THE SPECIFIC RESISTANCE OF BIOLOGICAL MATERIAL—A COMPENDIUM OF DATA FOR THE BIOMEDICAL ENGINEER AND PHYSIOLOGIST*†

L. A. GEDDES and L. E. BAKER

Section of Biomedical Engineering, Department of Physiology, Baylor University College of Medicine, Houston, Texas 77025

Abstract—The paper traces the history of, and tabulates determinations of the electrical resistivity of blood, other body fluids, cardiac muscle, skeletal muscle, lung, kidney, liver, spleen, pancreas, nervous tissue, fat, bone, and other miscellaneous tissues. Where possible, the conditions of measurement are given.

1. INTRODUCTION

EVER since the discovery of bioelectric events, there has been an interest in the ability of living tissues to conduct current. Those who have measured bioelectric events arising at a distance from the electrodes have speculated on possible alterations produced by intervening tissues. Although the conducting properties of body tissues and fluids permits measurement at an appreciable distance from a bioelectric generator, the voltages measured are considerably reduced. The fact that the tissues between a bioelectric source and the recording electrodes may possess different electrical characteristics gives rise to the possibility that not only may amplitude be reduced but waveform may be altered, as examplified by noticeable differencs in waveform of the EEG when recorded on the scalp and directly on the cortex. These facts have led many investigators to measure the specific resistance of biological material at different frequencies to better evaluate and to provide some theoretical basis for determining to what extent the volume conductor matrix in which the bioelectric generators are embedded can be considered homogeneous and in what manner inhomogeneities may alter and bias the diagnostic information contained in recordings of bioelectric events. While the matter is still unresolved, there has been published a considerable amount of valuable data relative to the conducting properties of tissues. In addition to their ultimate use in resolving the problem just described, such data have immediate value to the biomedical engineer and physiologist. Not only do the data have relevance to a better understanding of the location and orientation of bioelectric generators, they have value in understanding the bases for techniques in which current is sent into the body via electrodes placed on its surface. For example, in the measurement of blood flow by the impedance method (Nyboer, 1959), currents in the microampere range are caused to flow through the head, thorax limbs, digits, ventricular cavities and other organs. Respiration is measured by changes in transthoracic impedance. The contraction of skeletal muscle, and changes in the

^{*} Received 5 August, 1966.

[†] Supported in part by Grant 5 T1 HE 05125.08, National Heart Institute, National Institutes of Health, Washington, D.C.

fat and fluid content of tissues can be detected by impedance. A review of these techniques was presented by GEDDES (1964).

Currents in the milliampere range are passed through electrodes in direct contact with living tissue to stimulate nerve, muscle and gland and to produce anesthesis (GEDDES, 1965). In ventricular defibrillation and electroshock therapy, currents in the ampere range are employed. A knowledge of the resistivities of the structures between electrodes used for these purposes would assist in providing an understanding of the current paths.

Irritable tissues are often stimulated by transmission of electrical energy into a small receiver implanted within a subject. For example, in the unanesthetized animal, various parts of the nervous system have been stimulated by the use of a receiver consisting of a single or three orthogonally-mounted secondary pickup coils implanted below the integument. The terminals of the receivers were connected to electrodes affixed to nervous tissue and electrical energy was coupled into the implanted receiver from an external primary coil. In one series of investigations, the external primary was energized by line voltage. Descriptions of these methods have been presented by LOUCKS (1933), FENDER (1936, 1937), CLARK and WARD (1937) and HARRIS (1947). Similar studies using direct current pulses applied to the primary coil have been described by CHAFFEE and LIGHT (1934), LIGHT and CHAFFEE (1934), LOUCKS (1934) and HARRIS (1948). BICKFORD (1965) has even stimulated irritable tissues in the frog and man without the use of an implanted secondary by discharging a large condenser through a primary coil which induced eddy currents in the body tissues. The eddy currents were of sufficient intensity for stimulation of superficial nerves and muscles.

Radio frequency carriers have also been used to transmit energy into the body. Frequencies ranging from 430 kc/s to 300 Mc/s have been used to transmit stimuli to implanted receivers connected to various parts of the nervous system. Descriptions of these applications were presented by Newman (1937), Fender (1941),

GREIG (1944), GENGERELLI (1948, 1950), LAFFERTY (1949), MAURO (1950), VERZEANO (1953) and RIGGLE (1957). Using the same technique the bladder was stimulated by BRADLEY (1962, 1963) and BOYCE (1964). Cardiac pacemakers using the same principle have been described and are now currently in use. An excellent review of these applications has been presented by ROGEL and MAHLER (1965).

Larger amounts of energy have been transmitted into devices within the body which in turn re-transmit energy to a receiver located outside of the body. For example, this technique was used by FARRAR (1960–61) and HAYNES (1960) for continuous measurement of pressure in the gastrointestinal tract surrounding a swallowed pill receiver—transmitter; the device sometimes being called a transponder.

Still higher power levels have been transmitted to energize other implanted devices. For example, RICHWIEN and MILLNER (1966) used this method to maintain the power supply of a cardiac pacemaker. Furman et al. (1965) described an implanted cardiac pacemaker in which the batteries were recharged by an external radio transmitter. Schuder (1961, 1962, 1963) has investigated the problem of transmitting power levels of 50 W through the thoracic wall of a dog; the goal being to develop the capability of energizing an electric motor to activate an artificial heart.

In all of these energy transport investigations, the efficiency is often low because of the loose coupling between the transmitting and receiving coils and the losses in the intervening biological materials. Calculations of the expected efficiency and the amount of heat developed in the tissues depend upon knowledge of the electrical characteristics of the biological materials.

In view of the obvious importance of the electrical properties of tissue to a wide range of physiological studies, as shown by the foregoing examples, the authors have collected together an extensive body of data which describes one of the most important electrical parameters of biological material, its specific resistance. The data appearing in this paper were derived from

the survey of a large amount of literature in the English, French and German languages. Not all of the data screened appear in this report. In many of the investigations, there were obvious errors due to electrode polarization impedance. In such instances the figures listed were considerably different from values presented by those who took care to avoid electrode polarization errors. The authors of this paper selected only the data which indicate that electrode polarization impedance errors were minimal. Included with each entry is pertinent information on the details of the measurement technique (temperature, species, electrode arrangement and orientation and type of current, etc.). A considerable variety of current waveforms ranging from d.c., interrupted d.c., inductorium and sinusoidal have been employed. Wherever possible, these data are included. In most instances, the resistivities were measured in vitro; in some, the measurements were made in vivo.

The changes in resistivity which accompany the death of cells has long been a controversial issue. Galeotti in 1902 was probably the first to note such changes. In freshly excised tissues he observed an intitial increase followed by a considerable decrease in resistivity. However Galeotti did not maintain careful control of temperature. CRILE et al. (1922), on the other hand, being careful to maintain the temperature constant, measured the resistivity changes which accompany death. They found that the resistivity of all tissues measured was substantially constant during the first hour after removal from the body. The earliest post-mortem changes were found in the liver $(\frac{1}{2} hr)$ and in the brain (1 hr) and the latest in skeletal muscle (2 hr). In all cases resistivity was found to decrease with time. This observation fits with the view that after death, cell membranes lose their ability to maintain their insulating properties and ionic gradients.

2. BODY FLUIDS

In the mammalian species, approx. 70 per cent of the body weight is water. Of this amount, 50 per cent is within the cells that constitute the

organism and 20 per cent is designated as extracellular water which includes such fluids as blood, the digestive juices, urine, cerebrospinal fluid, lymph, etc. Because all of the body fluids are rich in dissolved salts it is not surprising that their resistivities are relatively low when compared with those of other biological materials.

In Table 1 are shown the resistivity figures for cerebrospinal fluid (CSF), bile, amniotic fluid, urine and various solutions used in physiological studies. These fluids, all rich in electrolytes, are good conductors and have resistivities much lower than those of other biological tissues. Inspection of Table 1 shows that in general there is a reduction in resistivity with an increase in temperature.

3. BLOOD

Table 2 presents the resistivity values for human, canine, bovine, equine, pig, rabbit and turtle blood and plasma. An examination of Table 2 reveals that the resistivities of all the blood specimens are temperature-dependent and resemble other electrolytes in having a negative coefficient, i.e. an increase in temperature lowers the resistivity. This relationship for human blood is shown in Fig. 1.

The resistivity of blood is also dependent on the percentage of red cells (hematocrit). With fewer red cells, the resistivity is lower, confirming the view that cells act as insulating particles at low frequencies. This relationship. shown in Fig. 2, also illustrates that the resistivity is also related to motion. It has been observed frequently that flowing blood exhibits a lower resistance than stationary blood (MOLNAR et al., 1953; SIGMAN et al., 1937; VELICK, 1940; COULTER, 1949). Figure 2 shows that the reduction in the resistivity of flowing blood is less with fewer cells in the blood. From the data in Table 2, a typical value for the low frequency resistivity of human blood at body temperature and normal hematocrit (40%) is between 148 and 176 Ω -cm. For canine and bovine blood at body temperature and normal hematocrit the low frequency resistivity values are approx. 130 and 138 Ω -cm respectively.

