Глава 21

По теореме 343, примененной к интервалу $\left[\eta,\frac{\xi+b}{2}\right]$, производная функции $L(\eta,x)$ при $x=\xi$ существует и равна $f(\xi)$; следовательно,

$$g'(\xi) = f(\xi)$$

После этого усилия мы "проинтегрируем"ряд знакомых нам непрерывных функций; их интегралами также окажутся знакомые нам функции.

Теорема 345. *Если* $n \neq -1$, *mo*

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ при } a \ge 0$$

(т. е. в каждом открытом интервале $a < x < b \ c \ a \ge 0$).

Доказательство. Для
$$x>0$$
, по теореме 109, имеем (1) $(\frac{x^{n+1}}{n+1})'=\frac{1}{n+1}(x^{n+1})'=\frac{1}{n+1}(n+1)x^n=x^n$

Теорема 346. Если $n \neq -1$ и целое, то

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \ npu \ a \ge 0 \ u \ npu \ b \le 0.$$

Доказательство. В силу теоремы 119, формула (1) верна для BCEX $x \neq 0$.

Теорема 347. *Если* $n \ge 0$ *и целое, то*

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

 ∂ ля всех x.

310

Доказательство. В силу теоремы 103, формула (1) верна для всех x.

Теорема 348.

$$\int \frac{dx}{x} = \begin{cases} logx + c & npu \ a \ge 0 \\ log(-x) + c & npu \ b \le 0 \end{cases}$$

Предварительные замечания. 1) Тем самым заполнен пробел n=-1 в теоремах 345 и 346. Но само существование интеграла следует уже из теоремы 344.

2) Результат можно объеденить в одну формулу

$$\int \frac{dx}{x} = \log|x| + c = \frac{1}{2}\log(x^2) + c,$$

годную в обоих случаях.

Доказательство: теоремы 104 и 105.

Теорема 349.

$$\int \sum_{i=0}^{n} a_i x^i dx = \sum_{i=0}^{n} a_i \frac{x^{i+1}}{i+1} + c$$

Предварительное замечание. Таким образом, интеграл от полинома есть полином. Мы уже знали, что производная от полинома есть полином.

Доказательство. Подинтегральная функция есть производная правой части

Теорема 350.

$$\int e^x dx = e^x + c$$

Доказательство.

$$(e^x)' = e^x.$$

Теорема 351.

$$\int \frac{dx}{x - \gamma} = \log|x - \gamma| + c \ npu \ a \ge \gamma \ u \ npu \ b \le \gamma$$

Доказательство. Если $x > \gamma$, то

$$(\log(x-\gamma))' = \frac{1}{x-\gamma}(x-\gamma)' = \frac{1}{x-\gamma};$$

если $x < \gamma$, то

$$(\log(\gamma - x))' = \frac{1}{\gamma - x}(\gamma - x)' = \frac{1}{x - \gamma}.$$