

Decision making and problem solving – Lecture 2

- Biases in probability assessment
- Expected Utility Theory (EUT)
- Assessment of utility functions

Last time

- □ Decision trees are a visual and easy way to model decisionmaking problems, which involve uncertainties
 - □ Paths of decisions and random events
- ☐ Probabilities are used to model uncertainty
 - □ Data to estimate probabilities not necessarily available
- We often need subjective judgements to estimate probabilities

Biases in probability assessment

- ☐ Subjective judgements by both "ordinary people" and "experts" are prone to numerous biases
 - Cognitive bias: Systematic discrepancy between the 'correct' answer and the respondent's actual answer
 - o E.g., assessment of conditional probability differs from the correct value given by Bayes' rule
 - Motivational biases: judgements are influenced by the desriability or undesirability of events
 - o E.g., overoptimism about success probabilities
 - o Strategic underestimation of failure probabilities
- ☐ Some biases can be very difficult to correct

Representativeness bias (cognitive)

- □ If x fits the description of A well, then P(x∈A) is assumed to be large
- ☐ The 'base rate' of A in the population (i.e., the probability of A) is not taken into account
- Example: You see a very tall man in a bar. Is he more likely to be a professional basketball player or a teacher?

Representativeness bias

- What is 'very tall'?
 - □ 195 cm?
 - Assume all BB players are very tall
- ☐ Based on 30 min of googling¹, the share of Finnish men taller than 195 cm exceeds 0.3 %
- ☐ If BB players go to the bar as often as teachers, it is more probable that the very tall man is a teacher, if the share of very tall men exceeds 0.31%
 - Fall 2020 students' responses: 76% teacher, 24% basketball player
 - Your responses: 78% teacher, 22% basketball player

Height	Males					
	20-29	30-39	40-49	50-59	60-69	70-79
	years	years	years	years	years	years
Percent under—		10 3			222	91
4'10"	_	_	_	(B)	_	-
4'11"	_	_	_	(B)	(B)	_
5'	(B)	_	_	(B)	(B)	-
5'1"	(B)	(B)	(B)	(B)	1 0.4	(B)
5'2"	(B)	(B)	(B)	(B)	(B)	(B
5'3"	(B)	1 3.1	1 1.9	(B)	1 2.3	(B
5'4"	3.7	1 4.4	3.8	1 4.3	4.4	5.8
5'5"	7.2	6.7	5.6	7.6	7.8	12.8
5'6"	11.6	13.1	9.8	12.2	14.7	23.0
5'7"	20.6	19.6	19.4	18.6	23.7	35.1
5'8"	33.1	32.2	30.3	30.3	37.7	47.7
5'9"	42.2	45.4	40.4	41.2	50.2	60.3
5'10"	58.6	58.1	54.4	54.3	65.2	75.2
5'11"	70.7	69.4	69.6	70.0	75.0	85.8
6'	79.9	78.5	79.1	81.2	84.3	91.0
6'1"	89.0	89.0	87.4	91.6	93.6	94.9
6'2"	94.1	94.0	92.5	93.7	97.8	98.6
6'3"	98.3	95.8	97.7	96.6	99.9	100.0
6'4"	100.0	97.6	99.0	99.5	100.0	100.0
6'5"	100.0	99.4	99.4	99.6	100.0	100.0
6'6"	100.0	99.5	99.9	100.0	100.0	100.0

Representativeness bias

- Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations. Please check the most likely alternative:
 - a. Linda is a bank teller.
 - b. Linda is a bank teller and active in the feminist movement.
- Many choose b, although b⊂a wherebyP(b)<P(a)
 - Fall2020 responses: 76% a, 24% b.
 - Your responses: 57% a, 43% b.

23.9.2021

Conservativism bias (cognitive)

- When information about some uncertain event is obtained, people typically do not adjust their initial probability estimate about this event as much as they should based on Bayes' theorem.
- Example: Consider two bags X and Y. Bag X contains 30 white balls and 10 black balls, whereas bag Y contains 30 black balls and 10 white balls. Suppose that you select one of these bags at random, and randomly draw five balls one-by-one by replacing them in the bag after each draw. Suppose you get four white balls and one black. What is the probability that you selected bag X with mainly white balls?
- □ Typically people answer something between 70-80%. Yet, the correct probability is $27/28 \approx 96\%$.
- ☐ Fall2020 responses: mean response 58%. Many (32%) answered 50%.
- ☐ Your responses: mean response 55%. Many (20%) answered 50%.