Fig. 1. Resistivity vs. temperature for human blood.

Although there are limited data for plasma resistivity, there is fairly good agreement among the plasma values for the mammalian species. An average low-frequency body-temperature resistivity range for plasma and serum for the human, cow and pig is $66~\Omega$ -cm. Locating this average value derived on Fig. 2, it is seen that the body temperature resistivity values for canine and human blood could easily extrapolate to this zero hematocrit value.

4. CARDIAC MUSCLE

Table 3 lists the resistivity values for cardiac muscle. The values shown for the human are considerably lower than those for other mammalian species. In the dog there is a considerable spread in the values and some degree of temperature-dependence is shown. It is difficult to state a single value for the resistivity of cardiac muscle and the data derived in one investigation (Rush, 1963) may indicate a reason for the variability. In his study, resistivity was measured parallel and transverse to

the direction of the muscle fibers. The two values bear a 2.2:1 relationship to each other. Studies on other types of muscle have produced similar information.

If the techniques used to derive the various resistivity values were valid, then the range of values represents the variations in the different specimens. Although there are insufficient data for the various species, averaging of the more numerous canine data will produce a resistivity figure representative of random orientation of the fibers. The average body-temperature low-frequency resistivity value for randomly-oriented canine cardiac muscle is 750 Ω -cm.

5. SKELETAL MUSCLE

Table 4 lists the values for the resistivity of skeletal muscle in the human, dog, cow, horse, pig, rabbit, guinea pig, frog and turtle. Cursory examination of the table reveals that there is a considerable variability in the values for each species at the same temperature. Part of the variability would appear to be related to the current pathway through the specimen. Skeletal muscle fibers are long and thin, resembling bundles of poorly-conducting tubes filled with electrolytes. It is therefore not surprising that the resistivity measured transverse to the fiber direction is higher than that measured in the direction of the fibers. In those studies which investigated the resistivities along and across muscle fibers, resistivity ratios ranging from 1.8 to 14.4 were observed. Hermann, according to Galeotti (1902), observed ratios of transverse to longitudinal resistivities ranging from 4.4 to 9.2 and SAPENGO (1930) reported a ratio of 1.97, clearly demonstrating the anisotropic nature of skeletal muscle. The high values of 14:4 and 11:8 obtained in rabbit and dog muscle may well be accurate, since a four-terminal method was employed (Burger, 1960-1; Rush, 1963). Based on the data in Table 4 the average transverse-to-longitudinal ratio of resistivities is 5.26. Bearing in mind the existence of considerable anisotropy, a random-orientation resistivity for skeletal muscle can be derived by averaging the data. The largest number of

Fig. 2. Resistivity vs. hematocrit.

observations have been on the canine and the average body-temperature low-frequency resistivity value for random orientation is in the vicinity of 950 Ω -cm.

Using 5.26 as the average ratio of transverse to longitudinal resistivity, the transverse and longitudinal resistivity values for canine skeletal muscle are 1600 and 300 Ω -cm. While it may be expected that the resistivity figures for skeletal muscle in other mammals would be similar, the data in Table 4 do not support this assumption.

6. LUNG

Because lung tissue contains considerable amounts of air even when removed from the donor species, the resistivity values might be expected to vary considerably. However, the data in Table 5, with only minor exceptions, show a fairly good agreement for the mammalian species at body temperature and in the low-frequency region. Several investigators have measured lung tissue in vivo with different degrees of inflation. In these studies the ratio of the resistivities for maximum inspiration and expiration varied between 1.23-3.41. In the dog, at body temperature and in the low-frequency region, an average resistivity figure (obtained by averaging all of the data) is 1275 Ω -cm. Maximum inspiratory and minimum expiratory values reported by different observers extends from 2170 to 401 Ω -cm. Inspection of the mammalian resistivity values reveals that there is a trend indicative of a negative coefficient of resistivity.

7. KIDNEY

The resistivity values for the kidney of various mammals and the turtle are shown in Table 6. Only a few figures are available for the mammalian species at body temperature and low frequencies. Excluding the values for the human, the average low-frequency values for all of the mammals is 370 Ω -cm at body temperature. Inspection of the low-frequency values presented indicates some tendency toward the existence of a negative temperature coefficient. However the lack of an adequate amount of data precludes further comment.

8. LIVER

The resistivity values for human, dog, cow, pig, rabbit, guinea pig and turtle liver are shown in Table 7. Taking the mammalian species as a whole, in the low-frequency region and at body temperature, there is a considerable lack of agreement among the values. As a group, those in closest agreement are for the canine at body temperature. From the data, an average low-frequency resistivity of 817 Ω -cm (589–1100) can be stated. At room temperature, the 1 Mc/s resistivity value for the human (298) appears to be rather low and that for the guinea pig extremely variable (225–3860) when compared with the other mammals.

9. SPLEEN

Table 8 lists the resistivity values for human, canine, cow, pig and turtle spleen. The canine figures group together fairly well and show a slightly negative temperature coefficient. At the following temperatures, the average low-frequency resistivity figures for canine spleen are: 38°C, 885; 24°C, 1032; 18°C, 1040 and at 12°C, 1187. In the turtle, a cold-blooded animal, the average resistivities are 1820 at 20° C and 1892 at 18° C.

10. PANCREAS

Table 9 lists both low- and high-frequency resistivity values for cow and pig pancreas. Unfortunately, the literature does not provide an adequate number of measurements for comparison. The values listed must, therefore, be used with caution because at audio frequencies there appears to be a positive coefficient of resistivity while in the radio-frequency range the reverse is true.

11. NERVE TISSUE

Table 10 lists the resistivity figures for specimens of the nervous system. As in other tissues in which there are well-defined long fibers, there are notable differences between transverse and longitudinal resistivities. Ratios of transverse to longitudinal resistivities are found to vary between 5.7 and 9.4. In addition remarkable differences in resistivity exist between grey and white matter, that of the latter being many times higher. The average low-frequency body-temperature resistivity for cow-pig, and rabbit brain is 580 Ω-cm. Rabbit cerebellum exhibits an average resistivity of 670 Ω -cm. Average values for rabbit and cat grey and white matter are 284 and 682 respectively, measured at body temperature in the low-frequency region.

12. FAT

The resistivity data for human and canine fat are shown in Table 11. Unfortunately there are no human data for the low-frequency region. The figures that are available indicate a resistivity of 2180 Ω-cm at 1 Mc/s for specimens between body and room temperature and an average resistivity of 2733 Ω-cm at 27°C in the 200-900 Mc/s region with a spread of values extending from 1100-5000 Ω-cm. For canine fat, the average low-frequency resistivity at body temperature is 2880 Ω-cm with a spread of values extending from 1000-5000 Ω -cm. If the data for cow and pig fat are included with that for the dog, the average low-frequency body temperature value for resistivity is 2720 Ω -cm.

13. BONE

Of all of the tissues in the body, the resistivity value for bone is the most variable. This is probably not too surprising, since bone is so varied in composition. For example, the skull consists of two dense, poorly-conducting bony tables separated by a spongy region containing blood, a good conductor. Electrically the skull mimics a leaky capacitor rather than a resistor. Similarly, the long bones are in reality poorly-conducting tubes filled with highly-conducting vascularized marrow, the seat of red cell production. Therefore, the values listed in Table 12 should be taken as indicative of the difficulty in the measurement of the resistivity of bone and, accordingly, are to be used with reservation.

14. MISCELLANEOUS

The high-frequency (200 and 500 Mc/s) resistivity values for parts of the bovine eye are shown in Table 13. The single value for human skin in Table 13 is open to speculation since the specimen measured included subcutaneous fat and the object of the authors study was to study the distribution of heat in diathermy procedures. Additional data will be required before a definite resistivity value can be stated for skin.

15. BODY SEGMENTS

In a few studies, segments of the body have been considered as conductors and values designated as resistivity have been reported. However, caution must be exercised in interpreting the meaning of resistivity as applied to such segments. Implied in the determination of resistivity is the existence of a known current-density distribution between the potential-measuring electrodes. In inhomogeneous conductors, current-density distribution is not uniform and is extremely difficult to specify. Therefore, the resistivity values listed in Table 14 for such biological structures should be used with discretion.

