Tarea 12

Ricardo Cruz Martínez

3 de enero de 2021

1. Prueba que la función $\varphi:\mathcal{C}^0[0,1]\to\mathbb{R}$ dada por

$$\varphi(u) := \int_0^1 u^2$$

es diferenciable y calcula su derivada.

Prueba. Sean $u, v \in C^0([0,1])$, afirmamos que

$$\lim_{v \to 0} \frac{\left| \varphi(u+v) - \varphi(u) - \int_0^1 2uv \right|}{\left\| v \right\|_{\infty}} = 0$$

En efecto

$$0 \leq \lim_{v \to 0} \frac{\left| \varphi(u+v) - \varphi(u) - \int_{0}^{1} 2uv \right|}{\|v\|_{\infty}} = \lim_{v \to 0} \frac{\left| \int_{0}^{1} (u+v)^{2} - \int_{0}^{1} u^{2} - \int_{0}^{1} 2uv \right|}{\|v\|_{\infty}}$$

$$= \lim_{v \to 0} \frac{\left| \int_{0}^{1} u^{2} + 2uv + v^{2} - 2uv \right|}{\|v\|_{\infty}} = \lim_{v \to 0} \frac{\left| \int_{0}^{1} v^{2} \right|}{\|v\|_{\infty}} \tag{1}$$

$$\leq \lim_{v \to 0} \frac{\int_{0}^{1} |v^{2}|}{\|v\|_{\infty}} = \lim_{v \to 0} \frac{\int_{0}^{1} v^{2}}{\|v\|_{\infty}}$$

Ahora, como $\varphi(v) = \|v\|_2^2 \le \|v\|_{\infty}^2$, tenemos que

$$\lim_{v \to 0} \frac{\int_{0}^{1} v^{2}}{\|v\|_{\infty}} = \lim_{v \to 0} \frac{\|v\|_{2}^{2}}{\|v\|_{\infty}} \le \lim_{v \to 0} \frac{\|v\|_{\infty}^{2}}{\|v\|_{\infty}} = \lim_{v \to 0} \|v\|_{\infty} = 0$$
(2)

Así, de (1) y (2), tenemos que

$$\lim_{v \to 0} \frac{\left| \varphi(u+v) - \varphi(u) - \int_0^1 2uv \right|}{\|v\|_{\infty}} = 0$$

Finalmente veremos que $f(v) := \int_0^1 2uv$ es lineal y continua.

Sean $\lambda, \mu \in \mathbb{R}, v, w \in \mathcal{C}^0([0,1]).$

$$f(\lambda u + \mu w) = \int_0^1 2u(\lambda v + \mu w) = \lambda \int_0^1 2uv + \mu \int_0^1 2uw = \lambda f(v) + \mu f(w)$$

Así, tenemos que f es lineal.

Dado que f es lineal y está definida en espacios normados, por la Tarea 3, basta ver que fes continua en 0.

Sea $\varepsilon > 0$

Queremos ver que $\exists \delta > 0$ tal que si $\|v\|_{\infty} < \delta$, entonces $|f(v)| < \varepsilon$. Proponemos $\delta = \frac{\varepsilon}{2 \|u\|_{\scriptscriptstyle 1}}$

$$\begin{split} |f(v)| &= \left| \int_0^1 2uv \right| \leq \int_0^1 |2uv| = 2 \int_0^1 |u| \, |v| \leq 2 \int_0^1 |u| \, \|v\|_\infty = 2 \, \|v\|_\infty \int_0^1 |u| < 2\delta \, \|u\|_1 \\ &= \frac{2\varepsilon \, \|u\|_1}{2 \, \|u\|_1} = \varepsilon \end{split}$$

 $\therefore f$ es continua en 0, y por ende, f es continua.

Por lo que podemos concluir que φ es diferenciable y su derivada es f

2. **Definición.** Un subconjunto A de un espacio métrico X es **conexo** si para cualesquiera $x, y \in A$ existe una trayectoria de x a y en A.

