Multiple Sequence Alignment (MSA) di sequenze SARS-CoV-2

Edoardo Silva 816560 Davide Marchetti 815990

A.A.: 2019/2020

1 Abstract

La seconda parte del progetto prevede di elaborare i file prodotti in precedenza ricavando informazioni relative alle alterazioni rilevate e producendo in output una tabella riassuntiva contenente:

- il gene id del gene in cui cade la variazione con lo start e l'end della sua CDS rispetto alla reference
- il codone (o i codoni) alterato della reference, con posizione di inizio rispetto alla CDS, sequenza del codone e amminoacido codifcato
- il nuovo codone generato dalla variazione (o i nuovi codoni generati) specificando la sequenza del codone e il nuovo amminoacido codificato

Attraverso le informazioni raccolte in questa fase saremo in grado di identificare in quali geni si concentrano le variazioni rilevate, all'interno di essi, dove queste avvengono e come alterino i codoni causando la produzione di una proteina diversa.

2 Algoritmo

L'algoritmo inizia caricando tutti i file necessari per l'elaborazione, in particolare quelli prodotti in output nella parte precedente del progetto:

- 1. Caricamento della sequenza reference dal fasta corrispondente memorizzato in /project-1/input/reference.fasta.
- 2. Caricamento di uno dei file di output prodotti nella prima parte di progetto. Nel nostro caso è stato utilizzata l'analisi dell'allineamento di ClustalW.
- 3. Lettura del file Genes-CDS.xlsx contenente le informazioni sui geni e le CDS della sequenza di reference. In particolare, una delle CDS analizzate derivava dall'unione (join) di due sequenze. In tal caso è possibile specificare il punto di unione della sequenza.

Dopo la lettura del materiale rilevante a questa fase di elaborazione, l'algoritmo itera le variazioni rilevate nell'allineamento e per ciascuna di esse esegue i seguenti step:

- 1. Identifica le CDS nelle quali avviene l'alterazione rispetto alla reference.
- 2. Recupera le informazioni del gene associato alle CDS rilevate calcolando le posizioni globali e relative alla CDS dell'alterazione.
- 3. Identifica i codoni alterati e ne effettua la ritraduzione in amminoacidi grazie ad una look-up table (listato 1). Vengono ignorate le alterazioni che presentano sequenze di soli -, derivate probabilmente da un sequenziamento errato o un'alterazione posta ai capi dell'allineamento.
- 4. Memorizza tutte le informazioni ricavate in una struttura dati apposita tramite cui derivare la tabella per l'output finale associando i valori a chiavi prestabilite.

Al termine dell'elaborazione di tutte le alterazioni, viene costruito un oggetto di tipo DataFrame fornito dalla libreria pandas.

Le chiavi utilizzate nella costuzione della struttura dati a lista diventeranno le colonne del DataFrame. Questo sarà esportato in CSV nella cartella /project-2/output/alteration-table.csv per permettere una visualizzazione più semplice tramite programmi terzi (come riportato in fig. 1)

3 Informazioni memorizzate

Ad ogni variazione analizzata corrisponde un entrata nella struttura dati a lista contenente le seguenti informazioni:

- gene id: id del gene in cui cade la variazione
- gene_start: inizio del gene in cui cade la variazione (1-based)
- gene end: fine del gene in cui cade la variazione (1-based)
- cds_start: inizio della Coding DNA Sequence della porzione del gene in cui cade la variazione (1-based)
- cds_end: fine della Coding DNA Sequence della porzione del gene in cui cade la variazione (1-based)
- relative_start: inizio della variazione in rispetto all'inizio della cds (1-based)
- relative end: fine della variazione in rispetto all'inizio della cds (1-based)
- alteration: sequenza della variazione
- original codone: codone della reference prima della modifica
- original aminoacid: amminoacido codificato da original codone
- altered codone: codone della reference modificati dalla variazione
- encoded aminoacid: amminoacido codificato da altered codone

