

Description of the Patent of Invention for "Wave Energy Plant for Electricity Generation"

Technical Field

The proposal concept deals with an ocean wave energy plant for electricity generation. It is composed by several components such as floaters, hydraulic pumps, hyperbaric chambers, outflow regulating valve, hydraulic turbine and electric generator.

Previous Technics

In the year of 1799 in France, the wave energy was employed directly to drive pumps, mills and other heavy mechanisms. Since then, experiences with different concepts have been performed worldwide.

Following the oil crisis of the 70's, the scientific research has had a significant increment in extracting increased amounts of electricity from wave energy, particularly in Europe.

Currently the electricity produced through the ocean wave energy is already treated commercially in a few cases. Some examples are: Netherlands with the project AWS (Archimedes Wave Swing) with 2MW of power, Portugal with the project OWC (Oscillating Water Column) with 400kW of power and the United Kingdom with the project LIMPET with 500 kW of power. In Denmark it is in installation tests the project WAVE DRAGON, with power generation up to 4MW.

The United States, Canada, Australia, Ireland, Norway, New Zealand, Spain, Sweden, Greece, India, China, Korea and Japan are examples of countries that have been working in research and development on ocean wave energy.

The concept of the proposed plant differs from the others considering that it incorporates hyperbaric chambers operating in high pressure up to 2500 psi or 17MPa

(equivalent to 1750 meters of water column). Thus, the plant can operate under pressure up to 17Mpa.

Detailed Description of the Invention

Description of Plant's Equipment and Working Mode

5 The present invention describes a wave energy plant that operates through the action of the sea waves on floaters, which can be of different sizes and shapes. Rectangular floaters have been used preferentially. Each floater is attached to a mechanical arm articulated at its
10 end point located at the main structure. The arm movements induced by the floater work as an actuator on a horizontal piston pump, sending either pressurized ocean or fresh water to a storage tank (hyperbaric chamber). Inside the chamber there is a certain amount of nitrogen gas so that
15 the chamber works as a hydraulic accumulator. When the pressure within the accumulator reaches the right operational level the pressurized water is ejected to a hydraulic turbine connected to an electric generator to produce electricity.

20 The amount of water fed into the hyperbaric chamber is set free by an outflow valve controller to move the turbine. This valve operates with pressures up to 2600 psi (17.5 Mpa) and it is able to outflow from 0,05 m³/s to 0,3 m³/s. The turbine shaft rotation is transmitted to an
25 electric generator to convert mechanical energy into electricity. An electronic control system monitors both voltage and frequency of the produced electricity, in order to input electricity properly to the local grid.

30 The equipments of the plant can be mounted on a fixed platform about five meters above the water sea level, next to the coast line (near shore system). For plants installed on the coast line or on existing piers, onshore system, it is recommended water depths greater than 10% of

the wave length to avoid sea bottom effects. The plant can also be installed floating in water depths greater than 35 meters (offshore system).

Process and Operational Parameters

5 The plant power generation is given by the product of the outflow to move the turbine and the pressure supplied by the hyperbaric chamber during the operation. This pressure in a conventional hydroelectric plant is provided by the outflow from the waterfall height
 10 (potential energy). The operational pressure range of the plant is associated with the predominant sea conditions in the installation location, such as average frequency and the significative wave height, according to the table below.

15 Table 1: Relationship between Pressure and Water Column

Pressure (Psi)	Pressure (MPa)	Water column (m)
500	3.5	350
1000	7.0	700
1500	10.5	1050
2000	14.0	1400
2500	17.5	1750

The plant can use either the ocean as a water reservoir or operate in closed circuit with stored fresh water; in this case the water is stored in a water tank.

20 After pumped into the hyperbaric chambers and stored under high pressure, the water jet is released to move the hydraulic turbine. The outflow of the water is controlled by a high pressure valve, especially designed for power control during the variation of the electricity demand, as well as to stop the plant for maintenance or in
 25 an emergency situation.

Drawing's Description

Figure 1 illustrates the equipments of the plant, where A represents the floater, B the articulated horizontal arm, C hydraulic pump, D platform for installation of the equipments, E hyperbaric chamber, F outflow control valve, G hydraulic turbine, H electric generator.

Figures 2 and 3 show the internal components of the outflow control valve. In Figure 2, A represents the valve's main body, B the outflow adjustment needle, C the valve adjustment ring, D the main structure of the valve setting and E the mechanical set for the outflow fine adjustment. Figure 3 shows the specific mechanical assembly of the outflow fine adjustment, where A represents the main body, B the outflow adjustment needle, C the mobile claws of the fine adjustment system.

Advantages of the Proposed Wave Energy Plant

- Production of clean and renewable energy.
- Contribution with additional electricity to the existing grid.
- Supply of electricity to islands or other distant places of the coast not reached by the electricity grid system.
- Modular and compact installations requiring low outflows and high pressures for operation, which means low expenditure costs.
- The increase of power can be obtained by adding modules (floater/ arm/ pump) to the existing plant.
- Clear energy, without environment impacts.

The equipments listed in the present invention do not have to be considered as definitive. Therefore, the number and sort of equipments can suffer variations according to the site characteristics where the plant should be installed.