

# به نام خدا



# دانشگاه تهران دانشکده مهندسی برق و کامپیوتر اصول سیستم های مخابراتی

# تمرین کامپیوتری اول

| محمدرضا بختيارى | نام و نام<br>خانوادگی |
|-----------------|-----------------------|
| 810197468       | شماره<br>دانشجویی     |
| 1399/9/29       | تاریخ ارسال<br>گزارش  |

# فهرست گزارش سوالات

| Bessel Differential Equations | 3  |
|-------------------------------|----|
| Narrow Band Modulation        | 5  |
| Single Tone Modulation        | 8  |
| FM using PM                   | 12 |
| Armstrong Indirect Method     | 13 |

# **Bessel Differential Equations**

## Bessel first kind:



## **Bessel second kind:**



## pmm function:

```
function y = p3_pmm(x , Ac , fc , kp , fs)
    t = 0 : 1/fs : (1/fs)*(length(x)-1);
    y = Ac*cos((2*pi*fc*t)+(x.*kp));
end
```

#### nb function:

```
function y = p4_nb(x , Ac , fc , kp , fs)
    t = 0 : 1/fs : (1/fs)*(length(x)-1) ;
    y = Ac*cos(2*pi*fc*t) - Ac*kp*x.*sin(2*pi*fc*t) ;
end
```

# modulating message signal:

```
%% Part 5 6 7
fs = 100000;
Ts = 1/fs;
                    % Sampling period
time = 0:Ts:0.2;
fc = 100 ;
Ac = 10;
kp = 10;
Xm = sin(20*pi*time);
PhaseModulation = p3 pmm(Xm , Ac , fc , kp , fs) ;
NarrowbandModulation = p4 nb(Xm , Ac , fc , kp , fs) ;
figure;
subplot (1,2,1);
plot(time, PhaseModulation);
title(' PhaseModulation ')
xlabel('Time(s)');
ylabel('Xc(t)');
subplot (1,2,2);
plot(time, NarrowbandModulation);
title(' NarrowbandModulation ')
xlabel('Time(s)');
ylabel('Xc(t)');
```

# modulated signal:



As mentioned in the question, the condition for using the Narrow Band function is that the value of phi is small (phi << 1)

but in this case phi is 10!

so we can no longer use this approximation, And this is the reason for the difference between the two plots .

## **Mean Squared Error:**

```
%% Part 8 9
  fs = 10000;
  Ts = 1/fs;
                         % Sampling period
  time = 0:Ts:0.2;
  fc = 100 ;
  Ac = 10 ;
  Xm = sin(20*pi*time);
  Kp = -1:0.001:1;
                           % Kp --> [-1 , 1]
  MSE = [];
                           % Mean Squared Error
  MaxKp = 0;
                           % Maximum Kp to have 1 percent error
\neg for kp = -1:0.001:1
      \label{eq:phaseModulation = p3_pmm(Xm , Ac , fc , kp , fs) ;} PhaseModulation = p3_pmm(Xm , Ac , fc , kp , fs) ;
      NarrowbandModulation = p4_nb(Xm , Ac , fc , kp , fs) ;
      MSE(end + 1) = immse( PhaseModulation , NarrowbandModulation ) ;
      if immse( PhaseModulation , NarrowbandModulation ) < 0.1</pre>
          MaxKp = kp ;
      end
  end
  plot(Kp, MSE) ;
  title(' Mean Squared Error ')
  xlabel('Kp');
  ylabel('MSE');
```



As we expected, with increasing the amount of Kp, the difference between the two modulations increases, and finally, the amount of error also increases.

```
MaxKp = 0.3820
```

# Single Tone Modulation

#### Single Tone Modulation:

```
%% Part 10
 fs = 10000 ;
 Ac = 10 ;
 fc = 100 ;
 B = [0.1, 1, 5, 10];
 Ts = 1/fs;
                      % Sampling period
 time = 0:Ts:0.2;
 Xm = sin(20*pi*time);
 fm = 10 ;
 Xc = [];
 frequency = -500:0.5:500;
for Counter = 1:1:4
     Xc = Ac * cos((2*pi*fc*time) + (B(Counter)*sin(2*pi*fm*time))) ;
     Y = fft(Xc);
     Y = fftshift(Y);
     figure;
     plot(frequency,abs(Y));
     xlim([-30 30])
     title(['Single Tone Modulation','B = ',num2str(B(Counter))])
     xlabel('frequency(Hz)');
     ylabel('Y');
L
end
```

Note: To make the diagrams more accurate, we use the "xlim" function to limit the horizontal axis.

# Plots before using "xlim":



# Plots after using "xlim":



As mentioned in the question, with increasing beta, the number of sentences increases and we can not ignore some sentences, which is why the signal is wider.

# modulating message signal using functional expansion:

```
%% Part 11 12
 fs = 100000;
 Ac = 10;
 fc = 100;
 B = [0.1, 1, 5, 10];
                     % Sampling period
 Ts = 1/fs;
 time = 0:Ts:0.2;
 Xm = sin(20*pi*time);
 fm = 10;
 Xc = [] ;
 Bc = [] ;
 N = [1 , 3 , 9 , 23] ;
 frequency = -500:0.5:500;
for Counter = 1:1:4
     Xc = Ac * cos((2*pi*fc*time) + (B(Counter)*sin(2*pi*fm*time)));
     Y = fft(Xc);
     Y = fftshift(Y);
     figure;
     plot(frequency,abs(Y));
     hold on
     title(['Single Tone Modulation', 'B = ', num2str(B(Counter))])
     xlabel('frequency(Hz)');
     ylabel('Y');
     Xc = 0;
阜
     for n = -N(Counter):1:N(Counter)
         Xc = Xc + (besselj(n, B(Counter)) * cos(2*pi*(fc + n*fm)*time));
     end
     Xc = Xc * Ac ;
     Y = fft(Xc);
     Y = fftshift(Y);
     plot(frequency,abs(Y));
     legend('Y_1','Y_2','Location','Best')
     hold off
     Bc(Counter) = 2 * (B(Counter) + 1) * fm;
 end
```

# Note: To make the diagrams more accurate, we use the "xlim" function to limit the horizontal axis.



#### fmm function:

```
Ifunction y = p3 fmm(x , Ac , fc , kf , fs)
N = 100 ;
Integral = 0 ;
Integral = Integral + x(N) + x(N+1) ;
end
Integral = ((0.2-0)/(2*N)) * Integral ;
Phi = 2*pi*kf*Integral ;
y = p3_pmm(Phi , Ac , fc , 1 , fs) ;
end
```

# pm modulation and fm modulation:

```
%% Part 14
 fs = 100000;
 Ts = 1/fs;
                     % Sampling period
 time = 0:Ts:0.2;
 fc = 100 ;
 Ac = 10 ;
 kp = 10;
 kf = 100 ;
 Xm = sin(20*pi*time);
 PhaseModulation = p3_pmm(Xm , Ac , fc , kp , fs) ;
 FrequencyModulation = p3_fmm(Xm , Ac , fc , kf , fs) ;
 figure;
 subplot (1,2,1);
 plot(time, PhaseModulation);
 title(' PhaseModulation ')
 xlabel('Time(s)');
 ylabel('Xc(t)');
 subplot (1,2,2);
 plot(time, FrequencyModulation) ;
 title(' FrequencyModulation ')
 xlabel('Time(s)');
ylabel('Xc(t)');
```







