Basic Statistics							
	Ungrouped Data	Grouped Dat	a				
		Discrete Data Continuous Data					
Arithmetic Mean	\rightarrow If $x_1, x_2, x_3 \dots, x_n$ are n observation then the mean is define by,						
	$\overline{x} = \frac{\sum x_i}{n}$	$\overline{x} = \frac{\sum (x_i f_i)}{N}$ Where $N = \sum f$					
Or	Short-cut Method:	Where $N = \sum f_i$ Short-cut Method: Short-cut Method:					
Mean Or	Short-cut Wethod.	Short-cut Method.	Short-cut Method:				
Expectation	$\overline{x} = A + \frac{\sum d_i}{n}$	$\overline{x} = A + \frac{\sum (f_i d_i)}{N}$	$\overline{x} = A + \frac{\sum (f_i d_i)}{N} \times h$				
	Where $d_i = x_i - A$ and A is assumed mean	Where $d_i = x_i - A$ and A is assumed mean	Where $d_i = \frac{x_i - A}{h}$ and A is assumed mean. h is length of class-interval				
Median	→ First arrange all the data in ascending or descending order	→ First arrange the data in ascending or descending form and find the cumulative frequency table	$M = l + \frac{\left(\frac{N}{2} - cf\right)}{f} \times h$				
	\rightarrow If n is odd then median is given by,	\rightarrow If N is odd then median is given by,	Where, $l = lower limit of median class$ $h = length of median class$				
	$M = \left(\frac{n+1}{2}\right)^{th} observation$	$M = \left(\frac{N+1}{2}\right)^{th} observation$	f = frequency of median class cf = cumulative frequency of				
	$\rightarrow \text{ If } \mathbf{n} \text{ is even then median is,}$ $1 \left[(n)^{th} \right] $	\rightarrow If N is even then median is,	the class preceding to median class				
	$M = \frac{1}{2} \left[\left(\frac{n}{2} \right)^{th} obser. + \left(\frac{n}{2} + 1 \right)^{th} obser. \right]$	$M = \frac{1}{2} \left[\left(\frac{N}{2} \right)^{th} obser. + \left(\frac{N}{2} + 1 \right)^{th} obser. \right]$	Median class is the class whose cumulative frequency is just greater than or equal to $\frac{N}{2}$				
Mode	 → Mode is the value of observation which is repeated most often in ungroup data → If there are two or more observation in the data that are repeated most often then each such member is a mode. 	→ Mode for discrete group data is the value of an observation with highest frequency	$M = l + \left(\frac{f_m - f_1}{2f_m - f_2 - f_1}\right) \times h$ Where, $l = \text{lower limit of model class}$ $f_1 = \text{frequency of class}$ preceding to model class $f_m = \text{frequency of model class}$ $f_2 = \text{frequency of class}$ succeeding to model class $h = \text{length of the model class}$ $h = \text{length of the model class}$ Model class is the class with maximum frequency				
Harmonic Mean	$H. M. = \frac{n}{\sum \left(\frac{1}{x_i}\right)}$	$H.M. = \frac{\sum f_i}{\sum \left(\frac{f_i}{x_i}\right)}$					
Geometric Mean	$\log(G.M.) = \frac{\sum(\log x_i)}{n}$	$\log(G.M.) = \frac{\sum f_i(\log x_i)}{N}$ Note: $H.M. \le G.M. \le A.M.$					
Quartiles	→ It is the value on the data which divide the entire data into four equal parts	$Q_k = l + \left(\frac{\frac{kN}{4} - cf}{f}\right) \times h where \ k = 1,2,3$					
Deciles	→ It is the value on the data which divide the entire data into ten equal parts	$D_k = l + \left(\frac{\frac{kN}{10} - cf}{f}\right) \times h \text{where } k = 1, 2, 3, \dots, 9$					
Percentiles	 → It is the value on the data which divide the entire data into hundred equal parts 	$P_k = l + \left(\frac{\frac{kN}{100} - cf}{f}\right) \times h \text{where } k = 1, 2, 3, \dots, 99$					
Mean Deviation from mean \overline{x}	$M.D.(\overline{x}) = \frac{\sum x_i - \overline{x} }{n}$	$M.D.(\overline{x}) = \frac{\sum f_i x_i - \overline{x} }{N}$					

