SWCON253: Machine Learning

Lecture 10 Model Evaluation

Jinwoo Choi Assistant Professor CSE, Kyung Hee University

Contents

- 1. Model Evaluation
- 2. Training, Test, Validation Sets
- 3. Holdout Methods (2-Way & 3-Ways)
- 4. k-Fold Cross-Validation

References

Intro to Machine Learning by Sebastian Raschka (http://stat.wisc.edu/~sraschka/teaching/stat451-fs2020/)

Model Evaluation

Model Evaluation

- Evaluates the prediction performance of a model
- More specifically, estimates the generalization performance, i.e., the predictive performance of our model on future (unseen) data.

Application

- 1. Model Test: Want to evaluate the generalization performance of the developed (final) model before deploy.
- 2. Model Selection: Want to increase the generalization performance in the development stage by tweaking the learning algorithm and selecting the best performing model from a given hypothesis space.

Training, Test, Validation Sets

- **Training Set**
 - Use training set to train your model (model fitting)
- Test Set
 - Use test set only to evaluate the performance of your final model (model test)
 - Caution: Do not use test set (or test result) to modify your model!
- Validation Set
 - You can use validation set to select best model or hyper-parameters (model selection)
 - ★ e.g., in polynomial regression, select the order of the polynomial (i.e., model capacity)
 - \star e.g., in L1 or L2 regularization, selecting the regularization-weight λ
 - \star e.g., in SVM, selecting the slack-weight C and/or kernel parameters
 - ★ Note: "best" here means best performing on the validation set, implying the lowest generalization error

Test data = ME CELLINA THOM AIH 73

(2-Way) Holdout Method

- The Simplest Model Test Technique
 - Divide our available data into two subsets: a training and a test set.
 - ★ e.g., randomly assign 33% of the data to the test set, or assign 10% if the dataset is relatively large.
 - Train your ML algorithm with the training set.
 - Stimate the generalization performance of the trained model with the test set.
 - (Optional) Retrain your ML algorithm with all the data, including both the training set and test set.
 - ★ As a rule of thumb, the model will have a better generalization performance if the algorithms uses more informative data.
 - ★ Do not re-estimate the generalization performance with this retrained model!

3-Way Holdout Method

- Holdout Method for Model Selection (or Hyperparameter Tuning)
 - Divide our available data into three subsets: a training, a validation, and a test set.
 - ★ e.g., assign 33% of the data to the test set, or assign 10% if the dataset is relatively large.
 - Train your ML algorithm with the same training set but with different hyperparameter settings.
 - 3 Compare the generalization performance of the trained models with the validation set and Choose the hyperparameters settings associated with the best performance.
 - Estimate the generalization performance of the trained model with the test set.
 - (Optional) Retrain your ML algorithm with all the data, i.e., including both the training set and test set.

3-Way Holdout Method – Another Usage

Early Stopping to Prevent Overfitting

- Validation Set is extensively used to determine (selecting) model parameters across multiple iterations (epochs)
- A kind of the "3-Way Hold-out Method".

- Cross-Validation (CV)
 - The main idea is that each sample in our dataset has the opportunity of being tested.
 - Cross-validation is very useful when the available dataset size is small.
 - Cf.) The term cross-validation is used loosely in literature, where the train/test holdout method is sometimes referred to as a cross-validation technique.
- **◆** Leave-one-out cross-validation

Held-out Validation

하나씩 베니니 당가 다음 기

training data

validation data

training data

validation data

validation data

validation data

training data

validation data

validation data

training data

validation data

Slide Credit: Bert Huang

- Cross-Validation (CV)
 - The main idea is that each sample in our dataset has the opportunity of being tested.
 - Cross-validation is very useful when the available dataset size is small.
 - Cf.) The term cross-validation is used loosely in literature, where the train/test holdout method is sometimes referred to as a cross-validation technique.
- **◆** Leave-one-out cross-validation
- ◆ k-Fold Cross-Validation

Cross Validation 均可能

Fold 1

training data

validation data

Fold 2

validation data

Fold 3

validation data

Fold 4

training data

validation data

Fold 5

training data

validation data

- Cross-Validation (CV)

 - Cross-validation is very useful when the available dataset size is small.
 - Cf.) The term cross-validation is used loosely in literature, where the train/test holdout method is sometimes referred to as a cross-validation technique.
- ◆ Leave-one-out cross-validation
- ◆ k-Fold Cross-Validation
 - - ★ non-overlapping test (validation) folds; utilizes all data for testing (validation)
 - * overlapping training folds ~ 특런 데이터는 경찰수 있습
 - It is the most common technique for model evaluation & selection

Model Selection via Validation

户個

- Measure performance on held-out training data
 - Simulate testing environment > 데이터를 때는 건 _
- Rotate folds of held-out subsets → 137
- Can even hold out one at a time: leave-one-out validation
- Use (cross) validation performance to tune extra parameters

k-Fold Cross-Validation

- ◆ k-Fold CV for Model Testing 片に 720
 - given model (with fixed hyperparameters).

型型型

- ♦ k-Fold CV for Model (or Algorithm) Selection
 - Compare the generalization performance of different models (with different hyperparameters).
 - Choose the best performing model.

