### Inferencia Estadística Propiedades de los EMV

Gabriel Martos Venturini gmartos@utdt.edu

**UTDT** 



1/30

## Hoja de ruta

- En este bloque analizaremos propiedades estadísticas de los EMV:
  - ► En muestras finitas (con *n* fijo).
  - ▶ Propiedades asintóticas  $(n \to \infty)$ .
- Algunos resultados asintóticos respecto de los test de hipótesis y los intervalos de confianza (basados en estimadores MV) se discutirán oportunamente en el desarrollo de dichos temas.

## Cumplen los principios de reducción

- Suficiencia (familias exponenciales).
- Verosimilitud.
- Invarianza.

### Definition (Eficiencia)

Una estimador  $W_n$  insesgado para  $\theta$  (en el contexto del modelo  $f(x;\theta)$ ) es eficiente si su varianza alcanza la cota de Cramer–Rao (para todo n).

- Ratio de Eficiencia:  $RE(W_n) = \frac{1/I_n(\theta)}{Var(W_n)} \le 1$ .
- $W_n$  es Eficiente si  $RE(W_n) = 1 \Rightarrow UMVUE$ .
- Ejemplos donde los EMV son los únicos eficientes (Lehmann–Scheffé):
  - $\{X_1,\ldots,X_n\}\stackrel{iid}{\sim} N(\mu,\sigma^2)$ , luego  $\widehat{\mu}_n=\overline{X}_n$ .
  - ► Sesgo<sup>2</sup>( $\widehat{\mu}_n$ ) = 0 y Var( $\widehat{\mu}_n$ ) =  $\frac{\sigma}{n}$  = CR( $\mu$ ): RE( $\widehat{\mu}_n$ ) = 1 para todo n.
- En general, los EMV son sesgados y por tanto no eficientes :(
  - $\{X_1,\ldots,X_n\}\stackrel{iid}{\sim} \mathsf{N}(\mu,\sigma^2)$ , luego  $\widehat{\sigma}_n^2=(n-1)S_n^2/n$ .
  - ► Sesgo<sup>2</sup>( $\hat{\sigma}_n^2$ ) =  $\frac{\sigma^4}{n^2} \neq 0$  y Var( $\hat{\sigma}_n^2$ ) =  $\frac{2(n-1)\sigma^4}{n^2} > \frac{2(n-1)^2\sigma^4}{n^3} = CR(\sigma^2)$ .
  - ▶  $RE(\hat{\sigma}_n^2) = (n-1)/n < 1.$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ ○壹 ● 今○○

4 / 30

UTDT Propiedades Asintóticas

### Recapitulación

- En general los EMV son sesgados y por tanto no eficientes.
  - Es la eficiencia una propiedad trascendental?

Los estimadores UMVUE no siempre existen, si existen no suele ser trivial encontrarlos, y en general pueden existir estimadores sesgados (por tanto ineficientes) pero de menor riesgo cuadrático (compensen el sesgo con una gran reducción en la varianza).

• Las propiedades en muestras finitas parecen escasas, sin embargo desde el punto de vista asintótico, los EMV son sin duda muy buenos.

Informalmente los estimadores MV se parecen bastante a los UMVUE (son "casi eficientes") cuando n es grande y su distribución se puede aproximar utilizando una distribución normal.

# Agenda

- Propiedades asintóticas
  - Consistencia
  - Normalidad Asintótica
  - Eficiencia Asintótica
- 2 Apéndice: Propiedades asintóticas de la función de verosimilitud

# Agenda

- Propiedades asintóticas
  - Consistencia
  - Normalidad Asintótica
  - Eficiencia Asintótica

2 Apéndice: Propiedades asintóticas de la función de verosimilitud

#### Consistencia

• Sea  $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$  y  $W_n(\underline{X})$  un estimador de  $\theta$ .

