

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu

Nazwa kwalifikacji: Eksploatacja maszyn, urządzeń i instalacji elektrycznych

Oznaczenie kwalifikacji: **EE.26**

Wersja arkusza: **SG**

Czas trwania egzaminu: 60 minut

EE.26-SG-20.06

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE

Rok 2020 CZĘŚĆ PISEMNA

PODSTAWA PROGRAMOWA 2017

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny brak stron lub inne usterki zgłoś przewodniczącemu zespołu nadzorującego.
- 2. Do arkusza dołączona jest KARTA ODPOWIEDZI, na której w oznaczonych miejscach:
 - wpisz oznaczenie kwalifikacji,
 - zamaluj kratkę z oznaczeniem wersji arkusza,
 - wpisz swój numer PESEL*,
 - wpisz swoją datę urodzenia,
 - przyklej naklejkę ze swoim numerem PESEL.
- 3. Arkusz egzaminacyjny zawiera test składający się z 40 zadań.
- 4. Za każde poprawnie rozwiązane zadanie możesz uzyskać 1 punkt.
- 5. Aby zdać część pisemną egzaminu musisz uzyskać co najmniej 20 punktów.
- 6. Czytaj uważnie wszystkie zadania.
- 7. Rozwiązania zaznaczaj na KARCIE ODPOWIEDZI długopisem lub piórem z czarnym tuszem/ atramentem.
- 8. Do każdego zadania podane są cztery możliwe odpowiedzi: A, B, C, D. Odpowiada im następujący układ kratek w KARCIE ODPOWIEDZI:

- 9. Tylko jedna odpowiedź jest poprawna.
- 10. Wybierz właściwą odpowiedź i zamaluj kratkę z odpowiadającą jej literą np., gdy wybrałeś odpowiedź "A":
- 11. Staraj się wyraźnie zaznaczać odpowiedzi. Jeżeli się pomylisz i błędnie zaznaczysz odpowiedź, otocz ją kółkiem i zaznacz odpowiedź, którą uważasz za poprawną, np.

12. Po rozwiązaniu testu sprawdź, czy zaznaczyłeś wszystkie odpowiedzi na KARCIE ODPOWIEDZI i wprowadziłeś wszystkie dane, o których mowa w punkcie 2 tej instrukcji.

Pamiętaj, że oddajesz przewodniczącemu zespołu nadzorującego tylko KARTĘ ODPOWIEDZI.

Powodzenia!

^{*} w przypadku braku numeru PESEL – seria i numer paszportu lub innego dokumentu potwierdzającego tożsamość

Zadanie 1.

Oględziny urządzeń napędowych w czasie ich pracy nie obejmują sprawdzenia

- A. stanu szczotek.
- B. poziomu drgań.
- C. stanu osłon części wirujących.
- D. wskazań aparatury kontrolno-pomiarowej.

Zadanie 2.

Na rysunku przedstawiono tabliczkę zaciskową typowego silnika trójfazowego z uzwojeniami stojana połączonymi w gwiazdę. Które pary zacisków po zdjęciu metalowego zwieracza należy ze sobą zewrzeć, aby uzwojenia silnika zostały skojarzone w trójkat?

- A. 1-4, 2-5, 3-6
- B. 1-5, 2-6, 3-4
- C. 1-6, 2-4, 3-5
- D. 1-5, 2-4, 3-6

Zadanie 3.

Która z wymienionych czynności jest związana z prowadzeniem ruchu elektrycznego urządzenia napędowego należącego do IV grupy?

- A. Pomiar napięcia zasilającego urządzenie.
- B. Zatrzymanie urządzenia w stanie awaryjnym.
- C. Wymiana uszkodzonego podzespołu urządzenia.
- D. Sprawdzenie nastawy zabezpieczenia przeciążeniowego.

Zadanie 4.

Przed przystąpieniem do pomiaru rezystancji izolacji uzwojeń wirnika silnika pierścieniowego w pierwszej kolejności należy

- A. wymienić szczotki.
- B. zewrzeć uzwojenie stojana.
- C. odłączyć rezystory rozruchowe.
- D. zmierzyć ciągłość obwodu wirnika.

Zadanie 5.

