Aula introdutória - Métodos Numéricos

Cálculo Numérico

Bóris Marin

UFABC

Apresentação e Burocracia

Hoje

Apresentação e informações gerais

- ementa
- programa
- bibliografia
- avaliação
- contato

Introdução aos Métodos Numéricos

Competências

Capacitar o aluno a:

- estudar os métodos numéricos teóricos e implementar computacionalmente estes métodos para solução de problemas;
- 2) perceber a importância da estimativa e do controle do erro em uma aproximação numérica;
- reconhecer as vantagens e desvantagens de cada método numérico estudado.

Programa tentativo

25/9	Apresentação, Motivação via exemplos computacionais
27/9	Introdução matemática e computacional
2/10	Introdução matemática e computacional
4/10	Aritmética de Ponto Flutuante, efeitos numéricos, propagação de erros
9/10	Solução de equações em uma variável: Dicotomia, Iterações, Convergência
11/1	Solução de equações em uma variável: Newton, Secante, Critérios de Parada
16/1	Aplicações e Discussão do Primeiro EP
18/1	Sistemas Lineares: Métodos exatos (Gauss/LU, Cramer)
23/1	Sistemas Lineares - Condicionamento, Erro. Aplicações
25/1	Sistemas Lineares: Métodos iterativos (Jacobi, Gauss-Seidel)
30/1	Aplicações e Discussão do Segundo EP
1/11	Interpolação Polinomial: Introdução, Newton, Lagrange
6/11	Interpolação Polinomial:por partes (linear, splines); erros
8/11	Mais Aplicações de Sistemas lineares
13/1	Ajuste de Funções: Regressão Linear, Mínimos Quadrados
15/11	feriado
20/11	feriado
22/11	Ajuste de Funções: Modelagem Matemática via MQ
27/11	Aplicações e discussão do Terceiro EP
29/11	Diferenciação, Quadratura: Fórmulas de Newton-Cotes
4/12	Quadratura: Newton-Cotes Compostas, Adaptativas, Gaussiana
6/12	Problemas de Valor Inicial em EDOs: introdução, Euler (Taylor)
11/12	PVI em EDOs: Métodos de Runge-Kutta
13/12	Aplicações e discussão Quarto EP
18/12	(repõe 15/11) PVI em EDOs: Erros, estabilidade
20/12	(repõe $20/11$) Discussão EPs para Rec

Avaliação

Trabalhos

- Quatro trabalhos teórico/computacionais, cobrindo os temas:
 - Zeros de Funções Reais
 - Resolução de Sistemas Lineares
 - Ajuste de Curvas / Interpolação Polinomial
 - Quadratura / Solução de EDOs
- Os trabalhos consistirão em uma lista de atividades, que devem ser entregues em forma de relatório, incluindo todo código utilizado, até uma data predeterminada.
- Resolução em grupo, com no máximo três alunos.
- Aulas específicas para discussão de cada exercício (antes da data de entrega); avaliação da participação de cada estudante.

Avaliação

Conceitos

 A cada trabalho será atribuída uma nota de zero a dez. O conceito final será calculado a partir da média aritmética destas notas, convertido segundo:

 Ao aluno que não atingir a frequência mínima, ou não entregar pelo menos dois dos trabalhos, será atribuído o conceito O.

Avaliação

Prova Substitutiva / Recuperação

 Não haverá prova substitutiva nem exame de recuperação. O aluno que ficar com conceito D ou F terá um prazo estendido para entregar os trabalhos até o início do quadrimestre subsequente.

Bibliografia

Sugerida

- Franco, N. B. Cálculo numérico. São Paulo: Prentice Hall, 2006.
- Burden, R. L. Faires, J. D. Análise numérica. São Paulo: Pioneira, 2003.

Complementar

- Otto, S.; Denier J. P. An Introduction to Programming and Numerical Methods in MATLAB. London: Springer-Verlag, 2005.
- Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis. New York: Springer-Verlag, 2002.

Quem sou eu e como me encontrar

- plantão: Sextas-Feiras, das 17h as 19h, Sala 271 Delta
- email: boris.marin@ufabc.edu.br (pode demorar!)
- exceto nas semanas de entrega de trabalhos!

Quem são vocês?

Cálculo Numérico – Motivações

Kepler

Johannes Kepler; Astronomia Nova (1609)

- Resultados de 10 anos de investigações sobre a órbita de marte
- Um dos clássicos da Astronomia: ajudou a estabelecer
 - heliocentrismo
 - órbitas elípticas

É deduzida a Equação de Kepler, associada a determinar a posição de um astro em função do tempo, que não tem solução de forma fechada: but I believe myself unable to solve it, and whoever shows the way would be for me a great Apollonius

Kepler (1609)

- Em seu Epitome Astronomiae Copernicanae (1617), Kepler propôs um método numércio para resovê-las
- Faremos o mesmo no primeiro exerício!

Fluidos

- Equações de Navier-Stokes: inúmeras aplicações práticas, mas ainda não "bem compreendidas" matematicamente:
 - têm sempre solução em 3d?
 - estas soluções são "bem comportadas"?
- #ficaadica: Prêmio de 1 milhão de dólares para a prova de existência e suavidade!

Fluidos

 Simulação do sistema vascular de um paciente: https://www.youtube.com/watch?v=YgqQXegJvY&feature=youtu.be&t=112

Ariane

- Ariane 5: Auto-destruição segundos após o lançamento (1996)
- 10 anos de desenvolvimento, 7 bilhões de dólares
- Carregando quatro satélites científicos
- **Erro numérico** (overflow...) no computador de controle causou desligamento do sistema de navegação

Zeros e Otimização

- Raízes: encontrar pontos tais que f(x) = 0
- Extremos: encontrar pontos tais que f'(x) = 0

Sistemas de Equações Lineares

■ Dados a_i, b_i , resolver para x_i

$$a_{11}x_1 + a_{12}x_2 = b_1$$

 $a_{21}x_1 + a_{22}x_2 = b_2$

Ajuste de Curvas

Integração Numérica (Quadratura)

Encontrar áreas sob curvas

Equações diferenciais

Dado

$$\frac{\mathrm{d}y}{\mathrm{d}t} \approx \frac{\Delta y}{\Delta t} = f(x, y),$$

encontrar y como função de t.

Lição de Casa

- Arrume um computador
- Familiarize-se com uma linguagem de programação / ferramentas que ter permitam (facilmente!):
 - criar uma lista x_i de 100 números equiespaçados entre 0 e 2π
 - calcular o seno de cada um desses números
 - fazer um gráfico do pares $(x_i, \sin x_i)$
- Apesar de você poder fazer tudo isso numa planilha, elas não são a ferramenta mais adequada para o tipo de algoritmos que estudaremos.
- (o mesmo vale para lápis e papel!)

/ programação científica

Demonstrações: Desenvolvendo a intuição

Passando para o interpretador

http://localhost:8888