Children and Time Allocation

Thomas H. Jørgensen

2023

Plan for today

Introduction

•0

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
 - Unitary model Combines US data.

Introduction

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
 - Unitary model Combines US data.
- Reading guide:
 - 1. What are the main research questions?

2. What is the (empirical) motivation?

3. What are the central mechanisms in the model?

4. What is the simplest model in which we could capture these?

Introduction

Plan for today

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
 - Unitary model Combines US data.

Reading guide:

- 1. What are the main research questions?
 - How do couples allocate time and consumption when having children?
 - How does children affect couples abilities to smooth consumption?
- 2. What is the (empirical) motivation?

3. What are the central mechanisms in the model?

4. What is the simplest model in which we could capture these?

Introduction

0

Empirical Motivation: Siminski and Yetsenga (2022)

Australian time-use data on panel of couples!

Fig. 1.—Relative domestic work time by relative wage. Each point represents 1 percentile of the female-to-male relative wage distribution among heterosexual couples. A color version of this figure is available online.

Outline

- Model and Mechanisms
- 2 Estimation
 - Data
 - First Step: MRS
 - Second Step: SMM
- Simulations

• Write out the recursive formulation of the model

Estimation

States Choices (transitions)

Choices:

```
H_{j,t}: work hours, j \in \{1,2\} (2=woman) L_{j,t}: leisure hours, j \in \{1,2\} T_{j,t}: Parenting hours, j \in \{1,2\} (child care) C_t: Household consumption
```

States:

```
A_t: wealth F_{j,t}: permanent income shock, j \in \{1,2\} u_{j,t}: transitory income shock, j \in \{1,2\} \varepsilon: vector of 5 unobserved time-fixed taste-shifters. (only allow for \varepsilon_{L_2},wife's leisure, using two-point, fnt 27) z_t: child (50/50 prob. at age 28, young for 10years)
```

State Transitions

Budget

$$A_{t+1} = (1+r)[A_t + \mathcal{T}(z_t, H_{1,t}W_{1,t} + H_{2,t}W_{2,t}) - C_t]$$

where joint taxation gives

$$\mathcal{T}(z_{t}, H_{1,t}W_{1,t} + H_{2,t}W_{2,t}) = \chi_t(b(z_t) + H_{1,t}W_{1,t} + H_{2,t}W_{2,t})^{1-\mu_t}$$

with $b(z_t)$ being a consumption floor.

Hours worked are

$$H_{j,t} = \overline{L} - L_{j,t} - T_{j,t}$$

Wages are

$$\log W_{j,t} = x'_{j,t} \beta_W^j + F_{j,t} + u_{j,t}$$
$$F_{j,t} = F_{j,t-1} + v_{j,t}$$

Preferences

Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where, for $x \in \{C, L_1, L_2, T_1, T_2\}$,

$$\tilde{\phi}_{x}(z_{t},\varepsilon_{t}) = \phi_{x}^{nk} + \phi_{x}^{k}z_{t} + \varepsilon_{x,t}$$

are taste-shifters.

(only $var(\varepsilon_{L_2,t}) > 0$ so irrelevant in all other)

Preferences

• Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where

 $\eta>0$ is the consumption Frisch elasticity $(1/\eta \text{ is the CRRA})$ $\gamma(z_t)$ is cost of work (for women) $\varphi_x\in(0,1)$ is the curvature wrt x. (Governs how sensitive x is to e.g. wage changes.)

• Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where they claim that $ho_{\scriptscriptstyle X} < 1$ is the complementarity $(\rho_{\scriptscriptstyle X} > 0)$ / substitutability $(\rho_{\scriptscriptstyle X} < 0)$ between men and women (This is not true, I think. If $\varphi_{\scriptscriptstyle X_1} = \varphi_{\scriptscriptstyle X_2} = \varphi_{\scriptscriptstyle X}$, then that is the elasticity of subs.)

