Devoir surveillé 4

Calculatrice autorisée Lundi 10 mars 2025

EXERCICE 1 (5 POINTS)

Effectuer les calculs suivants et donner le résultat sous forme simplifiée :

1.
$$\frac{3}{4} + \frac{5}{6}$$

2.
$$\frac{7}{9} \times \frac{3}{5}$$

3.
$$\frac{\frac{8}{15}}{\frac{4}{9}}$$

4.
$$1-\frac{2}{7}$$

5.
$$\left(\frac{5}{8} + \frac{1}{4}\right) \times \frac{2}{3}$$

CORRECTION
1.
$$\frac{3}{4} + \frac{5}{6} = \frac{9}{12} + \frac{10}{12} = \frac{19}{12}$$

2.
$$\frac{7}{9} \times \frac{3}{5} = \frac{7 \times 3}{9 \times 5} = \frac{7}{3 \times 5} = \frac{7}{15}$$

3.
$$\frac{\frac{8}{15}}{\frac{4}{9}} = \frac{8}{15} \times \frac{9}{4} = \frac{8 \times 9}{15 \times 4} = \frac{2 \times 9}{15} = \frac{2 \times 3}{5} = \frac{6}{5}$$

4.
$$1 - \frac{2}{7} = \frac{7}{7} - \frac{2}{7} = \frac{5}{7}$$

5.
$$\left(\frac{5}{8} + \frac{1}{4}\right) \times \frac{2}{3} = \left(\frac{5}{8} + \frac{2}{8}\right) \times \frac{2}{3} = \frac{7}{8} \times \frac{2}{3} = \frac{7}{12}$$

EXERCICE 2 (7 POINTS)

Dans une association de 420 membres, les activités proposées sont le jeu d'échecs et le jeu de go. Les membres sont classés selon leur tranche d'âge : les « juniors » et les « séniors ».

On sait que 315 membres, dont 63 juniors, jouent aux échecs et que 84 membres sont des juniors.

1. Compéter le tableau d'effectifs ci-contre.

	Échecs	Go	Total
Junior			
Sénior			
Total			

- 2. Calculer la fréquence marginale des joueurs d'échecs.
- 3. Calculer la fréquence conditionnelle des joueurs de Go parmi les juniors.
- 4. Au moins trois quarts des séniors sont des joueurs d'échecs. Est-ce vrai? Justifier votre réponse.
- 5. La fréquence marginales des femmes dans l'association est égale à 0,25. Calculer le nombre de femmes dans l'association.

CORRECTION

1.

	Échecs	Go	Total
Junior	63	21	84
Sénior	252	84	336
Total	315	105	420

- 2. La fréquence marginale des joueurs d'échecs est égale à $\frac{315}{420}$ = 0,75.
- 3. La fréquence conditionnelle des joueurs de Go parmi les juniors est égale à $\frac{21}{84}$ = 0,25.
- 4. La fréquence conditionnelle des joueurs d'échecs parmi les séniors est égale à $\frac{252}{336} = 0,75$. Il est vrai qu'au moins trois quarts des séniors sont des joueurs d'échecs.
- **5.** On sait qu'il y a un quart de femmes parmi les 420 membres. Ainsi, il y a $0.25 \times 420 = 105$ femmes dans l'association.

EXERCICE 3 (8 POINTS)

Un laboratoire pharmaceutique met au point un test pour dépister une maladie.

Une étude sur un échantillon de personnes montre que le test est positif dans 4% des cas et que 7% des personnes ayant un test positif ne sont en fait pas malades (on parle alors de « faux positif »). On apprend aussi que 97% des personnes testées négatives ne sont pas malades.

On choisit au hasard une personne testée et on considère les événements T : « le test est positif » et M : « la personne est malade ».

- 1. Construire un arbre pondéré décrivant la situation.
- 2. a. Calculer la probabilité que la personne ne soit pas malade et que son test soit négatif.
 - **b.** Calculer la probabilité conditionnelle que la personne soit malade sachant que son test est négatif (on parle alors de « faux négatif »).
- **3. a.** Quels sont les cas dans lesquels le test commet une erreur?
 - **b.** Calculer la probabilité que le test commet une erreur.

CORRECTION

1.

- **2. a.** $\mathbb{P}\left(\overline{M} \cap \overline{T}\right) = 0.96 \times 0.97 = 0.9312$ par lecture de l'arbre.
 - **b.** $\mathbb{P}_{\overline{T}}(\overline{M}) = 0.03$ par lecture de l'arbre.
- **3. a.** Le test commet une erreur quand la personne est malade testée négative ou quand la personne n'est pas malade testée positive.

b. La probabilité que le test commet une erreur est égale à $\mathbb{P}\left(M \cap \overline{T}\right) + \mathbb{P}\left(\overline{M} \cap T\right)$.

$$\mathbb{P}\left(M \cap \overline{T}\right) + \mathbb{P}\left(\overline{M} \cap T\right) = 0.96 \times 0.03 + 0.04 \times 0.07$$
$$= 0.0316$$