Radiotelescopios de bajo costo para la enseñanza de la Radioastronomía en Colegios

Laura Herrera Bryan Martinez Julian Avila 6 de julio de 2025

Universidad Distrital Francisco José de Caldas

Outline

- 1 Tamaño
- 2 Localización
- 3 Ingresos Proyectados
- 4 Inversión Necesaria
- 5 Gestión de Crédito
- 6 Gastos y Costos del Proyecto
- 7 Utilidad Bruta y Neta
- 8 Estudio Financiero Proyectado (Años 2-5)
- 9 Bibliografía

Tamaño

Nuestra Estrategia: ¿Por qué empezar pequeños?

- Estrategia Adoptada: "Tamaño inferior a la demanda con ampliaciones posteriores".
- Mercado Potencial: Identificamos una demanda de más de 270 colegios con perfil científico en Bogotá.
- Restricción Clave: Nuestra capacidad real está ligada al número de pasantes de la Universidad Distrital por año.
- Enfoque Inteligente: Iniciar con un piloto enfocado nos permite:
 - · Validar nuestro modelo educativo.
 - · Asegurar casos de éxito iniciales.
 - · Crecer de manera sostenible y con bajo riesgo financiero.

El Producto-Servicio

Un Proyecto de Grado Integral

Cada implementación requiere 600 horas de trabajo por pasante.

Nuestro Valor Agregado

No entregamos un equipo, implementamos un programa educativo completo.

Cronograma de Implementación (10 meses por colegio)

Semestre 1 - Desarrollo y Puesta en Marcha (320 horas)

- Mes 1-2 (120 horas): Planificación y construcción del hardware.
- Mes 3 (100 horas): Configuración de software y preparación de guías didácticas.
- Mes 4-5 (100 horas): Instalación en el colegio y talleres de formación inicial.

Semestre 2 - Acompañamiento y Cierre (280 horas)

- Mes 6-7 (120 horas): Asesoría a estudiantes en su primer proyecto de observación.
- Mes 8 (80 horas): Soporte técnico y evaluación de impacto.
- Mes 9-10 (80 horas): Sistematización de la experiencia e informe final de grado.

Capacidad de Impacto Directo por Implementación

Objetivo

Crear capacidad instalada y autonomía en cada institución.

Formación Docente Capacitamos un núcleo de 2 a 3 docentes líderes por colegio. Formación Estudiantil Formamos un grupo pionero de **15 a 20 estudiantes**.

Un Crecimiento Controlado y Sostenible

Capacidad	Año 1	Año 2	Año 3	Año 4	Año 5	
N° de Pasantes	3	6	9	9	9	
Implementación (Colegios)	3	6	9	9	9	
Formación (Docentes)	6 - 9	12 - 18	18 - 27	18 - 27	18 - 27	
Formación (Estudiantes)	45 - 60	90 - 120	135 - 180	135 - 180	135 - 180	

Cuadro 1: Proyección de crecimiento hasta alcanzar la capacidad madura del proyecto.

Meta

Alcanzar una capacidad madura de 9 implementaciones anuales a partir del tercer año.

Conclusiones y Próximos Pasos

- Tamaño Inicial: Iniciaremos con 3 implementaciones en el Año 1 para validar el modelo y perfeccionar los procesos.
- **Enfoque Estratégico:** Priorizaremos colegios del clúster Çorredor Científico del Norte" para asegurar el éxito del piloto.
- Visión a Futuro: El plan garantiza un crecimiento escalonado hasta alcanzar una capacidad sostenible y de alto impacto.
- **Siguiente Paso:** Formalizar las alianzas estratégicas con los 3 colegios seleccionados.

Localización

Nuestro Enfoque de Localización en Dos Fases

- **Objetivo:** Determinar las áreas geográficas y colegios con mayor probabilidad de éxito para la fase piloto.
- · Fase 1: Macrolocalización
 - Pregunta: ¿Cuál es la mejor zona geográfica para enfocar nuestros esfuerzos?
- · Fase 2: Microlocalización
 - Pregunta: ¿Cuáles son los 3 colegios específicos con mayor potencial dentro de esa zona?
- Método: Evaluación Cuantitativa por Puntos para una decisión objetiva y basada en datos.

