

Evaluation Board for Dual VGA and ADC

EVAL-AD8332/AD9238

FEATURES

Full selection of VGA functions
Self-contained high speed differential dual ADC
On-board clock source
Provisions for external clock
Jumper selectable VGA features
Standard ADI HSC FIFO board for control
Single 5 V supply operation

APPLICATIONS

TGC development in ultrasound systems VGA to ADC interface development Evaluation of TGC filters Evaluation of the AD8332 VGA Evaluation of the AD9238 HS ADC

INTRODUCTION

The EVAL-AD8332/AD9238 and ADC evaluation board is a fully integrated dual-channel differential variable gain amplifier (VGA) and analog-to-digital converter (ADC) on a single board. When connected to a multipurpose HSC FIFO board and operated with the accompanying software, ADC Analyzer™, it can convert and display analog waveforms processed by the VGA or perform FFTs and display up to six harmonics. It can be operated with its onboard clock or from an external clock for coherent sampling. Figure 2 is a simplified functional block diagram of the system.

Space is provided for a differential filter (with up to four poles) between VGA and ADC.

Figure 1. AD8332/AD9238 Connected to the FIFO Board

TABLE OF CONTENTS

General Description	3
peration	7
Equipment Needed	7
Initial SetUp	7
Initializing Analyzer Menus	9

Printed Board Layout	12
Ordering Information	18
Ordering Guide	19
ESD Caution	19

REVISION HISTORY

1/05—Revision 0: Initial Version

GENERAL DESCRIPTION

Figure 3 is a schematic of the VGA section of the board. There are several user options available for the AD8332. The input impedance is determined by the value of the feedback (RFBn) resistors. Although the default input impedance is 50 Ω , other impedances are obtained replacing the surface mount resistors with the appropriate values (consult the AD8332 data sheet for reference). Removing the feedback resistor results in the open circuit input impedance of 6 k Ω . As a rule of thumb, the value of the resistor is 5.5 × the desired matching impedance.

Figure 4 is the ADC and clock schematic and the power subcircuit The AD8332 operates from a single 5 V supply, while a 3.3 V LDO (VR1) provides power for the ADC, clock, and digital interface circuitry. Power pins on the devices are decoupled using ferrite beads.

The on-board clock frequency is 20 MHz; thus, the software must be set up with a windowing function to optimize non-coherent sampling. An SMA connector, S2, is provided for an external clock if coherent sampling is desired. The jumper, JP4, must be moved to its upper position. Trimpot R16 can be used to center the clock offset. If R9 and R10 are removed, the two channels of the AD9238 can be operated with independent clocks. Consult the AD9238 data sheet for additional operating details.

Figure 5 is a schematic of the interface circuit. Note that the FIFO evaluation board is available for a parallel port, which uses a standard printer cable, and for a USB. Many new laptop computers have only USB ports, while older laptops have parallel ports but not USB interfaces. Be sure to select the version that will interface with your computer.

For input frequencies from 1 MHz to 5 MHz, the 20 MHz on-board clock provides for adequate sampling despite non-coherency with the input signal, as long as windowing is enabled. (Windowing is an option offered in ADC Analyzer, which ensures that whole integers of the input waveform are sampled.) For the examples shown in this data sheet, the input signal was 1 MHz and the *Hanning* window option was selected. For coherent sampling, synchronized external generators are required for clock and signal inputs. Refer to the FIFO board data sheet for further information.

The signal generator shown in Figure 6 is a general-purpose instrument found on the benches of many labs. Harmonic distortion, although sufficiently low for most applications, can nonetheless be higher than that generated in either the AD8332 or AD9238. To reduce this level at the input, a low pass filter at the frequency of interest may be required.

