Machine Learning Model

Created	@Jun 10, 2021 12:31 PM
<u>≔</u> Tags	

Random Model

Log loss on Cross Validation Data using Random Model 2.46 Log loss on Test Data using Random Model 2.48 Accuracy 11.49

Confusion Matrix

Precision Matrix

Recall Matrix

Bytes file

K Nearest Neighbor Classification

Hyperparameter Search

Results from the Best Model

For values of best alpha = 1 The train log loss is: 0.08

For values of best alpha = 1 The cross validation log loss is: 0.23

For values of best alpha = 1 The test log loss is: 0.24

Accuracy 95.49

Confusion Matrix

Logistic Regression

Hyperparameter Search

 $log_loss for c = 1e-05 is 1.56916911178$

 $log_loss for c = 0.0001 is 1.57336384417$

 $log_loss for c = 0.001 is 1.53598598273$

 $log_loss for c = 0.01 is 1.01720972418$

 $log_loss for c = 0.1 is 0.857766083873$

 $log_loss for c = 1 is 0.711154393309$

 $log_loss for c = 10 is 0.583929522635$

 $log_loss for c = 100 is 0.549929846589$

 $log_loss for c = 1000 is 0.624746769121$

Results from the Best Model

log loss for train data 0.50 log loss for cv data 0.55 log loss for test data 0.53 Number of misclassified points 87.67

Confusion Matrix

Random Forest Classifier

Hyperparameter Search

 $log_loss for c = 10 is 0.106357709164$

 $log_loss for c = 50 is 0.0902124124145$

 $log_loss for c = 100 is 0.0895043339776$

 $log_loss for c = 500 is 0.0881420869288$

 $log_loss for c = 1000 is 0.0879849524621$

 $log_loss for c = 2000 is 0.0881566647295$

 $log_loss for c = 3000 is 0.0881318948443$

Results from the Best model

For values of best alpha = 1000 The train log loss is: 0.031

For values of best alpha = 1000 The cross validation log loss is: 0.09

For values of best alpha = 1000 The test log loss is: 0.08

Accuracy 96.76

Confusion Matrix

XgBoost Classification

Hyperparameter Search

 $log_loss for c = 10 is 0.20615980494$

 $log_loss for c = 50 is 0.123888382365$

 $log_loss for c = 100 is 0.099919437112$

 $log_loss for c = 500 is 0.0931035681289$

 $log_loss for c = 1000 is 0.0933084876012$

 $log_loss for c = 2000 is 0.0938395690309$

Results from the Best Model

For values of best alpha = 500 The train log loss is: 0.022

For values of best alpha = 500 The cross validation log loss is: 0.09

For values of best alpha = 500 The test log loss is: 0.08

Accuracy 98.67

Confusion Matrix

Machine Learning Model

XgBoost Classification with best hyper parameters using Random Search

```
Fitting 3 folds for each of 10 candidates, totalling 30 fits
[Parallel(n_jobs=-1)]: Done 2 tasks
                                          | elapsed:
                                                       26.5s
[Parallel(n_jobs=-1)]: Done 9 tasks
                                          | elapsed: 5.8min
[Parallel(n_jobs=-1)]: Done 19 out of 30 | elapsed: 9.3min remaining: 5.4min
[Parallel(n_jobs=-1)]: Done 23 out of 30 | elapsed: 10.1min remaining: 3.1min
[Parallel(n_jobs=-1)]: Done 27 out of 30 | elapsed: 14.0min remaining: 1.6min
[Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 14.2min finished
RandomizedSearchCV(cv=None, error_score='raise',
         estimator=XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,
      gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,
      min_child_weight=1, missing=None, n_estimators=100, nthread=-1,
      objective='binary:logistic', reg_alpha=0, reg_lambda=1,
      scale_pos_weight=1, seed=0, silent=True, subsample=1),
          fit_params=None, iid=True, n_iter=10, n_jobs=-1,
         param_distributions={'learning_rate': [0.01, 0.03, 0.05, 0.1, 0.15, 0.2], 'n_est
imators': [100, 200, 500, 1000, 2000], 'max_depth': [3, 5, 10], 'colsample_bytree': [0.1,
0.3, 0.5, 1], 'subsample': [0.1, 0.3, 0.5, 1]},
         pre_dispatch='2*n_jobs', random_state=None, refit=True,
         return_train_score=True, scoring=None, verbose=10)
```

