01:640:350H - Homework 11

Pranav Tikkawar

December 2, 2024

1. Section 6.1 Problem 2

Let x = (2, 1+i, i) and y = (2-i, 2, 1+2i). be vectors in C^3 Compute $\langle x, y \rangle ||x||$, ||y||, and ||x+y||. Then verify the Cauchy-Schwarz inequality and the triangle inequality for these vectors.

Solution:

$$\langle x,y \rangle = 2(2+i) + (1+i)(2) + i(1-2i) = 4 + 2i + 2 + 2i + i + 2 = 8 + 5i$$

$$||x|| = \sqrt{2^2 + (1+i)(1-i) + i(-i)} = \sqrt{4+2+1} = \sqrt{7}$$

$$||y|| = \sqrt{(2-i)(2+i) + 2^2 + (1+2i)(1-2i)} = \sqrt{5+4+5} = \sqrt{14}$$

$$||x+y|| = \sqrt{(4+i)(4-i) + (3+i)(3-i) + (1+3i)(1-3i)} = \sqrt{17+10+10} = \sqrt{37}$$

$$||\langle x,y \rangle| \leq ||x|| \cdot ||y|| \implies |8+5i| \leq \sqrt{7} \cdot \sqrt{14} \implies \sqrt{64+25} \leq \sqrt{98} \implies \sqrt{89} \leq \sqrt{98}$$

$$||x+y|| \leq ||x|| + ||y|| \implies \sqrt{37} \leq \sqrt{7} + \sqrt{14}$$

Through minor comuptation we can see that this is true.

2. Section 6.1 Problem 3

In C([0,1]) let f(t) = t and $g(t) = e^t$. Then compute $\langle f, g \rangle$, ||f||, ||g||, and ||f + g||. Then verify the Cauchy-Schwarz inequality and the triangle inequality for these functions.

Solution:

$$\langle f,g \rangle = \int_0^1 t \cdot e^t dt = t e^t - e^t \Big|_0^1 = 1$$

$$||f|| = \sqrt{\int_0^1 t^2 dt} = \sqrt{\frac{1}{3}}$$

$$||g|| = \sqrt{\int_0^1 e^{2t} dt} = \sqrt{\frac{e^2 - 1}{2}}$$

$$||f + g|| = \sqrt{\int_0^1 (t + e^t)^2 dt} = \sqrt{\int_0^1 t^2 + 2t e^t + e^{2t} dt} = \sqrt{\frac{1}{3} + 2 + \frac{e^2 - 1}{2}}$$

$$|\langle f,g \rangle| \leq ||f|| \cdot ||g|| \implies |1| \leq \sqrt{\frac{1}{3}} \cdot \sqrt{\frac{e^2 - 1}{2}} \implies 1 \leq \sqrt{\frac{e^2 - 1}{6}}$$

$$||f + g|| \leq ||f|| + ||g|| \implies \sqrt{\frac{1}{3} + 2 + \frac{e^2 - 1}{2}} \leq \sqrt{\frac{1}{3}} + \sqrt{\frac{e^2 - 1}{2}}$$

Through minor computation we can see that this is true.

3. Section 6.1 Problem 9

Let β be a basis for a finite dimentional inner product space.

- (a) Prove that if $\langle x, z \rangle = 0$ for all $z \in V$, then x = 0.
- (b) Prove that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in V$, then x = y.

Solution: Part a: If we take z = x then we get $\langle x, x \rangle = 0$ which implies that x = 0.

Part b: If we take z = x - y then we get $\langle x - y, x - y \rangle = 0$ which implies that x = y.

4. Section 6.1 Problem 11

Prove the parallellogram law on an inner product space V; that is show

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
 for all $x, y \in V$

Solution: We can start off by rewriting the equation in inner product form:

$$< x + y, x + y > + < x - y, x - y > = 2 < x, x > +2 < y, y >$$

We can rewrite the left hand side by the (almost) linearity of both elemnts of the inner product:

$$< x + y, x + y > + < x - y, x - y > = < x, x + y > + < y, x + y > + < x, x - y > - < y, x - y >$$
 $= < x, x > + < x, y > + < y, x > + < y, y >$
 $+ < x, x > - < x, y > - < y, x > + < y, y >$
 $= 2 < x, x > + 2 < y, y >$

Thus we have shown that the parallelogram law holds.

5. Section 6.1 Problem 12 Let $\{v_1, v_2, ..., v_k\}$ be an orthononal set in V and let $a_1, a_2, ..., a_k$ be scalars. Prove that

$$\left| \left| \sum_{i=1}^{k} a_i v_i \right| \right|^2 = \sum_{i=1}^{k} |a_i|^2 ||v_i||^2$$

Solution: We can start off by rewriting the left hand side in inner product form:

$$||\sum_{i=1}^{k} a_{i}v_{i}||^{2} = \langle \sum_{i=1}^{k} a_{i}v_{i}, \sum_{j=1}^{k} a_{j}v_{j} \rangle$$

$$= \sum_{i=1}^{k} \langle a_{i}v_{i}, \sum_{j=1}^{k} a_{j}v_{j} \rangle$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \langle a_{i}v_{i}, a_{j}v_{j} \rangle$$

$$= \sum_{i=1}^{k} \langle a_{i}v_{i}, a_{i}v_{i} \rangle \quad \text{since the set is orthogonal}$$

$$= \sum_{i=1}^{k} |a_{i}|^{2} \langle v_{i}, v_{i} \rangle$$

$$= \sum_{i=1}^{k} |a_{i}|^{2} ||v_{i}||^{2}$$

Thus we have shown that the equation holds.

6. Section 6.1 Problem 16(b) Let V = C([0,1]) and define

$$\langle f, g \rangle = \int_0^{1/2} f(t)g(t)dt$$

Is this a inner product on V? Justify your answer.

Solution: This is not an inner product as if we take a continuous function that is zero on the interval (0, 1/2)

$$f(t) = \begin{cases} 0 & \text{if } t \in [0, 1/2) \\ t - \frac{1}{2} & \text{if } t = 1/2 \end{cases}.$$

We can see that $\langle f, f \rangle = 0$ but $f \neq 0$.