ST2132

AY23/24 SEM 1

github/jovyntls

01. PROBABILITY

- probability of an event → the limiting relative frequency of its occurrence as the experiment is repeated many times
- the **realisation** x is a constant, and X is a generator
 - running r experiments gives us r realisations x_1,\ldots,x_r

Expectation

discrete: (mass function) $E(X) := \sum_{i=1}^{n} x_i p_i$

continuous:

(density function)

$$E(X) := \int_{-\infty}^{\infty} x f(x) \, dx$$

expectation of a function h(X)

$$E\{h(X)\} = \begin{cases} \sum_{i=1}^n h(x_i) p_i & X \text{ is discrete} \\ \int_{-\infty}^\infty h(x) f(x) \, dx & X \text{ is continuous} \end{cases}$$

Variance

variance,
$$\operatorname{var}(X) := E\{(X - \mu)^2\}$$
 standard deviation, $SD(X) := \sqrt{\operatorname{var}(X)}$

- $var(X) = E(X^2) E(X)^2$
- $E(X \mu) = 0$

Law of Large Numbers

mean and variance of r realisations:

$$\bar{x} := \frac{1}{r} \sum_{i=1}^{r} x_i$$
 $v := \frac{1}{r} \sum_{i=1}^{r} (x_i - \bar{x})^2$

LLN: for a function h, as $r \to \infty$.

$$\frac{1}{r} \sum_{i=1}^{r} h(x_i) \to E\{h(X)\}$$
$$\bar{x} \to E(X), \quad v \to \text{var}(X)$$

Monte Carlo approximation

simulate x_1, \ldots, x_r from X. by LLN, as $r \to \infty$, the approximation becomes exact

$$E\{h(X)\} \approx \frac{1}{r} \sum_{i=1}^{r} h(x_i)$$

Joint Distribution

(discrete) mass function:

$$P(X = x_i, Y = y_i) = p_{ij}$$

(continuous) density function:

$$f: \mathbb{R}^2 \to [0, \infty), \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

(expectation) for $h: \mathbb{R}^2 \to \mathbb{R}$,

$$E\{h(X,Y)\} = \sum_{i=1}^{J} h(x_i, y_i) p_{i,i}$$

 $\begin{cases} \sum_{i=1}^{I} \sum_{j=1}^{J} h(x_i, y_j) p_{ij} & X \text{ is discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f(x, y) \, dx \, dy & Y \text{ is continuous} \end{cases}$

Algebra of RV's

let X, Y be RVs and a, b, c be constants

- Z = aX + bY + c is also an RV
 - z = ax + by + c is a realisation of Z
- linearity of expectation: E(Z) = aE(X) + bE(Y) + c
- any theorem about a RV is true about a constant

Covariance

let $\mu_X = E(X), \mu_Y = E(Y).$

covariance,
$$cov(X, Y) = E\{(X - \mu_X)(Y - \mu_Y)\}$$

- $cov(X,Y) = E(XY) \mu_X \mu_Y$
- cov(X, Y) = cov(Y, X)
- cov(X, X) = var(X)
- cov(W, aX + bY + c) = a cov(W, X) + b cov(W, Y)
- $\operatorname{var}(aX + bY + c) =$ $a^2 \operatorname{var}(X) + b^2 \operatorname{var}(Y) + 2ab \operatorname{cov}(X, Y)$

$joint = marginal \times conditional distributions$

$$f(x,y) = f_X(x)f_Y(y|x)$$

= $f_Y(y)f_X(x|y), \quad x, y \in \mathbb{R}$

- f(x, y) is the *ioint density*
- $f_X(x), f_Y(y)$ are the marginal densities
- $f_Y(\cdot|x)$ is the **conditional** density of Y given X=x
- $f_X(\cdot|y)$ is the **conditional** density of X given Y=y
- for discrete case, density \equiv probability, $x \equiv x_i$, $y \equiv y_i$

