Logical Agents

In which we design agents that can form representations of the world, use a process of inference to derive new representations about the world, and use these new representations to deduce what to do.

Knowledge-Based Logical Agents

- Two central AI concepts
 - Representation of <u>knowledge</u>
 - Reasoning processes acting on knowledge
- Play crucial role in "Partially Observable" environments
 - Combine general knowledge with current percepts to infer hidden aspects before acting
- Aids in agent flexibility
 - Learn new knowledge for new tasks
 - Adapt to changes in environment by updating relevant knowledge

Logic

- For logical agents, knowledge is definite
 - Each proposition is either "True" or "False"
- Logic has advantage of being simple representation for knowledge-based agents
 - But limited in its ability to handle uncertainty
- We will examine propositional logic and first-order logic

Knowledge Base

- Central component is its <u>knowledge base</u> (KB)
 - Contains set of "sentences" or factual statements
 - Some assertions about the world expressed with a knowledge representation language
 - KB initially contains some background knowledge
 - Innate knowledge
- How to add new information to KB?
 - TELL function
 - Inference: deriving new sentences from old ones
- How to query what is known?
 - ASK function
 - Answers should follow what has been told to the KB previously

A Simple Knowledge-Based Agent

- Agent needs to know
 - Current state of world
 - How to infer unseen properties of world from percepts
 - How world evolves over time
 - What it wants to achieve
 - What its own actions do in various circumstances

Wumpus World

	SSS Stench		breeze	PIT
$Lion = wumpus \longrightarrow$		breeze Stench gold	PIT	breeze
	SSS Stench		breeze	
	Start	breeze	PIT	breeze

"Wumpus World" Environment

- Simple environment to motivate logical reasoning
- Agent explores cave with rooms connected by passageways
- "Wumpus" beast lurking somewhere in cave
 - Eats anyone who enters its room
 - Agent has one arrow (can kill Wumpus)
- Some rooms contain bottomless pits
- Occasional heap of gold present
- Agent task
 - Enter cave, find the gold, return to entrance, and exit

Wumpus World PEAS Description

- (P)erformance measure
 - Receive +1000 for picking up gold
 - Cost of –1000 for falling into pit or being eaten by Wumpus (GAME OVER!)
 - − Cost of −1 for each action taken
 - − Cost of −10 for using up the only arrow
- (E)nvironment
 - 4x4 grid of rooms
 - Agent starts in square [1,1]
 - Wumpus and gold locations chosen randomly
 - Probability of square being a pit is .2
 - [0=no, ..., 0.5=maybe, ..., 1=yes]

Wumpus World PEAS Description

- (A)ctuators
 - Move forward, turn left, turn right
 - Note: die if enter pit or live wumpus square
 - Grab (gold)
 - Shoot (arrow)
 - Kills wumpus if facing its square
- (S)ensors
 - Nose: squares adjacent to wumpus are "smelly"
 - Skin/hair: Squares adjacent to pit are "breezy"
 - Eye: "Glittery" if and only if gold is in the same square
 - Percepts: [Stench, Breeze, Glitter]

- Is the world deterministic?
- Is the world fully observable?
- Is the world static?

• Is the world discrete?

- Is the world deterministic?
 - Yes, outcomes exactly specified
- Is the world fully observable?
- Is the world static?

• Is the world discrete?

- Is the world deterministic?
 - Yes, outcomes exactly specified
- Is the world fully observable?
 - No, only <u>local</u> percepts
- Is the world static?

• Is the world discrete?

- Is the world deterministic?
 - Yes, outcomes exactly specified
- Is the world fully observable?
 - No, only <u>local</u> percepts
- Is the world static?
 - Yes, Wumpus and pits do not move (though would be interesting!)
- Is the world discrete?

- Is the world deterministic?
 - Yes, outcomes exactly specified
- Is the world fully observable?
 - No, only <u>local</u> percepts
- Is the world static?
 - Yes, Wumpus and pits do not move (though would be interesting!)
- Is the world discrete?
 - Yes, blocks/cells

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

 $\mathbf{P} = pit$

S = stench

V = visited

W = Wumpus

OK		
OK A	OK	

From local percepts, determines that $\{(1,1), (1,2), (2,1)\}$ are free from danger.

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

 $\mathbf{P} = pit$

S = stench

V = visited

W = Wumpus

From <u>breeze</u> percept, determines that (2,2) or (3,1) is a pit. Go back to (1,1) and move up to (1,2).

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

 $\mathbf{P} = \mathbf{pit}$

S = stench

V = visited

W = Wumpus

From <u>stench</u> and <u>no-breeze</u> percept in (1,2), determines that Wumpus in (1,3), pit in (3,1), and (2,2) clear.

