Bayesianische Netzwerke I

Christiane Belitz

2.5.2003

Überblick

- Der Vortrag basiert auf "Using Bayesian Networks to Analyze Expression Data" von Friedman et al. (2000)
- Definition: Bayesianisches Netzwerk
- Anwendung bei Genexpressionsdaten
- Anwendungsbeispiel: Zellzyklus-Expressionsdaten
- Ausblick

Definition: Bayesianische Netzwerke

- Sie sind eine Möglichkeit, die gemeinsame Verteilung der Variablen X_1, \ldots, X_n darzustellen
- Sie bestehen aus zwei Komponenten:
 - 1. einem gerichteten azyklischen Graph (=DAG) G
 - 2. bedingten Verteilungen der einzelnen Variablen X_i

1. Gerichteter azyklischer Graph

- Besteht aus einer Menge von Knoten X_1, \ldots, X_n , die durch Pfeile miteinander verbunden sind
- 'Gerichtet' bedeutet, dass die Verbindung zwischen zwei Variablen eine Richtung besitzt:

Eltern → Kinder

• 'Azyklisch' bedeutet, daß es keine Verbindungen zurück gibt, d.h. es gibt keine Variablen A_1, \ldots, A_n , die miteinander verbunden sind und für die gilt: $A_1 = A_n$

Beispiel

E: Einbruch (ja/nein)

A: Erdbeben (ja/nein)

B: Alarm (ja/nein)

D: Radiobericht über Erdbeben (ja/nein)

C: Herr Müller hört den Alarm (ja/nein)

Weitere wichtige Eigenschaften

• G stellt bedingte Unabhängigkeits-Annahmen dar

Grunglage bildet die Markov-Bedingung:

Jede Variable X_i ist unabhängig von ihren Nicht-Kindern gegeben ihre Eltern aus G.

• Definition: Bedingte Unabhängigkeit

X ist bedingt unabhängig von Y gegeben Z, wenn gilt: $P(X,Y|Z) = P(X|Z) \cdot P(Y|Z)$ oder P(X|Y,Z) = P(X|Z).

• Dann gilt die Kettenregel:

$$P(X_1,\cdots,X_n)=\prod_{i=1}^n P(X_i|Pa(X_i)),$$

wobei $Pa(X_i) = \text{Eltern von } X_i \text{ aus } G$

Beispiel

Unabhängigkeits-Strukturen:

- I(A, E)
- *I*(E,(A,D))
- *I*(D,(E,B,C)|A)
- *I*(B, D|(E, A)
- *I*(C,(D,E,A)|B)

Produktform der gemeinsamen Verteilung:

$$P(B, E, A, C, D) = P(A) \cdot P(E) \cdot P(D|A) \cdot P(B|E, A) \cdot P(C|B)$$

2. Bedingte Verteilungen

• Müssen für alle Variablen X_1, \ldots, X_n spezifiziert werden

• Unterschiedliche Darstellungsformen je nach Variablentyp: diskret, stetig oder Mischung aus beiden Typen

Diskrete Variablen

- Die bedingten Verteilungen sind Multinomialverteilungen
- Darstellung in Form von Tabellen
- Die Anzahl freier Parameter ist exponentiell zur Anzahl der Eltern

Stetige Variablen

• Meistens Wahl der bedingten Normalverteilung

 Der Erwartungswert hängt im einfachsten Fall linear von den Werten der Eltern ab

• Die Varianz ist von den Eltern unabhängig

• Die bedingten Verteilungen haben die Form:

$$P(X|u_1,\ldots,u_k) \sim N(a_0 + \sum_{i=1}^k a_i u_i,\sigma^2)$$
 mit $\{U_1,\ldots,U_k\} = Pa(X_i)$

• Die gemeinsame Verteilung von X_1, \ldots, X_n ist dann eine multivariate Normalverteilung

Mischung aus beiden Variablentypen

- Nur der Fall stetiger Variablen mit diskreten Eltern ist erlaubt
- Zu jeder Wertekombination der diskreten Eltern wird eine bedingte Normalverteilung, gegeben die stetigen Eltern, bestimmt
 - → konditionale Gauß-Verteilung

Äquivalenzklassen

- ullet Graph G enthält eine Menge von Unabhängigkeits-Annahmen Ind(G)
- Es gibt mehrere Graphen, die genau dieselben Unabhängigkeits-Annahmen erfüllen
- Beispiel: Zwei Variablen X und Y mit $Ind(G) = \phi$

paßt zu
$$X \longrightarrow Y$$
 und $X \longleftarrow Y$

• Definition: Zwei Graphen G und G' sind genau dann äquivalent, wenn Ind(G) = Ind(G')