Wskaż miernik do bezpośredniego pomiaru napięcia na uzwojeniu wzbudzenia maszyny synchronicznej.

Zadanie 6.

Które urządzenie należy zastosować do pomiaru temperatury obudowy i łożysk urządzenia napędowego?

Zadanie 7.

W którym stanie pracy silnik asynchroniczny ma najniższy współczynnik mocy?

- A. Biegu jałowego.
- B. Zwarcia awaryjnego.
- C. Zwarcia pomiarowego.
- D. Obciążenia znamionowego.

Zadanie 8.

Na podstawie charakterystyki M=f(s) silnika indukcyjnego przedstawionej na rysunku, określ przedział poślizgu dla pełnego zakresu pracy stabilnej maszyny.

B.
$$0 \div s3$$

C.
$$s2 \div s4$$

D.
$$s3 \div s4$$

Zadanie 9.

Która z wymienionych przyczyn odpowiada za zmniejszenie się prędkości obrotowej trójfazowego silnika pierścieniowego podczas jego pracy?

- A. Wzrost napięcia zasilania.
- B. Spadek obciążenia silnika.
- C. Zwarcie pierścieni ślizgowych.
- D. Przerwa w zasilaniu jednej fazy.

Zadanie 10.

W celu zmniejszenia prądu płynącego w obwodzie zasilania silnika indukcyjnego pierścieniowego w czasie jego rozruchu należy

- A. zwiększyć obciążenie na wale.
- B. zmienić kolejność faz w stojanie.
- C. przetoczyć pierścienie ślizgowe wirnika.
- D. dopasować rozrusznik obwodu wirnika.

Zadanie 11.

Wskaż wirnik silnika prądu stałego.

Zadanie 12.

W układzie prostego jednofazowego przekształtnika AC-DC zasilanego z sieci 230 V, którego schemat ideowy przedstawiono na rysunku, uległa uszkodzeniu jedna z diod prostowniczych. W czasie pracy odbiornik R₀ pobiera znamionowy prąd o wartości 20 A. Pojemność kondensatora wynosi 1 mF. Którą z wymienionych diod można zastosować w miejsce uszkodzonej?

- A. D22-10R-02
- B. D22-20R-02
- C. D22-10R-04
- D. D22-20R-04

Zadanie 13.

Którym z wymienionych wyłączników nadprądowych należy zabezpieczyć obwód zasilania trójfazowego silnika klatkowego o parametrach znamionowych: $P_N = 11 \text{ kW}$, $U_N = 400 \text{ V}$, $\cos \varphi = 0.73$, $\eta = 80\%$?

- A. S303 C20
- B. S303 C25
- C. S303 C32
- D. S303 C40

Zadanie 14.

Które z przedstawionych urządzeń jest przeznaczone do zabezpieczenia silnika trójfazowego przed przeciążeniem?

Zadanie 15.

Wyłącznik RCD w sieci jednofazowej montuje się w przewodach

- A. neutralnym i ochronnym.
- B. fazowym i neutralnym.
- C. fazowym i ochronnym.
- D. fazowym i fazowym.

Zadanie 16.

Ile wynosi największy dopuszczalny czas wyłączenia zasilania dla zapewnienia ochrony przeciwporażeniowej przy uszkodzeniu w układzie sieciowym TN-S o napięciu fazowym większym niż 400 V w obwodach odbiorczych o prądzie znamionowym nie większym niż 32 A?

- A. 0,1 s
- B. 0.2 s
- C. 0.5 s
- D. 0,8 s

Zadanie 17.

Określ uszkodzenie jednofazowego transformatora obniżającego napięcie, jeżeli wiadomo, że jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w stanie jałowym transformatora napięcia pierwotne i wtórne wyniosły odpowiednio 230 V i 460 V.

- A. Zwarcie w uzwojeniu wtórnym.
- B. Przerwa w uzwojeniu wtórnym.
- C. Zwarcie w uzwojeniu pierwotnym.
- D. Przerwa w uzwojeniu pierwotnym.

Zadanie 18.

Która z wymienionych przyczyn odpowiada za zadziałanie przekaźnika Buchholtza na wyłączenie transformatora?