Prueba que, si Ω es un subconjunto abierto y conexo de un espacio de Banach $V, \varphi: \Omega \to W$ es diferenciable en Ω y $\varphi'(u) = 0$ para todo $u \in \Omega$, entonces φ es constante en Ω .

Demostración. Sea $x \in \Omega$.

Primero veamos que φ es constante en cualquier bola con centro en x y radio δ contenida

Por hipoótesis, Ω es abierto, así $\exists \delta > 0$ tal que $B(x, \delta) \subseteq \Omega$.

Como $B(x, \delta)$ es convexa $(*), \forall y \in B(x, \delta)$, se tiene que

$$(1-t)x + ty \in B(x,\delta) \quad \forall t \in [0,1]$$

Una vez dicho esto, tenemos la hipótesis del Corolario 9.17, con lo que tenemos lo siguiente

$$\|\varphi(y) - \varphi(x)\|_{W} \le \sup_{t \in [0,1]} \|\varphi'(u_t)\|_{\mathcal{L}(VW)} \|x - y\|_{V}$$

Donde $u_t = (1-t)x + ty$, y como $B(x,\delta) \subseteq \Omega \Rightarrow \varphi'(u_t) = 0$ (esto último se cumple por hipótesis).

$$\therefore \|\varphi'(u_t)\|_{\mathcal{L}(V,W)} = 0$$

Por lo que tenemos que $\|\varphi(y)-\varphi(x)\|_{W}\leq 0$, y por propiedades de la norma, se sigue $\|\varphi(y) - \varphi(x)\|_W = 0$, de esto concluimos $\varphi(y) = \varphi(x) \quad \forall y \in B(x, \delta)$.

Por otra parte, como φ es diferenciable en Ω , entonces φ es continua (esto se sigue de la proposición 9.11 probada en clase).

Sea $x_0 \in \Omega$.

Definimos $H = \{z \in \Omega : f(z) = f(x_0)\},$ claramente $H \subseteq \Omega$.

Afirmamos que H es abierto en Ω .

Sea $x \in H \subseteq \Omega$, como Ω es abierto, $\exists \delta > 0$ tal que $B(x, \delta) \subseteq \Omega$, y por lo mencionado al inicio, se sigue que $\varphi(y) = \varphi(x_0) \quad \forall y \in B(x, \delta)$.

$$\therefore B(x,\delta) \subseteq H.$$

De esto tenemos que $H \subseteq int(H)$, por lo que H es abierto en Ω .

Por otra parte, afirmamos que H también es cerrado.

Veamos que $\Omega \setminus H$ es abierto, más aún, veremos que $\Omega \setminus H = \emptyset$

Donde $\Omega \setminus H = \{z \in \Omega : \varphi(z) \neq \varphi(x_0)\}\$, supongamos por contradicción que $\Omega \setminus H \neq \emptyset$.

Así $\exists \bar{x} \in \Omega \setminus H \Rightarrow \varphi(\bar{x}) \neq \varphi(x_0)$ y como Ω es abierto, tenemos que $\exists \delta > 0$ tal que $B(\bar{x}, \delta) \subseteq \Omega$ y por lo mencionado al inicio, tendríamos que $\forall y \in B(\bar{x}, \delta) \quad \varphi(y) \neq \varphi(x_0)$, lo que claramente contradice el hecho de que φ es continua.

De esto último se sigue que $\Omega \setminus H = \emptyset$.

 $\therefore H$ es cerrado.

Y con esto, hemos probado que φ es constante en cualquier bola.

Finalmente, como Ω es conexo y H es abierto y cerrado, tenemos que $H=\Omega$, además $H\neq\emptyset$, ya que $x_0\in H$, de esto se sigue que φ es constante (**).

Justificaciones

(*) Sea W un espacio métrico normado no vacío. Sea $x \in W$, entonces dada $\delta > 0$, $B(x, \delta)$ es convexa.

Prueba. Sea $y \in B(x, \delta)$, así $||x - y|| < \delta$.

