## **Graphic/Image File Formats**

Common graphics and image file formats:

- <a href="http://www.dcs.ed.ac.uk/home/mxr/gfx/">http://www.dcs.ed.ac.uk/home/mxr/gfx/</a>—
   comprehensive listing of various formats.
- See *Encyclopedia of Graphics File Formats* book in library
- Most formats incorporate compression, including lossless or lossy
- Graphics, video and audio compression techniques in next Chapter.











## **Graphic/Image Data Structures**

"A picture is worth a thousand words, but it uses up three thousand times the memory."

- A digital image consists of many picture elements, termed pixels.
- The number of pixels determine the quality of the image (resolution).
- Higher resolution always yields better quality.
- A bit-map representation stores the graphic/image data in the same manner that the computer monitor contents are stored in video memory.











### Monochrome/Bit-Map Images



Figure 1: Sample Monochrome Bit-Map Image

- Each pixel is stored as a single bit (0 or 1)
- A 640 x 480 monochrome image requires 37.5 KB of storage.
- Dithering is often used for displaying monochrome images





Multimedia CM0340









### **Gray-scale Images**





- Each pixel is usually stored as a byte (value between 0 to 255)
- A dark pixel may have a value of 10; a bright one may be 240
- A 640 x 480 greyscale image requires over 300 KB of storage.



CM0340

Multimedia







### **Dithering**

- Dithering is often used when converting greyscale images to monochrome ones e.g. for printing
- The main strategy is to replace a pixel value (from 0 to 255) by a larger pattern (e.g.  $4 \times 4$ ) such that the number of printed dots approximates the greyscale level of the original image
- If a pixel is replaced by a  $4 \times 4$  array of dots, the intensities it can approximate from 0 (no dots) to 16 (full dots).
- Given a  $4 \times 4$  dither matrix e.g.

$$\begin{pmatrix}
0 & 8 & 2 & 10 \\
12 & 4 & 14 & 6 \\
3 & 11 & 1 & 9 \\
15 & 7 & 13 & 5
\end{pmatrix}$$

we can re-map pixel values from 0–255 to a new range 0–16 by dividing the value by (256/17) (and rounding down to integer).



263

Multimedia

**)** 

### Dithering (cont.)

- A simple approach: replace each pixel by a  $4 \times 4$  dots (monochrome pixels). If the remapped intensity is > the dither matrix entry, put a dot at the position (set to 1) otherwise set to 0.
- Note that the size of the dithered image may be much larger. Since each pixel is replaced by  $4 \times 4$  array of dots, the image becomes 16 times as large.
- To keep the image size: an ordered dither produces an output pixel with value 1 iff the remapped intensity level just at the pixel position is greater than the corresponding matrix entry.





Multimedia CM0340

264







Back

### **24-bit Colour Images**





- Each pixel is represented by three bytes (e.g., RGB)
- Supports 256 x 256 x 256 possible combined colours (16,777,216)
- A 640 x 480 24-bit colour image would require 921.6 KB of storage
- Some colour images are 32-bit images,
  - the extra byte of data for each pixel is used to store an alpha value representing special effect information



Multimedia CM0340

265





Back

### **8-bit Colour Images**



Figure 4: Example of 8-Bit Colour Image

- One byte for each pixel
- Supports 256 out of the millions possible
- Acceptable colour quality
- Requires Colour Look-Up Tables (LUTs)
- A 640 x 480 8-bit colour image requires 307.2 KB of storage (the same as 8-bit greyscale)



Multimedia CM0340

266





### Colour Look-Up Tables (LUTs)

- Store only the index of the colour LUT for each pixel
- Look up the table to find the colour (RGB) for the index
- LUT needs to be built when converting 24-bit colour images to 8-bit: grouping similar colours (each group assigned a colour entry)
- Possible for palette animation by changing the colour map



Figure 5: Colour LUT for 8-bit Colour Images



Multimedia CM0340





Back

## **Standard System Independent Formats**

### GIF (GIF87a, GIF89a)

- Graphics Interchange Format (GIF) devised by the UNISYS Corp. and Compuserve, initially for transmitting graphical images over phone lines via modems
- Uses the Lempel-Ziv Welch algorithm (a form of Huffman Coding), modified slightly for image scan line packets (line grouping of pixels) so lossless — Algorithm Soon
- Limited to only 8-bit (256) colour images, suitable for images with few distinctive colours (e.g., graphics drawing)
- Supports interlacing
- GIF89a: supports simple animation, transparency index etc.



