

#ml-papers June 2019

Deep Learning and Long Term Investing

Why DL for long-term investing?

- Stock price should approach fundamental value in the long-term
- Sequenced input data = use RNN
- Automate "factor engineering"
- Lots of text to analyze
 - SEC filings
 - blog posts
 - social media
 - earnings transcripts
- Short-term allows testing with greater frequency, but many exogenous factors
 - Over the long-term, fundamentals play primary role in determining value

Setup

- Predict 1-year horizon
 - Balance between having sufficient data and removing noise from non-fundamental factors
- Monthly predictions
 - The model is asked, at each time step (month), to make a prediction about what will happen to the stock's price 12 time steps (one year) in the future
- Target: if the change in price for a stock is greater than the median change in price for all stocks, we assign it an outcome of +1.
 Otherwise, the outcome is -1
 - Does not predict degree of outperformance, but this lower bar makes learning easier and can still use it to achieve good performance

Predicting Outcomes Many Time Steps into the Future

The Data Set (from S&P's Compustat db)

- Includes any stocks that have been public for at least 36 months and traded between January 1970 and December 2015 (45 year total span)
- For each month, there are approximately 1,300 to 5,000 companies. The entire dataset represents approximately 10,000 companies.
- Non-US-based companies, companies in the financial sector, and companies with market capitalization below 100 million US dollars (date adjusted) are excluded

Income Statement & Other Items	Balance Sheet
Sales (Revenue)	Cash & Cash Equivalents
Cost of Goods Sold	Receivables
Sales, General, and Admin Expenses	Current Assets
Operating Income After Depreciation	Property Plant & Equipment
Net-Income	Other Assets (Incl. Goodwill)
Capital Expenditures	Total Assets
Dividends	Debt in Current Liabilities
Common Shares Outstanding	Accounts Payable
Price per Share	Current Liabilities
	Long-Term Debt
	Other Liabilities
	Total Liabilities
	Minority Interest
	Preferred Stock
	Shareholders' Equity

Input Features

Momentum

 Calculate the trailing 1-, 3-, 6-, and 9-month stock price change adjusted for splits, then find the percentile ranking, among all companies within the same month

Valuation

- Book to Market = (Shareholder's Equity)/(Market Cap)
- Earnings Yield = the reciprocal of P/E ratio
- Use the respective relative percentile rankings AND the raw values

Input Features (cont.)

Normalized fundamental features

Normalize data by dividing items by the L2 norm of each fundamental item

Year-over-year changes in fundamental features

- Year-over-year "log" change in value i.e., log[v(t)/v(t-1)] for balance sheet and income statement items that do not take on a negative value.
 - We use logarithms here to ensure that outlier changes (very large changes) don't have a disproportionate impact on the factor values

Input Features (cont.)

Missing value indicator features

- Reasons for missing values: an unreported item, a fiscal year change that prevents the creation of a trailing twelve-month sequence, a data collection issue, or a division by zero when a ratio is computed.
- Every input feature has a corresponding binary indicator feature that is equal to
 1 if the feature's value is missing for a given company-month; otherwise it is
 equal to 0
 - If the value is missing but it is not missing in the prior time-step (for the same company), then the prior time step value is pulled forward into the current time-step. However, the missing value indicator field value is still set to 1. If no value can be pulled forward, the missing value is set to zero.

Part 3 - Overview

- Intro to traditional model for long term investing a.k.a "factor" models
- 2) Intro to deep learning
- 3) Similarities & Differences between the 2 techniques

Part 3 - Factor Models

- When back-testing factor models we care about by how much they outperform the market but also about the statistical significance of the back-test (measured as a t-score)
- We run into a familiar problem when we're testing
 100 factors.. increased FPR
- They cite this paper which proposes adjusting statistical significance by the # of hypotheses being tested.. we might be able to apply something similar to Wisdom one day?

Part 3 - Factor Model Example

- 1) sort companies on Book Equity (amount available for distribution to shareholders) / Market Equity (how much investors think the company is worth), split into high, middle & low (30%, 40%, 30%).
 - i) Companies in the high group are desirable, low group = "growth" because they are expensive and presumably there's a reason for that.. this seems to correspond with an intuition of liquidity
- 2) HML (high minus low) is a strategy where you invest in "high" group stocks (value stocks) and short low (growth) stocks, HML returns (called value returns) are used to benchmark other strategies

Part 3 - Deep Learning

- DL 101: function approximation, training loop & convergence..
 not too much time spent on this author says to treat it as a black box for now
- Like other supervised ML, but with less feature engineering:) We can dump raw signals into a NN with dropout and let it learn efficient representations.
- Incredibly obvious advantage: less time spent researching new factors
- RNNs can model a companies evolution over time and recognize distributional shifts
- target: "probability that the company (represented by the input) will have a total return (price change plus dividends reinvested) greater than the median total return of all stocks"

Part 3 - Factor Models vs Deep Learning

- They can both be used for the same thing
- Authors tie out of sample prediction with multiple comparison bias
- Machine learning is an "automation of the scientific method" (cite)
- No real conclusion made..? It's basically just repeating earlier sections