This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

C03C 13/00, 13/02, 25/06

A2

(11) International Publication Number: WO 89/12032

(43) International Publication Date: 14 December 1989 (14.12.89)

US

(21) International Application Number: PCT/US89/02288 (81) Designated pean pat

1 June 1988 (01.06.88)

(22) International Filing Date: 25 May 1989 (25.05.89)

(71) Applicant: MANVILLE SALES CORPORATION [US/

US]; Manville Plaza, 5th Floor, P.O. Box 5108, Denver, CO 80217 (US).

(72) Inventors: OLDS, Leonard, Elmo; 977 South Lake Gulch Road, Castle Rock, CO 80104 (US). KIELMEYER, William, Henry; 3374 West Chenango Avenue, Englewood, CO 80110 (US).

(74) Agent: SCHRAMM, William, J.; Brooks & Kushman, 2000 Town Center, Suite 2000, Southfield, MI 48075 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), BR, CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KP, KR, LU (European patent), NL (European patent), NO, SE (European patent).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PROCESS FOR DECOMPOSING AN INORGANIC FIBER

(57) Abstract

(30) Priority data: 201,513

Inorganic fibers which have a silicon extraction of greater than 0.02 wt% Si/day in physiological saline solutions. The fiber contains SiO₂, MgO, CaO, and at least one of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof. Also disclosed are inorganic fibers which have diameters of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	Fi	Finland	MŁ	Mali
ΑU	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Fasso	HU	Hungary	NO	Norway
BG	Bulgaria	π	Italy	RO	Romania
BJ	Benin	JP	Japan ~	SD	Sudan
BR	Brazil	KP	Democratic People's Republic	SE	Sweden
CF	Central African Republic		of Korea	SN	Senegal .
CG	Congo	KR	Republic of Korea	SU	Soviet Union
CH	Switzerland	ш	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Togo
DE	Germany, Federal Republic of	w	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar	•	

10

15

20

25

30

PROCESS FOR DECOMPOSING AN INORGANIC FIBER

FIELD OF INVENTION

This invention relates to inorganic fiber compositions and more particularly it relates to inorganic fiber compositions which can contain silica, magnesia, calcium oxide, alumina, and other oxides. Some of the inventive fibers have excellent fire ratings, some have especially low durabilities in physiological saline solutions, and some have combinations of these foregoing properties.

BACKGROUND OF THE INVENTION

For many years, inorganic fibers generically referred to in the industry as "mineral wool fibers", made from slag, rock, fly ash, and other by-product raw materials have been manufactured. These fibers have been typically manufactured by melting the slag, rock, etc., containing such oxides as silica, alumina, iron oxide (ferrous and ferric), calcium oxide, and magnesia; allowing the molten material to be blown by gas or steam or to impinge on rotors at high speeds; and causing the resulting blown or spun fibers to be accumulated on a collecting surface. These fibers are then used in bulk or in the form of mates, blankets, and the like as both low and high temperature insulation. U.S. Patent No. 2,576,312 discloses a conventional mineral wool composition and method for making the same.

In the past, the industry has well recognized the standard drawbacks associated with conventional mineral wool fibers. Conventional mineral wool fibers may have high contents of undesired oxides which often

10

15

20

25

30

detract from their refractory properties. The conventional mineral wools are coarse, i.e. they have average fiber diameters of 4 to 5 microns (measured microscopically) and have high shot contents in the range of 30 to 50 weight percent. The coarseness of the fiber reduces the insulating value of the fiber and makes conventional mineral wool unpleasant to handle and unfriendly to the For example, because of their coarse fiber diameters, conventional mineral wool blankets must have bulk densities of from 4 to 8 pcf and even higher in order to pass the ASTM E-119 two hour fire test. On the other hand, fiber glass blankets are often made with bulk densities of 2 pcf or lower. While the fiber glass blankets are friendly because of their low bulk densities and relatively fine fiber diameter, they do not have sufficient fire resistance so as to pass even the one hour ASTM E-119 fire test.

Recently, another potential problem with traditional mineral wool and other types of fiber has been recognized. It is well known that inhalation of certain types of fiber can lead to elevated incidence of respiratory disease, including cancers of the lung and surrounding body tissue. Several occurrences are welldocumented in humans for several types of asbestos Although for other varieties of natural and manmade mineral fiber direct and unequivocal evidence for respiratory disease is lacking, the potential for such occurrence has been inferred from results of tests on laboratory animals. In the absence or insufficiency of direct human epidemiological data, results from fiber inhalation or implantation studies on animals provides the best "baseline information" from which to extrapolate disease potential.

10

15

Chronic toxicological studies on animals have, however, been able to statistically demonstrate the importance of three key factors that relate directly to the potential for respiratory disease and especially carcinoma: (a) dose of fiber received (including time of exposure); (b) dimension of the inhaled fiber; and (c) persistence of the fiber within the lung. of dose and dimension have been well-characterized from such studies and as a result are fairly well known in regard to human disease potential. The dose is obviously a product of the environment in which the fiber is used and the manner in which it is used. The dimension and persistence of the fiber within the lung, on the other hand, are functions of the manner in which the fiber is formed and of its chemical composition. general, the smaller the fiber the more likely that it will become embedded in lung tissue when inhaled, thus increasing the danger of respiratory disease.

Although less is known about the link between 20 persistence of the fiber within the lung and respiratory disease, increasing attention is being focused on this aspect of the health issue. Biological persistence refers to the length of time a fiber endures as an entity within the body. The physiochemical concept that most closely relates to persistence and is perhaps more 25 easily quantified is that of "durability" - specifically, the chemical solubility (or resistance to solubility) of fibers in body fluids and the tendency of such fibers to maintain physical integrity within such an In general, the less durable a fiber is, 30 environment. the less will be the potential health risk associated with the inhalation of that fiber. One method of measuring the chemical durability of a fiber in body fluids is to measure its durability in physiological

Ł

20

25

saline solutions. This can be done by quantifying the rate of extraction of a chemical component of the fiber such as silicon into the physiological saline solution over a certain period of time.

5 Thus, as can be easily concluded from the foregoing discussion, conventional mineral wool fibers have several serious drawbacks. However, even the alternatives to mineral wools have problems. example, as mentioned earlier glass fibers have a fire 10 resistance problem and whereas the refractory ceramic fibers have been gaining increasing use in recent years as an alternative to mineral wool fibers because of their ultra-high temperature resistance and superior ability to pass all fire rating tests, their use is limited by the fact that they are relatively expensive 15 and have a relatively high chemical durability in physiological saline solutions as well.

In conclusion, there is a great need in the industry for low cost, friendly feeling low bulk density inorganic fibers which have good fire resistance properties as measured by their ability to pass the ASTM E-119 two hour fire test. Additionally, there is a tremendous demand for fibers which have especially low durabilities in physiological saline solutions. What would be particularly advantageous to the industry would be fibers with combinations of the above mentioned sought after properties. Also, advantageous would be fibers which also have excellent refractory properties as well, e.g. high continuous service temperatures.

5.

30

SUMMARY OF THE INVENTION

In one embodiment of the present invention, there are provided inorganic fibers having a silicon extraction of greater than about 0.02 wt% Si/day in physiological saline solutions and a composition consisting essentially of about 0-10 wt% of either Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof; 35-70 wt% SiO₂; 0-50 wt% MgO; and CaO.

In another embodiment of the present invention, there are provided inorganic fibers which have a
5 hour silicon extraction in physiological saline
solutions of at least about 10 ppm. These fibers can
broadly have compositions consisting essentially of the
following ingredients at the indicated weight percentage
levels:

0-1.5 wt% of either Al_3O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 40-70 wt% SiO_2 ; 0-50 wt% MgO; and CaO

1.5-3 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 40-66 wt% SiO_2 ; 0-50 wt% MgO; and CaO

3-4 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 40-64 wt% SiO_2 ; 0-50 wt% MgO; and CaO

25 4-6 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 40-59 wt% SiO_2 ; 0-25 wt% MgO; and CaO

6-8 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 35-54 wt% SiO_2 ; 0-25 wt% MgO; and CaO

8-10 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 35-45 wt% SiO_2 ; 0-20 wt% MgO; and CaO

25

In a preferred embodiment, inventive fibers with 5 hour silicon extractions of greater than about 20 ppm and most preferably greater than about 50 ppm are provided.

5 In another embodiment of the present invention there are provided inorganic fibers having a diameter of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf and having a composition consisting essentially of 10 0-10 wt% of either Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof; 58-70 wt% SiO_2 ; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO and wherein the amount of alumina + zirconia is less than 6 wt% and the amount of iron oxides or alumina + iron oxides is 15 less than 2 wt%. Preferably, the inventive fibers in this embodiment may have compositions consisting essentially of about:

0-1.5 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 58.5-70 wt% SiO_2 ; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

greater than 1.5 wt% up to and including 3 wt% of either $A1_2O_3$, ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 58.5-66 wt% SiO_2 ; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

greater than 3 wt% up to and including 4 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 58-63 wt% SiO_2 ; 0-8 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

greater than 4 wt% up to and including 6 wt% of either Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof; 58-59 wt% SiO₂; 0-7 wt% MgO; 0-2% alkali metal oxides; and CaO.

10

As discussed herein earlier, there has been a demand in the industry for inorganic fibers with an excellent fire rating at low bulk densities and fibers with especially low chemical durabilities in physiological saline solutions. Therefore, each category of inventive fibers should fulfill a real need in the industry and should be available for applications where heretofore low cost, mineral wool type fibers have not been available. What is particularly advantageous about the present invention is the fact that fibers are provided where a special demand exists, i.e. applications in the industry where fibers with both an excellent fire rating and an especially low durability in physiological saline solutions are in demand.

Other features and aspects, as well as the various benefits and advantages, of the present invention will be made clear in the more detailed description which follows.

DETAILED DESCRIPTION OF THE INVENTION

The inventive fiber compositions of the present invention can be made from either pure metal oxides or less pure raw materials which contain the desired metal oxides. Table 1 herein gives an analysis of some of the various raw materials which can be used to make inventive fiber compositions. Physical variables of the raw materials such as particle size may be chosen on the basis of cost, handleability, and similar considerations.

Except for melting, the inventive fibers are formed in conventional inorganic fiber forming equipment

and by using standard inorganic fiber forming techniques as known to those skilled in the art. Preferably, production will entail electric furnace melting rather than cupola melting since electric melting keeps molten oxides of either pure or less pure raw materials more fully oxidized thereby producing longer fibers and stronger products. The various pure oxides or less pure raw materials are granulated to a size commonly used for electric melting or they may be purchased already so granulated.

5

10

15

25

30

The granulated raw materials are then mixed together and fed to an electric furnace where they are melted by electric resistance melting with electrodes preferably positioned according to the teachings of U.S. Patent No. 4,351,054. Melt formation can be either continuous or batchwise although the former is preferred. The molten mixture of oxides is then fiberized as disclosed in U.S. Patent No. 4,238,213.

While the fiberization techniques taught in U.S. 4,238,213 are preferred for making the inventive fibers, other conventional methods may be employed such as sol-gel processes and extrusion through holes in precious metal alloy baskets.

The fibers so formed will have lengths in the range of from about 0.5 to 20 cm and diameters in the range of from about 0.05 to 10 microns with the average fiber diameter being in the range of about 1.5 to 3.5 microns. Table 2 shows the average fiber diameter (measured microscopically) and the unfiberized shot content of various inventive fibers. As may be seen, the average microscopic fiber diameter was 2.3 microns and the average unfiberized shot content was 27%.

20

25

30

For purposes of comparison, conventional mineral wool fibers were also tested with the results being given in Table 2 as numbers 226 and 229. These conventional fibers averaged 4.7 microns (measured microscopically) in diameter and had an average 40 wt% shot content. The continuous service temperature ranged from 1370°F to 1490°F, averaging 1420°F.

Table 3 contains an extensive chemical analysis of a number of inventive fibers. Because of the large number of fiber samples containing alumina additives made to the base calcium oxide/magnesia/silica system, only the average analysis of the minor constituent of these fibers are given in Table 3. The silica, alumina, magnesia, and calcium oxide contents for these fibers are given in Table 4.

As used herein, the "service temperature" of an inorganic fiber is determined by two parameters. The first is the obvious condition that the fiber must not soften or sinter at the temperature specified. this criterion which precludes the use of glass fibers at temperatures about 800°F to 1000°F (425° to 540°C). Additionally, a felt or blanket made from the fibers must not have excessive shrinkage when soaking at its service temperature. "Excess shrinkage" is usually defined to be a maximum of 5% linear or bulk shrinkage after prolonged exposure (usually for 24 hours) at the service temperature. Shrinkage of mats or blankets used as furnace liners and the like is of course a critical feature, for when the mats or blankets shrink they open fissures between them through which the heat can flow, thus defeating the purpose of the insulation. fiber rated as a "1500°F (815°C) fiber" would be defined

as one which does not soften or sinter and which has acceptable shrinkage at that temperature, but which begins to suffer in one or more of the standard parameters at temperatures above 1500°F (815°C).