Figure 2. Simplified Block Diagram

Figure 3. Schematic—VGA

Figure 4. Schematic—ADC

Figure 5. Schematic—Interface

OPERATION

EQUIPMENT NEEDED

Power supplies—5 V and 3.3 V dc; high speed ADC FIFO evaluation kit; personal computer running Windows 95 or later, analog signal source and low pass filter; and reference supply for Vgain.

INITIAL SETUP

Table 1 lists the jumper and test-point functions for the VGA and ADC. Because the FIFO board functions as a universal interface for multiple ADC part numbers, it must be configured by jumpers specific for the AD9238. Jumper configurations for printer cable and USB versions are shown separately in Table 2 and Table 3. For a more detailed description of the jumper functions, consult the FIFO data sheet HSC-ADC-EVAL-

SC/HSC-ADC-EVAL-DC (or the EVAL-A version), both of which are found on the Analog Devices website.

Figure 6 illustrates the setup for operation. The EVAL-AD8332/ AD9238 is connected to either an HSC-ADC-EVAL-DC or HSC-ADC-EVALA-DC by mating 80 pin headers. The FIFO board connects to a personal computer using a standard parallel port printer cable or USB cable. A mouse is highly recommended if a laptop computer is used. A CD ROM of *ADC Analyzer*, an interactive program that operates the converters and processes the recovered data, is provided with both FIFOs. Refer to the FIFO data sheet for details on loading and operating the software. The system requires +5 V and +3 V 0.5 A supplies.

Table 1. AD8332/AD9238 Jumpers

Jumper	Function	Configuration
1	Data clock—delayed or inverted	Left position (inverted)
2	Select shared reference (Yes or No)	Left position (Yes)
3	Duty cycle stabilizer	Not inserted
4	Select internal or external clock	Internal selected (toward bottom of board)
7	DC couple low output of Channel 2	Not inserted
8	DC couple high output of Channel 2	Not inserted
9	DC couple high output of Channel 1	Not inserted
10	DC couple low output of Channel 1	Not inserted
11	Data format—inserted twos complement; removed offset binary	Not inserted
13	Connects VCM input of Channel 1 to VCM input of Channel 2	Not inserted
14	Connects optional VCM amplifier to VCM inputs	Not inserted
15	High or low gain select	High gain
16	Enable or disable the AD8332	Enable

Table 2. FIFO Board Jumper List—Printer Cable (Ref)

Jumper	Configuration	Jumper	Configuration	Jumper	Configuration	Jumper	Configuration
1	Unused	12	Installed	23	Unused	33	Lower position
2	Unused	13	Installed	24	Installed	34	Installed
3	Installed	14	Installed	25	Unused	35	Installed
4	Upper position	15	Installed	26	Unused	36	Installed
5	Position 3	16	Right position	27	Unused	37	Installed
6	Position 3	17	Unused	28	Unused	38	Installed
7	Lower position	18	Left position	29	Unused	39	Installed
8	Installed	19	Installed	30	Unused	40	Installed
9	Installed	20	Installed	31	Installed	41	Installed
10	Installed	21	Installed	32	Left position	42	Installed
11	Installed	22	Unused				

Table 3. FIFO Jumper List—USB Interface (Ref)

Jumper	Configuration	Jumper	Configuration	Jumper	Configuration	Jumper	Configuration
101	Unused	202	Unused	305	Position 3	313	Installed
102	Unused	203	Installed	306	Unused	314	Position 3
103	Installed	205	Installed	307	Unused	315	Position 1
105	Installed	206	Unused	310	Installed	401	Position 1
106	Unused	207	Unused	311	Installed	402	Position 3
107	Unused	303	Unused	312	Installed	403	Position 1
201	Unused	304	Position 3				

Figure 6. Test Interconnections

INITIALIZING ANALYZER MENUS

After the power and cabling have been set up, the system is ready for initialization. A 1 MHz sine wave input signal is recommended for this trial run. As a sanity check, observe the waveform prior to digitization by probing JP12 and/or JP17 with a differential probe. Adjust generator and attenuator settings for just under 2 V p-p to the ADC.

