Instruction Finetuning

Abhijeet

Agenda

01. Why Modify?

Available options with us.

02. Memory Math & Scaling Laws

Challenge - How much memory? Quantization - Train or Infer Scaling Laws

03. Train models to follow Instructions

FLAN-T5 ALPACA DOLLY etc.

04. Finetuning for Use-Case

- 1. Full Finetuning
- 2. Parameter Efficient Finetuning
 - a) Prompt Tuning
 - b) LORA

05. Implementation

- 1. Dialog Summarization.
- 2. Training Alpaca/Dolly.

Coursera reference

Not enough accuracy

Zero-shot Prompt Single-shot Prompt Few-shots Prompt

Scope

Select

Adapt and align model

Application integration

Define the use case

Choose an existing model or pretrain your own

Prompt engineering

Fine-tuning

Align with human feedback

Evaluate

Optimize and deploy model for inference Augment model and build LLMpowered applications

Coursera reference

Memory

OutOfMemoryError: CUDA out of memory.

Let's do a quick math....

1 parameter = 4 bytes (32-bit float) 1B parameters = 4×10^9 bytes = 4GB

Param name	Bytes per param
Weights	4 bytes
Adam states	8 bytes
Gradients	4 bytes
Activations & temp memory	8 bytes

Approx. GPU needed for 1B param model

Memory

OutOfMemoryError: CUDA out of memory.

Let's do a quick math....

1 parameter = 4 bytes (32-bit float) 1B parameters = 4×10^9 bytes = 4GB

Param name	Bytes per param
Weights	4 bytes
Adam states	8 bytes
Gradients	4 bytes
Activations & temp memory	8 bytes

Approx. GPU needed for 1B param model with Quantization

7000GB @ 16-bit full precision 175 Billion GPT-3 Model

Quantization

Data Type	PI value	Exponent	Fraction
FP32	3.1415920257568359375	8	23
FP16	3.140625	5	10
BF16	3.140625	8	7
INT8**	3	0	7

**INT8 & INT4 can only be used for inference (not training)

Compute & Scaling Laws

- 80GB is the maximum memory for the Nvidia A100 GPU. Trains 1B model.
- AI PACA-7B was trained on 8 80GB A100s
- GPT-3 175B needs 200 A100s.

August 23, 2023

1 petaflop/s-day at full efficiency

Number of petaflop/s-days to pre-train various LLMs

Chinchilla Scaling Laws

- Compute optimal training data size is ~20x number of parameters
- Very large models may be over-parameterized and under-trained.

Chinchilla Paper

Model	#Params	Compute Optimal (# of tokens) ~ 20X	Actual Tokens
Chinchilla	70B	~1.4T	1.4T
Llama-65B	65B	~1.3T	1.4T
Falcon-40B	40B	~0.8T	1T
Bloomberg-GPT	50B	~1T	700B
GPT-3	175B	~3.5T	300B
Bloom	176B	~3.5T	350B
OPT-175B	175B	~3.5T	180B

Chinchilla Scaling Laws

- Compute optimal training data size is ~20x number of parameters
- Very large models may be over-parameterized and under-trained.

Chinchilla Paper

Model	#Params	Compute Optimal (# of tokens) ~ 20X	Actual Tokens
Chinchilla	70B	~1.4T	1.4T
Llama-65B	65B	~1.3T	1.4T
Falcon-40B	40B	~0.8T	1T
Bloomberg-GPT	50B	~1T	700B
GPT-3	175B	~3.5T	300B
Bloom	176B	~3.5T	350B
OPT-175B	175B	~3.5T	180B

Over-parameterized & under-trained

Chinchilla Scaling Laws

- Compute optimal training data size is ~20x number of parameters
- Very large models may be over-parameterized and under-trained.

Chinchilla Paper

Model	#Params	Compute Optimal (# of tokens) ~ 20X	Actual Tokens
Chinchilla	70B	~1.4T	1.4T
Llama-65B	65B	~1.3T	1.4T
Falcon-40B	40B	~0.8T	1T
Bloomberg-GPT	50B	~1T	700B
GPT-3	175B	~3.5T	300B
Bloom	176B	~3.5T	350B
OPT-175B	175B	~3.5T	180B

Under-parameterized

Instruction Following Models

Multi-task Instruction Finetuning from base models

https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html

Instruction Following Models

Base Model	Instruction Models	Finetuning?	Dataset (Task)
T5-XXL	FLAN T5-XXL	SFT	FLAN - 1836 tasks, 15M pairs
Falcon-40B	Falcon-40B-Instruct	SFT	Baize - 100K pairs
Llama2-70B	Llama2-70B-Chat	RLHF	27.5K pairs, 2.9M pairs
GPT-3.5	Chat-GPT	RLHF	
PALM	Flan-PALM	SFT	FLAN – 1836 tasks, 15M pairs
Pythia	Dolly	SFT	Dolly - 15K pairs
Llama-13B	Alpaca-13B	SFT	GPT3 – 52K pairs
Llama-13B	Vicuna-13B	SFT	GPT-4 - 70K pairs
Llama-13B	Koala-13B	SFT	Public Dialogues - 500K pairs