16. DISCUSSION

Although many resistivity measurements appear in the literature, there are many tissues which have not as yet been measured. In addi-

tion, many of the values presented by the various workers are not in good agreement, despite care to avoid electrode polarization errors. However, it must be pointed out that most biological structures are composed of cells and hence exhibit different properties in different directions. The range of resistivities presented for the same tissue may reflect this feature of biological material. In addition, excised samples carry along with them various amounts of body fluids and standardization of the technique for inserting such samples into conductivity cells presents its own difficulties and probably widens the range of resistivity values. Moreover, as CRILE (1922) and others have observed, there are seasonal, environmental, age and diseaselinked changes as well as those which accompany the physiological function of the various tissues.

The resistivity values presented in the tables in this paper are those derived from gross samples of biological material. In using the values, caution must be exercised and generalizations about small samples should be avoided. When small, closely-spaced electrodes are in contact with small samples of biological material, the nature of the cellular structure will become a factor which cannot be neglected. In addition, when physiologically active structures are between small electrodes, large resistance changes will be observed to accompany the depolarization and repolarization of these tissues when they propagate their action potentials. Under these conditions it is difficult to obtain truly representative resistivity values.

17. CONCLUSION

From the data presented in the tables, a few broad generalizations can be made relative to the conducting properties of biological materials. Among those with the highest conductivity, i.e. the lowest resistivity, are the cell-free fluids, e.g. urine, amniotic fluid, bile, cerebrospinal fluid and plasma. The addition of cells (in the normal percentage) to plasma decreases the low frequency conductivity by a factor of about 2.5.

Less well conducting than blood are liver and spleen tissue. Although brain conducts better,

and skeletal muscle less well, on the average than these three tissues, the considerable degree of anisotropy present in skeletal muscle and brain precludes generalization about their conducting properties. Noteworthy however is the fact that grey matter, consisting as it does of a large number of nerve cell bodies, conducts better than white matter, which consists of fiber tracts which have their own anisotropy like skeletal muscle. Among the poorest conductors in the warm-blooded animals are lung, fat and bone.

From the data presented in the tables, two other generalizations appear to be valid. Firstly, biological fluids and nearly all tissues exhibit a negative temperature coefficient of resistivity, i.e. the conductivity increases with increasing temperature. Secondly, in most tissues, with the possible exception of those which exhibit a considerable degree of anisotropy, the resistivity values are not strongly frequency-dependent in the range extending from d.c. to a few hundred kc/s.

REFERENCES

- BICKFORD, R. G. and FREMMING, B. D. (1965) Neuronal stimulation by pulsed fields in animals and man. Digest 6th Int. Conf. Med. Electron. Biol. Engng, Tokyo. Okumura Printing Co., Okumura.
- BOYCE, W. H., LATHEM, J. E. and Hunt, L. D. (1964) Research related to the development of an artificial electrical stimulator for the paralyzed human bladder, a review. J. Urol. 91, 41-51.
- Bradley, W. E., Wittmers, L. E., Chou, S. N. and French, L. A. (1962) Use of a radio transmitter receiver unit for the treatment of the neurogenic bladder. J. Neurosurg. 19, 782-786.
- Bradley, W. E., Chou, S. N. and French, L. A. (1963) Further experience with the radio transmitter receiver unit for the neurogenic bladder. *J. Neurosurg.* 20, 953-960.
- Burger, H. C. and van Milaan, J. B. (1943) Measurement of the specific resistance of the human body to direct current. *Acta med. scand.* 114, 584-607.
- Burger, H. C. and van Dongen, R. (1960-61) Specific electric resistance of body tissues. *Physics Med. Biol.* 5, 431-447.
- CHAFFEE, E. L. and LIGHT, R. U. (1934) A method for the remote control of electrical stimulation of the nervous system. *Yale J. Biol. Med.* 7, 83-128.
- CLARK, S. L. and WARD, J. W. (1937) Electrical stimulation of the cortex cerebri of cats. Archs. Neurol. Psychiat. 38, 927-943.
- COLE, K. S. and CURTIS, H. J. (1950) Bioelectricity: electric physiology. In *Medical Physics*. (Edited by O. GLASSER) Vol. 2. Year Book Publishers, Chicago.

- COULTER, N. A. and PAPPENHEIMER, J. R. (1949) Development of turbulence in flowing blood. *Am. J. Physiol.* **159**, 401–408.
- CRILE, G. W., HOSMER, H. R. and ROWLAND, A. F. (1922) The electrical conductivity of animal tissues under normal and pathological conditions. *Am. J. Physiol.* 60, 59-106.
- FARRAR, J. T., BERKLEY, C. and ZWORYKIN, V. K. (1960)
 Telemetering of intraenteric pressure in man by an
 externally energized wireless capsule. Science, N. Y.
 131, 1814.
- FARRAR, J. T., ZWORYKIN, V. K. and BERKLEY, C. (1961) Telemetering of physiologic information from the gastro-intestinal tract by an externally energized capsule. *Proc.* 3rd Int. Conf. Med. Electron. London, 1960. C. C. Thomas, Springfield, Ill.
- FENDER, F. A. (1936) A method for prolonged stimulation of the nervous system. Am. J. Physiol. 116, 47.
- FENDER, F. A. (1937) Prolonged splanchnic stimulation. Proc. Soc. exp. Biol. Med. 36, 396-398.
- FENDER, F. A. (1941) Convulsive phenomena produced by a new method of remote excitation. *Archs Neurol. Psychiat.* **45**, 617-632.
- Frank, K. (1959) Identification and analysis of single unit activity in the central nervous system. *Handbook of Physiology*, Section 1, 261-277.
- Freygang, W. H. and Landau, W. M. (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat. *J. cell. comp. Physiol.* **45**, 377–392.
- FRICKE, H. and Morse, S. (1926) The electric resistance and capacity of blood for frequencies between 800 and 4.5 million cycles. *J. gen. Physiol.* 9, 153–167.
- Furman, S., Reddi, W., Escher, D., Denize, A., Schwedel, J. and Hurwitt, E. (1965) Rechargeable pacemaker for direct myocardial implantation. *Archs Surg.* 91, 796-800.
- GALEOTTI, G. (1902) Uber die elektrische Leitfähigkeit der tierschen Gewebe. Z. Biol. 43, 289-340.
- GEDDES, L. A. and HOFF, H. E. (1964) The measurement of physiological events by electrical impedance. Am. J. med. Electron. 3, 16-27.
- GEDDES, L. A. (1965) Electronarcosis. Med. biol. Engng 3, 27-37.
- GENGERELLI, J. A. (1948) The stimulation of nerves by means of radiant energy. Am. Psychol. 3, 340.
- GENGERELLI, J. A. and KALLEJEAN, V. (1950) Remote stimulation of the brain in the intact animal. J. Psychol. 29, 263-269.
- Greig, J. and Ritchie, A. (1944) A simple apparatus for remote nerve stimulation in the unanesthetized animal. *J. Physiol.* **103**, 8P.
- HARRIS, G. W. (1947) The innervation and actions of the neurophypophysis. *Phil. Trans. R. Soc.* 232B, 385-441.
- HARRIS, G. W. (1948) Electrical stimulation of the hypothalamus and the mechanism of neural control of the adenohypophysis. *J. Physiol.* 107, 418–429.
- HAYNES, H. E. and WITCHEY, A. L. (1960) The pill that talks. RCA Engng 5, 52-54.