Initiate ADC Analyzer on the computer. When prompted for a configuration file, select AD9238. This file will later require modification and will be saved as AD8332 + AD9238.

Before FFT or time domain information can be displayed correctly, you must configure the software for the hardware and the clock frequency in use. In the upper left toolbar, left-click the **Config** button, then FFT (the configuration data applies to both the time domain and FFT displays.) In the **Encode**Frequency (MSPS) box, adjust the MSPS to 20 if the on-board 20 MHz clock is used; otherwise enter the clock frequency of the external clock source being used. In the **Averages** dialog box, type 10. Clear the **Twos Complement** check box. Be sure to enter the same **Encode Frequency** (MSPS) setting to

Channel A and Channel B. See Figure 7 for a display of the FFT configuration setup. Save the revised configuration as a new file—i.e., AD8332 + AD9238.

Figure 7. FFT Configuration Menu

Analyzer displays both channels at once. To view a single VGA channel, remove the input signal from the unused input of the AD8332. For a first test, it's a good idea to capture a waveform in time domain. Left-click the **Time Domain** button (Figure 8), and the display appears as in Figure 9.

Figure 8. Time Domain Button

Figure 9. Initial Time Domain Display

The plot appears as a solid red rectangle. This is because it is displaying each of the 16 k samples. To crop the display and observe only a few cycles, left-click and drag the cursor horizontally over a small portion of the waveform. Right-click within the dialog box and a menu drops down. Right-click the upper **H-Zoom** option, and the display appears as in Figure 10.

Figure 10. Time Domain Waveform

There are six optional FFT displays: single, sequential-single, average, sequential-average, two-tone and sequential-two-tone. Figure 11 is a display of an FFT performed on both channels of the AD8332 using the same 1 MHz input signal

that is used for the 1 MHz waveforms. A splitter must be used if both LNA channels are driven. Figure 12 and Figure 13 are individual channel FFTs, a useful tool to observe channel isolation.

Figure 11. FFT, Both Channels

Figure 12. FFT, Channel 1

Figure 13. FFT, Channel 2

PRINTED BOARD LAYOUT

Figure 14 through Figure 17 are the copper patterns for the board.