- A. Przerwa w uzwojeniu pierwotnym.
- B. Przerwa w uziemieniu punktu neutralnego.
- C. Niesymetryczne obciążenie transformatora.
- D. Zwarcie między uzwojeniem pierwotnym i wtórnym.

Zadanie 19.

Ruch urządzeń napędowych należy wstrzymać w razie zagrożenia bezpieczeństwa obsługi lub otoczenia oraz w razie stwierdzenia uszkodzeń lub zakłóceń uniemożliwiających normalną eksploatację, a szczególnie w przypadku

- A. nadmiernych drgań.
- B. znamionowego poboru pradu.
- C. spadku rezystancji izolacji uzwojeń do 5 $M\Omega$.
- D. spadku napięcia zasilania mniejszego niż 3%.

Zadanie 20.

Minimalna rezystancja izolacji uzwojeń w temperaturze 20°C silnika asynchronicznego o mocy 5 kW zgodnie z przepisami powinna wynosić

- A. $1 M\Omega$
- B. $3 M\Omega$
- C. $5 M\Omega$
- D. $10 \text{ M}\Omega$

Zadanie 21.

Której informacji <u>nie musi zawierać</u> instrukcja eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowo-prądowymi?

- A. Charakterystyki technicznej instalacji.
- B. Doboru i nastawienia urządzeń zabezpieczających.
- C. Terminów zakresów prób i pomiarów kontrolnych.
- D. Zasad bezpieczeństwa przy wykonywaniu prac eksploatacyjnych.

Zadanie 22.

W którym układzie sieciowym <u>nie moga</u> być stosowane wyłączniki różnicowoprądowe jako elementy ochrony przeciwporażeniowej przy uszkodzeniu?

- A. IT
- B. TT
- C. TN-C
- D. TN-S

Zadanie 23.

Badania okresowe instalacji elektrycznej niskiego napięcia powinny być przeprowadzane <u>nie rzadziej niż</u> raz na

- A. 1 rok.
- B. 3 lata.
- C. 4 lata.
- D. 5 lat.

Zadanie 24.

Kto ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej znajdujących się w budynku biurowym?

- A. Zarządca budynku.
- B. Użytkownik lokalu.
- C. Właściciel budynku.
- D. Dostawca energii elektrycznej.

Zadanie 25.

Dla obiektu zasilanego instalacją elektryczną trójfazową o napięciu znamionowym 400 V maksymalny pobór mocy wynosi 10 kW. Dobierz minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, zakładając rezystancyjny charakter odbiorników i pomijając kwestię selektywności zabezpieczeń.

- A. 10 A
- B. 16 A
- C. 20 A
- D. 25 A

Zadanie 26.

Dla ochrony uzupełniającej obwody zasilające gniazda wtyczkowe o prądzie nieprzekraczającym 32 A powinny być zabezpieczone wyłącznikiem RCD o prądzie różnicowym

- A. 30 mA
- B. 100 mA
- C. 500 mA
- D. 1000 mA

Zadanie 27.

Schemat przedstawia układ do pomiaru

- A. ciągłości żył.
- B. spadków napięcia.
- C. rezystancji izolacji.
- D. impedancji pętli zwarcia.

Zadanie 28.

Pomiary instalacji odgromowej w obiekcie budowlanym wykazały rezystancję uziomu 35 Ω . Aby rezystancja uziomu wynosiła zalecane 10 Ω , należy

- A. wydłużyć uziom szpilkowy.
- B. zlikwidować zaciski probiercze.
- C. zwiększyć średnicę przewodu odgromowego.
- D. zwiększyć średnicę zwodów w instalacji odgromowej.

Zadanie 29.

Oblicz rezystancję przewodu LgY 10 mm² o długości 1 km wiedząc, że rezystywność miedzi wynosi $1.72\cdot10^{-8}\,\Omega\cdot\mathrm{m}$

- A. 1,72 Ω
- B. 17,2 Ω
- C. 172Ω
- D. 1720 Ω

Zadanie 30.

Jakie czynności należy podjąć, gdy suma spadków napięć w układzie sieciowym TN-S pomiędzy złączem ZKP a najbardziej oddalonym gniazdem odbiorczym wynosi 9 V, w sieci energetycznej o napięciu 230 V?

