ANÁLISE DE REGRESSÃO MÚLTIPLA

1) Em um estudo foi utilizada, erroneamente, uma amostra de apenas 3 observações para se estimarem os coeficientes de uma equação de regressão. Obteve-se R² = 0,96. A título de brincadeira, foi dito ao analista responsável que, se ele quisesse melhorar os resultados, bastaria eliminar uma observação e ficar com apenas n = 2. Faça uma crítica sobre o uso de amostras muito pequenas em regressão linear.

Com n=2, $R^2=1$ pois a reta vai ligar perfeitamente dois pontos. Importante notar que a regressão linear tem outras variáveis a serem analisadas além do R^2 , com poucos pontos a tendência é que esse indicador seja sempre alto. É também conveniente verificar o tamanho mínimo da amostra

2) A tabela a seguir apresenta os dados correspondentes à produção brasileira de automóveis, em milhares, no período de 17 anos. Ajuste os dados, usando os modelos de regressão linear. Analise os resultados e estime a produção para o décimo oitavo ano.

Produção Tempo

30,5	1
61	2
96,1	3
133	4
145,6	5
191,2	6
174,2	7
183,7	8
185,2	9
224,6	10
225,4	11
278,5	12
349,5	13
416	14
516	15
609	16
729,1	17

OLS Regression Results

Model:		0	LS	Adj.	R-squared:		0.839
Method:		Least Squar	es	F-st	atistic:		84.58
Date:	M	on, 01 Apr 20	24	Prob	(F-statistic	c):	1.49e-07
Time:		07:24:	08	Log-	Likelihood:		-97.228
No. Observat	tions:		17	AIC:			198.5
Df Residual:	s:		15	BIC:			200.1
Df Model:			1				
Covariance '	Type:	nonrobu	st				
========			====	=====			=======
		std err				_	_
		39.816					
-							
Tempo	35./353	3.886	9	.19/	0.000	27.453	44.017
Omnibus:		0.9	10	Durb	in-Watson:		0.255
Prob(Omnibus	s):	0.6	35	Jarq	ue-Bera (JB):	:	0.526
Skew:		0.4	17	Prob	(JB):		0.769
Kurtosis:		2.7	83	Cond	. No.		21.6
========			====	=====			=======

R-squared: 0,849 - Bom ajuste Coeficiente de tempo > 0 relação positiva entre as variáveis p-valor de tempo <0,05 - variável relevante para o modelo

Teste de Shapiro-Wilk para normalidade dos resíduos:

Estatística de teste: 0.944674015045166

Valor-p: 0.3778810501098633

Aceitamos a hipótese de igualdade dos resíduos p>0,05

Previsão Producao 589.1823529411766

3) A companhia Multifator está analisando o comportamento dos Custos Indiretos de Fabricação (CIF) em função das variáveis: horas de mão-de-obra direta (HMOD) e horas - máquina (HM) nos últimos 15 meses. Analise a variável CIF em função de cada uma das variáveis (HMOD e HM) isoladamente e em função das duas simultaneamente. Para facilitar as análises, obtenha também a matriz de correlação de todas as variáveis envolvidas. Após a análise do modelo de regressão com as duas variáveis simultaneamente, refaça o estudo, considerando o modelo de regressão *stepwise*. Compare os resultados das duas modelagens de regressão múltipla.

Período	CIF	HMOD	$\mathbf{H}\mathbf{M}$
1,00	350,00	4,00	10,00
2,00	400,00	8,00	14,00
3,00	470,00	12,00	16,00
4,00	550,00	10,00	26,00
5,00	620,00	15,00	31,00
6,00	380,00	7,00	12,00

7,00	290,00	6,00	13,00
8,00	490,00	10,00	21,00
9,00	580,00	11,00	26,00
10,00	610,00	13,00	24,00
11,00	560,00	12,00	23,00
12,00	420,00	8,00	12,00
13,00	450,00	11,00	19,00
14,00	510,00	12,00	19,00
15,00	380,00	5,00	11,00