Preferences

Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where

interpreting the last part as "home production of children"

- \rightarrow relative weight on j is their absolute advantage in child production
- \rightarrow if $\tilde{\phi}_{T_2}(z_t, \varepsilon_t) > \tilde{\phi}_{T_1}(z_t, \varepsilon_t)$ mothers has an absolute advantage

Outline

- Model and Mechanisms
- 2 Estimation
 - Data
 - First Step: MRS
 - Second Step: SMM
- 3 Simulations

• Zero-step calibration of some parameters (table 2)

- Zero-step calibration of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model

- Zero-step calibration of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model

Estimation

0000000000000000000

 Second-step SMD/SMM estimation of some parameters using solution/simulation from model.

- Zero-step calibration of some parameters (table 2)
- **First-step estimation** of some parameters using MRS conditions using log-linear approximations, without solving the model

Estimation

0000000000000000000

- Second-step SMD/SMM estimation of some parameters using solution/simulation from model.
- I will spend some time on the first-step estimation to give some detail. It takes up a big part of the paper

- Zero-step calibration of some parameters (table 2)
- **First-step estimation** of some parameters using MRS conditions using log-linear approximations, without solving the model

Estimation

0000000000000000000

- Second-step SMD/SMM estimation of some parameters using solution/simulation from model.
- I will spend some time on the first-step estimation to give some detail. It takes up a big part of the paper
- Illustrates the amount of hoops one could be willing to jump to reduce the parameter space in the SMD...

Data Sources

• Panel Study of Income Dynamics (PSID) labor income, and hours worked, $H_{j,t}$, $\rightarrow w_{j,t}$ Non-durable consumption, c_t , and assets, A_t .

- Panel Study of Income Dynamics (PSID) labor income, and hours worked, $H_{i,t}$, $\rightarrow w_{i,t}$
- American Time Use Survey (ATUS) Time used for leisure, $L_{i,t}$, and child care, $T_{i,t}$ Only for one respondent (not both partners)

Non-durable consumption, c_t , and assets, A_t .

 \rightarrow Use responses of women and *impute* values for their partners:

Estimation

000000000000000000

$$X_{1,t} = f(cohort_1, educ_1), X \in \{L, T\}$$

- Panel Study of Income Dynamics (PSID) labor income, and hours worked, $H_{j,t}$, $\rightarrow w_{j,t}$ Non-durable consumption, c_t , and assets, A_t .
- American Time Use Survey (ATUS)

 Time used for leisure, $L_{j,t}$, and child care, $T_{j,t}$ Only for one respondent (not both partners)
 - ightarrow Use responses of women and *impute* values for their partners:

$$X_{1,t} = f(cohort_1, educ_1), X \in \{L, T\}$$

• Consumer Expenditure Survey (CEX) Non-durable consumption, c_t . (better quality than PSID)

 MRS between wife's and husband's leisure can be found to give [note: nothing about ρ_L!]

$$L_2 = \left[\frac{(1-1/\phi_{L_1}) \exp(\tilde{\phi}_{L_1})}{(1-1/\phi_{L_2}) \exp(\tilde{\phi}_{L_2})} \right]^{-\phi_{L_2}} \left[\frac{W_2}{W_1} \right]^{-\phi_{L_2}} L_1^{\phi_{L_2}/\phi_{L_1}}.$$

 MRS between wife's and husband's leisure can be found to give [note: nothing about ρ_L!]

$$L_2 = \left[\frac{(1-1/\varphi_{L_1}) \exp(\tilde{\phi}_{L_1})}{(1-1/\varphi_{L_2}) \exp(\tilde{\phi}_{L_2})} \right]^{-\varphi_{L_2}} \left[\frac{W_2}{W_1} \right]^{-\varphi_{L_2}} L_1^{\varphi_{L_2}/\varphi_{L_1}}.$$

• Taking logs gives $(x = \log(X))$

$$\begin{split} I_2 &= - \, \varphi_{L_2} [\log (1 - 1/\varphi_{L_1}) + \tilde{\phi}_{L_1} - \log (1 - 1/\varphi_{L_1}) - \tilde{\phi}_{L_2}] \\ &- \varphi_{L_2} (w_2 - w_1) + \frac{\varphi_{L_2}}{\varphi_{L_1}} I_1 \end{split}$$

• MRS between wife's and husband's leisure

can be found to give [note: nothing about ρ_L !]