gene_Id	gene_id gene_start gene_end cds	מוע עווע								
Σ	26524	27191	26524	27191	197	197 C	GUG	GUC	>	>
	28275	29533	28275	29533	1100	1100 A	GAG	GAA	ш	В
	28275	29533	28275	29533	414	414 C	UUG	CUG	7	
	28275	29533	28275	29533	561	561 C	UCA	CCA	S	Ь
2	28275	29533	28275	29533	556	256 U	ncc	nnc	S	ш
	28275	29533	28275	29533	209	609 AAC	AGGGGA	AAACGA	RG	KR
	28275	29533	28275	29533	604	604 A	AGU	AAU	S	Z
ORF10	29559	29674	29559	29674	2	5 U	GGC	099	g	9
	267	21555	267	13483	1131	1131 A	GUA	AUA	>	_
	267	21555	267	21555	1131	1131 A	GUA	AUA	>	_
	267	21555	267	13483	10817	10817 U	UUG	nnn	1	ш
	267	21555	267	21555	10817	10817 U	UUG	nnn	1	ш
	267	21555	267	21555	18111	18111 U	ACA	UCA	—	S
	267	21555	267	13483	793	793 U	ACC	AUC	_	
	267	21555	267	21555	793	793 U	ACC	AUC	—	_
	267	21555	267	13483	2771	2771 U	UUC	nnn	ш	ш
	267	21555	267	21555	2771	2771 U	UUC	nnn	ш	ш
	267	21555	267	21555	14142	14142 U	CCU	ncn	Ь	S
	267	21555	267	13483	3637	3637 U	CCA	CUA	Ь	_
	267	21555	267	21555	3637	3637 U	CCA	CUA	Ь	l
	267	21555	267	13483	9248	9248 G	UUA	DUUG	7	1
	267	21555	267	21555	9248	9248 G	UUA	DUUG		l
	267	21555	267	13483	13110	13110 G	ACC	209	_	А
	267	21555	267	21555	13110	13110 G	ACC	209		А
	797	21555	267	13483	13210	13210 U	929	GUG	А	^
ORF1ab	267	21555	267	21555	13210	13210 U	NGC	UUC	C	ш.
	267	21555	797	21555	19218	19218 U	CCU	ncn	A	S
	267	21555	797	13483	8441	8441 C	GGU	299 200	9	G
	267	21555	797	21555	8441	8441 C	GBU CONTRACTOR	D99	9	9
	267	21555	267	21555	20621	20621 A	AAA	AAA	¥	~
	267	21555	792	13483	47	47 U	cnc	con	1	
	267	21555	267	21555	47	47 U	CUC	CUU		
	267	21555	267	13483	8516	8516 U	AGC	AGU	S	S
	267	21555	267	21555	8516	8516 U	AGC	AGU	S	S
	267	21555	267	13483	618	618 U	CGU	nen	R	O
	267	21555	267	21555	618	618 U	CGU	nen	8	C
	267	21555	267	13483	1082	1082 U	222	CCU	Д	Ь
	/97	21555	/97	21555	1082	1082 U	777	000	d 6	d -
	/97	21222	/97	13483	8893	8893 U		COO	A (
	/97	21555	197	12462	8893	8893 0	CCU		HEWAVE	_
	707	21233	707	21555	9433	9409	CALITICITATION	Y (HEVAVE	
	707	21555	707	21555	10250	10270		5 8	C DIVIDAVA	
ORF8	27895	28259	27895	28259	250	250 C	UIJA		ן יייין דייין איייין	S
	21564	25287	21567	25287	67	64 11	ACII.			
	21564	25384	21564	25384	1172	1177 [1]	Jell	11611		
	21564	25384	21564	25384	1840	1840 G	GAU	661		9
S	21564	25384	21564	25384	905	U 305	ACG	ACU) <u></u>) ₋
	21564	25384	21564	25384	3751	3751 U	GGA	GUA	9	>
	24554	70030	24564							

Figura 1: Tabella di output delle alterazioni

4 Output

Come riportato in fig. 1 la maggior parte delle alterazioni coinvolgono un singolo codone e quelli ottenuti rimangono traducibili.