Evaluación de Zonas de Influencia

Alternativas Evaluadas

- · Bogotá Eje Norte (Usaquén, Suba)
- · Municipios Aledaños (Chía, Cota)
- Bogotá Eje Centro-Occidente

Factores Clave Ponderados

- · Concentración de Colegios Foco-Ciencia (40 %)
- Potencial de Visibilidad y Prestigio (25 %)
- Facilidad Logística y Tiempo de Viaje (20 %)
- Proximidad al Centro de Operaciones (U.D.) (15 %)

Matriz de Evaluación de Zonas de Influencia

Cuadro 2: Evaluación de Macrolocalización.

Factor	Peso	A: Bogotá - Eje Norte		B: Municipios	Aledaños	C: Bogotá - Centro		
		Calif.	Pond.	Calif.	Pond.	Calif.	Pond.	
Concentración de Colegios Foco-Ciencia	40 %	9	3.60	8	3.20	6	2.40	
Potencial de Visibilidad y Prestigio	25 %	8	2.00	9	2.25	7	1.75	
Facilidad Logística y Tiempo de Viaje	20 %	7	1.40	5	1.00	9	1.80	
Proximidad al Centro de Operaciones	15 %	6	0.90	4	0.60	10	1.50	
PUNTUACIÓN TOTAL	100 %	7.90		7.05		7.45		

Zona Seleccionada: Eje Norte de Bogotá

Ofrece el mejor balance entre una alta concentración de colegios objetivo y una logística manejable.

Fase 2: Microlocalización - Búsqueda del Clúster Piloto

- · Objetivo: Identificar un çlúster"de 3 colegios en el Eje Norte para el Año 1.
- · Candidatos Preseleccionados:
 - Colegio Calasanz
 - · Colegio Bilingüe Maximino Poitiers
 - · Colegio San Viator
 - · Liceo de Cervantes
 - · Colegio Abraham Lincoln
- **Justificación:** Todos son colegios de alto perfil, ubicados en la zona norte, con afinidad científica y gran potencial de impacto.

Ranking Cuantitativo de Colegios Candidatos

Cuadro 3: Matriz de Evaluación de Microlocalización (Selección de Colegios).

Factor	Peso	o Calasanz		M. Poitiers		San Viator		Cervantes		A. Lincoln	
		Cal.	Pond.	Cal.	Pond.	Cal.	Pond.	Cal.	Pond.	Cal.	Pond.
Evidencia de Foco en Ciencias	40 %	10	4.00	7	2.80	8	3.20	8	3.20	8	3.20
Reputación y Visibilidad	25 %	8	2.00	8	2.00	9	2.25	10	2.50	9	2.25
Receptividad Institucional (Est.)	20 %	9	1.80	7	1.40	8	1.60	8	1.60	8	1.60
Ubicación y Facilidad Logística	15 %	8	1.20	9	1.35	8	1.20	7	1.05	7	1.05
PUNTUACIÓN TOTAL	100 %	9	.00	7	.55	8	.25	8	.35	8	.10

Conclusión: Nuestro Clúster Piloto Estratégico

- Decisión Basada en Datos: La estrategia de localización nos permite iniciar con los socios más fuertes en la zona más estratégica.
- · Clúster Seleccionado para el Año 1 (Top 3 del Ranking):

- 1. Colegio Calasanz (Puntaje: 9.00)
- 2. Liceo de Cervantes (Puntaje: 8.35)
- 3. Colegio San Viator (Puntaje: 8.25)
- · Beneficios del Enfoque:
 - · Maximiza la probabilidad de éxito.
 - · Optimiza la logística del equipo.
 - · Crea casos de estudio sólidos para la expansión futura.

