Chapter Two

Structures of Solids

Chapter 2 Slide 1 of 85

States of Matter Compared

Chapter 2 Slide 2 of 85

Table 2.11 Comparison of intermolecular and intramolecular interactions

Type of interaction	Example	Energy of interaction between molecules or units ~0.1–5 kJ/mol or ~10 (T _{bp} K) J/mol		
Dispersion (Instantaneous dipole-induced dipole)	H ₂ (bp 20 K) CH ₄ (bp 112 K) CCl ₄ (bp 350 K) CF ₄ (bp 112 K) n-C ₂₈ H ₅₈ (mp 336 K)			
Dipole-induced dipole	$Xe(H_2O)_x$ solvation of noble gases or hydrocarbons (see text)			
Ion-induced dipole	Ions in a molecular matrix (see text)			
Dipole-dipole	NF ₃ — NF ₃ (bp 144 K) BrF — BrF (bp 293 K)	5-20 kJ/mol,		
Ion-Dipole	K(OH ₂); Ions in aqueous solution and solid hydrates	67 kJ/mol (energy per bond		
Hydrogen bond	(H ₂ O) _x , (HF) _x , (NH ₃) _x alcohols, amines HF ₂	4-50 kJ/mol for neutral molecules		
Cation-anion	NaCl, CaO	400-500 kJ/mol of MX "molecules"		
Covalent bond	H ₂ F ₂ Cl ₂ Li ₂	432.08 kJ/mol 154.6 kJ/mol 239.32 kJ/mol · 100.9 kJ/mol		

Some Characteristics of Crystalline Solids

Type	Structural Intermolecular Particles Forces		Typical Properties	Examples	
Molecular					
Nonpolar	Atoms or nonpolar molecules	Dispersion forces	Extremely low to moderate melting points; soluble in nonpolar solvents	Ar, H ₂ , I ₂ , CCl ₄ , CH ₄ , CO ₂	
Polar	Polar molecules	Dispersion forces, dipole-dipole and dipole-induced dipole attractions	Low to moderate melting points; soluble in some polar and some nonpolar solvents	HCl, H ₂ S, CHCl ₃ , (CH ₃) ₂ O, (CH ₃) ₂ CO	
Hydrogen- bonded	Molecules with H bonded to N,O, or F	Hydrogen bonds	Low to moderate melting points; soluble in some hydrogen-bonded and some polar liquids	H ₂ O, HF, NH ₃ , CH ₃ OH, CH ₃ COOH	
Network Covalent	Atoms	Covalent bonds	Most are very hard; sublime or melt at very high temperatures; most are nonconductors of electricity	C(diamond), C(graphite) SiC, SiO ₂ , BN	
Ionic	Cations and anions	Electrostatic attractions	Hard; brittle; moderate to very high melting points; nonconductors as solids, but electrical conductors as liquids; many are soluble in water	NaCl, CaF ₂ , K ₂ S, MgO	
Metallic	Cations and delocalized electrons	Metallic bonds	Hardness varies from soft to very hard; melting points vary from low to very high; lustrous; ductile; malleable; good to excellent conductors of heat and electricity	Na, Mg, Al, Fe, Cu, Zn, Mo, Ag, Cd, W, Pt, Hg, Pb	
		Chapter	: 2	Slide 4 of 85	

Network Covalent Solids

- These substances contain a network of covalent bonds that extend throughout a crystalline solid, holding it firmly together.
- In material science, polymorphism is the ability of a solid material to exist in more than one form or crystal structure. Diamond, graphite and the Buckyball are examples of **polymorphs** of carbon. -ferrite, austenite, and -ferrite are polymorphs of iron. When found in elemental solids the condition is also called **allotropy**.
- The **allotropes** of carbon provide a good example
 - 1. Diamond has each carbon bonded to four other carbons in a tetrahedral arrangement using sp³ hybridization.
 - 2. Graphite has each carbon bonded to three other carbons in the same plane using sp² hybridization.
 - 3. Fullerenes and nanotubes are roughly spherical and cylindrical collections of carbon atoms using sp² hybridization.

Chapter 2 Slide 5 of 85

Crystal Structure of Diamond

Chapter 2 Slide 6 of 85

Crystal Structure of Graphite

Structure of a Buckyball

Carbon Nano-tube

A nanotube (also known as a buckytube) is a member of the fullerene structural family, which also includes buckyballs. Whereas buckyballs are spherical in shape, a nanotube is cylindrical, with at least one end typically capped with a hemisphere of the buckyball structure. Their name is derived from their size, since the diameter of a nanotube is on the order of a few nanometers, while they can be up to several centimeters in length. There are two main types of nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).

