Universität Potsdam Institut für Physik und Astronomie Abgabe am 25. Juni 2020, 24 Uhr

Übungsaufgaben zur theoretischen Mechanik²

20 Punkte

SS2020: Übung 10

V: Feldmeier

Schwarz¹

<u>1.</u> Infinitesimale und kanonische Transformationen

6 Punkte

Es seien $\vec{\delta a}$ und $\vec{\delta \phi}$ infinitesimale vektorielle Parameter. Was bedeuten die durch

a)
$$F_2(\vec{r}, \vec{P}) = \vec{r} \cdot \vec{P} + \delta \vec{a} \cdot \vec{P}$$

b)
$$F_2(\vec{r}, \vec{P}) = \vec{r} \cdot \vec{P} + \delta \vec{\phi} \cdot (\vec{r} \times \vec{P})$$

erzeugten kanonischen Transformationen? Schreiben Sie die Galilei-Transformation als kanonische Transformation. Wie ändert sich die Hamilton-Funktion?

<u>2.</u> Kanonische Transformation: Oszillator

6 Punkte

Gegeben sei die Hamiltonfunktion $H=p_x^2+x^2$. Finden Sie die kanonische Transformation, die H in die neue Hamiltonfunktion $K=P^2Q^4+\frac{1}{Q^2}$ transformiert. Benutzen Sie die Eigenschaften der kanonischen Transformation und die Beziehung $x=\frac{1}{Q}$. Wie lauten die Erzeugenden F_2 und F_3 ?

3. Erzeugende F_2 .

8 Punkte

Ein mechanisches System soll die explizit zeitabhängige Hamiltonfunktion

$$H(q, p, t) = H_0(q, p) + \epsilon q \sin \omega t$$

haben, mit Konstanten ϵ und ω . Die Hamiltonfunktion H_0 sei zeitunabhängig, wird aber nicht weiter spezifiziert.

- a) Wie lauten die Hamilton-Gleichungen?
- b) Finden Sie ein geeignetes f(q,t), so daß die erzeugende Funktion

$$F_2(q, P, t) = -qP - f(q, t),$$

eine kanonische Transformation $q, p \to Q, P$ und $H(q, p, t) \to h(Q, P)$ ergibt, nach der die Bewegungsgleichungen wieder kanonische Form $\dot{Q} = \partial h/\partial P$ und $\dot{P} = -\partial h/\partial Q$ haben. Zeigen Sie letzteres durch explizite Rechnung.

Hinweis. Die Lösung durch fast rein formale Rechnung. Diese aber bitte sehr sorgfältig.

¹udo.schwarz@uni-potsdam.de

²http://www.astro.physik.uni-potsdam.de/~afeld/2020SSMechanik.html http://www.astro.physik.uni-potsdam.de/~afeld/