PROBABILITY NOTES - PR4

JOINT, MARGINAL, AND CONDITIONAL DISTRIBUTIONS

Joint distribution of random variables X **and** Y: A joint distribution of two random variables has a probability function or probability density function f(x, y) that is a function of two variables (sometimes denoted $f_{X,Y}(x,y)$).

If X and Y are discrete random variables, then f(x, y) must satisfy

(i)
$$0 \le f(x,y) \le 1$$
 and (ii) $\sum_{x} \sum_{y} f(x,y) = 1$.

If X and Y are continuous random variables, then f(x, y) must satisfy

(i)
$$f(x,y) \ge 0$$
 and (ii) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dy \, dx = 1$.

It is possible to have a joint distribution in which one variable is discrete and one is continuous, or either has a mixed distribution. The joint distribution of two random variables can be extended to a joint distribution of any number of random variables.

If A is a subset of two-dimensional space, then $P[(X,Y) \in A]$ is the double summation (discrete case) or double integral (continuous case) of f(x,y) over the region A.

Cumulative distribution function of a joint distribution: If random variables X and Y have a joint distribution, then the cumulative distribution function is

$$F(x,y) = P[(X \le x) \cap (Y \le y)].$$

In the continuous case, $F(x,y)=\int_{-\infty}^x\int_{-\infty}^yf(s,t)\,dt\,ds$,

and in the discrete case, $F(x,y) = \sum_{s=-\infty}^{x} \sum_{t=-\infty}^{y} f(s,t)$.

In the continuous case, $\frac{\partial^2}{\partial x \, \partial y} \, F(x,y) = f(x,y)$.

Expectation of a function of jointly distributed random variables: If h(x, y) is a function of two variables, and X and Y are jointly distributed random variables, then the **expected value of** h(X, Y) is defined to be

$$E[h(X,Y)] = \sum_{x} \sum_{y} h(x,y) \cdot f(x,y)$$
 in the discrete case, and

 $E[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) \cdot f(x,y) \, dy \, dx$ in the continuous case.

Marginal distribution of X found from a joint distribution of X and Y:

If X and Y have a joint distribution with joint density or probability function f(x,y), then the **marginal distribution of X** has a probability function or density function denoted $f_X(x)$, which is equal to $f_X(x) = \sum_y f(x,y)$ in the discrete case, and is equal to $f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy$

in the continuous case. The density function for the marginal distribution of Y is found in a similar way; $f_Y(y)$ is equal to either $f_Y(y) = \sum_x f(x,y)$ or $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) \, dx$.

If the cumulative distribution function of the joint distribution of X and Y is F(x,y), then $F_X(x) = \lim_{y \to \infty} F(x,y)$ and $F_Y(y) = \lim_{x \to \infty} F(x,y)$.

This can be extended to define the marginal distribution of any one (or subcollection) variable in a multivariate distribution.

Independence of random variables X and Y: Random variables X and Y with cumulative distribution functions $F_X(x)$ and $F_Y(y)$ are said to be independent (or stochastically independent) if the cumulative distribution function of the joint distribution F(x,y) can be factored in the form $F(x,y) = F_X(x) \cdot F_Y(y)$ for all (x,y). This definition can be extended to a multivariate distribution of more than 2 variables. If X and Y are independent, then $f(x,y) = f_X(x) \cdot f_Y(y)$, (but the reverse implication is not always true, i.e. if the joint distribution probability or density function can be factored in the form $f(x,y) = f_X(x) \cdot f_Y(y)$ then X and Y are usually, but not always, independent).

Conditional distribution of Y given X=x: Suppose that the random variables X and Y have joint density/probability function f(x,y), and the density/probability function of the marginal distribution of X is $f_X(x)$. The density/probability function of the conditional distribution of Y given X=x is $f_{Y|X}(y|X=x)=\frac{f(x,y)}{f_X(x)}$, if $f_X(x)\neq 0$.

The conditional expectation of Y given X=x is $E[Y|X=x]=\int_{-\infty}^{\infty}y\cdot f_{Y|X}(y|X=x)\,dy$ in the continuous case, and $E[Y|X=x]=\sum_{x}y\cdot f_{Y|X}(y|X=x)$ in the discrete case.

The conditional density/probability is also written as $f_{Y|X}(y|x)$, or f(y|x). If X and Y are independent random variables, then $f_{Y|X}(y|X=x)=f_{Y}(y)$ and $f_{X|Y}(x|Y=y)=f_{X}(x)$.