- HEMINGWAY, A. and McLendon, J. F. (1932) The high frequency resistance of human tissue. *Am. J. Physiol.* **102**, 56-59.
- KAUFMAN, W. and JOHNSTON, F. D. (1943) The electrical conductivity of the tissues near the heart and its bearing on the distribution of the cardiac action currents. *Am. Heart J.* 26, 42-54.
- KINNEN, E., KUBICEK, W., HILL, P. and TURTON, G. (1964) Thoracic cage impedance measurements. (Tissue resistivity in vivo and transthoracic impedance at 100 kc/s) Tech. Doc. Rep. SAM-TDR 64-5. 1964. School of Aerospace Medicine. Brooks AFB, Texas.
- LAFFERTY, J. M. and FARRELL, J. J. (1949) A technique for chronic remote nerve stimulation. *Science*, N.Y. 110, 140-141.
- LEPESCHKIN, E. (1951) Modern Electrocardiography, Vol. 1. Williams and Wilkins, Baltimore.
- LIGHT, R. U. and CHAFFEE, E. L. (1934) Electrical excitation of the nervous system. Science, N.Y. 79, 299-300.
- LOUCKS, R. B. (1934) A technique for faradic stimulation of tissues beneath the integument in the absence of conductors penetrating the skin. *J. comp. Psychol.* 18, 305–313.
- MAURO, A., WALL, P. D., DAVY, L. M. and Scher, A. M. (1950) Central nervous stimulation by implanted high frequency receiver. *Fed. Proc.* 9, 86.
- MOLNAR, G. W., NYBOER, J. and LEVINE, R. L. (1953) The effect of temperature and flow on the specific resistance of human venous blood. U.S. Army Med. Res. Lab. Rep. Fort Knox, Ky. Rep. 127. Project 6-64-12-028. pp. 1-18.
- Newman, H., Fender, F. and Saunders, W. (1937) High frequency transmission of stimulating impulses. Surgery 2, 359-362.
- Nicholson, P. W. (1965) Specific impedance of cerebral white matter. Exp. Neurol. 13, 386-401.
- Nyboer, J. (1959) Electrical Impedance Plethysmography. C. C. Thomas, Springfield, Ill.
- Osswald, K. (1937) Messung der Leitfähigkeit und Dielektrizitätkonstante biologischer Gewebe und Flussigkeiten bei kurzen Wellen. Hochfreq Tech. Elektroakust. 49, 40–49.
- Pauly, H. and Schwan, H. P. (1964) The dielectric properties of the bovine eye lens. *I.E.E.E. Trans. Bio-Med. Engng BME-11*, 103-109.
- PHILIPSON, M. (1920) Sur la resistance électrique des cellules et des tissus. C. r. Hebd. Séanc. Mem. de la Soc. de Biol. 83, 1399-1402.
- RADVAN-ZIEMNOWICZ, J. C., McWILLIAMS, J. C. and KUCHARSKI, W. E. (1964) Conductivity versus frequency in human and feline cerebrospinal fluid. *Proc.* 17 *Ann. Conf. in Med. & Biol.* McGregor and Werner, Wash. 12, D.C.
- RANCK, J. B. (1963) Specific impedance of rabbit cerebral cortex. *Exp. Neurol.* 7, 144-152.
- RANCK, J. B. and Be Merir, S. L. (1965) The specific impedance of the dorsal columns of cat; an anisotropic medium. *Exp. Neurol.* 11, 451–463.
- RICHWIEN, R. and MILLNER, R. (1966) High frequency excited pacemaker with energy storage. *Med. biol. Engng* 4, 193-5.

- RIGGLE, G. C., JOHNSTON, G. I. and LI, C. L. (1957) Remote stimulation of cortical areas in primates. Conf. Paper 57–351, Winter Meeting A.I.E.E. January, 1957, 10pp.
- ROGEL, S. and MAHLER, Y. (1965) Experience with artificial pacing of the heart. *Israel J. Med. Sci.* 1, 1022-1037.
- ROSENTHAL, R. L. and TOBIAS, C. W. (1948) Measurement of the electric resistance of human blood use in coagulation studies and cell volume determinations. *J. Lab. clin. Med.* 33, 1110-1122.
- RUSH, S., ABILDSKOV, J. A. and McFee, R. (1963) Resistivity of body tissues at low frequencies. *Circulation Res.* 12, 40-50.
- SAPENGO, E. (1930) Uber die impedanz und Kapazität des quergestreiften Muskels in Längs—und Querrichtung. *Pflugers Arch, ges Physiol.* 224, 186–211.
- Schuder, J. C., Stephenson, H. E. and Townsend, J. F. (1961) High level electromagnetic energy through a closed chest wall. *I.R.E. int. Conv. Rec.* 9, 119–126.
- Schuder, J. C., Stephenson, H. E. and Townsend, J. F. (1961) Energy transfer into a closed chest by means of stationary coupling coils and a portable high power oscillator. *Trans. Am. Soc. artif. internal Organs* 7, 327–331.
- Schuder, J. C. and Stephenson, H. E. (1962) Energy transport into the closed chest from a set of very large mutually orthogonal coils. Digest Conf. Paper DP 62-617 AIEE Electric Tech. in Med. and Biol. St. Louis, Missouri, 1962. AIEE, New York, 18 pp.
- Schuder, J. C. and Stephenson, H. E. (1963) Energy transport and conversion for a permanently implanted artificial heart. *Trans. Am. Soc. artif. internal Organs* 9, 286–292.
- Schwan, H. P. and Li, K. (1953) Capacity and conductivity of body tissues at ultrahigh frequencies. *Proc. I.R.E.* 41, 1735-1740.
- Schwan, H. P. (1955) Electrical properties of body tissues and impedance plethysmography. *I.R.E. Trans. Med. Electron.* PGME-3, 32-45.
- Schwan, H. P. and Kay, C. F. (1956-57) The conductivity of living tissues. Ann. N.Y. Acad. Sci. 65, 1007-1013.
- Schwan, H. P. and Kay, C. F. (1956) Specific resistance of body tissues. *Circulation Res.* 4, 664-670.
- Schwan, H. P., Kay, C. F., Bothwell, P. T. and Foltz, E. (1965) Electrical resistivity of living body tissues at low frequencies. Fedn Proc. Fedn Am. Socs exp. Biol. 13, 131.
- SIGMAN, E., KOLIN, A., KATZ, L. N. and JOCHIM, K. (1937) Effect of motion on the electrical conductivity of the blood. *Am. J. Physiol.* 118, 708-719.
- Van Harreveld, A., Murphy, T. and Nobel, K. W. (1963) Specific impedance of rabbit's cortical tissue. *Am. J. Physiol.* **205**, 203–207.
- Velick, S. and Gorin, M. (1940) The electrical conductance of suspensions of ellipsoids and its relation to study of avian erythrocytes. *J. gen. Physiol.* 23, 753–771.
- Verzeano, M. and French, J. D. (1953) Transistor circuits in remote stimulation. *Electroenceph. clin. Neurophysiol.* 5, 613-616.

LA RESISTANCE SPECIFIQUE DES TISSUS BIOLOGIQUES—UN TABLEAU DE VALEURS DESTINES AUX PHYSIOLOGISTES ET INGENIEURS BIOMEDICAUX

Sommaire—Cet article présente l'historique et les résultats de l'évaluation de la résistivité électrique du sang et d'autres liquides biologiques, du muscle cardiaque, des muscles du squelette, des poumons, des reins, du foie, de la vesicule biliaire, du pancréas, des tissus nerveux, des vaisseaux, des os et de divers autres tissus. On indique les conditions de mesure lorsque cela est possible.

DER SPEZIFISCHE WIDERSTAND BIOLOGISCHEN MATERIALS— EIN DATENKOMPENDIUM FUR BIOLOGISCH-MEDIZINISCHE TECHNIKER UND PHYSIOLOGEN

Zusammenfassung—In dieser Arbeit wird die historische Entwicklung der Bestimmung des elektrischen Widerstands beschrieben. Tabellierte Daten für den elektrischen Widerstand von Blut, anderen Körperflüssigkeiten, Herzmuskel, Skelettmuskel, Lunge, Niere, Leber, Milz, Pankreas, Nervengewebe, Fett, Knochen und verschiedenen anderen Geweben werden zusammengestellt. Wenn möglich, werden die Meßbedingungen angegeben.

Table 1. Body fluids

Substance	Resistivity $(\Omega\text{-cm})$	Frequency	Temp.	Elec- trodes	Reference	Remarks
C.S.F.						
Human	64·6(64·0–65·2)	1 kc/s-30 kc/s	24.5	Not given	Radvan-Ziemnowicz, 1964	
Cat	65.7(65.5–66.1)	1 kc/s-30 kc/s	24.5	Not	Radvan-Ziemnowicz, 1964	
Rabbit	55-9 aver. (51-62)	1 kc/s	39	given 2	Crile, 1922	
Bile						
	∫ 60	Audio	37	2	Osswald, 1937	
Cow-pig		Audio	20	2	Osswald, 1937	
Cow-pig) 59	50 Mc/s	37	2 2 2	Osswald, 1937	
	L 76	50 Mc/s	20	2	Osswald, 1937	
Rabbit	66·2 aver. (61–72)	1 kc/s	39	2	Crile, 1922	
Amniotic flui						
Sheep	{ 65 { 49	1 kc/s	25	2	Unpublished	Measured after 2
-	₹ 49	1 kc/s	37.5	2	Unpublished	days of refrigerated storage
Urine				_	0 11 4007	
Cow-pig	$\begin{cases} 30 \\ 39 \end{cases}$	Audio	37	2	Osswald, 1937	
• •	(39	Audio	20	2	Osswald, 1937	
Physiological						
Saline	72	d.c.	18	4	Burger, 1943	
Saline 0.9%		200-900 Mc/s	27	2	Schwan, 1953	
Tyrode	52	Not given	37	?	Freygang, 1955	
Saline 0.9%	∫ 70 	1 kc/s	20	2 2	Unpublished by authors	
7,0	\ 50.5	1 kc/s	37.5	2	Unpublished by authors	
	(4.28	1 kc/s	20	2	Unpublished by authors	
3 M KCL	J 3⋅26	1 kc/s	37.5	2	Unpublished by authors	
Saline 0.9% 3 M KCL	3.85		23.5		Frank, 1959	
	€3.70		38	_	Frank, 1959	
Saline 1%	∫ 55·5		23.5	_	Frank, 1959	
70	₹ 50.0		38	_	Frank, 1959	
Saline 2M	∫ 7·14		23.5		Frank, 1959	
	ે 5⋅88		38		Frank, 1959	

