基本単位

長さ m、質量 kg、時間 s(秒)、電流 Aを基本とするMKSA単位系。

MKSA単位系に、温度 K、物質量 mol、光度 cdを加えたものをSI単位系と呼ぶ。

組立単位

組立単位は、基本単位の組みあわせでできる単位。これらの単位を組みあわせて使っている限り、数字の部分は変化しない。

1 Hz (ヘルツ) = 1 s⁻¹

 $1 N (ニュートン) = 1 m \cdot kg \cdot s^{-2}$

1 Pa (パスカル) = 1 N m⁻² = 1 m⁻¹·kg·s⁻² 1 J (ジュール) = 1 N·m = 1 m²·kg·s⁻² 1 W (ワット) = 1 J·s⁻¹ = 1 m²·kg·s⁻³

1 V (ボルト) = 1 W·A⁻¹

その他、よく使う慣用的な単位

1 h = 60 min = 3600 s

 $1 L = 0.001 m^3$

1 mL = 0.000 001 m³

指数表記と接頭辞

- $123456 \text{ m} = 1.23456 \times 10^5 \text{ m} = 1.23456 \times 10^2 \text{ km}$
- 6,000,000,000,000 s= 6×10¹² s = 6 Ts = 19万年
- $0.00004 \text{ g} = 4 / 100000 = 4 \times 10^{-5} \text{ g} = 40 \text{ }\mu\text{g}$
- $3.6 \times 10^3 \text{ J} \div (6.0 \times 10^2 \text{ s}) = 0.6 \times 10^1 \text{ W} = 6.0 \times 10^0 \text{ W} = 3.6 \text{ W}$

m×10^E のように数字を書く書き方を指数表記と呼ぶ。mを仮数部、Eを指数部と呼ぶ。

- ・ mは1以上10未満となるように指数部を調節する。(桁あわせ)
- Eが0の場合はx 10^oの部分は省略する。
- コンピュータでは、5.12×10⁶を5.12E6あるいは5.12E+06などのように表記する場合がある。
- 2つの指数表記の数をかけ算する場合には、仮数部同士を掛け、指数部同士を加える。
 - $a \times 10^{B} \times c \times 10^{D} = (a \times c) \times 10^{B+D}$
- 2つの指数表記の数を割り算する場合には、仮数部同士で割り算し、指数部の差をとる。
 - $a \times 10^{B} \div (c \times 10^{D}) = (a \div c) \times 10^{B-D}$
- 2つの指数表記の数を足し算/引き算する場合には、まず指数部が同じになるように、仮数部の小数点位置をずらしてから計算する。

 $2.5 \times 10^3 + 1.3 \times 10^4 = 0.25 \times 10^4 + 1.3 \times 10^4 = 1.55 \times 10^4$

日常ではキロ〜マイクロあたりが一番よく使われるが、化学では、太字の接頭辞をよく使う。ただし、それよりも巨大な数や微小な数(アボガドロ数6.022E23 mol-1、ボルツマン定数1.38E-23 J·K-1、プランク定数6.626E-34 J·sなど)では接頭辞を使うとよけいわからなくなるので指数表記する。

組立単位に接頭辞がつくと、少しややこしい。

 $1 \text{ cm}^2 = 0.0001 \text{ m}^2 \text{ (c=0.01}$ だから $\text{c}^2 = 0.0001$ と覚えておく)

 $1 \text{ mm}^3 = 10^{-9} \text{ m}^3$

 $1 \text{ g cm}^{-3} = 0.001 \text{ kg cm}^{-3} = 1000 \text{ kg m}^{-3}$

接頭辞は単位と分離できない。単位に3乗が付くときには、接頭辞もいっしょに3乗される。

 $1 L = 0.001 \text{ m}^3 = 1 \text{ dm}^3$ (1 dm = 0.1 m = 10 cm) だが、1 m(m^3)という書き方はできない。

