3 Is it a binary search tree? Hard version.

Problem Introduction

In this problem you are going to solve the same problem as the previous one, but for a more general case, when binary search tree may contain equal keys.

Problem Description

Task. You are given a binary tree with integers as its keys. You need to test whether it is a correct binary search tree. Note that there can be duplicate integers in the tree, and this is allowed. The definition of the binary search tree in such case is the following: for any node of the tree, if its key is x, then for any node in its left subtree its key must be strictly less than x, and for any node in its right subtree its key must be greater than **or equal** to x. In other words, smaller elements are to the left, bigger elements are to the right, and duplicates are always to the right. You need to check whether the given binary tree structure satisfies this condition. You are guaranteed that the input contains a valid binary tree. That is, it is a tree, and each node has at most two children.

Input Format. The first line contains the number of vertices n. The vertices of the tree are numbered from 0 to n-1. Vertex 0 is the root.

The next n lines contain information about vertices 0, 1, ..., n-1 in order. Each of these lines contains three integers key_i , $left_i$ and $right_i - key_i$ is the key of the i-th vertex, $left_i$ is the index of the left child of the i-th vertex, and $right_i$ is the index of the right child of the i-th vertex. If i doesn't have left or right child (or both), the corresponding $left_i$ or $right_i$ (or both) will be equal to -1.

Constraints. $0 \le n \le 10^5$; $-2^{31} \le key_i \le 2^{31} - 1$; $-1 \le left_i, right_i \le n - 1$. It is guaranteed that the input represents a valid binary tree. In particular, if $left_i \ne -1$ and $right_i \ne -1$, then $left_i \ne right_i$. Also, a vertex cannot be a child of two different vertices. Also, each vertex is a descendant of the root vertex. Note that the minimum and the maximum possible values of the 32-bit integer type are allowed to be keys in the tree — beware of integer overflow!

Output Format. If the given binary tree is a correct binary search tree (see the definition in the problem description), output one word "CORRECT" (without quotes). Otherwise, output one word "INCORRECT" (without quotes).

Time Limits.

language	С	C++	Java	Python	C#	Haskell	JavaScript	Ruby	Scala
time (sec)	2	2	3	10	3	4	10	10	6

Memory Limit. 512MB.