Table 2, Blood

Substance	Resistivity (Ω-cm)	Frequency	Temp.	Elec- trodes	Reference	Remarks
	(150	d.c.	40	4	Burger, 1960-61	
	155	20 c/s-5 kc/s	40	4	Burger, 1960-61	
	165 aver. (148–176)	1 kc/s	37	2	Rosenthal, 1948	Normal subjects
	137.8	1 kc/s	37	2	Rosenthal, 1948	34·4% hematocrit
	170-3	1 kc/s	37	2	Rosenthal, 1948	37.2% hematocrit
	169-1	1 kc/s	37	2 2	Rosenthal, 1948	40.2% hematocrit
	176.0	1 kc/s	37	2	Rosenthal, 1948	42.5% hematocrit
	131-2	1 kc/s	37	2	Rosenthal, 1948	43.9% hematocrit
Human	〕230⋅9	1 kc/s	37	2	Rosenthal, 1948	50.9% hematocrit
blood	199⋅8	1 kc/s	37	2	Rosenthal, 1948	55.6% hematocrit
	180-0	1 ke/s	37	2	Rosenthal, 1948	56.4% hematocrit (all calculated values)
	160	d.c.	37	4	Burger, 1943	
	154 aver. (of two methods)	120 kc/s	36·3 aver	. 2and	4 Molnar, 1953	Flowing venous blood
	200	d.c.	20	4	Burger, 1960-61	
	195	20 c/s-5 kc/s	20	4	Burger, 1960-61	
	230	d.c.	18	4	Burger, 1943	
	363	120 kc/s	1.3	2and	4 Molnar, 1953	Flowing blood
II	63 aver. (61–67)	1 kc/s	37	2	Rosenthal, 1948	Normal subjects
Human	₹ 100	d.c.	18	4	Burger, 1943	-
plasma	L 70	d.c	Body	4	Burger, 1943	
	ſ 108	100 kc/s	Body	2	Kinnen, 1964	29 % hematocrit
	118	100 kc/s	Body	2	Kinnen, 1964	33% hematocrit
	120	100 kc/s	Body	2	Kinnen, 1964	36% hematocrit
	129 and 158	100 kc/s	Body	2	Kinnen, 1964	40% hematocrit
Dog blood	155	100 kc/s	Body	2	Kinnen, 1964	41 % hematocrit
Dog blood	153	100 kc/s	Body	2	Kinnen, 1964	47% hematocrit
	156–243	Inductorium	38	2	Galeotti, 1902	Measured within 1 min
	207 aver. (185–230)	1 kc/s	Body	2	Kaufman, 1943	Approx. 50% hematocrit
Dog serum	138 aver. (98-178)	1 kc/s	Body	2	Kaufman, 1943	
G. 111	(145	20 c/s-5 kc/s	38	4	Burger, 1960-61	
Cow blood	131	d.c.	37	4	Burger, 1960-61	
~ .	(137 aver.	Audio	37	2	Osswald, 1937	
Cow-pig blood	(119–152) 192 aver.	Audio	20	2	Osswald, 1937	

Continued opposite

Table 2. Blood-continued

Cow blood	190 180 169-6 aver. (164-5-174) 164 aver. (159-168) 271-75 249-75 116-15 114-65 80-75 80-75 196-5 aver.	d.c. 20 c/s-5 kc/s 1 kc/s	20 20 Room Room Room Room	4 4 2 2 2 2 2 2 2	Burger, 1960-61 Burger, 1960-61 Sigman, 1937 Sigman, 1937 Sigman, 1937 Sigman, 1937	Stationary 70% cells Flowing at 15 cm/ sec—70% cells 100% cells stationary 100% cells flowing— 15 cm/sec
Cow blood	169-6 aver. (164-5-174) 164 aver. (159-168) 271-75 249-75 116-15 114-65 80-75 80-75	1 kc/s	Room Room Room Room	2 2 2 2 2	Sigman, 1937 Sigman, 1937 Sigman, 1937 Sigman, 1937	Flowing at 15 cm/ sec—70% cells 100% cells stationary 100% cells flowing— 15 cm/sec
Cow blood	(164·5-174) 164 aver. (159-168) 271·75 249·75 116·15 114·65 80·75 80·75	1 kc/s 1 kc/s 1 kc/s 1 kc/s 1 kc/s 1 kc/s	Room Room Room	2 2 2 2	Sigman, 1937 Sigman, 1937 Sigman, 1937	Flowing at 15 cm/ sec—70% cells 100% cells stationary 100% cells flowing— 15 cm/sec
Cow blood	(159–168) 271·75 249·75 116·15 114·65 80·75 80·75	1 kc/s 1 kc/s 1 kc/s 1 kc/s 1 kc/s	Room Room	2 2 2	Sigman, 1937 Sigman, 1937	sec—70% cells 100% cells stationary 100% cells flowing— 15 cm/sec
Cow blood {	249·75 116·15 114·65 80·75 80·75	1 kc/s 1 kc/s 1 kc/s 1 kc/s	Room Room	2 2	Sigman, 1937	100% cells flowing— 15 cm/sec
Cow blood {	116·15 114·65 80·75 80·75	1 kc/s 1 kc/s 1 kc/s	Room	2	,	15 cm/sec
Cow blood	114·65 80·75 80·75	1 kc/s 1 kc/s			Sigman, 1937	
Cow blood	80·75 80·75	1 kc/s 1 kc/s				40% cells stationary
Cow blood	80.75				Sigman, 1937	40% cells flowing—
	80.75		Room	2	Sigman, 1937	15 cm/sec 5% cells stationary
	7.7		Room	2	Sigman, 1937	5% cells flowing—15cm/sec
1	170 3 4101.	1 kc/s	Room	2	Sigman, 1937	80% hematocrit—
ļ		·				stationary
	189·25 aver.	1 kc/s	Room	2	Sigman, 1937	80% hematocrit flowing— 15 cm/sec
{	145·4 aver.	1 kc/s	Room	2	Sigman, 1937	60% hematocrit— stationary
	142·25 aver.	1 kc/s	Room	2	Sigman, 1937	60% hematocrit flowing— 15 cm/sec
	91 · 5 aver.	1 kc/s	Room	2	Sigman, 1937	20% hematocrit— stationary
Ĺ	91.35 aver.	1 kc/s	Room	2	Sigman, 1937	20% hematocrit flowing— 15 cm/sec
Cow-pig	91 aver.	25-100 Mc/s	37	2	Osswald, 1937	15 0111/600
blood	133 aver.	25-100 Mc/s	20	2	Osswald, 1937	
) 00000	. 99 aver.	25-100 Mc/s	37	2	Osswald, 1937	
Cow blood	89 aver. (80–96)	200-900 Mc/s	27	2	Schwan, 1953	
Cow plasma	65	20 c/s-5 kc/s	40	4	Burger, 1960-61	
	62.5	Audio	37	2	Osswald, 1937	
	. 83	Audio	20	2	Osswald, 1937	
	90	20 c/s-5 kc/s	20	4	Burger, 1960-61	
	89.4	87 kc/s-4·52 Mc/s	21.6	2	Fricke, 1926	
	62.5	25-100 Mc/s	37	2	Osswald, 1937	
	83	25-100 Mc/s	20	2	Osswald, 1937	
•	3890	1 kc/s	25	2	Philipson, 1920	Centrifuged and packed
HOTSE TEO	840	400 kc/s	25	2	Philipson, 1920	Centrifuged and packed
cells \	410	1 Mc/s	25	2	Philipson, 1920	Centrifuged and packed
	285	2 Mc/s	25	2	Philipson, 1920	Centrifuged and packed
	. 232	3.5 Mc/s	25	2	Philipson, 1920	Centrifuged and packed
	128 (117–136) 129–176	1 kc/s	39 39	2 2	Crile, 1922	
	· 129–176 · 120	Inductorium Inductorium	39 16	2	Galeotti, 1902 Galeotti, 1902	
. f	110	Inductorium	20	2	Galeotti, 1902 Galeotti, 1902	
i urue	103 aver.	Inductorium	24	2	Galeotti, 1902 Galeotti, 1902	
SCHIIII I	91 aver.	Inductorium	30	2	Galeotti, 1902 Galeotti, 1902	
	78 aver.	Inductorium	38	2	Galeotti, 1902	