	CIF	HMOD	HM
CIF	1.000000	0.882914	0.919862
HMOD	0.882914	1.000000	0.845405
НМ	0.919862	0.845405	1.000000

AS CORRELAÇÕES SÃO ALTAS E POSITIVAS

OLS Regression Results

Date: Mon, 01 Time: No. Observations: Df Residuals: Df Model:		CIF OLS Least Squares Mon, 01 Apr 2024 07:50:53 15 13	Adj. F-st. Prob Log- AIC: BIC:	uared: R-squared: atistic: (F-statistic Likelihood:):	0.780 0.763 45.97 1.30e-05 -78.584 161.2 162.6
========	coei	std err	t	P> t	[0.025	0.975]
-	200.8214	41.762 9 4.146		0.000		
Omnibus: Prob(Omnibus Skew: Kurtosis:	s):	0.876 0.645 -0.154 1.989	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.768 0.698 0.705 33.6

R-squared: 0,780 - Bom ajuste Coeficiente de HMOD > 0 relação positiva entre as variáveis p-valor de HMOD <0,05 - variável relevante para o modelo

Teste de Shapiro-Wilk para normalidade dos resíduos: Estatística de teste: 0.9590085744857788

Valor-p: 0.6751689314842224

Valor p acima de 0.05 aceito a normalidade dos resíduos

OLS Regression Results

=========	=======		======	=========	=======	========
Dep. Variable:		CIE	R-sa	uared:		0.846
Model:		OLS	adi.	R-squared:		0.834
Method:		Least Squares	_	atistic:		71.50
Date:		Mon, 01 Apr 2024	Prob	(F-statistic)	:	1.21e-06
Time:		07:42:42		Likelihood:		-75.886
No. Observat	cions:	15	_			155.8
Df Residuals	s :	13	BIC:			157.2
Df Model:		1				
Covariance I	Type:	nonrobust				
========						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	208.8765	32.714	6.385	0.000	138.202	279.551
HM	14.1764	1.677	8.456	0.000	10.554	17.798
Omnibus:		6.390	====== Durb	======== in-Watson:	=======	1.782
Prob(Omnibus	s):	0.041	Jarq	ue-Bera (JB):		3.222
Skew:		-0.944	Prob	(JB):		0.200
Kurtosis:		4.262	Cond	. No.		60.6
========						

R-squared: 0,846 - Ajuste melhor que o anterior Coeficiente de HM > 0 relação positiva entre as variáveis p-valor de HM <0,05 - variável relevante para o modelo

Teste de Shapiro-Wilk para normalidade dos resíduos: Estatística de teste: 0.9249430894851685

Valor-p: 0.22901682555675507

Valor p acima de 0.05 aceito a normalidade dos resíduos

OLS Regression Results

==========			======			=======
Dep. Variable:		CIF	R-squa	red:		0.885
Model:		OLS	Adj. R	-squared:		0.866
Method:		Least Squares	F-stat	istic:		46.17
Date:	Mo	on, 01 Apr 2024	Prob (F-statistic)	:	2.32e-06
Time:		07:42:52	Log-Li	kelihood:		-73.704
No. Observations:		15	AIC:			153.4
Df Residuals:		12	BIC:			155.5
Df Model:		2				
Covariance Type:		nonrobust				
					=======	=======
C	coef	std err	t	P> t	[0.025	0.975]

Intercept	184.8836	31.762	5.821	0.000	115.680	254.087
HMOD	11.7460	5.835	2.013	0.067	-0.968	24.460
HM	9.3694	2.825	3.317	0.006	3.215	15.524
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	6.4 0.0 -1.0 3.9	40 Jarque 62 Prob(J	, -	:	1.721 3.376 0.185 73.4

R-squared: 0,885 - Ajuste melhor que o anterior Coeficientes de HM e HMOD > 0 relação positiva entre as variáveis p-valor de HMOD > 0,05 - variável irrelevante para o modelo. É melhor o modelo só com HM

4) Uma rede de lojas de material de construção (CONSTRUCAO) que atua em 52 regiões quer fazer um estudo sobre a quantidade vendida (qt_vend) de determinado tipo de material. Como possíveis informações que poderiam ter alguma influência estão: gasto com propaganda (gast_prop), número de contas ativas (n_cont), número de marcas (n_marc), número de lojas na região (n_loj).

