第8問

図 1 は均一にドープされたドナー濃度 N_D の n 型半導体と、均一にドープされたアクセプタ濃度 N_A の p 型半導体で構成された pn 接合である. n 型半導体中の正孔の熱平衡濃度を p_{n0} 、p 型半導体中の電子の熱平衡濃度を n_{p0} とする。素電荷を q、ボルツマン定数を k_B 、温度を T、n 型半導体中性領域の長さを W_N とする。x は n 領域の空乏層端からの距離を表す。n 型領域における正孔の拡散定数を D_p 、正孔の少数キャリア寿命を τ_p とし、正孔の拡散距離 L_p は $L_p = \sqrt{D_p \tau_p}$ で与えられる。ここで $W_N >> L_p$ であり、 $x=W_N$ において正孔濃度は熱平衡濃度に等しくなっているとする。

この pn 接合に時間的に変化する電圧 V(t)を印加した場合の,n 型半導体中性領域における正孔濃度について考える.ある時刻 t,座標 x における正孔濃度を p(x,t) と表したとき,正孔の拡散方程式は以下の式で与えられる.

$$\frac{\partial p(x,t)}{\partial t} = -\frac{p(x,t) - p_{n0}}{\tau_p} + D_p \frac{\partial^2 p(x,t)}{\partial x^2}$$
 (i)

以下の問いに答えよ.

(1) まず、時間変化のない場合について考察する. すなわち $V(t) = V_{DC}$ の直流順方向バイアス電圧を印加したときの $p(0) - p_{n0}$ を V_{DC} の関数で表せ. ここで p(0) は x = 0 における正孔濃度を表す.

次に,順方向の直流電圧 V_{DC} に微小交流電圧 $V_{AC}e^{j\omega t}$ が重畳した電圧 $V(t) = V_{DC} + V_{AC}e^{j\omega t}$ を印加したときを考える.ここで $V_{AC}<< V_{DC}$, $V_{AC}<< k_BT/q$ の条件があり,j は虚数単位, ω は角周波数である.

以下の問いに答えよ.

(2) 時間的に変化する正孔濃度 p(x,t) が、 $p(x,t) = p_{DC}(x) + p_{AC}(x)$ $e^{j\omega t}$ の形で表されると仮定する.ここで $p_{DC}(x)$ は直流成分、 $p_{AC}(x)$ は交流成分の振幅を表す. $p_{DC}(x)$, $p_{AC}(x)$ がそれぞれ満たすべき微分方程式は式(ii)、(iii)で表されることを導け.

$$D_{p} \frac{\partial^{2} p_{DC}(x)}{\partial x^{2}} - \frac{p_{DC}(x) - p_{n0}}{\tau_{p}} = 0$$
 (ii)

$$D_{p} \frac{\partial^{2} p_{AC}(x)}{\partial x^{2}} - j \omega p_{AC}(x) - \frac{p_{AC}(x)}{\tau_{p}} = 0$$
 (iii)

- (3) x=0 における境界条件を求めたい、 $p_{DC}(0)-p_{n0}$ を V_{DC} の関数で表せ、また $p_{AC}(0)$ を V_{DC} と V_{AC} の関数で表せ、ここで、導出には次の式で与えられるテーラー展開 $f(\alpha+\beta)=f(\alpha)+\beta f'(\alpha)$ $(\alpha >> \beta)$ を用いること、
- (4) 上記の微分方程式(ii)を解き、直流成分 $p_{DC}(x)$ をx の関数で表せ、また、これをグラフで示せ、このとき、x=0、 $x=W_N$ 、 $x=L_p$ 、 p_{n0} 、 $p_{DC}(0)$ をグラフ中に明記すること、
- (5) 上記の微分方程式(iii)を解き、交流成分 $p_{AC}(x)$ を x の関数で表せ、(グラフで示す必要はない)
- (6) $\omega \tau_p << 1$ とき、p(x,t)はどのような時間的、空間的変化をするか、図を用いて簡単に説明せよ。

