Redes neuronales, estadística, aprendizaje estadístico y aprendizaje en máquinas

Vista de pájaro

Aprendizaje en máquinas
Aprendizaje estadístico

Estadística

Redes neuronales

Podemos acercarnos a numerosos conceptos desde diferentes perspectivas.

Hilos conductores:

- Estadística
- Redes neuronales \(= \) Punto de continuación

Objetivo fundamental: aprendizaje estadístico

Perspectivas de estudio de redes neuronales

Red de neuronas

Diferentes tipos de motivaciones:

- Biológica
- Física
- Matemática
- Sistémica / Computacional
- Ingenieril

Familia muy variada de modelos o arquitecturas, con diferentes finalidades

Nos interesará perspectiva:

 $Matemática \Rightarrow Sistémica \ / \ Computacional \Rightarrow Ingeniería$

Estructura de neurona

Elementos fundamentales de neurona

Formalización funcional

Schematic Diagram of a Neural Network

Marco de definición

Combinación de dos perspectivas:

- Cómo están constituidas ⇒ Teoría de Marr (sistemas de procesamiento de información)
- Para qué sirven ⇒ Teoría de resolución de problemas. (Aplicación fundamental: aprendizaje ⇒ Teoría del aprendizaje en máquinas)

Teoría de Marr

Herramienta organizacional para estudiar sistemas complejos de procesamiento de información

3 niveles de descripción

- Computacional: objetivo de la computación
- Algorítmico: algoritmo para computar el objetivo
- Implementacional: implementación detallada del algoritmo

Determina herramientas matemáticas a emplear en cada contexto

Paradigma de computación:

- Teoría de Marr (nivel implementacional y algorítmico)
- ⇒ Sistema dinámico con modularidad específica

Especificidad de redes neuronales: todas ellas comparten propiedades comunes a nivel algorítmico e implementacional \Rightarrow caracterizables mediante modelado matemático sencillo (sistema dinámico con modularidad específica) que facilita implementación

(También habitualmente...)

Paradigma de aprendizaje:

- Teoría de aprendizaje en máquinas (estadístico, computacional)
- ⇒ Máquina de aprendizaje

Las **redes neuronales** artificiales están formadas por un número (normalmente elevado) de unidades de procesamiento sencillas (**nodos**), que funcionan en paralelo, con un grado de **interconexión** muy alto, y que se comunican de forma sencilla. Las redes neuronales artificiales pueden adaptar o ajustar su funcionalidad (aprender) **modificando los "pesos"** de las conexiones entre las unidades.

Ingredientes de una red neuronal

- Caracterización de la **neurona**, unidad básica de computación: entrada, pesos, salida
- Definición de una **topología** de interconexión: conectividad, flujo de información, etc.
- Definición de unas reglas de ajuste de pesos (habitualmente, aprendizaje)

Propiedades derivadas de sus ingredientes: no lineal, distribuida y adaptable

Neurona

Tipo particular de autómata:

- Entrada $I = (x_1, \dots, x_m)$ • Pesos: $W = (w_1, \dots, w_m)$ $\}$ $Net = W^T \cdot I$
- Estado interno S: estado de activación de la neurona
- Salida: $O = \mathcal{O}(S)$, habitualmente, no lineal (escalón o una función sigmoidal)

Caracterizable Entrada/Salida:

$$O_{t+1} = \mathcal{O}(F(S_t, W_t^T \cdot I_t)), I, W \in R^m$$

Ajuste de funcionalidad (hab. entrenamiento o aprendizaje)

Ajuste de pesos de interconexión entre las neuronas

Existen diferentes criterios de ajuste según el $\underline{\text{problema}}$ a resolver y la arquitectura seleccionada.