Independence

- X, Y are independent $\iff \forall x, y \in \mathbb{R}$,
 - 1. $f(x,y) = f_X(x) f_Y(y)$
 - 2. $f_Y(y|x) = f_Y(y)$
 - 3. $f_X(x|y) = f_Y(x)$
- X, Y are independent ⇒
 - E(XY) = E(X)E(Y)
 - cov(X, Y) = 0

(the converse does not hold)

Conditional expectation

discrete case

let $f_Y(\cdot|x_i)$ be the conditional pmf of Y given $X=x_i$.

$$E[Y|x_i] := \sum_{j=1}^J y_j f_Y(y_j|x_i)$$

$$var[Y|x_i] := \sum_{j=1}^{J} (y_j - E[Y|x_i])^2 f_Y(y_j|x_i)$$

 $E[Y|x_i]$ is like E(Y), with conditional distribution replacing marginal distribution $f_Y(\cdot)$. likewise, $var[Y|x_i]$ like var(Y).

continuous case

$$E[Y|x] := \int_{-\infty}^{\infty} y f_Y(y|x) \, dy$$

$$var[Y|x] := \int_{-\infty}^{\infty} (y - E[Y|x])^2 f_Y(y|x) \, dy$$
$$= E(Y^2|x) - \{E(Y|x)\}^2$$

Distributions

if X is iid with expectation μ , SD σ and $S_n = \sum_{i=1}^n X_i$,

- $E(S_n) = n\mu$
- $SD(S_n) = \sqrt{n}\sigma$
- · variance of sum = sum of variances $\operatorname{var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{var}(x_i)$

bernoulli

binomial

$$X \sim Bin(n, p) \Rightarrow X_i \stackrel{i.i.d.}{\sim} Bernoulli(p)$$

$$E(X) = np, \quad \text{var}(X) = np(1-p)$$

$$E(X) = \sum_{k=1}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

multinomial

 $X \sim Multinomial(n, \mathbf{p})$

• for k outcomes E_1, \ldots, E_k , $Pr(E_i) = p_i$. For some $1 \le i \le k$, E_i occurs X_i times in n runs.

 (X_1,\ldots,X_k) has the multinomial distribution:

$$Pr(X_1 = x_1, \dots, X_k = x_k) = \binom{n}{x_1 \dots x_k} \prod_{i=1}^k p_i^{x_i}$$

- where $\binom{n}{x_1...x_k} = \frac{n!}{x_1!x_2!...x_k!}$
 - combinatorially, # of arrangements of x_1, \ldots, x_k
 - $\sum_{i=1}^n x_i = n$, $x_i \ge 0$

$$E(X) = \begin{bmatrix} np_1 \\ np_2 \\ \vdots \\ np_k \end{bmatrix}, \quad \text{var}(X_i) = np_i(1-p_i)$$

$$\text{var}(X) = \textit{covariance matrix } M \text{ with}$$

$$m_{ij} = \begin{cases} var(X_i) & \text{if } i = j \\ cov(X_i, X_j) & \text{if } i \neq j \end{cases}$$

- $cov(X_i, X_i) < 0$
- $X_i \sim Bin(n, p_i)$
- $X_i + X_i \sim Bin(n, p_i + p_i)$

02. PROBABILITY (2)

Mean Square Error (MSE)

$$MSE = E\{(Y - c)^2\}$$

- predictina Y:
- $MSE = var(Y) + \{E(Y) c\}^2$
- $\min MSE = \text{var}(Y)$ when c = E(Y)
- Y and X are correlated:

$$MSE = var[Y|x] + \{E[Y|x] - c\}^{2}$$

$$MSE = E[(Y - c)^{2}|x] = E[\{Y - E(Y)\}^{2}|x]$$

- $\min MSE = \text{var}(Y|x)$ when c = E[Y|x]
- if c = E(Y) instead of $E(Y|x) \Rightarrow$ the MSE increases by $(E(Y|x) - E(Y))^2$

mean MSE

$$\frac{1}{n} \sum_{i=1}^{n} \text{var}[Y|x_i] \approx E\{\text{var}[Y|X]\}$$

random conditional expectations

let X, Y be r.v.s.