5 The service temperatures for a representative number of fibers in the inventive compositional range are listed in Table 2. The continuous service temperature for constant silica/magnesia/calcium oxide ratios are given in Table 6. As may be seen in all cases, the lower the alumina content of the fiber, the higher the 10 service temperature will be, with the highest service temperature being at zero percent alumina for alumina contents less than 30%. Thus to attain the most desired properties of the inventive fiber it is not possible to 15. accept any of the alumina contents resulting from melting the traditional mineral wool raw materials. Rather, various amounts of sufficiently pure oxides will be required to dilute the alumina contents to the desired low levels. To attain fibers of the highest service temperatures, only pure raw materials with 20 essentially no significant amounts of alumina must be used.

A series of inventive fibers were also tested for their silicon extraction in a saline solution according to the following procedure:

A buffered model physiological saline solution was prepared by adding to 6 liters of distilled water the following ingredients at the indicated concentrations:

 $\frac{\text{Ingredient}}{\text{MgCl}_26\text{H}_20} \qquad \frac{\text{Concentration, g/1}}{\text{0.160}}$ $\text{NaC1} \qquad \qquad \text{6.171}$

-11-

KC1	0.311
Na ₂ HPO ₄	0.149
Na ₂ SO ₄	0.079
CaC1 ₂ 2H ₂ O	0.060
NaHCO ₃	1.942
$NaC_2H_3O_2$	1.066

Before testing, this solution was buffered to a pH of 7.6 by bubbling with a gaseous mixture of 5% $\rm CO_2/95\%N_2$.

10 One half (1/2) gram of each sample of fiber listed in Table 3 was then placed into separate closed, plastic bottles along with 50 cc of the prepared physiological saline solution and put into an ultrasonic bath for 5 hours. The ultrasonic vibration application was 15 adjusted to give a temperature of 104°F at the end of the 5 hour period. At the end of the test period, the saline solution was filtered and the solution chemically analyzed for silicon content. The silicon concentration in the saline solution was taken to be a measure of the 20 amount of fiber which solubilized during the 5 hour test The CaO and MgO contents of the fiber were period. similarly solubilized.

One of the inventive fibers was tested for silicon extraction in a physiological saline solution for periods of up to 6 months. Results were as follows:

Comments On Fiber Residue After 6 Months carbonate hydroxyl apatite fiber, disintegrated into small particles	slight fine grained fibers with uniform corrosion	no fiber corrosion; some surface deposition
Total Amphoteric Oxides in Fiber 1.0%	% o •	25.6%
Steady State Silicon Extraction Rate For 0.20 m ² /g Surface Area, % Si/day 0.16%	0.013%	0.012%
Silicon Extraction in 6 Months 96%	ю %	4. %
Fiber <u>Number</u> 29 (inventive)	137 (non- inventive)	235 (non- inventive)

10

15

20

25

Categorization of oxides melts according to scales of acidity or basicity has been well known for (See "A Scale of Acidity and Basicity in many years. Glass," Glass Industry, February 1948, pp 73-74.) have now found that by strictly controlling the compositions of the oxide melts according to the acidic or basicity behavior of the respective oxides, fibers can be made which are surprisingly soluble in saline solu-Increasing the content of silica, alumina, and the amphoteric oxides in the fiber increases the acid ratio of the fiber composition. This tends to stabilize the system against silicon extraction by weak solutions as a result of relative changes in the interatomic bonding forces and extension of the silica network. Other amphoteric oxides besides alumina will have an alumina equivalency with respect to extraction by saline solutions. The amphoteric oxides zirconia and titania appear to have an alumina equivalency of close to 1 to We have found that in general for desired high saline solubility the amount of total amphoteric oxides must be kept below about 10% depending upon the amount of silica present. On the other hand, with the exception of iron and manganese oxides, the basic oxides can vary widely since their alumina equivalency is small. However, while iron and manganese oxides are generally considered to be basic in nature, their behavior with respect to saline solubility more closely relate to the amphoteric oxides, thus the amounts of iron and manganese oxides must be similarly limited.

Many of the fibers were tested for their fire resistance according to the following simulated fire rating test procedure:

For screening test purposes, a small furnace was constructed using an electrically heated flat-plate element at the back of the heat source. A 6 inch x 6 inch x 2 inch thick sample of 1 3/4 to 6 1/2 pcf density of each formulated fiber was mounted parallel with the element and 1 inch from it. Thermocouples were then positioned at the center of the fiber sample surfaces. A computer was used to control power via a simple on-off relay system to the heating element. The position of the relay was based on the reading of the thermocouple on the sample surface nearest the element and the programmed fire test heat-up schedule.

5

10

15

The furnace was heated so as to follow a standard ASTM E-119 time/temperature curve for the 2-hour test period. In the test utilized herein, failure of the fiber is considered to occur when the furnace is unable to maintain the standard temperature per ASTM E-119 because the fiber insulation has sintered sufficiently to allow heat to escape through the fiber layer.

20 The results of the testing of the fibers for saline solubility and the two hour ASTM E-119 fire test are given in Table 4 for the fibers made with alumina addition and in Table 5 for the remaining fibers to which other oxidic constituents were added. These additions included: B_2O_3 , P_2O_5 , TiO_2 , ZrO_2 , Fe_2O_3 + MnO, 25 La_2O_3 , Cr_2O_3 , and Na_2O . For glass fibers within the scope of the invention to function in an ASTM E-119 fire test, i.e. to withstand the rising temperatures of a simulated fire which can reach 1850°F in two hours, it is neces-30 sary that they convert from an amorphous condition to a beneficial pseudo crystalline state during heat-up. inventive fibers do this but can be assisted in this function by the inclusion of suitable crystal nucleating

-15-

agents. Such agents may include TiO_2 , ZrO_2 , platinum, Cr_2O_3 , P_2O_5 , and others. Such additions are within the scope of this invention.

	USED
TABLE 1	MATERIALS
	RAW

		RAW MA	RAW MATERIALS USED		
			Pure Raw Materials		
	Silica Sand	Quick Lime	Calcined <u>Dolomite</u>	Aluminum Oxide	Magnesium Oxide
ACIDIC OXIDES					
sioz	0.66	0.34	0.50	0.02	0.4
AMPHOTERIC OXIDES	DES				
TiO_2	nil	nil	nil	0.002	nil
A1203	0.30	0.26	0.50	98.8	0.1
BASIC OXIDES					
Fe_2O_3	0.30	0.05	0.15	0.02	0.7
Mno	!		1	!	!
Mgo	0.02	0.14	40.0	nil	96.3
CaO	0.03	97.75	57.0	0.01	2.0
Na ₂ O	0.04	0.02	0.01	0.30	0.02
K_2O	0.01	0.01	nil	0.01	0.01
MISCELLANEOUS					
SO ₃	1	i	0.4	!	i i
So	8 :	Ţ	1	:	!
ပ	1	1 1	i	ţ F	i
TOT	0.2	0.7	3.0	0.20	1.8
TOTAL	06.66	99.27	101.56	98.36	101.33

TABLE 1
RAW MATERIALS USED (continued)

		Talc		61.2		nil	0.7	17-	0,85	ţ	31.7	0.19	ł	;		;	;	i	5.0	0.66
inued)	ials	Nepheline Syenite		61.3		0.003	23.4		0.07	ì	0.05	0.58	09.6	4.50		\$ \$	i i	1 1	0.62	100.12
RAW MATERIALS USED (continued)	Less Pure Raw Materials	Blast Furnace Slag		35.16		, 0.62	12.88		0.20	0.62	16.06	32.94	0.45	0.25		0.28	1.03	0.30	1	100.79
껆		Kaolin		50.5		1.61	43.6		0.80	1	0.01	0.04	90.0	0.02		!	;	!	2.90	99.54
			ACIDIC OXIDES	sio ₂	AMPHOTERIC OXIDES	\mathtt{rio}_2	A1203	CBASIC OXIDES	Fe ² 03	Mno	MgO	Cao	Na ₂ O	K ₂ 0	MISCELLANEOUS	so ₃	ري اا	U	101	TOTAL

Silica Sand: Ottawa Silica - Sil-co-Sil Grade 295
Quick Lime: Mississippi Lime - Pulverized Quick Lime
Calcined Dolomite: Ohio Lime NO. 16 Burnt Dolomitic Lime
Aluminum Oxide: Reynolds Calcined Alumina, RC-23
Magnesium Oxide: Baymag 56 Feed Grade
Kaolin: American Cyanamide Andersonville Kaolin
Blast Furnace Slag: Calumite Morrisville Slag
Nepheline Syenite: Indusmin Grad A400
Talc: Pfizer Grade MP4426

Additives:

Soda Ash: 58.3% $\mathrm{Na_2O}$ Boric Acid: 55.5% $\mathrm{B_2O_3}$

Magnetite Iron Concentrates: 98.5% Iron Oxides

Zircon: 66.2% ZrO2

Manganese Oxide: 99% MnO_2 Titanium Dioxide: 99% TiO_2

Chromium Oxide: 99.5% $\mathrm{Cr}_2^{-0}_3$

Lanthanum Carbonate: Moly Corp.

TABLE 3 COMPOSITION OF FIBERS

		ACIDIC OX	OXIDES		1	AMPHOTERIC OXIDES)ES	
TEST NO.	B ₂ O ₃	- <u>Sio</u> 2	P205	SUB	TiO ₂	A1203	$\frac{ZrO}{2}$	SUB TOTAL
Composi	ition of Fi	bers with	$\frac{Al}{2}$ 03_addit	Composition of Fibers with Al $_2$ O $_3$ additions (minor constituents only)	constituer	its only)		
1 to	00.00	;	00.00	į	0.01	1	0.01	0.02
	;]	;	;	1	1	!	i	!
Composi	Composition of Fi	Fibers with B,0, additions	B,0, additi	ions				
164	0.32	64.8	, ¦	65.12	ŀ	90.0	;	90.0
165	0.52	63.9	1	64.42	1	1.20	}	1.20
166	0.64	64.6	-	65.24	ì	90.0	1	90.0
167	0.82	64.5	!	65.32	1	90.0	ł	90.0
168	1.33	64.1	ŀ	65.43	i	90.0	¦	90.0
169	1.37	64.1	!	65.47		90.0	}	0.06
170	2.22	63.6	i	65.82	1	90.0	! !	90.0
171	8.41	59.6	1	68.01	ļ	90.0	ł	90.0
Composi	Composition of Fi	Fibers with P,06 additions	Poog additi	lons				
7	;	49.6	6.05	55.65	90.0	0.38	0.04	0.48
Compos	Composition of Fi	Fibers with TiO, additions	rio, additi	lons				
173	i	48.6	1	48.6	10.0	41.4	1	51.4
Composi	Composition of Fi	Fibers with ZrO, additions	ZrO, additi	lons				
174	!	63.5	. !	63.5	.01	0.88	0.21	1.10
175	!	59.2	!	59.2	1	0.33	0.40	0.73
176	!	59.5	1	59.5	1	0.31	0.42	0.73

TABLE 3 COMPOSITION OF FIBERS (continued)

I												•									
	SUB		.19			35.3	34.8	35.2	35.2	34.9	34.9	34.6	32.0		43.58		!	•	35.92	39.51	39.52
	K20	Z,	0.01	į į		!	ļ	!	!	ï	I I	i I	i i		0.04		!		.01	I I	i i
	<u>Na</u> 20	nts on]	0.04	1		I I	ŀ	!	1	ļ	i i	1	t i		0.05		1		.03	f I	1
	<u>Ba0</u>	stitue	0.04	1.		1	i	l l	!	1	!	i F	Į Į		0.00		i I		!	!	[
S	<u>Ca0</u>	or con	l i	ţ		26.6	26.2	26.5	26.5	26.3	26.3	26.1	24.0		31.45		1		35.55	39.1	39.1
BASIC OXIDES	<u>Li.20</u>	nim) sı	00.0	! !	*01	i	!	:	;	! !	į į	!	1		00.00		1		-	i	i
BASI	MgO	ddition	I I	1	<u>litions</u>	8.7	8.6	8.7	8.7	8.6	8.6	8.5	8.0	additions	11.15	litions	! i	litions	0.33	0.41	0.42
	<u>Cr.203</u>	Fibers with Al $_2$ O $_3$ additions (minor constituents only)	0.02	1	B,0, additions) 1	ı	ı	1	ı	ı	ļ	ı	Poof add	0.68	TiO2 additions	1	of Fibers with ZrO, additions	1 1	. 1	
	<u>La₂O₃ (</u>	with A			Tibers with B	ı	i	1	1		ı	1	1		0	Fibers with T	1	with Z]	1	i
	<u>La,</u>	ers	0.00	1	ers	I	l I	1	į	1	1.	Ī	!	ers	1	ers	ļ	ers	!	1	}
	MnO		0.02	ł	_	ł	i i	ļ	t I	:	!	ŀ	!	of Fibers with	00.0	of Fibe	ļ	of Fibe	ŀ	1	1
	FeO ₃	Composition of	90.0	l I	Composition of	[I I	·	:	!	! !	!!	ļ		0.21		! !	- 1	ļ	i i	!
	TEST NO.	Compos	1 to		Compos	164	165	166	167	168	169	170	171	Composition	7	Composition	173	Composition	174	175	176

TABLE 3
COMPOSITION OF FIBERS (continued)

