Соли

Соли — это сложные вещества, состоящие из ионов металлов и кислотных остатков.

Как видно из определения, соли по составу похожи на кислоты, только вместо атомов водорода они содержат ионы металла. Поэтому их можно также назвать продуктами замещения атомов водорода в кислоте на ионы металла. Например, всем известная поваренная соль NaCl может быть рассмотрена как продукт замещения водорода в соляной кислоте HCl на ион натрия.

Заряд иона натрия 1+, а заряд иона хлора 1-. Так как соединение электронейтрально, формула поваренной соли Na⁺Cl⁻. Если же надо вывести формулу сульфида алюминия (III), поступают следующим образом.

- 1. Обозначают заряды ионов, из которых состоит соединение: $\mathrm{Al^{3+}S^{2-}}$. Заряд иона алюминия $\mathrm{3+}$, а заряд иона серы можно определить по формуле соответствующей сероводородной кислоты $\mathrm{H_2S}$, он равен 2–.
- 2. Находят наименьшее общее кратное числовых значений зарядов ионов алюминия и серы (3 и 2), оно равно 6.

 Находят индексы, разделив наименьшее общее кратное на величины зарядов, и записывают формулу:

Аналогично выводят формулы солей кислородсодержащих кислот, имеющих сложные ионы. Выведем, например, формулу кальциевой соли фосфорной кислоты — фосфата кальция. По таблице Менделеева определим заряд иона кальция как элемента главной подгруппы II группы (ПА группы): 2+. По формуле фосфорной кислоты H_3PO_4 определим заряд иона, образованного кислотным остатком: PO_4^{3-} . Отсюда формула фосфата кальция имеет вид

$$Ca^{2+}(PO_4^{3-}) \longrightarrow Ca_3(PO_4)_2$$

(читают «кальций три, пэ-о-четыре дважды»).

Нетрудно заметить, что при выведении формул солей по зарядам ионов вы должны действовать так же, как при выведении формул бинарных соединений по валентности и по степеням окисления образующих их элементов.

Как образуют названия солей бескислородных кислот, вы уже рассмотрели, когда знакомились с номенклатурой бинарных соединений: соли HCl называют хлоридами, а соли H_2S — сульфидами.

Названия солей кислородсодержащих кислот составляют из двух слов: названия иона, образованного кислотным остатком, в именительном падеже и названия иона металла — в родительном. Названия ионов кислотных остатков составляют, в свою очередь, из корней названий элементов, с суффиксами -ат для высшей степени окисления и -ит для низшей степени окисления атомов элемента-неметалла, образующего сложный ион остатка кислородсодержащей кислоты. Например, соли азотной кислоты HNO3 называют нитратами: KNO3 — нитрат калия, а соли азотистой кислоты HNO2 — нитритами: Ca(NO2)2 — нитрит кальция. Если же металл проявляет различные степени окисления, то их указывают

в скобках римской цифрой, например: $Fe^{2+}SO_3$ — сульфит железа (II) и $Fe_2^{3+}(SO_4)_3$ — сульфат железа (III).

Номенклатура солей приведена в таблице 5.

По растворимости в воде соли делят на растворимые (Р), нерастворимые (Н) и малорастворимые (М). Для определения растворимости солей используют таблицу растворимости кислот, оснований и солей в воде. Если под рукой нет этой таблицы, можно воспользоваться приведёнными ниже правилами. Их легко запомнить.

- 1. Растворимы все соли азотной кислоты нитраты.
- 2. Растворимы все соли соляной кислоты хлориды, кроме AgCl (H), PbCl₂ (M).
- 3. Растворимы все соли серной кислоты сульфаты, кроме ${\rm BaSO_4\,(H),\, PbSO_4\,(H),\, CaSO_4\,(M),\, Ag_2SO_4\,(M)}.$
 - 4. Растворимы соли натрия и калия.
- Не растворяются все фосфаты, карбонаты, силикаты и сульфиды, кроме этих солей для Na⁺ и K⁺.

