10 и к 11. Построим правило отображения для двух уравнений.

Построенный граф для первых двух уравнений имеет вид:

Чередуя правило перехода от одного уравнения к другому, выполним вычисления.

-		Количество пар								
Пара	x_1, x_2	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}, x_{9}	x_{9}, x_{10}	
00	1	2	0	3	0	3	0	3	0	
01	1	2	0	3	0	3	0	3	0	
10	1	0	3	0	3	0	3	0	3	
11	1	1	1	0	0	0	0	0	0	

Заметим, что столбики стали повторяться.

Ответ: 3 решения.

Решение одного уравнения методом отображения

Задание 8. Сколько решений имеет уравнение:

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 = 1$$

Расставим порядок действий в выражении левой части уравнения.

 x_1 может быть равным 0 и может быть равным 1. И $x_1 \to x_2$ также может равняться 0 или 1.

\boldsymbol{x}_{1}	x_2	$x_1 \rightarrow x_2$
0	0	1
U	1	1
1	0	0
1	1	1

Представим таблицу истинности для импликации как отображение множеств:

Три стрелки ведут к 1 и одна стрелка ведет к 0. Каждая следующая импликация будет равна 0 столько раз, сколько стартовых единиц было на предыдущем шаге. А количество единиц будет получаться из удвоенного количества 0 предыдущего шага и количества единиц предыдущего шага.

Построим таблицу для определения количества 0 и количества 1 во всем выражении. В первый столбец запишем по 1, так как на "старте" этого выражения x_1 может быть равным один раз 1 и один раз 0. Далее будем считать количество 0 и количество 1 после каждого действия.

		Старт	\rightarrow	\rightarrow	\rightarrow	\rightarrow
		\boldsymbol{x}_{1}	I	II	III	IV
ĺ	0	1	1	3	5	11
	1	1	3	5	11	21

После VI действия получили 21 единицу.

Для дополнительного контроля за правильностью решения заметим, что в каждом столбике имеем в сумме "очередную" степень двойки.

Ответ: 21.

Задание 9. Сколько решений имеет уравнение:

$$((x_1 \cdot x_2 \to x_3) \cdot x_4 \to x_5) \cdot x_6 \to x_7 = 1$$

I II III IV V VI
$$((x_1 \quad \cdot \quad x_2 \quad \rightarrow \quad x_3) \quad \cdot \quad x_4 \quad \rightarrow \quad x_5) \quad \cdot \quad x_6 \quad \rightarrow \quad x_7$$

Отображение множеств для операций, использующихся в выражении:

Импликация Конъюнкция $x_1 x_2 x_1 \rightarrow x_2 0 0 0 0 0 0$

Выполняя вычисления в таблице, будем чередовать приведенные правила.

	Старт		\rightarrow	•	\rightarrow	•	\rightarrow
	\boldsymbol{x}_1	I	II	III	IV	V	VI
0	1	3	1	9	7	39	25
1	1	1	7	7	25	25	103

Ответ: 103.

Задание 10. Сколько решений имеет уравнение:

$$(x_1 \to x_2 \to x_3 \to x_4) \to (x_5 \to x_6 \to x_7) = 1$$

Расставим порядок действий в выражении левой части уравнения.

24

	I		II		III		VI		IV		V	
(x_1)	\rightarrow	X_{2}	\rightarrow	x_3	\rightarrow	x_{A}	\rightarrow	(x_{5})	\rightarrow	x_{6}	\rightarrow	x_7

Заметим, что выражения в первой и второй скобках **не зависят друг от друга**. В этом случае стартовыми будут два значения — x_1 и x_5 . Кроме этого, таблица для анализа выражения второй скобки повторяет часть таблицы, построенной для первой скобки. Найдем количество нулей и количество единиц в таблицах.

	Старт	\rightarrow	\rightarrow	\rightarrow	Старт	\rightarrow	\rightarrow	\rightarrow
	\boldsymbol{x}_{1}	I	II	III	x_5	IV	V	VI
0	1	1	3	5	1	1	3	33
1	1	3	5	11	1	3	5	95

Результат столбца VI получается из столбцов III и V. При этом количество синих (нулевых) стрелок увеличивается в 3 раза, а количество красных (единичных) увеличивается в 5 раз.

Поясним вычисления с помощью отображения:

Ответ: 95.

Задание 11. Сколько решений имеет уравнение:

$$\overline{(x_1\cdot(x_2\to x_3))\oplus x_4\to x_5}\cdot(x_6\cdot x_7\to x_8)=1$$

Построим таблицы истинности в виде отображений для операций, использующихся в левой части выражения.

Для удобства заполнения таблицы запишем выражение, изменив порядок множителей.

$$\overline{((x_2 \to x_3) \cdot x_1) \oplus (x_4 \to x_5)} \cdot (x_6 \cdot x_7 \to x_8) = 1$$

Расставим порядок действий выражения в левой части уравнения.