- E[Y|X] is a r.v. which takes value E[Y|x] with probability/density $f_X(x)$
- var[Y|X] is a r.v. which takes value var[Y|x] with probability/density $f_X(x)$

$$E(E[X_2|X_1]) = E(X_2)$$

$$var(E[X_2|X_1]) + E(var[X_2|X_1]) = var(X_2)$$

CDF (cumulative distribution function)

for r.v. X, let $F(x) = P(X \le x)$

• domain: \mathbb{R} ; codomain: [0,1]

$$F(x) = \int_{-\infty}^{\infty} f(x) \, dx$$

Standard Normal Distribution

$$Z \sim N(0,1)$$
 has density function $\phi(z) = rac{1}{\sqrt{2\pi}} \exp\{-rac{z^2}{2}\}, \quad -\infty < z < \infty$

$$E(Z) = 0$$
, $var(Z) = 1$

CDF,
$$\Phi(x) = P(Z \le x) = \int_{-\infty}^{x} \phi(z) dz$$

- $E(Z) = \int_{-\infty}^{\infty} z\phi(z) dz = 0$
 - $E(Z^2) = \int_{-\infty}^{\infty} z^2 \phi(z) \, dz = 1$
 - $E(Z^{2k+1}) = 0 \quad \forall k \in \mathbb{Z}_{\geq 0}$

general normal distribution

let $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\nu, \tau^2)$

standardisation:
$$\frac{X-\mu}{\sigma} \sim N(0,1)$$

- · summations:
 - for constants $a, b \neq 0$,

$$a + bX \sim N(a + b\mu, b^2\sigma^2)$$

•
$$X + Y \sim N(\mu + \nu, \sigma^2 + \tau^2 + 2\operatorname{cov}(X, Y))$$

•
$$cov(X,Y) = 0$$
. $\Rightarrow X \perp Y$

•
$$X \perp Y \Rightarrow X + Y \sim N(\mu + \nu, \sigma^2 + \tau^2)$$

- for W = a + bX,
 - density, $f_W(w) = \frac{d}{dw} F_W(w)$
 - CDF, $F_W(w) = P(X < \frac{w-a}{L}) = \Phi(\frac{w-a}{L})$

Central Limit Theorem

let X_1, \ldots, X_n be iid rv's with expectation μ and SD σ , with $S_n = \sum_{i=1}^n X_i$

as $n \to \infty$, the distribution of the standardised $S_n = \frac{S_n - n\mu}{\sqrt{n}\sigma}$ converges to N(0,1)

- $E(S_n) = n\mu$, $var(S_n) = n\sigma^2$
- for large n, approximately $S_n \sim N(n\mu, n\sigma^2)$

bernoulli

let $X_i \sim Bernoulli(p)$. then $S_n \sim Binom(n, p)$

- for large n, $S_n = N(np, np(1-p))$
- CLT: standardised $\frac{S_n-np}{\sqrt{n}\sqrt{p(1-p)}} \to N(0,1)$ as $n\to\infty$

Distributions

chi-square (χ^2)

$$\text{let } Z \sim N(0,1). \quad \Rightarrow \text{then } Z^2 \sim \chi_1^2$$

- Z^2 has χ^2 distribution with 1 degree of freedom
- degrees of freedom = number of RVs in the sum

$$E(Z^2) = 1, \quad E(Z^4) = 3$$

 $var(Z^2) = E(Z^4) - \{E(Z^2)\}^2 = 2$

let
$$V_1,\dots,V_n$$
 be iid χ_1^2 RVs and $V=\sum_{i=1}^n V_i.$ then
$$V\sim \chi_n^2$$

$$E(V)=n \quad {\rm var}(V)=2n$$

gamma

$$\begin{array}{l} \text{let } \alpha,\lambda>0. \text{ The } Gamma(\alpha,\lambda) \text{ density is} \\ \frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}, \quad x>0 \end{array}$$

