

ASYNCHRONOUS STOCHASTIC QUASI-NEWTON MCMC FOR NON-CONVEX OPTIMIZATION

Umut Şimşekli¹, Çağatay Yıldız², Thanh Huy Nguyen¹, Gaël Richard¹, A. Taylan Cemgil³

1: Télécom ParisTech, Paris, France 2: Aalto University, Espoo, Finland 3: Boğaziçi University, Istanbul, Turkey Supported by ANR (ANR-16-CE23-0014), TÜBİTAK (116E580), the industrial chair Machine Learning for Big Data from Télécom ParisTech

INTRODUCTION & MOTIVATION

• Distributed L-BFGS [1]: promising algorithm for solving:

$$\theta^* = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \left\{ U(\theta) \triangleq \sum_{i=1}^{N_Y} U_i(\theta) \right\}$$

- Its computational efficiency might be improved by reducing the synchronization overhead
- Goal: Develop asynchronous distributed L-BFGS
- Approach: Sample from a tempered posterior:

$$\theta^* \approx \theta \sim \{p(\theta|Y) \propto \exp(-\beta U(\theta))\}$$

- -Y: dataset, β : inverse temperature
- When $\beta \to \infty$: $p(\theta|Y) \to \delta_{\theta^*}$ (global optimum)

- For large β , a sample from $p(\theta|Y)$ will be close to θ^*
- Develop an L-BFGS-based, asynch. distributed MCMC al**gorithm** for sampling from $p(\theta|Y)$

TECHNICAL BACKGROUND

- The L-BFGS algorithm: [2]
- $-\theta_n = \theta_{n-1} hH_n \nabla U(\theta_{n-1})$
- $-H_n$: approximate inverse Hessian
- Requires iterate and gradient differences:

$$(\theta_n - \theta_{n-1}), \quad (\nabla U(\theta_n) - \nabla U(\theta_{n-1}))$$

• Stochastic Gradient MCMC: [3]

$$\theta_n = \theta_{n-1} - h\nabla \tilde{U}_n(\theta_{n-1}) + \sqrt{2h/\beta} Z_n$$

- $-\nabla U$: stochastic gradient
- $-Z_n \sim \mathcal{N}(0,I)$, Gaussian noise
- Discretization of: $d\theta_t = -\nabla U(\theta_t)dt + \sqrt{2/\beta}dW_t$
 - $+W_t$: Brownian motion
 - + Stationary measure $\propto \exp(-\beta U(\theta))$
- + Recently used for optimization [4]

METHOD

• Architecture: Master node + independent Worker nodes

• Master node: Store the up-to-date sample

$$u_{n+1} = u_n + \Delta u_{n+1}, \qquad \theta_{n+1} = \theta_n + \Delta \theta_{n+1}$$

• Worker nodes: L-BFGS computations

$$\Delta u_{n+1} \triangleq -h' H_{n+1}(\theta_{n-l_n}) \nabla \tilde{U}(\theta_{n-l_n}) - \gamma' u_{n-l_n} + \sqrt{2h'\gamma'/\beta} Z_{n+1}$$

$$\Delta \theta_{n+1} \triangleq H_{n+1}(\theta_{n-l_n}) u_{n-l_n}$$

- $-u_n$: momentum variable, h': step-size, γ' : friction
- $-l_n$: the 'delay' at iteration n, $\max_n l_n = l_{\max}$
- $-H_n$: L-BFGS matrix: computed on *local* variables of a worker
- **SGD-momentum:** $\beta \to \infty$, $l_{\text{max}} = 0$, $H_n(\theta) = I$

EXPERIMENTS

- Synthetic data: $\theta \sim \mathcal{N}(0, I), \ Y_i | \theta \sim \mathcal{N}(a_i^\top \theta, \sigma_x^2), \ i \in [1, N_Y]$
- Simulated distributed environment in MATLAB
- Explicit control on comp. times, delay, node variability

- Large-scale matrix factorization:
- $-F_{rk} \sim \mathcal{N}(0,1), \ G_{ks} \sim \mathcal{N}(0,1), \ Y_{rs}|F,G \sim \mathcal{N}(\sum_{k} F_{rk}G_{ks},1)$
- − C++ code with OpenMPI on a cluster with 500 computers
- MovieLens 1M, 10M, 20M datasets

- Sub-linear speed up:

NON-ASYMPTOTIC ANALYSIS

• Start with the stochastic differential equation:

$$dp_t = \left[(1/\beta)\Gamma_t(\theta_t) - H_t(\theta_t)\nabla U(\theta_t) - \gamma p_t \right] dt + \sqrt{2\gamma/\beta} \ dW_t$$
$$d\theta_t = H_t(\theta_t)p_t dt$$

- Γ: partial derivatives of H_t
- Invariant measure with density $\propto \exp(-\beta U(\theta) (\beta/2)p^{\top}p)$
- Euler discretization: (h: step-size)

$$p_{n+1} = p_n - hH_n(\theta_n)\nabla U(\theta_n) - h\gamma p_n + \frac{h}{\beta}\Gamma_n(\theta_n) + \sqrt{2h\gamma/\beta}Z_{n+1}$$

$$\theta_{n+1} = \theta_n + hH_n(\theta_n)p_n$$

- Discard Γ , set $u_n \triangleq hp_n$, $\gamma' \triangleq h\gamma$, $h' \triangleq h^2$, use delayed iterates → proposed algorithm
- Analyze the **ergodic error**: $\mathbb{E}[\hat{U}_N U^*]$:
- $-\hat{U}_N \triangleq \frac{1}{N} \sum_{n=1}^N U(\theta_n), \quad U^* \triangleq \min_{\theta} U(\theta), \quad \bar{U}_{\beta} \triangleq \int \theta p(\theta|Y) d\theta$
- Approach: $\mathbb{E}[\hat{U}_N U^\star] = \mathbb{E}[\hat{U}_N \bar{U}_\beta] + [\bar{U}_\beta U^\star]$

Main assumptions:

- $-\nabla U$, H_n : Lipschitz, H_n : bounded 2nd order derivatives
- $\mathbb{E} \|\nabla_{\theta} U(\theta) \nabla_{\theta} \tilde{U}(\theta)\|^2 \le \sigma$ - Stochastic gradients:
- Second-order moments: $\int_{\mathbb{R}^d} \|\theta\|^2 p(\theta|Y) d\theta \leq C_{\beta}/\beta$

Theorem 1

The ergodic error of the proposed algorithm is bounded as follows:

$$\left|\mathbb{E}\hat{U}_N - U^*\right| = \mathcal{O}\left(\frac{1}{Nh} + \max(1, l_{\max})h + \frac{1}{\beta}\right)$$

REFERENCES

- [1] Albert S Berahas, Jorge Nocedal, and Martin Takác. A multi-batch L-BFGS method for machine learning. In Advances in Neural Information Processing Systems, pages 1055–1063, 2016.
- [2] J. Nocedal and S. J. Wright. Numerical optimization. Springer, Berlin, 2006.
- [3] M. Welling and Y. W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In International Conference on
- Machine Learning, pages 681–688, 2011. [4] M. Raginsky, A. Rakhlin, and M. Telgarsky. Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis. In *Proceedings of the 2017 Conference on Learning Theory*, volume 65, pages 1674–1703, 2017.