Divisibility and Modularity

Divisibility

• Definition: Let $a,b \in \mathbb{Z}$ with $a \neq 0$. We say that a divides b, denoted a|b, if $\exists k \in \mathbb{Z}$ such that $b=a \cdot k$. In such case, we can also express this as $b \div a \in \mathbb{Z}$

- Determine whether each of the following statements are true
 - *a*) 3|6
 - Solution: $6 = 3 \times 2$, where 2 is an integer $\Rightarrow TRUE$
 - *b*) 6|3
 - Solution: $3 = 6 \times \frac{1}{2}$, where $\frac{1}{2}$ is not an integer $\Rightarrow FALSE$
 - *c*) 3 ∤ 5
 - Solution: $5 = 3 \times \frac{5}{3}$, where $\frac{5}{3}$ is not an integer $\Rightarrow TRUE$

- Let $n, d \in \mathbb{Z}^+$. How many positive integers not exceeding n are divisible by d
- e.g. $\rightarrow n = 9, d = 4$
- How many positive integers from 1-9 are divisible by 4?
 - 4 and 8 (2 integers)
- Notice: 4K describes a number divisible by 4, if $K \in \mathbb{Z}$. We can find all integers divisible by 4 not exceeding 9 by placing the following condition:
- 4*K* ≤ 9
- $K \le \left| \frac{9}{4} \right| = 2$ (floor function forces and integer)
- $K \le 2 \rightarrow K = 1,2$ (2 integers)
- \Rightarrow Any integer divisible by d, must have the form $d \times k$, $k \in \mathbb{Z}$
- $d \times k \le h \to k \le \left\lfloor \frac{h}{d} \right\rfloor \Longrightarrow$ Hence, there are $\left\lfloor \frac{h}{d} \right\rfloor$ many integers exceeding n that are divisible by d

Theorem 4.1.1

- Let $a, b, c \in \mathbb{Z}$ and $c \neq 0$ i. If a|b and a|c, then a|(b+c)
 - ii. If a|b, then $a|bc \ \forall c \in \mathbb{Z}$
 - iii. If a|b and b|c, then a|c

Proof:

i. If a|b and a|c, then $\exists k, q \in \mathbb{Z}$ such that $b=a\times k$ and $c=a\times q$ b+c=ak+aq b+c=a(k+q) $b+c=a\times u$, where $u=k+q\to u\in \mathbb{Z}$ By definition, a|(b+c)

Theorem 4.1.1

- Let $a, b, c \in \mathbb{Z}$ and $c \neq 0$
 - i. If a|b and a|c, then a|(b+c)
 - ii. If a|b, then $a|bc \ \forall c \in \mathbb{Z}$
 - iii. If a|b and b|c, then a|c
- Proof:
 - ii. If a|b, then $\exists k \in \mathbb{Z}$ such that $b = a \times k$ $bc = a \times k \times c$ $bc = a \times u$, where $u = k \times c \rightarrow u \in \mathbb{Z}$ By definition, a|bc

Theorem 4.1.1

- Let $a, b, c \in \mathbb{Z}$ and $c \neq 0$
 - i. If a|b and a|c, then a|(b+c)
 - ii. If a|b, then $a|bc \ \forall c \in \mathbb{Z}$
 - iii. If a|b and b|c, then a|c
- Proof:
 - i. If a|b and b|c, then $\exists k, q \in \mathbb{Z}$ such that $b = a \times k$ and $c = b \times q$ $c = b \times q$ $c = a \times k \times q$ $c = a \times u$, where $u = k \times q \rightarrow u \in \mathbb{Z}$ By definition, a|c

員

Theorem 4.1.2 Division Algorithm

- Let $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$, then $\exists ! \ q,r \in \mathbb{Z}$ satisfying $0 \le r < d$ such that $a = d \cdot q + r$
- Proof:
 - i. Let $d|a \to \exists q \in \mathbb{Z}$ such that $a = d \times q + r$ In such a case, $a = d \times q + r$, where r = 0ii. Let $d \nmid a \to \text{if } a \ d \nmid a \ \exists r \in \mathbb{Z}$ such that r < d and d|(a - r)In such a case, $a - r = q \times d \Longrightarrow a = d \times q + r$

Modularity

• Definition: Let $a,q,r \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$ such that $a=d\cdot q+r$. We define,

$$a \mod d = r$$

• Whenever a divided by d results in remainder r

- Which of the following are true?
 - a) $101 \mod 11 = 2$
 - $101 = 11 \times 9 + 2 \Longrightarrow TRUE$
 - b) $101 \mod 2 = 11$
 - $101 = 50 \times 2 + 1 \Longrightarrow FALSE$
 - c) $11 \mod 2 = 101$
 - $11 = 5 \times 2 + 1 \Longrightarrow FALSE$
 - $d) 101 \mod 2 = 1$
 - $101 = 50 \times 2 + 1 \Longrightarrow TRUE$

- What are the quotient and remainder when -11 is divided by 3?
- $-11 = -3 \times 3 + (-2)$
- $-11 = -4 \times 3 + 1$
- \Rightarrow q = -4, r = 1

Quotient

• Definition: Let $a,q,r \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$ such that $a=d \cdot q+r$.

$$a \mod d = r$$

Whenever a divided by d has a quotient q

- Evaluate the quotient of the following:
- $101 \div 11$

•
$$101 = 9 \times 11 + 2 \Longrightarrow 9$$

• $-11 \div 3$

•
$$-11 = -4 \times 3 + 1 \Longrightarrow -4$$

Congruency

- Definition: Congruent to b modulo m. Let $a, b, m \in \mathbb{Z}$. We say that a is congruent to b modulo m denoted $a \cong b \mod m$
- iff m|(a-b)