Office Hours!

Instructor:

Trevor Klar, trevorklar@math.ucsb.edu

Office Hours:

Mondays 2–3PM Tuesdays 10:30–11:30AM Thursdays 1–2PM or by appointment

Office:

South Hall 6431X (Grad Tower, 6th floor, blue side, first door on the right)

© 2017 Daryl Cooper, Trevor Klar

Review: Meaning of Derivatives

1. Find the equation of the tangent line to $y = x^3 - 5x$ at x = 2.

A
$$y = 2x - 6$$
 B $y = 16x - 7$ C $y = 7x + 16$ D $y = 7x - 16$

Review: Meaning of Derivatives 2

2. Where is $f(x) = 3x^2 + 12x - 4$ decreasing?

A
$$x < -2$$
 B $x > -2$ C $x < 2$ D $x > 2$ E $x = 2$

Review: Meaning of Derivatives 3

3. Where is $f(x) = x^3 + 12x^2 + 6x + 18$ concave up?

A
$$x < -4$$
 B $x > -4$ C $x > -2$ D $x < -2$ B

Review: Derivatives

4. Suppose

$$f(x) = 2x^4 - 3x^2 + 5x + 3$$

Click as you compute the following:

(A)
$$f'(x) = 8x^3 - 6x + 5$$

(B)
$$f''(x) = 24x^2 - 6$$

(C)
$$f'''(x) = 48x$$

(D)
$$\frac{d^4f}{dx^4} = 48$$

5. Find the minimum of $f(x) = 2x^2 + 8x + 3$

$$A = -5$$
 $B = -2$ $C = 0$ $D = 2$ $E = 5$

Derivatives (cont'd)

- **6.** Suppose $f(x) = x^2 4x + 5$. Click as you do the following:
 - (A) What is the slope of the graph when x = 3? f'(3) = 2
 - (B) What is the equation of the tangent line to the graph y = f(x) at x = 3? y = 2x 4
 - (C) Is the graph concave up or concave down?

$$f''(x) = 2 > 0$$
; concave up

Hint: Draw a picture!

How many did you get?

$$A = 3$$
 $B = 2$ $C = 1$ $D = 0$ $E = Don't$ press this button!

Objects in Motion

- 7. A gorilla standing on top of Campbell Hall and throws a banana at a monkey on top of Cheadle Hall 100 meters away.
 - $h(t) = 35 + 50t 5t^2$ meters is the height of the banana t seconds after it is thrown
 - Banana lands at the monkey's feet 6 seconds after it is thrown

Click as you do the following:

- (A) Draw a diagram showing Campbell Hall, Cheadle Hall, and the flight path of the banana.
- (B) How high is Cheadle Hall? h(6) = 155 m
- (C) How high above ground did the banana fly? h(5) = 160 m
- (D) How high above Cheadle Hall did the banana fly? 5 m
- (E) For how many seconds of the flight was the banana gaining height? until h'(t) = 0; until t = 5 seconds
- (A) How fast was the banana going when it landed? |h'(6)| = 10 m/s