Chapter 2 Slide 9 of 85

Experimental Determination of Crystal Structures

Chapter 2 Slide 10 of 85

William Lawrence Bragg (left) and William Henry Bragg.

In 1915, Bragg received the Nobel Prize.

Chapter 2 Slide 11 of 85

X-Ray Diffraction Image & Pattern

Single crystal

Powder

Chapter 2 Slide 12 of 85

Crystal Lattices

- To describe crystals, three-dimensional views must be used.
- The repeating unit of the lattice is called the **unit cell**.
- The **simple cubic cell** (primitive cubic) is the simplest unit cell and has structural particles centered only at its corners.
- The **body-centered cubic** (**bcc**) structure has an additional structural particle at the center of the cube.
- The **face-centered cubic** (**fcc**) structure has an additional structural particle at the center of each face.

Slide 13 of 85

Unit Cells In Cubic Crystal Structures

Chapter 2 Slide 14 of 85

Primitive cubic

Body-centered cubic

Face-centered cubic

Chapter 2 Slide 15 of 85

Occupancies per Unit Cells

```
Primitive cubic: a = 2r
         1 atom/unit cell
        occupancy = [4/3(\pi r^3)]/a^3 = [4/3(\pi r^3)]/(2r)^3
                      =0.52=52\%
Body-centered cubic: a = 4r/(3)^{1/2}
        2 atom/unit cell
        occupancy = 2 \times [4/3(\pi r^3)]/a^3 = 2 \times [4/3(\pi r^3)]/[4r/(3)^{1/2}]^3
                      = 0.68 = 68\%
Face-centered cubic: a = (8)^{1/2} r
         4 atom/unit cell
        occupancy = 4 \times [4/3(\pi r^3)]/a^3 = 4 \times [4/3(\pi r^3)]/[(8)^{1/2} r]^3
                      =0.74 = (74\%)
```

Chapter 2 Slide 16 of 85

Closest packed

Chapter 2 Slide 17 of 85

Crystal Structures of Metals

3 Li bccb hcp ccp 11 Na bcc hcp	4 Be hcp bcc	hcc: body-centered cubic hcp (2P): hexagonal close-packed ccp (3P): cubic close-packed 3P': distorted ccp 4P: double hexagonal, length of c axis is doubled 9P: ABABCBCAC sequence 3·2PT: diamond structure						13 Al	14 Si 3·2 <i>PT</i>				
19 K bcc	20 Ca ccp hcp	21 Sc hcp bcc	hcp hcp bcc bcc 3P' bcc hcp ccp ccp hcp								31 Ga other	32 Ge 3·2 <i>PT</i>	
37 Rb bcc	38 Sr ccp hcp	39 Y hcp bcc	40 Zr hcp bcc	41 Nb bcc	42 Mo bcc	43 Tc hcp	44 Ru hcp	45 Rh ccp	46 Pd ccp	47 Ag ccp	48 Cd hcp	49 In 3P'	50 Sn 3·2 <i>PT</i>
55 Cs bcc	56 Ba bcc	71 Lu hcp bcc	72 Hf hcp bcc	73 Ta bcc	74 W bcc	75 Re hcp	76 Os hcp	77 Ir ccp	78 Pt ccp	79 Au ccp	80 Hg other	81 TI hcp bcc	82 Pb ccp
57 La 4P hcp bcc	58 Ce ccp 4P bcc	59 Pr 4P hcp ccp	60 Nd 4P ccp bcc	61 Pm 4P	62 Sm 9P bcc	63 Eu bcc	64 Gd hep bcc	65 Tb hcp bcc	66 Dy hcp bcc	67 Ho hcp bcc	68 Er hcp hcc	69 Tm hcp bcc	70 Yb ccp bcc hcp
89 Ac <i>ccp</i>	90 Th ccp bcc	91 Pa bcc ccp	92 U other bcc	93 Np other bcc	94 Pu other bcc	95 Am 4P ccp	96 Cm 4 <i>P</i> <i>ccp</i>	97 Bk 4P ccp	98 Cf	99 Es	100 Fm	101 Md	102 No

[&]quot;Adapted from S.-M. Ho and B. E. Douglas, J. Chem. Educ. 1972, 49, 74.

⁵ Room-temperature structures are listed first.

