Relatório de Benchmark — Inferência com NVIDIA Triton para Detecção de Armas

Este relatório apresenta os resultados de um benchmark local utilizando o **NVIDIA Triton Inference Server** para o modelo de **detecção de armas** baseado em YOLO.

Descrição do Modelo

- Arquitetura: YOLOv11 Large
- Conversão: Modelo convertido para TensorRT para acelerar inferência
- Otimização:
 - Suporte a batch size dinâmico
 - Precisão e otimizações específicas para a GPU NVIDIA
- Gerenciamento de Concorrência: Delegado ao NVIDIA Triton, que distribui múltiplas requisições simultâneas de inferência.

Ambiente de Execução Local

- Máquina: Notebook Dell G15
- **GPU**: NVIDIA RTX 3050 Laptop GPU (6 GB VRAM)
- Sistema: Ambiente local com servidor Triton configurado para aceitar diferentes níveis de concorrência e batch size.

1. Throughput vs Concorrência

Figure 1: Throughput vs Concurrency

- O throughput atinge o máximo com batch sizes ≥ 4 e concorrência ≥ 10 .
- Após esse ponto, o ganho é marginal.
- Excelente escalabilidade com aumento inicial de concorrência.

Figure 2: Latency vs Concurrency

2. Latência (p95) vs Concorrência

- A latência cresce de forma aproximadamente linear.
- Batch sizes maiores aumentam a latência significativamente.
- Para aplicações em tempo real, batch size = 1 ou 2 é recomendado.

3. Utilização Média da GPU

Figure 3: GPU Utilization vs Concurrency

- A GPU rapidamente atinge utilização próxima de 100% com poucos clientes simultâneos.
- O modelo explora bem os recursos da RTX 3050 mesmo em ambiente local.

4. Uso Máximo da Memória da GPU

Figure 4: Max GPU Memory Usage

- O uso de memória é extremamente eficiente e estável (~0.56 GB).
- Indica ótima viabilidade para implantação em ambientes com recursos limitados.

Conclusões (Ambiente Local)

- Melhor throughput: batch size \$\geq\$ 4 com concorrência \$\geq\$ 10.
- Menor latência: batch size = 1 ou 2 com concorrência 8.
- Alta eficiência da GPU: Excelente aproveitamento da RTX 3050.
- Memória estável: Sem variação com o batch size ou concorrência.

[A SER COMPLETADO] Benchmark no Servidor da T4S

Este espaço será preenchido com os resultados de benchmark no ambiente de servidor dedicado com GPU(s) de alto desempenho (L40), visando validar a escalabilidade do modelo em infraestrutura de produção.

Recomendação

Para o modelo de detecção de armas via YOLOv11-Large com Triton:

Objetivo	Batch Size	Concorrência	Comentário
Baixa Latência	1–2	1-8	Ideal para detecções em hardware embarcado
Alto Throughput	4–6	≥ 10	Ideal para processamento em lote ou remoto
Uso eficiente de recursos	≥ 2	≥ 5	Boa utilização da GPU e memória

Objetivo	Batch Size	Concorrência	Comentário
Escalabilidade	A ser testado no servidor dedicado		

 $Relat\'orio\ gerado\ com\ base\ em\ testes\ locais\ utilizando\ o\ NVIDIA\ Triton\ Inference\ Server\ em\ ambiente\ controlado.$