Introduction to Information Theory

Eric Filiol

ESIEA - Laval Laboratoire de cryptologie et de virologie opérationnelles $(C+V)^O$ ${\tt filiol@esiea.fr}$

2013 - 2014

Introduction: What is Information

- Consider the following propositions
 - A A race between two equally matched horses is less uncertain that a race between six evenly matched horses.
 - B The outcome of a spin on a roulette wheel is more uncertain than the throw of a die.
 - C The throw of a fair die is more uncertain than the throw of a biased die in which the probabilities are $\frac{1}{10}$ of getting each of the numbers 1 to 5 and probability $\frac{1}{2}$ of getting a 6.
- What about their validity? Could you formalize easily those propositions? What is uncertainty?
- Uncertainty means/implies also the effort one should make to guess information (the case of cryptology).

Introduction: What is Information (2)

- Information theory deals with mathematical problems regarding the representation, the storage, the transformation, the transmission of information.
- Modern life is overwhelmed by all types of information.
- It is necessary to define what is information and how to define a measure of information.

Information Theory (1)

Information Theory (2)

- Information must be represented (essential difference with ideas or concepts).
 - Information is intrinsic to the existence of a physical medium (paper, air, hard disk, copper wire, optical fiber...).
- The concept of unpredictability is essential: why transmit an
 information which is obvious. Information is by essence unpredictable.
 So any measure of information will be that of its unpredictability
 degree/level.
- However very often a part only of received information is new (e.g. cell telephone number or Social insurance code). So information is never totally unexpected.

Information Theory (3)

- We have to use signals and encoding. We then have to choose signs or symbols to build messages.
- Key issues :
 - Cost of information representation, transmission, storage...
 - Required properties: unicity (to avoid ambiguity and equivocation), transinformation, universality...
- Without loss of generality we will consider only discrete signals/symbols.
- Two kind of information : useful information and parasite information or noise. The difference between the two is relative and subjective.
- Theory developed by C. E. Shannon in 1948-1949. Initial works by Harry Nyqyst and Ralph Hartley (1920).

- Introduction: What is Information and Information Theory?
- 2 Uncertainty
- 3 Entropy and Its Properties
- 4 Conditional Entropy
- Measure of Information
- 6 Conclusion
- Bibliography

- Introduction: What is Information and Information Theory?
- 2 Uncertainty
- 3 Entropy and Its Properties
- 4 Conditional Entropy
- Measure of Information
- 6 Conclusion
- Bibliography

Introduction: Statistical Description

Suppose that X and Y are two distinct random variables such that

$$P(X = 0) = p$$
 $P(X = 1) = 1 - p$ while $P(Y = 100) = p$ $P(Y = 200) = 1 - p$

- ullet Any definition of uncertainty should give X and Y the same uncertainty. In other words, it should be a function on the probability p only.
- This definition and the relevant properties should extend to variables taking more than 2 values.

Definition of Uncertainty

The uncertainty of a random variable X, which takes the values x_i with probabilities $p_i, (1 \le i \le n)$ is to be a function *only* of the probabilities p_1, \ldots, p_n .

Let us denote this function $H(p_1, \ldots, p_n)$.

Postulates for $H(p_1, \ldots, p_n)$

- A1 $H(p_1,\ldots,p_n)$ is maximum whenever $p_1=p_2=\ldots=p_n=\frac{1}{n}$
- A2 For any permutation $\pi \in S(n)$ we have $H(p_1,\ldots,p_n)=H(p_{\pi(1)},\ldots,p_{\pi(n)})$
- A3 $H(p_1,\ldots,p_n)\geq 0$ and $H(p_1,\ldots,p_n)=0$ whenever $\exists i\in [1,\ldots,n]$ such that $p_i=1$
- A4 $H(p_1,...,p_n,0) = H(p_1,...,p_n)$
- A5 $H(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}) \le H(\frac{1}{n+1}, \frac{1}{n+1}, \dots, \frac{1}{n+1}).$
- A6 $H(p_1, \ldots, p_{n-1})$ should be a continuous and strictly concave function.
- A7 $\forall (n,m) \in \mathbb{N}^2, H(\frac{1}{nm}, \frac{1}{nm}, \dots, \frac{1}{nm}) = H(\frac{1}{n}, \dots, \frac{1}{n}) + H(\frac{1}{m}, \dots, \frac{1}{m})$
- A8 Let $p=p_1+\ldots p_m$ and $q=q_1+\ldots q_n$ with each p_i and q_j being non negative and p,q being positive while p+q=1, we must have

$$H(p_1, \dots, p_m, q_1, \dots, q_n) = H(p, q) + p.H(\frac{p_1}{p}, \dots, \frac{p_m}{p}) + q.H(\frac{q_1}{q}, \dots, \frac{q_n}{q})$$