$$L_{2} = \left[\frac{(1 - 1/\varphi_{L_{1}}) \exp(\tilde{\phi}_{L_{1}})}{(1 - 1/\varphi_{L_{1}}) \exp(\tilde{\phi}_{L_{1}})} \right]^{-\varphi_{L_{2}}} \left[\frac{W_{2}}{W_{1}} \right]^{-\varphi_{L_{2}}} L_{1}^{\varphi_{L_{2}}/\varphi_{L_{1}}}.$$

• Taking logs gives $(x = \log(X))$

$$egin{aligned} I_2 &= - \, arphi_{L_2} [\log(1 - 1/arphi_{L_1}) + ilde{\phi}_{L_1} - \log(1 - 1/arphi_{L_1}) - ilde{\phi}_{L_2}] \ &- \, arphi_{L_2} (w_2 - w_1) + rac{arphi_{L_2}}{arphi_{L_1}} I_1 \end{aligned}$$

We can write this as

$$I_2 = K_0 + \varphi_{L_2}(w_1 - w_2) + \frac{\varphi_{L_2}}{\varphi_{L_1}}I_1 + \varphi_{L_2}(\varepsilon_1 - \varepsilon_2)$$

where $\varepsilon_1 - \varepsilon_2$ is unobserved (random) and the constant is

$$\mathcal{K}_0 = -\varphi_{L_2}[\log(1-1/\varphi_{L_1}) - \log(1-1/\varphi_{L_1}) + \phi_{L_1}^{nk} + \phi_{L_1}^k z - \phi_{L_2}^{nk} - \phi_{L_2}^k z]$$

• MRS between wife's and husband's leisure (e.q. 7, x = log(X))

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

• MRS between wife's and husband's leisure (e.q. 7, x = log(X))

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

can give *three* moments to identify K_0 , φ_{L_2} and φ_{L_1} .

- Requires individual-level data on leisure and wages.
 - ... Not available in any of the data sources...

• MRS between wife's and husband's leisure (e.q. 7, x = log(X))

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

can give *three* moments to identify K_0 , φ_{L_2} and φ_{L_1} .

- Requires individual-level data on leisure and wages.
 ... Not available in any of the data sources...
- They use PSID, people with *no children* younger than $10 \rightarrow L_{j,t} = \underbrace{\overline{L}}_{4,160 \text{ ass.}} \underbrace{T_{j,t}}_{0 \text{ ass.}} H_{j,t}$ observed through $H_{j,t}$.

MRS between wife's leisure and consumption (e.q. 8)

$$\mathbb{E}[I_{2,t} - K_1 + \varphi_{L_2} w_{2,t} - \mu \varphi_{L_2} y - \frac{\varphi_{L_2}}{\eta} c_t - \frac{\varphi_{L_2}}{\varphi_{L_1}} \rho_L (1 - \varphi_{L_1}) I_{1,t}$$

$$+ \varphi_{L_2} \rho_L \frac{\varphi_{L_2} (1 - \varphi_{L_2})}{\varphi_{L_1} (1 - \varphi_{L_1})} \frac{W_{2,t} L_{2,t}}{W_{1,t} L_{1,t}} | I_t] = 0$$

where μ is "known" tax parameter and y is household income. Can likewise give *three* moments to identify K_1 , η and ρ_L .

MRS between wife's leisure and consumption (e.q. 8)

$$\mathbb{E}[I_{2,t} - K_1 + \varphi_{L_2} w_{2,t} - \mu \varphi_{L_2} y - \frac{\varphi_{L_2}}{\eta} c_t - \frac{\varphi_{L_2}}{\varphi_{L_1}} \rho_L (1 - \varphi_{L_1}) I_{1,t}$$

$$+ \varphi_{L_2} \rho_L \frac{\varphi_{L_2} (1 - \varphi_{L_2})}{\varphi_{L_1} (1 - \varphi_{L_1})} \frac{W_{2,t} L_{2,t}}{W_{1,t} L_{1,t}} | I_t] = 0$$

where μ is "known" tax parameter and y is household income. Can likewise give *three* moments to identify K_1 , η and ρ_L .

