

AND

	В	F
0	0	0
1	0	0
0	1	0
1	1	1
		9

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
A	В	F
0	0	1
1	0	0
0	1	0
1	1	0

	A	В	F
<i>></i> ~	0	0	1
<i>/</i>	1	0	0
OR	0	1	0
	1	1	0

	Inputs		Output
j	Α	В	F
	0	0	0
	0	1	1
2	1	0	1
	1	1	0

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

IC – Introdução a Computação

EXCLUSIVE OR

Demultiplexador (DMUX)

De-Multiplexador (DEMUX) efetua a função inversa a do multiplexador (MUX), ou seja, a de enviar informações contidas em um canal a vários canais de saída.

Senac

Circuitos Lógicos

Demultiplexadores (DMUX)

Circuito lógico que recebe uma única entrada e seleciona uma saída para transferir.

- O controle é feito por uma entrada de seleção.
- Por exemplo:
 - \diamond Seleção (S₁S₀) = 00, seleciona Saída = O₀ = D, O₁ = O₂ = O₃ = 0
 - ❖ Seleção (S_1S_0) = 01, seleciona Saída = O_1 = D, O_0 = O_2 = O_3 = 0
 - ❖ Seleção (S_1S_0) = 10, seleciona Saída = O_2 = D, O_0 = O_1 = O_3 = 0

Em geral para 2ⁿ saídas, existem n varáveis de seleção.

Aplicações:

- Em roteamento de dados
- Geração de Funções lógicas combinacionais.

Demultiplexador 1x2 (DMUX)

O mais simples de todos

Quais são suas características?

- Quantidade de entradas = 1
- Quantidade de saídas = 2
- ❖ Bits de seleção = 1

Tabela Verdade

D	S	S ₀	S ₁
0	0	D = 0	0
0	1	0	D = 0
1	0	D = 1	0
1	1	0	D = 1

Tabela de Funcionamento

S	O_0	O ₁
0	D	0
1	0	D

Representação Gráfica:

Nosso Circuito

$$O_0 = S'D$$

$$O_1 = SD$$

Demultiplexador 1x4 (DMUX)

Um pouco mais complexo

Quais são suas características?

- Quantidade de entradas = 1
- Quantidade de saídas = 4
- ❖ Bits de seleção = 2

Representação Gráfica:

Tabela de Funcionamento

Sele	ção	Saida			
S ₁	S ₀	O_0	01	02	O ₃
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

Nosso Circuito

$$O_0 = D(S_1'S_0')$$

 $O_1 = D(S_1'S_0)$

$$O_2 = D(S_1S_0')$$

$$O_3 = D(S_1S_0)$$

Demultiplexador 1x8 (DMUX)

Um pouco mais complexo

Quais são suas características?

- Quantidade de entradas = 1
- Quantidade de saídas = 8
- ❖ Bits de seleção = 3

Tabela de Funcionamento

	Seleção)				Sai	ida			
S ₂	S ₁	S ₀	O ₀	O ₁	02	O ₃	O ₄	O ₅	O ₆	O ₇
0	0	0	D	0	0	0	0	0	0	0
0	0	1	0	D	0	0	0	0	0	0
0	1	0	0	0	D	0	0	0	0	0
0	1	1	0	0	0	D	0	0	0	0
1	0	0	0	0	0	0	D	0	0	0
1	0	1	0	0	0	0	0	D	0	0
1	1	0	0	0	0	0	0	0	D	0
1	1	1	0	0	0	0	0	0	0	D

Representação Gráfica:

Demultiplexador 1x8 (DMUX)

Um pouco mais complexo

Quais são suas características?

- Quantidade de entradas = 1
- Quantidade de saídas = 8
- ❖ Bits de seleção = 3

Representação Gráfica:

Nosso Circuito

$$O_0 = D(S_2'S_1'S_0')$$

$$O_1 = D(S_2'S_1'S_0)$$

$$O_2 = D(S_2'S_1S_0')$$

$$O_3 = D(S_2'S_1S_0)$$

$$O_4 = D(S_2S_1'S_0')$$

$$O_5 = D(S_2S_1'S_0)$$

$$O_6 = D(S_2S_1S_0')$$

$$O_7 = D(S_2S_1S_0)$$

Associação em Série de Multiplexadores

Os mux e demux são modulares, isto é, permitem associações que aumentam o número de canais.

Quando se necessita de um MUX com uma quantidade de canais de entrada maior do que os encontrados comercialmente em um circuito integrado, ou quando é necessário multiplexar mais de um canal de saída simultaneamente, basta fazer a associação conveniente de vários multiplexadores de forma a ampliar o número de canais de entrada ou o número de canais de saída.

Esta associação é uma forma de se ampliar a capacidade dos canais de entrada, e para tal, basta multiplexar as saídas de mais de um MUX de entrada através de um MUX de saída.