Para la demostración anterior, solo nos basta ver que

$$(1-t)x + ty \in B(x,\delta) \quad \forall t \in [0,1].$$

Sea $t \in [0, 1]$

$$\begin{split} \|(1-t)x + ty - x\|_W &= \|(1-t-1)x + ty\|_W = \|-tx + ty\|_W \\ &= |t| \, \|y - x\|_W \le \|x - y\|_W < \delta \end{split}$$

$$\therefore (1-t)x + ty \in B(x,\delta)$$

(**) Como Ω es conexo, entonces no existen $U,V\subseteq\Omega$ (abiertos o cerrados) tales que $U\cap V=\emptyset$ y $\Omega=U\cup V$, ya que hay una trayectoria que une a cualesquiera dos puntos.

Una vez dicho esto, veamos que si Ω es conexo, entonces los únicos conjuntos abiertos y cerrados en Ω son Ω y \emptyset .

Prueba. Supongamos por contradicción que existe $\emptyset \neq A \subsetneq \Omega$, donde A es abierto y cerrado, por ende $\Omega \setminus A$ es abierto y como $a \cap (\Omega \setminus A) = \emptyset$ y se tiene que $\Omega = A \cup (\Omega \setminus A)$ con A y $\Omega \setminus A$ abiertos, lo cual es absurdo, pues Ω es conexo.

3. Considera la función

$$\varphi: \ell_1 \to \mathbb{R}, \qquad \varphi(\overline{x}) := \|\overline{x}\|_{\ell_1} = \sum_{k=1}^{\infty} |x_k|.$$

Prueba que φ es Gâteaux-diferenciable en $\overline{x}=(x_k)$ si y sólo si $x_k\neq 0$ para todo $k\in\mathbb{N}$. Calcula la derivada de Gâteaux $\mathcal{G}\varphi(\overline{x})$ en ese caso.

 $Prueba. \Rightarrow$) Supongamos que φ es Gâteaux-diferenciable en $\bar{x} = (x_k)$.

Queremos ver que $x_k \neq 0 \quad \forall k \in \mathbb{N}$

Supongamos por contradicción que $\exists k_0 \in \mathbb{N}$ tal que $x_{k_0} = 0$.

Por hipótesis, φ es Gâteaux-diferenciable en \bar{x} , por lo que

$$\lim_{t\to 0} \frac{\varphi(\bar{x}+t\bar{v})-\varphi(\bar{x})}{t} \text{ existe } \forall v\in\ell_1$$

En particular si tomamos $\bar{v}:=v_k=\left\{\begin{array}{ccc} 1 & si & k=k_0\\ & & , \text{ claramente } \bar{v}\in\ell_1, \text{ además}\\ 0 & si & k\neq k_0 \end{array}\right.$

tenemos que

$$\begin{split} \varphi(\bar{x}+t\bar{v}) - \varphi(\bar{x}) &= \sum_{k=1}^{\infty} |x_k + tv_k| - \sum_{k=1}^{\infty} |x_k| \\ &= \sum_{k=1}^{k_0-1} |x_k| + |tv_{k_0}| + \sum_{k=k_0+1}^{\infty} |x_k + tv_k| - \sum_{k=1}^{\infty} |x_k| \\ &= \sum_{k=1}^{k_0-1} |x_k| + |t| + \sum_{k=k_0+1}^{\infty} |x_k| - \sum_{k=1}^{\infty} x_k \\ &= \sum_{k=1}^{k_0-1} |x_k| + |t| + \sum_{k=k_0+1}^{\infty} |x_k| - \sum_{k=1}^{\infty} |x_k| \\ &= \sum_{k=1}^{k_0-1} |x_k| + \sum_{k=k_0+1}^{\infty} |x_k| - \sum_{k=1}^{\infty} |x_k| - \sum_{k=k_0+1}^{\infty} |x_k| + |t| \\ &= |t| \end{split}$$

 $\therefore \varphi(\bar{x} + t\bar{v}) - \varphi(\bar{x}) = |t|.$

Por ende, tenemos que

$$\lim_{t \to 0} \frac{\varphi(\bar{x} + t\bar{v}) - \varphi(\bar{x})}{t} = \lim_{t \to 0} \frac{|t|}{t}$$

