1AP16 Rec'd PCT/PTO 22 SEP 2006

SEQUENCE LISTING

10/593842

<110> Nakamura, Yusuke Daigo, Yataro Nakatsuru, Shuichi	
<120> METHOD FOR DIAGNOSING NON-SMALL CELL LUNG CANCER	
<130> 082368-000510US	
<150> PCT/JP2005/005613 <151> 2005-03-18	
<150> US 60/555,789 <151> 2004-03-23	
<160> 127 .	
<170> PatentIn version 3.3	
<210> 1 <211> 4908 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (141)(3311) <400> 1	
acctgcgtgc agtcggtcct ccaggccacg cagcgcccga gagtaccagg gagactccgg	60
cccctgtcgg cgccaagccc ctccgcccct cacagcgccc aggtccgcgg ccgggccttc	120
attttttggc ggggaccgtc atg gcg tcg cag cca aat tcg tct gcg aag aag Met Ala Ser Gln Pro Asn Ser Ser Ala Lys Lys 1 5 10	173
aaa gag gag aag ggg aag aac atc cag gtg gtg gtg aga tgc aga cca Lys Glu Glu Lys Gly Lys Asn Ile Gln Val Val Val Arg Cys Arg Pro 15 20 25	221
ttt aat ttg gca gag cgg aaa gct agc gcc cat tca ata gta gaa tgt Phe Asn Leu Ala Glu Arg Lys Ala Ser Ala His Ser Ile Val Glu Cys 30 35 40	269
gat cct gta cga aaa gaa gtt agt gta cga act gga gga ttg gct gac Asp Pro Val Arg Lys Glu Val Ser Val Arg Thr Gly Gly Leu Ala Asp 45 50 55	317
aag agc tca agg aaa aca tac act ttt gat atg gtg ttt gga gca tct Lys Ser Ser Arg Lys Thr Tyr Thr Phe Asp Met Val Phe Gly Ala Ser 60 65 70 75	365
act aaa cag att gat gtt tac cga agt gtt gtt tgt cca att ctg gat Thr Lys Gln Ile Asp Val Tyr Arg Ser Val Val Cys Pro Ile Leu Asp 80 85 90	413

Glu	Val	Ile	Met 95	Gly	Tyr	Asn	Cys	Thr 100	Ile	Phe	Ala	Tyr	Gly 105	Gln	Thr	
						aca Thr										509
						gat Asp 130										557
ctt Leu 140	cat His	caa Gln	att Ile	ttt Phe	gag Glu 145	aaa Lys	ctt Leu	act Thr	gat Asp	aat Asn 150	ggt Gly	act Thr	gaa Glu	ttt Phe	tca Ser 155	605
						gag Glu										653
						gtt Val										701
						gtg Val										749
						gtc Val 210										797
						act Thr										845
						aca Thr										893
				Val	Lys	atc Ile	Gly	Lys								941
						cgt Arg										989
gaa Glu	gct Ala 285	gga Gly	aat Asn	ata Ile	aat Asn	caa Gln 290	tcc Ser	ctg Leu	ttg Leu	act Thr	ttg Leu 295	gga Gly	agg Arg	gtc Val	att Ile	1037
act Thr 300	gcc Ala	ctt Leu	gta Val	gaa Glu	aga Arg 305	aca Thr	cct Pro	cat His	gtt Val	cct Pro 310	tat Tyr	cga Arg	gaa Glu	tct Ser	aaa Lys 315	1085
cta Leu	act Thr	aga Arg	atc Ile	ctc Leu 320	cag Gln	gat Asp	tct Ser	ctt Leu	gga Gly 325	ggg Gly	cgt Arg	aca Thr	aga Arg	aca Thr 330	tct Ser	1133
						cct Pro										1181

			335					340					345				
						cat His										1	229
						acc Thr 370									-	1	277
			-	_		aaa Lys	_	_		_	_	_	_			1	325
						gaa Glu	-			_	-	_	_			1	373
						cag Gln										1	421
_	-				_	aat Asn		_			-		_	-		1	469
		_		_	_	tgt Cys 450			_	-						1	517
_		_				aaa Lys		_		_						1	565
						aca Thr										1	613
						aag Lys										1	661
	-	-				cat His			_	-	_	_	_	-	-	1	709
						gct Ala 530										1	757
						gaa Glu							-		_	1:	805
						gta Val										1	853
						tta Leu										1	901

				gaa Glu					-		-	1949
	_			gaa Glu 610			_	_	_	_		1997
_	_	_	_	aat Asn	_	_		-			_	2045
				cca Pro								2093
				ttc Phe								2141
				gaa Glu								2189
				caa Gln 690								2237
				aac Asn								2285
				ctt Leu								 2333
				gaa Glu								2381
				ata Ile								2429
				caa Gln 770								2477
				ttt Phe								2525
				gat Asp								2573
				aga Arg								2621

											gaa Glu					2669
							-	_		_	tgt Cys 855		-		-	2717
											gca Ala					2765
											gat Asp					2813
											aaa Lys					2861
aag Lys	ctt Leu	aat Asn 910	tgc Cys	ttt Phe	ctg Leu	gaa Glu	cag Gln 915	gat Asp	ctg Leu	aaa Lys	ctg Leu	gat Asp 920	atc Ile	cca Pro	aca Thr	2909
											cca Pro 935					2957
											ctg Leu					3005
											aac Asn					3053
											ctg Leu					3101
											gct Ala		Va]		tgt Cys	3149
	tca Ser 1005	Ile					Pł				at aa is Ly 10					3194
	aaa Lys 1020	Asp					g Gl				ca ct nr Le 10					3239
		Glu					ı Hj				ca aa nr Ly 10					3284
	ctg Leu 1050	Arç			ato Ile		ı Le		aa tt	cact	tggg	ggt	tggd	caat		3331
ttta	atttt	ta a	agaa	aact	t aa	aaat	aaaa	a cct	gaaa	accc	caga	actt	ga ç	gcctt	gtgta	3391

tagattttaa aagaatatat atatcagccg ggcgcggtgg ctcatgcctg taatcccagc 3451 actttgggag gctgaggcgg gtggattgct tgagcccagg agtttgagac cagcctggcc 3511 aacgtggcaa aacctcgtct ctgttaaaaa ttagccgggc gtggtggcac actcctgtaa 3571 teccagetae tggggagget gaggeaegag aateaettga aeccaggaag eggggttgea 3631 gtgaqccaaa ggtacaccac tacactccag cctgggcaac agaqcaagac tcqqtctcaa 3691 aaacaaaatt taaaaaagat ataaggcagt actgtaaatt cagttgaatt ttgatatcta 3751 cccatttttc tgtcatccct atagttcact ttgtattaaa ttgggtttca tttgggattt 3811 gcaatgtaaa tacgtatttc tagttttcat ataaagtagt tcttttataa caaatgaaaa 3871 gtatttttct tgtatattat taagtaatga atatataaga actgtactct tctcagcttg 3931 agcttaacat aggtaaatat caccaacatc tgtccttaga aaggaccatc tcatgttttt 3991 tttcttgcta tgacttgtgt attttcttgc atcctcccta gacttcccta tttcgctttc 4051 tecteggete aettteteee tttttatttt teaccaaace atttgtagag etacaaaace 4111 tatcctttct tattttcagt agtcagaatt ttatctagaa atcttttaac acctttttag 4171 tggttatttc taaaatcact gtcaacaata aatctaaccc tagttgtatc cctcctttaa 4231 gtatttaaaa cttgttgccc caaatgtgaa agcatttaat tcctttaaga ggcctaactc 4291 attcaccctg acagagttca caaaaagccc actttagagt atacattgct attatgggag 4351 accacccaga catctgacta atggctctgt gccacactcc aagacctgtg ccttttagag 4411 aagctcacaa tgatttaagg actgtttgaa acttccaatt atgtctataa tttatattct 4471 tttgtttaca tgatgaaact ttttgttgtt gcttgtttgt atataataca atgtgtacat 4531 gtatcttttt ctcgattcaa atcttaaccc ttaggactct ggtatttttg atctggcaac 4591 catatttctg gaagttgaga tgtttcagct tgaagaacca aaacagaagg aatatgtaca 4651 aagaataaat tttctgctca cgatgagttt agtgtgtaaa gtttagagac atctgacttt 4711 gatagctaaa ttaaaccaaa ccctattgaa gaattgaata tatgctactt caagaaacta 4771 aattgatctc gtagaattat cttaataaaa taatggctat aatttctctg caaaatcaga 4831 tgtcagcata agcgatggat aatacctaat aaactgccct cagtaaatcc atggttaata 4891 aatgtggttt ctacatt 4908

<210> 2

<211> 1056

<212> PRT

<213> Homo sapiens

<400> 2

Met 1	Ala	Ser	Gln	Pro 5	Asn	Ser	Ser	Ala	Lys 10	Lys	Lys	Glu	Glu	Lys 15	Gly
Lys	Asn	Ile	Gln 20	Val	Val	Val	Arg	Cys 25	Arg	Pro	Phe	Asn	Leu 30	Ala	Glu
Arg	Lys	Ala 35	Ser	Ala	His	Ser	Ile 40	Val	Glu	Cys	Asp	Pro 45	Val	Arg	Lys
Glu	Val 50	Ser	Val	Arg	Thr	Gly 55	Gly	Leu	Ala	Asp	Lys 60	Ser	Ser	Arg	Lys
Thr 65	Tyr	Thr	Phe	Asp	Met 70	Val	Phe	Gly	Ala	Ser 75	Thr	Lys	Gln	Ile	Asp 80
Val	Tyr	Arg	Ser	Val 85	Val	Cys	Pro	Ile	Leu 90	Asp	Glu	Val	Ile	Met 95	Gly
Tyr	Asn	Cys	Thr 100	Ile	Phe	Ala	Tyr	Gly 105	Gln	Thr	Gly	Thr	Gly 110	Lys	Thr
Phe	Thr	Met 115	Glu	Gly	Glu	Arg	Ser 120	Pro	Asn	Glu	Glu	Tyr 125	Thr	Trp	Glu
Glu	Asp 130	Pro	Leu	Ala	Gly	Ile 135	Ile	Pro	Arg	Thr	Leu 140	His	Gln	Ile	Phe
Glu 145	Lys	Leu	Thr	Asp	Asn 150	Gly	Thr	Glu	Phe	Ser 155	Val	Lys	Val	Ser	Leu 160
Leu	Glu	Ile	Tyr	Asn 165	Glu	Glu	Leu	Phe	Asp 170	Leu	Leu	Asn	Pro	Ser 175	Ser
Asp	Val	Ser	Glu 180	Arg	Leu	Gln	Met	Phe 185	Asp	Asp	Pro	Arg	Asn 190	Lys	Arg
Gly	Val	Ile 195	Ile	Lys	Gly	Leu	Glu 200	Glu	Iļe	Thr	Val	His 205	Asn	Lys	Asp
Glu	Val 210	Tyr	Gln	Ile	Leu	Glu 215	Lys	Gly	Ala	Ala	Lys 220	Arg	Thr	Thr	Ala
Ala 225	Thr	Leu	Met	Asn	Ala 230	Tyr	Ser	Ser	Arg	Ser 235	His	Ser	Val	Phe	Ser 240
Val	Thr	Ile	His	Met	Lys	Glu	Thr	Thr	Ile	Asp	Gly	Glu	Glu	Leu	Val

245	250	255

- Lys Ile Gly Lys Leu Asn Leu Val Asp Leu Ala Gly Ser Glu Asn Ile
- Gly Arg Ser Gly Ala Val Asp Lys Arg Ala Arg Glu Ala Gly Asn Ile
- Asn Gln Ser Leu Leu Thr Leu Gly Arg Val Ile Thr Ala Leu Val Glu
- Arg Thr Pro His Val Pro Tyr Arg Glu Ser Lys Leu Thr Arg Ile Leu
- Gln Asp Ser Leu Gly Gly Arg Thr Arg Thr Ser Ile Ile Ala Thr Ile
- Ser Pro Ala Ser Leu Asn Leu Glu Glu Thr Leu Ser Thr Leu Glu Tyr
- Ala His Arg Ala Lys Asn Ile Leu Asn Lys Pro Glu Val Asn Gln Lys
- Leu Thr Lys Lys Ala Leu Ile Lys Glu Tyr Thr Glu Glu Ile Glu Arg
- Leu Lys Arg Asp Leu Ala Ala Ala Arg Glu Lys Asn Gly Val Tyr Ile
- Ser Glu Glu Asn Phe Arg Val Met Ser Gly Lys Leu Thr Val Gln Glu
- Glu Gln Ile Val Glu Leu Ile Glu Lys Ile Gly Ala Val Glu Glu
- Leu Asn Arg Val Thr Glu Leu Phe Met Asp Asn Lys Asn Glu Leu Asp
- Gln Cys Lys Ser Asp Leu Gln Asn Lys Thr Gln Glu Leu Glu Thr Thr
- Gln Lys His Leu Gln Glu Thr Lys Leu Gln Leu Val Lys Glu Glu Tyr
- Ile Thr Ser Ala Leu Glu Ser Thr Glu Glu Lys Leu His Asp Ala Ala