- Requires individual-level data on leisure, wages and consumption.
- They again use PSID, people with *no children* younger than $10 \rightarrow L_{j,t} = \underbrace{\overline{L}}_{4,160 \text{ ass.}} \underbrace{T_{j,t}}_{0 \text{ ass.}} H_{j,t}$ observed through $H_{j,t}$.

• MRS between wife's and husband's parental time (e.g. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's parental time and consumption (e.q. 10)

Estimation

$$\begin{split} \mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t} \\ + \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] &= 0 \end{split}$$

can likewise give five moments to identify K_2 , φ_{T_2} , φ_{T_1} , K_3 and ρ_T .

MRS between wife's and husband's parental time (e.q. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's parental time and consumption (e.q. 10)

$$\begin{split} \mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t} \\ + \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] &= 0 \end{split}$$

can likewise give five moments to identify K_2 , φ_{T_2} , φ_{T_1} , K_3 and ρ_T .

 Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...

MRS between wife's and husband's parental time (e.q. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's parental time and consumption (e.q. 10)

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t} + \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give five moments to identify K_2 , φ_{T_2} , φ_{T_1} , K_3 and ρ_T .

- Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...
- Solution: Impute consumption from the CEX "into" the ATUS.
 - 1. **Estimate** avg. consumption in CEX: $\hat{C}(cohort, educ)$
 - 2. **Predict** consumption in ATUS: $c_{i,t} = \hat{C}(cohort_i, educ_i)$

• MRS between wife's and husband's parental time (e.q. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's parental time and consumption (e.q. 10)

Estimation

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t}$$

$$+ \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give *five* moments to identify K_2 , φ_{T_2} , φ_{T_1} , K_3 and ρ_T .

- Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...
- Solution: Impute consumption from the CEX "into" the ATUS.
 - 1. **Estimate** avg. consumption in CEX: $\hat{C}(cohort, educ)$
 - 2. **Predict** consumption in ATUS: $c_{i,t} = \hat{C}(cohort_i, educ_i)$
- Similarly for the time-use of men (as discussed above)

Parameter Estimates

TABLE 3 PARAMETER ESTIMATES

	A. MRS Estimates			
	Leisure and Consumption (1)	Parental Time (2)		
φ_{L_1}	.211	φ_{T_1}	.115	
	(.037)		(.081)	
$arphi_{L_l}$.162	$arphi_{T_2}$.503	
	(.025)		(.201)	
$ ho_L$.535	ρ_T	197	
	(.099)		(.123)	
η	.903			
	(.049)			
Observations	11,195		2,901	
	B. Preference Shifters			
	With Children	Without Children		
ϕ_{L_1}	-8.925		-7.680	
	(1.108)		(1.013)	
ϕ_{L_2}	-9.397		-8.816	
	(1.036)		(1.024)	
ϕ_{T_i}	-23.993		N/A	
	(10.245)			
ϕ_{T_2}	-3.957		N/A	
	(1.201)			
$\sigma_{\varepsilon\iota_{z}}^{2}$	1.476		.700	
	(.174)		(.087)	
γ	(see table 2)		4,794	
			(438)	
ϕ_C	.132		Normalized to	
	(.024)			

19/38

Parameter Estimates

TABLE 3 PARAMETER ESTIMATES

		A. MRS Estimates			
	Leisure an	nd Consun (1)	nption Pa	Parental Time (2)	
Li	leisure does not respond	.211	$arphi_{T_1}$.115	
	alot to wage-changes	(.037) .162		(.081) .503	
L_2	alot to wage changes	(.025)	$oldsymbol{arphi}_{T_2}$	(.201)	
	'	.535	$ ho_T$	197	
		(.099)		(.123)	
		.903			
hee	rvations	(.049) 11,195		2,901	

B. Preference Shifters With Children Without Children ϕ_{L_1} -8.925-7.680(1.108)(1.013) ϕ_{L_o} -9.397-8.816(1.036)(1.024)-23.993 ϕ_T N/A (10.245)-3.957N/A ϕ_{T_2} (1.201) $\sigma_{\varepsilon_{r_*}}^2$ 1.476 .700 (.174)(.087)(see table 2) 4,794 γ (438)Normalized to 0 .132 ϕ_C (.024)