Sin embargo, notemos lo siguiente

$$\lim_{t \to 0^{-}} \frac{|t|}{t} = \lim_{t \to 0^{-}} \frac{-t}{t} = \lim_{t \to 0^{-}} -1 = -1$$

$$\lim_{t \to 0^{+}} \frac{|t|}{t} = \lim_{t \to 0^{+}} \frac{t}{t} = \lim_{t \to 0^{+}} 1 = 1$$

Por lo que $\lim_{t\to 0}\frac{|t|}{t}$ no existe, lo cual es absurdo. $\therefore x_k \neq 0 \quad \forall k \in \mathbb{N}$

 \Leftarrow) Supongamos que $x_k \neq 0 \quad \forall k \in \mathbb{N}$

Queremos probar que φ es Gâteaux-diferenciable en $\bar{x} = (x_k)$.

Sea $\bar{v} \in \ell_1$

Afirmamos que

$$\lim_{t \to 0} \frac{\varphi(\bar{x} + t\bar{v}) - \varphi(\bar{x})}{t} = \sum_{k=1}^{\infty} f(v_k)$$

Donde
$$f(v_k) = \begin{cases} v_k & si \quad x_k > 0 \\ -v_k & si \quad x_k < 0 \end{cases}$$

Ahora, como $\bar{v} \in \ell_1 \Rightarrow \sum_{k=1}^{\infty} |v_k|$ converge.

Además, de cálculo 2, sabemos que si $\sum_{k=1}^{\infty} |f(v_k)| = \sum_{k=1}^{\infty} |v_k|$ converge, entonces $\sum_{k=1}^{\infty} f(v_k)$ también converge.

Sea $\varepsilon > 0$

Como
$$\sum_{k=1}^{\infty} |v_k|$$
 converge, entonces $\exists N \in \mathbb{N}$ tal que $\sum_{k=N}^{\infty} |v_k| < \frac{\varepsilon}{2}$.

Ahora, dada $n < N, x_n$ es positiva ó negativa

Caso 1) $x_n > 0$

Si
$$x_n > 0 \Rightarrow \exists \delta_n > 0$$
 tal que $x > 0 \quad \forall x \in B(x_n, \delta_n)$, así tenemos que

$$|x_k + tv_k| = x_k + tv_k \text{ si } |t| < \frac{\delta_n}{|v_k|}$$

Por ende

$$|x_k + tv_k| - |x_k| = x_k + tv_k - x_k = tv_k$$

Caso 2) $x_n < 0$

Si
$$x_n < 0 \Rightarrow \exists \delta_n > 0$$
 tal que $x < 0 \quad \forall x \in B(x_n, \delta_n)$, así

$$|x_k + tv_k| = -x_n - tv_k \text{ si } |t| < \frac{\delta_n}{|v_k|}$$

Por lo tanto

$$|x_k + tv_k| - |x_k| = -x_k - tv_k + x_k = -tv_k$$

Ahora, definimos
$$\bar{\delta_n} = \frac{\delta_n}{|v_k|}$$

Y tomando dicha delta para los valores n < N, tenemos que

$$\frac{\sum_{k=1}^{N-1} |x_k + tv_k| - \sum_{k=1}^{N-1} |x_k|}{t} = \frac{\sum_{k=1}^{N-1} tf(v_k)}{t} = \sum_{k=1}^{N-1} f(v_k) \text{ si } |t| < \delta' = \min_{n < m} \{\bar{\delta_n}\}$$