Ser	Lys	Leu	Leu 500	Asn	Thr	Val	Glu	Glu 505	Thr	Thr	Lys	Asp	Val 510	Ser	Gly
Leu	His	Ser 515	Lys	Leu	Asp	Arg	Lys 520	Lys	Ala	Val	Asp	Gln 525	His	Asn	Ala
Glu	Ala 530	Gln	Asp	Ile	Phe	Gly 535	Lys	Asn	Leu	Asn	Ser 540	Leu	Phe	Asn	Asn
Met 545	Glu	Glu	Leu	Ile	Lys 550	Asp	Gly	Ser	Ser	Lys 555	Gln	Lys	Ala	Met	Leu 560
Glu	Val	His	Lys	Thr 565	Leu	Phe	Gly	Asn	Leu 570	Leu	Ser	Ser	Ser	Val 575	Ser
Ala	Leu	Asp	Thr 580	Ile	Thr	Thr	Val	Ala 585	Leu	Gly	Ser	Leu	Thr 590	Ser	Ile
Pro	Glu	Asn 595	Val	Ser	Thr	His	Val 600	Ser	Gln	Ile	Phe	Asn 605	Met	Ile	Leu
Lys	Glu 610	Gln	Ser	Leu	Ala	Ala 615	Glu	Ser	Lys	Thr	Val 620	Leu	Gln	Glu	Leu
Ile 625	Asn	Val	Leu	Lys	Thr 630	Asp	Leu	Leu	Ser	Ser 635	Leu	Glu	Met	Ile	`Leu 640
Ser	Pro	Thr	Val	Val 645	Ser	Ile	Leu	Lys	Ile 650	Asn	Ser	Gln	Leu	Lys 655	His
Ile	Phe	Lys	Thr 660	Ser	Leu	Thr	Val	Ala 665	Asp	Lys	Ile	Glu	Asp 670	Gln	Lys
Lys	Glu	Leu 675	Asp	Gly	Phe	Leu	Ser 680	Ile	Leu	Cys	Asn	Asn 685	Leu	His	Glu
Leu	Gln 690	Glu	Asn	Thr	Ile	Cys 695	Ser	Leu	Val	Glu	Ser 700	Gln	Lys	Gln	Cys
Gly 705	Asn	Leu	Thr	Glu	Asp 710	Leu	Lys	Thr	Ile	Lys 715	Gln	Thr	His	Ser	Gln 720
Glu	Leu	Cys	Lys	Leu 725	Met	Asn	Leu	Trp	Thr 730	Glu	Arg	Phe	Cys	Ala 735	Leu

Glu Glu Lys Cys Glu Asn Ile Gln Lys Pro Leu Ser Ser Val Gln Glu Asn Ile Gln Gln Lys Ser Lys Asp Ile Val Asn Lys Met Thr Phe His 760 Ser Gln Lys Phe Cys Ala Asp Ser Asp Gly Phe Ser Gln Glu Leu Arg 775 Asn Phe Asn Gln Glu Gly Thr Lys Leu Val Glu Glu Ser Val Lys His 790 Ser Asp Lys Leu Asn Gly Asn Leu Glu Lys Ile Ser Gln Glu Thr Glu 805 Gln Arg Cys Glu Ser Leu Asn Thr Arg Thr Val Tyr Phe Ser Glu Gln 825 Trp Val Ser Ser Leu Asn Glu Arg Glu Glu Leu His Asn Leu Leu 835 840 Glu Val Val Ser Gln Cys Cys Glu Ala Ser Ser Ser Asp Ile Thr Glu 855 Lys Ser Asp Gly Arg Lys Ala Ala His Glu Lys Gln His Asn Ile Phe 870 Leu Asp Gln Met Thr Ile Asp Glu Asp Lys Leu Ile Ala Gln Asn Leu 885 890 Glu Leu Asn Glu Thr Ile Lys Ile Gly Leu Thr Lys Leu Asn Cys Phe 900 Leu Glu Gln Asp Leu Lys Leu Asp Ile Pro Thr Gly Thr Thr Pro Gln Arg Lys Ser Tyr Leu Tyr Pro Ser Thr Leu Val Arg Thr Glu Pro Arg 930 935 Glu His Leu Leu Asp Gln Leu Lys Arg Lys Gln Pro Glu Leu Leu Met 955 Met Leu Asn Cys Ser Glu Asn Asn Lys Glu Glu Thr Ile Pro Asp Val 965 970

As	o Val	Glu	Glu 980	Ala	Val	Leu	Gly	Gln 985	Tyr	Thr	Glu	Glu	Pro 990	Leu	Ser	
Gl:	n Glu	Pro 995	Ser	Val	Asp	Ala	Gly 1000		l Ası	o Cy:	s Sei	Se:		le G	ly Gly	
Va	l Pro 101		e Phe	e Glı	n His	s Ly:		ys Se	er H:	is G	ly Ly 10	ys 2 020	Asp	Lys	Glu	
As	n Arg 102	-	y Ile	e Ası	n Thi	r Lei		lu Ai	rg Se	er Ly	_	al ()35	Glu	Glu '	Thr	
Th	r Glu 1040		s Lei	u Va.	l Thi	r Lys		er Ai	rg L	eu Pi	ro Le	eu 2 050	Arg .	Ala	Gln	
Il	e Asn 105		L													
<2 <2	11> 3 12> 1	3 870 DNA Homo	sap:	iens												
<2		CDS (1).	. (870	0)												
at	00> : g tgg t Trp															48
	c gac a Asp															96
	g ctg u Leu	_	_					_	_	_			-		_	144
	c tgc r Cys 50															192
	g ctg t Leu															240
	c ctg r Leu															288
	c ctg o Leu	-		-	_											336

100	105	11	0
gac ctc ctc tgc aaa c Asp Leu Leu Cys Lys L 115			
gcc acg gtg ctc acc a Ala Thr Val Leu Thr I 130			
atc tgc ttc cca ctc c Ile Cys Phe Pro Leu A 145	egg gcc aag gtg arg Ala Lys Val 50	gtg gtc acc aag gg Val Val Thr Lys Gl 155	g cgg gtg 480 y Arg Val 160
aag ctg gtc atc ttc g Lys Leu Val Ile Phe V 165			
ccc atc ttc gtg cta g Pro Ile Phe Val Leu V 180			r Asp Pro
tgg gac acc aac gag t Trp Asp Thr Asn Glu C 195			
ctg ctc acg gtc atg g Leu Leu Thr Val Met V 210	2 22 2 2	2	
gtc ttc tgt ctc acg g Val Phe Cys Leu Thr V 225			
cgg agg agg cgc ggc g Arg Arg Arg Arg Gly A 245			
aac cac aag caa acc g Asn His Lys Gln Thr V 260			g Ala Leu
agg ctt tct ctc gcg g Arg Leu Ser Leu Ala G 275			
ctc tga Leu			870
<210> 4 <211> 289 <212> PRT <213> Homo sapiens			
<400> 4			
Met Trp Asn Ala Thr P 1 5	ro Ser Glu Glu	Pro Gly Phe Asn Le	u Thr Leu 15

Ala	Asp	Leu	Asp 20	Trp	Asp	Ala	Ser	Pro 25	Gly	Asn	Asp	Ser	Leu 30	Gly	Asp
Glu	Leu	Leu 35	Gln	Leu	Phe	Pro	Ala 40	Pro	Leu	Leu	Ala	Gly 45	Val	Thr	Ala
Thr	Cys 50	Val	Ala	Leu	Phe	Val 55	Val	Gly	Ile	Ala	Gly 60	Asn	Leu	Leu	Thr
Met 65	Leu	Val	Val	Ser	Arg 70	Phe	Arg	Glu	Leu	Arg 75	Thr	Thr	Thr	Asn	Leu 80
Tyr	Leu	Ser	Ser	Met 85	Ala	Phe	Ser	Asp	Leu 90	Leu	Ile	Phe	Leu	Cys 95	Met
Pro	Leu	Asp	Leu 100	Val	Arg	Leu	Trp	Gln 105	Tyr	Arg	Pro	Trp	Asn 110	Phe	Gly
Asp	Leu	Leu 115	Cys	Lys	Leu	Phe	Gln 120	Phe	Val	Ser	Glu	Ser 125	Cys	Thr	Tyr
Ala	Thr 130	Val	Leu	Thr	Ile	Thr 135	Ala	Leu	Ser	Val	Glu 140	Arg	Tyr	Phe	Ala
Ile 145	Cys	Phe	Pro	Leu	Arg 150	Ala	Lys	Val	Val	Val 155	Thr	Lys	Gly	Arg	Val 160
Lys	Leu	Val	Ile	Phe 165	Val	Ile	Trp	Ala	Val 170	Ala	Phe	Cys	Ser	Ala 175	Gly
Pro	Ile	Phe	Val 180	Leu	Val	Gly	Val	Glu 185	His	Glu	Asn	Gly	Thr 190	Asp	Pro
Trp	Asp	Thr 195	Asn	Glu	Cys	Arg	Pro 200	Thr	Glu	Phe	Ala	Val 205	Arg	Ser	Gly
Leu	Leu 210	Thr	Val	Met	Val	Trp 215	Val	Ser	Ser	Ile	Phe 220	Phe	Phe	Leu	Pro
Val 225	Phe	Cys	Leu	Thr	Val 230	Leu	Tyr	Ser	Leu	Ile 235	Gly	Arg	Lys	Leu	Trp 240
Arg	Arg	Arg	Arg	Gly 245	Asp	Ala	Val	Val	Gly 250	Ala	Ser	Leu	Arg	Asp 255	Gln

Asn His Lys Gln Thr Val Lys Met Leu Gly Gly Ser Gln Arg Ala Leu 260 265 270

Arg Leu Ser Leu Ala Gly Pro Ile Leu Ser Leu Cys Leu Leu Pro Ser 275 280 285

Leu

<210> <211> <212> <213>	5 4131 DNA Homo	sap.	iens												
<220> <221> <222>	CDS (373) (1629)								•			
<400> tcaagct	5 Egge	cccg	cgca	gc c	cgago	ccgg	g ct	gggc	gctg	tcc	togg	ada i	cctq	gggaac	60
cgcgcgg															120
cccgag	gaac (cacgo	ggtt	ct g	gagci	tagga	a gc	cgga	agct	ggg.	agtc	cgg (agga	gagcgg	180
agcccg	gagc (ccgga	agcc	cg g	ggcg	gaga	g tơ	tggg.	tctg	gcg	cttc	ccg a	actg	gacggc	240
gcgccc	gctg	gtcti	taga	ca c	gaga	cctc	c cct	tggg	ctcg	cgt.	tcat	cgg 1	tccc	cgcctg	300
agacgc	jece a	actc	ctgc	cc g	gacti	tcca	g cc	ccgg	aggc	gcc	ggac	aga (gccg	cggact	360
ccagcgo	cca (cc at Me	ig co	gc ct	tc aa eu As	ac ag sn Se 5	gc to er Se	cc go	cg co la P:	eg go ro Gi	ga ao ly Ti 10	nr Pi	cg go ro Gi	gc acg ly Thr	411
ccg gcc Pro Ala	gcc														
15	Āla	gac Asp	ccc Pro	ttc Phe	cag Gln 20	cgg Arg	gcg Ala	cag Gln	gcc Ala	gga Gly 25	ctg Leu	gag Glu	gag Glu	gcg Ala	459
ctg ctg Leu Leu 30	Ala gcc	Asp	Pro	Phe	Gln 20 ggc	Arg	Ala	Gln tcg	Ala	Gly 25	Leu	Glu	Glu	Ala	459 507
15 ctg ctg Leu Leu	Ala gcc Ala	Asp ccg Pro	Pro ggc Gly	Phe ttc Phe 35 agc	Gln 20 ggc Gly agc	Arg aac Asn gag	Ala gct Ala ctg	Gln tcg Ser	Ala ggc Gly 40	Gly 25 aac Asn	Leu gcg Ala acc	Glu tcg Ser	Glu gag Glu atc	Ala cgc Arg 45	
ctg ctg Leu Leu 30	Ala ggcc Ala ggcg Ala	Asp ccg Pro gca Ala	ggc Gly ccc Pro 50	Phe ttc Phe 35 agc Ser	Gln 20 ggc Gly agc Ser	aac Asn gag Glu	Ala gct Ala ctg Leu	tcg Ser gac Asp 55	Ala ggc Gly 40 gtg Val	Gly 25 aac Asn aac Asn	gcg Ala acc Thr	tcg Ser gac Asp	gag Glu atc Ile 60	Cgc Arg 45 tac Tyr	507
ctg ctg Leu Leu 30 gtc ctg Val Leu tcc aaa	Ala g gcc Ala g gcg Ala g gtg Val	Asp ccg Pro gca Ala ctg Leu 65	ggc Gly ccc Pro 50 gtg Val	ttc Phe 35 agc Ser acc Thr	Gln 20 ggc Gly agc Ser gcc Ala	aac Asn gag Glu gtg Val	Ala gct Ala ctg Leu tac Tyr 70	tcg Ser gac Asp 55 ctg Leu	Ala ggc Gly 40 gtg Val gcg Ala	Gly 25 aac Asn aac Asn ctc Leu	gcg Ala acc Thr ttc Phe	tcg Ser gac Asp gtg Val 75	gag Glu atc Ile 60 gtg Val	Cgc Arg 45 tac Tyr	507 555

