1. $\phi: X \longrightarrow Y$ is a function from a set X to a set Y. Z is a set. Define M(Z,X) to be the set of all functions from Z to X, and define M(Z,Y) to be the set of all functions from Z to Y. Define

$$\Phi: M(Z,X) \longrightarrow M(Z,Y)$$
$$f \mapsto \phi \circ f$$

If ϕ is injective, prove Φ is injective.

Solution:

For any $f_1 \neq f_2$ in M(Z,X), there exists $z \in Z$ such that $f_1(z) \neq f_2(z)$. ϕ is injective, so $\phi(f_1(z)) \neq \phi(f_2(z))$. We get

$$\Phi(f_1)(z) = \phi \circ f_1(z) = \phi(f_1(z)) \neq \phi(f_2(z)) = \phi \circ f_2(z) = \Phi(f_2)(z)$$

So $\Phi(f_1) \neq \Phi(f_2)$, we conclude Φ is injective.

- 2. Define a relation on \mathbb{Q} by $a \sim b$ if $a b = \frac{k}{3^n}$ for some $k, n \in \mathbb{Z}$ and n > 0.
 - (i). Prove that it is an equivalence relation.
 - (ii). Prove $\mathbb{Z} \subseteq [0]$.
 - (iii). Prove that there are infinitely many distinct equivalence classes for this equivalence relation.

Solution:

(i). Reflexive: $\forall r \in \mathbb{Q}, r-r=0=\frac{0}{3^1}$, so $r \sim r$

Symmetric: If $a \sim b$, then $a - b = \frac{k}{3^n}$ for some $k, n \in \mathbb{Z}$ and n > 0, $b - a = \frac{-k}{3^n}$, so $b \sim a$

Transitive: If $a \sim b$ and $b \sim c$, then $a - b = \frac{k_1}{3^{n_1}}$ for some $k_1, n_1 \in \mathbb{Z}$ and $n_1 > 0$, and $b - c = \frac{k_2}{3^{n_2}}$ for some $k_2, n_2 \in \mathbb{Z}$ and $n_2 > 0$. It follows

$$a-c = (a-b) + (b-c) = \frac{k_1}{3^{n_1}} + \frac{k_2}{3^{n_2}} = \frac{3^{n_2}k_1 + 3^{n_1}k_2}{3^{n_1+n_2}}$$

i.e., $a \sim c$

We conclude it is an equivalence relation.

- (ii). $\forall k \in \mathbb{Z}, k 0 = k = \frac{3k}{3^1}, k \sim 0, \text{ so } k \in [0], \mathbb{Z} \subseteq [0]$
- (iii). Take positive prime numbers p,q that are not equal to 3. If $\frac{1}{p} \sim \frac{1}{q}$, then

$$\frac{1}{p} - \frac{1}{q} = \frac{q - p}{pq} = \frac{k}{3^n}$$

for some $k, n \in \mathbb{Z}$ and n > 0. This means

$$3^n(q-p) = kpq$$

Note that p|kpq, so $p|3^n(q-p)$, and together with $p \neq 3$ we get

$$p|q-p$$

This implies p|q, it has to be p=q since both p and q are primes.

We thus conclude $p \neq q \Longrightarrow \left[\frac{1}{p}\right] \neq \left[\frac{1}{q}\right]$. There are infinitely many primes, so we already obtain infinitely many distinct equivalence classes.

3. How many different equivalence relations can we define on a set of four elements?

Solution: We know equivalence relations are in one-to-one correspondence with partition of a set, so we only need to find all the partitions of a set of four elements.