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

 $\mathbf{P} = pit$

S = stench

V = visited

W = Wumpus

From local percepts, it is OK to move up or right.

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

 $\mathbf{P} = pit$

S = stench

V = visited

W = Wumpus

Found gold! No need to explore further. Time to head back.

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

 $\mathbf{P} = pit$

S = stench

V = visited

W = Wumpus

Then go home using **OK** squares (retrace route).

Tight Spots

Breeze in (1,2) and $(2,1) \rightarrow$ no safe actions!

Pit may actually only be in (2,2), but can't tell.

More Tight Spots

Smell in $(1,1) \rightarrow$ Cannot move!

Possible action: shoot arrow straight ahead

Logical Agent

- Need agent to represent beliefs
 - "There is a pit in (2, 2) or (3, 1)"
 - "There is no Wumpus in (2, 2)"
- Need to make inferences
 - If available information is correct, draw a conclusion that is guaranteed to be correct
- Need <u>representation</u> and <u>reasoning</u>
 - Support the operation of knowledge-based agent

Knowledge Representation

- For expressing knowledge in computer-tractable form
- Knowledge representation language defined by
 - Syntax
 - Defines the possible well-formed configurations of sentences in the language

- Semantics

- Defines the "meaning" of sentences (need interpreter)
- Defines the <u>truth</u> of a sentence in a world (or model)

The Language of Arithmetic

Syntax: " $x + 2 \ge y$ " is a sentence

"x2 + y >" is not a sentence

Semantics: $x + 2 \ge y$ is true iff the number x + 2 is no less than the number y

 $x + 2 \ge y$ is True in a world where x=7, y=1 $x + 2 \ge y$ is False in a world where x=0, y=6

Inference

- Sentence is <u>valid</u> iff it is true under all possible interpretations in all possible worlds
 - Also called <u>tautologies</u>
 - "There is a stench at (1,1) or there is not a stench at (1,1)"
 - "There is an open area in front of me" is not valid in all worlds
- Sentence is <u>satisfiable</u> iff there is some interpretation in some world for which it is true
 - "There is a wumpus at (1,2)" could be true in some situation
 - "There is a wall in front of me and there is no wall in front of me" is <u>unsatisfiable</u>

Propositional Logic: Syntax

- True, False, S_1, S_2, \dots are sentences
- If S is a sentence, $\neg S$ is a sentence
 - Not (negation)
- $S_1 \wedge S_2$ is a sentence, also $(S_1 \wedge S_2)$
 - And (conjunction)
- $S_1 \vee S_2$ is a sentence
 - Or (disjunction)
- $S_1 \Rightarrow S_2$ is a sentence
 - Implies (conditional)
- $S_1 \Leftrightarrow S_2$ is a sentence
 - Equivalence (biconditional)

Propositional Logic: Semantics

- Semantics defines the rules for determining the truth of a sentence
 - (wrt a particular model)
- ¬S, is true iff S is false
- $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
- $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true
- $S_1 \Leftrightarrow S_2$, is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true
 - $(S_1 \text{ same as } S_2)$

Semantics in Truth Table Form

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Propositional Inference: Enumeration Method

- Truth tables can test for <u>valid</u> sentences
 - True under all possible interpretations in all possible worlds
- For a given sentence, make a truth table
 - Columns as the combinations of propositions in the sentence
 - Rows with all possible truth values for proposition symbols
- If sentence true in every row, then valid

Propositional Inference: Enumeration Method

• Test $((P \lor H) \land \neg H) \Rightarrow P$

P	H	$P \lor H$	\neg_H	(P ∨ H) ∧¬H	$((P \lor H) \land \neg H) \Rightarrow P$
False	False	False	True	False	True
False	True	True	False	False	True
True	False	True	True	True	True
True	True	True	False	False	True

Propositional Inference: Enumeration Method

• Test $((P \lor H) \land \neg H) \Rightarrow P$

P	Н	$P \lor H$	$\neg H$	(P ∨ H) ∧¬H	$((P \lor H) \land \neg H) \Rightarrow P$
False	False	False	True	False	True
False	True	True	False	False	True
True	False	True	True	True	True
True	True	True	False	False	True

Practice

• Test $(P \land H) \Rightarrow (P \lor \neg H)$

Practice

• Test $(P \land H) \Rightarrow (P \lor \neg H)$

P	H	$P \wedge H$	$\neg H$	(P ∨ ¬H)	$(P \wedge H) \Rightarrow (P \vee \neg H)$
False	False	False	True	Ture	True
False	True	False	False	False	True
True	False	False	True	True	True
True	True	True	False	True	True