	TOTAL		.14	.44		100.48	100.42	100.5	100.58	100.39	100.43	100.48	100.01		99.73		100.0		100.52	99.44	99.75
	H					10	10	10	10	10	101	10	10		ğ		100		10(ğ	9,
MISCELLANEOUS SUB	TOTAL	Fibers with $A_2^2 O_3$ additions (minor constituents only)	//0.	.22		!	ŀ	;	1	! 1	}	i	1		0.02		! !		!	1	• •
	Misc.	$\frac{1}{2}$ 03 additions (.02	! !	Fibers with B ₂ 0 ₃ additions	1	!	;	;	;	1	!	1	Fibers with P ₂ O ₅ additions	0.02	Fibers with TiO, additions	;	Fibers with ZrO, additions	1	!	Į Į
	4	Ö	'02'	.20	of	ŀ	;	i	ł	1	ł	Į I	!	of	į	of	i	of	!	;	i
TEST	NO.	COMPOSITOR	l to		Composition	164	165	166	167	168	169	170	171	Composition	8	Composition	173	Composition	174	175	176

-22-

TABLE 3 COMPOSITION OF FIBERS

	SUB TOTAL		0.84	06.0	0.93	1.88	1.15	2.89	2.69	2.95	3.53	3.68	3.65	3.62	3.50	3.75	3.73	4.25	4.34	7.87
XIDES	\overline{aro}_2		0.50	0.54	0.58	0.58	0.83	0.84	2.31	2.65	3.11	3.12	3.27	3.30	3.30	3.36	3.37	3.67	3.69	4.50
AMPHOTERIC OXIDES	A1203		0.34	0.36	0.35	1.29	0.32	2.03	0.38	0:30	0.42	0.56	0.38	0.32	0.20	0.39	0.36	0.58	0.65	3.35
	Tio2		:	ľ	!	.01	ŀ	.02		i i	1	1	i	1	1	i	ŀ	i	;	.02
	SUB	Composition of Fibers with ZrO2 additions (Cont.)	59.7	0.09	59.2	54.3	59.2	46.85	59.4	59.05	57.96	57.80	59.05	56.88	57.7	58.19	57.86	58.6	58.4	56.65
(IDES	<u>22.05</u>	ZrO2_addit	1	I	1	-	-1	ļ	1	1	1	!	!	1	!	i	f i	1	1	1
ACIDIC OXIDES	<u> 510</u> 2	ibers with	59.7	0.09	59.2	54.3	59.2	46.85	59.4	59.05	57.96	57.8	59.05	56.88	57.7	58.19	57.86	58.6	58.4	56.65
	B ₂ O ₃	tion of F	1	Į 1	Ţ	l I	1	!	ŀ	1	1	1	1	i	1	i	ł	ŀ	1	1
	TEST NO.	Composi	177	æ	179	180	181	182	182(a)	183	184	185	186	187	188	189	190	191	192	193

CHRCTITHTE CUEET

TABLE 3
COMPOSITION OF FIBERS (continued)

	SUB		39.16	38.78	37.98	43.12	37.73	49.98	36.96	38.07	38.72	38.14	39.51	40.45	39.0	38.65	38.88	36.22	35.79	35.36
	<u>K</u> 20		:	!	1	.02	1	.01	ļ	.01	!	;	į	1]	!	i	;	ļ	.01
	Na ₂ 0		ļ	ļ	1	.04	;	.05	i	.03	}	i i	;	: !	!	1	ŀ	!	! 1	.05
	<u>Ba0</u>		ļ		¦	.01	}	.03	:	00.	!	1	1	!	1	!	i	1	!	00.
ß	Ca0	7	38.7	38.3	37.0	32.75	36.6	29.5	34.9	34.84	35.17	34.4	36.94	36.45	36.0	35.39	35.66	33.5	33.2	31.9
BASIC OXIDES	<u>Li_2</u> 0	S (Cont	1 	i i	1	;	;	!	;	!	1	;	1	;	;	}	!	i	1	l i
BASI	MgO	ditions	0.46	0.48	0.98	10.20	1.13	20.6	2.06	3.08	3,55	3.74	2.57	4.00	3.00	3.26	3.22	2.72	2.59	3.35
	$\frac{Cr}{2}$ 03	ZrO2 additions (Cont.)	1	;	1	i i	i	I I	1	.05	:	ļ	ŀ	ł	!	i	1	1	i	00.
	<u>La₂03</u>	Fibers with	!	Į į	ļ	1	!	i i	;	. !	!	ŀ	! !		I I	!	;	!	;	!
	<u>Ouw</u>		!	ŀ	1	.01	1	.01	i	00.	!	1	1	!	!	1	<u>{</u>	ŀ	!	00.
	FeO ₃	Composition of	ţ	1					1		;	!	;	!	!	1	!	1 1	1	.05
	TEST NO.	Compos	177	æ	179	180	181	182	182(a)	183	184	185	186	187	188	189	190	191	192	193

TABLE 3
COMPOSITION OF FIBERS (continued)

		TO WATER OF THE	The section of the se	
		MIS	MISCELLANEOUS	
TEST NO.	<u>so</u> 3	Misc.	SUB <u>TOTAL</u>	TOTAL
Composition of	of Fibers with ZrO	Fibers with ZrO2 additions (Cont.)		
177	. !		!	99.70
. ໝ	· [I I	1	89.66
179	l i		1	98.11
180	I I	.01	.01	99,31
181	1		1	98.08
182	1	.02	.02	99.74
182(a)	į i	!	\$	99.05
183	į i	.02	.02	100.09
184	I I		i	100.21
185	l i	!	i	99.62
186	į	1	1 1	102.21
187	Ę. 1	1		100.95
188	i i	. 1	i	100.20
189	l I	t i	!	100.59
190	ľ	!	1 1	100.47
191	<u> </u>	I 1	!	70.66
192	i i	1	!	98.53
193		.01	.01	68.66

TABLE 3
COMPOSITION OF FIBERS

	SUB		90.0	18.02	7.49	90.	1.20	.20	6.72	90.0	0.94	1.15	90.0	15.28	1.20	90.0	14.32	90.0	2.0	
			0	18	7	0	Н	ר	9	0	0		0	15	Н	0	14	0	7	
DES	$\frac{2r0}{2}$		ļ	.01	.01	ł	ł	;	.01	i	.01	ţ	;	.01	;	i	.01	1	1	
AMPHOTERIC OXIDES	<u>A1</u> 203		90.0	18.0	7.45	90.0	1.20	1.20	6.70	90.0	0.92	1.15	90.0	15.26	1.20	90.0	14.3	90.0	2.0	
	$\overline{\mathrm{rio}}_2$;	.01	.03	ļ	ł	}	.01	i	.01	!]	.01	!	i i	.01	ļ	1 1	
	SUB	th FeO, and MnO additions	64.9	49.8	50.4	64.34	63.70	63.54	38.9	64.3	44.6	63.3	63.6	43.8	62.3	63.3	43.9	62.0	0.09	
OXIDES	P205	FeO, and 1	,	;	i	ľ	ţ	i	:	ļ	ŀ	ŀ	ŀ	1	1	ŀ	;	ļ	{	
ACIDIC OX	<u>s10</u> 2	bers with	64.9	49.8	50.4	64.34	63.70	63.54	38.9	64.3	44.6	63.3	63.6	43.8	62.3	63.3	43.9	62.0	0.09	
	B203	Composition of Fibers wi	Î	!	ŀ	!	!	!	!	;	}	{	1	ł	!	!	;	;	1	
	TEST NO.	Compos	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	

-26-

	(continued)
TABLE 3	OF FIBERS
	COMPOSITION

					BASI	BASIC OXIDES	S					
TEST NO.	FeO ₃	MnO	<u>La</u> 203	<u>Cr.203</u>	<u>MgO</u>	<u>Li</u> 20	<u>Ca0</u>	<u>BaO</u>	Na ₂ 0	K20	SUB	
Composition of	ition		Fibers with FeO3 and MnO	FeO ₃ ar	d Mno	additions	<u>ns</u>					
194	0.06	i	ĵ	, 1	8.72	ŀ	26.6	!	! }		35.38	
195	.22		ļ		0.2	!	31.5	ţ	1 1	!	31,92	
196	.48	.04	!		15.2	İ	26.2	1	.07	.05	42.04	
197	.50	!	ŀ	ŀ	7.80	į	26.4	i	l I	1	34.7	
198	. 69		ľ	ŀ	7.73	i	25.30	!	1 1	1	33.72	
199	.72	l i	i i	1	7.70	Į.	25.04	Į.	! !	!	33.46	
200	.80	-	į į	ł	16,1	i	37.5	\$ 1	ţ	1	54.40	
201	.96	i i	!	ŀ	8.6	1 1	26.4	!	ŀ	ŀ	35.96	
202	1.02	i i	1	Į.	18.1	!	32.8	1	1	i	51.92	
203	1.61		I	ľ	7.98	ļ	25.4	ľ	ļ	1	34.99	
204	1.92		1	;	8.6	i	26.1	!	i i		36.62	
205	2.90	.04	1	.14	22.7	ŀ	15.05	!	.10	.01	40.94	
206	3.05	ļ	ŀ	!	8.0	1	25.0	1	į	ł	36.05	
207	3.45	i	ŀ	1	8.0	i i	25.5	!	!	ļ	36.95	
208	3.50	i	1	i i	24.4	:	13.7	!	!	i	41.6	
209	4.81	i	Ĭ	1	8.0	Į i	25.5	1	!!	ŀ	38.31	
210]	8.0	ļ	i i	30.0	;	t i	!	!	1	38.0	
211	1	20.0	:	ŀ	20.0	i	1	1	ļ	1	40.0	

		COMPOSITION	TABLE 3 COMPOSITION OF FIBERS (continued)	
			MISCELLANEOUS	
TEST			SUB	
NO.	<u>50</u> 3	Misc.	TOTAL	TOTAL
Composition of	- 1	Fibers with FeO3 and Mno additions	litions	
194	; 	i	1	100.34
195	.05	.02	.07	99.81
196	.05	.02	.07	100.00
197	:	1	!	99.1
198	1	!	1	98.62
199	:	ł	!	98.20
200	.05	.02	.07	100.09
201	1	!	!	100.32
202	1	1 1	!	97.46
203	:	}	;	99.44
204	ï	;	1	100.28
205	.05	.08	.13	100.15
206	1	;	1	99.55
207	:	1	;	100.31
208	£ 1	!	!	99.82
209	1	!	1	100.37
210	ŀ	!	;	100.0
211	!	ľ	8 8	100.0

PHANT THITF SHEET

TABLE 3 COMPOSITION OF FIBERS

	SUB TOTAL	•	90.0	90.0	90.0	90.0		0.51		90.0	90.0	90.0	1.20	90.0	90.0	90.0	90.0	90.0
DES	<u>2x0</u> 2		!	Į.	1	1		0.01		1		ł	1	!	!	i	;	ł
AMPHOTERIC OXIDES	<u>Al</u> 203		90.0	90.0	90.0	90.0		0.49		90.0	90.0	90.0	1.20	90.0	90.0	90.0	90.0	90.0
7	Tio2		!	1	I I	1		0.01		l I	1	i	I I	Į Į	!	i	I I	i
	SUB	itions	58.1	57.8	57.5	56.9	tions	62.6	ions	64.7	64.5	64.4	63.5	64.3	64.2	64.0	63.0	60.3
OXIDES	P205	Composition of Fibers with La2 03 additions	1	ļ	1	i	Cr,0, additions) 	Na,0 addit	17 64.7 64	!	!	1	i I	į	i i	į	i
ACIDIC OX		lbers with	58.1	57.8	57.5	56.9	ibers with	62,6	bers with	64.7	64.5	64.4	63.5	64.3	64.2	64.0	63.0	60.3
	B203	ition of F	i i	i	ľ	ļ	Composition of Fibers with	1	ition of F	Į Į		!	i	!	ļ	i	1	Î
	TEST NO.	Compos	ļ	213	214	215	Compos	216	Compos	r U	77 218	22 219	220	221	222	223	224	225

TABLE 3 COMPOSITION OF FIBERS (continued)

					BASI	BASIC OXIDES	S				
TEST NO.	FeO ₃	MnO	<u>La 203</u>	$\frac{Cr}{2}$ 03	MgO	$\frac{\text{Li}_20}{\text{C}}$	CaO	Ba0	Na ₂ 0	$\underline{K}_2\underline{O}$	SUB TOTAL
Compo	Composition of	of Fib	f Fibers with La ₂ 0 ₃ additions	La203 a	dditio	ns					
!	0.16	!	00.00	1 1	4.60	!	36.71	;	1	!	41.47
213	0.15	!	0.56	ŀ	4.58	!	36.53	1	1	i	41.82
214	0.15	1	0.72	1	4.55	i	36.3	i	;	;	41.72
215	0.15	!	0.92	!	4.51	ļ	36.0	ł	i	-	41.58
Compo	sition	of Fib	Composition of Fibers with Cr,03 additions	Cr,04 a	dditio	SU					
216	0.08	00.	!	0.09	2.30	i	34.10 0.00	00.0	0.03	0.01	36.61
Compo	sition	of Fib	Composition of Fibers with Na,O additions	Na o ad	dition	ល្ប					
17	;	ŀ	1	i !	8.7	1	26.6	1	0.28	!	35.58
218	!	1	ŀ	1	8.7	1	26.5	1	0.45	1	35.65
219	;	i	:	1	8.6	1	26.5	i	0.71	!	35.80
220	į	!	ľ	i	8.5	ł	26.1	1	0.87	:	35.70
221	1	1	1	!	8.5	!	26.2	!	0.93	;	35.63
222	!	:	ł	!	8.6	ł	26.4	ł	1.11	i	36.11
223	!	!	1	!	8.6	ŀ	26.3	ł	1.40	!	36.3
224	!	!	i	!	8.5	1	25.9	į.	2.60	ļ I	37.0
225	ţ	i	ł	1	8.1	1	24.8	1	6.84	!	39.74