10 ⁿ	接頭辞	記号	漢数字表記(命数法)	十進数表記	語源
1024	ヨタ (yotta)	Υ	一杼	1 000 000 000 000 000 000 000 000	イタリア語「8」
1021	ゼタ (zetta)	Z	十垓	1 000 000 000 000 000 000 000	イタリア語「7」
1018	エクサ (exa)	E	百京	1 000 000 000 000 000 000	ギリシャ語「6」
1015	ペタ (peta)	Р	千兆	1 000 000 000 000 000	ギリシャ語「5」
1012	テラ (tera)	Т	一兆	1 000 000 000 000	ギリシャ語「怪物」
10 ⁹	ギガ (giga)	G	十億	1 000 000 000	ギリシャ語「巨人」
106	メガ (mega)	М	百万	1 000 000	ギリシャ語「大きい」
10 ³	キロ (kilo)	k	千	1 000	ギリシャ語「1000」
10 ²	ヘクト (hecto)	h	百	100	ギリシャ語「100」
10¹	デカ (deca, deka)	da	+	10	ギリシャ語「10」
100	なし	なし	_	1	なし
10-1	デシ (deci)	d	十分の一/一分	0.1	ラテン語「0.1(10)」
10-2	センチ (centi)	С	百分の一 / 一厘	0.01	ラテン語「100」
10-3	ミリ (milli)	m	千分の一/一毛	0.001	ラテン語「1000」
10-6	マイクロ (micro)	μ	百万分の一 / 一微	0.000 001	ギリシャ語「小さい」
10-9	ナノ (nano)	n	十億分の一 / 一塵	0.000 000 001	ギリシャ語「小人」
10-12	ピコ (pico)	р	一兆分の一 / 一漠	0.000 000 000 001	イタリア語「小さい」
10-15	フェムト (femto)	f	千兆分の一/一須臾	0.000 000 000 000 001	デンマーク語・ノルウェー語「15」
10-18	アト (atto)	a	百京分の一 / 一刹那	0.000 000 000 000 000 001	デンマーク語・ノルウェー語「18」
10-21	ゼプト (zepto)	z	十垓分の一 / 一清浄	0.000 000 000 000 000 000 001	ギリシャ語「7」
10-24	ヨクト (yocto)	у	一	0.000 000 000 000 000 000 000 001	ギリシャ語「8」

エネルギー

エネルギーとは、物体がもっている、仕事をする能力のこと。ここでいう仕事とは力と距離の積である。 仕事(J) = $J(N) \times$ 距離(m)

いろんな種類のエネルギーがあるが、同じ単位(ジュール)で表せる = 互換性がある。

- 1 kg重m = 9.8 J (位置エネルギー)
- 1 kg、1 m/sの物体は 0.5 J (運動エネルギー)
- 1 cal = 4 J
- 1 A, 1Vの電流1秒で1 Ws = 1 J
- 0.5モルの酸素と1 モルの水素が反応すると、水と241.8 kJのエネルギーが生じる

質の違う2つのエネルギーのかたちがある。

- 1. 仕事 = 向きがそろったエネルギー
- 2. 熱 = 向きがばらばらなエネルギーの集まり

単位はどちらも J。 仕事のほうが熱より高品質。

- 酸素と水素をまぜて爆発させると、生じるエネルギーは熱になる。
- 燃料電池で酸素と水素を反応させると、高品質な電流という形のエネルギーが得られる。
- 食物を消化すると、食物が分解されて化学エネルギーが生じ、その大部分は熱になり、一部が運動(仕事)となる。
- ・ 仕事は100%熱に変換できるが、熱(温度差)は一部しか仕事に変換できない。
 - 熱を仕事に変換する装置を熱機関と呼ぶ
 - ・ ガソリンエンジン、蒸気機関、原子炉etc.
 - その変換効率を熱効率と呼ぶ。
 - ・ 熱効率の理論上限値: η = (T_H-T_L) / T_H

TH, TL: 高温側と低温側の絶対温度

仕事はいずれ熱になる。熱は利用価値が少ない。