

Tratamiento de Señales

Version 2022-I

Procesamiento de Imágenes aColor

[Capítulo 2]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

[Espacio de Color RGB: Cómo se almacena una imagen RGB 1/2]

La imagen a color de N x M pixeles es almacenada como tres matrices de NxM pixeles, una para cada color (R,G,B). Así, el color del pixel (i,j) queda definido por el color dado por R(i,j), G(i,j) y B(i,j).

G =

 $\mathbf{R} =$

 $\mathbf{B} =$

Ejemplo

[Espacio de Color RGB: Cómo se almacena una imagen RGB 2/2]

Imagen (X)

1	2	9	1	2	9	1	2	9	1	2	9	1	2	9	1	2	9	1	2	9	1	2	9						
2	6	3	1	2	9	2	6	3	1	2	9	2	6	3	1	2	9	2	6	3	1	2	9	Paleta					
7	3	4	4	6	3	7	3	4	4	6	3	7	3	4	4	6	3	7	3	4	4	6	3						
1	2	9	7	3	4	1	2	9	7	3	4	1	2	9	7	3	4	1	2	9	7	3	4	Taleta					
4	6	3	4	6	3	4	6	3	4	6	3	4	6	3	4	6	•	4	6	3	4	6	3	-					
7	3	4	7	3	4	7	3	4	7	3	4	7	3	4	7	3	4	7	3	4	7	3	4		R	G	В		
4	6	3	2	9	1	4	6	3	2	9	1	4	6	3	2	9	Ų.		6	3	2	9	1	0	123	231	78		
7	3	4	6	3	1	7	3	4	6	3	1	7	3	4	6	3	1	7	3	4	6	3	1	1	27	201	27		
4	6	3	3	4	4	4	6	3	3	4	4	4	6	3	3	4	4	4	6	3	3	4	4	2	129	126	54		
7	3	4	2	9	7	7	3	4	2	9	7	7	3	4	2	9	7	7	3	4	2	9	7						
4	6	3	6	3	4	4	6	3	6	3	4	4	6	3	6	3	4	4	6	3	6	3	4	3	156	47	187		
7	3	4	3	4	7	7	3	4	3	4	7	7	3	4	3	4	7	7	3	4	3	4	7	4	123	27	165		
1	2	9	1	2	9	1	2	9	1	2	9	1	2	9	1	2	9	1	2	9	1	2	9	. 5	27	54	29		
2	6	3	1	2	9	2	6	3	1	2	9	2	6	3	1	2	9	2	6	3	1	2	9	6	150	187	27		
7	3	4	4	6	3	7	3	4	4	6	3	7	3	4	4	6	3	7	3	4	4	6	3	7					
1	2	9	7	3	4	1	2	9	7	3	4	1	2	9	7	3	4	1	2	9	7	3	4	_	123	165	231		
4	6	3	4	6	3	4	6	3	4	6	3	4	6	3	4	6	3	4	6	3	4	6	3	8	32	29	201		
7	3	4	7	3	4	7	3	4	7	3	4	7	3	4	7	3	4	7	3	4	7	3	4	9	89	27	126		
4	6	3	2	9	1	4	6	3	2	9	1	4	6	3	2	9	1	4	6	3	2	9	1						
7	3	4	6	3	1	7	3	4	6	3	1	7	3	4	6	3	1	7	3	4	6	3	1						
4	6	3	3	4	4	4	6	3	3	4	4	4	6	3	3	4	4	4	6	3	3	4	4						
7	3	4	2	9	7	7	3	4	2	9	7	7	3	4	2	9	7	7	3	4	2	9	7						
4	6	3	6	3	4	4	6	3	6	3	4	4	6	3	6	3	4	4	6	3	6	3	4						
7	3	4	3	4	7	7	3	4	3	4	7	7	3	4	3	4	7	7	3	4	3	4	7						

La imagen a color de N x M pixeles es almacenada como una matriz X de NxM pixeles que almacena índices de 0 a n-1, y una paleta de colores almacenada como una matriz de n x 3 elementos. Así, el color del pixel (i,j) de la imagen está definido en la fila k de la paleta, donde k = X(i,j).

Ejemplo

	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
v	0	0	0	0	1	1	1	1
$\Lambda = $	2	2	2	2	3	3	3	3
	2	2	2	2	3	3	3	3
	2	2	2	2	3	3	3	3
	2	2	2	2	3	3	3	3

Paleta

	R	G	В	
0	255	0	0	
1	0	255	0	
2	0	0	255	
3	128	128	128	

[Representación del color]

[Representación del color]

[Segmentación]

[Segmentación]

[Mejoramiento de imágenes a color]