Interionic Forces of Attraction

$$E = (Z^+Z^-e^2)/4\pi\epsilon r$$
 $e = 1.6 \times 10^{-19} \text{ C}$

In vacuum, $\varepsilon_0 = 8.85 \text{ x } 10^{-12} \text{ C}^2\text{m}^{-1}\text{J}^{-1}$

In water, $\varepsilon_{\text{H2O}} = 7.25 \text{ x } 10^{-10} \text{ C}^2\text{m}^{-1}\text{J}^{-1} = 82 \varepsilon_0$

In liquid ammonia, $\varepsilon_{NH3} = 2.2 \text{ x } 10^{\text{-}10} \text{ C}^2\text{m}^{\text{-}1}\text{J}^{\text{-}1} = 25 \ \varepsilon_0$

Unit Cell of Rock-Salt (Sodium Chloride)

 \bigcirc = Na⁺

Coord. #: Na+: 6; Cl-: 6

atom/ unit cell

Na: Cl = 4: 4 = 1: $1 \implies NaCl$

Cl at fcc

Na⁺ at O_h holes

Chapter 2 Slide 21 of 85

Unit Cell of Cesium Chloride

Coord. #: Cs+: 8; Cl-: 8

atom/ unit cell

Cs: Cl= 1: 1 \Longrightarrow CsCl

Cl⁻ at primitive cubic Cs⁺ at Cubic holes

Chapter 2 Slide 22 of 85

Unit Cell of Cubic Zinc Sulfide (Sphalerite or Zinc blende)

Coord. #: Zn²⁺: 4; S²⁻: 4

atom/ unit cell

Zn: S = 4: 4 = 1: $1 \implies ZnS$

S²⁻ at fcc Zn²⁺ at ½ Td holes

Chapter 2 Slide 23 of 85

A Born-Haber Cycle to Calculate Lattice Energy

NaCl(s)
$$\longrightarrow$$
 Na+(g) + Cl-(g)
$$\begin{array}{cccc}
DH_f \circ (\text{NaCl}) & & & & & & \\
DH_{sublimation} (\text{Na}) & & & & & \\
Na(s) + 1/2Cl_2(g) & & & & & & \\
\end{array}$$
Na(g) + Cl(g)
$$\begin{array}{cccc}
Na(g) + Cl(g) & & & & \\
\end{array}$$

lattice energy
$$U_0 = -DH_f^0(\text{NaCl}) + DH_{sublimation}(\text{Na}) + 1/2D(\text{Cl-Cl}) + IE(\text{Na}) - EA(\text{Cl})$$

$$= (+411 + 107 + 122 + 496 - 349) \text{ kJ/mol}$$

$$= +787 \text{ kJ/mol}$$

Chapter 2 Slide 24 of 85

Lattice Energy & Madelung Constant

$$M^{+}_{(g)} + X^{-}_{(g)} \rightarrow MX_{(s)}$$
 $\Delta H = -U_0 < 0$

 U_0 : lattice energy

Factors contributed to Lattice energy

- electrostatic energy ~90%
- repulsion of close shells ~8%
- dispersion forces ~1%
- zero-point energy (lattice vibration at 0K)
- correction for heat capacity

~1%

Chapter 2 Slide 25 of 85

Electrostatic energy in a crystal lattice, between a pair of ions

$$E_{c} = \frac{A(Z^{+}Z^{-}e^{2})}{4\boldsymbol{p}\boldsymbol{e}_{0}r}$$

A: Madelung Constant

For NaCl crystal, $Z^+ = Z^- = 1$ r = d

Figure 5.22 Distances to neighboring ions in the NaCl lattice.

$$E_c = -\frac{6e^2}{d} + \frac{12e^2}{\sqrt{2}d} - \frac{8e^2}{\sqrt{3}d} + \frac{6e^2}{2d} - \frac{24e^2}{\sqrt{5}d} + \frac{24e^2}{\sqrt{6}d} \dots$$
$$= -\frac{e^2}{d} \left(6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{2} + \frac{24}{\sqrt{5}} - \frac{24}{\sqrt{6}} \dots \right)$$

Chapter 2

$$A = 6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{2} + \frac{24}{\sqrt{5}} - \frac{24}{\sqrt{6}} \dots$$

The value of Madelung constant is determined only by the "geometry of the lattice", and independent of the "ionic radius" and "charge".

Table 5.12 Values of Madelung constants^a

Structure	Madelung constant	Structure	Madelung constant	
Sodium chloride	1.74756	Rutile (TiO ₂)	2.408	
Cesium chloride	1.76267	Anatase (TiO ₂)	2.400	
Zinc blende (ZnS)	1.63806	Cadmium iodide	2.36	
Wurtzite (ZnS)	1.64132	β -Quartz (SiO ₂)	2.201	
Fluorite (CaF ₂)	2.51939	Corundum (Al ₂ O ₃)	4.040	

^a Values are geometrical Madelung constants. "Conventional" values differ in cases where the charges differ for the cations and anions, as for CaF₂, TiO₂, and Al₂O₃.