Associação em Série de Multiplexadores

Vamos a um exemplo:

Obter um MUX de 16 entradas utilizando apenas circuitos MUX de 4 entradas.

Associação em Paralelo de Multiplexadores

Esta associação é importante quando se necessita selecionar informações digitais de vários bits simultaneamente.

Para isto, basta utilizar um MUX com um número de canais de entrada igual ao número de informações a serem multiplexadas sendo o número de MUX's igual ao número de bits destas informações;

Vamos olhar o exemplo a seguir:

A saída será composta por uma palavra de 3 bits.

Para isso, as 4 entradas de dados diferentes (E1, E2, E3 e E4), de 3 bits cada, será multiplexada para a saída dependendo das duas variáveis de seleção (A e B).

Senac

Circuitos Lógicos

Vamos construir um Multiplexador 4x1 utilizando apenas o multiplexador 2x1

$$S_1 = 0 e S_0 = 0$$
 F = A

$$S_1 = 0 e S_0 = 1$$
 F = C

$$S_1 = 1 e S_0 = 0$$
 F = B

$$S_1 = 1 e S_0 = 1 F = D$$

Tabela de Funcionamento

Entra	Saída	
S ₁	S ₀	F
0	0	Α
0	1	С
1	0	В
1	1	D

Associação em Série de Demultiplexadores

Esta associação é utilizada para a ampliação da capacidade de canais de saída, bastando ligar os DEMUX's de saída em um DEMUX de entrada.

Vamos ver um Exemplo:

Construiu-se um DEMUX de 16 saídas utilizando apenas circuitos DEMUX de 4 saídas.

Para isto, basta utilizar 4 DEMUX's de saída demultiplexando 1 DEMUX de entrada.

Associação em Paralelo de Demultiplexadores

Esta associação é utilizada para a ampliação do número de canais de saída, quando se necessita demultiplexar informações digitais de vários bits simultaneamente.

Vamos a um exemplo:

Temos uma informação composta por 3 bits (E1, E2, E3) para ser demultiplexada a uma das 4 saídas dos 3 DEMUX. Temos duas variáveis de seleção (A e B) e as entradas de cada DEMUX representam o dado solicitado.

Senac

Circuitos Lógicos

Vamos construir um Demultiplexador 1x4 utilizando apenas o Demux 1x2

$$S_1 = 0 e S_0 = 0$$
 A = D, B=C=D=0

$$S_1 = 0 e S_0 = 1$$
 B = D, A=C=D=0

$$S_1 = 1 e S_0 = 0$$
 $C = D, A=B=D=0$

$$S_1 = 1 e S_0 = 1 D = D, A=B=C=0$$

Tabela de Funcionamento

Sele	eção	Saida					
S ₁	S ₀	Α	A B C				
0	0	D	0	0	0		
0	1	0	D	0	0		
1	0	0	0	D	0		
1	1	0	0	0	D		

Definições

- Componente que pode executar qualquer uma das várias operações aritméticas (Somar, subtrair, incremento, etc) e lógicas (AND, OR, etc);
- As operações são realizadas com base nas entradas de controle do componente.
- > A operação a ser realizada é selecionada por bits externos.

Sel(n bits)

ALU

N
S

Se minha ALU tem $\frac{3}{5}$ bits = 2^{3} = 8 operações

Se minha ALU tem $\frac{4 \text{ bits}}{2} = 2^4 = 16 \text{ operações}$

Quantidade de operações é definida por 2ⁿ

Projeto de uma ALU

- Usar componentes em separado para cada operação, e multiplexador para selecionar o resultado da operação para saída.
- > Exemplo de um projeto de ALU com a sua tabela de funcionamento.

Exemplo de operações Bit-Wise (bit-a-bit)

Α	1	0	1	0
В	1	1	1	0
AND	1	0	1	0
OR	1	1	1	0
XOR	0	1	0	0

Projeto de uma ALU

Senac

Lista de Exercícios 6

Exercícios Multiplexadores:

- 1) Projete o multiplexador 32x1 utilizando apenas MUX 8x1
- 2) Projete o multiplexador 8x1 utilizando apenas MUX 4X1

Exercícios Demultiplexadores:

- 1) Projete o demultiplexador 1x32 utilizando apenas DEMUX 1x8
- 2) Projete o demultiplexador 1x8 utilizando apenas DEMUX 1x2

ATÉ A PRÓXIMA AULA!

Bibliografia

TOCCI, R.; WIDMER, N.; MOSS, G. Sistemas Digitais – Princípios e Aplicações. [S.I.]: Pearson Education Limited, 2011.

FEDELI, Ricardo Daniel. Introdução à ciência da computação / Ricardo Daniel Fedeli, Erico Giulio Franco Polloni, Fernando Eduardo Peres. – 2. ed. – São Paulo: Cengage Learning, 2011.

TANENBAUM, Andrew S.. Organização Estruturada de Computadores. 6º Edição. São Paulo, Pearson Prentice Hall, 2013.

