64111	-	16.41	-		1.8
MUL		IJΫ		U	IA

DENI	DNO		
	DENT	DENT ID NO	

MULTIMEDIA UNIVERSITY SUPPLEMENTARY EXAMINATION

TRIMESTER 1, 2015/2016

PCM0035 - GENERAL CHEMISTRY

(All sections / Groups)

17 NOV 2015 9.00 AM – 11.00 AM (2 HOURS)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 3 pages only excluding the cover page.
- 2. Attempt ALL questions. Distribution of the marks for each question is given.
- 3. Please write all your answers in the answer booklet provided.

QUESTION 1 [20 MARKS]

- a) Answer the following.
 - i) Draw the Lewis symbols for Mg^{2+} and P^{3-} .

[1 mark]

- ii) Draw the Lewis structures and state the total number of valence electrons for the compounds of dihydrogen dioxide (H₂O₂) and hydroxidooxidonitrogen (HNO₂). [4 marks]
- b) Among the exceptions to the octet rule are the odd-electron molecule and the expanded octet. For each exception, provide a specific example of a molecule. Draw the Lewis structure for each specific example and explain why it does not follow the octet rule.

 [4 marks]
- c) Given that the energy of a photon emitted by a hydrogen atom is -4.905×10^{-20} J. [$R_H = 2.18 \times 10^{-18}$ J; $h = 6.63 \times 10^{-34}$ J.s; $c = 3.00 \times 10^8$ m/s]
 - i) Find the wavelength of the photon emitted by the hydrogen atom. [2 marks]
 - ii) Determine the initial state (n_i) of the electron from the hydrogen atom, if it moves to a final state of n = 4. [3 marks]
- d) Write the quantum number values of n, l and m_l for 2p-orbitals.

[1 mark]

e) Which of the following species has the largest size and which has the smallest size. Justify your answer.

[2 marks]

f) Write the *electron configurations* for the elements given below and determine the group in the periodic table that each element belongs to.

i) Element with atomic number = 14

[1 mark]

ii) Element with atomic number = 6

[1 mark] [1 mark]

iii) Element with atomic number = 20

QUESTION 2 [20 MARKS]

a) The following molecules have different boiling points and viscosity. Predict which one has higher boiling point and larger viscosity. Explain your answer.

(i)	1-propanol	H ₃ C CH ₃		
		Methoxyethane		
(ii)	HC1	HF		

[4 marks]

b) Figure 1 shows a phase diagram of carbon dioxide.

i) Name point E.

[1 mark]

ii) Predict the most stable physical state at point D.

[0.5 mark]

iii) What happens if temperature is decreased from point z to point y. [0.5 mark]

[0.5 mark]

iv) How does this diagram differ from phase diagram of water?

[1 mark]

Continued...

Figure 1

- c) For the reaction: $C + D \longrightarrow E$, the rate equation is given by: Rate = $k [C]^2 [D]$. Answer the questions below:
 - What is the overall order of reaction.

[1 mark]

ii) Find the unit for the rate constant, k.

[2 marks]

iii) What will happen to the rate if the concentration of A is doubled.

[1 mark] [1 mark]

- iv) What will happen to the rate if the concentration of B is halved.
- v) What will happen to the rate if the concentration of A is doubled and the concentration of B is halved, assuming all changes take place at constant temperature? [1 mark]
- d) Consider the following reaction at a particular temperature:

$$NO_2(g) + N_2O(g) \iff 3 NO(g)$$

Given that the equilibrium concentrations are $[NO_2] = 2.50 \text{ M}$, $[N_2O] = 3.60 \text{ M}$ and [NO] = 0.003 M

What is the value of the equilibrium constant, K_c ?

[2 marks]

- ii) If [NO] is removed from the system at equilibrium, which direction will the reaction shift? [1 mark]
- e) The following data were measured for the reaction,

$$\mathrm{CH_4}\left(g\right) \ + \ 2\ \mathrm{O_2}\left(g\right) \ o \ \mathrm{CO_2}\left(g\right) \ + \ 2\ \mathrm{H_2O}\left(g\right)$$

Experiment	[CH ₄]	$[O_2]$	Initial Rate (M/s)	
A	0.25	0.24	0.2130	
В	0.25	0.12	0.1065	
С	0.36	0.10	0.1192	
D	0.18	0.10	0.0596	

Find the rate law for the reaction.

[3 marks]

ii) Determine the overall order of the reaction?

[1 mark]

Continued...

QUESTION 3 [20 MARKS]

a) For the reaction below, indicate the Brønsted-Lowry acid and conjugate base.

$$HCO_3^-(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq) + OH^-(aq)$$

[2 marks]

b) Determine the concentration of OH⁻ ion at 25 °C for each solution below and determine whether it is acidic, basic or neutral.

i)
$$[H^+] = 7.5 \times 10^{-5} M$$

[2 marks]

ii)
$$[H^+] = 1.0 \times 10^{-7} \text{ M}$$

[2 marks]

- c) Calculate how many grams of NaOH is needed to prepare a 0.52 L solution with pH 7.5. [Atomic mass: Na = 23; O = 16; H = 1] [3 marks]
- d) Automobile batteries use 3.00 M of H₂SO₄ as an electrolyte. How many liters of 1.20 M of NaOH will be needed to neutralize 2225 mL of automobile battery acid? The balanced chemical equation for the neutralization process is given below:

$$H_2SO_4(aq) + 2 NaOH(aq) \rightarrow 2 H_2O(l) + Na_2SO_4(aq)$$

[4 marks]

- e) A metal, X reacts with bromine to form XBr₃. Continuous electrolysis of XBr₃ by a steady current of 5.62 A for half an hour deposits 3.25 g of the metal, X. Calculate the molar mass of the metal, X. [Faraday constant = 96 500 C/mol e⁻] [3 marks]
- f) Based on their electronegativity and/or molecular structure, pick which acid is stronger and give reasons.

i) HF or HI

[2 marks]

ii) HClO or HClO₃

[2 marks]

End of Paper