



#### 1 Somas de Riemann

Objetivo: calcular a área da região definida pelo gráfico duma função [app]

• Uma partição  $P_n$  de um intervalo I = [a, b] é um conjunto de n + 1 pontos

$$P_n = \{x_i, i = 0, \dots, n : a = x_0 < x_1 < \dots < x_{n-1} < x_n = b\}$$

A partição regular, com  $x_i = a + \frac{b-a}{n}i$ , é a escolha mais comum

• A amplitude (norma) da partição  $P_n$  é  $\Delta P_n = \max_{i=1,...,n} |x_i - x_{i-1}|$ 

A partição regular tem amplitude  $\Delta P_n = \frac{b-a}{n}$ 

- À sequência  $C_n = \{\xi_1, \dots, \xi_n\}$  é compatível com  $P_n$  se  $\xi_i \in [x_{i-1}, x_i]$ Tipicamente,  $\xi_i$  é  $x_{i-1}$  ou  $x_i$  ou o minimizante/maximizante de f (contínua!) em  $[x_{i-1}, x_i]$
- A soma de Riemann da função f associada à partição  $P_n$  do intervalo  $[a, b] \in D_f$  e à sequencia  $C_n$  compatível com  $P_n$  é o sumatório

$$S(f, P_n, C_n) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$

# Somas de Riemann e integrabilidade

A função f é integrável (à Riemann) em  $[a,b] \subseteq D_f$  e  $\int_a^b f(x) dx = I \in \mathbb{R}$  se

$$S(f, P_n, C_n) \to I$$
, quando  $n \to +\infty$ , desde que  $\Delta(P_n) \to 0$ 

sendo  $P_n$  partições de [a, b] em n intervalos e  $C_n$  sequências compatíveis.

*Negativamente*: f não é integrável se  $S(f, P_n, C_n)$  não tem limite, ou seja,

- para alguma escolha de  $P_n$  e  $C_n$ ,  $S(f, P_n, C_n) \rightarrow \pm \infty$  ou
- para duas escolhas de  $P_n$  e  $C_n$ ,  $S(f, P_n, C_n)$  tem limites diferentes

Contudo, se f é integrável,  $S(f, P_n, C_n) \rightarrow \int_{-1}^{b} f(x) dx$  para quaisquer  $P_n$  e  $C_n$ 

Exemplo: supondo que f(x) = x é integrável,  $\int_{0}^{2} x dx = 2$  pois, com  $x_{i} = \frac{2i}{n} (\Delta(P_{n}) = \frac{2}{n})$  e  $\xi_{i} = x_{i}, i = 1, ..., n, S(f, P_{n}, C_{n}) = \sum_{i=1}^{n} f(\frac{2i}{n}) \frac{2}{n} = \frac{4}{n^{2}} \sum_{i=1}^{n} i = \frac{4}{n^{2}} \frac{n^{2} + n}{2} = 2 + \frac{2}{n} \xrightarrow{\Delta(P_{n}) \to 0} 2$ 

# Propriedades do integral de Riemann

Sejam f e g duas funções integráveis no intervalo I = [a, b]

- f é integrável em qualquer  $[c, d] \subseteq I$
- aditividade:  $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$  (desde que estes existam) consequentemente:  $\int_{a}^{a} f(x) dx = 0 e \int_{a}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$
- linearidade:  $\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx, \ \forall \alpha, \beta \in \mathbb{R}$
- designaldade triangular: |f| é integrável em I e  $\left|\int_{a}^{b} f(x) dx\right| \le \int_{a}^{b} |f(x)| dx$
- monotonia:  $f(x) \le g(x)$ ,  $\forall x \in I \Rightarrow \int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$
- teorema de Lagrange (!?) ou da média integral: f contínua em  $I \Rightarrow \exists c \in I : f(c) = \frac{1}{b-a} \int_{-a}^{b} f(x) dx$



# Condições de integrabilidade

Da função f, num intervalo  $I = [a, b] \subseteq D_f$ , podemos afirmar que ...