					acc Thr 115											747
					cac His											795
cgc Arg	ggc Gly	tac Tyr	tac Tyr 145	ttc Phe	ctg Leu	cgc Arg	gac Asp	gcc Ala 150	tgc Cys	acc Thr	tac Tyr	gcc Ala	acg Thr 155	gcc Ala	ctc Leu	843
aac Asn	gtg Val	gcc Ala 160	agc Ser	ctg Leu	agt Ser	gtg Val	gag Glu 165	cgc Arg	tac Tyr	ctg Leu	gcc Ala	atc Ile 170	tgc Cys	cac His	ccc Pro	891
					ctc Leu											939
agc Ser 190	gcc Ala	atc Ile	tgg Trp	ctc Leu	gcc Ala 195	tcg Ser	gcc Ala	ctg Leu	ctg Leu	acg Thr 200	gtg Val	cct Pro	atg Met	ctg Leu	ttc Phe 205	987
acc Thr	atg Met	ggc Gly	gag Glu	cag Gln 210	aac Asn	cgc Arg	agc Ser	gcc Ala	gac Asp 215	ggc Gly	cag Gln	cac His	gcc Ala	ggc Gly 220	ggc Gly	1035
					acc Thr											1083
cag Gln	gtc Val	aac Asn 240	acc Thr	ttc Phe	atg Met	tcc Ser	ttc Phe 245	ata Ile	ttc Phe	ccc Pro	atg Met	gtg Val 250	gtc Val	atc Ile	tcg Ser	1131
gtc Val	ctg Leu 255	aac Asn	acc Thr	atc Ile	atc Ile	gcc Ala 260	aac Asn	aag Lys	ctg Leu	acc Thr	gtc Val 265	atg Met	gta Val	cgc Arg	cag Gln	1179
gcg Ala 270	gcc Ala	gag Glu	cag Gln	ggc Gly	caa Gln 275	gtg Val	tgc Cys	acg Thr	gtc Val	ggg Gly 280	ggc Gly	gag Glu	cac His	agc Ser	aca Thr 285	1227
ttc Phe	agc Ser	atg Met	gcc Ala	atc Ile 290	gag Glu	cct Pro	ggc Gly	agg Arg	gtc Val 295	cag Gln	gcc Ala	ctg Leu	cgg Arg	cac His 300	ggc Gly	1275
					gca Ala											1323
ccc Pro	tac Tyr	cac His 320	gtg Val	cgg Arg	cgc Arg	ctc Leu	atg Met 325	ttc Phe	tgc Cys	tac Tyr	atc Ile	tcg Ser 330	gat Asp	gag Glu	cag Gln	1371
tgg Trp	act Thr 335	ccg Pro	ttc Phe	ctc Leu	tat Tyr	gac Asp 340	ttc Phe	tac Tyr	cac His	tac Tyr	ttc Phe 345	tac Tyr	atg Met	gtg Val	acc Thr	1419

aac gca ctc ttc tac gtc agc tcc acc atc aac ccc atc ctg tac aac Asn Ala Leu Phe Tyr Val Ser Ser Thr Ile Asn Pro Ile Leu Tyr Asn 350 365	1467
ctc gtc tct gcc aac ttc cgc cac atc ttc ctg gcc aca ctg gcc tgc Leu Val Ser Ala Asn Phe Arg His Ile Phe Leu Ala Thr Leu Ala Cys 370 375 380	1515
ctc tgc ccg gtg tgg cgg cgc agg agg aag agg cca gcc ttc tcg agg Leu Cys Pro Val Trp Arg Arg Arg Lys Arg Pro Ala Phe Ser Arg 385 390 395	1563
aag gcc gac agc gtg tcc agc aac cac acc ctc tcc agc aat gcc acc Lys Ala Asp Ser Val Ser Ser Asn His Thr Leu Ser Ser Asn Ala Thr 400 405 410	1611
cgc gag acg ctg tac tag gctgtgcgcc ccggaacgtg tccaggagga Arg Glu Thr Leu Tyr 415	1659
gcctggccat gggtccttgc ccccgacaga cagagcagcc cccacccggg agccttgatg	1719
ggggtcaggc agaggccagc ctgcactgga gtctgaggcc tgggaccccc ccctcccacc	1779
ccctaaccca tgtttctcat tagtgtctcc cgggcctgtc cccaactcct ccccacccct	1839
ccccatctc ctctttgaaa gccagaacaa gagagcgctc ctctcccaga taggaaaagg	1899
gcctctaaca aggagaaatt agtgtgcggc aaaaggcagt tttctttgtt ctcagactaa	1959
tggatggttc cagagaagga aatgaaatgt gctgggtggg gccgggcctc cggcggcccg	2019
gctgctgttc ccatgtccac atctctgagg cctgcacccc ctctgtctag ctcggggagt	2079
ccagccccag tcccgcaggc tccgtggctt tgggcctcac gtgcagaccc tgccatgcag	2139
acccatgece ecetececa ggeageteca agaaagetee etgactegee eetteaggee	2199
tggcaagetg ggggcccatc gccgtgggga gtccctccca ccaccctcgc cgcaggcagc	2259
tgcagccccc agaggggacc acaagcccaa aaaggacaaa aatgggctgg cctggaatgg	2319
cccagacccc agectecect ectecetece atecteacec aggecaagge ccaggggete	2379
tgccaggaca ccacatggga gggggctcag gcctcagcct caagatcttc agctgtggcc	2439
tetegggete ggeagaaggg acgeeggate aggggeetgg tetecageae etgeeegagt	2499
ggccgtggcc aggatggggt gcgcattccg tgtgctttgc ttgtagctgt gcaggctgag	2559
gtctggagcc aggcccagag ctggcttcag ggtggggcct tgagaagggg aatgtgggac	2619
aggggcgatg gtgcctggtc tctgagtaag atgccaggtc ccaggaactc aggcttcagg	2679
tgagaaggag cggtgtgtcc aggcaccgct ggccggcagc cctgggctga ggcacagact	2739
catttgtcac cttctggcgg cggcagccct ggccccggcc tccaagcagt tgaaaaagct	2799
ggcgcctcct tggtctctag gatccaggct ccacagagca catgactagc caggcccctg	2859

qcttaaqaag gtcgcctaag cctaagagaa gacagtccca ggagaagctg gccgggacca 2919 gccaggagct gggagccaca ggaagcaaaa gtcagccttt tcttcaaggg atttccctgt 2979 ctcaqaqcaq cctttgcccc agggaaatqg qctctgqqct gqctqcctqc accqqccatq 3039 tcgacccagg acccggacac ctggtcttgg gctgtgttca gccactttgc cttctctgga 3099 ctcagtttcc ccgtctgaga aatgagagtc gaatgctaca gtatctgcag tcgcttggat 3159 ctggctgttg agttgacggg ttccttgaac cccacaaaat ccctctccaa ccacaggacc 3219 cttcggctca ccaagaacgg ggcccagggg agtcaggcct attcgctgca cttcctgcca 3279 aactttgccc ccacaagcct ggtcatcagc caggcagccc tcccagtgcc caagggccac 3339 caaccccagg gaaacagggc cagcacagag gggccttcct cccccacaga gctcccatga 3399 catagtctgc tctgggcgga agagctttgc tgccagccag ggatgtccag aggtcggtgc 3459 agecectate cetgeteagg agtgggetea gagtetagea aatgetaagg eeceteagge 3519 tgggetetga aegaggaeet ggaeteagag ceagaeaggg eageeteaga eeettetetg 3579 gggctcctgg accttgggcc ataatttctg agcctcggtt tccccatcta aggaacagat 3639 gtggtcgttc cgccctctca gctggatgag actgtcctgg aggatccacc ccggaacaga 3699 cagaacggtg tctctcagga tggtgctctg agagagggca gagtggatgc cccactgccc 3759 tagacceteg gtagaegtgg ggtetetggg geggggtetg tggetgtgae tgaagtegge 3819 tttcccgttg atgtcttgat gctcctatct gtgcacttac cgtaggtagg gacacgtgtc 3879 catgcaccac agacacccc acgacacctg atctcgtatc actagcttqc ggccaggtca 3939 tgatgtggcc ccggaagctg gccctgcgtg ccatgagtgc gtcggtcatg gagtccggag 3999 cccctgagcc ggcccctggt gacggcacag ccctcacagc tcaaacgccc accccactc 4059 ccaccatctg caggtggtga aaacaaaccc cgtgtatctc tcaataaagg tggccgaagg 4119 gcctcgatgt gg 4131

<210> 6

<211> 418

<212> PRT

<213> Homo sapiens

<400> 6

Met Arg Leu Asn Ser Ser Ala Pro Gly Thr Pro Gly Thr Pro Ala Ala 1 5 10 15

Asp Pro Phe Gln Arg Ala Gln Ala Gly Leu Glu Glu Ala Leu Leu Ala 20 25 30

Pro Gly Phe Gly Asn Ala Ser Gly Asn Ala Ser Glu Arg Val Leu Ala

35 40 45

Ala	Pro	Ser	Ser	Glu	Leu	Asp	Val	Asn	Thr	Asp	Ile	Tyr	Ser	Lys	Val
	50					55					60				

- Leu Val Thr Ala Val Tyr Leu Ala Leu Phe Val Val Gly Thr Val Gly 65 70 75 80
- Asn Thr Val Thr Ala Phe Thr Leu Ala Arg Lys Lys Ser Leu Gln Ser 85 90 95
- Leu Gl
n Ser Thr Val His Tyr His Leu Gly Ser Leu Ala Leu Ser Asp
 $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$
- Leu Leu Thr Leu Leu Leu Ala Met Pro Val Glu Leu Tyr Asn Phe Ile 115 120 125
- Trp Val His His Pro Trp Ala Phe Gly Asp Ala Gly Cys Arg Gly Tyr 130 140
- Tyr Phe Leu Arg Asp Ala Cys Thr Tyr Ala Thr Ala Leu Asn Val Ala 145 150 155 160
- Ser Leu Ser Val Glu Arg Tyr Leu Ala Ile Cys His Pro Phe Lys Ala 165 170 175
- Lys Thr Leu Met Ser Arg Ser Arg Thr Lys Lys Phe Ile Ser Ala Ile 180 185 190
- Trp Leu Ala Ser Ala Leu Leu Thr Val Pro Met Leu Phe Thr Met Gly 195 200 205
- Glu Gln Asn Arg Ser Ala Asp Gly Gln His Ala Gly Gly Leu Val Cys 210 220
- Thr Pro Thr Ile His Thr Ala Thr Val Lys Val Val Ile Gln Val Asn 225 230 235 240
- Thr Phe Met Ser Phe Ile Phe Pro Met Val Val Ile Ser Val Leu Asn 245 250 255
- Thr Ile Ile Ala Asn Lys Leu Thr Val Met Val Arg Gln Ala Ala Glu 260 265 270

Ala Ile Glu Pro Gly Arg Val Gln Ala Leu Arg His Gly Val Arg Val 295 Leu Arg Ala Val Val Ile Ala Phe Val Val Cys Trp Leu Pro Tyr His 310 315 Val Arg Arg Leu Met Phe Cys Tyr Ile Ser Asp Glu Gln Trp Thr Pro 325 330 Phe Leu Tyr Asp Phe Tyr His Tyr Phe Tyr Met Val Thr Asn Ala Leu 340 345 Phe Tyr Val Ser Ser Thr Ile Asn Pro Ile Leu Tyr Asn Leu Val Ser 355 360 Ala Asn Phe Arg His Ile Phe Leu Ala Thr Leu Ala Cys Leu Cys Pro 370 375 Val Trp Arg Arg Arg Lys Arg Pro Ala Phe Ser Arg Lys Ala Asp 385 390 395 Ser Val Ser Ser Asn His Thr Leu Ser Ser Asn Ala Thr Arg Glu Thr 405 Leu Tyr <210> 7 <211> 23 <212> DNA <213> Artificial <223> An artificially synthesized primer sequence for RT-PCR <400> 7 taaatggctt caggagactt cag 23 <210> 8 <211> 24 <212> DNA <213> Artificial <223> An artificially synthesized primer sequence for RT-PCR <400> 8 ggttttaaat gcagctccta tgtg