Clasificación habitual (de aprendizaje en máquinas):

- Supervisado
 - Heurísticos: perceptrón
 - Minimizan función de coste (algoritmos tradicionales de adaptación): PMC, RBF
- Mediante refuerzo (con recompensa/castigo)
 - Actor/crítico
 - Q-learning
- No supervisado
 - Hebbiano (Hopfield, Oja)
 - Competitivo (SOM)
 - Máquinas de Boltzmann

Comprende varios aspectos:

- Definión de conectividad
- Temporalización o sincronización del flujo de información
 - Tiempo continuo-discreto
 - Secuencia de computaciones: Flujo directo o Bucles de realimentación

Aprendizaje supervisado versus aprendizaje no supervisado

Aprendizaje supervisado versus aprendizaje no supervisado

Aprendizaje supervisado

Ejemplo de aprendizaje supervisado: regresión

Se considera distribución de Y (una variable) condicionada a X

Aprendizaje no supervisado

Ejemplo de aprendizaje no supervisado: ACP

Se considera distribución conjunta de (X_1, X_2) (multivariable)

Criterios de clasificación

Entrada

- Binaria (funciones discriminantes, etc.)
- Continua (posible definir diferentes rangos de variación)
- Caracterización temporal
 - En tiempo continuo
 - En tiempo discreto
- Realimentación
 - Feedforward: definen una función u operador
 - Feedback: definen un sistema dinámico
- Entrenamiento
 - Supervisado
 - Con Recompensa/Castigo
 - No Supervisado

Diagrama de bloques general

Propiedades Historia

Como paradigma de computación

- Implementabilidad hardware
- Alto grado de paralelismo
- Robustez frente a posibles fallos (información distribuida)

Habitualmente se simulan mediante software en arquitecturas tradicionales

Como paradigma de aprendizaje (estadístico)

- Entrenamiento supervisado: define espacio parametrizado
- Entrenamiento no supervisado: implementa heurísticos

Máquina de aprendizaje: mecanismos sencillos y generales de adaptación

- McCullogh & Pitts (1943). Estudio biológico del cerebro → Modelo de neurona formal (concepto de umbral).
- Hebb (1949). Hebbian Learning: aprendizaje mediante adaptación de sinapsis (reforzar conexión).
- Minsky (1951). Stochastic Neural Analog Reinforcement Calculator (SNARC).
- Rosenblat (1959).
 {Perceptrón= Estructura + regla de aprendizaje.}
 Cambio temporal de pesos sinápticos. Regla del perceptrón.
- Widrow & Hoff (1960's). Filtrado adaptativo (≈ aprendizaje). Redes neuronales: ADALINE y MADALINE I. Aprendizaje basado en <u>LMS</u>: Delta Rule. Problema entrenamiento de varias capas (con función signo).
- Minsky & Papert (1969). Perceptrón única capa: clasificación de 1^{er} orden (no XOR). Problema entrenamiento varias capas.

Historia (y II)

- Werbos (1974). Algoritmo de retropropagación. Uso de función sigmoidal
- Grossberg (1970's). Adaptive Resonance Theory
- Kohonen (1970's). Mapas topológicos y memorias asociativas
- Hopfield (1982). Redes de Hopfield
- Rumelhart & McClelland (1986). Perceptrón Multicapa. Popularización de Retropropagación
- Cybenko, Hornik et al., Funahashi (1989). PMC como aproximador universal
- Retropropagación + VLSI + Computación paralela + Aplicaciones = Popularización RN's
- Resaca
- Asentamiento y contextualización de aportaciones fundamentales
- Redescubrimiento (siglo XXI): deep learning

Modelos más representativos

- Adaline, perceptrón, madaline
- Perceptrón multicapa (PMC o MLP)
- Funciones de base radial (RBFs)
- Redes de Hopfield, memorias autoasociativas
- Mapas asociativos, memorias asociativas bidireccionales (BAM)
- Mapas topológicos autoorganizativos de Kohonen
- Redes Hebbianas
- Redes recurrentes, TDNNs, CNNs, etc.
- Teoría de resonancia adaptativa (ART) de Grossberg
- Contrapropagación, correlación en cascada, etc.
- Redes jerárquicas multicapa (más allá de PMC, Neocognitrón)
 ⇒ Deep Learning
 - Supervisadas: Convolutional Neural Networks (CNNs), Recurrent Neural Networks (Long Short-Term Memories, LSTM, etc), Recursive Neural Networks
 - No supervisadas (Unsupervised Pretrained Networks, UPNs):
 Autoencoders, Restricted Boltzmann Machines, Deep Belief Networks (DBNs), Generative Adversarial Networks (GANs)