diferenciável ⇒ contínua ⇒ integrável ⇒ limitada

não limitada ⇒ não integrável

• limitada em I e não contínua num número finito de pontos  $\Rightarrow$  integrável

 $f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Z} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Z} \end{cases} \text{ \'e integrável em qualquer intervalo } [a, b] \subseteq \mathbb{R}$ 

• g integrável em I e  $f(x) \neq g(x)$  num número finito de pontos  $\Rightarrow$  integrável

sendo 
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx$$

com f do no exemplo anterior e  $g(x) \equiv 0$ ,  $\int_a^b f(x) dx = \int_a^b 0 dx = 0$ ,  $\forall [a, b] \subseteq \mathbb{R}$ 

monótona em  $I \Rightarrow$  integrável

 $\lceil mesmo\ com\ \infty\ descontinuidades\ em\ I \rceil$ 

#### 5 **Exercícios**

- 1. Considera a função definida em  $\mathbb{R}$  por  $f(x) = \begin{cases} \frac{\operatorname{tg} x}{x} & \operatorname{se} x \in ]0, \frac{\pi}{2}[\\ \operatorname{sen} x & \operatorname{se} x \notin ]0, \frac{\pi}{2}[ \end{cases}$ 
  - (a) Mostra que f é integrável em  $\left[-\pi, \frac{\pi}{4}\right]$ .
  - (b) Mostra que f não é integrável em  $\left[\frac{\pi}{4}, \pi\right]$ .
- 2. Seja f uma função de domínio D=[0,2] tal que f(0)=0 e, para cada  $n=0,1,2,3,\ldots,$   $f(x)=\frac{1}{2^n}$ (constante) no intervalo  $]\frac{1}{2^n},\frac{2}{2^n}].$  Esboça o gráfico de fe, baseando-te nele:
  - (a) justifica que f é integrável;
  - (b) mostra que  $A = \int_0^2 f(x) dx = 1 + \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \frac{1}{4^4} + \cdots$ ;
  - (c) verifica que  $\frac{1}{2}x \le f(x) \le x$  e prova que  $A \in \left[\frac{5}{4}, \frac{3}{2}\right]$ .

# Funções primitiváveis e integráveis

Observação: as derivadas laterais da função F (que definem F') não são limites laterais de F'

derivadas laterais: 
$$F_{\pm}^{l}(c) = \lim_{x \to c^{\pm}} \frac{F(x) - F(c)}{x - c}$$
 limites laterais da derivada:  $F^{l}(c^{\pm}) = \lim_{x \to c^{\pm}} F^{l}(x)$ 

contudo:  $\circledast$  se F é contínua e existe  $F'(c^{\pm})$ , então  $F'_{\pm}(c) = F'(c^{\pm})$ 

[pela regra de Cauchy]

F é uma primitiva de f (ou seja, f é a derivada de F) em I = [a, b] se e só se

$$F'_{+}(a) = f(a); \quad F'(x) = f(x), \forall x \in ]a, b[; \quad F'_{-}(b) = f(b)$$

Sendo assim, F é contínua em I = [a, b] (à direita em a e à esquerda em b) e

f primitivável em [a, b] e  $\lim_{x \to c} f(x) \in \mathbb{R} \Rightarrow f$  contínua em  $c \in I$ 

[aplicar ⊕]

integrável  $\neq$  primitivável f do slide 4 tem  $\lim_{x\to c} f(x) \equiv 0$  e não é contínua

primitivável  $\neq$  integrável  $f(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$  não é limitada perto de x = 0,

mas tem primitiva  $F(x) = \begin{cases} x^2 \sin \frac{1}{x^2} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$  (contínua, com  $F'_{\pm}(0) = 0$ ) [verificar!]

wiki
ver também [2.1 Primitivas - parte 4]



# Fórmula de Barrow – cálculo do integral de Riemann

f integrável e primitivável (com  $f = F^{\prime}$ ) em [a, b] ou, em particular, contínua,

então 
$$\int_{a}^{b} f(x) dx = F(b) - F(a) = \left[ F(x) \right]_{a}^{b}$$
 (fórmula de Barrow)

