Approximating distribution of input conditional on label using IFT of approximate characteristic function of its low dimensional embedding obtained using orthonormal projection of input

Dhruv Kohli * 1 Praanshu Goyal * 2

Abstract

1. Proposed Method

Given dataset $\mathbf{D}=(\mathbf{x_i},y_i)_{i=1}^N$ where $\mathbf{x_i}\in\mathbb{R}^m$ and $y_i\in\{1,2,\ldots,C\}$ is the class to which $\mathbf{x_i}$ belongs. N is the number of samples in \mathbf{D} , m is the dimension of the input and C is the number of possible classes. In the subsequent detail, we show how to compute $P(X=\mathbf{x_i}|y=c)$ and thereafter compute $P(y=c|X=\mathbf{x_i})$ using Bayes theorem. First, we compute an approxiation of the characteristic function $\phi_{X|y=c}(\mathbf{t})$ as in (1). And using the inverse transform of the approximate characteristic function, we obtain an approximation of $P(X=\mathbf{x}|y=c)$ and therefore of $P(y=c|X=\mathbf{x})$.

$$\phi_{X|y=c}(\mathbf{t}) = \mathbb{E}(e^{i\mathbf{t}^T X}|y=c)$$

$$= \sum_{k=0}^{\infty} \frac{i^k}{k!} \mathbb{E}((\mathbf{t}^T X)^k | y=c)$$

$$= \sum_{k=0}^{\infty} \frac{i^k}{k!} \frac{\mathbb{E}((\mathbf{t}^T X)^k \delta(y-c))}{P(y=c)}$$

$$\approx \sum_{k=0}^{K} \frac{i^k}{k!} \frac{\sum_{j=0}^{N} (\mathbf{t}^T \mathbf{x_j})^k \delta(y_j-c)}{NP(y=c)}$$

$$= \frac{1}{NP(y=c)} \sum_{k=0}^{K} \frac{i^k}{k!} \sum_{j=0}^{N} (\mathbf{t}^T \mathbf{x_j})^k \delta(y_j-c)$$
(1)

$$2\pi N P(y=c) P(X=\mathbf{x}|y=c) =$$

$$= 2\pi N P(y=c) \int_{t_1} \dots \int_{t_m} \phi_{X|y=c}(\mathbf{t}) e^{-\mathbf{t}^T \mathbf{x}} \partial t_1 \dots \partial t_m$$

$$\approx \sum_{k=0}^K \frac{i^k}{k!} \sum_{j=0}^N \delta(y_j - c) \int_{t_1} \dots \int_{t_m} (\mathbf{t}^T \mathbf{x_j})^k e^{-\mathbf{t}^T \mathbf{x}} \partial t_1 \dots \partial t_m$$
(2)

^{*}Equal contribution ¹Indian Institute of Technology, Guwahati, India ²Indian Institute of Technology, Guwahati, India. Correspondence to: Dhruv Kohli <dhruvkohli99@gmail.com>, Praanshu Goyal praanshugoyal13@gmail.com>.