Faça uma regressão entre quantidade vendida e as demais variáveis.

OLS Regression Results

==============			
Dep. Variable:	qt_venda	R-squared:	0.989
Model:	OLS	Adj. R-squared:	0.988
Method:	Least Squares	F-statistic:	1075.
Date:	Mon, 01 Apr 2024	<pre>Prob (F-statistic):</pre>	1.52e-45
Time:	07:59:08	Log-Likelihood:	-185.83
No. Observations:	52	AIC:	381.7
Df Residuals:	47	BIC:	391.4

Df Model: 4

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept gast_prop n_cont n_marc n_loj	178.4976 1.7943 3.3190 -21.1989 0.3218	8.656 0.722 0.109 0.526 0.312	20.621 2.485 30.507 -40.282 1.030	0.000 0.017 0.000 0.000 0.308	161.084 0.342 3.100 -22.258 -0.307	195.912 3.247 3.538 -20.140 0.950
Omnibus: Prob(Omnibus) Skew: Kurtosis:	9 1s):	0. -0.		,	:	1.548 1.410 0.494 383.

R-squared: 0,989 - p-valor de nloj > 0,05 - variável irrelevante para o modelo. Vamos repetir sem essa variável

OLS Regression Results

Time: No. Observations: Df Residuals: Df Model:		qt_ve Least Squa Ion, 08 Apr 2 08:47	OLS Adj. ares F-st 2024 Prob 7:53 Log- 52 AIC: 48 BIC: 3	uared: R-squared: atistic: (F-statistic Likelihood:	;):	0.989 0.988 1431. 6.23e-47 -186.41 380.8 388.6
=======		std err	t	P> t	[0.025	0.975]
Intercept gast_prop n_cont n_marc	1.6656 3.3701	0.712	2.341 34.789	0.000 0.023 0.000 0.000	0.235 3.175	3.096
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0. -0.	.537 Jarq .296 Prob	======================================	:	1.594 1.265 0.531 371.

R-squared: 0,989 – todas as variáveis relevantes para o modelo. N_marc tem relação negativa com a qt_venda, todas as demais são positivas.

Teste de Shapiro-Wilk para normalidade dos resíduos: Estatística de teste: 0.9676164984703064 Valor-p: 0.1671878695487976

Valor p acima de 0.05 aceito a normalidade dos resíduos

5) Um estudo revelou acentuada correlação entre o consumo de bebidas alcoólicas e a elevação dos salários dos professores. Existe relação de causa e efeito entre essas variáveis que justificaria um modelo de análise de regressão?

Aparentemente não existe relação de causa e efeito e essa correlação alta deve ser apenas coincidência.

- 6) Cite:
 - a) duas variáveis que podem apresentar alta correlação, mas não têm relação de causa e efeito;

Vendas de picolé e número de afogamentos

b) duas variáveis que podem apresentar alta correlação, sendo razoável supor relação de causa e efeito entre elas.

Número de gols de uma equipe e a pontuação desta equipe no campeonato

7) Considere o peso e o comprimento de alguns cães. Calcule o coeficiente de correlação entre estas duas variáveis:

Peso (Kg)	Comprimento (cm)
14	85
14	90
16	95
17	100
20	95
22	96
22	100
23	109

28	105
28	110

Peso_(Kg) Comprimento_(cm)

Peso_(Kg)	1.000000	0.847614
Comprimento_(cm)	0.847614	1.000000

Correlação alta e positiva

8) Calcule, pelo método dos mínimos quadrados, a equação de regressão linear para os dados do exercício anterior

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Mor ons:	Peso OLS Least Squares n, 08 Apr 2024 09:09:51 10 8 1 nonrobust	F-stat Prob (red: R-squared: Distic: F-statistic)	:	0.718 0.683 20.41 0.00195 -23.751 51.50 52.11
=========	coef		t 	P> t	[0.025	0.975]
Intercept Comprimento		11.989 0.121	-2.803	0.023		-5.962 0.828
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:	1.027 0.598 -0.160 1.783	Jarque	,		1.857 0.659 0.719 1.29e+03

R-squared: 0,718 - razoável. Relação positiva entre peso e comprimento p-valor menor que 0,05.