Em muitos casos não é necessário calcular explicitamente a primitiva

$$\int_{a}^{b} f(u)u' dx = \int_{u(a)}^{u(b)} f(u) du$$

$$\int_{a}^{b} f'(x)g(x) dx = \left[f(x)g(x)\right]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\phi(t))\phi'(t) dt \quad \text{onde } \phi(\alpha) = a \in \phi(\beta) = b$$

Nesta fórmula,  $\phi$  pode não ser invertível! Caso seja,  $\alpha = \phi^{-1}(a)$  e  $\beta = \phi^{-1}(b)$ 

**Exemplos:** 

(a) 
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cot x \, dx = \ln 2$$

(b) 
$$\int_{1}^{e} \ln x \, dx = 1$$

(a) 
$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cot x \, dx = \ln 2$$
 (b)  $\int_{1}^{e} \ln x \, dx = 1$  (c)  $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2 + \tan x} \, dx = \frac{\pi + \ln 3}{5}$ 

# O 'Teorema Fundamental' do cálculo integral

Dada a função  $f \in c \in D_f$ , seja  $F(x) = \int_{-\infty}^{x} f(t) dt$ 

- $d \in D_F$  se e só se f é integrável no intervalo de extremos c e d
- $D_F \subseteq D_f$  é sempre um intervalo que contém c, sendo F(c) = 0
- F é contínua (no domínio)
- f contínua em  $d \in D_F \Rightarrow F'(d) = f(d)$ , ou seja, contínua  $\Rightarrow$  primitivável
- senão, caso existam os limites laterais  $f(d^{\pm})$ , então  $F'_{\pm}(d) = f(d^{\pm})$
- para  $a, b \in D_F$ ,  $\int_a^b f(x) dx = F(b) F(a)$

De uma forma mais geral, seja  $G(x) = \int_{a(x)}^{\beta(x)} f(t) dt$ 

- $d \in D_G$  se e só se f é integrável no intervalo de extremos  $\alpha(d)$  e  $\beta(d)$
- $\alpha$ ,  $\beta$  contínuas  $\Rightarrow$  G contínua
- $\alpha$ ,  $\beta$  diferenciáveis e f contínua  $\Rightarrow G'(x) = f(\beta(x)) \cdot \beta'(x) f(\alpha(x)) \cdot \alpha'(x)$

#### Exercícios

- 3. Sabendo que  $F(x) = \int_0^x f(t) dt$ , onde  $f(t) = \begin{cases} 2 & \text{se } t \in [0, 1] \\ 1 & \text{se } t \in ]1, 2[ \\ \frac{4}{2} & \text{se } t \ge 2 \end{cases}$ 
  - (a) caracteriza a funcão *F*;
  - (b) calcula e interpreta o significado geométrico do  $\lim_{x\to +\infty} F(x)$ ;
  - (c) caracteriza a função F'.
  - (d) A função F tem derivadas laterais nos pontos, caso existam, onde  $F^{\mathsf{I}}$  não está definida?
- 4. Considera a função definida por  $F(x) = \int_{x}^{4x} \frac{1}{\sqrt{t}-2} dt$ .
  - (a) Determina o domínio de *F*.
  - (b) Caracteriza a função F'.
  - (c) Caracteriza a função F.



Slides (turmas TP4-6/8/9

## 10 Exercícios

- 5. Dada a função F definida por  $F(x) = 3 + \int_{\pi}^{x} \frac{1 + \sin^2 t}{t 4} dt$ ,
  - (a) determina o domínio de *F*;
  - (b) justifica que F é invertível;
  - (c) calcula  $(F^{-1})'(3)$ .
- 6. Considera a função F definida por  $F(x) = \int_0^{x^2} x^3 e^{t^2} dt$  em  $I = \mathbb{R}_0^+$ .
  - (a) Justifica a diferenciabilidade de F em I.
  - (b) Determina  $F^{I}(x)$  para  $x \in I$  e mostra que x = 0 é um minimizante global de F.
  - (c) Calcula (justificando!)  $\lim_{x\to 0^+} \frac{F(x)}{\sin x}$ .

