CLASE 1

ARQUITECTURA Y SISTEMAS OPERATIVOS

Unidad 1: Arquitectura de Computadoras

SISTEMA DE NUMERACIÓN DECIMAL

- Un <u>dígito</u> en base 10 está definido dentro del siguiente conjunto: { 0,1,2,3,4,5,6,7,8,9 }
- Todo número N es equivalente a la suma de cada uno de sus dígitos D_n multiplicado por su peso Bⁿ

$$N = d_n \cdot B^n + d_{n-1} \cdot B^{n-1} + \dots + d_1 \cdot B^1 + d_0 \cdot B^0$$

• Por ejemplo, para el sistema base B=10, el número N=568₍₁₀₎ es:

$$568 = (5 \times 10^{2}) + (6 \times 10^{1}) + (8 \times 10^{0})$$

$$= (5 \times 100) + (6 \times 10) + (8 \times 1)$$

$$= 500 + 60 + 8$$

SISTEMA DE NUMERACIÓN BINARIO

- Es otra forma de expresar números y cantidades.
- Ampliamente usado en el diseño y estudio de computadoras, y en otras areas dentro de la ciencia computacional.
- Un <u>dígito</u> en base 2 está definido dentro del siguiente conjunto: { 0,1 }

CONVERSION BINARIO ←→ **DECIMAL**

2°	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°
512	256	128	64	32	16	8	4	2	1

SISTEMA DE NUMERACIÓN HEXADECIMAL

 Un <u>dígito</u> en base 16 está definido dentro del siguiente conjunto: { 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F }

- En computación la información "cruda" estará codificada en binario y generalmente serán números de hasta 64 bits! (64 digitos).
- El sistema hexadecimal nos ayuda a reducir esa cantidad de dígitos, mediante una conversión rápida.
- La conversión es sencilla: Por cada **4 bits** (un NIBBLE) se forma **1 dígito en Hexa** (y viceversa tambien).

CONVERSIÓN BINARIO ←→ HEXADECIMAL

Ejemplos:

```
ightarrow 1111 0000 0000 0000 1011 0100 0101 1110<sub>(2)</sub> F 0 0 0 B 4 5 E _{(16)}
```

$$\rightarrow$$
 2 $C_{(16)}$ 0010 1100₍₂₎

$$\rightarrow 1\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 0_{(2)}$$

$$\rightarrow$$
 F 0 3 5 (16)

TABLA DE EQUIVALENCIA

BINARIO	OCTAL	HEXADECIMAL	DECIMAL
0000	Ö	0 1	Ö
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	.9	9
1010	12	A	10
1011	13	В	11
1100	14	C	12
1101	15	D	13
1110	16	Е	14
1111	17	F	15

SISTEMA DE NUMERACIÓN OCTAL

- Un <u>dígito</u> en base 8 está definido dentro del siguiente conjunto: { 0,1,2,3,4,5,6,7 }
- Lo usaremos particularmente en asignación de permisos en sistemas Unix/Linux
- Partiendo de un número N en binario, en lugar de agrupar 4 bits, agrupa ahora 3 bits al realizar la conversión el resultado será un número octal (analizar la tabla).

$$\rightarrow 0011100010111110_{(2)}$$

$$\rightarrow$$
 732₍₈

$$\rightarrow 001011100_{(2)}$$

$$\rightarrow 100_{(8)}$$

APLICACIONES

Ademas de representar numeros, una combinación de 1's y 0's también pueden representar otro tipo de información, esto depende del contexto que se le de:

NUMERO BINARIO	SIGNIFICADO SEGÚN EL CONTEXTO:			
	NUMÉRICO (decimal, hexa)	97 ₁₀		
0440 0004	TEXTO PLANO (ascii)	ʻa'		
0110 0001	COLOR (paleta vga)			
	INSTRUCCIÓN (Opcode)	sumar 1 al registro X		

OTROS EJERCICIOS

- → Revise la dirección IPv4 de su PC y responda:
- a) ¿En qué sistema de numeración está expresada?
- b) Convierta sus 4 números a binario
- → Revise la dirección Mac de su PC (tarjeta red) y responda:
- a) ¿En qué sistema de numeración está expresada?
- b) ¿Cuantos bits tendría la dirección Mac si se expresa en base 2?
- c) Convierta sus 6 números a decimal (Investigar un poco...)
- \rightarrow Se ha interceptado una transmisión y se obtuvo una secuencia de varios bits, se sospecha que se trata de un mensaje codificado en ASCII. ¿Cual es el mensaje?

