Relationale Algebra

- 1. Anfragen erfolgen auf Relationen
- 2. Anfrageergebnis ist wiederum eine Relation

Relationales Modell

Beispiel: Sportclub(Clubname, Gründungsdatum, Jahresbeitrag)

- 1. Primärschlüssel muss unterstrichen werden
- 2. Reihenfolge der Entitätstypen ist entscheiden => muss lauffähig sein!

Operatoren

Operator	Begriff	Syntax		
σ	Selektion	$\sigma_{\sf Selektionsbedingung}\left(R ight)$		
π	Projektion	$\pi_{Attributliste}\left(R ight)$		
ρ	Umbenennung	$\rho_{S(D,E)}(R(A,B))$ (Umbenennung R.A \rightarrow S.D, R.B \rightarrow S.E)		
x	Kreuzprodukt	RxS		
M	Natural Join	$R\bowtie S$		
\bowtie_P	Theta Join	$R\bowtie_p S$		
\	Mengendifferenz	$R \setminus S$		
U	Vereinigung	$R \cup S$		
Λ	Mengendurchschnitt	$R \cap S$		

Projektion

• Projektion auf nicht vorhandene Attribute => Fehler!

Filme								
Titel	Jahr	Länge	inFarbe	Studio	ProduzentID			
Total Recall	1990	113	True	Fox	12345			
Basic Instinct	1992	127	True	Disney	67890			
Dead Man	1995	121	False	Paramount	99999			

$\pi_{Titel, Jahr, Länge}(Filme)$

Titel	Jahr	Länge
Total Recall	1990	113
Basic Instinct	1992	127
Dead Man	1995	121

$\pi_{inFarbe}(Filme)$

inFarbe		
True		
False		

© F.Naumann, 2011

Kreuzprodukt

- Kombination aus allen Tupeln
- Anzahl Elemente = Anzahl Tupel R * Anzahl Tupel S
- Nicht kommutativ! $R \times S \neq S \times R$

R A B 1 2 3 4

$R \times S$	Α	R.B	S.B	C	D
	1	2	2	5	6
	1	2	4	7	8
	1	2	9	10	11
	3	4	2	5	6
	3	4	4	7	8
	3	4	9	10	11

Natural Join

- <u>Übereinstimmung</u> der Attributwerte <u>in allen gemeinsamen</u> Attributen
- falls keine Übereinstimmung gefunden wird => Kreuzprodukt

R	Α	В	С
	1	2	3
	6	7	8
	9	7	8

S	В	С	D
	2	5	6
	2	3	5
	7	8	10

s	A	В	С	D
	1	2	3	5
	6	7	8	10
	9	7	8	10

Theta Join

- Verallgemeinerung des natural Joins => viel flexibler
- 1. Bilde Kreuzprodukt
- 2. Selektiere mittels der Joinbedingung

R	Α	В	С
	1	2	3
	6	7	8
	9	7	8

s	В	С	D
	2	5	6
	2	3	5
	7	8	10

F	R ⋈ _{A<d< sub=""> S</d<>}						
A		R.B	R.C	S.B	s.c	О	
1		2	3	2	5	6	
1		2	3	2	3	5	
1		2	3	7	8	10	
6		7	8	7	8	10	
9		7	8	7	8	10	

Beispiele

Gast(Besucher, Restaurant) Sortiment(Restaurant, Bier)

Vorzug(Besucher, Bier)

- Alle Besucher des Restaurant Sternen
 - $\circ \quad \pi_{\mathsf{Besucher}} \left(\sigma_{\mathsf{Restaurant=Sternen}} \left(\mathsf{\;Gast\;} \right) \right) \\$
- Alle Biersorten, die das Restaurant Ochsen haben muss, damit jeder Gast zufrieden ist.
 - $\pi_{\text{Bier}}(\sigma_{\text{Restaurant} = \text{Ochsen}}((\text{Gast} \bowtie \text{Vor zug}) \bowtie \text{Sortiment}))$

Vereinigung

- Sammelt Elemente unter einem gemeinsamen Schema auf
- Schemas beider Relationen müssen identisch sein!

R							
Name	Adresse	Geschlecht	Geburt				
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99				
Mark Hamill	456 Oak Rd., Brentwood	М	8/8/88				

S			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	М	7/7/77

R U S

K O S			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	М	8/8/88
Harrison Ford	789 Palm Dr., Beverly Hills	М	7/7/77

Durschnitt

- Tupel, die in beiden Relationen gemeinsam vorkommen
- Schemas beider Relationen müssen identisch sein

R			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	М	8/8/88

S			
Name	Adresse	Geschlecht	t Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr. Beverly Hills	М	7/7/77

$R \cap S$

Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99

Differenz

- R und S müssen identische Schema haben!
- Eliminiert die Tupel aus der ersten Relation, die auch in der zweiten Relation vorkommen

R			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	М	8/8/88

S			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	М	7/7/77

R-S

Name	Adresse	Geschlecht	Geburt	
Mark Hamill	456 Oak Rd., Brentwood	М	8/8/88	

Bag Algebra

Bags => Multimengen = <u>Duplikate sind möglich!</u>

Duplikatelememination

 δ => entfernt Duplikate (Transformation Bag => Relation)

Operation, Symbol	
Selektion, σ	Gleich wie relationale Algebra, Duplikate behandeln wie 'normale' Tupel.
Projektion, π	Wie relationale Algebra, aber Duplikate nicht entfernen.
Kreuzprodukt, x	Gleich wie relationale Algebra, Duplikate behandeln wie 'normale' Tupel.
Joins, ⋈	Gleich wie relationale Algebra, Duplikate behandeln wie 'normale' Tupel.