- A. Zwiększyć przekrój żył kabla WLZ.
- B. Zmniejszyć przekrój żył kabla WLZ.
- C. Pozostawić instalację zasilającą bez zmian.
- D. Zwiększyć przekrój żył kabli wewnętrznych.

Zadanie 31.

Do wykonania WLZ w instalacji trójfazowej jak na rysunku należy zastosować przewód typu

- A. LgY
- B. YDY
- C. YKY
- D. UTP

Zadanie 32.

Dobierz minimalny przekrój przewodu wyrównawczego głównego wykonanego z miedzi wiedząc, że największy wymagany przekrój przewodu ochronnego w całej instalacji $S_{PEMAX} = 16 \text{ mm}^2$.

- A. 4 mm^2
- B. 6 mm^2
- $C. 10 \text{ mm}^2$
- D. 16 mm^2

Zadanie 33.

Określ typ charakterystyki czasowo-prądowej oraz minimalną wartość prądu znamionowego instalacyjnego wyłącznika nadprądowego do zabezpieczenia instalacji elektrycznej przedstawionej na schemacie, zakładając jednoczesną pracę odbiorników.

- A. B, 20 A
- B. B, 25 A
- C. C, 20 A
- D. C, 25 A

Zadanie 34.

Stosując kryterium prądowe dobierz minimalny prąd zabezpieczenia głównego RCD dla układu elektrycznego, przedstawionego na schemacie przy założeniu, że prąd różnicowy nie zawiera składowej stałej.

A. $\Delta I = 30 \text{ mA}$ B. $\Delta I = 100 \text{ mA}$

C. $\Delta I = 500 \text{ mA}$

D. $\Delta I = 1000 \text{ mA}$

Zadanie 35.

Wskaż miernik do wykonania kompletnych okresowych pomiarów eksploatacyjnych instalacji elektrycznej w budynku mieszkalnym.

Zadanie 36.

Wskaż miernik do pomiaru natężenia prądu bez dodatkowych urządzeń w linii WLZ zasilającej budynek mieszkalny.

Zadanie 37.

W tabeli zestawiono wyniki pomiarów rezystancji izolacji różnych instalacji elektrycznych, przeprowadzonych podczas prób odbiorczych. Która z instalacji znajduje się w złym stanie technicznym, wykluczającym jej eksploatację?

	Instalacja	Rezystancja izolacji, MΩ
A.	SELV	0,9
B.	FELV	0,9
C.	230 V/400 V	1,5
D.	400 V/ 690 V	1,2

Zadanie 38.

Którą z wymienionych czynności należy wykonać podczas oględzin instalacji elektrycznej budynku mieszkalnego przed oddaniem go do użytku?

- A. Próbę ciągłości przewodów ochronnych i połączeń wyrównawczych.
- B. Sprawdzenie właściwego doboru przekroju przewodów.
- C. Pomiar rezystancji izolacji instalacji elektrycznej.
- D. Sprawdzenie samoczynnego wyłączenia zasilania.

Zadanie 39.

Korzystając z danych zamieszczonych w tabeli wyznacz, wartość rezystancji jednej żyły przewodu YDY 3×2,5 mm² o długości 100 m.

Dane techniczne przewodu YDY

A. $0,741 \Omega$

B. $7,410 \Omega$

C. $74,10 \Omega$

D. 741,0 Ω

Ilość i przekrój znamionowy żył	Grubość znamionowa izolacji	Max. rezystancja żył	Orientacyjna masa przewodu o długości 1 km
mm ²	mm	Ω/km	kg/km
2x1	0,8	18,1	81
2x1,5	0,8	12,1	97
2x2,5	0,8	7,41	125
2x4	0,9	4,61	176
2x6	0,9	3,08	228
3x1	0,9	18,1	96
3x1,5	0,9	12,1	116
3x2,5	0,9	7,41	153

Zadanie 40.

Ile wynosi maksymalny czas samoczynnego wyłączenia zasilania dla zapewnienia ochrony przeciwporażeniowej przy uszkodzeniu w obwodach odbiorczych o prądzie znamionowym $I_n < 32~A$ w układzie sieciowym TN jednofazowej instalacji o napięciu 230 V?

A. 0,1 s

B. 0,2 s

C. 0,4 s

D. 5,0 s