Multimedia CM0340

268







### **JPEG**

- A standard for photographic image compression created by the Joint Photographic Experts Group
- Takes advantage of limitations in the human vision system to achieve high rates of compression
- Lossy compression which allows user to set the desired level of quality/compression
- Algorithm Soon Detailed discussions in next chapter on compression.



269

Multimedia

CM0340

44

1

Back

#### TIFF

- Tagged Image File Format (TIFF), stores many different types of images (e.g., monochrome, greyscale, 8-bit & 24-bit RGB, etc.) -> tagged
- Developed by the Aldus Corp. in the 1980's and later supported by the Microsoft
- TIFF is a lossless format (when not utilising the new JPEG tag which allows for JPEG compression)
- It does not provide any major advantages over JPEG and is not as user-controllable it appears to be declining in popularity



Multimedia CM0340







#### **PNG**

- PNG stands for Portable Network Graphics, meant to supersede GIF standard
- Features of PNG
  - Support up to 48 bits per pixel more accurate colours
  - Support description of gamma-correction and alpha-channel for controls such as transparency
  - Support progress display through  $8 \times 8$  blocks.













### Postscript/Encapsulated Postscript

- A typesetting language which includes text as well as vector/structured graphics and bit-mapped images
- Used in several popular graphics programs (Illustrator, FreeHand)
- Does not provide compression, files are often large
- Although able to link to external compression applications





Multimedia









## **System Dependent Formats**

### **Microsoft Windows: BMP**

- A system standard graphics file format for Microsoft Windows
- Used in Many PC Graphics programs, Cross-platform support
- It is capable of storing 24-bit bitmap images





Multimedia







### **Macintosh: PAINT and PICT**

- PAINT was originally used in MacPaint program, initially only for 1-bit monochrome images.
- PICT format was originally used in MacDraw (a vector based drawing program) for storing structured graphics
- Still an underlying Mac format



274

Multimedia









### X-window: XBM

- Primary graphics format for the X Window system
- Supports 24-bit colour bitmap
- Many public domain graphic editors, e.g., xv
- Used in X Windows for storing icons, pixmaps, backdrops, etc.





Multimedia CM0340







Back

## Basics of Colour: Image and Video

### **Light and Spectra**

- Visible light is an electromagnetic wave in the 400nm 700 nm range.
- Most light we see is not one wavelength, it's a combination of many wavelengths (Fig. 6).



Figure 6: Light Wavelengths

• The profile above is called a *spectra*.



Multimedia CM0340

276









### The Human Eye

- The eye is basically similar to a camera
- It has a lens to focus light onto the Retina of eye
- Retina full of neurons
- Each neuron is either a rod or a cone.
- Rods are not sensitive to colour.









Multimedia CM0340

277







### **Cones and Perception**

 Cones come in 3 types: red, green and blue. Each responds differently to various frequencies of light. The following figure shows the spectral-response functions of the cones and the luminous-efficiency function of the human eye.



Figure 7: Cones & Luminous-efficiency Function of the Human Eye

• Human eyes can't tell lights with different spectra as long as they have the same stimuli.



Multimedia CM0340

278







Back

## **RGB Colour Space**



Figure 8: Original Color Image

 Colour Space is made up of Red, Green and Blue intensity components









## Red, Green, Blue (RGB) Image Space







Red, Green, Blue (RGB) Respective Intensities

















### **CRT Displays**

• CRT displays have three phosphors (RGB) which produce a combination of wavelengths when excited with electrons.



- The *gamut* of colours is all colours that can be reproduced using the three primaries
- The gamut of a colour monitor is smaller than that of color models, E.g. CIE (LAB) Model see later.



Multimedia CM0340

281





Back

### **Colour-Matching Functions**

- To match a given colour with the three colour primaries, a subject is asked to separately adjust the brightness of the three primaries until the resulting light match most closely to the desired colour
- The amounts of R/G/B the subject selects to match each single-wavelength light forms the color-matching curves:

















## **CIE Chromaticity Diagram**

Does a set of primaries exist that span the space with only positive coefficients?

- Yes, but not the pure colours.
- In 1931, the CIE defined three standard primaries (X, Y, Z). The Y primary was intentionally chosen to be identical to the luminous-efficiency function of human eyes.
- All visible colours are in a *horseshoe* shaped cone in the X-Y-Z space. Consider the plane X+Y+Z=1 and project it onto the X-Y plane, we get the *CIE chromaticity diagram* as shown overleaf.



