Point Pattern Analysis: Processes

SERGIO REY

GPH 483/598
Geographic Information Analysis
School of Geographical Sciences
Arizona State University
Spring 2010

Outline

- Properties of Point Processes
 - First Order Properties
 - Second Order Property
- Point Processes
 - Complete Spatial Randomness
 - Homogeneous Poisson Process
 - Inhomogeneous Poisson Process (IPP)

First Order Properties: Spatial Analysis

Mean value of the process in space

- Variation in mean value of the process in space
- Global, large scale spatial trend

First Order Property of Point Patterns, Intensity: λ

- Intensity: λ = number of events expected per unit area
- Estimation of λ
- Spatial variation of λ , $\lambda(s)$, s is a location

$$\lambda(s) = \lim_{ds \to 0} \left\{ \frac{E(Y(ds))}{ds} \right\}$$
 (1)

Second Order Properties: Spatial Analysis

Spatial Correlation Structure

- Deviations in values from process mean
- Local or small scale effects

Second Order Property of Point Patterns

- Relationship between number of events in pairs of areas
- Second order intensity $\gamma(s_i, s_i)$

$$\gamma(s_i, s_j) = \lim_{ds_i \to 0, ds_j \to 0} \left\{ \frac{E(Y(ds_i)Y(ds_j))}{ds_i ds_j} \right\}$$
(2)

Spatial Stationarity

First Order Stationarity

$$\lambda(s) = \lambda \forall s \in A \tag{3}$$

$$E(Y(A)) = \lambda \times A \tag{4}$$

Second Order Stationarity

$$\gamma(s_i, s_j) = \gamma(s_i - s_j) = \gamma(h)$$
 (5)

- h is the vector difference between locations s_i and s_i
- h encompasses direction and distance (relative location)
- Second order intensity only depends on h for second order stationarity

Spatial Isotropy and Stationarity

Isotropic Process

- When a stationary process is invariant to rotation about the origin.
- Relationship between two events depend only on the distance separating their locations and not on their orientation to each other.
- Depends only on distance, not direction

Usefulness

- Two pairs of events from a stationary process separated by same distance and relative direction should have same "relatedness"
- Two pairs of events from a stationary and isotropic process separated by the same distance (irrespective of direction) should have the same "relatedness"
- Both allow for replication and the ability to carry out estimation of the underlying DGP.

Complete Spatial Randomness

CSR

- Standard of Reference
- Uniform: each location has equal probability
- Independent: location of points independent
- Homogeneous Planar Poisson Point Process

Poisson Point Process

Intensity

- number of points in region A : N(A)
- intensity: $\lambda = N/|A|$
- implies: $\lambda |A|$ points randomly scattered in a region with area |A|
- e.g., 10×1 (points per km^2)

Poisson Distribution

 $N(A) \sim Poi(\lambda |A|)$

Poisson Distribution

Single Parameter Distribution: $\lambda |A|$

- Generally, λ is the number of events in some well defined *interval*
 - Time: phone calls to operator in one hour
 - Time: accidents at an intersection per week
 - Space: trees in a quadrat
- Let x be a Poisson random variable
 - $E[x] = V[x] = \lambda |A|$

Poisson Distribution

$$P(x) = \frac{e^{-\lambda|A|}(\lambda|A|)^x}{x!}$$
 (6)

Probability Density for Poisson with Mean=2

In Space

Single Parameter

$$P[N(A) = x] = e^{-\lambda |A|} (\lambda |A|)^x / x! \tag{7}$$

Spatial Example

CSR with $\lambda = 5/km^2$

- Region = Circle
 - area = $|A| = \pi r^2$
 - r = 0.1 km then area $\approx 0.03 \text{ km}^2$
- Probability of Zero Points in Circle

$$P[N(A) = 0] = e^{-\lambda |A|} (\lambda |A|)^{x} / x!$$
 (8)

$$\approx e^{-5 \times 0.03} (5 \times 0.03)^0 / 0!$$
 (9)

$$\approx e^{-5 \times 0.03}$$
 (10)

Complete Spatial Randomness (CSR)

Homogeneous spatial Poisson point process

- The number of events occurring within a finite region A is a random variable following a Poisson distribution with mean $\lambda |A|$, with |A| denoting area of A.
- ② Given the total number of events N occurring within an area A, the locations of the N events represent an independent random sample of N locations where each location is equally likely to be chosen as an event.
 - Criterion 2 is the general concept of CSR (uniform (random)) distribution in *A*.
 - Criterion 1 pertains to the intensity λ .

Homogeneous Poisson process

Implications

- The number of events in nonoverlapping regions in *A* are statistically independent.
- ② For any region $R \subset A$:

$$\lim_{|R|\to 0} \frac{Pr[exactly \ one \ event \ in \ R]}{|R|} = \lambda > 0 \tag{12}$$

3

$$\lim_{|R|\to 0} \frac{Pr[more\ than\ one\ event\ in\ R]}{|R|} = 0 \tag{13}$$

Homogeneous Poisson process

Implications

- λ is the intensity of the spatial point pattern.
- For a Poisson random variable, Y:

$$E[Y] = \lambda = V[Y] \tag{14}$$

- Provides the motivation for some quadrat tests of CSR hypothesis.
 - If Y_R is the count in quadrat R
 - If $\widehat{E[Y]} < \widehat{V[Y]}$: overdispersion = spatial clustering
 - If $\widehat{E[Y]} > \widehat{V[Y]}$: underdispersion = spatial uniformity

Simulating CSR

N – conditioned

- CSR= uniform distribution
- random uniform draws for x and y point coordinates
- N fixed

λ – conditioned

- CSR= Poisson distribution
- λ and |A| given
- N(A) random

CSR Uniform

Limitations of CSR

Stationary Poisson Process

- homogeneous
- translation invariant

Rare in practice

very few (any?) actual processes are CSR

Strawman

- purely a benchmark
- null hypothesis

Inhomogeneous Poisson Process (IPP)

Criteria

- The number of events occurring within a finite region A is a random variable following a Poisson Distribution with mean $\int_A \lambda(s) ds$.
- ② Given the total number of events N occurring within A, the N events represent an independent sample of N locations, with the probability of sampling a particular point s proportional to $\lambda(s)$.

Spatially Variable Intensity $\lambda(s)$

- Useful for constant risk hypothesis
- Underlying population at risk is spatially clustered
- Want to control for that since with individual constant risk apparent clusters would be generated.
- Compare pattern against constant risk, not CSR.

Inhomogeneous Poisson Process

Implications

- Apparent clusters can occur solely due to heterogeneities in the intensity function $\lambda(s)$.
- Individual event locations still remain independent of one another.
- Process is not stationary due to intensity heterogeneity

HPP vs. IPP

HPP is a special case of IPP with a constant intensity

CSR vs. Constant Risk Hypotheses

CSR

- Intensity is spatially constant
- Population at risk assumed spatially uniform
- Useful null hypothesis if these conditions are met

Constant Risk Hypothesis

- Population density variable
- Individual risk constant
- Expected number of events should vary with population density
- Clusters due to deviation from CSR
- Clusters due to deviation from CSR and Constant Risk