Best Parameters

{'subsample': 1, 'n_estimators': 500, 'max_depth': 5, 'learning_rate': 0.05, 'colsample_bytree': 0.5}

Results from the Best Parameter Model

train loss 0.022 cv loss 0.09 test loss 0.08 Accuracy 98.67

ASM file

K-Nearest Neighbors

Hyperparameter search

log_loss for k = 1 is 0.104531321344 log_loss for k = 3 is 0.0958800580948 log_loss for k = 5 is 0.0995466557335 log_loss for k = 7 is 0.107227274345 log_loss for k = 9 is 0.119239543547 log_loss for k = 11 is 0.133926642781 log_loss for k = 13 is 0.147643793967 log_loss for k = 15 is 0.159439699615 log_loss for k = 17 is 0.16878376444 log_loss for k = 19 is 0.178020728839

Results from the Best Model

log loss for train data 0.048 log loss for cv data 0.096 log loss for test data 0.090 Accuracy 97.98

Confusion Matrix

Logistic Regression

Hyperparameter search

 $log_loss for c = 1e-05 is 1.58867274165$

 $log_loss for c = 0.0001 is 1.54560797884$

 $log_loss for c = 0.001 is 1.30137786807$

 $log_loss for c = 0.01 is 1.33317456931$

 $log_loss for c = 0.1 is 1.16705751378$

 $log_loss for c = 1 is 0.757667807779$

 $log_loss for c = 10 is 0.546533939819$

 $log_loss for c = 100 is 0.438414998062$

 $log_loss for c = 1000 is 0.424423536526$

Results from the Best Model

log loss for train data 0.40 log loss for cv data 0.42 log loss for test data 0.42 Number of misclassified points 90.39

Confusion Matrix

Random Forest

Hyperparameter search

 $log_loss for c = 10 is 0.0581657906023$

 $log_loss for c = 50 is 0.0515443148419$

 $log_loss for c = 100 is 0.0513084973231$

 $log_loss for c = 500 is 0.0499021761479$

 $log_loss for c = 1000 is 0.0497972474298$

 $log_loss for c = 2000 is 0.0497091690815$

 $log_loss for c = 3000 is 0.0496706817633$

Results from the Best Model

log loss for train data 0.012 log loss for cv data 0.050 log loss for test data 0.057 Accuracy 98.85