Denote this set by $\{a, b, c, d\}$, we see the possible partitions are as follows:

- $\{a\} \sqcup \{b\} \sqcup \{c\} \sqcup \{d\},$
- $\{a\} \sqcup \{b\} \sqcup \{c,d\}, \ \{a\} \sqcup \{c\} \sqcup \{b,d\}, \ \{a\} \sqcup \{d\} \sqcup \{b,c\}, \ \{b\} \sqcup \{c\} \sqcup \{a,d\},$
- $\{b\} \sqcup \{d\} \sqcup \{a,c\}, \, \{c\} \sqcup \{d\} \sqcup \{a,b\}, \,$
- $\{a,b\} \sqcup \{c,d\}, \, \{a,c\} \sqcup \{b,d\}, \, \{a,d\} \sqcup \{b,c\}$
- $\{a\} \sqcup \{b,c,d\}, \{b\} \sqcup \{a,c,d\}, \{c\} \sqcup \{a,b,d\}, \{d\} \sqcup \{a,b,c\}$

$$\{a, b, c, d\}$$

So there are in total 15 of them.

Remark: In general, the number of partitions of a set of n elements is called the Bell Number. You may read this Wikipedia Page for more story on that: https://en.wikipedia.org/wiki/Bell_number

4. A relation on a set is reflexive, and it also satisfies

$$a \sim b$$
 and $a \sim c \Longrightarrow b \sim c$

Prove it is an equivalence relation.

Solution:

Symmetry: If $a \sim b$, together with $a \sim a$, we get $b \sim a$

Transitivity: If $a \sim b$ and $b \sim c$, by the symmetry we just proved, $b \sim a$. Together with $b \sim c$, we get $a \sim c$.

5. Let G be the set of all functions $\mathbb{R} \longrightarrow \mathbb{R}$. Given f_1 and f_2 in G, define $f_1 + f_2$ to be the function $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ for any $x \in \mathbb{R}$. Show that G is an abelian group with the above law of composition.

Solution: (1). The law of composition is associative: for any $f_1, f_2, f_3 \in G$, $((f_1 + f_2) + f_3)(x) = (f_1 + f_2)(x) + f_3(x) = (f_1(x) + f_2(x)) + f_3(x) = f_1(x) + (f_2(x) + f_3(x)) = f_1(x) + (f_2 + f_3)(x) = (f_1 + (f_2 + f_3))(x)$ for any $x \in \mathbb{R}$, so $(f_1 + f_2) + f_3 = f_1 + (f_2 + f_3)$.

- (2). The identity element is the zero function $f_0(x) \equiv 0$: for any $f \in G$, $(f + f_0)(x) = f(x) + f_0(x) = f(x) = f_0(x) + f(x) = (f_0 + f)(x)$, so $f + f_0 = f_0 + f = f$.
- (3). The inverse of $f \in G$ is the function $-f \in G$ defined by (-f)(x) = -f(x) for any $x \in \mathbb{R}$: (f + (-f))(x) = f(x) + (-f)(x) = f(x) + (-f(x)) = 0, and similarly ((-f) + f)(x) = 0, so $f + (-f) = (-f) + f = f_0$.

So G with composition of functions is a group. It is an abelian group because for any $f_1, f_2 \in G$, $(f_1 + f_2)(x) = f_1(x) + f_2(x) = f_2(x) + f_1(x) = (f_2 + f_1)(x)$, so $f_1 + f_2 = f_2 + f_1$

- 6. G is a group.
 - (i). If $g \in G$, prove the inverse element of g is unique in G.
 - (ii). If $a, b \in G$, prove $(ab)^{-1} = b^{-1}a^{-1}$
 - (iii). If $x, y, z \in G$ and xyz = 1, prove yzx = 1

Solution:

(i). If h, k are both inverse of g, then

$$h = h.1 = h(gk) = (hg)k = 1.k = k$$

(Alternatively, you can also apply the Cancellation Law to hg=1=kg to conclude h=k)

- (ii). $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}b = 1$, $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1$, so $(ab)^{-1} = b^{-1}a^{-1}$
- (iii). If xyz = 1, then $yzx = (x^{-1}x)yzx = x^{-1}(xyz)x = x^{-1}1x = 1$