 Äquivalente Graphen besitzen denselben zugrundeliegenden ungerichteten Graphen

• Sie unterscheiden sich in der Richtung mancher Kanten

• Sie besitzen dieselben v-Strukturen, d.h. hier ist die Richtung festgelegt

(v-Struktur:
$$X \longrightarrow Y \longleftarrow Z$$
)

- Alle äquivalenten Graphen bilden zusammen eine Äquivalenzklasse
- ullet Äquivalenzklassen werden durch einen teilweise gerichteten Graphen (PDAG) eindeutig festgelegt

Anwendung bei Genexpressionsdaten

Ziel: Herausfinden, welche Gene sich gegenseitig beeinflussen

 Mit Bayesianischen Netzwerken lassen sich Prozesse gut beschreiben, bei denen jede Komponente direkt von einer relativ geringen Zahl anderer Komponenten abhängt

→ trifft auf Genexpressionsdaten zu

 Bayesianische Netzwerke liefern ein Modell für mögliche kausale Zusammenhänge

Durchführung

 Die Expressionsniveaus der Gene werden durch jeweils eine Zufallsvariable dargestellt

 Andere Zufallsvariable z.B. für experimentelle Bedingungen oder Zellstadium können hinzugenommen werden

• Damit soll ein Bayesianisches Netzwerk geschätzt werden

Probleme

• Genexpressionsdaten enthalten ein paar Tausend Variablen

• Datensätze bestehen nur aus ein paar Dutzend Beobachtungen

⇒ Schätzungen werden unsicher

Lösung

 Schätzen mehrerer Äquivalenzklassen von Netzwerken mit Hilfe des Bootstrap-Verfahrens

ullet Beschränken auf charakteristische Eigenschaften f, die in den meisten Äquivalenzklassen vorkommen

Bootstrap-Verfahren

- Es werden m = 200 neue Datensätze D_i gebildet
- ullet Dies geschieht durch das Ziehen mit Zurücklegen von N Beobachtungen aus dem ursprünglichen Datensatz
- Aus D_i (i = 1, ..., m) wird eine Netzwerkstruktur G_i gelernt
- ullet Für alle interessierenden Eigenschaften f werden Konfidenzwerte

$$conf(f) = \frac{1}{m} \sum_{i=1}^{m} f(G_i) \text{ mit } f(G_i) = \begin{cases} 1, & f \in G_i \\ 0, & f \notin G_i \end{cases}$$

berechnet

Charakteristische Merkmale

• Beschränkung auf Merkmale, die jeweils nur zwei Variablen betreffen

- zwei Arten von Merkmalen:
 - 1. Markov-Relationen
 - 2. Ordnungs-Relationen

1. Markov-Relation

- Betrifft direkte Nachbarschaft im Modell
- ullet Gibt an, ob die Variable Y in der Markov-Umgebung von X liegt
- ullet Zur Markov-Umgebung von X gehören alle Variablen, die mit X direkt verbunden sind oder die mit X gemeinsame Kinder besitzen
- Die Beziehung ist symmetrisch
- ullet Variable X gegeben ihre Markov-Umgebung ist unabhängig von allen anderen Variablen im Modell

2. Ordnungs-Relation

ullet Gibt an, ob Variable X in der gelernten Äquivalenzklasse ein Vorfahr von Y ist

ullet Ist ein Hinweis darauf, dass X einen Einfluss auf Y besitzt

Lokale Wahrscheinlichkeitsmodelle

Für die Wahl der bedingten Wahrscheinlichkeitsverteilungen gibt es folgende Möglichkeiten:

- 1. Multinomiales Modell
- 2. Lineares Gauß-Modell

1. Multinomiales Modell

- Die eigentlich stetigen Variablen werden kategorisiert, z.B.
 - −1 unterexprimiert
 - 0 normal
 - 1 überexprimiert
- Die bedingten Verteilungen der Variablen gegeben die Werte der Eltern folgen dann einer Multinomialverteilung
- Nachteil: Informationsverlust durch Kategorisierung
- Vorteil: Modell ist sehr flexibel und entdeckt viele Arten von Abhängigkeiten

2. Lineares Gauß-Modell

 Die bedingten Verteilungen sind bedingte Normalverteilungen der Form:

$$P(X|u_1,...,u_k) \sim N(a_0 + \sum_{i=1}^k a_i u_i, \sigma^2),$$

d.h.

$$E(X|u_1,...,u_k) = a_0 + \sum_{i=1}^k a_i u_i$$

ullet Die Koeffizienten a_i können also durch eine lineare Regression geschätzt werden