Representativeness and conservativism bias - debiasing

- Demonstrate the logic of joint and conditional probabilities and Bayes' rule
- ☐ Split the task into an assessment of
 - The base rates for the event (i.e., prior probability)
 - E.g., what are the relative shares of teachers and pro basketball players?
 - The likelihood of the data, given the event (i.e., conditional probabilities)
 - E.g., what is the relative share of people active in the feminist movement? Is this share roughly the same among bank tellers as it is among the general population or higher/lower?
 - What is the likelihood that a male teacher is taller than 195cm? How about a pro basketball player?

Availability bias (cognitive)

- □ People assess the probability of an event by the ease with which instances or occurences of this event can be brought to mind.
- Example: In a typical sample of English text, is it more likely that a word starts with the letter K or that K is the third letter?
 - Most (nowadays only many?) people think that words beginning with K are more likely, because
 it is easier to think of words that begin with "K" than words with "K" as the third letter
 - Yet, there are twice as many words with K as the third letter
 - Fall2020 students' responses: 34% first letter, 66% third letter.
 - Your responses: 45% first letter, 55% third letter.

☐ Other examples:

- Due to media coverage, the number of violent crimes such as child murders seems to have increased
- Yet, compared to 2000's, 18 times as many children were killed per capita in 1950's and twice as many in 1990's

Availability bias - debiasing

- Conduct probability training
- □ Provide counterexamples
- □ Provide statistics
- □ Based on empirical evidence, availability bias is difficult to correct

Anchoring bias (cognitive)

- When assessing probabilities, respondents sometimes consider some reference assessment
- ☐ Often, the respondent is *anchored* to the reference assessment
- Example: Is the percentage of African countries in the UN
 - A. Greater or less than 65? What is the exact percentage?
 - o 'Average' answer: Less, 45%.
 - o Fall2020 students' responses: Less, median 40%, mean 45%.
 - o Your responses: Less, median 35%, mean 39%.
 - B. Greater or less than 10? What is the exact percentage?
 - o 'Average' answer: Greater, 25%.
 - o Fall2020 students' responses: Greater, median 20%, mean 37%.
 - o Your responses: Greater, median 27%, mean 33%.

Anchoring bias - debiasing

- Avoid providing anchors
- □ Provide multiple and counteranchors
 - = if you have to provide an anchor, provide several which differ significantly from each other
- ☐ Use different experts who use different anchors
- □ Based on empirical evidence, anchoring bias is difficult to correct

Overconfidence (cognitive)

- ☐ People tend to assign overly narrow confidence intervals to their probability estimates
 - 1. Martin Luther King's age at death 39 years
 - 2. Length of the Nile River 6738 km
 - 3. Number of Countries that are members of OPEC 13
 - 4. Number of Books in the Old Testament 39
 - 5. Diameter of the moon 3476 km
 - 6. Weight of an empty Boeing 747 176900 kg
 - 7. Year of Wolfgang Amadeus Mozart's birth 1756
 - 8. Gestation period of an Asian elephant 21.5 months
 - 9. Air distance from London to Tokyo 9590 km
 - 10. Depth of the deepest known point in the oceans 11033 m

Your responses:

- ☐ If 3 or more of your intervals missed the correct value, you have demonstrated overconfidence
 - 96% of you did (91% in Fall2020)

Overconfidence - debiasing

- Provide probability training
- ☐ Start with extreme estimates (low and high)
- ☐ Use fixed values instead of fixed probability in elicitations:
 - Do not say: "Give a value x such that the probability for a change in GDP lower than x is 0.05"
 - Do say: "What is the probability that the change in GDP is lower than -3%?"
- □ Based on empirical evidence, overconfidence is difficult to correct

Desirability / undesirability of events (motivational)

- □ People tend to believe that there is a less than 50 % probability that negative outcomes will occur compared with peers
 - I am less likely to develop a drinking problem
 - Your responses: 32% (15 % in Fall2020) more likely, 28% (27 %) less likely, 40% (59 %) equally likely
- □ People tend to believe that there is a greater than 50 % probability that positive outcomes will occur compared with peers
 - I am more likely to become a homeowner / have a starting salary of more than 3,500€
 - Your responses on owning a home: 40% (20%) more likely, 12% (12%) less likely, 48% (68%) equally likely
 - Your responses on salary: 23% (20 %) more likely, 10% (10%) less likely, 67% (71%) equally likely
- People tend to underestimate the probability of negative outcomes and overestimate the probability of positive outcomes