Finalmente, tomando $\delta = \min\{\delta', 1\}$, si $|t| \leq \delta$, tenemos que

$$\left| \frac{\sum_{k=1}^{\infty} |x_k + tv_k| - \sum_{k=1}^{\infty} |x_k|}{t} - \sum_{k=1}^{\infty} |f(v_k)| \right| = \left| \frac{\sum_{k=1}^{N-1} |x_k + tv_k| - \sum_{k=1}^{N-1} |x_k|}{t} + \frac{\sum_{k=N}^{\infty} |x_k + tv_k| - \sum_{k=N}^{\infty} |x_k|}{t} - \sum_{k=1}^{N-1} f(v_k) - \sum_{k=N}^{\infty} |f(v_k)| \right|$$

$$= \left| \sum_{k=1}^{N-1} f(v_k) + \frac{\sum_{k=N}^{\infty} |x_k + tv_k| - \sum_{k=N}^{\infty} |x_k|}{t} - \sum_{k=1}^{N-1} f(v_k) - \sum_{k=N}^{\infty} f(v_k) \right|$$

$$= \left| \frac{\sum_{k=N}^{\infty} |x_k + tv_k| - \sum_{k=N}^{\infty} |x_k|}{t} - \sum_{k=N}^{\infty} |f(v_k)| \right|$$

$$\leq \left| \sum_{k=N}^{\infty} \frac{|x_k|}{t} + \sum_{k=N}^{\infty} \frac{|tv_k|}{t} - \sum_{k=N}^{\infty} \frac{|x_k|}{t} + \left| \sum_{k=N}^{\infty} f(v_k) \right|$$

$$= \left| \sum_{k=N}^{\infty} \frac{|tv_k|}{t} + \sum_{k=N}^{\infty} |f(v_k)| \right|$$

$$\leq \sum_{k=N}^{\infty} \frac{|tv_k|}{t} + \sum_{k=N}^{\infty} |f(v_k)| = \sum_{k=N}^{\infty} |v_k| + \sum_{k=N}^{\infty} |v_k|$$

$$\leq \sum_{k=N}^{\infty} |v_k| + \sum_{k=N}^{\infty} |f(v_k)| = \sum_{k=N}^{\infty} |v_k| + \sum_{k=N}^{\infty} |v_k| < \frac{2\varepsilon}{2} = \varepsilon$$

$$\therefore \lim_{t \to 0} \frac{\varphi(\bar{x} + t\bar{v}) - \varphi(\bar{x})}{t} = \sum_{k=1}^{\infty} f(v_k)$$

Ahora veamos que $\sum_{k=1}^{\infty} f(v_k)$ es continua. Sean $a, y \in \ell_1$, donde $a = (a_k), y = (y_k)$.

$$\left| \sum_{k=1}^{\infty} f(a) - \sum_{k=1}^{\infty} f(y) \right| \le \sum_{k=1}^{\infty} |f(a) - f(y)| = \sum_{k=1}^{\infty} |a_k - y_k| = ||a - y||_{\ell_1}$$

Por lo que la función dada por $\bar{G}(\bar{x}) = \sum_{k=1}^{\infty} f(x_k)$ es lipschitz continua y por ende, es continua.

Veamos que \bar{G} es lineal. Sean $a,b\in\ell_1,\lambda,\mu\in\mathbb{R}$

Caso 1) Si $x_n < 0$

$$\bar{G}(\lambda a + \mu b) = \sum_{k=1}^{\infty} f(\lambda a + \mu b) = \sum_{k=1}^{\infty} -\lambda a - \mu b = \lambda \sum_{k=1}^{\infty} -a + \mu \sum_{k=1}^{\infty} -b$$
$$= \lambda \sum_{k=1}^{\infty} f(a) + \mu \sum_{k=1}^{\infty} f(b)$$

Caso 2) Si $x_n > 0$

Se hace de manera análoga al caso 1

Así
$$\bar{G}(\lambda a + \mu b) = \lambda \sum_{k=1}^{\infty} f(a) + \mu \sum_{k=1}^{\infty} f(b) = \lambda \bar{G}(a) + \mu \bar{G}(b)$$

 $\dot{\bar{G}}$ es lineal

$$\therefore \varphi$$
 es Gâteaux-diferenciable y si derivada $\mathcal{G}_{\varphi}(\bar{x}) = \sum_{k=1}^{\infty} f(x_k)$