GOVERNMENT POLYTECHNIC, NAGPUR.

(An Autonomous Institute of Govt. of Maharashtra)

COURSE CURRICULUM

PROGRAMME : DIPLOMA IN CM / IT

LEVEL NAME : PROFESSIONAL COURSES

COURSE CODE : CM407E

COURSE TITLE : MICROPROCESSORS

PREREQUISITE : EC310E

TEACHING SCHEME: TH:03;TU:00;PR:02(CLOCK HRs.)

TOTAL CREDITS : 04 (1 TH/TU CREDIT = 1 CLOCK HR., 2 PR CREDIT = 1 CLOCK HR.)

THEORY TEE : 03 HRs

PRACTICAL TEE : 02 HRs (Internal)

PT EXAM : 01 HR

* RATIONALE:

Microprocessor is brain of computer. Intel family is widely used all over the world. 8085 is the 8-bit CPU and 8086 is the 16-bit CPU. 8086 is the base of all upward developed processors. It is more powerful and efficient computing machine. It overcomes all major limitations of the previous processors. It is able to get interfaced with 8-bit, 16-bit systems. This subject covers Basics of 8085, architecture of 8086 along instruction set. It also covers assembly language programming with effective use of procedure and macros. This will act as base for the advanced assembly language programming for next generation microprocessors.

* COURSE OUTCOMES:

After completing this course students will be able to-

- Apply the fundamentals of assembly language programming in developing microprocessor based applications.
- 2. Develop assembly language program for interfacing various peripheral devices.
- 3. Identify and illustrate the need of advance microprocessors
- 4. Develop and execute programs in 8086 assembly language.
- 5. Design the hardware and software necessary to realize a project idea.
- Interface external devices to the processor according to user requirements to create novel products and solutions for real life problems.

❖ COURSE DETAILS:

A. THEORY:

Units	Specific Learning Outcomes (Cognitive Domain)	Topics and subtopics	Hrs
01.8-Bit Microprocessor	 Describe the evolution of microprocessors. Enlist the features of 8085. Describe the architecture of 8085. Illustrate the 8085 flag register. Illustrate how the control and status signals can be separated. 	1.1. Evolution of microprocessors 1.2. 8085 bus structure 1.3. Salient features of 8085 microprocessor 1.4. Architecture of 8085 microprocessor 1.5. 8085 pin diagram 1.6. Control & status signals 1.7. Separation of control signals 1.8. 8085 flags 1.9. Limitations of 8-bit microprocessors	06
02. 16-Bit Microprocessor 8086	 Enlist the features of 8086 microprocessor. Describe the architecture of 8086. Enlist and specify the buses in 8086. Describe the 8086 minimum/maximum system configuration. Illustrate how memory addresses are generated. Illustrate the pipelining Process. Generate the memory address for interfacing a block of memory to 8086. 	2.1 Features of 8086 microprocessor 2.2 Register organization of 8086microprocessor 2.3 8086 architecture 2.4 Signal descriptions of 8086 2.5 General Bus operation 2.6 I/O addressing capability 2.7 Minimum mode 8086 system 2.8 Maximum mode 8086 system 2.9 Concepts of pipelining, memory segmentation and memory address generation.	10
03.8086 Assembly Language Programming	Identify the addressing mode of a particular instruction. Select a particular instruction for a specified action. Develop basic programs for 8086 microprocessor. Illustrate different types of microprocessor instructions with suitable example programs Develop and execute a program to perform	 3.1 Machine language instruction formats 3.2 Addressing modes of 8086 3.3 8086 Instruction set 3.4 Assembler directives and operators 3.5 Simple programs based on instruction set 3.6 Assembly Language Programming tools- Editor, Assembler, Linker, Debugger. 3.7 Program development steps: Defining problem Algorithms 	10

			_
	arithmetic operations.	 Flowchart Initialization checklist Choosing instructions Converting algorithm to ALP 3.8 Programming using assembler 	
04.Interrupts, Procedures & Macro	 Describe the operation of stack and its significance. Classify interrupts. Illustrate the use of interrupts with suitable programs. Describe various maskable and non-maskable interrupts. Describe the CALL procedure. Describe Macros. the use of procedures and macros with suitable example programs. Develop and execute a program for transferring a block of data using stack. Develop and execute a program making use of non-maskable interrupts. 	4.1 Introduction to stack 4.2 Stack structure of 8086 4.3 Interrupts and Interrupt Service Routine 4.4 Interrupt cycle of 8086 4.5 Non-maskable interrupts 4.6 Maskable Interrupt (INTR) 4.7 Software interrupts 4.8 Defining Procedure (Directives used, FAR and NEAR, CALL and RET instructions) 4.9 Nested, Reentrant & Recursive procedures 4.10 Defining and calling a Macro without parameters, Passing parameters to macros 4.11 Assembly language programs using procedures and macros.	8
05.System Interfacing	 Describe I/O mapping and memory mapping. Illustrate the odd and even bank memory concept. Describe the interfacing of 8255 PPI with 8086 microprocessor. Describe the interfacing of ADC 0808 with 8086 microprocessor. Describe the interfacing of DAC 0800 with 8086 microprocessor. Describe the interfacing of DAC 0800 with 8086 microprocessor Develop and execute a program to interface ADC for converting a signal from analog to digital. 	5.1 Memory interfacing techniques (I/O mapped I/O, Memory mapped I/O, Comparison of both) 5.2 Even and Odd bank concept 5.3 Memory Interfacing - RAM, ROM 5.4 Interfacing Input/ Output (I/O) ports 8255 Programmable Peripheral Interface - Configuration, Operation Modes, Interfacing 8255 with 8086 microprocessor 5.5 Interfacing of Analog to Digital converter 5.6 Interfacing of Digital to Analog converter	8
06.32-Bit Microprocessor s	State the features of advance microprocessors 80286, 80386, 80486, 80586. Compare advance	6.1 Salient features of 80286 microprocessor 6.2 Salient features of 80386 microprocessor 6.3 Salient features of 80486	06

