MA 102 (Mathematics II) IIT Guwahati

Tutorial Sheet No. 1

Linear Algebra

January 10, 2019

- 1. Let **u** and **v** be vectors in \mathbb{R}^n . Prove or disprove the following statements.
 - (a) The equality $\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4}(\|\mathbf{u} + \mathbf{v}\|^2 \|\mathbf{u} \mathbf{v}\|^2)$ holds.
 - (b) The equality $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u} \mathbf{v}\|$ holds if and only if \mathbf{u} and \mathbf{v} are orthogonal.
 - (c) There exist **u** and **v** such that $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 2$ and $\langle \mathbf{u}, \mathbf{v} \rangle = 3$.
- 2. Let **u** and **v** be vectors in \mathbb{R}^n . Show that $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$. What does this say about parallelogram in \mathbb{R}^2 ? Further, show that $|\langle \mathbf{u}, \mathbf{v} \rangle| = \|\mathbf{u}\| \|\mathbf{v}\|$ if and only if $\mathbf{u} = \alpha \mathbf{v}$ for some scalar α .
- 3. Express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} , where

(a)
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$;

(b)
$$\mathbf{u} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$.

- 4. True or False? Give justifications.
 - (a) If \hat{A} is the matrix obtained from A by replacing the ith column \mathbf{a}_i of A by $2\mathbf{a}_i$ then the systems $\hat{A}\mathbf{x} = \mathbf{0}$ and $A\mathbf{x} = \mathbf{0}$ are equivalent.
 - (b) If the rref of a 5×5 matrix A has the third column as $[1, 2, 0, 0, 0]^{\top}$ then $[-1, -2, 1, 0, 0]^{T}$ is a solution of $A\mathbf{x} = \mathbf{0}$.
 - (c) For an $n \times n$ matrix A, the systems $A\mathbf{x} = \mathbf{0}$ and $A^{\top}\mathbf{x} = \mathbf{0}$ are equivalent.
- 5. The *trace* of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of its diagonal entries and is denoted by tr(A), i.e. $tr(A) = a_{11} + \cdots + a_{nn}$.

Prove the following: if A and B are $n \times n$ matrices and α is scalar, then

- 1. tr(A + B) = tr(A) + tr(B);
- 2. $\operatorname{tr}(\alpha A) = \alpha \operatorname{tr}(A);$
- 3. $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 6. Suppose that \mathbf{x} and \mathbf{y} are two distinct solutions of the system $A\mathbf{x} = \mathbf{b}$. Prove that there are infinitely many solutions to this system. Interpret your findings geometrically.
- 7. Decide whether the following pairs are row-equivalent:

(a)
$$\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 5 & -1 & 5 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 10 \\ 2 & 0 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 4 & 3 & -1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 10 \end{bmatrix}$

8. Find all the solutions of the linear system with the augmented matrix $[A \mid \mathbf{b}]$ as given below:

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & 3 & 4 & 2 \\
5 & 6 & 7 & 8 & 5 \\
9 & 10 & 11 & 12 & 8
\end{array}\right]$$

- (a) Find $\hat{\mathbf{b}}$ such that $A\mathbf{x} = \hat{\mathbf{b}}$ does not have a solution.
- (b) By changing exactly one entry of A, find an \hat{A} such that $\hat{A}\mathbf{x} = \mathbf{b}$ will be consistent for all $\mathbf{b} \in \mathbb{R}^3$.
- 9. Determine the reduced row echelon form and the rank of the following matrices

$$(a) \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad (b) \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad (c) \begin{bmatrix} 2 & 4 & 6 & 2 & 4 \\ 1 & 2 & 3 & 1 & 1 \\ 2 & 4 & 8 & 0 & 0 \\ 3 & 6 & 7 & 5 & 9 \end{bmatrix}$$

10. If A and B are $m \times n$ matrices such that $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ are equivalent, then show that A and B are row equivalent.

**** End ****