Introduction

TABLE 3 PARAMETER ESTIMATES

		A. MRS Estimates		
	Leis	sure and Consumption (1)	Pa	rental Time (2)
$arphi_{L_{\mathfrak{l}}}$	Child-care time of mo	(.037)	$arphi_{T_1}$.115 (.081)
$arphi_{L_2}$	reponds a bit to wage	(.025)	$oldsymbol{arphi}_{T_2}$.503 (.201)
ρ_L		.535 (.099)	$ ho_T$	197 (.123)
η		.903 (.049)		
Obse	rvations	11,195 B. Preferen	ICE SHIFTERS	2,901

	D. I REFERENCE SHIFTERS		
	With Children	Without Children	
ϕ_{L_i}	-8.925	-7.680	
	(1.108)	(1.013)	
ϕ_{L_2}	-9.397	-8.816	
	(1.036)	(1.024)	
ϕ_{T_1}	-23.993	N/A	
	(10.245)		
ϕ_{T_2}	-3.957	N/A	
	(1.201)		
$\sigma_{\varepsilon_{t*}}^2$	1.476	.700	
	(.174)	(.087)	
γ	(see table 2)	4,794	
•	,	(438)	
ϕ_C	.132	Normalized to 0	
	(.024)		

References

TABLE 3 Parameter Estimates

	A. MRS Estimates		
Leisure a	and Consumption (1)	Pai	rental Time (2)
$\overline{arphi_{L_{1}}}$.211 (.037)	$arphi_{T_{i}}$.115 (.081)
$arphi_{L_t}$.162 (.025)	$oldsymbol{arphi}_{T_2}$.503 (.201)
$ ho_L$ leisure time is complements $_\eta$ (enjoy time together)	(.099) .903	$ ho_T$	197 (.123)
Observations	(.049) 11,195		2,901

	B. Prefere	NCE SHIFTERS
	With Children	Without Children
ϕ_{L_1}	-8.925	-7.680
	(1.108)	(1.013)
ϕ_{L_2}	-9.397	-8.816
	(1.036)	(1.024)
ϕ_{T_1}	-23.993	N/A
	(10.245)	
ϕ_{T_2}	-3.957	N/A
	(1.201)	
$\sigma_{\varepsilon_{t_t}}^2$	1.476	.700
	(.174)	(.087)
γ	(see table 2)	4,794
•	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(438)
ϕ_C	.132	Normalized to 0
	(.024)	

TABLE 3 PARAMETER ESTIMATES

A. MRS E	A. MRS ESTIMATES		
Leisure and Consumption (1)	Pa	rental Time (2)	
.211 (.037)	$oldsymbol{arphi}_{T_{\mathbf{i}}}$.115 (.081)	
.162 (.025)	$arphi_{T_2}$.503 [°] (.201)	
s sublements (.535)	$ ho_T$	197 (.123)	
.903 (.049)			
11,195		2,901	
B. Preferen	CE SHIFTER	s	
With Children	With	nout Children	
-8.925		-7.680	
(1.108)		(1.013)	
	Leisure and Consumption (1) 211 (.037) .162 (.025) 5 sublements (.099) .903 (.049) 11,195 B. Preferen With Children -8.925	$(1) \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$	

TABLE 3 Parameter Estimates

	A. MRS Estimates		
	Leisure and Consumption (1)	Pa	rental Time (2)
φ_{L_1}	.211 (.037)	$oldsymbol{arphi}_{T_{\mathbf{i}}}$.115 (.081)
$ ho_{L_q}$.162 (.025)	$arphi_{T_2}$.503 (.201)
D_L	.535 (.099)	$ ho_T$	197 (.123)
CRRA =1/0.903=1.1			(-14)
Observations	11,195		2,901

	B. Prefere	B. Preference Shifters		
	With Children	Without Children		
ϕ_{L_1}	-8.925	-7.680		
	(1.108)	(1.013)		
ϕ_{L_2}	-9.397	-8.816		
	(1.036)	(1.024)		
ϕ_{T_i}	-23.993	N/A		
	(10.245)			
ϕ_{T_2}	-3.957	N/A		
	(1.201)			
$\sigma_{\varepsilon_{l*}}^2$	1.476	.700		
	(.174)	(.087)		
γ	(see table 2)	4,794		
•	,	(438)		
$\phi_{\scriptscriptstyle C}$.132	Normalized to 0		
	(.024)			