Entropy Theorem

Theorem

Let $H(p_1,\ldots,p_n)$ be a function defined for any $n\in\mathbb{N}$ and $\forall (p_1,\ldots,p_n)\in\mathbb{R}^n$ with $p_i\in[0,\ldots,1]\subset\mathbb{R}$ such that $\sum_{i=1}^n p_i=1$. If h is to satisfy the axioms [A1]-[A8], then

$$H(p_1, \dots, p_n) = -\lambda \sum_{i=1}^n p_i \log(p_i)$$

with λ any positive constant and where the sum is for those i for which $p_i > 0$.

- The system of axioms [A1]-[A8] has been proposed by (Shannon, 1948). It is not minimal (Aczél & Daróczy, 1975).
- Proof left as exercice.

Random Variable Entropy

• For X an random variable that takes a finite set of values with probabilities p_1, \ldots, p_n , We define *Entropy* or *Uncertainty* of X as

$$H(X) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

under the same condition as in the Entropy Theorem.

- Axiom [A1] implies that $H(\frac{1}{2},\frac{1}{2})=1$. This expresses that the information unit is the *bit* (standing for Binary unIT).
- Exercices.

- $lue{1}$ Introduction : What is Information and Information Theory \hat{a}
- 2 Uncertainty
- 3 Entropy and Its Properties
- 4 Conditional Entropy
- Measure of Information
- 6 Conclusion
- Bibliography

Properties of Entropy

• Let X be a random vector which takes only a finite number of values u_1, u_2, \ldots, u_n . We define its entropy by

$$H(X) = -\sum_{i=1}^{n} p(u_i) \log_2(p(u_i))$$

• For n=2 with X=(U,V) and $p_{ij}=P(U=u_i,V=b_j)$ then we write

$$H(X) = H(U, V) = -\sum_{i,j} p_{ij} \log_2(p_{ij})$$

• More generally, if X_1, X_2, \ldots, X_n is a collection of random variables each taking only a finite number of values, we can consider the random vector $X = (X_1, X_2, \ldots, X_n)$ which takes also a finite number of values and define the *joint entropy* by

$$H(X) = H(X_1, X_2, \dots, X_n) = -\sum p(x_1, x_2, \dots, x_n) \log_2(p(x_1, x_2, \dots, x_n))$$

where $p(x_1, x_2, ..., x_n) = p(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$.

A First Inequality on Entropy

Theorem

For any $n \in \mathbb{N}$

$$H(p_1, p_2, \dots, p_n) \le \log_2(n)$$

with equality if and only if $p_i = \frac{1}{n} \quad \forall i \in [1, \dots, n] \subset \mathbb{N}$.

• Proof left as an exercise (hint : \log_e is a concave function).

Key Lemma

If $(p_i:1\leq i\leq n)$ is a given probability distribution, then the minimum of

$$G(q_1, \dots, q_n) = -\sum_{i=1}^n q_i \log_2(q_i)$$

over all probability distributions (q_1, \ldots, q_n) , is achieved when $q_k = p_k$, $(1 \le k \le n)$.

A Second Inequality on Entropy

The previous Lemma is useful to prove the following key Theorem.

Theorem

If X and Y are any two random variables taking only a finitely many values, then

$$H(X,Y) \le H(X) + H(Y)$$

with equality holding if and only if X and Y are independent.

- This can be extended to more than two random variables e.g. X_1, X_2, \ldots, X_n the equality holding when the variables are mutually independent.
- \bullet We extend this result two any pair of random vectors (U,V) and we have

$$H(U,V) \le H(U) + H(V)$$

Eric Filiol (Esiea - $(C+V)^O$ lab)

- Introduction: What is Information and Information Theory?
- 2 Uncertainty
- 3 Entropy and Its Properties
- 4 Conditional Entropy
- Measure of Information
- Conclusion
- Bibliography

Conditional Entropy

Suppose that X Y are random variables on a probability space Ω , taking many finitely values, and A is an event in Ω .

