Public Key Cryptography

Introduction

Public Key Cryptography

- □Unlike symmetric key, there is no need for Alice and Bob to share a common secret
 - Alice can convey her public key to Bob in a public communication:

Encrypting w/ Public Keys

- □ Public key schemes encrypt large blocks of data:
 - Smallest system with reasonable security has block sizes at least 160 bits (Elliptic Curves)
 - Key size generally equal to or close to block size
 - Orders of magnitude less efficient than symmetric key encryption

Why public key?

- ☐ The reason public keys are used is to establish secure communication when there is no way to exchange a key beforehand.
 - Confidential/authenticated channels for free?
- ☐ Must ensure that the public key belongs to the correct party (binding of identity to key). The public key directory may be corrupted:
 - Solution: Use a Public Key Infrastructure to certify your keys (PKI)

Encryption: Details

- □Alice knows Bob's public key P_{Bob}
- ☐ Uses the encryption algorithm:
 - \Rightarrow Enc(P_{Bob}, Message) = C
- □Anybody may encrypt messages that only Bob may read, since he knows the private key S_{Bob}
- $\square Message = Dec(S_{Bob}, C)$

How does Bob know S_{Bob}?

- □How did Bob come to know his private key to start with?
 - ❖ The answer is that Bob generates the pair (P_{Bob}, S_{Bob}) jointly. The key generation procedure is probabilistic and one-way.
 - The security of such methods is closely related to a class of mathematical problems from modular arithmetic

Modular arithmetic review

- ☐ Consider the integer interval [0, N-1] for some integer N.
- ☐ This is the set of possible remainder values when one divides any integer by N.
 - Called the set of residues modulo N
- □ Note that addition is well defined in this set:
 - ♣ Let A be an integer with residue mod N equal to a; and B mod N = b, for a, b in [0, N-1].
 - ❖ That means: A = kN + a, and B = lN + b, for some k, l (use long division)
 - ❖ Then A + B = (k + l)N + (a+b)
 - \bullet So: (A + B) mod N = a + b = [(a mod N) + (b mod N)] mod N

Adding residues

□Example:

```
+ 0 1 2 3
0 0
1 1 2
2 2 3 0
3 3 0 1 2
N = 4
```

Properties of modular addition

- ☐ associativity:
 - $(a + b \mod N) + c \mod N = a + (b + c \mod N) \mod N$
- □ commutativity:
 - $(a + b \mod N) = (b + a \mod N)$
- ☐ identity element:
 - $(a + 0 \mod N) = (a \mod N)$
- □ existence of additive inverse:
 - ❖ For each residue a mod N, there is a residue b such that (a + b mod N) = 0 mod N.
 - ❖ Just take b = N a (as integers)
 - ❖ We write b = -a as usual.

Multiplying residues

- ☐ We could define multiplication of residues as:
 - $4 \pmod{N} (a \mod N) = (a * b \mod N)$
- ☐ The definition works, because if
 - ❖ A = K N + a, B = I N + b
 - $(A * B) = k l N^2 + (k b + l a)N + a b$
 - ❖ So (A * B mod N) = a b mod N
- Multiplication of residues is also associative, commutative, and has an identity element (1 mod N)
- ☐ It distributes with addition:
 - $(c \mod N)(a + b \mod N) = ca + cb \mod N$

Multiplication Example

Multiplicative inverse

- Not always defined.
 - ❖ 2 is not invertible mod 4, from previous example
- \Box if c = 1 mod N, c it is relatively prime to N.
- ☐ If a is NOT relatively prime to N, then:
 - ❖ No multiple ab of a is relatively prime to N, and so:
 - ❖ No b can satisfy ab = 1 mod N
 - ❖ For a to be invertible mod N it is necessary that GCD(a, N) = 1
- ☐ From the theory of the greatest common divisor (GCD):
 - \Leftrightarrow If g = GCD(a, N) then there exist b, k such that a b + k N = g
 - ❖ So if a is relatively prime to N, there exists b, k with a b + k N = 1
 - ❖ b is the inverse of a mod N
 - ❖ For a to be invertible mod N it is sufficient that GCD(a, N) = 1

Number rings and fields

A	set of elements with operations + and *, such that
	addition is associative, commutative, has identity "0" and each element a has an additive inverse -a
	multiplication is associative, (commutative), and has identity
is	called a (commutative) ring
	If moreover, each element a (except for "0") has a multiplicative inverse a^{-1} , the set is called a <i>field</i> .
	In cryptography, <i>finite fields</i> and <i>finite rings</i> (finite sets with the above properties) are very important.
	Examples of finite rings, which are not fields: The set of residues [0, N-1] with operations as before, where N is a composite number
	Examples of finite fields: The set of residues $[0, p-1]$, where p is a prime.