CURSTITUTE SHEET

TABLE 3
COMPOSITION OF FIBERS (continued)

Sno	L		69.63	89.66	99,28	98.54		99.72		100.34	100.21	100.26	100.40	66.66	100.37	100.36	100.06	
ISCELLANE	SUB TOTAL			Į.	1	i		i		!	1	ľ	1	ľ	I I	l i	!	
X	Misc.	Fibers with La ₂ O ₃ additions	. !	!	i	f 1	Fibers with Cr203 additions	1 1	Fibers with Na20 additions	!	1	1	1	1	1	1		
	<u>SO</u> 3		i i	ţ.	i t	l i	ı	1		1	1	1	i I	1	l !	Ĭ P	1	
	TEST NO.	Composition of	;	213	214	215	Composition of	216	Composition of	1.7	218	219	220	221	222	223	224	

TABLE 3
COMPOSITION OF FIBERS

TEST				SUB				SUB
NO. Compos	$\mathbb{B}_2\mathbb{Q}_3$ sition of	NO. B_2Q_3 SiO_2 Composition of Conventional	P ₂ O ₅ Mineral	TOTAL Wools	$\frac{\text{TiO}_2}{2}$	$\frac{A1}{2}20_{3}$	$\frac{2rO}{2}$	TOTAL
226		40.0	1	40.0	0.37	9.1	0.03	9.50
	1	39.9	0.02	39.92	1.11	12.85	0.03	13.99
228	I	37.65	0.84	38.49	2.35	9.85	0.04	12.24
229	ŀ	41.75	0.12	41.87	1.07	16.0	0.03	17.10
Compos 231	sition of -	Composition of Refractory F 231 - 31.0	ibers (F	Fibers (Fibers with less than 25% Basic Oxides	58 Basic (<u>0xides)</u> 47.5	0.02	47.52
232	ı	37.1	ı	37.1	ı	59.2	i	59.2
233	1	50.0	ı	50.0	ı	40.0	ŧ	40.0
234	ı	54.0	ı	54.0	ı	46.0	1	46.0
235	i	58.47	1.15	59.62	0.98	24.54	0.03	25.55
236	i	52.1	ì	52.1	1.76	44.4	. 23	46.39
237	1	52.0	ı	52.0	1.71	42.2	2.93	46.84
238	1	49.8	ı	49.8	1.60	38.3	9.32	49.22
239	1	48.6	ì	48.6	1.55	36.2	12.3	50.05
240	ī	47.8	ı	47.8	1.50	34.4	15.1	51.00
241	1	46.2	ı	46.2	1.40	31.0	20.7	53.10
242	i	28	ı	28	19	50.	3	72
243	ı	64.5	ı	64.5	ı	27.4	1	27.4

TABLE 3 (cont'd.)
COMPOSITION OF FIBERS

	BAS	BASIC OXIDES	ES					1	MISC	MISCELLANEOUS	SOC
							SUB			SUB	
NO. FeO ₃ MnO La ₂ O ₃ Cr_2O_3 MGO Composition of Conventional Mineral	- 1	Li ₂ O Wools	<u>CaO</u>	Bao	Na ₂ O	K20	TOTAL	<u>503</u>	Misc.	TOTAL	TOTAL
0.64 - 0.02 11.2		0.01	36.5	0.04	0.54	0.55	49.97	0.1	0.59	0.69	100.16
- 0.00 6.05	Ŋ	0.01	38,55	0.12	0.23	0.27	45.82	0.67	0.07	0.74	100.47
- 0.04 12.95	Ŋ	0.01	23.55	0.07	2.01	08.0	49.35	0.42	0.19	0.61	100.69
- 0.02 6.45	Ŋ	0.63	27.75	0.03	2.04	0.63	41.53	0.56	0.08	0.64	101.14
Composition of Refractory Fibers (Fibers with less than 25%	<u>[r.</u> [ibers w	rith le	ss th	an 25%	ł	Basic Oxides	S			
1		ı	1.2	- 2	20.2	1	21.4	ı	1	ı	99.92
1		i	0.2	1	3.1	1	3.3	1 -	ı	ı	99.66
: :		ı	5.6	1	4.4	1	10.0	1	1	ı	100
l F		i	ı	ı	i	ľ	ı	ı	1		100
- 0.00 1.44		0.02	5.78	0.54	1.55	1.18	14.23	0.47	0.24	0.71	100.11
- 0.07	7	ı	0.12	i	.05	90.	1.13	1	1	ı	99.65
0.07	_	ı	0.12	ı	• 05	90.	1.07	1	1	1	99.91
- 0.07	_	1	0.12	1	.05	90.	1.02	1	i	i	100.04
- 0.07	7	1	0.12	1	.05	90.	1.00	1	1	ı	99.65
0.07	7	í	0.12	ı	.05	90.	.98	1	1	i	99.78
0.07	~	1	0.12	ì	.05	90.	0.93	ı	ı	i	100.23
1		i	ı	ı	1	ı	1	ı	1	ı	100
1		8.4	ì	1	ı	ı	8.4	1	i	1	100.3

4	
H	
AB	

Test Test Test Test Test Test Test Test	E-119 Fire Test Thickness 2 H Density Tes * 2.0/1.27 F	Saline Saline Extraction PDM. Si * 80 58 46 75 * 50 51 46 67 67 67 66	FIBERS MADE WITH ALLUMINA ides 1068	Ges Total 68.1 68.9 57.7 56.5 54.6 54.4 52.7 52.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.7	ON OX	MI M	COMPOSITION. Amphoteric Oxides Al203 Total Amphoteric Oxid 0.2 0.22 0.28 0.30 0.28 0.35 0.25 0.27 0.20 0.22		Acid Sicon 31. 31. 31. 31. 41. 41. 44. 48. 48. 48. 49. 49. 50. 51.	NO. 10 0 to 10 10 10 10 10 10 10 10 10 10 10 10 10
rų (r	2.0/1.97	77	11.101 99.75	45.8	0.1	45.6	0.30	0.28		19
Į.	1	56	101.11	47.2	44.3	2.8	99.0	0.64	53.2	18
Ĺτι	2.0/2.59	51	100.40	48.8	0.6	39.7	0.35	0.33	•	17
ı	ı	65	100.52	48.9	19.0	29.8	0.47	0.45	51.1	16
ŧ	ı	09	100.37	49.5	33.7	15.7	0.12	0.10	50.7	15
ı	1	56	100.27	50.1	43.0	7.0	0.12	0.10	50.0	14
*	*	*	101.24	51.8	48.3	3.4	0.19	0.17	49.2	13
ì		67	100.69	51.0	22.9	28.0	0.44	0.42	49.2	12
1	ı	46	100.93	51.7	38.3	13.3	0.58	0.56	48.6	11
1	i	51	101.03	51.9	43.0	8.8	0.58	0.56	48.5	10
ï	1	50	101.09	52.9	33.5	19.3	0.24	0.22	47.9	0
*	*	*	101.17	52.7	47.6	5.0	0.22	0.20	48.2	œ
*	*	*	101.17	54.4	45.1	9.5	0.22	0.20	46.5	7
i		75	100.17	54.6	0.1	54.4	0.52	0.50	45.0	9
Ŀ	2.0/1.27	46	100.52	56.5	16.6	39.8	2	0.25	43.7	വ
i	ì	58	100.40	56.5	10.4	46.0	0.35	C	43.5	4
i	i	80	99.95	57.7	0.1	57.5	0.30	0.28	•	ო
*	*	*	100.47	68.9	35.5	33.3	0.22	0.2	٠	7
*	*	*	100.37	68.1	29	39	0.22	0.2	32	7
							ric Oxic	1	1 1/2	
Test**	Density	ppm. Si	Analytical	Tota1	MgO	<u>CaO</u>	Total	$A1_20_3$	$\frac{\text{sio}_2}{2}$	NO.
2 Hour	Thickness	Extraction	Total	des	ic oxi	Bas	des	OX	Oxides	
. Test	E-119 Fire	Saline					eric	Amphot	Acidic	
		5 Hour				WT%	OSITION	COMI		
		INA ADDITIONS	TADE WITH ALUM	FIBERS N	NO		TEST			

	ć	1	:	l
	į		į	į
ı	K	į	i	١
			1	į
			•	ı
Į	٠		Į	ı
		٠	•	İ
			•	i
	í	•	•	I
Į	ij		1	ı
			i	ı
	ċ	Ľ	į	ı
	Ē	ċ	į	i
į		l	i	ı
		(ŧ	ı
ĺ	Ġ	ć	١	۱

	Test	2 Hour	Test**		Œ,	i	ı	ĒΨ	ᄕ	ધ	ı	i	ŀ	ĔΨ	Ē	Ľ4	ſΞŧ	ᄄ	Ę	ሲ	ĬΞŧ	ሲ	1	
	E-119 Fire Test	Thickness	Density		2.0/1.97	ı	ļ	2.0/1.94	2.0/2.12	2.0/1.87	I	ı	ı	1.88/2.20	2.0 /1.97	2.0 /1.91	2.0 /1.91	2.0 /1.91	2.0 /1.91	2.0 /1.94	2.0 /1.91	2.0 /2.01	ı	
5 Hour	Saline	Extraction	ppm. Si		83	68	30	51	69	70	47	46	40	56	1	59	80	49	61	74	58	59	56	
		Total	<u>Analytical</u>		100.20	100.47	99.67	09.66	100.57	99.39	99.97	100.30	100.10	99.56	99.85	99.53	99.94	99.61	100.54	99.22	99.39	99.32	100.98	Failed
		des	Tota1		46.0		44.1	43.55	44.1	42,75	42.59	42.2	41.94	41.1	41.05	4.53 41.33	4.79 40.59	41.21	41.7	5.36 40.46	40.57	40.1	41.7	F = Fai
		Basic Oxides	MgO		10.8	20.5	36.5	0.45	17,0	8.25	7.39	17.6	6.84	3.95	6.2	4.53	4.79	0.31	26.3	5,36	0.27	5.6	6.2	Poor,
WT%		Bas	Ca0	les	35.1	25.5	7.5	43.0	27.0	34.4	35,1	24.5	35.0	36,95	34.75	36.7	35.7	40.8		35.0	40.2	34.4	35.4	# **
COMPOSITION	Amphoteric	Oxides	Total	Amphoteric Oxides	0.35	0.42	1.02	0.10	0.42	0.24	0.93	1.05	1.11	0.94	0.78	0.05	1.10	0.05	0.39	0.11	0.07	0.53	0.43	0
CO	Ampho	ô	A_{203}		0.33	0.40	1.00	0.08	0.40	0.20	0,91	1.03	1.09	0.92	0.75	0.03	1.08	0.03	0.37	60.0	0.05	0.49	0.41	Fiberizable
	Acidic	Oxides	$\frac{\text{SiO}_2}{2}$	1 1/2%	53.8	53.9	54.5	55.9	56.0	56.35	56.4	57.0	57.0	57.25	57.8	58.1	58.2	58.3	58.4	58.6	58.7	58.5	58.8	Not Fibe
			NO.	0 to	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	 *