### 11 Exercícios

7. Calcula os seguintes integrais definidos:

(a) 
$$\int_0^1 \frac{x}{x^2 + 6x + 9} \, dx$$

(b) 
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{(1 + \sin x)(3 + \sin x)} \, dx$$

(c) 
$$\int_0^1 \ln \frac{1+x}{1+x^2} \, dx$$

(d) 
$$\int_0^{\sqrt{3}} \frac{x^3}{\sqrt{4-x^2}} dx$$

(e) 
$$\int_0^9 \frac{1}{\sqrt{1+\sqrt{x}}} dx$$

(f) 
$$\int_{1}^{e} \operatorname{sen}(\pi \ln x) \, dx$$

(g) 
$$\int_0^1 \frac{x^3 + 1}{\sqrt{x^2 + 3}} \, dx$$

(h) 
$$\int_{\sqrt{2}}^{2} \frac{\sqrt{x^2 - 1}}{x^2} dx$$

### 12 Exercícios

- 8. Calcula a área da região ...
  - (a) ... sombreada na Figura A, delimitada por  $y = x^2$ , y = 3x + 10 e  $y = \frac{1}{2}x$ ;





- (b) ... sombreada na Figura B, delimitada por  $2y = x^2 e x^2 + y^2 = 8$ ;
- (c) ... delimitada pelos gráficos de  $f(x) = x^3 2x^2 3x$  e g(x) = -2(x+1).

#### Solucões

- (a) Sendo contínua em  $[-\pi, 0]$ , f também é limitada (teorema de Weierstrass); em  $[0, \frac{\pi}{4}]$  f é contínua e, sendo  $\lim_{x \to 0^+} f(x) = 1 \in \mathbb{R}$ , é limitada: sendo limitada com, no máximo, uma descontinuidade (em x = 0), f é  $x \to 0^+$ ,  $x \to 0^+$  integrável em  $[-\pi, \frac{\pi}{4}]$ .
  - (b) Como f não é limitada em  $\left[\frac{\pi}{4}, \pi\right]$ , pois  $\lim_{x \to \frac{\pi}{2}^-} f(x) = +\infty$ , então não é integrável.
- (a) *f* é monótona (crescente);
  - (b) como  $f(x) \ge 0$  no domínio, o integral de f é igual à área da região delimitada pelo gráfico de f e pelo eixo das abcissas no intervalo [0, 2], ou seja, A é a soma das áreas dos quadrados de lado 1,  $\frac{1}{2}$ ,  $\frac{1}{2^2}$ ,  $\frac{1}{2^3}$ , ..., ou seja,  $1^2 = 1$ ,  $\frac{1}{2^2} = \frac{1}{4}$ ,  $\frac{1}{(2^2)^2} = \frac{1}{4^2}$ ,  $\frac{1}{(2^3)^2} = \frac{1}{4^3}$ , ...;



- (c) o gráfico mostra que  $f(x) \in [\frac{1}{2}x, x]$ ; assim, se Q é o quadrado cujo lado é o intervalo [1, 2] (da reta y = 0) e  $T_1$ e  $T_2$  são os triângulos retângulos com base no intervalo [0,1] e hipotenusa na reta  $y=\frac{1}{2}x$  e, respetivamente, y = x, então a região de área A contém a reunião de Q e  $T_1$ , de área  $\frac{5}{4}$ , e está contida na reunião de Q e  $T_2$ , de área  $\frac{3}{2}$ .
- (a) Como f é integrável em [0, x] para qualquer  $x \ge 0$  (sendo limitada com, no máximo, 2 descontinuidades), Festá definida em  $D_F = \mathbb{R}_0^+$ . A sua expressão é

$$F(x) = \begin{cases} \int_0^x f(x) \, dx &= \int_0^x 2 \, dx &= 2x & \text{se } x \in [0, 1] \\ \int_0^1 f(x) \, dx + \int_1^x f(x) \, dx &= F(1) + \int_1^x 1 \, dx &= 1 + x & \text{se } x \in [1, 2] \\ \int_0^2 f(x) \, dx + \int_2^x f(x) \, dx &= F(2) + \int_2^x \frac{4}{x^2} \, dx &= 5 - \frac{4}{x} & \text{se } x \ge 2 \end{cases}$$