Vereinigung

Bag union U

- Tupel zusammenführen
- **Duplikate**: man zählt im linken und im rechten Operanden die Duplikate und nimmt davon die grössere Anzahl

Bag concatenation ⊔

- Tupel zusammenführen
- Duplikate: man z\u00e4hlt im linken und im rechten Operanden die Duplikate und nimmt davon die Summe

Durschnitt ∩

- Tupel die in beiden Operanden vorkommen
- **Duplikate:** man zählt im linken und im rechten Operanden die Duplikate und nimmt davon die kleinere Anzahl

Differenz \

- Nur die Tupel die im linken, aber nicht im rechten Operanden vorkommen
- Duplikat-Entfernung auf den 1. Operanden!
- Duplikate:
 - 1. man zählt im linken und im rechten Operanden die Duplikate
 - 2. Differenz zwischen linker und rechter Multiplizität. Falls sie > 0, dann nimmt man diese Differenz, ansonsten 0!

Outer Joins

Erweiterung der Projektion

 Gegeben sei folgende Relation R: (alle Domänen integer)

R	A	В	С
	1	2	3
	4	5	6

•
$$\pi_{3 * A \rightarrow X,B + C \rightarrow D,C}$$
 (R)

R'	Х	D	С
	3	5	3
	12	11	6

Rechenregeln

$$\sigma_{\Phi}(\sigma_{\psi}(r)) = \sigma_{\psi}(\sigma_{\Phi}(r))$$

Kommutativität

 $\pi_A(\sigma_{\Phi}(r)) = \sigma_{\Phi}(\pi_A(r))$ falls Φ nur Attribute aus der Menge A referenziert

 $r \bowtie s = s \bowtie r$ (Achtung: Relationenformat ist verschieden!)

$$r \bowtie (s \bowtie t) = (r \bowtie s) \bowtie t$$

Assoziativität

$$\pi_{A}(\pi_{C}(r))$$
 = $\pi_{A}(r)$ falls $A\subseteq C$

$$\sigma_{\Phi}(\sigma_{\psi}(r)) = \sigma_{\Phi \ \wedge \ \psi}(r)$$

Idempotenz

$$\pi_A(r \cup s) = \pi_A(r) \cup \pi_A(s)$$

$$\sigma_{\Phi}(\mathsf{r} \cup \mathsf{s}) = \sigma_{\Phi}(\mathsf{r}) \cup \sigma_{\Phi}(\mathsf{s})$$

Distributivität

 $\sigma_{\Phi}(r \bowtie s) = \sigma_{\Phi}(r) \bowtie s$ falls Φ nur Attribute von r referenziert

$$\pi_{A,B}(r \bowtie s) = \pi_A(r) \bowtie \pi_B(s)$$
 falls für die Joinattribute J gilt: $J \subseteq A \cap B$

$$r \bowtie (s \cup t) = (r \bowtie s) \cup (r \bowtie t)$$

Datenbankdesign

Beziehungstyp

Schlüssel

• Es braucht einen Primärschlüssel, sobald es einen eingehenden Pfeil hat!

ISA-Beziehung

- Erbung des Primärschlüssel = {G#}
- Genauere Spezifikation

ID-Beziehung

- Erweiterung des Primärschlüssels = {ISBN, Ex#}
- Hierarchie => hängt an der Oberklasse

Zusammengesetzter Entitätstyp

• Schlüssel in Details = {M#, P#, D#} in Kombination

Tertiäre Beziehung

- Alle 3 Entitäten müssen beteiligt sein!
- Beispiel: einer Police wird immer eine Filiale und eine Kunde zugeordnet.

Schlüssel

Für jeden Pfeil mit einer Kardinalität 1 braucht es einen Schlüssel! Dieser setzt sich zusammen aus allen Primärschlüsselattributen aller an den anderen Pfeilen hängenden Entitätstypen (unabhängig was dort für eine Kardinalität steht).

Sonderfall M-M-M: es braucht einen Schlüssel, um Duplikate zu vermeiden! Dieser setzt sich zusammen aus allen Primärschlüsselattributen der an den Pfeilen hängenden Enitätstypen <u>zusammen</u>.

Umwandlung zu relationalem Modell

- Jedes Kästchen (Entitätstyp, Beziehungstyp) geht in eine Relation über mit entsprechenden Attributen
- Primärschlüssel werden unterstrichen
- Reihenfolge beachten! Muss lauffähig sein!