		C	CBCS SCHEME				
USN							

18CS741

Seventh Semester B.E. Degree Examination, July/August 2022 **Digital Image Processing**

Time: 3 hrs.

Max. Marks:

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the fundamental steps in digital image processing with a neat block diagram. 1
 - Explain the concept of sampling and quantization.

(10 Marks) (10 Marks)

- OR
- a. Briefly explain the following terms:
 - Neighbors of a pixel.
 - (ii) Distance function.
 - (iii) Euclidean distance.
 - (iv) City block distance.

(10 Marks)

- b. Consider the image segment shown,
 - 2 1 (q) 1
 - 2 0 2
 - 2 1 1
 - (p)1 0 1 2

Let $V = \{1, 2\}$. Compute the lengths of the shortest 4, 8 and m-path between p and q.

(10 Marks)

Module-2

a. Explain piecewise-linear transformation functions.

(10 Marks)

Define normalized histogram.

(02 Marks)

c. Consider a 3 bit image (L = 8) of size 64×64 pixels (MN = 4096) with the intensity distribution given in the table. Perform histogram equalization.

rk	0	T	2	3	4	5	6	7
n_k	790	1023	850	656	329	245	122	81

(08 Marks)

OR

- Explain the following:
 - Image negatives. (i)
 - Log transformations. (ii)
 - Power law transformations.

(10 Marks)

Explain smoothing spatial filters.

(10 Marks)

- Module-3
- Discuss the following frequency domain filters:
 - Ideal high pass filter. (i)₄

(ii) Butterworth highpass filter. (iii) Gaussian highpass filter.

(10 Marks)

Define 2D Discrete Fourier Transforms (DFT) and its inverse. Explain any three properties (10 Marks)

1 of 2

www.vturesource.com

18CS741

(10 Marks)

OR

- 6 a. Explain the algorithm for frequency domain filtering with a block diagram. (10 Marks)
 - b. Draw the block diagram of homomorphic filtering for image enhancement and explain it.
 (10 Marks)

Module-4

- a. Define local and global threshold. Explain how point detection algorithm works. (16 Marks
- b. What conditions need to be satisfied while partitioning an image into regions? (10 Marks)

OR

- 8 a. Explain the following gradient operators:
 - Roberts cross gradient operators.
 - (ii) Prewitt operators
 - (iii) Sobel operators.
 - (iv) Prewitt and Sobel mask for detecting diagonal edges. (10 Marks)
 - b. Explain global processing via the Hough Transform. (10 Marks)

Module-5

 Given the following symbols and their probability of occurrence, calculate the code and average length of code. (10 Marks)

Symbol	a ₂	a ₆	aı	a ₄	a ₃	a ₅
Probability	0.4	0.3	0.1	0.1	0.06	0.04

b. Explain Arithmetic coding and Run length coding. (10 Marks)

OF

- 10 a. Explain the general image compression model with a diagram. (10 Marks)
 - Explain coding redundancy and interpixel redundancy in image compression.

www.vturesource.com

ALL BRANCHES | ALL SEMESTERS | NOTES | QUESTON PAPERS | LAB MANUALS

A Vturesource Go Green initiative