Predicting Loan Eligibility

Lighthouse Labs: Mini-Project IV

Introduction

For most people, purchasing property requires a loan from financial companies. It is beneficial for companies and applicants to know if a loan will be approved. The *objective* of this project is to develop and deploy a machine learning model capable of predicting an applicant's loan eligibility based on demographic and financial information.

Outline of Workflow

Data Collection

CSV file containing historical applicants' information, such as income and credit history, and loan status

Exploratory Data Analysis

Analyzed trends within the data to determine factors important for modelling

Data Cleaning and Modelling Pipeline

Implemented data cleaning and modelling approaches using a machine learning pipeline

Deployment

Implemented model in a flask web app, which is then deployed to the cloud using AWS.

Hypothesis Generation

1 Applicant Income

Higher income applicants have more money to repay loans

2 Credit History

Applicants with good credit history are more trustworthy with loans

Property Area

Properties at desired areas are more appealing to financial companies

4 Demographic Properties

Applicants with stable jobs, high education levels, and less dependents may be considered more reliable

Exploratory Data Analysis

Demographic Patterns

Categorical data is generally unbalanced. Amongst the different groups within a category, the proportions of loan status varies.

Financial Patterns

Incomes are heavily skewed; the bulk of applicants make between \$0 to \$10,000. Applicants with poor credit history are more likely to get their loans refused.

Loan Patterns

Loans for semi-urban properties are more likely to get approved.

Pipeline Development

Data Transformation Approaches

Categorical Data

Impute missing values with most common observation

Impute missing values with median

Create a total income feature by adding applicant and co-applicant income

Extreme Values

Perform a log-transformation on skewed numerical data

Pipeline

Numerical Data

Total

Impute Median

Log Transform

Standard Scaler

Categorical Data

Impute Frequent

One-Hot Encoder

Dense Transform

- (1) Logistic Regression
- **2** Decision Tree Classifier
- 3 Random Forest Classifier
- 4 Gradient Boosting Classifier
- **5** XGBoost Classifier
- 6 Support Vector Classifier

Modelling and Evaluation

Logistic Regression Model

Implemented balanced weighting in logistic regression model (data is slightly unbalanced - 70%-30%). In doing so, model was able to reduce number of false positives.

Deployment

Quick Demo!

Loan Eligibility Predictor

Basic Information	
What is your gender? Male	What is your education level? Graduate
Are you married? Yes	Are you self-employed? Yes
Financial Status	
Does your credit history meet guidelines? Yes	4583
Dependent Information	
How many dependents do you have? 0	1508
Loan Information	
Where is your property located? Semiurban	123
	Predict Loan Eligibility

Future Improvements

- Model would benefit significantly with larger and more balanced dataset
- Improve model to better predict negative outcomes
 - reduce false positives through boosting or oversampling techniques (SMOTE
- Improve web application features and design

