Question number	Scheme	Marks
9	Intersections of curve and line:	
	$\begin{vmatrix} x^2 - 2 = -2x + 13 \\ \Rightarrow x^2 + 2x - 15 = 0 \end{vmatrix} y = \left(\frac{y - 13}{2}\right)^2 - 2$	
	$\rightarrow x + 2x + 13 = 0$	M1
	$\Rightarrow (x+5)(x-3) = 0 \text{ or } \Rightarrow y^2 - 30y + 161 = 0$	M1
	$\Rightarrow x = (-5), 3 \qquad \Rightarrow (y-7)(y-23) = 0$	1,11
	when $x = 3$, $y = 7$ $\Rightarrow y = 7$, (23)	A1
	Volume of cone	
	Using formula: Volume of cone = $\frac{1}{3} \times \pi \times 3^2 \times (13-7) = 18\pi$	B1
	or using integration:	
	Volume of cone = $\pi \int_{7}^{13} \left(\frac{13}{2} - \frac{y}{2} \right)^2 dy = \frac{\pi}{4} \left[169y - 13y^2 + \frac{y^3}{3} \right]_{7}^{13} = 18\pi$	
	Volume of solid generated by rotating the curve:	
	When $x = 0, y = -2$	
	Volume = $\pi \int_{-2}^{7} (y+2) dy = \pi \left[\frac{y^2}{2} + 2y \right]_{-2}^{7}$	M1M1
	$= \pi \left\{ \left(\frac{49}{2} + 14 \right) - \left(\frac{\left(-2 \right)^2}{2} + \left(-4 \right) \right) \right\} = \frac{81}{2} \pi$	ddM1 A1
	Total volume = $18\pi + \frac{81}{2}\pi = \frac{117}{2}\pi$ oe	A1 [9]
Total 9 marks		

M1	Attempt to solve $y + 2x = 13$ with $y = x^2 - 2$ and obtain a three term quadratic	
	in x or y. $(x^2 + 2x - 15 = 0 \text{ or } y^2 - 30y + 161 = 0)$ (Condone = 0 missing.)	
M1	Attempt to solve (see general principles for marking quadratics).	
A1	y = 7	
B1	18π correct volume of cone, in terms of π .	
M1	Correct integral for volume generated by rotating curve.	
	Volume $=\pm \pi \int_{(-2)}^{(7)} (y+2) (dy)$	
	Ignore limits and condone dy omitted or with the wrong variable.	
M1	Evidence of completing integration (see general principles for integration).	
	Ignore limits. π may be missing.	
	If $y + 2$ is combined with another expression in an attempt to add or subtract	
	two volumes, you may accept evidence of integration for the combined	
	expression.	
dd	Dep on previous two M marks. Substitute both correct limits $y = -2$ and $y = 7$	
M1	into the result of their integration. The full substitution should be shown unless	
	the answer is $\frac{81}{2}\pi$ oe.	
A1	$\frac{81}{2}\pi$ oe, given in terms of π .	
	A correct answer from the correct integration implies M1 for a correct	
	substitution of limits.	
A1	$\frac{117}{2}\pi$ oe, correct total volume, in terms of π .	