microprocessors. 3. State the need of higher processors.	6.4 6.5	microprocessor Comparison of various microprocessors Introduction to Pentium processors.	
		Total Hrs	48

B. LIST OF PRACTICALS/LABORATORY EXPERIENCES/ASSIGNMENTS:

Practi cals	Specific Learning Outcomes (Psychomotor Domain)	Units	Hrs.
1	Develop and execute an Assembly Language Program (ALP) to add / subtract two 16 bit numbers		2
2	Develop and execute an ALP to find sum of series of numbers.		2
3	Develop and execute an ALP to multiply two 16 bit unsigned/ signed numbers. OR Develop and execute an ALP to divide two unsigned/ signed numbers (32/16, 16/8, 16/16, 8/8).		4
4	Develop and execute an ALP to find smallest/ largest number from array of <i>n</i> numbers. OR Develop and execute an ALP to arrange numbers in array in ascending/ descending order.	8086 Assembly Language Programming	4
5	Develop and execute an ALP to perform block transfer data using string instructions / without using string instructions.		4
6	Develop and execute an ALP to compare two strings using string instructions / without using string instructions. OR Develop and execute an ALP to display string in reverse order, string length, Concatenation of two strings.		2
7	Determine digital equivalent of a analog signal by interfacing ADC with 8086 microprocessor.		2
8	Generate a square wave, ramp wave by interfacing a DAC with IC8255 to 8086 microprocessor	System Interfacing	2
9	Develop and execute an ALP to interface a stepper motor to 8086 microprocessor and rotate it in clockwise and anticlockwise direction.		2
10	Design and Prepare mini project based on any one application of 8086 microprocessor.	Mini-Project	6
		Skill Assessment	2
		Total Hrs	32

❖ SPECIFICATION TABLE FOR THEORY PAPER:

Unit	Units	Levels from	Cognition Pro	cess Dimension	Total Marks	
No.		R	U	A		
01	8-Bit Microprocessor	04(00)	04(04)	00(00)	08(04)	
02	16-Bit microprocessor 8086	02(00)	04(04)	08(04)	14(08)	
03	8086 assembly language programming	02(00)	08(04)	06(06)	16(10)	
04	Interrupts, Procedure & Macro	00(02)	08(00)	06(06)	14(08)	
05	System Interfacing	02(02)	04(04)	06(00)	12(06)	
06	32-bit microprocessors	00(00)	06(04)	00(00)	06(04)	
	Total	10(04)	34(20)	26(16)	70(40)	
			477 Table	Total Marks	70(40)	

R - Remember

U - Understand

A – Analyze / Apply

QUESTION PAPER PROFILE FOR THEORY PAPER:

									5.72.2			_				_			
Q.		Bit	1	Bit 2		Bit 3			Bit 4		Bit 5		Bit 6		option				
No	Т	L	М	Т	L	М	T	L	M	T	L	M	T	L	M	T	L	M	option
	1	R	2	1	R	2	2	R	2	3	R	2	5	R	2	4	R	2	5/7
01	5	R	2					~	1	1	-								
02	1	U	4	2	U	4	3	U	4	1	U	4	2	U	4				3/5
03	3	U	4	4	U	4	5	U	4	2	A	4	3	U	4				3/5
04	2	Α	4	2	Α	4	4	U	4	5	U	4	6	U	4				3/5
05	3	A	6	4	Α	6	3	A	6										2/3
06	5	Α	6	6	U	6	4	A	6										2/3

