实验 12 偏心拉伸实验

姓名: 邹佳驹

学号: 12012127

同组人: 刘鸿磊

1. 实验目的

- 1) 测定偏心拉伸时最大正应力,验证迭加原理的正确性;
- 2) 分别测定偏心拉伸时由拉力和弯矩所产生的应力;
- 3) 测定偏心距 e;

2. 实验仪器设备与工具

- 1) 组合实验台拉伸部件;
- 2) 力&应变综合参数测试仪:
- 3) 游标卡尺、钢板尺。

3. 实验原理和方法

偏心拉伸试件,在外载荷作用下,其轴力 N=P,弯矩 $M=P\cdot e$,其中 e 为偏心距。根据叠加原理,得横截面上的应力为单向应力状态,其理论计算公式为拉伸应力和弯矩正应力的代数和。即

$$\sigma = \frac{P}{A_0} \pm \frac{6M}{bh^2}$$

偏心拉伸试件及应变片的布置方法如图所示, R_1 和 R_2 分别为试件宽度侧的两个对称点, R_3 和 R_4 分别是试件高度侧的对称点。则

$$\epsilon_1 = \epsilon_p + \epsilon_M + \epsilon'$$
 $\epsilon_2 = \epsilon_P - \epsilon_M + \epsilon'$
 $\epsilon_3 = \epsilon_p + \epsilon_M - \epsilon'$
 $\epsilon_4 = \epsilon_P - \epsilon_M - \epsilon'$

式中: ε_p —轴力引起的拉伸应变, ε_M —弯矩引起的应变,

 ϵ' —试件位置偏移引起的应变

根据桥路原理,采用不同的组桥方式,即可分别测出与轴向力及弯矩有关的应变值。从而进一步求得弹性模量 E、偏心距 e、最大正应力和分别由轴力、弯矩产生的应力。采用**全桥对臂桥路**接法可直接测出轴向力引起的应变 ε_p ,(采用此接桥方式需加温度补偿片,接线如图所示。

4. 实验步骤

- 1) 设计好本实验所需的各类数据表格
- 2) 测量试件尺寸。在试件标距范围内,测量试件三个横截面尺寸,取三处横截 面面积的平均值作为试件的横截面积 A0 。见附表 1
- 3) 拟定加载方案。先选取适当的初载荷 P0 (一般取 P0 =10%Pmax 左右), 估算 Pmax (该实验载荷范围 Pmax <2000N), 分 5 级加载。
- 4) 根据加载方案,调整好实验加载装置。
- 5) 按实验要求接好线,调整好仪器,检查整个系统是否处于正常工作状态。
- 6) 加载。均匀缓慢加载至初载荷 P0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录应变值 εp 和 εM,直到最终载荷。实验至少重复两次
- 7) 作完试验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

5. 实验数据记录与处理

1. 实验要求

- a) 测定偏心拉伸时最大正应力,验证叠加原理的正确性;
- b) 分别测定偏心拉伸时由拉力和弯矩所产生的应变;
- c) 测定偏心距 e。

2. 试件测量

试件	厚度 h(mm)	宽度 b(mm)	横截面面积(mm²)				
截面I	4.99	30.67	153.0433				
截面II	5.00	30.70	153.5000				
截面III	4.98	30.47	151.7406				
平均	4.99	30.61	152.7439				
弹性模量 E	弹性模量 E=210 GPa						

3. 实验数据记录(逐级加载 $\triangle P = __360N_$,最大载荷 $P_{max} = __2000N_$)

由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。为了尽可能减小测量误差,实验宜从初载荷 $P_0(P_0 \neq 0)$ 开始,采用增量法,分级加载,分别测量在各相同载荷增量 P 作用下,产生的应变增量 $\Delta \epsilon$,并求出 $\Delta \epsilon$ 的平均值。

	200N	560N	920N	1280N	1640N	2000N
$4\epsilon_M$	33	91	151	208	268	325
(全桥)						
$2\epsilon_P$	23	54	82	110	134	158
(全桥)						
$2\epsilon_M$	17	46	75	104	133	162
(半桥)						
$2(\epsilon_M + \epsilon_P)$	31	84	134	188	239	291
(全桥)						

4. 数据处理

1. 验证叠加原理

拉伸应力: $\sigma_P = E \varepsilon_p$

弯矩应力: $\sigma_M = E \varepsilon_M$

实测总应力: $\sigma = E(\epsilon_M + \epsilon_P)$,其中 $(\epsilon_M + \epsilon_P)$ 为上表中全桥所测数据/2 叠加总应力: $\sigma = \sigma_P + \sigma_M$, 其中 $\sigma_P + \sigma_M$ 为单独计算所得的拉伸应力和 弯矩应力相加

数据处理如下:

E (GPa)	拉伸应变 (με_P)	弯矩应变 (με_M)	实测(拉伸+弯矩)应变 (με_P+με_M)	拉伸应力 (MPa)	弯矩应力 (Mpa)	实测总应力 (MPa)	叠加总应力 (MPa)	误差
210	11.5	8.5	15.5	2.415	1.785	3.255	4.200	22.50%
210	27	23	42	5.670	4.830	8.82	10.500	16.00%
210	41	37.5	67	8.610	7.875	14.07	16.485	14.65%
210	55	52	94	11.550	10.920	19.74	22.470	12.15%
210	67	66.5	119.5	14.070	13.965	25.095	28.035	10.49%
210	79	81	145.5	16.590	17.010	30.555	33.600	9.06%

作图如下:

实测总应力小于叠加总应力,两者误差随载荷增加而减小,在小载荷下,存在较大误差的原因可能是应变片读取应变不够准确。

2. 分别测定偏心拉伸时由拉力和弯矩所产生的应变

拉伸应变:

 $2\varepsilon_P = \varepsilon_1 + \varepsilon_2$,采用全桥测量,所得数据如下:

	200N	560N	920N	1280N	1640N	2000N
$2\epsilon_P$	23	54	82	110	134	158
(全桥)						

注意,处理实验数据过程中发现,此处选点有误,此处选点为 1 和 2, $\varepsilon_1+\varepsilon_2=$ $2\varepsilon_p+2\varepsilon'$,所得结果相比实际 $2\varepsilon_p$ 偏大。应该选取 1 和 4 点, $\varepsilon_1+\varepsilon_4=2\varepsilon_p$ 。

弯矩应变:

 $2\epsilon_M = \epsilon_1 - \epsilon_2$,采用半桥测量,所得数据如下:

	200N	560N	920N	1280N	1640N	2000N
$2\epsilon_M$	17	46	75	104	133	162
(半桥)						

若使用全桥测量,测量值为上表数据的2倍,所得数据如下:

	200N	560N	920N	1280N	1640N	2000N
$4\epsilon_M$	33	91	151	208	268	325
(全桥)						

3. 求偏心距 e

Method 1

通过总应力求解偏心距 e:

$$\sigma = \frac{P}{A_0} + \frac{6M}{bh^2} = \frac{P}{A_0} + \frac{6Pe}{bh^2} = E(\varepsilon_P + \varepsilon_M)$$

$$e = \frac{\left[E(\varepsilon_P + \varepsilon_M) - \frac{P}{A_0}\right]}{6P} \times bh^2$$

 $(\varepsilon_P + \varepsilon_M)$ 为实验直接测量值 $2(\varepsilon_P + \varepsilon_M)$ 的一半

注意:

求解结果如下:

Load	A_0	bh^2	实测(拉伸+弯矩)应变	е
(N)	(m²)	(m³)	(μ€_Ρ+μ€_Μ)	(m)
200	0.00015	4.7E-06	15.5	0.007581
560	0.00015	4.7E-06	42	0.007172
920	0.00015	4.7E-06	67	0.006816
1280	0.00015	4.7E-06	94	0.006916
1640	0.00015	4.7E-06	119.5	0.006822
2000	0.00015	4.7E-06	145.5	0.006803

$$e_{average} = 0.007018217m = 7.02mm$$

Method 2

通过弯矩应力计算偏心距 e

$$\sigma = \frac{P}{A_0} + \frac{6M}{bh^2} = \frac{P}{A_0} + \frac{6Pe}{bh^2} = \sigma_P + \sigma_M = E\varepsilon_P + E\varepsilon_M$$

$$\frac{6Pe}{bh^2} = E\varepsilon_M$$

$$e = \frac{E\varepsilon_M bh^2}{6P}$$

ε_M 为实验测量值 $2\varepsilon_M$ 的一半

求解结果如下:

Load	bh^2	弯矩应变	Е	е
(N)	(m^3)	(μ € _Μ)	(GPa)	(m)
200	4.7E-06	8.5	210	0.006955
560	4.7E-06	23	210	0.006721
920	4.7E-06	37.5	210	0.00667
1280	4.7E-06	52	210	0.006648
1640	4.7E-06	66.5	210	0.006636
2000	4.7E-06	81	210	0.006628

$$e_{average} = 0.006709508m = 6.71mm \\$$

两种方法所得 e 偏差为 0.31mm, 存在偏差的原因在于"1.验证叠加原理"中提到的实测总应力小于叠加总应力,即:

$$\sigma_{\text{GFM}} = E(\varepsilon_P + \varepsilon_M) < \sigma_{\text{Am}} = \frac{P}{A_0} + \frac{6M}{bh^2} = \sigma_P + \sigma_M = E\varepsilon_P + E\varepsilon_M$$

