Routing

Address Translation

- ☐ Map IP (high-level) addresses into physical (low-level) addresses
 - destination host
 - next hop router

Address Translation (cont'd)

v6 1286its Table based dynamically maintained

ARP (Address Resolution Protect) IN BIATEA broadcast subrets detayrom ARP request broadcast IB>? DEST = EB DEST=11--1 (48 15) TRAEK ARP My (direct) DEST = EA

Address Translation (cont'd)

- Techniques
 - m encode physical address in host part of IP address
 - m table-based
- ARP (Address Resolution Protocol)
 - m table of IP to physical address bindings
 - m broadcast request if IP address not in table
 - m target machine responds with its physical address
 - m table entries are discarded if not refreshed

- □ ARP messages are encapsulated in physical frames
 - Hardware Type: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLEN & PLEN: length of physical and protocol addresses
 - Operation: request or response
 - Source/Target Physical/Protocol addresses

HardwareType=1		ProtocolType=0x0800		
HLEN=48	PLEN=32	Operation		
SourceHardwareAddr				
SourceHardwareAddr		SourceProtocolAddr		
SourceProtocolAddr		TargetHardwareAddr		
TargetHardwareAddr				
TargetProtocolAddr				

Notes

- o table entries timeout in about 10-20 minutes
- update table with source when you are the target
- o refresh entry if already have an entry for source
- o do not refresh table entries upon reference

Fragmentation and Reassembly

- Each network has some MTU
- Strategy
- rategy
 fragment when necessary (MTU < Datagram Size)
 try to avoid fragmentation at source host
 re-fragmentation is possible
 fragments

 - fragments are self-contained datagrams
 - delay reassembly until destination host
 - do not recover from lost fragments

Fragmentation Example

Last Fragment

IPv6

- Initial motivation: 32-bit address space completely allocated
- □ 128-bit IPv6 address length gives us more than 10²⁸ times as many IPv4 addresses
- Additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- o fixed-length 40 byte header
- no fragmentation allowed

IPv6 Header (Cont)

Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same "flow" (concept of "flow" not well defined)

Next header: identify upper layer protocol for data

Transition From IPv4 To IPv6

- □ Not all routers can be upgraded simultaneously
 - ono "flag day"
 - O How will the network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Tunneling

tunnel Logical view: IPv6 IPv6 IPv6 IPv6 Physical view: IPv6 IPv6 IPv4 IPv4 IPv6 IPv6

Tunneling

tunnel Logical view: IPv6 IPv6 IPv6 IPv6 Physical view: IPv6 IPv6 IPv6 IPv6 IPv4 IPv4 Src:B Src:B Flow: X Flow: X Src: A Src: A Dest: E Dest: E Dest: F Dest: F Flow: X Flow: X Src: A Src: A Dest: F Dest: F data data data data E-to-F: A-to-B: D-to-E: B-to-C: IPv6 IPv6 IPv6 inside IPv6 inside IPv4 Matta @ BUCS - Routing IPv4

Generalized Forwarding and SDN

A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables

Traffic engineering: difficult

Q: what if w wants to route blue and red traffic differently?

<u>A:</u> can't do it (with destination based forwarding, and LS, DV routing)

OpenFlow: Flow Table Entries

OpenFlow example

Example: datagrams from hosts h5 and h6 should be sent to h3 or h4, via s1 and from there to s2 match action Host h6

10.2.0.3

match	action
ingress port = 1 IP Src = 10.3.*.* IP Dst = 10.2.*.*	forward(4)

action ingress port = 2forward(3) IP Src = 10.3.*.* IP Dst = 10.2.0.3ingress port = 2forward(4) IP Src = 10.3.*.* IP Dst = 10.2.0.4