where $\Gamma(\alpha)$ is a number that makes density integrate to 1

- $\chi_n^2 \text{ RV} \sim Gamma(\frac{n}{2}, \frac{1}{2})$

 - χ_n^2 is a special case of Gamma! density of χ_1^2 RV = $\frac{1}{\sqrt{2\pi}}v^{-1/2}e^{-v/2}, \quad v>0$
- $=Gamma(\frac{1}{2},\frac{1}{2})$ if $X_1\sim Gamma(\alpha_1,\lambda)$ and $X_2\sim Gamma(\alpha_2,\lambda)$ are independent, then $X_1 + X_2 \sim Gamma(\alpha_1 + \alpha_2, \lambda)$

t distribution

let $Z \sim N(0,1)$ and $V \sim \chi_n^2$ be independent.

$$\frac{Z}{\sqrt{V/n}} \sim t_n$$

has a t distribution with n degrees of freedom.

- t distribution is symmetric around 0
- $t_n \to Z$ as $n \to \infty$ (because $\stackrel{V}{=} \to 1$)

F distribution

let $V \sim \chi_m^2$ and $W \sim \chi_n^2$ be independent.

$$\frac{V/m}{W/n} \sim F_{m,n}$$

has an F distribution with (m, n) degrees of freedom.

- even if m=n, still two RVs V,W as they are independent
- for $T \sim t_n$, $T^2 = \frac{Z^2}{V/n} \sim F_{1,n}$

IID Random Variables

let X_1, \ldots, X_n be iid RVs with mean \bar{X} .

sample variance,
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

let
$$X_1,\ldots,X_n$$
 be iid $N(\mu,\sigma^2)$. $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$. $\bar{X}\sim N(\mu,\frac{\sigma^2}{n})$

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{\sigma^2}{n}$$

more distributions:

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

• \bar{X} and S^2 are independent

Multivariate Normal Distribution

let μ be a $k \times 1$ vector and Σ be a *positive-definite* symmetric $k \times k$ matrix.

the random vector $\mathbf{X} = (X_1, \dots, X_k)'$ has a multivariate normal distribution $N(\mu, \Sigma)$ if its density function is

$$\frac{1}{(2\pi)^{k/2}\sqrt{det}\boldsymbol{\Sigma}}\exp\left(-\frac{(\boldsymbol{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}{2}\right)$$

- $E(X) = \mu$, $var(X) = \Sigma$
- for any non-zero $k \times 1$ vector \boldsymbol{a} ,

$$a'X \sim N(a'\mu, a'\Sigma a)$$

- $a'\Sigma a > 0$ because Σ is positive-definite
- the product a'X is a scalar (same for $a'\mu, a'\Sigma a$)
- two multinomial normal random vectors X_1 and X_2 , sizes h and k, are independent if $cov(X_1, X_2) = \mathbf{0}_{h \times k}$
 - $(X_1 \bar{X}, \dots, X_n \bar{X})$ has a multivariate normal distribution; the covariance between \bar{X} and $(X_1 - \bar{X}, \dots, X_n - \bar{X})$ is 0, thus they are independent

03. POINT ESTIMATION

for a variable v in population N,

$$\mu = \frac{1}{N} \sum_{i=1}^{N} v_i$$
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (v_i - \mu)^2$

- μ , σ^2 are **parameters** (unknown constants)
- a simple random sample is used to estimate parameters: individuals drawn from the population at random without replacement

binary variable

for variable v with proportion p in the population,

$$\mu = p, \qquad \sigma^2 = p(1-p)$$

single random draw

for variable v (population of size N, mean μ , variance σ^2), let X be the chosen v-value.

$$E(X) = \mu$$
, $var(X) = \sigma^2$

draws with replacement

let X_1, \ldots, X_n be random draws with replacement from a population of mean μ and variance σ^2 .

random sample mean,
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$X_1, \dots, X_n$$
 are iid with $E(X_i) = \mu$, $\operatorname{var}(X_i) = \sigma^2$
$$E(\bar{X}) = \mu, \operatorname{var}(\bar{X}) = \frac{\sigma^2}{\pi}$$

let x_1, \ldots, x_n be realisations of n random draws with replacement from the population.

