TD 07 - Fonctions booléennes, tableaux de Karnaugh et circuits combinatoires

Exercice 1 Un ensemble E d'opérateurs booléens est dit complet si tout opérateur booléen peut s'exprimer en fonction de ceux de E.

- 0. Rappeler comment montrer que $\{\neg, \land, \lor\}$ est complet.
- 1. Montrer que $\{\neg, \land\}$ et $\{\neg, \lor\}$ sont complets.
- 2. Montrer que $\{\neg, \Rightarrow\}$ et $\{\oplus, \Rightarrow\}$ sont complets.
- 3. Montrer que $\{\uparrow\}$ et $\{\downarrow\}$ sont complets.
- 4. Expliquer pourquoi $\{\land, \lor\}$ n'est pas complet.

Exercice 2 Énumérer les mots binaires de longueur 3, puis ceux de longueur 4, selon un code de Gray.

Exercice 3 Écrire les tableaux de Karnaugh des fonctions suivantes :

$$a\bar{b}$$
; $a+b$; $\bar{a}+b$; $a\Leftrightarrow b$; $a\oplus b$; $a(a+b)$; $a+ab$; $a\bar{b}d+ac+\bar{a}b\bar{c}$; $\bar{a}+bd+a\bar{b}d$; $a\bar{b}c+\bar{d}+cd$.

Trouver si possible une expression plus simple grâce au tableau.

Exercice 4 Donner les expressions booléennes les plus simples possibles déduites des tableaux de Karnaugh donnés ci-dessous.

B_1		cd			
		00	01	11	10
	00	1	1	1	1
ab	01	1	1	1	1
	11	0	1	1	0
	10	0	1	1	0

B_3		cd			
		00	01	11	10
ab	00	1	0	0	1
	01	1	1	1	1
	11	1	1	0	0
	10	0	0	0	0

B_2		cd			
		00	01	11	10
ab	00	1	0	0	1
	01	0	1	1	0
	11	0	1	1	0
	10	1	0	0	1

B_4		cd				
		00	01	11	10	
ab	00	0	1	1	0	
	01	1	0	0	1	
	11	1	0	0	1	
	10	0	1	1	0	

Exercice 5 On souhaite construire des circuits permettant de comparer deux nombres.

- 1. On travaille tout d'abord sur deux nombres a et b sur 1 bit.
 - (a) Écrire les circuits testant a < b, $a \le b$, a = b, a > b et $a \ge b$.
 - (b) On suppose qu'on dispose (de plusieurs exemplaires) d'un circuit CMP₁ prenant a et b comme entrées et ayant deux sorties : a < b et $a \le b$.

Comment construire les trois autres fonctions a = b, a > b et $a \ge b$?

- 2. On s'intéresse maintenant à des nombres sur 2 bits.
 - (a) Écrire le tableau de Karnaugh des fonctions a < b et $a \le b$.
 - (b) En déduire les circuits LT₂ et LE₂ correspondants, puis le circuit comparateur CMP₂.
- 3. Comment cette construction pourrait se généraliser pour des nombres à n bits?