Рассмотрим растворимую натриевую соль бескислородной соляной кислоты — хлорид натрия NaCl и нера-

НОМЕНКЛАТУРА СОЛЕЙ

Таблица 5

Название и формула кислоты	Формула иона кислотного остатка	Название соли	Формула (пример)
Азотистая, HNO_2	NO_2^-	Нитриты	KNO_2
Азотная, HNO ₃	NO_3^-	Нитраты	Al(NO ₃) ₃
Хлороводородная (соляная), HCl	C1-	Хлориды	FeCl_3
Сернистая, H_2SO_3	SO ₃ ²⁻	Сульфиты	K ₂ SO ₃
Серная, ${ m H_2SO_4}$	SO ₄ ²⁻	Сульфаты	Na ₂ SO ₄
Сероводородная, ${ m H_2S}$	S ²⁻	Сульфиды	FeS
Φ осфорная, H_3PO_4	PO ₄ ³⁻	Фосфаты	Ca ₃ (PO ₄) ₂
Угольная, $\rm H_2CO_3$	CO ₃ ²⁻	Карбонаты	CaCO ₃
Кремниевая, H_2SiO_3	SiO ₃ ²⁻	Силикаты	Na ₂ SiO ₃

створимые кальциевые соли угольной и фосфорной кислот — карбонат кальция СаСО, и фосфат кальция $Ca_3(PO_4)_2$.

Соли, их классификация и свойства

Из всех неорганических соединений соли являются наиболее многочисленным классом веществ. Это твёрдые вещества, они отличаются друг от друга по цвету и растворимости в воде.

Соли — это класс химических соединений, состоящих из ионов металла и ионов кислотного остатка.

В начале XIX в. шведский химик Й. Берцелиус сформулировал определение солей как продуктов реакций кислот с основаниями, или соединений, полученных заменой атомов водорода в кислоте металлом. По этому признаку различают соли средние, кислые и основные.

Средние соли — это продукты полного замещения атомов водорода в кислоте на металл.

Именно с этими солями вы уже знакомы и знаете их номенклатуру. Например:

Na₂CO₃ — карбонат натрия,

 $Al(NO_3)_3$ — нитрат алюминия,

 CuSO_4 — сульфат меди (II) и т. д.

Диссоциируют такие соли на катионы металла и анионы кислотного остатка:

$$Na_2CO_3 = 2Na^+ + CO_3^{2-}$$
.

Кислые соли — это продукты неполного замещения атомов водорода в кислоте на металл.

K кислым солям относят, например, питьевую соду $NaHCO_3$, состоящую из катиона металла Na^+ и кислотного однозарядного остатка HCO_3^- . Для аналогичной кислой соли кальция формулу записывают так: $Ca(HCO_3)_2$.

Названия этих солей складывают из названий средних солей с прибавлением слова $zu\partial po$ -, например: $Mg(HSO_4)_2$ — гидросульфат магния.

Диссоциируют кислые соли следующим образом:

$$NaHCO_3 = Na^+ + HCO_3^-,$$

 $Mg(HSO_4)_2 = Mg^{2+} + 2HSO_4^-.$

Основные соли — это продукты неполного замещения гидроксогрупп в основании на кислотный остаток.

Например, к таким солям относится знаменитый малахит $(CuOH)_2CO_3$, о котором вы читали в сказах П. Бажова. Он состоит из двух гидроксокатионов $CuOH^+$ и двухзарядного аниона кислотного остатка CO_3^{2-} .

Катион $CuOH^+$ имеет заряд 1+, поэтому в молекуле два таких катиона и один двухзарядный анион CO_3^{2-} объединены в электронейтральную соль.

Названия таких солей будут такими же, как и у средних солей, но с прибавлением слова гидроксо-, например (CuOH)₂CO₃ — гидроксокарбонат меди (II) или AlOHCl₂ — гидроксохлорид алюминия. Подавляющее большинство основных солей нерастворимы или малорастворимы. Последние диссоциируют так:

$$AlOHCl_2 = AlOH^{2+} + 2Cl^{-}$$
.

Типичные реакции средних солей

- Соль + кислота → другая соль + другая кислота. (реакция обмена)
- Соль + щёлочь → другая соль + другое основание. (реакция обмена)
- 3. $Cоль_1 + соль_2 \longrightarrow соль_3 + соль_4$. (реакция обмена: в реакцию вступают две соли, в результате получаются две другие соли)
 - 4. Соль + металл → другая соль + другой металл. (реакция замещения)