Diagrama de Flujo del Proceso

Recursos: Insumos y Materiales

Componentes Electrónicos

- Antena parabólica
- LNB (Low-Noise Block)
- RTL-SDR Dongle
- Raspberry Pi 4
- MicroSD y Cables
- · Fuente de alimentación

Material Pedagógico

- Guías didácticas
- Manuales de usuario
- Material para talleres

Materiales Estructurales

- Trípode o base
- Caja protectora
- Tornillería y herrajes

Software

- S.O. para Raspberry Pi
- · Software de radioastronomía

Recursos: Talento Humano

Rol	Perfil Requerido	Responsabilidades Clave
Pasante	Estudiante de Ing./Física (600h / 10 meses)	Liderar todo el ciclo del proyecto. (Producción, instalación, soporte).
Tutor Académico	Docente U.D. (STEM) (2-4 h/semana)	Supervisar rigor técnico y académico. Facilitar recursos y evaluar.
Coordinador	Profesional en gestión (4-6 h/semana)	Gestionar relación con colegios. Asegurar calidad y logística.
Docente Contacto	Docente del colegio (Dedicación variable)	Punto de contacto institucional. Coordinar y multiplicar conocimiento.

Recursos: Maquinaria y Equipo

Tipo de Equipo	Descripción y Uso Principal
Herramientas Taller	Cautín, multímetro, alicates. Para el ensamblaje electró- nico en el laboratorio de la universidad.
Equipo de Cómputo	Computador portátil para programación, análisis de datos y elaboración de informes.
Equipo de Pruebas	Osciloscopio y generador de señales (opcional) para calibración y verificación del receptor.
Transporte	Vehículo para el traslado del equipo y del personal al co- legio para la instalación y seguimiento.

Inversión del Proyecto

• Los ingresos principales provendrán de la venta de radiotelescopios y servicios asociados (capacitación y soporte a escuelas privadas).

Ingresos Proyectados

Ingresos Proyectados (Año 1)

- Costo de construcción por unidad: COP\$ 800.000 (incluyendo enseñanza para estudiantes).
- · Margen de beneficio bruto: 30 %.
- · Precio de venta por unidad: Aproximadamente COP\$ 1.142.857.
- · Ventas proyectadas (Año 1): 3 radiotelescopios en 3 colegios.
- Ingresos totales (Año 1): 3 unidades \times COP\$ 1.142.857/unidad = COP\$ 3.428.571.

Inversión Necesaria

Inversión Necesaria

- La inversión principal se destinará a la adquisición de materiales y a cubrir los costos asociados con los estudiantes pasantes.
- · Costo estimado por unidad:
 - Antenas y LNB:
 - · Servisistemas: COP\$ 460.000
 - AZ Colombia Store: COP\$ 400.000 (precio de cinco antenas)
 - · Mercado Libre Colombia: COP\$ 200.000
 - Arduino R3:
 - · TD Electrónica: COP\$ 60.0000
 - Mercado Libre Colombia: COP\$ 150.000
 - · Potenciómetro:
 - TD Electrónica: COP\$ 3.000
 - Mercado Libre Colombia: COP\$ 4.000
 - · Protoboard:
 - TD Electrónica: COP\$ 20.000
 - · Mercado Libre Colombia: COP\$ 25.000

· Cables:

• TD Electrónica: COP\$ 15.000

· Vicartechz: COP\$ 10.000

• Mercado Libre Colombia: COP\$ 30.000

- Costo promedio por unidad: Incluye mano de obra (COP\$ 300.000), totalizando COP\$ 800.000 para la construcción y enseñanza.
- · Inversión total (Año 1):
 - · 3 estudiantes pasantes, cada uno responsable de una implementación.
 - Costo de producción para las 3 unidades: 3 unidades \times COP\$ 800.000/unidad = COP\$ 2.400.000.

Gestión de Crédito

- Se proponen dos modelos de financiación flexibles para facilitar la adquisición.
- Modelo 1: Pago inicial completo por parte del colegio antes del inicio del proyecto.
- · Modelo 2:
 - El proyecto gestiona un crédito a corto plazo con una entidad bancaria (ej. Bancolombia, Davivienda, Banco de Bogotá).
 - La institución educativa realiza el pago al finalizar la implementación, momento en el cual el proyecto salda el préstamo.

Gastos y Costos del Proyecto

Costos Directos (Costo de Bienes Vendidos - CBV)

- El costo por unidad es de COP\$ 800.000.
- Los costos directos totales para el Año 1 ascienden a: 3 unidades \times COP\$ 800.000/unidad = COP\$ 2.400.000.

