Rachunek Macierzowy i Statystyka Wielowymiarowa

Raport z zadania 3. - Implementacja norm macierzowych, wspołczynników uwarunkowania oras SVD.

Wojciech Jasiński, Michał Stefanik

Wydział Informatyki Akademia Górniczo Hutnicza Kraków 17 kwietnia 2024

Spis treści

1	Wst	tęp	2	
2	Dar	ne techniczne	2	
3	Nor	Normy macierzowe		
	3.1	Norma $ A _1$	2	
		3.1.1 Algorytm	2	
		3.1.2 Fragment kodu	2	
		3.1.3 Wartość dla macierzy testowej	2	
	3.2	Norma $ A _2$	2	
		3.2.1 Algorytm	2	
		3.2.2 Fragment kodu	2	
		3.2.3 Wartość dla macierzy testowej	2	
	3.3	Norma $ A _p$	2	
		3.3.1 Fragment kodu	3	
		3.3.2 Wartość dla macierzy testowej	3	
	3.4	Norma $ A _{\infty}$	3	
		3.4.1 Algorytm	3	
		3.4.2 Fragment kodu	3	
		3.4.3 Wartość dla macierzy testowej	3	
4	Wsı	półczynniki uwarunkowania	3	
_	4.1	Współczynnik uwarunkowania $cond_1(A)$	3	
		4.1.1 Fragment kodu	:	
		4.1.2 Wartość dla macierzy testowej	3	
	4.2	Współczynnik uwarunkowania $cond_2(A)$	3	
		4.2.1 Wartość dla macierzy testowej	3	
	4.3	Współczynnik uwarunkowania $cond_p(A)$	3	
		4.3.1 Wartość dla macierzy testowej	4	
	4.4	Współczynnik uwarunkowania $cond_{\infty}(A)$	4	
		4.4.1 Wartość dla macierzy testowej	4	
5	Dan	zkład SVD macierzy	4	
J		· · · · · · · · · · · · · · · · · · ·	4	
	$5.1 \\ 5.2$	Algorytm	4	
			4	
	5.3	Wartość dla macierzy testowej	ວ	
6	Wn	ioski	5	

1 Wstęp

Należało zaimplementować:

- Normy macierzowe: $||A||_1$, $||A||_2$, $||A||_p$, $||A||_{\infty}$
- Współczynniki uwarunkowania: $cond_1(A)$, $cond_2(A)$, $cond_p(A)$, $cond_\infty(A)$
- Rozkład SVD macierzy

2 Dane techniczne

Używamy np.ndarray z biblioteki numpy do reprezentacji macierzy. Wszystkie funkcje przyjmują i zwracają macierze w tej postaci.

Do testów używamy macierzy o wymiarach 3x3:

$$M = \begin{bmatrix} 4 & 9 & 2 \\ 3 & 5 & 7 \\ 8 & 1 & 6 \end{bmatrix}$$

3 Normy macierzowe

3.1 Norma $||A||_1$

3.1.1 Algorytm

Wzór na tę normę to $||A||_1 = \max_{j=1,\dots,n} \sum_{i=1,\dots,n} |a_{ij}|$. W prostszych słowach, jest to maksymalna suma wartości bezwzględnych w kolumnach macierzy.

3.1.2 Fragment kodu

```
 \begin{array}{ll} \textbf{def} & \text{matrix\_norm\_1} \left( A \colon \text{np.ndarray} \right) \colon \\ & \textbf{return} & \text{np.max} \left( \text{np.sum} \left( \text{np.abs} \left( A \right), \text{ axis} = 0 \right) \right) \end{array}
```

3.1.3 Wartość dla macierzy testowej

Dla macierzy testowej M wartość normy $||M||_1$ wynosi 15.

3.2 Norma $||A||_2$

3.2.1 Algorytm

Wzór na tę normę to $||A||_2 = |\lambda_1|$. W prostszych słowach, to największa co do modułu wartość własna macierzy.

3.2.2 Fragment kodu

```
def matrix_norm_2(A: np.ndarray):
    return np.max(np.abs(np.linalg.eigvals(A)))
```

3.2.3 Wartość dla macierzy testowej

Dla macierzy testowej M wartość normy $||M||_2$ wynosi 15.

3.3 Norma $||A||_p$

Z definicji:

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

Dla $p \neq 1, 2, \infty$ wartości normy są NP-trudne do aproksymacji. Skoro nie możemy po prostu policzyć p-normy, użyjmy normy Schattena. Dla p=2 przyjmuje ona postać normy Frobeniusa, dla $p=\infty$ normy spektralnej.

3.3.1 Fragment kodu

```
def matrix_norm_schatten(A: np.ndarray, p: int):
    return np.sum(np.abs(np.linalg.eigvals(A)) ** p) ** (1 / p)
```

3.3.2 Wartość dla macierzy testowej

Dla macierzy testowej M wartość normy Schattena $||M||_5$ wynosi 15.178.

3.4 Norma $||A||_{\infty}$

3.4.1 Algorytm

Wzór na tę normę to $||A||_{\infty} = \max_{i=1,...,n} \sum_{j=1,...,n} |a_{ij}|$. W prostszych słowach, jest to maksymalna suma wartości bezwzględnych w wierszach macierzy.