Covariance between random variables X and Y: If random variables X and Y are jointly distributed with joint density/probability function f(x,y), then the covariance between X and Y is $Cov[X,Y] = E[(X-E[X])(Y-E[Y])] = E[(X-\mu_X)(Y-\mu_Y)]$. Note that Cov[X,X] = Var[X].

Coefficient of correlation between random variables X and Y:

The coefficient of correlation between random variables X and Y is $\rho(X,Y)=\rho_{X,Y}=\frac{Cov[X,Y]}{\sigma_X\sigma_Y}$, where σ_X and σ_Y are the standard deviations of X and Y respectively.

Moment generating function of a joint distribution: Given jointly distributed random variables X and Y, the moment generating function of the joint distribution is $M_{X,Y}(t_1,t_2)=E[e^{t_1X+t_2Y}]$. This definition can be extended to the joint distribution of any number of random variables.

Multinomial distribution with parameters $n, p_1, p_2, ..., p_k$ (where n is a positive integer and $0 \le p_i \le 1$ for all i = 1, 2, ..., k and $p_1 + p_2 + \cdots p_k = 1$):

Suppose that an experiment has k possible outcomes, with probabilities $p_1, p_2, ..., p_k$ respectively. If the experiment is performed n successive times (independently), let X_i denote the number of experiments that resulted in outcome i, so that

$$X_1+X_2+\cdots+X_k=n$$
. The multivariate probability function is $f(x_1,x_2,...,x_k)=rac{n!}{x_1!\cdot x_2!\cdots x_k!}\cdot p_1^{x_1}\cdot p_2^{x_2}\cdots p_k^{x_k}$. $E[X_i]=np_i$, $Var[X_i]=np_i(1-p_i)$, $Cov[X_iX_j]=-np_ip_j$.

For example, the toss of a fair die results in one of k=6 outcomes, with probabilities $p_i=\frac{1}{6}$ for i=1,2,3,4,5,6. If the die is tossed n times, then with

 $X_i = \#$ of tosses resulting in face "i" turning up, the multivariate distribution of $X_1, X_2, ..., X_6$ is a multinomial distribution.

Some results and formulas related to this section are:

(i)
$$E[h_1(X,Y) + h_2(X,Y)] = E[h_1(X,Y)] + E[h_2(X,Y)]$$
, and in particular, $E[X+Y] = E[X] + E[Y]$ and $E[\sum X_i] = \sum E[X_i]$

(ii)
$$\lim_{x \to -\infty} F(x, y) = \lim_{y \to -\infty} F(x, y) = 0$$

(iii)
$$P[(x_1 < X \le x_2) \cap (y_1 < Y \le y_2)]$$

= $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$

(iv)
$$P[(X \le x) \cap (Y \le y)] = F_X(x) + F_Y(y) - F(x, y) \le 1$$

- (v) If X and Y are independent, then for any functions g and h, $E[g(X) \cdot h(Y)] = E[g(X)] \cdot E[h(Y)]$, and in particular, $E[X \cdot Y] = E[X] \cdot E[Y]$.
- (vi) The density/probability function of jointly distributed variables X and Y can be written in the form $f(x,y) = f_{Y|X}(y|X=x) \cdot f_X(x) = f_{X|Y}(x|Y=y) \cdot f_Y(y)$
- (vii) $Cov[X,Y] = E[X \cdot Y] \mu_X \cdot \mu_Y = E[XY] E[X] \cdot E[Y]$. Cov[X,Y] = Cov[Y,X]. If X and Y are independent, then $E[X \cdot Y] = E[X] \cdot E[Y]$ and Cov[X,Y] = 0. For constants a,b,c,d,e,f and random variables X,Y,Z and W, Cov[aX + bY + c,dZ + eW + f] = adCov[X,Z] + aeCov[X,W] + bdCov[Y,Z] + beCov[Y,W]
- (viii) For any jointly distributed random variables X and Y, $-1 \le \rho_{XY} \le 1$
- $$\begin{split} \text{(ix)} \ \ Var[X+Y] &= E[(X+Y)^2] (E[X+Y])^2 \\ &= E[X^2 + 2XY + Y^2] (E[X] + E[Y])^2 \\ &= E[X^2] + E[2XY] + E[Y^2] (E[X])^2 2E[X]E[Y] (E[Y])^2 \\ &= Var[X] + Var[Y] + 2 \cdot Cov[X,Y] \end{split}$$