Gastos Operativos

- Estipendio del Pasante: Los estudiantes colaborarán como pasantes y su contribución formará parte de su trabajo de grado. No se ha contemplado un costo salarial directo significativo para el proyecto en este rubro.
- Capacitación docente: Ya está incluido en el costo unitario de COP\$ 800.000.
- Gestión/Supervisión del proyecto: La supervisión es asumida por tutores docentes adscritos al semillero de Investigación en Energías Renovables de la Universidad.
- Marketing y divulgación: Se contactará a la Red Colombiana de Astronomía (RECA) y a los colegios seleccionados directamente. Los costos asociados son mínimos, principalmente de comunicación y desplazamientos.

- Logística y viajes: Para el primer año, se seleccionó un clúster de colegios cercanos en el Eje Norte de Bogotá (Usaquén y Suba) para optimizar la logística. Se asumen 3 visitas por colegio implementado (instalación y seguimiento/soporte).
 - Los costos de viaje para el Año 1 se estiman en: 3 colegios \times 3 visitas/colegio \times COP\$ 50.000/visita = COP\$ 450.000.
- Gastos administrativos: Estimados en un 5% de los costos directos.
 - Los gastos administrativos para el Año 1 son: $0.05 \times \text{COP}\$ \$ 2.400.000 = COP\$ 120.000.
- Total de Gastos Operativos (Año 1): COP\$ 450.000 + COP\$ 120.000 = COP\$ 570.000.

Utilidad Bruta y Neta

Utilidad Bruta y Neta (Año 1)

- Utilidad Bruta (Año 1): COP\$ 3.428.571 (Ingresos) COP\$ 2.400.000 (Costos Directos) = COP\$ 1.028.571.
- Utilidad Neta (Año 1): COP\$ 1.028.571 (Utilidad Bruta) COP\$ 570.000 (Gastos Operativos) = COP\$ 458.571.

Estudio Financiero Proyectado (Años

2-5)

Cálculos para el Año 2

- Ingresos: 6 unidades × COP\$ 1.142.857/unidad = COP\$ 6.857.142.
- Inversión (Costo de producción) / Costos Directos (CBV): 6 unidades × COP\$ 800.000/unidad = COP\$ 4.800.000.
- · Gastos Operativos:
 - Costos de viaje: 6 colegios \times 3 visitas/colegio \times COP\$ 50.000/visita = COP\$ 900.000.
 - Gastos administrativos: $0.05 \times COP\$ 4.800.000 = COP\$ 240.000$.
 - Total: COP\$ 1.140.000.
- **Utilidad Bruta:** COP\$ 6.857.142 COP\$ 4.800.000 = COP\$ 2.057.142.
- **Utilidad Neta:** COP\$ 2.057.142 COP\$ 1.140.000 = COP\$ 917.142.

Cálculos para el Año 3

- Ingresos: 9 unidades × COP\$ 1.142.857/unidad = COP\$ 10.285.713.
- Inversión (Costo de producción) / Costos Directos (CBV): 9 unidades × COP\$ 800.000/unidad = COP\$ 7.200.000.
- · Gastos Operativos:
 - Costos de viaje: 9 colegios \times 3 visitas/colegio \times COP\$ 50.000/visita = COP\$ 1.350.000.
 - Gastos administrativos: $0.05 \times \text{COP}$ \$ 7.200.000 = COP\$ 360.000.
 - Total: COP\$ 1.710.000.
- **Utilidad Bruta:** COP\$ 10.285.713 COP\$ 7.200.000 = COP\$ 3.085.713.
- **Utilidad Neta:** COP\$ 3.085.713 COP\$ 1.710.000 = COP\$ 1.375.713.

