20/05/2025 - Materiations Discretors 1 (UDE | MJ 10-12)

1. Repuso clase anterior

Yx P(x) \ Q(x) = Yx (P(x)) \ Q(x) A Prioridades: (1) 3 4

- (2) Algunos equivalencias: (A) $\forall x P(x) = \forall x 77 Y(x)$ (2) $\exists x P(x) \equiv \exists x 77 Y(x)$

 - ③ コヤスタ(x)= オスコヤ(x) (てがきる) {
 - ((+= Er) (x) 9rx4 = (x) 9x = r

3) Anidomiento:

- ∃x ∃y ヤ(x,y) = ∃y∃x ヤ(x,y)
- ③ Vx3yP(x,y) = ∃y4xP(x,y)

(1) Lenguaje Natural -> Logica de predicados

Formas aristotelica

Forma	Enunciado	Forma Aristotélica	Lógica de predicados	Ejemplo
Form <mark>a A:</mark> Universal afirmativa	Todos los S son P	A(S,P)	$\forall x \left(S(x) \to P(x) \right)$ Interpretación: Para todo x, si x es un S, entonces x es un P.	Ejemplo: Todos los hombres son mortales
Form <mark>a E:</mark> Universal afirmativa	Ningún S es P	E(S,P)	$\forall x \left(S(x) \to \neg P(x) \right)$ Interpretación: Para todo x, si x es un S, entonces x no es un P.	Ejemplo: Ningún cuadrado es circulo. Expresión: $\forall x \big(cuadrado(x) \rightarrow \neg ctrculo(x) \big)$
Form <mark>a I:</mark> Particular afirmativa	Algún S es P	1(S, P)	$\exists x \big(S(x) \land P(x) \big)$ Interpretación: Existe al menos un x tal que x es S y también es P.	Ejemplo: Alguno estudiante es ingeniero. Expresión: $\exists x \big(estudiante(x) \land ingeniero(x) \big)$
Forma 0: Particular negativa	Algún S no es P	0(S, P)	Interpretación: Existe al menos un x tal que x es S y no es P.	Ejemplo: Algún pájaro no vuela. Expresión: $\exists x \big(pajaro(x) \land \neg vuela(x) \big)$

3x (S(x) 17(x))

2. Luantificadores anidados.

Alconce: $\forall x \mid E(x) \rightarrow \exists y \mid L(y) \land Lee(x,y) \mid$ Contexts

Ejemplo 1:

Usando los predicados

- Persona(p): p es una persona
- Ama(x, y): que indica que x ama a y,

Escriba una oración en lógica de primer orden que signifique:

"Cada persona ama a alguien".

(1) Cada persona uma a alguien

U: cna) quier cusa (4, €, 155,...) Variables: アノタノラン···

Predicados: Persona(x) - Ama (x,y)

年、主、チ

Todas las persones amon a alquien You (Persona (-1) -> Ama a alguer)

3 Existe alguno amado por alguna persona

Ey (Personaly) ~ ama(x,y) ~ x = y)

Expresión Final: Yx (Personalx) -> 3y (Personaly) 1 ama(x,y) 1 x + y)

Ejemplo 2: Usando los predicados

- Persona(p): p es una persona
- Ama(x, y): que indica que x ama a y,

Escriba una oración en lógica de primer orden que signifique:

"hay una persona a la que todos los demás aman".

Forma	Enunciado	Forma Aristotélica	Lógica de predicados	Ejemplo
Forma A: Universal afirmativa	Todos los S son	A(S, P)	$\forall x \left(S(x) \rightarrow P(x) \right)$ = Interpretación: Para todo x, si x es un S, entonces x es un P.	Ejemplo: Todos los hombres son mortales. Expresión: $\forall x \Big(hombre(x) \rightarrow mortal(x)\Big)$
Forma E: Universal afirmativa	Ningún S es P	E(S,P)	$\forall x \ \big(S(x) \to \neg P(x)\big)$ Interpretación: Para todo x, si x es un S, entonces x no es un P.	Ejemplo: Ningún cuadrado es circulo. Expresión: $\forall x \big(cuadrado(x) \rightarrow \neg ctrculo(x) \big)$
Forma I: Particular afirmativa	Algún S es P	I(S,P)	$\exists x \big(S(x) \land P(x) \big)$ Interpretación: Existe al menos un x tal que x es S y también es P.	Ejemplo: Alguno estudiante es ingeniero. Expresión: $\exists x \big(estudiante(x) \land ingeniero(x) \big)$
Forma O: Particular negativa	Algún S no es P	O(S, P)	$\exists x \big(S(x) \land P(x) \big)$ Interpretación: Existe al menos un x tal que x es S y no es P.	Ejemplo: Algún pájaro no vuela. Expresión: $\exists x \Big(pajaro(x) \land \neg vuela(x) \Big)$

Hay una persona a la que todos los demas aman
3x (Personalt) 1 Esa persona es amada por todos los abonos)
Si es esa persona entonces todos la aman
Persona(x) 1 x x y -> ama (y, 2)
Ix (Persona(x) A by (Personaly) , x + y - ama (y,x))

Ejemplo: Cual sería la expresión en lenguaje formal para: "Cada numero real tiene un inverso".

Sobre countificadores anidados:

$$\forall x \forall y \ P(x,y) \equiv \forall y \forall x \ P(x,y)$$

$$\exists x \exists y \ P(x,y) \equiv \forall y \ \forall x \ P(x,y)$$

$$\forall x \forall y \ P(x,y) \neq \exists y \ \forall x \ P(x,y)$$