Table 3. Cardiac muscle

Substance	Resistivity (Ω-cm)	Frequency	Temp. (°C)	Elec- trodes	Reference	Remarks
	106 aver. (83–130)	200-900 Mc/s	27	2	Schwan, 1953	Autopsy material (aver. values)
Human	132	1 Mc/s	Near	2	Hemingway, 1932	2-3 hr after death
	l		room ter	np.		
	563	d.c. pulses 0·1 sec	Body	4	Rush, 1963	Transverse to fibers
	252	d.c. pulses 0·1 sec	Body	4	Rush, 1963	Parallel to fibers
	965 aver.	10 c/s	Body	2	Schwan, 1956-57	Anesthetized animal
	1250	10 c/s	Body	2	Schwan, 1955	Anesthetized animal
	925	100 c/s	Body	2	Schwan, 1956–57	Anesthetized animal
	1150	100 c/s	Body	2	Schwan, 1955	Anesthetized animal
	215 aver. (207–224)	1 kc/s	Body	2	Kaufman, 1943	Anesthetized animal
Dog	875 aver. (750–1000)	1 kc/s	Body	2	Schwan, 1956	Anesthetized animal
	825 aver. (700–950)	1 kc/s	Body	2	Schwan, 1955	Anesthetized animal
	845	1 kc/s	Body	2	Schwan, 1956-57	Anesthetized animal
	600	10 kc/s	Body	2	Schwan, 1956-57	Anesthetized animal
	825 aver. (700–950)	10 kc/s	Body	2	Schwan, 1955	Anesthetized animal
	456	100 kc/s	Approx. Body	2	Kinnen, 1964	Left ventricle
	1235	Inductorium	38	2	Galeotti, 1902	Freshly extirpated
Dan adula	∫ 1346	Inductorium	24	2	Galeotti, 1902	Freshly extirpated
Dog-adult	\ 1170 aver.	Inductorium	18	2	Galeotti, 1902	Freshly extirpated
Dag	∫ 1368	Inductorium	24	2 2	Galeotti, 1902	Freshly extirpated
Dog	₹ 1380	Inductorium	12		Galeotti, 1902	Freshly extirpated
Dog peri- cardium	419 aver. (405 and 434)	1 kc/s	Body	2	Kaufman, 1943	Anesthetized animal
Rabbit	900 aver. (855–952)	1 kc/s	39	2	Crile, 1922	Author reports variabilit
	1252 aver.	Inductorium	18	2	Galeotti, 1902	Author reports variabilit
Turtle	1490, 1540	Inductorium	18	2	Galeotti, 1902	Freshly extirpated

Table 4. Skeletal muscle

Substance	Resistivity (Ω-cm)	Frequency	Temp, (°C)	Elec- trodes	Reference	Remarks
	C 245	d.c.	37	4	Burger, 1960-61	Longitudinal
	240	100-1000 c/s	37	4	Burger, 1960-61	Longitudinal
	675	100-1000 c/s	37	4	Burger, 1960-61	Transverse
Human	{ 110	1 Mc/s	Freshly excised	2	Hemingway, 1932	Between body and room temp.
	100 aver. (81-120)	200-900 Mc/s	27	2	Schwan, 1953	Autopsy material
	∫ 96 5	10 c/s	Body	2	Schwan, 1956-57	Anesthetized
	1150 aver. (800–1500)	10 c/s	Body	2	Schwan, 1955	Anesthetized
	1075 aver. (850–1400)	100 c/s	Body	2	Schwan, 1955	Anesthetized
	880	100 c/s	Body	2	Schwan, 1956-57	Anesthetized
	1000 aver. (700-1300)	1 kc/s	Body	2	Schwan, 1955	Anesthetized
	643 aver. (575–711)	1 kc/s	Body	2	Kaufman, 1943	Anesthetized
	830	1 kc/s	Body	2	Schwan, 1956-57	Anesthetized
	875 aver. (750–1000)	1 kc/s	Body	2	Schwan, 1956	Anesthetized
Dog	760	10 kc/s	Body	2	Schwan, 1956-57	Anesthetized
	900 aver. (600–1200)	10 kc/s	Body	2	Schwan, 1955	Anesthetized
	1885	d.c. pulses— 0·1 sec	Body	4	Rush, 1963	Anesth. spinal transverse
	2300	d.c. pulses— 0·1 sec	Body	4	Rush, 1963	Anesth. spinal transverse
	205	d.c. pulses— 0·1 sec	Body	4	Rush, 1963	Anesth. spinal longitudinal
	150	d.c. pulses— 0·1 sec	Body	4	Rush, 1963	Anesth. spinal longitudinal
	1040	Inductorium	38	2	Galeotti, 1902	Tongue longitudinal cut
	L 490	Inductorium	38	2	Galeotti, 1902	Tongue freshly extirpated
Dog-adult	472	Inductorium	24	2	Galeotti, 1902	Tongue
Dog-newborn		Inductorium	24	2	Galeotti, 1902	Tongue
	1280	Inductorium	24	2	Galeotti, 1902	Transverse current
Dog	₹ 408	Inductorium	24	2	Galeotti, 1902	Longitudinal current
	395	100 kc/s	Room		Kinnen, 1964	Excised semitendinous
	485 aver.	Inductorium	18	2	Galeotti, 1902	Tongue
Dog-adult	₹ 984	Inductorium	18	2	Galeotti, 1902	Transverse current
_	L 470	Inductorium	12	2	Galeotti, 1902	Tongue freshly extirpated
Dog	408	Inductorium	12	2	Galeotti, 1902	Longitudinal current
Dog-adult	1072	Inductorium	12	2	Galeotti, 1902	Transverse current
Campage 1	1000	20 c/s-10 kc/s		2	Burger, 1960–61	Random orientation
Cow and	J 300	20 c/s-5 kc/s	33	4	Burger, 1960–61	Longitudinal
Horse	700	20 c/s-5 kc/s	33 33	4 4	Burger, 1960–61 Burger, 1960–61	Transverse
	C 1000	20 c/s-5 kc/s Audio	33 37	2	Osswald, 1937	Random orientation
	1000	Audio Audio	20	2	Osswald, 1937	Average values
Carri mia	2			2	Osswald, 1937	Average values
Cow-pig	124	50 Mc/s	37			

Continued overleaf

Table 4. Skeletal muscle-continued

Substance	Resistivity (Ω cm)	Frequency	Temp. (°C)	Elec- trodes	Reference	Remarks
	∫ 1800	20 c/s-1 kc/s	37	4	Burger, 1960-61	Transverse
	1750	20 c/s-1 kc/s	37	4	Burger, 1960-61	Random orientation
	125	20 c/s-1 kc/s	37	4	Burger, 1960-61	Longitudinal
Rabbit	169 aver. (134–290)	1 kc/s	39	2	Crile, 1922	
	1243	Inductorium	18	2	Galeotti, 1902	Transverse current
	548	Inductorium	12	2	Galeotti, 1902	Longitudinal current
	1720	Inductorium	12	- 2	Galeotti, 1902	Transverse current
	े 1840	1 kc/s	25	2	Philipson, 1920	
	1130	10 kc/s	25	2	Philipson, 1920	
[725	20 kc/s	25	2 2 2 2 2 2 2 2 2 2	Philipson, 1920	
	595	50 kc/s	25	2	Philipson, 1920	
ל לוווים מממוני	435	100 kc/s	25	2	Philipson, 1920	
	310	200 kc/s	25	2	Philipson, 1920	
	183	600 kc/s	25	2	Philipson, 1920	
	158	1 Mc/s	25	2 2	Philipson, 1920	
	145	2.5 Mc/s	25	2	Philipson, 1920	
	1280	Inductorium	24	2	Galeotti, 1902	Transverse current
	€ 1535	1 kc/s	25	2	Philipson, 1920	
	418	10 kc/s	25	2	Philipson, 1920	
	250	100 kc/s	25	2	Philipson, 1920	
	172	600 kc/s	25	2	Philipson, 1920	
	165	1 Mc/s	25	2	Philipson, 1920	
C	167	2.5 Mc/s	25	2	Philipson, 1920	
Frog	1 4530 and 4690	Inductorium	20	2	Galeotti, 1902	Gastroc. strongly contracted
	2640 aver. and 4110 aver.	Inductorium	18	2	Galeotti, 1902	Transverse current
	3950	Inductorium	18	2	Galeotti, 1902	Thigh-strongly contracted
	2150	Inductorium	17	2	Galeotti, 1902	Thigh-strongly contracted
	2560	Inductorium	16	2	Galeotti, 1902	Thigh-strongly contracted
T41	(1350 aver.	Inductorium	18	2	Galeotti, 1902	Transverse current
Turtle	740 aver.	Inductorium	18	2	Galeotti, 1902	Longitudinal current