### Definition (Consistencia)

Una secuencia de estimadores  $\{W_n\}_{n\geq 1}$  se dice **consistente** para el parámetro  $\theta$  si para todo  $\varepsilon>0$  (tan pequeño como quieras), se cumple:

$$\lim_{n\to\infty}P_{\theta}(|W_n-\theta|<\varepsilon)=1, \text{ para todo } \theta\in\Theta.$$

- Equivalentemente  $W_n$  es consistente si:  $\lim_{n\to\infty} P_{\theta}(|W_n \theta| \ge \varepsilon) = 0$ .
- La consistencia de  $W_n$  ocurre cuando su distribución de probabilidad tiende a concentrarse en torno de  $\theta$  a medida que n tiende a infinito.
  - ▶ Ej: Si  $X \sim N(\mu, \sigma_0^2)$  luego  $\widehat{\mu}_n \stackrel{\text{EMV}}{=} \overline{X}_n \sim N(\mu, \sigma_0^2/n)$ .
- Notar que por la ley de los grandes números (LGN)  $\overline{X}_n$  es siempre consistente para E(X). Sin embargo, en general, la consistencia depende tanto del estimador como del modelo estadístico.





Figure: Si  $X \sim N(\mu, \sigma_0^2)$ , la distribución de  $\widehat{\mu}_n$  se concentra en  $\mu$  cuando  $n \to \infty$ .

## Relación entre Consistencia y ECM

• Recordemos que el ECM de  $W_n$  se descomponía como:

$$\mathsf{ECM}(W_n, \theta) = E[(W_n - \theta)^2] = \mathsf{Var}_{\theta}(W_n) + \mathsf{Sesgo}_{\theta}^2(W_n).$$

• Por Chebychev (CB pp-122, th 3.6.1):

$$P(|W_n - \theta| \ge \varepsilon) \le \frac{E[(W_n - \theta)^2]}{\varepsilon^2} = \frac{ECM(W_n, \theta)}{\varepsilon^2}.$$

- Por lo que si<sup>1</sup>  $\lim_{n\to\infty} ECM(W_n, \theta) = 0$ , entonces  $W_n$  es consistente.
  - Si  $\lim_{n\to\infty} \operatorname{Sesgo}_{\theta}(W_n) = 0$  y  $\lim_{n\to\infty} \operatorname{Var}_{\theta}(W_n) = 0$   $\Rightarrow$  consistencia.
- Ejemplos: Estimadores MV cuando  $X \sim N(\mu, \sigma^2)$ .

<sup>1</sup>Esta es una condición suficiente para la consistencia. ←□→ ←♂→ ←≧→ ←≧→ → ≥ → へへへ

UTDT Propiedades Asintóticas 10 / 30

### Algunas reflexiones

- Un estimador puede ser sesgado y consistente:
  - ▶ Si  $W_n$  es insesgado y consistente para  $\theta$ , luego  $V_n = \frac{n}{n-1}W_n \frac{1}{n}$  es un estimador sesgado y consistente para  $\theta$  (¿porqué?).
- Un estimador puede ser insesgado e inconsistente:
  - $W_n = X_n$  para  $\mu$ , con  $\{X_1, \dots, X_n\} \stackrel{iid}{\sim} N(\mu, \sigma^2)$  (¿porqué?).
- Notar que si  $W_n$  es consistente para  $\theta$  y  $\psi$  es una función continua en  $\Theta$ , luego  $\psi(W_n)$  es consistente para  $\psi(\theta)$  (th. del mapa continuo<sup>2</sup>).
  - ▶ Ejemplo:  $\{X_1,\ldots,X_n\}\stackrel{iid}{\sim} \operatorname{Bern}(\theta)$ , luego  $\widehat{\theta}_n=\overline{X}_n$  es consistente para  $\theta$  (¿porqué?). Si me interesa el parámetro  $\psi(\theta)\equiv\theta/(1-\theta)$ , entonces  $\psi(\widehat{\theta}_n)=\overline{X}_n/(1-\overline{X}_n)$  es un estimador consistente de  $\psi(\theta)$ .
  - ▶ Tener en cuenta que si  $W_n$  era insesgado para  $\theta$ ; en general  $\psi(W_n)$  será sesgado para  $\psi(\theta)$  (salvo el caso en que  $\psi$  es una función lineal).

UTDT Propiedades Asintóticas 11/30

<sup>&</sup>lt;sup>2</sup>CB pp−233, th 5.5.4.

