参考答案

华东理工大学 2002-2003 年第二学期 《高分子科学基础》(高分子物理) 期终试卷(A)

			班级	姓名	学号	得分	
			选择题:(10 \题只有一个答		正确答案的编号填在	左边的括号里。选对者得	1分,
不達	先、	选错或	这多选均不得分	`)			
(A) 1	. 在二氧六环	中将锌粉与聚氯乙烷	烯共煮,红外光谱表明	明产物中有环丙烷结构而为	E
		双键	,则反应前聚	氯乙烯结构单元的银	建接顺序为:		
			(A) 头-尾键	接; (B) 头-头	、键接; (C)头-尾	和头-头各占 50%	
(C) 2	. 某结晶性聚	合物在偏光显微镜	下呈现黑十字消光图等	案,则其结晶形态是:	
			(A) 单晶;	(B) 串晶; (C) 球晶; (D) 片	間	
(B) 3	. 在聚四氟乙	烯的晶区中,其分	子链的构象为:		
			(A) 锯齿链	;(B)螺旋链;(C	こ) 无规线团		
(D) 4	. 用 WLF 方程	呈计算聚合物的粘度	度时,其适用范围是:		
			(A) $T_f \sim T_f$	$-100 ^{\circ}\text{C}; (B) T_g$	\sim T _g -100 °C; (C)	$T_f \sim T_f{+}100{}^{\circ}\text{C};$	
			(D) T _f 以下且	$LT_g \sim T_g + 100 ^{\circ}C$			
(A) 5	. 对含成核剂	的 PP 等温结晶过程	星的研究表明,其 Ara	mi 指数为 3 ,则生成的是	:
			(A) 球晶;	(B) 片晶; (C) 针	一状晶体		
(C) 6	. 下列因素中	, 使 Tg 降低的是:			
			(A) 增加分	·子量;(B)分子之	间形成氢键; (C)加	入增塑剂; (D) 交联	
(В) 7	. 假塑性流体	的熔体粘度随剪	切应力的增大而:		
			(A) 增大;	(B) 减小; (C) ⁷	不变		
(В) 8	. 聚合物的料	占流活化能越大, !	则其熔体粘度:		
			(A) 越大;	(B) 对温度越	敏感; (C) 对剪	刀速率越敏感	
(C) 9	. 晶态高聚物	发生强迫高弹形变	的温度范围是:		
			(A) $T_g \sim T_f$	之间;(B)T _b ~T _g .	之间;(C)Tg~Tm之	间;(D) T _b ~T _m 之间	
(A) 10). 聚合物在外	电场中发生极化时	,速度最快的是:		
			(A) 电子极	化;(B)原子极	化; (C) 偶极极(Ł; (D) 界面极化	

二. 多重选择题(20分)

(下面每个小题至少有一个答案是正确的,请将所有正确答案的编号填写在括号里。全选对者得 2 分,每选错一个扣 1 分,每少选一个扣 0.5 分,但不做选择或所选答案全错者不得分)

- 1. 聚甲基丙烯酸甲酯分子之间的相互作用包括:(A B C)
 - (A) 静电力; (B) 诱导力; (C) 色散力; (D) 氢键
- 2. 用来描述聚合物非晶态结构的模型有: (**B** C)
 - (A) 缨状微束模型; (B) 无规线团模型; (C) 两相球粒模型;
 - (D) 折叠链模型; (E) 插线板模型
- 3. 可以得到聚合物溶度参数的方法有:(A C D)
 - (A) 稀溶液粘度法;(B) 由汽化热计算;(C) 平衡溶胀度法;(D) 由摩尔引力常数计算;
 - (E) 由熔融热计算
- 4. 下列实验方法中,可以用来测定玻璃化转变温度的是:(A B C)
 - (A) 膨胀计法; (B) DSC 法; (C) DMA 法; (D) 解偏振光强度法
- 5. 下列实验方法中,可以测定聚合物结晶速率的方法有:(A B C D)
 - (A) 偏光显微镜法; (B) 膨胀计法; (C) 解偏振光强度法; (D) DSC 法
- 6. 下列对理想弹性体的描述中,正确的有:(**A B D**)
 - (A) 等温形变过程中内能保持不变: (B) 拉伸时只有熵变对弹性有贡献:
 - (C) 拉伸过程中吸热: (D) 泊松比为 0.5; (E) 张力由内能的变化和熵变引起
- 7. 理想溶液的热力学性质是:(**A E**)
 - (A) $\Delta H_m = 0$; (B) $\Delta S_m = 0$; (C) $\chi_1 = 0.5$; (D) $\chi_1 > 0.5$; (E) $\chi_1 = 0$
- 8. 在得到分子量的同时,可得到第二维利系数的方法有:(C F)
 - (B) 粘度法; (B) 端基分析法; (C) 膜渗透压法; (D) 沸点升高法;
 - (E)凝胶渗透色谱法; (F)光散射法; (G)蒸汽压渗透法
- 9. 处在玻璃态的聚合物,能够运动的单元有:(A B E)
 - (A) 链节; (B) 侧基; (C) 链段; (D) 整个分子; (E) 支链
- 10. 下列因素中,可以提高聚合物拉伸强度的有:(A C F)
- (A) 在主链中引入芳杂环结构; (B) 加入增塑剂; (C) 提高结晶度; (D) 缺陷增多;
- (E) 与橡胶共混; (F) 增加分子间力