Chapter 2 Slide 27 of 85

Born equation

$$PE = \frac{Ae^2Z_1Z_2}{d} + \frac{Be^2}{d^n}$$

electrostatic energy

repulsion of close shells

B: constant

n: Born exponent

Ion configuration	n
He	5
Ne	7
Ar, Cu ⁺	9
Kr, Ag+	10
Xe, Au ⁺	12

Chapter 2 Slide 28 of 85

At minimum PE, attractive and repulsive forces are balanced, and $d = d_0$. $\partial(PE)$

$$\frac{\partial (PE)}{\partial d} = 0$$

$$d_0 = \left(-\frac{nB}{AZ_1Z_2}\right)^{1/(n-1)}$$

$$B = \frac{-d_0^{(n-1)} A Z_1 Z_2}{n}$$

$$(PE)_0 = \frac{-Ae^2Z_1Z_2}{d_0} \left(\frac{1}{n} - 1\right)$$

Let $U_0 = -(PE)_0 N$ N: Avogadro's number

$$U_0 = \frac{-NAe^2 Z_1 Z_2}{d_0} \left(1 - \frac{1}{n}\right)$$
 Born-Lande equation

Chapter 2

$$U_0 = \frac{-NAe^2 Z_1 Z_2}{d_0} \left(1 - \frac{1}{n} \right)$$

For NaCl

$$A = 1.74756$$
 $Z_1 = 1, Z_2 = -1$
 $d_0 = r_{Na+} + r_{Cl-} = 2.81 \times 10^{-10} m$
 $n = (n_{Na+} + n_{Cl-})/2 = (7+9)/2 = 8$

$$\Rightarrow$$
 $U_0 = 755.2 \text{ kJ/mol}$

experimental $U_0 = 770 \text{ kJ/mol}$

Chapter 2

Modification of Born-Lande equation

1. Born-Mayer equation

Improving the repulsion

$$U_0 = \frac{NAZ^+Z^-e^2}{4pe_0d_0} (1 - \frac{0.345}{d_0})$$
Unit in ?, 10⁻¹⁰ m

2. Kapustinskii equation

$$U_0 = \frac{-nkZ^+Z^-}{d_0} (1 - \frac{0.345}{d_0})$$

$$k = 1.21 MJ. ? mol^{-1}$$

A? crystal lattice? r+/r-? r_0 A/n ~constant

$$n= ions \ per formula$$

 $e.g. \ n= 2 \ for \ NaCl$
 $n= 5 \ for \ Al_2O_3$

Chapter 2 Slide 31 of 85

$$MCO_{3(s)} \rightarrow MO_{(s)} + CO_{2(g)}$$

Data at 298K	Mg	Ca	Sr	Ba
$DG^{0}(kJ/mol)$	+48.3	+130.4	+183.8	+218.1
$DH^0(kJ/mol)$	+100.6	+178.3	+234.6	+269.3
$DS^0(J/K mol)$	+175.0	+160.6	+171.0	+172.1
T (?C)	300	840	1100	1300

$$\Delta G^{0} = \Delta H^{0} - T\Delta S^{0}$$
decomposition $T = \frac{\Delta H^{0}}{\Delta S^{0}}$

A small cation increases the lattice enthalpy of the oxide more than that of a carbonate.

Chapter 2 Slide 32 of 85

Solubility of ionic compounds

$$MX(c) \xrightarrow{U_0} M^+(g) + X^-(g)$$

$$\downarrow^{\Delta H_{M^+}} \downarrow^{\Delta H_{X^-}}$$

$$M^+(solv.) + X^-(solv.)$$

Enthalpy of solution

Hydration enthalpy

$$L = \Delta H_{M^+} + \Delta H_{X^-} + U_0$$

Free energy of solution

$$\Delta G^0 = \Delta H^0 - T\Delta S^0 = L - T\Delta S^0$$

$$RT \ln K_{\rm sp} = -L + T\Delta S^0$$

Chapter 2 Slide 33 of 85

Figure 5.23 Hydrated Li⁺ and SO₄²⁻ ions.

Hydration enthalpy
$$\Delta H_{hyd} = -\frac{Z^2}{2r} \left(1 - \frac{1}{e} \right)$$

$$U_0 \infty \frac{1}{r_+ + r_-}$$

$$\Delta H_{hydration} = \Delta H_{M^+} + \Delta H_{X^-} = \infty \frac{1}{r_{\perp}} + \frac{1}{r_{\perp}}$$

- In general, difference in ionic size favors solubility in water.
- Ionic compound MX tends to be most soluble when $r_x-r_M > 0.8$?