### Theorem (Consistencia de EMV)

Sea  $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$  y  $\widehat{\theta}_n$  el estimador MV de  $\theta$ . Para  $\psi$  continua en  $\Theta$  y bajo condiciones de regularidad generales (CB § 7.3.8) se tiene que:

$$\lim_{n\to\infty} P_{\theta}(|\psi(\widehat{\theta}_n) - \psi(\theta)| < \varepsilon) = 1,$$

luego  $\psi(\widehat{\theta}_n)$  es un estimador consistente de  $\psi(\theta)$ .

- Vale en particular para  $\psi(\widehat{\theta}_n) = \widehat{\theta}_n$  respecto de  $\psi(\theta) = \theta$ .
- Condiciones de regularidad (informal):  $L(\theta)$  (y por tanto  $f(x;\theta)$ ) es una función suficientemente suave respecto de  $\theta \in \Theta$ .
- Corolario: Los EMV son asintóticamente insesgados.
- Los estimadores de momentos son (cond. gerales.) consistentes.

UTDT

# Agenda

- Propiedades asintóticas
  - Consistencia
  - Normalidad Asintótica
  - Eficiencia Asintótica

2 Apéndice: Propiedades asintóticas de la función de verosimilitud

#### Transformaciones estabilizadoras de la varianza

• Si  $\widehat{\theta}_n$  es un estimador consistente de  $\theta$ , el error de estimación:

$$E_n = \widehat{\theta}_n - \theta \to_P 0.$$

• Para poder estudiar la distribución del error de estimación cuando  $n \to \infty$  necesitamos amplificar los errores multiplicandolos por una función de n que estabilice la varianza de  $E_n$ . Para  $\alpha > 0$ , hacemos:

$$n^{\alpha}E_n \rightarrow_F$$
 Distribución conocida.

- Al multiplicar por  $n^{\alpha}$  tenemos una 'lupa' que nos permite estudiar el comportamiento asintótico del estimador (o del error de estimación).
- Para el estimador de máxima verosimilitud  $\alpha = 1/2$ .
  - ▶ Para simplificar, en lo que sigue vamos a considerar  $\alpha = 1/2$ .

4 D > 4 A > 4 B > 4 B > 9 Q P

### Definition (Normalidad asintótica)

Un estimador  $\widehat{\theta}_n$  de  $\theta$  es asintóticamente normal si (asumimos  $\alpha = 1/2$ ):

$$\sqrt{n}(\widehat{\theta}_n - \theta) \rightarrow_F N(0, v_\theta),$$

es decir, si para tamaños de muestra grande, la distribución de  $\sqrt{n}(\widehat{\theta}_n - \theta)$ es aproximadamente  $N(0, v_{\theta})$ . Llamaremos a  $v_{\theta}$  y  $\sqrt{v_{\theta}}$  a la varianza y el error (desvío) estandard asintóticos de  $\theta_n$  como estimador de  $\theta$ .

• Si  $\widehat{\theta}_n$  es asintóticamente normal, entonces para n grande vale que:

$$E_n = \widehat{\theta}_n - \theta \sim_{\textbf{a}} N\left(0, \frac{v_\theta}{n}\right), \text{ o lo que los mismo } \widehat{\theta}_n \sim_{\textbf{a}} N\left(\theta, \frac{v_\theta}{n}\right)$$

- El término  $\frac{v_{\theta}}{n}$  aproxima la varianza de  $\widehat{\theta}_n$  cuando n es grande.
- Como  $\theta$  es desconocido, para que estos resultados nos sirvan en la práctica haremos uso de un estimador consistente de  $v_{\theta}$  (Slutzky).

- Slutzky: Si  $W_n \to_F W$  y  $V_n \to_P c$ , entonces:  $W_n V_n \to_F cW$ .
- Si  $\widehat{\theta}_n$  es asintóticamente normal y  $\widehat{v}_{\theta} \rightarrow_P v_{\theta}$ , luego:

#### Example

Consideremos una muestra aleatoria  $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} X$  y llamemos  $\mu = E(X)$  y  $\sigma^2 = Var(X)$ . Por el TCL se tiene que:

$$\sqrt{n}(\overline{X}_n - \mu) \to_F N(0, \sigma^2).$$

Luego  $\overline{X}_n$  es asintóticamente normal con media cero y su varianza asintótica es  $v_\mu = \sigma^2$  y por lo tanto para  $n \gg 0$  la variabilidad del estimador se puede aproximar con  $\sigma^2/n$ .

