

/	Please write clearly in	ı block capitals.	
	Centre number	Candidate number	
	Surname		
	Forename(s)		
	Candidate signature		
		I declare this is my own work.	/

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Wednesday 24 May 2023 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

FM03

	Answer all questions in the spaces provided.	
1	The 3×3 matrix N represents a reflection in the plane $y = 0$ The 3×3 matrix M represents an enlargement, scale factor 2 with the origin as the centre of enlargement.	
	Find the matrix NM [2 marks]	
	NM = 	

$$z^3 - 4z^2 + 3z + c = 0$$

where $\,c\,$ is a non-zero constant, has roots $\,\, \alpha \,$, $\,\, \beta \,\,$ and $\,\, \gamma \,\,$

2 (a) Show that

$$\alpha^2 + \beta^2 + \gamma^2 = 10$$

[3 marks]

2 (b) Explain why

$$\beta^3 - 4\beta^2 + 3\beta + c = 0$$

[1 mark]

2 (c) Show that

$$\alpha^3 + \beta^3 + \gamma^3 = 28 - 3c$$

[2 marks]

6

3 Two 3×3 matrices **A** and **B** are such that

$$det(\mathbf{AB}) = 10$$
 and $det(\mathbf{A}^{-1}) = 5$

A three-dimensional shape S_1 with volume $6~{\rm cm}^3$ is mapped onto the shape S_2 by the transformation represented by matrix ${\bf B}$

Find the volume of S_2

Γ4	ma	ark	re
L4	1116	ai r	12

Answer

4

4 A curve has Cartesian equation

$$y = x\sqrt{x} - \frac{1}{3}\sqrt{x}$$

4 (a) Show that

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \left(px^n + qx^{-n}\right)^2$$

where p, q and n are rational numbers.

[2 marks]

			Do not
			outside bo
b)	The arc of the curve from $x = 1$ to $x = 4$ is rotated through 2π radians about the x -axis.		
	Show that the area of the surred surface generated is		
	Show that the area of the curved surface generated is $\frac{173}{3}\pi$		
		[4 marks]	

5	Evaluate the improper integral	
	$\int_0^e \left(9x^2 \ln x + \frac{4}{1 + 4x^2}\right) dx$	
	showing the limiting process used.	[7 marks]
	Answer	

5	By using an integrating factor, find the general solution of the differential equation				
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{8x}{x^2 + 2}y = 2x^3 + \frac{1}{\left(x^2 + 2\right)^{\frac{9}{2}}}$				
	Give your answer in the form $y = f(x)$				
	[7	' marks]			

12	=

7

7	The sequence u_1, u_2, u_3, \ldots is defined by				
	$u_1 = 3$ $u_{r+1} = 3u_r + 4$				
7 (a)	By writing $u_{r+1} = 3u_r + 4$ in the rearranged form $u_{r+1} - u_r = 2u_r + 4$ use the method of differences to show that				
	$\sum_{r=1}^{n} u_r = \frac{1}{2} u_{n+1} - 2n - \frac{3}{2}$				
	[3 marks]				

7	(b)	Prove by induction that, for all integers $n \ge 1$		
		$u_n = 5 \times 3^{n-1} - 2$		
		··n · · · ·	[4 marks]	
			_	
7	(c)	Hence, write down $\sum_{r=1}^{n} u_r$ in terms of n		
		r=1	P4	
			[1 mark]	
		$\sum_{r=1}^{n} u_r =$		
		$\sum_{r=1}^{n} u_r$		

8 (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

[2 marks]

Answer

8	(b)	It is given that y satisfies the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} = 6\mathrm{e}^{-2x}$$

and when x = 0 it is given that both y = 0 and $\frac{d^2y}{dx^2} = 4$

Find the value of	\mathcal{Y}	when	x = 3
-------------------	---------------	------	-------

[/ marks]

y =

$$\mathbf{A} = \begin{bmatrix} 3 - k & 1 - k & 3 \\ 5 & 7 & 4 \\ 3 & 5 & 3 \end{bmatrix}$$

where k is a **positive** constant.

)]

$$A^{-1} =$$

9	(b) (i)	Use your answer	to part (a)	to solve the	equations
---	---------	-----------------	-------------	--------------	-----------

$$(3-k)x + (1-k)y + 3z = 1$$

 $5x + 7y + 4z = 1$
 $3x + 5y + 3z = 1$

Give your	solution	in	terms	of	k
-----------	----------	----	-------	----	---

[3 marks]

9 (b) (ii) Hence, state the range of possible values of
$$x + y + z$$

[1 mark]

Answer ____

Turn over ▶

10 (a) (i) Write down $e^{\frac{i\theta}{2}} + e^{-\frac{i\theta}{2}}$ in terms of $\cos\left(\frac{\theta}{2}\right)$

[1 mark]

$$e^{\frac{i\theta}{2}} + e^{-\frac{i\theta}{2}} =$$

10 (a) (ii) Hence, given that $e^{i\theta} \neq -1$ show that

$$\frac{1}{e^{i\theta}+1} = \frac{1}{2} - \frac{i}{2} tan \left(\frac{\theta}{2}\right)$$

[2 marks]