References

 γ

 ϕ_C

TABLE 3 Parameter Estimates

A. MRS Estimates

Ī	Leisure and Consumption (1)	Pa	rental Time (2)
ρ_{L_1}	.211	φ_{T_1}	.115
	(.037)		(.081)
o_{L_2}	.162	$arphi_{T_2}$.503
	(.025)		(.201)
L	.535	ρ_T	197
	(.099)		(.123)
1	.903		
	(.049)		
Observations	11,195		2,901
	B. Preferen	CE SHIFTER:	s
- -	With Children	With	nout Children
children decrease th	-8.925		-7.680
	(1.108)		(1.013)
value of leisure	-9.397		-8.816
	(1.036)		(1.024)
b_{T_i}	-23.993		N/A
	(10.245)		
T_2	-3.957		N/A
	(1.201)		
$\epsilon_{\ell_k}^2$	1.476		.700
	(.174)		(.087)

(see table 2)

.132

(.024)

4,794

(438) Normalized to 0 References

Introduction

TABLE 3 PARAMETER ESTIMATES

	A. MRS E	STIMATES	
Le	eisure and Consumption (1)	Pa	arental Time (2)
φ_{L_1}	.211 (.037)	$arphi_{T_{\mathrm{i}}}$.115 (.081)
$arphi_{L_2}$.162 (.025)	$arphi_{T_2}$.503 (.201)
$ ho_L$.535 (.099)	$ ho_T$	197 (.123)
η	.903		(9)
Observations	11,195		2,901
	B. Preferen	CE SHIFTER	ts
_	With Children	Wit	hout Children
ϕ_{L_i}	-8.925		-7.680
4.	(1.108) -9.397		(1.013) -8.816
ϕ_{L_2}	(1.036)		(1.024)
ϕ_{T_i} women have a large a	99,009		N/A
ϕ_{T_k} advantage in child-care	(N/A
$\sigma_{\varepsilon_{k_*}}^2$	1.476		.700
	(.174)		(.087)
γ	(see table 2)		4,794
ϕ_{c}	.132		(438) Normalized to
	(.024)		

Introduction

TABLE 3 PARAMETER ESTIMATES

	A. MRS E	STIMATES	
L	eisure and Consumption (1)	Pa	arental Time (2)
$arphi_{L_1}$.211 (.037)	$arphi_{T_{\mathrm{i}}}$.115 (.081)
$arphi_{L_{\!\scriptscriptstyle 2}}$.162 (.025)	$arphi_{T_2}$.503 (.201)
$ ho_L$.535 (.099)	$ ho_T$	197 (.123)
η	.903 (.049)		
Observations	11,195	_	2,901
_	B. Preferen	CE SHIFTER	ts
	With Children	Wit	hout Children
ϕ_{L_i}	-8.925		-7.680
	(1.108)		(1.013)
ϕ_{L_2}	-9.397		-8.816
	(1.036)		(1.024)
ϕ_{T_i}	-23.993		N/A
$\phi_{T_{\bullet}}$	(10.245) -3.957		N/A
	(1.901)		-1,1-
$_{\sigma_{\!\scriptscriptstyle E_{\!\scriptscriptstyle L}}^2}$ random pref. shocks h	1.470		.700
more varince when ch			(.087)
γ are present	(see table 2)		4,794
ϕ_c	.132		(438) Normalized to
	(.024)		