In alcuni casi, l'amminoacido risultante dalla traduzione dell'alterazione non viene modificato. La maggior parte delle variazioni si concentrano nel gene ORF1ab identificato da gene_id = 43740578.

Le ultime righe della tabella riportano delle alterazioni che determinano la cacellazione di alcune basi rispetto alla sequenza reference. Queste sono relative solo alla sequenza MT262993.1 e si pensa possano derivare da un errore in fase di sequenziamento.

5 Analisi dei risultati e conclusioni

Le alterazioni appartenenti a geni si concentrano per quasi i tre quarti del totale sul gene ORF1ab. Variazioni minori seguito dai geni gene_name=S e gene_name=N (12% ciascuno) e che gli altri siano quasi invariati. Un'analisi finale si trova nella terza e ultima parte del progetto.

Figura 2: Tipologia di variazioni

5.1 Divisone del lavoro

Durante la realizzazione del progetto entrambi i componenti del gruppo hanno partecipato attivamente alla sua realizzazione. In particolare:

- Edoardo Silva si è occupato principalmente di recuperare e gestire l'output JSON del progetto1 e delle funzioni di supporto.
- Davide Marchetti si è occupato principalmente di generare i file di output e correggere le porzioni di codice relative alle letture delle reference.

• Entrambi hanno lavorato alla creazione ed elaborazione dei dati, alla matrice delle mutazioni e le traduzioni di quest'ultime.

6 Listati di codice

Code Listing 1: Tabella per la traduzione in amminoacidi

```
aminoacids_lookup_table = {
 1
         'F': ['TTT', 'TTC'],
'L': ['TTA', 'TTG', 'CTT', 'CTA', 'CTC', 'CTG'],
'I': ['ATT', 'ATC', 'ATA'],
 2
 3
 4
         'M': ['ATG'],
         'V': ['GTT', 'GTA', 'GTC', 'GTG'],
'S': ['TCT', 'TCA', 'TCC', 'TCG', 'AGT', 'AGC'],
'P': ['CCT', 'CCA', 'CCC', 'CCG'],
 6
 7
 8
         'T': ['ACT', 'ACA', 'ACC', 'ACG'],
 9
         'A': ['GCT', 'GCA', 'GCC', 'GCG'],
'Y': ['TAT', 'TAC'],
'H': ['CAT', 'CAC'],
10
11
12
         'Q': ['CAA', 'CAG'],
13
         'N': ['AAT', 'AAC'], 'K': ['AAA', 'AAG'],
14
15
         'D': ['GAT', 'GAC'],
16
         'E': ['GAA', 'GAG'],
'C': ['TGT', 'TGC'],
17
18
19
         'W': ['TGG'],
         'R': ['CGT', 'CGA', 'CGC', 'CGG', 'AGA', 'AGG'], 'G': ['GGT', 'GGA', 'GGC', 'GGG'],
20
21
22
         'START': ['ATG'],
23
         'STOP': ['TAA', 'TAG', 'TGA']
24 | }
```

Code Listing 2: Memorizzazione dei risultati nella struttura dati a lista

```
1
     for key, value in variations:
2
       for index, cds in affected_cdses.iterrows():
3
4
         variations_to_genes.append({
5
           'gene_id': gene_id,
6
           'gene_start': gene_start + 1, # 1-based position
 7
           'gene_end': gene_end,
8
           'cds_start': cds_start + 1, # 1-based position
9
           'cds_end': cds_end,
10
           'original_codone': original_codone,
11
           'altered_codone': altered_codone,
           'relative_start': relative_start + 1, # 1-based position
12
13
           'relative_end': relative_end,
           'alteration': sequence,
14
15
           'original_aminoacid': original_aminoacid,
           'encoded_aminoacid': encoded_aminoacid
16
17
         })
```