SUBSTITUTE SHFFT

EXPERIMENTAL DATA

		our	**																					
	e Test	2 Hour	Test**		ሷ	Ъ	д	ĮŦ	д	д	д	ഥ	Ē	Δį	д	Д	Д	ሷ	д	Д	ഥ	Д		I
	E-119 Fir	Thickness	Density		2.0/1.86	2.0/1.97	2.0/1.90	2.5/1.4	2.0/1.95	2.0/1.92	2.0/1.90	2.0/1.89	2.0/1.88	2.0/1.91	2.0/2.01	2.0/1.98	2.0/1.95	2.0/1.91	2.0/1.89	2.0/1.95	2.0/1.94	2.0/1.93	1	
Inou c	Saline	Extraction	ppm. Si		67	49	. 89	47	09	61	77	73	51	70	30	47	45	41	59	45	36	51	56	
		Total	Analytical		99.45	99.21	100.09	101.11	99.94	100.11	99.87	99.95	100.8	6.66	100.86	100.55	100.78	100.58	99.30	76.66	100.68	99.97	100.17	
		des	Tota1		40.4	39.9	40.83	41.60	40.40	40.60	40.28	40.36	39.6	40.2	40.71	39.0	39.4	39.0	38.76	38.45	38.9	38.27	39.10	1
		ic oxi	MgO		6.10	3.8	0.43	36.8	4.75	10.7	5.98	8.16	16.8	11.4	0.11	12.9	11.0	16.4	6.36	9.85	10.7	9.47		\$
0 T M		Bas	Ca0	les	34.2	35.9	40.3	4.7	35.55	29.8	34.2	32.1	22.5	28.7	40.5	25.8	28.1	22.3	32.3	28.5	27.9	28.7	36.	4
NOT T TOO T	teric	ides	<u>rotal</u>	eric Oxic	0.10	0.26	0.11	0.26	0.34	90.0	0.04	0.04	1.45	0.05	0.30	1.50	1.33	1.43	0.19	1.07	1.13	0.95	0.22	
	Ampho	Ň	$A1_20_3$	- 1	0.08	0.24	0.09	0.24	0.32	0.04	0.02	0.02	1.43	0.03	0.28	1.48	1.31	1.41	0.17	1.05	1.11	0.93	0.2	. [4] = 2 = 2
	Acidic	Oxides	S10 ₂	1 1	58.9	59.0	59.1	59.2	59.15	59.4	59.5	59.5	59.6	59.6	59.8	59.9	59.9	0.09	60.3	60.4	60.5	60.7	8.09	Not 15: 15: 15: 15: 15: 15: 15: 15: 15: 15:
		-	NO	0 to	39	40	41	42	811 43	7 4 4	45	46	47	48	20	51	25	53	54	52	26	57	58	+
<u> </u>	OTH THOUTH AND		Amphoteric Saline E-119 Fire T Oxides Total Extraction Thickness	Acidic Amphoteric Saline E-119 Fire TOXIGES OXIGES TOTAL EXTRACTION Thickness SiO ₂ Al ₂ O ₃ Total CaO MGO Total Analytical ppm. Si Density	Acidic Amphoteric Saline E-119 Fire TOXIGES OXIGES TOTAL TOTAL DPM. Si Density	Acidic Amphoteric Saline E-119 Fire T Oxides Oxides Basic Oxides Total Extraction Thickness 5102 Al203 Total Analytical Density 0.11/2% Amphoteric Oxides Analytical Density 58.9 0.08 0.10 34.2 6.10 40.4 99.45 67 2.0/1.86	Acidic Amphoteric Basic Oxides Total Extraction Thickness 0xides Oxides Basic Oxides Total Extraction Thickness 5102 Al ₂ O ₃ Total Analytical ppm. Si Density 5102 Al ₂ O ₃ Total Analytical Density 511/2% Amphoteric Oxides Al ₂ O ₃ Basic Oxides Basic Oxides 58.9 0.08 0.10 34.2 6.10 40.4 99.45 67 2.0/1.86 59.0 0.24 0.26 35.9 3.8 39.9 99.21 49 2.0/1.97	Acidic Amphoteric Saline E-119 Fire T Oxides Doxides Basic Oxides Total Extraction and analytical and analytical a	Acidic Amphoteric Basic Oxides Total Extraction Thickness NO. SiO ₂ Al ₂ O ₃ Total CaO MgO Total Analytical ppm. Si Density 0 to 1 1/2 Amphoteric Oxides Amphoteric Oxides Amphoteric Oxides CaO MgO Total Analytical Density 39 58.9 0.08 0.10 34.2 6.10 40.4 059.45 67 0.24 0.26 35.9 3.8 39.9 99.21 49 99.21 49 2.0/1.97 49 2.0/1.97 2.0/1.97 41 59.1 0.09 0.11 40.3 0.43 40.83 100.09 68 2.0/1.90 2.0/1.90 2.0/1.90 42 59.2 0.24 0.26 4.7 36.8 41.60 101.11 47 2.5/1.4	Acidic Amphoteric Saline E-119 Fire T No. 5102 Al203 Total Cao MgO Total Analytical ppm. Si Density 0 to 1 1/2* Amphoteric Oxides 0 to 1 1/2* Amphoteric Oxides 0 to 1 1/2* Apple Si 0 to 1 1/2* Density 0 to 1 1/2* 40 59.0 0.24 0.26 35.9 3.8 39.9 99.21 49 2.0/1.97 41 59.1 0.09 0.11 40.3 0.43 40.83 100.09 68 2.0/1.90 42 59.2 0.24 0.26 4.7 36.8 41.60 101.11 47 2.5/1.4 43 59.15 0.32 0.34 35.55 4.75 40.40 99.94 60 2.0/1.95	Acidic Amphoteric Saline E-119 Fire T Oxides Dasic Oxides NO. SiO ₂ Al ₂ O ₃ Total Cao MgO Total Analytical Dpm. Si Dpm. Si Density 0 to 1 1/2* Amphoteric Oxides 0 to 1 1/2* Amphoteric Oxides 0 to 24 0.10 34.2 6.10 40.4 99.45 67 2.0/1.86 40 59.0 0.24 0.26 35.9 3.8 39.9 99.21 49 2.0/1.97 41 59.1 0.09 0.11 40.3 0.43 40.83 100.09 68 2.0/1.97 42 59.2 0.24 0.26 4.7 36.8 41.60 101.11 47 2.5/1.4 43 59.15 0.32 0.34 35.55 4.75 40.40 99.94 60 2.0/1.95 44 59.4 0.04 0.06 29.8 10.7 40.60 100.11 61 2.0/1.95	Acidic Amphoteric Total E-119 Fire T Oxides Oxides Basic Oxides Total E-119 Fire T NO. 5102 Al203 Total Ca0 MgO Total Analytical Dpm. Si Density 0 to 1 1/2 * Amphoteric Oxides O to 1 1/2 * Amphoteric Oxides Amphoteric Oxides Amphoteric Oxides Canal Angles Canal Angles <td< td=""><td>Acidic Amphoteric Saline Basic Oxides Total Extraction Thickness NO. Silos Oxides Oxides Density Total Density 10. Silos Allos Total Total Analytical Density 10. Lol 1/2s Amphoteric Oxides Amph</td><td> No. Side Amphoteric Saline E-119 Fire T No. Side Oxides Oxides Dasic Oxides No. Side Oxides Oxides Dasic Oxides No. Side Oxides Oxides Oxides O to 1 1/2</td><td>Acidic Amphoteric Saline E-119 Fire T Oxides Oxides Basic Oxides Total E-119 Fire T NO. SiO₂ Al₂O₂ Total CaO MgO Total Analytical Dpm. Si Si Si Si Si Si Si Si Si Si</td><td>Acidic Acidic Acidic Acidic Acidic Acidic Acidica Basic Oxides Total Cao MGO Total Cao MGO Total Acidica Total Cao MGO Total Acidica Total Acidica Total Acidica Acidica Total Acidica </td></td<>	Acidic Amphoteric Saline Basic Oxides Total Extraction Thickness NO. Silos Oxides Oxides Density Total Density 10. Silos Allos Total Total Analytical Density 10. Lol 1/2s Amphoteric Oxides Amph	No. Side Amphoteric Saline E-119 Fire T No. Side Oxides Oxides Dasic Oxides No. Side Oxides Oxides Dasic Oxides No. Side Oxides Oxides Oxides O to 1 1/2	Acidic Amphoteric Saline E-119 Fire T Oxides Oxides Basic Oxides Total E-119 Fire T NO. SiO ₂ Al ₂ O ₂ Total CaO MgO Total Analytical Dpm. Si Si Si Si Si Si Si Si Si Si	Acidic Acidic Acidic Acidic Acidic Acidic Acidica Basic Oxides Total Cao MGO Total Cao MGO Total Acidica Total Cao MGO Total Acidica Total Acidica Total Acidica Acidica Total Acidica Acidica								

	0100
	TUTTO
TYDED	7777

												-											
	Test	2 Hour	Test**		д	<u>Ω</u> ,	ъ	ρι	<u>Ω</u>	Дı	գ	Q	д	Д	L	ъ	Ŀ	Ъ	ľ	ሷ	ď	Eu	
	E-119 Fire Test	Thickness	Density		2.0/1.97	2.0/1.88	2.0/1.92	2.0/1.82	2.0/1.95	2.0/1.96	2.0/1.91	2.0/2.01	2.0/1.88	2.0/1.88	2.0/1.99	2.0/1.91	2.0/1.88	2.0/2.00	ŀ	2.0/1.87	2.0/1.91	2.0/1.88	
5 Hour	Saline	Extraction	ppm. Si		65	76	99	64	46	19	12	52	17	7	49	37	46	35	44	30	25	46	
		Total	Analytical		89.66	99.81	99.63	06.66	99.67	99.92	100.06	99.29	86.66	20.66	99.17	99.58	99.94	89.66	99.80	08.66	99.78	99.84	F = Failed
		des	Tota1		37,89	37.3	37.04	37.30	36.48	35,5	35.0	34.29	34.7	33.67	33.53	34.18	33.32	34.0	33.91	33.8	33.78	33.23	
		asic Oxides	MgO		5.19	15.5	6.64	7.70	5.28	10.2	10.9	5.79	11.8	2.60	4.83	6.68	30.1	6.50	5.21	11.8	7.88	30.1. 33.23	** P = Poor,
MT%		Bas	Ca0	les	32.6	21.7	30.3	29.5	31.1	25.2	24.0	28.4	22.8	30.97	28.6	27.4	3.12	27.4	28.6	21.9	25.8	3.12	
COMPOSITION,	Amphoteric	Oxides	Total	Amphoteric Oxides	0.04	90.0	0.04	0.05	0.04	1.27	1.51	1,15	1.43	1.25	1.49	0.05	1.17	0.03	0.04	0.05	0.05	1.17	a
COMPO	Amph	Ó	$A_{2}0_{3}$	- 1	0.02	0.04	0.02	0.03	0.02	1.25	1.49	1.13	1.41	1.23	1.47	0.03	1.15	0.01	0.02	0.03	0.03	1.15	rizable
	Acidic	Oxides	S10 ₂	1 1/2%	61.7	62.4	62.5	62.5	63.1	63.1	63.5	63.8	63.8	64.1	64.1	65.3	65.4	65.6	65.8	62.9	62.9	65.4	Not Fiberizable
•	•	~ •	NO.	0 to	59	09	61	62	63	29	ig UB	ŝT	G TU	TE	S !	e EE	T	72	73.	74	15	92	N

DAT
Ц
TA
2
Σ
2
P
×

		,										-31	3-	•									
		Test	2 Hour	Test**		գ	Дŧ	Д	Д.	ф	Д.	д	д	ᅀ	Ъ	ъ	д	ሷ		ŧ.	땁	Д	
		E-119 Fire Test	Thickness	Density		2.0/2.04	2.0/1.87	2.0/1.91	2.0/1.93	2.0/1.90	2.0/1.91	2.0/1.96	2.0/1.87	2.0/1.94	2.0/1.95	I	2.0/1.91	2.0/1.90			2.0/1.96	2.0/2.06	
	5 Hour	Saline	Extraction	ppm. Si		50	18	61	51	55	13	18	37	38	12	17	33	7		33	19	33	
EXPERIMENTAL DATA			Total	<u>Analytical</u>		100.18	100.04	100.03	99.01	99.28	99.02	99.66	30,66	99.11	100.4	100.57	99.73	99.47		99.65	69.66	100.93	iled
EXPERIM			des	Total		37.7	36.4	36.9	34.3	34.4	34.1	35.1	33.4	33,3	34.3	33,15	32.5	30.9		46.18	45.74	41.89	F = Failed
			asic Oxides	MgO	(Cont.)	4.9	10.1	6.9	0.3	0.2	0.2	9.4	0.2	2.5	16.3	23.1	29.7	0.1		40.9	0.64	33.7	= Pass,
	, WT%	•	Bas	<u>CaO</u>	- 1	32.7	26.2	29.9	34.0	34.1	33.8	25.6	33.1	30.7	17.7	9.74	2.7	30.7		4.98 40.9	45.0	7.89	
	COMPOSITION,	Amphoteric	Oxides	Total	3% Amphoteric Oxides	2.23	2.19	1.68	2.86	2.83	2.77	1.81	2.56	1.86	1,85	2.17	1.58	1.82	Oxides	3.52	3.60	3.79	a)
	CO	Ampho	ô	$\frac{A1}{203}$	% Ampho	2.21	2.17	1.66	2.84	2.81	2,75	1.79	2.54	1.84	1.83	2.15	1.56	1.80	4% Amphoteric	3.5	3.58	3.77	rizable
		Acidic	Oxides	$\frac{\text{sio}_2}{2}$		60.2	61.4	61.4	61.8	62.0	62.1	62.7	63.0	63.9	64.1	65.1	9.59	66.7		49.8	50.3	55.1	Not Fiberizable
				NO.	1 1/	95	96	26	98	9 6	100	101	102	103	104	105	106	107	3 to	108	109	110	 *