If X and Y are independent, then Var[X+Y] = Var[X] + Var[Y]. For any X, Y, $Var[aX+bY+c] = a^2Var[X] + b^2Var[Y] + 2ab \cdot Cov[X,Y]$

(x)
$$M_{X,Y}(t_1,0) = E[e^{t_1X}] = M_X(t_1)$$
 and $M_{X,Y}(0,t_2) = E[e^{t_2Y}] = M_Y(t_2)$

$$\begin{aligned} & (\text{xi}) \ \, \frac{\partial}{\partial t_1} \left. M_{X,Y}(t_1,t_2) \right|_{t_1=t_2=0} = E[X] \ , \ \, \frac{\partial}{\partial t_2} \left. M_{X,Y}(t_1,t_2) \right|_{t_1=t_2=0} = E[Y] \\ & \left. \frac{\partial^{r+s}}{\partial^r t_1 \, \partial^s t_2} \left. M_{X,Y}(t_1,t_2) \right|_{t_1=t_2=0} = E[X^r \cdot Y^s] \end{aligned}$$

(xii) If $M(t_1, t_2) = M(t_1, 0) \cdot M(0, t_2)$ for t_1 and t_2 in a region about (0, 0), then X and Y are independent.

(xiii) If
$$Y = aX + b$$
 then $M_Y(t) = e^{bt}M_X(at)$.

(xiv) If X and Y are jointly distributed, then for any y, E[X|Y=y] depends on y, say E[X|Y=y]=h(y). It can then be shown that E[h(Y)]=E[X]; this is more usually written in the form E[E[X|Y]]=E[X]. It can also be shown that Var[X]=E[Var[X|Y]]+Var[E[X|Y]].

(xv) A random variable X can be defined as a combination of two (or more) random variables X_1 and X_2 , defined in terms of whether or not a particular event A occurs. Variables X_1 and X_2 , defined in terms of X_1 and X_2 , defined in terms of X_1 if event X_2 occurs (probability X_2) if event X_3 does not occur (probability X_4). Then, X_4 can be the indicator random variable X_4 occurs (prob. X_4) if X_4 doesn't occur (prob. X_4) if X_4 doesn't occur (prob. X_4).

Probabilities and expectations involving X can be found by "conditioning" over Y: $P[X \le c] = P[X \le c | A \text{ occurs}] \cdot P[A \text{ occurs}] + P[X \le c | A' \text{ occurs}] \cdot P[A' \text{ occurs}]$ $= P[X_1 \le c] \cdot p + P[X_2 \le c] \cdot (1-p),$

 $E[X^k] = E[X_1^k] \cdot p + E[X_2^k] \cdot (1-p), \ M_X(t) = M_{X_1}(t) \cdot p + M_{X_2}(t) \cdot (1-p)$ This is really an illustration of a mixture of the distributions of X_1 and X_2 , with $\alpha_1 = p$ and $\alpha_2 = 1 - p$.

As an example, suppose there are two urns containing balls - Urn I contains 5 red and 5 blue balls and Urn II contains 8 red and 2 blue balls. A die is tossed, and if the number turning up is even then 2 balls are picked from Urn I, and if the number turning up is odd then 3 balls are picked from Urn II. X is the number of red balls chosen. Event A would be A = die toss is even. Random variable X_1 would be the number of red balls chosen from Urn I and X_2 would be the number of red balls chosen from Urn II, and since each urn is equally likely to be chosen, $\alpha_1 = \alpha_2 = \frac{1}{2}$.

(xvi) If X and Y have a joint distribution which is uniform on the two dimensional region R (usually R will be a triangle, rectangle or circle in the (x, y) plane), then the conditional distribution of Y given X = x has a uniform distribution on the line segment (or segments) defined by the intersection of the region R with the line X = x. The marginal distribution of Y might or might not be uniform.

Example 116: If $f(x,y) = K(x^2 + y^2)$ is the density function for the joint distribution of the continuous random variables X and Y defined over the unit square bounded by the points (0,0), (1,0), (1,1) and (0,1), find K.

Solution: The (double) integral of the density function over the region of density must be 1, so that $1 = \int_0^1 \int_0^1 K(x^2 + y^2) \, dy \, dx = K \cdot \frac{2}{3} \rightarrow K = \frac{3}{2}$.

Example 117: The cumulative distribution function for the joint distribution of the continuous random variables X and Y is $F(x,y) = (.2)(3x^3y + 2x^2y^2)$, for $0 \le x \le 1$ and $0 \le y \le 1$. Find $f(\frac{1}{2},\frac{1}{2})$.

