Fiche 2. Dérivées

Savoir.

- □ Comprendre la définition de la dérivée en terme de limite.
- ☐ Connaître les formules de la dérivées d'une somme, d'un produit, d'un quotient.
- ☐ Connaître sur le bout de doigts les formules des dérivées usuelles.

Savoir-faire.

- ☐ Savoir calculer l'équation de la tangente au graphe d'une fonction.
- ☐ Savoir dériver les fonctions construites à partir de fonctions usuelles.
- ☐ En particulier savoir dériver les compositions de fonctions.

Définition

Le **nombre dérivé** d'une fonction f en x_0 est défini par une limite :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Une autre écriture de cette limite est :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Une autre notation pour $f'(x_0)$ est $\frac{df}{dx}(x_0)$. La **fonction dérivée** est $x \mapsto f'(x)$.

Tangente

La dérivée en x_0 est le coefficient directeur de la tangente au point $(x_0, f(x_0))$. L'équation de cette tangente est :

$$f(x_0)$$

$$T$$

$$x_0$$

Exemple : quelle est l'équation de la tangente au graphe de $f(x) = e^{2x}$ en $x_0 = 1$? On a $f'(x) = 2e^{2x}$, $f(x_0) = f(1) = e^2$, $f'(x_0) = f'(1) = 2e^2$. L'équation de la tangente est $y = (x-1)2e^2 + e^2$, ce qui s'écrit aussi $y = 2e^2x - e^2$.

Opérations sur les dérivées

— Somme.
$$(f + g)' = f' + g'$$

— Produit par un réel.
$$(kf)' = kf'$$
 où $k \in \mathbb{R}$

— **Produit.**
$$(f \times g)' = f'g + fg'$$

— Quotient.
$$\left| \left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} \right|$$

Exemple. Calcul de la dérivée de $f(x) = xe^x + \ln(x)$. Il y a un produit (xe^x) et une somme. Ainsi :

$$f'(x) = (xe^x)' + (\ln(x))' \quad \text{(somme)}$$

$$= (x)'e^x + x(e^x)' + \frac{1}{x} \quad \text{(produit et dérivée de ln)}$$

$$= e^x + xe^x + \frac{1}{x} \quad \text{(dérivée de exp)}$$

$$= (x+1)e^x + \frac{1}{x}$$

Exemple. Calcul de la dérivée de $f(x) = \tan(x)$. Par définition $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Il s'agit de dériver un quotient.

$$\tan'(x) = \left(\frac{\sin(x)}{\cos(x)}\right)'$$

$$= \frac{\cos(x)\cos(x) - \sin(x)(-\sin(x))}{(\cos(x))^2}$$

$$= \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}$$

$$= \frac{1}{\cos^2(x)}$$

On a utilisé l'égalité $\cos^2(x) + \sin^2(x) = 1$. En repartant de l'avant-dernière égalité on a aussi :

$$\tan'(x) = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{\cos^2(x)}{\cos^2(x)} + \frac{\sin^2(x)}{\cos^2(x)} = 1 + \tan^2(x)$$

Formules

Les dérivées des fonctions classiques (à gauche) et les formules pour la composition (à droite, où u est une fonction qui dépend de x).

Fonction	Dérivée	
x^n	nx^{n-1} $(n \in \mathbb{Z})$	
$\frac{1}{x}$	$-\frac{1}{x^2}$	
\sqrt{x}	$\frac{1}{2}\frac{1}{\sqrt{x}}$	
x^{α}	$ax^{\alpha-1} (\alpha \in \mathbb{R})$	
e^x	e^x	
$\ln x$	$\frac{1}{x}$	
cos x	$-\sin x$	
sin x	cos x	
tan x	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	

Fonction	Dérivée	
u ⁿ	$nu'u^{n-1}$	$(n \in \mathbb{Z})$
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$	
u^{α}	$\alpha u'u^{\alpha-1}$	$(\alpha \in \mathbb{R})$
e ^u	u'e ^u	
ln u	$\frac{u'}{u}$	
cosu	$-u'\sin u$	
sin u	u' cos u	
tan u	$u'(1+\tan^2 u) = \frac{u'}{\cos^2 u}$	

Exemples.

- $F(x) = \ln(x^2)$ alors en posant $u = x^2$ (et donc u' = 2x), on a $F(x) = \ln(u)$ et donc $F'(x) = \frac{u'}{u} = \frac{2x}{x^2} = \frac{2}{x}$.
- $-F(x) = \exp(\frac{1}{x}) \text{ alors en posant } u = \frac{1}{x} \text{ (et donc } u' = -\frac{1}{x^2}), \text{ on a } F(x) = \exp(u) \text{ et donc } F'(x) = u' \exp(u) = -\frac{1}{x^2} \exp(\frac{1}{x}).$
- $F(x) = \sqrt{\ln(x)}$ alors en posant $u = \ln(x)$ (et donc $u' = \frac{1}{x}$), on a $F(x) = \sqrt{u}$ et donc $F'(x) = \frac{1}{2} \frac{u'}{\sqrt{u}} = \frac{1}{2} \frac{1}{x} \frac{1}{\sqrt{\ln(x)}}$.