电信定位

• 利用手机与电信蜂窝基站连接的信号强度信息推测用户位置

	LA	SF	NY
Total unique phones	318K	241K	267K
Total unique CDRs	1395M	701M	1095M
Median CDRs/phone/day	18	12	18
Median calls/phone/day	6	5	7
Median texts/phone/day	6	3	5

Each dataset spans 91 consecutive days from April 1 to June 30, 2011

(a) Los Angeles

(b) San Francisco

(c) New York

Median daily range of cellphone users who live in central LA, SF, and NY (darker yellow areas). The radii of the inner, middle, and outer circles represent the 25th, 50th, and 75th percentiles of these ranges across all users in that 3 area

Richard A. Becker, Ramón Cáceres, Karrie Hanson, Sibren Isaacman, Ji Meng Loh, Margaret Martonosi, James Rowland, Simon Urbanek, Alexander Varshavsky, Chris Volinsky: **Human mobility characterization from cellular network data**. Commun. ACM 56(1): 74-82 (2013)

GPS/北斗等卫星定位(终端定位技术)

- 用户群体覆盖面窄
- 持续性低(用户主动关闭GPS传感器)
- 特定区域不工作(如地下)

电信数据具有独一无二的优点

- 具有覆盖范围广
- 收集成本低
- 持续性高等

2020年新型冠状病毒疫情 基于电信数据的用户14天行程追踪技术

电信定位方法

一个示例电信测量报告 (Measurement Record: MR)

主基站		1 3 ps Bigion State (measurement received many					
			LCS_BIT	BestCellID	SRNC_ID	IMSI	MRTime
			300	1	103330	1234567890	2016/5/3 16:19
		UE_Rx_Tx_1	RTT_1	RSCP_1	EcNo_1	CellID_1	RNCID_1
个基站的	l] η.	333	37900	-98.88	-14.38	1	103330
		UE_Rx_Tx_2	RTT_2	RSCP_2	EcNo_2	CellID 2	RNCID_2
信号信息	4	335	37900	-104.88	-20	3	103330
יטיחוכ חו	1 -	UE_Rx_Tx_3	RTT_3	RSCP_3	EcNo_3	CellID_3	RNCID_3
		235	37900	-104.13	-19	1	103333
	1	UE_Rx_Tx_4	RTT_4	RSCP_4	EcNo_4	CellID_4	RNCID_4
		236	37900	-104.25	-18.38	2	103333
		1			1		

电信基站

电信信号强度

三角定位

工作小结

Nokia Chair in Data Science Prof. Pan Hui (ACM Distinguished Scientist & IEEE Fellow)

Prof. Dr.-Ing. Jörg Ott

Carnegie Mellon University Prof. Kun Zhang

Multi-Classification (RaF, MLP) Error: 30-40米 (多分类模型)

Data Repair

Error: 10-20 meter (数据噪音修复技术)

2020

Transfer Learning, HMM, CNN Error: 20 meters (位置标注数据稀疏)

Deep Reinforcement Learning Error \rightarrow ?

MobiQuitous

经过近6年的努力, 本团队在电信定位方向取得国际领先的工作

- 华为杰出合作成就奖
- 多次国际学术会议最佳论文奖
- 研究成果在国际顶级期刊和会议录用

Experimental Study of Telco Localization Methods

Yukun Huang, Fangzhou Zhu, Ning Liu, Mingxuan Yuan, Jia Zeng, Weixiong Rao
Huawei Noahs Ark Lab, Hong Kong
School of software Engineering, Tongji University, China

{yuan.mingxuan, zeng.jia}@Huawei.com wxrao@tongji.edu.cn

Introduction

 Telco localization is a technique which uses measurement report data from Telco networks to calculate the position of a mobile device.

- Advantages:
- 1 Energy-efficient
- 2 Available in most mobile phones or devices
- 3 Better network coverage
- 4 Active when making calls or mobile broadband services
- ⑤ Crowd spatiotemporal behavior analysis without bringing any burden to mobile devices.

Contributions

- Comprehensive performance study
- Comparing different data sources
- Gridding mechanism

Background

• MR data

TABLE II: An example of the 2G MR record.

Field	Example	Field	Example
Time	2016/5/3 13:34:36	MS	MS1
Frame Number	80121	Direction	UL
Message Type	Measurement Report	Event	NULL
Event Info	NULL	LAC	6243
Cell Id	61954	BSIC(Num)	33
ARFCN BCCH	579	RxLev Full (dBm)	-71
RxLev Sub (dBm)	-64	RxQual Full	6
RxQual Sub	0	MS TxPower (dBm)	30
LAC [1]			61954
BSIC (Num) [1] 34		ARFCN [1]	571
RxLev [1] -53		LAC [2]	6243
		 BSIC (Num) [6]	
Cell Id [6]	Cell Id [6] 53395		64
ARFCN [6]	ARFCN [6] 575		-80

TABLE III: An example of the 4G MR record

TABLE III. All example of the 40 Mix record.								
Field	Example	Field	Example					
MRTime	2016/5/3 19:16:34	IMSI	****058					
Serving eNodeBID	99129	Serving CellID	1					
eNodeBID_1	99130	CellID_1	1					
RSRP_1	-96.63	RSSI_1	-57.13					
RSRQ_1	-19.63	eNodeBID_2	99130					
CellID_2	3	RSRP_2	-98.75					
RSSI_2	-44.88	RSRQ_2	-20					
		eNodeBID_6	99167					
CellID_6	3	RSRP_6	-88.5					
RSSI_6	-44.25	RSRQ_6	-19.75					

Telco Localization Algorithms

- ML Estimator
- Cellsense
- Random Forest
- Multilayer perceptron
- XGBoost

Experimental Setup

- Hardware
- Datasets

Statistics

Dataset	record cnt	Distance	to srv BS	Avg. RSSI of srv BS	
Dataset	record cit	Avg.	Median		
GSM	46133	286.7 m	182.3 m	-64.3 dB	
LTE	46641	187.0 m	157.0 m	-71.2 dB	
	BS cnt	RSSIs of	f all BSs	Avg. dist. btw BS	
	DS CIII	Avg.	Median	Avg. dist. btw bs	
GSM	618	-66 dBm	-66 dBm	512.9 m	
LTE	973	-84.8 dBm	-74.6 dBm	277.5 m	

Telco Localization Experiment Flow

EXPERIMENTAL RESULTS

Accuracy comparison

TABLE IX: Median error (m) under different data sources

A. Accuracy comparison

Fig. 4: Comparison of all algorithms. left: 2G; right: 4G

	2G	4G
ML	172.8	174.6
Cellsense	64.8	41.3
RF	67.3	31.8
MLP	74.3	35.7
XGBoost	65.7	41.3

Data Source, Volume and Quality

Fig. 6: Performance with different volumes of training data. 1st row: 2G; 2nd row: 4G

Neighbors

Fig. 7: Influence of neighbors. 1st row: 2G; 2nd row: 4G

Gridding

Fig. 8: Regression vs. Classification. 1st row:2G, 2nd row:4G

Efficiency

Grid Size	501	50m		100m		150m		Regression	
	T	P	Т	P	T	P	Т	P	
ML Estimator		619.6		279		160		204	
Cellsense	17.34	11.35	17.27	5.94	17.33	4.3			
RF	10.26	1.35	4.81	0.54	3.29	0.36	1.56	0.15	
MLP	891.62	0.07	710.9	0.04	647.71	0.02	501.76	0.02	
XGBoost	9804	0.15	2717	0.07	1323	0.03			