Solution: $f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y) = (.2)(9x^2 + 8xy) \rightarrow f(\frac{1}{2}, \frac{1}{2}) = \frac{17}{20}$. **Example 118:** X and Y are discrete random variables which are jointly distributed with the following probability function f(x, y):

Find $E[X \cdot Y]$.

Solution:
$$E[XY] = \sum_{x} \sum_{y} xy \cdot f(x,y) = (-1)(1)(\frac{1}{18}) + (-1)(0)(\frac{1}{9}) + (-1)(-1)(\frac{1}{6}) + (0)(1)(\frac{1}{9}) + (0)(0)(0) + (0)(-1)(\frac{1}{9}) + (1)(1)(\frac{1}{6}) + (1)(0)(\frac{1}{6}) + (1)(-1)(\frac{1}{9}) = \frac{1}{6}.$$

Example 119: Continuous random variables X and Y have a joint distribution with density function $f(x,y) = \frac{3(2-2x-y)}{2}$ in the region bounded by y=0, x=0 and y=2-2x. Find the density function for the marginal distribution of X for 0 < x < 1. **Solution**: The region of joint density is illustrated in the graph at the right. Note that X must be in the interval (0,1) and Y must be in the interval (0,2). Since $f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy$, we note that given a value of x in (0,1), the possible values of y (with non-zero density for f(x,y)) must satisfy 0 < y < 2 - 2x, so that $f_Y(x) = \int_{x}^{2-2x} f(x,y) \, dy$

$$f_X(x) = \int_0^{2-2x} f(x, y) \, dy$$

= $\int_0^{2-2x} \frac{3(2-2x-y)}{2} \, dy = 3(1-x)^2$. \square

Example 120: Suppose that X and Y are independent continuous random variables with the following density functions - $f_X(x) = 1$ for 0 < x < 1 and $f_Y(y) = 2y$ for 0 < y < 1. Find P[Y < X].

Solution: Since X and Y are independent, the density function of the joint distribution of X and Y is $f(x,y) = f_X(x) \cdot f_Y(y) = 2y$, and is defined on the unit square. The graph at the right illustrates the region for the probability in question. $P[Y < X] = \int_0^1 \int_0^x 2y \, dy \, dx = \frac{1}{3}$. \square

Example 121: Continuous random variables X and Y have a joint distribution with density function $f(x,y)=x^2+\frac{xy}{3}$ for 0< x<1 and 0< y<2. Find $P[X>\frac{1}{2}|Y>\frac{1}{2}]$.

Example 122: Continuous random variables X and Y have a joint distribution with density function $f(x,y) = \frac{\pi}{2} \left(\sin \frac{\pi}{2} y \right) e^{-x}$ for $0 < x < \infty$ and 0 < y < 1. Find $P[X > 1 | Y = \frac{1}{2}]$.

Example 123: X is a continuous random variable with density function $f_X(x) = x + \frac{1}{2}$ for 0 < x < 1. X is also jointly distributed with the continuous random variable Y, and the conditional density function of Y given X = x is

$$f_{Y|X}(y|X=x) = \frac{x+y}{x+\frac{1}{2}}$$
 for $0 < x < 1$ and $0 < y < 1$. Find $f_Y(y)$ for $0 < y < 1$.

Solution:
$$f(x,y) = f(y|x) \cdot f_X(x) = \frac{x+y}{x+\frac{1}{2}} \cdot (x+\frac{1}{2}) = x+y$$
.

Then,
$$f_Y(y) = \int_0^1 f(x, y) dx = y + \frac{1}{2}$$
.

Example 124: Find Cov[X,Y] for the jointly distributed discrete random variables in Example 118 above.

Solution: $Cov[X,Y]=E[XY]-E[X]\cdot E[Y]$. In Example 118 it was found that $E[XY]=\frac{1}{6}$. The marginal probability function for X is $P[X=1]=\frac{1}{6}+\frac{1}{6}+\frac{1}{9}=\frac{4}{9}$, $P[X=0]=\frac{2}{9}$ and $P[X=-1]=\frac{1}{3}$, and the mean of X is $E[X]=(1)(\frac{4}{9})+(0)(\frac{2}{9})+(-1)(\frac{1}{3})=\frac{1}{9}$.

In a similar way, the probability function of Y is found to be $P[Y=1]=\frac{1}{3}$, $P[Y=0]=\frac{5}{18}$, and $P[Y=-1]=\frac{7}{18}$, with a mean of $E[Y]=-\frac{1}{18}$.

