Newton — Problem Set 4 — Solution

1. A Very Strange Central Force Law
(a) The rate at which the planet susceps out area is
(a) The rate at which the planet suscept out area is Proportional to: Veft (a-e) or the left He bothm and top
and Vacross a on the bottom and top Vright (ate) on the right Vright (ate) on the right Vright (ate) on the proposition 1, so we learn
and vacross on the right
These rates must be equal by Proposition 1, so we learn
Vacross = $\frac{a-e}{a}$ Vleft and Vright = $\frac{a-e}{a+e}$ Vleft (b) The DOOM horizontal component in the horizontal direction at the lover-left corner The DOOM vertical is proportional to Vleft
(b) V quantity of motion $V = \frac{a-e}{e}V_{eff}$
The DOOM horizontal
component in the horizontal direction at the
The DQOM vertical is proportional to Vleft
So the vector (which is the sum of these) is proportional to
11.1.1. resulting 1)
Multiply by a a resulting indeed and divide by star
Length at lower left is: Vright = $\frac{a-e}{a+e}$ Veeft Length at lower left is: Vright = $\frac{a-e}{a+e}$ Veeft Length at lower right is: $\frac{(a-e)^2}{a} + \frac{(a-e)^2}{a+e}$ Veeft
Length at lower left is: Vright = $\frac{a-e}{a+e}$ left length at lower right is:
Vright = a-e left
Whight = a-e Veft length at lower right is: \[\langle \frac{a-e}{a} \rangle \left \] \[\langle \frac{a-e}{a} \rangle \rangle \left \rangle \rangl
WHAT A STRANGE FORCE LAW! Ratio is a Vaz (ate) Veeft lower ight lower to Vaz hae)
right lower Va= k-e)

2. Radii of Curvature — Newton's Construction Involving Chords

(a) Below is a table showing the x-value, the slope of the chord leading to that x-value, and the place on the y-axis where the perpendicular to the chord intersects it.

```
lo[7] = twoAPerpendicular[x_] := -x / (-Sqrt[1-x^2] + 1)
In[12] = MatrixForm
       Table\big[\big\{x\,,\,\mathsf{twoAPerpendicular}[x]\,,\,\,-x\,\,\mathsf{twoAPerpendicular}[x]\,+\,\big(-\,\mathsf{Sqrt}\big[1\,-\,x^2\big]\,+\,1\big)\big\}\,,
         {x, DeleteCases[Range[-0.5, 0.5, 0.1], 0.0]}]]
       (-0.5 3.73205 2.
        -0.4 4.79129 2.
        -0.3 6.51313 2.
        -0.2 9.89898 2.
        -0.1 19.9499 2.
        0.1 -19.9499 2.
        0.2 -9.89898 2.
        0.3 -6.51313 2.
        0.4 -4.79129 2.
       0.5 -3.73205 2.
```

On the next page, I have plotted these results. Notice that for the circle, all the points go to exactly the same place. This is a property of the circle, not of other curves that are close to circular.

In[] = $Plot[-Sqrt[1-x^2]+1, \{x, -1, 1\},$ PlotRange $\rightarrow \{\{-1, 1\}, \{-0.5, 2.5\}\}, AspectRatio <math>\rightarrow 3/2$, GridLines \rightarrow {Range[-1, 1, 0.1], Range[-0.5, 2.5, 0.1]}, Frame \rightarrow True]

1.

-0.2

5.2

(b) Below is a table showing the x-value, the slope of the chord leading to that x-value, and the place on the y-axis where the perpendicular to the chord intersects it.

```
lo[14] = twoBPerpendicular[x_] := -x/(5x^4)
[x] = MatrixForm[Table[{x, twoBPerpendicular[x], -x twoBPerpendicular[x] + (5 x^4)}, -x twoBPerpendicular[x]] + (5 x^4)},
        {x, DeleteCases[Range[-1, 1, 0.1], 0.0]}]]
Out[16]//MatrixForm=
        -1.
                0.2
                          5.2
       -0.9 0.274348 3.52741
       -0.8 0.390625 2.3605
       -0.7 0.58309 1.60866
       -0.6 0.925926 1.20356
       -0.5
               1.6
                        1.1125
       -0.4
             3.125
                        1.378
       -0.3 7.40741 2.26272
       -0.2
               25.
                        5.008
       -0.1
               200.
                        20.0005
        0.1
              -200.
                        20.0005
        0.2
              -25.
                        5.008
        0.3 -7.40741 2.26272
        0.4
             -3.125
                        1.378
        0.5
              -1.6
                        1.1125
        0.6 -0.925926 1.20356
        0.7 -0.58309 1.60866
        0.8 -0.390625 2.3605
        0.9 -0.274348 3.52741
```

On the next page, I have plotted these results. Notice that for the quartic, there isn't convergence! The origin is a point on this curve with zero curvature.