3.4.2 Fragment kodu

```
def matrix_norm_inf(A: np.ndarray):
    return np.max(np.sum(np.abs(A), axis=1))
```

3.4.3 Wartość dla macierzy testowej

Dla macierzy testowej M wartość normy $||M||_{\infty}$ wynosi 15.

4 Współczynniki uwarunkowania

Współczynnik uwarunkowania danej macierzy A w p-normie definiujemy jako:

$$cond_p(A) = ||A||_p \cdot ||A^{-1}||_p$$

Wartość ta odzwierciedla wrażliwość rozwiązania układu równań liniowych na perturbacje w danych wejściowych lub błędy.

4.1 Współczynnik uwarunkowania $cond_1(A)$

4.1.1 Fragment kodu

```
def matrix_cond_1(A: np.ndarray):
    return matrix norm 1(A) * matrix norm 1(np.linalg.inv(A))
```

4.1.2 Wartość dla macierzy testowej

Dla macierzy testowej M wartość współczynnika uwarunkowania $cond_1(A)$ wynosi 5.33

4.2 Współczynnik uwarunkowania $cond_2(A)$

```
def matrix_cond_2(A: np.ndarray):
    return matrix_norm_2(A) * matrix_norm_2(np.linalg.inv(A))
```

4.2.1 Wartość dla macierzy testowej

Dla macierzy testowej M wartość współczynnika uwarunkowania $cond_2(A)$ wynosi 4.33

4.3 Współczynnik uwarunkowania $cond_p(A)$

Z uwagi na NP-trudność aproksymacji p-norm macierzy dla 2 , używamy wcześniej wspomnianej normy Schattena.

```
def matrix_cond_p(A: np.ndarray, p: int):
    return matrix norm schatten(A, p) * matrix norm schatten(np.linalg.inv(A), p)
```

4.3.1 Wartość dla macierzy testowej

Dla macierzy testowej M wartość współczynnika uwarunkowania $cond_p(A)$ wynosi 4.33

4.4 Współczynnik uwarunkowania $cond_{\infty}(A)$

```
def matrix_cond_inf(A: np.ndarray):
    return matrix_norm_inf(A) * matrix_norm_inf(np.linalg.inv(A))
```

4.4.1 Wartość dla macierzy testowej

Dla macierzy testowej M wartość współczynnika uwarunkowania $cond_{\infty}(A)$ wynosi 5.33

5 Rozkład SVD macierzy

5.1 Algorytm

Macierz A można zdekomponować na trzy macierze: U, S i V, takie że:

$$A = U \cdot S \cdot V^T$$

gdzie:

- ullet U macierz ortonormalna
- ullet S macierz diagonalna
- ullet V macierz ortonormalna

Macierz S zawiera wartości osobliwe macierzy A, a macierze U i V zawierają wektory własne macierzy odpowiednio AA^T oraz A^TA .

Macierz V znajdujemy jako macierz wektorów własnych macierzy A^TA . Następnie sortujemy wartości własne malejąco i tworzymy macierz V z wektorów własnych odpowiadających wartościom własnym w tej kolejności. Wartości własne dla tej macierzy pierwiastkujemy i tworzymy z nich macierz S.

Następnie obliczamy macierz U jako $U = A \cdot V \cdot S^{-1}$.

5.2 Fragment kodu

```
def SVD(A: np.ndarray):
    left_shape = A.shape[0]
    right_shape = A.shape[1]
    eigenvalues, V = np.linalg.eigh(np.dot(A.T, A))

idx = np.argsort(eigenvalues)[::-1]
    eigenvalues = eigenvalues[idx]
    V = V[:, idx]

singular_values = np.sqrt(eigenvalues)
    right_singular_vectors = V

left_singular_vectors = np.dot(A, right_singular_vectors)

with np.errstate(divide="ignore"):
    left_singular_vectors /= singular_values

left_singular_vectors = left_singular_vectors[:, :left_shape]
    Sigma = np.diag(singular_values)[:left_shape, :right_shape]

return left_singular_vectors, Sigma, right_singular_vectors.T
```

5.3 Wartość dla macierzy testowej

Dla macierzy testowej M otrzymujemy:

$$U = \begin{bmatrix} -0.45 & -0.89 \\ -0.98 & -.45 \end{bmatrix}$$

$$S = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

$$V^T = \begin{bmatrix} 0.7 & -0.3 & -0.5 \\ 0 & -0.8 & 0.4 \\ -0.67 & -.33 & 0.67 \end{bmatrix}$$

6 Wnioski

- W przypadku SVD zastosowana metoda pozwala nie szukać dwukrotnie wartości własnych, przez co może być szybsza.
- ullet P-normy macierzowe dla p różnych od 1, 2, są ∞ rzadko używane z uwagi na niepraktyczne i trudne aproksymacje numeryczne. Żadna sprawdzana biblioteka do obliczeń numerycznych nie implementuje algorytmów aproksymacji tych norm.