Integrazone

Integrali doppi

Gli Integrali doppi su un certo insieme \mathcal{D} (misurabile) permettono di trovare

$$\iint_{\mathcal{D}} f(x,y) dx dy = \text{Volume racchiuso tra la funzione integranda } (f(x,y)) \text{ e il piano } xOy$$

Nel caso in cui si abbia f(x, y) = 1 allora

$$\iint_{\mathcal{D}} f(x, y) dx dy = \text{Area dell'insieme } \mathcal{D}$$

I Procedimenti che permettono di calcolare gli integrali doppi sono due

Per orizzontali

- 1. Disegno approssimativamente il dominio d'integrazione ragionando prima su
- 2. Svolgo prima l'integrale della funzione in dx immaginando che la variabile y sia una costante
- 3. Poi integro il risultato della prima integrazione in dy. Da questo passaggio è vincolante ottenere un valore che non dipenda dalle due variabili dx dy

$$\iint_{\mathcal{D}} f(x,y) = \int_{y_A}^{y_B} \Big(\int_{x_A}^{x_B} f(x,y) dx \Big) dy$$

Per verticali

- 1. Disegno approssimativamente il dominio d'integrazione ragionando prima su
- 2. Svolgo prima l'integrale della funzione in dy immaginando che la variabile x sia una costante
- 3. Poi integro il risultato della prima integrazione in dx. Da questo passaggio è vincolante ottenere un valore che non dipenda dalle due variabili $dx\ dy$

$$\iint_{\mathcal{D}} f(x,y) = \int_{x_A}^{x_B} \left(\int_{y_A}^{y_B} f(x,y) dy \right) dx$$

Integrali tripli

Nel caso di integrali tripli, l'integrazione permette, come nel caso degli integrali doppi, di ricavare un volume, tuttavia in questo caso l'integrale rappresenterà un volume non più in \mathbb{R}^3 , bensì in \mathbb{R}^4 Questo tipo di integrali può essere svolto in due modi

Per fili

Per immaginarsi l'integrazione per strati è utile pensare di trovare prima il volume di uno spaghetto verticale infinitamente sottile che è lungo esattamente quanto il contenitore dentro al quale si trova, ovvero l'insieme \mathcal{P} e poi di sommare tutti gli spaghetti nel contenitore per trovare il volume del contenitore.

- 1. Integro la funzione in dz tra gli estremi dell'insieme \mathbb{P}
- 2. Integro i fili sulla superficie di base $\mathcal B$ dell'insieme dell'insieme di integrazione.

$$\iiint_{\mathcal{P}} f(x, y, z) dx dy dz = \iint_{\mathcal{B}} \left(\int_{z_A}^{z_B} f(x, y, z) \right) dx dy$$

Per strati

In questo procedimento ci si deve immaginare di trovare prima l'area di uno strato generico all'interno dell'insieme di integrazione e poi immagino di sommare tutti gli strati in modo di ottenere tutto il volume dell'insieme \mathbb{P}

- 1. Per prima cosa è necessario trovare un'altezza massima e una minima in cui sia possibile trovare una superficie orizzontale.
- 2. Dopo è necessario calcolare l'area di un generico strato
- In fine è sufficiente integrare tutti gli strati tra l'altezza massima e la minima.

$$\iiint_{\mathcal{P}} f(x, y, z) dx dy dz = \int_{z_{min}}^{z_{max}} \Big(\iint_{\mathcal{B}} f(x, y, z) dx dy \Big) dz$$

Applicazioni alla fisica

Definendo la densità di massa $\mu(x, y, z)$ di $\mathcal{D} \subseteq \mathbb{R}^3$, allora si possono ricavare alcune grandezze fisiche.

Massa Totale

$$\mathcal{M}(\mathcal{D}) = \iiint_{\mathcal{D}} \mu(x, y, z) dx dy dz$$

Baricentro

$$\begin{split} x_G &= \frac{\iiint_{\mathcal{D}} x \mu(x,y,x) dx dy dz}{\mathcal{M}(\mathcal{D})} \\ y_G &= \frac{\iiint_{\mathcal{D}} y \mu(x,y,x) dx dy dz}{\mathcal{M}(\mathcal{D})} \\ z_G &= \frac{\iiint_{\mathcal{D}} z \mu(x,y,x) dx dy dz}{\mathcal{M}(\mathcal{D})} \end{split}$$

Momento d'inerzia

$$\iiint_{\mathcal{D}} r^2(x,y,z)\mu(x,y,z)dxdydz$$

Cambiamenti di coordinate

Polari piane

$$\begin{cases} x = \cos(\theta) \\ y = \sin(\theta) \end{cases}$$

Casi particolarmente favorevoli Cerchio, corona circolare, "fetta di torta", "fetta di ciambella"

Polari sferiche

$$\begin{cases} x = \sin(\varphi)\cos(\theta) \\ y = \sin(\varphi)\sin(\theta) \\ z = \cos(\varphi) \end{cases}$$

Lo jacobiano di questa trasformazione è $\mathcal{JT} = \rho sin(\varphi)$

Casi particolarmente favorevoli

Cilindriche

$$\begin{cases} x = \cos(\theta) \\ y = \sin(\theta) \\ z = t \end{cases}$$

Lo jacobiano di questa trasformazione è $\mathcal{JT} = \rho$

Casi particolarmente favorevoli

Integrali curvilinei

Data una curva e una funzione scalare posso:

- 1. Parametrizzo la curva $\gamma(t)$ sulla quale voglio calcolare l'integrale
- 2. Calcolo la derivata $\gamma'(t)$ della curva parametrizzata
- 3. Calcolo la funzione composta $f(\gamma(t))$
- 4. Determino gli estremi di integrazione
- 5. Calcolo l'integrale secondo la formula:

$$\int_{a}^{b} f(\gamma(t)) \| \gamma'(t) \| dt$$

Integrali di linea

Data una curva e un campo vettoriale posso:

- 1. Parametrizzo la curva $\gamma(t)$ sulla quale voglio calcolare l'integrale.
- 2. Calcolo la derivata della curva parametrizzata $\gamma'(t)$
- 3. Calcolo il versore dato da $\frac{\gamma'(t)}{\|\gamma'(t)\|}$
- 4. Calcolo la funzione composta $\mathbf{F}(\gamma(t))$
- 5. Calcolo l'integrale dato dalla relazione:

$$\int_{a}^{b} \mathbf{F}(\gamma(t)) \cdot \frac{\gamma'(t)}{\|\gamma'(t)\|} dt$$

Integrali superficiali

- 1. Parametrizzo la superficie sulla quale voglio integrare
- 2. Determino la normale alla superficie $\|\mathbf{N}(u,v)\|$
- 3. Calcola la composta $f(\sigma(u, v))$
- 4. Calcolo l'integrale secondo la relazione:

$$\int_{\sigma} f dS = \int_{K} f(\sigma(u, v)) \|\mathbf{N}(u, v)\| du dv$$

Integrale di flusso

- 1. Parametrizzo la superficie $\sigma(u,v)$ sulla quale devo risolvere l'integrale
- 2. Determino il vettore normale alla superficie $\mathbf{N}(u,v)$ e calcolo anche il versore $\mathbf{n}(u,v)$
- 3. Calcolo la norma del vettore normale
- 4. Calcolo la composta $\mathbf{F}(\sigma(u,v))$

$$\int_{\sigma} \mathbf{F} \cdot dS = \int_{K} \mathbf{F}(\sigma(u, v)) \cdot \mathbf{N}(u, v) du dv$$

Teoremi relativi all'integrazione

Guldino 1

Il volume di un solido di rotazione D è uguale all'area della sezione meridiana S moltiplicata per la lunghezza della circonferenza descritta dal baricentro di S attorno all'asse di rotazione.

Condizioni

• Solido di rotazione

Nel caso di una rotazione intorno all'asse z

Teorema

$$Volume(D) = \iiint_{\mathcal{P}} dx dy dz = 2\pi y_G A(S)$$

Guldino 2

La superficie di un solido di rotazione è uguale alla lunghezza dell'arco generatore moltiplicato per la circonferenza che descrive il baricentro intorno all'asse di rotazione.

Condizioni

• La superficie Σ deve essere data da una rotazione dell'arco $\gamma(t)$, appartenente ad un piano delimitato da due assi cartesiani, intorno ad uno di questi due.

Nel caso di una rotazione di un arco $\gamma(t) \in yOz$ intorno all'asse z ottengo

Teorema

$$Area(\Sigma) = 2\pi y_G l(\gamma)$$

Green

Condizioni

- Sia $\mathbf{F}(x,y) = (f_1(x,y), f_2(x,y))$ un campo vettoriale di classe $C^1(\Omega)$ con $\Omega \subseteq \mathbb{R}^2$
- $\bullet\,$ Sia A un aperto limitato contenuto in Ω
- La frontiera di A è il sostegno di un arco chiuso, semplice e regolare a tratti percorso in verso antiorario.

Teorema

$$\int_{\delta A} \mathbf{F} \cdot d\mathbf{P} = \iint_{A} \Big(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \Big) dx dy$$

Gauss

Condizioni

- **F** è un campo vettoriale definito in un aperto $\Omega \in \mathbb{R}^3$
- $\bullet\,$ Sia Ω_0 un aperto limitato la cui frontiera è $\delta\Omega_0$

Teorema

$$\int_{\delta\Omega_0} \mathbf{F} \cdot \mathbf{n} dS = \int_{\Omega_0} div(\mathbf{F}) dx dy dz$$

Stokes

Condizioni

- F patto costituito dal sostegno po vettoriale definito in un $\Omega \in \mathbb{R}^3$
- \bullet Sia K il compatto costituito dal sostegno di un arco chiuso, semplice e regolare a tratti γ e dal suo interno.
- $\bullet\,\,\gamma$ è orientata in modo da lasciare alla sinistra il suo interno
- Sia $\sigma_0 = \sigma(K)$ la calotta relativa a K e $\delta \sigma_0$ l'arco detto bordo della calotta σ_0 il cui verso di percorrenza è dato dalla regola della mano destra rispetto all normale alla calotta

Teorema

$$\int_{\delta\sigma_0} \mathbf{F}(P) \cdot d\mathbf{P} = \int_{\sigma_0} rot(\mathbf{F}) \cdot dS$$

Campi conservativi

Un campo vettoriale \mathbf{F} , definito in Ω , si dice conservativo se esiste una funzione scalare φ tale che per ogni $x \in \Omega$ si abbia

$$\mathbf{F}(\mathbf{x}) = \nabla \varphi(\mathbf{x})$$

In cui $\varphi(\mathbf{x})$ è detta funzione potenziale

Condizioni

Affinché un campo vettoriale ${\bf F}$ sia conservativo e che ammetta quindi un potenziale, è necessario che:

- Se γ è un arco chiuso e regolare a tratti, allora $\int_{\gamma} \mathbf{F} \cdot d\mathbb{P} = 0$
- il $rot(\mathbf{F}) = \mathbf{0}$ e che \mathbf{F} sia definito su di un insieme semplicemente connesso

Se un campo vettoriale ${\bf F}$ è conservativo, allora:

- Se γ è un arco chiuso e regolare a tratti, allora $\int_{\gamma} \mathbf{F} \cdot d\mathbb{P} = 0$
- $rot(\mathbf{F}) = \mathbf{0}$

Ricerca del potenziale