Mean Deviation from median M	$M.D.(M) = \frac{\sum x_i - M }{n}$	$M.D.(M) = \frac{\sum f_i x_i - M }{N}$				
	$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$ Or When value of mean is fraction then,	$\sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N}$ Or When value of mean is fraction then,				
Variance (σ^2)	$\sigma^2 = \frac{\sum x_i^2}{n} - (\overline{x})^2$	$\sigma^2 = \frac{\sum f_i x_i^2}{N} - (\overline{x})^2$				
	Short-cut method:	Short-cut method:	Short-cut method:			
	$\sigma^{2} = \frac{1}{n^{2}} [n \sum d_{i}^{2} - (\sum d_{i})^{2}]$	$\sigma^{2} = \frac{1}{N^{2}} [N \sum f_{i} d_{i}^{2} - (\sum f_{i} d_{i})^{2}]$	$\sigma^2 = \frac{h^2}{N^2} [N \sum f_i d_i^2 - (\sum f_i d_i)^2]$ Where $d_i = \frac{x_i - A}{h}$			
	Where $d_i = x_i - A$ A is assume value from observation	Where $d_i = x_i - A$ A is assume value from observation	A is assume value from observation h is a length of class interval.			
Standard Deviation (σ)	The standard Deviation (S.D.) $\sigma = \sqrt{variance}$					
Coefficient of Variation (C.V.)	$C.V. = \frac{\sigma}{\overline{x}} \times 100$ $\rightarrow \text{ If the data has high value of C.V., then it is less consistent}$ $\rightarrow \text{ If the data has less value of C.V. then it is more consistent}$					
Coefficient of Mean Deviation	Coefficient of Mean Deviation $= \frac{M.D.}{\overline{x}} \times 100$					
Central	\rightarrow The r^{th} moment of n observation \rightarrow The r^{th} moment of a given grouped data about mean is,					
Moments	of a given data about mean is,					
Or Moment about mean	$\mu_r = \frac{\sum (x_i - \overline{x})^r}{n}$	$\mu_r =$	$\frac{\sum f_i(x_i - \overline{x})^r}{N}$			
	The first moment about the mean is	always zero, $(\mu_1 = 0)$				
	• The second moment about the mean measures the value of variance, $(\mu_2 = \sigma^2)$					
	 The third moment about the mean measures the skewness. The fourth moment about the mean measures the kurtosis. 					
Raw Moments Or Moment about arbitrary origin A	The r^{th} moment of n observation of a given data about any assume arbitrary value A is, $\mu'_r = \frac{\sum (x_i - A)^r}{n}$	value A is,	ouped data about any assume arbitrary $\frac{\sum f_i(x_i - A)^r}{N}$			

Relation between central moment (μ_r) and raw moments (μ_r) :

•
$$\mu_1 = 0$$

•
$$\mu_2 = \mu_2' - (\mu_1')^2$$

•
$$\mu_3 = \mu_3' - 3\mu_2'\mu_1' + 2(\mu_1')^3$$

•
$$\mu_3 = \mu_3' - 3\mu_2'\mu_1' + 2(\mu_1')^3$$

• $\mu_4 = \mu_4' - 4\mu_3'\mu_1' + 6\mu_2'(\mu_1')^2 + (\mu_1')^4$

Similarly,

$$\bullet \quad \mu_1' = \overline{x} - A$$

$$\bullet \quad \mu_2' = \mu_2 + (\mu_1')^2$$

•
$$\mu_3' = \mu_3 + 3\mu_2\mu_1' + (\mu_1')^3$$

•
$$\mu_4' = \mu_4 + 4\mu_3\mu_1' + 6\mu_2(\mu_1')^2 + (\mu_1')^4$$

It is a measure that belongs to the extent of symmetry or asymmetry in a distribution • Co-efficient of skewness $\beta_1 = \frac{\mu_3^2}{\mu_2^3}$ **Skewness** Karl Pearson's coefficient of skewness $S_k = \frac{Mean - Mode}{S.D.} = \frac{3(Mean - Median)}{S.D.}$

