MATH 076 - Computational Inverse Problems

Carter Kruse, July 12, 2023

Homework 1

Instructions

This homework assignment is split into two sections: written questions and computational questions. For the written questions, you are **not** permitted to use a calculator or any other computational tools. For the computational questions, you are asked to use a coding language of your choice to perform the tasks requested. You may make use any code posted to our course's Canvas page. **Please show all of your work.** If you have any questions or uncertainties, please reach out to your instructor.

Written Questions

1) Find the SVD and compute the condition number of

$$A = \begin{bmatrix} -1.5 & 2.5\\ 2.5 & -1.5 \end{bmatrix}$$

Let us define the singular value decomposition (SVD). Assuming $m \geq n$, for $A \in \mathbb{R}^{m \times n}$, the SVD of A is

$$A = U\Sigma V^T = \sum_{i=1}^n u_i \sigma_i v_i^T$$

 Σ is an $n \times n$ diagonal matrix with the singular values $\sigma_1, \ldots, \sigma_n$:

$$\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n), \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n \ge 0$$

Matrices $U \in \mathbb{R}^{m \times n}$ and $V \in \mathbb{R}^{n \times n}$ consist of the left and right singular vectors:

$$U = [u_1, u_2, \dots, u_n]$$
 $V = [v_1, v_2, \dots, v_n]$

The matrices have orthonormal columns, i.e. $u_i^T u_j = v_i^T v_i = \delta_{i,j}$, or simply $U^T U = V^T V = \mathbb{I}_n$, where

$$\delta_{i,j} \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

To find the SVD, let us use linear algebra. The eigenvectors of A^TA make up the columns of V. The eigenvectors of AA^T make up the columns of U. The square root of eigenvalues of either A^TA or AA^T make up Σ .

In this case, we have the following:

$$A^{T}A = AA^{T} = \begin{bmatrix} -1.5 & 2.5 \\ 2.5 & -1.5 \end{bmatrix} \begin{bmatrix} -1.5 & 2.5 \\ 2.5 & -1.5 \end{bmatrix}$$
$$A^{T}A = AA^{T} = \begin{bmatrix} (-1.5)^{2} + (2.5)^{2} & (-1.5)(2.5) + (2.5)(-1.5) \\ (2.5)(-1.5) + (-1.5)(2.5) & (2.5)^{2} + (-1.5)^{2} \end{bmatrix}$$

$$A^T A = A A^T = \begin{bmatrix} 8.5 & -7.5 \\ -7.5 & 8.5 \end{bmatrix}$$

To compute the eigenvalues, we determine the values of λ for which det $(A - \lambda I) = 0$, as follows:

$$(8.5 - \lambda)^{2} - (-7.5)^{2} = 0$$
$$(8.5)^{2} - 17\lambda + \lambda^{2} - (7.5)^{2} = 0$$
$$\lambda^{2} - 17\lambda + 16 = 0$$

When we factor to determine the appropriate value of λ , as $(\lambda - 16)(\lambda - 1) = 0$, we find that the eigenvalues of the matrix $A^T A = AA^T$ are $\lambda = 1, 16$.

According to the SVD, this means that Σ (the $n \times n$ diagonal matrix) with singular values $\sigma_1, \ldots, \sigma_n$ is given as follows:

$$\Sigma = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$

Now, to determine the eigenvectors, we aim to solve the expression $Av = \lambda v$, which is equivalent to solving $v(A - \lambda I) = 0$.

$$\begin{bmatrix} 8.5 - \lambda & -7.5 \\ -7.5 & 8.5 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Using the value $\lambda = 1$, this produces the following system of equations:

$$7.5x - 7.5y = 0$$

$$-7.5x + 7.5y = 0$$

So, we may consider a vector $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ which satisfies the above, which, normalized, is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$.

Using the value $\lambda = 16$, this produces the following system of equations:

$$-7.5x - 7.5y = 0$$

$$-7.5x - 7.5y = 0$$

So, we may consider a vector $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ which satisfies the above, which, normalized, is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{2} \end{bmatrix}$