10 (b) Hence, by replacing θ by $\pi - \theta$ in the equation in **part (a)(ii)**, show that for $e^{i\theta} \neq 1$

$$\frac{1}{e^{i\theta}-1} = -\frac{1}{2} - \frac{i}{2}\cot\left(\frac{\theta}{2}\right)$$

[3 marks]

Deduce that, for $e^{2i\theta} \neq 1$ $\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers. [2 marks]		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$ where a and b are rational numbers.		
where a and b are rational numbers.	Deduce that, for $e^{2i\theta} \neq 1$	
where a and b are rational numbers.		
where a and b are rational numbers.	1 $(\mathbf{L}_{\mathbf{L}}(\theta))$	(θ)
where a and b are rational numbers.	$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta} = a + i b \tan \left(\frac{1}{2}\right)$	$-\cot\left(\frac{1}{2}\right)$
	((-)	(-//
	and I am as East a market	
	where a and b are rational numbers.	[2 marks]
		[2 marks]

11 The line
$$L$$
 has equation $\begin{pmatrix} \mathbf{r} - \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \mathbf{0}$

The plane
$$\Pi$$
 has equation $\mathbf{r} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$

11 (a) Find
$$\begin{bmatrix} -2\\1\\2 \end{bmatrix} \times \begin{bmatrix} 1\\-3\\4 \end{bmatrix}$$

[1 mark]

Answer			

11 (b) Use a scalar triple product to determine whether or not $\begin{bmatrix} -4 \\ 3 \\ -2 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$

are coplanar vectors.

[2 marks]

Answer

11 (c)	Calculate the acute angle between the line L and the plane Π giving your arthe nearest degree.	swer to
	the hearest degree.	[4 marks]
	Answer	
11 (d)	The line I interprete the plane II at the point D	
11 (d)	The line L intersects the plane Π at the point P	
	The point Q has coordinates (1, 0, 2)	
	Calculate the length PQ	[4 marks]
	Question 11 continues on the next page	

Answer	
Hence, or otherwise, find the ${f exact}$ value for the shortest distance from the pother plane Π	oint Q to
	[3 marks]
	<u> </u>

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

Do not write outside the

The curve has exactly one stationary point <i>P</i> 12 (a) Find the <i>x</i> -coordinate of <i>P</i> giving your answer in the form ln <i>k</i> where <i>k</i> is a coordinate of the	
	onstant. marks]
Answer	

	The line L is the tangent to the curve at P	
	Find the shortest distance of <i>L</i> from the origin.	
	Give your answer in the form $\left. a(b)^c \right.$ where $\left. a \right.$, $\left. b \right.$ and $\left. c \right.$ are rational number	ers.
		[3 marks]
	Answer	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	
(c)	Answer Hence, determine whether or not the line $ L $ intersects the curve $ y = \tanh x $	

13	(a)	Write down the Maclaurin series expansion of In	(1+4x) in ascending powers of x
		up to and including the term in x^3 and state the	range of values of x for which this
		expansion is valid.	[2 marks]
		$\ln(1+4x) =$	
		$\ln\left(1+4x\right) = \underline{\hspace{1cm}}$	valid for
13	(b)	It is given that $y = \ln(\cos x - \sin x)$	
13	(b) (i)	Show that	
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-2}{1-\sin 2x}$	
		$\mathbf{q}_{\lambda} = \mathbf{S} \mathbf{n} \mathbf{z}_{\lambda}$	[3 marks]

13 (b) (ii)	Hence, show that the first three non-zero terms in ascending powers of x in the
	Maclaurin series expansion of $\ln(\cos x - \sin x)$ are $-x - x^2 - \frac{2}{3}x^3$
	[3 marks
13 (c)	Hence, show that
13 (c)	
	$\lim_{x\to 0} \left\lceil \frac{\ln\left(\left(1-\sin 2x\right)\sqrt{1+4x}\right)}{5x^2+6x^3}\right\rceil$
	exists and state its value.
	[5 marks
	Answer

The diagram shows a sketch of a curve *C*, the pole *O* and the initial line.

The end points A and B of the curve C are shown on the diagram above.

The curve C has polar equation

$$r = \frac{3}{2} \csc^2 \left(\frac{\theta}{2}\right)$$
 for $\frac{\pi}{4} \le \theta \le \frac{7\pi}{4}$

14 (a) The end point A has polar coordinates $\left(6+3\sqrt{2}, \frac{\pi}{4}\right)$

Show that the area of triangle AOB is $27 + 18\sqrt{2}$

[2 marks]

-		

14 (b)	Find the Cartesian equation of C giving your answer in the form $y^2 = f(x)$	
		[4 marks]
	Answer	
14 (c)	The straight line with polar equation $\tan\theta=\sqrt{3}$ intersects the curve C at the P and Q	points
14 (c) (i)	Find the polar coordinates of <i>P</i> and <i>Q</i>	
14 (6) (1)	Find the polar coordinates of F and Q	[3 marks]
	Answer	
	Question 14 continues on the next page	

14 (c) (ii) Find	$\int \left(1 + \cot^2\left(\frac{\theta}{2}\right)\right) \csc^2\left(\frac{\theta}{2}\right) d\theta$	
	[3 n	narks]
	Answer	

	[3 marks]
Initial	line

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.

outside the box

Do not write

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

IB/G/Jun23/FM03