Desirability / undesirability of events - debiasing

- ☐ Use multiple experts with alternative points of view
- ☐ Place hypothetical bets against the desired event
 - ☐ "Make the respondent's money involved"
- ☐ Use decomposition and realistic assessment of partial probabilities
 - □ "Split the events"
- ☐ Yet, empirical evidence suggests that all motivational biases are difficult to correct

Further reading: **Montibeller, G., and D. von Winterfeldt**, 2015. Cognitive and Motivational Biases in Decision and Risk Analysis, *Risk Analysis*

Risky or not risky?

https://presemo.aalto.fi/riskattitude1/

- ☐ Which one would you choose:
 - a) Participate in a lottery, where you have a 50 % chance of getting nothing and a 50 % chance of getting 10000 €
 - b) Take 4000 €
- Many choose the certain outcome of 4000 €, although a)'s expected monetary gain is higher

Option b) involves less risk

How to compare risky alternatives?

□ Last week

- We learned how to support decision-making under uncertainty, when the DM's objective is to maximize the expected monetary value
- Maximizing expected value is rational only if the DM is risk neutral, i.e., indifferent between
 - o obtaining x for sure and
 - o a gamble with uncertain payoff Y such that x=E[Y]
- Usually, DMs are risk averse = they prefer obtaining x for sure to a gamble with payoff Y such that x=E[Y]

Expectation = 14500

■ Next:

 We learn how to accommodate the DM's risk attitude (=preference over alternatives with uncertain outcomes) in decision models

Expected utility theory (EUT)

- ☐ John von Neumann and Oscar Morgenstern (1944) in Theory of Games and Economic Behavior:
 - Axioms of rationality for preferences over alternatives with uncertain outcomes
 - If the DM follows these axioms, she should prefer the alternative with the highest expected utility

□ Elements of EUT

- Set of outcomes and "lotteries"
- Preference relation over the lotteries satisfying four axioms
- Representation of preference relation with expected utility

EUT: Sets of outcomes and lotteries

- Set of possible outcomes *T*:
 - E.g., revenue *T* euros / demand *T*
- Set of all possible lotteries *L*:
 - A lottery $f \in L$ associates a probability $f(t) \in [0,1]$ with each possible outcome $t \in T$
 - Finite number of outcomes with a positive probability f(t) > 0
 - Probabilities sum up to one $\sum_t f(t) = 1$ 0
 - Lotteries are thus discrete PMFs / decision trees with a single chance node
- Deterministic outcomes are modeled as degenerate lotteries

Lottery

Decision tree

Probability mass function (PMF)

$$f(t) = \begin{cases} 0.6, t = 20000 \\ 0.3, t = 10000 \\ 0.1, t = -5000 \\ 0, elsewhere \end{cases}$$

Degenerate lottery

Decision tree

PDF

$$\frac{1}{1} 10000 \quad f(t) = \begin{cases} 1, t = 10000 \\ 0, elsewhere \end{cases}$$

EUT: Compound lotteries

- ☐ Compound lottery:
 - Get lottery $f_X \in L$ with probability λ
 - Get lottery $f_Y \in L$ with probability 1λ
- \square Compound lottery can be modeled as lottery $f_Z \in L$:

$$f_Z(t) = \lambda f_X(t) + (1 - \lambda) f_Y(t) \ \forall t \in T \simeq f_Z = \lambda f_X + (1 - \lambda) f_Y(t)$$

- □ Example:
 - You have a 50-50 chance of getting a ticket to lottery $f_X \in L$ or to lottery $f_Y \in L$

Preference relation

- □ Let > be preference relation among lotteries in L
 - Preference $f_X \ge f_Y$: f_X at least as preferable as f_Y
 - Strict preference $f_X > f_Y$ defined as $\neg (f_Y \ge f_X)$
 - Indifference $f_X \sim f_Y$ defined as $f_X \geq f_Y \land f_Y \geq f_X$

