4. Denotational Semantics

4. Denotational Semantics

Basic Idea

Defining Denotational Semantics

Domain Constructions

Basic Idea

How to Define Semantics

Informal/non-specifications

- · Reference Implementation: run program through compiler
- · Manuals: give descriptions in natural language

Formal specification

- **Denotational Semantics**: map terms to (mathematical) values
- · Operational Semantics: give rules for evaluating terms
- · Axiomatic Semantics: capture meaning through logical formulas

Basic Idea 2

Denotational Semantics

A denotational semantics maps

to

denotations (= values in some semantic domain)

Valuation function

 $\llbracket \cdot
rbracket$: abstract syntax ightarrow semantic domain

Valuation function in Elm eval : AST -> Value

Why Abstract Syntax in Semantics?

Principle of Compositionality

- Syntactic structure determines semantic content
- The meaning of an expression is obtained as a function of the meanings of its subexpressions.

Compositional Semantics

$$[\![f(e_1,\ldots,e_k)]\!] = [\![f]\!]([\![e_1]\!],\ldots,[\![e_k]\!])$$

Semantic Domains

Semantic domain: The set of possible meanings of a program

What is a meaning? — It depends on the language!

Language	Meaning
Boolean expressions	Boolean value
Arithmetic expressions	Integer
Imperative language	State transformation
SQL	Relation
Logo	Picture
Music notation	Sound
Labanotation	Human movement

Basic Idea

4. Denotational Semantics

Basic Idea

Defining Denotational Semantics

Denotational Semantics in Three Steps

Example in Elm:

- 1. Define the abstract syntax T type AST = ...

 Set of abstract syntax trees

 2. Define the semantic domain V type (alias) Value = .
- 2. Define the semantic domain V type (alias) Value = ... Set of semantic values
- 3. Define the *valuation function* $[\![\cdot]\!]:T\to V$ sem: AST -> Value Mapping from ASTs to semantic values a.k.a. the "semantic function"

Denotational Semantics in Elm

2. Semantic Domain
type alias Value = Int

```
3. Semantic Function

sem : Expr -> Value

sem e = case e of

Num i -> i

Neg e1 -> -(sem e1)

Plus e1 e2 -> sem e1 + sem e2

Times e1 e2 -> sem e1 * sem e2
```

Question 1

(1) Define the abstract syntax for the following language, (2) identify a semantic domain, and (3) define the denotational semantics.

$$b \in bexpr ::= \mathsf{T} \, | \, \mathsf{F} \, | \, b \vee b \, | \, b \wedge b \, | \, \neg b$$

2./3. Semantic Domain & Function

4. Denotational Semantics

Basic Idea

Defining Denotational Semantics

Domain Constructions

Type Constructors for Domain Building

Domain Construction	Type Representation
Product of domains	Use tuple types
Union of domains	Define data type
Adding errors	Use Maybe (or add Error constructor)
Adding state	Use function types

Example: Move Language

Language describing movements on a 2D plane

- a **step** is a horizontal or vertical vector
- a movement is a sequence of steps

Concrete Syntax

move ::= go up num | go right num | move; move

go up 3; go right 4; go up −1

Abstract Syntax & Semantic Domains

1. Abstract Syntax

Concrete Syntax

```
move ::= go up num | go right num | move; move
```

```
go up 3; go right 4; go up −1
```

```
Seq (Seq (GoUp 3) (GoRight 4)) (GoUp -1)
Seq (GoUp 3) (Seq (GoRight 4) (GoUp -1))
```

2. Semantic Domain
type alias Pos = (Int,Int)

Semantic Function

2. Semantic Domain
type alias Pos = (Int,Int)

```
3. Semantic Function

addPos: Pos -> Pos -> Pos

addPos (u,v) (x,y) = (u+x,v+y)

sem: Move -> Pos

sem m = case m of

GoUp n -> (0,n)

GoRight n -> (n,0)

Seq m1 m2 -> addPos (sem m1) (sem m2)
```


Question 2

Define the semantics of the Move language using the following abstract syntax.

Abstract Syntax

```
type Step = Up Int | Rgt Int
type alias Move = List Step
```

```
go up 3; go right 4; go up -1

[Up 3,Rqt 4,Up -1]
```

Semantic Function

Question 3

Define the semantics for the Move language as the total distance traveled, i.e., the semantic domain for moves is Int.

```
1. Abstract Syntax
type Dir = Up | Rgt
type alias Move = List (Dir,Int)
```

2. Semantic Domain
type alias Dist = Int

```
3. Semantic Function
```

Product Domains

Product Domain

A semantic domain for combining semantic features of types V1 and V2 can be defined as the tuple type (V1, V2).

```
type alias V = (V1, V2)
```

Combining Semantic Functions

The semantic functions sem1 : $T \rightarrow V1$ and sem2 : $T \rightarrow V2$ are combined as follows.

```
sem : T \rightarrow V
sem p = (sem1 p,sem2 p)
```

Example: Position & Distance of Moves

```
1. Abstract Syntax
type Move = GoUp Int | ...
```

```
2. Combined Semantic Domains
type alias Pos = (Int,Int)
type alias Dist = Int

type alias PosAndDist = (Pos,Dist)
```

```
3. Semantic Function
semP : Move -> Pos
semP m = ...
semD : Move -> Dist
semD m = ...
sem : Move -> PosAndDist
sem m = (semP m.semD m)
```

Error Domains

Lifted Error Domain

To add errors to a type V of "regular" values, use:

- (A) Maybe V, or
- (B) If V is a data type, add an Error or Undefined constructor to V

```
(A) Using Maybe
type Maybe a = Just a | Nothing
type alias V_Error = Maybe V
```

```
(B) Adding Constructor

type V_Error = C1 ... | Ck ... | Error
```

Example: Division by Zero

```
1. Abstract Syntax
type Expr = ...
| Div Expr Expr
```

2. Semantic Domain
type Value = Maybe Int

Grouping Case Expressions

2. Semantic Domain
type Value = Maybe Int

Factoring Error Handling

Import from the Maybe module

Customized Control Structures Possible with Higher-Order Functions!