24

<210>	9	
<211>	23	
<212>	DNA	
<213>	Artificial	
<220		
<220> <223>	An artificially synthesized primer sequence for RT-PCR	
\2237	An arctificially synthesized primer sequence for his ron	
<400>	9	
ctgaaca	agtg ggtatcttcc tta	23
_		
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
	An artificially synthesized primer sequence for RT-PCR	
1220	···· atottiotatif ofmonosizea pramer sequence are in ten	
<400>	10	
gatggct	cctt gacttagagg ttc	23
<210>	11	
<211>	22	
<212>		
<213>	Artificial	
<220>		
	An artificially synthesized primer sequence for RT-PCR	
<400>	11	
tgaaga	gatt cagagtggac ga	22
<210>	12	
<211> <212>	23	
	Artificial	
\213/	Altilitat	
<220>		
	An artificially synthesized primer sequence for RT-PCR	
<400>	12	
actgaga	aaca ttgacaacac agg	23
1010:	10	
<210>	13	
<211> <212>	22 DNA	
	Artificial	
\LJ/	IN CITIOTAL	
<220>		
<223>	An artificially synthesized primer sequence for RT-PCR	
	· · · · · · · · · · · · · · · · · ·	
<400>	13	
aagagg	gaca gggacaagta gt	22

```
<210> 14
<211> 21
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 14
atgccactgt tactgcttca g
                                                                      21
<210> 15
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 15
ggctcttaca actcatgtac cca
                                                                      23
<210> 16
<211> 24
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 16
tgatacagag acatgaagtg agca
                                                                     24
<210> 17
<211>
      19
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 17
tggtgtttgc cttcatcct
                                                                     19
<210> 18
<211>
      20
<212> DNA
<213> Artificial
<223> An artificially synthesized primer sequence for RT-PCR
<400> 18
gaatcccaga agtctgaaca
                                                                     20
```

21

<210> 19

```
<211> 19
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 19
acggtcctct acagtctca
                                                                     19
<210> 20
<211> 18
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 20
cacagggaga ggatagga
                                                                     18
<210> 21
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 21
agtgggctca gagtctagca aat
                                                                     23
<210> 22
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 22
tattgagaga tacacggggt ttg
                                                                     23
<210> 23
<211> 21
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 23
tgagccctga acaccagaga g
                                                                     21
<210> 24
<211> 21
```

```
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 24
aaagccagat gagcgcttct a
                                                                     21
<210> 25
<211> 22
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 25
tcttcagcat gatgtgttgt gt
                                                                     22
<210> 26
<211> 24
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 26
tgagagattc atgaggaagt cttg
                                                                     24
<210> 27
<211> 21
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 27
gaggtgatag cattgctttc g
                                                                     21
<210> 28
<211> 21
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 28
caagtcagtg tacaggtaag c
                                                                     21
<210> 29
<211>
      19
<212> DNA
```

<213>	Artificial	
<220> <223>	A target sequence for siRNA	
<400> gaagca	29 gcac gacttcttc	19
<210> <211> <212> <213>	30 19 DNA Artificial	
<220> <223>	A target sequence for siRNA	
<400> cgtacg	30 cgga atacttcga	19
<220> <223>	A target sequence for siRNA	
<400> gcgcgc	31 tttg taggattcg	19
<210><211><211><212><213>	19	
<220> <223>	A target sequence for siRNA	
<400> gttagte	32 gtac gaactggag	19
<210><211><211><212><213>	33 19 DNA Artificial	
<220> <223>	A target sequence for siRNA	
<400>	33	
	ctgt tggagatct	19
<210> <211> <212> <213>	34 19 DNA Artificial	

```
<220>
<223> A target sequence for siRNA
<400> 34
gaaggcagtt gaccaacac
                                                                      19
<210> 35
<211> 19
<212> DNA
<213> Artificial
<220>
<223> A target sequence for siRNA
<400> 35
cctctacctg tccagcatg
                                                                      19
<210> 36
<211> 19
<212> DNA
<213> Artificial
<220>
<223> A target sequence for siRNA
<400> 36
gttcatcagc gccatctgg
                                                                     19
<210> 37
<211> 19
<212> DNA
<213> Artificial
<220>
<223> A target sequence for siRNA
<400> 37
ggtcgtcata caggtcaac
                                                                     19
<210> 38
<211> 32
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 38
ggaattccat gtggaacgcg acgcccagcg aa
                                                                     32
<210> 39
<211> 40
<212> DNA
<213> Artificial
```

```
<220>
<223> An artificially synthesized primer sequence for RT-PCR
cgcggatccg cgtgtattaa tactagattc tgtccaggcc
                                                                     40
<210> 40
<211> 32
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 40
ggaattccat gtggaacgcg acgcccagcg aa
                                                                     32
<210> 41
<211> 36
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 41
                                                                     36
cgcggatccg cggagagaag ggagaaggca caggga
<210> 42
<211> 36
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
<400> 42
ggaattccat gcgcctcaac agctccgcgc cgggaa
                                                                     36
<210> 43
<211>
      39
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR
cgcggatccg cggtacagcg tctcgcgggt ggcattgct
                                                                     39
<210> 44
<211>
      22
<212>
      DNA
<213> Artificial
<220>
```

<223>	An artificially synthesized pr promoter region	imer sequence	for PCR	of H1RNA	gene
<400> tggtago	44 ccaa gtgcaggtta ta				22
<210> <211> <212> <213>	45 22 DNA Artificial				
<220> <223>	An artificially synthesized pr promoter region	imer sequence	for PCR	of H1RNA	gene
<400> ccaaago	45 ggtt tctgcagttt ca				22
<210> <211>	46 30		i		
<212> <213>	DNA Artificial		·		
<220> <223>	An artificially synthesized pr H1RNA gene fragment	imer sequence	for PCR	of pcDNA	3.1
<400> tgcggat	46 tcca gagcagattg tactgagagt				30
<210><211><211><212><213>	47 29 DNA Artificial				
<220> <223>	An artificially synthesized pr H1RNA gene fragment	imer sequence	for PCR	of pcDNA	3.1
<400> ctctato	47 ctcg agtgaggcgg aaagaacca				29
<210> <211> <212> <213>	47				
<220> <223>	An artificially synthesized pr ligated DNA	imer sequence	for PCR	of the	
<400> tttaago	48 cttg aagaccattt ttggaaaaaa aaaa	aaaaaa aaaaaac			47

<210> 49

```
<211>
      34
<212>
      DNA
<213>
      Artificial
<220>
<223>
      An artificially synthesized primer sequence for PCR of the
      ligated DNA
<400> 49
tttaagcttg aagacatggg aaagagtggt ctca
                                                                       34
<210>
      50
<211> 5085
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized vector sequence
<400> 50
gacggatcgg gagatctccc gatcccctat ggtgcactct cagtacaatc tgctctggat
                                                                      60
ccactagtaa cggccgccag tgtgctggaa ttcggcttgg tagccaagtg caggttatag
                                                                     120
ggagctgaag ggaagggggt cacagtaggt ggcatcgttc ctttctgact gcccqcccc
                                                                     180
cgcatgccgt cccgcgatat tgagctccga acctctcgcc ctgccgccgc cqqtqctccq
                                                                     240
tegeogeege geogecatgg aattegaaeg etgaegteat caaccegete caaqqaateg
                                                                     300
cgggcccagt gtcactaggc gggaacaccc agcgcgcgtg cgccctggca ggaagatggc
                                                                     360
tgtgagggac aggggagtgg cgccctgcaa tatttgcatg tcqctatqtq ttctqqqaaa
                                                                     420
tcaccataaa cgtgaaatgt ctttggattt gggaatctta taagttctgt atgagaccac
                                                                     480
tettteeett tttgggaaaa aaaaaaaaaa aaaaaaaacg aaacegggee gggegggtg
                                                                     540
gttcacgcct ataatcccag cactttggga ggccgaggcg ggcggatcac aaggtcagga
                                                                     600
ggtcgagacc atccaggcta acacggtgaa acccccccc atctctacta aaaaaaaaa
                                                                     660
atacaaaaaa ttagccatta gccgggcgtg gtggcgggcg cctataatcc cagctacttg
                                                                     720
ggaggctgaa gcagaatggc gtgaacccgg gaggcggacg ttgcagtgag ccqaqatcqc
                                                                     780
gccgactgca ttccagcctg ggcgacagag cgagtctcaa aaaaaaaacc qaqtqqaatq
                                                                     840
tgaaaagctc cgtgaaactg cagaaaccca agccgaattc tgcagatatc catcacactg
                                                                     900
geggeegete gagtgaggeg gaaagaacca getggggete tagggggtat eeceaegege
                                                                     960
cctgtagcgg cgcattaagc gcggcgggtg tggtggttac gcgcaqcgtg accqctacac
                                                                    1020
ttgccagcgc cctagcgccc gctcctttcg ctttcttccc ttcctttctc gccacgttcg
                                                                    1080
ccggctttcc ccgtcaagct ctaaatcggg ggctcccttt agggttccga tttagtgctt
                                                                    1140
tacggcacct cgaccccaaa aaacttgatt agggtgatgg ttcacgtagt gggccatcgc
                                                                    1200
```

cctgatagac	ggtttttcgc	cctttgacgt	tggagtccac	gttctttaat	agtggactct	1260
tgttccaaac	tggaacaaca	ctcaacccta	tctcggtcta	ttcttttgat	ttataaggga	1320
ttttgccgat	ttcggcctat	tggttaaaaa	atgagctgat	ttaacaaaaa	tttaacgcga	1380
attaattctg	tggaatgtgt	gtcagttagg	gtgtggaaag	tccccagget	ccccagcagg	1440
cagaagtatg	caaagcatgc	atctcaatta	gtcagcaacc	aggtgtggaa	agtccccagg	1500
ctccccagca	ggcagaagta	tgcaaagcat	gcatctcaat	tagtcagcaa	ccatagtccc	1560
gcccctaact	ccgcccatcc	cgcccctaac	tccgcccagt	teegeceatt	ctccgcccca	1620
tggctgacta	attttttta	tttatgcaga	ggccgaggcc	gcctctgcct	ctgagctatt	1680
ccagaagtag	tgaggaggct	tttttggagg	cctaggcttt	tgcaaaaagc	tecegggage	1740
ttgtatatcc	attttcggat	ctgatcaaga	gacaggatga	ggatcgtttc	gcatgattga	1800
acaagatgga	ttgcacgcag	gttctccggc	cgcttgggtg	gagaggctat	tcggctatga	1860
ctgggcacaa	cagacaatcg	gctgctctga	tgccgccgtg	ttccggctgt	cagcgcaggg	1920
gcgcccggtt	ctttttgtca	agaccgacct	gtccggtgcc	ctgaatgaac	tgcaggacga	1980
ggcagcgcgg	ctatcgtggc	tggccacgac	gggcgttcct	tgcgcagctg	tgctcgacgt	2040
tgtcactgaa	gcgggaaggg	actggctgct	attgggcgaa	gtgccggggc	aggatctcct	2100
gtcatctcac	cttgctcctg	ccgagaaagt	atccatcatg	gctgatgcaa	tgcggcggct	2160
gcatacgctt	gatccggcta	cctgcccatt	cgaccaccaa	gcgaaacatc	gcatcgagcg	2220
agcacgtact	cggatggaag	ccggtcttgt	cgatcaggat	gatctggacg	aagagcatca	2280
ggggctcgcg	ccagccgaac	tgttcgccag	gctcaaggcg	cgcatgcccg	acggcgagga	2340
tctcgtcgtg	acccatggcg	atgcctgctt	gccgaatatc	atggtggaaa	atggccgctt	2400
ttctggattc	atcgactgtg	gccggctggg	tgtggcggac	cgctatcagg	acatagcgtt	2460
ggctacccgt	gatattgctg	aagagcttgg	cggcgaatgg	gctgaccgct	tcctcgtgct	2520
ttacggtatc	gccgctcccg	attcgcagcg	catcgccttc	tatcgccttc	ttgacgagtt	2580
cttctgagcg	ggactctggg	gttcgaaatg	accgaccaag	cgacgcccaa	cctgccatca	2640
cgagatttcg	attccaccgc	cgccttctat	gaaaggttgg	gcttcggaat	cgttttccgg	2700
gacgccggct	ggatgatcct	ccagcgcggg	gatctcatgc	tggagttctt	cgcccacccc	2760
aacttgttta	ttgcagctta	taatggttac	aaataaagca	atagcatcac	aaatttcaca	2820
aataaagcat	ttttttcact	gcattctagt	tgtggtttgt	ccaaactcat	caatgtatct	2880
tatcatgtct	gtataccgtc	gacctctagc	tagagcttgg	cgtaatcatg	gtcatagctg	2940
tttcctgtgt	gaaattgtta	tccgctcaca	attccacaca	acatacgagc	cggaagcata	3000
aagtgtaaag	cctggggtgc	ctaatgagtg	agctaactca	cattaattgc	gttgcgctca	3060

etgecegett tecagteggg aaacetgteg tgecagetge attaatgaat eggecaaege 3120 gcggggagag gcggtttgcg tattgggcgc tcttccgctt cctcgctcac tgactcgctg 3180 cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta 3240 tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaaggcca gcaaaaggcc 3300 aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag 3360 catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac 3420 caggogtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc 3480 ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt 3540 aggtatetea gtteggtgta ggtegttege tecaagetgg getgtgtgea egaaceeece 3600 gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga 3660 cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta 3720 ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag aagaacagta 3780 tttggtatct gegetetget gaageeagtt acetteggaa aaagagttgg tagetettga 3840 tccggcaaac aaaccaccgc tggtagcggt ttttttgttt gcaagcagca gattacgcgc 3900 agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg 3960 aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag 4020 atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg 4080 tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt 4140 tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga gggcttacca 4200 tetggeecea gtgetgeaat gatacegega gaeceaeget caeeggetee agatttatea 4260 gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc 4320 tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt 4380 ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg 4440 gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc catgttgtgc 4500 aaaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg 4560 ttatcactca tggttatggc agcactgcat aattetetta etgteatgee ateegtaaga 4620 tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga 4680 ccgagttgct cttgcccggc gtcaatacgg gataataccg cgccacatag cagaacttta 4740 aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgctg 4800 ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc atcttttact 4860