Then,
$$Cov[X,Y] = \frac{1}{6} - (\frac{1}{9})(-\frac{1}{18}) = \frac{14}{81}$$
.

Example 125: The coefficient of correlation between random variables X and Y is $\frac{1}{3}$, and $\sigma_X^2=a$, $\sigma_Y^2=4a$. The random variable Z is defined to be Z=3X-4Y, and it is found that $\sigma_Z^2=114$. Find a.

Solution:
$$\sigma_Z^2 = Var[Z] = 9Var[X] + 16Var[Y] - 2 \cdot (3)(4) \, Cov[X,Y]$$
. Since $Cov[X,Y] = \rho[X,Y] \cdot \sigma_X \cdot \sigma_Y = \frac{1}{3} \cdot \sqrt{a} \cdot \sqrt{4a} = \frac{2a}{3}$, it follows that $114 = \sigma_Z^2 = 9a + 16(4a) - 24(\frac{2a}{3}) = 57a \rightarrow a = 2$.

Example 126: Suppose that X and Y are random variables whose joint distribution has moment generating function $M(t_1,t_2)=\left(\frac{1}{4}e^{t_1}+\frac{3}{8}e^{t_2}+\frac{3}{8}\right)^{10}$, for all real t_1 and t_2 .

Find the covariance between X and Y.

Solution:
$$Cov[X,Y] = E[XY] - E[X] \cdot E[Y]$$
.
 $E[XY] = \frac{\partial^2}{\partial t_1 \partial t_2} M_{X,Y}(t_1, t_2) \Big|_{t_1 = t_2 = 0}$
 $= (10)(9) \left(\frac{1}{4}e^{t_1} + \frac{3}{8}e^{t_2} + \frac{3}{8}\right)^8 \left(\frac{1}{4}e^{t_1}\right) \left(\frac{3}{8}e^{t_2}\right) \Big|_{t_1 = t_2 = 0} = \frac{135}{16}$,
 $E[X] = \frac{\partial}{\partial t_1} M_{X,Y}(t_1, t_2) \Big|_{t_1 = t_2 = 0} = (10) \left(\frac{1}{4}e^{t_1} + \frac{3}{8}e^{t_2} + \frac{3}{8}\right)^9 \left(\frac{1}{4}e^{t_1}\right) \Big|_{t_1 = t_2 = 0} = \frac{5}{2}$,
 $E[Y] = \frac{\partial}{\partial t_2} M_{X,Y}(t_1, t_2) \Big|_{t_1 = t_2 = 0} = (10) \left(\frac{1}{4}e^{t_1} + \frac{3}{8}e^{t_2} + \frac{3}{8}\right)^9 \left(\frac{3}{8}e^{t_2}\right) \Big|_{t_1 = t_2 = 0} = \frac{15}{4}$,
→ $Cov[X, Y] = \frac{135}{16} - \left(\frac{5}{2}\right) \left(\frac{15}{4}\right) = -\frac{15}{16}$. □

Example 127: Suppose that X has a continuous distribution with p.d.f. $f_X(x) = 2x$ on the interval (0,1), and $f_X(x) = 0$ elsewhere. Suppose that Y is a continuous random variable such that the conditional distribution of Y given X = x is uniform on the interval (0,x). Find the mean and variance of Y.

Solution: This problem can be approached in two ways.

(i) The first approach is to determine the unconditional (marginal) distribution of Y. We are given $f_X(x)=2x$ for 0< x<1, and $f_{Y|X}(y|X=x)=\frac{1}{x}$ for 0< y< x. Then, $f(x,y)=f(y|x)\cdot f_X(x)=\frac{1}{x}\cdot 2x=2$ for 0< x<1 and 0< y< x.

The unconditional (marginal) distribution of Y has p.d.f.

$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y) \, dx = \int_y^1 2 \, dx = 2(1-y) \text{ for } 0 < y < 1 \text{ (and } f_Y(y) \text{ is } 0$$
 elsewhere). Then $E[Y] = \int_0^1 y \cdot 2(1-y) \, dy = \frac{1}{3}$, $E[Y^2] = \int_0^1 y^2 \cdot 2(1-y) \, dy = \frac{1}{6}$, and $Var[Y] = E[Y^2] - (E[Y])^2 = \frac{1}{6} - (\frac{1}{3})^2 = \frac{1}{18}$.

