Scomposizione di un numero primo come somma di due quadrati

M. Alessandra De Angelis Relatore : Prof. Andrea Loi

Università degli studi di Cagliari Corso di laurea triennale in Matematica

31 Marzo 2015

Il nostro scopo è quello di dimostrare il seguente teorema dovuto a Pierre de Fermat :

Se p è un primo della forma
$$4n + 1$$
, allora $p = a^2 + b^2$, per opportuni interi a e b.

Per dimostrarlo abbiamo bisogno di introdurre alcuni concetti :

- 1) definizione e proprietà degli anelli euclidei;
- 2) definizione del dominio degli interi di Gauss.

Un dominio d'integrità **R** (anello commutativo privo di divisori dello zero) è detto anello euclideo se è possibile definire una funzione

$$\delta: \mathbf{R} \setminus \{\mathbf{0}\} \longrightarrow \mathbb{Z}_+$$

che associa a ogni $a \neq 0$ con $a \in \mathbf{R}$, un intero non negativo $\delta(a)$ tale che per $a,b \in \mathbf{R}$ con $a \neq 0$ e $b \neq 0$ si abbia :

$$\delta(\mathsf{a}) \le \delta(\mathsf{a}\mathsf{b}) \tag{1}$$

e inoltre $\exists t, r \in \mathbf{R}$ tali che

$$a = tb + r \tag{2}$$

con r = 0 oppure $\delta(r) < \delta(b)$

Osservazione (1)

A $\delta(0)$ non viene assegnato nessun valore.

Lemma (1)

In un anello euclideo ${\bf R}$ due qualunque elementi ammettono un massimo comune divisore d. Si ha inoltre che ${\bf d}={\bf a}\lambda+{\bf b}\mu$ per opportuni λ e μ di ${\bf R}$.

Corollario (1)

Un anello euclideo possiede un elemento unità.

Definizione (1)

Sia **R** un anello commutativo con unità. Un elemento $a \in \mathbf{R}$ si dice invertibile se $\exists b \in \mathbf{R}$ tale che ab = 1.

Osservazione (2)

Se **R** è un anello euclideo e $b \neq 0$ non è invertibile in **R** allora $\delta(a) < \delta(ab)$.

Lemma (2)

Sia $\mathbf R$ un dominio di integrità con unità. Supponiamo che per due elementi $a,b\in\mathbf R$ si abbia : $a\mid b\ e\ b\mid a$. Allora a=ub dove $u\ \grave{e}$ un elemento invertibile in $\mathbf R$.

Due elementi siffatti vengono detti associati.

Definizione (2)

In un anello euclideo ${\bf R}$ un elemento non invertibile π della forma $\pi=ab$, con $a,b\in{\bf R}$, si dice primo se a oppure b è invertibile.

Lemma (3)

In un anello euclideo ${\bf R}$ ogni elemento o è invertibile oppure si può scrivere come prodotto di un numero finito di elementi primi di ${\bf R}$.

Lemma (4)

Se π è primo in \mathbf{R} e π | ab, con a, b \in \mathbf{R} , allora π divide a oppure b.

Teorema (1)

Sia ${\bf R}$ un anello euclideo e $a \neq 0$ un elemento non invertibile di ${\bf R}$. Supponiamo che $a=\pi_1\pi_2...\pi_n=\pi'_1\pi'_2...\pi'_m$, dove π_i e π'_j sono elementi primi di ${\bf R}$. Allora m=n e ogni π_i con $1\leq i\leq n$ è associato a qualche π'_j con $1\leq j\leq m$ e viceversa.

 $\mathbb{J}[\mathfrak{i}]$ è l'insieme dei numeri della forma $a + \mathfrak{i}b$ con a e b interi e \mathfrak{i}

l' unità immaginaria. Con le usuali operazione di somma e moltiplicazione ($\mathbb{J}[i],+,\cdot$)

forma un dominio d'integrità detto dominio degli interi di Gauss.

Teorema (2)

$$(\mathbb{J}[\mathfrak{i}],+,\cdot)$$
 è un anello euclideo.

Dimostrazione: Definiamo la funzione

$$\delta: \mathbb{J}[i] \setminus \{0\} \longrightarrow \mathbb{Z}_+$$
$$x \longmapsto \delta(x) = x\overline{x}$$

dove con \overline{x} indichiamo il complesso coniugato di x.