Table 5. Lung

Substance	Resistivity (Ω-cm)	Frequency	Temp.	Elec- trodes	Reference	Remarks
Human	161 aver. (137–190)	200-900 Mc/s	27	2	Schwan, 1953	Autopsy material
	2390	d.c. pulses 0·1	Body	4	Rush, 1963	Peak inflation—anesth. animal
	1950	d.c. pulses 0·1	Body	4	Rush, 1963	Max. deflation—anesth. animal
	2170	d.c. pulses 0·1	Body	4	Rush, 1963	Average—anesth. animal
	1120	10 c/s	Body	2	Schwan, 1956-57	Anesthetized animal
	900-1600	10 c/s	Body	2	Schwan, 1955	Anesthetized animal
	1090	100 c/s	Body	2	Schwan, 1956-57	Anesthetized animal
	800-1500	100 c/s	Body	2	Schwan, 1955	Anesthetized animal
	1100	10 c/s-100 kc/s	Body	2.	Schwan, 1965	Anesthetized animal
Dog	744–766	1 kc/s	Body	2	Kaufman, 1943	End inspiration anesth.
	1227-1367	1 kc/s	Body	2	Kaufman, 1943	Super inflation—anesth.
	401	1 kc/s	Body	2	Kaufman, 1943	Deflation-anesthetized
	800-1300	1 kc/s	Body	2	Schwan, 1955	Anesthetized animal
	1040	1 kc/s	Body	2	Schwan, 1956-57	Anesthetized animal
	750-1000	1 kc/s	Body	2	Schwan, 1956	Anesthetized animal
	950	10 kc/s	Body	2	Schwan, 1956-57	Anesthetized animal
	800-1200	10 kc/s	Body	2	Schwan, 1955	Anesthetized animal
	1530	100 kc/s	Body	2	Kinnen, 1964	Full inspiration
	1345-2100	100 kc/s	Body	2	Kinnen, 1964	Mid inspiration
	1220	100 kc/s	Body		Kinnen, 1964	Complete expiration
	1720	Inductorium	24	2 2 2 2 2 2	Galeotti, 1902	5 min after extirpation
Dog-adult	1636 aver.	Inductorium	18	2	Galeotti, 1902	
Dog	1840	Inductorium	12	2	Galeotti, 1902	
Dog-adult	1739	Inductorium	12	2	Galeotti, 1902	
-	(1250 aver.	Audio	37	2	Osswald, 1937	
Cow-pig		50 Mc/s	37	2	Osswald, 1937	
	500 aver.	50 Mc/s	20	2	Osswald, 1937	
Dabbie	1770 aver. (1410–1970)	1 kc/s	39	2	Crile, 1922	
Rabbit	1864 aver.	Inductorium	18	2	Galeotti, 1902	
	2180 aver.	Inductorium	12	2	Galeotti, 1902	

Table 6. Kidney

Substance	Resistivity (Ω-cm)	Frequency	Temp. (°C)	Elec- trodes	Reference	Remarks
	ſ 12 6	1 Mc/s	Near ro	om 2	Hemingway, 1932	2-3 hr after death
Human	94 aver. (81–104)	200-900 Mc/s	27	2	Schwan, 1953	Autopsy material
	(11Ì	Audio	37	2	Osswald, 1937	
	119	50-100 Mc/s	37	2	Osswald, 1937	
Cow-pig	₹ 143	Audio	20	2	Osswald, 1937	
	147	50-100 Mc/s	20	2	Osswald, 1937	
	204	25 Mc/s	20	2 2	Osswald, 1937	
Dog	∫ 272	Inductorium	38	2	Galeotti, 1902	3 min after extirpation
Dog	ĺ 600	100 kc/s	Body	2 2	Kinnen, 1964	-
Dog-newborn	380	Inductorium	24	2	Galeotti, 1902	Freshly extirpated
Dog-adult	241	Inductorium	18	2 2	Galeotti, 1902	-
Dog-adult	252	Inductorium	12	2	Galeotti, 1902	
Dog-newborn	410	Inductorium	12	2	Galeotti, 1902	
Dog-newborn	376	Inductorium	12	2	Galeotti, 1902	Freshly extirpated
•	C 449	Inductorium	38	2	Galeotti, 1902	Freshly extirpated
O .::-	424	Inductorium	38	2	Galeotti, 1902	Freshly extirpated
Guinea pig	396 aver.	Inductorium	24	2 2	Galeotti, 1902	Freshly extirpated
	702	Inductorium	18	2	Galeotti, 1902	•
	€ 391	Inductorium	24	2	Galeotti, 1902	Freshly extirpated
Rabbit	454 aver.	Inductorium	18	2 2	Galeotti, 1902	
•	685 aver.	Inductorium	12	2	Galeotti, 1902	
	c 1065-1143	Inductorium	38 ?	2	Galeotti, 1902	Living tissue
	1175	Inductorium	38 ?	2	Galeotti, 1902	After extirpation
en ut	1038-1048	Inductorium	20	2	Galeotti, 1902	Living tissue
Turtle	1925	Inductorium	20	2	Galeotti, 1902	After extirpation
	757	Inductorium	18	2	Galeotti, 1902	Freshly extirpated
	1014-1043	Inductorium	18	2	Galeotti, 1902	Freshly extirpated

Table 7. Liver

Substance	Resistivity (Ω-cm)	Frequency	Temp.	Elec- trodes	Reference	Remarks
	c 298	1 Mc/s	Near re	oom 2	Hemingway, 1932	2-3 hr after death
Iuman	128 aver. (92–170)	200-900 Mc/s	27	2	Schwan, 1953	Autopsy material
	6833 aver.	Audio	37	2	Osswald, 1937	
	192 aver.	25 Mc/s	37	2	Osswald, 1937	
	182 aver.	50 Mc/s	37	2	Osswald, 1937	
~·.	164 aver.	100 Mc/s	37	2	Osswald, 1937	
Cow-pig	667 aver.	Audio	20	2	Osswald, 1937	
	250 aver.	25 Mc/s	20	2	Osswald, 1937	
	213 aver.	50 Mc/s	20	2	Osswald, 1937	
	200	100 Mc/s	20	2	Osswald, 1937	
	700	d.c. pulses 0·1	Body	4	Rush, 1963	Anesthetized
	1100 aver. (1000–1200)	sec 10 c/s	Body	2	Schwan, 1955	Anesthetized
	840	10 c/s	Body	2	Schwan, 1956-57	Anesthetized
	800	100 c/s	Body	2	Schwan, 1956-57	Anesthetized
	925 aver. (850–1000)	100 c/s	Body	2	Schwan, 1955	Anesthetized
	900	10 c/s-100 kc/s	Body	2	Schwan, 1965	
	900 aver. (800–1000)	1 kc/s	Body	2	Schwan, 1955	Anesthetized
Oog	765	1 kc/s	Body	2	Schwan, 1956-57	Anesthetized
	875 aver. (750–1000)	1 kc/s	Body	2	Schwan, 1956	Anesthetized
	589 aver. (506–672)	1 kc/s	Body	2	Kaufman, 1943	Anesthetized
	685	10 kc/s	Body	2	Schwan, 1956-57	Anesthetized
	775 aver. (700–850)	10 kc/s	Body	2	Schwan, 1955	Anesthetized
	600 aver. (300–900)	100 kc/s	Body	2	Kinnen, 1964	Anesthetized
	1070	Inductorium	38	2	Galeotti, 1902	3 min after extirpation
Oog-newborn		Inductorium	24	2	Galeotti, 1902	5 mm arter extripation
og-newborn Oog-adult	1010 aver.	Inductorium	18	2	Galeotti, 1902 Galeotti, 1902	
og-addit Oog	1460 aver.	Inductorium	12	2	Galeotti, 1902	
og_newborn		Inductorium	12	2	Galeotti, 1902 Galeotti, 1902	
-						
og–newborn		Inductorium	12	2	Galeotti, 1902	Prochly out:
Rabbit	1235 aver. (990–1639)	1 kc/s	39	2	Crile, 1922	Freshly extirpated
	1100 aver. 1885, 3730 aver.	Inductorium	18	. 2	Galeotti, 1902	
	∫ 3700	Inductorium	38	2	Galeotti, 1902	
	3710	Inductorium	38	2	Galeotti, 1902	Freshly extirpated
	2380	1 kc/s	25	2	Philipson, 1920	-
	464	200 kc/s	25	2	Philipson, 1920	e e e
uinea pig	₹ 317	800 kc/s	25	2	Philipson, 1920	
	260	2 Mc/s	25	2	Philipson, 1920	
	225	3.5 Mc/s	25	2	Philipson, 1920	
	3860	Inductorium	24	2	Galeotti, 1902	Freshly extirpated
	1335	Inductorium	18	2	Galeotti, 1902	
	2750 and 2825	Inductorium	38	2	Galeotti, 1902	Living tissue
	2830-2980	Inductorium	20	2	Galeotti, 1902	Living tissue
urtle	2890 and 3065	Inductorium	18	2	Galeotti, 1902	Living tissue
	1556 aver 2970 aver.	Inductorium	18	2	Galeotti, 1902	Living tissue