SUBSTITUTE QUEET

					4	EXPERIME	EXPERIMENTAL DATA			
		COMI	COMPOSITION,	WT%				5 Hour		
	Acidic	Amphoteric	teric					Saline	E-119 Fire Test	Test
	Oxides	OX	Oxides	Bas	Basic Oxides	des	Total	Extraction	Thickness	2 Hour
NO.	$\frac{\text{sio}_2}{2}$	$\frac{A1}{203}$	Total	CaO	MgO	Tota1	Analytical	ppm. Si	Density	Test**
3% t	0 4% An	to 4% Amphoteric	c Oxides	(Cont.)	7					
111	55.6	0.24	3.66	37.1	4.65	41.85	101.16	1	2.0/2.12	ſъ
112	56.5	0.35	3.65	36.51	4.17	40.78	100.98	ı	2.0/1.99	፫ብ
113	56.7	3.52	3.54	23.5	16.2	39.8	100.09	19	2.0/1.89	Ħ
114	56.7	3.06	3.08	23.4	16.6	40.28	100.11	40	2.0/4.02	দ
115	56.88	0.32	3.64	36.45	4.00	40.45	101.02	51	1	i
115a	57.5	3.29	3.31	37.7	0.75	38.55	99.41	9	2.0/1.93	ĮΞ4
116	58.1	3.05	3.07	25.6	12.8	38.5	99.72	20	2.0/1.9	Ħ
117	58.2	3.75	3.77	36.4	0.67	37.17	99.19	38	2.0/2.0	Ħ
119	58.80	3.76	3.78	36.7	0.24	37.04	79.66	28	2.0/1.97	ដែ
120	61.2	3.77	3.79	34.0	0.24	34.34	99.38	18	2.0/1.94	Д
4 to		6% Amphoteric Oxides	Oxides							
121	49.7	4.04	4.06	26.4	19.6	46.1	99.91	37	ı	1
122	55.8	5.20	5.22	30.1	9.2	39.4	100.47	7	2.0/1.88	Ŀı
123	56.85	5.40	5.41	31.8	5.65	37.55	99.91	4	2.0/1.99	Ľτι
124	57.0	4.68	4.70	22.0	15.6	37.7	99.45	32	2.0/2.00	ŗī
11	Not Fib	Not Fiberizable	~	* *	P = Pass,	 	Failed			

SUBSTITUTE SHFFT

EXPERIMENTAL DATA

-	4	0	-
---	---	---	---

						•					-4)-											
	Test	2 Hour	Test**			ĽΉ	দৈ	ſΞŧ	Ēŧ	਼ ਇਖ	t .	ĺΉ	Eų			ı	1	ı	ı	Ē	ı	Ľι	
	E-119 Fire Test	Thickness	Density		ı	2.0/1.97	2.0/2.0	2.0/3.17	2.0/1.98	2.0/2.04	1	2.0/2.01	2.0/2.04			. 1	1	ı	1	2.0/1.99	ı	2.0/2.05	
5 Hour	Saline	Extraction	ppm. Si		37	9	19	18	7	4	7		7			12	13	٣	1.2	1.0	1.7	1.2	
		Total	Analytical		98.72	99.83	99.57	99.43	79.66	100.11	100.27	99.93	6.66			100.17	98.69	99.45	101.02	100.05	101.37	100.37	Failed
		des	Tota1		52.6	45.2	43.8	41.5	37.3	37,6	35.6	35.2	33.1			52.2	46.76	46.12	40.0	37.81	38.9	34.5	II
		Basic Oxides	MgO		14.0	0.3	18.4	15.2	6.5	6.9	29.7	4.0	5.1	٠		13.7	9.6	0.52	16.2	4.21	16.3	10.9	= Pass, F
WT%		Bas	Ca0		38.5	44.8	25.3	26.2	30.7	30.6	5.9	31.2	27.9			38.4	36.7	45.5	23.7	33.5	22.5	23.5	 .*
COMPOSITION,	Amphoteric	Oxides	Total	0xides	6.92	7.68	6.42	7.48	7.62	6.36	6.72	6.18	7,10		c Oxides	9.32	9.13	8.78	8.92	69.6	8,72	9.22	a)
CO	Ampho	ô	$\frac{A1}{203}$	Amphoteric	06.9	7.66	6.40	7.45	7.60	6.34	6.7	6.16	7.08		10% Amphoteric	9.3	8.8	8.76	8.9	6.67	8.7	9.5	Not Fiberizable
	Acidic	Oxides	$\frac{\text{sio}}{2}$	ω %	39.2	46.9	49.3	50.4	54.7	56.1	57.9	58.5	59.7		10% Am	38.6	42.8	44.5	52.1	52.5	53.7	9.99	lot Fibe
			NO.	6 to	125	126	127	128	129	130	131	132	133		8 to	134	135	136	137	138	139	140	

SUBSTITUTE SHEET

= Pass, F = Failed

Д

= Not Fiberizable

2	•	
٤	۲	
۲	4	
٠,	٦	
_	3	
4	Ç	
F	1	
۲,	÷	
•	1	
Ľ	1	
3	1	
ι.	3	
_	3	
Р	4	
FYDEDTMENTAL	3	
~	1	
-	4	
×	Ç	
Ŀ	3	

	rest	2 Hour	Test**		ſ Σ	ÎΞ4	ĵ 	ı		ı	1	ഥ		ŧ	ı	ι	ſz,	Œ		ı	
	E-119 Fire Test	Thickness	Density		2.0/2.00	2.0/2.04	2.0/2.00	ŧ		ı	i	2.0/2.54		1	1	ı	2.0/2.01	2.0/2.01		t	
5 Hour	Saline	Extraction	ppm. Si		9	8.0	0.7	0.5		1.2	0.5	1.8		9.0	8.0	9.0	0.5	0.7		2.3	
EXPERIMENTAL DATA		Total	<u>Analytical</u>		99.87	72.66	102.42	101.12		99.37	99.89	100.27		99.77	99.77	99.97	100.07	99.97		99.97	
EXPERIME		des	<u>Total</u>		48.70	37.5	39.3	38.2		44.8	32.02	31.7		34.8	37.9	31.6	29.5	17.2		22.7	
		Basic Oxides	MgO		0.3	0.2	16.1	16.0		0.5	0.2	18.4		0.3	0.3	0.3	12.6	14.0		16.7	
WT%		Bas	<u>CaO</u>		48.25	37.2	23.1	22.1		44.2	31.5	13.2		34.4	37.5	31.2	16.5	3.1		5.9	
COMPOSITION,	Amphoteric	Oxides	Total	Amphoteric Oxides	10.01	10.92	10.72	10.22	Amphoteric Oxides	13.02	18.02	12.92	20 to 30% Amphoteric Oxides	28.42	21.52	25.72	22.42	22.82	Amphoteric Oxides	31.32	
CON	Ampho	O	$\frac{A1}{2}$	mphoter	10.05	10.9	10.7	10.2	nphoter	13.0	18.0	12.9	nphoter	28.4	21.5	25.7	22.4	22.8	photer	31.3	
	Acidic	Oxides	S10 ₂	to 12% An	41.0	51.3	52.4	52.7	to 20% An	41.5	49.8	55.6	2 30% An	36.5	40.3	42.6	48.4	59.9	40%	45.9	
•		-1	NO.	10 to	141	142	143	144			176	17 TE	SHE	T3	149	150	151	152	30 to	153	

TABLE 5	

TABLE 5 FIBERS MADE WITH VARIOUS ADDITIVE CONSTITUENTS	ANALYSES 5 Hour	Saline E-119 Fire Test	photeric Basic % Additive Extraction <u>Thickness</u> 2 Hour	Oxides Oxides Misc. Total (Incl.Total) ppm. Si Density Test	3_Additions	0.06 35.3 - 100.48 0.32% B ₂ O ₃ 53 2.0/1.94 P	34.8 - 100.42	0.06 35.2 - 100.5 0.64% " 43 2.0/1.89 P	0.06 35.2 - 100.58 0.82% " 45 2.0/2.00 P	0.06 34.9 - 100.39 1.33% " 47 2.0/1.95 P	0.06 34.9 - 100.43 1.37% " 45 2.0/ - P	0.06 34.6 - 100.48 2.22% " 46 2.0/2.02 P	0.06 32.0 - 100.07 8.41% " 52 2.0/6.45 P		addition).48 43.58 0.02 99.7 6.06% P ₂ O ₅ 71 2.0/1.94 F	addition	
FIBERS MADE WITH	ANALYSES		Amphoteric Basic	Oxides	203_Additions	35.3								•	205 addition	43.58	l <u>O, addition</u>	1
			Acidic	NO. Oxides	Fibers with B ₂ O ₃ Additions	164 65.12	165 64.42	S 166 65.24	167 65.32	158 65.43	169 65.47	TT 170 65.82	171 68.01	EE]	Fibers with P ₂ O ₅ addition	172 55.65	Fibers with Ti <u>o</u> , <u>addition</u>	i

	re Test	2 Hour	Test		ĺ	щ	ъ	1	1	ŧ	Д	[E 4	ሷ	ᄕᅩ	Д	വ	ᄄ	Įzų.	а	ı	ሲ	ì	Ē	д	Ъ	ᄄ
	E-119 Fire Test	Thickness	Density			2.0/2.01	2.0/2.00	1	ı	ı	2.0/2.02	2.0/2.00	2.0/2.03	2.0/2.17	2.0/2.00	2.0/2.20	2.0/2.37	2.0/2.03	2.1/2.11	ı	2.0/2.06	.1,	2.0/2.00	2.0/2.00	2.0/2.00	2.0/2.07
5 Hour	Saline	Extraction	is .mdd		į	25	48	55	32	40	46	29	57	44	25	38	25	10	15	51	13	12	ı	7	е	1.3
			otal)		($2r0_2$	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	:
		% Additive	(Incl.Total)			0.21%	0.40%	0.42%	0.50%	0.54%	0.58%	0.58%	0.83%	0.84%	2.31%	2.65%	3.11%	3.12%	3.27%	3.30%	3.30%	3.36%	3.37%	3.67%	3.69%	4.50%
			<u>Total</u>	•	0	100.52	99.44	99.75	99.70	89.66	98.11	99.31	98.08	99.74	99.05	100.09	100.21	99.62	102.21	100.95	100.20	100.59	100.47	99.07	98.53	99.89
			Misc.			ı	ı	ı	1	ı	ı	.01	ı	.02	. 02	ı	ı	ŧ	1	ı	1	1	1	1	1	.01
ANALYSES		Basic	Oxides	U		35.92	39.51	39.52	39.16	38.78	37.98	43.12	37.73	49.98	36.96	38.07	38.72	38.14	39.51	40.45	39.0	38.65	38.88	36.22	35.79	35.36
		Amphoteric	Oxides	2rO_additions	1 10	7.10	0.73	0.73	0.84	06.0	0.93	1.88	1.15	2.89	2.69	2.95	3.53	3.68	3.65	3.62	3.50	3.75	3.73	4.25	4.34	7.87
		Acidic	Oxides	Fibers with		0.00	59.2	59.5	59.7	0.09	59.2	54.3	59.2	46.85	59.4	59.05	57.96	57.80	59.05	56.88	57.7	58.19	57.86	58.6	58.4	58.65
		-	NO.	ਜ ਼ ਰਹ	177	# / T	175	176	177	178	179	180	181	182	182a	183	184	185	186	187	188	189	190	191	192	193

SUBSTITUTE SHEFT

												=										
	Test	2 Hour	Test		ር	: 1 :	i	д	Ŀ	Q 4	í	д	1	ᄕ	д	i	Įź,	釬	ĭ	ഥ	Ľτι	Ľι
	E-119 Fire Test	Thickness	Density		2.01/1.88	i	t	2.0/1.91	2.0/1.88	2.0/2.00	ı	2.0/1.88		2.0/1.95	2.0/1.91	i	2.0/1.98	2.0/1.88	1	2.0/1.98	2.0/2.00	2.0/2.00
5 Hour	Saline	Extraction	ppm. Si		56	0.5	18	51	24	35	17	45	49	12	31	1.3	7	18	7	13	0.9	0.7
		E	ન		& Mno	z	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
		% Additive	(Incl.Total		FeO3) =	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
		% Add	(Incl		0.06%	0.22%	0.52%	0.50%	0.69%	0.72%	0.80%	0.96%	1.02%	1.61%	1.92%	2.94%	3.05%	3.45%	3.50%	4.81%	8.0%	20.0%
			Total		100.34	99.81	100.00	99.1	98.62	98.20	100.09	100.32	97.46	99.44	100.15	100.02	99.55	100.31	99.82	100.37	100.0	100.0 2
ES			Misc.		1	0.07	0.07	ı	1	ı	0.07	ı	1	1	1	0.13	1	ı	ì	ı	ı	ı
ANALYSES		Basic	Oxides	suc	35.38	31.92	42.04	34.7	33.02	33.46	54.40	35.96	51.92	34,99	36.62	40.94	36.05	36.95	41.6	38.31	38.0	40.0
		Amphoteric	Oxides	Fibers with FeO, additions	90.0	18.02	7.49	90.0	1.20	1.20	6.72	90.0	0.94	1.15	90.0	15.28	1.20	90.0	14.32	90.0	2.0	ı
		Test Acidic	Oxides	s with	64.9	49.8	50.4	64.34	63.70	63.54	38.9	64.3	44.6	63.3	63.6	43.8	62,3	63.3	43.9	62.0	0.09	0.09
		Test	No.	Fiber	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211

