Mathematical Foundations of Computer Science Solutions to Homework Assignment 1 January 27, 2023

- 1. Let p, q, and r be the following propositions.
- p: You get an A on the final exam.
- q: You do every exercise in the text book
- r: You get an A in the course.

Express the following propositions using p, q, r and logical operators.

- (a) You get an A in the course but you do not do every exercise in the text book.
- (b) You get an A on the final exam, you do every exercise in the text book, and you get an A in the course.
- (c) To get an A in the course it is necessary for you to get an A on the final exam.
- (d) You get an A on the final, but you don't do every exercise in the text book; nevertheless, you get an A in the course.
- (e) Getting an A on the final exam and doing every exercise in the text book is sufficient for getting an A in the course.
- (f) You will get an A in the course if and only if you either do every exercise in the text book or you get an A on the final exam.

Solution.

- (a) $r \wedge \neg q$
- (b) $p \wedge q \wedge r$
- (c) $\neg p \rightarrow \neg r \equiv r \rightarrow p$
- (d) $p \wedge \neg q \wedge r$
- (e) $(p \land q) \rightarrow r$
- (f) $r \leftrightarrow (p \lor q)$
- **2.** Rewrite the following formally using quantifiers and variables, and write a negation for the statement.
 - (a) Everybody loves somebody.
 - (b) Somebody loves everybody.
 - (c) Any even integer equals twice some other integer.
 - (d) There is a program that gives the correct answer to every question that is posed to it.
 - (e) There is a prime number between every integer and its double.

Solution.

(a) \forall people p, \exists a person q such that p loves q.

Negation: \exists a person p such that \forall people q, p does not love q.

(b) \exists a person p such that \forall people q, p loves q.

Negation: \forall people p, \exists a person q such that p does not love q.

(c) \forall integers n, \exists an integer l such that n = 2l.

Negation: \exists an integer n such that \forall integers $l, n \neq 2l$.

(d) \exists a program p such that \forall questions q posed to p, p gives a correct answer to q.

Negation: \forall programs p, \exists a question q that can be posed to p such that p does not give a correct answer to q.

(e) \forall integers n, \exists a prime number p such that $n \leq p \leq 2n$.

Negation: \exists an integer n such that \forall primes p, either p < n or p > 2n.

- 3. Decide if the following proposition forms are a tautology using a truth table.
- (a) $(p \lor q) \lor (\neg p \lor \neg q)$
- **(b)** $(p \wedge q) \rightarrow (p \rightarrow q)$

Solution.

(a) The following truth table proves that the propositional form is a tautology.

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \lor (\neg p \lor \neg q)$
T	Т	F	F	Т	F	T
Т	F	F	Т	Т	Т	T
F	Т	Т	F	Т	Т	T
F	F	Т	Т	F	Т	T

(b) The following truth table shows that the propositional form is a tautology.

p	q	$p \wedge q$	$p \rightarrow q$	$(p \land q) \to (p \to q)$
T	Т	Т	Τ	T
T	F	F	F	Т
F	Т	F	Т	T
F	F	F	Т	T

- **4.** Prove or disprove the following.
 - (a) For every prime p, p + 2 is a prime.
 - (b) For all integers m and n, m+n and m-n are either both odd or both even.
 - (c) For any positive real numbers x and $y \le x$, |x y| = |x| |y|.
 - (d) For all natural numbers x, $x^2 x + 3$ is odd.
 - (e) For all natural numbers m, if m is even then m^7 is even

Solution. (a) The statement is false. p = 7 is a counterexample.

(b) The statement is true. We will prove this by contradiction. Without loss of generality assume that m + n is even and m - n is odd. Thus, for some integers k and l we have

$$m+n = 2k$$

$$m-n = 2l+1$$

Adding the two equations we get

$$2m = 2(k+l) + 1$$

This is a contradiction since the left side is an even number and the right side is an odd number.

(c) The statement is false. Let x = 3.1 and y = 2.9. Then,

$$|x - y| = |3.1 - 2.9| = 0 \neq |x| - |y| = 1$$

(d) The statement is true. Here is the proof. Observe that

$$x^2 - x + 3 = x(x - 1) + 2 + 1$$

It is sufficient to show that x(x-1)+2 is even. Note that either x is even or x-1 is even. Hence x(x-1) is even. Hence x(x-1)+2 is even.

(e) Let m=2k for some $k \in \mathbb{N}$. Thus $m^7=(2k)^7=2(64m^7)$ which is even.

5. Suppose a, b, x, and y are integers. Prove that if d|a and d|b, then d|(ax + by).

Solution. Since d|a and d|b we can express a and b as a = dk and $b = d\ell$, for some integers k and ℓ . Now we can write ax + by as follows.

$$ax + by = (dk)x + (d\ell)y$$
$$= d(kx + \ell y)$$
$$= dk'$$

where $k' = kx + \ell y$ is an integer. This proves that d|(ax + by).

6. Given any numbers x, y and z, if x - y is odd and y - z is even, is x - z odd or even? Prove your claim.

Solution. Since x-y is odd and y-z is even, for some integers k and ℓ we can express these terms as

$$x - y = 2k + 1$$

$$x = 2k + y + 1$$

$$y - z = 2\ell$$

$$z = y - 2\ell$$
(2)

Using (1) and (2) we can write x - z as follows.

$$x-z = (2k + y + 1) - (y - 2\ell)$$

= $2(k + \ell) + 1$
= $2k' + 1$

where $k' = k + \ell$ is an integer. Thus x - z has odd parity.

7. Let t be a positive integer. Prove the following statement by proving its contrapositive.

if r is irrational, then $r^{1/t}$ is irrational.

Be sure to state the contrapositive explicitly.

Solution. We will prove the claim by proving its contrapositive:

if $r^{1/t}$ is rational, then r is rational.

Since $r^{1/t}$ is assumed to be a rational we have

$$r^{1/t} = \frac{a}{b}$$
, where a and b are integers

By raising both sides of the above equation to power of t we get

$$r = \frac{a^t}{h^t}$$

Since a^t and b^t are integers r is rational.

8. Prove that for all integers n, if n-3 is divisible by 4 then n^2-1 is divisible by 8.

Solution. Since n-3 is divisible by 4, we have

$$n-3 = 4k for some integer k$$

$$n = 4k+3$$

$$n^2-1 = (n+1)(n-1)$$

$$= (4k+3+1)(4k+3-1)$$

$$= (4k+4)(4k+2)$$

$$= 4(k+1) \cdot 2(2k+1)$$

$$= 8(k+1)(2k+1)$$

Clearly, the R.H.S. is an integer that is divisible by 8.

- **9.** Prove or disprove the following.
 - (a) For all integers $n, n^3 n$ is divisible by 3.
 - (b) For all real numbers x, $2x^2 4x + 3 > 0$.

Solution.

(a) The proposition is true and we can prove it as follows. Let n be any particular but arbitrarily chosen integer. Then,

$$n^3 - n = n(n^2 - 1) = n(n - 1)(n + 1)$$

We have expressed $n^3 - n$ as a product of three consecutive integers. Observe that among any three consecutive integers one is divisible by 3. Hence, their product is also divisible by 3. Thus, $n^3 - n$ is also divisible by 3.

(b) The proposition is true and we prove it as follows. Let x be any particular but arbitrarily chosen real number. Then,

$$2x^{2} - 4x + 3 = 2x^{2} - 4x + 2 + 1 = 2(x^{2} - 2x + 1) + 1 = 2(x - 1)^{2} + 1$$

Since $(x-1)^2$ is non-negative, $2(x-1)^2+1\geq 1$. This proves the claim.