T= Unit/Topic Number

L= Level of Question

M= Marks

R-Remember

U-Understand

A-Analyze/ Apply

* ASSESSMENT AND EVALUATION SCHEME:

	v	Vhat	To Whom	Frequency	Max Marks	Min Marks	Evidence Collected	Course Outcomes	
ory	CA (Continuous Assessment)	Progressive Test (PT)	Students	Two PT (average of two tests will be computed)	20		Test Answer Sheets	1, 2, 3	
sment The	Conti Assess	Assignments	Stud	Continuous	10		Assignment Book / Sheet	1, 2, 3	
Direct Assessment Theory	TEE (Term End Examination)	End Exam	Students	End Of the Course	70	28	Theory Answer Sheets	1, 2, 3	
				Total	100	40			
	essment)	Skill Assessment		Continuous	20		Rubrics & Assessment Sheets	4,5,6	
Direct Assessment Practical	CA (Continuous Assessment)	Journal Writing	Students	Students	Continuous	05		Journal	4,5,6
sessmer	(Cor			TOTAL	25	10			
Direct As	TEE (Term End Examination)	End Exam	Students	End Of the Course	50	20	Rubrics & Practical Answer Sheets	4,5,6	
ssessment	1	Feedback on ourse	Student	After First Progressive Test	Stud	lent Feedba	ack Form	1 2 2 450	
Indirect Assessment	End (Of Course	Students	End Of The Course		Questionn	aires	1, 2, 3, 4,5,6	

SCHEME OF PRACTICAL EVALUATION:

S.N.	Description	Max. Marks
1	Drawing circuit diagram, selection of equipment's. writing procedure etc.	10
2	Performance	20
3	Calculation, Result, Drawing Graphs(if any	10
5	Viva voce	10
	TOTAL	50

***** MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

1. Computer Engineering:-

Course		Program Outcomes (POs)									PSOs		
Outcomes	1	2	3	4	5	6	7	8	9	10	1	2	
1	- 1	3	ā.		-		2	·	-	3	3	-	
2	-	3	-	-7	3	10	-	1) -	3	3	-	
3	-	3	-	E	1-	4	-	-)	0	3	3	-	
4	-	3	3	3	-	(6)	W	3	3	3	3	-	
5		3	3	3	7.2	iafa.	1	3	3	3	3	-	
6	- 1	3	3	3	3		-5	3	3	3	3	-	

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

2.Information Technology:-

Course		Program Outcomes (POs)									PSOs		
Outcomes	1	2	3	4	5	6	7	8	9	10	1	2	
1	-	3	-	-	-	-	-	-	-	3	-	3	
2	-	3	-	-	-	-	-	-	-	3	(5)	3	
3	-	3	-	-	-	-	-	-	-	3	-	3	
4	-	3	3	3	-	-	-	3	3	3	-	3	
5	-	3	3	3	-	-	-	3	3	3	-	3	
6	- 1	3	3	3	-	-	-	3	3	3	1-	3	

* REFERENCE & TEXT BOOKS:

S.N.	Title	Author, Publisher, Edition and Year Of publication	ISBN Number
1.	Microprocessor and Interfacing (Programming and hardware)	Douglas V. Hall, Tata McGraw Hill, Second Edition, 1974	978007601673
2.	Advanced microprocessor & peripherals	A.K. Ray & K.M. Bhurchandi, Tata McGraw Hill, Second Edition, 2009	0070606587
3.	Microprocessor Architecture programming & applications with 8085	Ramesh A. Gaonkar, Penram International, Fourth Edition, 1999	0139012578
4.	Advance Microprocessor and interfacing	Badri Ram, Tata McGraw-Hill Education, 12 th Reprint, 2001	0070434484, 9780070434486

❖ E-REFERENCES:

- 1. www.electronics.dit.ie/staff/tscarff/8086_instruction_set/8086_instruction_set.ht ml, assessed on 30th August, 2016
- 2. http://ece425web.groups.et.byu.net/stable/labs/8086Assembly.html, assessed on 30th August, 2016
- 3. nptel.ac.in>pdf>Teacher_Slides>mod1, assessed on 30th August, 2016

❖ LIST OF MAJOR EQUIPMENTS/INSTRUMENTS WITH SPECIFICATION

- 1. PS 8086 Specifications
 - Operating frequency: 18.432MHz
 - 16KB powerful software monitor two 27C256 EPROM ii.
 - iii. Three 16-bit programmable timers from 8253
 - iv. 48 programmable I/O lines from 8255
 - v. Serial interface using 8251
 - 50 pin FRC connector for bus expansion vi.
 - 20pin FRC connector foe user interface from 8255 vii.
 - viii. 9 pin D type connector for RS232 interface
 - 101 PC type keyboard for entering user data/address and for commands ix.

❖ LIST OF EXPERTS & TEACHERS WHO CONTRIBUTED FOR THIS CURRICULUM:

S.N.	Name	Designation	Institute / Industry
1.	Shri S. S. Tadas	HOD, Electronics	Government Polytechnic,
2.	Shri A. A. Ali	HOD, Electronics (IInd	Nagpur. Government Polytechnic,
3.	Ms. K. G. Giri	Shift) Lecturer, Electronics	Nagpur. Government Polytechnic,
J.	Mr.Sandip V.Darwhekar	Director	Nagpur. Beta Computronics
4	THE WHERE	Director	Pvt.Ltd.Nagpur

5	Mrs.Gazala Ali	HOD, Electronics	Anjuman Polytechnic, Nagpur.
6	Mr.S.M.Kale	Lecturer in Electronics & Telecomm Engineering	Government Polytechnic, Gadchiroli.

(Member Secretary PBOS)	(Chairman PBOS)

