Copyright pluttan&fiiriis

Привет! Это Трубусы и Уточки, мы создаем свою ботву, этот файл малая ее часть. Пользоваться и распространять файлы конечно же можно. Если вы нашли ошибку в файле, можете

исправить ее в исходном коде и подать на слияние или просто написать в issue. Так же вы можете купить распечатанную версию данного файла в виде книжки.

По всем вопросам писать в ВК.

GitHub: https://github.com/pluttan VK: https://vk.com/pluttan VK: https://vk.com/f i i x i i

https://t.me/botva_its6

 $a = \psi(q_{\overline{q}}) = [\psi(\frac{1}{2})]^{q} {n \choose n}$

Р (Zo) = Подготовка к РК2

x 2 dx [[4. (x) +42 (x) +... + 4, (x)]dx

Математический анализ

(a to) Pn(2)= a0+a, Z

a = 4 (=) ((og a x)' = lim

Над файлом работали: pluttan & fiixii

Copyright pluttan&fiirii &

кинэлэдэдпО Г

1.1 Сформулируйте определение наклонной асимптоты.

Пусть функция y=f(x) определена при x>x0 (x<x0). Если функция при $x\to+\infty(-\infty)$ представима в виде: f(x)=Ax+B+o(1), то прямую y=Ax+B называют наклонной правой (левой) асимптотой графика функции f(x).

1.2 Сформулируйте определение производной функции в точке.

Пусть f(x) определена в окрестности точки x_0 и пусть $\Delta x \neq 0$ таково, что $x_0 + \Delta x$ принадлежит указанной окрестности. Если \exists конечный предел $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$, то он называется производной f(x) в точке x_0 .

1.3 Сформулируйте определение односторонней производной функции.

Если f(x) определена в правосторонней (левосторонней) окрестности точки x_0 , т.е. на полуинтервале $[x_0,x_0+\eta)$ ($x_0,x_0+\eta$), $\eta>0$ и если $\exists \lim_{\Delta x \to 0+(0-)} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$, то этот предел называется правой (левой) производной функции f(x) в x_0 .

1.4 Сформулируйте определение производной п-го порядка.

Производная n-ого порядка от функции y=f(x), есть производная от производной n-1 порядка $y^{(n)}=(f^{n-1}(x))$.

1.5 Сформулируйте определение дифференцируемой функции в точке.

Пусть функция y=f(x) определена в некоторой окрестности точки x_0 . Функция f(x) называется дифференцируемой в точке x_0 , если ее приращение Δy в точке x_0 представимо в следующем виде: $\Delta y=A\Delta x \neq \alpha(\Delta x)\Delta x$, где $A=f'(x_0)$ и $\lim_{x\to\infty}\alpha(\Delta x)=0$.

$u_0=(x\Delta)\omega\lim_{0\leftarrow x\Delta}$ и $u_0(x)$ и $u_0(x)$ тде $u_0(x\Delta)$

1.6 Сформулируйте определение дифференциала первого порядка.

Линейная от Δx функция $A\Delta x(A=f'(x))$ называется дифференциалом функции f(x) 1-ого порядка.

1.7 Сформулируйте определение дифференцияла п-го порядка.

 $f^{(n)}(x)\partial x^n$ Дифференциал n-ого порядка называется дифференциал от дифференциала n-1 порядка $\partial^n y = \partial(\partial^{n-1} y) = 0$

1.8 Сформулируйте определение возрастающей функции.

Функция f(x) называется возрастающей на интервале (a,b), если $\forall x_1,x_2\in (a,b):f(x_2)>f(x_1).$

1.9 Сформулируйте определение невозрастающей функции.

 Φ ункция f(x) называется невозрастающей на интервале (a,b), если $\forall x_1,x_2\in (a,b):f(x_2)\leqslant f(x_1)$.

1.10 Сформулируйте определение убывающей функции.

 Φ ункция f(x) называется убывающей на интервале (a,b), если $\forall x_1,x_2\in (a,b):f(x_2)< f(x_1)$.

1.11 Сформулируйте определение неубывающей функции.

Функция f(x) называется неубывающей на интервале (a,b), если $\forall x_1, x_2 \in (a,b) : f(x_2) \geqslant f(x_1)$.

1.12 Сформулируйте определение монотонной функции.

Функция f(x) называется монотонной, если она невозрастающая или неубывающая.

1.13 Сформулируйте определение строго монотонной функции.

Функция f(x) называется строго монотонной, если она возрастающая или убывающая.

1.14 Сформулируйте определение локального минимума.

Точка x_0 называется точкой локального минимума функции f(x), если $\exists U_\delta(x_0)$, такая что $\forall x \in U_\delta(x_0)$: $f(x_0) \leqslant f(x)$

1.15 Сформулируйте определение строгого локального минимума.

Точка x_0 называется точкой строгого локального минимума функции f(x), если $\exists \overset{\circ}{U}_{\delta}(x_0)$, такая что $\forall x \in \overset{\circ}{U}_{\delta}(x_0)$: $f(x_0) < f(x)$

1.16 Сформулируйте определение локального максимума.