Figure 14. Component Side Copper

Figure 15. Layer 2 Copper

Figure 16. Layer 3 Copper

Figure 17. Wiring Side Copper

Figure 18. Component Side Silkscreen

Figure 19. Wiring Side Silkscreen

ORDERING INFORMATION

Table 4. Parts List

Qty.	Name	Description	Reference Designator	Manufacturer	Manufacturer Part No.
46	Capacitor	0.1 μF 16 V 0603 Ceramic	C1, 3–10, 14, 16, 17, 20, 22, 24, 26, 29–32, 35–43, 45, 48–51, 53–56, 58–60, 63, 69, 70, 72, 86	Kemet	C0603C104K4RAC
10	Capacitor	Tantalum 10 μF 6.3 V A size	C2, 11, 12, 27, 28, 33, 34, 47, 75, 76	Panasonic	ECS-T0JY106R
12	Capacitor	1 nF 50 V 0603	C13, 15, 18, 19, 21, 23, 25, 68, 74, 77, 78, 83, 85	Panasonic	ECU-V1H102KBV
2	Capacitor	Tantalum 1 μF 16 V A size	C44, 46	Kemet	T491A105K016AS
2	Capacitor	10 nF, 6.3 V, 0201	C52, 57	Panasonic	ECJ-ZEB0J103K
2	Capacitor	18 pF, 5%, NPO, 0603	C61, 62	Panasonic	ECJ-1VC1H180J
2	Capacitor	22 pF 50 V 5% 0603	C79, 80	Panasonic	ECJ-1VC1H220J
2	Capacitor	18 nF, 0603	CFB1, 2	Panasonic	ECJ-1VB1E183K
1	Header	80 Ckt RA Male, 0.1" ctr, 2 row	J1	Molex	10-89-1806
5	Header	3 pin, 0.1" ctr	JP1, 2, 4, 15, 16	Molex	22-10-2031
6	Header	2 pin, 0.1" ctr	JP3, 5, 6, 11, 12, 17	Mill Max	400-10-002-10-001
8	Resistor	5% 1/10 W 0805 0 Ω	Insert in positions L1, 14–20	Panasonic	ERJ-6ENF0.0
12	Ferrite Bead	120 nH, 0805	L2-13	Murata	BLM21BB750SN1
4	Resistor	1% 1/10 W 0805 1.5k Ω	R4, 12, 13, 21	Panasonic	ERJ-6ENF1501V
4	Resistor	5% 1/10 W 0805 33 Ω	R5-8	Panasonic	ERJ-6GEYJ330V
10	Resistor	0 Ω, 5%, 1/10 W, 0805	R9, 10 (8 @ positions L1, 14-20)	Panasonic	ERJ-6GEY0R00V
5	Resistor	100 Ω, 5%, 1/10 W, 0805	R11, 24–27	Panasonic	ERJ-6GEYJ101V
3	Resistor	5% 1/10 W 0805 4.7 kΩ	R14, 20, 41	Panasonic	ERJ-6GEYJ472V
1	Trimmer	10 kΩ 3/8" SQ	R16	BOURNS	3299W-103
1	Resistor	49.9 Ω, 1%, 1/10 W, 0805	R17	Panasonic	6ENF49R9V
2	Resistor	499 Ω, 1%, 1/10 W, 0805	R18, 19	Panasonic	ERJ-6ENF4990V
4	Resistor	1% 1/10 W 0805 1.5 kΩ	R4, 12, 13, 21	Panasonic	ERJ-6ENF1501V
2	Resistor	22 Ω, 5 %, 1/10 W, 0805	R39, 40	Panasonic	ERJ-6GEYJ220V
2	Resistor	1% 1/10 W 0805 274 Ω	RFB1, RFB2	Panasonic	ERJ-6ENF2740V
16	Network	22 Ω Resistor	RN1–16	CTS	742C083220JTR
3	Connector	SMA Female PC Mount	S1, 2, 3	Linx	CONREVSMA001
1	Terminal	Block Split	TB1	Wieland	25.602.2253.0
4	Test Pin	Vector	TP1, 2, 7, 8	Vector	K24A
1	Test Pin	Loop, 0.093" dia., Red	TP3	Bisco	TP-104-01-02
1	Test Pin	Loop, 0.093" dia., Black	TP4	Bisco	TP-104-01-00
5	Test Pin	Loop, 0.038" dia., White	TP5, 6, 9, 12, 13	Bisco	TP-105-01-09
1	IC	ADC, 12 bit dual, 65 MSPS	U1	Analog Devices	AD9238BST-65
4	IC	Oct. Buffer	U2, 3, 7, 10	Fairchild	74VHC541M
1	IC	Dual VGA	U4	Analog Devices	AD8332ARU
1	IC	Hex Inv	U5	Fairchild	74VHC04MTCX
1	Clock	20 MHZ	U6	Epson	SG-636PCE 20.0000MC0
1	IC, Volt Reg.	3.3 V Pos. Volt Reg. SOT-223	VR1	Analog Devices	ADP3339AKC-3.3
1	PC Board			3 = 0	
4	Hardware	Standoff 4–40 x 1/2" alum.			
4	Hardware	Screw 4–40 x 1/4" SS			
5	Jumper	Mini-jump jumper	Install at JP1, 2, 4, 15, 16	FCI	65474-001
1	Jamper	Socket conn. strip	Part of TB1	Wieland	Z5.530.0225.0

ORDERING GUIDE

Model	Description
EVAL-AD8332/AD9238	Evaluation Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

AD9238BCP-65EBZ