Slide 34 of 85 Chapter 2

Correlation between $DH_{solution}$ and the differences between the hydration enthalpy of the ions

Chapter 2 Slide 35 of 85

Fajan's rules

Fajan's Rule: the degree of covalent character of ionic bond

Polarization effects: (a) idealized ion pair with no polarization; (b) mutually polarized ion pair; (c) polarization sufficient to form covalent bond. Dashed lines represent hypothetical unpolarized ions.

Chapter 2 Slide 36 of 85

In 1923, Fajan suggested rules to predict the degree of covalent character in ionic compounds:

The polarization of an ionic bond and thus the degree of covalency is high if:

1) the charges on the ions are high.

eg., Al³⁺; Ti⁴⁺ ----- favors covalent character. Na⁺; K⁺ ----- favors ionic character.

2) the cation is small.

e.g., Na⁺ ion is larger than that of Al³⁺ Thus, Al³⁺ favors covalent character.

3) the anion is large.

e.g. F-ionic radius: 0.136 nm favors ionic character.

I ionic radius: 0.216 nm favors covalent character.

Chapter 2 Slide 37 of 85

4) An incomplete valence shell electron configuration

Noble gas configuration of the cation better shielding and less polarizing power

e.g. Hg^{2+} (r = 102 pm) is more polarizing than Ca $^{2+}$ (r = 100 pm)

HgO decomposed at 500 % CaO m.p. 2613 %

Halides	m.p. (?C)	Crys str	Halides	m.p. (?C)	Crys str
HgF ₂	645 (dec)	cubic	CaF ₂	1418	cubic
HgCl ₂	276	orthorhombic	CaCl ₂	775	cubic
$HgBr_2$	236	rhombohedral	CaBr ₂	742	rhom.
HgI_2	259	tetragonal	CaI ₂	783	hexagonal

Chapter 2

Examples:

For ions with noble gas (ns² np⁶) structure, the only factor that have to be considered are size and charge factor.

- a) Charge factor
- i) Cations

$$Na^+$$
 Mg^{2+} Al^{3+}

Increasing charge: increase in polarizing power

ii) Anions

 N^{3} O^{2} F^{-}

Increase in ionic charge, more ready to be polarized

Chapter 2 Slide 39 of 85

Chlorides	melting point / C	boiling point / C	Conductance in molten state
valency			
NaCl	800	1440	133
$MgCl_2$	715	1410	29
AlCl ₃	sublimation	183	1.5×10^{-5}
SiCl	-70	57	

AlCl₃ has covalent character. In fact, AlCl₃ exists as dimer Al₂Cl₆ at room conditions.

Chapter 2 Slide 40 of 85

b) Size factor

i) Cations $Be^{2+} \quad Mg^{2+} \quad Ca^{2+} \quad Sr^{2+} \quad Ba^{2+}$

The smaller the cation, the higher is its polarizing power

^	Chlorides	melting point / C	Conductance in molten state
T	BeCl ₂	404	0.056
	$MgCl_2$	715	29
	CaCl ₂	774	52
	$SrCl_2$	870	56
	BaCl ₂	955	

covalency

ii) Anions

The larger the anion, the more polarizable is the anion.

```
eg.,
NaF NaCl NaBr NaI
melting point / C 990 800 755 651
covalency
```

Chapter 2 Slide 42 of 85

$$MCO_{3(s)} \rightarrow MO_{(s)} + CO_{2(g)}$$

Some covalent character

	Carbonates	Decomp. Temp. (<u>(C)</u>	Oxides	m.p. (%)
lack	BeCO ₃	250	wurtzite structure	DEU	2530
	$MgCO_3$	540		MgO	2826
	CaCO ₃	900	NaCl structure <	CaO	2613
	SrCO ₃	1289		SrO	2430
	BaCO ₃	1360		BaO	1923

ovalency

Ionic compounds

Chapter 2 Slide 43 of 85

Close-packing of Spheres in Three Dimensions

Chapter 2 Slide 44 of 85

Chapter 2 Slide 45 of 85

Chapter 2 Slide 46 of 85

Chapter 2 Slide 47 of 85

able 5.4 Radius ratios for arrangements of rigid spheres

Arrangement of

Cubic

oordination

number of

8

number of	Arrangement of			corresponding t	
M	X	$\rho = r_{\rm M}/r_{\rm X}$	$\rho' = r_{\rm X}/r_{\rm M}$	cation C.N.	
3	Triangular	0.150-0.225	4.44-5.67		
4	Tetrahedral	0.225 - 0.414	2.42 - 4.44	Antifluorite, ZnS	
4	Planar	0.414 - 0.732	1.37 - 2.42		
6	Octahedral	0.414 - 0.732	1.37 - 2.42	NaCl, TiO ₂ , CdC	
* . T # *					

0.732 - 1.00

Radius ratios

1.00 - 1.37

Crystal structure

CsCl, CaF₂

Figure 5.21 The observed melting points of the alkali halides (*left*) and values corrected for the radius-ratio effect (*right*). (Reproduced with permission from Linus Pauling, *The Nature of the Chemical Bond*, 3rd ed., Cornell University, Ithaca, NY. Copyright © 1960 by Cornell University Press.)