The discrete logarithm problem

- \Box Let p be a prime number
 - ❖A large one, say 1000 -- 2000 bits long.
- \square Take g to be in the interval [2, p-2].
- ☐ Consider the exponential function:
 - $\Leftrightarrow Exp_g(\bullet, mod p): x \to g^x mod p$
- $\square Exp_q(\bullet, mod p)$ is hard to invert.
 - unless p is a "weak" prime (rare case and easy to test for)

Example

- $\Box N = 11; g = 2.$
- $\Box 2^2 = 4$, $2^3 = 8$, $2^4 = 5$, $2^5 = 10$, $2^6 = 9$,
 - $2^7 = 7$, $2^8 = 3$, $2^9 = 6$, $2^{10} = 1$ (mod 11)
- $\square 3^2 = 9$, $3^3 = 5$, $3^4 = 4$, $3^5 = 1$ (mod 11)
- □The residue (2 mod 11) can create all non-zero residues mod 11 via exponentiation. It is called a *generator*.
- ☐ The residue (3 mod 11) does not have the same property.

Encrypting a la Elgamal

- \square Take p a non-weak prime:
 - p = uq + 1, with q also prime, and u small.
 - \clubsuit This guarantees Exp(•, mod p) is hard.
- \square Take g' in [2, p-2] and choose
 - $\Leftrightarrow g = g'^u \mod p$.
- ☐ Choose private key *k* at random
 - ❖ k in [2, q -1]
- \square Compute the public key $y = g^k \mod p$.

EIGamal Encryption

- \Box To encrypt m in [1, p-1] for user Bob:
 - ❖ public key $y = g^k$, private key k
- □Compute a random value *r*
- **□**Compute
- ☐ To decrypt, Bob computes
 - $m = B(A^{-k}) \mod p$

Semantic security

If b' = b, the attacker wins.

If every attacker has only a negligible probability of success, we say that the scheme is *secure* under chosen-plaintext attacks.

Security of Elgamal encryption

- ☐ When the attacker receives:
 - \Leftrightarrow (g^r, m_by^r)
- ☐ it may divide the second term by m_b,
 - $(g^r, m_b (m_b^{-1})^{-1}y^r) = (A, B)$
- ☐ To decide if b = b', need to decide if, given (g, y, A, B), the last two values have the form:
 - ♦ (g^r, y^r) for some r, or not.
- ☐ This is called the *Decision Diffie-Hellman* (DDH) problem, and it is considered a difficult number theory problem---no efficient algorithms for it are known.

Elgamal and chosenciphertext attacks

- ☐ Elgamal is NOT secure against chosen ciphertext attacks
- ☐ Suppose the system wants to prevent you from decrypting a ciphertext (A, B), but may allow you to decrypt a different ciphertext:
 - Compute
 - (A', B') = (A, k B) mod p
 - If you get
 - m' = Dec (A', B'),
 - then compute
 - m = (k)⁻¹ m' mod p
- ☐ This is not a problem in practice, because Elgamal is used in practice as a hybrid scheme (see next).

Hybrid Scheme

- ☐ Use the public key encryption scheme to encrypt a key for a symmetric encryption scheme (e.g., AES)
- ☐ Use the symmetric key to encrypt the data
- ☐ More generally, two algorithms:
 - Key Encapsulation Mechanism (KEM) wraps a symmetric key using the public key encryption algorithm
 - Data Encapsulation Mechanism (DEM) encrypts the message contents using the symmetric key encoded in the KEM

Key Agreement

□ Alice to Bob:

 ★ g^a mod p, with a random

 □ Bob to Alice:

 ★ g^b mod p, with b random
 □ Session key derived from shared secret, but without authentication:

 ★ g^{ab} mod p
 □ Computing the key g^{ab} from (g, g^a, g^b) is the computational Diffie-Hellman problem (CDH)
 □ CDH must be at least as hard as DDH
 □ CDH at most as hard as computing logarithms to basis g mod p

Man-in-the-middle attack

$$A \xrightarrow{g^{x}} C \xrightarrow{g^{y}} B$$

$$K_{1} = g^{xs} \qquad K_{2} = g^{zy}$$

Adding authentication

$$K = v^{\times M^{-1}} = g^{\times y} \qquad K = u^{y} = g^{\times y}$$

Here, $g^{M} = P_{Alice}$, the public key of Alice.

