Miscellenous Notes

University of Waterloo Nicholas Pun

Contents

1	CO	463 - Convex Optimization	2
	1.1	2020/01/08 - Introduction	2
	1.2	2020/01/10 - Linear Algebra and Calculus Review	4
		1.2.1 Differentiation	4
	1.3	2020/01/15 - Review and Convex Sets	5
2	CO	739 - Information Theory and Applications	6

CO 463 - Convex Optimization

1.1 2020/01/08 - Introduction

Definition 1.1.1. Let $x, y \in \mathbb{R}^n$, $0 \le \lambda \le 1$, $z(\lambda) = \lambda x + (1 - \lambda)y$ is a <u>convex combination</u> of x and y

This simple definition leads to many strong algebraic and topological results.

For this course, we will work in Euclidean space \mathbb{E}^n with inner product $\langle x, y \rangle$ and norm $||x|| = \sqrt{\langle x, y \rangle}$.

On \mathbb{R}^n , we will use the familiar dot product $\langle x,y\rangle=x^{\mathsf{T}}y=\sum_{i=1}^n x_iy_i$ and norm $||x||=\sqrt{\sum_{i=1}^n x_i^2}$.

Definition 1.1.2. $C \subseteq \mathbb{E}^n$ is <u>convex set</u> if $x, y \in C$ $0 \le \lambda \le 1 \Rightarrow \lambda x + (1 - \lambda)y \in C$ (or equivalently, $x, y \in C \Rightarrow [x, y] \subseteq C$)

Note. We can write $z(\lambda)$ in the following ways:

$$z(\lambda) = \lambda x + (1 - \lambda)y$$

= $y + \lambda(x - y)$
= $x + (1 - \lambda)(y - x)$

The second equation can be interpreted as: "Beginning at y and moving towards x". And, the third equation can be interpreted as: "Beginning at x and moving towards y"

Definition 1.1.3. Let $C \subseteq \mathbb{E}^n$, C convex set. Then $f: C \to \mathbb{R}$ is a <u>convex function</u> if:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

 $\forall x, y \in C, \ \forall 0 \le \lambda \le 1$

Example 1.1.1.

The line between (x, f(x)) and (y, f(y)) is called the <u>secant line</u>. For convex function, the graph lies <u>below</u> the secant line.

The region above the graph is called the epigraph, denoted epi f. It is defined as:

$$epi f = \{(r, x) \in \mathbb{R} \times \mathbb{E}^n : x \in C, f(x) \subseteq r\}$$

for $f: C \to \mathbb{R}$, C convex.

We will see that:

Theorem 1.1.1. f is a convex function if and only if epi f is a convex set

Suppose we have the following minization problem:

$$p^* = \min f(x)$$

s.t $x \in C$

where $C \in \mathbb{E}^n$ convex, $f: C \to \mathbb{R}^n$ convex function.

We will show that: f convex \Rightarrow (local min <u>iff</u> global min)

Applications:

- Linear Programming
- Convex Relaxation

1.2 2020/01/10 - Linear Algebra and Calculus Review

Definition 1.2.1. The closed ball with center $\overline{x} \in \mathbb{E}$ and radius δ is

$$B_{\delta}(\overline{x}) = \{x : ||x - \overline{x} \le \delta\}$$

The <u>unit ball</u> is denoted $B(\overline{x})$

We say $S \subseteq \mathbb{E}$ is bounded if $\exists \gamma > 0$ such that $x \in S \Rightarrow ||x|| \leq \gamma$

Let $\mathbb{E} = M^{m \times n}$ ($m \times n$ matrices) with the trace inner product and the frobenius norm. If we have a mapping $L : \mathbb{E} \to \mathbb{F}$ between Euclidean spaces, this is called a <u>linear transformation</u> if:

$$L(ax + by) = aL(x) + bL(y)$$

 $\forall a, b \in \mathbb{R}, \ \forall x, y \in \mathbb{E}$

There are many examples of linear transformations:

Example 1.2.1. Matrix-Vector multiplication, i.e. Let $A : \mathbb{R}^n \to \mathbb{R}^m$ be an $m \times n$ matrix. A is a linear transformation.

Example 1.2.2. Let $L: \mathcal{S}^n \to \mathbb{R}^n$ (where \mathcal{S} is the set of $n \times n$ real symmetric matrices). L(x) = diag(x) is a linear transformation.

Let $L: \mathbb{E} \to \mathbb{F}$ be a linear transformation, the <u>adjoint</u> of L is L^* , defined by $\langle L(x), y \rangle = \langle x, L^*(y) \rangle \ \forall x \in \mathbb{E}, \ \forall y \in \mathbb{F}$

What is $diag^*$?: Let $A \in M^{n \times n}$,

$$diag(A) = \begin{pmatrix} A_{11} \\ \vdots \\ A_{nn} \end{pmatrix}$$
$$diag^* \begin{pmatrix} \begin{pmatrix} A_{11} \\ \vdots \\ A_{nn} \end{pmatrix} \end{pmatrix} = \begin{bmatrix} A_{11} & 0 \\ & \ddots & \\ 0 & & A_{nn} \end{bmatrix}$$

We can verify this by computing: $\langle diag(A), v \rangle = \langle A, diag^*(v) \rangle$

Definition 1.2.2. If $L: \mathbb{E} \to \mathbb{F}$ is a linear transformation, then L is called a linear operator.

Definition 1.2.3. If $L: \mathbb{E} \to \mathbb{F}$ and $L = L^*$, then L is a self-adjoint operator and $\mathbb{E} = \mathbb{F}$

1.2.1 Differentiation

Let $f: \mathbb{E} \to \mathbb{R}$ be a real-valued function.

We say f is \mathcal{C}^1 if its first partial derivatives are continuous. Similarly, we say f is \mathcal{C}^2 if the second partial derivatives are continuous.

WLOG, assume $A = A^{\dagger}$, and say we have the following quadratic function:

$$q(x) = \underbrace{\frac{1}{2}x^{\mathsf{T}}Ax}_{=\langle x,Ax\rangle} + \underbrace{b^{\mathsf{T}}x}_{=\langle b,x\rangle} + c$$

Then,

$$q(x+d) = \frac{1}{2}(x+d)^{\mathsf{T}}A(x+d) + b^{\mathsf{T}}(x+d) + c$$

$$= \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c + (Ax)^{\mathsf{T}} + b^{\mathsf{T}}d + \frac{1}{2}d^{\mathsf{T}}Ad$$

$$= q(x) + \langle Ax + b, d \rangle + \frac{1}{2}d^{\mathsf{T}}Ad$$

This is a Taylor series! $\langle Ax + b, d \rangle$ is linear in d and $\frac{1}{2}d^{\mathsf{T}}Ad$ is in o(||d||) if $A \neq 0$ $\nabla q(x) = Ax + b$ is the gradient of q at x, and in general, if $f(x+d) = f(x) + \langle v, d \rangle + o(||d||)$, then $v = \nabla f(x)$.

$1.3 \quad 2020/01/15$ - Review and Convex Sets

CO 739 - Information Theory and Applications