

Deep W-Networks: Solving Multi-Objective Optimisation Problems With Deep Reinforcement Learning

15th International Conference on Agents and Artificial Intelligence, Lisbon, Portugal

<u>Jernej Hribar</u>, Luke Hackett, and Ivana Dusparic School of Computer Science and Statistics, Trinity College Dublin, Ireland 23/02/2023

Multi-Objective Optimisation Problems

Background

- These problems require balancing trade-offs between objectives to find a compromise solution that satisfies all constraints.
- Many real world problems can be formulated as a multi-objective optimisation problem:
 - Radio resource management;
 - infectious disease control;
 - marketing optimization in advertising;
 - energy management of sensor networks.

Pareto Front

Background

- Is defined as the set of non-dominated solutions;
- Each objective is considered as equally good;
- Provides a way to visualize the trade-offs.

Image taken from: Wikipedia

W-Learning

Solution to Resolve Multi-Objective Problems

- Developed in the 1990s [1] to find the optimal policy for a multiobjective problems.
- Resolves competition between different policies, with the winner policy being the one that is most likely to suffer the most if it does not win.
- Each policy is implemented with a tabular Q-learning, and W-values representing the W weight.
- Computationally efficient, intuitive, versatile applicability, etc.

Aims and Objectives of Our Work

Contributions

- We propose a Deep W-Networks (DWN), a deep learning extension to W learning algorithm;
- DWN resolves the competition between greedy single-objective policies by relying on W-values;
- We show the modularity of DWN.

Deep W-Networks

Algorithm

- We employ two DQNs for each objective.
- The agent takes the action suggested by the policy associated with the highest W-value:

$$W_j(t) = \max(\{W_1(t),...,W_N(t)\}).$$

Deep W-Networks

Training W-values

W-values are updated similarly to Q-values:

$$W_i(t) \leftarrow (1-\alpha)W_i(t) + \alpha [Q(s(t), a_j(t)) - (R_i(t) + \gamma \max_{a_i(t+1) \in \mathcal{A}} Q(s(t+1), a_i(t+1))].$$

W policy saves the experience only when it was not selected.

Mountain Car

Environment

MOUNTAIN CAR

- The environment has three different objectives:
 - time penalty;
 - backward acceleration penalty;
 - forward acceleration penalty.
- Github code:

https://github.com/deepwlearning/deepwnetworks

Mountain Car

The number of steps to finish the episode

Mountain Car

The percentage of each policy DWN agent selects in an episode,

Deep Sea Treasure

Environment

- The environment has two objectives:
 - Time penalty;
 - Collected treasure.
- We use Convolutional Neural Network (CNN) structure in DWN Agent

Deep Sea Treasure

Pareto Front

Conclusion

and Future Work

- The proposed DWN is capable of finding the Pareto front.
- The main advantage of DWN is its ability to train multiple policies simultaneously.
- Future work:
 - Improving the computational performance;
 - Evaluating in more complex environments.

Thank you for your attention!

Email: jhribar@tcd.ie or jernej.hribar@ijs.si