– Cómo  $S_n^2 \to_p \sigma^2$ , luego también vale:  $\sqrt{n}(\overline{X}_n - \mu)/S_n \to_F N(0,1)$ .

$$\overline{X}_n \sim_a N(\mu, S_n^2/n)$$
, si  $n \gg 0$ .

- Este tipo de construcciones vale también para los EMV. La varianza asintótica de los EMV viene dada por la cota de Cramér-Rao.

UTDT Propiedades Asintóticas 17/30

## (refresh CR / información de Fisher)

• Para  $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta) \text{ y } W_n(\underline{X}) \in \mathcal{C}_{\theta} \text{ (H1, H2)}.$ 

$$V(W_n) \ge \frac{1}{n \underbrace{E\left(\left[\frac{\partial}{\partial \theta} \log f(X;\theta)\right]^2\right)}_{i(\theta)}} = \frac{1}{E\left(\left[\frac{\partial}{\partial \theta} \ell(\theta|\underline{X})\right]^2\right)} = \frac{1}{I_n(\theta)}.$$

- Información de Fisher:  $I_n(\theta) = ni(\theta)$ .
- Cuando se trata de modelos de la familia exponencial:

$$I_n(\theta) = -E\left(\frac{\partial^2}{\partial \theta^2}\ell(\theta|\underline{X})\right) \stackrel{iid}{=} -n\underbrace{E\left(\frac{\partial^2}{\partial \theta^2}\log f(X;\theta)\right)}_{i(\theta)}.$$

• Para los EMV se tiene que:  $v_{\theta} = 1/i(\theta)$ .

→□▶→□▶→□▶→□▶ □ のQで

### Theorem (Distribución asintótica de los EMV)

Bajo condiciones de regularidad generales y asumiendo que  $0 < i(\theta) < \infty$ , los estimadores MV tienen asintóticamente una distribución normal:

$$\sqrt{n}(\widehat{\theta}_n - \theta) \rightarrow_F N(0, 1/i(\theta)).$$

• Para  $n \gg 0$ , el error (desvío) standard del EMV se aproxima como:

$$\operatorname{se}_{\theta} \overset{n \gg 0}{=} \sqrt{\frac{1}{\operatorname{ni}(\theta)}} \overset{\operatorname{c.m.t.}}{=} \sqrt{\frac{1}{\operatorname{ni}(\widehat{\theta}_n)}} = \widehat{\operatorname{se}}_{\theta}.$$

• Si  $i(\theta)$  es una función continua, también vale que (Slutsky):

$$\sqrt{ni(\widehat{\theta}_n)(\widehat{\theta}_n-\theta)} \rightarrow_F N(0,1).$$

• Por lo tanto, para  $n \gg 0$  vale la aproximación:

$$\widehat{\theta}_n \sim_a N\left(\theta, \frac{1}{ni(\widehat{\theta}_n)}\right).$$

# Ejemplo: $X \sim \text{Bern}(\theta)$

#### ¿Utilidad de este resultado?

Nos permite construir intervalos de confianza y/o diseñar tests para el parámetro del modelo a partir de la distribución aproximada del EMV (validos cuando  $n \gg 0$ ). Como oportunamente veremos se cumple:

$$\mathsf{IC}_{1-\alpha}(\theta) = \Big\{ \widehat{\theta}_n \pm \mathsf{z}_{\alpha/2} \frac{1}{\sqrt{\mathsf{ni}(\widehat{\theta}_n)}} \Big\} = \Big\{ \widehat{\theta}_n \pm \mathsf{z}_{\alpha/2} \widehat{\mathsf{se}}_{\theta} \Big\}.$$

• Ejemplo: Intervalos de confianza con el modelo Bern $(\theta)$ .

$$\mathsf{IC}_{1-lpha}( heta) = \Big\{\widehat{ heta}_n \pm z_{lpha/2} \underbrace{\sqrt{\widehat{ heta}_n(1-\widehat{ heta}_n)}}_{\widehat{\mathfrak{Se}}_a}\Big\}.$$

• ¿Ejemplo en R? (volveremos sobre este tema en la próxima clase).