Multimedia CM0340

283







### **CIE Chromaticity Diagram (Cont.)**

CIE chromaticity diagram:



- The edges represent the pure colours (sine waves at the appropriate frequency)
- White (a blackbody radiating at 6447 kelvin) is at the dot
- When added, any two colours (points on the CIE diagram) produce a point on the line between them.



284

Multimedia

CM0340





#### L\*a\*b\* (Lab) Colour Model

- A refined CIE model, named CIE L\*a\*b\* in 1976
- Luminance: L
   Chrominance: a ranges from green to red, b ranges from blue to yellow
- Used by Photoshop



Lab model













Back



## Lab Image Space



**Original Color Image** 



L, A, B Image Intensities



Multimedia CM0340 286







Back

## **Colour Image and Video Representations**

- Recap: A black and white image is a 2-D array of integers.
- Recap: A colour image is a 2-D array of (R,G,B) integer triplets. These triplets encode how much the corresponding phosphor should be excited in devices such as a monitor.
- Example is shown:



Beside the RGB representation, YIQ and YUV are the two commonly used in video.



Multimedia CM0340

287







Back

### YIQ Colour Model

- YIQ is used in colour TV broadcasting, it is downward compatible with B/W TV.
- Y (luminance) is the CIE Y primary. Y = 0.299R + 0.587G + 0.114B

$$Y = 0.299K + 0.58/G + 0.114I$$

• the other two vectors:

$$I = 0.596R - 0.275G - 0.321B Q = 0.212R - 0.528G + 0.311B$$

The YIQ transform:

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.528 & -0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- I is red-orange axis, Q is roughly orthogonal to I.
- Eye is most sensitive to Y, next to I, next to Q. In NTSC, 4 MHz is allocated to Y, 1.5 MHz to I, 0.6 MHz to Q.



288

Multimedia CM0340







## **YIQ Colour Space**



**Original Color Image** 







Y, I, Q Image Intensities



Multimedia CM0340

289







Back

### YUV Color Model

- Established in 1982 to build digital video standard
- Video is represented by a sequence of fields (odd and even lines). Two fields make a frame.
- Works in PAL (50 fields/sec) or NTSC (60 fields/sec)
- Uses the Y, U, V colour space Y = 0.299R + 0.587G + 0.114B, U = B Y V = R Y
- The YUV Transform:

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.299 & -0.587 & 0.886 \\ 0.701 & -0.587 & -0.114 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$





Multimedia











### YCrCb (CCIR 601) Colour Model

- Similar to YUV
- YUV is normalised by a scaling

$$Cb = (B - Y)/1.772$$

$$Cb = (B - Y)$$

$$Cr = (R - Y)/1.402$$

$$\begin{bmatrix} Y \\ Cr \end{bmatrix} = \begin{bmatrix} 0.299 \\ -0.169 \end{bmatrix}$$

$$\begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \end{bmatrix}$$

$$\begin{bmatrix} Y \\ Cr \\ Cb \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$



Multimedia CM0340















# YCrCb Colour Space



Original Color Image



4



Y, Cr, Cb Image Intensities



смоз40 292

Multimedia











Close

#### The CMY Colour Model

- Cyan, Magenta, and Yellow (CMY) are complementary colours of RGB (Fig. 9). They can be used as Subtractive Primaries.
- CMY model is mostly used in printing devices where the colour pigments on the paper absorb certain colours (e.g., no red light reflected from cyan ink).



Figure 9: The RGB and CMY Cubes



Multimedia CM0340

293









#### The CMY Colour Model (cont.)

Combinations of additive and subtractive colours.

















Back

## Conversion between RGB and CMY

E.g., convert White from (1, 1, 1) in RGB to (0, 0, 0) in CMY.

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$















### **CMYK Color Model**

• Sometimes, an alternative CMYK model (K stands for *Black*) is used in colour printing (e.g., to produce darker black than simply mixing CMY). where

K = min(C, M, Y),



296

Multimedia

M = M - K,<br/>Y = Y - K.

C = C - K







# **CMYK Colour Space**



Original Color Image



C, M, Y, K image Intensities















### **Summary of Colour**

- Colour images are encoded as triplets of values.
- Three common systems of encoding in video are RGB, YIQ, and YCrCb.
- Besides the hardware-oriented colour models (i.e., RGB, CMY, YIQ, YUV), HSB (Hue, Saturation, and Brightness, e.g., used in Photoshop) and HLS (Hue, Lightness, and Saturation) are also commonly used.
- YIQ uses properties of the human eye to prioritise information.
   Y is the black and white (luminance) image, I and Q are the colour (chrominance) images. YUV uses similar idea.
- YUV/YCrCb is a standard for digital video that specifies image size, and decimates the chrominance images (for 4:2:2 video) — more soon.