三. 选择填空题(15分)

(下面每个小题均有多个答案,请将答案编号按要求的顺序填入空格内,顺序全对者得 1.5 分,其它情况一律不得分)

- 1. 下列高分子链的柔性顺序为: (A) > (C) > (B)
 - (A) 1.4-聚丁二烯: (B) 聚氯乙烯: (C) 1.4-聚 2-氯丁二烯
- 2. 下列三类不同的聚合物材料,其内聚能大小顺序一般为: (**B**) > (**C**) > (**A**) (**A**) 橡胶; (**B**) 纤维; (**C**) 塑料
- 3. 下列聚合物的熔点顺序为: (**B**) > (**C**) > (**A**)
 - (A) 聚乙烯; (B) 聚丙烯腈; (C) 聚丙烯
- 4. 下列聚合物中,其 Tg 的大小顺序为: (B) > (A)
 - (A) 顺式 1.4-聚异戊二烯: (B) 反式 1.4-聚异戊二烯
- 5. 下列三种聚合物,其介电常数的大小顺序为: (A) > (C) > (B)
 - (A)全同聚丙烯; (B)间同聚丙烯; (C)无规聚丙烯
- 6. 同一种聚合物样品,分别用三种不同的方法测定其分子量,则测定值的大小顺序为:

- (A) 渗透压法; (B) 光散射法; (C) 粘度法
- 7. 同一聚合物以相同浓度溶于同温下的不同溶剂中,渗透压为: (A) 之 (C) (C)
- 8. 聚乙烯在三种不同的拉伸速度下进行拉伸,其杨氏模量的大小顺序为:

$$(\mathbf{A}) > (\mathbf{C}) > (\mathbf{B})$$

- (A) 1000 mm/min; (B) 10 mm/min; (C) 100 mm/min
- 9. 已知 PS—环己烷体系(I)、聚二甲基硅氧烷—乙酸乙酯体系(II)及聚异丁烯—苯体系(III)的 θ 温度分别为 35 °C、18 °C 和 24 °C,那么于 24 °C 下测得这三个体系的相互作用参数,其大小顺序为: (A) > (C) > (B)
 - (A) $\chi_1(I)$; (B) $\chi_1(II)$; (C) $\chi_1(III)$
- 1 0. 下列三种不同的高分子链, 其等效链长的大小顺序为: (**A**) > (**C**) > (**B**) (**A**) 实际的高分子链; (**B**) 自由结合链; (**C**) 自由旋转链

四. 名词解释(15分)

等规度; 取向; 溶度参数; 玻璃化转变; 应力松弛

答:

等规度: 高聚物中含有全同立构和见同立构的总的百分数。

取向:聚合物在某种外力作用下,分子链、链段和结晶聚合物中的晶粒等结构单元沿外力方向 择优排列。

溶度参数: 内聚能密度的平方根。

玻璃化转变: 聚合物从玻璃态到高弹态之间的转变。

应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。

五. 简述题(12分)

- 1. 简述分子量对聚合物零切粘度的影响
- 2. 简述液晶纺丝的原理
- 3. 简述一种聚合物的分级实验方法

答:

1. 总的说来,聚合物的零切粘度随分子量的增大而增大。但在不同的分子量范围,其影响的程度不一样。在零切粘度 η_0 与分子量 \overline{M}_w 的关系中,存在一个临界分子量 M_a :

当 Mw < Mc, $\eta_0 \propto \text{Mw}^{1-1.5}$, $1g\eta_0 = 1gK1 + (1^-1.5) 1gMw$ 当 Mw > Mc, $\eta_0 \propto \text{Mw}^{3.4}$, $1g\eta_0 = 1gK2 + (3.4^-3.5) 1gMw$

- 2. 液晶纺丝的原理就是利用聚合物液晶溶液高浓度、低粘度; 低剪切速率下高取向度的特点。
- 3. 在较高的温度下将聚合物溶解在某种合适的溶剂中,逐渐降温,使溶液分相,把凝液相逐一取出,得到若干个级分,先得到的级分平均分子量最大,以后依次降低。这一方法称为逐步降温分级法。