(ii) The second approach is to use the relationships E[Y] = E[E[Y|X]] and Var[Y] = E[Var[Y|X]] + Var[E[Y|X]]. From the conditional density $f(y|X=x) = \frac{1}{x}$ for 0 < y < x, we have $E[Y|X=x] = \int_0^x y \cdot \frac{1}{x} \ dy = \frac{x}{2}$, so that $E[Y|X] = \frac{X}{2}$, and, since $f_X(x) = 2x$, $E[E[Y|X]] = E[\frac{X}{2}] = \int_0^1 \frac{x}{2} \cdot 2x \ dx = \frac{1}{3} = E[Y]$. In a similar way, $Var[Y|X=x] = E[Y^2|X=x] - (E[Y|X=x])^2$, where $E[Y^2|X=x] = \int_0^x y^2 \cdot \frac{1}{x} \ dy = \frac{x^2}{3}$, so that $E[Y^2|X] = \frac{X^2}{3}$, and since $E[Y|X] = \frac{X}{2}$, we have $Var[Y|X] = \frac{X^2}{3} - (\frac{X}{2})^2 = \frac{X^2}{12}$. Then $E[Var[Y|X]] = E[\frac{X^2}{12}] = \int_0^1 \frac{x^2}{12} \cdot 2x \ dx = \frac{1}{24}$, and $Var[E[Y|X]] = Var[\frac{X}{2}] = \frac{1}{4} Var[X] = \frac{1}{4} \cdot [E[X^2] - (E[X])^2] = \frac{1}{4} \cdot [\frac{1}{2} - (\frac{2}{3})^2] = \frac{1}{72}$ so that $E[Var[Y|X]] + Var[E[Y|X]] = \frac{1}{24} + \frac{1}{72} = \frac{1}{18} = Var[Y]$. \square

FUNCTIONS AND TRANSFORMATIONS OF RANDOM VARIABLES

Distribution of a function of a continuous random variable X: Suppose that X is a continuous random variable with p.d.f. $f_X(x)$ and c.d.f. $F_X(x)$, and suppose that u(x) is a one-to-one function (usually u is either strictly increasing, such as $u(x) = x^3$, e^x , \sqrt{x} or $\ln x$, or u is strictly decreasing, such as $u(x) = e^{-x}$). As a one-to-one function, u has an inverse function v, so that v(u(x)) = x. Then the random variable Y = u(X) (Y is referred to as a **transformation of** X) has p.d.f. $f_Y(y)$ found as follows: $f_Y(y) = f_X(v(y)) \cdot |v'(y)|$. If u is a strictly increasing function, then

$$F_Y(y) = P[Y \le y] = P[u(X) \le x] = P[X \le v(y)] = F_X(v(y))$$
.

Distribution of a function of a discrete random variable X: Suppose that X is a discrete random variable with probability function f(x). If u(x) is a function of x, and Y is a random variable defined by the equation Y = u(X), then Y is a discrete random variable with probability function $g(y) = \sum_{y=u(x)} f(x)$ - given a value of y, find all values of x for which y = u(x) (say $u(x_1) = u(x_2) = \cdots = u(x_t) = y$), and then g(y) is the sum of those $f(x_i)$ probabilities.

If X and Y are independent random variables, and u and v are functions, then the random variables u(X) and v(Y) are independent.

The distribution of a sum of random variables:

(i) If
$$X_1$$
 and X_2 are random variables, and $Y=X_1+X_2$, then
$$E[Y]=E[X_1]+E[X_2] \text{ and } Var[Y]=Var[X_1]+Var[X_2]+2Cov[X_1,X_2]$$

(ii) If X_1 and X_2 are discrete non-negative integer valued random variables with joint probability function $f(x_1, x_2)$, then for an integer $k \ge 0$,

$$P[X_1 + X_2 = k] = \sum_{x_1=0}^{k} f(x_1, k - x_1)$$
 (this considers all combinations of X_1 and X_2 whose sum is k).

If X_1 and X_2 are independent with probability functions $f_1(x_1)$ and $f_2(x_2)$, respectively, then $P[X_1+X_2=k]=\sum\limits_{x_1=0}^k f_1(x_1)\cdot f_2(k-x_1)$ (this is the **convolution method** of

finding the distribution of the sum of independent discrete random variables).

