В.

Define: |V| - number of vertices

|E| - number of edges

Time Complexity:

1. sort edges in descending order – O ($|E|\log |E|$)

For every edge in the edgeList: O(|E|)

Delete the edge + remove certain elements from the list of the vertex -> O(|V|)

Check Did we break the cycle + These two vertices are still connected (By using BFS) -> O (|V| + |E|)

If two vertices are disjoint \rightarrow insert the edge back \rightarrow O(|V|)

- \rightarrow Overall, the total time complexity will be $O(|V|^2)$ in sparse graph (where $|V| \approx |E|$)
 - Space Complexity: O(|E|), for creating a new temp edge array to store the remaining edges

C.

	Time Complexity	Space Complexity	Data Structure
Kruskal	O(E log V)	O(E)	Adjacency List
Prim	$O(V ^2)$	O(V)	Adjacency Matrix
Reverse- Kruskal	$O(E ^2)$	O(E)	Adjacency List