1-of-8 Decoder/Demultiplexer High-Performance Silicon-Gate CMOS

The MC54/74HC138A is identical in pinout to the LS138. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC138A decodes a three-bit Address to one-of-eight active-low outputs. This device features three Chip Select inputs, two active-low and one active-high to facilitate the demultiplexing, cascading, and chip-selecting functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output; one of the Chip Selects is used as a data input while the other Chip Selects are held in their active states.

- Output Drive Capability: 10 LSTTL Loads
- · Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- · Chip Complexity: 100 FETs or 29 Equivalent Gates

LOGIC DIAGRAM

FUNCTION TABLE

	Inputs							Ou	tput	s			
CS	1CS2	CS3	A2	A 1	A0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Χ	Н	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
X	Н	Χ	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	Χ	Χ	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Η	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	н	Н	Н	Н	Н	L	Н	Н
H	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high level (steady state); L = low level (steady state);

X = don't care

MC54/74HC138A

MC74HCXXXADT

TSSOP

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, V _{CC} and GND Pins	± 50	mA
PD	Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package† TSSOP Package†	750 500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package) (Ceramic DIP)	260 300	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq VCC. Unused inputs must always be

tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

†Derating — Plastic DIP: – 10 mW/ $^{\circ}$ C from 65 $^{\circ}$ to 125 $^{\circ}$ C

Ceramic DIP: - 10 mW/°C from 100° to 125°C

SOIC Package: $-\,7$ mW/°C from 65° to $125^\circ C$

TSSOP Package: - 6.1 .W/°C from 65° to 125°C

For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
VCC	DC Supply Voltage (Referenced to GND)	2.0	6.0	\ \
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND) 0	Vcc	V
TA	Operating Temperature, All Package Types	- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0$ (Figure 2) $V_{CC} = 4.5$ $V_{CC} = 6.0$	V 0 V 0 V 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit		mit	
Symbol	Parameter	Test Conditions	V _{CC}	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
VIH	Minimum High–Level Input Voltage	$V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
VIL	Maximum Low–Level Input Voltage	$V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
VOH	Minimum High–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{in} = V_{IH} \text{ or } V_{IL} I_{out} \le 2.4 \text{ mA}$ $ I_{out} \le 4.0 \text{ mA}$ $ I_{out} \le 5.2 \text{ mA}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	

^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit		mit	
Symbol	Parameter	Test Conditions	V _C C V	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
VOL	Maximum Low–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		V_{in} = V_{IH} or V_{IL} $ I_{out} \le 2.4$ mA $ I_{out} \le 4.0$ mA $ I_{out} \le 5.2$ mA	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	± 1.0	± 1.0	μА
ICC	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND I _{out} = 0 µA	6.0	4	40	160	μА

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6.0 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	V _{CC}	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
tPLH, tPHL	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 4)	2.0 3.0 4.5 6.0	135 90 27 23	170 125 34 29	205 165 41 35	ns
tPLH, tPHL	Maximum Propagation Delay, CS1 to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 85 22 19	140 100 28 24	165 125 33 28	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CS2 or CS3 to Output Y (Figures 3 and 4)	2.0 3.0 4.5 6.0	120 90 24 20	150 120 30 26	180 150 36 31	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 4)	2.0 3.0 4.5 6.0	75 30 15 13	95 40 19 16	110 55 22 19	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High—Speed CMOS Data Book (DL129/D).

			Typical @ 25°C, V _{CC} = 5.0 V	
ı	C_{PD}	Power Dissipation Capacitance (Per Package)*	55	pF

^{*} Used to determine the no–load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).

3

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

* Includes all probe and jig capacitance

Figure 4. Test Circuit

PIN DESCRIPTIONS

ADDRESS INPUTS

A0, A1, A2 (Pins 1, 2, 3)

Address inputs. These inputs, when the chip is selected, determine which of the eight outputs is active—low.

CONTROL INPUTS

CS1, CS2, CS3 (Pins 6, 4, 5)

Chip select inputs. For CS1 at a high level and CS2, CS3 at a low level, the chip is selected and the outputs follow the

Address inputs. For any other combination of CS1, CS2, and CS3, the outputs are at a logic high.

OUTPUTS

Y0 - Y7 (Pins 15, 14, 13, 12, 11, 10, 9, 7)

Active—low Decoded outputs. These outputs assume a low level when addressed and the chip is selected. These outputs remain high when not addressed or the chip is not selected.

EXPANDED LOGIC DIAGRAM

-A

G

16

OUTLINE DIMENSIONS

В

D 16 PL

⊕ 0.25 (0.010) M T A M

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
- 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С	_	0.200	_	5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27	BSC	
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
J	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62	BSC	
M	0°	15°	0°	15°	
N	0.020	0.040	0.51	1.01	

N SUFFIX

PLASTIC PACKAGE CASE 648-08 **ISSUE R**

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.070	1.02	1.77
G	0.	100 BSC	2	.54 BSC
Н	0.	050 BSC	1	.27 BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- T 14-30M, 1962.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)

4. MAXIMUM MOLLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT

MAXIMUM STEPLING DEBITION. MAXIMUM MATERIAL CONDITION. MILLIMETERS

DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.2	7 BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 INTERNET: http://Design=NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC54/74HC138A/D