Hercept 20 identités

 $ln(\cdot) = Plot[5 x^4, \{x, -1, 1\}, PlotRange \rightarrow \{\{-1, 1\}, \{-0.5, 2.5\}\}, AspectRatio \rightarrow 3/2, GridLines \rightarrow \{Range[-1, 1, 0.1], Range[-0.5, 2.5, 0.1]\}, Frame \rightarrow True]$

(c) Below is a table showing the x-value, the slope of the chord leading to that x-value, and the place on the y-axis where the perpendicular to the chord intersects it.

```
In[23] - twoCPerpendicular[x] := -x/(x^3 + x^2)
 In[30] = MatrixForm[Table[\{x, \text{twoCPerpendicular}[x], -x \text{twoCPerpendicular}[x] + <math>(x^3 + x^2)\},
        {x, DeleteCases[Range[-0.5, 1.0, 0.1], 0.0]}]]
Out[30]//MatrixForm=
       -0.5
                 4.
                         2.125
        -0.4 4.16667
                        1.76267
        -0.3 4.7619
                       1.49157
               6.25
        -0.2
                        1.282
        -0.1 11.1111
                        1.12011
        0.1 -9.09091 0.920091
        0.2 -4.16667 0.881333
        0.3 -2.5641 0.886231
        0.4 -1.78571 0.938286
        0.5 -1.33333 1.04167
        0.6 -1.04167
                        1.201
        0.7 -0.840336 1.42124
        0.8 -0.694444 1.70756
        0.9 -0.584795 2.06532
                -0.5
        1.
                           2.5
```

On the next page, I have plotted these results. This is the more typical case that Newton is expecting. Unlike for the circle they don't converge identically. Unlike the quartic at x = 0 though, they do converge.

Although I haven't plotted the additional ten points below on the next page, they help see numerically that they are converging to 1.0.

```
In[34] = MatrixForm[Table[\{x, twoCPerpendicular[x], -x twoCPerpendicular[x] + <math>\{x^3 + x^2\},
        {x, Range[-0.09, 0.09, 0.02]}]]
Out[34]//MatrixForm=
       -0.09
                12.21
                        1.10627
        -0.07 15.361
                        1.07983
        -0.05 21.0526 1.05501
                                         Convergence at x=0 to 1.0
       -0.03 34.3643
                        1.0318
       -0.01 101.01
                         1.0102
        0.01 -99.0099 0.9902
        0.03 -32.3625 0.971801
        0.05 -19.0476 0.955006
        0.07 -13.3511 0.939822
```

0.09 -10.1937 0.92626

 $\label{eq:plot_solution} \mathsf{Plot}\big[x^3+x^2,\ \{x,\ -1,\ 1\},\ \mathsf{PlotRange} \to \{\{-1,\ 1\},\ \{-0.5,\ 2.5\}\},\ \mathsf{AspectRatio} \to 3\ /\ 2,$ GridLines \rightarrow {Range[-1, 1, 0.1], Range[-0.5, 2.5, 0.1]}, Frame \rightarrow True]

Out[25]=

Plot[$\{x^3 + x^2, -Sqrt[0.25 - x^2] + 0.5, Sqrt[0.25 - x^2] + 0.5\}$, $\{x, -1, 1\}, PlotRange \rightarrow \{\{-1, 1\}, \{-0.5, 2.5\}\}, AspectRatio \rightarrow 3/2$, GridLines $\rightarrow \{Range[-1, 1, 0.1], Range[-0.5, 2.5, 0.1]\}$, Frame \rightarrow True]

the circle of or radius imposed superimposed 2.0 1.5 1.0 0.5

-0.5

0.5

$$F_{r} = -m \frac{V^{2}}{r} = -m \frac{(2\pi r)^{r}}{r^{2}} = -4\pi^{2} m \frac{r}{T^{2}}$$

$$= |2\epsilon \left[\left(\frac{\sigma}{r} \right)^{13} \left(\frac{\sigma}{r} \right)^{7} \right] / \sigma$$

Multiply through by Tiz and divide through by the 12e [(=13-(=))]/o mess to get

$$T^{2} = \frac{-4\pi^{2}m^{2}}{12\epsilon \left[\left(\frac{5}{r}\right)^{13} - \left(\frac{5}{r}\right)^{7}\right]}$$

$$T = \sqrt{\frac{4m}{12\epsilon \left[\left(\frac{5}{r} \right)^7 - \left(\frac{5}{r} \right)^{13} 7}} \approx 0$$

This is only valid for 175. For 126 what is in the square root is negative.

The real Van Der Waa I's system is quantum mechanical. I don't know if this period (or Frequency) plays any role in its analysis.

It was just intended to be practice with the methods leading up to corollary 7.