	(2) Fitting of $y = ax + bx^2$
	Here we have two unknowns so we can construct two normal equations as, The normal equations are, $\sum xy = a\sum x^2 + b\sum x^3$ $\sum x^2y = a\sum x^3 + b\sum x^4$
	By solving above two equations we get the value of three unknowns a , b
	(3) Fitting of $y = a + bx^2$
	 → Here we have two unknowns so we can construct two normal equations as, → The normal equations are,
	$\sum y = an + b \sum x^2$ $\sum x^2 y = a \sum x^2 + b \sum x^4$
	By solving above two equations we get the value of three unknowns a, b
	(1) Fitting of $y = ae^{bx}$
	→ We can convert a given exponential curve into linear equation by taking natural logarithm. So, In(x) = In(x) + hx
	$\ln(y) = \ln(a) + bx$ Now let's say, $Y = \ln(y)$, $A = \ln(a)$, $B = b$, $X = x$. So above equation become linear as,
	Y = A + BX Now in the new linear equation, we have two unknowns so we can construct two normal equations as,
	\rightarrow The normal equations are, $\sum Y = An + B \sum X$
	$\sum XY = a\sum X + B\sum X^2$ Where $X = a$ and $X = \ln(a)$
	Where $X = x$ and $Y = \ln(y)$ \rightarrow By solving above two equations we get the value of two unknowns A and B \rightarrow Now to find the value of a and b we use the relation
	$a = e^A and b = B$ (2) Fitting of $y = ab^x$
	→ We can convert a given exponential curve into linear equation by taking natural logarithm. So,
	$\ln(y) = \ln(a) + x \ln(b)$ Now let's say, $Y = \ln(y)$, $A = \ln(a)$, $B = \ln(b)$, $X = x$. So above equation become linear as,
Fitting of Exponential	Y = A + BX Now in the new linear equation, we have two unknown so we can construct two normal equations as,
curve	→ The normal equations are,
	$\sum Y = An + B \sum X$ $\sum XY = a \sum X + B \sum X^{2}$
	Where $X = x$ and $Y = \ln(y)$
	→ By solving above two equations we get the value of two unknowns A and B → Now to find the value of a and b we use the relation $a = e^A and b = e^B$
	(3) Fitting of $y = ax^b$
	→ We can convert a given exponential curve into linear equation by taking natural logarithm. So,
	$\ln(y) = \ln(a) + b \ln(x)$
	Now let's say, $Y = \ln(y)$, $A = \ln(a)$, $B = b$, $X = \ln(x)$. So above equation become linear as, $Y = A + BX$
	→ Now in the new linear equation, we have two unknown so we can construct two normal equations as,
	\rightarrow The normal equations are, $\sum Y = An + B \sum X$

 $\sum Y = An + B \sum X$

 \rightarrow By solving above two equations we get the value of two unknowns *A* and *B* \rightarrow Now to find the value of *a* and *b* we use the relation

 $a = e^A$ and b = B

Where $X = \ln(x)$ and $Y = \ln(y)$

 $\sum XY = a \sum X + B \sum X^2$

The correlation between any two variables is a measurement of how the value of one variable is changed when the value of other variable is changed. There are mainly two types of correlation exist.

- (1) Positive Correlation \rightarrow The change in the value of both variables is in the same direction
 - If value of one variable is increase, then the value of other is also increase
 - If value of one variable is decrease, then the value of other is also decrease
- (2) **Negative Correlation** \rightarrow The change in the value of both variables is in the opposite direction
 - If value of one variable is increase, then the value of other is decrease
 - If value of one variable is decrease, then the value of other is increase

* Karl Pearson's Coefficient of Correlation

It is measures of correlation between two variables x and y and it is denoted by r

$$r = \frac{cov(x,y)}{\sigma_x \, \sigma_y} = \frac{\frac{1}{n} \sum [(x - \overline{x})(y - \overline{y})]}{\sqrt{\frac{1}{n} \sum (x - \overline{x})^2} \sqrt{\frac{1}{n} \sum (y - \overline{y})^2}}$$

 \rightarrow When \overline{x} and \overline{y} are integer then,

$$r = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}$$

 \rightarrow When the value of both the variables x and y are small or \overline{x} and \overline{y} are not integer then,

$$r = \frac{n\sum(xy) - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}$$

 \rightarrow When the value of both the variables x and y are large then,

$$r = \frac{n\sum(d_xd_y) - (\sum d_x)(\sum d_y)}{\sqrt{n\sum d_x^2 - (\sum d_x)^2}\sqrt{n\sum d_y^2 - (\sum d_y)^2}}$$

Coefficient of Correlation (r)

Note:

- (1) If r = 1 then there exist **perfect positive** correlation between x and y
- (2) If r = -1 then there exist **perfect negative** correlation between x and y
- (3) If 0 < r < 1 then there exist **partial positive** correlation between x and y
- (4) If -1 < r < 0 then there exist partial negative correlation between x and y
- (5) If r = 0 then there is **No** correlation between x and y
- (6) Hence, the value of r is always between $-1 \le r \le 1$

❖ In this method we assign a rank to each observations either in ascending or in descending order. The spearman's rank correlation coefficient between two variables *x* and *y* are given by (when observation is not repeated)

$$\rho=1-\frac{6\sum d^2}{n(n^2-1)}$$

Spearman's Rank Correlation

Where $d = R_x - R_y$ and n is total no. of observations

 \diamond The spearman's rank correlation coefficient between two variables x and y are given by (when observation is repeated then rank is distributed equally among the equal observations)

$$\rho = 1 - \frac{6\left[\sum d^2 + \frac{1}{12}m_1(m_1^2 - 1) + \frac{1}{12}m_2(m_2^2 - 1) + \frac{1}{12}m_3(m_3^2 - 1) + \cdots\right]}{n(n^2 - 1)}$$

Where m denote the no. of repetitions of that particular observation.

