11.1. Prouver les affirmations suivantes directement à l'aide de la définition avec ϵ et δ (sans utiliser d'autres résultats).

$$i) \lim_{x \to 1} (2x + 8) = 10,$$

$$ii) \lim_{x \to 2} x^2 = 4,$$

$$ii) \lim_{x \to 2} x^2 = 4,$$
 $iii) \lim_{x \to -2} (|x| - x^3) = 10.$

11.2. Calculer $\lim_{x\to x_0} f(x)$, $\lim_{x\to x_0} f(x)$ et $\lim_{x\to x_0} f(x)$ dans les cas où $f:D\to \mathbf{R}$ et $x_0\in \mathbf{R}$ sont définis par:

a)
$$D = \mathbf{R} - \{-1, +1\},\$$

a)
$$D = \mathbf{R} - \{-1, +1\}, \qquad f(x) = \frac{x^3 - 1}{x^2 - 1}, \qquad x_0 = 1;$$

b)
$$D = \mathbf{R} - \{-1, +1\}$$

b)
$$D = \mathbf{R} - \{-1, +1\}, \qquad f(x) = \frac{x^3 - 1}{x^2 - 1}, \qquad x_0 = -1;$$

c)
$$D = \mathbf{R}$$

$$f(x) = x \text{ si } x \in \mathbf{Q}$$

c)
$$D = \mathbf{R}$$
, $f(x) = x \text{ si } x \in \mathbf{Q}$, $f(x) = 0 \text{ si } x \notin \mathbf{Q}$, $x_0 = 0$;

$$x_0 = 0$$

d)
$$D = \mathbf{R}$$

d)
$$D = \mathbf{R}$$
, $f(x) = x \text{ si } x \in \mathbf{Q}$, $f(x) = 0 \text{ si } x \notin \mathbf{Q}$, $x_0 = 1$.

$$f(x) = 0 \text{ si } x \notin \mathbf{Q}$$

$$x_0 = 1$$
.

11.3. Soit $f: D \to \mathbf{R}$ une fonction croissante définie au voisinage de $x_0 \in \mathbf{R}$. Démontrer que

$$\lim_{\substack{x \to x_0 \\ >}} f(x)$$
 et $\lim_{\substack{x \to x_0 \\ <}} f(x)$ existent.