Se
$$x = a + ib$$
, $x\overline{x} = a^2 + b^2$

1) Dimostriamo che $\delta(x) \leq \delta(xy) \ \forall \ y \neq 0$.

Osserviamo che $\delta(x)=a^2+b^2\geqslant 1$ in quanto somma di quadrati di due interi positivi non nulli.

Inoltre dalle proprietà dei numeri complessi discende che dati $x,y\in \mathbb{J}[\mathfrak{i}]$ si ha

$$\delta(xy) = \delta(x)\delta(y)$$

Unendo le due considerazioni troviamo

$$\delta(x) = \delta(x)1 \le \delta(x)\delta(y) = \delta(xy)$$

2) Dimostriamo che dati $x, y \in \mathbb{J}[i] \exists t, r \in \mathbb{J}[i]$ tali che y = tx + r, con r = 0 oppure $\delta(r) < \delta(x)$.

Dimostriamolo prima in un caso particolare.

Consideriamo $y \in \mathbb{J}[i]$ e $x \in \mathbb{Z}$ della forma y = a + ib e x = n (ricordiamo che \mathbb{Z} è un sottoanello di $\mathbb{J}[i]$).

Per l'algoritmo della divisione euclidea degli interi possiamo trovare due interi $\mathfrak u$ e $\mathfrak s$ tali che $a=\mathfrak u n+\mathfrak u_1$ e $b=\mathfrak s n+\mathfrak s_1$ dove $\mathfrak u_1$ e $\mathfrak s_1$ sono due interi tali che

$$|\mathfrak{u}_1| \leq \frac{n}{2} \; \mathsf{e} \; |\mathfrak{s}_1| \leq \frac{n}{2}$$

(3)

Si ha allora

$$y = a + ib = un + u_1 + i(sn + s_1)$$
$$= (u + is)n + (u_1 + is_1)$$
$$= tn + r$$

con $t = \mathfrak{u} + \mathfrak{i}\mathfrak{s}$ e $r = \mathfrak{u}_1 + \mathfrak{i}\mathfrak{s}_1$.

Poiché

$$\delta(r) = \delta(\mathfrak{u}_1 + \mathfrak{i}\mathfrak{s}_1)$$

per definizione di δ si ha

$$\delta(r) = \mathfrak{u}_1^2 + \mathfrak{s}_1^2$$

e per la (3) si conclude

$$\delta(r) \leq \frac{n^2}{4} + \frac{n^2}{4} \leq n^2 = \delta(n)$$

Dimostriamo il caso generale.

Supponiamo $x,y\in \mathbb{J}[\mathbf{i}]$ con $x\neq 0$. Se consideriamo $\frac{y\overline{x}}{x\overline{x}}$, possiamo ricondurci al caso precedente ricordandoci che $x\overline{x}$ è un intero che chiameremo n.

Esisteranno allora $t, r \in \mathbb{J}[i]$ tali che $y\overline{x} = tn + r$ con r = 0 o $\delta(r) \leq \delta(n) = \delta(x\overline{x})$.

Abbiamo trovato che

$$\delta(r) = \delta(y\overline{x} - tx\overline{x}) = \delta(y - tx)\delta(\overline{x})$$

Ма

$$\delta(r) < \delta(x\overline{x}) \text{ con } \overline{x} \neq 0$$

per cui

$$\delta(y-tx)<\delta(x)$$

Se chiamiamo $r_0 = y - tx$ e $y = tx + r_0$ allora $t, r \in \mathbb{J}[i]$ sono gli elementi cercati.

Ш

Lemma (5)

Sia p un intero primo, e supponiamo che per un certo intero c primo con p si possano trovare due interi x e y tali che $x^2 + y^2 = cp$. Allora esistono due interi a e b tali che $p = a^2 + b^2$.

Dimostrazione:

Per ipotesi p è primo in \mathbb{Z} . Supponiamo per assurdo che sia primo anche in $\mathbb{J}[i]$. Se scriviamo $cp = x^2 + y^2 = (x + iy)(x - iy)$, dal Lemma (4) sappiamo che

$$p \mid (x + iy)$$
 oppure $p \mid (x - iy)$

Ma se questo è vero allora

$$p \mid x \in p \mid y$$

perciò

$$x = pu e y = ps$$

Si ha allora

$$x+\mathfrak{i}y=p(\mathfrak{u}+\mathfrak{i}\mathfrak{s})$$

e dunque $p \mid (x - iy)$. Allora $p^2 \mid (x + iy)(x - iy) = cp$ questo implica che

$$p^2 \mid c$$

contro l'ipotesi (p, c) = 1.

