CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Outline

1 Eigenvalue problems

2 PCA

3 Eigenfaces

UT Austin CSE 392 Jan, 2024 3 / 20

Eigenvalue problems

Given a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, the eigenvalue problem:

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$
.

 λ is an eigenvalue and \boldsymbol{u} is an eigenvector of \boldsymbol{A} .

Types of problems:

- Find the largest or the smallest eigenvalues.
- Compute all eigenvalues in region of \mathbb{C} .
- Compute dominant eigenvalues and eigenvectors.

Applications: Structural engineering, stability analysis, electronic structure calculations, dimensionality reduction, spectral clustering and graphs, pagerank and many more.

UT Austin CSE 392 Jan, 2024 4/20

Eigenvalues and properties

A complex scalar λ is called an *eigenvalue* of a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ if there exists a nonzero vector $\mathbf{u} \in \mathbb{C}^n$ such that

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$
.

The vector u is called an eigenvector of A associated with λ .

- λ is an eigenvalue iff the columns of $A \lambda I$ are linearly dependent.
- That is, $det(\boldsymbol{A} \lambda \boldsymbol{I}) = 0$.

Eigenvalues and properties II

- The set of all eigenvalues of A, denoted $\Lambda(A)$, is the spectrum of A.
- An eigenvalue is a root of the *characteristic polynomial*:

$$p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$$

- So there are *n* eigenvalues (counted with their multiplicities).
- ullet The multiplicity of these eigenvalues as roots of $p_{m{A}}$ are called algebraic multiplicities.
- The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .
- Geometric multiplicity is \leq algebraic multiplicity.

UT Austin CSE 392 Jan, 2024 6 / 20

Eigenvalues and properties III

- Diagonalization: Two matrices A, B are *similar* if there exists a nonsingular matrix X such that: $A = XBX^{-1}$.
- $Au = \lambda u \Leftrightarrow B(X^{-1}u) = \lambda(X^{-1}u)$ eigenvalues remain the same, eigenvectors transformed.
- ullet A is diagonalizable if it is similar to a diagonal matrix.
- Transformations that preserve eigenvectors:
 - ► Shift : $\boldsymbol{B} = (\boldsymbol{A} \eta \boldsymbol{I})$
 - ▶ Polynomial : $\mathbf{B} = p(\mathbf{A})$
 - Inverse: $\boldsymbol{B} = \boldsymbol{A}^{-1}$
 - ▶ Shift and inverse: $\boldsymbol{B} = (\boldsymbol{A} \eta \boldsymbol{I})^{-1}$

Symmetric eigenvalue problem

• For every square symmetric matrix $A \in \mathbb{R}^{n \times n}$, we can compute eigendecomposition:

$$\boldsymbol{A} = \boldsymbol{U} \Lambda \boldsymbol{U}^{\top},$$

where U is an orthogonal matrix with eigenvectors u_i as columns, and Λ is diagonal matrix with eigenvalues λ_i on the diagonal.

- ullet U forms an orthonormal basis of eigenvectors of A.
- \bullet Eigenvalues of \boldsymbol{A} are real.
- ullet When $oldsymbol{A}$ is real, $oldsymbol{U}$ is also real.

UT Austin CSE 392 Jan, 2024 8/20

The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

The eigenvalues of a Hermitian matrix \boldsymbol{A} are characterized by the relation

$$\lambda_k = \max_{oldsymbol{S}, \dim(oldsymbol{S}) = k} \min_{oldsymbol{x} \in oldsymbol{S}, oldsymbol{x}
eq 0} rac{\langle oldsymbol{A} oldsymbol{x}, oldsymbol{x}
angle}{\langle oldsymbol{x}, oldsymbol{x}
angle} rac{\langle oldsymbol{A} oldsymbol{x}, oldsymbol{x}
angle}{\langle oldsymbol{x}, oldsymbol{x}
angle}$$

or

$$\lambda_k = \min_{oldsymbol{S}, \dim(oldsymbol{S}) = n-k+1} \max_{oldsymbol{x} \in oldsymbol{S}, oldsymbol{x}
eq 0} rac{\langle oldsymbol{A} oldsymbol{x}, oldsymbol{x}
angle}{\langle oldsymbol{x}, oldsymbol{x}
angle} rac{\langle oldsymbol{A} oldsymbol{x}, oldsymbol{x}
angle}{\langle oldsymbol{x}, oldsymbol{x}
angle}$$

- $\frac{\langle Ax, x \rangle}{\langle x, x \rangle}$ is called the Rayleigh–Ritz quotient of A.
- $\lambda_1 = \max_{\boldsymbol{x} \neq 0} \frac{\langle A\boldsymbol{x}, \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$ and $\lambda_n = \min_{\boldsymbol{x} \neq 0} \frac{\langle A\boldsymbol{x}, \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$.

Question: Use min-max theorem to show that $\sigma_1 = ||A||_2$.

Interlacing Theorem

Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric. Let $\mathbf{B} \in \mathbb{R}^{m \times m}$ with m < n be a principal submatrix (obtained by deleting both *i*-th row and *i*-th column for some values of *i*). Suppose \mathbf{A} has eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$, and \mathbf{B} has eigenvalues $\mu_1 \geq \cdots \geq \mu_m$. Then

$$\lambda_k \geq \mu_k \geq \lambda_{n+k-m}$$
 for $k = 1, \dots, m$

and if m = n - 1,

$$\lambda_1 \ge \mu_1 \ge \lambda_2 \ge \mu_2 \ge \dots \ge \mu_{n-1} \ge \lambda_n$$

PageRank

- PageRank is the first Google algorithm developed to evaluate the quality and importance of web pages.
- Webgraph created by all World Wide Web pages as nodes and hyperlinks as edges.