sample mean,
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- as $n \to \infty$, $\bar{x} \to \mu$ (LLN)
- sample distribution, x_i has the same distribution as X_i and the population distribution

representativeness

- X_1, \ldots, X_n is **representative** of the population
 - as n gets larger, \bar{X} gets closer to μ
- x_1, \ldots, x_n are *likely* representative of the population

estimating mean

given data x_1, \ldots, x_n ,

- sample mean, $\bar{x}=\frac{1}{n}\sum_{i=1}^n x_i$ is an **estimate** of μ the error in \bar{x} is $\mu-\bar{x}$; it cannot be estimated
- \bar{x} is a realisation of the **estimator** \bar{X}
 - this realisation is used to estimate μ

standard error

the size of error in estimate \bar{x} is roughly $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

the standard error (SE) in \bar{x} is $\frac{\sigma}{\sqrt{n}}$

• SE is a constant by definition: $SE = SD(\hat{X}) = \frac{\sigma}{\sqrt{E}}$

estimating σ

intuitive estimate of σ^2 , $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$

sample variance,
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$E(s^2) = \sigma^2$$

Point estimation of mean

a population (size N) has unknown mean μ , variance σ^2 . for random draws (without replacement) x_1, \ldots, x_n :

 \bar{x} is a realisation of \bar{X} , with $E(\bar{X}) = \mu$, $var(\bar{X}) = \frac{\sigma^2}{2\pi}$

- μ is estimated as $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- error in \bar{x} is measured by the SE: $\frac{\sigma}{\sqrt{n}} = SD(\bar{X})$
- SE is estimated as $\frac{s}{\sqrt{n}}$ $\Rightarrow \mu$ is around \bar{x} , give or take $\frac{s}{\sqrt{x}}$

unbiased estimation

- since $E(\bar{X}) = \mu$, \bar{X} is an **unbiased** estimator of μ . \bar{x} is an unbiased estimate.
- S^2 is unbiased for σ^2 : $E(S^2) = \sigma^2$
- S is not unbiased for σ : $E(S) < \sigma$

Simple random sampling (SRS)

n random draws without replacement from a population of mean μ and variance σ^2 .

- for $i=1,\ldots,n, E(X_i)=\mu$ and $\operatorname{var}(X_i)=\sigma^2$
- for $i \neq j$, $cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$
- ullet if n/N is relatively large,
 - multiply SE by correction factor $\sqrt{\frac{N-n}{N-1}}$
 - standard error = $\frac{N-n}{N-1}$

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{N-n}{N-1} \frac{\sigma^2}{n}$$

• if $n \ll N$, then SRS is like sampling with replacement (treat the data as if they come from IID RVs X_1, \ldots, X_n)

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{\sigma^2}{n}$$

estimating proportion p

• in a 0-1 population, $\mu = p$, $\sigma^2 = p(1-p)$

• p is estimated as \bar{x} (sample proportion of 1's)

- $SE = \frac{\sqrt{p(1-p)}}{\sqrt{n}} = SD(\hat{p})$ estimated by replacing p with \bar{x}
- unbiased estimator \hat{p}

- $E(\hat{p}) = p$, $var(\hat{p}) = \frac{p(1-p)}{n}$, $SD(\hat{p}) = SE$
- the estimate of σ is $\hat{\sigma}$, not s
- e.g. if a SRS of size 100 has 78 white balls. $p \approx 0.78 \pm \frac{\sqrt{0.78 \times 0.22}}{\sqrt{100}}$

Gauss Model

Let x_i be a realisation of X_i . X_1, \ldots, X_{100} are random draws with replacement from an imaginary population with mean w and variance σ^2 , w and σ^2 are parameters (unknown constants).

- $E(X_i) = w$, $\operatorname{var} X_i = \sigma^2$ (since X_i is just 1 draw)
- $E(\bar{X}) = w$, $\operatorname{var} \bar{X} = \frac{\sigma^2}{100}$