SUBSTITUTE QUEET

										45										
	Pest.	2 Hour	Test		Ē	ഥ	Œ	Ŀų		-45- д		Д	Д	д	ď	Д	ф	д	ſъ	Ē
	E-119 Fire Test	Thickness	Density		2.0/1.97	2.0/1.97	2.0/1.98	2.0/1.98		2.0/2.16		2.0/1.91	2.0/1.97	2.0/1.97	2.0/1.90	2.0/1.90	2.0/1.99	2.0/1.99	2.0/2.16	2.0/1.87
5 Hour	Saline	Extraction	ppm. Si		76	69	78	70		28		45	57	54	30	51	57	43	50	70
,		% Additive	(Incl.Total)		0.00% La203	· = %9	%2.			0.09% Cr ₂ 03		8% Na ₂ 0		1% "	17% "	3% ==	1% "	 %0	: %0	11 % 11
		%			0.0	0.56%	0.72%	0.92%		0.0		0.28%	0.45%	0.71%	0.87%	0.93%	1.11%	1.40%	2.60%	6.84%
			<u>rotal</u>		99.63	99.68	99.28	99.54		99.72		100.34	100.21	100.26	100.40	99.99	100.37	100.36	100.06	100.1
S			Misc.		ı	ı	1	i		1		ı	ì	ı	i	1	ı	1	ı	
ANALYSES		Basic	Oxides	<u>suo</u>	41.47	41.82	41.72	41.58	ons	36.61	ns	35.58	35.68	35.80	35.70	35.63	36.11	36.3	37.0	39.74
		Amphoteric	Oxides	Fibers with La ₂ O ₃ additions	90.0	90.0	90.0	90.0	Fibers with Cr ₂ O ₃ additions	0.51	Fibers with Na ₂ O additions	90.0	90.0	90.0	1.20	90.0	90.0	90.0	90.0	90.0
		Test Acidic	Oxides	s with 1	58.1	57.8	57.5	56.9	s with (62.6	s with h	64.7	64.5	64.4	63.5	64.3	64.2	64.0	63.0	60.3
		Test	No.	Fiber	212	213	214	215	Fiber	216	Fiber	217	218	219	220	221	222	223	224	225

SUBSTITUTE SKEET

		,																				
	e Test	2 Hour	Test		Ē	Ē	দ্ৰ	Ĕ		 [<u>z</u> ,	46-	- ц	ሲ	Д	1	1	t	t	1	ı	1	ſz,
	E-119 Fire Test	Thickness	Density		2.0/3.50	2.0/5.23	2.0/3.42	2.0/3.86		2.0/2.10	2.0/5.38	2.0/2.00	2.0/2.00	2.0/2.00	ı	1	ı	ı	i	ı	ı	2.0/1.85
5 Hour	Saline	Extraction	ppm. Si		7	1.2	9.0	1.0		73	9.0	0.8	0.3	0.3	1.0	0.4	0.3	0.4	0.3	0.4	0.5	0.8
		% Additive	(Incl.Total)		ı	1	t.	i	less than 25% Basic Oxides)		F	i	ı	ı	1	ı	1	i	1	ı	1	ı
			Tota1		100.16	100.47	100.69	101.14	an 25% Ba	99.92	99.66	100	100	100.11	99.65	99.91	100.04	99.68	99.78	100.23	100	100.3
ES			Misc.		0.69	0.74	0.61	0.64	less th	1	i	ı	t	0.7	1	1	ı	ı	ı	ı	ı	1
ANALYSES		Basic	Oxides	ol Fibers	49.97	45.82	49.35	41.53	(Fibers with	21.4	g.g	10.0	ı	14.23	1.13	1.07	1.02	1.00	0.98	0.93	1	8.4
		Amphoteric	Oxides	Mineral Wool Fibers	9.50	13.99	12.24	17.10		47.52	59.2	40.0	46.0	25.55	46.39	46.84	49.22	50.05	51.00	53.10	72	27.4
		Test Acidic	Oxides	Conventional	40.0	39.92	38.49	41.87	Refractory Fibers -	31.0	37.1	50.0	54.0	59.62	52.1	52.0	49.8	48.6	47.8	46.2	28	64.5
		Test	No.	Conve	226	227	228	229	Refra	23 23 23 23 24	BS ²³²	E TIT	234 1	235	236	E 237	238	239	240	241	242	243

TABLE 6

CONTINUOUS SERVICE TEMPERATURE FOR CONSTANT $\sin_2/\cos/mgo$ RATIOS

30	<u>hrinkage</u>		1550	1520	1480	1600	1520	C L
•	lax 5% s			•••				
20	re for m		1420	1400	. 1350	1460	1410	
10	Continuous Service Temperature for max 5% shrinkage	° F	1470	1420	1370	1460	1400	•
5	s Service		1480	1430	1380	1460	1420	1
0	Continuous		1480	1440	1400	1500	1430	0
	SiO ₂ /CaO/MgO Ratio			٠,				
	Sio ₂ /Ca0/		50/50/0	50/40/10	50/30/10	60/40/0	60/30/10	00/00/00

-48-

Reasonable modifications and variations are possible from the foregoing disclosure without departing from either the spirit or scope of the invention as defined in the claims.

WO 89/12032 PCT/US89/02288

-49-

CLAIMS

;	1.	A	process	for	decomposing	a	silica-
containing	fibe	r	comprising	the	steps of:		•

1. providing an inorganic fiber prepared from a composition consisting essentially of:

5

10

15

20

25

- (a) 0.06-10 wt% of a material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 35-70 wt% SiO₂;
 - (c) 0-50 wt% MqO; and
- (d) the remainder consisting essentially of CaO, the total being 100% by weight;
- 2. subjecting the silica-containing fiber to a physiological saline fluid; and
- 3. extracting the silica at a rate of at least 5 parts per million (ppm) of silicon in 5 hours, thereby decomposing the silicacontaining fiber.
- 2. The process of Claim 1 wherein the composition of subsection 1(a) ranges from 0.06-5 wt% of material selected from the group consisting of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides and mixtures thereof.
 - 3. The process of Claim 1 wherein the composition of subsection 1(c) ranges from 0.25-50 wt% MgO.
- 4. The process of Claim 1 wherein the composition consists essentially of:

15

20

-50-

	(a)	0.06-1.5	5 wt%	of	Al ₂	O ₃ , 2	Zro,
TiO2,	B_2O_3 ,	iron	oxides	a	nd	mixt	ures
there	of;						

- (b) 40-70 wt% Sio,;
- (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 5. The process of Claim 4 wherein the composition in subsection 1(c) ranges from 0.25-50 wt% MgO.
 - 6. The process of Claim 1 wherein the composition consists essentially of:
 - (a) 1.5-3 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 40-66 wt% SiO2;
 - (c) 0-50 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
 - 7. The process of Claim 1 wherein the composition of subsection 1(c) ranges from 0.25-50 wt% MgO.
- 8. The process of Claim 1 wherein the composition consists essentially of:
 - (a) 3-4 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 40-63 wt% Sio,;
 - (c) 0-50 wt% MgO; and

BUBSTITUTE SHEET

15

- (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 9. The process of Claim 8 wherein the composition of subsection 1(c) ranges from 0.25-50 wt% MgO.
 - 10. The process of Claim 1 wherein the composition consists essentially of:
 - (a) 4-6 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 40-60 wt% SiO2;
 - (c) 0-25 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
 - 11. The process of Claim 10 wherein the composition of subsection 1(c) ranges from 0.25-25 wt% MgO.
- 12. The process of Claim 1 wherein the 20 composition consists essentially of:
 - (a) 6-8 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 35-54 wt% SiO₂;
 - (c) 0-25 wt% MgO; and
- 25 (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 13. The process of Claim 12 wherein the composition of subsection 1(c) ranges from 0.25-25 wt% 30 MgO.

É.

- 14. The process of Claim 1 wherein the composition consists essentially of:
 - (a) 8-10 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 35-54 wt% SiO₂;
 - (c) 0-20 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 15. The process of Claim 14 wherein the composition of subsection 1(c) ranges from 0.25-20 wt% MgO.
 - 16. The process of Claim 1 wherein the fiber has a diameter of less than 3.5 microns.
- 17. The process of Claim 1 wherein the silicon extraction rate is at least 20 ppm, the Al_2O_3 content is about 0.06-7 wt%, and the SiO_2 content is about 40-66 wt%.
- 18. The process of Claim 1 wherein the silicon extraction rate is at least about 50 ppm, the $A1_2O_3$ content is about 0.06-3 wt%, and the SiO_2 content is about 40-60 wt%.
- 19. The process of Claim 1 wherein the silicon extraction rate is at least about 50 ppm, the Al₂O₃ content is about 0.06-0.75 wt%, and the SiO₂ content is about 40-60 wt%.
 - 20. A process of protecting a structural wall from fire comprising the steps of:

PCT/US89/02288

15

20

	 providing a fiber blanket having a
	bulk density in the range of about 1.5 to
	about 3 lbs. per cubic foot (pcf); wherein the
	fiber blanket has the ability to pass ASTM
5	E-119 two-hour fire test; the fibers in the
	blanket have a diameter less than about 3.5
	microns; and the fiber is an inorganic fiber
	prepared from a composition consisting essen-
	tially of:
10	(a) 0-7 wt% of Al ₂ O ₃ , ZrO ₂ , TiO ₂ ,
	B ₂ O ₃ , iron oxides and mixtures thereof;
	(b) 58-70 wt% SiO ₂
	(a) 0-21 w+9 Man.

- (c) 0-21 wt% MgO;
- (d) 0-2 wt% alkali metal oxide; and
- (e) the remainder consisting essentially of CaO, the total being 100% by weight; and
- 2. placing the blanket next to the wall, and thereby protecting the wall from fire.
- 21. The process of Claim 20 wherein the composition of subsection 1(a) ranges from 0.06-7 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof.
- 22. The process of Claim 20 wherein the composition of subsection 1(c) ranges from 0.25-21 wt% MgO.
 - 23. The process of Claim 20 wherein the composition consists essentially of:
- (a) 0.06-3.0 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 58.5-70 wt% SiO₂;

SUBSTITUTE SHEET

WO 89/12032 PCT/US89/02288

-54-

10	١	Λ_	2.1		15-0
(C)	ŀ	v-	Z T	WES	MgO

- (d) 0-2 wt% alkali metal oxide; and
- (e) the remainder consisting essentially of Cao, the total being 100% by weight.

24. The process of Claim 20 wherein the composition of subsection 1(c) ranges from 0.25-21 wt% MgO.

25. The process of Claim 20 wherein the composition consists essentially of:

5

15

25

- (a) from about 3 wt% up to and including 4 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 58-63 wt% SiO₂;
 - (c) 0-8 wt% MgO;
 - (d) 0-2 wt% alkali metal oxide; and
- (e) the remainder consisting essentially of CaO, the total being 100% by weight.

26. The process of Claim 25 wherein the composition in subsection 1(c) ranges from 0.25-8 wt% MgO.

27. The process of Claim 25 wherein the composition consists essentially of:

(a) from about 4 wt% up to and including 6 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;

- (b) 58-61 wt% Sio,;
- (c) 0-7 wt% MgO;
- 30 (d) 0-2 wt% alkali metal oxide; and

PCT/US89/02288 WO 89/12032

-55-

- (e) the remainder consisting essentially of Cao, the total being 100% by weight.
- The process of Claim 25 wherein the 5 composition of subsection 1(c) ranges from 0.25-7 wt% MgO.
- 29. An inorganic fiber having an average fiber diameter of less than about 3.5 microns, a silicon extraction rate greater than about 0.02 wt% Si/day in a 10 physiological saline solution and having a composition consisting essentially of about:
 - (a) 0.06-5.0 wt% of material selected from the group consisting of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides and mixtures thereof;
 - (b) 35-70 wt% SiO₂;
 - (c) 0-50 wt% MgO; and
 - (d) the remainder consisting essentially of Cao, the total being 100 wt%.
- 20 inorganic fiber having a silicon 30. An extraction of at least about 10 ppm over a 5 hour period in physiological saline solution and having a composition consisting essentially of about:
 - (a) 0.06-1.5 wt% of material selected from the group consisting of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides and mixtures thereof;
 - 40-70 wt% SiO2; (b)
 - (c) 0-50 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100 wt%.

SUBSTITUTE SHEET

15

25

30

WO 89/12032 PCT/US89/02288

-56-

31. An inorganic fiber according to Claim 30
having a silicon extraction of at least about 20 ppm, an
average fiber diameter of less than about 3.5 microns,
and having an SiO2 content of about 40-66 wt%.

- 5 32. An inorganic fiber according to Claim 30 having a silicon extraction of at least about 50 ppm and having an SiO₂ content of about 40-60 wt% and a MgO content of about 0.25-25 wt%.
- 33. An inorganic fiber having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions and having a composition consisting essentially of about:

15

20

- (a) 1.5-3 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof:
 - (b) 40-66 wt% Sio;
 - (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100 wt%.
- 34. An inorganic fiber according to Claim 33 having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and an MgO content of from about .25-50 wt%.
- 25 35. An inorganic fiber according to Claim 33 having a silicon extraction of at least about 50 ppm, an SiO₂ content of from about 40-54 wt%, and an MgO content of from about 0.25-18 wt%.
- 36. An inorganic fiber having a silicon30 extraction of at least about 10 ppm over a 5 hour period

10

25

30

1

in physiological saline solutions and having a composition consisting essentially of about:

- (a) 3-4 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 40-63 wt% SiO₂;
 - (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100 wt%.
- 37. An inorganic fiber according to Claim 36 having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and a SiO_2 content from about 40-58 wt%.
- 15 38. An inorganic fiber according to Claim 37 having a silicon extraction of at least about 50 ppm and an SiO₂ content of from about 40-52 wt% and a MgO content of from about .25-18 wt%.
- 39. An inorganic fiber having a silicon extraction of at least about 10 ppm over a 5 hour time period in a physiological saline solution and having a composition consisting essentially of about:
 - (a) 4-6 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 40-59 wt% Sio,;
 - (c) 0-46 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100 wt%.