3. Semantic Function

Union Domains

Union Domain

A semantic domain that comprises k alternative types $V1 \dots Vk$ can be defined as a data type with k constructors.

Each Cj injects (or "lifts") values of type Vj into V

Example: Two-Type Expressions

```
1. Abstract Syntax
type Expr = Num Int | Plus Expr Expr | Equal Expr Expr | Not Expr
```

Factoring Dynamic Type Checking

```
Custom Lifting Function

liftIII: (Int -> Int -> Int) -> Val -> Val -> Val

liftIII f v1 v2 = case (v1,v2) of

(I x,I y) -> I (f x y)

-> Undefined

Customized Control Structures

Possible with Higher-Order Functions!

3. Semantic Function
```

Times e1 e2 \rightarrow liftIII (*) (sem e1) (sem e2)

Domains for Stateful Computation

State Update Domain

If V is a type representing a state, then a domain for state updates on V can be represented as the function type $V \rightarrow V$.

Note: This is a very general and widely applicable schema.

States can be plain values (e.g., Int) or arbitrary mappings (e.g., [(Name, Value)]).

Example: Machine Language

```
1. Abstract Syntax
type Op = LD Int | INC | DBL
type alias Prog = List Op
```

```
2. Semantic Domains
type alias State = Int
type alias Update = State -> State
```

```
3. Semantic Functions
-- exec : Op -> Update
exec : Op -> State -> State
exec op s = case op of
    ID i \rightarrow i
    TNC \rightarrow s+1
    DBI -> s*2
sem : Prog -> State -> State
sem p s = case p of
    [] -> s
    op::ops -> sem ops (exec op s)
```

Function Domains

```
Multi-Parameter View
exec : Op -> State -> State
exec op s = case op of
    TNC \rightarrow s+1
sem : Prog -> State -> State
sem p s = case p of
    . . .
    op::ops -> sem ops (exec op s)
```

```
Function View
exec : Op -> (State -> State)
exec op = \s -> case op of
    TNC \rightarrow s+1
sem : Prog -> (State -> State)
sem p = \slash s -> case p of
    . . .
    op::ops -> sem ops (exec op s)
```


Question 4

Extend the machine language syntax to work with 2 registers A and B.

```
type Op = LD Int | INC | DBL
type alias Prog = List Op
```

Hints: (1) You need a new type Reg for registers.

(2) Operations must be parameterized by Reg.

```
type Reg = A | B
type Op = LD Reg Int | INC Reg | DBL Reg
type alias Prog = List Op
```


Question 5

Define the semantic domain(s) for the extended machine language.

```
type Reg = A | B
type Op = LD Reg Int | INC Reg | DBL Reg
type alias Prog = List Op
```

```
type alias State = (Int,Int)
type alias Update = State -> State
```


Question 6

Define the semantic function for the extended machine language.

```
type Reg = A | B
type Op = LD Reg Int | INC Reg | DBL Reg
type alias Prog = List Op

type alias State = (Int,Int)
type alias Update = State -> State
```

```
exec : Op -> Update

exec op (a,b) = case op of

LD A i -> (i,b)

LD B i -> (a,i)

INC A -> (a+1,b)

INC B -> (a,b+1)

...
```

Refactoring Semantics

```
type Reg = A \mid B
type Op = LD Reg Int
         | INC Reg | DBL Reg
type Prog = [0p]
type State = (Int,Int)
type Update = State -> State
exec : Op -> Update
exec op (a,b) = case op of
    LD A i \rightarrow (i.b)
    LD B i \rightarrow (a.i)
    INC A \rightarrow (a+1.b)
    INC B \rightarrow (a.b+1)
```

```
onReg : Reg -> (Int -> Int) -> Update
onReg r f (a,b) = case r of
    A \rightarrow (f a,b)
     B \rightarrow (a, f b)
exec : Op -> Update
exec op = case op of
   LD r i \rightarrow onReg r (\ \rightarrowi)
   INC r \rightarrow onReg r ((+) 1)
   DBL r \rightarrow onReg r ((*) 2)
```

Note: onReg is a control structure for dispatching semantic effects.

Discussion ...

Consider the following abstract syntax.

```
type Exp = Num Int | Plus Exp Exp | Equal Exp Exp
```

Which type definition for D should be used as the semantic domain?

```
(One) type alias D = Int
(Two) type alias D = Maybe Int
(Three) type D = I Int | B Bool
(Four) type D = I Int | B Bool | Error
(Five) type alias D = Maybe (Int,Bool)
```

Discussion ...

Consider a language for computing with integers and fractions.

```
type Exp = Num Int | Frac Int Int | Plus Exp Exp
```

```
Which type definition for \ensuremath{\mathsf{D}} could be used as the semantic domain?
```

```
(One) type alias D = Maybe (Int,Int)
(Two) type D = I Int | F (Int,Int)
(Three) type D = I (Maybe Int) | F (Int,Int) (✓)
(Four) type D = I Int | F (Int,Maybe Int)
(Five) type D = I Int | F (Maybe (Int,Int)) ✓
```