Applying KVL in
$$i1$$
,
 $10i1 - 6 + 2(i_1 - i_2) = 0$
 $=)12i_1 - 2i_2 = 6$

FOR
$$i2!$$
 $40i$. $2(i_2-i_1)+(1(i_2-i_3))$
 $+8+4i_2=0$

For
$$i3!$$
 $6+5i3-8+1(i3-i2)=0$
=> $6i33-i2=2$ — (ii)

From calc,

$$i_1 = 0.329A$$

 $i_2 = -1.025A$
 $i_3 = 0.162A$

Now,
$$i3 = i + i2$$

$$= 3i = i3 - 12$$

$$= 0.162 + 1.025$$

$$= 1.187 A$$
Ans

21

Using mesh analysis,

$$\hat{1}_0 = -i2 - 0$$

Supermesh,

210=
$$i3-i2$$
 — -0 = -12 $i3=0$

$$2+1(i2-i1)+2(i3-i1)+27=0$$

$$2+1(12-11)+2(13-12)$$

$$=) 29+12-11+213-211=0$$

From (1), $1(i_1-i_2)+3+2(i_1-i_3)=0$

$$=)$$
 $11 - 12 + 3 + 211 - 213 = 0$

$$=)$$
 $3i1-i2-2i3=-3-(v)$

$$(1) + (11) + (11) + (11) - 12 = 0$$

$$-3i_1+i_2+2i_3=-29$$

$$\frac{-311}{311-12} - \frac{213}{-13} = -32$$

$$-12 - 13 = -32$$

From (Wi)
$$3(v)$$
,
$$-i_{2}-i_{3}=0$$

$$(+) -i_{2}-i_{3}=-32$$

$$-2i_{2}-2i_{3}=-32$$

$$=) -2(-i_{2}-i_{3})=-32$$

$$=) -i_{2}-i_{3}=\frac{32}{2}$$

$$=) -i_{2}-i_{3}=16$$

$$=) -i_{3}=-i_{2}+16$$
Pulling this in (Db) (Wi) (1v)
$$-i_{2}-(-i_{2}+16)=0$$

$$=) -i_{2}+i_{2}$$

$$3i_{1}+3-i_{2}-2(-i_{2}+16)=-3$$

$$= -3$$

$$= 3i_1 - i_2 + 2i_2 - 32 = -3$$

$$= 3i_1 + i_2 = -35$$

$$\hat{1}_0 = \frac{VL}{2} = \boxed{18A}$$
 Ans

3/ Using mesh analysis,

$$35\sqrt{12}$$
Supermesh,
 $-35+10i2-10i1+2i3-2i1+8i3=0$

$$n = 35$$
, $-10i2 - 10i1 + 273$
= $-35 + 10i2 - 10i2 = 35 - 10$

Abo,
$$i_3 - i_2 = 3\%$$
 — (11)
=) $i_0 = i_2$ — (11)

From cale,

$$i_1 = 1.0096A$$
,

 $i_2 = 0.8413 A$ 9

 $i_3 = 3.8701 A$
 $50.i_0 = i_1 = 1.0096A$

Ans

 41
 $12 = 0.8413 A$ 9

 $13 = 3.8701 A$
 $13 = 3.8701 A$

8i
$$2 + 2v_0 + 4(i3 - i1) + 2(i2 - i1) = 0$$

 $-4i_1 - 2i_1 + (8+2)i_2 + 4i_3 + 2v_0 = 0$
but, $v_0 = 2(i_1 - i_2)$ from ①,
 $50, -6i_1 + 10i_2 + 4i_3 + 2 \times 2 (i_1 + i_2) = 0$
 $\Rightarrow i_1 = 3i_2 + 2i_3 = 0$
From ① $\Rightarrow i_3 - i_2 = 3$
 $6i_1 - 2i_2 - 4i_3 = 12$
using calculator we get,
 $i_1 = 3 \cdot 5A$, $i_2 = -0.5A$ $\Rightarrow i_3 = 2.5A$
 $1 \cdot 2 \cdot 5A$ $\Rightarrow i_3 = 2.5A$
Ans
 $5/1$ Using mesh, $3/1 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
 $-56 + 4(i_1 - i_3) + 1 \cdot i_1 = 0$
 $\Rightarrow 5i_1 - 4i_3 = 56$ $\Rightarrow 5i_2 + 2i_2 = 0$
 $-56 + 8(i_2 + i_3) + 2i_2 = 0$
 $10i_2 + 8i_3 = 56$ $\Rightarrow 6$

$$i_{3} = -0.5i_{0} = -0.5i_{1}$$
 $as, i_{0} = i_{1}$
 $50, 0.5i_{1} + i_{3} = 0$

from calc,

 $i_{1} = 8A$, $i_{2} = 8.8A - 3i_{3} = -4A$

Powers,

 $P_{1.2} = i_{1}^{2}(1) = 8^{2} \times 1 = 64\omega$
 $P_{4.2} = (i_{1} - i_{3})^{2} \times 4 = (0.8)^{2} \times 4 = 2.56\omega$
 $P_{8.2} = (i_{2} + i_{3})^{2} \times 8 = (8-4)^{2} \times 8 = 128\omega$
 $P_{2.2} = (i_{2}^{2} \times 2) = (8.8)^{2} \times 2 = 154.88\omega$

Anc

Now in 12 v & 201

Now combining current sources suresistances,

& all parcallel resistons,

Now the circuit is,

applying source transformation, $\frac{4}{\text{Req}} + \frac{4}{14}$ $= 4 \times \frac{14}{70}$ $\frac{80}{14} = 5.71$ So the final circcuit is, 7/ Using source transformation on 40 VN+30 - 20VN =1 Now, $= \frac{70 - 21 \text{Vn}}{20} = \frac{\text{Vn}}{8}$ $= \frac{1}{8} \cdot \text{Vn} = \frac{3.11 \text{V}}{3.11 \text{V}} = \frac{\text{Vn}}{8}$

8/ Using source transformation

$$E1 = 3x4 = 12V$$
, $R1 = 4\pi$
 $E2 = 0x2 = 18V$, $R2 = 3\pi$
 $E3 = 5x6 = 30V$, $E3 = 5\pi$
 $E3 = 5x6 = 30V$, $E3 = 5\pi$
 $E3 = 5x6 = 30V$
 $E3 = 5$

\$10 \$40 12 \$\$\frac{1}{2}\$\$\frac

Now,

$$R_{1} = \begin{bmatrix} 10^{-1} + 40^{-1} \end{bmatrix}^{-1}$$
 $R_{1} = 80$
 $T_{0} = 8+2 = 10A$

new circluit,

 $t_{0} = 8 + 2 = 10A$
 $t_{0} = 10A$
 $t_{$

10/

by notal analysis,

$$V_0 = I_0 \times 1 = 3 \times 1 = \boxed{3} V$$