These eigenvectors correspond to the columns of U and V. The following is the solution, which provides the SVD of the matrix A:

$$A = U\Sigma V^{T} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}^{T}$$

The condition number is defined as

cond
$$(A) = ||A^{-1}||_2 ||A||_2 = \frac{\sigma_1}{\sigma_1}$$

Thus, to compute the condition number, we simply take the ratio between the greatest singular value and the smallest, as follows

$$\operatorname{cond}\left(A\right) = \frac{\sigma_1}{\sigma_n} = 4$$

2) The solution x_{LS} to the linear least squares problem $\min_{x} ||Ax - b||_2$ is formally given as

$$x_{LS} = \left(A^T A\right)^{-1} A^T b$$

under the assumption that $A \in \mathbb{R}^{m \times n}$ has more rows than columns and $A^T A$ is full rank. Use this expression together with the SVD to show that x_{LS} has the *same* SVD expansion as when A is square and non-singular, i.e. prove

$$x_{LS} = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i$$

Let us define the singular value decomposition (SVD). Assuming $m \geq n$, for $A \in \mathbb{R}^{m \times n}$, the SVD of A is

$$A = U\Sigma V^T = \sum_{i=1}^n u_i \sigma_i v_i^T$$

 Σ is an $n \times n$ diagonal matrix with the singular values $\sigma_1, \ldots, \sigma_n$:

$$\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n), \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n \ge 0$$

Matrices $U \in \mathbb{R}^{m \times n}$ and $V \in \mathbb{R}^{n \times n}$ consist of the left and right singular vectors:

$$U = [u_1, u_2, \dots, u_n]$$
 $V = [v_1, v_2, \dots, v_n]$

The matrices have orthonormal columns, i.e. $u_i^T u_j = v_i^T v_i = \delta_{i,j}$, or simply $U^T U = V^T V = \mathbb{I}_n$, where

$$\delta_{i,j} \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Assumptions

$$U^{T}U = UU^{T} = I \qquad (U^{T})^{-1} = U$$

$$V^{T}V = VV^{T} = I \qquad (V^{T})^{-1} = V$$

$$\Sigma^{T}\Sigma = \Sigma\Sigma^{T} = \Sigma^{2}$$

Using the SVD with the solution x_{LS} to the linear least squares problem $\min_x ||Ax - b||_2$, under the assumption that $A \in \mathbb{R}^{m \times n}$ has more rows than columns and $A^T A$ is full rank produces the following:

$$x_{LS} = (A^T A)^{-1} A^T b$$

$$= ((U \Sigma V^T)^T (U \Sigma V^T))^{-1} (U \Sigma V^T)^T b$$

$$= ((V \Sigma^T U^T) (U \Sigma V^T))^{-1} (U \Sigma V^T)^T b$$

$$= (V \Sigma^T \Sigma V^T)^{-1} (U \Sigma V^T)^T b$$

$$= (V \Sigma^2 V^T)^{-1} (U \Sigma V^T)^T b$$

$$= (V^T)^{-1} (\Sigma^{-2}) (V)^{-1} (U \Sigma V^T)^T b$$

$$= (V^T)^{-1} (\Sigma^{-2}) (V)^{-1} (V \Sigma^T U^T) b$$

$$= ((V^T)^{-1} (\Sigma^{-2}) \Sigma^T U^T) b$$

$$= ((V^T)^{-1} (\Sigma^{-1}) U^T) b$$

$$= (V \Sigma^{-1} U^T) b$$

From this, we deduce that x_{LS} has the same SVD expansion as when A is square and non-singular. This is done by simply using the expansion of the expression above. \Box

$$x_{LS} = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i$$

3) When solving inverse problems, it is common to want to enforce some kind of *sparsity* condition. This means that we want our solution vector $x \in \mathbb{R}^n$ to have relatively few non-zero values. We will define the 0-"norm" $||x||_0$ to be

$$||x||_0 = \#$$
 non-zero values of x

For example, if $v = [0, 27, 0]^T$, then $||v||_0 = 1$. While this would seem to be the most natural way to discuss sparsity, the 0-"norm" as defined is not a real norm. Why is this the case?

The definition of a *vector* norm is given as ||x|| with $\mathbb{R}^n \to \mathbb{R}$ with the following properties:

- $||x|| \ge 0$
- $\bullet ||x|| = 0 \implies x = 0$
- $||\alpha x|| = |\alpha| ||x||$ with $\alpha \in \mathbb{R}$
- $||x+y|| \le ||x|| + ||y||$ with $y \in \mathbb{R}^n$

Thus, to be defined as a real norm, any potential proposal must satisfy all of the properties. For a solution vector $x \in \mathbb{R}^n$, the 0-"norm" defined as $||x||_0 = \#$ non-zero values of x satisfies the following properties:

- $||x|| \ge 0$
- $||x|| = 0 \implies x = 0$
- $||x+y|| \le ||x|| + ||y||$ with $y \in \mathbb{R}^n$

However, it does not satisfy the property $||\alpha x|| = |\alpha| ||x||$ with $\alpha \in \mathbb{R}$, as demonstrated by the following simple counterexample.