LLCacc	dagog cecegggeg agcadadda ggaaggedda aegeegedda adaggg	aala 4920
agggcg	gacac ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaag	catt 4980
tatcag	gggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataa	acaa 5040
ataggg	ggttc cgcgcacatt tccccgaaaa gtgccacctg acgtc	5085
<210><211><211><212><213>	51 DNA	
<220> <223>	An artificially synthesized oligonucleotide sequence for construction of siRNA expression vector	or
<400> tcccgt	51 ttagt gtacgaactg gagttcaaga gactccagtt cgtacactaa c	51
<210> <211> <212> <213>	51 DNA	
<220> <223>		or
<400> aaaagt	52 ttagt gtacgaactg gagtetettg aactecagtt egtacaetaa e	51
<210> <211> <212> <213>	47 DNA	
<220> <223>	An artificially synthesized oligonucleotide sequence for sirNA	or hairpin
<400> gttagt	53 tgtac gaactggagt tcaagagact ccagttcgta cactaac	47
<210> <211> <212> <213>	51	
<220> <223>		or
<400>	54 tgtct ctgttggaga tctttcaaga gaagatctcc aacagagaca c	51

```
<210> 55
<211> 51
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for
      construction of siRNA expression vector
aaaagtgtct ctgttggaga tcttctcttg aaagatctcc aacagagaca c
                                                                      51
<210> 56
<211> 47
<212> DNA
<213> Artificial
<220>
<223>
     An artificially synthesized oligonucleotide sequence for hairpin
      siRNA
<400> 56
gtgtctctgt tggagatctt tcaagagaag atctccaaca gagacac
                                                                      47
<210> 57
<211> 51
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for
      construction of siRNA expression vector
tcccgaaggc agttgaccaa cacttcaaga gagtgttggt caactgcctt c
                                                                      51
<210>
      58
<211>
      51
<212> DNA
<213> Artificial
<220>
<223>
      An artificially synthesized oligonucleotide sequence for
      construction of siRNA expression vector
<400> 58
aaaagaaggc agttgaccaa cactetettg aagtgttggt caactgeett c
                                                                      51
<210> 59
<211>
      47
<212>
     DNA
<213> Artificial
<220>
<223>
     An artificially synthesized oligonucleotide sequence for hairpin
      siRNA
```

```
<400> 59
gaaggcagtt gaccaacact tcaagagagt gttggtcaac tgccttc
                                                                     47
<210> 60
<211> 51
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for
      construction of siRNA expression vector
tocccotota cotgtocago atgttoaaga gacatgotgg acaggtagag g
                                                                     51
<210> 61
<211> 51
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for
      construction of siRNA expression vector
<400> 61
aaaacctcta cctgtccagc atgtctcttg aacatgctgg acaggtagag g
                                                                     51
<210> 62
<211> 47
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for hairpin
      siRNA
<400> 62
cctctacctg tccagcatgt tcaagagaca tgctggacag gtagagg
                                                                     47
<210> 63
<211>
      51
<212> DNA
<213> Artificial
<220>
      An artificially synthesized oligonucleotide sequence for
<223>
      construction of siRNA expression vector
<400> 63
tcccgttcat cagcgccatc tggttcaaga gaccagatgg cgctgatgaa c
                                                                     51
<210> 64
<211> 51
<212> DNA
<213> Artificial
```

```
<220>
<223> An artificially synthesized oligonucleotide sequence for
      construction of siRNA expression vector
<400> 64
aaaagttcat cagcgccatc tggtctcttg aaccagatgg cgctgatgaa c
                                                                      51
<210> 65
<211> 47
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for hairpin
      SIRNA
<400> 65
gttcatcagc gccatctggt tcaagagacc agatggcgct gatgaac
                                                                      47
<210> 66
<211> 51
<212> DNA
<213> Artificial
<220>
<223>
      An artificially synthesized oligonucleotide sequence for
      construction of siRNA expression vector
<400> 66
tocoggtogt catacaggto aacttcaaga gagttgacot gtatgacgac c
                                                                     51
<210> 67
<211> 51
<212> DNA
<213> Artificial
<220>
      An artificially synthesized oligonucleotide sequence for
<223>
      construction of siRNA expression vector
aaaaggtcgt catacaggtc aactctcttg aagttgacct gtatgacgac c
                                                                      51
<210> 68
<211>
      47
<212> DNA
<213> Artificial
<220>
<223>
      An artificially synthesized oligonucleotide sequence for hairpin
      siRNA
<400> 68
ggtcgtcata caggtcaact tcaagagagt tgacctgtat gacgacc
                                                                      47
```

<210> 69

<211> <212>	20 DNA
	Artificial
<220>	
<223>	An artificially synthesized primer sequence for construction of IMP-3 deletion mutant
<400>	69
atgaaca	aaac tgtatatcgg 20
	70
<211> <212>	18
	Artificial
<220>	
<223>	An artificially synthesized primer sequence for construction of IMP-3 deletion mutant
<400>	70
cttccgt	tott gactgagg 18
<210>	71
<211>	20
<212>	
<213>	Artificial
<220>	
<223>	An artificially synthesized primer sequence for construction of $\ensuremath{IMP-3}$ deletion mutant
<400>	71
	maac tgtatatcgg 20
<210>	72
	19
<212>	
<213>	Artificial
<220>	
<223>	An artificially synthesized primer sequence for construction of IMP-3 deletion mutant
<400>	72
	ttca agtttcacc 19
<210>	73
<211>	
<212>	
<213>	Artificial
<220>	
	An artificially synthesized primer sequence for construction of
	IMP-3 deletion mutant
<400>	73

atgaacaaac tgtatatcgg 20					
<210><211><211><212><213>	74 18 DNA Artificial				
<220> <223>	An artificially synthesized primer sequence for construction IMP-3 deletion mutant	of			
<400> ctccgt	74 ttct gattgctc	18			
<210><211><211><212><213>	20				
<220> <223>	An artificially synthesized primer sequence for construction IMP-3 deletion mutant	of			
<400> atgaac	75 aaac tgtatatcgg	20			
<210><211><211><212><213>					
<220> <223>	An artificially synthesized primer sequence for construction IMP-3 deletion mutant	of			
<400> aggcaaa	76 atca catggtttct g	21			
<210> <211> <212> <213>	77 18 DNA Artificial				
<220> <223>	An artificially synthesized primer sequence for construction IMP-3 deletion mutant	of			
<400> ttgccto	77 etge geetgetg	18			
<210> <211> <212> <213>	78 18 DNA Artificial				

36

<220>

<223>	An artificially synthesized IMP-3 deletion mutant	primer	sequence	for	construction	of
<400> cttccg	78 tett gaetgagg					18
-	3 3 3 3					
<210><211><211><212>	79 18 DNA					
<213>	Artificial					
<220>						
<223>	An artificially synthesized IMP-3 deletion mutant	primer	sequence	for	construction	of
<400>	79					
ttgcct	ctgc gcctgctg					18
<210>	80					
<211> <212>	18 DNA					
<213>	Artificial					
<220> <223>	An artificially synthesized IMP-3 deletion mutant	primer	sequence	for	construction	of
<400>	80					
ctccgtt	tct gattgctc					18
<210>	81					
<211>	23					
<212> <213>	DNA Artificial					
(210)	Altificial					
<220> <223>	An artificially synthesized	primer	sequence	for	IP-RT-PCR	
<400>	81					
ttatcct	gaa cagetetttg gtg					23
<210>	82					
<211>	23					
<212> <213>	DNA Artificial					
<220> <223>	An artificially synthesized			e	TD DE DOD	
12237	An archicially synthesized	brimer	sequence	TOL	IP-RI-PCR	
<400>	82					
aagcgaa	aggt cagctaaata tcc					23
2010 :	0.3					
<210> <211>	83 23					
<212>	DNA					
<213>	Artificial					

```
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 83
ctttctgagc acactacgga tct
                                                                     23
<210> 84
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 84
aagccctctt acttacaggg aaa
                                                                     23
<210> 85
<211> 21
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 85
ggttcccctg gatttagtga a
                                                                     21
<210> 86
<211> 25
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 86
caacagtaaa totgaaacto ttgoo
                                                                     25
<210> 87
<211>
      23
<212> DNA
<213> Artificial
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 87
gacaaaggta gcaagaggat ttc
                                                                     23
<210> 88
<211>
      22
<212> DNA
<213> Artificial
```

```
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 88
ctggtgttaa actcggttct tc
                                                                     22
<210> 89
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 89
ctagtgagtg aggctattgc agc
                                                                     23
<210> 90
<211> 24
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 90
gtctcttcta gcacctcaat ctcc
                                                                     24
<210> 91
<211>
      23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 91
atctgacttt ctgtccactg cat
                                                                     23
<210> 92
<211>
      22
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 92
taattcagca taagccaaag cc
                                                                     22
<210> 93
<211> 23
<212> DNA
<213> Artificial
```

```
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 93
                                                                     23
acacagtatg gactgaaatc gac
<210> 94
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 94
cacctcaatc tgaacaaggt tag
                                                                     23
<210> 95
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 95
                                                                      23
ggcctctcaa agtctggtag att
<210> 96
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for IP-RT-PCR
<400> 96
atattcccac ttcagagacg aca
                                                                      23
<210> 97
<211> 197
<212> PRT
<213> Artificial
<220>
<223> An artificially synthesized sequence of IMP-3 deletion mutant
<400> 97
Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser
                                    10
Asp Leu Glu Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro
```

25

20

Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His 55 Gly Lys Pro Ile Glu Val Glu His Ser Val Pro Lys Arg Gln Arg Ile Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu Val 85 90 Leu Asp Ser Leu Leu Val Gln Tyr Gly Val Val Glu Ser Cys Glu Gln 100 105 Val Asn Thr Asp Ser Glu Thr Ala Val Val Asn Val Thr Tyr Ser Ser 115 120 Lys Asp Gln Ala Arg Gln Ala Leu Asp Lys Leu Asn Gly Phe Gln Leu 130 135 Glu Asn Phe Thr Leu Lys Val Ala Tyr Ile Pro Asp Glu Met Ala Ala 145 150 Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly Gln 170 Arg Gly Ser Ser Arg Gln Gly Ser Pro Gly Ser Val Ser Lys Gln Lys Pro Cys Asp Leu Pro 195 <210> 98 <211> 23 <212> DNA <213> Artificial <223> An artificially synthesized primer sequence for Quantitative RT-PCR <400> 98

<210> 99 <211> 21 <212> DNA

acgaactcat ttgctcactc ctt

<213> Artificial

23

<220> <223>	An artificially synthesized primer sequence for Quantitative RT-PCR	
<400>	99 accc aacacaattg t	21
400040		21
<210> <211> <212> <213>	100 12 DNA Artificial	
<220> <223>	An artificially synthesized primer sequence for Quantitative $\operatorname{RT-PCR}$	
<400> acagcaa	100 mage ce	12
<210> <211> <212> <213>	101 23 DNA Artificial	
<220> <223>	An artificially synthesized primer sequence for Quantitative RT-PCR	
<400>	101 ctga cagagttcac aaa	2.2
ccacc	ciga cagagiticac aaa	23
<210> <211> <212> <213>	102 22 DNA Artificial	
<220> <223>	An artificially synthesized primer sequence for Quantitative RT-PCR	
<400> gggtggt	102 cete ecataatage aa	22
<210><211><211><212><213>	103 19 DNA Artificial	
<220> <223>	An artificially synthesized primer sequence for Quantitative $\ensuremath{RT-PCR}$	
<400> agcccad	103 Ettt agagtatac	19

