Домашнее задание 2

Вариант 62

V/V	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
E1	0	4		2	1				2			2
E2	4	0		3	1		3		4	5		2
E3			0			3		2	5	5		
E4	2	3		0	1		2	4	4		5	1
E5	1	1		1	0	1			3		1	
E6			3		1	0		4	4	3		2
E7		3		2			0	3		4	1	4
E8			2	4		4	3	0	2	4	4	3
E9	2	4	5	4	3	4		2	0			1
E10		5	5			3	4	4		0	1	
E11				5	1		1	4		1	0	2
E12	2	2		1		2	4	3	1		2	0

Найти кратчайшие пути от начальной вершины е0 до остальных вершин графа

1. Положим, что l(e1) = 0+. Будем считать эту пометку постоянной. Положим, что $l(e_i) = \infty$ для всех $i \neq 1$. Будем считать эту пометку временной. Положим, что $p = e_i$. Результаты итераций запишем в таблицу

	1
e1	0*
e2	8
e 3	8
e4	8
e 5	8
e6	∞
e 7	8
e8	∞
e9	8
e10	∞
e11	8
e12	∞

2.
$$\Gamma_p = \{e2, e4, e5, e9, e12\}$$

$$l(e2) = min[\infty, 0^* + 4] = 4$$

$$l(e4) = min[\infty, 0^* + 2] = 2$$

$$l(e5) = min[\infty, 0^* + 1] = 1$$

$$l(e9) = min[\infty, 0^* + 2] = 2$$

$$l(e12) = min[\infty, 0^* + 2] = 2$$

$$l(e_i^*) = min[l(e_i)] = l(e5) = 1^*$$

,		
	1	2
e1	0*	
e2	8	4
e 3	∞	∞
e4	8	2
e 5	8	1*
e 6	8	8
e 7	∞	8
e8	∞	∞
e 9	8	2
e10	8	8
e11	8	8
e12	8	2

- 4. Положим, что $p = e_5$
- 5. Вершины с временными отрезками е2, е4, е6, е9, е11

$$l(e2) = min[4, 1^* + 1] = 2$$

$$l(e4) = min[2, 1^* + 1] = 2$$

$$l(e6) = min[\infty, 1^* + 1] = 2$$

$$l(e9) = min[2, 1^* + 3] = 2$$

$$l(e11) = min[\infty, 1^* + 1] = 2$$

$$l(e_i^*) = min[l(e_i)] = l(e2) = 2^*$$

_			
	1	2	3
e1	0*		
e2	8	4	2*
e 3	8	8	8
e4	8	2	2
e5	8	1*	
e6	8	8	2
e 7	8	8	8
e8	8	8	8
e9	8	2	2
e10	8	8	8
e11	8	8	2
e12	8	2	2

- 7. Положим, что $p = e_2$
- 8. Вершины с временными отрезками е4, е7, е9, е10, е12

$$l(e4) = min[2, 2^* + 3] = 2$$

$$l(e7) = min[\infty, 2^* + 3] = 5$$

$$l(e9) = min[2, 2^* + 4] = 2$$

$$l(e10) = min[\infty, 2^* + 5] = 7$$

$$l(e12) = min[2, 2^* + 2] = 2$$

$$l(e_i^*) = min[l(e_i)] = l(e4) = 2^*$$

	-()			
	1	2	3	4
e1	0*			
e2	8	4	2*	
e 3	8	8	8	8
e4	8	2	2	2*
e 5	8	1*		
e6	8	8	2	2
e 7	8	8	8	5
e8	8	8	8	8
e9	8	2	2	2
e10	8	8	8	7
e11	8	8	2	2
e12	∞	2	2	2

- **10**. Положим, что p = e₄
- 11. Вершины с временными отрезками е7, е8, е9, е11, е12

$$l(e7) = min[5, 2^* + 2] = 4$$

$$l(e8) = min[\infty, 2^* + 4] = 6$$

$$l(e9) = min[2, 2^* + 4] = 2$$

$$l(e11) = min[2, 2^* + 5] = 2$$

$$l(e12) = min[2, 2^* + 1] = 2$$

$$l(e_i^*) = min[l(e_i)] = l(e_i) = 2^*$$

	1	2	3	4	5
e1	0*				
e2	8	4	2*		
e 3	8	8	8	8	8
e4	8	2	2	2*	
e 5	8	1*			
e6	8	8	2	2	2*
e 7	8	8	8	5	4
e8	8	8	8	8	6
e 9	8	2	2	2	2
e10	8	8	8	7	7
e11	8	8	2	2	2
e12	8	2	2	2	2

- 13. Положим, что $p = e_6$
- 14. Вершины с временными отрезками е3, е8, е9, е10, е12

$$l(e3) = min[\infty, 2^* + 3] = 5$$

$$l(e8) = min[6, 2^* + 4] = 6$$

$$l(e9) = min[2, 2^* + 4] = 2$$

$$l(e10) = min[7, 2^* + 3] = 5$$

$$l(e12) = min[2, 2^* + 2] = 2$$

$$l(e_i^*) = min[l(e_i)] = l(e_i) = 2^*$$

	1	2	3	4	5	6
e1	0*					
e2	8	4	2*			
e 3	8	8	8	8	8	5
e4	8	2	2	2*		
e5	8	1*				
e6	8	8	2	2	2*	
e 7	8	∞	8	5	4	4
e8	8	8	8	8	6	5
e9	8	2	2	2	2	2*
e10	8	∞	8	7	7	5
e11	8	8	2	2	2	2
e12	8	2	2	2	2	2