We define the conditional entropy of X given A by

$$H(X|A) = -\sum_{i=1}^{n} P(X = x_i|A) \log_2(P(X = x_i|A))$$

 We define in the same way the conditional entropy of X given Y (or the equivocation of Y about X) by

$$H(X|Y) = -\sum_{y_j}^{n} H(X|Y = y_j).P(Y = y_j)$$

where
$$H(X|Y=y_j) = -\sum_{x_i} P(X=x_i|Y=y_j) \log_2(P(X=x_i|Y=y_j))$$

ullet H(X|Y) is the uncertainty on X given a particular value of Y, averaged over the range of values that Y can take. In other words, it the remaining uncertainty about X after Y has been observed.

Properties of Conditional Entropy

Trivial property :

$$H(X|X) = 0$$

ullet If X and Y are independent then we have :

$$H(X|Y) = H(X)$$

- H(X|Y) is the uncertainty on X given a particular value of Y, averaged over the range of values that Y can take (exercice).
- This notion extends easily to random vectors.

$$H(U|V) = -\sum_{i=1}^{n} H(U|V = v_i).P(V = v_i)$$

• H(U|V) measures the uncertainty about U contained in V and we can prove that (proof left as an exercise)

$$H(U|V) = 0$$
 if and only if $U = g(V)$ for some G

Properties of Conditional Entropy (2)

Theorem: Chain rule

For any two pair of random variables X and Y that take only a finitely many values, and for U and V two random vectors each taking only a finite set of values then

$$H(X,Y) = H(Y) + H(X|Y)$$
 and $H(U,V) = H(V) + H(U|V)$

- This result expresses mathematically the idea that conditional entropy of X given Y
 correctly measures the remaining uncertainty (proof left as an exercise).
- We then can give the following corollary (proof left as an exercise).

Corollary

For any pair of X and Y (random variables or random vectors)

with equality if and only if X and Y are independent.

Properties of Conditional Entropy (3)

Corollary

For any three random variables X,Y and Z that take only a finitely many values, then

$$H(X,Y|Z) = H(X|Z) + H(Y,X,Z)$$

• The proof is similar to that of the Chain rule theorem.

Corollary

Let X_1, X_2, \ldots, X_n random variables drawn according to $p(x_x, x_2, \ldots, x_n)$. Then

$$H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1)$$

Proof by using the previous corollary.

- Introduction: What is Information and Information Theory?
- 2 Uncertainty
- 3 Entropy and Its Properties
- 4 Conditional Entropy
- Measure of Information
- 6 Conclusion
- Bibliography

- We would like to have a measure of information while until now we have just defined a measure of uncertainty.
- First attempt by (Hartley, 1928).
- Suppose E_1 and E_2 two events on probability space Ω , or respective probability p_1 and p_2 . Any "natural" measure of information I should satisfy

$$I(p_1, p_2) = I(p_1) + I(p_2)$$

ullet I must be a continuous, positive function, so for any event E we choose

$$I(E) = -\log_2(P(E))$$

• Let us extend this concept to random variables and random vectors to define the useful concept of *transinformation* or *mutual information*.

Let X and Y two random variables. We want to express the amount of information that Y reveals about X. we denote this I(X;Y) or I(X|Y).

$$I(X;Y) = I(X|Y) = H(X) - H(X|Y)$$

We then have

$$I(X;X) = H(X)$$

I(X;Y)=0 if and only if X and Y are independent

$$I(X;Y) = I(Y;X)$$

- Introduction: What is Information and Information Theory?
- 2 Uncertainty
- 3 Entropy and Its Properties
- 4 Conditional Entropy
- Measure of Information
- 6 Conclusion
- Bibliography

Conclusion

- Uncertainty and information are essentially the same quantities.
- The removal of uncertainty can be considered as giving information.
- Both are measured with the mathematical concept of entropy.
- The use of base 2 for the logarithm defines the unit of entropy as the *bit*.
- Go now to the computer room to practice with exercices.

- Introduction: What is Information and Information Theory?
- 2 Uncertainty
- 3 Entropy and Its Properties
- 4 Conditional Entropy
- Measure of Information
- 6 Conclusion
- Bibliography

Essential Bibliography

A few papers are available on the Moodle repository for this lecture.

- Aczél, J. & Daróczy, Z. (1975). On Measures of Information and Their Characterizations. Academic press.
- Hartley, R.V.L. (1928). Transmission of Information, Bell System Technical Journal, Volume 7, Number 3, pp. 535–563.
- Nyquist, H. (1924). Certain Factors Affecting Telegraph Speed. Bell System Technical Journal, 3, 324–346.
- Nyquist, H. (1928). Certain Topics in Telegraph Transmission Theory, Trans. AIEE, vol. 47, pp. 617–644.
- Shannon, C.E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656.
- Welsh, D. (1988). Codes and Cryptography, Oxford Science Publications.