六. 图示题(8分)

1. 分别画出牛顿流体、理想弹性体、线形和交联聚合物的蠕变曲线及回复曲线

- 2. 分别画出下列两种结晶聚合物的温度形变曲线,并标明T_s、T_m和T_f的大概位置。
 - (A) 结晶度 > 50%, $T_m > T_f$;
- (B) 结晶度 > 50%, T_m < T_f

七. 说明题(10分)

- 1. 在 PET (聚对苯二甲酸酯)塑料的加工过程中,通常会加入成核剂,试说明其原理及其对产品性能的影响。
- 2. 讨论不同柔性的聚合物的熔体粘度对温度和剪切速率依赖性的差异,并说明在 PE (聚乙烯)和 PC (聚碳酸酯)的加工中如何有效地增加其流动性。

答:

- 1. 成核剂的加入,主要是起异相成核的作用,可以大大提高 PET 的结晶速度,并使球晶的尺寸变小。结晶速率的提高有利于提高 PET 结晶度,从而提高产品的强度和模量,同时由于生成的是大量的小尺寸球晶, PET 的韧性不会下降,而且可以保持很好的透明性,使之可以用于包装。
- 2. 不同柔性的聚合物, 其熔体粘度对温度和剪切速率的依赖性是不同的: 柔性的高分子链在剪切力的作用下容易沿外力方向取向, 使粘度明显下降, 因此, 柔性聚合物的熔体粘度对剪切速率非常敏感, 而刚性高分子下降则不明显。刚性高分子链的粘流活化能大, 其剪切粘度对温度极为敏感, 随着温度的升高, 剪切粘度明显下降, 而柔性高分子链的粘流活化能小, 其剪切粘度随温度的变化较小。

PE 是典型的柔性高分子,而 PC 是典型的刚性高分子链,在加工中要有效地增加其流动性,对 PE 采取增大剪切速率的方法更加有效,对 PC 采取升高温度的方法更加有效。

八. 计算题(10分)

- 1. 假定某一聚合物的应力松弛行为符合Maxwell模型(串联模型),其中弹簧的模量为 10^8 Pa,粘壶的粘度为 10^{10} Pa·S,如果在时间t=0 时施加某一应力,引起的瞬时应变为 1%,保持 1%的恒定应变不变,计算t=50s时的应力。
- 2. 在 25 °C的 θ 溶剂中,测得浓度为 1×10^{-3} g/ml的聚苯乙烯溶液的渗透压为 0.5055 g/cm²。当入射光为非偏振光时,若忽略内干涉效应,用光散射法测得其 90 °C的瑞利因子为 3×10^{-5} /cm,已知光学常数 $K=1\times10^{-6}$ cm²·mol/g²,试求该聚苯乙烯试样的多分散系数。

解:

1. 己年: $E_2 = 10^8 Pa$; $\eta_2 = 10^8 Pa \cdot s$

则松弛时间为:

$$\tau = \frac{\eta_2}{E_2} = \frac{10^{10}}{10^8} = 100 \quad (s)$$

由于粘壶在加载瞬间的应变为零,因此瞬时应

变是由弹簧产生的, 故起始应力为:

$$\sigma_0 = E_2 \varepsilon_0 = 10^{10} \times 0.01 = 10^8$$
 (Pa)

则 t = 50s 后的应力为:

$$\sigma = \sigma_0 e^{-t/\tau} = 10^8 \cdot e^{-50/100} \approx 6.1 \times 10^7 (Pa)$$

2. 根据渗透压公式:

$$\frac{\prod}{C} = RT \left(\frac{1}{M_n} + A_2 C \right)$$

因为是在 θ 溶剂中,因此 $A_2=0$,有:

$$\frac{\prod}{C} = \frac{RT}{M_{"}}$$

则:

$$M_n = \frac{RT}{\Pi} \cdot C = \frac{8.478 \times 10^4 \times 298.15}{0.5055} \times 1 \times 10^{-3}$$

$$\approx 50000(g / mol)$$

因为入射光是非偏振光,根据光散射公式:

$$\frac{KC}{2R_{90}} = \frac{1}{M_{w}} + 2A_{2}C$$

因为 $A_2 = 0$,则:

$$M_{w} = \frac{2R_{90}}{KC} = \frac{2 \times 3 \times 10^{-5}}{1 \times 10^{-6} \times 10^{-3}} = 60000(g / mol)$$

多分散系数为:

$$D = \frac{M_w}{M_w} = \frac{60000}{50000} = 1.2$$

$$R = 8.478 \times 10^4 \, g \cdot cm / \, mol \cdot K$$