A. MRS Estimates

Donomiol Time

Parameter Estimates

TABLE 3 Parameter Estimates

I simuma am d Cammumanti am

	Leisure and Consumption (1)	Pa	Parental Time (2)	
φ_{L_1}	.211	$arphi_{T_1}$.115	
$arphi_{L_t}$	(.037) .162	$arphi_{T_2}$	(.081) .503	
$ ho_L$	(.025) .535	$ ho_T$	(.201) 197	
η	(.099) .903		(.123)	
Observations	(.049) 11,195		2,901	
	B. Preferen	E SHIFTER	ts	
	With Children	Wit	hout Children	
ϕ_{L_i}	-8.925		-7.680	
ϕ_{L_2}	(1.108) -9.397		(1.013) -8.816	
φ_{L_2}	(1.036)		(1.024)	
ϕ_{T_i}	-23.993		N/A	
ϕ_{T_2}	(10.245) -3.957		N/A	
$\sigma_{arepsilon_{t_k}}^2$	(1.201) 1.476		.700	
γ fixed cost (in co	ons.) of wo ksee table 2) 2,900		(087) 4,794 (438)	
$\phi_{\scriptscriptstyle C}$.132 (.024)		Normalized to	

Introduction

TABLE 3 Parameter Estimates

	A. MRS E	STIMATES	
	Leisure and Consumption (1)	Pa	arental Time (2)
$ \rho_{L_i} $.211 (.037)	$oldsymbol{arphi}_{T_{\mathrm{i}}}$.115 (.081)
$ ho_{L_q}$.162 (.025)	$oldsymbol{arphi}_{T_2}$.503 (.201)
O_L	.535 (.099)	$ ho_T$	197 (.123)
1	.903 (.049)		
Observations	11,195 B. Preferen	CE SHIFTER	2,901 s
	With Children	Wit	hout Children
ϕ_{L_1}	-8.925		-7.680
\dot{b}_{L_2}	(1.108) -9.397		(1.013) -8.816
b_{T_i}	(1.036) -23.993		(1.024) N/A
b_{T_2}	(10.245) -3.957		N/A
2 E _{L2}	(1.201) 1.476		.700
′	(.174) (see table 2)		(.087) 4,794
_{sc} marg. util. of co higher when ch	.132		(438) Normalized to

Outline

- Model and Mechanisms
- Estimation
 - Data
 - First Step: MRS
 - Second Step: SMM
- Simulations

Simulations

- Simulate transitory and permanent wage changes.
 Men and women separately
- **Transitory:** Approximate Frisch (since little income effect)
- Permanent: Approximate Marshall

Consumption and Labor Supply Responses

Age 30 response from 10% increase in wage in two models
 With child from age 28 + Without child from age 28 (elasticities)

TABLE 5

CONSUMPTION AND LABOR SUPPLY RESPONSES TO TRANSITORY AND PERMANENT SHOCKS

		Total Response						Extensive vs. Intensive Margin				
		C		H_1		H_2		E_2		$H_2 $ Employed		
	With Kids (1)	Without Kids (2)	With Kids (3)	Without Kids (4)	With Kids (5)	Without Kids (6)	With Kids (7)	Without Kids (8)	With Kids (9)	Without Kids (10)		
Transitory: Husband Wife	.119 .130	.123 .135	.180	.222 006	076 .703	.001 .394	051 .574	.005	041 .329	.006 .167		
Permanent: Husband Wife	.393 .353	.410 .375	.105 070	.116 106	296 .531	140 .304	193 .491	065 .266	170 .208	088 .086		

Note.—Model-simulated responses for transitory and permanent shocks.

- 1. Consumption response consistent with buffer-stock theory: transitory shocks have little effect
- 2. Women have larger responses than men
- 3. Children increases response for women
- 4. Extensive margin important (for women)

TABLE 6
LEISURE AND PARENTAL TIME RESPONSES TO TRANSITORY AND PERMANENT SHOCKS

		L_1		L_2	T_1	T_2
	With Kids (1)	Without Kids (2)	With Kids (3)	Without Kids (4)	With Kids (5)	With Kids (6)
Transitory:						
Husband	230	231	003	001	095	.131
Wife	007	.006	217	309	.033	538
Permanent:						
Husband	131	120	.078	.110	067	.261
Wife	.085	.110	151	238	.058	443

Note.—Model-simulated responses for transitory and permanent shocks.

- 1. Leisure elasticities similar between men/women w/w.o. kids and compliments (same-sign cross trans ela)
- 2. Permanent \rightarrow reduction in both own leisure and child care time and opposite sign cross elasticity \rightarrow specialization.
- 3. Women have large responses on child-care time from own and male wages.