• Nachteil: Das Modell erfasst nur lineare Abhängigkeiten

• Vorteil: Es gibt keinen Informationsverlust

Anwendungsbeispiel: Zellzyklus-Expressionsdaten

- Die Daten wurden an der Bäckerhefe (Saccharomyces cerevisiae) erhoben
- Der Datensatz enthält 76 Beobachtungen
- Gemessen wurden die mRNA-Level von 6177 ORF's (≈ Genen)
- Eine frühere Untersuchung (von Spellman et al. (1998)) lieferte den Datensatz, der aus den 800 Genen besteht, deren Expression sich im Laufe des Zellzyklus ändert

- Gemessen wurde zu unterschiedlichen Stadien des Zellzyklus
- Die Beobachtungen werden als unabhängig angesehen
- Der zeitliche Aspekt wird durch eine zusätzliche Variable berücksichtigt
- Biologisches Vorwissen wird nicht berücksichtigt

Robustheitsanalyse

• Erstellen eines zufälligen Datensatzes durch unabhängiges Permutieren der Messungen bei den einzelnen Genen

 Vergleich der Konfidenzwerte beim echten und beim zufälligen Datensatz

 Ergebnis: Konfidenzwerte sind beim zufälligen Datensatz deutlich niedriger

Konfidenzwerte für multinomiales (oben) und Gauß-Modell (unten), jeweils für Markov- (links) und Ordnungs-Relationen (rechts)

Vergleich der beiden Modelle

- Vergleich der Konfidenzwerte der Relationen im multinomialen und im Gauß-Modell
- Vergleiche getrennt für Markov- und Ordnungs-Relationen
- Ergebnis:
- Markov-Relationen: keine Korrelation zwischen den Konfidenzwerten
 Ordnungs-Relationen: schwache Korrelationen
- Die beiden Modelle finden vor allem bei den Markov-Relationen unterschiedliche Arten von Zusammenhängen heraus

Biologische Analyse

Die gelernten Relationen mit hohen Konfidenzwerten entsprechen bekannten biologischen Gegebenheiten

Ordnungs-Relationen

- Existenz weniger dominanter Gene, d.h. nur diese wenigen erscheinen vor allen anderen Genen
 - Hinweis darauf, dass diese Gene Initiatoren des Zellzyklus-Prozesses sind
- Dominante Gene werden mit Hilfe des Dominanz-Scores bestimmt:

$$DS(X) = \sum_{Y,C_o(X,Y)>t} C_o(X,Y)^k$$

wobei $C_o(X,Y)$ die Konfidenz von "X ist Vorfahr von Y" angibt

ullet Die dominantesten Gene sind bei beiden Modellen gleich und unterscheiden sich nur in der Reihenfolge (geordnet nach DS)

• Zu den dominanten Genen gehören:

$$\left. egin{array}{c} MSH6 \ - RFA2 \ POL30 \end{array}
ight\}$$
 beteiligt an DNA-Reperatur

- CDC45: wird für die Replikation der Chromosomen benötigt

Markov-Relationen

 Liefern Gen-Paare, deren Proteine an denselben Vorgängen beteiligt sind oder die durch denselben Mechanismus reguliert werden

- Die beiden Modelle liefern zum Teil verschiedene Paare
 - Grund: Das Gauß-Modell erkennt vor allem Beziehungen zwischen hochkorrelierten Genen

• Beispiele:

- HHT1 HTB1 (multinom. Modell; conf = 0.975): beides sind Histone
- MCD1 MSH6 (multinom. Modell; conf = 0.985): beide binden während der Mitose an die DNA
- HTA1 HTA2 (Gauß-Modell; conf = 1.0): miteinander verbundene Histone
- Vorsicht, vor allem beim Gauß-Modell:
 Gene, die sich auf den komplementären Strängen überlappen,
 liefern oft fälschlicherweise hohe Konfidenzwerte

- Bedingte Unabhängigkeiten zwischen hochkorrelierten Genen
- Beispiel aus dem multinomialen Modell:
- CLN2, RNR3, SVS1, SRO4 und RAD51
- CLN2 ist eine zentrale und frühe Zellzyklus-Kontrolle
- CLN2 ist mit den anderen Genen durch eine Markov-Relation verbunden
- Zwischen den anderen Genen besteht kein funktioneller Zuasammenhang

Bayesianisches Netzwerk für das Gen CLN2

Ausblick

- Erweiterung auf nicht-parametrische Modelle
- Miteinbeziehung biologischen Wissens
- Betrachtung von komplizierteren Relationen, die z.B. mehrere Variablen betreffen
- Miteinbeziehen von experimentellen Manipulationen durch stärkere Unabhängigkeits-Annahmen (kausale Netzwerke)