Suppose $v = [0, 1]^T \in \mathbb{R}^2$. Given the definition of the 0-"norm", we have ||v|| = 1. Let $\alpha = 4$. Then, we have $\alpha v = [0, 4]^T \in \mathbb{R}^2$. The following equality does not hold:

$$||\alpha v||_0 \neq |\alpha| \, ||v||$$

$$\left(\left|\left|\left[0,4\right]^T\right|\right|_0=1\right)\neq \left(4=\left|4\right|\left|\left|\left[0,1\right]^T\right|\right|_0\right)$$

Thus, the 0-"norm" does not satisfy the necessary properties to be considered a real norm, even though it may be the most natural way to discuss sparsity.

4) Suppose $x \in \mathbb{R}^n$. Prove the following.

2-Norm (Euclidean Norm)

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \sqrt{\overline{x}^T \overline{x}}$$

 ∞ -Norm (Max Norm)

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

1-Norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

(A) $||x||_{\infty} \le ||x||_2$

In the case where $x \in \mathbb{R}$, $||x||_{\infty} = ||x||_{2}$. This is due to the fact that the vector x is a singular value.

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i| = |x_1|$$

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \left((x_1)^2\right)^{\frac{1}{2}} = |x_1|$$

Thus, $||x||_2 = ||x||_{\infty}$.

In the case where $x \in \mathbb{R}^n$, where n > 1, let us consider the value of i for which $|x_i|$ is the maximum of all possible values, say j.

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i| = |x_j|$$

To determine the value of $||x||_2$, select x_j to remove from the summation, as follows:

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \left(x_j^2 + \sum_{i=1, i \neq j}^n x_i^2\right)^{\frac{1}{2}}$$

We may consider the sum as a residual term $\varepsilon > 0$, as $x_i^2 > 0$ for all i.

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \left(x_j^2 + \varepsilon\right)^{\frac{1}{2}}$$

Thus, we know the following:

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} \ge |x_j^2|$$

Thus, $||x||_{\infty} \leq ||x||_2$. \square

(B)
$$||x||_2 \le ||x||_1$$

Given that $||x||_2 \ge 0$ and $||x||_1 \ge 0$, we may prove the statement via the following:

$$||x||_{2}^{2} \leq ||x||_{1}^{2}$$

The definitions for $||x||_2$ and $||x||_1$ may be used as follows:

$$||x||_2^2 = \sum_{i=1}^n x_i^2$$
 $||x||_1^2 = \left(\sum_{i=1}^n |x_i|\right)^2$

To demonstrate the inequality $||x||_2^2 \le ||x||_1^2$, we may show the following:

$$\sum_{i=1}^{n} x_i^2 \le \left(\sum_{i=1}^{n} x_i^2 + 2\sum_{i,j,i < j} |x_i| |x_j|\right) = \left(\sum_{i=1}^{n} |x_i|\right)^2$$

Thus, $||x||_2 \le ||x||_1$. \square

(C) $||x||_1 \le n ||x||_{\infty}$

Let us consider the value of i for which $|x_i|$ is the maximum of all possible values, say j.

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i| = |x_j|$$

Thus, we know $n ||x||_{\infty} = n |x_j|$.

Further, we have the following:

$$||x||_1 = \sum_{i=1}^n |x_i|$$

As $|x_j|$ was selected to be the maximum element (in absolute terms) in the vector x, there are no values $|x_k|$ for which $|x_j| < |x_k|$. While there may be values for which $|x_k| = |x_j|$, there is no exceeding this limit. Thus, we have the following bound:

$$\sum_{i=1}^{n} |x_i| \le n |x_j|$$

(The upper bound assumes that the values $|x_i|$ are equivalent for all $i \in {0, \ldots n}$.)

Thus, $||x||_1 \le n ||x||_{\infty}$. \square

(D)
$$||x||_2 \leq \sqrt{n} ||x||_{\infty}$$

Given that $||x||_2 \ge 0$ and $||x||_\infty \ge 0$, we may prove the statement via the following:

$$||x||_{2}^{2} \le n ||x||_{\infty}^{2}$$

The definitions for $\left|\left|x\right|\right|_2$ and $\left|\left|x\right|\right|_1$ may be used as follows:

$$||x||_2^2 = \sum_{i=1}^n x_i^2$$
 $||x||_{\infty}^2 = \left(\max_{i=1,\dots,n} |x_i|\right)^2$

To demonstrate the inequality $||x||_2^2 \le n \, ||x||_{\infty}^2$, we may show the following:

$$\sum_{i=1}^{n} x_i^2 \le n \left(\max_{i=1,\dots,n} x_i^2 \right) = n \left(\max_{i=1,\dots,n} |x_i| \right)^2$$

(This follows similarly to the previous argument, with x_i^2 substituted for $|x_i|$.)

Thus,
$$||x||_2 \le \sqrt{n} \, ||x||_{\infty}$$
. \square

Computational Questions

View Matlab Code