Multimedia CM0340

230







#### **Basics of Video**

#### **Types of Colour Video Signals**

- Component video each primary is sent as a separate video signal.
  - The primaries can either be RGB or a luminance-chrominance transformation of them (e.g., YIQ, YUV).
  - Best colour reproduction
  - Requires more bandwidth and good synchronisation of the three components
- Composite video colour (chrominance) and luminance signals are mixed into a single carrier wave. Some interference between the two signals is inevitable.
- S-Video (Separated video, e.g., in S-VHS) a compromise between component analog video and the composite video. It uses two lines, one for luminance and another for composite chrominance signal.



Multimedia CM0340

299







Back

#### **NTSC Video**

- 525 scan lines per frame, 30 frames per second (or be exact, 29.97 fps, 33.37 msec/frame)
- Aspect ratio 4:3
- Interlaced, each frame is divided into 2 fields, 262.5 lines/field
- 20 lines reserved for control information at the beginning of each field
  - So a maximum of 485 lines of visible data
  - Laser disc and S-VHS have actual resolution of  $\approx$ 420 lines
  - Ordinary TV ≈320 lines



Multimedia CM0340









## NTSC Video Colour and Analog Compression

- Colour representation:
  - NTSC uses YIQ colour model.
  - Composite = Y + I cos(Fsc t) + Q sin(Fsc t), where Fsc is the frequency of colour subcarrier
  - Basic Compression Idea

Eye is most sensitive to Y, next to I, next to Q.

- This is STILL Analog Compression: In NTSC.
- - \* 4 MHz is allocated to Y.
  - \* 1.5 MHz to I,
    - \* 0.6 MHz to Q.
- Similar (easier to work out) Compression (Part of ) in digital compression — more soon



301

Multimedia CM0340

### PAL Video

- 625 scan lines per frame, 25 frames per second
   (40 msec/frame)
- Aspect ratio 4:3
- Interlaced, each frame is divided into 2 fields, 312.5 lines/field
- Colour representation:– PAL uses YUV (YCrCb) colour model
  - 1 AL uses 10 V (1010b) colour model
  - composite =
  - In PAL, 5.5 MHz is allocated to Y, 1.8 MHz each to U and

 $Y + 0.492 \times U \sin(Fsc t) + 0.877 \times V \cos(Fsc t)$ 

V.

PRIFYSGOL CAERDYB

302

Multimedia CM0340







#### **MATLAB Colour functions**

Example MATLAB's image processing toolbox colour space functions:

### **Colormap manipulation:**

colormap — Set or get colour lookup table rgbplot —Plot RGB colourmap components cmpermute — Rearrange colours in colormap.

#### Colour space conversions:

hsv2rqb/rqb2hsv — Convert HSV values/RGB colour space lab2double/lab2uint16/lab2uint8 — Convert Lab colour values to double etc.

ntsc2rgb/rgb2ntsc — Convert NTSC (YIQ)/RGB colour values ycbcr2rqb/rqb2ycbcr — Convert YCbCr/RGB colour



CM0340 303

Multimedia









## **Chroma Subsampling**

Chroma subsampling is a method that stores color information at lower resolution than intensity information. Why is this done? — COMPRESSION

- Human visual system (HVS) more sensitive to variations in brightness than colour.
- So devote more bandwidth to Y than the color difference components Cr/I and Cb/Q.
  - HVS is less sensitive to the position and motion of color than luminance
  - Bandwidth can be optimised by storing more luminance detail than color detail.
- Reduction results in almost no perceivable visual difference.

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Multimedia CM0340

304





Back

## **How to Chroma Subsample?**

Use color difference components. The signal is divided into:

luma (Y) component and

Chroma — two color difference components which we subsample in some way to reduce its bandwidth

How to subsample for chrominance?

The subsampling scheme is commonly expressed as a three part ratio (e.g. 4:2:2):



Multimedia CM0340







## Chroma Subsample 3 Part Ratio Explained

Each part of the three part ratio is respectively:

- 1: Luma (Y) or Red (R) horizontal sampling reference (originally, as a multiple of 3.579 MHz in the NTSC analog television system rounded to 4)
- 2: Cr/I/G horizontal factor (relative to first digit)
- 3: Cb/Q/B horizontal factor (relative to first digit), except when zero.
  - Zero indicates that Cb (Q/B) horizontal factor is equal to second digit, and,
  - Both Cr (I/G) and Cb (Qb) are subsampled 2:1 vertically.