EUT axioms A1-A4 for preference relation

- \square A1: \geq is complete
 - For any f_X , $f_Y \in L$, either $f_X \ge f_Y$ or $f_Y \ge f_X$ or both
- **□** A2: ≽ is transitive
 - If $f_X \ge f_Y$ and $f_Y \ge f_Z$, then $f_X \ge f_Z$
- ☐ A3: Archimedean axiom
 - If $f_X > f_Y > f_Z$, then $\exists \lambda, \mu \in (0,1)$ such that

$$\lambda f_X + (1 - \lambda)f_Z > f_Y$$
 and $f_Y > \mu f_X + (1 - \mu)f_Z$

- □ A4: Independence axiom
 - Let $\lambda \in (0,1)$. Then,

$$f_X > f_Y \Leftrightarrow \lambda f_X + (1 - \lambda)f_Z > \lambda f_Y + (1 - \lambda)f_Z$$

If the EUT axioms hold for the DM's preferences

- ☐ A3: Archimedean axiom
 - Let $f_X > f_Y > f_Z$. Then exists $p \in (0,1)$ so that $f_Y \sim pf_X + (1-p)f_Z$
- ☐ A4: Independence axiom
 - $f_X \sim f_Y \Leftrightarrow \lambda f_X + (1 \lambda) f_Z \sim \lambda f_Y + (1 \lambda) f_Z$
 - Any lottery (or outcome = a degenerate lottery) can be replaced by an equally preferred lottery; According to A3, such lotteries / outcomes exist $\lambda = 0.5$ 100 $\lambda = 0.5$

- NOTE: f_Z can be any lottery and can have several possible outcomes

0.5

Main result: Preference representation with Expected Utility

Arr satisfies axioms A1-A4 if and only if there exists a real-valued utility function u(t) over the set of outcomes T such that

$$f_X \geqslant f_Y \Leftrightarrow \sum_{t \in T} f_X(t)u(t) \ge \sum_{t \in T} f_Y(t)u(t)$$

☐ Implication: a rational DM following axioms A1-A4 selects the alternative with the highest expected utility

$$E[u(X)] = \sum_{t \in T} f_X(t)u(t)$$

- A similar result can be obtained for continuous distributions:
 - o $f_X \ge f_Y \Leftrightarrow E[u(X)] \ge E[u(Y)]$, where $E[u(X)] = \int f_X(t)u(t)dt$

Computing expected utility

- Example: Joe's utility function for the number of apples is u(1)=2, u(2)=5, u(3)=7. Would he prefer
 - Two apples for certain (X), or
 - A 50-50 gamble between 1 and 3 apples (Y)?
- Example: Jane's utility function for money is $u(t) = t^2$. Which alternative would she prefer?
 - X: 50-50 gamble between 3 and 5M€
 - Y: A random amount of money from Uni(3,5) distribution
 - What if her utility function was $u(t) = \frac{t^2-9}{25-9}$?

$$E[u(X)] = u(2) = 5$$

$$E[u(Y)] = 0.5u(1) + 0.5u(3)$$

= 0.5 \cdot 2 + 0.5 \cdot 7 = 4.5

$$E[u(X)] = 0.5u(3) + 0.5u(5)$$

= $0.5 \cdot 9 + 0.5 \cdot 25 = 17$

$$E[u(Y)] = \int_{3}^{5} f_{Y}(t)u(t)dt = \int_{3}^{5} \frac{1}{2}t^{2}dt$$
$$= \frac{1}{6}5^{3} - \frac{1}{6}3^{3} = 16.33333$$

- \square DM's preferences: $X \ge Y$
 - $\Box E[u(X)] = p_1 \ge 0.9p_2 + 0.2(1 p_2) = E[u(Y)]$

$$\Box E[v(X)] = 100p_1 = 100E[u(X)] \ge 100E[u(Y)] = 90p_2 + 20(1 - p_2) = E[v(Y)]$$

- □ w: Add 20 to all utilities v
 - $\Box E[w(X)] = 120p_1 + 20(1 p_1) = 100p_1 + 20 = E[v(X)] + 20 \ge E[v(Y)] + 20 = 90p_2 + 20(1 p_2) + 20(1 + p_2 p_2) = 110p_2 + 40(1 p_2) = E[w(Y)]$

