Semantics & Intermediate Representation

Arrays

(Homogeneous non-atomic elements)

ARRAYS

- One of the most important features in any programming language within the Imperative Paradigm (and also in OO) is the possibility to identify under ONE single name a "memory chunk" that stores multiple homogeneous values.
- This feature allow us to avoid declaring multiple variables to store "related-values".
- Its a "chunk" of continuous memory that stores same-type (homogeneous) values.

How do we store Arrays?

- We have the initial address of the array and, based on, that we must "calculate" the required offset (f) to access a specific element within the array.
- The main issue in Compile-time is that we don't have VALUES, so there's no way we can "calculate" anything; but we can add all the calculations to the intermediate code and let the Virtual Machine execute them to address a specific cell.

Address(id[$s_1, s_2, ... s_n$] = BaseAddress(id) + $f(id[s_1, s_2, ... s_n])$

Formula Traslation for the MOST general Array declaration

Lets have this array declaration:

where **linf**_x stands for lower limit (not necessarily 0) and **lsup**_x for the upper limit this variable is accessed as:

where s_k stands for the indexing expression

The formula to calculate the addess of a single cell is:

Address(
$$id[s_1,s_2,...s_n]$$
 = BaseAddress($id)$ + $f(id[s_1,s_2,...s_n])$

where d_k stands for the "size" of dimension-i = $lsup_k - linf_k + 1$

Formula Traslation for the MOST general Array declaration

Let's apply a little algebra to make it simple:

$$m_1 = d_2*d_3*....*d_n$$

 $m_2 = d_3*....*d_n$
...
 $m_{n-1} = d_n$
 $m_n = 1$

Address(id $[s_1,s_2,...s_n]$) = BaseA(id) + $s_1*m_1 + s_2*m_2 + + s_{n-1}*m_{n-1} + s_n + K$

where K stands for: $K = -(linf_1 * m_1 + linf_2 * m_2 + + linf_n)$

this K is a "constant" that transfer all dimensions to 0 (for non-zero lower-limits).

If the Array declaration is C-style, this constant is 0.

Formula Traslation for the MOST general Array declaration

Let's make it even simpler:

General formula for N-Dimensions

Address(id
$$[s_1,s_2,...s_n]$$
) = BaseA(id) + $s_1*m_1 + s_2*m_2 + + s_{n-1}*m_{n-1} + s_n + K$

Formula for 1 Dimension:

Address(id $[s_1]$) = BaseA(id) + s_1 + K

Formula for 2 Dimensions:

Address(id $[s_1,s_2]$) = BaseA(id) + $s_1*m_1 + s_2 + K$

Formula for 3 Dimensions:

Address(id $[s_1, s_2, s_3]$) = BaseA(id) + $s_1*m_1 + s_2*m_2 + s_3 + K$

...

Formula Traslation for a C-style Array declaration

General formula for N-Dimensions

Address(id
$$[s_1,s_2,...s_n]$$
) = BaseA(id) + $s_1*m_1 + s_2*m_2 + + s_{n-1}*m_{n-1} + s_n$

Formula for 1 Dimension:

Address(id $[s_1]$) = BaseA(id) + s_1

Formula for 2 Dimensions:

Address(id $[s_1,s_2]$) = BaseA(id) + $s_1*d_2 + s_2$

Formula for 3 Dimensions:

Address(id $[s_1, s_2, s_3]$) = BaseA(id) + $s_1*d_2*d_3 + s_2*d_3 + s_3$

...

Important information to store for the MOST general Array declaration

- In Compile-Time we can not perform any calculation because there are NO values.
- We'll have to convert the formula into Quadruples so the Virtual Machine can obtain results.
- That means we'll need to store all the elements (constant and calculated) in a structure, to make them available every time we try to address a specific cell from an Array. (trying to avoid extra-operations or even useless re-calculations)
- We'll add more attributes to our VarsTable.

Intermediate Representation for an ARRAY

Array Declaration

- 1. VarTable.add(id, type)
- 2. Set id as an array (isArray = true)
- Get a new node to save info about dimensions and link it to the id. Set DIM=1, R=1
- 4. Store Li_{DIM}
- 5. Store Ls_{DIM} R = $(Ls_{DIM} - Li_{DIM} + 1) * R$
- DIM = DIM + 1
 Get a new node and link it to the previous one.
- 7. Link the last node to null.

 Go to the first node in the list.

DIM = 1; OffSet = 0; Size = R; REPEAT

 $m_{DIM} = R / (Ls_{DIM} - Li_{DIM} + 1)$

Store m in the current node

 $R = m_{DIM}$

OffSet = OffSet + Li_{DIM} * m_{DIM}

DIM = DIM + 1 (Move to next node)

UNTIL no mode nodes

K = OffSet ** K is the constant in the formula Store (- K) in the last node.

 Store VirtualAddress in the current id in VarsTable calculate next VirtualAddress = VirtualAddress + Size

Intermediate Representation for an ARRAY

Array Access

- 1. PilaO.push(id) and PTipos.push(type)
- Id = PilaO.pop(); type = PTipos.pop() verify that id has dimensions
 DIM = 1
 PilaDim.push(id, DIM)
 Get the first node of dimensions (List).
 POper.push(FakeBottom)
- Create Quadruple:

```
\label{eq:Verify PilaO.Top LiDIM LsDIM. **Note: NO Pop at this time} % \begin{subarray}{ll} Verify PilaO.Pop(List) & Verify PilaO.Pop() & Verify PilaO.Pop() & Verify PilaO.Pop() & Verify PilaO.Push (T_j) & Verify PilaO.Pop(); & Verify PilaO.Push (T_k) & Verify PilaO.Push (T_k) & Verify PilaO.Pop(); & Verify PilaO.Push (T_k) & Verify PilaO.Push (T_k) & Verify PilaO.Pop(); & Verify PilaO.Push (T_k) & Verify PilaO.Push (T_k) & Verify PilaO.Pop(); & Verify PilaO.Push (T_k) & Ve
```

- DIM = DIM + 1
 Update DIM in PilaDIM
 Move to next node in List
- Aux1= PilaO.Pop() Create quadruples:
 - + aux1 K T_i where T_i is next available temp. K is the Offset
 - + T_i VirtualAdress T_n where T_n is next available temp.

PilaO.Push((T_n)). Contains an ADDRESS, that's why we use () to distinguish it. POper.Pop(). Eliminates FakeBottom