16. Положим, что p = e₉

17. Вершины с временными отрезками е3, е8, е12

$$l(e3) = min[5, 2^* + 5] = 5$$

$$l(e8) = min[5, 2^* + 2] = 4$$

$$l(e12) = min[2, 2^* + 1] = 2$$

18. Среди всех вершин с временными пометками найдем такую, что $l(e_i^*) = min[l(e_i)]$

$$l(e_i^*) = min[l(e_i)] = l(e11) = 2^*$$

	1	2	3	4	5	6	7
e1	0*						
e2	8	4	2*				
e 3	8	8	8	8	8	5	5
e4	8	2	2	2*			
e5	8	1*					
e6	8	8	2	2	2*		
e 7	8	8	8	5	4	4	4
e8	8	∞	∞	∞	6	5	4
e 9	8	2	2	2	2	2*	
e10	8	∞	∞	7	7	5	5
e11	8	8	2	2	2	2	2*
e12	8	2	2	2	2	2	2

- 19. Положим, что $p = e_{11}$
- 20. Вершины с временными отрезками е7, е8, е10, е12

$$l(e7) = min[4, 2^* + 1] = 3$$

$$l(e8) = min[4, 2^* + 4] = 4$$

$$l(e10) = min[5, 2^* + 1] = 3$$

$$l(e12) = min[2, 2^* + 2] = 2$$

$$l(e_i^*) = min[l(e_i)] = l(e12) = 2^*$$

	1	2	3	4	5	6	7	8
e1	0*							
e2	8	4	2*					
e 3	8	8	8	8	8	5	5	5
e4	8	2	2	2*				
e 5	8	1*						
e6	8	8	2	2	2*			
e 7	8	8	8	5	4	4	4	3
e8	8	8	8	8	6	5	4	4
e9	8	2	2	2	2	2*		
e10	8	8	8	7	7	5	5	3
e11	8	8	2	2	2	2	2*	
e12	8	2	2	2	2	2	2	2*

- 22. Положим, что $p = e_{12}$
- 23. Вершины с временными отрезками е7, е8

$$l(e7) = min[3, 2^* + 4] = 3$$

$$l(e8) = min[4, 2^* + 3] = 4$$

$$l(e_i^*) = min[l(e_i)] = l(e7) = 3^*$$

	1	2	3	4	5	6	7	8	9
e1	0*								
e2	8	4	2*						
e 3	8	8	8	8	8	5	5	5	5
e4	8	2	2	2*					
e 5	8	1*							
e6	8	∞	2	2	2*				
e 7	8	8	8	5	4	4	4	3	3*
e8	8	8	8	8	6	5	4	4	4
e 9	8	2	2	2	2	2*			
e10	8	8	8	7	7	5	5	3	3
e11	8	8	2	2	2	2	2*		-
e12	8	2	2	2	2	2	2	2*	

25. Положим, что p = e₇

26. Вершины с временными отрезками e8, e10 l(e8) = min[4, 3* +3] = 4

$$l(e10) = min[3, 3^* + 4] = 3$$

27. Среди всех вершин с временными пометками найдем такую, что $l(e_i^*) = min[l(e_i)]$

$$l(e_i^*) = min[l(e_i)] = l(e10) = 3^*$$

	1	2	3	4	5	6	7	8	9	10
e1	0*									
e2	8	4	2*							
e 3	8	8	8	8	8	5	5	5	5	5
e4	8	2	2	2*						
e 5	8	1*								
e6	8	8	2	2	2*					
e 7	8	8	8	5	4	4	4	3	3*	
e8	8	8	8	8	6	5	4	4	4	4
e9	8	2	2	2	2	2*				
e10	8	8	8	7	7	5	5	3	3	3*
e11	8	8	2	2	2	2	2*			
e12	8	2	2	2	2	2	2	2*		

- 28. Положим, что $p = e_{10}$
- 29. Вершины с временными отрезками е3, е8

$$l(e3) = min[5, 3^* + 5] = 5$$

$$l(e8) = min[4, 3^* + 4] = 4$$

$$l(e_i^*) = min[l(e_i)] = l(e8) = 4^*$$

	1	2	3	4	5	6	7	8	9	10	11
e1	0*										
e2	8	4	2*								
e 3	8	8	8	8	8	5	5	5	5	5	5
e4	8	2	2	2*							
e5	8	1*									
e6	8	8	2	2	2*						
e 7	8	8	8	5	4	4	4	3	3*		
e8	8	8	8	8	6	5	4	4	4	4	4*
e9	8	2	2	2	2	2*					
e10	8	8	8	7	7	5	5	3	3	3*	
e11	8	8	2	2	2	2	2*				
e12	8	2	2	2	2	2	2	2*			

- 31. Положим, что $p = e_8$
- 32. Вершины с временными отрезками e3 $l(e3) = min[5, 3^* + 2] = 5$
- 33. Среди всех вершин с временными пометками найдем такую, что $l(e_i^*) = min[l(e_i)]$

$$l(e_i^*) = min[l(e_i)] = l(e3) = 5^*$$

	1	2	3	4	5	6	7	8	9	10	11	12
e1	0*											
e2	∞	4	2*									
e 3	∞	8	8	8	8	5	5	5	5	5	5	5*
e4	∞	2	2	2*								
e 5	∞	1*										
e6	∞	8	2	2	2*							
e 7	∞	8	8	5	4	4	4	3	3*			
e8	∞	8	8	8	6	5	4	4	4	4	4*	
e9	∞	2	2	2	2	2*						
e10	∞	8	8	7	7	5	5	3	3	3*		
e11	∞	8	2	2	2	2	2*					
e12	∞	2	2	2	2	2	2	2*				

Все вершины имеют постоянную длину.