Questions de cours

Complémentaire d'une intersection, d'une réunion, double complémentaire

COMPLÉMENTAIRE

Énoncé

Soit A_i des parties d'un ensemble E, pour i parcourant un ensemble I, et B un ensemble. alors :

$$\mathsf{C}_E\!\left(\bigcup_{i\in I} A_i\right) = \bigcap_{i\in I} \mathsf{C}_E A_i$$

$$\mathsf{C}_E\bigg(\bigcap_{i\in I}A_i\bigg)=\bigcup_{i\in I}\mathsf{C}_EA_i$$

Démonstration: (avec des arguments ensemblistes)

Pour le complémentaire d'une union :

Dire que x n'appartient pas à $\bigcup_{i\in I}A_i$, c'est dire que x n'appartient à aucun des A. Donc il appartient au complémentaire de tous les A_i . C'est à dire que x appartient à $\bigcap_{i\in I} \mathbb{C}_E A_i$, et réciproquement.

Pour le complémentaire d'une intersection :

Dire que x n'appartient pas à $\bigcap_{i\in I}A_i$, c'est dire que x n'appartient pas à au moins un A_i . Donc il appartient à son complémentaire. Ainsi, x appartient à $\bigcup_{i\in I} \mathbb{C}_E A_i$ et réciproquement.

Double complémentarité

Énoncé

Soit E un ensemble et $B\subset E$. Alors $\mathbb{C}_E(\mathbb{C}_E B)=B$

Démonstration

Dire que x appartient à B, c'est dire qu'il n'appartient pas au complémentaire de B. C'est-à-dire que $x \in C_E(C_EB)$ et réciproquement.

Injectivité et composition

DÉFINITION

soit $f: E \to F$ f est **injective** si tout élément de F a au plus un antécédent dans E par f.

Ainsi, pour tout $y \in F$, l'équation y = f(x) d'inconnu x a au plus une solution dans E.

Composition

La composée de deux injections est injective

Soit $f: E \to F$ et $g: F \to G$ injectives. Soit $z \in G$, et supposons x_1, x_2 tels que $z = (g \circ f)(x_1) = (g \circ f)(x_2)$. Par injectivité de g, on obtient $f(x_1) = f(x_2)$ et par injectivité de f, on obtient $x_1 = x_2$.

Donc $g \circ f$ est injective.

Inversement, si $g \circ f$ est injective, alors f est injective

Supposons $g\circ f$ injective, et soit $y\in F$ tel qu'il existe x_1 et x_2 dans E tels que : $y=f(x_1)=f(x_2).$ On en déduit que : $g(y)=(g\circ f)(x_1)=(g\circ f)(x_2).$ Par injectivité de $g\circ f,\, x_1=x_2.$

Donc f est injective.

Surjectivité et composition

DÉFINITION

soit $f: E \to F$ f est surjective si tout élément de F a au moins un antécédent dans E par f.

Ainsi, pour tout $y \in F$, l'équation y = f(x) d'inconnue x a au moins une solution dans E.

Composition

La composée de deux surjections est une surjection

Supposons $f: E \to F$ et $g: F \to G$ surjectives.

Alors f(E) = F donc g(f(E)) = g(F) = G. Donc $g \circ f$ est surjective.

Inversement, si $g \circ f$ est surjective, alors g est surjective.

Supposons $g \circ f$ surjective (avec le même cadre que la démo d'avant)

Alors $f(E) \subset F$ donc $g(f(E)) = G \subset g(F) \subset G$

On en déduit que g(F) = G. Donc que g est surjective.

Définitions: majorant, minorant, borne supérieure, borne inférieure, maximum, minimum d'une partie

Théorème Définition

Soit F une partie d'un ensemble ordonné (E, \leq) .

- * F est majorée s'il existe a dans E tel que : $\forall x \in F, x \leqslant a$
- * F est minorée s'il existe a dans E tel que : $\forall x \in F, x \geqslant a$
- * F est bornée si F est majorée et minorée
- * F admet un \max imum s'il existe un majorant de F qui appartient à F.

Il est alors unique, noté $\max F$.

* F admet un minimum s'il existe un minorant de F qui appartient à F.

Il est alors unique, noté $\min F$.

- * F admet une **borne** supérieure si l'ensemble de ses majorants admet un plus petit élément de F, noté sup F. Si $\max F$ existe, alors $\max F = \sup F$
- * F admet une **borne inférieure** si l'ensemble de ses minorants admet un plus grand élément de F, noté $\inf F$. Si $\min F$ existe, alors $\min F = \inf F$

Théorèmes à citer

Injection, Surjection

Voir questions de cours

Bijection

- * Caractérisation : une application est bijective si elle est injective et surjective. Ainsi, soit $f: E \to F$ bijective, pour tout $y \in F$, il existe $x \in E$ tel que f(x) = y
- * la composée de deux bijections est une bijection
- * la composée de deux bijections est une bijection. Dans ce cas : $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$
- * Si $g \circ f$ est bijective, alors f est bijective et g est surjective.
- * Soit $f: E \to F, g: F \to E$. Alors si $g \circ f = \mathrm{Id}_E$ $f \circ g = \mathrm{Id}_F$ alors f et g sont bijectives, $f^{-1} = g$ et $g^{-1} = f$. On retrouve aussi que si f est bijective, alors f^{-1} l'est aussi.

Théorème des classes d'équivalence

Soit $\mathcal R$ une relation d'équivalence sur E. L'ensemble des classes d'équivalence modulo $\mathcal R$ forme une partition de E:

- a) aucune classe d'équivalence n'est vide
- b) deux classes d'équivalence sont disjointes ou égales
- c) leur réunion est égale à E.

Ainsi, chaque élément x d'une classe d'équivalence C en est un représentant : C = Cl(x)