UTDT Propiedades Asintóticas 20 / 30

#### Distribución asintóticas de funciones del EMV

• Si  $\psi'(\theta) \neq 0$  luego (**método delta** + normalidad asintótica):

$$\sqrt{n}(\psi(\widehat{\theta}_n) - \psi(\theta)) \to_F N(0, (\psi'(\theta))^2[i(\theta)]^{-1}).$$

• Para  $n \gg 0$ , el error standard de  $\widehat{\psi}_n \equiv \psi(\widehat{\theta}_n)$  se aproxima como:

$$\mathsf{se}_{\psi} \overset{\mathsf{n} \gg 0}{=} \sqrt{\frac{(\psi'(\theta))^2}{\mathsf{n} i(\theta)}} \overset{\mathsf{c.m.t.}}{=} \sqrt{\frac{(\psi'(\widehat{\theta}_n))^2}{\mathsf{n} i(\widehat{\theta}_n)}} = \widehat{\mathsf{se}}_{\psi}.$$

• Asumiendo continuidad en  $i(\theta)$  (y usando Slutsky):

$$\sqrt{\frac{ni(\widehat{\theta}_n)}{(\psi'(\widehat{\theta}_n))^2}}(\psi(\widehat{\theta}_n)-\psi(\theta))\to_F N(0,1).$$

• Por lo tanto, para  $n \gg 0$  se tiene que:

$$\widehat{\psi}_n \sim_{\mathsf{a}} \mathsf{N}\Big(\psi; \frac{(\psi'(\widehat{\theta}_n))^2}{\mathsf{n}i(\widehat{\theta}_n)}\Big).$$

## Extensiones (modelos multiparámetro)

• Los resultados anteriores también valen cuando  $dim(\Theta) = d > 1$ :

$$\widehat{\boldsymbol{\theta}}_n \overset{n \gg 0}{\sim}_a N_d(\boldsymbol{\theta}, \mathbf{I}_n(\boldsymbol{\theta})^{-1}).$$

- Por lo tanto (Slutsky), con n grande:  $\widehat{\theta}_n \stackrel{n \gg 0}{\sim}_a N_d(\theta, \mathbf{I}_n(\widehat{\theta}_n)^{-1})$ .
- Otras aproximaciones asintóticas también son válidas:
  - $\blacktriangleright \ 2\Big(\ell_n(\widehat{\theta}_n|\underline{X}) \ell_n(\theta|\underline{X})\Big) \to_F \chi_d^2 \text{, donde } d = \dim(\Theta).$
  - ► Estas aproximaciones son habituales al plantear test (de ratios de verosimilitud) para los parámetros del modelo (discutido más adelante).
  - ► Ejemplo elipse de confianza para el modelo normal.

# Agenda

- Propiedades asintóticas
  - Consistencia
  - Normalidad Asintótica
  - Eficiencia Asintótica

2 Apéndice: Propiedades asintóticas de la función de verosimilitud

- En las transparencias anteriores vimos que los EMV son consistentes y asintóticamente normales. También se cumple que su varianza, a medida que *n* crece, se aproxima a la cota de CR.
- Si  $\sqrt{n}(W_n \theta) \rightarrow_F N(0, \sigma_W^2(\theta))$  ( $W_n$  es asintóticamente normal<sup>3</sup>); la eficiencia asintótica de  $W_n$ :

$$\mathsf{EA}(W_n) = \frac{1/i(\theta)}{\sigma_W^2(\theta)} \le 1.$$

• Los EMV son asintóticamente eficientes porque  $EA(\widehat{\theta}_n) = 1$ .