Confusion Matrix

Machine Learning Model 22

XgBoost Classifier

Hyperparameter search

 $log_loss for c = 10 is 0.104344888454$

 $log_loss for c = 50 is 0.0567190635611$

 $log_loss for c = 100 is 0.056075038646$

 $log_loss for c = 500 is 0.057336051683$

 $log_loss for c = 1000 is 0.0571265109903$

 $log_loss for c = 2000 is 0.057103406781$

 $log_loss for c = 3000 is 0.0567993215778$

Results from the Best Model

For values of best alpha = 100 The train log loss is: 0.012

For values of best alpha = 100 The cross validation log loss is: 0.056

For values of best alpha = 100 The test log loss is: 0.049

Accuracy 99.13

Confusion Matrix

XgBoost Classifier with best hyperparameters

```
Fitting 3 folds for each of 10 candidates, totalling 30 fits
[Parallel(n_jobs=-1)]: Done 2 tasks
                                          | elapsed:
                                                        8.1s
[Parallel(n_jobs=-1)]: Done 9 tasks
                                                       32.8s
                                          | elapsed:
[Parallel(n_jobs=-1)]: Done 19 out of 30 | elapsed: 1.1min remaining:
[Parallel(n_jobs=-1)]: Done 23 out of 30 | elapsed: 1.3min remaining:
                                                                          23.0s
[Parallel(n_jobs=-1)]: Done 27 out of 30 | elapsed: 1.4min remaining:
                                                                           9.2s
[Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 2.3min finished
RandomizedSearchCV(cv=None, error_score='raise',
         estimator=XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,
      gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,
      min_child_weight=1, missing=None, n_estimators=100, nthread=-1,
      objective='binary:logistic', reg_alpha=0, reg_lambda=1,
      scale_pos_weight=1, seed=0, silent=True, subsample=1),
          fit_params=None, iid=True, n_iter=10, n_jobs=-1,
         param_distributions={'learning_rate': [0.01, 0.03, 0.05, 0.1, 0.15, 0.2], 'n_est
imators': [100, 200, 500, 1000, 2000], 'max_depth': [3, 5, 10], 'colsample_bytree': [0.1,
0.3, 0.5, 1], 'subsample': [0.1, 0.3, 0.5, 1]},
         pre_dispatch='2*n_jobs', random_state=None, refit=True,
         return_train_score=True, scoring=None, verbose=10)
```

Best Parameters

{'subsample': 1, 'n_estimators': 200, 'max_depth': 5, 'learning_rate': 0.15, 'colsample_bytree': 0.5}

Results from the Best Parameter Model

train loss 0.010 cv loss 0.050 test loss 0.048 Accuracy 99.16

Merged features

Random Forest Classifier

Hyperparameter search

log_loss for c = 10 is 0.0461221662017 log_loss for c = 50 is 0.0375229563452 log_loss for c = 100 is 0.0359765822455 log_loss for c = 500 is 0.0358291883873 log_loss for c = 1000 is 0.0358403093496 log_loss for c = 2000 is 0.0357908022178 log_loss for c = 3000 is 0.0355909487962

Results from the Best model

train loss 0.016 cv loss 0.035 test loss 0.040 Accuracy 98.92

XgBoost Classifier

Hyperparameter search

log_loss for c = 10 is 0.0898979446265 log_loss for c = 50 is 0.0536946658041 log_loss for c = 100 is 0.0387968186177 log_loss for c = 500 is 0.0347960327293 log_loss for c = 1000 is 0.0334668083237 $log_loss for c = 2000 is 0.0316569078846$ $log_loss for c = 3000 is 0.0315972694477$

Results from the Best model

train log loss is: 0.011

cross validation log loss is: 0.032

test log loss is: 0.032

Accuracy 99.35

XgBoost Classifier with best hyper parameters using Random search

Fitting 3 folds for each of 10 candidates, totalling 30 fits

```
[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 1.1min
[Parallel(n_jobs=-1)]: Done 9 tasks
                                          | elapsed: 2.2min
[Parallel(n_jobs=-1)]: Done 19 out of 30 | elapsed: 4.5min remaining: 2.6min
[Parallel(n_jobs=-1)]: Done 23 out of 30 | elapsed: 5.8min remaining: 1.8min
[Parallel(n_jobs=-1)]: Done 27 out of 30 | elapsed: 6.7min remaining: 44.5s
[Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 7.4min finished
RandomizedSearchCV(cv=None, error_score='raise',
         estimator=XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,
      gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,
      min_child_weight=1, missing=None, n_estimators=100, nthread=-1,
      objective='binary:logistic', reg_alpha=0, reg_lambda=1,
      scale_pos_weight=1, seed=0, silent=True, subsample=1),
         fit_params=None, iid=True, n_iter=10, n_jobs=-1,
         param_distributions={'learning_rate': [0.01, 0.03, 0.05, 0.1, 0.15, 0.2], 'n_est
imators': [100, 200, 500, 1000, 2000], 'max_depth': [3, 5, 10], 'colsample_bytree': [0.1,
0.3, 0.5, 1], 'subsample': [0.1, 0.3, 0.5, 1]},
         pre_dispatch='2*n_jobs', random_state=None, refit=True,
         return_train_score=True, scoring=None, verbose=10)
```

Best Parameters

{'subsample': 1, 'n_estimators': 1000, 'max_depth': 10, 'learning_rate': 0.15, 'colsample_bytree': 0.3}

Results from the Best Parameter Model

train loss 0.012 cv loss 0.035 test loss 0.032 Accuracy 99.37