Cálculos para el Año 4

- Ingresos: 9 unidades × COP\$ 1.142.857/unidad = COP\$ 10.285.713.
- Inversión (Costo de producción) / Costos Directos (CBV): 9 unidades × COP\$ 800.000/unidad = COP\$ 7.200.000.
- · Gastos Operativos:
 - Costos de viaje: 9 colegios \times 3 visitas/colegio \times COP\$ 50.000/visita = COP\$ 1.350.000.
 - Gastos administrativos: $0.05 \times \text{COP}$ \$ 7.200.000 = COP\$ 360.000.
 - Total: COP\$ 1.710.000.
- **Utilidad Bruta:** COP\$ 10.285.713 COP\$ 7.200.000 = COP\$ 3.085.713.
- **Utilidad Neta:** COP\$ 3.085.713 COP\$ 1.710.000 = COP\$ 1.375.713.

Cálculos para el Año 5

- Ingresos: 9 unidades × COP\$ 1.142.857/unidad = COP\$ 10.285.713.
- Inversión (Costo de producción) / Costos Directos (CBV): 9 unidades × COP\$ 800.000/unidad = COP\$ 7.200.000.
- · Gastos Operativos:
 - Costos de viaje: 9 colegios \times 3 visitas/colegio \times COP\$ 50.000/visita = COP\$ 1.350.000.
 - Gastos administrativos: $0.05 \times \text{COP}$ \$ 7.200.000 = COP\$ 360.000.
 - Total: COP\$ 1.710.000.
- **Utilidad Bruta:** COP\$ 10.285.713 COP\$ 7.200.000 = COP\$ 3.085.713.
- **Utilidad Neta:** COP\$ 3.085.713 COP\$ 1.710.000 = COP\$ 1.375.713.

Resumen Proyectado de Utilidad Neta (Años 1-5)

Indicador	Año 1 (COP\$)	Año 2 (COP\$)	Año 3 (COP\$)	Año 4 (COP\$)	Año 5 (COP\$)
Ingresos	3,428,571	6,857,142	10,285,713	10,285,713	10,285,713
Costos Directos	2,400,000	4,800,000	7,200,000	7,200,000	7,200,000
Utilidad Bruta	1,028,571	2,057,142	3,085,713	3,085,713	3,085,713
Gastos Operativos	570,000	1,140,000	1,710,000	1,710,000	1,710,000
Utilidad Neta	458,571	917,142	1,375,713	1,375,713	1,375,713

Cuadro 4: Resumen Proyectado de Utilidad Neta (Años 1-5).

Este análisis muestra un crecimiento constante en la utilidad neta a medida que el proyecto escala su capacidad de implementación hasta alcanzar su madurez en el Año 3. La estrategia de crecimiento gradual y autofinanciado permite una operación sostenible, generando los recursos necesarios para posibles expansiones futuras, incluyendo la fase de implementación en colegios públicos.

Análisis Financiero: Proyección a 5 Años

Concepto	Año 1	Año 2	Año 3	Año 4	Año 5
Ingresos Totales (-) Costos Directos	3,428,571 $2,400,000$	6,857,142 4,800,000	$10,\!285,\!713$ $7,\!200,\!000$	$10,\!285,\!713$ $7,\!200,\!000$	$10,285,713 \\ 7,200,000$
Utilidad Bruta	1028571	2057142	3085713	3085713	3085713
(-) Gastos Operativos	570,000	1,140,000	1,710,000	1,710,000	1,710,000
Utilidad Op. (UAII)	458571	917142	1375713	1375713	1375713

Indicador Clave: Tasa Interna de Retorno (TIR)

Definición

Representa la rentabilidad porcentual promedio anual que genera el proyecto sobre la inversión inicial.

Flujo de Caja Proyectado

• Año 0: -2,400,000

• **Año 1:** 458,571

· Año 2: 917,142

• Año 3: 1,375,713

· Año 4: 1,375,713

· Año 5: 1,375,713

Resultado

29.1 %

Conclusiones de Viabilidad Financiera

 Alta Rentabilidad: Una TIR del 29.1 % es superior a las tasas de oportunidad del mercado (15-20 %), lo que indica que el proyecto es una inversión muy atractiva.

 Punto de Equilibrio: El flujo de caja acumulado se torna positivo durante el tercer año. La inversión inicial se recupera en su totalidad en este punto.

 Validación del Modelo: El hito financiero del Año 3 coincide con el último escalamiento a 9 colegios, validando que este tamaño es sostenible y consolida la viabilidad a largo plazo.