• Likelihood that a person randomly clicking on links will arrive at any particular page.

PageRank

• PageRank value of a page is given as:

$$PR(p_i) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)},$$

 $p_1, p_2, ..., p_N$ are the pages, $M(p_i)$ = set of pages that link to $p_i, L(p_j)$ = number of outbound links on page p_j , N = total number of pages, and d = damping factor.

• The values are the entries of the dominant right eigenvector of the modified adjacency matrix rescaled so that each column adds up to one.

$$\mathbf{r} = \begin{bmatrix} PR(p_1) \\ PR(p_2) \\ \vdots \\ PR(p_N) \end{bmatrix}$$

 \bullet **r** is the solution of the equation

$$\mathbf{r} = \begin{bmatrix} (1-d)/N \\ (1-d)/N \\ \vdots \\ (1-d)/N \end{bmatrix} + d \begin{bmatrix} \ell(p_1, p_1) & \ell(p_1, p_2) & \cdots & \ell(p_1, p_N) \\ \ell(p_2, p_1) & \ddots & & \vdots \\ \vdots & & \ell(p_i, p_j) & \\ \ell(p_N, p_1) & \cdots & & \ell(p_N, p_N) \end{bmatrix} \mathbf{r}$$

the adjacency function $\ell(p_i, p_j)$ is the ratio between number of links outbound from page j to page i to the total number of outbound links of page j.

$$\sum_{i=1}^{N} \ell(p_i, p_j) = 1$$

The matrix is a stochastic matrix. Closely related to the problem of finding the stationary points of Markov processes. It is also a variant of the eigenvector centrality measure used commonly in network analysis.

UT Austin CSE 392 Jan, 2024 13 / 20

Dimensionality Reduction

Dimensionality Reduction

- Dimensionality Reduction (DR) techniques pervasive to many data applications.
- Reduce computational cost; but also more often :
 - ▶ reduce noise and redundancy in data, and
 - discover patterns.
- Given $\boldsymbol{x} \in \mathbb{R}^d$, and $k \ll d$, find the mapping $\Phi : \boldsymbol{x} \in \mathbb{R}^d \longrightarrow \boldsymbol{y} \in \mathbb{R}^k$.

Projection-based Dimensionality Reduction

- Given dataset $X = [x_i, \dots, x_n]$, and dimension k, find the reduced set Y.
- Projection method: Explicit mapping to the lower dimension

$$oldsymbol{y} = oldsymbol{V}^ op oldsymbol{x}$$

with $V \in \mathbb{R}^{d \times k}$.

• Projection-based Dimensionality Reduction : $Y = V^{\top}X$. Find the best such mapping (optimization) given that the y_i 's must satisfy certain constraints.

UT Austin CSE 392 Jan, 2024 16 / 20

Principal Component Analysis

- Principal Component Analysis (PCA) : find (orthogonal) V so that projected data $Y = V^{\top}X$ has maximum variance.
- Maximize over all orthogonal $d \times k$ matrices U:

$$\sum_i \|\boldsymbol{y}_i - \frac{1}{n} \sum_j \boldsymbol{y}_j\|_2^2 = \dots = \text{Tr}[\boldsymbol{V}^\top \bar{\boldsymbol{X}} \bar{\boldsymbol{X}}^\top \boldsymbol{V}],$$

where $\bar{\boldsymbol{X}} = [\bar{\boldsymbol{x}}_1, \dots, \bar{\boldsymbol{x}}_n]$ with $\bar{\boldsymbol{x}}_i = \boldsymbol{x}_i - \boldsymbol{\mu}$, and $\boldsymbol{\mu} = \text{mean}$.

• Solution: V = dominant k eigenvectors of the covariance matrix. Top k singular vectors of \bar{X} .

UT Austin CSE 392 Jan, 2024 17/20

Exercises

- Show that $\bar{X} = X(I \frac{1}{n}ee^{\top})$ (here e = vector of all ones). What does the projector $(I \frac{1}{n}ee^{\top})$ do?
- ullet Show that solution $oldsymbol{V}$ also minimizes reconstruction error:

$$\sum_i \|\bar{\pmb{x}}_i - \pmb{V} \pmb{V}^\top \bar{\pmb{x}}_i\|^2 = \sum_i \|\bar{\pmb{x}}_i - \pmb{V} \bar{\pmb{y}}_i\|^2$$

• It also maximizes $\sum_{i,j} \|\boldsymbol{y}_i - \boldsymbol{y}_j\|^2$

Low rank approximation

• Given a data matrix $X \in \mathbb{R}^{n \times d}$ and integer k, find a rank-k approximation of X.

$$\bullet \ \, \boldsymbol{X}_k = \boldsymbol{U}_k \boldsymbol{\Sigma}_k \boldsymbol{V}_k^\top = \boldsymbol{U}_k \boldsymbol{U}_k^\top \boldsymbol{X} = \boldsymbol{X} \boldsymbol{V}_k \boldsymbol{V}_k^\top.$$

$$oldsymbol{U}_k = rg \min_{oldsymbol{U} \in \mathbb{R}^{n imes k}} \|oldsymbol{X} - oldsymbol{U} oldsymbol{U}^ op oldsymbol{X}\|_F^2 = rg \max_{oldsymbol{U} \in \mathbb{R}^{n imes k}} \|oldsymbol{U} oldsymbol{U}^ op oldsymbol{X}\|_F^2.$$

$$\|\boldsymbol{X} - \boldsymbol{X}_k\|_F^2 = \sum_{i=k+1}^n \sigma_i^2.$$

Eigenfaces