Math 550

Homework 10

Dr. Fuller Solutions

1. (a) We may write $X(p) = w + (X_p \cdot n_p) n_p$, where $w \in \partial M_p$ and n_p is the unit outward normal at p. (Recall that in this case, the two different outward normal vectors n_p and N_p coincide.) Let $u = (u_1, u_2) \in \partial M_p$. Then

$$(\star \omega_{X}^{1})_{p}(u) = (-f_{y}(p) dx + f_{x}(p) dy)(u_{1}, u_{2})$$

$$= \det \begin{pmatrix} f_{x}(p) & u_{1} \\ f_{y}(p) & u_{2} \end{pmatrix}$$

$$= \det \begin{pmatrix} \begin{vmatrix} & & \\ X_{p} & u \\ & & \end{vmatrix} \end{pmatrix}$$

$$= \det \begin{pmatrix} w + (X_{p} \cdot n_{p})n_{p} & u \\ & & \end{vmatrix}$$

$$= X_{p} \cdot n_{p} \det \begin{pmatrix} \begin{vmatrix} & & \\ n_{p} & u \\ & & \end{vmatrix} \end{pmatrix} = X_{p} \cdot n_{p} ds(u).$$

(b) Direct calculation gives $d(\star \omega_X^1) = \text{div } X \ dA$. So

$$\int_{M} \operatorname{div} X \, dA = \int_{M} d(\star \omega_{X}^{1}) = \int_{\partial M} \star \omega_{X}^{1} = \int_{\partial M} X \cdot n \, ds.$$

2. Direct calculation gives div X = 0.

Since X is defined on M^3 , we apply the Divergence Theorem to $M - B_{\varepsilon}^3$, where B_{ε}^3 is a small open ball of radius ε centered at (0,0,0). Then

$$0 = \int_{M-B_{\varepsilon}^3} \operatorname{div} X \ dV = \int_{\partial(M-B_{\varepsilon}^3)} X \cdot N \ dA = \int_{\partial M} X \cdot N \ dA + \int_{S_{\varepsilon}^2} X \cdot N \ dA = \int_{\partial M} X \cdot N \ dA - 4\pi.$$

To see that $\int_{S_{\varepsilon}^2} X \cdot N \, dA = -4\pi$, note that the boundary orientation induced on S_{ε}^2 from $M - B_{\varepsilon}^3$ is opposite the orientation induced from the standard orientation on B_{ε}^3 . Also, if $p = (x, y, z) \in S_{\varepsilon}^2$, then $X(p) = \frac{1}{\varepsilon^3}(x, y, z)$ and $N(p) = \frac{1}{\varepsilon}(x, y, z)$, so $X(p) \cdot N(p) = \frac{1}{\varepsilon^4}(x, y, z) \cdot (x, y, z) = \frac{1}{\varepsilon^4}\varepsilon^2 = \frac{1}{\varepsilon^2}$. Thus

$$\int_{S_{\varepsilon}^2} X \cdot N \ dA = -\frac{1}{\varepsilon^2} \int_{S_{\varepsilon}^2} dA = -\frac{1}{\varepsilon^2} 4\pi \varepsilon^2 = -4\pi.$$

- 3. (a) $d(\omega_X^1) = \omega_{\text{curl } X}^2 = 0$. Then ω_X^1 is exact by the Poincare Lemma, so there exists f with $\omega_X^1 = df = \omega_{\text{grad } f}^1$. Thus X = grad f.
 - (b) $d(\omega_X^2) = \text{div } X = 0$. Then ω_X^2 is exact by the Poincare Lemma, so there exists a 1-form η with $\omega_X^2 = d\eta$. Note that if we write $\eta = f_x \, dx + f_y \, dy + f_z \, dz$, then $\eta = \omega_Y^1$ for the vector field $Y = (f_x, f_y, f_z)$. Then we have $\omega_X^2 = d\eta = d(\omega_Y^1) = \omega_{\text{curl } Y}^2$. Thus X = curl Y.

4. Suppose that ω extends to a 1-form $\widetilde{\omega}$ on \mathbf{R}^2 . Then at $p \neq (0,0,0)$, we have $d\widetilde{\omega}(p) = d\omega(p) = 0$. Thus the coefficient functions of $d\widetilde{\omega}$ are identically zero on $\mathbf{R}^2 - \{(0,0)\}$, and by continuity on \mathbf{R}^2 as well. So $d\widetilde{\omega}((0,0,0)) = 0$. Thus $\widetilde{\omega}$ is closed. By the Poincare Lemma, $\widetilde{\omega}$ is exact. But this would mean that its restriction ω to $\mathbf{R}^2 - \{(0,0)\}$ is exact, a contradiction to the fact that ω has been shown to be otherwise.

Addendum

1. Let $g: U \to \mathbb{R}^n$ be a local parameterization of M which induces the given orientation. Then we can write $g^*v = f dx_1 \wedge \cdots \wedge dx_k$, and since $g^*v(u)(e_1, \dots, e_k) > 0$ for all $u \in U$, we have

$$f(u) = f(u) dx_1 \wedge \cdots \wedge dx_k(e_1, \dots, e_k) = g^* v(u)(e_1, \dots, e_k) > 0$$

for all $u \in U$. Therefore,

$$\int_{g(U)} \mathbf{v} = \int_{U} g^* \mathbf{v} = \int_{U} f dx_1 \cdots dx_k > 0.$$

Finally, taking $\{\varphi\}$ to be a partition of unity subordinate to the cover of M by $\{g_{\alpha}(U_{\alpha})\}$, this implies $\int_{M} v = \sum_{\varphi} \int_{M} \varphi v > 0$.

2. If M were contractible, then the identity $i: M \to M$ would be homotopic to a constant function $c: M \to M$. Then if v is the volume form on M, we have $\int_M v = \int_M i^* v = \int_M c^* v = 0$. This contradicts the previous problem.