- * Regression analysis is used to find the best approximate value of one variable when the value of other variable is known.
- For that we can find the two best approximate linear curve of the form y = a + bx and x = a + by to the given set of 'n' data points $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)$.

x	x_1	x_2	x_3	 x_n
у	y_1	y_2	y_3	 \mathcal{Y}_n

→ The linear curve of the form

 $y = a + bx \rightarrow$ The regression line of y on x [It is also denoted by y = f(x)]

This regression line gives the best approximate value of variable y when the value of x is known.

 \rightarrow The linear curve of the form

 $x = a + by \rightarrow$ The regression line of x on y [It is also denoted by x = f(y)]

This regression line gives the best approximate value of variable x when the value of y is known.

(1) Regression line of y on x or [y = a + bx]

 \rightarrow The equation of regression line of y on x is given by,

$$y - \overline{y} = b_{yx} (x - \overline{x})$$

Regression

 $\overline{x} = mean \ value \ of \ x$

Where,

 $\overline{y} = mean \ value \ of \ y$

 $b_{yx} = Regression coefficient of y on x$

 \rightarrow The value of regression coefficient of y on x is given by,

$$oldsymbol{b}_{yx} = r rac{oldsymbol{\sigma}_y}{oldsymbol{\sigma}_x}$$

We have three formula to calculate the value of b_{yx}

 \rightarrow When \overline{x} and \overline{y} are integer then,

$$b_{yx} = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{\sum (x - \overline{x})^2}$$

 \rightarrow When the value of both the variables x and y are small or \overline{x} and \overline{y} are not integer then,

$$\boldsymbol{b}_{yx} = \frac{\boldsymbol{n} \sum (xy) - (\sum x)(\sum y)}{\boldsymbol{n} \sum x^2 - (\sum x)^2}$$

 \rightarrow When the value of both the variables x and y are large then,

$$\boldsymbol{b}_{yx} = \frac{\boldsymbol{n} \sum (\boldsymbol{d}_x \boldsymbol{d}_y) - (\sum \boldsymbol{d}_x)(\sum \boldsymbol{d}_y)}{\boldsymbol{n} \sum \boldsymbol{d}_x^2 - (\sum \boldsymbol{d}_x)^2}$$

(2) Regression line of x on y or [x = a + by]

 \rightarrow The equation of regression line of x on y is given by

$$x - \overline{x} = b_{xy} (y - \overline{y})$$

Where,

 $\overline{x} = mean \ value \ of \ x$

 $\overline{y} = mean \ value \ of \ y$

 $b_{xy} = Regression coefficient of x on y$

 \rightarrow The value of regression coefficient of x on y is given by,

$$b_{xy} = r \frac{\sigma_x}{\sigma_y}$$

We have three formula to calculate the value of b_{xy}

 \rightarrow When \overline{x} and \overline{y} are integer then,

$$b_{xy} = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{\sum (y - \overline{y})^2}$$

 \rightarrow When the value of both the variables x and y are small or \overline{x} and \overline{y} are not integer then,

$$b_{xy} = \frac{n \sum (xy) - (\sum x)(\sum y)}{n \sum y^2 - (\sum y)^2}$$

 \rightarrow When the value of both the variables x and y are large then,

$$b_{xy} = \frac{n \sum (d_x d_y) - (\sum d_x)(\sum d_y)}{n \sum d_y^2 - (\sum d_y)^2}$$

Note:

- (1) The value of co-efficient of correlation r is given by, $r = \pm \sqrt{b_{yx} \times b_{xy}}$ such that $-1 \le r \le 1$.
- (2) If value of one regression coefficient is greater than one then other must be less than one. (converse may be not true)
- (3) The equation of both regression lines intersect at their mean or at point $(\overline{x}, \overline{y})$.
- (4) The sign of both regression coefficients and the sign of correlation coefficient are same.

If
$$b_{yx} > 0 \Leftrightarrow b_{xy} > 0 \Leftrightarrow r > 0$$
 and If $b_{yx} < 0 \Leftrightarrow b_{xy} < 0 \Leftrightarrow r < 0$

- (5) If any equation is convert in the form y = a + bx then b is represent the regression coefficient of y on x. So $b = b_{yx}$
- (6) If any equation is convert in the form x = a + by then b is represent the regression coefficient of x on y. So $b = b_{xy}$
- (7) If r = 0 then both regression lines are perpendicular.
- (8) If $r = \pm 1$ then both regression lines are coincide.