Unit Cell of Rock-Salt (Sodium Chloride)

 \bigcirc = Na⁺

Coord. #: Na+: 6; Cl-: 6

atom/ unit cell

Na: Cl = 4: 4 = 1: $1 \implies NaCl$

Cl at fcc

Na⁺ at O_h holes

Chapter 2 Slide 50 of 85

Figure 5.11 Structures of CaC_2 and $CaCO_3$. Carbons of CO_3^{2-} are not visible.

Rock-salt structure

Chapter 2

Slide 51 of 85

Unit Cell of NiAS

Chapter 2 Slide 52 of 85

Unit Cell of Cesium Chloride

atom/ unit cell

Cs: Cl= 1: 1 \Longrightarrow CsCl

Cl⁻ at primitive cubic Cs⁺ at Cubic holes

Chapter 2 Slide 53 of 85

Unit Cell of Cubic Zinc Sulfide (Sphalerite or Zinc blende)

Coord. #: Zn²⁺: 4; S²⁻: 4

atom/ unit cell

Zn: S = 4: 4 = 1: $1 \implies ZnS$

S²⁻ at fcc Zn²⁺ at ½ Td holes

Chapter 2 Slide 54 of 85

Unit Cell of Hexagonal Zinc Sulfide (Wurtzite)

Polymorph of ZnS

Zn²⁺ at ½ Td holes

Chapter 2 Slide 55 of 85

PtS

Figure 5.9 The PtS structure showing the planar PtS₄ units. The larger ions are S^{2-} .

Pt²⁺ at fcc S²⁻ at ½ Td holes PtS₄ unit is planar

Chapter 2 Slide 56 of 85

Unit Cell of Fluorite Structure (Calcium Fluoride)

Coord. #: Ca²⁺: 8; F-: 4

atom/ unit cell

Ca: $F = 4: 8 = 1: 2 \implies CaF_2$

Ca²⁺ at fcc F- at Td holes

Chapter 2 Slide 57 of 85

• Fluorite Structure- MX₂
Large M

•Antifluorite structure- M₂X

Large X, e.g. Na₂O

Figure 5.10 The K_2 PtCl₆ structure showing the $[PtCl_6]^{2-}$ octahedra in a ccp arrangement with K^+ in tetrahedral sites.

Chapter 2 Slide 58 of 85

Unit Cell of Rutile TiO₂

Coord. #: Ti: 6; O: 3

atom/ unit cell

Ti: O = 2: 4 = 1: 2

O²⁻ at hcp Ti⁴⁺ at ½ O_h holes

Chapter 2 Slide 59 of 85

Table 5.5 Structures of some compounds of the type MX

	Halides						Oxygen Family			
Ions	F	Cl	Br	I	Ions	0	S	Se	Te	
Li		NaCl			Be	W^a	Z^b	Z	Z	
Na		— NaCl —			Mg	NaCl	NaCl	NaCl	Z	
K		NaCl			Ca	NaCl	NaCl	NaCl	NaCl	
Rb		— NaCl—			Sr	NaCl	NaC1	N ₂ Cl	NaCl	
Cs	NaCI		C(C)	and the second s	Ba	NaCi	NaCi	NaCl	NaC	
Cu	Millionestrandare	Z		Z	Zn	W	W		W	
1			-	*			Z		Z.	
Ag	NaCl	NaCl	NaCl	W	Cd	NaCl	W	W	2	
							Z			
1					Hø	Other	Z	Z	L	

[&]quot;Wurtzite. 'Zinc blende. 'See page 731.

Increasing covalency

A Structural Map for compounds of MX

Chapter 2 Slide 62 of 85

Table 5.6 Structures of some compounds of the type MX_2 and M_2X

Fluorite	(CaF ₂)		$R\iota$	tile (TiC	O_2)		Antifl	uorite	
CaF ₂ SrF ₂ BaF ₂ BaCl ₂	CdF ₂ HgF ₂ PbF ₂	ZrO ₂ ThO ₂ CeO ₂ UO ₂	MgF ₂ MnF ₂ FeF ₂ CoF ₂	NiF ₂ ZnF ₂ PdF ₂	TiO_2 MnO_2 MoO_2 GeO_2 SnO_2	Li ₂ O Na ₂ O K ₂ O Rb ₂ O	Li ₂ S Na ₂ S K ₂ S Rb ₂ S	Li ₂ Se Na ₂ Se K ₂ Se	Li ₂ Te Na ₂ Te K ₂ Te