- (iii) If X_1 and X_2 are continuous random variables with joint density function $f(x_1,x_2)$ then the density function of $Y=X_1+X_2$ is $f_Y(y)=\int_{-\infty}^{\infty}f(x_1,y-x_1)\,dx_1$. If X_1 and X_2 are independent continuous random variables with density functions $f_1(x_1)$ and $f_2(x_2)$, then the density function of $Y=X_1+X_2$ is $f_Y(y)=\int_{-\infty}^{\infty}f_1(x_1)\cdot f_2(y-x_1)\,dx_1$
- (iv) If $X_1, X_2, ..., X_n$ are random variables, and the random variable Y is defined to be $Y = \sum_{i=1}^n X_i$, then $E[Y] = \sum_{i=1}^n E[X_i]$ and $Var[Y] = \sum_{i=1}^n Var[X_i] + 2\sum_{i=1}^n \sum_{i=i+1}^n Cov[X_i, X_j] \ .$

If $X_1, X_2, ..., X_n$ are mutually independent random variables, then $Var[Y] = \sum_{i=1}^n Var[X_i]$ and $M_Y(t) = \prod_{i=1}^n M_{X_i}(t) = M_{X_1}(t) \cdot M_{X_2}(t) \cdot ... M_{X_n}(t)$

- (v) If $X_1, X_2, ..., X_n$ and $Y_1, Y_2, ..., Y_m$ are random variables and $a_1, a_2, ..., a_n, b, c_1, c_2, ..., c_m$ and d are constants, then $Cov[\sum_{i=1}^n a_i X_i + b, \sum_{j=1}^m c_j Y_j + d] = \sum_{i=1}^n \sum_{j=1}^m a_i c_j Cov[X_i, Y_j]$
- (vi) The Central Limit Theorem: Suppose that X is a random variable with mean μ and standard deviation σ and suppose that $X_1, X_2, ..., X_n$ are n independent random variables with the same distribution as X. Let $Y_n = X_1 + X_2 + \cdots + X_n$. Then $E[Y_n] = n\mu$ and $Var[Y_n] = n\sigma^2$, and as n increases, the distribution of Y_n approaches a normal distribution $N(n\mu, n\sigma^2)$. This is a justification for using the normal distribution as an approximation to the distribution of a sum of random variables.
- (vii) Sums of certain distributions: Suppose that $X_1, X_2, ..., X_k$ are independent random variables and $Y = \sum_{i=1}^k X_i$

distribution of X_i	distribution of Y
Bernoulli $B(1, p)$	binomial $B(k, p)$
binomial $B(n_i, p)$	binomial $B(\sum n_i, p)$
geometric p negative binomial n_i, p	negative binomial k, p negative binomial $\sum n_i, p$
Poisson λ_i	Poisson $\sum \lambda_i$
$N(\mu_i,\sigma_i^2)$	$N(\sum\!\mu_i,\sum\!\sigma_i^2)$

Example 128: The random variable X has an exponential distribution with a mean of 1. The random variable Y is defined to be $Y = 2 \ln X$. Find $f_Y(y)$, the p.d.f. of Y.

Solution:
$$F_Y(y) = P[Y \le y] = P[2 \ln X \le y] = P[X \le e^{y/2}] = 1 - e^{-e^{y/2}}$$

 $\rightarrow f_Y(y) = F_Y'(y) = \frac{d}{dy} (1 - e^{-e^{y/2}}) = \frac{1}{2} e^{y/2} \cdot e^{-e^{y/2}}.$

Alternatively, since $Y=2\ln X$ ($y=u(x)=2\ln x$, and \ln is a strictly increasing function with inverse $x=v(y)=e^{y/2}$), and $X=e^{Y/2}$, it follows that

$$f_Y(y) = f_X(e^{y/2}) \cdot \left| \frac{d}{dy} e^{y/2} \right| = \frac{1}{2} e^{y/2} \cdot e^{-e^{y/2}}.$$

Example 129: Suppose that X and Y are independent discrete integer-valued random variables with X uniformly distributed on the integers 1 to 5, and Y having the following probability function - $f_Y(0) = .3$, $f_Y(1) = .5$, $f_Y(3) = .2$. Let Z = X + Y. Find P[Z = 5].

Solution: Using the fact that $f_X(x) = .2$ for x = 1, 2, 3, 4, 5, and the convolution method for independent discrete random variables, we have

$$f_Z(5) = \sum_{i=0}^{5} f_X(i) \cdot f_Y(5-i)$$

= (0)(0) + (.2)(0) + (.2)(.2) + (.2)(0) + (.2)(.5) + (.2)(.2) = .20.