Conclusiones de Viabilidad Financiera

 Alta Rentabilidad: Una TIR del 29.1 % es superior a las tasas de oportunidad del mercado (15-20 %), lo que indica que el proyecto es una inversión muy atractiva.

• Punto de Equilibrio: El flujo de caja acumulado se torna positivo durante el tercer año. La inversión inicial se recupera en su totalidad en este punto.

 Validación del Modelo: El hito financiero del Año 3 coincide con el último escalamiento a 9 colegios, validando que este tamaño es sostenible y consolida la viabilidad a largo plazo.

Conclusiones de Viabilidad Financiera

 Alta Rentabilidad: Una TIR del 29.1 % es superior a las tasas de oportunidad del mercado (15-20 %), lo que indica que el proyecto es una inversión muy atractiva.

• Punto de Equilibrio: El flujo de caja acumulado se torna positivo durante el tercer año. La inversión inicial se recupera en su totalidad en este punto.

• Validación del Modelo: El hito financiero del Año 3 coincide con el último escalamiento a 9 colegios, validando que este tamaño es sostenible y consolida la viabilidad a largo plazo.

Bibliografía

Bibliography i

Referencias

[1] Abraham Luna C. et al. *Manual de Construcción de un Radiotelescopio en la Banda de 12 GHz para Usos Docentes*. Reporte Técnico. © Coordinación de Astrofísica, INAOE. Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840, Puebla, México: Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), 2021.

Bibliography ii

- [2] José Gallardo, Ignacio Toledo y Pablo Torres. Manual de Radioastronomía ALMA en la Escuela. Inf. téc. Basado en "El Universo Invisible" de Universe Awareness (UNAWE) y "Explorando nuestros orígenes cósmicos" del Observatorio Europeo Austral (ESO). Traducción al español por Ney Fernández y la Unidad de Astronomía de la Universidad de Antofagasta. 2021. URL: https://www.eso.org/public/archives/education/pdf/edu_0071.pdf.
- [3] Jaime Pinzón Peñaloza y Julieth Camila Cabrera Bernal. "Construcción de un radiotelescopio pequeño para la exploración solar en centros de interés".

 Trabajo de grado. Universidad Pedagógica Nacional, 2023.

Bibliography iii

- [4] Gobierno de México. Inauguran la 16ª edición de la Escuela de Astronomía Observacional para Estudiantes Latinoamericanos. Consultado el 30 de marzo de 2025. 2024. URL:
 - https://www.inaoep.mx/noticias/?noticia=1154&anio=2024.
- [5] Bryan Martinez Anzola et al. "Construcción de un radiotelescopio para analizar el Sol en la banda de 12GHz". En: Congreso Colombiano de Astronomía y Astrofísica. Presentado en el Congreso Colombiano de Astronomía y Astrofísica, 2024. Universidad Distrital Francisco José de Caldas. 2024.
- [6] Daniel Menor Adame. "Diseño de un radiotelescopio de bajo coste basado en tecnologías de radio definida por software". No Publicado. Madrid, dic. de 2018. URL: https://oa.upm.es/55238/.

Bibliography iv

- [7] Juan Ángel Vaquerizo. PARTNeR: Radioastronomía desde el aula. Consultado el 30 de marzo de 2025. Mayo de 2010. URL: https://www.madrimasd.org/partner-radioastronomia-desde-aula.
- [8] Agencia Iberoamericana para la Difusión de la Ciencia y la Tecnología.

 "INAOE, BUAP y Victorinox México firman convenio de colaboración para construir telescopios para escuelas". En: Ciencias Sociales México (sep. de 2011). Consultado el 30 de marzo de 2025. URL: https://www.dicyt.com/noticias/inaoe-buap-y-victorinox-mexico-firman-convenio-de-colaboracion-para-construir-telescopios-para-escuelas.

Bibliography v

[9] Boletines BUAP. "Del Aula al Universo, un telescopio para cada escuela, un programa que acerca los astros a los jóvenes". En: Boletines BUAP (abr. de 2021). Consultado el 30 de marzo de 2025. URL: https://www.boletin.buap.mx/node/1971.

Gracias

Gracias por la atención

¿Preguntas?