HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS

Brückenkurs Mathematik

Lösungen zum Übungsblatt 4

Aufgabe 1. Zeichnen Sie den Graphen der Funktion $f(x) = x^2 - 2x + 3$ im Intervall [-3, 4].

Lösung: Die Punkte ergeben miteinander verbunden eine Parabel

$$f(-3) = 18, f(-2) = 11, f(-1) = 6, f(0) = 3, f(1) = 2$$
 (Minimum), $f(2) = 3, f(3) = 6, f(4) = 11$

Aufgabe 2. Bestimmen Sie jeweils die Definitionsmenge, die Bildmenge, alle Nullstellen, den Scheitelpunkt und die Umkehrfunktion:

(a)
$$f(x) = 3x^2 + 5$$
:
 $D_f = \{x \in \mathbb{R}\}$
 $Imf = \{y \in \mathbb{R} \mid y \ge 5\}$
 f hat keine Nullstellen!
 $Scheitelpunkt$ ist $(0,5)$, denn x^2 ist immer grösser als 0 für $x \ne 0$, also muss bei $x = 0$ das Minimum von f sein.
 $f^{-1}(x) = \sqrt{\frac{x-5}{3}}$

(b)
$$f(x) = \frac{1}{x+4}$$
:
 $D_f = \{x \in \mathbb{R} \mid x \neq -4\}$
 $Imf = \{y \in \mathbb{R} \mid y \neq 0\} \Rightarrow es \ gibt \ keine \ Nullstellen!$
Einen Scheitelpunkt gibt es nicht, aber wir haben einen Pol bei $x = -4$.
 $f^{-1}(x) = \frac{1}{x} - 4$

Aufgabe 3. Zeichnen Sie die folgenden Betragsfunktionen:

- (a) $f(x) = |2x^2|$ ist eine um Faktor 2 gestreckte Parabel.
- (b) $f(x) = |x^2 9|$ ist eine um 9 Einheiten nach unten versetzte Parabel, zwischen Nullstellen -3 und 3 an der x-Achse nach oben gespiegelt.
- (c) f(x) = |x| entspricht der oberen Hälfte der Achsendiagonalen.

Aufgabe 4. Führen Sie die Polynom-Divisionen durch:

(a)
$$(x^3 + 7x^2 + 9x - 5) \div (x + 5) = (x^2 + 2x - 1)$$

(b)
$$(x^5 - x^4 - 13x^3 + 16x^2 + 13x - 10) \div (x^2 + 3x - 2) = (x^3 - 4x^2 + x + 5)$$

(c)
$$(x^3 + 3x^2 + 3x + 1) \div (x + 1) = (x^2 + 2x + 1)$$

Aufgabe 5. Beschreiben Sie Symmetrie, Monotonieverhalten und Achsenschnittpunkte der folgenden Graphen:

- (a) $f(x) = x^6 + 14$ ist eine gerade Funktion, also achsensysmmetrisch bezgl. der y-Achse. Der Graph entspricht der Parabel x^6 um 14 Einheiten in y-Richtung nach oben verschoben. Somit gibt es keinen Schnittpunkt mit der x-Achse, aber der Schnittpunkt mit der mit der y-Achse ist bei (0,14).
- (b) $f(x) = 3x^{-4}$ ist auch eine gerade Funktion, symmetrisch bezgl. der y-Achse. Im ersten Quadranten der Gaußschen Zahlenebene ähnelt sie der positiven Hälfte einer Hyperbel. f hat gar keine Achsenschnittpunkte.
- (c) $f(x) = 2(x-2)^3 + 1$ entspricht der Funktion $g(x) = x^3$ in x-Richtung um 2 und in y-Richtung um 1 Einheit verschoben. Zudem ist sie um Faktor 3 in y-Richtung gestreckt. Der Schnittpunkt mit der y-Achse ist (0,-15) und Schnittpunkt mit der x-Achse ist $(2-\frac{1}{\sqrt[3]{2}},0)$. (Jede Polynomfunktion mit ungeradem größten Koeffizienten hat einen Nullpunkt! Der Beweis auf youtube: https://www.youtube.com/watch?v=8l-La9HEUIU)

Aufgabe 6. Rechnen Sie von Grad ins Bogenmaß um oder umgekehrt:

(a)
$$30^{\circ} = \frac{\pi}{6}$$

(d)
$$\frac{\pi}{4} = 45^{\circ}$$

(b)
$$-45^{\circ} = -\frac{\pi}{4} = \frac{7\pi}{4}$$

$$(e) - \frac{5\pi}{6} = -150^{\circ} = 210^{\circ}$$

(c)
$$135^{\circ} = \frac{3\pi}{4}$$

$$(f) \frac{\pi}{3} = 60^{\circ}$$

Aufgabe 7. Gegeben seien rechtwinklige Dreiecke mit Katheten a und b und Hypotenuse c und Winkeln α (gegenüber a), β (gegenüber b) und $\gamma = 90^{\circ}$. Berechnen Sie die fehlenden Seiten oder Winkel:

(a)
$$a = 3cm, b = 4cm$$
:
 $c = \sqrt{a^2 + b^2} = \sqrt{9 + 16} = 5, \ \alpha = \sin\frac{3}{5}, \ \beta = \sin\frac{4}{5}$

(b)
$$c=10cm, \alpha=45^\circ$$
:
$$\beta=\alpha=45^\circ, \ und \ we gen \ a=b \ gilt \ 2a^2=c^2\Rightarrow a=b=\sqrt{\frac{c^2}{2}}=\sqrt{\frac{100}{2}}=\sqrt{\frac{50}{2}}=\sqrt{\frac{50}{2}}=\sqrt{\frac{100$$

Aufgabe 8. Bestimmen Sie erst Amplitude, Periode und Phasenverschiebung der Schwingungsfunktion $f(x) = 3\sin(2x - \frac{\pi}{4})$ und zeichnen Sie nachher ihren Verlauf.

$$f(x) = 3\sin\left(2x - \frac{\pi}{4}\right) = A\sin\left(bx + c\right)$$

Amplitude $A = 3$, Periode $P = \frac{2\pi}{b} = \frac{2\pi}{2} = \pi$, Phasenverschiebung $x_0 = \frac{c}{b} = -\frac{\pi}{8}$