Instruction Following Models

Base Model	Instruction Models	Finetuning?	Dataset (Task)
T5-XXL	FLAN T5-XXL	SFT	FLAN – 1836 tasks, 15M pairs
Falcon-40B	Falcon-40B-Instruct	SFT	Baize - 100K pairs
Llama2-70B	Llama2-70B-Chat	RLHF	27.5K pairs, 2.9M pairs
GPT-3.5	Chat-GPT	RLHF	
PALM	Flan-PALM	SFT	FLAN - 1836 tasks, 15M pairs
Pythia	Dolly	SFT	Dolly - 15K pairs
Llama-13B	Alpaca-13B	SFT	GPT3 - 52K pairs
Llama-13B	Vicuna-13B	SFT	GPT-4 – 70K pairs
Llama-13B	Koala-13B	SFT	Public Dialogues - 500K pairs

Imitating Models

Imitating Models

The False Promise of Imitating Proprietary LLMs

Alpaca reference
Vicuna reference
Koala reference
Dolly reference

Why? Need?

- 1. Fine-tuning can significantly increase the performance of a model on a specific task.
 - but can lead to reduction in ability on other tasks. Phenomenon called catastrophic forgetting
 Who cares ? use-case solved. (Generalist vs Specialist)
- 2. Examples take up space in the context window.
 - Less space for new tokens generated.
 - Larger prompts leads to slow inferencing. Show Llama-2-70B-Chat model as example

3. In-context learning may not work for smaller models.

Full Finetuning aka SFT

Loss: Cross-Entropy

Issues:

- Catastrophic forgetting
- Hyperparameter optimization
 - Overfitting
- Compute Cost (Budget)
 - > 7B param updated

Use instruction models.

Full Finetuning aka SFT

Full Finetuning aka SFT

Parameter Efficient Finetuning (PEFT)

- Less prone to catastrophic forgetting Frozen Weights
- Full fine-tuning of large LLMs is challenging Compute budget
- Full fine-tuning creates full copy of original LLM per task Inefficient
- PEFT fine-tuning saves space and is flexible

Parameter Efficient Finetuning (PEFT)

- Less prone to catastrophic forgetting Frozen Weights
- Full fine-tuning of large LLMs is challenging **Compute budget**
- Full fine-tuning creates full copy of original LLM per task **Inefficient**
- PEFT fine-tuning saves space and is flexible

Parameter Efficient Finetuning

Low Rank Adaption (LORA)

Figure 1: Our reparametrization. We only train A and B.

- 1. Freeze most of the original LLM weights.
- 2. Inject 2 rank decomposition matrices
- 3. Train the weights of the smaller matrices

Advantage (Rank=8) 512X64 = 32,768 params 512 x 8 = 4,096 (A) 8 x 64 = 512 (B) 86% reduction in params

Prompt Tuning

Soft prompt

August 23, 2023

Model tuning requires making a taskspecific copy of the entire pre-trained model for each downstream task and inference must be performed in separate batches. **Prompt tuning** only requires storing a small task-specific prompt for each task, and enables mixed-task inference using the original pretrained model. With a T5 "XXL" model, each copy of the tuned model requires 11 billion parameters. By contrast, our tuned prompts would only require 20,480 parameters per task—a reduction of over five orders of magnitude—assuming a prompt length of 5 tokens.

Prompt Tuning

Soft prompt Same length as token vectors Typically 20-100 tokens The teacher teaches the student with the book.

Figure 1: Standard **model tuning** of T5 achieves strong performance, but requires storing separate copies of the model for each end task. Our **prompt tuning** of T5 matches the quality of model tuning as size increases, while enabling the reuse of a single frozen model for all tasks. Our approach significantly outperforms fewshot **prompt design** using GPT-3. We show mean and standard deviation across 3 runs for tuning methods.

Guidelines: Finetuning for Use-case

Use instruct models for Finetuning for single task.

Example, Llama-chat. FLAN-T5 (not base models)

Use PEFT techniques, oppose to Full Finetuning

Example: Plug LORA adapters for specific use-case

Do not go for Full Finetuning. Finding right hyperparameter is difficult.

Unless you have the compute budget and lot of training data.

Quality of training data is very important

Research proves high quality datasets performs well even if quantity is less.

Thank you