Точка x_0 называется точкой локального максимума функции f(x), если $\exists U_f(x_0)$, такая что $\forall x \in U_f(x_0)$: $f(x_0) \geqslant f(x)$

1.17 Сформулируйте определение строгого локального максимума.

Точка x_0 называется точкой строгого локального минимума функции f(x), если $\exists \overset{\circ}{U}_f(x_0)$, такая что $\forall x \in \overset{\circ}{U}_f(x_0)$: $f(x_0) < f(x)$

1.18 Сформулируйте определение экстремума.

Точками локального экстремума называются точки локального максимума и строгого локального максимума, локального минимума и строгого локального минимума.

1.19 Сформулируйте определение строгого экстремума.

Точками строгого локального экстремума называются точки строгого локального максимума и минимума.

1.20 Сформулируйте определение стационарной точки.

Точки, в которых производная функции равна 0, называются стандартными.

1.21 Сформулируйте определение критической точки.

Точки, в которых производная функции равна 0 или не существует, называются критическими точками функции.

2.8 Сформулируйте теорему Ролля.

Пусть функция f(x):

- непрерывна на отрезке [a,b];
- дифференцируема на интервале (a,b);
- $\cdot (q)f = (p)f \bullet$

Тогда на интервале (a,b) найдётся точка c такая, что f'(c)=0.

2.9 Сформулируйте теорему Лагранжа.

Пусть функция f(x):

• непрерывна на отрезке [a,b];

- дифференцируема на интервале (a,b);

Тогда на этом интервале существует точка c такая, что $f(b)\Box f(a)=f'(c)(b\Box a)$.

2.10 Сформулируйте теорему Коши.

Пусть функции f(x) и g(x):

- непрерывны на отрезке [a,b];
- дифференцируемы на интервале (a,b);
- g'(x) отлична от нуля в каждой точке этого интервала.

Тогда на интервале (a,b) найдется точка c такая, что $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$.

Заметочка: на РК2 очень часто встречаются формулы понижения степени

$$\frac{n^2 \cos 2}{2} = n^2 \sin^2 \frac{n^2 \cos 2}{2}$$

$$\frac{n^2 \cos 2}{2} = n^2 \cos^2 \frac{n^2 \cos 2}{2}$$

Сформулируйте определение выпуклости функции на промежутке.

точки касания, лежит выше(ниже) точки графика функции с той же абсциссой. этом интервале, если для ∀ касательной к графику этой функции каждая точка касательной, отличная от Пусть функция f(x) определена на интервале (a,b). Говорят, что f(x) является выпуклой вверх(вниз) на

Сформулируйте определение точки перегиба графика функции.

такое, что направления выпуклостей f(x) на интервалах $(x_0-\delta;x_0)$ и $(x_0;x_0+\delta)$ различны. Точка $x_0\in(a,b)$ называется точкой перегиба f(x), если эта функция непрерывна в точке x_0 и если $\exists\delta>0$

Формулировки теорем 7

Сформулируйте необходимое и достаточное условие наличия наклонной асимптоты. 1.2

(певой) асимптотой графика данной функции, когда: Пусть функция f(x) определена при $x>x_0(x< x_0)$. Прямая y=Ax+B тогда и только является правой

 $A = (x - (x) t) \min_{\substack{(x) \\ (x) - (x) \\ ($

Сформулируйте необходимое и достаточное условие дифференцируемости функции в

точке.

ная $f'(x_0)$ в этой точке. Φ ункция f(x) дифференцируема в некоторой точке x_0 тогда и только тогда, когда существует производ-

Сформулируйте теорему о связи дифференцируемости и непрерывности функции.

Если функция дифференцируема в некоторой точке, то она непрерывна в этой точке.

2.4 Сформулируйте теорему о производной произведения.

 $(x)'\varrho(x)t + (x)\varrho(x)'t = '((x)\varrho(x)t)$ мёнидп , $(x)\varrho(x)t$ кишинұф Пусть функции f(x) и g(x) дифференцируемы в точке $x_0.$ Тогда в этой точке дифференцируемы также

Сформулируйте теорему о производной частного. 2.5

Пусть функции f(x) и g(x) дифференцируемы в точке x_0 и $(g(x) \neq 0)$. Тогда в этой точке дифференцируема также функции f(x), причём $\frac{f(x)}{f(x)g(x)-f(x)g'(x)}$

Сформулируйте свойство инвариантности формы записи дифференциала первого по-9.2

Дифференциал функции y=f(u) не зависит от того, является ли u независимой переменной или функцией

от другой независимой переменной.

Сформулируйте теорему Ферма. *L*.2

принимает наибольшее (или наименьшее) значение на этом промежутке. Тогда, если существует производ-Пусть функция f(x) определена на промежутке I и в некоторой внутренней точке x_0 этого промежутка

.опун внава вно от ,(0x)\ 1 ввн