Project Development Phase Model Performance Test

Date	15 February 2025	
Team ID	PNT2025TMID02609	
Project Name	Predicting Plant Growth Stages with Environmental and Management Data Using Power Bl	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Screenshot/values		
1.	Data Rendered	Plant growth data including soil type,fertilizer type, water frequency,temperature, humidity and growth milestone		
2.	Data Preprocessing	Cleaned missing values ,standardized data formats and remove duplicates		
3.	Utilization of Data filters	Filters applied for temperature range,fertilizer type ,soil type and water frequency		
4.	DAX Queries Used	Historic Data DAX Queries 1. Total Plants Observed Total Plants = COUNTROWS('Historic_Data')		
		2. Average Growth Milestone Average Growth Milestone = AVERAGE('Historic_Data'[Growth_Milestone])		

3. Maximum Temperature Recorded

Max Temperature = MAX('Historic_Data'[Temperature])

4. Minimum Temperature Recorded

Min Temperature = MIN('Historic_Data'[Temperature])

5. Average Humidity

Average Humidity = AVERAGE('Historic_Data'[Humidity])

6. Plants with High Sunlight Hours (e.g., >8 hours)

High Sunlight Plants = CALCULATE(COUNTROWS('Historic_Data'), 'Historic_Data'[Sunlight_Hours] > 8)

7. Plants with Low Growth (Growth Milestone < 50)

Low Growth Plants = CALCULATE(COUNTROWS('Historic_Data'), 'Historic_Data'[Growth_Milestone] < 50)

8. Growth Milestone by Fertilizer Type

Growth by Fertilizer =
AVERAGEX(VALUES('Historic_Data'[Fertilizer_
Type]),
CALCULATE(AVERAGE('Historic_Data'[Growth
_Milestone])))

9. Growth Milestone by Soil Type

Growth by Soil =
AVERAGEX(VALUES('Historic_Data'[Soil_Type
]),
CALCULATE(AVERAGE('Historic_Data'[Growth
Milestone])))

10. Humidity Level Category (Custom Column)

Humidity Category =
SWITCH(
TRUE(),
'Historic_Data'[Humidity] < 30, "Low",
'Historic_Data'[Humidity] >= 30 &&
'Historic_Data'[Humidity] <= 70, "Medium",
'Historic_Data'[Humidity] > 70, "High"
)

Predicted Data DAX Queries

1. Total Predictions Made

Total Predictions =
COUNTROWS(Predicted_Data')

2. Average Predicted Growth Milestone

Average Predicted Growth =
AVERAGE('Predicted_Data'[Predicted_Growth_

3. Prediction Model Accuracy Display

Model Accuracy = 0.64

Milestone])

4. Difference Between Actual and Predicted Growth

Growth Difference =
'Predicted_Data'[Actual_Growth_Milestone] 'Predicted_Data'[Predicted_Growth_Milestone]

5. Percentage Error Between Actual and Predicted

```
Percentage Error =
DIVIDE(
ABS('Predicted_Data'[Actual_Growth_Mileston
e] -
'Predicted_Data'[Predicted_Growth_Milestone])
  'Predicted_Data'[Actual_Growth_Milestone],
) * 100
6. Predictions Above Accuracy Threshold
(Example > 70%)
High Accuracy Predictions =
CALCULATE(COUNTROWS('Predicted Data'),
'Predicted_Data'[Predicted_Growth_Milestone]
>= 70)
7. Predictions with Large Deviations (Example
> 20)
Large Deviations =
CALCULATE(COUNTROWS('Predicted_Data'),
ABS('Predicted_Data'[Actual_Growth_Mileston
el -
'Predicted_Data'[Predicted_Growth_Milestone])
> 20
8. Predicted Growth by Soil Type
Predicted Growth by Soil =
AVERAGEX(VALUES('Predicted_Data'[Soil_Ty
pel),
CALCULATE(AVERAGE('Predicted_Data'[Predicted_Data']
cted_Growth_Milestone])))
9. Predicted Growth by Fertilizer Type
Predicted Growth by Fertilizer =
```

		AVERAGEX(VALUES('Predicted_Data'[Fertilize r_Type]), CALCULATE(AVERAGE('Predicted_Data'[Predicted_Growth_Milestone])))
		10. Prediction Accuracy Category Prediction Category = SWITCH(TRUE(), [Percentage Error] < 10, "High Accuracy", [Percentage Error] >= 10 && [Percentage Error] <= 30, "Moderate Accuracy", [Percentage Error] > 30, "Low Accuracy"))
5.	Dashboard Design	 No. of Visualizations/Graphs KPI Card - Average Humidity KPI Card - Average Temperature Cluster Bar Chart - Growth By Soil Type and Fertilizer Type Line Chart - Growth by Humidity Range and Water Frequency Clustered Bar Chart - Growth by Temperature range Donut Chart - Growth By Water Frequency Clustered Column Chart - Average Temperature by Temperature Range Slicer - Temperature Range Slicer - Fertilizer Type Slicer - Soil Type

6. Report Design

No. of Visualizations/Graphs

Historical data

Line Chart - Displays Sunlight Hours Vs Average Growth Milestone.

Pie Chart - Shows Fertilizer Type Usage Percentage.

Cluster Column Chart - Compares Fertilizer Type Vs Average Growth Milestone.

Stacked Bar Chart - Shows Growth milestone Distribution Across Soil Types.

KPI Cards - Total Plants Observed, Average Growth Milestone, Average Water Frequency.

Insights from Data:

Soil Type: Loamy and Sandy Loam soils result

in better plant growth

Humidity: Plants thrived at humidity levels

between 50%-70%.

Temperature: Growth milestones improved when temperatures ranged from 22°C to 28°C.

Water Frequency: Optimal growth was observed with watering every 2-3 days.

Fertilizer Type: Fertilizer B and C positively impacted growth compared to Fertilizer A

Predicted Data

KPI Cards

- Total Plants Predicted
- Average Growth Milestone
- Model Accuracy (64%)

Clustered Column Chart

Actual vs Predicted Growth Milestone

Bar Chart

 Fertilizer Type vs Predicted Growth Milestone

Pie Chart/Donut Chart

Soil Type Distribution

Line Chart

 Sunlight Hours vs Predicted Growth Milestone

Insights from Data

- Model accuracy is 64%, providing moderately reliable predictions.
- Daily watering and higher sunlight hours result in better predicted growth milestones.
- Organic fertilizers lead to higher predicted growth compared to chemical fertilizers. Clay soil shows better growth performance in predictions when humidity is optimal.
- Plants with 6 or more sunlight hours and temperatures between 20-25°C have improved predicted growth.