- \square DM's preferences: $X \ge Y$
 - $\Box E[u(X)] = p_1 \ge 0.9p_2 + 0.2(1 p_2) = E[u(Y)]$

$$p_2$$
 u=0.9
 p_2 u=0.2

- \Box v: Multiply u by $\alpha > 0$
 - $\Box E[v(X)] = \alpha p_1 = \alpha E[u(X)] \ge \alpha E[u(Y)] = 0.9\alpha p_2 + 0.2\alpha(1 p_2) = E[v(Y)]$

- \square w: Add β to all utilities ν
 - $E[w(X)] = (\alpha + \beta)p_1 + \beta(1 p_1) = \alpha p_1 + \beta = E[v(X)] + \beta \ge E[v(Y)] + \beta = 0.9\alpha p_2 + 0.2\alpha(1 p_2) + \beta(1 + p_2 p_2) = (0.9\alpha + \beta)p_2 + (0.2\alpha + \beta)(1 p_2) = E[w(Y)]$

- \square DM's preferences: $X \ge Y$
 - $\Box E[u(X)] = u(x^+)p_1 + u(x^-)(1-p_1) \ge u(y^+)p_2 + u(y^-)(1-p_2) = E[u(Y)]$

- \Box *v*: Multiply *u* by $\alpha > 0$
 - $\Box \quad E[v(X)] = \cdots = \alpha E[u(X)] \ge \alpha E[u(Y)] = \cdots = E[v(Y)]$

- \square w: Add β to all utilities ν
 - $E[w(X)] = \cdots = E[v(X)] + \beta \ge E[v(Y)] + \beta = f_X ($ $\cdots = E[w(Y)]$

 $w = \alpha u(y) + \beta$

- □ Let $f_X \ge f_Y \iff E[u(X)] \ge E[u(Y)]$. Then $E[\alpha u(X) + \beta] = \alpha E[u(X)] + \beta \ge \alpha E[u(Y)] + \beta = E[\alpha u(Y) + \beta]$ for any $\alpha > 0$
- \square Two utility functions $u_1(t)$ and $u_2(t) = \alpha u_1(t) + \beta_1(\alpha > 0)$ establish the same preference order among any lotteries:

$$E[u_2(X)] = E[\alpha u_1(X) + \beta] = \alpha E[u_1(X)] + \beta.$$

- ☐ Implications:
 - Any linear utility function $u_L(t) = \alpha t + \beta$, $(\alpha > 0)$ is a positive affine transformation of the identity function $u_1(t) = t \Rightarrow u_L(t)$ establishes the same preference order as expected value
 - Utilities for two outcomes can be freely chosen:
 - o E.g., scale utilities represented by u_1 such that and $u_2(t^*) = 1$ and $u_2(t^0) = 0$:

$$u_{2}(t) = \frac{u_{1}(t) - u_{1}(t^{0})}{u_{1}(t^{*}) - u_{1}(t^{0})} = \frac{1}{u_{1}(t^{*}) - u_{1}(t^{0})} u_{1}(t) - \frac{u_{1}(t^{0})}{u_{1}(t^{*}) - u_{1}(t^{0})}$$

$$= \alpha > 0 \qquad = \beta$$

23.9.2021

Let's practice!

https://presemo.aalto.fi/drcuckoo

The utility function of Dr. Cuckoo is $u(t) = \sqrt{t}$. Would he

- a) Participate in a lottery A with 50-50 chance of getting either 0 or 400 €?
- b) Participate in a lottery B in which the probability of getting 900 € is 30% and getting 0 € is 70%?

$$u(0) = 0$$
, $u(400) = 20$, $u(900) = 30$

a)
$$E[u(A)] = 0.5 \cdot 0 + 0.5 \cdot 20 = 10$$

b)
$$E[u(B)] = 0.7 \cdot 0 + 0.3 \cdot 30 = 9$$

NOTE! the **expectation of lottery A** = $200 \in$ **is smaller** than that of B = $270 \in$

Summary

- ☐ Probability elicitation is prone to cognitive and motivational biases
 - Some cognitive biases can be easy to correct, but...
 - Some other cognitive biases and all motivational biases can be difficult to overcome
- ☐ The DM's preferences over alternatives with uncertain outcomes can be described by a utility function
- □ A rational DM (according to the four axioms of rationality) should choose the alternative with the highest expected utility
 - NOT necessarily the alternative with the highest utility of expectation