<210> 104 <211> 4168 <212> DNA <213> Homo sapiens

<400> 104 aagacttagg aagactggtg gatgcgtttg ggttgtagct aggctttttc ttttctttct 60 cttttaaaac acatctagac aaggaaaaaa caagcctcgg atctgatttt tcactcctcg 120 ttettgtget tggttettae tgtgtttgtg tattttaaag gegagaagae gaggggaaea 180 aaaccagctg gatccatcca tcaccgtggg tggttttaat ttttcgtttt ttctcgttat 240 ttttttttaa acaaccactc ttcacaatga acaaactgta tatcggaaac ctcagcgaga 300 acgccgcccc ctcggaccta gaaagtatct tcaaggacgc caagatcccg gtgtcgggac 360 cettectggt gaagactgge tacgegtteg tggactgeec ggacgagage tgggeectea 420 aggccatcga ggcgctttca ggtaaaatag aactgcacgg gaaacccata gaagttgagc 480 actcggtccc aaaaaggcaa aggattcgga aacttcagat acgaaatatc ccgcctcatt 540 tacagtggga ggtgctggat agtttactag tccagtatgg agtggtggag agctgtgagc 600 aagtgaacac tgactcggaa actgcagttg taaatgtaac ctattccagt aaggaccaag 660 ctagacaagc actagacaaa ctgaatggat ttcagttaga gaatttcacc ttgaaagtag 720 cctatatccc tgatgaaatg gccgcccagc aaaacccctt gcagcagccc cgaggtcgcc 780 gggggcttgg gcagagggc tcctcaaggc aggggtctcc aggatccgta tccaagcaga 840 aaccatgtga tttgcctctg cgcctgctgg ttcccaccca atttgttgga gccatcatag 900 gaaaagaagg tgccaccatt cggaacatca ccaaacagac ccagtctaaa atcgatgtcc 960 accgtaaaga aaatgcgggg gctgctgaga agtcgattac tatcctctct actcctgaag 1020 gcacctctgc ggcttgtaag tctattctgg agattatgca taaggaagct caagatataa 1080 aattcacaga agagatcccc ttgaagattt tagctcataa taactttgtt ggacgtctta 1140 ttggtaaaga aggaagaaat cttaaaaaaa ttgagcaaga cacagacact aaaatcacga 1200 tatctccatt gcaggaattg acgctgtata atccagaacg cactattaca gttaaaggca 1260 atgttgagac atgtgccaaa gctgaggagg agatcatgaa gaaaatcagg gagtcttatg 1320 aaaatgatat tgcttctatg aatcttcaag cacatttaat tcctggatta aatctgaacg 1380 cettgggtet gtteceacce actteaggga tgeeacetee caceteaggg ecceetteag 1440 ccatgactcc tccctacccg cagtttgagc aatcagaaac ggagactgtt catctgttta 1500 teccagetet ateagteggt gecateateg geaageaggg ceageacate aageagettt 1560 ctcgctttgc tggagcttca attaagattg ctccagcgga agcaccagat gctaaagtga 1620 ggatggtgat tatcactgga ccaccagagg ctcagttcaa ggctcaggga agaatttatg 1680

1740 gaaaaattaa agaagaaaac tttgttagtc ctaaagaaga ggtgaaactt gaagctcata 1800 tcagagtgcc atcctttgct gctggcagag ttattggaaa aggaggcaaa acggtgaatg aacttcagaa tttgtcaagt gcagaagttg ttgtccctcg tgaccagaca cctgatgaga 1860 1920 atgaccaagt ggttgtcaaa ataactggtc acttctatgc ttgccaggtt gcccagagaa 1980 aaattcagga aattctgact caggtaaagc agcaccaaca acagaaggct ctgcaaagtg 2040 gaccacctca gtcaagacgg aagtaaaggc tcaggaaaca gcccaccaca gaggcagatg ccaaaccaaa gacagattgc ttaaccaaca gatgggcgct gaccccctat ccagaatcac 2100 atgcacaagt ttttacctag ccagttgttt ctgaggacca ggcaactttt gaactcctgt 2160 ctctgtgaga atgtatactt tatgctctct gaaatgtatg acacccagct ttaaaacaaa 2220 caaacaaaca aacaaaaaaa gggtggggga gggagggaaa gagaagagct ctgcacttcc 2280 ctttgttgta gtctcacagt ataacagata ttctaattct tcttaatatt cccccataat 2340 2400 gccagaaatt ggcttaatga tgctttcact aaattcatca aatagattgc tcctaaatcc aattgttaaa attggatcag aataattatc acaggaactt aaatgttaag ccattagcat 2460 agaaaaactg ttctcagttt tatttttacc taacactaac atgagtaacc taagggaagt 2520 2580 gctgaatggt gttggcaggg gtattaaacg tgcattttta ctcaactacc tcaggtattc 2640 agtaatacaa tgaaaagcaa aattgttcct tttttttgaa aattttatat actttataat 2700 gatagaagtc caaccgtttt ttaaaaaaata aatttaaaaat ttaacagcaa tcagctaaca ggcaaattaa gatttttact tetggetggt gacagtaaag etggaaaatt aattteaggg 2760 ttttttgagg cttttgacac agttattagt taaatcaaat gttcaaaaat acggagcagt 2820 gcctagtate tggagageag cactaceatt tattetttea tttatagttg ggaaagtttt 2880 tgacggtact aacaaagtgg tcgcaggaga ttttggaacg gctggtttaa atggcttcag 2940 gagacttcag ttttttgttt agctacatga ttgaatgcat aataaatgct ttgtgcttct 3000 gactatcaat acctaaagaa agtgcatcag tgaagagatg caagactttc aactgactgg 3060 caaaaagcaa getttagett gtettatagg atgettagtt tgeeactaca etteagaeca 3120 atgggacagt catagatggt gtgacagtgt ttaaacgcaa caaaaggcta catttccatg 3180 3240 gggccagcac tgtcatgagc ctcactaagc tattttgaag atttttaagc actgataaat taaaaaaaa aaattagact ccaccttaag tagtaaagta taacaggatt tctgtatact 3300 gtgcaatcag ttctttgaaa aaaaagtcaa aagatagaga atacaagaaa agtttttggg 3360 3420 atataatttg aatgactgtg aaaacatatg acctttgata acgaactcat ttgctcactc cttgacagca aagcccagta cgtacaattg tgttgggtgt gggtggtctc caaggccacg 3480

ctgctctctg aattgatttt ttgagttttg tttgtaagat gatcacagtc atgttacact 3540 gatctaaagg acatatatat aaccctttaa aaaaaaaatc actgcctcat tcttatttca 3600 agatgaattt ctatacagac tagatgtttt tctgaagatc aattagacat tttgaaaatg 3660 atttaaagtg ttttccttaa tgttctctga aaacaagttt cttttgtagt tttaaccaaa 3720 aaagtgccct ttttgtcact ggattctcct agcattcatg atttttttt catacaatga 3780 attaaaattg ctaaaatcat ggactggctt tctggttgga tttcaggtaa gatgtgttta 3840 aggccagagc ttttctcagt atttgatttt tttccccaat atttgatttt ttaaaaaatat 3900 acacataggt gctgcattta tatctgctgg tttaaattct gtcatatttc acttctagcc 3960 ttttagtatg gcaaatcata ttttactttt acttaagcat ttgtaatttg gagtatctgg 4020 tactagctaa gaaataattc tataattgag ttttgtactc accatatatg gatcattcct 4080 catgtataat gtgccccaaa tgcagcttca ttttccagat accttgacgc agaataaatt 4140 ttttcatcat ttaggtgcaa aaaaaaaa 4168

<210> 105

<211> 579

<212> PRT

<213> Homo sapiens

<400> 105

Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asp Leu Glu Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro 20 25 30 .

Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser 35 40 45

Trp Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His 50 55 60

Gly Lys Pro Ile Glu Val Glu His Ser Val Pro Lys Arg Gln Arg Ile 70 75 80

Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu Val $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Leu Asp Ser Leu Leu Val Gln Tyr Gly Val Val Glu Ser Cys Glu Gln
100 105 110

Val	Asn	Thr 115	Asp	Ser	Glu	Thr	Ala 120	Val	Val	Asn	Val	Thr 125	Tyr	Ser	Ser
Lys	Asp 130	Gln	Ala	Arg	Gln	Ala 135	Leu	Asp	Lys	Leu	Asn 140	Gly	Phe	Gln	Leu
Glu 145	Asn	Phe	Thr	Leu	Lys 150	Val	Ala	Tyr	Ile	Pro 155	Asp	Glu	Met	Ala	Ala 160
Gln	Gln	Asn	Pro	Leu 165	Gln	Gln	Pro	Arg	Gly 170	Arg	Arg	Gly	Leu	Gly 175	Gln
Arg	Gly	Ser	Ser 180	Arg	Gln	Gly	Ser	Pro 185	Gly	Ser	Val	Ser	Lys 190	Gln	Lys
Pro	Cys	Asp 195	Leu	Pro	Leu	Arg	Leu 200	Leu	Val	Pro	Thr	Gln 205	Phe	Val	Gly
Ala	Ile 210	Ile	Gly	Lys	Glu	Gly 215	Ala	Thr	Ile	Arg	Asn 220	Ile	Thr	Lys	Gln
Thr 225	Gln	Ser	Lys	Ile	Asp 230	Val	His	Arg	Lys	Glu 235	Asn	Ala	Gly	Ala	Ala 240
Glu	Lys	Ser	Ile	Thr 245	Ile	Leu	Ser	Thr	Pro 250	Glu	Gly	Thr	Ser	Ala 255	Ala
Cys	Lys	Ser	Ile 260	Leu	Glu	Ile	Met	His 265	Lys	Glu	Ala	Gln	Asp 270	Ile	Lys
Phe	Thr	Glu 275	Glu	Ile	Pro	Leu	Lys 280	Ile	Leu	Ala	His	Asn 285	Asn	Phe	Val
Gly	Arg 290	Leu	Ile	Gly	Lys	Glu 295	Gly	Arg	Asn	Leu	Lys 300	Lys	Ile	Glu	Gln
Asp 305	Thr	Asp	Thr	Lys	Ile 310	Thr	Ile	Ser	Pro	Leu 315	Gln	Glu	Leu	Thr	Leu 320
Tyr	Asn	Pro	Glu	Arg 325	Thr	Ile	Thr	Val	Lys 330	Gly	Asn	Val	Glu	Thr 335	Cys
Ala	Lys	Ala	Glu 340	Glu	Glu	Ile	Met	Lys 345	Lys	Ile	Arg	Glu	Ser 350	Tyr	Glu
Asn	Asp	Ile	Ala	Ser	Met	Asn	Leu	Gln	Ala	His	Leu	Ile	Pro	Gly	Leu

Asn Leu Asn Ala Leu Gly Leu Phe Pro Pro Thr Ser Gly Met Pro Pro

365

370 375 380

360

355

Pro Thr Ser Gly Pro Pro Ser Ala Met Thr Pro Pro Tyr Pro Gln Phe 385 390 395 400

Glu Gln Ser Glu Thr Glu Thr Val His Leu Phe Ile Pro Ala Leu Ser 405 410 415

Val Gly Ala Ile Ile Gly Lys Gln Gly Gln His Ile Lys Gln Leu Ser 420 425 430

Arg Phe Ala Gly Ala Ser Ile Lys Ile Ala Pro Ala Glu Ala Pro Asp 435 440 445

Ala Lys Val Arg Met Val Ile Ile Thr Gly Pro Pro Glu Ala Gln Phe 450 460

Lys Ala Gln Gly Arg Ile Tyr Gly Lys Ile Lys Glu Glu Asn Phe Val 465 470 475 480

Ser Pro Lys Glu Glu Val Lys Leu Glu Ala His Ile Arg Val Pro Ser 485 490 495

Phe Ala Ala Gly Arg Val Ile Gly Lys Gly Gly Lys Thr Val As
n Glu 500 505 510

Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr 515 520 525

Pro Asp Glu Asn Asp Gln Val Val Val Lys Ile Thr Gly His Phe Tyr 530 535 540

Ala Cys Gln Val Ala Gln Arg Lys Ile Gln Glu Ile Leu Thr Gln Val 545 550 555 560

Lys Gln His Gln Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser 565 570 575

Arg Arg Lys

<210> 106

<211> 3487 <212> DNA <213> Homo sapiens <220> <221> CDS (266)..(2512) <222> <400> 106 actgaaaqct ccqqtqccaq accccaccc cqqcccqqc ccqqqacccc ctccctccc 60 gggatccccc ggggttccca ccccqcccqc accqccqqqq acccqqccqq tccqqcqcqa 120 geocceptee ggggeeetgg cteggeeece aggttggagg ageeeggage cegeettegg 180 agctacggcc taacggcggc ggcgactgca gtctggaggg tccacacttg tqattctcaa 240 tggagagtga aaacgcagat tcata atg aaa act agc ccc cgt cgg cca ctg 292 Met Lys Thr Ser Pro Arg Arg Pro Leu att ctc aaa aga cgg agg ctg ccc ctt cct gtt caa aat gcc cca agt 340 Ile Leu Lys Arg Arg Leu Pro Leu Pro Val Gln Asn Ala Pro Ser gaa aca tca gag gag gaa cct aag aga tcc cct gcc caa cag gag tct 388 Glu Thr Ser Glu Glu Glu Pro Lys Arg Ser Pro Ala Gln Glu Ser aat caa gca gag gcc tcc aag gaa gtg gca gag tcc aac tct tgc aag 436 Asn Gln Ala Glu Ala Ser Lys Glu Val Ala Glu Ser Asn Ser Cys Lys 50 ttt cca gct ggg atc aag att att aac cac ccc acc atg ccc aac acg 484 Phe Pro Ala Gly Ile Lys Ile Ile Asn His Pro Thr Met Pro Asn Thr caa gta gtg gcc atc ccc aac aat gct aat att cac agc atc aca 532 Gln Val Val Ala Ile Pro Asn Asn Ala Asn Ile His Ser Ile Ile Thr gca ctg act gcc aag gga aaa gag agt ggc agt agt ggg ccc aac aaa 580 Ala Leu Thr Ala Lys Gly Lys Glu Ser Gly Ser Ser Gly Pro Asn Lys 100 ttc atc ctc atc agc tgt ggg gga gcc cca act cag cct cca gga ctc 628 Phe Ile Leu Ile Ser Cys Gly Gly Ala Pro Thr Gln Pro Pro Gly Leu 115 cgg cct caa acc caa acc agc tat gat gcc aaa agg aca gaa gtg acc 676 Arg Pro Gln Thr Gln Thr Ser Tyr Asp Ala Lys Arg Thr Glu Val Thr 130 ctg gag acc ttg gga cca aaa cct gca gct agg gat gtg aat ctt cct 724 Leu Glu Thr Leu Gly Pro Lys Pro Ala Ala Arg Asp Val Asn Leu Pro 145 aga cca cct gga gcc ctt tgc gag cag aaa cgg gag acc tgt gca gat 772 Arg Pro Pro Gly Ala Leu Cys Glu Gln Lys Arg Glu Thr Cys Ala Asp 155 160