Informalmente para  $n \gg 0$  los estimadores MV son casi insesgados, tienen una varianza muy parecida a la de los estimadores UMVUE y su distribución se puede aproximar con una normal :) :) :)

UTDT Propiedades Asintóticas 24 / 30

Notar que  $\sigma_W^2(\theta)$  es constante respecto de n, pero puede depender del valor de  $\theta$ 

#### Eficiencia asintótica relativa

Definition (Eficiencia asintótica relativa)

Sean  $W_n$  y  $V_n$  dos estimadores consistentes de  $\theta$  tales que:

$$\sqrt{n}(W_n - \theta) \to_F N(0, \sigma_W^2(\theta)), \text{ y } \sqrt{n}(V_n - \theta) \to_F N(0, \sigma_V^2(\theta)),$$

definimos la eficiencia asintótica relativa EAR $(W_n, V_n) = \sigma_W^2(\theta)/\sigma_V^2(\theta)$ .

- EAR como criterio para elegir entre estimadores consistentes.
- Ejemplo: Estimando  $\psi = P(X = 0)$  cuando  $X \sim \text{Poiss}(\lambda)$ .
  - Estrategia 1: Utilizar invarianza  $\widehat{\psi} = \psi(\widehat{\lambda})$ .
  - ▶ Estrategia 2: Bernullizar el problema  $\hat{p} = \hat{P}(Y = 1)$  (?).
  - $\blacktriangleright$  Como  $\sigma^2_{\widehat{\psi}} \leq \sigma^2_{\widehat{p}},$  preferimos el primer estimador.

#### **Conclusiones**

- Los EMV cumplen los 3 principios de inferencia.
- En muestras finitas, en general son sesgados y por tanto no eficientes.
- Si embargo son consistentes y asintóticamente eficientes.
  - Con  $n \gg 0$ , el sesgo de los EMV es pequeño y su varianza se parece a la de los estimadores eficientes (es muy parecido al UMVUE).
  - Aproximamos su varianza (error estandard) con la inversa de la información de Fisher evaluada en la estimación máximo verosímil.
- Podemos aproximar su distribución asintótica (y la de cualquier función continua del EMV) utilizando una distribución normal.
  - Esto nos permite construir intervalos y testear hipótesis (hacer inferencia) para  $\theta$  a partir de estos estimadores.

# Ejercicio integrador

Sea  $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} \mathsf{Exp}(\theta)$ , se pide:

- **1** Obtenga el EMV de  $\theta$  verificando la CSO.
- ¿Es el EMV una función del estadístico suficiente?
- 3 ¿Es el EMV el UMVUE?
- Ompute el riesgo cuadrático del estimador.
- ¿Es el estimador consistente?
- O Determine la distribución asintótica del EMV.
- **1** De una muestra de tamaño n=10 se tiene  $\sum_{i=1}^{10} X_i = 20$ ; calcule la estimación máximo verosímil de  $\theta$ , aproxime el error estándar del estimador (¿para qué sirve esta cantidad?).

## Agenda

Propiedades asintóticas

2 Apéndice: Propiedades asintóticas de la función de verosimilitud

- Bajo las siguientes condiciones de regularidad:
  - **1** El soporte del modelo,  $\{x \mid f(x; \theta) > 0\}$ , es el mismo para todo  $\theta \in \Theta$ .
  - ② Identificabilidad:  $\theta \neq \theta' \Rightarrow f(x; \theta) \neq f(x; \theta')$  para todo  $\theta, \theta' \in \Theta$ .
  - **3**  $\theta^*$  es un punto *interior* de  $\Theta$ , siendo  $\Theta$  compacto.
  - ... que se cumplen en general en la familia exponencial.
- Llamemos  $\theta^*$  al verdadero parámetro en la población:

$$\lim_{n\to\infty} P\Big(L_n(\theta^*|\underline{X}) > L_n(\theta|\underline{X})\Big) = 1, \text{ para todo } \theta \neq \theta^*.$$

- Cuando  $n \gg 0$ , con una probabilidad alta ocurre que el máximo de  $L_n(\theta)$  ocurre en el verdadero valor de  $\theta$  en la población.
- Cuando  $n \to \infty$  identificamos al "modelo" correcto con certeza.





Figure: Algunas realizaciones de  $\ell_n(\mu)$  para n=10,50,100,200.