- (b) Sendo  $f(x) \ge 0$  no domínio, F(x) representa uma área: o limite de F com x que tende para  $+\infty$  (igual a 5), é a área da região limitada inferiormente pelo eixo das abcissas e superiormente pelo gráfico de f em  $\mathbb{R}_0^+$ (ilimitada à direita).
- (c) Dado que f não é contínua em x=1, sendo  $\lim_{x\to 1^-} f(x) \neq \lim_{x\to 1^+} f(x)$ , mas é contínua em x=2, então F' está definida, e é igual a f, em  $\mathbb{R}_0^+ \setminus \{1\}$ .
- (d) Pela continuidade de F,  $F'_{-}(1) = \lim_{x \to 1^{-}} F'(x) = \lim_{x \to 1^{-}} f(x) = 2$  e  $F'_{+}(1) = \lim_{x \to 1^{+}} F'(x) = \lim_{x \to 1^{+}} f(x) = 1$ .
- 4. (a)  $D_F = [0,1[\cup]4,+\infty[$  (é necessário que  $[x,4x] \subseteq \mathbb{R}_0^+ \setminus \{4\}$ , onde  $\frac{1}{\sqrt{t}-2}$  é contínua).
  - (b)  $F'(x) = \frac{2}{\sqrt{x}-1} \frac{1}{\sqrt{x}-2} = \frac{\sqrt{x}-3}{x-3\sqrt{x}+2}$  em  $D_F$  (pela continuidade de  $\frac{1}{\sqrt{t}-2}$  e diferenciabilidade de x e 4x).
  - (c)  $F(x) = 2\sqrt{x} + 4 \ln \frac{2\sqrt{x}-2}{\sqrt{x}-2}$ .
- 5. (a)  $D_F = ]-\infty, 4[$  (intervalo que contém  $\pi$  e contido em  $\mathbb{R} \setminus \{4\}$ , domínio de  $\frac{1+\sin^2 t}{t-4}$ ).
  - (b)  $F'(x) = \frac{1+\sin^2 x}{x-4} < 0$ , para  $x \in D_F$ , logo F é estritamente decrescente e invertível.
  - (c)  $(F^{-1})'(3) = \frac{1}{F'(F^{-1}(3))} = \frac{1}{F'(\pi)} = \pi 4.$
- 6. (a) É o produto de funções diferenciáveis:  $x^3$  e  $\int_0^{x^2} e^{t^2} dt$  (porque  $e^{x^2}$  é contínua e  $x^2$  é diferenciável).
  - (b)  $F'(x) = 3x^2 \int_0^{x^2} e^{t^2} dt + 2x^4 e^{x^4} > 0$  para x > 0; pela monotonia, o mínimo é F(0) = 0.
  - (c) O limite é 0, aplicando a regra de Cauchy (pela continuidade,  $\lim_{x \to 0} F(x) = F(0) = 0$ ).
- 7. (a)  $\ln \frac{4}{3} \frac{1}{4}$  (b)  $\frac{1}{2} \ln \frac{3}{2}$
- (c)  $1 \frac{\pi}{2} + \ln 2$  (d)  $\frac{5}{3}$

- (e)  $\frac{16}{2}$

- (f)  $\frac{(1+e)\pi}{1+\pi^2}$  (g)  $2\sqrt{3} \frac{10}{3} + \frac{1}{2}\ln 3$  (h)  $\frac{\sqrt{2} \sqrt{3}}{2} + \ln \frac{2 + \sqrt{3}}{1 + \sqrt{5}}$
- 8. (a)  $\frac{26}{3}$  (b)  $2\pi + \frac{4}{3}$  (c)  $\frac{37}{12}$