					tgc Cys 175											820
					agt Ser											868
					aag Lys											916
aag Lys	gtt Val	gag Glu 220	gag Glu	cct Pro	tcg Ser	aga Arg	cca Pro 225	tca Ser	gcg Ala	tcc Ser	tgg Trp	cag Gln 230	aac Asn	tct Ser	gtg Val	964
					tac Tyr											1012
aac Asn 250	agc Ser	act Thr	gag Glu	agg Arg	aag Lys 255	cgc Arg	atg Met	act Thr	ttg Leu	aaa Lys 260	gac Asp	atc Ile	tat Tyr	acg Thr	tgg Trp 265	1060
					ccc Pro											1108
					cac His											1156
					ggc Gly											1204
gcc Ala	aac Asn 315	cgc Arg	tac Tyr	ttg Leu	aca Thr	ttg Leu 320	gac Asp	cag Gln	gtg Val	ttt Phe	aag Lys 325	cag Gln	cag Gln	aaa Lys	cga Arg	1252
ccg Pro 330	aat Asn	cca Pro	gag Glu	ctc Leu	cgc Arg 335	cgg Arg	aac Asn	atg Met	acc Thr	atc Ile 340	aaa Lys	acc Thr	gaa Glu	ctc Leu	ccc Pro 345	1300
ctg Leu	ggc Gly	gca Ala	cgg Arg	cgg Arg 350	aag Lys	atg Met	aag Lys	cca Pro	ctg Leu 355	cta Leu	cca Pro	cgg Arg	gtc Val	agc Ser 360	tca Ser	1348
tac Tyr	ctg Leu	gta Val	cct Pro 365	atc Ile	cag Gln	ttc Phe	ccg Pro	gtg Val 370	aac Asn	cag Gln	tca Ser	ctg Leu	gtg Val 375	ttg Leu	cag Gln	1396
ccc Pro	tcg Ser	gtg Val 380	aag Lys	gtg Val	cca Pro	ttg Leu	ccc Pro 385	ctg Leu	gcg Ala	gct Ala	tcc Ser	ctc Leu 390	atg Met	agc Ser	tca Ser	1444
gag Glu	ctt Leu 395	gcc Ala	cgc Arg	cat His	agc Ser	aag Lys 400	cga Arg	gtc Val	cgc Arg	att Ile	gcc Ala 405	ccc Pro	aag Lys	gtg Val	ctg Leu	1492

					ata Ile 415											1540
				_	ttt Phe		-					_			-	1588
_					gaa Glu											1636
					aaa Lys											1684
		_			ttc Phe			_							_	1732
_					acc Thr 495		_		_	_			_			1780
					tgt Cys											1828
					agc Ser											1876
					ccg Pro											1924
	_		_	_	gag Glu		_			_	_			_		1972
					tac Tyr 575											2020
		_	_	_	ctg Leu						_	_			_	2068
					gaa Glu					_			-		-	2116
		_	_		agc Ser		-				_		_		_	2164
					ctg Leu											2212
caa	agt	gct	ccc	ccc	ctt	gaa	tca	ccg	caa	agg	ctc	ctc	agt	tca	gaa	2260

Gln Ser Ala Pro Pro Leu Glu Ser Pro Gln Arg Leu Leu Ser Ser Glu 650 665	
ccc tta gac ctc atc tcc gtc ccc ttt ggc aac tct tct ccc tca gatPro Leu Asp Leu Ile Ser Val Pro Phe Gly Asn Ser Ser Pro Ser Asp670675	2308
ata gac gtc ccc aag cca ggc tcc ccg gag cca cag gtt tct ggc ctt Ile Asp Val Pro Lys Pro Gly Ser Pro Glu Pro Gln Val Ser Gly Leu 685 690 695	2356
gca gcc aat cgt tct ctg aca gaa ggc ctg gtc ctg gac aca atg aat Ala Ala Asn Arg Ser Leu Thr Glu Gly Leu Val Leu Asp Thr Met Asn 700 705 710	2404
gac agc ctc agc aag atc ctg ctg gac atc agc ttt cct ggc ctg gac Asp Ser Leu Ser Lys Ile Leu Leu Asp Ile Ser Phe Pro Gly Leu Asp 715 720 725	2452
gag gac cca ctg ggc cct gac aac atc aac tgg tcc cag ttt att cct Glu Asp Pro Leu Gly Pro Asp Asn Ile Asn Trp Ser Gln Phe Ile Pro 730 745	2500
gag cta cag tag agccctgccc ttgcccctgt gctcaagctg tccaccatcc Glu Leu Gln	2552
cgggcactcc aaggctcagt gcaccccaag cctctgagtg aggacagcag gcagggactg	2612
ttetgeteet catageteee tgetgeetga ttatgeaaaa gtageagtea caccetagee	2672
actgctggga ccttgtgttc cccaagagta tctgattcct ctgctgtccc tgccaggagc	2732
tgaagggtgg gaacaacaaa ggcaatggtg aaaagagatt aggaaccccc cagcctgttt	2792
ccattctctg cccagcagtc tcttaccttc cctgatcttt gcagggtggt ccgtgtaaat	2852
agtataaatt ctccaaatta tcctctaatt ataaatgtaa gcttatttcc ttagatcatt	2912
atccagagac tgccagaagg tgggtaggat gacctggggt ttcaattgac ttctgttcct	2972
tgcttttagt tttgatagaa gggaagacct gcagtgcacg gtttcttcca ggctgaggta	3032
cctggatctt gggttcttca ctgcagggac ccagacaagt ggatctgctt gccagagtcc	3092
tttttgcccc tccctgccac ctccccgtgt ttccaagtca gctttcctgc aagaagaaat	3152
cctggttaaa aaagtctttt gtattgggtc aggagttgaa tttggggtgg gaggatggat	3212
gcaactgaag cagagtgtgg gtgcccagat gtgcgctatt agatgtttct ctgataatgt	3272
ccccaatcat accagggaga ctggcattga cgagaactca ggtggaggct tgagaaggcc	3332
gaaagggccc ctgacctgcc tggcttcctt agcttgcccc tcagctttgc aaagagccac	3392
cctaggcccc agctgaccgc atgggtgtga gccagcttga gaacactaac tactcaataa	3452
aagcgaaggt ggacaaaaaa aaaaaaaaa aaaaa	3487

<210> 107

- <211> 748
- <212> PRT
- <213> Homo sapiens

<400> 107

- Met Lys Thr Ser Pro Arg Arg Pro Leu Ile Leu Lys Arg Arg Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$
- Pro Leu Pro Val Gln Asn Ala Pro Ser Glu Thr Ser Glu Glu Glu Pro 20 25 30
- Lys Arg Ser Pro Ala Gln Gln Glu Ser Asn Gln Ala Glu Ala Ser Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$
- Glu Val Ala Glu Ser Asn Ser Cys Lys Phe Pro Ala Gly Ile Lys Ile 50 60
- Ile Asn His Pro Thr Met Pro Asn Thr Gln Val Val Ala Ile Pro Asn 65 70 75 80
- Asn Ala Asn Ile His Ser Ile Ile Thr Ala Leu Thr Ala Lys Gly Lys 85 90 95
- Glu Ser Gly Ser Ser Gly Pro Asn Lys Phe Ile Leu Ile Ser Cys Gly
 100 105 110
- Gly Ala Pro Thr Gln Pro Pro Gly Leu Arg Pro Gln Thr Gln Thr Ser 115 120 125
- Tyr Asp Ala Lys Arg Thr Glu Val Thr Leu Glu Thr Leu Gly Pro Lys 130 135 140
- Pro Ala Ala Arg Asp Val Asn Leu Pro Arg Pro Pro Gly Ala Leu Cys 145 150 155 160
- Glu Gln Lys Arg Glu Thr Cys Ala Asp Gly Glu Ala Ala Gly Cys Thr 165 170 175
- Ile Asn Asn Ser Leu Ser Asn Ile Gln Trp Leu Arg Lys Met Ser Ser 180 185 190
- Asp Gly Leu Gly Ser Arg Ser Ile Lys Gln Glu Met Glu Glu Lys Glu 195 200 205
- Asn Cys His Leu Glu Gln Arg Gln Val Lys Val Glu Glu Pro Ser Arg 210 215 220

Pro 225	Ser	Ala	Ser	Trp	Gln 230	Asn	Ser	Val	Ser	Glu 235	Arg	Pro	Pro	Tyr	Ser 240
Tyr	Met	Ala	Met	Ile 245	Gln	Phe	Ala	Ile	Asn 250	Ser	Thr	Glu	Arg	Lys 255	Arg
Met	Thr	Leu	Lys 260	Asp	Ile	Tyr	Thr	Trp 265	Ile	Glu	Asp	His	Phe 270	Pro	Tyr
Phe	Lys	His 275	Ile	Ala	Lys	Pro	Gly 280	Trp	Lys	Asn	Ser	Ile 285	Arg	His	Asn
Leu	Ser 290	Leu	His	Asp	Met	Phe 295	Val	Arg	Glu	Thr	Ser 300	Ala	Asn	Gly	Lys
Val 305	Ser	Phe	Trp	Thr	Ile 310	His	Pro	Ser	Ala	Asn 315	Arg	Tyr	Leu	Thr	Leu 320
Asp	Gln	Val	Phe	Lys 325	Gln	Gln	Lys	Arg	Pro 330	Asn	Pro	Glu	Leu	Arg 335	Arg
Asn	Met	Thr	Ile 340	Lys	Thr	Glu	Leu	Pro 345	Leu	Gly	Ala	Arg	Arg 350	Lys	Met
Lys	Pro	Leu 355	Leu	Pro	Arg	Val	Ser 360	Ser	Tyr	Leu	Val	Pro 365	Ile	Gln	Phe
Pro	Val 370	Asn	Gln	Ser	Leu	Val 375	Leu	Gln	Pro	Ser	Val 380	Lys	Val	Pro	Leu
Pro 385	Leu	Ala	Ala	Ser	Leu 390	Met	Ser	Ser	Glu	Leu 395	Ala	Arg	His	Ser	Lys 400
Arg	Val	Arg	Ile	Ala 405	Pro	Lys	Val	Leu	Leu 410	Ala	Glu	Glu	Gly	Ile 415	Ala
Pro	Leu	Ser	Ser 420	Ala	Gly	Pro	Gly	Lys 425	Glu	Glu	Lys	Leu	Leu 430	Phe	Gly
Glu	Gly	Phe 435	Ser	Pro	Leu	Leu	Pro 440	Val	Gln	Thr	Ile	Lys 445	Glu	Glu	Glu
·Ile	Gln 450	Pro	Gly	Glu	Glu	Met 455	Pro	His	Leu	Ala	Arg 460	Pro	Ile	Lys	Val