原因在于实验所测 $2(\varepsilon_P + \varepsilon_M)$ 与单独所测 $2\varepsilon_P$ 和 $2\varepsilon_M$ 的和存在误差,该误差在于测量 $2\varepsilon_P$ 时选点有误,测量值为 $\varepsilon_1 + \varepsilon_2 = 2\varepsilon_P + 2\varepsilon'$,所以导致 $\sigma_{\underline{e_M}} > \sigma_{\underline{e_M}}$ 。

4. 计算偏心拉伸最大正应力

$$\sigma_{1,2} = \frac{P}{A_0} \pm \frac{6M}{bh^2} = \frac{P}{A_0} \pm \frac{6Pe}{bh^2}$$

Load	bh^2	A_0	e	应力1	应力2
(N)	(m³)	(m²)	(m)	(MPa)	(MPa)
200	4.68E-06	0.000153	0.00702	3.111114	-0.49235
560	4.68E-06	0.000153	0.00702	8.711118	-1.37858
920	4.68E-06	0.000153	0.00702	14.31112	-2.26482
1280	4.68E-06	0.000153	0.00702	19.91113	-3.15105
1640	4.68E-06	0.000153	0.00702	25.51113	-4.03728
2000	4.68E-06	0.000153	0.00702	31.11114	-4.92351

6. 实验结论

1)该实验通过偏心拉伸试件,测定得到不同载荷下偏心拉伸时的最大正应力如下:

将拉伸应力与弯矩应力相加得叠加总应力和实测总应力对比,结果如下:

随载荷增加,两者误差逐渐缩小,由于实验仪器测量存在误差,该实验未能 严格验证叠加原理。

2)偏心拉伸时由拉力和弯矩所产生的应变分布由全桥和半桥测量,结果如下:

拉伸应变(选点为 1 和 2, 未测到 $2\varepsilon_P$):

 $2\varepsilon_P + 2\varepsilon' = \varepsilon_1 + \varepsilon_2$,采用全桥测量,所得数据如下:

	200N	560N	920N	1280N	1640N	2000N
$2\epsilon_P + 2\varepsilon'$	23	54	82	110	134	158
(全桥)						

弯矩应变:

 $2\epsilon_M = \epsilon_1 - \epsilon_2$,采用半桥测量,所得数据如下:

	200N	560N	920N	1280N	1640N	2000N
$2\epsilon_M$	17	46	75	104	133	162
(半桥)						

3)通过两种方法测得偏心距 e 分别为7.02mm和6.71mm,两种方法所得 e 偏差为 0.31mm,存在偏差的原因在于"1.验证叠加原理"中提到的实测总应力小于叠加总应力,即:

$$\sigma_{\text{GM}} = E(\varepsilon_P + \varepsilon_M) < \sigma_{\text{AM}} = \frac{P}{A_0} + \frac{6M}{bh^2} = \sigma_P + \sigma_M = E\varepsilon_P + E\varepsilon_M$$

原因在于实验所测 $2(\varepsilon_P + \varepsilon_M)$ 与单独所测 $2\varepsilon_P$ 和 $2\varepsilon_M$ 的和存在误差,该误差在于测量 $2\varepsilon_P$ 时选点有误,测量值为 $\varepsilon_1 + \varepsilon_2 = 2\varepsilon_P + 2\varepsilon'$,所以导致 $\sigma_{\underline{\sigma}_{m}} > \sigma_{\underline{\varphi}_{m}}$ 。

7. 思考题

1) 与轴向拉伸相比,偏心拉伸最大应力提高了多少? 偏心拉伸最大应力相比轴向拉伸最大应力:

Load	应力1	应力2	轴向应力	增值
(N)	(MPa)	(MPa)	(MPa)	(MPa)
200	3.11	-0.49	1.31	1.80
560	8.71	-1.38	3.67	5.04
920	14.31	-2.26	6.02	8.29
1280	19.91	-3.15	8.38	11.53
1640	25.51	-4.04	10.74	14.77
2000	31.11	-4.92	13.09	18.02

2) 分析拉伸试件加持后上下加载点不对称所造成的误差, 及如何消除?

$$\begin{array}{lll} \epsilon_1 &= \epsilon_p + \epsilon_M + \epsilon' & \epsilon_2 &= \epsilon_P - \epsilon_M + \epsilon' \\ \epsilon_3 &= \epsilon_p + \epsilon_M - \epsilon' & \epsilon_4 &= \epsilon_P - \epsilon_M - \epsilon' \end{array}$$

式中: ϵ_p —轴力引起的拉伸应变, ϵ_M —弯矩引起的应变,

 ϵ' —试件位置偏移引起的应变

通过选取不同的测点进行叠加即可消除由试件位置偏移引起的应变。