

DBScan

Density Clustering

When do K-Means fail?

Step 2 - Calculate centroïds

Step 3 - Assign data points to the closest centroid

Step 2 - Calculate centroids

Step 3 - Assign data points to the closest centroid

Step 2 - Calculate centroids

Step 3 - Assign data points to the closest centroid

Step 4 - Get our K clusters

Example 2 - Data

Example 2 - K=2

Example 2 - Calculate Centroids

Example 3 - K=2

Example 3 - Assign data points

Example 3 - Calculate centroids

Example 3 - Assign data points

Example 3 - Assign data points

Example 3 - Fast forward

DBScan

New approach

 Density ⇒ DBScan will create clusters based on how close each samples are from each other

Core metrics

- Minimum Sample ⇒ How many observations to create a core sample
- Epsilon ⇒ Maximum distance to define an observation as part of a sample

Example - Define min_sample & eps

Example - Take observation & define core samples

core samples

core samples

core samples

core samples

core samples

Example - Take observation & define core samples

core samples

Example - Fast Forward

Example - Define outliers

Example - Define outliers

Example - Define outliers

cluster

cluster

cluster

cluster

How to choose min_sample & eps?

- Low eps & High min_sample → High density clusters
- High eps & Low min_sample → Low density clusters
- Low eps & Low min_sample → High outliers sensitivity
- High eps & High min_sample → Low outliers sensitivity

Choose types of distance for eps

Euclidean Distance

$$d_2(x,y) = \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}$$

$$d = \sqrt{(4-1)^2 + (5-1)^2}$$

$$d = \sqrt{(3)^2 + (4)^2}$$

$$d = \sqrt{9 + 16}$$

$$d = \sqrt{25}$$

$$d = 5$$

Manhattan Distance

$$d_1(x,y) = \sum_{i=1}^p |x_i - y_i|$$

$$d = |4 - 1| + |5 - 1|$$

$$d = 3 + 4$$

$$d = 7$$

Thanks!

See you in the next course

