COMP2005

Linear Filters:

- Convolution, Mean Filtering and Noise
- Gaussian Filtering

Spatial Filtering

Why?

- Intensity Transforms read and affect only a single pixel, their power is limited
- Images are spatially organised data structures, many important attributes vary slowly across the image
 - Object identity
 - Viewed surface orientation, colour, etc
 - Illumination
- Processes restricted to a small, compact area have access to more information but are still likely to consider a single object, surface, illumination pattern, etc.

Image Noise

- Noise = small errors in image values
- Imperfect sensors introduce noise
- Image compression methods are lossy: repeated coding & decoding adds noise

Original

JPEG

Difference (Enhanced)

Noise is often modelled as additive:

Recorded value = true value + random noise value

Gaussian Noise

- Sensors often give a measurement a little off the true value
 - On average they give the right value
 - They tend to give values near the right value rather than far from it
- We model this with a Gaussian
 - Mean (µ) = 0
 - Variance (σ²) indicates how much noise there is

Gaussian Noise

The level of noise is related to the Gaussian parameter σ

 $\sigma = 1$

 $\sigma = 10$

 $\sigma = 20$

Image with varying degrees of Gaussian noise added

Noise Reduction

- If you have multiple images, taking the mean value of each pixel will reduce noise
 - Noise is randomly added to each value
 - Mean value added is 0
 - If you average a large set of estimates of the same pixel the random noise values will cancel out

42 43 44 41 40 42 42 44 40

→ 42

 Given only a single image, averaging over a local region has a similar effect

> 42 43 44 41 40 42 → 42 42 44 40

- Ideally, we would choose the region to only include pixels that <u>should</u> have the same value
- We need a spatial filter.....

Spatial Filtering: Convolution

 Many filters follow a similar pattern - multiplying each image value by a corresponding filter entry, and summing the results

F _(-1,-1)	F _(0,-1)	F _(+1,-1)
F _(-1,0)	F _(0,0)	F _(+1,0)
F _(-1,+1)	F _(0,+1)	F _(+1,+1)

Filter Window

P _(x-1,y-1)	P _(x,y-1)	P _(x+1,y-1)
P _(x-1,y)	$P_{(x,y)}$	P _(x+1,y)
P _(x-1,y+1)	P _(x,y+1)	P _(x+1,y+1)

Picture Window

$$F_{(-1,-1)} \times P_{(x-1,y-1)}$$

+ $F_{(0,-1)} \times P_{(x,y-1)}$
+ $F_{(+1,-1)} \times P_{(x+1,y-1)}$
+ $F_{(-1,0)} \times P_{(x-1,y)}$
+ ...
+ $F_{(+1,+1)} \times P_{(x+1,y+1)}$
Result

Filtering

- More generally, with a filter with radius r
 - p_{x,y} is the original image value at (x,y)
 - p'_{x,y} is the new image value at (x,y)

$$p'(x,y) = \sum_{dx=-r}^{+r} \sum_{dy=-r}^{+r} f_{dx,dy} \times p_{x+dx,y+dy}$$

 Many, though not all, filters work this way, e.g. the mean filter:

	1/9	1/9	1/9
	1/9	1/9	1/9
3 × 3 mean filter	1/9	1/9	1/9

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

 5×5 mean filter

The Mean Filter

Original

Gaussian

Key Points

- Spatial filters operate on local image regions
- Many can be formulated as convolution with a suitable mask
- Noise reduction via mean filtering is a classic example

COMP2005

Gaussian Filtering

Gaussian Filters

- Convolution with a mask whose weights are determined by a 2D Gaussian function
- Higher weight is given to pixels near the source pixel
- These are more likely to lie on the same object as the source pixel

$$P(x,y) = \frac{1}{\sigma^2 2\pi} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

Discrete Gaussian Fitlers

- The Gaussian
 - Extends infinitely in all directions, but we want to process just a local window
 - Has a volume underneath it of 1, which we want to maintain

- We can approximate the Gaussian with a discrete filter
 - We restrict ourselves to a square window and sample the Gaussian function
 - We normalise the result so that the filter entries add to 1

Example

- Suppose we want to use a 5x5 window to apply a Gaussian filter with $\sigma^2 = 1$
 - The centre of the window has x = y = 0
 - We sample the Gaussian at each point
 - We then normalise it

-2	0.00	0.01	0.02	0.01	0.00		<u>1</u> 0.96
-1	0.01	0.06	0.10	0.06	0.01		
0	0.02	0.10	0.16	0.10	0.02		
1	0.01	0.06	0.10	0.06	0.01		
2	0.00	0.01	0.02	0.01	0.00		
'	-2	-1	0	1	2	•	

Gaussian Filters

- How big should the filter window be?
 - With Gaussian filters this depends on the variance (σ²)
 - Under a Gaussian curve 98% of the area lies within 2σ of the mean
 - A filter width of 5σ gives more than 98% of the values we want

The Gaussian Filter

Original

Gaussian

Separable Filters

- The Gaussian filter is separable
 - A 2D Gaussian is equivalent to two 1D Gaussians
 - First you filter with a 'horizontal' Gaussian
 - Then with a 'vertical' Gaussian.....

 0.06

 0.24

 0.40

 0.06

 0.24

 0.06

$$P(x,y) = \frac{1}{\sigma^2 2\pi} e^{\frac{-(x^2 + y^2)}{2\sigma^2}}$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-x^2}{2\sigma^2}} e^{\frac{-y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-x^2}{2\sigma^2}}\right) \left(\frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-y^2}{2\sigma^2}}\right)$$

$$= P(x) \times P(y)$$

Separable Filters

- The separated filter is more efficient
 - Given an NxN image and a nxn filter we need to do O(N²n²) operations
 - Applying two nx1 filters to a NxN image takes O(2N²n) operations

Example

- A 600×400 image and a 5×5 filter
- Applying it directly takes around 6,000,000 operations
- Using a separable filter takes around 2,400,000 - less than half as many

Key Points

- Like mean filtering, and Gaussian smoothing can be used to remove additive noise
- Gaussian smoothing emphasises pixels near the source pixel, where it is more likely image properties are fixed
- Gaussian smoothing is separable, and so efficient