Teste de Shapiro-Wilk para normalidade dos resíduos:

Estatística de teste: 0.9438753128051758

Valor-p: 0.5968831777572632

Valor p acima de 0.05 aceito a normalidade dos resíduos

9) Para o arquivo Biscobis.xlsx, referente a uma amostra de 100 empresas clientes de uma grande empresa que é fornecedora no setor industrial, processe a análise de regressão múltipla *stepwise* e analise os resultados obtidos, sendo:

Variável dependente: X_9 = nível de uso do serviço (quanto do total de produtos da empresa é comprado da Biscobis)

Variáveis independentes: avaliação de 0 a 10 de atributos da Biscobis:

 X_1 = rapidez na entrega do produto

 $X_2 = n$ ível de preço

 X_3 = flexibilidade de preço

 X_4 = imagem do fornecedor

 X_5 = serviço como um todo

 X_6 = imagem da força de vendas

 X_7 = qualidade do produto

X₈ = Variável nominal – status da compra 1=primeira compra 2=segunda compra 3=comprador frequente

Passo 1 criar variável dummy (está no código em anexo)

Passo 2 executar procedimento stepwise (está no código em anexo)

Resultado stepwise: ['x3', 'x5', 'x6', 'x7', 'x8 2', 'x8 3']

OLS Regression Results

Skew:

Kurtosis:

=========	========	========	=======	========	========	=======
Dep. Variabl	e:	2	x9 R-squ	ared:		0.845
Model: OLS			LS Adj. 1	Adj. R-squared:		
Method:		Least Square	es F-sta	F-statistic:		
Date:	Mo	n, 08 Apr 202	24 Prob	(F-statistic):	1.97e-35
Time:		10:31:0	06 Log-L	ikelihood:		-267.83
No. Observat	ions:	10	00 AIC:			549.7
Df Residuals	:	9	93 BIC:			567.9
Df Model:			6			
Covariance T	ype:	nonrobus	st			
========	coef	std err	======================================	======= P> t	[0.025	0.975]
 Intercept	1.9801	4.331	0.457	 0 649	 -6,621	10.582
x3	1.9147			0.000		2.699
x5	4.8305		6.695	0.000		
x 6	1.5569		3.098	0.003	0.559	2.555
x7	0.8487	0.265	3.205	0.002	0.323	1.374
x8 2	4.3577	1.187	3.671	0.000	2.000	6.715
x8_3	10.2542	1.576	6.506	0.000	7.124	13.384
Omnibus:	=======	======================================	======================================	======== n-Watson:	=======	1.810
Prob(Omnibus):	0.00		e-Bera (JB):		5.563

-0.164 Prob(JB):

1.892 Cond. No.

0.0619

138.

Todas as variáveis tem relação positiva – e p-valor<0,05 (variáveis relevantes) – r-quadrado 0. 845 bom valor

Teste de Shapiro-Wilk para normalidade dos resíduos: Estatística de teste: 0.9590353965759277 Valor-p: 0.0034342966973781586

Os resíduos não tem distribuição normal

10) Para o arquivo Imoveis.xlsx, faça a análise para o consumo de energia, área e idade explicando o valor. Analise os resultados.

OLS Regression Results

========	========	- ==========	=====	:====:	=========	========	=======
Dep. Varial Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	I ations: ls:		024 :01 50 46 3	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic Likelihood:	e):	0.844 0.834 83.11 1.35e-18 -249.36 506.7 514.4
========	coef	std err		t	P> t	[0.025	0.975]
Área Idade	1.4590	0.825	11 -3	.776	0.000 0.002	1.210 -4.434	1.708
Omnibus: Prob(Omnibus) Skew: Kurtosis:	.s):	0. 0.	===== 503 001 969 378			:	1.781 19.605 5.53e-05 1.43e+03

Idade tem relação negativa com o valor. Todas as demais positivas R-square 0,844 – valor alto. Todas as variáveis significativas (p-valor<0,05)

Teste de Shapiro-Wilk para normalidade dos resíduos:

Estatística de teste: 0.9448480606079102

Valor-p: 0.02104487642645836

Valor p acima de 0.05 aceito a normalidade dos resíduos