How to use Brunel's tqZ Code Documentation

The executable "**tbZAnal.exe**", contains a number of methods which are used to produce results for analysis of tqZ. These methods are accessible through a number of arguments. This documentation covers the standard processes in using the executable, and its compilation. It is by no means a complete guide, but one intended provide a starting point and to give others documentation which the author desperately lacked during his student days. The author takes no responsibility for any unintended consequences stemming from use of these instructions.

If it is not covered in this document, your best bet is to run "tbZAnal.exe --help" or "tbZAnal.exe -h" to display a help message displaying all the argument options. If that fails, my only advice is to prepare for some diving into code to find your answer...

Before running or compiling the program, the author recommends setting your CMSSW environment after running:

```
>>> source setup.sh
>>> cmsenv
```

Compiling the program:

In order to compile the program using the provided makefile, the user needs to place the program directory within the "src/" directory of a CMSSW release.

Following this, the program should compile with the console command:

```
>>> make
```

In theory the program can run without CMSSW, but all the various library dependencies are found within this environment, so for ease this document will assume the user is running the program within a CMSSW release.

Configuration Files:

When running any part of the analysis process, the executable needs a configuration file to use. The example configuration file "eeeConf.txt" is found in the directory "configs/" and the various example sub configuration files are found in the sub-directories noted in the example configuration file "eeeConf.txt". The contents are:

```
datasets = "configs/datasets/eeeDataAndMC.txt";
cuts = "configs/cuts/eeeCuts.txt";
plots = "configs/plots/plotConf.cfg";
outputFolder = "plots/eee/";
outputPostfix = "eee";
channelName = "eee";
```

datasets: the location of the text file denoting each physics channel, the location of the root file list for the channel, the number of events and cross section for the channel, the data type (MC or data), and histogram name, colour, label and plot type.

cuts: the location of the text file denoting the physics cuts for tight and loose electrons and muons. This doesn't' need altering for new config files unless one has new selection cuts. plots: the location of the text file with the instructions for plot names, axis widths, number of bins and axis labels.

outputFolder: the output directory for plots.

outputPostfix: the suffix used for output plots.

channelName: name of physics channel being analysed.

The sub-configuration files for datasets follow this general structure:

```
[tZq]
fileName = configs/datasets/fileLists/tZqFiles.txt
totalEvents = 1038665
crossSection = 0.03590
runType = mc
histoName = tZq
colour = kYellow
label = tZq
plotType = f
```

The "fileName" parameter denotes the path to a text file which lists the locations of the various input files (usually the output of the nTupiliser). Hopefully the other contents should be self-explanatory.

It is also worth noting that whilst the lepton channel is determined in the configuration file, there is an argument which overrides this:

-k : bit mask for lepton channel selection; 1 - eee, 2 - ee μ , 4 - e μ , 8 - μ , 15 — all lepton channels, 16-128 are the same except for inverted third lepton isolation.

Part 1 – Creating skims:

The first stage of producing results involves the creating of skim files. Before running this stage, the directory "skims" needs creating. To create the skims one uses the following command:

```
>>> ./tbZAnal.exe -c <user-config-file> -g -j
```

The arguments are described as follows:

```
-c <user-config-file>: see above.
```

-g: make post-lepton selection trees in the skim files.

-j: make the B-Tagging efficiency trees in the skim files.

-k <bit-mask>: see above (optional).

Part 2 – Creating MVA files:

The second stage of producing results involves the creating of mva files. Before running this stage, the directory "mvaTest" needs creating. To create the mva files one uses the following command:

```
>>> ./tbZAnal.exe -c <user-config-file> -u -v <SYST> -z
```

The arguments are described as follows:

- -c <user-config-file>: see above.
- u: use the post-lepton selection trees in the mva files.
- v <SYST>: do the desired systematic. This argument isn't required if one is running the program over systematic files, by their virtue of already being systematics! SYST either takes the value 1024 or 2048. Using 1024 uses the maximum event weighting for systematics and 2048 uses the minimum event weighting for systematics.
- -z, --makeMVATree: produce a tree after event selection for mva purposes.
- -k <bit-mask>: see above (optional).

Part 3: Producing Plots:

The third and final stage involves the creation of output plots. Before running this stage, the directory "plots" needs creating. To create the plots one uses the following command:

>>> ./tbZAnal.exe -c <user-config-file> -p

The arguments are described as follows:

- -p: makes all plots.
- -k <bit-mask>: see above (optional).

Etc.