Glu 465	Ser	Pro	Pro	Leu	Glu 470	Glu	Trp	Pro	Ser	Pro 475		Pro	Ser	Phe	Lys 480
Glu	Glu	Ser	Ser	His 485	Ser	Trp	Glu	Asp	Ser 490	Ser	Gln	Ser	Pro	Thr 495	Pro
Arg	Pro	Lys	Lys 500	Ser	Tyr	Ser	Gly	Leu 505	Arg	Ser	Pro	Thr	Arg 510	Cys	Val
Ser	Glu	Met 515	Leu	Val	Ile	Gln	His 520	Arg	Glu	Arg	Arg	Glu 525	Arg	Ser	Arg
Ser	Arg 530	Arg	Lys	Gln	His	Leu 535	Leu	Pro	Pro	Cys	Val 540	Asp	Glu	Pro	Glu
Leu 545	Leu	Phe	Ser	Glu	Gly 550	Pro	Ser	Thr	Ser	Arg 555	Trp	Ala	Ala	Glu	Leu 560
Pro	Phe	Pro	Ala	Asp 565	Ser	Ser	Asp	Pro	Ala 570	Ser	Gln	Leu	Ser	Tyr 575	Ser
Gln	Glu	Val	Gly 580	Gly	Pro	Phe	Lys	Thr 585	Pro	Ile	Lys	Glu	Thr 590	Leu	Pro
Ile	Ser	Ser 595	Thr	Pro	Ser	Lys	Ser 600	Val	Leu	Pro	Arg	Thr 605	Pro	Glu	Ser
Trp	Arg 610	Leu	Thr	Pro	Pro	Ala 615	Lys	Val	Gly	Gly	Leu 620	Asp	Phe	Ser	Pro
Val 625	Gln	Thr	Ser	Gln	Gly 630	Ala	Ser	Asp	Pro	Leu 635	Pro	Asp	Pro	Leu	Gly 640
Leu	Met	Asp	Leu	Ser 645	Thr	Thr	Pro	Leu	Gln 650	Ser	Ala	Pro	Pro	Leu 655	Glu
Ser	Pro	Gln	Arg 660	Leu	Leu	Ser	Ser	Glu 665	Pro	Leu	Asp	Leu	Ile 670	Ser	Val
Pro	Phe	Gly 675	Asn	Ser	Ser	Pro	Ser 680	Asp	Ile	Asp	Val	Pro 685	Lys	Pro	Gly
Ser	Pro 690	Glu	Pro	Gln	Val	Ser 695	Gly	Leu	Ala	Ala	Asn 700	Arg	Ser	Leu	Thr

```
Glu Gly Leu Val Leu Asp Thr Met Asn Asp Ser Leu Ser Lys Ile Leu
                   710
                                       715
Leu Asp Ile Ser Phe Pro Gly Leu Asp Glu Asp Pro Leu Gly Pro Asp
               725
                                   730
Asn Ile Asn Trp Ser Gln Phe Ile Pro Glu Leu Gln
          740
                               745
<210> 108
<211> 19
<212> DNA
<213> Artificial
<220>
<223> A target sequence for siRNA.
<400> 108
gcagcagaaa cgaccgaat
                                                                     19
<210> 109
<211>
      51
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for siRNA.
<400> 109
tcccgcagca gaaacgaccg aatttcaaga gaattcggtc gtttctgctg c
                                                                     51
<210> 110
<211>
      51
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for siRNA.
<400> 110
aaaagcagca gaaacgaccg aattctcttg aaattcggtc gtttctgctg c
                                                                     51
<210> 111
<211>
      47
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized hairpin siRNA sequence.
<400> 111
gcagcagaaa cgaccgaatt tcaagagaat tcggtcgttt ctgctgc
                                                                     47
```

```
<210>
      112
<211>
      2931
<212>
      DNA
<213>
      Homo sapiens
<220>
<221>
      CDS
<222>
      (146)..(751)
<400> 112
agggggagcg gagggaggtg tttctgtcag ttccggctgt ttgttcqqqa agtqqatccq
                                                                       60
ccgctgccgg agcagcccga agggagctgc ggatcgcgag gccagtaccg accccgcccg
                                                                      120
cccgcgcgca ccgccccgc ccgcc atg gcc cgg gac tac gac cac ctc ttc
                                                                      172
                            Met Ala Arg Asp Tyr Asp His Leu Phe
aag ctg ctc atc atc ggc gac agc ggt gtg ggc aag agc agt tta ctg
                                                                      220
Lys Leu Leu Ile Ile Gly Asp Ser Gly Val Gly Lys Ser Ser Leu Leu
ttg cgt ttt gca gac aac act ttc tca ggc agc tac atc acc acg atc
                                                                      268
Leu Arg Phe Ala Asp Asn Thr Phe Ser Gly Ser Tyr Ile Thr Thr Ile
                30
                                    35
gga gtg gat ttc aag atc cgg acc gtg gag atc aac ggg gag aag gtg
                                                                      316
Gly Val Asp Phe Lys Ile Arg Thr Val Glu Ile Asn Gly Glu Lys Val
            45
                                50
aag ctg cag atc tgg gac aca gcg ggg cag gag cgc ttc cgc acc atc
                                                                      364
Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Thr Ile
        60
acc tcc acg tat tat cgg ggg acc cac ggg gtc att gtg gtt tac gac
                                                                      412
Thr Ser Thr Tyr Tyr Arg Gly Thr His Gly Val Ile Val Val Tyr Asp
   75
                        80
gtc acc agt gcc gag tcc ttt gtc aac gtc aag cgg tgg ctt cac gaa
                                                                      460
Val Thr Ser Ala Glu Ser Phe Val Asn Val Lys Arg Trp Leu His Glu
                    95
                                         100
atc aac cag aac tgt gat gtt gtg tgc cga ata tta gtg ggt aat aag
                                                                      508
Ile Asn Gln Asn Cys Asp Asp Val Cys Arg Ile Leu Val Gly Asn Lys
                110
                                                         120
aat gac gac cct gag cgg aag gtg gtg gag acg gaa gat gcc tac aaa
                                                                      556
Asn Asp Asp Pro Glu Arg Lys Val Val Glu Thr Glu Asp Ala Tyr Lys
            125
                                130
ttc gcc ggg cag atg ggc atc cag ttg ttc gag acc agc gcc aag gag
                                                                      604
Phe Ala Gly Gln Met Gly Ile Gln Leu Phe Glu Thr Ser Ala Lys Glu
        140
aat gtc aac gtg gaa gag atg ttc aac tgc atc acg gag ctg gtc ctc
                                                                      652
Asn Val Asn Val Glu Glu Met Phe Asn Cys Ile Thr Glu Leu Val Leu
   155
                        160
```

cga gca aag aaa gac aac ctg gca aaa cag cag cag caa caa cag aac Arg Ala Lys Lys Asp Asn Leu Ala Lys Gln Gln Gln Gln Gln Asn 170 175 180	700
gat gtg gtg aag ctc acg aag aac agt aaa cga aag aaa cgc tgc tgc Asp Val Val Lys Leu Thr Lys Asn Ser Lys Arg Lys Lys Arg Cys Cys 190 195 200	748
taa tggcacccag tccactgcag agactgcact gcggtccctc ccccagcccg	801
aggcccacgg aggttcctcg ggggacagtc tcagtttcgt gccgttattt aaagaattct	861
ctccatgttt ttgtatcggg aggtgccatc ggcacttcct ccccgccct cctcgagtgc	921
caagaaggtg ttggaccagc ccgcccttcc ctactggtgc cccctcctcc ccggccaagg	981
cgcctggacc tggcgaggac gctgcccgcc gagcggactg attcgcagag tctgtacata	1041
gtgtatattg ctctacccgg ccgcacacca cgtcctgctc tggcttttgc cttcttgatg	1101
ccagcetget gcaacagace eteccegege ecetecceag eccatettae tgcaagcage	1161
gtcctgagga gacagcggca cgttctagct gcgtctgcgg ccagcccgtg ccagtggagt	1221
gggctccgcg ttgctcattc tctccgacag gttgtcagcc tctgtccccg ctgcacaggg	1281
tettgecect teteegggge etgtgecage tecetteeet eccegttgte etgteeceae	1341
agccattctg ggagctgggg aacctggtct caaggcaggc cctgcagttc cacagaggtg	1401
geaggtettg ecetttggee aacagattte ttgteetgee ttetagatge etetgagete	1461
caaacccagg gcagccatgg cttctcattt acaccaacag gtttcagttc caacagaaag	1521
gtcggggtag gttcgtgcag agatggggct ggcagggggg ctatgggagg attatttaa	1581
cagatcaaga aaatgaagcc aaatcaagtg aattaaattc ctcacaatta ttttctttcc	1641
ctgaggtttg attggcacag cagcaaaagt tgaggccacc ccacttgtgt ccactgtttt	1701
tagaaaaaaa tgaatggctt cctgccattg tggggctgga ctcttgggct ttcttggtgg	1761
gagcggagaa ggggcctccc acccttgtcc gagttgcctc ccactggagg tcaggagtct	1821
acactgcage ctcgggcact gtggggagtg catgcctggg gcctctgggt ggggaccatg	1881
gacaggccct ggtcactgtc ctaacctttg tcaggacaaa ggtagcaaga ggatttcctg	1941
gcgggtggga aggaatggct ggggcggcca gttttgacac gccccagtgc cctggagaac	2001
aaccagggtc atctgcactt gatgactgct ccccgacccc cagcccggac acctcattcc	2061
cctcccacta cagggatcaa gtgacctggg aagaaccgag tttaacacca ggatgtgttt	2121
ccttagattt cctttcctag gcgatttcca gggagagccc tgattggaca atcacatcac	2181
agatcacact gcagtttcca tgttagcact gtggatgggt ttttaatcaa taaaaactgg	2241
gggtttcttc tcaccgactc tccacttgcc caaactgcca aaagctggtg attctgggac	2301
aggeetteae tttggageea egggatgggg tgggggagee eeatgggeet gggaaggagg	2361

gtgctgtgga gggggctgca gggctgacca gcaggcagcc tcatctggtc gggggcgggg 2421 gcggcaggag cagaagcggg gtctccgtcc ttgggactgt cctggttggc cacgggccct 2481 gaggatgcac ggtgcctggg gctcctgtgc cggtgggcgg ggggcatgct ggcctctgag 2541 cgatcaggcg aggccagcga gggtgtgctt gcaaattcaa gcaataagag gggggttcct 2601 gggggcttcc agcccaggct agaagccccc atggcttctg gcagctggac atcagcccca 2661 ggtattgggg tgattttggt catgacagtg tgcctgtccc actgttacac gcatgaatgg 2721 gggttatggg gtgggggtgg ggactcaggg ctggaccgac gtcctagtgg acctgatgtg 2781 aaattootgt caaacaaaca ccacttttca atggtttgct aggagtattt ctgtattgaa 2841 agtttctaat tatgcttttt aaaaaaatac taaaaataaa ggttcaagct gccaaaaaaa 2901 aaaaaaaaa aaaaaaaaaa 2931

<210> 113

<211> 201

<212> PRT

<213> Homo sapiens

<400> 113

Met Ala Arg Asp Tyr Asp His Leu Phe Lys Leu Leu Ile Ile Gly Asp 1 5 10 15

Ser Gly Val Gly Lys Ser Ser Leu Leu Leu Arg Phe Ala Asp Asn Thr 20 25 30

Phe Ser Gly Ser Tyr Ile Thr Thr Ile Gly Val Asp Phe Lys Ile Arg 35 40 45

Thr Val Glu Ile Asn Gly Glu Lys Val Lys Leu Gln Ile Trp Asp Thr 50 55 60

Ala Gly Gln Glu Arg Phe Arg Thr Ile Thr Ser Thr Tyr Tyr Arg Gly 65 70 75 80

Thr His Gly Val Ile Val Val Tyr Asp Val Thr Ser Ala Glu Ser Phe 85 90 95

Val Asn Val Lys Arg Trp Leu His Glu Ile Asn Gln Asn Cys Asp Asp 100 105 110

Val Cys Arg Ile Leu Val Gly Asn Lys Asn Asp Asp Pro Glu Arg Lys 115 120 125

```
Val Val Glu Thr Glu Asp Ala Tyr Lys Phe Ala Gly Gln Met Gly Ile
    130
Gln Leu Phe Glu Thr Ser Ala Lys Glu Asn Val Asn Val Glu Glu Met
                                        155
Phe Asn Cys Ile Thr Glu Leu Val Leu Arg Ala Lys Lys Asp Asn Leu
                165
                                   170
Ala Lys Gln Gln Gln Gln Gln Asn Asp Val Val Lys Leu Thr Lys
            180
                               185
Asn Ser Lys Arg Lys Lys Arg Cys Cys
        195
<210> 114
<211> 19
<212> DNA
<213> Artificial
<220>
<223> A target sequence for siRNA.
<400> 114
gagatgttca actgcatca
                                                                     19
<210> 115
<211> 51
<212> DNA
<213> Artificial
<223> An artificially synthesized oligonucleotide sequence for siRNA.
<400> 115
tcccgagatg ttcaactgca tcattcaaga gatgatgcag ttgaacatct c
                                                                     51
<210> 116
<211> 51
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized oligonucleotide sequence for siRNA.
<400> 116
aaaagagatg ttcaactgca tcatctcttg aatgatgcag ttgaacatct c
                                                                     51
<210> 117
<211> 47
<212> DNA
```

<213> Artificial

```
<220>
<223> An artificially synthesized hairpin siRNA sequence.
gagatgttca actgcatcat tcaagagatg atgcagttga acatctc
                                                                      47
<210> 118
<211> 22
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 118
aaaaagggga tgcctagaac tc
                                                                      22
<210> 119
<211> 21
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 119
ctttcagcac gtcaaggaca t
                                                                      21
<210> 120
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 120
acacctacga aggtacacat gac
                                                                      23
<210> 121
<211> 23
<212> DNA
<213> Artificial
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 121
gctatttcag ggtaaatgga gtc
                                                                      23
<210> 122
<211>
      23
<212> DNA
<213> Artificial
```

```
<220>
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 122
cagagatgga ggatgtcaat aac
                                                                      23
<210> 123
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 123
catagcagct ttaaagagac acg
                                                                      23
<210> 124
<211> 21
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 124
ccaccataac agtggagtgg g
                                                                      21
<210> 125
<211> 24
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 125
cagttacagg tgtatgactg ggag
                                                                      24
<210> 126
<211> 23
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence for RT-PCR.
<400> 126
ctgaatacaa cttcctgttt gcc
                                                                      23
<210> 127
<211> 23
<212> DNA
<213> Artificial
<220>
```

<223> An artificially synthesized primer sequence for RT-PCR.

<400> 127 gaccacagaa ttaccaaaac tgc

23