Text Books:				
1. Soft computing: N. P Padhy and S P Simon, Oxford University Press 2015				
Reference Books:				
1. Principles of Soft Computing,		•	a, 2011.	
		ND ROBOTICS		
_ _	•	stem (CBCS) scheme]		
· ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	n tne academi SEMESTER -	c year 2017 - 2018)		
Subject Code	17CS752	IA Marks	40	
Number of Lecture Hours/Week	3	Exam Marks	60	
Total Number of Lecture Hours	CDEDITE	Exam Hours	03	
Module – 1	CREDITS -	03	Tanahina	
Module – 1			Teaching Hours	
CAMEDAS. Dinholo Comoros Da	diamatus	Magguring Light: Ligh		
CAMERAS: Pinhole Cameras, Radiometry – Measuring Light: Light in Space, Light Surfaces, Important Special Cases, Sources, Shadows, And				
Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading				
Models, Application: Photometric Stereo, Interreflections: Global Shading				
Models, Color: The Physics of Color, Human Color Perception, Representing				
Color, A Model for Image Color, Surface Color from Image Color.				
Module – 2	1400 00101 1101	ii iiiage coloi:		
Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, 8 Hours				
	Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as			
Templates, Edge Detection: Noise, Estimating Derivatives, Detecting Edges,				
	Texture: Representing Texture, Analysis (and Synthesis) Using Oriented			
Pyramids, Application: Synthesis by Sampling Local Models, Shape from				
Texture.		-		
Module – 3				
The Geometry of Multiple Views: Two Views, Stereopsis: Reconstruction, 8 Hours				
Human Stereposis, Binocular Fusion, Using More Cameras, Segmentation by				
Clustering: What Is Segmentation?, Human Vision: Grouping and Getstalt,				
Applications: Shot Boundary Detec			_	
Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,				
Module – 4				
Segmentation by Fitting a Model:	_		_	
Curves, Fitting as a Probabilistic Inf		_		
and Fitting Using Probabilistic Me		-		
Segmentation, The EM Algorithm in Practice, Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models,				
		•	dels,	
Kalman Filtering, Data Association, A	applications ar	iu Examples.		
Module – 5	nants of Ama	viical Euglidean Geem	netry, 8 Hours	
Geometric Camera Models: Elen		•	• .	
Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations, Geometric Camera Calibration: Least-Squares				
Parameter Estimation, A Linear Appropriate Parameter Estimation, A Linear Appropriate Parameter Estimation (1997)		<u>-</u>		
Distortion into Account, Analytical				
Robot Localization, Model- Based	_	• • •		
		iai Assumptions, Odia	uning	
Hypotheses by Pose Consistency, (-	_	

https://hemanthrajhemu.github.io

In Medical Imaging Systems, Curved Surfaces and Alignment.

Course outcomes: The students should be able to:

- Implement fundamental image processing techniques required for computer vision
- Perform shape analysis
- Implement boundary tracking techniques
- Apply chain codes and other region descriptors
- Apply Hough Transform for line, circle, and ellipse detections.
- Apply 3D vision techniques.
- Implement motion related techniques.
- Develop applications using computer vision techniques.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009.

Reference Books:

2. E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.