Problem 8

Figure 1 shows a schematic illustration of a pn junction diode comprising a uniformly-doped n-type semiconductor with donor concentration N_D and a uniformly-doped p-type semiconductor with acceptor concentration N_A . Thermal equilibrium hole concentration in the n-type semiconductor is p_{n0} , and thermal equilibrium electron concentration in the p-type semiconductor is n_{p0} . Here, q is the elemental charge, k_B is the Boltzmann constant, T is temperature, and W_N is the length of the n-type neutral region. As shown in Fig. 1, x denotes the distance from the edge of the depletion region in the n-type region. In the n-type region, D_p represents the diffusion constant of holes and τ_p the minority carrier lifetime of holes. Then, the diffusion length of holes L_p is defined as $L_p = \sqrt{D_p \tau_p}$. Here, we assume $W_N >> L_p$, and that the hole concentration at $x = W_N$ is equal to the thermal equilibrium hole concentration.

Let us consider the hole concentration in the n-type neutral region when a time-varying voltage V(t) is applied to the diode. The hole concentration at time t and position x is denoted as p(x,t). Then, the diffusion equation for holes is given by the following equation:

$$\frac{\partial p(x,t)}{\partial t} = -\frac{p(x,t) - p_{n0}}{\tau_p} + D_p \frac{\partial^2 p(x,t)}{\partial x^2}.$$
 (i)

Answer the following questions.

(1) First, let us consider the stationary state, i.e. non time-varying case. Namely, a forward DC bias voltage $V(t)=V_{DC}$ is applied to the diode. Express $p(0)-p_{n0}$ as a function of V_{DC} , where p(0) is the hole concentration at x=0.

Next, let us consider the case in which a time-varying voltage $V(t) = V_{DC} + V_{AC}e^{j\omega t}$ is applied, where V_{DC} is the forward DC bias voltage and $V_{AC}e^{j\omega t}$ the time-varying small AC voltage. Here, we assume $V_{AC} << V_{DC}$ and $V_{AC} << k_B T/q$. j is the imaginary unit and ω the angular frequency.

Answer the following questions.

(2) Assume that the time-variable hole concentration p(x,t) is expressed as $p(x,t) = p_{DC}(x) + p_{AC}(x) e^{j\omega t}$, where $p_{DC}(x)$ is the DC component and $p_{AC}(x)$ is the amplitude of the AC component. Show that the differential equations for $p_{DC}(x)$ and $p_{AC}(x)$ are given by the following equations (ii) and (iii), respectively.

$$D_{p} \frac{\partial^{2} p_{DC}(x)}{\partial x^{2}} - \frac{p_{DC}(x) - p_{n0}}{\tau_{p}} = 0$$
 (ii)

$$D_{p} \frac{\partial^{2} p_{AC}(x)}{\partial x^{2}} - j \omega p_{AC}(x) - \frac{p_{AC}(x)}{\tau_{p}} = 0$$
 (iii)

- (3) We would like to obtain the boundary conditions at x=0. Express $p_{DC}(0) p_{n0}$ as a function of V_{DC} . Also, express $p_{AC}(0)$ as a function of V_{DC} and V_{AC} . In the derivation, use the following Taylor expansion: $f(\alpha + \beta) = f(\alpha) + \beta f'(\alpha)$ $(\alpha >> \beta)$.
- (4) Solve the above differential equation (ii), and express $p_{DC}(x)$ as a function of x. Also, draw a graph of $p_{DC}(x)$. x=0, $x=W_N$, $x=L_p$, p_{n0} , and $p_{DC}(0)$ must be clearly indicated in the graph.
- (5) Solve the above differential equation (iii), and express $p_{AC}(x)$ as a function of x. Here, it is not necessary to draw a graph.
- (6) What are the temporal and spatial changes in p(x,t) when $\omega \tau_{\rho} \ll 1$? Explain it briefly using illustrations.

Fig. 1