Chapter 2

Slide 63 of 85

Table 2.3 Compounds with particular crystal structures

Crystal structure	Example*
Antifluorite	K ₂ O, K ₂ S, Li ₂ O, Na ₂ O, Na ₂ Se, Na ₂ S
Cesium chloride	CsCl, CaS, TISb, CsCN, CuZn
Fluorite	CaF ₂ , UO ₂ , BaCl ₂ , HgF ₂ , PbO ₂ ,
Nickel arsenide	NiAs, NiS, FeS, PtSn, CoS
Perovskite	CaTiO ₃ , BaTiO ₃ , SrTiO ₃
Rock salt	NaCl, LiCl, KBr, Rbl, AgCl, AgBr, MgO, CaO, TiO, FeO,
	NiO, SnAs, UC, ScN
Rutile	TiO ₂ , MnO ₂ , SnO ₂ , WO ₂ , MgF ₂ , NiF ₂
Sphalerite	ZnS, CuCl, CdS, HgS, GaP, InAs
(zinc blende)	
Wurtzite	ZnS , ZnO, BeO, MnS, AgI, [†] AIN, SiC, NH₄F

^{*}The substance in bold type is the one that gives its name to the structure. †Silver iodide is also found with a sphalerite structure, which is metastable.

Figure 5.13 Plot for r_M and r_X to show the sorting of structures for MX_2 compounds using ratio rules (solid lines) and by areas of predominant structures (dashed lines). (Adapted with permission from J. K. Burdett, S. L. Price, and G. D. Price, Solid State Commun. 1981, 40,

Chapter 2 Slide 65 of 85

Figure 5.14 Sorting map of structures of MX_2 compounds plotting r_{σ}^{M} and r_{σ}^{X} (see text). The original reference included 113 compounds. The insert, drawn to a different scale, shows series sulfides, selenides, and tellurides in three vertical columns. (Adapted with permission from J. K. Burdett, S. L. Price, and G. D. Price, Solid State Commun. 1981, 40, 923. Copyright © 1981, Pergamon Press, Ltd., Headington Hill Hall, Oxford OX3 OBW UK.)

Chapter 2

Increasing covalency

A Structural Map for compounds of MX₂

Chapter 2 Slide 67 of 85

Salts of highly polarizing cations and easily polarizable anions have layered structures.

Chapter 2 Slide 68 of 85

Salts of highly polarizing cations and easily polarizable anions have layered structures.

CdCl₂
Cl⁻ at ccp
Cd ²⁺ at ¹/₂ O_h sites
(alternate O layers)

Chapter 2 Slide 69 of 85

CdI₂
I at hcp
Cd ²⁺ at ¹/₂ O_h sites
(alternate O layer)

Chapter 2 Slide 70 of 85

Chapter 2 Slide 71 of 85

Unit Cell of Perovskite CaTiO₃

 $A^{II}B^{IV}O_3$ $A^{III}B^{III}O_3$

A and O together at ccp B at 1/4 O_h holes

Coord. #: A: 12; B: 6

atom/ unit cell

A: B: O= 1: 1: 3

Chapter 2 Slide 72 of 85

Unit Cell of ReO₃

Perovskite structure CaTiO₃ without Ca

Chapter 2 Slide 73 of 85

Unit Cell of Spinel MgAl₂O₄

Normal Spinel

A^{II}[B^{III}]₂O₄, A^{IV}[B^{II}]₂O₄, A^{VI}[B^I]₂O₄ e.g. NiCr₂O₄, Co₃O₄, Mn₃O₄ O ²⁻ at fcc A at 1/8 T_d holes B at 1/2 O_b holes

Inverse Spinel B[AB]O₄ e.g. Fe₃O₄

Chapter 2 Slide 74 of 85

Figure 5.15 Structures of AB₂O₄ compounds. (Reproduced with

Chapter 2

YBa₂Cu₃O₇

Chapter 2 Slide 76 of 85

Quartz SiO₂

Chapter 2 Slide 77 of 85

Figure 5.26 Chains of SiO_4 tetrahedra in (a) pyroxenes (repeating unit SiO_3^{2-}) and (b) amphiboles (repeating unit $Si_4O_{11}^{6-}$). The tetrahedra for b are viewed down one O-Si bond, where $Si(\bullet)$ is below the O (o). The repeating units are marked by dashed lines.