-2.6%

+.7%

Consumption Insurance

Parental time

TABLE 7 Insurance Effects

Consumption After-tax and transfers household earnings Before-tax (after-transfers) household earnings	-3.9% $-5.0%$ $-5.6%$		
	Husband	Wife	
Earner's average share of before-tax earnings	.66	.34	
Earner's before-tax and transfers earnings response:	-10.7%	+2.0%	
Hours	-1.0%	+3.0%	
Leisure	+1.3%	8%	

NOTE.—Insurance decomposition calculations based on model-simulated responses to a 10 percent permanent decline in the husband's wage.

- 1. Some consumption insurance (3.9% drop from 10% drop in wages)
- 2. Substitution effect dominates (-1% in hours worked)
- 3. Sizable cross-effect (+3% in work hours of women)
- 4. Leisure margin most active for men, parent time most for women.

Two counterfactuals with same budget effects:

- 1. unconditional child-subsidy, $b(z) \uparrow$
- 2. employment subsidy, $\gamma(z) \downarrow$

	P		LE 10 XPERIMEN	NTS				
	C (1)	H_1 (2)	H ₂ (3)	E ₂ (4)	L ₁ (5)	L_2 (6)	T ₁ (7)	T ₂ (8)
	A. Experiment 1: Unconditional Subsidy for Families with Young Children							
Total	.6%	4%	7%	4%	.4%	.3%		
Before young children	.9%	4%	5%	2%	.4%	.4%		
With young children	1.3%	6%	-1.8%	-1.0%	.8%	.7%	.2%	1.0%
After young children	.1%	1%	1%	1%	.1%	.1%		
Consumption equivalent utility value	.95%							
	B. Experiment 2: Employment Subsidy for Wives with Young Children							
Total	.1%	2%	1.9%	4.6%	.2%	5%		
Before young children	.9%	4%	5%	1%	.4%	.4%		
With young children	3%	3%	6.5%	13.1%	.3%	-1.7%	.3%	-5.6%
After young children	.1%	1%	1%	~0%	.1%	.1%		
Consumption equivalent utility value	.17%							

Exam: Opioad

You should hand in a single zip-file with all assignments and the exam.

The zip-file should be named after your KU username (e.g. abs123) and have the following folder and file structure:

Assignment_1\

Assignment_1.pdf - with text and all results

files for reproducing the results

Assignment_2\

Assignment_2.pdf - with text and all results

files for reproducing the results

Assignment_3\

Assignment_3.pdf - with text and all results

files for reproducing the results

Exam\

Exam.pdf - with text and all results

files for reproducing the results

Individual exam!

Try to answer all questions

48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments

- Try to answer all questions
 48 hours, but thought of as 2 × 9 work days
 Make sure that your computer+Python works!
 Similar flavor as assignments
- If stuck: Move on

- Try to answer all questions
 - 48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck:Move on
- If dependency across questions:

Write clearly how you move forward Often you can "easily" go back and change stuff if time

Try to answer all questions

48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments

If stuck:

Move on

If dependency across questions:

Write clearly how you move forward Often you can "easily" go back and change stuff if time

Write clearly!

I can only grade based on what you write!

- Try to answer all questions
 - 48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck:Move on
- If dependency across questions:

Write clearly how you move forward Often you can "easily" go back and change stuff if time

- Write clearly!

 I can only grade based on what your
 - I can only grade based on what you write!
- If unsure about how to understand the question: Write clearly what you do and why!

Try to answer all questions

48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments

If stuck:

Move on

If dependency across questions:

Write clearly how you move forward
Often you can "easily" go back and change stuff if time

- Write clearly!
 - I can only grade based on what you write!
- If unsure about how to understand the question: Write clearly what you do and why!
- Thanks for now Good luck!

References I

- Blundell, R., L. Pistaferri and I. Saporta-Eksten (2018): "Children, Time Allocation, and Consumption Insurance," *Journal of Political Economy*, 126(S1), S73–S115.
- SIMINSKI, P. AND R. YETSENGA (2022): "Specialization, ComparativeAdvantage, and the Sexual Divisionof Labor," *Journal of Labor Economics*, 40(4), 851–887.