SUBSTITUTE SHEET

F

- 40. An inorganic fiber according to Claim 39 having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and an SiO_2 content from about 40-58 wt%.
- 41. An inorganic fiber having a diameter of less than about 3.5 microns and which passes the ASTM E119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf, said inorganic fiber having a composition consisting essentially of:
 - (a) .06-7 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;

15

20

- (b) 58-70 wt% Sio,;
- (c) 0-21 wt% MgO;
- (d) 0.1-2 wt% alkali metal oxide; and
- (e) the remainder consisting essentially of CaO, the total being 100 wt%; wherein the amount of alumina + zirconia is less than 6 wt% and the amount of iron oxides or alumina + iron oxides is less than 2 wt%.
- 42. An inorganic fiber according to Claim 41 having a composition consisting essentially of about:
 - (a) .06-1.5 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof; and

30

(b) 58.5-70 wt% SiO₂.

PCT/US89/02288

10

20

25

F

- 43. An inorganic fiber according to Claim 42 having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions.
- 44. An inorganic fiber according to Claim 41 having a composition consisting essentially of about:
 - (a) greater than 1.5 wt% up to and including 3 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof; and
 - (b) 58.5-66 wt% SiO₂.
 - 45. An inorganic fiber according to Claim 44 having a silicon extraction of at least about 10 ppm over a 5 hour period in a physiological saline solution.
- 46. An inorganic fiber according to Claim 41 having a composition consisting essentially of about:
 - (a) greater than 3 wt% up to and including 4 wt% material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 58-63 wt% SiO,;
 - (c) .25-8 wt% MgO;
 - (d) .1-2 wt% alkali metal oxide;
 and
 - (e) the remainder consisting essentially of CaO, the total being 100 wt%.
 - 47. An inorganic fiber according to Claim 46 having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions.

		48.	An	inc	organic	fibe	r	according	to	Claim	41
having	a	compos	siti	lon	consist	ting	es	sentially	of	about	:

- (a) greater than 4 wt% up to and including 6 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 58-59 wt% Sio,;
 - (C) .25-7 wt% MgO;
 - (d) .1-2 wt% alkali metal oxide;

and

- (e) the remainder consisting essentially of CaO, the total being 100 wt%.
- 49. An inorganic fiber according to Claim 48 having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions.
 - 50. An inorganic fiber having a silicon extraction of greater than about 0.02 wt% Si/day in a physiological saline solution, a continuous service temperature above about 1450°F and having a composition consisting essentially of about:
 - (a) .06-5 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;

25

20

WO 89/12032

5

10

- (b) 40-70 wt% SiO₂;
- (c) 0-6 wt% MgO; and
- (d) the remainder comprising essentially of CaO, the total being 100 wt%.
- 51. The fiber of Claim 50 wherein the composition of subsection (c) has an amount of 0.25-6 wt% MgO.

- 52. An inorganic fiber having a silicon extraction of greater than about 0.02 wt% Si/day in a physiological saline solution, having a continuous service temperature above about 1500°F and having a composition consisting essentially of about:
 - (a) .06-1.5 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;

5

- (b) 60-70 wt% SiO₂;
- (c) 0-1 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100 wt%.
- 53. The fiber of Claim 52 wherein the composition of subsection (c) has an amount 0.25-1 wt% MgO.
 - 54. An inorganic fiber according to Claims 1 or 29 made from pure oxidic raw materials.
- 55. An inorganic fiber according to Claim 1 or 29 or 41 in which at least a portion of the raw materials is selected from a group consisting of talc, metallurgical slags, siliceous rocks, kaolin, and mixtures thereof.
 - 56. An inorganic fiber having a composition consisting essentially of about:

25

30

- (a) 8.0-9.3 wt% Al_2O_3 ;
- (b) 39-52 wt% SiO₂;
- (c) 22-38 wt% CaO; and
- (d) 7-14 wt% MgO, the total being 100 wt% and having a silica extraction in a saline solution of at least about 5 ppm over a 5 hour period.

SUBSTITUTE SHEET

57. An inorganic fiber composition having a composition consisting essentially of about:

- (a) 49-61 wt% SiO₂;
- (b) 10-36 wt% CaO; and
- (c) 3-23 wt% MgO, the total being 100 wt% and having a SiO_2 extraction in a saline solution of between about 24-67 ppm over a 5 hour period.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 89/12032 (51) International Patent Classification 4: (11) International Publication Number: C03C 13/00, 13/02, 25/06 (43) International Publication Date: 14 December 1989 (14.12.89) **A3** (81) Designated States: AT (European patent), AU, BE (European patent), BR, CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KP, KR, LU (European patent), NL (European patent), NO, SE (European patent) PCT/US89/02288 (21) International Application Number: 25 May 1989 (25.05.89) (22) International Filing Date: patent). (30) Priority data: US 1 June 1988 (01.06.88) 201,513 Published With international search report (71) Applicant: MANVILLE SALES CORPORATION [US/ Before the expiration of the time limit for amending the US]; Manville Plaza, 5th Floor, P.O. Box 5108, Denver, claims and to be republished in the event of the receipt of CO 80217 (US). (72) Inventors: OLDS, Leonard, Elmo; 977 South Lake Gulch Road, Castle Rock, CO 80104 (US). KIELMEYER, William, Henry; 3374 West Chenango Avenue; Englewood, CO 80110 (US). (88) Date of publication of the international search report: 5 April 1990 (05.04.90) (74) Agent: SCHRAMM, William, J.; Brooks & Kushman, 2000 Town Center, Suite 2000, Southfield, MI 48075 (US).

(54) Title: PROCESS FOR DECOMPOSING AN INORGANIC FIBER

(57) Abstract

Inorganic fibers which have a silicon extraction of greater than 0.02 wt% Si/day in physiological saline solutions. The fiber contains SiO₂, MgO, CaO, and at least one of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof. Also disclosed are inorganic fibers which have diameters of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

щų	icadons dires. 2.0 c 2 c .				
ATU BB BE BF BG BI BR CCF CG CH CM DE DK	Austria Australia Barbados Belgium Burkina Fasso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Cameroon Germany, Federal Republic of Denmark	ES FI ES ES ES ES ES ES ES ES ES ES ES ES ES	Spain Finland France Gabon United Kingdom Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Liechtenstein Sri Lanka Luxembourg Monaco	MG ML MR NL NO RO SO SE ST FI FI FI FI FI FI FI FI FI FI FI FI FI	Madagascar Mali Mauritania Malawi Netherlands Norway Romania Sudan Sweden Senegal Soviet Union Chad Togo United States of America

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 89/02288

1 61 466	SICATION O			1705 89702288
		F SUBJECT MATTER (It several classific Patent Classification (IPC) or to both Nation		
10c4		13/00, C 03 C 13/02		
IPC :		13/00, 6 03 6 13/02	, c 03 c 23/00	
II. FIELDS	SEARCHED	Minimum Document	ation Engels d 7	
Classificatio	n System I		lassification Symbols	
	;			
IPC ⁴	i !	C 03 C		
		Documentation Searched other th to the Extent that such Documents a		
				•
III. DOCU	MENTS CON	SIDERED TO BE RELEVANT		
Category •	Citation	of Document, 15 with Indication, where appro	opriate, of the relevant passages 12	Relevant to Claim No. 13
x	WO,	A, 87/05007 (MANVILI 27 August 1987 see claim 10; exampl lines 11-14		1-19
A	FR,	A, 1165275 (PILKING) 21 October 1958 see claim 1	TON BROTHERS LTD)	1-15,17-19
A	GB,	A, 2083017 (NIPPON S 17 March 1982 see claims 1,2; page samples 9,14; page 2	e 5, table 1,	1-15,17- 19
A	GB,	A, 1446910 (JAPANA CO.) 18 August 1976 see page 1, lines 2		1-3,6-15, 17,18
А	us,	A, 4366251 (RAPP) 28 December 1982 see claim 1	/·	1,3,12-15,
"A" doi coi "E" eni fili "L" do wh cut "O" do oti "P" do	cument defining naidered to be filter document in ng date cument which in ach is cited to atton or other a cument referring the means cument publish er than the price	i cited documents: 19 2 the general state of the art which is not of particular relevance but published on or after the international may throw doubts on priority claim(e) or establish the publication date of another pecial reason (as specified) g to an oral disclosure, use, exhibition or ed prior to the international filing date but prity date claimed	"T" later document published after or priority date and not in conflicted to understand the princip invention "X" document of particular relevant cannot be considered novel of involve an inventive step "Y" document of particular relevant cannot be considered to involve document is combined with one ments, such combination being in the art. "4" document member of the same	ict with the application but le or theory underlying the ice; the claimed invention reannot be considered to ice; the claimed invention an inventive step when the or more other such docu-obvious to a person skilled
Date of th		oletion of the international Search	Date of Mailing of this International S 2 7 FEV, 19	earch Report
Internatio	nai Searching	Authority	Signature of Authorized Officer	
	EUROPE!	N PATENT OFFICE		T.K. WILLIS

II. DOCUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET	Relevant to Claim No
stedory .	Citation of Document, with indication, where appropriate, of the relevant passages	Notes to the same of the same
A :	Chemical Abstracts, volume 81, no. 22, 27 November 1978, (Columbus, Ohio, US) see page 285, abstract 184615w, 2 JP, A, 7856207 (NIPPON SHEET GLASS CO., LTD) 22 May 1978	
x	WO, A, 87/05007 (MANVILLE CORP.) 27 August 1987 see claims 1-10; examples I,II,III; page 5, lines 1-14; page 4, lines 13-21	20-29,50- 53
Y		29,41,44- 49
Α .		42,43
X ·	GB, A, 1446910 (JAPAN INORGANIC MATERIAL CO.) 18 August 1976 see page 1, lines 22-34; page 1, line 58 - page 2, line 32	50,51
Y .	Time 56 page 27 com	29,41,44-
). A		20-28,42,
х	US, A, 2051279 (THORNDYKE) 21 March 1934 see claims 1-4; page 2, right-hand column, lines 16-49; page 2, left- hand column, lines 28-36	50,51
Y	•	29
A		20-28,41- 49,52,53
A	US, A, 4366251 (RAPP) 28 December 1982 see claim 1	20-22,41
Α .	GB, A, 2083017 (NIPPON SHEET GLASS CO.) 17 March 1982 see claims 1,2; page 5, table 1, samples 9,14; page 2, lines 11-64	20-29,41 49,50-53
A .	FR, A, 1165275 (PILKINGTON BROTHERS LTD) 21 October 1958 see claims 1,4	20-29,41 49,50-53
A	Chemical Abstracts, volume 81, no. 22, 2 December 1974, (Columbus, Ohio, US), ./	20-22,41

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET
see page 241, abstract 140076b, & SU, A, 409981 (STATE SCIENTIFIC- RESEARCH INSTITUTE OF CONSTRUCTION MATERIALS AND PRODUCTS) 5 January 1974
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE
This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:
1. Claim numbers because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim numbers
3. Claim numbers
VIE OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2
This international Searching Authority found multiple inventions in this international application as follows:
See Form PCT/ISA/206 dated 29th September 1989.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims: 1-19,54,55;20-28;29,50-53;41-49
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:
4. As all searchable claims could be searched without effort justifying an additional fee, the international Searching Authority did not invite payment of any additional fee. Remark on Protest
X The additional search fees were accompanied by applicant's protest.
No protest accompanied the payment of additional search fees.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 8902288 SA 29321

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 21/02/90

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Paten mem	Publication date	
WO-A- 8705007	27-08-87	AU-A- EP-A- JP-T-	6948887 0257092 63502746	09-09-87 02-03-88 13-10-88
FR-A- 1165275		CH-A- GB-A-	360770 810773	
GB-A- 2083017	17-03-82	JP-A- US-A-	57047741 4443550	18-03-82 17-04-84
GB-A- 1446910	18-08-76	JP-A- AU-A- CA-A- US-A-	50014820 5892673 1022195 4038089	17-02-75 06-02-75 06-12-77 26-07-77
US-A- 4366251	28-12-82	None	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
WO-A- 8705007	27-08-87	AU-A- EP-A- JP-T-	6948887 0257092 63502746	09-09-87 02-03-88 13-10-88
GB-A- 1446910	18-08-76	JP-A- AU-A- CA-A- US-A-	50014820 5892673 1022195 4038089	17-02-75 06-02-75 06-12-77 26-07-77
U\$-A- 2051279		None		~~~~~
US-A- 4366251 ·	28-12-82	None		
GB-A- 2083017	17-03-82	JP-A- US-A-	57047741 4443550	18-03-82 17-04-84
FR-A- 1165275		CH-A- GB-A-	360770 810773	