Figure 5.27 Sheets of SiO₄ tetrahedra. (a) Rings of six SiO₄²⁻ units in tale, Mg₃[(OH)₂|Si₄O₁₀], and biotite, K(Mg, Fe)₃[(OH)₂|AlSi₃O₁₀]. (b) Alternating units in apoptyllite. The repeating Si₄O₁₀⁴⁻ is outlined.

(a)單個砂氧四面體

(b)砂氧四面體晶片 (俯視圖)

(c)砂氧四面體晶片(立體圖)

○ 氧 • 矽

(a)單個鋁氧八面體

(c) 经氧八面體晶片(立體個)

文字餘位置 ②銀 ②氫氧根 ②氫氧根

圖 2-1-1 矽氧四面體及矽氧四面體晶片示意圖

Slide 80 of 85

圖 2-1-3 高嶺石晶體構造示意圖

圖 2-1-5 蒙脫石晶體構造示意圖

Chapter 2

Minaral		CECC
Mineral	Ideal formulab	CEC ^c
		(meq/100 g)
	Dioctahedral minerals	
Pyrophyllite	$Al_2(Si_4O_{10})(OH)_2$	O
Montmorillonite	$Na_X(Al_{2-X}Mg_X)(Si4O_{10})$	60 - 120
	(OH)2.zH2O	
Beidellite	$M_X(Al_2)(Al_XSi_{4-X}O_{10})$	60 - 120
	(OH)2.zH2O	
Nontronite	$M_X(Fe^{3+},Al)_2(Al_XSi_{4-X}O_{10})$	60 - 120
	(OH)2.zH2O	
	Trioctahedral minerals	
Talc	$Mg_3(Si_4O_{10})(OH)_2$	0
Hectorite	$(Na_2Ca)_{x/2}(Li_xMg_{3-x})$	60 - 120
	(Si ₄ O ₁₀)(OH) ₂ .zH ₂ O	
Saponite	$Ca_{X}/2Mg_{3}(Al_{X}Si_{4-X}O_{10})$	60 - 120
	.zH ₂ O	
Sauconite	$M_X(Zn,Mg)_3(Al_XSi_{4-X}O_{10})$	
	.zH ₂ O	

a: Only major cations are shown.

b: x depends on the origin of the mineral; montmorillonites can show a degree of substitution x in the octahedral sheet in the range 0.05- 0.52. Natural samples generally show substitutions in both octahedral and tetrahedral sheets, which renders the real situations more complex.

c: Cation-exchange capacity.

Chapter 2 Slide 83 of 85

Structure of synthetic zeolite ZSM-5

Fig. 1 Characteristic configuration (a) and its linkage within chains (b) in ZSM-5. These chains run parallel to [001]. Only T-atoms (Si, A1) are shown.

Fig. 4 The channel structure in ZSM-5.

Fig. 2 Skeletal diagram of the (010)-face of the ZSM-5 unit ce. The x-axis is horizontal and the z-axis vertical. Oxygen ator are not shown. The 10-membered ring apertures shown are tentrances to the straight channels which run parallel to [01].

Fig. 3 Skeletal diagram of the (100)-face of the ZSM-5 unit cell. The y-axis is horizontal and the z-axis is vertical. Oxygen atoms are not shown. The nearly circular 10-membered ring apertures shown are the entrances to the sinusoidal channels which run parallel to [100].

Table 5.14 Characteristics of some zeolites

Linde Type L

Mordenite

Name	Formula	Oxygens in ring	Pore size (Å)
Zeolite A (Linde Type A)	$\{Na_{12}[Al_{12}Si_{12}O_{48}]\cdot 27H_2O\}_8$	8	4.1
Heulandite	$Ca_{4}[Al_{8}Si_{28}O_{72}] \cdot 24H_{2}O$	$\begin{cases} 8\\10 \end{cases}$	2.6×4.7 3.0×7.6
Ferrierite	$Na_{2}Mg_{2}[Al_{6}Si_{30}O_{72}]\cdot 18H_{2}O$	$\begin{cases} 8\\10 \end{cases}$	$3.5 \times 4.8 \\ 4.2 \times 5.4$
Silicalite (ZSM-5)	$Na_n[Al_nSi_{96-n}O_{192}] \cdot \sim 16H_2O$	\[\begin{cases} 10 \\ 10 \end{cases} \]	5.3 × 5.6 5.1 × 5.5
Faujasite	$(Na_2, Ca, Mg)_{29}[Al_{58}Si_{134}O_{384}] \cdot 240H_2O$	12 (3-dim.)	7.4

 $K_6 Na_3 [Al_9 Si_{27} O_{72}] \cdot 21 H_2 O$

 $Na_{8}[Al_{8}Si_{40}O_{96}] \cdot 24H_{2}O$

7.1

 6.7×7.0

 2.6×5.7

12