В данном выражении три стартовых значения — x_2 , x_4 и x_6 .

	старт	\rightarrow		старт	\rightarrow	\oplus	Г	старт	•	\rightarrow	•
	x_2	I	II	X_4	III	IV	V	x_6	VI	VII	VIII
0	1	1	5	1	1	14	18	1	3	1	158
1	1	3	3	1	3	18	14	1	1	7	98

Результат IV и VIII действий поясним с помощью отображений:

Ответ: 98.

$$(x_1 \to x_2 \to x_3 \to x_4) \to (x_4 \to x_5 \to x_6) = 1$$

Расставим порядок действий:

Особенностью этого уравнения является то, что переменная x_4 участвует в выражении левой части дважды. Это означает, что решение следует получать из двух отдельных таблиц.

Построим решение этого выражения при $x_4 = 0$:

	старт	\rightarrow	\rightarrow	\rightarrow	старт	\rightarrow	\rightarrow	\rightarrow
	x_1	I	II	III	X_4	IV	V	VI
0	1	1	3	5	1	0	2	6
1	1	3	5	3	0	2	2	26

При переходе от II к III возьмем только нулевые стрелки. И в стартовый столбец $x_{_4}$ количество единиц возьмем равным 0.

Поясним действия с помощью отображений:

Построим решение этого выражения при $x_4 = 1$:

	старт	\rightarrow	\rightarrow	\rightarrow	старт	\rightarrow	\rightarrow	\rightarrow
	x_1	I	II	III	x_4	IV	V	VI
0	1	1	3	0	0	1	1	6
1	1	3	5	8	1	1	3	26

При переходе от II к III возьмем только единичные стрелки. И в стартовом столбце $x_{_4}$ количество единиц возьмем равным 0.

Поясним действия с помощью отображений:

Для вычисления ответа необходимо сложить результаты двух таблиц: 24 + 26 = 50. *Ответ:* 50.

Диаграммы Эйлера — Венна и система логических уравнений

Задача. Известно, что система, состоящая из N уравнений, имеет 189 решений (1).

$$\begin{cases} F(x_1, x_2, x_3) = 1 \\ F(x_2, x_3, x_4) = 1 \\ & \cdots \\ F(x_n, x_{n+1}, x_{n+2}) = 1 \end{cases}$$

Если к этой системе добавить уравнение $x_1 = 0$, то система будет иметь 88 решений (2).

Если вместо $x_1 = 0$ добавить уравнение $x_2 = 1$, то будет найдено 69 решений (3).

Замена последнего уравнения на уравнение $x_1 \to x_2 = 0$ приведет к 60 решениям (4).

Сколько решений имеет эта система, если последнее уравнение будет $x_2 \to x_1 = 1$?

Решение: Пусть $T(x_1, x_2)$ — это функция, вычисляющая количество решений системы. Функция зависит от значений параметров x_1 и x_2 .

Имеем уравнение T(0,0) + T(0,1) + T(1,0) + T(1,1) = 189. Из второго дополнения имеем уравнение: T(0,0) + T(0,1) = 88. Третье уравнение получим T(0,1) + T(1,1) = 69. Последнее уравнение получим T(1,0) = 60.

Все полученные уравнения можно объединить в систему.

$$\begin{cases}
T(0,0) + T(0,1) + T(1,0) + T(1,1) = 189 & (1) \\
T(0,0) + T(0,1) = 88 & (2) \\
T(0,1) + T(1,1) = 69 & (3) \\
T(1,0) = 60 & (4)
\end{cases}$$

Решив систему из четырех линейных уравнений с четырьмя неизвестными, получим:

$$\begin{cases} T(0,0) = 60 \\ T(0,1) = 28 \\ T(1,0) = 60 \\ T(1,1) = 41 \end{cases}$$

Для того чтобы найти, сколько решений имеет система при внесении ограничения $x_2 \rightarrow x_1 = 1$, необходимо вычислить сумму T(0,0) + T(1,0) + T(1,1) = 161.

Можно к этому заданию привести решение, отличающееся наглядностью, с использованием диаграмм Эйлера — Венна. Оформим условие задачи в виде таблиц (первая цифра пары — x_1 , вторая — x_2). Закрашенная область означает, что входит в сумму.

[1]: 189						
00	01					
10	11					

[2].00							
00	01						
10	11						

[4]: 60					
00	01				
10	11				

Требуется вычислить число, соответствующее закрашенной области:

00	01			
10	11			

Приведем пример оформления решения этого задания:

Из [1] и [4] следует [5]: 129

00	01
10	11

00	01
10	11

Из [6] и [1] следует [7]: 120

00	01
10	11

Из [7] и [6] следует Ответ: 161

00	01
10	11