PRIFYSGOL CAERDYD

Multimedia CM0340

000



## Chroma Subsampling Examples



- 4:4:4 no subsampling in any band equal ratios.
- 4:2:2 –>Two chroma components are sampled at half the sample rate of luma, horizontal chroma resolution halved.
- 4:1:1 -> Horizontally subsampled by a factor of 4.
- 4:2:0 -> Subsampled by a factor of 2 in both the horizontal and vertical axes











## **Chroma Subsampling: How to Compute?**

- Simply different frequency sampling of digitised signal
- Digital Subsampling: For 4:4:4, 4:2:2 and 4:1:1
   Perform 2x2 (or 1x2, or 1x4) chroma subsampling
  - Subsample horizontal and, where applicable, vertical directions
  - I.e. Choose every second, fourth pixel value.







Subsampling



Multimedia CM0340

308







Back

#### Chroma Subsampling: How to Compute? (Cont.)

- For 4:2:0, Cb and Cr are effectively centred vertically halfway between image rows.:
  - Break the image into 2x2 pixel blocks and
  - Stores the average color information for each 2x2 pixel group.



4:2:0 Subampling



Multimedia CM0340









Back

### Chroma Subsampling in MATLAB

The MATLAB funtion imresize() readily achieves all our subsampling needs:

```
IMRESIZE Resize image.
```

IMRESIZE resizes an image of any type using the specified interpolation method. Supported interpolation methods include:

'nearest' --- (default) nearest neighbour interpolation 'bilinear' bilinear interpolation

B = IMRESIZE(A, M, METHOD) returns an image that is M times the size of A. If M is between 0 and 1.0, B is smaller than A. If M is greater than 1.0, B is larger than A.

B = IMRESIZE(A, [MROWS MCOLS], METHOD) returns an image of size MROWS-by-MCOLS.

#### After MATLAB colour conversion to YUV/YIQ:

- Use nearest for 4:2:2 and 4:2:1 and scale the MCOLS to half or quarter the size of the image.
- Use bilinear (to average) for 4:2:0 and set scale to half.

See next Lab worksheet



Multimedia CM0340

310





Back

## Digital Chroma Subsampling Errors (1)

This sampling process introduces two kinds of errors:

 A minor problem is that colour is typically stored at only half the horizontal and vertical resolution as the original image subsampling.

This is not a real problem:

- Recall: The human eye has lower resolving power for colour than for intensity.
- Nearly all digital cameras have lower resolution for colour than for intensity, so there is no high resolution colour information present in digital camera images.



Multimedia CM0340

311







## Digital Chroma Subsampling Errors (2)

- Another issue: The subsampling process demands two conversions of the image:
  - From the original RGB representation to an intensity+colour (YIQ/YUV) representation, and
  - Then back again (YIQ/YUV -> RGB) when the image is displayed.
  - Conversion is done in integer arithmetic some round-off error is introduced.
    - This is a much smaller effect,
    - But (slightly) affects the colour of (typically) one or two percent of the pixels in an image.



Multimedia CM0340

312





### **Aliasing in Images**

Stair-stepping — Stepped or jagged edges of angled lines, *e.g.*, at the slanted edges of letters.





Image Zooming — changing resolution or not acquiring image in adequate resolution, e.g. digital zoom on cameras, digital scanning. (see zoom\_alias.m)





**Explanation:** Simply Application of Nyquist's Sampling Theorem: Zooming in by a factor n divides the sample resolution by n



Multimedia CM0340

313







Back

### Aliasing in Video

Temporal aliasing - e.g., rotating wagon wheel spokes apparently reversing direction, (see aliasing\_wheel.m + spokesR.gif):











Frame 1

Frame2

Below Nyquist Video At Nyquist Video Above Nyquist Video

Raster scan aliasing — e.g., twinkling or strobing effects on sharp horizontal lines, (see raster\_aliasing.m + barbara.gif):

Strobing Alias Video Strobing Alias Frequency Distributions Video

Interlacing aliasing — Some video is interlaced, this effectively halves the sampling frequency. e.g.:Interlacing Aliasing effects

Image Aliasing — Stair-stepping/Zooming aliasing effects as images.

**Explanation:** Simply Application of Nyquist's Sampling Theorem



Multimedia CM0340

314