Example 130: X_1 and X_2 are independent exponential random variables each with a mean of 1. Find $P[X_1 + X_2 < 1]$.

Solution: Using the convolution method, the density function of $Y=X_1+X_2$ is $f_Y(y)=\int_0^y f_{X_1}(t)\cdot f_{X_2}(y-t)\,dt=\int_0^y e^{-t}\cdot e^{-(y-t)}dt=ye^{-y}$, so that $P[X_1+X_2<1]=P[Y<1]=\int_0^1 ye^{-y}dy=\left[-ye^{-y}-e^{-y}\right]\Big|_{y=0}^{y=1}=1-2e^{-1}$ (the last integral required integration by parts).

Example 131: Given n independent random variables $X_1, X_2, ..., X_n$ each having the same variance of σ^2 , and defining $U = 2X_1 + X_2 + \cdots + X_{n-1}$ and

 $V=X_2+X_3+\cdots+2X_n$, find the coefficient of correlation between U and V.

Solution:
$$\rho_{UV} = \frac{Cov[U,V]}{\sigma_U \sigma_V}$$
; $\sigma_U^2 = (4+1+1+\dots+1)\sigma^2 = (n+2)\sigma^2 = \sigma_V^2$.

Since the X's are independent, if $i \neq j$ then $Cov[X_i, X_j] = 0$. Then, noting that Cov[W, W] = Var[W], we have

$$\begin{split} Cov[U,V] &= Cov[2X_1,X_2] + Cov[2X_1,X_3] + \dots + Cov[X_{n-1},2X_n] \\ &= Var[X_2] + Var[X_3] + \dots + Var[X_{n-1}] = (n-2)\sigma^2 \;. \\ \text{Then,} \;\; \rho_{UV} &= \frac{(n-2)\sigma^2}{(n+2)\sigma^2} = \frac{n-2}{n+2} \;. \end{split}$$

Example 132: Independent random variables X, Y and Z are identically distributed. Let W = X + Y. The moment generating function of W is $M_W(t) = (.7 + .3e^t)^6$. Find the moment generating function of V = X + Y + Z.

Solution: For independent random variables,

 $M_{X+Y}(t)=M_X(t)\cdot M_Y(t)=(.7+.3e^t)^6$. Since X and Y have identical distributions, they have the same moment generating function. Thus, $M_X(t)=(.7+.3e^t)^3$, and then $M_V(t)=M_X(t)\cdot M_Y(t)\cdot M_Z(t)=(.7+.3e^t)^9$. Alternatively, note that the moment generating function of the binomial B(n,p) is $(1-p+pe^t)^n$. Thus, X+Y has a B(6,.3) distribution, and each of X,Y and Z has a B(3,.3) distribution, so that the sum of these independent binomial distributions is B(9,.3), with m.g.f. $(.7+.3e^t)^9$.

Example 133: The birth weight of males is normally distributed with mean 6 pounds, 10 ounces, standard deviation 1 pound. For females, the mean weight is 7 pounds, 2 ounces with standard deviation 12 ounces. Given two independent male/female births, find the probability that the baby boy outweighs the baby girl.

Solution: Let random variables X and Y denote the boy's weight and girl's weight, respectively.

Then, W = X - Y has a normal distribution with mean

$$6\frac{10}{16} - 7\frac{2}{16} = -\frac{1}{2}$$
 lb. and variance $\sigma_X^2 + \sigma_Y^2 = 1 + \frac{9}{16} = \frac{25}{16}$.

Then,
$$P[X > Y] = P[X - Y > 0] = P\left[\frac{W - (-\frac{1}{2})}{\sqrt{25/16}} > \frac{-(-\frac{1}{2})}{\sqrt{25/16}}\right] = P[Z > .4],$$

where Z has standard normal distribution (W was standardized). Referring to the standard normal table, this probability is .34.

Example 134: If the number of typographical errors per page type by a certain typist follows a Poisson distribution with a mean of λ , find the probability that the total number of errors in 10 randomly selected pages is 10.

Solution: The 10 randomly selected pages have independent distributions of errors per page.

The sum of m independent Poisson random variables with parameters

 $\lambda_1, \lambda_2, \ldots, \lambda_m$ has a Poisson distribution with parameter $\sum \lambda_i$. Thus, the total number

of errors in the 10 randomly selected pages has a Poisson distribution with parameter 10λ .

The probability of 10 errors in the 10 pages is $\frac{e^{-10\lambda}(10\lambda)^{10}}{10!}$.