MTI: Authenticated DH

$$P_{Alice} = g^a \mod p, \ h = g^r \mod p$$

$$P_{Bob} = g^b \mod p, \ y = g^s \mod p$$

$$B$$

$$K = (P_{Bob})^r y^a \mod p$$
 $K = (P_{Alice})^s h^b \mod p$

$$K = g^{sa + rb} \mod p$$

DSA keys

- $\Box Generate large prime <math>p = kq + 1$,
 - ❖ p originally 512 bits, today 1024 or more
 - ❖ q originally 160 bits (still safer today).
- \Box Generator g such that $g^q = 1 \mod p$.
 - ❖ Take h ∈ [1, p 1]; set $g = h^{(p-1)/q} \mod p$
- □Choose private-public key pair: *<T, S>*
 - $\Leftrightarrow S$ random in [1, q]; $T = g^S \mod p$

Signing w/ DSA

- ☐Generate a per-message private/public key pair:
 - * $< T_m > T_m = g^{S_m} \mod p$
- $\Box d_m$ = digest of message (e.g., SHA-1)
- ☐ Compute the signature
 - $X = S_m^{-1} (d_m + S T_m) \mod q$
- \Box The signing pair is $(T_m \mod q, X)$

Verifying the DSA

- □Calculate the inverse of *X*:
 - **❖** X⁻¹ mod q
- \Box Calculate d_m from the message m
- $\Box \text{Compute } a = d_m X^{-1} \mod q$
- $\Box \text{Compute } b = T_m X^{-1} \mod q$
- $\Box \text{Compute } z' = (g^a T^b \mod p)$
- \Box If $z = T_m \mod q$, verification succeeds.

Elliptic Curves

- ☐ Alternative cryptographic settings for discretelog based public key schemes
 - Elliptic Curve DSA (ECDSA)
 - Elliptic Curve Diffie-Hellman Key Exchange
- ☐ Given a finite field F, an elliptic curve is the set of solutions in F × F to an equation of the form:

$$x y^2 = x^3 + Ax + B$$

- ☐ Graph of the equation $y^2 = x^3 x$
- ☐ Most lines intersect the curve at 3 points
- □ Vertical lines intersect only at 2 points
 - Add a "virtual point"
 O at "vertical infinity"
 and say all vertical
 lines pass through it.
 Then all lines cut the
 curve in 3 points.

Operating on points

- We can define an operation ⊗ on the points of an elliptic curve.
- ☐ The "point at infinity" O will act as identity:
 - $O \otimes P = P \otimes O = P$, for all points
- \Box If a line passes through three points, P_1 , P_2 , and P_3 , then we say that
 - $P_1 \otimes P_2 \otimes P_3 = O$

Using the rules

- □The inverse of a point P with coordinates (x, y) is the point Q = (x, -y). Why?
 - ❖If P = (x, y) solves $y^2 = x^3 + Ax + B$, so does Q = (x, -y), so at least makes sense
 - P and Q are in a vertical line, so our previous rule say that
 - $P \otimes Q \otimes O = O$, or $P \otimes Q = O$. Good.

Can we compute the product?

- ☐ Yes: Take two points, P and Q.
- \Box Write the equation of the line α that passes through P and Q.
- \Box Compute the third point R in the intersection of α with the curve E.
- \square By our rule, $P \otimes Q \otimes R = O$
- ☐ Then if S is the inverse of R (which we know how to compute as before), then

$$S = P \otimes Q$$

Elgamal, Diffie-Hellman, and DSA on Elliptic curves

- Now that we learned how to multiply points on the elliptic curve, we can do:
- ☐ EC-Elgamal encryption:
 - ❖ Public key (P, Q), where Q = P^x.
 - ❖ Encrypt m as (Pr, m ⊕H(Qr)). (See next slide)
- \Box ECDH: Pa, Pb \rightarrow Pab
- ☐ ECDSA also same.
- □ Note: Sometimes operation called addition, instead of multiplication. In this case, ECDH would be written
 - ◆ ECDH: aP, bP → abP

Caveats

- ☐ In order for using Elgamal encryption, it would be necessary to encode a message m as a point in the Elliptic curve.
- ☐ This is cumbersome. More practical to encrypt as:
 - ❖(P^r, m XOR H(Q^r)), where H is a hash function from the elliptic curve to binary strings.
 - Constructing this hash function is easier than encoding elements in the curve