Abbiamo fatto vedere che p non è primo in $\mathbb{J}[i]$. Segue che :

$$p = (a + ib)(g + id)$$

dove $a+ib, g+id \in \mathbb{J}[i]$ e nessuno dei due è invertibile. Questo vuol dire che $(a+ib)(a-ib)=a^2+b^2\neq 1$.

Infatti se a + ib non è invertibile, per l'osservazione (2) si ha che

$$\delta(a-\mathfrak{i}b)<\delta((a-\mathfrak{i}b)(a+\mathfrak{i}b))=\delta(a-\mathfrak{i}b)\delta(a+\mathfrak{i}b)$$

da cui si ricava

$$1 < \delta(a + \mathfrak{i}b) = a^2 + b^2$$

Analogamente $g^2 + d^2 \neq 1$. Poiché $p \in \mathbb{Z}$ si ha

$$p = (a - ib)(g - id)$$

perciò

$$p^2 = (a + ib)(g + id)(a - ib)(g - id) = (a^2 + b^2)(g^2 + d^2)$$

Quindi $(a^2 + b^2) \mid p^2$.

Si presentano tre possibilità :

- 1) $a^2 + b^2 = 1$ ma non può accadere perché a + ib non è invertibile;
- 2) $a^2 + b^2 = p^2$ ma questo implica $g^2 + d^2 = 1$ che per le stesse motivazioni del punto 1) non può accadere;
- 3) $a^2 + b^2 = p$ come volevasi dimostrare.

I numeri primi dispari si dividono in due classi:

- 1)quelli che divisi per 4 danno resto 1, della forma 4n + 1;
- 2) quelli che divisi per 4 danno resto 3, della forma 4n + 3.

Lemma (6)

Se p è un numero primo della forma 4n + 1 allora la congruenza $x^2 \equiv_p -1$ ammette soluzione.

Dimostrazione:

Definiamo un numero $x=1\cdot 2\cdot ...\cdot \frac{p-1}{2}$. Essendo p-1=4n ,x è il prodotto di un numero pari di fattori. Quindi possiamo scrivere equivalentemente $x=(-1)\cdot (-2)\cdot ...\cdot (-\frac{p-1}{2})$.

Per il teorema di Wilson sappiamo che se p è un numero primo allora $p-k\equiv_{p}-k$ è vera e dunque

$$x^{2} = 1 \cdot 2 \cdot \dots \cdot \frac{p-1}{2} \cdot (-1) \cdot (-2) \cdot \dots \cdot (-\frac{p-1}{2}) \equiv_{p}$$
$$1 \cdot 2 \cdot \dots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \dots \cdot (p-1) \equiv_{p} (p-1)! \equiv_{p} -1$$

Teorema (3)

Se p è un numero primo della forma 4n+1 allora $p=a^2+b^2$ per opportuni a e b.

Dimostrazione : Dal lemma (6) sappiamo che esiste $x \in \mathbb{J}[i]$ tale che $x^2 \equiv_p -1$ con $0 \le x \le (p-1)$.

Notiamo che l'intervallo può essere reso ancora più piccolo, infatti se

$$x>rac{p}{2}$$
 allora $y=p-x$ verifica $y^2\equiv_p(p-x)^2\equiv_pp^2-2xp+x^2\equiv_px^2\equiv_p-1$

con $\mid y \mid \leq \frac{p}{2}$.

Ha senso quindi considerare $|x| \le \frac{p}{2}$. Lo stesso lemma ci dice anche che $x^2 + 1 \equiv_p 0$ quindi $x^2 + 1$ è un multiplo di p che indicheremo con cp. Abbiamo

$$cp = x^2 + 1 \le \frac{p^2}{4} + 1 < p^2$$

Poiché in un anello euclideo non ci sono divisori dello zero otteniamo

$$c < p$$
 perciò p non divide c e dunque $(p, c) = 1$

Siamo nelle ipotesi del lemma (5) e possiamo concludere

$$p = a^2 + b^2$$
 per opportuni a e b.