Table 8. Spleen

Substance	Resistivity $(\Omega$ -cm)	Frequency	Temp. (°C)	Elec- trodes	Reference	Remarks
Human	256	1 Mc/s	Near	room 2	Hemingway, 1932	2-3 hr after death
Dog	∫ 885	Inductorium	38	2	Galeotti, 1902	Freshly extirpated
Dog	โ 1053	Inductorium	24	2	Galeotti, 1902	Freshly extirpated
	∫ 1010 aver.	Inductorium	24	2	Galeotti, 1902	
Dog-adult	1040 aver.	Inductorium	18	2	Galeotti, 1902	
•	1196 aver.	Inductorium	12	2	Galeotti, 1902	
Dog	1178	Inductorium	12	2	Galeotti, 1902	Freshly extirpated
-	715 aver.	Audio	37	2	Osswald, 1937	
	137 aver.	50 Mc/s	37	2	Osswald, 1937	
	120 aver.	100 Mc/s	37	2	Osswald, 1937	
Cow-pig	₹ 833	Audio	20	2	Osswald, 1937	
• •	175	25 Mc/s	20	2	Osswald, 1937	
	156	50 Mc/s	20	2	Osswald, 1937	
	^L 147	100 Mc/s	20	2	Osswald, 1937	
	(1520-1767	Inductorium	38	2	Galeotti, 1902	Living tissue
Turtle	₹ 1770–1870	Inductorium	20	2 .	Galeotti, 1902	Living tissue
	1840-1945	Inductorium	18	2	Galeotti, 1902	Living tissue

Table 9. Pancreas

Substance	Resistivity (Ω-cm)	Frequency	Temp. (°C)	Elec- trodes	Reference	Remarks
	(770 aver.	Audio	37	2	Osswald, 1937	
Com mia	185 aver.	25-100 Mc/s	37	2	Osswald, 1937	
Cow-pig) 625 aver.	Audio	20	2	Osswald, 1937	
	250 aver.	25-100 Mc/s	20	2	Osswald, 1937	

Table 10. Nerve tissue

Substance	Resistivity (Ω-cm)	Frequency	Temp. (°C)	Elec- trodes	Reference	Remarks
Brain						
	588 aver.	Audio	37	2	Osswald, 1937	
	222	25 Mc/s	37	2	Osswald, 1937	
	196 aver.	50 Mc/s	37	2	Osswald, 1937	
C	185 aver.	100 Mc/s	37	2	Osswald, 1937	
Cow-pig	1 910 aver.	Audio	20	2	Osswald, 1937	
	322 aver.	25 Mc/s	20	2	Osswald, 1937	
	244 aver.	50 Mc/s	20	2	Osswald, 1937	
	232 aver.	100 Mc/s	20	2	Osswald, 1937	
Rabbit cerebrum	570 aver. (521–725)	1 kc/s	39	2	Crile, 1922	
Rabbit cerebellum	730 aver. (610-855)	1 kc/s	39	2	Crile, 1922	
Cat—internal	C 800 aver	20 c/s-20 kc/s	Body	3	Nicholson, 1965	Transverse to fibers— anesthet.
capsule	85 aver.	20 c/s-20 kc/s	Body	3	Nicholson, 1965	Along fibers—anesthetized
B 111	(321	5 c/s	Body	4	Ranck, 1963	Anesthetized
Rabbit	₹ 230	5 kc/s	Body	4	Ranck, 1963	Anesthetized
cortex	208 ± 6	1 kc/s	Body	3		Anesthetized animal
Rabbit white matter	957 (approx.)	1 kc/s	Body	3	Van Harreveld, 1963	Anesthetized animal
Rabbit cerebellum	662–794	1 kc/s	39	2	Crile, 1922	
Rabbit cerebrum	505-621	1 kc/s	39	2	Crile, 1922	
Rabbit spinal cord	576 aver. (386–863)	1 kc/s	39	2	Crile, 1922	
Rabbit cerebral (gray)	438 aver.	1 kc/s	39	2	Crile, 1922	
Rabbit cerebr		1 kc/s	39	2	Crile, 1922	
Cat cortex	222 ± 9	Square pulses 0·3-0·7 m sec	37	4	Freygang, 1955	Anesthetized animal
Cat white matter	344 (approx.)	0·3-0·7 m sec	37	4	Freygang, 1955	
Cat—spinal	ſ 138-212	5-10 c/s	Body	4	Ranck, 1965	Longitudinal
cord	1211	5-10 c/s	Body	4	Ranck, 1965	Transverse

L. A. GEDDES and L. E. BAKER

Table 11. Fat

Substance	Resistivity $(\Omega\text{-cm})$	Frequency	Temp. (°C)	Elec- trodes	Reference	Remarks
	2180	1 Mc/s	Freshly excised	2	Hemingway, 1932	Between body and room temp.
Human	₹ 1500-5000	200 Mc/s	27	2	Schwan, 1953	Autopsy material
	1300-4000	400 Mc/s	27	2	Schwan, 1953	Autopsy material
	1100-3500	900 Mc/s	27	2	Schwan, 1953	Autopsy material
	1500-3000	10 c/s-100 kc/s	Body	2 2 4	Schwan, 1965	
	2500	d.c. pulses 0·1 sec	Body	4	Rush, 1963	Anesthetized animals
Dog	2006 aver. (1808–2205)	1 kc/s	Body	2	Kaufman, 1943	Anesthetized animals
	1000-3000	100 kc/s	Body	2	Kinnen, 1964	
	1500-5000	1 kc/s	Body	2	Schwan, 1956-57	Anesthetized
	3000 aver. (1500–5000)	1 kc/s	Body	2	Schwan, 1956	Anesthetized
Cow-pig	2500 aver.	Audio	37	2	Osswald, 1937	
	2000 aver.	25-100 Mc/s	37	2	Osswald, 1937	
	∫ 3850 aver.	Audio	20	2	Osswald, 1937	
	2780 aver.	25-100 Mc/s	20	2	Osswald, 1937	

Table 12, Bone

Substance	Resistivity (Ω-cm)	Frequency		Elec- trodes	Reference	Remarks
Human (thorax)	16,000	Low	Not given	Not given	Lepeschkin, 1951	(ECG spectrum)
Human	1800	1 Mc/s	Freshly excised	2	Hemingway, 1932	Between body and room temperature
Cow-pig	← 4550 aver.	Audio	37	2	Osswald, 1937	-
	3700 aver.	25-100 Mc/s	37	2	Osswald, 1937	
	∫ 6250 aver.	Audio	20	2	Osswald, 1937	
	5000 aver.	25-100 Mc/s	20	2	Osswald, 1937	

Table 13. Miscellaneous

Substance	Resistivity (Ω-cm)	Frequency	Temp.	Elec- trodes	Reference	Remarks
Eye						
Bovine cortical	198 and 131	300 kc/s and 200 Mc/s	32	2	Pauly, 1964	
Bovine intermediate	285 and 210	500 kc/s and 200 Mc/s	32	2	Pauly, 1964	
Bovine central	530 and 340	500 kc/s and 200 Mc/s	32	2	Pauly, 1964	
Skin						
Human	289	1 Mc/s	Freshly excised	2	Hemingway, 1932	Between body and room temperature

Table 14. Body segments

Substance	Resistivity (Ω-cm)	Frequency	Temp. (°C)	Elec- trodes	Reference	Remarks
Human						
Arm	160	d.c. pulses 0·1 sec	Body	4	Rush, 1963	Corrected for bone and fat
	<u>(</u> 470	d.c.	Body	4	Burger, 1943	Transverse
Forearm	₹ 230	d.c.	Body	4	Burger, 1943	Longitudinal
	(330	d.c.	Body	4	Burger, 1943	Geometric mean
Fingers and			_		• /	
Hand	280	d.c.	Body	4	Burger, 1943	
Finger	235	d.c.	Body	4	Burger, 1943	Current along finger
Neck	280	d.c.	Body	4	Burger, 1943	
Trunk	415	d.c.	Body	4	Burger, 1943	Along axis of body
Head	840	d.c.	Body	4	Burger, 1943	Trans-temporal
Head (Scalp)	230	d.c.	Body	4	Burger, 1943	Closely spaced electrodes
`	C 455	d.c.	Body	4	Burger, 1943	Maximum inspiration
m	375	d.c.	Body	4	Burger, 1943	Maximum expiration
Thorax	463	d.c. pulses 0·1 sec	Body	4	Rush, 1963	
Dog						
	f 445	d.c. pulses 0·1 sec	Body	4	Rush, 1963	Intact thorax
Thorax	281	d.c. pulses 0.1 sec	Body	4	Rush, 1963	Shell-less heart and lungs